1 Konzepte

Ereignisraum

Die Menge $\Omega \neq \emptyset$ aller möglichen Ergebnisse des betrachteten Zufallsexperiments. Die Elemente $\omega \in \Omega$ heissen Elementarereignisse.

Potenzmenge

Die Potenzmenge von Ω , bezeichnet mit $\mathcal{P}(\Omega)$ oder 2^{Ω} ist die Menge aller Teilmengen von Ω . Ein Prinzipielles Ereignis ist eine Teilmenge $A \subseteq \Omega$, also eine Kollektion von Elementarereignissen. Die Klasse aller beobachtbaren Ereignisse ist \mathcal{F} .

σ -Algebra

Ein Mengensystem ist eine σ -Algebra falls

- (1) $\Omega \in \mathcal{F}$
- (2) Für jedes $A \in \mathcal{F}$ ist auch $A^{\complement} \in \mathcal{F}$
- (3) Für jede Folge $A_{nn\in\mathbb{N}}$ mit $A_n\in\mathcal{F}$ für alle $n\in\mathbb{N}$ auch die Vereinigung $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$

Wahrscheinlichkeitsmass

Eine Abbildung $\mathcal{P}: \mathcal{F} \to [0,1]$ mit folgenden Eigenschaften:

- (1) $\mathcal{P}[A] \geq 0$ für alle Ereignisse $A \in \mathcal{F}$
- (2) $P[\Omega] = 1$
- (3) Für $A_i \in \mathcal{F}$ paarweise disjunkt gilt $P[\bigcup_{i=1}^{\infty} A_i] =$

Es gelten weiter folgende Rechenregeln:

- $\mathcal{P}[A^{\complement}] = 1 \mathcal{P}[A]$
- $\mathcal{P}[\emptyset] = 0$
- Für $A \subseteq B$ gilt $\mathcal{P}[A] < \mathcal{P}[B]$
- $\mathcal{P}[A \cup B] = \mathcal{P}[A] + \mathcal{P}[B] \mathcal{P}[A \cap B]$

Diskrete Wahrscheinlichkeitsräume

Impliziert:

- \bullet Ω ist endlich oder abzählbar unendlich
- $\mathcal{F}=2^{\Omega}$

Laplace Raum

Ist $\Omega = \{\omega_1, \dots, \omega_N\}$ endlich mit $|\Omega| = N$ und $\mathcal{F} = 2^{\Omega}$ sowie alle ω_i gleich wahrscheinlich mit $p_i = \frac{1}{n}$, so heisst Ω ein Laplace Raum und P die diskrete Gleichverteilung auf Ω . Dann ist für $A \subseteq \Omega$:

$$P[A] = \frac{|A|}{|\Omega|}$$

Bedingte Wahrscheinlichkeit

Wahrscheinlichkeit von B unter der Bedingung, dass A eintritt wird definiert durch:

$$P[B \mid A] := \frac{P[B \cap A]}{P[A]}$$
$$= \frac{P[A \mid B] \cdot P[B]}{P[A]}$$

Multiplikationsregel

Es gilt:

$$P[A \cap B] = P[A \mid B] \cdot P[B] = P[B \mid A] \cdot P[A]$$

Satz der totalen Wahrscheinlichkeit

Sei A_1, \ldots, A_n eine Zerlegung von Ω in paarweise disjunkte Ereignisse, d.h. $\bigcup_{i=1}^n A_i = \Omega$ und $A_i \cap A_k = \emptyset \quad \forall i \neq k$. Dann gilt:

$$P[B] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Beweis. Da $B \subseteq \Omega \implies B = B \cap \Omega = B \cap (\bigcup_{i=1}^n A_i) =$ $\bigcup_{i=1}^n (B \cap A_i)$. Weiter sind alle Mengen der Art $(B \cap A_i)$ paarweise disjunkt, was bedeutet, dass $(B \cap A_i)$ eine disjunkte Zerlegung von B bilden. Damit folgt:

$$P[B] = P \left[\bigcup_{i=1}^{n} (B \cap A_i) \right]$$
$$= \sum_{i=1}^{n} P[B \cap A_i] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Satz von Bayes

Sei A_1, \ldots, A_n eine Zerlegung von Ω mit $P[A_i] > 0$ für $i \in \{1, \dots, n\}$. Sei B ein Ereignis mit P[B > 0]. Dann gilt für jedes k:

$$P[A_k \mid B] = \frac{P[B \mid A_k] \cdot P[A_k]}{\sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]}$$

Beweis. Verwende Definition Bedingte Wahrscheinlichkeit. im Zähler Multiplikationsregel und im Nenner Satz der totalen Wahrscheinlichkeit.

Unabhängige Ereignisse (2)

Zwei ereignisse heissen (stochastisch) Unabhängig, falls

$$P[A \cap B] = P[A] \cdot P[B]$$

Ist P[A] = 0 oder P[B] = 0, so sind A, B immer unabhängig. Für $P[A] \neq 0$ gilt:

$$A,B$$
unabhängig $\Longleftrightarrow P[A\mid B]=P[A]$

Unabhängige Ereignisse (∞)

Seien A, B Ereignisse mit P[A] > 0. Die bedingte Die Ereignisse A_1, \ldots, A_n heissen (stochastisch) unabhängig, wenn für jede endliche Teilfamilie der Produktformel gilt, d.h. für $m \in \mathbb{N}$ und $\{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$:

$$P\left[\bigcap_{i=1}^{n} *A_{k_i}\right] = \prod_{i=1}^{n} P[A_{k_i}]$$

Diskrete Zufallsvariable

Eine reelwertige diskrete Zufallsvariable auf Ω ist eine Funktion $X: \Omega \to \mathbb{R}$. Mit Ω ist natürlich auch $\mathcal{W}(X) =$ $\{x_1, x_2, \dots\}$ endlich oder abzählbar.

• Die Verteilungsfunktion von X ist die Abbildung F_X : $\mathbb{R} \mapsto [0,1]$, definiert durch:

$$t \mapsto F_X(t) := P[X \le t] := P[\{\omega : X(\omega) \le t\}]$$

• Die Gewichtsfunktion oder diskrete Dichte von X ist die Funktion $p_X : \mathcal{W}(X) \mapsto [0,1]$, definiert durch:

$$p_X(X_k) := P[X = x_k] = P[\{\omega : X(\omega) = x_k\}]$$

Wobei gilt:

- $F_X(t) = P[X \le t] = \sum_{k \text{ mit } x_k \le t} p_X(x_k)$
- Für jedes $x_k \in \mathcal{W}(X)$ gilt $0 \leq p_X(x_k) \leq 1$ und $\sum_{x_k \in \mathcal{W}(X)} p_X(x_k) = 1$
- $\mu_X(B) := P[X \in B] = \sum_{x_k \in B} p_X(x_k)$
- $\sum_{x_k \in \mathcal{W}(X)} p_X(x_k) = P[X \in \mathcal{W}(X)] = 1$

Indikatorfunktion

Für jede Teilmenge $A \subseteq \Omega$ ist die Indikatorfunktion I_A von A definiert durch:

$$I_A(\omega) := \begin{cases} 1 & \text{falls } \omega \in A \\ 0 & \text{falls } \omega \in A^{\complement} \end{cases}$$

Erwartungswert

Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion $p_X(x)$, dann ist der Erwartungswert definiert durch:

$$E[X] := \sum_{x_k \in \mathcal{W}(X)} x_k \cdot p_X(x_k)$$

und hat folgende Eigenschaften:

- Linearität: $E[a \cdot X + b] = a \cdot E[X] + b$
- Monotonie: $X < Y \implies E[X] < E[Y]$
- Nimmt X nur Werte in \mathbb{N} an:

$$E[X] = \sum_{i=1}^{\infty} P[X \ge i]$$

Erwartungswert von Funktionen

Sei X eine Diskrete Zufallsvariable mit Gewichtsfunktion Seien X_1, \ldots, X_n diskrete Unabhängige Zufallsvariablen Seien X, Y diskrete Zufallsvariablen mit gemeinsamer $p_X(x)$ und Y=g(X) für eine Funktion $Y:\mathbb{R}\mapsto\mathbb{R}$. Dann

$$E[Y] = E[g(X)] = \sum_{x_k \in \mathcal{W}(X)} g(x_k) \cdot p_X(x_k)$$

Varianz

Sei X eine diskrete Zufallsvariable. Ist $E[X^2] < \infty$, so

$$Var[X] := E[X - E[X]^2]$$

$$= \sum_{x_k \in \mathcal{W}(X)} x_k - E[X]^2 \cdot p_X(x_k)$$

die Varianz von X. Es gilt weiter:

- $Var[X] = E[X^2] E[X]^2$
- $Var[a \cdot X + b] = a^2 \cdot Var[X]$
- $Var[X Y] = Var[X] + -1^2 \cdot Var[Y]$
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Standardabweichung

$$\sigma(X) = \sqrt{Var[X]}$$

Gemeinsame Verteilung

Seien X_1, \ldots, X_n beliebige Zufallsvariablen. Die Gemeinsame Verteilungsfunktion von X_1, \ldots, X_n ist die Abbildung $F:\mathbb{R}^n\mapsto [0,1]$, definiert durch:

$$(x_1, \dots, x_n) \mapsto F(x_1, \dots, x_n) := P[X_1 \le x_1, \dots, X_n \le x_n]$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$$

Die Gemeinsame Gewichtsfunktion ist:

$$p(x_1,\ldots,x_n) := P[X_1 = x_1,\ldots,X_n = x_n]$$

Unabhängige Zufallsvariablen

Zufallsvariablen X_1, \ldots, X_n heissen Unabhängig, falls gilt ist: (äquivalent):

$$F(x_1, ..., x_n) = F_{X_1}(x_1) \cdot ... \cdot F_{X_n}(x_n)$$

 $p(x_1, ..., x_n) = p_{X_1}(x_1) \cdot ... \cdot p_{X_n}(x_n)$

Unabhängige Ereignisse

Ereignisse A_1, \ldots, A_n heissen Unabhängig, falls für beliebige Teilmengen $B_i \subseteq \mathcal{W}(X_i)$ $i = 1, \ldots, n$ gilt (äquivalent):

$$P[X_1 \in B_1, \dots, X_n \in B_n] = \prod_{i=1}^n P[X_i \in B_i]$$

Funktionen von Zufallsvariablen

und $f_i: \mathbb{R} \to \mathbb{R}$ irgendwelche Funktionen. Sei weiter Gewichtsfunktion p(x,y). Die bedingte Gewichtsfunktion $Y_i := f_i(X_i)$. Dann sind die Zufallsvariablen $Y_1, \ldots, Y_n \mid \text{von } X$, gegeben dass Y = y, ist definiert durch: ebenfalls unabhängig.

Linearität des Erwartungswertes

Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. $E[X_1], \ldots, E[X_n]$. Sei $Y = a + \sum_{i=1}^n b_i$ X_i mit Konstanten a, b_1, \ldots, b_n . Dann gilt:

$$E[Y] = a + \sum_{i=1}^{n} b_i \cdot E[X_i]$$

Kovarianz

Seien X, Y Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit endlichen Erwartungswerten. Dann ist die Kovarianz definiert als:

$$Cov(X,Y) := E[XY] - E[X]E[Y]$$

= $E[(X - E[X])(Y - E[Y])]$

Wobei Cov(X, X) = Var[X].

Korrelation

Die Korrelation von X, Y ist definiert durch

$$\rho(X,Y) := \begin{cases} \frac{Cov(X,Y)}{\sigma(X) \cdot \sigma(Y)} & \text{falls } \sigma(X) \cdot \sigma(Y) > 0 \\ 0 & \text{sonst.} \end{cases}$$

und es gilt $|Cov(X,Y)| \leq \sigma(X) \cdot \sigma(Y)$ beziehungsweise $-1 < \rho(X, Y) < 1.$

Summenformel für Varianzen

$$Var\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} Var[X_i] + 2 \cdot \sum_{i < j} Cov(X_i, X_j)$$

ist aber Cov(X,Y) = 0 (X, Y paarweise unkorreliert), so wird die Summe linear.

Produkte von Zufallsvariablen

Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Falls X_1, \ldots, X_n unabhängig sind, so

$$E\left[\prod_{i=1}^{n} X_i\right] = \prod_{i=1}^{n} E[X_i]$$

Dann sind auch X_1, \ldots, X_n paarweise unkorreliert und:

$$Var\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} Var[X_i]$$

da Unabhängig \implies paarweise Unabhängig \implies unkorre-

Bedingte Verteilung

$$p_{X \mid Y}(x \mid y) := P[X = x \mid Y = y]$$

$$\frac{P[X = x, Y = y]}{P[Y = y]} = \frac{p(x, y)}{p_Y(y)}$$

für $p_Y(y) > 0$ und 0 sonst.

Kriterium für Unabhängigkeit

X, Y sind genau dann unabhängig, wenn für alle y mit $p_Y(y) > 0$ gilt:

$$p_{X \mid Y}(x \mid y) = p_X(x)$$
 $\forall x \in \mathcal{W}(X)$

n tief k

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Ableitung, Integration

Es gilt:

- Summerregel (f(x) + g(x))' = f'(x) + g'(x)
- Produktregel $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- Quotientenregel $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)}$ wenn $q(x) \neq 0$
- Kettenregel $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
- Partielle Integration $\int_a^b f'(x) \cdot g(x) \ dx = [f(x) \cdot f'(x)] \cdot g(x)$ q(x)_a = $\int_a^b f(x) \cdot q'(x) dx$
- Substitution $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \cdot \varphi'(t) dt$
- $a+c,b+c\in I$: $\int_a^b f(t+c)\ dt = \int_{a+c}^{b+c} f(x)\ dx$
- Logarithmus $\int \frac{f'(t)}{f(t)} dt = \log(|f(x)|)$

Substitution Beispiel

$$\int \cos(x^2) 2x \, dx \qquad u = x^2$$

$$\int \cos(u) du \qquad \frac{du}{dx} = \frac{dx^2}{dx} = 2x$$

2 Diskrete Verteilungen

Diskrete Gleichverteilung

Die diskrete Gleichverteilung auf einer endlichen Menge $\mathcal{W} = \{x_1, \dots, x_n\}$ gehört zu einer Zufallsvariablen X mit Wertebereich \mathcal{W} und Gewichtsfunktion:

$$p_X(x_k) = P[X = x_k] = \frac{1}{N}$$
 $k \in \{1, ..., N\}$

Unabhängige 0-1-Experimente

Es sei $A_i := \{\text{Erfolg beim } i\text{-ten Experiment}\}$ und:

- Die A_i sind unabhängig
- $P[A_i] = p$ für alle i

$$Y_i(\omega) = \begin{cases} 1 & \omega \in A_i \\ 0 & \omega \notin A_i \end{cases}$$

Bernoulli-Verteilung

Ein einziges 0-1-Experiment mit $W(X) = \{0,1\}$. Die Gewichtsfunktion ist gegeben durch $p_X(1) = p$, sowie $p_X(0) = 1 - p$. Man schreibt kurz $X \sim Be(p)$. Es gilt:

$$E[X] = 1 \cdot P[X = 1] + 0 \cdot P[X = 0] = p$$
$$Var[X] = E[X^{2}] - E[X]^{2} = p \cdot (1 - p)$$

Binomialverteilung

Beschreibt die Anzahl der Erfolge bei n unabhängigen 0-1-Experimenten mit Erfolgsparameter p. Also ist die Zufallsvariable respektive Gewichtsfunktion:

$$X = \sum_{i=1}^{n} I_{A_i} = \sum_{i=1}^{n} Y_i$$
$$p_X(k) = P[X = k] = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

und man schreibt kurz $X \sim Bin(n, p)$. Es gilt weiter:

$$E[X] = \sum_{i=1}^{n} E[Y_i] = n \cdot p$$

$$Var[X] = \sum_{i=1}^{n} Var[Y_i] = n \cdot p \cdot (1-p)$$

Geometrische Verteilung

Bei einer unendlichen Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p sein X die Wartezeit zum ersten Erfolg:

$$X = \inf\{i \in \mathbb{N} : A_i \text{ tritt ein}\}$$

$$p_X(k) = P[X = k] = p \cdot (1 - p)^{k - 1}$$

wir schreiben $X \sim Geom(p)$ und es gilt:

$$E[X] = \sum_{i=0}^{\infty} (1-p)^{i} = \frac{1}{1-(1-p)} = \frac{1}{p}$$

$$E[X \cdot (X-1)] = \frac{2(1-p)}{p^{2}}$$

$$Var[X] = \frac{1-p}{p^{2}}$$

Negativbinomiale Verteilung

Bei einer unendlichen Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p sein X die Wartezeit zum r-ten Erfolg $(r \in \mathbb{N})$:

$$X = \inf\{k \in \mathbb{N} : \sum_{i=1}^{k} I_{A_i} = r\}$$
$$p_X(k) = P[X = k] = {k-1 \choose r-1} \cdot p^r \cdot (1-p)^{k-r}$$

wir schreiben $X \sim NB(r, p)$ und es gilt:

$$E[X] = \sum_{i=1}^{r} E[X_i] = \frac{r}{p}$$

$$Var[X] = \sum_{i=1}^{r} Var[X_i] = \frac{r \cdot (1-p)}{p^2}$$

Hypergeometrische Verteilung

In einer Urne seien n Gegenstände, davon r vom Typ 1 und n-r vom Typ 2. Man zieht ohne zurücklegen m der Gegenstände. Die Zufallsvariable X beschreibt die Anzahl der Gegenstände vom Typ 1 in der Stichprobe. Der Wertebereich von X ist $\mathcal{W}(X) = \{0, 1, \dots, \min(m, r)\}$ und:

$$p_X(k) = \frac{\binom{r}{k} \cdot \binom{n-r}{m-k}}{\binom{n}{m}} \qquad \text{für } k \in \mathcal{W}(X)$$

$$E[X] = \sum_{i=1}^n i \cdot p_X(i) = m \cdot \frac{r}{n} \qquad \text{(Nicht im Skript)}$$

$$Var[X] = m \cdot \frac{r}{n} \left(1 - \frac{r}{n}\right) \cdot \frac{n-m}{n-1} \qquad \text{(Nicht im Skript)}$$

Poisson Verteilung

Die Poisson Verteilung mit Parameter $\lambda \in (0, \infty)$ ist eine Verteilung auf der Menge $\mathbb{N}_0 = \{0, 1, 2, \dots\}$ mit Gewichtsfunktion:

$$p_X(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$
 für $k = 0, 1, 2, ...$
$$E[X] = \sum_{i=1}^n i \cdot \frac{\lambda^i}{i!} e^{-\lambda} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

$$E[X^2] = \lambda^2 + \lambda$$
$$Var[X] = \lambda$$

Ist eine Zufallsvariable X Poisson verteilt mit Parameter λ schreiben wir $X \sim P(\lambda)$.

3 Zufallsvariablen

Zufallsvariable

Sein (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum. Also Ω ein Grundraum, $\mathcal{F} \subseteq 2^{\Omega}$ die beobachtbaren Ereignisse und P ein Wahrscheinlichkeitsmass auf \mathcal{F} . Eine (reelwertige) Zufallsvariable auf Ω ist eine messbare Funktion $X: \Omega \mapsto \mathbb{R}$. Das bedeutet, dass die Menge $\{X \leq t\} = \{\omega: X(\omega) \leq t\}$ für jedes t ein beobachtbares Ereigniss sein muss.

Verteilungsfunktion

Die Verteilungsfunktion von X ist die Abbildung $F_X : \mathbb{R} \mapsto [0,1]$:

$$t \mapsto F_X(t) := P[X \le t] := P[\{\omega : X(\omega) \le t\}]$$

und hat die Eigenschaften:

- F_X ist wachsend und rechtsstetig. Das bedeutet, dass $F_X(s) \leq F_X(t)$ für $s \leq t$ gilt und $F_X(u) \to F_X(t)$ für $u \to t$ mit u > t
- $\lim_{t\to-\infty} F_X(t) = 0$ und $\lim_{t\to+\infty} F_X(t) = 1$

Dichtefunktion

Das Analogon der Gewichtsfunktion im Diskreten Fall. Eine Zufallsvariable X mit Verteilungsfunktion $F_X(t) = P[X \leq t]$ heisst (absolut) stetig mit Dichte (funktion) $f_X : \mathbb{R} \mapsto [0, \infty)$, falls gilt:

$$F_X(t) = \int_{-\infty}^t f_X(s) \ dx$$
 für alle $t \in \mathbb{R}$

und hat die Eigenschaften:

- $f_X \ge 0$ und $f_X = 0$ ausserhalb von $\mathcal{W}(X)$.
- $\int_{-\infty}^{\infty} f_X(s) ds = 1$; das folgt aus $\lim_{t \to +\infty} F_X(t) = 1$

Gleichverteilung

Die Gleichverteilung auf dem Intervall [a, b] ist ein Modell für die Zufällige Wahl eines Punktes in [a, b]. Die zugehörige Zufallsvariable X hat den Wertebereich $\mathcal{W}(X) = [a, b]$, sowie

$$f_X(t) = \begin{cases} \frac{1}{b-a} & \text{für } a \le t \le b \\ 0 & \text{sonst.} \end{cases}$$

$$F_X(t) = \begin{cases} 0 & \text{für } t < a \\ \frac{t-a}{b-a} & \text{für } a \le t \le b \\ 1 & \text{für } t > b. \end{cases}$$

wir schreiben kurz $X \sim U(a, b)$.

$$E[X] = \frac{a+b}{2} \qquad Var[X] = \frac{(b-a)^2}{12}$$

Exponentialverteilung

Die Exponentialverteilung mit Parameter $\lambda > 0$ ist Sei X eine Zufallsvariable und Y = g(X) eine weitere Zudas stetige Analogon der Geometrischen Verteilung. Die fallsvariable. Ist X stetig mit Dichte f_X , so ist zugehörige Zufallsvariable X hat $\mathcal{W}(X) = [0, \infty)$, Dichte und Verteilungsfunktion:

$$f_X(t) = \begin{cases} \lambda \cdot e^{-\lambda t} & \text{für } t \ge 0\\ 0 & \text{für } t < 0 \end{cases}$$
$$F_X(t) = \int_{-\infty}^t f_X(s) \, ds = \begin{cases} 1 - e^{-\lambda t} & \text{für } t \ge 0\\ 0 & \text{für } t < 0 \end{cases}$$

wir schreiben kurz $X \sim Exp(\lambda)$. Weiter ist die Funktion Gedächtsnislos, dh. $P[X > t + s \mid X > s] = P[X > t]$.

$$E[X] = \frac{1}{\lambda}$$
 $Var[X] = \frac{1}{\lambda^2}$

Normalverteilung

Die Normalverteilung hat zwei Parameter: $\mu \in \mathbb{R}$ und Es gilt weiter, dass $M_n < \infty$ für $n \in \mathbb{N} \implies |m_m| \leq M_n$. $\sigma^2 > 0$. Die zugehörige Zufallsvariable X hat den Wertebereich $\mathcal{W}(X) = \mathbb{R}$ und die Dichtefunktion:

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$
 für $t \in \mathbb{R}$

welche symmetrisch um μ ist. Wir schreiben kurz: $X \sim$ $\mathcal{N}(\mu, \sigma^2)$.

Standard Normalverteilung

Wichtige Normalverteilung mit $\mathcal{N}(0,1)$. Weder für die zugehörige Dichte $\varphi(t)$ noch Verteilungsfunktion $\Phi(t)$ gibt es geschlossene Ausdrücke, aber das Integral

$$\Phi(t) = \int_{-\infty}^{t} \varphi(s) \ ds = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}s^2} \ ds$$

ist tabelliert. Ist $X \sim \mathcal{N}(\mu, \sigma^2)$, so ist $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$, also:

$$F_X(t) = P[X \le t] = P\left[\frac{X - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right] = \Phi\left(\frac{t - \mu}{\sigma}\right)$$

deshalb genügt es Φ zu tabellieren.

$$\Phi(-z) = 1 - \Phi(z)$$

Normalapproximation

Wenn $S_n \sim Bin(n, p)$ dann

$$S_n \sim_{annrox} N(np, np(1-p))$$

Erwartungswert

Ist X stetig mit Dichte $f_X(x)$, so ist der Erwartungswert:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx$$

sofern das Integral absolut konvergiert. Ist das Integral nicht absolut konvergent, so existiert der Erwartungswert nicht.

Erwartungswert einer Funktion

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \ dx$$

Momente & Absolute Momente

Sei X eine Zufallsvariable und $p \in \mathbb{R}^+$. Wir definieren:

- p-te absolute Moment von X: $M_n := E[|X|^p]$
- falls $M_n < \infty$ für ein n, dann ist das n-te (rohe) Moment von X durch $m_n := E[X^n]$ definiert.
- Das n-te zentralisierte Moment von X ist durch $\mu_n :=$ $E[(X-E[X])^n]$ definiert.

$$M_{p} = \int_{-\infty}^{\infty} |x|^{p} f_{X}(x) dx$$

$$m_{n} = \int_{-\infty}^{\infty} x^{n} f_{X}(x) dx$$

$$p \le q \land M_{q} < \infty \implies M_{p} < \infty$$

Gemeinsame Verteilung/Dichte

Die Gemeinsame Verteilungsfunktion von Zufallsvariablen X_1,\ldots,X_n ist die Abbildung $F:\mathbb{R}^n\mapsto[0,1]$ mit:

$$F(x_1, \dots, x_n) := P[X_1 \le x_1, \dots, X_n \le x_n]$$
$$= \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(t_1, \dots, t_n) dt_n \dots t_1$$

dann heisst $f(x_1, \ldots, x_n)$ die gemeinsame Dichte, welche folgende Eigenschaften hat:

- $f(x_1,...,x_n) \ge 0$ und = 0 ausserhalb von $\mathcal{W}(X_1,...,X_n)$.
- $\int_{0}^{\infty} \cdots \int_{0}^{\infty} f(t_1, \ldots, t_n) dt_n \ldots t_1 = 1$
- $P[(X_1,\ldots,X_n)\in A]=\int_{(x_1,\ldots,x_n)\in A}f(t_1,\ldots,t_n)\,dt_n\,.\,.\,.\,t_1$ für $A \subseteq \mathbb{R}^n$

${f Randverteilung}$

Haben X, Y die Gemeinsame Verteilungsfunktion F, so ist die Funktion $F_X: \mathbb{R} \mapsto [0,1],$

$$F_X(x) = P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \ dy$$

Sind X, Y diskrete Zufallsvariablen mit $\mathcal{W}(Y)$ $\{y_1, y_2, \dots\}$ und gemeinsamer Gewichtsfunktion p(x, y), so ist die Gewichtsfunktion der Randverteilung von X gegeben durch:

$$x \mapsto p_X(x) := \sum_{y_i \in \mathcal{W}(X)} P[X = x, Y = y_i]$$

Man wählt zufällig einen Punkt P = (U, V) in dem Gebiet D. Die gemeinsame Dichte von (U, V)

$$f_{U,V}(u,v) = \begin{cases} c & \text{falls } (u,v) \in D \\ 0 & \text{sonst} \end{cases}$$

- bestimme Konstnte c
- bestimme Randverteiungsfunktion von U und Randdichtefunktion $f_{II}(u)$.
- Sind U und V unabhängig?

$$D = \{(a, b) \in \mathbb{R}^2 : -1 \le a \le 1 \text{ and } -2 \le b \le 2\}$$

$$\cup \{(a, b) \in \mathbb{R}^2 : 1 \le a \le 2 \text{ and } -1 \le b \le 1\}$$

$$f_{U,V}(u, v) = \begin{cases} 1/10 & \text{if } (u, v) \in D \\ 0 & \text{otherwise} \end{cases}$$

For u < -1, $F_U(u) = P(U \le u) = 0$. For -1 < u < 1, $F_U(u) = P(U < u) =$

$$\int_{u}^{-1} \int_{-2}^{2} \frac{1}{10} \mathbf{1}_{D}(u, v) \, dv \, ds = \frac{4(u+1)}{10}$$

For $1 \le u \le 2$, $F_U(u) = P(U \le u) =$

$$\int_{1}^{-1} \int_{-2}^{2} \frac{1}{10} \mathbf{1}_{D}(u, v) \, dv \, ds + \int_{u}^{1} \int_{-1}^{1} \frac{1}{10} \mathbf{1}_{D}(u, v) \, dv \, ds$$

$$= \frac{8}{10} + \frac{2(u-1)}{10}$$

and $F_U(u) = 1$ for u > 2.

$$f_U(u) = \begin{cases} \frac{4}{10} & \text{if } -1 \le u \le 1\\ \frac{2}{10} & \text{if } 1 \le u \le 2\\ 0 & \text{otherwise} \end{cases}$$

$$f_V(v) = \int_{-\infty}^{\infty} f_{U,V}(u,v) du =$$

$$\frac{1}{2} \left(2[v \in [-2, 2]] + [v \in [-1, 1]] \right)$$

If U and V are independent, then for all u and v:

$$f_U(u) \cdot f_V(v) = f_{U,V}(u,v)$$

However, we have $f_{U,V}(2,2) = 0$ and $f_U(2) \cdot f_V(2) =$ $\frac{1}{5} \cdot \frac{1}{5} \neq 0$.

Therefore, U and V are not independent.

Unabhängigkeit

Die Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls gilt (äquivalent):

$$F(x_1, \dots, x_n) = F_{X_1}(x_1) \cdot \dots \cdot F_{X_n}(X_n)$$

$$f(x_1, \dots, x_n) = f_{X_1}(x_1) \cdot \dots \cdot f_{X_n}(X_n)$$

für alle x_1, \ldots, x_n .

Bedingte Verteilungen

Es gilt:

$$f_{X_1 \mid X_2}(x_1 \mid x_2) = \frac{f_{X_1, X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$

$$P[Y > t \mid Y < a] = \frac{P[t < Y < a]}{P[Y < a]}$$

$$E[X_1 \mid X_2] = \int x_1 \cdot f_{x_1 \mid x_2}(x_1 \mid x_2) dx_1$$

Summen von Zufallsvariablen

Sei Z = X + Y eine Zufallsvariable mit:

$$F_Z(z) = P[Z \le z] = P[X + Y \le z]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) \, dy \, dx$$

$$f_Z(z) = \int_{-\infty}^{\infty} f(z - y, y) \, dy$$

Transformationen

Sei X eine Zufallsvariable mit Verteilung und Dichte. Sei $g: \mathbb{R} \to \mathbb{R}$ eine messbare Funktion. Betrachte nun Y =g(X), wir suchen Verteilung und Dichte von Y:

$$F_Y(t) = P[Y \le t] = P[g(Y) \le t] = \int_{A_g} f_X(s) \, ds$$
$$A_g := \{ s \in \mathbb{R} \mid g(s) \le t \}$$

Wobei man die Dichte durch ableiten der Verteilung erhält. stochastisch gegen $\mu = E[X_i]$, d.h.:

Anwendung von Transformationen

Sei F eine stetige und streng monoton wachsende Verteilungsfunktion mit Unkehrfunktion F^{-1} . Ist $X \sim$ $\mathcal{U}(0,1)$ und $Y=F^{-1}(X)$, so hat Y gerade die Verteilungsfunktion F:

$$F_Y(t) = P[Y \le t] = P[F^{-1}(X) \le t]$$

= $P[X \le F(t)] = F(t)$

Mit der Substitution

$$\phi(X) = Y$$

$$X = \phi^{-1}(y)$$

$$f_Y(y) = f_X(\phi^{-1}(y))|\det J_{\phi^{-1}}(y)|$$

Sei X eine Zufallsvariable mit Dichte $f_X(x), x \in \mathbb{R}$ und sei $Y = e^X$. Was ist die Dichte $f_Y(y), y > 0$ der Zufallsvariable Y?

$$Y = e^{X}$$

$$X = \ln Y$$

$$\frac{dx}{dy} = \frac{1}{y}$$

$$f_{Y}(y) = f_{X}(\ln y) \cdot \frac{1}{y}$$

Markov Ungleichung

Sei X eine Zufallsvariable und ferner $g: \mathcal{W}(X) \mapsto [0, \infty)$ eine wachsende Funktion. Für jedes $c \in \mathbb{R}$ mit g(c) > 0 git

$$P[X \ge c] \le \frac{E[g(X)]}{g(c)}$$

Chebyshev-Ungleichung

Sei Y eine Zufallsvariable mit endlicher Varianz. Für jedes b > 0 git dann:

$$P[|Y - E[Y]| \ge b] \le \frac{Var[Y]}{b^2}$$

Schwaches Gesetz der grossen Zahlen

Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen, die alle den gleichen Erwartungswert $E[X_i] = \mu$ und die gleiche Varianz $Var[X_i] = \sigma^2$ haben. Sei

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Dann konvergiert \overline{X}_n für $n \to \infty$ in Wahrscheinlichkeit/

$$P\left[\left|\overline{X}_n - \mu\right| > \varepsilon\right] \xrightarrow[n \to \infty]{} 0$$
 für jedes $\varepsilon > 0$

(Statt unabhängig genügt auch $Cov(X_i, X_k) = 0$ für $i \neq k$) Starkes Gesetz der grossen Zahlen

Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen, die alle dieselbe Verteilung haben, und ihr Erwartungswert $\mu = E[X_i]$ sei endlich. Für:

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

gilt dann

$$\overline{X}_n \xrightarrow[n \to \infty]{} \mu$$

P-fastsicher

d.h.:

$$P\left[\left\{\omega\in\Omega:\overline{X}_n(\omega)\underset{n\to\infty}{\longrightarrow}\mu\right\}\right]=1$$

i.i.d. / u.i.v.

Independent identically distributed

Zentraler Grenzwertsatz

Sei X_1, X_2, \ldots eine Folge von i.i.d. Zufallsvariablen mit $E[X_i] = \mu$ und $Var[X_i] = \sigma^2$. Für die Summe $S_n = \sum_{i=1}^n X_i$ gilt dann:

$$\lim_{n \to \infty} P\left[\frac{S_n - n \cdot \mu}{\sigma \sqrt{n}} \le x\right] = \Phi(x) \quad \text{für alle } x \in \mathbb{R}$$

wobei Φ die Verteilungsfunktion von $\mathcal{N}(0,1)$ ist.

4 Tabellen

4.1 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)/\arccos(x)$	$\frac{1/-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$
$x \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$
$x \arctan(x) - \frac{1}{2} \ln(1+x^2)$	$\arctan(x)$
$\ln(\cosh(x))$	tanh(x)
$x^x (x > 0)$	$x^x \cdot (1 + \ln x)$
$f(x)^{g(x)}$	$e^{g(x)ln(f(x))}$
$f(x) = \cos(\alpha)$	$f(x)^n = \sin(x + n\frac{\pi}{2})$
$f(x) = \frac{1}{ax+b}$	$f(x)^n = (-1)^n * a^n * n! * (ax+b)^{-n+1}$
$-\ln(\cos(x))$	tan(x)
$\ln(\sin(x))$	$\cot(x)$
$\ln(\tan(\frac{x}{2}))$	$\frac{1}{\sin(x)}$
$\ln\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)$	$\frac{1}{\cos(x)}$

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x)dx$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} dx$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} dx$	$\sqrt{\pi}$
$\int (ax+b)^n dx$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n dx$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$ $\frac{(ax^p+b)^{n+1}}{(ax^p+b)^{n+1}}$
$\int (ax^p + b)^n x^{p-1} dx$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1}x^{p-1} dx$	$\frac{1}{ap}\ln ax^p + b $
$\int \frac{ax+b}{cx+d} dx$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} dx$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} dx$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
$\int \sqrt{a^2 + x^2} dx$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$

Momenterzeugende Funktion

Die Momenterzeugende Funktion einer Zufallsvariable X ist:

$$M_X(t) := E[e^{t \cdot X}]$$

für $t \in \mathbb{R}$

Grosse Summenabweichung

Seien X_1, \ldots, X_n i.i.d. Zufallsvariablen, für welche die Momenterzeugende Funktion $M_X(t)$ für alle $t \in \mathbb{R}$ endlich ist.

Für jedes $b \in \mathbb{R}$ gilt dann:

$$P[S_n \ge b] \le \exp\left(\inf_{t \in \mathbb{R}} (n \cdot \log M_X(t) - t \cdot b)\right)$$

Chernoff Schranken

Seien X_1, \ldots, X_n unabhängig mit $X_i \sim Be(p)$ und $S_n = \sum_{i=1}^n X_i$. Sei $\mu_n := E[S_n] = \sum_{i=1}^n p_i$ und $\delta > 0$. Dann gilt:

$$P[S_n \ge (1+\delta) \cdot \mu_n] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$$

Schätzer

Schätzer

Wir suchen ein Modell für eine Stichprobe X_1, \ldots, X_n und haben einen Parameteraum $\vartheta \subseteq \Theta$ und für jedes ϑ einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$. Wir möchten nun die Parameter $\vartheta_1, \ldots, \vartheta_m$ bestimmen. Ein Schätzer T_j für einen Parameter ϑ_j ist eine Zufallsvariable der Form $T_j := t_j(X_1, \ldots, X_n)$ für eine Schätzfunktion t_j .

Schätzwert

Ein Schätzwert ist das Ergebnis einer konkreten Berechnung, eine Zahl. Sie entsteht durch das Einsetzen konkreter Daten in einen Schätzer: $T_j(\omega) = t_j(x_1, \ldots, x_n)$ und liefert damit einen Wert für genau einen Parameter.

Eigenschaften von Schätzern

Sei T ein Schätzer.

- T ist erwartungstreu, falls $E_{\vartheta}[T] = \vartheta$ gilt. T schätzt im Mittel also richtig.
- Bias := $E_{\vartheta}[T] \vartheta$. Ein erwartungstreuer Schätzer hat also keinen Bias.
- Mittlere Quadratische Schätzfehler $MSE_{\vartheta}[T] := E_{\vartheta}[(T-\vartheta)^2].$
- Eine Folge $T^{(n)}$ von Schätzern heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ in P_{ϑ} -Wahrscheinlichkeit gegen ϑ konvergiert, d.h. für jedes $\vartheta \in \Theta$ gilt:

$$\lim_{n \to \infty} P_{\vartheta} \left[\left| T^{(n)} - \vartheta \right| > \varepsilon \right] = 0$$

Seien X_1, \ldots, X_n unabhängige, identisch verteilte Zufallsvariablen mit $X_i \sim \mathcal{U}([\theta-1,\theta])unter\mathbb{P}_{\theta}$ wobei $\theta \in \mathbb{R}$. Wir betrachten den Schätzer

$$T_1^{(n)} := \frac{1}{n} \cdot \sum_{i=1}^n X_i + \frac{1}{2}$$

Sind Schätzer erwartungstreu?

Here's the formatted text in LaTeX:

Sei $\theta \in \mathbb{R}$ fixiert. Aus der Gleichverteilung folgt, dass

$$\mathbb{E}_{\theta}[T(n)_1] = \left(\frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\theta}[X_i]\right) + \frac{1}{2} = \mathbb{E}_{\theta}[X_1] + \frac{1}{2} = \theta - \frac{1}{2} + \frac{1}{2}$$

Somit folgt, dass der Schätzer $T(n)_1$ erwartungstreu ist.

Maximum-Likelihood Methode

(Analog im diskreten Fall.) In einem Modell P_{ϑ} sind die Zufallsvariablen X_1, \ldots, X_n stetig mit einer gemeinsamen Dichtefunktion $f(x_1, \ldots, x_n, \vartheta)$. Oft sind die X_i i.i.d. und man erhält:

$$f(x_1, \dots, x_n, \vartheta) = P[X_1 = x_1, \dots, X_n = x_n]$$
$$= \prod_{i=1}^n f_X(x_i, \vartheta)$$

Wir nehmen nun an, dass die Daten die wir erhalten haben sehr Wahrscheinlich sind und versuchen nun folgende Likelihood funktion zu Maximieren durch Anpassungen an ϑ :

$$L(x_1, \dots, x_n; \vartheta) := f(x_1, \dots, x_n; \vartheta)$$
$$\log L(x_1, \dots, x_n; \vartheta) := \log f(x_1, \dots, x_n; \vartheta)$$

letzteres kann bei Produkt zu Summe umwandlung hilfreich sein.

Sei $\Theta = [0,1]$. Wir betrachten die Modellfamilie $P_{\theta\theta\in\Theta}$, wobei X_1,\ldots,X_n unter \mathbb{P}_{θ} unabhängig und identisch verteilt sind mit $X_1 \sim \operatorname{Geom}(\theta)$. Was ist die Likelihood-Funktion $L(x_1,\ldots,x_n;\theta)$ für $x_1,\ldots,x_n\in\{1,2,\ldots\}$?

$$L(x_1, \dots, x_n; \theta) = (P_\theta)[X_1 = x_1, \dots, X_n = x_n]$$
$$= \prod_{i=1}^n \mathbb{P}_\theta[X_i = x_i]$$
$$= \theta^n \cdot (1 - \theta)^{x_1 + \dots + x_n - n}$$

Was ist der Maximum-Likelihood-Schätzer $T_{\rm ML}$ für $\theta?$

$$n \cdot \log(\theta) + (x_1 + \ldots + x_n - n) \cdot \log(1 - \theta)$$

Wir setzen nun die Ableitung der log-Likelihood-Funktion nach θ gleich 0 und erhalten:

$$\frac{n}{\theta} - \frac{x_1 + \dots + x_n - n}{1 - \theta} = 0$$

$$\iff n - n\theta = (x_1 + \dots + x_n) \cdot \theta - n\theta$$

$$\iff \theta = \frac{n}{x_1 + \dots + x_n}$$

$$= \frac{n}{X_1 + \dots + X_n}$$

Empirisches Moment

Für $k \in \{1, ..., m\}$ sei das k-te Moment empirische Moment oder Stichprobenmoment \hat{m}_k der Realisierung $(x_1, ..., x_n)$:

$$\hat{m}_k(x_1, \dots, x_n) := \frac{1}{n} \sum_{i=1}^n x_i^k$$

Momentenmethode

Der Momentenmethode liegt zugrunde, dass die Momente einer Zufallsvariable bzw. einer Wahrscheinlichkeitsverteilung durch Stichprobenmomente geschätzt werden können.

Sei X_1, \ldots, X_n eine Stichprobe und Θ der Parameterraum. Für jeden Parameter $\vartheta = (\vartheta_1, \ldots, \vartheta_m) \in \Theta$ sei X_1, \ldots, X_n i.i.d. unter dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$. Methode:

- 1. Für gegebene Realisierungen x_1, \ldots, x_n bestimme für jedes $k \in \{1, \ldots, m\}$ das k-te empirische Moment
- 2. Stelle ein Gleichungssystem für die Unbekannten Parameter $\vartheta_1, \ldots, \vartheta_m$ auf, in dem das k-te empirische Moment dem k-ten Moment gleichgesetzt wird, also:

$$\hat{m}_k(x_1,\ldots,x_n) = g_k(\vartheta_1,\ldots,\vartheta_m) \quad k \in \{1,\ldots,m\}$$

3. Existiert eine Eindeutige Lösung so wird das unsere Schätzung für $\vartheta.$

Momentenschätzer

Der Vektor $\hat{\vartheta}(X_1, \dots, X_m)$ heisst Momentenschätzer des Parameters ϑ .

Beispiel: Normalverteile Stichprobe

Sei X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ -verteilt mit unbekannten Parametern $\vartheta = (\mu, \sigma^2)$. Damit berechnen wir mit der log max likelihood funktion Ableitungen setzen diese zu 0 und bekommen:

$$T_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n$$
$$T_2 = \frac{1}{n} \sum_{i=1}^{n} X_1 - \overline{X}_n^2$$

möchten wir aber noch, dass der Schätzer erwartungstreu wird, so wählen wir für $T_2 = S^2$:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

Normalverteile Stichproben

Seien X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt:

- $\overline{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ und $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$.
- $\frac{n-1}{\sigma^2}S^2 = \left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i \overline{X}_n)^2\right) \sim \mathcal{X}_{n-1}^2$
- $\bullet \ \overline{X}_n$ und S^2 sind unabhängig
- $\bullet \ \ \frac{\overline{X}_n \mu}{S/\sqrt{n}} = \frac{\overline{X}_n \mu}{\frac{\sigma/\sqrt{n}}{S/\sigma}} = \frac{\overline{X}_n \mu}{\sqrt{\frac{1}{n-1}} \frac{n-1}{\sigma^2} S^2} \sim t_{n-1}$

6 Statistik

\mathcal{X}^2 -Verteilung

Die \mathcal{X}^2 - Verteilung mit n Freiheitsgraden (bez. \mathcal{X}_n^2) gehört zu einer stetigen Zufallsvariable Y mit Dichtefunktion:

$$f_Y(y) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}y^{\frac{n}{2}-1}e^{-\frac{1}{2}y}$$

wobei dies ein Spezialfall der $Ga(\alpha, \lambda)$ Verteilung ist mit $\alpha = \frac{n}{2}$ und $\lambda = \frac{1}{2}$. Sind die Zufallsvariablen X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(0, 1)$, so ist die Summe $Y := \sum_{i=1}^n X_i^2 \sim \mathcal{X}_n^2$.

t-Verteilung

Die t-Verteilung mit n Freiheitsgraden gehört zu einer stetigen Zufallsvariable Z mit Dichtefunktion

$$f_Z(z) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})} \left(1 + \frac{z^2}{n}\right)^{-\frac{n+1}{2}} \quad \text{für } z \in \mathbb{R}$$

für n=1 ist das eine Cauchy Verteilung und für $n\to\infty$ erhält man $\mathcal{N}(0,1)$. Sind X,Y unabhängig und $X \sim$ $\mathcal{N}(0,1)$ und $Y \sim \mathcal{X}_n^2$, so ist der Quotient:

$$Z := \frac{X}{\sqrt{\frac{1}{n}Y}} \sim t_n$$
, also t-Verteilt mit n Freiheitsgraden

Hypothesen

Es gibt:

- Hypothese $H_0: \vartheta \in \Theta_0$
- Alternative $H_A: \vartheta \in \Theta_A$

Man verwirft die Hypothese genau dann, wenn der realisierte Wert im Verwerfungebereich K liegt.

Fehler

Es gibt folgende Fehler:

- 1. Art: Hypothese wird zu unrecht abgelehnt. $P_{\vartheta}[T \in$ K] für $\vartheta \in \Theta_0$
- 2. Art: Hypothese wird zu unrecht nicht verworfen. $P_{\vartheta}[T \not\in K]$ für $\vartheta \in \Theta_A$

Meisst kann man nicht beides minimieren, also geht man wie folgt vor:

1. Man wählt ein **Signifikanzniveau** $\alpha \in (0,1)$ und kontrolliert die Wahrscheinlichkeit eines Fehlers 1. Art durch

$$\sup_{\vartheta \in \Theta_0} P_{\vartheta}[T \in K] \le \alpha$$

2. Man versucht die Wahrscheinlichkeit für einen Fehler zweiter Art $P_{\vartheta}[T \notin K]$ für $\vartheta \in \Theta_A$ zu minimieren. Dazu maximiert man die Macht des Tests:

$$\beta: \Theta_A \mapsto [0,1]$$
 $\vartheta \mapsto \beta(\vartheta) := P_{\vartheta}[T \in K]$

Somit ist es schwieriger eine Hypothese zu verwerfen als zu behalten. In einem Test verwendet man deshalb immer als Hypothese die Negation der eigentlich gewünschten Aussage.

Christoph hat in 100 Versuchen 60 Mal richtig gelegen mit seiner Vorhersage. Soll man nun Christoph hellseherische Fähigkeiten zuschreiben, oder war das purer Zufall? Führen Sie dazu einen statistischen Test durch. Mittels eines Binomial-Tests möchten wir testen ob Christoph hellseherische Fähigkeiten be- sitzt oder nicht. Wir gehen dabei wir folgt vor:

- H_0 : Christoph besitzt keine hellseherische Fähigkeiten, d.h. $X \sim Bin(n, p)$ mit $p = \frac{1}{2}$
- Christoph besitzt hellseherische Fähigkeiten, d.h. $X \sim Bin(n,p)$ mit $p > \frac{1}{2}$
- Der Test ist einseitig durchzuführen. Wir möchten herausfinden ob Christophs Vorhersagen häufiger korrekt sind (d.h. $p > \frac{1}{2}$) sind als diejenigen einer Person die einfach zufällig etwas tippt (d.h. $p = \frac{1}{2}$)
- \bullet sei wieder X die Anzahl korrekter Vorhersagen aus
n Versuchen. Unter H_0 ist also $X \sim Bin(p = \frac{1}{2}, n = 100)$ und somit verwerfen wir H_0 für alljene $k \in \mathbb{N}$, für welche $P_{H_0}(X \geq$ $k \leq 0.05$. Durch Ablesen von der Binomialtabelle erhalten wir $P_{H_0}(X \geq 58) = 1 - P_{H_0}(X \leq$ 57) = 0.0666 und $P_{H_0}(X \ge 59) = 0.0443$. Der Verwerfungsbereich V ist also gegeben durch $V = k \in \mathbb{N} : k > 59.$
- Testentscheidung: Christoph hat von den 100 Mal 60 Mal korrekt vorhergesagt und somit verwerfen wir H_0 , denn $60 \in V$.

Likelihood Quotient

Sei $L(x_1,\ldots,x_n;\vartheta)$ die Likelihood Funktion und $\vartheta_0\in\Theta_0$ sowie $\vartheta_A \in \Theta_A$. Dann definieren wir:

$$R(x_1, \dots, x_n; \vartheta_0, \vartheta_A) = \frac{L(x_1, \dots, x_n; \vartheta_A)}{L(x_1, \dots, x_n; \vartheta_0)}$$

je grösser der Quotient, desto wahrscheinlicher die Alternative. Es gibt auch:

$$R(x_1, \dots, x_n) = \frac{\sup_{\vartheta \in \Theta_A} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}$$
$$\widetilde{R}(x_1, \dots, x_n) = \frac{\sup_{\vartheta \in \Theta_A \cup \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}$$

Wähle Konstante c_0 für $K_0 = (c_0, \infty)$ mithilfe von Signifikanzniveau.

Neyman-Pearson Lemma

 $|R(X_1,\ldots,X_n;\vartheta_0,\vartheta_A)|$ und $K:=(c,\infty)$, sowie $\alpha^*:=|\text{nter Varianz. Hier sind }X_1,\ldots,X_n|$ i.i.d. $\sim \mathcal{N}(\mu,\sigma^2)$ unter

 $P_{\vartheta_0}[T \in K] = P_{\vartheta_0}[T > c]$. Der Likelihood Quotienten Test mit Teststatistik T und kritischem Bereich K ist dann in folgendem Sinn optimal: Jeder andere Test mit Signifikanzniveau $\alpha \leq \alpha^*$ hat eine kleinere Macht (bez. Grössere WS Fehler 2. Art).

p-Wert

(Nach Wikipedia) Der p-Wert ist die Wahrscheinlichkeit ein mindestens so extremes Testergebnis zu erhalten, wenn die Nullhypothese gelten würde:

$$p(x) = P[X \le x \mid H_0] \text{ oder } P[X \ge x \mid H_0]$$

$$p(x) = 2 \cdot \min\{P[X \le x \mid H_0], P[X \ge x \mid H_0]\}$$

z-Test

Normalverteilung, Test für Erwartungswert bei bekannter Varianz. Hier sind X_1, \ldots, X_n i.i.d. $\mathcal{N}(\vartheta, \sigma^2)$. Wir möchten die Hypothese $H_0: \vartheta = \vartheta_0$ testen. Mögliche Alternativen $H_A \text{ sind } \vartheta > \vartheta_0, \, \vartheta < \vartheta_0 \text{ (einseitig) oder } \vartheta \neq \vartheta_0 \text{ (zweiseitig)}.$ Die Teststatistik ist:

$$T = \frac{\overline{X} - \vartheta_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$
 unter P_{ϑ_0}

Und die Verwerfungebereiche:

$$\begin{array}{ll} \vartheta < \vartheta_0 & (-\infty, z_\alpha) \\ \vartheta > \vartheta_0 & (z_{1-\alpha}, \infty) \\ \vartheta \neq \vartheta_0 & (-\infty, z_{\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2}}, \infty) \end{array}$$

Wobei die z Werte in der Tabelle nachgeschaut werden können und es gilt $z_{\alpha} = -z_{1-\alpha}$.

Beispiel Fehler 2. Art Berechnen

Nehme an: einseitiger z-Test, $T = \frac{\overline{X}_n - \mu_0}{\sigma / \sqrt{n}}$, $\mu_0 = 70$.

$$H_0: \mu = \mu_0 \qquad \qquad H_A: \mu < \mu_0$$

Kritischer Bereich mit 5% niveau: $K = (-\infty, -1.645)$. Wir nehmen an, dass $T = \frac{\overline{X}_n - \mu_A}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$:

$$\begin{split} P_{\mu_A}[T \not\in K] &= P_{\mu_A}[T > -1.645] \\ &= P_{\mu_A} \left[\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} > -1.645 \right] \\ &= P_{\mu_A} \left[\frac{\overline{X}_n - \mu_A}{\sigma/\sqrt{n}} > \frac{\mu_0 - \mu_A}{\sigma/\sqrt{n}} - 1.645 \right] \\ &= 1 - P_{\mu_A} \left[\frac{\overline{X}_n - \mu_A}{\sigma/\sqrt{n}} \le \frac{\mu_0 - \mu_A}{\sigma/\sqrt{n}} - 1.645 \right] \\ &= 1 - \Phi \left(\frac{\mu_0 - \mu_A}{\sigma - \sqrt{n}} - 1.645 \right) \quad \text{Weil} \quad \sim \mathcal{N}(0, 1) \end{split}$$

t-Test

Sei $\Theta_0 = \{\vartheta_0\}$ und $\Theta_A = \{\vartheta_A\}$. Wie oben sei T = | Normalverteilung, Test für Erwartungswert bei unbekan-

 $P_{\vec{\beta}}$, wobei $\vec{\vartheta} = (\mu, \sigma^2)$. Wir wollen die Hypothese $\mu = \mu_0 | \mathbf{Konfidenzbereich}$ testen. Die Teststatistik ist:

$$T := \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim t_{n-1} \qquad \text{unter } P_{\vartheta_0}$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Und die Verwerfungsbereiche:

$$\begin{array}{lll} c_{<} = t_{n-1,\alpha} & (-\infty,c_{<}) & \mu < \mu_{0} \\ c_{>} = t_{n-1,1-\alpha} & (c_{>},\infty) & \mu > \mu_{0} \\ c_{\neq} = t_{n-1,1-\frac{\alpha}{2}} & (-\infty,c_{<}) \cup (c_{>},\infty) & \mu \neq \mu_{0} \end{array}$$

Wobei gilt $t_{m,\alpha} = -t_{m,1-\alpha}$.

Gepaarter Zweiproben-Test

Hier sind X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu_X, \sigma^2)$ und Y_1, \ldots, Y_n i.i.d. $\sim \mathcal{N}(\mu_Y, \sigma^2)$ unter P_{ϑ} . Insbesondere ist m = nund die Varianz beider Stichproben dieselbe. Differenzen $Z_i := X_I - Y_i$ sind unter P_{ϑ} i.i.d. $\mathcal{N}(\mu_X - \mu_Y, 2\sigma^2)$. Dann analog z und t-Test. (Setzt natürliche Paarung von Daten voraus!)

Ungepaarter Zweiproben-Test

Hier sind unter P_{ϑ} die Zufallsvariablen X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu_X, \sigma^2)$ und Y_1, \ldots, Y_m i.i.d. $\sim \mathcal{N}(\mu_Y, \sigma^2)$, wobei die Varianz in beiden Fällen dieselbe ist.

• Bei bekannter Varianz:

$$H_0: \mu_X - \mu_Y = \mu_0 \quad (z.B. \ \mu_0 = 0)$$

$$T = \frac{\overline{X}_n - \overline{Y}_m - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)$$

Die kritischen Werte für den Verwerfungsbereich sind wie oben geeignete Quantile der $\mathcal{N}(0,1)$ -Verteilung, ie nach Alternative. Das ist der ungepaarte Zweistichproben-z-Test.

• Bei unbekannter Varianz:

$$S_X^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$S_Y^2 := \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

$$S^2 := \frac{1}{m+n-2} \left((n-1) \cdot S_X^2 + (m-1) \cdot S_Y^2 \right)$$

$$T = \frac{\overline{X}_n - \overline{Y}_m - (\mu_X - \mu_Y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$$

unter jedem P_{ϑ} . Dieser Test heisst ungepaarter Zweistichproben-t-Test.

Ein Konfidenzbereich für ϑ zu Daten x_1, \ldots, x_n ist eine Menge $C(x_1,\ldots,x_n)\subseteq\Theta$. Damit ist $C(X_1,\ldots,X_n)$ eine zufällige Teilmenge von Θ . Dieses C heisst Konfidenzbereich zum Niveau $1-\alpha$, falls für alle $\vartheta \in \Theta$ gilt:

$$P_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] \ge 1 - \alpha$$

Beispiel Konfidenzbereich

Machen wir den Ansatz:

$$C(X_1,\ldots,X_n)=[\overline{X}_n-\ldots,\overline{X}_n+\ldots]$$

so wollen wir erreichen, dass gilt:

$$1 - \alpha \le P_{\vartheta}[\vartheta \in C(X_1, \dots, X_n)]$$

= $P_{\vartheta}[\mu \in [\overline{X}_n - \dots, \overline{X}_n + \dots]] = P_{\vartheta}[|\overline{X}_n - \mu| \le \dots]$

Nach Satz 7.1 ist für jedes $\vartheta \in \Theta$:

$$\frac{\overline{X}_n - \mu}{S/\sqrt{n}} \sim t_{n-1} \quad \text{unter } P_{\vartheta}$$

$$1 - \alpha \le P_{\vartheta} \left[\left| \frac{\overline{X}_n - \mu}{S/\sqrt{n}} \right| \le \frac{\dots}{S/\sqrt{n}} \right]$$

also erhalten wir das Konfidenzintervall für μ zum Niveau $1-\alpha$:

$$C(X_1, \dots, X_n) = \left[\overline{X}_n - t_{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X}_n + t_{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$$

Diskrete Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	Var(X)	$p_X(t)$	$F_X(t)$
Gleichverteilung	n: Anzahl Ereignisse x _i : Ereignisse	$\frac{1}{n}\sum_{i=1}^{n} x_i$	$\frac{1}{n}\sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} (\sum_{i=1}^{n} x_i)^2$	$\frac{1}{n}$	$\frac{ \{k:x_k \le t\} }{n}$
Bernoulli	p: ErfolgsWK	p	$p \cdot (1 - p)$	$p^{t}(1-p)^{1-t}$	$1 - p$ für $0 \le t < 1$
Binomial	p: ErfolgsWK n: Anzahl Versuche	np	np(1-p)	$\binom{n}{t} p^{t} (1-p)^{n-t}$	$\sum_{k=0}^{t} {n \choose k} p^{k} (1-p)^{n-k}$
Geometrisch	p: ErfolgsWK t: Anzahl Versuche	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{t-1}$	$1 - (1 - p)^t$
Negativ Binomial	r > 0: Erfolge bis Abbruch p: ErfolgsWK t: Misserfolge	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$	$\binom{t+r-1}{k} \cdot (1-p)^r p^t$	$F_{\text{Binomial}}(t; n = t + r, p)$
Hypergeometrisch	N : Anzahl aller Elemente $M < N$: Anzahl möglicher Erfolge $n \leq N$: Anzahl Elemente in der Stichprobe	$n\frac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-m}{N-1}$	$\frac{\binom{M}{t}\binom{N-M}{n-t}}{\binom{N}{n}}$	$\sum_{k=0}^{t} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$
Poisson	λ: Erwartungswert und Varianz	λ	λ	$\frac{\lambda^k}{k!}e^{-\lambda}$	p

Stetige Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	Var(X)	$f_X(t)$	$F_X(t)$
Gleichverteilung	[a, b]: Inter- vall	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$	$\frac{1}{b-a}$	$\frac{t-a}{b-a}$
Exponentialverteilung	$\lambda : \frac{1}{\mathbb{E}[X]}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\begin{cases} \lambda e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda t} & t > 0 \\ 0 & t \le 0 \end{cases}$
Normalverteilung	σ^2 : Varianz $\mu : \mathbb{E}[X]$	μ	σ^2	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(t-\mu)^2}{2\sigma^2}} - \infty < t < \infty$	$\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{t} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}} dy$
χ^2 -Verteilung	n: Freiheits- grad	n	2n	$\frac{\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}} t > 0$	$Gamma(\frac{n}{2}, \frac{t}{2})$
Gamma-Verteilung	α, λ	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\frac{\lambda^{\alpha}t^{\alpha-1}e^{-\lambda t}}{\Gamma(\alpha)} t > 0 \alpha, \lambda > 0$	$\frac{1}{\Gamma(\alpha)}\gamma(\alpha, \lambda t)$
t-Verteilung	n: Freiheits- grad	0 für $n>1$ sonst undef.	$\begin{cases} \frac{n}{n-2} & n > 2 \\ \infty & 1 < n \le 2 \\ \text{undef. sonst} \end{cases}$	$\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \cdot \Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$	oof