RODZAJE REZYSTORÓW

A. ZE WZGLĘDU NA BUDOWĘ I MATERIAŁ

Rezystory węglowe

Blok proszku węglowego z lepiszczem.

Zakres rezystancji: od kilku Ω do kilku M Ω .

Tolerancja: 5-20%.

Wady:

Duży szum

Niska stabilność temp.

Zalety:

Niska cena

Rezystory warstwowe

Cienka warstwa rezystywna na ceramicznym rdzeniu.

Podtypy:

Węglowe – tanie, przeciętna stabilność.

Metalowe – wysoka precyzja (do 0,1%).

Tlenkowe – odporne na temp. i wilgoć.

Rezystancje: od <1 Ω do setek M Ω .

Rezystory drutowe

Drut oporowy nawinięty na ceramiczny korpus.

Duża moc: (nawet kilkadziesiąt W).

Zakres: od ułamków Ω do kilkudziesięciu k Ω .

Stosowane dla dużej obciążalności mocowej.

Rezystory foliowe

Trawiona folia metalowa na podłożu izolacyjnym.

Najwyższa precyzja: (do ±0,01%).

Niski TCR: (< 25 ppm/°C).

Rezystancje: od 1 Ω do kilkudziesięciu M Ω .

C. REZYSTORY SPECJALNE

Warystory

Rezystancja zależna od napięcia (maleje przy przekroczeniu progu).

Zastosowanie: ochrona przeciwprzepięciowa.

Rezystory bezpiecznikowe

Łączą cechy rezystora i bezpiecznika; przepalają się przy przeciążeniu.

Rezystory pomiarowe (shunty)

Bardzo mała, stabilna rezystancja (miliomy).

Pomiar prądu przez spadek napięcia.

Wymagana duża stabilność.

PODSTAWOWE PARAMETRY REZYSTORÓW

Rezystancja znamionowa: Wartość oporu $[\Omega]$.

Tolerancja: Dopuszczalna odchyłka (np. ±1%, ±5%).

Moc znamionowa: Maks. moc rozpraszania (mW do W).

TCR: Zmiana rezystancji z temp. [ppm/°C].

Napięcie max. pracy: Maks. napięcie [V].

Szumy własne: Generowane sygnały elektryczne.

Indukcyjność/pojemność: Istotne przy wysokich częstotliwościach.