

F 8628X: Модуль ведомого устройства PROFIBUS DP

- Модуль связи для ведомого устройства PROFIBUS DP
- Использование в ПЭС H51q начиная BS41q/51q V7.0-7 (9906).
- Соответствующий функциональный блок: НК-СОМ-3

1 Штекер

2 Коммуникационный модуль полевой шины

3 Переключатель 1

Рис. 1: Модули связи F 8628X

5 Вид спереди

1 Технические данные

Процессор 32-битный процессор Motorola MPC860T со встроенным

контроллером связи RISC.

Эксплуатационные

данные

5 В пост. тока/1 А

Необходимое пространство

3 RU, 4 HP

Последовательный С модулем ведомого устройства PROFIBUS DP интерфейс FB Соединение через 9-полюсный штекер SUB-D.

Интерфейс Ethernet 10BASE-T и 100BASE-TX по стандарту IEEE 802.3,

Подключение через штекер RJ-45.

HSR Интерфейс Быстрый последовательный интерфейс HSR (High Speed

Redundancy) для резервного модуля связи Соединение через кабель RJ-12 BV 7053.

Индикация рабочего

состояния

6 светодиодов для индикации рабочего состояния

DIP-переключатель 2 DIP-переключателя для настройки функций модуля

2 Функции F 8628X

С помощью модуля связи F 8628X система управления HIMA H41q/H51q может работать в качестве ведомого устройства PROFIBUS DP.

Начиная с операционной системы V4.x, модулю F 8628X доступна функция ELOP II TCP. Соединение TCP ELOP II позволяет выполнять быстрый обмен данными между PADT (ПК) и центральным модулем F 865xX.

Модуль F 8628X имеет те же функции ведомого устройства PROFIBUS DP, что и модуль F 8628, и совместим с ним.

Однако функция TCP может использоваться только с F 8628X с операционной системой от V4.x и выше.

Если F 8628X и сопроцессорный модуль F 8621A используются в одной ПЭС, следует использовать программный модуль HK-COM-3 с соответствующим параметрированием (см. онлайн-справку модуля).

2.1 Замена F 8628Х

Принципиальный порядок действий при замене модуля F 8628X

- 1. Перед извлечением модуля F 8628X крепежные винты должны быть полностью ослаблены и свободно подвижными.
- 2. Нажатием сверху на выкидной рычаг ослабьте и плавно извлеките модуль из направляющих, чтобы не сработали ошибочные сигналы в системе!
- 3. Для вставки модуля установите его на клеммную колодку и затем плавно вдавите до упора, чтобы избежать ошибочных сигналов в системе!
- ▶ Модуль F 8628X заменен.
- Ни в коем случае нельзя извлекать модуль F 8628X из резервного режима без соблюдения порядка действий, указанного в главе 2.1.2!

2.1.1 Действие выкидного рычага

Выкидной рычаг прижмите внизИзвлеките модуль

3 Передняя панель

Рис. 2: Действие выкидного рычага

2.1.2 Порядок действий для замены резервного модуля F 8628X в резервной системе управления H41q/H51q

1 Проследить за тем, чтобы кабель Ethernet был подсоединен к разъему Ethernet (10/100BASE-T), а HSR-кабель — к HSR-разъему (HSR). Соответствующие кабельные штекеры необходимо вставлять до фиксации в соответствующий разъем.

Замена резервного модуля F 8628X в резервной системе управления H41q/H51q

- 1. Отсоедините кабель связи (PROFIBUS DP).
- 2. Отсоедините Ethernet-кабель.
- 3. Произведите с соответствующим центральным модулем (например, F 8650X) действия в зависимости от версии операционной системы:
 - Версия ниже (05.34): извлеките центральный модуль!
 - Начиная с версии (05.34): вручную удалите прикладную программу, чтобы деактивировать центральный модуль, см. руководство по операционной системе (HIQuad Operating System Manual HI 803 078 RU).
- 4. Извлеките HSR-кабель BV 7053 (если используется).
- 5. Извлеките модуль связи F 8628X.
- 6. Проверьте новый модуль связи F 8628X:
 - Проверьте настройки DIP-переключателя,
 (см. главу 4 и сравните с замененным модулем F 8628X).
 - Проверьте, поддерживает ли операционная система нового модуля F 8628X (см. этикетку) используемые функции (напр., ELOP II TCP начиная с версии OS 4.x).
- 7. Вставьте новый модуль связи F 8628X.
- 8. Вставьте HSR-кабель BV 7053, если требуется.
- 9. Произведите с соответствующим центральным модулем (например, F 8650X) действия в зависимости от версии операционной системы:
 - ниже версии (05.34): вставьте центральный модуль!
 - От версии (05.34) и выше: нажмите кнопку **Асk**, чтобы активировать центральный модуль, см. руководство по операционной системе (HIQuad Operating System Manual HI 803 078 RU).
 - ☑ Светодиод RUN модуля F 8628X по истечении времени ожидания горит непрерывно.

- 10.Вставьте Ethernet-кабель.
- 11.Вставьте кабель связи (PROFIBUS DP).
- ► Резервный модуль F 8628X в резервной системе управления заменен.

 $f{1}$ Если новый модуль F 8628X имеет тот же IP-адрес, что и старый модуль F 8628X, в PADT (ПК) необходимо удалить запись ARP!

Иначе не удастся установить связь с новым модулем F 8628X, имеющим тот же IP-адрес. Пример:

Удаление записи ARP модуля F 8628X с IP-адресом 192.168.0.67:

- Запустить командную строку на PADT (ПК)
- Введите команду arp -d 192.168.0.67

2.2 Технические характеристики ведомого устройства HIMA PROFIBUS DP

PROFIBUS является международным открытым стандартом полевой шины, стандартизированным в EN 50170.

Более подробную информацию можно найти у региональных организаций-пользователей PROFIBUS (PNO) или в сети Интернет на странице www.profibus.com.

Функциональность протокола HIMA PROFIBUS DP соответствует стандарту EN 50170 (DP V0).

	Размеры	Примечание
PNO Ident Number	0x00EA	Присвоение с помощью PNO
Файл GSD	HIQ200EA.GSD	Файл с исходными данными устройства для конфигурации ведомого устройства H41q/H51q PROFIBUS DP в ведущем устройстве PROFIBUS DP можно скачать на интернетстранице www.hima.de.
Адрес ведомого устройства HIMA-PROFIBUS DP	Задается переключателем 1	Допустимые адреса 0125
Скорость передачи в бодах	9,6 кбит/с 19,2 кбит/с 45,45 кбит/с 93,75 кбит/с 187,5 кбит/с 500 кбит/с 1,5 Мбит/с 3 Мбит/с 6 Мбит/с	Настройка скорости передачи с помощью переключателя 2: 45,45 кбит/с (от OS 2.18 и выше).
Передача	RS485	Наиболее часто используемый способ передачи для PROFIBUS, часто обозначаемый как H2
Макс. входы	192 байт	Входы и выходы Макс. количество 256
Макс. выходы	240 байт	Входы и выходы Макс. количество 256
Мин. интервал ведомого устройства	3 мс	
Точность контроля сторожевого устройства PROFIBUS DP	± 10 мс	
Возможности подключения ведомого устройства HIMA PROFIBUS DP	Согласно международному стандарту PROFIBUS EN 50170	Необходимо учитывать длину кабелей, нагрузочные сопротивления и т. д.

Таблица 1: Технические характеристики ведомого устройства HIMA PROFIBUS DP

3 Диагностические светодиоды на передней панели модуля

Светодиоды расположены двумя рядами на передней панели модуля.

3.1 Светодиоды верхнего ряда на передней панели модуля

TX	COL	FB	Рабочее состояние
ON	-	-	Светодиод передачи по сети Ethernet
-	ON	-	Конфликт на линии Ethernet
-	-	OFF	Ha PROFIBUS DP отсутствуют какие-либо признаки работы ведомого устройства на шине
-	-	Мигает	Ведомое устройство в ожидании параметрирования от ведущего устройства PROFIBUS DP
-	-	ON	Обмен данными между ведомым устройством и ведущим устройством PROFIBUS DP

Таблица 2: Светодиоды верхнего ряда на передней панели модуля

3.2 Светодиоды нижнего ряда на передней панели модуля

RUN	RED	ERR	Рабочее состояние
ON	-	OFF	Протокол связи PROFIBUS DP активен
Мигает	-	OFF	Протокол связи PROFIBUS DP не активен
-	ON	OFF	Соединение с резервным модулем связи активно. Используется для TCP-соединения ELOP II.
Мигает	-	Мигает	Загрузка модуля связи
ON	-	Мигает	Начиная с версии ОС 4.х
			Ошибка применения/ошибка конфигурации
			Res-ID не равен ID
			■ Протокол связи ELOP II TCP не активен, хотя модуль связи
			в состоянии RUN
OFF	-	ON	Серьезная ошибка в модуле связи. Необходимо заменить.
OFF	-	Мигает	Сохранение кода ошибки во флеш-памяти (требуется для ремонта)
		трижд	Не извлекать модуль связи!
		Ы	

Таблица 3: Светодиоды нижнего ряда на передней панели модуля

4 Распределение функций переключателей

4.1 Распределение функций переключателя 1 (S1)

S1	ON	OFF	Значение	
1	1	0	Адрес ведомого устройства PROFIBUS DP (от 0 до 125) модуля	
2	2	0	F 8628X устанавливается с помощью переключателей 1/17	
3	4	0	(см. Таблица 5).	
4	8	0		
5	16	0		
6	32	0		
7	64	0		
8	ID_IP	ID_IP	Для версий OC < 4.x функция отсутствует.	
	Вкл.	Выкл.	■ ID_IP Вкл:	
			Принимается номер участника шины (ID), установленный с помощью переключателей (S1 17) на центральном модуле, если не удалось определить Res-ID из загруженной прикладной программы.	
			■ ID_IP Выкл:	
			Номер участника шины (ID), установленный с помощью переключателей (S1 17) на центральном модуле, ни в коем случае не принимается для Res-ID.	

Таблица 4: Распределение функций переключателя 1 (S1)

4.2 Переключатели 1/1...7

Переключатели 1/1...7 служат для установки адреса ведомого устройства PROFIBUS DP (от 0 до 125) модуля связи F 8628X.

Переключатель 1	Адрес PROFIBUS DP	Пояснение
On Off Off On Off Off		Положение белого переключателя: оп Белый переключатель в положении ОFF оп Белый переключатель в положении ON Неиспользуемый переключатель
On Off	125	

Таблица 5: Настройки переключателей 1/1...7

4.3 Распределение функций переключателя 2 (S2)

S2	ON	OFF	Значение	
1	Канал Ethernet 1	Канал Ethernet 2	Присвоение модуля F 8628X каналу Ethernet 1 или каналу Ethernet 2.	
2	-	-	Функция отсутствует	
3	-	-	Функция отсутствует	
4	-	-	Функция отсутствует	
5	ON	OFF		
6	ON	OFF	Скорость передачи в бодах для модуля F 8628Х устанавливает	
7	ON	OFF	с помощью переключателей 2/5…8 (см. Таблица 7).	
8	ON	OFF		

Таблица 6: Распределение функций переключателя 2 (S2)

4.3.1 Переключатели 2/5...8

Переключатели 2/5...8 служат для установки скорости передачи в бодах, с которой модуль F 8628X работает в качестве ведомого устройства PROFIBUS DP.

Переключатель 2	Скорость передачи в бодах	Пояснение
On Off	9,6 кбит/с	
On Off	19,2 кбит/с	
On Off	93,75 кбит/с	
On Off	187,5 кбит/с	Положение белого переключателя:
On Off	500 кбит/с	оп ■ Белый переключатель в положении OFF
On Off	1,5 Мбит/с	оп ☐ Белый переключатель в положении ON
On Off	3 Мбит/с	Неиспользуемый переключатель
On Off	6 Мбит/с	
On Off	12 Мбит/с	
On Off	45,45 кбит/с	

Таблица 7: Настройки переключателей 2/5...8

5 Ethernet-соединение через модуль F 8628X

5.1 Определение IP-адреса модуля F 8628X

IP-адрес модуля F 8628X определяется для всех версий OS из имени ресурса загруженной прикладной программы.

IP-адрес складывается из адреса сети и хост-адреса. Для адреса сети фиксированно задается значение 192.168.0.

Последний байт в IP-адресе 192.168.0.х является хост-адресом и рассчитывается следующим образом:

- Для модуля Ethernet канал 1 (переключатель 2/1 = ON)
 Хост-адрес = (последние две цифры имени ресурса) * 2 + 1
- Для модуля Ethernet канал 2 (переключатель 2/1 = OFF)
 Хост-адрес = (последние две цифры имени ресурса) * 2 + 2
- 1 Имя ресурса, в котором находится прикладная программа, должно заканчиваться двумя цифрами (Res-ID) и состоять из восьми знаков!

Допустимые ID: 1...99: начиная с версии OS H41q/H51q (05.34)

Примеры:

- Имя ресурса МТ200_33, модуль канал 1 (переключатель 2/1 = ON)
 Хост-адрес = 33 * 2 + 1 = 67; IP-адрес = 192.168.0.67
- Имя ресурса МТ200_33, модуль канал 2 (переключатель 2/1 = OFF)
 Хост-адрес = 33 * 2 + 2 = 68; IP-адрес = 192.168.0.68

Настройки модуля F 8628X при поставке

IP-адрес 192.168.0.63 (переключатель 2/1 = ON) или 192.168.0.64 (переключатель 2/1 = OFF).

Переключатель ID_IP деактивирован (переключатель 1/8 = OFF)

5.2 ТСР-соединение ELOP II с центральным модулем (CU)

С помощью PADT (ПК) пользователь может через 8628X установить TCP-соединение ELOP II с центральным модулем F 865xX.

Соединение TCP ELOP II позволяет выполнять быстрый обмен данными между PADT (ПК) и центральным модулем F 865xX.

Res-ID: Res-ID идентичен последним двум цифрам имени ресурса.

ID: ID на центральном модуле устанавливается с помощью DIPпереключателей 1...7.

5.2.1 Условия для TCP-соединения ELOP II

- Центральный модуль F 865хX, начиная с версии операционной системы (05.34)
- ELOP II, начиная с версии 4.1 Build (6118)
- Модуль Ethernet F 8628X, начиная с версии OS 4.x
- HSR-кабель в резервных системах

5.2.2 Соединение PADT (ПК) с F 8628X

PADT может устанавливать связь с H41q/51q всегда только через F 8628X систем H41q/H51q (в том числе и при резервировании).

Выбранный F 8628X передает телеграммы на соответствующий центральный модуль и через HSR-кабель (BV 7053) на резервный модуль F 8628X и соответствующий центральный модуль.

HSR-кабель между обоими резервными модулями F 8628X делает возможной связь с обоими центральными модулями и перезагрузку резервной H41q/H51q.

i

- При TCP-соединении ELOP II можно использовать любой свободный IP-адрес для PADT. Если IP-адреса PADT и F 8628X находятся в одинаковой подсети, на PADT не требуется запись маршрутизации (см. главу 5.2.6.1).
- Обратите внимание на то, чтобы данный IP-адрес не использовался никаким другим участников (например, H41/H51q, OPC-сервером или ПК), так как это приведет к проблемам связи.
- При выборе IP-адресов для H41q/H51q и OPC-серверов необходимо учитывать будущие возможности расширения связи.

5.2.3 Наладка TCP-соединения ELOP II на H41q/H51q

5.2.3.1 Настройки на ПЭС H41q/H51q

Необходимо выполнить следующие настройки на H41q/H51q:

- На модуле или модулях F 8628X активировать ID_IP (переключатель 1/8 = ON).
- На модуле F 8628X настроить канал 1 или канал 2.
- При наличии на резервном модуле Ethernet F 8627X резервного канала, настройте его (см. главу 5.1).
- Убедитесь, что в центральные модули F 865хX загружена соответствующая операционная система версии от (05.34) и выше.
- На модуле или модулях F 865xX установить одинаковый номер для ID (DIPпереключатель, см. технический паспорт F 865xX), используемый в имени ресурса в качестве Res-ID (последние две цифры имени ресурса, см. главу 5.1).

5.2.3.2 При необходимости удалить прикладную программу центрального модуля Если в F 865хX загружена прикладная программа с неверным именем ресурса (например, Res-ID отсутствует или является неверным), TCP-соединение ELOP II не может быть установлено.

Удалить прикладную программу с неверным именем ресурса, чтобы F 8628X создал собственный IP-адрес из ID, установленного на центральном модуле (DIP-переключатель 1...7).

Более подробную информацию по удалению прикладной программы, см. руководство по операционной системе (HIQuad Operating System Manual HI 803 078 RU).

5.2.3.3 Настройки в ELOP II

Выполните следующие настройки в ELOP II:

- B ELOP II создайте ресурс, из имени ресурса которого можно создать необходимый IP-адрес (см. главу 5.1).
- Для документирования назначения шкафа добавьте в диалоговом окне Edit Cabinet ELOP II значок модуля/модулей F 8628X.

Рис. 3: Назначение шкафа в диалоговом окне Edit Cabinet

■ В контекстном меню выбрать ресурс **Properties**.

Рис. 4: ELOP II, диалоговое окно Properties

- Откройте вкладку PADT (PC) и выберите тип связи Ethernet.
- Выберите один из установленных в ELOP II IP-адресов, *Channel1* или *Channel2*. Таким образом выбирается модуль F 8628X, с которым должен соединяться PADT.
- Закройте диалоговое окно с помощью ОК.

5.2.3.4 Загрузка прикладной программы в Н41q/H51q

- Подсоедините требуемый модуль F 8628X к PADT в соответствии с описанием подсоединения в главе 5.2.5.
- 1 При резервном модуле H41q/H51q обратите внимание на то, чтобы был вставлен HSR-кабель (BV 7053). В противном случае доступ к резервному модулю невозможен.
 - Откройте контекстное меню ресурса и выберите **Control Panel**. Если соединение установлено, в поле *Communication* отображается OK.
 - Загрузите прикладную программу с помощью функции Download/Reload в центральный модуль/модули F 865xX.
 - Запустите систему управления Н41q/H51q.

При возникновении проблем с TCP-связью ELOP II см. главу 5.2.6.

5.2.4 Переключение H41q/H51q на ELOP II TCP без остановки системы.

5.2.4.1 Условия

Система управления H41q/H51q может переключаться на ELOP II TCP без остановки системы, если выполнены следующие условия:

- Выполняются условия для TCP-соединения ELOP II, см. главу 5.2.1.
- В центральный модуль или модули F 865хX должна быть загружена соответствующая операционная система версии от (05.34) и выше.

■ В модуль или модули F 865xX должна быть загружена прикладная программа с допустимым именем ресурса, из которого F 8627X может создать IP-адрес.

 На модуле или модулях F 865хX необходимо устанавливать одинаковый номер для ID, используемый в имени ресурса в качестве Res-ID. Для считывания ID, см. руководство по операционной системе (HIQuad Operating System Manual HI 803 078 RU).

5.2.4.2 Установка модуля/модулей F 8628X

Для замены или установки F 8628X соблюдать указания из главы 2.2.

- На модуле или модулях F 8628X активировать ID IP (переключатель 1/8 = ON).
- На модуле F 8628X настройте канал 1 или канал 2 (см. главу 5.1).
- При наличии на резервном модуле Ethernet F 8628X резервного канала, настроить его (см. главу 5.1).
- Имеющийся модуль F 8628 заменить на F 8628X, через который должно производиться TCP-соединение ELOP II. Если до этого не использовались модули F 8628X, вставить F 8628X в предусмотренные слоты.

5.2.4.3 Настройки в ELOP II

Выполните следующие настройки в ELOP II

- 1. Откройте контекстное меню ресурса и выберите Properties.
- 2. Откройте вкладку **PADT (PC)** и выберите тип связи *Ethernet*.
- 3. Выберите один из установленных в ELOP II IP-адресов, *Channel1* или *Channel2*. Таким образом выбирается модуль F 8628X, с которым должен соединяться PADT.
- 4. Закройте диалоговое окно с помощью ОК.
- ▶ Канал для F 8628X настроен.

5.2.4.4 Установка соединения

Установите соединение для H41q/H51q:

- Соединить PADT с требуемым модулем F 8628X в соответствии с описанием подсоединения в главе 5.2.5.
- $\dot{1}$ При резервном модуле H41q/H51q обратите внимание на то, чтобы был вставлен HSR-кабель (BV 7053). В противном случае доступ к резервному модулю невозможен.
 - Откройте контекстное меню ресурса и выберите Control Panel.
 Если соединение установлено, в поле Communication отображается ОК.

При возникновении проблем с TCP-связью ELOP II см. главу 5.2.6.

5.2.5 ТСР-соединения ELOP II с системами H41g/H51g

ELOP II TCP может работать в существующей сети Ethernet.

Условия для использования имеющейся сети Ethernet для ПЭС HIMA с F 8628X:

- Сеть содержит только сетевые коммутаторы
- Режим полной дуплексной связи (без конфликтов)
- Достаточная ширина полосы пропускания
- Расчет времени ожидания с учетом времени задержки промежуточно подключенных активных сетевых компонентов (например, сетевые коммутаторы, шлюзы и т. д.).

При прямых соединениях без сетевого коммутатора между PADT и системой управления H41g/H51g требуется «кроссоверный» кабель Ethernet.

5.2.5.1 ТСР-соединения ELOP II с резервными системами H41q/H51q

Рис. 5: ТСР-соединения ELOP II с резервными системами H41q/H51q

PADT может устанавливать соединения с системами H41q/H51q, как в примерах на Рис. 5, через следующие каналы:

- В левом примере только через канал 1
- В среднем примере только через канал 2
- В правом примере только через канал 1

5.2.5.2 ТСР-соединения ELOP II с моносистемами H41q/H51q

Рис. 6: TCP-соединения ELOP II с моносистемами H41q/H51q

PADT может устанавливать соединения с системами H41q/H51q, как в примерах на Рис. 6, через следующие каналы:

- В левом примере через канал 1 или канал 2
- В правом примере только через канал 1

5.2.5.3 ТСР-соединение ELOP II с системами H41q/H51q через резервную сеть

- **2** IP-адрес x.x.x.x
- **3** IP-адрес х.х.х.у
- 4 Сегмент Ethernet 2
- 5 Сетевой коммутатор Ethernet
- 6 Канал 2, S2/1 = OFF
- 7 HSR-кабель
- 8 Канал 1, S2/1 = ON
- 9 Сегмент Ethernet 1

Рис. 7: TCP-соединение ELOP II с системами H41q/H51q через резервную сеть

PADT может обращаться к обеим системам H41q/H51q через сегмент Ethernet 1 или сегмент Ethernet 2.

При данной кабельной разводке для каждой карты Ethernet PADT необходимо создать запись маршрутизации (см. главу 5.2.6).

- i
- Использование возможностей кабельной разводки TCP для ELOP II, отличные от указанных выше, недопустимо и может привести к возникновению проблем!
- Должны использоваться только модули связи одного типа, являющиеся резервными по отношению друг к другу и соединенные посредством HSR-кабеля!
 Пример: соединение F 8628X с F 8628X не допускается!

5.2.6 Проблемы с TCP-связью ELOP II

Если TCP-связь ELOP II не устанавливается, прежде всего необходимо проверить следующее:

- Правильно ли выполнена кабельная разводка TCP ELOP II (см. главы с 5.2.5.1 по 5.2.5.3)?
- ID модуля F 865хX (DIP-переключатель 1...7) соответствует Res-ID имени ресурса?
- 1 Система управления H41q/H51q может связываться всегда только с одним PADT. Если пользователь с другим PADT обращается к той же системе управления, он может установить связь с данной системой управления многократным нажатием кнопки Initialize communication.

Тогда соединение с первым PADT прерывается. На панели данного PADT в поле *Communication* появляется указание «2. PADT (PC) connected to the PES».

5.2.6.1 Проверка, находится ли сетевая карта PADT (ПК) в той же подсети Для этого необходимо определить IP-адрес сетевой карты ПК. После этого можно устанавливать сетевое соединение.

Определение ІР-адреса сетевой карты ПК

- 1. В MS Windows откройте настройки для сетевых соединений PADT.
- 2. Выбрать используемую для соединения с модулем F 8628X сетевую карту.
- 3. Выберите свойства для интернет-протокола:
 - Если сетевая карта не находится в подсети 192.168.0.х модуля F 8628X, действовать по пункту «Установление сетевого соединения между ПК и F 8628X»
 - Если сетевая карта находится в той же подсети, а соединения все же нет, проверьте соединение с помощью функции Ping, см. главу 5.2.6.3.
- ▶ ІР-адрес определен.

Установление сетевого соединения между ПК и F 8628X

- 1. Первый метод: измените IP-адрес используемой сетевой карты ПК. Для этого в свойствах TCP/IP-соединения внесите свободный IP-адрес, находящийся в той же подсети 192.168.0.х, что и модуль F 8628X.
- 2. Второй метод: на ПК создать запись маршрутизации для модуля F 8628X.
 - Запустите командную строку на ПК
 - Введите следующую команду:
 - route -p add [IP-адрес F 8628X] mask 255.255.255.255 [IP-адрес ПК]

Параметр -p отвечает за то, чтобы запись маршрутизации сохранялась и после перезапуска компьютера становилась действительной.

- Komandoй route print проверьте, является ли запись маршрутизации для соединения между сетевой картой ПК и F 8628X правильной.
- Запустите панель управления ELOP II, чтобы установить связь с F 8628X.
- ▶ Сетевое соединение установлено.

5.2.6.2 Проблема с соединением после замены F 8628X!

На ПК необходимо удалить запись ARP, если новый модуль F 8628X имеет такой же IP-адрес, как и старый модуль F 8628X. Иначе не удастся установить связь с новым модулем F 8628X, имеющим тот же IP-адрес.

Пример: удалите запись ARP модуля F 8628X с IP-адресом 192.168.0.67.

- Запустите командную строку на ПК.
- Введите команду arp -d 192.168.0.67.

5.2.6.3 Проверка соединения с F 8628X с помощью команды Ping

- Запустите командную строку на ПК.
- Введите команду Ping 192.168.0.x.
- Возможные сообщения пинг-программы:
 - Ethernet-соединение ОК при сообщении: «Ответ 192.168.0.х: байты = 32, время
 ...мс....»

Если, тем не менее, соединения ELOP II нет, проверьте настройки ресурса в ELOP II.

- Het Ethernet-соединения при сообщении: «Request timed out». Проверьте кабельную разводку, записи маршрутизации и т. д.

Если все шаги в данной главе выполнены, а модуль F 8628X не отвечает, проверить, возможно ли соединение с другими участниками сети с помощью сетевой карты ПК.

5.2.6.4 Создание адреса для модуля F 8628X

F 8628X создает свой IP-адрес в соответствии со следующими приоритетами:

- 1. IP-адрес создается из ID ресурса (Res-ID) прикладной программы, загруженной в F 865xX.
 - Res-ID прикладной программы всегда имеет приоритет перед ID, созданным на центральном модуле F 865xX (DIP-переключатель 1...7).
- 2. IP-адрес создается из ID, установленного на центральном модуле F 865xX (DIP-переключатель 1...7), если Res-ID нельзя создать из имени ресурса актуальной прикладной программы и активирован переключатель ID_IP на модуле F 8628X (переключатель 1/8 = ON).
- 3. ІР-адрес базовой конфигурации

Если IP-адрес не удалось создать из Res-ID или ID (переключатель 1/8 = OFF), как описано в первых двух случаях, то используется последний IP-адрес, созданный на модуле F 8627X.

6 Параметры для ведущего устройства PROFIBUS DP для перезагрузки резервной системы H41q/H51q

Во время перезагрузки резервной системы H41q/H51q с резервным соединением PROFIBUS DP после переключения на загруженный сначала центральный модуль связь PROFIBUS DP ненадолго прерывается.

Во избежание реакций выхода из строя во время перезагрузки необходимо при параметрировании резервного управления в ведущем устройстве PROFIBUS DP учитывать данное время запаздывания t_{down} .

Определение времени запаздывания t_{down} для ведущего устройства PROFIBUS DP

Для определения времени запаздывания используется следующая формула:

 t_{down} < 200 MC + WDT + t_{master}

 t_{down} : В течение этого времени модули F 8628X не способны на связь.

WDT: Время сторожевого устройства системы H41g/H51g

t_{master}: Время, необходимое ведущему устройству PROFIBUS DP после загрузки

первого центрального модуля, чтобы перевести модуль связи F 8628X

в состояние для передачи данных

Время t_{master} составляет не менее 6 циклов шины (циклы опроса). Фактическое количество циклов шины (циклы опроса) должно задаваться пользователем в настройках ведущего устройства PROFIBUS DP или с помощью анализатора PROFIBUS DP.

1 Определение (формула) подходит только для модулей ведомого устройства PROFIBUS DP типа F 8628X. Данные модули ведомого устройства PROFIBUS DP должны устанавливаться на фиксированную скорость передачи в бодах (с помощью переключателей 2/5...8). Кроме того, необходимо убедиться, что при перезагрузке резервной системы H41q/H51q центральный модуль (CU 1) загружается первым.

7 Представление адресов переменных BUSCOM

7.1 Типы данных переменных BUSCOM

Наглядный обзор представления и сохранения переменных BUSCOM.

ELOP II Типы данных переменных	Отображение параметров процесса на F 8628X	Размер типов данных на F 8628X и F 865xX
BOOL	BOOL	1 байт
WORD (WORD INT UINT)	WORD	2 байта

Таблица 8: Определения типов данных

Все 2-байтовые типы данных, которые в ELOP II конфигурируются в качестве переменных BUSCOM, передаются в виде WORD. 1-байтовые типы данных (например, SINT, BYTE и т. д.) должны для передачи упаковываться в переменные BUSCOM типа данных WORD, например, с помощью функциональных блоков *Pack* и *Unpack*.

7.2 Адрес BUSCOM центрального модуля F 865xX

Адреса BUSCOM переменных BUSCOM следует задавать путем установки базового адреса и относительного адреса в ELOP II.

Адреса BUSCOM переменных BUSCOM рассчитываются на центральном модуле F 865xX следующим образом:

Базовый адрес + относительный адрес = адрес BUSCOM

Относительный адрес должен устанавливаться так, чтобы адрес BUSCOM находился в том же диапазоне (см. Таблица 9), что и соответствующий базовый адрес.

1 Настройка базовых адресов содержится в свойствах ресурса. Во вкладке **BUSCOM** отдельно можно настраивать базовые адреса для импорта, экспорта и импорта/экспорта. Фирма HIMA рекомендует сохранять стандартную настройку для базовых адресов.

В пределах областей импорта и экспорта центрального модуля F 865xX переменные BOOL и переменные WORD хранятся разделенными на области 0 и 1.

Компоненты	BOOL	WORD
	(адреса BUSCOM)	(адреса BUSCOM)
Область импорта 0 (базовый адрес 0000)	00002047	00002047
Область импорта 1 (базовый адрес 4096)	40968191	40968191
Область экспорта 0 (базовый адрес 0000)	00002047	00002047
Область экспорта 1 (базовый адрес 4096)	40968191	40968191

Таблица 9: Диапазон адресов BUSCOM центрального модуля F 865xX

7.3 Отображение переменных BUSCOM на F 8628X

Для передачи переменных BUSCOM осуществляется отображение переменных BUSCOM от центрального модуля F 865xX на модуль связи F 862xX.

Во внутренней памяти модуля F 8628X имеется две области памяти, в которые копируются переменные BUSCOM центрального модуля F 865xX.

Область памяти EV модуля F 8628X отображает экспортируемые переменные, а область памяти IV — импортируемые переменные. В пределах одной области памяти отдельная переменная описывается идентификационным номером.

- Данная схема преобразования переменных BUSCOM модуля F 865хX в идентификационные номера модуля F 8628X одинаково применима для переменных WORD и BOOL.
 - При использовании порта Modbus 8896 телеграмма Modbus может обращаться за пределы диапазона адресов типа переменных. При этом необходимо следить за тем, чтобы соответствующий тип переменных правильно интерпретировался!

7.3.1 Пример 1

Переменные WORD в области экспорта 0 (на модуле F 865хX) в данном примере начинаются с адреса BUSCOM 0 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 0.

Идентификационные номера переменных WORD в области памяти EV продолжаются по возрастающей до последней переменной WORD 110 из области экспорта 0.

Переменные BOOL в области экспорта 0 (на модуле F 865xX) в данном примере начинаются с адреса BUSCOM 0 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 111, следующего за идентификационным номером последней переменной WORD — 110.

Идентификационные номера переменных BOOL в области памяти EV продолжаются по возрастающей до последней переменной BOOL 150 из области экспорта 0.

Рис. 8: Отображение переменных WORD и BOOL из области экспорта 0

7.3.2 Пример 2

Переменные BOOL в области экспорта 0 (на модуле F 865хX) в данном примере начинаются с адреса BUSCOM 0 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 0. Идентификационные номера для переменных BOOL в области памяти EV продолжаются по возрастающей до последней переменной BOOL 100 из области экспорта 0.

Переменные BOOL в области экспорта 1 (на модуле F 865хX) в данном примере начинаются с адреса BUSCOM 4096 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 101, следующего за идентификационным номером последней переменной BOOL 100.

Идентификационные номера для переменных BOOL в области памяти EV продолжаются по возрастающей до последней переменной BOOL 4196 из области экспорта 1.

Рис. 9: Отображение переменных BOOL из областей экспорта 0 и 1

7.3.3 Пример 3

Переменные WORD в области экспорта 0 (на модуле F 865xX) в данном примере начинаются с адреса BUSCOM 1 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 1.

Идентификационные номера для данных переменных WORD в области памяти EV продолжаются по возрастающей до последней переменной WORD 110 из области экспорта 0.

Незанятый адрес BUSCOM 0 занимается фиктивными переменными и отображается на идентификационный номер 0 области памяти EV.

Переменные WORD в области экспорта 1 (на модуле F 865xX) в данном примере начинаются с адреса BUSCOM 4100 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 115. Идентификационные номера для данных переменных WORD в области памяти EV продолжаются по возрастающей до последней переменной WORD 4200 из области экспорта 1. Незанятые адреса BUSCOM 4096-4099 занимается эквивалентными переменными и отображаются на идентификационные номера 111–114 области памяти EV.

Переменные BOOL в области экспорта 0 (на модуле F 865хX) в данном примере начинаются с адреса BUSCOM 0 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 216, следующего за идентификационным номером 215 последней переменной WORD из области 0. Идентификационные номера для этих переменных BOOL в области памяти EV продолжаются по возрастающей до последней переменной BOOL 100 из области экспорта 0.

Переменные BOOL в области экспорта 1 (на модуле F 865хX) в данном примере начинаются с адреса BUSCOM 4096 и отображаются в области памяти EV (на модуле F 8628X), начиная с идентификационного номера 317, следующего за идентификационным номером 316 последней переменной BOOL из области 0. Идентификационные номера для этих переменных BOOL в области памяти EV продолжаются по возрастающей до последней переменной BOOL 4196 из области экспорта 1.

i Если переменные BUSCOM начинаются не в начале области, данная часть на центральном модуле заполняется фиктивными переменными и также отображается на модуле связи.

Рис. 10: Отображение переменных WORD и BOOL из областей экспорта 0 и 1

8 Свойства передачи PROFIBUS DP

На физической оболочке PROFIBUS DP осуществляется передача данных по стандарту RS485.

В следующей таблице отображены основные технические характеристики передачи RS485, используемые для PROFIBUS DP.

Объект	Размеры	Примечание
Топология сети	Линейная шина, активная оконечная нагрузка на обоих концах шины	Необходимо избегать тупиковых линий.
Среда	Экранированный витой кабель	В зависимости от условий окружающей среды экранирование может не требоваться. Не рекомендуется!
Количество станций	32 станции в каждом сегменте без повторителя	С повторителем расширяется до 126 станций
Штекерный соединитель	9-полюсный штекерный соединитель D-Sub	Можно приобрести в компании HIMA

Таблица 10: Характеристики стандарта передачи данных RS485

8.1 Длина линии в зависимости от скорости передачи в бодах

Скорость передачи в бодах	Дальность действия каждого сегмента
9,6 кбит/с	1200 м
19,2 кбит/с	1200 м
45,45 кбит/с	1200 м
93,75 кбит/с	1200 м
187,5 кбит/с	1000 м
500 кбит/с	400 м
1,5 Мбит/с	200 м
3 Мбит/с	100 м
6 Мбит/с	100 м
12 Мбит/с	100 м

Таблица 11: Длина линии в зависимости от скорости передачи в бодах

Данные по длине линии в таблице выше указаны для линии типа А со следующими параметрами:

Волновое сопротивление
 Погонная емкость
 Сопротивление петли
 Диаметр жилы
 Поперечное сечение жилы
 135...165 Ом
 30 пФ/м
 110 Ом/км
 0,64 мм
 > 0,34 мм²

8.2 Подключение шины и оконечная нагрузка шины

Оконечная нагрузка PROFIBUS DP состоит из комбинации сопротивлений, посредством которой на линии шины обеспечивается определенный равновесный потенциал.

Рис. 11: Подключение шины и оконечная нагрузка шины для PROFIBUS DP, назначение интерфейса FB

8.3 Кабель шины PROFIBUS DP

В IEC 61158 указаны два типа линий шины. Тип линии A может использоваться для любой скорости передачи до 12 Мбит/с. Тип линии B считается устаревшим и не должен больше использоваться.

Puc. 12: Кабель шины PROFIBUS DP с соединительным штекером шины и кабель PROFIBUS типа A

• Если используется интерфейс Ethernet модуля F 8628X, например, для ELOP II TCP, необходимо использовать прямой штекер PROFIBUS. Перекрестный штекер необходимо удалить, чтобы получить доступ к интерфейсу Ethernet модуля F 8628X.

В следующей таблице указаны штекеры PROFIBUS, используемые HIMA.

Штекер PROFIBUS	Обозначение PHOENIX CONTACT
Прямой	SUBCON-PLUS-PROFIB/AX/SC
Перекрестный, с дополнительным разъемом PG	SUBCON-PLUS-PROFIB/PG/SC2

Таблица 12: Штекеры PROFIBUS изготовителя PHOENIX CONTACT

9 Конфигурация ведомого устройства PROFIBUS DP через ведущее устройство PROFIBUS DP

Ведомое устройство HIMA PROFIBUS DP позволяет подключать ПЭС к PROFIBUS DP через интерфейс FB.

Данная функция позволяет ведущему устройству PROFIBUS DP считывать и записывать переменные BUSCOM.

Для конфигурации ведомого устройства HIMA PROFIBUS DP в ведущем устройстве PROFIBUS DP должно иметься конфигурационное программное обеспечение PROFIBUS DP. Оно может выглядеть, как показано на Puc. 13.

Пользователь имеет возможность определять окна переменных. Соответственно 4 окна для чтения и 4 окна для записи. Данные окна следует конфигурировать в конфигурационном программном обеспечении ведущего устройства PROFIBUS DP в области параметров (Parameter Data) (Puc. 15).

Таким образом ведущее устройство PROFIBUS DP получает соответствующую нормам возможность адресации данных. Заданные в окнах величины определяют длину полезных данных тех телеграмм PROFIBUS DP, которые ведущее устройство PROFIBUS DP должно (с помощью файла HIMA GSD) параметрировать и конфигурировать для ведомого устройства HIMA PROFIBUS DP, выступающего в качестве модульного ведомого устройства согласно стандарту.

Ведомое устройство HIMA PROFIBUS DP является модульным ведомым устройством. Поэтому в файле GSD модуля связи (HIQ200EA.GSD) предусмотрены модули. Они

служат для установки количества входных и выходных байтов, чтобы те соответствовали сумме параметрируемых окон (Рис. 16).

Рис. 13: Отображение конфигурации ведомого устройства HIQ200EA.GSD в ведущем устройстве PROFIBUS DP с выбором доступных модулей

9.1 Форматы данных

В следующем описании рассматриваются только пользовательские данные телеграммы. Для остальных данных телеграммы дается ссылка на стандарт EN 50 170.

Тип данных BUSCOM WORD появляется в телеграмме PROFIBUS в виде 2 следующих друг за другом байтов в формате Big Endian.

Тип данных BUSCOM BOOL подвергается сжатию во время передачи, так что в одном байте упаковываются до 8 переменных, определенных в области экспорта/импорта и следующих друг за другом. При этом значение TRUE соответствует 1, а FALSE соответствует 0. Нумерация переменных BUSCOM BOOL в битах байта начинается с бита 0 и заканчивается битом 7. Это соответствует переменной BOOL [а] до переменной BOOL [а+7]. Если в одной области/массиве данных определено не все множество 8 следующих друг за другом переменных BOOL, оставшиеся биты в последнем байте остаются неопределенными.

Если за переменными BOOL следуют переменные Word, то переменные Word начинаются в следующем байте.

9.2 Адресация

Переменные BUSCOM адресуются с идентификационным номером. Он представляет собой замену для адреса BUSCOM.

Определение окон для PROFIBUS INPUT и OUTPUT выглядит следующим образом:

Объект	Параметр	PROFIBUS DP INPUT	PROFIBUS DP OUTPUT
Экспорт 1	[0,1] = стартовые идентификационные номера [2,3] = Число переменных	X	
Экспорт 2	[4,5] = стартовые идентификационные номера [6,7] = Число переменных	X	
Экспорт 3	[8,9] = стартовые идентификационные номера [10,11] = Число переменных	X	
Экспорт 4	[12,13] =стартовые идентификационные номера [14,15] = Число переменных	Х	
Импорт 1	[16,17] = стартовые идентификационные номера [18,19] = Число переменных		X
Импорт 2	[20,21] = стартовые идентификационные номера [22,23] = Число переменных		Х
Импорт 3	[24,25] = стартовые идентификационные номера [26,27] = Число переменных		Х
Импорт 4	[28,29] = стартовые идентификационные номера [30,31] = Число переменных		Х

Таблица 13: Определение окон для PROFIBUS Input и Output

Область параметров (Parameter Data в конфигурационном программном обеспечении ведущего устройства PROFIBUS DP) состоит из 32 байт, инициализируемых с 00 hex. В ведущем устройстве PROFIBUS DP они устанавливаются на их значения (Puc. 13).

Первые 16 байт (байт 0...15) описывают окна экспортируемых переменных, последние 16 байт (байт 16...31) — окна импортируемых переменных модуля связи.

Экспортируемые переменные в ELOP II соответствуют входным переменным PROFIBUS DP, а импортируемые переменные в ELOP II — выходным переменным PROFIBUS DP (модули на Рис. 16).

Данные в области параметров (Parameter Data) состоят соответственно из 2 байтов, образующих 16-разрядное слово, в формате Big Endian.

Стартовые идентификационные номера и число переменных устанавливаются для модуля связи. Размер окна всегда охватывает целочисленные байты и определяется установленными в окне типами данных и их количеством (сжатые или несжатые).

Сумма размера 4 окон экспорта определяет длину полезных данных телеграммы PROFIBUS INPUT, а сумма размера 4 окон импорта — длину телеграммы OUTPUT.

Длина полезных данных INPUT и OUTPUT в целом не должна превышать 256 байт. Таким образом можно передавать, например, 2048 булевских переменных.

Для INPUT или OUTPUT в качестве границы PROFIBUS, стандарт EN 50170, можно конфигурировать не более 240 байт (т. е. до 1920 булевских переменных в одном направлении).

Стартовый идентификационный номер должен иметь значение, действительное для соответствующего массива данных модуля связи, т. е. в нем должна быть определена

переменная с данным идентификационным номером. Также, начиная с данной переменной, необходимо определить число последующих переменных.

Окно должно охватывать последовательность переменных, которые должны быть разного типа (т. е. смешанные BOOL/WORD). Сжатие данных происходит только для переменных в пределах окна.

Если определение окон не используется, то в качестве стартового идентификационного номера и числа переменных следует внести 0.

9.3 Пример адресации

- 1 Область памяти EV для экспортируемых переменных
- **2** Телеграмма PROFIBUS DP INPUT (Byte Offset, байтовое смещение)
- PROFIBUS Word Offset 0...39, несжатые
- 4 PROFIBUS BOOL Offset 40...58, сжатые
- 5 Окно 2, 150 переменных BOOL, начиная с идентификационного номера 200 (адрес)
- 6 Идентификационные номера
- Окно 1, 20 переменных WORD, начиная с идентификационного номера 1 (адрес)

Рис. 14: Пример создания адреса для экспортируемых переменных PROFIBUS DP (для импортируемых переменных соответственно)

2 окна экспортируемых переменных из массива данных 1 включаются без кодировки на PROFIBUS DP. Телеграмма PROFIBUS DP INPUT имеет объем пользовательских данных 59 байт (0...58). Она складывается следующим образом:

- Окно 1: начало переменных с идентификационного номера 1 (1 dec = 0001 hex в формате Big Endian), число переменных 20 шт. (20 dec = 0014 hex).
 Начиная с идентификационных номеров 1...20, идут переменные WORD, которые не могут быть сжаты. Каждой переменной WORD требуется 2 байт. Создается 40 байт пользовательских данных (байт 0...39).
- Окно 2: начало переменных с идентификационного номера 200 (200 dec = 00C8 hex), число переменных 150 шт. (150 dec = 0096 hex).
 Начиная с идентификационных номеров 200...349, идут переменные BOOL, сжимаемые в байт (150/8 = 18,75). Создается 19 байт пользовательских данных (смещение окном 1, байт 40...58).

Puc. 15: Пример создания адреса экспорта Parameter Data в ведущем устройстве PROFIBUS DP

Рис. 16: Пример создания адреса телеграммы PROFIBUS DP Input, объем пользовательских данных 59 байт в 5 модулях

10 Замена операционной системы

Модуль F 8628X имеет такую же операционную систему, что и F 8627X. Поэтому должен использоваться такой же файл операционной системы.

10.1 Переход на более раннюю/более позднюю версию операционной системы для модуля F 8628X

Следующие инструкции описывают переход на более раннюю/более позднюю версию операционной системы для модуля F 8628X.

1 Переход на более раннюю/более позднюю версию должны выполнять только сервисные инженеры HIMA. Компания HIMA рекомендует выполнять замену операционной системы только при остановке установки.

10.1.1 Переход с версии 2.х на более позднюю/более раннюю версию

Для перехода с версии 2.х на более позднюю/более раннюю версию необходимо загрузить файл операционной системы с расширением *.flash.

При обновлении версии 2.х до любой другой версии в обязательном порядке следите за тем, чтобы нужный файл OS был загружен в нужный модуль.

Если модуль F 8628X загружается с неверным файлом, функциональность модуля F 8628X теряется и больше не может программироваться в диалоговом окне диагностики ComEth. В этом случае модуль F 8628X необходимо заново программировать в компании HIMA.

После обновления до версии 3.х и выше становится действенным механизм защиты, можно загружать только файлы операционной системы с расширением *.ldb.

10.1.2 Переход с версии 3.х на более позднюю/более раннюю версию

Для перехода с версии 3.х и выше на более позднюю/более раннюю версию необходимо загрузить файл операционной системы с расширением *.ldb.

После перехода на более раннюю версию 2.х больше не действует механизм защиты, препятствующий загрузке неверного файла!

10.2 Загрузка операционной системы на модуль F 8628X

Загрузка операционной системы для модуля F 8628X выполняется в диалоговом окне диагностики ComEth.

1 Соединение между панелью управления ComEth и модулем Ethernet F 8628X необходимо закрыть, если работа с ComEth прекращена. Соединение с диагностической панелью ComEth можно оставить для контроля.

Загрузка операционной системы на модуль F 8628X

- 1. Запустите диалоговое окно ComEth и проверьте в индикации состояния ошибок следующее:
 - Main Program Version 0.8.0 или выше
 - Diagnostic Text Version-DLL 0.2.0 или выше

2. Выберите **Project->New** в строке меню диалогового окна диагностики ComEth, чтобы создать новый проект.

- 3. Выберите **New Configuration** в контекстном меню нового проекта, чтобы создать новую конфигурацию.
- 4. Выберите **New Resource** в контекстном меню новой конфигурации, чтобы создать новый ресурс.
- 5. Выберите **New F 8628X** в контекстном меню нового ресурса, чтобы создать новый модуль F 8628X.
- 6. Выберите **Properties** в контекстном меню нового модуля F 8628X, чтобы открыть диалоговое окно *Properties*.
- 7. Сконфигурируйте поля ввода следующим образом:
 - В поле ввода *Name* введите любое однозначное имя для F 8628X (например, CU1CM1).
 - В поле ввода IP Address введите IP-адрес модуля F 8628X, в который необходимо загрузить операционную систему.
 - Об определении ІР-адреса см. в главе 5.1.
 - В поле индикации *IP Address PC* отображаются IP-адреса всех доступных сетевых карт PADT (ПК).

Выберите IP-адрес сетевой карты, с помощью которой должна быть установлена связь с модулем F 8628X.

Версия OS	Примечания	
< V4.x	 ■ IP-адреса PADT (ПК) и модуля F 8628X должны находиться в одной подсети. ■ IP-адреса PADT (ПК) должны быть в одном из следующих диапазонов значений: 192.168.0.201192.168.0.214 192.168.0.243192.168.0.254 Исключение: если PADT (ПК) одновременно является ОРС-сервером и уже имеет один из IP-адресов ОРС-сервера, данный IP-адрес должен также использоваться для PADT. Если доступно несколько сетевых карт на PADT (ПК), необходимо ввести на ПК соответствующую запись маршрутизации для сетевой карты, которая используется для соединения с модулем F 8628X. 	
≥ V4.x	Можно использовать любой свободный IP-адрес для PADT (ПК). Если IP-адреса PADT (ПК) и F 8628X находятся в разных подсетях, на PADT (ПК) требуется запись маршрутизации для подсети модуля F 8628X.	

Таблица 14: Примечания по ІР-адресам

- 8. Выберите **Control Panel** в контекстном меню нового модуля F 8628X, чтобы запустить панель управления.
- В панели управления выберите PADT->Connect, чтобы установить соединение с модулем F 8628X.

Следующий шаг приводит к потере связи, если резервный модуль F 8628X отсутствует или не имеет связи!

- 10. Нажмите кнопку **Stop Device** в панели управления **ComEth**, чтобы установить модуль F 8628X в состояние STOP.
 - ☑ Мигает зеленый светодиод RUN.
- 11.В панели управления выберите **Extra->OS Update**, чтобы открыть стандартное диалоговое окно для открытия файла.
- 12. Выберите **правильную** операционную систему для перехода на более раннюю/более позднюю версию и загрузить в выбранный модуль F 8628X (см. главы 10.1.1 и 10.1.2).

£ Если загрузка операционной системы для F 8628X прервана, модуль Ethernet нельзя извлекать из модульной стойки! Правильный порядок действий:

- Закройте и снова откройте панель управления ComEth.
- Повторите предыдущий шаг для загрузки операционной системы.

Если загрузка операционной системы для F 8628X успешно завершена, **модуль F 8628X** необходимо **перезагрузить**. Только после перезагрузки запускается новая операционная система. До этого модуль F 8628X работает со старой операционной системой.

13. Перезагрузите модуль F 8628X с помощью следующих действий:

- Извлеките и вставьте модуль
- Выберите Extra->Reboot Device в панели управления ComEth.
- 14. Проверьте переход на более позднюю/более раннюю версию
 - Выберите в панели управления **PADT->Connect**, чтобы заново установить соединение с модулем F 8628X.
 - Выберите вкладку **Version** и проверьте, соответствует ли отображаемая версия OS той более поздней/более ранней версии OS, на которую осуществлялся переход.
- ▶ На модуль F 8628X переустановлена другая операционная система.
- 1 Следует учитывать: Если требуется загрузить следующий модуль F 8628X, имеющий такой же IP-адрес, что и загруженный модуль F 8628X, на PADT (ПК) необходимо удалить запись ARP.

Иначе не удастся установить связь со следующим модулем F 8628X, имеющим тот же IPадрес.

Пример: удаление записи ARP модуля F 8628X с IP-адресом 192.168.0.67.

- Запустите командную строку на РАДТ (ПК)
- Введите команду arp -d 192.168.0.67

11 Список литературы

Необходимо соблюдать указания следующих документов:

- 1. HIQuad Safety System Manual HI 803 077 RU
- 2. HIQuad Operating System Manual HI 803 078 RU
- 3. ELOP II Online Help
- 4. ELOP II First Steps Manual HI 800 001 R
- 5. HIMA OPC-Server 3.0 Rev. 2