# AML Project AirBnB New York City

SUBMITTED BY: RADHIKA RAJEEVAN & SUNIT NAIR

INSTRUCTOR: DR. FARID ALIZADEH

## Project Scope and Objective

- Analyze AirBnB data to extract possible/relevant features.
- Use techniques learned as part of course and additional methods to create regression models to predict price of listing.
- Clean and extract features from original data file (Python).
- Analyze and plot relevant graphs to understand data (Python).
- ▶ Load clean data set (CSV) to database (MySQL).
- Read data in R through database connection (MySQL).
- Derive new features from existing features.
- Run regression models to predict price against relevant features.

## The Dataset

- Original data set: 494,954 records
- ▶ USA data set: 134,545
- ▶ New York data set: 19,528
- ► Columns in data set: 89
- Data set after cleaning: 19,273
- Columns after cleaning and extraction: 130
- Column types
  - Identification: 1
  - Numerical: 23
  - Categorical: 106

# Python: Data Cleaning

#### Preview of Raw data: 19528 observations and 89 columns

|   | ID       | Listing Url                           | Scrape ID      | Last<br>Scraped | Name                                               | Summary                                                       | Space                                                     | Description                                                | Experiences<br>Offered | Neighborł<br>Over     |
|---|----------|---------------------------------------|----------------|-----------------|----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------|-----------------------|
| 0 | 17938814 | https://www.airbnb.com/rooms/17938814 | 20170502132028 | 2017-<br>05-05  | Beautiful spacious one bedroom, upper east side    | This apartment is flooded with light. It is 2                 | NaN                                                       | This apartment is flooded with light. It is 2              | none                   |                       |
| 1 | 267561   | https://www.airbnb.com/rooms/267561   | 20170502132028 | 2017-<br>05-05  | Sun filled Lower East<br>Side 1 BR apt             | NaN                                                           | Amazing<br>location<br>and always<br>super<br>clean! Stay | Amazing<br>location and<br>always<br>super clean!<br>Stay  | none                   |                       |
| 2 | 16301717 | https://www.airbnb.com/rooms/16301717 | 20170502132028 | 2017-<br>05-05  | Room in Prime LES<br>location                      | My place<br>is close to<br>Clinton St.<br>Baking<br>Compan    | NaN                                                       | My place is<br>close to<br>Clinton St.<br>Baking<br>Compan | none                   |                       |
| 3 | 834190   | https://www.airbnb.com/rooms/834190   | 20170502132028 | 2017-<br>05-04  | Manhattan Luxury<br>Loft.Like.Love.Lots.Look<br>!! | Welcome<br>to<br>downtown,<br>simply the<br>best part<br>of M | Downtown<br>Manhattan,<br>just like<br>you see it<br>in   | Welcome to<br>downtown,<br>simply the<br>best part of<br>M | none                   | neighborl<br>in Manha |
| 4 | 15582736 | https://www.airbnb.com/rooms/15582736 | 20170502132028 | 2017-<br>05-05  | LES Private Room -<br>NYC Manhattan<br>Location    | Perfectly<br>located on<br>the border<br>of the<br>Lower E    | The space is a your typical New York two-bedro            | Perfectly<br>located on<br>the border<br>of the Lower<br>E | none                   |                       |

## Python: Data Cleaning Tasks

- 1. Treating null values: Replace with 0 or delete
  - Host Response Time: NAs were replaced with 1 hour
  - Host Response Time: hours and days were converted to hours.
  - Ratings: NAs were replaced with 0
  - Neighbourhood: NAs were deleted due to lack of information.
- 2. Creating Dummy Variables: comma separated format to binary columns
  - Amenities
  - Review Features

#### df\_property['Amenities'][1]

'TV,Internet,Wireless Internet,Air conditioning,Kitchen,Elevator in building,Buzzer/wireless intercom,Heating,Washer,Dryer,Sham poo,Hangers,Hair dryer,Iron,Laptop friendly workspace,Self Check-In,Lockbox'

|      | 24-<br>hour<br>check-<br>in | Accessible-<br>height<br>toilet | Air<br>conditioning | BBQ<br>grill | Baby<br>bath | Baby<br>monitor | Babysitter<br>recommendations | Bathtub | Bed<br>linens | Breakfast | \ | Washer<br>/ Dryer | Wheelchair<br>accessible | Wide<br>clearance<br>to bed | Wide<br>clearance<br>to<br>shower<br>and toilet | do |
|------|-----------------------------|---------------------------------|---------------------|--------------|--------------|-----------------|-------------------------------|---------|---------------|-----------|---|-------------------|--------------------------|-----------------------------|-------------------------------------------------|----|
| ID   |                             |                                 |                     |              |              |                 |                               |         |               |           |   |                   |                          |                             |                                                 |    |
| 2515 | 0                           | 0                               | 1                   | 0            | 0            | 0               | 0                             | 0       | 0             | 0         |   | 0                 | 0                        | 0                           | 0                                               |    |
| 2595 | 1                           | 0                               | 1                   | 0            | 0            | 0               | 0                             | 0       | 0             | 0         |   | 0                 | 0                        | 0                           | 0                                               |    |
| 3647 | 0                           | 0                               | 1                   | 0            | 0            | 0               | 0                             | 0       | 0             | 0         |   | 0                 | 0                        | 0                           | 0                                               |    |
| 4611 | 0                           | 0                               | 1                   | 0            | 0            | 0               | 0                             | 0       | 0             | 0         |   | 0                 | 0                        | 0                           | 0                                               |    |

# Python: Data Cleaning Tasks

Preview of Cleaned Data: 19273 observations and 130 columns

|   | ID       | Host<br>Year | Host<br>Response<br>Hours | Neighbourhood<br>Cleansed | Neighbourhood<br>Group<br>Cleansed | Accommodates | Bathrooms | Bed<br>Type | Bedrooms | Beds | <br>Wireless<br>Internet | Host<br>Has<br>Profile<br>Pic | Host<br>Identity<br>Verified | Host Is<br>Superhost | Instant<br>Bookable | Is<br>Location<br>Exact | Require<br>Guest<br>Phone<br>Verification | Profile |
|---|----------|--------------|---------------------------|---------------------------|------------------------------------|--------------|-----------|-------------|----------|------|--------------------------|-------------------------------|------------------------------|----------------------|---------------------|-------------------------|-------------------------------------------|---------|
| 0 | 17938814 | 2016         | 1                         | Long Island City          | Queens                             | 3            | 1.0       | Real<br>Bed | 1.0      | 2.0  | <br>1                    | 1                             | 0                            | 0                    | 1                   | 1                       | 0                                         | 0       |
| 1 | 267561   | 2011         | 1                         | Lower East Side           | Manhattan                          | 2            | 0.0       | Real<br>Bed | 1.0      | 1.0  | <br>1                    | 1                             | 0                            | 0                    | 0                   | 1                       | 0                                         | 0       |
| 2 | 16301717 | 2014         | 24                        | Lower East Side           | Manhattan                          | 1            | 1.0       | Real<br>Bed | 1.0      | 1.0  | <br>1                    | 1                             | 1                            | 0                    | 0                   | 1                       | 0                                         | 0       |
| 3 | 834190   | 2012         | 1                         | Lower East Side           | Manhattan                          | 5            | 1.0       | Real<br>Bed | 1.0      | 3.0  | <br>1                    | 1                             | 1                            | 1                    | 1                   | 1                       | 0                                         | 0       |
| 4 | 15582736 | 2012         | 1                         | Lower East Side           | Manhattan                          | 1            | 1.0       | Real<br>Bed | 1.0      | 1.0  | <br>1                    | 1                             | 1                            | 0                    | 1                   | 1                       | 0                                         | 0       |

Price: Univariate Distribution





| df_me | rge['Price'].describe() |
|-------|-------------------------|
| count | 19142.000000            |
| mean  | 166.267736              |
| std   | 121.693285              |
| min   | 10.000000               |
| 25%   | 89.000000               |
| 50%   | 135.000000              |
| 75%   | 200.000000              |
| max   | 999.000000              |
| Name: | Price, dtype: float64   |

- The price distribution is skewed to the right.
- 50% of the properties are priced between \$90 \$200

Property Price vs Neighbourhood



- Manhattan & Brooklyn have more expensive property listings.
- Average Price \$170 and \$125 respectively.

Property Price vs Room Type



#### Average Property Price in Neighbourhood vs Property Type



- Price for property
   types difference with
   change in
   Neighbourhood
   groups.
- Rent a boat in Manhattan at \$600 or Live in a Hut for \$50
- Boats are cheaper in Bronx, Brooklyn, Queens, Staten Island

Price vs Property Type



- Boats and Vacation homes most expensive
- Lower price options are Hostels, Dorm or Huts
- Budget friendly options are Cabins or Houses

Decreasing order of average Price based on Property type in Manhattan

#### Price vs Amenities



- Price variations are significant according to the Room Type.
- Private Rooms are priced mostly < \$200.</li>
- Price is higher for an Entire Apartment.

#### Price vs Rating



#### Price vs Occupancy



- Budget friendly properties have higher ratings.
- Properties with 80% and above rates are concentrated over an average price of \$200
- This pattern also could be because there are fewer in the extremely high price bracket.

## Database



## R: Connection to Database

- ▶ Library RMySQL is used to connect to mySQL database.
- ▶ All DDL and DML commands are runnable through connection (provided user has corresponding privileges).
- Query results can be read into variables similar to reading CSV files.
- Numerical data types are converted to decimal automatically (with warnings).

```
print(paste("Connecting to database with user",r_user))
26
27
      mydb <- dbConnect(MySQL(), user=r_user, password=r_password, dbname=db_name, host="localhost")</pre>
      print(paste("Showing list of tables available in schema", db_name))
      tableNames <- dbListTables(mydb)
30
      print(tableNames)
      print(paste("Checking columns in table",tableNames[1]))
31
      colNames <- dbListFields(mydb, tableNames[1])</pre>
32
33
      print(colNames)
      print(paste("Fetching all data from ",tableNames[1]))
34
      tableQuery <- paste("SELECT * FROM ",db_name,".",tableNames[1],sep="")
35
      resultSet <- dbSendQuery(mydb, tableQuery)
36
      airData <- fetch(resultSet,n=-1)
37
      dbDisconnect(mydb)
38
```

## R Code: Data manipulation

- Converting Boolean data types to factor (0/1) features.
- Derive yearsAsHost from hostYear.
- Drop columns used to derive features.
- Club infrequent categorical levels into 'Other' to prevent errors during prediction on validation set.
- Remove records with price = 0 (to be used purely for prediction).
- Number of records in prediction set: 131
- Create training and test data sets from remaining valid data.
- Remove features as required at various stages.

# R Code: Data analysis (PCA)

- ▶ Analysis of numerical features.
- ▶ Features with similar factor loadings were removed.





## R Code: Regression Models

- ▶ Linear Regression.
- K-fold cross validation for linear regression after PCA.
- K-fold cross validation for linear regression after removal of features without significance in previous regression model.
- ▶ Regression Tree.
- Cross validation based pruning for tree.
- Ridge regression.
- ► Lasso regression.
- ▶ XGBoost.

## R Code: Model Performance

- ▶ Linear regression provided similar error rate and R-squared for all levels (with all features, after PCA-based removal, and p-value based removal).
- Regression Tree provided comparable results and pruning resulted in the same tree.
- Ridge and Lasso regression provided comparable results with notable difference only in weights of features.
- XGBoost provided highest R-squared and smallest RMSE.
- Cross validation based estimation of parameters required long time (~35-40 minutes per run x approximately 10 runs).
- XGBoost yielded almost +5% increase in R-squared value for same data.

## R Code: Prediction output to CSV

- XGBoost model run on prediction set.
- Output written to CSV file.
- ► All models run with log(price).
- XGBoost prediction differed on average by ~\$28 for price prediction vs log(price) prediction.

## Conclusion

- Despite large amount of features, explanatory power of features limited.
- Pricing of AirBnB listing in NYC possibly subjective and/or dependent on other features.
- Relationship between price and features may be non-linear.

Thank you.