Brachistochrone Problem

Find the frictionless path of least time between two points under uniform gravity

Howard Heaton

Overview

"Point-wise thinking ends here. Your variable just grew a time axis."

-Variational Evangelist

Scope Introductory derivation of solution to brachistochrone problem

Outline

- Problem Statement
- Problem Reformulation
- First-Order Optimality / Euler-Lagrange
- Beltrami Identity
- Differential Equation Solution

This lecture introduces concepts in the calculus of variations.

Problem Statement

Given two points p^1 and p^2 , find the curve r^* a frictionless bead would slide on from p^1 to p^2 in the least time T, *i.e.* using dots for time derivatives, solve

$$\mathbf{r}^* = \underset{\mathbf{r}, T}{\operatorname{argmin}} T$$
 such that $\mathbf{r}(0) = p^1$, $\mathbf{r}(T) = p^2$, $\dot{\mathbf{r}}(0) = 0$, \mathbf{r}, T

$$\mathcal{E} = \frac{1}{2}m||\dot{\mathbf{r}}(t)||^2 + mg\mathbf{r}_y(t) \text{ for all } t.$$

Note

- We assume p^2 is lower than and not directly below p^1 .
- For each time t, the point $\mathbf{r}(t) = (\mathbf{r}_x(t), \mathbf{r}_y(t))$ is in \mathbb{R}^2 .
- Constraint $\dot{\mathbf{r}}(0) = 0$ means bead starts from rest (i.e. velocity is zero).
- Total energy \mathcal{E} is conserved as bead travels from p^1 to p^2 .

Derivative for Horizontal Motion

Assume the curve is given by $\mathbf{r}(t) = (x(t), y(x(t)))$ for some function y(x).

This gives the speed formula

$$\|\dot{\mathbf{r}}\| = \left\| \left(\frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} \right) \right\| = \left\| \left(1, y' \right) \right\| \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{1 + (y')^2} \frac{\mathrm{d}x}{\mathrm{d}t}.$$

By the conservation of energy ${\mathcal E}$,

$$\mathcal{E} = \frac{1}{2}m||\dot{\mathbf{r}}||^2 + mgy \iff ||\dot{\mathbf{r}}|| = \sqrt{2(\mathcal{E}/m - gy)}.$$

Together, these two relations imply

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{\frac{2(\mathcal{E}/m - gy)}{1 + (y')^2}}.$$

 $^{^\}dagger$ Although terms may depend on x or t, we henceforth leave dependencies implicit.

Problem Reformulation

Set $p^1 = (x_1, y_1)$ and $p^2 = (x_2, y_2)$, taking $x_2 > x_1$. Then

$$T = \int_0^T dt = \int_{x_1}^{x_2} \frac{dt}{dx} dx = \int_{x_1}^{x_2} \sqrt{\frac{1 + (y')^2}{2(\mathcal{E}/m - gy)}} dx = \int_{x_1}^{x_2} \mathcal{L}(y, y') dx,$$

where \mathcal{L} is the Lagrangian for this problem. It is common to define the functional

$$J(y) = \int_{x_1}^{x_2} \mathcal{L}(y, y') dx$$

and let \mathcal{A} denote a set of "nice" functions y with $y(x_1) = y_1$ and $y(x_2) = y_2$. Our problem is \dagger

$$\min_{y \in \mathcal{A}} J(y)$$
.

[†]The constraint $\dot{\mathbf{r}}(0) = 0$ is automatically enforced by taking $\mathcal{E} = mgy_1$.

Variation Function

Each admissible $y \in A$ can be written as $y = y^* + \varepsilon v$, using the optimal $y^* \in A$, $\varepsilon > 0$ and a variation function v satisfying $v(x_1) = v(x_2) = 0$.

Decomposition of Feasible Function

First Variation and Optimality

The first variation of J at y in the direction v is the directional derivative

$$\delta J(y,v) = \lim_{\varepsilon \to 0} \frac{J(y+\varepsilon v) - J(y)}{\varepsilon} = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \Big[J(y+\varepsilon v) \Big]_{\varepsilon=0}.$$

Fix a variation function v and define $f(\varepsilon) = J(y^* + \varepsilon v)$. Since y^* is optimal,

$$f(0) = J(y^*) \le J(y^* + \varepsilon v) = f(\varepsilon)$$
 for all $\varepsilon \in \mathbb{R}$.

This shows 0 minimizes f and, thus, f'(0) = 0. Due to this and the facts v is arbitrary and $f'(0) = \delta J(y^*, v)$, it follows that

 $0 = \delta J(y^*, v)$, for all admissible variations v. (optimality condition)

First Variation Formula

Using subscripts for partial derivatives, the first variation δJ is given by

$$\delta J(y,v) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \Big[J(y+\varepsilon v) \Big]_{\varepsilon=0} \qquad \text{(substitute definition of } \delta J)$$

$$= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \Big[\int_{x_1}^{x_2} \mathcal{L}(y+\varepsilon v,y'+\varepsilon v') \, \mathrm{d}x \Big]_{\varepsilon=0} \qquad \text{(substitute definition of } J)$$

$$= \int_{x_1}^{x_2} \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\varepsilon} \left(y+\varepsilon v,y'+\varepsilon v' \right) \Big|_{\varepsilon=0} \, \mathrm{d}x \qquad \text{(pull derivative inside)}$$

$$= \int_{x_1}^{x_2} \mathcal{L}_y v + \mathcal{L}_{y'} v' \, \mathrm{d}x \qquad \text{(evaluate derivative)}$$

$$= \int_{x_1}^{x_2} \left(\mathcal{L}_y - \frac{\mathrm{d}}{\mathrm{d}x} \mathcal{L}_{y'} \right) v \, \mathrm{d}x + \left[v \cdot \mathcal{L}_{y'} \right]_{x_1}^{x_2} \qquad \text{(integrate by parts)}$$

$$= \int_{x_1}^{x_2} \left(\mathcal{L}_y - \frac{\mathrm{d}}{\mathrm{d}x} \mathcal{L}_{y'} \right) v \, \mathrm{d}x. \qquad \text{(apply } v(x_1) = v(x_2) = 0)$$

Euler-Lagrange

Plugging the formula for δJ into the optimality condition yields

$$0 = \delta J(y^*, v) = \int_{x_1}^{x_2} \left(\mathcal{L}_y - \frac{d}{dx} \mathcal{L}_{y'} \right) v \, dx, \quad \text{for all admissible variations } v.$$

The yellow term is zero as, if not, we could pick v to make the integral nonzero. †

Thus, we obtain the famous differential equation satisfied by optimal y^* :

$$0 = \mathcal{L}_y - \frac{d\mathcal{L}_{y'}}{dx} \quad \text{for all } x \in (x_1, x_2). \tag{Euler-Lagrange}$$

[†]This is a standard result, typically proven in a real analysis course.

Beltrami Identity

Multiplying the Euler-Lagrange equation by y' reveals

$$0 = y' \left(\mathcal{L}_y - \frac{d\mathcal{L}_{y'}}{dx} \right) = \mathcal{L}_y y' + \mathcal{L}_{y'} y'' - \frac{d}{dx} \left(y' \mathcal{L}_{y'} \right) = \frac{d}{dx} \left[\mathcal{L} - y' \mathcal{L}_{y'} \right].$$

This implies there is a constant $C \in \mathbb{R}$ such that

$$C = \mathcal{L} - y' \mathcal{L}_{y'}$$

$$= \sqrt{\frac{1 + (y')^2}{2(\mathcal{E}/m - gy)}} - y' \cdot \frac{y'}{\sqrt{2(\mathcal{E}/m - gy)(1 + (y')^2)}}$$

$$= \frac{1}{\sqrt{2(\mathcal{E}/m - gy)(1 + (y')^2)}}.$$
(Beltrami Identity)

Differential Equation Parametrization

From the previous slide, optimal y^{\star} solves the differential equation †

$$\frac{1}{2gC^2} = \left(\frac{\mathcal{E}}{mg} - y\right) \left(1 + (y')^2\right) = (y_1 - y) \left(1 + (y')^2\right).$$

Set $u = y_1 - y$ and $R = 1/4gC^2$ so that u' = -y' and

$$u\left(1+\left(u'\right)^2\right)=2R.$$

Parametrize u with respect to θ via $u = 2R \sin^2(\theta/2)$ so that

$$\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 = (u')^2 = \frac{2R}{u} - 1 = \frac{2R - u}{u}.$$

[†]From the initial conditions, $y_1 = \mathcal{E} / mg$.

Solution for Horizonal Component

Substituting in the parametrization of u,

$$(dx)^{2} = \frac{u}{2R - u} \cdot (du)^{2} = \tan^{2}\left(\frac{\theta}{2}\right) \cdot \left(2R \cdot \sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)d\theta\right)^{2}.$$

We may simplify this via[†]

$$(dx)^{2} = \left(\frac{1 - \cos(\theta)}{\sin(\theta)} \cdot R\sin(\theta) d\theta\right)^{2} = \left(R(1 - \cos(\theta)) d\theta\right)^{2}.$$

With the conditions $x(0) = x_1$ and $x_2 > x_1$, we integrate to deduce

$$x = \int R(1 - \cos(\theta)) d\theta = R(\theta - \sin(\theta)) + x_1.$$

[†]We use the identities $tan(\theta/2) = (1 - cos(\theta))/2$ and $sin(\theta) = 2sin(\theta/2)cos(\theta/2)$.

Time Scaling

We now solve for t in terms of θ . Observe

$$dt = \sqrt{\frac{1 + (y')^2}{2g(y_1 - y)}} dx$$

$$= \sqrt{\frac{(dx)^2 + (dy)^2}{2gu}}$$

$$= \sqrt{\frac{(R[1 - \cos(\theta)])^2 + (R\sin(\theta))^2}{2gR(1 - \cos(\theta))}} d\theta$$

$$= \sqrt{\frac{R}{g}} d\theta.$$

Integrating gives $\theta = t\sqrt{g/R}$.

Summary — Solution Derivation

- Optimal \mathbf{r}^* corresponds to \mathbf{y}^* satisfying $\delta J(\mathbf{y}^*, \mathbf{v}) = 0$.
- This optimality condition is equivalent to $\mathcal{L}_{y} d\mathcal{L}_{y'}/dx = 0$.
- This Euler-Lagrange equation is solved by the cycloid curve[†]

$$x = x_1 + R(\omega t - \sin(\omega t)),$$

$$y = y_1 - 2R\sin^2\left(\frac{\omega t}{2}\right) = y_1 - R(1 - \cos(\omega t)).$$

• Since each relation was established via equivalences/equalities, this is the unique solution (up to equivalent parametrizations).

[†]We take $\omega = \sqrt{g/R}$ and use a trigonometric identity to simplify y.

Summary - Brachistochrone Solution

The optimal curve \mathbf{r}^{\star} that solves the brachistochrone problem is

$$\mathbf{r}^{\star}(t) = \left(x_1 + R(\omega t - \sin(\omega t)), y_1 - R(1 - \cos(\omega t))\right), \quad \text{for all } t \in [0, T],$$

with $\omega = \sqrt{g/R}$ and R > 0 and T > 0 determined by the condition $\mathbf{r}^*(T) = p^2$.

[†]See Appendix for an example.

Found this useful?

- + Follow for more
- Share with friends

Building and use optimization?

Let's connect

References

- D. Smith. Variational Methods in Optimization. Prentice-Hall. 1974.
- I. Gelfand and S. Fomin. Calculus of Variations. Dover. 2000.
- Brachistochrone curve. Wikipedia. 2025.

Appendix — **Solving** for R and T

Set
$$\Theta = T\sqrt{g/R}$$
,

$$\Delta x = x_2 - x_1 = R(\Theta - \sin(\Theta))$$
 and $\Delta y = y_2 - y_1 = R(\cos(\Theta) - 1)$

so that $\Delta x > 0$, $\Delta y < 0$, and

$$0 = (R - R) \cdot (\Theta - \sin(\Theta)) = \Delta x - \Delta y \cdot \frac{\Theta - \sin(\Theta)}{\cos(\Theta) - 1}.$$

For $\theta \in (0, 2\pi)$, set

$$f(\theta) = \Delta x - \Delta y \cdot \frac{\theta - \sin(\theta)}{\cos(\theta) - 1}.$$

We seek Θ such that $f(\Theta) = 0$.

Appendix — **Solving** for R and T

Since f is continuous and

$$\lim_{t\to 0^+} f(\theta) = \Delta x > 0 \quad \text{and} \quad \lim_{t\to 2\pi^-} f(\theta) = -\infty < 0,$$

the intermediate value theorem states there is $\Theta \in (0, 2\pi)$ such that $f(\Theta) = 0$.

Because $f'(\theta) < 0$, the root Θ is unique.

Solve for Θ via bisection method, using f and interval (0, 2π). Then

$$T = \Theta \sqrt{\frac{R}{g}}$$
 and $R = \frac{\Delta x}{\Theta - \sin(\Theta)}$.

Sample code: github.com/TypalAcademy/brachistochrone

Appendix – Numerical Integration

To get discrete steps along the trajectory $\mathbf{r}(t)$, we numerically integrate.

For a step size $\Delta t > 0$, the simplest approach is to use Forward Euler estimates

$$x(t + \Delta t) \approx x(t) + \Delta t \cdot \frac{dx}{dt}(t)$$
.

Note

Since the bead starts from rest, dx/dt = 0 at t = 0. However, to make things "nice" numerically, we can use small $\varepsilon > 0$ and $\mathcal{E} = \varepsilon$ to ensure dx/dt > 0 at t = 0 and get an estimate of the desired trajectory.