USULAN PERBAIKAN FASILITAS DI STASIUN KERJA PERAKITAN MENGGUNAKAN METODE

RAPID UPPER LIMB ASSESSMENT (RULA)

(Studi kasus PT. Industri Telekomunikasi Indonesia (INTI))

LAPORAN KERJA PRAKTEK

Diajukan untuk Memenuhi Salah Satu Syarat Akademik di Jurusan Teknik Industri Teknologi Nasional

Disusun oleh : Muhammad Qurniawan 13-2009-107

JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI NASIONAL BANDUNG

2013

BABI

PENDAHULUAN

Bab I berisi ringkasan laporan dan sistematika penulisan.

1.1 RINGKASAN LAPORAN

Pada subbab ini membahas tentang tujuan kerja praktek dan isi laporan kerja praktek yang berisi gambaran umum perusahaan serta studi kasus yang diangkat dari permasalahan yang terdapat pada perusahaan.

1.1.1 Tujuan Kerja Praktek

Tujuan dari pelaksanaan kerja praktek di PT. Industri Telekomunikasi Indonesia (INTI) adalah sebagai berikut:

- Dapat mengetahui dan memahami sistem perusahaan yang diterapkan pada PT. Industri Telekomunikasi Indonesia (INTI).
- 2. Menganalisis salah satu stasiun kerja di lantai produksi, yaitu stasiun kerja perakitan dengan menggunakan metode *Rapid Upper Limb Assessment* (RULA) sebagai bahan evaluasi dalam membuat rancangan stasiun kerja baru agar mengurangi resiko cedera maupun tingkat kelelahan pada operator.

1.1.2 Isi Laporan Kerja Praktek

Perusahaan yang diteliti untuk kerja praktek adalah PT. Industri Telekomunikasi Indonesia (INTI) bertempat di Kota Bandung. Laporan kerja praktek yang dilakukan di PT. Industri Telekomunikasi Indonesia (INTI) meliputi sistem perusahaan, studi kasus, dan kesimpulan serta saran untuk PT. Industri Telekomunikasi Indonesia (INTI). Di dalam sistem perusahan menjelaskan tentang data umum perusahaan, struktur organisasi, aliran proses produksi, sistem perencanaan produksi, sistem tata letak mesin produksi, waktu baku produk, sistem perencanaan kerja dan lingkungan kerja, sistem pengendalian kualitas, pemasaran,

perancangan produk (proses perancangan produk atau jasa yang ada), sistem informasi manajemen (peta aliran informasi), dan manajemen sumber daya manusia.

PT. Industri Telekomunikasi Indonesia (INTI) perusahaan yang bergerak pada industri manufaktur yang memproduksi alat-alat komunikasi. PT. Industri Telekomunikasi Indonesia (INTI) terletak di Jl. Moch. Toha 77, Kota Bandung, Jawa Barat. Bermula dari Laboratorium Penelitian dan Pengembangan Industri Bidang Pos dan Telekomunikasi (LIPPI-POSTEL), pada 30 Desember 1974 berdirilah PT. Industri Telekomunikasi Indonesia (INTI) sebagai Badan Usaha Milik Negara (BUMN) yang didirikan berdasarkan Peraturan Pemerintah Nomor 34 tahun 1947, yang bergerak dalam bidang produksi, perdagangan, dan jasa.

PT. Industri Telekomunikasi Indonesia (INTI) memiliki beberapa produk yang diproduksi untuk memenuhi permintaan pasar di Indonesia berupa perangkat telekomunikasi, elektronika, dan informatika serta semua produk yang berkaitan dengan perangkat tersebut. Pada kurun periode 2005 - sekarang, INTI menangani solusi dan layanan jaringan tetap maupun seluler serta mengembangkan produk-produk seperti IP PBX, NMS (*Network Management System*), SLIMS (*Subscriber Line Maintenance System*), NGN Server, VMS (Video Messaging System), GPA (Perangkat Pemantau dan Pengontrol berbasis SNMP), *Interface Monitoring System* untuk jaringan CDMA, dan Sistem Direksi dan Peringatan Bencana Alam (*Disaster Forecasting and Warning System*).

Struktur organisasi di PT. Industri Telekomunikasi Indonesia (INTI) menggunakan struktur organisasi fungsional. Pembagian kerja yang dilakukan berdasarkan fungsinya. Wewenang dari pimpinan tertinggi dilimpahkan kepada kepala bagian yang mempunyai jabatan fungsional untuk dikerjakan kepada para pelaksana yang mempunyai keahlian khusus. PT. Industri Telekomunikasi Indonesia (INTI) memiliki 645 orang karyawan tetap.

Pada sistem perencanaan produksi, PT. Industri Telekomunikasi Indonesia (INTI) menerapkan sistem penjadwalan produksi dan sistem persediaan produk jadi. Tidak ada persediaan produk jadi karena menggunakan lingkungan manufaktur *make to order* (MTO), sehingga kegiatan produksi akan berjalan pada saat terdapat pesanan (*order*) atau memenangkan proyek suatu tender dan pelayanan terhadap pihak *customer* menggunakan sistem *First In First Service*. Produksi PRIMA 1100 (KWH Meter Digital) adalah hasil kerjasama PT. Industri Telekomunikasi Indonesia (INTI) dengan PT. PLN Persero dengan tujuan untuk memodernisasi KWH Meter model analog menjadi teknologi yang lebih canggih berupa digital.

Sistem tata letak mesin produksi yang digunakan adalah *prosess layout*. Sistem ini digunakan untuk mempermudah aliran proses produksi, sehingga dapat meningkatkan produktivitas kerja. *Layout* lantai produksi untuk pengerjaan produk PRIMA 1100 (KWH meter digital) terbagi menjadi 2 lantai produksi, yaitu lantai 1 dan lantai 5. Pada lantai 1 proses produksi yang dilakukan yaitu proses merakit komponen-komponen ke papan PCB dan merakit papan PCB yang telah lengkap ke *contactor*. Lalu pada lantai 5 melanjutkan proses produksi berupa pemasangan *main board, loading software*, uji kalibrasi dan akurasi, *insert* KCT, *running test*, dan pengepakan.

Sistem perancangan kerja untuk pembuatan produk PRIMA 1100 (KWH Meter Digital) tidak menggunakan mesin-mesin manufaktur, melainkan dikerjakan secara manual oleh para operator. Kondisi lingkungan kerja di lantai produksi sangat diperhatikan dan diatur dengan baik oleh PT. Industri Telekomunikasi Indonesia (INTI) baik tingkat pencahayaan, tingkat kebisingan, temperatur, ventilasi, getaran, warna, dan bau-bauan. Hal ini dilakukan agar menciptakan kondisi kerja yang efisien, nyaman, aman, sehat, dan efektif (ENASE).

Sistem pengendalian kualitas di PT. Industri Telekomunikasi Indonesia (INTI) terbagi menjadi 3 bagian, yaitu pengendalian kualitas bahan baku, pengendalian kualitas barang setengah jadi, dan pengendalian kualitas produk jadi. Pengendalian kualitas bahan baku dilakukan saat bahan baku tiba. Pemeriksaan dilakukan dengan mengambil beberapa sampel komponen. Selanjutnya pengendalian kualitas barang setengah jadi, semua produk dilakukan pengujian berupa uji kalibrasi dan akurasi. Selanjutnya produk yang telah lulus uji kelayakan tersebut, dilakukan pengendalian kualitas produk jadi melalui *running test* selama 420 menit. Pengujian akhir ini dilakukan agar produk yang diterima konsumen merupakan produk yang layak pakai.

Divisi pemasaran di PT. Industri Telekomunikasi Indonesia (INTI) dibagi kedalam 3 lini organisasi, yaitu *account* CELCO, TELCO, dan *Private Enterprise* (PE). Bagian CELCO dan TELCO bertugas untuk mengurusi dan memasarkan segala hal yang berkaitan dengan produk seluler serta menjalin hubungan baik dengan para perusahaan seluler di Indonesia seperti Indosat, Telkomsel, dan perusahaan lainnya. Pada *Private Enterprise* (PE) bertugas untuk mengurusi segala hal yang berkaitan dengan produk-produk orisinil dari PT. Industri Telekomunikasi Indonesia (INTI) dan salah satu produknya, yaitu PRIMA 1100 (KWH Meter Digital).

Perancangan produk di PT. Industri Telekomunikasi Indonesia (INTI) dilakukan oleh divisi pemasaran. Hal ini ditugaskan pada bagian pemasaran agar bagian pemasaran lebih mudah dalam memasarkan dan melakukan promosi pada produk karena benar-benar mengetahui proses pembuatan produk dari awal hingga selesai menjadi produk jadi.

Perencanaan kebutuhan sumber daya manusia di PT. Industri Telekomunikasi Indonesia (INTI) dirumuskan oleh pimpinan tiap-tiap divisi. Hal ini dilakukan karena setiap divisi yang paling mengetahui jumlah ideal Sumber Daya Manusia yang diperlukan. Tugas dari Divisi Manajemen Sumber Daya Manusia adalah menganalisis, apakah kebutuhan Sumber Daya Manusia yang diajukan relevan dengan kebutuhan dan kemampuan finansial perusahaan. Setelah didapatkan jumlah kebutuhan Sumber Daya Manusia, maka akan dilakukan rekrutmen terbuka untuk mengundang para calon pegawai untuk mendaftar. Selanjutnya setelah melalui proses seleksi demi seleksi, didapatkan sejumlah calon pegawai. Pegawai baru ini akan menjalani masa pelatihan dan orientasi selama 1 tahun terhitung tanggal penerimaannya.

Studi kasus yang diangkat dalam laporan ini adalah menganalisis hasil pengukuran beban postur kerja operator pada stasiun kerja perakitan dari tampak kanan maupun tampak kiri menggunakan metode *Rapid Upper Limb Assessment* (RULA). Saat pengamatan dapat terlihat pada para operator di salah satu stasiun kerja (SK), yaitu SK Perakitan dimana operator bekerja tidak memenuhi aspek ergonomi. Pada stasiun kerja tersebut operator bekerja selama 8 jam pada setiap hari kerjanya. Terlihat pada saat bekerja, operator harus membungkuk untuk melakukan proses penyolderan. Hal ini kurang baik, karena bila dilakukan untuk waktu yang lama, pekerjaan ini dapat menyebabkan kelelahan atau cedera pada operator. Hal itu dapat menyebabkan resiko cedera apabila operator bekerja dalam waktu yang cukup lama dan dapat mempercepat terjadinya kelelahan pada saat operator bekerja. Perbaikan yang dilakukan pada stasiun kerja berupa merancang desain kursi usulan. Dari hasil pengukuran ulang beban postur kerja operator setelah dilakukan perbaikan stasiun kerja dapat disimpulkan penggunaan desain kursi usulan dapat membantu perusahaan dalam mengurangi resiko cedera maupun tingkat kelelahan pada operator yang bekerja dalam proses perakitan PRIMA 1100 (KWH Meter Digital).

1.2 SISTEMATIKA PENULISAN

Sistematika penulisan yang terdapat pada laporan ini adalah sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisi tentang ringkasan laporan berupa tujuan dan isi laporan kerja praktek serta sistematika penulisan.

BAB II SISTEM PERUSAHAAN

Bab ini berisi tentang data umum perusahaan, struktur organisasi, aliran proses produksi, sistem perencanaan produksi, sistem tata letak mesin produksi, waktu baku produk, sistem perencanaan kerja dan lingkungan kerja, sistem pengendalian kualitas, pemasaran, perancangan produk (proses perancangan produk atau jasa yang ada), sistem informasi manajemen (peta aliran informasi), dan manajemen sumber daya manusia.

BAB III STUDI KASUS

Bab ini membahas tentang studi kasus, yaitu berupa identifikasi masalah, studi literatur, dan usulan pemecahan masalah.

BAB IV KESIMPULAN DAN SARAN

Bab ini berisi tentang kesimpulan dan saran pada laporan ini.

BAB IV

KESIMPULAN DAN SARAN

Bab IV berisi kesimpulan dan saran pada laporan ini.

4. 1 KESIMPULAN

Berdasarkan penelitian kerja praktek didapatkan kesimpulan sistem perusahaan PT. Industri Telekomunikasi Indonesia (INTI) dan kesimpulan dari studi kasus yang diangkat pada PT. Industri Telekomunikasi Indonesia (INTI).

4.1.1 Kesimpulan Mengenai Sistem Perusahaan di PT. Industri Telekomunikasi Indonesia (INTI)

Berikut ini adalah kesimpulan mengenai sistem perusahaan di PT. Industri Telekomunikasi Indonesia (INTI).

- 1. PT. Industri Telekomunikasi Indonesia (INTI) merupakan Badan Usaha Milik Negara (BUMN), dengan bidang usaha industri manufaktur yang memproduksi alat-alat komunikasi dan bergerak dalam bidang produksi, perdagangan, dan jasa.
- 2. Struktur organisasi di PT. Industri Telekomunikasi Indonesia (INTI) menggunakan struktur organisasi fungsional. Pembagian kerja yang dilakukan berdasarkan fungsinya. Wewenang dari pimpinan tertinggi dilimpahkan kepada kepala bagian yang mempunyai jabatan fungsional untuk dikerjakan kepada para pelaksana yang mempunyai keahlian khusus.
- 3. Sistem perencanaan produksi, PT. Industri Telekomunikasi Indonesia (INTI) menerapkan sistem penjadwalan produksi dan sistem persediaan produk jadi.
- 4. Lingkungan manufaktur yang diterapkan oleh perusahaan, yaitu *make to order* (MTO) yang beroperasi pada saat pesanan pelanggan (*customer order*) tiba atau

setelah memenangi proses tender. Pelayanan terhadap pihak *customer* menggunakan sistem *First In First Service*.

- Sistem tata letak mesin produksi yang digunakan dalam pembuatan produk PRIMA 1100 (KWH Meter Digital) adalah *prosess layout*. Sistem ini digunakan untuk mempermudah aliran proses produksi, sehingga dapat meningkatkan produktivitas kerja.
- 6. Kondisi lingkungan kerja di lantai produksi sangat diperhatikan dan diatur dengan baik oleh PT. Industri Telekomunikasi Indonesia (INTI). Tingkat pencahayaannya sebesar 525 Lux, untuk tingkat kebisingannya sebesar 75.5 dB, untuk temperaturnya sebesar 23.8°C, dan untuk ventilasi perusahaan memasang beberapa *exhaust* agar udara di ruangan pabrik tetap bersirkulasi.
- 7. Sistem pengendalian kualitas di PT. Industri Telekomunikasi Indonesia (INTI) terbagi menjadi 3 bagian, yaitu pengendalian kualitas bahan baku, pengendalian kualitas barang setengah jadi, dan pengendalian kualitas produk jadi.
- 8. Perancangan produk di PT. Industri Telekomunikasi Indonesia (INTI) dilakukan oleh divisi pemasaran.
- 9. Perencanaan kebutuhan sumber daya manusia di PT. Industri Telekomunikasi Indonesia (INTI) dirumuskan oleh pimpinan tiap-tiap divisi. Hal ini dilakukan karena setiap divisi yang paling mengetahui jumlah ideal Sumber Daya Manusia yang diperlukan.
- 10. Sistem perupahan di PT. Industri Telekomunikasi Indonesia (INTI) didasarkan pada pangkat dan kedudukan tiap pegawai (karyawan tetap atau kontrak atau *outsourcing*).

4.1.2 Kesimpulan Mengenai Studi Kasus Penelitian di PT. Industri Telekomunikasi Indonesia (INTI)

Berikut ini adalah kesimpulan mengenai studi kasus yang diangkat pada PT. Industri Telekomunikasi Indonesia (INTI).

1. Hasil pengukuran beban postur kerja dengan metode *Rapid Upper Limb Assessment* (RULA) operator yang bekerja di stasiun kerja perakitan saat bekerja dari tampak

kanan maupun tampak kiri sebelum dilakukan perbaikan stasiun kerja didapat nilai 6, artinya perlu dikaji kembali dan harus segera dilakukan perbaikan pada stasiun kerja perakitan.

- 2. Perbaikan yang dilakukan pada fasilitas yang terdapat di stasiun kerja perakitan, yaitu pada kursi yang dipakai oleh operator.
- 3. Perancangan desain kursi usulan menggunakan prinsip antropometri dengan menggunakan dimensi tubuh, yaitu tinggi popliteal (TPL) yang digunakan untuk menentukan dimensi tinggi kaki kursi, lebar pinggul (LP) yang digunakan untuk dimensi lebar alas duduk kursi, pantat popliteal (PpL) yang digunakan untuk dimensi panjang alas duduk kursi, dan tinggi bahu duduk (TBD) yang digunakan untuk dimensi tinggi sandaran kursi.
- 4. Hasil rancangan kursi usulan dalam perbaikan yang dilakukan di stasiun kerja perakitan beserta dimensinya dapat dilihat pada Lampiran D.
- 5. Hasil pengukuran beban postur kerja operator dari tampak kanan maupun tampak kiri setelah dilakukan perbaikan stasiun kerja dengan menggunakan desain kursi usulan didapat nilai 3, artinya perlu dikaji kembali, tetapi perubahannya merupakan opsional boleh dilakukan perbaikan pada stasiun kerja perakitan atau boleh juga tidak. Terlihat hasil akhir pengukuran menggunakan metode *Rapid Upper Limb Assessment* (RULA) sebelum dilakukan perbaikan stasiun kerja dan setelah dilakukan perbaikan stasiun kerja dengan menggunakan desain kursi usulan, semakin berkurang. Hal ini diharapkan dapat membantu perusahaan dalam mengurangi resiko cedera maupun tingkat kelelahan pada operator yang bekerja dalam proses perakitan PRIMA 1100 (KWH Meter Digital).

4.2 SARAN

Kondisi lingkungan kerja di lantai produksi PT. Industri Telekomunikasi Indonesia (INTI) sangat diperhatikan dan diatur dengan baik dari tingkat pencahayaan, tingkat kebisingan, temperatur, ventilasi, getaran, warna, dan bau-bauan. Namun untuk menambah kinerja operator agar lebih baik lagi, sebaiknya perusahaan secara berkesinambungan meninjau fasilitas-fasilitas stasiun kerja yang digunakan dengan menerapkan disiplin ilmu ergonomi diantaranya menggunakan prinsip antropometri dalam merancang fasilitas-fasilitas tersebut. Hal ini

dilakukan agar pada saat operator bekerja mampu melaksanakan tugasnya secara efektif, efisien, dan menciptakan kenyamanan serta keamanan bagi operator selama proses produksi berlangsung. Perusahaan dapat mengimplementasikan hasil dari perbaikan fasilitas stasiun kerja perakitan dengan menggunakan rancangan desain kursi usulan, agar dapat mengurangi resiko cedera maupun tingkat kelelahan pada operator saat bekerja.

LAMPIRAN A

PENGOLAHAN DATA ANTROPOMETRI

Pengolahan data antropometri terdiri dari uji kenormalan data, uji keseragaman data, uji kecukupan data, perhitungan persentil, dan hasil perhitungan persentil yang ditabelkan.

1. Uji Kenormalan Data

Uji kenormalan data dilakukan untuk mengetahui apakah data yang digunakan berdistribusi normal.

a. Tinggi popliteal (TPL)

Tinggi popliteal (TPL) digunakan dalam menentukan tinggi kaki kursi. Data dimensi tinggi popliteal (TPL) yang telah diurutkan dapat dilihat pada Tabel A.1.

Tabel A.1 Data Dimensi Tubuh Tinggi Popliteal (TPL)

	TPL												
25	39	41	43	45									
27,6	39	41	43,1	45									
29,1	39	41	44	45									
30	39	41	44	46									
31,4	39,5	41,5	44,5	46,2									
34	40	42	45	46,5									
34,5	40	42	45	47									
36,7	41	42	45	51									
37	41	43	45	51									
37	41	43	45	54									

$$R = X_{max} - X_{min} = 54 - 25 = 29$$

JK =
$$1 + 3.3 \text{ Log N} = 1 + 3.3 \text{ Log } 50 = 6.6 \approx 7$$

$$LK = R/k = 29/6,6 = 4,4$$

Data interval kelas *limit* untuk tinggi popliteal (TPL) dapat dilihat pada Tabel A.2.

Tabel A.2 Interval Kelas Limit

No.	Ir	<mark>ıterval kel</mark>	as	fi	CMi	fi.CMi	(CMi - Xbar)	(CMi - Xbar)^2	fi.(CMi - Xbar)^2
1	25	1	29,30	3	27,150	81,450	-14,784	218,567	655,700
2	29,40	1	33,70	2	31,550	63,100	-10,384	107,827	215,655
3	3 33,80 - 38,10				35,950	179,750	-5,984	35,808	179,041
4	38,20	1	42,50	15	40,350	605,250	-1,584	2,509	37,636
5	42,60	1	46,90	16	44,750	716,000	2,816	7,930	126,878
6	47,00	-	51,30	7	49,150	344,050	7,216	52,071	364,495
7	51,40	•	55,70	2	53,550	107,100	11,616	134,931	269,863
	Jun	ılah		50	282,450	2096,700	-11,088	559,643	1849,267

$$\overline{X}$$
 = $\frac{\Sigma(\text{fi.CMi})}{\Sigma \text{ fi}}$ = $\frac{2096,70}{50}$ = 41,934

SD =
$$\sqrt{\frac{\sum fi(CMi - \overline{X})^2}{\sum fi}} = \sqrt{\frac{1849,27}{50}} = 6,082$$

Data dari perhitungan *Goodness of fit* untuk tinggi popliteal (TPL) dapat dilihat pada Tabel A.3.

Tabel A.3 Goodness of fit

No.	Clas	s Bounda	ries	oi	ZLi	ZUi	P(ZLi)	P(ZUi)	Pi	ei	ei gab	oi gab	oi gab - ei gab	(oi gab - ei gab)^2	(oi gab - ei gab)^2/ei gab
1	0		24,95	0	-6,895	-2,793	0,000	0,003	0,003	0,131					
2	24,95		29,35	3	-2,793	-2,069	0,003	0,019	0,017	0,832	12.245	10	2.245	11 100	0.020
3	29,35		33,75	2	-2,069	-1,346	0,019	0,089	0,070	3,497	13,345	10	-3,345	11,190	0,838
4	33,75		38,15	5	-1,346	-0,622	0,089	0,267	0,178	8,885					
5	38,15		42,55	15	-0,622	0,101	0,267	0,540	0,273	13,672	13,672	15	1,328	1,764	0,129
6	42,55	-	46,95	16	0,101	0,825	0,540	0,795	0,255	12,746	12,746	16	3,254	10,590	0,831
7	46,95	-	51,35	8	0,825	1,548	0,795	0,939	0,144	7,198					
8	51,35	-	55,75	1	1,548	2,272	0,939	0,988	0,049	2,461	10,237	9	-1,237	1,531	0,150
9	55,75		~	0	2,272	~	0,988	1,000	0,012	0,577					
	Sig	ma		50	8,979	-2,084	3,641	4,641	1	50	50	50	0,000	25,075	1,948

Nilai χ^2 hitung

$$\chi^2 = \sum \frac{(\text{oi gab - ei gab})^2}{\text{ei gab}} = 1,948$$

Nilai χ^2 tabel :

$$\boldsymbol{v}=\boldsymbol{k}-\boldsymbol{r}-1$$
 ; $\boldsymbol{k}=jumlah$ kelas, $\boldsymbol{r}=parameter$ yang diamati

$$=4-2-1$$

= 1

$$\chi^2_{(0.05;v)} = (0.05, 1) = 3,841$$

γ2 Hitung: 1,948 **γ2 Tabel:** 3,841

Gambar A.1 Kurva Chi Kuadrat

Kesimpulan:

Dari gambar kurva chi-kuadrat di atas, data dimensi tubuh tinggi popliteal (TPL) tersebut merupakan data berdistribusi normal karena data tersebut berada di dalam daerah penerimaan.

b. Lebar pinggul (LP)

Lebar pinggul (LP) digunakan dalam menentukan lebar alas duduk kursi. Data dimensi lebar pinggul (LP) yang telah diurutkan dapat dilihat pada Tabel A.4.

Tabel A.1 Data Dimensi Tubuh Lebar Pinggul (LP)

		LP		·
27	32	34,2	36,5	38
27	32	34,5	37	38
28	32	34,9	37	38,5
29	32,5	35	37	39
30	33	35	37	39,5
31	33,2	36	37,5	40
31	33,5	36	37,5	41
31	34	36	37,5	42,5
31,5	34	36	37,5	45
32	34	36,5	38	45

$$R = X_{max} - X_{min} = 45 - 27 = 18$$

$$JK \ = 1 + 3.3 \ Log \ N = 1 + 3.3 \ Log \ 50 = 6.6 \approx 7$$

$$LK = R/k = 18/6,6 = 2,8$$

Data interval kelas *limit* untuk lebar pinggul (LP) dapat dilihat pada Tabel A.5.

Tabel A.5 Interval Kelas Limit

No.	In	<mark>iterval kel</mark>	as	fi	CMi	fi.CMi	(CMi - Xbar)	(CMi - Xbar)^2	fi.(CMi - Xbar)^2
1	27	ı	29,70	4	28,350	113,400	-6,776	45,914	183,657
2	29,80	ı	32,50	10	31,150	311,500	-3,976	15,809	158,086
3	32,60	1	35,30	11	33,950	373,450	-1,176	1,383	15,213
4	35,40	•	38,10	17	36,750	624,750	1,624	2,637	44,835
5	38,20	-	40,90	4	39,550	158,200	4,424	19,572	78,287
6	41,00	-	43,70	2	42,350	84,700	7,224	52,186	104,372
7	43,80	-	46,50	2	45,150	90,300	10,024	100,481	200,961
	Jun	ılah		50	257,250	1756,300	11,368	237,982	785,411

$$\overline{X}$$
 = $\frac{\Sigma(\text{fi.CMi})}{\Sigma \text{ fi}}$ = $\frac{1756,30}{50}$ = 35,126

SD =
$$\sqrt{\frac{\sum fi(CMi - \overline{X})^2}{\sum fi}} = \sqrt{\frac{785,411}{50}} = 3,963$$

Data dari perhitungan *Goodness of fit* untuk lebar pinggul (LP) dapat dilihat pada Tabel A.6.

Tabel A.6 Goodness of fit

	The extract documents of fit														
No.	Cla	ss Bounda	ries	oi	ZLi	ZUi	P(ZLi)	P(ZUi)	Pi	ei	ei gab	oi gab	oi gab - ei gab	(oi gab - ei gab)^2	(oi gab - ei gab)^2/ei gab
1	0		26,95	0	-8,863	-2,063	0,000	0,020	0,020	0,978					
2	26,95	-	29,75	4	-2,063	-1,356	0,020	0,087	0,068	3,396	12,893	14	1,107	1,225	0,095
3	29,75	-	32,55	10	-1,356	-0,650	0,087	0,258	0,170	8,519					
4	32,55	-	35,35	11	-0,650	0,057	0,258	0,523	0,265	13,234	13,234	11	-2,234	4,989	0,377
5	35,35	-	38,15	17	0,057	0,763	0,523	0,777	0,255	12,736	12,736	17	4,264	18,178	1,427
6	38,15	-	40,95	4	0,763	1,469	0,777	0,929	0,152	7,594					
7	40,95	-	43,75	2	1,469	2,176	0,929	0,985	0,056	2,804	11,137	0	-3,137	9,839	0.002
8	43,75		46,55	2	2,176	2,882	0,985	0,998	0,013	0,640	11,137	0	-3,137	9,039	0,883
9	46,55	-	~	0	2,882	~	0,998	1,000	0,002	0,099					
	sig	ma		50	-5,585	3,278	4,577	5,577	1	50	50	50	0,000	34,232	2,783

Nilai χ^2 hitung

$$\chi^2 = \sum \frac{(\text{oi gab - ei gab})^2}{\text{ei gab}} = 2,783$$

Nilai χ^2 tabel :

$$\boldsymbol{v}=\boldsymbol{k}-\boldsymbol{r}-1$$
 ; $\boldsymbol{k}=jumlah$ kelas, $\boldsymbol{r}=parameter$ yang diamati

$$=4-2-1$$

= 1

$$\chi^2_{(0.05;v)} = (0.05, 1) = 3,841$$

Gambar A.2 Kurva Chi Kuadrat

Kesimpulan:

Dari gambar kurva chi-kuadrat di atas, data dimensi tubuh lebar pinggul (LP) tersebut merupakan data berdistribusi normal karena data tersebut berada di dalam daerah penerimaan.

c. Pantat popliteal (PpL)

Pantat popliteal (PpL) digunakan dalam menentukan panjang alas duduk kursi. Data pantat popliteal (PpL) yang telah diurutkan dapat dilihat pada Tabel A.7.

Tabel A.7 Data Dimensi Tubuh Pantat Popliteal (PpL)

		PPL		
37	43	45	48	51
39	43	45,5	48,5	52
39	43	46	48,5	54
40	43	46	49	54
40	44	46	49	55
41	44	46,5	49	55
41	45	47	49	55
42	45	47	49	57
42	45	47	50	60
42	45	48	50	65,4

$$R = X_{max} - X_{min} = 65 - 37 = 28$$

$$JK = 1 + 3.3 \text{ Log } N = 1 + 3.3 \text{ Log } 50 = 6.6 \approx 7$$

$$LK = R/k = 28/6.6 = 4.3$$

Data interval kelas *limit* untuk pantat popliteal (PpL) dapat dilihat pada Tabel A.8.

Tabel A.8 Interval Kelas Limit

No.	In	<mark>iterval kel</mark>	as	fi	CMi	fi.CMi	(CMi - Xbar)	(CMi - Xbar)^2	fi.(CMi - Xbar)^2
1	37	1	41,20	7	39,100	273,700	-7,998	63,968	447,776
2	41,30	1	45,50	14	43,400	607,600	-3,698	13,675	191,453
3			49,80	17	47,700	810,900	0,602	0,362	6,161
4	49,90	1	54,10	6	52,000	312,000	4,902	24,030	144,178
5	54,20	1	58,40	4	56,300	225,200	9,202	84,677	338,707
6	58,50	-	62,70	1	60,600	60,600	13,502	182,304	182,304
7	62,80	1	67	1	64,900	64,900	17,802	316,911	316,911
	Jun	ılah		50	364,000	2354,900	34,314	685,927	1627,490

$$\overline{X}$$
 = $\frac{\Sigma(\text{fi.CMi})}{\Sigma \text{ fi}} = \frac{2354,90}{50} = 47,098$

$$SD = \sqrt{\frac{\sum fi(\text{CMi} - \overline{X})^2}{\sum fi}} = \sqrt{\frac{1627,49}{50}} = 5,705$$

Data dari perhitungan *Goodness of fit* untuk pantat popliteal (PpL) dapat dilihat pada Tabel A.9.

Tabel A.9 Goodness of fit

No.	Cla	ss Bounda	19100	oi	ZLi	ZUi	P(ZLi)	P(ZUi)	Di	ei	ei gab	oi anh	oi gab - ei gab	(oi gob oi gob)\\)	(oi gab • ei gab)^2 / ei gab
110.	Citi	S Dounau	ries	UI	LLI	LUI	I (LLI)	I (LUI)	П	ti	ei gan	oi gab	organ - ergan	(or gan - er gan) 4	(or gan - er gan) 27 er gan
1	0	-	36,95	0	-8,255	-1,779	0,000	0,038	0,038	1,882	7,634	7	-0.634	0.402	0,053
2	36,95		41,25	7	-1,779	-1,025	0,038	0,153	0,115	5,752	1,034	1	-0,034	0,402	0,000
3	41,25		45,55	15	-1,025	-0,271	0,153	0,393	0,240	12,020	12,020	15	2,980	8,883	0,739
4	45,55	-	49,85	16	-0,271	0,482	0,393	0,685	0,292	14,608	14,608	16	1,392	1,938	0,133
5	49,85	-	54,15	6	0,482	1,236	0,685	0,892	0,207	10,328	10,328	6	-4,328	18,729	1,814
6	54,15		58,45	4	1,236	1,990	0,892	0,977	0,085	4,245					
7	58,45		62,75	1	1,990	2,743	0,977	0,997	0,020	1,013	5,411	6	0.589	0,347	0,064
8	62,75		67,05	1	2,743	3,497	0,997	1,000	0,003	0,140	J,411	U	0,307	0,347	0,004
9	67,05	-	~	0	3,497	~	1,000	1,000	0,000	0,012					
	sig	ma		50	-1,382	6,874	5,134	6,134	1	50	50	50	0,000	30,299	2,802

Nilai χ^2 hitung

$$\chi^2 = \sum \frac{(\text{oi gab - ei gab})^2}{\text{ei gab}} = 2,802$$

Nilai χ^2 tabel :

$$\boldsymbol{v}=\boldsymbol{k}-\boldsymbol{r}-1$$
 ; $\boldsymbol{k}=jumlah$ kelas, $\boldsymbol{r}=parameter$ yang diamati

$$=5-2-1$$

$$=2$$

$$\chi^2_{(0.05;v)} = (0.05, 1) = 5,991$$

Gambar A.3 Kurva Chi Kuadrat

Kesimpulan:

Dari gambar kurva chi-kuadrat di atas, data dimensi tubuh pantat popliteal (PpL) tersebut merupakan data berdistribusi normal karena data tersebut berada di dalam daerah penerimaan.

d. Tinggi bahu duduk (TBD)

Tinggi bahu duduk (TBD) digunakan dalam menentukan tinggi sandaran kursi. Data tinggi bahu duduk (TBD) yang telah diurutkan dapat dilihat pada Tabel A.10.

Tabel A.10 Data Dimensi Tubuh Tinggi Bahu Duduk (TBD)

		TBD		
48	53,3	58	61,5	65,5
50	54	58,5	61,6	66
50	54	59	62	66
51	54,2	59	62,7	67,5
51,5	54,5	59	63	68
52	57	60	63	68,4
52	57	60	63,4	70
52,7	57,5	60	64	71
53	57,5	61	64	72,5
53	58	61	65	79

$$R = X_{max}$$
- $X_{min} = 79 - 48 = 31$

$$JK = 1 + 3.3 \text{ Log } N = 1 + 3.3 \text{ Log } 50 = 6.6 \approx 7$$

$$LK = R/k = 31/6,6 = 4,7$$

Data interval kelas *limit* untuk tinggi bahu duduk dapat dilihat pada Tabel A.11.

Tabel A.11 Interval Kelas Limit

No.	In	<mark>ıterval kel</mark>	as	fi	CMi	fi.CMi	(CMi - Xbar)	(CMi - Xbar) ²	fi.(CMi - Xbar)^2
1	48	1	52,60	7	50,300	352,100	-9,682	93,741	656,188
2	52,70	1	57,30 10 5		55,000	550,000	-4,982 24,820		248,203
3	57,40	•	62,00	16	59,700	955,200	-0,282	0,080	1,272
4	62,10	-	66,70	10	64,400	644,000	4,418	19,519	195,187
5	66,80	•	71,40	5	69,100	345,500	9,118	83,138	415,690
6	71,50	-	76,10	1	73,800	73,800	13,818	190,937	190,937
7	76,20		80,80	1	78,500	78,500	18,518	342,916	342,916
	Jun	ılah		50	450,800	2999,100	30,926	755,151	2050,394

$$\overline{X}$$
 = $\frac{\Sigma(\text{fi.CMi})}{\Sigma \text{ fi}} = \frac{2999,10}{50} = 59,982$

SD =
$$\sqrt{\frac{\sum fi(CMi - \overline{X})^2}{\sum fi}} = \sqrt{\frac{2050,394}{50}} = 6,404$$

Data dari perhitungan *Goodness of fit* untuk tinggi bahu duduk (TBD) dapat dilihat pada Tabel A.12.

Tabel A.12 Goodness of fit

No.	Cla	ss Bounda	ries	0i	ZLi	ZUi	P(ZLi)	P(ZUi)	Pi	ei	ei gab	oi gab	oi gab • ei gab	(oi gab - ei gab)^2	(oi gab - ei gab)^2/ei gab
1	0	•	47,95	0	-9,367	-1,879	0,000	0,030	0,030	1,506	6,306	7	0.694	0,482	0,076
2	47,95		52,65	7	-1,879	-1,145	0,030	0,126	0,096	4,799	0,300	1	0,074	0,402	0,070
3	52,65		57,35	10	-1,145	-0,411	0,126	0,341	0,214	10,721	10,721	10	-0,721	0,520	0,048
4	57,35	•	62,05	16	-0,411	0,323	0,341	0,627	0,286	14,305	14,305	16	1,695	2,874	0,201
5	62,05		66,75	10	0,323	1,057	0,627	0,855	0,228	11,404	11,404	10	-1,404	1,972	0,173
6	66,75		71,45	5	1,057	1,791	0,855	0,963	0,109	5,431					
7	71,45		76,15	1	1,791	2,525	0,963	0,994	0,031	1,544	7.264	7	-0.264	0,070	0,010
8	76,15	-	80,85	1	2,525	3,259	0,994	0,999	0,005	0,261	1,204	1	-0,204	0,070	0,010
9	80,85		~	0	3,259	~	0,999	1,000	0,001	0,028					
	sig	ma		50	-3,847	5,519	4,935	5,935	1	50	50	50	0,000	5,918	0,508

Nilai χ^2 hitung

$$\chi^2 = \sum \frac{(\text{oi gab - ei gab})^2}{\text{ei gab}} = 0.508$$

Nilai χ^2 tabel :

v = k - r - 1; k = jumlah kelas, r = parameter yang diamati

$$=5-2-1$$

= 2

$$\chi^2_{(0.05;v)} = (0.05, 1) = 5,991$$

Gambar A.4 Kurva Chi Kuadrat

Kesimpulan:

Dari gambar kurva chi-kuadrat di atas, data dimensi tubuh tinggi bahu duduk (TBD) tersebut merupakan data berdistribusi normal karena data tersebut berada di dalam daerah penerimaan.

2. Uji Keseragaman Data

Uji keseragaman data dilakukan untuk menguji data yang digunakan apakah berasal dari populasi yang sama.

a. Tinggi popliteal (TPL)

Tabel uji keseragaman data tinggi popliteal (TPL) dapat dilihat pada Tabel A.13.

Ukuran Subgrup Ī Subgrup 2 3 7 9 8 5 10 48 50 50 51 51,5 52 52 52.7 53 53 46,02 53,3 2 54 54 54,2 54,5 57 57 57,5 57,5 58 49.9 59 3 58 58.5 59 59 60 60 60 61 61 53.45 4 61,5 61,6 62 62,7 63 63,4 64 64 65 56,52 63 5 65.5 66 66 67,5 68 68.4 70 71 72.5 79 61,49

Tabel A.13 Uji Keseragaman Data Tinggi Popliteal (TPL)

 \overline{X} = Rata-rata dari subgrup

53,48

$$\sum \overline{X}_{1} = 187,720$$

$$\overline{\overline{X}}$$
 = $\frac{\Sigma \overline{X}_i}{k} = \frac{187,720}{5} = 37,544$

Sd =
$$\sqrt{\frac{\sum_{i=1}^{N} (X_i - \overline{X_i})^2}{N-1}} = 6.082$$

Sd_x = Standar deviasi dari subgrup

$$= 10$$

$$Sd_x = \frac{Sd}{\sqrt{n}} = \frac{6,082}{\sqrt{10}} = 1,923$$

BKA =
$$\overline{\overline{X}}$$
 + 3 Sd_x = 37,544 + (3 * 1,923) = 43,314

BKB =
$$\overline{\overline{X}}$$
 - 3 Sd_x = 37,544 - (3 * 1,923) = 31,774

b. Lebar pinggul (LP)

Tabel uji keseragaman data lebar pinggul (LP) dapat dilihat pada Tabel A.14.

Tabel A.14 Uji Keseragaman Data Lebar Pinggul (LP)

Cubomin	Ukuran Subgrup						Ī				
Subgrup	1	2	3	4	5	6	7	8	9	10	247
1	27	27	28	29	30	31	31	31	31,5	32	26,550
2	32	32	32	32,5	33	33,2	33,5	34	34	34	29,620
3	34,2	34,5	34,9	35	35	36	36	36	36	36,5	31,760
4	36,5	37	37	37	37	37,5	37,5	37,5	37,5	38	33,450
5	38	38	38,5	39	39,5	40	41	42,5	45	45	36,150
		•		•	•			•	•	7	31,506

 \overline{X} = Rata-rata dari subgrup

$$\sum \overline{X_1} = 157,530$$

k = Jumlah subgrup

$$\overline{\overline{X}}$$
 = $\frac{\Sigma \overline{X}_i}{k} = \frac{157,530}{5} = 31,506$

Sd =
$$\sqrt{\frac{\sum_{i=1}^{N} (X_i - \overline{X_i})^2}{N-1}} = 3,963$$

 Sd_x = Standar deviasi dari subgrup

n = Ukuran subgrup
$$= 10$$

$$Sd_x = \frac{Sd}{\sqrt{n}} = \frac{3,963}{\sqrt{10}} = 1,253$$

BKA =
$$\overline{\overline{X}}$$
 + 3 Sd_x = 31,506 + (3 * 1,253) = 35,266

BKB =
$$\overline{\overline{X}}$$
 - 3 Sd_x = 31,506 - (3 * 1,253) = 27,746

c. Pantat popliteal (PpL)

Tabel uji keseragaman data pantat popliteal (PpL) dapat dilihat pada Tabel A.15.

Tabel A.15 Uji Keseragaman Data Pantat Popliteal (PpL)

Subgrup	Ukuran Subgrup							Ī			
Suogrup	1	2	3	4	5	6	7	8	9	10	an.
1	37	39	39	40	40	41	41	42	42	42	36,10
2	43	43	43	43	44	44	45	45	45	45	39,50
3	45	45,5	46	46	46	46,5	47	47	47	48	41,60
4	48	48,5	48,5	49	49	49	49	49	50	50	44,00
5	51	52	54	54	55	55	55	57	60	65,4	49,30
			<u> </u>							Ž	42,10

 \overline{X} = Rata-rata dari subgrup

$$\sum \overline{X}_1$$
 = 210,50

$$\overline{\overline{X}} = \frac{\Sigma \overline{X}_i}{k} = \frac{210,50}{5} = 42,10$$

Sd =
$$\sqrt{\frac{\sum_{i=1}^{N} (X_i - \overline{X_i})^2}{N-1}} = 5,705$$

 Sd_x = Standar deviasi dari subgrup

$$= 10$$

$$Sd_x = \frac{Sd}{\sqrt{n}} = \frac{5,705}{\sqrt{10}} = 1,804$$

BKA =
$$\overline{\overline{X}}$$
 + 3 Sd_x = 42,10 + (3 * 1,804) = 47,512

BKB =
$$\overline{\overline{X}}$$
 - 3 Sd_x = 42,10 - (3 * 1,804) = 36,688

d. Tinggi bahu duduk (TBD)

Tabel uji keseragaman tinggi bahu duduk (TBD) dapat dilihat pada Tabel A.16.

Tabel A.16 Uji Keseragaman Data Tinggi Bahu Duduk (TBD)

Subgrup	Ukuran Subgrup							Ī			
Subgrup	1	2	3	4	5	6	7	8	9	10	211
1	48	50	50	51	51,5	52	52	52,7	53	53	46,020
2	53,3	54	54	54,2	54,5	57	57	57,5	57,5	58	49,900
3	58	58,5	59	59	59	60	60	60	61	61	53,450
4	61,5	61,6	62	62,7	63	63	63,4	64	64	65	56,520
5	65,5	66	66	67,5	68	68,4	70	71	72,5	79	61,490
				•						Ī	53,476

 \overline{X} = Rata-rata dari subgrup

$$\sum \overline{X_1} = 267,380$$

k = Jumlah subgrup

$$\overline{\overline{X}}$$
 = $\frac{\Sigma \overline{X}_i}{k} = \frac{267,380}{5} = 53,476$

Sd =
$$\sqrt{\frac{\sum_{i=1}^{N} (X_i - \overline{X_i})^2}{N-1}} = 6,404$$

 Sd_x = Standar deviasi dari subgrup

$$= 10$$

$$Sd_x = \frac{Sd}{\sqrt{n}} = \frac{6,404}{\sqrt{10}} = 2,025$$

BKA =
$$\overline{\overline{X}}$$
 + 3 Sd_x = 53,476 + (3 * 2,025) = 59,551

BKB =
$$\overline{\overline{X}}$$
 - 3 Sd_x = 53,476 - (3 * 2,025) = 47,401

3. Uji Kecukupan Data

Uji kecukupan data dilakukan untuk menguji data yang digunakan apakah telah memenuhi populasi dari segi kualitas dengan tingkat ketelitian 5% dan tingkat kepercayaan 95%.

a. Tinggi popliteal (TPL)

Tabel uji kecukupan data tinggi popliteal (TPL) dapat dilihat pada Tabel A.17.

Tabel A.17 Uji Kecukupan Data Tinggi Popliteal (TPL)

No.	Xi	Xi^2
1	25	625
2	27,6	762
3	29,1	847
4	30	900
5	31,4	986
6	34	1156
7	34,5	1190
8	36,7	1347
9	37	1369
10	37	1369
11	39	1521
12	39	1521
13	39	1521
14	39	1521
15	39,5	1560

Tabel A.17 Uji Kecukupan Data Tinggi Popliteal (TPL) Lanjutan

		<u> </u>
No.	Xi	Xi^2
16	40	1600
17	40	1600
18	41	1681
19	41	1681
20	41	1681
21	41	1681
22	41,5	1722
23	42	1764
24	42	1764
25	42	1764
26	43	1849
27	43	1849
28	43	1849
29	43,1	1858
30	44	1936
31	44	1936
32	44,5	1980
33	45	2025
34	45	2025
35	45	2025
36	45	2025
37	45	2025
38	45	2025

39	46	2116
40	46,2	2134
41	46,5	2162
42	47	2209
43	50,1	2510
44	50,5	2550
45	50,8	2581
46	51	2601
47	51	2601
48	51,1	2611
49	51,3	2632
50	54	2916
\sum	2099	90164
(∑Xi)^2	4407480	

$$N' = \left[\frac{40\sqrt{N*\Sigma X_i^2 - (\Sigma X_i)^2}}{\Sigma X_i} \right]^2 = \left[\frac{40\sqrt{(50*90164) - (4407480)^2}}{2099} \right]^2 = 37$$

Kesimpulan:

Dari data di atas nilai N' < N, sehingga data dimensi tubuh tinggi popliteal (TPL) tersebut telah cukup untuk memenuhi populasi dari segi kualitas.

b. Lebar pinggul (LP)

Tabel uji kecukupan data lebar pinggul (LP) dapat dilihat pada Tabel A.18.

Tabel A.18 Uji Kecukupan Data Lebar Pinggul (LP)

No.	Xi	Xi^2
1	27	729
2	27	729
3	28	784
4	29	841
5	30	900
6	31	961
7	31	961

8	31	961
9	31,5	992
10	32	1024
11	32	1024
12	32	1024
13	32	1024
14	32,5	1056
15	33	1089
16	33,2	1102
17	33,5	1122
18	34	1156
19	34	1156
20	34	1156
21	34,2	1170
22	34,5	1190
23	34,9	1218
24	35	1225
25	35	1225

Tabel A.18 Uji Kecukupan Data Lebar Pinggul (LP) Lanjutan

No.	Xi	Xi^2
26	36	1296
27	36	1296
28	36	1296
29	36	1296
30	36,5	1332
31	36,5	1332
32	37	1369
33	37	1369
34	37	1369
35	37	1369
36	37,5	1406
37	37,5	1406
38	37,5	1406
39	37,5	1406
40	38	1444
41	38	1444
42	38	1444
43	38,5	1482
44	39	1521

45	39,5	1560
46	40	1600
47	41	1681
48	42,5	1806
49	45	2025
50	45	2025
\sum	1761	62802
(∑Xi)^2	3100417	

$$N = 50$$

$$N' \qquad = \left\lceil \frac{40 \sqrt{N*\sum {X_i}^2 - (\sum X_i)^2}}{\sum X_i} \right\rceil^2 = \left[\frac{40 \sqrt{(50*62802) - (3100417)^2}}{1761} \right]^2 = 20$$

Kesimpulan:

Dari data di atas nilai N' < N, sehingga data dimensi lebar pinggul (LP) tersebut telah cukup untuk memenuhi populasi dari segi kualitas.

c. Pantat popliteal (PpL)

Tabel uji kecukupan data pantat popliteal (PpL) dapat dilihat pada Tabel A.19.

Tabel A.19 Uji Kecukupan Data Pantat Popliteal (PpL)

No.	Xi	Xi^2
1	37	1369
2	39	1521
3	39	1521
4	40	1600
5	40	1600
6	41	1681
7	41	1681
8	42	1764
9	42	1764
10	42	1764
11	43	1849
12	43	1849
13	43	1849
14	43	1849
15	44	1936

16	44	1936
17	45	2025
18	45	2025
19	45	2025
20	45	2025
21	45	2025
22	45,5	2070
23	46	2116
24	46	2116
25	46	2116
26	46,5	2162
27	47	2209
28	47	2209
29	47	2209
30	48	2304
31	48	2304
32	48,5	2352
33	48,5	2352
34	49	2401
35	49	2401

Tabel A.19 Uji Kecukupan Data Pantat Popliteal (PpL) Lanjutan

No.	Xi	Xi^2
36	49	2401
37	49	2401
38	49	2401
39	50	2500
40	50	2500
41	51	2601
42	52	2704
43	54	2916
44	54	2916
45	55	3025
46	55	3025
47	55	3025
48	57	3249
49	60	3600
50	65,4	4277
\sum	2355	112521

(∑Xi)^2 | 5547909 |

$$N = 50$$

$$N' = \left[\frac{40\sqrt{N*\sum X_i^2 - (\sum X_i)^2}}{\sum X_i} \right]^2 = \left[\frac{40\sqrt{(50*112521) - (5547909)^2}}{2355} \right]^2 = 20$$

Kesimpulan:

Dari data di atas nilai N' < N, sehingga data dimensi pantat popliteal (PpL) tersebut telah cukup untuk memenuhi populasi dari segi kualitas.

d. Tinggi bahu duduk (TBD)

Tabel uji kecukupan tinggi bahu duduk (TBD) dapat dilihat pada Tabel A.20.

Tabel A.20 Uji Kecukupan Data Tinggi Bahu Duduk (TBD)

No.	Xi	Xi^2
1	48	2304
2	50	2500
3	50	2500
4	51	2601
5	51,5	2652

Tabel A.20 Uji Ke<u>cukupan Data Tinggi Bahu Duduk</u> (TBD) Lanjutan

No.	Xi	Xi^2
6	52	2704
7	52	2704
8	52,7	2777
9	53	2809
10	53	2809
11	53,3	2841
12	54	2916
13	54	2916
14	54,2	2938
15	54,5	2970
16	57	3249
17	57	3249
18	57,5	3306

19	57,5	3306
20	58	3364
21	58	3364
22	58,5	3422
23	59	3481
24	59	3481
25	59	3481
26	60	3600
27	60	3600
28	60	3600
29	61	3721
30	61	3721
31	61,5	3782
32	61,6	3795
33	62	3844
34	62,7	3931
35	63	3969
36	63	3969
37	63,4	4020
38	64	4096
39	64	4096
40	65	4225
41	65,5	4290
42	66	4356
43	66	4356
44	67,5	4556
45	68	4624

Tabel A.20 Uji Ke<u>cukupan Data Tinggi Bahu Dudu</u>k (TBD) Lanjutan

No.	Xi	Xi^2
46	68,4	4679
47	70	4900
48	71	5041
49	72,5	5256
50	79	6241
\sum	2990	180913
(∑Xi)^2	8938904	

N = 50

N' =
$$\left[\frac{40\sqrt{N*\sum X_i^2 - (\sum X_i)^2}}{\sum X_i}\right]^2 = \left[\frac{40\sqrt{(50*180913) - (8938904)^2}}{2990}\right]^2 = 19$$

Kesimpulan:

Dari data di atas nilai N' < N, sehingga data dimensi tinggi bahu duduk (TBD) tersebut telah cukup untuk memenuhi populasi dari segi kualitas.

4. Perhitungan Persentil

Perhitungan persentil digunakan dalam menentukan dimensi tubuh dari tiap bagian penyusun rancangan kursi usulan.

a. Tinggi popliteal (TPL)

Berikut ini merupakan perhitungan persentil (P₅, P₅₀, dan P₉₅) untuk dimensi tubuh tinggi popliteal (TPL).

$$\begin{split} P_5 &= \overline{\overline{X}} - 1,645 S d_x \\ &= 37,544 - (1,645 * 1,923) \\ &= 34,380 \approx 35 \text{ cm} \\ P_{50} &= \overline{\overline{X}} \\ &= 37,544 \approx 38 \text{ cm} \\ P_{95} &= \overline{\overline{X}} + 1,645 S d_x \\ &= 37,544 + (1,645 * 1,923) \\ &= 40,708 \approx 41 \text{ cm} \end{split}$$

b. Lebar pinggul (LP)

Berikut ini merupakan perhitungan persentil (P₅, P₅₀, dan P₉₅) untuk dimensi tubuh lebar pinggul (LP).

$$P_5 = \overline{\overline{X}} - 1,645 \text{Sd}_x$$

= 31,506 - (1,645 * 1,253)
= 29,444 \approx 30 cm
 $P_{50} = \overline{\overline{X}}$
= 31,506 \approx 32 cm

$$P_{95} = \overline{\overline{X}} + 1,645 \text{Sd}_x$$

= 31,506 + (1,645 * 1,253)
= 33,568 \approx 34 cm

c. Pantat popliteal (PpL)

Berikut ini merupakan perhitungan persentil (P_5 , P_{50} , dan P_{95}) untuk dimensi tubuh pantat popliteal (PpL).

$$\begin{split} P_5 &= \overline{\overline{X}} - 1,645 S d_x \\ &= 42,10 - (1,645*1,804) \\ &= 39,132 \approx 40 \text{ cm} \\ P_{50} &= \overline{\overline{X}} \\ &= 42,10 \approx 43 \text{ cm} \\ P_{95} &= \overline{\overline{X}} + 1,645 S d_x \\ &= 42,10 + (1,645*1,804) \\ &= 45,068 \approx 46 \text{ cm} \end{split}$$

d. Tinggi bahu duduk (TBD)

Berikut ini merupakan perhitungan persentil (P_5 , P_{50} , dan P_{95}) untuk dimensi tubuh tinggi bahu duduk (TBD).

$$\begin{split} P_5 &= \overline{\overline{X}} - 1,645 S d_x \\ &= 53,476 - (1,645 * 2,025) \\ &= 50,145 \approx 51 \text{ cm} \\ P_{50} &= \overline{\overline{X}} \\ &= 53,476 \approx 54 \text{ cm} \\ P_{95} &= \overline{\overline{X}} + 1,645 S d_x \\ &= 53,476 + (1,645 * 2,025) \\ &= 56,807 \approx 57 \text{ cm} \end{split}$$

5 Data Hasil Perhitungan Persentil yang Ditabelkan

Tabel hasil pengolahan data dapat dilihat pada tabel A.21.

Tabel A.21 Hasil Perhitungan Persentil

No.	Discount Teleph	C:11	Nilai Persentil (Roundup)			
	Dimensi Tubuh	Simbol	P ₅	P ₅₀	P ₉₅	
1	Tinggi popliteal	TPL	35	38	41	
2	Lebar pinggul	LP	30	32	34	
3	Pantat popliteal	PpL	40	43	46	
4	Tinggi bahu duduk	TBD	51	54	57	

LAMPIRAN B

1. Worksheet RULA Gambar Operator Tampak Kanan (Sebelum Perbaikan

2. Worksheet RULA Gambar Operator Tampak Kiri (Sebelum Perbaikan SK)

3. Worksheet RULA Gambar Operator Tampak Kanan (Setelah Perbaikan SK)

4. Worksheet RULA Gambar Operator Tampak Kiri (Setelah Perbaikan SK)

LAMPIRAN C

χ^2 CRITICAL VALUES

TABLE C: χ^2 CRITICAL VALUES

Tail probability p											
df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001
1	1,32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82
20	23.83	25.04	26.50	28.41	31.41	34.17	35,02	37.57	40.00	42.34	45.31
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31		49.44	52.62
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40
50	56,33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8
00	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4

LAMPIRAN D

Gambar D.1 Desain Kursi Beserta Dimensi Dalam Satuan Centimeter