Courbes algébriques - TD

Alexandre Guillemot

 $24\ {\rm octobre}\ 2022$

Table des matières

1	TD1	L																		2
	1.1	Exercice 1 .											 							2
	1.2	Exercice 2 .			 								 							2
	1.3	Exercice 3 .			 								 							2
	1.4	Exercice 4 .			 								 							3
	1.5	Exercice 5 .											 							3
	1.6	Exercice 6 .			 								 							4
	1.7	Exercice 7 .			 								 							4
	1.8	Exercice 8 .			 								 							4
	1.9	Exercice 9 .											 							5
	1.10	Exercice 10			 								 							6
	1.11	Exercice 11			 								 							8
	1.12	Exercice 12			 								 							8
	1.13	Exercice 13			 								 							8
	1.14	Exercice 14											 	٠						8
	1.15	Exercice 15											 							9
	1.16	Exercice 16																		9
2	TD2	2																		10
	2.1	Exercice 1 .											 							10
	2.2	Exercice 2 .											 							11
	2.3	Exercice 3 .											 							11
	2.4	exercice 4 .											 							11
	2.5	Exercice 5 .											 							12
	2.6	Exercice 6 .											 							12
	2.7	Exercice 7 .											 							13
	2.8	Exercice 8 .											 							13
	2.9	Exercice 9 .											 							13
	2.10	Exercice 10			 								 							14

3	TD3	1
_	3.1 Exercice 1	1
	3.2 Exercice 2	1
	3.3 Exercice 3	1
	3.4 Exercice 4	1
	3.5 Exercice 5	1
	3.6 Exercice 6	1
	3.7 Exercice 7	1
	3.8 Exercice 8	1
	3.9 Exercice 9	1
	3.10 Exercice 10	2
	3.11 Exercice 11	2
	3.12 Exercice 12	5

Chapitre 1

TD1

1.1 Exercice 1

Soit $V \subset \mathbb{A}^1$ un souos ensemble algébrique, alors il existe $M \subseteq k[x]$ tq V = V(M). Maintenant V(M) = V((M)) et comme k[x] est principal, il existe $P \in k[x]$ tq V = V(P). Remarquons alors que $P \neq 0$ car sinon $V(P) = V(0) = \mathbb{A}^1$. Mais alors $V(P) = \{a \in \mathbb{A}^1 \mid P(a) = 0\}$ donc c'est l'ensemble des racines, qui est un ensemble fini (de cardinal inférieur à deg P).

1.2 Exercice 2

Vérifions la double inclusion : L'inclusion $\mathfrak{m}_a \subseteq \ker ev_a$ est triviale. Réciproquement, prenons $P \in k[x_1, \dots, x_n]$ tq P(a) = 0. Alors par divisions euclidiennes successives, on peut écrire

$$P(x_1, \dots, x_n) = Q_1(x_1, \dots, x_n)(x_1 - a_1) + \dots + Q_n(x_1, \dots, x_n)(x_n - a_n) + r$$

avec r un polynôme constant. Alors r=0 puisque P(a)=0 et ainsi $P\in\mathfrak{m}_a$.

1.3 Exercice 3

Soit k un corps infini. On montre par récurrence sur n que $I(\mathbb{A}_k)^n=0$:

- 1. Si n = 1, alors $I(\mathbb{A}^n_k) = \{ f \in k[x] \mid \forall a \in k, f(a) = 0 \}$. Mais alors soit $f \in I(\mathbb{A}^n_k)$, f a une infinité de racines, donc f est forcément nul (tout polynôme g non nul ayant au maximum deg g racines).
- 2. Soit $f \in I(\mathbb{A}^n_k)$. Alors regardons f comme un élément de $k[x_1,\cdots,x_{n-1}][x_n]$:

$$f = \sum Q_i x_n^i$$

avec $Q_i \in k[x_1, \dots, x_{n-1}]$. Maintenant fixons $(a_1, \dots, a_{n-1}) \in k^{n-1}$, alors pour tout $t \in k$

$$f(a_1,\cdots,a_{n-1},t)=0$$

donc le polynome $\sum Q_i(a_1, \dots, a_n) x_n^i \in k[x_n]$ est nul (on utilise l'initialisation). Ainsi chaque $Q_i(a_1, \dots, a_n)$ est nul, et ceci pour tout $(a_1, \dots, a_{n-1}) \in k^{n-1}$. Ainsi par hypothèse de récurrence les $Q_i \in k[x_1, \dots, x_{n-1}]$ sont nuls et alors f est nul, donc $I(\mathbb{A}_k^n) = 0$.

1.4 Exercice 4

 \supseteq est trivial. Réciproquement, soit $f \in \mathbb{F}_q[x]$ tel que f(a) = 0, pour tout $a \in \mathbb{F}_q$. Remarquons alors que $x^q - x$ s'annule sur tout \mathbb{F}_q et a au maximum q racines, donc doit forcément s'écrire $x^q - x = \prod_{a \in \mathbb{F}_q} (x - a)$. Maintenant, on peut factoriser f en

$$f = g \prod_{a \in \mathbb{F}_q} (x - a) = g(x^q - x) \in (x^q - x)$$

et donc l'inclusion réciproque est prouvée.

1.5 Exercice 5

- 1) Montrons que $V=V(x^2+y^2-1)$: il est clair que $V\subseteq V(x^2+y^2-1)$. Réciproquement, soit $(a,b)\in\mathbb{R}^2$ tels que $a^2+b^2-1=0$. Alors $a\in[-1,1]$ donc il existe $t\in\mathbb{R}\mid x=\cos t$. Et alors $b^2=1-(\cos t)^2=(\sin t)^2$ donc $b=\pm\sin t$. Si $b=\sin t$, alors on a terminé, sinon posons t'=-t, alors $a=\cos t'$ et $b=\sin t'$ et donc $(a,b)\in V$.
- 2) Supposons que V_2 est algébrique, disons $V_2 = V(I)$ pour $I \subseteq k[x,y]$. Alors prenons $P \in I$, on a $P(t,\sin t) = 0$ pour tout $t \in \mathbb{R}$. Mais alors regardons P comme un polynôme de k[x][y]

$$P = \sum Q_i y^i$$

avec $Q_i \in k[x]$. Alors fixons $t \in \mathbb{R}$, alors $\sum Q_i(t)y^i \in k[y]$ admet une infinité de racines, puisque $\sin(t+2k\pi)$ sont des racines, pour $k \in \mathbb{Z}$: en effet, $P(t,\sin(t+2k\pi)) = P(t,\sin t) = 0$. Ainsi $\sum Q_i(t)y^i = 0 \in k[y]$. Donc pour tout $t \in \mathbb{R}$, $Q_i(t) = 0$ et donc $Q_i = 0 \in k[x]$, et ainsi P = 0. Mais alors I = 0, donc $V_2 = \mathbb{A}^2_{\mathbb{R}}$ absurde.

3) Supposons que $V_3 = V(I)$. Alors soit $P \in I$, alors $P(t, e^t) = 0$ pour tout $t \in \mathbb{R}$. Supposons que P est non nul, alors regardons P comme un élément de k[x][y]

$$P = \sum_{n=1}^{k} Q_n y^n$$

où $Q_k \neq 0$. Alors

$$0 = \sum_{n=1}^{k} Q_n(t)e^{nt} \iff 0 = \sum_{n=1}^{k} Q_n(t)e^{(n-k)t}$$

et alors en passant à la limite, par croissances comparées on obtiens que $Q_n(t) \xrightarrow{t \to \infty} 0$ et donc $Q_n = 0 \in k[x]$ absurde. Ainsi P = 0, donc $V_3 = \mathbb{A}^2_{\mathbb{R}}$, absurde.

1.6 Exercice 6

- 1) Il est clair que $V_1 = V(y x^2, z x^3)$.
- 2) Montrons que $V_2 = V(xy 1)$: \subseteq est claire. Réciproquement, soit $(a, b) \in V(xy 1)$, alors ab = 1. Maintenant a et b sont non nuls, et alors b = 1/a, donc $(a, b) = (a, 1/a) \in V_2$.
- 3) Remarquons dans un premier temps que

$$V_3 = \{(t, (t+1)^2 - 1) \in \mathbb{A}^2 \mid t \in k\} = \{(t, t^2 + 2t) \in \mathbb{A}^2 \mid t \in k\}$$

Ainsi il est clair que $V_3 = V(x^2 + 2x - y)$.

1.7 Exercice 7

- 1) Soit $(x,y) \in V(I)$. Alors $xy^3 = 0$ et $x^2 + y^2 = 0$. Alors
 - 1. Soit x = 0 et alors $y^2 = 0$ donc y = 0
 - 2. Soit $y^3 = 0 \Rightarrow y = 0 \Rightarrow x^2 = 0 \Rightarrow x = 0$

et ainsi $V(I)=\{0\}$. Soit $(x,y)\in V(J)$, alors $x^2=0$ et $y^3=0$, donc x=0 et y=0. AInsi $V(J)=\{0\}$.

2)
$$I(V(I)) = I(V(J)) = (x, y).$$

1.8 Exercice 8

- 1) Comme k est un corps infini, I(V) = 0 (cf 1.3). On a donc $V(I(V)) = \mathbb{A}^2$.
- 2) Comme $V \neq V(I(V)), V$ n'est pas un ensemble algébrique affine.

1.9 Exercice 9

- 1) Oui, vu qu'un singleton n'a aucun sous ensemble propre.
- 2) Non. Une paire de points et l'union de deux points qui sont des sous-ensembles algébriques propres de cette paire de points.
- 3) Non : d'après le cours, $V(xy) = V(x) \cup V(y)$.
- 4) Si le corps n'est pas infini, alors $V(X-Y)=V((X-Y)^2)$ est un union fini disjoint de points, donc n'est pas irréductible. Si le corps est infini, montrons que $I(V(x-y))=I(V((x-y)^2))=(x-y):$ \supseteq est donné directement par le cours. Réciproquement, soit $P\in I(V((x-y)^2))$, alors $V((x-y)^2)=\{(t,t)\in\mathbb{A}^2\mid t\in k\}$ et donc P(t,t)=0 pour tout $t\in k$. Ainsi si on considère P en tant qu'élément de k[x][y] puis qu'on réalise la division euclidienne de celui-ci par x-y, alors on obtiens

$$P = Q_1(x, y)(x - y) + R(x, y)$$

et R s'identifie à un polynôme de k[x] vu que $\deg_Y R < 1$. Mais alors $|k| = \infty$ et R(t) = 0 pour tout $t \in k$, donc finalement R = 0 et $P \in (x, y)$. Pour conclure, remarquons (au vu de ce que l'on vient de faire) que (x - y) est le noyau de

$$k[x,y] \rightarrow k[t]$$
 $P \mapsto P(t,t)$

donc finalement k[x,y]/(x-y)=k[t] qui est intègre donc (x-y) est premier, prouvant l'irréductibilité de $V(x-y)=V((x-y)^2)$.

5) $V(y-x^2)=\{(t,t^2)\mid t\in k\}$. Montrons alors que $I(V(y-x^2))=(y-x^2)$ (si $|k|=\infty$). Si k est fini, alors $V(y-x^2)$ contiens au moins deux points ((0,0) et (1,1) par exemple) et n'est donc pas irréductible. Sinon, prouver l'égalité souhaitée revient à prouver que le noyau de

$$\varphi: k[x,y] \to k[t]$$

$$P \mapsto P(t,t^2)$$

vaut $(y - x^2)$ (du fait que dans un corps infini un polynome est nul si et seulement si sa fonction polynomiale associée est nulle). Mais alors soit $P \in \ker \varphi$, on réalise la division euclidienne de P par $y - x^2$ dans k[x][y]:

$$P = Q(y - x^2) + R(x, y)$$

mais R s'identifie à un polynôme de k[x] puisque $\deg_y R < 1$. Mais alors R(a) = 0 pour tout $a \in k$ et comme $|k| = \infty$, R = 0 et donc $P \in (y - x^2)$. L'inclusion réciproque est triviale. Finalement, on a bien $\ker \varphi = (y - x^2)$ et donc $I(V(y - x^2)) = (y - x^2)$ est un idéal premier, du fait que $k[x,y]/(y-x^2) \simeq k[t]$ qui est un anneau intègre.

6) 1. $V(x^2 - y^2) = V((x - y)(x + y)) = V(x - y) \cup V(x + y)$, donc $V(x^2 - y^2)$ n'est pas irréductible en caractéristique différente de 2. En caractéristique 2,

$$V(x^{2} - y^{2}) = V(x^{2} + y^{2}) = V((x + y)^{2}) = V(x + y)$$

est irréductible si et seulement si $|k| = \infty$.

- 2. On sépare en deux cas
 - (a) S'il existe $i \in k$ tel que $i^2 = -1$, alors $V(x^2 + y^2) = V(x iy) \cup V(x + iy)$ et ces sousensembles sont popres si char $k \neq 2$. En caractéristique 2, $V(x^2 + y^2) = V((x + y)^2) = V(x + y)$ qui est irréductible si $|k| = \infty$, et réductible sinon.
 - (b) Si -1 n'est pas un carré dans k, alors $V(x^2+y^2)=\{0\}$: soit $(a,b)\in V(x^2+y^2)$, alors $a^2+b^2=0$. Alors si a est non nul,

$$b^2 = -a^2 \iff \left(\frac{b}{a}\right)^2 = -1$$

absurde. Ainsi a=0 et donc b=0. $V(x^2+y^2)$ est donc irréductible dans ce cas.

7) Montrons que $V(y^4 - x^2, y - x) = \{\pm (1, 1)\}$: si $(a, b) \in V(y^4 - x^2, y - x)$ alors a = b et $a^2 = b^4$. Ainsi $a^2 = a^4$ et donc $a^2 = 1$, donc soit a = 1 et donc b = 1, soit a = -1 et donc b = -1. Ainsi si la caractéristique est différente de 2, c'est un ensemble réductible, sinon il est irréductible car composé d'un seul point.

1.10 Exercice 10

- 1) Montrons que $I(V(x^3))=(x)$: clairement, $V(x^3)=\{(0,b,c)\in\mathbb{A}^3\mid\}$. Maintenant soit $P\in I(V(x^3))$, alors P(0,b,c)=0 pour tous $b,c\in k$. Mais alors en réalisant la division euclidiennez de P par x dans k[y,z][x], on voit facilement que $P\in (x)$ (dans le cas où $|k|=\infty$). Finalement, $k[x,y,z]/(x)\simeq k[y,z]$ qui est un anneau intègre, donc $V(x^3)$ est irréductible.
- 2) aled
- 3) Tout d'abord, si le corps est fini, alors $V(Y^2 X^3)$ contiens (0,0) et (1,1), donc n'est pas irréductible. Supposons maintenant que $|k| = \infty$, montrons que

$$V(Y^2 - X^3) = \{(t^2, t^3) \in k^2 \mid t \in k\} =: V$$

Si $(x,y) \in V$, alors $\exists t \in k \mid (x,y) = (t^2,t^3)$. Et alors $y^2 - x^3 = t^6 - t^6 = 0$, donc $(x,y) \in V(Y^2 - X^3)$. Réciproquement, si $(x,y) \in V(Y^2 - X^3)$, alors $y^2 = x^3$ dans k. Et

alors si x=0, alors y=0 et $(0,0) \in V$. Sinon,

$$\left(\frac{y}{x}\right)^2 = x$$
$$\left(\frac{y}{x}\right)^3 = y$$

donc en posant t=y/x, $(x,y)=(t^2,t^3)\in V$. Ensuite, montrons que $I(V(Y^2-X^3))=(Y^2-X^3)$: remarquons dans un premier temps que pour tout $P \in k[T]$, $P = 0 \iff P(t) = 0$, $\forall t \in k$ du fait que $|k| = \infty$. Ainsi prouver $(Y^2 - X^3) = I(V(Y^2 - X^3))$ reviens à prouver que le noyau de

$$\begin{array}{ccc} \varphi: & k[X,Y] & \to & k[T] \\ & P & \mapsto & P(T^2,T^3) \end{array}$$

vaut (Y^2-X^3) . En effet, $P \in I(V(Y^2-X^3)) \iff P(t^3,t^3)=0, \forall t \in k \iff P(T^2,T^3)=0$ au vu de la remarque faite précédemment, donc $\ker \varphi = I(V(Y^2-X^3))$. Il est clair que $(Y^2 - X^3) \subseteq \ker \varphi$. Réciproquement, soit $P \in \ker \varphi$, réalisons la division euclidienne de Ppar $Y^2 - X^{\overline{3}}$ dans k[X][Y]:

$$P(X,Y) = Q(X,Y)(Y^{2} - X^{3}) + R(X,Y)$$

où $\deg_{Y} R \leq 1$. Ecrivons alors R(X,Y) = a(X)Y + b(X), montrons que a et b sont nuls. Développons alors a et b: si on écrit

$$a(X) = \sum_{i \ge 0} a_i X^i$$
$$b(X) = \sum_{i \ge 0} b_i X^i$$

on a

$$R(T^{2}, T^{3}) = a(T^{2})T^{3} + b(T^{2})$$

$$= \sum_{i \ge 0} a_{i}T^{2i+3} + b_{i}T^{2i}$$

$$= \sum_{i \ge 0} a_{i}T^{2i+3} + b_{i}T^{2i}$$

$$= \sum_{j \ge 0} c_{j}T^{j}$$

οù

$$c_j = \begin{cases} a_i & \text{si } j = 2i + 3 \text{ pour un certain } i \in \mathbb{N} \\ b_i & \text{si } j = 2i \text{ pour un certain } i \in \mathbb{N} \\ 0 & \text{sinon} \end{cases}$$

(Les coefficients de $a(T^2)T^3$ n'intéragissent pas avec ceux de $b(T^2)$, car devant des monômes de degré impair alors que ceux de $b(T^2)$ n'aparaissent que devant des monômes de degré pair). Ainsi comme $P \in \ker \varphi$, $0 = \varphi(R) = R(T^2, T^3)$ et donc $a_i, b_i = 0$ pour tout $i \geq 0$. Finalement, a, b = 0 et donc R = 0, d'où $P \in (Y^2 - X^3)$. Ainsi on a bien égalité $I(V(Y^2 - X^3)) = (Y^2 - X^3)$, et $V(Y^2 - X^3)$ est irréductible puisque $K[X, Y]/(Y^2, X^3)$ s'injecte dans k[T] qui est lui-même intègre.

1.11 Exercice 11

A faire

1.12 Exercice 12

A faire

1.13 Exercice 13

A faire

1.14 Exercice 14

- 1) Il est clair que $V = V(X_2 X_1^2, \dots, X_n X_1^n)$.
- 2) Montrons que $I(V)=(X_2-X_1^2,\cdots,X_n-X_1^n)$. \supseteq est claire, montrons l'inclusion réciproque : soit $P\in I(V)$, alors on peut écrire $P=\sum_{i=2}^nQ_i(X_i-X_1^i)+R$ où $R\in k[X_1]$. Maintenant pour tout $t\in k,\, P(t,t^2,\cdots,t^n)=R(t)=0$ et donc comme k est de caractéristique nulle, il est infini et R=0. Finalement $P\in (X_2-X_1^2,\cdots,X_n-X_1^n)$ et on a égalité. Finalement le noyau du morphisme

$$k[X_1, \cdots, X_n] \rightarrow K[T]$$

 $X_i \mapsto T^i$

est de noyau $(X_2-X_1^2,\cdots,X_n-X_1^n)=I(V)$, et est surjectif, donc $k[V]\simeq k[T]$

3) k[V] est intègre, donc V est irréductible.

1.15 Exercice 15

Soient $V_1 \subseteq \mathbb{A}^n_k$, $V_2 \subseteq \mathbb{A}^m_k$ des ensembles algébriques affines. On note

$$k[x_1, \cdots, x_n] =: A$$

$$k[y_1, \cdots, y_m] =: B$$

$$k[x_1, \cdots, x_n, y_1, \cdots, y_m] =: C$$

Alors il existe $I \subseteq A$ et $J \subseteq B$ tels que $V_1 = V(I)$ et $V_2 = V(J)$. Considérons le morphisme

$$\varphi := p_I \otimes p_J : A \otimes_k B \to A/I \otimes_k B/J \tag{1.1}$$

Où $p_I:A\to A/I,\ p_J:B\to B/J$ sont les projections canoniques des quotients respectifs. On sait que le morphisme $A\otimes_k B\to C$ induit par les morphismes canoniques $i_1:A\to C,$ $i_B:B\to C$ (issus de la propriété universelle des anneaux de polynômes) est un isomorphisme $(\sum_{finie}P_i\otimes Q_i$ est envoyé sur $\sum_{finie}i_A(P_j)i_B(Q_j)$). Une dernière remarque est qu'au vu de la naturalité de $\mathbf{Hom}_{\mathbf{Sets}}(S,k)\simeq \mathbf{Hom}_{k-\mathbf{CAlg}}(k[S],k)$, nous avons la commutativité du diagramme

$$A \xrightarrow{i_1} C \xleftarrow{i_2} B$$

$$ev_a \qquad ev_b \qquad ev_b$$

Pour terminer l'exercice, montrons que $V(\ker \varphi) = V_1 \times V_2$ (où $\ker \varphi$ est vu comme un idéal de C par l'isomorphisme naturel donné précédemment). Prenons $(a,b) \in V(\ker \varphi)$, puis soient $P \in I$, $Q \in J$. Alors $P \otimes 1, 1 \otimes Q \in \ker \varphi$ et donc

$$0 = \text{ev}_{(a,b)}(i_1(P)i_2(1)) = P(a)$$

et de même, Q(b) = 0, et ainsi $(a, b) \in V_1 \times V_2$. Réciproquement, soit $(a, b) \in V_1 \times V_2$. Alors tout élément de ker φ s'écrit comme une somme finie $\sum_{\text{finie}} P_j \otimes Q_j$. Mais

$$\operatorname{ev}_{(a,b)}\left(\sum_{\text{finie}} i_A(P_j)i_B(Q_j)\right) = \sum_{\text{finie}} P_j(a)Q_j(b) = 0$$

et ainsi $(a,b) \in V(\ker \varphi)$.

1.16 Exercice 16

Chapitre 2

TD2

2.1 Exercice 1

- 1) Montrons que $D(f) \cap D(g) = D(fg)$: en passant au complémentaire, il faut montrer que $V(fg) = V(f) \cup V(g)$, ce que l'on sait vrai d'après le cours.
- 2) Soit $U = \mathbb{A}^n \setminus V(I)$ un ouvert de \mathbb{A}^n , avec $I \subseteq k[x_1, \dots, x_n]$. Alors

$$V(I) = V\left(\bigcup_{f \in I} (f)\right)$$
$$= \bigcap_{f \in I} V((f))$$

donc finalement

$$U = \bigcup_{f \in I} D(f)$$

en passant au complémentaire.

- 3) $D(f) = \emptyset \iff V((f)) = \mathbb{A}^n_k \iff \forall x \in k^n, f(x) = 0 \iff f = 0$, la dernière équivalence provenant du fait que $|k| = \infty$ (résultat que l'on a prouvé par récurrence en td).
- 4) On utilise les questions précédentes : comme les ensembles D(f) forment une base pour la topologie de \mathbb{A}^n (question 2), et que $U, V \neq \emptyset$, pour tout $x \in U$, $y \in V$, il existe $f, g \in k[x_1, \dots, x_n]$ tels que $x \in D(f) \subseteq U$ et $y \in D(g) \subseteq V$. Maintenant $D(f) \cap D(g) = D(fg)$ (question 1) mais alors si $D(f) \cap D(g) = \emptyset$, alors fg = 0 (question 3) donc f = 0 ou g = 0 et donc $D(f) = \emptyset$ ou $D(g) = \emptyset$, absurde. Ainsi, $D(f) \cap D(g)$ est non vide, et donc $U \cap V \neq \emptyset$.

2.2 Exercice 2

On a

$$\bigcup_{i \in I} D(P_i) = \mathbb{A}^n \setminus \bigcap_{i \in I} V(P_i)$$
$$= \mathbb{A}^n \setminus V(\bigcup_{i \in I} \{P_i\})$$
$$= \mathbb{A}^n \setminus V((P_1, \dots, P_r))$$

mais $1 \in (P_1, \cdots, P_r)$ donc

$$\bigcup_{i \in I} D(P_i) = \mathbb{A}^n \backslash V(k[X_1, \cdots, X_n])$$
$$= \mathbb{A}^n \backslash \emptyset = \mathbb{A}^n$$

2.3 Exercice 3

Considérons l'ouvert $U = \mathbb{A}^n \setminus V$. Alors comme les D(f) forment une base pour la topologie de \mathbb{A}^n , il existe $f \in k[X_1, \dots, X_n]$ tel que $x \in D(f) \subseteq U$. Mais alors $f(x) \neq 0$ comme $x \in D(f)$, puis $V = \mathbb{A}^n \setminus U \subseteq \mathbb{A}^n \setminus D(f) = V(f)$ donc pour tout $y \in V$, f(y) = 0. Ainsi quitte a renormaliser f (en f/f(x)), il existe $f \in k[X_1, \dots, X_n]$ tel que f(x) = 1 et f(y) = 0 pour tout $y \in V$.

2.4 exercice 4

Soient $V_1, V_2 \subseteq X$ des fermés tels que $X = V_1 \cup V_2$. Alors $U_1 = (V_1 \cap U_1) \cup (V_2 \cap U_1)$ et $U_2 = (V_1 \cap U_2) \cup (V_2 \cap U_2)$. Maintenant, par irrécuctibilité de U_1 et U_2 , 4 cas se présentent :

- 1. $U_1 = (V_1 \cap U_1), U_2 = (V_1 \cap U_2)$. Alors $U_1, U_2 \subseteq V_1$ et ainsi $X \subseteq V_1$.
- 2. $U_1 = (V_2 \cap U_1), U_2 = (V_2 \cap U_2)$. Alors $U_1, U_2 \subseteq V_2$ et ainsi $X \subseteq V_2$.
- 3. $U_1=(V_1\cap U_1),\, U_2=(V_2\cap U_2).$ Ainsi $U_1\subseteq V_1$ et $U_2\subseteq V_2.$ Maintenant considérons $X\setminus U_1\subseteq U_2$ et $F_1\cap U_2\subseteq U_2.$ Alors

$$(V_1 \cap U_2) \cup (X \setminus U_1) = (V_1 \cap U_2) \cup (U_2 \setminus (U_1 \cap U_2)) \supseteq (U_1 \cap U_2) \cup (U_2 \setminus (U_1 \cap U_2)) = U_2$$

donc finalement $U_2 = (V_1 \cap U_2) \cup (X \setminus U_1)$. Mais alors soit $U_2 = V_1 \cap U_2$ du fait que

done infarement $U_2 = (V_1 + V_2) \cup (X \setminus U_1)$. Mais alors soit $U_2 = V_1 + V_2$ du fait $U_1 \cap U_2 \neq \emptyset$ et donc forcément $U_2 \neq X \setminus U_1$. Ainsi $U_2 \subseteq V_1$ donc $X \subseteq V_1$.

4. Le dernier cas $U_1=(V_2\cap U_1),\ U_2=(V_1\cap U_2)$ se traite comme le précédent, en inversant V_1 et V_2 .

Dans tous les cas, X est irréductible.

2.5 Exercice 5

1.

Si
$$\sqrt{I} = \sqrt{J}$$
, $V(I) = V(\sqrt{I}) = V(\sqrt{J}) = V(J)$.

Si
$$V(I) = V(J)$$
, alors $\sqrt{I} = I(V(I)) = I(V(J)) = \sqrt{J}$ d'après le nullstellensatz.

2.

$$V(I(V_1 \cap V_2)) = V_1 \cap V_2$$

$$V(\sqrt{I(V_1) + I(V_2)}) = V(I(V_1) + I(V_2)) = V(I(V_1)) \cap V(I(V_2)) = V_1 \cap V_2$$

donc
$$I(V_1 \cap V_2) = \sqrt{I(V_1 \cap V_2)} = \sqrt{I(V_1) + I(V_2)}$$
.

2.6 Exercice 6

- 1. L'application est régulière : en considérant les polynômes $P := X^2 1$, $Q := X(X^2 1) \in k[X]$, alors f(t) = (P(t), Q(t)). Elle n'est cependant pas bijective, par exemple -1 et 1 ont la même image par f.
- **2.** Le foncteur k[-] est pleinement fidèle, donc il préserve et réfléchis les isomorphismes. Ainsi $f^* = k[f]$ n'est pas un isomorphisme, puisque f n'est n'est pas un, n'étant pas bijectif.
- **3.** Montrons que k[V] n'est pas factoriel, alors comme $k[\mathbb{A}^1] \simeq k[X]$ est factoriel, on ne peut pas avoir $k[V] \simeq k[X]$. Par définition,

$$k[V] = k[X, Y]/I(V)$$

Calculons I(V): pour cela, dans un premier temps montrons que $V = \{(t^2 - 1, t(t^2 - 1)) \mid t \in k\} =: W$:

1. Soit $(x,y) \in W$, alors il existe $t \in k$ tel que $(x,y) = (t^2 - 1, t(t^2 - 1))$. Mais

$$(t(t^2-1))^2 - (t^2-1)^2(t^2-1+1) = 0$$

donc $(x,y) \in V$.

2. Soit $(x,y) \in V$, alors $y^2 - x^2(x+1) = 0$. Si x = 0, alors y = 0 et en prenant $t = 1 \in k$, on a bien $(x,y) = (t^2 - 1, t(t^2 - 1))$. Sinon, posons t = y/x, alors

$$t^{2} - 1 = \left(\frac{y}{x}\right)^{2} - 1 = x$$
$$t(t^{2} - 1) = \frac{y}{x}x = y$$

Ainsi on a bien V=W. Finalement, prouvons que $I(V)=(Y^2-X^2(X+1)): \supseteq \text{ est toujours vraie, montrons } \subseteq \text{. Soit } P\in I(V), \text{ alors } A \text{ finir, préciser si le corps est infini? algébriquement clos?}$

4. Comme k[W] n'est pas isomorphe à $k[\mathbb{A}^1]$, toujours du fait que k[-] est pleinement fidèle, W et \mathbb{A}^1 ne sont pas isomorphes.

2.7 Exercice 7

Pour que cet exercice soit juste, il faut supposer que k est infini. Remarquons qu'en toute généralité, on a toujours $k[V] \simeq k[\mathbb{A}^1]$ mais $k[\mathbb{A}^1]$ n'est pas forcément isomorphe à k[T] si k n'est pas infini (considérer par exemple $k = \mathbb{F}_2$).

1. Première méthode : f est un isomorphisme, d'inverse

Ainsi $f^*: k[V] \to k[\mathbb{A}^1]$ est un isomorphisme d'inverse g^* par fonctorialité de *. Finalement, comme k est infini, $k[\mathbb{A}^1] \simeq k[T]$ (voir les exercices précédents, les fonctions polynomiales s'identifient aux polynômes dans ce cas).

2. Deuxième méthode : montrons que

$$\begin{array}{cccc} \varphi: & k[X,Y,Z] & \to & k[T] \\ & X & \mapsto & T \\ & Y & \mapsto & T^2 \\ & Z & \mapsto & T^3 \end{array}$$

est un isomorphisme est de noyau I(V): si $P \in \ker \varphi$, alors $P(T, T^2, T^3) = 0$ et ainsi pour tout $(x, y, z) \in V$, $\exists t \in k$ tel que $(x, y, z) = (t, t^2, t^3)$ et donc $P(t, t^2, t^3) = 0$ et $P \in I(V)$. Réciproquement, si $P \in I(V)$, alors pour tout $t \in k$, $P(t, t^2, t^3) = 0$. Ainsi comme k est infini, $P(T, T^2, T^3) = 0 \in k[T]$ et $P \in \ker \varphi$. Pour terminer, remarquons que φ est surjective, ce qui prouve que $k[V] = k[X, Y, Z]/I(V) = k[X, Y, Z]/\ker \varphi \simeq k[T]$.

2.8 Exercice 8

A faire

2.9 Exercice 9

Soient V_1, V_2 des fermés de $\overline{f(X)}$ tels que $\overline{f(X)} = V_1 \cap V_2$. Comme $\overline{f(X)}$ est fermé, V_1 et V_2 sont des fermés de Y, et donc $f^{-1}(V_1), f^{-1}(V_2)$ sont des fermés de X. Maintenant comme $f(X) \subseteq V_1 \cup V_2$, on a $X = f^{-1}(V_1) \cup f^{-1}(V_2)$, et donc sans perte de généralité on peut supposer que $X = f^{-1}(V_1)$. Finalement, $f(X) \subseteq V_1 \subseteq \overline{f(X)}$, et donc $V_1 = \overline{f(X)}$.

2.10 Exercice 10

Hw2

Chapitre 3

TD3

3.1 Exercice 1

Remarquons que pour parler de dimension, V doit être non vide (sinon $k[V] = \{0\}$ et parler de corps des fractions d'un tel anneau n'a aucun sens). Ainsi supposons le :

- 1. Si $V = \{a\} \subseteq \mathbb{A}^n$, alors $V = V(\mathfrak{m}_a)$, où $\mathfrak{m}_a = (X_i a_i, 1 \le i \le n)$. Mais alors $k[V] \simeq k$, et ainsi dim $V = \operatorname{trdeg}_k k = 0$.
- 2. Réciproquement, supposons que $\operatorname{trdeg}_k k(V) = 0$. Alors k(V) est algébrique sur k, mais k est algébriquement clos donc toutes ses extensions algébriques sont triviales, i.e. $k(V) \simeq k$. Maitenant, au vu de la suite de morphismes d'anneau $k \hookrightarrow k[V] \hookrightarrow k(V) \simeq k$, k[V] doit être un corps, i.e. I(V) doit être un idéal maximal. Mais $k = \bar{k}$ et donc $I(V) = \mathfrak{m}_a$ pour un certain $a \in \mathbb{A}^n$, et ainsi $V = V(I(V)) = V(\mathfrak{m}_a) = \{a\}$ est un point.

3.2 Exercice 2

- 1. d=0: $F_1=X, F_2=Y, F_3=Z$. Alors V=0 est un point donc d'après l'exercice précédent elle est de dimension 0.
- 2. $d=1: F_1=F_2=X, F_3=Y.$ Alors $k[V]\simeq k[Z]$ est de degré de transcendance 1 sur k.
- 3. $d=2: F_1=F_2=F_3=X.$ Alors $k[V]\simeq k[Y,Z]$ est de degré de transcendance 2 sur k.
- 4. $d=3: F_1=F_2=F_3=0$. Alors $V=\mathbb{A}^3$ est de dimension 3.

3.3 Exercice 3

- 1. Notons k[V] = k[x,y], k(V) = k(x,y) (x,y = [X], [Y]). Montrons que $\{x\}$ est une base de transcendance de k(v) sur k. Déja, soit $P \in k[T]$ tel que P(x) = 0, alors P([X]) = [P(X)] = 0 et donc $P(X) \in I(V) = (X Y)$. Ainsi P = Q(X Y), mais $\deg_Y P = 0$, donc Q est forcément nul, et donc P = 0, ce qui prouve que $\{x\}$ est algébriquement indépendante. Finalement, k(x,y) est algébrique sur k(x), puisque x y = 0 dans k(x,y). On conclut donc que dim V = 1.
- 2. Notons k[V] = k[x, y, z]. Montrons que $\{y, z\}$ est une base de transcendance de k(x, y, z): dans k(x, y, z), x = y, donc ce corps est une extension algébrique de k(y, z). Motrons maintenant que $\{y, z\}$ est algébriquement indépendante. Soit $P \in k[Y, Z]$ tel que P(y, z) = 0, alors $P(y, z) = [P] \in k[V]$ où P est vu comme un élément de k[X, Y, Z]. Ainsi $P \in I(V)$ donc P = Q(X Y) avec $Q \in k[X, Y, Z]$. Mais comme P n'a aucun terme faisant intervenir X, Q doit forcément être nul, et donc P aussi, ce qui prouve l'indépendance algébrique de $\{y, z\}$ sur k. Ainsi dim V = 2.
- **3.** Il est facile de voir que $V = \{0\}$, et donc I(V) = (X, Y) (si k est infini, ce qui est le cas si $k = \bar{k}$). Ainsi, k(x, y) = k[x, y] = k est algébrique sur k, ce qui prouve que dim V = 0.
- 4. Ici, (X Y, Z) est un idéal premier puisque c'est le noyau du morphisme

$$\begin{array}{cccc} k[X,Y,Z] & \to & k[T] \\ X & \mapsto & T \\ Y & \mapsto & T \\ Z & \mapsto & 0 \end{array}$$

Ainsi I(V)=(X-Y,Z). Maintenant calculons une base de transcendance de k(V)=k(x,y,z): montrons que $\{x\}$ covient. Déjà, k(x,y,z) est algébrique sur k(x), puisque z=0 et x-y=0 dans ce corps. Maintenant si $P\in k[X]$ est tel que P(x)=0, alors cette égalité est aussi vraie dans k[V] et alors P(x)=[P]=0, donc $P\in I(V)$. Ainsi il existe $Q_1,Q_2\in k[X,Y,Z]$ tels que $P=Q_1(X-Y)+Q_2Z$. Réalisons la division euclidienne de Q_1 par Z, alors $Q_1=AZ+B$ avec $B\in k[X,Y]$. Mais alors B doit être nul car sinon $P=B(X-Y)+Z(A(X-Y)+Q_2)$ et si $A(X-Y)+Q_2$ est non nul, on a un problème pour le degré en Z, et sinon on a un problème pour le degré en Y. Ainsi $Q_1=ZA$. Alors $P=Z((X-Y)+Q_2)$, et au vu du degré en Z on doit avoir que $(X-Y)A+Q_2=0$, et donc P=0. Ainsi $\{x\}$ est algébriquement indépendante, donc une base de transcendance et dim V=1.

5. On a déjà vu dans un exercice précedent que comme Y^5 n'est pas un carré dans k[Y], $X^2 - Y^5$ est irréductible. Ainsi $I(V) = (X^2 - Y^5)$, et alors notons k(x, y) = k(V), montrons que $\{x\}$ est une base de transcendance. Déjà, k(x, y) est algébrique sur k(x) puisque $y^5 = x^2$ dans ce corps. Maintenant, soit $P \in k[X]$ tel que $P(x) = 0 \in k(x, y)$. Alors cette équation

peut être relevée dans k[x,y], et alors P(x)=[P]=0 dans cet anneau, donc $P \in I(V)$. Alors il existe $Q \in k[X,Y]$ tel que $P=Q(X^2-Y^5)$, mais en regardant le degré en Y, on conclut que Q=0 et donc P=0. Donc $\{x\}$ est algébriquement indépendante, c'est une base de transcendance de k(x,y) sur k, donc dim V=1.

3.4 Exercice 4

Pour calculer la dimension de $\mathfrak{m}_a/\mathfrak{m}_a^2$, on peut calculer la dimension de l'espace tangent géométrique T_a^{geom} . Notons $P_1=X^2-Y^3, P_2=Y^2-Z^3$, on a

$$\begin{split} P_1^1 &= \frac{\partial P_1}{\partial X}(0)X + \frac{\partial P_1}{\partial Y}(0)Y + \frac{\partial P_1}{\partial Z}(0)Z = 0 \\ P_1^1 &= \frac{\partial P_2}{\partial X}(0)X + \frac{\partial P}{\partial Y}(0)Y + 2\frac{\partial P_2}{\partial Z}(0)Z = 0 \end{split}$$

Ainsi $T_a^{\text{geom}} = V(0,0) = \mathbb{A}^3$. C'est un espace vectoriel de dimension 3, donc la dimension de $\mathfrak{m}_a/\mathfrak{m}_a^2$ en tant que k-ev vaut 3.

3.5 Exercice 5

1. Calculons la dimension de V: en supposant que $k=\bar k,\ I(V)=\sqrt{(X^2+Y^2-1)}$. Remarquons alors que X^2+Y^2-1 est un polynôme irréductible (à prouver si possible). Ceci implique que $I(V)=(X^2+Y^2-1)$ et que V est bien une variété affine. Montrons qu'elle est de dimension 1: condidérons k(x,y) le corps des fractions de $k[V]=k[x,y],\ x,y=[X],[Y]$. Alors k(x,y) est algébrique sur k(x), puisque $x^2+y^2-1=0$ dans ce corps. Ensuite $\{x\}$ est algébriquement indépendante sur k, car sinon on aurait $P\in k[T]$ tel que P(x)=0 dans k(x,y), donc dans k[v], ce qui veut dire que P(x)=[P(X)]=0 donc $P(X)\in I(V)$. Maintenant en regardant le degré en Y on voit facilement que P=0, ce qui prouve que $\{x\}$ est algébriquement indépendante sur k.

Pour trouver les points singuliers, calculons la jacobienne associée a X^2+Y^2-1 : elle vaut

$$\begin{bmatrix} 2X & 2Y \end{bmatrix}$$

Alors $(x,y) \in V$ est un point singulier si et seulement si le rang de cette matrice est strictement inférieur à 2-1=1, i.e. de rang 0, i.e. nulle. Donc forcément (x,y)=(0,0), mais ce point n'est pas dans V, d'où V est une courbe régulière.

3.6 Exercice 6

Si deux variétés sont isomorphes, alors leurs algèbres de fonctions régulières sont isomorphes. La dimension d'une variété étant égale à la dimension de Krull de leurs algèbres

de fonctions régulières, deux variétés isomorphes sont de même dimension. Pour terminer l'exercice, considérons les isomorphismes

$$\begin{array}{ccc} \mathbb{A}^1 & \to & V(X-Y) \subseteq \mathbb{A}^2 \\ x & \mapsto & (x,x) \end{array}$$

$$\begin{array}{ccc} \mathbb{A}^2 & \to & V(X-Y) \subseteq \mathbb{A}^3 \\ (x,y) & \mapsto & (x,x,y) \end{array}$$

Ainsi $V(X-Y) \subseteq \mathbb{A}^2$ est de dimension 1, alors que $V(X-Y) \subseteq \mathbb{A}^3$ est de dimension 2 et donc ne peuvent être isomorphes.

3.7 Exercice 7

Tout d'abord, faisons quelques calculs préliminaire.

- 1. $V = \{(t, t^2, t^4) \mathbb{A}^3 \mid t \in k\}$: il est clair que pour tout $t \in k, (t, t^2, t^3) \in V(X^2 Y, Y^2 Z)$. Réciproquement, soit $(x, y, z) \in V(X^2 Y, Y^2 Z)$, alors forcément $y = x^2$ et $z = y^2 = x^4$. Ainsi, il existe $t \in k$ (on prend x) tel que $(x, y, z) = (t, t^2, t^4)$.
- 2. $I(V) = (X^2 Y, Y^2 Z)$: si k est infini, alors \supseteq est ok, il faut montrer \subseteq : si $P \in I(V)$, alors écrivons $P = Q_1(X^2 Y) + Q_2(Y^2 Z) + R$ les divisions successives de P par Y et Z. Au vu du degré des diviseurs, $R \in k[X]$. Alors en évaluant en (t, t^2, t^4) , on obtiens que R(t) = 0 pour tout $t \in k$ donc P = 0 puisque le corps est infini, et donc $P \in (X^2 Y, Y^2 Z)$.
- 3. (X^2-Y,Y^2-Z) est un idéal premier : on voit facilement que $k[X,Y,Z]/(X^2-Y,Y^2-Z) \simeq k[X]$ qui est intègre.
- 4. Comme $k[V] \simeq k[T]$, on a directement que

Maintenant montrons que V est une courbe lisse :

1. En calculant

pas clair ce que ça veut dire deux méthodes : on peut calculer la jacobienne et montrer qu'il n'y a aucun points singuliers, calculer l'espage tangent géométrique et montrer que sa dimension vaut toujours la dimension de la variété, trouver un isomorphisme avec \mathbb{A}^1 ...

3.8 Exercice 8

1. Comme k est algébriquement clos et de caractéristique différente de 2, soit φ une forme bilinéaire, alors il existe une base orthonormale (e_1, \dots, e_n) de k^n telle que $\varphi(e_i, e_j) = 0$ pour tout $i \neq j$. Maintenant soit $P \in k[X_1, \dots, X_n]$ un polynôme homogène de degré 2. On peut lui associer une forme bilinéaire φ_P donnée par $\varphi_P(x, y) =$

3.9 Exercice 9

1. Soient $V, W \subseteq \mathbb{A}^n, \mathbb{A}^m$. Montrons que leur produit est une variété affine de \mathbb{A}^{n+m} . On a déjà vu dans un TD précédent que le produit d'ensemble algébriques est un ensemble algébrique. Il faut donc montrer que $V \times W$ est irréductible. Pour cela, remarquons dans un premier temps que pour tout $x \in V$, alors $\{x\} \times W \subseteq V \times W \subseteq \mathbb{A}^{n+m}$ est un fermé de $V \times W$ (du fait que la topologie sur $V \times W$ est induite par celle de \mathbb{A}^{n+m} et que $\{x\} \times W$ est un ensemble algébrique donc fermé de \mathbb{A}^{n+m}) et de plus, $\{x\} \times W \simeq W$ en tant qu'ensembles algébriques, et donc en tant qu'espace topologiques, vu que les morphismes sont continus pour la topologie de Zariski (et bien sur on a aussi $V \times \{y\} \subseteq V \times W \subseteq \mathbb{A}^{n+m}$ est un fermé de $V \times W$ et est isomorphe à V). Alors supposons que $V \times W = F_1 \cup F_2$ avec F_1, F_2 des fermés de $V \times W$. Condidérons alors les ensembles

$$V_i = \{ x \in V \mid \{x\} \times W \subseteq F_1 \}$$

1. $V = V_1 \cup V_2$: soit $x \in V$, alors

$$\{x\} \times W = ((\{x\} \times W) \cap F_1) \cup ((\{x\} \times W) \cap F_2)$$

puis $\{x\} \times W$ est un fermé de $V \times W$, et donc les $(\{x\} \times W) \cap F_i$ sont des fermés de $\{x\} \times W$. Maintenant $W \simeq \{x\} \times W$ en tant qu'espaces topologiques, donc $\{x\} \times W$ est irréductible, et donc soit $\{x\} \times W \subseteq F_1$, soit $\{x\} \times W \subseteq F_2$, i.e. $x \in V_1$ ou $x \in V_2$.

2. Remarquons que

$$V_i = \bigcap_{y \in W} \{ x \in V \mid (x, y) \in F_i \}$$

Ainsi il suffit de montrer que our tout $y \in W$, $\{x \in V \mid (x,y) \in F_i\}$ est un fermé de $V: V \simeq V \times \{y\}$, et par cet isomorphisme $\{x \in V \mid (x,y) \in F_i\}$ est envoyé sur $V \times \{y\} \cap F_1$, qui est un fermé de $V \times \{y\}$. Cela permet de conclure sur le fait que V_i est un fermé de V.

Ainsi, par irréductibilité de V, on a $V=V_1$ ou $V=V_2$, qui implique que $V\times W=F_1$ ou $V\times W=F_2$, prouvant que $V\times W$ est irréductible.

2. Soient V, W des ensembles algébriques. Montrons que $k[V \times W] \simeq k[V] \otimes_k k[W]$. Avant cela, montrons un lemme intermédiaire :

Lemme 3.9.1. Soient A, B des C-algèbres, I, J des idéaux de A, B respectivement. Alors

$$A/I \otimes B/J \simeq (A \otimes B)/(I \otimes B + A \otimes J)$$

Démonstration. Montrons que le morphisme

$$\phi: A/I \otimes B/J \to (A \otimes B)/(I \otimes B + A \otimes J)$$
$$[a] \otimes [b] \mapsto [a \otimes b]$$

est un isomorphisme. Remarquons juste rapidement que ce morphisme est bien défini, car induit par les morphismes $A/I \to (A \otimes B)/(I \otimes B + A \otimes J)$ et $B/J \to (A \otimes B)/(I \otimes B + A \otimes J)$ eux même induits par $A \to A \otimes B \to (A \otimes B)/(I \otimes B + A \otimes J)$ et $B \to A \otimes B \to (A \otimes B)/(I \otimes B + A \otimes J)$, qui passent bien au quotient par I et J respectivement. Alors soit

$$\psi: \begin{array}{ccc} A \otimes B & \to & A/I \otimes B/I \\ a \otimes b & \mapsto & [a] \otimes [b] \end{array}$$

alors si $x \in A \otimes B$ est dans $I \otimes B + A \otimes J$, on peut l'écrire comme un somme

$$x = \sum_{n} i_n \otimes b_n + \sum_{m} a_m \otimes j_m$$

Mais alors

$$\psi(x) = \sum_{n} [i_n] \otimes [b_n] + \sum_{m} [a_m] \otimes [j_m] = 0$$

donc ψ induit une application $\tilde{\psi}: (A \otimes B)/(I \otimes B + A \otimes J) \to A/I \otimes B/J$ qui envoie $[a \otimes b]$ sur $[a] \otimes [b]$. Il est finalement facile de voir que $\tilde{\psi}$ et ϕ sont inverses l'une de l'autre, prouvant l'isomorphisme.

Ainsi

$$k[V] \otimes_k k[W] \simeq k[X_1, \cdots, X_n] \otimes k[Y_1, \cdots, Y_n]/(I(V) \otimes B + A \otimes I(W))$$

mais on sait que $k[X_1, \cdots, X_n] \otimes k[Y_1, \cdots, Y_n m \simeq k[X_1, \cdots, X_n, Y_1, \cdots, Y_m]$, et $(I(V) \otimes B + A \otimes I(W))$ est envoyé sur l'idéal engendré par I(V) et I(W) vu comme des sous ensembles de $k[X_1, \cdots, X_n, Y_1, \cdots, Y_m]$ par cet isomorphisme. Ainsi il suffit de montrer que $(I(V) \cup I(W)) = I(V \times W)$:

- 1. \subseteq : clair.
- 2. \supset : Soit $R \in I(V \times W)$. Alors on peut écrire

$$R = \sum_{i=1}^{r} P_i Q_i$$

avec $P_i \in k[X_1, \dots, X_n]$ et $Q_i \in k[Y_1, \dots, Y_m]$. Maintenant soit $P_i \in I(V)$ pour tout i et alors on a terminé, soit il existe i tel que $P_i \notin I(V)$. Quitte a réindexer, OPS que

i=1. Alors il existe $x \in V$ tel que $P_1(x) \neq 0$. Maintenant $\sum P_i(x)Q_i \in k[Y_1, \dots, Y_m]$ est dans I(W), car R(x,y)=0 pour tout $(x,y)\in V\times W$. Et alors

$$R' := \frac{P_1}{P_1(x)} \sum P_i(x) Q_i \in (I(V) \cup I(W))$$

puis $R \in (I(V) \cup I(W))$ si et seulement si $R - R' \in (I(V) \cup I(W))$. Mais

$$R - R' = \sum_{i=1}^{r} \left(P_i - \frac{P_1}{P_1(x)} P_i(x) \right) Q_i$$
$$= \sum_{i=2}^{r} P_i' Q_i$$

où $P'_i \in k[X_1, \dots, X_n]$. Ainsi en itérant ce procédé, soit on va tomber sur le premier cas, soit on va finir par arriver sur le cas R = 0, qui est bien dans l'idéal $(I(V) \cup I(W))$.

3. Si k est algébriquement clos, alors on a une équivalence de catégories (donnée par le foncteur k[-]) entre la catégorie des variétés affines et des algèbres de tf intègres. Ainsi soient A,B des k-alg de tf intègres, il existe V,W des variétés affines telles que $k[V] \simeq A$, $k[W] \simeq B$. Mais alors

$$A \otimes_k B \simeq k[V] \otimes_k k[W] \simeq k[V \times W]$$

puis d'après la question $1, V \times W$ est une variété affine et donc $k[V \times W]$ est intègre. Cela prouve au passage que la catégorie des k-alg de tf intègres admet un objet satisfaisant la propriété universelle de coproduit, et ainsi par équivalence de catégorie $V \times W$ satisgait la propriété universelle du produit dans la catégorie des variétés affines.

4.

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{R}[X]/(X^2+1) \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C}[X]/(X^2+1)$$

mais ce dernier anneau n'est pas intègre puisque $(X - i)(X + i) = X^2 + 1$.

3.10 Exercice 10

Considérons le fermé $V(XY) \subseteq \mathbb{A}^2$. Alors $V(XY) = \{(t,0) \mid t \in k\} \cup \{(0,t) \mid t \in k\}$. Supposons alors que $V(XY) = V(I) \times V(J)$, comme $(t,0) \in V(XY)$, on doit avoir $t \in V(I)$, pour tout $t \in k$ i.e. $V(I) = \mathbb{A}^1$. De même, on doit avoir $V(J) = \mathbb{A}^1$, mais $\mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2 \neq V(XY)$.

3.11 Exercice 11

Dans un premier temps, soit $f_i \in k[X_1, \cdots, X_n]$ tels que $\varphi(a) = (f_1(a), \cdots, f_i(a))$. Alors montrer que φ est continue revient à montrer que $\tilde{\varphi}: \mathbb{A}^n \to \mathbb{A}^l$ définie par $\tilde{\varphi}(a) = (f_1(a), \cdots, f_i(a))$ pour tout $a \in \mathbb{A}^n$ est continue. En effet, soit Z un fermé de W, alors $Z = Z' \cap W$ pour Z un fermé de \mathbb{A}^l . Maintenant $\varphi^{-1}(Z) = \tilde{\varphi}^{-1}(Z') \cap V$ et est donc un fermé si et seulement si $\tilde{\varphi}^{-1}(Z')$ est un fermé. On peut donc se ramener au cas $\varphi: \mathbb{A}^n \to \mathbb{A}^l$. Ainsi considérons un fermé $V(J) \subseteq \mathbb{A}^l$, posons $I := k[\varphi](J)$, et montrons que $\varphi^{-1}(V(J)) = V(I)$.

1. \subseteq : soit $x \in \varphi^{-1}(V(J))$, alors pour tout $P \in I$, il existe $Q \in J$ tel que $P = k[\varphi](Q)$. Maintenant

$$P(x) = k[\varphi](Q)(x) = Q(\varphi(x)) = 0$$

puisque $Q \in J$ et $\varphi(x) \in V(J)$.

2. \supseteq : Soit $x \in V(I)$, alors pour tout $Q \in J$, $k[\varphi](Q) \in I$ et donc

$$Q(\varphi(x)) = k[\varphi](Q)(x) = 0$$

et donc $\varphi(x) \in V(J)$.

3.12 Exercice 12

Soit $E \subseteq \mathbb{A}^n$. Montrons que $V(I(E)) = \bar{E}$: déja, si $x \in E$, alors soit $P \in I(E)$, P(x) = 0 et ainsi $x \in V(I(E))$. Ensuite, soit $E \subseteq V(J)$ un ensemble algébrique, alors $J \subseteq I(V(J))$, et $I(V(J)) \subseteq I(E)$, donc $J \subseteq I(E)$ et finalement $V(I(E)) \subseteq V(J)$, ce qui prouve que $\bar{E} = V(I(E))$.