Highlight Detection in Soccer Matches

Chiotis Nikolaos, Kyriazopoulos Christos, Stavrianoudakis Vassileios

MTN2221, MTN2207, MTN2215

MSc Artificial Intelligence

June 30, 2023

Contents

- Introduction
 - Requirements
 - Problem Definition
- 2 Methodology
 - Methodology Visual
 - Methodology Audio
 - Methodology Text
- Experiments & Results
 - Experiment 1
 - Experiment 2
 - Experiment 3
 - Evaluation
- Conclusions + Future Work

Current Section

- Introduction
 - Requirements
 - Problem Definition
- 2 Methodology
 - Methodology Visual
 - Methodology Audio
 - Methodology Text
- 3 Experiments & Results
 - Experiment 1
 - Experiment 2
 - Experiment 3
 - Evaluation
- Conclusions + Future Work

Requirements

- pytorch
- librosa
- pyAudioAnalysis
- moviepy
- sklearn
- yt dlp
- opencv

Problem Definition

- Extract highlights from footbal matches and create summary
 - Make use of 3 modalities
 - Visual
 - Audio
 - Text

- Assumptions made
 - Resonable Assumption -> Distance based(outlier detection) approach
 - Light Assumption -> highlight duration is X seconds (10s in our case)
 - Strong Assumption -> k highlights per match

Current Section

- Introduction
 - Requirements
 - Problem Definition
- 2 Methodology
 - Methodology Visual
 - Methodology Audio
 - Methodology Text
- 3 Experiments & Results
 - Experiment
 - Experiment 2
 - Experiment 3
 - Evaluation
- Conclusions + Future Work

Methodology Visual

- First attempt -> Video transformer model(didn't work)
- Extract 1 frame/10s
- Use pretrained model (resnet18) to extract features
- Use pretrained model to extract field coverage feature
- Combine feature vectors
- Calculate cosine distance of feature vectors
- Calculate score based on distance and rank segments

Figure 1: Field Coverage Filter

Methodology Audio

- Audio segmentation (10s segments) with ffmpeg
- Feature extraction with pyAudioAnalysis
- Feature selection using a variance thresholding -> Keep features with higher variance
- Calculate cosine distance of feature vectors
- Calculate score based on distance and rank segments
- Further improvements showed in experiment section

Methodology Text

- Extract transcription from audio segments using pretrained model(whisper)
- Extract speech rate for each segment
- Use pretrained model to extract sentiment scores from text segments

Joy, Sadness, Anger, Disgust, Neutral, Surpise, Fear

- Combine features in one vector
- Calculate cosine distance of feature vectors
- Calculate score based on distance and rank importance of segments

Current Section

- Introduction
 - Requirements
 - Problem Definition
- 2 Methodology
 - Methodology Visual
 - Methodology Audio
 - Methodology Text
- Experiments & Results
 - Experiment 1
 - Experiment 2
 - Experiment 3
 - Evaluation
- Conclusions + Future Work

Experiment 1

- Get scores calculated from image and audio
- Calculate mean score for each segment
- Select k most distant segments
- for k=10 approximately 5 out of 10 where actual highlights

Experiment 1 Results

Experiment 2

- Get scores calculated from image and audio
- Thresholding based on mean audio amplitude ->
 - calculate mean amplitude of all segments
 - relevant segments ->
 mean segments amplitude >30% mean overall amplitude ->
 dummy silent segment removal
- Calculate mean score for each relevant segment
- Select k most distant segments
- for k=10 approximately 7 out of 10 where actual highlights

Experiment 2 Results

Experiment 3

- Get scores calculated from image, audio and text
- More strict thresholding with mean audio amplitude
- Calculate mean score for each segment
- Select k most distant segments
- for k=10 approximately 8 out of 10 where actual highlights

Experiment 3 Results

Final Pipeline

Evaluation

- Selected 5 matches
- Benchmarking with actual highlights compared to our highlights
- Used google form

	Game1	Game2	Game3	Game4	Game5
Score	3	4	3.5	2.5	3

Current Section

- Introduction
 - Requirements
 - Problem Definition
- Methodology
 - Methodology Visual
 - Methodology Audio
 - Methodology Text
- 3 Experiments & Results
 - Experiment 1
 - Experiment 2
 - Experiment 3
 - Evaluation
- Conclusions + Future Work

Most Important Results + Future Work

Conclusions

- Pros
 - Successful use of completely unsupervised technique.
 - · Zero training needed.
 - Simple hand-crafted rules for highlight selection
 - Inference time 20min (5 min without text modality)
 - k and X parameter are costumizable
- Cons
 - Wave-handy thresholding selection
 - highlight duration parameter somewhat restrictive
 - k parameter is very restrictive

Future Work

More consise and explainable thresholding definition

Enforce thresholding using other modalities except audio

 Make use of domain knowledge to extract most meaningfull features for each modality

Thank You