Mano e Palmo - Biometria a contatto

Parte VII

Indice

1	Introduzione		
	1.1	Applicazioni	2
	1.2	Vantaggi e Svantaggi	2
	1.3	Sensori	3
		1.3.1 Pegs or Pegs-free	3
2	Matching		
	2.1	Alcuni tipi delle 90 features estraibili	4
		Passi per il matching	
		Eigenfingers	

Capitolo 1

Introduzione

- È un tratto biometrico molto ben accettato dagli utenti in quanto poco invasivo
- È una tecnologia matura (presente dal 1979)
- Offre un discreto livello di accuratezza senza dover chiedere all'utente sample critici per la privacy (come impronta o iride)
- Offre la **possibilità di funzionare in modo multimodale** controllando più aspetti come immagini, misure, pattern delle vene
- Buona diffusione sul mercato

1.1 Applicazioni

- L'utente deve essere collaborativo
- I sistemi possono essere centralizzati, coprendo gli accessi a grandi aree (aeroporto, basi militari, ...)
- Sistemi usati principalmente per il **controllo degli accessi** o per *time* and attendace (controllo presenze sui luoghi di lavoro)
- Preferita dal nostro Garante della Privacy

1.2 Vantaggi e Svantaggi

- Vantaggi
 - Tecnologia consolidata
 - Sensore robusto
 - Dimensioni template ridotte

- Minore impatto su privacy degli utenti

• Svantaggi

- Costo
- Dimensioni e peso
- Sensibilità a luce diurna

1.3 Sensori

I sensori di solito lavorano su tre viste:

- palmare
- laterale
- dorsale

1.3.1 Pegs or Pegs-free

In commercio esistono dei dispositivi con dei pioli per il corretto posizionamento delle mani, ed altri senza.

 \rightarrow con i pioli il sistema diventa più accurato, perché viene ridotta la variabilità intraclasse del sample

CO Hanio Scotti – Università dedli Studi di Milano

Camera-based

Capitolo 2

Matching

2.1 Alcuni tipi delle 90 features estraibili

(a) Misura delle lunghezze degli elementi

(c) Immagine termica per la rilevazione del pattern delle vene

(b) Confronto delle immagⁱni delle parti con tecniche simili a autofacce

(d) Studio delle linee della pelle

2.2 Passi per il matching

- 1. **Peg removal:** conoscendo la posizione fissa dei pioli è facile sottrarli alle immagini
- 2. Estrazione dei contorni: viene segmentata l'immagine e trovato il contorno esterno della mano

3. Estrazione delle dita ed allineamento: le 5 dita vengono estratte dal profilo ed allineate seperatamente a partire da posizioni standard; questo velocizza il processo di matching

4. Matching:

- le curve delle mani da confrontare vengono trasformate in una serie di punti
- il matching lavora individuando le coppie di punti e misurando la loro distanza
 - \rightarrow se la distanza media (MAE, Mean Alignement Error) è minore di una certa soglia l'utente è considerato genuino, altrimeniti come un impostore

2.3 Eigenfingers

In un modo simile al metodo delle autofacce, da un database di immagini di mani è possibile ricostruire le dita e il palmo.