

The Normal Distribution Normal distribution - Important continuous distribution - Symmetric and bell-shaped. For the population • Mean, μ • Standard deviation, σ Probability density function $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-u)^2/2\sigma^2}$ Area under the curve represents 100% of the population Area under the curve represents 100% of the population

Standard Normal Tables

- The proportion of a normal population that is within a given distance to the mean is the same for any normal population.
- Standard normal tables summarize the probabilities of being less than Z units from the mean where μ = 0 and σ = 1.
- To use the tables, we must convert from the units in which the population items were originally measured to the number of **standard units** denoted by Z.

.

Standard normal distribution μ = 0 and σ = 1 Z: Standardized normal random variable Z = number of standard deviations away from the mean, of a specified value, x. $Z = \frac{x - \mu}{\sigma}$

		Standard	Normal Pro	babilities					
_		z	0	0.01	0.02	0.03	0.04	0.05	0.06
	\	0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
$P[Z \le z]$	Λ	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
/	\	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
/-		0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
	_	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
in in									
Table A. page	1040	0.5	0.6915	0.6950	0.0305	0.7019	0.7054	0.7088	0.7123
			0.6915	0.01	0.02	0.03	0.04	0.05	
		0.5 Z							0.06
	1040	z	0	0.01	0.02	0.03	0.04	0.05	0.06
		z 0	0 0.5000	0.01 0.4960	0.02 0.4920	0.03 0.4880	0.04 0.4840	0.05 0.4801	0.06 0.4761 0.4364
	1040	z 0 0.1	0 0.5000 0.4602	0.01 0.4960 0.4562	0.02 0.4920 0.4522	0.03 0.4880 0.4483	0.04 0.4840 0.4443	0.05 0.4801 0.4404	0.06 0.4761 0.4364 0.3974 0.3594

Area between two values

P(Z < +1.00) = 0.8413

P(Z<-1.00) = .1587

P(-1 < Z < +1) = P(Z < +1) - P(Z - 1) = 0.8413 - .1587 = .6826 = 68.26%

10

Normal Distribution Problem

$$Z = \frac{x - \mu}{\sigma}$$

A process characteristic has a mean of 3.1 and standard deviation of 1.2.

What % of the parts from the process will fall below 2.5?

Z used to work this problem is

A. +0.50 B. -0.50 C. -1.45

5 D. +1.45

The percent of the parts below 2.5 is

A. 51.99% B. 69.15% C. 48.01% D. 30.85%

11

Normal Distribution Problem

$$Z = \frac{x - \mu}{}$$

A process characteristic has a mean of 3.1 and standard deviation of 1.2.

What % of the parts from the process be greater than 3.7?

Z used to work this problem is

A. +0.50 B. -0.50 C. -1.45 D. +1.45

The percent of the parts greater than is

A. 51.99% B. 69.15% C. 48.01% D. 30.85%

. .

Normal Distribution Problem

A process characteristic has a mean of 3.1 and standard deviation of 1.2.

What % of the parts from the process will be between 2.5 and 3.7?

A. 56.22% B. 35.12% C. 38.30% D. 40.23%

What % of the parts from the process will be between 2.5 and 3.1?

A. 51.99% B. 19.15% C. 48.01% D. 30.85%

Given a process mean of 3.1 and standard deviation of 1.2, below what value will 60% of the observations fall?

What do we

 $z = \frac{x - \overline{3.1}}{}$ 1.2

know? Look for probability in

Plug into equation and solve for x.

body of table, then over to find Z.

P(Z < +z) = 0.600

 $0.25 = \frac{x - 3.1}{1.2}$

From Table: z = .25

x=(.25*1.2)+3.1=3.4

Normal Distribution Problem

 $Z = \frac{x - \mu}{}$

A process characteristic has a mean of 3.1 and standard deviation of 1.2.

(use closest in table to determine)

Below what number will 90% of the parts fall?

A. 4.64

B. 5.21

C. 3.68

D. 4.56

Above what number will 80% of the parts fall?

A. 1.78

B. 2.17

C. 3.01

D. 2.09

Independent events

When sampling from a distribution that is assumed to be normal, probabilities do not change.

When taking multiple observations from a process, each is an independent event.

For independent events: P(A and B) = P(A) * P(B)

What is the probability that 2 parts in a row taken from the process are below 1.9?

A. 0.1480 B. 0.3164 C. 0.0252 D. 0.1587

Related Assignments

See Blackboard for related assignments