Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has six (6) pages, including this one.
- Each of the pages 2–6 contain a 30-point problem. You may try as many problems as you wish, but I will stop adding once you reach 100 points (if, I meant if). As it is customary,

score	90-100	85–89	80-84	75–79	70-74	65–69	60-64	0–59
grade	A	$\mathrm{B}+$	\mathbf{B}	$\mathbf{C}+$	\mathbf{C}	$\mathrm{D}+$	D	${f F}$

- The test is fifty (50) minutes long.
- Enter your answer in the boxes provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	30	
3	30	
4	30	
5	30	
6	30	
Total	100	

Problem 1 (30 pts—10 pts each part). We want to compute the volume of the solid bounded below by the xy-plane, above by the plane y+z=3, and on the sides by the cylinders $r=\cos\theta$ and $r=2\cos\theta$.

(a) Sketch the object to the best of your ability.

(b) Express the volume of the object as a triple integral in either cylindrical or spherical coordinates (your choice).

$$V(R) = \iiint_R \mathbf{1} \, dV =$$

$$V(R) = \iiint_R \mathbf{1} \, dV =$$

Problem 2 (30 pts—10 pts each part). Let's assume that we are using the spherical coordinates from the textbook: For $\rho \geq 0$, $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi$,

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

We want to compute the volume of the solid bounded below by the xy-plane, on the sides by the sphere $x^2 + y^2 + z^2 = 4$, and above by the cone $\phi = \pi/3$.

(a) Sketch the object described above to the best of your ability.

(b) Express the volume of the object as a triple integral in either cylindrical or spherical coordinates (your choice).

$$V(R) = \iiint_R \mathbf{1} \, dV =$$

$$V(R) = \iiint_R \mathbf{1} \, dV =$$

Problem 3 (30 pts—10 pts each part). Integrate the function f(x, y, z) = 3xy on the solid bounded above by the paraboloid $z = 5 - x^2 - y^2$ and below by the paraboloid $z = 4x^2 + 4y^2$.

(a) Sketch the object to the best of your ability.

(b) Express as a triple integral in either cylindrical or spherical coordinates (your choice).

$$\iiint_R f(x, y, z) \, dV =$$

$$\iiint_R f(x, y, z) \, dV = \bigg|$$

Problem 4 (30 pts—10 pts each part). Find the volume of the solid cut from the cylinder $x^2+y^2 \le 1$ by the sphere $x^2+y^2+z^2=4$.

(a) Sketch the object to the best of your ability.

(b) Express the volume of the object as a triple integral.

$$V(R) = \iiint_R \mathbf{1} \, dV =$$

$$V(R) = \iiint_R \mathbf{1} \, dV =$$

Problem 5 (30 pts—10 pts each part). Integrate the function $f(x,y,z)=4x^2(z-2)$ over the solid cut from the thick-walled cylinder $1 \le x^2 + y^2 \le 2$ in the first octant by the cone $z = \sqrt{x^2 + y^2}$.

(a) Sketch the object to the best of your ability.

(b) Express as a triple integral in either cylindrical or spherical coordinates (your choice).

$$\iiint_R f(x, y, z) dV =$$

$$\iiint_R f(x, y, z) \, dV =$$