Review of Probability Theory & Stochastic Processes Continued

Lecturer: Vijay G. Subramanian Scribes: Kang Gong

1 Probability Theory

Probability Space $(\Omega, \mathcal{F}, \mathbb{P})$

Definition 1 (π -system). A collection S of subset of Ω is a π -system if it is closed under finite intersection.

Theorem 2. Given two probability distributions \mathbb{P}_1 and \mathbb{P}_2 such that they are the same on a π -system S, then they are also the same on the $\sigma(S)$, i.e.,

if
$$\forall A \in S$$
, $\mathbb{P}_1(A) = \mathbb{P}_2(A)$,
then $\forall B \in \sigma(S)$, $\mathbb{P}_1(B) = \mathbb{P}_2(B)$.

Remark This theorem means that specifying the values on a π -system uniquely specifies the probability distribution on the smallest σ -algebra containing it.

Example 3. For commonly used $\Omega = \mathbb{R}$, $S = \{(-\infty, x] : x \in \mathbb{R}\}$, S is a π -system since if $x_1 > x_2$, $(-\infty, x_1] \cap (-\infty, x_2] = (-\infty, x_2] \in S$. And $\mathbb{P}_X((-\infty, x]) = \mathbb{F}_X(x)$ is the cdf for random variable X.

Example 4. Random processes $\{X_t\}_{t\in\mathbb{R}}$ all takes values in \mathbb{R} .

Consider Borel σ -algebra $\mathcal{B}(\mathbb{R})$ and π -system $\{B_{t_i}: B_{t_i} \in \mathcal{B}(\mathbb{R})\}$. We can also use $\{B_{t_i}: B_{t_i} = (-\infty, x] \ \forall x \in \mathbb{R}\}$.

Let $\overline{B}_n = \prod_{i=1}^n B_{t_i}$, where \prod means Cartesian Product, i.e., $x = (x_1, ..., x_n) \in \overline{B}_n \Rightarrow x_i \in B_{t_i}$ for any i. The smallest σ -algebra containing such a π -system is called the Borel σ -algebra. And $\forall t_1 < t_2 < \cdots < t_n \in \mathbb{R}$ and $\forall n \in \mathbb{N}$, we have

$$\mathbb{P}(\overline{B}_n) = \mathbb{P}(X_{t_1} \in B_{t_1}, ..., X_{t_n} \in B_{t_n}),$$

i.e., specifying all finite dimensional marginals is equivalent to specifying the distribution of the random processes. The alternate specification specifies the joint CDF for all finite-dimensional collections.

Definition 5 (strictly stationary). A process $\{X_t : t \in \mathbb{R}\}$ is (strictly) stationary if for any finite set of indices $t_1 < t_2 < \cdots < t_n \in \mathbb{R}$ and any $\tau \in \mathbb{R}$ s.t.

$$\mathbb{P}(X_{t_1} \in B_1, X_{t_2} \in B_2, ..., X_{t_n} \in B_n)$$

$$= \mathbb{P}(X_{t_1+\tau} \in B_1, X_{t_2+\tau} \in B_2, ..., X_{t_n+\tau} \in B_n).$$

Remark The strict stationarity means that any time shifts don't change the distribution of the process.

Example 6. Let $\{X_n\}_{n\in\mathbb{Z}}$ be iid. Bernoulli $(\frac{1}{2})$ random variables, which is a stationary process.

Consequence 1: $\mathbb{P}(X_t \in B)$ for all $B \in \mathcal{B}(\mathbb{R})$ is independent of t. $\mathbb{F}_{X_t}(x)$ is independent of t. $\mu_t = \mathbb{E}[X_t]$ is independent of t (if it exists).

Consequence 2: $\mathbb{P}(X_t \in B_1, X_s \in B_2) = \mathbb{P}(X_{t-s} \in B_1, X_0 \in B_2)$ is a function of (t-s), so are the covariance $\mathbb{E}[X_t X_s]$ and the correlation function $\mathbb{E}[(X_t - \mu_t)(X_s - \mu_s)] = R_X(t-s)$.

Definition 7 (wide-sense stationary). A process $\{X_t\}_{t\in\mathbb{R}}$ is wide-sense stationary (WSS) if

$$\mu_t \triangleq \mathbb{E}[X_t] \equiv \mu, \quad (Not \ a \ function \ of \ t)$$

$$R_X(t,s) \triangleq \mathbb{E}[(X_t - \mu_t)(X_s - \mu_s)] = R_X(t-s).$$

Remark The strict stationary process is also WSS while the reverse is only true for Gaussian processes.

Definition 8 (independence). X_1 and X_2 are independent if

- Joint Distribution: $\mathbb{P}(X_1 \in B_1, X_2 \in B_2) = \mathbb{P}(X_1 \in B_1) \mathbb{P}(X_2 \in B_2) \ \forall \ B_1, B_2 \in \mathcal{B}(\mathbb{R}).$
- Moments: For all separable functions $f(x_1, x_2) = f_1(x_1) f_2(x_2)$, $\mathbb{E}[f(X_1, X_2)] = \mathbb{E}[f_1(X_1)] \mathbb{E}[f_2(X_2)]$. The Gaussian random variables X_1 , X_2 are independent iff $\mathbb{E}[X_1X_2] = \mathbb{E}[X_1] \mathbb{E}[X_2]$.
- Characteristic function: $\varphi_X(s) \triangleq \mathbb{E}[e^{isX}]$ $\mathbb{E}[e^{is_1X_1+is_2X_2}] = \mathbb{E}[e^{is_1X_1}]\mathbb{E}[e^{is_2X_2}] \quad \forall \ s_1, s_2.$ If the characteristic function has a product form, then independence, and hence, the reverse is also true. Moment generating function: $MGF_X(\theta) \triangleq \mathbb{E}[e^{\theta X}], \ \theta \in \mathbb{R}.$ $\mathbb{E}[e^{\theta_1X_1+\theta_2X_2}] = \mathbb{E}[e^{\theta_1X_1}]\mathbb{E}[e^{\theta_2X_2}] \quad \forall \ \theta_1, \theta_2.$
- σ -algebra: Suppose X_1 , X_2 take values in probability space $(E_1, \mathcal{E}_1, \mathbb{P})$ and $(E_2, \mathcal{E}_2, \mathbb{P})$ respectively. $\sigma(X_1)$ and $\sigma(X_2)$ are independent if $\forall A_1 \in \mathcal{E}_1$, $A_2 \in \mathcal{E}_2$

$$\begin{split} & \mathbb{E}[\mathbb{1}_{A_1}(X_1)\mathbb{1}_{A_2}(X_2)] \\ = & \mathbb{P}(X_1 \in A_1, X_2 \in A_2) \\ = & \mathbb{P}(X_1 \in A_1) \, \mathbb{P}(X_2 \in A_2) \\ = & \mathbb{E}[\mathbb{1}_{A_1}(X_1)] \, \mathbb{E}[\mathbb{1}_{A_2}(X_2)]. \end{split}$$

Random variables are independent iff the smallest σ -algebras $\sigma(X_1)$ and $\sigma(X_2)$ are independent.

Definition 9 (Bayes's rule). The conditional probability is defined as

$$\mathbb{P}(A|B) = \begin{cases} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} & \text{if } \mathbb{P}(B) > 0, \\ \text{undefined otherwise.} \end{cases}$$

Remark Conditioning on a set or a random variable is actually equivalent to conditioning on a σ -algebra.

Example 10. $\mathbb{P}(A|B) = \mathbb{E}[\mathbb{1}_A(X) \mid \mathbb{1}_B(X) = 1]$ with $\mathbb{P}_X(X \in B) = \mathbb{P}(B)$ and $\mathbb{P}_X(X \in A \cap B) = \mathbb{P}(A \cap B)$. Given a set B, conditioning on $\sigma(B)$ is equivalent to conditioning on $\mathbb{1}_B(X)$ in that $\sigma(B) = \{\emptyset, B, B^c, \Omega\} = \sigma(\mathbb{1}_B(X))$.

Example 11. Given random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and σ -algebra $\mathcal{G} \subset \mathcal{F}$, we define the conditional expectation $\mathbb{E}[X|\mathcal{G}]$ as follows. Let Y be another random variable, and (X, Y) have some joint distribution. Then, we have $\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma(Y)]$.

Definition 12 (conditional expectation). For random variable X and σ -algebra $\mathcal{G} \subset \mathcal{F}$, $\mathbb{E}[X|\mathcal{G}]$ is measurable with respect to \mathcal{G} . And for all $A \in \mathcal{G}$, $\mathbb{E}[X\mathbb{1}_A] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot \mathbb{1}_A]$. Specifically, $\mathbb{E}[X|Y]$ is a measurable function of Y, i.e., g(Y). For every function of Y, f(Y), we have

$$\begin{split} \mathbb{E}[Xf(Y)] &= \mathbb{E}[\mathbb{E}[X|Y] \cdot f(Y)] \\ &= \mathbb{E}[g(Y) \cdot f(Y)]. \end{split}$$

Example 13. $\mathbb{E}[X] = \mathbb{E}[X|\{\emptyset, \Omega\}]$ is constant, since the only functions measurable under $\{\emptyset, \Omega\}$ are constants.

Example 14. X and Y have a joint distribution (discrete) $\mathbb{P}_{X,Y}(x,y) \quad \forall x,y \in \mathbb{Z}$.

$$g(y) = \begin{cases} \sum_{x \in \mathbb{Z}} x \, \mathbb{P}_{X|Y}(x|y) = \sum_{x \in \mathbb{Z}} x \cdot \frac{\mathbb{P}_{X,Y}(x,y)}{\mathbb{P}_{Y}(y)} & \text{if } \mathbb{P}_{Y}(y) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbb{E}[X|Y] = g(Y).$$

Example 15. X and Y have a joint density (continuous) $f_{X,Y}(x,y) \quad \forall x,y \in \mathbb{R}$.

$$g(y) = \begin{cases} \int x f_{X|Y}(x|y) dx = \int x \cdot \frac{f_{X,Y}(x,y)}{f_Y(y)} dx & \text{if } f_Y(y) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbb{E}[X|Y] = g(Y).$$

If X and Y are jointly Gaussian, $\mathbb{E}[X|Y] = a + bY$, a linear function of Y.

2 Stochastic Process

Definition 16 (Markov process). Given an index set I and probability space $(E, \mathcal{E}, \mathbb{P})$, a random process $\{X_i\}_{i\in I}$ taking values in E is Markov if for any finite sequence of indices $i_1 < i_2 < \cdots < i_n \in I$,

$$\forall A \in \mathcal{E}, \quad \mathbb{P}(X_{i_n} \in A | X_{i_1}, X_{i_2}, ..., X_{i_{n-1}})$$

= $\mathbb{P}(X_{i_n} \in A | X_{i_{n-1}}).$

Remark For a Markov process $\{X_i\}_{i\in I}$, the future is conditionally independent of the past given the present.

Example 17. Suppose the discrete Markov process $\{X_i\}_{i\in\mathbb{Z}}$ has all positive conditional probabilities, then we have

$$\begin{split} &\mathbb{P}(X_{i_n} = a_n, X_{i_{n-1}} = a_{n-1}, ..., X_{i_1} = a_1) \\ &= \mathbb{P}(X_{i_n} = a_n \mid X_{i_{n-1}} = a_{n-1}, ..., X_{i_1} = a_1) \, \mathbb{P}(X_{i_{n-1}} = a_{n-1}, ..., X_{i_1} = a_1) \\ &= \mathbb{P}(X_{i_n} = a_n \mid X_{i_{n-1}} = a_{n-1}) \, \mathbb{P}(X_{i_{n-1}} = a_{n-1}, ..., X_{i_1} = a_1) \\ &= \mathbb{P}(X_{i_n} = a_n \mid X_{i_{n-1}} = a_{n-1}) \, \mathbb{P}(X_{i_{n-1}} = a_{n-1} \mid X_{i_{n-2}} = a_{n-2}) \cdots \, \mathbb{P}(X_{i_2} = a_2 \mid X_{i_1} = a_1) \, \mathbb{P}(X_{i_1} = a_1). \end{split}$$