Hope to Skills

Lecture# 26

Irfan Malik, Dr. Sheraz Naseer

Agenda

- Applications of CNN
- Auto Encoders
 - Introduction
 - Architecture
 - Encoder
 - Feature space
 - Decoder
- Types of Decoders
- Applications of Decoders
- Quiz

Previously

- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)

Application of CNN

- Image Classification
- Image Segmentation
- Facial Recognition
- Gesture Recognition

Image Segmentation

Object Detection

Gesture Recognition

Face Detection

Encoders & Decoders in Deep Learning

Encoder

- Converts original data into a secret code.
- Uses rules or transformations to hide the message.

Decoder

- Reverts the secret code back to the original data.
- Understands the rules to reverse the encoding.
- Enables understanding of the hidden message.

What Are Autoencoders?

A type of neural network designed for **dimensionality reduction** and **feature learning**.

Primary goal: To encode data into a **compact representation** and then decode it for **reconstruction**.

Anatomy of an Autoencoder

Components: Encoder, Bottleneck/Hidden Layer, Decoder.

Anatomy of an Autoencoder

Components: Encoder, Bottleneck/Hidden Layer, Decoder.

Encoder

The encoder is like a **detective** that learns to capture the most **important features** of an image or data.

It's the first part of the autoencoder and responsible for compressing the input data.

How Does the Encoder Work?

Imagine an encoder as a **funnel that squeezes** a big picture into a smaller **representation**.

It transforms the input data (e.g., an image) into a compact form called the latent space or **encoding**.

Encoding Process

- **Step 1:** The input data, such as an image, is fed into the encoder.
- **Step 2:** The encoder consists of layers of neurons that learn patterns and features in the data.

Step 3: These patterns are combined and transformed into a compact representation in the latent space.

Why is it Important?

Data Compression: The encoding is much smaller than the original data, making it efficient to store and transmit.

Feature Extraction: The encoder learns to extract valuable information, which can be used for various tasks

What is a Decoder?

The decoder is like an **artist** that takes the compact representation (**encoding**) from the encoder and **recreates** the **original data**.

It's the second part of the autoencoder and responsible for generating output from the encoding.

How Does the Decoder Work?

Imagine a **decoder** as a **reverse funnel** that **expands** the compact representation back into a **full image** or **data**.

It transforms the encoding from the **latent space** back into a **reconstructed output**.

Decoding Process

- **Step 1:** The encoded data (latent space representation) is fed into the decoder.
- **Step 2:** The decoder consists of layers that learn to reverse the compression process by generating features and patterns.
- **Step 3:** These generated features are combined to reconstruct the original data.

Recreating Original Data

The decoder's goal is to **recreate** data as close to the **original** input as possible. It uses the **knowledge** it gained from the encoder to generate meaningful features.

Why is it Important?

Data Reconstruction: The decoder's job is to bring back the data's original form from the compressed encoding.

Completing the Loop: Autoencoders aim to minimize the difference between the input and the reconstructed output.

Simple/Vanilla Auto-encoder

Types of Auto-Encoders

- 1. Vanilla Autoencoder
- Denoising Autoencoder
- 3. Variational Autoencoder (VAE):

Input Image

new offline handwritten database for guage, which contains full Spanish senter been developed: the Spartacus database Spanish Restricted-domain Task of Cursiv were two main reasons for creating this co most databases do not contain Spanish sente Spanish is a widespread major language. reason was to create a corpus from semanti These tasks are commonly used in practice of linguistic knowledge beyond the lexicon nition process.

Output Image

new offline handwritten database for guage, which contains full Spanish senter been developed: the Spartacus database Spanish Restricted-domain Task of Cursive were two main reasons for creating this co most databases do not contain Spanish sente Spanish is a widespread major language. reason was to create a corpus from semanti These tasks are commonly used in practice of linguistic knowledge beyond the lexicon nition process.

Denoising Autoencoders are a type of neural network.

Designed to **clean noisy** or **corrupted data** and extract **essential features**.

Input

Quiz