Is a double-stranded DNA the simplest and fastest biomolecular rotary motor

Franky Djutanta^a, Bernard Yurke^b & Rizal F. Hariadi^c

^a The Biodesign Institute, Arizona State University, ^b Department of Physics, Boise State University, ^cDepartment of Physics \mathcal{E} the Biodesign Institute, Arizona State University.

UNIVERSITY

sMotivation and background

- ► Molecular rotary motors are essential for living system.
- For instance, F_0F_1 -ATP synthase converts adenosine diphosphate (ADP) into adenosine triphosphate (ATP) by rotary motion.
- ► However, to replicate a molecular rotary motor requires an uneasy process.
- ▶ dsDNA may have a potential of becoming a molecular rotary motor because of its helix shape. Under a uniform field, the helix shape may have generated moment across the axis of dsDNA.
- ► The twist motion caused by the moment will be proportional to the voltage applied.
- ► We thought of this possibility and conducted a fluid mechanics theoretical analysis by deducing from the Navier-Stokes equations.

Experimental Setup

Theoretical approach

- Molecular motors are
- ➤ The properties of the actomyosin interaction have mainly been examined at two levels: skinned muscle fibers and single molecule measurements
- Using a DNA nanotube scaffold, we have engineered artificial myosin filaments with defined organization.
- Using a DNA nanotube-based O-shaped Myosin gliding assay (O-Myo), we continuously monitored interactions between small myosin ensembles and single actin filaments.
 - Done step closer toward rigorous characterization of the lifetime of myosin motors.

dsDNA Modification

Questions

- In muscle, contraction and force generation emerge from the coordinated interactions between astronomical number of myosin motors and actin filaments.
- ► The properties of the actomyosin interaction have mainly been examined at two levels: skinned muscle fibers and
- single molecule measurements
- Using a DNA nanotube scaffold, we have engineered artificial myosin filaments with defined organization.
- ▶ Using a DNA nanotube-based O-shaped Myosin gliding assay (O-Myo), we continuously monitored interactions between small myosin ensembles and single actin filaments.
 - Done step closer toward rigorous characterization of the lifetime of myosin motors.

References