Prénom : Contrôle de connaissances 30	
Solides cristallins et induction (13')	
♦ Justification :	v
Sites tétraédriques	Sites octaédriques
♦ Position :	♦ Position :
\Diamond Population :	\Diamond Population :
♦ Habitabilité :	♦ Habitabilité :
stationnaire. On appelle S sa section, supposée cons	stante, et n la densité d'électrons en son sein, supposée homoge et déterminer l'expression de i en fonction de e , n , S et v , p
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de LAPLACE.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale	direction $\overrightarrow{u_x}$, plongée dans un champ magnétique uniforme stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de LAPLACE. FIGURE 30.1 – Schéma fil.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de LAPLACE.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale Expression de l'intensité du courant	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale Expression de l'intensité du courant	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale Expression de l'intensité du courant	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur e démontrer les expressions linéique et intégrale Expression de l'intensité du courant	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 — Schéma fil.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur et démontrer les expressions linéique et intégrale Expression de l'intensité du courant Force subie par une section de fil	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil. Force subie par tout le fil
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur et démontrer les expressions linéique et intégrale Expression de l'intensité du courant Force subie par une section de fil	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil.
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur et démontrer les expressions linéique et intégrale Expression de l'intensité du courant Force subie par une section de fil	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil. Force subie par tout le fil
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur et démontrer les expressions linéique et intégrale Expression de l'intensité du courant Force subie par une section de fil	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil. Force subie par tout le fil
stationnaire. On appelle S sa section, supposée cons Faire un schéma d'une portion de conducteur et démontrer les expressions linéique et intégrale Expression de l'intensité du courant Force subie par une section de fil	stante, et n la densité d'électrons en son sein, supposée homoget déterminer l'expression de i en fonction de e , n , S et v , p de la force de Laplace. Figure 30.1 – Schéma fil. Force subie par tout le fil

Lycée Pothier 1/1 MPSI3 – 2023/2024