

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

U. S. DEPARTMENT OF AGRICULTURE,

BUREAU OF SOILS—BULLETIN No. 57.

MILTON WHITNEY, Chief.

A STUDY OF CROP YIELDS AND SOIL COMPOSITION IN RELATION TO SOIL PRODUCTIVITY.

BY

MILTON WHITNEY.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1909.

BUREAU OF SOILS.

MILTON WHITNEY, Chief of Bureau. Albert G. Rice, Chief Clerk.

SCIENTIFIC STAFF.

Frank K. Cameron, in charge of Chemical and Physical Laboratories. C. W. Dorsey, in charge of Soil Survey, Western Division.

Jay A. Bonsteel, in charge of Soil Survey, Eastern Division.

Oswald Schreiner, in charge of Fertility Investigations.

W J McGee, in charge of Soil Erosion Investigations.

LETTER OF TRANSMITŢAL.

U. S. DEPARTMENT OF AGRICULTURE,
BUREAU OF SOILS,
Washington, D. C., February 8, 1909.

Sir: I have the honor to transmit herewith a manuscript of an article entitled "A Study of Crop Yields and Soil Composition in Relation to Soil Productivity," and to recommend that this be published as Bulletin No. 57 of the Bureau of Soils.

Respectfully,

MILTON WHITNEY, Chief of Bureau.

Hon. James Wilson, Secretary of Agriculture.

3

CONTENTS.

	Page.
Introduction.	7
Evidence presented by the yields of crops in Europe	13
Evidence presented by the yields of crops in the United States	27
The yield per acre of wheat in the United States	29
The yield per acre of corn in the United States	44
Evidence presented by the yield of crops on individual farms	57
Evidence presented by the chemical composition of the soils of the United	
States as compared with those of Europe	60
The chemical composition of the soils of the United States	65
The chemical composition of the soils of Great Britain and Ireland	94
The chemical composition of the soils of France	100
The chemical composition of the soils of Germany.	121
Conclusions.	127

ILLUSTRATIONS.

			Page.
IG.		Average yield of wheat in the United States from 1867 to 1906	30
		Average yield of wheat in Maine, New Hampshire, Vermont, and New York from 1867 to 1906.	33
	3.	Average yield of wheat in New Jersey, Pennsylvania, Delaware, and Maryland from 1867 to 1906.	34
	4.	Average yield of wheat in Virginia, North Carolina, South Carolina, Georgia, and Alabama from 1867 to 1906.	35
		Average yield of wheat in Ohio, Indiana, and Illinois from 1867 to 1906. Average yield of wheat in Wisconsin, Michigan, Illinois, and Iowa	36
		from 1867 to 1906. Average yield of wheat in Minnesota, Nebraska, Kansas, and Missouri	37
		from 1867 to 1906	38
		Average yield of wheat in Wisconsin, Michigan, Iowa, Illinois, Minnesota, Nebraska, Kansas, and Missouri from 1867 to 1906	39
		Average yield of wheat in Kentucky and Tennessee from 1867 to 1906 Average yield of wheat in Ohio, West Virginia, and Indiana from 1867	40
	11.	to 1906. Average yield of wheat in Texas and Arkansas from 1867 to 1906	41 42
		Average yield of wheat in California from 1867 to 1906. Average yield of wheat in Oregon from 1867 to 1906.	43 43
	14.	Average yield of corn in the United States from 1867 to 1906	45
		Precipitation for June, July, and August, and yield of corn per acre Average yield of corn in Maine, New Hampshire, Vermont, Massa-	48
	17.	chusetts, Rhode Island, and Connecticut from 1867 to 1906. Average yield of corn in New York, New Jersey, and Pennsylvania from 1867 to 1906.	49 50
	18.	Average yield of corn in Maryland, Delaware, and Virginia from 1867 to 1906.	51
	19.	Average yield of corn in North Carolina, South Carolina, Georgia, Florida, and Alabama from 1867 to 1906.	52
	20.	Average yield of corn in Ohio, Indiana, Illinois, Michigan, Wisconsin, and Minnesota from 1867 to 1906.	53
		Average yield of corn in Kansas and Nebraska from 1867 to 1906	54
		Average yield of corn in Iowa and Missouri from 1867 to 1906	55
		Average yield of corn in Mississippi, Louisiana, Texas, and Arkansas from 1867 to 1906.	56
	24.	Average yield of corn in California from 1867 to 1906	57

6

A STUDY OF CROP YIELDS AND SOIL COMPOSITION IN RELA-TION TO SOIL PRODUCTIVITY.

INTRODUCTION.

The maintenance of the productive capacity of soils has been a subject of study and concern from the earliest historic times. The old Roman writers clearly recognized that soils may quickly become worn out by certain methods of cultivation and cropping, and that different types of soils show marked differences in their crop adaptations and endurance under different methods of culture.

The works of Cato, Varro, Virgil, Columella, Pliny, and Palladius, as well as many of the still earlier Greek writers, show that the proper system of cultivation, manuring, and cropping under intensive methods to maintain the productivity of the soil was uppermost in men's minds at that time. It was clearly apparent to them that system and intelligence, and these alone, were needed to reduce the number of individual failures to maintain the soils generally in a more productive state.

According to Dickson,^a the Romans had a greater variety of crops and exercised considerably more care in adapting them to the different soils than did the English at the time he wrote (1788), and more than we seem to give in this country. Considering Pliny as more particular in his directions as to the adaptation of crops to soil, Dickson gives Pliny's maxims in detail as follows:

Such a difference of soil, he says, points out the necessity of describing the kinds proper for the different crops. This is Cato's opinion, that corn should be sowen on land that is stiff, rich, and in good heart; that radish, millet, and panic, should be sowen upon the same kind of land, if moist or wet; that seed should be first sowen in cold and wet soils, and afterwards in warm; that lupines should be sowen in the red soil, the soil called pulla, or sandy soil, if they are not wet; far in moister fields, where the soil is chalky and red; triticum [wheat] in dry land, not liable to weeds, nor in a shade; beans in strong soils; siligo and triticum in open and exposed fields that receive greatest benefit from the heat of the sun; lentils in uncultivated and red soil, where there is not much grass; barley on fallow, and land so rich as to carry a crop every year. Spring sowing should be used in places that can not conveniently be sowen in autumn, and in soil whose fatness can carry constant crops. This maxim too is exact. These things should be sowen in shallow soil that do not require much sap, as the cytisus and cicer; legums are excepted, which are pulled

a The Husbandry of the Ancients, Adam Dickson, Edinburgh, 1788, Vol. 1, p. 187.

up and not cut in reaping; hence they are called *legums*, because thus gathered. In fat soil, should be sown such things as require much food, as garden herbs, *triticum*, siligo, flax. So, for the same reason, the shallow soil is allotted for barley, because it does not require much food, the richer and stiffer for *triticum*. In low lying grounds, far rather than *triticum* should be sowen. In grounds neither very high nor low, both *triticum* and barley; hilly ground produces plumper *triticum*, but not so large a crop. Far and siligo may be appointed to chalky and wet soils.

Theophrastus does not enter into particulars, as the Roman authors do; but he declares, in general, that, to know how to adapt plants to soils is one of the principal

things in agriculture.

Regarding the management of soils, Dickson further says:^a

By schemes of management, we mean the crops that are cultivated, the culture given them, and the order in which they succeed each other. In Britain we have a variety of schemes of management; we have successions of different crops, and we have the same crops succeeding each other, in different orders. It was so likewise among the Romans; and their different schemes were adapted to their different soils.

When the soil was very good * * * they raised several different sorts of crops in succession. Pliny mentions two schemes in this rich soil: That kind of soil, says he, called tenera may be croped in this manner; barley, millet, raddish, and then barley again, or triticum, as in Campania. For one of these crops, the land was always dunged, probably the millet; for Pliny mentions this among the crops to which dung was always applied. In this succession of crops there was no fallow intervening, and Pliny observes, that it was sufficient to plow the land immediately before, or when it was sowen. * * * Another order of croping, says Pliny, after a crop of far, let the land rest during the four winter months, and then be sowen with the spring bean, that so it may not rest till next winter, but carry a crop every year. * * * Columella says, that, when beans are sowen upon land that has carried a crop the year immediately preceding, dung must be applied. And Pliny himself says * * * that, even when beans are sown upon land that has not carried a crop, it must have been lately dunged.

Land that was treated in this manner, and carried a crop every year, was not very common; it was found chiefly in Campania, the country which was reckoned the most fertile in Italy. Pliny mentions a very extraordinary field in it, which, as it carried a crop every year, and more valuable crops too than those that have been mentioned, falls naturally to be taken notice of in this place * * *.

Ploughing, as was observed in the last chapter, is the most important operation in agriculture: but it cannot be performed in all its perfection, nor all its advantages obtained, except when land is summer fallowed. Of this the ancients seem to have been very sensible; for, instead of recommending fallowing, as is commonly done by writers on husbandry in modern times, the ancient writers mention it as a necessary preparation for a crop in ordinary soils. In Switzerland, Geneva, and some provinces of France they have a crop and fallow alternately. This seems likewise to have been the common practice among the Romans, from whom these nations no doubt received it. This practice probably arose from the opinion that the earth was in some measure exhausted by carrying a crop, and needed a year's rest to enable it to produce another * * *.

This extract gives a very fair view of the opinions held some two thousand years ago regarding this important matter of soil fertility and of the systems devised to maintain the productivity of soils. It was clearly recognized then, as it still is by many, that the maintenance of productivity is a personal matter with the tiller of the soil and depends upon his knowledge, skill, and industry. The present condition of the agriculture of Italy would seem to bear out this view and give no reason to fear a permanent loss of productivity with efficient methods of soil management, at least in finite time.

Little progress was made in our knowledge of the soil and its relation to crops or of methods of management until the modern science of agricultural chemistry was established by Liebig about 1840. The mineral theory of plant nutrition supposed that productivity depended upon the amount of available mineral plant-food elements present in the soil. Recently the Bureau of Soils has been able to show that the chemistry of the organic matter of the soil is probably of as much importance in the productivity of land as is the chemistry of the mineral matter. The effects of plowing, fallowing, draining, rotation of crops, and manuring are associated in one way or another with changes in the organic matter of the soil necessary to maintain productivity. In these days, of course, everyone recognizes the importance of cultural operations on physical and biological characteristics of the soil. Such natural agencies as climate, distribution of rainfall, sunshine, etc., are coming to be recognized as at least fully as important as the inherent characteristics of the soil.

The facts established by Liebig concerning the mineral necessities of plant development have been taken too literally and too narrowly as applied to the soil, and permanent losses have been feared which would in time completely exhaust the soil of mineral elements and leave it a barren waste. The impression is very strong in this country to-day that our soils are wearing out at an alarming rate, that yields are falling off, and that, without the liberal and universal use of phosphates, potash salts, and nitrates, to replace the amounts removed by crops, the soils will become permanently sterile.

On the supposition that the soil otherwise remains constant in composition, save only as material may be artificially added to it in fertilizers or subtracted from it by crops sold off the farm, various calculations show that the end of soil productivity under existing methods of culture will come at from seventy-five to one hundred and fifty years.

The fact that the soils of Europe and of Asia have been under agricultural occupation for many centuries, supporting a much denser population than our own, would seem to show such ideas to be erroneous when applied to our own soils, the bulk of which have been occupied for not more than fifty or seventy-five years.

As the researches of the Bureau of Soils have been published in a number of different forms—bulletins, and papers in scientific journals—it will be unnecessary at this place to give a résumé of the functions of the soil and its relation to crop production to explain

the apparently anomalous fact that we can extract plant food elements from the soil in our growing crops and yet leave the soil with apparently unimpaired supplies for future crops. Two points, however, will be mentioned to show the futility of the bookkeeping system of estimating the future resources of the soil.

The researches of the several experiment stations throughout the world and the investigations of our engineers on the amount of material carried in solution and in suspension in our principal rivers and borne by the wind, establishes the fact that loss through natural leaching and erosion removes far more mineral plant food elements than do cultivated crops. In cropping soils, therefore, and removing the crop from the land, we remove an inconsiderable amount of mineral material compared with normal losses to which the soil is adjusted through natural laws.

The second point opposed to this bookkeeping system of accounting for the plant-food constituents is that in a small majority of analyses reported in this country and abroad where both soils and subsoils have been examined, the upper soil, from which presumably the roots of annual plants take most of their mineral matter, has a content of potash and phosphoric acid higher than the subsoil.

From the meager information to be found in the works of the early agricultural writers of Greece and Italy it seems probable that the yields per acre obtained at the present time are not much different from those obtained in the earlier historic times. There are not many records in the literature of yields per acre for any field, farm, or country going back for any considerable number of years. Official estimates of yields have been kept by the United States Government and many of the States for the past forty years. Similar statistical estimates have been kept by most of the European countries for the past twenty or thirty years. Beyond this the information is fragmentary and possibly less trustworthy.

In the consideration of data of this kind it would at first sight seem more valuable to have continuous records of successive yields of a single field. However, the yield of a State is probably more reliable in showing changes in productivity because it combines a great number of individual fields and averages the results of all the individual methods used in the community. The first method would have the advantage of actual weight or measure of crop produced on a measured area; this is more certain, but it would depend upon the knowledge and skill of individuals and would vary greatly with the individual and with the soil type. The second method, depending as it does merely on estimates, has a less reliable basis, but largely eliminates differences in individual effort and differences in soil, provided the acreage remains fairly constant. Assuming reliability of the estimates, the second method would undoubtedly give more reli-

able information concerning the relative productivity of a State. Material changes in acreage or a considerable change of the area of production within the State would of course have an influence which must be considered in comparing and valuing results, even if no figures can be given for an exact expression of such change in the area cultivated.

When the yield per acre for a State or country under practically constant acreage is shown to have increased during a long period of years we may assume that the *productivity* has not declined. Much of this increase may result from improved methods of agriculture, better selection of seeds and crops, or the introduction of more live stock; and, for the purpose of our present inquiry, we need go no further to explain the increase or maintenance of productivity.

There are two matters, however, which should be considered in this connection. The first is the question of commercial fertilizers. If the productivity of the soil of a State depends ultimately and literally upon our returning an equivalent amount of plant-food constituents to the soil to replace that removed by the crop, then the life of the nation will ultimately depend upon the available deposits of nitrates, phosphates, and potash compounds. It is clearly impossible with the available data to give any expression of the amount of such replacement which has been made in the past, but from what we know, so far as the actual importation of mineral material foreign to the farm is concerned, it is negligible.

The use of commercial fertilizers is not old. The potash deposits of Germany were first worked in 1862, the phosphate deposits of South Carolina in 1868. Phosphates were discovered in Florida in 1888 and in Tennessee in 1894. It may be said that the general use of commercial fertilizers began in the United States about the year 1865.

The other matter which should receive attention is the influence of material in the form of foodstuffs imported from less densely settled countries to those of greater population as a possible source of introducing foreign mineral matter to maintain the productivity of the soil of the older and more densely settled countries. If any such transference of mineral material actually takes place to an extent sufficient to maintain or increase the productivity of more densely populated countries, then it is but reasonable to expect that the productivity of the soil of the more recently settled and more sparsely settled countries from which foodstuffs are exported would show a falling off in productivity. From this point of view the soils of the United States might be expected to show some material decline in productivity as a result of the enormous amount of foodstuffs exported, while the soils of Europe, to which these foodstuffs mainly go, should show a corresponding increase. But here again the impor-

tant thing to determine is whether the productivity of the soils of the newer country is actually declining.

In comparing figures representing yields per acre over a series of vears, whether for an individual farm or a State or nation, the one variable factor, the effects of which are difficult to eliminate, is the climate. So great is the influence of climate on the yield of crops that in a period of ten years the difference between the lowest and highest yield is as great or greater than the average. Thus in the decade from 1867 to 1876 the highest yield of corn as reported for Nebraska is 42.2 bushels per acre in 1869, and the lowest yield is 10 bushels in 1874. The difference, 32.2 bushels, is almost the same as the average for the decade, 32.5 bushels. Again in the decade from 1887 to 1896 the highest yield was 37.5 bushels in 1896, and the lowest 6 bushels in 1894. The difference, 31.5 bushels, is greater than the average for the decade, which is given as 26.2 bushels. There was no crop failure reported in the decade 1877 to 1886, in which the lowest yield is 27.4 bushels. In the decade 1897 to 1906 the lowest yield is 14.1 bushels. In the decade 1867 to 1876 occurred the highest and next to the lowest yield for the State in forty years.

The figures representing the yield of corn per acre in Nebraska for forty years, compiled from the published records of the Bureau of Statistics, arranged according to yield in each decade, is given in the following table:

Average yield of corn per acre in Nebraska by years and by decades, 1867–1906.

Year.	Bushels.	Year.	Bushels.	Year.	Bushels.	Year.	Bushels.
1874 1868 1870 1876 1873 1867 1872 1875	29. 9 30. 0 35. 0 36. 0 37. 8 40. 0 41. 5	1881 1886 1880 1882 1883 1885 1884 1877	27.4 27.4 31.0 34.9 36.0 36.7 37.7 38.0 41.0	1894 1890 1895 1887 1893 1892 1888 1891	6. 0 18. 0 16. 1 24. 1 25. 2 28. 2 35. 2 36. 5	1901 1898 1900 1903 1899 1897 1902 1904 1905	21. 0 26. 0 26. 0 28. 0 30. 0 32. 3 32. 8 32. 8
1869 Decade	32.5	Decade	35. 2	1896 Decade	26.2	1906 Decade	27.7

With variations so great as these, and, in fact, with the statistical records of any of the States, it is unwise to draw very positive conclusions from the average yield for decades, as ten years is not a sufficient period to minimize the results of extraordinary seasons.

These variations must be duly considered and carefully weighed in drawing conclusions regarding the increase or decrease of productivity shown by statistical records.

EVIDENCE PRESENTED BY THE YIELD OF CROPS IN EUROPE.

European countries have older agricultural soils than the United States, as they have been settled and have been developing their present agriculture for a thousand years or more, while many parts of our own Western and Central States have seen all of their agricultural development in the past sixty or seventy years.

If the views which have been taught for the past seventy years be correct, that continued cropping gradually exhausts the soil and tends to make it unproductive through loss of mineral plant food, we should expect to find a marked and fundamental difference between the soils of the United States and the older soils of Europe, as shown either in the yield of crops or in the chemical composition of the soils. We will first review such data as are available regarding the yield of crops and then consider the chemical data.

The following is given as the yield per acre of wheat in bushels in several European countries and in the United States for the ten years (1897–1906) in the Yearbook of the Department of Agriculture for 1907, page 620:

Average yield of wheat, of various countries, in bushels per acre.

United Kingdom	32. 2
Germany.	28. 0
France.	19.8
Austria	17.8
Hungary	17.6
United States	13.8
Russia (European)	9.2

On the face of it, it is apparent that the older soils of Europe are far from being less productive than the newer soils of the United States. This may be due to a difference in climate, to a greater original productivity of the soil, or to more intensive cultivation and a better system of agriculture than prevails in this country.

From the very meager data which are available, some of which will be given in the following paragraphs, it would appear that the yield of wheat in Germany in the middle of the sixteenth century was about equal to the average for the United States at the present time and that since that time the yields in Germany have about doubled. This should dispose of the idea that there is any material difference in climate or in original productivity of the soil, and throw us back to the personal effort of the farmer and the development of a more efficient system of agriculture.

The French minister of agriculture a gives the average yield per acre of the principal cereal crops in France from 1815 to 1876,

aBul. Min. Agr. Comm. France. Récoltes des Céréales et des Pommes de Terre de 1815 à 1876, pp. 456–459 (1878).

which, reduced to bushels per acre and ten-year averages, is as follows:

Yield of cereals in France, 1815-1876, by decades.

[Reduced to bushels a per acre.]

Year.	Wheat.	Rye.	Barley.	Oats.
1815-1824	12. 41	10. 58	14. 87	17. 50
1825-1834	14. 05	12. 89	15. 30	18. 52
1835-1844	14. 90	13. 59	16. 60	20. 97
1845-1854	15. 78	13. 68	18. 88	23. 66
1855-1864	16. 57	14. 71	20. 78	26. 00
1865-1874	16. 60	15. 30	20. 70	25. 60
1875-1876	16. 24	16. 41	19. 80	24. 63

a Bushels of capacity. Statistics for the ten years 1897–1906 indicate that the average weight of a bushel of wheat in France is 60 pounds, of rye 56.1 pounds, of barley 49.6 pounds, and of oats 36.5 pounds. The statistics for France on pp. 15 and 19 are in bushels of weight customarily employed in the United States (wheat 60 pounds, rye and corn 56 pounds, barley 48 pounds, oats 32 pounds). The difference is greatest in oats, the average yield of which as given in this table is on a basis some 14 per cent lower than in the tables on pp. 15 and 19, covering later years. Comparisons between these tables should not be made without making allowance for this.

The yield of wheat has increased from 12.41 to 16.60 bushels; of rye, from 10.58 to 16.41; of barley, from 14.87 to 20.78; and of oats, from 17.50 to 26.00. The great increase in the yield of cereal crops for France occurred prior to 1860.

Quite recently the Bureau of Statistics of this department has published a report on the cereal production of Europe ^a for the past twenty years or so.

The following table summarizes the yield per acre in five-year periods, the full data for each country being given further on:

a Cereal production of Europe, by Frank R. Rutter. Bul. 68, Bureau of Statistics, 1908.

Average annual yield of grain, by countries and by five-year periods.

	1901- 1905.	Bu. 18.5 19.3	19.4	20.2	:	13.3	13.7	13.6	13.4	i	
	1896– 1900.	Bu. 18.9 22.6	19.0	c16.5	:	14.6	13.5	13.5	19.1	:	
Corn.	1891- 1895.	Bu. 19.9 23.2	19.1	15.1 6		14.6	f 11.8		113.8 J		
	1886-1	Bu. 19.5 18.5	19.3	b 15.9		14.4			b 24.3 f		
	1901- 1905.	Bu. 26.7 30.1	64.7 35.9 32.0	47.1	53.9	23.0	20.0	20.0	20.5	27.7	44.7 40.5 56.7
v.	1896– 1900.	Bu. 25.5 30.1	56.8 35.5 30.1	45.0	50.8	41.0	18.9	18.6	18.0	28.1	43. 4 39. 8 53. 0
Oats.	1891– 1895.	Bu. 25.1 25.7	50.0 33.8 28.7	37.7	46.1	44.4	7 20.8	17.7	, 12.5 f 15.3	29.8	43. 5 39. 6 53. 3
	1886- 1890.	Bu. 24.3 20.6	\$ 49.8 32.0 30.2	33.2	45.9	40.6		915.1		b 32.0	41.8 39.3 47.6
	1901- 1905.	Bu. 23.7 22.5 22.5 22.5	52.0 41.0 34.0 24.0	34.3	50.7 40.8	18.5	14.2	7	13.9	24.6	34.3 33.6 42.2
y.	1896– 1900.	Bu. 20.8 22.1 20.9 22.2	35.8 30.9 22.5	237.8 31.8 c 13.2	45.2 48.0 38.1	34.5	12.4	12.3	716.4	25.2	35.0 34.6 40.2
Barley	1891- 1895.	Bu. 21.3 21.8 20.9 21.9	40.4 33.7 30.4 21.5	. 88.89.99 . 88.89.99 . 88.89.99	43.1 47.5 35.7	33.0	f 14,4	13.7	111.1 f 20.4	25.0	34.2 33.8 39.7
	1886- 1890.	Bu. 20.1 17.9 18.2 17.9	{ 40.8 23.6 29.7 21.9					911.0	b 10.1	\$27.0	33.9 33.7 36.4
	1901- 1905.	Bu. 18.6 17.6 17.7 13.6	34.0 26.8 16.8	25.1	25.0 25.0 8.0 8.0	18.7	11.8 9.5 h 12.2	8.9 8.9 9.9	n 11.2 h 8.2 12.6	22.2	27.1
ě	1896- 1900.	Bu. 15.9 16.3 16.4 13.8	30.1 25.8 17.1	16.8	24.9 20.3	13.4		11.3 8.2 713.5	k 14. 6 k 13. 1 10. 9	22.0	24.8
Rye.	1891– 1895.	Bu. 15.7 16.9 17.0 14.9	28.9 26.7 17.9	20.02	d 24.7 d 20.8	27.8 16.1 f 12.0	f 12. 1 f 10. 2 10. 3	10.4 8.0 i 8.9	, 9.8 ; 6.8 g 11.6	21.5	26.2
	1886- 1890.	Bu. 15.8 15.6 15.7 13.0	25.4 24.6 16.4	16.1 12.1 b 12.7	22. 0	27.9	99.5	b 9.4 b 4.8	b 10.5	6 22.4 6 22.5	24.1
	1901- 1905.	Bu. 18. 5 17. 9 18. 0 13. 2	34.0 40.2 20.2	28.88.28.28.29.29.29.29.29.29.29.29.29.29.29.29.29.	322. 322. 35.3	6 22. 2 18. 3	13.9 9.0 10.3	13.9 8.8 12.6	$h_{7.9}^{h_{12.8}}$	2,55 0,50 0,80 0,80	31.7 31.7 34.6
at.	1896– 1900.	Bu. 16.3 16.7 16.8 13.0		27.3 a 23.3 c 12.8							
Wheat	1891- 1895.	. Bu. 16.1 19.1 19.3 14.8	27.8 24.5 38.7 17.7	22.33.5	d 28.0 d 28.0 d 28.3	27.9 16.2 f 10.3	f12.9 f 9.2 8.9	7.9			
	1886- 1890.	Bu. 15.9 17.6 17.9 12.6	27.1 21.8 35.8 17.8	21.4 21.4 17.8 b 12.1	Z8. I	24.3	97.9	g 11.1 g 6.8	68.8	623. 623. 4.03.	30.4 30.4 30.4 27.9
	Country.	Austria-Hungary: Austria Hungary Winter Spring	Belgium: Winter Spring Denmark France.	Germany Winter Spring. Italy	Netherlands Winter Spring	Norway. Roumania. Russia (total)	Winter Spring Russia, European	Winter. Spring. Sorvia	Wmber Spring. Spain		United Kingdom Great Britain Ireland

a Average, 1896-1899. b 1890. c 1896. d Average, 1892-1895. e Average, 1902-1905 f Average, 1894-1895. Average, 1888-1890. h Average, 1901-1904. i 1893, j Average, 1897-1900. k Average, 1897-1897.

Commenting on this data, Doctor Rutter has the following to say:

AVERAGE YIELD OF GRAIN.

Wheat.—On comparing the area under wheat in northwestern Europe in 1905 with the average crop during 1901–1905, it appears that the average yield per acre exceeds 25 bushels; in southwestern Europe the average yield is only 16 bushels per acre, and in eastern Europe but 12 bushels. For Europe as a whole the average yield is slightly under 14 bushels per acre.

It appears, therefore, that the average yield per acre is highest where wheat culture is least generally practiced and where the acreage under grain shows the smallest increase. In other words, the extension of the wheat area is most marked where the

average yield per acre is lowest.

This condition holds true as regards individual countries as well as the larger divisions of Europe. The United Kingdom, Belgium, the Netherlands, and Denmark are at the same time the four countries in which the wheat acreage during the last twenty years has shown the largest reduction and the four countries which show the largest yield per acre. In each of these countries the acreage under wheat has fallen at least one-fifth in amount, while in each of them over 30 bushels per acre has been harvested on an average during the last five years.

At the other end of the series stands European Russia, in which the increase in acreage during the twenty years was no less than 60 per cent, while the average yield

per acre was little more than 10 bushels.

Between these two extremes the relation pointed out between yield and acreage has been by no means so constant, but the divergence is not sufficiently marked to affect the general correspondence. In Sweden, for instance, the acreage under wheat has shown a considerable increase, while the average yield per acre is high, nearly 25 bushels per acre. On the other hand, in Spain the low average yield, 13 bushels per acre, has been accompanied by a small increase in the acreage and the crop.

That the extent of wheat_culture should vary inversely as the average yield per acre, or, in other words, that where the results are best the smallest areas are devoted to wheat, seems at first sight paradoxical. It must be remembered that a high average yield, such as shown in the Teutonic countries of Europe, presupposes intelligence on the part of the farmers and valuable land justifying a large outlay of labor and capital. These conditions are much more favorable to the growth of crops requiring intensive cultivation than to grain crops, which give the highest profit when grown on new land on a large scale. Low average yields, if obtained at a low cost of production, produce a greater aggregate profit than can be obtained from grain crops on the smaller tracts in northwestern Europe, where the high price of land necessitates its use in intensive culture. The foregoing table contains unweighted averages of the yearly average yields shown later in the detailed tables.

Rye.—The yield of rye is highest in Belgium, where during the five years 1901–1905 an average of 34 bushels per acre was obtained. After Belgium come Ireland, Denmark, the Netherlands, Norway, and Germany, in all of which an average yield of from 25 to 27 bushels per acre was obtained. The lowest average yield per acre during the same years was obtained in Servia, 10 bushels per acre, while in European Russia the average yield was slightly more than 10 bushels and in Spain 13 bushels per acre.

Barley.—Of barley, as of rye, the highest average yield per acre during the last five years was obtained in Belgium, in which more than 50 bushels per acre was grown on an average, while the average yield of winter barley alone was 52 bushels per acre. In the Netherlands the average yield was only slightly lower, amounting to 51 bushels per acre for winter barley and 48 bushels for barley of both kinds. Outside of these two countries barley is grown principally as a spring crop; and if that variety alone be considered, Ireland, with 42 bushels per acre, shows the highest average yield. In Germany, Denmark, and Great Britain the average yield per acre is 34 bushels. The lowest average yields per acre recorded are shown by the statistics of European Russia and Servia, according to which but 14 bushels per acre were raised during each of the five years under review.

Oats.—Belgium records an average yield of oats during the five years 1901–1905 of no less than 65 bushels per acre, while Ireland produced 57 bushels and the Netherlands 54 bushels. The smallest average yield per acre recorded is that of Servia, where only 15 bushels were obtained, and European Russia with 20 bushels.

Corn.—The variations in the average yield per acre of corn are far less marked than the variations in the grains already considered. The almost total absence of its culture from any country included in the northwestern division eliminates the very countries where intensive culture is practiced. The highest yield recorded in 1901–1905 was 22½ bushels per acre in Spain, while the lowest, between 13 and 14 bushels, was obtained in Roumania, Servia, and European Russia.

Considering the average yield of grain in five-year periods in the above table and the yearly yields from which this is made up, as given in the accompanying tables, and bearing in mind what has been said regarding the great fluctuations due to seasonal variations in climate, it may safely be said that the figures give no evidence of decreased productivity of the older soils of Europe in the past twenty-five years. From the more meager information which we have concerning production during earlier periods and the opinions of European writers who have especially investigated this subject from actual farm records, it would seem that there has been a decided tendency toward increased production; and this has resulted mainly from better methods of soil management, as the use of commercial fertilizers is modern in Europe as it is in this country.

Acreage and yields of cereals in Austria, 1884-1906, by years.

	Whea	at.	Rye		Oat	S.	Barle	y.	Cor	n.
Year.	Area.	Average yield.	Area	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Aver- age yield.
1884 1885 1886 1887 1888 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1901 1902 1903 1904 1905 1906	Acres, 2,735,600 2,950,600 2,950,600 2,970,800 2,876,500 2,930,000 2,835,000 2,747,900 2,780,400 2,746,500 2,713,000 2,766,500 2,713,000 2,615,100 2,615,100 2,632,400 2,643,400 2,643,400 2,643,400 2,643,400 2,643,400 2,643,400 2,754,900 2,754,900 2,754,900 2,754,900 2,754,900 2,754,900 2,754,900 2,752,300 2,880,400	Bush. 15.5 16.0 15.0 18.0 17.4 13.9 15.1 14.4 17.8 15.4 16.0 13.2 18.0 19.0 19.0 15.5 16.7 19.0 19.0 19.0 10.2	Acres: 4,896,900 4,928,400 4,970,100 4,970,100 4,979,200 4,974,500 4,974,500 4,941,600 4,794,800 4,865,800 4,822,000 4,477,200 4,537,800 4,543,600 4,543,600 4,543,600 4,474,400 4,527,300 4,474,400 4,527,300 4,465,600 4,476,600 4,466,600 4,760,200 4,4864,600 4,997,200	Bush. 15.1 15.7 14.9 18.0 16.1 14.2 16.0 17.0 15.9 17.2 14.5 16.3 13.9 17.7 18.7 18.0 16.9 18.2 19.9	Acres. 4, 532, 900 4, 519, 600 4, 616, 300 4, 632, 600 4, 639, 900 4, 639, 300 4, 630, 100 4, 679, 300 4, 628, 700 4, 643, 400 4, 817, 600 4, 737, 500 4, 622, 400 4, 632, 800 4, 633, 500 4, 647, 500 4, 622, 400 4, 528, 000 4, 530, 500 4, 501, 500 4, 529, 200	Bush. 26. 4 22. 9 27. 3 25. 1 25. 1 18. 9 24. 9 25. 7 7 26. 9 21. 0 26. 0 26. 1 3 21. 5 27. 4 30. 2 25. 2 5. 6 27. 7 28. 3 24. 3 27. 7 34. 1	Acres. 2, 655, 600 2, 882, 300 2, 798, 900 2, 798, 900 2, 795, 800 2, 797, 800 2, 797, 800 2, 797, 600 2, 797, 400 2, 806, 900 2, 747, 000 2, 949, 500 2, 939, 100 2, 939, 100 2, 991, 900 2, 997, 600 2, 997, 600 2, 998, 900 2, 999, 900	Bush. 19.8 18.4 19.9 21.7 21.5 16.9 20.6 20.2 23.6 19.4 17.6 22.0 24.9 20.2 22.4 24.6 24.8 22.8 24.0 26.1	895, 300 908, 500 887, 300 887, 300 993, 700 897, 300 993, 700 907, 800 886, 400 806, 000 829, 700 841, 500 827, 800 827, 800 820, 700 836, 200 836, 200	Bush. 18.3 22.2 21.5 18.6 17.8 21.4 21.2 21.8 17.0 21.9 20.7 18.0 19.5 17.5 18.7 21.4 16.4 19.5 15.0 20.1 20.7

The official records for Austria are continuous from 1884 to 1906, twenty-three years. They show a remarkable uniformity in acreage in wheat, rye, oats, barley, and corn, and no evidence of decrease in productivity in any of these crops.

Acreage and yields of cereals in Hungary, 1883-1906, by years.

	Whe	it.	Rye		Oat	5.	Barle	Y-	Corn	
Year.	Area.	Average yield.	Area.	Aver- age yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1883 1884 1885 1886 1886 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1904 1905 1904 1905 1905 1906 1905 1906 1907 1907 1908 1909 190	Acres. 6, 438, 300 6, 797, 800 7, 172, 100 7, 229, 800 7, 277, 500 7, 636, 800 7, 824, 300 7, 929, 700 8, 648, 500 8, 648, 500 8, 304, 800 8, 311, 200 7, 444, 800 8, 160, 100 8, 438, 000 8, 483, 900 9, 131, 300 9, 197, 700 9, 131, 300 9, 197, 700 9, 197, 700 9, 197, 700	Bush.a 14. 1 15. 8 16. 6 15. 0 20. 8 19. 5 12. 9 19. 8 18. 4 18. 5 19. 5 19. 7 17. 17. 1 17. 8 17. 3 15. 2 20. 4 19. 1 16. 1 18. 5 21. 8	Acres. 2,714,900 2,729,400 3,061,200 3,045,900 3,045,900 2,992,000 2,931,900 2,942,600 2,798,500 2,978,500 2,978,500 2,977,200 2,807,200 2,691,300 2,735,400 2,755,100 2,755,000 2,803,700 2,803,700 2,803,700 2,803,700 2,803,700 2,803,700 2,803,700 2,803,700 2,803,700 2,803,700 2,801,800 2,802,800	Bush.a 14. 8 15. 7 14. 7 13. 4 17. 9 15. 1 14. 1 16. 5 17. 9 19. 5 16. 7 18. 2 13. 5 16. 9 17. 7 18. 2 18. 6 19. 0 19. 4	Acres. 2, 453, 000 2, 457, 800 2, 841, 600 2, 876, 400 2, 876, 400 2, 876, 400 2, 876, 400 2, 722, 300 2, 714, 700 2, 692, 600 2, 714, 700 2, 503, 600 2, 540, 600 2, 540, 600 2, 540, 400 2, 540, 400 2, 547, 300 2, 674, 700 2, 450, 400 2, 674, 300 2, 674, 300 2, 679, 400 2, 776, 500 2, 703, 700 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300 2, 759, 300	Bush.a 20.9 23.2 20.9 20.9 20.8 23.0 21.2 26.7 21.1 25.2 24.3 29.2 30.1 29.6 31.4 24.3 33.3 33.3 28.5 27.6 33.3 34.1 25.0 30.5 33.4	Acres. 2, 402, 600 2, 459, 600 2, 757, 100 2, 751, 100 2, 759, 100 2, 590, 100 2, 645, 800 2, 645, 800 2, 743, 500 2, 749, 600 2, 749, 600 2, 666, 200 2, 666, 200 2, 583, 600 2, 667, 700 2, 681, 400 2, 667, 700 2, 683, 800 2, 693, 800 2, 693, 800 2, 748, 800 2, 693, 800 2, 748, 800 2, 693, 800 2, 748, 800 2, 748, 800 2, 693, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800 2, 746, 800	Bush.a 16. 4 19.0 20.6 14.7 21.9 18.3 13.7 20.8 20.8 19.7 24.4 24.0 17.6 24.0 21.9 21.9 19.8 24.3 24.9 26.3	Acres. 4,507,500 5,396,000 5,396,000 5,502,400 5,398,900 5,585,600 5,589,000 6,031,000 5,941,500 6,049,200 5,793,100 6,161,900 6,161,900 6,392,200 6,392,200 6,387,800 6,387,800 6,387,800 6,389,100 6,389,100 6,389,100 6,389,100 6,389,100 6,389,200 6,389,100 6,389,200 6,385,400 6,385,400 6,385,400 6,385,400 6,385,400	Bush.a 19. 4 19. 7 22. 3 17. 7 15. 9 20. 1 20. 5 18. 4 27. 7 21. 9 25. 8 14. 0 26. 5 24. 7 20. 5 24. 7 20. 1 22. 9 23. 1 19. 1 24. 2 22. 9 23. 1 18. 0 28. 0

a Prior to 1893, Winchester bushels.
b Including maslin in Hungary proper.

The records for Hungary from 1883 to 1906, twenty-four years, show an increasing acreage in wheat and corn of, roughly, 33 and 50 per cent, respectively, and a practically constant acreage in rye, oats, and barley. There is no evidence of decreased productivity of any of these crops, but on the contrary fair evidence of increased productivity.

Acreage and yields of cereals in Belgium, 1880-1905, by years.

	v						,	0 0		
		Wheat.		Rye		Oats	5.		Barley.	
Year.	1 1100	Average	yield.	A mag	Aver-	A maa	Aver-	A was	Average	e yield.
	Area.	Winter.	Spring.	Area.	age yield.	Area.	age yield.	Area.	Winter.	Spring.
1880. 1881. 1882. 1883. 1884. 1885. 1886. 1887. 1888. 1889. 1891. 1892. 1893. 1894. 1895. 1898. 1898. 1899. 1900. 1901. 1902. 1902. 1903.	Acres. 6S1, 800 666, 000 650, 000 635, 000 619, 000 557, 000 5572, 000 5540, 000 5540, 000 477, 000 4415, 700 440, 000 423, 000 423, 000 407, 700 400, 700 415, 700 400, 700 415, 700 303, 200 402, 500	Bush. 26. 6 22. 4 25. 7 25. 0 25. 9 27. 5 27. 0 29. 8 21. 9 28. 6 23. 0 31. 2 27. 7 28. 4 28. 8 30. 7 26. 9 31. 7 26. 2 33 34 34 34 35 300	.5 .9 .7	Acres. 686, 100 687, 000 688, 000 689, 000 690, 000 691, 000 692, 000 693, 000 694, 000 695, 000 696, 000 697, 000 697, 000 698, 000 662, 000 644, 000 625, 000 620, 000 620, 000 630, 000 630, 000 644, 000 625, 000 639, 000 645, 000 620, 000 639, 000 639, 000 645, 000 639, 000 639, 000 639, 000 639, 000 639, 000 639, 000	Bush. 26.5 20.9 26.0 9 26.0 1 22.4 26.1 7 21.7 7 21.7 26.6 7 22.4 33.3 3 28.0 30.5 30.4 32.3 29.5 5 29.6 26.5 32.8 34.1 34.2 7 34.4 32.4 4 32.4	Acres, 616,500 616,000 616,000 616,000 616,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 615,000 617,000 618,000 619,000	Bush. 48. 6 38. 7 44. 5 41. 1 45. 4 46. 4 42. 0 50. 1 49. 2 35. 1 55. 8 46. 4 55. 8 66. 8 53. 3 62. 6 65. 9 70. 5 68. 5 61. 1	Acres. 99, 300 99, 300 99, 300 99, 300 99, 300 99, 300 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 400 99, 8000 97, 000 96, 000 94, 600 93, 900 95, 800 95, 800 94, 400	Bush. 36.0 35.4 38.6 37.6 42.3 39.3 42.7 39.3 43.9 35.1 40.4 45.4 34.3 44.9 38.8 40.6 44.6 37.3 342.2 42.3 50.5 51.5 52.4 49.4	. 3 . 9 . 2

The records for Belgium are continuous from 1880 to 1905, twenty-six years, with a decrease of about one-third in the area in wheat, and a nearly constant acreage in rye, oats, and barley, with no indication of decreased productivity for any of these crops.

Acreage and yields of cereals in Denmark, 1883–1905, by years.

	Wh	eat.	R	ve.	Oat	ts.	Bar	ley.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
	Acres.	Bush.a	A cres.	Bush.a	A cres.	Bush.a	Acres.	Bush.a
1883		33.9	670, 700	26. 4	1,010,500	30. 2	769,800	27. 1
1884		36.0	675, 400	24. 7	1,019,900	30. 4	763, 100	27. 2
1885		40. 1	680,000	26. 3	1,027,400	33.1	756, 400	27. 6
886		37. 7	684, 700	24. 2	1,035,800	34. 1	749, 800	31.0
1887		43. 7	689, 300	25.0	1,044,300	30. 5	743, 100	29. 4
1888		27. 4	694,000	23. 6	1,052,700	33. 7	736, 400	30. 1
889		36. 3	697,000	26. 0	1,056,900	26.5	730, 800	25. 5
890		33. 9	700, 100	24.3	1,061,000	35. 2	725, 100	32. 3
1891		_39. 1	703, 100	27. 8	1,065,200	32. 3	719,500	31. 5
1892		41.6	706, 100	28. 9	1,069,300	38.1	713, 800	34. 6
1893		39. 3	709, 100	27. 7	1,073,500	25. 9 35. 6	708, 200	24. 4 30. 3
1894		34. 8 38. 8	712, 200	23. 4 25. 7	1,077,600 1,081,700	37. 2	702,500 696,900	31. 3
1895		43. 4	715, 200	28. 0	1,085,900	35, 5	691, 200	30. 7
1896		40. 9	718, 200	25. 2	1,035,900	32. 4	,	27. 7
1897 1898		35. 2				38. 2		31. 6
1899		43. 0		25. 6		34. 1		31. 4
1900		42. 4		27. 8		37. 1		33. 0
1901		29. 2	673, 400	24. 7	1,069,100	35. 0	695, 300	32. 0
		14.7)	27. 9	1,000,100	38.6)	35. 5
1902		44. 1		28. 6		39.0		35. 5
1903	}b101,200	42.5	b674, 300	24. 5	b1, 057, 100	36.1	b656, 600	34. 6
1905		40.3		28.5	1	30. 9		32. 2

a Winchester bushels.

The estimates of the yield per acre for Denmark are continuous from 1883 to 1905, twenty-three years, and show no tendency to decline. The record of area is not complete, but indicates a considerable decrease for wheat and a fairly constant area in rye, oats, and barley.

Acreage and yields of cereals in France, 1883–1906, by years.

	Whea	t.	Rye		Oats		Barle	у.	Corn	
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1883. 1884. 1885. 1886. 1887. 1888. 1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897.	Acres. 16, 812, 500 17, 426, 300 17, 426, 300 17, 190, 400 17, 189, 000 17, 216, 900 17, 243, 200 17, 393, 600 14, 220, 400 17, 447, 800 17, 276, 200 17, 301, 400 16, 976, 900 16, 268, 800 17, 207, 600	Bush. 17. 3 18. 6 18. 2 17. 6 18. 6 16. 0 17. 6 19. 0 15. 2 18. 0 15. 9 19. 6 20. 0 14. 9 21. 2	Acres. 4, 249, 400 4, 263, 800 4, 133, 900 4, 013, 700 4, 024, 900 3, 952, 400 3, 952, 400 3, 781, 000 3, 844, 300 3, 789, 400 3, 787, 100 3, 587, 300 3, 644, 600 3, 644, 600	Bush. 16. 4 17. 3 16. 6 15. 8 16. 6 15. 5 16. 5 17. 4 16. 4 1 . 6 17. 0 19. 5 19. 0 18. 8 13. 3 18. 4	Acres. 9, 215, 700 9, 135, 700 9, 137, 200 9, 127, 200 9, 192, 600 9, 192, 600 9, 227, 500 9, 287, 500 9, 342, 300 10, 483, 900 9, 421, 700 9, 591, 100 9, 507, 400 9, 677, 300 9, 860, 800 9, 806, 800	Bush. 32. 9 31. 22 30. 7 31. 5 28. 2 29. 3 29. 6 32. 6 32. 6 32. 6 28. 5 7 30. 7 31. 2 30. 6 25. 7 33. 5	Acres. 2, 633, 000 2, 613, 100 2, 361, 400 2, 339, 300 2, 309, 000 2, 158, 500 3, 022, 500 2, 168, 400 3, 022, 500 2, 161, 300 2, 200, 000 2, 110, 000 2, 110, 900 2, 112, 600	Bush. 22. 5 21. 7 21. 7 22. 6 21. 7 20. 8 21. 2 23. 0 24. 7 21. 2 16. 6 22. 6 22. 5 19. 6 24. 1	Acres. 1,556,500 1,523,800 1,386,000 1,357,400 1,379,600 1,379,700 1,379,700 1,377,900 1,381,100 1,402,200 1,428,900 1,444,400 1,442,400 1,442,400 1,445,500	Bush. 17.7 18.4 18.4 18.7 21.6 20.0 18.9 17.4 19.5 18.8 19.4 18.3 21.2 21.2 21.2
1899 1900 1901 1902 1903 1904 1905 1906	17, 149, 500 16, 961, 400 16, 787, 700 16, 219, 200 16, 009, 200 16, 133, 200 16, 085, 800 16, 103, 200	21. 3 19. 2 18. 5 20. 2 22. 7 18. 6 20. 8 20. 4	3, 679, 100 3, 508, 300 3, 489, 400 3, 290, 800 3, 205, 500 3, 144, 300 3, 136, 900 3, 095, 100	18. 3 16. 9 16. 7 13. 9 18. 1 16. 8 18. 7 16. 4	9, 734, 200 9, 739, 400 9, 601, 700 9, 469, 400 9, 498, 100 9, 475, 500 9, 420, 100 9, 525, 600	31. 6 29. 3 26. 5 33. 8 36. 3 30. 7 32. 5 31. 0	1, 992, 300 1, 871, 100 1, 838, 700 1, 714, 700 1, 722, 500 1, 741, 300 1, 746, 200 1, 752, 800	23. 7 22. 6 21. 8 25. 4 26. 2 22. 6 24. 1 21. 6	1, 386, 400 1, 337, 300 1, 351, 900 1, 242, 000 1, 239, 500 1, 224, 600 1, 241, 400	18. 5 16. 8 19. 9 20. 3 20. 8 16. 2 19. 6

b Area returned by the census of 1901 as intended for the crop named at the time of fall planting; the area actually harvested in 1901, owing to the failure of the wheat crop, differed considerably from these figures.

The records for France are continuous for corn from 1883 to 1905, and for the other crops from 1883 to 1906, twenty-four years. The area in wheat, oats, and corn has been fairly constant, while that in rye and barley has considerably decreased. The yield per acre for none of the crops shows any tendency to decrease during this period. From the long-time records from 1815 to 1876, in a table on page 14, as taken from the official report of the French minister of agriculture and antedating this period of twenty-four years, there had been a considerable increase in productivity of the soils of France, particularly prior to 1860.

Acreage and yields of cereals in Germany, 1883-1906, by years.

	Whe	at.	Rye	е.	Oat	s.	Barle	ey.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
883	Acres. 4,760,300 4,755,400 4,742,600 4,743,600 4,743,600 4,743,600 4,743,600 4,777,300 4,881,700 4,881,900 5,051,100 4,881,900 5,051,100 4,883,900 4,771,200 4,761,400 4,866,200 5,063,500 5,063,500 4,725,200 4,466,300 4,783,300 4,762,000 4,783,300	Bush. 18. 2 19. 2 20. 2 20. 7 21. 9 19. 5 18. 0 21. 5 18. 4 23. 8 24. 8 24. 8 25. 0 24. 4 26. 4 27. 9 23. 5 30. 3 29. 5 28. 5 30. 3 30. 3	Acres. 14,399,000 14,447,200 14,435,500 14,428,200 14,365,300 14,366,300 14,366,300 14,366,300 14,366,300 14,366,300 14,566,600 14,563,300 14,744,100 14,600,800 14,744,100 14,567,600 14,750,600 14,715,000 15,208,100 15,208,100 15,308,100 15,186,000	Bush. 15.4 14.9 15.9 16.6 17.4 15.1 14.7 16.1 13.9 19.2 23.7 22.0 20.9 22.7 21.8 24.2 23.5 22.9 22.4 6 26.3 24.9 25.1	A cres. 9, 323, 700 9, 336, 400 9, 337, 400 9, 406, 100 9, 415, 300 9, 647, 000 10, 266, 400 9, 633, 800 9, 634, 300 9, 634, 300 9, 634, 300 9, 638, 400 9, 638, 400 9, 853, 800 10, 187, 600 10, 187, 600 10, 187, 600 10, 100, 302, 303, 000 10, 322, 900 10, 334, 000 10, 334, 000 10, 334, 000	Bush. 27. 6 31. 4 32. 1 1 35. 6 31. 5 6 31. 5 6 31. 5 4 32. 1 1 35. 4 35. 4 32. 29. 8 46. 8 46. 8 46. 8 46. 6 50. 1 51. 2 46. 2 43. 6 55. 7	Acres. 4,326,500 4,287,900 4,305,500 4,278,600 4,277,700 4,163,700 4,112,300 4,164,400 4,102,500 4,123,000 4,176,300 4,176,300 4,176,300 4,177,500 4,116,800 4,102,200 (a)	Bush. 22. 23. 24. 4. 25. 25. 26. 26. 27. 33. 31. 30. 29. 32. (a)

a Not estimated officially.

The records compiled by the bureau of statistics for Germany cover the period from 1883 to 1906, twenty-four years. The area in rye and oats appears to have slightly increased, and that in wheat to have been constant. The estimates for barley are given only until 1898. The yields of wheat, rye, oats, and barley show no tendency to decrease, but, on the contrary, indicate a considerable general increase in productivity, agreeing with opinions, quoted above, of those who have looked into the matter of individual farm records that the productivity of the soils in Germany has increased considerably within historic times. There is certainly no evidence to show a general decrease in productivity.

Acreage and yields of cereals in Italy, 1883–1905, by years.

	Whea	ıt.	Ry	e.	Oat	s.	Barl	ley.	Corr	ı.
Year.	Area.	Average yield.	. Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1883 b 1884	A cres. 10, 956, 600	Bush.a 12.1	A cres. 395, 400	Bush.a 13.2	A cres, 1, 079, 900	Bush.a 17.0	A cres, 835, 200	Bush,a 13.1	A cres, 4,675,200	Bush.a 18.0
1886 1887										
1889 1890 1891 1892	10,889,900 11,124,600 11,193,800	12. 1 12. 7 10. 3	348, 400 350, 900 355, 800	12.7 13.1 11.9	1,119,400 1,107,000 1,112,000	17. 0 18. 0 15. 5	820, 400 761, 100 773, 400	13. 4 12. 7 10. 3	4,724,600 4,709,800 4,702,400	15. 9 15. 4 15. 3
1893 1894 1895	11, 258, 100 11, 302, 500 11, 349, 500	12. 0 10. 8 10. 4 12. 8	358, 300 350, 900 338, 600	12.6 12.3 11.8	1, 131, 700 1, 151, 500 1, 171, 300	16. 1 14. 8 16. 4	798, 100 748, 700 733, 900 761, 100	9. 9 11. 1 10. 1 13. 2	4,744,400 4,697,400 4,835,800 4,833,400	17. 4 12. 7 14. 6 16. 5
1897 1898 1899	11,319,000									
1900 1901 1902 1903	11,910,400 11,737,400 11,984,500	13.8 11.6 15.4							4,336,700 4,200,800 4,171,100	23. 2 16. 9 21. 3
1904 1905	13, 336, 200 13, 134, 300	12.6 12.2							4, 796, 800 4, 845, 500	19. 5 20. 2

a Winchester bushels.

The records for Italy from 1883 to 1905 are fragmentary. So far as they go they give no indication of a decline in productivity.

Acreage and yields of cereals in the Netherlands, 1883-1905, by years.

	Whe	at.	Ry	е,	Oat	s.	Barl	ey.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1883	177, 500 157, 800 134, 600 152, 400 137, 200 133, 600	Bush.a 26.3 26.9 30.2 26.3 32.7 25.1 30.7 25.9 24.2 29.3 28.4 26.1 28.0 32.8 27.9 29.9 28.7 29.6 31.4 33.5 31.0 33.1	Acres. 493,000 498,500 503,800 503,400 504,100 501,500 501,500 495,800 514,700 519,100 531,100 528,900 532,900 539,300 534,000 541,700	Bush.a 22.0 21.3 23.0 21.3 27.3 19.7 22.6 22.1 18.3 25.1 24.8 23.9 24.7 25.6 22.6 25.8 24.5 25.8 25.8 25.9 25.3	Acres. 295, 200 278, 300 283, 100 285, 300 281, 900 284, 100 284, 300 377, 400 312, 200 327, 400 314, 100 316, 800 324, 700 324, 700 334, 400 339, 800 357, 100 357, 100 357, 100 357, 100	Bush.a 38.7 40.5 46.1 48.8 42.5 44.5 47.1 46.6 49.1 48.0 39.5 46.1 48.3 48.7 52.9 50.7 53.3 55.3 56.6 56.3 52.0 49.3	Acres, 120,000 116,400 122,600 110,100 111,400 111,100 101,700 104,400 103,500 94,900 95,700 97,200 88,800 87,000 87,000 94,400 95,700 94,400 95,700 96,100 96,300 97,300 98,900 97,300	Bush.a 42.6 42.0 44.7 42.8 47.0 38.3 44.2 39.8 40.0 46.3 46.1 38.2 41.8 47.0 41.6 43.9 45.2 48.5 43.7 51.6 48.5 47.2 49.1

a Winchester bushels.

The records for the Netherlands are complete from 1883 to 1905, twenty-three years. The yields give no indication of decline. The

b Average, 1879-1883.

area in wheat and barley has decreased considerably; that in rye and oats appears to have slightly increased.

Acreage and yields of cereals in Roumania, 1886-1906, by years.

	Whea	t.	Rye	•	Oats		Barle	γ.	Corn	
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1886 1887 1888 1888 1889 1891 1892 1893 1894 1895 1896 1897 1898 1898 1899 1900	Acres. 2,903,700 2,791,500 3,104,400 3,310,900 3,730,500 3,811,600 3,696,900 3,221,200 3,441,300 3,553,400 3,719,400 3,591,900 3,927,700	Bush.a 11.9 17.0 18.6 15.1 13.9 12.7 17.3 18.9 12.7 19.3 19.1 9.2 16.3 14.4	Acres. 570, 800 586, 600 743, 500 424, 500 301, 200 328, 900 395, 400 537, 600 601, 500 582, 600 477, 100 405, 900	Bush,a 11, 2 13, 0 19, 7 13, 5 11, 4 12, 9 14, 1 21, 8 14, 6 17, 2 20, 3 11, 7 16, 0 4, 2 14, 8	Acres. 560,700 582,200 528,600 483,800 441,100 456,900 557,700 622,300 649,100 668,500 696,500 712,000 756,000 766,500 630,800	Bush,a 17.5 21.2 20.4 13.6 17.2 16.9 19.8 24.8 15.4 15.5 21.1 13.8 23.0 8.2 13.8	$\begin{array}{c} 1,371,200\\ 1,504,600\\ 1,251,600\\ 1,263,900\\ 1,280,200\\ 1,299,500\\ 1,384,300\\ 1,467,600\\ 1,381,900\\ 1,365,600\\ 1,501,700\\ 1,673,400\\ 1,673,400\\ 1,678,200\\ 1,578,200\\ 1,578,200\\ 1,578,200\\ 1,584,500\\ \end{array}$	Bush,a 10. 6 12. 4 18. 4 12. 5 12. 6 17. 1 14. 9 24. 4 12. 2 16. 4 21. 2 12. 7 18. 3 2. 9 13. 5	Acres. 4, 234, 400 4, 560, 600 4, 283, 500 4, 307, 300 4, 184, 200 4, 502, 500 4, 560, 300 4, 791, 500 4, 583, 500 5, 238, 800 5, 029, 200	Bush.a 17. 1 10. 7 14. 7 15. 6 14. 1 14. 3 20. 5 16. 0 6. 8 15. 6 13. 7 17. 4 19. 5 5. 6 16. 9 22. 2
1901	4,044,000 3,673,200 3,967,600 4,254,700 4,838,900 4,998,500	17. 9 20. 8 18. 6 12. 6 21. 4 22. 8	522, 400 427, 000 390, 500 330, 900 398, 300 454, 500	18.3 16.3 18.3 6.7 33.7 19.6	655,100 793,500 1,054,500 1,052,000 921,000 943,700	25. 2 27. 6 29. 8 12. 0 20. 6 27. 7	1,244,700 1,254,700 1,311,900 1,320,100 1,306,600 1,380,600	19. 5 19. 7 22. 7 8: 8 21. 9 24. 3	5,258,400 5,391,500 5,120,200 5,173,800 4,882,200 5,144,500	12. 7 15. 7 15. 7 3. 8 12. 1 25. 4

aWinchester bushels.

The records for Roumania, one of the oldest agricultural countries of Europe, are complete from 1886 to 1906, twenty-one years. The area in wheat, oats, and corn has considerably increased, while that for rye and barley has remained fairly constant. The yields have varied considerably from season to season, thus wheat yielded only 6.3 bushels in 1899, but gave 22.8 bushels in 1906. Rye gave only 4.2 bushels in 1899, but gave 33.7 bushels in 1905. Oats gave 8.2 bushels in 1899, but gave 29.8 bushels in 1903. Barley gave only 2.9 bushels in 1899, but gave 24.4 bushels in 1893 and 24.3 bushels in 1906. Corn gave only 3.8 bushels in 1904 and 5.6 bushels in 1899, but gave 25.4 bushels in 1906. There is no indication whatever of any systematic decline in productivity during this period of twenty-one years, but, on the contrary, the indications are that there has been an increase.

Acreage and yields of cereals in Russia, 1883–1905, by years.

	Whea	Rye.		Oats		Barley	7.	Corn.		
Year.	Area.	Average yield.	Area.	Aver- age yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1883 1884	Acres.	Bush. [7.9 9.3	Acres.	Bush. 8.5	Acres.	Bush. [16.5]	Acres.	Bush.	Acres.	Bush. [13.1 11.0
1885 1886 1887	28,879,300	6.2 5.7 9.7	64,604,600	$ \left\{ \begin{array}{l} 10.9 \\ 10.3 \\ 11.5 \end{array} \right. $	34,882,800	$ \left\{ \begin{array}{l} 11.2 \\ 16.3 \\ 17.7 \end{array} \right. $	12,441,600	$ \left\{ \begin{array}{l} 8.1 \\ 10.7 \\ 13.5 \end{array} \right. $	1,487,800	11.6 15.3 8.7
1888 1889 1890 1891	30,601,300	$ \left\{ \begin{array}{c} 10.3 \\ 6.5 \\ 6.5 \\ 5.2 \end{array} \right. $	68,936,000	$ \left\{ \begin{array}{c} 10.9 \\ 8.3 \\ 9.2 \\ 6.8 \end{array} \right. $	36, 590, 800	$ \begin{cases} 15.4 \\ 14.3 \\ 15.7 \\ 12.4 \end{cases} $	14,397,800	$ \begin{cases} 12.7 \\ 8.9 \\ 11.0 \\ 9.4 \end{cases} $	(a)	(a)
1892 1893 1894 1895	32, 440, 700 32, 434, 000 32, 852, 200 31, 894, 300	7. 1 10. 9 10. 3 9. 2	63, 200, 300 61, 961, 900 63, 230, 200 62, 595, 300	8. 8 11. 1 12. 8 11. 5	34, 100, 200 33, 138, 000 32, 846, 500 33, 973, 300	13. 7 21. 2 21. 4 19. 8	15,485,900 15,787,200 15,756,200 15,808,600	10. 9 18. 8 15. 0 13. 3	2,258,600 2,089,600	18. 0 9. 3 13. 0
1896 1897 1898	34,848,300 35,606,400 36,007,500	8. 6 6. 7 9. 3	62, 595, 500 64, 238, 400 62, 646, 600 62, 283, 400	10. 9 9. 1 10. 2	35,571,600 36,206,500 35,658,500	18.8 15.1 15.7	15,808,600 16,860,000 17,218,800 17,589,800	12. 4 11. 8 14. 5	1,917,600 2,184,000 2,211,500 2,351,600	7. 9 20. 6 16. 8
1899 1900 1901 1902	38,045,200 39,966,900 41,921,000 42,590,200	8.3 8.0 7.6 10.9	63, 405, 600 65, 738, 400 65, 950, 300 65, 871, 400	12.7 12.6 10.3 12.3	36,112,400 37,399,300 37,999,800 37,252,400	23. 3 19. 9 13. 9 21. 7	17, 460, 300 17, 585, 400 18, 128, 100 18, 224, 400	10. 3 10. 6 10. 4 15. 1	2,406,100 2,709,400 2,701,100 2,860,700	9. 4 9. 4 22. 5 14. 1
1903 1904 1905	43,753,200 45,635,300 48,071,200	10. 4 11. 4 9. 4	66,511,200 65,643,600 64,689,600	12. 1 13. 6 9. 7	37,590,400 37,783,100 38,605,700	17. 3 26. 6 19. 9	19,247,000 20,069,200 20,236,000	15. 1 14. 5 13. 5	2,760,000 2,901,300 2,870,400	14.6 6.5 7.9

a Statistics corresponding to those of production not available.

The records for Russia are complete, so far as the yields per acre are concerned, from 1883 to 1905 for wheat, rye, oats, and barley, but incomplete for the yield of corn and for the acreage in all the crops. So far as can be seen, the acreage in most of the crops has increased and there is no indication of a decline in productivity.

Acreage and yields of cereals in Servia, 1893-1906, by years.

	Whe	at.	Ry	e.	Oats	S.	Barle	ey.	Cori	n.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	A verage yield.	Area.	Average yield.	Area.	Average yield.
1893. 1897. 1898. 1899. 1900. 1901. 1902. 1903. 1904. 1904. 1905. 1906.	Acres. 783,500 691,300 695,900 997,900 766,100 753,200 804,600 860,100 905,400 919,600 921,400	Bush. 11. 1 19. 4 14. 0 11. 7 10. 6 10. 8 14. 2 12. 7 12. 9 12. 3 14. 3	Acres. 147,800 91,900 111,700 146,100 87,900 93,300 98,400 105,100 111,500 117,500 120,200	Bush. 8. 9 20. 7 14. 2 11. 4 7. 7 9. 5 11. 0 10. 4 9. 2 9. 4 13. 0	Acres. 261,800 247,300 235,100 250,100 210,600 226,200 248,100 259,100 259,100 258,200 261,500	Bush. 12. 5 39. 6 27. 4 19. 8 12. 7 14. 8 16. 3 16. 4 12. 2 13. 7 17. 7	Acres. 227,600 185,200 237,200 281,400 184,900 195,000 217,900 234,900 244,700 266,300 270,200	Bush. 11.1 22.9 16.9 13.8 12.2 12.1 16.0 14.6 12.9 13.8 17.6	Acres. 1,314,100 1,107,900 1,235,700 1,148,500 1,251,500 1,251,500 1,296,400 1,319,100 1,336,600 1,365,300 1,354,500	Bush. 13.8 30.8 22.8 19.2 16.1 15.1 14.2 14.8 7.1 15.5 20.7

The records for Servia are available only from 1893 to 1906. The acreages in wheat, rye, oats, barley, and corn are fairly constant, while the yields show at least no decrease.

The same holds true for Spain with wheat, rye, barley, oats, and corn from 1890 to 1905, with some omission of yearly data; for Sweden with wheat, rye, oats, and barley from 1890 to 1905; and for Switzerland with wheat, rye, and barley from 1888 to 1905.

Acreage and yields of cereals in Spain, 1890-1905, by years.

	Whe	at.	Rye		Barle	Σ.	Oats	S.	Corn	n.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1890	Acres. 8,558,200	Bush.a 8.8	Acrεs. 1,709,200	Bush.b 10.5	Acres. 3,787,100	Bush.b	Acres.	Bush.b	Acres. 660,300	Bush.b 24.3
1892 1893	8, 366, 800 7, 954, 200	10. 4 11. 8								21.0
1895	8, 252, 100 7, 855, 900	13.3	1,518,100	11.5 11.7	2,518,200	23.0 17.7	730,100	17.0	826,000	23. 1
1596	7.825,200	10.1	1, 488, 000 1, 674, 200	9.2	2, 429, 300 2, 360, 600	13.8	653,600 683,100	13. 6 11. 5	793, 800 993, 300	19.8
1897	9,532,600 9,543,100	9. 7 13. 1	1,911,800 1,775,800	9.9 11.9	3, 109, 400 3, 689, 900	14.7 19.7	874, 800 938, 000	26. 5 18. 1	1.095,500 1,036,000	18.0 14.7
1899	9,052,500 9,559,700	10.8 10.5	1,848,800 1,799.000	11.5 11.9	3, 465, 200 3, 432, 400	15. 6 16. 5	932,000 937,200	16. 2 17. 5	1,160,200 1,175,700	22. 1 22. 1
1901 1902	9,172,300 9,150,100	14.9 14.6	1,969,000 1,937,900	14. 4 13. 5	3,301,200 3,599,900	24. 2 22. 6	944.200 1,111,800	24.1 21.0	1.156,100 1,142,700	22. 3 22. 1
1903	8,983,500 9,023,000	14. 4 10. 6	1.930,800	11. 7 9. 1	3,539,800 3,413,900	18. 2 15. 8	1,115,900 1,103,400	20.6 16.7	921,000 1,072.600	20. 4 19. 8
1905	8,879,200	10.4	1,854,200	14.3	3, 336, 200	13.8	1,119,400	19.9	1,148,900	27.7

Acreage and yields of cereals in Sweden, 1890-1905, by years.

	M.P	eat.	Ry	e.	Oa	ts.	Bar	ley.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900. 1900. 1901. 1902. 1903. 1904.	Acres. 174, 400 175, 400 176, 300 174, 700 175, 100 175, 800 178, 100 182, 800 186, 400 192, 500 202, 400 200, 600 199, 900 205, 700	Bush.a 23.2 24.7 24.6 22.3 24.9 21.1 26.7 26.3 25.2 24.4 28.0 21.5 23.5 27.7 26.9	Acres. 964,500 978,200 987,900 994,600 994,100 997,100 1,012,300 1,014,200 1,015,800 1,013,800 1,013,800 1,013,800 1,013,800 1,014,100	Bush.a 22. 4 22. 0 23. 3 23. 5 19. 4 19. 2 23. 0 22. 7 20. 4 20. 0 23. 3 21. 5 21. 9 23. 0 20. 4 24. 1	Acres. 1,979,200 1,992,100 2,021,200 2,022,000 2,044,600 2,023,000 2,044,600 2,033,100 2,034,700 2,037,500 2,038,200 2,040,100 2,036,300 2,045,900 2,045,900 2,045,900	Bush.a 32.0 26.4 32.1 27.9 31.4 31.0 26.2 26.6 32.0 24.9 30.7 27.1 28.2 29.3 25.2 28.8	Acres. 546, 200 546, 600 550, 100 540, 300 540, 700 542, 600 538, 700 545, 400 537, 600 537, 800 531, 400 528, 900 514, 000	Bush.a 27. 0 23. 9 25. 2 23. 9 26. 4 25. 7 25. 2 27. 2 27. 2 27. 2 22. 9 25. 7 23. 1 25. 7 25. 6 25. 0

a Winchester bushels.

Acreage and yields of cereals in Switzerland, 1888-1905, by years.

	Wh	eat.	R	re.	Oa	its.	Bar	ley.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1888	Acres.	Bush. 19.7	Acres.	Bush. (25.7	Acres.	Bush.	Acres.	Bush.
1889 1890 1891	183,000	19.5 24.6 24.2	77,000	$ \begin{cases} 22.2 \\ 27.8 \\ 25.6 \end{cases} $	} 136,000	43. 4 47. 5 48. 6	30,000	25. 4 28. 1 27. 5
1892 1893	174,000	25.0 18.8	79,000	28.7 22.5	139,000	45.6 30.3	30,000	27. 3 22. 0
1894 1895 1896	165,000	$ \begin{cases} 23.7 \\ 20.9 \\ 17.9 \end{cases} $	79,000	$ \begin{cases} 24.8 \\ 21.5 \\ 19.7 \end{cases} $	135,000	$ \left\{ \begin{array}{c} 43.2 \\ 43.5 \\ 38.8 \end{array} \right. $	27,000	25. 6 25. 0 21. 3
1897 1898 1899	160,000 164,000	21.5 24.5 24.7	\$8,000 \$8,000	23. 0 24. 2 25. 9	144,000 141,000	44. 0 48. 0 47. 9	27,000 27,000	24. 2 26. 6 25. 8
1900 1901 1902	164,000	25.1 22.0 24.3	88,000	25. 4 24. 0 24. 8	140,000	46.8 41.3 47.1	27,000	26.7 24.4 26.2
1903 1904 1905	} 157,000	$ \begin{cases} 25.9 \\ 24.7 \\ 22.3 \end{cases} $	} 92,000	26.6 26.9 24.9	137,000	49. 4 48. 4 45. 4	20,000	28.0 27.7 25.9

a In 1890, bushels of capacity.b Prior to 1897, bushels of capacity.

Acreage and yields of cereals in Great Britain, 1883–1906, by years.

	Whe	at.	Barl	ey.	Oat	s.
Year.	Area.	Average yield.	Area.	Average yield.	Area.	Average yield.
1883 1884 1885 1886 1887 1887 1888 1889 1890 1890 1891 1892 1393 1894 1895 1896 1897 1898 1898 1899 1990 1900 1901 1902 1903 1904 1904 1906	Acers. 2, 613, 200 2, 677,000 2, 478,300 2, 385,900 2, 317,300 2, 349,400 2, 386,300 2, 397,300 2, 398,300 1, 928,000 1, 928,000 1, 917,500 1, 928,000 1, 917,500 1, 928,000 1, 917,500 1, 928,000 1, 917,500 1, 928,000 1, 917,500 1, 928,000 1, 917,500 1, 928,000 1, 928,000 1, 928,000 1, 928,000 1, 928,000 1, 938,000 1, 94,000 1, 845,000 1, 700,800 1, 700,800 1, 726,400 1, 735,600	Bush.a 30.9 32.3 27.7 33.1 28.9 30.8 31.7 32.2 27.2 26.8 31.7 31.7 31.0 35.8 33.8 33.9 4 31.8 33.9 31.1 27.7 33.8 34.7	Acres. 2,292,000 2,168,800 2,257,300 2,241,200 2,085,200 2,121,500 2,112,800 2,112,800 2,075,100 2,095,800 2,166,300 2,164,800 2,164,800 2,035,800 1,903,700 1,982,100 1,990,400 1,990,400 1,588,500 1,840,700 1,588,500 1,810,700 1,713,700	Bush. a 35. 2 36. 2 38. 2 38. 3 38. 9 32. 8 36. 1 35. 2 35. 7 29. 6 35. 6 32. 7 34. 7 33. 9 35. 9 35. 2 22. 3 32. 0 35. 9 35. 9 35. 7	Acres. 2,975,400 2,915,400 2,910,500 3,081,600 3,088,000 2,882,300 2,882,300 2,893,700 2,997,500 3,171,800 3,253,400 3,296,100 3,296,100 3,296,100 3,036,100 2,917,800 2,959,800 3,026,100 3,037,000 3,037,000 3,140,200 3,051,400	Bush.a 38.7 38.0 39.0 35.8 40.5 40.0 40.0 36.7 42.9 38.0 39.7 42.0 40.0

a Winchester bushels.

The records given for Great Britain from 1883 to 1906, twenty-four years, show a decrease in acreage for wheat and barley and fairly constant acreage in oats. There is no indication of any decline in productivity.

Acreage and yields of cereals in Ireland, 1883–1906, by years.

	Wh	eat.	Bar	ley.	Oa	ts.	R	ye.
Year.	Area.	Average yield.	Area.	A verage yield.	Area.	Average yield.	Area.	Average yield.
	Acres.	Bush.	A cres.	Bush.	Acres.	Bush.	Acres.	Bush.
83	94.700	25. 5	183,600	35. 9	1,381,900	47.7	7,200	22.
84	67,900	27. 3	167,400	37. 4	1,348,400	47.0	7,100	22.
85	71,000	28.8	179,500	37. 6	1,328,900	47.8	8,400	25.
86	69,500	27. 0	181,900	35. 6	1,322,000	48.7	10,600	23.
87	67,200	28. 3	162,400	29.8	1,315,100	40.3	10,800	21.
88	99,000	25. 8	171,300	36.9	1,280,900	48, 2	13,900	26.
89	89,700	29. 9	186,300	40. 7	1,239,000	49.8	15,800	25
90	92,300	28, 6	182,400	39. 2	1,221,000	51.0	14,600	23
91	80,900	32. 3	178,300	43. 4	1,215,400	54. 2	13,400	27
92	75,400	29. 4	175,600	38.3	1,226,200	51.6	13,100	25
93	55,000	30.3	169,000	38. 3	1,248,300	54.4	13,500	26
94	49.300	31.0	164,800	39. 9	1,254,800	53. 8	11,900	25
95	36,500	30. 4	171,800	38. 7	1,216,400	52. 4	11,500	26
96	38,000	31.4	173,400	42.3	1,193,600	49. 9	13,700	25
97	47,200	28. 7	170,700	35. 4	1,175,100	48, 4	13,100	21
98	52,800	35. 2	158,200	44. 0	1,165,400	56.1	12,400	25
99	51,900	33.4	169,700	41.8	1,135,500	55. 2	12,100	25
00	53,800	31.3	174,200	37.3	1,105,000	55, 5	11,400	25
01	42,900	34. 2	161,700	42.1	1,099,300	56.6	11,000	27
02	44,200	36. 2	167,900	49. 3	1,082,100	60. 6	9,600	28
03	37,600	31.3	158,800	38.3	1,097,500	53. 6	10,000	26
04	30,800	33. 7	158,100	34. 7	1,078,800	55, 8	9,400	26
05	37,900	37.8	154,600	46, 4	1,066,800	56, 9	10,200	27
06	43,900	34.8	176,500	40. 9	1,076,300	58, 3	10,300	27

The records given for Ireland are complete from 1883 to 1906, twenty-four years. They show a material decrease in acreage for wheat, a slight decrease for oats, and a fairly constant acreage for barley and rye. There is no indication of a decline in productivity.

The largest average yield of wheat per acre for any one year of the countries above-named for the period reported on by the Bureau of Statistics is as follows:

Largest average yield of wheat in different European countries in any year covered by reliable statistics.

Bushels.	Bushels.
Russia 11. 4	Switzerland 25.9
Spain	Sweden
Italy 15. 4	Germany
Servia	Netherlands
Austria	Belgium. 35.1
Hungary	Great Britain
France	Ireland
Roumania	Denmark

The largest average yield of wheat for any one year in several groups of States in the United States for forty years, as compiled from the Bureau of Statistics' records, is as follows:

Largest wheat yield in any year for forty years in several groups of States.

	Bushels.
Virginia, North Carolina, South Carolina, Georgia, and Alabama	. 11.2
Kentucky and Tennessee.	. 14.3
Texas and Arkansas	. 15. 2
Wisconsin, Michigan, Iowa, and Illinois.	. 16.6
Minnesota, Nebraska, Kansas, and Missouri	. 16.7
Ohio, West Virginia, and Indiana	. 17.9
New Jersey, Pennsylvania, Delaware, and Maryland	. 19.7
California	. 20.0
Ohio, Indiana, and Illinois.	20.2
Oregon	. 21.1
Maine, New Hampshire, Vermont, and New York.	

It is safe to say that the soils of Europe have been occupied for agricultural purposes for one thousand to two thousand years longer than those of the United States, yet during the past twenty-five years ten out of the sixteen countries of Europe reported upon have produced more wheat per acre than any of the groups of States in the United States during the past forty years.

A careful examination of all the available data regarding crop yields in the European countries, and a comparison of these with the yields of the newer lands of the United States, fails entirely to justify the conclusion or general impression that the productivity of the soils of Europe is decreasing. On the contrary, one would be justified in concluding that with the general increase in education and incentive

the sum of the individual failures at the present time is rather more than counterbalanced by the successes, and on the whole there has been an increase in productivity within historic times.

EVIDENCE PRESENTED BY THE YIELD OF CROPS IN THE UNITED STATES.

The impression is strong and widespread that the productivity of the soils of the United States is decreasing. It is believed that the soils are wearing out through loss of mineral plant food removed by crops. It is believed that in the "early seventies" yields of 50 to 60 bushels of wheat per acre were common over the prairie soils of the Northwest.

Whatever may have been accomplished on individual farms at that time or since or however much we may be impressed with the individual failures which come under our personal observation, a careful study of the official records of the Bureau of Statistics of the Department of Agriculture a fails entirely to bear out the general impression that the yields are declining in the United States as a whole or in any considerable portion of the area, and gives us a very different and much more modest impression of the average yields obtained in the "early seventies."

In 1885, about twenty-four years ago, Prof. I. P. Roberts, of Cornell University, made inquiry of the Department of Agriculture regarding this question of wheat yield and the statistician, J. R. Dodge, sent him the following statement:

In response to your inquiries I may give a few facts tending to show the increase of rate of yield of wheat, the principal food-grain of countries of high civilization, as the result of progressive and scientific agriculture. It is a very significant fact that the countries of high natural fertility of virgin soils show the lowest rates of yield, while the soils of countries, long cultivated under systematic and enlightened methods, give much higher returns. Thus in Australasia the rate of yield is about 12 bushels per acre, as in this country. In India the average is about 9 bushels.

Coming to Europe, the average of Russia may be said to be 6 to 7 bushels, produced by careless cultivation in the rich soils of the black-earth belt and in other sections. The average of the valley of the Danube differs little from the average yield of this country. The average of Portugal is usually placed at about 13 bushels.

a See the following bulletins of the Bureau of Statistics, U. S. Department of Agriculture:

Bul. 56, Corn Crops of the United States, 1866–1906.

Bul. 57, Wheat Crops of the United States, 1866–1906.

Bul. 58, Oat Crops of the United States, 1866-1906.

Bul. 59, Barley Crops of the United States, 1866-1906.

Bul. 60, Rye Crops of the United States, 1866–1906.

Bul. 61, Buckwheat Crops of the United States, 1866-1906.

Bul. 62, Potato Crops of the United States, 1866–1906.

Bul. 63, Hay Crops of the United States, 1866–1906.

b Report of the Commissioner of Agriculture for 1885, p. 375.

In 1873, when a series of good wheat seasons had been enjoyed in Europe, an international statistical commission ^a fixed upon the following average rates of yield for those countries of Europe that furnished statistical data to determine them:

Bushels.	Bushels,
Great Britain	Saxe-Weimar 17.2
Saxe-Altenburg. 28.7	France 17. 1
Belgium	Baden
Saxony	
Holland 24.8	
Norway 23. 3	
Denmark	
Finland	

In the thirteenth century, according to J. E. Thorold Rogers, the rate of yield, while variable and not accurately determined, was not thought to exceed a quarter of 8 bushels. Arthur Young, in 1770, made the average in England 23 bushels per acre, and Sir James Caird, in 1850, 26½ bushels. Though the yield is given in the above table of the commission at 29.9 bushels, Sir James Caird, in 1868, thought 28 bushels near the real average. There was a large yield for several years afterwards, but after 1873 there was a period of low yield, scarcely equal to the average of Ireland, 24 bushels.

In France, according to Alexander Moreau de Jonnes, in his Statistique de l'Agriculture of France, the average yield was 8 hectoliters per hectare, or a little more than 9 bushels per acre. In 1873, over 11 bushels; in 1840, 14 bushels. It may be assumed that the yield per acre in France is now very nearly double the rate two hundred years ago. It is not much over a half a century since the average rate of France passed the present yield in this country.

Evidence from Russia is not very explicit, though its tenor is favorable to gradual increase of rate of yield. It has conditions much like our own, large areas of new and cheap lands, which tend to prevent rapid change of rate, while the elements of improvement are in active movement locally. As to this country, the average has not materially increased for the whole area, because that area is geographically changing. It is shifting from east to west and to northwest, taking in fresh prairie lands and giving up to grass and other crops a part of the more eastern acreage. Yet, on the whole, it is not so much abandonment of older areas as the taking up of western lands in the increase of breadth. This change perpetuates substantially the original conditions, and keeps the average nearly the same, viz, about 12 bushels per acre for a series of years throughout the entire breadth in wheat.

I find no evidence that the yield is decreasing in this country. In a given field in the spring-wheat region, the rate will increase for a year or two after breaking, then begin to decline, not from soil exhaustion, but from preoccupation of the soil with weeds. Yet there is evidence that the rate of yield is increasing in Western New York, Southern Michigan, and the wheat counties of Ohio, Indiana, and Illinois, and in Maryland, where some semblance of rotation exists and cultivation has some pretense of a scientific basis. In those regions the average is already about the same as in France, and is 20 to 50 per cent higher than the general average. In 1879 the areas above mentioned averaged about 18 bushels per acre, while spring wheat, grown year after year amid weeds and without any real cultivation of the soil, only produced 11 bushels per acre.

^a A summary of the results of the International Statistical Congress held at St. Petersburg in 1872 is contained in the Report of the Commissioner of Agriculture, p. 254, 1876.

Again, in 1886, Dodge makes the following statement:^a

It is sometimes assumed that the yield of wheat is declining in this country. This conclusion is not warranted by the facts. The average for six years past is 12.1 bushels per acre, ranging from 10.4 to 13.6 annually. The average of the preceding ten years was 12.4. Almost any period of five to eight years has heretofore made an average very slightly exceeding 12 bushels. The older wheat-growing States make larger averages than the newly settled regions, not because the land is richer, but because it is more thoroughly cultivated. In the future, as rotation and thorough culture prevail, the average rate of yield must be expected to increase, as it has done in some sections already.

With the complete records of the Bureau of Statistics extending over forty years we should be in a better position to draw conclusions than was Dodge, with less than half the records. Nevertheless it is extremely difficult to draw positive conclusions from estimates, even with records extending over a period of forty years, in a country which has been rapidly developing and when the basis of the estimates, namely, the area is rapidly increasing and where the seasonal variations are large. It may not be safe to assume, as may be done with the European records, that the sum of individual failures at present is rather more than counterbalanced by the sum of individual successes as compared with the past, and to say that there is an indication of increased productivity, since the agricultural history of this country is not old enough nor is the period covered by statistics long enough to justify such a positive statement. The records are, however, sufficient for the statement that there is no evidence to prove a decrease in productivity.

THE YIELD PER ACRE OF WHEAT IN THE UNITED STATES.

The average yield of wheat in the United States for the past forty years from 1867 to 1906 is, according to the records of the Bureau of Statistics, 12.7 bushels per acre.

The following table gives the yields for each year in the several decades:

Average yield per acre of wheat in the United States from 1867 to 1906, by years and by decades.

1867–1876.	1877–1886.	1887–1896.	1897–1906.
Bushels. 11. 6 12. 1 13. 6 12. 4 11. 6 11. 9	Bushels. 13. 9 13. 1 13. 8 13. 1 10. 2 13. 6	Bushels. 12. 1 11. 1 12. 9 11. 1 15. 3 13. 4	Bushels. 13. 4 15. 3 12. 3 12. 3 15. 0 14. 5
12. 7 12. 3 11. 1 10. 5	11. 6 13. 0 10. 4 12. 4	11. 4 13. 2 13. 7 12. 4	12. 9 12. 5 14. 5 15. 5

a Report of the Commissioner of Agriculture for 1886, p. 373.

The straight or unweighted averages for the several decades, 12.0, 12.5, 12.7, 13.8, indicate a gradual and regular increase in productivity. However, when these figures are platted and a medial line drawn through the figure, there is indicated a slight downward curve with the low point of the curve about 1886–87, the end and beginning of a decade, which accounts for it not being shown in the averages.

A corresponding depression is noticed in the records for nearly all the States and indicates very strongly a general seasonal influence over most of the country during the middle of the forty-year period. In fact, a critical examination of all the data presented in this bulletin indicates that a full forty-year period is the smallest unit which should be taken to minimize seasonal fluctuations in order to give a normal average which can safely be used as a basis for comparison of relative productivity. Certainly ten-year and even twenty-year averages can not be used with perfect assurance.

Fig. 1.—Average yield of wheat in the United States from 1867 to 1906.

So far as the available data can be relied upon for any conclusion, it may be said that there is on the whole a decided tendency toward increased productivity of the soils of the United States.

We must, however, see if this has been influenced to any significant degree by the extension of wheat growing into new areas, as the mean acreage of wheat in the United States for the several decades is given as 21,661,078, 35,060,189, 36,583,809, and 45,540,593. There are 33 States which have a higher average yield per acre than the United States as a whole, and 15 States having a lower yield. If proportionately more of the increase in acreage has occurred in the 33 States having above the average yield of the country as a whole, the increase in yield per acre in the United States would be accounted for. To determine this, we must take up the records of the individual States or groups of States having somewhat similar yields and similar increases or decreases in acreage.

In the following table the States for which the Bureau of Statistics has full forty-year records (except California, which has records extending for only thirty-nine years) are arranged in the order of the average yield per acre of wheat over this period:

Average yield of wheat in bushels per acre in different States for forty years, 1867 to 1906.

	Bushels.	В	ushels.
Vermont	18.5	California	. 12.9
Maine	16. 5	Average for United States	. 12.7
New York	15. 7	Iowa	. 12.4
New Jersey	14.5	Missouri	. 12. 2
Michigan	14. 5	Texas	. 11.5
Pennsylvania	14. 2	West Virginia	. 10.6
Ohio	14. 1	Kentucky	. 10.5
Kansas	13. 9	Virginia	9.1
Wisconsin	13.7	Arkansas	. 8.9
Minnesota	13. 6	Tennessee	. 8.2
Maryland	13. 3	Mississippi	. 81
Illinois	13. 2	Alabama	7.6
Nebraska	13. 1	Georgia	. 7.1
Indiana	13. 1	North Carolina	6. 9
Delaware	13. 1	South Carolina	. 6.6

The most obvious fact brought out by this table is that the arrangement shows roughly three geographical groups of States, the Southern States having very small yields, the New England States with New York showing the largest yields (two or three times as large as the Southern States), and the great wheat States of the Middle West coming between.

The average yield for each of the four decades from 1867 to 1906 is given for each of the States in the table prepared by the Bureau of Statistics and published in the Crop Reporter for December, 1908. These show a general tendency to increase, but there are fluctuations which make it difficult to draw satisfactory conclusions, since the seasonal variations have not been entirely eliminated even over so long a period, and we know that great changes have occurred in the acreage of certain of the States; it is important to see the effect, if any, of these changes upon the average yield.

For the present purpose it has been deemed best to group the States with due regard to equality of yield per acre and increase or decrease in acreage in order to further minimize the influence of seasonal variation of climate.

In considering the change in the productive capacity as measured by the yield per acre of crops, it is necessary to have records covering a sufficiently long period to reduce the seasonal variations to a very small amount, but it is unfortunate that we have available no continuous records in this country for more than forty years, either for a State or for any individual farm or constant area of any soil type.

The nearest approach to this constant acreage and uniformity of yield in several States, where, at the same time, records of the Bureau of Statistics are available for forty consecutive years, is in what may be taken as two groups of States, namely, Maine, New

Hampshire, Vermont, and New York; and New Jersey, Pennsylvania, Delaware and Maryland. In all of these States agriculture is old and in the past forty years there has been relatively very little new land to take up.

Average yield per acre of wheat in Maine, New Hampshire, Vermont, and New York, from 1867 to 1906, by years and by decades.

1867–1876.	1877–1886.	1887–1896.	1897–1906.
Bushels. 13.3 13.1 16.7 15.0 15.5 15.3 13.9 15.9	Bushels. 17. 0 16. 0 14. 5 14. 3 15. 3 14. 6 14. 2 15. 8	Bushels. 13. 2 15. 0 15. 0 15. 1 16. 7 16. 6 15. 6 19. 7	Bushels. 17. 7 20. 6 20. 1 19. 3 18. 6 20. 3 21. 4 19. 9
14. 1 14. 2 14. 7	15. 6 16. 2 15. 4	21. 4 20. 9 16. 9	20. 9 22. 4 20. 1

In Maine and Vermont the acreage in wheat, at all times small, has been reduced considerably in later years, and the yield per acre has materially increased during the successive decades. It may be argued that this increase in yield per acre is due to the abandonment of lands less well adapted to wheat; but in New York, which has a very much larger acreage, but with much smaller change in acreage, the yield has increased nearly as much. If we take the figures representing the yield per acre for each of the States for the four decades as an indication only of productivity and, regardless of acreage, add them together, we get a factor of relative productivity for the different decades in which the seasonal fluctuations will be more nearly eliminated than if we had used the weighted averages, and while the results show the same order of increase we get a smoother curve.

Reducing these sums to figures approximately equal to the average yield per acre of the several States, by dividing by the number of years, the relative yields of the several decades are represented by the figures 14.7, 15.4, 16.9, and 20.1, indicating a decided and progressive increase in the productivity of the lands.

These States, however, show a remarkable falling off in the total land values and contain many so-called "abandoned" farms, but so far as the production of wheat is concerned this is not due to a decline in fertility or to the wearing out of the soil; the explanation must be sought in changed economic conditions connected with the relative cost of production and other conditions which are outside of the scope of this discussion.

The accompanying diagram shows even more clearly than the average figures for the decades the rate of increase in productivity.

The effect of the intelligent reduction of acreage mentioned as a possible factor in increasing the yield per acre of wheat in the New England States and New York can not hold with the second group of States above mentioned, as the acreage has varied but little in the States of New Jersey, Pennsylvania, Delaware, and Maryland. Nevertheless, by combining the yields per acre as productivity factors for these States, as was done with the first group, the relative order of productivity for the different decades is represented by the figures 12.7, 12.9, 13.5, and 16.1, again showing a regular increase for a group of some of the older States, where the land has practically all been settled for much longer than the forty years covered by the data.

Fig. 2.—Average yield of wheat in Maine, New Hampshire, Vermont, and New York from 1867 to 1906.

Average yield per acre of wheat in New Jersey, Pennsylvania, Delaware, and Maryland, from 1867 to 1906, by years and by decades.

1867–1876.	1877-1886.	1887–1896.	1897–1906.
Bushels.	Bushels.	Bushels.	Bushels.
12. 2	14. 0	13. 1	15. 9
14. 2	13. 8	11. 9	13. 8
11. 1	15. 0	11. 4	18.1
14. 4	11. 8	14. 7	17.4
10. 5	13. 4	13. 8	15.8
13. 2	12.3	14. 2	13. 1
13. 0	12.5	14. 7	13. 9
12. 6	9.9	14. 4	15. 9
13. 8		16. 1	17. 0
12.7	12. 9	13. 5	16. 1

The accompanying diagram brings out one detail which is not clearly apparent in the table of figures or in the averages for the

decades, namely, that in the latter part of the second decade and the first part of the third decade there was a marked decline in productivity, evidently due to seasonal influences.

The general trend of the curve is undoubtedly upward. In considering the estimates of the Department of Agriculture it must be remembered that as soon as the actual figures are available from each decennial census the estimates of the bureau on the acreage and yield are adjusted to meet the ascertained facts, and this may have an influence on the estimates of the yield per acre. It is significant that this departure from the general trend of the curve begins at 1881 and ends at 1891, when the census figures were available. It will be seen in considering the yield of corn that this factor has undoubtedly influenced the estimates to a notable extent, espe-

Fig. 3.—Average yield of wheat in New Jersey, Pennsylvania, Delaware, and Maryland from 1867 to 1906.

cially for some of the States. It is of course apparent that this method of diagrammatical representation is a very rigorous expression of estimates, and brings out inequalities which might not be brought out by a similar diagram of ascertained facts, if such facts could be established each year, as is done each decennial year by the Census Bureau. Such definiteness is not possible under the methods which must be employed by the department, nor is it claimed for these estimates. Anyone at all familiar with statistical work will clearly understand these limitations.

In the States of Virginia, North Carolina, South Carolina, Georgia, and Alabama the average yields per acre have been closely comparable and the acreage not very different either among the States or during the period of forty years. The averages are not so regular as in the last two groups of States, in that the figure representing

the average for the second decade is six-tenths of a bushel lower than the first, and for the third decade five-tenths of a bushel less than for the first decade.

Average yield per acre of wheat in Virginia, North Carolina, South Carolina, Georgia, and Alabama, from 1867 to 1906, by years and by decades.

1877–1886.	1887–1896.	1897-1906.
Bushels.	Bushels.	Bushels.
6. 7	5.8	$9.6 \\ 11.2 \\ 7.2$
6. 5 6. 7	4.8 7.4	9. 8 9. 1
7.5 6.1	7.3 8.2	5. 7 7. 1
5. 1	7.3	9. 2 8. 1 10. 4
6.8	6.9	8.7
	Bushels. 9.0 6.7 8.4 6.5 6.7 7.5 6.1 6.5 5.1 5.8	Bushels. 9.0 6.8 6.7 5.8 6.7 7.4 7.5 6.1 8.2 6.5 7.1 5.1 7.3 5.8 7.9

The medial line of the diagram shows a depression. Whether this is real or is influenced in any way by a readjustment to conform to

Fig. 4.—Average yield of wheat in Virginia, North Carolina, South Carolina, Georgia, and Alabama from 1867 to 1906.

the facts established by the census of 1880, the figures for which are known to have been available in 1881, and by the census figures of 1890, can not now be established with any certainty. In any event the general trend of the line is upward rather than downward as popularly supposed.

Ohio, Indiana, and Illinois form another group of States having nearly the same acreage and the same yields per acre in which the yield per acre for the past forty years has apparently at least held its own or even increased, the relative productivity of the three States for the four decades being represented by the figures 11.9, 14.2, 13.8, and 13.9.

Average yield per acre of wheat in Ohio, Indiana, and Illinois, from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
11. 2 11. 9	15.3 15.9	13.9 11.6	12.6 14.5
13.7 12.3 12.5	19.5 17.0 10.8	15. 1 11. 2 17. 7	11.3 8.1 16.2
12.1	16. 4 10. 1	14.8 13.4	17. 0 10. 7
12.9	13.1	18.5 11.2	11.5 17.1
10.7	14.5	10.9	20. 2
11.9	14.2	13.8	13.9

Two areas of slight depression are shown in the medial curve of the diagram, but as a whole the line shows a tendency to rise.

Fig. 5.—Average yield of wheat in Ohio, Indiana, and Illinois from 1867 to 1906.

We now come to two groups of States showing some marked differences in acreage in the last forty years.

The acreage in wheat in the first of these groups, embracing Wisconsin, Michigan, Iowa, and Illinois has declined considerably. The total average acreage in wheat for the four decades is 7,336,041, 8,525,988, 5,697,582, and 4,572,012. The relative yield per acre of the group of States for the corresponding decades may be expressed by the figures 12.4, 13.3, 13.8, and 14.3, as shown by the following table:

a The object in averaging the yields of several States being to decrease the seasonal variation and acreage variation, it has been deemed best to use the data for Illinois in two groups, since this State may be classed geographically with Ohio and Indiana, and with Iowa, Wisconsin, and Michigan. Similarly, the data for a State has been used below in more than one group of States, as desired, to secure as wide a basis for the averages as is possible.

Average yield per acre of wheat in Wisconsin, Michigan, Illinois, and Iowa, from 1867 to 1906, by years and by decades.

1867–1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
12. 2	15. 9	12. 2	12.0
12. 9	13, 4	12. 4	16. 6
13. 7	15, 2	14. 5	11.7
13. 0	13, 4	11.7	12. 9
12. 3	9, 3	16.4	15, 3
12.7	14. 7	13, 5	16, 6
13.8	11.9	12.4	13.0
12. 2	13, 5	16.3	12.7
11.9	12.7	14.8	16. 3
9.1	13. 4	14. 2	16. 2
12. 4	13. 3	13.8	14.3

This shows an apparently regular increase in productivity and by referring to the diagram it is seen that with one slight depression the direction of the medial line is upward, indicating an increasing productivity. It may be argued, as in the case of the New England

Fig. 6.—Average yield of wheat in Wisconsin, Michigan, Illinois, and Iowa from 1867 to 1906.

States, that in restricting the acreage the lands less well adapted to wheat have been first abandoned and the average yield increased in this way, but this is negatived by a similar increase in productivity in groups of States where the acreage has remained constant or has increased.

We have another group of closely adjacent States, namely, Minnesota, Nebraska, Kansas, and Missouri, where the acreage has largely increased the sum of the mean acreage for the several decades, being 2,693,576, 7,799,182, 8,654,331, and 14,364,930. The relative yield per acre of the group may be expressed by the figures 13.8, 12.6, 12.6, and 14, showing an apparent increase. The figures for Minnesota and Kansas, it is true, appear to show a slight decrease, but the seasonal variations in both these States are large, so large they are not eliminated in the ten-year periods. For example, in Nebraska in the first and third decades the difference between the highest and lowest yield is actually greater than the average yield for forty years. The

larger the group of States that can be compared, other things being equal, the better.

Average yield per acre of wheat in Minnesota, Nebraska, Kansas, and Missouri, from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897–1906.
Bushels. 13.5	Bushels.	Bushels.	Bushels.
15. 0 16. 7 14. 4	13. 1 12. 2 11. 3	11. 4 14. 5 11. 9	14. 1 10. 9 13. 2
12. 7 12. 3 15. 2	9. 1 13. 9 14. 0	15. 4 13. 5 9. 1	16. 1 16. 3 12. 9
13. 1 13. 2 11. 7	14. 5 10. 1 12. 4	11. 6 13. 7 12. 6	12. 6 14. 8 15. 7
13.8	12.6	12.6	14.0

The accompanying diagram shows the medial line describing one great uniform curve with the points of origin and ending approxi-

Fig. 7.—Average yield of wheat in Minnesota, Nebraska, Kansas, and Missouri from 1867 to 1906.

mately at the same elevation. Some doubt is cast upon the validity of this curve on account of the uncertainty as to what influence, if any, the census figures available in 1881 had upon the basis of estimating the yields for the decade ending with the publication of the figures for the 1890 census. If an adjustment was made so that the medial line need not be continuous the most probable course would be represented by the broken lines. If the continuous curve is followed there is no evidence of permanent decline in productivity. If the broken line is followed there is evidence of a general and continuous increase in productivity.

We are justified in concluding in this group of States where the acreage has increased the productivity has increased, as was shown in the last group of States where the acreage has decreased.

Combining the data for all eight of the States just named—Wisconsin, Michigan, Iowa, Illinois, Minnesota, Nebraska, Kansas, and Missouri—we get for the average figures for the four decades 13.1, 13, 13.2, and 14.1.

Average yield per acre of wheat in Wisconsin, Michigan, Iowa, Illinois, Minnesota, Nebraska, Kansas, and Missouri, from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
12. 8 14. 0 15. 2	15. 6 13. 3 13. 7	12. 0 11. 9 14. 5	12. 6 15. 3 11. 3
13. 7 12. 5	12. 3 9. 2	11.8 15.9	13. 1 15. 7
12. 5 14. 5 12. 6	14. 3 13. 0 14. 0	13. 5 10. 7 13. 9	16. 4 12. 9 12. 7
12. 6 12. 6 10. 4	11. 4 12. 9	14. 2 13. 4	15. 5 15. 9
13. 1	13.0	13. 2	14. 1

In the diagram we can only show the medial line as making one long curve sloping gently downward from the origin during half the

Fig. 8.—Average yield of wheat in Wisconsin, Michigan, Iowa, Illinois, Minnesota, Nebraska, Kansas, and Missouri from 1867 to 1906.

period, and then upward to the end point, which is somewhat higher than the origin, as though the seasonal changes had passed through a single cycle of forty years. If there was an adjustment of the department's estimates in 1881 to conform with the data of the Tenth Census, then it would have shown a broken line, each section rising slightly from the two points of origin.

Kentucky and Tennessee have each maintained a fairly constant acreage for the forty-year period. The figures representing the average yield by decades, 8.8, 8.1, 9.7, 10.9, indicate a gradual increase save for a slight decrease in the second decade. The diagram shows this to be due to a slight depression originating at the same period as in several of the other groups of States.

Average yield per acre of wheat in Kentucky and Tennessee from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887–1896.	1897–1906.
Bushels. 8. 4 7. 6 9. 7 9. 4 5. 6 10. 8 8. 1 9. 8 9. 3 9. 2	Bushels. 10.5 7.2 11.0 7.4 6.8 10.7 6.7 8.8 3.4 8.9	Bushels. 9.1 9.4 9.3 8.2 11.2 10.7 10.3 9.9 8.6	Bushels. 12. 4 14. 3 8. 9 11. 5 11. 5 8. 3 7. 8 11. 5 9. 3 13. 3
8.8	8.1	9. 7	10.9

On the whole there can be no doubt that the productivity has shown a decided tendency to increase in this group of States.

Fig. 9.-Average yield of wheat in Kentucky and Tennessee from 1867 to 1906.

With Ohio, West Virginia, and Indiana we have a group of States where the acreage showed a decided increase during the first three decades. The total acreage in wheat for the four decades is 3,503,127, 5,283,871, 5,530,392, and 4,588,086. The figures representing the average yields for the several decades, 11.6, 13.3, 12.4, 13.1, show a tendency toward increased productivity save for a relatively high yield in the second decade.

Average yield per acre of wheat in Ohio, West Virginia, and Indiana, from 1867 to 1906, by years and by decades.

1007 1070	1055 1000	1007 1000	1007 1000
1867-1876.	1877–1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
10.9	13. 9	12.0	14. 4
11.6	15. 2	10.2	15, 5
13. 9	17. 6	13, 2	11.1
12. 1	15.5	10.5	7. 0
12. 0	11.5	15. 2	14.0
11.5	14.3	13. 0	13.6
10. 9	10.1	13. 4	11.3
12.9	12.8	16.5	10.3
8.4	8.8	11.0	15.9
11.3	13.5	9. 4	17. 9
11.6	13.3	12. 4	13. 1

When the results are represented diagrammatically this increase is not so apparent, as the medial line is wavy and shows clearly neither an increase nor a decrease in productivity.

In Texas the acreage has increased about ninefold, comparing the total acreage of the first decade and of the last. In Arkansas the

Fig. 10.—Average yield of wheat in Ohio, West Virginia, and Indiana from 1867 to 1906.

acreage has remained fairly constant. Combining the data for the two States the figures representing the average yields of the four decades show the highest yield in the first decade with an increasing yield from the second to the fourth.

Average yield per acre of wheat in Texas and Arkansas, from 1867 to 1906 by years and by decades.

1867-1876.	1877–1886.	1887–1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
9. 4 9. 8	10. 5 11. 0	9. 9 10. 2	13. 2 12. 9
11. 5 11. 3	7. 8 7. 5	9. 0 7. 1	9. 9
9. 9	8. 9	10.8	14.3 8.9
14.5 13.5	8. 2 7. 3	10.3 9.3	9. 1 10. 2
11.5	8.8	11.9	10. 4
15. 2 10. 6	8. 9 9. 0	7. 6 9. 9	$ \begin{array}{c} 8.4 \\ 11.2 \end{array} $
11.7	8,8	9, 6	10. 9
11.7	0.0	3.0	10. 5

A probable reason for this is shown in the diagram (fig. 11). It was due to three phenomenally high yields in the first decade and probably to an adjustment of the department's estimates in 1881 to conform with the figures of the Tenth Census. If an adjustment was made the curve should be broken, and its true position may be represented by the broken lines on the diagram.

The acreage in wheat in California has been fairly constant for the forty-year period. The figures representing the average yields for the four decades, 14.6, 12.9, 12.7, 11.6, show an apparently regular decrease in productivity, and this State is popularly supposed to represent an extreme case of declining yields in wheat and loss of fertility due to continuous wheat culture.

Fig. 11.—Average yield of wheat in Texas and Arkansas from 1867 to 1906.

Average yield per acre of wheat in California from 1867 to 1906, by years and by decades.

1867–1876.	1877–1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
20. 0 18. 2	17. 0 14. 0	12. 1 13. 3	9. 1 14. 1
19. 0 11. 0 12. 2	16. 0 12. 0 13. 0	12. 0 13. 0 13. 0	10. 3 13. 0 10. 9
13. 5 13. 2 11. 0	13. 0 13. 2 9. 4	13.3 11.3 13.0	11. 2 10. 8 9. 3
13. 0	11.6	14. 6	17. 1
14. 6	12. 9	12. 7	11.6

When the data are represented diagrammatically, the medial line has a slight tendency downward.

There are three relatively very high yields in the first decade, two in the second, and one in the last year of the last decade; but on the whole practically little change is indicated by the general direction of the line. The data for Oregon show great fluctuations from year to year. The figures in the table show lower yields in the second and third decades than in the first and last. This is brought out more clearly in the diagram, which seems to show one long, uniform curve showing

Fig. 12.—Average yield of wheat in California from 1867 to 1906.

a somewhat decided tendency to decrease until about the end of the second decade, and an equally decided increase during the last two decades.

Average yield per acre of wheat in Oregon from 1867 to 1906, by years and by decades.

1867-1876.	1877–1886.	1887-1896.	. 1897–1906.
Bushels.	Bushels. 20. 0	Bushels. 17.5	Bushels. 17. 0
19. 0 19. 5	21. 0 16. 0 17. 0	16.3 16.2 14.5	20. 5 19. 2 13. 8
19. 2 18. 2 19. 0 19. 5	17. 2 16. 7 16. 5 18. 0	19. 0 15. 7 17. 5 17. 7	21. 1 20. 0 18. 2 19. 0
19. 5 17. 6 17. 0	18. 0 15. 9 12. 6	20. 0 17. 0	19. 0 18. 6 20. 0
18.6	17.1	17.1	18.7

Fig. 13.—Average yield of wheat in Oregon from 1867 to 1906.

The following table gives, in decades, the data for the States having records covering less than forty-year periods and more than twenty

years and with records for not less than five of the years in each decade.

Average yield of wheat, in bushels per acre, in States having records for more than twenty and less than forty years.

State or Territory.	First decade.	Second decade.	Third decade.	Fourth decade.
Utah	b 21.1	b 19. 2 a 14. 1 a 17. 5	18.8 19.2 c21.0 19.2 19.0 c14.0 20.8 15.6 16.2 17.7	23. 5 26. 0 23. 0 23. 8 24. 6 12. 3 26. 7 20. 0 21. 8 23. 3

a Five years.

b Seven years.

cSix years.

The data here are so incomplete in comparison with what has been given, and the development of irrigation in many of these States has been so great a factor that the results will not be discussed. For some of the other States, notably Massachusetts, Connecticut, Rhode Island, South Dakota, Louisiana, and Florida, the data are so incomplete that no conclusion can be drawn.

From the foregoing analysis of the statistics that are available it is seen that there is no indication of a general decrease in productivity of our soils when planted to wheat. If any conclusion is to be drawn from the data, it must be that the productivity has increased. This applies equally to States and groups of States where the acreage has remained constant, where it has increased, and where it has decreased. It applies equally to States where commercial fertilizers have been used more or less freely and to States where the use of commercial fertilizers has not yet become general. It applies as well to the older soils of the Eastern and Southern States as to the newer soils of the Western States. The conclusion seems to be inevitable that the upward tendency observable is due to better and more intelligent methods of control. However much we may be impressed by the cases of failures which come to our personal knowledge, in the country as a whole the sum of successes counterbalance the failures rather better at present than in the past.

THE YIELD PER ACRE OF CORN IN THE UNITED STATES.

The average yield per acre of corn in the United States for the past forty years, from 1867 to 1906, as given by the Bureau of Statistics is 25.1 bushels. The figures representing the average yield for the four decades are 26.2, 25.1, 24.1, and 25.4.

Average yield per acre of corn in the United States from 1867 to 1906, by years and by decades.

1867–1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels,	Bushels.
23. 6	26.7	20.1	
26. 0	26. 9	26. 3	24. 8
23. 6	29. 2	27. 0	25. 3
28. 3	27. 6	20. 7	25. 3
$ \begin{array}{r} 29.1 \\ 30.8 \\ 23.8 \\ 20.7 \end{array} $	18. 6	27. 0	16.7
	24. 6	23. 1	26.8
	22. 7	22. 5	25.5
	25. 8	19. 4	26.8
29. 5	26. 5	26. 2	28. 8
26. 2	22. 0	28. 2	30. 3
26. 2	25.1	24.1	25. 4

There has been a considerable increase in acreage, the total acreage for the four decades being 386,884,000, 634,089,000, 742,909,000, and 879,712,000. This change in the acreage, one of the factors upon which the average yield per acre is based, must be considered in drawing conclusions from the figures. The following diagram, however, is based on the yields regardless of changes in acreage:

Fig. 14.—Average yield of corn in the United States from 1867 to 1906.

The medial line curves slightly downward during the middle of the period. It is somewhat doubtful if this apparent decrease is real, as there was evidently an adjustment of the department's estimates in 1881 to accord with the figures which were available from the records of the Tenth Census. Such adjustment was undoubtedly made for some of the States, but not for all, as will appear further on, and these adjustments affected the estimates for the United States. Allowing for such an adjustment the medial line of the diagram should be broken at 1880–81 and the two parts would then show a gradual and constant rise from each point of origin. That such an adjustment was made seems altogether likely from the following statement by the statistician of the department:^a

The abnormal extraordinary increase of recent years made it difficult to keep pace with advancing production, as is shown by the record for 1879, which is widely at variance with the census returns for that year. In other crops the difference is usually slight between the two records, but in the corn estimate it is evident that the department figures are quite too low.

a Report of the Commissioner of Agriculture, 1881-82, p. 580.

It seems impossible after the lapse of nearly thirty years to determine with certainty what adjustments were made for the several States at any particular time in a system which from the very nature of its work should be adjusted from time to time as definite figures are established.

In most of the States there has been a decided increase in corn acreage. In only Maine and Rhode Island has there been a decided decrease in acreage. In New Hampshire, Vermont, Massachusetts, Connecticut, New York, Pennsylvania, and New Jersey there has been little change in acreage. In California there was an increase followed by a decrease in the last decade.

The following table gives the percentage of increase in the acreage of the twenty-four States showing a material increase from 1867 to 1906:

Percentage of increase in corn acreage from 1867 to 1906 in the several States where material increase has occurred.

State.	Percentage of increase.	State.	Per- centage of in- crease.	State.	Per- centage of in- crease.
Nebraska. Kansas. Texas. Minnesota Arkansas. Iowa Florida Wisconsin. West Virginia.	2,500 700 356 469 190 179 153 152 133	Missouri Average for United States Michigan Louisiana Virginia South Carolina North Carolina Georgia	130 127 124 121 87 85 75 72	Kentucky Indiana Mississippi Tennessee. Alabama Illinois. Maryland Ohio	54 50 49 46 36

The following table gives the States for which forty consecutive years' records are furnished by the Bureau of Statistics (excepting California, which has thirty-nine years' record), arranged according to their average yields per acre:

Average yield of corn, in bushels per acre, for forty years, 1867-1906, by States.

State.	Yield.	State.	Yield.	State.	Yield.
New Hampshire. : Vermont. Massachusetts Pennsylvania New Jersey. Maine Ohio Connecticut Iowa Indiana. Wisconsin New York Michigan	35. 1 34. 5 33. 2 33. 2 32. 9 32. 9 32. 2 31. 5 31. 3 30. 8	Rhode Island California Minnesota Nebraska Missouri Maryland Kentucky West Virginia Kansas. Average for United States Delaware	30. 2 30. 1 30. 1 29. 2 28. 7 28. 3 26. 6 26. 1 25. 3 25. 1 25. 1 22. 6	Tennessee. Arkansas. Texas. Virginia. Louisiana Mississippi North Carolina. A labama. Georgia Florida. South Carolina.	19.0 16.7 15.0 13.3 13.1

There are twenty-three States in which the yield equals or exceeds the average yield of the United States and twelve States having a lower yield.

In looking over the crop records of a State or nation for a period of years one can not help being impressed with the wide fluctuations in yields from year to year, giving the diagram, when the points of observation are connected by straight lines, a saw-tooth appearance. This seems to be due principally to variations in rainfall. This fact is brought out in a striking way for the corn crop by J. Warren Smith, who says: ^a

All cultivators of the soil recognize the important relation between precipitation and crop yield. Johnson b said in 1870: "It is a well-recognized fact that next to temperature the water supply is the most influential factor in the production of a crop."

We believe that few people have any proper appreciation of the effect of an abundant water supply upon the ultimate yield of crops, although this subject is now receiving careful investigation. In a recent publication of the Department of Agriculture c describing an exhaustive investigation of many types of soils under many conditions of cultivation and wide range of yields it was found impossible to correlate the yields observed with the nutritive mineral elements in the soil or in the soil solution, which latter is the immediate source from which plants feed. From this it was concluded that on the average farm the great controlling factor in the yield (but not necessarily the quality) of crop is not the amount of plant food present, but a physical factor, the exact nature of which is yet to be determined, and this idea is made more definite by the further statement "that the actual quantity of water a soil can furnish the plant, irrespective of the percentage of water actually present in the soil, has probably a very important influence on the yield."

It is self-evident that to have water furnished to the plant in any soil in sufficient quantities there must be an abundant supply available either through actual rainfall or through irrigation; so that, other things being equal, the results of the investigations of the Bureau of Soils seem to agree with the results found in practice, namely, heavy rainfall, large yields; light rainfall, small yields. And not only this, but, in a latitude and elevation favorable for the production of crops, precipitation has first place and temperature the second.

It was with something of this thought in mind that the writer, assisted by Prof. William D. Gibbs, president of New Hampshire State College, began the preparation of the accompanying charts; yet neither was prepared for the remarkable confirmation of their theory or the close relation between the yield of corn and the precipitation in certain definite short periods during the growth of the crop.

* * * Inasmuch as the greater portion of the corn produced in the United States is grown in the central part of the country, only Ohio, Indiana, Illinois, Iowa, Nebraska, Kansas, Missouri, and Kentucky are considered, both in the yield per acre and the precipitation.

As the area of greatest corn production does not include all of Ohio, Kentucky, Kansas, and Nebraska, we probably should have considered only the western parts of Ohio and Kentucky and the eastern parts of Nebraska and Kansas for both yield and rainfall. * * *

a Relation of Precipitation to Yield of Corn, J. Warren Smith, Section Director, Weather Bureau, Yearbook of the Department of Agriculture, p. 215, 1903.

b How Crops Feed, p. 216.

Bulletin No. 22, Bureau of Soils, p. 63.

In the following chart the rainfall for June, July, and August is combined in the dotted line, giving the average total rainfall for those months over the eight States. The full line shows the yield.

Fig. 15.—Precipitation for June, July, and August, and yield of corn per acre.

It is supposed to take from twenty to thirty years to establish a normal monthly temperature and longer than this to establish a reliable normal for rainfall.^a As the variation in yield is of the same order as the variation in rainfall, we must not take too seriously slight variations or inequalities in average yields for periods of ten years but rather by generalization attempt to get at the trend of the change rather than at actual amounts of increase or decrease.

Of the six New England States, the acreage in Maine and Rhode Island has materially decreased, while indications are that the yield per acre has slightly increased. The acreage of the four other States has remained fairly constant, while the figures indicate a slight decrease in yield per acre in New Hampshire and Vermont, and a slight increase in Massachusetts and Connecticut. The differences,

^a A recent publication of the Weather Bureau, entitled "Summary of the Climatological Data for the United States by Sections: Section 1—Southern Texas," pp. 1,2, contains the following statements:

[&]quot;The period of observations, 1871 to 1907, inclusive, thirty-seven years, covers a sufficient length of time to warrant the assumption that the variations within which the several climatic elements are liable to fluctuate are embraced therein. * *

[&]quot;The tables of temperature, days with rain, average relative humidity, etc., generally cover periods of less duration than the precipitation data, but of sufficient length to construct dependable averages."

however, are so slight, as compared with the fluctuations within the decades that no safe conclusions can be drawn as to any change of productivity. Comparing the groups of States, as was done in the case of wheat, the total acreage for the four decades was 2,469,000, 2,627,000, 2,169,000, and 1,951,000, while the relative yields for the four decades may be expressed by the figures 32.6, 32.5, 34.7, and 34.4, indicating, if anything, a slight increase in productivity of the soils as measured by the yield per acre of corn.

Average yield per acre of corn in Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
33. 6	36. 2	26. 3	39. 2
29. 8	32. 6	34. 0	36. 1
32. 4	33. 3	34. 8	36. 8
31. 9	30. 2	36. 7	38. 2
34. 3	25. 2	36. 3	26. 3
31. 0	33. 1	30. 1	25. 2
30. 5	32. 7	35. 3	35.3
33. 1	33. 4	40. 1	36.4
35. 7	33. 0	39. 1	37.1
32.6	32.5	34.7	34. 4

The figures representing the average yields for the several decades appear to fluctuate slightly, but the diagram shows this to be due to

Fig. 16.—Average yield of corn in Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut from 1867 to 1906.

four or five exceptionally low yields, while the medial line shows an upward trend during the forty years for this group of States.

The acreage in New York, Pennsylvania, and New Jersey has varied but little in the forty years. The figures representing the average yield for the several decades—34.3, 31.4, 31.5, 33.2—indicate neither an increase nor a decrease in productivity.

Average yield per acre of corn in New York, New Jersey, and Pennsylvania from 1867 to 1906, by years and by decades.

1867-1876.	1877–1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
31.8	33.8	31.7	32.8
34.8	35.7	32. 4	35.7
29.8	34.0	29.8	34.0
34.3	38.8	28. 4	30.0
34.8	24.9	33. 1	35.0
38.7	29. 2	31.7	31.9
34.0	26.0	26.6	26. 7
32.7	31.0	31.1	33. 1
38.3	31.7	34.0	35. 4
33. 7	28.9	35. 7	37.1
	20.0		01.1
34.3	31.4	31.5	33, 2
0 0	02.1	02.0	00.2

When the data is charted, however, it is seen that there is a decided break at the years 1880-81 when the census figures were available, and the only possible explanation is that the department's

Fig. 17.—Average yield of corn in New York, New Jersey, and Pennsylvania from 1867 to 1906.

estimates were adjusted at that time in conformity with the facts determined by the census. The medial line of the diagram is seen to rise gradually but steadily from the two points of origin, indicating a gradual increase rather than decrease in productivity of the soils of these States, as was shown in the last group of States.

The acreage in corn in Maryland, Delaware, and Virginia has materially increased, the total acreage for the several decades being 16,145,000, 24,973,000, 28,038,000, and 26,243,000. The figures representing the average yield per acre—22.2, 21.3, 21, 27.1—show nothing definite regarding a change in productivity.

Average yield per acre of corn in Maryland, Delaware, and Virginia from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887–1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
24. 0	22. 0	19.1	26.0
17. 9	25. 5	18.0	24.7
22. 5	29. 7	19.5	22.0
22. 7	17. 9	22.4	28.8
21. 3	21. 3	18.2	27.5
19.8	18.5	22.6	26. 0
19.5	18.5	21.3	29. 0
26. 0	18.7	22. 1	30. 2
26. 3	17.7	25. 2	29. 8
22.2	21.3	21.0	27.1

The diagram, however, shows a very decided break at the period 1880-81, which is undoubtedly due, as in the case of the last group of States, to a readjustment of the department's estimates to accord with

Fig. 18.—Average yield of corn in Maryland, Delaware, and Virginia from 1867 to 1906.

the findings of the Tenth Census. The two sections of the medial line each show a decided rise from the point of origin, indicating a decided increase in productivity for this group of States for the forty-year period.

The total acreage in corn for the several decades for the group of States embracing North Carolina, South Carolina, Georgia, Florida, and Alabama, 66,993,000, 86,117,000, 102,619,000, 113,809,000, show a decided increase. The figures representing the average yield for the several decades, 12.2, 10.8, 11.4, 11.3, give little indication of a change in productivity.

Average yield per acre of corn in North Carolina, South Carolina, Georgia, Florida, and Alabama, from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897-1906.
Bushels. 12. 4 11. 7 12. 7 13. 0 11. 9 13. 2	Bushels. 11.7 11.0 10.6 11.3 9.1 12.5	Bushels. 11.7 10.3 11.8 10.7 12.3 10.6	Bushels. 10. 6 11. 4 10. 8 9. 6 9. 7 10. 0
12. 2 12. 3 11. 5 11. 3	9.6 11.0 10.5 10.6	10. 4 12. 0 13. 1 10. 9	12.3 13.0 12.1 13.3

In this case the diagram brings out nothing more definitely than do the figures, and it is not evident that the productivity has changed materially one way or the other.

The total acreage for the several decades for the group of States embracing Ohio, Indiana, Illinois, Michigan, Wisconsin, and Minne-

Fig. 19.—Average yield of corn in North Carolina, South Carolina, Georgia, Florida, and Alabama from 1867 to 1906.

sota is 126,441,000, 177,378,000, 162,838,000, and 193,646,000. The figures representing the average yields for the several decades, 31.9, 30.3, 28.9, 33.1, show definitely little as to any change in productivity.

Average yield per acre of corn in Ohio, Indiana, Illinois, Michigan, Wisconsin, and Minnesota from 1867 to 1906, by years and by decades.

1867–1876.	1877-1886.	1887–1896.	1897-1906.
1007 1070.		1001 10001	1001 1000.
Bushels.	Bushels.	Bushels.	Bushels.
29.5	29.8	23.8	30.9
33.6	34.6	32.1	34.0
26.8	35.6	28.2	33.8
36.9	33.7	26.5	36.8
36.6	25.7	30. 2	25.9
37. 9	29.5	27.3	31.9
29.0	23. 9	26.0	31.0
27.8	29. 2	24. 4	30.9
31.0	32.5	33.3	37.0
30.0	28.8	37.0	38.3
31.9	30.3	28.9	33.1

The diagram shows either a considerable depression in curvation of the medial line with a general trend upward, or, what is more

likely, a readjustment of the department's estimates in 1881, which would give two sections of a nearly straight broken line with a decided upward slope. It is impossible to state at this time which of these two interpretations of the diagram is correct. Each of them, however, shows a marked tendency toward increased productivity; the one more than the other.

The average yield for Nebraska and Kansas for the several decades may be expressed by the figures 33.5, 33.2, 24.5, and 24.9. These two States show by far the greatest increase in corn acreage of any of the 35 States under consideration. The basis for the estimate of the average yield per acre in the last decade—namely, the acreage—was 700 per cent larger in Kansas and 2,500 per cent larger in Nebraska than in the first decade; yet we have in Nebraska the average yield of 32 bushels on 3,011,000 acres in the first decade to compare with the average yield of 27.8 bushels on 77,213,000 acres in the last

Fig. 20.—Average yield of corn in Ohio, Indiana, Illinois, Michigan, Wisconsin, and Minnesota from 1867

decade and nearly as great a disparity in the case of Kansas. The combined acreage for the four decades is 12,625,000, 63,621,000, 110,130,000, and 154,177,000.

However, taking the original data as they stand, we find, in going back to the records for the individual State, three years of crop failure in Kansas in the third decade, the average yields being for 1887, 14.6 bushels; 1890, 15.6; and 1894, 11.2, the highest yield being in 1889, 35.3 bushels. In the last decade there were three years of very low yields—1897, 18 bushels; 1898, 16; and 1901, 7.8. The last five years of the last decade show four years well above the average for the forty years. Similarly, in the third decade, Nebraska shows a yield of only 6 bushels in 1890, while in the last decade are two very low yields and four out of the last five years show a considerably larger yield than the average for the forty years.

Average yield per acre of corn in Nebraska and Kansas, from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
37.5	37.2	19.3	24.0
20.4	37.9	30.9	18.5
45.3	37. 0	35.9	27. 5
28.9	30. 2	16.8	22. 5
40.7	22. 8	30.9	10. 9
38.1	34. 3	26.3	31. 1
37. 0	36.3	23. 2	25.8
10. 2	37.3	8. 6	26.8
40. 0	34.5	20. 2	30.2
36. 7	24.6	32. 7	24.9
33.5	33.2	24.5	24.9

The diagram shows a great depression covering the past twenty years. This may be due in part, but not entirely, to a readjustment of the Department's estimates in 1881. It is probably due in part to

Fig. 21.—Average yield of corn in Kansas and Nebraska from 1867 to 1906.

the westward extension of agriculture into the drier soils of the western parts of these States.

The same general inequalities are shown in the statistics for the other crops reported upon for these two States by the Bureau of Statistics, with the possible exception of wheat, and while the facts can be explained only in part there is nothing that clearly indicates a positive change in productivity.

Adjoining Kansas and Nebraska on the east are the States of Iowa and Missouri, where there has likewise been a considerable increase in acreage, although not so large as in the first-named States. The total acreage of the two States for the four decades is 58,188,000, 117,138,000, 141,778,000, and 148,721,000. The average yields may be expressed by the figures 32, 29.7, 29.8, and 30.2.

Average yield per acre of corn in Iowa and Missouri from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887-1896.	1897-1906.
Bushels.	Bushels.	Bushels.	Bushels.
33. 6	31.8	33. 4	30. 5
31. 9	37.5	35. 8	28. 5
31.7	33. 2	25. 9	33. 0
40.2	21. 1	33. 3	17. 5
38.4	27. 7	28. 0	35. 5
26. 2	25. 9	30. 9	30. 2
22. 6	33. 7	18. 5	29. 4
35.8	31. 7	35. 5	34.3
28.9	23. 6	33. 0	35.9
32.0	29.7	29.8	30.2

The diagram indicates that there was a slight adjustment of the department's estimates in 1881 as indicated by the broken lines, but assuming that the curve should stand as drawn, in either case there is a tendency toward increased production.

Fig. 22.—Average yield of corn in Iowa and Missouri from 1867 to 1906.

The total acreage in corn for the several decades for Mississippi, Louisiana, Texas, and Arkansas is 40,408,000, 71,225,000, 91,561,000, and 110,791,000. The figures representing the average yields for the several decades are 20.9, 17.5, 16.9, and 17.5.

Average yield per acre of corn in Mississippi, Louisiana, Texas, and Arkansas, from 1867 to 1906, by years and by decades.

1867-1876.	1877-1886.	1887–1896.	1897-1906.
Bushels. 21.5 23.7 24.9 24.3 18.5 21.2 18.6	Bushels. 20.0 20.7 17.0 20.9 12.7 19.1 15.7	Bushels. 18. 1 17. 1 17. 7 15. 2 18. 3 16. 9 15. 3	Bushels. 16.5 20.3 18.0 16.3 11.1 13.4 21.0
15. 2 20. 9 20. 3	15. 2 17. 8 16. 2 17. 5	17. 9 20. 5 12. 4	20. 8 16. 7 20. 5

The diagram shows this inequality to be due to an apparent decline in productivity during the first half of the forty-year period. There has, however, evidently been a readjustment of the department's estimates in 1881 to accord with the census figures, and the medial line of the diagram should in this case be broken and continued in the direction of the broken lines. This would show in one interpretation of the diagram a general, but slight, tendency toward increased productivity over most of the period and by the other interpretation a more decided tendency toward increased productivity.

The total acreage in corn in California in the several decades is 326,006, 1,101,000, 1,127,000, and 562,000. The figures representing the average yield per acre for the several decades are 37.9, 28.7, 30.6, and 29.7.

Fig. 23.—Average yield of corn in Mississippi, Louisiana, Texas, and Arkansas from 1867 to 1906.

Average yield per acre of corn in California from 1867 to 1906, by years and by decades.

1867-1	876. 187	7-1886.	1887-1896.	1897-1906.
Bush	els. Ba	ushels. 30.0	Bushels. 30.0	Bushels. 31.5
4	5. 0 1. 4 5. 6	34. 5 28. 0 32. 0	27. 8 28. 2 27. 5	26. 0 27. 0 25. 0
3	8. 0 5. 0	27. 2 28. 3	34. 5 30. 3	31. 0 30. 5
3	1. 0 6. 2 6. 3	24. 5 30. 0 24. 7	37. 1 19. 3 34. 5	30. 7 28. 6 32. 0
3	3.0	27. 2	37.0	34. 9
3	7.9	28.7	30. 6	29. 7

The diagram shows a decided falling off in the first fifteen years, after which the general trend of the medial line is upward. The falling off appears to be real, as there is no appearance of a readjustment of the Department's estimates as there is in so many of the groups of States.

Summing up the evidence regarding the yield per acre of corn in the several States, it may be stated that there is no justification for the popular belief that the yield is decreasing in the United States or in any considerable portion of it, either on the soils of the older States in the East and South or on the soils of the newer States of the central or western part of the country; in the States which use commercial fertilizers or in those that do not. The acreage in corn in most of the States having increased considerably it is not possible to determine the effect of this increase on the yield per acre as was done in the case of wheat.

If any positive conclusion is to be drawn from the figures, it would have to be that the productivity of the soils of the United States and of the several States has increased during the past forty years as measured by the yield of corn.

With the full analysis of the data for the two important crops of wheat and corn, it seems unnecessary for the purpose of this report to discuss the data relating to oats, barley, rye, hay, buckwheat, potatoes, and cotton, especially as an inspection of the data fur-

Fig. 24.—Average yield of corn in California from 1867 to 1906.

nished by the Bureau of Statistics on these crops shows the same general facts as are shown by wheat and corn and would add nothing material to this discussion. The only inference, therefore, which can be drawn from the statistics of crop production is that the productivity of the soils of the United States has not declined in the past forty years, but that, on the contrary, it has increased.

EVIDENCE PRESENTED BY THE YIELD OF CROPS ON INDI-VIDUAL FARMS.

It may be argued that the statistics which have been presented for States do not represent the same soil or the same farms throughout the period, and this is undoubtedly true. But records of actual yields from the same farm for a long period of years are extremely rare. There are no such records for farms in the United States so far as the examined literature shows. Possibly if a thorough search were made a number of family records could be found of the annual yield of crops on individual farms which had remained in the same

family for fifty to one hundred years or more and such data would be of much interest if made available.

Such investigations into old family records has recently been taken up in France and Germany with the most interesting and valuable results.

Kellermann has made a most exhaustive investigation and report upon the increase in crop production in Germany.^a He gives the yields per acre of a large number of estates which have been handed down from father to son, some of the records going back to the middle of the sixteenth century. Three cases only will be given here, which show the general trend of the information he was able to gather.

Yield of cereals in Schmatzfeld (Germany).

[Reduced	to	bushels	per	acre.]	
----------	----	---------	-----	--------	--

Year.	Wheat.	Rye.	Barley.	Oats.
1552-1557	12.5	13. 2	14.2	14.8
1660. 1670. 1822.	14.6	12. 8 17. 2 24. 3	8.3 16.1 33.7	12.3 17.4 26.2
1825 1830	18.1	20. 0 21. 2	28. 1 35. 6	32. 5 46. 2
1840	25.6 28.7	30. 0 33. 1 39. 3	31. 6 39. 3	45. 5 50. 1
1860. 1870. 1886.	27.6	20. 4 28. 9	32. 9 43. 8 43. 2	62. 9 46. 6 66. 6
1887-1896. 1897-1904.		29. 6 34. 0	47. 6 50. 4	59. 7 69. 1

The period from 1552 to 1557, apparently the average for those years, gives a yield of wheat of 12.5 bushels per acre; in 1670 there is a record of 14.6 bushels; in 1822 of 18.7 bushels; in 1825 of 18.1 bushels; in 1840 of 25.6 bushels; in 1850 of 28.7 bushels; in 1860 of 35.3 bushels; in 1897 of 45.1 bushels; an increase in those three hundred years from 12.5 bushels in 1552 to 45.1 bushels in 1897–1904, the record showing a regular increase with a few fluctuations which are probably due to seasonal conditions.

Rye has increased during the same time from 13.2 bushels in 1552 and 12.8 bushels in 1660 to 30 bushels in 1840 and 34 bushels in 1897.

Barley has increased from 14.2 bushels in 1552 or 8 bushels in 1660 to 16.1 bushels in 1670, and finally to 50.4 bushels in 1897.

Oats have increased from 14.8 bushels in 1552-1557, the first record, to 69.1 bushels in 1897-1904, which is the last record.

Yield of cereal crops on Rittergut Trebsen, near Leipzic.

[Reduced	to	bushels	per	acre.]	l
----------	----	---------	-----	--------	---

Year.	Wheat.	Rye.	Barley.	Oats.
1756-1765. 1766-1775. 1776-1785. 1786-1795.	13. 25 16. 63 13. 98	15. 91 12. 33 14. 47 13. 67	14. 25 21. 71 20. 44 16. 77	23. 03 23. 48 23. 45 19. 16
1796-1800 1814-1816 1820-1822 1825-1834	15. 28 16. 90 21. 04	15. 36 15. 68 19. 14 21. 63 27. 92	15. 16 25. 41 18. 28 30. 19 36. 66	17.90 25.72 26.36 31.83 46.54
1803-1894 1803-1892 1803-1894	25.51 27.03 29.85	28.75 23.06 28.36 30.45	30.95 30.95 35.39	56. 25 44. 64 54. 74 51. 15
1900–1904.	00.44	32. 52	43. 23	57. 80

From this estate apparently more nearly continuous records are given in five and ten year periods from 1756 to 1904. The average yield of wheat in the first period of which we have a record, 1756–1765, is 26 bushels; in the next period, 1766–1775, it is 13 bushels; and from that time a gradual increase up to 1900–1904, when it was 36 bushels. Rye increases similarly by regular steps from 15.91 bushels to 32.52 bushels; barley from 14.25 bushels to 43.23 bushels; oats from 23.03 bushels to 57.80 bushels.

Yield of cereals on Gut I, of Conrad.

[Reduced to bushels per acre.]

1800-1810 1810-1820 1820-1830	21.15	14, 64		
1830-1840 1840-1850 1850-1855 1855-1860 1860-1865 1865-1870 1870-1875 1875-1880	20. 02 23. 25 18. 82 23. 10 26. 40 25. 27 29. 77 27. 45 29. 92 28. 12 25. 57	14, 04 11, 76 17, 76 15, 04 19, 84 23, 12 24, 16 30, 48 26, 48 28, 32 24, 32 24, 32 25, 12	19. 80 20. 92 21. 29 16. 37 20. 83 32. 75 27. 71 37. 85 36. 17 35. 71 29. 38 36. 45	17. 22 13. 44 14. 84 13. 86 27. 58 33. 46 34. 44 44. 52 55. 72 51. 38 39. 48 45. 08

On this estate from 1800 to 1894 in ten-year averages wheat increased from 21.15 to 35.70 bushels, rye from 14.64 to 29.52, barley from 19.8 to 41.06, and oats from 17.22 to 43.96.

Kellermann throughout cites many well-known authorities and refers to many sources of information, and concludes his article with this remarkable statement:

If we now make a brief survey of the results obtained in the foregoing, we must affirm that the development of the yields of cultivated soil since the beginning of the past century presents a very pleasing picture, not only that agriculture, by absolute addition to the acreage of 30 to 35 per cent and decrease in fallow from 33 to $4\frac{1}{2}$ per cent,

has tried to meet the growing needs of the nation for food, but above all that it has shown how to gain from the soil gradually $2\frac{1}{2}$ times as much per unit of surface as formerly.

The same facts have been brought out by Steinbrück,^a who cites many cases of individual farms from records going back for one hundred years or more.

EVIDENCE PRESENTED BY THE CHEMICAL COMPOSITION OF THE SOILS OF THE UNITED STATES AS COMPARED WITH THOSE OF EUROPE.

The soils of the countries of northern and middle Europe are to-day producing from two to three times as large vields of the staple farm crops as the soils of the Northern and Middle States of the United They are, therefore, removing from the soil more of the mineral plant-food constituents. The soils are older agriculturally in that the countries have been settled for one thousand to two thousand years longer for agricultural pursuits than the United States. The soils as a whole were, no doubt, similar originally in composition, as they are derived from the same class of rock materials. If, as some suppose, there is danger of permanent loss of fertility of our soils through loss of mineral plant-food constituents or any one essential constituent through the removal of our very moderate crops for one hundred or two hundred or even for one thousand years, the cropping records of European soils would be expected to have resulted in some significant difference in lower content of mineral plant-food constituents at the present time as compared with the newer agricultural soils of the United States.

For the purpose of such a comparison all analyses of soils by the acid digestion method, the results of which are available to us in the literature of the past eighteen years, have been compiled and are presented in the following tables so far as they pertain to the soils of Great Britain, Ireland, Germany, France, and the United States. It is in these countries where the most active work has been done and about which the most results have been published. There have been found and are presented in this bulletin the results of the analyses of 1,857 samples of soil from all parts of the United States, 286 samples from Great Britain and Ireland, 1,550 samples from France, and 449 samples from Germany. This makes a total of 4,142 analyses available for comparison.

So far as it has been possible to determine from the description of the analytical work all of the results used in this bulletin have been obtained from recognized methods of "acid digestion" with con-

a Der Boden und die landwirtschaftlichen Verhältnisse des Preussischen Staates, vol. 7, p. 799 (1906), edited by August Meitzen.

centrated acid, and only the results pertaining to the top soil have been taken; the results pertaining to the subsoils having been rejected. This has been done to make the data strictly comparable.

It will be remembered that rocks vary greatly in their ultimate chemical composition accordingly as one or more of the common minerals predominate to give the essential character to the rock. Soils vary in ultimate chemical composition and, according to the mode of their formation, soils are generally more complicated than the rocks with respect to the minerals they contain. It is as difficult, therefore, to intelligently compare soils from their chemical composition, unless the physical characteristics are known, as it would be to compare or identify rocks from chemical data alone. As soil classification and soil surveying are new and not on an international basis, it is impossible to compare soils from different countries in any classified or systematic way from the data given in connection with the analyses.

Johnson wrote in 1869: a

Notwithstanding an immense amount of labor has been expended in studying the composition of soils, and chiefly in ascertaining what and how much, acids dissolve from them, we have, unfortunately, very few results in the way of general principles that are of application, either to a scientific or a practical purpose. In a number of special cases, however, these investigations have proved exceedingly instructive and useful.

This applies now to the ordinary chemical analyses of soils as well as it did forty years ago.

The chemical composition of soils varies so greatly without any obvious law of general relationship to crop production that averages mean little or nothing and the figures are given without any attempt at averaging. The average amount of potash in all soils reported upon would probably be not far from 0.3 per cent. The extreme amounts reported in the following tables for all countries are 0.003 to 11.37 per cent. The average amount of phosphoric acid in all soils reported would probably be not far from 0.16 per cent. The extremes given in the following tables are 0.003 to 7.14 per cent. The extremes for lime are 0.002 to 94.7 per cent. The extremes for magnesia are 0.001 to 16.97 per cent.

Too much importance should not be paid to moderate differences in composition, as soils are liable to vary greatly in the same field. An excellent illustration of this is given in the results from St. Viaud, France; 73 samples were taken from a field of approximately 250 hectares (617 acres), of which the separate analyses are given us as shown in the following table.

a Samuel W. Johnson, "How Crops Feed," p. 331.

Composition of 73 samples of soil taken from a field of about 617 acres in St. Viaud, France.

Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).	Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
	Per cent. 0.07 21 117 14 12 23 21 21 17 20 24 41 12 22 24 22 22 19 16 6 21 17 10 14 14 15 21 15 10 16 16 12 18 18 15 10 17 17 15 10 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10	Per cent. 0.03 0.03 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.05 0.07 0.07 0.07 0.05 0.09 0.05 0.06 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07	Per ccnt. 0.16 177 299 266 166 133 100 0055 166 133 355 188 182 166 160 183 180 170 170 180 180 180 180 180 180 180 180 180 18	Per cent. 0.13 -15 27 -16 -12 -21 -26 -06 -19 -14 -60 -23 -12 -13 -30 -24 -56 -37 -44 -23 -23 -14 -31 -31 -31 -34 -34 -35 -33 -38 -40 -12 -38 -40 -12 -38 -40 -10 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -40 -10 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38		Per cent. 0.18 200 188 112 101 111 111 115 200 144 122 255 122 122 20 222 255 255 254 244 222 223 211 221 210 211 221 231 211 222 215 215 215 217 217 218 218 220 221 231 241 252 253 255 255 255 255 255 255 255 255	Per cent. 0.06 0.06 0.06 0.08 0.04 0.07 0.06 0.06 0.06 0.08 0.04 0.07 0.06 0.08 0.08 0.04 0.09 0.06 0.09 0.06 0.05 0.07 0.06 0.05 0.05	Per cent. 0.08 20 11 21 11 15 12 22 22 06 09 05 25 21 11 10 16 60 99 10 18 15 17 17 12 20 90 19 47 13 111 38 17 18 18	Per cent. 0.07 .09 .51 .72 .76 .54 .45 .39 .20 .17 .27 .20 .04 .36 .25 .34 .21 .12 .37 .31 .51 .51 .51 .51 .60 .99 .20 .10 .12 .15 .17 .13 .10 .09 .53 .12 .10 .09 .53 .12 .10 .09

In this field the potash varies from 0.07 to 0.51 per cent, phosphoric acid from 0.03 to 0.10 per cent, lime from 0.05 to 0.47 per cent, and magnesia from 0.03 to 0.60 per cent. This range in composition in this single field would cover most of the 1,565 samples reported from France; so that it would appear that there is no significant difference in composition with respect to these four mineral plant-food constituents in most of the soils of France which have been examined and reported upon.

Another reason why too much consideration should not be given to slight differences in composition is the unavoidable error of analysis. For a number of years it has been the practice of the referee on soils of the Association of Official Agricultural Chemists to submit samples of soil to various analysts for examination. These samples are thoroughly prepared by grinding, sifting, and mixing and careful subsampling to insure thorough uniformity in the samples which go to the different individuals. The method of analysis is explicitly prescribed so as to insure, as far as possible, uniformity in results. The following tables of results show the agreement:

Variations in results of analyses of the same sample of soil by eight analysts.

[Provisional method: Thirty-six hours' digestion.]

Analyst.	K ₂ O.	Na ₂ O.	P ₂ O ₅ .	CaO.	MgO.
Α			0.429		
B	. 470	0.76 .155	. 486	. 521	. 407
D a	. 340	.280 .140 .140	. 580 . 560 . 530	. 360 . 410 . 430	. 360 . 390 . 400
E d F	. 330	. 125	.600	. 430	.375
G. Н.	. 44		. 48		

The extreme variation here representing the possible limit of error has been: For potash 0.2 per cent, for phosphoric acid 0.44 per cent, for lime 0.24 per cent, and for magnesia 0.16 per cent.

Variations in results by eight analysts—phosphoric acid and potash calculated as per cent of the dried fine earth.a

[Official method: Ten hours' digestion in HCl of 1.115 sp. gr.]

4 1	К	20. San	nple No.	-	P ₂ O ₅ . Sample No. —			
Analyst.	1.	2.	3.	4.	1.	2.	3.	4.
A	0.359 .345 .354 .260	0.154 .112 .235	0.380 .396	0.04 .225	0. 447 . 420 . 430 . 324 . 510	0. 268 . 210 . 117 . 201	0. 409 . 462 . 449 . 421	0.230 .244 .095 .267
F b F c G G G G G G G G G G G G G G G G G G	.210 .304	.179 .130 .125	. 365 . 220 . 286	.175 .100 .158	. 451 . 412 . 460 . 425	.172 .185 .210 .163	.396 .383 .500 .422	. 193 . 190 . 220 . 176

a Bulletin No. 47, Bureau of Chemistry (1896), p. 36.

The extreme variation here has been for the various soils; For potash, 0.16, 0.12, 0.18, and 0.18 per cent, respectively; for phosphoric acid 0.19, 0.15, 0.12, and 0.15 per cent, respectively.

Variations in results by nine analysts—phosphorus soluble in fifth-normal nitric acid.a [Parts per million in dry soil.]

Analyst.	No. 1.	No. 2.	No. 3.	No. 4.	Analyst.	No. 1.	No. 2.	No. 3.	No. 4.
A b	22. 0 18. 0 18. 0 14. 4 14. 0	8. 0 15. 0 10. 0 11. 0 7. 4 7. 4 5. 8 6. 1	5. 0 10. 0 5. 7 6. 0 4. 4 4. 8 3. 6 2. 8	158. 0 175. 0 158. 0 158. 0 165. 5 162. 0 155. 5 154. 5	CDDFGGG	10. 6 16. 7 31. 7	7. 7 5. 7 5. 6 9. 7 15. 2 7. 8 7. 8	3. 1 3. 6 6. 4 25. 5 4. 8 4. 8	163. 4 145. 6 157. 1 167. 4 165. 4 166. 0

<sup>a Bulletin No. 105, Bureau of Chemistry (1907), p. 144.
b Work done according to directions sent out.</sup>

a Digestion in Snyder flask.
 b In platinum flask and condenser.
 c In platinum bottle, stoppered.
 d Reported as dried at 110° C., figured to original soil by reporter.

b Gravimetric.

c Volumetric.

c Baking of residual omitted.

d Baking omitted and phosphorus determined by Kentucky method.

Variations in results by five analysts—potassium soluble in fifth-normal nitric acid by official method.a

[Dowto	per mi	llian in	d	anil l
Tarts	per mir	шоп ш	. (III V	SUII.I

Analyst.	No. 1.	No. 2.	No. 3.	No. 4.	Analyst.	No. 1.	No. 2.	No. 3.	No. 4.
A A B C	99. 2 88. 7 113. 0 95. 5	130. 0 135. 9 128. 0 127. 9	141. 7 139. 8 188. 0 135. 5	236. 0 233. 1 276. 0 234. 4	D E	89.3 91.3 96.1	107. 9 136. 0 133. 8	120. 8 142. 5 139. 8	189. 1 244. 9 249. 9

a Bulletin No. 105, Bureau of Chemistry (1907), p. 144.

The determinations in the above tables being expressed in parts per million instead of in per cent can not be directly compared with the first two tables, but it is seen that the proportional variation is about the same.

The aggregate area of the three countries selected for a comparison of the soils with those of the United States is but a relatively small part of the continent of Europe. The total area of Europe is estimated at 3,550,000 square miles, according to Rohrbach, and 3,760,000, according to Wagner-Supan; of continental United States at 2,974,159 (land area) square miles. The area in square miles of the European countries selected for a comparison of the chemical composition of the soils with those of the United States covers only about one-sixth of the continent. The areas, as given in the Statesman's Yearbook, are as follows:

Great Britain and Ireland:	square miles 50, 848
Wales Scotland Ireland	7, 467 30, 405
	121, 080
Germany	208, 780

The land area of some of our own States with which these figures are comparable are:

are comparable are.	uoro milos
ра	uare nines.
Texas	262,398
California	156,092
Minnesota	
Missouri	68, 727
Illinois	56,002
Alabama	
Florida.	54, 861
New York	47,654
Pennsylvania	44,832

THE CHEMICAL COMPOSITION OF THE SOILS OF THE UNITED STATES.

The following table contains the results of all the analyses made in the United States by the "acid digestion" method during the past eighteen years, so far as they have been found in the literature. A summary of the findings is given immediately following the table:

Chemical composition of the soils of the United States.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
California a Illinois Kansas Indiana Massachusetts Michigan Missouri Montana New York South Dakota Texas Wisconsin Illinois Illinois Illinois Illinois Indiana Illinois Indiana Illinois Indiana Iowa Kansas Michigan Montana New York South Dakota Texas Wisconsin Illinois Indiana Illinois Indiana Iowa Kansas Michigan Montana New York South Dakota Texas Wisconsin Washington: b	1 3 5 7 9 12 14 16 18 18 19 22 25 27 35 39 51 163 669 70 73 74 74 74 80 80 84 85 87 89 90	Per cent. 0.555 161 525 .161 525 .496 .153 .496 .153 .118 .272 .311 .321 .390 .095 .230 .580 .337 .594 .586 .156 .479 .384 .465 .766 .766 .766 .766 .766 .766 .766 .7	Per cent. 0:230 0:66 1:06 0:096 1:166 1:144 0:64 1:121 1:185 1:185 1:185 1:187 1:156 1:185 1:105 0:93 1:166 1:163 1:170 1:165	Per cent. 0.955 210 610 575 250 405 525 490 405 870 250 665 525 175 405 520 790 1140 1.535 900 230 1.455 405 405 230 1.455 370 1.185 675 405 970 1.125 7.10 1.155 9.370	Per cent. 1. 052 247 643 501 450 558 275 550 907 518 628 162 412 886 585 5585 1. 726 1. 542 218 989 450 662 615 281 1. 105 589 585 1. 740 642 645 645 645 645 645 645 645 646 645 646 645 646 646
Yakima County. Kittitas County. Oregon, b Morrow County Alabama c. Butler County. Talladega County. Pike County.	17 37 79 1129 1131 1133	1. 07 . 70 . 89 . 15 . 182 . 903 . 149	. 13 . 18 . 18 . 017 . 029 . 150 . 032	2. 00 2. 08 1. 37 . 051 . 275 . 289 . 039	1.34 1.47 1.08 .01 .293 .633
Arizona: d Glendale. Granite Mountains Orangewood. Tempe. Glendale. Orangewood. Glendale Mesa Tempe. Glendale Casa Grande. California, Needles d.	3 4 5 6 11 10 0 17 14 1 1 2 9 7 7 19 8 16 18 18 15 12 20 22	. 955 . 528 . 777 . 472 . 671 . 630 . 783 . 593 . 1. 025 . 563 . 860 . 818 . 1. 959 . 970 1. 094 1. 045 . 683 . 777 . 686 . 683 . 777	. 244 . 148 . 220 . 140 . 059 . 112 . 080 . 058 . 053 . 122 . 106 . 207 . 227 . 210 . 149 . 045 . 045 . 045 . 045	2. 213 3. 028 2. 721 2. 883 2. 068 2. 453 1. 336 1. 354 1. 282 2. 703 1. 240 2. 419 5. 711 2. 611 3. 513 4. 205 2. 854 5. 579 6. 427	2. 535 1. 991 2. 441 2. 025 1. 391 1. 668 1. 317 1. 188 1. 764 1. 356 1. 713 2. 326 2. 102 2. 541 3. 086 2. 013 1. 466 1. 564 1. 447 1. 775

a This and following samples, to and including number 90, analyzed by Moore, Jour. Am. Chem. Soc. 24,

^{85 (1902).}b Hilgard, Weather Bureau Bul. No. 3, p. 18 (1892).

c Bul. 3, n. s. Alabama Agr. Expt. Sta., No. 3, p. 13 (1889).

d Bul. 28, Arizona Agr. Expt. Sta., pp. 77–92 (1898).

Chemical composition of the soils of the United States—Continued.

. State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
California: a Amador County.	1291 1294	Per cent. 0. 64 . 26	Per cent. 0. 05 . 07	Per cent. 0. 20 . 17	Per cent. 0. 18 . 16
	1115 1113	. 53 1. 48	. 05	.50	. 30 2. 21
Butte County Shasta County Merced County	1139 1028	. 26	. 07	6. 10 . 113	1.23 .306
Merced County	1192 1061	. 26	. 03	. 49 1. 417	. 33 1. 955
•	1065 1055	. 29	. 02	1.02 1.14	. 63 1. 58
	1189 1190	1.32 .67	.06	. 99 1. 31	1. 54 1. 74
Alameda County	1191 1029	1. 01 . 28	.08	1.10 8.21	1.28 .43
Santa Clara County Napa County	999 1075	. 31 1. 48	.11	1.39	16, 97 1, 43
	1077	. 67	. 08	2. 49 . 71	10. 77 1. 71
Sacramento County Contra Costa County San Bernardino County	1230 809	. 24	.06	. 66 1. 51	.34 1.24
San Demardino County	812 1406	.97	. 05	1. 65 1. 57	1.68 1.33
	1536	. 73	.14	1.58	1. 85 1. 78
,	1537 1248 1251	. 69 . 74 1, 17	.03	1.71 1.11 1.19	1. 40 1. 29
	. 1246	. 68	11	1.15	1.30
San Diego County.	1253 1238 1092	1. 17 . 64 1. 42	.11 .06 .35	. 96 1. 06 2. 20	1. 27
Arizona: a	506	1.18	.13	8. 67	2.97
Near Yuma Gila River Valley California: b	1195 1645	. 66	.23	6.26	2.13
Sutter County Tehama County Sacramento County	1636 1698	.74 .50 .49	. 26 . 20	.81 1.45	1.14
•	1699	. 62	.11	1.55 1.29	.94
Kern County Sonoma County Napa County	1466 1647	1.04	.16	.90	1.24 1.97
Alameda County	1655 1679	1.28	.09	1.15	1.08
Alameda County San Luis Obispo County San Benito County	1693 1704	. 51	. 29	1.04 1.16	2.09
Ventura County Riverside County	1714 1758	1.37	.21	. 67 4. 23	. 57 3. 80
	1759 1760	1.16	.12	2.19 8.00	2.32 5.69
Orange County	1761 1016	1.01	. 22	13.94 2.04	6.16 1.92
Tulare County	1159 1157	1.20 1.31	.10	1.86 1.70	1.81 1.96
East Highlands	1163 1984	1.24 .98	. 09	3.06 .96	2.71 1.42
Riverside Corona Wheatland	1406	. 87 1. 17	.14	1.57 1.19	1.33 1.29
Wheatland	2403 2405	. 42	.20	.72	1.45 1.83
	2408 2411	. 65 . 23	. 21	. 83	1.50 .29
Salton Basin	2324 2325	.76	. 23 . 22 . 07	4.35 3.75	1.24 1.68
Berkeley	2430	. 33		.76	. 76
Arkansas Valley	$\frac{1}{2}$. 23	. 23	2.80 1.28	. 97
Yuma	3 4	. 59	.21	3.69 1.46	1.61
Fort Collins	5 6	. 56	.16	3.58 2.17	. 73 1. 00
	7 8	. 41	. 21	.70	. 85

a Ann. Rep. Cal. Agr. Expt. Sta., 1890, pp. 23–50.

b Results for this and the following samples to and inclusive of 2411 from Ann. Rep. Cal. Agr. Expt. Sta., 1899–1901, 1893–4, 1894–5, 1895–1907; Nos. 2324 to 2425, from Bul. 140, Cal. Agr. Expt. Sta. (1902); № 2425, from Bul. 140, Cal. Agr. Expt. Sta. (1907).

c Buls. 9 and 10, Colo. Agr. Expt. Sta. (1890).

Chemical composition of the soils of the United States—Continued.

State or Territory.	Original sample No.	Potash (K ₂ O.)	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Colorado—Continued. San Luis. Fort Collins.	9 10 11	Per cent. 0. 41 . 27 . 14 . 41	Per cent. 0. 23 . 23 . 14 . 21	Per cent. 0. 67 . 81 . 68 . 70	Per cent. 0. 54 . 56 . 67 . 85
Florida: a		. 41			
Lake City	D E		. 02 . 70 . 07	. 03 . 34 . 06	.02 .13 .03
Auburndale	7		. 02 . 01 . 005	.03 .10 .007	. 05 . 03 . 001
Tobacco soil (Cuban)	9	.018	. 005 . 053 1. 60	. 008 . 130 7. 60	.003 .008 .17
Pineapple soil Orange soil Cotton soil		.006 .014 .010	.012 .018 .032	.000 .034 Trace.	. 009 . 022 . 020
Indiana: b Newton County		. 47	.17		
Hendricks County		.23	. 22		
Fountain County.		. 181 . 428	. 222		
		. 281	.154		
Delaware County		. 32	1.01		
		.21	.16		
Kentucky: c Hodgenville	2003	.090	. 172	. 080	
Lagrange Beard	2004	.190	.182	. 190	
Beard	2130 2131	. 532	.096	. 198	
Newport	2276	Trace.	. 592		. 503
Lexington	2502	. 510	. 537	. 605 . 425	. 393
Casky Meade.	- 2600 6039	.310 .178	.117		
meaue	6040	. 249	. 040		
	6041 6943	. 204	. 055		
(1) 11	6044	. 308	. 039		
Scottsville, Allen County	7716 7720	.096	.27	.120	
Shelbyville Scottsville, Allen County Lincoln County Logan County Lewis County	7885 8457	. 169	.064		
Lewis County	8599	. 251	. 038		
Boone County	8810 8847	. 223	.090		
Marshall County	8856	.308	.038		
Kenton County	8857 8897	. 411	.042		
Breckenridge County	9541 9802	.26	. 07		
Casey County	9800	. 160	.158	. 520	
Fayette County Henry County	. 10249	. 318	. 475	. 520	
Hopkins County	9623	. 145	. 052		
Livingston County	9624 10493	. 165	. 072		
	10494	. 505	. 230		
	10495 10496	. 475	. 170		
Pulaski County	9766	. 141	.030		
Grayson County. Meade and Hardin counties	11067	. 148	.063		
Henderson County Hickman County	. 11188	. 273	. 077		
	11171	. 440	. 118		
Hopkins County Lincoln County	. 11174	. 162	. 064		
Logan County	11119	. 220	. 155		
Boone County		. 206	.076	1	

<sup>a Bul. 5, Fla. Agr. Expt. Sta. (1899); Bul. 6 (1889); Bul. 19 (1893); Bul. 87 (1906).
b Bul. 95, Ind. Agr. Expt. Sta., pp. 25-29 (1903).
c This and following samples to and including No. 8599, Rep. Ky. Agr. Expt. Sta., 1892, 1893, 1894, 1899, 1901, 1902, 1903; Nos.14398 to 14604, Bul. 126, Ky. Agr. Expt. Sta.</sup>

Chemical composition of the soils of the United States—Continued.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Kentucky—Continued. Boyd County. Casey County. Clark County.	4.4.04	Per cent.	Per cent.	Per cent.	Per cent.
Boyd County	14401 14407	0. 130 . 542	0.064		
Clark County	14411	.710	.377	0.500	0.480
	14412	. 732	. 455	. 600 . 725	. 500
·	14610	. 549	1.335	. 725	. 280
	14613 14654	. 646 . 375	1.755 .855	1. 100	. 240
	14618	.638	1.695	.712 1.175	. 320
	14648	. 455	. 485	. 739	. 420
	14616 14650	. 407	.710 .512	.350	.200
	14652	. 401	.755	. 739	. 480
Fayette County	14408	. 360	. 132		
' '	14409	. 576	. 182		
	14498 14577	.417	. 524		
	14490	.582	. 450	.400	.400
	14491	. 400	. 444	. 475	. 520
	14492	. 380	. 390	. 400	. 400
	14493 14494	. 410	. 562	. 600	.480
	14494	. 452	. 770	. 725	.480
	14482	. 435	. 490		
,	14483	. 437	. 474		
	14484 14485	. 337	. 392	.300 .350	. 220
Henry County		.347	. 356	. 300	. 340
	14477	. 300	. 274		
Knox County Muhlenberg County Ohio County Pendleton County. Rockcastle County	14633	. 125	.042		
Munienberg County	14636 14410	. 483	.120	. 200	. 300
Pendleton County	14400	.202	.096		. 500
Rockcastle County	14480	. 180	. 038		
	• 14499	. 350	.054		
Warren County	$14509 \\ 14592$. 430	.070		
,	14593	.256	.055		
	14594	. 307	. 050		
Woodford Country	14595	. 280	. 025		
Woodford County	. 14513 14606	. 472	. 625		
	14604	. 548	1.385	1.725	. 240
Louisiana a	1a		.064	. 170	. 114
Maine, b Scarboro	2a cccx cv	.120	. 112	.060	. 02:
Aaryland: c	CCCXCV	.11			
Washington County	133	. 55	. 50	. 56	
•	134	. 35	.32	. 56	
Vost Virginia e Martinshurg	463 465	.45	.24	.31	
West Virginia, c Martinsburg	466	. 22	.20	. 56	
	467	. 32	.19	. 31	
Michigan: d	1	1.84	. 40	1.98	1. 43
Lenawee County	2	2.05	.41	2. 10	1. 59
Washtenaw County	3	1. 18	. 40	1.28	. 86
Cass County	4	1.18	. 44	2.02	. 66
Shiawassee County	5	1. 10 1. 85	.33	1.38 1.64	1. 23
Shiawassee County. Agricultural College.	6 7	. 85	.30	1, 22	.59
	8	2.12	. 41	1.28	. 89
Von Buren County	9	1. 97	.31	1.46	. 43
Van Buren CountyLake County	10 11	.83	.13	.51	.46
Lake County. Mason County.	12	. 65	.22	. 66	.12
	13	2.10	. 30	1.00	. 89
Osceola County Mecosta County	14 15	1. 19 1. 96	. 29	.80	.64
Mecosta County	16	1.80	. 44	1.14	.49
Wexford County	17	. 83	. 15	.65 .	. 24
Missaukee County	18	1.95	. 28	1.15	. 98
Missaukee County Grand Traverse County Benzie County	19 20	. 89 1. 10	.13	1.37 .55	. 41
Antrim County	21	. 98	.18	. 95	. 36

a Bul. 22, La. Agr. Expt. Sta., 1893, p. 739.
 b Ann. Rpt. Me. Agr. Expt. Sta., 1894, p. 15.

c Ann. Rpt. Md. Agr. Expt. Sta., 1889, p. 86.
 d Bul. 99, Mich. Agr. Expt. Sta., 1893, pp. 6-15.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO.	Magnesia (MgO).
Michigan—Continued. Grayling Kalamazoo. Grand Haven Luce County Isabella County. Midland County. Clare County Lake County Bay County Montealm County Josego County Usego County Monnesota: a	22 23 24 26 27 28 29 30 31 32 33 34 35 36 37	Per cent. 0. 20 3. 33 3. 30 3. 44 2. 20 4. 86 1. 85 5. 54 1. 90 7. 73 92 1. 18 1. 13 61 1. 10	Per cent. 0.05 0.04 0.01 .88 .69 .49 .15 .36 .14 .14 .38 .20 .14 .16	Per cent. 0. 20 24 32 6. 09 5. 02 4. 18 87 1. 64 99 35 68 1. 18 82 40	Per cent. 0. 12 1.17 1.5 81 62 75 27 1. 23 1.16 73 30 46 31 1.13 36
Red Wing Gillord Good Thunder Langdon Eden Prairie Faribault County McLeod County MetLeod County Meter County Goodhue County Warren Crookston Twin Valley Gossen Moorhead Worthington Benson Fergus Falls Alexandria Wadena Park Rapids Henning Fair Haven Mille Lacs Pine Hinckley New Duluth Wyanette Saint Cloud Duluth Farmington Rolling Stone Faribault Owatonna Experiment station Austin Wells Markato Polk County Norman County Norman County Polk County Vanity Chippewa County Lincoln County Chippewa County Kandiyohi County Chippewa County Marti County Chippewa County Martin County Chippewa County Martin County Chippewa County Martin County Martin County Kandiyohi County Martin County Martin County Martin County Martin County Martin County Kandiyohi County Martin Coun	285 265 269 290 304 300 306 234 261 302 257 203 298 202 236 308 275 224 312 222 259 298 326 214 208 321 245 230 292 277 279 239 280 280 281 282 288 282 288 282 288 282 298 298 326 444 444 444 266 442 444 444 266	. 15 . 33 . 46 . 171 . 111 . 20 . 21 . 21 . 21 . 21 . 25 . 31 . 30 . 30 . 50 . 60 . 60 . 60 . 54 . 90 . 91 . 8 . 34 . 32 . 32 . 32 . 32 . 32 . 32 . 32 . 32	.10 .10 .10 .10 .10 .10 .10 .10 .10 .10	.47 .56 .60 .48 .74 .70 .1.00 .23 .58 .76 .2.44 .2.40 .2.55 .2.59 .61 .1.20 .1.29 .695 .61 .1.33 .92 .1.06 .61 .3.56 .61 .1.26 .60 .61 .3.56 .61 .63 .71 .78 .38 .11 .76 .48 .41 .54 .48 .51 .48 .51 .48 .51 .54 .48 .51 .58 .51 .58 .50 .70 .70 .70 .70	.21 .38 .16 .20 .41 .40 .42 .36 .19 .97 .81 .85 .191 .67 .25 .80 .38 .38 .77 .65 .25 .24 .82 .25 .25 .30 .38 .38 .37 .25 .25

a This and the following samples to and including No. 257 from Ann. Rept. Minn. Agr. Expt. Sta., 1893; Nos. 203 to 329, Bulls. 30, 41, and 65, Minn. Agr. Expt. Sta.

State or Territory.	Original sample No	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
linnesota—Continued.		Per cent.	Per cent.	Per cent.	Per cent.
Meeker County.	202 432	0.25 .13	0.18 .23	2.48	0. 97
Wright County. McLeod County. Hennepin County.	462	. 17	.20	.95	. 66
Hennepin County	430	.30	.38	.51	.50
Ramsey County	451 374	.29	.32	. 92	.43
Ramsey County	420	.30	. 45	. 94	.51
Becker County	422	. 25	. 47	. 88	. 55
Todd County	418 424	.17	.31	. 56	.26
Ottertail County	456	.15	.16	.78	. 17
Cass County	414	.27	. 20	.28	.11
Dakota County	436 434	.32	.20	.31	° .38
Wabasha County	468	.27	. 28 . 26	. 67	. 5-
Goodhue County	285	.22	.10	.40	.17
Rice County	257 489	.26	.30	.76 .51	. 81
Houston County	483	.34	.22	.42	. 4
Freeborn County	470	. 27	. 26	. 60	. 4
Fillmore County Faribault County	487 300	.41	.12	. 45 . 70	6
Olmsted County	485	.61	.24	.30	.7
Blue Earth County Washington County	269	.46	.19	. 60	.1
Washington County	440 314	.26	.19	.29 .28	.4
Chisago County		.20	.20		
Pine County	426	.18	. 13	. 33	. 2
Godfor Goroote	228 474	.25	.12 2.61	.76 .20	.2
Carlton County		.34	.10	.22	
	495	.31	.11	.17	
Pine County.		38	.22	. 47	
Dakota County	563 557	.42	.19	.41	. 4
	535	. 44	.16	. 46	.2
	513	. 23	.36	. 58	- 6
Goodhue County	553 521	. 40	.17	.64	.6
	527	.51	. 20	.70	.7
	616	. 50	.20	. 56	.2
	555 577	.44	.14	. 49	.6
	577 573	.37	.13	. 59	.6
	572	. 55	.17	. 48	.5
Hennepin County Wabasha County	542 515	. 43	.23	. 42	.4
Wabasha County	618	. 44	. 22	. 41	.1
	503	. 20	.38	. 49	- 4
Winona County	596 597	.38	.15	. 43	.5
	598	. 44	.18	1.69	1.1
Freeborn County	592	.54	.27	.61	.5
	594 567	. 46	.18	. 52	. 2
	584		. 29	2.36	.2
	586 519	. 29	.22	1.94 .40	6.1
Mower County	533	.37	.19	. 49	.3
Fillmore County	633	. 49	.32	3, 22	.2
Waseca County	505	. 21	. 48 . 22	.53	.4
Martin County	455 561	.57	.11	.93	.7
Watonwan County	531	. 49	.15	. 81	
	606	. 45	.19	. 40	.1
	607 608	.36	.19	.77 2.55	.2
Nicollet County	523	. 52	.20	. 62	.7
Sibley County	559	. 43	.16	.63	.4
Renville County	511 599	. 42	.32	.57	.6
Lac qui Parle County	568a		. 19	14.00	1.3
	502	.54	.29	1.65	. 6
Big Stone County Kandiyohi County	537 624	.35	.20	. 68 1. 42	-7
Randryour County	5.8	.34	.14	.72	. 6
	590	. 50	.18	1.31	.7
Swift County	620 609	.62	.21	.87	.1

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Minnesota—Continued, Polk County Ottertall County Becker County Norman County Kittson County Hubbard County Isanti County Sherburne County Morrison County Itasea County Beltrami County Chisago County Mischerical	632 571 612 613 614 569 611 509 579 575 540 544 548 666 600 602 630	Per cent. 0.57 .51 .44 .73 .66 .60 .73 1.16 .20 .10 .18 .23 .15 .55 .18 .35 .27 .37 .43 .36	Per cent. 0.19 1.16 1.14 1.16 1.34 2.32 1.10 1.14 1.11 1.17 1.13 1.14 1.10 0.09 2.21 2.30	Per cent. 0.74 -97 -71 -89 4.60 8.67 1.10 1.25 -48 -38 -28 -24 -44 -42 -74 -19 -76 -51 -27 -70 1.22	Per ccnt. 0.68 61 -25 -76 -2.00 1.69 -60 -58 -25 -29 -21 -34 -30 1.04 -22 -36 -24 -13 -37 -41
Mississippi: a Senatobia McNeil Experiment Station	1,489	.142	. 270 . 023 . 017	1.560 .220 .170	. 460 . 162 . 140
North Dakota: b Red River Valley (average 21 samples). James River Valley (average 5 samples). Sheyenne River Valley (average 2 samples). Mouse River Valley (average 4 samples). Devils Lake region (average 10 samples) Turtle Mountains (average 5 samples). Wells County (average 2 samples). Rolette County (average 7 samples) West Missouri (average 2 samples). Station farm. Mayville, Old. Mayville, New. Station Plats.	422 423 424 425 426 427 428	.54 .48 .54 .57 .55 .45 .45 .45 .45 .46 .60 .73 .54 .63 .50 .22 .18 .77 .61 .79 .82 .78	.19 .27 .17 .18 .12 .14 .19 .25 .27 .33 .38 .40 .39 .39 .37 .31 .21 .20 .27 .33 .38 .39 .39 .39 .39 .39 .39 .39 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30	4.16 1.07 14.67 2.19 6.08 .77 .41 .96 .32 1.25 .83 .80 .86 1.01 .95 1.03 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	.81 .57 .93 .51 .61 .47 .28 .14 .43 Trace. Trace. Trace. Trace. Trace. Trace. 28 .07 .08 .07 .23 .34 .50 .44
Oregon: c Lincoln County Washington County Wasco County Washington County Benton County Polk County Washington County Lincoln County Lincoln County Lincoln County Lincoln County Lincoln County Lincoln County Asample 1489 Ann Rat Miss Agr Exat Sta 1800	1A 1B 1C 1D 1E 1F 1H 1H 1J 1K 1L 1M 1N 1O 1P 1Q 1S 1T 1U 1W 1W 1N 1W 1N 1W 1W 1W 1W 1W 1W 1W 1W 1W 1W 1W 1W 1W	1.76 .10 .03 .16 .00 .12 .28 .26 .11 .47 .24 .11 .12 .19 .26 .38 .33 .16 .22 .33 .00 .00 .15	.06 .27 .03 .32 .02 .09 .34 .34 .01 .05 .33 .30 .08 .06 .21 .33 .12 .12 .11	. 23 1. 40 . 34 . 63 . 65 . 75 . 13 . 76 1. 60 . 60 . 1. 47 . 53 . 43 . 31 . 30 . 27 . 42 . 45 . 27 . 60 . 60 . 60 . 60 . 60 . 60 . 60 . 60	1. 13 1. 65 1. 71 1. 18 1. 41 1. 13 .90 .71 1. 78 1. 03 .55 1. 27 .82 1. 54 .54 .25 .98 2. 04 .52 .27 .21

a Sample 1489, Ann. Rpt. Miss. Agr. Expt. Sta., 1890; samples from McNeil Expt. Sta., Bul. 99, Miss. Agr. Expt. Sta.
b This and the following samples from Bul. 35, N. Dak. Agr. Expt. Sta. (1899), and Ann. Rpt. N. Dak.

Agr. Expt. Sta., 1901.

^c Samples 1A to 627, Bul. 50, Oreg. Agr. Expt. Sta. (1898) samples 2382 to 2542, Ann. Rpt. Oreg. Agr. Expt. Sta., 1903.

·					,
State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Oregon—Continued. Douglas County. Crook County. Union County. Washington County. Baker County. Polk County. Washington County. Marion County. Marion County. Washington County. Lincoln County. Washington County. Washington County. Unatilla County. Unatilla County. Benton County. Josephine County. Linn County. Wasoo County. Multnomah County. Josephine County. Douglas County. Wasco County.	406 407 409 424 425 426 427 448 449 2N 623 624 454 625 408 597 612 613 615 615 626 629 616 618 764 763 764 763 764 763 764 766 411 628 628 628 768 768	.39 .12 .46 .25 1.85 1.27 .31 .20 .41 .20 .29 .06 .21 .48 .52 .26 .38	Per cent. 0.16 0.88 0.7 23 1.33 2.88 1.44 0.02 4.47 0.04 6.63 3.11 3.00 2.54 1.12 1.13 2.25 2.55 1.14 1.14 2.23 3.00 0.66 2.28 2.25 2.55 8.22 2.11 3.38 2.29 3.30 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Per cent. 2.05 1.21 1.21 1.30 1.41 2.01 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.8	Per cent. 0. 42 1.11 24 26 97 97 91 1.93 01 1.93 01 287 85 96 80 63 00 71 .38 1.45 46 .79 .90 .80 .83 .72 46 .43 .71 1.10 .62 .05 1.23 .36 .36 .33 .63 .52 .24 .24 .24 .24 .24 .24 .24 .24 .24 .2

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Washington	40 41	Per cent. 0. 274 . 058 . 442 . 436 . 374	Per cent. 0. 166 . 159 . 191 . 265 . 096	Per cent. 0.979 1.758 .930 .604 .644	Per cent. 0. 015 . 647 . 362 . 043 . 297
Jefferson County	119 120 42 43 175	. 663 . 651 . 019 . 022 . 054	. 070 . 096 . 109 . 085 . 089	.874 .908 .154 .579 .219	. 072 . 270 . 335 . 036 . 212
San Juan County	45 46	.000 .000 .000 .341 .347	.106 .365 .274 .112 .288	1. 468 . 538 . 448 2. 084 4. 679	.159 .432 .223 .018
Whitman County	76 77 5 72	. 006 . 019 . 635 . 471	.096 .112 .142 .361	.714 .614 1.081 .457	.011 .027 .727 .256
Whatcom County	73 75 78 79 139	. 332 . 006 . 142 . 021 . 316	. 122 . 294 . 285 . 067 . 139	. 514 . 324 . 409 . 359 1. 234	. 283 . 546 . 000 . 151 . 454
Skagit County	140 141 142 82 83 84 85	.483 .275 .319 .111 .057 .006	. 054 . 144 . 266 . 090 . 070 . 045 . 144	1. 044 1. 322 . 892 1. 049 . 832 . 892 . 892	. 112 . 000 . 014 . 009 . 005 . 005
Yakima County	86 100 101 91 92 93	. 129 . 186 . 028 . 189 . 149 . 310	. 267 . 304 . 205 . 128 . 174 . 141	1. 082 . 474 . 518 2. 389 . 909 1. 259	. 006 Trace. . 018 . 092 . 068 . 364
King County	94 137 102 129 179	. 047 . 455 . 004 . 057 . 142	. 154 . 029 . 057 . 070 . 390	1.469 1.154 .389 .599 .404	.421
Thurston County Snohomish County	176 103	. 076 . 051	.320	. 506	. 189 . 235 . 018
Island County	177 105 122	. 218 . 145 . 626	. 237 . 067 . 344	. 704	.332
Clarke County Clallam County	162 111 128	. 335 . 154 . 171	.137 .240 .115	1. 214 . 333 . 525 . 834	. 209 . 054 . 023 . 450
Spokane County	115 198 199 218 289 290	. 550 . 534 . 385 . 147 . 378 . 465	. 154 . 216 . 190 . 245 . 320 . 287	. 432 . 630 . 600 27. 940 1. 200 1. 450	.306 .036 .054 .605 .400
Franklin County	291 292 293 294 80	.485 .440 .437 .393 .085	. 351 . 320 . 351 . 325 . 048	1.350 1.550 1.050 1.300 1.971	.345 1.003 .299 .362 .018
Experiment Station Farm	81 124 126 106 373 374 375	Trace 111 . 054 . 003 . 107 . 129 . 117	. 019 Trace. . 045 . 029 . 177 . 136 . 192	. 308 . 659 . 534 1. 296 . 150 . 175 . 005	. 281 . 032 . 036 . 476 . 010 . 148 . 109
Thurston County	376 377 184 102	. 092 . 020 . 188 . 004	. 135 . 336 . 312 . 058	.010 .220 .638 .389	. 091 . 091 . 048 . 561
Pierce County	231 37 219	. 189	. 297 . 205 . 192	. 450	.112 .048
Snohomish County	219 220 212 221 200	. 181 . 144 . 146 . 150 . 087	. 192 . 409 . 217 . 307 . 159	.940 .760 1.140 .520 .410	. 091

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia MgO).
Utah: a College Farm Cache Valley, south end	90 93 2067 2074 2162	Per cent. 0.046 .051 1.04 .62 1.15	Per cent. 0.115 .103 .18 .18	Per cent. 3. 45 3. 08 . 83 . 69 . 60	Per cent. 2. 29 2. 52 . 50 . 55 . 49
Cache Valley, west side, south half	2070 2079 2062 2058 2085 2071 2073 2163	.74 1.48 .69 .77 .76 1.34 1.50	. 24 . 39 . 24 . 19 . 24 . 21 . 27	. 86 1. 66 2. 10 . 84 . 85 1. 00 1. 01	.67 2.42 .56 .61 .64 .98
Cache Valley, west side, north half	2163 2160 2166 2061 2078 2063 2064 2081	1. 43 1. 34 1. 09 . 47 . 67 . 68 . 71 1. 37	. 27 . 25 . 42 . 14 . 18 . 16 . 20 . 29	1. 25 1. 28 1. 55 . 46 . 99 . 67 . 69 1. 31	. 86 1. 16 . 51 . 21 . 67 . 33 . 49 . 50
Cache Valley, north end	2065	1. 51 1. 18 1. 56	. 25 . 15 . 30 . 30	1.06 1.85 3.14 .67	. 89 . 88 . 67 . 13
Cache Valley, east side	2055 2059	. 50 1. 16 1. 39	. 20	1.68	. 54
Middle Cache Valley		1.05	. 21	2. 22 7. 35 1. 50	1. 47 1. 37 . 21
Sanpete Valley	2047 2048 2049 2050 2051 2052 2053 2084 2083 1819 1816 1821 1824 1826 1827 1806 1827 1806 1821 1805 1805 1805 1816 1816 1821 1816 1821 1805 1806 1805 1806 1806 1806 1806 1806 1806 1806 1806	. 50 . 60 . 30 . 444 . 90 . 31 . 366 2. 69 1. 20 . 27 . 80 . 51 . 1. 24 65 95 67 1. 03 58 95 	25 18 20 18 21 15 16 21 11 11 22 17 15 20 16 21 17 15 20 16 17 18 19 14 16 17 23 20 16 11 11 11 11 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	2. 43 .59 .54 .56 1. 52 .62 .47 6. 39 8. 36 13. 09 22. 54 14. 89 13. 16 9. 91 9. 53 14. 01 12. 84 13. 17 13. 17 13. 17 13. 17 13. 17 14. 13. 76 15. 17 16. 13. 17 17. 17. 17 17. 17. 17 17. 17 18. 18 18.	. 58 . 73 . 33 . 41 . 18 . 31 . 26 . 66 . 66 . 1. 56 . 1. 30 . 29 . 29 . 29 . 20 . 20 . 1. 1. 20 . 1. 1. 20 . 1. 1. 20 . 1. 1. 20 . 1. 20 . 1. 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20
Laramie Experiment Farm Lander Experiment Farm Saratoga Experiment Farm Sheridan Experiment Farm Sundance Experiment Farm Wheatland Experiment Farm Tennessee c	7 37 51 19 43	. 50 . 64 . 68 . 61 . 73 . 52 . 68 . 63 . 120 . 180 . 330 . 312 . 092 . 403 . 340 . 218	. 15 . 14 . 15 . 20 . 12 . 13 . 28 . 18 . 14 . 040 . 074 . 104 . 057 . 021 . 021 . 021	1. 47 . 82 . 64 6. 63 3. 41 . 74 . 69 4. 97 . 87 . 053 . 060 . 180 . 163 . 050 . 073 . 100 . 100	14 .76 1.36 1.65 .95 1.15 .94 3.21 .85 .144 .215 .342 .455 .085 .291 .265

a Ann. Rep. Utah Agr. Expt. Sta. (1891); Bul., 52, Utah Agr. Expt. Sta., 1898.
 b Bul. 6, Wyo. Agr. Expt. Sta. (1892).
 c Bul. 3, Tenn. Agr Expt. Sta. (1897).

State or Territory.	Original sample No.	Potash (K ₂ O).	Phos- phoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Organa County	10 11 12 13 14 15	Per cent. 0.393 .285 .378 .409 .380 .416	Per cent. 0. 078 . 020 . 026 . 069 . 071 . 113	Per cent. 0. 278 . 093 . 132 . 212 . 205 . 199 . 050	Per cent. 0.355 .157 .184 .270 .246 .290
Greene County Knox County Grundy County Franklin County Monroe County Loudon County Dyer County Coffee County Benton County Carroll County Fayette County Raury County Robertson County Robertson County	1	. 180	. 021 .074 .040 .017 .022 .057 .104 .113 .069 .010 .020 .026 .071 .158 .078	. 050 . 060 . 053 . 073 . 100 . 163 . 180 . 199 . 212 . 100 . 093 . 132 . 205 . 510 . 278 . 63	. 085 . 213 . 140 . 291 . 265 . 455 . 342 . 290 . 270 . 090 . 157 . 184 . 246 . 290 . 355 . 62
ew York b	31, 32, 52, 51, 52, 52, 51, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52	. 04 1. 06 1. 06 1. 06 1. 91 1. 97 1. 97 1. 89 1. 04 1. 32 1. 23 2. 54 2. 57 1. 17 1. 13 1. 38 1. 38 4. 488 3. 364 6. 470 6. 227 1. 227 1. 227 1. 227 6. 227	. 16 . 09 . 08 . 05 . 115 . 093 . 134 . 117 . 08 . 09 . 07 . 07 . 06 . 06 . 210 . 125 . 030 . 104 . 178 . 479 . 291 . 213 . 215 . 223 . 163 . 32 . 35 . 35 . 35 . 35 . 35 . 35 . 35 . 35	. 63 . 63 . 73 . 77 . 60 . 62 . 68 . 70 . 63 . 55 . 63 . 55 . 63 . 59 . 47 . 42 . 62 . 9.056 . 7.492 . 1.990 . 11.549 . 18.86 . 7.716 . 9.580 . 2.447 . 223 . 1.503 . 2.801 . 1.407 . 2.001 . 2.50 . 80 . 80 . 80 . 80 . 80 . 80 . 80 . 8	

a Ann. Rept. N. H. Agr. Expt. Sta., 1893.
 b Ann. Rept. N. Y. Agr. Expt. Sta., 1889.
 c Bul. 5. Mo. Agr. Expt. Sta. (1889).
 d Bul. 19, Nevada Agr. Expt. Sta. (1892, 1897); Ann. Rept. Nevada Agr. Expt. Sta., 1890.
 c Nos. 1523, 1533, 1534 in this place are evidently original Nos. 1505, 1506, 1507 misnumbered.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Nevada	1545 1546 1547 1548 1549 12 13 14 15 16 17 46 47 48 49 50	Per cent. 0.46 32 32 40 243 593 808 403 705 481 250 516 459 781 888	Per cent. 0.55 .26 .38 .26 .38 .153 .121 .167 .105 .103 .088 .115 .185 .184 .095 .121 .093	Per cent. 1.60 1.20 1.85 1.20 1.48 .104 .335 .451 .181 .062 .055 .081 .404 .116 .059 .076	Per cent. 1.06 45 45 45 34
Ohio:b East farm, Wooster	4 7 10 13		.211 .07 .081 .08 .08 .08 .091 .101 .089 .11 .129 .07 .08 .08 .097 .118 .18 .18 .18 .167 .191 .156 .12 .20 .20 .17 .17 .17	.081 .35 .30 .27 .29 .25 .25 .33 .25 .33 .25 .33 .25 .24 .20 .225 .30 .225 .40 .60 .60 .60 .60 .60 .60 .60 .60 .60 .6	.30 .43 .48 .28 .43 .42 .42 .42 .40 .40 .23 .35 .44 .37 .43 .36 .368 .375 .45 .39 .35 .45 .39 .35 .46 .37 .36 .36 .37 .46 .37 .37 .46 .37 .37 .46 .37 .46 .37 .37 .46 .37 .37 .46 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .46 .37 .37 .37 .37 .37 .37 .37 .37 .37 .37
Test farm, Strongville Test farm, Strongville	1864 1368 1874 1880 1884 1810 1820 1826 1832 1838	.53 .62 .43 .18 .25 .22 .21 .20 .25 .23 .19 .19	.10 .11 .12 .097 .064 .121 .099 .08 .12 .197 .161 .113 .227 .126 .126	.63 .68 .45 .20 .16 .10 .19 .23 .28 .19 .18 .27 .30	.58 .62 .49 .44 .31 .54 .34 .40 .40 .42 .56 .461 .57
'Northwest test farm, Neapolis Germantown Carpenter test farm Wooster experiment farm, first 12 inches Strongville, first 12 inches Columbus, O. S. U., first 12 inches Neapolis, first 12 inches	1806 1803 1807 1786 1792 1787 1793 4253 4255 4257	.11 .15 .05 .05 .06 .06 .040 .040 .090 .142 .193 .181 .25 .251 .563	121 111 16 10 12 120 130 110 120 102 124 101 101 102 102 104 101 104 105 104 105 106 107 107 108 109 109 109 109 109 109 109 109	. 23 . 22 . 11 . 49 . 08 . 41 . 07 . 31 . 07 . 22 . 11 . 18 . 31 . 205 . 621 . 070	.54 .50 .09 .18 .14 .15 .10 .14 .11 .33 .36 .356 .474 .623 .105

a Buls. 28 and 99, W. Va. Agr. Expt. Sta. (1892, 1906). b Buls. 110 and 150, Ohio Agr. Expt. Sta.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Oklahoma: a Virgin soil, Station farm Virgin soil. Virgin soil Pennsylvania: b	7 10 5	Per cent. 0 44 .80 .32	Per cent. 0.06 .04 .06	Per cent. 0.95 .44 .76	Per cent. 0.21 .16 .18
Donegal	15 15 1 3 5 19 21 23	.62 .67 .23 .02 .142 .090 .100 .171 .050 .089 .052 .050 .040 .541	. 191 . 265 . 22 . 02 . 057 . 066 . 011 . 044 . 107 . 022 . 034 . 037 . 051 . 155	.61 .41 .32 .07 .027 .037 .045 .019 .022 .046 .025 .062 .028 .188	1. 26 2. 05 .78 .02 .081 .043 .110 .040 .072 .124 .043 .047 .003 .811
Kingston plain. Kingston upland Warwick Lime Rock. Block Island Middletown East Providence. Tennessee: ¢	166 167 168 169 170 171	.175 .124 .184 .136 .164 .126	.106 .029 .092 .067 .099 .120	.448 .410 1.295 .273 .252 .495	. 264 . 290 1. 141 . 209 . 368 . 356
Tennessee: Hamblen County Knox County Hamblen County McMinn County Hamblen County Knox County Hamblen County Knox County McMinn County McMinn County McMinn County Washington County Hamblen County Knox County County County County Roane County Hamblen County Knox County County County Hamblen County Humphreys County Lawrence County Montgomery County Stewart County Montgomery County Stewart County Stewart County	588 555 606 311 488 644 644 644 666 666 322 602 608 511 577 299 821 174 595 597 1299 600 603 30 377 553 553 553 553 666 666 662 605 566 560 570 742 581	.12 .10 .09 .14 .16 .23 .38 .28 .28 .26 .99 .26 .43 .26 .51 .26 .43 .26 .43 .26 .41 .24 .41 .34 .41 .30 .52 .91 .45 .41 .41 .41 .41 .41 .41 .41 .41 .41 .41	. 04 . 04 . 04 . 03 . 05 . 09 . 06 . 10 . 10 . 10 . 10 . 09 . 08 . 03 . 10 . 07 . 07 . 07 . 07 . 07 . 07 . 07 . 0	.08 .08 .10 .12 .09 .14 .16 .17 .12 .04 .09 .11 .12 .08 .82 .17 .22 .10 .06 .10 .11 .12 .30 .38 .20 .38 .20 .17 .73 .38 .41 .10 .06 .04 .23 .31 .43 .41 .10 .06 .04 .23 .31 .08 .14 .15 .08	.13 .12 .22 .11 .20 .17 .15 .37 .13 .11 .10 .22 .15 .24 .25 .24 .30 .53 .12 .18 .19 .24 .29 .33 .35 .6 .96 .96 .91 .10 .27 .14 .10 .27 .14 .10 .27 .14 .30 .23 .33 .33 .33 .34 .35 .35 .31 .32 .33 .35 .35 .31 .32 .33 .35 .35 .31 .32 .33 .35 .35 .31 .32 .33 .35 .35 .31 .32 .33 .35 .35 .31 .32 .33 .35 .35 .31 .32 .33 .35 .35 .35 .31 .32 .33 .35 .35 .35 .35 .35 .35 .35 .35 .35

a Bul. No. 5, Okla. Agr. Expt. Sta. (1894).
 b Ann. Rept. Pa. Agr. Expt. Sta., 1894.
 c Ann. Rept. S. C. Agr. Expt. Sta., 1889.

d Bul. 28, R. I. Agr. Expt. Sta. (1894).
 e Bul, 78, Tenn. Agr. Expt. Sta. (1906).

			1	1	
State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Tennessee—Continued. White County. Coffee County. Dickson County. Houston County. Lewis County. Putnam County. Warren County. Bedford County. Bedford County. Rutherford County. Smith County. Williamson County. Williamson County. Carroll County. Chester County. Dyer County. Hardeman County. Hardeman County. Henderson County. Henderson County. Madison County. Madison County. Blount County. Weakley County. Blount County. Weakley County. Blount County. Weakley County. Weakley County. Montagomery County. Maury County. Summer County.	633 660 635 822 634 160 161 567 568 662 661 659 664 158 159 663 749 669 663 671 169 666 67 135 576 677 135 576 677 135 576 676 677 135 576 677 677 678 679 679 679 679 679 679 679 679 679 679	. 38 . 31 . 40	Per cent. 0.06 0.07 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.01 0.01 0.01 0.01 0.02 0.04 0.03 0.04 0.05 0.05 0.09 0.02 0.04 0.03 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06	Per cent. 0.14 133 .099 .14 .18 .100 .002 .100 .004 .099 .34 .406 .06 .099 .07 .07 .09 .28 .25 .24 .31 .37 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	Per cent. 0.16 49 28 34 15 24 15 24 18 16 177 35 111 14 13 13 33 42 44 19 21 23 40 36 36 38 32 31 21 26 28 38 38 32 21 21 21 21 21 21 21 21 21 21 21 21 21
	2698 2699 2700 2701 2702	. 20 . 26 . 12 . 44 . 39	. 53 . 21 . 21 . 34 . 18	. 48 . 80 . 54 . 32 . 45	. 41 . 30 . 27 . 13 . 13

a Ann. Rep. Oregon Agr. Expt. Sta., 1905; Bradley Jour. Am. Chem. Soc., 28, 64 (1906).

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Peaverdam soils	2097 2095 2096 2513 2525 2539 2554 2591 2591 2616 2617 2618 2619 2621 2627 2633 2635 2637 2638 2644 2649 2650 2658 2690 2691 2754 2754 2758 2781 2838 2844 2847 2848 2844 2847 2848 2844 2847 2848 2844 2847 2848 2854 2869 2921 1 2 2 3 4 5	Per cent. 0.08 -14 -30 -19 -21 -20 -28 -30 -18 -51 -17 -16 -10 -17 -16 -10 -17 -16 -10 -17 -16 -10 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18	Per cent. 0.24 38 40 40 20 144 19 226 145 23 20 22 21 19 12 23 38 31 39 20 41 16 38 36 26 30 43 18 38 48 29 20 21 21 22 23 20 41 24 25 24 26 30 20 21 22 20 20 20 20 20 20 2	Per cent. 0.28 0.28 0.31 45 45 47 1.94 0.29 1.26 0.84 1.22 1.98 1.19 1.99 1.19 1.90 1.19 1.90 1.19 1.90 1.19 1.90 1.19 1.90 1.19 1.90 1.19 1.90 1.19 1.90 1.19 1.90 1.90	0.56 87 85 86 48 111 90 1.27 79 1.31 71 1.00 33 46 59 60 60 60 60 00 95 79 91 1.80 48 44 35 58 35 46 67 76 67 76 61 124 124 124 124 125 125 144 155 158 167 176 178 178 178 188 188 188 188 188 188 188
Oxford. Washington: b Spokane County. Stevens County. Ferry County. Okanogan County. Chelan County.	564 641 642 643 1030 77 78 161 342 435 656 656 673 1103 446 1872 1873 789 790 158 576 1885 1886	. 829 . 438 . 304	. 249 .108 .157 .300 .185 .122 .048 .083 .280 .400 .343 .217 .082 .192 .082 .124 .257 .241 .145 .170 .070 .070	7.768 3.20 3.34 5.244 6.18 7.41 7.41 7.41 6.40 3.50 6.50 6.494 6.99 8.009 8.51 9.61 7.64 3.79 1.365 7.14 8.852	3. 891 1.142 Trace 398 . 295 . 150 . 239 . 234 . 175 . 374 . 602 1. 218 . 469 . 515 . 684 . 548 . 262 . 216 . 162 . 319 . 301 . 897 . 186

a Bul. 90 A, N. C. Agr. Expt. Sta. (1893).
 b Bul. 85, Wash. Agr. Expt. Sta. (1908). Bul. 10, Div. of Chemistry, U. S. Dept. Agr. (1886).

	Original		Phos-		
State or Territory.	sample No.	Potash (K ₂ O).	phoric acid (P_2O_5) .	Lime (CaO).	Magnesia (MgO).
Washington—Continued. Lincoln County.	741	Per cent. 0. 436	Per cent. 0.117	Per cent. 0.842	Per cent, 0. 584
Intenti County	742	. 524	. 150	. 755	. 746
Douglas County	1890 868	. 517	.172°	. 563 5. 561	. 070
Douglas County	1024	. 312	. 050	1.120	. 445
	1241 1242	. 298	.125	. 568	. 568
A James Coursets	1416	. 380	.102	. 563	. 171
Adams County.	1699 1837	. 450	. 042	. 618 . 591	. 684
Whitman County	1888 1134	. 506	.187	. 508 . 726	. 194
Garfield County Asotin County	1133	. 567	. 080	. 609	. 847
	1420 1431	. 434	. 052	. 480	. 239
	1432	. 391	. 047	. 549	. 210
Walla Walla County	1698 1842	. 358	.050	. 824 1. 098	. 306
	1845	. 328	. 037	. 659	. 104
Columbia County	1846 1135	. 426 . 467	.110	.770	. 140
· · · · · · · · · · · · · · · · · · ·	1411	. 431	. 162	. 803	. 437
Benton County	1412 142	. 387	.152 .165	. 831 3. 451	. 509 1. 458
·	708	.329	.105	1. 570 . 944	1.009 .650
	743 745	. 288	Trace.	.987	. 712
	767 782	. 304	Trace.	1. 721 1. 250	. 940 . 582
Yakima County	194	. 212	. 136	1.631	. 703
	545 662	. 144	.130	1.770 1.078	1. 270 . 500
	677	. 125	Trace.	. 648	Trace.
Kittitas County	722 723	. 471	.112	1.190 2.134	. 793
TTU 114 4 Cl m 4	751	. 794	.187	14.912	4. 830
Klickitat County	9	. 359	.150	. 663	. 385
	190 512	.147	.069	. 365	. 354 Trace.
	1025	.116	.067	. 550	
Skamania County	661 1102	. 385	.138	. 540 . 452	. 297
Clarke County	172	.166	. 243	. 486	. 547
	330 331	9.178	. 198	. 200	. 674
Wahkiakum County	602 603	. 354	. 212	. 552 1. 542	. 228
	604	.134	. 062	. 145	
Lewis County	783 784	. 071	. 062	. 653	. 405 . 455
	785	. 224	. 107	. 479	. 086
	786 1772	. 124	. 062	. 421	. 189
Chehalis County		. 223	.118	. 379	. 256 . 713
Mason County	869	. 146	. 155	1.525	. 657
	1656 1657	. 440	.192	1. 338 1. 433	. 703
	1658	. 475	. 224	1.329	. 465
	1659 1660	. 545	.224	2.099 1.418	1. 411
	1661	. 940	. 224	1. 428 1. 449	.947
San Juan County	1662 394	.700	. 300	.873	. 991
	870 871	.180	.125	1.060 1.031	. 630 . 481
King County	159	. 126	. 044	. 615	. 807
	160 499	. 157 . 125	. 073	. 693 1. 089	. 548
	500 744	. 153	.190	1.089 1.321	.658 .602
Dakota: a					
Prairie soils	6 16	. 720 . 725	.112	. 848 . 852	. 868 1. 535
	7	. 745	.224	3.898	2.007

a Bul. 10, Div. of Chemistry, U. S. Dept. Agr. (1886) (locality unknown).

State or Territory.	riginal ample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Michigan:a Berrien County	2550	Per cent. 0. 180	Per cent. 0.715	Per cent. 0. 967	Per cent. 0. 267
Indiana:a Boone County.	2551	. 510	. 041	1.387	. 771
New York: a Oswego County	A1	. 320	. 023	, 350	. 389
	A2 A3 A4 B5 B6 B7 C8	. 320 . 425 . 305 . 595 . 400 . 475 . 480 . 530 . 460	. 023 . 052 . 023 . 050 . 010 . 048 . 038 . 176 . 176	. 350 . 350 . 564 . 753 1. 873 . 535 . 683 . 634	. 503 . 501 . 274 . 641 . 555 . 868 . 642 . 793
Louisiana: 4 Rapides Parish,	2574 2575 2576 2577 2579 2580 2581 2582	1. 470 . 930 1. 940 . 805 . 430 . 165 . 745 . 805	. 160 . 144 . 193 . 113 . 097 . 00 . 080 . 096	1. 165 2. 060 . 836 . 414 . 185 . 111 . 371 . 926	2. 169 1. 066 2. 547 1. 131 . 346 . 090 . 839 1. 934
Nebraska: b Dawes County		.041	.822	1.892	. 205
Cherry County Brown County Antelope County Saunders County Lancaster County Hamilton County Mills form		. 410 . 741 . 592 . 241	. 062 . 062 . 039 . 112	. 498 . 773 . 595 . 490	. 084 . 060 . 031 . 334
Laneaster County Hamilton County Mills farm Division B	 	. 197 . 054 . 806 . 593	1. 421 . 094 . 137 . 156	. 612 . 468 1. 007 . 715	. 420 . 439 1. 080 . 860
Wisconsin: c Experiment plat— Poor		.26	.18	1. 44	1000
Modium		.27 .30	.20	1. 35 1. 05	
Good. Douglas County Clark County. University farm	 127	1. 27	. 08	. 75	2.08
University farm	61 119	. 08	.17	. 63	.73
Shiocton . Lac du Flambeau .	71 48	. 17 1. 81	.27	. 83 1. 05	. 56
Peat	21 22	. 46 1. 43	.25	1.74 1.82	. 44 1. 47
Texas: d					
Terrell. Forney	 	.17	. 28 . 326	11.00	. 28
Prairie soil. Manor, Travis County.	 	.837	.313	6. 62 5. 81	. 81 . 317
Bell County, Waxie	 	. 22 1. 45	.12	23.98 1.03	. 94
Prairie soil Manor, Travis County Bell County, Waxie Bell County, Hammock Waxahachie New Fraunfals	 Ţ	. 35	. 15	5. 17	. 67
A bilana	11	11 27	Trace.	7.32 4.04	1.31 1.40
Wichita El Paso Do Fort Bend Brazoria	 	. 426	Trace.	.74	Trace.
Do	 	. 43	. 60	3.83	Trace.
Brazoria.	 	. 46 1. 091	.166	2.74 1.66	. 24
D0	 	. 885 . 545	. 34 Trace.	5. 66 . 600	1.85 .73
Do Kaufman County	 	. 68	. 25	6.30	.46
Pecan Gan		.83	.128	. 814	.32
Cherokee Ridge soil Pine Ridge	 	Trace.	. 07	.16	Trace.
Tyler County	 	Trace.	Trace.	.00	.00
Do	 	Trace.	Trace.	.00 4.04	. 08 1. 41
Do		1.14			

<sup>a Bul. 10. Div. of Chemistry, U. S. Dept. Agr. (1886).
b Buls. 38 and 60, Nebr. Agr. Expt. Sta., (1894, 1899).
c Ann. Rep. Wis. Agr. Expt. Sta., 1905.
a Buls. 25, 35, 43, 61, 82, and 99, Texas Agr. Expt. Sta.; Ann. Rep. Texas Agr. Expt. Sta. 1889.</sup>

	1	1	,	1	
State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P_2O_5) .	Lime (CaO).	Magnesia (MgO).
Texas—Continued.	. 1	Per cent. 0.093 .46	Per cent. 0.024 .22	Per cent. 0.958 6.33	Per cent. 0.464 1.46
Hamis County	3	.56	.15	8.17	2.01
Harris County Hitchcock	1	.17	.12	1.62 .21	. 695
	2 3		.035	.165	Trace.
	4		.037	.40	.08
Mesa Beeville		.397 .32	.074	3.56	1.06
Beevine.	2	Trace.	.04	.76	.47
Carson's farm	3 14	Trace.	.06	.60	. 13
Carson's farm	16	. 05	.05	.17	. 09
Huntsville.	18 1	.01	.008	.04	.08
Huntsvine.	2	.06	.06	.09	.18
Willis	3	Trace.	.07	.18	.18
Willis.	4	.06	.01	.18	. 14
	5 7	.37	.04	.16	.18
,	9	. 04	.03	.04	. 28
Discovile	11	. 05	. 29	.06	. 18
Rice soils	95 96	. 08	.016	.24	.18
	97	.137	. 019	. 53	.70
	137 141	.143	.026	. 24	.26
T	206	.396	. 025	2.17	.83
Harris County		. 29	.156	. 65 1. 05	1.09
Victoria County Brazoria County Brownsville		. 78	.148	1.88	1.91
Brownsville		1.31	. 204	14.43	1.53
Norfolk sand		.10	.01	.28	.31
· Fine sand		.13	.01	.10	.03
Orangeburg fine sand		. 14	. 05	.14	.06
Fine sandy loam		.71	.05	.10	.08
Houston County— Norfolk sand Fine sand Fine sandy loam Orangeburg fine sand Fine sandy loam Lufkin fine sand Clay Susquehanna fine sandy loam Clay Anderson County—		.14	.01	.43	. 07
Susquehanna fine sandy loam		.11	. 03	.05	.09
			.02	. 29	
Norfolk sand		. 07	.02	.05	.05
Fine sandy loam.		. 10	.02	.04	.05
Fine sand Fine sandy loam Orangeburg fine sandy loam Clay		.13	.03	.02	.04
Yazoo clay		.50	.14	3.14	.75
Lamar County—			. 05	.12	.07
Orangeburg sandy loam. Fine sandy loam.		.76	. 02	.06	. 07
Silt. Clay Houston black clay. Clay.		.78	. 12	1.52	.61
Houston black clay		.39	. 05	1.05	.89
Clay		. 19	.02	.35 1.20	.32 1.25
Sharkey clay Lufkin clay Sanders loam		. 83	.11	.07	.11
Sanders loam.		.12	.04	.38	. 25
Travis County— Houston black clay		.29	. 07	5.66	. 68
Yazoo sandy loam Travis gravelly loam Lufkin fine sandy loam		.28	.07	10.60 1.47	1.06 .16
Lufkin fine sandy loam		.52	.04	.91	.10
			09	04	.02
Norfolk sand Sandy loam. Houston black loam. Clay Orangeburg fine sand. Clay.		.05	.02	.04	. 14
Houston black loam		.80	.06	3.06 1.16	.73 1.83
Orangeburg fine sand		.32	.08	.18	.01
Clay		. 45	.09	.35	.35
Portsmouth sandy loam San Antonio clay loam Austin fine sandy loam		. 23	.08	3.40 8.06	4.01
Austin fine sandy loam		. 03	.11	23.64	. 62

State or Territory.	Original sample No.	Potash (K ₂ O).	Phos phoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Texas—Continued. Hays County— Houston loam. Black clay. Clay. Clay. Silt clay. Blanco loam. Susquchanna fine sandy loam. Wabash clay. Rio Grande Valley. Arkansas a. California a Colorado a Miscellaneous District of Columbia a Florida a	1 2 2	.04 .58 .58 .78 .05 .34 .41 .17 .36 .15 .34 .22 .30 .107 .112 .99 .40 .181 .1.52 .72 .31 .84 .555 .31 .52 .99 .40 .107 .11 .88 .89 .89 .89 .89 .89 .89 .89 .89 .89	Per cent. 0.01 0.08 0.09 1.8 1.00 0.12 0.04 1.5 1.12 0.9 3.6 0.07 1.00 0.07 Trace. 1.6 0.07 0.05 1.4 0.5 0.3 3.0 0.3 3.0 0.3 3.0 0.3 3.0 0.3 0.3	Per cent. 0.37 19.61 19.32 12.40 1.58 34.91 70 9.86 3.53 3.68 3.79 10.00 0.07 1.55 .08 1.49 1.47 .26 4.46 6.1.36 1.06 1.20 1.98 6.67 1.29 1.34 2.82 2.20 1.96 1.79 1.79 1.79 1.79 1.79 1.63 2.23 2.10 6.63 2.74 4.05 2.23 2.10 6.63 2.74 4.05 2.23 2.10 6.63 2.74 4.05 2.03 2.10 6.30 6.00 6.00 6.00 6.00 6.00 6.00 6.0	.60 .19 .45 .20 .28 .21 .23 .48 .62

a Analyses made by the Bureau of Soils, U. S. Dept. of Agr.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Georgia ^a	6263 6364 1217aA 1217aB 1217aC 1217aD	Per cent. 0.16 .09 .18 .54 .26	Per cent. 0. 12 . 05 . 09 . 10 . 11	Per cent. 0.16 .09 Trace. 2.84 Trace. 3.23	Per cent. 0. 18 . 12 . 66 . 36 . 62
Kentucky a	5299 7565 13715 13716 13717 13718	.53 .28 .39 .31 .23	. 13 . 11 . 03 . 05 . 05 . 05 . 04	.17 .05 .24 .24 .29 .23	.08 .40 .43 .37
Louisiana a	1059a 733 734	1. 06 . 71 . 76	.25 .19 .18	. 23 . 54 . 66	. 51
Maryland a	132 5460 5459 5456 5455 5454	.41 .38 .91 .44 .89	.08 .11 .10 .05	.44 .21 .11 .11 .15	. 69 . 34 . 18 . 47 . 40 . 14
Minnesota a	1099 749a 864a 15355 15356 15357 15358	. 46 .15 .08 .73 .63 .15	. 20 . 04 . 04 . 24 . 17 . 24 . 15 . 23	1. 26 . 09 . 09 6. 45 13. 83 1. 22 1. 07	.03
Mississippi a. Nebraska a	15359 15360 7935 17205 17208 17214 17221	.14 .17 .31 .91 .96 .99	. 13 . 24 . 19 . 26 . 26 . 29	1. 03 . 60 . 83 2. 35 1. 95 3. 07 2. 35	1.22 1.22 1.22 .42 .65
New Jersey a	2809 6832 1242a 5685 17990 17993 17996	1.00 .08 1.20 1.09 72 .69	.30 .02 .28 1.25 .12 .20	. 24 . 19 . 24 1. 27 1. 45 1. 81 1. 86	3. 23 1. 23 1. 60 1. 42
North Dakota a	17999 18002 18005 18008 6549 1119a	. 66 1. 07 . 73 . 92 . 92	.20 .16 .15 .21 .10	1. 56 1. 78 1. 70 1. 80 . 92 . 08	1. 31 1. 48 1. 21 1. 51 1. 37
State College	1283a 1266a 1268a 1270a 1273a 1274a 1276a	. 46 . 40 . 47 . 42 . 47 . 49 . 40	.17 .12 .11 .11 .12 .11 .01	.09 .31 .26 .23 .25 .25 .25	.54 .47 .46 .41 .42 .45
	1278a 1280a 1282a 1284a 1265a 1267a 1269a 1271a 1272a 1275a 1277a	. 44 . 26 . 35 . 49 . 43 . 38 . 41 . 42 . 39 . 40	.13 .11 .16 .13 .11 .11 .12 .11 .14 .11	.24 .33 .34 .29 .25 .23 .24 .24 .27 .26 .23	. 52 . 44 . 43 . 56 . 55 . 42 . 45 . 50 . 50 . 53 . 49 . 47
South Carolina a Texas a.	1281a 3961 2165 2167 805a	. 26 . 02 . 13 . 08 . 06 . 02	. 12 . 76 . 02 . 02 . 03 . 02	.31 .59 .07 .15 .22	.38 .26 .06 .16 .09
	790a 12481 12482	.82 1.64 1.20	.14	7.25 2.67 6.88	1, 17

a Analyses made by the Bureau of Soils, U.S. Dept. of Agr.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Virginiaa	1295a 4004 6546 798a	Per cent. 1. 02 . 06 . 57 1. 51	Per cent. 0.16 .30 .11 .05	Pes cent. 0.14 .09 1.11 .37	Per cent. 0.18 1.01
California:b Eldorado County Stanislaus County Tulare County Ventura County Los Angeles County Eldorado County Shasta County Modoc County Modoc County Glenn County Yuba County Humboldt County Lake County Contra Costa County Alameda County San Luis Obispo County Ventura County Riverside County Riverside County San Diego County San Diego County San Diego County San Diego County San Diego County San Diego County Florida, c Dade County	1638 1901 1900 1903 1904 1910 1820 1908 1906 1907 2214 2181 2163 2403 2405 2319 2243 2453 2301 2295 2454 1880 2430 2661 2273 2344 18936 2470 2471 2324 2325	.55 .98 .49 .97 .87 .84 1.60 .41 1.18 1.01 .31 .40 .41 .23 .42 .42 .42 .61 .95 1.41 .61 .61 .61 .61 .61 .61 .61 .61 .61 .6	.23 .05 .05 .15 .15 .14 .31 .21 .15 .15 .16 .22 .20 .14 .30 .15 .22 .20 .14 .30 .15 .22 .20 .14 .30 .15 .22 .20 .14 .30 .30 .15 .22 .20 .20 .20 .20 .20 .20 .20 .20 .20	.52 .61 .44 .79 .73 .74 2.73 1.95 2.66 2.49 .38 1.34 5.72 .97 .44 4.50 1.38 .76 1.38 .72 2.31 4.53 2.11 2.35 1.36 1.38 2.47 2.51 1.38 2.47 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51	. 38 .511 .344 1. 22 . 64 1. 27 2. 87 2. 87 2. 64 1. 79 . 67 2. 55 . 42 1. 45 1. 83 2. 68 2. 55 2. 35 1. 35 1. 76 2. 55 2. 35 1. 50 1. 83 2. 68 2. 64 2. 55 2. 35 1. 64 2. 55 2. 35 2. 35 2. 42 2. 42 2. 42 2. 42 2. 43 2. 43 2. 43 2. 43 2. 44 2. 45 2. 45
Lee County De Soto County Brevard County	14 19 18 1 25 26 28 59 4 64 12	. 0178 Trace. . 0164 . 0058 Trace. . 0125 . 0024 . 0212 . 0072	. 0240 . 0256 . 0304 2. 5630 . 0208 . 0496 . 0112 . 0128 . 0160 . 0928 . 0336	. 0725 . 5500 6. 6050 Trace. . 0725 . 0000 . 0700 . 0750 . 0000 . 2100	. 0612 . 0351 . 0036 . 0290 . 0198 . 0117 . 0261 . 1125 . 0369
Osceola County	13 21 38 40 X 47 49 51 42 43	. 0111 . 0612 Trace. . 0034 . 0198 . 0077 . 0073 Trace. . 0038 Trace.	. 0192 . 0544 . 0416 Trace. . 0333 . 0032 . 0096 . 0144 . 0064 . 2768	. 1075 2. 2325 . 0400 . 0000 . 1150 . 0225 . 0150 . 0600 . 0000	. 0099 . 0207 . 0090 . 0634 . 0197 . 0144 . 0252 . 0234 . 0090 . 0531
Hillsboro County	44 45 55 57 75 116 73 31 60 62 Y 6 8	Trace	2.4000 21112 0272 0240 3408 0880 1360 1328 0816 0272 1175 0112 0577 1660	. 1125 . 0175 . 0125 . 0000 . 2025 . 2650 . 0275 . 0000 . 0024 . 0500 . 0225 . 0525 . 0500 . 0500	. 0990 . 0414 . 0261 . 0162 . 0693 . 0072 . 0405 . 0369 . 0270 . 0036 . 0175 . 0297 . 0279

a Analyses made by the Bureau of Soils, U. S. Dept. of Agr. bAnn. Rep. Cal. Agr. Expt. Sta., 1895–1897, 1901–1903. Buls. 43 and 68, Fla. Agr. Expt. Sta. (1897,1903).

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia MgO).
Clorida—Continued. Miami	1296	Per cent. 0.0135	Per cent. 0. 0162	Per cent. 0. 1740	Per cent. 0.0176
	1298 1300	.0170	.0075	.1587	.0222
Boca Raton	1302 1304	.0097	.0087	:0187	.0000
West Palm Beach	1306 1308 1310	.0140 .0048 .0097	. 0087 . 0100 . 0087	.0087 .0037 .0062	.0000
Jensen	1312 1314 1316	.0145 .0061 .0073	.0137 .0120 .0056	.0287 .0000 .0112	. 0158 . 0095 . 0049
Eldred	1318 1320	.0061	. 0087	.0087	.0058
St. Petersburg	1322 1380	.0134	.0106	.0137 .0162	.0000
Oneco	1382 1384	.0134	.0556	.0312	.0357
Punta Gorda	1386	. 0170	.0187	. 0850	.0171
Orlando Keyaho: a	1388 1390 1411	.0110 .0158 .2963	. 0050 . 0250 . 9459	- 0475 - 0350 4. 7259	. 0144 . 0432 1. 5758
Kootenai County	9		Trace.	1.32	.03
Latah County	20 17	. 59	. 45	.94 2.80	1.16 .51
Shoshone County	. 19 5	.61	1.57 .35	.13 .78	.19 .72
Shoshone County	31	.034	. 25	3.75	.91
Idano County	13 14	. 40	. 62	1.49 1.44	2.52 .34
Canyon County	15 1	1.92	.01	2.70	. 22
	6		1.20	. 69 Trace.	1.60
	8		.19	- 65	.57
Bingham County	21 22	1.16 1.22	1.39 .47	. 07 2. 59	.31
	23 24	1. 28 . 99	. 41 1.16	2.15 2.08	. 14 1. 25
	25	1.04	. 21	.06	1.09
Bear Lake County	26 27	1.44 .72	.31	1.43 3.94	. 37 3. 15
	29 30	1.12	.05	. 59 5. 92	3. 15 1. 24
Cassia County	4	.72 .775	. 183	1.971	1.387
Cœur d'Alene	5 7	. 695 . 440	.137	1.870 .533	1.322 1.290
Nez Perce County	9	. 467 . 459	.205	. 432	1.527 .905
American Ridge Latah County	12	. 684	.157	. 557	. 997
Latan County	13 14	.673	.131	.722 .767	1.019 .802
Lewiston Moscow	15 16	. 526	.148	.872	1.150 .886
	18	. 677	.176	.999	.766
Boise	20 21 22	.789 .896 .459	.237 .184 .141	1.567 .893 .465	1.090 1.006 .535
ouisiana: b	23	.572	.143	.780	. 831
Calhoun	1 2	.023	.037	.085	.018
	3 5	.011	. 021	.027	.027
Monroe	7 9	.069	.072	.128	.180
ississippi:¢ Agricultural College	48	.125	. 148	.45	.32
	50	. 153	.187	. 43	.55
	49 51	.122 .126	.092	. 161	. 12
	52 53	. 303	. 204	. 400	. 68
	54 55	. 127	.233	.370	. 47

<sup>a Buls. 9 and 28, Idaho Agr. Expt. Sta. (1894, 1901).
b Special Rep. on the Geology and Agriculture of the Hills of La., Pt. I. La. Agr. Expt. Sta., 1892.
c Ann. Rep. Miss. Agr. Expt. Sta., 1895 and 1898-99; Bul. 65, Miss. Agr. Expt. Sta. (1900).</sup>

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P_2O_5) .	Lime (CaO).	Magnesia (MgO).
Union County Jackson County Chickasaw County Chickasaw County Covington County Noxubee County Oktibbeha County Tallahatchie County Hinds County Holmes County Crystal Springs Coffeeville Yazoo City Como Elizabeth Oktibbeha County	1544 1572 1696 928 400 401 402 403 404 421 75 76 269 617 620	Per cent. 0.117 .097 .131 .150 .111 .145 .116 .12 .06 .31 .050 .056 .080 .10 .09 .08 .18 .25 .46 .10 .22 .24 .07 .20 .18 .09 .17 .14 .365 .143 .147 .55 .300 .280	Per cent. 0.182 .185 .102 .147 .096 .181 .118 .08 .08 .089 .027 .015 .004 .26 .184 .100 .24 .097 .257 .07 .192 .190 .07 .09 .06 .08 .06 .08 .06 .127 .27 .232 .16 .144 .093	Per cent. 0.440 .64 .54 .83 .39 .14 .22 .86 .16 .23 .20 .27 .302 .280 .280 .290 .491 .47 .94 .66 1.85 .35 .175 .27 .22 .15 .19 .19 .214 .88 .084 .34 .888 .084 .34 .888	Per cent. 0. 60 . 56 . 39 . 79 . 53 . 40 . 12 . 10 . 06 . 061 . 072 . 064 . 028 . 22 . 318 . 126 . 144 . 38 . 25 . 36 . 302 . 08
Wilkinson County. Oktibbeha County. Jones County. Kemper County. Noxubee County.	621 622 583 594 595 597 585 1026 833	360 210 380 200 420 165 460 166 337 208 076 465 185 263 442 148 201 218 478 463	. 262 . 108 . 247 . 108 . 229 . 147 . 300 . 033 . 079 . 024 . 110 . 156 . 072 . 053 . 188 . 084 . 090 . 085 . 189 . 121	1. 03 . 380 . 315 . 230 . 190 . 32 . 630 . 080 . 185 . 111 . 192 . 168 . 980 . 535 . 960 . 210 . 225 . 985 . 156 . 1	
Lowndes CountyOktibbeha County	941 941 943 943 944 945 946 949 99 951 1155 1157 581 584 586 583 6222 1106 1107 1108	. 403 . 426 . 400 . 500 . 509 . 574 . 450 . 360 . 372 . 245 . 358 . 387 . 283 . 268 . 39 . 92 . 210 . 177 . 21 . 470 . 423 . 360 . 480 . 480	121 122 263 302 296 105 046 105 079 111 140 093 123 3096 57 114 106 328 143 274 086 121 121 121 121 121 121 121 12	1.130 1.18 15.57 5.24 5.15 990 3.56 3.25 3.35 3.60 3.71 1.10 1.80 2.25 2.25 9.90 12.52 2.25 9.90 12.52 1.11	

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Mississippi—Continued. Oktibbeha County	1121	Per cent. 0. 152	Per cent. 0. 097	Per cent. 0.175	Per cent.
	1122 1111	.150	. 083	.100	
	1113	. 305	. 070	1.06	
	1280 1124	. 276	. 075	.960	
	1126	. 177	.119	170	
	1114 1115	. 398	.114	1. 20 . 800	
	1158	. 331	. 188	. 940	
Clay County	1159 1161	. 193	. 051	. 650	
	1162	.369	. 244	1.53 1.24	
	1163	.302	. 207	1.36	
Monroe County.	1165 1168	. 258 . 502	.113	1.82	
	1169	.364	. 109	1.11	
	1172 1174	.401	.174	6.26 1.59	
	1175	.370	. 153	.680	
Chickasaw County	1178 1179	. 305	.115	1.06 .615	
	1180	.258	. 054	. 890	
,	1181	.402	.140	5.80	
	1182 1274	.135	.047	.160	
	1276	. 262	.064	.150	
Lee County	1184 1185	.385	.160	1.20	
	1186	.321	. 210	1.61	
	1187 1189	. 216	.210	3.27 1.27	
	1190	.395	.194	1.47	
	1191	. 157	.068	. 235	
	1193 1194	. 269	.185	.940	
	1200	. 200	. 083	. 500	
	1202 1204	.250	.076	.340	
	1206	.179	. 253	9.63	
	1209 1213	.129	.055	.160	
Prentiss County	1211	. 220	.090	. 510	
	1217 1219	.098	.036	. 190 . 120	
	1219	.103	.065	.120	
	1223	.321	.329	11.93	
	1225 1227	.220	.129	.810 .340	
	1229	.105	. 009	.070	
	1234 1250	.088	.018	. 072	
	1253	.359	. 092	1.32	
	1254 1256	.122	.051	1.05	
	1257	. 565	.140	. 830	
Alcorn County	1241 1245	.147	.071	. 235	
	1248	.157	. 050	. 140	
Union County	1261 1263	.276	.048	. 190 . 160	
	1265	.170	.038	.190	
	1266	. 203	. 052	.140	
	1268 1030	.258	.093	. 205	
Pontotoc County	1269	. 336	.167	. 142	
Alcorn County	1272 1236	.333	.094	. 106	
Madison County	625	. 215	. 062	. 29	
	629 633	.20	. 076	. 22	
	879	.250 .257	. 061	.120	
	881	. 257	.040	. 165	
	883 884	.396	. 042	.145	
	876	. 326	. 022	.300 .265	

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Mississippi—Continued.	200	Per cent.	Per cent.	Per cent.	Per cent.
Leake County.	890 892	0.281 .160	0.018 .019	0. 110 . 110	
	894 895	.165	.022	. 025	
Attala County	897	. 190	. 030	. 115	
	898 900	.229	.044	. 210	
Choetaw County	902 904	.105	.013	.050	
Chociaw Country	905	.177	.024	.050	
Carroll County.	906 958	. 197	.037	.105	
Curron Country	960	. 276	.188	. 135	
	961 963	.222	. 104	.160	
	965	.408	.078	. 110	
	967 969	.436	.090	.120	
Yalobusha County	971 973	.180	.023	.015	
·	974	.212	.053	.140	
Panola County	975 976	.223	. 063	.145	
Tailota Country	977	. 335	.168	. 260	
	978 979	. 333	.117	.130	
	981	. 426	.064	. 170	
	983 985	.322	.064	.125	
The to County	988	. 304	.135	.120	
Tate County	991 994	.183	.066	.190	
	996	.262	.064	. 220	
	997 1000	. 43	.071	.165	
Marshall County	1001 1003	. 26 . 253	.069	.150	
Haishan County	1007	.360	. 083	. 225	
Amite County	1008	. 252	. 079	. 275	
Zimio County	1023	. 17	. 067	.175	
	1025 1026	.242	.057	. 125	
Hinds County	871	.168	. 040	.190	
	873 875	.182	.057	.210	
Neshoba County	834 836	.170 .247	.052	.075	
	838	. 163	.087	.080	
Scott County	853 855	.270 .210	.097	.235	
	856	. 309	. 058	. 20	
	848 849	.190	.025	. 095	
Leake County	850	.150	.049	.135	
	844 846	.189	.050	.205	
Scott County	852 954	.130 .563	. 082	. 085	
Neshoba County	801	. 203	.117	.360	
	803 805	.223	.058	.075	
	807	. 190	.061	.175	
•	809 810	.170 .286	.040	.140	
	811	. 263	.068	1.20	
	813 816	.173	.05	.070	
	818	.196	.149	. 225	
	820 822	. 233	.081	. 215 . 155	
	823 824	.277	.065	. 120	
	825	. 253	.050	. 285	
	826 827	. 262	.077	.150	
	828	.134	.047	. 115	
	830 831	.199	.060	.130	

Chemical composition of the soils of the United States—Continued.

State or Territory.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia MgO).
Mississippi—Continued. Jones County. Harrison County. Winston County. Kemper County. Neshoba County. Kemper County Scott County. Rankin County. Washington County.	913 915 917 919	Per cent. 0.132 123 160 0.98 160 0.98 140 149 133 0.90 0.141 345 129 255 290 0.94 244 240 230 193 115 55	Per cent. 0.036 -046 -035 -033 -044 -055 -074 -060 -022 -028 -019 -029 -013 -029 -052 -040 -080 -097 -062 -057 -16	.725 .220 .185 .115	Per cent.
Coahoma County	677 678 679 700 701 702 703 658 659	6.87 6.92 .941 .54 .54 .84 .36 .415	. 192 . 195 . 216 . 092 . 14 . 134 . 115 . 118 . 109	. 92 . 89 . 97 . 40 . 41 . 59 . 34 . 372 . 245	

Alabama.—Four samples have been reported upon from this State, the range in composition being for potash 0.149 to 0.903 per cent, phosphoric acid 0.017 to 0.15 per cent, lime 0.039 to 0.289 per cent, and magnesia 0.01 to 0.633 per cent.

ARIZONA.—Twenty-two samples have been reported upon from this State, the range in composition being for potash 0.472 to 1.959 per cent, for phosphoric acid 0.031 to 0.244 per cent, lime 0.579 to 8.67 per cent, and magnesia 0.66 to 3.086 per cent.

ARKANSAS.—Six samples have been reported upon from this State, the range in composition being for potash 0.15 to 0.36 per cent, phosphoric acid 0.07 to 0.16 per cent, lime 0.07 to 0.15 per cent, and magnesia 0.14 to 0.29 per cent.

California.—One hundred and fifteen samples have been reported upon from this State, the range in composition being for potash 0.09 to 1.84 per cent, phosphoric acid 0.02 to 0.71 per cent, lime 0.113 to 13.94 per cent, and magnesia 0.16 to 16.97 per cent.

Colorado.—Twenty-nine samples have been reported upon from this State, the range in composition being for potash 0.14 to 1.27 per cent, for phosphoric acid 0.06 to 0.36 per cent, lime 0.40 to 6.00 per cent, and magnesia 0.13 to 1.61 per cent.

CONNECTICUT.—Only one sample has been reported upon from this State, containing 0.23 per cent potash, 0.22 per cent phosphoric acid, 0.32 per cent lime, and 0.78 per cent magnesia.

DISTRICT OF COLUMBIA.—Four samples have been reported upon from the District of Columbia, the range in composition being for potash 0.29 to 0.53 per cent, phosphoric acid 0.05 to 0.14 per cent, lime 0.26 to 0.57 per cent, and magnesia 0.01 to 0.19 per cent.

FLORIDA.—Eighty-eight samples have been reported upon from this State, the range in composition being for potash 0.0023 to 0.2963 per cent, phosphoric acid 0.0032 to 2.563 per cent, lime 0.0037 to 7.60

per cent, and magnesia 0.001 to 1.5758 per cent.

GEORGIA.—Two samples have been reported upon from this State, the range in composition being for potash 0.09 to 0.16 per cent, phosphoric acid 0.05 to 0.12 per cent, lime 0.09 to 0.16 per cent, and magnesia 0.12 to 0.16 per cent.

IDAHO.—Thirty-seven samples have been reported upon from this State, the range in composition being for potash 0.034 to 1.92 per cent, phosphoric acid 0.01 to 1.57 per cent, lime 0.06 to 5.92 per cent,

and magnesia 0.03 to 3.15 per cent.

ILLINOIS.—Five samples have been reported upon from this State, the range in composition being for potash 0.156 to 0.580 per cent, phosphoric acid 0.066 to 0.185 per cent, lime 0.21 to 1.455 per cent, and magnesia 0.218 to 0.989 per cent.

INDIANA.—Thirteen samples have been reported upon from this State, the range in composition being for potash 0.181 to 0.68 per cent, phosphoric acid 0.041 to 1.01 per cent, lime 0.37 to 1.387 per cent, and magnesia 0.45 to 0.771 per cent.

Iowa.—Two samples have been reported upon from this State, the range in composition being for potash 0.337 to 0.365 per cent, phosphoric acid 0.093 to 0.137 per cent, lime 0.790 to 1.185 per cent, and magnesia 0.585 to 0.662 per cent.

Kansas.—Seven samples have been reported upon from this State, the range in composition being for potash 0.18 to 0.766 per cent, phosphoric acid 0.089 to 0.13 per cent, lime 0.17 to 3.23 per cent, and magnesia 0.36 to 0.66 per cent.

Kentucky.—Ninety-two samples have been reported upon from this State, the range in composition being for potash 0.09 to 1.06 per cent, phosphoric acid 0.015 to 1.755, lime 0.05 to 1.725, and magnesia 0.08 to 0.52 per cent.

LOUISIANA.—Eighteen samples have been reported upon from this State, the range in composition being for potash 0.008 to 1.94 per cent, phosphoric acid 0.007 to 0.193 per cent, lime 0.009 to 2.06 per cent, and magnesia 0.011 to 2.547 per cent.

Maine.—Only one sample has been reported upon from this State, containing 0.14 per cent potash, and 0.17 per cent phosphoric acid.

MARYLAND.—Fourteen samples have been reported upon from this State, the range in composition being for potash 0.08 to 0.91 per cent,

phosphoric acid 0.04 to 0.50 per cent, lime 0.09 to 1.26 per cent, and magnesia 0.03 to 0.69 per cent.

Massachusetts.—Only one sample has been reported upon from this State, containing 0.153 per cent potash, 0.144 per cent phosphoric acid, 0.525 per cent lime, and 0.558 per cent magnesia.

MICHIGAN.—Forty samples have been reported upon from this State, the range in composition being for potash 0.118 to 2.12 per cent, phosphoric acid 0.01 to 0.88 per cent, lime 0.20 to 6.09 per cent, and magnesia 0.12 to 1.59 per cent.

MINNESOTA.—One hundred and sixty-six samples have been reported upon from this State, the range in composition being for potash 0.08 to 1.16 per cent, phosphoric acid 0.04 to 2.61 per cent, lime 0.11 to 14.0 per cent, and magnesia 0.10 to 6.12 per cent.

MISSISSIPPI.—Two hundred and seventy-six samples have been reported upon from this State, the range in composition being for potash 0.05 to 6.92 per cent, phosphoric acid 0.004 to 0.57 per cent, lime 0.015 to 15.57 per cent, and magnesia 0.023 to 1.22 per cent.

MISSOURI.—Eight samples have been reported upon from this State, the range in composition being for potash 0.272 to 2.57 per cent, phosphoric acid 0.06 to 0.121 per cent, lime 0.405 to 0.630 per cent, and magnesia 0.21 to 0.55 per cent.

Montana.—Two samples have been reported upon from this State, the range in composition being for potash 0.731 to 0.747 per cent, phosphoric acid 0.176 to 0.185 per cent, lime 0.87 to 0.97 per cent, and magnesia 0.907 to 1.105 per cent.

Nebraska.—Fifteen samples have been reported upon from this State, the range in composition being for potash 0.041 to 0.99 per cent, phosphoric acid 0.02 to 1.421 per cent, lime 0.19 to 3.07 per cent, and magnesia 0.03 to 1.22 per cent.

Nevada.—Forty-eight samples have been reported upon from this State, the range in composition being for potash 0.016 to 3.34 per cent, phosphoric acid 0.019 to 2.292 per cent, lime 0.80 to 17.831 per cent, and magnesia 0.17 to 8.404 per cent.

NEW HAMPSHIRE.—Five samples have been reported upon from this State, the range in composition being for potash 0.64 to 1.06 per cent, phosphoric acid 0.05 to 0.36 per cent, lime 0.63 to 0.77 per cent, and magnesia 0.53 to 0.74 per cent.

New Jersey.—Two samples have been reported upon from this State, the range in composition being for potash 1.09 to 1.20 per cent, phosphoric acid 0.28 to 1.25 per cent, and lime 0.24 to 1.27 per cent.

NEW YORK.—Sixteen samples have been reported upon from this State, the range in composition being for potash 0.246 to 1.04 per cent, phosphoric acid 0.01 to 0.202 per cent, lime 0.125 to 1.873 per cent, and magnesia 0.274 to 1.94 per cent.

NORTH CAROLINA.—Two samples have been reported upon from this State, the range in composition being for potash 0.02 to 0.161 per cent, phosphoric acid 0.016 to 0.02 per cent, lime 0.07 to 0.24 per cent, and magnesia 0.02 to 0.047 per cent.

NORTH DAKOTA.—Twenty-five samples have been reported upon from this State, the range in composition being for potash 0.18 to 0.96 per cent, phosphoric acid 0.10 to 0.40 per cent, lime 0.32 to 14.67

per cent, and magnesia 0.07 to 1.37 per cent.

OHIO.—Fifty-seven samples have been reported upon from this State, the range in composition being for potash 0.04 to 0.64 per cent, phosphoric acid 0.064 to 0.80 per cent, lime 0.07 to 0.68 per cent, and magnesia 0.09 to 0.76 per cent.

OKLAHOMA.—Three samples have been reported upon from this State, the range in composition being for potash 0.32 to 0.80 per cent, phosphoric acid 0.04 to 0.06 per cent, lime 0.44 to 0.95 per cent, and magnesia 0.16 to 0.21 per cent.

OREGON.—One hundred and thirty-six samples have been reported upon from this State, the range in composition being for potash 0.02 to 1.85 per cent, phosphoric acid 0.01 to 2.30 per cent, lime 0.10 to 14.36 per cent, and magnesia 0.01 to 3.36 per cent.

PENNSYLVANIA.—Twenty-four samples have been reported upon from this State, the range in composition being for potash 0.26 to 0.67 per cent, phosphoric acid 0.01 to 0.265, lime 0.08 to 0.61, and magnesia 0.38 to 2.05 per cent.

RHODE ISLAND.—Seven samples have been reported upon from this State, the range in composition being for potash 0.124 to 0.184 per cent, phosphoric acid 0.029 to 0.127 per cent, lime 0.252 to 1.295 per cent, and magnesia 0.209 to 1.141 per cent.

SOUTH CAROLINA.—Eleven samples have been reported upon from this State, the range in composition being for potash 0.02 to 0.541 per cent, phosphoric acid 0.011 to 0.76 per cent, lime 0.019 to 0.59 per cent, and magnesia 0.003 to 0.811 per cent.

SOUTH DAKOTA.—Two samples have been reported upon from this State, the range in composition being for potash 0.365 to 0.39 per cent, phosphoric acid 0.147 to 0.153 per cent, lime 0.665 to 0.710 per cent, and magnesia 0.585 to 0.628 per cent.

TENNESSEE.—One hundred and forty-four samples have been reported upon from this State, the range in composition being for potash 0.06 to 0.91 per cent, phosphoric acid 0.01 to 1.70 per cent, lime 0.02 to 2.25 per cent, and magnesia 0.085 to 0.96 per cent.

Texas.—One hundred and seventeen samples have been reported upon from this State, the range in composition being for potash 0.01 to 11.37 per cent, phosphoric acid 0.008 to 0.60 per cent, lime 0.02 to 34.91 per cent, and magnesia 0.01 to 4.01 per cent.

UTAH.—Fifty-five samples have been reported upon from this State, the range in composition being for potash 0.046 to 2.69 per cent, phosphoric acid 0.103 to 0.42 per cent, lime 0.37 to 22.54 per cent, and magnesia 0.07 to 2.52 per cent.

VIRGINIA.—Two samples have been reported upon from this State, the range in composition being for potash 0.06 to 1.02 per cent, phosphoric acid 0.16 to 0.30 per cent, and lime 0.09 to 0.14 per cent.

Washington.—One hundred and ninety-four samples have been reported upon from this State, the range in composition being for potash 0.003 to 9.178 per cent, phosphoric acid 0.019 to 0.543 per cent, lime 0.005 to 36.009 per cent, and magnesia 0.005 to 4.83 per cent.

West Virginia.—Fourteen samples have been reported upon from this State, the range in composition being for potash 0.243 to 0.888 per cent, phosphoric acid 0.088 to 0.211 per cent, and lime 0.055 to 0.451 per cent.

WISCONSIN.—Thirteen samples have been reported upon from this State, the range in composition being for potash 0.08 to 1.81 per cent, phosphoric acid 0.05 to 0.27 per cent, lime 0.37 to 1.82 per cent, and magnesia 0.412 to 2.08 per cent.

WYOMING.—Nine samples have been reported upon from this State, the range in composition being for potash 0.52 to 0.73 per cent, phosphoric acid 0.12 to 0.28 per cent, lime 0.64 to 6.63 per cent, and magnesia 0.14 to 3.21 per cent.

Chemical composition of the soils of Great Britain and Ireland.

ENGLAND.

County.	Description and locality.	Original sample No.	Potash (K ₂ O).	Phos- phoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Dorset a	Alluvium. Gravel	38 62 41 366 37 63 64 83 30 40 65 58 80 12 68 88 81 11 11 67 61	Per cent. 0.46 .22 .81 .22 .33 .18 .17 .19 .13 .18 .13 .23 .22 .20 .27 .27 .24 .06 .244	Per cent. 0.42 23 46 32 28 26 20 18 25 20 18 25 20 12 32 47 15 33 40 21 11 42	Per cent. 3.84 1.31 1.09 7.1 64 1.11 1.00 37 1.43 80 0.88 37 1.26 6.66 1.57 6.5 33 1.80	0.48
	chalk. Chalk	15 71 99 95	. 25 . 27 . 19 . 29	.30 .29 .78 .47	41. 00 38. 78 31. 50 31. 05	- 83 - 65 - 53 - 11

^a Fifth Annual Report on the Soils of Dorset, University College, Reading, 1903. In the original paper the results are expressed as lime carbonate and lime other than carbonate; these have been recalculated to give CaO content.

ENGLAND—Continued.

ENGLAND—Continued.							
County.	Description and locality.	Original sample No.	Potash (K ₂ O.)	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).	
Dorset	ChalkGreensand	51 94 35 50 16 72 49 21 100 1 98 96 97 79 47 48	Per cent. 0.20 .22 .28 .39 .59 .50 .20 .39 .38 .17 .47 .47 .57 .81 .74 .40	0.33 .49 .24 .36 .33 .27 .31 .25 .51 .44 .36 .31 .26 .37 .60	Per cent. 31. 90 14. 22 5. 69 35. 60 33. 40 9. 48 2. 09 1. 71 1. 38 8. 88 9. 40 9. 44 43 92 7. 12 2. 18	0.27 .15 .71 .27 .71 .43 .19 .39 .47 .41 .39 .06 .288 .08	
	Junction greensand and marlstone.	31	.27	.32	1.55	.27	
	Wealden beds	25 33 32 84 69 22 27 66 3 20 42 85 86	. 29 . 31 . 25 . 24 . 36 . 31 . 34 . 46 . 30 . 4 . 47 . 61 . 81	.50 .29 .43 .15 .6 .89	. 85 1.01 1.36 .65 .96 .92 .1.82 .51 2.10 2.23 2.47 1.87	. 68 . 41 . 34 . 32 . 11 . 37 . 48 . 07 . 55 . 50 . 09 . 43 . 51	
	Coral rag	87 88 19 77 82 89 8	.95 .92 .38 .63 .39 .53 .27	.34 .50 .31 .32 .47 .60 .40	1.76 1.18 .67 6.34 10.53 18.75 26.75 2.03	. 42 . 51 . 96 . 54 . 53 . 60 . 36 . 69	
	Calcareous grit. Oxford elay.	58 9 73 34 60 59 52 53 29 4	. 49 . 25 . 79 . 21 . 91 . 53 . 73 . 49 . 34 . 46 . 26	.32 .31 .38 .38 .34 .23	12.09 .80 1.88 .81 2.04 .60 1.70 .59 .60 2.99 3.16	. 20 . 63 . 21 . 55 . 47 . 35 . 50 . 25 . 32 . 38 . 64	
	Fuller's earth.	76 28 18 23	. 50 . 23 . 41	. 45 . 29 . 45	6.29 6.88 .99	. 22 . 46 1. 06	
		56 46 90	.17 .66 .89	. 26 . 27 . 30 . 31	.77 .91 1.09 4.50	. 57 . 35 . 53 . 82	
	Inferior oolite	26 91 13	. 53 . 52 . 50	. 17 . 64 . 37	8.28 4.80 11.64	. 01 . 93 . 29	
	Junction inferior oolite and Midford sands. Midford sands.	14 55 54	.31	.34 .36 .25	2.44 .77 .45	. 60 . 48 . 44	
	Junction Midford sands and	45 5 92 6	$ \begin{array}{r} .44 \\ .33 \\ .26 \\ .21 \end{array} $. 38	. 58 . 31 . 42 1. 34	.41 .39 .29 .41	
	marlstone. Marlstone	43 7 70 75 78	. 57 . 36 . 30 . 76 . 58	.32 .49 .63 .33 .47	1.39 .59 .65 .80 2.44	.10 .38 .02 .43	

ENGLAND-Continued.

County.	Description and locality.	Original sample No.	Potash (K ₂ O.)	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Dorset	Junction markstone and lower Lias.	24	Per cent. 0.27	Per cent. 0.29	0.72	Per cent. 0.38
	Lower Lias		.69	.35	. 95 2. 28	.39
Essex a	Birch	74 93	. 65 . 51 . 38	. 51 . 53 . 10	1.14 .96 .57	.84
IIBBOX	Bulvan Burnham		.32	.10	1.78	
	Hedingham			$\begin{cases} .16 \\ .14 \\ .24 \end{cases}$	1.18	
	Orsett		.12	.08	.36	
	Roxwell		.79 .34	. 20	5.96 3.85	
	Tendring		.41 .48 .20	.10 .09 .16	5.80 7.75 .29	
	Thaxted		. 18	.13	.85 1.63	
Cambridge b	St. Osyth Yeldham Hatley plot Joint rotation	3	. 52	.15	1.64	
	Burgoyn's (Univ. farm):		.64	.083	.90 2.20	
	Fields 14–15 Fields 16–17		. 559	.139	2.15 .76	
	Fields 18–19 Bowlder clay: Above Gault		. 575	. 091	.90 3.95	. 285
	Above Green sand Above Gault	. 19 20	.785 .994	.113	.78 1.22	. 28
	Above Grey chalk Gault soils	21 3 7	. 963 1. 14 1. 143	. 102 . 14 . 127	1.325 3.87 7.28	.60 .29 .15
	Kimeridge clay soils	8 12	1.13 1.13	. 097	4.74 .425	. 215 . 134
		15 17	1.00 1.58	. 098	2. 425 2. 48	.18
	Ampthill clay soils		. 655 1. 06 1. 11	.096 .118 .145	. 48 . 323 . 322	. 145 . 215 . 47
	Lower green sand soils	22 5 23	1.09 .236 .278	. 138	.308 .065 .085	. 25 . 08 . 125
		18 9	.47	. 259 . 197 . 169	.34	. 24
Lincolnshire c	Peaty matter from the fens.		.47	.146	.15 2.23 1.44	.14
	Fen soil	III	. 42 . 43 . 28	. 26 . 21 . 16	1.50 1.02	.34
	Marsh soil	II I	.16 .20 .08	.16 .21 .77	2.16 2.12 1.20	.40 .28 .30
	Farm near Crowland	III	.08	1.02 1.24	1.00 .87	. 50
		IV V VI	.11	1.20 .68	1.24 1.09 2.00	.21 .39 .40
		· V1	.09	1.23	2.00	

a Dymond, The Essex Field Experiments, 1896–1901, Part I. Compiled for the Essex Technical Instruction Committee.

Jour. Essex Tech. Laboratories, 3, 163 (1897).

Dymond and Bull, the Essex Field Experiments, 1896–1903, No. 2.

Guide to Experiments at Univ. Farm and other Centers in the Eastern Counties, Cambridge University,

^{1907.} b Guide to Experiments at University Farm and other Centers in the Eastern Counties, Cambridge University, 1907.
Foreman, Journal Agricultural Science, 2, 161 (1907).
c E. W. Bell, Chemical News, 68, 191 (1893), used HCl (S. G. 1.16).
R. H. Wilson, Chemical News, 70, 153 (1894).

ENGLAND-Continued.

County.	Description and locality.	Original sample No.	Potash K_2O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesi (MgO).
Northumberland a	Cockle Park (unmanured plot).	1	Per cent. 0. 283	Per cent. 0. 106	Per cent. 0. 306	Per cent.
	Miniature Farms	9	. 244	. 087	. 265	
		$\frac{1}{2}$.04	. 12		
	•	3	- 04	. 13	,	
		4 5	.05	.13		
		6	. 05	. 12		
	Hanging Leaves	265 267	. 49	.06	. 43 . 25	
	Davy Houses East Tower Hill	266	. 20	.08	. 27	
	East Tower Hill	••••••	. 06	. 17		
	Peepy		\ \ \ .114	. 034	. 48	
	Whitefield		. 072	. 115	. 45	
	Kimblesworth Cockle Park:	355	. 27	. 07	. 33	
	Tower Hill		. 44	- 12	. 79	
	Back House Tree Field		. 263	. 097	. 286	
	Pallace Leas Field plot	1	. 36	. 10	. 44	
		$\frac{2}{6}$. 40	.08	. 44	
		8	. 28	. 06	. 37	
		12 13	. 39	.06	. 55 . 42	
Northampton b	Cransley plot	1	. 54	. 116	. 60	
	• 1	2 3	. 57	. 145	. 67	
		3 4	. 59	. 08	. 53	
		5	. 50	. 139	. 45	
		6 7	. 54	.133	. 58	
		8	. 50	. 113	. 45	
		9 10	. 65	.112	. 84	
Isle of Ely c	Black soils:					
	White Fen Benwick Littleport Fen		. 604	. 306	2. 95 4. 39	
	Wryde		. 458	. 432	2. 54	
	Wryde Loam, Wisbech Fen Clays, Wryde		- 602	. 383	3. 54	
			1. 276	. 264	. 764 1. 48	
	Silts, Wryde		. 392	. 224	3. 19	
	Silts, Needham		. 281	. 245	1. 58 1. 57	
Cheshire d		1	. 30	. 10	. 54	
Norfolk ¢	Saxlingham	2	. 41	. 30	. 60	
TOTIOIR V	Stanhoe.	7	. 112	. 057	1. 39	
Suffolk f	Trowse plot. Bramford.	3	. 13	. 16	1. 43	
ounoik /	Saxmundham		. 19	. 18	2. 18 1. 59	0. 2
Durham g	Grange Hill plot	116	. 07	. 13		
	Shield Ash plot	1 11	. 35	. 09	. 54	

a Somerville Agricultural Experiments, 5 years' work at the Northumberland County Demonstration Farm, 1902, pp. 62 and 167.
Gilchrist, Bulletin 4, Armstrong College, Newcastle upon Tyne.
Ninth Annual Report on Experiments, Counties of Cumberland, Durham, and Northumberland, 1900.
Gilchrist, Bulletin 8, County Agricultural Experiment Station, Newcastle upon Tyne.

b The Improvement of Poor Pastures, Report on an Experiment at Cransley, Northamptonshire, in seasons 1901, 1902, and 1903, Cambridge University.
c First Annual Report of Experiments, 1897, Cambridge, and Counties Agricultural Education Scheme.
Guideto Experiments at University Farm and other Centers in the Eastern Counties, Cambridge, 1907.
d Yearbook College of Agriculture and Horticulture, Holmes Chapel, Cheshire, 1904.
c Guide to Experiments at University Farm and other centers in the Eastern Counties, Cambridge University, 1907.

University, 1907.

I Report on Experiments at Bramford and Saxmundham.

Sixth Annual Report on Experiments in Counties of Cumberland, Durham, and Northumberland, 1897.

Tenth Annual Report on Experiments in Counties of Cumberland, Durham, and Northumberland, 1901.

ENGLAND-Continued.

County.	Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid. (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
Cumberland a		499 501	Per cent. 0. 37 . 33 . 30	Per cent. 0. 05 . 05 . 05	Per cent. 0. 27 . 28 . 25	Per cent.
Hampshire b	Newlands Manor, Lyming- ton. West Mark, near Petersfield.	5	.26	.17	.70	0. 46
Oxford c	Wick. Farm: Headington, I		.03	.049	. 84	. 29 Trace.
Berkshire d.	Headington, II Sutton's seed trial grounds, Reading.		.19	.12	5. 49 . 80	Trace.
******	(1)		00		CaCO ₃	
Wiltshire e	Christchurch Allotment Station, Warminster.			. 34	4. 17	. 27
	Borehamroad, Warminster. Horningsham. Heytesbury. Codford allotment soil. Chitterne allotment soils. Imber allotment.		21	. 258 . 30 . 254 . 45 . 466 . 908 . 370	195 .165 .125 55.36 12.21 47.50 42.35	. 21 . 29 . 18 . 13
T	Corsley plotClay soil, WarminsterYork warp soil.	2	. 259 . 459 . 184 . 308	. 402 . 134 . 255 . 223	49. 97 . 60 25. 55 4. 17	
Kent f	London clay: Whitstable Sheppey Chalk soils:		1.13	.119	. 35 . 224	2.02 1.24
	Wye Minster, Thanet		450	.143 .101 .094	7.91 1.96 3.70	. 193 . 58 . 64
	Sutton-by-Dover. Meopham Wye Court.		.432	. 192 . 126 . 244	18. 1 12. 2 31. 4	.69
	Wye S. E. A. C. Olantigh Wye. Charing East Lenham Charing			- 194	14.84 33.4 47.7 28.6 30.9 14.2	
	Charing		1.07	. 132	.44	
	Brook		. 901	. 133 . 253 . 084 . 048	2.52 .019 .061 2.42	.040
	CharingEast LenhamBrook		. 837 . 915 1.01	. 038 . 12 . 16 . 131	. 20 13. 2 . 022 1. 76	
Surrey j	East Lenham		. 515	. 199	10.6 .85	
	Wanborough Station. Ashtead Common Wyke Flexford Stoughton.		- 36	. 065 . 093 . 061 . 066	. 065 . 002 . 24 2. 4	.35 1.12
	Stoughton Wanborough Raynes Park Horsley Chalk soils:			.053 .078 .097 .116	. 057 . 03 . 073 . 19	
	Seale		. 236	. 18 . 193 . 166 . 163	56.9 39.0 53.6 61.4	.40 2.81

a Tenth Annual Report on Experiments in Cumberland, Durham, and Northumberland.
b Gilchrist and Foulkes, Suppl. I, Jour. Extension College, Reading, 1896.
c Gilchrist and Foulkes, Suppl. I, Jour. Extension College, Reading, 1896.
d Gilchrist and Foulkes, Suppl. I, Jour. Extension College, Reading, 1896.
e Report on Experiments, Wilts County Council Technical Education Committee, 1892, 1893, 1895.
f Hall and Plymen. South-Eastern Agricultural College, Wye, First Report on Chemical and Physical Study of the Soils of Kent and Surrey, 1902.

ENGLAND-Continued.

	·	Сопинис	u.			
County.	Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P_2O_5) .	Lime (CaO).	Magnesia (MgO).
Surrey	Gault soils, Alder Holt		Per cent. 0.968	Per cent. 0.092 .151 .074 .0895	Per cent. 0.040 .025 .039 .024	Per cent. 0.009
	WAL	ES.a				
	Garden soil		0.142	0.306	CaO. 1.40	0.671
	SCOTL	AND.b				
	Cleghorn, near Lanark: Plot 1 Plot 2 Drumfork, Helensburgh Easterboard, Croy Birgidale Knock, Rothesay. Tarves. Wester Fintray, Kintore Fedderate, Maud Tulloch Lumphanan Fasque, Fettercairn		.213 .928 .539 .244 .247 .279	0. 104 . 126 . 45 . 128 . 244 . 481 . 283 . 367 . 113 . 214	CaCO ₃ . 0, 44 .32 CaO. 0, 168 .403 .638 .594 .593 .568 .826 .759	
	IRELA	ND.c				
Cork	Limestone soils, Shanagany, Old red sandstone, Killeagh Silurian clay slate soils: Bally-Carney. Clonroche. Limestone soils: Rock ford		0. 464 .547 .384 .720	0. 148 . 156 . 156 . 167	3.938 .201 .268 .301	
	St. Kieran's.		.943	.13	1. 266	

a Annual Report Field Experiments, University College of Wales, Aberystwyth, 1899.
b Reports on Experiments, 1893, Glasgow and West of Scotland Technical College.
Reports on Experiments, 1895, Glasgow and West of Scotland Technical College.
Reports on Experiments, 1903 and 1904, Aberdeen and North of Scotland College of Agriculture.

←H.C. Sheringham. Irish Agricultural Organisation Society. 1st Annual Report of Field Experiments in Counties of Wexford, Cork, Tipperary, Mayo, Meath, King's County and Queen's County, 1899.

England.—Two hundred and sixty-nine samples were reported upon from England, the range in composition being for potash 0.03 to 1.58 per cent, phosphoric acid 0.034 to 1.24 per cent, lime 0.002 to 61.4 per cent, and magnesia 0.009 to 2.81 per cent.

Wales.—Only one sample has been reported upon from Wales having 0.142 per cent potash, 0.306 per cent phosphoric acid, 1.4 per cent lime, and 0.671 per cent magnesia.

SCOTLAND.—Ten samples were reported upon from Scotland the range in composition being for potash 0.116 to 0.928 per cent, phosphoric acid 0.104 to 0.481 per cent, and lime 0.168 to 0.826 per cent.

IRELAND.—Six samples were reported upon from Ireland, the range in composition being for potash 0.384 to 0.943 per cent, phosphoric acid 0.13 to 0.167 per cent, and lime 0.201 to 3.938 per cent.

Chemical composition of the soils of France.

AISNE.a

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P_2O_5) .	Lime (CaCO ₃).	Magnesium (MgO).
LAON. Semilly	1 4	Per cent. 0. 36 . 60	Per cent. 0.09 . 11	Per cent. 11. 22 5. 07	Per cent. 0.007 .003
Chambry	6 1 3 5 7 8	. 22 . 29 . 21 . 27 . 28	. 07 . 18 . 09 . 13	5. 52 5. 44 7. 45 34. 12 15. 55	.004 .004 .01 .01
Bucy-les-Cerny.	10	. 08 . 28 . 44 . 41	.03 .06 .16 .07	. 92 . 86 1. 76 3. 36	.005 .005 .01 .005
Crépy-en-Laonnois	1 3 5 1 3 7 9	. 44 . 28 . 29 . 22 . 16 . 24	.09 .06 .08 .07 .06	6. 32 . 96 2. 83 34. 53 . 60	.01 .05 .02 .01
Vorges	14 16 17	. 24 . 25 . 19 . 27 . 20 . 20	. 10 . 12 . 10 . 24 . 08	. 32 2. 40 7. 64 58.00 5. 56 1. 04	. 005 . 01 . 01 . 01 . 01 . 005
Presles .	1 3 5 7 8 9	. 22 . 33 . 06 . 48	. 08 . 10 . 06 . 08	. 60 1. 98 59. 50 9. 36 3. 71	.01 .004 .01 .01
Montbérault	1 3 5 1 3 5 8	. 12 . 30 . 37 . 20	. 04 . 05 . 08 . 06	3. 52 . 15 64. 75 2. 43	. 005 . 005 . 02 . 01
Chevregny	5 8 11 13 15 1 3 5 7 8	. 47 . 07 . 42 . 32 . 29 . 16 . 47 . 16 . 28 . 26 . 21	.10 .04 .11 .05 .08 .02 .07 .08 .07	1. 10 . 18 10. 40 4. 69 . 71 . 64 2. 24 . 64 . 96 29. 20 7. 80	.06 .005 .16 .005 .04 .02 .02 .01 .01
Urcel	11 13 15 1 3 6 7	. 52 . 70 . 71 . 10 . 22 . 25 . 30	.03 .26 .10 .03 .09 .05	.76 7.08 37.00 .09 4.64 .17	. 01 . 02 . 005 . 01 . 18 . 003 . 015
Quincy-Basse.	9 1 3 5	. 12 . 10 . 26 . 16	. 04 . 08 . 07 . 08	31. 31 1. 08 2. 68 . 88	. 005 . 005 . 05 . 02
Landricourt	1 3 5 1 3 6	. 12 . 19 . 30 . 30	.06 .06 .08 .08	.08 .60 .48 .92	.01 .005 .02 .01
Jumencourt	10 1 2 4	. 39 . 18 . 57 . 18	. 10 . 08 . 08 . 08	1. 72 9. 20 . 76 39. 70	. 02 . 006 . 27 . 01
Folembray	1 2 4 1 3 5 7 8 10	. 25 . 12 . 22 . 15	. 03 . 04 . 03 . 03 . 04	1. 60 . 08 2. 93 . 32 1. 70	.01 .02 .08 .003
Leuilly-sous. Coucy	10 1 3 4	. 15 . 22 . 24 . 26	. 05 . 09 . 10	1. 70 1. 76 2. 00 . 52	. 01 . 006 . 003 . 005
Crécy-au-Mont	1 3 4 7 1 3 5 7 9	. 23 . 23 . 27 . 29	.05 .12 .07 .11	4. 94 . 28 . 68	. 003 . 01 . 01 . 02 . 39
	9	. 25 . 19 . 47	.06	51. 20 7. 98	.01

AISNE-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgC).
LAON—continued. Crécy-au-Mout	13 15	Per cent.	Per cent.	Per cent. 0.72 2.39	Per cent.
Pont-Saint-Mard	15 1 3 5	.15 .18 .25 .26	.04 .06 .08 .08	2. 39 . 24 . 52 32. 30	.01 .006 .006
Vaudesson	7 9 3 5 6 8	.30 .26 .17 .21 .38 .19	.03 .06 .06 .08 .10	.17 .84 .72 17.08 .18 .41	. 006 . 005 . 02 . 01 . 02 . 01
Couvrelles	10 12 1 5 7	. 33 . 25 . 55 . 40	.08 .05 .13 .06	. 18 1. 00 2. 12 . 15	. 004 . 47 . 006 . 006
Mercin	9 11 13 15 1	. 27 . 39 . 26 . 38 . 31	. 06 . 03 . 04 . 09 . 09 . 09	. 40 3. 23 . 15 . 79 . 86	. 006 . 005 . 02 . 07 . 06
Melch	3 7 9 11	. 22 . 28 . 23 . 22	.09 .11 .06 .04 .04	.72 .73 1.00 .36 3.14	. 01 . 01 . 01 . 004 . 04
Amifontaine.	13 1 3 4	.08 .24 .23 .13	.13 .24 .10 .09	. 55 7. 08 13. 21 10. 60	.01 .004 .005 .007
	5 6 7 8 10	.39 .15 .45 .18	$egin{array}{c} .19 \\ .19 \\ .13 \\ .06 \\ .16 \\ \end{array}$	33. 92 10. 48 33. 70 9. 34 63. 80	. 006 . 005 . 006 . 01 . 007
Juvincourt	11 1 2	. 26 . 23 . 14	. 09 . 09 . 07	14.40 13.12 1.34	. 007 . 005 . 01
Berry-au-Bac	4 1 2 4 1 2	.28 .37 .32 .30	.11 .16 .21 .12	35.50 49.20 25.00 23.60	.12 .03 .03 .04
Gernicourt	4	. 29 . 09 . 32 . 27	.10 .02 .16	4.82 .68 9.90 30.70	.01 .005 .006
Clermont-les-Fermes	6 7 1 3 5 7	. 27 . 17 . 25 . 37 . 20	.07 .10 .17	75. 90 .57 6. 00 1. 28	.01 .02 .01 .003
	9 11 13	.30 .31 .35 .25 .21	.12 .08 .10 .08	2.19 .98 .45 .36	. 003 - 002 - 003 - 04
Missy-les-Pierrepont	3 4	.43 .19 .27 .40	.08 .10 .06 .15	. 16 3. 80 . 29 2. 24 2. 66	. 005 . 004 . 006 . 008 . 07
Grandlup	6 8 1 2 3	. 29 . 28 . 35 . 21 . 24	.06 .09 .13 .08 .06	.38 .70 30.94 22.20 .28	. 03 . 02 . 01 . 01 . 01
Frières-Faillouel.	8 1 2 3 5 7 8 1 3 5 9	.40 .38 .15 .19 .29	.14 .14 .09 .08 .09	1.63 3.08 1.63 1.70 5.16	.01 .01 .01 .006 .01
Liez	10 1 4 6	.35 .33 .25 .32 .22	.09 .07 .11 .07 .08	5. 46 2. 32 3. 06 5. 24 3. 18	.005 .01 .005 .01
	8 10 12 14	. 27 . 20 . 18 . 24	.12 .11 .20 .08	39.50 1.05 .36 1.33	. 01 . 005 . 01 . 01

AISNE—Continued.

			,		
Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
LAON—continued. Charmes	1 3 5 7 9	Per cent. 0.47 .25 .58 .15	Per cent. 0.11 .07 .13 .09	Per cent. 0.58 2.62 5.28 1.56	Per cent. 0.003 .02 .004
Rogécourt	12 1 3 5	.27 .85 .28 .13 .24	.09 .12 .10 .08 .08	1.60 7.04 3.08 2.03 3.14 1.13	.01 .01 .05 .07 .01
Fressancourt	8 9 1 3 5	.23 .28 .29 .26	. 04 . 08 . 08 . 10	3. 68 . 52 1. 96 2. 32	. 02 . 02 . 05 . 008
Faucouzy	1 3 5 7 1 4 5 6	.28 .31 .37 .32 .34	.10 .10 .15 .20	5.84 4.50 3.40 65.50	. 005 . 04 . 05 . 003 . 04
Chevresis-Monceau.	8 10 12 14 1 3	.60 .22 .61 .35 .28	.18 .11 7.14 6.87 .10	28. 80 2. 40 19. 70 62. 00 5. 10 33. 88	.004 .08 .02 .01 .01
Grugies	4	. 08 . 25 . 05 . 34 . 35 . 45	.05 .10 .10 .08 .14	35.08 15.65 48.30 .25 4.76 8.22	.01 .004 .004 .01 .01
Crézancy	5 7	.27 .24 .20 .29 .47	.04 .08 .06 .03	41. 44 . 46 34. 20 . 54 8. 26	. 005 . 005 . 02 . 01 . 02
Épieds	11 1 3 6 9	. 33 . 21 . 26 . 27 . 48 . 21	.09 .07 .06 .06 .07	10.20 1.15 .28 .78 16.98 .68	.01 .006 .01 .02 .01
Torey	11 13 1 3 5 7	. 19 . 19 . 09 . 18 . 26	.00 .05 .05 .04 .06	1.50 .68 1.28 8.91 3.30	. 02 . 02 . 006 . 006 . 04
Pouilly-sur-Serre	9 11 1 3 5 7	. 20 . 35 . 23 . 35 . 25 . 32	.05 .05 .15 .04 .04	.61 .98 2.19 .45 5.24 .34	.01 .02 .004 .003 .005
Nouvion-et-Catillon	9 10 13 1 3 5 6 8	.30 .30 .65 .33 .39 .42	. 23 . 06 . 05 . 03 . 10 . 05 . 11 . 08	. 34 8.00 33.93 3.25 . 80 . 50 1.70 1.42 . 48	. 004 . 005 . 003 . 005 . 003 . 01 . 005 . 006
Mesbrecourt-Richecourt.	10 12 13 15 1 3 5 7	. 30 .37 .35 .24 .35 .37 .58 .32	.09 .07 .07 .12 .11 .14 .08 .13	.70 1.28 .48 53.20 4.20 .38 .39 1.18 49.00	. 005 . 01 . 01 . 005 . 006 . 003 . 01 . 01
La Ferté-Chevresis.	10 12 14 16 1 3 5	. 46 . 44 . 51 . 27 . 34 . 46	.05 .11 .10 .12 .08	1.30 1.24 .39 1.16 2.58 1.16	.006 .01 .01 .006 .01 .01

AISNE—Continued.

Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
LAON—continued. La Ferté-Chevresis.	7 8	Per cent. 0.30 .37 .31	Per cent. 0. 11 . 19	Per cent. 28. 44 45. 16	Per cent. 0.004 .01
Valécourt	9 11 13 1 2 5 7	.69 .32 .33 .57	. 12 . 16 . 11 . 20 . 06 . 07	1.95 .67 9.98 56.45 2.60 3.94	.005 .006 .01 .005 .006
Pargny-les-Bois.	10 11	.37 .32 .37 .32 .13	.10 .08 .09 .04 .13	.66 36.80 1.24 .30 62.00	.01 .01 .01 .01
Bois-les-Pargny.	1	. 42 . 33 . 48	. 10 . 05 . 08	1.06 .28 .84	.01 .05 .004
Erlon	3 5 7 1 3 5	.21 .34 .14 .29 .28 .30	.09 .07 .08 .08 .09	.38 .64 1.36 .52 .46	.01 .01 .01 .01 .002
Marey	9 11 1	.24 .15 .20 .30	.05 .14 .04 .15	.70 62.45 .32 37.00	.02 .04 .003 .003 .10
Voyenne	3 5 7 1 3	.27 .23 .37	.08 .08 .13	. 41 . 68 . 18	.006 .01 .01
Marle	3 5 7 9 1 3 5	.31 .27 .28 .42 .31	.12 .14 .18 .16 .07	7.88 15.53 7.96 .85 1.00	.01 .01 .01 .006 .01
Houry	5 7 9 1 3 6	. 23 . 47 . 42 . 50 . 27	.07 .14 .09 .18	.80 .80 1.18 1.44 1.65	.02 .01 .01 .01
Prisces	8 10 1 3 5	. 48 . 35 . 61 . 30 . 53	. 13 . 09 . 15 . 16 . 23	2.96 4.78 .76 1.47	.01 .01 .006 .005 .007
Gronard	5 7 9 1 4	1.30 .33 .26	.13 .80 .08 .07	1.30 .70 1.04 .56	. 006 . 006 . 03 . 003
Agnicourt-et-Séchelles	6 1 3 5 7	.28 .28 .28	.03 .11 .26 .10	1.84 3.00 8.08 1.18	. 005 . 02 . 01 . 01
	9 10	. 26 . 25 . 51	.18 .25 .15	2.55 53.50 .68	.01 .02 .01
Montloué	12 14 1 3 5 7	.30 .21 .23 .28 .45	. 10 . 17 . 07 . 09 . 08	.32 87.00 .32 .68 .78	.01 .01 .01 .01
Noircourt	7 9 1 3 5	. 21 . 35 . 43 . 50 . 29	.15 .17 .06 .08 .06	56.00 1.68 5.88 .36 3.55	.02 .04 .01 .006
Goudelancourt	11 12 14 16 18 1 3 5	. 41 . 15 . 40 . 14 . 43 . 35 . 39 . 23 . 41	.11 .16 .08 .10 .06 .05 .18 .07	13. 50 38. 00 .98 1. 97 1. 36 .48 26. 50 .50	. 003 . 006 . 01 . 02 . 03 . 01 . 004 . 005 . 01

AISNE-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₂).	Magnesium (MgO).
LOAN—continued.	1	Per cent. 0.52	Per cent.	Per cent.	Per cent. 0.004
Bucy-les-Pierrepont.	3 5 7	. 39 . 25 . 28 . 16 . 24 . 20 . 44	0.08 .07 .09 .05 .06 .08 .07	0. 25 . 40 . 42 42. 00 . 42 29. 50 . 52 . 42 . 34	. 004 .004 .007 .007 .003 .004 .02
Boncourt	11 13 15	.40 .27 .37 .25 .29	. 06 . 02 . 08 . 09 . 07 . 10	.44 .12 .72 .28 .26	.01 .004 .01 .12 .03 .01
Lappion	1 5 7 1 3 5 6	. 28 . 30 . 14 . 23 . 26	.08 .11 .04 .04	.80 47.00 .22 .12 .28	.11 .02 .01 .02
La Selve	8 10 13 1	.29 .28 .37 .32	.07 .15 .04 .04	.24 94.70 .64 1.84 48.00	. 02 . 02 . 19 . 03 . 02 . 007
Sissonne	2 3 1 3 4 5 6 7 8	. 26 . 24 . 33 . 24 . 24	.07 .21 .07 .09	.78 43.00 9.20 .80 23.22	. 02 . 005 . 004 . 004 . 003
	9	.28 .30 .49 .14	. 15 . 50 . 32 . 06	15. 64 16. 19 10. 71 . 52	. 007 . 003 . 005 . 004
Machecourt	10 1 3 5	.12 .29 .35 .39	. 04 . 12 . 03 . 11	. 24 49. 00 . 80 1. 40	. 004 . 009 . 006 . 002 . 01
Chivres	5 7 1 3 4 6	.47 .24 .23	.06 .17 .14 .05	1.96 20.00 46.60 .24 5.64	. 004 . 003 . 01 . 23
Liesse	1 1 3 5 7	.27 .20 .47 .30	. 04 . 03 . 04 . 05	1.63 .52 .38 .20	. 004 . 009 . 007 . 01 . 02
Samoussy:	6 8	.27 .37 .27 .24 .23	.09 .06 .14 .10	. 68 . 24 39. 75 2. 60 26. 00	.02 .008 .01 .01
Monceau-le-Waast	1 3 1 2	.25 .19 .38	.08 .14 .12	2.97 3.25 .52	.01 .03 .01
Eppes Coucy-les-Eppes	4 6 8 9	.40 .23 .22 .29 .27 .31 .30 .16	. 06 . 09 . 07 . 06 . 03 . 09 . 06 . 04	. 28 1. 00 . 80 14. 00 . 64 86. 00 8. 00 . 30 . 42	. 01 . 004 . 007 . 006 . 004 . 006 . 005 . 004
Festieux.	6 8 9 10 1 3	.19 .21 .47 .29 .25 .16 .25 .29	. 07 . 03 . 17 . 09 . 09 . 03 . 07 . 13	. 36 . 30 7. 30 35. 50 2 10 . 16 10. 50 25. 44 1. 50	. 01 . 001 . 01 . 003 . 003 . 004 . 005 . 006
Veslud.	4 5 1 3 4 6	. 19 . 18 . 33 . 35	.08 .04 .03 .05 .13	. 24 . 04 . 88 20. 00	.007 .003 .03 .004

AISNE—Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
LOAN—continued. Parfondru	1	Per cent.	Per cent.	Per cent.	Per cent. 0.007
Bruyères	1 2 5 1 1	. 52 . 26 . 14 . 32 . 27	. 15 . 05 . 05 . 07 . 03	2. 88 5. 40 . 24 1. 00 . 84	.01 .02 .02 .008 .007
Ployart	1 3 5 1 3 5 1 3 5 1 3 5 1	. 21 . 24 . 44	.05 .11	10.88 .63 3.37	. 006 . 007 . 03
Vaureseine	1 3	. 18 . 37 . 33	.10 .09 .06	2.40 20.00 10.00	. 01 . 007 . 02
Montchalons	1 3 5	. 24 . 40 . 32 . 32	.12 .16 .10 .04	.40 .60 3.40 .20	. 006 . 008 . 005 . 005
ChérêtOrgeval.	5 1 2 1	.32 .36 .36 .25	. 07 . 07 . 06	47. 00 19. 00 1. 40	. 02 . 02 . 02 . 007
Bièvres	4 1 3	. 27 . 26 . 36	. 14 . 10 . 17	. 84 . 44 20. 00	. 004 . 03 . 01
Martigny	4 1 3	. 28 . 36 . 33	. 10 . 07 . 07	11. 00 1. 10 13. 06	. 006 . 007 . 05
Monampteuil	4 5 1 3 5 7 9 1	. 39 . 40 . 20 . 27 . 20	. 12 . 07 . 07 . 05 . 07	13. 18 . 46 . 99 . 19 . 23	. 31 . 08 . 002 . 005 . 004
Braisne	7 9 1 3 5	. 19 . 34 . 23 . 28 . 20	. 07 . 07 . 67 . 06	. 24 . 45 . 50 . 48 . 84	. 005 . 005 . 03 . 02 . 02
Brenelle Courcelles	5 7 1 1 3 5 7	.17 .35 .34 .47 .24	. 12 . 04 . 05 . 08 . 08	7.00 .48 .78 1.66 1.26 65.00	. 01 . 01 . 01 . 03 . 03 . 01
Limé	8 10 1 3 5 7	.16 .20 .32 .23 .31	. 04 . 07 . 05 . 05 . 07	27. 00 . 44 . 74 . 26 . 42	.01 .01 .02 .01
Quincy-sous-Le-Mont et Bruyères	9 2 4 6	. 64 . 32 . 26 . 27 . 24	. 07 . 91 . 05 . 06 . 09	29. 00 30 41 . 56	. 01 . 01 . 02 . 005 . 01
Laffaux	8 1 3 5	. 22 . 24 . 37	. 05 . 05 . 07	1.09 1.90	.01 .008 .008
Neuville-sur-Margival	1 3	. 22 . 42 . 29	. 06 . 07 . 06	. 52 . 48 . 30	.007 .01 .005
Terny-Sorny	1 3 5	.36 .39 .38	.06 .12 .06	$ \begin{array}{c} 1.42 \\ 21.20 \\ 1.22 \end{array} $.006 .006 .003
Margival	5 7 9 1 3 5	. 26 . 30 . 28 . 48 . 28	. 06 . 07 . 06 . 08 . 08	. 42 . 72 3. 68 2. 02 . 82	.004 .02 .01 .01 .005
Vuillery et Braye-sous-ClamecyVillemontoire	7 9 1 1	. 28 . 26 . 28 . 24 . 29 . 16	. 05 . 06 . 07 . 13 . 09	81.00 3.68 .34 5.10 .72	.005 .008 .003 .02
Buzaney	3 5 7 9 1 3 5	.16 .20 .16 .27 .33 .31	.07 .09 .08 .04 .06	18.20 .82 .60 .98 1.70 .40	. 03 . 03 . 007 . 01 . 01 . 006

AISNE—Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime CaCO ₃).	Magnesium (MgO).
LAON—continued.		Per cent.	Per cent.	Per cent.	Per cent.
Aconin	1 3 4 6	0.33 .30 .32 .37	.0.08 .09 .06 .16	9.70 1.10 .86 .40	0. 01 . 01 . 02
Cutry	1	.3 .38 .66	. 05 . 07 . 07	. 10 . 24 1. 88	. 006 . 005 . 01 . 01
Cœuvres-et-Valsery	3 5 7 1 3 5	. 38 . 38 . 24 . 26	. 06 . 08 . 06 . 07 . 12	. 48 . 20 . 24 54. 00 2. 24	.01 .004 .01 .006 .01
Saint-Pierre-Aigle	6 7 1 3	.37 .29 .25	. 08 . 03 . 07	.36 .48 .24	.01 .007 .01
Laversine	1 3	.33	. 02	.28	.005
Dommiers	1 3	.31	.06	. 20 . 36	. 01
Berny-Rivière	1	.8	.12	41. 90 17. 00	.05
Nouvron	2 1	. 80	. 08	. 73	.003
	3 5 7	. 64	.09	. 65	.01
	8 1	. 42	.06	5. 09 86. 70	. 02
Morsain	2	.30	.05	2.16 .70	. 007
	2 3 5 2	. 22	. 06	2.23 5.44	. 005
Vézaponin	2 4	.30	.05	3.04 .50	.01
Selens	6	. 44	.05	. 30 1. 48	.01
	4 5	. 12	.06	44.00 3.00	. 01
	8 10	.35	.08	. 61 1. 18	. 01
Saint-Aubin	1 3	. 26	. 06	$\frac{1.08}{2.80}$. 05
Trosly-Loire	1	.24	.06	2.27 .68	. 04
,	3 4 5	.19	. 08	1.52 .82	. 06
	5 7	.22	.03	9.96 2.08	. 06
ATILL continue Assessment	8 9 1	.22	.07	.78	.03
Villequier-Aumont	4	.57	.22	.38	.004
	6 8	.26	.05	. 82	.01
Landouzy-la-Cour	10 2	. 27	.05	2.38 2.30	.01
	4 6	. 32	.06	. 64	.01
	10 12	. 23	. 09	. 60	.01
Vervins	14 1	.39	.08	1.00 .32	.006
	3 5	.24	.10 .10	.20 1.28	.007
Font 'ne-les-Vervins	$\frac{1}{3}$.28	.11	. 60 93. 00	.008
	4 6	. 33	.10	. 68 2. 20	. 009
Laigny	8	. 40	.10	1.84	.007
war Pul	3 6	.30	.10	.80 9.44	.006
Haution	1	.31	.08	1. 24 . 32	.006
Voulpaix	3 1	. 31	.09	. 56	.003
	2 3 5	. 66	.07	1.24	.007

AISNE—Continued.

Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
LAON—continued.		Per cent.	Per cent.	Per cent.	Per cent.
Marfontaine	$\frac{1}{2}$	0.31	. 0.17	1.96 .36	0.01
Rougeries Presles Nouvion	4 1 1 1 4	. 24 . 28 . 33 . 25 . 47 . 30	.00 .09 .09 .05 .10	. 52 . 92 . 35 1. 68	.01 .004 .006 .01 .006
Laval	3	.27	.10	. 15 . 56	.005
Monthenault	$\begin{array}{c} 6 \\ 1 \\ 3 \end{array}$.12 .54 .46	. 06 . 07 . 07	. 60 . 52 . 16	.02 .005 .005
Chamouille	5 7 8 1 2	. 40 . 40 . 35 . 32 . 38	.04 .06 .04 .10	.72 .06 1.64 2.56 6.60	. 004 . 004 . 005 . 05 . 006
Courtecon	3 5 7	. 27 . 26 . 26 . 37	. 06 . 06 . 06 . 17	.36 .70 .48 .96	. 006 . 02 . 003
Pancy	10 1 3	.33 .24 .52	. 08 . 02 . 09	11.30 .20 .52	. 007 . 03 . 007
Colligis	1	. 52	.07	. 84	.01
Crandelain	$\begin{array}{c} 3 \\ 1 \\ 4 \end{array}$. 58 . 28 . 29	. 05 . 05 . 07	9. 96 . 24 . 22	. 007 . 007 . 01
Trucy.	6	.33	.05	.18	. 005 . 003
Lierval	3	.33	.03	. 20 19. 86	. 004
	$\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$. 56	. 12	8.52	. 01
Lesdins	3 5	.34 .30 .39	. 14 . 16 . 08	56.40 2.80	. 01 . 004 . 02
Levergies	7 1 4 6	.38 .27 .27 .36	. 13 . 10 . 07 . 09	1. 44 18. 04 2. 04 . 92	.02 .01 .02 .02 .01
Gouy	8 1 3 5 7	.37 .39 .59 .40	.10 .07 .14 .12	.54 3.70 .76 .76	.01 .01 .005
Prouvais	8 10 12 14 16 1 3 6 7	. 17 . 51 . 50 . 51 . 44 . 38 . 22 . 29 . 40	$\begin{array}{c} .12 \\ .12 \\ .10 \\ .09 \\ .09 \\ .10 \\ .08 \\ .06 \\ .22 \\ .24 \\ \end{array}$	42. 40 1. 08 . 60 1. 76 11. 92 . 64 . 68 2. 80 32. 70 34. 00	$\begin{array}{c} .01 \\ .006 \\ .01 \\ .01 \\ .01 \\ .01 \\ .01 \\ .007 \\ .02 \\ .01 \\ .01 \\ .01 \end{array}$
Molinchart	9 10 1	. 46 . 22 . 36	. 30 . 15 . 09	52.00 7.44 3.40	.02 .01 .01
Clacy. Merlieux	3 5 1 2	.27 .38 .30	. 04 . 09 . 11 . 23	$\begin{array}{r} .32 \\ 44.50 \\ 6.40 \\ 2.06 \end{array}$. 005 . 01 . 02 . 03
Montbavin et Montarsène.	3 5 1 3	.38 .32 .37 .26	.06 .04 .07 .05	$\begin{array}{c} .16 \\ .16 \\ .62 \\ .76 \end{array}$. 003 . 003 . 01 . 01
*	5 7 8	.19 .23 .28	.04 .04 .05	.40 .12 .22	.01 .01 .01
Barisis	9 1 3	. 20 . 22 . 38	.08 .06 .08	27.00 .64 1.00	. 02 . 007 . 004
Mont-Saint-Martin	6 7 1 3	.23 .29 .42 .39	.06 .05 .09 .10	22.00 1.08 6.70 1.04 15.60	. 005 . 003 . 02 . 007

AISNE-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgC).
LAON—continued.	1	Per cent. 0.23	Per cent. 0.06	Per cent. 0.48	Per cent.
	357934121313513571	.38 .29 .26	.06 .06	.28 .20 .60	.004
Nogentel	3	.28	.10	32.00	.01
Étampes	1	.40 .72	.23	5.80 1.36	.01
Chierry	2	. 24	.12	$7.50 \\ 15.92$.008
Fossoy	. , 1	.40	.20	20.00 17.46	.01
	5	1.17	.12	13.74 14.96	.00
Seraucourt-le-Grand	3	.28 .29 .50	.14	3.53 .10 1.08	.02 .02 .01
Happencourt	7 1	. 28 . 44 . 42	.21 .15 .22	3. 24 3. 23 31. 00	.000
Artemps	3 5 1	. 38	.10	8. 64 2. 98	.01
Clastres	3 1 1	.30	.10	1.56 .60	.01
Guise	1 4 6	. 29 . 64 . 40	.08	. 20 2. 64 . 70	.02
Lesquielles-Saint-Germain.	8	.39 .27 .46	. 09 . 03 . 56 . 07 . 12	. 24 45. 00 . 72 3. 04	.00 .01 .01
Couvron	6 1 3	.31 .31 .34	. 12 .10 .16 .12 .18	4.06 5.88	.00 .04 .03
Barenton-Cel	4 5 1 3 4	.17 .21 .51 .35	.07 .10 .09	58.00 .20 2.62 8.70 1.62	.04
Chalandry	6 8 10 1	.14 .51 .41 .49	.19 .08 .07 .09	72.00 .60 14.00 1.80 2.10	.00
Cessiéres	1 3	. 28	.12	.56	.00
Guivry	1 3 1 3 5 7 2 4	. 45 . 34 . 27 . 24	. 05 . 07 . 07 . 08	. 52 . 36 . 40 . 48	. 00 . 00 . 00 . 00
Berlancourt	8 1 3 5	. 33 . 38 . 43 . 27	. 09 . 08 . 09 . 09	1. 20 2. 20 5. 50	. 00 . 02 . 05 . 01
Neuville-Saint-Amand	3	. 23 . 36 . 41 . 49	.11 .09 .08 .12	16.00 2.68 .20 2.00 2.16 47.00	.00 .02 .00 .00
Remaucourt	5 7 8 10 12 15 1 3 6 9	. 45 . 33 . 35 . 40 . 53 . 38 . 47 . 37	. 16 . 07 . 07 . 09 . 18 . 16 . 13 . 12	3. 02 1. 40 1. 60 1. 00 3. 36 1. 62 2. 52 39. 50	. 000 . 000 . 000 . 000 . 01 . 01 . 01
VauxresisCuisy-en-Almont	1 1	. 34	. 22 . 07 . 09	.64	.002
Vieil Arcy	3 1 3 5 7 10	. 31 . 36 . 14 . 25	.07 .07 .07	1. 08 1. 40 . 40 16. 00	.00:

AISNE-Continued.

AIS	SNE—Con	tinued.			
Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
LAON—continued. Dhuizel	1 3 1 2 4 6 9	Per cent. 0.39 .25 .65 .30 .35 .43 .34	Per cent. 0.07 .07 .16 .07 .11 .06 .09	Per cent. 0.60 .76 1.00 .92 1.10 1.00 16.80	Per cent. 0. 004 .003 .002 .004 .005 .004 .002
P.A.	S-DE-CA	LAIS.a			
Erquières	1 2 3 4	0.268 .137 .267 .267	0. 119 . 092 . 098 . 103	0. 405 2. 411 1. 836 3. 875	
Guigny	5 6 1 2 3	. 207 . 298 . 219 . 32 . 35 . 30 . 289	. 103 . 211 . 172 . 143 . 086 . 104 . 159	15. 565 57. 344 1. 652 1. 932 1. 897 8. 112	
Berthonval	5 1 2 3 4 5	.317 .26 .33 .30	.121 .10 .14 .115	35. 971 1. 17 1. 51 . 20	
Louez.	5 1 2 3 4	. 29 . 34 . 316 . 293 . 388 . 333	.22 .094 .116 .118 .158	23. 39 . 925 . 70 1. 20 4. 215 4. 265	
Valhuon	5 6 1 2 3	.319 .328 .376 .314 .245	. 26 . 252 . 096 . 094 . 092	23. 00 23. 00 1. 12 . 716 1. 36	
Saint-Martin	4 5 1 2 3 4	.219 .266 .121 .176 .154 .176	.094 .084 .108 .156 .15	1. 05 1. 19 . 135 1. 085 . 625 2. 70	
Longunesse.	5 6 1 2 3 4	.169 .185 .191 .198 .249	. 146 . 156 . 159 . 133 . 121 . 145	. 475 1. 35 . 533 4. 906 1. 183 2. 786	
Marek	5 6 7 8 1 2 3	. 289 . 30 . 198 . 174 . 33 . 256 . 347	. 158 . 086 . 142 . 098 . 116 . 063 . 129	1. 848 . 648 1. 041 1. 041 18. 011 14. 016 25. 145 22. 086	
Offekerque	5 6 1 2	. 043 . 25 . 384 . 29	.031 .116 .104 .101	. 101 14. 974 16. 412 14. 101	
Guines	3 4 1 2 3	. 22 . 291 . 235 . 282 . 248	. 092 . 105 . 153 . 167 . 254	13. 834 15. 806 . 96 7. 699 21. 334	
Faubourg Ronville	4 1 2 3	. 324 . 26 . 223 . 257	. 224 . 704 . 704 . 554	13. 014 38. 75 34. 427 19. 739	
Souastre	4 5 6 1 2 3	. 295 . 258 . 266 . 268 . 241 . 277	. 40 . 194 . 642 . 092 . 091 . 11	4. 572 1. 625 9. 939 1. 84 1. 47 . 518	

a Pagnoul. Terres Arables de Pas-de-Calais, 1894. Bul. Sta. Agron. Pas-de-Calais, 1887-1895.

PAS-DE-CALAIS-Continued.

	Original	Potash	Phosphoric	Lime	Magnagire
Description and locality.	sample No.	(K_2O) .	acid (P_2O_5) .	(CaCO ₃).	Magnesiur (MgO).
		Per cent.	Per cent.	Per cent.	Per cent.
Souastre	4	0.267	0:075	1.504	
	5	. 239	.09	2. 053	
	6 7	.29	.08	2. 21 2. 596	
as	i	.262	.08	1.02	
	1 2 3 4 5	. 262 . 208	1 , 134	3, 866	
	3	.311	.081	3.112 .97	
	5	.345	. 08 1. 28	. 923	
	6 7	. 245 . 256	. 056	. 031	
	7	.177	.25	62. 448	
	8 9	.199	.104	1. 62 2. 72	
erres	1	.278	. 123	. 961	
	1 2 3 4 5 6 7 1 2 3	. 122	. 143	. 468	
·	3	.30 .255	.118	4. 17 . 75	
_	5	. 315	.106	1.62	
	6	.263	.107	2.02	
3 35 4 3	7	268	.11	1.11	
resnes-lez-Montauban	1 2	.277	.162	33. 272 1. 972	
	3	. 257	.085	1. 901	
	4	323	11	1.633	
31-6	5 1	. 292	.231	42.112	,
\dinfer	1 2	.367	.114	1.14 .861	
	2 3	. 307	.094	. 526	
	4 5	. 262	.093	.774	
	5	. 286	.103	2. 462 1. 208	
	7	.288	.084	. 125	
	8	. 253	.071	.125 .077	
Hénin-sur-Cojeul	1	. 289 . 228	. 186	14. 40	
	2	.228	.115	2. 53 2. 30	
	6 7 8 1 2 3 4 5 6	. 262	.096	1.15	
	5	.268	. 163	10, 42	
1.1.	6	. 313	.094	. 93 7. 173	
Achicourt	1 2 3 4 5 6 7 8	. 277	. 571	7.173	
	3	. 278	. 16	1.901	
	4	. 329	.149	1.288	
	5	. 295	.159	2. 263 35. 968	
	7	.257 .278	.57	32. 988	
	8	. 355	.14	2.68	
	9	. 317	. 329	4.67	
Croisilles	1 2	. 334	.109	2.061 .592	
	3	.308	.114	.992	
	4	. 305	. 103	1.511	
	1 2 3 4 5 6 7 8	. 265 . 325	.114	12. 525 1. 003	
	7	. 26	. 157	16, 67	
	8	. 282 . 275	. 093	. 459 2. 917	
a Herlière	1	.275	.075	2.917	
	2	. 273 . 276	.066	3.00 1.904	
	4	. 249	.099	4.857	
	5	. 276	. 089	2.145	
Moyenneville	1	. 309	. 102	.614	
	2 3 4 5 1 2 3 4 5 6	.317 .317	.091	. 208 . 774	
	4	. 306	.099	. 811	
	5	.215	. 103	.381	
blainzevelle	6	.345	.133	.684	
	$\frac{1}{2}$. 162	. 114	. 59	
	2 3	. 304	. 092	. 359	
	4	. 266 . 269	.072	. 251 1. 53	
	6	202	.102	. 429	
	4 5 6 7 8	. 224	.073	1.845	
	8	. 224 . 25 . 269	. 071	.102	
	9	. 269	.085	2.652 .28	

PAS-DE-CALAIS—Continued.

	1				
Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P_2O_5) .	Lime CaCO ₃).	Magnesium (MgO).
		Per cent.	Per cent.	Per cent.	Per cent.
Havrincourt	$\frac{1}{2}$	0. 272 . 237	0.111	1.537 .799	
	3	.283	. 137	3,646	
	4 5	. 319	. 103	.605 3.469	
	5	. 237	.124	3. 469 1. 652	
	6 7	.275		. 62	
	8	. 337	. 159	. 87	
	9	. 35	.106	. 848 2, 628	
	11	. 25	.103	1.578	
YY 11 1	12	. 206	.27	39.918	
Hesdigneul	1 2	. 248 . 276	.081	. 573	
	2 3	. 257	. 139	.877	
	4 5	.337	. 116	1.687	1
	6	. 268	.067	.245 1,171	
	6 7	. 264	.073	. 051	
	8	. 266	.072	. 243	
	9	. 182	. 095	. 255 1. 413	
Metz-en-Couture	10	. 322 . 272	.116	2. 536	
	1 2	. 228	. 111	. 93	
	3 4	. 227	.133	1.734 .568	• • • • • • • • • • • • • • • • • • • •
	5	. 323	.131	. 753	
	6 7	. 233	. 105	. 711	
	7 8	. 289 . 218	.118	2.344 .876	
	9	. 218	.098	1.996	
	10	. 243	. 105	. 537	
Fontaine-lez-Boulans	11 1	· 22 · 308	. 103	2. 599 1. 884	
Fontanie-lez-Doulans	2 3	38	.314	11. 117	
	3	. 365	. 083	65. 90	
	4 5	. 297	. 073	3. 899 14. 713	
	5 6	. 545	. 422	30. 198	
Clairmarais	1 2 3 4 5 6 7 8 9	. 253	. 054	2.171	
	2 3	. 414	.088	. 675 1. 514	
	4	. 26	. 069 !	. 902	
	5	. 36	.081	1. 022	
	7	. 378	. 26 . 078	33.837 2.12	
	8	. 31	. 142	16.783	
Wizernes	9	. 53 . 249	.10	3.685 .253	
· ·	2	. 379	.063	1.059	
December of the second	3	. 271	.06	1.33	
Racquinghem	1 2	. 385	.072	.00 .671	
	2 3 1 2 3 4	.28	.099	.774	
	4	. 266	. 086	1.224	
	5 6 7	. 353	. 114	1.237 1.003	• • • • • • • • • • • • • • • • • • • •
•	7	. 557	. 045	. 929	
	8 9	.761	.038	.608	
Houlle	1	. 178	.00 .085	.00 2.204]
	2 3	. 245	. 161	. 28.211	
•	3 4	. 254 . 161	.147	29.757 3.034	
	5	. 304	. 105	5.803	
Moulle	1	. 217	. 082	2.203	
	2 3 4	. 171	. 088	1. 463 4. 167	
	4	. 279 . 21	. 111	2.648	
Zoteux	5 1 2 3	. 178	.102	3. 439	
	2	. 293	. 126 . 117	2. 08 . 436	
*	3	. 287	, 223	6.007	
	4 5	. 395	. 209	1.807 .212	
	5 6	.272	. 193	4. 813	

PAS-DE-CALAIS-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
Mentque-Nortbécourt.	1 2 3	Per cent. 0.144 .292 .196	Per cent. 0.162 .141 .141	Per cent. 61.819 12.013 6.114	Per cent.
Isques.	4 5 6 1 2 3 4 5 6	.297 .197 .266 .404	. 159 . 151 . 133 . 176 . 139	7.612 39.253 11.502 7.955 1.005	
Hubersent	3 4 5 6	.199 .236 .234 .466 .358	.073 .092 .09 .257 .248	2. 163 . 174 . 242 9. 746 8. 238	
Bailleul-lez-Pernes.	2 3 4 5 6	. 147 . 202 . 272 . 211 . 20 . 357	. 136 . 093 . 079 . 084 . 071 . 066	32.749 3.213 .328 2.803 .092 23.371	
Dameu-jez-r ernes	123456123456123123456123456712345611	.243 .301 .214 .287	.006 .079 .083 .065 .121	.796 1.466 1.247 .873 6.479	
Auchy-lez-Hesdin	1 2 3 1 2	. 195 . 224 . 27 . 23 . 135	.124 .091 .119 .057	3.594 .332 .694 18.422	
Labourse	3 4 5 6	. 225 . 219 . 208 . 143 . 40	.277 .061 .051 .083 .219	2.065 17.465 21.053 17.912 14.489 25.177	
	2 3 4 5 6	. 325 . 281 . 234 . 257 . 306	.225 .131 .087 .102 .219	23.305 23.511 1.00 1.678 23.619 19.108	
Feuchy	7 1 2 3 4	.342 .329 .254 .316 .165	. 208 .183 .086 .092 .103	6.948 .78 1.124	
Coupelle-Vielle Boiry-Notre-Dame	5 6 1 1 2 3	.317 .403 .232 .306 .275 .292	.285 .189 .10 .092 .092	27.373 7.627 4.968 .715 -756	
	3 4 5 6 7 8 9	. 292 . 268 . 242 . 277 . 185 . 276	.088 .088 .093 .081 .043 .098	.745 .817 1.069 1.377 .258	
	9 10 11 12 13	. 276 . 281 . 30 . 321 . 297 . 28	.077 .086 .185 .073	.76 .753 18.21 .64 .372	
Givenchy-en-Gohelle.	14	. 251 . 315 . 366 . 386 . 282	.078 .136 .132 .155 .127	.616 1.224 1.283 3.864	
Pénin	1234561233456612334566	.367 .436 .306 .261 .333	. 124 . 178 . 119 . 149 . 149	. 88 5. 42 5. 891 . 769 9. 243 3. 681	
Baralle	4 5 6 1 2	. 203 . 267 . 331 . 245 . 224	. 202 . 139 . 14 . 093 . 102	63.776 1.119 2.472 2.246 1.763	
	3 4 5 6	. 262 . 289 . 269 . 331	. 272 . 133 . 249 . 164	14. 719 . 741 9. 838 3. 219	

PAS-DE-CALAIS—Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
77 - 1	1	Per cent.	Per cent.	Per cent.	Per cent.
Rebergues	1 2	0.35 .647	0, 206 . 126	14. 421	
	$\frac{2}{3}$.27	. 222	1. 495 47. 525	
	4 5	. 32	.373	11. 439	
	5	. 384	. 164	81.513	
Agents	6	. 189	.312	17.655	
Agny	1 2	. 39 . 251	.682 .163	19. 799 2. 265	
	3	. 236	. 135	2. 203	
	4	.38	. 192	4. 135	
	5	. 298	. 246	5.20	
A I TI - Al-	2 3 4 5 6 1 2	.30	. 258	11.348	
Auchy-lez-Hesdin	1	. 221	. 202	1.268	
	3	. 176 . 208	. 239	47.327 7.066	
	4	. 239	. 125	4, 61	
Herbelles	i	. 244	. 097	. 708	
	1 2 3 4 5 6	. 27	. 114	. 273	
1	3	. 238	. 093	. 765	
	4	. 241	. 201	43.37	
	6	. 336	. 155	. 586 7. 123	
Beussent	1	. 411	. 187	16. 211	
	2	. 411 . 241	. 134	51.008	
	1 2 3 4 5 6	. 293	.084	2.564	
	4	. 369	. 135	3.493	
	5	. 273 . 224	.096	.716	
Divion		. 224	. 116 . 084	5.975 .978	
,	1 2 3 4 5 6	. 237	. 124	3.626	
	3	. 167	.046	. 434	
	4	. 257	. 116	4.754	
	5	. 19	.096	. 869	
Aix-en-Issart	6	. 239	. 176	2.583	
ATA-eti-155at t.,	2	. 323	.091	. 331	
,	1 2 3 4 5 6	. 292	.116	.316	
	4	. 152	. 307	36.02	
	5	. 259	. 09	1.004	
TT	6	. 247	. 167	6. 025	
Hermies	1	. 40	. 269	6. 881 6. 882	
	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. 341	. 159	2, 329	
		. 27	.17	4 729	
	4 5 6 1 2 3	. 289	. 124	. 561	
73. / .	6	. 269	. 138	1.413	
Chérisy	1	. 202	. 121	1.026	
	2	. 228	. 34	23. 132 . 924	
8	4	. 336	. 133	. 975	
	5	. 259	. 174	3, 929	
	6	. 173	. 162	. 839 1. 245	
Guarbecque	4 5 6 1 2 3 4 5 6 1 2 3	. 296	. 10	1.245	
	2	. 337	. 097	1.114	
	3	. 294	.13	2. 24 1. 312	
	5	. 219	. 065	. 788	
	6	. 308	. 106	2. 146	
zel-les-Hameau	1	. 202	. 107	. 646	
	2	. 219	. 225	38. 899	
	3	. 279	. 121	1. 975	
	5	. 209	. 087	. 618	
17	6	. 303	.12	2. 784	
	7	. 277	. 111	1.671	
Camiers	1	. 125	. 179	48. 777	
	2	. 119	. 07	2 05	
	4 5 6 7 1 2 3 4 5 6 7 8 1 2 3	. 329	. 379	9. 588 1. 746	
	5	. 181	. 163	41. 025	
	6	. 235	.144	68 206	
	7	. 156	. 119	6 145	
I o Manual and	8	. 207	. 089	. 277	
Le Transloy	1	. 242	. 081	, 914 , 52	

PAS-DE-CALAIS-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
Le Transloy	4 5 6 1 3 5 7	Per cent. 0. 219 254 296 26 .186 .133 .205	Per cent. 0.118 .132 .121 .075 .08 .089 .101	Per cent. 0. 537 1. 247 . 769 . 877 . 175 . 289 2. 063	Per cent.
Fleurbaix	9 11 1 2 3	. 22 . 192 . 321 . 34 . 372	. 203 . 167 . 09 . 083 . 113	11. 44 13. 74 . 997 . 94 . 739	
Bernieulles	4 1 2 3 4	. 358 . 277 . 275 . 239 . 221	.105 .083 .079 .091	2. 086 . 322 5. 241 . 854 2. 599	
Duisans	5 6 1 2 3 4	. 214 . 339 . 235 . 361 . 298 . 326 . 281	. 089 . 077 . 111 . 198 . 089 . 12 . 158	1. 053 4. 612 1. 348 2. 94 . 834 . 528 1. 989	
Bucquoy (Essart)	5 6 7 1 2 3 4	. 209 . 292 . 233 . 275 . 268 . 272	. 221 . 126 . 08 . 136 . 146 . 135	48. 356 5. 413 6. 333 1. 469 . 606 . 546	
LouezAblainzevelle	5 3 5	. 27 . 291 . 245	. 133 . 213 . 172	. 528 4. 702 . 575	
Ablainzeveile. Frevent Les Attaques. Ablainzeveile. Oisy-le-Verger Lumbres.	6 8 10 11 13 14	. 287 . 265 . 226 . 236 . 337	. 132 . 088 . 148 . 096 . 094 . 108	. 661 1. 069 13. 177 . 527 1. 367 2. 378	
Lagnicourt. Bethune Bapaume Campagne-les-Hesdin Fouquières. Bapaume Oignies Auchy-lez-La-Bassée Oignies Les Chats-Huants Ecoust-Saint-Mein	15 16 17 19 21 23 25 26 28 1	. 212 . 343 . 303 . 283 . 222 . 231 . 223 . 206 . 238 . 18 . 258	.157 .119 .144 .105 .103 .072 .122 .063 .133 .053	5. 747 1. 328 1. 59 625 . 985 5. 201 . 775 . 586 2. 201 . 455 2. 172	
Bethune	2 3 1 2	. 284 . 256 . 209 . 224	.124 .128 .09 .092	. 827 . 586 1. 379 1. 031	
BOUG	HES-DU-	RHÔNE.a			
Lo Cross	1	0, 241	0, 099	0.35	0.482
La Crau	1 2 3 4 5 6 7 8	0.241 .221 .204 .177 .416 .339 .491	0.099 .088 .088 .103 .128 .091 .053	0.35 .708 1.64 .464 1.588 .384 -972 12.00	0.482 .382 .498 .616 .56 .56 .612 .854
Limon de Durance	8	. 26 . 252 . 353 . 312	.102 .108 .109 .104	23. 75 20. 905 23. 12 20. 777	. 833 . 989 1.15 . 94
Limon du RhôneSables du Rhône.	1 2 3 4 5 6	.396 .213 .20 .082 .07 .062	.118 .112 .101 .094 .078 .069	23. 05 31. 50 32. 40 16. 83 18. 30 19. 30	. 358 . 666 . 53 . 32 . 56 . 52 . 587
a Castina Ann Sai Agran 1808 pp	-		or France 1		

a Gastine. Ann. Sci. Agron., 1898, pp. 155, 240. Bul. Min. Agr. France, 1897, pp. 614-655.

BOUCHES-DU-RHÔNE—Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime CaCO ₃).	Magnesium (MgO).
Sables du Rhône	7 8 9 10 11 12 23 33 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 12 13 14 15 16 17 18 19 12 13 14 15 16 17 18 19 12 13 14 15 16 17 18 19 12 12 13 14 15 16 17 18 19 12 12 12 13 14 15 16 17 18 19 12 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 11 12 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Per cent. 0.091 0.092 0.093 0.06 0.06 0.011 0.085 0.065 0.076 0.111 0.163 0.066 0.073 0.099 0.098 0.129 0.129 0.121 0.078 0.085 0.074 0.181 0.153 0.222 0.366 0.75 0.224 0.122 0.419 0.76 0.545 0.29 0.418 0.224 0.212 0.419 0.418 0.224 0.212 0.419 0.418 0.224 0.212 0.419 0.418 0.224 0.212 0.419 0.418 0.224 0.212 0.419 0.418 0.224 0.212 0.419 0.418 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.236 0.247 0.249 0.255 0.211 0.249 0.255 0.211 0.278 0	Per cent. 0.094 0.098 101 0.077 0.093 135 15 115 1148 0.078 0.096 13 14 1122 138 1.06 13 1.16 1.128 1.18 1.165 1.128 1.18 1.165 1.128 1.18 1.19 1.16 1.19 1.19 1.19 1.19 1.19 1.19	Per cent. 20. 20 24. 50 22. 50 23. 60 21. 41 27. 65 18. 40 34. 45 22. 10 22. 15 21. 45 22. 10 17. 36 30. 30 24. 40 19. 00 21. 70 20. 40 18. 76 22. 28 20. 00 25. 25 20. 30 20. 25 22. 44 26. 40 18. 24 31. 87 33. 87 34. 70 34. 70 36. 40	Per cent. 0.586 421 629 48 547 543 404 157 437 53 52 648 530 578 1.657 684 731 462 547 478 58 634 648 66 66 612 1.136 66 66 612 1.136 66 612 1.136 71 1.104 1.048 1.1090 1.090 1.001 1.005 1.013 1.992 1.046 1.065 1.046 1.040
	MARNE	1.a			
Verzy: Verzenay Verzy Villers-Marmery	12 24 30 29 65 45 13 8	0. 171 . 186 . 237 . 115 . 205 . 136 . 19 . 169 . 135 . 241 . 219 . 278 . 252 . 258 . 18 . 168	0. 205 1.34 215 169 1.8 1.86 216 1.33 0.95 1.86 1.7 1.95 1.42 2.44 2.64 2.00	14. 50 19. 00 17. 50 14. 10 8. 20 18. 30 10. 20 8. 00 1. 74 9. 30 12. 50 14. 00 2. 30 25. 20 26. 80	0.007 .036 .011 .009 .003 .007 .043 .034 .091 .092 .106 .086 .139 .097

a Müntz. Bul. Min. Agr., France, 1893, 170-210.

MARNE-Continued.

HA.	.RNE—Col	minueu.			
Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime CaCO ₃).	Magnesium (MgO).
Ville-en-Tardenois: Pargny		Per cent. 0.186 .168 .246 .246	Per cent. 0.153 .123 .111 .058	Per cent. 32.10 27.80 14.50 36.00	Per cent. 0.164 .137 .288 .288
Villedomange	1 2	. 23 . 144 . 263 . 281 . 534 . 622 . 139 . 257	.089 .061 .165 .13 .094 .08 .161	16. 50 4. 00 9. 30 13. 30 30. 50 22. 50 11. 35 8. 85	. 205 . 108 . 262 . 249 . 146 1. 124 . 295 . 016
CHARE	NTE-INF	ERIEURE.	,a		
Perigny	1 2 3 4 5	0. 434 . 482 . 778 . 379 . 742	0.089 .142 .146 .124 .147		
LOIR	E-INFER	IEURE.			
Nozay	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22 25 26 27 28 29 30 31 32 33 33 34 36 37 38 48 48 48 48 48 48 48 48 48 48 48 48 48	0.07 .05 .04 .10 .02 .05 .07 .13 .02 .07 .03 .11 .03 .05 .06 .06 .04 .11 .05 .06 .04 .11 .07 .06 .08 .08 .09 .09 .07 .06 .04 .07 .06 .08 .08 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09	0.08	0.07 .05 .05 .05 .03 .09 .09 .09 .04 .09 .03 .11 .03 .03 .07 .10 .12 .04 .09 .11 .11 .08 .04 .09 .11 .11 .08 .04 .06 .09 .13 .07 .07 .04 .06 .06 .07 .07 .07 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09	0.07

a Verneuil. Prog. Agr. Viticole, 21, 491 (1894). b Bul. Sta. de la Loire-Inférieure, 1900-01, 1903-4.

LOIRE-INFERIEURE-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
Nozay	511 52 53 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 84 85 86 87 88 90 91 92 93 84 95 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 102 103 104 105 116 117 118 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	Per cent. 0.12 10 111 115 133 111 0.09 12 0.99 111 16 0.09 0.09 0.03 0.03 0.03 0.03 0.04 0.08 0.07 0.09 0.09 0.03 0.05 0.02 0.04 0.02 0.06 0.09 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Per cent. 0. 12 13 100 111 109 109 100 110 111 105 104 105 105 111 108 107 108 107 108 109 109 109 109 109 109 109 109 109 109	Per cent. 0.11 1.13 1.13 1.12 1.11 1.11 1.17 1.10 1.10 1.10 1.10 1.10	Per cent. 0.1 0.0 0.0 0.0 0.0 0.0 1.1 1.1 1.1 1

LOIRE-INFERIEURE-Continued.

Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
Nozay	130 131 132 133 134 135 136 137 138 140 141 142 143 144 145 146 147 150 151 151 152 153 154 155 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 170 170 170 170 170 170 171	Per cent. 0.08 .10 .20 .13 .06 .08 .08 .08 .07 .09 .03 .02 .14 .07 .07 .07 .09 .08 .10 .10 .10 .08 .13 .13 .11 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	Per cent. 0.06 14 .07 .05 .04 .07 .08 .07 .08 .07 .08 .07 .08 .07 .08 .09 .09 .07 .11 .18 .09 .04 .08 .04 .08 .04 .08 .04 .08 .04 .08 .04 .07 .07 .07 .07 .07 .07 .05 .02 .05 .03 .02 .05 .03 .02 .05 .03 .02 .05 .03 .04 .05 .09 .05 .09 .05 .09 .05 .09 .05 .09 .05 .09 .05 .09 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	Per cent. 0. 13	Per cent. 0.05 06 222 12 05 06 06 04 07 08 02 12 12 06 06 13 06 07 27 21 13 14 11 16 16 26 26 15 07 10 06 07 11 13 28 07 11 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 10 06 07 11 07 11 08 08 08 08 08 08 08 08 08 08 08 08 08
St. Viaud: Plessis-Grimaud (appx. 250 hectares)		.07 .21 .17 .14 .12 .23 .21 .09 .17 .7 .20 .244 .12 .14 .22 .19 .16 .16 .21 .17 .10 .14 .14 .15 .10 .16 .16 .12 .18 .18 .15 .10 .10 .17 .10 .10 .17 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10	.03 .09 .04 .04 .06 .08 .06 .06 .04 .09 .03 .06 .06 .08 .07 .07 .06 .05 .09 .05 .04 .06 .05 .06 .05 .06 .07 .07 .07 .07 .08 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09	.16 .17 .29 .26 .16 .13 .10 .15 .16 .16 .13 .35 .32 .18 .18 .18 .12 .16 .30 .24 .08 .30 .24 .08 .30 .15 .18 .31 .21 .10 .10 .07	. 13 . 15 . 27 . 16 . 12 . 21 . 26 . 06 . 19 . 14 . 60 . 23 . 12 . 31 . 30 . 24 . 56 . 37 . 44 . 23 . 20 . 14 . 17 . 31 . 24 . 33 . 18 . 26 . 15 . 23 . 23 . 25 . 34 . 38 . 40 . 12 . 03

LOIRE-INFERIEURE-Continued.

Description and locality.	Original sample No.	Potash (K_2O) .	Phosphorie acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
		Per cent.	Per cent.	Per cent.	Per cent.
St. Viaud: Plessis-Grimaud		0.10	0.10	0.06	0.0
		.18	.06	.08	.0
		.20	.06	. 20	.0
		. 18	.08	.12	.5
		.15	.07	.21	. 7
		.10	.06	.15	:5
		.11	.05	.12	.4
		.15	.06	.27	.3
		.20	.06	. 12	.2
		.14	.08	. 22	.1
		.12	.04	.06	.2
		.25	.08	.09	.2
		. 12	.04	.05	.0
		.18	. 07	.21	
		.20	.08	. 10	.2
		.22	.06	. 16	. 3
		.12		.09	.2
		. 20	.06	.10	.1
		.25	.06	.15	
		.25	.03	.17	
		.24	.07	.12	.1
		.22	.05	.09	:0
		.23	.07	.07	
		.21	.05	.09	
		.22	.07	. 27	
		. 15	.06	. 10	.1
	:	. 12	.05	.20	.]
		13	.06	. 19	.1
		. 10	.04	. 47	.1
		.14	.05	. 13	1
		. 18	.06	.11	.(
		. 17	.05	. 38	. 5
		. 51	.04	. 17	
		. 16	.04	.18	.1
•		. 13	.04	.10	
	HÉRAUI	$_{ m T,}a$			
apestang: Alluvions de Capestang	1	0. 131	0,095	15, 164	

Murviel: Alluvions de l'Orb. 3 114 0.95 15. 164	0 - 1 - 11 - 1 - 1 - 0 - 1 - 0	1	0 101	0.00=	18 104	
Murviel: Alluvions de l'Orb. 3 117 132 2.918 Thézan. 4 158 107 3.87 LIgnan. 5 10 07 006 5 10 07 006 6 172 09 437 149 138 3.466 6 172 09 437 149 138 3.466 6 6 172 09 137 149 138 3.466 6 6 172 09 137 149 138 3.466 6 6 172 138 3.466 6 6 6 172 138 3.466 6 6 6 172 138 3.466 6 6 183 146 5.60 9 131 179 3.816 0 12 131 179 3.816 0 13 107 171 138 101 6.89 12 2.63 1 101 188 101 101 101 101	Capestang: Alluvions de Capestang	1	0.131	0.095	15. 164	
Thézan			.114	. 087	8.512	
Thézan.	Murviel: Alluvions de l'Orb.	3	.117	. 132	2,918	
Lignan 5 10 0.7 0.06 Sauvian 6 1.72 0.9 4.37 Lignan 7 1.49 1.38 3.466 Beziers 8 1.39 1.16 5.60 Villeneuve 10 1.75 1.34 2.635 Villeneuve 11 1.82 1.5 4.584 Lieuran: Alluvions de Libron 12 1.34 1.01 6.889 Beziers 13 1.07 0.71 1.38 Servian: Alluvions de la Tongue 14 1.5 1.37 6.364 Saint-Thibery: Alluvions de l'Hérault 16 1.71 1.08 8.288 Saint-Thibery: Alluvions de l'Hérault 16 1.71 1.54 6.944 Bessan 18 1.95 1.4 7.224 Bessan 18 1.95 1.4 7.28 Agde. 20 1.74 1.67 8.344 Agde: Sables des dunes 21 20 1.33 <td< td=""><td></td><td>4</td><td></td><td></td><td></td><td></td></td<>		4				
Sauvian 6 1.72 .09 .437 Lignan 7 1.149 1.38 3.466 Beziers 8 1.39 1.146 5.60 Villeneuve 10 1.75 1.134 2.635 Lieuran: Alluvions de Libron 11 1.82 1.5 4.584 Lieuran: Alluvions de la Tongue 13 1.07 .071 1.38 Servian: Alluvions de la Tongue 14 1.5 1.37 6.364 Saint-Thibery: Alluvions de l'Hérault 16 1.71 1.08 8.288 Saint-Thibery: Alluvions de l'Hérault 16 1.71 1.54 6.944 Bessan 18 1.95 1.4 7.224 Bessan 18 1.95 1.4 7.28 Agde 20 1.74 1.67 8.344 Agde: Sables des dunes 22 0.47 1.67 8.344 Agde: Sables des dunes 22 0.47 0.88 11.088 Lieuran: Diluvium de l'Epinouse						
Lignan	Canarian					
Beziers						
Villeneuve 9 131 179 3.816 Lieuran: Alluvions de Libron 11 182 15 4.584 Beziers 12 134 101 6.889 Beziers 13 107 707 1.38 Servian: Alluvions de la Tongue 14 15 137 6.364 Saint-Thibery: Alluvions de l'Hérault 16 171 108 8.288 Saint-Thibery: Alluvions de l'Hérault 16 171 154 6.944 Bessan 18 195 14 7.224 Bessan 18 195 14 7.28 Agde 20 174 167 8.344 Agde: Sables des dunes 22 047 088 11.088 Lieuran: Diluvium de l'Epinouse 23 167 04 1686 Servian 24 143 042 003 Saint-Thibery 25 192 055 431 Servian: Dipoits fluvio-volcaniques 28 135		1				
Villeneuve 10 175 134 2.635 Lieuran: Alluvions de Libron 12 134 101 6.889 Beziers 13 107 .071 1.38 Servian: Alluvions de la Tongue 14 1.5 137 6.364 Saint-Thibery: Alluvions de l'Hérault 16 171 1.08 8.288 Saint-Thibery: Alluvions de l'Hérault 16 171 1.54 6.944 Bessan 18 1.95 14 7.224 Bessan 18 1.95 14 7.28 19 1.68 20 7.112 Agde 20 1.74 1.67 8.344 Agde: Sables des dunes 21 20 133 8.848 Lieuran: Diluvium de l'Epinouse 23 1.67 04 1.686 Servian 24 1.43 042 003 Saint-Thibery 25 1.92 .055 431 Beziers 26 .076 .06 781 </td <td>Beziers</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Beziers					
Lieuran: Alluvions de Libron 12 134 101 6.889 Beziers 13 107 0.71 1.38 Servian: Alluvions de la Tongue. 14 1.5 1.37 6.364 Servian: Alluvions de la Tongue. 15 1.71 108 8.288 Saint-Thibery: Alluvions de l'Hérault 16 1.71 1.54 6.944 1.55 7.224 Bessan 18 1.95 1.4 7.28 19 1.68 20 7.112 Agde. 20 1.74 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.341 1.68 8.29 8.34 1.68 8.34 8.34 1.68 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.3			. 131	. 179	3.816	
Lieuran: Alluvions de Libron 12 134 101 6.889 Beziers 13 107 0.71 1.38 Servian: Alluvions de la Tongue. 14 1.5 1.37 6.364 Servian: Alluvions de la Tongue. 15 1.71 108 8.288 Saint-Thibery: Alluvions de l'Hérault 16 1.71 1.54 6.944 1.55 7.224 Bessan 18 1.95 1.4 7.28 19 1.68 20 7.112 Agde. 20 1.74 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.344 1.67 8.341 1.68 8.29 8.34 1.68 8.34 8.34 1.68 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.3	Villeneuve	10	. 175	. 134	2,635	
Lieuran: Alluvions de Libron 12	,	11	. 182	15	4 584	
Beziers 13	Lieuran: Alluvione de Libron					
Servian; Alluvions de la Tongue.						
Saint-Thibery: Alluvions de l'Hérault.						
Saint-Thibery: Alluvions de l'Hérault. 16 171 154 6.944 4 Bessan. 18 195 14 7.224 18 Agde. 19 168 20 7.112 7.28 18 Agde. 20 174 167 8.344 18 18 20 7.112 18 19 168 20 7.112 20 7.112 20 133 8.848 38 <td>Servian: Alluvions de la Tongue</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Servian: Alluvions de la Tongue					
Bessan						
Bessan	Saint-Thibery: Alluvions de l'Hérault			. 154	6.944	
Agde. 19 168 20 7.112 Agde: Sables des dunes. 21 20 133 8.848 Agde: Sables des dunes. 22 047 088 11.088 Lieuran: Diluvium de l'Epinouse. 23 167 04 1.686 Servian. 24 143 042 003 Saint-Thibery. 25 192 055 431 Beziers. 26 076 06 781 Servian: Dépôts fluvio-volcaniques 29 122 26 3.147 Agde: Terrain pliocène. 30 258 114 1.419 Servian. 32 164 081 3.214 Autignee: Terrain miocène. 33 102 15 12.712 Murviel. 34 127 095 6.72		17	. 164	. 155	7.224	
Agde. 19 168 20 7.112 Agde: Sables des dunes. 21 20 133 8.848 Agde: Sables des dunes. 22 047 088 11.088 Lieuran: Diluvium de l'Epinouse. 23 167 04 1.686 Servian. 24 143 042 003 Saint-Thibery. 25 192 055 431 Beziers. 26 076 06 781 Servian: Dépôts fluvio-volcaniques 29 122 26 3.147 Agde: Terrain pliocène. 30 258 114 1.419 Servian. 32 164 081 3.214 Autignee: Terrain miocène. 33 102 15 12.712 Murviel. 34 127 095 6.72	Bessan	18	. 195	. 14	7.28	
Agde. 20 .174 .167 8.344 Agde: Sables des dunes. 21 .20 .133 8.848 Lieuran: Diluvium de l'Epinouse. 22 .047 .088 11.088 Servian. 24 .143 .042 .003 Saint-Thibery. 25 .192 .055 .431 Beziers. 26 .076 .06 .781 Servian: Dépôts fluvio-volcaniques. 28 .135 .047 .706 Servian: Dépôts fluvio-volcaniques. 29 .122 .26 3.147 Agde: Terrain pliocène. 30 .258 .114 1.419 Servian. 31 .121 .082 17.64 Servian. 32 .164 .081 3.214 Autignee: Terrain miocène. 33 .102 .15 12.712 Muryiel. 34 .127 .095 6.72		19	. 168	. 20	7. 112	
Agde: Sables des dunes	A ada					
Agde: Sables des dunes. 22 .047 .088 11.088 Lieuran: Diluvium de l'Epinouse 23 .167 .04 1.686 Servian. 24 .143 .042 .003 Saint-Thibery. 25 .192 .055 .431 26 .076 .06 .781 27 .147 .056 .896 Beziers. .28 .135 .047 .706 Servian: Dépôts fluvio-volcaníques .29 .122 .26 3.147 Agde: Terrain pliocène. .30 .258 .114 1.419 Servian. .32 .164 .081 3.214 Autignec: Terrain miocène. .33 .102 .15 .12.712 Murviel. .34 .127 .095 6.72	11840					
Lieuran: Diluvium de l'Epinouse. 23 1.67 .04 1.686 Servian. 24 1.43 .042 .003 Saint-Thibery. 25 1.92 .055 431 26 0.76 .06 .781 Beziers. 27 1.47 .056 .896 Servian: Dépôts fluvio-volcaniques. 29 1.22 .26 3.147 Agde: Terraîn pliocène. 30 .258 1.14 1.419 Servian. 31 .121 .082 17.64 Servian. 32 .164 .081 3.214 Autignec: Terraîn miocène. 33 .102 .15 12.712 Murviel. 34 .127 .095 6.72	4 - 1 - 4 - 1 - 2 - 2 - 2 2					
Servian " 24	Agde: Sables des dunes					
Saint-Thibery. 25 192 0.55 431 26 0.76 0.6 7.81 26 0.76 0.6 7.81 27 1.47 0.56 896 Servian: Dépôts fluvio-volcaniques 28 1.35 0.47 7.06 Servian: Dépôts fluvio-volcaniques 29 1.22 26 3.147 Agde: Terraîn pliocène. 30 2.58 1.14 1.419 Servian. 32 1.64 0.81 3.214 Autignec: Terrain miocène. 33 1.02 15 12.712 Murviel. 34 1.27 0.95 6.72	Lieuran: Diluvium de l'Epinouse	23				
Beziers 26	Servian					
Servian Serv	Saint-Thibery		. 192	. 055	. 431	
Servian	• •	26	. 076	.06	. 781	
Beziers 28 .135 .047 .706 Servian: Dépôts fluvio-volcaniques 29 .122 .26 3.147 Agde: Terraîn pliocène 30 .258 .114 1.419 Servian: 31 .121 .082 17.64 Servian: 32 .164 .081 3.214 Autignee: Terrain miocène 33 .102 .15 12.712 Murviel 34 .127 .095 6.72		27	. 147	. 056		
Servian: Dépôts fluvio-volcaniques 29 .122 .26 3.147 Agde: Terrain pliocène 30 .258 .114 1.419 31 .121 .082 17.64 Servian 32 .164 .081 3.214 Autignee: Terrain miocène 33 .102 .15 12.712 Murviel 34 .127 .095 6.72	Reziers					
Agde: Terrain pliocène 30 .258 .114 1.419 31 .121 .082 17.64 Servian 32 .164 .081 3.214 Autignee: Terrain miocène 33 .102 .15 12.712 Murviel 34 .127 .095 6.72						
31 .121 .082 17.64	Agdet Terrein pliceine	20				
Servian 32 .164 .081 3.214 Autignee: Terrain miocène 33 .102 .15 12.712 Murviel 34 .127 .095 6.72	Ague. Terram phocene					
Autignec: Terrain miocène 33 .102 .15 12.712 Murviel 34 .127 .095 6.72	~ .					
Murviel 34 .127 .095 6.72	Servian	. 32				
Murviel 34 .127 .095 6.72	Autignec: Terrain miocène	33		. 15	12.712	
	Murviel	34	. 127	. 095	6.72	
			.20	.119	10.92	

^a Lagatuand Semichon. Matériaux pour une Étude des Terres du Département de l'Hérault, 1893; Prog. Agr. et Vitu., 19, 105, 162, 179, 233, 276, 447, 489 (1893).

HÉRAULT-Continued.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaCO ₃).	Magnesium (MgO).
Murviel Beziers Maureilham Capestang Pinet Beziers Pinet Beziers	36 37 38 39 40 41 42 43 44 45	Per cent. 0. 103 0.44 0.098 1.34 1.188 1.05 2.266 2.212 1.31 2.336	Per cent. 0.121 .052 .157 .162 .054 .177 .136 .038 .092 .139	Per cent. 15. 904 15. 848 15. 344 11. 76 17. 304 24. 136 28. 836 30. 408 14. 84 23. 016	Per cent.
I	OORDOGN	NE.a			
Terrains granitiques.		0. 255 . 244 . 235	0. 034 . 0492 . 046	0. 012 . 0556 . 0491	
Terrains crétacés Sables du Périgord Saint-Nexans: Bouvées argilo-siliceuses Lunas: Bouvées silico-argileuses Lèves Saint-Alvère Landais: Terrains tertiaires		. 08 . 069 . 0812 . 1445 . 091 . 209 . 075 . 097 . 195 . 258	. 0796 . 095 . 0256 . 0256 . 022 . 069 . 079 . 02 . 051 . 056	CaCO ₃ 16. 00 64. 00 Trace. Trace. Trace. 2. 24 16. 00 . 119 2. 77 2. 24	
Terrains quaternaires		. 319 . 15 . 189	. 059 . 0703 . 0615	1. 39 . 2225 . 184	0.125
MEUR	гне-ет-м	OSELLE.b			
Cirey: Grès bigarrés. Bertrichamp: Grès bigarrés. Marnes Argile		0. 1717 . 0901 . 1819 . 1972	0.0523 .0212 .0559 .0634	0.0364 .028 .0532 .1512	0. 075 . 10 . 05 . 08
HAU	TE-PYRÉ	NÉES.c			
Vallée de Luz. Prairieirriguée. Prairie tourbeuse Prairie sèche.	1 2 3 4	0. 455 . 098 . 097 . 287	0. 123 . 202 . 394 . 128	0. 0107 . 0171 . 082 0. 0137	
E	URE-ET-I	JOIR.d			
	206 210 212 214 216 220 222 224 226 228 230	0. 096 . 081 . 096 . 105 . 084 . 086 . 076 . 098 . 072 . 079	0. 069 . 039 . 051 . 045 . 056 . 036 . 034 . 061 . 06 . 047 . 051	0. 84 . 39 . 49 . 91 1. 09 . 84 . 53 5. 60 . 47 . 42 . 58	0. 148 .10 .092 .096 .079 .086 .073 .084 .075 .078
	ÉPERNA	Y.d			
Aoise: Mesnil-sur-Oger	1 2	0. 178 . 169	. 0. 186 . 157	28. 95 41. 65	0. 025 . 093

a Ann. Inst. Nat. Agron. France, 14, 61 (1891-92).
 b Bourgeois. Chaire departmentale d'agricuiture. Rapports, 1891.
 c Faure. Ann. Inst. Nat. Agron., 13, 117 (1888-91).
 d Commission météorologique d'Eure-et-Loir, Rapports sur les champs d'experiences, 1891-1892.

There have been 1,550 samples reported upon from France with the extreme range for potash 0.02 to 1.30 per cent, phosphoric acid 0.01 to 7.14 per cent, lime 0.003 to 94.70 per cent, and magnesia 0.001 to 1.657 per cent.

Chemical composition of the soils of Germany.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
HESSE.a		Per cent.	Per cent.	Per cent.	Per cent.
Buntsandstein		0. 25 . 32 . 31	0. 17 . 13 . 12	0.35	0.31
Basalt		. 11	.15	.37	.30 1.16
Grauwacke	• • • • • • • • • • • • • • • • • • • •	.23	.18	.30	1. 15 1. 75
fuschelkalk Taunusgesteine"	243 411	. 15	. 07	. 10	.06
Pevonien Rotliegendes'' 'ertiary	67	. 57	.02 .12	. 13 3. 16	.08 1.13
Certiary	6 15	. 37	.10	14.97 12.41	1.76 1.42
	1	. 45	.05	20. 20	. 83
	5 3	. 29	.12	28, 80 5, 55	2.16
Diluvium	19 25	.22	.30	13.60	.19
muvium	58		. 06	. 38 3. 24	.06
	7 8	$^{.19}_{.26}$.09	15, 95 6, 85	1,50 1,05
	16 16	. 22	.15	6.46	. 45
lluvium	10	.11	.25	17. 68 2. 12	2.07
	$\frac{21}{20}$. 23	.14	3. 41 4. 73	. 42
	12	. 21		9.00	. 37
Vöslin: c					
Koppenow Zdrewen		. 094	.0709	. 109	
Dubberzin Gross-Silber		. 0936	.0603	. 2243	
Gross-Silber		. 0572	. 0657	.1991	
Reinwasser		. 0524	. 0881	. 1292	
KlSpiegel		. 069	.118	. 05	
Garden		.068	.037	. 134	
Helenenau		. 065	. 065	. 095	
GrRaddow		.044	.06	. 082	
Schinz. Breitenberg.		.038 °	. 053	. 035	
Schmolsin		.058	.099	.185	
GrMellen Knick		.026	.092	.048	
		. 00	.072	.10	
WEST PRUSSIA.d	1	. 081	.105	. 182	. 42
Camozoic		.065	.096	.147	. 19
		.068	.094	.153	.17
		.049	.098	.14	.13
		. 039	. 053	. 233	.16
		.078	.133	5. 783 . 087	.26
		.078	.106	. 898	. 33
		.061	.065	. 70 . 847	.10
fesozoia	Y	. 092	.054	. 20	. 02
Aesozoic		.066	.018	. 683	.04
		. 103	. 03	2.507	. 53

a Habernoll, Mitt. Landw. Inst. könig. Univ. Breslau, 2, 147 (1899). Haselhoff, Fühlingslandw. Ztg., 55,

a Habernon, anter Bandw. And Samencontrolstation, Möslin, 1897, 1899.
 b Baessler, Ber. Thät. Agrik.-Chem. Versuchs-und Samencontrolstation, Köslin, 1897, 1899.
 c The potash analyses were made with 10 per cent hydrochloric acid. The phosphoric acid and lime results are based upon complete analyses.
 d Wohltmann, Das Nahrestoff-Kapital west-deutscher Böden, Bonn, 1901. Analyses with cold hydrochloric acid.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
WEST PRUSSIA a—continued.		Per cent.	Per cent.	Per cent.	Per cent.
[esozoic		0.113 .031 .039	0.025 .06 .021	22.067 3.24 .183	0.113 .205 .14
		. 056 . 039 . 05	. 045 . 047 . 083	.347 .127 .027	.084
aleozoic		. 077 . 047 . 135	.115 .169 .058	. 28 . 386 4. 403	. 063 . 048 . 216
	-	. 144 . 026 . 188	.171 .034 .235	2. 60 . 087 . 297	. 37 . 019 . 659
		. 123 . 04 . 129	. 192	1. 63 Trace. . 293 . 753	.14 .01 .07
Cruptive rocks	1	. 179 . 212 . 14	. 041 . 209 . 22	1. 849 1. 03	. 170
fumus soils	8 13	.34	. 44	2. 85 1. 40	
leavy soils	21	.05	. 29	2. 37 1. 91	
,	5 7 9	.48	.13	. 88	
	11 17	.17	.11	.19	
	20 22	.17	.12	. 84 1. 77	
	23 27 28 29	. 23	.11	. 41	
	28 29	.25	.10	. 31	
fedium soils	2	.17 .11	.09	.38	
	12 14	.13	.05	. 40 . 35	
	18 24 25	.16	.12	. 27 . 17	
		. 09	.09	. 16 6. 40	
ight soils	. 6	.21	.10	.18 .43 .11	
	10 15	.04 .07 .07	.19 .08 .09	.13	
	16 19 30	.07	.09	.26 .17	
Vestphalia ^b Lünten Dömern		.047	.016	.076	
	20	. 265	.028	.077	
	3 2	. 419	. 061	. 571	
	18 11	.024	.016	. 225 . 152	
	5 13	. 304	.015	. 081	
•	22 24	.031	.019	.178	
	25 26	.03	.011	. 103	
	7 8 16	.149 .05 .256	.04 .012 .01	.027 .017 .025	
Wettringen, Bilk, and Haddrup:		.029	.03	.097	.06
1 (a)	3	.033	.018	.192	Trace
	3 5 8 9	.019	.011	.007	Trace
I	15	.019	Trace.	.079	.04

a Schmoeger Landw. Jahrb., vol. 34, p. 160 (1905). Blanck, Landw. Vers. Sta., 60, 407 (1904). The first two soils were treated with hot concentrated hydrochloric acid. The following five soils were treated with double-strength hydrochloric acid, and for the last two soils complete analyses are given.

b Haselhoff and Breme. Die Haideböden. Westfalens, 1899 to 1903.

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
WEST PRUSSIA—continued					
Wettringen, Bilk, and Haddrup—Con.	4	Per cent. 0.04	Per cent. 0.021	Per cent.	Per cent. 0. 029
4	9	.024	.021	0. 01 . 029 . 05	. 031
-	16 19	.014	.092	. 125 . 148	. 036 Trace. . 043
п	31	.019	. 044 Trace.	.255	. 025
	2 5	.01	.070	.126	.071
	6	. 032	.01	. 203	.00
	16 21 25	.023	.016	. 056	.00
ш	25 1 2	.051	Trace.	. 032	.01
	2 5	. 025 . 057	Trace.	.00	.018
***	10 13	.04	.005	Trace.	. 033 Trace.
IV	5	.019	.00	.01	.00
V	10	.05	.007	.138	.004
	1 .3 .5	. 014 . 066 . 014	.017 .066 .00	.182 .058 .139	.014
VI	8 1 2	.028	.03	.014	. 031 . 008 . 014
VII	6	.016	.023	.286	.083
	7 16	.019	.015	. 261	.003
VIII	22 1	.027	.014	. 05	Trace.
	8 12	.014	. 056	. 075 . 072	.023
	16	.027	.007	.01	.016
IX	20 2 12	.091	.066	.063	.102
	20	.023	.00	.041	.081
	21 28 32	.032	.00	.075	.037
X	32 4 9	. 049	.013	Trace.	.017
	13 16	. 061 . 044 . 053	.014 .023 .013	Trace. .155 .075	. 014 . 004 Trace.
Handorf and Telgte	13	.008	.071	.112	.018
•	1 2	.057	.019	.077	.022
	3 5	.026 .012 .106	.025	.119	. 005
	10 15	. 127	.028	.114	. 032
	20	.114	.053	.165	. 131
*	8 10	.037	. 043	.112	.123
St. Mauritz, Gelmer, and Gimbte	$\begin{array}{c} 18 \\ 20 \\ 3 \end{array}$. 068 . 025 . 023	. 097 . 16 . 039	. 092 . 16 . 365	.08 .14 .062
t dimety distributions	4	. 129	.027	.178	Trace.
•	5 7 8	.01	.039	. 543	. 045
	8 9 12	.086	.036	.117	.00
	12 15	. 053	.024	.348	.00
Wiedenbrück	1	.054	. 021	.12	. 113
		. 083	.062	.288	.079

Chemical composition	i of the sou	s of Germa	my—Contin		
Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
WEST PRUSSIA—continued.		D	D		D
Wiedenbrück-Continued		Per cent. 0.06	Per cent. 0. 032	Per cent. 0.108	Per cent. 0.049
	2 5	. 073 . 115	.006	.075	.021
	6	. 045	.011	.063	. 023
	8	.148	.011	. 418	.082
	9	.146 .048	. 10 . 027	.105 .194	.081
	14	.006	.009	. 052	.01
	17	.004	, 016	. 073	. 027
	18	.004	. 023	.116 .174	. 032
	19	. 025	.037	. 091	.028
	20	. 051 . 021	. 066	. 205 . 113	.013
	21	.017	. 034	. 08	.015
	22	.101	. 029 . 03 . 013	. 165	. 03 . 012 . 009
	23	.018	. 018	. 21	.026
	24	. 064	.014	. 061	.011
	24	. 043	.027	. 12	. 01 . 015 . 054
		. 088	.024	. 093 . 078	.032
	25	.07	.034	. 085	.016 .015
	26	.039	.014	. 028	.011
	27	. 042	.009	. 063	. 022
	28	.019	. 016	. 14	.02
	29	. 061	. 032 . 022 . 015	. 23 . 51 . 035	. 002 . 058 . 003
		.041	. 006	. 048	.006
	30	.085	.01	. 028	0.05
	31 32 35	. 024	. 021	.073	. 035
	35	. 052 . 042	. 041 . 038 . 023	.07	. 042
		. 056	.026	. 178 . 035	. 034
	37 39	. 058 . 025	. 019	. 08	.016
	40 42	. 051 . 035	. 021	.04	.008
	12	. 06	. 032	. 025	. 022
	43	.016 .013 .099	. 035 . 029 . 013	.143	.021
	46 47	.032	.018	. 055	. 011 Trace.
	48 50	. 047	. 035	. 043	
	51	. 062	. 029	. 04 . 045	.014
	52	. 126	. 032	. 035	.001
		. 041	.013	.062	. 023
	53	.015	. 027	. 123 . 055	. 007
	54	. 063	Troop	.012	Trace.
	56	. 036	.005 .006 .011	. 09	. 007 Trace.
	57	.034	Trace.	. 11	Trace.
	58 59	. 008	. 021	. 12	Trace.
	61 62	.091	.021	.013	. 007 Trace

Description and locality.	Original sample No.	Potash (K ₂ O).	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
WEST PRUSSIA—continned. Arendsee a	1 2 3 4 5 6 7 8 9 10	Per cent. 0.055 116 0.074 0.094 1.91 446 339 167 510 277 3336 3486 68 88 11 15 34 3.10 3.23	Per cent. 0.048 1.158 .072 .05 .093 .084 .148 .08 .814 .158 .1180 .1113 .09 .18 .13 .11 .11 .252 .245	Per cent. 0. 343 .317 .912 .285 .563 .984 .575 .503 .4. 019 .81 1. 059 1. 093 .41 .48 .50 .38 1. 08 1. 99 1. 82	Per cent. 0.041 132 0.048 0.074 3.342 52 1.666 3.338 1.257 8.36 2026 1.166 1.87 1.17 79 1.18 1.09 1.18
Blauhandter Groden	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 100 111 112 123 134 14 15 6 16 17 7 18 8 19 20 21 22 22 22 23 33 31 32 32 33 33 34 5 35 36 37 38	2. 23 2. 14 73 89 62 62 117 43 43 44 39 62 44 44 38 46 62 37 38 33 33 49 65 56 60 100 18 39 56 68 68 68 68 68 68 68 68 68 68 68 68 68	.25 .21 .18 .23 .12 .08 .05 .13 .26 .15 .11 .05 .18 .11 .10 .10 .11 .13 .10 .11 .13 .10 .11 .14 .14 .14 .14 .19 .19 .19 .19 .19 .19 .19 .19 .19 .19	4.34 4.24 5.86 6.57 7.09 .43 2.52 .10 .14 .50 3.28 3.28 3.28 3.28 3.28 .11 .95 .24 .28 .39 .33 1.53 69 .69 .46 .46 .47 .49 .49 .49 .49 .49 .49 .49 .49 .49 .49	1. 66 1. 41 1. 71 1. 81 1. 85
Moor soils	608 597 610 609 612	. 091 . 077 . 099 . 088 . 046	.276 .272 .256 .34 .183	4.82 3.51 2.77 2.13 1.50	

a Schneidewind Meyer and Frese, Landw. Jahrb., 35, 927 (1906). Analyses made with 10 per cent hydrochloric acid, except in the case of phosphoric acid, where complete analyses are given.

b Schucht. Jour. Landw., 53, p. 322 (1905). Maercker, Zusammensetzung und Düngerbedürfnis Oldenburg Marscherden und deren Bewirtschaftung. Berlin, 1896.

c Vierteljahresschr. bayer. Landw.-Rat, 10, Ber, Arbeiten Moorkult, 1904.

Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P_2O_5) .	Lime (CaO).	Magnesia (MgO).
BAVARIA AND WURTEMBURG—continued.			_		
oor soils	611	Per cent. 0.056	Per cent. 0.266	Per cent. 1.20	Per cent
·	613 232	.060	. 243	.921 2.85	
	233	.237	.211	1.19	
	234 235	. 1265	. 397	1.25 .471	
	69	.0754			
	248 223	.0761	. 139	.529 .387	
	219	. 0669	. 146	. 681	
·	243 246	. 0738 . 0665	. 147	. 506	
	224	. 0565	. 156	. 454	
	$\frac{451}{242}$.0517	. 127	. 459 . 557	
	241 249	. 0588	. 121	. 331	
	249 452	.0478 .0645	. 085	. 61 . 341	
	453	.0682	. 127	. 254	
	222 454	. 0496	. 117 . 107	. 397	
	247	.0467	. 129	.325 .421 .377	
	244	.0508	.094	.377	
	221		.094	. 535	
	237	. 0365	. 076	.368	,
	239	. 0386 . 032 . 0307	. 093	.214 .371	
	247 244 220 221 237 245 239 240 236 238 580	. 0307	. 085	. 516	
"	238	.028	.061	.344	
	580	.028 .0238 .116 .097 .075	. 097	. 36	
	581 593	.097	. 098	. 404	
	594	.074	. 151	. 257	
	592 585		. 106	. 439 . 272	
	589	.076 .0586 .0457	. 121	. 217	
	591 595	.0457	. 135	.306 .228	
	577	.063	. 18	.24	
	586 578	.074	. 153	.356	
	583 575	.078	. 108	. 289	
	575	. 050	. 194	.32 .312	,
	572 579	. 047	. 162	.336 .259 .298 .367 .265	
	587 576	. 0451	. 117	. 259	
	574	. 046	. 127	.367	
	.588 584	.043	.113	.265	:
	590	. 042 . 037 . 033	. 092	.017	
	582	. 033	. 096	.313	
	573 544	.0794	. 184	. 383	
	542	. 0587	. 152	. 39	
	1076 547	. 021 . 0794 . 0587 . 0668 . 0673 . 0629	. 206	. 826	
	540	. 0629	. 156	. 89 . 425	
	541 536	. 0555	. 164	. 419	
	1074	. 058	. 217	. 423	
	1071 539	. 063	.182	1. 02	
	537		. 106	. 40 . 615	
	538 543	. 0473	. 083	. 825	
	546	. 0293	. 074	2. 73 . 576	
	1073 1075	. 042	. 20	. 078	
	1072	. 041	. 177	. 906	
oess soils a	545	.15	. 094	. 742 14. 95	0.
	2	. 12	. 13	14 10	1.
	3 4	.13	.13	12. 50 16. 76 10. 26	Tra

a Halenke, Kling and Engels, Vierteljahressch. bayer. Landw.-Rat. 10, 447 (1905).

Chemical composition of the soils of Germany—Continued.

Description and locality.	Original sample No.	Potash (K_2O) .	Phosphoric acid (P ₂ O ₅).	Lime (CaO).	Magnesia (MgO).
BAVARIA AND WURTEMBURG—continued. Loess soils	6 7 8 9	Per cent. 0. 18 . 13 . 20	Per cent. 0. 14 . 11 . 15	Per cent. 12. 20 16. 40 17. 80	Per cent. Trace. 0.29 .93
Middle-sandstone soils a	$\begin{array}{c}1\\2\\3\\4\end{array}$. 06 . 05 . 06 . 06	. 05 . 04 . 07 . 09	47. 00 . 09 . 05 . 17 . 19	. 46 . 05 . 04 . 19 . 14
North German plain loess b	5 6 7 8 9	. 03 . 09 . 19 . 17 . 13 2. 33	. 02 . 09 . 05 . 18 . 34	. 02 . 00 . 014 . 25 . 52 6. 6	. 02 . 27 . 08 . 09 . 15 1. 37
Highland.		2. 47 . 81 2. 58 2. 57 . 109	. 115	. 59 . 50 . 80 . 43 . 064	. 25 . 17 . 72 . 70 . 238
,		. 41 . 026 . 102	. 068 . 08 . 03	. 29 . 072 . 242	. 64 . 075 . 161

There have been 449 samples reported upon from Germany with the extreme range for potash 0.003 to 3.23 per cent, phosphoric acid 0.003 to 0.814 per cent, lime 0.003 to 47.0 per cent, and magnesia 0.001 to 2.16 per cent.

CONCLUSIONS.

A careful study of the data which have been presented appears to justify two conclusions.

First. That the productivity of the newer agricultural soils of the United States and of the older agricultural soils of Europe, taken as a whole and for a nation, are not declining, as is popularly supposed. Individual farms deteriorate and soils wear out as they have always done, but as a whole it seems probable that we are producing more crops per acre than formerly. This is undoubtedly due to many factors; to better and more intelligent cultivation, more and better systems of rotation of crops, and, in later years, to intelligent use of fertilizers—three methods of control in the hands of every individual In addition, we must recognize the increase in farm animals and stock, the improvement in seed by selection and breeding, and the increasing density in population, which is forcing attention to more intensive methods.

Second. That so far as our information goes there is apparently no significant difference at the present time between the composition of the older agricultural soils of Europe and the newer agricultural soils of the United States with respect to potash, phosphoric acid, lime, and magnesia.

 ^a Blanck, Landw. Vers.-Sta., 65, 161 (1906).
 ^b Burguy, Über die Bödenverhaltnisse des norddeutschen Flachlandes in ihrer Beziehung zum geologischen Aufbau desselben. Inaug.-Diss. Berlin, 1899.

