Theory of Computation '23 Endsem Time: 120 minutes, Marks: 70

Name: Roll: Marks:

Beware: Solutions are to be written in the space provided. NO EXTRA SHEET. Meaningless rambles fetch negative credits. For Problem 2-6, 1 point for writing 'I don't know'

Problem 1. (10 points) Recall

 $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA and } w \text{is a string and } w \in L(N)\}$ $EQ_{DFA,REX} = \{\langle D, R \rangle \mid D \text{ is a DFA and } R \text{ is a regular expression and } L(D) = L(R)\}$

Let R be the regular expression $a^*b(a^*b)^*$ State True or False with a **single** sentence argument.

- 1. $\langle M_1, aba \rangle \in A_{NFA}$ True. aba is accepted by M_1
- 2. $\langle M_1, bab \rangle \in A_{NFA}$ False. bab not accepted by M_1
- 3. $\langle M_1, M_2 \rangle \in EQ_{DFA,REX}$ False. M_2 is not a reg-ex
- 4. $\langle M_1, R \rangle \in EQ_{DFA,REX}$ False. $bb \in L(R)$ but $bb \notin L(M_1)$
- 5. $\langle M_2, R \rangle \in EQ_{DFA,REX}$ False. M_2 is not a DFA OR $bb \in L(R)$ but $bb \notin L(M_2)$

Rubric: +1 for correct answer, +1 for reason

Problem 2. Prove without using Rice's Theorem that the following language is undecidable

$$B_{TM} = \{ \langle M \rangle \mid M \text{ is a deterministic Turing Machine with input alphabets } a, b$$
 such that $L(M) \subseteq b(a+b)^*, L(M) \neq \emptyset \}$

Solution. We can reduce either A_{TM} or $HALT_{TM}$ to B_{TM} . +1 I will show reduction from A_{TM} . Assume there is a decider for B_{TM} , D. +1

We will show how to construct a decider R for A_{TM} . +1

Decider $R\langle M, w \rangle$: +1

- 1. Construct a new TM M_w which does the following on any input x + 1
 - If $x \neq b$ then Reject + 2 Else
 - Run M on w and Accept if M accepts w + 2
- 2. Run $D\langle M_w \rangle$. Accept if D accepts else Reject +2

Why this works (not required for full score): The language of M_w is $\{b\}$ if and only if M accepts w. Hence the decider D for B_{TM} can separate the two scenarios and decide A_{TM} . Remark:

- a. Some of you might have shown a mapping reduction instead of proving contradiction. That also works. There is also a possiblity of a general reduction and not a mapping reduction. All of those are fine.
- b. A few of you have argued that since the subsets of $b(a+b)^*$ is an uncountable set, B_{TM} is unrecognizable and hence undecidable. This is a *wrong* solution. The point is, B_{TM} itself is not a subset of $b(a+b)^*$. Rather, it is a language which contains Turing Machines that accept only such languages (which might potentially be a much much smaller set than all possible subsets of $b(a+b)^*$. We have given a small credit for this attempt.

Problem 3. $DOUBLE-SAT = \{\langle \varphi \rangle \mid \varphi \text{ is a Boolean formula satisfiable by at least two assignments }$ Prove that DOUBLE-SAT in **NP**-Complete. **Solution.**

- a. DOUBLE-SAT is in NP. This is very easy using small certificates which are two different assignments. It can be verified in polynomial time if both are satisfying or not. +2
- b. DOUBLE SAT is **NP**-hard. This can be done by reduction from SAT. Suppose φ is an instance of SAT. We create the following instance of $DOUBLE SAT : \varphi' = \varphi \wedge (x_1 \vee x_2)$, where x_1, x_2 are Boolean variables that do not occur in φ . +3

Suppose we have a YES instance φ . Then there are clearly two distinct satisfying assignments for φ' : just take the satisfying assignment for φ and make $x_1 = 1, x_2 = 0$ for one and $x_1 = 0, x_2 = 1$ for the other. Clearly φ' is a YES instance then. +3

Suppose we have a YES instance φ' . Then clearly there is at least one satisfying assignment for φ since we can simply ignore the clause $x_1 \vee x_2$ and use the fact that these variables do not occur in φ . +3.

The above reduction is trivially polynomial time. +1.

Problem 4. Say that string x is a prefix of string y if a string z exists where xz = y, and say that x is a proper prefix of y if in addition $x \neq y$. A language is prefix-free if it doesn't contain a proper prefix of any of its members. Let

 $PrefixFreeREX = \{R \mid R \text{ is a regular expression where } L(R) \text{ is prefix-free } \}$

Show that PrefixFreeREX is decidable. (Give a proper description of a Turing machine which decides this language) **Solution.**

We design a deterministic Turing Machine which decides this language

On any input $\langle R \rangle$

- 1. First check if R is a valid regular expression and Reject if not We are not penalizing for missing this
- 2. Convert R to an NFA N+3
- 3. Convert the NFA N to a DFA D + 1
- 4. Minimize the DFA D + 2
- 5. Check the following two conditions
 - There exists a path between two different final states in the minimized DFA +3
 - There exists a cycle containing at least one final state +3
- 6. If any of the above condition is TRUE, Reject otherwise Accept

Remarks: Each of the above steps is absolutely necessary. Common mistakes are: converting R to DFA directly (no algorithm is known for that), checking conditions on DFA without minimizing (might give false negatives) etc.

Problem 5. Prove that if P = NP then every language in P, except \emptyset and Σ^* is NP-complete.

We will show that any language $L \in \mathbf{P}$ is \mathbf{NP} -complete.

- 1. $L \in NP$ clearly since $P \subset NP + 2$
- 2. We do a polynomial time reduction from any language $A \in \mathbf{NP}$ to L. +2, -1 for missing polynomial time

Now the proof. This has +8 points and the evaluation is subjective depending on how much close to correctness your proof is. Please do not argue for score increments unless you have written a perfectly correct solution.

We need two observation. Firstly, since $L \notin \{\Sigma^*, \Phi, \text{ there exists a string } x \in L \text{ and a string } x' \notin L.$ Now, consider the language $A \in \mathbf{NP}$. By the assumed condition, A is also in P. Now we simply define a mapping $f: A \to L$ such that f(y) = x if $y \in A$ and f(y) = x' if $y \notin A$. The main observation is that, this function is computable in polynomial time. The reason simply is that A is decidable in polynomial time by the assumed condition.

Remark: Many of you have used a fact: problems in \mathbf{P} are reducible to each other. This is an absolutely non-trivial fact and you do not get credit for this without a proof. For example, this implies every problem in \mathbf{P} is reducible to sorting - clearly that is not true, is it?

Problem 6. Let B be the language of all palindromes over 0, 1 containing an equal number of 0s and 1s. Show that B is not context-free.

Solution.

- 1. Given any p > 0 + 1, choose the string $s = 0^p 1^{2p} 0^p + 2$. Clearly $s \in B$.
- 2. Consider any split s = uvxyz such that $|vxy| \le p$ and at least one of |v|, |y| > 0. +2 Now there could be two cases and we show that Pumping Lemma fails under both of them
 - Case 1: vxy spans only the 1's. Let |vy| = m. But then the string $uv^0xy^0z = 0^p1^{2p-m}0^p$. This is still a palindrome but does not contain equal number of 0's and 1's. +3
 - Case 2: vxy contains 0's. But now, it can be observed that vxy can either span strictly the first half or the second half. In either case, uv^0xy^0z will contain a different number of 0's in the two halves. Hence, this will not be a palindrome and hence not in B (Note that in this case, number of 0's and 1's in the pumped down string can still be equal depending on the decomposition). +4