Álgebra Lineal Grupo 3044, 2020-II Examen parcial 1

"Sorprenderse, extra \tilde{n} arse, es comenzar a entender."

—José Ortega y Gasset, filósofo español

Número de cuenta:

- **1.** Sea $A = \{f : \mathbb{R} \to \mathbb{R} \mid |\int_{-\infty}^{\infty} f(x) \ dx| < \infty\}$. Demuestra que A sobre \mathbb{R} forma un espacio vectorial. (2.5 ptos.)
- **2.** Sea $F(\mathbb{R}, \mathbb{R})$ el espacio vectorial formado por todas las funciones $f: \mathbb{R} \to \mathbb{R}$. Sean $P = \{f: \mathbb{R} \to \mathbb{R} \mid f(-x) = f(x)\}$ e $I = \{f: \mathbb{R} \to \mathbb{R} \mid f(-x) = -f(x)\}$. Demuestra que P, I y $P \cap I$ son subespacios vectoriales de $F(\mathbb{R}, \mathbb{R})$. Escribe explícitamente a $P \cap I$. (2.5 ptos.)
- **3.** Demuestra que si $O = \{\mathbf{o}_1, \mathbf{o}_2, \dots, \mathbf{o}_n\}$ es un conjunto de vectores ortogonales, entonces es linealmente independiente. (2.5 ptos.)
- **4.** Sea (V, K) un espacio vectorial con $L_1 \subset V, L_2 \subset V$. Demuestra que si $L_1 \subseteq L_2 \implies \langle L_1 \rangle \subseteq \langle L_2 \rangle$. ¿La implicación en el sentido contrario también será válida? Argumenta. (2.5 ptos.)

Extra: Sea \mathbf{v} un vector no nulo del espacio vectorial complejo \mathbb{C} . ¿Cómo puedes interpretar geométricamente el producto del vector \mathbf{v} por el escalar $\frac{1}{i} \in \mathbb{C}$ en el plano complejo? Argumenta y da un ejemplo. (0.5 ptos. extra.)*