pCT Scanner Phase II

Pierluigi Piersimoni & Valentina Giacometti Loma Linda University February 25, 2015

General warnings for the UTV frame of reference (f.o.r.)

- To avoid any mistakes we always refer to the UTV f.o.r. looking at the scanner from the beam's point of view
- The U axis is positive along the beam propagation direction
- The T Axis points from Right to Left, so a negative T means Right a positive T means Left
- The V Axis points from Up to Down, so a negative V means Top, a positive V means bottom

Beam's point of view:
the beam propagates along the U
direction (reconstruction) or the Z
direction (Geant4)

General warnings for the UTV frame of reference (f.o.r.)

- To avoid any mistakes we always refer to the UTV f.o.r. looking at the scanner from the beam's point of view
- The U axis is positive along the beam propagation direction
- The T Axis points from Right to Left, so a negative T means Right a positive T means Left
- The V Axis points from Up to Down, so a negative V means Top, a positive V means bottom
- In the Geant4 f.o.r. the Z and the X axes correspond, respectively, to the U and the T axes. The Y axis corresponds to the -V axis

Beam's point of view: the beam propagates along the U direction (reconstruction) or the Z direction (Geant4)

Chip and strip numbers - Front Trackers

Sensors and Gaps positioning - Front Trackers

Chip and strip numbers - Rear Trackers

Sensors and Gaps positioning - Rear Trackers

Real coordinate in the Lab f.o.r. for the strips

V	SSD	Тор	#	Bottom	#
plane	#	strip	strip	strip	strip
V0	0	-43.72	0	43.607	383
	1	-43.72	0	43.607	383
V1	0	-43.72	0	43.607	383
	1	-43.72	0	43.607	383
V2	0	-43.72	0	43.607	383
	1	-43.72	0	43.607	383
V3	0	-43.72	0	43.607	383
	1	-43.72	0	43.607	383

Т	SSD	Most Left	#	Most Right	#
plane	#	strip	strip	strip	strip
T0	0	176.644	0	89.32	383
	1	88.375	384	1.051	767
	2	0.089	768	-87.235	1151
	3	-88.182	1152	-175.506	1535
T1	0	172.77	0	85.446	383
	1	84.49	384	-2.834	767
	2	-3.787	768	-91.111	1151
	3	-92.074	1152	-179.398	1535
T2	3	187.643	0	100.319	383
	2	99.304	384	11.98	767
	1	11.028	768	-76.296	1151
	0	-77.241	1152	-164.565	1535
T3	3	183.455	0	96.131	383
	2	95.195	384	7.871	767
	1	6.936	768	-80.388	1151
	0	-81.334	1152	-168.658	1535

Warning: the #strip is arbitrary, chosen to have a univocal strips numbering for each plane

V-Tracker 0 - FPGA #0

T-Tracker 0 - **FPGA #4 & #5**

V-Tracker 1- FPGA #1

T-Tracker 1 - **FPGA #6 & #7**

T-Tracker 2 - **FPGA #8 & #9**

V-Tracker 2- FPGA #2

T-Tracker 3 - FPGA #10 & #11

V-Tracker 3- FPGA #3

pCT bit stream Output format

Warning: all the colored bold quantities are what we need the simulation to supply

pCT bit-stream

1 × Run Header

Event Header •12 × Tracker FPGA Headers if Nchip>0 Chip → Nchip × Headers if Ncluster>0 Strip → Ncluster × Headers Energy detector FPGA Header •2 ×

#event ×

Run Header (13 Bytes)

- ★ 32-bit identifier
 - byte 0: 0x0 0000 0000
 - byte 1: 0xD2 1101 0010
 - byte 2: 0x55 0101 0101
 - byte 3: 0x4E 0100 1110 =1RUN(ASCII)
- ★ 24-bit run number
- ★ 32-bit run start-time
- ★ 7 status bits, for now set to 0
- ★ 1 time tag bit
- ★ 8-bit program version number
- ★ 12-bit stage angle, in tenths of degree (**ProjDeg**)

Event Header

- ★ 24-bit beginning-of-event identifier
 - byte 0: 0xF0 1111 0000
 - byte 1: 0x43 0100 0011
 - byte 3: 0x54 0101 0100 = 1pCT(ASCII)
- ★ 36-bit event time tag: 35-bit time tag + 1 time tag flag (inserted for time pix)
- ★ 12-bit time since the previous trigger, in clock cycles
- ★ 24-bit Event header:
 - start bits: 10
 - error FLAGS:
 - Incorrect FPGA address received
 - tag mismatch error
 - CRC error
 - Chip error
 - 18-bit event identifying number # (Nevent)

Tracker FPGA headers (12 bits)

- For each event at least a header for each Tracker FPGA is registered
 - 4-bit FPGA address:
 from 0000 (FPGA #0) to 1011 (FPGA#11)
 - 3-bit event tag: 1-bit tag clock counter + 2-bit ASIC trigger
 - 1-bit error flag (trigger tag mismatch)
 - 4-bit number of chips (Nchip) reporting cluster (strip) data, i.e. number of CHIP containing one or more hit strings.
- if Nchip is ≠ 0, #Nchip × CHIP headers are registered in the bit stream.

CHIP (ASIC) headers (12 bits)

- 1-bit cluster overflow
- 1 unused 0 bit
- 4-bit number of hit strips cluster (Ncluster)
- chip error bit
- parity error bit
- 4-bit CHIP address (AddChip)

#Ncluster × Strip headers are registered in the bit stream. (Ncluster is at least 1)

Strip headers (12 bits)

- 6-bit number of hit strips (Nstrips)
- 6-bit first hit strip address (AddStrip)

Warning: if Nstrip =0, just 1 strip has been hit and AddStrip correspond to the address of this hit strip. If Nstrip >0 Nstrip+1 strips have been hit and AddStrip represents the address of the first hit strip.

Energy Deposition FPGA header (12 bit)

- ★ 2-bit trigger tag
 - 1-bit pedestal flag (PedFlag): 1 = included 0 = not included
 - 1-bit additional trigger tag
- ★ 3-bit tag for the front-end buffer
- ★ 1-bit data type flag: 1 = samples 0 = reduced (in the latest beam tests is 0)
- ★ 1-bit error flag
- ★ 2-bits number of channel (**Nch**) per FPGA: 3 for FPGA #12 (connected to 3 calorimeter stage) 2 for FPGA #13

Nch times the following:

- ★ (16) 24-bit energy deposition data (16 if PedFlag=0)
 - if PedFlag =1 -> 8-bit pedestal (PedValue) [signed integer]
 - 16-bit calorimeter response (sample sum) (EnergyValue) [signed integer]
- ★ if reduced data AND no pedestal AND Nch=2-> 4 unused 0 bits