Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky

Odhad relativní četnosti binomického rozdělení pomocí klasického a bayesovského přístupu v jazyce R

BAKALÁŘSKÁ PRÁCE

Studijní program: [Data Analytics]

Autor: [Bc. Michal Lauer]

Vedoucí práce: [Ing. Ondřej Vilikus, Ph.D.]

Praha, Prosinec 2024

Poděkování				
Děkuji svému vedoucímu za odborné neocenitelnou podporu.	vedení práce a p	orůběžné konzulta	ace a své přítelk	zyni za

Klíčová slova	
Bayesovská statistika, odhad relativní četnosti, jazyk R	
Abstract	
Abstract.	
Keywords	
Bayesian statistics, relative frequency estimation, R language	

Abstrakt

Abstrakt.

Obsah

Ú	vod		9
1	Sta	istické metody	10
	1.1	Inference	. 10
		1.1.1 Problematika výběrových šetření	. 10
	1.2	Frekventistická inference	. 10
		1.2.1 Testování hypotéz	. 10
		1.2.2 Metriky při testování hypotéz	. 10
		1.2.3 Jednovýběrový odhad poměru s velkým vzorkem	. 10
		1.2.4 Jednovýběrový odhad poměru s malým vzorkem	. 10
	1.3	Bayesovská inference	. 11
2	Mo	nte Carlo generování	12
	2.1	Vyhodnocení generovaného rozdělení	. 12
		2.1.1 Vyhodocení hypotéz	
		2.1.2 Odhad poměru	. 12
3 P	Pra	ktické odhady	13
	3.1	Balíčky pro frekventistickou inferenci	
		3.1.1 Klasické test poměru	
	3.2	Software pro bayesovskou statistiku	
		3.2.1 Balíček R2WinBUGS	
		3.2.2 Balíček jags	. 17
		3.2.3 stan	. 17
	3.3	Simulace	. 17
		3.3.1 Malý vzorek	. 18
		3.3.2 Velký vzorek	. 18
		3.3.3 Porovnání výsledků	. 18
Za	ávěr		19
	3.4	Jak citovat v textu	. 19
P	oužit	á literatura	20
		esovské modely	22
	பay	COURDING THOUGHY	44

Seznam obrázků

Seznam tabulek

Seznam zdrojových kódů

3.1	NENÍ CAPTION	14
3.2	NENÍ CAPTION	15
3.3	NENÍ CAPTION	15
3.4	NENÍ CAPTION	16
3.5	NENÍ CAPTION	16
A.1	Winbugs	22

Seznam použitých zkratek

 ${f BCC}$ Blind Carbon Copy

CC Carbon Copy

 \mathbf{CERT} Computer Emergency Response

Team

CSS Cascading Styleheets

DOI Digital Object Identifier

HTML Hypertext Markup Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtended Markup Language

Úvod

Tohle je **úvodní** text.

1. Statistické metody

Krátký úvod do historie, bayes, inferenční bayes (rozdělení) vs. inference (bod) citace Karla

1.1 Inference

proč to používáme, výběr vs. populace, reprezentativnost

1.1.1 Problematika výběrových šetření

reprezentativnost, definice populace, čas sběru, organizace sběru...

1.2 Frekventistická inference

Jak to funguje, jak to spoléhá na sampling distributions

1.2.1 Testování hypotéz

hladina významnosti, úroveň spolehlivosti, Testovací statistika, kritický obor, 1/2 stranný test p-hodnota, interval spolehlivosti

1.2.2 Metriky při testování hypotéz

Chyba I. a II. druhu, síla testu, velikost efektu

1.2.3 Jednovýběrový odhad poměru s velkým vzorkem

použití, předpoklady, poměrový Z test, binomický test, síla testu, velikost efektu

1.2.4 Jednovýběrový odhad poměru s malým vzorkem

Proč jsou důležité speciální metody, nějaké typy (wiki)

1.3 Bayesovská inference

Odvození bayesova vzorce, popis likelihood/aprior/data, druhy aprior/posterior

2. Monte Carlo generování

Halsing, Gibs, HMC

2.1 Vyhodnocení generovaného rozdělení

korelace, ESS, monte carlo error...

2.1.1 Vyhodocení hypotéz

Interval kredibility, ROPE, Bayesův faktor

2.1.2 Odhad poměru

3. Praktické odhady

3.1 Balíčky pro frekventistickou inferenci

3.1.1 Klasické test poměru

```
Test
test
stats::t.test()
test
Jednoduchý T-test
   One Sample t-test
data: x
t = 8.8438, df = 99, p-value = 3.621e-14
alternative hypothesis: true mean is not equal to {\tt 0}
95 percent confidence interval:
0.7158758 1.1300282
sample estimates:
mean of x
0.922952
??
Simulace alfa = chyba 1. druhu
```

Procento falešných zamítnutí h0 se blíží hladine významnosti

3.2 Software pro bayesovskou statistiku

3.2.1 Balíček R2WinBUGS

podporuje WinBUGS, OpenBUGS

```
1 set.seed(123)
  x \leftarrow rbinom(10, 1, .6)
3
  bugs <- R2WinBUGS::bugs(</pre>
4
5
       data = list(
6
                 = length(x), # čPoet pozorování
 7
                              # Vstupní data
                 = x,
           alpha = 0.01,
8
                              # Hodnota parametru alpha
9
           beta = 0.01
                              # Hodnota parametru beta
10
       ),
11
       # ččPoátení hodnoty
12
       inits = list(
           list(p = 0.5),
13
14
           list(p = 0.5)
15
16
       n.chains = 2, n.iter = 5000, n.burnin = 1000, n.thin = 1,
       # Parametry, které žuloit
17
18
       parameters.to.save = c("p"),
19
       # Cesta k modelu
```

```
20
      working.directory = "kapitoly/prakticka",
21
      model.file = "r2winbugs.txt",
22
       # Cesta k programu WinBUGS
23
       bugs.directory = r"(C:\Users\Mike\Downloads\WinBUGS14\WinBUGS14)",
24
       # ňOdstra pracovní soubory
25
       clearWD = T,
26
       # Replikovatelnost
27
       bugs.seed = 123
28)
```

Výpis 3.1: NENÍ CAPTION

Výsledek

```
1 # print(bugs)
```

Výpis 3.2: NENÍ CAPTION

Odhad parametru p.

```
1 mcmcplots::caterplot(mcmcout = bugs,
                                                    # Výstup modelu
2
                       parms = "p",
                                                    # Vybraný parametr
3
                       val.lim = c(0, 1),
                                                    # Limity na ose X
4
                       quantiles = list(
5
                          outer = c(0.025, 0.975), # 95% interval kredibility
6
                          inner = c(0.055, 0.945) # 89% interval kredibility
7
                       )
8
 )
```

Výpis 3.3: NENÍ CAPTION

Posteriorní rozdělení jednotlivých chainů.

Výpis 3.4: NENÍ CAPTION

Vývoj jednotlivých chainů.

Výpis 3.5: NENÍ CAPTION

3.2.2 Balíček jags

aplikace, R implementace, výhody/nevýhody, používá gibse

3.2.3 stan

aplikace, R implementace, výhody/nevýhody, používá hmc

3.3 Simulace

jak budou simulace provedné, jak budou vyhodnocené, nastavení ROPE/alternativ. pro odhad chyb

3.3.1 Malý vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.2 Velký vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.3 Porovnání výsledků

Jak testy dopadly

Závěr

Konec práce, závěr.

3.4 Jak citovat v textu

```
\label{eq:commutation} $$\operatorname{Cermak2018}$ $\longrightarrow (\operatorname{\check{C}erm\acute{a}k} \& \operatorname{Smutn\acute{y}}, 2018)$$ $$\operatorname{Hladik2018,Jasek2018}$ $\longrightarrow (\operatorname{Hladik} \& \operatorname{\check{C}ern\acute{y}}, 2018; \operatorname{Ja\check{s}ek} \ et \ al., 2018)$$ $$\operatorname{parencite} \ [kap. 3]{\operatorname{Pecakova2018}}$ $\longrightarrow (\operatorname{Pec\acute{a}kov\acute{a}}, 2018, \ kap. 3)$$
```

Použitá literatura

- Čermák, R., & Smutný, Z. (2018). A Framework for Cultural Localization of Websites and for Improving Their Commercial Utilization. In *Global Observations of the Influence of Culture on Consumer Buying Behavior* (s. 206–232). IGI Global. https://doi.org/10.4018/978-1-5225-2727-5.ch013
- Hladík, M., & Černý, M. (2018). The Shape of the Optimal Value of a Fuzzy Linear Programming Problem. Fuzzy Logic in Intelligent System Design, 281–286. https://doi.org/10.1007/978-3-319-67137-6_31
- Jašek, P., Vraná, L., Šperková, L., Smutný, Z., & Kobulský, M. (2018). Modeling and Application of Customer Lifetime Value in Online Retail. *Informatics*, 5(1). http://www.mdpi.com/2227-9709/5/1/2/pdf
- Pecáková, I. (2018). Statistika v terénních průzkumech. Professional Publishing.

A. Bayesovské modely

```
::: {.cell-output .cell-output-stdout}

...
model {
    for (i in 1:N) {
        x[i] ~ dbern(p)
    }

    p ~ dbeta(alpha, beta)
}
...
:::
```

Výpis A.1: Winbugs