R Tutorial for Undergraduate Econometrics

February 20, 2017

1 Introduction to R

1.1 Method 2

The estimate of OLS is calculated using the following formula:

$$\hat{\beta_{OLS}} = (X'X)^{-1}X'Y$$

1.2 Stargazer Latex Output of OLS Fit

	Dependent variable:		
	y		
x1	-2.987***		
	(0.049)		
x2	3.003***		
	(0.016)		
x3	-1.907^{***}		
	(0.071)		
x4	4.976***		
	(0.050)		
Constant	1.754***		
	(0.552)		
Observations	1,000		
\mathbb{R}^2	0.980		
Adjusted R^2	0.980		
Residual Std. Error	$3.065~({ m df}=995)$		
F Statistic	$12,287.690^{***} (df = 4; 995)$		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Table 1: Single Model

	Dependent variable:					
	y					
	(1)	(2)	(3)	(4)		
x1	-2.987***	-2.443^{***}	-2.858^{***}	-2.863^{***}		
	(0.049)	(0.338)	(0.162)	(0.161)		
x2	3.003***		2.972***	2.968***		
	(0.016)		(0.051)	(0.051)		
x 3	-1.907^{***}			0.408^{*}		
	(0.071)			(0.222)		
x4	4.976***					
	(0.050)					
Constant	1.754***	32.430***	21.455***	20.712***		
	(0.552)	(3.451)	(1.661)	(1.707)		
Observations	1,000	1,000	1,000	1,000		
\mathbb{R}^2	0.980	0.050	0.783	0.784		
Adjusted R^2	0.980	0.049	0.783	0.783		
Residual Std. Error	$3.065~({ m df}=995)$	$21.179 \; (\mathrm{df} = 998)$	$10.124 \; (\mathrm{df} = 997)$	$10.112~({\rm df}=996)$		
F Statistic	$12,287.690^{***} (df = 4; 995)$	$52.303^{***} \text{ (df} = 1; 998)$	$1,799.815^{***} (df = 2; 997)$	$1,203.870^{***} (df = 3; 996)$		

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: Multiple Models

2 Plots

Figure 1 represents the predicted value of y for various values of x_3 holding all other variables 0. Specifically, we are comparing:

$$y_{true} = \beta_0 + \beta_3 x_3$$
$$y_{predicted} = \hat{\beta}_0 + \hat{\beta}_3 x_3$$

Figure 2 represents same plot with a different color.

Figure 1: Predicted value of y for various values of x_3

Figure 2: Predicted value of y for various values of x_3