GR_ROSE向けのMicroPython 使い方

MicroPython for GR_ROSE

- MicroPythonのSTM32の実装をGR_ROSE(RX65N)に移植したものです。
- 移植した機能はSTM32向けの実装(pyboard)にほぼ準拠しています。
 - 使い方の詳細はpyboardのマニュアル (https://docs.micropython.org/en/latest/)を参照してください。
 - ただし、USB, CAN, WDT...は未実装です。
 - Pyboardの一部のモジュールのパラメータが実装できていないものがあります。詳細はソースコードを参照ください。
 - MicroPythonのESP8266およびESP32向けの実装とはモジュールが異なります。

用意するもの

- Windows 10が動作するPC
 - ターミナルソフトウェア(ここではTera Termを使用します。)
- GR_ROSE
- その他ガジェット
 - このドキュメントでは、以下のガジェットのサンプルを取り上げます。
 - ・ オムロン 2 JCIEボード
 - MAX7129 8x8 LED Matrixボード
 - NeoPixel Ring 12個

使い方

- GR-ROSEのUSBマイクロコネクタとWindow 10 PCのUSBコネクタを接続します。
- デバイスマネージャのポートでUSBシリアルデバイスとして認識されます。

使い方

- Tera Termを起動し、認識されたCOMポートを選択し、Setup Serial portメニューを選択し、Baud rateで115200を選択し、Enterキーを押します。>>というMicroPython REPLプロンプトが表示されるはずです。
- このコンソールより、MicroPythonのプログラムが実行できます。

最初のサンプル Lチカ

- 最初のサンプルとして、GR-ROSEボード上のLEDを点灯してみます。
- 下記のプログラムを入力してみます。
- Enterキーを数回入力します。
- Ctrl-Cキーの入力でプログラムが終了します。

```
import pyb
while True:
pyb.LED(1).toggle()
pyb.delay(50)
```

REPLの補足

- インデントのあるプログラムを Cut&Pasteする際は、Ctrl-Eを押 してから、Pasteすると便利です。
- Ctrl-Dでプログラムを実行します。
- Ctrl-Cでプログラムを停止します。
- さらにCtrl-Dでソフトウェアリブート します。

ストレージ

- GR_ROSEの実装では、ストレージとして、内蔵FlashとSDカードが使用できます。
- 内蔵フラッシュは、仮に0xfffa0000より256KB確保しています。
- 起動時に、"/flash"デフォルトのフォルダとなり、初期化後はboot.pyとmain.pyの2つのファイルが置かれています。
 - main.pyを更新することで起動時にプログラムを実行することができます。
- 起動時にSDカードが挿入されている場合には"/sd"フォルダがデフォルトのフォルダとなります。

```
MicroPython v1.12-816-g4573864c0-dirty on 2020-05-09; GR-MANGO with RZA2M
Type "help()" for more information.
>>> import uos
>>> uos.listdir("")
['boot.py', 'main.py']
>>> uos.listdir("/")
['flash']
```

Visual Studio Code + PyMakrによるプログラム編集

Visual Studio Code + PyMakrのインストール

- Visual Studio Codeのインストール
 - https://visualstudio.microsoft.com/ja/
- Nodejsのインストール (6.9.5 以降) たぶん、最新版で問題ない
 - https://nodejs.org/en/
- Visual Studio CodeにPyMakerプラグインのインストール
 - 左下の拡張メニューアイコンをクリックし、EXTENSIONS:MARKETPLACEの検索欄に PyMakrと入力し、インストール
- PyMakerプラグインにGR_ROSEのCOMポートなどを登録
 - View Command Paletteメニューで、PyMakr Global settingsを選択し、pymakr.jsonファイル中の"address": "xxxx"のxxxxにCOMポートを設定

PyMakr – Global settings

PyMakr Tips

- PyMakrのファイルは、以下のフォルダに置かれている。
 - C:¥Users¥ユーザ名¥.vscode¥extensions¥pycom.pymakr-1.1.6
- PyMakrの設定fileは、以下のフォルダに置かれている。
 - C:¥Users¥ユーザ名¥.AppData¥Roaming¥Code¥User
- Windows環境でCOMポート接続が断続する場合には、C:¥Users¥ユーザ名 ¥.vscode¥extensions¥pycom.pymakr-1.1.6¥lib(and ¥src)¥connections¥pyserial.js の139行目ぐらいからのをコメントアウトする。
- Uploadに失敗する場合、config.jsでupload_chunk_sizeを512から256に設定する。

```
sendPing(cb) {
   //if (process.platform == 'win32') {
   // avoid MCU waiting in bootloader on hardware restart by setting both dtr and rts high
   // this.stream.set({ rts: true });
   // not implemented
   if (this.dtr_supported) {
      this.stream.set({ dtr: true }, function (err) {
      if (cb) {
        cb(err);
        return err ? false : true;
      }
    });
    }else {
      cb();
    return true;
   }
}
```


Pin Assign Information

Available Pins

Pin Name	CPU Pin	Pin Name	CPU Pin	Pin Name	CPU Pin
SER1_TX	P20	DAC	P05	ETH_MDIO	PA3
SER1_RX	P21	A0	PD2	ETH_TXEN	PB4
SER1_SEL	P22	A1	PD3	ETH_TXD0	PB5
SER2_TX	P13	A2	PD4	ETH_TXD1	PB6
SER2_RX	P12	A3	PD5	ETH_RXD0	PB1
SER2_SEL	P14	A4	PD6	ETH_RXD1	PB0
SER3_TX	PC3	A5	PD7	ETH_RXER	PB3
SER3_RX	PC2	ACC_SCL	P52	ETH_CRS	PB7
SER3_SEL	PC4	ACC_SDA	P50	ETH_CLK	PB2
SER4_TX	P32	ACC_INT	P07	LED1	PA0
SER4_RX	P33	ESP_RES	P17	LED2	PA1
SER4_SEL	P34	ESP_IO0	P27	A_WIRE_SC L	
SPI_SS	PE4	ESP_IO15	P31	A_WIRE_SD A	PE1
SPI_MO	PE6	ESP_EN	P24	A_ESP_CK	PC5
SPI_MI	PE7	SER6_RX	P25	A_ESP_MI	PC7
SPI_CK	PE5	SER6_TX	P23	A_ESP_MO	PC6
SER5_RX	P30	SER7_TX	PC7	A_ESP_SS	PC4
SER5_TX	P26	SER7_RX	PC6	A_ESP_IO0	P15
WIRE_CL	P52	SER7_DIR	PC5		<u> </u>
WIRE_DA	P50	ETH_MDC	PA4		

Pin interrupt

Pin Name	CPU Pin	INT	
SER1_TX	P20	IRQ8	
SER1_RX	P21	IRQ9	
SER2_TX	P13	IRQ3	
SER2_RX	P12	IRQ2	
SPI_MO	PE6	IRQ6	
SPI_MI	PE7	IRQ7	
SPI_CK	PE5	IRQ5	
SER5_RX	P30	IRQ0	
DAC	P05	IRQ13	
A0	PD7	IRQ7	
A1	PD6	IRQ6	
A2	PD5	IRQ5	
A3	PD4	IRQ4	
A4	PD3	IRQ3	
A5	PD2	IRQ2	
SER7_TX	PC7	IRQ14	
SER7_RX	PC6	IRQ13	

PWM pin

Pin Name	CPU Pin	PWM	
SER1_TX	P20	MTIOC1A	
SER4_TX	P32	MTIOC0C	
SPI_CK	PE5	MTIOC4C	
SER7_TX	PC7	MTIOC3A	
SER7_RX	PC6	MTIOC3C	
ED1	PA0	MTIOC4A	

Module

Pyboard pyb modules	GR Rose pyb(rxb) modules	Description	
Accel	未実装	加速度センサー	
ADC	ADC	AD変換	
CAN	未実装	CAN (controller area network communication bus)	
DAC	DAC	DA変換	
ExtInt	ExtInt	I/Oピンによる外部割込み	
I2C	I2C	I2C (a two-wire serial protocol)	
LCD	未実装	LCD制御	
LED	LED	LEDオブジェクト	
Pin	Pin	I/Oピン	
PinAF	未実装	ピン周辺機能	
RTC	RTC	リアルタイマー	
Servo	Servo	サーボ(PWM)	
SPI	SPI	SPI (a master-driven serial protocol)	
Switch	Switch	スイッチ	
Timer	Timer	タイマー	
TimerChannel	同等機能なし	タイマー向けチャネル設定	
UART	UART	シリアル通信	
USB_HID	未実装	USB Human Interface Device (HID)	
USB_VCP	未実装	USB仮想COMポート	

サンプルコード

- ファイルアクセス
- ピン割り込み
- Timer (ソフトウェア)
- I2C デバイススキャン
- I2C SH30 温度湿度センサー
- I2C OMRON 2SMPB-02E MEMS絶対圧センサ
- ・ネットワーク

サンプル ファイルアクセス

• デフォルトの/flashフォルダのmain.pyの内容を表示します。

```
f = open('main.py', 'r')
f.read()
f.close()
```

```
MicroPython v1.12-816-g4573864c0-dirty on 2020-05-09; GR-MANGO with RZA2M
Type "help()" for more information.
>>> f = open('main.py', 'r')
>>> f.read()
'# main.py -- put your code here!¥r¥n'
>>> f.close()
```

/flash及び/sdファイルシステムへの読み書きは、標準的には、MicroPythonのファイル入出力ライブラリを呼び出すことで行っています。

サンプルピン割り込み-スイッチ検出

- Switch(PD7)を押すと、print("intr")が実行されます。
- IRQxを割り当て可能なピンのみで実行できます。

from pyb import Pin, ExtInt
callback = lambda e: print("intr")
ext = ExtInt(Pin(Pin.cpu.PD7, Pin.IN, Pin.PULL_UP),
ExtInt.IRQ_RISING, Pin.PULL_UP, callback)

サンプル Timer – タイマー呼び出し

• ソフトウェアタイマ機能で、2 秒ごとに、print(2)を呼び出します。

```
from machine import Timer
tim = Timer(-1)
tim.init(period=2000, mode=Timer.PERIODIC,
callback=lambda t:print(2))
```

```
>>> from machine import Timer
>>> tim = Timer(-1)
>>> tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))
>>> 2
2
2
2
2
```

サンプル I2C - SH30 温度湿度センサー

- ・温度湿度を表示します。
 - sh30.pyモジュールを/flashに(PyMakr経由などで)Upload後、下記のコードを実行します。

from sht30 import SHT30

sensor = SHT30(scl_pin=machine.Pin.cpu.P52, sda_pin=machine.Pin.cpu.P50, i2c_address=0x44)

temperature, humidity = sensor.measure()

print('Temperature:', temperature, 'ºC, RH:', humidity, '%')

machine pinは、pyb.Pin としても定義できます machine.Pin.cpu.P52 -> pyb.Pin('WIRE_CL') machine.Pin.cpu.P50 -> pyb.Pin('WIRE_DA')

```
[1/9] Writing file blink.py (0kb)
[2/9] Writing file boot.py (0kb)
[3/9] Writing file i2c_scan.py (0kb)
[4/9] Writing file main.py (0kb)
[5/9] Writing file max7219.py (4kb)
[6/9] Writing file opt3001.py (0kb)
[7/9] Writing file opt3001_sample.py (0kb)
[8/9] Writing file sht30.py (7kb)
[9/9] Writing file sht30_sample.py (0kb)
Upload done, resetting board...
OK
MicroPython v1.12-816-g4573864c0-dirty on 2020-05-09; GR-MANGO with RZA2M
Type "help()" for more information.
>>>> ■
```

上記はGR-MANGOの出力例

サンプル ネットワーク – HTTPアクセス

• ソケットモジュールを使用して、http://micropython.orgにアクセスします。

```
import network
net=network.Ethernet()
net.ifconfig()
net.active(True)
net.ifconfig("dhcp")
net.ifconfig()
import usocket as socket
s = socket.socket()
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s.connect(addr)
s.send(b'GET / HTTP/1.1\forall r\forall nHost:
micropython.org\u00e4r\u00e4n\u00e4r\u00e4n')
data = s.recv(1000)
s.close()
data
```

```
import network
>>> net=network.Ethernet()
 >> net.ifconfig()
 '0.0.0.0', '0.0.0.0', '0.0.0.0', '0.0.0.0')
>>> net.active(True)
>>> net.ifconfig("dhcp")
 '192.168.0.47', '255.255.255.0', '192.168.0.1', '192.168.0.1')
>>> import usocket as socket
>>> s = socket.socket()
>>> addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
>>> s.connect(addr)
>>> s.send(b'GET / HTTP/1.1¥r¥nHost: micropython.org¥r¥n¥r¥n')
>>> data = s.recv(1000)
>>> s.close()
>>> data
    TP/1.1 200 OK¥r¥nServer: nginx/1.12.2¥r¥nDate: Sat, 12 Jan 2019 03:27:43 GM
fr¥nContent-Type: text/html; charset=utf-8¥r¥nContent-Length: 16839¥r¥nConnecti
n: keep-alive¥r¥nVary: Accept-Encoding¥r¥nX-Frame-Options: SAMEORIGIN¥r¥n¥r¥n<![
DCTYPE html>¥n¥n¥n4n4html lang="en">¥n <head>¥n <meta charset="utf-8">¥n
Kmeta http-equiv="X-UA-Compatible" content="IE=edge">¥n-
                                                           Kmeta name="viewport
content="width=device-width, initial-scale=1">\n
                                                   <!-- The above 3 meta tags
*must* come first in the head -->¥n¥n     <link rel="icon" href="/static/img/favi
con.icoʻ
```

Network-HTTPS access

• ソケットモジュールを使用して、https://micropython.org にアクセスします。

```
import network
net=network.LAN()
net.active(True)
net.ifconfig("dhcp")
net.ifconfig()
import socket
import ussl
s = socket.socket()
addr = socket.getaddrinfo("micropython.org", 443)[0][-
1]
s.connect(addr)
ss = ussl.wrap socket(s)
ss.write(b"GET / HTTP/1.0\fr\fr\fr\fr\fr\fr\fr\fr
data=ss.read(4096)
s.close()
print(data)
```

```
import network
   net=network.LAN()
   net.active(True)
 >> net.ifconfig("dhcp")
 > net.ifconfig()
 '192.168.0.73', '255.255.255.0', '192.168.0.1', '192.168.0.1')
 >> import socket
   import ussl
 >> s = socket.socket()
 >> addr = socket.getaddrinfo("micropython.org", 443)[0][-1]
   s.connect(addr)
>>> ss = ussl.wrap socket(s)
>>> ss.write(b"GET / HTTP/1.0\r\n\r\n")
>>> data=ss.read(4096)
 >> s.close()
 >> print(data)
b'HTTP/1.1 200 OK\r\nServer: nginx/1.10.3\r\nDate: Sun, 24 May 2020 04:09:00 GM.
\r\nContent-Type: text/html\r\nContent-Length: 11482\r\nLast-Modified: Fri, 20
ay 2016 09:54:37 GMT\r\nConnection: close\r\nVary: Accept-Encoding\r\nETag: "57
ededd-2cda"\r\nStrict-Transport-Security: max-age=15768000\r\nAccept-Ranges: by
es\r\n\r\n<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"\n"http://www
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n\n<html>\n\n<head>\n<title>Damien
eorge</title>\nhhref="/fa"
```

Network-HTTP access via ESP8266

• ESP8266用のソケットモジュールを使用して、http://micropython.orgにアクセスします。

```
import network
 esp = network.ESP8266()
  esp.connect("xxxxxx", "xxxxxxxxxx")
esp.ifconfig()
import wsocket as socket
s = socket.socket()
addr = socket.getaddrinfo('www.micropython.org',
80)[0][-1]
s.connect(addr)
s.send(b"GET / HTTP/1.0\forall r\forall n\forall r\forall n\forall r\forall n\forall r\forall n\forall r\forall n\forall n\forall
data=s.recv(8192)
s.close()
  print(data)
```

```
>> import network
>> esp = network.ESP8266()
AT ver=1.6.2.0(Apr 13 2018 11:10:59)
SDK ver=2.2.1(6ab97e9)
>> esp.connect("
>>> esp.ifconfig()
('192.168.0.75', '192.168.0.1', '255.255.255.0')
>> import wsocket as socket
>>> s = socket.socket()
>>> addr = socket.getaddrinfo('www.micropython.org', 80)[0][-1]
>> s.connect(addr)
>>> s.send(b"GET / HTTP/1.0\r\n\r\n")
>>> data=s.recv(8192)
>>> s.close()
>>> print(data)
'HTTP/1.1 200 OK\r\nServer: nginx/1.10.3\r\nDate: Sun, 24 May 2020 04:00:12 GMT
\r\nContent-Type: text/html\r\nContent-Length: 54\r\nLast-Modified: Sat, 04 Oct
2014 21:54:13 GMT\r\nConnection: close\r\nVary: Accept-Encoding\r\nETag: "54306c
85-36"\r\nAccept-Ranges: bytes\r\n\r\nServer down for maintenance.\n\nPlease che
ck back soon.\n'
```

GC Memory Information

Display GC Memory information.

import micropython
micropython.mem_info()

```
MicroPython v1.12-571-gfaae6b130-dirty on 2020-05-24; GR-ROSE with RX65N
Type "help()" for more information.
>>> import micropython
>>> micropython.mem_info()
stack: 960 out of 23552
GC: total: 250368, used: 1552, free: 248816
No. of 1-blocks: 21, 2-blocks: 8, max blk sz: 40, max free sz: 15541
```

おしまい

- 使い方の詳細は、MicroPythonのドキュメントを参照してください。
 - https://docs.micropython.org/en/latest/
- 移植したソースコードは以下のGithubのrxブランチに置かれています。
 - https://github.com/ksekimoto/micropython
 - git clone https://github.com/ksekimoto/micropython -b rx
 - ビルド済のバイナリファイルは、rx_release フォルダ以下に格納しています。

その他、制限事項など。

- ビルド方法は、Github上のreadme.mdファイルに記載する予定です。
 - Boards¥GR_ROSE_DDにMBED USBドライブコピー用のビルド定義ファイル
 - Boards¥GR ROSEフォルダがJ-linkデバッグ向けのビルド定義ファイル
- 内蔵フラッシュドライブに不整合が発生した場合には、起動時にSwitch(PinD7)を3秒押して、boot.py, main.pyを再作成してください。
- シリアル通信の処理にバグがあります。4Kバイトの受信バッファを超える通信で問題が発生する可能性があります。
- タイマーは、STM32とはMicroPythonのモジュールの実装が大幅に異なります。詳細はソースファイルをご確認ください。
- 各クラスのパラメータはオリジナルから機能を大幅に省略している場合があります。
- 各クラスのprintメソッドはオリジナルから機能を大幅に省略している場合があります。

See the book 「GR-ROSE」ではじめる電子工作 (Japanese)

http://www.kohgakusha.co.jp/books/detail/978-4-7775-2084-8

Backupスライド

プログラム編集、実行環境

ツール	インストール	使い方など
Visual Studio Code + PyMakr (Windows / Linux /Mac(??))	拡張メニューでPyMakrと入力してインストール。Nodejs 6.9.5以降がインストールされていること。設定方法は、Pymakr > Global settingメニューで使用するCOMポートを設定する。	メニューから、Pythonのプログラムの実 行、アップロード、ダウンロードが可能
uPyCraft v.1.1 (Windows環境) *** uPyCraft V1.1 File Edit Tools Help device sd in uPy_lib in workSpace	下記リンクより、実行ファイルをダウンロードして実行する。 https://randomnerdtutorials.com/u PyCraftWindows	メニューから、Pythonのプログラムの実行、アップロード、ダウンロードが可能 https://randomnerdtutorials.com/in stall-upycraft-ide-windows-pc- instructions/
MU エディタ (Windows/Linux) (***********************************	Githubからソースをダウンロードして、GR_ROSEのUSBを認識するように変更 (https://github.com/ksekimoto/mu/tree/pyboard)	Microbitのエディタとして利用されている。 https://codewith.mu/

オムロン2JCIE-EV センサーボード

センサ	部品番号	形式	メーカ	インターフェイス	
温湿度センサ	U1	SHT30-DIS-B	Sensirion	I2C (0x44)	
周辺光センサ	U2	OPT3001DNP	Texas Instruments	I2C (0x45)	
MEMS絶対圧センサ	U3	2SMPB-02E	オムロン	I2C (0x56)	
MEMSデジタル モーションセンサ	U5	LIS2DW12	STMicroelec tronics	SPI (SPIO -CS:P84)	
MEMSマイクロフォン	U6	SPH0645LM4H-B	Knowles	I2S	