Regularization

Alex(ander) Jung Assistant Professor for Machine Learning Department of Computer Science Aalto University

Reading.

Ch. 7 of https://mlbook.cs.aalto.fi

Learning Goals

- develop intuition for effective data and model size
- reduce model size by model pruning
- increase data size by data augmentation
- regularization = impl. model pruning = impl. data aug.
- use reg. for transfer , multi-task and semi-supervised learning

Empirical Risk Minimization

learn hypothesis out of model that incurs minimum loss when predicting labels of datapoints based on their features

training set

$$\hat{h} \in \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{L}(h|\mathcal{D})$$

 $= \underset{h \in \mathcal{H}}{\operatorname{argmin}} (1/m) \sum_{i=1}^{m} L((\mathbf{x}^{(i)}, y^{(i)}), h).$

model

loss function

see Ch. 4.1 of mlbook.cs.aalto.fi

hypothesis

label of i-th datapoint

features of i-th datapoint

ERM is only Approximation!

Small Training Error Does Not Imply Good Performance on New Data Points!

Small Training Error Merely Indicates That Optimization/Training Algorithm Works

Data and Model Size

nr. of features n

crucial parameter is the ratio d/m

Effective Data Size

consider data points obtained from time series

Effective Dim. Linear Maps

• linear map can perfectly fit m data points with n features, as soon as $n \ge m$ [Ch 6.1, mlbook.cs.aalto.fi]

• eff.dim. of linear maps = nr. of features

 $\bullet d = n$

Effective Dim. Linear Maps

we can perfectly fit (almost) any m data points using polynomials of degree d as soon as

$$d \ge m-1$$

m=3, degree d=2 polynomial

Data Hungry ML Methods

- millions of features for datapoints (e.g. megapixel image)
- eff.dim. d of linear maps is also millions
- eff.dim d of deep nets is millions ... billions
- can perfectly fit any set of 100000s (!) of datapoints
- training error will be zero (overfitting!)

how to bring d/m below critical value?

- increase m by using more training data
- decrease d by using smaller hypothesis space

how to bring d/m below critical value?

- increase m by using more training data
- decrease d by using smaller hypothesis space

Data Augmentation

add a bit of noise to features

we have increased the dataset by factor 3!

rotated cat image is still cat image

21

flipped cat image is still cat image

shifted cat image is still cat image

23

noisy cat image is still cat image

how to bring d/m below critical value?

- increase m by using more training data
- decrease d by using smaller hypothesis space

replace original ERM

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

with ERM on smaller $\widehat{\mathcal{H}} \subset \mathcal{H}$

$$\min_{h \in \widehat{\mathcal{H}}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

Nested Models

Prune Hypospace by Early Stopping

Soft Model Pruning via Regularization

Regularized ERM

learn hypothesis h out of model (hypospace) \mathcal{H} by minimizing

average loss on training set

loss increase for datapoints

8/12mpirical risk of h) A. Jung HCML Summer School outside training set

Regularized Linear Regression

- squared error loss
- linear hypothesis map $h(x) = w^T x = w_1 x_1 + \dots + w_n x_n$

$$\min_{W} \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda \mathcal{R}(w)$$

- ridge regression uses $\mathcal{R}(w) = ||w||_2^2 = w_1^2 + \dots + w_n^2$
- Lasso uses $\mathcal{R}(w) = \|w\|_1 = \|w_1\|_1 + \dots + |w_n|$

Regularization = Implicit Pruning!

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h) + (R(h))$$

$$= \text{equivalent to}$$

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

$$\min_{h \in \mathcal{H}(\mathcal{X})} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

with pruned model $\mathcal{H}^{(\lambda)} \subset \mathcal{H}$

Regularization = "Soft" Model Selection

Regularization does implicit Data Augmentation

augment with (infinitely many) realizations of RV!

Regularization =Implicit Data Aug.

To sum up,

- large ratio d/m leads to overfitting
- reduce d by using smaller model ("pruning")
- increase m by using more data points
- regularization is a soft model pruning
- regularization does implicit data augmentation

Transfer Learning via Regularization

- Problem I: classify image as "shows border collie" vs. "not"
- Problem II: classify image as "shows a dog" vs. "not"
- ML Problem I is our main interest
- ullet only little training data $\mathcal{D}^{(1)}$ for Problem I
- much more labeled data $\mathcal{D}^{(2)}$ for Problem II
- ullet pre-train a hypothesis on $\mathcal{D}^{(2)}$, fine-tune on $\mathcal{D}^{(1)}$

learn h by fine-tuning \hat{h}

 $\mathcal{D}^{(2)}$ pre-train hypothesis \hat{h}

fine tuning on $\mathcal{D}^{(1)}$

distance to hypothesis \hat{h} which is pre-trained on $\mathcal{D}^{(2)}$

Multi-Task Learning via Regularization

- Problem I: classify image as "shows border colly" vs. "not"
- Problem II: classify image as "shows husky" vs. "not"
- ullet training data $\mathcal{D}^{(1)}$ for Problem I and $\mathcal{D}^{(2)}$ for Problem II
- jointly learn hypothesis $h^{(1)}$ on $\mathcal{D}^{(1)}$ and $h^{(2)}$ on $\mathcal{D}^{(2)}$
- ullet require $h^{(1)}$ to be "similar" to $h^{(2)}$

 $\mathcal{D}^{(1)}$

jointly learn similar $h^{(1)}$ and $h^{(2)}$ for each dataset

training error of $h^{(1)}$

training error of $h^{(2)}$

min

$$h^{(1)}, h^{(2)}$$

$$\hat{L}(h^{(1)}|\mathcal{D}^{(1)}) + \hat{L}(h^{(2)}|\mathcal{D}^{(2)}) + \lambda d(h^{(1)}, h^{(2)})$$

"distance" between $h^{(1)}$ and $h^{(2)}$

Semi-Supervised Learning via Regularization

- classify image as "shows border colly" vs. "not"
- ullet small labeled dataset $\mathcal{D}^{(1)}$
- ullet massive image database $\mathcal{D}^{(2)}$ with unlabeled images
- train hypothesis h(.) on $\mathcal{D}^{(1)}$ with following structure:

"chain" or "pipeline"

learn linear classifier f(.) learn feature map g(.)

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h) + \lambda \hat{L}(g|\mathcal{D}^{(2)})$$

use training error to fine tune h(.)

learn feature map g(.) using large unlabeled database $\mathcal{D}^{(2)}$

To Sum Up

- ML works well if m/d > 1
- increase data size m by data augmentation
- decease model size d by regularization
- adding reg. term = data augmentation/soft model-pruning
- special cases of reg.: transfer-, multi-task- and semi-supervised learning