Analiza algoritmilor – Test 3

- 1. (3p) Fie problemele de decizie A, B, C despre care știm că $A \le_p B$ și $B \le_p C$. Ce puteți spune despre apartenența fiecărei probleme la clasele de probleme P, NP, NPC, NPD și despre relațiile dintre aceste clase de probleme, în următoarele situații:
 - **a.** $A \in P$ și $C \in NP$
 - **b.** $A \in NPC$ și $B \in NP$
 - c. $B \in NPD \text{ si } C \in P$
- 2. (3p) Se dau 2 grafuri neorientate ponderate $G_1 = (V_1; E_1)$, $G_2 = (V_2; E_2)$ și întregii pozitivi p, k.
 - O *MulțimeSubgr* a lui G_1 este formată din subgrafurile $G_{1, p}$, $G_{1, 2p}$, ..., $G_{1, kp}$ ale lui G_1 , astfel încât $G_{1, jp} = (V_{1, jp}; E_{1, jp})$, card $(V_{1, jp}) = j*p$, j=1..k și fiecare $G_{1, jp}$ conține o muchie de același cost cu o muchie din $G_{2, p}$. $G_{2, p} = (V_{2, p}; E_{2, p})$ este un subgraf al lui G_2 , astfel încât card $(V_{2, p}) = p$ și suma costurilor muchiilor din $G_{2, p}$ este cel mult k.

Arătați că problema următoare este în clasa NP: să se determine dacă există o MulțimeSubgr pentru graful G_1 .

- 3. (4p) Fie problema ACOPERIRE-PARĂ: Se dă un graf neorientat G' = (V', E') în care gradul fiecărui nod este par și întregul pozitiv k'. Există o submulțime S' de noduri, card(S') = k', astfel încât fiecare muchie are <u>cel puțin</u> un capăt în S'?
 - a. Demonstrați că pentru orice graf, numărul nodurilor având un grad impar este par.
 - **b.** Folosind proprietatea anterioară, demonstrați că ACOPERIRE-PARĂ este în clasa de complexitate NPC. Pentru aceasta, reduceți ACOPERIRE la ACOPERIRE-PARĂ; **ACOPERIRE**: Se da un graf neorientat G = (V, E) și întregul pozitiv k. Există o submulțime *S* de noduri, card(S) = k, astfel încât fiecare muchie are cel putin un capăt în S?

Figura 1 - O posibilă schemă de reducere

- **4. (2p)** Fie următoarea transformare de la problema K-CLICĂ la problema SAT. Produce această transformare o reducere polinomială corectă? Argumentați.
 - **K-** CLICĂ: Se dă un graf neorientat G = (V, E) și un număr k. $\exists V' \subseteq V, |V'| = k$ a.i. V' să formeze un graf complet?
 - **SAT**: Dându-se o formulă booleană F în Forma Normal Conjunctivă (FNC), există o asociere a variabilelor la valori de adevăr astfel încât formula F să fie adevărată?
 - O formulă în FNC este o conjuncție de clauze. O clauză este formată din literali conectați prin operatorul logic V (sau). Un literal este reprezentat de o variabilă booleană sau de negarea acesteia. De exemplu, formula $F = (x_1 \ V \ x_2) \land (x_1 \ V \ \neg x_2)$ este adevărată pentru $x_1 = 1$ și indiferent de valoarea de adevăr a lui x_2 .

Transformare:

- $x_1, x_2, \dots x_n$ câte o variabilă pentru fiecare nod din graf. x_i este True dacă nodul i este în V
- $\forall i, j \leq n, (i, j) \notin E \rightarrow (\overline{x_i} \vee \overline{x_j})$
- $\forall \{i_1, i_2, \dots i_{n-k}\}$ o submulţime a lui $V \rightarrow (x_{i_1} \lor x_{i_2} \lor \dots \lor x_{i_{n-k}})$
- $\forall \{i_1, i_2, \dots i_{k+1}\}$ o submultime a lui $V \to (\overline{x_{i_1}} \vee \overline{x_{i_2}} \vee \dots \vee \overline{x_{i_{k+1}}})$

Toate clauzele generate mai sus sunt unite prin ∧ pentru a forma intrarea problemei SAT.