Example for Diode Limiter

Problem: Find the output voltage across R_L in the limiter circuit.

Example for Diode Clamper

Problem: Find the output voltage across R_L in the clamping circuit.

Zener Diode for Load Regulation

 $I_{ZK}=1~mA$, and $I_{ZM}=50~mA$. Assume an ideal zener diode where $Z_Z=0~\Omega$ and V_Z remains a constant 12 Problem: Determine the minimum and maximum load currents for which the zener diode in Figure given below will maintain regulation. What is the minimum value of R_L that can be used? $V_Z=12V_c$ V over the range of current values, for simplicity.

13

Example for Non-Inverting OpAmp

Problem 1: Determine the voltage gain in dB, input resistance, output voltage, and output current for the Op-Amp circuit. Here, $V_{in}=0.3 \text{ V}$, $R_I=1 \text{ k}\Omega$, $R_f=39 \text{ k}\Omega$.

Example for Ideal OpAmp

Problem 2: Find output voltage when an input voltage of 5 V is applied to the circuit. The feedback resistance is 4.4 kΩ.

Example for Inverting OpAmp

Problem 3: Determine the voltage gain, source current, output current, and output voltage of the Op-Amp circuit. Here, V_m =0.5 V, R_I =78 k Ω , and R_f =490 k Ω .

Example for Inverting OpAmp

Problem 4: Determine the voltage gain, input resistance, and output resistance of the inverting Op-Amp circuit. Consider $R_{in} = 2 k\Omega$, and $R_f = 10 k\Omega$

Example for Inverting OpAmp

Problem 4: Determine the voltage gain, input resistance, and output resistance of the inverting Op-Amp circuit. Consider $R_{in} = 2 k\Omega$, and $R_f = 10 k\Omega$

Example for Non-Inverted Comparator

Problem 1: Find V_{out} for the given circuit.

Example for Inverted Comparator

Problem 2: Find V_{out} for the given circuit.

Example for Output Bounding

Problem 3: Find V_{out} for the given circuit.

Example for Summing OpAmp

Problem 4: Find v_0 and i_o in the Op-Amp circuit.

Example for OpAmp Integrator

Problem 2: Find the output waveform for the given circuit. $_{1\mu F}$

Example for OpAmp Differentiator

Problem 3: Determine the output waveform for the given circuit.

