Hello, fellow person that comes across this. I have had one brief exposure with Linear Algebra following MATH 21-1 at UCSC. However, Axler is just so cool, so I am trying to learn a bit of linalg on the side to supplement my much more traditional linalg experience at the UC.

A few things of note. This whole thing is very "partial": in the sense that its contents contain many a parts of things omitted which I feel like I have a good grasp on from 21-1 such that I don't need to be reminded again; I only include things that maybe useful to me later either b/c I don't know it or I want to be reminded of it. As such, I don't think this will be helpful for most people.

1 | **1.A**

1.1 | Things of Note

• $\lambda \in \mathbb{F}$ is called a "scalar". I mean duh but still.

1.1.1 | Defining a list

A list of length n is a collection of n elements (any mathematical object?) separated by commas.

"Identical" lists are established when lists have:

- the same length
- · same elements
- · in the same order.

Its also called a \$n\$-tuple.

n must be a finite non-negative value. Therefore, an "infinitely long list" is not a list.

1.1.2 | Sets vs Lists

Lists have order and repetition. In sets, order and repetitions don't matter.

1.1.3 | F

- A set
- Containing 2 elements 0, 1
- Operators of "addition" and "multiplication" that satisfy the following properties
- 1. Properties of \mathbb{F} That, with $\alpha, \beta, \lambda \in \mathbb{F}$:
 - Commutativity $\alpha + \beta = \beta + \alpha$ and $\alpha\beta = \beta\alpha$
 - Associativity $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ and $(\alpha\beta)\lambda = \alpha(\beta\lambda)$
 - Existence of Identities $\lambda + 0 = \lambda$ and $\lambda 1 = \lambda$
 - Additive Inverse for every α , $\exists \beta$ s.t. $\alpha + \beta = 0$
 - Multiplicative Inverse for every $\alpha \neq 0$, $\exists \beta$ s.t. $\alpha \beta = 1$
 - Distribution $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$

1.1.4 $|\mathbb{F}^n|$

$$\mathbb{F}^n = \{(x_1, \dots, x_n) : x_j \in \mathbb{F} \text{ for } j = 1, \dots, n\}$$

$$\tag{1}$$

We say x_j is the j^{th} coordinate of (x_1, \ldots, x_n) .

 $\ln \mathbb{F}^n...$

1. Addition

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
 (2)

2. Scalar Multiplication

$$\lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$
(3)

3. Zero

$$0 = (0, \dots, 0) \tag{4}$$

4. Additive Inverse ...of $x \in \mathbb{F}^n$:

$$x + (-x) = 0 \tag{5}$$

That:

$$x = (x_1, \dots, x_n), -x = (-x_1, \dots, -x_n)$$
 (6)

1.2 | In-Text Exercises

1.2.1 | Verify that $i^2 = -1$

$$(0+1i)(0+1i) = (0+0+0+ii) = -1$$

1.2.2 | Defining subtraction and division

 $\alpha, \beta \in \mathbb{C}$

Subtraction could be defined in that:

- Let $-\alpha$ be defined as the additive inverse of α
- Subtraction, therefore, is defined $\beta \alpha = \beta + (-\alpha)$

Division could be defined in that:

- Let $1/\alpha$ be defined as the multiplicative inverse of α
- Subtraction, therefore, is defined $\beta/\alpha = \beta(1/\alpha)$

1.3 | Actual Exercises

1: Suppose $a,b\in\mathbb{R}$, $a,b\neq 0$, find $c,d\in\mathbb{R}$ s.t. $\frac{1}{(a+bi)}=c+di$

$$\frac{1}{(a+bi)} = \frac{(a-bi)}{(a+bi)(a-bi)} =$$
 (7)

$$\Rightarrow \frac{a-bi}{a^2-(bi)^2} = c+di \tag{8}$$

$$\Rightarrow \frac{a - bi}{a^2 + b^2} = c + di \tag{9}$$

$$\Rightarrow \frac{a}{a^2 + b^2} - \frac{bi}{a^2 + b^2} = c + di$$
 (10)

Therefore:

$$c = \frac{a}{a^2 + b^2} \tag{11}$$

$$d = \frac{-b}{a^2 + b^2} {12}$$

2: Show that $\frac{-1+\sqrt{3}i}{2}$ is the cube root of 1.

$$(\frac{-1+\sqrt{3}i}{2})^3$$
 (13)

$$\Rightarrow (\frac{-1+\sqrt{3}i}{2})(\frac{-1+\sqrt{3}i}{2})(\frac{-1+\sqrt{3}i}{2}) \tag{14}$$

$$\Rightarrow \frac{(-1+\sqrt{3}i)(-1+\sqrt{3}i)(-1+\sqrt{3}i)}{8}$$
 (15)

$$\Rightarrow \frac{(1 - 2\sqrt{3}i - 3)(-1 + \sqrt{3}i)}{8} \tag{16}$$

$$\Rightarrow \frac{(1 - 2\sqrt{3}i - 3)(-1 + \sqrt{3}i)}{8} \tag{17}$$

$$\Rightarrow \frac{8}{8} = 1 \tag{18}$$

3: Find two distinct square roots of i

?

4: Show that $\alpha + \beta = \beta + \alpha, \forall \alpha, \beta \in C$

Let:

 $\forall a,b,c,d \in \mathbb{R}$

- $\alpha = (a + bi)$
- $\beta = (c + di)$

$$\alpha + \beta = (a+bi) + (c+di) \tag{19}$$

$$= (a+c) + (b+d)i$$
 (20)

$$= (c+a) + (d+b)i (21)$$

$$= (c+di) + (a+bi)$$
 (22)

$$= \beta + \alpha \blacksquare \tag{23}$$

5: Show that $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda), \forall \alpha, \beta, \lambda \in \mathbb{C}$

Let:

 $\forall a,b,c,d,e,f \in \mathbb{R}$

- $\alpha = (a + bi)$
- $\beta = (c + di)$
- $\lambda = (e + fi)$

$$(\alpha + \beta) + \lambda = ((a+bi) + (c+di)) + (e+fi)$$
 (24)

$$= ((a+c) + (b+d)i) + (e+fi)$$
(25)

$$= (a + c + e) + (b + d + f)i$$
(26)

$$= (a + (c + e)) + (b + (d + f))i$$
(27)

$$= (a+bi) + (c+e) + (d+f)i$$
(28)

$$= (a+bi) + ((c+di) + (e+fi))$$
(29)

$$= \alpha + (\beta + \lambda) \blacksquare \tag{30}$$

2 | **1.B**

2.1 | Things of Note

2.1.1 | Vector Spaces V

A "vector"/"point" is a member of a vector space. The exact nature of scalar multiplication depends on which \mathbb{F} we are working it; hence, when being precise, we say that V is a vector space "over \mathbb{F} ".

- 1. Motivation
 - · Addition is commutative, associative, and has identity
 - · Every element has additive inverse
 - · Scalar multiplication is associative
 - · Addition and scalar multiplication is connected by distribution
- 2. Basic Operators
 - Addition on set V is a function that assigns $u+v\in V$ to each pair $u,v\in V$

• Scalar Multiplication on set V is a function that assigns $\lambda v \in V$ to each $\lambda \in \mathbb{F}$ and $v \in V$. Note that this is different than a field, because if you can't multiply two different things in and out of the field and expect it to remain. But you could multiply an element in field \mathbb{F} and a vector in vector space V and expect it to stay in V.

Note also "Multiplication" is not defined as 1) there are two and 2) they behave very differently.

- 3. Properties For $u, v, w \in V$ and $a, b \in \mathbb{F}$.
 - Commutativity u + v = v + u
 - Associativity (u+v)+w=u+(v+w) and (ab)v=a(bv).
 - Additive Identity $\exists 0 \in V \ s.t. \ v + 0 = v, \forall v \in V$
 - Additive Inverse $\forall v \in V, \exists w \in V \ s.t. \ v+w=0$
 - Multiplicative Identity 1v = v
 - Distribution a(u+v) = au + av and (a+b)v = av + bv
- 4. Unique Additive Identity The additive identity ("zero") in a vector space must be unique. (i.e. there cannot be two distinct zeros 0 and 0' which both are $\in V$). This is because:

$$0 = 0 + 0' = 0' + 0 = 0'$$
(31)

That — if both 0 and 0' are additive identities, 0 = 0'.

5. Unique Additive Inverse Every element in a vector space has an unique additive inverse (i.e. there cannot be two distinct additive inverses of $v \in V$ w and w' which both are $\in V$).

Suppose w and w' are both additive inverses of v, then it holds that:

$$w = w + 0 = w + (v + w') = (w + v) + w' = 0 + w' = w'$$
(32)

That — if both w and w' exists in V, w = w'.

6. Zero and Vectors 0v = 0 for $v \in V$. $a\vec{0} = \vec{0}$ for $a \in \mathbb{F}$.

2.1.2 | 𝔽∞

Wait but aren't \mathbb{F}^n supposed to be made of lists, which has finite length?

I guess its just sequences of all of everything in F.

$$\mathbb{F}^{\infty} = \{ (x_1, x_2, \dots) : x_j \in \mathbb{F} \text{ for } j = 1, 2, \dots \}$$
 (33)

2.1.3 | \mathbb{F}^{S}

 \mathbb{F}^S is defined as the set of functions that maps elements in set S to \mathbb{F} . It is a vector space.

1. Addition Addition between $f, g \in \mathbb{F}^S$ is defined by:

$$(f+g)(x) = f(x) + g(x), \ \forall x \in S$$

2. Scalar Multiplication Multiplication between $\lambda \in \mathbb{F}$ and $f \in \mathbb{F}^s$, $\lambda f \in \mathbb{F}^s$ is defined as:

$$(\lambda f)(x) = \lambda f(x), \ \forall x \in S$$
(35)

3. \mathbb{F}^n and \mathbb{F}^∞ are special cases of \mathbb{F}^s ...this is because a list $\{x_1, x_2, x_3, \ldots, x_n\}$ is actually a bijective mapping between $\{1, 2, 3, \ldots, n\}$ (the indexes) and the values of the list, which are all $\in \mathbb{F}$. so :tada:!

2.2 | In-Text Exercises

2.2.1 | Verify that \mathbb{F}^n is a vector space over \mathbb{F}

Not going to write this one out, but:

- Commutativity: via rules addition, commutation (in \mathbb{F}), then undoing addition
- · Associativity: addition, communication, then undoing addition
- Additive Identity: addition + definition of "zero" in \mathbb{F}^n
- Additive Inverse: addition + additive inverse (in \mathbb{F})
- Multiplicative Identity: scalar multiplication (by 1) and then identity (in \mathbb{F})
- Distribution: definition of addition in \mathbb{F}^n , scalar multiplication, undoing definition of addition again

2.3 | Actual Exercises

1: Proof that $-(-v) = v, \ \forall v \in V$

Step	Explanation
v = v + 0	Additive identity
v = v + (-v + -(-v))	Additive inverse
v = (v + -v) + -(-v)	Associative property
v = 0 + -(-v)	Additive inverse
$v = -(-v) \blacksquare$	Additive Identity

2: Suppose $a \in \mathbb{F}, v \in V$, and av = 0. Proof a = 0 or v = 0.

Let $a \neq 0$. We define the multiplicative inverse of a as a^{-1} .

Step	Explanation
v = 1v	Multiplicative identity
$v = aa^{-1}v$	Multiplicative inverse
$v = ava^{-1}$	Commutativity
$v = 0a^{-1}$	Given
$v = 0 \blacksquare$	Number times 0

If a = 0, \blacksquare .

3: Suppose $v, w \in V$, explain why \exists unique $x \in V$ s.t. v + 3x = w

Let $x = \frac{1}{3}(w - v)$; by addition and scalar multiplication, $\exists x \in V$.

$$\begin{array}{lll} \text{Step} & \text{Explanation} \\ v+3x=w & \text{Given} \\ v+3(\frac{1}{3}(w-v))=w & \text{Defined} \\ v+(w-v)=w & \text{Multiplication in } \mathbb{F} \\ v-v+w=w & \text{Commutativity} \\ w=w & \blacksquare & \text{Additive Inverse} \end{array}$$

Therefore, $\exists x \in V$ that satisfies the needed property.

Suppose there exists more than 1 x which satisfies this property. We call them x and x'. This would tell us the following equalities:

$$v + 3x = w$$
, $v + 3x' = w$.

It follows from the equalities that:

$$3x = w - v$$
, $3x' = w - v$

Then, it follows that

$$3x = 3x'$$

Therefore:

$$x = x' \tag{36}$$

Hence, if given that there exists v + 3x = w, v + 3x' = w, x = x'. Hence, there is only one unique x such that v + 3x = w.

3 | 1.C

Axler, in his infinite wisdom, has crammed everything that's interesting to note in Chapter 1.c.

3.1 | Things of Note

3.1.1 | Subspaces

(Woo hoo!)

A subset $U \subset V$ is called a "subspace of V" if U is also a vector space using the same addition and scalar multiplication operators.

1. Checking for Subspaces Check for three conditions:

For
$$U \subset V$$

- Additive Identity $0 \in U$. (also could be defined as "set is nonempty", b/c if nonempty, and its closed under scalar multiplication, multiplying any element by 0 will do the trick. But often showing 0 is in it is actually simpler.)
- Closed Under Addition $u,w\in U$ implies $u+w\in U$
- Closed Under Scalar Multiplication $a \in \mathbb{F}$ and $u \in U$ implies $au \in U$

3.1.2 | Summing Subsets

Suppose U_1, \ldots, U_m are subsets of V. The "sum" of the subsets $(U_1 + \cdots + U_m)$ is the set of all possible sums of elements in U_1, U_m . That is:

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$$
(37)

1. Properties of the Sums of Subspaces Suppose U_1, \ldots, U_m are subspaces of V. $U_1 + \cdots + U_m$ is the smallest subspace of V containing all of U_1, \ldots, U_m .

3.1.3 | Direct Sum

Suppose U_1, \ldots, U_m are subspaces of V

- Sum $U_1+\cdots+U_m$ is a direct sum if $U_1+\cdots+U_m$ can be only written only one way as a sum $u_1+\cdots+u_m$
- Direct sum is noted as $U_1 \oplus \cdots \oplus U_m$

"Sums is the union, direct sums is the disjoint union".

- 1. Checking for Direct Sums Suppose U_1,\ldots,U_m are subspaces of V. $U_1+\cdots+U_m$ is a direct sum iff the only way to write 0 as a sum $u_1+\cdots+u_m$ is by taking each u_j equaling to 0. This could be implied from the definition of a direct sum: that there is only one way to write a 0 as $u_1+\cdots+u_m$, and being closed scalar multiplication means that you could multiply 0 to each subspace individually and they still have to add up to 0.
- 2. Direct Sum of Two Subspaces Suppose U,W are subspaces of V. U+W is a direct sum iff $U\cap W=\{0\}$.

3.2 | In-Text Excercises

3.2.1 | Summing Subspaces, an Example

Suppose $U=\{(x,x,y,y)\in\mathbb{F}^4:x,y\in\mathbb{F}\}$ and $W=\{(x,x,x,y)\in\mathbb{F}^4:x,y\in\mathbb{F}\}$. Then:

$$U + W = \{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$$
 (38)

We verify this by writing out the sum.

$$U + W = \{(x_u, x_u, y_u, y_u) + (x_w, x_w, x_w, y_w) : x_u, y_u \in U, x_w, y_w \in W\}$$
(39)

$$= \{(x_u + x_w, x_u + x_w, y_u + x_w, y_u + y_w) : x_u, y_u \in U, x_w, y_w \in W\}$$
(40)

$$= \left\{ \left(\underbrace{x}_{x_u + x_w}, x, \underbrace{y}_{y_u + x_w}, \underbrace{z}_{y_u + y_w} \right) : x, y, z \in \mathbb{F} \right\}$$

$$\tag{41}$$

3.2.2 | Verify sums equal to spaces

Suppose U, W are subspaces of \mathbb{F}^3 .

$$U = \{(x, y, 0) \in \mathbb{F}^3 : x, y \in \mathbb{F}\}$$
(42)

$$W = \{(0, 0, z) \in \mathbb{F}^3 : z \in \mathbb{F}\}$$
(43)

Verify $\mathbb{F}^3 = U \oplus W$

$$U + W = \{(x, y, z) \in F^3 : x, y, z \in F\} = \mathbb{F}^3$$
(44)

:tada:?

3.3 | Actual Excercises

1: For each of the following subsets of \mathbb{F}^3 , determine if it is a subspace of \mathbb{F}^3 .

$$U = \{(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$$
(45)

We could see that $(0,0,0) \in U$.

Let
$$u_1 = (x_1, x_2, \frac{-x_1 - 2x_2}{3}), u_2 = (x_3, x_4, \frac{-x_3 - 2x_4}{3}).u_1, u_2 \in U.$$

$$u_1+u_2=(x_1+x_3,x_2+x_4,\frac{-(x_1+x_3)-2(x_2+x_4)}{3}).$$
 Define $x_1+x_3=x,\ x_2+x_4=y.$ Therefore: $u_1+u_2=(x,y,\frac{-x-2y}{3}).$

$$x + 2y - x - 2y = 0.$$

Therefore, U is closed under addition.

Let $u_1 = (x_1, x_2, \frac{-x_1 - 2x_2}{3})$. We scale each element by scalar factor λ .

$$\lambda u_1 = (\lambda x_1, \lambda x_2, \lambda \frac{-x_1 - 2x_2}{3}).$$

 $\lambda x_1 + 2\lambda x_2 - \lambda x_1 - 2\lambda x_2 = 0$. Therefore, U is closed under scalar multiplication.

Therefore, it is a subspace of \mathbb{F}^3 .

10: Suppose that U_1 and U_2 are subspaces of V. Prove that the intersection $U_1 \cap U_2$ is a subspace of V.

Given U_1 and U_2 are both subspaces, 0 must be in both subsets hence it must be in their intersection.

Let $u_1=(x_1,y_1,z_1)$. Let $u_2=(x_2,y_2,z_2)$. Finally, let $u_1,u_2\in U_1\cap U_2$. By this last fact, we could derive the fact that $u_1,u_2\in U_1,U_2$.

As U_1 is a subspace, U_1 closed under addition. Since $u_1,u_2\in U_1$, $u_1+u_2\in U_1$. As U_2 is a subspace, U_2 closed under addition. Since $u_1,u_2\in U_2$, $u_1+u_2\in U_2$.

As $u_1 + u_2 \in U_1, U_2$, it is additionally $u_1 + u_2 \in U_1 \cap U_2$. $U_1 \cap U_2$ is therefore closed under addition.

By the same token....

As U_1 is a subspace, U_1 is closed under scalar multiplication. Since $u_1 \in U_1$, $\lambda u_1 \in U_1$. As U_2 is a subspace, U_2 is closed under scalar multiplication. Since $u_1 \in U_2$, $\lambda u_1 \in U_2$.

Therefore, as $\lambda u_1 \in U_1, U_2$, it is additionally true that $u_1 \in U_1 \cap U_2$, it is therefore closed under multiplication.

4 | **2.A**

What's with the balancing of these chapters? Like Span and Linear Independence is squished in one, but then Bases gets a whole chapter and so does dimension.

4.1 | Things of Note

· Lists of vectors are usually denoted as a list without parentheses

4.1.1 | Linear Combination

A linear combination of a list is a sum of vectors in the form:

$$a_1v_1 + \dots + a_mv_m \tag{46}$$

where, $a_1, \ldots, a_m \in \mathbb{F}$.

1. Verifying Linear Combinations You could note that a linear combination is actually just a linear system of equations. That:

To check (x, y, z) is a linear combination of (v_1, v_2, v_3) , (w_1, w_2, w_3) , figure if there exists a pair (a_1, a_2) such that...

$$\begin{cases} x = a_1 v_1 + a_2 w_1 \\ y = a_1 v_2 + a_2 w_2 \\ z = a_1 v_3 + a_2 w_3 \end{cases}$$
(47)

If so, there exists the requisite scalars such that the linear combination is possible.

4.1.2 | Linear Span

The span is the set of all linear combinations of a list of vector. That:

$$span(v_1, ..., v_m) = \{a_1v_1 + \dots + a_mv_m : a_1, ..., a_m \in \mathbb{F}\}$$
 (48)

The span of an empty list of vectors () is defined to be $\{0\}$. Due to the fact that any subspace must be closed under scalar multiplication + addition, the span of a list of vectors in V is the smallest subspace of V containing all the vectors in that list.

- 1. Spanning List If $span(v_1, \ldots, v_m) = V$, we say that v_1, \ldots, v_m spans V.
- 2. Finite-Dimensional Vector Space A vector space is "finite-dimensional" if some list of vector in it could span the space. i.e. there exists a list of vectors that span the space. Otherwise, it is called "infinite dimensional".

Every subspace of a finite dimentional vector space is finite dimentional.

4.1.3 | Polynomials

We quickly recap the definition of a polynomial. A function $p : \mathbb{F} \to \mathbb{F}$ is called a polynomial if $\exists a_0, \dots, a_m \in \mathbb{F}$ s.t.

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m, \forall z \in \mathbb{F}$$
(49)

By the same token, $\mathcal{P}($

1. Degree of a Polynomial A polynomial $p \in \mathcal{P}(\mathbb{F})$ has degree m if $\exists a_0, a_1, \dots, a_m \in \mathbb{F}$ with $a_m \neq 0$ such that...

$$p(z) = a_0 + a_1 z + \dots + a_m z^m, \forall z \in \mathbb{F}$$
(50)

If p has degree m, we write deg p = m. A zero-polynomial is said to have degree $-\infty$.

2. $\mathcal{P}_m(\mathbb{F})$ For a non-negative integer m, $\mathcal{P}_m(\mathbb{F})$ is defined as the set of all polynomials with coefficients in \mathbb{F} and degree at most m.

You will therefore notice, then, that:

$$\mathcal{P}_m(\mathbb{F}) = span(1, z, \dots, z^m) \tag{51}$$

4.1.4 | Linear Independence

Linear independence exists by a only *unique* choice of scalars a_1, \ldots, a_m to form any given $v \in span(v_1, \ldots, v_m)$. This could also be stated as that:

that the only choice $a_1, \ldots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \cdots + a_mv_m = 0$ is the "trivial" case whereby $a_1 = \cdots = a_m = 0$.

The empty set is also defined as linearly independent.

4.1.5 | Linear Dependence

A list of vectors in V is linearly dependent if its not linearly independent.

A list v_1, \ldots, v_m of vectors is linearly dependent if there exist $a_1, \ldots, a_m \in \mathbb{F}$ that's not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$.

- 1. Linear Dependence Lemma Suppose v_1, \ldots, v_m is an linearly dependent list in V. Then, exists a $j \in \{1, 2, \ldots, m\}$ such that:
 - (a) $v_i \in span(v_1, ..., v_{i-1})$
 - (b) If the i^{th} term is removed, the span remains the same
- 2. Lengths of Lin. Indp List In a finite-dimentional vector space, the length of every linearly independent list is less than or equal to the length of every spanning list.

4.2 | In-Text Excercises

4.2.1 $|\mathcal{P}(\mathbb{F})$ is a subspace of $\mathbb{F}^{\mathbb{F}}$

Zero exists in the set as, for a polynomial, $(a_0, \ldots, a_m) = (0, \ldots, 0)$ would create a function $f : \mathbb{F} \to 0$.

Due to commutativity, we could group and factor-out input-variable z such that the sum of two polynomials become $(a_{0a}+a_{0b})+(a_{1a}+a_{1b})z+\cdots+(a_{ma}+a_{mb})z^m$, which would be another polynomial. This would be closed under addition.

Due to distribution, a scalar λ multiplied to a polynomial would just scale every value by λ resulting in $\lambda a_0 + \lambda a_1 z + \cdots + \lambda a_m z^m$, which would be another polynomial. This would be closed under scalar multiplication.

Therefore, the set of polynomials in \mathbb{F} is as subspace.

4.2.2 | Show that $\mathcal{P}(\mathbb{F})$ in infinite-dimensional

Any list $U\subset \mathcal{P}(\mathbb{F})$ would contain the highest-degree polynomial with degree m. Therefore, the element $z^{m+1}\in \mathcal{P}(\mathbb{F})$ would not be in the span of the list: making the list not span the entire space. Therefore, there could not be a list that spans $\mathcal{P}(\mathbb{F})$, making it infinite-dimentional.