

BİÇİMSEL DİLLER VE OTOMATA TEORİSİ

Biçimsel Diller ve Otomata Teorisi

2. Hafta

DR. ÖĞR. ÜYESİ. HÜSEYİN VURAL

Ders İzlencesi

- Finite Automata (Sonlu Otomata)
- Sonlu Otomata Tanımı
- Sonlu Otomata Tasarımı

Sonlu Otomata

• Sonlu otomatlar çok küçük hafızaya sahip modellerdir.

 Çok küçük hafızaya sahip bu modellerin kullanıldığı sistemleri günlük hayatımızda bir çok yerde kullanıyoruz.

Örneğin otomatik açılabilen kapılar.

Sonly Otomata

• Otomatik kapı sisteminin kontrol mekanizması 2 farklı durumda bulunur. **Açık** veya **kapalı**.

Sonlu Otomata

• 4 farklı giriş olabilir.

Sonly Otomata

• Otomatik açılan kapı için durum diyagramı

Sonlu Otomata

Otomatik açılan kapı için durum geçiş tablosu

	Kimse yok	Ön tarafta nesne var	Arka tarafta nesne var	İki tarafta nesne var
Kapalı				
Açık				

Sonly Otomata

Otomatik açılan kapı için durum geçiş tablosu

	Kimse yok	Ön tarafta nesne var	Arka tarafta nesne var	İki tarafta nesne var
Kapalı	Kapalı	Açık	Kapalı	Kapalı
Açık	Kapalı	Açık	Açık	Açık

- Otomatik açılan kapı için 1 bitlik bir hafıza kontrolürü yeterli olacaktır çünkü 1 bit sayesinde 2 durum da hafızada tutulabilir.
- Eğer asansör örneği veya hesap makinesi yapmak istersek 1 bit yeterli olmayacaktır.

- Aşağıdaki şekil M1 otomatasını gösteren durum diyagramıdır.
 - 3 durum içermektedir (q1,q2,q3).
 - q1 başlangıç durumunu, q2 ise kabul durumunu göstermektedir.
 - Bir durumdan diğerine geçişi gösteren oklara geçiş denilmektedir.

- M1 otomatasının 1101 string'ini kabul edip etmeyeceğini inceleyelim.
- Otomat, string'i soldan başlayarak sırasıyla birer birer okur ve en son değeri okuduğunda otomat çıkışı üretilir.

- 1.) 1101 string'i için q1 durumundan başlanacaktır.
- 2.) İlk olarak 1 değeri okunacak ve q2 durumuna geçiş yapılacaktır. q1→ q2
- 3.) Sonraki 1 değeri okunacak ve q2 durumunda kalmaya devam edecektir. q2→ q2

- 1.) Sonraki 0 değeri okunacak ve q3 durumuna geçiş yapılacaktır. q2→ q3
- 2.) Son kalan 1 değeri okunacak ve q2 durumuna geçiş yapılacaktır. q3→ q2
- 3.) String kabul edilecektir çünkü M1 otomatı son olarak q2 durumundadır.

- M1 otomatı aşağıdaki stringleri kabul eder mi?
 - 1,01,11,0101010101
 - 100,0100,1100000,0101000000

- Sonlu Otomata'yı matematiksel notasyonla tanımlamak için farklı özellikler gerekmektedir.
 - Durum kümesi ve bir durumdan diğerine geçişi gösteren giriş değerleri
 - Giriş değerlerini elde etmek için alfabe
 - Geçiş kuralları
 - Başlangıç durumu
 - Kabul durum(ları)

• $M = (Q, \Sigma, \delta, q_0, F)$

- 1.) Q, sonlu durumlar kümesidir. Otomatın bulunabileceği durumları gösterir.
- 2.) Σ, alfabeyi gösterir.
- 3.) $\delta: Q \times \Sigma \to Q$. $\delta(delta)$ geçiş fonksiyonudur
- 4.) q₀ başlangıç durumunu gösterir
- 5.) F, kabul durumlarının kümesini gösterir.

•
$$M1 = (Q, \Sigma, \delta, q_0, F)$$

- Q = $\{q_1, q_2, q_3\}$
- $\Sigma = \{0,1\}$
- q_1 = başlangıç durumu
- $F = \{ q_2 \}$

- $M1 = (Q, \Sigma, \delta, q_0, F)$
- δ geçiş fonksiyonu şu şekildedir

	0	1
\mathbf{q}_1	q_1	Q_2
q_{2}	q_3	Q_2
q_3	q_2	q_2

Sonlu Otomata

• Eğer M otomatının kabul ettiği tüm stringlerin kümesine A dersek o zaman M otomatının diline A denilir.

• L(M) = A

• A = {w | w en az bir tane 1 içermelidir veya son 1'den sonra gelen sıfırların sayısı çift olmalıdır.

 Eğer bir otomatın kabul ettiği her hangi bir string yoksa o zaman bu otomatın dili boş kümedir.

	0	1
q_1	q_1	Q_2
q_2	q_1	Q_2

 $L(M) = \{w \mid w, 1 \text{ ile biten kelimeler}\}$

	0	1
q_1	q_1	Q_2
q_2	q_1	Q_2
	0	1
	ql	
		0

 $L(M) = \{w \mid w, \text{ boş string veya 0 ile biten kelimeler}\}$

M2 otomati

M3 otomati

*1 ile başlayan ve 0 ile biten kelimeleri kabul eden otomat

*En az bir tane 1 içerecek otomat

*0101 substring'ini içerecek otomat, x0101y

*En az 3 uzunluğuna sahip kelimeleri içeren 3. sembolü 0 olacak otomat

DERS SONU

Finite Automata ve Deterministic Finite Automata

Dr. Öğr. Üyesi Hüseyin VURAL