Copper(II) Coordination Compounds Correlations with Atomic Descriptors

Ricardo Almada Monter

Institute of Chemistry Universidad Nacional Autónoma de México

Advisor: Prof. Dr. Fernando Cortés Guzmán

2020

2020

Education

(4.5 year) Bs in Chemistry

Selected Courses:

 Computational Chemistry, Quantum Chemistry II

Other Courses:

• Introduction to Deep Learning.

Freie Universität Berlin (FUB)

Exchange Student

Selected Courses: .

Statistical Thermodynamics

Research Experience

Institute of Chemistry, UNAM

Research Assistant

August 2018-Present

Advisor: Prof Dr. Fernando Cortés Guzmán

- Worked in 3 Projects
- Collaborated in a Published Paper:
 - DOI:10.1016/j.molstruc.2019.12748
- Presented Posters at three conferences
- Participated in Courses like
 "Introduction to Linux Systems" and
 "Introduction to Machine Learning"

QTAIM¹

- Central Idea: atoms or group of atoms show intrinsic characteristics inside a molecule.
- Partitions ($\Omega \sim$ atoms): Done through $\rho(\mathbf{r})$ (Eq 1).
- $\rho(\mathbf{r})$ topology is dominated by the attractive forces of the nuclei.

$$\rho(\mathbf{r}) = N \int ... \int |\Psi(x_1, x_2, ..., x_N)|^2 d\omega dx_2, ..., dx_N$$
 (1)

4 / 26

Figure 1: Relief map of $\rho(\mathbf{r})$ (benzene)

Ricardo Almada Monter (IQ) 2020

¹R.F. W Bader. Atoms in Molecules: A Quantum Theory. eng. 1. publ. in paperback (with corr.) Oxford: Clarendon Press, 1994, XVIII, 438 S., [1] Bl. :, III., graph. Darst. ISBN: 0-19-855865-1.

Partitioning into Atoms²

- ullet Atomic Partitioning o Atomic Properties.
- The average of an observable in a molecule is defined as Eq (2).

$$<\hat{A}>_{molecule} = \sum_{i}^{A} (N \int_{\Omega} \left\{ \int \frac{1}{2} [\Psi^* \hat{A} \Psi + (\hat{A} \Psi)^* \Psi] d\tau \right\} d\mathbf{r})$$
 (2)

Electronic Populations:

$$N(\Omega) = \int_{\Omega} \rho(\mathbf{r}) d\mathbf{r} \tag{3}$$

• α or β Population:

$$<\psi_i(\mathbf{r})|\psi_i(\mathbf{r})>^{\sigma}_{\Omega}=\int_{\Omega}\psi_i^{\sigma*}(\mathbf{r})\psi_i^{\sigma}(\mathbf{r})d\mathbf{r}$$
 (4)

Ricardo Almada Monter (IQ)

²C.F Matta and R.J Boyd, eds. *Atoms in Molecules : An introduction; From Solid State to DNA and Drug Design.* eng. 1. publ. Harlow [u.a.]: Wiley-VCH, 2007.

Atomic Quadrupole Moment³

• It is a symmetric tensor that measures the deviation of the atomic $\rho(\mathbf{r})$ from sphericity.

$$Q(\Omega) = -\frac{e}{2} \begin{pmatrix} Q_{xx} & Q_{xy} & Q_{xz} \\ Q_{yx} & Q_{yy} & Q_{yz} \\ Q_{zx} & Q_{zy} & Q_{zz} \end{pmatrix}$$
 (5)

• $Q(\Omega)$ is a diagonalizable matrix with Q_1, Q_2, Q_3 diagonal elements.

Ricardo Almada Monter (IQ)

³Matta and Boyd, Atoms in Molecules : An introduction; From Solid State to DNA and Drug Design.

Figure 2: Representation of quadrupolar polarizations⁴

⁴P.L. A Popelier. Atoms in Molecules: An Introduction. eng. 1. publ. Harlow [u.a.]: Prentice Hall, 2000, XIII, 164 S. :, III., graph. Darst. ISBN: 0-582-36798-0.

The Electronic Laplacian⁵

- In essence, $\nabla^2 \rho(\mathbf{r})$ determines whether the functions is:
 - Concentrated:

$$\nabla^2 \rho(\mathbf{r}) < 0 \tag{6}$$

Depleted:

$$\nabla^2 \rho(\mathbf{r}) > 0 \tag{7}$$

- $\nabla^2 \rho(\mathbf{r})$ has a topology of its own.
- Critical Points $\rightarrow \nabla^2(\nabla^2 \rho(\mathbf{r}))u_i = \lambda_i u_i$
- Classification scheme:
 - r: rank; $\#\lambda|\lambda_i\neq 0$
 - s: signature ; $\sum sign(\lambda_i)$

⁵Popelier, Atoms in Molecules: An Introduction.

- Critical Points of an atom:
 - (3,+3) or vertices (V).
 - (3,+1) or edges (E).
 - (3,-1) or faces (F).
- Atomic graph: pictorial representation of a connectivity scheme.
- Euler's formula: V + F E = 2

Figure 3: Critical Points for Copper(II) 6 : 4 V, 8 E y 6 F

2020

9/26

Ricardo Almada Monter (IQ) Copper(II) Correlations

⁶L. Gutiérrez-Arzaluz et al. "Origin of the Photoinduced Geometrical Change of Copper(I) Complexes from the Quantum Chemical Topology View". In: Chemistry – A European Journal 25.3 (2019), pp. 775–784. DOI: 10.1002/chem.201804596.

So Far:

- Topological Partiton(Ω) of $\rho(\mathbf{r}) \to N(\Omega), N_{\alpha}(\Omega), N_{\beta}(\Omega), Q(\Omega)$
- $\nabla^2 \rho(\mathbf{r}) \to \mathsf{Basic}$ and Acid Regions.
- $abla^2
 ho(\mathbf{r})$ Topology o Atomic Graph.

This is study is based in Two Chemical Properties:

- AGD → Calculated.
- $Log \beta \rightarrow Experimental$.

AGD

AGD Descriptor⁷

- "Atomic Graphic Descriptor".
- Mathematically defined as in Eq (8)

$$AGD = \sum \nabla^2 \rho(\mathbf{r})_{cc} - \sum \nabla^2 \rho(\mathbf{r})_{cd}$$
 (8)

 Conceptual: describes the polarization in the valence shell of an atom and it is an approximation of the atom's hardness.

Figure 4: AGD: $\sum V(Yellow) - \sum F(Pink)$

⁷D.I Ramírez-Palma and F. Cortes-Guzman. Tendencia periódica en las propiedades del Laplaciano de la Densidad Electrónica de Compleios de Metales de la primera serie del Bloque "d". Tesis Digital de UAEM: http://ri.uaemex.mx/handle/20.500.11799/14246, 2013.

Formation Constant of Copper(II)

• Formation constant: Thermodynamic equilibrium constant of a metal and a produced complex. (Eq 9)

$$\beta: Cu_{(aq)}^{2+} + nL_{(aq)} \rightleftharpoons CuL_{n}^{2+}{}_{(aq)}$$

$$\tag{9}$$

2020

12 / 26

- Reported as $Log\beta$
- Compilations:⁸ with diverse metals and ligands.
- Utility: To design and understand new complexes and its reactivity.
- Not all complexes can be reported or obtained experimentally

Ricardo Almada Monter (IQ) Copper(II) Correlations

⁸R.M. Smith and A.E Martell. *Critical Stability Constants, Aminoacids*. Vol. 1. Plenum Press, New York and London, 1984; IUPAC. *The IUPAC Stability Constants Database*. discontinued. Academic Software: Yorks.

Aims

- To create a database of Cu(II) complexes with:
 - $Log \beta_{exp}$.
 - $Log \beta_{cal}$.
 - Geometry.
 - Atomic Properties (Cu).
 - $\nabla^2 \rho(\mathbf{r})$ Information.
- To produce a predictive and explanatory model: $Log \beta_{exp} = f(Descriptors)$
- To produce a predictive and explanatory model:
 AGD = f(Descriptors)

Method

Database

Geometry	#
S.PI	8
S.Py	11
Oct	39
Total	58

Table 1: Total Number of Molecules (20 ligands)

Figure 5: Some examples of the molecules in the database.

Calculated Formation Constant

• Error range: 10-38 kcal/mol \rightarrow Overestimation in $Log \beta_{cal}$

$Log \beta_{exp}$ and $Log \beta_{cal}$

For Cis Molecules:

$$Log\beta_{exp} = 0.310Log\beta_{cal} + 1.8821 \tag{10}$$

For Trans Molecules:

$$Log\beta_{exp} = 0.305 Log\beta_{cal} + 1.9478 \tag{11}$$

Table 2: Statistical Parameters of the Models

Eq	R^2	CV_{R^2}	S.E	kcal/mol	Molecules
10	0.903	0.891	1.145	1.54	36
11	0.910	0.897	1.119	1.50	36

$Log \beta_{exp}$ Correlations

For Cis Molecules:

$$Log \beta_{exp} = -0.337 \sum \nabla^{2} \rho(\mathbf{r})_{cc} (NO)^{\{7a\}} - 0.567 \sum \nabla^{2} \rho(\mathbf{r})_{cc} (Cu)^{\{7b\}}$$

$$+ 0.094 \sum \nabla^{2} \rho(\mathbf{r})_{cd} (Cu)^{\{7b\}} + 89.841 N(Cu) - 2656.510$$
(12)

(a) Concentration CPs from O and N

(b) Copper AG

Figure 7: $\nabla^2 \rho(\mathbf{r})$ CPs considered

$Log \beta_{exp}$ Correlations

For Trans:

$$Log \beta_{exp} = -0.314 \sum_{c} \nabla^{2} \rho(\mathbf{r})_{cc}(NO)^{\{8a\}} - 0.507 \sum_{c} \nabla^{2} \rho(\mathbf{r})_{cc}(Cu)^{\{8b\}} + 0.081 \sum_{c} \nabla^{2} \rho(\mathbf{r})_{cd}(Cu)^{\{8b\}} + 88.369N(Cu) - 2656.510$$
(13)

(a) Concentration CPs from O and N

(b) Copper AG

Figure 8: $\nabla^2 \rho(\mathbf{r})$ CPs considered

$Log \beta_{exp}$ Models

Contributions to $Log \beta_{exp}$ from the descriptors:

• -0.314
$$\sum \nabla^2 \rho(\mathbf{r})_{cc}(NO)$$
 — Positive — Nucleophilic Bonded Atoms.

- Concentration in $\sum \nabla^2 \rho_{cc}(NO)$ \longrightarrow Higher $Log \beta_{exp}$
- $0.64 \sum \nabla^2 \rho(\mathbf{r})_{cc}(NO) = \sum \nabla^2 \rho(\mathbf{r})_{cc}(O)$

Figure 9: Concentration CPs from O and N

$Log \beta_{exp}$ Models

Contributions to $Log \beta_{exp}$ from the descriptors:

- $88.369N(Cu) \longrightarrow Positive \longrightarrow Electronic population in Cu(II) (gain).$
- -0.507 $\sum \nabla^2 \rho(\mathbf{r})_{cc}(Cu)$ \longrightarrow Positive \longrightarrow Basicity from Copper(II).
- 0.0814 $\sum \nabla^2 \rho(\mathbf{r})_{cd}(Cu) \longrightarrow \text{Negative} \longrightarrow \text{Acidity from Copper}(II).$

Figure 10: Copper(II) Atomic Graph

$Log \beta_{exp} Models$

In summary:

Table 3: Statistical Parameters of the Models

Descriptor	For	R^2	CV_{R^2}	S.E	kcal/mol	Molecules
$Log \beta_{cal}$	Cis	0.903	0.891	1.145	1.54	36
$Logeta_{cal}$	Trans	0.910	0.897	1.119	1.50	36
QTAIM	Cis	0.954	0.935	0.762	1.02	37
QTAIM	Trans	0.948	0.933	0.802	1.08	37

AGD Correlation

For all the Molecules in the Database:

$$AGD = -234.113\Delta N_{\alpha}(Cu) + 239.999\Delta N_{\beta}(Cu) + 11.653\Delta Q_{1}(Cu) - 142.693$$
(14)
(a) $[CuL_{n}]$
(b) $[Cu(H_{2}O)_{6}]^{2+}$

Figure 11: $\Delta \equiv [CuL_n] - [Cu(H_2O)_6]^{2+}$ Fig 11a- Fig 11b

Eq	R^2	CV_{R^2}	F	S.E	Molecules
14	0.914	0.889	177	0.782	54

AGD Contributions

• 11.653 $\Delta Q_1(Cu) \longrightarrow \text{Negative} \longrightarrow \text{Shape of density}$.

Figure 12: Representation of quadrupolar polarizations

(c) Axial Direction

AGD Models

Contributions to AGD from the descriptors:

- -234.113 $\Delta N_{\alpha}(Cu)$ \longrightarrow Negative $\longrightarrow \alpha$ Contribution
- 239.999 $\Delta N_{\beta}(Cu)$ \longrightarrow Positive $\longrightarrow \beta$ Contribution

Figure 13: Box Plot from Changes in Electronic Population

In Conclusion

- $Log \beta_{exp}$ and $Log \beta_{cal} \rightarrow$ First approach but undescriptive and with a considerable |S.E|.
- $Log \beta_{exp} \rightarrow$ Tend to be higher as the bonded atoms increase their nucleophilic capacity and lower as the copper decreases its ability to accept electrons.
- $AGD \rightarrow \text{Related}$ with polarization terms; change in the form of the central atom electronic density and gains in the α,β populations.
- AGD and $Log \beta_{exp} \to Possible$ to create Models with the proposed Atomic descriptors.