

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

Лабораторная работа №7

по дисциплине «Архитектура ВМиС»

Студент группы: <u>ИКБО-04-20</u>	Xан А.А (Фамилия студента)
Преподаватель	<u>Железняк Л.М.</u> (Фамилия преподавателя)

Содержание

ВВЕДЕНИЕ	2
Цель лабораторной работы	
Порядок выполнения работы	
Выполнение работы	
Таблица истинности	
Контрольные вопросы	
ВЫВОДЫ	
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	

введение

Нам необходимо смоделировать логическую схему 3-х разрядного мультиплексора 8:1 с использованием параметрических элементов при помощи текстового редактора Quartus II. Исследовать работу схемы с использованием сигнального редактора.

Цель лабораторной работы

Приобретение навыков использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментальное исследование счетчиков и регистров, построенных на их основе.

Порядок выполнения работы

- 1. Изучить правила построения и принцип работы триггеров и построение на их основе логических схем.
- 2. Нарисовать электрическую схему по указанию преподавателя при помощи графического редактора САПР QUARTUS II. и произвести симуляцию работы схемы, зарисовать диаграммы работы и по ее результатам заполнить таблицу истинности смоделированной схемы.
- 3. Спроектировать эту же электрическую схему, но с использованием параметрических элементов САПР QUARTUS II, проверить ее работу в сигнальном редакторе и оценить временные задержки в схеме.
- 4. Спроектировать эту же электрическую схему, но и использованием готовых элементов из библиотеки примитивов САПР QUARTUS II, проверить ее работу в сигнальном редакторе и по ее результатам заполнить таблицу истинности смоделированной схемы.
- 5 Ответить на контрольные вопросы, оформить отчет о выполненной работе.

Выполнение работы

Задание варианта: 3-х разрядный мультиплексор 8:1.

Строение мультиплексора содержит 8 информационных входов D0-D7, 3 входа выбора S0-S2 и один выход F.

Спроектировать электрическую схему, с использованием параметрических элементов САПР QUARTUS II, проверить ее работу в сигнальном редакторе и оценить временные задержки в схеме.

```
SUBDESIGN 'lab22'
    \Box (
     s0,s1,s2:INPUT;
3
     d0,d1,d2,d3,d4,d5,d6,d7:INPUT;
5
     f0:OUTPUT;
 6
7
     BEGIN
     f0=(d0 AND !s0 AND !s1 AND !s2) OR
8
         (dl AND s0 AND !s1 AND !s2) OR
9
10
         (d2 AND !s0 AND s1 AND !s2) OR
11
        (d3 AND s0 AND s1 AND !s2) OR
12
        (d4 AND !s0 AND !s1 AND s2) OR
13
        (d5 AND s0 AND !sl AND s2) OR
14
        (d6 AND !s0 AND s1 AND s2) OR
15
        (d7 AND s0 AND s1 AND s2);
16 END;
17
```

Рис. 1. - Описание схемы на языке AHDL.

Построенная схема не имеет задержки.

Диаграмма результата работы программы

Рис. 2. - Результаты моделирования работы схемы в сигнальном редакторе

Как можно заметить, она в точности повторяет диаграмму работы первой принципиальной схемы.

Таблица истинности

S2S1S0	D7D6D5D4D3D2D1D0	F
000		1
001		0
010		0
011	000001	0
100	0000001	0
101		0
110		0
111		0
000		0
001		1
010		0
011	0000010	0
100	0000010	0
101		0
110		0
111		0
000		0
001		0
010		1
011	0000100	0
100	0000100	0
101		0
110		0
111		0
000		0
001		0
010		0
011	0001000	1
100	0001000	0
101		0
110		0
111		0

0 0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1

Контрольные вопросы

1. <u>Объясните понятие «параметрический элемент». Какие параметрические элементы допступны в CAПР QUARTUS II?</u>

Параметрический элемент — это один или несколько конструктивных элементов, которые можно сохранять и повторно использовать в других проектах.

Параметрические элементы CAПР QUARTUSII

Counter

Входные выводы		
Имя вывода	Описание	
data []	Параллельный вход данных счетчика	
clock	Вход счетных импульсов	
clk_en	Разрешение синхронизации.	
cnt_en	Разрешение счета	
updown	Управление направлением счета (1 = сложение, 0 = вычитание)	
aclr	Асинхронный сброс входов	
aset	Асинхронная установка входов	
aload	Асинхронная загрузка входов. Установка счетчика в значение data[].	
sclr	Синхронный сброс входов. Сброс счетчика следующим тактовым импульсом	
sset	Синхронная установка входов. Установка счета следующим тактовым импульсом.	
sload	Синхронная загрузка входов. Загрузка в счетчик значения data[] следующим	

тактовым импульсом.

Выходные выводы		
Имя вывода	Описание	
q[]	Выход счетчика	
eq [150]	Декодированный выход счетчика. Высокий активный уровень появляется в момент, когда счетчик достигает заданного значения.	
cout	Перенос в старший разряд	
	Параметры	
Параметр	Описание	
LPM_WIDTH	Разрядность счетчика или входных значений data[] и выходных q[].	
LPM_DIRECTION	Может принимать значения "UP", "DOWN" или "UNUSED". Если этот параметр используется, то вход updown не должен быть подключен. Если вход updown не подключен, то значение LPM_DIRECTION по умолчанию — "UP"	
LPM_MODULS	Максимальный счет, плюс один. Число уникальных состояний в цикле счетчика. Если введенное значение больше, чем LPM_MODULUS параметр, поведение счетчика не определено.	
LPM_AVALUE	Постоянное значение, которое загружается, когда aset высок. Если введенное значение больше чем <modulus>, поведение счетчика - неопределенный (X) логический уровень, где</modulus>	

	<modulus> - LPM_MODULUS. Параметр ограничен значением в 32 бита.</modulus>
LPM_SVALUE	Постоянное значение, которое загружается по переднему фронту тактовых импульсов, когда sset или sconst высок. Должен Использоваться, если sconst используется.
LPM_HINT	Позволяет определять специфические Altera- параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

Multiplier

Входные выводы		
Имя вывода	Описание	
dataa[]	Множимое	
datab[]	Множитель	
sum[]	Частичная сумма	
clock	Вход тактовых импульсов	
clken	Разрешение использования тактового входа	
aclr	Асинхронный сброс	
Выходные выводы		
Имя вывода	Описание	
result[]	result = dataa [] * datab [] + sum. The product LSB is aligned with the sum LSB.	

Параметры	
Параметр	Описание

LPM_WIDTHA	Разрядность dataa[].
LPM_WIDTHB	Разрядность datab[].
LPM_WIDTHP	Разрядность result[].
LPM_WIDTHS	Разрядность sum []. Обязателен, даже если порт суммы не используется.
LPM_ REPRESENTATION	Тип выполняемого сравнения "SIGNED"," UNSIGNED", "UNUSED". Если значение не указанно, то по умолчанию устанавливается "UNSIGNED"
LPM_HINT	Позволяет определять специфические Altera- параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL
INPUT_A_IS_CONSTANT	Аltera параметр. Принимает значения "YES", "NO", и "UNUSED". Если dataa [] связан с постоянным значением, устанавливая INPUT_A_IS_CONSTANT "YES" оптимизирует <i>multiplier</i> по использованию ресурсов и скорости. Если опущено, значение по умолчанию - "NO".
INPUT_B_IS_CONSTANT	Аltera параметр. Принимает значения "YES", "NO", и "UNUSED". Если datab [] связан с постоянным значением, устанавливая INPUT_B_IS_CONSTANT "YES" оптимизирует <i>multiplier</i> по использованию ресурсов и скорости. Значение по умолчанию - "NO".

USE_EAB	Аltera параметр. Принимает значения "ON", "OFF", и "UNUSED". Устанавливая параметр USE_EAB "ON" позволяет QUARTUSII использовать блоки дополнительных атрибутов, чтобы использовать 4 х 4 или (8 х значение константы) стандартные блоки в АСЕХ1К и FLEX10К устройствах.
LATENCY	Altera параметр. То же, что и LPM_PIPELINE. Параметр обеспечивает совместимости с QUARTUSII проектами версии ниже 7.0. Для всех новых проектов, используется параметр LPM_PIPELINE
MAXIMIZE_SPEED	Аltera параметр. Возможные значения от 0 до 10. Если параметр используется, то QUARTUSII пытается оптимизировать данную функцию lpm_mult для скорости, а не для уменьшения занимаемой области, и отменяет установку опции Optimize в диалоговом окне Global Project Logic Synthesis (меню Assign). Если MAXIMIZE_SPEED не использован, значение опции Optimize используется вместо него. Если установлено MAXIMIZE_SPEED - 6 или выше, компилятор оптимизирует мегафункции lpm_mult для более высокой скорости; если установлено - 5 или меньше, компилятор оптимизирует для уменьшения занимаемой области.

Comparator

	Входные выводы
Имя вывода	Описание

dataa[]	datab[] сравнивается с этим значением
datab[]	Значение с которым сравнивается dataa[]
clock	Вход тактовых импульсов
clken	Разрешение использования тактового входа
aclr	Асинхронный сброс
Выходные выводы	
Имя вывода	Описание
alb	"High" (1) если dataa[] < datab[]
aeb	"High" (1) если dataa[] == datab[]
agb	"High" (1) если dataa[] > datab[]
ageb	"High" (1) если dataa[] >= datab[]
aneb	"High" (1) если dataa[] != datab[]
aleb	"High" (1) если dataa[] <= datab[]

Параметры	
Параметр	Описание
LPM_WIDTH	Разрядность входов dataa[] и datab[]
LPM_REPRESENTATION	Тип выполняемого сравнения "SIGNED", "UNSIGNED", "UNUSED". Если значение не указанно, то по умолчанию устанавливается "UNSIGNED"
LPM_PIPELINE	
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

CHAIN_SIZE	
ONE_INPUT_IS_CONSTANT	Специфический Altera - параметр.
	Принимает значения "YES", "NO", или
	"UNUSED". Обеспечивает большую
	оптимизацию, если один из входов
	постоянен. По умолчанию - "NO".

Adder Subtractor

	Входные выводы
Имя вывода	Описание
dataa[]	Первое слагаемое/ Уменьшаемое
datab[]	Слагаемое/ Вычитаемое
add_sub	Если "1" (high), операция = dataa [] +datab [] +cin. Если "0" (low), операция = dataa[]-datab[] +cin-1
clock	Вход тактовых импульсов
clken	Разрешение использования тактового входа
aclr	Асинхронный сброс

Выходные выводы	
Имя вывода	Описание
result[]	dataa [] +datab [] +cin или dataa[] -datab[] +cin-1.
cout	Обнаруживает переполнения в операциях "UNSIGNED".
overflow	Результат превышает доступную точность

	Параметры
۱	

Параметр	Описание
LPM_WIDTH	Разрядность входов dataa[],datab[],result[]
LPM_DIRECTION	Значения - "ADD", "SUB", и "UNUSED". Если не указано, значение по умолчанию "DEFAULT", в этом случае используется значение add_sub порта. Add_sub порт не может использоваться, если используется LPM_DIRECTION.
LPM_REPRESENTATION	Тип выполняемого сравнения "SIGNED"," UNSIGNED", "UNUSED". Если значение не указанно, то по умолчанию устанавливается "UNSIGNED"
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL
ONE_INPUT_IS_CONSTANT	Altera параметр. Принимает значения "YES", "NO", и "UNUSED". Обеспечивает большую оптимизацию, если один вход постоянный. Если не указано, значение по умолчанию - "NO"
MAXIMIZE_SPEED	Аltera параметр. Возможные значения от 0 до 10. Если параметр используется, то QUARTUSII пытается оптимизировать данную функцию lpm_mult для скорости, а не для уменьшения занимаемой области, и отменяет установку опции Optimize в диалоговом окне Global Project Logic Synthesis (меню Assign). Если MAXIMIZE_SPEED не использован, значение опции Optimize используется вместо него. Если установлено MAXIMIZE_SPEED – 6 или выше,

компилятор оптимизирует мегафункции
lpm_mult для более высокой скорости; если
установлено - 5 или меньше, компилятор
оптимизирует для уменьшения
занимаемой области.

Absolute Value

Входные выводы	
Имя вывода	Описание
data []	Число со знаком

Выходные выводы	
Имя вывода	Описание
result[]	Абсолютное значение data [].
overflow	

Параметры	
Параметр	Описание
LPM_WIDTHA	Разрядность data [] и result[]
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

Divider

Входные выводы	
Имя вывода	Имя вывода
numer[]	Числитель
denom[]	Знаменатель
clock	Вход тактовых импульсов
clken	Разрешение использования тактового входа
aclr	Асинхронный сброс
Выходные выводы	
Имя вывода	Описание
quotient[]	Частное
remain[]	Остаток

Параметры	
Параметр	Описание
LPM_WIDTHN	Разрядность numer[] и quotient[].
LPM_WIDTHD	Разрядность denom[] и remain[].
LPM_NREPRESENTATION	Определяет параметр числителя "SIGNED" или "UNSIGNED" Сейчас поддерживается только "UNSIGNED".
LPM_DREPRESENTATION	Определяет параметр знаменателя "SIGNED" или "UNSIGNED" Сейчас поддерживается только "UNSIGNED"
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

2. <u>Объясните принцип работы счетчика, построенного на триггерах.</u> <u>Какие типы счетчиков существуют?</u>

Счетчик - это устройство, которое служит для отслеживания количества каких-либо событий.

Счетчик - это автомат, служащий для учета количества событий.

Счётчик на D-триггерах, 1 элемент меняет на противоположное значение, а на остальные последующие подаётся отрицание предыдущего D-триггера.

Счетчики классифицируются по следующим параметрам:

- 1. по разрядности
 - 2.
 - суммирующие
 - вычитающие
 - реверсивные
 - с произвольным порядком пересчета
 - 3.
 - синхронные
 - асинхронные
- 4. по типу формирования переноса внутри счетчика
 - с последовательным
 - с параллельным
 - с комбинированным
 - 5.
 - с функцией установки произвольного числа
 - с установкой в ноль

Счетчик называют полным, если количество устойчивых состояний на выходе равно 2^n , где n-число выходов счетчика

3. <u>Объясните назначение пунктов меню Edit Ports/Parameters.</u>

Для редактирования параметров и входов/выходов схемы необходимо Properties. Во вкладке Ports можно выбрать необходимые входы/выходы комбинационный схемы,

4. Чем ограничивается максимальная скорость работы счетчика? Какова максимальная частота работы счетчика разработанного в ходе выполнения лабораторной работы? В зависимости как реализовано соединение триггеров, последовательно или параллельно, параллельно — минимально, последовательно — максимально.

Я разработала параллельную схему, т.е. 1 такт нужен.

выводы

В данной лабораторной работе я приобрела навыки использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментально исследовал счетчики и регистры, построенных на их основе.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Головков А., Пивоваров И., Кузнецов И. Компьютерное моделирование и проектирование радиоэлектронных средств. Учебник для вузов. Стандарт третьего поколения.:- СПб.: 2015. 208 с.
- 2. Соловьев В.В., Климович А. Логическое проектирование цифровых систем на основе программируемых логических интегральных схем. М.: Горячая линия Телеком, 20011. 376 с.
- 3. Стешенко В. ПЛИС фирмы ALTERA: элементная база, система проектирования и языки описания аппаратуры М.: Додека, 2010. 576 с.
- 4. Антонов А.П. Язык описания цифровых устройств AlteraHDL: Практический курс. М.: ИП «Радиософт», 2013. 224 с.
- 5. Ефремов Н.В. Введение в систему автоматизированного проектирования Quartus II. Учебное пособие. М.: ГОУ ВПО МГУЛ, 2011. 147 с.