TAPI:

Transactions for Accessing Public Infrastructure

Pekka Nikander HIIT & Ericsson

Joint work with Angelos Keromytis, Matt Blaze, John Ioannidis, Sotiris Ioannidis, and Vassilis Prevelakis

Presentation outline

- o Overview
- o Conceptual idea
- Protocol view
- KeyNote2 Micro-checks
- o OTP Coins
- o Putting the details together
- Summary

Overview

- o General, off-line, micro-payment system
- Amortizes cost of expensive crypto over many small, cheap-to-verify transactions
 - No probabilistic schemes
- Includes explicit risk management and dispute handling mechanisms
- Based on KeyNote2 and OTPCoins
- Especially suitable for Internet access

Conceptual idea (for access)

Protocol point-of-view

KeyNote2 Micro-checks

- o Presented & revised in FC2001 & FC2002
- Based on KeyNote2 trust management system, introduced in 1998 [RFC2704]
 - o Assumes that each party has a public key
 - o Keys sign credentials, delegating trust
- Each check encodes conditions for its validity

Roles and Credentials

OTP Coins

- A reverse hash chain of a given length <n>
 - $\circ H_0 = hash(H_1) = hash(hash(H_2)) = hash^n(H_n)$
- \circ Revealed one-by-one, first H_0 then H_1 etc
 - Receiver can verify that $H_{n-1} = hash(H_n)$, thereby verifying that H_n is the next value
- Compatible with EAP OPIE [RFC2289]

Putting details together

- \circ Initial hash value H_0 stored in the check
- Subsequent hash values very cheap to verify
- \circ Merchant shows last received value H_k
 - Clearing checks that $H_0 = hash^k(H_k)$
 - User charged only for <k> coins

Summary

- o A cheap, practical micro-payment approach
 - o Based on existing, proven technology
 - No new, fancy crypto
- Splits a KeyNote2 micro-check into coins
- Suitable for wireless Internet access
 - Designed to work with IEEE 802.1x
- Supports off-line and on-line verification