```
Aufgabe 2
2.1)
Boolesche Funktion f: B^4->B^6
f(x_3, x_2, x_1, x_0) = (y_5, y_4, y_3, y_2, y_1, y_0), mit
y_5 = x_3 \wedge x_2 \wedge x_1 \wedge x_0
y_4 = (x_3 \wedge x_1) \vee (x_3 \wedge x_2)
y_3 = (x_3 \wedge x_0) \vee (x_3 \wedge x_1) \vee (x_3 \wedge x_2)
y_2 = (x_2 \wedge x_1 \wedge x_0) \vee x_3
y_1 = \{x_3 \lor x_2 \land x_1\}
y_0 = x_3 \lor x_2 \lor x_1 \lor x_0
2.2)
Die Gültigkeitsbereiche für alle fi von yi
ON(f_0) = \{0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100,
1101, 1110, 1111}
\mathrm{ON}(f_1) = \{0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111\}
ON(f_2) = \{0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111\}
ON(f_3) = \{1001, 1010, 1011, 1100, 1101, 1110, 1111\}
ON(f_4) = \{1010, 1011, 1100, 1101, 1110, 1111\}
ON(f_5) = \{1111\}
2.3)
                                                                              x_0
                                                                                                                1
                                                                                                                1
                                                                                                               1
```

1

 $y_0 = \{x_3 \lor x_2 \lor x_1 \lor x_0\}$

1

$$l_{0} = \{ \\ \neg x_{3} \land x_{2} \land x_{1} \land \neg x_{0}, \\ \neg x_{3} \land x_{2} \land x_{1} \land x_{0}, \\ x_{3} \land \neg x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land \neg x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land \neg x_{2} \land x_{1} \land \neg x_{0}, \\ x_{3} \land \neg x_{2} \land x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land x_{1} \land x_{0}, \\ x_{3} \land \neg x_{2} \land x_{0}, \\ x_{3} \land \neg x_{2} \land x_{0}, \\ x_{3} \land \neg x_{2} \land x_{1}, \\ x_{3} \land \neg x_{2} \land x_{1}, \\ x_{3} \land x_{2} \land \neg x_{1}, \\ x_{3} \land x_{2} \land x_{0}, \\ x_{3} \land x_{2} \land x_{1} \}$$

$$l_{2} = \{x_{2} \land x_{1}, x_{3} \land \neg x_{2}, x_{3} \land x_{0}, x_{3} \land x_{1}, x_{3} \land x_{2}\}$$

$$p_{2} = \{x_{2} \land x_{1} \land x_{0}, x_{3} \land x_{1} \land x_{0}\}$$

$$l_{3} = \{x_{3}\}$$

$p_3 = \{x_2 \wedge x_1, x_3 \wedge x_0, x_3 \wedge x_1\}$										
f	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
$x_2 \wedge x_1 \wedge x_0$	0	1	0	0	0	0	0	0	0	1
$x_3 \wedge x_1 \wedge x_0$	0	0	0	0	0	1	0	0	0	1
$x_2 \wedge x_1$	1	1	0	0	0	0	0	0	1	1
$x_3 \wedge x_0$	0	0	0	1	0	1	0	1	0	1
$x_3 \wedge x_1$	0	0	0	0	1	1	0	0	1	1
x_3	0	0	1	1	1	1	1	1	1	1

 x_3 Dominiert die Zeile $x_3 \wedge x_1$, $x_3 \wedge x_0$ und $x_3 \wedge x_1 \wedge x_0$. Deshalb können wir diese beiden Zeilen auslassen. Außerdem hat x_3 in den Spalten 1000 und 1100 die einzige 1. Wir können also auch diese Spalten raus lassen. Zeile $x_2 \wedge x_1$ hat in Spalte 0110 als einziger eine 1 also kann auch diese Spalte gekürzt werden. $x_2 \wedge x_1$ Dominiert auch die Zeile $x_2 \wedge x_1 \wedge x_0$. Übrig bleibt nur noch $x_3 \wedge x_1 \wedge x_0$ als Rest. Daraus folgt folgendes Minimalpolynom für y_1 . $y_1 = \{x_3 \vee x_2 \wedge x_1\}$

$$l_{0} = \{ \\ \neg x_{3} \land x_{2} \land x_{1} \land x_{0}, \\ x_{3} \land \neg x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land \neg x_{2} \land \neg x_{1} \land x_{0}, \\ x_{3} \land \neg x_{2} \land x_{1} \land \neg x_{0}, \\ x_{3} \land \neg x_{2} \land x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land \neg x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land x_{1} \land \neg x_{0}, \\ x_{3} \land x_{2} \land x_{1} \land x_{0} \}$$

$$l_{1} = \{ \\ x_{2} \land x_{1} \land x_{0}, \\ x_{3} \land \neg x_{2} \land \neg x_{1}, \\ x_{3} \land \neg x_{2} \land \neg x_{1}, \\ x_{3} \land \neg x_{2} \land x_{1}, \\ x_{3} \land x_{2} \land \neg x_{1}, \\ x_{3} \land x_{2} \land x_{0}, \\ x_{3} \land x_{2} \land x_{1} \}$$

$$l_{2} = \{x_{2} \land x_{1}, x_{3} \land \neg x_{2}, x_{3} \land x_{0}, x_{3} \land x_{1}, x_{3} \land x_{2}\}$$

$$p_{2} = \{x_{2} \land x_{1}, x_{3} \land x_{0}, x_{3} \land x_{1} \land x_{0}\}$$

$$l_{3} = \{x_{3}\}$$

$$p_{3} = \{x_{2} \land x_{1}, x_{3} \land x_{0}, x_{3} \land x_{1}\}$$

f	0111	1000	1001	1010	1011	1100	1101	1110	1111	
$x_2 \wedge x_1 \wedge x_0$	1	0	0	0	0	0	0	0	1	
$x_3 \wedge x_1 \wedge x_0$	0	0	0	0	1	0	0	0	1	
$x_2 \wedge x_1$	1	0	0	0	0	0	0	1	1	
$x_3 \wedge x_0$	0	0	1	0	1	0	1	0	1	
$x_3 \wedge x_1$	0	0	0	1	1	0	0	1	1	
x_3	0	1	1	1	1	1	1	1	1	

Durch Zeilendominanz bleiben nur x_3 und die $x_2 \wedge x_1$ übrig.

$$y_2 = \{x_3 \lor x_2 \land x_1\}$$

$$\begin{aligned} l_0 &= \{x_3 \wedge \neg x_2 \wedge \neg x_1 \wedge x_0, \\ x_3 \wedge \neg x_2 \wedge x_1 \wedge \neg x_0, \\ x_3 \wedge \neg x_2 \wedge x_1 \wedge x_0, \\ x_3 \wedge x_2 \wedge \neg x_1 \wedge \neg x_0, \\ x_3 \wedge x_2 \wedge \neg x_1 \wedge x_0, \\ x_3 \wedge x_2 \wedge x_1 \wedge \neg x_0, \\ x_3 \wedge x_2 \wedge x_1 \wedge \neg x_0, \\ x_3 \wedge x_2 \wedge x_1 \wedge x_0 \}\end{aligned}$$

$$l_{1} = \{x_{3} \wedge \neg x_{2} \wedge x_{0}, \\ x_{3} \wedge \neg x_{2} \wedge x_{1}, \\ x_{3} \wedge x_{1} \wedge x_{0}, \\ x_{3} \wedge x_{2} \wedge \neg x_{1}, \\ x_{3} \wedge x_{2} \wedge x_{0}, \\ x_{3} \wedge x_{2} \wedge x_{1}\}$$

$$l_{2} = \{x_{3} \wedge x_{0}, x_{3} \wedge x_{1}, x_{3} \wedge x_{2}\}$$

$$p_{2} = \{x_{3} \wedge x_{1} \wedge x_{0}\}$$

$$t_{2} = \{x_{3} \land x_{0}, x_{3} \land x_{1}, x_{3} \land x_{2}\}$$

$$p_{2} = \{x_{3} \land x_{1} \land x_{0}\}$$

$$p_{3} = \{x_{3} \land x_{0}, x_{3} \land x_{1}, x_{3} \land x_{2}\}$$

$$f | 1001 | 1010 | 10$$

f	1001	1010	1011	1100	1101	1110	1111
$x_3 \wedge x_1 \wedge x_0$	0	0	1	0	0	0	1
$x_3 \wedge x_0$	1	0	1	0	1	0	1
$x_3 \wedge x_1$	0	1	1	0	0	1	1
$x_3 \wedge x_2$	0	0	1	1	1	1	1

Durch Spaltendominanz kommen wir auf.

$$y_3 = \{x_3 \wedge x_0 \vee x_3 \wedge x_1 \vee x_3 \wedge x_2\}$$

$$l_0 = \{ x_3 \wedge \neg x_2 \wedge x_1 \wedge \neg x_0, x_3 \wedge \neg x_2 \wedge x_1 \wedge x_0, x_3 \wedge x_2 \wedge \neg x_1 \wedge \neg x_0, x_3 \wedge x_2 \wedge \neg x_1 \wedge x_0, x_3 \wedge x_2 \wedge x_1 \wedge x_0, x_3 \wedge x_2 \wedge x_1 \wedge \neg x_0,$$

 $x_3 \wedge x_2 \wedge x_1 \wedge x_0$

$$l_1 = \{x_3 \land \neg x_2 \land x_1, x_3 \land x_1 \land x_0, x_3 \land x_2 \land \neg x_1, x_3 \land x_2 \land x_0, x_3 \land x_2 \land x_1\}$$

$$l_2 = \{x_3 \land x_1, x_3 \land x_2\}$$

$$p_2 = \{x_3 \land x_1 \land x_0, x_3 \land x_2 \land x_0\}$$

$$p_3 = \{x_3 \land x_1, x_3 \land x_2\}$$

10 (0 1) 0 1)									
f	1010	1011	1100	1101	1110	1111			
$x_3 \wedge x_1 \wedge x_0$	0	1	0	0	0	1			
$x_3 \wedge x_2 \wedge x_0$	0	0	0	1	0	1			
$x_3 \wedge x_1$	1	1	0	0	1	1			
$x_3 \wedge x_2$	0	1	1	1	1	1			

Durch Spaltendominanz kommen wir auf $y_4 = \{x_3 \land x_1 \lor x_3 \land x_2\}$

Da y_5 sich nicht weiter vereinfachen lässt, ist das Minimalpolynom gleich der Normalform. $y_5 = \{x_3 \land x_2 \land x_1 \land x_0\}$

Aufgabe 3

3.1)

Partielle boolesche Funktion

f: D->
$$B^3$$
, mit $D=\{010,011,101,111\}$ und $f(x_2,x_1,x_0)=(y_2,y_1,y_0)$ ergibt $y_2=\{\neg x_2\wedge x_0\vee \neg x_1\}$ $y_1=\{\neg x_0\vee x_2\}$ $y_0=\{\neg x_2\vee \neg x_1\}$

3.2)

Die Wahrheitsmenge der fi von yi

$$ON(f_2) = \{0111, 101\}$$

$$ON(f_1) = \{010, 101, 111\}$$

$$ON(f_0) = \{010, 011, 101\}$$

und deren Don't care Bereiche

$$DC(f_2, f_1, f_0) = \{000, 001, 100, 110\}$$

3.3)

 y_2

 y_1

 y_0

