In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\mac
a

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	1
0	2001- 08-01 01:00:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999	105.00
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.5§
2	2001- 08-01 01:00:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001	100.09
3	2001- 08-01 01:00:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002	69.77
4	2001- 08-01 01:00:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998	75.18
	•••										
217867	2001- 04-01 00:00:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000	47.88
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000	26.80
217869	2001- 04-01 00:00:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.77
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000	37.88
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.3€

217872 rows × 16 columns

```
In [3]: a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217872 entries, 0 to 217871
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype					
0	date	217872 non-null	object					
1	BEN	70389 non-null	float64					
2	CO	216341 non-null	float64					
3	EBE	57752 non-null	float64					
4	MXY	42753 non-null	float64					
5	NMHC	85719 non-null	float64					
6	NO_2	216331 non-null	float64					
7	NOx	216318 non-null	float64					
8	OXY	42856 non-null	float64					
9	0_3	216514 non-null	float64					
10	PM10	207776 non-null	float64					
11	PXY	42845 non-null	float64					
12	S0_2	216403 non-null	float64					
13	TCH	85797 non-null	float64					
14	TOL	70196 non-null	float64					
15	station	217872 non-null	int64					
dtyp	<pre>dtypes: float64(14), int64(1), object(1)</pre>							

In [4]: b=a.fillna(value=87)
b

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2001- 08-01 01:00:00	87.00	0.37	87.00	87.00	87.00	58.400002	87.150002	87.00	34.529999	105.
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.
2	2001- 08-01 01:00:00	87.00	0.28	87.00	87.00	87.00	50.660000	61.380001	87.00	46.310001	100.
3	2001- 08-01 01:00:00	87.00	0.47	87.00	87.00	87.00	69.790001	73.449997	87.00	40.650002	69.
4	2001- 08-01 01:00:00	87.00	0.39	87.00	87.00	87.00	22.830000	24.799999	87.00	66.309998	75.
217867	2001- 04-01 00:00:00	10.45	1.81	87.00	87.00	87.00	73.000000	264.399994	87.00	5.200000	47.
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	87.00	0.13	71.080002	129.300003	87.00	13.460000	26.
217869	2001- 04-01 00:00:00	0.49	1.09	87.00	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	87.00	80.019997	197.000000	2.58	5.840000	37.
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.

217872 rows × 16 columns

```
In [5]: b.columns
```

In [6]: c=b.head(10)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM1
0	2001- 08-01 01:00:00	87.00	0.37	87.00	87.00	87.00	58.400002	87.150002	87.00	34.529999	105.00000
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.59999
2	2001- 08-01 01:00:00	87.00	0.28	87.00	87.00	87.00	50.660000	61.380001	87.00	46.310001	100.09999
3	2001- 08-01 01:00:00	87.00	0.47	87.00	87.00	87.00	69.790001	73.449997	87.00	40.650002	69.77999
4	2001- 08-01 01:00:00	87.00	0.39	87.00	87.00	87.00	22.830000	24.799999	87.00	66.309998	75.18000
5	2001- 08-01 01:00:00	2.11	0.63	2.48	5.94	0.05	66.260002	118.099998	3.15	33.500000	122.69999
6	2001- 08-01 01:00:00	87.00	0.28	87.00	87.00	87.00	35.799999	39.590000	87.00	68.250000	124.90000
7	2001- 08-01 01:00:00	87.00	0.67	87.00	87.00	87.00	74.830002	112.000000	87.00	26.410000	113.00000
8	2001- 08-01 01:00:00	87.00	0.41	87.00	87.00	87.00	33.209999	37.299999	87.00	62.299999	125.30000
9	2001- 08-01 01:00:00	87.00	0.17	87.00	87.00	0.13	24.129999	36.970001	87.00	46.200001	95.58999

Out[8]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY
0	87.00	0.37	87.00	87.00	87.00	58.400002	87.150002	87.00	34.529999	105.000000	87.00
1	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.599998	1.73
2	87.00	0.28	87.00	87.00	87.00	50.660000	61.380001	87.00	46.310001	100.099998	87.00
3	87.00	0.47	87.00	87.00	87.00	69.790001	73.449997	87.00	40.650002	69.779999	87.00
4	87.00	0.39	87.00	87.00	87.00	22.830000	24.799999	87.00	66.309998	75.180000	87.00
5	2.11	0.63	2.48	5.94	0.05	66.260002	118.099998	3.15	33.500000	122.699997	2.29
6	87.00	0.28	87.00	87.00	87.00	35.799999	39.590000	87.00	68.250000	124.900002	87.00
7	87.00	0.67	87.00	87.00	87.00	74.830002	112.000000	87.00	26.410000	113.000000	87.00
8	87.00	0.41	87.00	87.00	87.00	33.209999	37.299999	87.00	62.299999	125.300003	87.00
9	87.00	0.17	87.00	87.00	0.13	24.129999	36.970001	87.00	46.200001	95.589996	87.00
4.0											•

In [9]: d.plot.line()

Out[9]: <AxesSubplot:>

In [10]: sns.pairplot(d)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1c3213d7700>

In [11]: sns.distplot(a['NOx'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [12]: sns.heatmap(d.corr())

Out[12]: <AxesSubplot:>

linear regression

```
In [13]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
         y=d['TCH']
In [14]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [15]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[15]: LinearRegression()
In [16]: print(lr.intercept_)
         1.1672524421982615
In [17]:
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[17]:
                   Co-efficient
            BEN
                 4.197552e-04
             CO -1.288123e-14
            EBE
                4.198043e-04
            MXY
                 4.069907e-04
          NMHC
                 9.849200e-01
           NO_2 -1.384461e-15
            NOx 6.467450e-16
            OXY 4.167604e-04
```

```
In [18]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1c32f481a60>


```
In [19]: print(lr.score(x_test,y_test))
```

0.9999999874528135

ridge

```
In [20]: from sklearn.linear_model import Ridge,Lasso
```

```
In [21]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[21]: Ridge(alpha=10)

```
In [22]: rr.score(x_test,y_test)
```

Out[22]: 0.9999064008491518

lasso

```
In [23]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[23]: Lasso(alpha=10)

In [24]: la.score(x_test,y_test)

Out[24]: 0.9999455601905967

In [25]: a1=b.head(7000)
a1

Out[25]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2001- 08-01 01:00:00	87.00	0.37	87.000000	87.0	87.00	58.400002	87.150002	87.00	34.529999	105
1	2001- 08-01 01:00:00	1.50	0.34	1.490000	4.1	0.07	56.250000	75.169998	2.11	42.160000	100
2	2001- 08-01 01:00:00	87.00	0.28	87.000000	87.0	87.00	50.660000	61.380001	87.00	46.310001	100
3	2001- 08-01 01:00:00	87.00	0.47	87.000000	87.0	87.00	69.790001	73.449997	87.00	40.650002	69
4	2001- 08-01 01:00:00	87.00	0.39	87.000000	87.0	87.00	22.830000	24.799999	87.00	66.309998	75
6995	2001- 08-13 04:00:00	87.00	0.00	87.000000	87.0	0.08	18.580000	18.590000	87.00	56.660000	22
6996	2001- 08-13 04:00:00	87.00	0.09	87.000000	87.0	87.00	29.580000	32.770000	87.00	52.709999	38
6997	2001- 08-13 04:00:00	1.38	0.17	30.530001	87.0	0.25	54.880001	68.870003	87.00	23.240000	18
6998	2001- 08-13 04:00:00	87.00	0.01	87.000000	87.0	87.00	19.580000	20.990000	87.00	51.270000	33
6999	2001- 08-13 04:00:00	87.00	0.00	87.000000	87.0	0.05	17.200001	18.219999	87.00	38.090000	43

7000 rows × 16 columns

```
In [27]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

logistic regression

In [28]: h=StandardScaler().fit_transform(f)

```
In [29]: logr=LogisticRegression(max_iter=10000)
         logr.fit(h,g)
Out[29]: LogisticRegression(max_iter=10000)
In [30]: | from sklearn.model_selection import train_test_split
         h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [31]: i = [[10,20,30,40,50,60,11,22,33,44,55,54,21,78]]
In [32]: prediction=logr.predict(i)
         print(prediction)
         [28079021]
In [33]: logr.classes_
Out[33]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079009,
                28079011, 28079012, 28079014, 28079015, 28079016, 28079018,
                28079019, 28079021, 28079022, 28079023, 28079024, 28079025,
                28079035, 28079036, 28079038, 28079039, 28079040, 28079099],
               dtype=int64)
In [34]: logr.predict_proba(i)[0][0]
Out[34]: 2.528560047135413e-268
In [35]: logr.predict_proba(i)[0][1]
Out[35]: 4.8254923316380694e-139
In [36]: logr.score(h_test,g_test)
Out[36]: 0.6580952380952381
```

elastic net

```
In [37]: | from sklearn.linear_modparameters={'max_depth':[1,2,3,4,5],
          'min_samples_leaf':[5,10,15,20,25],
          'n estimators':[10,20,30,40,50]
          }train)
Out[37]: ElasticNet()
In [38]: print(en.coef_)
         [4.03774205e-06 0.00000000e+00 6.75326452e-08 1.59177368e-03
          9.84302947e-01 0.00000000e+00 0.0000000e+00 6.12270211e-05]
In [39]: print(en.intercept_)
         1.205669535972298
In [40]:
         prediction=en.predict(x_test)
         print(en.score(x_test,y_test))
         0.9999996548442733
         random forest
In [41]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(h_train,g_train)
Out[41]: RandomForestClassifier()
         parameters={'max_depth':[1,2,3,4,5],
In [42]:
          'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
In [43]: | from sklearn.model selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accl
         grid_search.fit(h_train,g_train)
Out[43]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [44]: |grid_search.best_score_
```

Out[44]: 0.6297959183673469

In [45]: rfc_best=grid_search.best_estimator_

```
In [47]: from sklearn.tree import plot_tree
    plt.figure(figsize=(80,50))
    plot_tree(rfc_best.estimators_[2],filled=True)
```

Out[47]: [Text(1893.818181818182, 2491.5, 'X[7] <= -0.586\ngini = 0.958\nsamples = 308 $7\$ value = [167, 199, 200, 226, 214, 213, 199, 203, 201, 195\n206, 210, 178, 218, 208, 218, 175, 220, 214, 209\n189, 219, 221, 198]'), Text(946.909090909091, 2038.5, 'X[11] <= 0.935\ngini = 0.798\nsamples = 656\nvalue = $[0, 0, 0, 226, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \]$ 0, 0, 0, 0, 198]'), $Text(676.3636363636364, 1585.5, 'X[4] <= -0.087 \setminus gini = 0.781 \setminus gini = 547$ \nvalue = [0, 0, 0, 213, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 175, 70, 214, 0, 0, 0, 0, 191]'), Text(541.09090909091, 1132.5, 'X[5] <= -1.04\ngini = 0.748\nsamples = 507 \nvalue = [0, 0, 0, 213, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 175, 0, 214, 0, 0, 0, 0, 191]'), $Text(270.54545454545456, 679.5, 'X[13] <= -1.818 \setminus gini = 0.251 \setminus gini = 84$ \nvalue = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 109, 0, 14, 0, 0, 0, 0, 3]'), Text(135.272727272728, 226.5, 'gini = 0.0\nsamples = 48\nvalue = [0, 0, 0, $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 75, 0, 0, 0, 0, 0, 0, 0]'),$ Text(405.818181818187, 226.5, 'gini = 0.496\nsamples = 36\nvalue = [0, 0, $0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 34, 0, 14, 0, 0, 0, 3]'),$ Text(811.6363636363637, 679.5, X[12] <= -1.097 ngini = 0.719 \ nsamples = 423 0, 0, 0, 188]'), $Text(676.3636363636364, 226.5, 'gini = 0.542 \nsamples = 123 \nvalue = [0, 0, 0]$ 0, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 112, 0, 0, 0, 13]'), Text(946.909090909091, 226.5, 'gini = 0.717\nsamples = 300\nvalue = [0, 0, 0] $0, 137, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 66, 0, 88, 0, 0, 0, 0, 175]'),$ Text(811.63636363637, 1132.5, 'gini = 0.0\nsamples = 40\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 70, 0, 0, 0, 0, 0]'), Text(1217.4545454545455, 1585.5, 'X[7] <= -1.954\ngini = 0.214\nsamples = 10 9\nvalue = [0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 150, 0, 0, 0, 0, 0, 7]'), Text(1082.1818181818182, 1132.5, 'gini = 0.0\nsamples = 91\nvalue = [0, 0, $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 142, 0, 0, 0, 0, 0]'),$ Text(1352.72727272727, 1132.5, 'gini = 0.64\nsamples = 18\nvalue = [0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 8, 0, 0, 0, 0, 7]'), Text(2840.727272727373, 2038.5, X[11] <= -0.399 | mgini = 0.947 | nsamples = 24 31\nvalue = [167, 199, 200, 0, 214, 213, 199, 203, 201, 195\n206, 210, 178, 2 18, 208, 218, 0, 0, 0, 209, 189\n219, 221, 0]'), Text(1961.4545454545455, 1585.5, 'X[1] <= -0.129\ngini = 0.905\nsamples = 86 4\nvalue = [70, 51, 136, 0, 128, 41, 156, 0, 88, 152, 153\n27, 151, 0, 10, 3, 0, 0, 0, 33, 0, 0, 192, 0]'), $Text(1623.27272727275, 1132.5, 'X[9] <= -0.948 \setminus ini = 0.791 \setminus insamples = 16$ 3\nvalue = [5, 9, 8, 0, 0, 0, 81, 0, 20, 12, 33, 11, 4\n0, 0, 0, 0, 0, 0, 7, 0, 0, 85, 0]'), Text(1488.0, 679.5, X[8] < -0.062 = 0.682 = 31 = 0.682 = 312, 0, 0, 0, 0, 30, 0, 0, 5, 0, 3, 0, 0\n0, 0, 0, 0, 0, 7, 0, 0, 14, 0\]'), Text(1352.72727272727, 226.5, 'gini = 0.479\nsamples = 15\nvalue = [0, 0, $0, 0, 0, 0, 22, 0, 0, 5, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 5, 0]'),$ Text(1623.27272727275, 226.5, 'gini = 0.754\nsamples = 16\nvalue = [0, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0\n0, 0, 0, 0, 0, 0, 7, 0, 0, 9, 0]'), Text(1758.54545454547, 679.5, 'gini = 0.795\nsamples = 132\nvalue = [5, 7, $8, 0, 0, 0, 51, 0, 20, 7, 33, 8, 4, 0 \ 0, 0, 0, 0, 0, 0, 0, 71, 0]'),$ Text(2299.6363636364, 1132.5, 'X[6] <= 0.589\ngini = 0.905\nsamples = 701 \nvalue = $[65, 42, 128, 0, 128, 41, 75, 0, 68, 140, 120, 16\n147, 0, 10, 3,$ 0, 0, 0, 26, 0, 0, 107, 0]'), Text(2029.090909090909, 679.5, X[2] <= -0.454 ngini = 0.906 \ nsamples = 651 \nvalue = $[63, 42, 128, 0, 128, 30, 74, 0, 68, 101, 117, 16 \n118, 0, 10, 3,$

```
0, 0, 0, 26, 0, 0, 107, 0]'),
 Text(1893.8181818182, 226.5, 'gini = 0.0\nsamples = 67\nvalue = [0, 0, 0,
0, 0, 0, 0, 0, 101, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(2164.3636363636365, 226.5, 'gini = 0.896\nsamples = 584\nvalue = [63, 4
107, 0]'),
 Text(2570.18181818185, 679.5, 'X[13] <= 0.591\ngini = 0.654\nsamples = 50
0, 0, 0]'),
 Text(2434.909090909091, 226.5, 'gini = 0.0 \nsamples = 25 \nvalue = [0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 39, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(2705.4545454545455, 226.5, 'gini = 0.539\nsamples = 25\nvalue = [2, 0,
0, 0, 0, 11, 1, 0, 0, 0, 3, 0, 29, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(3720.0, 1585.5, 'X[12] <= -0.082\ngini = 0.932\nsamples = 1567\nvalue =
[97, 148, 64, 0, 86, 172, 43, 203, 113, 43, 53\n183, 27, 218, 198, 215, 0, 0,
0, 176, 189, 219\n29, 0]'),
 Text(3381.818181818182, 1132.5, 'X[11] \leftarrow 0.321 \mid 0.789 \mid 0.7
\nvalue = [0, 0, 0, 0, 86, 0, 31, 203, 0, 43, 0, 183, 0 \n0, 0, 215, 0, 0, 0, 0]
0, 0, 0, 29, 01'),
 Text(3111.27272727275, 679.5, X[4] <= -1.097  ngini = 0.739 \ nsamples = 298
\nvalue = [0, 0, 0, 0, 69, 0, 30, 1, 0, 33, 0, 173, 0 \n0, 0, 150, 0, 0, 0, 0, 0, 0]
0, 0, 22, 0]'),
 Text(2976.0, 226.5, 'gini = 0.379\nsamples = 96\nvalue = [0, 0, 0, 0, 4, 0, 0]
0, 1, 0, 0, 0, 31, 0, 0 \setminus n0, 114, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(3246.545454545455, 226.5, 'gini = 0.738\nsamples = 202\nvalue = [0, 0, 0]
0, 0, 65, 0, 30, 0, 0, 33, 0, 142, 0\n0, 0, 36, 0, 0, 0, 0, 0, 0, 22, 0]'),
 Text(3652.3636363636365, 679.5, 'X[4] <= -1.092 \setminus gini = 0.532 \setminus gini = 200
\nvalue = [0, 0, 0, 0, 17, 0, 1, 202, 0, 10, 0, 10, 0 \n0, 0, 65, 0, 0, 0, 0, 0]
0, 0, 7, 01'),
 Text(3517.09090909095, 226.5, 'gini = 0.422\nsamples = 180\nvalue = [0, 0,
0, 0, 8, 0, 0, 201, 0, 1, 0, 8, 0, 0\n0, 47, 0, 0, 0, 0, 0, 0, 7, 0]'),
 Text(3787.636363636364, 226.5, 'gini = 0.692 \setminus samples = 20 \setminus samples = [0, 0, 0]
0, 0, 9, 0, 1, 1, 0, 9, 0, 2, 0, 0\n0, 18, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(4058.1818181818185, 1132.5, 'X[13] <= -0.0\ngini = 0.901\nsamples = 106
9\nvalue = [97, 148, 64, 0, 0, 172, 12, 0, 113, 0, 53, 0\n27, 218, 198, 0, 0,
0, 0, 176, 189, 219, 0, 0]'),
 Text(3922.9090909091, 679.5, 'gini = 0.0\nsamples = 110\nvalue = [0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n191, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(4193.4545454546, 679.5, 'X[6] \leftarrow -0.105 \cdot ngini = 0.891 \cdot nsamples = 959
\nvalue = [97, 148, 64, 0, 0, 172, 12, 0, 113, 0, 53, 0\n27, 218, 7, 0, 0, 0,
0, 176, 189, 219, 0, 0]'),
 Text(4058.1818181818185, 226.5, 'gini = 0.832\nsamples = 491\nvalue = [0, 7
8, 2, 0, 0, 59, 0, 0, 12, 0, 22, 0, 0\n152, 4, 0, 0, 0, 0, 137, 158, 171, 0,
0]'),
 Text(4328.7272727273, 226.5, 'gini = 0.894\nsamples = 468\nvalue = [97, 7
0, 62, 0, 0, 113, 12, 0, 101, 0, 31, 0\n27, 66, 3, 0, 0, 0, 0, 39, 31, 48, 0,
0]')]
```


from this data set i observed that the linear rwegression has the highest accuracy of 1.1672524421982615