Phylogeny: construction, visualization and interpretation

February 2023

Erkison Ewomazino Odih SEQAFRICA, University of Ibadan, Nigeria University of Copenhagen, Denmark

Outline

- Phylogeny inference from SNPs
- Phylogenetic tree construction
- Phylogenetic tree interpretation
- Phylogenetic tree visualization Microreact

Phylogeny

- Phylogeny represents the evolutionary relationships and relatedness between a group of organisms.
- Inferred from single nucleotide polymorphisms (SNPs)
- SNPs are allelic nucleotide variants at given positions in the genome.
- For phylogeny analyses, SNPs are assumed to be:
 - Independent
 - Random

1. Select reference and map reads to reference

• The closer the reference to the sample data, the better.

Software: BWA mem, samtools, Mauve...

2. Call SNPs / variant calling and filtering of low quality SNPs

Reference sequence

Software: Samtools, VarScan, bcftools...

3. Filter recombination (optional)

- Remove SNPs due to recent recombination events e.g mobile elements
- Often identified by relative SNP densities (clustering) along the alignment

Software: Gubbins...

- 4. Concatenate filtered SNPs to create pseudogenomes and a pseudoalignment.
 - Constructed from only shared positions in all genomes and reference

5. Construct phylogenetic tree from pseudoalignment using chosen method and algorithm.

Phylogenetic tree interpretation

- Taxa are on the tree tips/leaves
- Nodes: hypothetical taxa ancestors
- Branches connect nodes and taxa
- Topology: branching structure of a tree
- Clade: taxa sharing a unique common ancestor
- **Bootstraps:** proportion of multiple replicate trees supporting each node.
- Root: more distantly related to all taxa on the tree;
 tells direction of evolution

Phylogenetic tree interpretation

Reading phylogenetic trees

- Trees depict branching history; topology most important.
- Different orientations, same topology.
- Unless otherwise indicated, branch lengths are meaningless; avoid inferring temporal information that is not shown
- Branch lengths, when indicated, reflect the amount of evolutionary change as well as the passage of time.

Phylogenetic tree interpretation: Misconceptions

Evolutionary timeline flows from tips/leaves

2. Related species have proximal leaves

Phylogenetic tree interpretation: Misconceptions

3. Genetic change occurs only at nodes

Fact:

- Changes accumulate in taxa over time and are present along branches
- Nodes simply represent (hypothetical) common ancestors between taxa
- Shared ancestor; divergence event
- Unique ancestor

4. Related species have fewer connecting nodes

Phylogenetic tree visualisation: Microreact

- A flexible, interactive software/web application for easy visualization of datasets consisting of a combination of trees, maps, timelines, and associated metadata.
- Input:
 - Data file: Comma separated values (.csv) format; can contain a combination of textual metadata, locations and dates.
 - Optional tree file: Newick (.nwk) format.
- Output: interactive tree, map, timeline, and table.

Phylogenetic tree visualisation: Microreact

Sample data file

id	latitude	longitude	Country	Country_colour	Country_shape	Pedalism
Bovine	46.227638	2.213749	France	Red	square	Four
Gibbon	15.870032	100.992541	Thailand	Green	circle	Two
Orangutan	-0.589724	101.3431058	Sumatra	Blue	circle	Two
Gorilla	1.373333	32.290275	Uganda	#CC33FF	circle	Two
Chimp	-0.228021	15.827659	Congo	Orange	circle	Two
Human	55.378051	-3.435973	UK	#CCFF33	circle	Two
Mouse	40.463667	-3.74922	Spain	#00FFFF	square	Four

https://microreact.org/instructions

Mandatory column

id – unique identifier for each data row

Optional columns

latitude, longitude – geographic columns

year, month, day – temporal columns

<custom-name> — other metadata

<column-name>__colour - specify colour

<custom-name>__shape - specify shape

Phylogenetic tree visualisation: Microreact

Source: https://microreact.org/project/N1TRn11L

Microreact benefits

- Powerful visualization and data exploration
- Visualization can be shared as a permanent web link among collaborators.
- The web link can be embedded within publications to enable readers to explore and download the data.
- Simple and easy-to-use, yet powerful

Microreact demo

ORIGINAL RESEARCH

published: 07 March 2022 doi: 10.3389/fmed.2022.846051

Rectal Colonization and Nosocomial Transmission of Carbapenem-Resistant Acinetobacter baumannii in an Intensive Care Unit, Southwest Nigeria

OPEN ACCESS

Edited by:

Spyros Pournaras, National and Kapodistrian University of Athens, Greece

Reviewed by:

Nabil Karah, Umeå University, Sweden Konstantina Dafopoulou, University Hospital of Larissa, Greece Erkison Ewomazino Odih^{1,2*‡}, Emmanuel Oladayo Irek^{3‡}, Temitope O. Obadare³, Anderson O. Oaikhena¹, Ayorinde O. Afolayan¹, Anthony Underwood^{4,5}, Anthony T. Adenekan⁶, Veronica O. Ogunleye⁷, Silvia Argimon^{4,5}†, Anders Dalsgaard², David M. Aanensen^{4,5}, Iruka N. Okeke¹ and A. Oladipo Aboderin⁸*

The Fleming Fund | SEQAFRICA

Thank you

This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

