Dinosaur War: A Strategic Game of Utter Chance

Dave Fetterman

Obviously Unemployed

2/238/23

 ${\bf Abstract}$

TODO

1 Pieceyard

t	$t \cdot g$	Matching factor t^* · Matching g^*	First cycle
x^4	$x^4d^3c^2b^1a^0$	none	none
$-x^3a$	$-x^3d^3c^2b^1a^1$	$-x^3b \cdot -d^3c^2a^1b^0$	(x,b,a)
$-x^3b$	$-x^3d^3c^2b^2a^0$	$-x^3c \cdot -d^3b^2c^1a^0$	(x,c,b)
$-x^3c$	$-x^3d^3c^3b^1a^0$	$-x^3d \cdot -c^3d^2b^1a^0$	(x,d,c)
$-x^3d$	$-x^3d^4c^2b^1a^0$	none	none
x^2ba	$x^2d^3c^2b^2a^1$	$x^2ca \cdot -d^3b^2c^1a^0$	(x,c,b)
x^2ca	$x^2d^3c^3b^1a^1$	$x^2da \cdot -c^3d^2b^1a^0$	(x,d,c)
x^2da	$x^2d^4c^2b^1a^1$	$x^2db \cdot -d^3c^2a^1b^0$	(x,b,a)
x^2cb	$x^2d^3c^3b^2a^0$	$x^2db \cdot -c^3d^2b^1a^0$	(x,d,c)
x^2db	$x^2d^4c^2b^2a^0$	$x^2dc \cdot -d^3b^2c^1a^0$	(x,d,c)
x^2dc	$x^2d^4c^3b^1a^0$	none	none
-xcba	$-xd^3c^3b^2a^1$	$-xdba \cdot -c^3d^2b^1a^0$	(x,d,c)
-xdba	$-xd^4c^2b^2a^1$	$-xcba \cdot -d^3b^2c^1a^0$	x, c, b)
-xdca	$-xd^4c^3b^1a^1$	$-xdcb \cdot -d^3c^2a^1b^0$	(x,b,a)
-xdcb	$-xd^4c^3b^2a^0$	none	none
dcba	$d^4c^3b^2a^1$	none	none

This sum, $x^4d^3c^2b^1a^0 - x^3d^4c^2b^1a^0 + x^2d^4c^3b^1a^0 - xd^4c^3b^2a^0 + d^4c^3b^2a^1$, when added to the tables of all the other initial settings of g, produces $S_{[0,4]}$.

Figure 1: Three terms of $P_{[0,2]}$, corresponding to complete directed graphs of size 3

References

[1] Wikipedia: https://en.wikipedia.org/wiki/Minimax_theorem