University of Tehran

Probabilistic Multivariate Time-series Forecasting

Ali Izadi

1

University of Tehran June 2021

Agenda

- Why <u>probabilistic</u> and <u>multivariate</u>?
- Familiar with the progress in the state of the art methods and their categories
- Future works.

Point Forecast: Seq2Seq - RNN - LSTM - Transformers

[1] Benidis, K., Rangapuram, S.S., Flunkert, V., Wang, B., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L. and Callot, L., 2020. **Neural forecasting: Introduction and literature overview.** *arXiv preprint arXiv:2004.10240*.

- Prediction uncertainty for assessing how much to trust the predictions.
- This problem is challenging, especially during high variance segments.
- Extreme event prediction depends on numerous external factors.

Forecast Type	Model
Point	$\hat{\mathbf{z}}_{i,T_i+1:T_i+\tau} = f(\mathbf{z}_{i,1:T_i}, \mathbf{x}_{i,1:T_i+1}; \Phi)$
Probabilistic	$p(\mathbf{z}_{i,T_i+1:T_i+\tau} \mathbf{z}_{i,1:T_i},\mathbf{x}_{i,1:T_i+\tau};\Phi) = f(\mathbf{z}_{i,1:T_i},\mathbf{x}_{i,1:T_i+1};\Phi)$

- Forecasting thousands or millions of related time series.
 - Energy consumption of individual households
 - The demand for all products that a large retailer offers
 - The load for servers in a data center
- The computational and numerical difficulties of estimating time-varying and high-dimensional dependencies

Definition

Let $y_t \in \mathbb{R}^N$ denote the value of a multivariate time series at time t, with $y_{t,i} \in \mathbb{R}$ the value of the corresponding i-th univariate time series. Further, let $x_{t,i} \in \mathbb{R}^k$ be time varying covariate vectors associated to each univariate time series at time t, and $x_t := [x_{t,1}, \dots, x_{t,N}] \in \mathbb{R}^{k \times N}$

Data-sets

- Exchange rate: daily exchange rate between 8 currencies
- Solar: hourly photovoltaic production of 137 stations in Alabama State
- **Electricity**: hourly time series of the electricity consumption of 370 customers
- **Traffic**: hourly occupancy rate, between 0 and 1, of 963 San Francisco car lanes
- Taxi: spatio-temporal traffic time series of New York taxi rides taken at 1214 locations every 30 minutes in the months of January 2015 (training set) and January 2016 (test set)
- Wikipedia: daily page views of 2000 Wikipedia pages

State space models vs **Autoregressive** models

• Autoregressive:

$$Q_{\Theta}(\mathbf{z}_{i,t_0:T}|\mathbf{z}_{i,1:t_0-1},\mathbf{x}_{i,1:T}) = \prod_{t=t_0}^{T} Q_{\Theta}(z_{i,t}|\mathbf{z}_{i,1:t-1},\mathbf{x}_{i,1:T})$$

State space

$$p_{SS}(z_{1:T}|\Theta_{1:T}) := p(z_1|\Theta_1) \prod_{t=2}^{T} p(z_t|z_{1:t-1},\Theta_{1:t}) = \int p(\boldsymbol{l}_0) \left[\prod_{t=1}^{T} p(z_t|\boldsymbol{l}_t) p(\boldsymbol{l}_t|\boldsymbol{l}_{t-1}) \right] d\boldsymbol{l}_{0:T}$$

State space models

Linear Gaussian model

Gaussian State Space model:

$$z_t \sim \mathcal{N}(G_{\alpha}(z_{t-1}, \Delta_t), S_{\beta}(z_{t-1}, \Delta_t))$$
 (Transition) (1)
 $x_t \sim \Pi(F_{\kappa}(z_t))$ (Emission) (2)

linear State Space model:

$$G_{\alpha}(z_{t-1}) = G_t z_{t-1}, S_{\beta} = \Sigma_t, F_{\kappa} = F_t z_t,$$

State space models vs **Autoregressive** models

- Data efficiency:
 forecasting time series with missing or noisy data irrespective of whether the data regime is sparse or dense
- Structural assumptions:
 Interpretability with composition of level-trend and seasonality model

Multivariate Methods

=

DeepAr

$$Q_{\Theta}(\mathbf{z}_{i,t_0:T}|\mathbf{z}_{i,1:t_0-1},\mathbf{x}_{i,1:T}) = \prod_{t=t_0}^{T} Q_{\Theta}(z_{i,t}|\mathbf{z}_{i,1:t-1},\mathbf{x}_{i,1:T}) = \prod_{t=t_0}^{T} \ell(z_{i,t}|\theta(\mathbf{h}_{i,t},\Theta))$$

$$\mathbf{h}_{i,t} = h\left(\mathbf{h}_{i,t-1}, z_{i,t-1}, \mathbf{x}_{i,t}, \Theta\right)$$

$$\ell_{G}(z|\mu,\sigma) = (2\pi\sigma^{2})^{-\frac{1}{2}} \exp(-(z-\mu)^{2}/(2\sigma^{2}))$$

$$\mu(\mathbf{h}_{i,t}) = \mathbf{w}_{\mu}^{T} \mathbf{h}_{i,t} + b_{\mu} \quad \text{and} \quad \sigma(\mathbf{h}_{i,t}) = \log(1 + \exp(\mathbf{w}_{\sigma}^{T} \mathbf{h}_{i,t} + b_{\sigma}))$$

[2] Salinas, D., Flunkert, V., Gasthaus, J. and Januschowski, T., 2020. **DeepAR: Probabilistic forecasting with autoregressive recurrent networks.** *International Journal of Forecasting*, *36*(3), pp.1181-1191.

Deep State Space

$$egin{aligned} m{l}_t &= m{F}_t m{l}_{t-1} + m{g}_t arepsilon_t, & arepsilon_t &\sim \mathcal{N}(0,1). \ & z_t &= y_t + \sigma_t \epsilon_t, & y_t &= m{a}_t^{ op} m{l}_{t-1} + b_t, & \epsilon_t &\sim \mathcal{N}(0,1), \ & \Theta_t &= (m{\mu}_0, m{\Sigma}_0, m{F}_t, m{g}_t, m{a}_t, b_t, \sigma_t), \end{aligned}$$

likelihood:

$$p_{SS}(z_{1:T}|\Theta_{1:T}) := p(z_1|\Theta_1) \prod_{t=2}^{T} p(z_t|z_{1:t-1},\Theta_{1:t}) = \int p(\boldsymbol{l}_0) \left[\prod_{t=1}^{T} p(z_t|\boldsymbol{l}_t) p(\boldsymbol{l}_t|\boldsymbol{l}_{t-1}) \right] d\boldsymbol{l}_{0:T}$$

[3] Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y. and Januschowski, T., 2018. **Deep state space models for time series forecasting**. *Advances in neural information processing systems*, *31*, pp.7785-7794.

Deep State Space

$$\mathcal{L}(\Phi) = \sum_{i=1}^{N} \log p\left(z_{1:T_i}^{(i)} \left| \mathbf{x}_{1:T_i}^{(i)}, \Phi \right.\right) = \sum_{i=1}^{N} \log p_{SS}\left(z_{1:T_i}^{(i)} \left| \Theta_{1:T_i}^{(i)} \right.\right).$$

• State space parameters learned by recurrence network with **independent** assumptions between **dimensions**.

[3] Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y. and Januschowski, T., 2018. **Deep state space models for time series forecasting**. *Advances in neural information processing systems*, *31*, pp.7785-7794.

Deep State Space

Better result than **DeepAr** (autoregressive model)

	Methods	2-weeks		3-weeks		4-weeks	
Datasets		p50Loss	p90Loss	p50Loss	p90Loss	p50Loss	p90Loss
electricity	auto.arima	0.283	0.109	0.291	0.112	0.30	0.11
	ets	0.121	0.101	0.130	0.110	0.13	0.11
	DeepAR	0.153	0.147	0.147	0.132	0.125	0.080
	DeepState	0.087	0.05	0.085	0.052	0.085	0.057
traffic	auto.arima	0.492	0.280	0.492	0.289	0.501	0.298
	ets	0.621	0.650	0.509	0.529	0.532	0.60
	DeepAR	0.177	0.153	0.126	0.096	0.219	0.138
	DeepState	0.168	0.117	0.170	0.113	0.168	0.114

^[3] Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y. and Januschowski, T., 2018. **Deep state space models for time series forecasting**. *Advances in neural information processing systems*, *31*, pp.7785-7794.

Multivariate Methods

Multivariate forecasting with low rank gaussian copula

a low-rank covariance structure to reduce computational complexity and handle non-Gaussian marginal distributions.

$$p(\mathbf{z}_1, \dots \mathbf{z}_{T+\tau}) = \prod_{t=1}^{T+\tau} p(\mathbf{z}_t | \mathbf{z}_1, \dots, \mathbf{z}_{t-1}) = \prod_{t=1}^{T+\tau} p(\mathbf{z}_t | \mathbf{h}_t).$$

$$\mathbf{h}_{i,t} = \varphi_{\theta_h}(\mathbf{h}_{i,t-1}, z_{i,t-1}) \qquad i = 1, \dots, N,$$

$$p(\mathbf{z}_t | \mathbf{h}_t) = \mathcal{N}([f_1(z_{1,t}), f_2(z_{2,t}), \dots, f_N(z_{N,t})]^T | \boldsymbol{\mu}(\mathbf{h}_t), \boldsymbol{\Sigma}(\mathbf{h}_t)).$$

[4] Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R. and Gasthaus, J., 2019. **High-dimensional multivariate forecasting with low-rank gaussian copula processes.** *arXiv preprint arXiv:1910.03002*.

Multivariate forecasting with low rank gaussian copula

 Only methods that are able to produce correlated samples are considered in their comparisons.

dataset estimator	CRPS-Sum							
	exchange	solar	elec	traffic	taxi	wiki		
VAR	0.010+/-0.000	0.524+/-0.001	0.031+/-0.000	0.144+/-0.000	0.292+/-0.000	3.400+/-0.003		
GARCH	0.020+/-0.000	0.869+/-0.000	0.278+/-0.000	0.368+/-0.000	(* 1)	-		
Vec-LSTM-ind	0.009+/-0.000	0.470+/-0.039	0.731+/-0.007	0.110+/-0.020	0.429+/-0.000	0.801+/-0.029		
Vec-LSTM-ind-scaling	0.008+/-0.001	0.391+/-0.017	0.025+/-0.001	0.087+/-0.041	0.506+/-0.005	0.133+/-0.002		
Vec-LSTM-fullrank	0.646+/-0.114	0.956+/-0.000	0.999+/-0.000		·	-		
Vec-LSTM-fullrank-scaling	0.394+/-0.174	0.920+/-0.035	0.747+/-0.020	32°	(<u>-</u> 1)	-		
Vec-LSTM-lowrank-Copula	0.007+/-0.000	0.319+/-0.011	0.064+/-0.008	0.103+/-0.006	0.326+/-0.007	0.241+/-0.033		
GP	0.011+/-0.001	0.828+/-0.010	0.947+/-0.016	2.198+/-0.774	0.425+/-0.199	0.933+/-0.003		
GP-scaling	0.009+/-0.000	0.368+/-0.012	0.022+/-0.000	0.079+/-0.000	0.183+/-0.395	1.483+/-1.034		
GP-Copula	0.007+/-0.000	0.337+/-0.024	0.024+/-0.002	0.078+/-0.002	0.208+/-0.183	0.086+/-0.004		

^[4] Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R. and Gasthaus, J., 2019. **High-dimensional multivariate forecasting with low-rank gaussian copula processes.** *arXiv preprint arXiv:1910.03002*.

Multivariate Methods

Normalizing flow

We can transform a probability distribution using an invertible mapping (i.e. bijection). Let $\mathbf{z} \in \mathbb{R}^d$ be a random variable and $f: \mathbb{R}^d \mapsto \mathbb{R}^d$ an invertible smooth mapping. We can use f to transform $\mathbf{z} \sim q(\mathbf{z})$. The resulting random variable $\mathbf{y} = f(\mathbf{z})$ has the following probability distribution:

$$q_y(\mathbf{y}) = q(\mathbf{z}) \left| \det \frac{\partial f^{-1}}{\partial \mathbf{z}} \right| = q(\mathbf{z}) \left| \det \frac{\partial f}{\partial \mathbf{z}} \right|^{-1}.$$
 (1)

[5] Rezende, D. and Mohamed, S., 2015, June. **Variational inference with normalizing flows.** In *International conference on machine learning* (pp. 1530-1538). PMLR.

• The model is autoregressive it can be written as a product of factors

$$p_{\mathcal{X}}(\mathbf{x}_{t_0:T}|\mathbf{x}_{1:t_0-1},\mathbf{c}_{1:T};\theta) = \prod_{t=t_0}^T p_{\mathcal{X}}(\mathbf{x}_t|\mathbf{h}_t;\theta),$$
$$\mathbf{h}_t = \text{RNN}(\text{concat}(\mathbf{x}_{t-1},\mathbf{c}_{t-1}),\mathbf{h}_{t-1}).$$

 To get a powerful and general emission distribution model, we stack K layers of a conditional flow

$$\log p_{\mathcal{X}}(\mathbf{x}) = \log p_{\mathcal{Z}}(\mathbf{z}) + \log |\det(\partial \mathbf{z}/\partial \mathbf{x})| = \log p_{\mathcal{Z}}(\mathbf{z}) + \sum_{i=1}^{K} \log |\det(\partial \mathbf{y}_i/\partial \mathbf{y}_{i-1})|.$$

[6] Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U. and Vollgraf, R., 2020. **Multivariate probabilistic time series forecasting via conditioned normalizing flows.** *arXiv preprint arXiv:2002.06103*.

Autoregressive model + Normalizing flow

[6] Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U. and Vollgraf, R., 2020. **Multivariate probabilistic time series forecasting via conditioned normalizing flows.** *arXiv preprint arXiv:2002.06103*.

Autoregressive model + Normalizing flow

• Better results than **GP copula (covariance)**

Data set	Vec-LSTM ind-scaling	Vec-LSTM lowrank-Copula	GP scaling	GP Copula	LSTM Real-NVP	LSTM MAF	Transformer MAF
Exchange Solar	$0.008 {\pm} 0.001 \\ 0.391 {\pm} 0.017$	$\substack{0.007 \pm 0.000 \\ 0.319 \pm 0.011}$	$0.009 \scriptstyle{\pm 0.000} \\ 0.368 \scriptstyle{\pm 0.012}$	$0.007 {\pm} 0.000 \\ 0.337 {\pm} 0.024$	$0.0064 {\pm} 0.003 \\ 0.331 {\pm} 0.02$	$\begin{array}{c} 0.005 {\pm 0.003} \\ 0.315 {\pm 0.023} \end{array}$	$\begin{array}{c} 0.005 {\pm 0.003} \\ 0.301 {\pm 0.014} \end{array}$
Electricity Traffic	$0.025 \pm 0.001 \ 0.087 \pm 0.041$	$0.064 {\pm} 0.008 \\ 0.103 {\pm} 0.006$	$0.022 \pm 0.000 \ 0.079 \pm 0.000$	$0.024{\pm}0.002\\0.078{\pm}0.002$	0.024 ± 0.001 0.078 ± 0.001	$\begin{array}{c} 0.0208 {\pm 0.000} \\ 0.069 {\pm 0.002} \end{array}$	$egin{array}{l} 0.0207 {\pm 0.000} \ 0.056 {\pm 0.001} \end{array}$
Taxi Wikipedia	$0.506{\pm0.005}\atop0.133{\pm0.002}$	$\substack{0.326 \pm 0.007 \\ 0.241 \pm 0.033}$	$0.183 \pm 0.395 \\ 1.483 \pm 1.034$	0.208 ± 0.183 0.086 ± 0.004	0.175 ± 0.001 0.078 ± 0.001	$\begin{array}{c} 0.161 {\pm 0.002} \\ 0.067 {\pm 0.001} \end{array}$	0.179 ± 0.002 0.063 ± 0.003

[6] Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U. and Vollgraf, R., 2020. **Multivariate probabilistic time series forecasting via conditioned normalizing flows.** *arXiv preprint arXiv:2002.06103*.

$$\begin{split} \mathbf{l}_1 &\sim \mathcal{N}(\mu_1, \Sigma_1) & \text{(initial state)} \\ \mathbf{l}_t &= F_t \mathbf{l}_{t-1} + \boldsymbol{\epsilon}_t, & \boldsymbol{\epsilon}_t \sim \mathcal{N}(0, \Sigma_t), & \text{(transition dynamics)} \\ \mathbf{y}_t &= f_t(A_t^T \mathbf{l}_t + \boldsymbol{\epsilon}_t), & \boldsymbol{\epsilon}_t \sim \mathcal{N}(0, \Gamma_t). & \text{(observation model)} \\ p(y_t | l_t; \Theta, \Lambda) &= p_{\mathbf{z}}(f_t^{-1}(y_t) | l_t; \Theta) \left| \det \left[\operatorname{Jac}_{y_t}(f_t^{-1}) \right] \right|, \end{split}$$

The resulting model still retaining many of the attractive **properties of state space models**, inference is tractable

[7] de Bézenac, E., Rangapuram, S.S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson, H., Gallinari, P. and Januschowski, T., 2020, January. **Normalizing Kalman Filters for Multivariate Time Series Analysis.** In *NeurIPS*.

State space model + Normalizing flow

• Better results than **GP copula and DeepAr**

method	exchange	solar	elec	wiki	traffic
VES	0.005 ± 0.000	0.9 ± 0.003	0.88 ± 0.0035		0.35 ± 0.0023
VAR	0.005 ± 0.000	0.83 ± 0.006	0.039 ± 0.0005		0.29 ± 0.005
VAR-Lass	0.012 ± 0.0002	0.51 ± 0.006	0.025 ± 0.0002	3.1 ± 0.004	0.15 ± 0.002
GARCH	0.023 ± 0.000	0.88 ± 0.002	0.19 ± 0.001		0.37 ± 0.0016
DeepAR	0.006 ± 0.001	0.336 ± 0.014	0.023 ± 0.001	0.127 ± 0.042	0.055 ± 0.003
GP-Copul	a 0.007 ± 0.000	0.363 ± 0.002	0.024 ± 0.000	0.092 ± 0.012	0.051 ± 0.000
KVAE	0.014 ± 0.002	0.34 ± 0.025	0.051 ± 0.019	0.095 ± 0.012	0.1 ± 0.005
NKF(Ours	0.005 ± 0.000	0.320 ± 0.020	0.016 ± 0.001	0.071 ± 0.002	0.10 ± 0.002
ablation $f_t = id$	0.005 ± 0.000	0.415±0.002	0.026 ± 0.000	0.082 ± 0.000	0.123 ± 0.000
study $\begin{cases} f_t \text{ Local} \end{cases}$	0.005 ± 0.000	0.405 ± 0.005	0.018 ± 0.001	0.068 ± 0.004	0.102 ± 0.013

[7] de Bézenac, E., Rangapuram, S.S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson, H., Gallinari, P. and Januschowski, T., 2020, January. **Normalizing Kalman Filters for Multivariate Time Series Analysis.** In *NeurIPS*.

Continuous time series models

- necessary for irregular time series:
 Time between observations isn't constant.
- Tasks:
 - Interpolation(missing values)
 - Exterapolation

- inherits many of the appealing **properties of its base process** such as efficient **computation of likelihoods**.
- Wiener process (continuous)

$$p_{\boldsymbol{W}_t|\boldsymbol{W}_s}(\boldsymbol{w}_t|\boldsymbol{w}_s) = \mathcal{N}(\boldsymbol{w}_t;\boldsymbol{w}_s,(t-s)\boldsymbol{I}_d),$$

Continuous normalizing flow

$$\log p_{\boldsymbol{X}}(\boldsymbol{h}(t_1)) = \log p_{\boldsymbol{Z}}(\boldsymbol{h}(t_0)) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f}{\partial \boldsymbol{h}(t)}\right) dt.$$

[8] Deng, R., Chang, B., Brubaker, M.A., Mori, G. and Lehrmann, A., 2020. **Modeling continuous stochastic processes with dynamic normalizing flows**. *arXiv preprint arXiv:2002.10516*.

[9] Chen, R.T., Rubanova, Y., Bettencourt, J. and Duvenaud, D., 2018. **Neural ordinary differential equations.** *arXiv preprint arXiv:1806.07366*.

University of Tehran June 2021

Future Works

• Enrich multivariate Distribution with probabilistic graphical models (sparser representation) or finding casual dependencies.

[10] Wehenkel, A. and Louppe, G., 2021, March. **Graphical normalizing flows**. In *International Conference on Artificial Intelligence and Statistics* (pp. 37-45). PMLR.

University of Tehran

June 202

Future Works

- Diffusion models (state of the art generative models)
 - Diffusion Models Beat GANs on Image Synthesis
 - Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting

Thank you.

aliizadi2030@gmail.com

