

AIRLINE DELAYS

TEAM:

Ashley, Gopi, Kiena, Tracy, Zainab

BOARDING PASS

• FLIGHT

B345

• GATE

D8

• SEAT

29E

Project Overview

25%-30%
DELAYS

Every year, approximately 25-30% of flights are delayed

\$28B

| COST

••••••

Delays in flights cost passengers and the operations approximately more than \$28 billion

Purpose

01 02

Which airline has the most delayed flights?

Which routes have the most delayed occurrences?

03

Will flying time impact delay occurrences?

Which date of the week will have the most delay? Weekend vs Weekday

Which airport (departure/arrival) is the worst?

BOARDING PASS

Problem Statement

NOTE:

- Predicting Flight Delays
- Identify Key Factors causing Delay

• FLIGHT

B345

• GATE

D8

SEAT

29E

Percentage of Delayed Flights by Airline

Flight Delays by Day of the Week and Airport

the Week	
Day of the Week	
Sunday	8,491
Monday	
Tuesday	
Wednesday	
Thursday	12,826
Friday	
Saturday	6,091

Delay Occurrences of each Airport by the Day of the Week

Sum of Dep Del15

Flight Delays and Route Distances

Routes with the Most Delays

BOARDING PASS

Machine Learning Model

Supervised Learning

- Logistic Regression Model
- Balanced Random Forest Classifier
- Easy Ensemble AdaBoost Classifier

Machine Learning Log Regression (Logistic Regression Model)

```
from sklearn.metrics import accuracy score
          print(accuracy score(y test, y pred))
          0.8239913320531662
In [49]:
          # Print the imbalanced classification report
          print(classification report imbalanced(y test, y pred))
                                                                                iba
                             pre
                                                                      geo
                                                                                           sup
                            0.83
                                      1.00
                                                 0.03
                                                           0.90
                                                                     0.16
                                                                                0.03
                                                                                         76582
                            0.67
                                      0.03
                                                 1.00
                                                           0.05
                                                                     0.16
                                                                                0.02
                                                                                         16635
         avg / total
                            0.80
                                      0.82
                                                 0.20
                                                           0.75
                                                                     0.16
                                                                                0.03
                                                                                         93217
```


Constraints of the current model and planning for the future

CONSTRAINTS

Current Data set solely deals with the month of January. Given more time we would have included the full 12 months in the year.

PROPOSAL FOR THE FUTURE

- 1. Trying new datasets to include other routings, including international flights.
- 2. Test the Machine Learning model with other datasets.