Multiplexer (Data selector)

- MUX
- Combinational circuit that selects binary information from one of many input lines and directs it to a single output line
- The selection of a particular input line is controlled by a set of selection lines.
- Normally, there are 2" input lines and n selection lines whose bit combinations determine which input is selected.
- A two-to-one-line multiplexer connects one of two 1-bit sources to a common destination

Multiplexer

Logic symbol for a 1-of-4 data selector/multiplexer

Data selection for a 1-of-4-multiplexer.

-	Data-Select Inputs	
Input Selected	S_0	S_1
D_0	0	0
D_1	1	0
D_2	0	1
D_2 D_3	1	1

The data output is equal to D_0 only if $S_1 = 0$ and $S_0 = 0$: $Y = D_0 \overline{S}_1 \overline{S}_0$. The data output is equal to D_1 only if $S_1 = 0$ and $S_0 = 1$: $Y = D_1 \overline{S}_1 S_0$. The data output is equal to D_2 only if $S_1 = 1$ and $S_0 = 0$: $Y = D_2 S_1 \overline{S}_0$. The data output is equal to D_3 only if $S_1 = 1$ and $S_0 = 1$: $Y = D_3 S_1 S_0$. the total expression for the data output is

$$Y = D_0 \bar{S}_1 \bar{S}_0 + D_1 \bar{S}_1 S_0 + D_2 S_1 \bar{S}_0 + D_3 S_1 S_0$$

Multiplexer

$$Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$$

A 16-input MUX

Demultiplexers

DEMUX

- reverses the multiplexing function.
- It takes digital information from one line and distributes it to a given number of output lines.
 - The demultiplexer is also known as a data distributor.
- Decoders can also be used as demultiplexers

Parity generator/checker

- Nibble (4 bits)
- XOR is also called modulo-2 addition
- A ⊕ B = 1 only when there are an odd number of 1's in (A,B). The same is true for A ⊕ B ⊕ C also
- Basic Parity Logic
 - The sum (disregarding carries) of an even number of 1s is always 0
 - The sum of an odd number of 1s is always 1

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Modulo-2 sum

- The modulo-2 sum of two bits can be generated by an exclusive-OR gate
- The modulo-2 sum of four bits can be formed by three exclusive-OR gates

