Lecture-8 Main Points

- Interpretation of a proposition P in a Boolean Algebra
 - P is true in $(B, \llbracket \cdot \rrbracket_B)$ iff $\llbracket P \rrbracket_B = 1$.
 - P is true in a BA B iff for all valuations $[\![\cdot]\!]_B$ into B, $[\![P]\!]_B = 1$.
 - P is valid (or a tautology) iff P is true in all BA B. (equivalently, for all $(B, \llbracket \cdot \rrbracket_B), \llbracket P \rrbracket_B = 1)$
- Extending interpretation to a judgment $\Gamma \vdash A$

- Define
$$\llbracket \Gamma \rrbracket_B = \begin{cases} 1 & \text{if } \Gamma \text{ is empty} \\ \llbracket A_1 \rrbracket_B \wedge \ldots \wedge \llbracket A_m \rrbracket_B & \text{if } \Gamma \equiv A_1, \ldots, A_m \end{cases}$$

- $-\Gamma \vdash A$ is true in $(B, \llbracket \cdot \rrbracket_B)$ iff $\llbracket \Gamma \rrbracket_B \leq \llbracket A \rrbracket_B$.
- $-\Gamma \vdash A$ is true in B iff for all B valuations $\llbracket \cdot \rrbracket_B$, $\llbracket \Gamma \rrbracket_B \leq \llbracket A \rrbracket_B$.
- $-\Gamma \vdash A$ is valid iff $\Gamma \vdash A$ is true for all BA B.
- Syntax vs. Semantics
 - Soundness
 - Completeness
- Theorem (Soundness): If $\Gamma \vdash_{\mathbf{Nc}} A$ then $\Gamma \vdash A$ is valid.
 - Proof by induction on depth of derivation tree of $\Gamma \vdash_{\mathbf{Nc}} A$.
- Completeness
 - Given a valid P, how to relate it to derivability in $\vdash_{\mathbf{Nc}}$?
 - We use a standard technique of constructing a Lindenbaum algebra of propositional logic.

- * Define an equivalence relation ' \sim ' on the set of all propositions as follows.
 - · $A \sim B$ iff $A \vdash_{\mathbf{Nc}} B$ and $B \vdash_{\mathbf{Nc}} A$. (In the following we use just ' \vdash ' for ' $\vdash_{\mathbf{Nc}}$ ').
 - · We let [A] stand for equivalence class of A w.r.t. relation ' \sim '.
- * Domain of Lindenbaum algebra A is $\{[A] \mid A \text{ is a proposition}\}$
- * Show that relation \sim is a congruence for operations $\vee, \wedge, \rightarrow$.
- * Define ordering \leq on equivalence classes of \sim as follows.
 - $\cdot [A] \leq [B] \text{ iff } A \vdash B.$
 - · Show that relation \leq is well defined.
- * Show that \leq is a partial order and \vee , \wedge are lub and glb operators w.r.t. this ordering.
- * Define operations on \mathcal{A} , as
 - · $[A] \vee [B] = [A \vee B], [A] \rightarrow [B] = [A \rightarrow B], \neg [A] = [\neg A]$ etc.
- * Show that $\mathcal{A} = (\mathcal{A}, \leq, \wedge, \vee, \neg, [\bot], [\bot \to \bot])$ is a BA.