Przygotowanie do egzaminu z geometrii 3D

22 stycznia 2025

Spis treści

1 Formulas 1

1 Formulas

Długość wektora ${f V}$ jest określona jako:

$$\|\mathbf{V}\| = \sqrt{V_x^2 + V_y^2 + V_z^2}$$

Opis: Ten wzór pozwala obliczyć długość (moduł) wektora w przestrzeni trójwymiarowej, używając jego współrzędnych $V_x,\,V_y,\,V_z.$

Iloczyn skalarny dwóch wektorów ${f V}$ i ${f W}$ jest określony jako:

$$\mathbf{V} \cdot \mathbf{W} = V_x W_x + V_y W_y + V_z W_z$$

Opis: Ten wzór oblicza iloczyn skalarny (dot product) dwóch wektorów w przestrzeni trójwymiarowej, mnożąc odpowiadające sobie współrzędne V_x , W_x , V_y , W_y , V_z , W_z i sumując wyniki.

Iloczyn wektorowy dwóch wektorów V i W jest określony jako:

$$\mathbf{V} \times \mathbf{W} = \begin{bmatrix} V_y W_z - V_z W_y \\ V_z W_x - V_x W_z \\ V_x W_y - V_y W_x \end{bmatrix}$$

Opis: Iloczyn wektorowy (cross product) dwóch wektorów w przestrzeni trójwymiarowej tworzy nowy wektor, który jest prostopadły do płaszczyzny utworzonej przez \mathbf{V} i \mathbf{W} . Składniki nowego wektora są obliczane na podstawie powyższego wzoru.

Rzut wektora ${f W}$ na ${f V}$ jest określony jako:

$$\mathrm{proj}_{\mathbf{V}}\mathbf{W} = \frac{\mathbf{V}\cdot\mathbf{W}}{\|\mathbf{V}\|^2}\mathbf{V}$$

 $\mathbf{Opis:}$ Rzut wektora \mathbf{W} na \mathbf{V} to wektor będący projekcją \mathbf{W} na kierunek $\mathbf{V}.$