SET AGREEMENT IMPOSSIBILITY PROOF THROUGH COMBINATORIAL TOPOLOGY

Modern distributed algorithms, Prof. Dan Alistarh, February 2022

TEAM PRESENTATION

Shayan Talaei

talaee.shayan@gmail.com

ROADMAP

SET AGREEMENT PROBLEM

SHARED-MEMORY SYSTEM

In a shared-memory system we have the following properties.

We have n asynchronous processes.

 Processes are communicating by writing and reading from the memory.

A process may fail.

K-SET AGREEMENT PROBLEM

In k-set agreement problem, each process has a starting input.

Each Process has to decide on a value such that:

k-Agreement

At most k different values are decided.

Validity

Every decided value is an input of a process.

In the consensus problem, we are trying to solve the k-set agreement when k = 1.

FLP Theorem. Consensus is impossible among n processes in asynchronous read/write shared memory if at least one of the processors can fail.

Proof idea:

- Step 1: Bivalent Initialization
 - Any consensus algorithm must have a bivalent initial configuration.
- Step 2: Bivalent Extension
 - Every bivalent configuration has a bivalent extension.

No extension-based proof for k-set may exist. (Alistarh, Aspnes, Ellen, Gelashvili, Zhu [STOC 2019])

ROADMAP

SET AGREEMENT COUNTING-BASED PROOF

SET AGREEMENT COUNTING-BASED PROOF

Theorem 1. There is no wait-free algorithm solving the (n-1)-set agreement task in an asynchronous shared memory system with n processes.

SET AGREEMENT COUNTING-BASED PROOF

Theorem 1. There is no wait-free algorithm solving the (n-1)-set agreement task in an asynchronous shared memory system with n processes.

If there is a wait-free algorithm to solve the k-set agreement for some 0 < k < n, so we can solve (n-1)-set agreement.

Corollary 1. For every 0 < k < n, there is no wait-free algorithm solving the k-set agreement task in an asynchronous shared memory system with n processes.

Sketch of proof for Theorem 1:

For the sake of contradiction, assume there is a wait-free algorithm.

Let Cm, $0 < m \le n$, be the set of all executions such that

- only the first m processes, p0, p1, ..., p(m-1) take steps.
- each pi has an input value i.
- all the values 0, ..., m-1 are decided.

If |Cn| is odd, then $Cn \neq \emptyset$.

There is an execution in which n values are decided.

If |Cn| is odd, then $Cn \neq \emptyset$.

There is an execution in which n values are decided.

- By induction, we prove the size of Cm is odd for all $0 < m \le n$.
- For m = 1 we just have a solo execution.
- Map C(m-1) to a subset of Cm like Am with the same parity.
- |Cm\Am| is even.
- |Am| is odd (because |C(m-1)| is odd).
- $|Cm\Delta m| + |\Delta m| = |Cm|$ is odd.

ROADMAP

COMBINATORIAL TOPOLOGY FORMULATION

KEY IDEA

Capture all the essential properties of our system in a

INPUT GRAPH ${\cal I}$

Vertices are colored by red and blue and labeled by input values.

INPUT GRAPH ${\cal I}$

Vertices are colored by red and blue and labeled by input values.

OUTPUT GRAPH \mathcal{O}

Vertices are colored by red and blue and labeled by output values.

TASK $(\mathcal{I}, \mathcal{O}, \Delta)$

 Δ is a name-preserving carrier map from ${\mathcal I}$ to ${\mathcal O}$.

Map each simplex in \mathcal{I} to a subgraph of \mathcal{O}

- Solo-executions
- Same inputs

ROADMAP

READ-WRITE SHARED-MEMORY PROTOCOL

PROTOCOL

How to define an algorithm from a processor's perspective?

I. Start from an initial local view

- $ightarrow \mathcal{I}$ the input graph
- II. Perform some steps using a protocol

III. Until reach to a set of local views

 $\rightarrow \mathcal{P}$ the protocol graph

IV. Output based on your local view

 $ightarrow \delta$ the decision map

Note that Ξ and $\mathcal P$ are independent from the task. Therefore, solvability of the task using the protocol is down to finding δ properly.

PROTOCOL GRAPH ${\mathcal P}$

Wey $Idea \rightarrow finding$ all possible local views starting from an input graph \mathcal{I} using a defined protocol

PROTOCOL GRAPH ${\cal P}$

Layered read-write protocol

In each round first write and then read

What happens if

- 1. A reads before write of B?
- 2. B reads before write of A?
- 3. Both writes be before both reads?

Simply each edge subdivides into three edges.

PROTOCOL GRAPH ${\mathcal P}$

Layered read-write protocol

In a single round, each edge

subdivides three edges

Connected input graph

Read-write shared-memory protocol

Connected protocol graph

DECISION MAP δ

Decision map is a simplicial map, which maps each simplex of \mathcal{P} , vertices and edges, to a simplex of (?), i.e.,

- Vertices: each local view ———— Output value
- Edges: each possible execution ——— Valid execution in output graph

ROADMAP

CONSENSUS IMPOSSIBILITY PROOF
THROUGH
COMBINATORIAL TOPOLOGY

CONNECTIVITY

Connected input graph

Connected protocol graph

Connected protocol graph

Connected protocol graph

Connected protocol graph

Read-write shared memory cannot carry a disconnected carrier map

Read-write shared memory cannot carry a disconnected carrier map

A.

TWO-PROCESS CONSENSUS UNSOLVABILITY

Two-process consensus Δ is a disconnected carrier map.

Two-process consensus using read-write shared memory is not possible!

N-PROCESS CONSENSUS UNSOLVABILITY

READ-WRITE SHARED MEMORY PROTOCOL GRAPH

- Vertices → processors' local view
- Edges → possible executions

N-PROCESS CONSENSUS UNSOLVABILITY

Two-process consensus Δ is a disconnected carrier map.

Read-write shared memory cannot carry a disconnected carrier map Δ .

N-process consensus using read-write shared memory is not possible!

ROADMAP

COMBINATORIAL **TOPOLOGY** GENERALIZATION FOR SET AGREEMENT

How to generalize the combinatorial topology approach for k-set agreement?

First, we have to extend models and definitions to higher dimensions.

The above models have different meanings.

TWO DIFFERENT VIEWS

• The combinatorial view: A subset of vertices is called a simplex. A simplex X is said to have dimension |X|-1.

TWO DIFFERENT VIEWS

- The combinatorial view: A subset of vertices is called a simplex. A simplex X is said to have dimension |X|-1.
- The geometric view: a geometric simplex of dimension n, is the convex hull of some affinely independent points in \mathbb{R}^d (d \geq n).

{1, 2, 3}

Abstract simplicial complex

Let S be the set of the vertices. A family T of finite subsets of S, we say that T is an abstract simplicial complex on S if the following are satisfied:

- 1. If $X \subseteq T$, and $Y \subseteq X$, then $Y \subseteq T$.
- 2. $\{v\} \in T \text{ for all } v \in S$.

Geometric simplicial complex

A geometric simplicial complex K in \mathbb{R}^d is a collection of geometric simplices, such that

- For every X

 K, any convex hull of a subset from X's vertices is also in K.
- 2. For all X, Y \subseteq K, their intersection X \cap Y is a convex hall is in each of them.

Defining the relation between geometric and combinatorial views

Given a geometric simplicial complex K, we define the underlying abstract simplicial complex C(K) as follows:

Defining the relation between geometric and combinatorial views

Given a geometric simplicial complex K, we define the underlying abstract simplicial complex C(K) as follows:

- Take the union of all the sets of vertices of the simplices of K as the vertices of C(K).
- For each simplex of K in the form of the convex hull of {v0, v1, ..., vn}, take the set

```
\{v0, v1, ..., vn\} to be a simplex of C(K).
```

Defining the relation between geometric and combinatorial views

Given a geometric simplicial complex K, we define the underlying abstract simplicial complex C(K) as follows:

- Take the union of all the sets of vertices of the simplices of K as the vertices of C(K).
- For each simplex of K in the form of the convex hull of {v0, v1, ..., vn}, take
 the set

 $\{v0, v1, ..., vn\}$ to be a simplex of C(K).

For a abstract simplicial complex T, there exist many geometric simplicial complexes K, such that C(K) = T.

Let K be a geometric simplicial complex K and T be a abstract simplicial complex such that C(K) = T.

Let K be a geometric simplicial complex K and T be a abstract simplicial complex such that C(K) = T.

- |K| is the union of its simplices, called its polyhedron.
- |T| = |K|.

k-connectivity

Let k be any positive integer. The complex K is k-connected if, for all $0 \le l \le k$, and continuous map $f: S^l \to |K|$ can be extended to $F: D^l+1) \to |K|$, where the sphere S^l is the boundary of the disk $D^l+1)$.

k-connectivity

Let k be any positive integer. The complex K is k-connected if, for all $0 \le l \le k$, and continuous map $f: S^l \to |K|$ can be extended to $F: D^l \to |K|$, where the sphere S^l is the boundary of the disk $D^l \to |K|$.

One way to think about that there is no k-dimensional "hole" in the complex.

k-connectivity

Let k be any positive integer. The complex K is k-connected if, for all $0 \le l \le k$, and continuous map $f: S^l \to |K|$ can be extended to $F: D^l \to |K|$, where the sphere S^l is the boundary of the disk $D^l \to |K|$.

One way to think about that there is no k-dimensional "hole" in the complex.

A carrier map from a k-connected complex G to a complex H is k-connected if the image of G under the map is still k-connected.

Impossibility of k-set agreement proof using combinatorial topology

Theorem 2. Let I be an input complex for k-set agreement. If (I, O, D) is an (n+1)-process k-set agreement task, and (I, P, m) is a protocol such that m is (k-1)-connected for simplices in I, then (I, P, m) cannot solve the k-set agreement task (I, O, D).

Impossibility of k-set agreement proof using combinatorial topology

Theorem 2. Let I be an input complex for k-set agreement. If (I, O, D) is an (n+1)-process k-set agreement task, and (I, P, m) is a protocol such that m is (k-1)-connected for simplices in I, then (I, P, m) cannot solve the k-set agreement task (I, O, D).

Proof idea:

- 1. m is (k-1)-connected.
- 2. P is (k-1)-connected.
- 3. The image of I under D is not (k-1)-connected.
- 4. There is no simplicial map from P to a subset of D(I).

ROADMAP

ANY QUESTIONS?

You can find us at:

- matinansaripour@gmail.com
- talaee.shayan@gmail.com

RESOURCES

[1] Attiya H., Paz A. (2012) Counting-Based Impossibility Proofs for Renaming and Set Agreement. In: Aguilera M.K. (eds) Distributed Computing. DISC 2012. Lecture Notes in Computer Science, vol 7611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33651-5 25

[2] Herlihy, M., Kozlov, D., & Rajsbaum, S. (2013). Distributed computing through combinatorial topology. Newnes.

