School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 2, 2018)

Workshop exercises: Week 8

Consider the following dataset:

id	apple	ibm	lemon	sun	LABEL
Α	4	0	1	1	FRUIT
В	5	0	5	2	FRUIT
C	2	5	0	0	COMP
D	1	2	1	7	COMP
Ε	2	0	3	1	?
F	1	0	1	0	?

- 1. Treat the problem as an unsupervised machine learning problem (excluding the id and LABEL attributes), and calculate the clusters according to k-means with k=2, using the Manhattan distance:
 - (a) Starting with seeds A and D.
 - (b) Starting with seeds A and F.
- 2. Perform **agglomerative clustering** of the above dataset (excluding the *id* and LABEL attributes), using the Euclidean distance and calculating the **group average** as the cluster centroid. Do you expect to observe a different dendrogram if we were instead using the cosine similarity?

- 3. What is **overfitting**? What does it mean for a classifier to **generalise**?
- 4. A **confusion matrix** is a summary of the performance of a (supervised) classifier over a set of development ("test") data, by counting the various instances:

		Actual				
		a	b	c	d	
	a	10	2	3	1	
Classified	b	2	5	3	1	
Classified	c	1	3	7	1	
	d	3	0	3	5	

- (a) Calculate the classification accuracy of the system. Find the error rate for the system.
- (b) Calculate the **precision**, **recall**, **F-score** (where $\beta = 1$), **sensitivity**, and **specificity** for class d. (Why can't we do this for the whole system? How can we consider the whole system?)
- 5. How is **holdout** evaluation different to **cross-validation** evaluation?