Question 4

Given ODE

$$\frac{dy}{dx} = 1 + \frac{y}{x}$$

Initial Condition

$$y(1) = 1$$

Analytical solution of ODE is

$$y_{analytical} = x(1 + \ln x)$$

Part (a)

Trying 2nd Order Runge-Kutta (Heun's Method) by hand. Taking h=0.5.

We will retain 6 digits. Two steps will take $x=1\ {
m to}\ x=2$

$$x_1 = 1$$

$$y_1 = 1$$

$$h = 0.5$$

(In code our array and ilteration will start from **0th** index in hand calculation it will start with **1st** index)

$$\frac{dy}{dx} = f(x,y) = 1 + \frac{y}{x}$$

First Step

$$x_0 = 1$$

$$y_0 = 1$$

$$h = 0.5$$

$$x_1 = x_0 + h = 1 + 0.5 = 1.5$$

$$k_1 = hf(x_0, y_0) = .5(1 + \frac{1}{1}) = 1$$

$$k_2 = hf(x_1, y_0 + k_1) = 0.5(1 + \frac{2}{1.5}) = 1.166666$$

$$y_1 = y_0 + 0.5(k_1 + k_2) = 1 + 0.5(1 + 1.166666) = 2.083333$$

```
**Second Step** x_1=1.5 y_1=2.083333 h=0.5 x_2=x_1+h=1+1.5=2 k_1=hf(x_1,y_1)=.5(1+\frac{2.083333}{1.5})=1.194444 k_2=hf(x_2,y_1+k_1)=0.5(1+\frac{3.277777}{2})=1.319444 y_2=y_1+0.5(k_1+k_2)=2.083333+0.5(1.94444+1.319444)=3.340277 This after two steps we have
```

This after two steps we have

$$\mathbf{y_2} = \mathbf{3.340277}$$
 at $x = 2$

```
In [64]: import numpy as np
         def WriteDataToFile(list,myfile):
              myfile.write(', '.join(str(item) for item in list)+'\n')
         fxy = lambda x, y : 1 + y/x
         F = lambda x : x*(1 + np.log(x))
         xi = 1
         xf = 6
         h = 0.5
         y0 = 1
         x = np.arange(xi,xf,h , dtype=float)
         ##Numpy do not include xf so adding it manually
         x = np.append(x,xf)
         y = np.zeros(len(x))
         y[0] = y0
         myfile = open("output_data\\rk.csv", 'a')
         myfile.seek(0)
         myfile.truncate()
         WriteDataToFile(["itr","x","y_numerical","y_analytical","Error"],myfile)
         WriteDataToFile([0,x[0],y0,F(x[0]),abs(y0-F(x[0]))],myfile)
         for i in range(1,len(x)):
             x_0 = x[i-1]
             y_0 = y[i-1]
             ##This is necessary cuz H changes in last ilteration(since we appended xf)
             hint = x[i] - x 0
             k1 = hint*fxy(x 0, y 0)
             k2 = hint*fxy(x_0 + hint,y_0 + k1)
             y[i] = y_0 + k^2/2 + k^1/2
             actual_y = F(x[i])
             WriteDataToFile([i,x[i],y[i],actual_y,abs(y[i] - actual_y)],myfile)
         myfile.close()
```

Part (b)

Our numerical answers does mathc with the answers for x_2 we calculated with hand. On x_2 our hand calculation yielded $y_2=3.340277$ which is exactly equal to y_2 from rk method within 6 decimal place

```
Also; y_{num}(6)=16.564193984526778 Absolute error; |y_{num}(6)-y_{actual}|=0.1863628308415528
```

Part (c)

```
In [65]: from scipy.integrate import solve_ivp
         def WriteDataToFile(list,myfile):
              myfile.write(', '.join(str(item) for item in list)+'\n')
         fxy = lambda x, y : 1 + y/x
         F = lambda x : x*(1 + np.log(x))
         def rk2(xi,xf,h,y0):
             x = np.arange(xi,xf,h , dtype=float)
             x = np.append(x,xf)
             y = np.zeros(len(x))
             y[0] = y0
             for i in range(1,len(x)):
                 ##This seems unnecessary but it is necessary cuz last xf DO NOT HAVE interv
                 x_0 = x[i-1]
                 y_0 = y[i-1]
                 hint = x[i] - x_0
                  k1 = hint*fxy(x_0,y_0)
                  k2 = hint*fxy(x_0 + hint,y_0 + k1)
                 y[i] = y_0 + k^2/2 + k^1/2
              return y[-1]
         hv = np.flip(np.arange(.001,.05,0.005,dtype=float))
         myfile = open("output_data\\rk_h.csv", 'a')
         myfile.seek(0)
         myfile.truncate()
         WriteDataToFile(["h","n","error_in_RK2","e2h/eh"],myfile)
         xinit = 1
         xfinal = 6
         y_actual_at_6 = F(xfinal)
         for i in hv:
             rktwo = rk2(xinit,xfinal,i,1)
             rktwo2h = rk2(xinit,xfinal,i*2,1)
             eh = abs(rktwo - y_actual_at_6)
              e2h = abs(rktwo2h - y_actual_at_6)
```

```
WriteDataToFile([i,np.ceil((xfinal-xinit)/i),eh,e2h/eh],myfile)

myfile.close()

rkfour = solve_ivp(fxy, [1,6],[1],t_eval=np.linspace(1, 6, 6),method='RK45')

rktwo = rk2(xinit,xfinal,0.1,1)

print("RK2 Error : {e}".format(e = abs(rktwo - F(xfinal))))

print("RK4 Error : {e}".format(e = abs(rkfour.y[0][-1]-F(xfinal))))
```

RK2 Error : 0.009230502441933908 RK4 Error : 0.0005262026957986166

Part (c)

We will tabulate errors for different h and see ration of convergance.

h	n	error_in_RK2	e2h/eh
0.046	109.0	0.002008699826330229	3.9047013945386224
0.041	122.0	0.001600099323837867	3.9155031797401767
0.0360000000000000004	139.0	0.0012367891819131671	3.9251170558936903
0.031	162.0	0.0009194548008650827	3.9356005589363883
0.0260000000000000002	193.0	0.0006484536527970874	3.946494067496399
0.021	239.0	0.00042414298501469716	3.9568341506074023
0.016	313.0	0.00024683953161996897	3.967079997330838
0.011	455.0	0.00011697249590625347	3.9773757291591854
0.006	834.0	3.489197315076353e-05	3.987597195245042
0.001	5000.0	9.717245141871445e-07	3.997952281681664

As you can see as we become more precise our error decreases but also $\frac{e_{2h}}{e_h}$ tends to **4**

Which actually makes sense, well as the name suggest its 2nd Order Runga Kutta method nothing less expected right !!!

Part (d)

We used python inbuilt solver that implemented **rk4** method. scipy.integrate.solve ivp

Their solution was fairly more accurate than our OG **rk2** method. Errors for few test cases are written below code in o/p cell