Adopted Levels, Gammas

	Histo		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Huo Junde, Huo Su, Yang Dong	NDS 112,1513 (2011)	29-Oct-2009

 $Q(\beta^{-})=-1.567\times10^{4} \text{ syst}; S(n)=16643.0 7; S(p)=7166.6 4; Q(\alpha)=-8000 7 2012Wa38$

Note: Current evaluation has used the following Q record -15303 SY16639 167165 11-7997 13 2003Au03.

 $\Delta Q(\beta^-)=140.$

Other reaction: $^{24}Mg(^{32}S,X)$.

⁵⁶Ni Levels

Cross Reference (XREF) Flags

```
^{9}Be(^{57}Ni,^{56}NiX\gamma)
^{28}Si(^{32}S,2p2n\gamma)
^{28}Si(^{36}Ar,2\alpha\gamma)
^{40}Ca(^{28}Si,3\alpha\gamma)
            <sup>58</sup>Ni(p,t)
                                                                                                                                                      <sup>56</sup>Ni(d,d'):giant res
                                                                                 Ē
Α
           ^{54}Fe(^{3}He,n),(^{3}He,n\gamma),(\alpha,2n\gamma)
^{54}Fe(^{16}O,^{14}C),(^{12}C,^{10}Be)
                                                                                                                                                      ^{57}Zn \varepsilonp decay:47 ms
В
                                                                                F
                                                                                                                                         J
                                                                                G
                                                                                                                                         K
                                                                                                                                                      Coulomb excitation
C
           ^{56}Cu ε decay (93 ms)
                                                                                Н
```

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ &	XREF	Comments
0.0	0+	6.075 d <i>10</i>	ABCDEFGH JK	$\%\varepsilon + \%\beta^+ = 100$
				T _{1/2} : from 1992Da15. Others: 6.10 d 2 (1963We06), 6.4 d <i>I</i> (1952Sh30), 6.0 d 5 (1952Wo15), 5.9 d <i>I</i> (1990Su13), and 5.8 d 6 (1961Mo10).
2700.6 7	2+	53 fs +34–17	ABCDEFGH JK	β_2 =0.173 17; B(E2) \uparrow =0.060 12 (1995Kr17); B(E2) \uparrow =0.049 12 (2004Yu10) T=0 (2001Bo54)
3923.6 <i>13</i>	4+	>0.7 ps	ABCDEFGH	T=0 (2001Bo54)
3956.6 <i>13</i>	0+	> 0.7 Ps	AB	1 (2001)
4932 3	$(3^-,5^-)$		A	
4935.5 6	(3^+)		A DEF	T=0 (2001Bo54)
5003.7 13	0+		AB	
5315.7 16	6+		ABC FGH	
5352.5 8	2+		AB GH	
5483.7 <i>13</i>	4+		AB D	T=0 (2001Bo54)
5665.1 <i>15</i>	5		AB EF	XREF: A(5679).
5799 <i>3</i>			A	
5988.1 <i>6</i>	4+		A D	T=0 (2001Bo54)
				XREF: A(5985).
				J^{π} =(3 ⁺) and T=0,1 quoted in 2001Bo54 have been revised by the authors. The revised note further suggests that J^{π} =(4 ⁺) and T=0 are favored by shell-model calculations. L(p,t)=4.
6011 <i>3</i>	1-		ABC	XREF: B(6000).
6236 <i>3</i>	(2^{+})		A	
6326.4 11	4+#		AB GH	
6405.8 <i>13</i>			В	
6431.9 7	4+		A D	T=1 (2001Bo54)
				IAS of 4^+ g.s. in 56 Co.
6522.1 <i>18</i>	5		A F	
6554.6 8	(2^{+})		AB	XREF: A(6572).
6588.6 8	(3^{+})		CD	T=1 (2001Bo54)
				XREF: C(6570).
				J^{π} =(3,4,5) ⁽⁺⁾ and T=0,1 quoted in 2001Bo54 have been revised by the authors. The revised assignment is based on a comparison of energy differences of isobaric analog states in ⁵⁶ Ni and ⁵⁶ Cu.
6650.5 <i>15</i>	6+		FΗ	
6654.8 <i>13</i>	0+#		AB	T=0 (1974Na19) XREF: A(6662).

E(level) [†]	$J^{\pi \ddagger}$	У	KREF	Comments
6730 8 7025 <i>10</i>		A		XREF: B(7060).
7144 6	1-	AB AB		XREF: B(7120).
7250 8	(1^{-})	A		
7289 25 ≈7400	(0^+) (6^+) @	A C		
~7442.8 <i>13</i>	2+	AB		T=1 (1970Br48)
757((2-			XREF: A(7433).
7576 <i>6</i> 7601.4 <i>17</i>	3 ⁻ (7 ⁺)	AB	FΗ	
7652.6 <i>14</i>	6+#	С	GH	XREF: C(7650).
7670 8	0+#	AB		XREF: B(7690).
7801 <i>10</i> 7903.7 <i>10</i>	(1^{-}) 0^{+}	A AB		T=1 (1974Na19)
1903.1 10	U	AD		XREF: A(7913).
				IAS of 0 ⁺ 1450 keV in ⁵⁶ Co.
7954.7 15	8 ⁺ 2 ^{+#}	В	FGH	
8080 <i>30</i> 8143 <i>10</i>	2'"	ABC A		
8223.7 16	8+		FGH	
8479 10	2+#	A		XREF: A(8520).
8575 <i>10</i> 8674 <i>8</i>	2+#	A		VDEE, D(9400)
8778.5 <i>17</i>	(7)	AB C	FΗ	XREF: B(8690). XREF: C(8700).
8796 <i>6</i>	4+	Α		
8870 <i>12</i> 9009.7 <i>17</i>	9+	ABC AB	G F H	
9042 8		A	1 11	
9109 8	$(4^+)^{\textcircled{@}}$	A C		XREF: C(9100).
9154 <i>10</i> 9240.5 22	(8 ⁺)	A A	F	
9309.5 17	8+#	AB	GH	
9418.3 <i>17</i>	10 ⁺	В	FGH	
9450 8 9477.7 <i>17</i>	$(2^+)^{\#}$ (9^+)	AB	F H	
9596 <i>6</i>	(9)	Α	гп	
9676 <i>6</i>		Α		
9735.5 19	7 [@]	ABC	G	%p≈100 XREF: B(9720)C(9700).
				This level decays by protons to $7/2^-$, g.s. in 55 Co. E(p)(lab)=2540 30, observed in
				(proton)(summed γ) coin spectrum.
9756 <i>5</i>	$(0^+)^{\#}$	AB		
9824 <i>3</i> 9943 <i>4</i>	0+	A ABC		T=2 (1984Ka07)
				Double IAS of 0 ⁺ g.s. in ⁵⁶ Fe.
9994 <i>3</i> 10011 <i>6</i>	0^{+}	A AB		T=2 (1984Ka07)
10041 6	0+	AD A		T=2 (1984Ka07) $T=2 (1984Ka07)$
10055 <i>3</i>		Α		
10095 <i>5</i> 10150 <i>5</i>		A A		
10250 6	0+#	ВС		
10331 10		A		

E(level) [†]	$J^{\pi \ddagger}$	π^{\ddagger} XREF		Comments
10377 10		A		
10428 8		Α		
10469.7 <i>18</i>	9		F H	
10655 <i>10</i>	$(4^+)^{\textcircled{0}}$	ABC		XREF: C(10550).
10677.3 <i>17</i>	10 ⁺		FGH	
10820 20	2+#	AB		XREF: A(10785).
10854 10		A		
10935.5 <i>18</i>	9 <mark>@</mark>	В	GH	XREF: B(10950).
11001.8 <i>18</i>	(10^{+})		H	
11055 <i>15</i>		A		
11294.7 20	$(10^+)^{\#}$	BC	GH	XREF: B(11200)C(11300).
11420.6 <i>17</i>	11+	В	F H	XREF: B(11500).
11800 <i>30</i>	2 ^{+#}	BC		
11866.7 22	(10^{+})	В	F H	XREF: B(12000).
12358.8 <i>18</i>	12+	В	F H	XREF: B(12300).
12508.5 <i>19</i>	11 [@]		F H	
13505.7 <i>18</i>	(12)		F H	
13578 <i>3</i>	12+#		GH	
13644.4 <i>24</i>	(12^{+})		GH	J^{π} : from earlier paper 2006Jo03 from the same group as 2008Jo04.
14454.5 <i>21</i>	13 [@]		GH	
14735 <i>3</i>	14 ⁺		GH	
$15.3 \times 10^3 \ 2$	10	C		WDEE 1/1/2000)
16358 <i>4</i>	13		GHI	XREF: I(16200).
16773 <i>3</i>	15 [@]		GH	
18632 <i>5</i>	(16^{+})		G	
19521 5	17 [@]		GΙ	XREF: I(19300).
22459 7			G	

 $^{^{\}dagger}$ For states connected by gammas, the excitation energies are from E γ by using a least-squares adjustment procedure. The rest are from ⁵⁸Ni(p,t), except as noted.

‡ From L transfer in ⁵⁸Ni(p,t), except as noted.

From L transfer in ⁵⁴Fe(³He,n).

@ From L transfer in ⁵⁴Fe(¹⁶O, ¹⁴C), (¹²C, ¹⁰Be).

& From DSA in ⁵⁴Fe(³He,n), (³He,nγ).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
2700.6	2+	2700.6 [‡] 3	100‡ 3	$0.0 0^{+}$	E2	B(E2)(W.u.)=5.8 + 19-38
3923.6	4+	1224.5 [‡] 2	100‡ 5	2700.6 2+	E2	B(E2)(W.u.)<23
3956.6	0_{+}	1256 <mark>&</mark>		2700.6 2+		
4935.5	(3^{+})	1010.4 [‡] 4	100 [‡] 17	3923.6 4+		
		2234.5 [‡] 7	60 [‡] 16	2700.6 2+		
5003.7	0_{+}	2303 <mark>&</mark>		2700.6 2+		
5315.7	6+	1392 # <i>1</i>	100 [#] 4	3923.6 4+	E2#	
5352.5	2+	2650 <i>1</i>	60 20	2700.6 2+	D+Q	
5483.7	4+	5351 2 2780.4 <i>4</i>	100 <i>20</i> 14.5 <i>12</i>	$0.0 0^{+}$ $2700.6 2^{+}$	E2	

γ ⁽⁵⁶Ni) (continued)

$E_i(level)$	\mathbf{J}_i^π	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger a}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]
5665.1	5	1741 [#] 1	100# 10	3923.6 4+	D
5988.1	4+	2062.8 [‡] 4	100 [‡] 27	3923.6 4+	
		3287.4 [‡] 5	78 [‡] 10	2700.6 2+	
6326.4	4+	976 <i>1</i>	67 17	5352.5 2+	E2
		2402 1	25 8	3923.6 4 ⁺ 2700.6 2 ⁺	E2
6405.8		3626 <i>1</i> 3705 ^{&}	100 8	2700.6 2 ⁺	E2
6431.9	4+	950.7 [‡] 5	15 [‡] 2	5483.7 4 ⁺	
0431.9	4	2506.7 [‡] 3	100‡ 5	3923.6 4 ⁺	
6522.1	5	857 [#] 1	100* 3	5665.1 5	
6554.6	(2^+)	3854 ^{&}	100 11	2700.6 2 ⁺	
0334.0	(2)	6554		$0.0 \ 0^{+}$	
6588.6	(3 ⁺)	1653.1 [‡] 4	5.9 [‡] 13	4935.5 (3 ⁺)	
6650.5	6 ⁺	2726 [#] 1	100 [#] 20	3923.6 4 ⁺	E2#
6654.8	0+	3954&	100 20	2700.6 2+	LZ
7442.8	2+	4742 <mark>&</mark>		2700.6 2 ⁺	
7601.4	(7 ⁺)	2285 [#] 1	100 [#] 18	5315.7 6 ⁺	(E2+M1)#
7652.6	6+	1326 <i>I</i>	100 17	6326.4 4+	E2
		3729 2	4 4	3923.6 4+	E2
7903.7	0_{+}	2551&	11 <mark>&</mark> 6	5352.5 2+	
		5203 <mark>&</mark>	100 & 6	2700.6 2+	
7954.7	8+	1304 [#] 1	8 # 1	6650.5 6 ⁺	E2#
		2638 [#] 1	100 [#] 6	5315.7 6+	E2#
8223.7	8+	2908 [#] 1	100# 8	5315.7 6+	E2#
8778.5	(7)	3114# 2	<48 [#]	5665.1 5	
		3462 [#] 1	100 [#] <i>19</i>	5315.7 6+	
9009.7	9+	787 <mark>#</mark> <i>1</i>	82 [#] 7	8223.7 8+	E2+M1#
		1055 [#] 1	100 <mark>#</mark> 8	7954.7 8+	E2+M1 [#]
9240.5	(8+)	3924 [#] 2	100 [#] 27	5315.7 6+	(E2)#
9309.5	8+	1657 <i>I</i>	100 12	7652.6 6 ⁺	E2 E2 [#]
9418.3	10+	1463 [#] <i>I</i> 1523 [#] <i>I</i>	100 [#] 6 100 [#] 19	7954.7 8 ⁺	
9477.7	(9^+)	1523" <i>1</i> 1876 [#] 2	100" 19 67 [#] 19	7954.7 8 ⁺	(E2+M1)# #
9735.5	7	1876" 2 845 2	6/" 19 1×10 ² 1	7601.4 (7 ⁺) 8870	" (E2)
9133.3	/	2083 2	1×10^{-1} $1 \times 10^{2} I$	7652.6 6 ⁺	(E2)
10469.7	9	2515 [#] 1	100# 38	7954.7 8 ⁺	D#
10677.3	10 ⁺	2453 [#] 1	100 36	8223.7 8+	E2#
10935.5	9	1200 <i>I</i>	100 12	9735.5 7	E2
		1626 <i>1</i>	52 8	9309.5 8+	D
11001.8	(10^{+})	3047 [@] 1	100 @ 25	7954.7 8+	(E2) [@]
11294.7	(10^{+})	1987 [@] 1	1.0×10^{2} 6	9309.5 8+	
11420.6	11+	2002# 1	3.7 [#] 16	9418.3 10 ⁺	E2+M1 [#]
		2412 [#] <i>1</i>	3.2 [#] 6	9009.7 9+	E2#
11866.7	(10^{+})	2626 [@] b 2	<35 <mark>@</mark>	9240.5 (8+)	
		3912 [@] 2	100 [@] 21	7954.7 8+	(E2) [@]

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]
12358.8	12 ⁺	1681 [#] 1	61 [#] 10	10677.3	10 ⁺	E2#
		2940 [#] 1	100 # <i>14</i>	9418.3	10 ⁺	E2#
12508.5	11	1212 [@] <i>1</i>	61 [@] 11	11294.7	(10^+)	
		1573 [@] 1	100 [@] 15	10935.5	9	E2 [@]
13505.7	(12)	1146 [@] 1	61 [@] 11	12358.8	12+	
		2086 [@] 1	100 [@] 15	11420.6	11 ⁺	
13578	12 ⁺	2282 2	100 18	11294.7	(10^{+})	E2
13644.4	(12^{+})	2349 <i>3</i>	$10 \times 10^2 \ 3$	11294.7	(10^{+})	
		4226 2	$7 \times 10^{1} \ 3$	9418.3	10^{+}	
14454.5	13	1946 <i>1</i>	100 14	12508.5	11	E2
14735	14 ⁺	2377 2	9 3	12358.8	12+	E2
16358	13	2779 <i>3</i>	100 <i>33</i>	13578	12+	D
16773	15	2318 2	100 7	14454.5	13	E2
18632	(16^{+})	3897 <i>4</i>	<100	14735	14+	
19521	17	2748 <i>4</i>	100 14	16773	15	E2
22459		2938 [@] 4	1.0×10^{2} 6	19521	17	@

[†] From 28 Si(36 Ar, 2 $\alpha\gamma$), except as noted. ‡ From 56 Cu ε decay. # From 28 Si(32 S, 2 Pa 2). @ From 40 Ca(28 Si, 3 $\alpha\gamma$). & From 54 Fe(3 He, $^$

^a Relative photon branching from each level renormalized to 100 for the strongest branching.

b Placement of transition in the level scheme is uncertain.

 $^{56}_{28}\text{Ni}_{28}\text{-}6$

Adopted Levels, Gammas

	History						
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh	NDS 111, 897 (2010)	12-Jan-2010				
0(0=) 05(1.0.5; 5(-) 1	2216.2.5. 9(-) 9172.2.5. 0(-) 6200.2.4 2012W-29						
	2216.3 5; $S(p)=8172.2$ 5; $Q(\alpha)=-6399.2$ 4 2012Wa38 has used the following Q record.						
S(2n)=22467 11, S(2p)=1	5 -						
	$(12217.0 \ 18; \ S(p)=8172.4 \ 5; \ Q(\alpha)=-6400.0 \ 6$ 2009AuZZ	2003 A 1103					
Other reactions:	$\frac{12217.076}{5}$, $\frac{3(p)-6172.43}{5}$, $\frac{2007Au22}{5}$,2003Au03					
⁵⁶ Fe(¹² C, ¹⁰ Be): 1998Pa43	$E = 60 \text{ MeV}, \ \sigma(\theta).$						
Additional information 1.							
	1989Na11; elastic and inelastic scattering. Extracted deform		model potential.				
	E=600 MeV; 2009Ag02: E=9.9, 11.2, 12.1, 13.0, 14.0 MeV	; measured σ , $\sigma(\theta)$.					
	, 1999Gu02: E=42 MeV, $\sigma(\theta)$.						
	e06: E=70.5 MeV, $\sigma(\theta)$, Ay(θ).						
	: E=15.1, 17.1, 18.5, 19.9, 21.4 MeV; measured σ , $\sigma(\theta)$.						
	E=20.7, 23.4, 25.3, 27.2, 29.3 MeV; measured $\sigma(\theta)$.						
³ Ni(°B,p'Be): 2008Ag11	: E=25.0, 26.9, 28.4 MeV; measured light fragment energy	spectra, $\sigma(\theta)$, excitation f	unctions.				
	: 1987FeZX; DWBA analysis extracted deformation paramet						
	7; studied relationship between centroid and Γ of giant quadratic quadratic relationship between centroid and Γ	rupole resonance and neu	tron binding energy.				
⁵⁸ Ni(¹⁸ O, ¹⁸ O): 1997Si13:							
⁵⁸ Ni(²⁸ Si, ²⁸ Si): 2003Ga18							
	Ni'), $(^{62}\text{Ni}, ^{62}\text{Ni'})$: 2000Va28: E=96.9-116.5 MeV, $\sigma(\theta)$.						
⁵⁸ Ni(⁵⁸ Ni, ⁵⁸ Ni): 2007Hi0							
⁵⁸ Ni(⁵⁸ Ni, ⁵⁸ Ni): 1996Va1							
	⁵⁸ Ni(58 Ni): 1994Me24: E=200 MeV, $\sigma(\theta)$.						
58 Ni (π,π) , 58 Ni (π^{+},π^{+}') , 58 Ni (π^{-},π^{-}') : 1996La04, 1991Ra22, 1989Oa01; strong absorption model analysis of elastic scattering to							
extract deformation.							
⁵⁸ Ni mesic atoms, pionic x-rays: 1990Ku08, interaction shifts, and widths.							
⁵⁸ Ni(d,n): 1993InZZ; deduced occupation probabilities of proton orbits.							
58 Ni(α,α): 1992Du08; analysis of total cross section data to extract mean square radii of matter distribution.							
Cu(K^-, γ): 1972Ba55.							

⁵⁸Ni Levels

Individual values of τ in ps for first 2⁺ state at 1454 keV that were used in averaging are given below:

1. Deduced from BE2 measurement in Coulomb excitation: 0.82 *16* (1960An07, earlier value of 0.67 *17* in 1959Al95), 0.95 *6* and 1.04 *22* (1960Go08), 0.88 *9* (1962St02), 0.860 *20* (1970Le17), 0.924 *28* (1971ChZF), 0.83 *17* (2004Yu10).

Structure calculations (levels, transition probabilities, etc.): 2009Be24, 2007Sv01, 2006Va21, 2004Ho08, 1999Ha21, 1977Ko02,

- 2. From Γ in (γ, γ') : 0.62 20 (1964Bo22), 0.98 9 (1970Me18), 1.07 8 (1972ArZD), 0.90 11 (1981Ca10).
- 3. From B(E2) in (e,e'): 0.956 16 (1967Du07), 1.14 6 (1969Af01), 1.07 9 (1983Kl09). Uncertainties in B(E2) are statistical, 15% for systematic uncertainty as suggested in 1967Du07 is added in quadrature. Other: 0.65 9 (1961Cr01), not included in the averaging procedure.
- 4. From DSAM in (p,p'γ): 0.94 12 (1969Be48), 0.92 17 (1973BeYD).

1975Va08, 1974Pa13, 1972Gl05, 1972Ob02.

- 5. From DSAM in $(n,n'\gamma)$: 1.00 ps +15-10 (2008Or02, weighted average of two measurements at E(n)=1.6 and 1.8 MeV). Value of 42 fs 12 from 1989Ge09 is discrepant and highly suspect.
- 6. From DSAM in Coulomb excitation: 1.27 2 (2001Ke08), uncertainty is increased to 0.07 to take into account 5% systematic uncertainty due to stopping powers, as suggested by one of the authors of 2001Ke08 in an e-mail reply in December 2007. It should be pointed that this value stands as the highest amongst all the others and is higher by \approx 35% from the precise values deduced from BE2 values in Coulomb excitation. In the e-mail reply, the author of 2001Ke08 claimed that their measurements are reliable for two main reasons: a) the γ rays were detected in coincidence with scattered ¹²C ions thus giving clean γ -ray spectra,

⁵⁸Ni Levels (continued)

b) high ion velocities in inverse kinematics used for the first time. In a thesis by 2005NiZS where lifetime of first 2⁺ state in ²²Ne was measured using Coulomb excitation technique and ^{nat}Ni and 107Ag as targets, the results for first 2⁺ state in ²²Ne were found to be consistent in the two measurements only when BE2 value for first 2⁺ state from Coulomb excitation data was used. Use of the lifetime from 2001Ke08 gave inconsistent results.

Cross Reference (XREF) Flags

```
54Fe(12C,8Be)
                                                                                                                                 <sup>58</sup>Ni(<sup>3</sup>He, <sup>3</sup>He')
                                ^{58}Cu ε decay (3.204 s)
                        Α
                                                                            J
                                                                                                                          S
                                                                                   54Fe(16O,12C)
                                                                                                                                 ^{58}Ni(\alpha,\alpha')
                                ^{59}Zn \varepsilonp decay (182.0 ms)
                        В
                                                                           K
                                                                                                                         Т
                                ^{28}Si(^{36}Ar,\alpha2p\gamma)
                                                                                   ^{56}Fe(^{3}He.n)
                                                                                                                                 <sup>58</sup>Ni(<sup>6</sup>Li, <sup>6</sup>Li')
                        C
                                                                           Ĺ
                                                                                                                         U
                        D
                                ^{28}Si(^{36}Ar,\alphap\gamma):prompt p decay
                                                                                   ^{56}Fe(\alpha,2n\gamma)
                                                                           M
                                                                                                                         ٧
                                                                                                                                 Coulomb excitation
                                ^{40}Ca(^{24}Mg,\alpha2p\gamma)
                                                                                   ^{58}\mathrm{Ni}(\gamma,\gamma'),(\mathrm{pol}\ \gamma,\gamma')
                                                                                                                                 <sup>60</sup>Ni(p,t)
                        Ē
                                                                            N
                                ^{45}Sc(^{16}O,p2n\gamma)
                                                                                   <sup>58</sup>Ni(e,e')
                        F
                                                                            0
                                                                                                                                 Ni(K^-, x ray \gamma)
                                ^{48}\text{Ti}(^{12}\text{C},2\text{n}\gamma)
                        G
                                                                            P
                                                                                   ^{58}Ni(n,n'),(n,n'\gamma)
                                                                                                                                 <sup>58</sup>Ni(<sup>16</sup>O, <sup>16</sup>O')
                        Н
                                <sup>54</sup>Fe(<sup>6</sup>Li,d)
                                                                            Q
                                                                                   ^{58}Ni(p,p'),(pol p,p'),(p,p'\gamma)
                                                                                                                                 <sup>58</sup>Ni(<sup>18</sup>O, <sup>18</sup>O')
                                ^{54}Fe(^{7}Li,t)
                                                                            R
                                                                                   <sup>58</sup>Ni(d,d')
                                                                     XREF
                                                                                                                                 Comments
                                                                                                  T_{1/2}: >7.0×10<sup>20</sup> y for decay by double \varepsilon\beta^+ channel to the 0<sup>+</sup> g.s. of <sup>58</sup>Fe, and>4.0×10<sup>20</sup> y for decay by
                                                    ABCDEFGHIJKLMNOPORSTUVWXYZ
                                                                                                     the same mode to the 2<sup>+</sup>, 811-keV level of <sup>58</sup>Fe
                                                                                                     (1993Va19). Others: 1984No09, 1982Be20.
1454.21<sup>l</sup> 9
                                                                                                   \mu=+0.076 18 (2001Ke02,2005St24)
                             0.652 ps 21
                                                    ABCDEFGHIJK MNOPQRST VWXYZ
                                                                                                   Q=-0.10 6 (1974Le13,1989Ra17)
                                                                                                   \langle r^2 \rangle^{1/2} = 3.7748 fm 14 (2004An14 evaluation).
                                                                                                   J^{\pi}: E2 \gamma to 0^+.
                                                                                                   T_{1/2}: different averaging methods were employed to 20
                                                                                                      independent values given in header comments above
                                                                                                     but minimum uncertainty was assigned as 5%, which
                                                                                                     required increasing the uncertainty by a factor of \approx 2
                                                                                                     to values in 1970Le17 and 1971ChZF. Average
                                                                                                     values of \tau in ps obtained are: 0.95 3 by weighted
                                                                                                     average, normalized \chi^2=2.0; 0.95 9 by limitation of
                                                                                                     statistical weights method (the uncertainties is
                                                                                                     increased to overlap the most precise value of 0.86
                                                                                                     4); 0.931 21 by normalized residuals method (NRM),
                                                                                                     normalized \chi^2 = 1.2; 0.926 21 by Rajeval's technique,
                                                                                                     normalized \chi^2=1.0. The evaluators adopt 0.94 3 as in
                                                                                                      2008Or02; this value overlaps all the averaging
                                                                                                     methods used. 2001Ra27 evaluation (which did not
                                                                                                     include 2008Or02, 2004Yu10 and 2001Ke08) lists
                                                                                                      \tau=0.904 ps 26.
                                                                                                   μ: transient field integral perturbed angular correlation
                                                                                                      (2001Ke02). Other: -0.12 24 (1978Ha13,1989Ra17).
                                                                                                   Q: reorientation in Coulomb excitation
                                                                                                     (1974Le13,1970Le17). See also 2005St24
                                                                                                     compilation.
2459.21^{l} 14
                             3.7 ps 4
                                                      BCDEFGH JK M OPQRST VWX
                                                                                                   J^{\pi}: \Delta J=2, E2 \gamma to 2^{+}; L(\alpha,\alpha')=4.
                                                                                                   T_{1/2}: from 2001Ke08, Coulomb excitation.
                                                                                                   T_{1/2}: from DSA In (p,p'\gamma). T_{1/2}=57 fs +25-13 from
2775.42 14
                             0.38 \text{ ps} + 12 - 9
                                                    AB
                                                                HI K NOPQR T W
```

E(level) [†]	$J^{\pi \ddagger}$	${{\operatorname{T}}_{1/2}}^{\#}$	XREF	Comments
				B(E2) In (e,e') is In disagreement. J^{π} : $L(\alpha,\alpha')=2$.
2902.15 <i>21</i>	1^{+h}	69 fs +15-14	A H N PQ t	Configuration= $\nu(p_{3/2}f_{5/2})$ ((p,p'),1986Ho15).
2942.56 18	0+	1.46 ns <i>14</i>	A H NOPQ St W	$T_{1/2}$: from $\gamma\gamma(t)$ in 58 Cu decay (1970Ra34). Other: 2.01 ns 7 in (p,p' γ) (1971St02) is in disagreement. Value from decay work is preferred due to cleaner γ -ray spectra such studies than in reaction data. J^{π} : E0 transition to g.s
3037.86 16	2+	57 fs 8	AB H NOPQRST VW	J ^{π} : L(α , α')=2. T _{1/2} : unweighted average of 75 fs 7 (2001Ke08, Coulomb excitation), 40 fs 6 from (p,p' γ), 47 fs +13-9 from (γ , γ'), 66 fs 6
3263.66 22	2+	37 fs 5	AB H K NOPQRST VW	from (e,e') .
3203.00 22	2		AD I K NOPQRSI VW	J ^{π} : L(α , α')=2. T _{1/2} : unweighted average of 53 fs 8 (2001Ke08, Coulomb excitation), 30 fs 4 from (γ , γ'), 25 fs 4 from (ρ , $\rho'\gamma$), 44 fs 21 from (η , $\eta'\gamma$), 33 fs 3 from (ρ , ρ').
3269.1 8	$(2)^{\boldsymbol{i}}$	>57 [@] fs	N	
3273.7 7	$(2)^{\boldsymbol{i}}$	>50 [@] fs	N	
3420.55 ^q 18	3 ⁺	0.26 ps + 22 - 10	C K PQ T W	J^{π} : L(p,p')=2+4 gives 3 ⁺ uniquely.
3450.9 5		>11 [@] fs	N	
3524 5	4+		I RT	J^{π} : $L(\alpha, \alpha')=4$.
3531.1 3	0+	0.19 ps 6	A H KL OPQ	J^{π} : E0 transition to g.s. L=0 in (6 Li,d), (3 He,n); also E0 in (e,e').
3593.71 25	1,2+	33 fs 9	A N PQ T	J^{π} : γ to 0 ⁺ ; population in (γ, γ') . $T_{1/2}$: DSA In $(p, p'\gamma)$. Other: 39 fs 7 from (γ, γ') .
3620.09 ^q 22 3775.0 3	4 ⁺ 3 ⁺	0.11 ps +8-5 0.28 ps +14-7	BCDEFGH K M OPQ ST W K PQ T W	J^{π} : L(α,α')=4; ΔJ =2, E2 γ to 2 ⁺ . J^{π} : L(p,p')=2+4 gives 3 ⁺ uniquely.
3870 3898.8 <i>4</i>	2+	23 fs 6	R AB H K NOPQR T W	J^{π} : $L(\alpha,\alpha')=2$.
3070.0 4	2		AB II K NOLQK I W	$T_{1/2}$: unweighted average of 13 fs +10-5 from (γ, γ') , 34 fs +8-6 from (e, e') , and 23 fs 3 from $(p, p'\gamma)$.
3943.6 <i>12</i>		>24 [@] fs	N	
4020	(44)		I 0 Q	77 47 (2) 2
4105.9 3	(4^{+})		C E	J^{π} : $\Delta J=(2)$, Q γ to 2^{+} .
4108.4 3	2+	128 fs 55	H K NOPQRST W	E(level): this level is different from 4107.7, 2^+ . J^{π} : L(p,p')=2. $T_{1/2}$: unweighted average of 65 fs 10 from (p,p' γ), 0.14 ps +9-4 from (e,e'), 0.10 ps
4260 80	(2+)		L	+16-4 from (γ, γ') . E(level): broad peak, from energy matching it could correspond to 4295 level, but $J^{\pi'}$ s are different.
40047.4	4+	24.6 . 22 . 19	C	J^{π} : L(³ He,n)=2.
4294.7 4	4 ⁺	24 fs +22-18	C K OPQ W	J^{π} : 4 from (e,e'); γ to 2 ⁺ and RUL.
4347.9 <i>12</i> 4358.7 <i>7</i>	$(2^+,3,4^+)$	17 fs +15-13	k PQ T W E k Q	J^{π} : γ' s to 2^+ and 4^+ .
4383.0 ^q 3	(5^+)		CDEFG M Q T	J^{π} : $\Delta J=1$, (M1+E2) γ to 4 ⁺ .
4404.3 4	4+	43 fs +17-14	C PQ T W	J^{π} : $L(\alpha,\alpha')=4$.
4449.6 <i>4</i>	1+,2+		A QR T	J^{π} : log $ft=5.1$ from 1 ⁺ .
4474.6 5	3^{-a}	22 fs 6	B HI K OPQRST W	$T_{1/2}$: weighted average of 19 fs 8 from $(p,p'\gamma)$,

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF	Comments
					and 24 fs 8 from $(n,n'\gamma)$. B(E3)(\uparrow)=0.0176 16 (2002Ki06 evaluation, adopted from (e,e')).
4518.3 8				Q	W
4538.0 <i>6</i>	0^{+a}	31 fs <i>11</i>	A	OPQ T	
4574.1 <i>5</i>	1 ⁱ	21 [@] fs 3	J	N Q	XREF: N(?).
4752.2 8	4+		В	O QRST	
					J^{π} : $L(\alpha, \alpha') = 4$.
					E(level): weighted average of 4750 5 (e,e'), 4750 7 (p,t), 4750 8 (α , α '), 4755 5 (p,p').
4920.0 6				Q	$(p,t), +750 \circ (\alpha,\alpha), +755 \circ (p,p).$
4954.0 8	1 ⁱ	14 [@] fs 2		N	
4964.7 <i>3</i>	(5^{+})	11 13 2	CE	Q	J^{π} : $\Delta J=1 \ \gamma \text{ to } 4^{+}$.
5064.3 10	` '		I	Q	,
5084 5				Q	
5127.5 ^l 4	6+ <i>ah</i>		CDEFGH	M O Q T	
5156 <i>11</i>	2+				$\mathbf{W} \qquad \mathbf{J}^{\pi} \colon \mathbf{L}(\mathbf{p},\mathbf{t}) = 2.$
5166 <i>10</i>	1+ h			Q	Configuration= $\nu(p_{3/2}p_{1/2})$ ((p,p'),1986Ho15).
5170.3 10		6	K	QS	
5359.3? 16	$(2)^{l}$	>29 [@] fs		N	
5384.5 ^q 4	6+	@	CDE H	Q	J^{π} : $\Delta J=1$, E1 γ from 7 ⁻ ; $\Delta J=2$, Q γ' s to 4 ⁺ .
5394.0 9	4.4	41 [@] fs 8	Н	N T	TT T ()
5436.3 10	4 ⁺	<i>(</i> ()		0 Q	$J^{\pi}: L(p,p')=4.$
5452.2 <i>4</i>	1 ⁱ	>13 [@] fs		N Q	TT 1 (1) 4 C 5470 5 11 (1) 4 C 5400 11
5472.3 <i>8</i> 5503.5 <i>10</i>	4+			Q Q	J^{π} : L(p,p')=4 for 5470 5, and L(p,t)=4 for 5488 11.
5528.0 4	$(1)^{i}$	>7 [@] fs		N	
5589.0 7	(5^{-})	>/ 18	CD H	N t	J^{π} : L(α,α')=4+5 for a doublet; γ from 7 ⁻ ;
3307.0 7	(3)		CD II		$L(^{6}Li,d)=(5,6).$
5590.3 10	2+			Q ST	$\mathbf{W} \qquad \mathbf{J}^{\pi} \colon \mathbf{L}(\alpha, \alpha') = 2.$
5594.2 6	4+ <i>a</i>		K	0 Q t	XREF: O(5585).
5706.3 8				Q	
5744.7 5	(6^+)		С	•	J^{π} : $\Delta J = 2$, Q γ to 4^+ .
5748.5 8 5766.3 8	2 ⁺ 4 ⁺			Q	J^{π} : L(p,p')=2. J^{π} : L(p,p')=4.
5803.3 7	4			Q Q	J : L(p,p)=4.
5824.6 11				Q	
5896.4 7			Н	o Q S	
5905.3 7	1 + <i>i</i>	25 [@] fs 4		No	E(level): In (e,e') , level is At 5909 8 with J=2 In one
					study and 5903 15 In another with J=1, with assumed
					natural-parity states. IT is possible that it is doublet In
5006 5	2+			- 0	(e,e') representing 1^+ and 2^+ levels.
5906 <i>5</i>	2+			o Q	J^{π} : L(p,p')=2. E(level): see comment for 5905.3 level.
5924 10	$(0^+)^{b}$			0.0	
5942.4 10	$(0^+)^{b}$			· · · · · ·	W
	$(0^{+})^{b}$			-	W
5963 <i>10</i> 5967 8	$(0^{+})^{b}$ $2^{+},3^{-a}$			Q O	W
	$(0^+)^{b}$.		_
5982 <i>10</i> 6018.4 <i>10</i>	$\frac{(0^{+})^{b}}{3^{-a}}$		I	Q 0 Q	W
6027.3 7	1 ⁻	0.85 [@] fs 5	u le	NO Q T	J^{π} : L(α,α')=1; J=1 from (γ,γ'); $J^{\pi}=2^+$ favored in
0021.3 /	1	0.03 18 3	пК	NO Q I	(e,e') , but 1^- is not ruled out.
					(-)- /,

COEFF Q F; \(\text{L} \t	E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF		Comments
COSE Q F: ΔI=1, E1 γ to 6*; γ to 4* not ΔI=1, D+Q.	6067.5 ^q 4	(7 ⁺)		CDEF Q		J^{π} : $\Delta J=2$, Q γ to (5 ⁺); $\Delta J=1$, (M1+E2) γ to 6 ⁺ .
6145 15 3 T 6	6084.7 5					
6174.3 8 2 2 3 7 4 6 6199 10 6220.0 4 (7 *) 6 22 8 6 220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 8 6 (2 *) 6 6220.0 4 (7 *) 6 22 8 8 6 (2 *) 6 6220.0 4 (7 *) 6 (2	6116 <i>10</i>			Q		
6199 10						
6220.0 / (7*)		$2^{+},3^{-a}$				XREF: O(6182).
6228.3 6 (2*) ^a (2*) ^a 0 0 0 F; Δ!=2(2) γ to (5*), 6228 8 level. 6228.3 6 (2*) ^a 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6231 10 (2*) ^a 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6271 10 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6271 10 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 6271 10 0 0 0 F; 2*, (1*) In (e,e*) for a 6235 8 level. 628.3 6 3* 6316 10 1-,2**a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				· · · · · · · · · · · · · · · · · · ·		
6228.3 6 (2*) ^a		(7+)				IT AI 1 (+ AI (2) (5+)
6248 10 (2*) ^a (2*) ^a (0) (2*) ^a (1) (
6271 10 6274 3 10						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)				J. 2 ,(1) III (e,e) 101 a 0233 8 level.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4[+]^{a}$				
6306 1						J^{π} : L(p,p')=3.
G389 10						The state of the s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,			W	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6389 10			Q	W	
6424.9? 9 1					W	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				i 0 Q	W	J^{π} : L(p,p')=2, also (e,e').
6437 10 6447 10 6447 10 6447 10 6460 5 4+ 6468.4 7 (1+)a^2 6478.4 7 2+ 6478.4 7 2+ 6478.4 7 2+ 6570 10 6507.2 11 6549 10 6471	6424.9? 9			N		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1^{i}	6.9 [@] fs 7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6437 10			hi Q S	W	
6468.4 7 (1*) ^d 6478.4 7 2* 6478.4 7 2* 6478.4 7 2* 6500 10 6507.2 11 6549 10 (4*) ^c 6571.4 10 2* 6508 10 (4*) ^c 6601.3 8 6604.6 l 4 (8*) CDEFG M CDEFG M CREECE						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6500 10 6507 2 11 6590 10 6591 4 10 6571.4 10 2+ 6598 10 6601.3 8 6604.6 1^{1} 6601.3 8 6604.6 1^{1} 6714 10 6685.0? 9 6714 10 6717.4 7 6735 8 3 7 6735 8 3 7 6735 8 673 10 3 7^{1} 6805.5 10 3 7^{1} 6805.5 10 3 7^{1} 6805.5 10 3 7^{1} 6805.7 7 6714 10 685.7 7 6816 8 685.7 7 6774 10 6865.8 10 6865.1 10 6866.1 10 686						
6507.2 II 6549 10 (4+) ^C Q W 6571.4 IO 2+ 6598 10 (4+) ^C F Q W 6601.3 8 6604.6 ^I 4 (8+) 6665.4 7 6674 10 6685.0? 9 1 ^I 3.6 [©] fs 4 76714 10 6717.4 7 6735 8 3 ⁻ 0 T W 6735 8 3 ⁻ 0 T W 6752 5 2+ 6763.5 10 3 ^{-f} hi 0 Q s 6805.5 10 3 ^{-f} hiJk Q s 6805.5 10 3 ^{-f} hiJk Q s 6805.5 10 3 ^{-f} hiJk Q s 6816 8 (2+) ^a 0 Q J ^π ; L(p,p') = 2. 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6863.1 6 (6) 6864.7 C Q W 677.2 L(p,p') = 2. 677.2 L(p,p') = 2. 678.3 L(p,p') = 2. 679.3 L(p,p') = 2. 6		21				J'': L(p,p')=2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6571.4 IO 2+		$(4^+)^{\mathbf{C}}$			TaT	
6698 10 (4+) ^C						J^{π} : L(p,p')=2.
6601.3 8 6604.6 l 4 (8 $^+$) CDEFG M XREF; G(?)M(?). J^π : $\Delta J = 2$, Q γ to 6^+ ; $\Delta J = 1$, (M1+E2) γ to 7^+ ; band assignment. 6665.4 7 6674.10 6685.0? 9 1 l 3.6 l fs 4 N 6714.10 6717.4 7 6735 8 3 - 6752 5 2 $^+$ Q J^π : $L(\alpha,\alpha') = 3$; also (e,e'). 6765.5 10 3 $^-$ hi 0 0 s E(level): level at 6780 in (3 He, 3 He') where $\Delta E = 25$ keV for strong and 50 keV for weak levels. 6793.10 3 - $^-$ hi Jk Q s 6805.5 10 3 - $^-$ hi Jk Q s 6816.8 (2 $^+$) a 0 Q $^ ^+$: $^ ^+$ $^ ^ ^ ^+$ $^ ^ ^ ^ ^ ^ ^ ^-$		$(4^+)^{\it c}$			W	4.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6601.3 8					
6665.4 7 6674 10	6604.6 ^l 4	(8^{+})		CDEFG M		
6655.4 7 6674 10 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q						
6674 10 6685.0? 9 1 1 3.6 6 fs 4 N 6714 10 Q W 6717.4 7 6735 8 3 - 6752 5 2 + 6763.5 10 3 - f 6805.5 10 3 - f 6805.5 10 3 - f 6816 8 (2+)a 6845.7 7 (7+) 6854.5 10 3 - a 6863.1 6 (6) C C 6886 10 (2+,3-)d 6886 10 (2+,3-)d 6886 10 (2+,3-)d 6886 10 (2+,3-)d 1 Q N Q W Jπ: $L(\alpha,\alpha')=3$; also (e,e'). Jπ: $L(\alpha,\alpha')=3$; also (e,e'). Jπ: $L(\alpha,\alpha')=3$; also (e,e'). E(level): level at 6780 in (3 He, 3 He') where ΔΕ=25 keV for strong and 50 keV for weak levels. E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). Jπ: γ' s to (5+) and 6+. E(level): level at 6860 40 in (p,t). Jπ: ΔJ=1, D γ to (5+). Negative parity assigned by 2009Jo03 In (36 Ar, α 2pγ).						assignment.
6685.0? 9 1 i 3.6 e fs 4						
6714 10 6717.4 7 6735 8 6752 5 6763.5 10 6793 10 6793 10 6793 10 6816 8 686 10 6863.1 6 686 10 6793		1 <i>i</i>	260 5 4			
6717.4 7 6735 8 3 ⁻ 6752 5 2 ⁺ 6763.5 10 3 ^{-f} 6769.5 10 3 ^{-f} 6805.5 10 3 ^{-f} 6816 8 (2 ⁺) ^a 6845.7 7 (7 ⁺) 6854.5 10 3 ^{-a} 6863.1 6 (6) 6863.1 6 (6) 6876 10 (2 ⁺ ,3 ⁻) ^d 6876 1 Q C C C C C C C C C C C C C C C C C C C		1'	3.6° is 4			
6735 8 3 ⁻ 6752 5 2 ⁺ 6763.5 10 3 ^{-f} 6763.5 10 3 ^{-f} 6763.5 10 3 ^{-f} 6763.5 10 3 ^{-f} 6770 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3						
6752 5 2+ 6763.5 10 3-f hi 0 Q s E(level): level at 6780 in (3 He, 3 He') where ΔE=25 keV for strong and 50 keV for weak levels. 6793 10 3-f 6805.5 10 3-f hi Jk Q s 6816 8 (2+) ^a 6845.7 7 (7+) 6854.5 10 3-a H 0 Q T W $XREF: Q(6844)$. E(level): level at 6800 40 in (p,t). $XREF: Q(6844)$. E(level): level at 6860 40 in (p,t). $XREF: Q(6844)$.		3-				I^{π} : L(α, α')=3: also (e.e').
6763.5 10 3^{-f} hi 0 Q s E(level): level at 6780 in (3 He, 3 He') where $\Delta E=25$ keV for strong and 50 keV for weak levels. 6793 10 3^{-f} iJk Q s 6805.5 10 3^{-f} hiJk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). 6816 8 (2+) a 0 Q J ^{π} : 2^{+} ,(1-) In (e,e'). 6845.7 7 (7+) C J ^{π} : 2^{+} ,(1-) In (e,e'). 6854.5 10 3^{-a} H 0 Q T W XREF: Q(6844). 6863.1 6 (6) C J ^{π} : $\Delta J=1$, D γ to (5+). Negative parity assigned by 2009Jo03 In (36 Ar, $\alpha 2$ p γ).						
keV for strong and 50 keV for weak levels. 6793 10 3^{-f} iJk Q s 6805.5 10 3^{-f} hiJk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). 6816 8 (2+) a 0 Q J $^{\pi}$: 2+,(1 $^{-}$) In (e,e'). 6845.7 7 (7+) C J $^{\pi}$: γ 's to (5+) and 6+. 6854.5 10 3^{-a} H 0 Q T W XREF: Q(6844). E(level): level at 6860 40 in (p,t). F(level): level at 6860 40 in (p,t). $E(level)$:		3^{-f}				
6805.5 10 3^{-f} hi Jk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 Q, 12 C). 6816 8 ($^{2+}$) d 0 Q J $^{\pi}$: $^{2+}$,(1 $^{-}$) In (e,e'). 6845.7 7 ($^{7+}$) C J $^{\pi}$: $^{2+}$, $^{2+}$ s to ($^{5+}$) and 6 $^{+}$. 6854.5 10 $^{3-d}$ H 0 Q T W XREF: Q(6844). E(level): level at 6860 40 in (p,t). 1 $^{2+}$						
6805.5 10 3^{-f} hi Jk Q s E(level): level at 6780 30 in (7 Li,t), level at 6800 50 in (16 O, 12 C). 6816 8 ($^{2+}$) a 0 Q J $^{\pi}$: $^{2+}$,(1 $^{-}$) In (e,e'). 6845.7 7 ($^{7+}$) C J $^{\pi}$: $^{2+}$ s to ($^{5+}$) and 6 $^{+}$. 6854.5 10 $^{3-a}$ H 0 Q T W XREF: Q(6844). 6863.1 6 (6) C J $^{\pi}$: 2 J=1, D 2 to ($^{5+}$). Negative parity assigned by 2009Jo03 In (36 Ar, 2 2p 2).	6793 10	3- <i>f</i>		iJk Q s		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6805.5 10	3^{-f}				E(level): level at 6780 30 in (⁷ Li,t), level at 6800 50 in
6816 8 $(2^{+})^{al}$ 0 Q J^{π} : 2^{+} , (1^{-}) In (e,e'). 6845.7 7 (7^{+}) C J^{π} : γ' s to (5^{+}) and 6^{+} . 6854.5 10 3^{-al} H 0 Q T W XREF: Q(6844). 6863.1 6 (6) C J^{π} : $\Delta J = 1$, D γ to (5^{+}) . Negative parity assigned by 2009Jo03 In $(3^{6}$ Ar, $\alpha 2$ p γ).						
6854.5 10 3^{-d} H 0 Q T W XREF: Q(6844). E(level): level at 6860 40 in (p,t). J^{π} : $\Delta J = 1$, D γ to (5 ⁺). Negative parity assigned by 2009Jo03 In (36 Ar, α 2p γ).	6816 8	$(2^+)^a$		0 Q		J^{π} : 2 ⁺ ,(1 ⁻) In (e,e').
E(level): level at 6860 40 in (p,t). J^{π} : $\Delta J=1$, D γ to (5 ⁺). Negative parity assigned by 2009Jo03 In (36 Ar, α 2p γ).	6845.7 7	(7^{+})		C		J^{π} : γ' s to (5^+) and 6^+ .
6863.1 6 (6) C J^{π} : $\Delta J=1$, D γ to (5 ⁺). Negative parity assigned by 2009Jo03 In (36 Ar, $\alpha 2$ p γ).	6854.5 <i>10</i>	3 ^{-a}		H OQT	W	
2009Jo03 In (36 Ar, α 2p γ).						
6886 $10 (2^+, 3^-)^d$ 1 Q	6863.1 6	(6)		C		
	6006.10	(2+ 2-) d		7 0		$2009J003$ In ($^{\circ}$ Ar, α 2p γ).
6892.9? 15 (1)° 11° fs 5 N						
	6892.9? <i>15</i>	(1) ^t	11 ts 5	N		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
6912 10 6925 10 6935 10 6960 10 6983 5 6992.5 10 7017 10	(2 ⁺ ,3 ⁻) ^d 4 ^{+e} 4 ⁺ e		1 Q	J^{π} : L(p,p')=2; also (e,e').
7042 10 7048.2 9 7051 5 7054.5 10 7068 5 7089 10	1 ⁻ⁱ 4 ⁺ 4 ⁺	0.83 [@] fs 3	i	J^{π} : $L(p,p')=4$. J^{π} : $L(p,p')=4$.
7109 8 7111 5 7113.5 7 7131.5 10 7141 5	$(2^{+})^{a}$ 3^{-} $(1,2^{+})$ 4^{+}		i 0 i Q i Q i Q i Q	J^{π} : $4^{(+)}$ is also suggested In (e,e'). J^{π} : $L(p,p')=3$. J^{π} : $L(p,p')=4$.
7180 25 7210.4 10 7249.6 11 7255 5	3 ⁻ 3 ⁻ (1) ⁱ 2 ⁺ 1 ⁱ	9 [@] fs 3 0.99 [@] fs 11	S W H K O Q T W N O Q	J ^{π} : L(3 He, 3 He')=3. J ^{π} : L(p,p')=3; also (e,e'); L(α , α')=4 is inconsistent. J ^{π} : L(p,p')=2; also (e,e').
7271.7 7 7273.7 6 7300.5 10 7314.8 ^q 5 7380.5 10	7 ⁻ 3 ⁻ (8 ⁺) (1,2 ⁺)	0.99° IS 11	N Q C O Q C	J ^{π} : possible negative parity since No analog GT state seen In ⁵⁸ Cu from (³ He,t) (2002Fu07). J ^{π} : ΔJ =1, E1+M2 γ to 6 ⁺ ; ΔJ =0, D+Q γ to 7 ⁻ . J ^{π} : L(p,p')=3. J ^{π} : ΔJ =1, D+Q γ to (7 ⁺); ΔJ =2, Q γ to 6 ⁺ . J ^{π} : γ to 0 ⁺ .
7388.8 <i>4</i> 7420 <i>5</i> 7446.2 ⁹ <i>5</i> 7462 <i>8</i> 7514.5 <i>10</i>	1 ⁺ⁱ 3 ⁻ (9 ⁺) (1 ⁺) ^a 3 ^{-a}	1.00 [@] fs 5	NO Q C EF O Q hi 1 0 Q ST	J^{π} : L(p,p')=3. J^{π} : ΔJ=1, (M1+E2) γ to (8 ⁺); ΔJ=2, Q γ to (7 ⁺). J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
7560 8 7570.5 10 7585.1 6 7595.9 6 7603 8	1^{+a} 2^{+} $(2)^{i}$ $(1^{-})^{a}$	5.2 [@] fs 8	Hi kl O kl Q N N O	J^{π} : $L(p,p')=2$.
7616.0? 10 7618 5 7680.6 10 7709.7 6	$(1)^{i}$ 4^{+} 1^{-a} 1^{+i}	9.5 [@] fs 40 0.72 [@] fs 3	N Q O Q J NO Q	J^{π} : L(p,p')=4. Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
7721 10 7724.3 ^r 5 7748 8 7766.0 7	$ \begin{array}{c} (8^{+}) \\ (1^{+},2^{-})^{a} \\ (1)^{i} \end{array} $	3.7 [@] fs 6	I Q T C O Q N	J^{π} : $\Delta J=2 \gamma$ to 6^{+} ; $\Delta J=0$, D+Q γ to (8^{+}) .
7807.3 <i>5</i> 7820 <i>8</i> 7858 <i>5</i> 7860 <i>5</i>	1^{-i} $4[+]^a$ $3^ 4^+$	0.81 [@] fs 10	K N Q H O Q Q	J^{π} : $L(p,p')=3$. J^{π} : $L(p,p')=4$.
7862.6 ^{&} 7 7876.7 26	(1,2 ⁺) 1 ⁱ	0.9 [@] fs 5	Q N	J^{π} : γ to 0^+ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF	Comments
7937 25 7973.6 6 7982.8 6 8068.6? 12	8 ^{-a} (8 ⁺) (8 ⁻) (1 ⁻) ⁱ	1.38 [@] fs <i>17</i>	H C C	0	J ^π : ΔJ=2 γ to (6 ⁺); ΔJ=1, D+Q γ to 7 ⁺ . J ^π : ΔJ=1, D+Q γ to (7 ⁺); ΔJ=1, (M1+E2) γ to 7 ⁻ .
8074.5 7	(8^+) 1^{i}	1.6 [@] fs 3	C	N	J^{π} : $\Delta J=1$, D+Q γ to (7^+) .
8096.3 <i>6</i> 8100 <i>15</i> 8110.6 <i>10</i>	$4[+]^a$ $(1,2^+)$	1.0° IS 3	K	N O T Q	XREF: K(8060). J^{π} : γ to 0^{+} .
8115.1 <i>6</i> 8120.8 ^r <i>5</i>	(8 ⁻) (9 ⁺)		C C E	Ų	J^{π} : γ to σ . J^{π} : γ to σ . J^{π} : ΔJ =1, D+Q γ 's to (8^+) .
8134 <i>5</i> 8143 <i>10</i>	3-		CL	Q Q	J^{π} : L(p,p')=3.
8203 <i>20</i> 8237.3 <i>4</i>	$(1^+)^g$ 1^{-i}	$0.15^{\textcircled{@}} \text{ fs } +3-2$	K	Q NO Q	J^{π} : 1 ⁺ suggested in (e,e') is in disagreement, if the
8276 8	1+ <i>ag</i>	0.13 15 15 2		0 Q	level is the same as in (γ, γ') . J^{π} : 1 ⁺ ,(2 ⁻) In (e,e') .
8317.1 <i>17</i> 8372 <i>20</i>	1^{i} $(1^{+})^{g}$	1.9 [@] fs 3		N Q Q	
8395 <i>8</i> 8395.1 <i>12</i>	2+a $1-i$	0.40 [@] fs 8		O N Q	
8419 <i>10</i>	1+gh $1+gi$	0.51 [@] fs 3		Q	Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
8461.0 <i>7</i> 8475 <i>8</i> 8493 <i>15</i>	2^{-a} $(3^{-},1^{-})$	0.51 ° IS 3		N Q O T	J^{π} : L=(3,1) in (α,α') .
8514.1 <i>4</i>	1^{-i}	0.66 [@] fs 5		NO Q	J^{π} : 1 ⁺ suggested in (e,e') is in disagreement, if the level is the same as in (γ, γ') .
8552.7 13	1(+)	0.97 [@] fs 8		N Q	J^{π} : from analysis of $\sigma(\theta)$ in (p,p') , $J=1$ from (γ,γ') . Configuration= $\nu(p_{3/2}p_{1/2})$ $((p,p'),1986Ho15)$.
8600.5 <i>7</i> 8654 <i>9</i>	1 ⁺ <i>agi</i> (3 ⁻ ,1 ⁻)	0.57 [@] fs 6		NO Q Q T	E(level): unweighted average of 8645 10 (p,p'), and 8662 15 (α , α ').
8679.3 8	1^{+agi}	0.223 [@] fs 11		NO Q	J^{π} : L=(3,1) in (α,α') .
8692 8716 <i>10</i>				Q Q	
8718.1 <i>6</i> 8780 <i>8</i>	(9^{-}) 2^{-a}		С	0	J^{π} : $\Delta J=1$, (M1+E2) γ to (8 ⁻); γ to 7 ⁻ .
8797 <i>5</i> 8808 <i>25</i>	3^{-} $8^{-}a$ $(1^{+})^{a}$			Q 0	J^{π} : L(p,p')=3.
8817 <i>8</i> 8830 <i>40</i> 8845 <i>5</i>	2 ⁺ 3 ⁻			0 W 0 Q	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e'). J^{π} : L(p,t)=2. J^{π} : L(p,p')=3; 2 ⁺ ,3 ⁻ from (e,e').
8857.4 6	$1^{(+)}gi$ 1^{-i}	0.61 [@] fs <i>12</i> 0.390 [@] fs <i>17</i>		N Q	J. E(p,p)=3, 2, 3 Holli (c,c).
8880.2 <i>6</i> 8896.4? <i>10</i> 8902 <i>5</i>	1 * 4+	0.390° is 17	C	N Q Q	J^{π} : γ to (8 ⁺) suggests (8,9,10 ⁺). J^{π} : L(p,p')=4.
8934.6 5	$1^{(-)}i$	0.310 [@] fs 11	J	NO	J^{π} : parity from (e,e').
8961.3 <i>7</i> 9012 <i>5</i>	1^{+agi} 3^{-}	1.20 [@] fs <i>13</i>	6	NO Q Q	J^{π} : L(p,p')=3.
9027.2 <i>7</i> 9037 <i>8</i> 9062.7 ^{r} <i>6</i>	(9^{-}) $(1^{+})^{a}$ (10^{+})		С	0	J^{π} : $\Delta J = 2 \gamma$ to 7^- ; γ to (8^-) . J^{π} : 1^+ , (2^-) In (e,e') . J^{π} : $\Delta J = 2 \gamma$ to (8^+) ; $\Delta J = 1$, $(M1 + E2) \gamma$ to (9^+) .
7002.7	(10)				σ . $\triangle \sigma - 2 \gamma$ to $(\sigma j, \triangle \sigma - 1, (1411 + 122) \gamma$ to $(j j)$.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF	Comments
9073.4 <i>6</i> 9113 <i>10</i>	1^{+agi}	0.51 [@] fs 3		NO Q O	
9156.9 7	1^{+agi}	0.77 [@] fs 10		NO Q	
9190.7 5	1-i	0.58 [@] fs 6		N Q	J^{π} : (1 ⁺) suggested in (p,p') is in disagreement, if
7170.7 3	1	0.30 13 0		N Q	the level is the same as in (γ, γ') .
9251 <i>10</i>	$(1^+)^{g}$			0 Q	(1),
9295 10	1^{+h}			o Q T	Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
9304 5	3-			o Q	J^{π} : L(p,p')=3.
9310 40	4+			W	J^{π} : L(p,t)=4.
9322.1 9 9	(11^{+})	@	С		J^{π} : $\Delta J=2 \gamma$ to (9^+) .
9326.4 6	11	0.33 [@] fs 5		N Q	
9336 20	$(1^+)^g$		С. Г.	Q	VDCE, E(9)
9345.5 6	(10^{-})		CE		XREF: E(?). J^{π} : ΔJ=2 γ to (8 ⁻); ΔJ=1, (M1+E2) γ to (9 ⁻).
9368.5 6	1 ⁽⁺⁾ <i>ai</i>	0.37 [@] fs 4		NO	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e'); 1 ⁽⁻⁾ In (γ,γ') .
9379 5	3-	0.57 15 7		Q	J^{π} : L(p,p')=3.
9407 10	$(2^{-})^{a}$			0	J^{π} : 2^{-} , (1^{+}) In (e,e').
9436 5	4+	_		Q	J^{π} : $L(p,p')=4$.
9455.4 18	1 ⁱ	2.1 [@] fs 4		N	
9458 <i>5</i>	3-			0 Q	J^{π} : L(p,p')=3.
9523.3 13	1 ⁻ⁱ	0.118 [@] fs <i>13</i>		NO Q	J^{π} : 1 ⁺ ,(2 ⁻) suggested in (e,e') and (1 ⁺) in (p,p') are in disagreement, if the levels in these two reactions are the same as in (γ, γ') .
9554.0 <i>21</i>	1 ⁱ	0.335 [@] fs 20		K NO	XREF: $K(9500)$. J^{π} : (2^{-}) In (e,e') .
9585.2° 8	(9^{-})		С		J^{π} : $\Delta J=2 \gamma$ to 7^- ; $\Delta J=1$, D γ to (8^+) .
9588 <i>5</i>	4+			Q	J^{π} : L(p,p')=4.
9630.5 24	1 ⁱ	0.15 [@] fs 3		N	
9632 5	4+			Q	$J^{\pi}: L(p,p')=4.$
9643 10	$(2^{-})^{a}$		C	0	J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
9666.9 <i>8</i> 9667 <i>10</i>	(10^+) 2^{-a}		С	0	J^{π} : $\Delta J=2 \gamma$ to (8^+) ; $\Delta J=1$, D+Q γ to (9^+) .
9667.8 15	1 <i>i</i>	0.38 [@] fs 13		N	
9672 5	3-	0.36 18 13		Q	J^{π} : L(p,p')=3.
9723.0 9	$1^{(-)}i$	0.109 [@] fs 16		N	. E(p,p) 3.
9750 <i>10</i>	1^{+ag}	0.10) 13 10		0 Q	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
9790.6 <i>10</i>	(10^{+})		С		J^{π} : $\Delta J=1$, D+Q γ to (9 ⁺).
9799 10				0	
9835 5	3-			Q	E(level): doublet in (p,p') , 3^- and 1^+ levels, the latter corresponds to 9842 level here. J^{π} : $L(p,p')=3$.
9843 5	1 ⁺ <i>gh</i>	$0.26^{\textcircled{0}}$ fs +27–10		NO Q	E(level): possible IAS of 1050,1 ⁺ In ⁵⁸ Co. $T_{1/2}$: from (γ, γ') for J=1.
0070 5	2-			0.0	Configuration= $\nu(p_{3/2}p_{1/2})$ ((p,p'),1986Ho15).
9870 <i>5</i> 9886.8 <i>7</i>	$3^ (10^+)$		С	0 Q	J^{π} : L(p,p')=3. J^{π} =(2 ⁻) In (e,e').
9890.8 / 9890 <i>40</i>	(10 ⁺)		C	K W	J^{π} : $\Delta J = 2 \ \gamma \ \text{to} \ (8^+)$. J^{π} : $L(p,t) = 2$.
9929 5	3-			1 Q	J^{π} : L(p,p')=3.
9941 10	$(2^+)^a$			0	J^{π} : 2^{+} ,(1 ⁻) In (e,e').
9956 5	3-			1 Q	J^{π} : L(p,p')=3.
10029 5	3-			0 Q	J^{π} : L(p,p')=3. J^{π} =(2 ⁻) In (e,e').
10059 5	4+			Q	$J^{\pi}: L(p,p')=4.$

E(level) [†]	J ^{π‡}		XREF		Comments
10073 10	1 ⁺ <i>a</i>		0		
10107 <i>10</i>	1^{+ag}		0 Q		
10120 5	4 ⁺		K Q		XREF: K(10100).
					$J^{\pi}: L(p,p')=4.$
10137.2 <i>12</i>	(10^+)	C			
10144.7 <i>6</i>	(10^{-})	C			**
10157 <i>10</i>	1^{+eg}		0 Q		E(level): possible IAS of 1377,1 ⁺ In ⁵⁸ Co.
10180.8 <i>6</i>	(11^{-})	C			
10190 25	8 ^{-a}		0		
10192.5° 7	(11^{+})	С			
10209 5	3-		Q		J^{π} : $L(p,p')=3$.
10014 10	1 + 0				E(level): note that 10209 and 10214 are two different levels in (p,p') .
10214 10	1 ^{+a}		0 Q		J^{π} : also from 0° data in (p,p') (2007Fu04) In (p,p').
10240.5	4.4				E(level): possible IAS of 1435, 1 ⁺ In ⁵⁸ Co.
10249 5	4+		Q		$J^{\pi}: L(p,p')=4.$
10266 10	1 ^{+a}		0		
10293.5 11	(9-)	С	0		
10304 10	1 ^{+a}		Q		
10355 10	4 ⁺		0		$II \cdot I \cdot (n \cdot n') = A$
10365 <i>5</i> 10385 <i>10</i>	$(1^+)^a$		Q 0		J^{π} : L(p,p')=4. J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
10383 10	(10^{+})	С	U		J. 1 ,(2) III (e,e).
10404.8 7	(9-)	C			
10434 10	$(2^{+})^{a}$	_	0 Q		J^{π} : 2 ⁺ ,(1 ⁻) In (e,e').
10460 5	4 ⁺		Q		J^{π} : L(p,p')=4.
10510 10	1^{+ag}		o Q		XREF: O(10492).
10510 10	1		U Q		E(level): possible IAS of 1729,1 ⁺ In ⁵⁸ Co.
10523 5	4+		Q		J^{π} : L(p,p')=4.
10550 10	$(1^+,2^-)^a$		0		
10582 <i>10</i>	$(1^{+})^{a}$		0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
10586 5	3-		Q		$J^{\pi}: L(p,p')=3.$
10590 <i>50</i>	0^{+}		L		J^{π} : L(³ He,n)=0.
10590.9 6	(11^{-})	С			
10630 40	4+			W	J^{π} : L(p,t)=4.
10633 10	1 ^{+a}		0		***
10638 5	3-		Q		J^{π} : L(p,p')=3.
10667 10	1^{+agh}		0 Q		E(level): possible IAS of 1868,1 ⁺ In ⁵⁸ Co.
					Configuration= $\nu(f_{7/2}^{-1}f_{5/2})$ ((p,p'),1986Ho15).
10694.7 <mark>P</mark> 7	(10^{-})	С			1/2 5/20 1/2 1/2
10720 <i>10</i>	$(3^-,4^+)^a$		0		
10744 5	4+		0 Q		J^{π} : L(p,p')=4.
10781.7 9	(11^{+})	C			
10805 <i>10</i>	$1^+, 2^{-a}$		0 Q		
10823 5	4+		Q		$J^{\pi}: L(p,p')=4.$
10856 <i>10</i>	$(1^-,2^+)^a$		0		
10882.0 <i>14</i>	(11^{+})	С			
10891 10	2^{+a}		0		TT T (1) 4
10902 5	4 ⁺		Q		J^{π} : $L(p,p')=4$.
10950 10	$1^{+a}_{4^{+}}$		0		VDEE. V(10050)
10967 5	4+		K Q		XREF: K(10950).
11005 6 8	(11^{-})	С			$J^{\pi}: L(p,p')=4.$
11005.6 8	1^{+ag}	C	0.0		E(lavel), possible IAS of 2240 1+ In 58Ca
11008 <i>10</i> 11052 <i>10</i>	$(1^+)^g$		0 Q		E(level): possible IAS of 2249,1 ⁺ In ⁵⁸ Co. XREF: Q(11063).
11032 10	(1)6		0 Q		J^{π} : (2 ⁺) In (e,e').
					J. (2) III (C,C).

E(level) [†]	$_{ m J}^{\pi \ddagger}$		XREF		Comments
11080 10	$(1^+)^a$		0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
11117.0° 8	(11^{-})	С			5 . 1 ,(2) III (0,0).
11135 10	$(3^-,4^+)^a$		0		
11158 5	3-		Ő Q		E(level): note that 11158 and 11165 are two different levels in (p,p').
11130 3	3		O Q		J^{π} : L(p,p')=3; 2 ⁺ ,3 ⁻ In (e,e').
11165 10	1+		Q		J^{π} : from 0° data in (p,p') (2007Fu04) In (p,p').
11203 5	4+		Q		J^{π} : $L(p,p')=4$.
11240 25	8- <i>a</i>		0		J . L(P,P) - 1.
11255.2 ^p 7	(11^{-})	С	· ·		
11266 10	$(1^{+})^{a}$		0 Q		J^{π} : 1+,(2-) In (e,e').
11297 10	2+a		0		3 . 1 ,(2) III (0,0).
11297.7 7	(12^{-})	С	O .		
11300 5	4 ⁺		Q		J^{π} : $L(p,p')=4$.
11335 10	$1^{-},2^{+a}$		0 Q		J . L(P,P) - 1.
11363 10	$(2^{-})^{a}$		0		J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
11410 10	$(2^+,3^-)^a$		0		3 . 2 ,(1) III (0,0).
11413.1 9	(11^+)	С	· ·		
11434 5	4+		Q		J^{π} : $L(p,p')=4$.
11450 25	$(6^+)^a$		0		J . L(P,P) - 1.
11470 10	$(2^{-})^{a}$		0		J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
11474.5 ^r 7	(12^{+})	С	O .		3 . 2 ,(1) iii (c,c).
11497 10	(3^{-})	_	Q	W	J^{π} : L(p,t)=(3).
11536 10	$(2^{-})^{a}$		0	"	$J^{\pi}: 2^{-}, (1^{+}) \text{ In } (e,e').$
11579.3 8	(12^{+})	С	O .		3 . 2 ,(1) iii (c,c).
11593 10	2^{+a}		0 Q		
11639 10	$\frac{2}{2^{+},3^{-a}}$		0		
11678 10	1^{+ag}		Q		
11728 5	4 ⁺		Q		J^{π} : $L(p,p')=4$.
11734 10	$^{+}_{2}^{+}a$		0		$J : L(p,p) \rightarrow 4$.
11792 10	$(2^{+})^{a}$		O Q		
11814.3 8	(12^{-})	С	O Q		
11824.7 11	(12^{+})	C			
11850 40	(3^{-})			W	J^{π} : L(p,t)=(3).
11860 10	1+a		0	•	σ . $D(p,t)=(\sigma)$.
11887 10	1+ <i>a</i>		0 Q		J^{π} : 1 ⁺ In (p,p') (2007Fu04); 2 ⁻ ,(1 ⁺) in (e,e').
11933 10	$(3^-,4^+)^a$		0		5 . 1 m (p,p) (20071 do 1), 2 ,(1) m (e,e).
11990 <i>10</i>	$(1^+)^a$		0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
11996.4 ^P 7	(12^{-})	С	•		5 . 1 ,(2 / III (0,0 /.
12040 10	2+a		0		
12090 10	-		0		
12141 10	$1^{-},2^{+a}$		0		
12155.1 10	(12^{-})	С	•		
12197 10	$(1^{2})^{g}$ $(1^{+},2^{+})^{g}$		0 Q		J^{π} : (2 ⁺) In (e,e').
12249 10	(1 ,2)		0		3 . (2) in (e,e).
12283 10	(1) <mark>8</mark>		o q		J^{π} : (1 ⁻) In (e,e').
12330 10	$(2^{-})^{a}$		0		$J^{\pi}: 2^{-}, (1^{+}) \text{ In } (e,e').$
12356.8 9	(12^{-})	С	•		5 . 2 ,(1 / III (0,0).
12364.6 7	(12^{+})	C			
12386 10	$(12)^{g}$	_	0 Q		J^{π} : (2 ⁺) In (e,e').
12447 10	$(2^+)^a$		0		· (=) · (=)
12482 10	$(2^+,4^+)^a$		0		
12500 25	8^{-a}		0		
12570.1 7	(12^{+})	С	•		%p=3.7 14 (2009Jo03)
120,011,	()	-			E(p)(c.m.)=1.83 MeV 5 (2009Jo03).
					prompt p decay populates 2524, 13/2 ⁻ level In ⁵⁷ Co which deexcites
					prompt p decay populates 2521, 15/2 level in Co which decacites

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	2	XREF	Comments
					through 834-466-1224 cascade to ⁵⁷ Co g.s.
12573 10	$2^{+},3^{-a}$			0	amough of those 1221 outstade to the gibt
12613 10	2^{+a}			0	
12643 10	$(1^+,2^+)^g$			0 Q	J^{π} : 2 ⁺ ,(4 ⁺) In (e,e').
12700 <i>10</i>	$(2^{-})^{a}$			0	J^{π} : 2 ⁻ ,(1 ⁺) In (e,e').
12719.2 7	(12^{+})		С		
12744 10	$(1^+,2^+)^g$			0 Q	J^{π} : (2 ⁺) In (e,e').
12796 <i>10</i>	$(1^+)^a$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
12831.6° 9	(13^{-})		C		
12837 10	$(2^{+})^{a}$			0	
12858 10	2^{+a}			0	
12912.1 <mark>P</mark> 9	(13^{-})		C		
12928 <i>4</i>			C		J^{π} : possible γ to (11 ⁺) suggests (11,12,13).
12931 <i>10</i>	$2^{+},3^{-a}$			0	
12971 <i>10</i>	2^{+a}			0	
13016.6 <i>10</i>	(13^{-})		C		
13022 10	$2^{+},4^{+}$			0	
13048.2 10	(13^{-})		C		
13057 10	2+ <i>a</i>			0	
13095.1 19	(12^{+})		С		
13125 10	(10+)		6	0	
13129.2 18	(12^{+})		С	0	IT. 1+ (2-) I. (1)
13176 10	$(1^+)^a_{2^+a}$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
13233 10			С	0	
13238.1 <i>7</i> 13260 <i>10</i>	(13^+) 2^+a		C	0	
13200 10	$(1^+,2^+)^g$			0 0 Q	J^{π} : (2 ⁺) In (e,e').
13345 10	2^{+a}			0 Q 0	J . (2) III (e,e).
13356.6 ^r 9	(13 ⁺)		С	U	
13411 10	1^{+a}		C	0	
13448 10	$^{1}_{2}+a$			0	
13492 10	2			0	
13556 10	$(2^+)^a$			0	J^{π} : 2 ⁺ ,(1 ⁻) In (e,e').
13590 10	$(1^+,2^-)^a$			0	5 . 2 ,(1) III (e,e).
13606.8 ^w 13	(12^{+})		C	·	
13632 4	(12)		C C		J^{π} : γ to (11 ⁺) suggests (11,12,13).
13649 10	2^{+a}			0	. , , , , , , , , , , , , , , , , , , ,
13685 10	$(2^{+})^{a}$			0	
$13.7 \times 10^3 \ 3$,	4.7 MeV 3		0	E(level): GQR.
13716 10	1+ <i>a</i>			0	_(=====================================
13765 10	$(1^+)^a$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
13814 10	2^{+a}			0	
13850.1 ^P 10	(14^{-})		C		
13884.2 <i>17</i>	(13+)		С		
13902 10	(2^{+})			0	J^{π} : 2 ⁺ ,(3 ⁻) In (e,e').
13929 10	$(2^{+})^{a}$			0	
13943 <i>3</i>			C		J^{π} : γ to (11 ⁺) suggests (11,12,13).
13955 10	$(2^+)^a$			0	
14000 <i>10</i>	2^{+a}			0	
14045 10	$(2^+)^a$			0	
14081 <i>10</i>	1+a			0	
14127.8 8	(14^{+})		C		
14138 <i>10</i>				0	
14180 <i>10</i>	$(1^+)^a$			0	J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
14213 <i>10</i>	$(2^+)^a$			0	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF		Comments
14217.5 13	(14-)		С			
14272 10	$1^{-},2^{+},3^{-a}$			0		
14303 10	$1^{-},2^{+},3^{-a}$			0		
14337 10	2^{+a}			Ō		
14383 10	$\frac{1}{2} + a$			Ö		
14441 10	$(2^+)^a$			0		J^{π} : 2 ⁺ ,(3 ⁻) In (e,e').
14455.8 ⁿ 16	(13^+)		С	O		3 . 2 ,(3) III (c,c).
14470 40	(0^+)				W	J^{π} : L(p,t)=(0).
14504 10	2^{+a}			0	"	\mathbf{J} . $\mathbf{L}(\mathbf{p},t)=(0)$.
14542 10	$(2^+)^a$			0		J^{π} : 2+,(1-,3-) In (e,e').
14598 10	(2)			0		J . 2 ,(1 ,5) III (e,e).
14630 <i>10</i>	$2^{+},3^{-a}$			0		
14692 10	2,3			0		
14736 10	$(2^+)^a$			0		
	2^{+a}					
14823 10	$(1^+)^a$			0		$I\pi$. 1+ (2=) I (1)
14852 10				0		J^{π} : 1 ⁺ ,(2 ⁻) In (e,e').
14853.1° 11	(15^{-})		С	•		
14894 <i>10</i>	$1^{-},2^{+a}$		_	0		
14920.9 ^r 11	(14^+)		C			
14934.7 ^p 12	(15^{-})		C			
14940 <i>10</i>	$(2^+)^a$			0		
15010.6 8	(14^{+})		C			
15031.0 <i>10</i>	(14^{+})		C			TT (4.01) 1 (4.01)
15105.2 <i>19</i>			С			J^{π} : γ' s to (12 ⁺) and (13 ⁺) suggest (12,13,14).
15187.0 <i>23</i>	(13^{+})		C			
15241.9 <i>14</i>	(13 ⁻)		С			%p=43 6 (2009Jo03) E(p)(c.m.)=2.15 MeV 5 (2009Jo03). prompt p decay populates 4814, 17/2 ⁻ level In ⁵⁷ Co which deexcites through 2290-834-466-1224 cascade to ⁵⁷ Co g.s.
15242.0 <i>18</i>			C			J^{π} : γ to (13 ⁻) suggests (13,14,15).
15266.3 10	(14^{+})		C			
15294.3 ^w 10	(14^{+})		C			
15324.1 ^m 12	(14^{+})		C			
≈15400	(13^{-})		C			%p=?
						E(p)(c.m.)≈2.35 MeV (2009Jo03). prompt p decay populates 4814, 17/2 ⁻ level In ⁵⁷ Co which deexcites through 2290-834-466-1224 cascade to ⁵⁷ Co g.s.
15412.6 <i>14</i>	(13^{-})		C			J^{π} : from 2005Ru06.
15434.1 <i>14</i>	(13^{-})		Č			
15709.3 9	(15 ⁺)		C			
15736.9 8	(15+)		C			
15858.2 9	(15^{+})		C			
16167.2 20			С			J^{π} : γ' s to (13 ⁺) and (14 ⁺) suggest (13,14,15).
16171.0 ⁿ 13	(15^+)		C			
16246.6 <mark>P</mark> 14	(16-)		С			
16496.6 23	(16^{-})		C			
16567.0 9	(16^{+})		С			
$16.64 \times 10^3 \ 12$. ,	5.81 MeV +16-11			T	E(level): L=2, isoscalar giant-quadrupole
						resonance (ISGQR).
16673 <i>3</i>	(14 ⁻)		С			%p=?

E(level) [†]	$J^{\pi \ddagger}$	${{\operatorname{T}}_{1/2}}^{\#}$		XREF		Comments
16676.4 8	(16 ⁺)	, , , , , , , , , , , , , , , , , , ,	С			J^{π} : from 2005Ru06, decays by protons to 5918, 19/2 ⁻ level in ⁵⁷ Co; the decay mode not shown in 2009Jo03.
16707 3	(14-)		С			%p=40 7 (2009Jo03) E(p)(c.m.)=2.56 MeV 5 (2009Jo03). prompt p decay populates 5918, 19/2 ⁻ level In ⁵⁷ Co which deexcites through 1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
16745 3	(14 ⁻)		С			%p=? E(p)(c.m.)=2.61 MeV 12 (2009Jo03). prompt p decay populates 5918, 19/2 ⁻ level In ⁵⁷ Co which deexcites through 1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
16758 3	(14-)		С			%p=41 6 (2009Jo03) E(p)(c.m.)=2.59 MeV 8 (2009Jo03). prompt p decay populates 5918, 19/2 ⁻ level In ⁵⁷ Co which deexcites through 1104-2290-834-466-1224
16798.0 ^v 10	(15 ⁻)	17 ps <i>11</i>	C			cascade to 57 Co g.s. %p=7 2 (2009Jo03); % α =2.6 3 (2009Jo03) T _{1/2} : from estimated T _{1/2} =7-28 ps (2001Ru03) from average Q(transition) in the band=2.4 3, assuming that 1364 γ and 1385 γ are part of the continuation of the band and that Q(transition) does not change at lower spins. E(p)(c.m.)=1.62 MeV 6, E(α)(c.m.)=6.90 MeV 6 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
17019.6 ⁰ 19			C			prompt α decay populates 2949, 6 ⁺ level In ⁵⁴ Fe which deexcites through 411(6 ⁺ to 4 ⁺)-1130(4 ⁺ to 2 ⁺)-1408(2 ⁺ to g.s.) cascade. J ^{π} : γ to (15 ⁻) suggests (15,16,17), (17 ⁻) from
17163.1 ^m 13	(16 ⁺)		С			possible band assignment.
17197 <i>3</i> 17290.0 ^w <i>11</i>	(16 ⁺)		C C			
$17.42 \times 10^3 \ 25$	(-)	3.9 MeV 4		0	T	E(level): L=1, giant-dipole resonance. Γ is from (α, α') . Other: 5.0 MeV 3 In (e,e').
17482 <i>3</i>	(15 ⁻)		С			%p=11 3 (2009Jo03) E(p)(c.m.)=2.35 MeV 6 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s.
17530.0 9 17582 <i>3</i>	(17 ⁺) (15 ⁻)		C C			%p=66 5 (2009Jo03); % α <10 (2009Jo03) E(p)(c.m.)=2.43 MeV 4, E(α)(c.m.)=7.71 MeV 8 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co g.s. prompt α decay populates 2949, 6 ⁺ level In ⁵⁴ Fe which deexcites through 411(6 ⁺ to 4 ⁺)-1130(4 ⁺ to 2 ⁺)-1408(2 ⁺ to g.s.) cascade.

17607 3	E(level) [†]	$J^{\pi \ddagger}$	${T_{1/2}}^{\#}$		XREF		Comments
18261.1 1/4	17607 3	(15 ⁻)		С			E(p)(c.m.)=2.47 MeV 7 (2009Jo03). prompt p decay populates 6976, 21/2 ⁻ level In ⁵⁷ Co which deexcites through 1058-1104-2290-834-466-1224 cascade to ⁵⁷ Co
18.43×10 ³ 15	18261.1 ⁿ 14						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(16 ⁻)	7.41 MeV <i>13</i>	С		Т	E(level): L=0, giant-monopole resonance.
19196 p 4							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19196 <i>P</i> 4	(10)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
20135.4 j 25 (18") C	19566.9 ^w 19						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(18-)		С			E(p)(c.m.)=1.94 MeV 7 (2009Jo03). prompt p decay populates 10075, 25/2 ⁺ level In
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
							%n<10 (2009Io03)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21100.3 23	(1)		C			E(p)(c.m.)=1.89 MeV 7 (2009Jo03). prompt p decay populates 11069, 27/2 ⁺ level In
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23331 ^k 3	(21^{-})					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(21^+)	42 M N 26	C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(22^{+})	4.3 MeV 20	C		1	E(level): isoscalar giant-dipole resonance (ISGDR).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$25918^{k} \ 3$ (23 ⁻) C $26059.7^{l} \ 20$ (23 ⁺) C $27366^{j} \ 4$ (24 ⁻) C $28709^{v} \ 3$ (25 ⁻) C $28931^{k} \ 3$ (25 ⁻) C	25141 ^w 4	(22^{+})		C			
26059.7^{t} 20 (23 ⁺) C 27366^{j} 4 (24 ⁻) C 28709^{v} 3 (25 ⁻) C 28931^{k} 3 (25 ⁻) C							
$27366^{j} \ 4$ (24 ⁻) C $28709^{\nu} \ 3$ (25 ⁻) C $28931^{k} \ 3$ (25 ⁻) C							
$28709^{\nu} \ 3$ (25 ⁻) C C $28931^{k} \ 3$ (25 ⁻) C							
	28709 ^v 3						
20401 1 4 (26=)		(25^{-})		C			
	30491 ^j 4	(26^{-})		C			T
31.13×10 ³ 14 7.8 MeV 27 0 T E(level): isoscalar giant-dipole resonance (ISGDR). In (e,e'), composite energy is 28.3 MeV 3.	31.13×10 ³ 14		7.8 MeV 27		0	T	E(level): isoscalar giant-dipole resonance (ISGDR). In (e,e'), composite energy is 28.3 MeV 3.
32175 <i>3</i> (27 ⁻) C							1 500
$32495^k \ 3 \qquad (27^-)$	32495 ^k 3	(27^{-})		С			

E(level) [†]	$J^{\pi \ddagger}$		XREF	Comments
33972 ^j 4	(28-)	С		
36045 <i>4</i>	(29^{-})	C		
36535 ^k 3	(29^{-})	C		
37810 ^j 4	(30^{-})	С		
40333 4	(31^{-})	C		
40931 ^k 3	(31^{-})	С		
42007 ^j 4	(32^{-})	С		
$x^{\mathcal{U}}$		C		Additional information 2.
2868.1+x ^u 10		C		
6083.2+x ^u 15		C		
9667.3+x ^u 18		C		

[†] From a least-squares fit to E γ 's for levels populated in γ -ray studies. For levels populated in particle-transfer and inelastic scattering studies, the values are averaged over all available data. For levels populated in (γ, γ') , values are as given in the 58 Ni (γ, γ') dataset.

[‡] For high-spin (J>6) levels, all assignments are from γ -ray cascades observed in in-beam γ -ray studies: $^{28}\text{Si}(^{36}\text{Ar},\alpha2\text{p}\gamma), ^{28}\text{Si}(^{32}\text{S},2\text{p}\gamma); ^{40}\text{Ca}(^{24}\text{Mg},\alpha2\text{p}\gamma); ^{45}\text{Sc}(^{16}\text{O},\text{p}2\text{n}\gamma); ^{48}\text{Ti}(^{12}\text{C},2\text{n}\gamma) \text{ and }^{56}\text{Fe}(\alpha,2\text{n}\gamma).$ For many transitions angular distribution/correlation data support these assignments. For a few transitions, supporting γ (lin pol) data are available. In addition, ascending spins are assumed in these reactions as the excitation energy rises. Arguments for individual are given for levels below 10 MeV. Above this energy, all assignments are as proposed in $^{28}\text{Si}(^{36}\text{Ar},\alpha2\text{p}\gamma)$ reaction by 2009Jo03 and their previous papers, based on DCO data for selected transitions and γ cascades. The parentheses have been added by the evaluators since strong supporting arguments from polarization or other parity-sensitive seem to be lacking. When J^π is deduced from L-transfers, target J^π=0⁺ in all reactions.

[#] From DSA in $(p,p'\gamma)$ (1969Be48), except where noted otherwise. Weighted or unweighted averages are taken when values are available from different reactions. Values from (γ,γ') are deduced from measured Γ_0^2/Γ and branching ratios.

[@] From Γ_0^2/Γ or Γ_0 in (γ, γ') and adopted branching ratios, assuming $\Gamma(0)/\Gamma=1$ when there is only the ground-state transition listed from a level. See (γ, γ') dataset for details.

[&]amp; A level assumed by the evaluators to assign γ transitions to 1454 and g.s. in $(p,p'\gamma)$. These transitions could not be assigned to levels in (p,p') because their J^{π} was 3^{-} or 4^{+} .

^a From analysis of form factor in (e,e').

 $^{^{}b}$ (0⁺) from L(p,t)=(0) for 5960 40.

 $^{^{}c}$ (4⁺) from L(p,t)=(4) for 6560 40.

 $^{^{}d}$ (2⁺,3⁻) from L(3 He,n)=(2,3) for 6900 50.

^e 4⁺ from (e,e') for 6930 15.

 $f \ 3^- \text{ from L}(^3\text{He}, ^3\text{He}') = 3 \text{ for } 6780 \ 25.$

 $[^]g$ (1⁺) from strong population of L(p,p')=0 state in near 0° data (2007Fu04), and interpretation as GT transition.

^h From analysis of $\sigma(\theta)$ and analyzing power data in (pol,P').

ⁱ From $\gamma(\theta)$ and/or asymmetry measurement In (pol γ, γ').

 $^{^{}j}$ Band(A): Band based on (16⁻), α =0. Parity from 2009Jo03 and 2006Ru02.

^k Band(a): Band based on (17⁻), α =1. Parity from 2009Jo03 and 2006Ru02.

^l Band(B): yrast structure.

^m Band(C): Band based on 15323,14⁺.

ⁿ Band(D): Band based on 14455,13⁺.

^o Band(E): Band based on 9585,9⁻.

^p Band(F): $\Delta J=1$ band based on 10694,10⁻.

^q Band(G): $\Delta J=1$ band based on 3422,3⁺.

^r Band(H): $\Delta J=1$ band based on 7724,8⁺.

- ^s Band(I): Band based on 18638,18⁺.
- ^t Band(i): Band based on 19945,19⁺.
- ^u Band(J): γ cascade.
- $^{\nu}$ Band(K): SD-1 Band. BASED ON (15⁻); from 2009Jo03, 2006Ru02 and 2001Ru03. this band has been assigned (2001Ru03) In the secondary minimum of the potential well. Population intensity≈2%, relative to the total ⁵⁸Ni channel. The (13⁻) states At 15410 and 15431 are possibly continuation of this band towards low-lying states. The (15⁻) member of this band decays by prompt α emission to ⁵⁴Fe. Average Q(transition)=2.4 3 (2001Ru03), from residual Doppler-shift method.
- ^w Band(L): SD-2 band. based on (12⁺); from 2009Jo03 and 2001Ru03. this band has been assigned (2001Ru03) In the secondary minimum of the potential well. Population intensity≈1%, relative to the total ⁵⁸Ni channel.

γ (58Ni)

2 ⁺ 4 ⁺	1454.28 10							
		100	$0.0 0^{+}$	E2				B(E2)(W.u.)=10.0 4
	1004.80 15	100	1454.21 2+	E2				B(E2)(W.u.)=11.2 <i>12</i>
	2459.1	≤0.5	$0.0 0^{+}$					_()()
2+	316.1	≤0.06	2459.21 4+					
_	1321.2 2	100.0 3	1454.21 2+	E2+M1	-1.1 <i>I</i>			B(M1)(W.u.)=0.011 +3-4; $B(E2)(W.u.)=15 +4-5$
	1321.2 2	100.0 5	1131.21 2	D2 (WII	1.1 1			Mult.: large $\delta(Q+D)$ from $\gamma(\theta)$.
	2775 5 4	153	0.0 - 0+	F2				B(E2)(W.u.)= $0.029 + 8 - 10$
1+				152				D(E2)(W.u.)=0.029 +0=10
1								
				(M1)				B(M1)(W.u.)=0.00079 + 18-19
	2901.5 3	0.4 0	0.0 0	(MII)				Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$; ΔJ^{π} requires M1.
0+	40.2.4	100 4	2002 15 1+	D. (1)		0.501.10		
0.	40.3 4	100 4	2902.15	[M1]		0.581 19		$\alpha(K) = 0.519 \ 17; \ \alpha(L) = 0.0541 \ 18; \ \alpha(M) = 0.000762 \ 25$
	165.0.0	10.4.10	2555 42 24	FE 01		0.0000		B(M1)(W.u.)=0.116 <i>14</i>
	167.2 2	18.4 19	2775.42 21	[E2]		0.0809		$\alpha(K) = 0.0722; \ \alpha(L) = 0.00761; \ \alpha(M) = 0.001063$
	100.00	0.4	0.150.01 1±					B(E2)(W.u.)=21 3
		19.9 <i>19</i>						B(E2)(W.u.)=0.00040 6
	2942.3		$0.0 0^{+}$	E0			0.058 8	$q_k^2(E0/E2)=0.65 \ 10, \ X(E0/E2)=0.53 \ 9, \ \rho^2(E0)=0.63E-5$
								10 (2005Ki02 evaluation).
								$I_{(\gamma+ce)}$: 0.021% 3 decay of level In $(p,p'\gamma)$.
2+	95.2	≤0.5	$2942.56 0^{+}$					
		≤0.2						
	262.6 <i>3</i>	1.7 3	$2775.42 \ 2^{+}$	M1(+E2)	-0.035			B(M1)(W.u.)=0.21 5; B(E2)(W.u.)=5 +18-5
								If M1, B(M1)(W.u.)=0.3 <i>1</i> .
	578.5	≤0.5	$2459.21 4^{+}$					
	1583.8 <i>3</i>	100.0 17	1454.21 2+	M1+E2	+0.21 3			B(M1)(W.u.)=0.055 8; B(E2)(W.u.)=1.8 6
	3037.7 <i>3</i>	68.4 <i>19</i>		[E2]				B(E2)(W.u.)=1.15 17
2+	321	≤0.3	2942.56 0+					
	361.6	≤0.3	2902.15 1 ⁺					
	488.2	≤0.3	2775.42 2 ⁺					
	804.3	<u>≤</u> 1.7	2459.21 4+					
	1809.5 <i>3</i>	65.8 18		M1+E2	+0.7 4			B(M1)(W.u.)=0.027 11; B(E2)(W.u.)=8 6
	3263.4 <i>4</i>	100.0 18	$0.0 0^{+}$	[E2]				B(E2)(W.u.)=1.9 3
(2)								
	3273.7 7		$0.0 0^{+}$					
3+		5.7 <i>3</i>		(M1(+E2))	+0.08 9			B(M1)(W.u.)=(0.08 +3-7); B(E2)(W.u.)=(7 +15-7)
-		≤0.6		//				(),(, (), - ()() ()
		< 0.7						
				(M1(+E2))	-0.02.3			B(M1)(W.u.)=(0.09 +4-8); B(E2)(W.u.)=(0.07 +23-7)
				(1/11(122))	0.02 3			2(111)(1111) (010) 17 0), 2(22)(1111) -(0107 123 7)
	3450.9 <i>5</i>		$0.0 0^{+}$					
	(2) (2)	2775.5 4 1 ⁺ 442.7 1448.2 4 2901.3 5 0 ⁺ 40.3 4 167.2 2 483.3 ^a 1488.3 3 2942.3 2 ⁺ 95.2 135.8 262.6 3 578.5 1583.8 3 3037.7 3 2 ⁺ 321 361.6 488.2 804.3 1809.5 3 3263.4 4 (2) 3269.1 8 (2) 3273.7 7 3 ⁺ 382.9 3 477.9 518.5 645.1 961.0 2 1966.3 3420.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

17

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$I_{(\gamma+ce)}$	Comments
3531.1	0+	493.3 588.5 ^a	≤1.0	3037.86 2 ⁺ 2942.56 0 ⁺				I_{γ} : ≤ 1.0 , but no γ expected for E0 transition.
		629.1	≤1.1	2902.15 1+				Tyr = 1.0, out no / enpected for 2.0 damenton
		755.7 1071.8 <mark>a</mark>	≤1.8 ≤2.9	2775.42 2 ⁺ 2459.21 4 ⁺				
		2076.9 3	100	1454.21 2+	[E2]			B(E2)(W.u.)=5.6 18
		3530.9		0.0 0+	E0		0.068 11	$q_k^2(E0/E2)=0.27 \ 4$, $X(E0/E2)=0.47 \ 7$, $\rho^2(E0)=0.08 \ 3$ (2005Ki02 evaluation).
3593.71	$1,2^{+}$	330.0	≤1.1	3263.66 2+				
		555.8 652.8 <i>10</i>	≤2.4 8.3 <i>10</i>	3037.86 2 ⁺ 2942.56 0 ⁺				
		691.6	<1.5	2942.36 0 2902.15 1 ⁺				
		818.4 <i>4</i>	27.2 15	2775.42 2+				
		1134.3	≤3.5	2459.21 4+				
		2139.2 5	18.0 10	1454.21 2+				
		3593.3 6	100.0 22	0.0 0+				I_{γ} : other: branching=24% 3 in (γ, γ') work of 2000Ba63 seems in error, the level in (γ, γ') is considered as the same as in other reactions and decays.
3620.09	4+	582.4	<3.8	3037.86 2+				as in other reactions and accurs.
		844.8	<3.8	2775.42 2+				
		1161.2 3	100.0 24	2459.21 4+	(M1(+E2))	+0.6 +3-6		B(M1)(W.u.) = (0.07 + 4 - 6); B(E2)(W.u.) = (4.E + 1.4)
		2166.3 5	20.5 24	1454.21 2+	E2			B(E2)(W.u.)=1.3 +7-10
3775.0	3 ⁺	3620.0 ^a 354.5 <i>3</i>	<4.4 33 <i>3</i>	$0.0 0^{+}$ $3420.55 3^{+}$	(M1(+E2))	+0.05 +21-12		B(M1)(W.u.)=(0.33 +9-17); B(E2)(W.u.)=(1.E+1 +11-1)
3773.0	3	736 2	16 3	3037.86 2 ⁺	(WII(+E2))	T0.03 T21-12		If M1, B(M1)(W.u.)=0.019 9.
		872.6	<4.3	2902.15 1+				ii iiii, B(iiii)(iii.u.)=0.017 7.
		999.2		2775.42 2+				
		1316.4 <i>15</i>	100 7	2459.21 4+	M1(+E2)	+0.19 15		B(M1)(W.u.)=(0.019 +5-10); B(E2)(W.u.)=(0.8 +12-8)
		2320.5 8	24 3	1454.21 2+				If M1, B(M1)(W.u.)= 9×10^{-4} 5.
		3774.4	<5	$0.0 0^{+}$				P. 0.44 (411 - 1 - 0.040 - 10
3898.8	2+	2444.7 4	100.0 16	1454.21 2 ⁺ 0.0 0 ⁺	[M1]			B(M1)(W.u.)=0.050 13 B(E2)(W.u.)=0.50 14
		3898.0 7	31.9 <i>16</i>	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=0.50 $I4$ I _{γ} : from (p,p' γ).
3943.6		3943.6 12		$0.0 0^{+}$				γ . Holli (p,p,γ) .
4105.9	(4^{+})	486.0 <i>3</i>	6 3	3620.09 4 ⁺				
	. ,	683.7 5	3 <i>3</i>	3420.55 3 ⁺				
		1646.4 <i>12</i>	9 3	2459.21 4+				
4400 :		2653.1 12	100 3	1454.21 2+	(Q)			
4108.4	2+	687.4	4.3 22	3420.55 3+				
		1205.9	11 4	2902.15 1+	DM11			D(M1)(W ₁₁)=0.0044.24
		1332.5 2654.6 <i>4</i>	13 <i>4</i> 87 <i>5</i>	2775.42 2 ⁺ 1454.21 2 ⁺	[M1] M1+E2	-0.58 +8-9		B(M1)(W.u.)=0.0044 24 B(M1)(W.u.)=0.0028 13; B(E2)(W.u.)=0.26 13
		4107.4 7	100 5	$0.0 0^{+}$	[E2]	-0.36 +6-9		B(E2)(W.u.)=0.0028 13, B(E2)(W.u.)=0.20 13 B(E2)(W.u.)=0.13 6
		110/.11/	100 5	0.0	رحدا			2(22)() 0.10 0

γ (58Ni) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
4294.7	4+	1835.3 4	67 33	2459.21 4+			
		2840.8 <i>10</i>	100 <i>33</i>	1454.21 2+	[E2]		B(E2)(W.u.)=6+5-6
4347.9		2893.6 12	100	$1454.21 \ 2^{+}$			if E2, B(E2)(W.u.)=12 11.
4358.7	$(2^+,3,4^+)$	1584		2775.42 2+			
		1901.7 <i>12</i>		2459.21 4+			
		2902		$1454.21 \ 2^{+}$			
4383.0	(5^+)	276.7 6	3.8 7	$4105.9 (4^+)$	D+Q		
		763.0 <i>3</i>	100.0 20	3620.09 4+	(M1+E2)	-0.385	
		962 <i>1</i>	0.2 2	3420.55 3 ⁺			
		1923.9 7	31.2 20	2459.21 4+	D+Q	+0.27 10	
4404.3	4+	2951.3 <i>11</i>	100	1454.21 2+	E2		B(E2)(W.u.)=4.4 + 15-18
4449.6	$1^+, 2^+$	855.0 <i>4</i>	100 10	3593.71 1,2 ⁺			
		1547.0 7	11 3	2902.15 1+			
		1673.8 <i>6</i>	12.4 <i>17</i>	$2775.42 \ 2^{+}$			
4474.6	3-	1697.5 9	25 8	2775.42 2+	[E1]		B(E1)(W.u.)=0.0008 4
		3021.1 6	100 17	1454.21 2+	[E1]		B(E1)(W.u.)=0.00060 22
4518.3		2059		2459.21 4+			
		3064		1454.21 2+			
4538.0	0^{+}	3083.7 6	100	1454.21 2+	[E2]		B(E2)(W.u.)=4.9 18
4574.1	1	4574.1 [@] a		$0.0 0^{+}$			
4752.2	4+	1132	100	3620.09 4 ⁺			
		2293	25	2459.21 4+			
4920.0		1300		3620.09 4+			
		1656		3263.66 2 ⁺			
		2461		2459.21 4+			
4954.0	1	4954.0 8		$0.0 0^{+}$			
4964.7	(5^+)	1344.7 2	23 3	3620.09 4+			
	,	2503.8 13	100 <i>3</i>	2459.21 4+	D+Q	-0.42 4	
5064.3		2605	100	2459.21 4+			
5127.5	6+	723.2 2	0.6 2	4404.3 4+			
		744.6 3	100.0 21	4383.0 (5 ⁺)	(M1+E2)	-0.424	δ: from (36 Ar,α2pγ). Other: $-2.5 + 6 - 8$ or $-0.20 + 10 - 15$ in (12 C,2nγ).
		832.0 ^a 7	0.4 2	4294.7 4+	(1111 1 22)	02	0. nom ('m,w2p/). o mon 20 10 0 0 0 10 m (0,2m/).
		1020.3 7	1.46 21	4105.9 (4+)			
		2668.6 10	45.8 21	2459.21 4+	Q		
5170.3		2711	.0.0 21	2459.21 4+	~		
5359.3?	(2)	5359.3 [@] a 16		$0.0 0^{+}$			
5384.5	6 ⁺	1000.8 8	100 10	4383.0 (5 ⁺)	D+Q		
5504.5	U	1088.9 10	4 2	4383.0 (3) 4294.7 4 ⁺	D+Q		
		1764.5 <i>11</i>	100 10	3620.09 4 ⁺	0		
		2926.6 <i>15</i>	66 8	2459.21 4 ⁺	Q Q		
5394.0		5394.0 9	00 0	$0.0 0^{+}$	Q		
5436.3	4+	2977	100	2459.21 4 ⁺			
5452.2	1	5452.2 [@] 4	100	$0.0 0^{+}$			
3432.2	1	3432.2 4		0.0			

19

γ (58Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
5472.3	4+	3013		2459.21 4+			
		4018		1454.21 2+			
5503.5		2728	100	2775.42 2+			
5528.0	(1)	5528.0 <i>4</i>		$0.0 0^{+}$			
5589.0	(5 ⁻)	3129.0 <i>15</i>	100	2459.21 4+			
5590.3	2+	5590	100	$0.0 0^{+}$			E_{γ} : from $(p,p'\gamma)$.
5594.2	4+	1819	53	3775.0 3+			E_{γ} : all γ' s from $(p,p'\gamma)$.
		3135	100	2459.21 4+			
		4140	3	1454.21 2+			
5706.3		2931 ^a		2775.42 2+			
		3247		2459.21 4+			
57447	(C+)	4252	100	1454.21 2+			
5744.7	(6^{+})	3286.0 18	100	2459.21 4+	Q		
5748.5	2+	2155 3289		3593.71 1,2 ⁺			
		3289 4294 <mark>a</mark>		2459.21 4 ⁺ 1454.21 2 ⁺			
5766.3	4+	3307		2459.21 4 ⁺			
3700.3	4	4312		1454.21 2 ⁺			
5803.3		4349		1454.21 2 ⁺			
3603.3		5803		$0.0 0^{+}$			
5824.6		2404		3420.55 3 ⁺			
5896.4		4442		1454.21 2 ⁺			
3070.1		5896		$0.0 0^{+}$			
5905.3	1+	5905.3 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.0043 7
5942.4	(0^+)	4488	100	1454.21 2+			
6018.4	3-	4564	100	1454.21 2+			
6027.3	1-	3565		2459.21 4+			
		4574.1 [@] 5	23 4	1454.21 2+			
		6027.3 7	100 4	0.0 0+	E1		B(E1)(W.u.)=0.00197 17
6067.5	(7^+)	322.8 2	1.6 3	5744.7 (6 ⁺)	(M1+E2)	-0.18 10	2(21)(1141) 0100127 17
	. /	682.7 5	16.1 <i>13</i>	5384.5 6+	(M1+E2)	-0.11 8	
		940.1 <i>4</i>	100 5	5127.5 6 ⁺	(M1+E2)	-0.364	
		1684.6 <i>10</i>	42 3	4383.0 (5 ⁺)			
6084.7	7-	495.6 <i>6</i>	2.4 12	5589.0 (5-)			
		699.6 8	23.5 24	5384.5 6+	E1(+M2)	-0.06 13	
		957.1 7	100 4	5127.5 6 ⁺	E1(+M2)	-0.065	
		3625.1 <i>13</i>	10.6 12	2459.21 4+	(E3)		Mult.: DCO In (36 Ar, α 2p γ) consistent with pure octupole or Δ J=2,Q, not
							with $\Delta J=1$, dipole.
6174.3	$2^{+},3^{-}$	3715		2459.21 4+			
		4720 ^a		1454.21 2+			
		6174		$0.0 0^{+}$			
6220.0	(7^{+})	835.5 6	100 9	5384.5 6 ⁺	D+Q	-0.084	
		1092.7 5	88 9	5127.5 6+	D+Q		
I							

20

\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
	1256.4 9	40.3	4964.7	(5 ⁺)	(O)		
			2902.15	1+			
(-)							
4 Γ±1		100					
		100					
3							
		100					
		100					
1							
(1^{+})							
	6468		0.0	0_{+}			
2+	5024		1454.21	2+			
	6478		0.0	0_{+}			
		100		4+			
2+							
(8^{+})		2.6.3					
(0)							
					(M1±F2)	_0.18.3	δ: from (36 Ar, α 2pγ). Other: $-0.20 + 5-9$ In (12 C,2nγ).
			5127.5			0.10 3	0. Holli (711,02py). Other. 0.20 13 7 Hi (C,2Hy).
		70 3			Q		
1							
			1454.21	2+			
_							
(7^{+})							
(6)		100			D		
(1)	6892.9 [@] a 15		0.0	0_{+}			
	5538	100		2+			
1-				0+	E1		B(E1)(W.u.)=0.00155 6
		100					
$(1,2^+)$							
\							
		100					
3-	4751	100					
	(7 ⁺) (2 ⁺) (2 ⁺) 4[+] 3 ⁻ 1 1 (1 ⁺) 2 ⁺ 2 ⁺ (8 ⁺) 1 3 ⁻ (7 ⁺) 3 ⁻ (6) (1) 1 ⁻ (1,2 ⁺)	(7 ⁺) 1256.4 9 (2 ⁺) 3326 4774 6228 4[+] 3815 3 ⁻ 3366 3533 4854 2940 6402 1 6424.9@a 9 1 6430.7a 10 (1 ⁺) 5014 6468 2 ⁺ 5024 6478 2887 2 ⁺ 5117 2981 4142 (8 ⁺) 384.8 3 519.5 4 537.0 3 1476.8 10 5211 6665 1 6685.0@a 9 5263 6717 3 ⁻ 5309 3 ⁻ 5351 (7 ⁺) 1718.0 10 2463.0 19 3 ⁻ 5400 (6) 2478.9 18 (1) 6892.9@a 15 5538 1 ⁻ 7048.2 9 7054 (1,2 ⁺) 5659 7113 7131	(7+) 1256.4 9 40 3 (2+) 3326 4774 6228 4[+] 3815 100 3- 3366 3533 4854 2940 100 6402 100 6402 100 100 6402 100 6402 100 100 6402 100 6402 100 100 6402 100 6402 100 100 6402 100 100 6402 100 100 6402 100 100 6402 100 100 6402 100 100 6468 2+ 5024 6468 2+ 5024 6478 2887 100 2981 4142 100 2981 4142 100 3 100 3 3 100 3 3 100 3 100 3 1476.8 10 70 3 5211 6665 1 6685.0@a 9 5263 6717 3- 5309 100 3- 5351 100 100 100 60 247	(7+) 1256.4 9 40 3 4964.7 (2+) 3326 2902.15 4774 1454.21 6228 0.0 4[+] 3815 100 2459.21 3- 3366 2942.56 3533 2775.42 4854 1454.21 2940 100 3420.55 6402 100 0.0 1 6424.9@a 9 0.0 1 6424.9@a 9 0.0 1 6430.7a 10 0.0 (1+) 5014 1454.21 6468 0.0 0.0 2+ 5024 1454.21 6478 0.0 3620.09 2+ 5117 100 1454.21 2981 3620.09 2459.21 (8+) 384.8 3 2.6 3 6220.0 519.5 4 2.1 3 6084.7 537.0 3 100 3 6067.5 1476.8 10 70 3 5127.5 5211 1454.21	(7+) 1256.4 9 40 3 4964.7 (5+) (5+) (2+) 3326 2902.15 1+ 1454.21 2+ 6228 0.0 0+ 4[+] 3815 100 2459.21 4+ 3- 3366 2942.56 0+ 3533 2775.42 2+ 4854 1454.21 2+ 2940 100 3420.55 3+ 6402 100 0.0 0+ <	(7+) 1256.4 9 40 3 4964.7 (5+) (Q) (2+) 3326 2902.15 1+ (Q) 4774 1454.21 2+ (D) (D) 4[+] 3815 100 2459.21 4+ 3 3- 3366 2942.56 0+ 3533 2775.42 2+ 4854 1454.21 2+ 2940 100 3420.55 3+ 6402 100 0.0 0+ 0+ 1 6424.9@a 9 0.0 0+ 0+ 1 6424.9@a 9 0.0 0+ 0+ 1 6430.7a 10 0.0 0+ 0+ (1+) 5014 1454.21 2+ 0+ 6468 0.0 0+ 0+ 0+ 2+ 5024 1454.21 2+ 0+ 2887 100 3620.09 4+ 0+ 2+ 5117 100 1454.21 2+ 2981 3620.09 4+ 0+ 0+ 4142 2459.21 4+ 0+ 0+ 537.0 3 100 3 6067	(7+) 1256.4 9 40 3 4964.7 (5+) (Q) (2+) 3326 2902.15 1+ 4774 1454.21 2+ 6228 0.0 0+ 4[+] 3815 100 2459.21 4+ 3- 3366 2942.56 0+ 3533 2775.42 2+ 4854 1454.21 2+ 2940 100 3420.55 3+ 6402 100 0.0 0+ 1 6424.9@a 9 0.0 0+ 1 6430.7a 10 0.0 0+ (1+) 5014 1454.21 2+ 6468 0.0 0+ 2+ 5024 1454.21 2+ 6478 0.0 3620.09 4+ 2+ 5117 100 1454.21 2+ 2887 100 3620.09 4+ 4142 2459.21 4+ (8+) 384.8 3

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
7249.6	(1)	7249.6 11		0.0	0+			
7271.7	1	5817		1454.21	2+			E_{γ} : from $(p,p'\gamma)$.
		7271.7 7		0.0	0_{+}			, , , , , , , , , , , , , , , , , , ,
7273.7	7-	410.5 3	8.5 21	6863.1	(6)			
		1189.9 8	57 <i>4</i>	6084.7	7-	D+Q		
		2146.4 <i>15</i>	100 6	5127.5	6+	E1+M2	-0.196	
7300.5	3-	5846	100	1454.21				
7314.8	(8^{+})	709.7 5	48 <i>4</i>	6604.6	(8^{+})			
		1095.7 9	78 <i>7</i>	6220.0	(7^{+})			
		1245.9 9	100 7	6067.5	(7^{+})	D+Q	-0.155	
		1930.3 <i>14</i>	81 7	5384.5	6+	Q		
7380.5	$(1,2^+)$	7380	100	0.0	0^{+}			
7388.8	1+	7388.8 <i>4</i>		0.0	0^{+}	M1		B(M1)(W.u.)=0.055 3
7446.2	(9^+)	841.6 <i>4</i>	100 <i>3</i>	6604.6	(8^{+})	(M1+E2)	-0.18 3	
	, ,	1226.1 9	14.1 <i>17</i>	6220.0	(7^{+})	Q		
		1378.6 10	5.5 <i>3</i>	6067.5	(7^{+})			
7514.5	3-	6060	100	1454.21				
7570.5	2+	7570	100	0.0	0+			
7585.1	_	7585.1 6		0.0	0+			
7595.9	(2)	7595.9 6		0.0	0+			
7616.0?	(1)	7616.0 ^a 10		0.0	0+			
7680.6	1-	6226	100	1454.21				
7709.7	1+	7709.7 6	100	0.0	0^{+}	M1		B(M1)(W.u.)=0.067 3
7724.3	(8 ⁺)	878.4 9	50 17	6845.7	(7^{+})	1411		D(H11)(H.u.)=0.007 3
7721.5	(0)	1119.6 4	100 17	6604.6	(8^{+})	D+Q		
		1639.0 10	50 17	6084.7	7-	DiQ		
		1657.0 10	50 17	6067.5	, (7 ⁺)			
		2343.0 20	67 17	5384.5	6+	Q		
7766.0	(1)	7766.0 <i>7</i>	07 17	0.0	0^{+}	Q		
7807.3	1-	6356		1454.21				
7007.5	1	7807.3 <i>5</i>	100	0.0	0+	E1		B(E1)(W.u.)=0.00117 15
7862.6	$(1,2^+)$	6408	100	1454.21		Li		D(E1)(W.d.)=0.00117 13
7002.0	(1,2)	7862			0+			
70767			15.26					
7876.7	1	6424.9 [@] 9	45 36	1454.21				
7072 ((0±)	7876.7 26	100 36	0.0	0^{+}			
7973.6	(8^{+})	1370.0 <i>10</i>	100 5	6604.6	(8 ⁺)	D 0	0.25.0	
		1752.0 <i>11</i>	76 10	6220.0	(7^{+})	D+Q	-0.37 8	
= 00 5 =	· 0 – :	2229.6 <i>16</i>	43 5	5744.7	(6^{+})	Q		
7982.8	(8-)	709.2 5	100 4	7273.7	7-	(M1+E2)	-0.15 3	
		1120.2 8	6.5 22	6863.1	(6)			
		1915.6 <i>13</i>	65.2 22	6067.5	(7^{+})	D+Q	-0.17 6	
8068.6?	(1^{-})	8068.6 [@] a 12		0.0	0_{+}	(E1)		B(E1)(W.u.)=0.00062 8
8074.5	(8^{+})	1470 <i>1</i>	55 <i>5</i>	6604.6	(8^{+})			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [†]	δ^{\dagger}	Comments
8074.5	(8^{+})	1854.3 <i>13</i>	100 5	6220.0 (7 ⁺)	D+Q	-0.21 8	
8096.3	1	8096.3 <i>6</i>		$0.0 0^{+}$			
8110.6	$(1,2^+)$	8110	100	$0.0 0^{+}$			
8115.1	(8-)	2031.0 14	100	6084.7 7			
8120.8	(9^{+})	396.5 1	6.4 9	$7724.3 (8^+)$	D+Q		
		805.5 5	6.4 9	7314.8 (8 ⁺)	D+Q		
		1516.6 7	100 5	6604.6 (8+)	D+Q	-0.134	
8237.3	1-	8237.3 4		$0.0 0^{+}$	E1		B(E1)(W.u.)=0.0054 +8-11
8317.1	1	8317.1 <i>17</i>		$0.0 0^{+}$			
8395.1	1-	5359.3 [@] 16		3037.86 2 ⁺			I_{γ} : 35 16 for 5359.3 γ +5452.2 γ , assuming the main placements of these γ rays are from 8395 level.
		5452.2 [@] 4		2942.56 0 ⁺			
		8395.1 <i>12</i>	100 16	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.0019 6
8461.0	1+	8461.0 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.071 5
8514.1	1-	8514.1 <i>4</i>		$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00111 9
8552.7	1 ⁽⁺⁾	8552.7 <i>13</i>		$0.0 0^{+}$	[M1]		B(M1)(W.u.)=0.036 3
8600.5	1+	8600.5 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.061 7
8679.3	1+	8679.3 8		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.151 8
8718.1	(9^{-})	603.0 4	4.4 11	8115.1 (8 ⁻)	D+Q		
		735.4 5	51.6 22	7982.8 (8 ⁻)	(M1+E2)	-0.16 <i>3</i>	
		1403.2 10	20.9 22	$7314.8 (8^+)$	D+Q	-0.13 <i>10</i>	
		1444.4 10	23.1 11	7273.7 7			
	(.)	2114.0 <i>15</i>	100 3	6604.6 (8+)	D(+Q)	-0.034	
8857.4	1(+)	8857.4 6	100	$0.0 0^{+}$	[M1]		B(M1)(W.u.)=0.052 11
8880.2	1-	8880.2 6	100	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00165 8
8896.4?	.()	1581.6 <i>11</i>	100	7314.8 (8+)			
8934.6	1(-)	8934.6 5	100	$0.0 0^{+}$	(E1)		B(E1)(W.u.)=0.00204 8
8961.3	1+	8961.3 7	100	$0.0 0^{+}$	[M1]		B(M1)(W.u.)=0.026 3
9027.2	(9-)	912.3 6	17 6	8115.1 (8-)	0		
9062.7	(10±)	2942.2 <i>21</i> 941.1 <i>7</i>	100 6	6084.7 7	Q M1+E2	-0.24 6	
9002.7	(10^+)	941.1 / 1336.5 28	100 <i>4</i> 4.3 <i>14</i>	8120.8 (9 ⁺) 7724.3 (8 ⁺)	M1+E2	-0.24 0	
		1617.0 <i>11</i>	4.3 <i>14</i> 14.3 <i>14</i>	7446.2 (9 ⁺)			
		2459.9 <i>17</i>	40 3	6604.6 (8 ⁺)	Q		
9073.4	1+	9073.4 6	TU J	$0.0 0^{+}$	(M1)		B(M1)(W.u.)=0.058 4
9156.9	1+	9156.9 7		$0.0 0^{+}$	M1		B(M1)(W.u.)=0.030 7 B(M1)(W.u.)=0.037 5
9190.7	1-	9190.7 5		$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00100 11
9322.1	(11^{+})	1876.4 <i>13</i>	100	7446.2 (9+)	Q		()()
9326.4	1	6424.9 [@] 9	39 10	2902.15 1+	-		
7520.1	1	9326.4 8	100 10	$0.0 0^{+}$			
9345.5	(10^{-})	627.5 5	100 4	8718.1 (9 ⁻)	(M1+E2)	-0.15 <i>3</i>	
	()	1363.1 10	22.7 14	7982.8 (8 ⁻)	Q		

$E_i(level)$	īπ	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	Ţπ	Mult. [†]	δ^{\dagger}	Comments
	J_i^{π}				J_f^{π}			Comments
9345.5 9368.5	(10^{-}) $1^{(+)}$	1899.9 13	74 <i>4</i>	7446.2	(9 ⁺)	D+Q	-0.16 <i>3</i>	D(M1)(W) 0 072 0
9308.3	1	9368.5 6		0.0	0.	[M1]		B(M1)(W.u.)=0.072 8 if E1, B(E1)(W.u.)=0.00148 16.
9455.4	1	9455.4 18		0.0	0^{+}			n Di, D(Di)(a.) 0.0011010.
9523.3	1-	8068.6 [@] 12	72 9	1454.21	2+			
		9523.3 <i>13</i>	100 9	0.0	0_{+}	E1		B(E1)(W.u.)=0.0026 5
9554.0	1	9554.0 <i>21</i>	67.17	0.0	0+	D		
9585.2	(9-)	1511.5 <i>11</i> 1610.6 <i>11</i>	67 <i>17</i> 100 <i>17</i>	8074.5 7973.6	(8^+) (8^+)	D D		
		3498.7 <i>24</i>	67 17	6084.7	7 ⁻	Q		
9630.5	1	9630.5 24		0.0	0+			I_{γ} : branching=38% 6 in (γ, γ') , but other two transitions proposed to feed
								levels for which there is not much evidence from other studies.
9666.9	(10^+)	1592.2 <i>11</i> 1694.2 <i>12</i>	53 6	8074.5	(8^+)	0		
		1694.2 12 2219.5 16	100 <i>12</i> 47 <i>6</i>	7973.6 7446.2	(8^+) (9^+)	Q D+Q		
		3062.0 21	41 6	6604.6	(8 ⁺)	DiQ		
9667.8	1	6892.9 [@] 15	49 27	2775.42				
		9667.8 <i>15</i>	100 27	0.0	0_{+}			
9723.0	1 ⁽⁻⁾	6685.0 [@] 9	139 <i>13</i>	3037.86				
0=00 <	(4.0±)	9723.0 9	100 13	0.0	0+	(E1)		B(E1)(W.u.)=0.0019 4
9790.6 9843	(10^+)	2344.0 <i>16</i> 9842 <i>5</i>	100 100	7446.2 0.0	(9^+)	D+Q		B(M1)(W.u.)=0.09 +4-9
9886.8	(10^{+})	1811.4 <i>13</i>	69 6	8074.5	(8 ⁺)	[M1] Q		D(M1)(W.u.)=0.09 +4=9
7000.0	(10)	1913.2 4	100 6	7973.6	(8^{+})	Q		
10137.2	(10^{+})	2688.4 19	100 8	7446.2	(9^+)			
101447	(10=)	3533.0 20	92 8	6604.6	(8^+)	Q		
10144.7	(10 ⁻)	799.1 <i>6</i> 1117.8 <i>8</i>	100 <i>7</i> 21 <i>7</i>	9345.5 9027.2	(10^{-}) (9^{-})	D+Q D+Q		
		1426.1 10	21 7	8718.1	(9-)	D⊤Q		
		2029.0 10	21 7	8115.1	(8-)			
101000	/d >	2162.9 9	14 7	7982.8	(8-)	0.61 -55	0.00	
10180.8	(11^{-})	835.6 <i>6</i> 1153.7 <i>10</i>	100 <i>3</i> 1.6 <i>5</i>	9345.5 9027.2	(10^{-}) (9^{-})	(M1+E2)	-0.09 4	
		1463.9 10	1.6 3 12.1 <i>16</i>	9027.2 8718.1	(9^{-})	Q		
10192.5	(11^{+})	1129.4 8	100 4	9062.7	(10^{+})	D+Q	-0.45 6	
	. /	2072.7 15	22.4 15	8120.8	(9+)	Q		
10202.5	(0-)	2746.6 19	39 3	7446.2	(9 ⁺)	Q		
10293.5	(9-)	3688.3 28 4207.7 <i>30</i>	100 <i>33</i> 33 <i>33</i>	6604.6 6084.7	(8 ⁺) 7 ⁻			
10394.1	(10^+)	3078.0 22	50 <i>50</i>	7314.8	(8 ⁺)			
	(- /	3788.0 27	100 50	6604.6	(8 ⁺)			
10404.8	(9-)	4320.0 <i>30</i>	100	6084.7	7-			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [†]	δ^{\dagger}
10590.9	(11^{-})	410.3 <i>3</i>	31 <i>3</i>	10180.8	(11^{-})	D+Q	
		446.3 <i>3</i>	39 <i>3</i>	10144.7	(10^{-})	D+Q	
		1245.2 9	100 6	9345.5	(10^{-})	D+Q	
		1563.5 11	6 3	9027.2	(9^{-})		
		1872.5 <i>13</i>	42 3	8718.1	(9-)	Q	
10694.7	(10^{-})	289.9 2	10 10	10404.8	(9^{-})		
		401.0 <i>10</i>	20 10	10293.5	(9-)	D+Q	
		1350.0 <i>10</i>	10 <i>10</i>	9345.5	(10^{-})		
		1632.2 <i>11</i>	20 10	9062.7	(10^{+})		
		1798.2 <i>13</i>	20 10	8896.4?			
		2710.2 <i>19</i>	40 10	7982.8	(8^{-})	Q	
		3249.7 <i>23</i>	100 10	7446.2	(9^+)	D	
10781.7	(11^{+})	991.1 <i>7</i>	50 10	9790.6	(10^+)	D+Q	
		3336.0 <i>23</i>	100 10	7446.2	(9^+)	Q	
10882.0	(11^{+})	1559.9 <i>11</i>	100	9322.1	(11^{+})	D+Q	
11005.6	(11^{-})	825.1 6	36 7	10180.8	(11^{-})	D+Q	
		1683.5 <i>12</i>	100 7	9322.1	(11^{+})		
11117.0	(11^{-})	1229.9 9	100 <i>13</i>	9886.8	(10^{+})	D+Q	-0.097
		1531.2 <i>11</i>	88 <i>13</i>	9585.2	(9^{-})		
		2090.0 15	38 <i>13</i>	9027.2	(9^{-})	Q	
11255.2	(11^{-})	560.6 <i>4</i>	100 5	10694.7	(10^{-})	(M1+E2)	-0.265
		1074.1 8	42 5	10180.8	(11^{-})		
11297.7	(12^{-})	707.0 5	38.8 11	10590.9	(11^{-})	(M1+E2)	-0.155
		1116.3 8	100 <i>3</i>	10180.8	(11^{-})	D+Q	-0.22~3
11413.1	(11^{+})	3966.2 28	100	7446.2	(9^{+})	Q	
11474.5	(12^{+})	1281.8 9	100 5	10192.5	(11^{+})	D+Q	-0.55 8
		1807.5 <i>13</i>	35 <i>3</i>	9666.9	(10^+)	Q	
		2152.4 <i>15</i>	32 <i>3</i>	9322.1	(11^{+})	D+Q	-0.397
		2410.9 <i>17</i>	30 <i>3</i>	9062.7	(10^{+})	Q	
11579.3	(12^{+})	1386.7 <i>10</i>	100 7	10192.5	(11^{+})	D+Q	-0.35 8
		1692.7 <i>10</i>	27 <i>7</i>	9886.8	(10^{+})		
11814.3	(12^{-})	1223.8 9	52 <i>4</i>	10590.9	(11^{-})	D+Q	$-0.08\ 2$
		1633.8 <i>11</i>	100 4	10180.8	(11^{-})	D+Q	$-0.07\ 2$
		2467.9 <i>17</i>	56 <i>4</i>	9345.5	(10^{-})	Q	
11824.7	(12^{+})	1632.0 <i>10</i>	100	10192.5	(11^{+})	D+Q	-0.61 14
11996.4	(12^{-})	741.4 5	100 6	11255.2	(11^{-})	D+Q	
		1301.0 <i>10</i>	12 6	10694.7	(10^{-})	Q	
		1406.2 <i>10</i>	12 6	10590.9	(11^{-})		
		1813.8 <i>13</i>	18 <i>6</i>	10180.8	(11^{-})		
12155.1	(12^{-})	1564.0 <i>12</i>	67 11	10590.9	(11^{-})	D+Q	+0.15 11
		1974.1 <i>14</i>	100 11	10180.8	(11^{-})	D+Q	-0.27 10
12356.8	(12^{-})	1351.1 9	100 10	11005.6	(11^{-})		
		1766.0 <i>10</i>	40 10	10590.9	(11^{-})		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
12364.6	(12^{+})	1582.5 11	75 25	$10781.7 (11^+)$		
	` ′	2171.4 <i>15</i>	50 25	10192.5 (11+)		
		2478.0 20	50 25	9886.8 (10 ⁺)		
		2697.0 20	50 25	9666.9 (10+)		
		3302.1 <i>23</i>	100 25	$9062.7 (10^{+})$	Q	
12570.1	(12^{+})	991.0 <i>10</i>	14 <i>14</i>	11579.3 (12 ⁺)		
		1157.0 8	29 7	$11413.1 \ (11^+)$		
		1789.0 <i>13</i>	14 <i>14</i>	$10781.7 (11^+)$		
		2174.9 <i>15</i>	14 <i>14</i>	$10394.1 \ (10^{+})$		
		2377.8 17	14 <i>14</i>	$10192.5 (11^+)$		
		2390.1 <i>17</i>	100 14	10180.8 (11-)	D	
		2431.0 <i>17</i>	29 <i>14</i>	$10137.2 (10^+)$		
		2682.9 <i>21</i>	43 14	9886.8 (10 ⁺)		
		3248.0 <i>23</i>	71 14	9322.1 (11+)	D+Q	-0.44 11
		3507.0 <i>25</i>	14 <i>14</i>	9062.7 (10+)		
12719.2	(12^{+})	1306.0 <i>10</i>	33 33	11413.1 (11+)		
		2526.5 18	33 33	10192.5 (11 ⁺)		
		2928.0 20	33 33	9790.6 (10+)		
		3400.0 24	67 33	9322.1 (11+)	_	
12021 6	(1.2-)	3655.0 26	100 33	9062.7 (10+)	Q	
12831.6	(13^{-})	1534.1 11	100 5	11297.7 (12 ⁻)	0	
		1713.6 12	77 5	11117.0 (11-)	Q	
12012 1	(12=)	2652.2 19	41 5	10180.8 (11 ⁻)	Q	
12912.1	(13^{-})	915.7 6	100 5	11996.4 (12 ⁻) 11255.2 (11 ⁻)	D+Q	
12928		1657.0 <i>12</i> 3606.0 <i>30</i>	30 <i>5</i> 100	9322.1 (11+)		
13016.6	(13^{-})	1718.3 <i>12</i>	100	11297.7 (12 ⁻)	D+Q	
13048.2	(13^{-})	1749.8 12	100 7	11297.7 (12) 11297.7 (12 ⁻)	D+Q D+Q	
13040.2	(13)	2044.3 14	29 7	11005.6 (11 ⁻)	D⊤Q	
13095.1	(12^{+})	3772.2 30	100	9322.1 (11+)	(D+Q)	
13129.2	(12^{+})	3806.3 30	100 50	9322.1 (11+)	(D+Q)	
13238.1	(13^{+})	518.9 4	40 2	12719.2 (12+)	D+Q	
1020011	(10)	668.0 5	100 4	12570.1 (12+)	D+Q	
		873.3 6	44 4	12364.6 (12+)	D+Q	
		1424.5 10	28 2	11814.3 (12 ⁻)	D	
		1764.1 <mark>&</mark> 12	10 ^{&} 2	11474.5 (12+)		
		1704.1 12 1941.7 <i>14</i>	30 2	11297.7 (12 ⁻)	D	
		3045.0 21	2 2	10192.5 (11 ⁺)	Ъ	
13356.6	(13^+)	1881.5 <i>13</i>	100 17	11474.5 (12 ⁺)		
12220.0	(10)	3164.1 22	83 17	10192.5 (11 ⁺)	Q	
13606.8	(12^{+})	3417.0 24	$1 \times 10^2 I$	10192.5 (11+)	*	
15000.0	(12)	4283.9 31	$1 \times 10^{2} I$	9322.1 (11 ⁺)	D+Q	
13632		4310 3	100	9322.1 (11)	שוע	
15052		15105	100	// (11)		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [†]	δ^{\dagger}
13850.1	(14^{-})	938.0 7	100 5	12912.1 (13-)	D+Q	
		1853.8 <i>13</i>	47 5	11996.4 (12-)	Q	
13884.2	(13^{+})	755.0 10	33 <i>33</i>	$13129.2 (12^+)$		
		789.0 <i>10</i>	33 <i>33</i>	13095.1 (12+)	(D+Q)	
		2586.3 25	100 33	11297.7 (12 ⁻)	(D)	
13943		3750.0 <i>26</i>	100	10192.5 (11+)		
14127.8	(14^{+})	889.6 <i>6</i>	100 5	13238.1 (13+)	D+Q	
		1763.0 <i>10</i>	3.1 10	$12364.6 (12^{+})$	_	
14217.5	(14^{-})	1861.0 <i>13</i>	100 20	12356.8 (12-)	Q	
14455.0	(10+)	2062.0 15	80 20	12155.1 (12 ⁻)	Q	
14455.8	(13^+)	4261.7 30	100	10192.5 (11+)		
14853.1	(15^{-})	1835.6 13	8 4	13016.6 (13 ⁻)	0	
1.4020.0	(1.4±)	2021.2 14	100 12	12831.6 (13 ⁻)	Q	
14920.9	(14^{+})	1564.3 10	14 14	13356.6 (13 ⁺)	0	
14934.7	(15^{-})	3445 2 1084.8 8	100 <i>14</i> 100 <i>11</i>	11474.5 (12 ⁺) 13850.1 (14 ⁻)	Q D+Q	
14934.7	(13)	2022.2 14	78 11	12912.1 (13 ⁻)	D+Q Q	
15010.6	(14^{+})	1654.0 <i>10</i>	25 <i>13</i>	13356.6 (13 ⁺)	Q	
13010.0	(14)	1773.0 <i>10</i>	25 <i>13</i>	13238.1 (13+)		
		3185.9 22	13 13	11824.7 (12 ⁺)		
		3431.0 24	25 13	11579.3 (12+)		
		3536.4 <i>30</i>	100 13	11474.5 (12+)	Q	
15031.0	(14^{+})	1674.0 12	40 20	13356.6 (13+)	*	
	,	3206.0 <i>30</i>	20 20	11824.7 (12+)		
		3451.4 <i>24</i>	20 20	11579.3 (12+)		
		3556.0 25	100 20	11474.5 (12 ⁺)	Q	
15105.2		1221.0 <i>10</i>	$1 \times 10^{2} I$	13884.2 (13 ⁺)		
		1976.0 <i>14</i>	$1 \times 10^{2} I$	13129.2 (12 ⁺)		
15187.0	(13^{+})	2057.0 20	$1 \times 10^{2} I$	13129.2 (12+)		
	` /	4997 <i>4</i>	$1 \times 10^{2} I$	10192.5 (11+)		
15242.0		2193.7 15	100	13048.2 (13 ⁻)		
15266.3	(14^{+})	2249.9 16	29 14	13016.6 (13-)		
	. ,	2435.6 17	100 14	12831.6 (13-)	D	
15294.3	(14^{+})	1688.0 <i>12</i>	100 11	13606.8 (12 ⁺)	Q	
		2277.9 16	22 11	13016.6 (13 ⁻)		
		2462.2 17	44 11	12831.6 (13 ⁻)	D+Q	-0.13 7
15324.1	(14^{+})	3498.4 25	13 <i>13</i>	$11824.7 (12^{+})$		
		3849.0 27	100 13	$11474.5 (12^+)$	Q	
15434.1	(13^{-})	3436.5 ^a 24	$1 \times 10^2 I$	11996.4 (12 ⁻)		
		4136 4	$1 \times 10^2 I$	11297.7 (12-)		
15709.3	(15^{+})	1581.3 <i>11</i>	100 7	14127.8 (14 ⁺)	D+Q	-0.22 4
		2470.0 <i>17</i>	29 7	13238.1 (13 ⁺)		
15736.9	(15^{+})	706.0 <i>10</i>	5.6 13	15031.0 (14 ⁺)		

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\cday{\dagger}}$	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult. [†]
15736.9	(15^+)	726.5 5	19 6	15010.6	(14^{+})	
13/30.7	(13)	1609.4 11	100 6	14127.8	(14^{+})	D+O
		2501.1 18	63 6	13238.1	(13^{+})	Q
15858.2	(15^+)	847.6 6	5 5	15010.6	(14^{+})	~
	()	1731.1 <i>12</i>	100 5	14127.8	(14^{+})	D+Q
16167.2		1062.0 10	$1 \times 10^{2} I$	15105.2	,	
10107.2		2283.0 16	$1 \times 10^{2} I$	13884.2	(13^{+})	
16171.0	(15^+)	847.0 <i>10</i>	67 33	15324.1	(14^{+})	
10171.0	(15)	1715.0 <i>12</i>	100 33	14455.8	(13^{+})	Q
16246.6	(16^{-})	1312.0 9	80 20	14934.7	(15^{-})	D+O
102.0.0	(10)	2396.1 17	100 20	13850.1	(14^{-})	Q
16496.6	(16^{-})	2279.0 19	100	14217.5	(14^{-})	Q
16567.0	(16^{+})	708.6 10	33 17	15858.2	(15^{+})	
	(-)	857.6 <i>6</i>	83 17	15709.3	(15^{+})	D+O
		1645.6 <i>12</i>	100 <i>17</i>	14920.9	(14^{+})	Q
16676.4	(16^+)	818.4 6	87 <i>13</i>	15858.2	(15^{+})	D+Q
	. ,	940.4 7	75 <i>13</i>	15736.9	(15^{+})	
		1644.6 <i>12</i>	50 <i>13</i>	15031.0	(14^{+})	Q
		1665.0 <i>12</i>	100 <i>13</i>	15010.6	(14^{+})	Q
		2546.0 18	50 <i>13</i>	14127.8	(14^{+})	Q
16798.0	(15^{-})	1363.8 <i>10</i>	40 20	15434.1	(13^{-})	Q
		1385.4 <i>10</i>	20 20	15412.6	(13^{-})	
		1474 <mark>a</mark>		15324.1	(14^{+})	
		1503.9 <i>11</i>	100 <i>20</i>	15294.3	(14^{+})	D
		1531.9 <i>11</i>	20 20	15266.3	(14^{+})	
		1556.0 <i>10</i>	40 20	15241.9	(13^{-})	
		3750		13048.2	(13^{-})	
		3965 <i>3</i>	20 20	12831.6	(13^{-})	Q
17019.6		2166.5 <i>15</i>	100	14853.1	(15^{-})	
17163.1	(16^{+})	992.1 <i>10</i>	100 33	16171.0	(15^+)	D+Q
		1839.1 <i>13</i>	67 13	15324.1	(14^{+})	Q
		1896.6 <i>13</i>	67 13	15266.3	(14^{+})	
17197	(a < ± >	2092.0 20	100	15105.2	/4 4±5	
17290.0	(16^{+})	1965.0 <i>14</i>	15 8	15324.1	(14^{+})	Q
		1996.0 <i>14</i>	100 8	15294.3	(14^{+})	Q
		2023.9 12	15 8	15266.3	(14^+)	
17520.0	(17+)	2436	70.10	14853.1	(15^{-})	
17530.0	(17^+)	854.0 6	70 10	16676.4	(16^+)	
		962.8 7	15 5	16567.0	(16^+)	0
		1793.3 13	100 10	15736.9	(15^+)	Q
17681.4	(17^+)	1819.5 <i>13</i> 1004.8 <i>7</i>	60 <i>10</i> 50 <i>10</i>	15709.3 16676.4	(15^+) (16^+)	
1/061.4	(1/)	1004.8 /	30 <i>10</i> 30 <i>10</i>	16567.0	(16^+)	
		1113.8 6	30 10	10307.0	(10)	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
17681.4	(17^{+})	1823.7 <i>13</i>	100 10	15858.2 (15 ⁺)	Q	
	, ,	1944.8 <i>14</i>	70 10	15736.9 (15+)	Q	
		1972.7 <i>14</i>	40 10	15709.3 (15 ⁺)	Q	
18261.1	(17^+)	1097.9 <i>10</i>	17 <i>17</i>	17163.1 (16+)	D+Q	
		2090.0 10	100 33	16171.0 (15 ⁺)	Q	
18341.5	(16^{-})	1583.0 <i>11</i>	17 <i>17</i>	16758 (14-)		
		1596.0 <i>11</i>	17 <i>17</i>	16745 (14-)		
		1634.0 <i>11</i>	83 17	16707 (14 ⁻)	Q	
		1668.0 <i>12</i>	100 17	16673 (14-)		
		3489.4 <i>24</i>	17 <i>17</i>	14853.1 (15 ⁻)	D(+Q)	-0.02 14
18461.0	(17^{-})	1170.5 8	17 6	17290.0 (16+)	D+Q	-0.10 6
		1664.0 <i>12</i>	100 6	16798.0 (15-)	Q	
18638.9	(18^{+})	957.5 <i>7</i>	75 8	17681.4 (17+)		
		1109.0 <i>10</i>	17 8	17530.0 (17 ⁺)		
		1962.2 <i>14</i>	100 8	16676.4 (16 ⁺)	Q	
		2073.0 15	33 8	16567.0 (16 ⁺)	Q	
19196		2949.0 <i>30</i>	100	16246.6 (16-)		
19205.4	(17^{-})	864.0 10	33 <i>33</i>	18341.5 (16-)	D+Q	
		1598.0 <i>10</i>	67 33	17607 (15 ⁻)		
		1623.6 <i>11</i>	100 33	17582 (15-)		
		1723.0 <i>13</i>	67 33	17482 (15 ⁻)		
19482.5	(18^{+})	1221.1 <i>10</i>	50 <i>50</i>	18261.1 (17 ⁺)		
		2320.0 16	100 50	17163.1 (16 ⁺)	(Q)	
19566.9	(18^{+})	2276.9 <i>16</i>	100	17290.0 (16 ⁺)	Q	
19945.7	(19^+)	1307.3 9	58 8	18638.9 (18+)		
		2263.4 16	100 8	17681.4 (17 ⁺)	Q	
		2415.0 <i>17</i>	42 8	17530.0 (17+)	Q	
20135.4	(18^{-})	930.0 10	33 11	19205.4 (17 ⁻)		
		1794.0 <i>13</i>	100 11	18341.5 (16 ⁻)	Q	
20450.1	(19^{-})	1988.7 <i>14</i>	100	18461.0 (17 ⁻)	Q	
20826.2	(19^+)	2565.0 18	100	18261.1 (17 ⁺)	Q	
21106.3	(19^{-})	971.0 <i>10</i>	14 <i>14</i>	20135.4 (18 ⁻)	D+Q	
		1901.0 <i>14</i>	100 14	19205.4 (17 ⁻)	Q	
21248.0	(20^{+})	1301.8 9	50 7	19945.7 (19 ⁺)		
		2609.0 <i>18</i>	100 14	18638.9 (18 ⁺)	Q	
22138	(20^{+})	2570.9 18	100	19566.9 (18 ⁺)	Q	
22211.3	(20^{-})	1105.0 <i>10</i>	22 11	21106.3 (19 ⁻)	D+Q	
		2076.0 <i>15</i>	100 11	20135.4 (18 ⁻)	Q	
22239.6	(20^{+})	2757.0 19	100	19482.5 (18 ⁺)	Q	
22767.9	(21^{+})	1519.2 <i>11</i>	37 13	$21248.0 (20^{+})$		
		2824.3 20	100 <i>13</i>	19945.7 (19 ⁺)	Q	
22800.4	(21^{-})	2349.7 16	100	20450.1 (19 ⁻)	E2	
23331	(21^{-})	1120		22211.3 (20 ⁻)		

γ (58Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}
23331	(21^{-})	2225.0 16	100	21106.3	(19^{-})	Q	30491	(26^{-})	3125	27366	(24-)
23741	(21^{+})	2914.5 25	100	20826.2	(19^+)	Q	32175	(27^{-})	3466	28709	(25^{-})
24211.9	(22^{+})	1444.0 <i>10</i>	29 14	22767.9	(21^{+})		32495	(27^{-})	3564	28931	(25^{-})
		2964.0 19	100 14	21248.0	(20^{+})	Q			3786	28709	(25^{-})
24611	(22^{-})	1280		23331	(21^{-})		33972	(28^{-})	3480	30491	(26^{-})
		2400.0 17	100 17	22211.3	(20^{-})	Q	36045	(29^{-})	3870	32175	(27^{-})
25141	(22^{+})	3002.8 <i>21</i>	100	22138	(20^{+})	Q	36535	(29^{-})	4040	32495	(27^{-})
25552	(23^{-})	2750.5 19	100	22800.4	(21^{-})	Q	37810	(30^{-})	3838	33972	(28^{-})
25918	(23^{-})	2587.0 18	100	23331	(21^{-})	Q	40333	(31^{-})	4288	36045	(29^{-})
26059.7	(23^{+})	1848.0 <i>13</i>	50 <i>50</i>	24211.9	(22^{+})		40931	(31^{-})	4396	36535	(29^{-})
		3291.0 <i>23</i>	100 50	22767.9	(21^{+})	Q	42007	(32^{-})	4197	37810	(30^{-})
27366	(24^{-})	2755.0 20	100	24611	(22^{-})	Q	2868.1+x		2868	X	
28709	(25^{-})	3157.0 22	100	25552	(23^{-})	Q	6083.2+x		3215	2868.1+x	
28931	(25^{-})	3014.0 <i>21</i>	100	25918	(23^{-})	Q	9667.3+x		3584	6083.2+x	
		3379		25552	(23^{-})						

[†] Mainly from $\gamma(\theta)$ in $(p,p'\gamma)$. Some assignments are from DCO values in $(^{24}\text{Mg},\alpha2p\gamma)$. The multipolarity assignments for γ rays from (γ,γ') are from polarization asymmetry measurements.

[‡] Values represent averages of all available data. For γ rays taken from (γ, γ') work only, values are level-energy differences, without applying any correction for recoil, which is at most 1 keV.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{58}_{28}Ni_{30}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{58}_{28}{\rm Ni}_{30}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{58}_{28}{\rm Ni}_{30}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

58₂₈Ni₃₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

γ Decay (Uncertain)
Coincidence

 $^{58}_{28}Ni_{30} \\$

 $^{58}_{28}\text{Ni}_{30}\text{-}47$

Band(B): Yrast structure

Band(F): $\Delta J \text{=} 1$ band based on 10694,

10-19196 2949 (16^{-}) 16246.6 Band(H): $\Delta J=1$ band based on 7724, 1312 (15^{-}) 2396 14934.7 (14^{+}) 14920.9 1085 1564 $(14^-)_{2022}$ 13850.1 (13^{+}) 13356.6 3445 12912.1 (13^{-}) 1882 (12⁻) ₁₆₅₇ 11996.4 (12+) 3164 11474.5 (11^{-}) 1301 11255.2 561 (10^{-}) 10694.7 1282 Band(G): $\Delta J=1$ band based on 342/2, (11^+) 2411 10192.5 3^+ 1129 (11^{+}) 9322.1 $(10^+)_{2073}$ 9062.7 941 1876 **(9**⁺) 8120.8 7724.3 7446.2 7314.8 1379 1246 (7⁺)__1930 6067.5 5384.5 1685 (5⁺) 1764 4383.0 962 763 3620.09 3420.55 $^{58}_{28}{\rm Ni}_{30}$

Band(J): γ cascade

Band(K): SD-1 Band

Band(i): Band based on 19945,19⁺

	His	story	
Type	Author	Citation	Literature Cutoff Date
Update	E. Browne, J. K. Tuli		1-Dec-2013

 $Q(\beta^{-})=-6128.0 \ 16$; $S(n)=11387.73 \ 5$; $S(p)=9532.38 \ 20$; $Q(\alpha)=-6291.0 \ 3$ 2012Wa38

Datasets given as xref=k and l, both from XUNDL, based on 2013Sc08 and 2013Sc20 ⁶⁰Ni3c were included after the publication of this evaluation in Nuclear Data Sheets. This dataset has been revised accordingly.

Others:

Nuclear Structure.

2012Bh08, 2012Ca27, 2012Do04, 2012Gu16, 2012Ni03, 2011Gu20, 2011Kh10, 2011Mi12, 2011Ni21, 2011Qu04, 2010Gu13, 2010So04, 2010Lo03, 2009Ku13, 2008Ma17, 2006An27, 2003Sa08, 2002Be59, 2002De27, 2002Ma64.

Level energies and densities.

2011Ba39, 2011Be41, 2011Bh06, 2011Na02, 2007Te10, 2004Sa40, 2003Na24, 2003Pe07, 2002No08.

Compilations of B(E2) values: 2012Go17, 2012Pr08. Mass measurements: 2007Gu09, 2005Gu36, 2004He32.

Nuclear Reactions: 2012Fu04, 2012Sc01, 2011Ch57, 2011Gu15, 2010Gu03, 2010Pr07, 2008Av03, 2007Po09, 2005Ha54.

⁶⁰Ni(d,d): 2012Ku21, 2006Ch28.

⁶⁰Ni(p,p'): 2011Mu10, 2010Be11, 2009Ku13, 2008Li05, 2004Ko34, 2002Sa49.

⁶⁰Ni(³He, ³He): 2010Ha19.

⁶⁰Ni(α , α'): 2010Sa34, 2006Lu01.

⁶¹Ni(p,d): 2009Le14.

⁶⁰Ni(¹⁷O,¹⁷O'): 2006Ha54, 2006Lu08.

⁶⁰Ni(¹⁸O, ¹⁸O'): 2009Pe14, 2002Al01, 2002Ro29.

⁶⁰Ni(n,n): 2006Hu14. ⁵⁹Co(d,p): 2007Vo08.

⁵⁸Ni(¹⁸O, ¹⁶O): 2006Pe02, 2005Al03, 2002Al01.

Discovery of ⁶⁰Ni: 2012Ga06.

1998Go18: Measured photon rates and energy spectra from radiative muon capture.

Some L-values and arguments for J^π assignments

 $\gamma(\theta)$ and lin pol in L(p,t)E(level) $L(^3He,d)@$ L(p,d)& ($^{7}Li,2np\gamma$) 0ther Adopted L(t,p)Target $J^{\pi}=$ $7/2^{-}$ $3/2^{-}$ 0 0 3 1 f 0+ a,k 2+ 2+ 1332 2 1+3 1 f b 2158 2 2+ 2+ 1 3 g e 2284 0 3 1 1 0^+ 4+ 2505 4 1+3 3 g C 4^{+} 3+ 3+ 3 g 2626 1+3e 4+ 3119 4 1 1+3 d,h,q 3124 1+ 3194 1+3 1+3 d,h,u 2 2+ 3269 1+3 e,h 0^+ 3318 1 j?,1 2+ 3393 1+3 e.h 3588 k?,1 0^+ 4^+ (4^{+}) 1 3670 (3) m 3700 4+ p 3736 1 1+3 2+ e,h 3875 1+3 e,h 2+,3+ 3925 1 e 2+ 4007 1 + 3e,h,t 4020 1+ 1 d,h,t 4039 3 4 3- $1^{+}, 2^{+}$ 4078 1+3 d,h

 $^{^{56}}$ Fe(α,γ): 1974Fo03 for splitting of GDR, 1978KeZQ threshold effects.

4112			1+3		s,h,v	2+
4165		1		5 ⁺		5 ⁺
4265				6+		6 ⁺
4319		1?	1+3		e,h	2+
4335					v,e,h	2
4341	(0)					(0 ⁺)
4355			1+3			$1^+, 2^+, 3^+$
4493		1+3?	1+3		d,h,p	2+
4535			1+3		v,e,h	2+
4548					d,h	1^+ , 2^+
4579	2				e	2+
4760					e,h	1,2
Some	L-values	and arguments	for J^{π}	assignments	(continue	ed)

			γ	$\gamma(\theta)$ and			
	L(p,t)			in pol in			
E(level)	L(t,p)	$L(^3He,d)@$	L(p,d)&	$(^7 \text{Li}, 2 \text{np} \gamma)$		Other	Adopted
Target J^{π} =	0+	$7/2^{-}$	3/2-				
4844					e,h	1,2	
4849					е	1,2,3	
4958	4			(c+ c+)		4+	
4985				$(6^+, 8^+)$	i	(6 ⁺)	
5015	4				р	(5-)	
5048	(1)				e,h	1,2	
5069	(1)					(1-)	
5110					r	8-	
5120	4				p	4+	
5244	4					4+	
5348	•			7-		7-	
5396	3				p	3-	
5449	2					2+	
5530	(0,2)				W	(2 ⁺)	
5662				5,7		5,7	
5785				(7 ⁺)		(7 ⁺)	
5800					p	2+	
5973					p	5-	
6181	(1)					(1-)	
6331					p	2+	
6810				5-,7-,9-		5-,7-,9-	
7550					n	8-	
8280	_				0	(1 ⁺)	
8430	3					3-	
8433					n	8-	
8959					n	8-	
9208	•				n	8-	
11207	2					2+	
11620					0	(1 ⁺)	
11860					0	(1 ⁺)	
12333					n	8-	
12515					n	8-	
13908					n	8-	
14817					n	8-	
15499					n	8-	
16110					n 	8-	

Question marks signify uncertain identification with E(level). @ J^{π} of $^{59}\text{Co(g.s.)}$ is $7/2^-$. & J^{π} of $^{61}\text{Ni(g.s.)}$ is $3/2^-$.

a. 0^+ from g.s. of even-even nucleus. b. 1,2,3 from β^- decay of $^{60}\text{Co}(2^+)$ with logft=7.25 6. c. 3^- ,4,5,6,7 $^-$ from β^- decay of $^{60}\text{Co}(5^+)$ with logft=7.510 1. d. 1^+ ,2 $^+$,3 $^+$ from ε decay of $^{60}\text{Cu}(2^+)$ with logft<5.9. e. 1,2,3 from ε decay of $^{60}\text{Cu}(2^+)$ with 5.9<logft<7.4.

f. J of transferred neutron is 3/2 from (pol p,d).

```
g. J of transferred neutron is 5/2 from (pol p,d).
h. Not 3^+ from \gamma decay to g.s.
i. 8^+ excluded from branch to 4^+ 2505 level.
j. 0^+ from \sigma(\theta) in ^{56}Fe(^6Li,d).
                        in 58 Fe(^3He,n).
k. 0^+ \text{ from } \sigma(\theta)
1. \mathrm{O}^+ from pair conversion and no corresponding \gamma (1981Pa10).
m. 4^+ from L(d, ^6Li)=4
                                                in ^{60}Ni(e,e').
                                 and \sigma(\theta)
n. 8 from <sup>60</sup>Ni(e,e').
                           and A(\theta) in <sup>60</sup>Ni(p,p'),
o. (1^+) from \sigma(\theta)
p. From L(\alpha, \alpha')
q. Not 1^+ from \gamma decay from 5244, 4^+ level.
r. From \sigma(\theta)
                  in ^{60}Ni(\pi^+,\pi^{+\prime}),
s. Not 1^+ from \gamma decay to 2506, 4^+
t. From (\gamma, \gamma')
u. From (n,n'\gamma), Hauser-Feshbach-Moldauer calculations
v. \gamma to 4<sup>+</sup>
W. \gamma to 3^+
```

⁶⁰Ni Levels

For properties of 15 resonances in the range E(n)=0-18 keV from 59 Ni(n, γ), see 1981MuZQ. Level configurations given in comments are from 58 Ni(α , 2 He) and 60 Ni(pol p,p') reactions.

Cross Reference (XREF) Flags

```
^{59}Co(\alpha,t)
                           <sup>60</sup>Co β<sup>-</sup> decay (1925.28 d)
                   Α
                                                                                                                      Others:
                           ^{60}Co β^- decay (10.467 min)
                                                                              ^{59}Co(^{3}He,d\gamma)
                                                                                                                               <sup>56</sup>Fe(<sup>16</sup>O, <sup>12</sup>C)
                   В
                                                                      0
                                                                                                                      AA
                           ^{60}Cu \varepsilon decay
                                                                              ^{58}Ni(\alpha,2p\gamma)
                                                                                                                               ^{60}Ni(n,n'\gamma)
                   C
                                                                                                                      AB
                           <sup>60</sup>Ni(p,p'), (pol p,p')
                                                                              ^{60}Ni(e,e')
                   D
                                                                                                                               ^{60}Ni(\pi^+,\pi^{+\prime}), (\pi^-,\pi^{-\prime})
                                                                      Q
                                                                                                                      AC
                           ^{28}Si(^{36}Ar,4p\gamma)
                                                                              ^{60}Ni(d,d'), (pol d,d')
                   Ē
                                                                                                                               ^{64}Zn(d,^{6}Li)
                                                                                                                      AD
                                                                              ^{60}Ni(\alpha, \alpha')
                           ^{59}Ni(n,\gamma) E=thermal
                                                                                                                               <sup>58</sup>Fe(<sup>16</sup>O, <sup>14</sup>C)
                   F
                                                                      S
                                                                                                                      ΑE
                           ^{60}Ni(p,p'\gamma)
                                                                              <sup>56</sup>Fe(<sup>6</sup>Li,d)
                                                                                                                               ^{60}Ni(\gamma, \gamma')
                   G
                                                                      Т
                                                                                                                      AF
                           ^{59}\mathrm{Co}(\mathrm{p,}\gamma)
                                                                              ^{56}Fe(^{7}Li,^{2}np\gamma)
                                                                                                                               ^{60}\mathrm{Ni}(\mathrm{n,n'})
                   Н
                                                                      П
                                                                                                                      AG
                           ^{28}Si(^{35}Cl,3p\gamma)
                                                                              ^{58}Ni(\alpha, ^{2}He), (\alpha, ^{2}p)
                                                                                                                               ^{61}Ni(^{3}He,\alpha)
                                                                      ٧
                   Ι
                                                                                                                      ΑH
                                                                              <sup>58</sup>Ni(<sup>12</sup>C, <sup>10</sup>C)
                                                                                                                               ^{60}Ni(^{3}He,^{3}He')
                           <sup>58</sup>Ni(t,p), (pol t,p)
                                                                      W
                   J
                                                                                                                      ΑI
                                                                              60Ni(16O,16O'), (6Li,6Li')
                           <sup>61</sup>Ni(p,d), (pol p,d)
                   K
                                                                      X
                                                                                                                      ΑJ
                                                                                                                               Coulomb excitation
                                                                              ^{50}Cr(^{12}C,2p\gamma)
                           62Ni(p,t)
                                                                      Y
                                                                                                                               ^{60}Ni(pol \gamma, \gamma'):res
                   L
                                                                                                                      AK
                           ^{59}Co(^{3}He,d)
                                                                      Z
                                                                              ^{51}V(^{12}C,2npy)
                                                                                                                      AL
                                                                                                                               ^{60}Ni(\gamma, \gamma'),(pol \gamma, \gamma'):XUNDL-6
                                                                     XREF
                                                                                                                                       Comments
                                                                                                    XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI,
                             stable
                                                   ABCDEFGHIJKLMNOPQRSTUVWXYZ
                                                                                                        AJ, AK, AL
1332.514<sup>l</sup> 4
                                                                                                    XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI,
                              0.735 ps 21
                                                   ABCDEFGHIJKLMNOPQRSTUVWXYZ
                                                                                                       AJ, AK, AL
                                                                                                    \mu=+0.32 6 (2001Ke02,2011StZZ); Q=+0.03 5
                                                                                                       (1974Le13,2011StZZ)
                                                                                                    Configuration=(\nu p_{3/2})^2.
                                                                                                    T_{1/2}: From 2008Or02, recommended value based on all
                                                                                                       known measurements. T_{1/2}=0.77 4 Wt. av.: 0.90 ps
                                                                                                        +21-14 in (n,n'\gamma), 0.91 ps 2 from DSA in Coul. ex.
                                                                                                       (2001Ke08), 0.715 ps 16 in ^{60}Ni(\gamma,\gamma') (1970Me08),
                                                                                                       0.9 ps 3 \gamma \gamma(t) (1976Kl04), 0.77 ps 6 from
                                                                                                       B(E2)=0.087 7 (1974Si01), 0.73 ps 2 from
                                                                                                       B(E2)=0.0928 20 (1974Li13), 0.69 ps 5 DSA
                                                                                                       (1973Fi15).
```

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				 μ: other: 0.18 24 from transient field integral PAC (1978Ha13). Q: from Coulomb excitation reorientation (1989Ra17,2011StZZ). Other value: -0.104 18 from electron scattering (1972Li12).
2158.632 ^l 18	2+	0.59 ps <i>17</i>	ABCDEFGHIJKLMNOPQRSTU XYZ	XREF: Others: AA, AB, AG, AH, AJ, AK, AL $T_{1/2}$: calculated from measured $B(E2)\uparrow$ in $^{60}Ni(e,e')$.
2284.80 4	0+	>1.5 ps	CD FG JKLM O RST	$T_{1/2}$: >1.0 ps (1989Ko54) in (n,n' γ). XREF: Others: AB, AG, AK, AL $T_{1/2}$: >0.69 ps (1989Ko54) in (n,n' γ).
2505.753 ^l 4	4+	3.3 ps <i>10</i>	A CDEFGHIJKLMNOPQRSTUVWXYZ	XREF: Others: AA, AB, AD, AE, AG, AJ $T_{1/2}$: from Coul. ex. (2001Ke08). Others: 1.1 ps 3 from B(E4)=0.00165 30 (from (e,e'), average of 0.0015 3 (1969To08), 0.0018 3(1961Cr01)) and $I\gamma(2506\gamma)=2.0\times10^{-6}$ 4 (1978Fu05)). Others (from DSA): 0.9 ps +12-4 (1979Mo06), 3.3 ps 5 (1975Iv04), 0.5 ps +19-3 (1973Ro20), \leq 4 ps (1980Ke06), 0.4 ps +4-2 (1989Ko54). J^{π} : configuration=((ν p _{3/2})(ν f _{5/2})).
2626.06 ^l 5	3+	≈0.6 ps	CDEFGHIJKLM OP R U YZ	XREF: Others: AB, AG, AH $T_{1/2}$: from ≤ 0.7 ps in 56 Fe(7 Li,2np γ) and >0.5 ps in 60 Ni(p,p' γ), DSA. Other: 0.6 ps $+5-3$ (1989Ko54) in (n,n' γ).
3119.87 ^l 7	4+	0.24 ps <i>10</i>	EFGHIJ LMnOPQR TU WXYZ	XREF: Others: AA, AB $T_{1/2}$: from 56 Fe(7 Li,2np γ), DSA; 0.04 ps <i>1</i> (1989Ko54) in (n,n' γ).
3123.698 25	2+	0.23 ps +17-10	CD FG K M P S U	XREF: Others: AA, AB, AF, AK, AL $T_{1/2}$: From $(p,p'\gamma)$,
3185.98 ⁿ 6	$(3^+)^k$	0.14 ps <i>4</i>	CdEFGHIjk no U	XREF: Others: AB $T_{1/2}$: others: 1.6 ps 7 from 56 Fe(7 Li,2np γ), DSA, 0.12 ps +5-2 (1989Ko54) in (n,n' γ). J^{π} : J^{π} =3 ⁺ in 28 Si(35 Cl,3p γ), (p, γ).
3193.87 <i>3</i>	1 ⁺ <i>k</i>	53 fs <i>14</i>	Cd FG jk M o	XREF: Others: AB, AF, AK, AL $T_{1/2}$: other: 19 fs 7 From ⁶⁰ Ni(γ,γ').
3269.19 10	2+	71 fs 2 <i>1</i>	CD FGH JKLM O TU	XREF: Others: AB, AF, AK, AL $T_{1/2}$: other: 0.10 ps +3-2 (1989Ko54) in (n,n' γ).
3317.829 25	0+	0.24 ps +28-11	D FG J M R T x	XREF: Others: AA, AB, AE, AK $T_{1/2}$: 0.10 ps 3 (1989Ko54) in (n,n' γ).
3381 <i>5</i> 3393.14 <i>3</i>	2+	0.23 ps +35-11 0.13 ps +6-4	G N R X CD FGH JKLM S	XREF: Others: AB, AK, AL XREF: S(3350).
3587.72 ^a 3	0+	<40 ps	CD FG T	$T_{1/2}$: 0.08 ps 6 (1989Ko54) in (n,n' γ). XREF: Others: AA, AB $T_{1/2}$: from ⁶⁰ Ni(p,p' γ), p γ (t).
3619.46 <i>9</i> 3671.16 ^{<i>m</i>} <i>11</i>	3 ⁺ k 4 ⁺	0.2 ps +5-1 0.06 ps 4	CDEFGH K O U BCDE GHI K MNOPQ U	XREF: Others: AB XREF: Others: AA, AB $T_{1/2}$: 0.11 ps +7-3 (1989Ko54) in (n,n' γ).
3702.9 ^b 10	4+		O RS X	XREF: Others: AB J^{π} : also L(16 O, 16 O')=4 for E=3690. 6+ in $(n,n'\gamma)$.
3730.82 ⁿ 8 3734.44 6	4+ <i>k</i> 2+	0.21 ps +29-9 0.11 ps 4	DE GHIjk M O C FG jkL	XREF: Others: AB XREF: Others: AB, AK $T_{1/2}$: 0.10 ps 2 (1989Ko54) in (n,n' γ).
			Continued on next page (footnote	es at end of table)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
3798.0 <i>10</i>	1	118 fs <i>15</i>		XREF: Others: AL
3871.050 22	2^{+k}	>3.0 ps	CD FG JK	XREF: Others: AB, AK
3671.030 22	2	>3.0 ps	CD 1.0 JK	$T_{1/2}$: 0.21 ps +16-9 in (p,p' γ), 0.04 ps 1
	1_			$(1989\text{Ko}54) \text{ in } (n,n'\gamma).$
3887.36 7	2^{+k}	0.07 ps +7-4	C FG 1	XREF: Others: AB
3895 <i>4</i>		59 fs 25	$ exttt{D} exttt{G} exttt{1} exttt{r}$	
3908 <i>3</i>	1	27 fs 5		XREF: Others: AL
3925.18 9	$2^{+},3^{+}$	0.19 ps +19-8	CD FGH M r	$T_{1/2}$: also from $(p,p'\gamma)$: 0.09 ps +16-12.
4006.444 24	2+	21 fs 7	CD FG JK N	XREF: Others: AF, AK, AL
				J^{π} , $T_{1/2}$: from 60 Ni(γ , γ').
				$T_{1/2}$: 28 fs 5 (1989Ko54) in (n,n' γ), 20 fs 10 in
4010.006.24	1.4	10.6.2	CD 77 77	$(p,p'\gamma)$.
4019.886 <i>24</i>	1+	12 fs <i>3</i>	CD F K	XREF: Others: AF, AK, AL
1025 1		05.6.14		$T_{1/2}$, J^{π} : from ⁶⁰ Ni(γ, γ').
4035 4	2-	25 fs 14	G	VDEE OIL ALAD
4039.89 <i>6</i>	3-	22 fs 10	ABCD FGH JKLM QRST VWX	XREF: Others: AA, AB
				$T_{1/2}$: 33 fs +15-12 from (p,p' γ), 38 fs 11 in
4077.00.5	1+,2+	> 12 fo	CD ECH V	$(n,n'\gamma)$.
4077.99 5	1 ,2	>12 fs	CD FGH K	XREF: Others: AB $T_{1/2}$: 14 fs 7 (1989Ko54) in $(n,n'\gamma)$.
4111.96 9	2+		D FG K	11/2. 14 18 / (1969R034) III (II,II <i>y</i>).
4165.50 ^m 8	5 ⁺	0.8 ps 4	DE GHI K M OP U	XREF: Others: AB
1103.50	5	0.0 ps 1	DE GIT K II OI	$T_{1/2}$: from ⁵⁶ Fe(⁷ Li,2np γ), DSA. 1.4 ps +14–6
				from 58 Ni(α ,2p γ), DSA, 0.09 ps +9-3
				(1989Ko54) in $(n,n'\gamma)$, DSA.
4186.19 <i>24</i>	(4^{+})		E	(1787K034) III (II,II), DSA.
4191.2 10	(+)		D G O	
$4265.00^{l} 8$	6 ⁺	0.45 ps +11-21		$T_{1/2}$: from ⁵¹ V(¹² C,2np γ), DSA. 0.5 ps 3 from
4203.00 8	O	0.43 ps +11-21	DE P U YZ	⁵⁶ Fe(⁷ Li,2npγ), DSA.
4294.5 3			D H M	re(LI,ZIIpy), DSA.
4300.8^{b} 7				Iπ. I (/) 2 - 4 1 (3II- 1) 1 f Ε 4200.
4300.8 /			0 S X	J^{π} : L(α,α')=2+4 and L(3 He,d)=1 for E=4300;
1210 50 5	2+		CD EC 1V V	$L(^{16}O, ^{16}O') = 4$ for E=4320.
4318.58 <i>5</i> 4335.52 <i>4</i>	2		CD FG JK X C F	XREF: Others: AK
4333.32 4 4341 <i>4</i>	(0^+)	29 fs +31-21	D G L N	
4355.56 14	2+	45 fs + 26 - 18	CD G JK R	
4400.0 7	_	15 15 120 10	0	
4407.46 ⁿ 8	5+ <i>j</i>		D HI M P	
4450.7 7	5 0		0	
4493.16 5	2+	16 fs <i>14</i>	CD FG K MNO S	
4534.14 <i>14</i>	2+		CD F K R X	J^{π} : L(¹⁶ O, ¹⁶ O')=4 for E=4540 multiplet. G to 0 ⁺
	-			and 4^+ .
4547.96 <i>3</i>	$1^+, 2^+$		CD FG 0	
4577.45 6	2+	<18 fs	CD FG JK M	
4579.0 <i>5</i>	(4^{+})		E	
4613 ^c 7			D K R	
4760.23 9	1,2		C F H	
4768 <i>4</i>		0.05 ps +6-3	D G T	
4779.13 ^b 6			D F m O	
4800.0 5			D H mN	
4843.93 8	2+	6.9 fs 21	Cd F jK	XREF: Others: AL
40.40.0				J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
4848.9 6	1,2,3		Cd H j M QR	
4859 <i>4</i>			G X	
4891 <i>10</i>			D	
				1 (411)
			Continued on next page (footnote	es at end of table)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
4928.98 <i>14</i> 4953.36 <i>7</i> 4958 <i>4</i> 4970.6 <i>10</i> 4986.00 ^m <i>8</i> 5014.45 <i>8</i>	4 ⁺ (6 ⁺) (5 ⁻) ^j	61 fs $2I$ 0.06 ps +5-3 $1.0^{\textcircled{@}} \text{ ps } +25-7$	D F F D FG L D G K M O DE HI P U W DE IJ N P RS	J ^{π} : from L(α,α')=5 but J ^{π} =4 ⁺ in (α ,2p γ). T _{1/2} : 0.21 ps +256-1 from ⁵⁸ Ni(α ,2p γ), DSA.
5048.3 7	1,2		CD Q	XREF: Q(?).
5065.02 6	(1-)	2.98 fs 28	b D F J T	J^{π} : J^{π} (5050 100)=4 ⁺ ,6 ⁺ in (e,e'). XREF: Others: AL
5091.1 <i>10</i> 5106 <i>4</i> 5110 <i>f</i> 20 5120.7 <i>b</i> 7 5127.16 <i>17</i>	8 ⁻ 4 ⁺	0.03 ps +5-3	b O X D G A LMNO S F	$T_{1/2}$: From (γ, γ') , (pol γ, γ').
5133 5	6+ <i>j</i>		D G r	E(level): 5120 keV and 5132 keV might be the same level.
5148.51 ⁿ 8 5174 5 5191.7 8 5205 5 5236.20 10	5 ⁽⁺⁾	16 fs <i>16</i>	DE I Pr D G D I D G T	XREF: I(5192).
5244 5 5264 ^c 10 5288.55 14 5307 8 5318 5	4+	0.05 ps +5-3	D G J l D l RS D F w d K w d G	J^{π} : L(α,α')=2 for E=5250.
5348.79 7	7-	250 ps 21	DE IJ P U YZ	$T_{1/2}$: from 56 Fe(7 Li,2np γ), DSA. 290 ps 50 from 51 V(12 C,2np γ), RDM.
5379 <i>5</i> 5396 ^c <i>10</i> 5410.8 <i>10</i> 5428 <i>10</i>	3-		D G KM D J S O	
5446.98 <i>11</i> 5449.5 <i>4</i>	2 ⁺ 6 ⁺		D FGH JKL R E	E(level): ${}^{59}\text{Co}(p,\gamma)$ gives 5444.6 <i>10</i> keV.
5476.04 21 5530 4 5612.40 4 5642 ^c 10 5650 ^b	(2+)	20 fs 14	DF N DGHJKL DF S D J T	J ^{π} : L(p,t)=(2) for E=5510 30. γ to 3 ⁺ . J ^{π} : L(α , α')=3 for E=5600.
5663.03 ^m 11 5672.36 7 5710.79 4 5741 10	7+	0.7 [@] ps +21-3	MO DE I PRUX F ADF D	
5780.5 <i>5</i> 5785.1 <i>4</i> 5799 <i>4</i> 5830.8 ^d <i>7</i> 5859.9 <i>5</i>	(7 ⁺) 2 ⁺		D GH L O D M U D G S D G O R D F M	J^{π} : L(p,t)=(6) for a multiplet at 5770 30.
5878.05 9 5901.69 10 5902.44 7 5918.54 21	6-		F E D F N D F JKL	J^{π} : L(p,t)=4 for a level at 5920 <i>30</i> .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	S		XREF	7		Comments
5931.1 <i>11</i>	1	21 fs 6						XREF: Others: AL
5946 ^c 10 5967.8 3 5973 ^c 10 5992 ^c 10 6028 10 6054 ^c 10	5-			D F B D D D D	M J jK	R T		$J^{\pi}, T_{1/2}$: From (γ, γ') , (pol γ, γ').
6066.72 11 6076.6 ^c 9 6111.5 ^c 10 6112.43 ⁿ 15	(8) ^j 7 ⁺			F D D E	Ij L IJ			J^{π} : L(p,t)=(4) for E=6070 30. XREF: I(6112).
6142 ^c 10 6181.0 ^c 7	1-	1.80 fs 28		D D	J JK	S R T		J^{π} : $L(\alpha, \alpha')=3$ for E=6160. XREF: Others: AL $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
6192 ^c 10 6229.3 11	(2+)	20 fs 4	0.023 5	D	K	Q		XREF: Others: AL J^{π} : assignment is tentative.
6239.2 <i>3</i> 6278.34 <i>11</i> 6292 ^c <i>10</i>	(6-)			A D F DE D	J N L J			
6327.21 ^c 15 6362.05 ^c 17 6382.4 4	2+	12 fs <i>3</i>		D F D F D F	J J	S		XREF: Others: AL
6403 ^c 10	1	12 18 3		D	L			T _{1/2} : From (γ, γ') , $(\text{pol } \gamma, \gamma')$. J ^{π} : L(p,t)=(3) for E=6400 30.
6431 <i>10</i> 6461.10 ^m <i>14</i> 6465.25 <i>16</i>	8+ <i>j</i> 1-	1.2 [@] ps +16-5 1.7 fs 5		D E D F	IJ	P	W	XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
6489.28 <i>22</i> 6515.0 <i>9</i>	1+	3.0 fs 5		D F	N		W	XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
6516.72 <i>23</i> 6551 ^c <i>10</i> 6567.33 <i>20</i>				D F D D F	K	S		J^{π} : $L(\alpha, \alpha') = 3$ for E=6530.
6587.6 <i>6</i> 6610 ^{<i>c</i>} 10	1-	1.25 fs 28		D	J	т		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
6610 10 6623 10 6647.17 9 6658 10				D D D F D	K	Т		
6672.4 <i>9</i> 6687 <i>10</i>	(9) <i>j</i>			D	I			
6718.5 10	1-	6.7 fs <i>13</i>		D				XREF: Others: AL XREF: D(6708). E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
6736.5 10	(1)	6 fs <i>3</i>		D				XREF: Others: AL XREF: D(6728). E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
6756.4 <i>3</i> 6761.39 <i>14</i> 6765 ^c <i>10</i> 6791 <i>10</i>	7 ⁽⁺⁾			D F E DE D	N L			J^{π} : L(p,t)=(3) for E=6770 30.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #				XRE	EF				Comments
6810.95 <i>16</i>	9- <i>j</i>	0.55 ps 28	DE		Ι		PQ	τ	J ,	YZ	$T_{1/2}$: from 56 Fe(7 Li,2np γ), DSA. 0.6 ps +4-2 from 58 Ni(α ,2p γ), DSA.
6834.92 ^c 19 6835.18 24			D F		K						11(4,277), 2011.
6837.2 <i>3</i> 6859 ^c 10	8-	0.6 [@] ps +5-2	DE D		Ι		P Q	T	W		
6892 ^c 10 6911.93 9	1+	1.46 fs 28	A D F	,							XREF: Others: AL XREF: AL(6913.7). J^{π} , $T_{1/2}$: From (g, γ') , $(\text{pol } \gamma, \gamma')$.
6950.4 <i>13</i> 6996.86 <i>20</i> 7027.83 ⁿ <i>15</i>	(10) ^j 8 ⁺		F E		Ι			S			J^{π} : $L(\alpha, \alpha') = (3,4)$.
7038.7 7	1-	1.3 fs 4	E								XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7056.27 <i>14</i> 7101.4 <i>13</i>	$\frac{j}{(10)^{j}}$		F		I I						
7110 ^h 30 7207.6 3 7222.80 11 7250.0 4	8+		F F E			L N	Q	T			J^{π} : $L(p,t)=(2)$.
7290 30 7316.13 16 7339.68 25	0		F F			L		T	W		
7360.97 24 7380.3 5 7414.16 23	(8) 8 ⁺		E E F	•							
7433.45 ^m 16 7465.66 25 7473.49 24	9+ <i>j</i> (7-) 1+	2.1 fs <i>3</i>	E E F		Ι		P				XREF: Others: AL
7495.2 <i>4</i> 7531.4 <i>4</i>	8+		F E	•							J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7550 ^e 8 7552.0 <i>3</i> 7559.5 8	8 ⁻ 1 ⁻	6.5 fs 22	F			N	Q				XREF: Q(7522). XREF: Others: AL
≈7570 ^g	1	0.3 13 22	A					Т			E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7590 <i>50</i> 7627.4 <i>17</i>	<i>j</i> 1 ⁻	0.27 fs <i>3</i>			Ι				W		XREF: Others: AK, AL
7647.4 7											XREF: AK(7650). E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7657.6 8 7684.1 <i>4</i>	1+	0.97 fs <i>14</i>	F	,							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7690.0 3	1-	0.208 fs 28	F								XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7691.4 <i>3</i> 7732.5 <i>4</i> 7747.6 <i>5</i>	(9 ⁻) ^j 8 ⁺ 1 ⁻	0.55 fs 21	E		I						XREF: Others: AL
7760.33 <i>18</i> 7761.8 <i>3</i>	8 ⁻ 1 ⁺	1.7 fs <i>4</i>	E F		Ι		0				E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ'). J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments	
7798.9 <i>3</i>			F		
7813.5 <i>13</i> 7818.02 <i>13</i>	j		I F		
7850.3 10	1+	1.66 fs 28	-	XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').	
7880.4 12	1+	2.6 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
7926.7 17	1+	8.2 fs <i>36</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
7950.93 24	1+	0.76 fs <i>14</i>	F	XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
7980.81 <i>21</i>	9+		E	7 1/2	
8042.6 <i>16</i>	1+	7.7 fs 28		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8044.26° 17 8074.4 4	9- <i>j</i> 8+	$0.04^{\textcircled{0}}$ ps $+31-4$	E I L P E	, , , , , , , , , , , , , , , , , , ,	
8086.0 5	1-	0.201 fs 35	_	XREF: Others: AK , AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').	
8111.8 <i>12</i>	1+	3.0 fs 7		W XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8126.6 7	1-	0.45 fs 6		XREF: Others: AK, AL XREF: AK(8124). E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').	
8189.1 7	1	1.04 fs 21		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8261.5 8	1-	0.40 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8272.09 19	10-		E	$E(10,01), y, 1_{1/2}$. From (γ, γ) , (por γ, γ).	
8286.3 <i>3</i>	(1 ⁺)		D F	Configuration= $((\nu f_{7/2})^{-1}(\nu f_{5/2}))1^+$.	
8294.0 8	1-	0.76 fs 28		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8351.8 <i>13</i>	1+	2.4 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8359.3 <i>15</i>	1+	3.4 fs <i>11</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8389.9 <i>4</i>	9-		E	=(************************************	
8407 4	1-	6.3 fs <i>37</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8426.69 <i>12</i> 8430 <i>30</i>	9- 3-		E L	, , , , , , , , , , , , , , , , , , ,	
8433 ⁱ 10	8-		L N Q	XREF: N(8445).	
8451.5 <i>16</i>	1	2.3 fs 6		XREF: Others: AK, AL XREF: ak(6460).	
8464.0 <i>13</i>	1-	2.7 fs 7		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8485.50 ^r 24 8504.7 3	9-		E F	E(rever), \mathbf{J} , $\mathbf{I}_{1/2}$. Profit (y,y) , $(\text{pot } y,y)$.	
8515.2 9	1-	0.69 fs <i>14</i>	•	XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8521.11° 17 8565.60 18 8638.5 3	10 ^{-j}	0.5 [@] ps +6-2	E I P F F	W W	
8655.4 9	1-	1.32 fs 28	•	XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	

E(level) [†]	$J^{\pi \ddagger}$	${{ m T}_{1/2}}^{\#}$				XRE	EF		Comments
8656.8 8	1+	0.7 fs 6							XREF: Others: AL
0666 21 22				_					E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
8666.21 <i>22</i> 8688.4 <i>13</i>	1+	2.6 fs 7		F		L			XREF: Others: AL
0000.113		2.0 15 /							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8688.92 ^m 23	10 ⁺			E	Ι				,
8747.0 <i>12</i>	1-	0.90 fs <i>21</i>							XREF: Others: AL
8768 <i>4</i>	1+	8 fs 8							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AK , AL
0,00	-	0 10 0							XREF: AK(8760).
0==0 < 10									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8778.6 <i>10</i>	1+	1.25 fs <i>35</i>							XREF: Others: AL
8781.6 <i>10</i>	1-	1.25 fs <i>35</i>							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AL
0,0110 10									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8793.6 9	1+	1.11 fs <i>35</i>							XREF: Others: AL
8846.5 <i>14</i>	1+	1.5 fs 4							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AL
0040.5 14	1	1.5 15 7							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8871.7 <i>16</i>	1+	1.6 fs 4							XREF: Others: AL
0000 5 12	1+	0.02.5.21							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8890.5 12	1+	0.83 fs 21							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8924.1 10	1-	0.36 fs 6							XREF: Others: AL
									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8959 ⁱ 10	8-	79 keV	Α			N	Q		XREF: N(8994).
9010.5 19	1-	2.1 fs 7							$T_{1/2}$: from (α,t) . XREF: Others: AL
7010.3 17	1	2.1 15 /							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9045.20 24		206.12		F					WRITE OIL
9053.3 24	1-	2.9 fs <i>12</i>							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9060 <i>50</i>								W	E(iever), y , y
9068.9 <i>13</i>	1+	1.04 fs 28							XREF: Others: AL
0076 66 17									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9076.66 <i>17</i> 9092.3 <i>8</i>	1-	0.132 fs 28		F					XREF: Others: AK, AL
									XREF: AK(9110).
0100 01 01	10-			_					E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
9123.01 ^r 21 9132.2 15	10 ⁻ 1 ⁻	0.90 fs 21		E					XREF: Others: AL
7132.2 13		0.90 13 21							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9132.27 <mark>0</mark> 20	11- <i>j</i>	$0.18^{\textcircled{0}} \text{ ps } +10-8$		E	I		P		, , , , , , , , , , , , , , , , , , ,
9149 <i>3</i>	1-	0.69 fs <i>35</i>							XREF: Others: AL
9208 ^e 10	8-	127 keV	Α			N	Q		E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Q(9172).
<i>9200 10</i>	O	127 RC V	А			IN	Q		$T_{1/2}$: from (α,t) .
9256.0 25	1-	1.5 fs 7							XREF: Others: AL
9264.30 24	11-			E					E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9264.50 24 9266.5 24	1-	1.4 fs 7		Ľ					XREF: Others: AL
									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9274.7 15	1	2.6 fs <i>19</i>							XREF: Others: AL
9301.2 <i>15</i>	1+	0.55 fs 21							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AL

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
9308.3 14	1-	0.49 fs 21		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AK, AL XREF: AK(9310).
9346.82 18			F	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9352.6 2 <i>1</i>	1-	1.9 fs 8	r	XREF: Others: AL
		0.00 0.00		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9395.5 <i>15</i>	1-	0.83 fs <i>35</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9410.7 <i>17</i>	1-	1.2 fs 5		XREF: Others: AL
0426.2.4	10+			E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9426.2 <i>4</i> 9453.1 <i>16</i>	10 ⁺ 1 ⁺	1.0 fs 4	Е	XREF: Others: AL
7133.1 10	1			E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9463.9 11	1-	0.21 fs 2 <i>I</i>		XREF: Others: AL
9468 <i>4</i>	1+	1.9 fs <i>12</i>		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AL
,				E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9504.9 <i>17</i>	1-	10 fs 4		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9599.0 <i>15</i>	1-	0.62 fs 28		XREF: Others: AL
_				E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
9622.5 ^t 8	10-	2.0 f- 26	E	VDEE: Oderson Al
9640.2 <i>21</i>	1-	3.0 fs 26		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9659.3 8	1-	0.049 fs 14		XREF: Others: AK, AL
				XREF: AK(9663).
9665.67 ^v 22	10 ⁺		E	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9701.4 <i>15</i>	1-	0.8 fs 5		XREF: Others: AL
0714 0 4	(10±)		E	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9714.9 <i>4</i> 9718.27 22	(10 ⁺) 11 ⁻		E E	
9721.0 <i>18</i>	1-	1.2 fs 8		XREF: Others: AL
9751.5 23	1-	4.2 fs <i>35</i>		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AL
9131.3 23	1	4.2 18 33		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9760.42 24	11-		E	
9774.8 20	1-	1.9 fs <i>14</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9807.5 19	1-	1.6 fs 10		XREF: Others: AL
0021 4	1+	1266		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9831 <i>4</i>	1+	1.3 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9832.0 <i>21</i>	1-	1.3 fs 6		XREF: Others: AL
0071 2 20	1-	0.0.0.7		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9871.3 20	1-	0.8 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9887.9 <i>4</i>	10 ⁺		E	
9893.5 <i>17</i>	1-	0.49 fs 28		XREF: Others: AL
9953.7 <i>3</i>			F	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9960.14 ^r 23	11-		E	
9989.27° 24	$(12^{-})^{j}$	$0.21^{\textcircled{0}}$ ps $+21-7$	E I P	
10029.02 <i>17</i>			F	W

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments				
10054.23 25	(11-)	E					
10158.6 <i>3</i>	(12^{-})	E					
10241.7 5	(11^{-})	E					
10697.3 3	12-	E					
10788.66 ^r 22	12-	E					
10825.23 25	11+	E					
10872.60 24	11 ⁺ 11 ⁺	E E					
10977.68 <i>23</i> ≈10985	11	H H					
11030.60 21	11 ⁺	E					
11044.14 ^v 24	12+	E H					
11079.1 4	(12^{-})	E					
11112.8° 3	13 ⁻ <i>j</i>	E I					
11120.6 ^t 9	12-	E L					
≈11138		H					
≈11149		Н					
≈11158		Н	(0)				
≈11207&	2+	H L	Possible IAS of ⁶⁰ Co, 58-keV level, ⁶² Ni(p,t).				
11224.995	(11^{+})	ЕН					
11255.23 ^p 20 (11387.700 17)	12 ⁺ (1 ⁻ ,2 ⁻)	E F	E(level): S(n)=11387.73 5 (2012Wa38).				
≈11429	(1 ,2)	Н	E(16ve1). 5(11)–11361.73 3 (2012 wa36).				
11443.40 ^s 25	13-	E H					
11493.6 5	(12^{+})	E					
11553.3 ^r 3	13-	E					
≈11599	(4.4s)	H					
11620 20	(1^{+})	D					
≈11647 ≈11702		H H					
≈11702 ≈11732		H					
11750 ^h 30		H L	J^{π} : L(p,t)=(2).				
11785.6 ^q 5	(12^{+})	E	$\mathbf{J} \cdot \mathbf{E}(\mathbf{p},t) - (2)$.				
11851.17 ^p 23	13+	E					
11860 ^a 20	(1^+)	D	Configuration= $((\nu f_{7/2})^{-1}(\nu f_{5/2}))1^+$.				
11878.0 5	(13)	E H					
≈11932		H	TT T () (1)				
11950 <i>30</i>		H L	J^{π} : L(p,t)=(4).				
≈12130		Н	Possible IAS of ⁶⁰ Co, 1006-keV level, ⁶² Ni(p,t).				
≈12130 12273.7° 4	14 ⁻ <i>j</i>						
$12273.7^{\circ}4$ $12333^{i}10$	8-	I	VDEE. N/19205\				
≈12355? 10 ≈12355?	δ	E N Q H	XREF: N(12305).				
≈12465		H					
12486.2 ^q 5	(13^{+})	E H					
12515 ^e 16	8-	H N Q	XREF: Q(12505).				
12578.4 ^p 3	14+	E					
12742.1 5	13+	E					
12774.7 ^v 4 12859.3 6	14 ⁺	E	No information about a decay of this level				
12859.3 6 13037.5 <i>s</i> 10	13 ⁺ 14 ⁻	E E	No information about γ decay of this level.				
13037.3 10 13246.3 4	13 ⁺	E					
13282.3^{w} 5	(14^{+})	E					
13353.0 ^q 6	(14+)	E					

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		7	Comments	
13615.4 ^s 5	15-			E			
13662.2 ^p 4	15 ⁺			E			
13760 <i>30</i>					L		J^{π} : L(p,t)=(0).
13810.0° 5	(15^{-})			E			
13908 ⁱ 10	8-		Α		N	Q	XREF: N(13883).
14201.0 9 6	(15^+)			E			
14463.7 ^u 4	15 ⁺			E			
14645.5 ^v 5	16 ⁺			E			
14670 <i>30</i>					L		J^{π} : L(p,t)=(4).
14803.2 ^p 4	16 ⁺			E			
14817 ^e 10	8-	64 keV			N	Q	XREF: Q(14840).
							$T_{1/2}$: from (α,t) .
14933.9 ^w 5	16+			E			
15164.8 ^q 7	(16^{+})			E			
15281.5 ^t 11	(16^{-})			E			
15499 ⁱ 10	8-				N	Q	XREF: N(15483).
16026.6 ^u 5	17+			E			
16098.1 ^P 4	(17^+)			E			
16110 23	8-				N		
16194.4 ^{\$} 8	17-			E			
16242.0? 9 13	(17^{+})			E			
16842.4^{v} 7	18+			E			
17235.8 ^w 8	18+			E E			
17911.6 ^u 7	19 ⁺						
18131.4 ^t 13	(18^{-})			E			
19238.4 ^s 11	(19^{-})			E			
19504.4 ^v 10	20^{+}			E			
20017.9 ^w 11	(20^{+})			E			
20177.5 ^u 9	21+			E			
22863.5 ^v 13	(22^{+})			E			
22996.5 ^u 12	23+			E			

[†] Calculated from adopted gammas, except as noted.

 $^{^{\}ddagger}$ Spin/parity and single-particle configuration assignments for levels de-excited by γ rays are based on band structure, γ -ray multipolarities and angular distributions. See separate table for comments to individual levels.

[#] From 60 Ni(p,p' γ) p γ coin DSA, except as noted.

[@] From ⁵⁸Ni(α ,2p γ), DSA.

[&]amp; From 59 Ni(α ,2p γ), DSA. & From 59 Co(p, γ). ^a From 59 Ni(n, γ) E=thermal. ^b From 59 Co(3 He,d γ). ^c From 60 Ni(p,p'), (pol p,p').

^d From 60 Ni(p,p' γ).

^e From 59 Co(α ,t).

^f From ⁶⁰Ni($\pi^+,\pi^{+\prime}$), ($\pi^-,\pi^{-\prime}$).

From ${}^{68}\text{Ni}(\pi^{+},\pi^{+})$, 8 From ${}^{56}\text{Fe}({}^{6}\text{Li,d})$.

h From ${}^{62}\text{Ni}(\text{p,t})$.

i From ${}^{60}\text{Ni}(\text{e,e'})$.

j From ${}^{28}\text{Si}({}^{35}\text{Cl,3p})$.

- ^k From comparison with Hauser-Feshbach-Moldauer calculations in $(n,n'\gamma)$.
- ¹ Band(A): γ cascade based on g.s..
- ^m Band(B): $\Delta J=1$ structure based on 3671, 4⁺.
- ⁿ Band(C): $\Delta J=1$ structure based on 3186, 3⁺.
- ^o Band(D): Magnetic-dipole rotational band-1. Band based on 8044, 9^- state. Configuration= $\pi[1f_{7/2}^{-1}(fp)^1] \otimes \nu[1g_{9/2}^1(fp)^3]$.
- p Band(E): Magnetic-dipole rotational band-2. Band based on 11255, 12⁺ state. Configuration= π [1f⁻¹_{7/2}(fp)¹]⊗ ν [1g²_{9/2}(fp)²] or π [1f⁻¹_{7/2}1g¹_{9/2}]⊗ ν [1g¹_{9/2}(fp)³].
- ^q Band(F): Magnetic-dipole rotational band-3. Band based on 11225, (11⁺) state. Configuration= π [1f_{7/2}⁻¹(fp)¹]⊗ν[1g_{9/2}²(fp)²] or π [1f_{7/2}⁻¹1g_{9/2}¹]⊗ν[1g_{9/2}¹(fp)³].
- ^r Band(G): Magnetic-dipole rotational band-4. Band based on 8485, 9⁻ state. Configuration= $\pi[1f_{7/2}^{-1}(fp)^1]$ ⊗ $\nu[1g_{9/2}^{-1}(fp)^3]$.
- ^s Band(H): $\Delta J=2$ band based on 11443, 13⁻. Configuration= $\pi[1f_{7/2}^{-2}(fp)^2]⊗ν[1g_{9/2}^{1}(fp)^3]$.
- $^{t} \ \, \text{Band(h): } \Delta J = 2 \ \, \text{band based on } 11120, \ \, 12^{-}. \ \, \text{Configuration} = \pi [1f_{7/2}^{-2}(\text{fp})^{2}] \otimes \nu [1g_{9/2}^{1}(\text{fp})^{3}].$
- ${}^{u} \ Band(I): \ \Delta J=2 \ band \ based \ on \ 13246, \ 13^{+}. \ Configuration = \pi [1f_{7/2}^{-3}(1g_{9/2}^{1}(fp)^{2}] \otimes \ \nu [1g_{9/2}^{1}(fp)^{3}].$
- $^{\nu}$ Band(J): ΔJ =2 band based on 9665, 10^+ . Two forked spin sequences, one based on 9665, 10^+ and the other on 13282, (14⁺). Configuration= $\pi[1f_{7/2}^{-2}(1g_{9/2}^1(fp)^1]\otimes \nu[1g_{9/2}^1(fp)^3]$.
- ^w Band(j): ΔJ =2 band based on 13282, (14⁺). Two forked spin sequences, one based on 9665, 10⁺ and the other on 13282, (14⁺). Configuration= π [1f_{7/2}⁻²(1g_{9/2}¹(fp)¹]⊗ ν [1g_{9/2}¹(fp)³].

All γ data from ($^{36}\text{Ar,4p}\gamma)$ where Ey is from this reaction.

15

$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
1332.514	2+	1332.501 ^b 5	100 ^b	0.0	0+	E2		0.0001625 23		α =0.0001625 23; α (K)=0.0001137 16; α (L)=1.108×10 ⁻⁵ 16; α (M)=1.560×10 ⁻⁶ 22 α (N)=6.73×10 ⁻⁸ 10; α (IPF)=3.61×10 ⁻⁵ 5 B(E2)(W.u.)=13.1 4
2158.632	2+	826.06 ^{&} 3	100.0 ^{&} 24	1332.514	2+	M1+E2	+0.9 3	0.000337 18		α =0.000337 18; α (K)=0.000303 17; α (L)=2.97×10 ⁻⁵ 17; α (M)=4.18×10 ⁻⁶ 23; α (N+)=1.80×10 ⁻⁷ 10 B(M1)(W.u.)=0.031 13; B(E2)(W.u.)=7.E+1 4 δ: av of +0.67 21 from ⁶⁰ Ni(p,p'γ), and +1.2 3 from ⁶⁰ Cu ε decay. Poor agreement with +0.03 +1-25 from ⁵⁶ Fe(⁷ Li,2npγ)0.2 2 from DCO (2008To15).
		2158.57 ^{&} 10	17.6 ^{&} 24	0.0	0+	(E2)		0.000439 7		B(E2)(W.u.)=0.22 7 α =0.000439 7; α (K)=4.45×10 ⁻⁵ 7; α (L)=4.32×10 ⁻⁶ 6; α (M)=6.08×10 ⁻⁷ 9; α (N+)=0.000390 6 α (N)=2.64×10 ⁻⁸ 4; α (IPF)=0.000389 6 Mult.: $\Delta \pi$ =no from J^{π} 's of connecting levels.
2284.80	0+	952.4 ^a 2 2284.87	100 ^a	1332.514	2 ⁺ 0 ⁺	ЕО			0.016	$I_{(\gamma+ce)}$: I(E±) from 1961Pa10 is given. Ice(K)(2285)/Ice(K)(952)=0.074 16, Ice(K)(2285)/I(pair)=0.130 28, B(E0)/B(E2)=0.027 4, ρ^2 <0.028 (1981Pa10).
2505.753	4+	347.14 ^b 7	0.0076 ^b 5	2158.632	2+	E2		0.00557 8		α =0.00557 8; α (K)=0.00499 7; α (L)=0.000503 7; α (M)=7.06×10 ⁻⁵ 10; α (N+)=2.90×10 ⁻⁶ 4 α (N)=2.90×10 ⁻⁶ 4 B(E2)(W.u.)=0.19 6 Mult.: From DCO (2008To15).
		1173.228 ^b 3	100.00 ^b 3	1332.514	2+	E2(+M3)	-0.0025 22	0.0001722 25		α =0.0001722 25; α (K)=0.0001500 21; α (L)=1.465×10 ⁻⁵ 21; α (M)=2.06×10 ⁻⁶ 3 α (N)=8.88×10 ⁻⁸ 13; α (IPF)=5.42×10 ⁻⁶ 8 B(E2)(W.u.)=(5.5 17); B(M3)(W.u.)=(1.8×10 ² +32-18)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{ extbf{@}}$	$lpha^\dagger$	Comments
2505 752	-	2505 (02.5	20.10-6.4		<u> </u>			0.62.1025.12	Additional information 1. δ : from 60 Co β^- decay (1925.28 d). Others: $-0.09 + 50 - 30$ from 58 Ni(α ,2p γ), $+0.02 + 18 - 2$ from 56 Fe(1,2np γ).
2505.753	4 ⁺	2505.692 5	2.0×10 ⁻⁶ 4	0.0	0+	[E4]		8.63×10 ⁻⁵ 12	α =8.63×10 ⁻⁵ 12; α (K)=7.76×10 ⁻⁵ 11; α (L)=7.58×10 ⁻⁶ 11; α (M)=1.069×10 ⁻⁶ 15; α (N+)=4.62×10 ⁻⁸ 7 α (N)=4.62×10 ⁻⁸ 7 B(E4)(W.u.)=1.8 7 E _{γ} : from E(level). Mult.: from J^{π} 's of connecting levels. Additional information 2. B(E4)(W.u.): 4.8 10 from measured B(E4)↑ in 60 Ni(e,e').
2626.06	3 ⁺	120.5 ^a 3	5.5 ^a 5	2505.753	4+	M1+E2		0.15 13	$\alpha(K)=0.14$ 12; $\alpha(L)=0.015$ 13; $\alpha(M)=0.0021$ 18; $\alpha(N+)=8.E-5$ 7 $\alpha(N)=8.E-5$ 7
		467.3 ^a 2	100 ^a 5	2158.632	2+	M1(+E2)	+0.02 +11-27	0.00102 7	α =0.00102 7; α (K)=0.00091 6; α (L)=9.0×10 ⁻⁵ 6; α (M)=1.27×10 ⁻⁵ 8; α (N+)=5.4×10 ⁻⁷ 4 α (N)=5.4×10 ⁻⁷ 4 B(M1)(W.u.)≈(0.23); B(E2)(W.u.)≈(0.76) δ : +0.38 18 (2008To15).
		1293.7 ^a 2	53 ^a 5	1332.514	2+	M1+E2	-3.1 +4-6	0.0001595 23	α =0.0001595 23; α (K)=0.0001198 18; α (L)=1.168×10 ⁻⁵ 17; α (M)=1.646×10 ⁻⁶ 24 α (N)=7.10×10 ⁻⁸ 11; α (IPF)=2.63×10 ⁻⁵ 5 B(M1)(W.u.)≈0.00053; B(E2)(W.u.)≈5.6 Mult.: from 1989Ko54 in (n,n' γ) and (36 Ar,4p γ). δ: from (n,n' γ); +0.11 15 (2008To15).
3119.87	4+	493.90 ^{&} 20	8.7 ^{&} 22	2626.06	3+	M1+(E2)	+0.25 40	0.00094 20	α =0.00094 20; α (K)=0.00085 18; α (L)=8.4×10 ⁻⁵ 18; α (M)=1.18×10 ⁻⁵ 25; α (N+)=5.1×10 ⁻⁷ 11 α (N)=5.1×10 ⁻⁷ 11 B(M1)(W.u.)=0.06 3; B(E2)(W.u.)=(3.E+1+9-3) δ : From DCO (2008To15).
		1787.20 ^{&} 10	100.0 ^{&} 22	1332.514	2+	E2		0.000281 4	α =0.000281 4; α (K)=6.30×10 ⁻⁵ 9; α (L)=6.12×10 ⁻⁶ 9; α (M)=8.62×10 ⁻⁷ 12; α (N+)=0.000211 3 α (N)=3.73×10 ⁻⁸ 6; α (IPF)=0.000211 3 B(E2)(W.u.)=9 4 Mult.: From DCO=1.10 5 (2008To15).

16

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
3123.698	2+	497.9 ^a 2 613.7 3 839.2 ^a 4 965.2 ^a 3	3.68 ^a 20 4.4 11 1.01 ^a 16 0.66 ^a 14	2626.06 3+ 2284.80 0+ 2158.632 2+				Mult.: d not consistent with ΔJ^{π} .
		965.2 ^a 3 1791.6 ^a 3	$100^a 5$	1332.514 2+	M1+E2	-0.21 4	0.000237 4	α =0.000237 4; α (K)=5.93×10 ⁻⁵ 9; α (L)=5.75×10 ⁻⁶ 8; α (M)=8.10×10 ⁻⁷ 12; α (N+)=0.000171 3 α (N)=3.52×10 ⁻⁸ 5; α (IPF)=0.000171 3 B(M1)(W.u.)=0.013 +6-10; B(E2)(W.u.)=0.34 +20-28 Mult., δ : from $\gamma\gamma(\theta)$ in ⁶⁰ Cu ε decay.
		3124.1 ^a 3	10.5 ^a 6	$0.0 0^{+}$				viait.,o. nom //(o) in Ca o accay.
3185.98	(3+)	680.30 ^{&} 15	86 ^{&} 14	2505.753 4+	M1+E2		0.00055 11	α =0.00055 11; α (K)=0.00050 10; α (L)=4.9×10 ⁻⁵ 10; α (M)=6.9×10 ⁻⁶ 14; α (N+)=2.9×10 ⁻⁷ 6 α (N)=2.9×10 ⁻⁷ 6
		1027.33 ^{&} 8	100 ^{&} 14	2158.632 2+	M1+E2	-6.1 +9-10	0.000226 4	α =0.000226 4; α (K)=0.000203 3; α (L)=1.99×10 ⁻⁵ 3; α (M)=2.80×10 ⁻⁶ 4; α (N+)=1.200×10 ⁻⁷ 17 α (N)=1.200×10 ⁻⁷ 17 B(M1)(W.u.)=0.0014 6; B(E2)(W.u.)=9.E+1 3 Mult., δ : from 1989Ko54 in (n,n' γ).
		1853.8 ^{&} 3	92 ^{&} 14	1332.514 2+	M1+E2		0.00028 3	α =0.00028 3; α (K)=5.72×10 ⁻⁵ 18; α (L)=5.55×10 ⁻⁶ 18; α (M)=7.82×10 ⁻⁷ 25; α (N+)=0.000218 24 α (N)=3.39×10 ⁻⁸ 11; α (IPF)=0.000218 24
3193.87	1+	909.2 ^a 2	42.6 <mark>a</mark> 19	2284.80 0+				a(-,) -1
		1035.2 ^a 2	78 <mark>a</mark> 4	2158.632 2+				
		1861.6 ^a 3	100 ^a 6	1332.514 2+				
2260.10	2+	3194.1 ^a 3	42.6 ^a 19	$0.0 0^{+}$				
3269.19	2+	643.2 ^a 3 984.5 ^a 6	44.0 ^a 24 3.6 ^a 20	2626.06 3 ⁺ 2284.80 0 ⁺	[E2]		0.000251 4	α =0.000251 4; α (K)=0.000225 4; α (L)=2.21×10 ⁻⁵ 4; α (M)=3.11×10 ⁻⁶ 5; α (N+)=1.334×10 ⁻⁷ 19 α (N)=1.334×10 ⁻⁷ 19 B(E2)(W.u.)=10 6
		1110.5 ^a 4	48 ^a 8	2158.632 2 ⁺				B(E2)(W.u.)=10 0
		1936.9 ^a 3 3269.4 ^a 3	100 ^a 4 35.2 ^a 20	1332.514 2 ⁺ 0.0 0 ⁺	[E2]		0.000920 13	α =0.000920 13; α (K)=2.22×10 ⁻⁵ 4; α (L)=2.14×10 ⁻⁶ 3; α (M)=3.02×10 ⁻⁷ 5; α (N+)=0.000895 13 α (N)=1.314×10 ⁻⁸ 19; α (IPF)=0.000895 13 B(E2)(W.u.)=0.23 7
	0^{+}	1159.09 ⁱ 13	1.18 ⁱ 11	2158.632 2+				

γ (60Ni) (continued)

						/(- 1.5) (- 1.5)		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f]	J_f^{π} Mult.#	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
3317.829	0+	3318.6		0.0	+ E0		0.064	$I_{(\gamma+ce)}$: I(E±) from 1961Pa10 is given. I(pair)(3318)/Ice(K)(1986)=11.5 12, B(E0)/B(E2)=0.49 8, ρ^2 =0.077 42 (1981Pa10).
3381		1222 ^c 5	100 ^c	2158.632 2	+			$\rho = 0.07742 (17011410).$
3393.14	2+	1234.51 ⁱ 7	12.6 ⁱ 7	2158.632 2				
	_	2060.58 ⁱ 3	100.0^{i} 23	1332.514 2				
		3393.05 ⁱ 20	7.4 ⁱ 7	0.0		0.000968 14		$\alpha = 0.000968 \ 14; \ \alpha(K) = 2.09 \times 10^{-5} \ 3; \ \alpha(L) = 2.02 \times 10^{-6} \ 3;$ $\alpha(M) = 2.85 \times 10^{-7} \ 4; \ \alpha(N+) = 0.000945 \ 14$ $\alpha(N) = 1.239 \times 10^{-8} \ 18; \ \alpha(IPF) = 0.000945 \ 14$
2505.52	0.4	20274	32.7 ⁱ 8	2102.07	_			B(E2)(W.u.)=0.043 +14-21
3587.72	0+	393.76 ⁱ 6	$32.7^{i} 8$ $100^{i} 2$	3193.87 1				
		1429.07^{i} 3 2255.18^{i} 5		2158.632 2				
		2255.18° 5 3588	46.4 ⁱ 15	1332.514 2° 0.0 0°			0.13	$I_{(\gamma+ce)}$: I(E±) from 1961Pa10 is given.
		3366		0.0 0	LU		0.13	I(y+ce). R(E2) from 19011 at 0 is given. I(pair)(3588)/Ice(K)(2256)=68 11, B(E0)/B(E2)(1429)=0.13 3, B(E0)/B(E2)(2256)=2.9 5 (1981Pa10).
3619.46	3+	993.46 ⁱ 10	100 ⁱ	2626.06 3				
		1113.9 ⁱ 3	33 ⁱ 4	2505.753 4	+			
		1460 ^{dk}		2158.632 2	+			
3671.16	4+	1165.2 2	100	2505.753 4	+ M1+E2	0.000162 12		α =0.000162 <i>12</i> ; α (K)=0.000142 <i>11</i> ; α (L)=1.39×10 ⁻⁵ <i>11</i> ; α (M)=1.96×10 ⁻⁶ <i>15</i> ; α (N+)=4.0×10 ⁻⁶ <i>7</i> α (N)=8.4×10 ⁻⁸ <i>6</i> ; α (IPF)=3.9×10 ⁻⁶ <i>7</i>
		1512.1 6	1.6	2158.632 2	+ [E2]	0.000189 3		α =0.000189 3; α (K)=8.75×10 ⁻⁵ 13; α (L)=8.51×10 ⁻⁶ 12; α (M)=1.199×10 ⁻⁶ 17; α (N+)=9.16×10 ⁻⁵ 13 α (N)=5.18×10 ⁻⁸ 8; α (IPF)=9.15×10 ⁻⁵ 13 B(E2)(W.u.)=1.3 9
3702.9	4+	583 1	100	3119.87 4	+			E_{γ} : from $(n,n'\gamma)$.
3730.82	4+	545.0 <i>1</i>	27 9	3185.98 (3	3 ⁺) M1+E2	0.0010 3		α =0.0010 3; α (K)=0.00089 25; α (L)=8.8×10 ⁻⁵ 25; α (M)=1.2×10 ⁻⁵ 4; α (N+)=5.3×10 ⁻⁷ 15 α (N)=5.3×10 ⁻⁷ 15
		610.9 <i>3</i>	27 9	3119.87 4	+ D			
		1105.0 4	45 9	2626.06 3	⁺ M1+E2	0.000178 <i>15</i>		α =0.000178 15; α (K)=0.000159 13; α (L)=1.56×10 ⁻⁵ 13; α (M)=2.19×10 ⁻⁶ 18; α (N+)=9.3×10 ⁻⁷ 17
		10040.3	(0.10	2505 552	+ 5			$\alpha(N)=9.5\times10^{-8} 8; \alpha(IPF)=8.4\times10^{-7} 16$
		1224.9 2 2398.4 <i>3</i>	63 <i>18</i> 100 <i>18</i>	2505.753 4 ² 1332.514 2 ²		0.000547 8		α =0.000547 8; α (K)=3.70×10 ⁻⁵ 6; α (L)=3.58×10 ⁻⁶ 5;
								$\alpha(M)=5.05\times10^{-7}$ 7; $\alpha(N+)=0.000506$ 7 $\alpha(N)=2.19\times10^{-8}$ 3; $\alpha(IPF)=0.000506$ 7 B(E2)(W.u.)=0.9 +5-9
3734.44	2+	611 <i>ak</i>	≤3 ^a	3123.698 2	+			D(D2)(11.u.)-0.7 TJ-7
3/34.44	4	1451.4 ^a 5	22^{a} 4	2284.80 0		0.0001754 25		α =0.0001754 25; α (K)=9.51×10 ⁻⁵ 14; α (L)=9.26×10 ⁻⁶ 13;

								γ ⁽⁶⁰ Ni) (contin	ued)	28 ^{N1} 32 ⁻¹⁹
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments	
	3734.44	2+	2403.3 ^a 6	100 ^a 11	1332.514	2+			$\alpha(M)=1.304\times10^{-6} \ 19; \ \alpha(N+)=6.98\times10^{-5}$ $\alpha(N)=5.63\times10^{-8} \ 8; \ \alpha(IPF)=6.97\times10^{-5} \ 10$ B(E2)(W.u.)=10 5	_
	3734.44	2	3735.6 ^a 13	3.4 ^a 12			[E2]	0.001096 16	α =0.001096 16; α (K)=1.80×10 ⁻⁵ 3; α (L)=1.742×10 ⁻⁶ 25; α (M)=2.45×10 ⁻⁷ 4; α (N+)=0.001076 15 α (N)=1.068×10 ⁻⁸ 15; α (IPF)=0.001076 15 B(E2)(W.u.)=0.014 7	
	3798.0	1	3797.9 ^j 10	100 ^j	0.0	0+	j		B(B2)(Wal) 0.0117	
	3871.050	2+	677.17 ⁱ 5	16.7 ⁱ 4		1+				
			747.33 ⁱ 3	100^{i} 2	3123.698					
			751.9 ⁱ 4	3.2^{i} 7	3119.87					
			1244.93 ⁱ 22	2.6 ⁱ 5	2626.06					
			1712.30 ⁱ 9	91 ⁱ 2	2158.632					
			2538.53 ⁱ 4	55 ⁱ 1	1332.514					т
			3870.94 ⁱ 7	43.5 ⁱ 15		0^{+}				ron
	3887.36	2+	569.5 ⁱ 4	7 ⁱ 3	3317.829	0^{+}				From ENSDF
			693.57 ⁱ 11	30 ⁱ 3	3193.87	1+				SN
			1381.8 ⁱ 3	$28^{i} 5$	2505.753	4+				DF
			2554.69 ⁱ 10	100 ⁱ 4	1332.514					
	3895		1269 ^c 5	67 ^c	2626.06					
			2563° 5	100°	1332.514					
	3908	1	3908 ^j 3	100^{j}		U	j			
	3925.18	$2^+,3^+$	305.7 ⁱ 3	30 ⁱ 6		3 ⁺				
			739.2 ⁱ 3	57 <mark>i</mark> 10		(3^{+})				
			805.6 ⁱ 4	21 ⁱ 6		4+				
			1419.40 ⁱ 10	100 ⁱ 8	2505.753					
			1766.5 ⁱ 3	55 ⁱ 8	2158.632					
	4006.444	2+	883.1 ⁱ 3	$1.0^{i}_{.}$ 2	3123.698					
			1380.4 ⁱ 3	2.8 ⁱ 4	2626.06					
			2673.86 ⁱ 4	100 ⁱ 2	1332.514					
			4006.30 ⁱ 4	75 ⁱ 2	0.0	0+	E2	0.001190 <i>17</i>	α =0.001190 17; α (K)=1.622×10 ⁻⁵ 23; α (L)=1.566×10 ⁻⁶ 22; α (M)=2.21×10 ⁻⁷ 3; α (N+)=0.001172 α (N)=9.60×10 ⁻⁹ 14; α (IPF)=0.001172 17	
									B(E2)(W.u.)=0.8 3 Mult.: From (γ, γ') ,(pol γ, γ').	
	4019.886	1+	431.9 ⁱ 4	0.5 ⁱ 2	3587.72	0^{+}			110th (1,1),(pot 1,1).	281
	1017.000	1	702.11^{i}	1.5^{i} 2	3317.829					13 ₂
			896.23 ⁱ 6	7.1^{i} 3	3123.698					28N1 ₃₂ -19
•			1734.98 ⁱ 11	9.3^{i} 5	2284.80					,

$\gamma(^{60}\text{Ni})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
4019.886	1+	2687.33 ⁱ 4 4019.74 ⁱ 5	$42^{i} 1$ $100^{i} 3$	1332.514	2 ⁺ 0 ⁺	M1		0.001087 16	α =0.001087 16; α (K)=1.568×10 ⁻⁵ 22; α (L)=1.513×10 ⁻⁶ 22; α (M)=2.13×10 ⁻⁷ 3; α (N+)=0.001069 α (N)=9.29×10 ⁻⁹ 13; α (IPF)=0.001069 15 Mult.: From (γ, γ') ,(pol γ, γ').
4035		2703 ^c 5 4035 ^c 5	100 ^c 100 ^c	1332.514 0.0	2 ⁺ 0 ⁺				
4039.89	3-	853.8 ⁱ 4	$10^{i} 2$	3185.98	(3^{+})				
		1881.15 ⁱ 12	51 ⁱ 4	2158.632	2+	[E1]		0.000586 9	α =0.000586 9; α (K)=3.21×10 ⁻⁵ 5; α (L)=3.11×10 ⁻⁶ 5; α (M)=4.37×10 ⁻⁷ 7; α (N+)=0.000550 8 α (N)=1.90×10 ⁻⁸ 3; α (IPF)=0.000550 8 B(E1)(W.u.)=0.0010 5
		2707.44 ⁱ 8	$100^{i} 4$	1332.514	2+	[E1]		0.001103 16	α =0.001103 <i>16</i> ; α (K)=1.91×10 ⁻⁵ <i>3</i> ; α (L)=1.84×10 ⁻⁶ <i>3</i> ; α (M)=2.59×10 ⁻⁷ <i>4</i> ; α (N+)=0.001082 <i>16</i> α (N)=1.127×10 ⁻⁸ <i>16</i> ; α (IPF)=0.001082 <i>16</i> B(E1)(W.u.)=0.0006 <i>3</i>
4077.99	$1^+, 2^+$	1451.88 ⁱ 16	14 ⁱ 2	2626.06	3 ⁺				
		1919.28 ⁱ 7	55 ⁱ 3	2158.632	2+				
		2745.47 ⁱ 6	100 ⁱ 3	1332.514	2+				
		4077.6 ⁱ 9	9 ⁱ 2	0.0	0_{+}				
4111.96	2+	992 ^c 5	92 ^c	3119.87					
		1485.94 ⁱ 19	46 ⁱ 5	2626.06					
		1606.10 ⁱ 14	70 ⁱ 6	2505.753					
		2779.42 ⁱ 14	100 ⁱ 6	1332.514					
		4111.6 ⁱ 8	49 ⁱ 9		0+				
4165.50	5+	494.4 2	9 2	3671.16	4+	M1+E2		0.0013 5	α =0.0013 5; α (K)=0.0012 4; α (L)=0.00012 4; α (M)=1.6×10 ⁻⁵ 6; α (N+)=6.9×10 ⁻⁷ 22 α (N)=6.9×10 ⁻⁷ 22
		1044.4 2	14 4	3119.87	4+	M1+E2		0.000200 18	α =0.000200 18; α (K)=0.000180 16; α (L)=1.76×10 ⁻⁵ 16; α (M)=2.48×10 ⁻⁶ 23; α (N+)=1.07×10 ⁻⁷ 1 α (N)=1.07×10 ⁻⁷ 10
		1539.0 <i>3</i>	14 4	2626.06	3+				
		1659.6 <i>3</i>	100 9	2505.753	4+	M1+E2	-1.7 4	0.000224 6	α =0.000224 6; α (K)=7.15×10 ⁻⁵ 12; α (L)=6.94×10 ⁻⁶ 12; α (M)=9.78×10 ⁻⁷ 16; α (N+)=0.000145 5 α (N)=4.24×10 ⁻⁸ 7; α (IPF)=0.000145 5 B(M1)(W.u.)=0.0011 7; B(E2)(W.u.)=2.2 12 δ : other: -1.0 +5-4 from ⁵⁸ Ni(α ,2p γ), -1.1 +8-9 in (³⁶ Ar,4p γ).
4186.19	(4^{+})	515 <i>I</i>	67 33		4+	(D)			****
		1560.2 4	100 33	2626.06	3+	(M1+E2)		0.000186 <i>17</i>	α =0.000186 <i>17</i> ; α (K)=7.9×10 ⁻⁵ 4; α (L)=7.7×10 ⁻⁶ 4; α (M)=1.08×10 ⁻⁶ 5; α (N+)=9.8×10 ⁻⁵ <i>13</i> α (N)=4.69×10 ⁻⁸ <i>19</i> ; α (IPF)=9.8×10 ⁻⁵ <i>13</i>

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f .	J_f^{π} N	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
4191.2		462 ^{dk}		3730.82	 1 ⁺				
.1, 1,2		520 ^g			1 ⁺				
		572 ^c 5	75 ^c		3+				
		1565 ^c 5	100 ^c		3+				_
4265.00	6+	1145.67 ^e 15	5.4 ^e 8	3119.87	4 ⁺ E2	2		0.000179 3	α =0.000179 3; α (K)=0.0001583 23; α (L)=1.546×10 ⁻⁵ 22; α (M)=2.18×10 ⁻⁶ 3; α (N+)=3.06×10 ⁻⁶ 5 α (N)=9.37×10 ⁻⁸ 14; α (IPF)=2.96×10 ⁻⁶ 5 B(E2)(W.u.)=2.3 +12-7
		1759.21 ^e 15		2505.753	4+ E2	2(+M3)	-0.08 +3-7	0.000270 4	α =0.000270 4; α (K)=6.57×10 ⁻⁵ 22; α (L)=6.39×10 ⁻⁶ 21; α (M)=9.0×10 ⁻⁷ 3; α (N+)=0.000197 4 α (N)=3.89×10 ⁻⁸ 13; α (IPF)=0.000197 4 B(E2)(W.u.)=(5.0 +24-13); B(M3)(W.u.)=(7.E+4+7-6) δ : other: -0.1 +4-2 from ⁵⁸ Ni(α ,2p γ).
4294.5		1788.9 <mark>&</mark> 4	67 <mark>&</mark> 17	2505.753	1 ⁺				
		2961.8 <mark>&</mark> 4	100 <mark>&</mark> <i>17</i>	1332.514	2+				
4300.8		1181 <mark>8</mark>		3119.87					
		1795 <mark>8</mark>		2505.753					
4318.58	2+	1692.45 ⁱ 8	37 ⁱ 2	2626.06	3 ⁺				
		1813.5 ⁱ 5	21 ⁱ 2	2505.753	1 ⁺				
		2985.97 ⁱ 7	100 ⁱ 3	1332.514	2+				
		4318.52 ⁱ 11	41 ⁱ 2	0.0)+				
4335.52	2	1829.9 ⁱ 4	6^{i} 2	2505.753	1 ⁺				
		2176.84 ⁱ 4	100 ⁱ 3	2158.632	2+				
		3002.5 ⁱ 4	9 ⁱ 2	1332.514	2+				
		4335.37 ⁱ 23	31 ⁱ 3)+				
4341	(0^+)	1217 ^c 5	43 ^c	3123.698					
		2182 ^c 5	100 ^c	2158.632	2+				
4355.56	2+	3024 ^{ak}	100 <mark>a</mark>	1332.514 2	2+				
4400.0		700 <mark>gk</mark>		3702.9	1 ⁺				
		1130 ^g		3269.19	2+				
		1895 <mark>8</mark>		2505.753					
4407.46	5+	241.8 <i>I</i>	45 6		5 ⁺ D				
		676.6 2	100 10	3730.82	l ⁺ M	1+E2		0.00056 11	α =0.00056 11; α (K)=0.00050 10; α (L)=4.9×10 ⁻⁵ 10; α (M)=7.0×10 ⁻⁶ 14; α (N+)=3.0×10 ⁻⁷ 6 α (N)=3.0×10 ⁻⁷ 6
		736.4 4	61 10	3671.16	1 ⁺ M	[1+E2		0.00045 8	α =0.00045 8; α (K)=0.00041 7; α (L)=4.0×10 ⁻⁵ 7; α (M)=5.6×10 ⁻⁶ 10; α (N+)=2.4×10 ⁻⁷ 4 α (N)=2.4×10 ⁻⁷ 4
		1288.3 4	13 <i>3</i>	3119.87	1 ⁺ M	1+E2		0.000151 11	
		1200.5 1	155	5117.07	. 171			0.000131 11	a 0.000151 11, a(11)=0.000110 /, a(L)=1.15×10 /,

						Adopted	Levels, Gamn	nas (continued)
							γ ⁽⁶⁰ Ni) (conti	nued)
$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
								$\alpha(M)=1.59\times10^{-6}\ 10;\ \alpha(N+)=2.2\times10^{-5}\ 4$ $\alpha(N)=6.9\times10^{-8}\ 4;\ \alpha(IPF)=2.2\times10^{-5}\ 4$
4407.46	5+	1781.3 <i>3</i>	29 3	2626.06	3 ⁺	E2	0.000278 4	$\alpha(N)=6.9\times10^{-6}$ 4; $\alpha(IPF)=2.2\times10^{-6}$ 4 $\alpha=0.000278$ 4; $\alpha(K)=6.34\times10^{-5}$ 9; $\alpha(L)=6.16\times10^{-6}$ 9; $\alpha(M)=8.68\times10^{-7}$ 13; $\alpha(N+)=0.000208$ 3 $\alpha(N)=3.76\times10^{-8}$ 6; $\alpha(IPF)=0.000208$ 3
		1901.70 <i>15</i>	48 6	2505.753				<i>u</i> (N)=5.70×10 0, <i>u</i> (IFF)=0.000208 3
4450.7		1945 ⁸ 3118 ⁸		2505.753 1332.514				
4493.16	2+	758.5 ⁱ 4	8 ⁱ 2	3734.44				
4473.10	2	1306.5^{i} 5	7^{i} 2	3185.98				
		2334.4^{i} 3	12^{i} 2	2158.632				
		3160.60 ⁱ 6	100 ⁱ 3	1332.514				
		4494.0 <mark>a</mark> 7	6.8 ^a 14	0.0	0_{+}			
4534.14	2+	2028.5 ⁱ 5	63 ⁱ 17	2505.753				
		2375.6 ⁱ 3	100 ⁱ 14	2158.632				
		3203 <i>ak</i>	54 ^a 18	1332.514				
		4536 <i>ak</i>	$\leq 10^a$	0.0	0+			
4547.96	1+,2+	813.48 ⁱ 7	20^{i} 1	3734.44	2+			
		$1154.82^{i} 12$ $1354.08^{i} 9$	13 ⁱ 1 19 ⁱ 2	3393.14 3193.87	2+			
		1334.08^{i} 9 1424.24^{i} 4	72 ⁱ 2	3123.698				
		2263.17^{i} 4	$100^{i} 2$	2284.80				
		2389.25^{i} 5	86 ⁱ 2	2158.632				
		3215.27 ⁱ 8	35^{i} 2	1332.514				
		4548.2^{i} 3	47 ⁱ 5	0.0	0+			
4577.45	2+	1308.16^{i} 25	29 ⁱ 4	3269.19				
	_	2418.65 ⁱ 20	28 ⁱ 4	2158.632				
		3244.90 ⁱ 9	100 ⁱ 4	1332.514				
		4577.37 ⁱ 14	95 ⁱ 6	0.0	0^{+}			
4579.0	(4 ⁺)	1952.9 5	100	2626.06	3+	M1+E2	0.00032 3	α =0.00032 3; α (K)=5.21×10 ⁻⁵ 15; α (L)=5.05×10 ⁻⁶ 15; α (M)=7.11×10 ⁻⁷ 21; α (N+)=0.00026 3 α (N)=3.09×10 ⁻⁸ 9; α (IPF)=0.00026 3
4760.23	1,2	1491.5 ⁱ 3	31 ⁱ 6	3269.19	2+			(,,
	-	1636.42 ⁱ 13	85 ⁱ 6	3123.698				
		2601.5 ⁱ 4	26 ⁱ 6	2158.632				
		3428.0 ⁱ 4	100 ⁱ 3	1332.514				
		4760.1 ⁱ 4	56 ⁱ 7	0.0				
4768		1644 ^c 5 2142 ^c 5	100 ^c 82 ^c	3123.698 2626.06				
•		∠14∠ J	04	2020.00	5			•

667.4ⁱ 5

4779.13

4111.96 2+

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
4779.13		1385.97 ⁱ 14	28 ⁱ 4	3393.14	2+			
		1585.33 ⁱ 13	54 ⁱ 4	3193.87				
		2493.8 ⁱ 3	26 ⁱ 2	2284.80				
		2620.40 ⁱ 8	100 ⁱ 4	2158.632				
		3446.77 ⁱ 17	65 ⁱ 6	1332.514				
4800.0		2641.3 ^{&k} 5	100 <mark>&</mark>	2158.632				
4843.93	2+	3511.07 ⁱ 18	45^{i} 2	1332.514				
1010190	-	4843.76 ⁱ 9	100 ⁱ 4	0.0	0+	E2	0.001458 21	α =0.001458 21; α (K)=1.228×10 ⁻⁵ 18; α (L)=1.185×10 ⁻⁶ 17; α (M)=1.669×10 ⁻⁷ 24 α (N)=7.27×10 ⁻⁹ 11; α (IPF)=0.001444 21
10.10.0			10.1020	2260.40				Mult.: From (γ, γ') , (pol γ, γ').
4848.9	1,2,3	1579.5 ^a 6 3518 ^a 2	$1.0 \times 10^{2a} 4$ $2. \times 10^{1a} 1$	3269.19				
4859		3518 ^a 2 3527 ^c 5	2.×10 ¹⁴ 1 61 ^c	1332.514 1332.514				
4037		4859 ^c 5	100°C	0.0	0+			
4928.98		1194.4 ⁱ 5	38 ⁱ 13	3734.44				
1,720.70		2770.5^{i} 3	98 ⁱ 13	2158.632				
		3596.4 ⁱ 4	100 ⁱ 15	1332.514				
4953.36		841.2 ⁱ 3	14 ⁱ 3	4111.96	2+			
4733.30		913.63 ⁱ 14	$40^{i} 4$		3-			
		1684.4 ⁱ 3	26^{i} 5	3269.19	2+			
		3620.64^{i} 14	100 ⁱ 7	1332.514				
4958	4+	2452 ^c 5	100°/	2505.753				
1750	•	3626 ^c 5	67 ^c	1332.514				
4970.6		1299 ^c 5	25 ^c	3671.16				
		2344 ^c 5	100 ^c	2626.06				
		3638 ^g		1332.514				
4986.00	(6 ⁺)	578.3 3	17 <i>4</i>	4407.46	5 ⁺	M1+E2	0.00084 22	α =0.00084 22; α (K)=0.00076 20; α (L)=7.5×10 ⁻⁵ 20; α (M)=1.1×10 ⁻⁵ 3; α (N+)=4.5×10 ⁻⁷ 11 α (N)=4.5×10 ⁻⁷ 11
		720.9 2	51 4	4265.00	6+	D		
		820.5 2	13.2 19	4165.50	5+	M1+E2	0.00035 5	α =0.00035 5; α (K)=0.00031 5; α (L)=3.1×10 ⁻⁵ 5; α (M)=4.3×10 ⁻⁶ 7; α (N+)=1.9×10 ⁻⁷ 3 α (N)=1.9×10 ⁻⁷ 3
		1255.8 2	9.4 19	3730.82	4+	E2	0.0001623 23	α =0.0001623 23; α (K)=0.0001291 18; α (L)=1.260×10 ⁻⁵ 18; α (M)=1.774×10 ⁻⁶ 25 α (N)=7.64×10 ⁻⁸ 11; α (IPF)=1.88×10 ⁻⁵ 3 B(E2)(W.u.)=0.5 +4-5
		1314.5 2	34 4	3671.16	4+	E2	0.0001619 23	α =0.0001619 23; α (K)=0.0001170 17; α (L)=1.141×10 ⁻⁵ 16; α (M)=1.606×10 ⁻⁶ 23

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
4986.00	(6 ⁺)	1867.0 <i>3</i>	11.3 19	3119.87	4+	E2	0.000312 5	$\alpha(N)=6.93\times10^{-8}\ 10;\ \alpha(IPF)=3.18\times10^{-5}\ 5$ B(E2)(W.u.)=1.5 +11-15 $\alpha=0.000312\ 5;\ \alpha(K)=5.80\times10^{-5}\ 9;\ \alpha(L)=5.63\times10^{-6}\ 8;$ $\alpha(M)=7.94\times10^{-7}\ 12;\ \alpha(N+)=0.000248\ 4$ $\alpha(N)=3.44\times10^{-8}\ 5;\ \alpha(IPF)=0.000248\ 4$
		2480.6 <i>3</i>	100 6	2505.753	4+	E2	0.000584 9	B(E2)(W.u.)=0.09 +7-9 α =0.000584 9; α (K)=3.49×10 ⁻⁵ 5; α (L)=3.38×10 ⁻⁶ 5; α (M)=4.76×10 ⁻⁷ 7; α (N+)=0.000546 8 α (N)=2.07×10 ⁻⁸ 3; α (IPF)=0.000546 8
5014.45	(5-)	749.5 3	3 3	4265.00	6+	E1	0.000189 3	B(E2)(W.u.)=0.18 +13-18 α =0.000189 3; α (K)=0.0001700 24; α (L)=1.655×10 ⁻⁵ 24; α (M)=2.33×10 ⁻⁶ 4; α (N+)=1.002×10 ⁻⁷ α (N)=1.002×10 ⁻⁷ 14
		828.3 3	6 3	4186.19	(4+)	(E1)	0.0001528 22	α =0.0001528 22; α (K)=0.0001375 20; α (L)=1.337×10 ⁻⁵ 19; α (M)=1.88×10 ⁻⁶ 3 α (N)=8.11×10 ⁻⁸ 12
		848.9 <i>I</i>	3 3	4165.50	5+	E1	0.0001452 <i>21</i>	α =0.0001452 21; α (K)=0.0001307 19; α (L)=1.271×10 ⁻⁵ 18; α (M)=1.79×10 ⁻⁶ 3 α (N)=7.71×10 ⁻⁸ 11
		1283.8 4	9 3	3730.82	4+	E1	0.0001733 25	α =0.0001733 25; α (K)=5.97×10 ⁻⁵ 9; α (L)=5.78×10 ⁻⁶ 9; α (M)=8.14×10 ⁻⁷ 12; α (N+)=0.0001070 1 α (N)=3.52×10 ⁻⁸ 5; α (IPF)=0.0001070 16
		1343.3 2	55 6	3671.16	4+	E1	0.000208 3	α =0.000208 3; α (K)=5.52×10 ⁻⁵ 8; α (L)=5.35×10 ⁻⁶ 8; α (M)=7.53×10 ⁻⁷ 11; α (N+)=0.0001466 21 α (N)=3.26×10 ⁻⁸ 5; α (IPF)=0.0001465 21
		1894.7 3	100 10	3119.87	4+	E1	0.000595 9	α =0.000595 9; α (K)=3.18×10 ⁻⁵ 5; α (L)=3.07×10 ⁻⁶ 5; α (M)=4.33×10 ⁻⁷ 6; α (N+)=0.000560 8 α (N)=1.88×10 ⁻⁸ 3; α (IPF)=0.000560 8
		2508.7 4	87 10	2505.753	4+	E1	0.000989 14	α =0.000989 14; α (K)=2.12×10 ⁻⁵ 3; α (L)=2.05×10 ⁻⁶ 3; α (M)=2.88×10 ⁻⁷ 4; α (N+)=0.000966 14 α (N)=1.251×10 ⁻⁸ 18; α (IPF)=0.000966 14
5048.3	1,2	2889.6 ^a 7	1.0×10 ² <i>a</i> 4	2158.632	2+			α(11)-1.231×10 10, α(111)-0.000200 14
	-	3716 ^{ak}	≤35 ^a	1332.514	2+			
5065.02	(1=)	5048 ^a 3 3732.23 ⁱ 22	9 ^a 5 30 ⁱ 3	0.0	0 ⁺			
5065.02	(1-)	5064.79 ⁱ 7	$30^{i} \ 3$ $100^{i} \ 3$	1332.514 0.0	0 ⁺			
5091.1		2465 ^f	100 f	2626.06	-			
5106		1435 ^c 5	100°C	3671.16	4+			
5120.7	4+	2600 ^c 5 2615 ^g 3788 ^g	82 ^c	2505.753 2505.753 1332.514	4+			

							<i>y</i> (1 v .	i) (continued)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
5127.16		1392.3 ⁱ 5	18 ⁱ 7	3734.44	2+				
3127.10		3794.8^{i} 4	100^{i} 13	1332.514					
5133		3800° 5	100°13	1332.514					
5148.51	6+	740.9 2	100 10	4407.46		M1+E2	+0.4 1	0.000391 11	α =0.000391 11; α (K)=0.000351 10; α (L)=3.44×10 ⁻⁵ 10; α (M)=4.84×10 ⁻⁶ 14; α (N+)=2.09×10 ⁻⁷ 6 α (N)=2.09×10 ⁻⁷ 6
		883.5 <i>1</i>	28.6 24	4265.00	6+	D			
		982.9 3	11.9 24	4165.50	5+	M1+E2		0.000229 23	α =0.000229 23; α (K)=0.000206 21; α (L)=2.01×10 ⁻⁵ 21; α (M)=2.8×10 ⁻⁶ 3; α (N+)=1.22×10 ⁻⁷ 12 α (N)=1.22×10 ⁻⁷ 12
		1477.3 4	4.8 24	3671.16	4+	E2		0.000181 3	α =0.000181 3; α (K)=9.17×10 ⁻⁵ 13; α (L)=8.92×10 ⁻⁶ 13; α (M)=1.257×10 ⁻⁶ 18; α (N+)=7.87×10 ⁻⁵ 12 α (N)=5.43×10 ⁻⁸ 8; α (IPF)=7.86×10 ⁻⁵ 12
		2029.0 5	7.1 24	3119.87	4+	E2		0.000381 6	α =0.000381 6; α (K)=4.98×10 ⁻⁵ 7; α (L)=4.83×10 ⁻⁶ 7; α (M)=6.80×10 ⁻⁷ 10; α (N+)=0.000326 5 α (N)=2.95×10 ⁻⁸ 5; α (IPF)=0.000326 5
		2643.0 4	60 7	2505.753	4+	E2		0.000657 10	α =0.000657 10; α (K)=3.14×10 ⁻⁵ 5; α (L)=3.04×10 ⁻⁶ 5; α (M)=4.28×10 ⁻⁷ 6; α (N+)=0.000622 9 α (N)=1.86×10 ⁻⁸ 3; α (IPF)=0.000622 9
5174		2548 ^c 5	100 ^C	2626.06	3+				$u(11)-1.00 \times 10^{-3}$, $u(111)-0.000022$
5191.7		927^{h}	100	4265.00					
5205		2699° 5	100°C	2505.753					
5236.20	5(+)	2116.0 <i>I</i>	100	3119.87		D+Q			
5244	4+	2120° 5	100 ^C	3123.698					
5288.55		1248.86 ⁱ 15	100 ⁱ 12	4039.89	3-				
		3955.2 ⁱ 6	69 ⁱ 17	1332.514	2+				
		5287.8 ⁱ 7	61 ⁱ 14	0.0	0^{+}				
5318		2812 ^c 5	100 ^C	2505.753	4+				
5348.79	7-	200.2 1	5.3 4	5148.51		E1		0.00621 9	α =0.00621 9; α (K)=0.00558 8; α (L)=0.000547 8; α (M)=7.67×10 ⁻⁵ 11; α (N+)=3.22×10 ⁻⁶ 5 α (N)=3.22×10 ⁻⁶ 5 B(E1)(W.u.)=8.7×10 ⁻⁶ 10
		334.2 1	16.9 8	5014.45	(5 ⁻)	E2		0.00636 9	α =0.00636 9; α (K)=0.00570 8; α (L)=0.000575 8; α (M)=8.06×10 ⁻⁵ 12; α (N+)=3.30×10 ⁻⁶ 5 α (N)=3.30×10 ⁻⁶ 5
		362.8 1	7.6 6	4986.00	(6 ⁺)	E1		0.001128 <i>16</i>	B(E2)(W.u.)=4.9 5 α =0.001128 16; α (K)=0.001014 15; α (L)=9.92×10 ⁻⁵ 14; α (M)=1.395×10 ⁻⁵ 20; α (N+)=5.93×10 ⁻⁷ α (N)=5.93×10 ⁻⁷ 9
		1083.6 2	100.0 4	4265.00	6+	E1		9.00×10 ⁻⁵ 13	B(E1)(W.u.)= $2.10 \times 10^{-6} 25$ $\alpha = 9.00 \times 10^{-5} 13$; α (K)= $8.10 \times 10^{-5} 12$; α (L)= 7.86×10^{-6}
		1005.0 2	100.0 4	4203.00	U	EI		7.00X10 13	$\alpha = 3.00 \land 10$ 13, $\alpha(\mathbf{K}) = 6.10 \land 10$ 12, $\alpha(\mathbf{L}) = 7.80 \land 10$

							γ ⁽⁶⁰ Ni) (continued	d)		⁶⁰ ₂₈ Ni ₃₂ -26
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	I_{γ}	E_f J	\int_{f}^{π} Mult.#	$\delta^{ extit{@}}$	$lpha^\dagger$	Comments	01
	5348.79	7-	2843.0 1	3.7 4	2505.753 4+	E3		0.000528 8	11; $\alpha(M)=1.106\times10^{-6}$ 16; $\alpha(N+)=4.78\times10^{-8}$ 7 $\alpha(N)=4.78\times10^{-8}$ 7 B(E1)(W.u.)=1.04×10 ⁻⁶ 9 α =0.000528 8; $\alpha(K)=4.11\times10^{-5}$ 6; $\alpha(L)=3.99\times10^{-6}$ 6; $\alpha(M)=5.62\times10^{-7}$ 8; $\alpha(N+)=0.000482$ 7 $\alpha(N)=2.44\times10^{-8}$ 4; $\alpha(IPF)=0.000482$ 7 B(E3)(W.u.)=0.42 6	
	5379 5410.8	2+	$ 2255^{c} 5 2905^{f} 1091.42^{i} 9 $	100 ^c 100 ^f 94 ⁱ 5	3123.698 2 ⁺ 2505.753 4 ⁺					
	5446.98	2+	1091.42^{i} 9 1575.84^{i} 13 3288.5^{i} 3 4114.4^{i} 6	$94^{i} \ 3$ $100^{i} \ 7$ $27^{i} \ 7$ $99^{i} \ 12$	4355.56 2 ⁺ 3871.050 2 ⁺ 2158.632 2 ⁺ 1332.514 2 ⁺					
	5449.5	6+	2944.4 7	100	2505.753 4 ⁺			0.000787 11	α =0.000787 11; α (K)=2.62×10 ⁻⁵ 4; α (L)=2.54×10 ⁻⁶ 4; α (M)=3.58×10 ⁻⁷ 5; α (N+)=0.000758 11 α (N)=1.554×10 ⁻⁸ 22; α (IPF)=0.000758 11	Fro
96	5476.04		1888.4^{i} 3 2282.0^{i} 3	100 ⁱ 13 81 ⁱ 13	3587.72 0 ⁺ 3193.87 1 ⁺				22, 4(22)	From ENSDF
	5530	(2+)	2904 ^c 5 3371 ^c 5	67 ^c 100 ^c	2626.06 3 ⁺ 2158.632 2 ⁺					DF
	5612.40		851.9 ⁱ 3 1064.2 ⁱ 4 1592.53 ⁱ 4 1741.3 ⁱ 5 1878.0 ⁱ 4 2488.73 ⁱ 10 3453.67 ⁱ 11 4279.8 ⁱ 4 5611.8 ⁱ 4	4.5 ⁱ 7 4.8 ⁱ 9 100 ⁱ 3 3.0 ⁱ 9 5 ⁱ 1 20 ⁱ 1 30 ⁱ 1 7.7 ⁱ 14 8.2 ⁱ 12	4760.23 1,2 4547.96 1 ⁺ 4019.886 1 ⁺ 3871.050 2 ⁺ 3734.44 2 ⁺ 3123.698 2 ⁺ 2158.632 2 ⁺ 1332.514 2 ⁺ 0.0 0 ⁺	,2 ⁺				
	5663.03	7+	514.4 2	11.1 19	5148.51 6+	M1+E2		0.0012 4	α =0.0012 4; α (K)=0.0010 4; α (L)=0.00010 4; α (M)=1.5×10 ⁻⁵ 5; α (N+)=6.2×10 ⁻⁷ 18 α (N)=6.2×10 ⁻⁷ 18	
			677.7 2	100 7	4986.00 (6	M1+E2	+0.18 +17-16	0.000454 19	α =0.000454 19; α (K)=0.000408 17; α (L)=4.00×10 ⁻⁵ 17; α (M)=5.63×10 ⁻⁶ 23; α (N+)=2.43×10 ⁻⁷ 1 α (N)=2.43×10 ⁻⁷ 10 B(M1)(W.u.)=0.048 +21-48; B(E2)(W.u.)=6 +12-6	
			1255.1 3	22.2 19	4407.46 5+	E2		0.0001624 23	α =0.0001624 23; α (K)=0.0001293 19; α (L)=1.261×10 ⁻⁵ 18; α (M)=1.776×10 ⁻⁶ 25 α (N)=7.65×10 ⁻⁸ 11; α (IPF)=1.86×10 ⁻⁵ 3 B(E2)(W.u.)=2.0 +9-20	⁶⁰ ₂₈ Ni ₃₂ -26
			1397.7 2	69 <i>6</i>	4265.00 6+	M1(+E2)	-0.12 13	0.0001438 23	$\alpha = 0.0001438 \ 23; \ \alpha(K) = 9.35 \times 10^{-5} \ 14;$	5

 $E_i(level)$

Mult.#

 α^{\dagger}

Comments

 $\alpha(L)=9.08\times10^{-6}\ 14;\ \alpha(M)=1.280\times10^{-6}\ 19;$ $\alpha(N+..)=3.99\times10^{-5}$

From ENSDF

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
5663.03	7+	1498.0 4	3.7 19	4165.50	5+	E2		0.000185 3	$\alpha(N)=5.56\times10^{-8} \ 9; \ \alpha(IPF)=3.98\times10^{-5} \ 9$ B(M1)(W.u.)=(0.0038 +17-38); B(E2)(W.u.)=(0.05 +12-5); \$\alpha=0.000185 \ 3; \ \alpha(K)=8.91\times10^{-5} \ 13; \ \alpha(L)=8.67\times10^{-6} \ 13; \$\alpha(M)=1.222\times10^{-6} \ 18; \ \alpha(N+)=8.62\times10^{-5} \ 13\$ \$\alpha(N)=5.28\times10^{-8} \ 8; \ \alpha(IPF)=8.62\times10^{-5} \ 13\$ B(E2)(W.u.)=0.14 +10-14
5672.36		2478.42 ⁱ 7	100 ⁱ 4	3193.87	1+				2(32)(\(\text{Mai}\) \(\text{SII}\) \(\text{II}\)
		3046.7 ⁱ 7	13 ⁱ 4	2626.06	3 ⁺				
		3513.6 ⁱ 3	56 ⁱ 6	2158.632	2+				
5710.79		1632.99 ⁱ 18	15 ⁱ 1	4077.99	$1^+, 2^+$				
		2317.65 ⁱ 20	13 ⁱ 2	3393.14	2+				
		2392.6 ⁱ 3	11 ⁱ 1	3317.829	0^{+}				
		2517.00 ⁱ 9	68 ⁱ 2	3193.87	1+				
		2586.98 ⁱ 12	20^{i} 1	3123.698	2+				
		3426.3 ⁱ 5	26 ⁱ 7	2284.80	0^{+}				
		3551.94 ⁱ 14	36 ⁱ 2	2158.632	2+				
		5710.52 ⁱ 10	100 ⁱ 4	0.0	0_{+}				
5780.5		3153.6 <mark>&</mark> 7	82 <mark>&</mark> 13	2626.06	3+				
		3275.4 <mark>&</mark> 7	100 & <i>13</i>	2505.753	4+				
5785.1	(7^{+})	799.0 <mark>ek</mark> 2	100 ^e	4986.00	(6^{+})	D(+Q)	-0.07 + 9 - 27		
5799	2+	3293^{d} 5		2505.753	4+				
		4467 ^d 5		1332.514					
5830.8		2711 ⁸		3119.87					
5050.0		4498 <i>g</i>	100	1332.514					
5859.9		3700.9 ⁱ 9	100 ⁱ	2158.632					
5878.05		2684.19 ⁱ 12 4545.9 ⁱ 5	100 ⁱ 5 45 ⁱ 9	3193.87					
5901.69	6-	4545.9° 5 1637.0 <i>1</i>	45° 9 38 8	1332.514 4265.00		E1		0.000411 6	α =0.000411 6; α (K)=3.98×10 ⁻⁵ 6; α (L)=3.86×10 ⁻⁶ 6;
3901.09	U	1037.0 1	30 0	4203.00	U	EI		0.000411 0	$\alpha(M)=5.43\times10^{-7} 8$; $\alpha(N+)=0.000366 6$ $\alpha(N)=2.35\times10^{-8} 4$; $\alpha(IPF)=0.000366 6$
		1736.0 <i>I</i>	100 8	4165.50	5+	E1		0.000483 7	α =0.000483 7; α (K)=3.63×10 ⁻⁵ 5; α (L)=3.52×10 ⁻⁶ 5; α (M)=4.95×10 ⁻⁷ 7; α (N+)=0.000442 7 α (N)=2.15×10 ⁻⁸ 3; α (IPF)=0.000442 7
5902.44		2633.3 ⁱ 3	18 ⁱ 3	3269.19	2+				
		3276.32 ⁱ 20	24 ⁱ 3	2626.06					
		3743.71 ⁱ 13	100 ⁱ 5	2158.632					
5918.54		1562.8 ⁱ 3	100 ⁱ 10	4355.56					

							/()	(**************************************	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
5918.54		2525.4^{i} 3	83 ⁱ 15	3393.14	2+				
5931.1	1	5930.8 ^j 11	100 ^j	0.0	0^{+}	j			
5967.8		1474.6 ⁱ 3	100 ⁱ 13	4493.16	2+				
		5967.5 ⁱ 8	29 ⁱ 11	0.0	0^{+}				
6066.72		1532.65 ⁱ 12	60 ⁱ 6	4534.14	2+				
		2797.7 ⁱ 5	23 ⁱ 6	3269.19	2+				
		3440.37 ⁱ 17	100 ⁱ 9	2626.06	3 ⁺				
		6067.2 ⁱ 8	15 ⁱ 6	0.0	0^{+}				
6076.6	(8)	727 h		5348.79	7-				
6111.5	(-)	963 ^h		5148.51	6+				
6112.43	7+	963.7 3	100 7	5148.51	6+	M1+E2	+0.3 2	0.000219 7	α =0.000219 7; α (K)=0.000197 6; α (L)=1.92×10 ⁻⁵ 6; α (M)=2.70×10 ⁻⁶ 9; α (N+)=1.17×10 ⁻⁷ 4 α (N)=1.17×10 ⁻⁷ 4
		1847.2 5	61 7	4265.00	6+	M1+E2		0.00028 3	α =0.00028 3; α (K)=5.76×10 ⁻⁵ 18; α (L)=5.59×10 ⁻⁶ 18; α (M)=7.87×10 ⁻⁷ 25; α (N+)=0.000215 24 α (N)=3.42×10 ⁻⁸ 11; α (IPF)=0.000215 24
		1946.6 5	29 4	4165.50	5+	E2		0.000346 5	α =0.000346 5; α (K)=5.37×10 ⁻⁵ 8; α (L)=5.21×10 ⁻⁶ 8; α (M)=7.34×10 ⁻⁷ 11; α (N+)=0.000286 4 α (N)=3.18×10 ⁻⁸ 5; α (IPF)=0.000286 4
6181.0	1-	4848.4 <i>14</i>	10 4	1332.514	2+				a(1) 3.10×10 3, a(111) 0.000200 7
		6180.6 7	100 <i>I</i>	0.0	0_{+}	E1			$\alpha(IPF) = 0.00233 \ 4$
6229.3	(2^{+})	6229.0 ^j 11	100 <i>j</i>	0.0	0_{+}	$(E2)^{j}$			$\alpha(IPF) = 0.00180 \ 3$
6239.2		4906.1 ⁱ 5	100 ⁱ	1332.514					
6278.34	(6-)	1042.0 <i>I</i>	75 33	5236.20	5 ⁽⁺⁾	(E1)		9.68×10 ⁻⁵ <i>14</i>	α =9.68×10 ⁻⁵ 14; α (K)=8.71×10 ⁻⁵ 13; α (L)=8.46×10 ⁻⁶ 12; α (M)=1.191×10 ⁻⁶ 17; α (N+)=5.14×10 ⁻⁸ 8 α (N)=5.14×10 ⁻⁸ 8
		1264.0 ^g 1	100 33	5014.45	(5 ⁻)	(M1+E2)		0.000151 11	α =0.000151 <i>11</i> ; α (K)=0.000120 <i>8</i> ; α (L)=1.17×10 ⁻⁵ <i>8</i> ; α (M)=1.65×10 ⁻⁶ <i>11</i> ; α (N+)=1.8×10 ⁻⁵ <i>3</i> α (N)=7.1×10 ⁻⁸ <i>5</i> ; α (IPF)=1.8×10 ⁻⁵ <i>3</i>
6327.21	2+	1568.0 ⁱ 5	14 ⁱ 3	4760.23	1,2				
		2320.7 ⁱ 4	25 ⁱ 4	4006.444	2+				
		3058.0 ⁱ 7	16 ⁱ 4	3269.19	2+				
		4168.32 ⁱ 19	100 ⁱ 8	2158.632	2+				
6362.05		749.7 ⁱ 3	100 ⁱ 12	5612.40					
		3167.7 ⁱ 4	90 ⁱ 10	3193.87	1+				
6382.4	1	6382.3 ⁱ 5	100 <i>i</i>	0.0	0^{+}				
6461.10	8+	348.7 2	9 3	6112.43	7+	M1+E2		0.0037 18	α =0.0037 18; α (K)=0.0034 16; α (L)=0.00034 16; α (M)=4.7×10 ⁻⁵ 23; α (N+)=2.0×10 ⁻⁶ 9 α (N)=2.0×10 ⁻⁶ 9
		798.1 2	100 5	5663.03	7+	M1+E2	+0.45 5	0.000335 6	α =0.000335 6; α (K)=0.000301 6; α (L)=2.94×10 ⁻⁵ 6;

${\bf Adopted\ Levels,\ Gammas\ (continued)}$

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
(4(1.10	0+	1212.4.4	27.3	5148.51	C+	F2	0.0001610.22	$\alpha(M)=4.15\times10^{-6} 8; \ \alpha(N+)=1.79\times10^{-7} 3$ $\alpha(N)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$
6461.10	8+	1312.4 4	27 3	3148.31	0.	E2	0.0001618 23	α =0.0001618 23; α (K)=0.0001174 17; α (L)=1.145×10 ⁻⁵ 16; α (M)=1.612×10 ⁻⁶ 23 α (N)=6.95×10 ⁻⁸ 10; α (IPF)=3.13×10 ⁻⁵ 5 B(E2)(W.u.)=1.5 +7-15
		1475.0 4	16 <i>I</i>	4986.00	(6 ⁺)	E2	0.000180 3	α =0.000180 3; α (K)=9.20×10 ⁻⁵ 13; α (L)=8.95×10 ⁻⁶ 13; α (M)=1.261×10 ⁻⁶ 18; α (N+)=7.79×10 ⁻⁵ 11 α (N)=5.45×10 ⁻⁸ 8; α (IPF)=7.78×10 ⁻⁵ 11 B(E2)(W.u.)=0.49 +21-49
		2195.9 5	6 1	4265.00	6+	E2	0.000456 7	α =0.000456 7; α (K)=4.32×10 ⁻⁵ 6; α (L)=4.18×10 ⁻⁶ 6; α (M)=5.89×10 ⁻⁷ 9; α (N+)=0.000408 6 α (N)=2.56×10 ⁻⁸ 4; α (IPF)=0.000408 6 B(E2)(W.u.)=0.025 +12-25
6465.25	1-	1621.2 ⁱ 5	19 ⁱ 6	4843.93	2+			
		2578.2 ⁱ 5	16 ⁱ 5	3887.36	2+			
		5132.6 ⁱ 5	31 ⁱ 7	1332.514	2+			
		6464.9 ⁱ 3	100 ⁱ 6	0.0	0+	E1		α (IPF)=0.00240 4 Mult.: From (γ, γ') ,(pol γ, γ').
6489.28		3369.4 ⁱ 4	46 ⁱ 8	3119.87	4+			
		3983.6 ⁱ 4	100 ⁱ 12	2505.753	4+			
		4204.0 ⁱ 7	42 ⁱ 12	2284.80	0^{+}			
6515.0	1+	6514.6 ^j 9	100 ^j	0.0	0^{+}	M1 ^j		$\alpha(IPF) = 0.001745 \ 25$
6516.72		2198.1 ⁱ 4	100 ⁱ 19	4318.58	2+			
		2496.9 ⁱ 3	70 ⁱ 12	4019.886	1+			
6567.33		2547.35 ⁱ 21	100 ⁱ	4019.886	1+			
6587.6	1-	4302.0 ^j 11	30 ^j 6	2284.80	0^{+}	j		
		5254.7 ^j 10	19 ^j 6	1332.514	2+	j		
		6587.6 ^j 8	100 ^j 3	0.0	0_{+}	E1 <i>j</i>		$\alpha(IPF)=0.00243 \ 4$
6647.17		2607.10 ⁱ 22	55 ⁱ 7	4039.89	3-			
		2627.4 ⁱ 3	39 ⁱ 6	4019.886	1+			
		3027.86 ⁱ 16	100 ⁱ 8		3+			
		4021.4 ⁱ 5	100 ⁱ 11	2626.06	3+			
6672.4	(9)	595 ^h		6076.6	(8)			
6718.5	1-	6718.1 ^j 10	100 ^j	0.0	0_{+}	E1 ^j		$\alpha(IPF) = 0.00246 \ 4$
6736.5	(1)	4577.7 ^j 13	100 ^j 21	2158.632		j		
		6736.1 ^{<i>j</i>} 16	85 ^j 21	0.0	0_{+}	j		
6756.4		2831.3 ⁱ 6	78 ⁱ 22	3925.18	$2^+,3^+$			
		3487.1 ⁱ 4	100 ⁱ 22	3269.19	2+			

 $E_i(level)$

7038.7

7056.27

7101.4

7207.6

7222.80

7250.0

7316.13

7339.68

7360.97

7380.3

7414.16

7433.45

7465.66

8+

8+

9+

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
7473.49	1+	2938.6 ⁱ 4	80 ⁱ 17	4534.14	2+			
		7473.0 ⁱ 8	100 ⁱ 20	0.0	0+	M1		α (IPF)=0.00193 3 Mult.: from (γ, γ') ,(pol γ, γ').
7495.2		6162.5 ⁱ 6	100.0 ⁱ	1332.514	2+			Mate. Hom (7,7),(por 7,7).
7531.4	8+	1418.9 4	75 25	6112.43		M1+E2	0.000158 13	α =0.000158 13; α (K)=9.5×10 ⁻⁵ 5; α (L)=9.3×10 ⁻⁶ 5; α (M)=1.30×10 ⁻⁶ 7; α (N+)=5.2×10 ⁻⁵ 8
								$\alpha(N)=5.6\times10^{-8} \ 3; \ \alpha(IPF)=5.2\times10^{-5} \ 8$
		3266.9 8	100 25	4265.00	6+	E2	0.000919 13	α =0.000919 13; α (K)=2.22×10 ⁻⁵ 4; α (L)=2.15×10 ⁻⁶ 3; α (M)=3.02×10 ⁻⁷ 5; α (N+)=0.000894 13
								$\alpha(N)=1.315\times10^{-8} \ 19; \ \alpha(IPF)=0.000894 \ 13$
7552.0		5393.3 ⁱ 3	100.0	2158.632				
7559.5	1-	7559.0 ^j 8	100 <i>j</i>	0.0	0+	E1 <i>j</i>		$\alpha(IPF) = 0.00262 \ 4$
7627.4 7647.4	1-	677 7646.9 <i>7</i>	100	6950.4 0.0	(10) 0 ⁺	E1		$\alpha(IPF)=0.00264$ 4
7657.6	1+	7657.1 ^j 8	100 ^j	0.0	0+	$M1^{j}$		$\alpha(IPF)=0.00196 \ 3$
7684.1		6351.2 ⁱ 4	100.0 ⁱ	1332.514	2+			
7690.0	1-	3354.5 ⁱ 4	100^{i} 11	4335.52				
		6358.8 ^j 16	2 <i>j</i> 1	1332.514		j		
		7689.5 ⁱ 5	90 ⁱ 13	0.0	0+	E1		α (IPF)=0.00265 4 Mult.: from (γ, γ') ,(pol γ, γ').
7691.4	(9^{-})	2500 ^h		5191.7				
7732.5	8+	2586.2 6	75 25	5148.51	6+	E2	0.000632 9	α =0.000632 9; α (K)=3.25×10 ⁻⁵ 5; α (L)=3.15×10 ⁻⁶ 5; α (M)=4.44×10 ⁻⁷ 7; α (N+)=0.000595 9 α (N)=1.93×10 ⁻⁸ 3; α (IPF)=0.000595 9
		3465.8 8	100 25	4265.00	6+	E2	0.000995 14	α =0.000995 14; α (K)=2.02×10 ⁻⁵ 3; α (L)=1.96×10 ⁻⁶ 3; α (M)=2.76×10 ⁻⁷ 4; α (N+)=0.000972 14 α (N)=1.199×10 ⁻⁸ 17; α (IPF)=0.000972 14
7747.6	1-	5461.9 ^j 11	20 ^j 4	2284.80	0+	j		$u(1)-1.175\times 10^{-17}$, $u(111)-0.000772$ 14
1777.0	1	5590.1^{j} 10	16.7^{j} 19	2158.632		j		
		6413.8 ^j 9	$50^{j} 6$	1332.514		j		
		7747.3 ^j 8	100 ^j 8	0.0	0+	E1 j		$\alpha(IPF)=0.00266 \ 4$
7760.33	8-	294.7 2	20 10	7465.66	(7-)	(M1+E2)	0.006 4	α =0.006 4; α (K)=0.006 4; α (L)=0.0006 4; α (M)=8.E-5 5; α (N+)=3.4×10 ⁻⁶ 18 α (N)=3.4×10 ⁻⁶ 18
		948.5 <i>3</i>	20 10	6810.95	9-	M1+E2	0.00025 3	α =0.00025 3; α (K)=0.000223 24; α (L)=2.18×10 ⁻⁵ 24; α (M)=3.1×10 ⁻⁶ 4; α (N)=1.32×10 ⁻⁷ 14 α (N)=1.32×10 ⁻⁷ 14
		1648.0 <i>4</i>	40 10	6112.43	7+	E1	0.000419 6	α =0.000419 6; α (K)=3.94×10 ⁻⁵ 6; α (L)=3.82×10 ⁻⁶ 6; α (M)=5.37×10 ⁻⁷ 8; α (N+)=0.000375 6 α (N)=2.33×10 ⁻⁸ 4; α (IPF)=0.000375 6
I		1860.4 5	10 10	5901.69	6-	E2	0.000310 5	$\alpha(N)=2.33\times10^{-6} 4$; $\alpha(IPF)=0.0003/5 6$ $\alpha=0.000310 5$; $\alpha(K)=5.84\times10^{-5} 9$; $\alpha(L)=5.67\times10^{-6} 8$; $\alpha(M)=7.99\times10^{-7}$

γ (60Ni) (continued)

E_i (level)	\mathbf{J}_{i}^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
7760.33	8-	2411.4 6	100 10	5348.79	7-	M1+E2		0.00051 4	12; α (N+)=0.000245 4 α (N)=3.46×10 ⁻⁸ 5; α (IPF)=0.000245 4 α =0.00051 4; α (K)=3.60×10 ⁻⁵ 9; α (L)=3.48×10 ⁻⁶ 9; α (M)=4.91×10 ⁻⁷ 12; α (N+)=0.00047 4 α (N)=2.13×10 ⁻⁸ 5; α (IPF)=0.00047 4
7761.8	1+	1399.4 ⁱ 4	37 ⁱ 12	6362.05					
		4492.3 ⁱ 6	81 ⁱ 15	3269.19	2+				
		7761.6 ⁱ 8	$100^{i} 23$	0.0	0+	M1			α (IPF)=0.00198 3 Mult.: from (γ, γ') ,(pol γ, γ').
7798.9		1472.6 ⁱ 6	$1.0 \times 10^{2} i \ 3$	6327.21	2+				
		5640.4 ⁱ 7	95 ⁱ 24	2158.632	2+				
7813.5		1141 ^h		6672.4	(9)				
7818.02		4693.6 ⁱ 5	100.0 ⁱ	3123.698	2+				
7850.3	1+	7849.7 ^j 10	100 ^j	0.0	0_{+}	M1 ^j			$\alpha(IPF) = 0.00200 \ 3$
7880.4	1+	7879.8 ^j 12	100 <i>j</i>	0.0	0_{+}	M1 ^j			$\alpha(IPF) = 0.00200 \ 3$
7926.7	1+	7926.1 ^{<i>j</i>} <i>17</i>	100 ^j	0.0	0_{+}	M1 ^j			$\alpha(IPF)=0.00201 \ 3$
7950.93	1+	3632.4 ⁱ 6	89 ⁱ 23	4318.58	2+				
		4080.0 ⁱ 7	100 ⁱ 23	3871.050	2+				
		7951.4 ⁱ 8	93 ⁱ 23	0.0	0_{+}	M1			$\alpha(IPF) = 0.00201 \ 3$
7000 01	9+	547.2.4	7.7	7422.45	9+	D			Mult.: from (γ, γ') , (pol γ, γ').
7980.81	9.	547.2 <i>4</i> 1519.9 <i>4</i>	7 <i>7</i> 100 <i>36</i>	7433.45 6461.10	-	D M1+E2		0.000176 15	α =0.000176 15; α (K)=8.3×10 ⁻⁵ 4; α (L)=8.1×10 ⁻⁶ 4;
		1319.9 4	100 30	0401.10	0	WII+L2		0.000170 13	$\alpha(M)=1.14\times10^{-6}$ 5; $\alpha(N+)=8.3\times10^{-5}$ 12 $\alpha(N)=4.94\times10^{-8}$ 21; $\alpha(IPF)=8.3\times10^{-5}$ 12
		2317.5 3	71 <i>21</i>	5663.03	7+	E2		0.000511 8	α =0.000511 8; α (K)=3.93×10 ⁻⁵ 6; α (L)=3.80×10 ⁻⁶ 6; α (M)=5.36×10 ⁻⁷ 8; α (N+)=0.000467 7 α (N)=2.33×10 ⁻⁸ 4; α (IPF)=0.000467 7
8042.6	1+	8042.0 ^j 16	100 ^j	0.0	0^{+}	M1 ^{<i>j</i>}			(11) 2.55×10 1, u(11) 0.0001017
8044.26	9-	283.9 2	27 4	7760.33		M1+E2		0.007 4	α =0.007 4; α (K)=0.007 4; α (L)=0.0007 4; α (M)=9.E-5 6; α (N+)=3.8×10 ⁻⁶ 21 α (N)=3.8×10 ⁻⁶ 21
		352.9 2	44 6	7691.4	(9-)	M1+E2		0.0036 17	α =0.0036 17; α (K)=0.0032 15; α (L)=0.00032 16; α (M)=4.5×10 ⁻⁵ 22; α (N+)=1.9×10 ⁻⁶ 9 α (N)=1.9×10 ⁻⁶ 9
		683.3 2	2.1 2	7360.97	(8)	(D+Q)			w(1) 1.7/10 7
		1207.0 3	100 10	6837.2	8-	M1+E2	+0.37 4	0.0001471 22	α =0.0001471 22; α (K)=0.0001257 18; α (L)=1.223×10 ⁻⁵ 18; α (M)=1.724×10 ⁻⁶ 25
									$\alpha(N)=7.47\times10^{-8}\ II;\ \alpha(IPF)=7.37\times10^{-6}\ I3$
									B(M1)(W.u.)=0.10 +11-10; $B(E2)(W.u.)=18 +19-18$
		1233.0 <i>3</i>	23 4	6810.95	9-	D			

$\gamma(^{60}\text{Ni})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
								$\alpha(M)=5.73\times10^{-7} 8$; $\alpha(N+)=0.000324 5$ $\alpha(N)=2.48\times10^{-8} 4$; $\alpha(IPF)=0.000323 5$
								B(E1)(W.u.)=0.00013 +14-13
8044.26	9-	2696.1 6	60 4	5348.79	7-	E2	0.000680 10	α =0.000680 10; α (K)=3.03×10 ⁻⁵ 5; α (L)=2.94×10 ⁻⁶ 5; α (M)=4.14×10 ⁻⁷ 6; α (N+)=0.000646 9 α (N)=1.80×10 ⁻⁸ 3; α (IPF)=0.000646 9
	- 1				- 1			B(E2)(W.u.)=1.6 16
8074.4	8+	3807.8 9	100	4265.00	6 ⁺	E2	0.001123 16	α =0.001123 16; α (K)=1.752×10 ⁻⁵ 25; α (L)=1.692×10 ⁻⁶ 24; α (M)=2.38×10 ⁻⁷ 4; α (N+)=0.001104 α (N)=1.037×10 ⁻⁸ 15; α (IPF)=0.001104 16
8086.0	1-	5800.8 ^j 8	16.0 ^j 25	2284.80	0^{+}	j		
		6752.3 ^{<i>j</i>} 13	7.4^{j} 25	1332.514		j		
		8085.7 ^j 7	$100^{j} 25$	0.0	0+	E1 <i>j</i>		
8111.8	1+	8111.2 <i>12</i>	100	0.0	0^{+}	M1		
8126.6	1-	8126.0 7	100 .	0.0	0_{+}	E1		
8189.1	1	8188.5 ^j 7	100^{j}	0.0	0_{+}	<i>j</i>		
8261.5	1-	8260.9 ^{<i>j</i>} 8	100 ^j	0.0	0_{+}	E1 ^{<i>j</i>}		
8272.09	10-	1435.0 4	18 2	6837.2	8-	E2	0.0001726 25	α =0.0001726 25; α (K)=9.73×10 ⁻⁵ 14; α (L)=9.48×10 ⁻⁶ 14; α (M)=1.335×10 ⁻⁶ 19; α (N+)=6.44×10 ⁻⁵ α (N)=5.76×10 ⁻⁸ 8; α (IPF)=6.44×10 ⁻⁵ 10
		1461.6 <i>4</i>	100 15	6810.95	9-	M1+E2	0.000164 14	α =0.000164 14; α (K)=9.0×10 ⁻⁵ 5; α (L)=8.7×10 ⁻⁶ 5; α (M)=1.23×10 ⁻⁶ α (N+)=6.4×10 ⁻⁵ 9
								$\alpha(N)=5.33\times10^{-8} \ 24; \ \alpha(IPF)=6.4\times10^{-5} \ 9$
8286.3	(1^{+})	2613.9 ⁱ 3	100 ⁱ 16	5672.36				
		5659.9 ⁱ 8	58 ⁱ 16	2626.06				
8294.0	1-	6135.5 ^j 11	54 ^{<i>j</i>} 8	2158.632		<i>J</i> :		
		8293.0 ^j 10	100^{j} 7	0.0	0+	E1 ^j		
8351.8	1+	8351.2 ^j 13	100 ^j	0.0	0+	$M1^{j}$		
8359.3	1+	8358.7 ^j 15	100 ^j	0.0	0 ⁺	M1 ^j	0.000027.12	0.000000 10 (77) 0.40 (10=5.4) (7) 0.41 (40=6.4) (3.5 0.41 (40=6.4)
8389.9	9-	3039.2 7	100	5348.79	7-	E2	0.000826 12	α =0.000826 12; α (K)=2.49×10 ⁻⁵ 4; α (L)=2.41×10 ⁻⁶ 4; α (M)=3.40×10 ⁻⁷ 5; α (N+)=0.000799 12 α (N)=1.476×10 ⁻⁸ 21; α (IPF)=0.000799 12
8407	1-	8406 <i>4</i>	100	0.0	0^{+}	E1		α(11)-1.110/10 21, α(111)-0.000179 12
8426.69	9-	3077.8 1	100	5348.79	7-	E2	0.000842 12	α =0.000842 12; α (K)=2.44×10 ⁻⁵ 4; α (L)=2.36×10 ⁻⁶ 4; α (M)=3.33×10 ⁻⁷ 5; α (N+)=0.000815 12
0.451.5	1	0.450.01.15	100 j	0.0	0+	j		$\alpha(N)=1.447\times10^{-8} \ 21; \ \alpha(IPF)=0.000815 \ 12$
8451.5	1	8450.9 ^{<i>j</i>} 16	100^{j}	0.0	0+			
8464.0 8485.50	1- 9-	8463.4 ^{<i>j</i>} 13 1648.2 4	100 ^j 86 <i>14</i>	0.0 6837.2	0 ⁺	E1 ^j M1+E2	0.000211 20	α =0.000211 20; α (K)=7.1×10 ⁻⁵ 3; α (L)=6.9×10 ⁻⁶ 3; α (M)=9.7×10 ⁻⁷ 4; α (N+)=0.000132 17
								$\alpha(N)=4.23\times10^{-8}$ 16; $\alpha(IPF)=0.000132$ 17

$$\frac{E_{i}(\text{level})}{I_{i}} = \frac{J_{i}^{\pi}}{1674.5 \ 4} = \frac{E_{\gamma}^{\ddagger}}{29 \ 14} = \frac{I_{\gamma}}{6810.95} = \frac{E_{f}}{9^{-}} = \frac{J_{f}^{\pi}}{M1} = \frac{Mult.^{\#}}{0.000200 \ 3} = \frac{\alpha^{\dagger}}{\alpha = 0.000200 \ 3; \ \alpha(\text{K}) = 6.68 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 6.48 \times 10^{-6} \ 9; \ \alpha(\text{M}) = 9.14 \times 10^{-7} }$$

38

1+

8778.6

8777.9^j 10

 100^{j}

 0^{+}

0.0

 $M1^{j}$

							/ \	, (
E_i (level) J	π i	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
8781.6 1 ⁻	-	8780.9 ^j 10	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			
8793.6 1 ⁺	+	7459.5 ^j 11	100 ^j 20	1332.514	2+	j			
		8795.2 ^j 16	82 ^j 19	0.0	0_{+}	$M1^{j}$			
8846.5 1+	+	8845.8 ^j 14	100 <i>j</i>	0.0	0_{+}	M1 ^j			
8871.7 1+	+	8871.0 ^j <i>16</i>	100 <i>j</i>	0.0	0_{+}	$M1^{j}$			
8890.5 1+	+	8889.8 ^j 12	100 <i>j</i>	0.0	0_{+}	M1 ^j			
8924.1 1	-	8923.4 ^j 10	100 ^j	0.0	0_{+}	E1 ^j			
9010.5	-	9009.8 ^j 19	100 ^j	0.0	0_{+}	E1 ^j			
9045.20		5173.6 ⁱ 3	100 ⁱ	3871.050	2+				
9053.3	-	9052.6 ^j 24	100 <i>j</i>	0.0	0_{+}	E1 ^j			
9068.9	+	9068.2 ^j 13	100 ^j	0.0	0_{+}	$M1^{j}$			
9076.66		5759.1 ⁱ 7	100 ⁱ 21	3317.829	0_{+}				
		5952.4 ⁱ 5	100 ⁱ 21	3123.698					
9092.3	-	7761.2 19	25 8	1332.514		E1			$\alpha(IPF) = 0.00266 \ 4$
0122 01 10	n-	9091.2 8 601.6 2	100 25 11 6	0.0 8521.11	0 ⁺ 10 ⁻	E1			
9123.01 10	J	637.5 2	100 6	8485.50	9 ⁻	D M1+E2		0.00065 15	α =0.00065 15; α (K)=0.00059 13; α (L)=5.8×10 ⁻⁵ 13;
		037.3 2	100 0	6465.50	9	WII+EZ		0.00003 13	α =0.00003 17, α (R)=0.00039 13, α (L)=3.8×10 13, α (M)=8.1×10 ⁻⁶ 18; α (N+)=3.5×10 ⁻⁷ 8 α (N)=3.5×10 ⁻⁷ 8
		2311.8 6	28 5	6810.95	9-	M1+E2		0.00047 4	α =0.00047 4; α (K)=3.87×10 ⁻⁵ 10; α (L)=3.75×10 ⁻⁶ 10; α (M)=5.28×10 ⁻⁷ 13; α (N+)=0.00043 4 α (N)=2.29×10 ⁻⁸ 6; α (IPF)=0.00043 4
9132.2	_	9131.5 ^j 15	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			u(1) 2.25/10 0, u(11) 0.00015 /
9132.27 11		611.5 2	100 3	8521.11	10-	M1+E2	+0.08 7	0.000561 10	α =0.000561 10; α (K)=0.000504 9; α (L)=4.94×10 ⁻⁵ 9;
									$\alpha(M)=6.96\times10^{-6} \ 12; \ \alpha(N+)=3.00\times10^{-7} \ 5$ $\alpha(N)=3.00\times10^{-7} \ 5$ $\alpha(M)=6.96\times10^{-7} \ 5$ $\alpha(M)=6.96\times10^{-6} \ 12; \ \alpha(N+)=3.00\times10^{-7} \ 5$ $\alpha(N)=3.00\times10^{-7} \ 5$ $\alpha(N)=3.00\times10^{-7} \ 5$ $\alpha(N)=3.00\times10^{-7} \ 5$
		1088.2 3	2.8 4	8044.26	9-	E2		0.000198 3	α =0.000198 3; α (K)=0.0001780 25; α (L)=1.741×10 ⁻⁵ 25; α (M)=2.45×10 ⁻⁶ 4; α (N+)=1.054×10 ⁻⁷ α (N)=1.054×10 ⁻⁷ 15 B(E2)(W.u.)=4.0 +19-24
9149 1	-	9148.7 ^j 30	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			
9256.0 1	-	9255.2 ^j 25	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			
9264.30 11	1-	874.1 <i>3</i>	99	8389.9	9-	E2		0.000337 5	α =0.000337 5; α (K)=0.000303 5; α (L)=2.97×10 ⁻⁵ 5; α (M)=4.18×10 ⁻⁶ 6; α (N+)=1.79×10 ⁻⁷ 3 α (N)=1.79×10 ⁻⁷ 3
		2452.2 6	100 9	6810.95	9-	E2		0.000571 8	α =0.000571 8; α (K)=3.56×10 ⁻⁵ 5; α (L)=3.45×10 ⁻⁶ 5; α (M)=4.86×10 ⁻⁷ 7; α (N+)=0.000532 8 α (N)=2.11×10 ⁻⁸ 3; α (IPF)=0.000532 8
9266.5 1	-	9265.7 ^j 24	100 ^j	0.0	0+	E1 <i>j</i>			a(1), 2.11.110

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
9274.7	1	9273.9 ^j 15	100 ^j	0.0	0+	\overline{j}			
9301.2	1+	9300.4 ^j 15	100 ^j	0.0	0^{+}	M1 ^j			

 α =0.00044 4; α (K)=4.11×10⁻⁵ 11; α (L)=3.98×10⁻⁶ 10; α (M)=5.60×10⁻⁷

 $\alpha(N)=2.69\times10^{-8}$ 4; $\alpha(IPF)=0.000378$ 6

 $\alpha(N)=2.43\times10^{-8}$ 6; $\alpha(IPF)=0.00039$ 4

Comments

 $\alpha = 0.00034$ 3; $\alpha(K) = 5.02 \times 10^{-5}$ 14; $\alpha(L) = 4.87 \times 10^{-6}$ 14; $\alpha(M) = 6.86 \times 10^{-7}$

 α =0.000496 7: α (K)=4.03×10⁻⁵ 6: α (L)=3.90×10⁻⁶ 6: α (M)=5.49×10⁻⁷ 8:

0.000718 10 α =0.000718 10; α (K)=2.87×10⁻⁵ 4; α (L)=2.78×10⁻⁶ 4; α (M)=3.92×10⁻⁷

 α =0.000211 3; α (K)=7.90×10⁻⁵ 11; α (L)=7.68×10⁻⁶ 11;

 α =0.000340 5; α (K)=5.43×10⁻⁵ 8; α (L)=5.27×10⁻⁶ 8; α (M)=7.43×10⁻⁷

 α =0.000428 6: α (K)=4.54×10⁻⁵ 7: α (L)=4.40×10⁻⁶ 7: α (M)=6.20×10⁻⁷ 9:

 $\alpha(N+..)=0.000451 7$

 $\alpha(N)=2.38\times10^{-8}$ 4; $\alpha(IPF)=0.000451$ 7

 α =0.000555 8; α (K)=3.65×10⁻⁵ 6; α (L)=3.54×10⁻⁶ 5; α (M)=4.98×10⁻⁷ 7;

 α (N+..)=0.000515 8

20; $\alpha(N+..)=0.00028$ 3

6; $\alpha(N+...)=0.000686$ 10

11; $\alpha(N+..)=0.000280$ 4

 α (N+..)=0.000378 6

15; $\alpha(N+..)=0.00039$ 4

 $\alpha(N)=1.703\times10^{-8}$ 24; $\alpha(IPF)=0.000686$ 10

 $\alpha(M)=1.082\times10^{-6}$ 16; $\alpha(N+..)=0.0001237$ $\alpha(N)=4.68\times10^{-8}$ 7; $\alpha(IPF)=0.0001236$ 18

 $\alpha(N)=3.22\times10^{-8}$ 5; $\alpha(IPF)=0.000280$ 4

 $\alpha(N)=2.98\times10^{-8}$ 9: $\alpha(IPF)=0.00028$ 3

 $\alpha(N)=2.16\times10^{-8}$ 3; $\alpha(IPF)=0.000515$ 8

 α =0.001180 17; α (K)=1.777×10⁻⁵ 25; α (L)=1.715×10⁻⁶ 24;

 $\alpha(M)=2.41\times10^{-7}$ 4; $\alpha(N+..)=0.001160$

 $\alpha(N)=1.049\times10^{-8}$ 15: $\alpha(IPF)=0.001160$ 17

3204.6 7

 E_{ν}^{\ddagger}

9307.5 14

5306.7ⁱ 4

9351.8^j 21

9394.7*j* 15

9409.9^j 17

9452.3^j 16

7303.2^j 16

9464.5^j 15

9466.8^j 35

9504.1^j 17

9598.2^j 15

9639.4^j 21

8326.0 16

9658.5 9

1590.9 4

1934.0 5

2134.4 5

2233.0 5

2284.9 6

2416.3 6

2854.4 7

2785.2 7

1992.9 5

 $E_i(level)$

9308.3

9346.82

9352.6

9395.5

9410.7

9426.2

9453.1

9463.9

9468

9504.9

9599.0

9622.5

9640.2 9659.3

9665.67

 10^{+}

1+

1-

 10^{-}

1-

 10^{+}

 I_{γ}

100

100.0

100^J

100*j*

 100^{j}

100

100^j

100^j

100^j

 100^{j}

100

100^j

11 4

100 23

33 7

27 7

27 7

20 7

20 7

47 7

100 13

 $61^{j} 20$

 $1.0 \times 10^2 j$ 3

 \mathbf{E}_f

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8074.4

7732.5

7531.4

7433.45

7380.3

7250.0

6810.95

1332.514 2+

6837.2

2158.632 2+

7433.45

4039.89

 0^{+}

3-

 0^{+}

 0^{+}

 0^{+}

9+

 0^{+}

 0^{+}

 0^{+}

 0^{+}

 0^{+}

8-

 0^{+}

 0^{+}

8+

8+

8+

9+

8+

8+

9-

13 7

E2

Adopted Levels, Gammas (continued)

 γ (60Ni) (continued)

 α^{\dagger}

0.00034 3

0.000211 3

0.000340.5

0.000428 6

0.00044 4

0.000496 7

0.000555 8

0.001180 17

Mult.#

E1

E1^J

E1*j*

E1^j

 $M1^{j}$

 $E1^{j}$

 $M1^{j}$

E1^j

E1*j*

E2

E1^j

E1

E2

E2

E2

E2

E2

E1

M1+E2

M1+E2

6461.10 8+

0.000893 13

 α =0.000893 13; α (K)=2.29×10⁻⁵ 4; α (L)=2.21×10⁻⁶ 4; α (M)=3.12×10⁻⁷

 $^{60}_{28}\mathrm{Ni}_{32}$ -41

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.#	α^{\dagger}	Comments
								5; $\alpha(N+)=0.000868$ 13 $\alpha(N)=1.356\times10^{-8}$ 19; $\alpha(IPF)=0.000868$ 13
9701.4	1-	9700.6 ^j 15	100 ^j	0.0	0^{+}	E1 <i>j</i>		$u(N)=1.550\times 10^{-1}$ 19; $u(PF)=0.0000008$ 15
9701.4 9714.9	(10^{+})	1287.9 <i>4</i>	100	8426.69	9-	(E1)	0.0001757 25	α =0.0001757 25; α (K)=5.93×10 ⁻⁵ 9; α (L)=5.75×10 ⁻⁶ 8; α (M)=8.10×10 ⁻⁷
,,,,,	(10)	1207.5	100	0.120.09		(L1)	0.0001737 23	12; $\alpha(N+)=0.0001098 I$
								$\alpha(N)=3.50\times10^{-8}$ 5; $\alpha(IPF)=0.0001098$ 16
9718.27	11-	454.0 2	99	9264.30	11^{-}	M1	0.001084 <i>16</i>	α =0.001084 16; α (K)=0.000974 14; α (L)=9.59×10 ⁻⁵ 14; α (M)=1.351×10 ⁻⁵
								19; $\alpha(N+)=5.81\times10^{-7}$
		11060.3	65.6	0.521 11	1.0-	N/1 - E0	0.000157.10	$\alpha(N)=5.81\times10^{-7}$ 9
		1196.8 <i>3</i>	65 6	8521.11	10-	M1+E2	0.000157 12	α =0.000157 <i>12</i> ; α (K)=0.000135 <i>10</i> ; α (L)=1.31×10 ⁻⁵ <i>10</i> ; α (M)=1.85×10 ⁻⁶ <i>13</i> ; α (N+)=7.2×10 ⁻⁶ <i>13</i>
								$\alpha(N)=8.0\times10^{-8}$ 6; $\alpha(IPF)=7.2\times10^{-6}$ 13
		1447.1 <i>4</i>	41 6	8272.09	10-	M1+E2	0.000162 14	$\alpha = 0.000162 \ 14; \ \alpha(K) = 9.2 \times 10^{-5} \ 5; \ \alpha(L) = 8.9 \times 10^{-6} \ 5; \ \alpha(M) = 1.25 \times 10^{-6} \ 6;$
						· 		$\alpha(N+)=6.0\times10^{-5}$ 9
								$\alpha(N)=5.43\times10^{-8} \ 25; \ \alpha(IPF)=6.0\times10^{-5} \ 9$
		2905.9 7	100 6	6810.95	9-	E2	0.000770 11	α =0.000770 11; α (K)=2.68×10 ⁻⁵ 4; α (L)=2.59×10 ⁻⁶ 4; α (M)=3.65×10 ⁻⁷ 6
								α(N+)=0.000740 11
0721.0	1-	9720.2 ^j 18	100 <i>j</i>	0.0	0+	E1 <i>j</i>		$\alpha(N)=1.588\times10^{-8} \ 23; \ \alpha(IPF)=0.000740 \ 11$
9721.0 9751.5	1 ⁻ 1 ⁻	9720.2^{j} 18 9750.6^{j} 23	100^{j}	0.0	0+	E1 ^j		
9760.42	1 11 ⁻	1239.0 3	44 5		10 ⁻	M1+E2	0.000152 11	α =0.000152 11; α (K)=0.000125 8; α (L)=1.22×10 ⁻⁵ 8; α (M)=1.72×10 ⁻⁶ 12
7700.12	11	1237.03	113	0321.11	10	WITTEL	0.000132 11	$\alpha(N+)=1.33\times10^{-5}$ 23
								$\alpha(N)=7.4\times10^{-8}$ 5; $\alpha(IPF)=1.33\times10^{-5}$ 22
		2948.8 7	100 9	6810.95	9-	E2	0.000789 11	α =0.000789 11; α (K)=2.62×10 ⁻⁵ 4; α (L)=2.53×10 ⁻⁶ 4; α (M)=3.57×10 ⁻⁷ 5
								$\alpha(N+)=0.000759 \ 11$
		;	i		- 1	i		$\alpha(N)=1.550\times10^{-8} 22$; $\alpha(IPF)=0.000759 11$
9774.8	1-	$9773.9^{j}20$	100^{j}	0.0	0+	E1 ^j		
9807.5	1-	9806.6 ^j 19	100^{j}	0.0	0+	E1 ^j		
9831	1+	9830 ^{<i>j</i>} 4 9831.1 ^{<i>j</i>} 21	100^{j} 100^{j}	0.0	0^{+}	M1 ^j E1 ^j		
9832.0	1- 1-	9831.1 ^j 21 9870.4 ^j 20	100^{j} 100^{j}	0.0	0+	E1 <i>j</i> E1 <i>j</i>		
9871.3 9887.9	1 10 ⁺	9870.4 ⁷ 20 2638.4 6	100 50	0.0 7250.0	8 ⁺	E1 ³	0.000655 10	α =0.000655 10; α (K)=3.15×10 ⁻⁵ 5; α (L)=3.04×10 ⁻⁶ 5; α (M)=4.29×10 ⁻⁷ (
2001.7	10	2030. 4 0	100 30	1230.0	o	Li2	0.000033 10	α =0.000033 10; α (N)=3.13×10 × 3; α (L)=3.04×10 × 3; α (N1)=4.29×10 × 6 α (N+)=0.000620 9
								$\alpha(N)=1.86\times10^{-8}$ 3; $\alpha(IPF)=0.000620$ 9
		3079.0 7	100 50	6810.95	9-	E1	0.001289 18	α =0.001289 18; α (K)=1.607×10 ⁻⁵ 23; α (L)=1.550×10 ⁻⁶ 22;
								$\alpha(M)=2.18\times10^{-7} \ 3; \ \alpha(N+)=0.001271$
		•						$\alpha(N)=9.49\times10^{-9} I4$; $\alpha(IPF)=0.001271 I8$
9893.5	1-	9892.6 ^j 17	100 ^j	0.0	0+	E1 <i>j</i>		
0050 7		5933.3 ⁱ 7	100 ⁱ	4019.886	1+			
9953.7 9960.14	11-	827.8 6	15 8	9132.27	11-	M1	0.000293 5	α =0.000293 5; α (K)=0.000264 4; α (L)=2.57×10 ⁻⁵ 4; α (M)=3.63×10 ⁻⁶ 6;

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
9960.14	11-	836.4 3	100 8	9123.01 10-	M1+E2		0.00033 5	α =0.00033 5; α (K)=0.00030 4; α (L)=2.9×10 ⁻⁵ 4; α (M)=4.1×10 ⁻⁶ 6; α (N+)=1.77×10 ⁻⁷ 24 α (N)=1.77×10 ⁻⁷ 24
		1438.6 4	38 8	8521.11 10-	M1+E2		0.000160 13	α =0.000160 13; α (K)=9.3×10 ⁻⁵ 5; α (L)=9.0×10 ⁻⁶ 5; α (M)=1.27×10 ⁻⁶ 7; α (N+)=5.7×10 ⁻⁵ 9 α (N)=5.5×10 ⁻⁸ 3; α (IPF)=5.7×10 ⁻⁵ 9
9989.27	(12-)	856.9 <i>3</i>	100 5	9132.27 11-	M1(+E2)	+0.13 15	0.000274 6	α =0.000274 6; α (K)=0.000247 6; α (L)=2.41×10 ⁻⁵ 6; α (M)=3.39×10 ⁻⁶ 8; α (N+)=1.47×10 ⁻⁷ 4 α (N)=1.47×10 ⁻⁷ 4 B(M1)(W.u.)=(0.16 +6-16); B(E2)(W.u.)=(7 +16-7)
		1468.3 4	4.2 8	8521.11 10 ⁻	E2		0.000179 3	α =0.000179 3; α (K)=9.28×10 ⁻⁵ 13; α (L)=9.04×10 ⁻⁶ 13; α (M)=1.273×10 ⁻⁶ 18; α (N+)=7.55×10 ⁻⁵ 11 α (N)=5.50×10 ⁻⁸ 8; α (IPF)=7.55×10 ⁻⁵ 11 B(E2)(W.u.)=1.1 +5-11
10029.02	(11=)	5184.9 5	100	4843.93 2+	0.51)		0.000224.5	0.000004.5 (#) 0.000001.4 (#) 0.04 10-5 4
10054.23	(11 ⁻)	789.4 <i>3</i>	33 33	9264.30 11	(M1)		0.000324 5	α =0.000324 5; α (K)=0.000291 4; α (L)=2.84×10 ⁻⁵ 4; α (M)=4.01×10 ⁻⁶ 6; α (N+)=1.733×10 ⁻⁷ 25 α (N)=1.733×10 ⁻⁷ 25
		3243.4 7	100 33	6810.95 9	(E2)		0.000909 13	α =0.000909 13; α (K)=2.25×10 ⁻⁵ 4; α (L)=2.17×10 ⁻⁶ 3; α (M)=3.06×10 ⁻⁷ 5; α (N+)=0.000884 13 α (N)=1.331×10 ⁻⁸ 19; α (IPF)=0.000884 13
10158.6	(12 ⁻)	894.1 3	100	9264.30 11	(M1+E2)		0.00028 4	α =0.00028 4; α (K)=0.00026 3; α (L)=2.5×10 ⁻⁵ 3; α (M)=3.5×10 ⁻⁶ 5; α (N+)=1.51×10 ⁻⁷ 18 α (N)=1.51×10 ⁻⁷ 18
10241.7	(11-)	3428.9 8	100	6810.95 9	(E2)		0.000981 14	α =0.000981 14; α (K)=2.06×10 ⁻⁵ 3; α (L)=1.99×10 ⁻⁶ 3; α (M)=2.80×10 ⁻⁷ 4; α (N+)=0.000959 14 α (N)=1.219×10 ⁻⁸ 17; α (IPF)=0.000959 14
10697.3	12-	936.7 3	100 25	9760.42 11-	M1+E2		0.00026 3	α =0.00026 3; α (K)=0.00023 3; α (L)=2.2×10 ⁻⁵ 3; α (M)=3.2×10 ⁻⁶ 4; α (N+)=1.36×10 ⁻⁷ 15 α (N)=1.36×10 ⁻⁷ 15
		979.1 <i>3</i>	75 25	9718.27 11	M1+E2		0.000231 24	α =0.000231 24; α (K)=0.000208 21; α (L)=2.03×10 ⁻⁵ 21; α (M)=2.9×10 ⁻⁶ 3; α (N+)=1.23×10 ⁻⁷ 12 α (N)=1.23×10 ⁻⁷ 12
10788.66	12-	734.1 2	40 20	10054.23 (11	M1+E2		0.00046 8	α =0.00046 8; α (K)=0.00041 7; α (L)=4.0×10 ⁻⁵ 7; α (M)=5.7×10 ⁻⁶ 10; α (N+)=2.4×10 ⁻⁷ 4 α (N)=2.4×10 ⁻⁷ 4
		828.5 3	100 20	9960.14 11-	M1+E2		0.00034 5	α =0.00034 5; α (K)=0.00031 5; α (L)=3.0×10 ⁻⁵ 5; α (M)=4.2×10 ⁻⁶ 6; α (N+)=1.81×10 ⁻⁷ 25 α (N)=1.81×10 ⁻⁷ 25
		1028.0 9	80 20	9760.42 11-	M1+E2		0.000207 19	α =0.000207 19; α (K)=0.000186 17; α (L)=1.82×10 ⁻⁵ 18; α (M)=2.57×10 ⁻⁶ 24; α (N+)=1.11×10 ⁻⁷ 1 α (N)=1.11×10 ⁻⁷ 10

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$lpha^\dagger$	Comments
10788.66	12-	1657.5 4	60 20	9132.27 11-	M1+E2	0.000214 20	α =0.000214 20; α (K)=7.0×10 ⁻⁵ 3; α (L)=6.8×10 ⁻⁶ 3; α (M)=9.6×10 ⁻⁷ 4; α (N+)=0.000136 17
10825.23	11+	1398.8 9	33 <i>33</i>	9426.2 10+	M1+E2	0.000156 <i>13</i>	$\alpha(N)=4.18\times10^{-8}\ I5;\ \alpha(IPF)=0.000136\ I7$ $\alpha=0.000156\ I3;\ \alpha(K)=9.8\times10^{-5}\ 5;\ \alpha(L)=9.5\times10^{-6}\ 5;\ \alpha(M)=1.34\times10^{-6}\ 7;$ $\alpha(N+)=4.7\times10^{-5}\ 7$ $\alpha(N)=5.8\times10^{-8}\ 3;\ \alpha(IPF)=4.7\times10^{-5}\ 7$
		2135.8 5	100 33	8688.92 10+	M1+E2	0.00040 4	α =0.00040 4; α (K)=4.44×10 ⁻⁵ 12; α (L)=4.30×10 ⁻⁶ 12; α (M)=6.06×10 ⁻⁷ 16; α (N+)=0.00035 4
		2844.8 7	100 33	7980.81 9+	E2	0.000744 11	$\alpha(N)=2.63\times10^{-8}$ 7; $\alpha(IPF)=0.00035$ 4 $\alpha=0.000744$ 11; $\alpha(K)=2.78\times10^{-5}$ 4; $\alpha(L)=2.69\times10^{-6}$ 4; $\alpha(M)=3.78\times10^{-7}$ 6; $\alpha(N+)=0.000713$ 10
		3390.8 8	33 <i>33</i>	7433.45 9+	E2	0.000968 14	$\alpha(N)$ =1.644×10 ⁻⁸ 23; $\alpha(IPF)$ =0.000713 10 α =0.000968 14; $\alpha(K)$ =2.10×10 ⁻⁵ 3; $\alpha(L)$ =2.02×10 ⁻⁶ 3; $\alpha(M)$ =2.85×10 ⁻⁷ 4; $\alpha(N+)$ =0.000944 14
10872.60	11+	1446.6 <i>4</i>	33 33	9426.2 10+	M1+E2	0.000162 14	$\alpha(N)=1.241\times10^{-8}$ 18; $\alpha(IPF)=0.000944$ 14 $\alpha=0.000162$ 14; $\alpha(K)=9.2\times10^{-5}$ 5; $\alpha(L)=8.9\times10^{-6}$ 5; $\alpha(M)=1.26\times10^{-6}$ 6; $\alpha(N+)=6.0\times10^{-5}$ 9
		2184.4 5	67 33	8688.92 10+	M1+E2	0.00042 4	$\alpha(N)=5.44\times10^{-8}\ 25;\ \alpha(IPF)=6.0\times10^{-5}\ 9$ $\alpha=0.00042\ 4;\ \alpha(K)=4.27\times10^{-5}\ 11;\ \alpha(L)=4.13\times10^{-6}\ 11;\ \alpha(M)=5.82\times10^{-7}\ 15;$ $\alpha(N+)=0.00037\ 4$
		2891.7 7	67 33	7980.81 9+	E2	0.000764 11	$\alpha(N)=2.53\times10^{-8}$ 7; $\alpha(IPF)=0.00037$ 4 $\alpha=0.000764$ 11; $\alpha(K)=2.70\times10^{-5}$ 4; $\alpha(L)=2.61\times10^{-6}$ 4; $\alpha(M)=3.68\times10^{-7}$ 6; $\alpha(N+)=0.000734$ 11
		3439.2 8	100 33	7433.45 9+	E2	0.000985 14	$\alpha(N)=1.601\times10^{-8}\ 23;\ \alpha(IPF)=0.000734\ 11$ $\alpha=0.000985\ 14;\ \alpha(K)=2.05\times10^{-5}\ 3;\ \alpha(L)=1.98\times10^{-6}\ 3;\ \alpha(M)=2.79\times10^{-7}\ 4;$ $\alpha(N+)=0.000962\ 14$
10977.68	11+	2289.1 6	<17	8688.92 10 ⁺	M1+E2	0.00046 4	$\alpha(N)=1.213\times10^{-8}\ 17;\ \alpha(IPF)=0.000962\ 14$ $\alpha=0.00046\ 4;\ \alpha(K)=3.93\times10^{-5}\ 10;\ \alpha(L)=3.81\times10^{-6}\ 10;\ \alpha(M)=5.37\times10^{-7}\ 14;$ $\alpha(N+)=0.00042\ 4$
		2705.8 6	17 <i>17</i>	8272.09 10	E1	0.001102 16	$\alpha(N)=2.33\times10^{-8} 6$; $\alpha(IPF)=0.00042 4$ $\alpha=0.001102 16$; $\alpha(K)=1.91\times10^{-5} 3$; $\alpha(L)=1.84\times10^{-6} 3$; $\alpha(M)=2.60\times10^{-7} 4$; $\alpha(N+)=0.001081 16$
		2996.6 7	100 50	7980.81 9+	E2	0.000809 12	$\alpha(N)=1.128\times10^{-8}\ 16$; $\alpha(IPF)=0.001081\ 16$ $\alpha=0.000809\ 12$; $\alpha(K)=2.55\times10^{-5}\ 4$; $\alpha(L)=2.47\times10^{-6}\ 4$; $\alpha(M)=3.47\times10^{-7}\ 5$; $\alpha(N+)=0.000780\ 11$
		3544.2 8	83 17	7433.45 9+	E2	0.001022 15	$\alpha(N)=1.511\times10^{-8}$ 22; $\alpha(IPF)=0.000780$ 11 $\alpha=0.001022$ 15; $\alpha(K)=1.96\times10^{-5}$ 3; $\alpha(L)=1.89\times10^{-6}$ 3; $\alpha(M)=2.66\times10^{-7}$ 4; $\alpha(N+)=0.001000$ 14
11030.60	11+	2341.7 6	100 50	8688.92 10+	M1+E2	0.00048 4	$\alpha(\text{N})=1.158\times10^{-8}\ 17;\ \alpha(\text{IPF})=0.001000\ 14$ $\alpha=0.00048\ 4;\ \alpha(\text{K})=3.78\times10^{-5}\ 9;\ \alpha(\text{L})=3.66\times10^{-6}\ 9;\ \alpha(\text{M})=5.16\times10^{-7}\ 13;$ $\alpha(\text{N}+)=0.00044\ 4$ $\alpha(\text{N})=2.24\times10^{-8}\ 6;\ \alpha(\text{IPF})=0.00044\ 4$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
11030.60	11+	3048.4 7	50 50	7980.81	9+	E2		0.000830 12	α =0.000830 12; α (K)=2.48×10 ⁻⁵ 4; α (L)=2.40×10 ⁻⁶ 4; α (M)=3.38×10 ⁻⁷ 5; α (N+)=0.000802 12 α (N)=1.469×10 ⁻⁸ 21; α (IPF)=0.000802 12
		3596.7 8	50 50	7433.45	9+	E2		0.001041 15	α =0.001041 <i>15</i> ; α (K)=1.91×10 ⁻⁵ <i>3</i> ; α (L)=1.85×10 ⁻⁶ <i>3</i> ; α (M)=2.60×10 ⁻⁷ <i>4</i> ; α (N+)=0.001020 <i>15</i>
11044.14	12+	1156.8 <i>3</i>	12 2	9887.9	10+	E2		0.0001760 25	$\begin{array}{l} \alpha({\rm N}){=}1.132{\times}10^{-8}\ 16;\ \alpha({\rm IPF}){=}0.001020\ 15\\ \alpha{=}0.0001760\ 25;\ \alpha({\rm K}){=}0.0001548\ 22;\ \alpha({\rm L}){=}1.513{\times}10^{-5}\ 22;\\ \alpha({\rm M}){=}2.13{\times}10^{-6}\ 3 \end{array}$
		1283.0 4	3 2	9760.42	11-	E1		0.0001728 25	$\alpha(N)=9.17\times10^{-8}\ 13;\ \alpha(IPF)=3.83\times10^{-6}\ 6$ $\alpha=0.0001728\ 25;\ \alpha(K)=5.97\times10^{-5}\ 9;\ \alpha(L)=5.79\times10^{-6}\ 9;$ $\alpha(M)=8.15\times10^{-7}\ 12;\ \alpha(N+)=0.0001065\ 1$
		1329.0 4	1.5 15	9714.9	(10 ⁺)	(E2)		0.0001623 23	$\alpha(N)=3.53\times10^{-8}$ 5; $\alpha(IPF)=0.0001064$ 16 $\alpha=0.0001623$ 23; $\alpha(K)=0.0001143$ 16; $\alpha(L)=1.114\times10^{-5}$ 16; $\alpha(M)=1.569\times10^{-6}$ 22
		1378.7 4	100 3	9665.67	10 ⁺	E2		0.0001655 24	$\alpha(N)=6.77\times10^{-8}\ 10;\ \alpha(IPF)=3.53\times10^{-5}\ 5$ $\alpha=0.0001655\ 24;\ \alpha(K)=0.0001058\ 15;\ \alpha(L)=1.030\times10^{-5}\ 15;$ $\alpha(M)=1.451\times10^{-6}\ 21$
		1911.4 5	3 1	9132.27	11-	E1		0.000607 9	$\alpha(N)=6.26\times10^{-8} 9$; $\alpha(IPF)=4.79\times10^{-5} 7$ $\alpha=0.000607 9$; $\alpha(K)=3.14\times10^{-5} 5$; $\alpha(L)=3.03\times10^{-6} 5$; $\alpha(M)=4.27\times10^{-7} 6$; $\alpha(N+)=0.000572 8$
11079.1	(12 ⁻)	837.1 3	100 50	10241.7	(11-)	(M1+E2)		0.00033 5	$\alpha(N)=1.85\times10^{-8}$ 3; $\alpha(IPF)=0.000572$ 8 $\alpha=0.00033$ 5; $\alpha(K)=0.00030$ 4; $\alpha(L)=2.9\times10^{-5}$ 4; $\alpha(M)=4.1\times10^{-6}$ 6; $\alpha(N+)=1.77\times10^{-7}$ 24
		1025.1 3	100 50	10054.23	(11-)	(M1+E2)		0.000209 20	$\alpha(N)=1.77\times10^{-7} 24$ $\alpha=0.000209 \ 20; \ \alpha(K)=0.000188 \ 18; \ \alpha(L)=1.83\times10^{-5} \ 18;$ $\alpha(M)=2.58\times10^{-6} \ 25; \ \alpha(N+)=1.11\times10^{-7} \ I$
11112.8	13-	954.1 3	1.7 <i>17</i>	10158.6	(12-)	(M1+E2)		0.00024 3	$\alpha(N)=1.11\times10^{-7}\ 10$ $\alpha=0.00024\ 3;\ \alpha(K)=0.000220\ 24;\ \alpha(L)=2.15\times10^{-5}\ 24;$ $\alpha(M)=3.0\times10^{-6}\ 4;\ \alpha(N+)=1.31\times10^{-7}\ 14$
		1123.4 3	100 7	9989.27	(12-)	M1+E2	+0.13 7	0.0001597 24	$\alpha(N)=1.31\times10^{-7}$ 14 $\alpha=0.0001597$ 24; $\alpha(K)=0.0001426$ 21; $\alpha(L)=1.388\times10^{-5}$ 21; $\alpha(M)=1.96\times10^{-6}$ 3
		1981.1 5	7 2	9132.27	11-	E2		0.000360 5	$\alpha(N)=8.48\times10^{-8}\ 13;\ \alpha(IPF)=1.168\times10^{-6}\ 23$ $\alpha=0.000360\ 5;\ \alpha(K)=5.20\times10^{-5}\ 8;\ \alpha(L)=5.04\times10^{-6}\ 7;$ $\alpha(M)=7.10\times10^{-7}\ 10;\ \alpha(N+)=0.000303\ 5$
11120.6	12-	1498.1 <i>4</i>	100	9622.5	10-	E2		0.000185 3	$\alpha(N)=3.08\times10^{-8}$ 5; $\alpha(IPF)=0.000303$ 5 $\alpha=0.000185$ 3; $\alpha(K)=8.91\times10^{-5}$ 13; $\alpha(L)=8.67\times10^{-6}$ 13; $\alpha(M)=1.222\times10^{-6}$ 18; $\alpha(N+)=8.63\times10^{-5}$ 13
11224.9	(11+)	2705 2	50 50	8521.11	10-	(E1)		0.001102 16	$\alpha(N)=5.28\times10^{-8} 8$; $\alpha(IPF)=8.62\times10^{-5} 13$ $\alpha=0.001102 16$; $\alpha(K)=1.91\times10^{-5} 3$; $\alpha(L)=1.84\times10^{-6} 3$; $\alpha(M)=2.60\times10^{-7} 4$; $\alpha(N+)=0.001080 16$ $\alpha(N)=1.128\times10^{-8} 16$; $\alpha(IPF)=0.001080 16$

								_	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
11224.9	(11+)	3792.5 9	100 50	7433.45	9+	(E2)		0.001118 16	α =0.001118 <i>16</i> ; α (K)=1.763×10 ⁻⁵ 25; α (L)=1.702×10 ⁻⁶ 24; α (M)=2.40×10 ⁻⁷ 4; α (N+)=0.001098 α (N)=1.044×10 ⁻⁸ <i>15</i> ; α (IPF)=0.001098 <i>16</i>
11255.23	12+	224.6 1	14 5	11030.60	11+	M1+E2	-0.12 <i>10</i>	0.0061 7	α =0.0061 7; α (K)=0.0055 6; α (L)=0.00055 7; α (M)=7.7×10 ⁻⁵ 9; α (N+)=3.3×10 ⁻⁶ 4 α (N)=3.3×10 ⁻⁶ 4
		278.0 2	100 5	10977.68	11+	M1(+E2)	-0.03 5	0.00344 7	α =0.00344 7; α (K)=0.00309 7; α (L)=0.000307 7; α (M)=4.32×10 ⁻⁵ 9; α (N+)=1.85×10 ⁻⁶ 4 α (N)=1.85×10 ⁻⁶ 4
		382.8 2	33 5	10872.60	11+	M1+E2	-0.05 4	0.00161 3	α =0.00161 3; α (K)=0.001447 24; α (L)=0.0001430 24; α (M)=2.01×10 ⁻⁵ 4; α (N+)=8.64×10 ⁻⁷ 14 α (N)=8.64×10 ⁻⁷ 14
		429.9 2	43 5	10825.23	11+	M1(+E2)	-0.04 4	0.001230 19	α =0.001230 <i>19</i> ; α (K)=0.001105 <i>17</i> ; α (L)=0.0001089 <i>17</i> ; α (M)=1.535×10 ⁻⁵ 24 α (N)=6.59×10 ⁻⁷ <i>10</i>
		1293.4 4	29 5	9960.14	11-	E1		0.000179 3	α =0.000179 3; α (K)=5.89×10 ⁻⁵ 9; α (L)=5.71×10 ⁻⁶ 8; α (M)=8.04×10 ⁻⁷ 12; α (N+)=0.0001135 17 α (N)=3.48×10 ⁻⁸ 5; α (IPF)=0.0001135 17
		1590.3 4	33 5	9665.67	10 ⁺	E2		0.000211 3	α =0.000211 3; α (K)=7.91×10 ⁻⁵ 11; α (L)=7.69×10 ⁻⁶ 11; α (M)=1.083×10 ⁻⁶ 16; α (N+)=0.0001234 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001234 18
		2123.4 5	4.8 5	9132.27	11-	E1		0.000751 11	α =0.000751 11; α (K)=2.68×10 ⁻⁵ 4; α (L)=2.59×10 ⁻⁶ 4; α (M)=3.65×10 ⁻⁷ 6; α (N+)=0.000722 11 α (N)=1.586×10 ⁻⁸ 23; α (IPF)=0.000722 11
(11387.700)	$(1^-,2^-)$	1358.67 <i>18</i>	0.126 19	10029.02					
		1434.0 <i>3</i>	0.084 19	9953.7					
		2040.85 19	0.223 23	9346.82					
		2311.00 18	0.223 23	9076.66					
		2341.9 4	0.107 19	9045.20					
		2721.59 25	0.177 23	8666.21					
		2749.5 <i>4</i> 2822.3 <i>3</i>	0.121 23	8638.5					
		2822.3 3 2883.0 4	0.186 <i>23</i> 0.172 <i>23</i>	8565.60 8504.7					
		3101.2 6	0.172 23	8286.3	(1 ⁺)				
		3436.9 <i>3</i>	0.35 3	7950.93					
		3569.53 <i>13</i>	0.409 23	7818.02	-				
		3589.0 <i>3</i>	0.24 4	7798.9					
		3625.6 4	0.16 3		1+				
		3697.7 6	0.15 3		1-				
		3703.4 8	0.18 5	7684.1					
		3836.1 5	0.15 3	7552.0					
		3892.4 5	0.20 3	7495.2					

		4			
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}
(11387.700)	$(1^-,2^-)$	3913.7 <i>3</i>	0.19 3	7473.49	1+
,	. , ,	3973.4 5	0.19 3	7414.16	
		4048.2 <i>4</i>	0.22 3	7339.68	
		4071.49 22	0.34 4	7316.13	
		4164.75 11	0.90 4	7222.80	
		4180.5 7	0.084 18	7207.6	
		4331.24 <i>15</i>	0.53 <i>3</i>	7056.27	
		4390.4 <i>3</i>	0.19 2	6996.86	
		4475.58 10	0.70 3	6911.93	1+
		4553.0 <i>3</i>	0.33 3	6834.92	
		4631.2 5	0.17 3	6756.4	
		4740.48 12	1.05 5	6647.17	
		4819.9 <i>6</i>	0.15 3	6567.33	
		4871.7 8	0.11 3	6516.72	
		4898.4 <i>4</i>	0.30 3	6489.28	
		4922.34 25	0.72 5	6465.25	1-
		5005.5 7	0.14 3	6382.4	1
		5025.43 25	0.43 4	6362.05	
		5059.8 6	0.19 3	6327.21	2+
		5148.1 <i>3</i>	0.29 2	6239.2	
		5320.69 18	0.44 3	6066.72	
		5419.5 6	0.12 2	5967.8	
		5468.5 6	0.13 2	5918.54	
		5485.02 8	1.75 4	5902.44	
		5509.46 11	1.04 4	5878.05	
		5527.4 5	0.16 2	5859.9	
		5676.64 <i>4</i>	4.35 8	5710.79	
		5714.96 18	0.74 4	5672.36	
		5775.08 6	3.32 7	5612.40	
		5911.3 8	0.074 23	5476.04	2+
		5940.5 3	0.34 3	5446.98	2+
		6099.4 <i>3</i> 6260.19 <i>20</i>	0.29 3	5288.55	
		6322.29 11	0.33 <i>3</i> 2.59 <i>7</i>	5127.16 5065.02	(1-)
		6434.01 10	1.04 3		(1^{-})
		6458.42 18	0.46 3	4953.36 4928.98	
		6543.44 18	2.7 1	4843.93	2+
		6608.29 15	1.36 6	4779.13	_
		6627.12 19	0.59 4	4760.23	1,2
		6809.91 9	1.55 6	4577.45	2+
		6839.38 12	5.6 3	4547.96	$\frac{2}{1^{+},2^{+}}$
		6894.23 11	1.28 5	4493.16	2+,2
		7051.67 12	1.02 4	4335.52	2
		7068.67 8	1.93 6	4318.58	2 ⁺
		, 300.07 0	1.75 0	.510.50	_

$\gamma(^{60}\text{Ni})$ (continued)

Adopted Levels, Gammas (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{ extbf{@}}$	$lpha^\dagger$	Comments
(11387.700)	$(1^-,2^-)$	7275.9 9	0.09 2	4111.96	2+				
(,	() /	7309.22 14	0.99 5	4077.99					
		7367.31 5	9.1 2	4019.886	1+				
		7380.77 4	11.3 <i>3</i>	4006.444					
		7499.4 <i>4</i>	0.35 3	3887.36					
		7516.17 <i>4</i>	9.5 2	3871.050					
		7652.88 8	2.00 5	3734.44	2+				
		7799.40 6	3.20 7	3587.72	0^{+}				
		7993.95 10	1.44 5	3393.14	2+				
		8069.26 4	14.8 <i>3</i>	3317.829	0^{+}				
		8117.6 9	0.20 6	3269.19	2+				
		8193.24 <i>4</i>	8.8 2	3193.87	1+				
		8200.88 17	0.96 4	3185.98	(3^+)				
		8263.35 5	7.4 2	3123.698					
		9102.10 4	41.1 7	2284.80					
		9228.19 9	5.3 2	2158.632					
		10054.14 7	38.2 7	1332.514					
		11386.50 9	100 4	0.0	0^{+}				
11443.40	13-	654.9 2	29 7	10788.66	12-	M1+E2		0.00061 13	α =0.00061 13; α (K)=0.00055 12; α (L)=5.4×10 ⁻⁵ 12; α (M)=7.6×10 ⁻⁶ 16; α (N+)=3.2×10 ⁻⁷ 7 α (N)=3.2×10 ⁻⁷ 7
		1683.2 4	100 7	9760.42	11-	E2		0.000242 4	α =0.000242 4; α (K)=7.07×10 ⁻⁵ 10; α (L)=6.87×10 ⁻⁶ 10; α (M)=9.68×10 ⁻⁷ 14; α (N+)=0.0001639 2 α (N)=4.19×10 ⁻⁸ 6; α (IPF)=0.0001638 23
		1724.9 <i>4</i>	79 <i>7</i>	9718.27	11-	E2		0.000257 4	α =0.000257 4; α (K)=6.74×10 ⁻⁵ 10; α (L)=6.55×10 ⁻⁶ 10; α (M)=9.23×10 ⁻⁷ 13; α (N+)=0.000182 3 α (N)=4.00×10 ⁻⁸ 6; α (IPF)=0.000182 3
11493.6	(12+)	2361.4 9	100	9132.27	11-	(E1)		0.000901 13	α =0.000901 13; α (K)=2.31×10 ⁻⁵ 4; α (L)=2.23×10 ⁻⁶ 4; α (M)=3.14×10 ⁻⁷ 5; α (N+)=0.000876 13 α (N)=1.362×10 ⁻⁸ 19; α (IPF)=0.000876 13
11553.3	13-	764.2 3	100	10788.66	12-	M1+E2		0.00041 7	$\alpha(N)=1.362\times10^{-5}$ P ; $\alpha(PF)=0.0008/6$ P 3 $\alpha=0.00041$ P 3; $\alpha(K)=0.00037$ P 5; $\alpha(L)=3.6\times10^{-5}$ P 5; $\alpha(M)=5.1\times10^{-6}$ P 9; $\alpha(N+)=2.2\times10^{-7}$ P 7 P 9; $\alpha(N)=2.2\times10^{-7}$ P 9;
11785.6	(12 ⁺)	560.8 2	50 25	11224.9	(11+)	M1+E2		0.00092 25	α =0.00092 25; α (K)=0.00082 22; α (L)=8.1×10 ⁻⁵ 22; α (M)=1.1×10 ⁻⁵ 3; α (N+)=4.9×10 ⁻⁷ 13 α (N)=4.9×10 ⁻⁷ 13
		2654.2 6	100 25	9132.27	11-	(E1)		0.001073 15	α =0.001073 15; α (K)=1.96×10 ⁻⁵ 3; α (L)=1.89×10 ⁻⁶ 3; α (M)=2.66×10 ⁻⁷ 4; α (N+)=0.001051 15
11851.17	13 ⁺	596.0 2	100 5	11255.23	12+	M1(+E2)	-0.03 4	0.000591 9	$\alpha(N)=1.158\times10^{-8}\ I7;\ \alpha(IPF)=0.001051\ I5$ $\alpha=0.000591\ 9;\ \alpha(K)=0.000531\ 8;\ \alpha(L)=5.21\times10^{-5}\ 8;$ $\alpha(M)=7.34\times10^{-6}\ II;\ \alpha(N+)=3.17\times10^{-7}\ 5$ $\alpha(N)=3.17\times10^{-7}\ 5$

							γ ⁽⁰⁰ N ₁₎ (co	ontinued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ddagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
11851.17	13+	872.6 3	4.5 15	10977.68	11+	E2		0.000338 5	α =0.000338 5; α (K)=0.000304 5; α (L)=2.99×10 ⁻⁵ 5; α (M)=4.20×10 ⁻⁶ 6; α (N+)=1.80×10 ⁻⁷ 3 α (N)=1.80×10 ⁻⁷ 3
		1862.9 5	4.5 15	9989.27	(12-)	E1		0.000573 8	α =0.000573 8; α (K)=3.26×10 ⁻⁵ 5; α (L)=3.15×10 ⁻⁶ 5; α (M)=4.44×10 ⁻⁷ 7; α (N+)=0.000537 8 α (N)=1.93×10 ⁻⁸ 3; α (IPF)=0.000536 8
11878.0 12273.7	(13) 14 ⁻	1180.7 <i>3</i> 1160.8 <i>3</i>	100 100 <i>12</i>	10697.3 11112.8	12 ⁻ 13 ⁻	(D+Q) M1+E2	+0.11 6	0.0001515 22	α =0.0001515 22; α (K)=0.0001336 19; α (L)=1.300×10 ⁻⁵ 19; α (M)=1.83×10 ⁻⁶ 3 α (N)=7.95×10 ⁻⁸ 12; α (IPF)=2.94×10 ⁻⁶ 5
		2284.6 6	15 4	9989.27	(12-)	E2		0.000496 7	α =0.000496 7; α (K)=4.03×10 ⁻⁵ 6; α (L)=3.90×10 ⁻⁶ 6; α (M)=5.50×10 ⁻⁷ 8; α (N+)=0.000451 7 α (N)=2.39×10 ⁻⁸ 4; α (IPF)=0.000451 7
12486.2	(13+)	700.8 2	100 25	11785.6	(12+)	M1+E2		0.00051 10	α =0.00051 10; α (K)=0.00046 9; α (L)=4.5×10 ⁻⁵ 9; α (M)=6.4×10 ⁻⁶ 12; α (N+)=2.7×10 ⁻⁷ 5 α (N)=2.7×10 ⁻⁷ 5
		2495.3 6	75 25	9989.27	(12-)	(E1)		0.000981 14	α =0.000981 14; α (K)=2.13×10 ⁻⁵ 3; α (L)=2.06×10 ⁻⁶ 3; α (M)=2.90×10 ⁻⁷ 4; α (N+)=0.000958 14 α (N)=1.261×10 ⁻⁸ 18; α (IPF)=0.000958 14
12578.4	14+	727.1 2	100 6	11851.17	13+	M1(+E2)	+0.03 5	0.000385 6	α =0.000385 6; α (K)=0.000346 5; α (L)=3.38×10 ⁻⁵ 5; α (M)=4.77×10 ⁻⁶ 7; α (N+)=2.06×10 ⁻⁷ 3 α (N)=2.06×10 ⁻⁷ 3
		1025.1 3	4 2	11553.3	13-	E1		9.99×10 ⁻⁵ 14	α =9.99×10 ⁻⁵ 14; α (K)=8.99×10 ⁻⁵ 13; α (L)=8.73×10 ⁻⁶ 13; α (M)=1.229×10 ⁻⁶ 18; α (N+)=5.31×10 ⁻⁸ 8 α (N)=5.31×10 ⁻⁸ 8
		1323.9 4	6 2	11255.23	12+	E2		0.0001621 23	α =0.0001621 23; α (K)=0.0001152 17; α (L)=1.123×10 ⁻⁵ 16; α (M)=1.582×10 ⁻⁶ 23 α (N)=6.82×10 ⁻⁸ 10; α (IPF)=3.40×10 ⁻⁵ 5
12742.1	13+	1956.0 <i>12</i>	100 50	10788.66	12-	E1		0.000638 9	α =0.000638 9; α (K)=3.03×10 ⁻⁵ 5; α (L)=2.93×10 ⁻⁶ 5; α (M)=4.12×10 ⁻⁷ 6; α (N+)=0.000604 9 α (N)=1.79×10 ⁻⁸ 3; α (IPF)=0.000604 9
		2753.2 7	50 <i>50</i>	9989.27	(12 ⁻)	E1		0.001128 <i>16</i>	α =0.001128 <i>16</i> ; α (K)=1.87×10 ⁻⁵ <i>3</i> ; α (L)=1.80×10 ⁻⁶ <i>3</i> ; α (M)=2.54×10 ⁻⁷ <i>4</i> ; α (N+)=0.001107 <i>16</i> α (N)=1.102×10 ⁻⁸ <i>16</i> ; α (IPF)=0.001107 <i>16</i>
12774.7	14+	1281.1 4	1 <i>I</i>	11493.6	(12+)	(E2)		0.0001616 23	α =0.0001616 23; α (K)=0.0001236 18; α (L)=1.206×10 ⁻⁵ 17; α (M)=1.698×10 ⁻⁶ 24 α (N)=7.32×10 ⁻⁸ 11; α (IPF)=2.41×10 ⁻⁵ 4
		1730.4 4	100 5	11044.14	12+	E2		0.000259 4	α =0.000259 4; α (K)=6.70×10 ⁻⁵ 10; α (L)=6.51×10 ⁻⁶ 10; α (M)=9.17×10 ⁻⁷ 13; α (N+)=0.000185 3 α (N)=3.97×10 ⁻⁸ 6; α (IPF)=0.000185 3

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
13037.5	14-	1916.9 5	100	11120.6	12-	E2	0.000333 5	α =0.000333 5; α (K)=5.52×10 ⁻⁵ 8; α (L)=5.36×10 ⁻⁶ 8; α (M)=7.55×10 ⁻⁷ 11; α (N+)=0.000272 4 α (N)=3.27×10 ⁻⁸ 5; α (IPF)=0.000272 4
13246.3	13+	2202.3 5	100 50	11044.14	12+	M1+E2	0.00042 4	α =0.00042 4; α (K)=4.21×10 ⁻⁵ 11; α (L)=4.08×10 ⁻⁶ 11; α (M)=5.74×10 ⁻⁷ 15; α (N+)=0.00038 4 α (N)=2.49×10 ⁻⁸ 7; α (IPF)=0.00038 4
		2456.4 6	100 50	10788.66	12-	E1	0.000958 14	α =0.000958 14; α (K)=2.18×10 ⁻⁵ 3; α (L)=2.11×10 ⁻⁶ 3; α (M)=2.97×10 ⁻⁷ 5; α (N+)=0.000934 13 α (N)=1.288×10 ⁻⁸ 18; α (IPF)=0.000934 13
13282.3	(14+)	1839.1 5	100 20	11443.40	13-	(E1)	0.000556 8	α =0.000556 8; α (K)=3.32×10 ⁻⁵ 5; α (L)=3.22×10 ⁻⁶ 5; α (M)=4.53×10 ⁻⁷ 7; α (N+)=0.000519 8 α (N)=1.96×10 ⁻⁸ 3; α (IPF)=0.000519 8
		2238.1 9	40 20	11044.14	12+	(E2)	0.000475 7	α =0.000475 7; α (K)=4.17×10 ⁻⁵ 6; α (L)=4.05×10 ⁻⁶ 6; α (M)=5.70×10 ⁻⁷ 8; α (N+)=0.000428 6 α (N)=2.47×10 ⁻⁸ 4; α (IPF)=0.000428 6
13353.0	(14+)	866.8 <i>3</i>	100	12486.2	(13+)	M1+E2	0.00031 4	α =0.00031 4; α (K)=0.00027 4; α (L)=2.7×10 ⁻⁵ 4; α (M)=3.8×10 ⁻⁶ 5; α (N+)=1.63×10 ⁻⁷ 21 α (N)=1.63×10 ⁻⁷ 21
13615.4	15-	2061.2 5	13 7	11553.3	13-	E2	0.000395 6	$\alpha(N)=1.63\times 10^{-21}$ $\alpha=0.000395$ 6; $\alpha(K)=4.84\times 10^{-5}$ 7; $\alpha(L)=4.69\times 10^{-6}$ 7; $\alpha(M)=6.61\times 10^{-7}$ 10 ; $\alpha(N+)=0.000342$ 5 $\alpha(N)=2.87\times 10^{-8}$ 4; $\alpha(IPF)=0.000342$ 5
		2172.9 5	100 7	11443.40	13-	E2	0.000445 7	α =0.000445 7; α (K)=4.40×10 ⁻⁵ 7; α (L)=4.26×10 ⁻⁶ 6; α (M)=6.01×10 ⁻⁷ 9; α (N+)=0.000397 6 α (N)=2.61×10 ⁻⁸ 4; α (IPF)=0.000397 6
13662.2	15 ⁺	1083.9 <i>3</i>	100 8	12578.4	14+	M1+E2	0.000185 16	α =0.000185 16 ; α (K)=0.000166 14 ; α (L)=1.62×10 ⁻⁵ 14 ; α (M)=2.28×10 ⁻⁶ 20 ; α (N+)=9.9×10 ⁻⁸ 8 α (N)=9.9×10 ⁻⁸ 8
		1811.0 5	11 3	11851.17	13 ⁺	E2	0.000290 4	α =0.000290 4; α (K)=6.15×10 ⁻⁵ 9; α (L)=5.97×10 ⁻⁶ 9; α (M)=8.41×10 ⁻⁷ 12; α (N+)=0.000222 4
13810.0	(15-)	1536.2 4	100 33	12333	8-	(M1+E2)	0.000180 <i>16</i>	$\alpha(N)=3.64\times10^{-8}$ 6; $\alpha(IPF)=0.000222$ 4 $\alpha=0.000180$ 16; $\alpha(K)=8.1\times10^{-5}$ 4; $\alpha(L)=7.9\times10^{-6}$ 4; $\alpha(M)=1.12\times10^{-6}$ 5; $\alpha(N+)=8.9\times10^{-5}$ 12
		2697.2 6	67 33	11112.8	13-	(E2)	0.000680 10	$\alpha(N)=4.83\times10^{-8} \ 20; \ \alpha(IPF)=8.9\times10^{-5} \ 12$ $\alpha=0.000680 \ 10; \ \alpha(K)=3.03\times10^{-5} \ 5; \ \alpha(L)=2.93\times10^{-6} \ 5; \ \alpha(M)=4.13\times10^{-7}$ $\alpha(N)=4.13\times10^{-8} \ 3$
14201.0	(15+)	848.0 <i>3</i>	100	13353.0	(14+)	M1+E2	0.00032 5	$\alpha(N)=1.80\times10^{-8}$ 3; $\alpha(IPF)=0.000646$ 9 $\alpha=0.00032$ 5; $\alpha(K)=0.00029$ 4; $\alpha(L)=2.8\times10^{-5}$ 4; $\alpha(M)=4.0\times10^{-6}$ 6; $\alpha(N+)=1.71\times10^{-7}$ 23
14463.7	15+	1217.1 3	56 12	13246.3	13 ⁺	E2	0.0001653 24	$\alpha(N)=1.71\times10^{-7}$ 23 $\alpha=0.0001653$ 24; $\alpha(K)=0.0001383$ 20; $\alpha(L)=1.350\times10^{-5}$ 19; $\alpha(M)=1.90\times10^{-6}$ 3 $\alpha(N)=8.19\times10^{-8}$ 12; $\alpha(IPF)=1.153\times10^{-5}$ 17

 $\alpha(N)=6.8\times10^{-8}$ 4; $\alpha(IPF)=2.3\times10^{-5}$ 4

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$lpha^\dagger$	Comments
16194.4	17-	2578.9 6	100	13615.4 15-	E2	0.000628 9	α =0.000628 9; α (K)=3.27×10 ⁻⁵ 5; α (L)=3.16×10 ⁻⁶ 5; α (M)=4.46×10 ⁻⁷ 7; α (N+)=0.000592 9 α (N)=1.94×10 ⁻⁸ 3; α (IPF)=0.000592 9
16242.0?	(17 ⁺)	1077 ^k 1		15164.8 (16 ⁺)	(M1+E2)	0.000187 16	α =0.000187 16; α (K)=0.000168 14; α (L)=1.64×10 ⁻⁵ 15; α (M)=2.32×10 ⁻⁶ 20; α (N+)=1.00×10 ⁻⁷ 9 α (N)=1.00×10 ⁻⁷ 9
16842.4	18+	2196.9 5	100	14645.5 16+	E2	0.000456 7	α =0.000456 7; α (K)=4.31×10 ⁻⁵ 6; α (L)=4.18×10 ⁻⁶ 6; α (M)=5.89×10 ⁻⁷ 9; α (N+)=0.000408 6
17235.8	18+	2301.9 6	100	14933.9 16 ⁺	E2	0.000504 7	$\alpha(N)=2.56\times10^{-8}$ 4; $\alpha(IPF)=0.000408$ 6 $\alpha=0.000504$ 7; $\alpha(K)=3.97\times10^{-5}$ 6; $\alpha(L)=3.85\times10^{-6}$ 6; $\alpha(M)=5.42\times10^{-7}$ 8; $\alpha(N+)=0.000459$ 7
17911.6	19 ⁺	1884.9 5	100	16026.6 17+	E2	0.000320 5	$\alpha(N)=2.35\times10^{-8}$ 4; $\alpha(IPF)=0.000459$ 7 $\alpha=0.000320$ 5; $\alpha(K)=5.70\times10^{-5}$ 8; $\alpha(L)=5.53\times10^{-6}$ 8; $\alpha(M)=7.79\times10^{-7}$ 11; $\alpha(N+)=0.000256$ 4
18131.4	(18-)	2849.9 7	100	15281.5 (16-)	(E2)	0.000746 11	$\alpha(N)=3.38\times10^{-8}$ 5; $\alpha(IPF)=0.000256$ 4 $\alpha=0.000746$ 11; $\alpha(K)=2.77\times10^{-5}$ 4; $\alpha(L)=2.68\times10^{-6}$ 4; $\alpha(M)=3.77\times10^{-7}$ 6; $\alpha(N+)=0.000715$ 10
19238.4	(19-)	3043.9 7	100	16194.4 17-	(E2)	0.000828 12	$\alpha(N)=1.639\times10^{-8}\ 23;\ \alpha(IPF)=0.000715\ 10$ $\alpha=0.000828\ 12;\ \alpha(K)=2.49\times10^{-5}\ 4;\ \alpha(L)=2.40\times10^{-6}\ 4;\ \alpha(M)=3.39\times10^{-7}\ 5;$ $\alpha(N+)=0.000801\ 12$
19504.4	20+	2661.9 6	100	16842.4 18+	E2	0.000665 10	$\alpha(N)=1.473\times10^{-8}\ 21;\ \alpha(IPF)=0.000801\ 12$ $\alpha=0.000665\ 10;\ \alpha(K)=3.10\times10^{-5}\ 5;\ \alpha(L)=3.00\times10^{-6}\ 5;\ \alpha(M)=4.23\times10^{-7}\ 6;$ $\alpha(N+)=0.000630\ 9$
20017.9	(20 ⁺)	2782.0 7	100	17235.8 18 ⁺	(E2)	0.000717 10	$\alpha(N)=1.84\times10^{-8}$ 3; $\alpha(IPF)=0.000630$ 9 $\alpha=0.000717$ 10; $\alpha(K)=2.88\times10^{-5}$ 4; $\alpha(L)=2.79\times10^{-6}$ 4; $\alpha(M)=3.93\times10^{-7}$ 6; $\alpha(N+)=0.000685$ 10
20177.5	21+	2265.9 6	100	17911.6 19 ⁺	E2	0.000487 7	$\alpha(N)=1.706\times10^{-8}\ 24;\ \alpha(IPF)=0.000685\ 10$ $\alpha=0.000487\ 7;\ \alpha(K)=4.08\times10^{-5}\ 6;\ \alpha(L)=3.96\times10^{-6}\ 6;\ \alpha(M)=5.58\times10^{-7}\ 8;$ $\alpha(N+)=0.000442\ 7$
22863.5	(22 ⁺)	3359.0 8	100	19504.4 20 ⁺	(E2)	0.000955 14	$\alpha(N)=2.42\times10^{-8}$ 4; $\alpha(IPF)=0.000442$ 7 $\alpha=0.000955$ 14; $\alpha(K)=2.13\times10^{-5}$ 3; $\alpha(L)=2.05\times10^{-6}$ 3; $\alpha(M)=2.89\times10^{-7}$ 4; $\alpha(N+)=0.000932$ 13
22996.5	23 ⁺	2818.9 7	100	20177.5 21+	E2	0.000733 11	$\alpha(N+)=0.000952\ 13$ $\alpha(N)=1.259\times10^{-8}\ 18;\ \alpha(IPF)=0.000932\ 13$ $\alpha=0.000733\ 1I;\ \alpha(K)=2.82\times10^{-5}\ 4;\ \alpha(L)=2.73\times10^{-6}\ 4;\ \alpha(M)=3.84\times10^{-7}\ 6;$ $\alpha(N+)=0.000701\ 10$ $\alpha(N)=1.669\times10^{-8}\ 24;\ \alpha(IPF)=0.000701\ 10$

[†] Additional information 3. [‡] From (36 Ar,4pγ), unless given otherwise. For additional γ's from unbound states, see 59 Co(p,γ). # Multipolarity from $\gamma(\theta)$ in 56 Fe(7 Li,2npγ); character (E or M) from RUL or ΔJ^{π} , except as noted.

γ (60Ni) (continued)

- $^{@}$ From 56 Fe(7 Li,2np γ), except as noted. $^{\&}$ From 59 Co(p, γ).
- ^a From 60 Cu ε decay.
- ^b From 60 Co β^- decay (1925.28 d).
- ^c From 60 Ni(p,p' γ).
- ^d From 60 Ni(p,p' γ).
- ^e From 56 Fe(7 Li,2np γ).
- ^f From ⁵⁹Co(³He,d γ). E γ deduced from level separation and not included in energy fit.
- ^g From ⁵⁹Co(³He,d γ). E γ deduced from level separation and not included in energy fit.
- ^h From ${}^{28}\text{Si}({}^{35}\text{Cl},3\text{p})$. ⁱ From ${}^{59}\text{Ni}(\text{n},\gamma)$ E=thermal.
- ^j From (γ, γ') , (pol γ, γ').
- ^k Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{60}_{28}{\rm Ni}_{32}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

28^{1N1}32

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

$$^{60}_{28}{
m Ni}_{32}$$

Adopted Levels, Gammas

	History										
	Type	Author		Citation	Literature Cutoff Date						
	Full Evaluation	Alan L. Nichols, Balraj Singh, J	Jagdish K. Tuli	NDS 113,973 (2012)	15-Apr-2012						
$Q(\beta^-) = -39$	$Q(\beta^-) = -3958.9 \ 5$; $S(n) = 10595.9 \ 4$; $S(p) = 11137.2 \ 8$; $Q(\alpha) = -7016.3 \ 5$ 2012Wa38										
Note: Curre	nt evaluation has us	ed the following Q record -3958 .	90 4810595.8 <i>3</i>	11137.2 7 -7016.3 4	2011AuZZ.						
S(2n)=1841	5.95 <i>31</i> , S(2p)=199	10.9 <i>34</i> (2011AuZZ).									
Values in 20	$OO3AuO3: Q(\beta^{-})=-3$	3948 4, S(n)=10596.5 3, S(p)=111	136.6 7, $Q(\alpha) = 70$	017.6 6, S(2n)=18416.7	3, S(2p)=19912 3.						
2001Tr23: r	neasured level width	ns and shifts in anti-protonic atom	S.								
2006An27:	nuclear structure cal	lculations of first 2+ and 3- states	S.								
Other React											
		06, 1968Ab10; g.s. and first 2 ⁺ le									
		nal, FWHM=50-60 keV, measured									
66Zn(d,6Li):	: 1973Ce02: E=27.2	25 MeV, Si telescopes, FWHM=40	00 keV, $\sigma(\theta)$ for	g.s. and first 2 ⁺ state.							
XREF table	: the following level	ls are populated in reactions label	ed with XREF=	Y:							
58 Fe(16 O, 12	C): 0, 1173, 2340, 2	2890, 3270, 3520, 3750.									
⁶² Ni(³ He, ³ He'), (³ He, dp): 0, 1173, 2300, 2340, 3750, 4350.											
	⁶³ Cu(n,npy): 0, 1173, 2302, 2336, 3059.										
	Be),(⁹ Be, ¹⁰ B): 0, 117										
64 Zn(14 C, 16											

62Ni Levels

 $T_{1/2}$ (first 2⁺ level at 1173 keV):

 66 Zn(α ,2 α): 0, 1173, 2360.

 τ =2.09 ps 6 is weighted average of 13 values from different methods listed as comments below. A minimum uncertainty of 5% was assigned, and three methods were employed in the weighted averaging procedures. A value consistent with all the three methods has been adopted (LWM: limitation of statistical weights; NRM: normalized residuals method; RT: Rajeval technique). Reduced χ^2 varies between 1.1 and 2.2 in the three methods. 2001Ra27 evaluation adopted a very similar value of τ =2.07 ps 6 which did not include the 2001Ke08 measurement. Other: $T_{1/2}=1.24 \text{ ps} +60-33 \text{ (2011Ch05)}$ in $(n,n'\gamma)$.

Individual values of mean lifetime τ in ps as used in the averaging procedures are given below:

⁶²Ni isotope identified in mass spectroscopic data by F.W. Aston, Nature 134, 178 (1934).

- 1. Deduced from BE2↑ measurement in Coulomb excitation: 2.25 45 (1960An07, earlier value of 1.40 35 in 1959Al95), 2.23 22 (1962St02), 2.20 13 (1969Ha31), 2.05 6 (1970Le17), 2.09 7 (1971ChZF).
- 2. From Γ in (γ, γ') : 2.15 42 (1981Ca10, also 2.1 ps 5 in 1977Ca14 from the same group as 1981Ca10).
- 3. From B(E2) in (e,e'): 2.096 27 (1967Du07), 2.99 20 (1972Li28), 1.82 18 (1975DeXW).
- 4. From DSAM in $(\alpha,p\gamma)$: 1.55 25 (1978Ke11), 1.6 +4-6 (1978Oh04).
- 5. From DSAM in Coulomb excitation: 2.28 18 (1965Es01), 2.01 12 (2001Ke08), uncertainty increased to 0.12 to include 5% systematic uncertainty due to stopping powers, as suggested by one of the authors of 2001Ke08 in an e-mail communication to evaluators, December 2007.

Cross Reference (XREF) Flags

A	⁶² Co $β$ ⁻ decay (1.54 min)	L	61 Ni(d,p),(pol d,p)	W	⁶⁴ Ni(p,t)
В	62 Co β ⁻ decay (13.86 min)	M	62 Ni (γ,γ')	X	65 Cu(p, α)
C	⁶² Cu ε decay (9.67 min)	N	⁶² Ni(e,e')	Y	58 Fe(16 O, 12 C)
D	48 Ca(18 O,4n γ)	0	62 Ni(n,n' γ)	Z	62 Ni(3 He, 3 He'),(3 He,dp)
E	⁵⁸ Fe(⁶ Li,d)	P	⁶² Ni(p,p'),(pol p,p')	Other	rs:
F	59 Co(α ,p γ)	Q	62 Ni(p,p' γ)	AA	63 Cu(n,np γ)
G	60 Ni(t,p),(pol t,p)	R	⁶² Ni(d,d'),(pol d,d')	AB	63 Cu(6 Li, 7 Be),(9 Be, 10 B)
H	60 Ni(α , 2 He)	S	$^{62}\mathrm{Ni}(\alpha,\alpha')$	AC	64 Zn(14 C, 16 O)
I	⁶⁰ Ni(¹² C, ¹⁰ C),(¹⁴ C, ¹² C)	T	Coulomb excitation	AD	66 Zn(α ,2 α)
J	61 Ni(n, γ) E=thermal	U	⁶³ Cu(n,d)		
K	61 Ni(n, γ),(n,n):resonances	V	63 Cu(d, 3 He),(pol d, 3 He)		

E(level) [†]	J^{π}	T _{1/2} &	XREF Co	mments
0.0	0+	stable	http://cdfe.sinp.msu. 2012Sc01 deduced val occupancy as follow experimental spectro	21 (2004An14 B update available on ru). ence orbit neutron rs from summed oscopic factors in their eaction: 2.31 each for r 1p _{1/2} , 0.34 for
1172.98 <i>10</i>	2+	1.45 ps <i>4</i>	ABCDEFGHIJ LMNOPQRSTUVWXYZ XRĒF: Others: AA, AB μ =+0.33 5 (2001Ke02 Q=+0.05 12 (1974Le1 B(E2)↑=0.0881 25 μ : transient-field integ	, AC, AD ,2011StZZ) 3,1989Ra17,2011StZZ) ral PAC (2001Ke02). (1988Sp04), +0.64 22 ul. ex. 7).
2048.68 12	0+	0.76 ^a ps +76-28	C EFG J LM OPQRS WX J^{π} : from adopted J^{π} : $L(t,p)=L(p,t)=0$. $T_{1/2}$: Other: 1.8 ps + J^{π}	
2301.84 <i>13</i>	2+	$0.58^a \text{ ps } +16-9$	ABC EFG J LMNOPQ S WX Z $(n,n'\gamma)$. XREF: Others: AA, AD J^{π} : $L(p,t)=L(t,p)=2$.	
2336.52 14	4+	$0.86^a \text{ ps } +24-13$	B DEFG J L OPQRSTUVWXYZ $T_{1/2}$: Other: 0.67 ps + XREF: Others: AA, AD J^{π} : L(p,t)=L(t,p)=4. $T_{1/2}$: other: 0.86 ps +	
2890.63 <i>20</i> 3058.76 <i>17</i>	0 ⁺ 3 ⁺	>3.1 ^a ps 2.3 ^a ps +14-7	C EFG J L OPQR WXY J^{π} : L(p,t)=0. A F J L OPQ WX XREF: Others: AA J^{π} : from $(n,n'\gamma)$. g.s. level as seen in (n,γ) measurements indic	ransition from this) is disputed. A_2, A_4 ate $\Delta J=1$ for all three γ
3157.96 <i>16</i>	2+	0.62 ps +11-10	A C EFG J M OPQRS U Wx (2011Ch05) . $L(p,t)=$ $T_{1/2}$: from $(n,n'\gamma)$. Ot $(\alpha,p\gamma)$. J^{π} : $L(p,t)=L(t,p)=2$.	her: 0.69 ps +55–28 in
3176.7 <i>3</i>	4+	0.73^{a} ps 17	B D F L OP Wx J^{π} : L(p,t)=4.	
3257.62 21	2+	$0.71^{a} \text{ ps } 17$	A C F J L OPQ Wxy J^{π} : L(p,t)=2.	
3262 8	(2,4)+	•	E G L PQ xy J^{π} : from $L(^{6}Li,d)=2+4$ unresolved doublet. E(level): may include	Also, $L(d,p)=1+3$.
3269.97 20	1+,2+#	0.125 ps <i>14</i>	A C J M O xy J^{π} : $L(d,p)=1+3$ for a $T_{1/2}$: from $(n,n'\gamma)$.	evel at 3265 10.
3277.69 23	4 ⁺	$0.195^a \text{ ps } +34-18$	B D FG O RS W y $T_{1/2}$: other: 0.42 ps + J^{π} : L(p,t)=4 for a leve	7-6 in $(n,n'\gamma)$. 1 at 3271 5; $L(\alpha,\alpha')=4$ γ decay to 2^+ state is
3369.98 20	1+#	0.19 ^a ps 9	A C F J LM OP x $T_{1/2}$: other: 0.35 ps + J^{π} : earlier suggested a measurement suggestion dipole (2011Ch05).	
3378 <i>3</i>			F x	
3462 3	1 ⁺ to 4 ⁺		F L PQ VWx J^{π} : L=3, dominant J-to d,p).	ransfer is 5/2 in (pol

3486 3 3518.23 22 2* 0.201 ^d ps 38 A FG J LN OPQRS WXY JF: J=2.4 from yy(0) in ⁶¹ Ni(n,y); y decays to 0* levels: L(p,p=2; L(p,1)=0+2. L=0 component is most likely for 3524 level. L	E(level) [†]	J^π	T _{1/2} &	XREF	Comments
decays to 0 levels; L(t,p)=2; L(t,p)=2; L(t,p)=3524	3486 <i>3</i>			F x	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3518.23 22	2+	0.201 ^a ps 38	A FG J LM OPQRS wxy	decays to 0 ⁺ levels; L(t,p)=2; L(p,t)=0+2. L=0 component is most likely for 3524 level.
3524.4 5 0° 0.76 ps +5-2 E 0 WZY XREF: Others: AA, AC XREF: (351s). 3756.5 3 3° 0.1490 ps +34-22 EFG J L NOPQRS W yZ B(E3)=0.020 3 (1967bu07; ozuCxi06) F: from (n,n'y); L(6Li,d)=0; L(p,L)=0+2. F: from (n,n'y); L(6PLi,d)=0; L(n,l)=0+2. F: from (n,n'y); L(n,l)=1. F: from (n,n'y)	2522.54.10	2+ 2+@	0.150	T 1 0	=
		*		· ·	-
3756.5 3 3	3324.4 3	U	0.7° ps +3-2	E O wxy	XREF: E(3519).
389.6 4	3756.5 3	3-	$0.149^a \text{ ps } +34-22$	EFG J L NOPQRS W yZ	B(E3) \uparrow =0.020 3 (1967Du07,2002Ki06) J ^{π} : L(p,t)=L(t,p)=L(p,p')=3. T _{1/2} : other: 0.17 ps +8-5 in (n,n' γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3849.4 <i>3</i>	0+,1+,2+		J M PQ	J^{π} : from (γ, γ') if γ decay from 7646, 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3859.6 4	1+,2+	0.277 ^a ps +17-9	C FG JLM PR UW	XREF: L(3853). J^{π} : J=1,2 from γ transitions to 0 ⁺ states, π =+ from log ft =5.6 from 1 ⁺ ; L(d,p)=1;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3967-3	+		F I PO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2+	0.111^{a} ps 35		
4018.88 25 (6)+ 0.62 ps 28	4000.5 10	4 ⁺	0.042^{a} ps $+28-21$		
Other: $0.076 \text{ ps} + 62-28 \text{ in } (\alpha, p\gamma)$. J^{π} : $E2 \text{ y to } 4^{+}$ and intense feeding in $(^{18}O_{1}4n\gamma)$. J^{π} : $E2 \text{ y to } 4^{+}$ and intense feeding in $(^{18}O_{1}4n\gamma)$. J^{π} : $L(d_{1}p)=1 \text{ from } 3/2^{-}$ target. J^{π} : $L(d_{2}p)=1 \text{ from } 3/2^{-}$ target. J^{π} : $L(d_{2}p)=3 \text{ for a doublet at } 4154 6$; $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. J^{π} : $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. J^{π} : $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 \text{ for a } 4153 10 \text{ level}$. $L(d_{2}p)=3 10 \text{ level}$. $L(d_{2}p)=3 $			-		10
4055.3 3 4+ 0.042 ^a ps +15-10 B F L P Wx J ^{π} : L(p,t)=4. 4062.4 5 1+,2+#	4018.88 25	(6)+	0.62 ps 28	DF L OP W	Other: 0.076 ps $+62-28$ in $(\alpha, p\gamma)$. J^{π} : E2 γ to 4 ⁺ and intense feeding in
4062.4 5 1 $^+$,2 $^+$ # 4146.0 8 (4 $^+$) 0.34 a ps +21-11					J^{π} : L(d,p)=1 from 3/2 ⁻ target.
4146.0 8 (4 ⁺) 0.34 ^a ps +21-11			0.042^{a} ps $+15-10$		J^{π} : L(p,t)=4.
XREF: I(4200). J^{π} : L(p,t)=(4) for a doublet at 4154 6 ; L(d,p)=3 for a 4153 $I0$ level. 4151.4 J^{π} : L(p,t)=(4) for a doublet at 4154 J^{π} : L(p,t)=3 for a 4153 J^{π} : L(p,t)=4 for a doublet at 4154 J^{π} : L(p,t)=3 for a 4153 J^{π} : L(p,t)=4 for a doublet at 4154 J^{π} : L(p,t)=3 for a 4153 J^{π} : L(p,t)=3 for a 4153 J^{π} : L(p,t)=5 for a level at 4150. J=(5) from (180,4ny). 4179 J^{π} : L(p,t)=5 for a level at 4150. J=(5) from (180,4ny). 4179 J^{π} : L(p,t)=6 from L=4, dominant J-transfer 9/2 in (pol d,p); J^{π} : L(p,t)=0. 4208.8 J^{π} : L(p,t)=0. 4208.8 J^{π} : L(p,t)=0. 4317.2 J^{π} : L(p,t)=2. 4415.9 J^{π} : L(p,t)=2.			0.249		WREE OIL AR AR
4154.2 4 (4 ^{\pm})	4146.0 8	(4")	$0.34^{46} \text{ ps } +21-11$	F HI I PQ UVW	XREF: I(4200). J^{π} : L(p,t)=(4) for a doublet at 4154 6;
4161.26 24 (5 ⁻) <1.4 ps D F S J^{π} : $L(d,p)=3$ for a 4153 10 level. J^{π} : $L(\alpha,\alpha')=5$ for a level at 4150. $J=(5)$ from $(^{18}O,4n\gamma)$. 4179 3 F P R J^{π} : $J L P J^{\pi}$: J^{π} :			0.034 ^a ps 9		77 7 () () () () () () () () ()
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<1.4 ps		L(d,p)=3 for a 4153 10 level.
4201.0 4 (3,4) $^-$		(3)	11. т рз	D I S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2.4)=			IT 2- 4 (- C I 4 I ' 4 I C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3,4)			9/2 in (pol d,p); γ decay to $2^+,3^+$ state
4317.2 II 1+,2+#		0+			I^{π} . I (p t)=0
4393 7 (1 to 5) ⁺ L PQ J ^{π} : L(d,p)=3 from 3/2 ⁻ target. 4407 4 2 ⁺ P W J ^{π} : L(p,t)=2. 4415.9 5 1 ⁺ ,2 ^{+#} G J 4424 3 F					υ . Δ(ρ,υ)=υ.
4407 4 2 ⁺ P W J^{π} : $L(p,t)=2$. 4415.9 5 1 ⁺ ,2 ^{+#} G J 4424 3 F					J^{π} : L(d,p)=3 from 3/2 ⁻ target.
4424 <i>3</i> F		2+			
		$1^+,2^{+\#}$			
		(3-)			J^{π} : $L(\alpha, \alpha') = (3)$.

E(level) [†]	J^{π}	T _{1/2} &	XR	EF		Comments
4455 <i>4</i> 4503 <i>4</i>	(3)-		G L G L	P PQ	W W	J ^π : L(p,t)=(3); L(pol d,p)=4 from 3/2 ⁻ target for a 4500 25 level.
4623 <i>5</i> 4627.5 <i>10</i>	0 ⁺ 2 ⁺ ,3 ⁺ @		G J	PQ	W	a 4300 23 level. J^{π} : $L(p,t)=L(t,p)=0$.
4648.9 <i>3</i> 4655 <i>5</i>	(7 ⁻) [‡] 3 ⁻	509 ps 24	D F HI G	Q S P	W	J^{π} : D+Q γ to (6 ⁺) and E2 γ to (5), (¹⁸ O,4n γ). J^{π} : L(p,t)=3.
4704 <i>7</i> 4712 <i>5</i> 4719.9 <i>7</i>	2 ⁺ (3) ⁻		G L JL	PQ P	x Wx Wx	J^{π} : L(p,t)=2. J^{π} : L=4, dominant J-transfer is 9/2 for a level at 4720 25, ⁶¹ Ni(pol d,p); γ to 2 ⁺ .
4781 <i>5</i> 4835 <i>7</i>	2+		G	PQ S P	U W	J^{π} : L(p,t)=2.
4847 7	$(1 \text{ to } 5)^{(+)}$			PQ	V	J^{π} : L(d, 3 He)=3 from 3/2 ⁻ target for a 4850 80 group.
4861 <i>5</i> 4863.3 <i>3</i>	(2 ⁺) 5 ⁻ ,6 ⁻	8.39 ps <i>14</i>	D G L	PQ	X Wx	J^{π} : L(p,t)=(2). J^{π} : L=4, dominant J-transfer of 9/2 ⁺ in (pol d,p) gives 3 ⁻ to 6 ⁻ . Lifetime and strong feeding in (¹⁸ O,4ny) exclude 3 and 4.
4882 <i>5</i> 4949 <i>7</i>	4+		L	P P	Wx	J^{π} : L(p,t)=4.
4967 <i>7</i> 4981 <i>7</i>	(4 ⁺)		GH	P P		J ^{π} : from DWBA analysis and proposed configuration= ν p _{3/2} $\otimes \nu$ f _{5/2} in (α , ² He).
4994 <i>6</i> 4999.7 <i>14</i>	3 ⁻ 1 ⁺ ,2 ^{+#}		G J	P Q	W	J^{π} : L(p,t)=3.
5016 <i>5</i> 5041 <i>10</i>	4 ⁺ (3 ⁻ to 6 ⁻)		G L	P P	W	J^{π} : L(p,t)=4. J^{π} : L=4, dominant J-transfer is 9/2 in (pol d,p) for a level at 5030 25.
5071 <i>10</i> 5121 <i>10</i>			L	PQ PQ		
5148 <i>5</i> 5154 <i>10</i>	(2^+) $(2^+,4^+)$ 2^+		G	P P	W	J^{π} : L(p,t)=(2). J^{π} : L(t,p)=(2+4).
5203 5 5222 10 5233 10	2.			P PQ P	W	$J^{\pi} \colon L(p,t)=2.$
5280 <i>10</i> 5286 <i>6</i> 5310	(2 ⁺) 2 ⁺		G	PQ P S	W	J^{π} : $L(p,t)=(2)$. J^{π} : $L(\alpha,\alpha')=2$.
5331 10	(3)-		G i L	PQ		J^{π} : $J=(3)$ from $L(t,p)=(3)$; $\pi=-$ from $L(d,p)=2$. Also $L=2$, dominant J-transfer is 5/2 in (pol d,p).
5355 <i>5</i> 5393 <i>10</i>	4+		i	P P	W	J^{π} : $L(p,t)=4$.
5420 <i>5</i> 5447 <i>5</i> 5465 <i>6</i>	(4 ⁺) 0 ⁺		G G	PQ P P	W W W	J^{π} : $L(p,t)=(4)$. J^{π} : $L(p,t)=0$.
5488 <i>10</i> 5511 <i>10</i>			L	P P		
5.53×10 ³ 10 5541 5 5545 10	6 ⁺ 2 ⁺ 3 ⁻ to 6 ⁻		G L	N P P	VW	J^{π} : from form factor in ⁶² Ni(e,e'). J^{π} : L(p,t)=2. J^{π} : L=4, dominant J-transfer is 9/2 in (pol d,p)
5565 <i>10</i> 5574 <i>5</i>	2+		G	P P	W	for a level at 5540 25. J^{π} : L(p,t)=2.

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ &			XR	EF			Comments
5587 10						P			
5601 10						P			
5628 6	3-			G	L		S	W	J^{π} : L(t,p)=3; L(α,α')=3 for a level at 5640 10.
5673 10	5-			HI	-	P			s : E(t,p)=5, E(t,a)=5 for a lever at 50 to 70.
5679 8	3			G		P		W	
5709 10				u		P		"	
5739 10						P			
	(O-) †	0.55	_			•			TT F2 (7) 4640 1 1 (180 4)
5751.2 <i>3</i>	(9 ⁻) [‡]	0.55 ps 21	D			n			J^{π} : E2 γ to (7), 4648 level, (¹⁸ O,4n γ).
5772 10	(7.0.0)	1.4	_			P			TT 6 1:6 (1804)
5806.1 4	(7,8,9)	<1.4 ps	D			_			J^{π} : from lifetime and strong feeding, (¹⁸ O,4n γ).
5808 6	(3-)					P		W	J^{π} : L(p,t)=(3).
5834 10					L	P			J^{π} : L(pol d,p)=2 for a level at 5830 25.
5846 10						P			
5859 10					L	P			
5870 <i>10</i>	(4+)					P		7.7	TI I (A) (A)
5888 8	(4^{+})					P		W	J^{π} : L(p,t)=(4).
5901 <i>10</i>	4+					P		7.7	T/ I (A A
5912 8	4 ⁺					P	_	W	J^{π} : L(p,t)=4.
5930	2+						S		J^{π} : $L(\alpha,\alpha')=2$.
5961 10						P			
5979 10	(1 - 2 -)					P			TT 1 (1311) 0.6 2/2
5993 10	$(1^-,2^-)$					P		V	J^{π} : L(d, ³ He)=0 from 3/2 ⁻ target for a group at 5990 80.
6023 10						P			
6026 10	(2-)					P			III I (() (2)
6047 8	(3-)					P		W	J^{π} : L(p,t)=(3).
6059 10	7-			ΗI		P			E(level), J^{π} : doublet in $(\alpha, {}^{2}\text{He})$ with $J^{\pi}=5^{-}$ and 7^{-} .
6073 8	4 4-					P		W	TT T 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6103 10	1 ⁻ to 4 ⁻				L	P			J^{π} : L=2, dominant J-transfer is 5/2 in (pol d,p) for a level at 6100 25.
6126 8						P		W	E(level): assumed to be same as 6121 10 level seen in
(122.10						_			(p,p').
6133 10						P			
6143 10						P		7.7	
6160 9						ъ.		W	F(I I) (1(0 I I)
6170 10	(4+)					P		7.7	E(level): same as 6160 level?
6253 9	(4 ⁺)					0		W	J^{π} : L(p,t)=(4).
6313 9	1 ⁻ to 4 ⁻				L	Q		W	J^{π} : L=2, dominant J-transfer is 5/2 in (pol d,p) for a level at 6320 25.
6354 8	2+							W	J^{π} : L(p,t)=2.
6398 8	4+				L			W	J^{π} : L(p,t)=4.
6454 8								W	4.7
6520	3-					P	S		J^{π} : $L(p,p')=L(\alpha,\alpha')=3$.
6540 80	$1^{-}.2^{-}$				L			V	J^{π} : L(d, 3 He)=0 from 3/2 ⁻ target.
6647.0 <i>3</i>	(9 ⁻) [‡]		D						J^{π} : E2 γ from 7559 level, $J=(11)$; γ to (7^{-}) level,
									$(^{18}O,4n\gamma).$
6680						P			_ 2
6750 <i>80</i>	$1^{-},2^{-}$				L			V	J^{π} : L(d, 3 He)=L(d,p)=0 from $3/2^{-}$ targets.
6900 25	$(1^-,2^-)$				L				$J^{\pi}: L(\text{pol } d,p)=(0).$
7030	3-					P			J^{π} : L(p,p')=3.
7080 <i>30</i>					L				E(level): seen in (d,p), perhaps same as 7030.
7170	8+			HI		Q			E(level),J ^{π} : doublet at 7190 in (α , ² He) with J ^{π} =6 ⁺ and 8 ⁺ .
7260	1 ⁻ to 4 ⁻				L	P			J^{π} : L=2, dominant J-transfer is 5/2 in (pol d,p) for a
7559.4 <i>4</i>	(11 ⁻) [‡]	0.83 ps 42	D						level at 7300 25. J^{π} : E2 γ transitions to $J=(9^{-})$ levels, ($^{18}O,4n\gamma$).
		1							, , , , , , , , , , , , , , , , , , , ,

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
7620	6+	HI PQ	
7645.6 <i>4</i>	1-	M	E(level): differs from E γ of capture γ from Fe(n, γ) by 14.35 eV 15.
			J^{π} : E1 γ to g.s., $^{62}Ni(\gamma,\gamma')$.
7700?		Q	
7800 <i>25</i>	1 ⁻ to 4 ⁻	L	J^{π} : L=2, dominant J-transfer is 5/2 in (pol d,p).
8130 25	$(1^- \text{ to } 4^-)$	L Q	J^{π} : L=(2), dominant J-transfer is (5/2) in (pol d,p).
8460 25	$(2^{-} \text{ to } 5^{-})$	L	J^{π} : L=(4), dominant J-transfer is (7/2) in (pol d,p).
(10596.1 4)	1-,2-	J	
10597.1° 3	1-0	K	
10598.9° 3	1+ <i>c</i>	K	
10599.0° 3	2 ^{-c}	K	
10602.0° 3	1+c	K	
10602.2 ^c 3	1 ⁺ <i>c</i>	K	
10602.8° 3	1 ^{-c}	K	
10603.2 ^c 3	2 ^{-c}	K	
10604.1 ^c 3	2 ^{-c}	K	
10605.7° 3	1+ <i>c</i>	K	
10608.2° 3	2^{-c} 1^{+c}	K	
10608.9 ^c 3 10609.2 ^c 3	2- <i>c</i>	K	
10609.2° 3	2+ <i>c</i>	K K	
10609.9° 3	1+ <i>c</i>	K	
10609.9° 3	1- <i>c</i>	K	
10612.1 3	1- <i>c</i>	K	
10613.3 3	2- <i>c</i>	K	
10616.8 ^c 3	$\frac{2}{2-c}$	K	
10616.9 ^c 3	1+ <i>c</i>	K	
10619.9° 3	1- <i>c</i>	K	
10623.5° 3	2 ⁻ <i>c</i>	K	
10624.3 ^c 3	$\frac{2}{1-c}$	K	
10624.4 ^c 3	2^{-c}	K	
10625.8 ^c 3	2 ^{-c}	K	
10626.3 ^c 3	1 ^{-c}	K	
10627.0 ^c 3	2 ^{-c}	K	
10627.9 ^c 3	2 ^{-c}	K	
10628.8 ^c 3	1- <i>c</i>	K	
10629.8 ^c 3	1 ⁺ C	K	
10632.2 ^c 3	1 ^{-c}	K	
10632.2 ^c 3	2 ^{-c}	K	
10632.5 ^c 3	1 ⁺ C	K	
10636.4 ^c 3	1 ^{-c}	K	
10638.6 ^c 3	2 ^{-c}	K	
10640.4° 3	1-c	K	
10640.4° 3	2+c	K	
10641.1° 3	1-0	K	
10641.6° 3	1 ^{-c}	K	
10645.3 ^c 3	2 ^{-c}	K	
10645.6° 3	2^{-c} 1^{+c}	K	
10646.2 ^c 3 10646.4 ^c 3	1+ <i>c</i>	K	
10646.4° 3 10647.3° 3	1+ <i>c</i>	K K	
10047.5 3	1	K	

E(level) [†]	${ m J}^\pi$	XREF	E(level) [†]	${ m J}^{\pi}$	XREF
10648.1 ^c 3	2 ^{-c}	K	10720.7 ^c 3	2 ^{-c}	K
10649.6 ^c 3	1- <i>c</i>	K	10721.1 ^c 3	1 ^{-c}	K
10651.3 ^c 3	2^{-c}	K	10721.8 ^c 3	2^{-c}	K
10652.8 ^c 3	2^{-c}	K	10723.8 ^c 3	1^{-c}	K
10653.0 ^c 3	2^{-c}	K	10724.4 ^c 3	1^{-c}	K
10654.1 ^c 3	1+c	K	10724.8 ^c 3	2- <i>c</i>	K
10655.5 ^c 3	2- <i>c</i>	K	10729.7 ^c 3	2- <i>c</i>	K
10655.6 ^c 3	2^{-c}	K	10730.7 ^c 3	2^{-c}	K
10658.0 ^c 3	1+c	K	10731.7 ^c 3	2^{-c}	K
10658.4 ^c 3	1+c	K	10734.2 ^c 3	2^{-c}	K
10658.7 ^c 3	2^{-c}	K	10735.4 ^c 3	1- <i>c</i>	K
10660.4 ^c 3	2^{-c}	K	10736.1 ^c 3	2- <i>c</i>	K
10663.0 ^c 3	2 ^{-c}	K	10736.8° 3	2^{-c}	K
10664.3 ^c 3	2- <i>c</i>	K	10738.6° 3	2- <i>c</i>	K
10664.3 ^c 3	1- <i>c</i>	K	10740.7 ^c 3	1+ <i>c</i>	K
10665.3 ^c 3	1+c	K	10741.2 ^c 3	2- <i>c</i>	K
10667.5° 3	2- <i>c</i>	K	10742.7° 3	2- <i>c</i>	K
10671.8° 3	2- <i>c</i>	K	10746.3 ^c 3	2- <i>c</i>	K
10671.8° 3	$\frac{1}{1}$ -c	K	10747.1° 3	$\frac{1}{1}$ -c	K
10673.4° 3	1+ <i>c</i>	K	10748.0° 3	2 ^{-c}	K
10673.5° 3	2-c	K	10748.5° 3	2- <i>c</i>	K
10674.9° 3	$\frac{1}{2} - c$	K	10749.7° 3	$\frac{1}{1}$ -c	K
10677.3° 3	1- <i>c</i>	K	10752.3 ^c 3	1- <i>c</i>	K
10677.6° 3	1- <i>c</i>	K	10753.1° 3	2- <i>c</i>	K
10678.4° 3	2- <i>c</i>	K	10754.9 ^c 3	2- <i>c</i>	K
10681.1 ^c 3	1+ <i>c</i>	K	10757.8° 3	$\frac{1}{1}$ -c	K
10682.8° 3	1- <i>c</i>	K	10759.7° 3	1- <i>c</i>	K
10688.3° 3	2- <i>c</i>	K	10760.6° 3	2 ^{-c}	K
10690.6 ^c 3	1- <i>c</i>	K	10763.7° 3	2- <i>c</i>	K
10690.9° 3	2+ <i>c</i>	K	10766.1° 3	2- <i>c</i>	K
10691.2 ^c 3	1+c	K	10767.0 ^c 3	$\frac{1}{1}$ -c	K
10692.2° 3	1- <i>c</i>	K	10769.8 ^c 3	1- <i>c</i>	K
10692.5° 3	2- <i>c</i>	K	10772.4° 3	2 ^{-c}	K
10695.7 ^c 3	2^{-c}	K	10774.7° 3	2- <i>c</i>	K
10698.7° 3	1- <i>c</i>	K	10776.5° 3	2- <i>c</i>	K
10699.2 ^c 3	2 ^{-c}	K	10778.3 ^c 3	1^{-c}	K
10700.0° 3	1- <i>c</i>	K	10781.5 ^c 3	2 ^{-c}	K
10702.2 ^c 3	2 ^{-c}	K	10786.5° 3	1- <i>c</i>	K
10703.3 ^c 3	1+ <i>c</i>	K	10787.8° 3	2- <i>c</i>	K
10703.5° 3	2-c	K	10790.9 ^c 3	2- <i>c</i>	K
10704.0° 3	1+c	K	10793.3° 3	$\frac{1}{1}$ -c	K
10704.7° 3	1+ <i>c</i>	K	10796.0° 3	2- <i>c</i>	K
10706.2 ^c 3	2- <i>c</i>	K	10798.5° 3	1+ <i>c</i>	K
10708.4 ^c 3	2- <i>c</i>	K	10799.1° 3	1- <i>c</i>	K
10711.2° 3	$\frac{1}{2^{-c}}$	K	10800.6° 3	1+ <i>c</i>	K
10712.1° 3	1- <i>c</i>	K	10802.2 ^c 3	3+ <i>c</i>	K
10712.8° 3	2^{-c}	K	10803.0° 3	2- <i>c</i>	K
10714.3° 3	2- <i>c</i>	K	10804.6 ^c 3	3+ <i>c</i>	K
10715.0° 3	$\frac{1}{2}-c$	K	10805.9 ^c 3	1+ <i>c</i>	K
10716.6° 3	2- <i>c</i>	K	10807.1 ^c 3	2 ^{-c}	K
10719.2 ^c 3	$\frac{1}{2} - c$	K	10810.3° 3	2- <i>c</i>	K

E(level) [†]	J^π	XREF	E(level) [†]	\mathbf{J}^{π}	XREF
10812.4 ^c 3	2 ^{-c}	K	10855.3 ^c 3	2 ^{-c}	K
10817.1 ^c 3	2^{-c}	K	10858.7 ^c 3	2^{-c}	K
10017.2 3	2^{-c}	K	10868.7 ^c 3	2^{-c}	K
10822.7 ^c 3		K	10876.1 ^c 3	2^{-c}	K
10824.3 ^c 4		K	10878.9 ^c 3	2^{-c}	K
10824.4 ^c 5	1- <i>c</i>	K	10882.5 ^c 3	2^{-c}	K
10827.8 ^c 3		K	10884.4 ^c 3	2^{-c}	K
10828.5 ^c 3		K	10885.7 ^c 3	2^{-c}	K
10832.2 ^c 3		K	10888.2 ^c 3	2^{-c}	K
10832.3 ^c 5	1^{-c}	K	10891.2 ^c 3	2^{-c}	K
10845.6 ^c 3		K	10970° 20	2^{-c}	K
10849.8 ^c 3	1- <i>c</i>	K	11010° 20	1- <i>c</i>	K
10851.4 ^c 3	2 ^{-c}	K			

 $^{^{\}dagger}$ Level energies given with decimals are from a least-squares fit to the adopted E γ data. Others are from 64 Ni(p,t) and 62 Ni(p,p'), and from ⁶¹Ni(d,p) at the highest energies. ‡ Parity same as that of 4160 level, from ⁴⁸Ca(¹⁸O,4n γ). $^{\sharp}$ From ⁶¹Ni(n, γ): J^{π} =0+ to 3+ from primary E1 transition from 1⁻,2⁻ capturing state, γ to 0+ excludes 0 and 3.

[@] From ⁶¹Ni(n,γ): $J^{\pi}=0^+$ to 3^+ from primary E1 transition from $1^-,2^-$ capturing state, γ to 4^+ excludes 0 and 1.

[&]amp; From $^{48}\text{Ca}(^{18}\text{O},4\text{n}\gamma)$, except as noted. ^a From DSAM in $^{59}\text{Co}(\alpha,\text{p}\gamma)$.

^b From DSAM in 62 Ni(n,n' γ).

^c Neutron resonance, J^{π} from R-matrix analysis (2006Ko28).

$\gamma(^{62}\mathrm{Ni})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	$E_f \underline{J_f^{\pi}}$	Mult.	$\delta^{@}$	Comments
1172.98	2+	1172.95 11	100	0.0 0+	E2&		B(E2)(W.u.)=12.1 4
2048.68	0^{+}	875.69 <i>7</i>	100	1172.98 2+	E2 <mark>&</mark>		
		(2048.4)		0.0 0+	E0		$q_K^2(E0/E2)$ =0.084 11, X(E0/E2)=0.031 4 (2005Ki02). E _y : a 2048.4-keV E0 transition has been observed (1981Pa10) with B(E0 to g.s.)/B(E2 to 1173)=0.028 5 from ce(K)(2048 γ)/ce(K)(876 γ)=0.084 11.
2301.84	2+	1128.82 <i>14</i>	80.8 20	1172.98 2+	M1+E2	+3.19 11	B(M1)(W.u.)=0.00106 +18-30; B(E2)(W.u.)=14.9 +24-42 Mult.,δ: from 62 Ni(p,p'γ) (1972Va01). Other: δ =+3.0 +7-20 from 62 Cu decay (1976Ca31).
		2301.8 <i>3</i>	100 <i>3</i>	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.57 +10-16
2336.52	4+	1163.50 <i>12</i>	100	1172.98 2+	E2&		B(E2)(W.u.)=21 +4-6
2890.63	0_{+}	1717.5 <i>3</i>	100	1172.98 2+	E2		B(E2)(W.u.)<0.84
2050 56	2+	500 00 00	45. 4	2226.52 4) f1 F2	16 20	Mult.: $\delta = -4.1 + 13 - 30$ from (n, γ) (1970Fa06). Known J^{π} requires pure E2.
3058.76	3+	722.02 <i>23</i> 756.85 <i>20</i>	47 <i>4</i> 100 <i>6</i>	2336.52 4 ⁺ 2301.84 2 ⁺	M1+E2 (M1+E2)	+1.6 +3-9	P(M1)/W) (0.000 + 2. 6), P/F2)/W) (0.10 + 11. 15)
		1885.8 <i>3</i>	91 7	2301.84 2 ⁺ 1172.98 2 ⁺	M1+E2 M1(+E2)	$-0.08\ 2$ $-0.03\ +3-2$	B(M1)(W.u.)=(0.009 +3-6); B(E2)(W.u.)=(0.18 +11-15) B(M1)(W.u.)=(0.00055 +18-34)
		1003.0 3	91 7	1172.96 2	WII(±E2)	-0.03 +3-2	δ : from (n,n' γ). Others: -0.50 8 (1985KoZM in (n,n' γ), +0.65 +20-16 (1970Fa06).
3157.96	2+	856.09 12	12.3 5	2301.84 2+	M1+E2		
		1984.9 <i>3</i>	100 4	1172.98 2+	(M1+E2)	+0.13 8	B(M1)(W.u.)= $(0.0026 5)$; B(E2)(W.u.)= $(0.020 +25-20)$ δ : from (n,n' γ) (1970Fa06).
		3158.0 <i>15</i>	58 7	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.068 +14-15
3176.7	4+	875.0 <i>4</i>	6.9 10	2301.84 2+	[E2]		
2057.60	2+	2003.6 4	100 4	1172.98 2+	E2 ^C		B(E2)(W.u.)=1.5 4
3257.62	2+	955.7 <i>3</i> 2084.8 <i>4</i>	3.76 22 100 <i>3</i>	2301.84 2 ⁺ 1172.98 2 ⁺	[E2+M1] M1+E2		
		3257.6 12	3.3 4	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.0046 13
3269.97	$1^+, 2^+$	968.2 5	>11.6	2301.84 2+			5(32)(***********************************
		1221.0 <i>3</i>	<97.7	$2048.68 \ 0^{+}$			
		2097.2 3	100	1172.98 2+			
		3270.0 22	<23.3	$0.0 0^{+}$	0-		
3277.69	4+	2104.5 3	100	1172.98 2+	E2&		B(E2)(W.u.)=4.8 +5-9 E _γ : average of 2103.78 25 (18 O,4nγ) and 2104.6 3 (62 Co β^- decay
							(13.9-min)), 2104.5 3 in $(\alpha,p\gamma)$. B(E2)(W.u.)>0.55.
3369.98	1+	479.36 6	2.8 5	2890.63 0 ⁺	M1 . F2	. 1 6 . 41 . 77	D/M1/M/) 0.002 . 12 2 D/F2/M/) 12 . 21 . 12
		1067.7 3	16.6 <i>17</i>	2301.84 2+	M1+E2	+1.6 +41-11	B(M1)(W.u.)= $0.003 + 13 - 3$; B(E2)(W.u.)= $13 + 21 - 13$ δ : from (n,n' γ) (2011Ch05).
		1321.1 <i>3</i>	12.8 13	2048.68 0+			
		3369.7 17	100 16	0.0 0+	D		
3378		2205 3	100	1172.98 2+			

 γ ⁽⁶²Ni) (continued)

 $\delta^{@}$

+0.32 6

 α^{\dagger}

0.001179 17

B(E2)(W.u.)=2.86

 (n,γ) , 1970Fa06).

B(E2)(W.u.)=0.026 7

B(E1)(W.u.)=0.00045 +9-12

 E_{ν} : 2805.2 18 in (α, p_{ν}) .

 $\alpha(M)=2.23\times10^{-7}$ 4

B(E2)(W.u.)=0.16 9

B(E2)(W.u.)=4.6 21

B(E2)(W.u.)=3.3 +14-17

B(E2)(W.u.)=5.4 + 18-33

B(E2)(W.u.)=0.49 + 13-18

 $B(E1)(W.u.)=8.7\times10^{-5}+16-22$

 E_{ν} : seen in $(\alpha, p\gamma)$, coincident with 2302 γ .

 $\alpha(K)=1.643\times10^{-5}\ 23;\ \alpha(L)=1.586\times10^{-6}\ 23;$

 $\alpha(N)=9.73\times10^{-9}$ 14; $\alpha(IPF)=0.001161$ 17 I_{γ} : average of 67 11 in (n,γ) and 127 32 in $(\alpha,p\gamma)$.

 I_{γ} : from (n,γ) .

 I_{γ} : from (n,γ) .

 I_{γ} : from (n,γ) .

Comments

δ: from $(n,n'\gamma)$ (2011Ch05). Other: +0.44 9 (from

Mult.

 $(M1+E2)^{b}$

E2

E2

[E1]

(E1)

[E2]

[E2]

[E2]

E2&

[E2]

[E2]

[E2]

 E_{γ}^{\ddagger}

2289 *3*

1184 *3*

360.5 4

459.3 3

1469.9 5

2345.3 4

3519.0 2*1*

463.3 5

1185.94 18

1221.0 *3*

2351.4 4

1454.5 3

2584.1 5

1548.0 5

968.2 4

3861.7 11

450.4 7

703.1 6

2799.4 5

3973 2

1664

2837.9 15

1682.34 21

777.5 3

1718.8 5

1753.5 8

2882.3 4

1761.0 5

870^d

1844.1 8

1092.50 25

4062.4 10

1665 *3*

579.42 20

264.94 25

 E_i (level)

3518.23

3522.54

3524.4

3756.5

3849.4

3859.6

3972.9

4000.5

4011.0

4018.88

4055.3

4062.4

4146.0

4151.4

3967

3462

3486

1+ to 4+

2+

 $2^{+},3^{+}$

 0^{+}

3-

 $0^+.1^+.2^+$

 $1^+, 2^+$

 2^{+}

4+

 $(6)^{+}$

 $1^{+},2^{+}$

 (4^{+})

 $2^{+}.3^{+}$

4+

 I_{γ} #

100

100

2.6 3

10.0 5

13.3 5

9.9 15

2.0 4

29 4

49 8

92 8

100 8

100 11

91 4

33 9

100 13

2 1

11 4

100 39

100

100

100

26 *3*

100 6

9 3

16 *I*

100 20

90 10

100

100 22

97 30

100

<100

100

100 5

 E_f

1172.98

2301.84 2+

3157.96 2+

3058.76 3+

2048.68 0+

1172.98 2+

3257.62 2+

3058.76 3⁺

2336.52 4+

2301.84 2+

1172.98 2+

2301.84 2+

1172.98 2+

2301.84 2+

2890.63 0+

2301.84 2+

3269.97 1+.2+

 $0.0 0^{+}$

3522.54 2⁺,3⁺

3269.97 1+,2+ 1172.98 2+

 $0.0 0^{+}$

2336.52 4+ 1172.98 2+

2336.52 4+

3277.69 4+

2336.52 4+

2301.84 2+

1172.98 2+

2301.84 2+

3277.69 4+

2301.84 2+

3058.76 3⁺

 $0.0 0^{+}$

 $0.0 0^{+}$

γ (62Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^π	Mult.@	α^{\dagger}	Comments
4151.4	2+,3+	1815.8 8	44 22	2336.52				
		1850.0 7	66 22	2301.84				
4154.2	(4 ⁺)	1817.7 <i>3</i>	100	2336.52	4+			E_{γ} : evaluator assumes that 1815.8 γ in (n,γ) and 1817.7 γ in $(\alpha,p\gamma)$ are not the same.
4161.26	(5^{-})	883.54 16	50 21	3277.69	4+	D+Q ^a		I_{γ} : average of 29 in ($^{18}O,4n\gamma$) and 71 in ($\alpha,p\gamma$).
								δ : -0.24 6 or -2.4 4, (¹⁸ O,4nγ). $\Delta \pi$ =yes suggests smaller value more likely. 5 ⁻ assignment defines the transition as E1+M2; δ =-0.24 6 gives B(M2)(W.u.)>20, compared with RUL=1.
		1001	38	3157.96	2+			Mult.: assignment of 5 ⁻ defines the transition as E3 to give B(E3)(W.u.)>7.6×10 ⁵ , compared with RUL=100; this transition may be suspect.
		1825.0 <i>3</i>	100	2336.52	4+	D+Q ^a		δ : -0.16 6 or -3.1 4, (¹⁸ O,4n γ) $\Delta\pi$ =yes suggests smaller solution more likely.
4179		1002 3	100	3176.7		4		The second second second more more
4201.0	$(3,4)^{-}$	678.5 <i>3</i>	100	3522.54				
4317.2	1+,2+	4318 <i>3</i>	100		0^{+}			
4415.9	1+,2+	1045.9 <i>4</i>	100 20	3369.98				
	- ,-	4416 2	80 20		0+			
4424		2122 3	100	2301.84				
4627.5	$2^{+},3^{+}$	310.4 5	26 11	4317.2				
1027.5	- ,5	2289.7 15	80 43	2336.52				
		3456 <i>3</i>	100 29	1172.98				
4648.9	(7-)	487.59 <i>13</i>	52	4161.26		E2 <mark>&</mark>	0.00179 <i>3</i>	B(E2)(W.u.)=0.95 5
4046.7	(/)	401.39 13	34	4101.20	(3)	EZ**	0.00179 3	$\alpha(K)=0.001609 \ 23; \ \alpha(L)=0.0001603 \ 23; \ \alpha(M)=2.25\times10^{-5} \ 4; \ \alpha(N)=9.42\times10^{-7} \ 14$
		630.0 14	100	4018.88	(6) ⁺	D+Q ^a		E_{γ} : 628.4 3 from $(\alpha, p\gamma)$ not included in average.
	(0)					⊅דע		δ : -0.19 4 or -2.3 5, (¹⁸ O,4n γ).
4719.9	(3)	1661.3 7	100 50	3058.76				
1062.2		3546 2	88 25	1172.98	2			
4863.3	5-,6-	702.02 14	100	4179	2+			
4999.7	$1^+, 2^+$	3828 2	100 18	1172.98				
		4998 2	82 18		0_{+}	0_		
5751.2	(9-)	1102.41 <i>17</i>	100	4648.9	(7^{-})	E2&		B(E2)(W.u.)=43 17
5806.1	(7,8,9)	1157.24 22	100	4648.9	(7^{-})			
6647.0	(9^{-})	895.75 <i>16</i>	100	5751.2	(9-)			
		1997.94 <i>24</i>	88	4648.9	(7^{-})	-		
7559.4	(11^{-})	912.33 <i>16</i>	46	6647.0	(9^{-})	E2&		B(E2)(W.u.)=23 12
		1808.43 22	100	5751.2	(9-)	E2&		B(E2)(W.u.)=1.7 9
		3416	1.9	4230.0	0+	- -		_ (/(/
7645.6	1-	7410						
7645.6	1-	3585	3.3	4062.4	1+,2+			

γ (62Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	Comments
7645.6	1-	3783	3.3	3859.6	1+,2+		
		3798	0.6	3849.4	$0^+, 1^+, 2^+$		
		4129	2.4	3518.23	2+		
		4273	3.3	3369.98	1+		
		4375	3.4	3269.97	$1^+, 2^+$		
		4487	2.7	3157.96			
		5597	25.8	2048.68			
		6473	6.5	1172.98			_
		7646	100	0.0	0_{+}	E1	$B(E1)(W.u.)=6.5\times10^{-5}$
							$\alpha(IPF) = 0.00264 \ 4$
							Mult.: from polarization measurement, 62 Ni (γ, γ') .
(10596.1)	$1^{-},2^{-}$	5596 <i>4</i>	3.0 20	4999.7	1+,2+		
		5877 2	6.0 20	4719.9	(3)		
		5968 2	14.0 20	4627.5	$2^{+},3^{+}$		
		6179 2	20 4	4415.9	1+,2+		
		6277 <i>3</i> 6364 2	8 4	4317.2	1 ⁺ ,2 ⁺ 0 ⁺		
		6387 2	10 <i>6</i> 8 <i>4</i>	4230.0 4208.8	0.		
		6395 2	10 <i>6</i>	4201.0	$(3,4)^{-}$		
		6445 2	24 4	4151.4	$2^{+},3^{+}$		
		6623 2	34 6	3972.9	2+,3		
		6840.0 <i>15</i>	3.0	3756.5	3-		
		7073 <i>3</i>	30 14	3522.54			
		7078.0 <i>15</i>	72 14	3518.23	2+		
		7326.0 <i>15</i>	96 8	3269.97			
		7338 2	28 6	3257.62	2+		
		7436 2	40 6	3157.96	2+		
		7537 2		3058.76	3 ⁺		
		7703.4 15	26 12	2890.63			
		8296 <i>3</i>	16 <i>4</i>	2301.84			
		8551.3 <i>15</i>	92 10	2048.68			
		9422.3 5	100 10	1172.98			
		10594.6 7	74 16	0.0	0_{+}		

12

[†] Additional information 1. † From $(n,n'\gamma)$ for E(level) up to 3756.4; for others $E\gamma$ are averages from the most precise measurements. The most complete data from $^{61}Ni(n,\gamma)$ tend to have $E\gamma$ that are 0.1-0.2 keV lower than other data in the range where comparisons are possible (1-3 MeV).

[#] Primarily based on (n,γ) data.

[@] From $(n,n'\gamma)$ or (n,γ) , except as noted.

[&] From RUL and $\gamma(\theta)$ in ⁴⁸Ca(¹⁸O,4n γ).
^a From $\gamma(\theta)$ in ⁴⁸Ca(¹⁸O,4n γ).

^b Mult=D+Q from $\gamma(\theta)$. $\Delta \pi$ =no from level scheme.

^c Mult=Q from $\gamma(\theta)$. $\Delta \pi$ =no from level scheme.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

History Author Citation Literature Cutoff Date Туре Full Evaluation Balraj Singh and Jun Chen NDS 178,41 (2021). 12-Nov-2021 $Q(\beta^{-})=-1674.62\ 21;\ S(n)=9657.46\ 20;\ S(p)=12536\ 19;\ Q(\alpha)=-8111\ 3$ S(2n)=16495.23 21, S(2p)=22798.9 28 (2021Wa16). Mass measurements: 2007Gu09, 2005Gu36, 2004He32, 1974De22. Following reactions deal with cross sections or reaction mechanism: ⁶⁶Zn(¹⁴C, ¹⁶O): 1981Be40 (72 MeV). ⁶⁵Cu(n,d), (n,np): 1987Ah01 (9,11 MeV), 1982Sh28 and 1979Sh25 (14.2 MeV), 1979Gr06 (14.8 MeV), 1967Ch02 (14 MeV), 1965Fa06 (14 MeV). Additional information 1. 65 Cu(γ,p): 1971We06 (17 MeV), 1968Ab10 (≤26 MeV). ⁶⁵Cu(p,2p): 1977Sh03 and 1977ShZQ (17 MeV). ⁶⁴Ni(d,np): 1971Ne07 and 1970Ne16 (13.6 MeV), 1968Cu04 (<16 MeV). 64 Ni(π ,X γ) E=100, 160, 220 MeV: 1978Ja19. Measured prompt and β delayed spectra of residual nuclides. $^{64}\text{Ni}(\pi^-,\gamma)$: 1990Ku08. Muonic atom: 1976Sh21. Antiprotonic atom: 2001Tr23. 64 Ni(π,X): mesic atom: 1990Ku08. ⁶⁴Ni(t,t) E=20 MeV: 1969Fl06: Measured $\sigma(\theta)$. ⁶⁴Ni(a,dd): 1988Me14 (96 MeV). 65 Cu(n,d) E=6-16 MeV: 1997Di07: analysis of σ (E) data. ⁶²Ni(¹⁸O, ¹⁶O): 1973Au02 (50,57,65 MeV). Hyperfine structure, isotope shift measurement with optical method: 1980St21.

Consult NSR database for theory references on nuclear structure. 64 Zn can decay by double β decay to 64 Ni. Many measurements have been reported

⁶⁴Zn can decay by double β decay to ⁶⁴Ni. Many measurements have been reported dealing with search for β transition to ⁶⁴Ni g.s.. No definitive decay has been observed, upper limits on ⁶⁴Zn half-life have been established. The latest reports are 2020Az05, 2011Be39, 2010Be41, 2009Be27, 2009Da16, 2008Be02, 2007Bl15, 2006Wi12, 2006Zu02. For details, see T_{1/2} comment for g.s. of ⁶⁴Zn in Adopted Levels for ⁶⁴Zn.

⁶⁴Ni Levels

Cross Reference (XREF) Flags

A B C D E F G H I	⁶⁴ Co β ⁻ decay (0.30 s) ⁶⁴ Cu ε decay (12.7006 h) ⁶² Ni(t,p) ⁶² Ni(α, ² He) ⁶² Ni(¹² C, ¹⁰ C) ⁶² Ni(¹⁸ O, ¹⁶ Oγ) ⁶³ Ni(n,γ) E=th ⁶³ Ni(n,γ):resonances ⁶⁴ Ni(e,e') ⁶⁴ Ni(π^+,π^+),(π^-,π^-)	K L M N O P Q R S	64 Ni(π ,X):mesic atom 64 Ni(π ,n') 64 Ni(π ,n') 64 Ni(π ,n' γ) 64 Ni(π ,p') 64 Ni(π ,p') 64 Ni(π ,p' γ) 64 Ni(π ,d'),(pol d,d') 64 Ni(π ,d') 64 Ni(π ,a') 64 Ni(π ,a') 64 Ni(π ,a' γ) 64 Ni(π ,x'):inelastic scatt	U V W X Y Z Othe AA AB AC	65 Cu(d, 3 He) 65 Cu(t, α) 67 Zn(n, α) 68 Zn(d, 6 Li) 208 Pb(64 Ni, 64 Ni' γ) 238 U(64 Ni, 64 Ni' γ) rs: 238 U(70 Zn,X γ) Coulomb excitation Muonic atom		
$\frac{\text{E(level)}^{\dagger}}{0.0} \frac{\text{J}^{\pi \ddagger}}{0^{+}} \frac{\text{T}_{1/2}}{\text{stable}}$	XREF ABCD FG IJ LMNOPQRSTUVWXYZ		Comments XREF: Others: AA, AB Evaluated rms charge radius $< r^2 > ^{1/2} = 3.8572$ fm 23 (2013An02). Evaluated $\delta < r^2 > (^{60}\text{Ni}, ^{64}\text{Ni}) = +0.338$ fm² 10 (2013An02). Measured $\delta < r^2 > (^{60}\text{Ni}, ^{64}\text{Ni}) = +0.368$ fm² 9; deduced total charge radius $R_c (^{64}\text{Ni}) = 3.854$ fm 2 (2020Ka22). Measured isotope shift $\delta v (^{60}\text{Ni}, ^{64}\text{Ni}) = +1027.2$ MHz 25(stat)				

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
1345.777 23	2+	1.086 ps <i>35</i>	ABCD FG IJ LMNOPQRSTUVWXYZ	77(syst) (2020Ka22). Measured $\delta < r^2 > (^{64}\text{Ni}, ^{58}\text{Ni}) = +0.6362 \text{ fm}^2 48;$ $\delta < r^2 > (^{64}\text{Ni}, ^{60}\text{Ni}) = +0.3631 \text{ fm}^2 48 \text{ (2021Ko18)}.$ Measured isotope shift $\delta v (^{64}\text{Ni}, ^{58}\text{Ni}) = +1534.3 \text{ MHz } 26,$ $\delta v (^{64}\text{Ni}, ^{60}\text{Ni}) = +1028.2 \text{ MHz } 26 \text{ (2021Ko18)}.$ XREF: Others: AA, AB
				μ =+0.37 6 (2001Ke02,2001Ke08,2020StZV) Q=+0.35 20 (1971ChZT,2016St14,2021StZZ) B(E2)↑=0.0705 29 β ₂ =0.206 21 (1989Va02)
				XREF: Q(1320).
				J ^π : L(t,p)=L(α , α')=L(d,d')=L(p,p')=2 from 0 ⁺ . T _{1/2} : weighted average of 1.065 ps 116 from RDDS in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ) (2017Kl01) and 1.088 ps 35 from DSAM in Coul. Ex. (2001Ke08,2001Ke02). Others: 0.017 ps 8 from DSAM in (n,n' γ) (1983El03, 1989Ge09); 0.28 ps 10 from DSAM in (α , α' γ) (1974Iv01); 0.91 ps 4 from adopted B(E2)↑=0.0705 29.
				μ: from transient-fields in Coul. ex. (2001Ke02,2001Ke08). Other: +0.92 26
				(1978Ha13,1979BrZP) from Coul. ex.
				Q: from Coul. ex. (1971ChZT). 2021StZZ and 2016St14 list rounded value of 0.4 2.
				B(E2) \uparrow : weighted average of 0.070 <i>10</i> from (^{18}O , $^{16}O\gamma$)
				(2020Ma37), 0.071 3 from (e,e'); 0.0718 29 (2014Al20), 0.065 4 (1971ChZT), 0.087 17 and 0.077 15 (1960An07), 0.090 18 (1959Al95) from Coul. ex. Others: 0.069 5 from inelastic scattering (1996Ch03); see
				also (α, α') dataset for deformation parameter.
				β_2 : from (pool p,p'). In (α,α') (1971Go36), negative sign is indicated from relative phase of $\sigma(\theta)$ for (α,α) and (α,α') . Others: 0.13 to 0.22 (see (π,π') , (p,p') ; (d,d') ; $({}^3\text{He},{}^3\text{He}')$; (α,α') ; inelastic scattering).
2276.58 <i>3</i>	2+		A C FG I MNOP R UV XYZ	XREF: Others: AB
				E(level), J^{π} : spin=2 from $\gamma\gamma(\theta)$ in 238 U(64 Ni, 64 Ni' 7); parity from L(d, 3 He)=L(t, α)=1 from 3/2 $^{-}$. Other: L(p,p')=(0) proposed (1963Di11) for a weak group at 2275 and J^{π} =0 $^{+}$ assumed by 1987Ba78 in the analysis of $\sigma(\theta)$ for a 2280 group in (α,α') suggest an additional (0 $^{+}$) level near 2275.
2477 <i>7</i>	6+		N P	B(E2)\(\gamma \cdot 0.0002 \) (e,e') (1988Br10). XREF: N(?). E(level): from (p,p'). Other: 2490 from (d,d').
2610.04 9	4+	1.73 ps 28	C F I MNOPR UV XYZ	J ^{\vec{n}} : L(d,d')=6 from 0+. XREF: Others: AA, AB
		1 -		T _{1/2} : from DSA in Coul. Ex. (2001Ke08). Other: >0.31 ps from DSA in (n,n' γ) (1989Ko54). J ^π : 1264.3 γ E2 to 2 ⁺ ; L(t,p)=L(e,e')=L(p,p')=4 from 0 ⁺ . B(E4)↑=0.0018 4 (e,e') (1988Br10). β ₄ =0.09 (1969Be20), 0.07 (1974Ba74).
2867.40 <i>10</i>	0+	1.45 ps <i>10</i>	A C FG MNOP UV YZ	β_4 =0.09 (1909Be20), 0.07 (1974Ba74). XREF: Others: AB $J^{\pi}: L(t,p)=0 \text{ from } 0^+; \text{ spin=0 from } \gamma\gamma(\theta) \text{ in}$ $^{238}U(^{64}\text{Ni},^{64}\text{Ni}'\gamma) \text{ Other: } L(p,p')=(2) \text{ from } 0^+ \text{ and}$ $L(d,^3\text{He})=1+3 \text{ from } 3/2^- \text{ could indicate a separate level.}$

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF		Comments
2972.11 6	(1,2+)	0.13 ps + <i>13</i> -5	A C FG I MN	V Z	$T_{1/2}$: from B(E2) in Coulomb excitation (2020Ma37); also 1.4 ps 6 from RDDS in 62 Ni(18 O, 16 O γ) (2020Ma37). Value of 0.04 ps 2 from DSAM in (n,n' γ) (1989Ko54) seems discrepant. E(level): probable doublet in (t,p) and (p,p').
					J ^{π} : 2972.0 γ to 0 ⁺ . J ^{π} =(2 ⁺) from L(t,p)=(2) for one member of the doublet. 2 ⁺ proposed by 2020Ma37 in (18 O, 16 O γ) but no arguments given. T _{1/2} : from DSAM in (n,n' γ) (1989Ko54).
2982.94 <i>14</i>	(3 ⁺)		F 0	Z	J^{π} : proposed by 2012Br15 based on $\gamma\gamma(\theta)$ in $^{238}U(^{64}Ni,^{64}Ni'\gamma)$.
3025.84 4	0+	3.6 ps <i>12</i>	A C FG MNOP	Z	XREF: Others: AB J^{π} : spin=0 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); 1680.1 γ E2 to 2 ⁺ .
					$T_{1/2}$: from RDDS in 62 Ni(18 O, 16 O γ) (2020Ma37). Other: 4.1 ps +5-4 from B(E2) in Coulomb excitation (2020Ma37) and adopted branching ratio of 1680 γ .
3153.72 4	2+		A c eFG R	V	J^{π} : L(α , α')=2 from 0 ⁺ . Other: 1 ⁺ reported by 2020Ma37 in 62 Ni(18 O, 16 O γ), but no arguments given.
3165.81 <i>15</i>	4+	0.13 ps +17-5	c eF I MNOP	v YZ	given. J^{π} : spin=4 from $\gamma\gamma(\theta)$ in $^{238}U(^{64}Ni,^{64}Ni'\gamma)$; parity from $L(e,e')=L(p,p')=4$ from 0^+ . $T_{1/2}$: from DSAM in $(n,n'\gamma)$ (1989Ko54). $B(E4)\uparrow=0.00058$ 14 (e,e') (1988Br10).
3275.99 5	2+	0.24 ps <i>3</i>	A C FG I MNOP R	V	J ^π : L(t,p)=L(α,α')=2 from 0 ⁺ . T _{1/2} : from B(E2)↑=0.0025 <i>I</i> from (e,e') (1988Br10) and adopted branching of 3275.9γ.
3395.89 12	4+		C F I MNOP	V YZ	J ^π : spin=4 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); parity from L(t, α)=3 from 3/2 ⁻ .
3463.62 5	0+#		FG MN	v Z	XREF: Others: AB J^{π} : spin=0 from $\gamma \gamma(\theta)$ in (n,γ) E=th (2020Ma37); 2117.86 γ to 2 ⁺ ; primary γ from 1 ⁻ expected to be E1.
3482 5	$(2^+,3,4^+)$		MNO	V	Additional information 2. J^{π} : probable 2136 γ to 2 ⁺ and 872 γ to 4 ⁺ .
3559.90 18	3-		C eF IJ MNOPQR	v YZ	B(E3)↑=0.026 5 (1988Br10,2002Ki06) β ₃ =0.203 20 (1989Va02) XREF: R(3580).
					J ^π : spin=3 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); L(t,p)=L(α,α')=L(p,p')=L(e,e')=3 from 0 ⁺ . B(E3)↑: from (e,e'), average (by 2002Ki06) of two values: 0.031 and 0.026 listed by 1988Br10 using two different models. Others: 0.022 or 0.024 ((α,α'), 1985Al24) and (π,π') (1993Pe09). β ₃ : from (pol p,p'). Others: 0.11-0.17 (see (p,p');
3578.66 5	(1+)		A e G		(d,d'); (3 He, 3 He'); (α , α ')). XREF: G(?). J ^{π} : 3578.3 γ to 0 ⁺ ; 2012Pa39 in 64 Co β ⁻ decay proposed (1 ⁺) based on non-observation in (t,p) and 278.6 γ most likely M1 from 3856 level with
3647.99 7	2+		C FG MNOP	V	parity=(+). J^{π} : spin=2 from $\gamma\gamma(\theta)$ in (n, γ) E=th (2020Ma37); $L(t,\alpha)$ =3 from 3/2 ⁻ .
			Continued on next pa	age (footno	otes at end of table)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$		XREF			Comments
3748.99 6	2+	>0.5 ps	c FG	mnop	uv		XREF: Others: AB J^{π} : spin=2 from $\gamma\gamma(\theta)$ in (n,γ) E=th (2020Ma37); 2403.25 γ M1+E2 to 2 ⁺ .
	·()						$T_{1/2}$: from line-shape analysis for 2403 γ observed in 65 Cu(11 B, 12 C γ) (2020Ma37). See 62 Ni(18 O, 16 O γ) dataset.
3749.29 <i>17</i>	4(-)		С	mnop R	uv	YZ	J ^π : spin=4 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); 189 γ to 3 ⁻ and 99.9 γ from 5 ⁻ are most likely M1. But L(α,α')=(4) for a group at 3745 suggests (4 ⁺).
3798.7	2+		c FG	MNO	uv		Additional information 3. E(level): from (^{18}O , $^{16}O\gamma$) (2020Ma37). Other: 3797 5 from (p,p'). J^{π} : probable 2451 γ to 2 ⁺ ; 2020Ma37 in (n, γ) E=th
3808 7			се	MN	uv		state that $J^{\pi}=2^{+}$ is firmly established, but no further details are given. E(level): from (p,p').
3849.13 <i>17</i>	5-		c eF I	MnOP R	V	YZ	XREF: Others: AA J^{π} : L(e,e')=L(α , α ')=5 from 0 ⁺ and L(t, α)=4 from 3/2 ⁻ . Possible dominant configuration= $vg_{9/2}vp_{1/2}$ (1994Pa20).
3856.59 22	0+		A c eFG	n			B(E5)↑=0.00055 3 (e,e') (1988Br10). J ^π : 2020Ma37 in (n,γ) E=th note that 0 ⁺ is established based on a 702γ-3154γ correlation cascade from a (n,γ) E=th experiment at ILL, which has not been
3963 7	(0 ⁺ to 4 ⁺)		С	NOP			published. Additional information 4. E(level): weighted average of 3958 10 from (t,p) and 3965 7 from (p,p').
4076 3	4 ⁺		cDe I	Mn p r	V		J^{π} : probable 2671 γ to 2 ⁺ . E(level): from (e,e'). $L(\alpha,\alpha')$ =(4,5) suggests a doublet with J^{π} =4 ⁺ and 5 ⁻ . J^{π} : $L(e,e')$ =4 from 0 ⁺ and $L(t,\alpha)$ =3 from 3/2 ⁻ . $R(E_{\pi})^{\pi}$ =0.00030. 7 (e,e') (1088 Pr.10)
4085.07 19	5 ⁽⁻⁾		c eF	nOp r		YZ	B(E4)↑=0.00030 7 (e,e') (1988Br10). J ^π : spin=5 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); 236.2 γ to 5 ⁻ is most likely M1; L(α,α')=(4,5) suggests a doublet with J ^π =4 ⁺ and 5 ⁻ .
4137 7			е	N			E(level): from (p,p') .
4172.53 19	6 ⁽⁻⁾			n		YZ	J ^{π} : spin=6 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); 323.4 γ to 5 ⁻ and 359.4 γ from 7 ⁻ are most likely M1.
4174 <i>7</i>	(1,2)			n0			Possible configuration= $\nu g_{9/2}\nu p_{3/2}+\nu g_{9/2}\nu f_{5/2}^{-1}$ (1994Pa20). Additional information 5.
4216 <i>3</i>	4+		C I	NO	٧		J^{π} : probable 4174 γ to 0 ⁺ . XREF: C(4211)N(4210)V(4211).
							Additional information 6. E(level): weighted average of 4218 3 from (e,e'), 4210 7 from (p,p'), 4211 10 from (t,p) and 4211 11 from (t, α). J^{π} : L(e,e')=4 and L(t, α)=3 from 3/2 ⁻ , but L(t,p)=(0) is in disagreement. B(E4)↑=0.0011 3 (e,e') (1988Br10).
4244 7			С	N	u		E(level): weighted average of 4239 <i>10</i> from (t,p) and 4247 7 from (p,p').
4268.22 5	0+#		A C FG	NO	u		J^{π} : 688.0 γ to (1 ⁺), 1114.6 γ to 2 ⁺ ; probable allowed β^- feeding from 1 ⁺ parent.
4285 7				N	u		E(level): from (p,p'). J^{π} : L(d, 3 He)=3 from $3/2^{-}$ for a group at 4290 50.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	_		XREF				Comments
4346 6			С	I	NO		V		Additional information 7. E(level): weighted average 4344 10 from (t,p), 4347 6 from (e,e'), and 4346 7 from (p,p'). J^{π} : L(t, α)=3 from 3/2 ⁻ gives J^{π} =(1 to 5) ⁺ for a group at 4358 11.
4369 <i>7</i> 4397 <i>7</i>			С		N NO		v		E(level): from (p,p'). Additional information 8. E(level): from (p,p').
4417.6 <i>3</i> 4453 <i>7</i>	$(0^+ \text{ to } 4^+)$				N NO			Z	J^{π} : 2141 γ to 2 ⁺ . Additional information 9. E(level): from (p,p').
4477.1 <i>4</i> 4493 <i>6</i>	(6 ⁺) 2 ⁺		С	I	N N			Z	J ^π : proposed by 2012Br15 in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). E(level): from (e,e'). Others: 4491 <i>10</i> from (t,p) and 4494 7 from (p,p'). J ^π : L(e,e')=2 from 0 ⁺ .
4521 7			С		NO				B(E2)↑=0.0014 2 from (e,e') (1988Br10). XREF: O(4510). E(level): weighted average of 4524 10 from (t,p) and 4520 7 from (p,p').
4531.91 22	7-		D	E				YZ	XREF: D(4600)E(4520). J^{π} : spin=7 from $\gamma\gamma(\theta)$ in 238 U(64 Ni, 64 Ni' γ); $L(\alpha,^{2}$ He)=7 from 0 ⁺ . Possible configuration= $\nu g_{9/2}\nu p_{3/2}+\nu g_{9/2}\nu$, $f_{5/2}^{-1}$ (1994Pa20). 1990Fi07 suggest
4556.4 <i>4</i>	$(0^+,1^+,2^+)$		A C		N		v		configuration= $\nu f_{5/2}\nu g_{9/2}$. XREF: N(4548). J^{π} : probable allowed β^- feeding from 1 ⁺ parent.
4573.16 5	2+			GI	NO		v		J ^{π} : L(e,e')=2 from 0 ⁺ ; 4572.9 γ to 0 ⁺ , probable 1963 γ to 4 ⁺ . B(E2) \uparrow =0.0013 2 in (e,e') (1988Br10).
4584 <i>7</i> 4615.57 <i>7</i>	(1,2)		С	G	N N	R			E(level): from (p,p') . XREF: $c(4620)$. J^{π} : 4615.3 γ to 0^{+} .
4640.66 6	2+	25.9 fs +7-5	С	GΙ	NO		V		XREF: c(4620)N(4632). E(level): possible doublet in (p,p'). J^{π} : L(e,e')=2 from 0 ⁺ and L(t, α)=3 from 3/2 ⁻ . $T_{1/2}$: from B(E2) \uparrow =0.0030 5 in (e,e') (1988Br10) and adopted branching of 4640.3 γ .
4670 7					N				
4692 7	#		С		N				E(level): from (p,p'). Other: 4692 10 from (t,p).
4704.12 <i>6</i> 4711.99 <i>23</i>	0 ^{+#} (6 ⁻)			FG				Z	J^{π} : 3358.2 γ to 2 ⁺ and primary γ from 1 ⁻ . J^{π} : proposed in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ) based on 6262.8 γ to 5 ⁻ .
4719 <i>3</i>	4+		C	I	NO				XREF: c(4732)O(4730). Additional information 10. E(level): weighted average of 4719 3 from (e,e'), and 4720 7 from (p,p'). Probable doublet in (p,p' γ). J ^{π} : L(e,e')=4 from 0 ⁺ . B(E4) \uparrow =0.00040 10 (e,e') (1988Br10).
4741 7			С		N				XREF: c(4732). E(level): from (p,p').
4759 6	(1,2)		С	I	NO		V		Additional information 11. E(level): weighted average of 4750 10 from (t,p), 4760 6 from (e,e'), 4762 7 from (p,p') and 4762

E(level) [†]	$J^{\pi \ddagger}$	XR	REF	Comments
				11 from (t,α) .
				J^{π} : probable 4759 γ to 0 ⁺ .
4800 7	$(1^+ \text{ to } 5^+)$		N V	E(level): weighted average of 4796 7 from (p,p') and 4811 11 from
				(t,α) .
				J^{π} : L(t, α)=3 from 3/2 ⁻ .
4868.54 6	(1,2)	G		J^{π} : 4868.3 γ to 0 ⁺ .
4889 <i>6</i>	2+	CI	N V	E(level): weighted average of 4886 10 from (t,p), 4887 6 from (e,e'),
				4894 7 from (p,p'), and 4888 11 from (t, α).
4029.7			NO	J^{π} : L(t,p)=2 from 0 ⁺ and L(t, α)=1 from 3/2 ⁻ .
4928 7			NO	Additional information 12.
4962.2 6	$(6^-,7^-,8^-)$		Y	E(level): from (p,p') . J^{π} : 430.3 γ to 7 ⁻ most likely M1.
4963 7	$(0^+, 7^-, 8^-)$ $(0^+ \text{ to } 4^+)$	С	NO u	XREF: O(4970)u(5000).
4703 7	(0 10 +)		NO u	Additional information 13.
				E(level): weighted average of 4958 10 from (t,p) and 4966 7 from
				(p,p').
				J^{π} : probable 3617 γ to 2 ⁺ .
4991 <i>6</i>	2+	C I	NO uv	XREF: O(5000)u(5000)v(5011).
				Additional information 14.
				E(level): weighted average of 4993 6 from (e,e'), 4985 10 from (t,p),
				and 4991 7 from (p,p'). Others: 5000 50 from (d, ³ He) probably a
				multiplet; 5011 11 from (t,α) probably a doublet.
				J^{π} : L(e,e')=2 from 0 ⁺ . See also comment for 5009 level.
2 000 1 0				$B(E2)\uparrow=0.0030 \ 2 \ from \ (e,e') \ (1988Br10).$
5009 10			N uv	XREF: u(5000)v(5011).
				E(level): from (p,p').
				J^{π} : L(t, α)=3 from 3/2 ⁻ from a probable doublet at 5011 11 and
5027 10		_	V	$L(d, {}^{3}He)=3$ from $3/2^{-}$ for a probable multiplet at 5000 50.
5027 10		С	N uv	E(level): weighted average of 5026 10 from (t,p) and 5028 10 from
				(p,p') . J^{π} : see comment for 5009 level.
5065 10			N	J. See comment for 3009 level.
5093 <i>3</i>	4+		NO V	Additional information 15.
3073 3	•			E(level): weighted average of 5085 10 from (t,p), 5095 3 from (e,e'),
				5087 10 from (p,p') and 5090 11 from (t,α) .
				J^{π} : L(e,e')=4 from 0^{+} and L(t, α)=3 from $3/2^{-}$.
				$B(E4)\uparrow=0.0013 \ 3 \text{ from (e,e') (1988Br10)}.$
5107 <i>10</i>			N	
5123 10			N	
5155.56 7	$(0^+,1,2,3^-)$	C G	No	XREF: C(5146)o(5160).
5160.30				J^{π} : 3809.6 γ to 2^{+} and primary γ from 1^{-} .
5169 <i>10</i>		С	No	XREF: C(5164)o(5160).
				E(level): weighted average of 5164 10 from (t,p) and 5174 10 from
5188 10			N	(p,p').
5215 3	4+		NO V	XREF: E(5200).
3213 3	•	C L I	110 V	Additional information 16.
				E(level): weighted average of 5209 10 from (t,p), 5216 3 from (e,e'),
				5217 10 from (p,p') and 5210 11 from (t,α) . Other: 5200 50 from
				$(^{12}C, ^{10}C).$
				J^{π} : L(e,e')=4 from 0 ⁺ and L(t, α)=3 from 3/2 ⁻ .
				$B(E4)\uparrow=0.00053 \ 14 \ from (e,e') (1988Br10).$
5229 10			N	
5264 10		С	N v	XREF: c(5273)v(5278).
5005 30	(0± 0 1±)			E(level): from (p,p') .
5285 10	$(2^+,3,4^+)$	С	NO v	XREF: c(5273)v(5278).

E(level) [†]	$J^{\pi \ddagger}$	XF	REF	Comments
				Additional information 17. E(level): from (p,p') . J^{π} : probable 2675 γ to 4 ⁺ and 3939 γ to 2 ⁺ .
5332 <i>10</i> 5355 <i>10</i>		С	N N	E(level): weighted average of 5358 10 from (t,p) and 5351 10 from
5369 3	3-	I	N R V	 (p,p'). XREF: v(5378). E(level): from (e,e'). Others: 5370 10 from (p,p'), 5378 11 from (t,α). J^π: L(e,e')=3 from 0⁺ and L(t,α)=2 from 3/2⁻. But the 5378 group in (t,α) may correspond to 5369 and/or 5386. B(E3)↑=0.0020 4 from (e,e') (1988Br10).
5383 7	$(0^+ \text{ to } 4^+)$		NO v	XREF: v(5378). Additional information 18. E(level): from (p,p'). J^{π} : probable 3106y and 4037y to 2 ⁺ .
5408 6	2+	c I	n	E(level): from (e,e'). J^{π} : L(e,e')=2 from 0 ⁺ . B(E2)\(\gamma=0.0036\) 5 from (e,e') (1988Br10).
5418.21 <i>7</i> 5439 <i>10</i>	(1) ⁻ (5 ⁻)	c G DE	n V N	J ^π : L(t,α)=2 from 3/2 ⁻ and 5417.9 γ to 0 ⁺ . E(level): weighted average of 5430 50 from (α,²He), 5410 50 from (¹²C,¹⁰C), and 5441 10 from (p,p'). J ^π : L(α,²He)=5 from 0 ⁺ ; possible configuration= ν f _{5/2} $\otimes\nu$ d _{5/2} (1990Fi07).
5484 <i>3</i>	(3-)	I	NO UV	Additional information 19. E(level): from (e,e'). Other: 5480 10 from (p,p'), 5481 11 from (t, α), 5500 100 from (d, 3 He). J ^{π} : L(e,e')=(3) from 0 ⁺ , but L(t, α)=1 from 3/2 ⁻ gives (0 to 3) ⁺ . B(E3) \uparrow =0.00067 13 from (e,e') (1988Br10).
5507 <i>10</i> 5536 <i>10</i>		С	N NO	XREF: O(5550). E(level): weighted average of 5535 <i>10</i> from (t,p) and 5537 <i>10</i> from (p,p').
5567 <i>11</i> 5614 <i>10</i> 5663 <i>10</i>	(2 ⁺) (1 ⁺ to 5 ⁺)	C C	v v	J ^{π} : L(t,p)=(2) from 0 ⁺ . E(level): weighted average of 5660 <i>10</i> from (t,p) and 5667 <i>11</i> from (t, α). J ^{π} : L(t, α)=3 from 3/2 ⁻ .
5734 3	4 ⁺	I		J ^{π} : L(e,e')=4 from 0 ⁺ . B(E4)↑=0.0022 5 from (e,e') (1988Br10).
5735.8 <i>3</i> 5759 <i>11</i>	(7 ⁻) 0 ⁻ to 4 ⁻ 0 ^{+#}	T.C	Z V	J ^{π} : proposed in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ). J ^{π} : L(t, α)=2 from 3/2 ⁻ .
5768.75 <i>8</i> 5812.0 <i>3</i>	8+	FG DE	NO YZ	J ^π : 3492.3 γ to 2 ⁺ and primary γ from 1 ⁻ . J ^π : spin=8 from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); L(α , ² He)=8,(6) from 0 ⁺ .
5817 6	3-	I		Possible configuration= $vg_{9/2}^2$ (1990Fi07,1994Pa20). J^{π} : L(e,e')=3 from 0 ⁺ . B(E3)↑=0.00073 <i>14</i> from (e,e') (1988Br10).
5843 <i>11</i> 5870 5902 <i>11</i>	(1-,2-)		NO V	E(level): from (p,p') and $(p,p'\gamma)$. XREF: N(5910)O(5910). E(level): from (t,α) . J^{π} : L (t,α) =0 from 3/2 ⁻ .
5976 <i>11</i> 6018 <i>3</i>	(1 ⁺ to 5 ⁺) 3 ⁻	I	V	J^{π} : L(t, α)=3 from 3/2 ⁻ . J^{π} : L(e,e')=3 from 0 ⁺ . B(E3)\(^=0.00118 23 from (e,e') (1988Br10).

E(level) [†]	$J^{\pi \ddagger}$	2	KREF		Comments
6040 50	(6+)	DE			E(level): weighted average of 6030 50 from (α , ² He) and 6050 50 from (12 C, 10 C).
					J^{π} : L(α , ² He)=6,(8) from 0 ⁺ .
(0(0,11	1- 2-		WO	****	Possible configuration= $vg_{9/2}vd_{5/2}$ (1990Fi07).
6060 11	1-,2-		NO	UV	E(level): from (t,α) . Other: 6.05E3 10 from $(d,^3He)$. J^{π} : $L(t,\alpha)=L(d,^3He)=0$ from $3/2^-$.
6116 <i>3</i>	3-	I		V	E(level): from (e,e'). Other: 6121 11 from (t,α) .
0110 3	3	-		•	J^{π} : L(e,e')=3 from 0 ⁺ . B(E3)↑=0.00118 23 from (e,e') (1988Br10).
6182 <i>11</i>				V	B(E3) =0.00110 23 Holli (e,e') (1700B110).
6188.7 <i>4</i>	9(-)				Z J ^{π} : spin=9 from $\gamma \gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); 1656.8 γ to 7 ⁻ .
6220 11				V	77(7)
6444 11	$(1,2)^+$		0	V	Additional information 20. E(level): from (t,α) .
					J^{π} : L(t, α)=3 from 3/2 ⁻ ; probable 6444 γ to 0 ⁺ .
6512 <i>11</i>	1-,2-			V	J^{π} : L(t, α)=0 from 3/2 ⁻ .
6622 11				V	
6656 11				uV	E(level): from (t,α) .
6687 11	1-,2-			uV	J^{π} : L(d, 3 He)=0 from $3/2^{-}$ for a doublet at 6700 100. E(level): from (t, α).
006/ 11	1 ,2			uv	J ^{π} : L(t, α)=0 from 3/2 ⁻ .
6754 11			NO	V	E(level): from (t,α) .
6796.0 5	(10^+)			-	Z J^{π} : proposed in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); 984.0 γ to 8 ⁺ .
6822 11	()			V	= 0 (respective to 0 (respective to 0)
6838 11				V	
6861 <i>11</i>				V	
7020 10	(1,2)		0		Additional information 21. J^{π} : probable 7020 γ to 0^{+} .
7130			NO		3 . probable 7020 y to 0 .
7220 10	(1,2)		0		Additional information 22.
					J^{π} : probable 7220 γ to 0 ⁺ .
$7.30 \times 10^3 \ 10$	0-,1-,2-,3-,4-			U	J^{π} : L(d, ³ He)=2 from 3/2 ⁻ .
7730 10	(1,2)		0		Additional information 23.
- 010 ³ -10	0-1-0-0-1-				J^{π} : probable 7330 γ to 0 ⁺ .
$7.95 \times 10^3 10$	0-,1-,2-,3-,4-		0	U	J^{π} : L(d, 3 He)=2 from $3/2^{-}$.
8240 <i>10</i>	(1,2)		0		Additional information 24. J^{π} : probable 8240 γ to 0 ⁺ .
9657.86 20		Н			3 . probable 6240 y to 0 .
9658.05 20	$0^{-},1^{-}$	Н			J^{π} : s-wave resonance (2018MuZY).
9658.81 20	$0^{-},1^{-}$	H			J^{π} : s-wave resonance (2018MuZY).
9664.17 20		Н			
9665.97 20		Н			
9666.31 20		Н			
9666.36 <i>20</i> 9666.48 <i>20</i>		H H			
9667.09 20		H			
9669.36 20		H			
9670.03 20		H			
9671.23 20		H			
9671.33 <i>21</i>		H			
9673.41 20		Н			
9674.33 <i>20</i> 9675.02 <i>21</i>		H			
9675.02 <i>21</i> 9676.72 <i>20</i>		H H			
9676.83 21		H			
7070.03 21					

E(level) [†]	T _{1/2}	XRE	EF	Comments
9680.24 22		Н		
9686.86 22		H		
9689.29 20		H		
9711.36 20		H		
$13.2 \times 10^3 \ 3$	4.8 MeV <i>3</i>	I		E(level), $T_{1/2}$: energy and width for a giant quadrupole resonance (1974Gu16).
$15.4 \times 10^3 \ 2$	4.2 MeV 2		T	E(level), $T_{1/2}$: energy and width for a giant quadrupole resonance (1990Ga07).
$15.60 \times 10^3 \ 30$	5.64 MeV <i>40</i>		R	E(level), $T_{1/2}$: energy and width for a giant quadrupole resonance (1992Yo01).
$16.4 \times 10^3 \ 10$	6.8 MeV <i>1</i>	J		E(level), $T_{1/2}$: energy and width for a giant quadrupole resonance (1989Oa01).

[†] From a least-squares fit to γ -ray energies with uncertainties for levels connected with those γ transitions and from reaction data for others, unless otherwise noted. Above ≈4 MeV, due to high level density and limited resolution the correspondence of levels from different reactions is somewhat ambiguous.

^{\ddagger} Above 3.5 MeV, due to high level density L-transfer values available from only one reaction such as (t,α) or $(d,^3He)$ are considered tentative for J^{π} assignments.

[#] From 2020Ma37 in (n,γ) E=th. The authors state that the decay pattern is only consistent with 0^+ based on an unpublished (n,γ) E=th experiment at ILL and that $\gamma\gamma(\theta)$ of a cascade toward 1346 level also yields firm 0^+ assignment.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^π	Mult.	δ	α <mark>&</mark>	Comments
1345.777	2+	1345.83 3	100	0.0	0+	E2		1.63×10 ⁻⁴	B(E2)(W.u.)=7.76 26 E _γ : weighted average of 1345.8 <i>I</i> from ⁶⁴ Co β^- decay (0.30 s), 1345.77 6 from ⁶⁴ Cu ε decay (12.700 h), 1345.84 3 from (n,γ) E=th, 1346.0 <i>I</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ), and 1345.8 <i>I</i> from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). Other: 1345.1 2 from (⁷⁰ Zn, Xγ). Mult.: from ΔJ=2, Q from $\gamma\gamma(\theta)$ data in (⁶⁴ Ni, ⁶⁴ Ni'γ), and RUL.
2276.58	2+	930.81 [‡] 3	100.0 22	1345.777	2+	(M1+E2)	+0.75 20		E _γ : others: 930.8 <i>I</i> from ⁶⁴ Co β ⁻ decay (0.30 s), 930.8 <i>I</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ), and 930.8 <i>I</i> from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). I _γ : from ⁶⁴ Co β ⁻ decay (0.30 s). Other: 100.0 23 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). Mult.,δ: D+Q and δ from γ(θ) in (n,n'γ); (M1+E2) from level scheme. Other: δ (Q/D)≈-0.9 from γγ(θ) in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
		2276.6 1	0.84 23	0.0	0+				E _γ : from 64 Co β^- decay (0.30 s). Other: 2277 2 from 238 U(64 Ni, 64 Ni' γ). I _γ : from 238 U(64 Ni, 64 Ni' γ). Other: <2.46 from 64 Co β^- decay.
2610.04	4+	1264.3 <i>1</i>	100	1345.777	2+	E2		1.62×10 ⁻⁴	B(E2)(W.u.)=6.7 +13-9 E _y : from (64 Ni, 64 Ni' γ). Other: 1264.0 2 from (70 Zn,X γ). Mult.: ΔJ =2, Q from $\gamma(\theta)$ in (n,n' γ); and RUL.
2867.40	0+	1521.6 [‡] <i>1</i>	100	1345.777	2+	E2		1.91×10 ⁻⁴	B(E2)(W.u.)=3.15 +23-21 E _{γ} : others: 1521.6 <i>I</i> from ⁶⁴ Co β ⁻ decay (0.30 s), 1521.5 <i>4</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ) and 1521.5 <i>2</i> from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ). Mult.: Q from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); M2 ruled out by RUL.
2972.11	(1,2+)	695.6 3	80 <i>30</i>	2276.58	2+				E _γ : weighted average of 695.7 3 from ⁶⁴ Co $β$ ⁻ decay (0.30 s) and 695.5 3 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). I _γ : from ⁶⁴ Co $β$ ⁻ decay (0.30 s). Other: 80 40 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
		1626.30 [‡] 7	100 [‡] 20	1345.777	2+				E _γ : others: 1626.3 <i>I</i> from ⁶⁴ Co β ⁻ decay (0.30 s) and 1626.4 4 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). I _γ : others: 100 40 from ⁶⁴ Co β ⁻ decay (0.30 s) and 100 60
		2972.03 6	69 8	0.0	0+				from $^{238}\text{U}(^{64}\text{Ni},^{64}\text{Ni}'\gamma)$. E _{γ} : weighted average of 2972.0 <i>I</i> from $^{64}\text{Co}\ \beta^-$ decay (0.30 s) and 2972.04 <i>6</i> from (n, γ) E=th. Other: 2973 <i>I</i> from $^{238}\text{U}(^{64}\text{Ni},^{64}\text{Ni}'\gamma)$.

γ (64Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	α&	Comments
2982.94	(3 ⁺)	706.5 2	100 12	2276.58				E _γ : weighted average of 2972.0 <i>I</i> from ⁶⁴ Co β^- decay (0.30 s) and 2972.04 <i>6</i> from (n,γ) E=th. Other: 2973 <i>I</i> from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). I _γ : weighted average of 60 20 from ⁶⁴ Co β^- decay (0.30 s), 70 8 from (n,γ) E=th, and 80 40 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
		1637.0 3	64 12	1345.777			4	
3025.84	0+	749.23 [‡] 4	3.6 [‡] 2	2276.58	2+	[E2]	5.05×10^{-4}	B(E2)(W.u.)=1.5 +8-4 I _γ : from I _γ (749γ)/I _γ (1680γ)=3.6 2/100 in (n,γ) E=th (2020Ma37).
		1680.07 [‡] 4	100 [‡]	1345.777	2+	E2	2.41×10^{-4}	B(E2)(W.u.)=0.75 +37-19
								E_{γ} : others: 1680.1 <i>I</i> from ⁶⁴ Co β ⁻ decay and 1680.1 2 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
								Mult.: Q from $\gamma\gamma(\theta)$ in $^{238}U(^{64}Ni,^{64}Ni'\gamma)$; M2 ruled out by RUL.
3153.72	2+	877.16 <i>5</i>	62 9	2276.58	2+			E_{γ} : weighted average of 877.2 <i>I</i> from ⁶⁴ Co β ⁻ decay (0.30 s) and 877.15 <i>5</i> from (n, γ) E=th.
								I_{γ} : weighted average of 58 9 from ⁶⁴ Co β ⁻ decay (0.30 s) and 73 15 from (n, γ) E=th.
		1807.98 5	73 12	1345.777	2+			E_{γ} : weighted average of 1808.0 <i>I</i> from ⁶⁴ Co β^- decay (0.30 s) and 1807.97 5 from (n, γ) E=th.
								I_{γ} : from ⁶⁴ Co β^- decay (0.30 s). Other: 75 16 from (n, γ) E=th.
		3153.69 7	100 5	0.0	0+			E_{γ} : weighted average of 3153.7 <i>I</i> from ⁶⁴ Co β^- decay (0.30 s) and 3153.68 7 from (n, γ) E=th.
3165.81	4+	1820.0 2	100	1345.777	2+	E2	2.94×10^{-4}	I_{γ} : from (n, γ) E=th. Other: 100 <i>18</i> from ⁶⁴ Co β ⁻ decay (0.30 s). B(E2)(W.u.)=14 +9-7
								E_{γ} : weighted average of 1820.4 5 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ) and 1819.9 2 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
								Mult.: Q from $\gamma \gamma(\theta)$ in $^{238}U(^{64}Ni,^{64}Ni'\gamma)$; M2 ruled out by RUL.
3275.99	2+	1930.2 <i>1</i>	26 8	1345.777	2+	$(M1+E2)^{@}$		B(M1)(W.u.)=0.0026 8; B(E2)(W.u.)=1.19 34
								E_{γ} : from ⁶⁴ Co β^- decay (0.30 s).
								I_{γ} : weighted average of 14 9 from 64 Co β^- decay (0.30 s) and 32 6 from
								(n,γ) E=th.
		-1-	4					B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		3275.90 [‡] 6	100+ 5	0.0	0_{+}	[E2]		B(E2)(W.u.)=0.33 +5-4
								E_{γ} : other: 3275.9 <i>I</i> from ⁶⁴ Co β ⁻ decay.
3395.89	4+	230.0 <i>3</i>	6.7 30	3165.81	4+			I_{γ} : other: 100 23 from ⁶⁴ Co β^- decay.
3393.09	7	413.0 3	7.4 19	2982.94	(3^+)			
		785.9 2	68 11	2610.04	4+			E_{γ} : other: 785.7 5 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ).
								I _γ : weighted average of 81 <i>13</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ) and 59 <i>11</i> from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).

γ (64Ni) (continued)

E d B	177	F †	. †	Б	τ.π.	3.6.1.	c	α <mark>&</mark>	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	δ	α	Comments
3395.89	4+	2049.9 2	100 15	1345.777	2+	(E2)			E_{γ} : from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ). Other: 2049.8 4 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ).
									I_{γ} : other: 100 25 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ);
									I_{γ} . other: 100 25 Horri 116 (141, 141 γ), $I_{\gamma}(2050\gamma)/I_{\gamma}(786\gamma)=40/60$ in $(p,p'\gamma)$ is discrepant.
									Mult.: Q from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); E2 from level scheme.
3463.62	0_{+}	310 [‡]	4.6 [‡]	3153.72	2+				
		492 [‡]	1.0‡	2972.11					
		1187.01 <i>5</i>	100 20	2276.58	2+				E _{γ} : weighted average of 1187.02 3 from (n, γ) E=th
									and 1186.5 3 from 238 U(64 Ni, 64 Ni' γ). I _{γ} : from (n, γ) E=th.
		2117.86 [‡] 7	19.6 [‡] 20	1345.777	2+	(E2)			Mult.: Q from $\gamma\gamma(\theta)$ in (n,γ) E=th; E2 from level
		2117.00	19.0 20	13 13.777	-	(22)			scheme.
3482	$(2^+,3,4^+)$	872 [#]		2610.04	4+				
		2136 [#]		1345.777					
3559.90	3-	1283.4 3	28 6	2276.58	2+				E _{γ} : weighted average of 1284.0 6 from $^{208}\text{Pb}(^{64}\text{Ni},^{64}\text{Ni}'\gamma)$ and 1283.3 3 from $^{238}\text{U}(^{64}\text{Ni},^{64}\text{Ni}'\gamma)$.
									I_{γ} : from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ). Other: 27 9 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ).
		2213.8 3	100 13	1345.777	2+	(E1)		8.10×10 ⁻⁴	E _{γ} : weighted average of 2214.4 5 from $^{208}\text{Pb}(^{64}\text{Ni},^{64}\text{Ni}'\gamma)$ and 2213.7 2 from $^{238}\text{U}(^{64}\text{Ni},^{64}\text{Ni}'\gamma)$.
									I_{γ} : from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ). Other: 100 27 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ).
									Mult.: D from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); E1 from level scheme.
		3560 [#]		0.0	0^{+}	[E3]			
3578.66	(1 ⁺)	2232.89 [‡] 6	100 [‡] 10	1345.777	2+				E_{γ} , I_{γ} : other: 2232.9 <i>I</i> with I_{γ} =100 72 from ⁶⁴ Co β ⁻ decay.
		3578.3 1	30.5 15	0.0	0+				E_{γ} : weighted average of 3578.3 <i>I</i> from ⁶⁴ Co β^- decay and 3578.32 8 from (n, γ) E=th.
		±							I_{γ} : from (n, γ) E=th. Other: <43 from ⁶⁴ Co $β$ ⁻ decay.
3647.99	2+	2302.30‡ 17	100‡ 10	1345.777		(M1+E2) [@]			
2740.00	2+	3647.86 [‡] 7	53.8 [‡] 28		0 ⁺				E. J., from (180-160-) (2020) (-27)
3748.99	2+	1473 2403.25 [‡] 7	20 100 [‡] 9		2 ⁺	E2 · M1	. 1 22 10		E_{γ},I_{γ} : from ($^{18}O,^{16}O\gamma$) (2020Ma37). B(M1)(W.u.)<9.9×10 ⁻⁴ ; B(E2)(W.u.)<0.42
		24U3.23" /	100* 9	1345.777	۷'	E2+M1	+1.23 10		B(M1)(W.u.)<9.9×10 '; B(E2)(W.u.)<0.42

γ (64Ni) (continued)

						<u>-</u>		(commuta)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
									E _γ : other: 2400 from (p,p'γ). Mult.,δ: D+Q and δ from $\gamma\gamma(\theta)$ in (n,γ) E=th (2020Ma37); E1+M2 disfavored by the large δ and RUL.
3748.99	2+	3748.77 [‡] 8	29.6 [‡] <i>15</i>	0.0	0_{+}				
3749.29	4(-)	189.2 <i>3</i>	100 9	3559.90	3-	(M1)		0.00889	E _γ : weighted average of 189.0 4 from 208 Pb(64 Ni, 64 Ni' $^{\gamma}$) and 189.3 3 from 238 U(64 Ni, 64 Ni' $^{\gamma}$). I _γ : from 238 U(64 Ni, 64 Ni' $^{\gamma}$). Other: 100 17 from 208 Pb(64 Ni, 64 Ni' $^{\gamma}$).
									Mult.: D from $\gamma\gamma(\theta)$ in 238 U(64 Ni, 64 Ni' γ); M1 is most likely.
		583.4 <i>3</i>	35 6	3165.81		(E1)		3.34×10 ⁻⁴	E _γ : other: 583.4 <i>6</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ). I _γ : weighted average of 33 <i>8</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ) and 36 <i>6</i> from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ). Mult.: D from γγ(θ) in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ); E1 from level scheme.
		766.6 <i>4</i>	7.6 15	2982.94					
		1139.4 <i>3</i>	18 <i>6</i>	2610.04	4+				E_{γ} : other: 1130 from $(p,p'\gamma)$.
3798.7	2+	2453		1345.777		$(M1+E2)^{@}$			E_{γ} : from level-energy difference.
3849.13	5-	99.9 3	4.5 13	3749.29	4 ⁽⁻⁾	[M1]		0.0469 8	E _{γ} : weighted average of 99.6 6 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ) and 100.0 3 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ).
									I_{γ} : weighted average of 4.2 14 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ) and 4.8 13 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ).
		289 <i>1</i>	0.52 31	3559.90	3-	[E2]		0.0106 2	, , ,
		453.2 <i>3</i>	8.6 25	3395.89	4+	(E1)		6.25×10^{-4}	E_{γ} : weighted average of 452.9 6 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ) and 453.3 3 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
									I_{γ} : unweighted average of 11.1 $I4$ from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ) and 6.1 $I3$ from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ).
									Mult.: D from $\gamma\gamma(\theta)$ in 238 U(64 Ni, 64 Ni' γ); E1 from level scheme.
		683.6 <i>4</i>	0.9 4	3165.81	4+				
		1239.3 3	100.0 9	2610.04	4+	(E1)		1.47×10 ⁻⁴	E_{γ} : unweighted average of 1239.0 3 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ), 1239.0 I from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ), and 1239.9 3 from (⁷⁰ Zn, Xγ).
									I _{γ} : other: 100 <i>10</i> from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ). Mult.: D from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); E1 from level scheme.
		2503 [#] <i>a</i>		1345.777	2+	[E3]			
3856.59	0_{+}	278.6 <i>3</i>	10 5	3578.66	(1^+)	-			E_{γ} , I_{γ} : from ⁶⁴ Co β ⁻ decay.
		702.2 3	100 5	3153.72	2+				E_{γ}, I_{γ} : from ⁶⁴ Co β^- decay.

13

γ (64Ni) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
3963	$(0^+ \text{ to } 4^+)$	2617 [#]		1345.777				200 (4 (4
4085.07	5 ⁽⁻⁾	236.2 <i>3</i>	39 <i>14</i>	3849.13	5-			E_{γ} : weighted average of 236.5 5 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ) and 236.1 3 from ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni'γ).
								I _γ : weighted average of 50 20 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni'γ) and 33 14 from (²³⁸ U ⁶⁴ Ni, ⁶⁴ Ni'γ).
		688.9 <i>3</i>	9.5 24	3395.89	4+			E_{γ} : note that a 688.9 γ is placed from the 4268 level in ⁶⁴ Co β ⁻ decay.
		1474.9 <i>3</i>	100 14	2610.04	4+	(E1)		E_{γ} , I_{γ} : other: 1474.8 5 with I_{γ} =100 20 from ²⁰⁸ Pb(⁶⁴ Ni, ⁶⁴ Ni' γ). Mult.: D from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); (E1) from level scheme.
4172.53	6(-)	323.4 1	100	3849.13	5-	(M1)	0.00239	E _γ : other: 323.4 2 from 208 Pb(64 Ni, 64 Ni' γ). Mult.: D from $^{γγ}(\theta)$ in 238 U(64 Ni, 64 Ni' γ); most likely M1.
4174	(1,2)	4174 [#]		0.0	0^{+}			2.2.2 = 2.2 //(2/2.2. 2/2/2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
4216	4+	1606 [#]		2610.04	4 ⁺			
4268.22	0+	688.0 <i>3</i>	22 9	3578.66	(1 ⁺)			E_{γ} , I_{γ} : from ⁶⁴ Co β^- decay. Poor-fit; level-energy difference=689.56. Note that a 688.9 γ is placed from 4085 level in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ).
		1114.58 [‡] 4	100 18	3153.72	2+			E_{γ} : from (n,γ) E=th. Other: 1114.6 <i>I</i> from ⁶⁴ Co β ⁻ decay. I_{γ} : from ⁶⁴ Co β ⁻ decay (0.30 s). Other: 100 20 from (n,γ) E=th.
		2922.08 9	10.8 11	1345.777	2+			E_{γ} : weighted average of 2922.1 <i>I</i> from ⁶⁴ Co β ⁻ decay (0.30 s) and 2922.07 9 from (n, γ) E=th.
								I_{γ} : from (n,γ) E=th. Other: <21.7 from ⁶⁴ Co β ⁻ decay.
4346		1736 [#]		2610.04	4+			
4397		2120 [#]		2276.58	2+			
4417.6	$(0^+ \text{ to } 4^+)$	2141.0 <i>3</i>	100	2276.58	2+			
4453		2176 [#]		2276.58	2+			
4477.1	(6^+)	1311.3 4	100	3165.81	4+			200 . 64 . 64
4531.91	7-	359.4 1	100	4172.53	6 ⁽⁻⁾	(M1)	0.00186	E _γ : other: 359.4 2 from 208 Pb(64 Ni, 64 Ni' $^{\gamma}$). Mult.: D or D+Q with Δ J=1 from $\gamma\gamma(\theta)$ in 238 U(64 Ni, 64 Ni' $^{\gamma}$); M1 is most likely.
4556.4	$(0^+,1^+,2^+)$	3210.5 4	100	1345.777	2+			E_{γ} : from ⁶⁴ Co β^- decay.
4573.16	2+	1963 [#]		2610.04	4+			,
		2297 [#]		2276.58	2+			
		3227.31 [‡] 6	100 [‡] 5	1345.777				
		4572.94 [‡] 9	49.8 [‡] 25	0.0	0 ⁺			
4615.57	(1,2)	2339.17 12	75 9	2276.58	2+			
		4615.27 9	100 5	0.0	0_{+}			

14

γ (64Ni) (continued)

(level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α&	Comments
640.66	2+	3294.90 [‡] 7	69.2 [‡] 34	1345.777	2+	[M1,E2]	0.00088 6	B(M1)(W.u.)=0.0097 +4-5; B(E2)(W.u.)=1.51 8 B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		4640.34 [‡] 8	100 [‡] 5	0.0	0_{+}	[E2]	1.40×10^{-3}	B(E2)(W.u.)=0.394 +13-16
704.12	0_{+}	2427.50 [‡] 9	63 [‡] 7	2276.58	2+			
		3358.24 [‡] 6	100 [‡] 5	1345.777				
711.99	(6-)	626.8 <i>3</i>	27 18	4085.07	5 ⁽⁻⁾			
		862.9 2	100 18	3849.13	5-			
719	4+	3373 [#]		1345.777				
759	(1,2)	3413 [#]		1345.777				
		4759 [#]	4.	0.0	0+			
868.54	(1,2)	3522.66 [‡] 6	100 [‡] 5	1345.777				
		4868.34‡ 11	3.43 [‡] <i>16</i>	0.0	0_{+}			
928	(6- 5- 0-)	3582 [#]	100	1345.777				
962.2	$(6^-,7^-,8^-)$	430.3 6	100		7-			
963	$(0^+ \text{ to } 4^+)$	3617 [#]		1345.777				
991	2+	3645 [#]		1345.777	21			
093	4 ⁺	696 [#] 3747 [#]		4397	2+			
155.56	(0+ 1 2 2-)		83‡ 9	1345.777				
155.56	$(0^+,1,2,3^-)$	2878.94 8		2276.58	2+			
215	4.4	3809.64 [‡] 9 2938 [#]	100‡ 5	1345.777				
215	4 ⁺			2276.58	2+			
20.5	(2+ 2 4+)	3869 [#]		1345.777				
285	$(2^+,3,4^+)$	2675 [#] 3939 [#]		2610.04	4 ⁺			
202	(O+			1345.777				
383	$(0^+ \text{ to } 4^+)$	3106 [#] 4037 [#]		2276.58	2 ⁺			
410.21	(1)=		100 7 5	1345.777				
418.21	(1)-	4072.32 [‡] 9	100‡ 5	1345.777				
10.1	(2-)	5417.92 [‡] <i>12</i>	96 [‡] 5	0.0	0+			
484	(3 ⁻)	3207#		2276.58	2+			
735.8	(7-)	4138 [#] 1204.1 <i>3</i>	100 40	1345.777 4531.91	2 ⁺ 7 ⁻			
133.8	(7-)	1204.1 3 1562.8 <i>4</i>	80 <i>40</i>	4331.91	6 ⁽⁻⁾			
768.75	0^{+}	3492.33 [‡] 11	80 40 82 [‡] 4	2276.58	2+			
100.15	17	シオクム・シン・ 11	04 · T	44/1010	_			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
5812.0	8+	1280.1 2	100	4531.91	7-	(E1)	1.71×10 ⁻⁴	E_{γ} : weighted average of 1280.4 5 from 208 Pb(64 Ni, 64 Ni' γ) and 1280.0 2 from 238 U(64 Ni, 64 Ni' γ).
								Mult.: D or D+Q from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); E1 from level scheme.
6188.7	9(-)	1656.8 <i>3</i>	100	4531.91	7-	(E2)	2.33×10^{-4}	Mult.: Q from $\gamma\gamma(\theta)$ in ²³⁸ U(⁶⁴ Ni, ⁶⁴ Ni' γ); E2 is more likely.
6444	$(1,2)^+$	6444 [#]		0.0	0_{+}			
6796.0	(10^{+})	984.0 <i>4</i>	100	5812.0	8+			
7020	(1,2)	7020 [#]		0.0	0^{+}			
7220	(1,2)	7220 <mark>#</mark>		0.0	0^{+}			
7730	(1,2)	7730 [#]		0.0				
8240	(1,2)	8240 [#]		0.0				

[†] From ²³⁸U(⁶⁴Ni, ⁶⁴Ni'γ), unless otherwise noted.

[‡] From (n, γ) E=th.

[#] γ from $(p,p'\gamma)$ only, shown in the level scheme by 1969Be20, where the measured γ -ray energies were not listed. The energy here is deduced from level-energy difference. This value is considered as approximate and may deviate by as much as 15 keV from that quoted in $(p,p'\gamma)$ dataset.

[@] 2020Ma37 in (n,γ) E=th states that $\gamma\gamma(\theta)$ of the cascade toward 1346 level indicates a dominant M1 character, with only a small E2 admixture.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Legend

Level Scheme (continued)

Level Scheme (continued)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111,1093 (2010)	3-Mar-2009

 $Q(\beta^{-})=251.8\ 16$; $S(n)=8952.4\ 15$; $S(p)=14110\ 3$; $Q(\alpha)=-9553\ 4$ 2012Wa38

Note: Current evaluation has used the following Q record 251.9 16 8951.9 1514125 13-9531 15 2009AuZZ,2003Au03.

⁶⁶Ni Lev<u>els</u>

Configuration: Listed configurations are those expected in this region, and were used in DWBA analysis of $(\alpha,^2\text{He})$ data.

Cross Reference (XREF) Flags

```
A ^{66}Co β^- decay D ^{64}Ni(α, ^2He)
B ^{64}Ni(t,p) E (HI,xnγ)
C ^{68}Zn(^{14}C,^{16}O)
```

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
0	0+	54.6 h <i>3</i>	ABCDE	% β^- =100 Configuration=(ν f _{5/2} 0 ⁺) T _{1/2} : from ⁶⁶ Ni β^- decay, weighted average of 55.1 h <i>10</i> (1956Jo20), 54.8 h <i>3</i> (1956Kj07), and 53.5 h <i>7</i> (1956Ru45).
1424.8 [‡] 10 2445 [‡] 1 2664 10	2 ⁺ 0 ⁺ (0 ⁺)	0.8 ps 2	ABC E AB B	$T_{1/2}$: Deduced by evaluators from B(E2) \uparrow =600 200 (2002So03).
2670.8 [‡] 13 2916 [‡] 1 2965 10	(3 ⁺) 2 ⁺ 0 ⁺		A E AB B	J^{π} : from log $ft=4.2$ for β^- decay from (3 ⁺).
3185.44 [#] 15 3230.6 3	(4 ⁺) 2 ⁺		B E AB	XREF: B(3219). J^{π} : From log $fi=4.9$ for β^{-} decay from (3 ⁺).
3370.9 [#] 4 3390 <i>50</i>	3 ⁻ (5 ⁻)		B E D	Configuration= $((\nu p_{1/2})(\nu g_{9/2}))5^-$ J ^{π} : L(α , ² He)=(5).
3541.34 [#] <i>18</i>			В Е	J^{π} : (4 ⁺) from L(t,p)=(4) disagrees with (5 ⁻) yrast state in (HI,xn γ) suggested from analogy with ⁶⁴ Ni.
3599.3 [#] 6 3646 <i>10</i>	(6 [−])&	4.3 ns 4	B E B	$T_{1/2}$: from (HI,xn γ) (1994Pa20).
3678 <i>10</i> 3725.2 [#] <i>6</i>	3-		B B E	
3746 <i>10</i> 3782 <i>10</i> 4028 <i>10</i> 4070.4 [#] 7	2+		B B B d B dE	
4089.4 [#] 6	7-		B dE	Configuration= $((\nu f_{5/2})(\nu g_{9/2}))7^-$ J ^{π} : L(α , ² He)=7 for a level at 4050 50.
4125 10 4407 10 4500 10 4655 10 4696 10 4738 10	(4+)		B B B B	

E(level) [†]	J^{π}	XREF	Comments
4760 <i>50</i>	(5-)	d	Configuration= $((v f_{5/2})(v d_{5/2}))5^-$
	(-)		J^{π} : L(α , ² He)=(5). At the largest angle measured, this level could not be separated clearly from
			the 5170 level with a dominant configuration= $(v g_{9/2})_{84}^{+2}$.
4796 <i>10</i>		Вd	0 07278+
4919 <i>10</i>		В	
4967 10		В	
5109 10		В	
5157 10		B d	
5174.9 [#] 7	$(8)^{+}$	dE	Configuration= $((\nu G_{9/2})_{8+}^{+2} + (\nu G_{9/2})(\nu d_{5/2})6^+)$ J ^{π} : L(α , ² He)=8+6 for an unresolved doublet at 5170 50; (8 ⁺) in (HI,xn γ).
			J^{π} : L(α , ² He)=8+6 for an unresolved doublet at 5170 50; (8 ⁺) in (HI,xn γ).
5192 <i>10</i>		B d	
5237 10		В	
5260 10		В	
5327 <i>10</i> 5368 <i>10</i>		B B	
5503 10		В	
5584 10		В	
5612 10		В	
5660 10		В	
5745 10		В	
5787 10		В	
5836 10		В	
5885 10		В	
6004 <i>10</i> 6027 <i>10</i>		B B	
6074 10		В	
6122 10		В	
6166 10		В	
6217 <i>10</i>		В	
6267 10		В	
6304 <i>10</i>		В	
6339 10		В	
6384 10		В	
6457 <i>10</i> 6525 <i>10</i>		В	
6556 10		B B	
6579.8# 9	(10 ⁺)&		
65/9.8" 9 6600 <i>10</i>	(10.)	E B	
6665 10		В	
6730 <i>10</i>		В	

[†] From ⁶⁴Ni(t,p), except as stated. [‡] From ⁶⁶Co β^- decay.

[#] From (HI, $xn\gamma$).

 $^{^{\}circ}$ From deduced L values in 64 Ni(t,p) with the assumption that the spins of the transferred neutrons couple to S=0, except as stated otherwise. & From (HI,xn γ) based on level systematics and shell model calculations.

$\gamma(^{66}Ni)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
1424.8	2+	1424.8 10	100	0	0+	3599.3	(6-)	58.0 <i>5</i>	100	3541.34	
2445	0^{+}	1020 # <i>I</i>	100	1424.8	2+	3725.2		354.3 <i>5</i>	100	3370.9	3-
2670.8	(3^{+})	1246.0 9	100	1424.8	2+	4070.4		471.1 <i>4</i>	100	3599.3	(6^{-})
2916	2+	471.3 6	100	2445	0_{+}	4089.4	7-	490.1 2	100	3599.3	(6^{-})
3185.44	(4^{+})	1760.3 <i>1</i>	100	1424.8	2+	5174.9	$(8)^{+}$	1085.5 <i>3</i>	100	4089.4	7-
3370.9	3-	1945.8 <i>3</i>	100	1424.8	2+	6579.8	(10^{+})	1404.8 <i>6</i>	100	5174.9	$(8)^{+}$
3541.34		355.9 <i>1</i>	100	3185.44	(4^{+})						

 $^{^\}dagger$ From $^{66}\text{Co}~\beta^-$ decay and (HI,xn γ). ‡ Relative photon branching from each level. # Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

