Lecture 7: Molecules and molecular clouds

Paul van der Werf

Course Contents

- 1. Introduction and ecology of the interstellar medium
- 2. Physical conditions and radiative processes
- 3. The atomic interstellar medium
- 4. Ionization and recombination
- 5. HII regions
- 6. Collisional excitation and nebular diagnostics
- Molecules and their excitation
- 8. Thermal balance
- 9. Interstellar dust
- 10. Molecular clouds
- 11. Shocks, supernova remnants and the 3-phase ISM
- 12. Extragalactic ISM and outlook

Today's Lecture

Molecules and their excitation

- 1. Molecular structure and molecular spectra
- 2. The H₂ problem
- 3. Molecules as probes

Corresponding textbook material: Draine Ch. 5 and 31

Molecular spectra

Born-Oppenheimer approximation:

we can, to good approximation, consider the nuclei fixed and the electrons moving in the resulting potential.

Based on this we can derive that three types of transitions occur:

- 1. Electronic transitions (mostly optical/UV)
- Vibrational transitions (mostly near/mid-IR)
- Rotational transitions (mostly far-IR/mm/radio)

Electronic transitions

Reconfiguration of electron cloud

- As for atoms/ions, but with non-spherical potential
- High excitation energies (E/k ~ 50000 K), so not collisionally excited
- UV absorption lines

H₂ UV absorption lines

FUSE spectrum towards a bright UV source, showing H2 absorption lines (Shull et al., 2000)

- blue tick marks: H₂ Werner band
- red tick marks: H₂ Lyman band

Vibrational energy levels

Spring analogy, with spring constant determined by the mode of vibration and the nature of the chemical bond.

Quantum harmonic oscillator:

$$E_v = h\nu_0 \left(v + \frac{1}{2}\right)$$
 $v = 0, 1, 2, ...$

(from wikipedia)

- Excitation energies $E/k \sim 1000$ K, so usually not collisionally excited
- IR absorption bands
- Fluorescent emission

Vibrational modes in polyatomic molecules

(from wikipedia)

Characteristic vibrational band frequencies

(credit Jonathan Williams)

Rotational levels of linear molecules

- valid for e.g., H₂, HD, CO, CS, HF, CO⁺, CH⁺, SiO,...
- and also: HCN, HNC, HCO⁺, N₂H⁺,...
- but not for instance: OH, OH⁺, O₂, N₂,CO₂, ...

Classical rigid rotor: $E_{\text{rot}}(J) = \frac{J^2}{2I}$ where $I = m_r r_n^2$

$$E_{\rm rot}(J) = \frac{J^2}{2I}$$

$$I = m_r r_n^2$$

J: angular momentum

I: moment of inertia

 r_n : internuclear distance

reduced mass m_r :

$$\frac{1}{m_r} = \frac{1}{m_1} + \frac{1}{m_2}$$

Rotational levels of linear molecules

Quantum rigid rotor:
$$E_{\text{rot}}(J) = \frac{\hbar^2}{2m_r r_n^2} J(J+1) \qquad J = 0,1,2,....$$

$$J = 0,1,2,....$$

Define the rotational constant $B_v = \frac{\hbar^2}{2m_r r_n^2}$

$$B_v = \frac{\hbar^2}{2m_r r_n^2}$$

(NB: why the dependence on vibrational quantum number ν ?),

Then we can write $E_{\text{rot}}(J) = B_v J(J+1)$

$$E_{\rm rot}(J) = B_v J(J+1)$$

and inserting numbers:
$$\frac{E_{\rm rot}(J)}{k} = 24 \text{ K} \frac{m_{\rm H}}{m_r} \left(\frac{0.1 \text{ nm}}{r_n}\right)^2 J(J+1)$$

SO:

- lines in mm/submm/far-IR
- typical molecular cloud temperatures (so expect collisional excitation)

Rotational lines of H₂ and CO

$$\frac{E_{\text{rot}}(J)}{k} = 24 \text{ K} \frac{m_{\text{H}}}{m_r} \left(\frac{0.1 \text{ nm}}{r_n}\right)^2 J(J+1)$$

For simple molecules: r_n roughly constant m_r varies

• for
$$H_2: m_r = m_H / 2$$
 $\rightarrow \Delta E (J=1-0) = 170 \text{ K}$

• for CO :
$$m_r = 6.9 m_H$$
 $\rightarrow \Delta E (J=1-0) = 5.5 K$

So:

- energy spacing is smaller for heavier molecules
- CO lines are good probes of cold molecular gas, but H₂ lines are not

Energy levels of CO

Rotational line spectra: CO vs H₂

H₂ UV absorption lines

FUSE spectrum towards a bright UV source, showing H2 absorption lines (Shull et al., 2000)

- blue tick marks: H₂ Werner band
- red tick marks: H₂ Lyman band

H₂ electronic and vibrational energy levels

H₂ rovibrational energy levels

Note: for H_2 $\Delta J = \pm 2$

Vibrational absorption bands

Vibrational absorption bands of C_2H_2 (acetylene), HCN and CO_2 in Orion (data below model)

(Boonman *et al.,* 2003)

Rotational energy levels of H₂O

Energy levels of NH₃

Note inversion doubling of all rotational transitions

Partial spectrum of the Orion star forming region

HIFI Spectrum of Water and Organics in the Orion Nebula

© ESA, HEXOS and the HIFI consortium E. Bergin

Today's Lecture

Molecules and their excitation

- 1. Molecular structure and molecular spectra
- The H₂ problem
- 3. Molecules as probes

Rotational transtions for linear molecules

Start with heteronuclear molecules (CO, CS, HD, SiO, HCN, HCO+,...)

Since the charge distribution is asymmetric, these have a permanent electric dipole moment μ [Debye].

The Einstein A coefficient for electric dipole transitions (rotating) dipole with electric dipole moment μ) can be calculated:

$$A_{J,J-1} = \frac{128\pi^3}{3\hbar} \left(\frac{B_v}{hc}\right)^3 \mu^2 \frac{J^4}{J+\frac{1}{2}}$$
 with the selection rule $\Delta J = \pm 1$

so approximately: $A_{J,J=1} \propto J^3$

and the other A's are zero.

e.g., for CO:
$$A_{J,J-1} = 1.07 \cdot 10^{-7} \frac{J^4}{J + \frac{1}{2}}$$
 s⁻¹, so slow transitions (nuclear inertia)

How about homonuclear molecules?

Homonuclear molecules (principally H₂) have no permanent dipole moment and hence no electric dipole transitions.

Now the strongest transitions are the (much weaker) electric quadrupole transitions with the selection rule $\Delta J = \pm 2$

This results in 2 separate rotational ladders:

- ortho-H₂ (J odd)
- para-H₂ (*J* even)

Quantum physics also requires (see Draine Sect 5.1.6):

- for para-H₂: nuclear spins antiparallel $(J_{\text{nuc}} = 0, g_{\text{nuc}} = 1)$
- for ortho- H_2 : nuclear spins parallel $(J_{\text{nuc}} = 1, g_{\text{nuc}} = 3)$.

So abundance ratio ortho/para H_2 is expected to be 3.

The H₂ problem

The lowest H_2 transition is the J=2-0 transition at $\lambda=28~\mu m$ (from the J=2 level which is 511 K above the ground state).

Hence:

- probes only warm H₂ (several 100K)
- can only be observed from space
- very weak line (quadrupole transition)

 $\rm H_2$ emission is very hard to observe directly and is not a tracer of bulk molecular gas.

In contrast: CO J = 1-0: $\lambda = 2.6$ mm (accessible from the ground), J=1 level is 5.5 K above ground state: promising probe of cold molecular gas.

Rotational line spectra: CO vs H₂

First detection of H_2 28 μ m line in the ISM

Fig. 3. ISO-SWS spectrum of the H_2 S(0) line (28.21 μ m) in the central regions of NGC 6946, with symbols as in Fig. 1.

Fig. 1. ISO-SWS spectrum of the H_2 S(1) line (17.03 μ m) in the central regions of NGC 6946. The dotted line represents the RSRF of the instrument (see text). The vertical line is the expected wavelength for a heliocentric radial velocity of 48 km s⁻¹.

(Valentijn, Van der Werf, De Graauw & De Jong 1996)

Today's Lecture

Molecules and their excitation

- 1. Molecular structure and molecular spectra
- 2. The H₂ problem
- Molecules as probes

Critical densities for rotational lines

$$n_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$

Recall
$$n_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$
 and $A_{J,J-1} = \frac{128\pi^3}{3\hbar} \left(\frac{B_v}{hc}\right)^3 \mu^2 \frac{J^4}{J + \frac{1}{2}}$

Since approximately $A_{J,J-1}$ αJ^3 , and $k_{J,J-1}$ is a slow function of J, we find that approximately $n_{\rm crit} \propto J^3$. We also had approximately $E(J) \propto J^2$ for the level energy.

$$n_{
m crit} \propto J^3$$

Implications:

- to excite high-J lines efficiently, we need both high T and high n.
- since high-J line fluxes depend on both T and n, they do not form a clean temperature or density probe.
- using multiple lines, the degeneracy can be broken (in principle)

Tracing densities with molecular lines

Recall
$$n_{cri}$$

$$a_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$
 and

Recall
$$n_{\text{crit}} = \frac{A_{J,J-1}}{k_{J,J-1}}$$
 and $A_{J,J-1} = \frac{128\pi^3}{3\hbar} \left(\frac{B_v}{hc}\right)^3 \mu^2 \frac{J^4}{J + \frac{1}{2}}$

So: molecules with large μ will have large $n_{\rm crit}$ molecules with low μ will have low $n_{\rm crit}$.

E.g., CO J=1-0: $n_{crit} \sim \text{few } 100 \text{ cm}^{-3}$

but HCN J=1-0: $n_{crit} \sim \text{few } 10^5 \text{ cm}^{-3}$

Generally:

- low CO lines (J=1-0, 2-1) are have low critical densities and good probes of bulk cold molecular gas
- lines of heavier molecules (HCN, CS, HCO⁺) probe denser molecular gas
- high lines of any molecule probe warm, dense gas

Properties of some important molecules

MOLECULE	$egin{array}{c} { m LOWEST} \\ { m ROTATIONAL} \\ { m LINE} & [\mu { m m}] \end{array}$	ROTATIONAL DIPOLE MOMENT [Debye]	$egin{array}{c} ext{VIBRATIONAL} \ ext{TRANSITIONS} \ [\mu m] \end{array}$
${ m H_2}$	28.1	0	2.3
HD	112.1	5.8×10^{-4}	2.6
ОН	119	1.7	2.7
NH	302		3.0
CH	149,562	1.46	3.5
HCl	479	1.11	3.3
CO	2600	0.112	4.8
CS	6110	2	7.8
HCN	3440	3	3.0, 4.9, 14
HCO ⁺	3360	3.3	
NH_3	524	1.5	2.9, 6.1, 10.5
H_2O	538,269	1.85	2.7, 6.3
HDO	590	1.84	3.0, 3.7, 7.1
$\mathrm{H_2D^+}$	806		
$\mathrm{H_{3}O^{+}}$	$760 \rightarrow 830$	≈1	
O_2	5350	0	
SiO	6910	3.1	8.1

Critical densities

Species	transition	$ u_{ul}$	E_u	A_{ul}	n_{cr}
		[GHz]	[K]	$[s^{-1}]$	$\left[\mathrm{cm}^{-3}\right]$
CO	1 - 0	115.3	5.5	7.2×10^{-8}	1.1×10^{3}
	2 - 1	230.8	16.6	6.9×10^{-7}	6.7×10^{3}
	3-2	346.0	33.2	$2.5 imes 10^{-6}$	$2.1 imes 10^4$
	4-3	461.5	55.4	$6.1 imes 10^{-6}$	4.4×10^4
	5 - 4	576.9	83.0	1.2×10^{-5}	7.8×10^4
	6 - 5	691.2	116.3	2.1×10^{-5}	1.3×10^5
	7 - 6	806.5	155.0	$3.4 imes 10^{-5}$	2.0×10^5
CS	1 - 0	49.0	2.4	1.8×10^{-6}	4.6×10^{4}
	2 - 1	98.0	7.1	1.7×10^{-5}	3.0×10^{5}
	3 - 2	147.0	14	6.6×10^{-5}	1.3×10^{6}
	5 - 4	244.9	35	3.1×10^{-4}	8.8×10^{6}
	7 - 6	342.9	66	1.0×10^{-3}	2.8×10^{7}
	10 - 9	489.8	129	$2.6 imes 10^{-3}$	1.2×10^8
HCO ⁺	1 - 0	89.2	4.3	$3.0 imes 10^{-5}$	$1.7 imes 10^5$
	3-2	267.6	26	1.0×10^{-3}	4.2×10^{6}
	4-3	356.7	43	$2.5 imes 10^{-3}$	9.7×10^{6}
HCN	1 - 0	88.6	4.3	$2.4 imes 10^{-5}$	2.6×10^{6}
	3-2	265.9	26	8.4×10^{-4}	7.8×10^{7}
	4-3	354.5	43	2.1×10^{-3}	1.5×10^{8}
$\rm H_2CO$	$2_{12}-1_{11}$	140.8	6.8	$5.4 imes 10^{-5}$	1.1×10^{6}
	$3_{13} - 2_{12}$	211.2	17	$2.3 imes 10^{-4}$	5.6×10^{6}
	$4_{14} - 3_{13}$	281.5	30	6.0×10^{-4}	9.7×10^{6}
	$5_{15} - 4_{14}$	351.8	47	1.2×10^{-3}	2.6×10^{7}
NH_3	(1,1) inversion	23.7	1.1	1.7×10^{-7}	1.8×10^{3}
	(2,2) inversion	23.7	42	$2.3 imes 10^{-7}$	2.1×10^3
H_2	2-0	$1.06\mathrm{E}4^a$	510	2.9×10^{-11}	10
	3-1	$1.76\mathrm{E}4^{b}$	1015	4.8×10^{-10}	300

Molecular lines as probes

(credit: Reinhard Genzel)

Next lecture

Thermal balance

- 1. What sets the temperature of the ISM?
- 2. Temperatures of HII regions
- 3. The origin of the 2-phase ISM
- 4. Temperatures of molecular clouds