Chapter 32 Convergence simple et uniforme des suites de fonctions

Exercice 32.1

Étude de la convergence simple de la suite de fonctions $(u_n)_{n\in\mathbb{N}}$ avec

$$\forall t \in \mathbb{R}_+, u_n(t) = \frac{t^n}{1 + t^n}.$$

Exercice 32.2

Pour $n \in \mathbb{N}^*$, on pose

$$u_n(x) = \begin{cases} x^n \ln(x), & \text{si } x \in]0, 1] \\ 0 & \text{si } x = 0. \end{cases}$$

Étudier la convergence simple et uniforme de la suite de fonctions $(u_n)_{n\geq 1}$ sur [0,1].

Exercice 32.3

Étudier la convergence simple et uniforme sur $[0, +\infty[$ de la suite de fonctions (f_n) définie par

$$f_n(x) = \frac{x}{n(1+x^n)}.$$

Exercice 32.4

On pose pour tout $x \in \mathbb{R}_+$,

$$u_n(x) = e^{-nx} \sin(nx).$$

- **1.** Étudier la convergence simple de la suite de fonctions (u_n) sur $[0, +\infty[$.
- **2.** Étudier la convergence uniforme de la suite de fonctions (u_n) sur $[a, +\infty[$ avec a > 0.
- **3.** Étudier la convergence uniforme de la suite de fonctions (u_n) sur $[0, +\infty[$.

Exercice 32.5

Pour tout $n \in \mathbb{N}^*$, on définit la fonction u_n de [0,1] vers \mathbb{R} par

$$u_n(x) = x^n(1-x).$$

- 1. Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction u que l'on précisera.
- **2.** Montrer que pour tout $n \in \mathbb{N}^*$,

$$||u_n - u||_{\infty} = \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n.$$

3. La suite $(u_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers u sur [0,1]?

Exercice 32.6

Pour tout $n \in \mathbb{N}^*$, on définit la fonction f_n de \mathbb{R} vers \mathbb{R} par

$$f_n(x) = \frac{n+1}{n}x.$$

- **1.** Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- **2.** La suite $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers f sur \mathbb{R} ?

Exercice 32.7

Pour tout $n \in \mathbb{N}^*$, on définit la fonction g_n de \mathbb{R} vers \mathbb{R} par

$$g_n(x) = \begin{cases} 1 - \frac{1}{n}|x|, & |x| < n \\ 0, & |x| \ge n. \end{cases}$$

- **1.** Montrer que la suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction g que l'on précisera.
- **2.** La suite $(g_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers g sur \mathbb{R} ?

Exercice 32.8

Pour tout $n \in \mathbb{N}^*$, on définit la fonction h_n de \mathbb{R} vers \mathbb{R} par

$$h_n(x) = \begin{cases} 1 + x^2 \sin \frac{1}{nx}, & x \neq 0 \\ 1, & x = 0. \end{cases}$$

- 1. Montrer que la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction h que l'on précisera.
- **2.** La suite $(h_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers h sur \mathbb{R} ?

Exercice 32.9

Pour tout $n \in \mathbb{N}^*$, on définit la fonction k_n de [0,1] vers \mathbb{R} par

$$k_n(x) = \begin{cases} 4n^2x, & 0 \le x \le \frac{1}{2n} \\ -4n^2x + 4n, & \frac{1}{2n} < x \le \frac{1}{n} \\ 4n^2x, & \frac{1}{n} < x \le 1. \end{cases}$$

- 1. Montrer que la suite de fonctions $(k_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction k que l'on précisera.
- **2.** La suite $(k_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers h sur [0,1]?
- **3.** Soit $a, b \in]0, 1[$ avec a < b. La suite $(k_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément vers h sur [a, b]?

Exercice 32.10

Pour tout $n \in \mathbb{N}^*$, on définit la fonction ℓ_n de [0,1] vers \mathbb{R} par

$$\mathcal{\ell}_n(x) = n\left(x^n - x^{n+1}\right).$$

- **1.** Montrer que la suite de fonctions $(\ell_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction ℓ que l'on précisera.
- **2.** La suite $(\ell_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers ℓ sur [0,1]?
- **3.** Soit $a, b \in]0, 1[$ avec a < b. La suite $(\ell_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément vers ℓ sur [a, b]?

Exercice 32.11

Pour tout $n \in \mathbb{N}^*$, on définit la fonction m_n de \mathbb{R}_+ vers \mathbb{R} par

$$m_n(x) = \frac{x^n}{1 + x + x^2 + \dots + x^n}.$$

- 1. Montrer que la suite de fonctions $(m_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+ vers une fonction m que l'on précisera.
- **2.** Montrer que pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}^*$, on a

$$\left| m_n(x) - m(x) \right| \le \frac{1}{n+1}.$$

3. La suite $(m_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers m sur \mathbb{R}_+ ?