

# Homework 1 - Berkeley STAT 157

Handout 1/22/2017, due 1/29/2017 by 4pm in Git by committing to your repository. Please ensure that you add the TA Git account to your repository.

- 1. Write all code in the notebook.
- 2. Write all text in the notebook. You can use MathJax to insert math or generic Markdown to insert figures (it's unlikely you'll need the latter).
- 3. Execute the notebook and save the results.
- 4. To be safe, print the notebook as PDF and add it to the repository, too. Your repository should contain two files: homework1.ipynb and homework1.pdf.

The TA will return the corrected and annotated homework back to you via Git (please give rythei access to your repository).

In [2]: from mxnet import ndarray as nd

#### 1. Speedtest for vectorization

Your goal is to measure the speed of linear algebra operations for different levels of vectorization. You need to use wait\_to\_read() on the output to ensure that the result is computed completely, since NDArray uses asynchronous computation. Please see

http://beta.mxnet.io/api/ndarray/ autogen/mxnet.ndarray.NDArray.wait to read.html (http://beta.mxnet.io/api/ndarray/ autogen/mxnet.ndarray.NDArray.wait to read.html) for details.

- 1. Construct two matrices A and B with Gaussian random entries of size  $4096 \times 4096$ .
- 2. Compute C = AB using matrix-matrix operations and report the time.
- 3. Compute C = AB, treating A as a matrix but computing the result for each column of B one at a time. Report the time.
- 4. Compute C = AB, treating A and B as collections of vectors. Report the time.
- 5. Bonus question what changes if you execute this on a GPU?

```
In [27]: import time
         ##01
         A = nd.random.normal(0, 1, (4096, 4096))
         B = nd.random.normal(0, 1, (4096, 4096))
         start2 = time.time()
         C2 = nd.dot(A, B)
         C2.wait to read()
         print("time for Q2 is", time.time() - start2)
         ##03
         C3 = nd.zeros((4096, 4096))
         start3 = time.time()
         for i in range(4096):
             C3[:, i] = nd.dot(A, B[:,i])
         C3.wait to read()
         print("time for Q3 is", time.time() - start3)
         time for Q2 is 2.7555549144744873
         time for Q3 is 20.58580207824707
In [28]: ##Q4
         C4 = nd.zeros((4096, 4096))
         start4 = time.time()
         B = B.T
         for i in range(4096):
             for k in range(4096):
                 C4[i, k] = nd.dot(A[i], B[k]).asscalar()
         C4.wait to read()
         print("time for Q4 is", time.time() - start4)
```

#### 2. Semidefinite Matrices

Assume that  $A \in \mathbb{R}^{m \times n}$  is an arbitrary matrix and that  $D \in \mathbb{R}^{n \times n}$  is a diagonal matrix with nonnegative entries.

1. Prove that  $B = ADA^{T}$  is a positive semidefinite matrix.

time for Q4 is 2494.8225951194763

2. When would it be useful to work with B and when is it better to use A and D?

1. To prove positive semidefinite, want to show that

$$\forall x \in \mathbb{R}^m, x^T B x > 0$$

Since  $B = ADA^{\top}$ .

$$x^T B x = (x^T A) D(A^T x)$$

And we know that  $(x^T A)$  is a 1 \* n matrix, and  $(A^T x) = (x^T A)^T$  is a n \* 1 vector. Let  $x^TA = v = [v_1, \dots, v_n]$ , v has n arbitrary entries since both A and x are arbitrary. Now let  $d_{11}, d22, \ldots, dnn$  denote the non-negative entries in D, then

$$vDv^T = \sum_{i=1}^n v_i^2 * d_{ii}$$

 $vDv^T = \Sigma_{i=1}^n v_i^2 * d_{ii} \qquad \forall$  for each  $i, v_i^2 \geq 0, d_{ii} \geq 0$ , thus  $\Sigma_{i=1}^n v_i^2 * d_{ii} \geq 0$  Thus by definition,  $B = ADA^\top$  is a positive semidefinite matrix.

2. I suppose that when no additional operation is needed, B is better because you can just compute it once and save running time; but if you want A to contain some information or want the option to adjust A or D during operations, it's better to use both A and D.



### 3. MXNet on GPUs

- 1. Install GPU drivers (if needed)
- 2. Install MXNet on a GPU instance
- 3. Display !nvidia-smi
- 4. Create a 2 × 2 matrix on the GPU and print it. See <a href="http://d2l.ai/chapter\_deep-learning-">http://d2l.ai/chapter\_deep-learning-</a> computation/use-gpu.html (http://d2l.ai/chapter\_deep-learning-computation/use-gpu.html) for details.

## 4. NDArray and NumPy

Your goal is to measure the speed penalty between MXNet Gluon and Python when converting data between both. We are going to do this as follows:

- 1. Create two Gaussian random matrices A, B of size  $4096 \times 4096$  in NDArray.
- 2. Compute a vector  $\mathbf{c} \in \mathbb{R}^{4096}$  where  $c_i = ||AB_i||^2$  where  $\mathbf{c}$  is a **NumPy** vector.

To see the difference in speed due to Python perform the following two experiments and measure the time:

- 1. Compute  $||AB_{i\cdot}||^2$  one at a time and assign its outcome to  $\mathbf{c}_i$  directly.
- 2. Use an intermediate storage vector  $\mathbf{d}$  in NDArray for assignments and copy to NumPy at the end.

```
In [14]: import numpy as np
    import time

A = nd.random.normal(0, 1, (4096, 4096))
B = nd.random.normal(0, 1, (4096, 4096))
##Method1
B = B.T
c = np.ones(4096)
start1 = time.time()
for i in range(4096):
    vector = nd.dot(A, B[i])
    vector.wait_to_read()
    toAdd = vector.sum().asscalar()
    c[i] = toAdd**2

print("time for Method#1 is", time.time() - start1)
```

time for Method#1 is 23.370030164718628

```
In [16]: ##Method2
start2 = time.time()
d = nd.ones((1, 4096))
for i in range(4096):
    vector = nd.dot(A, B[i])
    toAdd = vector.sum().asscalar()
    d[0][i] = toAdd**2
c = d.asnumpy()
d.wait_to_read()
print("time for Method#2 is", time.time() - start2)

## Observation: method two is obviously faster
```

time for Method#2 is 19.857491970062256

#### 5. Memory efficient computation

We want to compute  $C \leftarrow A \cdot B + C$ , where A, B and C are all matrices. Implement this in the most memory efficient manner. Pay attention to the following two things:

- 1. Do not allocate new memory for the new value of C.
- 2. Do not allocate new memory for intermediate results if possible.

```
In [19]: C = nd.random.normal(0, 1, (500, 500))
    print("ID of C before is", id(C))
    A = nd.random.normal(0, 1, (500, 500))
    B = nd.random.normal(0, 1, (500, 500))
    for i in range(500):
        C[i] = nd.dot(A, B)[i] + C[i]
    print("ID of C after is", id(C))

ID of C before is 4570709688
    ID of C after is 4570709688
```

### 6. Broadcast Operations

In order to perform polynomial fitting we want to compute a design matrix A with

$$A_{ij} = x_i^j$$

Our goal is to implement this **without a single for loop** entirely using vectorization and broadcast. Here  $1 \le j \le 20$  and  $x = \{-10, -9.9, \dots 10\}$ . Implement code that generates such a matrix.

```
In [62]: import numpy as np
         x = np.arange(-10, 10, 0.1)
         x.size
         x = nd.array(x)
         x.reshape((1, 200))
         result = nd.zeros((200, 20))
         result[:, 0] = x
         result[:, 1] = result[:, 0]*x
         result[:, 2] = result[:,1]*x
         [[1. 1. 1. 1. 1.]
          [2. 2. 2. 2. 2.]
          [3. 3. 3. 3. ]
          [4. 4. 4. 4. 4.]
          [5. 5. 5. 5. 5.]]
         <NDArray 5x5 @cpu(0)>
         [[ 1.]
          [ 4.]
          [ 9.]
          [16.]
          [25.]]
         <NDArray 5x1 @cpu(0)>
         [[ 1.
                  1.]
          [ 16.
                 16.]
          [ 81.
                 81.]
          [256. 256.]
          [625. 625.]]
         <NDArray 5x2 @cpu(0)>
```