

Quantum Materials(RMn₆Sn₆; R= Ho, Nd) Under Extreme Condition (QuantumExtreme)

Pikesh Pal, Yixi Su

Jülich Centre for Neutron Science (JCNS) at MLZ, Forschungszentrum Jülich GmbH, Garching, Germany

Motivation and Objectives

Dirac cone Van Hove singularity Van Hove singularity Flat band Γ Μ Κ Γ Momentum

Kagome lattice:

- Hosts Dirac Fermions, flat bands, and van Hove singularities
- Topological quantum electronic properties

RMn₆Sn₆: Topological Kagome magnet

Spin quantization of Mn at Kagome layer and band gap at Dirac points are correlated (Rare earth)

Yin, JX., *et al. Nature* **612**, 647–657 (2022).

HoMn₆Sn₆:P₆/mmm

Spin quantization axis of Mn in Kagome layer depends upon magneto crystalline anisotropy of Ho: **Easy cone anisotropy**

Objective: Pressure tunability of spin anisotropy: Single crystal Neutron scattering under pressure

F. Kabir *et al.*, Phys. Rev. Mater. 6, 064404 (2022)

NdMn₆Sn₆: Distorted Kagome system

- > Distorted orthorhombic structure (*Immm*)
- Multiple spin reorientation transition
- > Correlated structural disorder
- ➤ Resolved structure only by powder diffraction Objective: Correaltion between structural disorder and magnetism: Single crystal Neutron scattering to review the crystal and magnetic structure

W. Ma et al., Phys. Rev. B 103, 235109(2021)

Preliminary characterizations

HoMn₆Sn₆:Pressure tuning of magnetism

- Single crystal is grown by Sn flux
- DC and AC magnetic charactezation:
 Both ambient and under pressure (upto 3GPa)
 Ferrimagnetic (in ab plane) order below To
- ➤ Ferrimagnetic (in ab plane) order below Tc (373 K) and undergoes spin reorientation from easy plane to easy cone (49° to c direction) states below T_{SR} (192 K)
- ➤ The T_{SR} almost varies linearly within ambient pressure (190 K) to 25 kbar (198 K) range.
- ➤ Tc varies nonlinearly with in ambient pressure (374 K) to 5 Kbar (395 K) range and shifts beyond the highest measured temperature at 400 K above 5 Kbar

NdMn₆Sn₆:Single crystal X-ray diffraction and Magnetism

- > X-ray diffraction and magnetization study on single crystal grown by flux method
- > Pseudohexagonal Laue pattern is observed
- \succ Reflections can be indexed (93%) with reduced hexagonal cell (a=5.5662(5), b=5.5680(6), c=4.5836(3), α = 90.032(7), β =89.982, γ =119.998(11))
- ➤ Hexagon like diffuse scattering features in the (h,k,±1.5) reciprocal planes
- ➤ Transitions at Tc~375 and other two main spin reorientations at ~150K and 40K
- ➤ Additional peculiar transitional anomaly is observed at ~ 60K

Conclusion and future plans

- ➤ The crtical transition is much higher than 400K
- > T_{SR} changes monotonocally but change in Tc is nonmonotonic
- > Additional transitional anomaly ~ 300K at low field is intriguing
- Direct investigation with neutron scattering can elucidate the role of lattice and interplaner coupling to address the features.
- > The average crystal structure must be reviewed with single crystal neutron diffraction for the crystal and magnetic structure.
- > The role of correlated srtructural disorder with with magnetism.
- ➤ Investigation of pressure tunability of crystal and magnetic structure in order to unravel the correlation among the lattice and spin degrees of freedom.

2 4 6 8 10

Temperature [K]

-2 | to B = 0 at room temperature

