Contents

1	5.1 Weak Induction	1
2	5.2 Strong Induction 2.1 Example	1
3	5.3 Recursive Definitions 3.0.1 Example	1

1 5.1 Weak Induction

2 5.2 Strong Induction

2.1 Example

Prove that any positive integer can be written as a sum of 2^k , where k's are distinct.

Proof:

1. Basis step:

$$1 = 2^0, 2 = 2^1, 3 = 2^0 + 2^1$$

2. Inductive step:

We assume that k can be written as a sum of distinct powers of 2.

Where $1 \le k \le n$, we want to show that n+1 is a sum of distinct powers of 1.

Consider the following cases

- (a) $n = \sum 2^r$, where r is some distinct positive integers. Then $n+1=1+\sum 2^r=2^0+\sum 2^r$ is a sum of distinct powers of 2.
- (b) $n=1+\sum 2^s$, where s is some distinct positive integers. Then $n+1=1+\sum 2^s+1=2+\sum 2^s=2\left(1+\sum 2^{s-1}\right)$. Since $n\geq 1$, $\frac{n+1}{2}=1+\sum 2^{s-1}$, then $\frac{n+1}{2}$ is a sum of distinct powers of 2.

3 5.3 Recursive Definitions

3.0.1 Example

Prove that f(0) = 0, f(n+1) = f(n) + 2n + 1 is equivalent to $f(n) = n^2$.

Proof By Induction:

• Basis Step:

When $n=0, f(0)=0, f(0)=n^2=0^2=0$. Then the recursive is equivalent to the closed formula when n=1. Then $f(1)=f(0+1)=f(0)+2\cdot 0+1=0+0+1=1$ and $f(1)=1^2=1$.

• Inductive Step:

Then for the closed formula,

$$f(n+1) = (n+1)^2$$

and for the recursive form

$$f(n+1) = f(n) + 2n + 1 = n^2 + 2n + 1 = (n+1)^2$$

Thus, the closed form and the recursive form are equivalent (for n + 1). Therefore, the equivalency is proved.