Likelihood Estimation Normal Profile

Likelihood concepts ADMB and stock assessment

Arni Magnusson

ICES, 18 Oct 2012

Outline

- Likelihood relative probability, support, combine data sources
- 2 Estimation MLE, log likelihood, confidence interval
- 3 Normal distribution $N(\mu, \sigma)$, dnorm
- 4 Profile likelihood procedure, interpretation

Outline

- 1 Likelihood relative probability, support, combine data sources
- 2 Estimation MLE, log likelihood, confidence interval
- ③ Normal distribution $N(\mu, \sigma)$, dnorm
- 4 Profile likelihood procedure, interpretation

Relative probability

$$P(A_1) = 0.5$$
 $P(A_2) = 0.3$ $P(A_3) = 0.2$ $L(A_1) = 500$ $L(A_2) = 300$ $L(A_3) = 200$ $L(A_1) = 0.005$ $L(A_2) = 0.003$ $L(A_3) = 0.002$

Expresses how well the data **support** some parameter value or hypothesis

$$L(\theta|\mathsf{data})$$

Like *RSS* but even more useful: not only point estimate, but also **uncertainty**

We can fit a model to many types of data at once and **combine** the likelihood components with simple multiplication

$$L = L_1 \times L_2 \times \cdots$$

Unified framework, for simple or complex models

Choose between models with different number of parameters

$$2\log\frac{L_1}{L_0} \sim \chi^2_{\Delta df}$$

$$AIC = -2 \log L + 2k$$

$$BIC = -2\log L + \log(n)k$$

Outline

- 1 Likelihood relative probability, support, combine data sources
- 2 Estimation MLE, log likelihood, confidence interval
- ③ Normal distribution $N(\mu, \sigma)$, dnorm
- Profile likelihood procedure, interpretation

Maximum likelihood estimation

Log likelihood

Log transformation makes things easier

$$egin{array}{lcl} L(heta|\mathsf{data}) &=& p\left(\mathsf{data}| heta
ight) \\ && p\left(y_1,\ldots,y_n| heta
ight) \\ && p\left(y_1| heta
ight) imes & \cdots imes & p\left(y_n| heta
ight) \\ && \prod p\left(y_i| heta
ight) \end{array}$$

$$\log L(\theta|\text{data}) = \sum \log p(y_i|\theta)$$

Log likelihood

 $0.5\chi^2_{df=1}=1.92$ for 95% confidence interval

 $0.5\chi^2_{df=1}=1.92$ for 95% confidence interval

 $0.5\chi^2_{df=1}=1.92$ for 95% confidence interval

 $0.5\chi^2_{df=1}=1.92$ for 95% confidence interval

Outline

- Likelihood relative probability, support, combine data sources
- Estimation MLE, log likelihood, confidence interval
- 3 Normal distribution $N(\mu, \sigma)$, dnorm
- 4 Profile likelihood procedure, interpretation

Likelihood Estimation

> Normal Profile

Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$p(y_i|\theta) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i-\mu_i)^2}{2\sigma^2}}$$

$$L(\theta|y) = \prod \left(\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i-\mu_i)^2}{2\sigma^2}}\right)$$

$$-\log L = \left[0.5n\log(2\pi)\right] + n\log\sigma + \frac{\sum (y_i-\mu_i)^2}{2\sigma^2}$$

$$= \left[0.5n\log(2\pi)\right] + n\log\sigma + \frac{RSS}{2\sigma^2}$$

dnorm in R

```
neglogL <- -sum(dnorm(y, mu, sigma, log=TRUE))</pre>
```

L <- prod(dnorm(y, mu, sigma))</pre>

dnorm in R

Outline

- 1 Likelihood relative probability, support, combine data sources
- Estimation MLE, log likelihood, confidence interval
- ③ Normal distribution $N(\mu, \sigma)$, dnorm
- 4 Profile likelihood procedure, interpretation

Profile likelihood

lacktriangledown Fix heta (a parameter of interest) at some value

 $oldsymbol{Q}$ Minimize $-\log L$ by estimating all other parameters

3 Save this value of $-\log L$

Repeat over a range of θ values

Profile likelihood

Interpretation

Consider a 2-dimensional likelihood surface, describing the likelihood at different values of two parameters:

	$\theta_1 = 1$	$\theta_1 = 2$	$\theta_1 = 3$	$\theta_1 = 4$	$\theta_1 = 5$
$\theta_2 = 1$	5	15	25	20	15
$\theta_2 = 2$	10	40	60	35	20
$\theta_2 = 3$	50	100	75	40	25
$\theta_2 = 4$	10	40	60	35	20
$\theta_2 = 5$	5	15	25	20	15

Interpretation

Consider a 2-dimensional likelihood surface, describing the likelihood at different values of two parameters:

Marginal distribution

In likelihood inference, we find the maximum likelihood for each value of θ_1 across all values of θ_2

In Bayesian inference, we integrate the likelihood over $heta_2$

Interpretation

Would you place your bet on $\theta_1 = 2$ or $\theta_1 = 3$?

	$\theta_1 \!=\! 1$	$\theta_1 = 2$	$\theta_1 = 3$	$\theta_1 = 4$	$\theta_1 = 5$	sum
$\theta_2 = 1$	5	15	25	20	15	80
$\theta_2 = 2$	10	40	60	35	20	165
$\theta_2 = 3$	50	100	75	40	25	290
$\theta_2 = 4$	10	40	60	35	20	165
$\theta_2 = 5$	5	15	25	20	15	80
sum	80	210	245	150	95	780

profile, marginal, conditional, joint, ...