

www.sites.google.com/site/faresfergani

<u>السنة الدراسية : 2015/2014</u>

# <u>لمحتوى المفاهيمي :</u>

# التحولات المرفقة بتفاعلات حمض-أساس

## <u>قوة الأحماض و الأسس</u>

### • ثابت الحموضة Ka للثنائية (أساس/حمض):

- تتميز الثنائية  $(HA/A^{-})$  بثابت يسمى ثابت الحموضة ، يرمز له به Ka و هو يعطى بالعبارة التالية :

$$K_{a} = \frac{\left[A^{-}\right]_{f} \left[H_{3}O^{+}\right]_{f}}{\left[HA\right]_{f}}$$

- يعرف الـ pKa بالعلاقة:

pKa = - log Ka

و هذه العلاقة تكافئ :

 $Ka = 10^{-pKa}$ 

- توابت الحموضة Ka و pKa تمكن من مقارنة قوة الأحماض الضعيفة فيما بينها و كذلك قوة الأسس الضعيفة فيما بينها كما يلي :

- يكون الحمض أقوى كلما كان : Ka أكبر ، pKa أقل ، كما أن الحمض الضعيف يكون أقوى كلما كان  $\tau_f$  أكبر ، أما إذا كان للحمضين الضعيفين نفس التركيز الإبتدائي يكون الحمض أقوى كلما كان  $\left[H_3O^+\right]_f$  أكبر ، pH أقل .
- يكون الأساس أقوى كلما كان :  $\kappa_a$  أقل ،  $\kappa_a$  أكبر ، كما أن الأساس الضعيف يكون أقوى كلما كان  $\tau_f$  أكبر ، أما إذا كان للأساسين الضعيفين نفس التركيز الإبتدائي يكون الأساس أقوى كلما كان  $\tau_f$  أكبر ،  $\tau_f$  أكبر .

### <u>التمرين (1):</u>

قارن بين الحمضين الضعيفين من حيث القوة في الحالات التالية .

 $CH_3COOH$  و حمض الإيثانويك Ka للحمضين الضعيفين : الإيبوبروفين  $C_{12}H_{17}COOH$  ، و حمض الإيثانويك معرف كما يلى :

- $Ka(C_{12}H_{17}COOH/C_{12}H_{17}COO^{-}) = 5.93 \cdot 10^{-5}$
- $Ka(CH_3COOH/CH_3COO^-) = 1.58 \cdot 10^{-5}$ 
  - ي ي الموافقتين للحمضين : البنزويك  $_{6}H_{5}COOH$  ، الميثانويك  $_{9}HCOOH$  معرفة كما يلي : 2- قيمة الـ  $_{9}HCOOH$
- $pKa(C_6H_5COOH/C_6H_5COO^-) = 4.7$
- $pKa(HCOOH/HCOO^{-}) = 3.8$

3- الحمضين الخيعيفين : حمض البنزويك  $C_6H_5COOH$  ، حمض السالي سيليك الذي نرمز لها اختصارا بلا بالمنافق المنافق المنا

- $C_6H_5COOH \rightarrow \tau_{f1} = 0.0225 \ (2.25\%)$
- RCOOH  $\rightarrow \tau_{f2} = 0.063 (6.3\%)$

4- الحمضين المنعيفين : حمض الإيثانويك  $CH_3COOH$  ، حمض الميثانويك HCOOH لهما نفس التركير و المحدائي C و تركيز محلولهما بالشوراد  $H_3O^+$  معرف كما يلي :

- $CH_3COOH \rightarrow [H_3O^+]_f = 1.26.10^{-4} \text{mol/L}$
- HCOOH  $\rightarrow$   $\left[\mathrm{H_3O^+}\right]_\mathrm{f} = 1.26.10^{-3}\,\mathrm{mol/L}$

 $C_0$  لهما نفس التركيز الإبتدائي  $C_6H_5COOH$  الإيثانويك  $C_6H_5COOH$  لهما نفس التركيز الإبتدائي و قيمة الـ DH لمحلولهما معرفة كما يلى :

- $C_6H_5COOH \rightarrow pH = 3.6$
- $CH_3COOH \rightarrow pH = 3.4$

### <u>الأجوبة :</u>

المقارنة بين الأحماض الضعيفة من حيث القوة:

1- الإيبوبروفين C<sub>12</sub>H<sub>17</sub>COOH و الإيثانويك -1

 $\tilde{K}$ ون الحمض الضعيف أقوى كلّما كان ثابت الحموضة  $\tilde{K}$  أكبر ، وحيث أن

 $Ka(C_{12}H_{17}COOH/C_{12}H_{17}COO^{-}) > Ka(CH_{3}COOH/CH_{3}COO^{-})$ 

فإن حمض الإيبوبر وفين C<sub>12</sub>H<sub>17</sub>COOH أقوى من حمض الإيثانويك CH<sub>3</sub>COOH .

: HCOOH و الميثانويك  $C_6H_5COOH$  البنزويك -2

يكون الحمض الضعيف أقوى كلما كان pKa أقل ، وحيث أن :

 $pKa(HCOOH/HCOO^{-}) < pKa(C_6H_5COOH/C_6H_5COO^{-})$ 

.  $C_6H_5COOH$  أقوى من حمض البنزويك HCOOH فإن حمض

### : RCOOH و الساسيليك $C_6H_5COOH$

عندما يكون لحمضين ضعيفين نفس التركيز الابتدائي ، يكون الحمض الضعيف أقوى كلما كانت  $au_{
m f}$  أكبر ، وحيث أن :

 $\tau_{\rm f} \left( RCOOH \right) \, > \, \tau_{\rm f} \left( C_6 H_5 COOH \right)$ 

 $C_6H_5COOH$  فإن حمض الساليسليك أقوى من حمض البنزويك

### 4- الإيثانويك CH<sub>3</sub>COOH و الميثانويك 4

عندما يكون لحمضين ضعيفين نفس التركيز الابتدائي، يكون الحمض الضعيف أقوى كلما كان تركيزه بالشوارد  ${\rm H}_3{\rm O}^+$  أكبر، وحيث أن تركيز  ${\rm H}_3{\rm O}^+$  عند انحلال حمض الميثانويك يكون أكبر من تركيز  ${\rm H}_3{\rm O}^+$  عند انحلال حمض الإيثانويك فإن، حمض الميثانويك ولك HCOOH أقوى من حمض الإيثانويك  ${\rm CH}_3{\rm COOH}$ .

 $C_6$  و الإيثانويك  $C_6$  و الإيثانويك  $C_6$ 

عندما يكون لحمضين ضعيفين نفس التركيز الابتدائي، يكون الحمض أقوى كلما كان pH المحلول أقل، وحيث أن pH محلول حمض الإيثانويك أقل من pH محلول حمض البنزويك ، فإن حمض الإيثانويك pH أقوى من حمض البنزويك  $CH_3COOH$ .

### التمرين (2):

قارن بين الأساسين الضعيفين من حيث القوة في الحالات التالية .

معرف كما  $C_2H_5NH_2$  و إيثيل أمين  $CH_3NH_2$  معرف كما للموافق للأساسين الضعيفين : ميثيل أمين  $C_2H_5NH_2$  معرف كما يلى :

- $Ka(CH_3NH_3^+/CH_3NH_2) = 2.5 \cdot 10^{-11}$
- $Ka(C_2H_5NH_3^+/C_2H_5NH_2) = 1.6 \cdot 10^{-11}$

 $c_2$  معرفة كمّا يلي : النشادر  $c_2H_5NH_2$  الموافقة للأساسين الضعيفين : النشادر  $c_2H_5NH_2$  معرفة كمّا يلي  $c_3$ 

- pKa( $NH_4^+/NH_3$ ) = 9.3
- $pKa(C_2H_5NH_3^+/C_2H_5NH_2) = 10.8$

C- الأساسين الضعيفين : النشادر  $NH_3$  و ميثل أمين  $CH_3NH_2$  لهما نفس التركيز الابتدائي C و نسبة التقدم النهائي للتفاعل المنمذج لانحلالهما في الماء معرفة كما يلي :

- NH<sub>3</sub>  $\rightarrow \tau_{f1} = 0.04$
- $CH_3NH_2 \rightarrow \tau_{f2} = 0.06$

4- رتب الأسس : إيثيل أمين  $\mathrm{CH_3NH_2}$  ، النشادر  $\mathrm{NH_3}$  ، ميثيل أمين  $\mathrm{CH_3NH_2}$  حسب تزايد القوة .

### الأجوبة :

المقارنة بين الأسس الضعيفة:

<u>1</u>- الميثيل أمين CH<sub>3</sub>NH<sub>2</sub> و الإيثيل أمين CH<sub>3</sub>NH<sub>2</sub>

يكون الأساس الصعيف أقوى كلما كان Ka أقل ، وحيث أن :

 $Ka (C_2H_5NH_3^+/C_2H_5NH_2) < Ka (CH_3NH_3^+/CH_3NH_2)$ 

.  $CH_3NH_2$  أقوى من الميثيل أمين  $C_2H_5NH_2$  فإن الإيثيل أمين

### $\frac{1}{2}$ د النشادر $\frac{1}{2}$ و الإيثيل أمين $\frac{1}{2}$ النشادر $\frac{1}{2}$

يكون الأساس الضعيف أقوى كلما كان pKa أكبر ، و حيث أن :

 $pKa (C_2H_5NH_2/C_2H_5NH_3^+) > pKa^-(NH_4^+/NH_3)$ 

فإن الإيثيل أمين  $\mathrm{C_2H_5NH_2}$  أقوى من النشادر  $\mathrm{NH_3}$  .

 $\frac{3}{6}$ - النشادر  $\frac{1}{1}$ NH و الميثيل أمين  $\frac{1}{1}$ CH  $\frac{1}{1}$ CH : إذا كان للأساسين الضعيفين نفس التركيز الابتدائي ، يكون الأساس الضعيف أقوى كلما كان  $\frac{1}{1}$ أكبر ، وحيث أن :  $\tau_f (CH_3NH_2) > \tau_f (NH_3)$ 

فإن الميثيل أمين CH3NH2 أقوى من النشادر NH3.

 $\frac{4}{4}$  - ترتیب الأسس حسب تزاید قوتها :  $\frac{1}{4}$  در تیب الأسس حسب تزاید قوتها :  $\frac{1}{4}$  در تیب الأسس حسب تزاید قوتها :  $\frac{1}{4}$  در تیب المیثیل أمین  $\frac{1}{4}$  در تابع المیثیل أمین المیثیل أمین  $\frac{1}{4}$  در تابع المیثیل أمین المیثی النشادر NH<sub>3</sub> ، إذن ترتيب هذه الأسس الضعيفة حسب تزايد قوتها يكون كما يلى :



### التمرين (3):

محلول لحمض الإيثانويك CH3COOH حجمه V و تركيزه C مقدرا بالوحدة (mol/L).

1- اكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي الحاصل بين حمض الإيثانويك و الماء .

2- أنشئ جدو لا لتقدم التفاعل الكيميائي السابق.

3- اعتماداً على جدول التقدم أثبت ما يلى علماً أن Ka هو ثابت الحموضة للثنائية (-CH3COOH/CH3COO).

. 
$$Ka = \frac{[H_3O^+]_f^2}{C - [H_3O^+]} \bullet$$

$$Ka = \frac{\tau_f^2 C}{1 - \tau_f} \quad \bullet$$

$$. Ka = \frac{\tau_f^2.x_{max}}{V(1-\tau_f)} \quad \bullet$$

$$\tau_{\rm f} = \frac{1}{1 + 10^{\rm pKa - pH}} \bullet$$

## 1- معادلة التفاعل الكيميائي:

$$CH_3COOH + H_2O = CH_3COO^- + H_3O^+$$

### 2- جدول التقدم:

| الحالة   | التقدم                    | CH <sub>3</sub> COOH | $+ H_2O =$ | = CH <sub>3</sub> COO | $+ H_3O^+$ |
|----------|---------------------------|----------------------|------------|-----------------------|------------|
| ابتدائية | $\mathbf{x} = 0$          | $n_{0a} = CV$        | بزيادة     | 0                     | 0          |
| انتقالية | X                         | CV - x               | بزيادة     | X                     | X          |
| نهائية   | $\mathbf{x}_{\mathbf{f}}$ | CV - x <sub>f</sub>  | بزيادة     | $X_{\mathrm{f}}$      | $X_{f}$    |

: (CH<sub>3</sub>COOH/CH<sub>3</sub>COO) للثنائية 
$$Ka = \frac{\left[H_3O^+\right]_f^2}{C - \left[H_3O^+\right]}$$
 درنا:

$$Ka = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}$$

- اعتمادا على جدول التقدم:

$$\bullet \left[ \text{CH}_{3}\text{COO}^{\text{-}} \right]_{\text{f}} = \frac{n_{\text{f}} \left( \text{CH}_{3}\text{COO}^{\text{-}} \right)}{V} = \frac{x_{\text{f}}}{V} \rightarrow \left[ \text{CH}_{3}\text{COO}^{\text{-}} \right]_{\text{f}} = \left[ \text{H}_{3}\text{O}^{+} \right]_{\text{f}} .$$

• 
$$[CH_3COOH]_f = \frac{n_f (CH_3COOH)}{V} = \frac{CV - x_f}{V} = C - \frac{x_f}{V} \rightarrow [CH_3COOH]_f = C - [H_3O^+]_f$$
 .   
: بالتعویض فی عبارہ Ka نجد :

$$Ka = \frac{\left[H_3O^+\right]_f \left[H_3O^+\right]_f}{C - \left[H_3O^+\right]_f} \rightarrow Ka = \frac{\left[H_3O^+\right]_f^2}{C - \left[H_3O^+\right]_f}$$

$$Ka = \frac{\tau^2 C}{1 - \tau}$$
 الثنائية  $Ka = \frac{\tau^2 C}{1 - \tau}$  دينا

$$Ka = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}$$

و لدينا :

$$\tau_f = \frac{x_f}{x_{max}} \longrightarrow x_f = \tau_f.x_{max}$$

و باعتبار التفاعل تام:

$$CV - x_{max} = 0 \, \rightarrow \, x_{max} = CV \ \, \rightarrow \ \, x_f = \tau_f.CV$$

- اعتمادا على جدول التقدم:

• 
$$\left[ H_3 O^+ \right]_f = \frac{n_f (H_3 O^+)}{V} = \frac{x_f}{V} = \frac{\tau_f C V}{V} \rightarrow \left[ H_3 O^+ \right]_f = \tau_f C$$

$$\bullet \left[ \text{CH}_3 \text{COO}^\text{-} \right]_f = \frac{n_f \left( \text{CH}_3 \text{COO}^\text{-} \right)}{V} = \frac{x_f}{V} = \frac{\tau_f \text{CV}}{V} \\ \to \left[ \text{CH}_3 \text{COO}^\text{-} \right]_f = \tau_f \text{C} \quad .$$

$$\bullet \left[ \text{CH}_{3}\text{COOH} \right]_{\!f} = \frac{n_f \left( \text{CH}_{3}\text{COOH} \right)}{V} = \frac{\text{CV} \cdot x_f}{V} = \frac{\text{CV} \cdot \tau_f \text{CV}}{V} = \frac{\text{CV} \left( 1 - \tau_f \right)}{V}$$

$$\rightarrow [CH_3COOH]_f = C(1-\tau_f)$$

بالتعويض في عبارة Ka نجد:

$$Ka = \frac{\tau_f C \cdot \tau_f C}{C (1 - \tau_f)} = \frac{\tau_f^2 \cdot C^2}{C (1 - \tau_f)} \rightarrow Ka = \frac{\tau_f^2 C}{(1 - \tau_f)}$$

 $Ka = \frac{\tau_f^2.x_{max}}{V(1-\tau_f)}$ 

$$Ka = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}$$

و لدينا :

$$\tau_f = \frac{x_f}{x_{max}} \longrightarrow x_f = \tau_f.x_{max}$$

- اعتمادا على جدول التقدم:

• 
$$\left[ H_3 O^+ \right]_f = \frac{n_f (H_3 O^+)}{V} = \frac{x_f}{V} \rightarrow \left[ H_3 O^+ \right]_f = \frac{\tau_f . x_{max}}{V}$$

$$\bullet \left[ \text{CH}_{3}\text{COO}^{\text{-}} \right]_{\text{f}} = \frac{n_{\text{f}} \left( \text{CH}_{3}\text{COO}^{\text{-}} \right)}{V} = \frac{x_{\text{f}}}{V} \rightarrow \left[ \text{CH}_{3}\text{COO}^{\text{-}} \right]_{\text{f}} = \frac{\tau_{\text{f}} x_{\text{max}}}{V}$$

• 
$$\left[ \text{CH}_{3}\text{COOH} \right]_{f} = \frac{n_{f} \left( \text{CH}_{3}\text{COOH} \right)}{V} = \frac{\text{CV} - \tau_{f}.x_{\text{max}}}{V}$$

باعتبار التفاعل تام:

$$CV - x_{max} = 0 \rightarrow CV = x_{max}$$

و منه

$$\begin{split} \left[ \text{CH}_{3}\text{COOH} \right]_{f} &= \frac{n_{f}\left( \text{CH}_{3}\text{COOH} \right)}{V} = \frac{x_{max} - \tau_{f}.x_{max}}{V} \\ &\rightarrow \left[ \text{CH}_{3}\text{COOH} \right]_{f} = \frac{x_{max}\left( 1 - \tau_{f} \right)}{V} \end{split}$$

بالتعويض في عبارة Ka:

$$Ka = \frac{\frac{\tau_{f}.x_{max}}{V} \frac{\tau_{f}.x_{max}}{V}}{\frac{x_{max}(1-\tau_{f})}{V}} = \frac{\frac{\tau_{f}^{2}.x_{max}^{2}}{V^{2}}}{\frac{x_{max}(1-\tau_{f})}{V}} = \frac{\tau_{f}^{2}.x_{max}^{2}}{V^{2}} \cdot \frac{V}{x_{max}(1-\tau_{f})} \rightarrow Ka = \frac{\tau_{f}^{2}.x_{max}}{V(1-\tau_{f})}$$

$$au_{\mathrm{f}} = \frac{1}{1 + 10^{\mathrm{pKa-pH}}}$$
 : الدينا

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}} = \frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}\left[H_{3}O^{+}\right]_{f}$$

و لدينا أيضا:

$$\tau_f = \frac{x_f}{x_{max}} \rightarrow x_f = \tau_f.x_{max}$$

و باعتبار التفاعل تام:

$$CV$$
 -  $x_{max} = 0 \rightarrow x_{max} = CV \rightarrow x_f = \tau_f.CV$ 

- اعتمادا على جدول التقدم:

$$\bullet \left[ CH_3COO^{-} \right]_f = \frac{n_f \left( CH_3COO^{-} \right)}{V} = \frac{x_f}{V} = \frac{\tau_f CV}{V} \rightarrow \left[ CH_3COO^{-} \right]_f = \tau_f C \ .$$

• 
$$\left[ \text{CH}_3 \text{COOH} \right]_f = \frac{n_f \left( \text{CH}_3 \text{COOH} \right)}{V} = \frac{\text{CV} \cdot x_f}{V} = \frac{\text{CV} \cdot \tau_f \text{CV}}{V} = \frac{\text{CV} \left( 1 - \tau_f \right)}{V}$$

$$\rightarrow \left[ \text{CH}_3 \text{COOH} \right]_f = \text{C} \left( 1 - \tau_f \right)$$

ر منه يصبح

$$K_a = \frac{\tau_f C}{C (1 - \tau_f)} [H_3 O^+]_f \rightarrow K_a = \frac{\tau_f}{(1 - \tau_f)} [H_3 O^+]_f$$

$$\log K_{a} = \log(\frac{\tau_{f}}{1 - \tau_{f}}) + \log[H_{3}O^{+}]_{f} \rightarrow -\log K_{a} = -\log(\frac{\tau_{f}}{1 - \tau_{f}}) - \log[H_{3}O^{+}]_{f}$$

$$pK_a = -\log(\frac{\tau_f}{1 - \tau_f}) + pH \rightarrow pK_a = +\log(\frac{1 - \tau_f}{\tau_f}) + pH$$

$$pK_a - pH = log(\frac{1 - \tau_f}{\tau_f}) \ \to \ 10^{pK_a - pH} = \frac{1 - \tau_f}{\tau_f} \ \to \ \frac{1}{\tau_f} - 1 = 10^{pK_a - pH}$$

$$\frac{1}{\tau_f} = 1 \, + \, 10^{pK_a \, \text{-}\, pH} \quad \to \ \tau_f = \frac{1}{1 \, + \, 10^{pK_a \, \text{-}\, pH}}$$

### <u>التمرين (4) :</u>

محلول للنشادر  $NH_3$  حجمه V و تركيزه C مقدرا بالوحدة  $NH_3$ 

1- اكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي الحاصل بين النشادر و الماء .

2- أنشئ جدو لا لتقدم التفاعل الكيميائي السابق .

3- اعتمادا على جدول التقدم أثبت أن :

$$. Ka = \frac{(C - [HO^-]) Ke}{[HO^-]^2} \bullet$$

.  $(NH_4^+/NH_3)$  هو ثابت الحموضة Ka هو شابت ( $Ka = \frac{(1-\tau_f)Ke}{\tau^2 \, C}$  •

### <u>الأجوبة :</u>

1- معادلة التفاعل الكيميائي:

$$NH_3 + H_2O = NH_4^+ + HO^-$$

### 2- جدول التقدم:

| الحالة   | التقدم                    | NH <sub>3</sub>     | + H <sub>2</sub> O | $=$ $NH_4^+$              | + HO <sup>-</sup>         |
|----------|---------------------------|---------------------|--------------------|---------------------------|---------------------------|
| ابتدائية | x = 0                     | $n_{0b} = CV$       | بزيادة             | 0                         | 0                         |
| انتقالية | X                         | CV - x              | بزيادة             | X                         | X                         |
| نهائية   | $\mathbf{x}_{\mathbf{f}}$ | CV - x <sub>f</sub> | بزيادة             | $\mathbf{x}_{\mathrm{f}}$ | $\mathbf{x}_{\mathrm{f}}$ |

$$\underline{:} [NH_4^+]_f = [HO^-]_f$$
 يُبات  $\bullet$  -3

اعتمادا على جدول التقدم:

• 
$$[HO^{-}]_{f} = \frac{n_{f}(HO^{-})}{V} = \frac{x_{f}}{V} \rightarrow x_{f} = [HO^{-}]_{f}.V$$

$$\bullet \left[ NH_4^+ \right]_f = \frac{x_f}{V} = \frac{\left[ HO^- \right]_f \cdot V}{V} \rightarrow \left[ NH_4^+ \right]_f = \left[ HO^- \right]_f$$

$$\underbrace{[NH_3]_f = C - [HO^-]_f}_{\text{Ender of the large of the large}}$$
: اعتمادا على جدول التقدم:

• 
$$[HO^-]_f = \frac{n_f (HO^-)}{V} = \frac{x_f}{V} \rightarrow x_f = [HO^-]_f . V$$

$$\bullet \left[ \mathrm{NH_3} \right]_{\mathrm{f}} = \frac{\mathrm{CV} - \mathrm{x_f}}{\mathrm{V}} = \frac{\mathrm{CV} - \left[ \mathrm{HO}^{-} \right]_{\mathrm{f}} \cdot \mathrm{V}}{\mathrm{V}} = \frac{\mathrm{V} \left( \mathrm{C} - \left[ \mathrm{HO}^{-} \right]_{\mathrm{f}} \right)}{\mathrm{V}} \quad \to \quad \left[ \mathrm{NH_3} \right]_{\mathrm{f}} = \mathrm{C} - \left[ \mathrm{HO}^{-} \right]_{\mathrm{f}}$$

$$\underline{\tau}_{\mathrm{f}} = \frac{\left[\mathrm{HO}^{\text{-}}\right]}{\mathrm{C}}$$
ندينا ·

$$\tau_{f} = \frac{x_{f}}{x_{max}}$$

اعتمادا على جدول التقدم:

$$[HO^{-}]_{f} = \frac{n_{f}(HO^{-})}{V} = \frac{x_{f}}{V} \rightarrow x_{f} = [HO^{-}]_{f}.V$$

بفرض أن التفاعل تام يكون:

$$CV - x_{max} = 0 \rightarrow x_{max} = CV$$

بالتعويض في عبارة τ<sub>f</sub> :

$$\tau_f = \frac{\left[HO^{\text{-}}\right]_f V}{CV} \ \to \ \tau_f = \frac{\left[HO^{\text{-}}\right]_f}{C}$$

: (باهمال التشرد الذاتي للماء) 
$$\left[ \mathrm{HO}^{\mathrm{-}} \right]_{\mathrm{f}} = \frac{\sigma_{\mathrm{f}}}{\lambda (\mathrm{NH_4}^+) + \lambda (\mathrm{HO}^{\mathrm{-}})}$$

محلول النشادر يحتوي على الشوارد  $\frac{1}{100} \cdot \frac{1}{100}$  بالإضافة إلى الشوراد  $\frac{1}{100} \cdot \frac{1}{100}$  التي إهمات بسبب إهمال التفكك الشاردي للماء ، لذا يكون :

$$\sigma_f = \lambda (NH_4^+) \left[ NH_4^+ \right]_f + \lambda (HO^-) \left[ HO^- \right]_f$$

اعتمادا على جدول التقدم:

$$\bullet \left[ HO^{-} \right]_{f} = \frac{n_{f} \left( HO^{-} \right)}{V} = \frac{x_{f}}{V} \rightarrow x_{f} = \left[ HO^{-} \right]_{f}.V$$

$$\bullet \left[ NH_4^+ \right]_f = \frac{x_f}{V} = \frac{\left[ HO^- \right]_f . V}{V} \rightarrow \left[ NH_4^+ \right]_f = \left[ HO^- \right]_f$$

$$\begin{split} &\sigma_{f} = \lambda(NH_{4}^{+}) \left[HO^{-}\right]_{f} + \lambda(HO^{-}) \left[HO^{-}\right]_{f} \\ &\sigma_{f} = \left(\lambda(NH_{4}^{+}) + \lambda(HO^{-})\right) \left[HO^{-}\right]_{f} \quad \rightarrow \quad \left[HO^{-}\right]_{f} = \frac{\sigma_{f}}{\lambda(NH_{4}^{+}) + \lambda(HO^{-})} \end{split}$$

• 
$$Ka = \frac{[NH_3]_f [H_3O^+]_f}{[NH_4^+]_f}$$

و اعتمادا على جدول التقدم:

• 
$$[HO^-]_f = \frac{x_f}{V} \rightarrow [HO^-]_f = [HO^-]_f . V$$

• 
$$\left[\mathrm{NH_3}\right]_\mathrm{f} = \frac{\mathrm{CV} - \mathrm{x_f}}{\mathrm{V}} = \frac{\mathrm{CV} - \left[\mathrm{HO}^-\right]_\mathrm{f} \cdot \mathrm{V}}{\mathrm{V}} = \frac{\mathrm{V} \left(\mathrm{C} - \left[\mathrm{HO}^-\right]_\mathrm{f}\right)}{\mathrm{V}} \rightarrow \left[\mathrm{NH_3}\right]_\mathrm{f} = \mathrm{C} - \left[\mathrm{HO}^-\right]_\mathrm{f}$$
 : Ka بالتعويض في عبارة

$$Ka = \frac{(C - [HO^{-}]_{f}) \cdot [HO^{-}]_{f}}{[HO^{-}]_{f}} \rightarrow Ka = \frac{(C - [HO^{-}]_{f}) Ke}{[HO^{-}]_{f}}$$

$$Ka = \frac{[NH_3]_f [H_3O^+]_f}{[NH_4^+]_f}$$

و لدينا:

$$\tau_f = \frac{x_f}{x_{max}} \quad {\rightarrow} \ \, x_f = \tau_f.x_{max}$$

و بفرض أن التفاعل تام:

$$CV - x_{max} = 0 \rightarrow x_{max} = CV \rightarrow x_f = \tau_f CV$$

- اعتمادا على جدول التقدم:

• 
$$[NH_3] = \frac{CV - x_f}{V} = \frac{CV - \tau_f CV}{V} = \frac{CV (1 - \tau_f)}{V} = C (1 - \tau_f)$$

$$[HO^{-}] = \frac{x_f}{V} = \frac{\tau_f CV}{V} = \tau_f . C$$

$$\bullet \left[ H_3 O^+ \right]_f = \frac{Ke}{\left[ HO^- \right]_f} = \frac{Ke}{\tau_f C}$$

بالتعويض في عبارة Ka نجد:

$$Ka = \frac{C(1-\tau_f).\frac{Ke}{\tau_f C}}{\tau_f C} \rightarrow Ka = \frac{(1-\tau_f).Ke}{\tau_f^2.C}$$

## الصفة الحمضية و الأساسية في محلول مائي

### • العلاقة بين الـ pH و الـ pKa:

$$\begin{split} K_{a} &= \frac{\left[H_{3}O^{+}\right]_{f}\left[\text{wlwi}\right]_{f}}{\left[\text{cond}\right]_{f}} \rightarrow -\log K_{a} = -\log \left(\frac{\left[H_{3}O^{+}\right]_{f}\left[\text{wlwi}\right]_{f}}{\left[\text{cond}\right]_{f}}\right) \\ & \log K_{a} = \log \left[H_{3}O^{+}\right]_{f} + \log \frac{\left[\text{wlwi}\right]_{f}}{\left[\text{cond}\right]_{f}} \\ & -\log K_{a} = -\log \left[H_{3}O^{+}\right]_{f} - \log \frac{\left[\text{wlwi}\right]_{f}}{\left[\text{cond}\right]_{f}} \\ & pKa = pH - \log \frac{\left[\text{wlwi}\right]_{f}}{\left[\text{cond}\right]_{f}} \end{split}$$

### ● مجالات تغلب الصفة الحمضية أو الأساسية لثنائية:

- يتغلب الحمض HA على الأساس المرافق A (صفة حمضية غالبة أو سائدة ) عندما يكون :

$$[HA]_f > [A^-]_f$$

في هذه الحالة يمكن كتابة:

$$\begin{split} &\left[A^{\text{-}}\right]_{\!\!f} < \left[HA\right]_{\!\!f} \\ &\frac{\left[A^{\text{-}}\right]_{\!\!f}}{\left[HA\right]_{\!\!f}} < 1 \ \rightarrow \ \log \frac{\left[A^{\text{-}}\right]_{\!\!f}}{\left[HA\right]_{\!\!f}} < \log 1 \ \rightarrow \ \log \frac{\left[A^{\text{-}}\right]_{\!\!f}}{\left[HA\right]_{\!\!f}} < 0 \end{split}$$

نضيف للطرفين pKa:

$$pKa + \frac{\left[A^{-}\right]_{f}}{\left[HA\right]_{f}} < pKa$$

- يتغلب الأساس على حمضه المرافق (صفة أساسية غالبة أو سائدة ) عندما يكون :

$$\left[A^{-}\right]_{f} > \left[HA\right]_{f}$$

و باتباع نفس الخطوات السابقة ، نجد:

- لا يكون أحد من الأساس أو الحمض غالبا (لا توجد صفة غالبة أو سائدة ) إذا تحقق :

$$[HA]_f = [A^-]_f$$

و باتباع نفس الخطوات السابقة ، نجد:

$$pH = pKa$$

### ๑ مخطط توزيع الصفة الغالبة :

- يعبر على الصفة الحمضية أو الأساسية الغالبة (السائدة) بنسبة مئوية معرفة كما يلي :

ملاحظة : في محلول حمضي أو أساسي (ليس مزيج) تركيزه المولي C يكون : --------

$$\left[ \left[ \text{ الساس} \right]_{\mathrm{f}} + \left[ \text{ الساس} \right]_{\mathrm{f}} = \mathrm{C} \right]$$

- لمعرفة الصفة الغالبة لثنائية (أساس/ حمض) يستعمل عادة مخطط يدعى مخطط الصفة الغالبة فهو يبرز تطور النسبة المئوية للصفة الحمضية و النسبة المئوية للصفة الأساسية بدلالة الـ pH بحيث تقدر هذه النسب مئويا

## مثا<u>ل:</u>

عند معايرة محلول حمض الايثانويك CH3COOH بمحلول الصود NaOH ، يتفاعل حمض الايثانيوك نسبة الصفة الحمضية  $CH_3COO^-$  ، يؤدي هذا إلى تتناقص نسبة الصفة الحمضية «CH<sub>3</sub>COOH في الوسط التفاعلي و تزايد نسبة الصفة الأساسية «CH<sub>3</sub>COO في نفس الوسط التفاعلي كما مبين في الشكل التالي:



- عند تقاطع المنحنيين:

$$50\% = \%$$
 الأساس =  $50\%$  الأساس  $\int_{f} = [$  مصن $\int_{f}$   $pH = pKa$ 

### • تطبيق على الكاشف الملون:

- الكاشف الملون عبارة عن حمض ضعيف لونه عندما تكون الصفة الحمضية غالبة يختلف على لونه عندما تكون الصفة الأساسية غالبة .
  - نرمز لكاشف الملون (الحمض) بـ HIn و لأساسه المرافق بـ In.
    - ينحل الكاشف الملون HIn في الماء وفق المعادلة:

$$Hln_{(aq)} + H_2O_{(\ell)} = H_3O^+_{(aq)} + ln^-$$

- نرمز لثابت الحموضة للثنائية (-Hln/ln) بالرمز Ki و يكون :

$$Ki = \frac{\left[H_3O^+\right]_f \left[ln^-\right]_f}{\left[H ln\right]_f}$$

- يمكن كتابة:

$$pH = pKi + log \frac{\left[ ln^{-} \right]_{f}}{\left[ H ln \right]_{f}}$$

- نقبل بأن الكاشف الملون يأخذ لونه الحامضي أي لون HIn ، إذا كان :

 $[HIn]_f > 10[In^-]_f$ 

$$\begin{split} &\frac{\left[HIn\right]_{f}}{\left[In^{-}\right]_{f}} > 10\\ &\frac{\left[In^{-}\right]_{f}}{\left[HIn\right]_{f}} < \frac{1}{10}\\ &\log\frac{\left[In^{-}\right]_{f}}{\left[HIn\right]_{f}} < \log\frac{1}{10}\\ &\log\frac{\left[In^{-}\right]_{f}}{\left[HIn\right]_{f}} < -1\\ &pKi + \log\frac{\left[In^{-}\right]_{f}}{\left[HIn\right]_{f}} < pKi -1 \end{split}$$

$$pH < pKi - 1$$

و بالمثل الكاشف الملون يأخذ لونه الأساسي أي لون  $\operatorname{In}^{-}$  ، إذا كان :

$$\begin{split} &\left[In^{\text{-}}\right]_{f} > 10 \left[HIn\right]_{f} \\ &\left[In^{\text{-}}\right]_{f} \\ &100 \\ &\log \frac{\left[In^{\text{-}}\right]_{f}}{\left[HIn\right]_{f}} > \log 10 \\ &\log \frac{\left[In^{\text{-}}\right]_{f}}{\left[HIn\right]_{f}} > 1 \\ &pKi + \log \frac{\left[In^{\text{-}}\right]_{f}}{\left[HIn\right]_{f}} > pKi + 1 \end{split}$$

$$pH > pKi + 1$$

- تسمى منطقة الـ pH المحصورة بين pKi-1) ، pKi-1) ، pKi-1) بمنطقة التحول ، و من أجل pKa=pH يأخذ الكاشف لوينته الحساسة .

- يمكن تلخيص ما سبق في ما يلي:



نتيجة : - لكل كاشف ملون مجال تغير لوني كما مبين في المثال التالي :



### - أمثلة أخرى:

|                | الكاشف       | الهيليالتين | الفينول فتالين |  |
|----------------|--------------|-------------|----------------|--|
| مجال تغير لونه |              | 4.4 - 3.1   | 10 - 8.2       |  |
| 5              | لون HIn      | بر تقالي    | عديم اللون     |  |
| لون<br>كاشف    | منطقة التحول | أحمر        | عديم اللون     |  |
|                | لون ⁻In      | أصفر        | بنفسجي         |  |

## <u>المعايرة pH مترية</u>

- تهدف المعايرة حمض- أساس إلى تعيين التركيز المولى لمحلول حمضى (أو محلول أساسى) مجهول التركيز بواسطة محلول أساسى (أو حمضى) معلوم التركيز .

### • التركيبة التجريبية و الفطوات الهتبعة :

- يوضح الشكل التالي التجهيز المستعمل للمعايرة الـ pH مترية و المتكون أساسا من كأس بيشر يحتوي المحلول المراد معايرة ، سحاحة تحتوي على المحلول المستعمل في المعايرة ، مخلاط مغناطيسي أو رجاج يستعمل لخلط المزيج المتحصل عليه في كأس بيشر و كذا جهاز قياس الـ pH .



- نضع محلول معاير في البيشر ، و ليكن حجما  $V_a$  من المحلول الحمضي تركيزه المولي  $C_a$  ثم نضيف له الماء المقطر حتى يسهل غمر مسبار جهاز pH متر في المحلول .

- نسكب تدريجيا المحلول الأساسي الموجود بالسحاحة على المحلول الحمضي الموجود بالبيشر ، و نسجل في كل مرة قيمة pH المزيج من خلال جهاز pH متر ، ندون النتائج في جدول ، ثم نرسم البيان pH خلال جهاز  $f(V_b)$  ، الذي يمثل تغيرات pH المزيج بدلالة حجم المحلول الأساسي المضاف pH ، و يستغل هذا البيان لمعرفة كيفية تطور pH الوسط التفاعلي .

### • نقطة التكافؤ :

- عندما تتفاعل كل كمية مادة النوع الكيميائي المعاير مع كل كمية مادة النوع الكيميائي المعايرة في عندما يكون التفاعل المنمذج للمعايرة في

الشروط الستوكيومترية ، تكون المعايرة قد بلغت نقطة التكافؤ ، و في حالة معايرة حمض أحادي بأساس أحادي أو العكس يكون :

$$C_1V_1 = C_2V_{2E}$$

( أحادي يعني يتخلى أو يثبت بروتون  $H^+$  لا أكثر )

- لتعيين نقطة التكافؤ E في المعايرة pH مترية في المنحنى  $pH=f(V_2)$  ، نتبع طريقة المماسين المتوازيين كما مبين في الشكل التالى :



- في حالة المعايرة اللونية ، تبلغ المعايرة نقطة التكافؤ عندما يتغير لون الكاشف المناسب المضاف عند بداية المعايرة.
- في حالة المعايرة عن طريق قياس الناقلية النوعية σ تبلغ المعايرة نقطة التكافؤ عندما تبلغ الناقلية النوعية قيمة حدية كما مبين في الشكل التالي :



- يمكن باستعمال بعض البرمجيات للحصول على المنحنى  $g(V) = \frac{dpH}{dV}$  انطلاقا من منحنى المعايرة pH = f(V) - pH = f(V)



- عند التكافؤ تبلغ القيمة  $g(V)=rac{dpH}{dV}$  قيمة حدية (تعريف نقطة الإنعطاف) ، فمن الشكل يكون الحجم المضاف عند التكافؤ في هذا المثال هو  $V_{\rm E}=12.4~{
m mL}$  عند التكافؤ في هذا المثال هو

### نقطة نصف التكافؤ :

عند نقطة نصف التكافؤ في حالة معايرة حمض ضعيف أو أساس ضعيف تتفاعل نصف الكمية الابتدائية للنوع الكيميائي المعاير ، ففي حالة معايرة حمض الإيثانويك مثلا ، تتفاعل عند نصف التكافؤ نصف الكمية الابتدائية لحمض الايثانويك  $CH_3COOH$  متحولة إلى أساسه المرافق  $CH_3COO$  ، و تتبقى نصف الكمية الثاني في المحلول على حالها ، و عليه عند نصف التكافؤ يكون :

$$\left[ \text{CH}_{3}\text{COOH} \right]_{\text{f}} = \left[ \text{CH}_{3}\text{COO}^{\text{-}} \right]_{\text{f}}$$

- عندما تتفاعل كل كمية مادة النوع الكيميائي المعاير و ليكن  ${
m CH_3COOH}$  مثلاً عند التكافؤ ، يكون الحجم المضاف من المحلول المعاير هو  ${
m V}_{2E}$  ، و عليه عند نصف التكافؤ أين تتفاعل نصف الكمية يكون الحجم المضاف من المحلول المعاير مساوي لنصف الحجم اللازم للتكافؤ أي ، عند نصف التكافؤ يكون :

$$V_2 = \frac{V_{2E}}{2}$$

، 
$$pH = pKa + log \frac{\left[ CH_{3}COO^{-} \right]_{f}}{\left[ CH_{3}COOH \right]_{f}}$$
: دينا العلاقة التالية

: يمكن القول أن عند نصف التكافؤ يكون ( $\mathrm{CH_3COOH}_{\mathrm{f}}^{\mathrm{l}} = [\mathrm{CH_3COO}^{\mathrm{-}}]_{\mathrm{f}}^{\mathrm{l}}$  ) يمكن القول أن عند نصف التكافؤ يكون

$$pH = pKa(CH_3COOH/CH_3COO^{-})$$

و بصفة عامة تكون إحداثيي نقطة نصف التكافؤ في المنحنى  $pH = f(V_2)$  هي :

$$V_2 = \frac{V_{2E}}{2}, pH = pKa$$

### الكاشف الهناسب للهعايرة :

لكل كاشف ملون مجال تغير لون كما ذكرنا سابقا ، و الكاشف المناسب للمعايرة هو الكاشف الذي يغير لونه في منطقة التكافؤ ، أي يجب أن يكون مجال تغير لونه يتضمن قيمة الـ pH عند التكافؤ .

مثال-1: معايرة محلول حمض كلور الهيدروجين بدلالة محلول هيدروكسيد الصوديوم:

 $C_a$  من محلول حمض كلور الهيدروجين HCl تركيزه المولي  $V_a = 10~\text{mL}$  تركيزه المولي



ثم نضيف له تدريجيا بواسطة السحاحة محلول هيدروكسيد  $C_b = 10^{-2} \quad mol.L^{-1}$  تركيزه pH قيمة pH قيمة pH قيمة بواسطة مقياس الد pH قيمة المزيج الموافق ، ندون النتائج في جدول ثم نرسم المنحنى  $pH = f(V_b)$  .

- معادلة تفاعل المنمذج للمعايرة هي : أ

$$H_3O^+_{(aq)} + HO^-_{(aq)} = 2H_2O_{(\ell)}$$

- بعد تحديد نقطة التكافؤ بطريقة المماسات نجد:

- حجم محلول هيدروكسيد الصوديوم (الصود) اللازم  $V_E = 10 \; mL$  لبلوغ التكافؤ هو

- . pH = 7 المزيج عند التكافؤ هو pH = 7 ، هذا يعني أن المزيج عند التكافؤ يكون معتدل pH
- الكاشف المناسب لهذه المعايرة هو: أزرق البروموتيمول الأن القيمة pH = 7 تنتمي لمجال تغير لونه.

### مثال-2: معايرة محلول هيدروكسيد الصوديوم بواسطة محلول كلور الهيدروجين:

- نضع في بيشر بواسطة ماصة حجم  $V_b = 10 \; \mathrm{mL}$  من محلول هيدروكسيد الصوديوم تركيزه المولي  $C_b$  ثم نضيف له تدريجيا بواسطة السحاحة مُحلول كلور الهيدروجين تركيزه  $m C_a = 10^{ ext{-}2}~mol.L^{ ext{-}1}$  و نقيس في كلّ إضافة بو اسطة مقياس الـ pH قيمة pH المزيج الموافق ، ندون النتائج في جدول ثم نرسم المنحنى  $pH = f(V_b)$  فنحصل على البيان الموضح في (الشكل) .



- بعد تحديد نقطة التكافؤ بطريقة المماسات نجد:
- حجم محلول كلور الهيدروجين اللازم لبلوغ التكافؤ هو:  $V_E = 10 \text{ mL}$
- المزيج عند التكافؤ هو pH = 7 هذا يعني أن pHالمزيج عند التكافؤ يكون معتدل.
- الكاشف المناسب لهذه المعايرة هو : أزرق البروموتيمول لأن القيمة pH = 7 تنتمى لمجال تغير لونه



### مثال-3: (معايرة محلول حمض الإيثانويك بواسطة محلول الصود)

نضع في بيشر بواسطة ماصة حجم  $m V_a = 10~mL$  من محلول حمض الإيثانويك تركيزه المولي  $m C_a$  ثم نضيف له تدريجياً بواسطة السحاحة محلول هيدروكسيد الصوديوم تركيزه  ${
m C_b}=10^{-2}~{
m mol.L}^{-1}$  و نقيس في كل إضافة بو اسطة مقياس الـ pH قيمة pH المزيج الموافق ، ندون النتائج في جدول ثم نرسم المنحنى  $pH = f(V_b)$  فنحصل على البيان الموضح في (الشكل)



- البيان في هذه التجربة يحتوي على نقطتي انعطاف الأولى تقع في منتصف المجال  $-10 \, \mathrm{mL}$  ، و تسمى نقطة نصف التكافؤ ، و الثانية في منتصف منطقة التكافؤ و هي نقطة التكافؤ .
  - معادلة تفاعل المنمذج للمعايرة هي:

$$CH_3COOH_{(aq)}\;HO^{\text{-}}_{(aq)}\;=CH_3COO^{\text{-}}_{(aq)}+H_2O_{(\ell)}$$

- بعد تحديد نقطة التكافؤ بطريقة المماسات نجد:
- .  $V_E = 10 \; mL$  : هو الكرزم لبلوغ التكافؤ هو الصود اللازم المرابع المحاول الصود اللازم المرابع المحاول الم
- pH المزيج عند التكافؤ هو pH=8.2 ، هذا يعنى أن المزيج عند التكافؤ يكون أساسيا
- الكاشف المناسب لهذه المعايرة هو : الفينول فتالين ، لأن القيمة pH=8.2 تنتمي لمجال تغير لونه .
  - بعد تحديد نقطة نصف التكافؤ نجد:
  - $pKa(CH_3COOH/CH_3COO^{-}) = pH = 4.8 \bullet$

### مثال-4: معايرة محلول النشادر بمحلول حمض كلور الهيدروجين:

 $\overline{V_b}$  نضع في بيشر بواسطة ماصة حجم  $\overline{V_b}$  10 mL من محلول النشادر تركيزه  $\overline{C_b}$  ثم نضيف له تدريجيا بواسطة  $\overline{V_b}$  السحاحة محلول حمض كلور الهيدروجين HCl تركيزه  $\overline{C_a}$  ثم نقيس في كل إضافة بواسطة مقياس الـ  $\overline{pH}$  قيمة  $\overline{pH}$  المزيج الموافق ، ندون النتائج في جدول ، و عندما نرسم المنحنى الممثل لتغيرات الـ  $\overline{pH}$  بدلالة حجم حمض كلور الهيدروجين المضاف نحصل على البيان الموضح في (الشكل) .



- معادلة تفاعل المنمذج للمعايرة هي :

$$NH_{3(aq)} + H_3O^+_{(aq)} = NH_4^{\phantom{4}}_{(aq)} + H_2O_{(\ell)}$$

### - اعتمادا على البيان :

- حجم محلول حمض كلور الهيدروجين اللازم لبلوغ التكافؤ هو :  $V_b = 10 \; \text{mL}$
- pH المزيج هند التكافؤ هو pH=5.8 ، هذا يعني أن المزيج عند التكافؤ يكون حمضيا .
  - $pKa(NH_4^+/NH_3) = 9.2$
- الكاشف المناسب لهذه المعايرة هو : أحمر الميثيل ، لأن القيمة pH = 9.2 تنتمي لمجال تغير لون هذا الكاشف [6.2 4.4] .

### <u>التمرين (5) :</u>

عند الدرجة  $V_1=20~\text{mL}$  و تركيزه الإبتدائي  $V_1=20~\text{mL}$  و تركيزه الإبتدائي  $C_1=0.1~\text{mol/L}$  نسجل قيمة  $C_1=0.1~\text{mol/L}$  المربحة مصلولا لحمض كلور الهيدروجين تركيزه الإبتدائي ثم نسكب تدريجيا الحمض على الأساس مع الرج المستمر و نقيس PH الوسط التفاعلي المتجانس من أجل كل حجم  $V_2$  مضاف من محلول كلور الهيدروجين .

نسجل النتائج في جدول ، ثم نرسم البيان  $pH = f(V_2)$  الذي يعبر عن تغيرات pH الوسط التفاعلي بدلالة حجم الحمض المضاف ، فنحصل على البيان الموضح في الشكل الأتى :



- 1- أكتب معادلة التفاعل المنمذج للمعايرة .
- 2- أذكر الثنائيات (أساس/حمض) الداخلة في التفاعل.
- 3- استنتج من البيان إحداثيي كل من نقطة التكافؤ ، و نصف التكافؤ و كذا قيمة pH محلول النشادر الذي قمنا بمعايرته .
  - 4- من النتائج المتحصل عليها:
  - أ- ما هي طبيعة الوسط التفاعلي عند التكافؤ .

ب- من بين الكواشف التي تضمنها الجدول التالي ما هو أنسب كاشف لهذه المعايرة؟

| الكاشف            | أزرق البروموتيمول | الفينول فتالين | أحمر الميثيل |
|-------------------|-------------------|----------------|--------------|
| PH مجال تغير لونه | 6.2 - 7.6         | 8.2 - 9.5      | 4.2 - 6.0    |

 $C_2$ جـ أوجد التركيز

 $\cdot$  NH<sub>4</sub>+/ NH<sub>3</sub> للثنائية Ka الحموضة الحموضة

### الأجوبة :

1- معادلة التفاعل الحادث:

$$NH_3 + H_3O^+ = NH_4^+ + H_2O$$

2- الثنائيات (أساس/حمض) الداخلة في التفاعل:

 $(NH_4^+/NH_3)$  ,  $(H_3O^+/H_2O)$ 

3- إحداثيي نقطة التكافؤ:

 $(V_{2E} = 10 \text{ mL}, pH = 5.8)$ 

إحداثي نقطة نقطة نصف التكافؤ

 $(V_2 = 5 \text{ mL}, pH = 9.2)$ 

pH = 10.6: هو محلول النشادر قبل المعايرة هو pH = 10.6

4-أ- طبيعة الوسط التفاعلي عند التكافؤ: pH = 5.8 < 7 ، هذا يعني أن الوسط التفاعلي (المزيج) عند التكافؤ ذو طبيعة حمضية .

ب- الكاشف المناسب لهذه المعايرة هو أحمّر الميثيل لأن مجال تغير لونه يتضمن قيمة الـ pH عند التكافؤ . (pH = 5.8)

جــ التركيز <u>C<sub>2</sub> :</u> عند التكافؤ :

$$C_1V_1 = C_2V_{2E}$$

$$C_2 = \frac{C_1V_1}{V_{2E}}$$

$$C_2 = \frac{0.1 \cdot 20 \cdot 10^{-3}}{10 \cdot 10^{-3}} = 0.2 \text{ mol/L}$$

 $(NH_4^+/NH_3)$  للثنائية (Ka الموضة

عند نصف التكافؤ: pH = pKa ومنه:

 $pKa(NH_4^+/NH_3) = 9.2 \rightarrow Ka = 10^{-9.2} = 6.31 \cdot 10^{-10}$ 

### تمارين مقترحة

### التمرين (6): (بكالوريا 2008 – رياضيات) (الحل المفصل: تمرين مقترح 08 على الموقع)

عند عند .  $C_1=1.0$  .  $10^{-2}$  mol/L تركيزه المولى  $C_6H_5$ -COOH ناخذ محلو لا مائيا ( $S_1$ ) لحمض البنزويك  $\sigma = 0.86 \cdot 10^{-2} \, \mathrm{S.m^{-1}}$  التوازن في الدرجة  $25^{\circ} \mathrm{C}$  ناقليته النوعية فنجدها

- 1- أكتب معادلة التفاعل المنمذج لتحول حمض البنزويك في الماء .
  - 2- أنشئ جدولا لتقدم التفاعل .
- $_{1}$  عند التوازن  $_{2}$  عند التوازن  $_{3}$  عند التوازن  $_{2}$

 $C_6H_5COO^-$  عطى الناقلية المولية للشاردة  $H_3O^+$  و الشاردة  $H_3O^+$  و الشاردة  $C_6H_5COO^-$  :  $\lambda(H_3O^+)=35.0\cdot 10^{-3}~\mathrm{S.m}^2.\mathrm{mol}^{-1}$  ,  $\lambda(C_6H_5COO^-)=3.24\cdot 10^{-3}~\mathrm{S.m}^2.\mathrm{mol}^{-1}$ الذاتي للماء) .

- 4- أو  $\overline{q}$  بنسبة النهائية  $au_{1f}$  لتقدم التفاعل ماذا تستنتج
  - $K_1$  أحسب ثابت التوازن الكيميائي .  $K_1$
- و له  $C_1=C_2$  و المولى  $C_1=C_2$  لحمض الساليسيليك ، الذي يمكن أن نرمز له  $C_1=C_2$  ، تركيزه المولى  $C_1=C_2$ pH = 3.2 في الدرجة
  - ا أوجد النّسبة النهائية  $au_{2f}$  لتقدم تفاعل حمض الساليسيليك مع الماء  $au_{2f}$ 
    - 2- قارن بين  $au_{1f}$  و  $au_{2f}$  . استنتج أي الحمضين أقوى .

### أجوبة مختصرة :

- .  $C_6H_5COOH_{(aq)} + H_2O_{(\ell)} = C_6H_5COO_{(aq)}^- + H_3O_{(aq)}^+$  (1
  - 2) جدول التقدم:

| الحالة   | التقدم           | C <sub>6</sub> H <sub>5</sub> COOH + | H <sub>2</sub> O | $= C_6H_5COC$ | $O^- + H_3O^+$ |
|----------|------------------|--------------------------------------|------------------|---------------|----------------|
| ابتدائية | $\mathbf{x} = 0$ | $n_0 = CV$                           | بزيادة           | 0             | 0              |
| انتقالية | X                | CV - x                               | بزيادة           | X             | X              |
| نهائية   | X <sub>f</sub>   | $CV - x_{\rm f}$                     | بزيادة           | $X_{f}$       | $X_{f}$        |

$$\left[ H_3 O^+ \right]_f = \frac{\delta}{\lambda (C_6 H_5 COO^-) + \lambda (H_3 O^+)} = 0.225 \text{ mol/m}^3 = 2.25.10^{-4} \text{ mol/L}$$
 (3)

$$\left[ \text{HO}^{-} \right]_{\text{f}} = 4.44.10^{-11} \text{ mol/L} \quad \left[ \text{C}_{6} \text{H}_{5} \text{COO}^{-} \right]_{\text{f}} = 2.25.10^{-4} \text{mol/L}$$

$$[C_6H_5COOH]_f = 9.8.10^{-3} \text{ mol/L}$$

نه تفاعل دونا الحمض  $c_6 H_5 COOH$  في الماء هو تفاعل ،  $au_{\rm fl} < 1$  ،  $au_{\rm fl} = 2.25.10^{-2}$  (2.25%) (4 غير تام و أن هذا الحمض  $C_6H_5COOH$  ضعيف .

$$K = 5.17.10^{-6} (5)$$

من تفكك أكبر من تفكك حمض الساليسيك تفكك أكبر من تفكك حمض  $au_{\rm f2} > au_{\rm f1}$  ،  $au_{\rm f2} = 6.30.10^{-2}$  (6.3%) (1 -II البنزويك و عليه فحمض الساليسيك أقوى من حمض البنزويك

### التمرين (7): ( بكالوريا 2012 - علوم تجريبية ) (الحل المفصل: تمرين مقترح 13 على الموقع)

تؤخذ كل المحاليل في 20°C.

نحضر محلو لا S حجمه M عند كتلة M من حمض البنزويك النقى  $C_6H_5COOH$  في الماء .

1- اكتب معادلة انحلال حمض البنزويك في الماء .

2- أعط عبارة ثابت الحموضة Ka للثنائية أساس/حمض.

 $(\mathrm{Na}^+_{(\mathrm{aq})} + \mathrm{HO}^-_{(\mathrm{aq})})$  من محلول حمض البنزويك بمحلول هيدروكسيد الصوديوم  $\mathrm{V}_a = 20~\mathrm{mL}$  من محلول حمض البنزويك بمحلول المناوي و  $\mathrm{C}_b = 0.2~\mathrm{mol.L}^{-1}$  يعطي تطور pH المزيج بدلالة حجم الصود المضاف  $\mathrm{V}_b$ :



أ- اكتب معادلة تفاعل المعايرة .

ب- عين إحداثيات النقطتين E و 'E من (الشكل-2) . ما مدلولهما الكيميائي .

جـ جد التركيز المولي  $C_a$  لحمض البنزويك

د- احسب الكتلة m لحمض البنزويك النقي المستعملة لتحضير المحلول S .

.  $C_6HCOOH_{(aq)}/C_6H_5COO^-$  هـ جد قيمة  $K_a$  الثنائية

pH=6.0 عند pH=6.0 ?

 $M(C) = 12 \text{ mol.L}^{-1}$  ،  $M(H) = 1 \text{ g.mol}^{-1}$  ،  $M(O) = 16 \text{ g.mol}^{-1}$ 

### التمرين (8): ( بكالوريا 2013 - علوم تجريبية ) (الحل المفصل: تمرين مقترح 16 على الموقع)

 $C_a$  نعاير حجما :  $V_a = 20 \; mL$  ، تركيزه المولي الابتدائي  $V_a = 20 \; mL$  ، تركيزه المولي الابتدائي بمحلول هيدروكسيد الصوديوم تركيزه المولي :  $C_b = 10^{-1} \; mol.L^{-1}$  ، و حجمه  $V_b$  . النتائج المتحصل عليها مكنت من رسم البيان  $pH = f(V_b)$  .



1- ارسم بشكل تخطيطي التركيب التجريبي للمعايرة.

 $V_{b}(mL)$ 

- 2- بين كيف يمكن تحقيق قياس الـ pH لمحلول .
  - 3- اكتب معادلة تفاعل المعايرة
    - خدد بیانیا :
  - أ- إحداثيتي نقطة التكافؤ E ، ثم احسب أ-
- .  $(C_6H_5COOH_{(aq)}/C_6H_5COO^{-}_{(aq)})$  ب- قيمة الـ pKa للثنائية
- جـ قيمة الـ pH من أجل :  $V_{b}=0$  . بين أن حَمْض البنزويك ضعيف .

### أحوية مختصرة :

- 2) نقوم بمعايرة مقياس الـ pH بوضعه في محلول معلوم قيمة الـ pH مسبقا ، نخرج المسبار من المحلول الخاص ثم نقوم بتنظيفه بالماء المقطر ، نغمس المسبار في المحلول الذي نريد قياس الـ pH لـه ، نرج المحلول بواسطة مخلاط مغناطيسي بحذر حتى لا يلامس المسبار القطعة المغناطيسية ، نضع مقياس الـ pH في وضعية "قياس" ، ثم ننتظر استقرار القيمة المشار إليها ، عند إجراء عدة قياسات متتالية يجب تنظيف المسبار بالماء المقطر بعد كل قياس ،
- .  $C_6H_5O_2H + HO^- = C_6H_5O_2^- + H_2O$  (3 pKa = pH<sub>1/2E</sub> = 4.2 (ب ،  $C_a$  = 9.2 .  $10^{-2}$  mol/L ،  $E(V_{bE}$  = 18.4 mL , pH = 8 ) (أ -4 جـ) pH=2.7 نحسب  $au_{
  m f}$  نجد :  $au_{
  m f}=0.022<1$  نحسب  $au_{
  m f}$  نجد :  $au_{
  m f}=0.022<1$