

NB-IoT

- Definido em R13, outro modo em vez de LTE-M
- Largura de banda 200 KHz
 - Um bloco de recursos em GSM/LTE
- Baseado no protocolo LTE, simplificado
 - OFDMA(para baixo)/FDMA(para cima), QPSK
 - 200kbps (para baixo)/20kbps (para cima)
- Três modos de operação

NB-IoT

- Usa extensivamente o design LTE
- Custo mais baixoem termos de utilização do canal
- Cobertura estendida
- Baixa sensibilidade do receptor= -141dBm
- Bateria de longa duração: 10 anos com bateria de 5 Watts-hora (dependendo das necessidades de tráfego e cobertura)
- Suporte para um grande número de dispositivos: pelo menos 50.000 por célula
- > 3 modos de operação:
 - Estar sozinho: operadora autônoma, por exemplo, espectro atualmente usado pelos sistemas GERAN (GSM Edge Radio Access Network) como substituição de uma ou mais operadoras GSM
 - Faixa de guarda: blocos de recursos não utilizados dentro da banda de guarda de uma operadora LTE
 - Dentro da banda: blocos de recursos dentro de uma operadora LTE normal

NB-IoT - Arquitetura

NB-IoT – Espectro e Acesso

Projetado com diversas opções de implantação para espectro licenciado GSM, WCDMA ou LTE para alcançar eficiência

NB-IoT(@2019)

Tecnologias celulares

- Duas estratégias, para cenários diferentes
 - Sem MIMO para energia de dispositivos de baixo custo.

SigFox

- Fornecer e manter uma plataforma de conectividade PAGA
 - Banda Ultra Estreita: 100 Hz por mensagem
 - Taxa de bits ultrabaixa: mensagens de 12 bytes, 140 mensagens por dia (máximo!)
 - Longo alcance: ~50KM
 - Sensores com duração de 10 anos
 - Fornece apenas conectividade, controle de acesso e um corretor
- Modelo de Negócio: serviço de conectividade para alarmes, medidores inteligentes, etc.

SigFox

- Rede de sensores de área ampla de baixa potência (LPWASN)
- Milhares de milhões☺
 - Um milhão por ponto de acesso ;)
- Proprietário comercial
 - Você tem que usar sua infraestrutura de acesso (construída com operadoras) e software
 - Mercado aberto para os endpoints
- Alcance de 30 a 50 km em áreas rurais e de 3 a 10 km em áreas urbanas
- Banda ultra estreita, frequência 868 (UE) ou 902 (EUA) (MHz)
- Baixo consumo de energia
- Rede dedicada

SigFox

- Cada dispositivo pode enviar até 140 mensagens por dia
 - Carga útil: 12 octetos (~96 bytes)
 - Taxa de dados: até 100bps
- (**Ciclo de trabalho:**o tempo ocupado pela operação de um dispositivo, que opera de forma intermitente)
 - Comum na IoT
- Sigfox explora isso:
 - Quando um dispositivo tem uma mensagem a ser enviada, a interface Sigfox é ativada e a mensagem é transmitida em uplink
 - Em seguida, o dispositivo escuta por um curto período, se houver dados a serem enviados para ele
 - Isso é bom para cenários de aquisição de dados
 - Mas não é tão bom para situações de comando e controle
- Casos de uso:
 - Medidores inteligentes, detectores de fumaça

Sigfox-Arquitetura

LoRa

- Significa "Longo Alcance"
- Para ser usado em cenários de dispositivos alimentados por bateria de longa duração
- Semi-proprietário
 - Partes do protocolo estão bem documentadas, outras não.
 - Eles são donos da parte de rádio (mas o sublicenciamento está a caminho)
 - Você pode instalar seus próprios gateways
- LoRa geralmente significa duas coisas diferentes:
 - LoRa: uma camada física que usa modulação Chirp Spread Spectrum (CSS)
 - LoRaWAN: um protocolo de camada MAC

Pilha LoRa

LoRa (a camada física⊕)

- Desenvolvido por Semtech
- Baixo alcance, baixo consumo de energia e baixo rendimento
- Opera em bandas de 433, 868 (UE) ou 915 (EUA) MHz
- Carga útil de 2 a 255 octetos (2Kb)
 - Depende dos parâmetros de configuração
- Taxa de dados: até 50 Kbps

LoRa (a camada física⁽²⁾)

• Na Europa, são utilizados 8 canais com largura de banda de 0,3 MHz

- Mecanismo MAC para controlar comunicações entre dispositivos finais e gateways LoRaWAN. Para todos os dispositivos, ele gerencia:
 - Frequências de comunicação
 - Taxa de dados
 - Poder
- Padrão aberto desenvolvido pela LoRa Alliance

Rede LoRA

- Topologia estrela de estrelas
- Dispositivos transmitem dados de forma assíncrona
 - Os dados são recebidos por vários gateways
 - Cada gateway encaminha os dados recebidos para um servidor de rede centralizado, usando um link de backhaul (Ethernet ou celular)
 - O servidor de rede:
 - Filtra pacotes duplicados
 - O pacote com o sinal mais forte é decodificado
 - Realiza verificações de segurança
 - Gerencia a rede

LORA-Arquitetura

- Modulação
 - (alterar um sinal, a portadora, de uma forma que permita que ela contenha informações a serem transmitidas)
- LoRa usa uma técnica proprietária de modulação Spread-Spectrum: Chirp Spread Spectrum (CSS)
 - (Um chirp é um sinal em que a frequência aumenta ou diminui com o tempo)
 - Tenta aumentar o alcance em:
 - Envio de informação com mais potência (dentro dos valores regulamentados <14dBm ou 25mW)
 - Ou diminuindo a taxa de dados
 - Aumenta o orçamento de links
 - Aumenta a imunidade a interferências dentro da banda
- Isto, juntamente com técnicas de correção direta de erros, contribuem para ampliar o alcance e a robustez dos links de comunicação de rádio.
 - Comparado ao FSK

- Possui diferentes fatores de propagação (SF7 a SF12)
 - Fatores de propagação podem definir a taxa de modulação e ajustar a distância
 - Eles indicam quão rápido ou lento é o chilrear (quantos chilreios você ouve por segundo) → quantos dados você pode codificar por segundo
 - Quanto maior o SF, menor a taxa de dados
 - Cada SF é 2x mais lento que o anterior
 - Quanto mais lento você enviar seus dados, mais longe poderá enviá-los
 - Quanto maior o SF, mais energia é necessária (tempo no ar)
 - A interface tem mais tempo para decodificar e a sensibilidade é aumentada
- Isso ajuda a dimensionar a rede
 - Nós mais próximos recebem dados muito mais rápido
 - O ar é "liberado" para outros nós transmitirem
 - Ao adicionar mais gateways, os dispositivos ficam mais próximos deles, aplicando o procedimento acima

Fonte: Thomas Telkamp

• Para um bw de 125kHz (configurável por design)

Fator de propagação	Símbolos/segundo	Limite SNR	Tempo no ar (10 pacote de bytes) - ms	Taxa de bits - bps
7	976	- 7,5	56	5469
8	488	- 10	103	3125
9	244	- 12,5	205	1758
10	122	- 15	371	977
11	61	- 17,5	741	537
12	30	- 20	1483	293

- A largura de banda (kHz), o fator de espalhamento e a taxa de codificação são variáveis de projeto que permitem a um sistema otimizar o compromisso entre
 - Largura de banda ocupada
 - Taxa de dados
 - Orçamento de links
 - Imunidade a interferências
- Usando software, é possível combinar esses valores para definir um modo de transmissão

- Largura de banda
 - Mostre qual será a largura do sinal de transmissão
 - 3 opções: 125 kHz, 250 kHz ou 500 kHz
 - Maior alcance: 125 kHz
 - Maior velocidade de transmissão: 500 kHz
 - Menos largura de banda = mais tempo de antena = mais sensibilidade = mais bateria consumida

- Taxa de codificação
 - 4 opções: 4/5, 4/6, 4/7 e 4/8
 - Significado:
 - Cada 4 bytes úteis serão codificados por 5, 6, 7 ou 8 bits de transmissão
 - Taxa de codificação menor: 4/8
 - Taxa de codificação mais baixa = mais tempo de antena

- Fator de propagação
 - Número de chips por símbolo utilizados no tratamento de dados antes do sinal de transmissão
 - 7 opções: 6, 7, 8, 9, 10, 11 e 12
 - Maior Fator de Espalhamento = Maior Alcance = mais tempo de transmissão

Mode	BW	CR	SF	Sensitivity (dB)	Transmission time (ms) for a 100-byte packet sent	Transmission time (ms) for a 100-byte packet sent and ACK received	Comments
1	125	4/5	12	-134	4245	5781	max range, slow data rate
2	250	4/5	12	-131	2193	3287	-
3	125	4/5	10	-129	1208	2120	-
4	500	4/5	12	-128	1167	2040	-
5	250	4/5	10	-126	674	1457	-
6	500	4/5	11	-125,5	715	1499	-
7	250	4/5	9	-123	428	1145	-
8	500	4/5	9	-120	284	970	-
9	500	4/5	8	-117	220	890	-
10	500	4/5	7	-114	186	848	min range, fast data rate, minimum battery impact

- No LoPy
 - Método
 - lora.init(modo, *, frequência=868000000, tx_power=14, largura de banda=LoRa.BW_125KHZ,sf=7, preâmbulo = 8, taxa_de_codificação=LoRa.CODING_4_5, power_mode=LoRa.ALWAYS_ON, tx_iq=False, rx_iq=False, adr=False, public=True, tx_retries=1, device_class=LoRa.CLASS_A)
- Largura de banda:LoRa.BW_125KHZ / LoRa.BW_250KHZ / LoRa.BW_500KHZ
- SF:sf=6 / sf=7 / sf=8 / sf=9 / sf=10 / sf=11 / sf=12
- Taxa de codificação:LoRa.CODING_4_5 / LoRa.CODING_4_6 / LoRa.CODING_4_7 / LoRa.CODING_4_8

Componentes

- Dispositivo final
 - Dispositivos (baixo consumo de energia) que se comunicam com o LoRa Gateway
 - Eles não estão associados a um gateway específico.
 - Estão, no entanto, associados a um Network Server.
- Porta de entrada
 - Dispositivos intermediários que retransmitem pacotes entre dispositivos finais e um servidor de rede.
 - Vinculado ao servidor de rede por meio de uma rede backhaul de maior largura de banda.
 - Eles adicionam informações sobre a qualidade da recepção ao encaminhar um pacote de um dispositivo final para um servidor de rede.
 - Eles são transparentes para os dispositivos finais.
 - Existem vários gateways em uma rede
 - Vários gateways podem receber o mesmo pacote transmitido do mesmo dispositivo final
- Servidor de rede
 - Decodifica e desduplica pacotes enviados de dispositivos.
 - Gera pacotes a serem enviados para dispositivos
 - Escolhe o gateway apropriado para enviar pacotes para um dispositivo final específico

LORA – Classes de dispositivos

Aulas	Descrição	Uso pretendido	Consumo	Exemplos de serviços
A (" todos ")	Só ouve depois dispositivo final transmissão	Módulos sem restrição de latência	O mais econômico aula de comunicação energeticamente Suportado por todos os módulos. Adaptado para alimentação por bateria módulos	Detecção de fogoTerremoto precoce Detecção
B («farol»)	e eu ó d você ele eu ouve regularmente ajustável frequência	Módulos com latência restrições para o recepção de mensagens de alguns segundos	Consumo otimizado. Adaptado para alimentação por bateria módulos	 Medição inteligente Aumento de temperatura
C («contínuo»)	Módulo sempre audição	Módulos com recepção forte restrição de latência (menos de um segundo)	Adaptado aos módulos da rede ou sem restrições de energia	 Gestão de frota Gerenciamento de tráfego em tempo real

Qualquer objeto LoRa pode transmitir e receber dados

- Classes de dispositivos finais
 - Classe A bidirecional
 - Menor consumo de energia
 - Os dispositivos agendam transmissões de uplink de acordo com suas necessidades, com uma pequena variação antes da transmissão.
 - Cada transmissão de uplink é seguida por duas janelas curtas de recebimento de downlink.
 - As transmissões de downlink em qualquer outro momento terão que esperar até a próxima transmissão de uplink
 - Menos flexibilidade para downlink

- Classes de dispositivos finais
 - Classe B bidirecional com slots de recebimento programados
 - Dispositivos abrem mais janelas de recebimento em horários programados
 - Há um beacon sincronizado do gateway para o servidor de rede, indicando quando o dispositivo está escutando

151

- Classes de dispositivos finais
 - Classe C bidirecional com slots máximos de recebimento
 - Maior consumo de energia
 - Janelas de recepção quase contínuas
 - O servidor pode iniciar a transmissão quase a qualquer momento

- Ciclo de trabalho do dispositivo final
 - Além da frequência de transmissão, aplicam-se regulamentos de ciclo de trabalho
 - Atraso entre quadros sucessivos enviados por um dispositivo
 - Limitação de 1% para dispositivos finais
 - O dispositivo tem que esperar 100x o tempo que levou para enviar a mensagem, para poder enviar novamente no mesmo canal
 - Portais: 10%

LoRaWAN - Carga útil

- EndereçoDev-endereço curto do dispositivo.
- FPort-campo de porta de multiplexação.
- FCnt-contador de quadros.
- *microfone*-código de integridade de mensagem criptográfica
- Tipo M-tipo de mensagem (uplink, downlink, confirmado (requer um ACK,...).
- *Majo*r versão LoRaWAN
- ADReADRAckReq-mecanismo de adaptação de controle de taxa de dados pelo servidor de rede.
- CONFIRMAR-reconhece o último quadro recebido.
- *Pendente* -indica que ainda há dados a serem enviados pelo servidor de rede (é necessário que o dispositivo final envie outra mensagem para abrir uma janela de recebimento).
- FOptsLen-comprimento do FOptscampo em bytes.
- FOpts-contém comandos MAC em uma mensagem de dados.
- CID-ID do comando MAC.
- Argumentos-argumentos opcionais do comando.
- Carga útil FRMP-carga útil, criptografada usando AES com um comprimento de chave de 128 bits.

O tamanho mínimo do cabeçalho MAC é 13 bytes; seu tamanho máximo é 28 bytes.

Não há endereço de destino nos pacotes de uplink ou endereço de origem nos pacotes de downlink.

- Comandos MAC
 - Permite que a rede personalize os parâmetros do dispositivo final
- Verificações
 - Status do link (pode ser enviado pelo próprio dispositivo final)
 - Bateria do dispositivo
 - Margem do dispositivo (SNR)
- Configurações
 - Taxa de dados
 - Potência de transmissão
 - Canais TX e RX
 - Tempo de RX
 - Repetição
 - Ciclo de trabalho
 - Tempo de permanência

- Conexão do dispositivo final a uma rede
 - Também conhecido como Ativação
- Este processo fornece ao dispositivo final:
 - Endereço do dispositivo final (*EndereçoDev*): Um identificador composto pelo identificador de rede (7 bits) e pelo endereço de rede do dispositivo final (25 bits)
 - Identificador do aplicativo (Aplicativo EUI): Identificação exclusiva do proprietário do dispositivo final
 - Chave de sessão de rede (*NwkSKey*): Uma chave usada pelo servidor de rede e pelo dispositivo final para verificar e garantir a integridade da mensagem
 - Chave de sessão do aplicativo (*AppSKey*): Uma chave usada pelo servidor de rede e pelo dispositivo final para criptografar a carga útil das mensagens recebidas
- Nota sobre segurança:
 - A segurança do protocolo LoRaWAN é baseada em 802.15.4
 - AES-128

- Para ativar o dispositivo, existem dois procedimentos:
 - Ativação Over-the-Air (OTAA)
 - *Solicitação de adesão*e*Resposta de adesão*mensagens são trocadas em cada nova sessão, permitindo que os dispositivos finais obtenham as chaves de sessão da rede e do aplicativo
 - Ativação por Personalização (ABP)
 - Os dispositivos possuem ambas as chaves já armazenadas internamente

- Taxa de dados adaptável
 - A rede informa ao nó em qual taxa de dados ele pode enviar dados
 - Gerencia o SF para cada dispositivo final
 - O objetivo é:
 - Otimize para taxa de dados mais rápida em relação ao alcance
 - Maximize a vida útil da bateria
 - Maximize a capacidade da rede

- Normalmente, não há comunicação direta nó a nó
 - LoRaWAN permite isso tendo 2 gateways e um servidor de rede entre os nós
- No entanto, a maioria dos fornecedores de dispositivos finais também inclui (principalmente para testes) uma forma bruta de LoRa
 - Permite comunicação ponto a ponto entre nós
 - Contém apenas o protocolo da camada de enlace
 - Permite apenas um número muito pequeno de nós em uma topologia
 - Não há gerenciamento de pacotes

(útil para uma primeira tentativa com LoRa)