The Naive Bayes Algorithm: Takeaways 🖻

by Dataquest Labs, Inc. - All rights reserved © 2020

Concepts

• When a new message " w_1 , w_2 , ..., w_n " comes in, the Naive Bayes algorithm classifies it as spam or non-spam based on the results of these two equations:

$$P(Spam | w_1, w_2, \dots, w_n) \propto P(Spam) \cdot \prod_{i=1}^n P(w_i | Spam) P(Spam^C | w_1, w_2, \dots, w_n)$$

• To calculate $P(w_i|Spam)$ and $P(w_i|Spam^C)$, we need to use the additive smoothing technique:

$$P(w_i | Spam) = \frac{N_{w_i | Spam} + \alpha}{N_{Spam} + \alpha \cdot N_{Vocabulary}}$$

$$P(w_i | Spam^C) = \frac{N_{w_i | Spam^C} + \alpha}{N_{Spam^C} + \alpha \cdot N_{Vocabulary}}$$

• Below, we see what some of the terms in equations above mean:

 $N_{w_i|Spam}$ = the number of times the word w_i occurs in spam messages

 $N_{w_i|Spam}$ c = the number of times the word w_i occurs in non-spam messages

 N_{Spam} = total number of words in spam messages

 $N_{Spam}c$ = total number of words in non-spam messages

 $N_{Vocabulary}$ = total number of words in the vocabulary

 $\alpha = 1$ (α is a smoothing parameter)

Resources

• A technical intro to a few version of the Naive Bayes algorithm

• An intro to conditional independence

Takeaways by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\text{@}}$ 2020