1 PGM-Bilder

In dieser Aufgabe lernen Sie die Verwendung von File-Streams.

In der nachfolgenden Abbildung sehen Sie ein Beispiel für eine PGM Bilddatei im ASCII-Format:

image_ascii.pgm

PGM-Dateien können direkt in CLion betrachtet werden. Wenn Sie sie bearbeiten möchten, ändern Sie die Dateiendung auf .txt.

Die Datei besteht aus zwei Teilen: im oberen Teil ist der Bild-Header aufgeführt und im unteren Teil die Bildmatrix.

Der Bild-Header ist bei PGM immer im ASCII-Format, unabhängig davon ob es sich um PGM-ASCII oder PGM-Binary handelt. Nur die Bildmatrix ist bei PGM-Binary im Binärformat abgespeichert. Dadurch braucht das PGM-Binary üblicherweise viel weniger Speicherplatz und kann schneller gelesen und geschrieben werden.

Der Bild-Header muss ganz zu Beginn den Formatbezeichner P2 (für PGM-ASCII) bzw. P5 (für PGM-Binary) enthalten. Header-Zeilen die mit einem # beginnen werden als Kommentare überlesen. Nach dem Formatbezeichner müssen die Bildbreite gefolgt von der Bildhöhe in Pixel stehen. Die letzte Header-Information enthält den positiven Maximalwert, welcher in der Bildmatrix vorkommen darf.

Nach jeder Zeile steht ein "\n" Charakter. Auch nach der letzten Zeile.

Die genaue Spezifikation finden Sie auf sourceforge.net.

1.1 Aufgabe

Implementieren Sie die Klasse PGM, welche eine Bilddatei im Format PGM-ASCII einlesen und das gleiche Bild im Format PGM-Binary abspeichern kann. Verwenden Sie diese Klasse in einer eigenen App. Folgend ein Vorschlag für das Interface dieser Klasse:

pgm.h

```
1 #pragma once
2
3 #include <cstddef>
4
5 #include <vector>
6 #include <string>
8 class PGM {
9 public:
bool ReadASCII(const std::string& filename);
bool WriteBinary(const std::string& filename);
12
private:
14 size_t width_;
15 size_t height_;
int32_t max_value_;
   std::vector<uint8_t> data_;
17
18 };
```