Основы программной инженерии

Обеспечение качества программных систем

Обеспечение качества ПО

- Методы, направленные на проектирование качественного ПО
 - Формальные спецификации
 - Синтез ПО на основе спецификаций и моделей (MDD, etc)
 - Контрактное программирование (Design by contracts)
 - И т.п.
- Методы, направленные на обеспечение качества существующего ПО

Обеспечение качества ПО. Терминология

- **Верификация** подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены
- ▶ Валидация подтверждение на основе представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены, декларируемые свойства и характеристики подтверждаются, а поставленная цель (предназначение системы, комплекса, устройства и т. д.) достигнута.

Методы обеспечения качества ПО

- По используемым формализмам
 - Формальные методы
 - Неформальные методы
- По необходимости запуска анализируемой программы
 - Динамические
 - Статические
 - Гибридные
- По уровню автоматизации
 - Ручные
 - Автоматизированные
 - Автоматические

Методы обеспечения качества

- Динамические методы
 - Тестирование
 - Профилирование
 - Динамический анализ
 - Мониторинг
 - Анализ трасс исполнения
 - Контрактное программирование
 - 0
- Статические методы
 - Формальная верификация
 - Дедуктивная верификация
 - Model checking (методы проверки модели)
 - Статический анализ
 - Трансформации программ
 - Рефакторинги
 - Модификации
 - Аудит

Формальная (дедуктивная) верификация

- Верификация подтверждение соответствия конечного продукта функциональной спецификации
- Формальная верификация доказательство корректности с помощью формальных методов
- Используемые методы и мат. аппарат
 - Пропозициональные логики
 - Темпоральные логики
 - Формальные семантики
 - Формальные преобразования программ
 - Формальные спецификации
 - Логика Хоара
 - Сепарационная логика (separation logic)
 - И т.п.
- Наиболее известные подходы:
 - Верификация методом Хоара (на основе троек Хоара)
 - Верификация по Флойду

Формальная (дедуктивная) верификация

- Достоинства:
 - В случае успеха в программе нет ошибок!
- Недостатки:
 - Формальные спецификации на порядок сложнее программ
 - Для большинства программ задача формального доказательства корректности – очень трудоёмка
 - Для некоторых случаев задача формального доказательства корректности – неразрешима
- В реальных системах при формальной верификации рассматривают часть системы и частичные спецификации
- Редко применяется для обеспечения качества программных систем общего назначения

Метод проверки моделей

- Проверка модели, проверка на модели, model checking
- Метод формальной верификации для систем с конечным числом состояний
- Позволяет проверить, удовлетворяет или нет система некоторому свойству (требованию)

Верификация по методу Model Checking

- Исследуемая система приводится к модели с конечным числом состояний (например, модель Крипке)
- Проверяемые свойства представляются формулами темпоральной логики (LTL, ALTL, CTL, CTL* и т.д.)
- Проверка модели формальная проверка выполнимости формулы на модели
 - Результат проверки:
 - Формула выполняется
 - Формула не выполняется. Контрпример.
 - Существуют методы проверки систем с $10^{100-200}$ состояний

Верификация по методу Model Checking

Верификация по методу Model Checking

- Ограничения
 - Проверяются свойства, связанные только с корректностью смены состояний
 - Не все свойства представляются в виде темпоральных формул
 - В общем случае задача NP-полная
 - В общем случае неформализуется переход от реальной системы к модели с конечным числом состояний
- Программные средства:
 - SPIN
 - NuSMV
 - •

Обеспечение качества ПО путем обнаружения ошибок

- Ошибки
 - Функциональные ошибки
 - Нефункциональные ошибки (дефекты)
- Проявление дефектов:
 - Сбои ПО
 - Зависания ПО
 - Аварийное завершение ПО
 - Уязвимости
 - Отсутствие проявлений
 - 0

Обнаружение программных дефектов

- Динамические методы:
 - Тестирование
 - Динамический анализ
- Статические методы:
 - Статический анализ
 - Верификация (частично)

- Использует исходный код ПО для анализа
- Применяется для
 - Форматирования программ
 - Вычисления программных метрик
 - Оптимизации программ
 - Распараллеливания программ
 - Преобразования программ
 - Обфускации программ
 - Деобфускации программ
 - Обнаружения дефектов

0

- Цель обнаружение дефектов в программном коде
- Использует исходный код ПО для анализа
- Позволяет проанализировать все возможные трассы исполнения
- Позволяет проанализировать все наборы входных данных
- Может быть полностью автоматизирован
- Позволяет обнаружить нефункциональные дефекты

Программные дефекты

- Основные виды дефектов:
 - Неправильная работа с буферами:
 - Переполнение буферов
 - Выход за границу массива
 - •
 - Неправильная работа с динамической памятью:
 - Утечки памяти
 - «Висячие» указатели
 - Разыменование нулевого указателя
 - •
 - Использование неинициализированных переменных
 - Ошибки работы с объектами
 - Ошибки работы с библиотечными функциями
 - Ошибки работы со строками
 - Арифметические ошибки
 - И т.п.

- Используемые методы
 - Интервальный анализ
 - Поиск достижимости
 - Анализ указателей
 - Ресурсный анализ
 - Сигнатурный анализ

0

Схема проведения СА

- Достоинства СА:
 - Обнаружение дефектов на ранних стадиях
 - Сокращение стоимости разработки, отладки, тестирования, сопровождения
- Недостатки СА:
 - Невозможность обнаруживать функциональные ошибки
 - Недостаточность информации о путях выполнения -> наличие ложных обнаружений
 - Невозможность обнаружить все ошибки статически
 - Высокие требования к вычислительным ресурсам

- Программные средства анализа кода и поиска дефектов:
 - IBM Rational Code Analyzer
 - Coverity Prevent
 - Fortify 360
 - Klocwork
 - Flexlint/PCLint
 - Splint
 - Microsoft PREFix/PreFast
 - ParaSoft C++Test
 - Frama-C
 - Aegis (http://digiteklabs.ru/aegis)
 - ...(более 20)

Методы обеспечения качества ПО

	Х-ка качества	Проблема	Обеспечение качества
1	Функциональная пригодность	Функциональные ошибки, несоответствие спецификации	Верификация; тестирование
2	Надежность	Низкая надежность	Статический анализ; тестирование
3	Удобство использования	Сложность использования	Тестирование*
4	Уровень произв-ти	Проблемы с произв-тью, ресурсами	Тестирование; профилирование динамический / стат. анализ
5	Совместимость	Несовместимость; несоответствие стандартам	Статический анализ, тестирование
6	Защищенность	Уязвимости	Статический анализ, верификация; тестирование
7	Сопровожд-ть	Сложность сопровождения	Рефакторинг, документирование
8	Переносимость	Сложность адаптации	Аудит, рефакторинг; стат. анализ