

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Кафедра информатики, математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №4 по дисциплине «Обыкновенные дифференциальные уравнения»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02 $\frac{\text{Агличеев A.O.}}{(\Phi \textit{ИO})} \frac{}{(\textit{nodnucb})}$ « 7 » июня 2022 г.

Содержание

1	Введение										3						
2	Задание 1												4				
	2.1 Постан	овка задачи	I														4
	2.2 Решени	1e															4
3	Задание 2										6						
	3.1 Постан	овка задачи	I														6
	3.2 Решени																
4	Задание 3												9				
	4.1 Постан	овка задачи	I														S
	4.2 Решени																
5	Заключені	ие														1	10

1 Введение

В данной лабораторной работе мне нужно решить и дать хар-ку линейных уравнений высших порядков, решить задачу Коши для уравнений 2-го порядка и найти коэффициент логистичекого уравнения.

2 Задание 1

2.1 Постановка задачи

Для следующих линейных дифференциальных уравнений дать характеристику и найти общее решение:

1.
$$y'' - y' \tan x - y \sec^2 x = 0$$

$$2. y'' - y' = \tanh x$$

3.
$$x^2y'' + 2xy' = (2 + \ln^2 x) \cdot \sinh(5 \ln x) \cdot \sin(\ln x)$$

4.
$$x^{IV} + 2x''' + 30x'' + 8x' + 104x = (-6 + 5t^2) \cdot \sinh 4t$$

5.
$$(x-1)^2y'' - x^2y' + 2xy = 2y'' - 3y' + 2y$$

2.2 Решение

Поиск решения и построение векторного поля будет проводиться в системе компьютерной математики Wolfram Mathematica.

1.
$$y'' - y' \tan x - y \sec^2 x = 0$$

Характеристика: Линейное однородное приведенное дифференциальное уравнения второго порядка с переменными коэффициентами

Omeem:
$$y \cos x = C_1 \sin x + C_2$$

$$2. y'' - y' = \tanh x$$

Характеристика: Линейное неоднородное приведенное дифференциальное уравнения второго порядка с постоянными коэффициентами, неоднородность общего вида

Omsem:
$$y = C_1 e^x + C_2 e^{-x} + (e^x + e^{-x}) \operatorname{arctg} e^x$$

3.
$$x^2y'' + 2xy' = (2 + \ln^2 x) \cdot \sinh(5 \ln x) \cdot \sin(\ln x)$$

Xарактеристика: Уравнение Эйлера второго порядка, характерестическая неоднородность после замены $x=e^t$

Omsem:
$$y = \frac{C_1}{x} + C_2 + \frac{29x^5 \ln^2 x \cdot \sin \ln x}{1924} - \frac{19 \ln^2 x \cdot \sin \ln x}{884x^5} - \frac{2299x^5 \ln x \cdot \sin \ln x}{232361} + \frac{14464829x^5 \sin \ln x}{445138564} + \frac{801x^5 \ln x \cdot \sin \ln x}{48841x^5} - \frac{2042719x^5 \sin \ln x}{43175444x^5} - \frac{11x^5 \ln^2 x \cdot \cos \ln x}{1924} - \frac{9 \ln^2 x \cdot \cos \ln x}{884x^5} - \frac{6023787x^5 \cos \ln x}{445138564} + \frac{2789x^5 \ln x \cdot \cos \ln x}{462722} - \frac{1110393x^5 \cos \ln x}{43175444x^5} - \frac{1259x^5 \ln x \cdot \cos \ln x}{97682x^5}$$

4.
$$x^{IV} + 2x''' + 30x'' + 8x' + 104x = (-6 + 5t^2) \cdot \sinh 4t$$

Характеристика: Линейное неоднородное приведенное дифференциальное уравнения четвёртого порядка с постоянными коэффициентами, характеристическая неоднородность

Omsem:
$$y = e^{-t}(C_1 \cos 5t + C_2 \sin 5t) + C_3 \cos 2t + C_4 \sin 2t + e^{4t} \left(\frac{1}{400}t^2 - \frac{3}{1000}t - \frac{39}{20000}\right) - e^{-4t} \left(\frac{1}{272}t^2 + \frac{49}{11560}t + \frac{21929}{3930400}\right)$$

5.
$$(x-1)^2y'' - x^2y' + 2xy = 2y'' - 3y' + 2y$$

Характеристика: Линейное однородное неприведенное дифференциальное уравнения второго порядка с переменными коэффициентами

Omsem:
$$y = C_1 e^x + C_2(x^2 - 1)$$

3 Задание 2

3.1 Постановка задачи

Для заданных уравнений указать тип в простой форме. Найти общее решение. Найти частное решение, удовлетворяющее заданным условиям. Построить график решения:

1.
$$2yy'' + y'^2 + y'^4 = 0$$
; $y(0) = 1$, $y'(0) = 2$

2.
$$2yy'' = 4y'^2 + y''$$
; $y(0) = 0$, $y'(0) = -2$

3.2 Решение

1.
$$\begin{cases} 2yy'' + y'^2 + y'^4 = 0, \\ y(0) = 1, \\ y'(0) = 2; \end{cases}$$

Тип уравнения: Общее уравнение несодержащее аргумента

Общее решение: $2(C_1y-1)^{\frac{3}{2}}+C_2=3C_1x$

Задача Коши: $(5y-4)^{\frac{3}{2}}-1=15x$

Рис. 1: График $(5y-4)^{\frac{3}{2}}-1=15x$

2.
$$\begin{cases} 2yy'' = 4y'^2 + y'', \\ y(0) = 0, \\ y'(0) = -2; \end{cases}$$

Тип уравнения: Общее уравнение несодержащее аргумента

Общее решение:
$$y = \frac{C_1 x + C_2 - 1}{2(C_1 x + C_2)}$$

$$\it Задача \ Kowu: y = rac{2x}{4x-1}$$

Рис. 2: График $y = \frac{2x}{4x-1}$

4 Задание 3

4.1 Постановка задачи

Дано логистическое уравнение популяции:

$$\frac{dP(t)}{dt} = kP(t) \cdot \left(1 - \frac{P(t)}{M}\right), \quad P(0) = 800, \qquad P(800) = 1100$$

$$M = 29000, \qquad P(t_i) = 3100$$

Аналитически найти, при каких k и t_i решение будет удовлетворять условиям выше. Вывести соответствующую систему для неизвестных. Построить график решения данного уравнения. Решение оформить в среде T_FX .

4.2 Решение

Решим дифференциальное уравнение:

$$\frac{P}{M-P} = Ce^{kt}$$

Составим систему для неизвестных и решим её:

$$\begin{cases} \frac{800}{28200} = Ce^0, \\ \frac{1100}{27900} = Ce^{800k}, \\ \frac{3100}{25900} = Ce^{kt_i}; \end{cases}$$

$$\begin{cases} \frac{800}{28200} = C, \\ \ln\left(\frac{1551}{1116}\right)^{1/800} = k, \\ \log_{\frac{1551}{1116}} \left(\frac{4371}{1036}\right)^{800} = t_i. \end{cases}$$

Рис. 3: График решения уравнения

5 Заключение

Я решил 5 линейных уравнений высших порядков, 2 задачи Коши для уравнений 2-го порядка и аналитически нашёл коэффициент для логистического уравнения. Оформлял отчёт по работе в «ТЕХ Live».