Birla Central Library

PILANI (Jaipur State)

(Engg College Branch)

Class No: 690.0834

Book No :- B 60 B

Accession No:-30476

BUILDING AND STRUCTURAL TABLES

BUILDING

AND

STRUCTURAL TABLES 2

for Architects, Builders and Engineers

FREDERICK HYDE BLAKE

B.Sc.(Eng.), M.I.C.E., M.I.Struct.E.

LONDON

CHAPMAN AND HALL LTD

37 ESSEX STREET, W.C.2

THIS BOOK IS PRODUCED IN COMPLETE
CONFORMITY WITH THE AUTHORIZED
ECONOMY STANDARDS

Catalogue No. 301/4
Printed in Great Britain by The Whitefriars Press Ltd.
London and Tonbridge.
Bound by G. & J. Kitcat Ltd., London.
Flexiback Binding.

PREFACE

The object of this volume of Tables is to present in convenient form the data most frequently required in the design and construction of buildings.

Formerly, the lack of standard specifications and corresponding permissible stresses for the numerous materials used in engineering and building construction resulted in a great waste of time, as each engineer and architect was obliged to concoct his own rules. To-day, the very multiplicity of regulations brings its own problem, and it is the aim of the compiler of the present volume to marshal and compare the data most often needed.

The requirements of the rival authorities generally differ only to a trivial extent, and it is earnestly hoped that the various Ministries now concerning themselves with building standards will come together and cause to be produced, by men who understand the subject, a comprehensive code which shall supplant all existing structural regulations and become a national code by force of law. Any special conditions peculiar to particular localities, unusual cases of design or the proposed use of new materials, could readily be provided for by local powers of waiver or addition to such a national

code, and provision could be made for its periodical revision.

A number of codes have been in preparation since 1943 under the direction of the Codes of Practice Committee, Ministry of Works. The only one affecting the field of this book which has appeared at the time of going to press is Chapter V of the Code of Functional Requirements of Buildings. In the codes which have yet to appear, increased working stresses in concrete and structural steel are forecast, but the changes will not take effect unless and until they become incorporated in revised by-laws. The codes themselves are not mandatory and do not constitute a national code as envisaged in the preceding paragraph; to the extent that their contents prove unacceptable to local authorities, they will provide yet another series of recommendations to bewilder the designer.

Building codes of practice, reports and by-laws and the invaluable specifications of the British Standards Institution have been examined for the purposes of this book, and abstracted wherever it appeared that the data could be presented with advantage in tabular form. In several cases Tables have been prepared to enable the rules to be applied without calculation. A list of the codes and regulations referred to will be found immediately preceding the Index.

The information has been grouped by subjects, and the general system of arrangement keeps to the same order as the designer normally follows in computing his loads, commencing with the roof and following through to the

The subject matter has been carefully arranged and indexed for rapid reference and care has been taken to ensure that the information is accurate and in accordance with current practice. Attention has been paid to the needs of those who, while not regularly engaged in designing, find themselves confronted from time to time with design problems.

The extensive information on steel design given in the well-known manufacturers' handbooks has been excluded, with one exception. Particulars of vi PREFACE

rolled steel sections and beam loads are so frequently required as to be deemed worthy of repetition.

Tables of reinforced concrete solid and hollow floor slabs, of general application, have been computed; they are arranged in direct-reading form and include constants to facilitate the preparation of calculations for submission to local authorities. Columns and beams are not included because of the great diversity of sizes at present in use. In this connection, attention is drawn to a pamphlet issued by the Reinforced Concrete Association Ltd., viz., "Recommended Dimensions of Reinforced Concrete Structural Members" (March 1946, price 6d.).

The Tables which are based on L.C.C. and other regulations do not claim to deal with every clause and must be read in conjunction with the originals.

In recent years there have been many forecasts of revolutionary methods of building. Notable improvements have indeed been introduced in the field of fittings and prefabricated internal plumbing, but as far as the structure is concerned there is as yet little indication that established methods and materials will be ousted by radically different technique, at least for the majority of permanent buildings.

Some information on plastics is included in the book, but it seems to be generally agreed that, with the possible exception of resin-bonded plywood as a surfacing material, no plastic has yet emerged which has all the qualities necessary for a structural member. Some plastics are, nevertheless, eminently suitable for internal fittings.

Most architects and engineers have experienced the annoyance and delay arising from the necessity to search for the weight of materials with which they are concerned. The book includes a comprehensive list of the densities of materials used in construction, or which may form a structural load, and although omissions are inevitable it is hoped that the collection will be found useful.

The Author records his thanks to the British Standards Institution, the London County Council, the Institution of Structural Engineers, and to certain other authorities mentioned in the text, for permission to quote from the publications named, and to professional friends for valuable suggestions and encouragement.

CONTENTS

	Page
ROOFS	_
Roof Coverings allowed by By-laws	3
Weight and Minimum Pitch	3 5
Gauge and Lap. Steel Angle Purlin Spans and Spacing	6
Weights of Typical Roof Constructions	7
Equivalent Slopes and Length up Slope	8
Downpipes. Asbestos Cement Slates Welsh Slates	9
Shingles. Footage of Tiling and Slating Battens	ΙÍ
Corrugated Steel Sheets, Weight and Coverage	ii
Asbestos Cement Sheets	iż
Weight of Metal Sheet and Wire. Copper Sheet. Lead Sheet	i3
Standard Wire Gauge	14
Birmingham and Zinc Gauges. Iron and Zinc Sheet	15
Hook Bolts, Roofing Nails, Sheeting Bolts, Washers	16
Wind, Snow and other Loading on Roofs and Walls	16
Timber Data	19
Timber Working Stresses	20
Standard and Cubic Foot Equivalents	21
Timber Roof Construction: Rafters, Purlins, Ceiling Joists	23
Loads and Stresses	25
Posts and Struts	26
Reactions at Roof Trusses	27
Reactions on Concrete Padstones; Bearing Plates	29
WALLS, FLOORS AND BEAMS	
Concrete Data	33
Proportions for Concrete Mixes	38
Mixes for Various Purposes	39
All-in Mixes. Batches	39
Quantities per Cubic Yard of Concrete	40
100 Sq. Yards of Concrete	42
Concrete Cost Charts	44
Permissible Stresses in Reinforced Concrete	46
Compressive Stresses in Beams	47
Pressures on Plain Concrete	47 50
Brick Data. Standard Bricks, Air Bricks, Glass Bricks	50 51
Number of Bricks in Brickwork. Mortar Quantities	51 52
Number of Facing Bricks. Brick Bonds Quetta Bond Quantities. Properties of Brickwork	52
Mortar Mixes	54
Heights of Brick Courses	55
Walls and Piers of Brickwork, Masonry and Plain Concrete	58
Strength of Bricks. Local and Eccentric Loads	62
Properties of Building Stones	64
Imposed Loading on Floor Slabs	65
Weight of Finishes, Ceilings and Insulations	67
Weight of Partitions	68
FLOORS	
Concrete Floors. Conditions of Support	71
Solid Reinforced Concrete Slabs. Section Area of Round Bars	72
SOUR MENIOR CONCRETE STADS. SECTION AFER OF MORNING DATA	•

viii CONTENTS

	Page
Safe Loads on Solid R.C. Slabs	73
Filler Joist Floors	80
Hollow Tile Floors	82
Weight of Round Mild Steel Bars	88
Working Stresses in Steel Reinforcement	88
Reinforced Concrete Data	89
Concentrated Loads on Slabs	90
Slabs Reinforced in both Directions	91
Weights of various Materials	92
Troights of various flacorials	
BEAMS	
Superimposed Loading on Beams .	!!!
Bending Formulæ	112
Bending Moments in Continuous Beams	113
Portals or Bents	118
Bending Moments, Thrusts and Reactions in Portals	119
Working Stresses in Structural Steel	136
Strength of Butt and Fillet Welds	138
Dimensions of British Standard Beams	139
Maximum Size of Rivets and Bolts	140
Dimensions of British Standard Channels	141
Properties of Equal Angles	142
Unequal Angles	143
Tee Bars	144
Deflection Coefficients.	144
Standard Backmarks. Rivet Spacing	145
Laterally Unsupported Steel Beams. Coefficients	146
Safe Loads on British Standard Beams	148
Channels	152
Broad Flanged Beams	154
Timber Floors. Joist Spacing	156
Superimposed Loading	160
FOUNDATIONS	
Soil Definitions and Safe Loads	165
Comparative Weights of Earth, Gravel, etc.	166
	167
Angles of Repose. Increase in Bulk of Excavated Material	168
Damp Courses	100
SERVICES AND FITTINGS	
Meter Pits. Manhole Covers and Frames. Chequer Plates	171
Dimensions for Planning	172
Dimensions of Cast Iron Pipes	173
Asbestos Cement Pipes	178
Salt-glazed Ware Pipes	180
Wrought Iron and Steel Tubes	181
Copper Tubes	182
Lead Pipes	182
Plumbers' Wiped Joints. Identification of Pipes	185
Flow in Small Pipes. Hydraulic Data	186
Flow in Small Drains and Wood Flumes	187
Covering Power of Paints and Coatings	188
Domestic Electric Consumption. Electric Cables	189
Electric Conduits	190
Dimensions of Cisterns and Hot Water Cylinders	191
Heating Data	191
Small Boilers. Flue Sizes. Air Temperatures	193

ix
i

	Page
Transmittance of Heat	194
Thermal Resistance of Materials	197
Gas Consumption and Flow	199
Whitworth Bolts, Nuts, Locknuts and Washers	200
Coach Screws, Lewis Bolts, Rivet Heads	201
Copper Roves, Wire Nails, Wood Screws	202
Flat Bottom and Bull Head Railway Rails	203
Weight and Strength of Manila Ropes	204
Steel Wire Ropes	204
Wrought Iron Chains	205
Strength of Shackles	206
GENERAL TABLES	
Simpson's Rule. Areas of Small Circles	209
Regular Polygons	210
Properties of the Circle	210
Trigonometrical Functions	211
Imperial and other Measures	214
Decimal and Metric Equivalents	216
Sizes for Drawings	216
Properties of Metals	217
Composition of Common Alloys	222
Properties of Plastics	223
List of British Standard Specifications	224
List of Reports and Codes	226
Index to Pages	227

ABBREVIATIONS

- B.S. British Standard Specification.
- L.C.C. London County Council.
- M.O.H. Ministry of Health.
- M.W.B. Metropolitan Water Board.

ROOF COVERINGS ALLOWED BY BY-LAWS

Many local authorities have based their building requirements on the Ministry of Health Model By-laws, Series IV, but as numerous variations from the model have been made it is still necessary to consult the by-laws of the district concerned.

The following list gives the roof coverings which are generally acceptable.

TABLE I. Roof Coverings

- 1. Asbestos cement sheets.
- 2. Asphalt, not more than 17% bitumen
- 3. Copper sheet.
- 4. Galvanised corrugated steel sheet not thinner than 24 B.G.*
- 5. Glass, wired; no restriction on area if in hard metal frames.
- 6. Lead sheet.
- 7. Macadam, not more than 7% bitumen, $\frac{1}{4}$ " to 1" thick. 8. Mortar 1" thick on boards.
- 9. Roofing felt laid in mastic, variously stipulated as not more than §" and not less than $\frac{3}{10}$ " total thickness.
- 10. Shingles, permitted in some areas.
- 11. Slates, asbestos.
- 12. Slates, natural.
- 13. Stone slabs.
- 14. Thatch, permitted in some areas.
- 15. Tiles, clay.
- 16. Tiles, concrete.
- 17. Zinc sheet, not thinner than 14 Zinc Gauge according to B.S. 849.†
- * By-laws generally say 24 B.W.G. Corrugated steel is sold by Birmingham Gauge and not Birmingham Wire Gauge. See Tables 20 and 21 for details of the gauges.

† See list of British Standard Specifications immediately preceding the Index.

WEIGHT AND PITCH OF ROOF COVERINGS

The weights given are per sq. ft. of actual surface and to the nearest 1 lb. To obtain the weight per sq. ft. covered in plan, for sloping roofs, multiply by the appropriate figure in column 3, Table 5. For relation between gauge and lap see page 5. For lining materials see Table 82.

TABLE 2

Material (see later Tables for details)	Weight lb./sq. ft. of slope	Minimum Pitch (ordinary exposure)
Asbestos Cement 4" Sheets, 3" or 6" corrugations, including laps and fastenings. 153" Diamond or Honeycomb Slating to B.S. 690	34	{ I in 2 (if in one length, I in 10)
3″ lap 4″	2½ 3	lin l·5 33½° lin l·7 30°
153" Rectangular Slating to B.S. 690 3" lap 24" 3" ,	4	l in l·7 30° l in 2 26½° l in 50
Asphalt per inch of thickness Bitumen Macadam ,, ,, ,, Bituminous Felt in layers	11 1½	, ,, ,,
Boards, softwood \\ \frac{2}{2}" thick \\ \ \ \ \ \ \ \ \ \ \ \ \	2 2 2 2 3 3	_ _ _
Copper Sheet incl. laps and rolls, 24 S.W.G. 22 ,,	14	I in 64 with standing seam, I in 100 with drips.
Corrugated Sheets, see Asbestos; Galvanised. Felt, Roofing, in layers ,, Sarking	11/4	1 in 50
Galvanised Corrugated Steel Sheets incl. laps and fastenings. 26 S.W.G. 24 ,, 22 ,,		$\begin{cases} 1 & \text{in } 2\frac{1}{2} \text{ (if in one length, } 1 \text{ in } 10) \end{cases}$
Glazing, patent, lead covered steel astragals	6	l in 2.7 20°
Lead Sheet, including laps and rolls 3 lb. 4 ,,	3½ 4¾	I in 64 plus drips or I in 8 without drips; max. pitch 10°
Macadam, tar or bitumen per inch of thickness Mortar Screeding ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	11	Any pitch if water- proofed.
sheets Roofing Felt in layers Ruberoid, 5 layer	 	l in 50
Shingles (cedar tiles) 16" long 6" lap 8½",	1 ½ 2	1 in 1·5 33½° 1 in 1·7 30°
Slates, Welsh, 0.2" thick, 24" long 3", , 20", , 3", , 16", , 3",	6 <u>1</u> 7 7 <u>1</u>	l in 2.5 22° l in 2 26½° l in 1.5 33½°
Steel, see Galvanised. Tarmac per inch of thickness	11	Any pitch if water-proofed.
Thatch, 12" thick, incl. battens Tiling, Clay: Marseilles Pan 3" overlap Pan, pointed in mortar	8 <u>1</u> 6 <u>1</u> 8 <u>1</u>	in 45° in 2 264° in 1.5 334° in 2 264°
Plain 10½" × 6½" (B.S. 402) : handmade 2½" lap 3½" ;;	141	l in 1·2 40°
34" ,, machine made 24" ,, 34" ,,	16 <u>4</u> 13 15	
Tiling, Concrete: Plain $10\frac{1}{2}'' \times 6\frac{1}{2}'' \times \frac{7}{4}''$ (B.S. 473) Interlocking $15'' \times 9'' \times \frac{3}{4}''$ (B.S. 550)	141	l in 1·2 40°
Zinc Sheet, incl. laps and rolls 12 ZG 14 , 16 ,	7 2 1 1 1 1 2	l in 1-7 30° I in 64 plus drips or l in 8 without drips.

The L.C.C. By-laws prohibit the slope of a roof exceeding 75°, and in warehouses 47° unless against a street or open space and of incombustible materials.

RELATION BETWEEN GAUGE AND LAP

The gauge is the spacing of slates or tiles measured from centre to centre up the slope, and is equal to the spacing of the battens. It is also equal to the width of the visible portion of each row of slates or tiles, as may be seen from the sketch.

Gauge
$$g = \frac{1}{2}$$
 (length of slate-lap)
Lap = length-2 (gauge)

Thus for a given length of slate, it is sufficient to specify either gauge or lap to control the degree of weathering and the number of slates per square.

In the case of diamond tiling the lap is measured differently, see the figure opposite Table 9.

TABLE 3. Maximum Span and Spacing of Steel Angle Purlins

Roof Covering	Usual Maximum	Size of Purlin				
(see next Table)	Purlin Spacing	3"×2"× #"	4"×3"× #"	5"×3"× 18"	6"×3"×1"	
24 B.G. galv. corrugated steel sheets 10' long	4′ 9″	9′ 6″	13′	16′		
6' 6" long	6′ 0″	8′	11′6″	14′		
Boards and felt Asbestos sheets 6" corr.	4′ 6″	9′ 3″	12′ 6″	15′ 6″		
,, ,, 3" corr.	3′ 0″	11'	15′			
Patent glazing	6′ 0″	7′ 6″	10′	12′ 6″	16′	
Asbestos slating and boards	4′ 6″	8′ 6″	11′6″	14′	18′	
Welsh slating and boards	4′ 6″	8′	10′ 6″	13′	17′	

The above are suitable for slopes not less than 20° and not more than 1 in 2; wind pressure 15 lb./sq. ft. normal to slope.

TABLE 4. Weights of Typical Roof Constructions

Construction	lb. per sq. ft. on slope	ib. per sq. ft. on plan	Construction	ib. per sq. ft. on slope	lb. per sq. ft. on plan
Asbestos rect. slating 15½" long, 3" lap.	4.0	*	Patent metal glazing Steel purlins 6' centres	6·0 1·3	*
Black sheathing felt I' Boards Common rafters 8' span (size from Table 33)	-2 2-5 I-I		Steel roof truss	7.3	8·2 2·5
Purlin and ridge	.5				10.7
	8.3	9.3	Asbestos diamond slating 153" side, 4" lap.	2.9	
24 B.G. galv. corrugated sheets incl. laps, fixed.	1.5		I" Boards Steel purlins 4' 6" centres Firring on purlins	2·5 1·6 ·3	
Steel purlins 4' 9" centres	1.5			7.3	8.2
Steel roof truss	3.0	3·3 2·5	Steel roof truss		2.5
		5.8	Welsh slating '2" thick,	7.5	
Asbestos corr. sheets incl. laps, fixed. Steel purlins 3' centres	3·3 2·4		14" long, 3" lap. 1" Boards Steel purlins 4' 6" centres Firring on purlins	2·5 1·7 ·3	
Steel roof truss	5.7	6·4 2·5	Steel roof truss	12.0	13·5 2·5
	Ī	8.9			16.0
Bituminous felt I" Boards	1·5 2·5		Asbestos corr. sheets Reinforced concrete purlins	3·3 5·0	
Steel purlins 4' 6" centres Firring on purlins	.3		Reinforced concrete 30'	8.3	9·3 15·
Steel roof truss	5.9	6·6 2·5	truss.		24.3
		9.1	2" × 1" Battens at 5" centres	1.0	1.2

^{*} Calculated for I in 2 slope; for other slopes convert total in previous column with appropriate value of S in Table 5.

The purlin weights and steel truss allowance are adequate for all ordinary spans; different purlin spacings do not materially affect the totals.

Other Typical Roof Constructions

Reinforced concrete roofs 25-40 ft. span Flat beams (T section) about 3 ft. cent Precast coffered slabs on the above	res			er sq. ft. on plan 20 16
Bituminous felt	•	•		1.5
				37.5
Portal truss or 3-pin arch, 10-12 ft. ce	ntre	s, excl	ud-	
ing part below eaves level .	•	•	•	16.5
Precast purlins				.5
Precast coffered slabs on 1 in 2 slope Bituminous felt	•		•	18
Bituminous felt	•	•	•	1.7
				41.2
				71.7
For spans between 25 and 70 ft., width of b	arrel	15 to	30 ft	:—
•		15 to	30 ft	
Barrel vault 2½ in. thick				30
Barrel vault $2\frac{1}{4}$ in thick Stiffening and edge beams				30 10
Barrel vault 2½ in. thick				30
Barrel vault $2\frac{1}{4}$ in thick Stiffening and edge beams				30 10 1·5
Barrel vault 2½ in. thick Stiffening and edge beams				30 10
Barrel vault $2\frac{1}{4}$ in, thick Stiffening and edge beams Bituminous felt	•		•	30 10 1.5
Barrel vault 2½ in. thick Stiffening and edge beams	•		•	30 10 1·5 41·5 ————————————————————————————————————
Barrel vault 2½ in. thick Stiffening and edge beams	tru:	: : ss and	pur	30 10 1·5 41·5 ————————————————————————————————————
Barrel vault 2½ in. thick	tru:		pur	30 10 1·5
Barrel vault 2½ in. thick Stiffening and edge beams	tru:	: : ss and	pur	30 10 1·5 41·5 ————————————————————————————————————
Stiffening and edge beams Bituminous felt Asbestos-cement tubular members in	tru:	: : : ss and	pur	30 10 1·5

TABLE 5. Equivalent Slopes and Length up Slope Exact figures are in **bold type**.

Slope I In H	Angle °	Length S	Slope I in H	Angle °	Length S
l in 57·29 20 10 8 6 5·671 5 4 3·73	1 3 54 7 91 10 111 14	I-0001 × H I-001 I-005 I-008 I-014 I-015 I-020 I-031 I-035	l in 3½ 3 2·747 2½ 2 1·732 1½ 1·303 1·192	16 18½ 20 22 26½ 30 33½ 37½ 40	1-040 × H 1-054 1-064 1-077 1-118 1-155 1-202 1-260 1-305 1-414

MAXIMUM SPACING OF DOWNPIPES

Based on 1 sq. in. of downpipe cross-section for each 90 sq. ft. of roof measure on slope, for slope 1 in 2. For other slopes multiply result by 1.118,

obtaining s from table above. The smaller values for cast iron pipes arise from the bore being smaller than the nominal diameter, see table.

TABLE 6. Spacing of Downpipes, feet

Nominal Diameter		Distance H in feet						
of Downpipes	15	20	25	30	35	40		
2" cast iron 2½" asbestos ., cast iron 3" asbestos ., cast iron 3½" asbestos cast iron 4" asbestos cast iron 4½" asbestos ., cast iron 5" asbestos ., cast iron 5, cast iron	15 26 24 38 35	11 20 18 28 26 39 36	16 14 23 21 31 29 40 38 51 48	13 12 19 17 26 24 34 32 43 40 53 50	16 15 22 20 29 27 37 35 45 43	19 18 25 24 32 30 39 38 48 57 54		

For particulars of cast iron and asbestos pipes see tables 140, 141.

ASBESTOS CEMENT SLATES

As standardised in B.S. 690. The thicknesses are specified in mm., but are given here in approximate decimal equivalents.

TABLE 7. Rectangular Slates

The number per square can be obtained from the Welsh Slate Table.

Size	Av. Thickness	Dimension D in.		
in.	in.	3" lap	4" lap	
24 × 12 20 × 10 154 × 77	·18 ·16	13 3 11 4 91	141 121 10	
112 × 57	_	2½" la	ıp, 7‡	

TABLE 8. Diamond Pattern	Slate	c
--------------------------	-------	---

Size in.	Av. Thick- ness in.	Lap* in.	Gauge in.	F in.	No. per square, nett.
24 × 24 15\frac{15}{4} × 15\frac{3}{4} ""	·18 ·16 ·' ·'	4 23 3 3 3 4 2 2	13½ 8½ 8½ 8¼ 75 68	29년 18년 17년 17년 13월	37 86 90 98 105

^{*} The lap is measured diagonally between successive rows of slates, as shown in the sketch.

TABLE 9. Honeycomb Pattern Slates

Size in.	Av. Thick- ness in.	Lap* in.	Gauge in.	F. in.	No. per square, nett.
$\begin{array}{c} 24 \times 24 \\ 15\frac{3}{4} \times 15\frac{3}{4} \end{array}$	·18 ·16	4 23	12 84	32½ 20¼	37 88
113 × 113	,,	3½ 2½	7 5 5	19 <u>3</u> 14 <u>7</u>	99 172

WELSH SLATES

The British Standards Institution gave, in B.S. 680—Welsh Roofing Slates, a test for quality and noted the wide variety of thicknesses produced (ranging from 16 in. to 45 in. per 100 slates), but found itself unable to obtain agreement from the quarries to lay down standard thicknesses. The weights given below are based on Welsh slate weighing 175 lb./cu. ft. and 0.20 in. thick, i.e. light weights. Slates are sold by the "thousand" of 1200 pieces, and sometimes by weight.

[See overleaf.

TABLE 10

	Size	1	No. per i	00 sq. ft		Weight	Weight		per sq. oof, lb.
Name of States	l in.	Lap 21"	Lap 3"	Lap 3½	Lap 4"	each lb.	I200 cwt.	Lap 3"	Lap 4"
Empresses Princesses Princesses Duchesses Small Duchesses Marchionesses Wide Countesses Countesses Outsize Countesses Viscountesses. Wide Ladies Broad Ladies Ladies Wide Headers Headers Headers Small Ladies Narrow Ladies Small Headers Long Doubles	26 × 16 24 × 14 24 × 12 22 × 12 20 × 10 18 × 12 18 × 9 16 × 12 16 × 10 16 × 8 14 × 12 14 × 8 14 × 7 13 × 7	77 96 112 124 135 138 165 155 207 178 214 237 267 209 251 314 358 275 392	79 98 115 127 138 142 170 160 214 185 222 246 277 219 262 328 374 288 412	80 101 118 130 142 146 175 166 221 192 231 256 288 229 275 343 392 304 434	82 103 120 134 146 150 180 171 229 200 240 267 300 240 288 360 411 320 458	8·43 6·81 5·84 5·35 4·91 4·06 4·38 3·28 3·90 3·25 2·60 3·41 2·84 2·27 1·99 2·64 1·85	90 73 63 57 53 52 44 47 35 42 35 31 28 37 30 24 21 28 20	6·7 6·8 6·9 7·0 7·2 7·5 	6·9 7·0 7·2 7·3 7·5 7·8 8·2
Wide Doubles Small Doubles	12 × 10 12 × 8	304 380	320 400	339 424	360 450	2·44 1·94	26 21	7·8 ,,	8.8

SHINGLES (cedar tiles)

Length 16 in., widths random from 4 in. to 12 in.

Thickness 0.4 in. tapering towards the upper end.

When hung on walls, lap 3 in., i.e. gauge 6½ in. is satisfactory.

Shingles are sold in bundles of about 100 and the quantities required are as follow:-

TABLE II

Lap Gauge Bundles per square	3" 6½" 3	6″ 5″ 4	8 <u>1</u> ″ 3‡″ 5
---------------------------------------	----------------	---------------	--------------------------

PLAIN TILES, Clay or Concrete

		No. per	squa	re			554	633
		Gauge		•	•		4 in.	3 ↓ in.
10 <u>‡</u> in.	\times 6½ in. :	Lap.	•	•	•	•	2½ in.	3½ in.

Battens I in. $\times \frac{3}{4}$ in. Two nails to each tile in every third course.

Two courses nailed next to eaves, hips and ridges.

On vertical courses nail all tiles.

ROOFS II

CONCRETE INTERLOCKING TILES

15 in. \times 9 in. : Overlap . . . 2 in.

Gauge . . . 13 in.

No. per square . . 144

Battens $1\frac{1}{2}$ in. \times 1 in. One nail or wire to each tile in every third course.

MARSEILLES TILES

Gauge 133 in.

Battens I in. $\times \frac{3}{4}$ in. One nail or wire to each tile every third course.

WELSH SLATES

Sizes and quantities in Table 10.

Battens $1\frac{1}{2}$ in. $\times \frac{3}{4}$ in. Two nails to each slate.

TRAFFORD TILES

These are really sheets measuring 4 ft. by 3 ft. 8 in., and require purlins at 3 ft. 6 in. centres. No. per square $8\frac{1}{2}$

Wt., lb/sq. ft. 3.4

Longer sheets of the same width are also obtainable.

FOOTAGE OF SLATING OR TILING BATTENS PER SQUARE, nett

TABLE 12. Rectangular Slates or Tiles

Length of		La	Р	
Slate	21″	3"	31,"	4"
26" 24" 22" 20" 18" 16" 14" 13"	102 112 123 138 153 178 209 229 253	105 115 127 142 160 185 219 240 267	107 118 130 146 166 192 229 253 284	109 120 134 150 172 200 240 266 300

TABLE 13. Diamond or Honeycomb Slates
Obtain the gauge from Table 9 for the lap required.

Gauge	Feet per	Gauge	Feet per
in.	square	in.	square
12 87 81 81 81 81	100 135 141 145 148	756 776 6 6 578 5	158 163 196 214 240

GALVANISED CORRUGATED STEEL SHEETS

According to B.S. 798, the flat sheets for 8/3 in. corrugations (about 2 ft. 2 in. wide) are to be from $29\frac{1}{2}$ in. to $29\frac{3}{4}$ in. wide, and for 10/3 in. corrugations (about 2 ft. 8 in. wide) are to be from $35\frac{1}{2}$ in. to $35\frac{3}{4}$ in. wide, before corrugating. The effective widths with one corrugation overlap are 24 in. and 30 in. respectively. The weight of galvanising is to be not less than $1\frac{3}{4}$ oz./sq. ft., including both sides. The finished weight varies slightly.

Length of	Birmingham Gauge						
Sheet 16 18	18	20	22	24	26	28	
5′	32.2	25.9	19.6	16.1	13.3	10.7	8.7
5′ 6″	35· 4	28.5	21.6	17.7	14.6	11.7	9.6
6'	38-6	31-1	23.6	19.3	16.0	12.9	10.5
6′ 6″	41.8	33.7	25.6	20.9	17.3	13.9	11.3
7′	45.0	36⋅3	27.5	22.5	18.7	15.0	12.3
7′6″	48.2	38.9	29.5	24.1	20.0	16-1	13-1
8'	51.5	41.5	31.4	25.7	21.3	17-1	14-0
8′ 6″	54.7	44-1	33.4	27.3	22.6	18∙2	14.8
9'	57.9	46.7	35.3	28.9	24.0	19.3	15.7
9'6"	61-1	49.3	37.3	30.5	25.3	20.4	16.6
10'	64.3	51.9	39.2	32.2	26.7	21.5	17.

TABLE 14. 8/3 in. Weight in lb. per sheet

TABLE 15. 10/3 in. Weight in lb. per sheet

5′	38·7	31·2	23·6	19·4	16·0	12·9	10·5
5′ 6″	42·5	34·3	26·0	21·3	17·5	14·1	11·5
6′	46·4	37·5	28·4	23·2	19·2	15·5	12.6
6′ 6″	50·4	40·5	30·8	25·1	20·8	16·7	13.6
7′	54·1	43·6	33·1	27·1	22·5	18·0	14.8
7′ 6″	58·0	46·7	35⋅5	29·0	24·1	19·4	15·7
8′	62·0	49·9	37⋅8	30·9	25·6	20·6	16·8
8′ 6″	65·8	53·1	40·1	32·8	27·2	21·9	17·8
9′	69·6	56·1	42·5	34·8	28·9	23·3	18·9
9′ 6″	73·5	59·3	44·8	36·7	30·4	24·6	20·0
10′	77-4	62.4	47-1	38.7	32⋅1	25.8	21.1

GALVANISED STEEL SHEETS—Continued.

TABLE 16. Flat and Corrugated Sheets

Birmingham Gauge	16	18	20	22	24	26	28
Approx. thickness after galvanising, in.	.065	.052	.042	.034	.028	-023	-019
Weight of flat sheet lb./sq. ft.	2.62	2.09	1.68	1.35	1.09	-88	-71
Weight of corr. sheet lb./sq. ft.	2.96	2.37	1.90	1.53	1.23	.99	-81
Weight of corr. sheet allowing for laps* lb./sq. ft.	3.49	2.80	2.24	1.80	1.45	1.17	·96

^{*} Based on 6 ft. sheets with 6 in. end lap and 2 in. side lap, exclusive of fastenings, for which add 0.04 lb./sq. ft.

ASBESTOS CEMENT SHEETS

Flat sheets $\frac{1}{4}$ in. thick weigh	2·3 lb./sq. ft.
Corrugated sheets 1 in. thick weigh	2.6 ,, ,,
Ditto allowing for 6 in. end lap and side lap weigh	3.3 ,, ,,

Sheets with $10\frac{1}{2}/2\frac{7}{8}$ in. corrugations are $29\frac{1}{2}-30$ in. wide and the effective width is $25\frac{7}{8}$ or $28\frac{3}{4}$ in. according to the side lap. The overall depth is $1\frac{1}{8}$ in. Sheets with $7\frac{1}{2}/5\frac{3}{4}$ in. corrugations are $41\frac{1}{2}-43$ in. wide and the effective width is $34\frac{1}{2}$ or $40\frac{1}{4}$ in. according to the side lap. The overall depth is 2 in. or $2\frac{1}{8}$ in.

For tiles see Tables 7-9.

WEIGHTS OF METAL SHEET AND WIRE

For copper sheet see Table 18.

- ,, lead ,, ,, ,, 19.
- ,, zinc ,, ,, ,22
- " iron sheet and wire see Tables 20 (S.W.G.) and 21 (B.G.).

For other metals multiply the weight for iron sheet or wire in Tables 20 and 21 by the following conversion factors:—

TABLE 17

Metal	Factor	Metal	Factor
Aluminium	-350	Monel metal	1·14
Brass	-11	Muntz metal	1·09
Copper	-16	Steel	1·02
Gunmetal	-10	Tungum	1·11
Lead	-47	Zinc	·935

TABLE 18. Weight and Thickness of Copper Sheet

24 S.W.G. is the usual thickness for roofing. For gauges not given below see Tables 17 and 20.

s.w.g.	Thickness in.	Weight lb./sq. ft.	Trade Description	
20 22 23 24	·036 ·028 ·024 ·022	1·67 1·30 1·11 1·02	" 19 oz." " 16 oz."	
Per inch	Per inch of thickness			

TABLE 19. Weight and Thickness of Lead Sheet

Weight ib./sq. ft.	Thickness in.	Weight lb./sq. ft.	Thickness in.	
2 2½ 3 3½ 4 4	-034 -042 -051 -059 -068 -076	5 6 7 8 9	-085 -102 -119 -136 -152 -170	
Per inch	Per inch of thickness			

Lead sheet should not be used on slopes greater than 10°. Copper nails should be used if nailing is unavoidable.

The usual weights in good-class work are as follows:—

- (a) Roofs and main gutters . 7 lb./sq. ft.
- (b) Hip, ridge and small gutters 6,,
- (c) Flashings and aprons . . 5 ,, ,
- (d) Damp course and soakers . 4 ,,

BRITISH GAUGES IN CURRENT USE

The Imperial Standard Wire Gauge was authorised in 1884 and is the only legal wire gauge in the U.K. It is also commonly used for sheets, although the Birmingham Gauge is still frequently used for sheet iron and the Zinc Gauge for sheet zinc. It is to be hoped that these two gauges, and others seldom used, will become obsolete.

The Whitworth Decimal Gauge, used by the Admiralty and others, has the advantage that the gauge sizes denote the thickness in mils so that a table is unnecessary, e.g. No. 20 W.D.G. is .020 in. thick.

For sectional areas of S.W.G. sizes see Table 184.

TABLE 20. Standard Wire Gauge
Weight of Iron Wire and Sheet

s.W.G. No.	Diameter or Thickness in.	Weight of 100 ft. of Iron Wire Ib.	Weight per sq. foot Sheet Iron Ib.	S.W.G. No.	Diameter or Thickness in,	Weight of 100 ft. of Iron Wire 1b,	Weight per sq. foot Sheet Iron lb.	
7/0 6/0	·500 ·464 ·432			13 14 15	-092 -080 -072	I·67	3.20	
5/0 4/0 3/0	·400 ·372			16 17	·064 ·056	1.07	2.56	
2/0	·348 ·324			18 19	·048 ·040	-603	1.92	
2 3	-300 -276 -252			20 21 22	-036 -032 -028	·340 ·205	1.44	
2 3 4 5 6 7 8	·232 ·212	14-09	9.28	23 24	-02 4 -022	·127	-88	
6 7	·192 ·176 ·160	9·62 7·39	7·68 6·40	25 26 27	-020 -018 -016*	-085	-72	
10	·144 ·128	7·39 4·29	5.12	28 29	·015 ·014	-057	-60	
11	·116			30	-012	-040	-48	
12	·104	2.83	4-16	*The last four sizes approx. The gauge goes to No. 50.				

For other metals see Table 17.

TABLE 21. Birmingham Gauge. Weight of Sheet Iron

This gauge (for Sheet and Hoops) differs from the Birmingham Wire Gauge and Birmingham Plate Gauge. Birmingham Wire Gauge between sizes 20 and 30 is almost identical with S.W.G.

B.G. No,	Thickness in.	Wt. per sq. ft. lb.	B.G. No.	Thickness in.	Wt. per sq. ft.
8 9 10 11	·157 ·1398 ·1250 ·1113 ·0991	6·28 5·59 5·00 4·45 3·96	20 21 22 23 24	-0392 -0349 -0312 -0278 -0248	1.57 1.40 1.25 1.11 .99
13 14 15 16 17 18 19	-0882 -0785 -0699 -0625 -0556 -0495 -0440	3·53 3·14 2·80 2·50 2·24 1·98 1·76	25 26 27 28 29 30 31	-0220 -0196 -0174 -0156 -0139 -0123 -0110	.88 .78 .70 .62 .56 .49

TABLE 22. Zinc Gauge. Weight of Sheet Zinc In accordance with B.S. 849—Plain Sheet Zinc Roofing

Zinc	auge inickness Weight		7 ft. × 3 ft. Sheets		8 ft. × 3	ft. Sheets.
Gauge No.		Wt. per sheet lb.	No. per ton	Wt. per Sheet Ib.	No. per Ton.	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	011 -013 -015 -017 -019 -022 -025 -028 -031 -036 -041 -046 -051 -057 -063 -070	.41 .49 .56 .64 .71 .82 .94 1.05 1.16 1.35 1.54 1.73 1.91 2.14 2.36	8.6 10.2 11.8 13.4 14.9 17.3 19.7 22.0 24.4 28.3 32.2 36.2 40.1 44.8 49.6 55.1	259 219 1190 168 150 129 114 102 92 79 69 62 56 50 45	9.9 11.7 13.5 15.3 17.1 19.7 22.5 25.2 27.9 32.4 36.9 41.4 45.9 51.2 56.6 62.9	227 192 166 147 131 113 100 89 80 69 61 54 49 44

TABLE 23. Hook Bolts & in. diam.

Length		in.	31	4	41	5
Weight	Per 100	lb.	13.0	14.2	15.5	17.3
	Per gross	lb.	18.7	20.4	22-4	24-9

TABLE 24. Roofing Nails and Screws

Length		in.	21″	3″
Weight of nails	Per 100	lb.	3.5	4-1
	Per gross	lb.	5.1	5.9
Mainha of	Per 100	lb.	3.7	4.9
Weight of screws	Per gross	lb.	5.3	7.0

TABLE 25. Sheeting Bolts 1 in. diam.

Length	in.	ŧ	ı	11	i <u>à</u>
Weight per 100	lb.	2.5	2.9	3.2	3.5
,, ,, gross	lb.	3.6	4-1	4.6	5-1

CURVED DIAMOND WASHERS for roof bolts

Weight per 100 —4.3 lb. .. per gross—6.2 lb.

LIMPET WASHERS for roof bolts

Weight per 100 —1.0 lb. , per gross—1.4 lb.

For FLAT WASHERS see Table 170.

WIND, SNOW AND OTHER LOADING ON ROOFS WIND LOADS ON WALLS

For convenience, wind loading on portions of the structure other than the roof is considered here in addition to loading on roofs.

The Institution of Structural Engineers Technical Report No. 8 contains regulations for wind loading (repeated in Report No. 10) which are more detailed than and differ from the requirements of the L.C.C.

Post-War Building Study No. 8 of the Ministry of Works ("Reinforced Concrete Structures") recommends the adoption of the above Technical Report for wind loading with the exception of the provisions relating to sloping roofs, for which the L.C.C. by-laws are to be retained.

- (i) Sloping Roofs, L.C.C. requirements, including repair party and snow loads.
- (a) Slope exceeding 20°. Minimum superimposed load, deemed to include the wind load, of 15 lb./sq. ft. of roof surface acting normal to the surface inwards on the windward side, and 10 lb./sq. ft. outwards on the leeward side, the two loadings to be designed for separately and not simultaneously.

(b) Slope not exceeding 20° (including flat roofs). A minimum superimposed load of 50 lb./sq. ft. of covered area on slabs or 30 lb./sq. ft. on beams, e.g. purlins. Beams not spaced further apart than 30 in. are to be designed for slab loading.

(ii) Vertical Surfaces. Technical Report No. 8.

Wind pressure, acting normal to the surface, varies with the height and is to be taken as 5 lb./sq. ft. at mean ground level, increasing at the rate of 1 lb./sq. ft. for each 10 ft. of height up to a maximum of 15 lb./sq. ft. for heights of 100 ft. and over. The corresponding values are tabulated for various heights below.

TABLE 26. Wind Pressures at Various Heights.

	t above nd, ft.	Lb./sq. ft.	Height above Ground, ft.	Lb./sq ft.
10 20 30 40 50)))	5 6 7 8 9	60 70 80 90 100 and over	11 12 13 14 15

These pressures apply to areas where the wind velocity at a height of 50 ft. does not exceed 80 m.p.h. In more exposed situations the pressures shall be increased in the ratio of the square of the anticipated velocity (m.p.h.) to the square of 80.

(iii) Isolated Projections, Technical Report No. 8.

On isolated projections, chimneys, etc., above the general roof level the pressure is to be taken as 50% greater than in (ii). See also (vii).

(iv) Gable Ends, Technical Report No. 8.

The pressure up to eaves level shall be taken as varying with the height, as in (ii). Above eaves level the pressure shall be taken as uniform, its value being as given in (ii) for a height midway between eaves and ridge.

(v) Wind Drag, Technical Report No. 8.

In addition to the pressures acting normal to the foregoing surfaces, all surfaces, whether vertical, inclined or horizontal, parallel to the direction of the wind shall be considered as subject to a drag tangential to the surface and equal to $2\frac{1}{2}\%$ of the appropriate value given in (ii).

(vi) Multiple Spans, Technical Report No. 8.

Spans connected together and arranged so that the windward span shelters the others: relief of wind load on the structure supporting the spans may be allowed as follows:—

				Ke	aucea by
On the span adjoining the	windw	vard s	pan	•	50%
On the next span		•	•	•	75%
On the remaining spans		•	•		87 <u>1</u> %

The relief does not apply to the roof structure or valley beams.

(vii) Cylindrical Areas, Technical Report No. 8.

On cylindrical areas with axis vertical, e.g. chimneys, 60% of the pressures given in (ii) shall be taken as acting on the projected area exposed to the wind.

The B.S. Code of Practice C.P.4 (Chapter V) recommends the following loads:—

- (i) Superimposed load, deemed to include snow:-
 - (a) On roofs sloping up to 10° (including flat roofs), 30 lb./sq. ft measured on plan; for spans l less than 8 ft., $\frac{240}{l}$ lb./sq. ft.
 - (b) On slopes greater than 10° and up to 65°, 10 lb./sq. ft. measured on plan; the roof also to be capable of carrying at any point a concentrated load of 200 lb. if workmen can stand directly on the roof, or 100 lb. if the slope is such that they would have to use a ladder or other support.
 - (c) On slopes greater than 65°, no allowance necessary.
- (ii) Wind loads.

This section of Chapter V contains valuable information on the effect of wind on buildings, but as a design code is not very satisfactory. The process involves making two difficult decisions, viz., which of six different wind velocities shall be adopted for the site, and what part of the height of the building may be considered as shielded by permanent near-by obstacles. From these considerations the appropriate wind pressure p is obtained, and 0.5p is taken as acting uniformly over the whole height of the windward vertical face of the building, with an equal suction on the lee side.

For roofs, various factors are applied to p according to the slope and other conditions. The salient points which emerge from the recommendations are that external pressure is considerably less than 15 lb./sq. ft, on most roofs, while the suction may exceed 10 lb./sq. ft. The latter figure is adequate for roofs, of any slope, not exceeding 60 ft. in effective height in localities where a 55 m.p.h. wind is appropriate, but the suction may reach 40 lb./sq. ft. on very high buildings in exposed sites.

It would appear that much simpler rules for wind loading could be devised within the Code for the majority of buildings in inland towns.

HOUSE CONSTRUCTION—Snow and Wind Loading

Post-War Building Study No. I of the Ministry of Works ("House Construction") makes the following recommendations.

- (i) Sloping Roofs.
- (a) Slope of 10° and over. A snow load of 10 lb./sq. ft. measured on plan, and a negative pressure (suction) of 8* lb./sq. ft. on the leeward slope, acting separately or in conjunction with the snow load.
- (b) Slope of less than 10° (including flat roofs). A superimposed load including snow of 30 lb./sq. ft. measured on plan, alternatively an upward pressure of 10 lb./sq. ft.

The roof covering and framing should be able to withstand a concentrated load of 100 lb. at any point accessible by ladder, or 200 lb. if accessible without a ladder.

(ii) Vertical Surfaces

For buildings not more than 20 ft. high to the eaves, a horizontal wind pressure of 8* lb./sq. ft. When the building height does not exceed three times the width and there is reasonable stiffening by crosswalls calculations are unnecessary.

^{*} In very exposed situations these pressures should be taken as 16 lb./sq. ft.

TIMBER DATA

1 Standard = 165 cu. ft. (Petrograd standard) = 1980 Board feet (U.S.).

B.S. 565—Terms and Definitions applicable to Hardwoods and Softwoods gives the following terms for different sizes of timber, but they are not yet in universal use:—

Batten 2 in. to 4 in. thick incl. 5 in. to 8 in. wide incl. Board Under 2 in. thick. 4 in. and over wide.

Deal 2 in. to 4 in. thick incl. Not under 9 in. but under 11 in.

wide.

Plank 2 in. to 6 in. thick incl.

Scantling 2 in. to 4 in. thick incl.

Strip Under 2 in thick

Lindar 4 in wide

Strip Under 2 in. thick. Under 4 in. wide. Square Equal dimensions from 1 in. \times 1 in. to 6 in. \times 6 in.

The term "scantling" is also used in the sense of cross-section or size. Cost. £1 per standard = 1.454 pence per cu. ft.

If the dimensions of a timber are d inches by b inches and the cost of timber is $\pounds N$ per standard, then

$$\frac{d \times b \times N}{100}$$
 = pence per foot run, within 1%.

PROPERTIES OF TIMBERS

English green timber contains in the case of hardwoods about 40% of its weight of water, in softwoods from 50% to 60%; from 8% to 12% is retained even when thoroughly seasoned. The difference in weight from the green state to normally dry and seasoned is therefore some 10–15 lb./cu. ft. The weights given below and in the Table of Densities are for timber containing 15% water, that is, seasoned and apparently dry.

The distinction between hardwoods and softwoods has no relation to hardness. A former convention called timber weighing over 40 lb./cu. ft. hardwood. The British Standards Institution adopts a distinction based solely on botanical type.

The safe working stress in timber is usually taken as one-sixth of the ultimate stress. For working stresses under L.C.C. by-laws see p. 25. For weight of other timbers see Table of Densities, Table 93.

TABLE 27.

Name	Weight lb./cu. ft.	Ultimat Ib. per	Young's Modulus	
	10.740.716.	Tension	Compression	lb./sq. in.
Ash English	43	5-15000	7–9000	Millions 1·32·0
Ash, English Beech	48	10-20000	7-7000	1.4-1.8
Birch, yellow *	44	15000	7000	1.4-1.0
Cedar, Western red	24	11000	6000	
Deal, see Yellow Pine	27	11000	8000	
Elm, English	36	5-7000	5000	1.0-1.2
Fir, Douglas	33	7000	6000	1.6
Greenheart	62-70	18000	15000	2-3.4
Hickory *	51	19000	9000	
Hornbeam	44	12000	7000	
Larch	37	4000		1.0-1.6
Lignum vitae	75–83	12000	11000	
Mahogany, Honduras	34	20000	8000	1.6-2.0
Spanish	43	14000	8000	1⋅3–3⋅0
Maple *	43	15000	7500	
Oak, American red	45	7-10000	7-9000	2.1
white	48	12000	10000	2⋅1
English	45	8-16000	6-10000	1.2-1.7
Oregon pine, see Fir, Douglas	1			
Pine, American yellow	27	2000	4000	1.6-2.5
Dantzig	36	310000	6000	2.3
Kauri (N.Z.)	38	5000	5000	2.9
Pitch-	41	5–9000	7000	I ·3–3·0
Riga	34-47	4-11000	4000	1.3-3.0
Poplar *	28	9000	5000	
Pyinkado	62	12000	11000	2⋅5
Redwood, non-graded	27	see	Table 37	
graded	33 or 41	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"5000	
Spruce, Norway *	29	9000	5000	1.5
Teak Whitewood	41	8-13000	8-11000	1.8-2.4
vvnitewood	29	9000	5000	1.5

^{*} The stresses given for these timbers apply to specimens for use in aircraft construction

WORKING STRESSES

For timber the working stress is generally taken at one-sixth of the ultimate stress. The following values may be adopted for selected seasoned timber. See p. 25 for L.C.C. requirements.

TABLE 28. Working Stresses, lb./sq. in.

Timber	Fibre Stress in Bending	Compressive Stress		
Greenheart	3000	2500		
Ash, Beech, Oak, Teak	1500	1200		
Douglas Fir, Larch, Pitch- pine.	1200	1000		
Elm, Spruce, Redwood	1000	800		

LENGTH OF TIMBER IN ONE STANDARD

The Petrograd standard of 165 cu. ft. is used in the tables below. The standard terminology recommended in B.S. 565 is indicated by the frames. Sizes printed in italics are termed "squares."

TABLE 29.

Feet Run per Standard

h. in.	Thickness, in.											
Width. in.	ł	4	ŧ	₹	1	11	13	2	21	3	31	4
1 1 1	Str 47520 31680	rips	31680 21120		23760 1 7820		10560	Se	cantling	s		
2 2½ 3 3½	23760 15840	19008	15840 12670 10560	13577 10862 9052	9504 7920	9504 6336	7920 6336 5280	5940 4750 3960 3394	3800 3168 2715	2640 2263	1940	
4 4½	11880	9504	7920	6788	5940	4752	3960	2790 2640	2376 2112	1980 1760	1697 1508	1485 1 320
5 6 7 8	7920 6788	6336 5430	5280 4525	4526 3879	4752 3960 3394 2970	3168 2715	2640 2263 1980	Ba 2376 1980 1697 1485	1900 1584 1357 1188	1584 1320 1131 990	1357 969 848	1188 990 848 742
9 10			3520		2640	2112	1760	Do 1320 1188	eals 1056 950	880 792		660 594
11 12			2880		2160 1980	1728	1440	Pla 1080 990	nks 864 792	720 660		540 495

TABLE 30. Equivalents of One Standard of Flooring or Shuttering

Thickness	Sq. yds.	Sq. ft.			
10 mag 4 " 14 m 2"	440 352 293 220 176 147 110	3960 3170 2640 1980 1580 1320 990			

LENGTH OF TIMBER IN I CU. FT.

The standard terminology recommended in B.S. 565 is indicated by the frames. Sizes printed in italics are termed "squares."

TABLE 31. Feet Run per cu. ft.

in.			***************************************		-	Thickn	ess, in.				,	
Width in.	ł	8	ŧ	ł	ı	13	Ι <u>Ι</u>	2	21	3	31	4
 	288	rips	192 128		144 96·0		64.0					
2 2 1 3 3 3	144 96	115 76·8	96·0 76·9 64·1	82-3 65-8 54-9	72·0 57·6 48·0	57·6 38·4	48·0 38·4 32·0	36·0 28·5 24·0 20·6	23:0 19:2 16:5	16·0 13·7	11.7	
4 4 <u>1</u>	72-0	ards 57·6	48 ·0	41-1	36.0	28.9	24.0	18·0 16·0	14·4 12·8	12·0 10·7	10-3 9-1	9·0 8·0
5 6 7 8	48·0 41·2	38·4 32·9	32·0 27·5	27·4 23·5	28·9 24·0 20·6 18·0	19·2 16·5	16·0 13·7 12·0	Batt 14-4 12-0 10-3 9-0	tens 11·5 9·6 8·2 7·2	9·6 8·0 6·3 6·0	8·2 6·9	7·2 6·0 4·5
9 10			21.4		16.0		10.7	De 8·0 7·2	als 6·4	5.3		4·0 3·6
11 12					13·1 12·0	10-5	8.7	Pla 6·5 6·0	nks 5·2 4·8	4·4 4·0		3·3 3·0

EQUIVALENTS OF ONE SQUARE (100 sq. ft.) OF TONGUED AND GROOVED FLOORING

The effective width of T. & G. boarding as laid is indefinite and should be checked with the supplier if ordering by length.

TABLE 32. Feet Run per Square

Nominal Width in.	Length ft.	Nominal Width in.	Length ft,	Nominal Width In.	Length ft.
3	480	4½	300	6	220
3½	400	5	270	6±	200
4	340	5 <u>‡</u>	240	7	180

TIMBER ROOF CONSTRUCTION

The L.C.C. by-laws permit alternative methods of determining the sizes and spacing of timbers in roof construction.

(a) Provided that the construction and covering materials are not of abnormal weight, e.g. the covering of flat roofs is not heavier than I in. of asphalt, the size and spacing of timbers may be obtained by the use of a table of spacing factors.

The following three tables have been calculated to give this information direct; they are based on the factors for "non-graded" timber (working fibre stress in bending 800 lb./sq. in.), see Table 37.

The alternative (b) is discussed later.

Cantilevers may project clear of support by a distance not exceeding one-quarter of the supported span for which the timber would be permitted.

Non-graded timbers, supported at each end
(i) RAFTERS, PURLINS AND CEILING

STSIOL

TABLE 33. Clear Spacing S in inches

Joist Size				•	Clear Spa	n in Feet				
d × b in.	6	7	8	9	10	- 11	12	13	14	15
3 × 2 4 × 2 4½ × 2 5 × 1½ 5 × 2	11 26 34 34 39	8 ¹ 18 23 26 30	11 18 18 21	8 ² 11 13	8³ 9	74 84		Ma: 1 2 3	x. span 6'-6" 8'-8" 9'-9" 10'-10'	
6 × 14 6 × 2 7 × 14 7 × 2 8 × 2 8 × 24 8 × 24	54 62 65 74 112 126 140	39 45 54 62 74 83 92	30 34 39 45 62 70 77	23 26 30 34 45 51 56	18 21 23 26 39 44 48	13 15 20 23 30 34 37	10 11 16 18 26 29 32	7 8 11 13 21 23 26	9 11 18 20 22	7 8 13 15

(ii) JOISTS TO FLAT ROOFS

TABLE 34. Clear Spacing S in inches

Joist Size		Clear Span in Feet.									
d × b in.	6	7	8	9	10	11	12	13	14	15	
5 × 1\frac{1}{4} 5 × 2 6 × 1\frac{1}{4} 6 × 2 7 × 2 8 × 2\frac{1}{4} 8 × 2\frac{1}{4} 9 × 2 9 × 2\frac{1}{2} 9 × 3 11 × 2\frac{1}{2} 11 × 3	14 16 23 27 32 49 61 73 56 70 84	10 12 16 19 27 32 40 48 39 48 58 70 84	7 9 12 14 19 27 35 40 32 40 48 61 73	9 10 14 19 24 24 27 34 40 48 58	7 8 10 16 20 18 19 23 28 40 48	9 12 15 15 16 20 24 34 40	10 12 12 14 16 21 27 33	8 10 10 12 15 20 24	9 10 13 17 21	8 9 12 15	

(iii) BINDERS TO FLAT ROOFS

TABLE 35. (Also (iv) Joists and Binders to Residential Floors based on 50 lb. loading)

Joist Size d × b in.	Clear Spacing S in Inches.									
6 × 1 ¹ / ₄ 6 × 2 7 × 2 8 × 2 8 × 2 ¹ / ₄ 8 × 2 ¹ / ₄ 9 × 2 9 × 2 ¹ / ₁ 9 × 3 11 × 2 ¹ / ₂ 11 × 3	33 38 45 69 77 86 79 98 118 112	23 27 38 45 50 56 54 67 82 99 118	17 20 27 38 42 47 45 56 67 86 103	13 15 20 27 30 33 38 47 57 68 82	10 12 15 23 26 29 27 33 40 56	7 8 13 18 20 22 23 28 34 47 57	10 15 17 19 20 25 30 40 48	81 12 13 15 15 18 22 28 34	10 11 12 13 16 19 25 30	8 ² 9 ² 10 ² 12 15 18 22 27

Max. span: 1 12'-10". 2 14'-8".

Local by-laws sometimes specify the minimum dimensions of rafters and joists, without specifying the spacing. The above values are not necessarily in accordance with such dimensions.

(b) The alternative to using the foregoing tables is to determine the size and spacing of timbers by calculation. In this event the following superimposed loadings are specified by the L.C.C.:—

ROOFS 25

TABLE 36.

	Construction	Lb./sq. ft. of Horizontal Area Covered.
Flat-roof :— (slope not more than 20°)	boarding joists, firring binders, trusses	200 50 30
		Lb./sq. ft. of Roof Surface
All parts of pit	ched roof :—	
(slope more	Inwards on windward side Outwards on leeward side, but	15
than 20°) Ceiling joists	not simultaneously with the above	10 25

The deflection under the specified loading is not to exceed $\frac{1}{3\,\hat{\theta}\,O}$ of the length of the member. The stresses under the specified loading are not to exceed the values given below (L.C.C.).

TABLE 37.

	Working Stress lb./sq. in.			
Nature of Stress.	Non-graded	Grade 1200 lb. f.		
Extreme fibre stress in bending Shear stress in direction of grain Compression perpendicular to grain Compression in direction of grain in posts and	800 90 165	1200 100 325		
struts with slenderness ratio not exceeding 10 (see Table 38) Tension in direction of grain Modulus of elasticity	800 800 1200000	1000 1200 1600000		

Timber Roof Construction—Continued.

The compression stress in posts and struts of slenderness ratio greater than 10 is not to exceed the values given in table 38 (L.C.C.).

TABLE 38.

					Lb. per	sg. in.
	Slende	rness Rai	Nongraded	Graded 1200 lb. f.		
Exceedin	g 10 bi	it not e	exceedin	g 12	785	985
۱,,	ັ 12	,,	,,	i 14	775	9 70
;;	14	,,	11	16	755	950
",	16.	,,	,,	18	725	920
1	18			20	690	875
į "	20	••	**	22	635	820
, "	22	,,	,,	24	565	745
,,	24	**	,,	26	485	650
"	26	"	**	28	420	600
"	28	"	**	30	365	485
' '	30	""	**	32	320	430
,,		,,	"			
,,	32	,,	11	34	285	380
,,	34	,,	**	36	255	340
١,,,	36	,,	,,	38	225	300
	38	,,	**	40	205	275

The slenderness ratio shall not exceed 40. Where bending loads are present the strut must be designed to withstand the combined bending and direct stress, for which see p. 113.

Note, the two foregoing tables apply generally to timber construction, including floors, q.v.

The formulæ to be used in designing timber beams are given on p. 161.

The accompanying figure gives the working loads, centrally supported, on timber columns of different sizes and lengths. The values are calculated from formulæ published by the Forest Products Laboratory, Madison, Wisconsin; for each size shown the upper curve is for timber with a value for E of 1,600,000 lb./sq. in. and maximum safe compressive stress of 1200 lb./sq. in., while the corresponding values for the lower curve are 1,300,000 and 1000 lb./sq. in. Some English figures indicate considerably higher loads than those shown.

REACTIONS AT ROOF TRUSSES

(i) DEAD LOAD REACTIONS

The main table gives the reaction at each shoe for various spans and spacings of trusses, taking the combined weight of covering, purlins and truss at 9 lb./sq. ft. of area covered. Trusses up to 30 ft. span are usually spaced at about 12 ft. centres, for 45 ft. span at 14 ft. and over 60 ft. span, 16 ft.; a truss allowance of $2\frac{1}{2}$ lb./sq. ft. is sufficiently accurate. In accordance with the data on page 6 this table applies to asbestos sheets and to boards and felt.

TABLE 39. Vertical Reactions R, tons

Spacing of											
Trusses ft.	20	25	30	35	40	45	50	55	60		
8	-32	·40	·48	.56							
.9	∙36	· 4 5	-54	.63	·72		ļ		ł		
10	· 4 0	-50	.60	·70	-80	-90	1	1			
11	·44	-55	-66	·77	-88	.99	1.10	1	1		
12	·48	-60	.72	.84	.96	1.08	1.20	1.32			
13	.52	-65	.78	.91	1.04	1.17	1.30	1.43	1		
14	.56	·70	-84	-98	1.12	1.26	1.40	1.54	1.69		
15		·75	-90	1.05	1.20	1.35	1.50	1.66	1.81		
16			.96	1.13	1.29	1.45	1.61	1.77	1.93		

For other covering materials multiply the above reactions by the factors given below.

TABLE 40.

Covering	Multiply Reaction by
24 B.G. galv. corrugated sheets on steel purlins Patent glazing on steel purlins Asbestos diamond slating, I" boards and steel purlins Light Welsh slating ·2" thick, I" boards and steel purlins.	·65 1·1 1·1 1·8

(ii) WIND LOAD REACTIONS

In accordance with B.S. 449 and L.C.C. By-laws, viz., wind pressure 15 lb./sq. ft. normal to slope on windward side and 10 lb./sq. ft. suction on lee side. Table 41 gives the vertical reaction R under windward shoe, whether windward or lee shoe is free, without suction. These are the maximum vertical reactions possible.

TABLE 41. Vertical Reaction R, tons

Spacing of											
Trusses ft.	20	25	30	35	40	45	50	55	60		
8 9 10 11 12 13 14 15	·37 ·41 ·46 ·51 ·55 ·60 ·65	-46 -52 -58 -63 -69 -75 -81 -86	·55 ·62 ·69 ·76 ·83 ·90 ·97 I·04 I·10	·65 ·73 ·81 ·89 ·97 I·05 I·13 I·21 I·29	·83 ·92 I·01 I·10 I·20 I·29 I·38 I·47	1.04 1.14 1.24 1.35 1.45 1.56	1·27 1·38 1·50 1·61 1·73 1·84	1·52 1·65 1·77 1·90 2·02	I·80 I·93 2·07 2·21		

To allow for expansion one shoe must be left free to slide, and it is assumed that the reaction under it is vertical. The horizontal component of the wind pressure and suction is resisted at the other shoe. Since the wind may blow from either side the worst combination at each shoe must be designed for. The reaction obtained from Table 41 must therefore be multiplied by the factors below to give the horizontal reactions and lee shoe reactions.

TABLE 42.

Conditions	Windwa	ard Shoe	Leewa	rd Shoe	
Conditions	Vertical Reaction	Horizontal Reaction	Vertical Reaction	Horizontal Reaction	
Pressure only	I·00	·727 0	·454 ·454	0 -727	Leeward shoe free Windward shoe free
Pressure and suction	·698 ·698	l·21 0	- ·211 - ·211	0 1·21	Leeward shoe free Windward shoe free

DESIGN LOADS ON STRUCTURE BELOW ROOF

- (i) DEAD LOADS. These may be obtained direct for typical roofs, pp. 6 and 7.
- (II) WIND LOADS. The vertical component is to be taken at 10 lb./sq. ft. of plan area covered (L.C.C.).

SAFE REACTIONS ON CONCRETE PADSTONES

Calculated for I:2:4 concrete (L.C.C. Designation III) at 42 tons/sq. ft. For $I:I\frac{1}{2}:3$ mix, add one-sixth to reactions tabulated, see Table 61.

The length L should be not less than 4 in.; it may be approximately equal to the depth of beam for depths up to 8 in. and two-thirds of the depth for deep beams.

When the reaction does not exceed the product of $L \times B$ times the permissible pressure in Table 61 or 63, no padstone is required.

TABLE 43. Safe Reactions in tons

Width	Length of Bearing L in.									
Bearing B in.	4	5	6	7	8	9	10	12	14	
1 1 2 3 4 4 1 5 5 5 1 6 7 7 1 2 8	1·5 1·75 3·00 4·00 4·50 5·00 5·50 6·00 7·00 7·50 8·00	1·87 2·19 3·75 5·00 5·62 6·25 6·87 7·50 8·75 9·37	2·62 4·50 6·00 6·75 7·50 8·25 9·00 10·5 11·2 12·0	3·06 5·25 7·00 7·87 8·75 9·62 10·5 12·2 13·1 14·0	3·50 6·00 8·00 9·00 10·0 11·0 12·0 14·0 15·0	6·75 9·00 10·1 11·2 12·4 13·5 15·7 16·8 18·0	7·50 10·0 11·2 12·5 13·7 15·0 17·5 18·7 20·0	9·00 12·0 13·5 15·0 16·5 18·0 21·0 22·5 24·0	10·5 14·0 15·7 17·5 19·2 21·0 24·4 26·2 28·0	
10 11 12	10·0 11·0 12·0	12·5 13·7 15·0	15·0 16·5 18·0	17·5 19·2 21·0	20·0 22·0 24·0	22·5 24·7 27·0	25·0 27·5 30·0	30·0 33·0 36·0	35·0 38·4 42·0	

BEARING PLATES

The reaction as given in the above table may be increased by improving the concrete mix, by increasing L or by adding bearing plates to increase B, as in Fig. (b). The thickness of plate required, for different loads and projections beyond the flange of the joist, is given in the next table, calculated on the usual assumption that the maximum B.M. in the plate occurs under the middle of the flange which applies the load.

THICKNESS OF BEARING PLATES

TABLE 44. See notes on preceding page.

	Projection			Thickness	of Plate, in.					
Length of Bearing Lin.	of Plate (each side) in.	ł	•	ŧ	7	1	11			
			Reactions in Tons							
4	1 1½ 2 2½ 3	5·3 3·6 2·7 2·1 1·8	8·3 5·6 4·2 3·3 2·8	12·0 8·0 6·0 4·8 3·4	16·3 10·9 8·2 6·5 4·0					
6	1 1½ 2 2½ 3	8·0 5·3 4·0 3·2 2·7	12·5 8·3 6·2 5·0 4·2	18·0 12·0 9·0 7·2 6·0	24·5 16·3 12·2 9·8 8·2					
8	 1½ 2 2½ 3 3½	10·7 7·1 5·3 4·3 3·6	16·7 11·1 8·3 6·7 5·6 4·8	24·0 16·0 12·0 9·6 8·0 6·9	32·7 21·8 16·3 13·0 10·9 9·3	42·7 28·4 21·3 17·1 14·2 12·2				
10	1½ 2 2½ 3 3½	8·9 6·7 5·3 4·5	14·8 11·1 8·9 7·4 6·3	20·0 15·0 12·0 10·0 8·6	27·2 20·4 16·3 13·6 11·6	35·5 26·6 21·3 17·8 15·2				
12	1½ 2 2½ 3 3½	10·7 8·0 6·4 5·3	16·7 12·5 10·0 8·3 7·2	24·0 18·0 14·4 12·0 10·3	32·7 24·5 19·6 16·3 14·0	42·7 32·0 25·6 21·3 18·3	66·7 50·0 40·0 33·3 28·6			
14	1½ 2 2½ 3 3	12·4 9·3 7·5 6·2	19·4 14·6 11·7 9·7 8·3	28·0 21·0 16·9 14·0 12·0	38·1 28·6 22·9 19·1 16·3	49·8 37·4 29·8 24·9 21·4	77·7 58·3 46·7 38·9 33·3			

Example

A 12 in. \times 5 in. joist carrying a symmetrical load of 28 tons is to be supported on a 9 in. brick wall. Allowing for chamfer on the padstones the length of bearing will not exceed 8 in. The reaction is 14 tons. From Table 43 the width of bearing required, for 8 in. length is 7 in., whereas the joist flange width is 5 in. A plate giving a projection of 1 in. on each side is therefore required. From Table 44, for length of bearing 8 in. and projection 1 in., the least thickness for a reaction of 14 tons is $\frac{\pi}{8}$ in .(16-7 tons). The bearing plate required is therefore 7 in. \times $\frac{\pi}{8}$ in. \times 8 in. long

WALLS, FLOORS AND BEAMS

WALLS, FLOORS AND BEAMS

CONCRETE DATA

Concrete is usually required to reach its designed strength within 28 days or less, and compressive failure at this age occurs in the mortar and not in the coarse aggregate. For a given quantity of cement per cubic yard, provided that well-graded aggregate is used, maximum concrete strength will be achieved when

(a) the largest maximum size of aggregate which will suit the work is chosen, as such aggregate has the lowest proportion of voids, less mortar is required and therefore it may be richer; and

(b) no more water is used in the mix than is necessary to enable the con-

crete to be worked compactly into place.

Enriching a mix by additional cement only improves the strength and other properties, in so far as a lower ratio of water to cement is needed to obtain the same consistency.

The three mixes below, if mixed to the consistencies appropriate to their respective classes of work, will have approximately equal strength. The decreasing proportions of fine to coarse aggregate reflect the reduction in voids as the range of coarse aggregate size increases. (See note to Table 52.)

TABLE 45.

Range of Size of Coarse Aggregate	Proportions
3" to 3" 3" to 3" 16" to 3" 16" to 12"	$\begin{array}{c} 1:2\frac{3}{4}:4\\ 1:2\frac{1}{4}:5\\ 1:2:6 \end{array}$

TABLE 46. Usual Maximum Size of Coarse Aggregate

	Purpose Size.
	window frames, lintols $\frac{1}{2}$ " concrete in beams, $\frac{1}{2}$ " $\frac{1}{4}$ "
Reinforced concre	te when cover and 1½"
Mass concrete in ro	
,, ,, not	less than 12" thick 3"

```
I Bag of cement, U.K. = 112 lb.
I ,, ,, export = 90 or 112 lb.
I Sack ,, ,, U.S. = 94 lb.
I Barrel ,, U.K. = 400 lb.
I ., U.S. = 376 lb.
```

The accompanying diagrams show the effect of varying conditions on the properties of concrete.

Water/cement ratio is always calculated by weight, thus 0.5 w/c ratio means $\frac{1}{2}$ cwt. (56 lb. or 5.6 gals.) of water to 1 cwt. of cement. In American units 1 U.S. gallon per sack = 0.833 Imperial gals. per 94 lb. = 1 Imperial gallon per cwt. very nearly.

The relation between slump and water ratio varies with the mix and with different aggregates; the curve given is typical. Slump is usually defined as the subsidence of the mix when it has been filled into a metal cone 12 in. high and of standard proportions and the cone is removed. A 9-in. cone will show a slump approximately three-quarters of that obtained with a 12-in. cone.

Slumps commonly necessary in practice are given below for ordinary hand placing conditions. The last column gives an indication of the water/cement ratio.

TAB	LE	47.
-----	----	-----

Nature of Work	Slump	Description	Water/Cement Ratio
Road slabs and paths well rammed Mass concrete foundations and thick walls Reinforced concrete beams and columns Narrow reinforced beams	2" 3" 3" 4"	Stiff Plastic Rather wet	0·6 0·7 0·8
Walls and partitions less than 6" thick Heavily reinforced beams and columns Thin horizontal sections between shutters	4" 4"-5" 5"-6"	Sloppy	0.9

These slumps can be reduced by about a half when mechanical vibration is employed. The table should be read in conjunction with the preceding notes and with Table 53.

Miscellaneous Properties.

Compressive strength—see the diagrams.

Tensile strength—usually about 8% of compressive strength.

Elastic Modulus (Young's Modulus) in compression E_c —usually about 1000 times the compressive strength.

Elastic Modulus in tension E_t —usually about 89% of the value of E in compression (for mortar 91%).

Expansion Joints

A shrinkage of .0006 corresponds to about $\frac{3}{4}$ in. in 100 ft., and a temperature coefficient of .000,006 represents $\frac{3}{8}$ in. per 100 ft. for a change of temperature of 50° F. If the ends were fully restrained a bar of concrete with a value of 4 million lb./sq. in. for E would have induced in it a stress of 24 lb./sq. in. for each degree F. change in its temperature.

In practice these figures are never realised because of the effects of restraint along the length, imperfect fixity at the ends and relief due to creep in the concrete. None the less expansion joints are necessary when considerable lengths of concrete are to be built; a common rule is to provide such joints at intervals of 40 ft. A greater length is permissible when the concrete is protected from rain, where it is adequately bonded to the structure beneath or where its temperature is not likely to differ widely from the construction of which it forms a part. Concreting in alternate bays and similar precautions reduce the shrinkage stresses during the early life of the work but do not reduce the tendency to movement due to subsequent temperature and moisture changes.

Sulphate Corrosion

Pozzolana and Trass cements are obtainable for use in concrete to be subject to the action of sulphate waters, peat, etc. The strength of concrete made with these cements is appreciably less and the cost more than for normal Portland cement. The makers should be consulted for details.

Influence of Temperature on Strength

Representative figures for good quality concretes cured at different temperatures are given below. These are from laboratory tests and the water-cement ratio (about 0.5) is too low for works use without mechanical consolidation.

TABLE 48. Strength of 1:2:4 Concrete, 5½ gals. of Water/cu. ft. of Cement, Normal Portland Cement Compressive Strength of 6-in. Cubes, lb./sq. in.

Age in	Temperature during Curing, Fahr.							
Days.	36°	50°	6 4 °	80°	95°	Steam		
1 3 7 14 28	920 2050 3300	1100 1900 2600 3500	550 1700 2500 3000 3700	2100 2800 3150 3850	2200 2880 3200 3900	2000 3100 3600 3800 3950		

TABLE 49. Strength of 1:2:4 Concrete,
5½ gals. of Water/cu. ft. of Cement,
Rapid Hardening Cement
Compressive strength of 6-in. Cubes, lb./sq. in.

Age in	Temperature during Curing, Fahr.						
Days	36°	50°	64°	80°			
1 3 7 28	100 400 1200 4200	550 1900 3100 4500	900 2600 3300 4700	1100 2850 3400 4800			

TABLE 50. Removal of Shuttering (Days after placing concrete)

	Normal Port	land Cement	Rapid-hardening P.C.	
Construction	Cold, about freezing	Normal, about 60°	Cold, aboutfreezing	Normal, about 60°
Beam sides, walls, columns Slabs, leaving props ,, props Beam soffits, leaving props ,, ,, props	8 10 14 12 28	3 4 8 6 16	7 10 14 12 21	2½ 3 5 4 7

The removal of shuttering from reinforced concrete work must be judged according to the general temperature prevailing.

The shuttering of concrete made with aluminous cement may be struck in 24 hours in all the above cases provided the concrete temperature is kept below 80° F. The best curing temperature is about 61° F. No lime or Portland cement must be allowed to contaminate aluminous cement.

TABLE 51. Typical Weights /cu. ft. of Concrete.

Aggregate and Mix		lb./cu. ft.	Aggregate and	d Mix	lb,/cu. ft.
Granite, whinstone Ballast 'Limestone 'Slag, gran. blast furnace 'Brick	1:2:4 1:1:2:4 1:2:4	155 145 141 130–145 110 (90) 110–120	Clinker Coke breeze Foamed slag ,, Aerocrete usually Pumice ,,	1:2:4 '' 1:2½:7½ 1:2:4 1:2½:7½	100 (90) 90 (70) 80 70 50-60 48 (70) 41

The values in brackets are the maximum densities permitted for concrete partitions in B.S. 492; the mix is not specified.

The presence of 1% of main reinforcement adds nearly 4 lb./cu. ft. to the weight of concrete. The weight of reinforced concrete is taken for design purposes, however, at 144 lb./cu. ft., from which the following simple rules derive:—

A beam b in. wide and d in. deep weighs bd lb./ft. run.

A slab D in. thick weighs 12D lb./sq. ft.

PROPORTIONS FOR CONCRETE MIXES

Specifications should always stipulate a mix to be so many volumes of fine and coarse aggregate to I cwt. of cement, so that a definite quantity of cement is added to each batch; measuring cement by volume is unsatisfactory.

The following table gives the mixes recognised by the L.C.C. by-laws and the corresponding nominal proportions by which they are generally described.

TABLE 52.

Designa- tion of	Nominal Mix	Cu. ft. of per 112 lb	Aggregate . Cement.	Minimum Resistance,	
Concrete	PHX	Fine	Coarse	at Age of 28 Days.	
 } 	: : 2 : \frac{1}{2} : 3 : 2 : 4	1/4 7/8 2/4	2½ 3¾ 5	lb./sc 29: 25 22	25 50
IV V VI VII	1:6 1:8 1:10 1:12	1	0 2 1 5	7	80 10 /40 70
				Prelim.	Works
IA IIA IIIA	2 3 2 4	1 ¼ 1 7 2 ½ 2 ½	2½ 3¾ 5	5625 4850 4275	3750 3300 2850

NOTE. Mixes intermediate between those stated may be used, provided that the ratio of fine to coarse is I to 2, and the properties of such intermediate mixes may be taken, on the basis of the combined volumes of fine and coarse aggregate, as pro rata between the two nearest mixes tabulated. The District Surveyor may approve ratios of fine to coarse aggregate between I to $1\frac{1}{2}$ and I to $2\frac{1}{2}$.

Fine aggregate is defined as that which will pass a $\frac{1}{16}$ in. mesh, and coarse aggregate that which will be retained on a $\frac{1}{16}$ in. mesh. The maximum size of coarse aggregate is not limited by the by-laws except for reinforced work, in which it shall pass a mesh $\frac{1}{4}$ in. smaller than the minimum lateral distance between the bars. The size should not exceed one-quarter of the smallest dimension of the concrete work.

CONCRETE MIXES FOR VARIOUS PURPOSES

(1 cwt. of cement = $1\frac{1}{4}$ cu. ft.)

TABLE 53.

Purpose	Sį	ecification	on	Nominal MIx
	Cem.	Sand	Coarse	Nominal Phy
Highly stressed reinforced concrete, see Table 58 Reinf. concrete stressed intermediately between classes 1 and 3.	cwt.	cu. ft.	cu. ft. 2½	1:1:2
Thin r.c. walls, concrete cast between horizontal shutters, water-retaining structures, hollow tile floors, precast piles, roads (wearing carpet) 3. General reinforced concrete in walls, floors, beams, columns, roads, in situ piles, encasing steelwork	1	1 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3 3 5	1:1½:3
Foundations on variable bottom or in tidal ground, concrete supporting walls and columns	l or l	3	*	$1:2\frac{1}{2}:5$ approx.
5. Covering site under building (6" thick, or 4" if on hard core)	ı	3½	7	1:2.8:5.6
Foundations, gravity retaining walls, roads (base course) Bedding and haunching drains, filling, blinding	1		0* 5*	l : 8 l : l2

^{*} Unseparated aggregate, e.g. ballast "all-ups" or "crusher run" stone.

Local by-laws items are shown in italics.

BATCHES USING I CWT. BAG OF CEMENT

TABLE 54.

Nominal Mix	Volume of Dry Materials cu. ft.	Gallons of Water per Batch †	Smallest Mixer Size	Volume of Finished Concrete cu. ft.
 $\begin{array}{c} 1:1:2\\ 1:1\frac{1}{2}:3\\ 1:2:4\\ 1:6\\ 1:2\frac{1}{2}:5\\ 1:3:6\\ 1:8\\ 1:10\\ \end{array}$	5·0 6·9 8·7 8·7 10·6 12·5 11·2	41 5 6 8 8 10 111 14	5/3½ 7/5 9/7 14/10 	3·2 4·5 5·8 7·0 7·1 8·4 9·2

^{*} Sum of separate volumes before mixing.

ALL-IN MIXES

When neither strength nor impermeability is important it is unnecessary to gauge the coarse and fine aggregate separately.

Unseparated ballast all-ups or crusher-run stone is then used. Such materials vary considerably in grading and figures relating to them are necessarily rough. The following table may be used, with reserve, for either class of material.

[†] Approximate total mixing water including water in the aggregates, to give a slump of 3 in. with crushed or angular aggregate or 4 in. with rounded aggregate.

TABLE 55.

Nomina	Cu. ft. of	Cwt.	Per Cut	olc Yard of	Concrete	
Mix Aggrega		Cement per cu. yd. of All-in	Сеп	nent	All-in Aggregate	
	Cement	Aggregate	lb.	ton	cu. yd.	
1:3 1:4 1:5 1:6 1:7 1:8 1:9	33 5 61 71 83 10 111 121	7·25 5·46 4·38 3·62 3·13 2·67 2·42 2·17	740 600 500 430 380 330 300 270	·33 ·27 ·22 ·19 ·17 ·15 ·13 ·12	.91 .98 1.04 1.06 1.09 1.10 1.11	

CONCRETE QUANTITIES

The quantities given in the next two tables are based on proportions by volume of fine and coarse aggregate as ordinarily measured in gauge boxes, the weight of cement being calculated at the standard equivalent of 90 lb./cu. ft.; this assumes that whole cwt. bags are used in each batch. Ordinary Portland cement measured in a box weighs only about 80 lb., and rapid-hardening cement 70–75 lb./cu. ft.

The coarse aggregate is taken as graded material from $\frac{3}{16}$ in. up, with usual percentages of voids, viz., for shingle 40%, broken stone 45%.

In view of the wide variation in the volume of sand through bulking (p. 92) the sand quantities can only be a rough guide to the purchaser: sometimes 20% more than the volume stated is required to give a good mix.

The weight figures for sand are adequate for estimating purposes. The weight figures for broken stone aggregate apply to stone of density 150 lb./cu. ft., i.e., average sandstone. For granite add 0-10 ton and for most limestones deduct 0-07 ton, in last column of Table 56.

The quantities in the tables include appropriate allowances for waste.

Typical weights of aggregates per cu. yd.:-

MATERIALS REQUIRED PER CUBIC YARD OF FINISHED CONCRETE

TABLE 56.

Nominal Mix	Type of	Portland Cement		Sand See note above		Coarse Aggregate	
riix	Aggregate	Ib.	ton	cu. yd.	ton	cu. yd.	ton
1:1:2	Shingle	950	·425	-39	-49	·78	·90
	Broken Stone	1000	·447	-41	·51	-82	-82
l:l⅓:3	Shingle	670	·300	· 4 2	.52	-83	.96
•	Broken Stone	710	-318	-44	-55	.87	-87
1:2:3	Shingle	620	·278	.51	-64	.76	-86
	Broken Stone	650	-291	-53	-65	-80	-80
1:13:31	Shingle	610	.273	·42	.52	-84	.97
	Broken Stone	640	-286	.44	-55	-88	-88
1:2:4	Shingle	520	-233	-44	-55	-87	1.00
	Broken Stone	550	-246	-46	.57	.91	.91
1:2½:5	Shingle	430	·192	-44	-55	.88	1.01
	Broken Stone	450	-201	-46	.57	.92	.92
1:3:6	Shingle	360	-161	·45	-56	.90	1.03
	Broken Stone	380	·170	-47	-59	.94	.94
1:4:8	Shingle	280	125	·46	.57	.92	1.06
	Broken Stone	295	·132	-49	-61	.97	.97

MATERIALS REQUIRED PER 100 SQ. YDS.

TABLE 57. See notes on page 40.

							Thickness of
Nominal Mix	Material	Unit	l"	13"	2"	3"	4"
l:l:2 Shingle	Cement Sand	ton	1·17 1·08	1·76 1·62	2·35 2·16		
Similar	Shingle	cu. yd.	2.16	3.24	4.32	1	1 1
1:1:2	Cement	ton	Ī·24	1.86	2.48	1	
Broken Stone	Sand	cu. yd.	1.14	1.70	2.27		
	Stone	cu. yd.	2.28	3.41	4.55		
1:1½:3	Cement	ton	·83	1.24	1.66	2.49	3.32
Shingle	Sand	cu. yd.	1.2	1.7	2.3	3.4	4.6
	Shingle	cu. yd.	2.3	3.4	4.6	6.9	9.2
	Cement	ton	.88	1.32	1.76	2.64	3.52
Broken Stone	Sand	cu. yd.	1.2	1.8	2.4	3.6	4.8
	Stone	cu. yd.	2.4	3.6	4.8	7.3	9.7
1:2:4	Cement	ton				1.94	2.58
Shingle	Sand	cu. yd.				3.7	4.9
	Shingle	cu. yd.			İ	7.3	9.7
1:2:4	Cement	ton				2.04	2.72
Broken Stone	Sand	cu. yd.				3.8	5.1
	Stone	cu. yd.				7.6	10-1
1:2½:5	Cement	ton				1.60	2.14
Shingle	Sand	cu. yd.		,		3.7	4.9
	Shingle	cu. yd.				7.3	9.8
1:2½:5	Cement	ton			1	1.68	2.24
Broken Stone	Sand	cu. yd.			1	3.8	5.1
	Stone	cu. yd.				7.7	10.2
1:3:6	Cement	ton	·45	-63	.91	1.35	1.81
Shingle	Sand	cu. yd.	1.3	1.9	2.5	3.8	5.0
	Shingle	cu. yd.	2.5	3.8	5.0	7.6	10.0
1:3:6	Cement	ton	· 4 8	.71	.95	1.42	1.90
Broken Stone	Sand	cu. yd.	1.3	2.0	2.7	3.9	5.3
	Stone	cu. yd.	2.6	4.0	5.3	7.9	10.5
l : 6 All-in	Cement	ton	.53	-80	1.07	1.60	2.14
All-In Aggregate	Aggregate	cu. yd.	2·9 4·0	4·4 5·9	5·9 7·9	8·8 II·8	11.8
~881 cRarc	,,	ונטוו	J - V	J.7	1.7	111.0	1 13.0

OF CONCRETE SLAB, FINISH OR BLINDING

5*	6"	7"	8″	9"	10*	11"	12"
5·15 5·7 11·5 4·39 6·1 12·1	4.98 6.9 13.8 5.28 7.3 14.5	5:81 8:1 16:1 6:16 8:5	6·64 9·2 18·4 7·03 9·7 19·3	7.47 10.3 20.7 7.90 10.9 21.8			
3·23	3·87	4·52	5·16	5-81	6·46	7·10	7·7·4
6·1	7·3	8·5	9·7	10-9	12·2	13·4	14·6
12·0	14·5	16·9	19·3	21-7	24·1	26·6	29·1
3·40	4·08	4·76	5·44	6-12	6·80	7·50	8·1:
6·3	7·6	8·8	10·1	11-4	12·6	13·9	15·2
12·6	15·1	17·6	20·1	22-7	25·2	27·8	30·3
2·67	3·20	3·74	4·27	4·80	5·34	5·87	6·4
6·1	7·3	8·6	9·8	11·0	12·3	13·5	14·7
12·3	14·7	7·	19·5	22·0	24·6	27·0	29·4
2·80	3·35	3·9	4·47	5·03	5·60	6·15	6·7
6·4	7·7	9·0	10·2	11·5	12·7	14·0	15·4
12·7	15·3	7·9	20·4	23·0	25·4	28·0	30·7
2·26	2·71	3·16	3·61	4·06	4·50	4·95	5.4
6·2	7·5	8·8	10·0	11·3	12·5	13·8	15.0
12·5	15·0	17·5	20·0	22·5	25·0	27·5	30.0
2·37	2·85	3·33	3·80	4·28	4·75	5·22	5.7
6·6	7·9	9·2	10·5	11·8	13·1	14·4	15.7
13·1	15·7	18·3	21·0	23·6	26·2	28·8	31.4
2·67	3·20	3·74	4·27	4·80	5·34	5·88	6.5
14·8	17·7	20·7	23·6	26·6	29·5	32·5	35.4
19·8	23·7	27·6	31·6	35·5	39·5	43·5	47.4

PERMISSIBLE STRESSES IN REINFORCED CONCRETE

(i) L.C.C. by-laws.

TABLE 58.

Designation	Nominal Modular		Permissible Concrete Stresses Ib. per sq. in.				
of Concrete (see Table 52)	Mix	Ratio m.	Compression				
			Bending	Direct	Shear	Bond	
"Ordinary I Concrete" II III		15 ,,	975 850 750	780 680 600	98 85 75	123 110 100	
"Quality A IA Concrete" IIA IIIA	2 	,, ,,	1250 1100 950	1000 880 760	125 110 95	150 135 120	

Punching shear in footings is not to exceed twice the value given in the column headed "Shear."

Institution of Structural Engineers Report No. 10, Part IV, "Hollow Floors," recommends that the above stresses be reduced by 10% if $\frac{3}{8}$ in. aggregate is used.

(ii) Code of Practice: Reinforced Concrete Structures Research Committee, Department of Scientific and Industrial Research. See remarks on p. 226.

TABLE 59.

м.	Min		Modular	Permissible Concrete Stresses lb. per sq. in.					
Mix Reference		Nominal Mix	Ratio m.	Compression					
				Bending	Direct	Shear	Bond		
" Ordinary Grade "	 V	2 	14 14 16 18	975 925 850 750	780 740 680 600	98 93 85 75	123 118 110 100		
" High Grade "	 V			1250 1200 1100 950	1000 960 880 760	125 120 110 95	150 145 135 120		

The minimum 28-day cube strength requirements are:

Preliminary tests—4.5 times the value in Col. 4 (bending stress). Works tests —3

A Special Grade is also recognised, with permissible stresses based on the test results.

PERMISSIBLE COMPRESSIVE STRESS IN R.C. BEAMS

The concrete compressive stress in bending permitted in Tables 58 and 59 can be used for beams only when the length l between adequate lateral restraints does not exceed 20 times the breadth b of the compression flange. When the ratio exceeds 20, the calculated compressive stress is to be limited so that $\frac{l}{b}$ does not exceed $20 \left\{ 3 - 2 \left(\frac{calculated\ compressive\ stress}{permissible\ compressive\ stress} \right) \right\}$. Code of Practice; L.C.C. Memorandum on Computation of Stresses. The stress allowed may be obtained directly in the table below.

TABLE 60. Permissible Compressive Stress, lb./sq. in.

<u></u>	Concrete Designation, L.C.C.								
Б	1	н	111	IA	IIA	IIIA	Proportion		
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52	975 926 877 829 780 731 682 634 585 536 487 439 390 341 292 243 195	850 807 765 722 680 637 595 552 510 467 425 382 340 297 255 212 170	750 712 675 637 600 562 525 487 450 412 375 337 300 262 225 187 150	1250 1187 1125 1062 1000 937 875 812 750 687 625 562 500 437 375 312 250	1100 1045 990 935 880 825 770 715 660 605 550 495 440 385 330 275 220 165	950 902 855 807 760 712 665 617 570 522 475 427 380 332 285 237 190	1·0 ·95 ·90 ·85 ·80 ·75 ·70 ·65 ·60 ·55 ·40 ·35 ·40 ·35 ·20 ·15		
56 58 60	97 48 0	85 42 0	75 37 0	125 62 0	110 '55 0	95 47 0	·10 ·05 —		

PERMISSIBLE PRESSURES ON PLAIN CONCRETE

Four types of construction in plain concrete are distinguished in the L.C.C. by-laws, viz.: Filling, Foundations ("concrete supporting walls or piers"), Walls and Piers.

It is stipulated that concrete supporting walls and piers shall be adequately restrained at its upper and lower extremities, and if not also restrained between the extremities the permissible pressure is reduced according to figures based on the ratio of height to least horizontal dimension.

In the case of walls and piers a similar reduction of permissible pressure is made, and rules are given defining the height (" effective height") to be taken in different cases.

These regulations have been re-arranged and are presented in a more convenient form in the two tables following:—

	rons per sq. rc.							
Designation of Concrete	Nominal Mix	Filling	Foundations	Walls and Piers	Local Pressure in Walls & Piers			
l II	: :2 : \dagger:3		40 35	40 35	48 42			
III IV	: ½:3 :2:4 :6	20	30 20	30 20	36 24			

10

TABLE 61. Maximum Permissible Pressures on Plain Concrete. L.C.C. Tons per sq. ft.

15

Concrete weaker than Class V is not allowed in any part of the construction

18

Slenderness Ratio and Conditions of Lateral Support :-

1:10

See notes on previous page. The reductions in permissible pressure are given below.

H is the actual storey height or height between lateral restraints (feet).

d is the least horizontal thickness measured in the direction of restraint (feet).

TABLE 62.

H H	Foundations	Walls Horizontally restrained at the Top	Walls not restrained at the Top	Piers Horizontally restrained at the Top	Piers not restrained at the Top
		Multiply pr	essures in T	able 61 by :	
Up to 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 .9 .8 .7 .6 .5 .4 .3 .1	1·0 ., ., ., ., .925 .85 .775 .7 .625 .55 .475	1·0 ,, ,, ,85 .7 .55 .4	1·0 ,, ,, ., .9 .8 .7 .6 .5 .4	I-0 ,, .8 .6 .4

^{*} These pressures are to be reduced according to slenderness ratio and conditions of lateral support as specified in the next table. Walls may be designed according to rules of thickness for normal circumstances, for which see p. 58.

B.S. 449 recognises two cases only, viz., general load-bearing concrete and foundations for column bases, but includes an extra allowance for local pressure as at girder bearings, Column 4, and also provides for a higher pressure in foundations under column bases where the depth is not greater than $1\frac{1}{2}$ times the least width, Column 5.

TABLE 63. Maximum Permissible Pressures on Plain Concrete. B.S. 449

Tons per sa. ft.

Type of Concrete	Nominal Mix	3 General	· 4 Local	5 Under Column Bases	6 Under Column Bases †			
Fine Concrete								
1	1:1:2	40	48	534	57			
II	1:11:3	35	42		57 50 43			
III	1:2:4	30	36	46 3 40	43			
Mass Concrete			1	1	.•			
IV	1:6	20	24	264	28			
٧	1:8	15	18	26 3 20	21			
VI	1:10	10	12	134	14			
VII	1:12	5	6	13 1 6 3	7			
	l							

The pressures in Column 5 may be increased, where the loaded area A_1 is smaller than the total area A of the upper surface of the concrete, by multiplying by the ratio $3\sqrt{\frac{A}{A_1}}$; A shall not be taken larger than the greatest square which can be symmetrically placed round the loaded area and wholly within the area of the upper surface, and the maximum pressure shall not exceed double the value in Column 3.

* The pressures in Columns 3 and 4 apply only to cases where the Slenderness Ratio, i.e. actual height divided by least horizontal dimension is not greater than 6. The following percentage reductions are to be made in other cases:—

The slenderness ratio shall not exceed 12. No distinction is made between piers and walls.

- † Institution of Structural Engineers Report No. 8.
- B.S. 1145 repeats Col. 3 with additional mixes, but differs for local loading and slenderness ratio.

BRICK DATA

Three sizes of brick have been standardised in B.S. 657, Common Building Bricks. They are :---

Type I
$$-8\frac{3}{4} \times 4\frac{3}{16} \times 2$$
 in.
Type II $-8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{5}{8}$ in.
Type III $-8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{7}{8}$ in.

A tolerance of $\pm \frac{1}{8}$ in. is allowed in the length and of $\pm \frac{1}{16}$ in. in the other dimensions.

Sand lime (or calcium silicate) bricks are standardised in B.S. 187, the sizes being Types II and III as above.

Cast iron Air Bricks and Gratings, B.S. 493, are standardised as follows:-

TABLE 64

	Air	Bricks	
Overall Size in.	Heavy Grade	Gratings	
in.	Minimum Wt		
9 × 3	36	12	21
9 × 6	57	21	36
9 × 9	78	33	5 4
9 × 12	102	45	66
Depth	13"	14"	5 " 16"

Glass Bricks (non load bearing) given in B.S. 952, Glass for Glazing are as follow:—

TABLE 65

Size, in.	Weight, lb. oz.
$\begin{array}{c} 8 \times 4\frac{7}{8} \times 3\frac{7}{8} \\ 5\frac{2}{4} \times 5\frac{3}{4} \times 3\frac{7}{8} \\ 7\frac{3}{4} \times 7\frac{3}{4} \times 3\frac{7}{8} \end{array}$	4 5 3 II 6

BRICKWORK QUANTITIES

1 Rod of brickwork= $30\frac{1}{4}$ sq. yds. or 272 sq. ft. of brickwork $1\frac{1}{2}$ bricks thick. =45.4 ,, ,, 408 ,, , , 1 brick ...

=11\frac{1}{4} cu. yds. or 306 cu. ft. of brickwork.

Area of reduced brickwork = area of equivalent work $1\frac{1}{2}$ bricks ($13\frac{1}{2}$ in.) thick.

The rod is still widely used as a unit for pricing, but the custom is growing of measuring brickwork in square yards of a stated thickness.

NUMBER OF BRICKS IN BRICKWORK

The thickness of vertical joints on face is taken as $\frac{1}{4}$ in.; in the case of English and English Garden Wall Bonds, vertical joints in header courses must be $\frac{1}{4}$ in. If the stretcher course vertical joints are $\frac{1}{4}$ in.

must be $\frac{5}{16}$ in. if the stretcher course vertical joints are $\frac{1}{4}$ in.

No allowance has been made for waste. The volume in yards cube is to be calculated on the nominal thickness, viz., $4\frac{1}{2}$ in., 9 in., $13\frac{1}{2}$ in., etc.

TABLE 66

			N	umber of Bric	ks	
Brick Size	Bed Joints	Р	er Yd, Super o	Per Yd.	Per Rod	
in.	In.	4}"	9"	13}"	Cube	
Type I 8 ³ / ₄ × 4 ³ / ₁₆ × 2		64 61 59	128 121 117	192 182 176	512 484 468	5800 5500 5310
Type II $8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{5}{8}$	478-12	50 48 46	100 96 92	150 144 138	400 384 368	4530 4350 4170
Type III $8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{7}{8}$	- 438- 2	46 44 43	92 89 85	138 133 128	368 356 340	4170 4020 3870

The number of bricks required is the same for all solid bonds.

OUANTITY OF MORTAR IN BRICKWORK

The notes at the head of the table above apply here also.

TABLE 67. For mortar data see page 54.

	_	Cu. Ft. of Mortar (nett)						
Brick Size	Bed Joints	F	er Yd. Super o	Per Yd.	Per Rod			
in.	in.	4}"	9*	13}″	Cube			
Type I 8\frac{3}{4} \times 4\frac{3}{16} \times 2	- 4-7 B- 2	.8 .9 1.0	1·6 1·8 2·0	2·3 2·8 3·0	6·2 7·4 8·0	70 84 90		
Type II 83 × 43 × 25	4376-1	·6 ·8 ·9	·3 ·6 ·8	2·0 2·3 2·6	5·3 6·2 7·0	60 70 79		
Type III 8½ × 4½ × 2½	‡ ‡ ‡	·6 ·7 ·8	1·3 1·4 1·7	1.9 2.1 2.5	5·1 5·7 6·6	57 65 75		

NUMBER OF FACING BRICKS IN BRICKWORK

Headers are counted as whole bricks. No allowance has been made for waste.

TABLE 68.Facing Bricks per yard super

	Bed	Bond						
Brick Size in.	Joints English	English	English Garden Wall.	Flemish or Quetta	Flemish Garden Wall	Stretcher		
Type I 8\frac{3}{4} \times 4\frac{3}{16} \times 2	478	96 91 88	80 76 73	86 81 78	74 69 67	64 61 58		
Type II 8\frac{1}{4} \times 4\frac{1}{16} \times 2\frac{5}{8}	4 3 8 1 2	75 72 69	63 60 58	67 65 62	57 55 53	50 48 46		
Type III $8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{7}{8}$	4 3 8 2	69 67 64	58 56 53	62 60 57	53 51 49	46 44 43		

COMMON BRICK BONDS

English	
English Garden Wall	
Flemish; Quetta	
Flemish Garden Wall	
Stretcher	

QUETTA BOND QUANTITIES

This useful construction costs little more than plain brickwork but has much of the strength and resistance to destruction of reinforced concrete. In common with engineering brickwork its joints are best made $\frac{1}{4}$ in. thick.

By omitting the concrete and reinforcement, Bergen Hollow Bond is obtained.

TABLE 69

Brick Size	Bed	N	Number of Bricks				
in.	Joint	Per Yd. Super	Per Yd. Cube	Per Rod			
$\begin{array}{c} 8\frac{3}{4} \times 4\frac{3}{16} \times 2 \\ 8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{5}{8} \\ 8\frac{3}{4} \times 4\frac{3}{16} \times 2\frac{5}{8} \end{array}$	‡",	171 133 123	471 356 327	5160 4030 3710			
		Cu. Ft. of Concrete					
All sizes of brick		1.36	3.63	41-1			
		W	eight of Steel,	lb.			
$\frac{1}{4}'' \phi \text{ at } 6\frac{3}{4}'' \text{ c.c.}$		2·68 4·19 *	7·16 11·2	81·1 127			

PROPERTIES OF BRICKWORK (Stock bricks in cement mortar)

 $E=1,000,000\ lb./sq.$ in. Temperature coefficient $0.000,003/degree\ F.$ Safe loads, pages 62 and 64. Ultimate loads, next page. Heat transmittance, Tables 166 and 168. Weight, Table 70. Strength of individual bricks, Table 78.

TYPICAL WEIGHTS OF BRICKWORK (DRY)

TABLE 70

T (D.)	Weight.	Weight, lb./sq. ft.				
Type of Brick	lb./cu. ft.	4}"	9"	131		
Blue Diatomaceous	150 30	56	112	169		
Engineering Firebrick	135 110–125	51	101	152		
Flettons	110-115	42	84	126		
,, cavity	90	34	68	101		
London stocks	115	4 3	86	129		
Red	100-120	41	83	124		
Sand-cement	130	49	98	146		
Sand-lime	115	43	86	129		

Plaster I in. thick weighs 9 lb./sq. ft.

ULTIMATE STRENGTH OF BRICK PIERS

The figure below shows the compressive strength at failure of brick piers laid in mortars with varying proportions of lime and cement. The mortar in all cases is composed of 3 parts sand to 1 part of cementing material, i.e. lime and cement combined. The data on which the figure is based were given in the Building Research Board Annual Report, 1934.

It will be seen that the strength of brickwork laid in mortar containing equal parts of cement and lime is practically as great as when laid in cement mortar, although the strength of the mortar is less than one-half as great; this is attributed to the improvement in workability which accompanies the admixture of lime. The strength of the bricks was 2685 lb./sq. in.

For quantities of mortar in brickwork see Table 67.

Tensile strength of mortar at 28 days:-

I cement: 3 sand - 450 lb./sq. in. = 29 tons/sq. ft.

Compressive strength of mortars, see previous paragraph.

TABLE 71. Materials for I cu. yd. of mortar

Propor	tions by	vol.	Ceme	nt or	Cement	or Lime	Sand		
Cement Lime	or	Sand	Lime cu. ft.		lb.	lb.	cu. ft.	cu. yd.	ton
! ! !	Ì	1 2 3 4	2(1)	3	1750 1150 870 700	720 470 360 290	20 26 30 32	.70 .96 I.II I.I8	·87 1·20 1·38 1·47
Cement	Lime	Sand	Cem.	Lime	Cement	Lime			
	1 2 3 4 5	6 9 12 15 18	5 3½ 2½ 2 1¾	5 6 3 7 <u>1</u> 8 81	430 287 215 172 143	180 240 270 288 300	30 	1·11 " " "	1·38

Rendering and Plastering

I cu. yd. of mortar will cover the following areas :-

TABLE 72

Surface	Minimum Thickness in.	Area Covered yd. sup.	Surface	Minimum Thickness in.	Area Covered yd. sup.
Concrete or plaster	-la-lecia-kwianje	288 144 96 72 57 48	Brickwork ,,,, Rubble ,,, Laths	rija vija rija rija rija	72 48 57 41 50 37

Mixes

Cement stucco, 1 cement : $2\frac{1}{2}$ or 3 sand.

(waterproof) render, I cement: 2 sand. dampcourse, I cement: I sand.

Coarse stuff, I lime putty: 2 or 3 sand.

Fine stuff, I lime putty: I sand.
I ton of chalk lime makes about 2 cu. yds. lime putty.

HEIGHTS OF BRICK COURSES

For standard bricks, measured from top of footing to top of brick

TABLE 73

No. of Courses		2" Bricks		2{	" Bricks			2¦″ Brick	(S
2 కే	Bed. Joints: ½"	ť	ł ″	ł"	ŧ"	ł"	ł"	ŧ"	ł*
1 2 3 4 5	ft. in. 24 44 64 9	ft. in. 23 43 71 8 91 118	ft. [in. 2½ 5 7½ 10 1 0½	ft. In. 27 53 85 111 1 23	ft. In. 3 6 9 1 0 3	ft.	in. 3 18 14 3 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft. in. 3½ 6½ 9¾ I I	fs. In. 33 63 101 1 11 47
6 7 8 9 10	1 14 33 6 84 10	1 2 1 4 1 7 93 111	3 5½ 8 10½ 2 l	5 1 8 1 11 2 1 7 43	6 9 2 0 3 6	2	63 97 1 41 74	7½ 10¾ 2 2 5½ 8½	81 118 2 3 68 93
11 12 13 14 15	2 0 1 3 51 71 91	2 2	3½ 6 8½ 11 3 1½	75 10½ 3 13 4¼ 7½	9 3 0 3 6 9	3	108 1125 458 747 108	113 3 3 64 91 4 03	3 18 4 2 2 8 4 2 8 4 2 8 8 8 8 8 8 8 8 8

Table 73—Continued.

s of		2" Bricks		25"	Bricks		2%" Brick	
No. of Courses	Bed Joints: ½"	i	i"	ł"	ŧ"	ł" ł"	<u>3</u> ″	1,"
16 17 18 19 20	ft. In. 3 0 24 44 64 9	ft. in. 3 2 43 63 94 112	ft. in. 3 4 6½ 9 11½ 4 2	ft. in. 3 10 4 07 3 34 6 6 8 9 1	ft. in. 4 0 3 6 9 5 0	ft. in. 4 2 5 8 8 1 1 2 5 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2	ft. in. 4 4 7	ft. in. 4 6 93 5 03 44 71
21 22 23 24 25	111 4 11 31 6 81	4 17 44 65 9 113	4½ 7 9½ 5 0 2½	5 03 34 68 9	3 6 9 6 0 3	55 83 117 6 3 6 6	8\frac{1}{4} 6 2\frac{1}{4} 6 9\frac{1}{4}	107 6 21 58 9 7 08
26 27 28 29 30	101 5 01 3 51 71	5 13 41 61 87 81	5 7½ 10 6 0½ 3	6 23 55 81 113 7 21	6 9 7 0 3 6	7 08 1 6 8 3 9 3 4 9 3 4	7 0½ 3¾ 7 10¼ 8 1½	33 7
31 32 33 34 35	6 0 21 41 63	6 15 4 63 83 118	5½ 8 10½ 7 I 3½	5 8 10 8 1 4 5 4 5	9 8 0 3 6 9	8 07 4 71 101 9 13	4 ³ / ₄ 8 11 ¹ / ₄ 9 2 ¹ / ₅ 5 ³ / ₄	85 9 0 33 61 101
36 37 38 39 40	9 11½ 7 1½ 3¾ 6	7 1 1 2 3 5 6 1 8 8 8 1 1 1 1 1 1	6 8 <u>1</u> 11 8 1 <u>1</u> 4	7½ 103 9 1¼ 48 7	9 0 3 6 9	41 78 103 10 17 5	10 04 3½ 63 10	10 147 478 84 1138 11 3
41 42 43 44 45	81 101 8 03 3 51	8 13 33 61 81 107	6½ 9 11½ 9 2 4½	97 10 03 35 61 93	3 6 9 11 0 3	8 1 4 1 2 3 5 2 5 5 5 5 5 5 5 5	11 14 41 74 11 12 24	63 93 12 1 42 78
46 47 48 49 50	7½ 9½ 9 0 2½ 4½	9 11 33 6 83 103	7 9½ 10 0 2½ 5	11 04 38 6 87 113	12 0 3 6	113 12 28 6 91 13 01	5½ 8¾ 13 0 3½ 6½	11 4 13 2 8 6 9 8 14 0 3
51 52 53 54 55	6 2 9 11 <u>1</u> 10 1 <u>1</u> 3 2	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7½ 10 11 0½ 3 5½	12 25 51 81 111 13 21	13 0 3 6 9	3	1	10 2 1 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 5 5 5 5
56 57 58 59 60	6 8 1 10 <u>1</u> 11 0 1 3	11 32 52 81 101	8 10½ 12 1 3½ 6	5 77 101 14 18 41	14 0 3 6 9 15 0	7 10 15 1 43 7	15 2 54 84 114 16 3	9 16 0 3 3 1 7 1 10 <u>1</u>
61 62 63 64	51 71 91 12 0	12 07 31 51 8	8½ 11 13 1½ 4	73 101 15 11 4	3 6 9 16 0	101 16 13 41 8		17 17 51 88 18 0

Table 73—Continued.

No. of Courses	2" Bricks			2g″ Bricks			2% Bricks		
	Bed Joints: ½"	i"	<u>ł</u> ″	ł"	ę"	1" t	1 1	1 2"	
65	ft. in. 12 24	ft. in. 12 103	ft. in. 13 6½	ft. in. 15 67	ft. in. 16 3	ft. in. 16 11	ft. in.	ft. in. 18 33	
66 67 68 69 70	41 63 9 111 13 11	13 034 318 517 778 1014	9 11½ 14 2 4½ 7	934 934 312 638 94	6 9 17 0 3 6	17 2: 5- 8- 11: 18 2:	10½ 18 1¾ 5 8¼ 11½	64 108 19 14 478 84	
71 72 73 74 75	34 6 84 101 14 04	14 05 3 53 73 101	9½ 15 0 2½ 5 7½	17 0 18 3 578 834 118	9 18 0 3 6 9	19 0- 3- 6-	19 2 3 6 91 20 01 33 33	115 20 3 65 93 21 15	
76 77 78 79 80	3 5 7 7 9 9 15 0	15 0½ 278 5¼ 758 10	10 16 0½ 3 5½ 8	18 2½ 5¾ 8¼ 11½ 19 2	19 0 3 6 9 20 0	20 0 3 6 10	7 104 21 14 78 43 8	4½ 7% 11¼ 22 2% 6	
81 82 83 84 85	24 41 63 9 114	16 03 23 51 71 97	10½ 17 1 3½ 6 8½	47 734 1058 20 11 438	3 6 9 21 0 3	21 4 7 10 22	1 1 1 4 22 2 1 2 3 3 4 9 2 3 0 4	23 034 418 712 1078	
86 87 88 89 90	16 1 1 4 3 3 4 6 8 4 10 1 2	17 0¼ 25 5 73 93	18 1½ 4 6½ 9	7½ 10½ 21 1 3½ 6¾	6 9 22 0 3 6	- 11	3 1 3 1 6 3 1 6 3 1 6 3 1 6 3 1 6 3 1 6 1 6	24 24 55 9 25 08 33	
91 92 93 94 95	17 03 3 51 71 93	18 0 1 2 1 4 7 4 7 1 4 9 8	11½ 19 2 4½ 7 9½	22 0½ 33 6¼ 9å	23 0 3 6 9	24 24 2 8	71 11 25 24 34 74 83	7 1 10 1 2 1 2 1 5 1 5 1 8 5	

LINTOL BEAMS CARRYING BRICKWORK

British Standard Beams as in Table 103, encased in concrete with a minimum cover of 2 in. and supported at each end.

B.S.B.	4½" Brickwork Max. clear span 8 ft.				9" Brickwork			
$3'' \times 3'' \times 8\frac{1}{2}$ lb.					Max. clear span			7 ft.
$4'' \times 3'' \times 10$ lb.	,,	,,	٠,,	10 ft.	,,	,,	٠,,	9 ft.
$5'' \times 3'' \times 11$ lb.	١,,	,,	,,	12 ft.	,,	,,	,,	10 ft.
$6'' \times 3'' \times 12 \text{ lb.}$,,	,,	,,	13 ft.	١,,	,,	,,	12 ft.
$7'' \times 4'' \times 16$ lb.	;;	••		16 ft.	,,	•••	•••	14 ft.
$8'' \times 4'' \times 18 \text{ lb.}$		• • •			1 .,	•	,,	15 ft
$9'' \times 4'' \times 21$ lb.					,,	,,	,,	16 ft

WALLS AND PIERS

of Brickwork, Masonry or Plain Concrete L.C.C. by-laws

(i) Definition of Walls and Piers.

Where a pier is built integrally with a wall and projects on one side of it for a distance not exceeding $\frac{1}{4}$ of the wall thickness (or projects on both sides so that the sum of the projections does not exceed $\frac{1}{4}$ of the wall thickness) the combination is deemed to be a wall. Where the projections exceed these limits the combination is deemed to be a pier.

(ii) Definition of Length of Wall.

The length of a wall is taken as the clear distance between any buttressing walls or piers (see (i) above) which are bonded to it; the buttressing walls or piers must extend to the top of the wall in single storey buildings, or to the underside of floor of the topmost storey when there is more than one storey.

(iii) Rules for Thickness.

The thickness of walls and piers of brickwork, masonry or plain concrete may be decided under the L.C.C. by-laws either from a set of rules prescribing the thickness in various circumstances, or by calculation of the pressures. In either case, certain minimum thicknesses are laid down, and these are reproduced shortly in Table 74 and paragraphs (b) to (e) below. Thickness is always exclusive of rendering, stone facing or other finishes. The regulations may only be applied to walls carrying distributed loads, including joists up to 42 in. centres. In general, openings in the walls are limited to one-half of the elevation area in any storey. Isolated piers come under column regulations. Certain single-storey buildings are exempted from the rules.

(a) Minimum Wall Thicknesses in general.

TABLE 74

Type of Wall	Material of Wali	Warehouses	Buildings other than Warehouses	
External wall or buttressing } wall	B RC	8 <u>1</u> ″ 4″	8½″ 4″	
Party wall: Not exceeding 30' high	B RC	13" 8"	8½″ 8″	
Exceeding 30' and not ex- ceeding 40' (or 50' high if the length is not over 35')	B RC	13″	8 <u>1</u> " 8"	
Any other height	B RC	",	13"	

B = brickwork, masonry or plain concrete.

RC = reinforced concrete.

(b) Party Walls.

Every party wall and pier combined with it must be of a thickness at any level not less than one-fortieth of the height from that level to the top of the wall.

(c) Panels.

When a part of a wall is so constructed that it does not aid in sustaining any of the loads on the rest of the wall, e.g. a panel in a framed structure, such part or panel may be deemed to be a separate wall for the purpose of determining the thickness.

(d) Other Walls.

In every other wall and pier the thickness at any level must not be less than one-sixtieth of the height from that level to the top of the wall.

(e) Cavity Walls.

These must consist of two leaves each not less than 4 in. thick, and the cavity must be from 2 in. to 6 in. wide. Iron ties not less than $\frac{3}{4}$ in. $\times \frac{3}{16}$ in. in cross-section are required at the rate of two per square yard for cavities up to 3 in. wide, increasing proportionately up to four per square yard for a 6-in. cavity. Local by-laws sometimes limit the cavity width to $3\frac{1}{2}$ in.

For walls of brickwork, masonry or plain concrete where calculations of pressure are not made, the following stipulations must also be met.

(iv) External and Party Walls.

(a) Tables 75 and 76 give in summary form the minimum thicknesses for these two classes of walls. They are also subject to a further condition, viz.:—

In buildings other than public buildings and warehouses, where in any storey height the thickness of wall as determined by Table 75 is less than one-sixteenth of the storey height, the thickness shall be increased to one-sixteenth and the thickness below that storey shall be increased to a like extent

In warehouses, the fraction stated above is to be one-fourteenth. The increased thickness may be confined to piers, the combined widths of which amount to not less than $\frac{1}{4}$ of the wall length. An external wall not over 25 ft. high and not more than 30 ft. long may be constructed as a cavity wall in accordance with paragraph iii (e) and the thickness given in Tables 75 and 76 shall then be the sum of the thicknesses of the two leaves.

(b) See Tables 75 and 76; for lengths exceeding 45 ft., the thickness in the two uppermost storeys is to be as stated for lengths not exceeding 45 ft., and $4\frac{1}{2}$ in. greater in the remaining storeys. The increase may be confined to piers as above defined.

(c) See Table 76; for cases below the thick line, the thickness at any level between the base and 16 ft. from the top shall be not less than is indicated by joining with straight lines the specified thicknesses at the base and at 16 ft. from the top, as shown in the sketch.

THICKNESS OF EXTERNAL AND PARTY WALLS in Brickwork, Masonry or Plain Concrete

(i) Buildings other than Public Buildings or Warehouses (See notes iii, iv (a))

TABLE 75

Height			Length not exceeding				
Exceeding	Not exceeding	20′	30′	35′	45′	Length exceeding 45'	
	12′	8 <u>‡</u> ″	8½″	8½″	8½″	8 <u>‡</u> ″	
12′	25′	,,	,,	Lowest storey 13", others 8		8½″	
25′	30′	,,	Lowest 13" Others 8½"	Lowest t	thers 8½″		
30′	40′	Top sto	p 8½", others 13"				
40′	50′	Lowest	17½″, top 8½″, ot	hers 13"	Lowest two 17½" Others 13"	Lowest 21½" Next 17½" Others 13"	
50′	60′	Lowest	Lowest $2l\frac{1}{2}$ " Next two $17\frac{1}{2}$ " Others 13 "				
60′ 70′ 80′ 90′ 100′	70′ 80′ 90′ 100′ 120′	Lowest Lowest Lowest Lowest Lowest	See note iv(b)				

(ii) Warehouses. (See notes iii, iv (a); for cases below the thick line see also note iv (c))

TABLE 76

Height		Length	Length						
Exceed- ing	Not exceed- ing	30′	35′	45′	exceeding 45'				
	25′		Top storey 8½", others 13"						
25′	30′	Top store	Top storey $8\frac{1}{2}$ " To 16' from top 13" At base $17\frac{1}{2}$ "						
30′	40′	13" throughout For 16' from top, 13" At base, 17½"			For 16' from top, 13" At base, 21½"				
40′	50′	For 16' from top, 13" At base, $17\frac{1}{2}$ "	For 16' from top, 13' At base, 26"						
50′	60′		For 16' from top, 13" At base, $21\frac{1}{2}$ "						
60′	80′	Α	As above						
80′	100′	For 16' At base	" " .						
100′	120′	For 16' At base	" "						

(v) Buttressing Walls (other than external or party walls).

The thickness of buttressing walls is to be not less than two-thirds of the thickness specified for external and party walls of the same height, length and class of building.

(vi) Partition Walls.

Partition walls and walls buttressing partition walls shall be of a thickness not less than half of the thickness specified for external and party walls of the same height, length and class of building; provided that a non-load-bearing partition wall adequately restrained on all four edges may be of less than the above thickness so long as the sum of its length and three times its height does not exceed 200 times its thickness.

Where the thickness is not determined in accordance with regulations iv to vi, or where exceptional circumstances make it necessary, calculation of the pressures on walls and piers must be made.

The following table gives the maximum permissible pressures on walls and piers for various qualities of brick or block and of mortar mixture.

The reductions in permissible pressure on brick walls and piers for different conditions of lateral support and slenderness ratio are the same as those for concrete, and are given in Table 62.

The permissible stresses in plain concrete are given in Tables 61 and 63 and in reinforced concrete in Tables 58 and 59.

TABLE 77. Permissible Pressures on Brickwork or Masonry (L.C.C.) (Slenderness Ratio not exceeding 6)

Ref.	Test Load on Brick or Block (see note below)				Pressure	
No.	lb. per sq. in.			Sand	"Column A" tons per sq. ft.	
1 2	15000 }	ı	_	2	{ 40 30	
3 4 5 6 7 8 9 10 11 12 13	Not less than:— '7500 5000 4000 3000 " " " " " " " " "	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2½ 3 4 6 4 6 9 12 15 18	23 16 13½ 11 10 8 7 6 5½ 5 4½	

For local loading under beams, etc., see p. 63.

Note. The test load is defined as the maximum load which the brick or block can withstand, when saturated with water, without cracking or breaking. It follows that bricks which fail at less than 1500 lb./sq. in. are not permitted for load-bearing walls; that if the test gives a value between 1500 and 3000 lb. the permissible pressure must be taken, according to the mortar proportions, from the figures in the 1500 lb. group, and so on.

Bricks or blocks in parts of the structure other than load-bearing walls or piers must have a test value of not less than 1000 lb./sq. in., with the exception that the value may be not less than 200 lb./sq. in. for non-load-bearing partitions built in accordance with the proviso in paragraph vi.

For test load values between 10,000 and 15,000, the permissible pressure may be taken as the appropriate proportionate value between 30 and 40 tons/sq. ft.; for example with bricks failing at 12,500 lb./sq. in. the permitted pressure is 35, provided that the mortar is 1:2 cement mortar.

The permissible pressure on brickwork is seen to be based on the crushing strength of the bricks and on the proportions of the mortar, the general rule being that strong bricks should be laid in strong mortar.

Test results on a particular brand of brick vary widely, and it would be necessary in practice to obtain from the supplier an undertaking that the bricks to be supplied for work designed in accordance with these permissible pressures will exceed the stipulated test strength.

The list below gives an indication of the classification to be expected of various well-known types of brick, based on tests at the Building Research Station and elsewhere.

TABLE 78

Test Load lb. per sq. in.	Type of Brick
Over: 10000 Not less than: 7500 5000 4000 3000 1500	Stafford blue Stafford blue, engineering bricks Engineering bricks, brindles Phorpres Fletton, Leicester red Pressed common Fletton, best sand-lime Sand-lime, hand-made multi-stocks, Aylesford pink, Hard London stocks.
Not permitted in load-bearing brickwork	London stocks (backings), multi-stocks

For weight of brickwork, see Table 70.

Local loading under beam or column (L.C.C.)

The pressures permitted in Table 77 may be increased by 20% under beams, columns or similar local loads, provided the stresses are immediately distributed over material not so stressed.

Local loading, Eccentric and Lateral Forces (B.S. 449)

More elaborate allowances for these loads are provided in B.S. 449. The same test loads and mortars are covered, and "Column A" of Table 77 gives the permitted pressures "due to combined live and dead loads where considered as uniformly distributed," on piers and bearing walls which have a slenderness ratio (i.e. actual height divided by least lateral dimension) not greater than 6.

The stresses due to eccentric loading (see page 113) and lateral forces are to be calculated and added to the uniformly distributed pressures, and the total so obtained is not to exceed the values given in Column B in the next table.

Local pressures under beams and columns are to be calculated, and the combination of such pressures with either of the two foregoing types of loading is not to exceed the values given in Column C.

Where the slenderness ratio exceeds 6, the following percentage reductions are to be made to the pressures permitted in Columns A, B and C:—

```
Slenderness ratio over 6 but not more than 8 . . . . 20% over 8 ,, ,, ,, 10 . . . . 40% over 10 ,, ,, ,, 12 . . . . . . . 60% over 12 not permitted
```

Maximum Pressures tons per sq. ft. Ref. No. in Table 77 Column B Column C 48 40 23456789 34.5 34.5 24 20·25 24 20.25 16.5 16.5 15 15 12 12 10.5 10.5 10 9 8.25 8.25 11 12 7.5 7.5

TABLE 79. Permissible Pressures, B.S. 449 (see foregoing notes)

13

14

PROPERTIES OF BUILDING STONES

6.75

6.75

For a good list of weights of English stones see B.S. 648—Unit Weights of Building Materials

TABLE 80

Stone	Weight Dry	Working Load	Ultimate tons/s		Young's Modulus	Temperature Coefficient per deg. F	
sione	lb./cu. ft.	tons/sq. ft. (see Table 77)	Compn.	Shear	tons/sq. ft. × 1000	parts per million	
Ancaster *	156		200				
Bath *	130	4	up to 200				
Darley Dale †	148		'			1	
Forest of Dean †	152	ļ	1				
Granite	165	48	1300-1600	150	450	3.6	
Ham Hill yellow *	135	10					
Hopton Wood *	158		1				
Limestones		18 if					
4			than 150	90	380-510	2.9	
Mansfield stone *	141.	11				1	
Marble	170		750	90	510	3.9	
Millstone grit †	145		400-500		1		
Portland stone *	140		1		1	1	
Sandstones	}	30 if	1				
1		1	than 250	110	160-210		
Slate, Welsh	175	22	900	low	900		
Westmor- land.	187	,,	,,	,,	,,		
Terra Cotta	110-140	ł	250-560	110-250	150-500	1.1	
York stone †	140	17					

Limestones. † Sandstones.

r

If saturated add, for granite, marble or slate 1 lb./cu. ft.

8		,	
sandstones	7	,,	,,
Portland stone	- 11	,,	,,
Bath stone	15	,,	•••
other limestones	7–12	,,	,,

For permissible pressures on masonry see also Tables 77 and 79.

LOADS ON SLABS

The load to be provided for includes

(i) Specified imposed load.

(ii) Weight of finish, filling and ceiling.

(iii) Allowance for partitions.

(iv) Self-weight of slab.

Regulations covering (i) make a distinction between slabs and beams, on the ground that slabs must be able to withstand local excessive loading while beams are able to average the load over an appreciable area. (The model by-laws of the Ministry of Health make no such distinction.)

Load regulations for beams are given on page III.

The following table gives the L.C.C. requirements and is accompanied by references to B.S. 449–1937, Institution of Structural Engineers Report No. 8 (Report No. 10 is nearly identical on the subject of floor loads), the model by-laws, Post-War Building Study No. 8, 1944 and the Housing Manual 1944 of the Ministries of Health and Works.

The B.S. Code of Practice C.P.4 (Chapter V) proposes imposed loads some of which are considerably lower than those in Table 81.

The class load per sq. ft. recommended for private dwellings of not more than two storeys is 30 lb.; for rooms in other dwellings, hospitals and hotels, 40 lb.; offices, 50 lb.; classrooms, 60 lb.; banking halls and offices where the public may congregate, 70 lb.; churches, restaurants and garages for vehicles up to $2\frac{1}{2}$ tons gross weight, 80 lb.; other garages and light workshops generally, 100 lb.

An appendix will give a comprehensive list of occupancies and the appropriate class.

The distinction between beam and slab loading is dropped, except in respect of the strip load requirements which are as follows:—

The minimum load on slabs (applying only to spans of less than 8 ft.) is 8 times the class load distributed over the span on a strip I ft. wide; the load on short spans in the 50 lb. class, for example, is $\frac{8 \times 50}{\lambda}$ lb./sq. ft.

The minimum load on beams (applying only to beams carrying less than 64 sq. ft. of floor) is 64 times the class load distributed along the span.

(i) IMPOSED LOADING ON FLOOR SLABS

Load classes in accordance with L.C.C. by-laws; the $\frac{1}{2}$ ton and $\frac{3}{8}$ ton uniformly distributed strip load requirements are expressed below in terms of the span I, so that no separate check need be made for those requirements.

TABLE 81

Class	Type of Building or Floor	Lb./sq. ft. of Slab
ı	Rooms used for residential purposes; and corridors, stairs and landings within the curtilage of a flat or residence.	For spans up to 11·2') Ift. For greater spans, 50
*	Bedrooms, dormitories and wards in hotels, hospitals, infirmaries, workhouses and sanatoria. (For public spaces, corridors and staircases, see starred Classes 4, 5 and 6.)	As Class I
2 3	Offices, floors above entrance floor Offices, entrance floor and floors below; retail shops; garages for cars not over 2½ tons in weight. (Report No. 8 gives 60 lb. for Class 2, and 2 tons instead of 2½ tons.)	For spans \ 840 up to 10.5' \int \ ft. For greater spans, 80
*	Churches; classrooms and lecture rooms in schools; reading and writing rooms in libraries, clubs and hotels; art galleries; show-rooms for light goods.	As Class 3
4	Corridors, stairs and landings not provided for in Class I. (Report No. 8 stipulates 300 lb. point load on each step or landing.)	For spans \ 840 up to 8.4' \ \ \overline{Ift.} For greater spans, 100
*	Dance and drill halls, restaurants, cafés, concert halls, grandstands, gymnasia, light workshops; public spaces in hotels, hospitals, restaurants, auction-rooms; theatres, cinemas, assembly halls. (The last three if with permanent seating accommodation are put in Class 3 by Report No. 8).	As Class 4
5	Workshops and factories; garages for motor vehicles other than those in Class 3 (vehicles from 2 to 3 tons loaded weight, Report No. 8).	For spans \\ \begin{align*} 840 \\ \text{up to 5.6'} & \overline{1 \text{ft.}} \\ \text{For greater spans, 150} \\ \text{(See also footnote)}
*	Storage rooms, factories, workshops, retail and book shops where the average load does not exceed 150 lb./sq. ft. Staircases and corridors in this Class. (Report No. 8 stipulates a 360-lb. point load on each step or landing.)	As Class 5
6	Warehouses, book stores, stationery stores and the like	For spans yellow to 4.2' Ift. For greater spans, 200
*	Pavements surrounding building but not adjoining a roadway. Staircases and corridors in this Class. (Report No. 8 stipulates a 600 lb. point load on each step or landing.)	As Class 6

Notes on Table 81

★ These cases are not specifically referred to in the L.C.C. by-laws, but District Surveyors and local authorities will normally accept the class loadings stated. For classes I and 2 see also below.

The actual loading on classes 4 to 6 is to be ascertained and is not to be taken as less than the values in the table.

The L.C.C. requires in addition, for garage floors in Class 5, that the slab shall be designed to carry 1.5 times the maximum possible combination of wheel loads, but each wheel load not less than 1 ton.

Beams and ribs spaced not further apart than 2 ft. 6 in. centre to centre

are to be designed for these loads and not for beam loads.

B.S. 449 and the model by-laws of the Ministry of Health omit Class 5 and place garages for vehicles over 2 tons in weight in Class 6, but without a wheel load stipulation. In addition, the model by-laws omit the strip load requirements, and specify the loading on Class 1 at 40 lb. instead of 50, and on Class 2 at 50 lb. instead of 80.

Report No. 8 omits the strip load requirements.

Post-War Building Study No. I and Housing Manual 1944 of the Ministries of Health and Works suggest an even further reduction for floors in Class I, for dwellings of not more than two storeys, to 30 lb./sq. ft. for spans over 8 ft. $\left(\frac{240}{I \text{ ft.}}\right)$ for spans not over 8 ft. on slabs or floor boards.

(ii) WEIGHT OF SLAB FINISHES, CEILINGS AND INSULATIONS For other materials see Table 93.

TABLE 82

Material					
Adamantine tiles	12" 1	hick 20			
Aluminium foil		negligible			
Asbestos cement flat sheets	$\begin{cases} \frac{3}{4} & 1 \\ \frac{3}{4} & \frac{3}{4} \end{cases}$	thick 13 21			
Asbestos wood	per inch of thick	ness 7			
,, spray	,, ,,	., 2			
Asphalt		, 11			
Beaver board	"	nick I			
Cabot's Quilt	<u>'</u>	· · · · · · · · · · · · · · · · · · ·			
Celotex	per inch of thick				
Cement. See mortar.	•				
Cemesto	1 늘" :	thick 4			
Concrete, breeze aggregate	per inch of thick				
brick aggregate	,, ,,	,, 10			
Cork, flooring	,, ,,	,, 2			
insulation slabs	,, ,,	,,			
Donnacona board	,, ,,	,, I]			
Felt, hair	11 11	,, 4			
Fibre board	,, ,,	,, 1 <u>4</u>			
Firebrick (silica)	,, ,,	, l2 1			
Glass silk	,, ,,	,, 1			
Granolithic	,, ,,	,, 12			
Gypklith	1) 1)	,, 3			
Gyproc. See Plaster board.					
Hardwood boards, parquetry	子" thick, in m	astic 4			
	l <u>∓</u> ″,, ,	, 44			
Insul board	per inch of thick	kness 1 1 1 2 3			
Kenmore board	11 11	,, 3			
Kieselguhr	,, ,,	,, 2 1			
Lath and plaster, average	,, ,,	,, 6 ⁻			
Lloyd hardboard	31 31	,, 3			
- insulating board	11 11	,, I I			
Macadam, tar	1, 1,	,, 11			

Table 82—Continued.

Material	Weight lb. per sq. ft.			
Magnesium oxychloride, sawdust filler ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	per 7 1 1 1 1 1 1 1 1 1 1	inch of thick, inch of	thickness thickness in mastic thickness	7 11 1 1 1 1 1 1 1 1
Slagwool	• • •	,,	,,	!#
Tarmac	,,	,,	**	!!
Tentest board	11	**	**	1-2
Terrazzo	,,	••	**	12
Tiling, clay	• • •	• • • • • • • • • • • • • • • • • • • •	••	1 1 1 1 1 1 1 1
Treetex	,,	**	••	1 .
Wood wool slab	**	"	,,	34

(iii) ALLOWANCE FOR PARTITIONS

Partition loads may be dealt with either by fixing the position and details of the partition on plan and designing to suit, or by making a general allowance by way of adding to the superimposed load on the whole floor.

TABLE 83. Typical weights are as follows:—

Construction	Lb. persq. ft. of Partition
Breeze blocks 4" thick Brickwork 4\frac{4}{2}" thick (See Table 70). Hollow clay blocks 3" thick plus plaster, 4", Timber studding plastered Plaster, per inch of thickness	30 42 23 27 20 9

According to the L.C.C. by-laws, the minimum allowance for partitions or the floors of rooms used as offices, where the positions of partitions are not definitely located in the design, shall be at the rate of

20 lb./sq. ft. of floor area.

Report No. 8 Institution of Structural Engineers stipulates the allowance to be 10% of the weight per foot run of partitions if this amount exceeds 20 lb./sq. ft. B.S. C.P.4 agrees, and adds that if the 10% so obtained is less than one-fifth of the imposed load, the weight of the partition may be neglected.

CONCRETE FLOORS

CONCRETE FLOORS

CONDITIONS OF SUPPORT

The following tables for reinforced concrete solid, filler joist and hollow floors are calculated for simply supported spans as in Fig. (a). The main reinforcement tabulated is in the direction of the span and is the quantity required at mid-span A, where the bending moment is $wl^2/8$.

When adjacent spans are continuous over supports, as in Figs. (b) and (c). for example, the B.M. is less than in a simply supported span of the same length. When using the tables, adjustment for conditions of support is made by reducing the span and not the load; the latter cannot be done directly since the slabs carry their own weight in addition to the imposed loads tabulated.

The method of using the tables for continuous spans (under L.C.C. rules) is then as follows:-

For End Spans, reduce the actual effective span by 10% before entering the tables to obtain the steel at B, Figs. (b) and (c), where $\dot{M} = wl^2/10$.

(In the case of two spans, Fig. (b), the B.M. over the centre support is $- w_1^2/8$ and therefore the full actual span must be used to find the steel at B".

In the case of three or more spans, the B.M. at B' over the support next

to the end is $-wl^2/10$ so that the span reduced by 10% should be used.) For Interior Spans, reduce the actual span by 18% before entering the tables to obtain the steel at C, where $M = wl^2/12$. Use the same amount over interior supports as at C'.

The effective span is to be taken as the distance between centres of supports, or as the clear span plus the effective depth of the slab. The moments quoted above, viz., $wl^2/10$ and $wl^2/12$ are allowable under the L.C.C. rules only if adjacent spans are of approximately equal length, i.e. when they do not differ by more than 15% of the longer span.

Reinforcement.

The continuity steel indicated in the diagrams over the supports should extend for one-fifth of the span in each direction. When the reinforcement is in the form of bars, it is customary to bend up half the bottom bars at this position in the span and carry them over the support, and to add sufficient top bars to make up the quantity required over the support.

Distribution bars transverse to the main bars are required by L.C.C., to the extent of 10% of the weight or cross-section of the main bars.

The tables of solid reinforced concrete slabs are followed by notes on the effect of concentrated loads (page 90) and on the bending moments in slabs which are supported at all four edges (page 91).

SOLID REINFORCED CONCRETE SLABS

Selection of Slab. For a given superimposed load and span (the latter adjusted for conditions of fixity if required), the most economical slab will usually be found by trying the second or third line in each table and taking the thinnest slab which will carry the required load in the appropriate span column. The slabs below the third line are not efficiently reinforced and are only tabulated because slab thickness is often dictated in practice by other considerations, e.g. when a light span adjoins a heavily loaded one and the thickness is kept the same for convenience.

Neutral Axis and Lever Arm Factors. The columns headed n_1 and a_1 are not required for selecting a slab but are included to assist when calculations have to be submitted to the local authority, and are used as follows:—

When an entry appears under n_1 , the resistance moment of slabs on that line is limited by concrete stress, and is given by (for Class III concrete):—

•
$$RM_{(concrete)} = \frac{1}{2} c.b.n.a. = 375 \times 12 \times n_1 d \times a_1 d in./lb. \text{ or } 375 n_1 a_1 d^2 \text{ ft./lb.}$$

When no entry appears under n_1 , the steel stress limits the resistance moment, which is then given by :—

$$RM_{\text{(steel)}} = A_{\text{T}}.t.a = A_{\text{T}}.18000 \, a_1 \, d \, \text{in./lb.} \text{ or } A_{\text{T}}.1500 \, a_1 \, d \, \text{ft./lb.}$$

In the above, n= depth of neutral axis, a= lever arm, $A_T=$ sectional area of main steel per foot width as tabulated below, d= effective depth: in accordance with usual office practice d is to be taken as overall thickness of slab less $\frac{3}{4}$ in. except in the case of $\frac{5}{8}$ in. bars when d= actual depth from top of slab to centre of bars. The tables have been calculated with the exact value of d in all cases, but the values of n_1 and n_2 apply to the approximate values stated above. $n_2=$ and $n_3=$ and $n_4=$ apply to the approximate

SECTION AREA OF ROUND BARS

TABLE 84.

AT sq. in. per ft. width of slab

Diam.				Spacin	g Centre (o Centre	of Bars			
J	3″	4"	5*	6"	7"	8"	9"	10"	12"	15"
2 6 % 1 0 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	·110 ·196 ·307 ·442 ·785 1·23	·083 ·147 ·230 ·331 ·589 ·920	-066 -118 -184 -265 -471 -736	-055 -098 -153 -221 -393 -614	·047 ·084 ·132 ·190 ·337 ·526	041 -074 -115 -166 -295 -460	-037 -065 -102 -147 -262 -409	-033 -059 -092 -133 -236 -368	-028 -049 -077 -110 -196 -307	-022 -039 -061 -088 -157 -245

(i) SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS

Calculated in accordance with L.C.C. by-laws, for concrete designation III (1:2:4 mix), max. steel stress 18,000, max. concrete stress 750 lb./sq. in., modular ratio 15, concrete cover not less than $\frac{1}{2}$ in. or diameter of bar. See notes opposite for n_1 , a_1 and effective span and for other conditions

of support.

The self-weight of the slabs has been deducted.

SAFE DISTRIBUTED IMPOSED LOADS

TABLE 85	•
----------	---

Lb. per sq. ft.

		Main Steel Effective Span										
		Mair	Steel				Effe	ective Sp	an			
n ₁	a ₁	Diam. in.	Centres in.	5′	5′ 6″	6′	6′ 6″	7′	7′ 6″	8′	8′ 6″	9′
		3″ \$	SLAB									
·45 ·40	.89 .91 .92	16 ,,	3 4 5	208 184 146	166 146 114	133 118 91	108 95 72					
		3 <u>i</u> ″	SLAB									
·47 ·42 ·41	.87 .88 .90 .89 .91	alected Cale 2	3 4 3 5 4 5	326 294 270 234 182	262 235 216 186 143	214 192 174 150 113	176 158 142 122 90	146 130 118 99 72	122 108 97 81 57			
		4″ 9	SLAB									
·48 ·45 ·44 ·40	.84 .85 .87 .89 .90 .91	-kr-kratestestestestestestestes	4 5 3 4 3 5 4 6 5 6	382 322 278 266 218 174	322 307 258 221 218 172 135	310 290 264 252 210 178 170 136 107	258 240 218 208 172 145 138 109 84	215 200 181 172 141 119 112 87 65	181 168 152 144 117 98 91 70 50	153 142 127 120 97 80 74 56	130 120 107 101 80 65 60 44	111 102 91 85 67 53 49

SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS The self-weight of slab has been deducted.

SAFE DISTRIBUTED

TABLE 85—Continued.

Lb. per

		Main	Steel					Effective
n ₁	σ ₁	Diam. in.	Spacing in.	5′	5′ 6″	6′	6′ 6″	7′
	-	41/2	SLAB		· · · · · · · · · · · · · · · · · · ·			
-46 -42 -40	.85 .86 .87 .89 .87 .90 .91 .92 .93 .94	-12 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	4 5 6 4 7 3 5 6 7 6 7	374 307 260 203 168	300 244 205 158 129	372 350 316 292 244 197 164 125	310 290 262 241 200 160 132 99 78	280 260 242 217 200 165 130 106 77 60
		5″ S	LAB					
-44 -48 -40 	.85 .84* .88 .87 .90 .88 .91	- kudecke-k ; rke-kudecke ; ; ;	4 5 3 5 6 4 7 3 5 6 7 8	352 294 254	280 232 199	360 333 280 226 186 158	298 276 230 184 150 126	352 348 330 328 298 248 229 190 150 121

^{*}d = 4.06".

c = 750 t = 18,000

IMPOSED LOADS

sq. ft.

Span								
7′ 6″	8′	8′ 6″	9′	9′ 6″	10′	10′ 6″	11′	11′ 6″
237 220	202 186	173 158	148 135	128 116	110 99			
204	173	147	125	107	92			
183	153	129	110	93	79			
168	141 113	119 94	100 78	84	71 53			
137 106	87	71	57	64 46	36			
85 60	68 46	54	43					İ
45	33							
]	1	<u> </u>	1
200	254	220	100	145	142	122	107	0.2
300 295	256 252	220 216	190 187	165 162	142 140	123 121	107 105	93 91
280 278	238 236	204 202	176 174	152 150	131 130	113 112	98 97	84
252	214	182	156	134	115	98	85	73
209	176	149	127	108	91	77	65	54
192	161	136	115	97	82	69	57	47
158 123	131	109 82	91 67	76 54	62 43	50 34	41	
98	79	63	50	38				
79	62	48	37					

SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS The self-weight of slab has been deducted.

SAFE DISTRIBUTED

TABLE 85—Continued

Lb. per

		Steel	Effective								
n,	a ₁	Diam. in.	Spacing in.	5′	5′ 6″	6′	6′ 6″	7′	7′ 6″	8′	8′ 6″
		5 <u>‡</u> ″ S	LAB								
-46 -42 -39	.85* .86 .87 .88 .88 .90 .,. .91 .92	M6-14 1:18-14 1:18 1: 1: 1:	5 4 5 6 7 9	394 334 246	314 265 192	406 315 254 212 150	338 259 207 171 118	390 337 286 280 214 169 138 93	332 286 241 236 178 139 112 73	316 292 283 242 204 199 148 114 90 56	272 251 243 207 173 169 124 93 72 42

^{*} d = 4.56"

6" SLAB

·44 ·41	.85* .86 .87 .89 .88 .89 .90 .91 .90 .92	ester-ter presente presente propies pr	5 4 5 3 6 7 4 5 9 6 7 9	370 274	293 214	352 340 284 236 168	289 280 232 191 133	376 316 312 239 232 188 154 104	319 266 263 200 193 155 125 81	383 334 316 270 224 222 166 160 128 101 63	331 288 272 231 190 188 139 133 105 81 47	
------------	---	--	--	------------	------------	---------------------------------	---------------------------------	--	---	--	---	--

^{*} d = 5.06"

c = 750 t = 18,000

IMPOSED LOADS

sq. ft.

					Span					
9′	9′ 6″	10′	10′ 6″	11′	11′ 6″	12′	12′ 6″	13′	13′ 6″	14
236 216 210 178 147 143 103 76 57 30	206 188 182 153 125 122 86 61 44	178 163 157 131 107 104 71 49 34	156 142 136 113 91 88 58	136 123 118 97 77 74 47	119 107 102 83 65 62	104 93 89 71 54 52	91 81 77 60 45 43	79 69 66 51 36 34		
288 249 234 198 162 160 116 111 86 65 35	252 216 203 171 138 137 97 92 70 51	220 188 176 147 117 116 80 77 56	193 164 153 127 99 98 66 63 44	169 143 133 109 84 83 54 51	149 125 116 94 71 70 43 40	130 108 100 80 59 58 34	94 87 68 49 48	100 82 73 57 40 39	87 71 62 47	7 6 5

SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS The self-weight of slab has been deducted.

SAFE DISTRIBUTED

TABLE 85—Continued.

Lb. per

		Main	Steel									E	ffective
n,	σ 1	Diam. in.	Spacing in.	6′	6′ 6″	7′	7′ 6″	8′	8′ 6″	9′	9′ 6″	10′	10′ 6″
		7″ \$	SLAB										,
·42	-86* -87 -88 -89 -91 -90 -92 -91 -92 -93 -94	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 4 5 6 4 8 5 9 10 6 8 10	364 340 238 176	299 278 191 137	376 324 288 282 246 228 152	317 272 241 235 204 188 122 83	326 268 229 201 196 168 154 97 62	279 228 193 169 164 139 127 76 45	392 302 240 194 163 141 137 116 104 59 32	344 263 207 166 138 118 115 96 85 44	313 302 228 178 141 116 98 95 77 69	276 266 199 154 120 97 81 78 62 55
' d = 6	·06″	!!	1	L	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	L	<u> </u>

8" SLAB

·43 ·39	.86* .87* .88* .88 .89 .90 .,	5,6 11 - 14 11 11 11 11 11 11 11 11	4 5 6 4 5 6 7 8 9	280	352 225	380 328 290 180	319 273 240 145	384 319 269 229 199 115	329 272 227 192 165 91	354 283 232 193 160 137 71	309 245 199 164 134 113 54	360 355 268 211 170 137 112 83	318 314 234 183 145 115 93 66	
------------	---	-------------------------------------	---	-----	------------	--------------------------	--------------------------	--	---------------------------------------	--	--	---	--	--

^{*}d = 7.06"

c = 750t = 18,000

IMPOSED LOADS

sq. ft.

pan													
11'	11′ 6″	12′	12′ 6″	13′	13′ 6″	14'	14′ 6″	15′	15′ 6″	16′	16′ 6″	17"	17′ 6″
244 234 174 133 102 79 67 64 50 42	216 207 152 115 86 65 54 51	192 184 133 98 73 53 43 40	170 164 116 84 61 42	151 144 101 71 49	134 128 88 60	118 112 74 50	104 99 63	92 87 55	81 76 46	71 66	61 57	53 49	

358 328 280 277 205 158 123 97 76	319 292 248 246 180 136 104 81	286 260 220 217 157 117 88 66 49	256 232 195 193 138 101 74 53	229 208 174 171 120 86 61	206 186 154 152 104 73 50	184 166 136 134 90 61	165 148 121 119 77 50	148 122 106 104 66	133 108 93 91 56	118 96 82 80	105 84 72 69	94 74 62 60	83 64 53 51	
---	---	--	--	---	---	--------------------------------------	--------------------------------------	--------------------------------	------------------------------	-----------------------	-----------------------	----------------------	----------------------	--

(ii) FILLER JOIST FLOORS (Simply Supported)

In accordance with B.S. 449 and L.C.C. by-laws. Concrete 1:2:4 designation III. I in. cover to sides and bottom of joists. The cases selected require no transverse reinforcement in the slab.

The self-weight of floor has been deducted.

For adjustment when the span is continuous over a support see notes on page 71.

SAFE DISTRIBUTED

TABLE 85A.

Lb. per

Steel Joists (British	Centre to Centre	to Inset i		Slab Thick- ness	Total Self Weight			Effective		
Standard) Size and Weight	of Joists in.	in.	in.	t in.	lbs./ sq. ft.	7	8	9	10	
3"×1½"×4 3"×3"×8½ 4"×1½×5	18	2	6 7	3	46 52 49	369	271 397 399	204 303 305	157 235 237	
4"×3"×10 42"×12"×6½ 5"×3"×11	24	3	7 1 9	" 4	56 52 66				369 350	
6"×3"×12 7"×4"×16 8"×4"×18	21 24 .,	2	10 11	3½ 4 ,,	65 74 78					

Based on data given in their steel Handbook by permission of Messrs. Redpath Brown & Co. Ltd.

The loads tabulated refer to this type of floor.

* If the slab is built with flush soffit, the dead weight is increased. Deduct from tabular load the figure on same line in the last column.

IMPOSED LOADS

sq. ft.

	Spans of Joists in Feet									
11	12	13	14	15	16	17	, 18	19	20	*
121 185 187 295 280	95 147 149 239 227 363 427	74 118 120 195 186 299 354	97 161 153 249 297 410	78 133 126 208 250 348 445	62 110 105 175 211 296 381	87 148 180 255 330	72 125 154 219 286	105 131 189 248	88 112 163 216	29 26 38 35 45 48 50 54 63

(III) HOLLOW TILE FLOORS

These floors consist structurally of a series of reinforced concrete T-beams, which are so closely spaced as to require to be designed for slab loading. They are much weaker in shear than solid floors of the same thickness, for the ribs alone are taken as resisting shear and the ribs represent only $\frac{1}{4}$ or $\frac{1}{3}$ th of the whole cross-section.

In consequence, the safe span of a hollow floor as determined by shear stress in the rib concrete is usually less than the safe span calculated from the bending resistance. In these cases it is customary to omit the hollow blocks in the end portions of the span where the shear exceeds the value which can be taken by the ribs. The remainder of the span is called the "Hollow Span" in Table 86, the whole span being termed the "Effective Span," as defined on page 71.

The usual concrete mix is $1:1\frac{1}{2}:3$ nominal, and small aggregate, e.g. $\frac{3}{2}$ in., is used as the concrete must be worked round reinforcement in narrow ribs. The conditions also call for a fluid mix.

(i) Simply Supported Spans

Table 86 gives directly the safe distributed imposed load in lb. per sq. ft. on various floors and effective spans. Where an entry for the Hollow Span occurs under the safe load figure, this entry gives the length which may be built hollow, and the remainder of the span must be solid. If there is no entry the whole span may be hollow.

(ii) Continuous Spans

(a) The permissible length of the hollow portion is the same for continuous as for simple spans, when fully loaded, but it may not be equidistant from the two supports, and its position varies for different arrangements of partial loading.

(b) If no entry appears for H, the whole span may be hollow with the exception of a few inches over a support. This is to take care of reverse bending, because the plain rib even when doubly reinforced is not quite so strong in bending as the T section at mid-span: but the BM is falling rapidly near the support and within a few inches the rib is capable of taking it. For the floors included in the table, a length of solid over each support equal to $\frac{1}{10}$ th of the span is sufficient when no value of H is tabulated.

(c) In accordance with L.C.C. by-laws and usual practice, the BM in con-

tinuous spans is taken as $\frac{Wl}{10}$ or $\frac{Wl}{12}$ as on page 71. The shear at the supports

varies according to the arrangement of spans and affects the position of the hollow portions. The procedure in using the table for continuous spans is as follows:—

Two Spans

Reduce the actual span by 10% before entering the table. Select a suitable floor to carry the required superimposed load on the reduced span, and note the hollow span H tabulated. The distance x_1 is $\cdot 44l - \cdot 50H$, subject to note (b), and H_1 is $H - \cdot 06l$ H as tabulated

l = actual span (not reduced)

Three Spans

The end span is reduced by 10% and the centre span by 18% before entering the table. The distance x_2 is 45l - 50H, subject to note (b).

$$x_3$$
 is $.58l - .50H$
 $H_2 = H - .07l$ $H_3 = H - .16l$

Four Spans

The end span is reduced by 10% and all inner spans by 18% before entering the table. The distance $x_4 = .45l - .50H$ subject to note (b). $x_5 = .60l - .50H$ $H_4 = H - .07l$ $H_5 = H - .17l$

$$\begin{cases}
x_5 = .60l - .50H \\
H_4 = H - .07l \\
H_5 = H - .17l
\end{cases}$$
 subject to note (b)

The continuity steel over the supports is dealt with on page 71. In columns I and 2 are tabulated for reference the depth of neutral axis n and depth to c.g. of compression z. Column 3 gives the number and diameter of bars in each rib. The concrete cover is the same as for solid slabs (page 73).

SIMPLY SUPPORTED HOLLOW REINFORCED CONCRETE SLABS

Calculated in accordance with L.C.C. by-laws, concrete designation II (I: $1\frac{1}{2}$: 3 mix), viz., maximum steel stress 18,000, maximum concrete stress 850, m=15, q=85 lb./sq. in. For continuous slabs see notes. The selfweight has been deducted.

TABLE 86.

2.29 65

2-5"

Safe Load

Hollow Span

(ľ	3	in.	RIBS.	II in.	TOPPING	:
	,,	•		111001			•

SAFE DISTRIBUTED

393

5/0

4½ SLAB -03	(i) 3 in. RIBS, 1½ in. TOPPING:— SAFE DISTRIBUTED											
1n.	•	,	Reinforcement								Ef	fective
1-3 34 1-\frac{1}{2}''	in.	1	in each Rib		5′	5′ 6″	6′	6′ 6 ″	7′	7′ 6″	8′	8′ 6″
Hollow Span Safe Load Hollow Span Hollow Span Safe Load Ho				4½" SLAB								
Safe Load Hollow Span Safe	.03	-34	l <u>-</u> - <u>}</u> ″		216			111	90	74	60	49
Safe Load Hollow Span Safe Load Hollow Span Safe Load Hollow Span Safe Load Hollow Span Safe Load Holl	1.36	-45	2–≟″	Safe Load		370	305					
1-57 -55 2-\frac{1}{8}" Safe Load Hollow Span Safe Load Ho	1.56	.52	2 - § ″	Safe Load	2/9	3/3	412	343	290	249	214	186
1.57 .55 2-\frac{1}{8}" Safe Load Hollow Span 3/3 3/9 4/7 5/3 3/6 4/0 3/6 5/2 5\frac{1}{2}" SLAB 1.57 .52 2-\frac{1}{2}" Safe Load Hollow Span Safe Load Hol	5" SLAB											
-71 -55 2-\frac{5}{8}" Safe Load Hollow Span	1.47	.49	2-1/2"									
1.57 .52 2-\frac{1}{2}" Safe Load Hollow Span Safe Load	1.71	-55	2 - § ″	Safe Load		3/3	3/9	436	370	316	273	236
1-71 -55 -1-2", 1-3" Safe Load Hollow Span				5½" SLAB	,	·	<u>' </u>		L		L	<u>' </u>
1.71 .55 1-\frac{1}{2}", 1-\frac{8}{8}"	I ·57	.52	2 -1 ″									
1.86 .58 2_8" Safe Load	1.71	.55	1-1/2", 1-1/8"	Safe Load			4/0	417	353	301	260	224
1 · 84 · 58 I - ½", I - ¾" Safe Load Hollow Span Safe Load Hollow Span Safe Load Hollow Span Hollow Span Safe Load Hollow Span Hollo	1-86	-58	2-5"	Safe Load				3/6	435	373	323	280
2-00 -60 2-\frac{8}{3}Hollow Span Safe Load Hollow Span Hollow Span Hollow Span Safe Load Hollow Span Span Span Span Span Span Span Span	6" SLAB											
2-00 -60 2-8" Safe Load Hollow Span 422 365 318 5/0	1.84	-58	1-1/2", 1-1/8"									
7" SLAB (see also next page)	2.00	-60	2-17	Safe Load					4/1	422	365	318
	7' SLAB (see also next page)											

c = 850t = 18000

IMPOSED LOADS. Lb. per sq. ft.

9′	9′ 6″	10′	10′ 6″	11'	11′6″	12'	12′ 6″	13′	13′ 6″	14'	14' 6"	15
	₇											
111												
158 6/3												
										· · · · · · · · · · · · · · · · · · ·		
132 8/10	114	99	86	75								
206 5/9	180 6/5	159 7/I	140 7/10	125 8/6								
152 8/9	132	115	100	87	76	66	58	50				
196 6/9	172 7/6	151 8/4	132 9/4	116	103	91	· 81	71				
246 5/7	216 6/3	191 6/11	169	150 8/4	9/2	119 10/0	107 10/9	95 11/8				
			<u> </u>	<u> </u>	`							
221	194	170	151	132	118	104	92	82	72	64		
6/10 279 5/7	7/7 245 6/3	8/5 217 6/11	9/3 193 7/7	10/3 172 8/4	11/1 153 9/1	136 10/0	122 10/9	109 11/9	98 12/7	88 13/6		
					·········							
345 5/7	305 6/3	270 6/11	241 7/7	215 8/4	192 9/2	173 10/0	155 10/10	140	126	114	109	

Simply Supported Hollow Reinforced Concrete Slabs—Continued.

$$t = 18000$$
, $c = 850$, $m = 15$, $q = 85$ lb./sq. in.

The self-weight has been deducted. For notes on n and z see page 89. Column 3 gives the number and diameter of bars in each rib.

TABLE 86—Continued.

(ii)	4 in	RIBS.	2 in	TOP	PING	•
	т ш.	INIDO.	Z 111.		11140	

SAFE DISTRIBUTED

(11)	, 411	i. Kibs, 2 iii	. IOFFING	.—				3/11		11110	OILD
n	z	Reinforcement								E	ffective
in.	in.	in each Rib		8′	8′ 6″	9'	9′ 6″	10′	10′ 6″	11'	11′ 6″
		7" SLAB									
2·13	·70	2 -5 ″	Safe Load Hollow Span	410	356	313	275	243	216 10/1	191	170
2.27	·73	I - 5 , I- <u>3</u> ″	Safe Load	5/11	6/7	7/5 374	8/4 331	9/3 293	261	232	208 10/0
2.43	.76	2-3/	Hollow Span Safe Load Hollow Span			6/1	6/9 396 5/9	7/6 353 6/5	8/3 316 7/0	9/2 282 7/9	254 8/6
		8" SLAB									
2.35	·75	2 -5 "	Safe Load Hollow Span			372 7/6	327 8/4	290 9/3	259 10/1	229	205
2.53	.78	1 -5 ″, 1 -3 ″	Safe Load Hollow Span			410	362	321	287	255	225 10/9
2.72	-80	2-3/	Safe Load Hollow Span			6/8	7/5 403 6/8	8/2 358 7/5	9/0 320 8/2	9/11 286 9/0	257 9/10
		9" SLAB		' <u></u>			<u>'</u>				l
2.59	.78	2- <u>5</u> "	Safe Load Hollow Span				383 8/4	340	304 10/1	270	242
2.79	-81	I—≦", I—¾"	Safe Load				436	9/3 387	346	309	278
3.01	·84	2 -3 "	Hollow Span Safe Load Hollow Span				7/3	8/0	8/10	9/8 373 8/3	10/6 335 9/0
		10" SLAB		,	·		<i></i>				,, ,, ,, ,, ,, ,, ,, ,, ,, ,,, ,, ,, ,, ,, ,, ,, ,, ,,,
3.01	-84	1- 5 ", 1- 3 "	Safe Load							380	342
3.31	-86	2-3"	Hollow Span Safe Load							9/2	10/0
3.74	·88	4-1/	Hollow Span Safe Load Hollow Span								

c = 850t = 18000

IMPOSED LOADS. Lb. per sq. ft.

Spans												
i2′	12′ 6″	13′	13′ 6″	14'	14′ 6″	15′	15′ 6″	16′	16′ 6″	17′	17′ 6″	18
152	136	121	108	97	87	78						
186 10/11 228 9/3	168 11/9 206 10/0	151 12/9 187 10/9	136 13/9 169 11/9	123 14/10 153 12/7	111 15/10 139 13/6	100 17/0 126 14/6						
	1											
183	162	148	132	119	107	96	86	77				
209 11/9	184	166	150	135	122	110	100	90				
231 10/8	207 11/8	188 12/6	170	153	139	127	115	104				
	,											
217	195	176	158	143	129	116	105	95	86	77		
250	224	203	184	167	151	137	125	113	109	93		
11/6 313 9/7	274 10/8	249 11/6	226 12/5	206 13/4	188 14/4	172	157	143	131	120		
					· · · · · · · · · · · · · · · · · · ·							
309 10/8	279 11/10	253	229	209	190	173	158	144	132	120	110	1
374	339	309	281	257	235	215	197	181	167	153	141	ı
9/3 400	10/0 362	10/10 331	11/9 301	12/6	13/6	14/5	15/5	196	180	165	153	ı
8/4	9/1	9/10	10/7	11/4	12/2	13/1	14/0	14/10	15/10	16/10		ľ

WEIGHT OF ROUND MILD STEEL BARS

TABLE 87

Diameter	Lb. per ft.	Diameter	Lb. per ft.
1 3 " 1 5 "	·042 ·094 ·167	50" 34" 44" 8	I ·043 I ·502 2·044
16 36 7 16 16 2"	·261 ·376 ·511 ·668	" " " <u> </u> "	2-670 3-380 4-172 6-008

For small sizes see also S.W.G., Table 20. For cross-section areas see Circles, Table 184.

WEIGHT OF ROUND MILD STEEL BARS AT DIFFERENT SPACINGS (one direction only)

TABLE 88. Lb. per sq. yd.

ė	Spacing Centre to Centre, in.											Ė
Diam.	3	4	5	6	7	8	9	10	12	15	18	Diam.
±" 1±" 1±"	1·50 3·38 6·00	1·12 2·53 4·50	.90 2.03 3.61	·75 1·69 3·00	·64 I·45 2·58	·56 I·27 2·25	·50 I·13 2·00	·45 I·01 I·80	·37 ·84 I·50	·30 ·68 I·20	·25 ·56 I·00	±," 1,0" 1,0"
# 7 " 1 " 2 " 5 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 6 " 7 " 7 " 6 " 7 "	9·39 13·5 18·4 24·0 37·5 54·1 73·6 96·1	7·04 10·1 13·8 18·0 28·2 40·5 55·2 72·1	5·63 8·11 11·0 14·4 22·5 32·4 44·2 57·7	4·70 6·77 9·19 12·0 18·8 27·0 36·8 48·1	4·03 5·79 7·87 10·3 16·1 23·2 31·5 41·2	3·52 5·07 6·89 9·01 14·1 20·3 27·6 36·0	3·13 4·50 6·12 8·01 12·5 18·0 24·5 32·0	2·82 4·08 5·51 7·21 11·3 16·2 22·1 28·8	2·34 3·38 4·59 6·01 9·39 13·5 18·4 24·0	1·88 2·70 3·67 4·80 7·50 10·8 14·7 19·2	1.56 2.25 3.06 4.00 6.25 9.00 12.3 16.0	5 / 16 / 7 / 16 / 7 / 16 / 7 / 7 / 8 / 7 / 7 8 / 7 / 7 8 / 7 8 / 7 / 7

WORKING STRESSES IN STEEL REINFORCEMENT

(i) Ordinary mild steel.					
Bars in tension generally			18,000	lb./se	q. in.
Tension in column helical reinforcement			13,500	,,	٠,,
Compression in beams where the resista			·		
the concrete is not counted			18,000	,,	,,
(ii) Cold-worked mild steel (e.g. fabric, etc.	of	hard	-drawn	wire	s. or

This value is generally accepted for commercial reinforcements falling in this class. Post-War Building Study No. 8 recommends a working stress of half the guaranteed yield point with a maximum permitted stress of 25,000 lb. in beams and 27,000 lb. in slabs.

REINFORCED CONCRETE DATA

Symbols:

 A_T Cross-sectional area of tension steel in width b, sq. in.

a Lever arm, inches.

b Width, inches.

c Max. concrete compressive stress, lb./sq. in.

d Effective depth, i.e. from compression surface to c.g. of tension steel, inches.

M_R Moment of resistance, inch-lb.

m Modular ratio $\frac{E_{steel}}{E_{concrete}}$

n Depth of neutral axis from compression surface, inches.

t Tensile stress in steel, lb./sq. in.

(i) Neutral axis within concrete area:-

$$a = d - \frac{n}{3}; p = \frac{100A_T}{bd}; n_1 = \frac{n}{d} = \sqrt{(\cdot 01 \text{ mp})^2 + \cdot 02 \text{ mp}} - \cdot 01 \text{ mp}$$

$$M_R = \frac{1}{2} c.b.n. \left(d - \frac{n}{3}\right)...\text{failure on concrete.}$$
or $t.A_T \left(d - \frac{n}{3}\right)......$ failure on steel.

For m = 15:

P%	<u>n</u>
.2 .3 .4 .5 .6 .675 .7 .8 .9 1.0 1.2 1.4	·217 ·258 ·292 ·320 ·343 ·359 ·365 ·384 ·401 ·417 ·445 ·470 ·492

The effect of increasing m is to increase the depth of neutral axis, therefore to increase the concrete compression area and to reduce the lever arm. The moment of resistance is reduced for failure on steel and increased for failure on concrete, but the effect is small for values of p less than 1%.

(ii) Neutral axis below slab :-

d_s Thickness of slab, inches.

z Depth from compression surface to c.g. of concrete compression, inches.

$$a = d - z \; ; \; z = \frac{d_s}{3} \left(\frac{3n - 2d_s}{2n - d_s} \right)$$

$$M_R = \frac{bcd_s}{2n} \left(2n - d_s \right) \left(d - z \right) \dots \text{failure on concrete}$$
or t.A_T $(d - z) \dots \dots \text{failure on steel}$.

Shear

Maximum shear stress in concrete beam or slab $=\frac{S}{ba}$ where S is the total shearing force at section.

CONCENTRATED LOADS ON SLABS (Slabs reinforced in one direction)

Institution of Structural Engineers Report No. 10 contains rules for dealing with concentrated loads.

If the load is in contact over a rectangular area $g \times h$, g being measured along the span and h transversely:—

(i) The width of slab to be taken as supporting the load is x + h where x is the distance of load from nearest support.

(ii) Provision must also be made for resisting a transverse BM in the slab of value $\frac{Wx}{8}$, taken as resisted by a strip of width g + 2D, where D is the effective depth of slab plus any solid finish or filling.

When h is small compared with x, the design data may be obtained from the table below for different positions of a concentrated load W lb. on a span l ft.

TABLE 89

	In directi	Transversely			
Distance of Load W from nearest Support.	Equivalent Distributed Load Ib./sq. ft.	Width of Strip exposed to Loading given in Col. ii	BM on strip of width g + 2D ib./ft.		
i	ii	ili	iv		
0.5 1	$\frac{W}{l^2} \times 4.0$	0.5 1	WI × 0.062		
0·4 / 0·3 / 0·2 /	4·8 5·6 6·4	0·4 / 0·3 / 0·2 /	·050 ·037 ·025		

The self-weight of slab and any distributed loading must be added to Column ii. Appropriate allowances may be made for conditions of fixity at the supports.

For the treatment of concentrated loads on slabs which are supported on all four sides, see Reinforced Concrete Bridges by W. L. Scott.

SLABS REINFORCED IN BOTH DIRECTIONS and supported on all four sides

The tables below have been calculated from the regulations given in the Institution of Structural Engineers Technical Report No. 10, Part I, for ratios of span, in two directions, up to 1.5 and for any combination of end fixity conditions.

In each case the balance of total load is to be taken in the direction at right angles to that stated in the tables. Total load = self-weight plus imposed load.

TABLE 90. Square Slabs.

End Conditions	Proportion of Total Load
End conditions similar One span fixed both ends Other span free both ends One span fixed both ends Other span fixed one end	0·5 on each span 0·625 on fixed span 0·556 on fixed span

TABLE 91. Rectangular Slabs

Proportion of Total Load on Shorter Span Ratio of Spans									
·548	-594	·636	.675	·709	·741	·769	·794	·815	∙835
-669	·709	·7 4 5	·776	-803	⋅827	·847	-865	-880	-894
·603	-647	· 68 5	·720	·753	781	·806	·827	·846	-863
·422	·468	-512	-554	∙593	-632	-666	-697	·726	·752
· 492	∙539	∙583	·624	·661	·696	·727	·75 4	·779	·802
	·548 ·669 ·603 ·422	·548 ·594 ·669 ·709 ·603 ·647 ·422 ·468	1.05 1.10 1.15 .548 .594 .636 .669 .709 .745 .603 .647 .685 .422 .468 .512	1.05 1.10 1.15 1.20 .548 .594 .636 .675 .669 .709 .745 .776 .603 .647 .685 .720 .422 .468 .512 .554	Ratio of Rat	Ratio of Spans 1-05	Ratio of Spans 1-05	Ratio of Spans 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 548 .594 .636 .675 .709 .741 .769 .794 669 .709 .745 .776 .803 .827 .847 .865 603 .647 .685 .720 .753 .781 .806 .827 422 .468 .512 .554 .593 .632 .666 .697	Ratio of Spans 1-05 1-10 1-15 1-20 1-25 1-30 1-35 1-40 1-45 -548 -594 -636 -675 -709 -741 -769 -794 -815 -669 -709 -745 -776 -803 -827 -847 -865 -880 -603 -647 -685 -720 -753 -781 -806 -827 -846 -422 -468 -512 -554 -593 -632 -666 -697 -726

If the above proportions are applied to the imposed load only (i.e. self-weight of slab excluded) the result when used in conjunction with Table 84 will be on the safe side. For greater economy, deduct the proportion of self-weight which is carried in the other direction.

WEIGHTS OF VARIOUS MATERIALS

Table 93 gives the densities in lb./cu. ft. of a variety of materials which enter into construction or may form a structural load, either on a floor slab or in bins.

The designer will generally be able to obtain reliable data from the client on the weight of the material in the actual form in which it is to be stored, but the information is not always available when preliminary designs are being made.

Minimum design loads for floors are laid down in building by-laws, but there is an obligation on the part of architect or engineer to ensure that the strength provided is adequate to support the goods concerned when stacked to the intended height, and in these days of conveyors and mobile cranes storage spaces are likely to be filled to the ceiling.

Materials in Bulk

The figure given for stone, minerals, etc., is the density of the solid material unless otherwise stated; to obtain the weight in a broken or powdered condition a reduction must be made to allow for the voids.

Granular Materials

Broken material consisting of particles all of about the same size usually contains from 55% to 60% of voids, i.e., it will weigh from 0.4 to 0.45 of the solid weight. Material graded from $\frac{1}{4}$ in. to $\frac{3}{4}$ in. will contain from 40% to 45% voids, while a mixture of all sizes including sand or similar particles may have as little as 25% voids.

Fine Granular Materials

Materials of grain size equivalent to sand are markedly affected by the presence of moisture. Thus if a cubic foot of dry sand is mixed with 1% of its weight of water and then refilled into a measure it will be found to occupy appreciably more than a cubic foot. The effect, called "bulking," increases with further additions of water and in the case of loosely gauged sand usually attains a maximum with 4% to 5% of water, when the volume will be from 30% to 35% more than that of the dry sand. When further additions of water are made the volume begins to decrease, and when saturated the sand will again occupy its original volume. Changes of water content of sand are not accompanied by volume changes if the material remains undisturbed.

Powders

The proportion of voids in fine powders is affected by air cushioning and is usually greater than in coarse materials. Thus, the density of Portland cement particles is about 190 lb./cu. ft., but cement as loosely gauged weighs only some 80 lb./cu. ft., so that it contains 58% of voids, although graded. By applying pressure or tamping the density can be increased to 110 lb. or more, a much greater increase than is possible with coarse material.

Timber

The weights of timber are given for 15% moisture content, that is, average apparently dry condition; see notes on page 19.

Materials in Containers

The effective weights of many substances normally stored in containers are given direct in the table; in other cases a suitable factor may be applied to the bulk density tabulated without serious inaccuracy.

TABLE 92

Condition of Storage	Multiply Bulk Density by
i Cylindrical drums stored on end, or rolled on separating battens, as in A ii Cylindrical drums stored as in B iii Cylindrical cans in wooden cases iv Barrels or casks arranged as in A v ,, ,, ,, B vi Bags piled in mounds, lump material vii ,, ,, ,, granular material	.70 .81 .74 .60 .70 .85

The bulk density must of course be the value for the actual form of the material, that is, in lumps, granular or powdered.

WEIGHTS OF MATERIALS, TABLE 93

The density given is in lb./cu. ft. for both solids and liquids. See the preceding notes on different types of material and the effect of containers. When information appears elsewhere in the book, a page reference is given immediately after the name of the material.

TABLE 93. Weights of Materials

		I I	
Material	lb./cu.ft.	Material	lb./cu.ft
ACACIA	46	ANDALUSITE	190-205
ACANTHITE	450	ANDESITE	166
ACETALDEHYDE	50	ANDRADITE	240
ACETIC ACID	66	ANGLESITE	395
ACETONE	51	ANILINE	64
ACIDS, carboys, cased	24	ANIMAL FOOD, cased	25
ACTINOLITE	193	— GUTS, casks	45
ADAMANTINE CLINKERS	173	ANISEED, bags	20
	130		6i
stacked	130	ANISEED OIL	
AEROCRETE p. 37		ANORTHITE	172
AGAR-AGAR	45	ANTHOPHYLLITE	195
AGATE	161	ANTHRACITE, broken	54
AJOWAN OIL	57	ANTIMONY, pure	417
ALABASTER	168	ore, bags	90
ALBITE	165	APATITE	200
ALCOHOL, ABSOLUTE	49	APPLES, barrels	25
Commercial	51	APRICOTS, preserved, cases	40
,, proof spirit	57	ARACHIS OIL	57
ETHYL-	49	ARECA NUTS, bags	37
METHYL-	49	ARGENTITE	450
WOOD-, barrels	28	ARNICA	56
ALDEHYDE	50	ARROWROOT, bags	43
ALE. See BEER	ĺ	boxes	32
ALLUVIUM, undisturbed	100	ARSENIC, comml., cases	100
ALMANDITE	260	ARSENO-PYRITES	380
ALMOND OIL, sweet	57	ARTICHOKES	35
bitter	66	ASBESTOS, crude	56
ALMONDS, hogsheads	20	fibre, cases	42
ALPAX cast	164	natural	190
ALUM	106	pressed	60
casks	40	— CEMENT pp. 4, 6, 67	120-130
pulverised	68	- SAND	60
ALUMINIUM cast	159	- SLATES p. 8	55
rolled	167	ASH, English	43
	64	Canadian	46
ingots — BRONZE	471	ASHES, dry	40
	20	ASPHALT, natural	63
— manufactured, cases	167-174	•	130
— DTD alloys — PAINT	75	paving ASSAFOETIDA, cases	56
	92		
- PASTE	45-50	ATACAMITE AUTOMATIC MACHINES, cases	235
— POWDER	43-30		10
- SHEET, weight p. 13	ایدا	AUTOMOBILES, cases	8
- SULPHATE, bags	45	AVIATION SPIRIT	47
ALUNDUM	250	AXLES and WHEELS	32
AMATOL	87, 97	AZURITE	238
AMMONIA liq. fort.	55		[
AMMUNITION, S/A, cases	90		1
AMOSITE	140		1
AMPHIBOLITE	188	BABBITT'S METAL	460
AMYL ACETATE	55	BACON, barrels	34
ANALCITE	141	BAGGAGE	8
ANCASTER stone	156	BAKELITE	80-120
	1	1	1
		<u> </u>	

Table 93—Continued.

Material	lb./cu.ft	Material	lb./cu. ft.
BALLAST p. 166		BITUMEN, natural	68
BALSA WOOD	7	prepared	85
BALSAM, Copaiba	60	EMULSION	70
Peru	71	BLACK POWDER	64
BAMBOO	22	cases	28
BARBED WIRE	24	BLACKWOOD, bags	35
BARIUM OXIDE, solid	290-340	BLANKETS, bales	20
BARK, coppice, bags	22	BLASTFURNACE OIL	57
oak, ,,	41	BLASTING GELATINE	100
BARLEY grain	44	BLEACH, barrels	32
bags	37	solution	72
ground	33	BLEACHING POWDER. See	
BARRELS, empty	8	Bleach.	
BARS, steel, bundled	170	BLOOD	66
BARYTES	260-290	dried, casks	35
broken	180	BLUE GUM	68
BASALT	180	BLUE VITRIOL, powdered	84
BASIC SLAG, crushed	112	BOILED OIL	59
BASSWOOD	26	BOLTS and NUTS, bags	75
BATH STONE	130	Whitworth p. 200	,,
BATHS, iron, cases	130	BONE	110-125
BATTERIUM	478	- FAT	56
BAUXITE	160	- MANURE, bags	32
crushed	80		50
1	75	- MEAL, bags	59
ore, bags BAY OIL	61	— OIL	72
BEAN MEAL	39	BONES, loose calcined, crushed	23
	28	BOOKS, on shelves	40
BEANS, Broad French, Kidney	31	bulk	60
Haricot	36		24
— CANNED	43	BOOTS and SHOES, cases	50
BEECH	48	BORACIC ACID, bags	35
	20	Casks BORATE OF LIME	43
BEEF, dressed, cases	43	[]	106
tierces BEER	64	BORAX	100
	28	BORIC. See BORACIC. BORNITE	320
bottled, cases	33		56
barrels BEESWAX	60	BOTTLED GOODS, cases	26
	20	BOTTLES, empty, crates	360
BEET, bags	530	BOURNONITE BOX WOOD	58
BELL METAL	30	BRAN	13
BELTING, hair, bales	34	D	
leather, cases BEN OIL	57	BRANDY hottles sases	52 37
BENTONITE	133	bottles, cases casks	28
BENZENE	55	BRASS, cast	520
	55		535
BENZOL		rolled p. 13	
BERYL	170	perforated sheets, casks	45
BERYLLIUM BRONZE		tubes, bundles	56
BICYCLES, crates	180	BRAUNITE BRAZIL NUT OIL	300 57
BIOTITE BIRCH American	40		25
BIRCH, American		BRAZIL NUTS, barrels	
logs	28	BREAD, cased	14
squares	39 44	BREEZE CONCRETE p. 37	31
yellow RIDMARRIGHT		BREWER'S GRAINS, wet desiccated	16
BIRMABRIGHT	167		
BIRMASIL	167	BRICKS, old, stacked	100
BISCUITS, cases	14	BRICKWORK p. 53	7.5
BISMITE	270	BRINE, common salt, comml.	75
BISMUTH	610	calcium chloride	73-78
BISMUTHIMITE	400	BRITANNIA METAL goods, cases	
BISMUTITE	460	BRITISH COLUMBIA PINE	33
	_ L	II	•

Table 93—Continued.

	 -		 1
Material	lb./cu, ft.	Material	lb./cu.ft.
BROCHANTITE	245	CARPETS, rolls	16
BRONZE, cast	520	CARROTS, bulk	30
drawn, sheet	549	CASEIN	84
- ALUMINIÚM-	471	CASHEW NUTS, bags	30
BERYLLIUM-	512	CASKS, empty	8
DELTA-	537	CASSIA, bundles	17
MANGANESE-	537	— OIL	66
PHOSPHOR-, cast	540	CASSITERITE	400-440
BROOKITE	240-260	CASTANHA OIL	57
BROOMS, cases	9	CASTINGS, cases	30-60
BRUCITE	145	CASTOR OIL	60
BULBS, planting, cases	70	CASTORS, casks	64
BUTTER	59	CAUSTIC SODA, drums	74
cases	32 30	lye (max.)	94 24
tubs	55	CEDAR, WESTERN RED CEDARWOOD OIL	59
BUTYL ACETATE	35	CELERY OIL	55
		SEED, bags	30
		CELLOMOLD	78 <u>–</u> 85
CADE OIL	61-66	CELLULOID	84-100
CADMIUM	538	- GOODS, cases	10
CALAMINE	220	CELLULOSE ACETATE p. 223	
CALAVERITE	565	— NITRATE p. 223	
CALCITE	170	CEMENT, bags	80
CALCIUM CARBIDE, solid	138	bulk	80-90
drums	50	casks	60
CARBONATE.		drums	80
See Lime, Marble.		Roman	62
CHLORIDE, solid	138	— SLURRY	90
drums	45	CERALUMIN "C"	170
brine	73-78	CERARGYRITE	350
PHOSPHATE, bags	53	CERESINE	58
CAMPHOR	62	CERUSSITE	405
cases	33	CERVANTITE	260-330
— OIL	54-62	CHAINS	160
CAMWOOD	28 37	CHALCEDONY	140 165
CANARY SEED, bags CANDIED FRUIT, cases	28	CHALCEDONY CHALCOCITE	340-360
CANDLED FROM, cases	58	CHALCOPYRITES	260
CANDLES, cases	32	CHALK	100-170
CANES, bundles	15	broken, barrels	60
CANNED GOODS, cases	30	CHARCOAL	20-35
CANTON MATTING, rolls	14	CHEESE, cases	32
CANVAS, bales	48	CHERRY WOOD	45
CAPERS, kegs	32	CHERT	160
CARAMEL LIQ., casks	45	CHESTNUT, Horse	32
CARAWAY OIL	57	Sweet	35
- SEEDS, bags	37	CHICORY, dried roots	22
CARBOLIC ACID, comml.	67	raw roots	30
CARBON, GAS-	120	ground	30
graphite	140	CHILLIES, bags	15
— DISŬLPHIDE	101	CHINA GRASS, bales	17
— TETRACHLORIDE CARBONATE OF LIME, barrels	80	— ROOT, bags — WARE, cases	24 26 -4 0
	11	CHLORIDE OF LIME, leadlined	20-70
— MAGNESIA, bags — SODA, solution	72	cases	28
CARBORUNDUM	195	CHLORITE	170
CARDAMOM OIL	58	CHLOROFORM	92
CARDBOARD	30	CHOCOLATE, cases	34
CARPET SWEEPERS, cases	10	CHOW CHOW, cases	37
		1	
		Л.,	

Table 93—Continued.

CHRISTOBALITE 145 COPPERAS, powdered 70 CHROMADOR 489 270-290 CORAL, bags or barrels 25 CHROMIUM 443 CORN, bales 30 CHRYSOCITE 210 CORK p. 67 8-14 CHRYSOTILE 140 CORNBOARD 7-16 CHRYSOTILE 140 CORNBOARD 7-16 CHRYSOTILE 140 CORNBOARD 7-16 CHRYSOTILE 140 CORNBOARD 7-16 CORNELIAN 163 250 CORNELIAN 163 250 CIGARETTES, cases 15 CORUNDUM 25-36 CIGARS, cased 12 American, pressed 25-36 CIMENT FONDU, bags 80 Duck, pressed bales 16 CINCHONA, bales 15 Duck, pressed bales 36 CINCHONA, bales 15 Duck, pressed bales 36 CINDERS 40 Egyptian or Indian, pressed 37 CINCHONA, bales 16 Egyptian or Indian, waste, bales		1	7	
CHROMADOR CHROMIUTE 489 CORR, bales CORR, balls CORR, bulk CORN, bulk CO	Material	lb./cu.ft.	Material	lb./cu. fc.
CHROMADOR CHROMIUTE 489 CORR, bales CORR, balls CORR, bulk CORN, bulk CO	CHRISTOBALITE	145	COPPERAS, powdered	70
CHROMIUM			CORAL, bags or barrels	
CHRYSOCOLLA 130 CORK, p. 67 bales CORK, bulk			CORD. bales	
CHRYSOCOLLA 130 CORREDARD 7-16 CORNSULTE 140 CORNELIAN 163 CORNELIAN 163 CORNELIAN 163 CORNELIAN 163 CORNUMBER 163 CORNUMBER 163 CORNUMBER 163 CORNUMBER 163 CORNUMBER 163 CORNUMBER 164 CORNUMBER 165 CORNUMB			CORK p. 67	
CHRYSOTILE				
CHRYSOTILE 140 CORN. bulk CORNELIAN 250 25-36 CORNELIAN				-
CIDER				
CIGARETTES, cases CIGARS, cased CIGARS, cased CIGARS, cased CINCHONA, bales CINDERS COOLLITE CRACKED SPIRIT CORESULIC ACID. See CRESOL CRESYLIC ACID. See CRESOL CROCIDOLITE CROCI				
CIGARETTES, cases 15				
12				
CIMENT FONDU, bags				23-30
15				17
CINDERS				
CINNABAR				33
ORE, bags				33
CINNAMON, bales			piece goods, cases	
CISTERNS p. 191				
CISTERNS p. 191		1		
CLTRONELLA OIL CLAY p. 166 CLINKER, FURNACE CLOTH, AMERICAN, rolls GOODS, cases CLOVER, SEED, bags CLOVER SEED, bags CLOVES, bales COLOVER, bales COCOA, bags or bulk tins in cases COCOA, bags or bulk tins in cases COCOA, bags or bulk tins in cases COCOA, bags or bulk COCOONUT, fiBRE, bales COCOONUT, fiBRE, bales COCOA, bags or bulk COCOONUT, fiBRE, bales COCOA, bags or bulk COCOONUT, fiBRE, bales COCOA, bags or bulk COCOONUT, fiBRE, bales COCOONUT, fiBRE, bales COCOA, bags or bulk COCOONUT, fiBRE, bales COCOONUT, fiBRE, bales COCOA, bags or bulk COCOONUT, fiBRE, bales COCOA, bags or bulk COCOONUT, fiBRE, bales COCOONU			- SEED CAKE, bags	
CLAY p. 166	CITRONELLA OIL	56	SEED MEAL	
CLINKER, FURNACE CLOTH, AMERICAN, rolls — GOODS, cases — LEATHER, rolls CLOVER SEED, bags CLOVES, bales — OIL OF COACHSCREWS, bags COAL, loose lumps slurry COBALTITE COCOA, bags or bulk tins in cases — BEANS — BUTTER COCONUT FIBRE, bales — OIL COCOONS, boxes COCIVER OIL COFFEE, bags — YARN, ,, COKE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COCOAL COPPER, cast drawn or sheet p. 13 Ingots - WOOL, packed COVELLITE 290 COVELLITE COCVELLITE COCVELLITE COCVELLITE COCVELLITE COCVELLITE COCOCUPTIT CREAM OF TARTAR, hogsheads CRESOL, ORTHO- META— 66 CRESOL, ORTHO- META— 67 CRESOL, CORTHO- META— 66 CRESOL, CORTHO- META— 67 CRESOL, CORTHO- META— 68 CRESOL, CORTHO- META— 68 CRESOL, ORTHO- META— 68 CRESOL, CORTHO- META— 68 CRESOL, ORTHO- META— 68 CREM OF TARTAR, hogsheads CREAM OF TARTAR, hogsheads CREAM OF TARTAR, hogsheads CREAM CREA CRESUL CROCIOLITE CROCIOLITE CROCIOLITE CROCIOLITE CROCIOLITE	CLAY p. 166			
CLOTH, AMERICAN, rolls — GOODS, cases — LEATHER, rolls CLOVER SEED, bags CLOVES, bales — Oil. OF COACHSCREWS, bags COAL, loose lumps slurry COBALT COBALTITE COCA, bags COCHINEAL, tinlined cases COCOON, bags or bulk tins in cases — BEANS — BUTTER COCOONS, boxes COCOONUT FIBRE, bales — Oil. COCOONS, boxes COCOONS, boxes COCOONS, boxes COCIDER, bags — BEANS — BEANS — BEANS — OIL COFFEE, bags — YARN, ,, COKE — YARN, ,, COKE COLUMBIAN PINE COLUMBIAN CARCIO CRECSOLE CRCOCID CRESOLE CRCOCID CRESOL CRE	CLINKER, FURNACE	64	WOOL, packed	
— GOODS, cases 25 CRACKED SPIRIT 47 — LEATHER, rolls 30 CREAM OF TARTAR, hogsheads 37 CLOVES, bales 20 CREAM OF TARTAR, hogsheads 37 CLOVES, bales 20 CREAM OF TARTAR, hogsheads 37 COCAL, loose lumps slurry 56 CRESOL, ORTHO— 66 COAL, loose lumps slurry 56 CRESYLIC ACID. See CRESOL CROCIDOLITE 205 COBALTITE 375–390 CROCKERY, crates 26-40 COCA, bags 9 CUCUMBER OIL 57 COCAL, bags or bulk tins in cases 17 CUPRITE 375 — BEANS 25 CUPRO-NICKEL (60–80%, Cu) 558 — BEANS 20 CURRANTS, boxes 44 COCOONS, boxes 11 CUSTARD POWDER, cases 33 CODIVER OIL 58 CUTCH, baskets 33 COIR FIBRE, bales 20 DAMMAR GUM, cases 26 — YARN, ,, 33 DARLEY DALE STONE 148 COLEMANITE 150 DATES, cases <		30		290
CLOVER SEED, bags 50	- GOODS, cases	25	CRACKED SPIRIT	1
CLOVES, bales	— LEATHER, rolls	30	CREAM	59-63
— OIL OF 67 CRESOL, ORTHO—META—META—CRESOL ORDITE 64 66 67 67 67 67 67 67 67 67 67 67 67 67 67 66 66 66 66 66 66 67 6	CLOVER SEED, bags	50	CREAM OF TARTAR, hogsheads	37
COACHSCREWS, bags COAL, loose lumps slurry COBALT COBALT COBALTITE COCA, bags COCHINEAL, tinlined cases COCOA, bags or bulk tins in cases BEANS BUTTER COCONUT FIBRE, bales OIL COCOONS, boxes CODLIVER OIL COFFEE, bags BEANS COIR FIBRE, bales YARN, , COLUMBIAN PINE COLUMBIAN PI	CLOVES, bales			66
COAL, loose lumps slurry 66 slurry 62 COBALT 536 COBALTT 536 COCA, bags 79 COCA, bags 79 COCOA, bags or bulk tins in cases 17 COCOA, bags or bulk tins in cases 79 COCONUT FIBRE, bales 70 COCONUT FIBRE, bales 70 COCONUT FIBRE, bales 70 COCONUT FIBRE, bales 70 COCONS, boxes 70 COCONS, boxes 70 COCONUT FIBRE, bales 70 COCONUT FIBRE, bales 70 COCONS, boxes 71 COCONS, boxes 70 COCON				64
COAL, loose lumps slurry 62 COBALT 536 COBALTITE 375-390 COCA, bags 79 COCHINEAL, tinlined cases COCHINEAL, tins in cases 17 COCO, bags or bulk 185 COCONUT FIBRE, bales 20 COCONUT FIBRE, bales 20 COCONUT FIBRE, bales 20 COCONS, boxes 11 COCOONS, boxes 21 COCONS, boxes 21 COCONS, bags 28-32 COBARNS 28-32 COBARNS 20 CORRESYLIC ACID. See CRESOL CROCLIDITE 205 CROCLITE 375 CROCLITE 375 CUCUMBER OIL 57 CUPRITE CUPRO-NICKEL (60-80%, Cu) 558 CUTCH, baskets 33 CUTCH, baskets 33 CUTCH, baskets 33 CUTCH, baskets 33 CUTCH, baskets 33 CUTCHEY, cases 37 COPFEE, bags 28-32 CUPRESS WOOD 37 COPFEE, bags 28-32 COPFEE, bags 28-32 COPFEE, bags 30-35 COLEMANITE COLOPHONY. See Resin. COLUMBIAN PINE 33 COLZA OIL 57 CONDUITS, VITRIFIED 56 COPAL COPPER, cast drawn or sheet p. 13 Ingots 58 CROCCIDITE 205 CROCCIONITE 205 CROCCISTE 205 CUPTE 205 COUTHET 205 CUPTE 205 CUPTE 205 COUTHET 205 CUPTE 205 CUPTE 205 COUTHET 205 CUPTE 205 COUTHET 205 CUPTE 205 COUTHET 205 COPAC 205 CUPTE 205 COUTHET 205 COUTHET 205 CUPTE 205 COUTHE 205 CUPTE 205 CUPTE 205 COUTHE 205 CUPTE 205 COUTHE 205 CUPTE 205 COUTHE 205 COUTHE 205 CUPTE 205 COUTHE 205 CUPTE 205 COUTHE 205 COUTHE 205 CUPTE 205 COUTHE 205 CUPTE 205 COUTHE 205 CO	COACHSCREWS, bags			66
COBALTITE COBALTITE COCA, bags COCHINEAL, tinlined cases COCOA, bags or bulk tins in cases BEANS BUTTER COCONUT FIBRE, bales OIL COCOONS, boxes CODIIVER OIL COFFEE, bags BEANS COIR FIBRE, bales YARN, ,, COKE COLEMANITE COLEMANITE COLEMANITE COLOPHONY. See Resin. COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COCOPAL COOPAL COOPER, cast Ingots CROCKERY, crates CROCKERY, crates CROCKERY, crates CROCOISITE CRYOLITE CUPRO-NICKEL (60–80%, Cu) 558 CUTCH, baskets CUTCH, baskets CUTCH, baskets CUTCH, baskets CUTLERY, cases CUTLERY, cases CUTLERY, cases CUTLERY, cases CUTLERY, cases DARI ATTORITION DAMMAR GUM, cases DARLEY DALE STONE DARLEY DALE STONE DALES, cases DEAL, YELLOW DESICCATED COCONUT, cases DEAL, YELLOW DESICCATED COCONUT, cases DESCONITE DHOLL, bags DIABASE DIA	COAL, loose lumps	1		
COBALTITE COCA, bags COCHINEAL, tinlined cases COCOA, bags or bulk tins in cases BEANS BUTTER COCOONUT FIBRE, bales OIL COCOONS, boxes COLIVER OIL COFFEE, bags BEANS COIR FIBRE, bales YARN, TOKE COLEMANITE COLOPHONY. See Resin. COLUMBIAN PINE COLZA OIL COMPOSITION PIPE p. 184 CONCRETE p. 37 CONDUITS, VITRIFIED COPAL COPPER, cast Ingots COCHNER OIL COCONUT, cases COLUMBER OIL CUPRITE CUCUMBER OIL CUPRO-NICKEL (60–80%, Cu) CURRANTS, boxes CUSTARD POWDER, cases CUTCH, baskets CUTLERY, cases CUTLERY, cases CUTCH, baskets CUTLERY, cases CUTLERY,				
COCA, bags COCHINEAL, tinlined cases COCHINEAL, tinlined cases COCOA, bags or bulk tins in cases BEANS BUTTER COCONUT FIBRE, bales OIL COCONUT FIBRE, bales OIL COCOONS, boxes CODLIVER OIL COFFEE, bags BEANS COIR FIBRE, bales Yaran, Yaran, Sase COLEMANITE COLOPHONY. See Resin. COLUMBIAN PINE				26-40
COCHINEAL, tinlined cases COCOA, bags or bulk tins in cases BEANS BEANS BUTTER COCONUT FIBRE, bales OIL COCOONS, boxes COLIVER OIL COFFEE, bags BEANS COIR FIBRE, bales OIL COEMANITE COLEMANITE COLEMANITE COLUMBIAN PINE COLUMBIAN PINE COLIZA OIL COMPOSITION PIPE p. 184 CONCRETE p. 37 CONDUITS, VITRIFIED COPAL COPPER, cast Ingots COCOONS, boxes CUTCH, baskets CUTCH, baskets CUTLERY, cases CUTCH, baskets CUTLERY, cases CUTLER				
COCOA, bags or bulk tins in cases				
tins in cases BEANS BUTTER COCONUT FIBRE, bales OIL OCOONS, boxes COLTCH, baskets CUTCH, baskets CUTLERY, cases CUTLE				
BEANS BUTTER COCONUT FIBRE, bales OIL COCOONS, boxes CUTCH, baskets CUTLERY, cases CULERANTS, between curlers CULERANTS, between			CUPRILE (40 0004 C.)	
- BUTTER COCONUT FIBRE, bales - OIL COCOONS, boxes CODLIVER OIL COFFEE, bags - BEANS COIR FIBRE, bales - YARN, ,, COKE COLEMANITE COLOPHONY. See Resin. COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE COLUMBIAN PINE CONCRETE p. 37 CONDUITS, VITRIFIED COPPER, cast drawn or sheet p. 13 ingots 60 CUSTARD POWDER, cases CUTLERY, cases COPPERS WOOD 37 DARI DARIEY DALE STONE 148 DATES, cases DEAL, YELLOW 27 DEKALIN DELTA METAL DESICCATED COCONUT, cases DEXONITE DHOLL, bags DIABASE DIABASE 180 DIABASE 180 DIABONE DIAFOMACEOUS BRICK 30		1/	CUPRO-NICKEL (60-80%, Cu)	
COCONUT FIBRE, bales OIL OCOONS, boxes COLIVER OIL COFFEE, bags BEANS COIR FIBRE, bales YARN, ,, COKE COLEMANITE COLEMANITE COLOPHONY. See Resin. COLUMBIAN PINE COLZA OIL COMPOSITION PIPE p. 184 CONCRETE p. 37 CONDUITS, VITRIFIED COPAL COPPER, cast Ingots COLOMANITE COLOPHONY. See Resin. COLUMBIAN PINE COLZA OIL COMPOSITION PIPE p. 184 CONCRETE p. 37 CONDUITS, VITRIFIED COPAL COPPER, cast Ingots CUTCH, baskets CUTLERY, cases CUTCH, baskets CUTLERY, cases CUTCH, baskets CUTLERY, cases 37 COMPESS WOOD DAMMAR GUM, cases DARI DARIEY DALE STONE DATES, cases DEAL, YELLOW 27 DESICCATED COCONUT, cases DEXONITE DHOLL, bags DIABASE		/0		
— OIL 58 CUTLERY, cases 37 COCOONS, boxes 11 58 CYPRESS WOOD 37 CODLIVER OIL 58 28-32 40 40 40 40 40 40 40 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48				
COCOONS, boxes				
CODLIVER OIL 58 28-32 40				
COFFEE, bags			CTI RESS TOOD	3/
BEANS COIR FIBRE, bales YARN, ,,				1
COIR FIBRE, bales 20 DAMMAR GUM, cases 26 YARN, ,, 33 DARI 47 COKE 30-35 DARLEY DALE STONE 148 COLEMANITE DATES, cases 56 COLOPHONY. See Resin. DEAL, YELLOW 27 COLZA OIL 57 DEKALIN 56 COMPOSITION PIPE p. 184 DESICCATED COCONUT, cases 32 CONCRETE p. 37 DEXONITE 80 COPAL 65 DIABASE 180 COPPER, cast 547 DIAKON 74 drawn or sheet p. 13 558 DIASPORE 220 Ingots 10ATOMACEOUS BRICK 30		1		1
— YARN, ,, 33 DARI 47 COKE 30-35 DARLEY DALE STONE 148 COLEMANITE 150 DATES, cases 56 COLOPHONY. See Resin. DEAL, YELLOW 27 COLUMBIAN PINE 33 DEKALIN 56 COMPOSITION PIPE p. 184 DELTA METAL 537 CONCRETE p. 37 DESICCATED COCONUT, cases 32 DEXONITE 80 DOPAL DIABASE 180 COPPER, cast 547 DIAKON 74 drawn or sheet p. 13 558 DIASPORE 220 Ingots 10ATES, cases 56 DEAL, YELLOW 27 537 DESICCATED COCONUT, cases 32 DIABASE 180 DIAKON 74 DIASPORE 220 DIATES, cases 50 DELTA METAL 537 DEXONITE 80 DIAKON 74 DIATES, cases 30		1	DAMMAR GUM cases	26
COKE				
COLEMANITE			H	
COLOPHONY. See Resin. COLUMBIAN PINE COLZA OIL COMPOSITION PIPE p. 184 CONCRETE p. 37 CONDUITS, VITRIFIED COPAL COPPER, cast drawn or sheet p. 13 ingots DEAL, YELLOW 27 DEKALIN DELTA METAL DESICCATED COCONUT, cases DEXONITE DHOLL, bags 45 DIABASE 180 DIABASE 180 DIASPORE DIASPORE DIASPORE 220 DIATOMACEOUS BRICK 30				
COLUMBIAN PINE 33 DEKALIN 56		.50		
COLZA OIL COMPOSITION PIPE p. 184 CONCRETE p. 37 CONDUITS, VITRIFIED COPAL COPPER, cast drawn or sheet p. 13 ingots 57 DELTA METAL DESICCATED COCONUT, cases DEXONITE DHOLL, bags 45 DIABASE DIAKON 74 DIASPORE DIASPORE DIASPORE 220 DIATOMACEOUS BRICK 30		33		
DESICCATED COCONUT, cases 32				
CONCRETE p. 37		1		
CONDUITS, VITRIFIED 56 DHOLL, bags 45 COPAL 65 DIABASE 180 COPPER, cast 547 DIAKON 74 drawn or sheet p. 13 558 DIASPORE 220 ingots 224 DIATOMACEOUS BRICK 30				
COPAL 65 DIABASE 180 COPPER, cast 547 DIAKON 74 Copper	CONDUITS, VITRIFIED	56	H =	
COPPER, cast 547 DIAKON 74 drawn or sheet p. 13 558 DIASPORE 220 lingots 224 DIATOMACEOUS BRICK 30				
drawn or sheet p. 13 558 DIASPORE 220 DIATOMACEOUS BRICK 30				
ingots 224 DIATOMACEOUS BRICK 30				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		84		
ı	, , ,			

Table 93—Continued.

Material	lb./cu.ft.	Material	lb./cu. ft.
DIORITE	179	FERRO-SILICON	437
DOLOMITE	180	FIBRE BOARD	10-25
DOORS, crates	20	FIBRE, BRISTLE, bags	28
DOUGLAS FIR	33	FIGS, boxes	40
DRIPPING, tins in cases	32	FILBERTS	22
DRUGS, cases	26	FILES, etc., cases	56 ⋅
DRY GOODS, average	30	FINNINGS, casks	45
DURALUMIN	174	FIR CONES, cases	47
DUTCH CLINKERS, stacked	100	FIR, DOUGLAS	33
DYES, jars in cases	28	- SILVER	30
DYNAMITE	77	FIREBRICK, Stourbridge	125
	i i	FISH, boxes	45
EARTH p. 166	į.	— MANURE, bags	34
EARTHENWARE, packed	20	— OIL, casks	39
EBONITE	75-80	FLAX, bales	14
EBONY	74-83	- MEAL, bags	28
ECLOGITE	194	— SEED ,,	43
	22	— SEED ,, — STRAW, bulk	73
EGGS, crates	65	SIRAYY, DUIK	
preserved, jars in cases	65	WAX	61
ELECTRIC CONDUIT		FLINT	160
ELEKTRON	110	FLINT-GLASS. See Glass.	
ELM, American	42	FLOUR	44
Canadian	42	sacks	40
Dutch	36	barrels	34
English	36	FLUID, BRAKE, cartons	35
Wych	43	FLUORITE	200
EMERY	250	FLUORSPAR	200
EMERY WHEELS, cases	37	FOREST OF DEAN STONE	152
ENARGITE	275	FORMIC ACID, pure	76
EPIDOTE	210	FRANKINCENSE OIL	55
EPSOM SALTS, bulk	42	FRANKLINITE	320
ERYTHRITE	185	FREESTONE	140-155
ESSENTIAL OILS, bottles in cases	11	masonry, dressed	150
ETHER	46	rubble	140
ETHYL ACETATE	57	FRUIT JUICES, bulk	65
ETHYL FLUID	107	FRUIT, DRIED, cases	60
ETHYL LACTATE	65	- STONE-, boxes	44
- SILICATE	58	FULLER'S EARTH, natural	110-150
ETHYLENE GLYCOL	70	FUR CLIPPINGS, bales	10
EUCALYPTUS OILS	53-58	FURFURAL	72
EVERDUR	533	FURS, cases or bundles	17
EXTRACT, bottles in cases :	555	FUSEL OIL	52
Malt and Oil	41	FUSTIC	19
	25	FOSTIC	1 7
Meat or Vegetable bulk Malt and Oil	88		{
Durk Plait and Off	90		
	1 1	CARRO	LOE
1	1 1	GALENA	185
FANCY COOPS	,_	GALLIA	470
FANCY GOODS, mixed	12	GALLITH	84
FARINA, bags	42	GALL NUTS, bags	50
FATTY ACIDS, barrels	40	GALVANISED SHEETS, bundles	56
FEED GENTON, bags	22	GAMBIER, bags	22
MARSDEN, ,,	24	GAMBOGE	76
FELSPAR	168	cases	33
FELT, HAIR	17	GARNET	240
- ROOFING, rolls	37	GARNIERITE	140-175
FENNEL SEED, bags	24	GAS OIL	53
OIL	55-61	GAULTHERIA OIL	74
FERBERITE	450-470	GELATINE	79
FERRIC OXIDE, solid	305-330	- BLASTING	100
1			1
	<u> </u>		L

Table 93—Continued.

	7		
Material	lb./cu.ft.	Material	lb./cu.ft.
GELIGNITE	100	GUANO	3055
GENTIAN ROOT, bales	17	GUM, cased	26
GIBBSITE	150	GUM ARABIC	90
GILSONITE	68	GUM, BLUE	68
GINGER, cases	28	— RED	56
GIRDERS, STEEL, nested	140-200	GUNMETAL, cast	528
GLASS, Bottle	170	rolled p. 13	549
Common green	157	GUNNIE, bags	39
Crown, extra white	153	GUNPOWDĚR	56
silicate	137	GURJUN	46
Flint, best	192	GUTTA PERCHA	60
heavy	310-370	GYPKLITH	- 28
Optical	220	GYPSUM, crushed	65-100
Plate p. 4	174	solid	160
crates	50	bags	52
Pyrex	140	- PLASTER	46
— BOTTLES, crates	26	12/13/12/1	
- REFUSE (broken)	95		
— SILK	10-13		
GLASSPAPER, cases	40	HADDOCKS, cases	25
GLASSWARE, cases	iĭ	HAEMATITE, crushed	150
GLAUBERITE	170	solid	300-330
GLUCOSE liq. (43° Beaumé)	89	HAIR, HORSE, pressed in bales	14
barrels	50	- PLASTERER'S	ii
GLUE, casks	22	HALIBUT LIVER OIL	58
GLUTEN MEAL	37	HALITE	155
GLYCERINE (GLYCEROL)	79	HALLOYSITE	130
drums	50	HAM HILL STONE	135
GLYCOL	70	HAMS, barrels	34
GNEISS	172	HARDCORE	120
GOLD	1206	HARDWARE, DOMESTIC (not	
GOMA LACA	56	hollow-ware), crates	20
GOOSEBERRIES, cases	57	HAUSMANNIŤE	295
GOURD OIL	57	HAVEG	125
GRAIN, Barley	39	HAY, chaffed	6
Beans	51	pressed	12
Brewer's dried, bags	25	stacked	8
Buckwheat	36	HEMLOCK, WESTERN	31
Clover	37	HEMP, bales	20–30
Linseed	40	- OIL	58
Oats	26	HERRING OIL	58
Rye	45	HERRINGS, Fresh, barrels	37
GRAMOPHONES, cases	10	Salted, ,,	50
— RECORDS	50	HESSIAN, bales	22
GRANITE	165	HESSITE	520
chippings	90	HICKORY	51
dressed, cases	140	HIDES, dry, bales	28
GRANOLITHIC p. 67	140	salted, bales	40
GRAPESEED OIL	58	HIDUMINIUM	175
GRAPHITE	140	HOGGIN	110
GRAVEL p. 166 GREASE, tierces		HOLLOW-WARE, Domestic,	
GREASE, tierces	34	cases	12
GREEN VITRIOL, powdered	70	HONE, Razor	180
GREENHEART, Demerara	62–70	HONEY	90
Burma	48	HOPS, pressed bales	26
GRINDSTONE	133	HORNBEAM	300 330
GROCERIES. See separate items	200	HORNBLENDE	200-220
GROSSULARITE	220	HORNS, Animal, loose	24
GROUND NUT OIL	57	HORSEHAIR, pressed bales	14
GROUND NUTS, bags	39	HOSIERY, cased	17
	1	!	1

Table 93—Continued.

	I II		
Material	lb./cu. ft.	Material	lb./cu. ft.
HÜBNERITE	425	KAINITE, natural	130
HYDRALIME, bags	38	ground	60
HYDROCHLORIC ACID, conc.	76	KAOLIN	140
HYDROZINCITE	230	KAOLINITE	165
HYPERSTHENE	215	KAPOK, pressed bales	12
	1 1	KARRI	59
		KAURI, New Zealand	38
	}	Queensland	30
ICE	57	KAURI GUM	66
ILMENITE	280-310	KENTISH RAG — crushed	167
IMPLEMENTS, Agricultural,		KERNELS, cases	100 47
bundles	16	KEROSENE	50
IMPROVED WOOD p. 223	1 1	KIESELGUHR, insulation	30
INCONEL	533	KUPFERNICKEL	450 -4 75
INDIARUBBER	70	KUPLUS	490
INDIGO	63	K07203	'''
cased	36		
INK, PRINTERS', barrels	50		
IRIDIUM	1400	LACQUER, tins in cases	37
IRIDOSMINE	12-1300	LAMPBLACK, bags	16
IROKO	41 450	hogsheads	20
IRON, cast malleable cast	460-468	LAMPS, ELECTRIC, cartons	5
	480	LARCH	37
wrought p. 14 — CORRUGATED, bundles	56	LARD	58
- PIG, random	170	cases	37
stacked	280	— OIL	57
- PIPES. See PIPES.	200	LAVENDER OIL	_57
- PYRITES, ground	180	LEAD, cast or rolled p. 13	707
solid (60% Fe)	300-320	pigs	224
- SULPHATE, powdered	70	— BRONZE (Cu 70 Pb 30)	610
WIRE, coils	56	- RED, powder	130
IRONSTONE, CLEVELAND,	1	- WHITE, powder paste in drums	86 174
lumps	135	LEATHER Paste III Grains	60
- SPANISH ,,	150	bales or bundles	20
— SWEDISH "	230	hides, compressed	23
IRONMONGERY, packages	56	rolls	īo
IRONWOOD	71	scrap, bales	12
ISINGLASS	69 25	LEATHEROID, cases	34
packed IVORINE	84	LEMON PEEL, casks	35
IVORY	115	LEMONS, boxes	26
loose	80	LENTILS, bulk	49
IZAL, drums	45	LEUCITE	160
1	"	LEWIS BOLTS p. 201	
1		LIGNUM VITÆ	75–83
1		LIME, ACETATE OF, bags	80
JAGGERY, bags	56	BLUE LIAS, ground	53
JAM, bottles in cases	36	lump — CARBONATE OF, barrels	62 80
IARRAH	56	- CHLORIDE OF, lead lined	00
JELLIES, cased	30	cases	28
JET COST	80	- GREY CHALK, lump	44
JICWOOD p. 223		- GREY STONE, lump	55
JOINTING COMPO. for tanks	50	- HYDRATE, bags	32
JOISTS, STEEL, nested	140-200	- HYDRAULIC	45
JUNIPÉR BERRIES, bags	28	QUICK-, ground	64
- TAR OIL	61-66	 SLAKED, ground, dry 	35
JUTE, bales	30	,, wet	95
,, compressed	40	LIME MORTAR, dry	103
1	1	11	1

Table 93—Continued.

LIME MORTAR—continued wet wet wet wet wet wet wet wet wet wet				" ()
LIME WOOD	Material	1B./cu.1t.		10./cu. it.
LIME WOOD				
MACADAM MACADAM MACADAM MACADAM MACASSAR OIL MACADAM MACADAM MACABAM MACASSAR OIL MACADAM MACABAM MACA				
LIMESTONE p. 64 LIMESTONE p. 64 LIMESTONE p. 64 LIMESTONE p. 64 LIMESTONE p. 64 LIMESTONE p. 64 LIMESTONE p. 65 LIMESTONE p. 64 LIMESTONE p. 65 LIMESTONE p. 64 LIMESTONE p. 64 LIMESTONE p. 65 LIMESTONE p. 64 LIMESTONE p. 65 LIMESTONE p. 65 LIMESTONE p. 65 LIMESTONE p. 65 LIMESTONE p. 66 LIMESTONE				
MARCADAM 130 MACCADAM 130 MACCADAM				
LIMONITE Cooking Coo	LIMESTONE 5 64	33		
LINEN, Damask, bales 50		230-260		
Cook Cook				
LINN.EITE 310 300 MARI. p. 166 166 167 1				
LINOLEUM, rolls LINSED CAKE, broken — GRAIN — Oll, boiled — raw		310	MARJORAM OIL	57
— GRAIN	LINOLEUM, rolls	1		
— Oil., boiled raw refined 59				35
Page				70
Teffined 158				
LIQUORICE, cases 26			MATCHES, cases	
130			MATTRESSES WIRE hundles	
LITHOPHONE, solid 270				
CLOYD BOARD, hard insulating 17				
Insulating 17			— GLUTEN	
COAM p. 166		17	- OAT, bags	34
COCUST BEANS 47		1	— RYE	
LOESS 90	LOCKNUTS, Whitworth p. 200			
LOGWOOD 57				
LUBRICATING OIL 57				
MACADAM				
MACADAM	LOBRICATING OIL	3/		
MACADAM 130 METHYL ACETATE 58 MACASSAR OIL 54 METHACRYLATE p. 223 52 MACE, cases 28 METHYLATED SPIRIT 52 MACE, Cases 38 METHYLATED SPIRIT 57 MACHINERY, AGRICULTURAL, cases 28 bags 32 Cases 32 scrap 20 MAGNALIUM 120 MICANITE 130 MAGNESIA, solid 150 MIDDLINGS 25 MAGNESIUM 108 condensed, cases 38 MAGNESIUM 108 malted, powder 23 MAGNETITE 310 malted, powder 23 MAGNETITE 310 malted, powder 23 MAHL, bags 12 MILL BOARD 644 MAIL, bags 12 MILLERITE 340 MAILE, grain 47 MILLET 47 MALACHITE 250 MOHAIR, bags 10 MALACHITE 250 MOHAIR, bags 10 MALT	ĺ	(METAL ANTIFRICTION cases	
MACADAM 130	l			
MACE, cases 28 MEXICAN POPPY OIL 57 MACE OIL 58 MICA 170–190 MACHINERY, AGRICULTURAL, cases 28 bags 32 Cases 20 MICANITE 130 MAGNESILUM 150 MIDDLINGS 25 MAGNESIUM 108 condensed, cases 38 MAGNETIC OXIDE OF IRON 310 malted, powder 23 MAGNETITE 310 malted, powder 23 MAGNETITE 310 malted, powder 23 MAGNETITE 310 powdered 34 MAGNETITE 310 malted, powder 23 MAHOGANY, African 35 skimmed 64½ MAIL, bags MILL BOARD 70 MAIL, bags 12 MILLERITE 340 MAILERITE 47 MILLET 47 MALACHITE 250 MOHAIR, bags 10 MALACHITE 250 MOHAIR, bags 10 MALACHITE 290	MACADAM	130		
MACE OIL 58 MICA 170-190 MACHINERY, AGRICULTURAL, cases 28 bags scrap 32 MAGNALIUM 120 MICANITE 130 MAGNESIA, solid 150 MIDDLINGS 25 MAGNESITE 190 MILK 64 MAGNESIUM 108 condensed, cases 38 MAGNETIC OXIDE OF IRON 310 malted, powder 23 MAGNETITE 310 powdered 34 MAGNETITE 310 malted, powder 23 MAHOGANY, African 35 skimmed 64½ MAHOGANY, African 35 skimmed 64½ MAIL, bags 112 MILLERITE 340 MAIL, bags 112 MILLET 47 MAIZE, grain 47 MILLSTONE GRIT 145 husked ears 30 MINIUM 570 MALACHITE 250 MOHAIR, bags 10 MALT 33 MOLYBDENITE 290 OIL	MACASSAR OIL		METHYLATED SPIRIT	
MACHINERY, AGRICULTURAL, cases 28 bags scrap 32 MAGNALIUM 120 MICANITE 130 MAGNESIA, solid 150 MIDDLINGS 25 MAGNESITE 190 MILK 64 MAGNESIUM 108 condensed, cases 38 MAGNETIC OXIDE OF IRON 310 powdered 34 MAGNETITE 310 malted, powder 23 MAGNETITE 34 MILL BOARD 70 MILL BOARD 70 MILLET 47 MAILLESTONE GRIT 145 47 MILLSTONE GRIT 145 47 MALACHITE 250 MOHAIR, bags 10				57
Cases MAGNALIUM 120 MICANITE 130 MICANITE 1			H	
MAGNALIUM MAGNESIA, solid MAGNESITE 120 MICANITE 130 MAGNESITE MAGNESIUM 150 MIDDLINGS 25 MAGNESIUM 108 condensed, cases 38 — ALLOYS, about MAGNETIC OXIDE OF IRON MAGNETITE 310 powdered 23 MAGNETITE MAHOGANY, African Hondurae 35 skimmed 64½ MAIL, bags MAIL, bags MAIL, bags MAIZE, grain husked ears 43 MILLERITE MILLET 340 MILLET 47 MILLET 47 MILLET 47 MILLET 145 MAIZE, grain husked ears 30 MINIUM 570 MALACHITE MALT 250 MOHAIR, bags MOLASSES 10 MALT 33 MOLASSES 110 — COOMBS — EXTRACT and CODLIVER OIL 41 MOLYBDENITE MONAZITE 290 MOLYBDENUM 623 310-330 MONAZITE MANGANIN 537 MORTAR, CEMENT, set 120-130 MORTAR, CEMENT, set 100-110 100-110	•	28		
MAGNESIA, solid 150 MIDDLINGS 25 MAGNESITE 190 MILK 64 MAGNESIUM 108 condensed, cases 38 — ALLOYS, about 115 malted, powder 23 MAGNETIC OXIDE OF IRON 310 powdered 34 MAGNESIA, solid 108 condensed, cases 38 MAGNESIA, solid 115 milk 64 MAGNESIA, solid 115 malted, powder 23 310 310 powdered 34 34 MAGNESITE 310 malted, powder 23 34 MAHOGANY, African 35 skimmed 64½ MILL BOARD 70 340 MILLERITE 340 MILLERITE 47 MILLET 47 47 MILLET 47 MILLET 47 47 MILLET 47 MILLET 380 380 MALACHITE 250 MOHAIR, bags 10 MALACHITE 33<		120		
MAGNESITE 190 MILK 64 MAGNESIUM 108 condensed, cases 38 — ALLOYS, about 115 malted, powder 23 MAGNETIC OXIDE OF IRON 310 powdered 34 MAGNESITE 310 powdered 34 MAHORANY, African 35 skimmed 64½ MILLERITE 340 MILLERITE 340 MILLET 47 MILLET 47 MILLET 47 MILLET 47 MILLET 47 MILLSTONE GRIT 145 MALACHITE 250 MOHAIR, bags 10 MALACHITE 250 MOHAIR, bags 10 MOLYBDENITE 290 290 OIL 623 MOLYBDENUM 623				
MAGNESIUM 108 condensed, cases malted, powder 38 — ALLOYS, about 115 malted, powder 23 MAGNETIC OXIDE OF IRON 310 powdered 34 MAGNETITE 310 ,, tins in cases 19 MAHOGANY, African 35 skimmed 64½ Honduras 34 MILL BOARD 70 Spanish 43 MILLERITE 340 MAIZE, grain 47 MILLSTONE GRIT 145 husked ears 30 MINIUM 570 — OIL 58 MISPICKEL 380 MALACHITE 250 MOHAIR, bags 10 MALT 11 casks 80 — COOMBS 11 casks 80 — EXTRACT and CODLIVER OLL Dottles in cases 41 MOLYBDENUM 623 MANGANESE 460 MONEL 310-330 MANGANIN 530 — LIME, set 100-110				
— ALLOYS, about 115 malted, powder 23 MAGNETIC OXIDE OF IRON 310 powdered 34 MAGNETITE 310 ,, tins in cases 19 MAHOGANY, African 35 skimmed 64½ Honduras 34 MILL BOARD 70 Spanish 43 MILLERITE 340 MAIL, bags 12 MILLET 47 MAIZE, grain 47 MILLSTONE GRIT 145 husked ears 30 MINIUM 570 — OIL 58 MISPICKEL 380 MALACHITE 250 MOHAIR, bags 10 MALT 33 MOLASSES 110 — EXTRACT and CODLIVER 31 MOLYBDENITE 290 MOLYBDENUM 623 310-330 MANGANESE 460 MONEL 548 — BRONZE 537 MORTAR, CEMENT, set 120-130 MANGANIN 530 — LIME, set 100-110			11	
MAGNETIC OXIDE OF IRON MAGNETITE 310 powdered 34 MAHOGANY, African Honduras 35 skimmed 64½ MAIL, bags MAIL, bags MAIZE, grain husked ears 12 MILLERITE 340 MALACHITE MALACHITE 380 MISPICKEL 380 MALT OIL 33 MOLASSES 110 — EXTRACT and CODLIVER OIL 88 MOLYBDENITE 290 MOLYBDENUM 623 MANGANESE MANGANESE 460 MONEL MONEL 310-330 MANGANIN 530 LIME, set 100-110				
MAHOGANY, African Honduras Spanish 35 34 43 MILL BOARD 64½ 70 340 MILL BOARD 34 340 MILL BOARD 340 340 47 MILLET 340 47 MILLET 340 47 MILLET 47 MILLET 47 MILLET 47 MILLET 47 MILLET 47 MILLET 145 MILLET 47 MILLET 145 MINIUM 570 380 MOHAIR, bags 10 MOHAIR, bags 10 MOLASSES 110 Casks 110 MOLASSES 110 MOLASSES 110 MOLASSES 110 MOLASSES 290 MOLYBDENUM 623 MOLYBDENUM 623 MONAZITE 310–330 MONEL 310–330 MONEL 310–330 MONEL 548 MONTAR, CEMENT, set 120–130 MOD-110 MANGANIN 530 — LIME, set 100–110		310	powdered	34
Honduras 34				
Spanish 43 MILLERITE 340				
MAIL, bags 12 MILLET 47 MAIZE, grain 47 MILLSTONE GRIT 145 husked ears 30 MINIUM 570 — OIL 58 MISPICKEL 380 MALACHITE 250 MOHAIR, bags 10 MALT 33 MOLASSES 110 — COOMBS 11 casks 80 — EXTRACT and CODLIVER OIL 88 MOLYBDENITE 290 OIL 88 MOLYBDENUM 623 MANGANESE 460 MONAZITE 310–330 MONEL 548 MONEL 548 MONTAR, CEMENT, set 120–130 MANGANIN 530 — LIME, set 100–110				
MAIZE, grain				
husked ears	MAI7F grain			
— OIL 58 MISPICKEL 380 MALACHITE 250 MOHAIR, bags 10 MALT 33 MOLASSES 110 — COOMBS 11 casks 80 — EXTRACT and CODLIVER MOLYBDENITE 290 OIL 88 MOLYBDENUM 623 bottles in cases 41 MONAZITE 310-330 MANGANESE 460 MONEL 548 — BRONZE 537 MORTAR, CEMENT, set 120-130 MANGANIN 530 — LIME, set 100-110	husked ears			
MALACHITE 250 MOHAIR, bags 10 MALT 33 MOLASSES 110 — COOMBS 11 casks 80 — EXTRACT and CODLIVER OIL 88 MOLYBDENITE 290 MOLYBDENUM 623 MONAZITE 310-330 MANGANESE 460 MONEL 548 MONEL 537 MORTAR, CEMENT, set 120-130 MANGANIN 530 LIME, set 100-110			MISPICKEL	
MALT			MOHAIR, bags	10
— EXTRACT and CODLIVER OIL bottles in cases 88 MOLYBDENUM 623 MANGANESE - BRONZE MANGANIN 460 MONEL MONEL 537 MORTAR, CEMENT, set 120–130 MANGANIN 530 - LIME, set 100–110	MALT		MOLASSES	110
OIL 88 MOLYBDENUM 623 bottles in cases 41 MONAZITE 310-330 MANGANESE 460 MONEL 548				
bottles in cases				1
MANGANESE 460 MONEL 548 BRONZE 537 MORTAR, CEMENT, set 120-130 MANGANIN 530 LIME, set 100-110				
— BRONZE 537 MORTAR, CEMENT, set 120–130 MANGANIN 530 — LIME, set 100–110				
MANGANIN 530 — LIME, set 100-110				
			— LIME. set	
•				

Table 93—Continued.

Material	lb./cu. ft.	Material	lb./cu. ft.
MUD p. 166		ONYX	165
MUNTZ METAL, cast	524	OOLITE	120-160
sheet p. 13	557	OPIUM, chests	23
MURIATE OF LIME, cases	28	ORANGES, cases	25
MURIATIC ACID (HCI) conc.	76	ORE. See individual kinds	1
MUSCOVITE	170-190	OREGON PINE	33
MUSIC ROLLS, cases	28	ORPIMENT .	220
MYRRH OIL	63	ORRIS ROOT, bags ORTHOCLASE	28 160
	İ	OSIERS, bundles	150
	1	OSMIUM	1400
NAILS, WIRE, bags	75	OXIDE OF IRON, casks	45
NAPHTHA, Heavy	59	OYSTERS, barrels	37
White	55	OYSTER SHELL, solid	130
NAPHTHALENE	71	OZOKERITE WAX	53-58
NEATS FOOT OIL	57		
NEOPRENE	75		1
NEPHELITE	60	5.5.4.00	40
NICCOLITE	460-480 550	PADAUK PAINT, Aluminium	49 75
NICKEL — SILVER	545	Bituminous emulsion	70
NITRATE OF SODA	70	Red Lead	195
NITRE, solid	120	Red Lead dispersed	95
NITRIC ACID. 100%	95	White Lead	175
68%	88	Zinc	150
NITROBENZENE	76	PALLADIUM	7!!
NITROCHALK, bags	40	PALM OIL	58
NUTMEGS, cases	37 57	PAPER, Blotting, bales	25 56
NUT OIL NUTS, Whitworth p. 200	3/	Printing, reels Wall, rolls	24
Brazil, casks	25	Writing	60
shelled, cased	28	PARAFFIN OIL	50
Filberts	22	- WAX	56
NUX VOMICA	30	PARSNIPS	31
	i	PEANUT OIL	57
		PEANUTS, bags	14
OAK, African	60	PEARL ALUM, bags PEARLASH, pots	43 45
American red	45	PEARS	57
white	48	PEAS	50
Austrian	45	in pod	35
English	50-55	PEAT p. 166	
OATMEAL, bags	34	PENTÀNE	39
OATS	33	PENTLANDITE	285-310
bags ground	27 23	PEPPER, bags PEPPERMINT, cases	28 32
OCHRE, solid	250	PERFUMERY, cases	28
barrels	45	PERIODITE CASES	182
OCTANE	44	PERILLA OIL	58
OILCAKE, bags	41	PERSPEX p. 4	84
OILS. See individual kinds:		PERUVIAN BARK, bales	15
Usually: bulk	57	PETRIFYING LIQUID	58
OLIGOCLASE barrels	37 166	PETROL — cans or drums	43-48 45-50
OLIVENITE	270	PETROLEUM	55
OLIVE OIL	57	barrels	35
OLIVES, casks	33	PEWTER	453
OLIVINE	210	PHENOLFORMALDEHYDE p. 223	
ONIONS	50	PHOSPHATES, ground	75
boxes	30	bags	53
		II .	1

Table 93—Continued.

Material	lb./cu. ft.	Material	lb./cu. ft.
PHOSPHOR-BRONZE, cast	540	POTATOES	40
drawn	550	barrels	37
PHOSPHORUS, RED, pure	137	PRESSPAHN	78
— YELLOW, pure	114	PRINTING INK, barrels	50
cases	35	PROOF SPIRIT	57
PICRIC ACID, cast PINE, American Red	100 33	PROUSTITE PROVISIONS, cases	350 28
British Columbian	33	PRUNES, DRIED, casks	43
Christiania	43	PSILOMELANE	230-290
Columbian	33	PULP, WOOD, dry	35
Dantzig	36	wet	45
Kauri, Queensland	30	PUMICE STONE	30-57
New Zealand	38	PURBECK STONE	169
Memel	34	PYINKADO	62
Oregon	33	PYRARGYRITE	360
Pitch	34 47	PYREX	180
Riga PINE OIL	3 4_4 7 58	PYRITES, IRON, ground solid (60% Fe)	300-320
Heavy	64	— COPPER, solid	255-270
PINE SEEDS, cases	37	PYROLUSITE PYROLUSITE	300
PINS, SPLIT, barrels	56	PYROMORPHITE	430
PIPES. See Tables 134 to 149.		PYROPE	230
BRASS, bundles	56	PYROPHYLLITE	180
— CAST IRON, stacked	60-80	PYROXENE	210
- EARTHENWARE, loose	20	PYRRHOTITE	290
- SALT-GLAZED, stacked	25		[
— WROUGHT IRON	200		f
stacked 🖁 " 3"	200 90	OUARTZ	165
6"	50	loose	90-105
PISÉ BLOCKWORK	100-120	QUARTZITE	170
PITCH	68	OUEBRACHO	80
barrels	50	QUICKLIME, ground, dry	64
— MINERAL	100	QUILT, Eel grass	11
PLAGIOCLASE	168		
PLANE	40		i
PLASTER BOARD p. 68 PLASTER OF PARIS, loose	58	RABBIT SKINS, bales	16
set	80	RAGBOLTS p. 201	10
PLATINUM	1340	RAGS, baled	13
PLUMBAGO	130	RAGSTONE	150
casks	48	RAILS, RAILWAY	150
PLUMS	44	RAISINS, cases	43
PLYWOOD	30-40	RAPE-SEED OIL	57
PLASTIC-BONDED	45-90	REALGAR	220
POLYBASITE	380	RED FIBRE, Vulcanized	90 56
POLYSTYRENE p. 223 POLYVINYL CHLOR.		RED GUM RED LEAD powder, dry	132
ACETATE p. 223	1	REDRUTHITE	340-360
POPLAR	28	REDWOOD, American	33
PORCELAIN	145	Baltic	31
— Electrical	160-220	Non-graded	27
PORK, tierces	34	Rhodesian	57
PORPHYRY	175	RESIN, lumps	67
PORPOISE OIL	58	barrels	48
PORTLAND CEMENT, loose	75-85	BONDED PLYWOOD	45-85
p. 92 bags drums	70–80 75	RESIN OIL RHEA FIBRE, bales	62
PORTLAND STONE	140	RHODIUM	777
POTASH	140	RHODOCHROSITE	220
	'''		
		I	1

Table 93—Continued.

	1	<u> </u>	
Material	lb./cu.ft.	Material	lb./cu.ft.
RHODONITE	210-230	SEEDS—continued.	
RHYOLITE	160	CLOVER	50-52
RICE, bags	50	— COCKSFOOT	14
polished, bags	36	— CRESTED DOGSTAIL	30
- BRAN, bags	25	— ITALIAN RYE GRASS	1218
- MEAL, bags	37	LUCERNE	48
RIPIDOLITE	170	- MEADOW FESCUE	23
ROAD METAL	80-100	— PERENNIAL RYE GRASS	16-22
ROCK. See individual kinds and		RAPE	37
Table 80.		- ROUGH-STALKED	
ROCK CRYSTAL	170	MEADOW	22
— SALT, solid	125	 SAINFOIN, rough 	23
broken	60	milled	47
ROOFING MATERIALS		- TALL FESCUE	19
ROPE, bundles	17	- TIMOTHY	37
Manila, coils	32	— TURNIPS	39
Wire, coils	90	- VETCHES	50
ROSIN. See RESIN.	'•	SEMOLINA, bags	37
ROTTEN-STONE	125	SENARMONTITE	330
ROVES, COPPER		SENECA ROOT, bags	18
RUBBER, Crepe, cases	25	SENNA LEAVES, bales	18
Processed sheet	70	SERPENTINE	160
Raw	58	SESAME OIL	58
Sponge-	3-10	SEWING MACHINES, cases	28
Vulcanized	75	SHALE	160
RUM, bottles in cases	34	granulated	70
hogsheads	32	- OlL, Scottish	59
RUTILE	265	SHARK OIL	58
RYE	45	SHEEP CARCASES, frozen	20
- MEAL	25	SHEEPSKINS, pressed	28
		unpressed	15
		SHEET, COTTON, cases	23
		- METALS p. 13	
SADDLERY, cases	28	SHELLAC, solid	68
SAGO, bags	42	flake, cases	20
boxes	40	SHELLS, bags	28
SAL AMMONIAC	90	SHINGLE p. 166	-
SALMON, cans in cases	32	SHINGLES p. 10	1 1
SAL SODA, barrels	46	SIDERITE	240
SALT, bulk	60	SILAGE, at top surface	35
bags	45	Add I lb./ft. of depth.	
- EPŠOM, kegs	41	SILICA, fused transparent	138
ROCK-, solid	125	translucent	128
broken	60	SILICATE COTTON	14-18
SALT-GLAZED WARE	140	— OF SODA	106
SALTPETRE, barrels	60	barrels	53
SAND pp. 92, 166		SILICON, pure	143
SANDPAPER. See GLASSPAPER		SILK, bales	22
SANDSTONE p. 64		— GLASS-	10-13
SASSAFRAS OIL	68	SILT p. 166	
SATINWOOD	60	SILUMIN	165
SAUCES, bottles in cases	25	SILVER, cast	652
SAWDUST	13	pure	655
SCHEELITE	380	- GLANCE	450
SCHIST	180	SINDANYO	120
SCREWS, IRON, packages	100	SIRAPITE, powder	64
SEA WATER	63–65	SISAL, bales	20
SEAL OIL	58	SIZE	20
SEALSKINS, bales	70	SLAG, coarse	90
SEEDS. See also Grain.		granulated	60

Table 93—Continued.

Material	lb./cu. ft.	Material	lb./cu. ft.
SLAGWOOL	14-18	STONE	156
SLATE, Welsh p. 9 Westmorland	175 187	— ANCASTER— BATH	130
SLATES, cases	93	- CAEN	125
SLUDGE CAKE, pressed, 50%	73	- DARLEY DALE	148
water	58	- FOREST OF DEAN	152
SMALTITE	410	- FREE-	140-155
SNOW, fresh	6	- GRANITE	165
wet compact	20	- HAM HILL	135
SOAP, boxed	57	— HOPTON WOOD	158
— POWDER, cases	38	KENTISH RAG	167
- SOFT, cases	44	LIME-p. 64	
SOAPSTONE	170	- MANSFIELD	141
SODA, bags	41	MARBLE	170
— ASH, barrels	62	- MILLSTONE GRIT	145
powdered, bulk	62	- PORTLAND	140
- BICARBONATE, casks	39	— PURBECK	107
— CARBONATE OF, solution	72	SAND-p. 64 SLATE, Welsh	175
— CAUSTIC, drums	74	Westmorland	187
lye (max.)	94	- YORK	140
- NITRATE OF	70	STONEWARE	140
— SILICATE OF	106	STRAW, pressed	6
barrels	53	compressed bales	19
SOFT DRINKS, cases	27	STRAWBOARDS, bundles	37
SOIL p. 166		STRONTIUM WHITE, solid	240
SOLDER, pigs	170	ground	110
SOOT from SOYA BEAN OIL	22 58	SUGAR, bags SULPHATE OF ALUMINIUM,	45–50
- FLOUR	36	bags	45
SPAR, CALCAREOUS	170	— AMMONIA, bags	40
- FELD-	168	— COPPER, cryst.	84
FLUOR-	200	— IRON, powder	70
SPATHIC ORE	210-240	SULPHUR, pure solid	120-130
SPECULUM METAL	465	sticks in cases	56
SPELTER, loose	170	SULPHURIC ACID, 100%	123
SPERM OIL	55	Commercial	105-112
SPERMACETI	59	jars, cases	25
SPESSARTITE SPHALERITE	260 250	SUNFLOWER OIL SUPERPHOSPHATE, bags	58 40
SPIEGELEISEN	460	SWEDES	35
SPINEL	220-250		38
SPIRITS OF WINE	49	SYENITE	165-170
SPODUMENE	200	SYLVANITE	490-520
SPONGE, bundles	15	SYRUP up to	83
SPONGE RUBBER	3-10	barrels	45
SPRING WASHERS, cases	40	Golden, cases	55
SPRUCE, Canadian	29		
Norway	29 28		1
Sitka STANNITE	280	TALC	170
STARCH	59	casks	40
boxes or barrels	28	TALLOW	59
STATIONERY, cases	32	tierces	32
STEATITE	170	∥ — OIL	57
STEEL pp. 4, 12	489	TAMARINDS, cases	48
- BALLS, barrels	75	kegs	41
— PUNCHINGS	300	TAN EXTRACT, casks	47
STEPHANITE STIBNITE	390 290	TAPIOCA, barrels TAR	39 71–77
STIDINIE	270		/ -//
		L	L

Table 93—Continued.

Material	lb./cu. ft.	Material	lb./cu.ft.
	10./cu. 1c.		
TAR—continued.		UVAROVITE	220
— barrels	50 53		
TARES	45		
bags TARMACADAM	130	VALENTINITE	350
TARMACADAM TARPAULINS, bundles	45	VALERIAN, OIL OF	59
TARTAR, casks	37	VANADIUM	374
TEA, chests	22	VAPOURISING OIL	51
TEAK, Burma, African	41	VARNISH, barrels	37
TENNANTITE	280	tins in cases	45
TENORITE	360-390	VEGETABLES. See individual	
TERNARY ALLOY LEAD	707	kinds.	
TERRA ALBA, solid	143	VERDIGRIS, barrels	40
ground	70	VERMICELLI, boxes	20
TERRA COTTA	112	VERMILION, solid	510
TETRACHLORETHANE	100	VETCHES, seed	50
TETRA ETHYL LEAD	100	VINEGAR	64
TETRAHEDRITE	280-320	VITREOSIL	170
TETRALIN	61	VITRIOL, OIL OF, 100%	123
THYME, bales	16	Commercial	105-112
TILES, bulk	47	- BLUE, powder	84
TIMBERS. See individual kinds	1	— GREEN, powder	70
and Table 27.			
TIN	454		
TINFOIL, cases	56	MAD	100 240
TINNED GOODS, cases	30-40	WAD	190-260
TINPLATE, boxes	200-280 400-440	WALNUT — OIL	41 58
TINSTONE	12	WASHERS, Flat, bags	90
TINWARE, cases TITANITE	220	Spring, cases	40
TITANIUM	280	WASTE PAPER	22
— OXIDE, solid	230	pressed packed	28-32
TOBACCO, packets	18	WATER, Fresh	62.3
pressed leaf	28	Salt	63-75
TOLUENE (TOLUOL)	54	WATERGLASS	106
TOMATO PASTE, casks	37	barrels	53
TOOLS, HAND, cases	56	WAX, Bees	60
TOWELS, cases	40	Brazil	62
TOYS, cases	8	cases or barrels	37
TRACHYTE	170	Paraffin	56
TRAIN OIL	47	WHALE OIL	58
TRAP	170	WHEAT	49
TREACLE	110	bags	39
TREETEX	13	- MEAL	42
TREMOLITE	190	WHISKY	27
TROLITOL p. 223	66	bottles in cases	37
TUBES. See PIPES. TUFNOL p. 223	85	casks WHITE LEAD, powder	28 86
TUNG OIL	59	paste in drums	174
TUNGUM	533	paste in drums	175
TUNGSTEN	1200	- METAL	460
TURNIPS	33	WHITENING (WHITING), casks	56
— SEED	39	WHITEWOOD	29
TURPENTINE	54	WILLOW, American	36
barrels	37	English	28
TYPE METAL, varies	650	WILMIL	170
TYRES, rubber	11–16	WINE, bulk	61
		bottles in cases	37
		casks	28
UNIONMELT POWDER	97	WINTERGREEN, OIL OF	74
			<u> </u>

Table 93—Continued.

Material	lb./cu.ft.	Material	lb./cu. ft.
WILLEMITE WIRE D. 13	250	XYLONITE	84
Iron, coils	74		
Nails, bags Rod, coils	75 50	Y ALLOY	174
Rope, coils	90	YARN, bales	25
WITHERITE WOLFRAM (WOLFRAMITE)	270 460	YELLOW METAL, sheets or bars packed	56
WOLLASTONITE WOOD BLOCK PAVING p. 67	175 56	YÉW YORK STONE	42-50 140
WOOD WASTE, pressed bales	30	TORK STOINE	170
WOOL, compressed bales piece goods, cases	48 27		
uncompressed	13	ZINC, cast	427
WORSTEDS, piece goods, cases WULFENITE	27 430	rolled sheets packed pp. 4, 13	449 56
		ZINCBLENDE	255
XYLENE (XYLOL)	54	ZINCITE ZIRCON	330–360 290

SUPERIMPOSED LOADING ON BEAMS

See loading regulations on slabs. The following table gives the L.C.C. requirements for beams and references to the *Institution of Structural Engineers Report No.* 8. Every beam must be capable of supporting the load given in the 4th column, uniformly distributed along its length but not acting with the floor load. For timber joists see Tables 115–124.

TABLE 94

ı			
*	Rooms used for residential purposes; and corridors, stairs and landings within the curtilage of a flat or residence Bedrooms, dormitories and wards in hotels, hospitals, infirmaries, workhouses and sanatoria. For public corridors spaces and stairs see below	40 As Class I	l ton
*	Offices, floors above entrance floor Restaurants, cafés, theatres, cinemas; concert and assembly halls with permanent seating ac- commodation; churches; classrooms and lec- ture rooms in schools; reading and writing rooms in libraries, clubs and hotels; art gal-	50	2 ton
3	leries, showrooms Offices, entrance floor and floors below: retail	70	2 ton
	shops; garages for cars not over 2\frac{1}{4} tons weight	80	2 ton
4	Corridors, stairs and landings not provided for in Class I (Report No. 8 gives 80 lb. for corridors to offices on entrance floor and floors below, and 50 lb. on floors above.)	Not less than 100	2 ton
*	Assembly, auction and concert halls without permanent seating accommodation; dance and drill halls; grandstands, gymnasia, light work-		
5	shops Workshops and factories; and garages for motor vehicles other than those in Class 3	As Class 4 Not less than 120	2 ton See footnotes
*	Storage rooms, retail shops, bookshops and libraries where the average load does not exceed 120 lb./sq. ft. (The L.C.C. require 200 lb. in		
6	warehouses and libraries.)	As Class 5 Not less than	2 ton
"	Warehouses, bookstores, stationery stores and the like	200	2 ton
*	Pavements surrounding buildings but not adjoining a roadway Report No. 8 requires corridors and stairs in Class 6 to be designed for 200 lb. loading; and requires the loading on retail shops (see Class 3) to be ascertained and the floor placed in Class 4 or 5 if necessary. B.S. 449 is substantially in agreement with the above provisions.	As Class 6	2 ton

^{*} These cases are not specifically covered by the L.C.C. by-laws, but District Surveyors and local authorities will normally accept the class loading stated.

The actual loading on floors in Classes 4 to 6 is to be ascertained, and is not to be taken as less than the above figures.

Class 5. The uniform load stipulated is 2 tons for workshops and factories; for garages a loading equal to 1.5 times the maximum possible combination of wheel loads shall be taken. Report No. 8 gives a more elaborate regulation for garages.

BENDING FORMULÆ

For reinforced concrete see page 89. For timber see page 161.

Symbols:—

A Cross-sectional area of member,

b Breadth of member, in.

d Depth of member, in.

E Young's Modulus, tons/sq. in.

f Fibre stress, tons/sq. in. Moment of Inertia, in.4

k Radius of gyration, in.

l Span, in.

z Section Modulus, in.3

M Bending moment, inch-tons.

Shear stress, tons/sq. in. q Shear stress, tons/sq. in R Radius of curvature, in.

S Total shearing force at section.

W Total load distributed along the span, tons.

y Dist. from neutral axis to extreme fibres, in.

$$\frac{f}{y} = \frac{M}{I} = \frac{E}{R}$$
; $M = \frac{fI}{y} = fz$; $z = \frac{I}{y}$; $I = Ak^2$

For rectangular sections, $l = \frac{bd^3}{12}$; $z = \frac{bd^2}{6}$; $q_{max} = 1.5 \frac{S}{bd}$

TABLE 95

Deflections of Beams (in inches)

Type of Beam	Distributed Load W	Central Load W
Simply supported	5 Wl³	1 Wl³ 48 · EI
Fixed both ends	1 384 · EI	1 WI3 192 · EI
One end fixed, the other simply supported	185 · Wl³	2 Wl³ EI
Cantilever	1 W/3 8 · El	Load W at end: Wl³ El

BEAMS · 113

Combined Bending and Direct Stress

P Direct load acting at distance e from c.g.

f Max. fibre stress =
$$\frac{P}{A} + \frac{Pey}{Ak^2}$$

= $\frac{P}{A} + \frac{Pey}{I}$
= $\frac{P}{A} + \frac{Pe}{Z}$ for symmetrical section.

BENDING MOMENTS IN CONTINUOUS BEAMS

Approximate positive and negative design BM's in beams subjected to uniformly distributed loads may be obtained from the next table which is derived from data in the *Institution of Structural Engineers Report No.* 10. These values make allowance for unloaded spans.

More exact calculations are to be made unless the following conditions are fulfilled:—

The ratio of adjacent beam lengths shall not exceed 1.20.

The ratio of imposed to dead load shall not exceed 2.

w = imposed plus dead load, in lb. per foot run.

For support moments, l = mean of the effective spans adjacent to the support, in feet.

For mid-span moments, l = effective length of span concerned, in feet.

B.S.T.

I

TABLE 96.

Bending Moments, lb. feet.

_	EACH SPAN					
Beams continuous over	Positive ne	ear Centre	Negative at Support			
TWO SPANS	w/² 10·7	$\left(\frac{wl^2}{10}\right)$	w/2 8			
	INTERIO	R SPANS	END SPANS			
	Pos. near centre	Neg. at support	Pos. near centre	Neg. at support		
THREE SPANS	$\frac{wl^2}{13\cdot 3}$ $\left(\frac{wl^2}{12}\right)$	w/² 10	w/² 10			
FOUR SPANS	$\frac{wl^2}{12\cdot6}$ $\left(\frac{wl^2}{12}\right)$		w/² 10			
Centre support		w/ ² 12				
Support next to end support				w/2 10		
FIVE or more SPANS End span			wl ²	w/2 10		
Span next to end span	wl² 12·6	w/2 12				
Other spans	$ \frac{\binom{wl^2}{12}}{\frac{wl^2}{12}} $	wl ² 12				

L.C.C. values are given in brackets where they differ from Report No. 10.

The by-law constants on the previous page are adequate to cover the worst possible incidence of loading which, according to the position considered, will be either when two adjacent spans are loaded and all others unloaded, or when alternate spans are loaded and the others unloaded.

The total load, i.e. self-weight plus imposed load, used in conjunction with the constants gives results on the safe side since the self-weight cannot be arranged in the manner stated above. It is sometimes worth while to separate the effects of dead and imposed loading, and for this purpose the two following tables derived from data in Report No. 10 are convenient. The ratio of adjoining span lengths must not exceed 1.20.

w = uniformly distributed dead load, in lb./ft. $w_1 = \text{uniformly distributed imposed load, in lb./ft.}$ W = concentrated dead load at each point named, in lb. $W_1 = \text{concentrated imposed load at the same points, in lb.}$

TABLE 97. TWO SPANS (End Supports Free)
Bending Moments in lb. ft.

	Each Span					
Nature and Position of Load	Positive n	ear Centre	Neg. at Internal Support			
	Dead Load	Imposed Load	Dead Load	Imposed Load		
Uniformly distributed	w l² 1 4·25	w ₁ / ²	w/2 8	w ₁ / ²		
Concentrated loads at middle points	WI 6·25	$\frac{W_1I}{5}$	WI 5·25	W₁/ 5·25		
Concentrated loads at third points	WI 4·5	W₁/ 3·5	$\frac{WI}{3}$	$\frac{W_1I}{3}$		
Concentrated loads at middle and quarter points	WI 3·75	W₁/ 2·75	<u>WI</u> 2	$\frac{W_1I}{2}$		

TABLE 98. THREE OR MORE SPANS (End Supports Free)
Bending Moments in lb. ft.

	Intermediate Spans			End Spans				
Nature and Position of Load		ve near ntre		tive at port		ve near intre		tive at
	Dead Load	Imposed Load	Dead Load	Imposed Load	Dead Load	Imposed Load	Dead Load	Imposed Load
Uniformly distributed	w/ ² 24	w ₁ l ²	$\frac{wl^2}{12}$	$\frac{w_1l^2}{12}$	w/2 12	$\frac{w_1l^2}{10}$	$\frac{wl^2}{10}$	$\frac{w_1l^2}{10}$
Concentrated loads at middle points	WI 7·5	W₁/ 5·25	WI 8·25	W₁/ 6·25	WI 5.75	W₁/ 4·75	WI 6·25	W₁/ 5·5
Concentrated loads at third points	WI 8·25	W₁/ 4·25	WI 4.75	W₁/ 3·5	WI 4	W₁/ 3·5	WI 3·5	W₁/ 3·25
Concentrated loads at middle and quarter points	WI 5·25	$\frac{W_1I}{3}$	WI 3·25	W₁/ 2·5	$\frac{WI}{3}$	$\frac{W_1I}{2.5}$	WI 2·5	$\frac{W_1l}{2\cdot 25}$

CONTINUOUS BEAMS OR SLABS WITH CANTILEVER ENDS

Uniformly distributed loads w lb./ft. Effective length of cantilever l_1 ft. Effective length of inner spans l ft.

TABLE 99. Bending Moments in lb. ft.

Ratio	N	Negative Moments					
<u>l</u> 1	At Support next to Cantilever	At next adjacent Support	At other internal Supports	Near middle of end Span*			
·225	$\frac{wl_1^2}{2}$	wl ² 10	w/2 12	wl² 10∙7			
.25	,,	wl² 10·2	,,	wl² 10⋅8			
-30	,,	wl² 10·6	,,	wl² ∏ .			
-35	,,	w1² 11·0	,,	wl ² 11·5			
· 4 0	,,	w/2 11·5	- ,,	w/² 12			
· 4 5	,,	w/ ² 12	,,	w/² 12·6			

^{*} This column is calculated in accordance with the provisions of Report No. 10 which allow the fixing moments at the ends of the span to be taken at one-half of the values tabulated in columns 2 and 3 above.

CONTINUOUS BEAMS

Bending moments, shear forces and deflections for various conditions of loading and arrangements of beams are also given in the steel manufacturers' handbooks.

Other cases of continuous beams may be worked out by Clapeyron's Theorem of Three Moments, applicable to any number of continuous spans and any loading. With the signs given in the three cases following the fixing moments are negative; this is the usual designer's convention although the opposite of that given in many text-books.

(i) Distributed loads:-

If w_1 and w_2 are the evenly distributed loads (lb./ft. run) on the spans of length l_1 and l_2 ft., the moments M_A , M_B and M_C at A, B and C respectively, in lb. ft., are given by

$$M_A I_1 + 2M_B (I_1 + I_2) + M_C I_2 = -\frac{1}{4} (w_1 I_1^3 + w_2 I_2^3)$$

This expression enables M_B to be found only if A and C are simple supports and the beam does not continue beyond them, so that $M_A = M_C = O$. When there are several spans l_1 l_2 l_3 etc. similar equations can be written for the pairs l_2 l_3 , l_3 l_4 and so on. Thus n equations are available for n+1 spans, i.e. n+2 supports, and the moments at the end supports must be found separately.

If one end overhangs, say at A, M_A can be found by calculation of the canti-

If the beam is built in at A so that its slope is zero,

$$2M_{A}+M_{B}=-\frac{w_{1}l_{1}^{2}}{4}.$$

If the end C is similarly built in

$$M_B + 2M_C = -\frac{w_2 l_2^2}{4}$$

and from these simultaneous equations all the fixing moments can be obtained.

(ii) Concentrated loads:-

$$M_{A}l_{1}+2M_{B}\left(l_{1}+l_{2}
ight)+M_{C}l_{2}=-rac{W_{1}a}{l_{1}}\left(l_{1}^{2}-a^{2}
ight)-rac{W_{2}b}{l_{2}}\left(l_{2}^{2}-b^{2}
ight)$$

If there are several loads on a span, a similar term involving either W_1 and a or W_2 and b is written down for each load on the right-hand side of the equation. If the beam is fixed at A or C additional equations are found by the method given in (iii).

(iii) Any loading:-

Draw the B.M. curves for the loading concerned, as for simply supported spans. If A_1 and A_2 are the areas under these curves and the centroids of the areas are distant a and b from the left and right-hand supports respectively,

$${
m M_A} l_1 + 2 {
m M_B} \; (l_1 + l_2) + {
m M_C} l_2 = - \; rac{6 {
m A_1} a}{l_1} - rac{6 {
m A_2} b}{l_2}$$

The areas A_1 and A_2 are positive for the B.M. signs shown in the figure. If the end A is fixed and horizontal,

$$2M_{A} + M_{B} = -\frac{6A_{1}(l_{1} - a)}{l_{1}^{2}}$$

If the end C is fixed and horizontal

$$M_{B} + 2M_{C} = -\frac{6A_{2}(l_{2} - b)}{l_{2}^{2}}$$

Shears and Reactions in Continuous Spans (equal spans and equal loads):—

Section	Shear
ı	$\frac{W}{2}$
2	3W
3	5W 8
4	-4W
5	-6W
6	·5W

PORTALS OR BENTS

The increasing employment of welding in steelwork is encouraging the replacement of braced frames by bents, which depend for their stability on the stiffness of the members and the rigidity of the connections between them.

A collection of the cases most commonly met is given in the following pages; it includes examples of rectangular frames such as are encountered in basements and deep culverts.

The moment of inertia of each member is constant along the length.

BENDING MOMENTS, THRUSTS AND REACTIONS IN PORTALS

Symbols:

Α = Area of free B.M. diagram of loaded member.

E.D. = Evenly distributed.

 $F_{AB} = Axial thrust in member AB, etc.$

= Horizontal thrust at feet.

= Moment of inertia of section of member.

,, ,, beam or rafter.

 $I_{
m c}=$,, ,, ,, ,, each column if columns equal $I_{
m c1}=$,, ,, ,, ,, L.H. ,, ,, ,, unequ

 $I_{c2} = ,, ,, ,R.H.$

= Stiffness coefficient of member = $\frac{I}{\text{Length}}$ $\begin{bmatrix} \text{Length in inches if } \\ I \text{ in in}^4 \end{bmatrix}$

 $K_b K_c K_{c1} K_{c2}$ correspond to $I_b I_c I_{c1} I_{c2}$

$$K_b = \frac{I_b}{l}$$
 for beams $= \frac{I_b}{s}$ for rafters For l , s and h see the figures concerned.

 l_1 , l_2 see page 124.

M = External moment applied to portal.

 $M_A M_B M_C M_D M_E =$ Bending moments induced at A B C D and E.

(Where only one value is given the moment is the same in both the members at the point considered. Where an external moment M is applied at the point, two values are given and they differ by M.)

N N₁ N₂ N₃ see below.

= Concentrated side load.

 $R_A R_B = Vertical reactions at A and B.$

W = Concentrated load or total distributed load.

= Distributed load per unit length.

= Free B.M. in loaded member, e.g. $\frac{wl^2}{8}$ for load w on length l.

$$I_{c_1}$$
 I_{c_2}

$$N = \frac{K_b}{K_{c1}} + 3 + \frac{K_b}{K_{c2}}$$

Feet Fixed :—
$$N_1 = \frac{K_b}{K_c} \left(\frac{K_b}{K_c} + 4 \right) + \frac{2K_b\phi}{K_c} (3 + 2\phi) + \phi^2$$
where $\phi = \frac{r}{h}$

$$\begin{split} N_2 &= \frac{I_b}{I} \! \left(\frac{2K_b}{K_c} + 3 \right) + \frac{K_b}{K_c} \! \left(\frac{K_b}{K_c} + 2 \right) \\ N_3 &= 1 + \frac{I_b}{I} + \frac{6K_b}{K_c} \end{split}$$

RECTANGULAR PORTALS—FEET HINGED

E.D. LOAD ON BEAM (i) Columns Equal

$$R_{A} = R_{B} = \frac{wl}{2} \quad H = \frac{wl^{2}}{4h} \cdot \frac{K_{c}}{2K_{b} + 3K_{c}}$$

$$M_{C} = M_{D} = -Hh$$

$$M_{1} = \mu + M_{c} = \frac{wl^{2}}{8} \cdot \frac{2K_{b} + K_{c}}{2K_{b} + 3K_{c}}$$
(ii) Columns Unequal
$$H = \frac{wl^{2}}{4hN} \qquad M_{1} = \mu + M_{c}$$

Other values as above

IRREGULAR DISTRIBUTED LOAD ON BEAM (i) Columns Equal $R_A = \frac{\text{Moment of load about } B}{l} = W - R_B$ $R_B = \frac{\text{Moment of load about } A}{l} = W - R_A$ $H = \frac{3}{lh} \cdot \frac{K_c}{2K_b + 3K_c} \cdot \begin{pmatrix} \text{Area of free B.M.} \\ \text{diagram} \end{pmatrix}$ $H = \frac{3}{lhN} \cdot (\text{Area of free B.M. diagram})$ Other values as above

E.D. SIDE LOAD

(i) Columns Equal

$$R_A = R_B = \frac{wh^2}{2l}$$

$$H = \frac{wh}{8} \cdot \frac{5K_b + 6K_c}{2K_b + 3K_c}$$

$$M_{C} = -Hh \quad M_{D} = \frac{wh^{2}}{2} - Hh = \frac{wh^{2}}{8} \cdot \frac{3K_{b} + 6K_{c}}{2K_{b} + 3K_{c}}$$

$$h' = h - \frac{H}{w} \quad M_{1} = \frac{(wh - H)^{2}}{2w}$$
(ii) Columns Unequal

(ii) Columns Unequal
$$H = \frac{wh}{8} \cdot \frac{5K_b + 6K_{c1}}{N \cdot K_{c1}} \quad M_D = \frac{wh^2}{2} - Hh$$

Other values as above

IRREGULAR DISTRIBUTED SIDE LOAD

$$H = \frac{Wa}{l} + \frac{3K_b}{2h^2(2K_b + 3K_b)}$$
.

$$M_C = -Hh$$
 $M_D = (Moment of load about A) - Hh$

(ii) Columns Unequal

$$H = \frac{1}{2hNK_{c1}} \left\{ (2K_b + 3K_{c1}) \text{ (Moment of load about A)} + \frac{6K_b}{h^2} \text{. (Moment of free B.M. diagram about A)} \right\}$$
Other values as above

CONCENTRATED LOAD ON BEAM

Columns Equal

$$R_{A} = \frac{Wb}{l}$$
 $R_{B} = \frac{Wa}{l}$

$$H = \frac{Wab}{lh} \cdot \frac{3K_c}{4K_b + 6K_c}$$

$$M_C = M_D = -Hh$$

$$R_{A} = \frac{1}{l} \qquad R_{B} = \frac{1}{l}$$

$$H = \frac{Wab}{lh} \cdot \frac{3K_{c}}{4K_{b} + 6K_{c}}$$

$$M_{C} = M_{D} = -Hh$$

$$M_{1} = \frac{Wab}{l} + M_{C} = \frac{Wab}{l} \cdot \frac{4K_{b} + 3K_{c}}{4K_{b} + 6K_{c}}$$

RECTANGULAR PORTALS—FEET HINGED—Continued.

SIDE LOAD AT BEAM (i) Columns Equal

$$R_A = R_B = \frac{Ph}{l}$$
 $H = \frac{P}{2}$

$$M_C = -\frac{Ph}{2}$$
 $M_D = \frac{Ph}{2}$

$$M_{C} = -\frac{Ph}{2}$$
 $M_{D} = \frac{Ph}{2}$
(ii) Columns Unequal
 $R_{B} = R_{B} = \frac{Ph}{l}$
 $H = \frac{P}{2N} \left(\frac{2K_{b}}{K_{c1}} + 3 \right)$
 $M_{C} = -Hh$
 $M_{D} = (P - H)h$

EXTERNAL MOMENT AT BEAM

(i) Columns Equal

$$R_{A} = R_{B} = \frac{M}{l}$$
 $H = \frac{3M}{2h} \cdot \frac{K_{c}}{2K_{b} + 3K_{c}}$

$$M_C = M_D = Hh$$

$$M_D' = M_D - M$$

(ii) Columns Unequal

$$H = \frac{3M}{2hN}$$
 Other values as above

EXTERNAL MOMENT AT HINGE

(i) Columns Equal

$$R_A = R_B = \frac{M}{l} \qquad H = \frac{3M}{2h} \cdot \frac{K_b + K_c}{2K_b + 3K_c}$$

$$M_C = -Hh$$

$$M_D = M - Hh$$

(ii) Columns Unequal

$$H = \frac{3M}{2hN} \cdot \left(\frac{K_b}{K_{c1}} + 1\right)$$

Other values as above

RECTANGULAR PORTALS—FEET FIXED

E.D. LOAD ON BEAM

$$R_{A} = R_{B} = \frac{wl}{2} \qquad H = \frac{wl^{2}}{4h} \cdot \frac{K_{c}}{K_{b} + 2K_{c}}$$

$$M_{A} = M_{B} = -\frac{M_{D}}{2} = \frac{Hh}{3} = \frac{wl^{2}}{12} \cdot \frac{K_{c}}{K_{b} + 2K_{c}}$$

$$M_{C} = M_{D} = -2M_{A} = -\frac{wl^{2}}{6} \cdot \frac{K_{c}}{K_{b} + 2K_{c}}$$

ANY SYMMETRICAL DISTRIBUTED LOAD ON BEAM

$$H = \frac{3}{lh} \cdot \frac{K_c}{K_b + 2K_c} \cdot \left(\begin{array}{c} \text{Area of free B.M.} \\ \text{diagram} \end{array} \right)$$

$$M_A = M_B = -\frac{M_D}{2} = \frac{Hh}{3} = \frac{K_c}{K_b + 2K_c} \cdot \left(\begin{array}{c} \text{Area of free B.M.} \\ \text{diagram} \end{array} \right)$$

$$M_C = M_D = -2M_A$$

E.D. SIDE LOAD

$$\begin{split} R_{A} &= R_{B} = wh^{2} \frac{K_{b}}{6K_{b} + K_{c}} \quad H = \frac{wh}{8} \cdot \frac{2K_{b} + 3K_{c}}{K_{b} + 2K_{c}} \\ M_{A} &= -\frac{wh^{2}}{4} \cdot \left(\frac{4K_{b} + K_{c}}{6K_{b} + K_{c}} + \frac{K_{b} + 3K_{c}}{6K_{b} + 12K_{c}}\right) \\ M_{B} &= M_{C} + Hh = \frac{wh^{2}}{4} \cdot \\ & \left(\frac{4K_{b} + K_{c}}{6K_{b} + K_{c}} - \frac{K_{b} + 3K_{c}}{6K_{b} + 12K_{c}}\right) \\ M_{C} &= M_{B} - Hh = -\frac{wh^{2}}{4} \cdot \\ & \left(\frac{2K_{b}}{6K_{b} + K_{c}} + \frac{K_{b}}{6K_{b} + 12K_{c}}\right) \\ M_{D} &= \frac{wh^{2}}{4} \left(\frac{2K_{b}}{6K_{b} + K_{c}} - \frac{K_{b}}{6K_{b} + 12K_{c}}\right) \end{split}$$

BUILDING AND STRUCTURAL TABLES

RECTANGULAR PORTALS—FEET FIXED—Continued.

CENTRAL CONCENTRATED LOAD ON BEAM

$$R_{A} = R_{B} = \frac{W}{2} \quad .H = \frac{3Wl}{8h} \cdot \frac{K_{c}}{K_{b} + 2K_{c}}$$

$$M_{A} = M_{B} = \frac{Hh}{3} = \frac{Wl}{8} \cdot \frac{K_{c}}{K_{b} + 2K_{c}}$$

$$M_{C} = M_{D} = -\frac{Wl}{4} \cdot \frac{K_{c}}{K_{b} + 2K_{c}}$$

$$M_{1} = M_{C} + \frac{Wl}{4} = \frac{Wl}{4} \cdot \frac{K_{b} + K_{c}}{K_{b} + 2K_{c}}$$

P C -

CONCENTRATED SIDE LOAD

$$R_{A} = R_{B} = \frac{Ph}{2l} \cdot \frac{6K_{b}}{6K_{b} + K_{c}} = \frac{2M_{D}}{l} \qquad H = \frac{P}{2}$$

$$M_{A} = -\frac{Ph}{2} \cdot \frac{3K_{b} + K_{c}}{6K_{b} + K_{c}} \qquad M_{B} = -M_{A}$$

$$M_{C} = M_{B} - \frac{Ph}{2} = -\frac{Ph}{2} \cdot \frac{3K_{b}}{6K_{b} + K_{c}} \qquad M_{D} = -M_{C}$$

PITCHED BENTS—FEET HINGED. EQUAL COLUMNS, EQUAL RAFTERS

W = Total load

A = Area of free B.M. diagram on loaded member

G = Centroid of free B.M. diagram

 $\phi = \frac{r}{h}$

IRREGULAR DISTRIBUTED VERTICAL LOAD

$$R_{A} = W - R_{B} \qquad R_{B} = \frac{W \cdot a}{l}$$

$$H = \frac{Wa(3 + 2\phi) + \frac{6Al_{2}}{(\frac{1}{2}l)^{2}} + \frac{6Al_{1}}{(\frac{1}{2}l)^{2}}(1 + \phi)}{4h(\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2})}$$

$$M_{C} = M_{E} = -Hh$$

$$M_{D} = \frac{Wa}{2} - Hh(1 + \phi)$$

E.D. VERTICAL LOAD

$$\mu = \text{Max. free B.M.} = \frac{w}{8} \left(\frac{l}{2}\right)^2 \text{ and A}$$

$$= \frac{2}{3} \cdot \frac{l}{2} \cdot \frac{w}{8} \left(\frac{l}{2}\right)^2 = \frac{wl^3}{96} \text{ for each rafter}$$

$$R_A = R_B = \frac{wl}{2}$$

$$H = \frac{wl^2}{32h} \cdot \frac{8 + 5\phi}{\frac{K_b}{K_c} + 3 + 3\phi + \phi^2}$$

$$- H \qquad M_C = M_E = -Hh$$

$$M_C = M_E = -Hh$$

$$M_D = \frac{wl^2}{8} - Hh(1 + \phi)$$

 $M_E = (W - H)h$

$R_A = R_B = \frac{\text{Moment of load about A}}{R_B}$ $=\frac{W(h+a)}{1}$ $Wh\left(\frac{2K_{b}}{K_{c}} + 6 + 3\phi\right) + Wa(3 + 2\phi) + \frac{6Al_{2}}{r^{2}} + \frac{6Al_{1}}{r^{2}}(1 + \phi) + \frac{4h\left(\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2}\right)}{4h\left(\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2}\right)}$ $M_{\rm D} = \frac{W(h+a)}{2} - Hh(1+\phi)$

IRREGULAR DISTRIBUTED HORIZONTAL LOAD

PITCHED BENTS—FEET HINGED. EQUAL COLUMNS, EQUAL RAFTERS—Continued.

See notes on p. 124.

E.D. HORIZONTAL LOAD

$$\mu = \text{Max. free B.M.} = \frac{wr^2}{8}$$

$$A = \frac{2}{3} \cdot r \cdot \frac{wr^2}{8} = \frac{wr^3}{12}$$

$$R_A = R_B = \frac{wr}{l} \left(h + \frac{r}{2} \right)$$

$$H = \frac{wr}{16} \cdot \frac{\frac{8K_b}{K_c} + 24 + 20\phi + 5\phi^2}{\frac{K_b}{K_c} + 3 + 3\phi + \phi^2}$$

$$M_C = -Hh$$

$$M_D = \frac{R_A \cdot l}{2} - Hh(1 + \phi)$$

$$M_E = (wr - H)h$$

IRREGULAR DISTRIBUTED HORIZONTAL LOAD

$$R_{A} = R_{B} = \frac{W \cdot a}{l} \qquad \phi = \frac{r}{h}$$

$$H = \frac{Wa\left(\frac{2K_{b}}{K_{c}} + 6 + 3\phi\right) + \frac{K_{b}}{K_{c}} \cdot \frac{6Al_{1}}{h^{2}}}{4h\left(\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2}\right)}$$

$$M_{C} = -Hh$$

$$M_{D} = \frac{Wa}{2} - Hh(1 + \phi)$$

$$M_{E} = Wa - Hh$$

E.D. HORIZONTAL LOAD

$$R_{A} = R_{B} = \frac{wh^{2}}{2l}$$

$$H = \frac{wh}{16} \cdot \frac{\frac{5K_{b}}{K_{c}} + 12 + 6\phi}{\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2}}$$

$$M_{C} = -Hh$$

$$M_{D} = \frac{wh^{2}}{4} - Hh(1 + \phi)$$

$$M_{E} = \frac{wh^{2}}{2} - Hh$$

$$R_A = R_B = \frac{Ph}{l}(1+\phi)$$

CONCENTRATED LOAD

$$H = \frac{r}{2}$$

$$H = \frac{P}{2}$$

$$M_{C} = -\frac{Ph}{2} \qquad M_{D} = 0$$

$$M_{E} = \frac{Ph}{2}$$

$$M_{E}=\frac{Ph}{2}$$

CONCENTRATED LOAD

$$R_{A} = R_{B} = \frac{Ph}{l}$$

$$H = \frac{P}{4} \cdot \frac{\frac{2K_{b}}{K_{c}} + 6 + 3\phi}{\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2}}$$

$$M_{C} = -Hh$$

$$M_c = -- Hh$$

$$M_D = \frac{Ph}{2} - Hh(1 + \phi)$$
 $M_E = (P - H)h$

PITCHED BENTS—FEET HINGED. EQUAL COLUMNS, EQUAL RAFTERS—Continued.

CONCENTRATED LOAD

$$R_{A} = R_{B} = \frac{W}{2}$$

$$H = \frac{Wl}{8h} \cdot \frac{3 + 2\phi}{\frac{K_{b}}{K_{c}} + 3 + 3\phi + \phi^{2}}$$

$$M_{C} = M_{E} = -Hh \quad M_{D} = \frac{Wl}{4} - Hh(1 + \phi)$$

EXTERNAL MOMENT

$$R_{A} = R_{B} = \frac{M}{l}$$

$$H = \frac{3M}{4h} \cdot \frac{2 + \phi}{K_{c} + 3 + 3\phi + \phi^{2}}$$

$$M_{C} = Hh \qquad M_{D} = -\frac{M}{2} + Hh(1 + \phi)$$

$$M_{E} = Hh \qquad M_{E} = -M + Hh$$

PITCHED BENTS—FEET FIXED. EQUAL COLUMNS, EQUAL RAFTERS

CONCENTRATED LOAD

$$R_{A} = R_{B} = \frac{W}{2} \qquad \phi = \frac{r}{h}$$

$$H = \frac{Wl}{4hN_{1}} \cdot \left(\frac{3K_{b}}{K_{c}} + \frac{4K_{b}\phi}{K_{c}} + \phi\right)$$

$$M_{A} = M_{B} = \frac{Wl}{4N_{1}} \left(\frac{K_{b}}{K_{c}} + \frac{2K_{b}\phi}{K_{c}} + \phi\right)$$

$$M_{C} = M_{E} = -Hh + M_{A}$$

$$M_{D} = \frac{Wl}{4} + M_{A} - Hh(1 + \phi)$$

CONCENTRATED LOAD

$$R_{A} = R_{B} = \frac{Ph}{l}(1 + \phi) + \frac{2M_{A}}{l}$$
 $H = \frac{P}{2}$
 $M_{E} = -M_{C} = \frac{Ph}{2} + M_{A}$
 $M_{A} = -\frac{Ph}{4} \cdot \frac{3K_{b} + 2K_{c}}{3K_{b} + K_{c}}$
 $M_{B} = -M_{A}$
 $M_{C} = -\frac{Ph}{2} + M_{B}$
 $M_{D} = 0$

CONCENTRATED LOAD

$$R_{A} = R_{B} = \frac{Ph}{l} - \frac{M_{E} - M_{A}}{l}$$

$$H = \frac{P}{2N_{1}} \cdot \frac{K_{b}}{K_{c}} \left(\frac{K_{b}}{K_{c}} + 4 + 3\phi\right)$$

$$M_{A} = \frac{Ph}{4} \left\{ -\frac{2\phi \left(\frac{K_{b}}{K_{c}} + \frac{2K_{b}\phi}{K_{c}} + \phi\right)}{N_{1}} + \frac{3K_{b} + 2K_{c}}{3K_{b} + K_{c}} \right\}$$

$$M_{C} = -Hh + M_{E}$$

$$M_{D} = \frac{Ph + M_{A} + M_{E}}{2} - Hh(1 + \phi)$$

$$M_{E} = (P - H)h + M_{A}$$

LOAD [[]]

E.D. LOAD

$$R_{A} = R_{B} = \frac{wl}{2}$$

$$H = \frac{wl^{2}}{8h} \cdot \frac{\frac{4K_{b}}{K_{c}} + \frac{5K_{b}\phi}{K_{c}} + \phi}{N_{1}}$$

$$M_{A} = M_{B} = \frac{wl^{2}}{48N_{1}} \left\{ \frac{K_{b}}{K_{c}} (8 + 15\phi) + \phi(6 - \phi) \right\}$$

$$M_{C} = M_{E} = -Hh + M_{A}$$

$$M_{D} = \frac{wl^{2}}{8} + M_{A} - Hh(1 + \phi)$$

BUILDING AND STRUCTURAL TABLES

PITCHED BENTS—FEET FIXED. EQUAL COLUMNS, EQUAL RAFTERS—Continued.

EXTERNAL MOMENT

$$R_{A} = R_{B} = \frac{3M.K_{b}}{l(3K_{b} + K_{c})} \quad H = \frac{3M}{hN_{1}} \cdot \frac{K_{b}}{K_{c}}(1 + \phi)$$

$$M_{A} = -\frac{M}{2N_{1}} \cdot \left(\frac{2K_{b}}{K_{c}} + \frac{3K_{b}\phi}{K_{c}} - \phi^{2}\right)$$

$$\pm \frac{M.K_{c}}{6K_{b} + 2K_{c}}$$

$$M_{C} = M_{B} + Hh$$

$$M_{D} = \frac{-M + M_{A} + M_{B}}{2} + Hh(1 + \phi)$$

$$M_{E} = Hh + M_{A} \qquad M'_{E} = -M + M_{E}$$

RECTANGULAR FRAMES. COLUMNS OF EQUAL K.

Typical free B.M. diagrams G = Centroid of diagram A = Area of diagram $F_{AB} = \text{Axial force in } AB$, etc. For N_2 and N_3 see page 120.

IRREGULAR DISTRIBUTED LOAD ON BEAM

$$\frac{M_{A}}{M_{D}} = -\frac{Wl \frac{I_{b}}{I} \left(\frac{2K_{b}}{K_{c}} + 3\right) - \frac{12A}{l} \cdot \frac{K_{b}}{K_{c}}}{12N_{2}} \mp \frac{W(b - a) \frac{I_{b}}{I} + \frac{60A}{l^{2}} (l_{2} - l_{1})}{20N_{3}}$$

$$\frac{M_{B}}{M_{C}} = -\frac{\frac{12A}{l} \left(\frac{3I_{b}}{I} + \frac{2K_{b}}{K_{c}}\right) - Wl \frac{I_{b}}{I} \cdot \frac{K_{b}}{K_{c}}}{12N_{2}} \mp \frac{W(b - a) \frac{I_{b}}{I} + \frac{60A}{l^{2}} (l_{2} - l_{1})}{20N_{3}}$$

$$F_{AD} = \frac{Wb}{l} + \frac{W(b - a) \frac{I_{b}}{I} + 60 \frac{A}{l^{2}} (l_{2} - l_{1})}{10lN_{3}}$$

$$F_{BC} = \frac{Wa}{l} - \frac{W(b - a) \frac{I_{b}}{I} + 60 \frac{A}{l^{2}} (l_{2} - l_{1})}{10lN_{3}}$$

$$F_{DC} = \pm \frac{M_{A} - M_{D}}{h} = \pm \frac{M_{B} - M_{C}}{h} = \pm \frac{l}{4hN_{2}} \cdot \left\{ \frac{12A}{l} \left(\frac{I_{b}}{I} + \frac{K_{b}}{K_{c}}\right) - Wl \cdot \frac{I_{b}}{K_{c}} \left(\frac{K_{b}}{K_{c}} + 1\right) \right\}$$

RECTANGULAR FRAMES. COLUMNS OF EQUAL K .- Continued.

SYMMETRICAL DISTRIBUTED LOAD ON BEAM

$$a = b W_1 = W_2 = \frac{W}{l} B.M. diagram as before, but symmetrical about vertical C.L.$$

$$M_A - M_D = M_B - M_C$$

$$M_A = M_B = -\frac{1}{12N_2} \cdot \left\{ W l \frac{I_b}{I} \left(\frac{2K_b}{K_c} + 3 \right) - \frac{12A}{l} \cdot \frac{K_b}{K_c} \right\}$$

$$M_C = M_D = -\frac{1}{12N_2} \cdot \left\{ \frac{12A}{l} \left(\frac{3I_b}{I} + \frac{2K_b}{K_c} \right) - W l \cdot \frac{I_b}{I} \cdot \frac{K_b}{K_c} \right\}$$

$$F_{AD} = F_{BC} = \frac{W}{2} F_{DC} = \frac{M_A - M_D}{h} F_{AB} = -\frac{M_A - M_D}{h} = -F_{DC}$$

Note.—The loads in most of these cases are assumed to be resisted by distributed loads, e.g. w_1 , w_2 such as would be caused by earth pressure; in some cases a concentrated reaction is shown.

E.D. LOAD ON BEAM

IRREGULAR DISTRIBUTED SIDE LOAD resisted at base

RECTANGULAR FRAMES, COLUMNS OF EQUAL K.—Continued. EQUAL IRREGULAR DISTRIBUTED SIDE LOADS

$$\mathbf{M_{A}} = \mathbf{M_{B}} = -\,\frac{\mathbf{K_{b}}}{3\,\mathbf{K_{c}N_{2}}}.\, \bigg\{ \frac{6\,A\,l_{2}}{h^{2}} \! \bigg(\frac{2\,\mathbf{K_{b}}}{\mathbf{K_{c}}} + \,3 \bigg) - \,\frac{6\,A\,l_{1}}{h^{2}}.\,\frac{\mathbf{K_{b}}}{\mathbf{K_{c}}} \bigg\}$$

$$\mathbf{M_C} = \mathbf{M_D} = -\frac{\mathbf{K_b}}{3\mathbf{K_cN_2}} \cdot \left\{ \frac{6\mathbf{A}l_1}{h^2} \left(\frac{3I_b}{I} + \frac{2\mathbf{K_b}}{\mathbf{K_c}} \right) - \frac{6\mathbf{A}l_2}{h^2} \cdot \frac{\mathbf{K_b}}{\mathbf{K_c}} \right\}$$

$$F_{AD} = F_{BC} = O$$
 $F_{DC} = \frac{Wa}{h} + \frac{M_A - M_D}{h}$ $F_{AB} = \frac{Wb}{h} + \frac{M_D - M_A}{h}$

CONCENTRATED VERTICAL LOAD

$$\begin{split} \frac{M_{A}}{M_{B}} & = \frac{WlI_{b}}{4I} \left\{ -\frac{2K_{b} + 3K_{c}}{3K_{c}N_{2}} \mp \frac{1}{5N_{3}} \right\} \\ \frac{M_{C}}{M_{D}} & = \frac{WlI_{b}}{4I} \left\{ \frac{K_{b}}{3K_{c}N_{2}} \pm \frac{1}{5N_{3}} \right\} \end{split}$$

For concentrated loads between C and D use the expressions for Irregular Distributed Load on Beam.

$$F_{AD} = \frac{WI_b}{10IN_3} \qquad F_{BC} = -F_{AD} = -\frac{WI_b}{10IN_3} \qquad \frac{F_{DC}}{F_{AB}} \mp \frac{WlI_b}{4hIN_2} \left(\frac{K_b}{K_c} + I\right)$$

BEAMS

CONCENTRATED SIDE LOAD

$$\begin{split} \frac{M_{\text{A}}}{M_{\text{B}}} &\mp \frac{Ph}{2N_3} \Big\{ \frac{3K_b}{K_c} + 1 - \frac{I_b}{5I} \Big\} \\ F_{\text{BC}} &= -\frac{2M_c}{l} \end{split} \qquad \begin{split} \frac{M_{\text{C}}}{M_{\text{D}}} &= \mp \frac{Ph}{2N_3} \Big\{ \frac{6I_b}{5I} + \frac{3K_b}{K_c} \Big\} \\ F_{\text{DC}} &= F_{\text{AB}} = \frac{P}{2} \end{split}$$

EXTERNAL MOMENT

WORKING STRESSES IN STRUCTURAL STEEL

For steel reinforcement stresses see page 88.

Note 1. In grillages, provided the beams are spaced not less than 3 in. apart, and have 4 in. of concrete cover all round except where they cross each other, all the stresses given in Table 100 may be increased as follows:—

		I S F	B.S. 449		
		I. Struct. E Report No. 8	Mild Steel to B.S.15	High Tensile Steel to B.S.548	
Single grillage		12½%	50%	331%	
Other grillages: top tier		25%	,,	,,	
other tiers	•	50%	,,	,,	

Note 2. The tensile and compressive fibre stresses in beams encased in good concrete, with 2 in. cover on each side and with the top flange at least 1½ in. below the top level of concrete, may be increased by one-eighth (Report No. 8). B.S. 449 allows an increase of one-sixteenth.

TABLE 100. Permissible Working Stresses, tons/sq. in.

	B.S. 449 and	Report No. 8
Structural Steel in Building	Mild Steel to B.S.15	High Tensile Steel to B.S. 548
(a) Parts in Tension Axial stresses on net area of section Extreme fibre stress in beams Shop rivets Field rivets Bolts \$\frac{3}{4}"\$ and over (8.S. 449) under \$\frac{3}{4}"\$ ", ", ".	8 8 5 4 5	12 12 7½ 6 7½
(b) Parts in Compression Axial stress in columns, special rules Extreme fibre stress in beams with adequate lateral support B.S. 449: Where the laterally unsupported length L is greater than 20 times the width b of compression flange Report No. 8: Rule based on radius of gyration and "effective length" specified in detail.	 8 *11·0-0·15 ^L 5	12

Table 100—Continued.

	B.S.449 and	Report No. 8
Structural Steel in Building	Mild Steel to B.S.15	High Tensile Steel to B.S. 548
(c) Parts in Shear On gross section of web. Report No. 8: When the distance L between flanges or web stiffeners exceeds for mild steel	5	7½
80 or for high tensile steel 60 times the thickness t of web	$9.44 - \frac{L}{18t}$	$11.5 - \frac{L}{15t}$
but never to exceed, on net area	6	9
B.S. 449 limits $\frac{L}{t}$ to 60		
Shop rivets and turned fitted bolts	6 5 4	9 7½ 6
(d) Parts in Bearing Shop rivets and turned fitted bolts Field rivets Black bolts Report No. 8 permits, for rivets or bolts in double shear, the bearing stress on the central thickness of metal to be taken at 2½ times the permissible stress in shear given under (c).	12 10 8	18 15 12

^{*} These values for the standard flange widths of beams and channels are given direct in Table III.

Permissible Working Stresses, tons/sq. in.

Structural Steel in Girder Bridges	B.S. 153
Tension members (on nett section)	9
and I beams:— Outside edges adequately stiffened	$9\left(1-\frac{.0075\frac{l}{b}}{.}\right)$
,, ,, unstiffened	$9\left(1-01\frac{t}{b}\right)$
Compression members (radius of gyration k , unbraced length l) in truss and lattice girders:—	, ,,,
With riveted connections	$9 \left(10038 \frac{\iota}{k}\right)^{T}$
With riveted connections	$9\left(10054\frac{l}{k}\right)^{\dagger}$
(† Not to exceed 7-65 tons/sq. in.)	
<u>_</u>	1

Permissible tensile stress in wrought iron is 75%, and compressive stress 85%, of values for structural steel.

STRENGTH OF BUTT WELDS

TABLE 101

	Thickness of	Safe Load pe	e Load per inch, tons.		
Section	Plates	Tension	Shear		
	₫″	1.00	-62		
na .	3″ 16″	1∙50	-94		
9.5-10°	‡ ″	2.00	I·25		
	<u>5</u> ″	2.50	1.56		
,6ď-10a*	3" 8	3.00	I ·87		
(a) 1/100-	1/2"	4.00	2.50		
£17	₹″	5.00	3.12		
•	₹″	6.00	3.75		

STRENGTH OF FILLET WELDS

TABLE 102. In accordance with B.S. 538—Metal Arc Welding in Mild Steel

6. (5.11)	Safe Load per inch, tons			
Size of Fillet	End Fillets	Side Fillets		
" " " " " " " " " " " " " " " " " " "	.61 .92 1.23 1.53 1.84 2.45 3.06 3.68 4.29 4.90	.44 .66 .87 1.09 1.31 1.75 2.19 2.63 3.06 3.50		
Stress tons per sq. in.	7	5		

Values for butt and fillet welds usually permitted by L.C.C.:—

			tons/sq. in.
Butt welds:	Tension or compression	•	. 8
	Shearing in webs of plate girders and joists		. 6
	,, other than the above		. 5

Fillet welds:	End fillets .		•		•	6
	Side, diagons	al and T	fillets			5

DIMENSIONS OF BRITISH STANDARD BEAMS B.S. 4—Channels and Beams for Structural Purposes

When a size is rolled in two weights designers must specify size and weight.

TABLE 103. (For section moduli, see Table 112)

Size	Weight	Thicl	cness	Dist	ance	Area	Size
in.	lb./fc.	Web t ₁	Flange t _s	Clear of Root Fillets r, in.	Centres of Holes C in.	sq. in.	in.
3 × 1½ 3 × 3 4 × 1¾ 4 × 3 4¾ × 1¾	4 8½ 5 10 6½	·16 ·20 ·17 ·24 ·18	·25 ·33 ·24 ·35 ·32	2·0 1·5 2·9 2·5 3·5	34-1278-1278	1·18 2·52 1·47 2·96 1·91	$3 \times 1\frac{1}{2}$ 3×3 $4 \times 1\frac{3}{4}$ 4×3 $4\frac{3}{4} \times 1\frac{3}{4}$
5 × 3 5 × 4½ 6 × 3 6 × 4½ 6 × 5	11 20 12 20 25	·22 ·29 ·23 ·37 ·41	-38 -51 -38 -43 -52	3·4 2·8 4·4 4·0 3·7	1 1/2 2 1/2 2 1/2 2 1/2 2 2/3 2 3/4	3·26 5·88 3·53 5·89 7·37	5 × 3 5 × 4½ 6 × 3 6 × 4½ 6 × 5
7 × 4 8 × 4 8 × 5 8 × 6 9 × 4	16 18 28 35 21	·25 ·28 ·35 ·35 ·30	-39 -40 -57 -65 -46	5·2 6·2 5·6 5·2 7·0	2 4 2 4 2 3 3 4 2 4 2 4	4·75 5·30 8·28 10·30 6·18	7 × 4 8 × 4 8 × 5 8 × 6 9 × 4
9 × 7 10 × 4½ 10 × 5 10 × 6 10 × 8	50 25 30 40 55	·40 ·30 ·36 ·36 ·40	·82 ·50 ·55 ·71 ·78	5·7 7·8 7·6 7·1 6·5	4 2½ 2¾ 3½ 4¾ 4¾	14·71 7·35 8·85 11·77 16·18	$\begin{array}{c} 9 \times 7 \\ 10 \times 4\frac{1}{2} \\ 10 \times 5 \\ 10 \times 6 \\ 10 \times 8 \end{array}$
12 × 5 12 × 6 L 12 × 6 H 12 × 8 13 × 5	32 44 54 65 35	·35 ·40 ·50 ·43 ·35	·55 ·72 ·88 ·90 ·60	9·7 9·1 8·8 8·3 10·5	23 31 31 43 43 23	9·45 13·00 15·89 19·12 10·30	12 × 5 12 × 6 L 12 × 6 H 12 × 8 13 × 5
14 × 6 L 14 × 6 H 14 × 8 15 × 5 15 × 6	46 57 70 42 45	-40 -50 -46 -42 -38	·70 ·87 ·92 ·65 ·65	11·2 10·8 10·3 12·5 12·2	3½ 3½ 4¾ 2¾ 3½	13·59 16·78 20·59 12·36 13·24	14 × 6 L 14 × 6 H 14 × 8 15 × 5 15 × 6

Table 103—Continued.

Size	Weight	Thic	kness	Dist	ance	Area	Size	
in.	lb./fc.	Web t ₁ in.	Flange t _s	Clear of Root Fillets r, in.	Centres of Holes, C, in.	sq. in.	in.	
16 × 6 L 16 × 6 H 16 × 8 18 × 6 18 × 7	50 62 75 55 75	.40 .55 .48 .42 .55	.73 .85 .94 .76	13·1 12·8 12·3 15·0 14·5	3½ 3½ 4¾ 3½ 4	14·71 18·21 22·06 16·18 22·09	16 × 6 L 16 × 6 H 16 × 8 18 × 6 18 × 7	
$\begin{array}{c} 18 \times 8 \\ 20 \times 6\frac{1}{2} \\ 20 \times 7\frac{1}{2} \\ 22 \times 7 \\ 24 \times 7\frac{1}{2} \end{array}$	80 65 89 75 95	·50 ·45 ·60 ·50 ·57	.95 .82 I.01 .83	14·2 16·8 16·2 18·7 20·2	43 34 4 <u>1</u> 4 4 <u>1</u>	23·53 19·12 26·19 22·06 27·94	$\begin{array}{ c c c }\hline 18 \times 8 \\ 20 \times 6\frac{1}{2} \\ 20 \times 7\frac{1}{2} \\ 22 \times 7 \\ 24 \times 7\frac{1}{2} \\ \end{array}$	

MAXIMUM SIZE OF RIVET OR BOLT IN FLANGES OF B.S.B. AND T SECTIONS

TABLE 104

Width of	Max. Size of	Width of	Max. Size of
Flange	Rivet or Bolt	Flange	Rivet or Bolt
in.	in.	in.	In.
1 ½ 1 ½ 2 ½ 2 ½ 3 3 ½ 4	14 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	4½ 5 5 5½ 6 6½ 7 7½ 8	3 4

For drilling centres of T sections see B.S.B.s of same flange width, in Table 103.

For weights and section modulus of T sections, see Table 108.

DIMENSIONS OF BRITISH STANDARD CHANNELS

B.S. 4—Channels and Beams for Structural Purposes

Each of the sections given below can also be rolled with a thicker web; for particulars see B.S. 4. Designers should confirm that the sections chosen are readily obtainable, and should specify size and weight.

For dimension C and maximum rivet size see Table 110.

TABLE 105. For section moduli see Table 113.

)M. 1-h.	Thick	ness	Distance Clear of	
Size	Weight	Web t ₁	Flange t _a	Root Fillets r	Area
in.	lb./ft.	in.	in.	in,	sq. in.
$ \begin{array}{c} 3 \times 1\frac{1}{2} \\ 4 \times 2 \\ 5 \times 2\frac{1}{2} \\ 6 \times 3 \end{array} $	4·60	·20	·28	1·8	1·35
	7·09	·24	·31	2·5	2·09
	10·22	·25	·38	3·3	3·01
	12·41	·25	·38	4·1	3·65
6×3	16.51	-38	·48	3.9	4.86
$\begin{array}{c} 6 \times 3\frac{1}{2} \\ 7 \times 3 \\ 7 \times 3\frac{1}{2} \\ 8 \times 3 \\ 8 \times 3\frac{1}{2} \end{array}$	16·48	·28	.48	3·75	4·85
	14·22	·26	.42	5·0	4·18
	18·28	·30	.50	4·8	5·38
	15·96	·28	.44	6·0	4·69
	20·21	·32	.52	5·7	5·94
$\begin{array}{c} 9 \times 3 \\ 9 \times 3\frac{1}{2} \\ 10 \times 3 \\ 10 \times 3\frac{1}{2} \\ 11 \times 3\frac{1}{2} \end{array}$	17·46	30	.44	7·0	5·14
	22·27	•34	.54	6·6	6·55
	19·28	•32	.45	8·0	5·67
	24·46	•36	.56	7·6	7·19
	26·78	•38	.58	8·6	7·88
12 × 3½	26·37	·38	·50	9·7	7·76
12 × 4	31·33	·40	·60	9·3	9·21
13 × 4	33·18	·40	·62	10·3	9·76
15 × 4	36·37	·41	·62	12·3	10·70
17 × 4	44·34	·48	·68	14·2	13·04

SIZES AND WEIGHTS OF EQUAL ANGLES

B.S. 4a—Equal Angles, Unequal Angles and Tee Bars for Structural Purposes **TABLE 106**

Size, In.	Lb./ft.	Section Modulus	Size, in.	Lb./ft.	Section Modulus
1 × 1 × 1/8 3 16	.80 1.15	.028 .040	$\begin{array}{c} 3\frac{1}{2} \times 3\frac{1}{2} \times \frac{5}{16} \\ \frac{3}{16} \end{array}$	7·11 8·45 11·05	.94 1·12 1·46
1	l·01 l·47 l·91	·045 ·070 ·086	4 × 4 × 5/6	8·17 9·73	I · 24 I · 48
$\begin{array}{c c} \mathbf{l}\frac{1}{2} \times \mathbf{l}\frac{1}{2} \times \frac{3}{16} \\ \vdots \\ \frac{5}{16} \end{array}$	1.79 2.34 2.85	·100 ·128 ·16	12 55 8	12·75 15·68	1.93 2.36
$\begin{array}{ c c }\hline & 1\frac{3}{4} \times 1\frac{3}{4} \times \frac{3}{16} \\ & \frac{1}{4} \\ & \frac{5}{16} \end{array}$	2·11 2·76 3·39	·137 ·180 ·219	4½ × 4½ × 5 16 12 12 15 16	9·24 11·00 14·45 17·80	1·89 2·47 3·03
$\begin{array}{ c c } 2 \times 2 \times \frac{3}{16} \\ & \frac{1}{4} \\ & \frac{5}{16} \\ & \frac{3}{8} \end{array}$	2·43 3·19 3·92 4·62	·180 ·236 ·290 ·34	5 × 5 × 38	12·28 16·16 19·93 23·59	2·35 3·08 3·78 4·46
$\begin{bmatrix} 2\frac{1}{4} \times 2\frac{1}{4} \times \frac{3}{16} \\ \frac{1}{4} \\ \frac{5}{16} \end{bmatrix}$	2·75 3·61 4·45 5·26	·231 ·304 ·374 ·441	6 × 6 × 3	14·82 19·55 24·17 28·69	3·40 4·49 5·54 6·54
$\begin{array}{ c c c c c c }\hline 2\frac{1}{2}\times2\frac{1}{2}\times\frac{1}{4} \\ & \frac{1}{16} \\ & \frac{1}{8} \\ \hline \end{array}$	4·04 4·98 5·90	·377 ·470 ·549	7 × 7 × ½	22·95 28·42 33·79	6·17 7·63 9·04
3 × 3 × ¼ 5 1 6 3 8 ½	4·89 6·04 7·17 9·35	·555 ·680 ·812 I·05	8 × 8 × 5 5 6 7 7 8	32·68 38·89 45·00	10·05 11·94 13·77

For drilling centres and maximum rivet size see Table 110.

SIZES AND WEIGHTS OF UNEQUAL ANGLES

B.S. 4a—Equal Angles, Unequal Angles and Tee Bars for Structural Purposes

TABLE 107. The section modulus is about an axis parallel to the short leg.

Size, in.	Lb./ft.	Section Modulus	Size, in.	Lb./ft.	Section Modulus
$\begin{array}{ c c c c c c }\hline 2\times 1\frac{1}{2}\times \frac{3}{16} \\ \hline 4 \end{array}$	2·11 2·76	·175 ·229	5 × 3 × 5 16 3 8 4	8·17 9·73 12·75	1·84 2·18 2·86
$2\frac{1}{2} \times 1\frac{1}{2} imes \frac{3}{16}$	2·43 3·19	·270 ·350	1. 8	15-67	3.50
$\begin{array}{c} 2\frac{1}{2} \times 2 \times \frac{3}{16} \\ \frac{1}{4} \\ \frac{5}{16} \end{array}$	2·75 3·61 4·45	·280 ·368 ·453	$\begin{array}{c} 5 \times 3\frac{1}{2} \times \frac{5}{16} \\ \frac{3}{8} \\ \frac{1}{2} \end{array}$	8·71 10·37 13·61	1·88 2·24 2·93
$3\times2\times\frac{1}{4}$ $\frac{5}{16}$	4·04 4·98 5·90	·522 ·650 ·761	5 × 4 × 3 5 5 5 8	11·00 14·45 17·80	2·28 2·99 3·66
$\begin{array}{c} 3\times 2\frac{1}{2}\times \frac{1}{4}\\ \frac{5}{16}\\ \frac{3}{6} \end{array}$	4·47 5·51 6·54	·541 ·670 ·790	6 × 3 × 5 16 3 8	9·24 11·00 14·45	2·59 3·09 4·05
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4·89 6·04 7·17	·743 ·900 I·07	\$ 18	17-80	4-97
$\begin{array}{c} 3\frac{1}{2}\times3\times\frac{1}{4}\\ \frac{1}{3}6\\ \frac{1}{2} \end{array}$	5·32 6·58 7·81 10·20	·745 ·920 I·10 I·42	6 × 3½ × 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9·76 11·63 15·30 18·86	2·65 3·17 4·16 5·11
$\begin{array}{ c c c c c }\hline 4\times2\frac{1}{2}\times\frac{1}{4}\\ &\frac{5}{16}\\ &\frac{3}{8}\\ \end{array}$	5·32 6·58 7·81	.939 1.17 1.38	6 × 4 × 3 1 2 2 5 8	12·28 16·16 19·93	3·23 4·24 5·22
$4 \times 3 \times \frac{5}{16}$	7·11 8·45 11·05	1·20 1·42 1·85	$7 \times 3\frac{1}{2} \times \frac{3}{6}$	12·91 17·00 20·99	4·23 5·58 6·87
4 × 3½ × 56 16 16 18	7·64 9·09 11·91 14·61	1·22 1·45 1·89 2·31	8 × 4 × ½ 5 8	19·55 24·17	7·34 9·06

For drilling centres and maximum rivet size see Table 110.

SIZES AND WEIGHTS OF T BARS

B.S. 4a—Equal Angles, Unequal Angles and Tee Bars for Structural Purposes

TABLE 108. (See also Table 104)

Size, in.	Lb./ft.	Section Modulus	Size, in.	Lb./ft.	Section Modulus
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2·36 3·21 4·07 5·92 7·20 8·49 11·09 9·77 12·79 9·79	130 237 375 548 801 833 1 08 1 45 1 90 854	5 × 4 × 3 6 1 4 6 × 3 × 3 6 1 4 6 × 4 × 4 5 6 6 × 6 × 6 × 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 6 8 6 6 6 8 6 6 6 6 6 6 6 8 6	11·06 14·50 11·08 14·52 16·22 19·99 19·62 24·23	1 · 49 1 · 96 •871 1 · 14 2 · 00 2 · 46 4 · 36 5 · 40

The first dimension is the head or table of the Tee and the second dimension is the stalk; the thickness applies to both.

The Section Modulus is about an axis parallel to the head of the Tee.

DEFLECTION COEFFICIENTS

for steel beams and channels carrying the full tabular loads

Mid-span deflection in inches = cL^2 where L is the span in feet.

Example: a beam 12 in. deep, e.g. 12 in. \times 5 in. or 12 in. \times 6 in. B.S.B. or 12 in. \times 3½ in. or 12 in. \times 4 in. B.S.C., on 14 ft. span fully loaded, will deflect 0.00154 \times 14² = .301 in.

TABLE 109

3 ·00615 12 ·00154 4 ·00461 13 ·00142 43 ·00389 14 ·00132 5 ·00369 15 ·00123 6 ·00308 16 ·00115	Depth of Section, in.	Deflection Coeff. c.	Depth of Section, in.	Deflection Coeff. c.
7 00264 17 00109 8 00231 18 00103 9 00205 20 000923 10 00185 22 000839	5 6 7 8 9	.00461 .00389 .00369 .00308 .00264 .00231 .00205 .00185	13 14 15 16 17 18 20 22	-00142 -00132 -00123 -00115 -00109

TABLE 110. STANDARD BACKMARKS (Drilling Centres)

For beams see Table 103; the values also apply to T sections. For channels the values below for the appropriate leg length apply.

Leg in.	C In.	Max. Size of Rivet or Bolt in.	Leg in.	C in.	Max, Size of Rivet or Bolt In.	Leg in.
1 \\ \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \\ \frac{2}{4} \\ \frac{2}{4} \\ \frac{1}{2} \\ \	7478 - 18-1478	78- N ; pianj4 ;	3 3½ 4 4½ 5 6	13/4 2 21/4 21/2 3 3	7 8 .,	5 6 7 8 9

Leg	A	
in.	in.	
5 6 7 8 9	2 2 2 3 3 3 3	134 24 3 3 4 5

RIVET SPACING IN GIRDERS

		Diam.	of Rivets	
Spacing (centres of rivets)	3"	3"	2"	1"
Minimum pitch on line Maximum pitch on line: Two lines staggered ² Minimum distance to sheared edge to rolled or planed edge	1	2¼" 8" 12" 1¼" 1¼"	25" 8" 12" 11" 11"	3" 8" 12" 13"

¹ Must not exceed in tension members 16 times, or in compression members 12 times, the thickness of the thinnest outside plate or angle.

² If in angles, must not exceed in tension members 32 times, or in compression members 18 times, the thickness of the thinnest outside angle. If in plates, see 1.

LATERALLY UNSUPPORTED STEEL BEAMS

B.S. 449 and L.C.C. by-laws stipulate that when the laterally unsupported length L inches of a steel beam exceeds 20 times the breadth b inches of compression flange, the fibre stress shall not exceed $11 - .15 \frac{L}{b}$ tons/sq. in., i.e. 8 tons /sq. in. when $\frac{L}{b} = 20$; further, the ratio $\frac{L}{b}$ shall not exceed 50.

TABLE III.

Proportion of Tabular

Width of								LATE	RALLY	UNSUP	PORTED
Flange in.	3	4	5	6	7	8	9	10	11	12	14
1½ 1¾ 2 2½ 3	·925	-775 -861 -925	·625 ·732 ·813 ·925	·475 ·605 ·700 ·835 ·925	-475 -587 -745 -850	·475 ·654 ·775	·565 ·700	·475 ·625	·550	-475	
3½ 4 4½ 5	NO			.990	·925 ·981	·861 ·925 ·974	·797 ·869 ·925 ·970	·731 ·812 ·875 ·925 ·966	·667 ·756 ·826 ·880 ·925	·603 ·700 ·775 ·835 ·884	·475 ·587 ·674 ·745 ·802
5½ 6 7 7½ 8 10		DUCTIO					·		.962	·925 ·898	·850 ·925 ·955 ·981
!! !2											

The Tables 112 to 114 are for laterally supported beams working on the full fibre stress of 8 tons/sq. in., and the table below gives the proportion of tabular loads permitted when a beam is not laterally supported, or when the distance between effective lateral supports, e.g. secondary beams, exceeds 20 times the compression flange width.

For beams solidly encased in concrete, B.S. 449 permits b to be taken as the width of the steel flange plus the least concrete cover on one side only and not exceeding 4 in. in thickness.

Loads Permitted

SAFE LOADS ON BRITISH STANDARD BEAMS

- I. The next three tables give the total load which may be uniformly distributed along a simply supported beam. If concentrated or non-uniform loads occur the BM. must be worked out and a section chosen so that 8z (reduced if necessary according to Table III) is not less than the BM. in inchtons.
- 2. The load shown at the left-hand end of each line is the maximum load which may be distributed on the corresponding beam; no increase of load on shorter spans is permissible unless the web is stiffened.
 - 3. The self-weight of beams has not been deducted.

TABLE 112.

Safe Uniformly Distributed

Size of Joist	Weight	Section Modulus							EF	FECTIVE	SPANS
in.	lb. per ft.	Z	3	4	5	6	7	8	9	10	11
3×1½ 4×1¾ 3×3	4 5 8½	I·II I·83 2·54	1.9 3.2 4.3	1·4 2·4 3·3	· · 9 2·7	.98 .6 2.2	1·3 1·9 1·6	I·2			
4 ³ ×1 ³ 4×3	10	2·83 3·89	5·0 6·9	3·7 5·1	3·0 4·1	2·5 3·4	2·1 2·9	I∙8 2·6	1·6 2·3 2·0		
5×3	н	5.47	8.4	7.2	5⋅8	4.8	4-1	3.6	3.2	2.9	2·6 2·4
6×3 5×4½	12 20	7·00 10·01	10.7	9.3	7·4 10·5	6·2 8·8	5·3 7·6	4·6 6·6	4·1 5·9	3·7 5·3	3·3 4·8 4·4
7×4	16	11.29		13-5	12.0	10.0	8.6	7.5	6.6	6.0	5.4
6×41	20	11.57	17.7	15.4	12.3	10.2	8.8	7.7	6⋅8	6-1	5∙6
8×4 6×5	18 25	13·91 14·56		17·4 19·0	14·8 15·5	12·3 12·9	10·5 11·0	9·2 9·7	8·2 8·6	7·4 7·7	6·7 7·0
9×4 8×5	21 28	18·03 22·42		20.8	19·2 21·6	16·0 19·9	13·7 17·0	12·0 14·9	10·6 13·2	9.6 11.9	8·7 10·8
10×4½ 8×6	25 35	24·47 28·76			22.6	21.7	18·6 21·0	16·3 19·1	14·4 17·0	13·0 15·3	11·8 13·9
10×5	30	29.25			27.9	26.0	22.2	19.5	17-3	15.6	14-1

Arranged in ascending order of section modulus. The values are taken by permission from Messrs. Redpath Brown & Co. Ltd.'s Steel Handbook.

(B.S.B.) (1932 Revision) 8 tons/sq. in.

- 4. Loads to the right of the thick lines must be multiplied by the appropriate factor in Table III if the beam is not laterally supported by crossbeams, floor slab or otherwise.
- 5. Where two loads are tabulated at the right hand end of the line, the higher figure is the maximum safe load and the lower figure is the load which will produce a deflection of $\frac{1}{325}$ th of the span. Under L.C.C. by-laws and B.S. 449 the span of a steel beam shall not exceed 24 times its depth unless the deflection is less than $\frac{1}{325}$ th of the span.
 - 6. For beams continuous over a support see notes on p. 117.

Loads in Tons

12	14	16	18	20	22	24	26	28	30	32	36	40
2·4 2·0 3·1 4·4 3·7 5·0 5·1 6·1 6·4	4·3 4·4 3·7 5·2 5·5 4·7	3·8 3·2 3·9 2·8 4·6 4·9						I	-			
8·0 9·9	4·7 6·8 8·5	3·6 6·0 7·4	6.6									
10·8 12·7	9.3	8·1 9·5	6·6 5·9 7·2 8·5 7·5 8·6				,					
13.0	11.1	9.7	7·5 8·6	7.8								

Continued overleaf.

General dimensions of these sections are given in Table 103.

British Standard Beams-Continued.

TABLE 112.—Continued.

See notes on previous page.

Safe Uniformly Distributed

Size of	Weight	Section							EF	FECTIVE	SPANS
in.	lb. per ft,	Modulus z	3	4	5	6	7	8	9	10	11
12×5 10×6	32 40	36·84 40·96				31.7	28.0	24·4 26·9	21·8 2 4 ·2	19·6 21·8	17·8 19·8
13×5 9×7	35 50	43·62 46·25				33.5	33.2	29.0	25·8 26·3	23·2 24·6	21·0 22·4
ľŽ×6L	44	52.79					36.3	35∙0	31.2	28-1	25.4
15×5 10×8	42 55	57·13 57·74				47.4	43-4	38.0	33.8	30·4 29·6	27·6 27·9
12×6H	54	62-63					46·I	41.6	37.0	33-4	30-2
I4×6L	46	63.22			ŀ			41.7	37.4	33.7	30-6
15×6	45	65.59						41.3	38.8	34.9	31-8
14×6H	57	76-19					53.8	50-6	45.0	40.6	36-8
16×6L	50	77.26						46-1	45.6	41.2	37-4
12×8	65	81.30									38-0
16×6H	62	90.63					68-4	60.4	53.6	48.3	43.8
18×6	55	93.53							53.5	49.8	45.2
14×8	70	100.8									47.8
16×8	75	121.7									59.0
20×61 18×7	65 75	122·6 127·9							75.0	62·9 68·2	59·4 62·0
18×8	80	143-6									69.6
22×7 20×7½ 24×7½	75 89 95	152·4 167·3 211·1							90.7	77·5 89·2	73·8 81·0 97·6

8 tons/sq. in.

Loads in Tons

12	14	16	18	20	22	24	26	28	30	32	36	
16.3	14.0	12.2	10.9	9.8								
18-2	15.6	13.6	12.1	10.9	9.9 9.0							
19.3	16.6	14.5	12.9	11.6		-						l
20.5	17-6	15.4	13.7	12·3								
23.4	20.1	17.5	15.6	14.0	12.7	11.7	10.8	10.0				
25.3	21.7	19.0	16.9	15.2	13.8	12.6	9.9 -7	8·6 10·8	10-1			
25.6 l	21.9	19.2	17-1	15.3	14.0					1		ı
		,			12.7							
27.8	23.8	20.8	18.5	16.7	15-1	13.9	12·8 11·8	11·9 10·2				
28.0	24.0	21.0	18.7	16.8	15.3	14.0	12.9	12.0	11.2	10·5 9·2		
29·1	24.9	21.8	19-4	17:4	15.9	14.5	13-4	12.4	10·4 11·6	10.9	9.7	
33.8	29.0	25.3	22.5	20.3	18-4	16.9	15-6	14.5	13.5	10·2 12·7	8.0	
34-3	29· 4	25.7	22.8	20-6	18.7	17 ⋅1	15.8	14.7	12·6 13·7	11·1 12·8	11-4 10-1	
36-1	30.9	27.0	24.0	21.6	19.7	18.0	16.7	15.5			10.1	
40-2	34.5	30-2	26.8	24-1	21.9	20∙1	15·3 18·5	13·2 17·2	16-1	15-1	13.5	
41.5	35.6	31-1	27.7	24.9	22.6	20.7	19-1	17-8	16.6	15.5	11.9	
44.7	38.3	33.5	29.8	26.8	24.4	22.3	20-6	19-1	17.9	16.8		
54-1	46.3	40.5	36.0	32.4	29.5	27.0	24.9	23⋅1	16·7 21·6	14·7 20·2	18.0	
54.4	1 46.7	40.8	36.3	32.6	29.7	27.2	25.1	23.3	21.7	20.4	16·0 18·1	
56.8	48.7	42.6	37.8	34.1	31.0	28.4	26.2	24.3	22.7	21.3	18.9	
63.8	54.6	47.8	42.5	38-2	34.8	31.9	29.4	27.3	25.5	23.9	21.2	
67.7	I 58⋅0	50.8	45-1	40.6	36.9	33.8	31.2	29.0	27.0	25.4	22.5	١
74·3 93·8	63.7	55.7	49.5	44.6	40.5	37.1	34.3	31.8	29.7	27.8	24.7	

SAFE LOADS ON BRITISH STANDARD

See notes I to 4 on page 148.

TABLE 113. Safe Distributed

C.	Weight	Section Modulus							E	FFECTIVI	SPANS
Size, in.	b./ft.	Z	3	4	5	6	7	8	9	10	11
3×1½ 4×2 5×2½ 6×3 6×3	4·60 7·09 10·22 12·41 16·51	1·22 2·53 4·75 7·09 8·76	1 2·1 4·4 8·4	1.6 1 3.3 6.3 9.4 11.6	1·3 2·6 5·0 7·5 9·3	1·0 2·2 4·2 6·3 7·7	.79 1.9 3.6 5.4 6.6	·61 1·6 3·1 4·7 5·8	1·3 2·8 4·2 5·1	1·0 2·5 3·7 4·6	2·0 3·4 4·2
7×3 6×3½ 8×3 7×3½ 9×3	14·22 16·48 15·96 18·28 17·46	9·36 9·63 11·68 12·24 13·89		12·4 15·5	9.9 10·2 12·4 13·0	8·3 8·5 10·3 10·8	7·I 7·3 8·8 9·3	6·2 6·4 7·7 8·1	5·5 5·7 6·9 7·2 8·2	4·9 5·1 6·2 6·5 7·4	4·5 4·6 5·6 5·9 6·7
$\begin{array}{c c} 8 \times 3\frac{1}{2} \\ 10 \times 3 \\ 9 \times 3\frac{1}{2} \\ 10 \times 3\frac{1}{2} \\ 11 \times 3\frac{1}{2} \end{array}$	20-21 19-28 22-27 24-46 26-78	15·14 16·53 18·36 21·90 25·80			16-1	13-4	11.5	10.0	8.9 9.6 10.8 12.8 15.2	8.0 8.8 9.7 11.6 13.7	7·3 8·0 8·9 10·6 12·4
12×3½ 12×4 13×4 15×4 17×4	26·37 31·33 33·18 36·37 44·34	26·62 33·35 37·98 46·55 61·20							15·6 19·6 22·4 27·4 36·2	14·1 17·7 20·2 24·8 32·6	12·8 16·0 18·4 22·4 29·6

^{*} Each of the sections tabulated above is also rolled in a heavier weight by raising the rolls to give a thicker web. The user should confirm that a section is available.

CHANNELS (B.S.C.) 1932 Revision

8 tons/sq. in.

Loads in Tons.

IN FEET											
12	14	16	18	20	22	24	26	28	30	32	36
I ·7 3 · I 3 · 8	2·3 2·8	I ·7 2 · I									
4·I 4·2 5·I 5·4 6·I	3·5 3·1 4·4 4·6 5·2	2·7 2·4 3·8 3·5 4·6	2·I 3·0 2·8 4·I	2·4 3·3	2.7						
6·7 7·3 8·1 9·7 11·4	5·7 6·2 6·9 8·3 9·8	5·0 5·5 6·1 7·3 8·6	3·9 4·8 5·4 6·4 7·6	3·2 4·4 4·4 5·8 6·8	3·6 3·6 4·9 6·2	3·0 4·0 5·2	4.4				
11·8 14·8 16·8 20·6 27·2	10·1 12·7 14·4 17·7 23·3	8·8 11·1 12·6 15·5 20·4	7·8 9·8 11·2 13·7 18·1	7·0 8·8 10·1 12·4 16·3	6·4 8·0 9·2 11·2 14·8	5.9 7.4 8.4 10.3 13.6	5·0 6·3 7·7 9·5 12·5	4·3 5·4 6·7 8·9	5·8 8·2 10·8	7·2 10·2	5·7 8·5

Arranged in ascending order of section modulus. The values are taken by permission from Messrs. Redpath Brown & Co. Ltd.'s Steel Handbook. General dimensions of these sections are given in Table 105.

SAFE LOADS ON BROAD

See notes 1 to 4 on page 148. The thick vertical lines below show the limit of spans equal to 20 times flange width; the widths and depths of these beams are less than the nominal dimensions.

The deflections do not exceed $\frac{1}{82}$ th of span for the loads tabulated. **TABLE 114.**Safe Distributed

Nominal Size *	Approx. Weight *	Depth of web clear of Root	Section Modulus				EFFECTIVE SPANS				
in.	lb./ft.	Fillets in.	Fillets z in.	6	7	8	9	10			
5 × 5 5½ × 5½ 6 × 6 7 × 7 8 × 8	13 16½ 18 25 30	3·0 3·6 4·0 4·9 5·4	6·4 9·3 10·9 18·5 24·9	5·7 8·3 9·7	4·9 7·1 8·3 14·1 16·8	4·3 6·2 7·3 12·3 16·6	3·8 5·5 6·5 10·9 14·8	5·0 5·8 9·9			
10 × 10 11 × 11 12 × 12 14 × 12 16 × 12	44 51½ 59 76 85	7·1 8·0 8·8 10·6 12·0	46·7 61·0 75·8 114 142					23.3			
18 × 12 20 × 12 24 × 12 30 × 12 40 × 12	96 108 124 145 188	13·7 15·4 19·1 24·7 34·2	179 221 299 424 700								

The above values have been extracted from Handbook 22 by permission of Messrs. R. A. Skelton & Co., Steel and Engineering Ltd., who marketed these sections in Great Britain until 1939. The sections were rolled in Luxembourg and it is expected that they will become available again in due course.

^{*} The exact sizes and weights are metric figures. Each size is rolled in 4 weights of which the lightest (D.I.E. series) is tabulated above.

FLANGED BEAMS (Grey Process)

8 tons/sq. in.

Loads in Tons

IN FEET											
12	14	16	18	20	22	24	26	28	30	32	36
8·2 11·0 21 26·9 31 45	9·5 18 23 29 43 53	· 16 20 25 38 47	4 18 22 34 42	16 20 30 38	18 28 34	17 25 32	23 29	22 27	25		
	65 78 102	60 74 100 137 210	53 65 89 126 207	48 59 80 113 187	43 54 72 103 170	40 49 66 94 [156	37 45 61 87 144	34 42 57 81 133	32 39 53 75 124	30 37 50 71 117	33 44 63 104

Broad flanged beams have advantages as columns, since the radius of gyration about the YY axis is greater than in a B.S.B. of similar weight. When used as beams they are less efficient than B.S.B.'s, the ratio of section modulus to weight being smaller; they are useful in some circumstances, e.g. for lintols where the broad flange forms a wide bearing for brickwork, in cases where lateral rigidity is necessary, and where they may replace compound girders, i.e. Joists with riveted flange plates.

TIMBER FLOOR CONSTRUCTION

The L.C.C. by-laws permit alternative methods of determining the size and spacing of timber joists and binders.

(a) Provided that the construction is of normal weight, e.g. does not include concrete pugging between the joists, the size and spacing of timbers may be obtained by the use of a table of spacing factors.

The following tables have been calculated to give this information direct; they are based on the L.C.C. factors for "non-graded" timber (working fibre stress in bending 800 lb./sq. in.).

The alternative (b) is referred to at the end of the timber tables.

Cantilevers may project clear of support by a distance not exceeding d of the supported span for which the timber would be permitted.

Non-graded timbers, supported at each end

[(iv) JOISTS AND BINDERS TO RESIDENTIAL FLOORS, see Table 35]

(v) JOISTS TO OFFICES, ABOVE ENTRANCE FLOOR

TABLE 115.

Clear Spacing S in inches

Joist Size	Clear Span in Feet									
d × b in.	6	7	8	9	10	11	12	13	14	15
6 × 1½ 6 × 2 7 × 2 8 × 2 8 × 2½	17 20 25	12 14 20 25	8 10 14 20 22 25	7 ¹ 9 ² 10 14 16	98 12 13	9 10		1 2 3	x. span 8'-6" 8'-6" 9'-11" 12'-9"	:
$ \begin{array}{c} 8 \times 2\frac{1}{2} \\ 9 \times 2 \\ 9 \times 2\frac{1}{2} \\ 9 \times 3 \\ 11 \times 2\frac{1}{2} \\ 11 \times 3 \end{array} $			25	20 25	13 14 17 21	12 15 18 25	10 12 15 21 25	94 114 134 15	12 15	 13

¹ Refer to the table inset, which gives the calculated maximum permitted span.

(vi) BINDERS TO OFFICES, ABOVE ENTRANCE FLOOR Clear Spacing S in inches

TABLE 116.

Joist Size				Clear Sp	an in Fee	t		
d × b In.	8	9	10	11	12	13	14	15
9 × 3 9 × 4 10 × 4 11 × 3 11 × 4 12 × 4 12 × 6	57 76 94 88 118 134 201	48 64 76 70 94 118 177	46 64 57 76 94	46 48 64 76	54 64 96	54 81	46 69	60

(vii) JOISTS TO OFFICES ON AND BELOW ENTRANCE FLOOR, RETAIL SHOPS, GARAGES FOR CARS NOT OVER 24 TONS

TABLE 117.

Clear Spacing S in inches

Joist Size	Clear Span in Feet											
$d \times b$ in.	6	7	8	9	10	11	12	13	14	15		
$ \begin{array}{r} 6 \times 1\frac{1}{4} \\ 6 \times 2 \\ 7 \times 2 \\ 8 \times 2 \\ 8 \times 2\frac{1}{4} \\ 8 \times 2\frac{1}{2} \end{array} $	16 18 22 35	11 13 18 22 26	8 9 13 18 20 22	71 81 9 13 15	8 ² 12 14	9 10		1 2	Max. span : 1 8'-6" 2 9'-11" 3 12'-9"			
$\begin{array}{c} 9 \times 2^{2} \\ 9 \times 2^{\frac{1}{2}} \\ 9 \times 3 \\ 11 \times 2^{\frac{1}{2}} \\ 11 \times 3 \end{array}$			22	18 22	13 16 19	11 14 16 22	9 11 13 18 22	8 ⁸ 10 ³ 12 ³ 14 16	11 13	10 12		

(viii) BINDERS TO OFFICES ON AND BELOW ENTRANCE FLOOR, RETAIL SHOPS, GARAGES FOR CARS NOT OVER 2‡ TONS

TABLE 118.

Clear Spacing S in inches

Joist Size			(Clear Spa	ın in Fee			
d × b in.	8	9	10	11	12	13	14	15
9 × 3 9 × 4 10 × 4 11 × 3 11 × 4 12 × 4 12 × 6	37 50 60 57 76 88 132	40 50 45 60 76	50 60 90	40 50 75	60	51	42	

(ix) JOISTS AND BINDERS TO CORRIDORS AND LANDINGS

Note. If within the curtilage of a flat or residence, a waiver may be sought to work on Table 35.

TABLE 119.

Clear Spacing S in inches

Joist Size	Clear Span in Feet											
d × b in.	6	7	8	9	10	11	12	13	14	15		
6 × 1½ 6 × 2 7 × 2 8 × 2½ 8 × 2½ 9 × 2½ 9 × 2½ 9 × 3 11 × 2½ 11 × 3	9 10 13 21 23 26 24 30 36 34 40	6 7 10 13 14 16 16 20 24 30 36	7 10 11 12 13 16 19 26 31	7 8 9 10 12 15 20 24	7 9 10 16	. 12 15	10 12	9				

(x) JOISTS TO WORKSHOPS, FACTORIES, GARAGES FOR MOTOR VEHICLES OTHER THAN THOSE IN CLASS (viii)

TABLE 120.

Clear Spacing S in inches

Joist Size			(Clear Spa	n in Feet			
d×b in.	6	7	8	9	10	11	12	13
6 × 1 ¹ / ₄ 6 × 2 7 × 2 8 × 2 ¹ / ₂ 8 × 2 ¹ / ₂ 9 × 2 ¹ / ₂ 9 × 3 11 × 3	9 10 13 21 23 26 24	6 7 10 13 14 16 16 20 24	7 10 11 12 13 16 19 26	7 8 9 10 12 15 20 24	7 9 10 16	12	1ax. spa 12'-10 10 10	n " 91 101

(xi) BINDERS TO WORKSHOPS, FACTORIES, GARAGES FOR MOTOR VEHICLES OTHER THAN THOSE IN CLASS (viii)

TABLE 121.

Clear Spacing S in inches

Joist Size		(Clear Spa	n in Feet		
d × b in.	8	9	10	11	12	13
10 × 4 11 × 3 11 × 4 12 × 4 12 × 6	40 37 50 58 86	40 50 75	40 . 60	48	39	

(xii) JOISTS AND BINDERS TO WAREHOUSES, BOOK AND STATIONERY STORES AND THE LIKE

TABLE 122.

Clear Spacing S in inches

Joist Size			Clea	r Span in	Feet		
d × b in.	6	7	8	9	10	11	12
8 × 2	15	9	7				
8 × 3	22	13	10				
9 × 2	18	12	9	7	1		
9 × 3	27	18	13	10	ŀ		
9 × 4	36	24	18	14			
10 × 4			24	18	14		
11×3	30	27	22	18	13	10	
11×4	40	36	30	24	18	14	
12 × 4			36	30	26	18	14
12 × 6			54	44	36	27	21
12 × 6			54	44	36	27	21

(b) The alternative to using the foregoing tables is to determine the size and spacing of timber by calculation, in which case the following superimposed loadings are specified by the L.C.C. and in B.S. 1018—Timber in Building Construction, respectively.

Both specifications state that floor boards shall be not less than § in. thick, and shall be calculated on a superimposed loading of not less than 200 lb./sq. ft.; but B.S. 1018 allows grooved and tongued boards to be designed on not less than twice the loading for joists (see next table).

The M.O.H. Model by-laws give rules for timber rafter and joist thickness, and specify that a trimmer joist carrying not more than 6 common joists, or carrying one trimmer joist not more than 3 ft. from its end, should be $1\frac{1}{2}$ in. thicker than a common joist of the same span. The common joists specified for warehouses are not deep enough to be efficient, but timber is no longer likely to be permitted in warehouses.

TABLE 123. Superimposed Loading. Lb./sq. ft.

Class	Type of Building or Floor	On Joists between Binders or other Supports.		On binders and other Supporting Constructions.	
Class		L.C.C.	BS.1018	L.C.C.	BS.1018
1	Rooms used for residential pur- poses; and corridors, stairs and landings within the curtilage of a				
*	flat or residence Hotel bedrooms, hospital rooms and wards (for public spaces see	40 As	40	40 As	40
2	below) Offices, floors above entrance floor	Class I 80	40 80	Class I 50	4 0 50
3	Offices, entrance floor and floors below; retail shops; garages for cars not over 2½ tons, L.C.C.				
*	(2 tons, B.S. 1018) Churches, schools, reading rooms,	90 As	80	80 As	80
	art galleries	Class 3	80	Class 3	70
4 ★	Corridors, stairs and landings not provided for in Class I Assembly, dance and drill halls,	100	100	100	100
×	restaurants, cafés, theatres, cinemas, grandstands, gymnasia,				
5	light workshops, public spaces in hotels and hospitals Workshops and factories, garages	As Class 4 Not	100	As Class 4 Not	100
3	for motor vehicles other than those described in Class 3	less than		less than	a-14 774
5a	Garages for motor vehicles exceeding 2 tons in weight		200	_	200
6	Warehouses, book stores, stationery stores and the like	Not less than 200	200	Not less than 200	200

★ These cases are not specifically covered by the L.C.C. by-laws, but District Surveyors and local authorities will normally accept the class loading stated. The actual loading on floors in Classes 5 and 6 and for any purpose not specified is to be ascertained, and is not to be taken as less than the figures given where they apply.

The minimum breadth of a joist or binder is $1\frac{3}{8}$ in.—B.S. 1018 or $1\frac{3}{4}$ in.—L.C.C. Both specifications limit the deflection under the specified loading

to $\frac{1}{860}$ th of the span. B.S. 1018 stipulates that if the depth of a member exceeds 3 times the breadth and the length exceeds 50 times the breadth, lateral restraint (such as would be provided by floor boards) is necessary.

B.S. 1018 gives definitions of the various types of joist in floor construction, as shown in the sketch plan. A plate is a member supported throughout its length, as on a wall, and used to spread the load from other parts of the construction, e.g. joists or rafters.

Frimming
Josets
Trimmer
Joset,
Bridging
Trimmed Jones

The following formulæ are given for checking the bending moment, shear and deflection of timber beams. They may be derived from the expressions given on page 112.

TABLE 124

Bridging Joists and Trimmed Joists, simply supported.	Bridging Joists, Trimmed Joists, Binders, continuing over Supports and adequately cantilevered.
$WI = \frac{4}{3} \cdot b \cdot d^2 f$	$WI = \frac{1}{3} \cdot bd^2f$
$q = \frac{3}{4} \frac{W}{bd}$	$q = \frac{3}{2} \frac{W}{bd}$
$bd^3 = \frac{225}{4} \cdot \frac{Wl^2}{E}$	$bd^3 = 540 \frac{Wl^2}{E}$

where W is the total load in lb. distributed over the span.

I is the span in inches.

b and d are in inches.

E is the Elastic Modulus in lb./in.² units. q is the maximum shear stress, lb./in.²

FOUNDATIONS

FOUNDATIONS

SOIL DEFINITIONS AND SAFE LOADS

TABLE 125

Agricultural Definitions

Sandy soil, containing	not more than 5% clay
Sandy Loam	5–8%,,′
Loam	8–15%,,
Clay Loam	15-30% ,,
Clay	over 30% ,,
Marl	5-50% lime

TABLE 126

Soil Classification

(Massachusetts Institute of Technology)

Gravel above 2-0 0-6-2-0 0-2-0-6 0-0-2 0-0-02 0-0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06 0-02 0-06	Designation	Grain Size mm.
· ·	Coarse sand Medium sand Fine sand Coarse silt Medium silt Fine silt	0.6-2.0 0.2-0.6 .06-0.2 .02-06 .006-02 .002-006

FOUNDATION PRESSURES ON GROUND

Any list such as this can only be a rough indication of the permissible load. The decision should be made after consulting the local authority, who may require tests. Excavation in clay should always be taken below frost level.

TABLE 127

Nature of Ground	Safe Load tons/sq. ft.
Natural bed of silt, peat, recent made ground Alluvial soil, very wet sand, made ground well compacted or tipped several years. Natural bed of soft clay, wet sand Natural bed of fairly dry clay, fine dry sand or loam Natural bed of firm dry clay, medium boulder clay, gravel Compact sand or gravel, London blue clay, hard boulder or similar compact clay, in deep foundations Hard solid chalk Shale and soft rock Very hard rock	Less than \$\frac{1}{4}\$ or requires piling Up to \$\frac{1}{2}\$ 3 4 6 Up to 10 Up to 40

TABLE 128. COMPARATIVE WEIGHTS OF EARTH, GRAVEL, etc.

Material (see Table	es 125 and 126 for Definitions)	Lb. per cu. ft.
Alluvial ground	undisturbed	100
Bailast	loose, graded	100
	undisturbed	120
Chalk		100-170
Clay fill	dry, lumps	65
·	dry, compact	90
	damp, compact	110
	wet, compact	130
,, undisturbed	•	120
do.	gravelly	130
,, China	compact	140
Fuller's Earth	natural	110-150
Gravel	loose	100
	undisturbed	120-135
Kaolin	compact	140
Loam (sandy clay)		75
	dry, compact	100
	wet, compact	120
Loess	dry	90
Marl (limey clay)		110-120
Mud, river	wet	110-120
Peat	dry, stacked	35
	sandy, compact	50
	wet, compact	85
Sand fill	damp when filled	80
<u> </u>	dry when filled	100
1	saturated	120
,, undisturbed		105
l	saturated	125
Shingle	fine, dry	100
l	,, saturated	130
1	coarse, graded, dry	115
l	,, ,, saturated	140
Silt	wet	110-120
Soil, common	loose	90
1	compact	130

For the weights of building stones see page 64. A number of minerals are included in the table of Densities, page 94.

ANGLES OF REPOSE

The angle of repose of granular materials varies with the size of the particles, being steeper as the size increases, but the presence of damp fine material in broken stone or ballast increases the angle.

In fine granular materials, dampness increases the angle, but water, above a certain proportion, acts as a lubricant and the angle flattens.

The angle of repose of material like clay is very indefinite. Hard lumps can be stacked to an almost vertical face, but weathering will eventually break them down to a slope which depends on the nature of the clay. The presence of clay in sand and of sand in clay increases the angle of repose.

The figures below can only be regarded as typical.

TABLE 129

Material	Angle	Material	Angle
Alluvial ground Ballast Cement, clinker ground Clay ,, typical construction: Embankment, water face downstream face Cutting Coal, broken 10 mesh slurry Coke Grain Gravel	25° 45° 33° concave 15°-45° I in 3 = 18° I in 2½ = 22° I in 1½ = 33° 35°-45° 34° 16° 0-20° 25°-30° 25° 35°-45°	Hæmatite, loose Marl Pyrites, ground Rock filling Sand, coarse fine saturated Shale, colliery dirt Shingle, crushed smooth Slag filling Stone, broken, up to 2"	35° 45° 40° 45° 35°–40° 30°–35° 25° 35° 40° 30° 35° 35°–40°

INCREASE IN BULK OF EXCAVATED MATERIAL

TABLE 130

SERVICES AND FITTINGS

METER PITS

The Metropolitan Water Board specify the minimum dimensions of meter pits when not in the line of wheeled traffic as below.

TABLE 131

Internal Dimensions of Pit, and Clear Opening of Cover	Depth of Frame of Cover
24" × 24"	41/
36" × 24" 42" × 24"	,,
	of Pit, and Clear Opening of Cover 24" × 24" 36" × 24"

MANHOLE COVERS AND FRAMES (CAST IRON)

B.S. 497 for light manhole covers and frames gives the dimensions and weights below.

TABLE 132

Nominal Size =	Overall Size of	Depth of		
Clear Opening in.	Frame in.	Frame*	Frame Ib.	Cover lb.
18 × 18 24 × 18 24 × 24	$\begin{array}{c} 21\frac{1}{4} \times 21\frac{1}{4} \\ 27\frac{3}{4} \times 21\frac{1}{4} \\ 28 \times 22 \\ 28\frac{1}{2} \times 22\frac{1}{2} \\ 28 \times 28 \end{array}$	3/2 1/2 1/2 1/4 1/2	13½ 18 27 36 31	28½ 38 57 76 81

^{*} The cover chequer pattern projects $\frac{3}{92}$ in. above the rim of the frame.

STEEL CHEQUERED AND PLAIN PLATES Weights and Safe Loads

TABLE 133.

Thickness	Weight p	er sq. ft.	Si	ife uniformly D	Distributed Lo	ad, lb./sq. ft.	
in.	Chequer	Plain	Span I	2	3	4	5 ft.
+	22	20.4	5970	1490	660	370	240
7.	194	17.9	4570	1140	510	280	180
. 4	163	15.3	3360	840	370	210	130
*	141	12.8	2330	580	260	140	93
1.	114	10.2	1490	370	160	93	59
}	94	7.7	840	210	93	52	
					ļ		

DIMENSIONS FOR PLANNING

In general these dimensions should be regarded as minima.

Stairs. Rise $7\frac{1}{2}$ in. max. Run or tread $8\frac{1}{2}$ in. Width 3 ft. (Public buildings: Rise 6 in., tread 11 in., width 4 ft. 6 in.) Headroom from nose of stair 6 ft. 6 in. vertically. Height of handrall from nose of stair 2 ft. 6 in. vertically. Ditto on landings 3 ft. 0 in.

Windows. 10% of floor area (L.C.C.), half to open.

P.W.B.S. No. 12 recommends 15% for large bedrooms and large living rooms and 20% for kitchens. Measurement of area is inside the fixed framework. The glass line should be not more than 2 ft. 9 in. above floor level and the lintel not less than 7 ft. 6 in. above floor level.

Fittings

Bath 5 ft. 6 in. × 2 ft. 4 in. in plan

★ Sink 10 in. deep × 2 ft. 0 in. × 1 ft. 6 in. ,,

Linen and clothes cupboard not less than 20 in. deep.

Lavatory basin 25 in. wide by 18 in. front to back

★ Gas oven vertical type 2 ft. 6 in. × 2 ft. 0 in. ,, ,,

★ horizontal type 3 ft. 6 in. × 2 ft. 0 in. ,, ,,

★ Copper, gas or electric 1 ft. 9 in. × 1 ft. 9 in. in plan

* These items are becoming standardised at 3 ft. 0 in. in height above floor and 1 ft. 9 in. front to back.

Roads and paths

Access road 16 ft. Cul de sac 13 ft. Private drive 9 ft.

Public path 6 ft. The minimum width of carriage-way usually permitted in local by-laws is 20 ft.

Minimum turning circles: 10 ton lorry 60–65 ft. diameter. 30 H.P. car 45 ft. diameter.

Vehicles

Cars range from 4 ft. 3 in. to 6 ft. 0 in. wide, 5 ft. 1 in. to 6 ft. 5 in. high, 10 ft. 7 in.-16 ft. 7 in. long.

All cars not over 14 H.P. will go in a garage 14 ft. 6 in. long.

Garage for cars:

door opening (straight approach) 7 ft. Height to lintel 6 ft. 6 in. width inside

Garage for large lorries:

door opening 10 ft. Height to lintel 14 ft.

track width outside tyres 7 ft.

wheel load single tyre 2.1 tons, double tyre 3.6 tons.

Loading dock level above road 3 ft. 0 in.

Railways

Standard gauge between runnir	ng faces of ra	ils .	4 ft. 8½ in.
Clearance from running face of	rail to struc	ture .	4 ft. 9≩ in.
Height clear above rail level to	structure .		15 ft. 0 in.
Centre of buffer stop above rai			3 ft. 6 in.
Wagon floor above rail level			
Loading dock above rail level			
Large loco, wheel loads 8 tons a			
Width of widest rolling stock			8 ft. 4 in.
Dimensions of timber sleepers			
Height of rail top above top of			
	90 lb. bullhe	ead rails	71 in.
	90 lb. flat be		

DIMENSIONS OF PIPES

The main purpose of these pipe tables is to show conveniently the overall diameters and effective lengths, which are required in planning. In the British Standard specifications, the outside diameters of sockets must be obtained by adding other dimensions which are often in fractions to $\frac{1}{32}$ in. The present tables give these dimensions directly, in decimals to the nearest tenth of an inch, so that the figures are sufficiently accurate for determining clearances and easier to handle than small fractions.

When pipes are cast with ears, the face of the ears is practically tangential to the outside of the socket.

It will be noticed that the standard lengths are in some cases "effective," i.e. exclusive of the depth of socket, and in other cases overall, i.e. inclusive of the socket. The depth of socket for the latter cases is tabulated so that the effective length may be derived.

Summary of Cast Iron Spigot and Socket Pipes

- B.S. 40. Cast Iron Low Pressure Heating Pipes.
 - 41. Cast Iron Flue or Smoke Pipes.
 - 78. Cast Iron Pipes (Vertically Cast) for Water, Gas and Sewage.
 - 416. Cast Iron Soil, Waste, Ventilating and Heavy Rainwater Pipes.
 - 437. Cast Iron Drain Pipes.
 - 460. Cast Iron Light Rainwater Pipes (Cylindrical).

DIMENSIONS OF CAST IRON PIPES

- B.S. 40. Heating Pipes (Low Pressure) in standard lengths 3 ft., 6 ft. and 9 ft. overall.
- B.S. 41. Flue or Smoke Pipes in standard lengths 3 ft. and 6 ft. overall.

TABLE 134.

Dimensions in inches

		B.S.	B.S. 41					
Nominal Internal Diam.	Outside Diam.	Diam. over Socket	Depth of Socket	Weight of 6 ft. Pipe Ib.	Outside Diam.	Diam. over Socket	Depth of Socket	Weight of 6 ft. Pipe Ib.
2	2.4	4.0	3	27				_
<u>3</u>	3.5	5.3	3.5	45				
4	4.5	6.5	4	61	4.3	5.4	3	33 36
41					4.8	5.9	3	36
5	5.6	7.7	4	94	5.3	6.4	3⋅25	46
6	6.6	9.0	4.5	125	6.3	7.6	3.5	63
7	7.7	10.1	4⋅5	160	7.4	8.8	3⋅5	86
8	8.8	11.5	5	201	8.5	10-1	4	112
9	9.8	12.6	5	243	9.5	11.4	4	144
10					10.6	12.6	4.25	176
12				_	12.6	14.8	4.25	245

Dimensions of Cast Iron Pipes—Continued.

In accordance with B.S. 78—Cast Iron Pipes for Water, Gas and Sewage.

Four classes are included in this specification, which covers straight pipes and bends and other specials, with joints either spigot and socket, turned and bored, or flanged.

Class Purpose Tested Pressure
A Gas 200 ft.
B Water sewage 400 ft.
C ,, ,, 600 ft.
D ,, ,, 800 ft.

For the weights see next table.

TABLE 135.

Dimensions in inches

Р	ipe Thickne in.	:55					Flange Diam.	Nominal Internal
A	8	С	A & B	С	A&B	С	A, B & C	Diam. in.
·35 ·36	As Class A	As Class A	2·20 2·72	As Classes	4·86 5·42	As Classes	5 1	1± 2
·37 ·38	",	"	3·24 3·76	A & B	6·60	A & B	6 1 71	2 1 3
· 4 1	",	·45	5.90	"	8.88	",	10 10	4 5
	·35 ·36 ·37 ·38 ·39 ·41	in. A B -35 As -36 Class A -37383941	A B C -35 As As -36 Class A Class A -3738394145	A B C A&B -35 As As Class A 2:20 -36 Class A Class A 3:24 -38 ,, ,, 3:76 -39 ,, -40 4:80 -41 ,, -45 5:90 -42 4:90	in. A B C A B C -35 As As Class A Class A 2.72 Classes -37 3.24 A & B -3940 4.80 41 45 5.90	In. In.	In. In.	In. In. In. Flange Dlam. Flange Dlam. A & B C A & B C A & B C In.

TABLE 135—Continued.

Nominal Internal	Pi	pe Thickne in.	: 55		e Diam. n.		er Socket n.	Flange Diam.	Nominal Internal
Diam. In.	A	В	С	A & B	С	A & B	С	A, B & C in.	Diam. in.
7 8 9 10 12 14 15 16 18 21	·45 ·47 ·49 ·52 ·55 ·57 ·59 ·60 ·63 ·67 ·71	 .57 .61 .63 .65 .69 .75	·53 ·57 ·60 ·63 ·69 ·75 ·77 ·80 ·85 ·92 ·98	8·06 9·14 10·20 11·3 13·1 15·2 16·3 17·3 19·4 22·5 25·6	13.6 15.7 16.8 17.8 20.0 23.1 26.3	11·2 12·4 13·5 14·6 16·7 19·0 20·1 21·2 23·6 26·9 30·3	17-6 20-0 21-1 22-3 24-7 28-1 31-6	12 134 141 16 18 203 213 223 254 29 321	7 8 9 10 12 14 15 16 18 21

Other sizes are also listed. Class D is only used for very high pressures. The Metropolitan Water Board stipulates that water service pipes shall be at least Class C. For fraction-decimal equivalents see Table 188.

LENGTHS AND WEIGHTS OF C.I. PIPES (spigot and socket)

in accordance with B.S. 78. The length is exclusive of depth of socket. For the dimensions see previous page.

TABLE 136.

Weight per pipe, lb.

Internal		Class A Class B Class C				s C	
Diam. In.	6 ft.	9 ft.	12 ft.	9 ft.	12 ft.	9 ft.	12 ft.
1½ 22½ 3 4 5 6 7 8 9 10 12 14 15 16 18 21	47 60	105 129 171 222 276 334 403 468 546 677	221 286 357 433 520 605 707 876 1066 1179 1278 1505 1860 2266	** As Class A 697	As Class A	★ As As Class A 175 239 307 383 473 555 642 868	226 310 399 498 614 721 835 1125 1425 1563 1727 2056 2132 3147

* 6 ft. lengths only; weights as Class A.

Dimensions and Weights of typical spun Cast Iron Pipes (spigot and socket)

The length is exclusive of the depth of socket. Tested pressure 400 ft.

TABLE 137.

Weight per pipe, lb.

Internal	Class B							
Diameter In.	Thickness in.	9 ft.	12 ft	18 ft.				
4	-30	135	175	255				
5	-31	180	231	334				
6	.33	228	294	426				
7	-34	267	343	497				
8	-36	322	413	596				
9	-37	377	483	696				
10	.39	436	560	808				
12	·43	556	714	1032				
14	·46		896	1312				
15	-47		980	1413				
16	-49		1085	1565				
18	.52		1281	2163				

B.S. 416—Soil, Waste, Ventilating and Heavy Rainwater Pipes, in standard lengths 6 ft. overall.

TABLE 138.

Dimensions in inches

Nominal Size = Internal Diam,	Outside Diam.	Diameter over Socket	Depth of Socket	Weight of Pipe ib.
	Extr	a Heavy G	rade	
3½ 4 5 6	4 5.8 41 6.3 51 7.5 61 8.5		3 3 3·25 3·5	55 60 78 92
	ŀ	leavy Grad	le	
3 3 <u>4</u> 4	3.4 3.9 4.4	₹ [5·1 ₱ 5·75 6·25	2·75 3 3	40 48 54

Dimensions of Cast Iron Pipes-Continued.

TABLE 138—Continued.

Nominal Size = Internal Diam.	Outside Diam.	Diameter over Socket	Depth of Socket	Weight of Pipe Ib.							
Medium Grade											
1½ 2 2½ 3 3½ 4 5 6	1.9 2.4 2.9 3.4 3.9 4.4 5.4 6.4	3·4 3·9 4·4 5·1 5·8 6·3 7·5 8·5	2·25 2·5 2·75 2·75 3 3 3·25 3·5	22 24 30 35 41 46 59 71							

B.S. 437.—Drain Pipes, in standard lengths 9 ft. exclusive of socket (*2 in. diam., 6 ft. only)

TABLE 139.

Dimensions in inches

Nominal Size Internal Diam.	Outside Diam.	Diameter over Socket	Weight of Pipe Ib.
2	2·6	4·4	42*
3	3·6	5·75	98
4	4·75	7·1	157
5	5·75	8·25	186
6	6·75	9·25	225
7	7·9	10·9	316
8	8·9	11·9	370
9	9·9	12·9	441

B.S. 460-Light Rainwater Pipes (Cylindrical) in standard lengths 6 ft. overall

TABLE 140.

Dimensions in inches

Nominal Size †	Outside Diam.	Diameter over Socket	Depth of Socket	Weight of Pipe Ib.
2 2½ 3 3 3½ 4 4 4½ 5	ዘ" more than nominal size ., .,	3 3·5 4 4·6 5·1 5·7 6·2 7·25	2년 255 247 27 3 3년 3 3년 3 3년 3 3년 3 3년	17 19 23 28 34 40 45 58

[†] The internal diameter in each case is approximately $\frac{1}{8}$ in. less than the Nominal Size.

DIMENSIONS OF ASBESTOS CEMENT PIPES

See remarks on page 173.

The following specifications refer to asbestos cement pipes:—

- B.S. 567. Flue Pipes for Gas Fired Appliances.
 Standard lengths 1 ft., 2 ft., 3 ft., 4 ft., 5 ft., 6 ft. effective.
 Test pressure 6 lb./sq. in.
- B.S. 569. Rain Water Pipes (includes gutters, rainwater heads, etc.). Standard length 6 ft. effective.
- B.S. 582. Soil, Waste and Ventilating Pipes.
 Standard length 6 ft. effective. See Table 141 for test pressures.
- B.S. 835. Flue Pipes for Domestic Heating Stoves.
 Standard lengths 1 ft., 2 ft., 3 ft., 4 ft., 5 ft., 6 ft. effective.
 Test pressure 6 lb./sq. in.
- B.S. 486. Pressure Pipes, see Table 142.

The year of the latest specification referred to is given in the list at the end of the book.

B.S. 567 B.S. 835	
B.S. 569	
B.S. 582	
B.S. 486	

TABLE 141.

Dimensions in inches

Internal Diam.			. 569		B.S. 582		B.S. 835		
Nominal Diam.	Outside Diam.	Diam. over Socket	Outside Diam.	Diam. over Socket	Outside Diam,	Diam. over Socket	Min. Test Pressure	Outside Diam,	Diam, over Socket
2 2½ 3 3½ 4 4½ 5 5½ 6 7 8 9 10	22233455 1x 1x34343434343434343434343434343434343434	3 34 4 44 5 5 64 64 7 7 9 10 11 12 13	2½ 3 % 18 18 18 18 18 18 18 18 18 18 18 18 18	3 4 4 5 5 1 2 6 6 3 4 4 8 4 8 4	2½ 3 56 4 8 56 4 6 54 6 4	4·1 4·6 5·4 6·0 6·5 7·9 8·9	300 240 250 215 190 — 180 150 1b./ sq. in.	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	41/2 51/4 51/4 51/4 61/4 71/4 71/4 10 11 12 13 14/2

B.S. 486—Asbestos Cement Pressure Pipes

These pipes have plain ends, to be jointed by sleeves which are not covered in the specification. The pipes will fit in the sockets of the corresponding cast iron pipes of B.S. 78.

TABLE 142. Dimensions and Weights per foot

CLASS		A		В		C	:	D	
Working Pressure		100 ft.		200 ft.		300 ft.		400 ft.	
Nom. Internal Diam. in.	Outside Diameter (all classes) in.	Int. Diam. In.	Wt. per ft., Ib.	Int. Diam, in.	Wt. per ft., lb.	Int. Diam. in.	Wt. per ft., lb.	Int. Diam. In.	Wt. per ft., lb.
2 3 4 5 6 7 8 9	2-76 3-76 4-80 5-90 6-98 8-06 9-14 10-2 11-26	1.98 2.96 3.96 4.98 6.00 7.00 8.00 9.00 9.98	3 4½ 6 8 10 13 16 18 21	1.98 2.96 3.86 4.80 5.76 6.74 7.70 8.62 9.58	3 4½ 7 10 13 16 20 23	1-98 2-76 3-58 4-50 5-42 6-32 7-22 8-10 8-94	3 5½ 8½ 12 16 20 26 30	1-86 2-66 3-48 4-34 5-18 6-00	3½ 6 9 13 18 24

TABLE 142—Continued.

	CLASS A		Α.	В		С		D		
	Working	Pressure	100) ft.	200) ft.	300 ft.		400 ft.	
Nom. Internal Diam. In.	(all cl	Diameter lasses)	Int. Diam. in.	Wt. per. ft., lb.	Int. Diam. in.	Wt. per. ft., lb.	Int. Diam. in.	Wt. per. ft., in.	Int. Diam. in.	Wt. per. ft., lb.
12 14 15 18 20 21 24	Class A 13·14 15·22 16·26 19·38 21·46 22·50 25·60	Classes B C D 13·60 15·72 16·78 19·98 22·06 23·12 26·26	11·78 13·64 14·58 17·38 19·26 20·18 23·00	27 36 41 58 71 78 99	11-60 13-42 14-32 17-02 18-82 19-72	39 53 60 85 102	11-26	46		

Other sizes are listed up to 40 in. 100 ft. of head = 43.35 lb./sq. in.

SALT-GLAZED WARE PIPES

Formerly known as "stoneware." The trade designation "Best Quality" is appreciably cheaper than goods marked "British Standard." B.S. 65 covers taper pipes, bends and junctions in addition to straight pipes. The dimensions given below are calculated from data in B.S. 65.

The standard length is exclusive of depth of socket.

TABLE 143

Internal	Outside	Diam. over	Standard Lengths	Approx.	Wt, of 6"
Diameter	Diameter	Socket		Wt. per 2ft.	of barrel
in.	in.	in.		Pipe, lb.	lb.
3 4 5 6 7 8 9 10 12 13 14 15 18 21 24 27 30 36	378 56 618 714 88 98 101 115 14 151 168 171 21 241 271 304 41	5·5 6·9 8·3 9·5 10·8 11·9 13·2 14·7 17·4 18·7 20·2 21·4 29·2 32·7 36·2 39·7 48·2	2' 2', 2' 6" 2', 2' 6", 3'	11 19 25 30 37 45 55 66 100 115 139 157 239 304 372 460 540 820	8 9 11 13 20 23 28 31 45 56 69 83 98 147

Pipes to British Standard Specification must withstand an internal hydraulic pressure of 20 lb./sq. in. for 5 seconds.

WROUGHT IRON AND STEEL TUBES FOR GAS, WATER AND STEAM In accordance with B.S. 788—Wrought Iron Tubes and Tubulars and B.S. 789—Steel Tubes and Tubulars

The three grades are also known as Light, Medium and Heavy, Medium being one size and Heavy two sizes thicker on the S.W.G. than Light. The outside diameter is controlled by the screw gauges, and the actual bore therefore depends on the wall thickness but is within $\frac{1}{18}$ in. of the nominal, for sizes up to 2" and within $\frac{1}{8}$ in. for larger sizes.

TABLE 144

Nominal	Approx. Outside	Wa	ill Thickness	, in.	w	eight per ft.	lb.*	Diam.	
Bore in.	Diameter in.	Gas	Water	Steam	Gas	Water	Steam	Socket	
1 8	1 3 3 2	.080	.092	⋅104	·274	·303	-329	·60	
1 1	17	.,,_	.22	.,,	⋅378	423	·465	·75	
3	11	-092	-104	-116	·57 4	·636	-695	.91	
1 2	27	·104	-116	·128	⋅806	·885	·960	1.10	
3	1 18	-116	128	·144	1.150	1.253	1.385	1.34	
1	111	·128	-144	·160	1.630	1.810	1.983	1.66	
11	145	·144	-160	·176	2.327	2.559	2.786	2.03	
1 }	1 2 2	-160	-176	·192	2.926	3.189	3.447	2.28	
2	2 3	٠,,	١,,	١,,	3.711	4.053	4.389	2.78	
2 ½ 3	3	·176	192	·2i2	5.205	5.646	6-190	3.44	
3	312	,,	,,	,,	6.126	6.651	7.300	4.0	
3 ½	4	,,	,,	,,	7.048	7.656	8.410	4.5	
4	41	ì		I	7.970	8.662	9.520	5.06	
5	51/2	,,	,,	,,	9.813	10.67	11.74	6.12	
Ã	61	,,	,,	,,		1		7.25	
6	61	,,	,,	,,	11.66	12.68	13.96	7.2	

The weights given are for wrought iron; add 2% for mild steel.

War Emergency B.S. 789A—1940 substitutes Light and Heavy Weights for the three grades of B.S. 789; Light Weight is one gauge lighter in each size than Gas, and Heavy Weight is the same as Water or Medium grade.

The properties of useful sizes of tubes are given below, calculated on the nominal thickness and minimum permitted outside diameter. The steel is 22–30 tons/sq. in. tensile, and may be stressed in bending to 10 tons/sq. in. for scaffolding. Tubes of $\frac{1}{2}$ in. bore and upwards are supplied in random lengths of 15 to 23 ft.

Steel Tubes-B.S. 789 Water or B.S. 789A Heavy Weight

		344.1.1.	Minimum Properties					
Trade Name	Bore in.	Outside Diam. in.	de Thickness VV	lb./ft.	Section Area sq. in.	l in.4	k in.	z in.ª
2″ 2 <u>1</u> ″ 3″		1 3 8 2 3 3	·176 ·192	3·253 4·134 5·759	.949 1·206 1·675	·353 ·724 I·626	·610 ·774 ·985	·372 ·614 1·095

PIPE HOOKS

A table of standard dimensions of pipe hooks suitable for fixing the above tubes is given in B.S. 31—Electric Conduits.

COPPER TUBES

Ministry of Health Model Specification agrees with B.S. 659 for Light Gauge Copper Tubes, suitable for compression or capillary joints or bronze welding. For screwed joints B.S. 61—Copper Tubes and their Screw Threads gives three classes, viz., Low Pressure, 50 lb./sq. in. working, Medium Pressure 125 lb., High Pressure 200 lb./sq. in.

t = thickness in inches (specified as S.W.G.) of the wall.

Outside diam. = Internal diam. + 2t

TABLE 145

	D.C.	659			B.S.	61		
Internal Diam. In.	Б.3.	637	Low P	ressure	Medium	Pressure	High P	ressure
****	t	lb./ft.	t	lb./ft	t	lb./ft.	t	lb./ft.
+	-040	-08	.064	-15	-064	·15	.080	·20
Ĭ	-048	-17	.072	.28	-080	-32	-092	-38
3	,,	-25	,,	.39	,,	·44	• • • • • • • • • • • • • • • • • • • •	·52
į	,,	-32	,,	-50	,,	-56	-104	.76
\$	• •		,,	-61		-68	-116	1.04
i i	,,	·46	•	.72	-092	.94	,,	1.21
Ž			,,	-82		1.08		1.39
ı°i	-056	.71	-080	1.04	104	1.39	-128	1.75
11	,,	-88	,,	1.29	,,	1.70	-144	2.43
	,,	1.05	\	1.53	,,	2.02	,,	2.86
13			-092	2.05	,,	2.33	,,	3.30
2	-064	1.60	.,	2.33	,,	2.65	,,	3.73
2∔	٠,,	1.98	,,	2.88	-116	3.67	176	5.70
2½ 3 3½	.072	2.68	-104	3.90	·128	4.84	-192	7.42
3 ‡	-080	3.46	-116	5.07	-144	6.25	-212	9.55
42	-092	4.55	·128	6.39	-160	7.93	·232	11.88
							1	<u> </u>

LEAD PIPES

The Metropolitan Water Board define pipes as follows:—

A service pipe is any pipe subject to pressure from the main; the portion from the main to the stopvalve in the street, or if no stopvalve to the boundary of the street or where the pipe enters the premises in or under the street (whichever of these points is nearer to the main), is called a communication pipe and the remainder of the service pipe is called a supply pipe. A distributing pipe is any pipe under pressure from a storage cistern, feed cistern or hot water apparatus.

There are several conflicting specifications relating to lead pipes.

(i) B.S. 602—Lead Pipes, specifies the following weights per lineal yard (the figures in brackets are the weights stipulated for B.N.F. Ternary Alloy No. 2 lead pipes specified in B.S. 603, for pipes laid above ground):—

Minimum Weight, Ib./lin. yd. **TABLE 146.**

internal Diameter :	ŧ"	1 "	2 "	۱″	11,"	14"	2″
Working Pressure		Su	pply and	l Distril	outing F	Pipes	
Not exceeding 150 ft. head (65 lb./sq. in.) Exceeding 150 ft. and not exceeding 250 ft. head (108 lb./sq. in.) Exceeding 250 ft. and not exceeding 350 ft. head (152 lb./sq. in.)	4½ (3) 5 (3½) 6 (4)	6 (4) 7 (5) 9 (6)	9 (6) 11 (8) 15 (12)	12½ (9) 16 (13) 21 (21)	16 (12) 21 (18) 28 (28)	20 (15) 27 (24) 35 ² (35 ²)	28 (21) 38 ¹ (38 ¹)
		Fig. 3 (2½)	ushing a	7 (5½)	9 (7½)		16 (13)

¹ Not exceeding 225 ft. head. 2 ,, ,, 325 ,,

The M.W.B. by-laws differentiate between service and distributing pipes, and between hot and cold water in the latter.

The M.O.H. Model Specification also makes these distinctions but differs from both the other authorities in the recommended weights.

(ii) M.W.B. by-laws. (The figures in brackets are the weights stipulated for ternary alloy lead pipes fixed above ground.)

TABLE 147. Minimum Weight, lb./lin. yd.

Internal Diam, :	å ″	₫″	ł"	1"	11/2"	I <u>}</u> ″	2"	21″	3″
Pressure				Ser	vice P	pes			
Not exceeding 250 ft. head Exceeding 250 ft. and not exceeding 400 ft.	5 (3½) 6 (4)	7 (5) 9 (6)	(7½) 15 (10)	16 (11) 21 (14)	21 (14) 28 (19)	27 (18) 35 (23½)	38 (25½) 48 (32)	59 (40) —	85 (57) —
			Dis	tributi	ng Pip	es	L		
For cold water For hot water Hot or cold, alloy	4 4 <u>1</u> (3)	5 6 (4)	8 9 (6)		14 16 (11)	18 20 (13½)	24 28 (19)	38 44 (29½)	54 63 (42)
		Flu	shing a	nd Wa	rning	Pipes			
Lead or ternary alloy	2	3	5	7	9	12	16		

(iii) Ministry of Health Model Specification

TABLE 148.

Minimum Weight, lb./lin. yd.

Internal Diameter:	. 7″	<u>}</u> "	3"	1″	11,"	112"	2″				
Pressure	Supply Pipes										
Not exceeding 110 ft. head Exceeding 110 ft. and not	4	6	9	12	16	18	24				
exceeding 250 ft. Exceeding 250 ft.	5 5 <u>1</u>	7 9	12 16	16 21	21 28	27 36	33 48				
		<u> </u>	Distri	buting l	Pipes	!	1				
For cold water For hot water	4	5 6	8 9	11 12	14 16	18 18	24 24				
	Flushing and Warning Pipes										
			5	7	9	11	14				

APPROXIMATE DIMENSIONS OF LEAD PIPES

This table gives the wall thickness t and outside diameter O.D. of the lead pipes mentioned in the foregoing specifications; the sizes are not necessarily obtainable. Lead pipe should be specified by the internal diameter (bore) and weight per yard. The usual length of coil is 60 ft. for bores up to 1 in. and 30 ft. for larger sizes.

TABLE 149.

Dimensions in inches.

	∦″ bore			₹" bore			i" bore				
lb./yd.	t	O.D.	lb./yd.	t	O.D.	lb./yd.	t	O·D.	lb./yd.	t	O.D.
2 3 3½ 4 4 4½ 5	In. -09 -13 -14 -16 -17 -19 -22	in. -56 -63 -66 -70 -73 -76 -81	3 4 5 6 7 9	·11 ·14 ·16 ·19 ·21 ·26	In. -71 -77 -83 -87 -92 1-01	5 6 7½ 8 9 10 11	·12 ·14 ·17 ·18 ·20 ·22 ·24 ·31	In. 1·00 1·04 1·10 1·12 1·16 1·19 1·23 1·36	7 8½ 11 12½ 14 16 21	·13 ·16 ·20 ·22 ·24 ·27 ·34	In. I·23 I·31 I·39 I·44 I·48 I·54 I·68

TABLE 149—Continued.

lł" bore		l≟″ bore			2" bore			2½" bore			
lb./yd.	t	O.D.	lb./yd.	t	O.D.	lb./yd.	t	O.D.	lb./yd.	t	O.D.
9 11 14 16 19 21 28	in. •14 •17 •21 •23 •27 •29 •37	in. 1·53 1·58 1·66 1·71 1·79 1·84 2·00	12 13½ 18 20 23½ 27 35	·15 ·18 ·22 ·24 ·28 ·32 ·40	in. 1·81 1·85 1·95 1·99 2·06 2·14 2·30	16 19 24 25½ 28 32 38 48	in. -16 -19 -23 -24 -27 -30 -35 -43	in. 2·32 2·38 2·46 2·49 2·54 2·60 2·70 2·86	38 44 59	in. ·30 ·34 ·43	in. 3·09 3·18 3·37

B.N.F. Ternary alloy lead may be taken as having the same weight as lead.

PLUMBERS' WIPED JOINTS

TABLE 150

Diam. of pipe	1/2	3	ı	14	11/2	2	3	4	in.
Length of joint	21/2	23/4	3	3	3	34	31/2	3 ½	in.
Weight of solder	34	ı	14	1 ½	13	23/4	31/2	414	lb.

B.S. 617—Identification of Pipes, etc., in Buildings

The specification recommends painting with the appropriate colour either the whole line, or a 12-in. length on each pipe in positions readily seen, in each compartment of the building and next to valves, switches, etc. A list of identification marks to distinguish individual lines is also given. A separate specification is issued for Chemical Factories.

TABLE 151

Service	Colour	Service	Colour
Air Drainage Electricity Gas Oil Refrigeration Steam	White Black Orange Deep cream Light brown French grey Crimson	Water:— Cold fresh Hydraulic power Hot fresh Central heating Fire service Salt	Azure blue ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

HEAD REQUIRED BY SMALL WATER PIPES

Add to the length of pipe 2 ft. for each bend and obtain the head required by proportion from the table; for example actual length 40 ft. plus 5 bends = 50 ft., so take $\frac{50}{100}$ of value in table. Then, if the discharge required is 10 gals. per minute, a head of 8 ft. is needed for a 1 in. bore pipe, $2\frac{1}{2}$ ft. for $1\frac{1}{4}$ in. bore and so on.

A flow of 10 gals./minute will supply sufficient for a bath in 3-4 minutes or fill a normal bucket in 10 seconds.

TABLE 152. Head H in feet required per 100 ft. of pipe

Inter- nal Diam.		Discharge in Gals. per minute.										
of Pipe	2	4	6	8	10	12	14	20	40	60	80	100
1 1 1 1 2 2 1 2 2 1 2 3	20 8	28 11 3	Veloc 26 6 2 1	ities Exce IO 4 I·5	16 5 2	23 7 3 0·6	10 4 1	7 1·5 0·5 0·2	6 2 0·8	4·4 1·8	7·8 3·1	4.7

HYDRAULIC DATA

- I cu. ft. of fresh water weighs 62.3 lb. at 60° F.
- ,, ,, sea ,, (av.) ,, 64.0 lb.
- I gallon of fresh water weighs 10.0 lb.
- I cu. ft. = 6.23 gals.
- I cu. ft. per second (cusec) = 60 cu. ft. per minute (c.f.m.) = 374 gals. per minute (g.p.m.) = 28,430 gals. per hour (g.p.h.)
 - I ft. of head = \cdot 433 lb./sq. in.
 - 1 lb./sq. in. = 2.30 ft. of head.
 - I in. on mercury manometer = 0.49 lb./sq. in.
 - 1 atmosphere = 14.7 lb./sq. in. = 29.9 in. of mercury.
 - = 33.9 ft. of water.

DISCHARGE OF SMALL DRAINS AND SEWERS OF CONCRETE OR SALT-GLAZED WARE

Calculated from Barnes' Formula for Slimy Sewers:

 $Q = 31.85 \times 60 \times d^{2.70} \times i^{.50}$ c.f.m.

TABLE 153. Discharge, cu. ft./minute

Hydraulic			Diameter of P	ipe	
Gradient*	4"	6"	9″	12″	15″
I in 40 I in 60 I in 80 I in 100 I in 120 I in 140 I in 160 I in 200 I in 250 I in 300	16 13	46 38 33 29	139 114 98 88 80 74 69 66	302 247 213 191 174 161 151 144 135 121	552 451 390 349 318 295 276 263 247 221 201
Usual minimum gradient	l in 60	l in 90	l in 180	l in 380	l in 500

DISCHARGE OF UN-PLANED WOOD FLUMES

Calculated from Barnes' formula:

 $Q = Av = A \times 182.5 \ m^{.666} \ i^{.569} \times 60 \ c.f.m.$

TABLE 154. Discharge, cu. ft./minute

Hydraulic	ln	Internal Section of Flume, Breadth $ imes$ Depth, in.										
Gradient*	12"×12" 24×6	24×12	24×18 36×12	36×6	36×18	36×24 48×18	48×12					
l in 100 l in 200 l in 300 l in 400 l in 500	383 258 205 174 153	1000 677 538 456 402	1700 1150 910 773 681	622 419 333 282 249	2960 2000 1580 1340 1180	2910 2310 1960 1730	1640 1300 1110 970					

^{*} The hydraulic gradient is not necessarily equal to the gradient of the channel. It is defined as the drop in free water level (e.g. at manhole chambers) divided by the distance measured along the line of flow.

COVERING POWER OF PAINTS AND COATINGS

TABLE 155

Ironwork:		Yards super per gallon
Red lead oil paint, priming		. 80
second coat .		110
White lead oil paint on undercoat .	•	130
Bituminous solution	•	. 100–130
bituminous solution	•	. 100–130
Wrought Woodwork:		
Knotting		. 800
Linseed oil		. 80
Stain		. 100
		. 20
Tar		90
second coat	•	110
third coat .	•	. 120–130
	•	
Enamel finish paint, undercoat .	•	. 100
finish coat .	•	. 70
Enamel, first coat		. 70
second coat		. 80
Varnish, first coat		. 60
second coat		. 80
second coat Carbolineum or sideroleum	•	40
Carbonneam of sideroleum	•	. 10
Rough Woodwork:		
Creosote	•	. 20
Tar		. 10
Plaster:		
Oil paint, priming		. 70
second coat		. 100
		Yards super per lb.
Water paints, distempers, first coat.		. 4
second coat	•	. 8
	•	. 30
Size (dry weight)	•	. 30 . 7
Whitening, first coat	•	
second coat	•	. 10
Stucco or Concrete:		_
Water paints, distempers, first coat.		. 3
second coat		. 6

ELECTRICAL DATA

Ampères = $\frac{\text{Volts}}{\text{Ohms}}$. Watts = ampères \times volts = $(\text{ampères})^2 \times \text{Ohms}$.

The above relations apply to direct current supply. In alternating current circuits the effect of inductance and capacity must be included, but on ordinary systems for the lighting and heating of building these factors may be ignored.

- I Kilowatt (KW) = 1000 watts = 1.34 horsepower.
- I "Unit" or Board of Trade Unit (B.T.U.) = I kilowatt-hour.
- 1 Horsepower = 746 watts = 550 ft. lb./second.

When converting horsepower to watts, etc., the efficiency of the plant must be taken into account.

For thermal and gas equivalents see page 199.

DOMESTIC ELECTRIC CONSUMPTION

TABLE 156

Appliance	Watts
Boiling ring, to boil 1 qt. in 15 mins. Flat iron, 3 lb. Griller, per sq. in of surface Hot plate Kettle, to boil 1 qt. in. 10 mins. Oven 12" × 12" × 15" 16" × 16" × 18" Radiator, per 1000 cu. ft. of space Toaster Vacuum cleaner Water boiler, small, per gal.	1000 350 12 150-300 700 2000 3000 1000 350 150 500-600

The next two tables are based, in part, on data in the Institution of Electrical Engineers' Regulations for the Electrical Equipment of Buildings, reproduced by permission of the Institution.

The second column of Table 157 gives average values for 250 volt cables: the sizes vary slightly among different manufacturers. The diameters of 600 volt cables are somewhat greater.

VULCANISED-RUBBER-INSULATED CABLES

TABLE 157

	Nominal	Current Rat	ing when in C	onduit, amp.	Resistance
Conductor Size	Outside Diameter in.	Not more than 2 Single Cables	Not more than 4 Single Cables	Not more than 8 Single Cables	per 1000 yds. at 60° F, ohms
1/-044 3/-029 3/-036 7/-029 7/-036 7/-044 7/-052 7/-064 19/-044 19/-052	·155 ·180 ·200 ·210 ·235 ·270 ·300 ·345 ·380 ·425	29 38 45 56 65 78	5 10 15 23 30 36 45 52 62	5 5 8 12	15-79 12-36 8-019 5-281 3-427 2-294 1-643 1-084 0-847 0-606

ELECTRIC CONDUITS

Weight, thickness and radius in accordance with B.S. 31.

Cable capacity in accordance with Regulations for the Electrical Equipment of Buildings.

TABLE 158

Outside Diam. of Conduit	j.		§^		₹″		۱″		11	-	13	-	2"		21	
Nominal thickness: Class A (plain) Class B (screwed)	in .04 .05	Ю	.04 .06		.04 .07	- 1	·04 ·07	- 1	·05 ·07	- 1	·06 ·08		·06		·07 ·09	
Weight per 100 ft., lb. ${A \choose B}$	20		26		37 53		50 73		73 93		10 12		13 19		19 24	
Min. radius on C.L. : Elbow or tee Normal or ½ normal bend	1	ī 1	5 1 T	9_6	3 1	7	ا 2	ŀ	1; 3;	t t	3	<u> </u>	2 5		2 ₁	1
Conductor Size						Maxi	mum	Nun	nber	of C	ables	;				
	S	В	S	В	S	В	S	В	S	В	s	В	S	В	S	В
1/-044	2	2	5 4 3 2	4 3 2 2	7 7 5 5 3 2 2	6 5 4 4 2	13 12 10 8 6 5 4 3 2	10 10 8 6 5 4 3 2	20 20 18 12 10 8 6 4 4 3	14 14 12 10 8 7 5 4 3 2	8 7 6 5	6 6 5 4	10	7 6	12	8 7

Conduit is ordered by the outside diameter and class (A or B). Pipe hooks for fixing conduit to walls, and standard connector boxes, etc., are covered by B.S. 31. A normal bend turns through 90° and a half-normal bend through 45°. The cables referred to are 250 v. grade vulcanised-rubber-insulated in accordance with B.S. 7. Column S applies to runs not exceeding 14 ft. between draw-in boxes and not deflecting from the straight more than 15°; column B to runs which deflect more than 15°.

Electric conduits must not be allowed to touch gas or water pipes, but may be earthed to water pipes.

DIMENSIONS AND WEIGHT OF GALVANISED OPEN CISTERNS

TABLE 159

		Weight of		Minimum			
Gals.	Size on Plan	Depth of Water	Size on Plan	Depth of Water	Cistern Ib.	Water lb.	Thickness of Sheet, BG.
20	2' × 1' 4"	1′ 3″	1'8" × 1'8"	1′ 3″	19	200	20
30	2' × 1' 6"	1'7"	$2' \times 2'$	1' 4"	24	300	,,
40	2′ 3″ × 1′ 8″	1′8″	2′ × 2″	1′8″	30	400	,,
50	2' 5" × 1' 10"	1' 10"	2' 1" × 2' 1"	1′ 10″	35	500	,,
60	2'6" × 1'11"	2′	2′ 3″ × 2′ 3″	1'11"	40	600	,,
80	3' × 2' 2"	2′	2' 6" × 2' 6"	2′ 1″	63	800	18
100	3' × 2' 6"	2′ 2″	2' 9" × 2' 9"	2′ 1″	71	1000	,,
150	3' 7" × 2' 10"	2′ 5″	$3' \times 3'$	2′ 8″	130	1500	16
200	4' × 3'	2′ 8″	3′ 6″ × 3′ 6″	2′ 7″	160	2000	١,,
300	4′ 6″ × 3′ 7″	3′ 0″	4' 0" × 4'	3′	200	3000	٠,,

DIMENSIONS OF HOT WATER CYLINDERS

Suitable for 30 ft. working head

TABLE 160

G !!	D:	Height	Weigh	nt, lb.
Gallons	Diameter	over Dome	Cylinder	Water
19 25 30 37 44 62 83 100	1'6" "' 1'8" 1'10" 2'0"	2'0" 2'6" 3'0" 3'6" 4'10" 4'6" 5'4"	50 59 66 76 85 145 152 172	190 250 300 370 440 620 830 1000

HEATING DATA

The heating requirements of normal small brick buildings, in which no effort has been made to reduce heat losses by the incorporation of insulating materials, may be estimated by rule of thumb methods. For thermal units and equivalents see page 199.

HEATING AND RADIATOR AREA REQUIRED PER 1000 CU. FT. OF SPACE

TABLE 161

Temperature	B.Th.U.	Area of Radiator plus Exposed Pi				
Excess over Outside Air	per hour	Low Pressure Hot Water at 160° F.	Low Pressure Steam 5 lb. gauge			
20° F.	1600	12 sq. ft.	7 sq. ft.			
25°	2150	16	9			
30°	2700	20	12			
35°	3400	25	15			
40°	4200	31	19			

Additions to the above should be made separately for the particular circumstances listed below.

For exceptionally high or unsheltered sites	15%
When heating is cut off during the night	15%
For rooms facing north to east	15% 10%
For each external wall of room above one	10%
In lofty rooms: 12 ft. up to 15 ft	5%
15 ft. to 25 ft	10%
over 25 ft	15%

In Post-War Building Studies, No. 1—House Construction, desirable standards of insulation for walls of houses are given. For large buildings it is necessary to make accurate estimates of heat loss so as to secure the best balance between capital expenditure on insulation and annual cost of heating. See the notes following Table 165.

RADIATION FROM HORIZONTAL PIPES TO AIR AT 60° F.

TABLE 162. B.Th.U./hour/lineal foot

Temperature in Pipe					
160° F.	212° F.	226° F. (5 lb. gauge)			
63	96	104			
77	117	128			
96	146	159			
105	160	174			
124	188	206			
146	222	242			
175	266	290			
218	332	358			
	63 77 96 105 124 146 175	160° F. 212° F. 63 96 77 117 96 146 105 160 124 188 146 222 175 266			

HOT WATER SERVICE

The following amounts of storage in hot tank are usually recommended:

Per bath			16 gallons
Per sink:	hotel, etc.	•	40 ,,
	commercial		10–20 ,,
	domestic		7,
Per lavato	ry basin .		3 "

The boiler should be capable of raising the hot tank contents through 100° F. in $1\frac{1}{2}$ to 2 hours. For dimensions of hot tanks, see Table 160. To heat 100 gallons of water through 100° F. in 2 hours requires

To heat 100 gallons of water through 100° F. in 2 hours requires $\frac{100 \times 10 \times 100}{2} = 50,000$ B.Th.U./hr., to which should be added 20% for

loss in exposed circulation in small installations, i.e. about 600 B.Th.U./hr./gallon stored.

I cu. ft. of town gas gives about 500 B.Th.U.

Heating Data—Continued.

SMALL BOILERS BURNING SOLID FUEL

In accordance with the recommendations of B.S. 758.

TABLE 163

Heating Surface		mance J./hour	Smoke Pipe	Storage Vessel	Circulat Diame	ing Pipe ter, in.
sq. ft.	Continuous	Short Period	Diameter in.	gals.	Soft Water	Hard Water
2 2½ 3 4	12000 15000 18000 24000	20000 25000 30000 40000	4 4 <u>1</u> ,,	25-30 25-37 30-45 40-60	 	14 14
5	30000	50000	,,	50-75	1 ½	11-2

For larger installations the makers should be consulted.

All pipes and fittings in heating installations should be of "steam" weight (see Table 144 (M.W.B.)).

The hot draw-off should be not further than 25 ft. from hot water cistern or flow pipe (M.O.H.); a maximum of 16 ft. is preferred (M.W.B.).

BOILER FLUE SIZES

TABLE 164. Thousands of B.Th.U./hr.

Size of		Height of	Flue, feet.	
Flue, in.	20	30	40	50
9×4½ 9×9 14×9 14×14	70 190 320 400	90 230 420 600	120 270 460 800	130 310 500 900

DESIRABLE AIR TEMPERATURES

TABLE 165

Accommodation	Degrees F.
Garages for storage only	40
Bedrooms, corridors in public buildings, dance halls	50
Shops, showrooms, factories for light manual work	55
Churches, lecture halls, theatres, cinemas, concert halls	58-60
Factories, workers seated	60
Offices, living and bed-sitting rooms	62
Hospitals, schoolrooms, nurseries	65
Operating theatres, drying rooms	75

Transmittance of Heat

The property often tabulated in connection with the transmittance of heat through various materials is the Thermal Conductivity, which in British units is defined as the number of British Thermal Units (B.Th.U.) transmitted through a stated thickness of the material per square foot per hour per degree Fahrenheit difference of temperature between the faces. When dealing with different materials in combination a more convenient unit is the Thermal

Resistance, i.e. Thermal Conductivity, defined as the number of hours required to transmit I B.Th.U. through a stated thickness of the material per square foot per degree F. difference of temperature between the faces; these units can be added algebraically.

The temperatures which interest the designer, however, are not those of the faces of the construction but of the air on each side of it, and the rate of loss of heat depends, for a given difference of air temperature, not only on the thermal resistance of the material but also on the readiness with which the outer surface transfers heat to the atmosphere by convection and radiation. The practical unit for heating purposes is the Heat Transmittance Coefficient U, measured in B.Th.U./sq. ft./hr./degree F. difference in air temperature, and it varies according to the exposure.

Table 166 gives the values of \tilde{U} for various constructions with normal exposure; the values should be increased by 10%-20% for walls facing north,

and on exceptionally exposed sites.

The rate of heat loss through a wall of area A sq. ft. and Transmittance Coefficient U, if the inside air temperature is maintained at t° F. above the outside temperature, is $A \times U \times t$ in B.Th.U./hr., and the sum of these quantities for the walls, floor and ceiling or roof of a room or building is equal to the rate of heating required to maintain the difference of temperature assumed.* Boilers and heating appliances are rated in B.Th.U./hr. The outside temperature for maximum heating requirements may be taken as 30° F. in the south of England and 20° F. in the north. Desirable inside temperatures are given in Table 165.

* (Allowance must be made for loss due to draughts, see Table 167.)

TRANSMITTANCE COEFFICIENT U FOR TYPICAL CONSTRUCTIONS

The values of *U* in B.Th.U./sq. ft./hr./degree F. difference of air temperature on the two sides are tabulated below for normal exposure, see the preceding notes. The constructions are listed in order of merit for heat insulation.

TABLE 166

Wall Construction (Dry unless otherwise stated)	U
6" foamed slag concrete 1:6, rendered, 1\frac{1}{2}" wood wool lining	·15
2-44" skins clinker concrete 1:10, 2" cavity, render and plaster	·17
Fletton bkwk, 2" cavity, 4" fibreboard on battens	·15 ·17 ·18
6" 1:2:4 ballast concrete, 1" cavity, aluminium foil, asbestos sheet on battens	!2
4" Bath or Portland stone, 8" foamed slag concrete 1:6, plaster	.19
9" Fletton bkwk., \frac{1}{4}" fibreboard on battens .	.21
9", ,, ,, ,, direct against bkwk.	∙23
2-3" skins clinker concrete 1: 10, 2" cavity, render and plaster	.19 .21 .23 .23
2-24",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	∙25

TABLE 166—Continued.

Wall Construction (Dry unless otherwise stated)	U
7" stone concrete 1:2:4, 1" wood wool slab, render	,,
9" Fletton bkwk, render, plaster on battens internally	-28
Corrugated asbestos sheeting, 4" fibreboard on battens internally	-30
2-44" skins Fletton bkwk, 2" cavity, plaster	-31
3" stone concrete 1:2:4, 2" cavity, 3" clinker concrete 1:6, render	,,
Corrugated steel sheeting, ½" fibreboard on battens internally	,,
9" hollow clay tile, render and plaster	-32
5" clinker concrete 1:10, rendered, papered	,,
4" Bath or Portland stone, 9" Fletton backing, plaster	-32
9" London stock bkwk, dry, plaster	-36
9" Fletton	-37
2-41" skins sandlime bkwk dry, 2" cavity, plaster	,,
9" Fletton bkwk.	-40
10" Stone or ballast concrete 1 : 2 : 4	-41
4" Bath or Portland stone, $4\frac{1}{2}$ " Fletton backing, plaster	.42
8" no-fines concrete 1:6, stone aggregate, render and plaster	·4346
4" hollow clay tiles, render and plaster	.44
9" Sandlime bkwk, dry, plaster	-45
8" stone or ballast concrete 1:2:4	.45
4" studding, lath and plaster both sides	'-
44" hollow clay tiles, render and plaster	.46
9" Sandlime bkwk, dry	-48
6" stone or ballast concrete 1:2:4	-52
9" London stock bkwk, wet, plaster	-53
44" Fletton bkwk.	-54
5" stone or ballast concrete 1:2:4	-55
8" Bath or Portland stone	-56
9" London stock bkwk, wet	-58
4" stone or ballast concrete 1:2:4	-59
4\frac{4}{\sigma} \text{sandlime bkwk.}	-62
	1.15
Corrugated asbestos sheeting, unlined	
,, steel ,, ,,	1.2

The cavities are of normal construction with metal ties and unventilated. Stucco, rough-cast or pebble-dash finishes may be substituted for rendering without materially altering the value of U. Render refers to the outside face and plaster to the inside face.

For constructions not listed see the text following the next Table.

Transmittance Coefficients—Continued.

TABLE 167

Pitched Roof and Ceiling Construction	U				
Tiles, felt and battens. Ceiling ½" fibreboard above ceiling joists, ½" fibreboard ceiling Tiles, battens, boards and felt. Ceiling of plaster Slating, felt underlay, ½" sarking. Ceiling of plaster Corr. steel or asbestos sheets, ½" fibreboard and air space, no ceiling Tiles, felt and battens. Ceiling of plaster Tiles, felt and boards, no ceiling Tiles, felt and battens, no ceiling Corr. asbestos sheets unlined, no ceiling ,, steel ,, ,, ,, ,, ,, ,, perspex ,, ,, ,, ,, ,,					
Flat Roof and Ceiling Construction 2" asphalt, 2" lightweight concrete screed, 6" concrete slab. Ceiling ½" fibreboard on battens 1½" boards and felt, wood joists. Ceiling of plaster ,, ,, ,, ,, ,, ,, No ceiling 6" concrete slab, ½" asphalt 6" hollowtile concrete slab, ½" asphalt As above with ½" fibreboard lining See also wall construction, Table 166.					
Windows and Lights King's Glas-crete pavement lights, single construction double construction 21 oz. glass in wood frames 1 ,, ,, ,, double glazed Floor Construction 2					
Wood blocks or boards on concrete direct on ground I" t and g boarding on wood joists, ventilated below	·15 ·25				

 $^{^1}$ For opening windows the heat loss is usually about doubled through infiltration of air. If the windows remain open special calculations must be made. 19:3 B.Th.U. will raise the temperature of 1000 cu. ft. of air by 1° F. The air in a well-ventilated room is changed twice an hour, and with a coal fire up to 10 times an hour.

² The exposure is less than in the case of walls and roofs, and the values of U here given have been adjusted so as to be suitable for calculation of heat loss.

To arrive at the value of *U* for constructions not listed, Table 168 and the graph following it may be used. Table 168 gives the Thermal Resistance per inch of thickness for various materials. The Thermal Resistance is proportional to the thickness, and from these values the total Thermal Resistance of any combination of materials may be obtained. The corresponding value of *U* for heating calculations may then be read from the graph and will be near enough for practical purposes.

Example :-

II in. ventilated cavity wall of Fletton brickwork, with $\frac{1}{2}$ in. fibreboard on wood battens inside.

		Thermal Resist	ance
From Table 168: 4½ in. Fletton b 2 in. cavity and 4½ in. Fletton b	41 in. Fletton brickwork	$4\frac{1}{2} \times \cdot 16 =$	·72
	2 in. cavity and wall ties	-	·20
	4½ in. Fletton brickwork	as above	·72
	Air space at battens		·90
	½ in. Fibreboard	$\frac{1}{2} \times 3.0 =$	1.50
	Total thermal resistar	nce	4.04
	Total thermal resistan		T-0-F
	From graph, $U = .19$		

Table 166 gives · 18

Thermal Resistance K of Materials

The unit of thermal resistance is the number of hours required to transmit I B.Th.U. per sq. ft. per degree F. difference of temperature between the faces, and is given below **per inch of thickness**. The figure in the first column gives the order of merit in this table.

TABLE 168

	Material	Thermal Resistance		Material	Thermal Resistance
22 18 9 2 37 18 6 24 23 30 29 25 26 27 10 21 20 19 16 12 9 38 3	Air space 2", and ties ,, ,, ,, (unventilated) ,, ,, between wall and lining on wood battens As above with aluminium foil curtain in cavity Aluminium Asbestos cement sheets Boards, see Hardwood, Softwood. Breeze, see Concrete, Clinker Brickwork, diatomaceous Fletton, dry Ldn. stocks, dry wet sandlimes, dry Cavity, see Air Space. Clinker, see Concrete. Concrete, ballast 1 : 1 : 2 1 : 2 : 4 do., no fines cellular clinker 1 : 6 1 : 10 foamed slag 1 : 6 1 : 10 pumice 1 : 6 1 : 10 Copper Cork slab Diatomaceous earth, see	-20★ -50★ -90★ 3.4★ -00067 -48	29 28 2 13 14 35 36 33 4 31 8 17 10 8 11 2 30 8 34	Fireclay, at 600° C. Glass Glass silk Hardboard Hardwood, mahogany oak, teak Iron, cast wrought Lead Magnesia pipe insulation Marble Perspex Plaster do. partition slab Plasterboard Plastics, laminated Plywood Pumice, see Concrete. Rendering, cement abt. Rubber Slagwool (silicate cotton) Slate Softwood Steel Stone, Bath or Portland Stucco Wood, see Hardwood, Softwood. Wood wool slab Zinc	
1 4 5	Brickwork. Felt Fibreboard, insulating laminated	3·8 2·5–3·0 1·9		For proprietary building boards see Fibreboard, Hardboard, Plasterboard, etc.	

^{*} The values for air spaces must be taken as stated and not regarded as per inch of thickness.

I B.Th.U. (British Thermal Unit) is the quantity of heat required to raise the temperature of I lb. of water by 1° F. (at 63° F.).

I c.g.s. unit of thermal conductivity is the number of gm.-calories transmitted per sq. cm. per second per cm. thickness per degree C.

I B.Th.U. per sq. ft. per hour per degree F. per inch = 2903 c.g.s. units.

I cu. ft. of ordinary town gas represents about 500 B.Th.U.

I Gas Therm = 100,000 B.Th.U. = about 200 cu. ft. of town gas.

= 29.32 kilowatt-hours or "Units."

I B.Th.U. = 0.293 watt-hours = 778 ft. Ib.

I Kilowatt-hour = 3411 B.Th.U. = 0.0341 gas therms = about 6.8 cu. ft. of town gas.

In domestic installations I gas therm will raise 100 gals. of water by about 150° F., and I B.T.U. will raise 100 gals. of water by 2-3° F.

Gas Consumption

TABLE 169

			Cu.	ft. per hou
Cooker (13 cu. ft. oven	, hotp	late)		90
Fire, full on: 10 in.	. '			30
14 in.				40
21 in.				65
Geyser (2 gals. per min	ute)			120
Refrigerator, domestic	· ·			2
Water Heater: bath	• .			200
storag	e, 20 g	al.		40
wash o	opper	, 5 gal		25

Size of Gas Pipes

The chart below gives the flow in pipes of steam weight (see Table 144) for ordinary conditions.

FLOW OF GAS IN STRAIGHT PIPES

WHITWORTH BLACK BOLTS, NUTS, LOCKNUTS AND WASHERS HEX-ROUND-HEX (B.S. 28)

The length is measured to the underside of head

TABLE 170.

Weight per bolt in lb.

Length in.	ł"	<u>#</u> ″	1 "	8″	₹″	₹″	l" dia.	
	·042 ·045 ·049 ·052 ·056 ·059 ·063 ·065 ·069 ·075 ·082 ·089 ·096 ·103	·106 ·114 ·122 ·130 ·138 ·145 ·153 ·161 ·169 ·185 ·200 ·216 ·232 ·247	·222 ·236 ·250 ·264 ·278 ·292 ·305 ·319 ·333 ·361 ·389 ·417 ·445 ·472 ·500 ·556 ·612 ·667 ·723	376 398 419 441 463 484 506 528 549 593 637 680 724 767 810 897 984 1 071 1 158 1 245	·612 ·643 ·675 ·706 ·737 ·769 ·800 ·831 ·862 ·925 ·988 I ·050 I ·113 I ·175 I ·238 I ·363 I ·488 I ·613 I ·739 I ·863 I ·989	.944 .986 l.029 l.072 l.114 l.157 l.999 l.242 l.327 l.412 l.497 l.583 l.667 l.753 l.923 2.094 2.264 2.434 2.605 2.775	1·394 1·449 1·505 1·561 1·616 1·672 1·727 1·838 1·950 2·061 2·172 2·283 2·394 2·617 2·839 3·062 3·284 3·507 3·729	
Thick- ness of head	-23	·34	·45	·56	-67	·78	-89	inches
Weight of one nut Thickness of	·0134	·0345	·0757	·1394	·2164	·3203	·4611	lb.
Thick- ness of locknut	-18	·26	-34	-43	-51	.59	-68	inches
Thick- ness of washer	·06 4	-080	·104	·128	·144	·160	·176	inches
Wt. per 100 washers Dia-	-44	I <i>-</i> 02	2.20	4.04	6.35	9.38	13.2	lb.
meter washer	i	7	1 4	13	1 2	17	21	inches

COACH SCREWS

TABLE 171. Weight per gross, lb.

Length		Diameter	
in.	₹″	1″	8"
1½ 2 2½ 3 3½ 4 5	11 13 15 17 19 21 25 29	24 26 30 34 38 42 49 59	46 51 57 62 68 79 90

LEWIS BOLTS (RAG BOLTS) For nuts ee Whitworth bolts

TABLE 172. Dimensions and Weight

Diam.	<u>1</u> ″	§″	₹″	l"	1″	11,7	۱ <u>۱</u> ″
L	5″	6"	6″	7″	8″	9″	10″
ı	3″	3″	3″	3½″	4½″	5″	6"
ь	7″	1 1	14"	1½"	1층"	1 7 ″	2분″
Weight Ib.	·40	·73	1.02	1.63	2.45	3.53	5.00

RIVET HEAD DIMENSIONS Calculated in accordance with B.S. 275

TABLE 173

Nominal	Snap o	or Pan	Counte	rsunk
Diameter	Diameter	Projec- tion	Diameter	Depth
in.	in.	in.	in.	in.
-215894478	-80 -00 -20 -40 -60	·35 ·44 ·53 ·61 ·70	·75 ·94 I·I2 I·31 I·50	·22 ·27 ·33 ·38 ·43

The nominal diameter is the diameter of the hole in which the rivet is driven.

COPPER ROVES

TABLE 174

Size, in.	ŧ	76	Ŧ
lb. per 1000	3	33	5

WIRE NAILS

TABLE 175.

Number in 1 lb.

s.w.g.					Leng	th, in.				
3.W.G.	ŧ"	1"	11,"	2"	21"	3"	31,"	4"	5″	6"
0 2 4 6 8 10 12 14 16	2760	710 1140 2070	165 274 473 761 1380	62 86 124 205 350 571	36 50 69 99 164 284	22 30 41 57 83 137 236	19 26 35 49 71 117	11 16 23 31 43 62 103	9 13 18 25 35	8 11 15 21

Common constructional sizes are shown in bold figures.

WOOD SCREWS

TABLE 176

Size	Diameter in.	Size	Diameter in.
0 1 2 3 4 5 6 7 8 9	-052 -066 -080 -094 -108 -122 -136 -150 -164 -178 -192	11 12 13 14 15 16 17 18 19 20	·206 ·220 ·234 ·248 ·262 ·276 ·290 ·304 ·318 ·332

The length of roundhead screws is measured to the underside of head, countersunk screws overall.

RAILWAY RAILS

TABLE 177.

British Standard Flat Bottom

Weight	Dime	nsions in i	nches	Section	B.S.
lb. per yard	Height	Width of Head	Width of Base	Modulus Z in.³	No.
14 20 25 30 35 40 45 50 65 70	2·125 2·5 2·875 3·125 3·375 3·625 3·875 4·125 4·312 4·5 4·687	1-156 1-375 1-5 1-625 1-75 1-875 1-969 2-062 2-156 2-25 2-312 2-375	2·125 2·5 2·75 3·0 3·25 3·5 3·75 3·937 4·125 4·312 4·437 4·625	1·37 1·88 2·44 3·10 3·77 4·55 5·43 6·22 7·04 7·79 8·73	536
75 80 85 90 95 100 110	5.062 5.25 5.437 5.625 5.812 6.0 6.25 6.5	2·437 2·5 2·562 2·625 2·687 2·75 2·875 3·0	4·812 5·0 5·187 5·375 5·562 5·75 6·0 6·25	9·72 10·75 11·61 13·05 14·22 15·37 17·41 19·73	" " " " " " " " " " " " "

TABLE 178. British Standard Bull Head (B.S. 9)

Weight Ib. per yard	Dimensions, inches		Section
	Height	Width of Head	Modulus Z in.³
60 65 70 75 80 85 90 95 100	4-75 4-875 5-0 5-125 5-375 5-469 5-547 5-719 5-906	2-312 2-375 2-437 2-5 2-562 2-687 2-75	6·47 7·22 7·92 8·53 9·64 10·44 11·00 11·77 12·47

WEIGHT AND STRENGTH OF MANILA ROPES In accordance with B.S. 431—Manila Ropes for General Purposes

TABLE 179. 3 Strand (Hawser Laid) Manila Rope

		S	afe Load in Cw	rt.	
Circum- ference in.	nce Diameter	Grade I or Special Quality.	Grade II or Standard Quality	Grade III or Merchant Quality	Weight per 100 ft. lb.
	5 16	I·8 2·7 4·0 5·3	1·6 2·4 3·5 4·7	1·4 2·1 3·1 4·1	3·6 4·7 7·2 9·6
2 4 1 2 2 3	5 8 16 7 8	7·1 8·5 10·5 12·7	6·3 7·6 9·4 11·3	5·5 6·6 8·2 9·9	13·1 15·1 20·3 23·9
3	 5 	15·0 17·4 20·0 22·8	13·3 15·5 17·7 20·2	10·7 13·6 15·5 17·7	28·6 33·4 39·3 43·9
4 4 1074	1 <u>‡</u>	25·6 28·5 31·9 35·1	22.7 25.3 28.3 31.2	19·9 22·1 24·8 27·3	51·3 57·2 64·3 71·5
5		38.8	34-4	31.8	80.0

The safe loads given above are based on a Factor of Safety of 6. Where the rope is knotted or spliced a deduction of $\frac{1}{3}$ should be made.

4 STRAND (shroud laid) has a central core; the strength is 10% less than for 3 strand and the weight 5%-10% more.

SISAL has about the same strength and weight as Manila rope.

TARRED HEMP weighs 25% more and is 30% weaker than Manila.

COIR weighs 25% less and is about 70% weaker than Manila.

Cordage is always specified by the circumference.

WEIGHT AND STRENGTH OF STEEL WIRE ROPES

In accordance with B.S. 302—Round Strand Steel Wire Rope for Cranes. The values below are for Best Patent Steel 80-90 tons/sq. in. For other qualities multiply the strength by :—

Special Improved Patent Steel 90-100 to	tons/sq.	in.		1.10
Best Plough Steel 100-110	,,,	,,		1.23
Special Improved Plough Steel 110-120	**			1.35

		Saf				
Circum- ference	Approx. Diameter	(Construction			
in.	in.	6/19	6/24	6/37	lb.	
	5 - 12 10 + 0 10 10 10 10 10 10 10 10 10 10 10 10 1	-46 -55 -70 -82 1-00 1-21 1-35 1-84 2-02 2-32 2-85 3-42 4-31 5-91 6-74 7-60 9-12 10-7	.40 .55 .67 .79 .95 I.09 I.25 I.71 I.92 2.13 2.71 3.22 3.79 4.56 5.22 5.92 6.87 8.10	-47 -57 -65 -78 -96 1-13 1-34 1-78 2-02 2-29 2-71 3-34 4-03 4-56 6-22 7-15 8-38 10-0	18 21 25 30 36 43 50 66 74 84 102 123 154 184 217 247 275 336 392	
	diameter circumf.	7.5	7.0	6.0		

TABLE 180. Steel Wire Ropes—80-90 ton quality

The safe loads given above are based on a Factor of Safety of 6, which is usually sufficient. The sheave diameters are those recommended for rope speeds up to 200 ft./minute; the life of the rope is shortened if smaller sheaves are used.

SHORT LINK WROUGHT IRON CHAINS

The working loads given below are in accordance with the recommendations of B.S. 394—Short Link Wrought Iron Crane Chains, and of the Home Office, for chains of "Standard" quality (corresponding approximately to the old BBB quality).

Where a chain is subject to shock or passes over an edge or where there is any special hazard the working load is to be substantially less than the values tabulated.

Chains become brittle in use and should be sent periodically for heat treatment.

The nominal diameter is the diameter of the material in the link; the overall width of each link is 3½ times the nominal diameter.

TABLE 181

Nominal Size. in.	Weight per foot. Ib.	Working Load (see notes above) tons
5 67 87 6- x0 67 80 47 8	1·25 1·71 2·25 2·92 3·75 4·50 6·17 8·5	-55 -80 1-12 1-50 1-87 2-32 3-37 4-57 6-0

A separate specification is issued covering Pitched or Calibrated chain for working over chain wheels.

STRENGTH OF SHACKLES

In accordance with B.S. 825-Mild Steel Shackles for Lifting Purposes

TABLE 182.

D Shackles

Managaria	Sm	all D Shack	les	Large D Shackles		
Material Diameter in.	Jaw Opening in.	Pin Diameter in.	Working Jaw Load Opening tons in.		Pin Diameter in.	Working Load tons
70 - hude de 7 - 0	187-18 147-18-1N		·6 I·0 I·5 2·0 2·75 3·5	1 B 1 1 1 1 2	-kurborden b	·5 ·75 I·25 I·75 2·25 3·0

TABLE 183.

Bow Shackles

M	Sma	II Bow Shac	kles.	Large Bow Shackles			
Material Diameter in.	Jaw Opening in.	Pin Diameter in.	Working Load tons	Jaw Opening. in.	Pin. Diameter in.	Working Load tons	
	14	- ja-jarjari-i-	.3 .5 .75 I.25 I.75 2.25			.35 .6 I.0 I.5 2.0 2.5	

GENERAL TABLES

GENERAL TABLES

SIMPSON'S RULE

To find the area under a curve as shown in the sketch:—

Divide the base into an even number of parts so that there is an odd number of ordinates. Then if S_E is the sum of the lengths of the end ordinates E, S_A the sum

of the alternate ordinates A and S_B the sum of the remaining (even) ordinates B, then the area of the figure is approximately

$$\frac{b}{3}(S_E+4S_A+2S_B)$$

The greater the number of ordinates used, the more accurate will be the result.

QUADRATIC EQUATIONS

If
$$ax^2+bx+c=0$$
,
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 or, if $x^2+ax=b$,
$$x=-\frac{a}{2}\pm\sqrt{b+\left(\frac{a}{2}\right)^2}$$

AREAS OF SMALL CIRCLES

TABLE 184. For Round Bars at different spacings see Table 88

S.W.G. or Diameter in.	Area sq. in.	Diameter In.	Area	Diameter in.	Area sq. in.
20gg 18gg 13gg 12gg 13gg 12gg 11gg 12gg 11gg 12gg 11gg 12gg 11gg 12gg 11gg 1	0010 0018 0032 0050 0066 0085 0106 0122 0129 0163 0201 0243 0276 0290 0353 0490 0499 0599 0707 0767	28 7 - 2 9 - 28 24 - 26 18 - 18 - 18 - 18 -	110 150 196 248 307 371 442 518 601 690 785 890 994 1-107 1-227 1-484 1-767 2-073 2-405 2-761 3-976	21/23 33/34 44/44/55/67 890112	4.908 5.939 7.069 8.295 9.621 11.04 12.57 14.18 15.90 17.72 19.64 21.64 23.75 25.96 28.27 38.48 50.27 63.62 78.54 95.03

REGULAR POLYGONS

TABLE 185

N	Number			Radius of Circle		
Name	of Sides	la ×	inside i×	Outside l×	Angle A	
Pentagon	3 4 5 6 7 8 9	·4330 I·0 I·720 2·598 3·634 4·828 6·182 7·694 9·366	-2887 -5 -6879 -8660 1-038 1-207 1-374 1-539 1-703	·5773 ·7071 ·8506 I·0 I·152 I·307 I·462 I·618 I·775	60° 90° 108° 120° 128 <u>1</u> ° 135° 140° 144°	
Dodecagon	. 12	11-196	1.866	1.932	150 ³	

PROPERTIES OF THE CIRCLE

Chord of angle $A = \frac{c}{r}$

For areas of small circles see Table 184.

Circumference of circle =
$$2\pi r$$

$$\pi = 3.141593$$
 $\pi^2 = 9.869604$

Arc length
$$abc = r.A$$
 (A in radians)

$$=\frac{8l-c}{3}$$
 approx.

 $1 \text{ radian} = 57.296^{\circ}$

$$l = \sqrt{h^2 + \frac{c^2}{4}}$$

$$c = 2\sqrt{2rh - h^2}$$

$$r=\frac{4h^2+c^2}{8h}$$

$$h=r-\sqrt{r^2-\frac{c^2}{4}}$$

Moment of inertia about a diameter = $\frac{\pi d^4}{64}$ = .0491 d^4

TRIGONOMETRICAL FUNCTIONS

See table on next page

$$\sin A = \frac{a}{r}$$

$$\text{chord of } A = \frac{c}{r} \qquad \text{versine } A = \frac{v}{r} = 1 - \cos A$$

$$\tan A = \frac{a}{b}$$

$$\frac{\sin A}{\cos A} = \tan A \qquad \sin^2 A + \cos^2 A = 1$$

$$\sin^2 A + \cos^2 A = 1$$

$$\cos A = \frac{b}{r}$$

$$1 + \tan^2 A = \sec^2 A = \frac{1}{\cos^2 A}$$

PROPERTIES OF TRIANGLES

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

If
$$s = \frac{1}{2}(a+b+c)$$
, area of triangle $= \sqrt{s(s-a)(s-b)(s-c)}$

TRIGONOMETRICAL FUNCTIONS

TABLE 186.

See diagrams on previous page

Degrees	Sine	Tan		Cos	Chord		
0	0	0	&	1.0000	0		90
ı	·01745	·017 46	57-290	·99985	-01745	1-4018	89
2	·03490	·03 4 92	28-636	.99939	.03490	1.3893	88
3	-05234	·05241	19-081	-99863	05235	1-3676	87
4	06976	-06993	14-301	-99756	-06980	1-3640	86
5	-08716	-08749	11-430	-99619	.08724	1.3512	85
6	·10453	-10510	9.5144	·99452	·10467	1-3383	84
7	·12187	·12278	8-1443	·99255	·12210	1.3252	83
8	-13917	·14054	7-1154	·99027	·13951	1.3121	82
9	·15643	·15838	6.3137	·98769	·15692	1.2989	81
10	·17365	·17633	5.6713	98481	·17431	1.2856	80
11	·19081	-19438	5-1445	·98163	·19169	1.2722	79
12	·20791	-21256	4.7046	·97815	-20906	1.2586	78
13	-22495	·23087	4.3315	·97437	-22641	1.2450	77
14	-24192	-24933	4.0108	·97030	-24374	1-2313	76
15	·25882	-26795	3.7320	-96593	-26105	1.2175	75
16	·27564	·28675	3.4874	.96126	-27835	1.2036	74
17	·29237	-30573	3.2708	-95630	-29562	1.1896	73
18	·30902	-32492	3.0777	·95106	·31287	1.1756	72
19	-32557	·34433	2.9042	-94552	·33010	1.1614	71
20	-34202	-36397	2.7475	-93969	·34730	1-1471	70
21	-35837	·38386	2.6051	·93358	·36447	1-1328	69
22	-37461	·40403	2.4751	-92718	-38162	1-1184	68
23	·39073	·42447	2.3558	·92050	·39874	1.1039	67
24	·40674	·44523	2.2460	·91355	·41582	1.0893	66
25	·42262	·46631	2-1445	·90631	·43288	1.0746	65
	Cos		Tan	Sine		Chord	Degrees

TABLE 186—Continued.

Degrees	Sine	Tan		Cos	Chord		
26	·43837	·48773	2.0503	-89879	·44990	1.0598	64
27	· 4 5399	·50953	1.9626	-89101	·46689	1.0450	63
28	· 4 6947	·53171	I ·8807	-88295	·48384	1.0301	62
29	·48481	·55431	I ·8040	-87462	·50076	1.0151	61
30	·50000	·57735	1.7320	-86603	·51764	1.0000	60
31	·5150 4	·60086	1-6643	-85717	·53 44 8	·98 4 85	59
32	·52992	-62487	1-6003	·84805	·55127	-96962	58
33	·54464	-64941	1.5399	-83867	·56803	·95432	57
34	-55919	-67451	1.4826	-82904	·58474	·93894	56
35	·57358	·70021	1-4281	-81915	-60141	·92350	55
36	·58778	·7265 4	1-3764	-80902	-61803	·90798	54
37	-60181	·75355	1-3270	-79864	-63461	89240	53
38	-61566	.78129	1.2799	·78801	-65114	·87674	52
39	-62932	-80978	1.2349	-77715	-66761	·86102	51
40	·64279	-83910	1-1917	·76604	-68404	·84524	50
41	·65606	-86929	1.1504	·75471	-70041	·82939	49
42	-66913	-90040	1-1106	-74314	-71674	·81347	48
43	·68200	·93252	1.0724	·73135	·73300	·79750	47
44	-69466	-96569	1.0355	·71934	·74921	·78146	46
45	-70711	1.0000	1.0000	-70711	·76537	·76537	45
	Cos		Tan	Sine		Chord	Degrees

IMPERIAL AND OTHER MEASURES with metric and U.S. equivalents

TABLE 187

LENGTH

```
1 \text{ mil} = .001 \text{ in.}
                                                      I thread (yarn) = 1\frac{1}{2} yds.
1 \text{ cm.} = .3937 \text{ in.} = .0328 \text{ ft.}
                                                      I fathom = 6 ft.
1 \text{ in.} = 25.40 \text{ mm.} = 2.540 \text{ cm.}
                                                      I rod or pole = 5\frac{1}{2} yds.
                                                     I knot (sashline) = 12\frac{1}{2} yds.
I line (printing) = 6 points = 1.12 in.
I nail (cloth) = 2\frac{1}{4} in.
                                                      1 chain (Gunter) = 2\overline{2} yds. = 100
I palm = 3 in.
                                                        links
I hand = 4 in.
                                                      I skein (yarn) = 120 yds.
I link (Gunter) = 7.92 in.
                                                      1 \text{ cable} = 600 \text{ or } 608 \text{ ft.}
I foot = 12 \text{ in.} = .3048 \text{ m.}
                                                      1 \text{ coil (rope)} = 600-720 \text{ ft.}
                                                      I furlong = 10 chains = 220 yds.
1 \text{ yard} = 3 \text{ ft.} = .9144 \text{ m.}
I metre = 3.281 ft. = 39.37 in. See also Tables 188, 189.
                  1 mile = 8 furlongs = 1760 yds. = 5280 ft. = 1.609 km.
                  I nautical mile (Admiralty) = 6080 ft. average
                  1 \text{ km.} = .6214 \text{ mile}
```

AREA

```
I sq. in. = 6.452 sq. cm. I sq. cm. = .1550 sq. in. I sq. ft. = .929.0 sq. cm. = .0929 sq. m. I sq. yd. = .98361 sq. m. I sq. m. = .10.76 sq. ft. I square = .100 sq. ft. I rod, pole or perch = .30\frac{1}{4} sq. yds. = .272\frac{1}{4} sq. ft. I rood = .40 perches I acre = .4 roods = .10 sq. chains = .4840 sq. yds. = .4046.89 sq. m. I sq. mile = .640 acres = .2.5899 sq. km.
```

VOLUME (see also Liquid Measure)

```
| c.c. = .0610 cu. in. | c.c. = .0610 cu. in. | cu. ft. = 1728 cu. in. = 28,320 c.c. = .0283 cu. m. | cu. yd. = 27 cu. ft. = .7645 cu. m. = 21.04 bushels | cu. m. = 1.308 cu. yds. = 35.31 cu. ft. | bushel = 1.2836 cu. ft. | bushel = 1.032 U.S. bushel | Petrograd standard = 165 cu. ft. | bushel = 4 pecks = 8 gals. | bushel of cement weighs | cwt. | lod (bricklayer's) = \frac{2}{3} cu. ft. | sack = 2 or 4 bushels | quarter = 8 bushels
```

WEIGHT

```
= .0648 \text{ gm.} = .0001429 \text{ lb.}
l grain
            = 16 \text{ drams} = 28.350 \text{ gm}. \text{ I gm.} = .0353 \text{ oz.}
l oz.
             = 16 \text{ oz.} = 453.59 \text{ gm.} = 7000 \text{ grains}
I lb.
I stone = 14 lb. | Smithfield stone = 8 lb.
I quarter = 28 lb.
                           l cental = 100 lb. l centner = 50 kgm.
1 \text{ cwt.} = 4 \text{ quarters} = 112 \text{ lb.}
           = 20 \text{ cwt.} = 2240 \text{ lb.} \quad \text{I U.S. ton (short ton)} = 2000 \text{ lb.}
ton
            = 1.0160 \text{ tonnes} = 1016.0 \text{ kgm}. 1 tonne = .9842 \text{ ton}
ton
             = 1000 \text{ gm.} = 2.204 \text{ lb.} 1 tonne = 1000 \text{ kgm.} = 2204 \text{ lb.}
i kgm.
```

Imperial Measures and Equivalents—Continued.

PRESSURE

```
\begin{array}{lll} I \ b./sq. \ in. &= \cdot 0643 \ ton/sq. \ ft. = \cdot 0703 \ kgm./sq. \ cm. \\ I \ ton/sq. \ ft. &= I5\cdot55 \ lb./sq. \ in. = I\cdot094 \ kgm./sq. \ cm. \\ I \ kgm./sq. \ cm. &= I4\cdot22 \ lb./sq. \ in. = \cdot 9141 \ ton/sq. \ ft. \end{array}
```

For atmospheric and hydraulic equivalents see page 186.

DENSITY

```
I lb./cu ft. = .0160 gm./c.c. I gm./c.c. = 62.43 lb./cu. ft. 100 lb./cu. ft. = 1.205 tons/cu. yd. = 0.05787 lb./cu. in. I ton/cu. yd. = 82.96 lb./cu. ft. = 1329 kgm./cu. m.
```

TEMPERATURE

```
I° C. = \frac{1}{6}° F. I° F. = \frac{5}{9}° C. Freezing point = 32° F. = 0° C.
```

LIQUID MEASURE

```
60 minims = I fluid drachm = ·222 cu. in.
8 fl. dr. = I fl. oz. = I·732 cu. in.
20 fl. oz. = I pint = 4 gills = 34·68 cu. in. = 568·3 c.c.
I quart = 2 pints. I pottle = 2 quarts
I gallon = 4 quarts = 8 pints = 277·463 cu. in. = ·1605 cu. ft.
I cu. ft. = 6·230 gallons
I litre = I 000 c.c. = ·2200 Imperial gallons = I·76 Imp. pints
I U.S. gallon = ·833 Imp. gallons
I Imp. gallon = I·196 U.S. gals. = 4·546 litres
I Imp. gallon of pure water weighs I0 lb.
I Reputed quart = 0·60 Imp. quart.
```

BEER AND WINE MEASURES

```
I Pin =4\frac{1}{2} gals.
I Firkin or \frac{1}{4} barrel = 9 gals.
I Anker = 10 gals.
I Aum = 30 gals.
I Barrel = 36 gals.
1 Tierce = 42 gals.
I Hogshead, beer and sherry = 54 gals.
             brandy
                              = 46-60 gals.
I Puncheon, beer
                              = 72 gals.
             brandy and rum = 120 gals.
                              = 108 gals.
I Butt, beer and sherry
                               = 92-115 gals.
I Pipe
```

DECIMAL AND METRIC EQUIVALENTS FOR EACH 1/32 INCH

TABLE 188

Frac	tion	Decimal	Milli- metres	Fraction	Decimal	Milli- metres
32 32 32	1 6 8	·03125 ·0625 ·09375 ·125	.79 1.59 2.38 3.17	17 32 16 19 32 5	·53125 ·5625 ·59375 ·625	13·49 14·29 15·08 15·87
\$2 32 32	136 14	·15625 ·1875 ·21875 ·25	3·97 4·76 5·56 6·35	21 32 14 23 32 34	·65625 ·6875 ·71875 ·75	16·67 17·46 18·26 19·05
32 31 31	5 16 3	·28125 ·3125 ·34375 ·375	7·14 7·94 8·73 9·52	25 32 13 27 32 7	·78125 ·8125 ·84375 ·875	19·84 20·64 21·43 22·22
13 15 15	7/6 1/2	·40625 ·4375 ·46875 ·5	10·32 11·11 11·91 12·70	3.5 3.5 3.1 3.2	·90625 ·9375 ·96875	23·02 23·81 24·62 25·40

MM. AND CM. EQUIVALENTS IN INCHES

TABLE 189

MM.	Inch	MM.	Inch	MM.	Inch	CM.	Inches
1	-03937	11	·4330	21	·8268	1	-3937
2	-07874	12	·4724	22	-8662	2	·7874
3	-1181	13	-5118	23	·9055	3	1.181
4	·1575	14	-5512	24	.9449	4	1.575
5	·1968	15	-5905	25	·9842	5	1.968
6	-2362	16	-6299	25.4	1.0000	6	2.362
7	·2755	17	·6693			7	2.755
8	-3149	18	·7087]	8	3-149
9	-3543	19	·7480		1	9	3.543
10	-3937	20	·7874			10	3.937

SIZES FOR DRAWINGS

The following sizes are recommended as standards in B.S. 308—Engineering Drawing Office Practice, which also gives a list of standard abbreviations for use on drawings.

The more common commercial sizes of paper corresponding to these dimensions have been added.

TABLE 190

_	Dimensions, inches				
Commercial Size	Outside Edges of Sheet	Maximum Border Size			
	72 × 40 60 × 40	70 × 38 58 × 38			
Antiquarian	53 × 30	52 × 29			
Double Elephant	40 × 30 40 × 27	39 × 29 39 × 26			
Imperial	40 × 15 30 × 22	39 × 14 29 × 21			
Demy	27 × 20 20 × 15	26 × 19 19 × 14			
Foolscap	15 × 10 13 × 8	$\begin{array}{c} 14\frac{1}{4} \times 9\frac{1}{4} \\ 12\frac{1}{4} \times 7\frac{1}{4} \end{array}$			
Quarto	10 × 8	9¼ × 7¼			

PROPERTIES OF METALS

The physical properties of some metals vary widely according to the conditions of manufacture, e.g. the proportions of constituent metals, rate of cooling, subsequent heat treatment and working, and the size of the specimen.

Table 191 gives the Density, Ultimate Tensile Stress, Yield Stress (tensile), Young's Modulus and the Elongation of the most commonly used metals.

For metals for which the density and no other information is given, see Table 93.

The relative densities of certain common metals are also given on page 13 in connection with the weight of sheets.

The Ultimate Compressive Stress of ductile materials is uncertain, but may be taken as approximately equal to the tensile Yield Stress; in brittle materials the compressive strength is generally higher than the tensile, and for grey cast iron is from 3 to 4 times as great.

The Yield Stress in Compression is generally the same as in tension, but in cast iron is higher (10–12 tons/sq. in.).

The Elastic Modulus in Compression is about the same as in tension; in shear it may be taken at 0.4 of the values tabulated.

The **Ultimate Shear Stress** is generally 0.8 to 0.85 of the ultimate tensile stress.

For representative values of Temperature Coefficient of Expansion, Brinell Hardness and Melting Point, see Table 192.

The Working Stress in metals is usually taken at about 0.3 of the ultimate stress, whether tensile or shear. For working stresses in structural steel, see page 136.

A few representative light alloys are included in the tables; for further information the reader is referred to the numerous D.T.D. specifications and to an article by Hardy and Watson in the Structural Engineer, February, 1946.

PROPERTIES OF METALS

For composition of the alloys mentioned, see Table 193. For other properties see the preceding Notes. Elongation is measured on 2" specimen for the aluminium alloys and on 8" specimen for other metals.

TABLE 191

Metal	Weight lb./cu. ft.	Ultimate Tensile Stress	Yield Stress	Young's Modulus	Elongation
		to	ns per sq. in	•	%
ALPAX die cast sand cast	16 4	13-15 10-12	7 6	4820 ,,	2-5
ALUMINIUM, cast rolled hard-rolled do. annealed 5–20% Zn.	159 167 ,,	5·5 10·8 6·1 5–13	2·2 3–12	4000 4560 	20 7 39 3–16
ALUMINIUM BRONZE	471	Up to 42	20-25		8–19
BA/29, cast	164	16		4800	7
BERYLLIUM BRONZE quenched and heat treated	512	76–82	67		35
BIRMABRIGHT, various alloys	167	11–25			3–18
BRASS (a) cartridge: chill cast rolled sheet do. annealed wire (b) Admiralty: drawn tube do. reheated	520 533–536 ., ., 530	16 30–40 20–23 42 21	6 20 6	5800	60-70 10-15 65-75
rolled plate ½" (c) Naval, annealed	,,	26 24–30		5800	20 20–50
BRONZE (see also Aluminium, Beryllium, Manganese and Phosphor Bronzes) 90/10 cast cold drawn quenched, 400° C. ,, 800° C.	520 549 	15 38 12 13	9 26 6·6 4·5	5400	10 12 14 30
CERALUMIN "C" chill cast	170	24		4500	
CHROMADOR, see Steel.					

TABLE 191—Continued.

Metal	Weight lb./cu. ft.	Ultimate Tensile Stress	Yield Stress	Young's Modulus	Elongation
		to	ns per sq. in.		%%
COPPER, cast hammered or sheet wire, annealed do. hard-drawn	547 558 555	11 16 19 27	3.6	6700 7600	25 4
CUPRO-NICKEL 80/20 60/40	558 ''	23 30		8000 9200	40 <u>-4</u> 5 45
DELTA METAL, see Manganese Bronze.					
DURALUMIN "E"	174	26–36	16	4800	8
ELEKTRON, cast forged rolled, annealed	108–113 ,, ,,	9 20 21	7 9 "	2850 ;;	5 18 15
GUNMETAL, Admiralty, cast rolled	528 549	8 14			10
HIDUMINIUM "Du"	175	26–27		4800	15
INCONEL	533	45–55			15-18
IRON, cast, grey* malleable:	450	5–18	3	5-10000	slight
Blackheart Whiteheart spun	460 468	22-25 22-28 15-18		11000 7000	12-18 5-7
wrought, sheet wire :	480	20–27	12–18	12000	25–30
annealed hard-drawn	,,	30 38			
LEAD (see also Ternary alloy)	707	0.8-1.0		320	20–65
MANGANESE BRONZE	537	25–27	11-13		46-48
MONEL, cast hot rolled sheets and rods	548	19-23 30-34	14·5 21–24	10000	12 30-35
MUNTZ METAL cast	524	24			
hot rolled and cold drawn extruded and cold	557	25.8	6.5		48
drawn NITRALLOY, see Steel.		28.4	13.9		31

TABLE 191—Continued.

Metal	Weight lb./cu.ft.	Ultimate Tensile Stress	Yield Stress	Young's Modulus	Elongation
		to	ons per sq. in		%
NITRICAST-IRON sand cast centrifugal cast		25 28		8500 9800	
NORAL 26ST	174	28–32			8
PHOSPHOR-BRONZE malleable cast hard drawn wire	540 550	1618 5558	8	7–8000	17 10
STEEL, see also pp. 136, 137 cast, annealed Chromador -8% C oil quenched -6% Cr 1-2% Ni -4% C 3-5% Ni, oil	489 492	30–35 37–43 80 69	23 54 56	13500	30 2 14
9% C 3.3% NI, OII quenched Nitralloy structural: B.S. 15 plates and	,,	127 35–76	71 32–69	,,	5 12–37
sections ,, rivets ,, rounds and	489	28-33 25-30		"	16-20 26-30
squares B.S. 548 high tensile	,,	28–33 37–43	19-23	"	16-24 14-18
TERNARY ALLOY LEAD No. 2	707	1.69			62
TUNGUM cold forged hard rolled sand cast	533	45 46 20	10	6900 8000	13 17 51
Y ALLOY, quenched and aged	174	14		4500	2
ZINC, rolled	449	7–10		6000	45

^{*} See B.S. 991 for details of various grades of cast iron.

HARDNESS, EXPANSION AND MELTING POINT OF SELECTED METALS

The temperature coefficient gives the change of length with change of temperature, thus: Change of length in inches = length of specimen (inches) \times change of temperature in degrees F. \times coefficient tabulated, divided by I million.

TABLE 192

Metal	Brinell Hardness	Temperature Coefficient per °F	Melting Point °F.
Aluminium, rolled Brass, cartridge:	45	Parts per million 14	1215
chill cast hard rolled	60 150–200	} 10-11	1650
Copper Duralumin	114	9.5 12.6	1949 1170
Invar Iron, grey cast do. chilled	100-200 400-500	17 to + 1.4 6.0	2770
malleable wrought	100-300	6·2 6·6	,,
Lead (see also below) Monel, hot-rolled sheets	120-140	16 25·2	621 2460
Muntz metal ditto Phosphor-bronze Steel, cast	116 100-130 150-200	9.3	1800 2800 (casting
cobalt alloys mild structural	1250-1400	6.0	temperature)
nickel chrome hardened Ternary alloy lead No. 2	400-700 5⋅7	14.6	
Tin Tungum	114	12·1 10·5	449 2088
Y alloy Zinc	114	12·6 14·5	787

COMPOSITION OF COMMON ALLOYS

List of symbols :—

ΑI	Aluminium	Cu	Copper	Pb	Lead
Be	Beryllium	Fe	Iron	Sb	Antimony
	Carbon	Mg	Magnesium	Si	Silicon
Cq	Cadmium		Magnanese	Sn	Tin
Ce	Cerium	Ni	Nickel	Zn	Zinc
Cr	Chromium	Р	Phosphorus		

TABLE 193

Metal	Composition of Alloy when referred to in Table 192.
Alpax	Si 8-13, Al 87-92
Aluminium bronze	Cu 92, Al or Zn 8
Babbitt's metal	Sn 10, Cu 1, Sb 1
Beryllium bronze	Be 2·4, Cu 97·6
Birmabright	Similar to duralumin
Brass	Cartridge Cu 70, Zn 30; Admiralty Cu 70, Zn 29, Sn 1; Naval ,, 62 ,, 37 ,, I
Bronze	Cu 90, Sn 10, some Zn
Ceralumin " C "	Similar to duralumin, with ·15% Ce
Chromador	Proprietary chrome steel
Cupro-nickel	Cu 80, Ni 20; Cu 60, Ni 40; and other proportions
Delta metal	Proprietary manganese bronze Cu 55, Zn 40, Fe and Mn
Duralumin, typical	Cu 4·0, Mn ·5, Mg ·5, Si 1·0, Al 94, some Fe
Elektron	Proprietary aluminium-magnesium alloy
Everdur	Cu 96, Si 3, Mn 1
German silver	Cu 60, Ni 15, Zn 25
Gunmetal, Admiralty	Cu 86–88, Sn 10–12, Zn 2·5 max.
Hiduminium	Similar to duralumin with Ni, Fe
Inconel	Ni 80, Cr 12-14, Fe 6-8
Lead-bronze	Cu 70, Pb 30
Magnalium	Al 70–86, Mg 13–30
Manganese bronze Monel	Cu 55, Zn 40, Fe + Mn 4; varies Ni 65-70. Cu 30-35
Muntz metal	Cu 60, Zn 40, trace Pb
Nickel silver	Cu 60-65, Ni 20, Zn 15-20
Nitralloy steels	C ·2-·4, Mn ·5-·6, Si ·2-·4, Cr I·4-I·7, Al ·9-I·I, Fe 96
Nitricast-iron	C 2-6, Si 2-6, Al 1-7, Cr 1-4, Mn -6, Fe 91
Pewter	Sn 86. Sb 14: varies
Phosphor-bronze	Cu 92. Sn 7.4. P ·36
Ternary alloy lead No. 2	Sb 1.5, Cd .25, Pb 98.25
Tungum	Proprietary copper alloy Cu 84, Zn 13, Al I, Si I
Y alloy	Similar to duralumin
·	

PROPERTIES OF PLASTICS

The list below gives the characteristics of some well-known plastics; the properties can be varied over a wide range by the inclusion of filler materials and changing the conditions of manufacture, and the figures given are typical only. The figures are largely derived from Warburton Brown's Handbook of Engineering Plastics.

TABLE 194

Typical Trade Name		Weight lb./cu. fc.	Ultimate Stress Ib./sq. in.		Young's Modulus	Temperature Coefficient
Name		10./24.12.	Tensile	Comp. ^{ve}	lb./sq. in.	per °F.
					Millions	Parts per million
Bakelite		80	6–9000		·7~I·0	
Cellomold	2	78–85	6-11000	4 -16000	·10–·13	80–90
Celluloid	3	84-100	5-10000	.	·2-· 4	66–90
Diakon	4	74	7-9000	11-13000	· 4 ·6	44
Improved wood	5	50	22000	11000		1
		80	29000	20000		
Ivorine	6	84	7500		.5–.6	44
Jicwood " 138 "		86	45000	25000		
" 97 "		54	30000	16500		
Perspex	7	75-84	8-10000		-354	38
Tufnol	8	84-86	10-16000		1.0-1.5	
Trolitol	9	66	6-8500	6-8000	1.2-1.5	40-45
Resin-bonded			2 0300	5 5000		.5-15
sheet for gears		82–86				,

Type of plastic:—

- 1. Phenol formaldehyde.
- 2. Cellulose acetate.
- 3. nitrate.
- 4. Methyl methacrylate.
- 5. (Impregnated Canadian birch.)
- 6. Casein.
- 7. Polyvinyl chloride acetate.
- Urea formaldehyde.
 Polystyrene.

BUILDING AND STRUCTURAL TABLES BRITISH STANDARDS REFERRED TO

B.S. No.	Title	Page
4—1932 4A—1934	Channels and Beams for Structural Purposes (add. April, 1934) Equal Angles, Unequal Angles and Tee Bars for Structural	139–141
,	Purposes	142-144
91935	Bull Head Railway Rails (add. March, 1941)	203
11—1936	Flat Bottom Railway Rails (add. March, 1941)	203
15—1936	Steel for Bridges, etc., and General Building Construction	
	(add. February, 1938 and February, 1941)	220
28—1932	Whitworth Black Bolts, Nuts and Washers	200
31—1940	Steel Conduits and Fittings for Electrical Wiring (add. March,	100 100
40 1000	1942)	182-190 173
40—1908 41—1908	Cast Iron Low Pressure Heating Pipes, Spigot and Socket	173
61-1913	,, ,, Flue or Smoke Pipes ,, ,, ,, Copper Tubes and their Screw Threads	182
651937	Salt-glazed Ware Pipes, including Taper Pipes, Bends and	102
	Junctions	180
781938	Cast Iron Pipes (Vertically Cast) for Water, Gas and Sewage,	
	and Special Pipes (add. Nov., 1938) 5/-	174
153—1937	Girder Bridges. Part 3—Loads and Stresses	137
187—1942	Sand Lime (Calcium Silicate) Bricks	50
275—1927 302—1938	Dimensions of Rivets $(\frac{1}{2}^{n}-1\frac{3}{2}^{n})$ diameter) (add. April, 1941)	201
302-1738	Round Strand Steel Wire Ropes for Cranes (add. November, 1941)	204
308—1927	Engineering Drawing Office Practice (add. January, 1943)	216
394—1944	Short Link Wrought Iron Crane Chain	205
4161944	Cast Iron Spigot and Socket Soil, Waste, Ventilating and Heavy Rainwater Pipes	176
4311940	Manila Ropes for General Purposes (add. June, 1940, March, 1942, May, 1942)	204
437—1933	Cast Iron Spigot and Socket Drain Pipes (add. Aug., 1943)	177
449—1937	Use of Structural Steel in Building (add. May, 1940)	28, 49, 63, 136, 146
460-1944	Cast Iron Spigot and Socket Light Rainwater Pipes (Cyl.) 3/6	177
473-1944	Concrete Plain Roofing Tiles and Fittings	4
486—1933	Asbestos Cement Pressure Pipes	178
493—1933	Cast Iron Air Bricks and Gratings (for Brickwork)	50
497—1933	Cast Iron Manhole Covers and Frames (Light)	171
536—1934	Light Flat Bottom Railway Rails and Fishplates 14 and 20 lb.	
	per yard and Portable Railway Track 24" gauge (add. April, 1934)	203
538—1940	Metal Árc Welding in Mild Steel as applied to General Building Construction (add. August, 1940)	138
5481934		1.50
	Building Construction (add. May, 1936, February, 1938,	136, 220
550—1945	June, 1942)	130, 220
565—1938	Concrete Interlocking Roofing Tiles and Fittings Terms and Definitions applicable to Hardwoods and Softwoods	19
567—1934	Asbestos Cement Spigot and Socket Flue Pipes and Fittings.	178
569—1934	,, ,, ,, Rainwater Pipes, Gutters	
	and Fittings	,,
5821943		
	ing Pipes and Fittings.	,,_

Continued.

BS. No.	Title	Page
602—1939 617—1942 648—1935 657—1941 659—1944 680—1936 690—1940 743—1941 758—1945 788—1938 789—1938 798—1938 825—1939 835—1939	Lead Pipes for other than Chemical Purposes (add. June, 1941, March, 1942) Identification of Pipes, Conduits, Ducts and Cables in Buildings Unit Weights of Building Materials Common Building Bricks, Dimensions Light Gauge Copper Tubes Welsh Roofing Slates Asbestos Cement Slates and Unreinforced Flat and Corrugated Sheets Materials for Horizontal Damp-proof Courses including Classification for Bituminous Damp-proof Courses (Part I) Domestic Hot Water Supply Boilers Burning Solid Fuel Wrought Iron Tubes and Tubulars, Gas, Water and Steam Qualities (add. Mar., 1938, Jan., 1939) Steel Tubes and Tubulars, Gas, Water and Steam Qualities Galvanised Corrugated Steel Sheets Mild Steel Shackles for Lifting Purposes Asbestos Cement Flue Pipes and Fittings (Heavy Quality) for Domestic Heating Stoves (add. June, 1941) Plain Sheet Zinc Roofing, Code of Practice	182 185 64 50 182 9 4, 8 168 193 181 7, 11 206
952—1941 1018—1942	Glass for Glazing, including Definitions, etc 3/6 (Part I) Timber in Building Construction. Floors	50 160

Extracts from British Standards, as listed above, are reproduced by permission of the British Standards Institution, 28 Victoria Street, London, S.W.I, from whom official copies of the specifications can be obtained at a price of 2s. net per copy unless otherwise stated.

REPORTS AND CODES REFERRED TO	_
British Standards Institution: C.P.4—1944. Code of Functional Requirements of Buildings.	Page
Chapter V—Loading	, 65
Institution of Electrical Engineers: Regulations for the Electrical Equipment of Buildings 189,	190
Institution of Structural Engineers:	
Report No. 8—Steelwork for Buildings, Part I, Loads and Stresses (Revised 1938) 16, 49, 65, 111,	136
Report No. 10—Reinforced Concrete for Buildings and Structures, Part I, Loads (1938) 65, 90, 113-	-116
L.C.C.:	
Building By-laws (1938) . 4, 16, 23-26, 28, 38, 46-48, 58-63, 65, 68, III, 146, 156-160,	
Memorandum on Computation of Stresses, amended 1939	47
The clauses on reinforced concrete in these two documents are referred to below as the L.C.C. code.	
Building Industries National Council:	
Code of Practice for the Use of Reinforced Concrete (Reprinted April, 1942)	
This document is the same as the L.C.C. code with alterations of wording to suit the different administration which prevails outside the County of London. The two codes were based on the Code of Practice proposed by the Reinforced Concrete Structures Research Committee of the Department of Scientific and Industrial Research, with modifications.	•
Ministry of Works:	
Post-War Building Studies No. 1—House Construction (1944) 18 No. 8—Reinforced Concrete Structures (1944)	, 67 88
The above and the remainder of the 22 Studies published in 1944 and 1945 contain much useful information on building.	
Ministry of Health: Model By-laws, Series IV. Buildings (1939) 3, 183,	193
Ministries of Health and Works:	
Housing Manual and Technical Appendices (1944)	67
Metropolitan Water Board By-laws 171, 182,	193

INDEX TO PAGES

Note.—The densities of a large number of materials are given in Table 93. The names of these materials will not be found in the Index unless other information is given elsewhere in the book.

```
Abbreviations, x
Acre, 214
Adamantine tiles, 67
Aerocrete, 37
Age, effect on concrete strength, 35
Aggregate, cost, 45
           definitions, 38–40
           effect on concrete weight,
           sizes, 33, 38, 40
Air bricks, cast iron, 50
    pipe, colour, 185
    temperatures, 193
Aircraft timbers, 20
Alloys, composition, 222
       light. See Aluminium.
All-ups, ballast, 39
Alluvial soil, angle of repose, 167
             loads, 165
             weight, 166
Alpax, 218, 222
Aluminium alloys, 217, 218-222
           bronze, composition, 222
                    properties, 218
           foil, 67, 194, 197
            properties, 197, 218, 221
            weight of sheet, 13
Aluminous cement,
           removal of shuttering, 37
           strength, 35
Ampere, 188
Ancaster stone, 64
Angles functions of, 211
       of repose, 167
       rolled steel, properties, 142
                    backmarks, 145
Anker, 215
Antiquarian paper, 217
Arc length, circular, 210
Area circles, 209
     polygons, 210
     round bars, 88
     Simpson's rule, 209
Art gallery, floor load, 66, 111
Asbestos cement, by-laws, 3
                  corrugated, 4, 6, 12
                  flat, 12
                  pipes, 8, 178
```

```
Asbestos cement, roof truss, 7 slates, 8

Asbestos spray, 67 wood, 67

Ash (timber), 20

Asphalt, by-laws, 3, 23 dampcourse, 168

Assembly hall floor loads, 66, 111, 160

Atmosphere, pressure, 186

Auction hall floor loads, 65, 66, 111

Aum measure, 215

Aylesford pink bricks, 63

Babbitt's metal, 222

Backmarks, standard, 145

Bags, material stored in, 93
```

```
Bags, material stored in, 93
 Bakelite, 223
 Ballast, all-ups, 39
         angles of repose, 167
         weight, 40, 166
 Ballast concrete, insulation, 194, 197
                   quantities, 38, 41, 42
                   weight, 37
 Banking hall floor load, 65
 Barnes formulæ, 187
 Barrel, gas, water and steam, 181
         measure, 215
         vault. 7
 Barrels, materials stored in, 93
 Bars, Steel, areas, 88
             stresses, 88
              weights, 88
 Basements, 118
 Basin dimensions, 172
 Batches, concrete, 39
 Bath dimensions, 172
      stone properties, 64, 197
 Battens, definitions, 19
          slating, II
 Beams, continuous, 71, 82, 113-118
         deflection formulæ, 112
         load regulations, 65, 111, 160
         reinforced concrete, 47, 88, 89
         steel, dimensions, 139, 141
               deflections, 144
               safe loads, 148, 152
Bearing plates, 29
```

Beaver board, 67	Brickwork, brick quantities, 50-53
Bedroom floor loads, 65, 66, 111	courses, 55
temperature, 193	dampcourses, 168
Beech, 20	eccentric loading, 63
Bending formulæ, 71, 89, 112, 161	facing bricks, 52
Bents, formulæ, 118–135	heat transmittance, 194,
Bergen hollow bond, 52	197
Beryllium bronze composition, 222	lateral loading, 63
properties, 218	local loading, 63
Binders, timber, 24, 156	mortar mixes, 62
Birch, yellow, 20	quantities, 54
Birmabright, 218, 222	permissible pressure, 62,
Birmingham Gauge, 15	64
Wire Gauge, 15	safe loads, 62
Bituminous felt, 4	slenderness ratio, 63
paint, 188	temperature coefficient,
Blinding, concrete quantities, 42	53
Blue brick dampcourse, 168	ultimate loads, 54, 63
weight, 53	weight, 53
clay, load on, 165	Young's modulus, 53
Board, definition, 19	Bridging joists, 160
Board of Trade Unit, 188	Brinell hardness, 221
Boards and felt, 4	British Standard beams, dimensions,
hardwood, softwood, 67, 196,	139
197	safe loads,
Boilers, hot water, 192, 193	146, 148
Bolts, max. size in members, 140	channels, dimensions,
hook, 15	141
lewis, 201	safe loads,
sheeting, 16	146, 152
stress In, 136	Specifications, 224
Whitworth, 200	British Thermal Unit, 199
Bond stress, concrete, 46	Broad flanged beams, 154
Bookshop floor joists, 158, 159	Bronzes, 218, 221, 222
loads, 66, 110, 160	B.Th.U., 199
Boulder clay, load on, 165	B.T.U., 188
Bow shackles, 206	Buffer stop height, 1731
Brass, properties, 218, 221, 222	Building Industries National Council,
weight of sheet, 13	226
	Bulk, density, 92
Breeze concrete, weight, 37	
partition weight, 68	increase on excavating, 167
Brick, aggregate weight, 37	Bulking of sand, 92
air, 50	Bushel, 214
Aylesford, 63	Butt (measure), 215
blues, brindles, 53, 63	Butt welds, 138
calcium silicate, 50, 53, 63	Buttressing walls, 58, 61
data, 50	
engineering, 53, 63	
fire-, 53	C
Flettons, 53, 63	Cable, electric, 189, 190
glass, 50	length, 214
partition weight, 68	Cabot's Quilt, 67
piers, 54	Café floor loads, 66, 111, 160
red, 53	Calcium silicate bricks, 50
sand-cement, 53	Cantilever, deflection, 112
sand-lime, 50, 53, 63	length, 156
stocks, 53	moments, 116
walls, 58-64, 194	timber, 23, 156
Brickwork, bonds, 52	Capacity, drains, 187

Capacity, electric cables, 190	Clapeyron's Theorem, 117
flumes, 187	Classification of soils, 165
gas pipes, 199	Classroom floor load, 65, 66
measures, 215	Clay, angle of repose, 167
pipes (small), 186	definition, 165
sewers, 187	increase of bulk, 167
Carbolineum covering power, 188	load on, 165
Carriage-way width, 172	weight, 166
Cars, dimensions, 172 Casein, 223	Clinker, concrete, 37 insulation, 194, 197
Casks, materials stored in, 93	Clothes cupboard dimensions, 172
Cast iron, pipes, list, 173	Clubs, floor load, 66, 111
properties, 219	Coach screws, 201
Cavity walls, construction, 59	Coal, angle of repose, 167
insulation, 194, 197	Coatings, covering power, 188
Cedar tiles. See Shingles, 10	Codes of practice, 226
timber, 20	Coefficient, deflection, 144
Ceiling joists, 23	expansion, 221
Cellomold, 223	heat transmittance, 194
Celluloid, 223	Coil, measure, 214
Cellulose acetate, 223	Coir rope, 204
nitrate, 223	Coke, angle of repose, 167
Cement, angle of repose, 167	Cold-worked steel, 88
aluminous, 35, 37	Colours to identify pipes, 185
concrete quantities, 41	Columns, concrete bases, 49
cost curves, 44	steel, 137
mortar quantities, 51	timber, 25, 26
Pozzolana, 36	Combined stress, 113
quantities, 41, 51	Communication pipe, 182
rapid hardening, 35, 37, 40	Composition of common alloys, 222
strengths, 35 Trass, 36	Compressive strength, brickwork, 54, 62
weight, 40, 68	concrete, 46-
Cental, 214	49
Centigrade, 215	metals, 217
Centimetre, 214, 216	mortar, 54
Centner, 214	steel, 136, 137
Central heating pipe colour, 185	stone, 64
Ceralumin C, 218, 222	' timbers, 20, 25
C.G.S. unit of heat, 199	Concentrated loads, beams, 148
Chain measure, 214	slabs, 90
Chains, weight and strength, 205	Concert hall floor load, 66, 111
Chalk, increase of bulk, 167	temperature, 193
load, 165	Concrete properties and data, 33–45
weight, 166	filling, 48
Channels, steel, dimensions, 141	insulation, 194, 197
safe loads, 152	painting, 188
Chapter V, building code, 17, 65	piers and walls, 48, 58
Chequer plates, 171	slab quantities, 42
Chimneys, wind load on, 17	See Reinforced Concrete.
Chord of angles, 210, 211	Conductivity, thermal, 194
Chromador, 220, 222	Conductors, electric, 189, 190
Church floor loads, 65, 66, 111	Conduits, electric, 190
temperature, 193 Cinema floor loads, 66, 111	Cone, slump, 34 Consumption, electric, 189
temperature, 193	gas, 199
Circles, area of, 209	Containers, materials stored in, 93
properties, 210	Continuity steel, 71
Cistern dimensions, 191	Continuous spans, 71, 82, 113–118

Copper, dampcourse, 168	Data, collected, portals, 118-135
electric, dimensions, 172	reinforced concrete,
consumption, 189	71,91
gas, consumption, 199	soils, 165–167
properties, 197, 219, 221	stones, 64
roves, 202	timbers, 19
sheet, 13	weights, 92–107
	Deal, definition, 19
tubes, 182	
Cord of timber, 19	See Pine, Yellow, 20
Cork flooring, 67	Decagon data, 210
Corridors, loads on, 66, 111, 160	Decimal gauge, 14
temperature, 193	Deflection of beams, 112, 144, 149, 160
timber joists, 158	Degrees of temperature, 215
Corrugated sheets, asbestos, 4, 5, 6, 12	Delta metal, 219, 222
galvanised, 4, 5, 6,	Demy paper, 217
" 11	Densitles. See Weights.
insulation, 195,	Dept. of Scientific and Industrial
197	Research, 226
Cosines of angles, 211, 212	Design tables, R.C. floors, 71-91
Cost charts for concrete, 44	Diagonal weld strength, 139
equivalents, timber, 19	Diakon, 223
Countersunk rivets, 201	Diamond slates, 9
Countersunk rivets, 201 Countesses, slates, 10	
	washers, 16
Courses, heights of brick, 55	Dimensions for planning, 172
Covering power of paints, 188	Discharge, small pipes, 186
Covers, manhole, 171	drains, sewers, flumes, 187
Creosote, covering power, 188	Distemper, covering power, 188
Crushed stone quantities, 41, 42	Distributing pipe, 182
Crusher-run stone, 39, 40	Distribution bars, 72
Cul-de-sac width, 172	Dock, loading, height, 172
Culverts, 118	Dodecagon data, 210
Cupboard, linen, dimensions, 172	Domestic fittings, 172
Cupro-nickel, 219, 222	floor load, 65, 66, 160
Curing concrete, 35	timber floors, 24
Current in cables, 189	Donnaconna board, 67
Cusec, 186	Door dimensions, 172
Cylinders, hot water, 191	Dormitories, floor loads, 66, 111
Cymiders, not water, 171	Doubles, slates, 10
	Downpipes, dimensions, 176, 177, 179
D	size and spacing, 8
Damp course, cement, 55	Drachm, 215
general, 168	Drain pipe, cast iron, 177
lead, 14, 168	colour, 185
Dance halls, floor load, 66, 111, 160	salt-glazed ware, 180
temperature, 193	Drains, concrete round, 39
Darley Dale stone, 64	flow in, 187
Data, collected, brickwork, 50-57	Dram, 214
concrete, 33–49	Draughts, effect of, 196
electric, 188	Drawings, sizes, 217
heating, 191–199	Draw-off pipe, 193
hydraulic, 186	Drill hall floor load, 66, 111, 160
measures, 214	Drilling centres, 145
metals, 217–222	Drive width, 172
mortar, 54	Drums, materials stored in, 93
paints, 188	Drying room temperature, 193
pipes, 173-187	D-shackles, 206
planning, 172	Duchesses, slates, 10
plastics, 223	Duralumin, 219, 221, 222
polygons, 210	Dwellings, fittings, 172

Dwellings, floor load, 65, 66, 160 timber floors, 24

Earth. See Soil. Eccentric loading on walls, 63 stress, 113 Effective length of pipes, 173 span, 71 Electricity cables, 189, 190 consumption, 189 duct colour, 185 ducts, 190 Elektron, 219, 222 Elm, 20 Elongation, 218 Empresses, slates, 10 Enamel, covering power, 188 Encasing steelwork, mix for, 39 End spans, 71 Engineering bricks, 52, 63 English bond, 52 Garden Wall bond, 52 Entrance floor loads, 66, 111, 160 Equal angles, steel, 142 Equivalent slopes, roof, 7 Equivalents, metric-English, 214-216 Expansion coefficients, brickwork, 53 concrete, 34 metals, 221 plastics, 223

joints, 36 External walls, L.C.C. rules, 58, 60

Factory. See Workshop. Fahrenheit, 215 Fastenings, roof sheets, 16 Fathom, 214 Felt, hair, 67 insulation, 197 roofing, by-laws, 3 weight, pitch, 4 Fibre board, 67, 194, 197 Filler joist floors, 80 Fillet welds, 138 Filling, concrete mix, 39 pressure on, concrete, 48 earth, 165 Fillings, angle of repose, 167 weight, 166 Finish, concrete, quantities, 42 floor, weights, 67 Fir, Douglas, 20 Firebrick, 53 Fire service pipe colour, 185 Firkin, 215 Firring, 6

Fittings, domestic, dimensions, 172 consumption, 189, 199 Flange width factor, 146 Flashings, lead, 14 Flat, floor load, 66, 111 roof, weight, 7 load, 17, 25 Flemish bond, 52 Garden Wall bond, 52 Fletton bricks, 53, 63 insulation, 194, 197 Floor loads, beams, 111, 160 slabs, 66, 159 Floors, concrete, 71-91 finish, weights, 67 filler joist, 80 hollow, 82 loads on, 65, 66, 111, 160 magnesium oxychloride, 68 timber, 24, 156-161 tongued and grooved, 23 Flow, drains and sewers, 187 gas pipes, 199 small pipes, 186 wood flumes, 187 Flue pipes, asbestos, 178 cast iron, 173 Flushing pipes, 183 Foamed slag concrete insulation, 194, 197 weight, 37 Formulæ, Barnes, 187 bending, 89, 112, 161 Clapeyron, 117 quadratic, 209 reinforced concrete, 89 timber, 161 trigonometric, 211 Foundations, concrete mix, 39, 48 pressure, on concrete. 48, 49 on earth, 165 Frost, effect on concrete, 36, 37 Fuller's earth, weight, 166

Gable ends, wind on, 17
Gallon, 215
Galvanised sheets, corrugated, 11, 12
flat, 12, 14
insulation, 195, 197
roofs, 4, 5, 6
Garage floor, loads, 65, 66, 111, 160
timber joists, 157, 158

Functions of angles, trigonometric,

211, 212

Furlong, 214

Garage, temperature in, 193 dimensions, 172 Gas, calorific value, 199 consumptions, 199 copper dimensions, 172 oven dimensions, 172 pipes, cast iron, 173 colour of, 185 wrought iron, 181 steel, 181 Gauge, Birmingham, 15 railway, 172 Standard Wire, 14 tiling, 5 Whitworth Decimal, 14 Zinc. 15 German silver, 222 Girders, rivet spacing, 145 Glass in roofs, 3 line height, 172 silk. 67 thermal resistance, 197 weight and pitch, 4 Graded timber, 25 Grain, angle of repose, 167 measure, 214 weight. See Table 93. Gramme, 214 Grandstands, floor load, 66, 111, 160 Granite, concrete weight, 37 strength, 80 Granolithic, 67 Granular materials, 92 Gravel, angle of repose, 167 increase of bulk, 167 safe load on, 165 weight, 166 Greenheart, 20 Grey process beams, 154 Grillage, 136 Gunmetal, properties, 219, 222 weight of sheet, 13 Gunter's chain, 214 Gutter, lead, 14 Gymnasium floor load, 66, 111, 160 Gyproc. See Plasterboard.

matite, angle of repose, 167
Hairfelt, 67, 197
Ham Hill stone, 64
Hand, measure, 214
Handrail height, 172
Hardness of metals, 221
Hardwood definition, 19
floor weight, 67
Head for small pipes, 186
Headers, slates, 10

Heat transmittance, 194 Heating data, 191-199 pipes, cast iron, 173, 174 colour, 185 sizes, 192 Hemp rope, 204 Heptagon data, 210 Hexagon data, 210 Hickory, 20 Hiduminium, 219, 222 High grade concrete, 46 Hip, lead, 14 Hogshead, 215 Hollow block partition, 68 bond, Bergen, 52 floors, 82 walls. See Cavity. Honeycomb slates, 9 Hook bolts, weight of, 15 Hopton Wood stone, 64 Hornbeam, 20 Hospital floor loads, 65, 66, 160 temperature, 193 Hot water cylinder sizes, 191 Hotel floor loads, 65, 66, 160 Houses, floor loads, 65, 66, 160 floor timbers, 24 heating, 191-199 planning data, 172 roof timbers, 23-25 wind load, 16, 18 Housing Manual, 226 Hydraulic data, 186 gradients, 187 power, pipe colour, 185

dentification of pipes, 185 Impregnated birch, 223 Improved wood, 223 Inconel, 219, 222 Increased bulk on excavating, 167 Infirmaries, floor loads, 66, [1] Institution of Structural Engineers, 226 Electrical Engineers, 226 Insul board, 67 Insulation, 194-198 Interior spans, 71 Invar, 221 Iron, properties, 197, 219, 221, 222 weight of sheet and wire, 14, 15 Ironwork, painting of, 188 Ivorine, 223

icwood, 223 Joints, brickwork, 51, 52, 55

Joints, pipe, 173, 185 plumbers, 185 Joists, ceiling, 23 steel, dimensions, 139, 154 safe loads, 148, 154 timber, 24, 156
Kenmore board, 67 Kilogramme, 214 Kilometre, 214 Kilowatt, 199 Knot, 214 Knotting, 188
Ladies slates, 10 Landing floor loads, 66, 111, 160 timber joists, 158 Lap, corrugated sheets, 12 slates, 4, 5, 8 tilling, 4, 5, 8 Larch, 20 Lateral load on walls, 63 Lateral support, beams, 47, 146 walls, 48, 58-61 Lath and plaster, insulation, 195 weight, 67 Lattice girders, 137 L.C.C. See London County Council. Lead, bronze, 222 dampcourse, 14, 168 pipes, 182 properties of, 197, 219, 221 sheet, 13 ternary alloy, 182, 185, 220, 221 Leaders, size and spacing, 8 Leicester red bricks, 53, 63 Lever arm, 72, 89 Lewis bolts, 201 Library floor loads, 66, 111 Lignum vitæ, 20 Lime mortar, 54, 55 Limestone, 64 concrete, 37 Line measure, 214
Line measure, 214 Linen cupboard dimensions, 172 Link measure, 214 Linseed oil covering power, 188 Lintols, brickwork, 57, 172 broad flanged beams, 155 Litre, 215 Lloyd board, 67 Load (timber), 19 Loading on beams, 111, 148, 152, 154 floors, 65, 72, 80, 82
floors, 65, 72, 80, 82 ground, 165

```
Loading on roofs, 16
          walls, 62
Loads, snow, 16, 18
       wind, 16, 18
Loam definition, 165
      weight, 166
Local load on walls, 63
Locknuts, Whitworth, 200
Locomotive wheel load, 173
London County Council By-laws :-
    beam loads, III, 160
    compressive stress, beams, 47
    concrete, stresses in, 46-48
    floor loads, 66, 71
    piers, 48, 58, 63
    pitch of roofs, 4
    proportions for concrete, 38
    stresses in reinforced concrete,
                  46, 47, 88
               steel beams, 146, 149
    timber floors, 24, 156-161
            posts, 25
            roofs, 23
    walls, 58-63
    welding, 138
    wind load on roofs, 16, 29
    windows, 172
London stock bricks, 53
```

Macadam, by-laws, 3 weight and pitch, 4 Magnalium, 222 Magnesia insulation, 197 Magnesium oxychloride floors, 68 Mahogany, 20 Manganese bronze, 219, 222 Manhole covers, 171 Manila ropes, 204 Manometer, mercury, 186 Mansfield stone, 64 Maple, 20 Marble, 64, 197 Marchioness slates, 10 Marl, angle of repose, 167 definition, 165 weight, 166 Marseilles tiles, II Masonite, 68 Masonry, permissible pressures, 62, 64 rules for walls, 58 strength of stone, 64 Mastic weight, 68 Measures, British and other, 214 Melting points of metals, 221 Mercury, manometer, 186 weight, Table 93 Metals, properties, 217-222

Meter pits, 171 Methyl methacrylate, 223 Metre, 214 Metric equivalents, 216 Metropolitan Water Board, 226 Mil. 214 Mile, 214 Millimetre, 216 Millstone grit, 64 Minim, 215 Ministry of Health, 226 Ministry of Works, 226 Mixer sizes, 39 Modular ratio, 89 Modulus of elasticity. See Young's Modulus. Moment of inertia, 112 resistance, slabs, 72, 89 Monel metal, 219, 221, 222 sheet, 13 Mortar data, 34, 54, 168 mixes for brickwork, 54, 62 quantities in brickwork, 51 roof, 3 screed, 68 weight, 68 Muntz metal, 219, 221, 222 sheet, 13

Nail, measure, 214
Nails, roofing, 16
wire, 202
Neutral axis, 72, 89
Nitralloy, 219, 222
Nitricast iron, 220, 222
Nonagon data, 210
Nursery temperature, 193
Nuts, Whitworth, 200

Oak, 20
Octagon data, [210
Office floor loads, 65, 66, 111, 160
temperature, 193
timber floors, 156
Ohm, 188
Oil pipe colour, 185
Openings in walls, 58
Operating theatre temperature, 193
Oregon pine. See Fir, Douglas, 20
Oven dimensions, 172

Padstones, dimensions, 29 Paint, covering power, 188 Palm measure, 214 Panels, L.C.C. rules, 59 Pan head rivets, 201 tiles, 4 Paper, drawing, sizes, 216 Parquetry, 67 Partitions, blocks for, 62, 68 load allowance, 68 thickness, 61 weight, 37, 68 Party walls, L.C.C. rules, 58 Patent steel ropes, 204 Paths, width of, 172 Pavement loading, 66, 111 Peat, effect on concrete, 36 safe load on, 165 weight, 166 Peck, measure, 214 Pentagon data, 210 Perch, 214 Perspex, 4, 197, 223 Petrograd standard, 19 Pewter, 222 Phenol formaldehyde, 223 Phorpres bricks, 53, 63 Phosphor bronze, 220, 221, 222 Piers, concrete, 48 definition, 58 slenderness ratio, 63 ult. strength, 54 Pin, measure, 215 Pine, Dantzig, Kauri, Pitch, Riga, Yellow, 20 Pipe hooks, 182 measure, 215 Pipes, asbestos cement, 178 cast iron, 173 colour identification, 185 copper, 182 lead, 182 salt-glazed ware, 180 steel and wrought iron, 181 Pitch of roofs, 3, 4 Pitched bents, 124 Pitchpine, 20 Plank, definition, 19 Planning data, 172 Plaster boards, 68, 197 insulation, 194, 197 painting, 188 weight, 68 Plastering, 55, 68, 194, 197 Plastics, data, 197, 223 Plough steel ropes, 204 Plumbers' wiped joints, 185 Plywood, insulation, 197 Poisson's ratio, concrete, 34 Pole, measure, 214 Polygons, data, 210 Polystyrene, 223

Robustoul ablas assesses 222	Defeirementar also salaum 105
Polyvinyl chlor-acetate, 223	Refrigeration pipe colour, 185
Poplar, 20	Reinforced concrete data, 72, 89
Portal truss, concrete, 7	D.S.I.R. stresses,
Portland stone (4, 107	46
Portland stone, 64, 197	beams, 46, 47
Posts, timber, 25, 26	floors, 71-91
Pottle measure, 215	L.C.C. stresses,
Powders, voids in, 92	46, 88
Pozzolana cement, 36	mixes, 38
Pressure on foundations, 165	purlins, 6, 7
on concrete, 46, 48, 49	removing shut-
pipes, asbestos, 179	tering, 37
wind, 16	roofs, 7
Priming, covering power of, 188	Reinforcement, section areas, 72
Princesses slates, 10	slabs, 71–91
Projections, wind load on, 17	stresses, 88
Public spaces floor load, 66, 111, 160	weights, 88
Pumice concrete weight, 37	Render, cement, 54, 55, 197
insulation, 197	weight, 68
Puncheon, 215	Residential floor loads, 65, 66, 111, 160
Punching shear, 46	timber joists, 24
Purlins, asbestos cement, 7	Resin-bonded sheet, 223
concrete, 7	Restaurant floor loads, 65, 66, 111, 160
steel, 5, 6	Restraint of walls, 48, 61
timber, 23	Rivets, head dimensions, 201
weight, 6, 7	maximum sizes, 140
Putty, lime, 55	spacing, 145
Pyinkado, 20	stress in, 136, 137
Pyrites, angle of repose, 167	Road slabs, concrete, 39, 42
Tyrices, ungic of repose, for	Roads, concrete mix for, 39
	width of, 172
_	Rock, safe loads, 64, 165
Quadratic equations, 209	weight, 64
Quart measure, 215	filling, angle of repose, 167
Quarter, measure, 214	increase of bulk, 167
Quarto size, 217	Rod, brickwork, 50
Quetta bond, 52	measure, 214
	Rods, steel, areas, 72
quantities, 53	in floors, 71–87
	stress, 88
R - 41 210	weight, 88
Radian, 210	Rolling stock dimensions, 173
Radiator areas, 191	Roof, coverings, weight, 4
Radius, bending, 112	flat, 17, 18, 24, 25
gyration, 112	insulation, 196
Rafters, timber, 6, 23	load on structure, 27, 29
Rag bolts, 201	reinforced concrete, 7
Rails, builhead, flat bottom, 173, 201	timber, 23, 25
Railway data, 173	truss spacing, 27
Rainwater pipes, asbestos, 178	weights, 6, 7
cast iron, 177	wind load, 16
size and spacing, 8	Rope, coir, strength and weight, 204
Reactions, continuous spans, 118	manila, strength and weight,
roof trusses, 27	204
Reading room floor load, 66, 111, 160	sisal, strength and weight, 204
Rectangular portals, 120, 130	wire, strength and weight, 204
slabs, 91	Roves, copper, 202
Reduction factors, steel beams, 146	R.S.Js, dimensions, 139, 154
Redwood, 20, 25	safe loads, 146-151, 154

Rubber sheet, weight, 68	Shrinkage, concrete, 34, 36
insulation, 197	See Expansion.
Ruberoid, 4	Shroud-laid rope, 204
	Shuttering, area in a standard, 21
C	removal of, 37
Sack, 34, 214	Sideroleum, covering power, 188
Salt-glazed ware pipes, 180	Side weld strength, 139
Salt water pipe colour, 185	Silicate cotton, 68, 197
Sanatoria floor loads, 66, 111	Silt, 165
Sand, angle of repose, 167	Simpson's rule, 209
bulking, 92	Sines of angles, 211, 212
on excavating, 167	Sink dimensions, 172
cost in concrete, 45	Sisal rope, 204
pressure on, 165	Site, concrete mix over, 39
quantity in concrete, 41, 42	Size, covering power, 188
size of particles, 165	Skein, measure, 214
voids, 92	Slabs, filler joist, 80
weight, 166	concentrated loads, 90
Sand-cement bricks, 53	hollow concrete, 82-87
Sand-lime bricks, 50, 53, 63	loads specified on, 65, 66
insulation, 195, 197	quantities for, 42
Sandstone, 64	reinforced both ways, 91
Scaffold steel tubes, 181	ro of, coffered, 7
Scantling, definition, 19	solid concrete, 71–79
School floor loads, 66, 111, 160	Slag, angle of repose, 167
temperature, 193	concrete weight, 37
Screws, roofing, 16	Slagwool weight, 68
wood, 202	insulation, 197
Service pipe, 175, 182–184	Slate, damp course, 168
Sewage pipes, asbestos, 178	insulation, 196, 197
cast iron, 174, 176	properties, 64
Shackles, dimensions and strength, 206	Slates, asbestos cement,
Shale, angle of repose, 167	diamond, 9
load, 165	honeycomb,
Shear, concrete, 46, 82, 90	rectangular, 8
continuous spans, 118	Welsh, 4, 6, 9, 11
steel beams, 112, 137, 148	Sleepers, railway, dimensions, 173
timber, 25, 112	Slenderness ratio, timber, 25
Sheave, diameter, 205	walls and piers, 48
Sheeting bolts, 16	49, 63
Sheets, copper, 13	Slopes, equivalent, 7
lead, 13	minimum for roofs, 4
metal, 13	Slump of concrete, 34
iron and steel, 12, 14, 15	Smoke pipes, asbestos, 178
zinc, 15	cast iron, 173
Shell construction, see Barrel vault, 7	Snap-head rivet dimensions, 201
Shingle, angle of repose, 167	Snow, 16, 18
cost, 145	Soil, bulking of, 167
quantity in concrete, 40-43	definitions, 165
weight, 40, 166	pipes, asbestos, 178
Shingles, cedar, by-laws, 3	cast iron, 176
coverage, 10	pressure on, 165
pitch, 4	weights, 166
weight, 4	Solid fuel boilers, 193
Shop floor loads, 65, 66, 111	Spans, continuous, 71, 82, 113–118
temperature, 193	effective, 71
timber floor joists, 157	lintols, 57
Showrooms, floor loads, 66, 111	joists, steel, 146, 154
temperature 193	timber 24 156

Specific gravity. See Weights of Materials.	Studding, timber, insulation, 195 • weight, 68
Spruce, Norway, 20	Sulphate waters, effect on concrete, 36
Square, area, 19	Supply pipe, 182
properties, 210	
scantling, 19	
Stack, timber measure, 19	T
Stafford blue bricks, 63	angents of angles, 212
Stairs, dimensions, 172	Tar, covering power of, 188
loads on, 66, 111, 160	Tarmac weight, 4
Stancheons, 119, 136	Teak, 20
Standard brick sizes, 50 timber measure, 19	Tee beams, reinforced concrete, 89
144	steel, 144 Temperature, air in rooms, 193
Wire Gauge, areas, 209 sizes, 14	coefficient, brickwork,53
Standards, British, list, 224	concrete, 34
Stationery store floor load, 66, 111, 160	metals, 221
timber joists, 159	plastics, 223
Steam pipe, colour, 185	stones, 64
wrought iron, 181	effect on concrete
Steel, properties, 197, 220, 221, 222	strength, 36, 37
reinforcement areas, 72	Tensile strength, concrete, 34
stresses, 88, 89	metals, 218
weights, 88	mortar, 54
sheets, weight, 13	plastics, 223
structural, stresses, 136	steel, 136, 137
tubes, 181	timber, 20, 25
wire ropes, 204	Tentest board weight, 68
See Galvanised.	Ternary alloy lead, 182, 185, 220, 221
Stiffness coefficient, 119	Terra cotta, 64
Stock bricks, 50, 53, 63	Terrazzo weight, 68
Stone, broken, angle of repose, 167	Tests on bricks, 62, 63
quantity in concrete,	brickwork, 54
40–43	concrete, 35, 46
measure, 214	Thatch, by-laws, 3
Stones, properties of building, 64, 197	weight and pitch, 4
Stoneware pipes, 180	Theatre floor loads, 66, 111, 160
Storage room floor load, 66,92, 111, 160	Theorem of three moments, 117
Strength. See Compressive, Tensile,	Thermal resistance, 197
and material concerned.	Thickness of piers, 58, 63
Stress, ultimate, concrete, 35, 36	pipes, 173-184, 190
metals, 218	slabs, 71-89
plastics, 223	walls, 58
steel, 220	Thread measure, 214
stone, 64	Three moments, theorem of, 117
timber, 20	pin arch roof, 7
working, concrete, 46-49	Tierce, 215
steel, 136, 88	Ties, wall, 59
timber, 20	Tiles, adamantine, 67
posts, 26	asbestos, 8
Stretcher bond, 52	clay by-laws, 3
Strip, load on floors, 65, 67	weight, pitch, 4
timber, definition, 19	concrete, 4
Structure gauge over railway, 173	coverage, 10
Struts, timber, 25, 26	insulation, 195, 196
steel, 137, 138	weight, 4
Stucco, 55	Tiling battens, II
insulation, 195, 197	Timber, area equivalents, 21, 23
painting, 188	data, 19
· · · · · · · · · · · · · · · · · · ·	•

Timber, floors, 156 length equivalents, 21, 22 posts, 25, 26 roofs, 23 Timbers, properties of various, 27 Tin properties, 221 Ton, 24 **Tonne**, 214 Trafford tiles, 11 Transmittance of heat, 194 Trass cement, 36 Triangle data, 211 equilateral, 210 Trigonometric functions, 211, 212 Trimmed joists, 160 Trimmer joists, 160 Trimming joists, 160 Trolitol, 223 Truss portal, 7 roof, weight, 6 Tubes, see Pipes. Tubulars, 181 Tufnol, 223 Tungum properties, 220, 221, 222 sheet weight, 13 Turning circle, vehicles, 172 Twisted bars, 88

Ultimate stress, 217 Undecagon data, 210 Unequal angles, steel, 143 Urea formaldehyde, 223

Varnish, covering power, 188
Vault, barrel, 7
Vehicles data, 172
Ventilating pipes, asbestos, 178
cast iron, 176
Versine of angle, 211
Viscountess slates, 10
Voids, percentage of, 92
Volt, 188
V.R.I. cables, 189

Wall definition, 58
plate, 160
tiled, 10
Walls pressure on concrete, 48
to L.C.C. by-laws, 58-64
Wards, hospital, floor loads, 66, 111, 160
Warehouse floor loads, 66, 111, 160
timber joists, 159
wall thickness, 58, 61

Warning pipe, 183, 184 Washers, flat, 200 limpet, 16 Waste pipe, asbestos, 178 cast iron, 176 Water pipe, asbestos, 179 by-laws, 171, 182, 193 cast iron, 174, 176 copper, 182 head required, 186 lead, 182 wrought iron, steel, 181 Water-cement ratio, 34, 35 Watt, 188 Weights of materials :-brickwork, 53 concretes, 37 earth and gravel, 166 general table, 94–107 metals, 218 partitions, 68 plastics, 223 roofs. 6, 7 sheet metals, 13-15 slab finishes, 67 stones, 64 timbers, 20 walls, 53, 68 Welds, strength of, 138 Wheel load, garage floor, 67, 112, 172 locomotive, 173 Whinstone concrete weight, 37 Whiting, covering power, 188 White lead, covering power, 188 Whitewood, 20 Whitworth bolts, 200 Decimal Gauge, 14 Wind drag, 17 loads, 16, 28, 29 Window dimensions, 172 insulation, draughts, 196 Wire gauge, Standard, 14 ropes, 204 Wood insulation, 196, 197 See Timbers. Woodblock flooring, 67, 196, 197 Wood-screws, 202 Woodwool slab insulation, 194, 197 weight, 68 Woodwork, painting of, 188 Working stress, brickwork, 62, 64 concrete, 46-49 masonry, 62, 64 metals, 217 steel, 88, 136 stone, 64 timbers, 20 Workshop floor loads, 65, 66, 111, 160 temperature, 193

Workshop timber joists, 158, 159 Writing room floor loads, 66, 111, 160 Wrought iron tubes, 181

Young's modulus, mortar, 34 plastics, 223 stone, 64 timber, 20, 25

Yalloy, 220, 221, 222 Yield stress, 217 York stone, 64 Young's modulus, brickwork, 53 concrete, 34 metals, 217, 218

Zinc by-laws, 3
Gauge, 15
properties, 197, 220, 221
roof, weight and pitch, 4
sheet weight, 15

The weights of a large number of substances are given in Table 93; these substances will not be found in the Index unless other information is included in the book.

DATE OF ISSUE

This book must be returned within 3, 7, 14 days of its issue. A fine of ONE ANNA per day will be charged if the book is overdue.

