1. Guía de ejercicios

1.1. Guía 1

Ejercicio 1.1. Una pequeña empresa de productos químicos debe consumir más de $40~M^3/\text{mes}$ de un determinado alcohol, debido a que ha firmado un contrato con la municipalidad de la zona (este alcohol es producido allí mismo). En compensación recibe beneficios impositivos.

Produce dos tipos de fertilizantes: A y B. En la tabla siguiente se da la información básica:

	Producto A	Producto B
Consumo de alcohol	3 M³/unidad	2/3 M³/unidad
Consumo de ciclohexano	1 tn/unidad	2 tn/unidad

Cuadro 1: Tabla de datos

Disponibilidad de ciclohexano: 20 tn. por mes.

Con estas restricciones, y sabiendo que la contribución marginal es 1.200 \$/u para el producto A y 400 \$/u para el producto B, ¿cuál es el plan óptimo de producción?.

Solución:

- 1. Objetivo del problema: Maximizar la contribución marginal total.
- 2. Definir variables de decisión:

$$x_1 = \text{unidades producidas de fertilizante A [unidad/mes]}$$

 $x_2 = \text{unidades producidas de fertilizante B [unidad/mes]}$
(1)

3. Función objetivo (maximizar contribución marginal):

$$\max Z = 1200 \cdot x_1 + 400 \cdot x_2 \tag{2}$$

4. Restricciones:

$$3 \cdot x_1 + \frac{2}{3} \cdot x_2 \ge 40$$
 (Restricción de consumo de alcohol)
 $x_1 + 2 \cdot x_2 \le 20$ (Restricción de consumo de ciclohexano) (3)
 $x_1, x_2 \ge 0$ (No se pueden producir cantidades negativas de productos)

Ejercicio 1.2. Hay tres máquinas disponibles para la producción de dos productos. Cada uno de ellos requiere los tiempos de proceso que se indican en la tabla siguiente (expresados en horas/unidad).

Producto	Máq. A	Máq. B	Máq. C
1	2	3	4
2	4	2	2
Disponibilidad (hs/mes)	80	60	100

Cuadro 2: Tabla de datos

El esquema del proceso productivo es el siguiente:

- Ambos productos deben pasar sucesivamente por las tres máquinas (en el orden "A→B→C") para quedar totalmente terminados. Una máquina puede procesar un solo producto por vez.
- El precio de venta de 1 es de 60 \$/u y el de 2 es de 50 \$/u. Se planea la operación para el mes que viene.

¿Cuál es el uso óptimo de estos recursos frente al objetivo de maximizar las ganancias?.

Solución:

- 1. Objetivo del problema: Maximizar las ganancias.
- 2. Definir variables:

$$x_1 = \text{unidades producidas de producto 1 [unidad/mes]}$$

 $x_2 = \text{unidades producidas de producto 2 [unidad/mes]}$
(4)

3. Función objetivo (maximizar ganancias):

$$\max Z = 60 \cdot x_1 + 50 \cdot x_2 \tag{5}$$

4. Restricciones:

$$\begin{aligned} 2 \cdot x_1 + 4 \cdot x_2 &\leq 80 & \text{(Restricción de disponibilidad de máquina A)} \\ 3 \cdot x_1 + 2 \cdot x_2 &\leq 60 & \text{(Restricción de disponibilidad de máquina B)} \\ 4 \cdot x_1 + 2 \cdot x_2 &\leq 100 & \text{(Restricción de disponibilidad de máquina C)} \\ x_1, x_2 &\geq 0 & \text{(No se pueden producir cantidades negativas de productos)} \end{aligned} \tag{6}$$

5. Representación gráfica:

Observando el gráfico, se puede ver que el punto óptimo es el punto C(10,15), con un valor de Z=1350.

Figura 1: Representación gráfica del problema

6. Obtención algebraicamente de la solución: Tenemos que usar variables de holgura o slack variables para poder expresar las restricciones de igualdad como restricciones de desigualdad. Para ello, definimos las variables de holgura s_1 , s_2 y s_3 :

$$s_1=$$
 variable de holgura de la restricción de disponibilidad de máquina A $s_2=$ variable de holgura de la restricción de disponibilidad de máquina B $s_3=$ variable de holgura de la restricción de disponibilidad de máquina C (7)

Con estas variables, podemos expresar las restricciones de igualdad como restricciones de desigualdad:

$$\begin{aligned} 2 \cdot x_1 + 4 \cdot x_2 + s_1 &= 80 & \text{(Restricción de disponibilidad de máquina A)} \\ 3 \cdot x_1 + 2 \cdot x_2 + s_2 &= 60 & \text{(Restricción de disponibilidad de máquina B)} \\ 4 \cdot x_1 + 2 \cdot x_2 + s_3 &= 100 & \text{(Restricción de disponibilidad de máquina C)} \\ x_1, x_2, s_1, s_2, s_3 &\geq 0 & \text{(No se pueden producir cantidades negativas de productos)} \end{aligned} \tag{8}$$