Parking Occupancy Radar

Gio Zavalza, Brian Ngeunjuntr, Elliot Nam

Internet of Things (IOT) (CS 437 EKS), Department of Computer Science, University of Illinois Urbana-Champaign

Motivation: Horrible Parking

Finding parking is horrendously bad at UIUC; UIUC only provides an illegible map that has no live updates.

Challenges:

(1) Fine-Tuning Radar Configuration

•	,		
	channelCfg 7 3 0		
	chirpComnCfg 18 0 0 128 4 30 0		
	chirpTimingCfg 6 28 0 90 59.75		
	frameCfg 8 0 400 1 250 0		
	% guiMonitor 2 2 0 2 0 1 1 0 0 0 0		
	guiMonitor 2 2 0 0 0 1 1 0 0 0 0		
	sigProcChainCfg 64 8 2 0 4 4 0 .5		
	cfarCfg 2 4 3 2 0 12.0 0 0.5 0 1 1 1		
	aoaFovCfg -60 60 -40 40		
	rangeSelCfg 0.1 .6		
	clutterRemoval 0		
	compRangeBiasAndRxChanPhase 0.0 1.00000 0.00000		
	adcDataSource 0 adc_data_0001_CtestAdc6Ant.bin		
	adcLogging 0		
	lowPowerCfg 1		
	factoryCalibCfg 1 0 40 0 0x1ff000		

Parameter	Value	
Operating Frequency	77 GHz	
Azimuth Resolution	15 deg.	
Range Resolution	0.977 m	
Maximum Unambiguous Range	50 m	
Maximum Radial Velocity	23.03 m/s	
Radial Velocity Resolution	2.89 m/s	
Frame duration	33.333 ms	
Range Detection Threshold	15 dB	
Doppler Detection Threshold	15 dB	
SDK Version	3.2	

(2) Balancing Stationary vs Moving Object Detection

(1) Tuning the radar for parameters such as scaling, clustering thresholds, noise reduction, and power was very time consuming (2) Extracting too much information from the radar led to I/O overflow, so running both presence detection and tracking stationary objects was limited

Proposed Solution: Radar Point cloud

Collect radar data in realtime to generate a point cloud that identifies stationary vehicles in virtual boundary boxes that represent parking spaces.

Approach: 3D Mapping Data -> Server Grid

Utilize the mmWave RADAR with the TI Industrial Visualizer for real-time segmentation. Then, transmit the occupancy grids to the server that will display available parking spaces.

Main Results

Successfully mapped 3d point-clouds and transmitted packets to a server that displays a grid showing available parking spots.

