PLP - 29 TOPIC 29—SET PARTITIONS

Demirbaş & Rechnitzer

SET PARTITIONS

EQUIVALENCE CLASSES — EQUAL OR DISJOINT

COROLLARY:

Let R be an equivalence class on A and $a,b\in A$. Then

$$[a] = [b]$$

$$[a]=[b]$$
 or $[a]\cap[b]=arnothing$

EQUAL OR DISJOINT

$$[a]=[b] \ \mathit{or} \ [a]\cap [b]=arnothing$$

PROOF.

Let $a,b\in A$ and consider the intersection $C=[a]\cap [b]$. Either $C=\varnothing$ or $C\neq\varnothing$.

- ullet If C=arnothing we are done.
- So now assume that $C \neq \varnothing$, which means there is some $c \in C$. Hence $c \in [a]$ and $c \in [b]$. Thus $c \mathrel{R} a$ and $c \mathrel{R} b$.

By symmetry we know $a \ R \ c$, and then transitivity gives $a \ R \ b$. The previous theorem then implies [a] = [b] as needed.

CUTTING UP A SET

DEFINITION:

A partition of the set A is a set, \mathcal{P} , of non-empty subsets of A so that

- ullet if $x\in A$ then there is $X\in \mathcal{P}$ with $x\in X$
- ullet if $X,Y\in \mathcal{P}$ then either $X\cap Y=arnothing$ or X=Y

Elements of \mathcal{P} are parts or pieces of the partition.

EQUIVALENCE CLASSES ARE A PARTITION

THEOREM:

Let R be an equivalence relation on A.

The set of equivalence classes of R forms a set partition.

Scratch work

- Let $\mathcal{P} = \{[x] : x \in A\}$
- Need to show that every $x \in A$ belongs to some $X \in \mathcal{P}$ We already proved that each x belongs to [x].
- Need to show that for each $X,Y\in \mathcal{P}$, either $X\cap Y=\varnothing$ or X=Y We just proved this!

PROOF

Equivalence classes form a set partition

PROOF.

Let
$$\mathcal{P} = \{[x] : x \in A\}$$
 .

- Let $x \in A$ then we proved previously that $x \in [x]$. Since $[x] \in \mathcal{P}$, we know that x is in some piece of the partition.
- Let $X, Y \in \mathcal{P}$. By the previous corollary we know that either X = Y or $X \cap Y = \emptyset$. Thus \mathcal{P} forms a set partition.

We can go further — a set partition can define an equivalence relation.

A SET PARTITION GIVES AN EQUIVALENCE RELATION

THEOREM:

Let ${\mathcal P}$ be a set partition of A. Now define a relation by

$$x \ R \ y \qquad \iff \qquad \exists X \in \mathcal{P} ext{ s.t. } x,y \in X$$

then R is an equivalence relation.

Scratch work / proof sketch — a good exercise