# **HIGGS BUNDLES – EXISTENCE OF SOLUTIONS**

### PEDRO NÚÑEZ

ABSTRACT. We introduce the stability condition for Higgs bundles and discuss the Hitchin–Kobayashi correspondence [Hit87, §3 and §4].

#### **CONTENTS**

| 1.         | Stability of Higgs bundles    | 1  |
|------------|-------------------------------|----|
| 2.         | Idea of the existence theorem | 9  |
| References |                               | 11 |

-parts in gray will be omitted during the talk-

## 1. Stability of Higgs bundles

*Notation.* In this first section, all vector bundles, morphisms and sections are assumed to be holomorphic. We will often go back and forth between vector bundles E and their sheaves of sections E.

Let M be a compact Riemann surface and K its canonical line bundle. We denote the set of rank 2 vector bundles on M by  $\mathbf{Vec}_2(M)$ .

**Definition** (Higgs bundle). A *Higgs bundle* on M is a pair  $(E, \Phi)$ , where  $E \in \mathbf{Vec}_2(M)$  and  $\Phi \in H^0(M, \mathcal{E}nd(\mathcal{E}) \otimes \mathcal{K})$ . We call  $\Phi$  a *Higgs field* on E.

Remark. Using the canonical isomorphisms

$$H^0(M, \mathcal{E}nd(\mathcal{E}) \otimes \mathcal{K}) \cong \text{Hom}(\mathcal{O}, \mathcal{E}^{\vee} \otimes \mathcal{E} \otimes \mathcal{K}) \cong \text{Hom}(\mathcal{E}, \mathcal{E} \otimes \mathcal{K})$$

we may identify  $\Phi$  with a morphism  $\Phi: E \to E \otimes K$ .

**Definition** (Stability). A Higgs bundle (E, Φ) is said to be *stable* if for every Φ-invariant line bundle  $L \subseteq E$  we have  $\mu(L) < \mu(E)$ , where Φ-invariance means that  $\Phi(L) \subseteq L \otimes K$ .

*Remark.* (E, 0) is stable if and only if E is stable in the usual sense.

Date: 15 July 2020.

Supported by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

**Exercise A.** There are no stable Higgs bundles on  $\mathbb{P}^1$ . [*Hints below*<sup>1</sup>]

*Notation.* For  $E \in \mathbf{Vec}_2(M)$ , denote by  $\mathrm{End}_0(E)$  the vector bundle of traceless endomorphisms.

**Lemma 1.** Let  $E \in \mathbf{Vec}_2(E)$ . Then there is a natural projection  $\mathrm{pr}_0 : \mathrm{End}(E) \to \mathrm{End}_0(E)$  whose kernel is the trivial line bundle of multiples of the identity, yielding a short exact sequence

$$0 \to \mathcal{O} \to \mathcal{E}nd(\mathcal{E}) \to \mathcal{E}nd_0(\mathcal{E}) \to 0.$$

In particular,  $deg(ch(\mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K}) td(\mathcal{K}^{\vee}))_1 = 3g - 3$ .

*Proof.* Over  $x \in M$ , the map  $\operatorname{pr}_{0,x} : \operatorname{End}(E_x) \to \operatorname{End}_0(E_x)$  is given by

$$\phi \mapsto \phi - \frac{\operatorname{tr}(\phi)}{2} \operatorname{id}_{E_x}.$$

The endomorphisms in the kernel are precisely the multiples of the identity, and this fibre-wise description globalizes to the desired short exact sequence. For the Chern class computation we use the axioms in [Har77, Appendix A]. We have

$$c_1(\mathcal{E}nd_0(\mathcal{E})) = c_1(\mathcal{E}nd(\mathcal{E})) = c_1(\mathcal{E}^{\vee} \otimes \mathcal{E}) = 0,$$

therefore

$$\operatorname{ch}(\mathcal{E} n d_0(\mathcal{E}) \otimes \mathcal{K}) = 3 + c_1(\mathcal{E} n d_0(\mathcal{E})) + 3c_1(\mathcal{K}) = 3 + 3c_1(\mathcal{K}).$$

We also have

$$td(\mathcal{K}^{\vee}) = 1 - \frac{c_1(\mathcal{K})}{2},$$

so multiplying the two expressions we obtain

$$\operatorname{ch}(\operatorname{\mathcal{E}} nd_0(\operatorname{\mathcal{E}}) \otimes \operatorname{\mathcal{K}})\operatorname{td}(\operatorname{\mathcal{K}}^{\vee}) = 3 + \frac{3}{2}c_1(\operatorname{\mathcal{K}}).$$

Since  $deg(c_1(\mathcal{K})) = 2g - 2$ , the result follows.

*Notation.* We define the following subsets of  $Vec_2(M)$ :

- S :=  $\{E \in \mathbf{Vec}_2(M) \mid \exists \Phi \text{ such that } (E, \Phi) \text{ is stable} \}.$
- A :=  $\{E \in \mathbf{Vec}_2(M) \mid \text{a general } \Phi \text{ has no invariant } L\}.$
- **B** :=  $\{E \in \mathbf{Vec}_2(M) \mid \exists L \text{ invariant for all } \Phi\}.$

**Lemma 2.** *If*  $g \geqslant 2$ , then

$$Vec_2(M) = A \sqcup B$$
.

<sup>&</sup>lt;sup>1</sup>Grothedieck's theorem allows us to write  $\Phi$  as a matrix. What can we say about each entry? The solution can be found in [Hit87, Remark (3.2) (iii)]

*Proof.* Let  $\pi: \mathbb{P}(E) \to M$  be the projectivization of our rank 2 vector bundle and let  $O(-1) \to \mathbb{P}(E)$  denote the tautological line bundle, whose fiber over  $[v] \in \mathbb{P}(E)$  is the line  $\{\lambda v \mid \lambda \in \mathbb{C}\} \subseteq E_{\pi([v])}$  spanned by v. Denote also  $O(l) := O(-1)^{\otimes (-l)}$ . If  $\mathcal{F}$  is a sheaf on  $\mathbb{P}(E)$ , we denote  $\mathcal{F}(l) := \mathcal{F} \otimes \mathcal{O}(l)$ , where  $\mathcal{O}(l)$  denotes the sheaf of sections of O(l). Using the relative Proj construction we can write  $\mathbb{P}(E) = \mathbb{P}(\mathcal{E}^{\vee}) := \operatorname{Proj}_{M}(S(\mathcal{E}^{\vee}))$ , so [Har77, Exercise III.8.4] implies that

$$\pi_* \mathcal{O}(l) = \begin{cases} S^l(\mathcal{E}^{\vee}) & \text{if } l \geqslant 0, \\ 0 & \text{if } l < 0. \end{cases}$$

Let  $x \in M$ . Given  $A \in \operatorname{End}(E_x)$ , we define the quadratic form  $v \mapsto Av \wedge v$  with values in  $\Lambda^2 E_x$ , which can then be naturally regarded as an element in  $S^2(E_x^{\vee}) \otimes \Lambda^2 E_x$ . The resulting quadratic form is trivial precisely when  $A = \lambda \operatorname{id}_{E_x}$  for some  $\lambda \in \mathbb{C}$ , so by Lemma 1 we obtain an injective homomorphism  $\operatorname{End}_0(E_x) \to S^2(E_x^{\vee}) \otimes \Lambda^2 E_x$ . Both vector spaces have the same dimension, so this must be an isomorphism. These isomorphisms globalize to an isomorphism  $\operatorname{End}_0(E) \cong S^2(E^{\vee}) \otimes \Lambda^2 E$ , hence we obtain an isomorphism

$$\mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K} \cong \pi_* \mathcal{O}(2) \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E}.$$

The projection formula yields now an isomorphism  $\mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K} \cong \pi_*(\pi^*(\mathcal{K} \otimes \Lambda^2 \mathcal{E})(2))$ , hence an isomorphism

$$\psi:\,H^0(M,\mathcal{E}nd_0(\mathcal{E})\otimes\mathcal{K})\cong H^0(\mathbb{P}(E),\pi^*(\mathcal{K}\otimes\Lambda^2\mathcal{E})(2)).$$

Let now  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$ . A line bundle  $L \subseteq E$  is then  $\Phi$ -invariant precisely when  $\psi(\Phi)$  vanishes at all  $[v] \in \mathbb{P}(L) \subseteq \mathbb{P}(E)$ . In other words, L is  $\Phi$ -invariant if and only if  $\sigma(M) \subseteq \operatorname{div}(\psi(\Phi))$ , where  $\operatorname{div}(-)$  denotes the divisor of zeros of a section and  $\sigma : M = \mathbb{P}(L) \longrightarrow \mathbb{P}(E)$  is the section induced by  $L \subseteq E$ .

Suppose now that  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$  is not nilpotent and let  $L \subseteq E$  be a  $\Phi$ -invariant line bundle. Then over a general point  $x \in M$ , the corresponding traceless endomorphism  $\phi_x \in \operatorname{End}_0(E_x)$  is diagonalizable, so we can find some eigenvector  $v \in E_x \setminus L_x$  in an eigenspace other than  $L_x$ . This gives us a point  $[v] \in \mathbb{P}(E) \setminus \sigma(M)$  on which  $\psi(\Phi)$  vanishes. Hence  $\sigma(M)$  is a proper irreducible component of the divisor  $\operatorname{div}(\psi(\Phi))$ .

The previous discussion shows that if  $\Phi$  is not nilpotent and  $\operatorname{div}(\psi(\Phi))$  is irreducible, then there are no invariant line bundles  $L \subseteq E$ . By Hirzebruch–Riemann–Roch and Lemma 1 we have

$$h^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K}) \geqslant 3g - 3 \geqslant 3,$$

so the complete linear system defined by the invertible sheaf  $\pi^*(\mathcal{K} \otimes \Lambda^2 \mathcal{E})(2)$  has dimension at least 2. If this linear system does not have a fixed divisor, then Bertini's theorem [Iit82, Theorem 7.19] tells us that  $\operatorname{div}(\psi(\Phi))$ 

is irreducible for a general  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$ . Since in our case  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$  is nilpotent if and only if  $\Phi^2 = 0$ , a general  $\Phi$  is not nilpotent. Therefore  $E \in \mathbf{A}$  in this case.

Let us see what happens if the linear system has a fixed divisor. Such a fixed divisor must be the zero locus of a non-zero global section s of an invertible sheaf on  $\mathbb{P}(E)$ , which is up to isomorphism of the form  $\pi^*\mathcal{L}(l)$  with  $\mathcal{L}$  an invertible sheaf on M and  $l \in \mathbb{Z}$  [Har77, Exercise II.7.9]. Being a fixed divisor means then that every other global section of our line bundle can be written as a product st, where  $t \in H^0(\mathbb{P}(E), \pi^*\mathcal{N}(2-l))$ . Since our line bundle had non-zero global sections, both  $\pi^*\mathcal{L}(l)$  and  $\pi^*\mathcal{N}(2-l)$  must have non-zero global sections. By the projection formula, this leaves us with only three possibilities:

- a) l = 0;
- b) l = 1;
- c) l = 2.

We analyze each case separately to conclude that

$$E \in \begin{cases} \mathbf{A} & \text{if } l = 0, \\ \mathbf{B} & \text{if } l \in \{1, 2\}. \end{cases}$$

Let us start with case a). Let  $\pi^*s \in H^0(\mathbb{P}(E), \pi^*\mathcal{L}) \cong H^0(M, \mathcal{L})$  be a global section corresponding to the fixed component of our linear system. Dividing all global sections by s and by  $\pi^*s$  respectively we obtain the following commutative diagram:

$$H^{0}(M, \mathcal{E}nd_{0}(\mathcal{E}) \otimes \mathcal{K}) \xrightarrow{\cong} H^{0}(\mathbb{P}(E), \pi^{*}(\mathcal{K} \otimes \Lambda^{2}\mathcal{E})(2))$$

$$\uparrow_{s} \downarrow \cong \qquad \qquad \uparrow_{\pi^{*}s} \downarrow \cong$$

$$H^{0}(M, \mathcal{E}nd_{0}(\mathcal{E}) \otimes \mathcal{K} \otimes \mathcal{L}^{\vee}) \xrightarrow{\cong} H^{0}(\mathbb{P}(E), \pi^{*}(\mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^{2}\mathcal{E})(2))$$

By definition, the new linear system does not have any fixed divisors and has the same dimension. Hence we can apply Bertini to conclude that a generic  $\Phi' \in H^0(M, \mathcal{E} nd_0(\mathcal{E}) \otimes \mathcal{K} \otimes \mathcal{L}^{\vee})$  does not have invariant line bundles, which in this case are defined as line bundles  $N \subseteq E$  such that  $\Phi'(N) \subseteq N \otimes K \otimes L^{\vee}$ . But a line bundle  $N \subseteq E$  is  $\Phi'$ -invariant if and only if it is  $s\Phi'$ -invariant, so we have  $E \in A$  in this case.

We move on to case b). Assume that the fixed divisor corresponds to a non-zero global section  $s \in H^0(\mathbb{P}(E), \pi^*\mathcal{L}(1))$ . This corresponds to a non-zero morphism  $E \to L$ . The fibre-wise kernel has then dimension 1 generically and 2 at special points by upper semi-continuity [Ati89, Proposition 1.3.2]. Hence we can find a line bundle  $N \subseteq \operatorname{Ker}(s) \subseteq E$ , which can be described as the largest line subbundle of E contained in the kernel of E. If E0 is a non-zero vector, then E1 and so E2 div(E3) is div(E4).

Thus the corresponding section  $\sigma(M) \subseteq \mathbb{P}(E)$  is contained in  $\operatorname{div}(\psi(\Phi))$  for all  $\Phi$  and N is  $\Phi$ -invariant for all  $\Phi$ . Hence  $E \in \mathbf{B}$  in this case.

In case c), the fixed divisor corresponds to a non-zero global section of  $\pi^*\mathcal{L}(2)$ . We have

$$H^0(\mathbb{P}(E), \pi^*\mathcal{L}(2)) \cong H^0(M, \mathcal{L} \otimes S^2 \mathcal{E}^{\vee}) \cong H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{L} \otimes \Lambda^2 \mathcal{E}^{\vee}).$$

So we can think of the fixed global section s as a traceless endomorphism of E with coefficients in  $L \otimes \Lambda^2 E^{\vee}$ . With this point of view, s-invariance of a line bundle  $N \subseteq E$  translates into  $s\Phi'$ -invariance of  $N \subseteq E$  as before, where  $s\Phi'$  is a Higgs field. Let us see that the fixed section s has some non-trivial kernel, hence defining a line bundle invariant under all Higgs fields as in the previous case. To show that there is some non-trivial kernel, it suffices to check that  $\det(s) = 0$ . Since s is traceless, it suffices in turn to check that  $\operatorname{tr}(s^2) = 0$ . Suppose on the contrary that  $\operatorname{tr}(s^2) \neq 0$ . Fix some non-zero  $s_1 \in H^0(M, \mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E})$  and consider the linear map

$$\theta: H^0(M, \mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E}) \longrightarrow H^0(M, \mathcal{K}^2)$$
$$\Phi' \longmapsto \operatorname{tr}(s^2) s_1 \Phi'$$

Since  $\operatorname{tr}(s^2)s_1$  can only vanish at finitely many points, the image of a non-zero  $\Phi'$  can only vanish at finitely many points, hence  $\theta$  is injective. From Hirzebruch–Riemann–Roch and Lemma 1 we know that

$$h^0(M, \mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E}) \geqslant 3g - 3 = h^0(M, \mathcal{K}^2),$$

so  $\theta$  is an isomorphism. Since  $\mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E}$  has global sections, its degree is non-negative. If it was zero, then this would be the trivial line bundle and we would have  $h^0(M, \mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E}) = 1 < 3g - 3$ , a contradiction. Hence  $\deg(\mathcal{L}^{\vee} \otimes \mathcal{K} \otimes \Lambda^2 \mathcal{E}) > 0$  and the non-zero global section  $s_1$  has at least one zero. If  $\theta$  was indeed an isomorphism, then each zero of  $s_1$  would give a base point of the complete linear system corresponding to  $\mathcal{K}^2$ . But  $\deg(\mathcal{K}^2) = 4g - 4 \geqslant 2g$ , so this linear system has no base points [Har77, Corollary IV.3.2]. This contradiction shows that s has non-trivial kernel, which contains a line bundle  $N \subseteq E$  invariant by all  $\Phi \in H^0(M, \mathcal{E} nd_0(\mathcal{E}) \otimes \mathcal{K})$ . Hence  $E \in \mathbf{B}$  as well in this case.

**Exercise B.** Assume  $g \ge 2$ . Let  $K^{\frac{1}{2}}$  be a line bundle whose square is K and let  $K^{-\frac{1}{2}}$  be its inverse. Does  $K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}$  belong to **A** or to **B**? [*Hints below*<sup>2</sup>]

**Lemma 3.** Let  $E \in \mathbf{Vec}_2(M)$  and  $L \subseteq E$  a line bundle. We have the following short exact sequences:

$$\Phi_{\alpha} := \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix},$$

<sup>&</sup>lt;sup>2</sup>Consider the family of traceless endomorphisms given by

a) 
$$0 \to \mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^{\vee} \otimes \mathcal{K} \to \mathcal{E} nd_0(\mathcal{E}) \otimes \mathcal{K} \to \mathcal{E} \otimes \mathcal{L}^{-1} \otimes \mathcal{K} \to 0.$$
  
b)  $0 \to \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K} \to \mathcal{E} nd_0(\mathcal{E}) \otimes \mathcal{K} \to \mathcal{L}^{-2} \otimes (\Lambda^2 \mathcal{E}) \otimes \mathcal{K} \to 0.$ 

Moreover, the sections of the image of  $K \otimes L \otimes \Lambda^2 E^{\vee}$  in a) leave only L invariant; and the sections of the image of  $E^{\vee} \otimes K \otimes L$  in b) are those which leave L invariant.

*Proof.* All the short exact sequences are the result of tensoring another short exact sequence with  $\mathcal{K}$ , so let us find the necessary short exact sequences without  $\mathcal{K}$ . Under the isomorphism  $E \cong E^{\vee} \otimes \Lambda^2 E$  [Har77, Exercise II.5.16], the line bundle L is sent to linear forms with coefficients in  $\Lambda^2 E$  vanishing along L, hence we have a short exact sequence

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{L}^{\vee} \otimes \Lambda^2 \mathcal{E} \to 0.$$

Dualizing this short exact sequence we obtain an inclusion  $L \otimes \Lambda^2 E^{\vee} \subseteq E^{\vee}$ . Tensoring with L and composing with the inclusion  $E^{\vee} \otimes L \subseteq E^{\vee} \otimes E$  we obtain an inclusion  $L^2 \otimes \Lambda^2 E^{\vee} \subseteq \operatorname{End}(E)$ . Choosing a basis on each fibre and chasing all the identifications we have made so far, we see that the image of  $L^2 \otimes \Lambda^2 E^{\vee}$  lies actually in  $\operatorname{End}_0(E)$ . Indeed, let V be a two dimensional  $\mathbb{C}$ -vector space and let  $e_1$  and  $e_2$  be a basis. Let L be the line spanned by a nonzero vector l, which we may assume to be  $e_1$ . The first identification we have is  $V \cong \operatorname{Hom}(V, \Lambda^2 V)$ , sending v to the homomorphism  $v' \mapsto v' \wedge v$ . This corresponds to  $\alpha_v \otimes (e_1 \wedge e_2) \in V^{\vee} \otimes \Lambda^2 V$ , where  $\alpha_v \in V^{\vee}$  is the linear form sending  $e_1 \mapsto v_2$  and  $e_2 \mapsto -v_1$ . Denoting by  $\overline{\alpha_v}$  its image in  $L^{\vee}$ , we can describe the morphism corresponding to the right hand side of the previous short exact sequence as

$$V \longrightarrow L^{\vee} \otimes \Lambda^{2} V$$

$$v \longmapsto \overline{\alpha_{v}} \otimes (e_{1} \wedge e_{2})$$

Let now  $\beta \in (L^{\vee} \otimes \Lambda^2 V)^{\vee}$  and denote by  $\lambda_{v}^{\beta}$  the complex number such that

$$\overline{\alpha_v} \otimes (e_1 \wedge e_2) \stackrel{\beta}{\longmapsto} \lambda_v^{\beta}.$$

A point  $\mu l \otimes \beta \in L \otimes (L^{\vee} \otimes \Lambda^2 V)^{\vee}$  corresponds then to the endomorphism

$$V \longrightarrow V$$

$$v \longmapsto \mu \lambda_{v}^{\beta} l$$

parametrized by quadratic differentials  $\alpha \in H^0(M, K^2)$ . Use without proof the fact that an invariant line bundle exists if and only if the characteristic polynomial

$$\lambda^2 - \alpha$$

has a root in  $H^0(M, K)$ , i.e. if and only if the quadratic differential  $\alpha$  can be written as a square  $\alpha = \beta^2$  for some differential form  $\beta \in H^0(M, K)$ . If  $\alpha$  was a square, its zeros would all have multiplicity at least two. Conclude that  $K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}} \in \mathbf{A}$  using Bertini's theorem.

A basis for L is  $e_1$ , a basis for  $L^{\vee} \otimes \Lambda^2 V$  is  $\overline{\alpha_{e_2}} \otimes (e_1 \wedge e_2)$  and a basis for  $L \otimes (L^{\vee} \otimes \Lambda^2)^{\vee}$  is  $e_1 \otimes \beta_0$ , where  $\beta_0 \in (L^{\vee} \otimes \Lambda^2 V)^{\vee}$  is such that  $\lambda_{e_2}^{\beta_0} = 1$ . Writing the image of the basis  $e_1 \otimes \beta_0$  under the map  $L \otimes (L^{\vee} \otimes \Lambda^2 V)^{\vee} \longrightarrow \operatorname{End}(V)$  as a matrix with respect to our bases we obtain

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
,

because  $\overline{\alpha_{e_1}} = 0$  and therefore  $\lambda_{e_1}^{\beta} = 0$  for any  $\beta$ . We have thus the desired injective homomorphism

$$L^2 \otimes \Lambda^2 V^{\vee} \hookrightarrow \operatorname{End}_0(V)$$

whose image are the traceless endomorphisms which preserve only L. This is the morphism from which we obtain the short exact sequence in a).

We regard this as a homomorphism into End(V) for a moment and use the basis  $e_{11}$ ,  $e_{12}$ ,  $e_{21}$ ,  $e_{22}$  of End(V), where  $e_{ij}$  denotes the endomorphism which, represented as a matrix in terms of our basis, has zeros everywhere except for a 1 in the ij-th position. Then our homomorphism is given by

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Dualizing it we obtain a surjection

$$\operatorname{End}_0(V^{\vee}) \twoheadrightarrow L^{-2} \otimes \Lambda^2 V$$

given with respect to the dual bases by

$$\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$$
.

Its kernel are the endomorphisms of  $V^{\vee}$  represented with respect to the dual basis by a matrix of the form

$$\begin{pmatrix} a & 0 \\ b & -a \end{pmatrix}.$$

Hence, under the isomorphism  $\operatorname{End}(V) \cong \operatorname{End}(V^{\vee})$  given in coordinates by sending a matrix to its transpose, we obtain a surjection

$$\operatorname{End}_0(V) \to L^{-2} \otimes \Lambda^2 V$$

whose kernel are endomorphisms represented with respect to our basis by matrices of the form

$$\begin{pmatrix} a & b \\ 0 & -a \end{pmatrix}.$$

Therefore the kernel of this surjection consists precisely of the traceless endomorphisms of V that leave at least L invariant. The inclusion of

this kernel can be naturally regarded as the composition of the inclusion  $\operatorname{Hom}(V,L) \subseteq \operatorname{Hom}(V,V)$  and the projection  $\operatorname{pr_0} : \operatorname{Hom}(V,V) \to \operatorname{End_0}(V)$ , which writing every homomorphism as a matrix with respect to the bases above has the form

$$\begin{pmatrix} a & b \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} \frac{a}{2} & b \\ 0 & -\frac{a}{2} \end{pmatrix}.$$

This gives us the short exact sequence in b) and the right hand side of the short exact sequence in a).

**Lemma 4.** If  $g \ge 2$  and E is a stable rank 2 vector bundle, then  $E \in A$ .

*Proof.* By Lemma 2 it suffices to show that it is not in **B**. So let *E* be a stable rank 2 vector bundle on *M* and assume  $L \subseteq E$  is a line bundle which is Φ-invariant for all  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$ . Consider the short exact sequence *b*) from Lemma 3

$$0 \longrightarrow \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K} \longrightarrow \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K} \longrightarrow \mathcal{L}^{-2} \otimes (\Lambda^2 \mathcal{E}) \otimes \mathcal{K} \longrightarrow 0.$$

Since all  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$  leave L invariant, we get an induced isomorphism on global sections  $H^0(M, \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K}) \cong H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$ . The left hand side of the short exact sequence a) in Lemma 3 factors by construction into a short exact sequence of the form

$$0 \to \mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^{\vee} \otimes \mathcal{K} \to \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K} \to \mathcal{Q} \otimes \mathcal{K} \to 0,$$

where  $\deg(\mathbb{Q})$  can be seen to be 0 by computing first Chern classes. Riemann–Roch says then that  $h^0(\mathbb{Q} \otimes \mathcal{K}) \in \{g-1,g\}$ . Since E is stable, we have  $\deg(\mathcal{L}^2 \otimes \Lambda^2 \mathcal{E}^\vee) < 0$ , and since the complete linear system corresponding to  $\mathcal{K}$  is base-point free [Har77, Lemma IV.5.1] we have  $h^0(M, \mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^\vee \otimes \mathcal{K}) \leq g-1$  by [Har77, Proposition IV.3.1]. The long exact sequence of the previous short exact sequence gives then

$$h^0(M, \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K}) \leqslant 2g - 1.$$

The earlier Hirzebruch-Riemann-Roch computation showed that

$$h^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K}) \geqslant 3g - 3.$$

If we want the two dimensions to be equal we must have g=2 and  $h^0(M, \mathcal{K} \otimes \mathcal{L} \otimes \mathcal{E}^{\vee}) = 3$ . From the same long exact sequence as before we deduce, using that  $h^0(M, \mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^{\vee} \otimes \mathcal{K}) < g = 2$ , that  $h^0(M, \mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^{\vee} \otimes \mathcal{K}) = 1$ . In particular,  $\deg(\mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^{\vee} \otimes \mathcal{K}) \geqslant 0$ . We have  $\deg(\mathcal{K}) = 2$  and by stability we had  $\deg(\mathcal{L}^2 \otimes \Lambda^2 \mathcal{E}^{\vee}) < 0$ , so we must have

$$\deg(\mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^{\vee} \otimes \mathcal{K}) \in \{0, 1\}.$$

If it is 0, then the existence of global sections implies that it is the trivial line bundle, hence the previous short exact sequence becomes

$$0 \to \mathcal{O} \to \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K} \to \mathcal{K} \to 0.$$

Split short exact sequences are preserved by dualizing and tensoring with line bundles, so if this sequence was split then  $\mathcal E$  would be decomposable as a direct sum of line bundles. But this would give more endomorphisms of  $\mathcal E$  than there should be, since stable vector bundles are simple. So the previous short exact sequence is a non-trivial extension and the coboundary map  $H^0(M,\mathcal K) \to H^1(M,\mathcal O)$  is non-zero. The long exact sequence implies then that  $h^0(M,\mathcal E^\vee\otimes\mathcal K\otimes\mathcal L)\leqslant 2$ , contradicting our previous conclusion that this dimension was 2.

If it is 1, again by the existence of a non-zero global secction we deduce that it is the line bundle corresponding to some point  $x \in M$ . The short exact sequence becomes

$$0 \to \mathcal{O}(x) \to \mathcal{E}^{\vee} \otimes \mathcal{L} \otimes \mathcal{K} \to \mathcal{K} \to 0,$$

and the coboundary map is again non-zero, yielding the same contradiction as before.  $\hfill\Box$ 

**Lemma 5.** *If*  $g \ge 2$ , then

$$S = A$$
.

*Proof.* By definition  $A \subseteq S$ , so let us see the other inclusion. Let  $E \in S$ . If E is stable, then  $E \in A$  by Lemma 4. So assume there exists  $L \subseteq E$  such that  $\mu(L) \geqslant \mu(E)$ . Then  $\deg(\mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^\vee \otimes \mathcal{K}) \geqslant 2g - 2$ , so Riemann–Roch implies that  $h^0(\mathcal{L}^2 \otimes (\Lambda^2 \mathcal{E})^\vee \otimes \mathcal{K}) \in \{g - 1, g\}$ . In particular, from the short exact sequence a) in Lemma 3 we deduce that there exists a non-zero Higgs field leaving only L invariant. So if  $E \in B$ , then this L is a line bundle invariant by all  $\Phi \in H^0(M, \mathcal{E}nd_0(\mathcal{E}) \otimes \mathcal{K})$ . Since  $\mu(L) \geqslant \mu(E)$ , this contradicts the assumption that  $E \in S$ . □

## 2. Idea of the existence theorem

We take a step back from the algebraic/holomorphic realm into the smooth setting, following the discussion in [Wen14, §2.1.1]. Let  $E \to M$  be a smooth complex rank 2 vector bundle over a compact Riemann surface M of genus  $g \geqslant 2$ . A holomorphic structure structure on E is equivalent to the choice of a  $\bar{\partial}$ -operator [Huy05, Theorem 2.6.26] satisfying the Leibniz rule and an integrability condition, which in our case is trivially verified because  $d\bar{z} \wedge d\bar{z} = 0$ . Let h be a hermitian structure on E, which can be glued from standard ones using a partition of unity [Huy05, Proposition 4.1.4]. Then there is a unique hermitian connection compatible with the

holomorphic structure [Huy05, Proposition 4.2.14], which we called the Chern connection.

Let now  $A_E$  be the space of hermitian connections on the hermitian bundle (E, h), which is an affine space over the infinite-dimensional real vector subspace  $A^1(\mathfrak{u}_h(E)) \subseteq A^1(\operatorname{End}(E))$  consisting of 1-forms with values in skew-hermitian endomorphisms [Huy05, Corollary 4.2.11]. Chern connections allow us to identify  $A_E$  with the space of holomorphic structures on E.

**Definition.** We consider the gauge group

$$\mathcal{G}_E = A^0(\mathbf{U}_h(E)) = \{ g \in A^0(\text{End}(E)) \mid gg^* = \mathrm{id}_E \},$$

where  $g^*$  is the h-adjoint endomorphism of g.

We will be mainly interested in the special unitary subgroup of gauge transformations, whose complexification is the group  $A^0(\text{Aut}_0(E))$  of automorphisms of E with constant determinant 1, because  $SU(2)^{\mathbb{C}} = SL(2,\mathbb{C})$  [Kna02, p. 376].

**Definition.** We consider now the Banach manifold

$$\mathfrak{B}_E = \mathcal{A}_E \times A^{1,0}(\operatorname{End}(E))$$

with the symplectic structure given by

$$\mathcal{K}((A_1, \Phi_1), (A_2, \Phi_2)) = -\int_M \operatorname{tr}(A_1 \wedge A_2) + 2i \operatorname{Im}(\operatorname{tr}(\Phi_1 \Phi_2^*)),$$

for  $A_1, A_2 \in A^1(\mathfrak{u}_h(E))$ ,  $\Phi_1, \Phi_2 \in A^{1,0}(\operatorname{End}(E))$  and  $\Phi^*$  denoting the h-adjoint of  $\Phi$ .

**Fact 6.** The gauge group  $\mathcal{G}_E$  acts nicely on both factors of  $\mathcal{B}_E$  by conjugation, and this action admits a momentum map

$$\mu(\nabla, \Phi) = -F - [\Phi, \Phi^*] - 2\pi i \mu(E) \operatorname{id}_E \mathcal{K}_M,$$

where F denotes the curvature of  $\nabla$ .

References for this fact. This is briefly discussed in [Hit87,  $\S4$ ]. A more detailed account can be found in [?, Proposition III.3.2].

We also restrict our attention to the subspace of  $\mathcal{B}_E' \subseteq \mathcal{B}_E$  consisting of pairs  $(\nabla, \Phi)$  such that  $\nabla^{0,1}\Phi = 0$ , i.e.  $\Phi \in H^0(M, \operatorname{End}(E) \otimes K)$  is holomorphic with respect to the holomorphic structure defined by  $\nabla$ . We want to solve the self-duality equation

$$\mu(\nabla, \Phi) = 0$$

for  $(\nabla, \Phi) \in \mathcal{B}'_E$ . If we fix a holomorphic structure on E, we can think of the gauge group acting on the hermitian metric

$$(g \cdot h)(s_1, s_2) = h(g \cdot s_1, g \cdot s_2).$$

From this perspective, we need to find a Higgs field  $\Phi \in H^0(M, \operatorname{End}(E) \otimes K)$  and a hermitian metric h on E such that the Chern connection  $\nabla$  corresponding to the hermitian metric and the fixed holomorphic structure satisfies  $\mu(\nabla, \Phi) = 0$ .

#### REFERENCES

- [Ati89] M. F. Atiyah. K-theory. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, second edition, 1989. Notes by D. W. Anderson. ↑ 4
- [Har77] R. Hartshorne. *Algebraic geometry*. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. ↑ 2, 3, 4, 5, 6, 8
- [Hit87] N. J. Hitchin. The self-duality equations on a Riemann surface. *Proc. London Math. Soc. (3)*, 55(1):59−126, 1987. ↑ 1, 2, 10
- [Huy05] Daniel Huybrechts. *Complex geometry*. Universitext. Springer-Verlag, Berlin, 2005. An introduction. ↑ 9, 10
- [Iit82] Shigeru Iitaka. *Algebraic geometry*, volume 76 of *Graduate Texts in Mathematics*. Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24. ↑ 3
- [Kna02] Anthony W. Knapp. *Lie groups beyond an introduction*, volume 140 of *Progress in Mathematics*. Birkhäuser Boston, Inc., Boston, MA, second edition, 2002. ↑ 10
- [Wen14] Richard A. Wentworth. Higgs bundles and local systems on riemann surfaces, 2014.  $\uparrow$  9