Álgebra Linear – Videoaula 2

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Motivação

• V: um espaço vetorial.

Subconjunto W de V que também são espaços vetoriais: subespaço vetorial

- Mesma soma: Se $x, y \in W$, então $x + y \in W$.
- Mesmo produto: Se $x \in W$ e $\lambda \in \mathbb{R}$, então $\lambda x \in W$.

A definição

Definição

Um subespaço vetorial de um espaço vetorial V é um subconjunto não-vazio W satisfazendo:

- Para quaisquer $x, y \in W$, vale que $x + y \in W$;
- Para qualquer $x \in W$ e qualquer $\lambda \in \mathbb{R}$, vale que $\lambda x \in W$.

Diz-se que W é **fechado** por soma e produto por escalar, respectivamente.

Subespaços vetoriais triviais

O espaço todo

Se V é um espaço vetorial:

 \bullet V é um subespaço vetorial de V;

Qualquer subespaço $W \subseteq V$ com $W \neq V$ é dito ser **próprio**.

Subespaços vetoriais triviais

O subespaço zero

- $\{0_V\}$ é um subespaço vetorial de V:
 - Se $x, y \in \{0_V\}$, então $x = y = 0_V$, logo

$$x + y = 0_V + 0_V = 0_V \in \{0_V\};$$

• Se $x \in \{0_V\}$ e $\lambda \in \mathbb{R}$, então $x = 0_V$ e

$$\lambda x = \lambda 0_V = 0_V$$
.

 $\{0_V\}$ é o subespaço zero ou subespaço nulo.

V e $\{0_V\}$ são chamados de subespaços **triviais**.

Subespaços de \mathbb{R}^2

Seja $V=\mathbb{R}^2$.

O conjunto $W = \{(x_1, x_2) : x_1 + x_2 = 0\}$ é um subespaço de \mathbb{R}^2 :

- W é não-vazio, pois $(0,0) \in W$.
- <u>W</u> é fechado por soma: Se $x = (x_1, x_2)$ e $y = (y_1, y_2)$ pertencem a W, então $x + y = (x_1 + y_1, x_2 + y_2)$, e

$$(x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) = 0 + 0 = 0,$$

 $\mathsf{logo}\; x+y\in W.$

• W é fechado por produto: Similarmente, se $x \in W$ e $\lambda \in \mathbb{R}$, então $\lambda x \in W$.

Subespaços de $\mathbb{R}^{\mathbb{R}}$

Funções pares e ímpares

Seja $V = \mathbb{R}^{\mathbb{R}}$, o espaço vetorial das funções $f : \mathbb{R} \to \mathbb{R}$. O subconjunto P de V consistindo das funções **pares** é um subespaço:

$$P = \{f : f(x) = f(-x) \text{ para todo } x \in \mathbb{R}\}.$$

- P é não-vazio, pois contém funções constantes;
- P é fechado pela soma: exercício.
- P é fechado por produto: Se $f \in P$ e $\lambda \in \mathbb{R}$, então

$$(\lambda f)(-x) = \lambda \cdot f(-x) = \lambda \cdot f(x) = (\lambda f)(x)$$

para todo x, logo $\lambda f \in P$.

Similarmente, o conjunto I das funções ímpares também é subespaço vetorial de $\mathbb{R}^{\mathbb{R}}$.

Subespaços de $\mathbb{R}^{\mathbb{R}}$

Funções polinomiais

O espaço $\mathcal{P}(\mathbb{R})$ das funções polinomiais é um subespaço de $\mathbb{R}^{\mathbb{R}}$.

Por exemplo: Se $f,g:\mathbb{R}$ são polinomiais, então

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m$$

е

$$(f+g)(x) = f(x) + g(x)$$

$$= (a_0 + a_1x + a_2x^2 + \cdots) + (b_0 + b_1x + b_2x^2 + \cdots)$$

$$= (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \cdots$$

$$= C_0 + C_1x + C_2x^2 + \cdots,$$

onde $C_i = a_i + b_i$.

Um contra-exemplo

O conjunto $[0,\infty)$ não é um subespaço de \mathbb{R} :

- $oldsymbol{0}$ $[0,\infty)$ é não-vazio. (ok...)
- ② $[0,\infty)$ é fechado por soma? Se $x,y\in[0,\infty)$, então $x,y\geq 0$, logo

$$x + y \ge x \ge 0$$

- e portanto $x + y \in [0, \infty)$. (ok. . .)
- **3** $[0, \infty)$ é fechado por produto? Não! Se $x = 1 \in [0, \infty)$ e $\lambda = -1 \in \mathbb{R}$, então

$$\lambda x = -1 \notin [0, \infty).$$

Outro contra-exemplo

- O conjunto $X = \{(x, y) \in \mathbb{R}^2 : |x| \ge |y|\}$ não é subespaço de \mathbb{R}^2 .
 - 1 X é não-vazio. (ok...)
 - 2 X é fechado por soma? Não! Se v = (-1,1) e w = (1,1), então $v, w \in X$, mas

$$v+w=(0,2)\not\in X.$$

3 X é fechado por produto? Sim! (Exercício)

Outro contra-exemplo

$$X = \left\{ (x, y) \in \mathbb{R}^2 : |x| \ge |y| \right\}$$

DE SANTA CATARINA

Subespaços de \mathbb{R} , \mathbb{R}^2 e \mathbb{R}^3

- Subespaços de \mathbb{R} :
 - {0}, R.
- Subespaços de \mathbb{R}^2 :
 - $\{(0,0)\}, \mathbb{R}^2$.
 - Retas que passam por (0,0);
- Subespaços de \mathbb{R}^3 :
 - $\{(0,0,0)\}, \mathbb{R}^3$.
 - Retas que passam por (0,0,0);
 - Planos que passam por (0,0,0);

Uma única conta para determinar se é subespaço

Teorema

Um subconjunto não-vazio U de um espaço vetorial V é subespaço de V se, e somente se, para todos $x,y\in U$ e para todo $\lambda\in\mathbb{R}$, vale que $x+\lambda y\in U$

JNIVERSIDADE FEDERAL

Teorema

Se U é um subespaço vetorial de V, então U é um espaço vetorial com as soma e produto restritos de V. Além disso:

- $\mathbf{0}$ $\mathbf{0}_{V} \in U$;
- 2 Se $x \in U$ então $-x \in U$.

De fato, tome $x \in U$ qualquer. Então

- $0 \ 0_V = 0x \in U;$
- $-x = (-1)x \in U$.

Subespaços são, de fato, espaços

Teorema

Se U é um subespaço vetorial de V, então U é um espaço vetorial com as soma e produto restritos de V. Além disso:

- 2 Se $x \in U$ então $-x \in U$.

Associatividades, comutatividade, distributividades, unidade do produto são trivias.

- ① O zero de V também é um zero de U, pois $0_V + x = x + 0_V = x$ para todo $x \in V$, e em particular para $x \in U$.
- ② O oposto em V de um elemento de U é o oposto em U do mesmo elemento.

Intersecções de subespaços

Teorema

Se U_1, U_2, \ldots, U_n são subespaços vetoriais de V, então

$$\bigcap_{i=1}^n U_i := U_1 \cap U_2 \cap \cdots \cap U_n$$

também é subespaço vetorial de V.

 $\bigcirc \bigcap_{i=1}^{n} U_i$ é não-vazio: De fato, $0_V \in U_i$ para todo i, logo

$$0_V \in \bigcap_{i=1}^n U_i.$$

Teorema

Se U_1, U_2, \ldots, U_n são subespaços vetoriais de V, então

$$\bigcap_{i=1}^n U_i := U_1 \cap U_2 \cap \cdots \cap U_n$$

também é subespaço vetorial de V.

- $\bigcirc \bigcap_{i=1}^n U_i$ é fechado por soma: Se $x, y \in \bigcap_{i=1}^n U_i$, então
 - Para todo i, $x, y \in U_i$, logo $x + y \in U_i$ (para todo i), ou seja, $x + y \in \bigcap_{i=1}^n U_i$.
- $\bigcirc \bigcap_{i=1}^{n} U_i$ é fechado por produto: Exercício

Intersecções de subespaços

Se U_1, \ldots, U_n são subespaços de V, então $\bigcap_{i=1}^n U_i$ é o maior subespaço de V que está contido em todos os U_1, \ldots, U_n .

União de subespaços

Em geral, a união de subespaços não é subespaço. Por exemplo,

$$X = \{(x, x) : x \in \mathbb{R}\}$$

e

$$Y = \{(x, -x) : x \in \mathbb{R}\}$$

são subespaços de \mathbb{R}^2 , mas $X \cup Y$ não é subespaço.

Mais um exemplo

Considere uma equação linear

$$2x_1 + 3x_2 - 4x_3 + x_4 = \alpha. \tag{*}$$

O conjunto solução da equação (*) é o subconjunto de \mathbb{R}^4

$$\mathsf{Sol}_* = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + 3x_2 - 4x_3 + x_4 = \alpha \right\}$$

Exercício

Prove que Sol_* é um subespaço de \mathbb{R}^4 se, e somente se, $\alpha=0$.

Mais um exemplo, agora com intersecções

Considere um sistema linear homogêneo

O conjunto solução do sistema (*) é o subconjunto Sol_* de \mathbb{R}^4 consistindo das 4-uplas (x_1,x_2,x_3,x_4) que satisfazem a todas as equações de (*) simultaneamente.

Já sabemos que o conjunto solução de cada uma das equações (\heartsuit) (\diamondsuit) e (\clubsuit), separadamente, é um subespaço vetorial de \mathbb{R}^4 . Chamemo-los de Sol $_{\diamondsuit}$, Sol $_{\diamondsuit}$ e Sol $_{\clubsuit}$.

Então $\operatorname{Sol}_* = \operatorname{Sol}_{\heartsuit} \cap \operatorname{Sol}_{\diamondsuit} \cap \operatorname{Sol}_{\clubsuit}$ é um subespaço vetorial de \mathbb{R}^4 .