

Análise de complexidade Estruturas de Dados

Bruno Prado

Departamento de Computação / UFS

- O que é eficiência?
 - Tempo ou esforço empregado para realizar algo
 - Otimização do uso dos recursos

- Qual a história e por que era importante?
 - Os recursos computacionais eram muito limitados
 - ▶ Grande consumo de potência e uso compartilhado

- ► Por que hoje é importante?
 - Restrições de custo
 - ► Baixo consumo de potência

- Quais são os tipos de complexidade computacional?
 - ► Tempo: número de passos executados
 - Espaço: tamanho da alocação em memória

- Indicador de eficiência de execução do algoritmo
 - Métrica: número de passos executados
 - ▶ Problema: ordenação de sequência com n números $E_1, E_2, \ldots, E_{n-1}, E_n$ para gerar uma sequência ordenada $E'_1, E'_2, \ldots, E'_{n-1}, E'_n$

- Indicador de eficiência de execução do algoritmo
 - Métrica: número de passos executados
 - ▶ Problema: ordenação de sequência com n números $E_1, E_2, \ldots, E_{n-1}, E_n$ para gerar uma sequência ordenada $E'_1, E'_2, \ldots, E'_{n-1}, E'_n$

- Indicador de eficiência de execução do algoritmo
 - Métrica: número de passos executados
 - ▶ Problema: ordenação de sequência com n números $E_1, E_2, \ldots, E_{n-1}, E_n$ para gerar uma sequência ordenada $E'_1, E'_2, \ldots, E'_{n-1}, E'_n$

Quantos passos são realizados?

Ordenação por seleção

```
// Padrão de tipos por tamanho
tinclude <stdint.h>
// Procedimento de ordenação por seleção
void selection_sort(uint32_t* V, uint32_t n) {
for(uint32_t i = 0; i < n - 1; i++) {
    uint32_t min = i;
    for(uint32_t j = i + 1; j < n; j++)
        if(V[j] < V[min]) min = j;
    if(i != min) trocar(&V[i], &V[min]);
}
</pre>
```

Ordenação por seleção

Número de passos =
$$(n-1) + (n-2) + \cdots + 2 + 1$$

= $\frac{(n-1)[1+(n-1)]}{2} \approx n^2$

Ordenação por inserção

Ordenação por inserção

n < Número de passos $< n^2$

- Como calcular a quantidade de passos?
 - Análise depende somente do tamanho da entrada n
 - Demais trechos do código são constantes

```
// Padrão de tipos por tamanho
   #include <stdint.h>
   // Procedimento de exemplo
   void exemplo(uint32_t n) {
       c1();
5
       for(uint32_t i = 0; i < n; i++)
6
           c2();
           for(uint32_t j = 0; j < n; j++)
8
               c3();
9
                for(uint32\_t k = 0; k < n; k++)
10
                    c4();
11
12
```

- Como calcular a quantidade de passos?
 - Expressão em função do valor de n
 - ▶ Sub-rotinas c1, c2, c3 e c4 não dependem de n

exemplo(n) =
$$c1 + n \times \{c2 + n \times [c3 + (c4 \times n)]\}\$$

= $c1 + c2 \times n + c3 \times n^2 + c4 \times n^3$

- Como obter o tempo consumido?
 - Entrada de tamanho 1.000
 - Valores de

```
c1 = 200 \text{ ns}, c2 = 150 \text{ ns}, c3 = 250 \text{ ns} e c4 = 100 \text{ ns}
```

```
exemplo(1000) = 200 \text{ ns} + 150 \text{ ns} \times 10^3 + 250 \text{ ns} \times 10^6 + 100 \text{ ns} \times 10^9

= (0,0000002 + 0,00015 + 0,25 + 100) \times 10^9 \text{ ns}

= 100,2501502 \times 10^9 \text{ ns}

\approx 100 \text{ s}
```

- Como obter o tempo consumido?
 - Quanto maior o valor do tamanho da entrada n, maior é o domínio do fator de maior grau da função
 - Para um valor de n suficientemente grande $n > n_0$

$$exemplo(n) \le g(n)$$

$$g(n) = c \times n^3$$

- Análise assintótica
 - ► Valores das constantes dependem da máquina
 - ► Com $n \to \infty$ se analisa a ordem das funções

$$\lim_{n \to \infty} \frac{\mathsf{exemplo}(n)}{\mathsf{g}(n)} = \begin{cases} 0 & \mathsf{exemplo}(n) < \mathsf{g}(n) \\ k & \mathsf{exemplo}(n) = \mathsf{g}(n) \\ \infty & \mathsf{exemplo}(n) > \mathsf{g}(n) \end{cases}$$

- Indicador de eficiência de memória do algoritmo
 - Métrica: tamanho da alocação em memória
 - ▶ Problema: ordenação de sequência com n números $E_{1,}E_{2,}\ldots,E_{n-1},E_{n}$ para gerar uma sequência ordenada $E'_{1},E'_{2},\ldots,E'_{n-1},E'_{n}$

- Indicador de eficiência de memória do algoritmo
 - Métrica: tamanho da alocação em memória
 - ▶ Problema: ordenação de sequência com n números $E_1, E_2, \ldots, E_{n-1}, E_n$ para gerar uma sequência ordenada $E'_1, E'_2, \ldots, E'_{n-1}, E'_n$

- Indicador de eficiência de memória do algoritmo
 - Métrica: tamanho da alocação em memória
 - ▶ Problema: ordenação de sequência com n números $E_1, E_2, \ldots, E_{n-1}, E_n$ para gerar uma sequência ordenada $E'_1, E'_2, \ldots, E'_{n-1}, E'_n$

Quantas posições de memória são utilizadas?

- Como calcular a memória alocada?
 - Expressão em função do valor de entrada n
 - Constantes dependem do tamanho do dado

- Como calcular a memória alocada?
 - Expressão em função do valor de entrada n
 - Constantes dependem do tamanho do dado

$$insertion_sort(n) = c_{uint32\ t} \times n + c_{uint32\ t} \times 3$$

- Como calcular a memória alocada?
 - Expressão em função do valor de entrada n
 - Constantes dependem do tamanho do dado

```
// Padrão de tipos por tamanho
tinclude <stdint.h>
// Procedimento de exemplo

void exemplo(uint32_t* V, uint32_t n) {
    V = (uint32_t*)(malloc(n * sizeof(uint32_t)));
    for(uint32_t i = 0; i < n; i++)
        V[i] = rand();
}</pre>
```

- Como calcular a memória alocada?
 - Expressão em função do valor de entrada n
 - ► Constantes dependem do tamanho do dado

$$exemplo(n) = c_{uint32\ t} \times n + c_{uint32\ t} \times 2$$

- Como calcular a memória alocada?
 - Quanto maior o valor do tamanho da entrada n, maior é o domínio do fator de maior grau da função
 - Para um valor de n suficientemente grande $n > n_0$

$$exemplo(n) \le g(n)$$

$$g(n) = c \times n$$

- Análise assintótica
 - Valores das constantes dependem da máquina
 - ► Com $n \to \infty$ se analisa a ordem das funções

$$\lim_{n \to \infty} \frac{\mathsf{exemplo}(n)}{\mathsf{g}(n)} = \begin{cases} 0 & \mathsf{exemplo}(n) < \mathsf{g}(n) \\ k & \mathsf{exemplo}(n) = \mathsf{g}(n) \\ \infty & \mathsf{exemplo}(n) > \mathsf{g}(n) \end{cases}$$

Ordem de crescimento

Classes de complexidade para entrada n

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2 ⁿ	n!
10 ¹	3,3	10 ¹	$3,3 \times 10^{1}$	10 ²	10 ³	10 ³	$3,6 \times 10^{6}$
10 ²	6, 6	10 ²	$6,6 \times 10^{2}$	10 ⁴	10 ⁶	$1,3 \times 10^{30}$	9, 3 × 10 ¹⁵⁷
10 ³	10	10 ³	$1,0 \times 10^{4}$	10 ⁶	10 ⁹	-	-
10 ⁴	13	10 ⁴	$1,3 \times 10^{5}$	10 ⁸	10 ¹²	-	-
10 ⁵	17	10 ⁵	$1,7 \times 10^{6}$	10 ¹⁰	10 ¹⁵	-	-
10 ⁶	20	10 ⁶	$2,0 \times 10^{7}$	10 ¹²	10 ¹⁸	-	-

Exemplo

- Calcular a complexidade de tempo e de espaço do algoritmo fatorial
 - Descrever sua implementação iterativa
 - Tudo deve ser claramente justificado

$$Fatorial(n) = \begin{cases} 1 & n = 0 \\ n \times Fatorial(n-1) & n > 0 \end{cases}$$

Notação O

- ► Formalização da complexidade dos algoritmos
 - Notações matemáticas (análise assintótica)
 - Melhor caso (Ω)
 - ► Pior caso (O)
 - Caso médio (Θ)

Notação O

- Função de busca sequencial
 - ▶ Descrita pela equação $busca(n) = c_A + c_B \times n$

```
// Padrão de tipos por tamanho

#include <stdint.h>
// Procedimento de busca

int32_t busca(int32_t elem, int32_t V[], uint32_t n) {
    int32_t r = -1;
    for(uint32_t i = 0; r == -1 && i < n; i++)
        if(V[i] == elem)
        r = i;
    return r;
}</pre>
```

Melhor caso

- O que é a análise de melhor caso de um algoritmo?
 - Situação com menor número de passos realizados
 - ► Estabelece um limitante inferior ou melhor caso

Melhor caso

- O que é a análise de melhor caso de um algoritmo?
 - Situação com menor número de passos realizados
 - Estabelece um limitante inferior ou melhor caso
- Busca sequencial pelo elemento 33
 - Primeira ocorrência
 - Vetor possui 1.000 elementos sem repetições

Melhor caso

- Análise de melhor caso da busca sequencial
 - Existem constantes positivas c e n_0 tal que $0 \le cg(n) \le busca(n)$, para todo $n \ge n_0$, logo $\Omega(busca(n)) = \Omega(g(n)) = \Omega(c_A + c_B) = c_{MC}$

Departamento de Computação / UFS

Pior caso

- O que é a análise de pior caso de um algoritmo?
 - Descreve a situação com maior número de passos
 - ► Estabelece um limitante superior

Pior caso

- O que é a análise de pior caso de um algoritmo?
 - Descreve a situação com maior número de passos
 - Estabelece um limitante superior
- Busca sequencial pelo elemento 14
 - Última ocorrência
 - Vetor possui 1.000 elementos sem repetições

Pior caso

- Análise de pior caso da busca sequencial
 - Existem constantes positivas $c e n_0$ tal que $0 \le busca(n) \le cg(n)$, para todo $n \ge n_0$, logo $O(busca(n)) = O(cg(n)) = O(c_A + c_B \times n) = c_{PC} \times n$

f(n) < cg(n)

Notação O

- Propriedades da notação O
 - ► Termos constantes: O(c) = O(1)
 - Multiplicação por constantes: $O(c \times f(n)) = O(f(n))$
 - Adição: $O(f_1(n)) + O(f_2(n)) = O(|f_1(n)| + |f_2(n)|)$
 - ▶ Produto: $O(f_1(n)) \times O(f_2(n)) = O(f_1(n) \times f_2(n))$

- ▶ Não confundir com caso prático ou real
 - Observa o comportamento real do algoritmo
 - Utiliza dados estatísticos

- Não confundir com caso prático ou real
 - Observa o comportamento real do algoritmo
 - Utiliza dados estatísticos
- Busca sequencial por um elemento qualquer
 - São executadas na busca entre 1 e n iterações
 - Vetor possui 1.000 elementos sem repetições

- Análise de caso médio da busca sequencial
 - Existem constantes positivas c e n_0 tal que $0 \le c_1 g(n) \le busca(n) \le c_2 g(n)$, para todo $n \ge n_0$, logo $\Omega(c_{MC}) \le busca(n) \le O(n)$

$$c_1G(N) \leq f(N) \leq c_2G(N)$$

ightharpoonup Ordem exata de execução de um algoritmo f(n)

$$f(n) = \Omega(c_1g(n)) e f(n) = O(c_2g(n))$$

$$\downarrow$$

$$f(n) = \Theta(g(n))$$

Exemplo

 Calcule a complexidade de tempo e espaço do código abaixo, utilizando as 3 notações vistas

```
// Padrão de tipos por tamanho
  #include <stdint.h>
   // Procedimento de exemplo
   void exemplo(uint32_t n) {
       int a[] = (int*)(malloc((n*n+10) * sizeof(int)));
5
       for(int i = 0; i < 10; i++)
6
           a[i] = 1:
       for(int i = 0; i < n; i++) {
8
           int b = 3:
9
           for(int j = 0; j < n; j++) {
10
                a[i][i] = b * a[i][i];
11
                for(int k = 0; k < 10; k++)
12
                    a[i][i]=a[i][i] * a[k];
13
14
15
       for(int i = n; i < n * n; i++)
16
           a[i] = a[i] + 2;
17
18
```

Exercícios

- Explique porque é utilizada a análise assintótica e qual a importância de utilização da notação O
- Descreva com suas palavras o que você entende por pior caso, melhor caso e caso médio
- Verifique como calcular a complexidade de algoritmos implementados recursivamente