

이미지 학습을 통한 운전자 이상행동 탐지

ABNORMAL DETECTION

CONTENTS

1. 팀원 소개

2. 주제선정 배경

3. 데이터 수집 및 전처리

4. 수행 프로세스

5. YOLO 모델 WEBAPP 구현

6. 모바일 어플 데모 영상

가디언즈 멤버소개

이미지 라벨링 YOLO 모델 스트림릿 웹앱 구현 어플 영상 제작

강미수

박예린

이미지 라벨링 YOLO 모델 기획서 작성 PPT 제작

천대원

이미지 라벨링 CNN 모델 (VGG16 등) 머신러닝 모델

주제 선정 배경

"교통사고 원인 **1위**?"

RESULT

교통사고 발생 원인 1위 졸음

졸음 운전 = 혈중 알코올 농도 0.17%의 음주 운전

출처: 한국도로공사 04~14년 고속도로 교통사고 발생 원인

물류·화물 차량 **운행 및 사고 특성**

- ① 7시간 이상의 장거리 운전으로 높은 피로도
- ② 사고 시 높은 피해 금액, 넓은 피해 범위
- ③ 낙하물 발생 시 심한 교통 정체

〈화물차 가해 사망사고 원인〉

출처: 한국도로공사

시장 및 프로덕트 조사

차량 기능

테슬라, 제네시스 등 고가 차량에 탑재 화물차에 제공되지 않음 블랙박스

교통사고 발생 시 운전자 과실 책정 가능성 자발적 설치 확률 낮음 카메라 App

설치 위치, 촬영 각도 등 환경 요인 통제 불가 배터리 소모 문제

07

WHO?

물류·화물 차량 운전자들

WHAT?

이상행동 (졸음, 전방주시 태만 등)

HOW?

이미지 학습을 통한 실시간 운전자 행동 탐지

IoT 카메라 + 모바일 App

=> 실시간 행동 탐지 후 운전자 맞춤형 음성 알림

데이터 수집 및 전처리

사용 데이터 소개

AI HUB 제공 운전자 및 탑승자 상태 이상행동 모니터링 데이터

차량 안의 운전자 이미지 30,000장을 클래스 별로 직접 Labeling

이상행동을 하지 않는 정상 운전자

Normal

졸음, 물건 찾기, 휴대폰 사용 이상 운전자

Drowsy / Search / Phone

10

DATA

학습 데이터 전처리

1. 학습/훈련/검증 Split

2. CNN 학습을 위한 이미지 Resize 및 증강

SPLIT & GENERATING

<데이터 Split & 이미지 Resize>

학습: 12,800 | 훈련: 1,600 | 검증: 1,600 (8:1:1)

이미지 크기: 128 X 128

<CNN - ImageDataGenerator로 이미지 증강>

- 이미지 증강 전 이미지 수

drowsy: 7,130

search: 5,654

phone: 1,049

normal: 16,011

- 이미지 증강 후 이미지 수

drowsy: 16,000

search: 16,000

phone: 16,000

normal: 16,000

수행 프로세스

이미지학습 모델

(1) 이미지 클래스 분류

ML

② 실시간 객체 탐지

YOLO

V 5, 7, 8, 9

딥러닝 모델

CNN

이미지의 공간 정보를 유지한 상태로 학습이 가능한 모델 머신러닝 분류모델

지도 학습 알고리즘으로 분류 및 회귀 문제 학습

딥러닝 모델

빠른 속도와 높은 정확도의 객체 탐지 알고리즘

CNN 모델 학습 결과

RESNET-50

VGG19

VGG16

CUSTOMIZING

train_acc: 0.9704 val_acc: 0.9214 train_loss: 0.0723 val_loss: 0.2615

Model: VGG16

사용 모델 중 가장 <mark>낮은 검증 손실</mark>

심층 신경망으로 개발된 컨볼루션 신경망 모델

ML 분류모델 학습 결과

CNN 모델에서 추출한 feature로 머신러닝 모델 학습 및 평가

XGBOOST

accuracy: 0.9300 recall: 0.9275 precision: 0.9300 f1-score: 0.9275

LOGISTIC REGRESSION

accuracy: 0.9300 recall: 0.9325 precision: 0.9300 f1-score: 0.9325

RANDOM FOREST

accuracy: 0.8700 recall: 0.8725 precision: 0.8675 f1-score: 0.8625

DECISION TREE

accuracy: 0.7100 recall: 0.7075 precision: 0.7100 f1-score: 0.7075

Model : Logistic Regression 사용 모델 중 가장 <mark>높은 점확도, 재현율</mark> 로지스틱 함수로 분류 문제를 해결하는 알고리즘

YOLO 모델 학습 결과

YOL05

P: 0.713 R: 0.765 mAP50: 0.682 mAP50-95): 0.598

YOL07

P: 0.468 R: 0.492 mAP50: 0.473 mAP50-95): 0.185

Y0L08

P: 0.902 R: 0.908 mAP50: 0.956 mAP50-95): 0.591

Model : YOLO v8 YOLOv8과 VOLOv9의 성능 수치는 비슷 학습 모델을 영상에 적용했을 때 v9에서 <mark>과적합 발생</mark> 최종적으로 YOLOv8 채택

YOLO v8 학습 결과

WEBAPP 구현

WEB DEVELOPMENT

스트림릿 WebApp 구현

학습된 YOLOv8 모델을 이미지, 비디오, 유튜브 링크 3가지 소스에 테스트 가능

STREAMLIT

https://abnormal-driver-detection-yolov8-webapp.streamlit.app/

APPLICATION DEMO 영상

THANK YOU!