1-4(a): Taxonomy of Recommender Systems (part 1 of 2)

Learning Objectives

- To understand the different types of recommender systems
 - A framework for analyzing recommender systems in general
 - A specific overview of different recommendation algorithms
- To acquire a roadmap for the rest of the course, based on the algorithms studied

Analytical Framework

- Dimensions of Analysis
 - Domain
 - Purpose
 - Recommendation Context
 - Whose Opinions
 - Personalization Level
 - Privacy and Trustworthiness
 - Interfaces
 - Recommendation Algorithms

Introduction to Recommender Systems

Domains of Recommendation

- Content to Commerce and Beyond
 - News, information, "text"
 - Products, vendors, bundles
 - Matchmaking (other people)
 - Sequences (e.g., music playlists)
- One particularly interesting property
 - New items (e.g., movies, books, ...)
 - Re-recommend old ones (e.g., groceries, music)

Purposes of Recommendation

- The recommendations themselves
 - Sales
 - Information
- Education of user/customer
- Build a community of users/customers around products or content

Recommendation Context

- What is the User doing at the time of recommendation?
 - Shopping
 - Listening to Music
 - Hanging out with other people
- How does the context constrain the recommender?
 - Groups, automatic consumption (vs. suggestion), level of attention, level of interruption?

Interfaces

- Types of Output
 - Predictions
 - Recommendations
 - Filtering
 - Organic vs. explicit presentation
 - Agent/Discussion Interface
- Types of Input
 - Explicit
 - Implicit

Introduction to Recommender Systems

Recommendation Algorithms

- Non-Personalized Summary Statistics
- Content-Based Filtering
 - Information Filtering
 - Knowledge-Based
- Collaborative Filtering
 - User-User
 - Item-Item
 - Dimensionality Reduction
- Others
 - Critique / Interview Based Recommendations
 - Hybrid Techniques

UNIVERSITY OF MINNESOTA
Introduction to Recommender Systems

Recommendation Algorithms

- Non-Personalized Summary Statistics
- Content-Based Filtering
 - Information Filtering
 - Knowledge-Based
- Collaborative Filtering
 - User-User
 - Item-Item
 - Dimensionality Reduction
- Others
 - Critique / Interview Based Recommendations
 - Hybrid Techniques

Non-Personalized Summary Stats

- External Community Data
 - Best-seller; Most popular; Trending Hot
- Summary of Community Ratings
 - Best-liked
- Examples
 - Zagat restaurant ratings
 - Billboard music rankings
 - TripAdvisor hotel ratings

Introduction to Recommender Systems

Content-Based Filtering

- User Ratings x Item Attributes => Model
- Model applied to new items via attributes
- Alternative: knowledge-based
 - Item attributes form model of item space
 - Users navigate/browse that space
- Examples
 - Personalized news feeds
 - Artist or Genre music feeds

Personalized Collaborative Filtering

- Use opinions of others to predict/recommend
- User model set of ratings
- Item model set of ratings
- Common core: sparse matrix of ratings
 - Fill in missing values (predict)
 - Select promising cells (recommend)
- Several different techniques

Introduction to Recommender Systems

Collaborative Filtering Techniques

- User-user
 - Select neighborhood of similar-taste people
 - Variant: select people you know/trust
 - Use their opinions
- Item-item
 - Pre-compute similarity among items via ratings
 - Use own ratings to triangulate for recommendations
- Dimensionality reduction
 - Intuition: taste yields a lower-dimensionality matrix
 - Compress and use a taste representation

Note on Evaluation

- To properly understand relative merits of each approach, we will spend significant time on evaluation
 - Accuracy of predictions
 - Usefulness of recommendations
 - Correctness
 - Non-obviousness
 - Diversity
 - Computational performance

Introduction to Recommender Systems

Other Approaches

- Interactive recommenders
 - Critique-based, dialog-based
- Hybrids of various techniques

Moving Forward

- Next Lecture: A Tour of Amazon.Com, organized by our taxonomy
- Then, you should be able to:
 - Analyze a recommender application on your own
- Course Structure:
 - We step through the recommendation algorithms, with six major modules
 - Related topics intermingled

Introduction to Recommender Systems

1-4: Taxonomy of Recommender Systems

