

Дисциплина: Электроника

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.03 Прикладная информатика

ОТЧЕТ

по домашнему заданию №1

Название: ИССЛЕДОВАНИЕ ВОЛЬТ-АМПЕРНЫХ И ВОЛЬТ-ФАРАДНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО ДИОДА

Студент	ИУ6-45Б	08.63.2024	И.А.Дулина
Преподаватель	(Группа)	(Подпись, дата)	(И.О. Фамилия) В.А. Карпухин
		(Полпись, лата)	(И.О. Фамилия)

Цель работы: исследование вольт-амперных и вольт-фарадных характеристик модели полупроводникового диода в программе аналогового и цифрового моделирования электрических и электронных цепей Micro-Cap 12.

Вариант: 7

Nº	фамилия	имя	модель диода	добротность контура	частота резонанса, кГц
1	Балашов	Максим	Д815В	120	2000
2	Буханцев	Илья	Д815А	47	680
3	Волкова	Юлия	Д816Б	160	510
4	Гумаров	Мирас	Д816В	330	620
5	Давтян	Айк	Д814Г	75	1100
6	Данилов	Никита	Д815Ж	33	3300
7	Дулина	Ирина	Д816В	51	1300

Рисунок 1 – данные варианта

Модель	U _{ст} , В				U _{np} , B	г _{ст} , Ом Іст	, мА			Модель в			
элемента	мин.	ном.	макс.	Іст, мА	aU _{ст} , %/°С	dU _{cτ} , %	(при I _{ст} , мА)	(при I _{ст} , мА)	мин.	макс.	Рпр, Вт	T, °C	MC12
Д815В	7,4		9,1	1 A	0,07	4	1,5 (500)	1 (1 A)	50	950	8	-60+125	D815V

Рисунок 2 – характеристики диода

Так как диод Д816В не представлен среди существующих для выбора в программе Micro-Cap 12, было решено выбрать диод Д815В и исследовать его характеристики

Задание:

1. Построить прямую и обратную ветви вольт-амперной характеристики диода (модель выбирается согласно варианту, см. приложенный к заданию файл). Оценить влияние допустимого рабочего диапазона температур на характеристики полупроводникового диода.

Рисунок 3 – параметры диода D815V

Рисунок 4 – прямая модель ВАХ выбранной модели диода

Рисунок 5 – обратная модель ВАХ выбранной модели диода

Рисунок 6 — схема для исследования прямой цепи BAX диода Напряжение пробоя по графику — $8.2~\mathrm{B}$. Оно соответствует полю BV в информации о диоде.

Рисунок 7 – окно DC Analysis Limits для исследования прямой ветви BAX диода

Рисунок 8 – прямая ветвь ВАХ диода Д815В для трех значений температуры

Рисунок 9 — схема для исследования обратной ветви ВАХ диода При напряжении 1В диод закрыт, при напряжении 8 В находится в состоянии электрического пробоя, а при напряжении большем, чем 8.2 В — происходит перегрев прибора (тепловой пробой).

Рисунок 10 – окно DC Analysis Limits для исследования обратной ветви BAX диода

Рисунок 11 – BAX диода при обратной цепи

Рисунок 12 – ВАХ при обратной цепи (напряжение пробоя)

При анализе вольт-амперных характеристик диода Д815В было выявлено, что при прямой и обратной ветвях при увеличении температуры величина напряжения пробоя по модулю уменьшается

2. Проанализировать зависимость собственной барьерной емкости диода от напряжения смещения (рекомендуется использовать параллельный резонансный контур, при этом добротность контура и частоту резонанса при нулевом смещении выбрать согласно варианту).

Их характеристик диода Д815В выберем СЈО (собственная ёмкость при нулевом напряжении смещения)

$$CJO = 76,32 \ \pi\Phi$$

Рассчитаем ёмкость конденсатора С1:

$$C1 = 3*CJO = 228,96 \, \pi\Phi$$

Рассчитаем ёмкость разделительного конденсатора Ср (С2):

$$C2=100*CJO = 76,32*10^{-12}*100 \Phi = 7,632 \text{ H}\Phi$$

Рассчитаем номинал катушки L1 с помощью формулы Томпсона:

Собщ=C1+
$$\frac{c_{2*CJO}}{c_2+CJO} \approx$$
C1+CJO

$$L1 = \frac{1}{(2\pi f_0)^2 \cdot (C1 + CJ)}$$

$$L1 = 49,097$$
 мк Γ н

Рассчитаем номинал резистора R1 через формулу, связывающего его с добротностью:

$$R1 = \frac{1}{Q} \cdot \sqrt{\frac{L1}{c1}} = 9,07983 \text{ Om}$$

Рассчитаем сопротивление источников переменного и постоянного напряжение R2 и Rb (Резистор R2 необходим для корректного отображения AЧX, а резистор Rb не позволяет произойти короткому замыканию по переменному напряжению через обладающий нулевым сопротивлением источник постоянного напряжения Vb), принимая их номиналы равными сопротивлению контура на резонансной частоте

$$Ri=Rb=Rpe_3 = \frac{1}{R_1} \frac{L_1}{c_1} = 23 616,6135 \text{ Om}$$

Построим схему:

Рисунок 13 – схема для исследования ВФХ диода (параллельный контур)

Рисунок 14 – окно AC Analysis Limits

Рисунок 15 – АЧХ напряжения на контуре

Алгоритмизируем построение графиков:

Рисунок 16 – окно Stepping

Рисунок 17 – AЧХ напряжения на контуре для нескольких значений напряжения смещения с отметками (Vb=0 B)

Рисунок 18 – АЧХ напряжения на контуре для нескольких значений напряжения смещения с отметками (Vb=8B)

Алгоритмизируем определение частоты резонанса

Рисунок 19 – окно Properties for Performance

Рисунок 20 – ВФХ диода

Проанализировав зависимость собственной ёмкости диода от напряжения смещения, было выявлено, что при увеличении обратного напряжения ёмкость диода снижается за счёт увеличения p-n перехода и расстояния между обкладками конденсаторами.

Вывод: была изучена программа Micro-cap 12, вольт-амперные и вольт-фарадные характеристики полупроводникового диода Д815В, были получены и оценены результаты поведения диода и его характеристики при различных условиях.