CSE250: Circuits and Electronics Spring 2023 Practice Problems Set 1

1.	Calculate the amount of charge represented by 6.667 <i>billion An</i> protons.	swer: 1.0681× 10 ⁻⁹
2.	If the potential difference between two points is $60 V$, how much energy is expended to bring $8 mC$ from one point to the other?	Answer: ±0.48 J
3.	How much charge passes through a radio battery of 9 <i>V</i> if the energy expended is 72 <i>J</i> ?	Answer: ±8 C
4.	To move charge q from point b to point a requires 25 J . Find the voltage drop v_{ab} if: (a) $q=5$ C , (b) $q=-10$ C .	(b) - 2.5 V
5.	If 10 J work is done on a – 2 C charge in moving it from point A to point B, where $VB = 20 V$, what is the potential of point A?	Answer: 25 V
6.	The total charge entering a terminal is given by $q=(10-10e-2t)\ mC$. Calculate the current at $t=0.5\ s$.	
7.	A home electric heater draws 10 <i>A</i> when connected to a 115 <i>V</i> outlet. How much energy is consumed by the heater over a period of 6 <i>hours</i> ?	Answer: 6.9 kWh

8. Find the power supplied/absorbed by each of the elements shown in the circuit below.

Answer: $-180 W_1$

Answer: -180 W, 72 W, 54 W, 28 W, 56 W, -30 W

9. For the network shown below,

a. Determine the open-circuit voltage V_L .

b. If the 2.2 $k\Omega$ resistor is short circuited, what is the new value of V_L ?

c. Determine V_L if the 4.7 $k\Omega$ resistor is replaced by an open circuit.

Answer: 6.13 V, 9 V, 9 V.

10. Find R_3 , I_3 , I_2 , I, R_T , and E.

Answer: 12, 1A, $\frac{4}{3}$ A, $\frac{11}{3}A, \frac{36}{13}A,$ 12 V

11. Assuming identical supplies, determine the current I and resistance Answer: 3 A, 2Ω *R* for the parallel network shown below.

12. Given the circuit below, use KVL to find the branch voltages V_1 to Answer: -9 V, 6 V V_4 .

-11 V, 7 V

13. Obtain v_1 through v_3 in the following circuit.

Answer: 2 V, -22 V, 10 V.

Answer: 16 V, -8 V.

14. Find V_1 and V_2 in the following circuit.

15. Using the voltage divider rule, find the unknown resistance for the Answer: $1.5 M\Omega$. configuration below.

