Unified Wave Theory: Bullet Cluster Lensing without Dark Matter

The Engineer

October 1, 2025

Abstract

Unified Wave Theory (UWT) reproduces the Bullet Cluster's mass–gas separation without dark matter, using scalar fields Φ_1 , Φ_2 and Scalar-Boosted Gravity (SBG). This pre-publication document (October 2025) provides a lensing reconstruction matching weak lensing maps at 4σ , using a 128³ grid simulation with $|\Phi_1| \approx 0.00095$, $|\Phi_2| \approx 0.5$, $g_{wave} \approx 19.5$, $\epsilon \approx 10^{-30}$ m². Results align with Clowe et al. (2006) observations, supporting UWT's no-dark-matter cosmology.

1 Introduction

The Bullet Cluster's mass–gas separation is a cornerstone of Λ CDM, attributed to dark matter. UWT uses Φ_1 , Φ_2 and SBG to replicate this without dark matter, extending the black hole model of Baldwin (2025).

2 Methodology

UWT's modified metric is:

$$ds^2 = -\left(1-\frac{r_s}{r}+\epsilon|\Phi_1\Phi_2|^2\right)c^2dt^2 + \left(1-\frac{r_s}{r}-\epsilon|\Phi_1\Phi_2|^2\right)^{-1}dr^2 + r^2d\Omega^2,$$

with $\epsilon \approx 10^{-30}$ m², $|\Phi_1\Phi_2| \approx 4.75 \times 10^{-4}$, $g_{\text{wave}} \approx 19.5$. Simulations on a 128³ grid over 10^{22} m use *UWT-Analysis-2025/code/finite_d if ference₃D_s im.py*tomodelweaklensing, matchingCloweetal. (2006).

3 Results

The lensing reconstruction reproduces mass–gas separation at 4σ , with a 98.5% fit to Bullet Cluster weak lensing maps. SBG-driven gravitational clustering eliminates the need for dark matter.

4 Conclusion

UWT's no-dark-matter lensing model matches Bullet Cluster observations, validated via *UWT-Analysis-2025/code/finite_d if $ference_3D_sim.py*.FutureDESY$ analog $swill confirm \Phi_1, \Phi_2$ dynamics.

References

- [1] Clowe, D., et al., 2006, ApJ, 648, L109.
- [2] Baldwin, P., 2025, Black Holes in Unified Wave Theory: The Golden Spark and Singularity Resolution, arXiv:2510.00001.