Groups

Adam Kelly, Lectured by Dr. A. Khukhro

Michaelmas 2020

This document is an account of the Cambridge Mathematical Tripos course 'Groups', lectured by Dr. Ana Khukhro. in Michaelmas 2020. This is a work in progress, and is likely to to contain errors, which you may assume to be my own.

Contents

1	Groups																			2
	1.1 Definition				 . ,											 	 			2

§1 Groups

§1.1 Definition

In this section we will formally introduce the notion of a group, and we will consider some examples of groups along with their basic properties.

Definition 1.1

A **group** is a set G with a binary operation * on G such that:

- Identity. G has an identity element e such that e * g = g * e = g for all $g \in G$.
- Inverses. Each element $g \in G$ has an **inverse**, that is, an element $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.
- Associativity. The operation * is associative, that is (g*h)*k = g*(h*k) for any $g,h,k \in G$.

Remark (A pedantic point). In some cases, people will add an additional 'closure' axiom, stating that if $g, h \in G$ then $g * h \in G$. However, this is redundant as it is implied by stating that * is a binary operation on G. You must keep it in mind however when checking if something is a group.

Remark (Bracketing). The 'associativity' axiom means that we can write g * h * k without specifying what order it should be done first.

Notation. It's proper to state that (G, *) is a group', but this is regularly abbreviated to saying 'G is a group', whenever the operation being used is clear.

So that's what a group is, let's dive straight into some examples.

Example 1.2 (Examples of Groups)

The following are all examples of groups.

- 1. $G = \{e\}$, along with the binary operation * satisfying e * e = e (the 'trivial group').
- 2. G being the set of symmetries of a shape, along with g * h defined to be 'performing h followed by g' where $g, h \in G$ is a group.
- 3. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are all groups.
- 4. The nonzero^a real numbers $\mathbb{R}\setminus\{0\}$ with multiplication is a group.
- 5. $(\mathbb{R},*)$ where r*s=r+s+5 for any $r,s\in\mathbb{R}$ is a group.
- 6. $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ with addition modulo n is a group.
- 7. A vector space with vector addition is a group.
- 8. The set of invertible 2×2 matrices with real coefficients, $GL_2(\mathbb{R})$ is a group with respect to matrix multiplication.

Proof Sketch. Check that each construction satisfies all of the axioms stated in the def-

^aYou should consider why we need to exclude zero for $\mathbb R$ to be a group.

inition of a group.

Let's also look at some structures that are not groups.

Example 1.3 (Non-Examples of Groups)

The following are all not groups.

- 1. $G = \{0, 1, 2, \dots, n-1\}$ with addition.
- 2. (\mathbb{Z}, \times) .
- 3. $(\mathbb{R}, *)$ where $r * s = r^2 s$ for $r, s \in \mathbb{R}$.
- 4. $G = \{0, 1, 2, \dots\}$ and the operation * such that m * n = |n m| for $m, n \in G$.