VERMES MIKLÓS Fizikaverseny

II. forduló 2015. március 9.

X. osztály

JAVÍTÓKULCS

I

I. feladat	
 a.) Többet mutat, mert a fémgolyó tágulása kisebb, mint a vízé b.) - az adiabatikus tágulás hőmérséklet csökkenéssel jár, - az oldatból kiszabaduló buborékok a túlhűtött 	2 p 2 p
folyadékban kristályosodási gócokat képeznek,	2 p
 - a palack nyitásakor a nyomás csökken, emiatt a víz magasabb hőmérsékleten fagy meg. c.) Vízzel hiába próbálkoznának, mivel az olaj sűrűsége kisebb, s így felülre kerül. 	2 p
A por szerepe: elzárja az oxigént, s így megfullasztja a tüzet.	2 p
II. feladat	
a.) $Q_{fel} = 84000 J$	2 p
A környezettől időegység alatt felvett hő: $Q/\Delta t = 140 \text{ J/s}$ $m_i = 1,23 \text{ kg}$	1 p
$m_1 = 1,23 \text{ kg}$ b.) $m_2 = 2 \text{ kg}$ jég által felvett hő, ahhoz hogy 0°C-ra melegedjen: $Q_i = 21000 \text{ J}$	1 p 1 p
$m = 10 \text{ kg}$ víz által leadott hő, amikor 0°C-ra hűl: $Q_v = 84000 \text{ J}$	1 p
A környezettől 20 perc alatt felvett hő: $Q = 168000 \text{ J}$ $Q_1 = Q_v + Q = 252000 \text{ J}$	
$Q_2 = 21000 \text{ J}$	1 p
Mivel $Q_1 > Q_2$ a jég egy része megolvad	1 p
$m_{\rm j\acute{e}g}' = 0,679~kg~\rm j\acute{e}g~olvad~meg$	1 p
Tehát 1,3 kg jég marad.	1 p
III. feladat	
1.) $\eta = L/Q$	1 p
$L = \frac{(n-1)npV}{2}$	1,5 p
$Q = \frac{(n-1)(1+n\gamma)}{\gamma-1} pV$	1,5 p
$\eta = \frac{n(\gamma - 1)}{2(1 + n\gamma)}$	1 p

2.) a.) pV = NkT $N = 1,45 \cdot 10^{25}$ részecske.

b.) a nyomás 50 méter mélységben: $p_1 = p + \rho g h = 6 \cdot 10^5 \text{Pa}$	1 p 1 p
$pV = p_1(V + V_1)$	
V ₁ = 90 L térfogatra fújható fel a léggömb	1 p
$mg = F_a$ $mg = \rho V_1 g$ $m = 90 kg$	1 p
c.) Felfele jövet a nyomás csökken, a térfogat nő, s így az Archimédeszi erő is nő,	
tehát gyorsulni fog.	1 p