

Histogram Layer for Texture Classification

Taewook (Tyler) Kim¹, Joshua Peeples², Dr. Alina Zare²

¹Kent School, Kent, CT 06757;

²Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32608

THE MACHINE LEARNING AND SENSING LABORATORY

Introduction and Motivation

Texture Classification

- **Definition**: an area of texture analysis that focuses on assigning images into a texture classes.
- **Applications**: medical imaging, defense, agriculture.

Traditional Approach

Images from KTH-TIPS 2b Dataset

• Problem: Very laborious; often needed to determine features empirically.

Deep Learning Approach

• **Problem**: Training deep learning models requires a copious amount of labeled data along with immense amounts of computational power.

Method

In this work, we propose a novel model that incorporates a localized histogram layer for convolutional neural networks (CNNs). Our studies will be the first attempt use a radial basis function instead of standard histogram operation which creates several advantages

$$y_k = \begin{cases} 1, B_k - w \le x_k < B_k + w \\ 0, otherwise \end{cases}$$

Standard Operation

Radial Basis Function

- 1. Spatial information will be retained as opposed to previous global methods.
- 2. The histogram layer will be less sensitive to various outliers and ambiguity in the data because of "soft" binning assignments (see example below)
- 3. Using RBFs (Radial Basis Functions) will also provide a differentiable histogram operation allowing the model to learn via back-propagation.

Experimental Setup (d) 2HistCNN (e) 2CNN Parallel (f) 2HistCNN Parallel

Architectures used for each texture dataset.

To evaluate the performance of the proposed model, we use six different artificial neural networks (ANN) with the following constraints: 1) Similar architectures and 2) Number of parameters.

Results & Discussion

Average Overall Accuracy

Network	Average Overall Accuracy			
roework	Non-Standardized	Standardized		
1_CNN	38.87 ± 4.05	47.48 ± 0.97		
1_HistCNN	34.90 ± 4.09	37.43 ± 3.33		
2_CNN	29.51 ± 5.14	44.35 ± 1.07		
2_HistCNN	36.75 ± 2.58	40.14 ± 1.49		
2_CNN_parallel	40.31 ± 3.79	47.66 ± 1.22		
2_HistCNN_parallel	35.91 ± 4.15	38.20 ± 2.85		

- Every network improved performance significantly with standardization, averaging about 6.50% increase in average overall accuracy.
- Most of the histogram networks showed poorer accuracy than the corresponding CNNs. However, since this is a multi-class problem, average overall accuracy alone cannot determine networks' performance. Therefore, we looked at average f1-score, precision, and recall for further evaluation.

1_CNN & 1_HistCNN

	1_CNN Avg. F1-score	1_HistCNN Avg. F1-score	1_CNN Avg. Precision	1_HistCNN Avg. Precision	1_CNN Avg. Recall	1_HistCNN Avg. Recall
Sample A	0.45 ± 0.24	0.31 ± 0.28	0.47 ± 0.22	0.30 ± 0.27	0.48 ± 0.29	0.36 ± 0.32
Sample B	0.43 ± 0.22	0.35 ± 0.29	0.43 ± 0.21	0.33 ± 0.30	0.47 ± 0.27	0.40 ± 0.32
Sample C	0.44 ± 0.25	0.28 ± 0.28	0.43 ± 0.24	0.29 ± 0.31	0.49 ± 0.28	0.33 ± 0.33
Sample D	0.40 ± 0.23	0.35 ± 0.30	0.42 ± 0.22	0.35 ± 0.29	0.46 ± 0.29	0.41 ± 0.32

2_CNN & 2_HistCNN

	2_CNN	2_HistCNN	2_CNN	2_HistCNN	2_CNN	2_HistCNN
	Avg. F1-score	Avg. F1-score	Avg. Precision	Avg. Precision	Avg. Recall	Avg. Recal
Sample A	0.40 ± 0.23	0.33 ± 0.25	0.41 ± 0.22	0.31 ± 0.21	0.44 ± 0.28	0.41 ± 0.33
Sample B	0.40 ± 0.23	0.37 ± 0.24	0.40 ± 0.21	0.37 ± 0.24	0.44 ± 0.26	0.42 ± 0.31
Sample C	0.42 ± 0.22	0.34 ± 0.25	0.44 ± 0.22	0.34 ± 0.22	0.46 ± 0.29	0.40 ± 0.34
Sample D	0.38 ± 0.24	0.32 ± 0.24	0.40 ± 0.24	0.31 ± 0.22	0.43 ± 0.27	0.38 ± 0.32

2_CNN_parallel & 2_HistCNN_parallel

	2_CNN_par Avg. F1-score	2_HistCNN_par Avg. F1-score	2_CNN_par Avg. Precision	2_HistCNN_par Avg. Precision	2_CNN_par Avg. Recall	2_HistCNN_par Avg. Recall
Sample A	0.44 ± 0.26	0.31 ± 0.26	0.45 ± 0.24	0.31 ± 0.31	0.48 ± 0.31	0.36 ± 0.31
Sample B	0.44 ± 0.24	0.31 ± 0.27	0.48 ± 0.23	0.31 ± 0.30	0.46 ± 0.30	0.36 ± 0.30
Sample C	0.45 ± 0.24	0.38 ± 0.25	0.46 ± 0.24	0.39 ± 0.30	0.49 ± 0.32	0.43 ± 0.30
Sample D	0.42 ± 0.28	0.31 ± 0.26	0.43 ± 0.24	0.35 ± 0.31	0.48 ± 0.33	0.38 ± 0.30

• From these comparisons, we learned that the CNNs implemented with histogram layer did not necessarily perform better on texture classification.

Conclusion

Contributions

- Learned standardization improves performance significantly.
- Histogram layer did not necessarily perform

Future Works

- Different initialization techniques for histogram layer can be used
- Tuning of parameters (i.e. window size, number of bins, kernel size)

Acknowledgement

- Joshua Peeples
- Dr. Alina Zare
- UF Student Science Training Program (SSTP)
- University of Florida Research Computing HiPerGator