

Deep Learning

Mohammad Reza Mohammadi 2021

Deep Q-Learning

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num\_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
     \epsilon \leftarrow \epsilon_i
     Observe S_0
    t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
        t \leftarrow t + 1
     until S_t is terminal;
end
return Q
```


Preprocessing part

- We want to reduce the complexity of our states to reduce the computation time needed for training
 - First, we can grayscale each of our states
 - Then, we crop the frame
 - Then, we reduce the size of the frame
 - And stack four sub-frames together

frames

Convolutional network

- The frames are processed by three convolution layers
 - These layers allow you to exploit spatial relationships in images
 - But also, because frames are stacked together, you can exploit some spatial properties across those frames
- We use one fully connected layer and one output layer that produces the Q-value estimation for each action

Experience Replay

- Making more efficient use of observed experience
- Experience replay will help us to handle two things:
 - Avoid forgetting previous experiences
 - Reduce correlations between experiences

Avoid forgetting previous experiences

- At each time step, we receive a tuple (state, action, reward, new_state)
 - We learn from it, and then throw this experience

• Our problem is that we give sequential samples from interactions with the

environment to our neural network

Avoid forgetting previous experiences

- Our problem is that we give sequential samples from interactions with the environment to our neural network
 - It tends to forget the previous experiences as it overwrites with new experiences
 - For instance, if we are in the first level and then the second (which is totally different), our agent can forget how to behave in the first level

Avoid forgetting previous experiences

- As a consequence, it can be more efficient to make use of previous experience, by learning with it multiple times
- Create a "replay buffer"
 - This stores experience tuples while interacting with the environment, and then we sample a small batch of tuple to feed our neural network

- We know that every action affects the next state
 - This outputs a sequence of experience tuples which can be highly correlated
- If we train the network in sequential order, we risk our agent being influenced by the effect of this correlation
- By sampling from the replay buffer at random, we can break this correlation
- This prevents action values from oscillating or diverging catastrophically

- Play a first-person shooter:
 - A monster can appear on the left or on the right
 - The goal of our agent is to shoot the monster
 - It has two guns and two actions
 - shoot left or shoot right

- We learn with ordered experience
- Say we know that if we shoot a monster, the probability that the next monster comes from the same direction is 70%
 - This is the correlation between our experiences tuples

- Let's begin the training
 - Our agent sees the monster on the right, and shoots it using the right gun
 - Then the next monster also comes from the right (with 70% probability), and the agent will shoot with the right gun
- The problem is, this approach increases the value of using the right gun through the entire state space

• If our agent doesn't see a lot of left examples (since only 30% will probably come from the left), our agent will only finish by choosing right regardless of where the monster comes from

- To handle this problem:
 - First, we must stop learning while interacting with the environment
 - We should try different things and play a little randomly to explore the state space
 - We can save these experiences in the replay buffer
 - Then, we can recall these experiences and learn from them
 - After that, go back to play with updated value function

Deep Q-Learning

We want to update our neural nets weights to reduce the error

```
Algorithm 1 Deep Q-learning with Experience Replay
 Initialize replay memory \mathcal{D} to capacity N
  Initialize action-value function Q with random weights
 for episode = 1, M do
      Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
      for t = 1, T do
                                                                                                         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma max_aQ(S_{t+1}, a) - Q(S_t, A_t)]
          With probability \epsilon select a random action a_t
          otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
          Execute action a_t in emulator and observe reward r_t and image x_{t+1}
                                                                                                                                Former Learning Immediate Discounted Estimate
                                                                                                             New
                                                                                                                                                                                               Former
          Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
                                                                                                                                                                optimal Q-value
                                                                                                                                                                                               Q-value
                                                                                                           O-value
                                                                                                                               Q-value
                                                                                                                                            Rate Reward
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
                                                                                                                                                                 of next state
                                                                                                                              estimation
                                                                                                                                                                                              estimation
                                                                                                          estimation
          Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal D
          Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                                                                                                                                                TD Target
                                                                                                                                                                            TD Error
          Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
      end for
 end for
```

Generative Models

Generative models

Given training data, generate new samples from same distribution

- Training data $\sim p_{data}(x)$
- Want to learn $p_{model}(x)$ similar to $p_{data}(x)$
- Generated samples $\sim p_{model}(x)$

Generative models

- For example, suppose we know that the distribution of a random variable is Gaussian and we observe several instances of it
- We can estimate the parameters (mean and variance) by these observations
- Using $\sigma \times randn() + m$, we can generate new samples

Generative models - applications

Generative models - applications

Generative models - applications

www.jiahuiyu.com