ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

PO4 – Analiza časovnih vrst

Motivacija - V 4 Velocity

- □ Časovna vrsta
 - Časovno urejena množica opazovanj

- □ Aplikacije:
 - Vremenske napovedi (temperatura, vlažnost, ...)
 - □ Finančni trendi (vrednost valut, delnic ...)
 - Povpraševanje po dobrinah (nakupi)
 - Medicina (srčni utrip, EEG,...)

Motivacija - V 4 Velocity

- □ Časovna vrsta
 - V čem je razlika?

- □ Regresija (tradicionalno)
 - Ciljna spremenljivka
 - Razlagalne spremenljivke

$$y_i = eta_0 1 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Motivacija - V 4 Velocity

- □ Časovna vrsta
 - Tradicionalna časovna vrsta (četrtletni zaslužki podjetja)

- Analiza vsebovanih vzorcev za predvidevanje:
 - Trendi, cikli, šum, povezave z zunanjimi okoliščinami ...

Vsebina

□ Analiza in lastnosti časovnih vrst

- □ Napovedovanje vrednosti
 - Autokorelacija
 - ARIMA

Narava časovnih vrst

- Obravnavali bomo le univariantne diskretne časovne vrste
 - Univariantnost spremljamo eno samo spremenljivko
 - Meritve izvajamo v enakomernih časovnih korakih
- □ Notacija
 - Naključna spremenljivka $X = \{x_t\}$, kjer t predstavlja čas
 - $t \in \{1, 2, ..., T\}$
- □ Variabilnost:

Osnovni matematični model

- □ Notacija
 - Naključna spremenljivka $X = \{x_t\}$, kjer t predstavlja čas
 - \blacksquare $t \in \{1, 2, ..., T\}$
- \square Naivna različica: $x_t = f(t)$
 - Zaradi visoke stopnje variabilnosti skoraj nikoli ni učinkovit
- \square Splošni model: $x_t = f(t) + \varepsilon$
 - \Box f(t) deterministični del, ki sledi časovnim zakonitostim
 - lacktriangle naključni del, ki sledi zakonom verjetnosti

Osnovni matematični model

Razlogi za variabilnost vrednosti

Dekompozicija signala:

■ Trend:

Sezonski efekti:

■ Neregularne fluktuacije: 3

Stacionarna časovna vrsta

□ Definicija:

- Časovna vrsta je stacionarna, kadar je verjetnost pojavitve vsake vrednosti $X = \{x_t\}$ enaka verjetnosti pojavitve vsake vrednosti v drugem časovnem obdobju $X_h = \{x_{t+h}\},$
- Taka časovna vrsta je odvisna zgolj od časovne razlike in ne od dejanskega časa!
- □ Šibko stacionarna:
 - Povprečje je konstanta
- □ Zakaj je stacionarnost koristna?

Avtokorelacija

□ Pearsonov korelacijski koeficient

$$r = r_{xy} = rac{\sum x_i y_i - n ar{x} ar{y}}{\sqrt{(\sum x_i^2 - n ar{x}^2)} \, \sqrt{(\sum y_i^2 - n ar{y}^2)}}.$$

- □ kjer
 - □ n − število elementov
 - x,y spremenljivki

Avtokorelacija

- □ Definicija
 - Korelacija med signalom $X = \{x_t\}$ in njegovo zakasnjeno kopijo $X_h = \{x_{t+h}\}$

- □ Naivni pristop k napovedovanju:
 - Poiskati najprimernejši h
- Določa sezonski efekt oz. periodičnost signala

Tradicionalne časovne vrste

Naključne vrednosti

- Nabor vrednosti iz območja [X,Y]
- Ima konstantno povprečje
- □ Konstantno varianco
- □ Je stacionaren

Beli šum (Gaussovo naključje)

Tradicionalne časovne vrste

Naključni sprehod

- $\square x_{t+1} = x_t + w_{t}, \text{ kjer}$
 - je w_t naključna vrednost
- □ Povprečje se spreminja
- Tudi varianca se spremenija
- □ Ni stacionaren

10 naključnih sprehodov:

Tradicionalne časovne vrste

Naključni sprehod

- $\square x_{t+1} = x_t + w_{t}, \text{ kjer}$
 - je w_t naključna vrednost
- □ Povprečje se spreminja
- Tudi varianca se spremenija
- □ Ni stacionaren

Diferenciacija

- Odvod naključni sprehod

- □ Ker je w_t povsem
 naključna vrednost
 - \blacksquare je Δx_{t+1} stacionaren!

Ocena trenda – tradicionalna regresija

- Definicija
 - Korelacija med signalom $X = \{x_t\}$ in njegovo zakasnjeno kopijo $X_h = \{x_{t+h}\}$
- □ Naivni pristop k napovedovanju:
 - Poiskati najprimernejši h
- Takšen pristop lahko uporabimo zgolj nad stacionarno časovno vrsto.

Navadna linearna regresija

Ocena dolgoročnega trenda

- □ Minimizacija napake
 - □ Differencialne enačbe
- Metoda najmanjših kvadratov
 - (-) Poudari outlierje
 - (+)Enostavna reševanje

Metoda najmanjših kvadratov

- Centriranje podatkov
 - Črta gre skozi koordinatno izhodišče

$$y_i = b_0 + b_1 x_i$$

$$\overline{y} = b_0 + b_1 \overline{x}$$

$$y_i - \overline{y} = 0 + b_1 (x_i - \overline{x})$$

 $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_k x_{i,k} + \varepsilon_i$

- □ Splošni model
 - $\blacksquare k$ koeficientov za k parametrov
 - lacksquare in napaka $arepsilon_i$
 - $lackbox{$\square$ V matrični obliki: } y_i = \begin{bmatrix} x_{i,1}, \ x_{i,2}, \ \dots, \ x_{i,k} \end{bmatrix} egin{bmatrix} eta_1 \\ draphi \\ draphi \\ eta_k \end{bmatrix} + arepsilon_i$

Metoda najmanjših kvadratov

- □ Če imamo več meritev, lahko izdelamo matriko
 - b predstavljaoceno dejanskevrednosti

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

 $_{\square}$ Generalizirano $\mathbf{y}_{\parallel}=\mathbf{X}\mathbf{b}+\mathbf{e}_{\parallel}$

 $\mathbf{y}: n \times 1$ \square Velikosti matrik: $\mathbf{X}: n \times k$

b: $k \times 1$

e: $n \times 1$

Metoda najmanjših kvadratov

Minimizacija kvadratov napak

$$\begin{array}{ll} \square \ \, \mathsf{Re\check{s}itev:} & \frac{f(\mathbf{b})}{\partial \mathbf{b}} = 0 \\ & = (\mathbf{y} - \mathbf{X}\mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{b}) \\ & = \mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X}\mathbf{b} + \mathbf{b} \mathbf{X}^T \mathbf{X}\mathbf{b} \end{array}$$

- Po nekaj napora lahko z diferencialnimi enačbami ugotovimo
 - □ Ta formula je biblija!

$$\mathbf{b} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

□ Inverzna matrika:

$$\mathbf{A}^{-1} = egin{bmatrix} a & b \ c & d \end{bmatrix}^{-1} = rac{1}{\det \mathbf{A}} egin{bmatrix} d & -b \ -c & a \end{bmatrix} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}.$$

Metoda najmanjših kvadratov - Primer

$$\square$$
 Ne pozabimo: $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

□ Vhod:

$$x_{1, ext{original}} = [1, \quad 3, \quad 4, \quad 7, \quad 9, \quad 9]$$
 $x_{1} = [-4.5, \ -2.5, \ -1.5, \ 1.5, \ 3.5, \ 3.5]$ $x_{2, ext{original}} = [9, \quad 9, \quad 6, \quad 3, \quad 1, \quad 2]$ $x_{2} = [4, \ 4, \ 1, \ -2, \ -4, \ -3]$ $y_{ ext{original}} = [3, \quad 5, \quad 6, \quad 8, \quad 7, \quad 10]$ $y = [-3.5, \ -1.5, \ -0.5, \ 1.5, \ 0.5, \ 3.5]$

$$\mathbf{X} = \begin{bmatrix} -4.5 & 4 \\ -2.5 & 4 \\ -1.5 & 1 \\ 1.5 & -2 \\ 3.5 & -4 \\ 3.5 & -3 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -3.5 \\ -1.5 \\ -0.5 \\ 1.5 \\ 0.5 \\ 3.5 \end{bmatrix}$$

$$\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 55.5 & -57.0 \\ -57.0 & 62 \end{bmatrix} \quad \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 36.5 \\ -36.0 \end{bmatrix}$$

$$\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 62 & 57.0 \\ 57.0 & 55.5 \end{bmatrix} \quad \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 36.5 \\ -36.0 \end{bmatrix}$$

192

Inverzna matrika

□ Ni enostavno!

$$\mathbf{A}^{-1} = egin{bmatrix} a & b \ c & d \end{bmatrix}^{-1} = rac{1}{\det \mathbf{A}} egin{bmatrix} d & -b \ -c & a \end{bmatrix} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}.$$

$$\mathbf{A}^{-1} = egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}^{-1} = rac{1}{\det(\mathbf{A})} egin{bmatrix} A & B & C \ D & E & F \ G & H & I \end{bmatrix}^{\mathrm{T}} = rac{1}{\det(\mathbf{A})} egin{bmatrix} A & D & G \ B & E & H \ C & F & I \end{bmatrix}$$

□ Bločna inverzija

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \\ -(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \end{bmatrix}$$

Metoda najmanjših kvadratov - Primer

 \Box Rezultat b1 = 1.01 in b2 = 0.43?