Bonus Lecture: Solving Systems of Equations

Chris Conlon

September 7, 2020

Grad IO

Basic Setup

Often we are interested in solving a problem like this:

Root Finding f(x) = 0

Optimization $\arg \min_{x} f(x)$.

These problems are related because we find the minimum by setting: $f^{\prime}(x)=0$

Root Finding

Newton's Method for Root Finding

Consider the Taylor series for f(x) approximated around $f(x_0)$:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0) + f''(x_0) \cdot (x - x_0)^2 + o_p(3)$$

Suppose we wanted to find a root of the equation where $f(x^*) = 0$ and solve for x:

$$0 = f(x_0) + f'(x_0) \cdot (x - x_0)$$
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

This gives us an iterative scheme to find x^* :

- 1. Start with some x_k . Calculate $f(x_k), f'(x_k)$
- 2. Update using $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$
- 3. Stop when $|x_{k+1} x_k| < \epsilon_{tol}$.

Halley's Method for Root Finding

Consider the Taylor series for f(x) approximated around $f(x_0)$:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0) + f''(x_0) \cdot (x - x_0)^2 + o_p(3)$$

Now let's consider the second-order approximation:

$$x_{n+1} = x_n - \frac{2f(x_n) f'(x_n)}{2 [f'(x_n)]^2 - f(x_n) f''(x_n)} = x_n - \frac{f(x_n)}{f'(x_n) - \frac{f(x_n)}{f'(x_n)} \frac{f''(x_n)}{2}}$$
$$= x_n - \frac{f(x_n)}{f'(x_n)} \left[1 - \frac{f(x_n)}{f'(x_n)} \cdot \frac{f''(x_n)}{2f'(x_n)} \right]^{-1}$$

- Last equation is useful because we only need to know $f(x_n)/f'(x_n)$ and $f''(x_n)/f'(x_n)$
- If we are lucky $f''(x_n)/f'(x_n)$ is easy to compute or ≈ 0 (Newton's method).

Root Finding: Convergence

How many iterations do we need? This is a tough question to answer.

• However we can consider convergence where f(a) = 0:

$$|x_{n+1} - a| \le K_d * |x_n - a|^d$$

- d=2 (Newton's Method) quadratic convergence (we need f'(x))
- d=3 (Halley's Method) cubic convergence (but we need f''(x))

Root Finding: Fixed Points

Some (not all) equations can be written as f(x) = x or g(x) = 0: f(x) - x = 0.

• In this case we can iterate on the fixed point directly

$$x_{n+1} = f(x_n)$$

- ullet Advantage: we only need to calculate f(x).
- There need not be a unique solution to f(x) = x.
- But... this may or may not actually work.

Contraction Mapping Theorem/ Banach Fixed Point

Consider a set $D \subset \mathbb{R}^n$ and a function $f: D \to \mathbb{R}^n$. Assume

- 1. D is closed (i.e., it contains all limit points of sequences in D)
- 2. $x \in D \Longrightarrow f(x) \in D$
- 3. The mapping g is a contraction on D : There exists q<1 such that

$$\forall x, y \in D: ||f(x) - f(y)|| \le q||x - y||$$

Then

- 1. There exists a unique $x^* \in D$ with $f(x^*) = x^*$
- 2. For any $x^{(0)} \in D$ the fixed point iterates given by $x^{(k+1)} := f\left(x^{(k)}\right)$ converge to x^* as $k \to \infty$
- 3. $x^{(k)}$ satisfies the a-priori error estimate $\left\|x^{(k)} x^*\right\| \leq \frac{q^k}{1-q} \left\|x^{(1)} x^{(0)}\right\|$
- 4. $x^{(k)}$ satisfies the a-posteriori error estimate $||x^{(k)} x^*|| \le \frac{q}{1-q} ||x^{(k)} x^{(k-1)}||$

Some notes

- Not every fixed point relationship is a contraction.
- Iterating on $x_{n+1} = f(x_n)$ will not always lead to f(x) = x or g(x) = 0.
- ullet Convergence rate of fixed point iteration is slow or q-linear.
- \bullet When q is small this will be faster.
- q is sometimes called modulus of contraction mapping.
- A key example of a contraction: value function iteration!

Accelerated Fixed Points: Secant Method

Start with Newton's method and use the finite difference approximation

$$f'(x_{n-1}) \approx \frac{f(x_{n-1}) - f(x_{n-2})}{x_{n-1} - x_{n-2}}$$
$$x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}$$

- ullet This doesn't have the actual $f'(x_n)$ so it isn't quadratically convergent
- Instead is is superlinear with rate $q=\frac{1+\sqrt{5}}{2}=1.618<2$ (Golden Ratio)
- Faster than fixed-point iteration but doesn't require computing $f'(x_n)$.
- Idea: can use past iterations to approximate derivatives and accelerate fixed points.

Accelerated Fixed Points: Anderson (1965) Mixing

Define the residual $r(x_n) = f(x_n) - x_n$. Find weights on previous k residuals:

$$\widehat{\alpha^n} = \arg\min_{\alpha} \left\| \sum_{k=0}^m \alpha_k^n \cdot r_{n-k} \right\| \text{ subject to } \sum_{k=0}^m \alpha_k^n = 1$$

$$x_{n+1} = (1 - \lambda) \sum_{j=0}^m \widehat{\alpha_k^n} \cdot x_{n-k} + \lambda \sum_{j=0}^m \widehat{\alpha_k^n} \cdot f(x_{n-k})$$

- Convex combination of weighted average of: lagged x_{n-k} and lagged $f(x_{n-k})$.
- Variants on this are known as Anderson Mixing or Anderson Acceleration.

Accelerated Fixed Points: SQUAREM (Varadhan and Roland 2008)

Define the residual $r(x_n) = f(x_n) - x_n$ and $v(x_n) = f \circ r(x_n) = f \circ f(x_n) - f(x_n)$.

$$x_{n+1} = x_n$$
 $-2s [f(x_n) - x_n]$ $+s^2 [f \circ f(x_n) - 2f(x_n) + x_n]$
= x_n $-2sr$ $+s^2(v-r)$

Three versions of stepsize:

$$s_1 = \frac{r^t r}{r^t (v - r)}, \quad s_2 = \frac{r^t (v - r)}{(v - r)^t (v - r)}, \quad s_3 = -\sqrt{\frac{r^t r}{(v - r)^t (v - r)}}$$

Idea: use two iterations to construct something more like the quadratic/Halley method. Note: I am hand-waving, don't try to derive this.