

Ocean Heat Budget analysis in OGCMs

Fabio Boeira Dias

PhD Candidate CSIRO/UTAS QMS Program

Supervisor team:

Catia Domingues

Simon Marsland

Stephen Rintoul

Nathan Bindoff

Large uncertainty in sea level rise projections from AOGCMS

- Ocean heat uptake and vertical/lateral transport
- Long standing scientific question of great societal importance (WCRP Grand Challenge Regional Sea Level and Coastal Impacts)
- Lack mechanistic view of the physical processes
 (diagnostics & international coordination) => CMIP6/FAFMIP (Flux-Anomaly-Forced MIP) and OMIP

Ocean heat budget analysis

$$\rho_0 c_p \frac{\partial \Theta}{\partial t} = -\nabla \cdot (F_{ADV} + F_{EIT} + F_{KPP} + F_{SW} + F_{SUBMESO} + F_{VDIFF} + F_{OVERFLOW})$$

Temperature equation

- LHS net heat tendency
- RHS Transport convergence terms:
 - ADV = resolved advection
 - EIT = Eddy-induced transport (advection + diffusion)
 - **KPP** = nonlocal K-profile parametrisation (mixed layer physics)
 - SW = Shortwave penetration
 - SUBMESO = Submesoscale restratification on the mixed layer
 - VDIFF = Vertical (diapycnal diffusion)
 - **OVERFLOW** = Overflow of dense waters parametrisation

Model drift studies

- Improving model drift/bias:
 - subgrid-scale parametrisation
 - high-resolution solutions
 - advection, shortwave schemes

Ocean heat balance

- Long spin-up = stable mean-state
 - "control" experiment
 - Processes are in a balance

*Results from MOM5-SIS - CORE NYF

- Heat redistribution: regional processes

Ocean heat uptake and redistribution

- Perturbed experiments:
 - Inter annual forcing
 - Idealised forcing (e.g. FAFMIP)
- Contrasted with control
 - how processes differ?

*Results from MOM5-SIS - CORE IAF

Summary

- Ocean heat budget analysis useful tool for:
 - Scientific questions ocean heat uptake and redistribution processes
 - ocean variability on different time scales
 - climate change scenarios
 - Model development help to test features and reduce model drift
- Next steps:
 - complement analysis using thermohaline coordinates (water mass framework)
 - Idealised experiments like FAFMIP climate change scenarios on OGCMs