Determinants of HIV

M. Moellenkamp and N. Rosemberg

December 4th, 2014

Outline

- Motivation
- Research Question
- Methodology
- Theoretical Framework
- Descriptive Statistics
- Findings
- Conclusion
- Limitations

Motivation and Research Question

- Understand why some countries failed to achieve MDG 6A
- MDG 6: Combat HIV/AIDS, malaria and other diseases
- Target 6A: Have halted by 2015 and begun to reverse the spread of HIV/AIDS
- 2 Explore disease-specific determinants of health

Research Question: Are community level factors significant determinants of HIV/AIDS incidence rates?

Methodology and Dataset

Methodology

We will...

Datasets

 We will use the World Development Indicators (WDI) for the independent variables and a dataset from UNAIDS for the HIV/AIDS prevalence rate.

Theoretical Framework

Source: Dahlgren and Whitehead, 1991

Descriptive Statistics

Incidence

Figure 6: Interesting Cases for HIV Incidence Rates

The Model

To answer our research question we will estimate the following equation:

$$I_{it} = \beta_0 + \beta_1 S E_{it} + \beta_2 W L C_{it} + \beta_3 S C N_{it} + \beta_4 I L F_{it} + \epsilon_{it}$$

Where I stands for HIV/AIDS incidence, SE stands for socioeconomic factors, WLC stands for working and living conditions, SCN stands for social and community networks and ILF stands for individual lifestyle factors.

Imputed missing values

Logistic Regression Results - Model 1

	Value	Std. Error	t-stat	p-value
(Intercept)	-37.1746929	7.2103748	-5.1557227	0.0000008
IGDPpc	0.2489572	0.3457756	0.7199966	0.4727468
I Rural	-2.5413122	0.5654495	-4.4943220	0.0000110
ICO2	-0.5202531	0.2141617	-2.4292530	0.0181720
IHCexpend	0.8908174	0.3869425	2.3021958	0.0217045
lWater	-2.4404196	0.8416829	-2.8994524	0.0038103
ISanitation	0.9458424	0.2773110	3.4107641	0.0006504
ILifeExpect	19.2785139	1.7640069	10.9288198	0.0000000
IDPT	-0.5486725	1.0372650	-0.5289607	0.5972094
IMeasles	1.3664857	1.1431652	1.1953528	0.2322867
Inverse	1.8274583	0.2597700	7.0349083	0.0000000
IFemSchool	-5.6224819	0.7316914	-7.6842253	0.0000000

Predicted Probabilities - Female School Enrollment (in Quartiles)

Predicted Probabilities Female Unemployment

```
## pdf
## 2
```

Simple Linear Regression Results - Model 2

	Value	Std. Error	t-stat	p-value
(Intercept)	7.2577315	1.5544175	4.6691005	0.0000030
IGDPpc	-0.0073352	0.0711081	-0.1031559	0.9178406
IRural	0.2218054	0.1373740	1.6146097	0.1066197
ICO2	0.1124236	0.0308273	3.6468874	0.0002691
IHCexpend	0.3760953	0.1036964	3.6268877	0.0002905
lWater	-0.3353254	0.1796206	-1.8668540	0.0621075
ISanitation	0.0766694	0.0692372	1.1073438	0.2681743
ILifeExpect	-3.4213728	0.3251958	-10.5209613	0.0000000
IDPT	0.5907791	0.2456552	2.4049116	0.0162064
IMeasles	-0.0817581	0.2455781	-0.3329211	0.7392345
Inverse	-0.4257759	0.0472547	-9.0102427	0.0000000
${\sf IFemSchool}$	0.6029876	0.1533176	3.9329322	0.0002000

Fixed Effects Regression Results - Model 2

	Value	Std. Error	
(Intercept)	-0.1251196	3.5429514	-0.03
IGDPpc	0.0493379	0.1392642	0.3
I Rural	2.8976187	0.5864125	4.9
ICO2	0.0543819	0.0386581	1.40
IHCexpend	-0.0016818	0.1031654	-0.0
lWater	-1.3726857	0.3590034	-3.82
ISanitation	-0.5479255	0.3298781	-1.6
lLifeExpect	-0.8062209	0.3371903	-2.39
IDPT	0.7836174	0.1988538	3.94

as.factor(country)Control African Population
M. Moellenkamp and N. Rosemberg

IMeasles

IFemSchool

as.factor(country)Burundi

Inverse

-1.8280571 0.2679815 2.7076110 0.4209272

0.1944063

0.1015148

0.1649165

0.5537583

-0.7001023

-0.1160559

0.0116322

-3.7296150

-3.60

-1.14

0.07

-6.73

-6.82

Conclusions and Limitations - Model 1

- ** Logistic Regression Results of Model 1 (all countries) **
 - Generally in line with hypothesis
 - Most of the variables are statistically significant
 - Only Immunisation Variables and GDP per capital are not significant
- ** Predicted Probabilities of Model 1 (selected countries) **
- Direction of effect of Female School Enrollment matches initial assumptions for all case studies
- Direction of effect of Female Unemployment does not match initial assumptions for any case study

Conclusions and Limitations - Model 2

- ** Linear Regression of Model 2 (countries with incidence above mean)
 **
 - Significance of some variables changes
 - Female School Enrollment and Female Unemployment remain highly significant
 - Effect of Female Schooling becomes positive (!)
- ** Fixed Effects Regression of Model 2 (countries with incidence above mean) **
- Significance of some variables changes compared to simple linear model
- Female School Enrollment and Female Unemployment become insignificant
- Immunisation rates for DPT & Measles become highly significant (!)