# Deep Learning Basics Backpropagation

**HKUST MSBD 6000B** 

Instructor: Yu Zhang

## How to train the dragon?









Loss of the system

$$l(x;\theta) = l(f_{\theta}, x, y)$$

Find direction d so that:



Loss  $l(x; \theta + d)$ 

How to find  $d: l(x; \theta + \epsilon v) \approx l(x; \theta) + \nabla l(x; \theta) * \epsilon v$  for small scalar  $\epsilon$ 



Loss  $l(x; \theta + d)$ 

Conclusion: Move  $\theta$  along  $-\nabla l(x;\theta)$  for a small amount



Loss  $l(x; \theta + d)$ 

#### Neural Networks as real circuits

Pictorial illustration of gradient descent

#### Gradient

Gradient of the loss is simple

• E.g., 
$$l(f_{\theta}, x, y) = (f_{\theta}(x) - y)^2/2$$

• 
$$\frac{\partial l}{\partial \theta} = (f_{\theta}(x) - y) \frac{\partial f}{\partial \theta}$$

Key part: gradient of the hypothesis

## Open the box: real circuit



## Single neuron



Function:  $f = x_1 - x_2$ 

## Single neuron



Function:  $f = x_1 - x_2$ 

Gradient:  $\frac{\partial f}{\partial x_1} = 1, \frac{\partial f}{\partial x_2} = -1$ 

#### Two neurons



Function: 
$$f = x_1 - x_2 = x_1 - (x_3 + x_4)$$

#### Two neurons



Function: 
$$f = x_1 - x_2 = x_1 - (x_3 + x_4)$$

Function:  $f = x_1 - x_2 = x_1 - (x_3 + x_4)$ Gradient:  $\frac{\partial x_2}{\partial x_3} = 1$ ,  $\frac{\partial x_2}{\partial x_4} = 1$ . What about  $\frac{\partial f}{\partial x_3}$ ?

#### Two neurons



Function: 
$$f = x_1 - x_2 = x_1 - (x_3 + x_4)$$
  
Gradient:  $\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_3} = -1$ 

## Multiple input



Function: 
$$f = x_1 - x_2 = x_1 - (x_3 + x_5 + x_4)$$
  
Gradient:  $\frac{\partial x_2}{\partial x_5} = 1$ 

## Weights on the edges



Function: 
$$f = x_1 - x_2 = x_1 - (w_3x_3 + w_4x_4)$$

## Weights on the edges



Function: 
$$f = x_1 - x_2 = x_1 - (w_3x_3 + w_4x_4)$$

### Weights on the edges



Function: 
$$f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4)$$
  
Gradient:  $\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial w_3} = -1 \times x_3 = -x_3$ 



Function: 
$$f = x_1 - x_2 = x_1 - \sigma(w_3x_3 + w_4x_4)$$



Function: 
$$f = x_1 - x_2 = x_1 - \sigma(w_3x_3 + w_4x_4)$$
  
Let  $net_2 = w_3x_3 + w_4x_4$ 



Function: 
$$f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4)$$
  
Gradient:  $\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial net_2} \frac{\partial net_2}{\partial w_3} = -1 \times \sigma' \times x_3 = -\sigma' x_3$ 



Function: 
$$f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4)$$
  
Gradient:  $\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial net_2} \frac{\partial net_2}{\partial w_3} = -1 \times \sigma' \times x_3 = -\sigma' x_3$ 

## Multiple paths



Function: 
$$f = x_1 - x_2 = (x_1 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$$

## Multiple paths



Function: 
$$f = x_1 - x_2 = (x_1 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$$

#### Multiple paths



Function: 
$$f = x_1 - x_2 = (x_3 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$$
  
Gradient:  $\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial net_2} \frac{\partial net_2}{\partial x_3} + \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial x_3} = -1 \times \sigma' \times w_3 + 1 \times 1 = -\sigma' w_3 + 1$ 

## Summary

- Forward to compute *f*
- Backward to compute the gradients



## Math form

#### Gradient descent

• Minimize loss  $\hat{L}(\theta)$ , where the hypothesis is parametrized by  $\theta$ 

- Gradient descent
  - Initialize  $\theta_0$
  - $\theta_{t+1} = \theta_t \eta_t \nabla \hat{L}(\theta_t)$

## Stochastic gradient descent (SGD)

Suppose data points arrive one by one

• 
$$\hat{L}(\theta) = \frac{1}{n} \sum_{t=1}^{n} l(\theta, x_t, y_t)$$
, but we only know  $l(\theta, x_t, y_t)$  at time  $t$ 

- Idea: simply do what you can based on local information
  - Initialize  $\theta_0$
  - $\theta_{t+1} = \theta_t \eta_t \nabla l(\theta_t, x_t, y_t)$

#### Mini-batch

• Instead of one data point, work with a small batch of b points

$$(x_{tb+1}, y_{tb+1}), ..., (x_{tb+b}, y_{tb+b})$$

• Update rule

$$\theta_{t+1} = \theta_t - \eta_t \nabla \left( \frac{1}{b} \sum_{1 \le i \le b} l(\theta_t, x_{tb+i}, y_{tb+i}) \right)$$

• Typical batch size: b = 128