Complexity

By: Riham Katout

Videos

1- <u>part1</u>

2- <u>part2</u>

By: Riham Muneer Katout

Articles

1- Knowing the complexity in competitive programming

2- How to Analyse Loops for Complexity Analysis of Algorithms

By: Riham Muneer Katout

What is the time, and space complexity of the following codes?

```
int a = 0, b = 0;
for (i = 0; i < N; i++) {
    a = a + rand();
}
for (j = 0; j < M; j++) {
    b = b + rand();
}</pre>
```

Options:

```
1. O(N * M) time, O(1) space
```

- 2. O(N + M) time, O(N + M) space
- 3. O(N + M) time, O(1) space
- 4. O(N * M) time, O(N + M) space

```
Solution O(N + M) time, O(1) space
```

```
int a = 0;
for (i = 0; i < N; i++) {
    for (j = N; j > i; j--) {
        a = a + i + j;
    }
}
```

Options:

- 1. O(N)
- 2. O(N*log(N))
- 3. O(N * Sqrt(N))
- 4. O(N*N)

```
Solution O(N*N)
```

```
int i, j, k = 0;
for (i = n / 2; i <= n; i++) {
    for (j = 2; j <= n; j = j * 2) {
        k = k + n / 2;
    }
}</pre>
```

Options:

- 1. O(n)
- 2. O(N log N)
- 3. O(n^2)
- 4. O(n^2Logn)

Solution O(nLogn)

What is the time, and space complexity of the following codes?

```
int a = 0, i = N;
while (i > 0) {
    a += i;
    i /= 2;
}
```

Options:

```
1. O(N)
```

- 2. O(Sqrt(N))
- 3.0(N/2)
- 4. O(log N)

Solution

```
O(log N)
```

```
for(int i=0;i<n;i++){
   i*=k;
}</pre>
```

Options:

- 1. O(n)
- 2. O(k)
- 3. $O(log_k n)$
- 4. $O(log_n k)$

Solution $O(\log_k n)$

```
int value = 0;
for(int i=0;i<n;i++)
    for(int j=0;j<i;j++)
    value += 1;</pre>
```

Options:

- 1. n
- 2.(n+1)
- 3. n(n-1)
- 4. n(n+1)

Solution

n(n-1)

n	Possible complexities
$n \leq 10$	$\mathcal{O}(n!)$, $\mathcal{O}(n^7)$, $\mathcal{O}(n^6)$
$n \leq 20$	$\mathcal{O}(2^n \cdot n)$, $\mathcal{O}(n^5)$
$n \leq 80$	$\mathcal{O}(n^4)$
$n \leq 400$	$\mathcal{O}(n^3)$
$n \leq 7500$	$\mathcal{O}(n^2)$
$n \leq 7 \cdot 10^4$	$\mathcal{O}(n\sqrt{n})$
$n \leq 5 \cdot 10^5$	$\mathcal{O}(n \log n)$
$n \leq 5 \cdot 10^6$	$\mathcal{O}(n)$
$n \leq 10^{18}$	$\mathcal{O}(\log^2 n)$, $\mathcal{O}(\log n)$, $\mathcal{O}(1)$

By: Riham Muneer Katout