Name: SHEIKPAREETH

Machine Learning, Supervised, classification, Naive baye's

In [1]:

```
#Import the libraries and put nicknames
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

In [2]:

```
#Reading the dataset
dataset=pd.read_csv("fraud.csv")
```

In [3]:

#It have 16426 rows and 9 columns dataset

Out[3]:

	step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalar		
0	1	PAYMENT	9839.64	170136.00	160296.36	0.00			
1	1	PAYMENT	1864.28	21249.00	19384.72	0.00			
2	1	PAYMENT	11668.14	41554.00	29885.86	0.00			
3	1	PAYMENT	7817.71	53860.00	46042.29	0.00			
4	1	PAYMENT	7107.77	183195.00	176087.23	0.00			
16421	743	CASH_OUT	339682.13	339682.13	0.00	0.00	33		
16422	743	TRANSFER	6311409.28	6311409.28	0.00	0.00			
16423	743	CASH_OUT	6311409.28	6311409.28	0.00	68488.84	637		
16424	743	TRANSFER	850002.52	850002.52	0.00	0.00			
16425	743	CASH_OUT	850002.52	850002.52	0.00	6510099.11	736		
16426 rows × 9 columns									

In [4]:

#Above the value is categorical value so i have used "one hot encoding method" (we cannot a #I have removed the duplcates or dummy value dataset=pd.get_dummies(dataset,drop_first=True)

In []:

```
#provide input columns name for the easily without seeing the table
dataset.columns
```

In [5]:

```
#Put the input and account column name
indep=dataset[["step", "amount", "oldbalanceOrg", "newbalanceOrig", "oldbalanceDest", "newbalanceOrig", "newbalanceOrig", "oldbalanceDest", "newbalanceOrig", "newbalanceOrig", "newbalanceOrig", "oldbalanceDest", "newbalanceOrig", "newbala
```

In []:

```
#output values (dependent)
dep
```

In []:

```
#Input values (independent)
indep
```

In [6]:

```
#split inti training set and test test
#take 30% of sample
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(indep,dep,test_size=0.3,random_state=0)
```

In [7]:

```
#model creation process for naive bayes classification
#Gaussian Naive Bayes
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import classification_report
clf_report = classification_report(y_test, y_pred)
print(clf_report)
print(cm)
```

```
precision
                            recall f1-score
                                                 support
           0
                    1.00
                              0.46
                                         0.63
                                                    4926
                                         0.00
           1
                    0.00
                              1.00
                                                       2
                                         0.46
                                                    4928
    accuracy
                    0.50
                              0.73
                                         0.32
                                                    4928
   macro avg
                              0.46
weighted avg
                    1.00
                                         0.63
                                                    4928
[[2288 2638]
 0
          2]]
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:724: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel ().

```
y = column_or_1d(y, warn=True)
```

In [8]:

```
#Multinomial Naive Bayes
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import classification_report
clf_report = classification_report(y_test, y_pred)
print(clf_report)
print(cm)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:724: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel ().

y = column_or_1d(y, warn=True)

	precision	recall	f1-score	support
0	1.00	0.44	0.61	4926
1	0.00	1.00	0.00	2
accuracy			0.44	4928
macro avg weighted avg	0.50 1.00	0.72 0.44	0.30 0.61	4928 4928

[[2149 2777] [0 2]]

In [9]:

```
#Bernoulli Naive Bayes
from sklearn.naive_bayes import BernoulliNB
classifier = BernoulliNB()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import classification_report
clf_report = classification_report(y_test, y_pred)
print(clf_report)
print(cm)
```

```
precision
                             recall f1-score
                                                 support
           0
                                                     4926
                    1.00
                               1.00
                                          1.00
            1
                    0.00
                               0.00
                                          0.00
                                                        2
    accuracy
                                          1.00
                                                     4928
                                          0.50
                                                     4928
                    0.50
                               0.50
   macro avg
weighted avg
                    1.00
                               1.00
                                          1.00
                                                     4928
[[4926
          0]
 2
          0]]
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:724: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel ().

```
y = column_or_1d(y, warn=True)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.p y:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples.

'precision', 'predicted', average, warn_for)

In [11]:

```
#Complement Naive Bayes
from sklearn.naive_bayes import ComplementNB
classifier =ComplementNB()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import classification_report
clf_report = classification_report(y_test, y_pred)
print(clf_report)
print(cm)
```

```
precision
                            recall f1-score
                                                 support
           0
                              0.44
                                         0.61
                                                    4926
                    1.00
           1
                    0.00
                              1.00
                                         0.00
                                                       2
    accuracy
                                         0.44
                                                    4928
                              0.72
                                         0.30
                                                    4928
   macro avg
                    0.50
weighted avg
                              0.44
                                         0.61
                                                    4928
                    1.00
[[2148 2778]
```

```
[[2148 2778]
[ 0 2]]
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:724: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel ().

```
y = column_or_1d(y, warn=True)
```