

### **Point Location**

Kirkpatrick Structure

- DAG

Junhui DENG

deng@tsinghua.edu.cn

#### Kirkpatrick Structure

- \*Each triangle in  $T_{k+1}$  stores pointers to  $\leq 8$  triangles it overlaps in  $T_{\leq k}$
- a triangle may have

  more than 1 parent

❖ Note that

❖ So this structure

is actually a DAG

instead of a TREE



## Construction Algorithm ❖ Start with T<sub>a</sub> ♣ Repeat { //construct T<sub>k+1</sub> from T<sub>k</sub> - select an appropriate IS - delete the vertices of the subset - re-triangulate the holes left } until there is a single triangle //Th **123456789101121314**15 Computational Geometry, Tsinghua University

# Degree

- ❖ Each triangle in T<sub>k+1</sub>
  - can overlap at most
    - 8 triangles in  $T_{\leq k}$
- **❖** Hence each node has
  - an (outgoing) degree of
    - no more than 8



### Height

- ❖ Each iteration eliminates
  - a constant fraction
    of vertices
- ❖ The algorithm will terminate after

$$log_{(\frac{18}{17})}n = \mathcal{O}(logn)$$

iterations

❖ In other words,
the hierarchical depth will

be within  $O(\log n)$ 

