Topic 5

Rhythm Analysis

(some slides are adapted from Zafar Rafii and some figures are from Meinard Mueller)

Definitions for Rhythm Analysis

 Rhythm: "movement marked by the regulated succession of strong and weak elements, or of opposite or different conditions."

---- Oxford English Dictionary

- **Beat:** basic unit of time in music
- Tempo: speed or pace of a given piece, typically measured in beats per minute (BPM)

More Definitions

- Onset: single instant marking the beginning of transient
 - Onsets often occur on beats.
- Attack: sharp increase of energy
- Transient: a short duration with high amplitude within which signal evolves quickly

More Definitions

 Measure (or bar): segment of time defined by a given number of beats

A 4-beat measure drum pattern.

[http://en.wikipedia.org/wiki/Metre (music)]

More Definitions

 Meter: Organization of music into regularly recurring measures of stressed and unstressed beats

Hypermeter: 4-beat measure and 4-measure hypermeasure. Hyperbeats in red. [http://en.wikipedia.org/wiki/Metre (music)]

Rhythm Analysis Tasks

- Onset Detection
- Beat Tracking
- Tempo Estimation
- Higher-level Structure Analysis

Why is it important?

- Intellectual merit
 - Important component of music understanding
 - Music cognition research

- Broad applications
 - Identify/classify/retrieve by rhythmic similarity
 - Music segmentation/summarization
 - Audio/video synchronization
 - Source separation

Onset Detection

- Signal processing: define a detection function
 - Energy-based
 - Spectral-based
 - Phase-based
- Machine Learning: learn patterns from labeled data
 - Probabilistic models
 - Neural networks

Energy-based Onset Detection

Waveform

Signal Envelope (energy)

$$E_w^x(n) := \sum_{m=-M}^{M} |x(n+m)w(m)|^2$$

Envelope Derivative (half-wave rectified)

$$\Delta_{\mathrm{Energy}}(n) := |\mathrm{E}_{w}^{x}(n+1) - \mathrm{E}_{w}^{x}(n)|_{\geq 0}$$

Thresholding → Onsets

Energy-based Onset Detection

Pros and Cons

- Simple
- Works well for percussive sounds
- Soft onsets by string/wind instruments are hard to detect
- Tremolo/vibrato can cause false detections

How to improve

- Use logarithmic-energy to replace linear energy
- Perform analysis in different frequency bands, then summarize

Spectral-based Onset Detection

- STFT to get magnitude spectrogram $|\chi|$
- (optional) compression

$$\mathcal{Y} := \Gamma_{\gamma}(|\mathcal{X}|) = \log(1 + \gamma \cdot |\mathcal{X}|)$$

- Spectral flux:
 - Take derivative w.r.t.
 time (half-wave rectified)

$$\Delta_{\text{Spectral}}(n) := \sum_{k=0}^{K} |\mathcal{Y}(n+1,k) - \mathcal{Y}(n,k)|_{\geq 0}$$

Spectral-based Onset Detection

- Pros and Cons
 - More complex than energy-based
 - Can weigh different frequencies differently
 - Works better for soft onsets (e.g., legato notes) and polyphonic music
 - Still doesn't work very well for vibrato

Tempo Estimation

- Tempo = beats / minutes
- Beat tracking is a sufficient but not a necessary condition for tempo estimation
- How to estimate tempo without tracking beats?
- Idea: look at the regularity of onsets
- Assumptions
 - Onsets mostly occur on beats
 - Tempo is constant within a period of time

Tempo Estimation

- Take the onset strength curve and analyze its periodicity
 - Autocorrelation
 - STFT

Tempogram

Beat Tracking

- Identify the beat times, i.e., the times to which we tap our feet
 - Detected onsets provide useful but noisy information, since not all onsets are on beats.
 - Estimated tempo tells us the space between two beats, but not the exact locations (i.e., phase).
- How to identify beats?
- To simply the problem, we assume
 - Onsets, especially strong ones, are mostly on beats.
 - Tempo is constant.

Beat Tracking

- A 2-step approach
 - Step 1: Tempo estimation
 - Step 2: Identify beats from onsets using the tempo
 - Create an impulse train (i.e., "comb") with the tempo
 - Cross-correlate the "comb" with the onset strength curve.
 - The lag that gives us the highest cross-correlation value tells us the beat phase.

Beat Tracking

A 2-step approach, illustration

Problem: too rigid about beat spacing

- Beat tracking: finding a sequence of beat locations such that they
 - 1) are well aligned with strong onsets
 - 2) mostly regularly spaced

Score function $\mathbf{S}(B) := \sum_{\ell=1}^{L} \Delta(b_{\ell}) + \lambda \sum_{\ell=2}^{L} P_{\hat{\delta}}(b_{\ell} - b_{\ell-1})$ Beat onset sequence strength Regularity penalty function

• Find $B = (b_1, b_2, \dots, b_L)$ that maximizes S(B)

- Suppose beat locations are precise to audio frames, and suppose there are N frames, then how many possible sequences?
 - 2^N (although many are bad ones!)
 - Can't enumerate all!

Key idea: reuse calculations by recursion!

- Consider a beat sequence $B_n = (b_1, b_2, \dots, b_L)$ where $b_L = n$.
- Let D(n) be the maximal score over all such sequences ending at n, with various lengths.
- Assume B_n is the optimal sequence
- Then

$$\begin{aligned} \mathbf{D}(n) &= \Delta(n) \\ \mathbf{D}(n) &= \Delta(n) \end{aligned} \qquad \text{recursion} \\ \mathbf{D}(n) &= \Delta(n) + \lambda P_{\hat{\delta}}(n - b_{L-1}) + \mathbf{D}(b_{L-1}) \end{aligned}$$

Considering the two cases, we have

$$\mathbf{D}(n) = \Delta\left(n\right) + \max\left\{ \begin{aligned} &0, \\ &\max_{m \in [1:n-1]} \left\{ \mathbf{D}(m) + \lambda P_{\hat{\delta}}(n-m) \right\} \end{aligned} \right.$$

- We can calculate D(n) from $D(1) = \Delta(1)$.
- Record the preceding beat

$$\mathbf{P}(n) := \underset{m \in [1:n-1]}{\operatorname{argmax}} \left\{ \mathbf{D}(m) + \lambda P_{\hat{\delta}}(n-m) \right\}$$

- Best score $S(B^*) = \max_{n \in [0:N]} D(n)$
- Trace back from $b_L = n^*$ to get the best sequence

Rhythmic Structure

Beginning of *Another one bites the dust* by Queen.

- One approach: detect onsets; analyze tempo and beats at different levels.
- Another approach: analyze repetition of spectral content
 - Beat spectrum

Definition

 Using the autocorrelation function, we can derive the beat spectrum [Foote et al., 2001]

Use

 The beat spectrum reveals the hierarchically periodically repeating structure of the audio

Calculation

 Compute the power spectrogram from the audio using the STFT (square of magnitude spectrogram)

Calculation

 Compute the autocorrelation of the rows of the spectrogram

ECE 477 - Computer Audition, Zhiyao Duan 2019

- Calculation
 - Compute the mean of the autocorrelations (of the rows)

Notes

- The first highest peak in the beat spectrum does not always correspond to the repeating period!
- The beat spectrum does not indicate where the beats are or when a measure starts!

State-of-the-Art

Some interesting links

- Dannenberg's articles on beat tracking:
 http://www.cs.cmu.edu/~rbd/bib-beattrack.html
- Goto's work on beat tracking: http://staff.aist.go.jp/m.goto/PROJ/bts.html
- Ellis' Matlab codes for tempo estimation and beat tracking: http://labrosa.ee.columbia.edu/projects/beattrack/
- MIREX's annual evaluation campaign for Music Information Retrieval (MIR) algorithms, including tasks such as onset detection, tempo extraction, and beat tracking: http://www.music-ir.org/mirex/wiki/MIREX_HOME

References

- J. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B. Sandler, "A tutorial on onset detection in music signals," *IEEE Trans. on Speech and Audio Processing*, vol. 13, no. 5, 2005.
- R. B. Dannenberg, "Music Understanding by Computer," 1987/1988 Computer Science Research Review, Carnegie Mellon School of Computer Science, pp. 19-28, 1987.
- J. Foote, "Visualizing Music and Audio using Self-Similarity," in 7th ACM International Conference on Multimedia (Part 1), Orlando, FL, USA, pp. 77-80, October 30-November 05, 1999.
- J. Foote, "Automatic Audio Segmentation using a Measure of Audio Novelty," in *IEEE International Conference on Multimedia and Expo*, New York, NY, USA, vol.1, pp. 452-455, July 30-August 02, 2000.
- J. Foote and S. Uchihashi, "The Beat Spectrum: A New Approach to Rhythm Analysis," in *IEEE International Conference on Multimedia and Expo*, Tokyo, Japan, pp. 881-884, August 22-25, 2001.
- M. Goto, "An Audio-based Real-time Beat Tracking System for Music With or Without Drum-sounds," Journal of New Music Research, vol. 30, no. 2, pp. 159-171, 2001.
- D. P. W. Ellis, "Beat Tracking by Dynamic Programming," *Journal of New Music Research*, vol. 36, no. 1, pp. 51-60, 2007.
- M. Müller, D. P. W. Ellis, A. Klapuri, and G. Richard, "Signal Processing for Music Analysis," *IEEE Journal of Selected Topics in Signal Processing*, vol. 5, no. 6, pp. 1088-1110, October 2011.
- Wikipedia, "Rhythm," http://en.wikipedia.org/wiki/Rhythm, 2012.
- Wikipedia, "Meter," http://en.wikipedia.org/wiki/Metre (music), 2012.