VEKTORIANALYYSI / CALCULUS OF SEVERAL VARIABLES

2. välikoe / 2. exam

9.12.2013

1. Kun a>0, merkintä $B(\bar 0,a)$ tarkoittaa tason origokeskistä, a–säteistä kiekkoa. Olkoon $A=B(\bar 0,5)\setminus \bar B(\bar 0,2)$. Laske integraali

$$\iint_A (1-y)(x^2+y^2)^{3/2} dx \, dy.$$

- 2. Laske käyräintegraali $\int_{\gamma} F \cdot d\bar{s}$, kun F on vektorikenttä $F(x,y,z) = (y^2,y+z,2-x)$ ja γ on kahdesta janasta koostuva murtoviiva, joka alkupiste on (0,0,0), loppupiste on (1,1,0) ja se kulkee pisteen (1,1,1) kautta.
- 3. a) Onko mahdollista löytää vakiota $A\in\mathbb{R}$ siten, että vektorikentästä $F:\mathbf{R}^2\to\mathbf{R}^2,$ missä

$$F(x,y) := (y^2 - y\sin x, Axy + \cos x)$$

tulee eksakti. Jos vastaus on myönteinen, määrää F:n jokin potentiaali.

- b) Samoin, kun $F(x,y) := (y^2 xe^y, Axy + e^x)$
- 4. Olkoon

$$G := \{(x_1, x_2, x_3) \in \mathbf{R}^3 \mid 0 < x_3 < 5 , x_1^2 + x_2^2 < 9\}.$$

Määritä vektorikentän $F(x_1, x_2, x_3) := (x_1 + \sin x_2, x_2 - \sin x_3, x_3^2)$ vuo ulospäin reunan ∂G läpi. (Gauss)

1. For a > 0, we denote by $B(\bar{0}, a)$ the disc with center at the origin and radius a. Let $A = B(\bar{0}, 5) \setminus \bar{B}(\bar{0}, 2)$. Calculate the integral

$$\iint_A (1-y)(x^2+y^2)^{3/2} dx \, dy.$$

- 2. Calculate the path integral $\int_{\gamma} F \cdot d\bar{s}$, when F is the vector field $F(x,y,z) = (y^2, y+z, 2-x)$ and γ consists of two straight line segments starting from (0,0,0), ending at (1,1,0) and running through the point (1,1,1).
- 3. a) Is it possible to find a constant $A \in \mathbb{R}$ such that the vector field $F : \mathbb{R}^2 \to \mathbb{R}^2$ with

$$F(x,y) := (y^2 - y\sin x, Axy + \cos x)$$

becomes exact? In the case the answer is affirmative, find a potential for F.

- b) The same for $F(x,y) := (y^2 xe^y, Axy + e^x)$
- 4. Let

$$G := \{(x_1, x_2, x_3) \in \mathbf{R}^3 \mid 0 < x_3 < 5 , \ x_1^2 + x_2^2 < 9\}.$$

Calculate the outward flux of the vector field $F(x_1, x_2, x_3) := (x_1 + \sin x_2, x_2 - \sin x_3, x_3^2)$ through the boundary ∂G . (Gauss)