Voortentamen Inleiding Logica

25 oktober 2002

Opgave 1. Leid met natuurlijke deductie (ND) af:

- (a) $(p \lor q) \to r \vdash \neg r \to \neg q$, (7 punten)
- (b) $p \land \neg q \vdash q \to r$, (7 punten)
- (c) $\neg p \land \neg q \vdash \neg (p \lor q)$. (7 punten)

Opgave 2. Onderzoek met een waarheidstafel de geldigheid van:

$$p \lor (p \to q), \neg q \models p \lor q$$

(7 punten)

Opgave 3.

(a) Gegeven is dat $\phi \models \psi$ en dat ϕ een tautologie is. Volgt dan dat ook ψ een tautologie is? Motiveer uw antwoord.

(4 punten)

(b) Geef een formule ϕ zodat zowel $\phi \equiv \phi \land p$ als $\phi \equiv \phi \land \neg p$ gelden. (4 punten)

Opgave 4.

(a) Geef het criterium om te bepalen of een conjunctieve normaalvorm (CNV) een tautologie is.

(4 punten)

(b) Bepaal een CNV voor de formule $(p \land (\neg q \to r)) \lor \neg p$. Laat zien hoe je aan je antwoord komt.

(8 punten)

(c) Bepaal met het criterium uit (a) of de formule uit (b) een tautologie is. (4 punten)

Opgave 5. Gegeven is het Kripke-model $\mathcal{M} = (W, R, L)$ met

$$\begin{array}{lcl} W & = & \{a_1,a_2,a_3\} \\ R & = & \{(a_1,a_2),(a_1,a_3),(a_2,a_3),(a_3,a_3)\} \\ L(p) & = & \{a_2\} \end{array}$$

(a) Teken het model.

(2 punten)

- (b) Ga voor elk van de werelden a_1, a_2, a_3 na of geldt: $\mathcal{M}, a_i \Vdash \Diamond p \to p$. (6 punten)
- (c) Geldt $\mathcal{M} \models \Diamond p \rightarrow p$? (4 punten)
- (d) Geldt $\mathcal{M} \models \Box p \rightarrow p$? (6 punten)

(Motiveer uw antwooorden.)

Opgave 6.

(a) Gegeven is de boolse functie h(x,y,z) van drie variabelen x,y,z die 1 is als precies twee van de variabelen de waarde 1 hebben, en die 0 is in alle andere gevallen. Geef een gereduceerde OBDD voor h met variabelen ordening [x,y,z]. Doe dit met behulp van de regels C1-3 vanuit een BDT voor h.

(10 punten)

Gegeven is de boolse functie f(x,y) die 1 is als hoogstens één van de variabelen x,y de waarde 1 heeft, en die 0 is in alle andere gevallen.

Verder is gegeven de boolse functie g(z, w) die 1 is als precies één van de variabelen z, w de waarde 1 heeft, en die 0 is in alle andere gevallen.

- (b) Geef BDD's voor f en g. (5 punten)
- (c) Gebruik de in (b) gevonden BDD's om een BDD te construeren voor de boolse functie

$$f(x,y) \cdot \overline{g(z,w)}$$

(5 punten)

Het tentamencijfer is (het totaal aantal punten plus 10) gedeeld door 10.