Cesàro zveznost in odvedljivost Seminar

Matevž Miščič

2. april 2020

Uvod

V prvem letniku smo spoznali, kako lahko zveznost funkcije v neki točki karakteriziramo z zaporedji. Funkcija $f: \mathbb{R} \to \mathbb{R}$ je zvezna v točki $a \in \mathbb{R}$ natanko tedaj, ko za vsako zaporedje (a_n) , ki konvergira proti a, zaporedje $(f(a_n))$ konvergira proti f(a). Podobno lahko z zaporedji karakteriziramo funkcijsko limito: število $L \in \mathbb{R}$ je limita funkcije $f: \mathbb{R} \to \mathbb{R}$ v točki $a \in \mathbb{R}$ natanko tedaj, ko za vsako zaporedje (a_n) s členi različnimi od a, ki konvergira proti a, zaporedje $(f(a_n))$ konvergira proti a. Po definiciji je funkcija a0 dvedljiva v a0, če obstaja limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

v tem primeru tej limiti pravimo odvod funkcije f v točki a. Ker funkcijsko limito znamo opisati z zaporedji, lahko rečemo, da je f odvedljiva v a natanko tedaj, ko obstaja število $L \in \mathbb{R}$, da za vsako zaporedje (a_n) s členi različnimi od a, ki konvergira proti a, zaporedje $(\frac{f(a_n)-f(a)}{a_n-a})$ konvergira proti L. Sedaj smo uspeli pojma zveznosti in odvedljivosti funkcije opisati samo s pojmom konvergence zaporedja. Če bi znali tudi kako drugače definirati, kdaj dano zaporedje konvergira in kakšna je limita, bi dobili drugačni definiciji zveznosti in odvedljivosti. Točno s tem se bomo ukvarjali v tej predstavitvi. Najprej se bomo naučili, kaj je to Cesàro konvergenca zaporedja, s pomočjo tega bomo dobili novi definiciji zveznosti in odvedljivosti, nato pa bomo ugotovili katere funkcije so zvezne oziroma odvedljive po tej novi definiciji.

1 Cesàro konvergenca

Naj bo (a_n) realno zaporedje. Temu zaporedju lahko priredimo novo zaporedje, katerega n-ti člen je enak $\overline{a}_n = \frac{a_1 + a_2 + ... + a_n}{n}$. Temu novemu zaporedju bomo rekli zaporedje aritmetičnih sredin zaporedja (a_n) in ga označili z (\overline{a}_n) .

Definicija 1. Realno zaporedje (a_n) Cesàro konvergira, če konvergira njegovo zaporedje aritmetičnih sredin (\bar{a}_n) . V takem primeru limiti zaporedja (\bar{a}_n) pravimo Cesàro limita zaporedja (a_n) .

Oznaka $a_n \to a$ naj pomeni, da zaporedje (a_n) konvergira proti a, oznaka $a_n \leadsto a$ pa, da zaporedje Cesàro konvergira proti a.

V prvem letniku smo se pri analizi naučili, da iz $a_n \to a$ sledi $a_n \leadsto a$. Obratno seveda ne velja, saj zaporedje $((-1)^n)$ Cesàro konvergira proti 0, ne konvergira pa v običajnem smislu. Ker je pojem Cesàro konvergence zelo pomemben za nadaljevanje, si oglejmo še nekaj primerov.

Zgled 1. Poiščimo primer omejenega zaporedja, ki ni Cesàro konvergentno. Prvi člen naj bo enak 2. Naslednjih nekaj členov bo enakih -2. Takih členov mora biti dovolj, da bo aritmetična sredina padla pod -1. Nato spet dodajmo dovolj členov enakih 2, da bo aritmetična sredina narasla nad 1. S ponavljanjem take konstrukcije dobimo omejeno zaporedje, ki ni Cesàro konvergentno, saj zaporedje aritmetičnih sredin oscilira med -1 in 1.

Zgled 2. Naj bo $m \in \mathbb{N}$ in $a_1, a_2, \ldots, a_m \in \mathbb{R}$. Zanima nas, kdaj zaporedje

$$a_1, a_2, \ldots, a_m, a_1, a_2, \ldots$$

Cesàro konvergira proti 0. Naj bo $A := a_1 + a_2 + \ldots + a_m$. Ker za vse $k \in \mathbb{N}$ velja $\overline{a}_{km} = \frac{A}{m}$, je enakost A = 0 potreben pogoj za $a_n \leadsto 0$. Naj bo torej A = 0. Zaporedje delnih vsot zaporedja (a_n) je potem periodično, zato je omejeno. Sledi, da zaporedje aritmetičnih sredin konvergira proti 0. Torej (a_n) Cesàro konvergira proti 0 natanko tedaj, ko velja A = 0.

Naj bo V vektorski prostor vseh realnih zaporedij. Lahko je preveriti, da je preslikava $\phi: V \to V$, ki zaporedju (a_n) priredi njegovo zaporedje aritmetičnih sredin (\overline{a}_n) , endomorfizem vektorskega prostora V. V nadaljevanju bomo videli, da je ϕ surjektivna preslikava, je pa tudi injektivna, torej je celo avtomorfizem vektorskega prostora V, ampak to za nas ne bo tako pomembno. Pomembna bo le linearnost ϕ .

Naj bosta (a_n) in (b_n) Cesàro konvergentni zaporedji. Zanima nas, če lahko kaj povemo o Cesàro konvergenci vsote teh dveh zaporedji $(a_n + b_n)$. Ker je ϕ aditivna, je zaporedje aritmetičnih sredin vsote enako vsoti zaporedji aritmetičnih sredin. Povedano drugače, za vsak $n \in \mathbb{N}$ velja $\overline{a_n + b_n} = \overline{a_n} + \overline{b_n}$. Zaporedji $(\overline{a_n})$ in $(\overline{b_n})$ konvergirata, zato konvergira tudi njuna vsota $(\overline{a_n + b_n})$ in velja

$$\lim_{n \to \infty} \overline{a_n + b_n} = \lim_{n \to \infty} \overline{a}_n + \lim_{n \to \infty} \overline{b}_n.$$

S tem smo pokazali, da je vsota Cesàro konvergentnih zaporedij Cesàro konvergentna in da je Cesàro limita vsote enaka vsoti Cesàro limit obeh zaporedij. S podobnim razmislekom lahko vidimo, da podobno velja za množenje zaporedja s skalarjem. Če je (a_n) Cesàro konvergentno zaporedje s Cesàro limito a in je $\lambda \in \mathbb{R}$, potem je tudi (λa_n) Cesàro konvergentno s Cesàro limito λa .

Produkt dveh Cesàro konvergentnih zaporedij pa ni nujno Cesàro konvergentno zaporedje, kar nam pokaže naslednji zgled.

Zgled 3. Naj bo $a_n = (-1)^n \sqrt{n}$ za vse $n \in \mathbb{N}$ in $A_n = \sum_{k=1}^n a_k$. Ker je zaporedje (\sqrt{n}) naraščajoče, lahko hitro vidimo, da je zaporedje (A_n) alternirajoče: lihi členi so negativni, sodi pa pozitivni. Torej za lihe člene velja $-\sqrt{n} = a_n \le A_{n-1} + a_n = A_n \le 0$, za sode pa $0 \le A_n = A_{n-1} + a_n \le a_n = \sqrt{n}$. Sledi

$$|\overline{a}_n| = |\frac{A_n}{n}| \le \frac{\sqrt{n}}{n} \to 0,$$

zato velja $a_n \to 0$ oziroma $a_n \leadsto 0$. Če pa zaporedje (a_n) pomnožimo s samim seboj, dobimo zaporedje, ki ni Cesàro konvergentno.

2 Cesàro zveznost

Sedaj lahko končno začnemo obravnavati Cesàro zveznost.

Definicija 2. Funkcija $f: \mathbb{R} \to \mathbb{R}$ je Cesàro zvezna v točki $a \in \mathbb{R}$, če za vsako zaporedje (a_n) , ki Cesàro konvergira proti a, zaporedje $(f(a_n))$ Cesàro konvergira proti f(a). Pravimo, da je f zvezna, če je zvezna v vsaki točki $a \in \mathbb{R}$.

Da si bomo lažje predstavljali, katere funkcije so Cesàro zvezne, si najprej oglejmo kakšen primer.

Zgled 4. Pokazati želimo, da je vsaka funkcija oblike f(x) = Ax + B, kjer sta $A, B \in \mathbb{R}$, Cesàro zvezna. Naj bo (a_n) poljubno Cesàro konvergentno zaporedje in a njegova Cesàro limita. Zaporedje $(Aa_n + B)$ Cesàro konvergira kAa + B = f(a), torej je funkcija f res Cesàro zvezna.

Zgled 5. Oglejmo si še primer funkcije, ki ni Cesàro zvezna. Naj bo $f(x) = x^2$ funkcija. Zaporedje $((-1)^n)$ Cesàro konvergira k 0, zaporedje $(f((-1)^n))$ pa je konstantno enako 1, zato Cesàro konvergira k 1 in ne k f(0) = 0. Torej f ni Cesàro zvezna v točki 0.

Kot smo ugotovili, je vsaka funkcija oblike f(x) = Ax + B Cesàro zvezna. Izkaže se, da so to tudi vse Cesàro zvezne funkcije. Dokaz temelji na [2, stran 247-248].

Izrek 1. Naj bo $f: \mathbb{R} \to \mathbb{R}$ funkcija. Naslednje trditve so ekvivalentne.

- 1. Funkcija f je Cesàro zvezna v točki 0.
- 2. Funkcija f je Cesàro zvezna.
- 3. Funkcija f je oblike f(x) = Ax + B za neki realni števili $A, B \in \mathbb{R}$.

Dokaz. $(1) \Rightarrow (3)$: Naj bo funkcija $g: \mathbb{R} \to \mathbb{R}$ definirana s predpisom g(x) = f(x) - f(0). Potem je g Cesàro zvezna v točki 0 in velja g(0) = 0. Naj bo $a \in \mathbb{R}$ poljubno realno število. Ker zaporedje $a, -a, a, -a, a, \ldots$ Cesàro konvergira proti 0 in je g Cesàro zvezna v 0, zaporedje $g(a), g(-a), g(a), g(-a), \ldots$ Cesàro konvergira proti g(0) = 0. Potem mora veljati g(a) + g(-a) = 0 oziroma g(-a) = -g(a). Naj bosta zdaj $b, c \in \mathbb{R}$ poljubni realni števili. Spet zaporedje $b, c, -(b+c), b, c, -(b+c), \ldots$ Cesàro konvergira k 0, zato tudi zaporedje $g(b), g(c), g(-(b+c)), g(b), \ldots$ Cesàro konvergira proti g(0) = 0. Sledi g(b) + g(c) + g(-(b+c)) = 0 oziroma -(g(b) + g(c)) = g(-(b+c)). Upoštevamo še, da je velja g(-a) = -g(a) za vsak $a \in \mathbb{R}$ in dobimo g(b) + g(c) = g(b+c). Torej je g aditivna.

Naslednji cilj je pokazati, da velja $g(\lambda x) = \lambda g(x)$ za vse $\lambda \in \mathbb{Q}$ in $x \in \mathbb{R}$. Za primer, ko je $\lambda \in \mathbb{N}$, to sledi neposredno iz aditivnosti. Ker velja tudi g(0) = 0 in g(-a) = -g(a), to velja celo za vse $\lambda \in \mathbb{Z}$. Naj bo zdaj $\frac{m}{n} \in \mathbb{Q}$ poljubno racionalno število. Velja $mg(x) = g(mx) = g(n\frac{m}{n}x) = ng(\frac{m}{n}x)$ oziroma $\frac{m}{n}g(x) = g(\frac{m}{n}x)$, kar smo želeli dokazati.

Pokažimo zdaj, da je g zvezna. Naj bo (x_n) poljubno zaporedje, da je $x_n \to 0$. Poiščimo zaporedje (y_n) , katerega zaporedje aritmetičnih sredin je enako (x_n) . Očitno mora biti $y_1 = x_1$. Denimo, da smo že definirali y_1, \ldots, y_n in da velja $x_k = \overline{y}_k$ za vse $k \le n$. Da bo veljalo tudi $x_{n+1} = \overline{y}_{n+1}$ oziroma $x_{n+1} = \frac{y_1 + \ldots + y_{n+1}}{n+1}$, moramo vzeti $y_{n+1} = (n+1)x_{n+1} - (y_1 + \ldots + y_n)$. Tako definirano zaporedje (y_n) res zadošča $x_n = \overline{y}_n$

za vse $n \in \mathbb{N}$. Ker je $x_n \to 0$, je $y_n \leadsto 0$ po definiciji, zato iz Cesàro zveznosti funkcije g v 0 sledi $g(y_n) \leadsto g(0) = 0$. Iz tega, kar smo pokazali v prejšnjih odstavkih, potem sledi

$$g(x_n) = g(\overline{y}_n) = g(\frac{y_1 + \ldots + y_n}{n}) = \frac{g(y_1) + \ldots + g(y_n)}{n} \to 0.$$

Torej je g zvezna v 0. Ker je $g(x_0 + x) = g(x_0) + g(x)$, je zvezna tudi v vsaki drugi točki $x_0 \in \mathbb{R}$.

Naj bo A = g(1). Zvezni funkciji g in $x \mapsto Ax$ se ujemata na \mathbb{Q} , ki je gosta podmnožica v \mathbb{R} , torej sta enaki. Če vzamemo B = f(0), velja f(x) = Ax + B za vse $x \in \mathbb{R}$. S tem je implikacija dokazana.

- $(3) \Rightarrow (2)$: To smo pokazali v zgledu 4.
- $(2) \Rightarrow (1)$: Če je f Cesàro zvezna, je po definiciji Cesàro zvezna tudi v točki 0. \square

3 Cesàro odvedljivost

Sedaj bomo vpeljali še pojem Cesàro odvedljivosti. Kakšna je motivacija za naslednjo definicijo smo obravnavali že v uvodu.

Definicija 3. Funkcija $f: \mathbb{R} \to \mathbb{R}$ je Cesàro odvedljiva v točki $a \in \mathbb{R}$, če obstaja število $f'(a) \in \mathbb{R}$, da za vsako zaporedje (a_n) s členi različnimi od a, ki Cesàro konvergira proti a, zaporedje diferenčnih kvocientov $(\frac{f(a_n)-f(a)}{a_n-a})$ Cesàro konvergira proti f'(a). Številu f'(a) v takem primeru rečemo Cesàro odvod funkcije f v točki a. Pravimo, da je f odvedljiva, če je odvedljiva v vsaki točki $a \in \mathbb{R}$.

Oglejmo si nekaj primerov funkcij in poskusimo ugotoviti, če so Cesàro odvedljive.

Zgled 6. Naj bo $f: \mathbb{R} \to \mathbb{R}$ funkcija oblike $f(x) = Ax^2 + Bx + C$ za neke $A, B, C \in \mathbb{R}$. Naj bo (a_n) poljubno Cesàro konvergentno zaporedje s Cesàro limito a, ki ima vse člene različne od a. Velja

$$\frac{f(a_n) - f(a)}{a_n - a} = \frac{(Aa_n^2 + Ba_n + C) - (Aa^2 + Ba + C)}{a_n - a}$$
$$= \frac{A(a_n - a)(a_n + a) + B(a_n - a)}{a_n - a}$$
$$= A(a_n + a) + B \Rightarrow 2Aa + B,$$

torej je f Cesàro odvedljiva in je 2Ax+B njen Cesàro odvod. Opazimo lahko, da je Cesàro odvod enak odvodu.

Zgled 7. Naj bo zdaj $f: \mathbb{R} \to \mathbb{R}$ funkcija s predpisom $f(x) = x^3$. Velja $(-1)^n \leadsto 0$, ampak

$$\frac{(-1)^3 - 0^3}{(-1) - 0} = 1 \rightsquigarrow 1 \neq 0 = f(0).$$

Torej f ni Cesàro odvedljiva v točki 0.

Vemo že, da je $f: \mathbb{R} \to \mathbb{R}$ zvezna v točki $a \in \mathbb{R}$ natanko tedaj, ko obstaja limita f v točki a in je ta limita enaka f(a). Podobno velja tudi za Cesàro zveznost, kar nam pove naslednja lema. V dokazu te leme in naslednjega izreka bomo sledili [1].

Lema 1. Naj bo $f : \mathbb{R} \to \mathbb{R}$ funkcija. Naj za vsako zaporedje (a_n) s členi različnimi od 0, ki Cesàro konvergira proti 0, velja $f(a_n) \leadsto f(0)$. Potem je f Cesàro zvezna v točki 0.

Dokaz. Predpostaviti smemo, da velja f(0) = 0. Podobno kot pri dokazu izreka 1 lahko dokažemo, da velja f(a+b) = f(a) + f(b) za neničelna $a, b \in \mathbb{R}$. Če je katero od obeh števil enako 0, pa to očitno velja. Torej je f aditivna. Velja tudi f(-a) = -f(a) za vse $a \in \mathbb{R}$.

Naj bo (a_n) poljubno zaporedje, za katero velja $a_n \rightsquigarrow 0$. Pokazati želimo, da velja $f(a_n) \rightsquigarrow f(0) = 0$. To bomo storili tako, da bomo skonstruirali zaporedje (b_n) s členi različnimi od 0, ki se bo malo razlikovalo od zaporedja (a_n) , tako da bo veljalo $a_n - b_n \rightsquigarrow 0$ in $f(a_n) - f(b_n) \rightsquigarrow 0$.

Ker je množica \mathbb{R} neštevna, množica $\{a_n \mid n \in \mathbb{N}\} \cup \{-a_n \mid n \in \mathbb{N}\}$ pa števna, lahko izberemo $\delta \in \mathbb{R}$, da za vsak $n \in \mathbb{N}$ velja $\delta \neq a_n$ in $\delta \neq -a_n$. Definirajmo $b_n = a_n + (-1)^n \delta$. Za vse $n \in \mathbb{N}$ je potem $b_n \neq 0$, torej je (b_n) zaporedje z neničelnimi členi. Če je n sod, velja $b_1 + \ldots + b_n = a_1 + \ldots + a_n$, če je n lih, pa je $b_1 + \ldots + b_n = a_1 + \ldots + a_n - \delta$. Od tod sledi

$$\overline{a}_n - \overline{b}_n = \begin{cases} 0; & n \text{ sod} \\ \frac{\delta}{n}; & n \text{ lih,} \end{cases}$$

torej je $\overline{a}_n - \overline{b}_n \to 0$. Ker zaporedje (\overline{a}_n) konvergira k 0, enako velja za zaporedje (\overline{b}_n) , to pa lahko drugače zapišemo kot $b_n \leadsto 0$.

Zaradi aditivnosti f velja $f(b_n) = f(a_n + (-1)^n \delta) = f(a_n) + f((-1)^n \delta) = f(a_n) + (-1)^n f(\delta)$. Za sod n potem velja $f(b_1) + \ldots + f(b_n) = f(a_1) + \ldots + f(a_n)$, za lih n pa $f(b_1) + \ldots + f(b_n) = f(a_1) + \ldots + f(a_n) - f(\delta)$. Podobno kot prej sledi

$$\overline{f(a_n)} - \overline{f(b_n)} = \begin{cases} 0; & n \text{ sod} \\ \frac{f(\delta)}{n}; & n \text{ lih,} \end{cases}$$

torej je $\overline{f(a_n)} - \overline{f(b_n)} \to 0$ oziroma $f(a_n) - f(b_n) \leadsto 0$.

Pokazali smo že, da zaporedje (b_n) Cesàro konvergira k 0, ker pa ima le neničelne člene, po predpostavki velja $f(b_n) \rightsquigarrow f(0) = 0$. Ker velja tudi $f(a_n) - f(b_n) \rightsquigarrow 0$, lahko zaključimo, da $(f(a_n))$ Cesàro konvergira k 0, torej je f res Cesàro zvezna v točki 0.

V zgledu 6 smo pokazali, da so vse funkcije oblike $f(x) = Ax^2 + Bx + C$ Cesàro odvedljive. V naslednjem izreku bomo pokazali, da so to tudi vse Cesàro odvedljive funkcije.

Izrek 2. Naj bo $f: \mathbb{R} \to \mathbb{R}$ funkcija. Naslednje trditve so ekvivalentne.

- 1. Funkcija f je Cesàro odvedljiva v točki 0.
- 2. Funkcija f je Cesàro odvedljiva.
- 3. Funkcija f je oblike $f(x) = Ax^2 + Bx + C$ za neka realna števila $A, B, C \in \mathbb{R}$.

Dokaz. (1) \Rightarrow (3) : Definiramo funkcijo $f: \mathbb{R} \to \mathbb{R}$ s predpisom

$$g(x) = \begin{cases} \frac{f(x) - f(0)}{x}; & x \neq 0\\ f'(0); & x = 0. \end{cases}$$

Naj bo (a_n) zaporedje s členi različnimi od 0, da velja $a_n \leadsto 0$. Potem velja

$$g(a_n) = \frac{f(a_n) - f(0)}{a_n - 0} \leadsto f'(0) = g(0),$$

po definiciji Cesàro odvoda f v točki 0. Po lemi 1 je g Cesàro zvezna v točki 0, zato je po izreku 1 oblike g(x) = Ax + B za neka $A, B \in \mathbb{R}$. Potem pa je $f(x) = xg(x) + f(0) = Ax^2 + Bx + C$ za C = f(0).

- $(3) \Rightarrow (2)$: To smo pokazali v zgledu 6.
- $(2) \Rightarrow (1)$: Če je f Cesàro odvedljiva, je po definiciji Cesàro odvedljiva tudi v točki 0.

Končno smo klasificirali Cesàro zvezne in Cesàro odvedljive funkcije. Opazimo, da obstajajo funkcije, ki so Cesàro odvedljive, ampak niso Cesàro zvezne. Takšna funkcija je na primer $x\mapsto x^2$. To je presenetljivo, saj vemo, da je funkcija zvezna v neki točki, če je odvedljiva v tej točki. Za Cesàro zveznost in Cesàro odvedljivost pa se izkaže, da to ne velja.

Angleško-slovenski slovar strokovnih izrazov

convergence konvergencacontinuity zveznostdifferentiability odvedljivost

Literatura

- [1] J. A. Hocutt in P. L. Robinson, Everywhere Differentiable, Nowhere Continuous Functions, Amer. Math. Monthly 125 (2018) 923–928.
- [2] P. R. Halmos, *Problems for Mathematicians, Young and Old*, Dolciani Mathematical Expositions **12**, Mathematical Association of America, Washington, 1991.