Aashish Goyal

Ph.D. Candidate, University of British Columbia

Vancouver, BC, Canada • goyal001@student.ubc.ca • aashishgoyal0110.github.io • + 1 (604) 307-8801

SUMMARY

A final-year Ph.D. candidate working to develop fast and scalable code in order to solve non-linear Partial Differential Equations (mass, momentum, and energy equations) for flows laden with non-spherical rigid bodies and complex geometries. Specialized in scientific computing, programming, and transport phenomena with applications to food, pharmaceutical, and oil-gas industries. Over 8 years of experience in high-performance code development in C/C++ and FORTRAN.

EDUCATION

Doctor of Philosophy Sep 2019-present

Chemical and Biological Engineering, University of British Columbia (UBC)

May 2014-Jul 2015

May 2014-Jul 2015

Chemical Engineering, Indian Institute of Technology Kanpur (IITK)

Bachelor of Technology Aug 2010-Apr 2014

Chemical Engineering, Indian Institute of Technology Kanpur (IITK)

TECHNICAL SKILLS

Fundamental Proficiencies: Scientific computing, Fluid mechanics, Particle-laden flows, Discrete Element Methods,

Molecular Dynamics, Direct Numerical Simulations, Computational Fluid Dynamics (CFD)

Programming Languages: C/C++, FORTRAN, Python, Java, SQL, Julia, Bash

Computer Programs: MATLAB, OpenMPI/OpenMP, GIT

Platforms: Windows, Linux, High-Performance Computing (HPC), Cloud Computing

Softwares: Ansys Fluent, Autodesk Inventor, Ansys Spaceclaim, OpenFOAM, LIGGGHTS, MS office, VScode

ACADEMIC WORK EXPERIENCE

GRADUATE RESEARCH ASSISTANT, UNIVERSITY OF BRITISH COLUMBIA

Sep 2019-present

Supervisor: Dr. Anthony Wachs

- Developed fast and scalable code in C/C++ to solve complex non-linear Partial Differential Equations
- Deployed the code on High-Performance Computing (HPC) platforms and proved its scalability up to 7000 cores
- Designed the framework using **object-oriented programming** for extensive modularity, inheritance, and adaptability
- Collaborated and guided researchers to extend the code to solve other challenging flow problems with complex geometries and deformable Red Blood Cells
- Developed a Fourier Predictive Model to determine the force modulations on a binary sphere system near a wall
- Designed probability and **machine learning** models to predict the hydrodynamic interactions on non-spherical particle suspension

Work-Integrated Learning, Math¹Industry Workshop (M2PI.CA)

Jul 2023

- Participated in a green-themed workshop aimed at solving problems related to clean energy and clean technology
- Analyzed carbon emissions from wood burning, automobiles, and wood processing machinery
- Developed a fundamental mathematical model in Python to calculate the release of toxic gas emissions from burning
- Quantified monetary gains for the industry (Innovatree Carbon Group) to use the wood for power generation

GRADUATE TEACHING ASSISTANT, UNIVERSITY OF BRITISH COLUMBIA

Sep 2020-Apr 2023

- Instructed 250 students in Python for the application of computational methods
- Designed the problem statements for tutorials to help students understand the course efficiently
- Introduced regular questionnaires and quizzes to enhance the practical learning of numerical methods
- Managed students concerns and requests to provide effective, timely, and appropriate feedback to support student's learning

GRADUATE RESEARCH ASSISTANT, INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Jan 2014-Jun 2015

Supervisor: Dr. Pankaj Apte

- Developed a **Molecular Dynamics** simulation on **FORTRAN** for the phase transition of Silicon (Si) from a supercooled state to an amorphous state
- Implemented mathematical techniques such as Fourier Transform to detect alterations in Si vibrational frequency
- Confirmed a unique dynamic equilibrium point with the sharp increase in four-coordinated Si molecules

INDUSTRY WORK EXPERIENCE

PROJECT ENGINEER, TRIDIAGONAL SOLUTIONS

Dec 2015-Jun 2018

Supervisor: Dr. Mothivel Mummudi

- Built computational models for solid handling processes using **fluid mechanics**, granular physics, and data analysis
- Developed a standard operating procedure to model the processes, including particle tumbling, coating, and drying
- Enabled industries to conduct **design of experiments** and optimize process operations using the projects below
- Received outstanding performance award for efficient project execution and innovative solutions in 2016 and 2017

SUMMER INTERN, RELIANCE INDUSTRIES LIMITED

May 2013-Jul 2013

- Analyzed the drying of Poly Vinyl Chloride (PVC) to increase the plant production from 13.5MT to 22MT
- Developed a mathematical model using the first principle of PVC drying taking environmental impacts into account
- Integrated plant data in the model to optimize the design parameters and operating conditions
- Recommended modifications for the Debottlenecking of the PVC plant to increase plant production by 60%

SCIENTIFIC COMPUTING PROJECTS FOR INDUSTRY

SUDEM: SPEED-UP OF DEM SIMULATIONS

Jan 2018-Jun 2018

- Developed a framework to simulate large-scale processes using Eulerian flow fields along with discrete modeling steps to simulate granular media in LIGGGHTS framework.
- Implemented the model on factory-scale equipment and reduced the computing time by 90%.

Hybrid Modelling of Sand Transport in Oil Industry

Jul 2017-Dec 2017

- Developed a model for the particle suspension in turbulent flow in a pipe based on stochastic models
- Created an interface to couple two open-source platforms for particle and flow modeling, respectively
- Correctly computed the quantitative behavior of flow for the sand cluster movement and re-suspension

On-The-Fly Data Processing and Optimization

Dec 2016-Jun 2018

- Developed a generalized framework for data processing to run in parallel with the simulations
- Eliminated humongous post-simulation data and reduced the overall process time.
- Enabled the users to control the process parameters during the execution of simulation in LIGGGHTS

LIQUID COATING ON GRANULAR PARTICLES FOR FOOD AND PHARMA INDUSTRY

Dec 2015-Jun 2018

- Developed a FORTRAN code to model spray coating, liquid transfer, and moisture evaporation
- Parallelize the computational model by using OpenMPI which reduced the computing time by 80%
- Recommended operating conditions for industries to optimize operation time and energy consumption

PUBLICATIONS

- Aashish Goyal, Gai Guodong, Zihao Cheng, and Anthony Wachs, "Flow past a random array of statistically homogeneously distributed stationary Platonic polyhedrons: Data analysis, Probability maps, and PINN model", In Preparation for submission to International Journal of Multiphase Flows
- Aashish Goyal, Jean-Lou Pierson, and Anthony Wachs, "Pairwise hydrodynamic interaction of two spheres in a
 wall-bounded linear shear flow near a wall and another sphere", Submitted for review to International Journal of
 Multiphase Flows
- Aashish Goyal and Anthony Wachs, "An accurate and scalable direction-splitting solver for flows laden with non-spherical rigid bodies Part 2: moving rigid bodies", **Submitted** for review to **Computers and Fluids**
- Aashish Goyal and Anthony Wachs, "An accurate and scalable direction-splitting solver for flows laden with non-spherical rigid bodies Part 1: fixed rigid bodies", In Press in Communication in Computational Physics
- Antoine Morente, **Aashish Goyal** and Anthony Wachs, "A Highly Scalable Direction Splitting Solver on Regular Cartesian Grid to Compute Flow in Complex Geometries Described by STL files", **Fluids** 2023, <u>Link</u>
- A.K. Gautam, Nandlal Pingua, **Aashish Goyal** and P.A. Apte, "Dynamical instability causes the demise of a supercooled tetrahedral liquid", **Journal of Statistical Physics** 2017, <u>Link</u>

Conferences

- **Aashish Goyal** and Anthony Wachs, "A fast and highly scalable Direction splitting algorithm to solve momentum and heat transfer in flow laden with non-spherical rigid bodies", ICNMMF-4 2022, <u>Link</u>
- Antoine Morente, A. Asuri Mukundan, Aashish Goyal and Anthony Wachs, "Blood flow in Capillary Networks", APS-DFD 2022, Link
- A. Asuri Mukundan, Antoine Morente, **Aashish Goyal** and Anthony Wachs, "A 3D numerical membrane model for simulating red blood cells (RBC) dynamics and transport", APS-DFD 2022, <u>Link</u>
- Aashish Goyal and Mothivel Mummudi, "Smart Strategies for DEM modeling of industrial processes", CFDEM conference 2017
- Harshavardhan Babu, Aashish Goyal, Tukaram Suryawanshi and Mothivel Mummudi, "Accelerated Process Innovation through Hybrid Computational Modeling", AIChE 2017, Link

LEADERSHIP SKILLS

CLUSTER ADMINISTRATOR, COSMOS LAB, UNIVERSITY OF BRITISH COLUMBIA

Aug 2020-present

- Managing the cluster to process and visualize big simulation data for all users
- Defined the standard procedure for data management from the start to the end of a certain project
- Documented guidelines on Gitlab wiki to setup and run remote visualization on clusters

MAINTAINER, GITLAB REPOSITORY, COSMOS LAB, UNIVERSITY OF BRITISH COLUMBIA

Jan 2020-present

- Responsible for maintaining best practices for writing code and merging it into the master branch
- Defined the structure of an object-oriented framework for easy integration of code from multiple developers
- Created a Gitlab wiki repository to collaborate with users to document the installation instructions, test cases, and guidelines to submit jobs on HPC platforms

HEAD, ROBOCON, IIT KANPUR

Sep 2012-Mar 2013

- Led a 3-tier team of 50 members to represent IITK at the National round of Asia-Pacific robotics competition
- Pitched the competition to unaware senators and professors, leading to a two-fold increase in the funding
- Introduced new fabrication and actuation methods that were readily adopted by the campus community for their projects
- Qualified among the Top 15 participants out of ~100 teams in India, and received the best design award the next year