

Stuttgarter Fernsehturm

Der Stuttgarter Fernsehturm ist ein Wahrzeichen der Stadt Stuttgart. Er ist einer der ersten Türme mit Turmkorb.

Bildquelle: Taxiarchos228 – own work, FAL, https://upload.wikimedia.org/wikipedia/commons/d/dd/Stuttgarter_Fernsehturm1.jpg [12.05.2021] (adaptiert).

a) Zur Bestimmung der Höhe *h* des Stuttgarter Fernsehturms wurde die nachstehende nicht maßstabgetreue Skizze erstellt.

Bildquelle: Hansj?Lipp, CC BY-SA 2.0, https://upload.wikimedia.org/wikipedia/commons/d/d0/Der_Stuttgarter_Fernsehturm_vom_Marienplatz_aus_gesehen_-_geo.hlipp.de_-_10720.jpg [12.05.2021] (adaptiert).

Es gilt: $\gamma = 36,1^{\circ}$ und $\delta = 47,7^{\circ}$

1) Berechnen Sie die Höhe h.

[0/1 P.]

b) Beim Bau des Stuttgarter Fernsehturms wurde Beton verwendet. Die mittlere Druckfestigkeit des Betons in Abhängigkeit von der Trocknungszeit kann durch die Funktion *R* beschrieben werden.

$$R(t) = a - b \cdot c^t$$

t ... Trocknungszeit in Tagen

R(t) ... mittlere Druckfestigkeit bei der Trocknungszeit t in N/mm²

a, b, c ... Parameter

In der nachstehenden Abbildung ist der Graph von R dargestellt.

1) Geben Sie mithilfe der obigen Abbildung die Parameter a und b an.

a =

b = [0/1 P.]

2) Berechnen Sie mithilfe der obigen Abbildung den Parameter c. [0/1 P.]

3) Begründen Sie anhand der Gleichung von R, warum die mittlere Druckfestigkeit für $t \to \infty$ asymptotisch gegen den Wert 48,2 geht. [0/1 P.]

c) Für bestimmte Jahre ist die jährliche Besucherzahl des Stuttgarter Fernsehturms in der nachstehenden Tabelle angegeben.

Jahr	2007	2009	2011	2016	2017
Besucherzahl (gerundet)	329000	284000	307000	530 000	460 000

Die zeitliche Entwicklung der jährlichen Besucherzahl des Stuttgarter Fernsehturms soll durch die lineare Funktion *f* modelliert werden.

 $t \dots$ Zeit in Jahren mit t = 0 für das Jahr 2007

f(t) ... jährliche Besucherzahl des Stuttgarter Fernsehturms zur Zeit t

- 1) Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion f auf. Wählen Sie dabei t = 0 für das Jahr 2007. [0/1 P.]
- 2) Ermitteln Sie mithilfe von f den prognostizierten Wert für die Besucherzahl des Stuttgarter Fernsehturms im Jahr 2025. [0/1 F

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

a1)

$$\frac{e}{\sin(\gamma)} = \frac{100}{\sin(\delta - \gamma)}$$

Berechnung mittels Technologieeinsatz:

$$e = 293,01...$$

$$h = e \cdot \sin(\delta) = 216,72...$$

Der Stuttgarter Fernsehturm hat eine Höhe von rund 216,7 m.

a1) Ein Punkt für das richtige Berechnen der Höhe *h*.

b1)
$$a = 48.2$$

 $b = 48.2 - 2.6 = 45.6$

b2)
$$36.2 = 48.2 - 45.6 \cdot c^7$$

Berechnung mittels Technologieeinsatz:

$$c = 0.8263...$$

- **b3)** Weil c < 1, strebt der Term $b \cdot c^t$ für $t \to \infty$ gegen 0, und damit strebt R(t) gegen 48,2.
- **b1)** Ein Punkt für das Angeben der richtigen Werte der Parameter a und b.
- b2) Ein Punkt für das richtige Berechnen des Parameters c.
- b3) Ein Punkt für das richtige Begründen.

Bundesministerium Bildung, Wissenschaft und Forschung

c1) Berechnung mittels Technologieeinsatz:

$$f(t) = 21263 \cdot t + 275684$$
 (Koeffizienten gerundet)

c2) f(18) = 658421,0...

Der prognostizierte Wert für die Besucherzahl des Stuttgarter Fernsehturms im Jahr 2025 beträgt gemäß diesem Modell rund 658 000.

- c1) Ein Punkt für das richtige Aufstellen der Gleichung von f.
- **c2)** Ein Punkt für das richtige Ermitteln des prognostizierten Wertes der Besucherzahl im Jahr 2025.