12/30/2023

BUSINESS REPORT

PREDICTIVE MODELLING

KAVIN BHARATHI

Contents

Problem Statement 1: Linear Regression	3
Data Dictionary	3
EDA	3
Univariate Analysis:	4
Bivariate Analysis:	7
Multivariate Analysis:	7
Outlier Detection & Treatment:	8
Train and Test Split	10
Model Performance	
Problem Statement 2: Logistic Regression and Linear Discriminant Analysis	
EDA	
Univariate Analysis	
Bivariate Analysis	17
Outliers	18
Encoding	19
Train Test Split	19
Model Building	19
Logistic Regression	19
LDA	
Model Comparison	
Business Insights and Recommendations	
List Of Tables	
Table 1: Data Description - Dataset 1	3
Table 2: Data Summary	
Table 3 – Sample dataset after Encoding	
Table 4 – Actual, Fitted & Residual	
Table 5 - Data Dictionary – Dataset 2	
Table 6 – 5 Point Summary	
Table 7 - Encoding	
Table 8 – Model Comparison	23

List Of Figures

Figure 1 - Distribution & Boxplot of Sales	4
Figure 2 - Distribution & Boxplot of Capital	4
Figure 3 - Distribution & Boxplot of Patents	
Figure 4 - Distribution & Boxplot of R&D	
Figure 5 - Distribution & Boxplot of Employment	
Figure 6 - Distribution & Boxplot of Tobinq	
Figure 7 - Distribution & Boxplot of Values	6
Figure 8 - Distribution & Boxplot of Institutions	6
Figure 9 - Distribution of Capital and Patents	7
Figure 10 - Pairplot	
Figure 11 - Heatmap	
Figure 12 - Before Outlier Treatment	8
Figure 13 - After Outlier Treatment	
Figure 14 – Top Variables with Co-Efficient	10
Figure 15 – OLS Regression Results for Train Data	
Figure 16 - OLS Regression Results for Test Data	
Figure 17 – Fitted vs Residual	
Figure 18 – dvcat	
Figure 19 – Survived Split	
Figure 20 – Airbag Split	
Figure 21 – Seatbelt Split	
Figure 22 – Car Crash Trend	
Figure 23 – Car Created Year Trend	
Figure 24 - Pairplot	
Figure 25 - Heatmap	
Figure 26 – Outlier Before Treatment	
Figure 27 – Outlier After Treatment	
Figure 28 – Performance Metrics for Train	
Figure 29 – Confusion Matrix for Train	
Figure 30 – Performance Metrix for Test	
Figure 31 – Confusion Matrix for Test	
Figure 32 - AUC and ROC Curve –Train Data	
Figure 33 - AUC and ROC Curve –Test Data	
Figure 34 – Feature Importance	
Figure 35 – Performance Metrics for Train	
Figure 36 – Confusion Matrix for Train	
Figure 37 – Confusion Matrix for Test	
Figure 38 – AUC & ROC Curve	
Figure 39 - Coefficient	
Figure 40 – Deploy Split	24

Problem Statement 1: Linear Regression

You are a part of an investment firm and your work is to do research about these 759 firms. You are provided with the dataset containing the sales and other attributes of these 759 firms. Predict the sales of these firms on the bases of the details given in the dataset so as to help your company in investing consciously. Also, provide them with 5 attributes that are most important.

Data Dictionary

Column Name	Description	Data Type
Name		Турс
sales	Sales (in millions of dollars).	Float
capital	Net stock of property, plant, and equipment.	Float
patents	Granted patents.	Integer
randd	R&D stock (in millions of dollars).	Float
employment	Employment (in 1000s).	Float
sp500	Membership of firms in the S&P 500 index. S&P is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States	Object
tobinq	Tobin's q (also known as q ratio and Kaldor's v) is the ratio between a physical asset's market value and its replacement value.	Float
value	Stock market value.	Float
institutions	Proportion of stock owned by institutions	Float

Table 1: Data Description - Dataset 1

1.1) Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, data types, shape, EDA). Perform Univariate and Bivariate Analysis.

EDA

The Data is imported and below are the observations:

- The Data has 759 Rows and 9 Columns
 - Data types: Float 7, Integer 1, Object 1

	sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
count	759.000000	759.000000	759.000000	759.000000	759.000000	759	738.000000	759.000000	759.000000
unique	NaN	NaN	NaN	NaN	NaN	2	NaN	NaN	NaN
top	NaN	NaN	NaN	NaN	NaN	no	NaN	NaN	NaN
freq	NaN	NaN	NaN	NaN	NaN	542	NaN	NaN	NaN
mean	2689.705158	1977.747498	25.831357	439.938074	14.164519	NaN	2.794910	2732.734750	43.020540
std	8722.060124	6466.704896	97.259577	2007.397588	43.321443	NaN	3.366591	7071.072362	21.685586
min	0.138000	0.057000	0.000000	0.000000	0.006000	NaN	0.119001	1.971053	0.000000
25%	122.920000	52.650501	1.000000	4.628262	0.927500	NaN	1.018783	103.593946	25.395000
50%	448.577082	202.179023	3.000000	36.864136	2.924000	NaN	1.680303	410.793529	44.110000
75%	1822.547366	1075.790020	11.500000	143.253403	10.050001	NaN	3.139309	2054.160386	60.510000
max	135696.788200	93625.200560	1220.000000	30425.255860	710.799925	NaN	20.000000	95191.591160	90.150000

Table 2: Data Summary

- The Object Variable sp500 contains two categories and majority of it belongs to No Category
- There are no duplicates in the dataset.
- 21 missing values found in the Tobing column and it will be treated later.

Univariate Analysis:

Figure 1 - Distribution & Boxplot of Sales

Figure 2 - Distribution & Boxplot of Capital

Figure 3 - Distribution & Boxplot of Patents

Figure 4 - Distribution & Boxplot of R&D

Figure 5 - Distribution & Boxplot of Employment

Figure 6 - Distribution & Boxplot of Tobing

Figure 7 - Distribution & Boxplot of Values

Figure 8 - Distribution & Boxplot of Institutions

- Mostly the sales of the firms is around 10000.
- Most of the firms are having capital less than 25000 and the patents acquired by them were also in small quantities. So, this indicates that most of the firms are smaller or mid-sized ones.
- However, there are certain outlier population indicating the firms belonging to larger sized.

Bivariate Analysis:

Figure 9 - Distribution of Capital and Patents

• When the capital is High the Patents is also high. This indicates that firms with higher capital is holding much patents.

Multivariate Analysis:

Figure 10 - Pairplot

Figure 11 - Heatmap

• From the above pair plot and heatmap we can see that there is a strong correlation between few variables like Employment and sales, R & D stock and Sales, Capital and Sales, R & D stock and Patents.

Outlier Detection & Treatment:

Figure 12 - Before Outlier Treatment

- The black circles represent the outliers and it is present in all the columns except Institutions.
- Majority of the variables are highly skewed towards right.

Figure 13 - After Outlier Treatment

The outliers are treated by IQR value as seen above.

1.2) Impute null values if present? Do you think scaling is necessary in this case?

- The variable **tobinq** is having 21 null values and it has been replaced using median after finding the skewness value as 3.29.
- Yes, scaling can be done as it enhances the performance of the algorithm.

1.3) Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (30:70). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using R-square, RMSE.

• One Hot encoding is done for the column **sp500**.

	sales	capital	patents	randd	employment	tobinq	value	institutions	sp500_yes
0	-0.267788	-0.591504	0.221152	1.979986	-0.564800	2.493756	0.142598	1.718839	0
1	-0.542217	-0.632706	-0.583181	-0.782879	-0.619331	-0.577847	-0.645807	0.738279	0
2	2.052715	1.962722	1.955496	1.979986	2.055116	0.734749	2.055843	0.215929	1
3	-0.513909	-0.481679	-0.683723	-0.125658	-0.471265	-0.740066	-0.748521	-0.744789	0
4	-0.694622	-0.613908	-0.583181	-0.670901	-0.608694	-0.511899	-0.746022	0.297142	0

Table 3 – Sample dataset after Encoding

Train and Test Split

- The model for test and train has been split into 70:30 Ratio.
- The Linear Regression Model is built and fitted into the Training dataset.
- The feature importance is derived and we can see the co efficient of the variables below.

Figure 14 – Top Variables with Co-Efficient

- It clearly shows that Employment plays a crucial role followed by Capital and Value variable.
- These three important variables are the driving factors of the model and hence we can conclude that even if the other variables are not present or close to zero these three variables can be focused.

Model Performance

Model 1:

• To check the model performance, we calculate R Square value.

R Square for Train data: 0.935
RMSE for Train Data: 0.259
R Square for Train data: 0.923
RMSE for Train Data: 0.263

This is a very good model as it shows 92% variance of the testing data was captured by the model.

Model 2:

• The Sklearn model using OLS method gives an similar response as seen below.

• R Square for Train data: 0.935

OLS Regression Results

Dep. Variable:		sales	R-square	ed:		0.935		
Model:		OLS	Adj. R-s	squared:		0.934		
Method:	L	east Squares	F-statis	stic:		945.6		
Date:	Sat,	30 Dec 2023	Prob (F	-statistic):	6	.02e-305		
Time:		17:13:13	Log-Like	elihood:		-36.474		
No. Observation	s:	531	AIC:			90.95		
Df Residuals:		522	BIC:			129.4		
Df Model:		8						
Covariance Type	:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
	0.0204	0.047	4 722	0.004	0.062	0.004		
const								
		0.025						
patents								
		0.019			0.011			
			16.763	0.000		0.476		
tobinq				0.007				
	0.2656		9.405		0.210			
institutions			0.099	0.921	-0.024	0.026		
sp500_yes			2.544	0.011	0.025	0.197		
Omnibus:	=======	183.987				1.955		
Prob(Omnibus):		0.000		Bera (JB):		1261.544		
Skew:			Prob(JB)	. ,		.15e-274		
Kurtosis:		10.059	Cond. No		-	8.46		

Figure 15 – OLS Regression Results for Train Data

• R Square for Test data: 0.932

OLS Regression Results										
Dep. Variable:			R-square		0.932					
Model:		OLS	Adj. R-	squared:	0.929					
Method:	L	east Squares	F-stati	stic:		373.1				
Date:	Sat,	30 Dec 2023	Prob (F	-statistic):	4.	75e-123				
Time:		17:41:46	Log-Like	elihood:		-5.9422				
No. Observation	s:	228	AIC:			29.88				
Df Residuals:		219	BIC:			60.75				
Df Model:		8								
Covariance Type	:	nonrobust								
	coef	std err	t	P> t	[0.025	0.975]				
const				0.199						
capital	0.2368	0.046	5.126	0.000	0.146	0.328				
patents	-0.0182	0.027	-0.670	0.504	-0.072	0.035				
randd	-0.0175	0.030	-0.591	0.555	-0.076	0.041				
employment	0.4880	0.042	11.610	0.000	0.405	0.571				
tobinq	-0.0348	0.018	-1.919	0.056	-0.071	0.001				
value	0.3181	0.038	8.436	0.000	0.244	0.392				
institutions	0.0290	0.019	1.498	0.136	-0.009	0.067				
sp500_yes	-0.1146	0.058	-1.989	0.048	-0.228	-0.001				
Omnibus:		133.046	Durbin-N	Watson:		2.228				
Prob(Omnibus):				Bera (JB):	1	376.268				
Skew:		2.064	Prob(JB)):	1.	40e-299				
Kurtosis:		14.306	Cond. No	ο.		7.11				
						======				

Figure 16 - OLS Regression Results for Test Data

- Using OLS Method we can see that the model is performing slightly better in the test model.
- So, it is better to go with the SKlearn model for interpretation.

1.4) Inference: Based on these predictions, what are the business insights and recommendations

The following are the observations for the model

	Actual Values	Fitted Values	Residuals
0	-0.751485	-0.697459	-0.054026
1	-0.606816	-0.560103	-0.046712
2	0.678812	0.864440	-0.185627
3	-0.728405	-0.711163	-0.017242
4	-0.592357	-0.456111	-0.136246

Table 4 – Actual, Fitted & Residual

Figure 17 – Fitted vs Residual

- The key variables to considered by the firm are Capital, Employment and value.
- These three factors are influencing the business.
- Hence, the firm needs to have a closure look into these three items.
- Also, it is advisable to have a look at the research and development stocks of the firms as it is closely related with almost all the factors.

Problem Statement 2: Logistic Regression and Linear Discriminant Analysis

You are hired by the Government to do an analysis of car crashes. You are provided details of car crashes, among which some people survived and some didn't. You have to help the government in predicting whether a person will survive or not on the basis of the information given in the data set so as to provide insights that will help the government to make stronger laws for car manufacturers to ensure safety measures. Also, find out the important factors on the basis of which you made your predictions.

Data Dictionary

Column Name	Description	Data Type
dvcat	factor with levels (estimated impact speeds) 1-9km/h, 10-24, 25-39, 40-54, 55+	Object
	Observation weights, albeit of uncertain accuracy, designed to account for varying	•
	sampling probabilities. (The inverse probability weighting estimator can be used to	
	demonstrate causality when the researcher cannot conduct a controlled	
weight	experiment but has observed data to model)	Float
Survived	factor with levels Survived or not_survived	Object
airbag	a factor with levels none or airbag	Object
seatbelt	a factor with levels none or belted	Object
frontal	a numeric vector; 0 = non-frontal, 1=frontal impact	Integer
sex	a factor with levels f: Female or m: Male	Object
ageOFocc	age of occupant in years	Integer
yearacc	year of accident	Integer
yearVeh	Year of model of vehicle; a numeric vector	Float
	Did one or more (driver or passenger) airbag(s) deploy? This factor has levels	
abcat	deploy, nodeploy and unavail	Object
occRole	a factor with levels driver or pass	Object
deploy	a numeric vector	Integer
	a numeric vector; 0: none, 1: possible injury, 2: no incapacity, 3: incapacity, 4:	
injSeverity	killed; 5: unknown, 6: prior death	Float
	character, created by pasting together the populations sampling unit, the case	
	number, and the vehicle number. Within each year, use this to uniquely identify	
caseid	the vehicle.	Object

Table 5 - Data Dictionary – Dataset 2

2.1) Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

EDA

The Data is imported and below are the observations:

- The Data has 11217 Rows and 16 Columns
 - Data types: Float 3, Integer 5, Object 8
- Column injSeverity is having 77 Null values and it is replaced with Median.

	Unnamed: 0	dvcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	уеагасс	yearVeh	abcat	occRole	
count	11217.000000	11217	11217.000000	11217	11217	11217	11217.000000	11217	11217.000000	11217.000000	11217.000000	11217	11217	11
unique	NaN	5	NaN	2	2	2	NaN	2	NaN	NaN	NaN	3	2	
top	NaN	10-24	NaN	survived	airbag	belted	NaN	m	NaN	NaN	NaN	deploy	driver	
freq	NaN	5414	NaN	10037	7064	7849	NaN	6048	NaN	NaN	NaN	4365	8786	
mean	5608.000000	NaN	431.405309	NaN	NaN	NaN	0.644022	NaN	37.427654	2001.103236	1994.177944	NaN	NaN	
std	3238.213319	NaN	1406.202941	NaN	NaN	NaN	0.478830	NaN	18.192429	1.056805	5.658704	NaN	NaN	
min	0.000000	NaN	0.000000	NaN	NaN	NaN	0.000000	NaN	16.000000	1997.000000	1953.000000	NaN	NaN	
25%	2804.000000	NaN	28.292000	NaN	NaN	NaN	0.000000	NaN	22.000000	2001.000000	1991.000000	NaN	NaN	
50%	5608.000000	NaN	82.195000	NaN	NaN	NaN	1.000000	NaN	33.000000	2001.000000	1995.000000	NaN	NaN	
75%	8412.000000	NaN	324.056000	NaN	NaN	NaN	1.000000	NaN	48.000000	2002.000000	1999.000000	NaN	NaN	
max	11216.000000	NaN	31694.040000	NaN	NaN	NaN	1.000000	NaN	97.000000	2002.000000	2003.000000	NaN	NaN	
4														F

Table 6 – 5 Point Summary

• Using the above 5 point Summary we can see that most of the persons survived in the accidents.

Univariate Analysis

Figure 18 – dvcat

From the above charts we can see that most of the crashes were happened while the speed was between 10
 24 followed by 25-39 and 40-54.

Figure 19 – Survived Split

• There is a huge difference between Survived (10037) and Not survived (1180).

Figure 20 – Airbag Split

• In the 11217 crashes 7064 cars were equipped with airbag.

Figure 21 – Seatbelt Split

• In the 11217 crashes 7849 cars were equipped with seatbelt.

Figure 22 – Car Crash Trend

• From the above chart we can see the increase in the crash trend over the years.

Figure 23 – Car Created Year Trend

• As per the above insights we can clearly see that cars created from later 1980s to 2000 were the ones crashed more.

Bivariate Analysis

Figure 24 - Pairplot

Figure 25 - Heatmap

- From the above heatmap and pairplot we can see that most of the variables are not closely corelated.
- Some of the variables available in the pairplot, do not have the classes well separated. They will not be considered as good predictors.

Outliers

Figure 26 – Outlier Before Treatment

• The variable weight contains more outliers. Hence it is treated as seen below.

Figure 27 – Outlier After Treatment

2.2) Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

Encoding

	dvcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	abcat	occRole	deploy	inj Severity
0	1	27.078	0	0	0	1.0	0	32.0	0	0	0.0	4.0
1	3	89.627	0	1	1	0.0	1	54.0	1	0	0.0	4.0
2	1	27.078	0	0	1	1.0	0	67.0	0	0	0.0	4.0
3	1	27.078	0	0	1	1.0	1	64.0	0	1	0.0	4.0
4	1	13.374	0	0	0	1.0	0	23.0	0	0	0.0	4.0

Table 7 - Encoding

- The object datatype columns were encoded with 0s and 1s as seen in the above sample so that the machine learning models can understand the data.
- The target variable "Survived" is replaced by 1 and "Not Survived" by 0.

Train Test Split

- The data has been split into 70:30 Ratio.
- As the dependent variable contains 0s and 1s, to reduce biases stratify method is used.
- Both Logistic regression and LDA is applied.
- 2.3) Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized.

Model Building

Logistic Regression

The model for Logistic Regression is built with solver "Newton – cg"

Performance Metrics

Classification Report & Confusion Matrix – Train Data

	precision	recall	f1-score	support
0	0.92 0.99	0.89 0.99	0.91 0.99	826 7025
accuracy macro avg weighted avg	0.96 0.98	0.94 0.98	0.98 0.95 0.98	7851 7851 7851

Figure 28 – Performance Metrics for Train

Figure 29 – Confusion Matrix for Train

Classification Report & Confusion Matrix – Test Data

	precision	recall	f1-score	support	
0	0.93	0.89	0.91	354	
1	0.99	0.99	0.99	3012	
accuracy			0.98	3366	
macro avg	0.96	0.94	0.95	3366	
weighted avg	0.98	0.98	0.98	3366	

Figure 30 – Performance Metrix for Test

Figure 31 – Confusion Matrix for Test

AUC and ROC Curve –Train Data

■ AUC - 0.987

Figure 32 - AUC and ROC Curve —Train Data

- AUC and ROC Curve -Test Data
 - AUC 0.987

Figure 33 - AUC and ROC Curve -Test Data

Inference:

- The Accuracy and Recall is same for both the test and train data.
- Also, The AUC value matched in both the models.
- This ensures that the model performing well and there is no need of optimization of the model.

Feature Importance:

- Seatbelt and Airbag are the most important variables as they are corelated and impact is high.
- Variables Deploy and Injseverity are also very important.

```
The coefficient for dvcat is 0.6406401640420135
The coefficient for weight is 0.007175080245011356
The coefficient for airbag is 0.8535377824321096
The coefficient for seatbelt is 0.856878902671269
The coefficient for frontal is 1.182136676447145
The coefficient for sex is 0.372492412189811
The coefficient for ageOFocc is -0.03500160338597787
The coefficient for abcat is 0.1851842362839773
The coefficient for occRole is -0.46928689854751626
The coefficient for deploy is -0.6683535461481442
The coefficient for injSeverity is -4.4620811012429
```

Figure 34 – Feature Importance

LDA

- The LDA Model is built with default parameters and evaluated the accuracy score along with the confusion Matrix.
- The ROC-AUC Curve is plotted for both the models.

Performance Metrics

- The Accuracy score is 96 and 97 in the Train and Test data respectively.
- The Recall score is also very similar to each other as seen below.

Classification	Report of the training data:				
	precision	recall	f1-score	support	
0 1	0.87 0.96	0.69 0.99	0.76 0.98	826 7025	
accuracy macro avg weighted avg	0.91 0.95	0.84 0.96	0.96 0.87 0.95	7851 7851 7851	

Classification Report of the test data:

	precision	recall	f1-score	support	
0	0.86	0.67	0.75	354	
1	0.96	0.99	0.97	3012	
accuracy			0.95	3366	
macro avg weighted avg	0.91 0.95	0.83 0.95	0.86 0.95	3366 3366	

Figure 35 – Performance Metrics for Train

Figure 36 – Confusion Matrix for Train

Figure 37 – Confusion Matrix for Test

AUC and ROC Curve

The AUC is also very similar for both the models.

AUC for the Training Data: 0.979
AUC for the Test Data: 0.978

1.0

0.8

0.6

0.4

0.4

Figure 38 – AUC & ROC Curve

0.6

Training Data

1.0

Test Data

0.8

Inference:

• The model has performed very well in both the models as all the scores very similar.

0.2

• This implies that the model is very good.

0.2

0.0

0.0

Feature Importance:

- frontal and dvcat are the most important variables as they are corelated and impact is high.
- Variable Injseverity is also very important.

The coefficient for dvcat is 0.7981533817183232
The coefficient for weight is -0.0007416459885542775
The coefficient for airbag is 0.47368298157750294
The coefficient for seatbelt is 0.6063892133429107
The coefficient for frontal is 0.8183679580751099
The coefficient for sex is 0.4745402369664335
The coefficient for ageOFocc is -0.02603188304662198
The coefficient for abcat is 0.1205348233537516
The coefficient for occRole is -0.28723479255923134
The coefficient for deploy is -0.07334048867811763
The coefficient for injSeverity is -1.5433558560613099

Figure 39 - Coefficient

Model Comparison

	Accur	Accuracy Recall		Precision		AUC		
Model Name	Train	Test	Train	Test	Train	Test	Train	Test
<mark>Logistic</mark>								
Regression	<mark>0.98</mark>	<mark>0.98</mark>	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.987</mark>	<mark>0.987</mark>
LDA Model	0.96	0.95	0.99	0.99	0.96	0.96	0.979	0.978

Table 8 – Model Comparison

- While comparing both the Logistic Regression and LDA model we can conclude that Logistic regression performs better as it gives same results in both train and test.
- So, we can conclude that Logistic Regression performed well using the given Data and well optimized.

2.4) Inference: Based on these predictions, what are the insights and recommendations

Business Insights and Recommendations

Important Features:

- As per Logistic Regression Seatbelt, Deploy and Airbag are the most important variables in deciding the survival.
- The LDA model suggests Frontal and dvcat as the most important variable. But it also gives a very good results in Airbag and Seatbelt. So, Seatbelt and Airbag is very important.
- In both the models injseverity is a very important factor. So, it is also very important.
- These features can influence in the future models.

Recommendations:

- Wearing Seatbelt and having the Airbags in the cars can save many lives.
- The government can run an awareness campaign to enforce the people to use seatbelts.

Figure 40 – Deploy Split

- Around 7000 times the Airbag has not been deployed in the car.
- So, it is very essential to deep dive into this issue and mandate the car makers to improve the airbag feature.