CENG 463 Machine Learning

Lecture 04 - Linear Regression

Example: House prices according to area

- Supervised Learning: The "right answer" for each example in the data is given.
- Regression Problem: Predict real-valued output

Training set for house pricing:

N	otat	ion:

		I	m = number of training
Size in fe	et ² (x)	Price in \$1000's (y)	examples
210	4	460	v - "ipput" verieble / feetures
141	6	232	x = "input" variable / features
153	4	315	<pre>y = "output" variable / "target"</pre>
852	2	178	variable
		•••	(x,y) = one training example
			$(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) = i^{th}$ training example

h is a function from x to y. How can we represent h?

Linear regression with one variable. i.e. Univariate linear regression.

- Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- θ_i 's are parameters.

- Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- θ_i 's are parameters. How to choose them?
- Choose θ_i 's so that $\mathbf{h}_{\theta}(\mathbf{x})$ is close to \mathbf{y} for our training examples.

$$\min_{\theta_0 \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\min J(\theta_0, \theta_1)$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

What is J(0,1)?

What is J(0,0.5)?

Change of cost function according to θ_1 :

Change of cost function according to θ_0 and θ_1 :

- We have some function $J(\theta_0, \theta_1)$ that we want to minimize.
 - \circ Find θ_0 , θ_1 parameters that minimize J:
 - Start with some θ_0 , θ_1 .
 - Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until hopefully we end up at a minimum.

Gradient descent does NOT guarantee to reach the global minimum!

Gradient descent algorithm for two-parameter case:

repeat until convergence { $\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \text{ (for j=0 and j=1)}$

This is the derivative term, indicates the direction of step.

This number is 'learning rate', controls the size of the step we take.

Correct: Simultaneous update

$$temp_0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq temp_0$$

$$\theta_1 \coloneqq temp_1$$

Incorrect: Successive update

$$temp_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp_0$$

$$temp_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp_1$$

 Let's assume a cost function with one variable (θ₁):

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- The derivative gives the slope at that point.
 - Positive slope decreases the value of θ_1 .
 - Negative slope increases θ_1 .

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- If α is too small, gradient descent can be slow.
- If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.
- What does gradient descent do if we are already at the local minimum point?

- Gradient descent can converge to a local minimum, even with the learning rate α <u>fixed</u>.
- As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Gradient Descent for Linear Regression

We merge two things we have learned:

Gradient Descent

repeat until convergence { $\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$ } $\{ \text{for } j = 0 \text{ and } j = 1 \}$

Linear Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_j} = \partial \frac{\frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2}{\partial \theta_j}$$

Gradient Descent for Linear Regression

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_j} = \partial \frac{\frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2}{\partial \theta_j} \\
= \partial \frac{\frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2}{\partial \theta_j}$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Gradient Descent for Linear Regression

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Linear regression has a 'convex' (i.e. bowl-shaped) cost function, so we expect to reach global minimum.

Summary

- We have learned about:
 - Linear Regression Model with One Variable
 - Cost Function
 - Gradient Descent
 - Gradient Descent with Linear Regression