At Tutorial 6 – Marked Question (31st May 2019)

Chapter 9, Ex 50: Driven RLC Circuit

In the series circuit above, set R = 1 Ω . a) Compute α and ω_0 . b) If $i_s=3u(-t)+2u(t)$ mA, determine $v_R(0^-)$, $i_L(0^-)$, $v_c(0^-)$, $i_L(0^+)$, $i_L(0^+)$, $i_L(\infty)$, and $v_c(\infty)$.

At Tutorial 6 - Unmarked Questions (31st May 2019)

Chapter 9, Ex 42: Source-free RLC Circuit

Component values of R = 2 Ω , C = 1 mF, and L = 2 mH are used to construct the circuit represented above. If $v_c(0^-)$ = 1 V and no current initially flows through the inductor, calculate i(t) at t = 1 ms, 2ms, and 3ms.

Chapter 9, Ex 52: Forced RLC Circuit

Consider the circuit depicted above. If $v_S(t) = -8 + 2u(t) V$, determine:

- a) $v_{\rm C}(0^+)$
- b) $i_{L}(0^{+})$
- c) $v_c(\infty)$
- d) $v_{c}(t = 150 \text{ms})$

Tuts: 14 of 14