This document provides supplementary materials for the article, including tables containing the results of experiments. All notations are the same as those used in the article itself. These tables also include data on experiments based on LEC problems of sorting algorithms. Therefore, we have slightly expanded the description of the benchmarks and functions used Construction 1.

A. Benchmarks description

11

13

15

16

17

18

20

21

22

23

24

25

26

28

30

31

32

33

34

35

37

48

49

50

51

The first class of benchmarks we considered is a variety of particularly challenging LEC instances for circuits that perform specific arithmetic functions, such as multipliers and sorting algorithms. Specifically, we examined two categories of LEC instances:

- 1) LEC for two different multiplication algorithms: we considered the "Column multiplier", "Wallace tree", "Karatsuba decomposition", and "Dadda multiplier". These instances are denoted as AvB_k , where A and B represent the multiplication algorithms, and k is the number of bits in the multiplied numbers. For instance, CvK₁₆ represents the LEC instance for Column and Karatsuba multiplication algorithms for two 16-bits numbers (16x16 multiplier). This leads to six classes of LEC instances: CvK_k , CvW_k , DvC_k , DvK_k , DvW_k , KvW_k .
- 2) LEC for different sorting algorithms: we considered the "bubble sort", "selection sort", and "pancake sort" algorithms. The corresponding LEC instances are denoted by $AvB_{k,l}$, where A and B represent the sorting algorithms, k is the number of sorted numbers and l is the number of bits in each number. For instance, BvP_{9.4} denotes the LEC for Bubble and Pancake sorting algorithms that sort nine 4-bit numbers. The test instances are denoted by $BvP_{k,l}$ ("Bubble vs Pancake"), $SvB_{k,l}$ ("Selection vs Bubble"), $PvS_{k,l}$ ("Pancake vs Selection").

The second class consists of several (satisfiable) instances related to algebraic cryptanalysis, specifically the SAT encodings of the preimage attack on the reduced-round MD4 compression function. In our experiments, we selected two CNFs (md4_40steps_11.30-32Dobb_one_constr_one_hash, referred to as MD4₄₀, and md4 43steps 12Dobb one constr one hash, referred to as MD4₄₃) from the repository¹ presented in [23]. These CNFs correspond to two cryptanalysis instances that are neither too easy nor too difficult.

B. Functions for Construction 1 43

For Construction 1, we used a partitioning of the set X^{in} into disjoint sets of variables. Function λ_1^j used in Construction 1 was selected experimentally as follows ($\lambda_2^j = \neg \lambda_1^j$ in all cases):

- $i ext{-XOR: } \lambda_1^j=(x_1^j\oplus x_2^j\oplus \ldots \oplus x_i^j);$ $2 ext{-DIS: } \lambda^1=x_1\vee x_2;$
- 3-MAJ: λ_1^j = majority (x_1^j, x_2^j, x_3^j) , where $\mathtt{majority}(a,b,c) = a \wedge b \vee a \wedge c \vee b \wedge c;$
- 4-BENT: $\lambda_1^j = x_1^j \wedge x_3^j \oplus x_2^j \wedge x_4^j$.

Functions λ^j for j > 1 are defined over the corresponding subsequent disjoint chunks of inputs, e.g. $\lambda^2 = x_4 \oplus x_5 \oplus x_6$ for 3-XOR.

53

54

55

56

58

59

60

62

63

64

65

67

69

70

71

72

73

74

75

C. Tables description

- Tables I to VI contain detailed information on experiments with 12x12 multipliers;
- Table VII provides detailed information on experiments with 16x16 multipliers;
- Table VIII displays the results of an experiment comparing the computation of the decomposition hardness of 12x12 multipliers with different orders of the input variables. For each instance, the hardness was computed using Constructions 1 and 2 for 5 different random orders of input variables;
- Table IX is an extended version of Table 3 from the article and contains detailed data on the construction of estimates of the decomposition hardness of the non-full-round MD4 inversion problem, relaxed by Dobbertin constraints. This table also shows the exact values of the decomposition hardness of the considered problems w.r.t. to different partitionings;
- Table X contains detailed data on experiments on the decomposition hardness of LEC problems for sorting algorithms.

¹https://github.com/olegzaikin/MD4-CnC

 $\label{eq:table_interpolation} TABLE~I~$ Experimental results for partitionings. $\texttt{CvK}_{12}.$

Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
Sequential	_	_	36 864
2-XOR/4096	2.87 ± 0.15	2.43 - 3.6	11751
2-DIS/4096	17.35 ± 15.27	1.83 - 218.47	71 075
3-MAJ/256	21.24 ± 1.12	18.29 - 26.39	5 4 3 7
3-XOR/256	20.76 ± 0.91	18.55 - 23.84	5314
INT/32	176.45 ± 20.22	134.32 - 211.85	5 647
INT/64	74.61 ± 7.01	52.89 - 87.1	4775
INT/100	45.19 ± 4.48	28.41 - 55.42	4 5 2 0
INT/128	33.03 ± 3.16	21.26 - 39.18	4 2 2 8
INT/200	21.31 ± 2.2	12.44 - 27.28	4 2 6 3
INT/256	15.71 ± 1.41	9.05 - 18.35	4021
INT/300	14.16 ± 1.43	7.44 - 19.95	4 2 4 8
INT/400	10.73 ± 1.06	5.07 - 12.93	4 2 9 3
INT/500	8.8 ± 0.87	4.17 - 10.93	4 401
INT/512	8.01 ± 0.74	3.71 - 9.72	4 102
INT/600	7.45 ± 0.79	2.73 - 9.93	4471
INT/1024	4.49 ± 0.46	1.49 - 5.55	4 5 9 6
CnC-d8/256	16.05 ± 12.22	2.95 - 133.19	4110
CnC-def./56404	0.15 ± 0.23	0.01 - 11.8	8 3 5 8
CnC-n4600/273	16.47 ± 30.42	2.12 - 418.31	4 4 9 8
CnC-def	ault incremental	iGlucose	16782
	t incremental Ca		9 427

Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
Sequential		_	3 299
2-X0R/4096	1.63 ± 0.11	1.34 - 2.11	6 6 7 3
2-DIS/4096	10.5 ± 10.23	0.23 - 151.78	42 992
3-MAJ/256	13.49 ± 2.09	5.51 - 19.95	3 4 5 5
3-XOR/256	13.95 ± 1.0	11.48 - 16.83	3 5 7 1
INT/32	96.46 ± 30.92	17.33 - 157.67	3 087
INT/64	43.11 ± 12.1	4.7 - 62.38	2759
INT/100	26.74 ± 7.28	2.14 - 40.42	2675
INT/128	20.02 ± 5.28	1.73 - 30.75	2 5 6 3
INT/200	12.41 ± 3.08	0.69 - 19.59	2482
INT/256	8.87 ± 2.19	0.36 - 12.92	2272
INT/300	8.29 ± 2.17	0.34 - 14.32	2488
INT/400	5.93 ± 1.48	0.15 - 10.46	2372
INT/500	4.76 ± 1.15	0.08 - 9.18	2 3 7 9
INT/512	4.34 ± 1.05	0.08 - 6.62	2224
INT/600	3.97 ± 0.94	0.04 - 6.67	2384
INT/1024	2.19 ± 0.54	0.01 - 3.38	2 247
CnC-d8/256	9.66 ± 20.28	1.16 - 275.34	2474
CnC-def./80956	0.05 ± 0.08	0.0 - 3.02	4 054
CnC-n2800/250	11.07 ± 30.81	0.57 - 262.87	2767
CnC-defa	ult incremental	iGlucose	6 2 0 5
CnC-default	incremental Ca	dical v1.5.3	5 893

Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s		Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
Sequential	_	_	6612		Sequential	_	_	36 224
2-XOR/4096	1.72 ± 0.12	1.34 - 2.14	7 032	2	2-XOR/4096	2.89 ± 0.17	2.46 - 3.76	11824
2-DIS/4096	13.01 ± 14.42	0.17 - 150.52	53 304		2-DIS/4096	18.66 ± 16.95	1.84 - 235.98	76414
3-MAJ/256	14.98 ± 3.4	3.57 - 24.88	3 836	3	B-MAJ/256	23.3 ± 1.64	19.16 - 30.39	5 966
3-XOR/256	16.96 ± 1.02	14.62 - 20.21	4 343	3	3-XOR/256	22.96 ± 1.12	21.02 - 27.28	5 879
INT/32	140.81 ± 49.68	25.05 - 222.69	4 506		INT/32	191.41 ± 15.84	162.17 - 217.88	6 1 2 6
INT/64	60.0 ± 21.15	6.7 - 99.99	3 840		INT/64	83.39 ± 8.07	58.91 - 100.33	5 3 3 8
INT/100	34.91 ± 10.49	3.39 - 51.01	3 492		INT/100	49.93 ± 5.21	34.96 - 64.33	4993
INT/128	25.39 ± 7.79	1.99 - 40.28	3 251		INT/128	35.73 ± 3.24	24.25 - 43.33	4 574
INT/200	14.97 ± 4.24	1.01 - 25.7	2 995		INT/200	23.62 ± 2.88	11.74 - 36.04	4724
INT/256	10.97 ± 3.02	0.57 - 16.92	2 809		INT/256	16.99 ± 1.72	10.15 - 21.59	4 349
INT/300	9.6 ± 2.64	0.47 - 18.57	2880		INT/300	15.57 ± 1.95	7.38 - 21.77	4672
INT/400	6.88 ± 1.75	0.19 - 11.44	2751		INT/400	11.32 ± 1.22	4.81 - 14.1	4 5 3 0
INT/500	5.46 ± 1.37	0.16 - 8.34	2731		INT/500	9.45 ± 1.06	3.7 - 12.7	4726
INT/512	5.1 ± 1.32	0.14 - 7.38	2614		INT/512	8.51 ± 0.96	3.6 - 11.22	4 3 5 5
INT/600	4.48 ± 1.1	0.09 - 7.42	2686		INT/600	7.83 ± 0.88	2.8 - 11.08	4 697
INT/1024	2.53 ± 0.63	0.02 - 3.68	2 589		INT/1024	4.69 ± 0.55	1.44 - 6.15	4 806
CnC-d8/256	18.66 ± 253.93	0.74 - 4065.08	4 777		nC-d8/256	17.04 ± 11.8	0.17 - 65.03	4 362
CnC-def./73359	0.06 ± 0.08	0.0 - 3.08	4074		-def./68995	0.13 ± 0.19	0.01 - 9.94	8 639
CnC-n2850/261	13.73 ± 30.76	0.62 - 298.97	3 584	CnC-1	n4450/246	20.16 ± 39.43	2.06 - 463.09	4959
	efault incremental		7916			ault incremental		16767
CnC-defau	ılt incremental Ca	dical v1.5.3	7 592		CnC-defaul	lt incremental Ca	idical v1.5.3	9 759

TABLE VII
EXPERIMENTAL RESULTS FOR PARTITIONINGS. MULTIPLIERS 16x16.

Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s	
Sequential	_	_	10 373	
2-X0R/4096	1.74 ± 0.13	1.42 - 2.16	7 118	
2-DIS/4096	14.19 ± 14.76	0.19 - 199.22	58 129	
3-MAJ/256	17.16 ± 3.22	4.36 - 26.92	4 392	
3-XOR/256	18.79 ± 1.11	16.16 - 22.4	4810	
INT/32	155.89 ± 48.06	30.02 - 225.99	4 989	
INT/64	70.88 ± 21.88	7.9 - 104.63	4 537	
INT/100	42.48 ± 12.81	2.75 - 68.47	4 249	
INT/128	31.0 ± 9.52	2.47 - 49.06	3 969	
INT/200	18.37 ± 5.33	0.9 - 30.43	3 675	
INT/256	12.92 ± 3.69	0.59 - 20.11	3 308	
INT/300	11.39 ± 3.16	0.4 - 19.23	3 4 1 8	
INT/400	8.02 ± 2.24	0.21 - 13.02	3 209	
INT/500	6.27 ± 1.65	0.12 - 10.12	3 138	
INT/512	5.8 ± 1.61	0.11 - 10.14	2972	
INT/600	5.13 ± 1.35	0.06 - 8.95	3 078	
INT/1024	2.81 ± 0.79	0.02 - 4.83	2880	
CnC-d8/256	15.85 ± 135.66	1.21 - 2176.97	4058	
CnC-def./53954	0.08 ± 0.17	0.0 - 21.06	4 2 1 0	
CnC-n2650/293	13.24 ± 34.91	0.63 - 374.09	3 880 10 320	
CnC-default incremental iGlucose				
CnC-defau	lt incremental Ca	dical v1.5.3	9 7 1 0	

Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
Sequential	_	_	37 339
2-X0R/4096	2.88 ± 0.16	2.52 - 3.76	11781
2-DIS/4096	20.35 ± 19.44	1.72 - 275.52	83 356
3-MAJ/256	24.58 ± 2.55	19.36 - 35.41	6 2 9 2
3-XOR/256	24.47 ± 1.05	21.95 - 29.35	6 2 6 4
INT/32	229.09 ± 20.46	192.35 - 262.83	7 3 3 1
INT/64	94.81 ± 9.25	70.89 - 114.68	6 0 6 8
INT/100	57.85 ± 6.79	40.61 - 77.49	5 785
INT/128	41.38 ± 4.44	26.5 - 49.68	5 298
INT/200	26.14 ± 2.97	13.47 - 37.02	5 229
INT/256	18.9 ± 2.12	10.17 - 24.08	4839
INT/300	16.77 ± 1.85	7.67 - 23.22	5 0 3 0
INT/400	12.33 ± 1.39	5.42 - 16.3	4931
INT/500	10.12 ± 1.15	4.85 - 16.36	5 058
INT/512	9.28 ± 1.11	4.05 - 12.4	4750
INT/600	8.41 ± 0.99	3.28 - 11.98	5 044
INT/1024	4.97 ± 0.62	1.5 - 6.97	5 091
CnC-d8/256	19.72 ± 21.87	0.16 - 227.13	5 048
CnC-def./57516	0.15 ± 0.25	0.01 - 28.66	8 828
CnC-n4550/217	26.16 ± 48.27	2.26 - 524.06	5 677
CnC-def	ault incremental	iGlucose	17716
CnC-defaul	t incremental Ca	dical v1.5.3	11981

Inst.	Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
CvK ₁₆	Sequential 2-XOR/65536 3-MAJ/2048 3-XOR/2048 INT/1024 INT/2048 INT/4096 INT/8192 INT/16384 INT/32768 INT/65536 INT/131072	$\begin{array}{c} -\\ 33.24\pm1.4\\ 2093\pm655\\ 2441\pm235\\ 3955\pm573\\ 1450\pm197\\ 553\pm59\\ 219\pm22\\ 90\pm7.8\\ 39.8\pm3.7\\ 18.6\pm2.2\\ 10.1\pm1.2\\ \end{array}$	26.26 - 40.68 1 195 - 3 556 1 753 - 3 243 1 422 - 5 894 460 - 2 235 189 - 728 48 - 340 9.1 - 119 0.9 - 54.5 0.01 - 26.5 0.01 - 14.4	>864 000 2 178 663 4 284 519 4 998 083 4 049 359 2 968 692 2 264 599 1 792 975 1 467 434 1 305 053 1 223 521 1 321 271
	nC-d16/65 536 -n7500/72 617 Sequential 2-XOR/65 536 3-MAJ/2 048 3-XOR/2 048 INT/65 536 INT/131 072	$ \begin{array}{c} 22.8 \pm 17.7 \\ 25.2 \pm 161 \end{array} $ $ \begin{array}{c} -1.64 \pm 1.93 \\ 1.514 \pm 734 \\ 2.111 \pm 145 \\ 13.37 \pm 3.74 \\ 6.39 \pm 1.43 \end{array} $	0.11 - 253.8 0.25 - 28755 	1 491 116 1 825 959 >864 000 1 418 200 3 098 645 4 322 038 875 967 837 069
DvC ₁₆	Sequential 2-XOR/65 536 3-MAJ/2 048 3-XOR/2 048 INT/65 536 INT/131 072 aC-d16/65 534 -n4500/52 602	$\begin{array}{c} 27.12 \pm 151 \\ \hline$	0.05 – 13 532 ————————————————————————————————————	1392715 >864000 1302856 2293699 2499298 597799 619720 809517 999001
DvK ₁₆	Sequential 2-XOR/65536 3-MAJ/2048 3-XOR/2048 INT/65536 nC-d16/65535 -n7400/58308	$ \begin{array}{c} $	28.37 - 45.25 1 218 - 3 625 1 977 - 3 327 0.01 - 31.43 0.01 - 919 0.05 - 26 851	>864 000 2 301 015 4 496 446 5 170 873 1 327 640 1 640 023 1 946 050
-	Sequential 2-XOR/65536 3-MAJ/2048 3-XOR/2048 INT/65536 -n4300/54347	24.34 ± 2.16 1677 ± 747 2145 ± 191 13.51 ± 3.67 24 ± 113	17.69 – 36.11 147 – 4450 1473 – 2807 0.01 – 27.4 0.01 – 8063	>864 000 1 595 147 3 432 961 4 391 977 885 363 1 304 537
	Sequential 2-XOR/65 536 3-MAJ/2 048 3-XOR/2 048 INT/65 536 nC-d16/65 536 -n7500/70 469	\begin{matrix}	28.5 - 48.46 1 310 - 4 614 2 287 - 3 642 0.01 - 30.97 0.1 - 20 495 0.23 - 11 294	>864 000 2 344 223 5 149 410 5 765 837 1 423 759 1 950 390 2 159 532

TABLE VIII EXPERIMENTAL RESULTS FOR PARTITIONINGS. MULTIPLIERS 12x12.5 different random input variables orders for every partitioning.

TABLE IX
EXPERIMENTAL RESULTS FOR PARTITIONINGS. MD4. SAMPLE SIZE FOR ESTIMATES IS 1000 SUBTASKS.

Inst.	Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
CvK ₁₂	INT/256 INT/256 INT/256 INT/256 INT/256	$\begin{array}{c} 17.21 \pm 0.85 \\ 17.04 \pm 0.96 \\ 17.84 \pm 1.14 \\ 17.54 \pm 0.97 \\ 17.85 \pm 0.93 \end{array}$	14.99 – 19.86 14.88 – 21.17 14.72 – 21.88 14.86 – 20.68 15.42 – 20.62	4 406 4 362 4 568 4 491 4 570
	3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256	$\begin{array}{c} 21.25 \pm 0.68 \\ 20.83 \pm 0.97 \\ 20.95 \pm 0.98 \\ 21.52 \pm 0.88 \\ 20.73 \pm 0.87 \end{array}$	19.79 – 23.84 19.04 – 24.86 19.28 – 25.87 19.25 – 25.88 19.01 – 24.65	5 439 5 333 5 363 5 510 5 309
\mathtt{CvW}_{12}	INT/256 INT/256 INT/256 INT/256 INT/256	$\begin{array}{c} 12.12 \pm 2.33 \\ 11.46 \pm 2.62 \\ 12.02 \pm 2.49 \\ 11.93 \pm 2.33 \\ 11.73 \pm 2.78 \end{array}$	4.81 – 17.61 3.13 – 16.07 3.95 – 15.75 2.73 – 17.39 3.58 – 17.22	3 103 2 934 3 078 3 054 3 004
	3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256	$\begin{array}{c} 16.73 \pm 0.91 \\ 15.77 \pm 1.2 \\ 16.16 \pm 1.19 \\ 17.11 \pm 0.88 \\ 15.28 \pm 1.13 \end{array}$	14.95 - 20.05 13.31 - 20.61 12.88 - 19.84 15.13 - 19.77 13.39 - 20.09	4 283 4 037 4 138 4 380 3 912
extstyle e	INT/256 INT/256 INT/256 INT/256 INT/256	$\begin{array}{c} 9.74 \pm 1.08 \\ 8.98 \pm 1.38 \\ 9.69 \pm 1.16 \\ 9.68 \pm 0.98 \\ 9.95 \pm 0.99 \end{array}$	5.43 – 12.96 4.05 – 13.03 5.7 – 11.99 4.91 – 11.86 6.39 – 13.15	2 494 2 298 2 481 2 479 2 548
	3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256	$\begin{array}{c} 13.42 \pm 0.91 \\ 12.91 \pm 0.84 \\ 12.97 \pm 0.71 \\ 12.94 \pm 0.76 \\ 12.68 \pm 0.72 \end{array}$	11.73 – 17.27 11.48 – 17.03 11.64 – 16.11 11.37 – 15.86 11.51 – 16.91	3 436 3 305 3 321 3 312 3 246
DvK ₁₂	INT/256 INT/256 INT/256 INT/256 INT/256	$\begin{array}{c} 18.12 \pm 1.07 \\ 18.97 \pm 0.95 \\ 18.43 \pm 0.86 \\ 17.86 \pm 0.91 \\ 18.17 \pm 1.04 \end{array}$	15.44 – 21.9 16.16 – 21.87 15.85 – 21.08 14.45 – 21.1 15.66 – 21.56	4 640 4 858 4 719 4 572 4 653
	3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256	$\begin{array}{c} 24.91 \pm 1.02 \\ 23.86 \pm 1.07 \\ 23.59 \pm 1.05 \\ 23.89 \pm 1.11 \\ 24.69 \pm 1.1 \end{array}$	22.68 – 28.38 21.77 – 27.87 21.09 – 27.62 21.57 – 28.5 22.33 – 28.55	6 379 6 109 6 038 6 117 6 320
$\overline{ extsf{DvW}_{12}}$	INT/256 INT/256 INT/256 INT/256 INT/256	$\begin{array}{c} 13.55 \pm 1.87 \\ 13.33 \pm 1.74 \\ 12.82 \pm 2.39 \\ 13.36 \pm 2.36 \\ 13.61 \pm 2.23 \end{array}$	6.41 – 18.4 6.74 – 17.11 4.25 – 16.74 4.76 – 18.16 6.03 – 18.35	3 469 3 414 3 283 3 420 3 485
	3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256	$\begin{array}{c} 18.59 \pm 0.99 \\ 18.32 \pm 0.87 \\ 18.98 \pm 0.92 \\ 18.35 \pm 0.9 \\ 19.17 \pm 0.99 \end{array}$	16.2 – 22.34 15.96 – 21.37 16.97 – 21.7 16.02 – 21.36 17.09 – 23.29	4760 4690 4861 4698 4909
KvW ₁₂	INT/256 INT/256 INT/256 INT/256 INT/256	$\begin{array}{c} 20.52 \pm 1.41 \\ 19.79 \pm 1.19 \\ 20.0 \pm 1.21 \\ 19.84 \pm 1.09 \\ 20.12 \pm 1.77 \end{array}$	15.83 – 26.37 16.07 – 23.83 15.39 – 23.08 16.76 – 22.2 13.23 – 25.41	5 253 5 067 5 120 5 081 5 151
	3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256 3-XOR/256	$\begin{array}{c} 25.69 \pm 1.13 \\ 26.22 \pm 1.04 \\ 25.33 \pm 1.11 \\ 25.89 \pm 1.17 \\ 25.62 \pm 0.84 \end{array}$	23.27 - 30.11 23.74 - 29.65 22.91 - 29.2 23.07 - 31.05 23.88 - 28.05	6 578 6 713 6 484 6 629 6 559

Inst.	Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Time, s
MD4 ₄₀	CnC/400509	26 ± 274	0.01 - 39087	10 550 880
(est.)	INT/10k	1721 ± 2156	8.46 - 26114	17 206 801
(est.)	INT/20k	711 ± 801	0.07 - 6750	14 213 201
(est.)	INT/50k	252 ± 315	0.1 - 3915	12 590 001
(est.)	INT/60k	222 ± 253	0.09 - 3074	13 306 201
(est.)	INT/70k	183 ± 210	0.08 - 1928	12 747 001
(est.)	INT/80k	153 ± 163	0.07 - 1458	12 205 601
(est.)	INT/90k	140 ± 149	0.09 - 1292	12 550 500
(est.)	INT/100k	119 ± 141	0.09 - 1002	11 898 001
(est.)	INT/110k	105 ± 114	0.08 - 1382	11 511 501
(est.)	INT/120k	100 ± 107	0.1 - 882	11 888 401
(est.)	INT/130k	95 ± 104	0.09 - 931	12 288 901
(est.)	INT/140k	92 ± 90	0.09 - 690	12 794 601
(est.)	INT/150k	84 ± 86	0.09 - 659	12 480 001
(full)	INT/90k	137 ± 156	0.07 - 2595	12 301 214
(full)	INT/110	112 ± 124	0.06 - 2210	12 250 123
$\mathtt{MD4}_{43}$	CnC/54611	31 ± 52	0.01 - 2236	1 686 960
(est.)	INT/10k	357 ± 380	7.26 - 5110	3 561 401
(est.)	INT/20k	170 ± 162	0.1 - 1453	3 399 401
(est.)	INT/30k	107 ± 90	0.1 - 842	3 205 801
(est.)	INT/40k	90 ± 81	0.09 - 957	3 594 001
(est.)	INT/50k	65 ± 53	0.08 - 371	3 241 000
(est.)	INT/60k	65 ± 59	0.1 - 628	3 877 201
(est.)	INT/70k	53 ± 38	0.08 - 341	3 696 701
(est.)	INT/80k	46 ± 34	0.08 - 251	3 666 401
(est.)	INT/90k	82 ± 65	0.15 - 744	7 379 101
(est.)	INT/100k	76 ± 66	0.15 - 1.087	7 581 001
(est.)	INT/110k	41 ± 32	0.1 - 310 $0.08 - 207$	4 507 801
(est.)	INT / 120k	36 ± 28	0.08 - 207 0.08 - 164	4 280 401
(est.)	INT/130k INT/140k	$33 \pm 22 \\ 32 \pm 23$	0.08 - 104 0.08 - 157	4 213 301 4 461 801
(est.)		32 ± 23 31 ± 20	0.08 - 137 0.08 - 126	
(est.)	INT / 150k	26 ± 17.2	0.08 - 120 0.08 - 115	4 630 501
(est.)	INT/200k INT/300k	20 ± 17.2 20 ± 12.8	0.08 - 113 0.09 - 80	5 016 001 5 931 001
(est.)	INT/400k	16.5 ± 11	0.09 - 80 0.09 - 80	6 592 001
(est.) (est.)	INT/500k	10.3 ± 11 14.3 ± 9.3	0.09 - 80 0.08 - 73.9	7 125 001
(est.)	INT/1kk	9.5 ± 6.2	0.08 - 73.9 0.1 - 44.3	9 490 001
(full)	INT/20k	9.3 ± 0.2 166 ± 163	0.1 - 44.5 $0.08 - 3134$	3 3 1 3 4 5 1
(full)	INT/20k INT/30k	100 ± 103 112 ± 104	0.08 - 3134 0.07 - 1910	3 349 802
(full)	INT/50k INT/50k	71 ± 60	0.07 - 1910 0.07 - 1002	3 526 129
(full)	INT/60k	61 ± 48.8	0.07 - 1002 0.07 - 988	3 627 241
(full)	INT/90k	43.9 ± 33.2	0.07 - 699	3 956 652
(1011)		.5.7 ± 55.2	0.07	

 $\label{eq:table x} \textbf{TABLE} \ \textbf{X} \\ \textbf{Experimental results for partitionings. Sorting algorithms.}$

Inst.	Partitioning (type / size)	$\begin{array}{c} \text{Avg} \pm \text{sd} \\ \text{time, s} \end{array}$	Min-max time, s	Total time, s
BvP _{9,4}	Sequential 2-XOR/262144 3-MAJ/4096 3-XOR/4096 4-BENT/512 4-XOR/512	$ \begin{array}{c} $	5.01 – 67.4 86.5 – 773 1 224 – 2 169 180 – 2 509 880 – 4 017	7 960 5 098 809 1 016 054 6 722 151 510 585 1 428 411
	5-XOR/256 6-XOR/64 INT/2 INT/4 INT/8 INT/16 INT/32 INT/64	6570 ± 449 9283 ± 742 6781 ± 256 5959 ± 884 4537 ± 495 2166 ± 755 1942 ± 675 1571 ± 508	5 276 - 7 945 7 860 - 11 106 6 601 - 6 961 4 775 - 6 894 3 623 - 5 097 883 - 3 455 695 - 3 550 623 - 2 746	1 681 715 594 053 13 561 23 835 36 292 34 646 62 113 100 482
C	INT/128 INT/256 INT/512 INT/1024 INT/4096 CnC-d12/3799 nC-def./2013 C-n7250/4064	$\begin{array}{c} 1051 \pm 354 \\ 517 \pm 211 \\ 443 \pm 175 \\ 347 \pm 129 \\ 108 \pm 46.6 \\ 2.66 \pm 6.79 \\ 4.52 \pm 8.75 \\ 2.83 \pm 4.32 \end{array}$	348 - 2 056 137 - 1 057 118 - 972 94.9 - 771 17.2 - 247 0.01 - 143 0.01 - 166 0.01 - 128	134 461 132 261 226 324 354 567 441 666 10 091 9 108 11 498
C	Sequential 3-MAJ/4 096 3-XOR/4 096 4-BENT/512 4-XOR/512 INT/16 INT/32 INT/64 INT/128 INT/256 INT/512 INT/1 024 INT/4 096 CnC-d12/3 041 nC-def./16 227 C-n6500/4 043	$\begin{array}{c}$	19.2 - 434 657 - 1 241 140 - 932 310 - 1 390 435 - 828 388 - 727 271 - 601 152 - 455 85.0 - 253 52.2 - 237 48.9 - 175 10.1 - 68.8 0.01 - 141 0.01 - 259 0.01 - 69	2 472 406 853 3 557 590 174 657 459 943 10 385 17 339 27 715 39 639 41 909 71 248 112 290 148 922 8 234 10 115 11 229
C	Sequential 3-MAJ/4096 3-XOR/4096 4-BENT/512 4-XOR/512 INT/16 INT/32 INT/64 INT/128 INT/256 INT/512 INT/512 INT/4096 CnC-d12/3044 nC-def./3156 -n11750/4037	$\begin{array}{c}$	236-2163 4727-8246 866-8103 3712-17003 6900-14935 5409-13782 3337-9575 1839-7196 575-3937 492-3124 317-2528 45.0-738 0.02-1643 0.02-1854 0.02-865	41 901 2 822 841 24 967 143 1 652 400 5 631 961 165 400 263 026 386 799 521 411 507 463 797 966 1 130 096 1 223 049 67 933 68 315 67 418