FİZ 112 GENEL FİZİK-II FİNAL SINAVI SORULARI

PAÜ Mühendislik Fakültesi Çevre, Gıda, Jeoloji, Kimya ve Tekstil Mühendisliği Bölümleri

Cevap Anahtari

S1S₂ S3S4Adı-Soyadı:

23.05.2019 iö Öğrenci No:Bölümü: NÖ Saat: 10.30

Dersi veren öğretim elemanının adı ve soyadı:

NOT: Cep telefonu kullanılması yasaktır. Hesap makinesi kullanabilirsiniz. SÜRE: 90 dakika

Soru 1 (25 P): Şekildeki devreye göre aşağıdaki soruları cevaplayınız.

Bütün akımlar ε ve R cinsinden hesaplanmalıdır.

a) Birkaç adımda en basit eşdeğer devreyi çiziniz. (5P)

T

b) ε 'dan geçen akım I nedir? (4P)

$$I = \frac{\mathcal{E}}{3R}$$

c) R_1 'den geçen akım I_1 nedir? (3P)

$$I_1 = I = \frac{\mathcal{E}}{3R}$$

d) $V_{ab} = V_a - V_b$ nedir? (4P)

e) R_2 'den geçen akım I_2 nedir? (3P)

$$I_2 = \frac{V_{ab}}{6R} = \frac{2\xi}{3)(6R)} = \frac{\xi}{9R}$$

f) R_3 'den geçen akım I_3 nedir? (3P)

$$I_3 = I_2 = \frac{\varepsilon}{9R}$$

g) R_4 'den geçen akım I_4 nedir? (3P)

$$I_4 = \frac{V_{ab}}{3R} = \frac{2\xi}{(3)(3R)} = \frac{2\xi}{9R}$$

Soru 2 (25P): Manyetik alanın +z ekseni yönünde B=0.1 T şiddetinde olduğu bir bölgede, bir proton +y ekseni boyunca 10⁶ m/s hızıyla fırlatılıyor.

(protonun yükü $e=1.6x10^{-19}$ ve protonun kütlesi $m_p=1.7x10^{-27}$ kg)

a)Protona etkiyen kuvvetin şiddetini ve yönünü bulunuz.

Protona etkiyen kuvuet, $F = q(V \times B)$

Kurvetin sideti;

$$F = 918 \times 90^{\circ} = e18$$

 $F = 1.6 \times 10^{-19}.10^{6}.0.1$
 $F = 1.6 \times 10^{-14} \text{ Newton}$ (10P)

b) Protonun çizdiği dairesel yörüngenin yarıçapını hesaplayınız.

Proton xy - dizleminde doiresel bir yorunge cizer

Merkezcil kuvvet saglayon man. kuvvet old. göre

$$m\frac{v^2}{c} = qvB$$
 $\Rightarrow c = \frac{mv}{qB}$

$$r = \frac{1.7 \times 10^{27} \times 10^6}{1.6 \times 10^{19} \cdot 0.1} = 0.11 \text{ m}$$

Soru 3: Yeterince uzun bir tel şekilde görüldüğü gibi bükülmüş ve sabit bir I akımı taşımaktadır. $(\pi = 3,14 \text{ ve } \mu_0 = 4\pi \times 10^{-7} \text{ T.m/A olarak alınız})$

a) Soldaki ve sağdaki uzun düz tel parçalarının "o" noktasında oluşturdukları manyetik alanların şiddetlerin boxuployumı ve yönlerini belirleyiniz.

(10 P)

1
$$\exists l \times \vec{r} = d l r \cdot s \cdot in \delta = 0$$
 $\Rightarrow B_1 = 0$

3
$$d\vec{l} \times \vec{r} = dl.r. \sin 180 = 0 \Rightarrow B_3 = 0$$

b) Ortadaki yarım çemberin "o" noktasında oluşturduğu manyetik alanın şiddetini hesaplayınız ve yönünü belirleyiniz. (15 P)

$$dB = \frac{4\pi}{4\pi} r^3$$

$$dB = \frac{10\pi}{4\pi} \frac{dl \cdot r \cdot sin$$

$$B = \frac{4\pi \cdot 10^{7} \cdot 5}{4r} = \frac{4\pi \cdot 10^{7} \cdot 5}{4r} = \frac{3.4.5 \cdot 10^{6} \text{ Tesley}}{8 = 15.7 \cdot 10^{6} \text{ T}}$$

Soru 4 (25P): Uzun bir solenoid metre başına 400 tane sarıma sahip olup, $I(t)=30(1-e^{-1.60t})$ akımını taşımaktadır. Bu solenoidin içinde ve bununla aynı eksene sahip, ince telden sarılmış 250 sarımlı ve 6cm yarıçaplı bir bobin vardır. Akımı değiştirerek bobinde indüklenen emk ne olacaktır? $\mu_0=4\pi \times 10^{-7} \, (T.m/A)$

Solenoidin man. alanı;
$$B = \mu_0 n T$$

$$B = \mu_0 n 30 (1 - e^{1,60t})$$

manyetik Aki;
$$\Phi_B = \int B dA = \mu o n \int T(t) dA$$

$$\Phi_B = \mu o n 30 (1 - e^{1/60t}) (\pi R^2)$$

Induklenen Emk (N sammian) Foraday Yasası;

$$\xi = \pm 250 (4\pi \times 10^{-7}) 400.30 \left[\pi (0,06)^{2}\right].1,60.e^{-1,60t}$$

$$\xi = -(68,2 \text{ mV}) e^{-1,60t}$$