CONFIDENCE INTERVALS FOR A REGRESSION COEFFICIENT

Based on Stock and Watson, ch. 5

JESPER BAGGER
EC2203 | ROYAL HOLLOWAY | 2020/21

THE t-TEST

THE SIMPLE LINEAR REGRESSION MODEL

• The population regression model is

$$Y_i = eta_0 + eta_1 X_i + u_i; \quad i = 1, \ldots, n$$

- β_0 and β_1 are population parameters; they are fixed (non-random), but unknown
- The data $(Y_i, X_i; i=1,\ldots,n)$ is a **random sample** from the population of Y and X
- Assume the Least Squares assumptions for causal inference are satisfied

THE LARGE-SAMPLE SAMPLING DISTRIBUTION

Under the OLS assumptions for causal inference, in large samples, $\hat{\beta}_1$ is approximately distributed according to the Normal distribution:

$$\hat{eta}_1 \overset{ ext{approx}}{\sim} \mathcal{N}\left(eta_1, \sigma^2_{\hat{eta}_1}
ight)$$

THE t-STATISTIC

$$H_0: eta_1 = eta_{1,0}; \quad H_1: eta_1
eq eta_{1,0}$$

• When the Least Squares assumptions for causal inference holds and H_0 is true, then $\hat{eta}_1 \overset{\mathrm{approx}}{\sim} \mathcal{N}(eta_{1,0},\hat{\sigma}^2_{\hat{eta}_1})$, and

$$t = rac{\hat{eta}_1 - eta_{1,0}}{\hat{\sigma}_{\hat{eta}_1}} \stackrel{ ext{approx}}{\sim} \mathcal{N}\left(0,1
ight)$$

where $\hat{\sigma}_{\hat{eta}_1}$ is a consistent (robust!) estimator of $\sigma_{\hat{eta}_1}$.

ullet t-test of H_0 with significance level lpha=0.05: reject H_0 if |t|>1.96; otherwise, do not reject H_0

SIGNIFICANCE LEVELS AND CRITICAL VALUES

TEST SCORES AND CLASS SIZES

```
Score_i = eta_0 + eta_1 STR_i + u_i; \quad i = 1, \dots, n \ H_0: eta_1 = 0; \quad H_1: eta_1 
eq 0
```

```
# Regression of Score on STR using CASchools dataframe
lm1 <- lm(Score ~ STR, data = CASchools) # Fitted model in lm1
# Regression output with heteroskedastic robust SEs
parameters(lm1, robust = TRUE, vcov_type = "HC1")</pre>
```


CONFIDENCE INTERVALS

MANY, MANY t-TESTS

- Thought experiment: test all possible hypothesized values for β_1 with 5% significance level, record rejections and non-rejections
- Given $\hat{\beta}_1$ and $\hat{\sigma}_{\hat{\beta}_1}$, which hypothesized values $\beta_{1,0}$ for β_1 are not rejected?

$$\left|rac{\hat{eta}_1-eta_{1,0}}{\hat{\sigma}_{\hat{eta}_1}}
ight|<1.96$$

95%-CONFIDENCE INTERVAL

• The outlined test procedure implies that we fail to reject $H_0: \beta_1 = \beta_{1,0}$ for $\beta_{1,0}$ in the following interval:

$$\hat{eta}_1 - 1.96 imes \hat{\sigma}_{\hat{eta}_1} \leq eta_{1,0} \leq \hat{eta}_1 + 1.96 imes \hat{\sigma}_{\hat{eta}_1}$$

• Estimate of range of β_1 -values, called a 95%-confidence interval for β_1 (abbreviated $CI_{\beta_1,0.95}$), all of which are consistent with the estimate $\hat{\beta}_1$

TEST SCORES AND CLASS SIZES

$$Score_i = \beta_0 + \beta_1 STR_i + u_i; \quad i = 1, \ldots, n$$

```
# Regression output with heteroskedastic robust SEs
parameters(lm1, robust = TRUE, vcov_type = "HC1")
```


95% COVERAGE PROBABILITY

$$CI_{eta_1,0.95} = \left[\hat{eta}_1 - 1.96 imes\hat{\sigma}_{\hat{eta}_1},\hat{eta}_1 + 1.96 imes\hat{\sigma}_{\hat{eta}_1}
ight]$$

- Random sampling implies that the confidence interval limits are random variables
- $CI_{eta_1,0.95}$ is the set of eta_1 -values that are not rejected by a two-sided t-test with a 5% significance level
- $CI_{eta_1,0.95}$ is also a interval that has a 95% coverage probability of containing the true value eta_1

SUMMARY

SUMMARY

• A 95%-confidence interval is the range of β_1 -values that are not rejected by a two-sided t-test with a 5% significance level

Provides an estimate of a range of values for β_1 consistent with estimate $\hat{\beta}_1$

- A 95%-confidence interval is a random interval with a 95% coverage probability: will cover the true value β_1 in 95/100 random samples
- Confidence intervals are routinely reported by regression software including in R

