Группа 8-1

Ортоцентр

- $\boxed{1}$ Докажите, что $\angle ABH = \angle CBO$.
- $\boxed{2}$ Докажите, что $\angle ABH = \angle H_cH_aH$.
- $\boxed{3}$ Докажите, что H_aA биссектриса $\angle H_cH_aH_b$.
- [4] Докажите, что O ортоцентр треугольника $M_a M_b M_c$.

Углы

- П Даны две окружности, пересекающиеся в точках X и Y. Прямая, проходящая через X, пересекает первую окружность в точке A, а вторую в точке C. Другая прямая, проходящая через Y, первую окружность пересекает в точке B, а вторую в точке D. Докажите, что $AB \parallel CD$.
- 2 В окружность вписан шестиугольник. Найдите сумму углов при трёх его несоседних вершинах.
- $\boxed{3}$ Окружности с центрами O_1 и O_2 пересекаются в точках A и B. Луч O_2A пересекает первую окружность в точке C. Докажите, что точки O_1 , O_2 , B, C лежат на одной окружности.
- 4 Докажите, что в равнобедренной трапеции вершины боковой стороны, точка пересечения диагоналей и центр описанной окружности лежат на одной окружности.

Углы-2

- Дан треугольник ABC. I центр вписанной окружности. Докажите (и запомните), что $\angle AIB = 90^\circ + \frac{\angle A}{2}$
- Дан треугольник ABC. H ортоцентр (точка пересечения высот). Докажите (и запомните), что $\angle AHB = 180^{\circ} \angle C$
- 4 Дан треугольник ABC. BH_1 , CH_2 высоты треугольника. Докажите, что C, B, H_1 , H_2 лежат на одной окружности.