Drumheads Redux

Completed and Analyzed in class, April 15, 2025

This is our nineteenth notebook. It builds on the techniques in the eighteenth notebook. The difference between a guitar string and a drumhead is just the number of dimensions. After graduating to two dimensions, it will (I hope) be fairly apparent how to go to three dimensions.

I am hopeful that we can cover both the rectangular and circular drumhead in one class. If we only did the rectangular one, that would be too modest a goal. It is hardly any different than the guitar string.

Rectangular Drumhead — Theory

Back in the fourteenth notebook we had these acceleration formulas:

$$a_{j,k} = v_0^2 (z_{j,k+1} + z_{j,k-1} + z_{j+1,k} + z_{j-1,k} - 4 z_{j,k})$$

For a guitar string, the corresponding equation is:

$$\frac{\partial^2 z}{\partial t^2} = v_0^2 \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right)$$

Let's be clear about the dependent and independent variables. The time is t. The drumhead is stretched along the x- and y-axes. Those are the independent variables. The dependent variable is the displacement, which we are putting in the z-direction, so the dependent variable is z, and we want to find the function of three variables, z(t, x, y).

Partial Derivatives

Now that we have three independent variables, we will have things like this:

$$\label{eq:one-point} $\inf[1]:=$ Derivative[0,0,2][z][t,x,y] //$ TraditionalForm $\inf[1]/TraditionalForm=$ $z^{(0,0,2)}(t,x,y)$$$

The Drumhead Differential Equation

Recopying what was above, you can give Mathematica this differential equation:

$$\frac{\partial^2 z}{\partial t^2} = V_0^2 \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right)$$