Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh

Department of Statistics, University of Oxford

Contents

Background

Sampling and inference

Experiments

Example

- ► Messages sent between people over time
- ► Protein-protein interactions

Edges and vertices

TODO: break picture into 4

Power law degree distribution

Sparsity and power law

Empirical study

SNAP dataset [1]	# of vertices	# of edges
Ask Ubuntu	159,316	964,437
UCI social network	1,899	20,296
:	:	:

Ask Ubuntu

UCI social network

dense

Sparse

Vertex exchangeable dense

Sparse

Vertex exchangeable Preferential attachment

dense

Sparse

Vertex exchangeable Edge exchangeable

Pitman Yor

Preferential attachment

Edge exchangeable models [2], [3]

Edge exchangeable models [2], [3]

Edge exchangeable models [2], [3]

Paintbox representation

Paintbox representation

Consequence

▶ Edge exchangeable models have sublinear sparsity

Beta Neutral-to-the-left Model [4]

Latent representation

Sampling and inference

Why a paper on sampling and inference for BNTL models?

Sampling and inference

Why a paper on sampling and inference for BNTL models?

- ► Inference is notoriously difficult for *non-exchangeable* structures
- ▶ Need to identify *exchangeable substructures*

Exchangeable substructure

Gibbs structure

The joint density has Gibbs structure

$$p(\operatorname{graph}|\mathbf{T}) = \prod_{j=1}^{K} p(\operatorname{choose} j \ d_j \ \operatorname{times} \ \operatorname{out} \ \operatorname{of} \ n - T_j)$$

- ightharpoonup K = # vertices
- ▶ n = #edges
- ▶ $d_i = \text{degree of vertex } j$
- ▶ T_j = arrival time of vertex j

Gibbs structure

Explicitly

$$p(\mathsf{graph}|\mathbf{T}) = \frac{\Gamma(d_1 - \alpha)}{\Gamma(n - K\alpha)} \prod_{j=2}^{K} \frac{\Gamma(T_j - j\alpha)\Gamma(d_j - \alpha)}{\Gamma(T_j - 1 - (j-1)\alpha)\Gamma(1 - \alpha)}$$

- ightharpoonup K = # vertices
- ▶ n = #edges
- ▶ d_i = degree of vertex j
- $ightharpoonup T_j = arrival time of vertex j$

Available data

Observation	Unobserved variables
Entire history	α, ϕ, Ψ
Degrees in arrival order	$lpha, \phi, oldsymbol{\Psi}, oldsymbol{T}$
Snapshot	$\alpha, \phi, \Psi, T, \sigma$

- $ightharpoonup lpha = \mathsf{BTNL} \; \mathsf{parameter} \in (-\infty, 1)$
- $lackbox{}\phi = {
 m arrival\ distribution\ parameters}$
- $\mathbf{\Psi}$ = latent sociabilities
- ightharpoonup T = arrival times
- $ightharpoonup \sigma = arrival order$

Gibbs sampler

Variable	Gibbs sampling scheme
α	MCMC, e.g. slice sampling
ϕ	Depends on arrival dist. family Λ_ϕ
Ψ	$egin{aligned} \Psi_j graph, oldsymbol{\Psi}_{ackslash j} &\sim Beta(d_j-lpha, ar{d}_{j-1}-(j-1)lpha) \ & where \ ar{d}_j &= \sum_{i=1}^j d_j \ & can marginalise out \ oldsymbol{\Psi} \end{aligned}$
Т	Simple update for T_j , can't move past neighbours
σ	Initialise in descending degree order use M-H with adjacent swap proposal $\sigma_j \leftrightarrow \sigma_{j+1}$

Point estimation

If entire history observed, maximum a posterior (or maximum likelihood) estimates for α,ϕ computable

Experiments

- ► Gibbs: parameter recovery
- ► Gibbs: scalability
- ▶ Point estimation with massive graphs

Parameter recovery

- ightharpoonup Simulate 500 edges with fixed lpha
- lacktriangle Arrivals either \mathcal{PYP} or Geom
- ► Observe final snapshot of the graph

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(au, \mathcal{PYP}(heta, au))$	0.046 ± 0.002	$\textbf{-2637.0}\pm\textbf{0.1}$
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(eta))$	0.049 ± 0.004	-2660.5 ± 0.7
Geom(0.25)	$(\tau, \mathcal{PYP}(\theta, \tau))$	0.086 ± 0.002	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	$\textbf{0.043}\pm\textbf{0.003}$	$\textbf{-2382.6}\pm\textbf{0.2}$

Scalability

▶ Simulate with fixed α and Geom(β) arrivals

	100 edges	10000 edges
$ \hat{\alpha} - \alpha^* $	0.12 ± 0.01	0.01 ± 0.00
$ \hat{eta} - eta^* $	0.02 ± 0.00	0.00 ± 0.00
Effective Sample Size	0.90 ± 0.04	0.75 ± 0.08
Runtime (s)	21 ± 0	2267 ± 2

- ► Runtime linear in #edges
- ► Most expensive Gibbs update is for **T**

MLEs for SNAP datasets

- ► SNAP datasets
- \blacktriangleright Fit point estimates for α, ϕ
- ▶ Fit: coupled \mathcal{PYP} , uncoupled \mathcal{PYP} and Geom(β) arrivals

MLEs for SNAP datasets

Ask Ubuntu

 \blacktriangleright Estimates of \mathcal{PYP} parameters vary significantly between coupled and uncoupled

$$\hat{\theta}, \hat{\alpha} = 18080, 0.25$$

 $\hat{\theta}, \hat{\alpha}, \hat{\tau} = -0.99, -2.54, 0.99$

- ▶ Edge exchangeable models misspecified $(\eta > 2)$
- ightharpoonup Using Geom estimates η well

Conclusion

- ▶ BNTL models are *flexible*
- ▶ BNTL models are tractable

Future work

- ► Scalability of inference
 - ▷ Metropolis-Hastings to update T altogether
 - \triangleright Variational inference for σ

References

- Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [2] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [3] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, (just-accepted), 2017.
- [4] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.