

You can view this report online at: https://www.hackerrank.com/x/tests/1528818/candidates/50260563/report

Full Name: Breeha Qasim

Email: bq08283@st.habib.edu.pk

Test Name: CS 102 - Lab 6 - Spring 2023

Taken On: 17 Feb 2023 10:30:19 PKT

Time Taken: 113 min 12 sec/ 2880 min

Work Experience: < 1 years
Invited by: Aisha

Skills Score: Tags Score: 98.9%

scored in **CS 102 - Lab 6 - Spring 2023** in 113 min 12 sec on 17 Feb 2023 10:30:19 PKT

Recruiter/Team Comments:

No Comments.

Plagiarism flagged

We have marked questions with suspected plagiarism below. Please review.

	Question Description	Time Taken	Score	Status
Q1	Binary Search Iterative > Coding	7 min 10 sec	100/ 100	(!)
Q2	Binary Search Iterative Modified > Coding	23 min 13 sec	92/ 100	⊘
Q3	Binary Search Recursive > Coding	9 min 11 sec	100/ 100	\odot
Q4	Binary Search Recursive Modified > Coding	1 min 36 sec	100/ 100	⊘
Q5	Updating Student Record > Coding	46 min 1 sec	100/ 100	⊘
Q6	Length of the Line > Coding	14 min 24 sec	100/ 100	(!)
Q7	Finding Multiple > Coding	11 min 19 sec	100/ 100	1

2. item - An item to search in the list and return the index of item; -1 otherwise.

```
>>> binary_search_iterative( [0, 1, 2, 8, 13, 17, 19, 32, 42], 3)
-1
>>> binary_search_iterative( [0, 1, 2, 8, 13, 17, 19, 32, 42], 17)
5
```

```
INTERVIEWER GUIDELINES
  def binary_search_iterative(lst,item):
     low = 0
     high = len(lst)-1
     i = (low + high)//2
     j = low + high
     while j>0:
         if lst[i] == item:
            return i
         elif lst[i]<item:</pre>
            low = i+1
         elif lst[i]>item:
            high = i-1
         i = (low + high)//2
         j = j//2
      return -1
```

CANDIDATE ANSWER

```
def binary_search_iterative(lst,item):
    high=len(lst)-1
    low=0
    mid=0
    while low<=high:
        mid=(high+low)//2
    if lst[mid]<item:
        low=mid+1
    elif lst[mid]>item:
        high=mid-1
    else:
        return mid
    return -1
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample case	Success	6	0.107 sec	9.08 KB
Testcase 1	Easy	Sample case	Success	6	0.0618 sec	8.91 KB
Testcase 2	Easy	Hidden case	Success	8	0.0704 sec	9.11 KB
Testcase 3	Easy	Hidden case	Success	8	0.0466 sec	9.07 KB
Testcase 4	Easy	Hidden case	Success	8	0.0761 sec	9.31 KB
Testcase 5	Easy	Hidden case	Success	8	0.0546 sec	9.24 KB

Testca	ise 6	Easy	Hidden case	0	Success	8	0.0623 sec	9.08 KB
Testca	ise 7	Easy	Hidden case	Ø	Success	8	0.0572 sec	9.23 KB
Testca	ise 8	Easy	Hidden case	Ø	Success	8	0.0551 sec	8.91 KB
Testca	ise 9	Easy	Hidden case	Ø	Success	8	0.0871 sec	9.18 KB
Testca	se 10	Easy	Hidden case	Ø	Success	8	0.0527 sec	8.95 KB
Testca	se 11	Easy	Hidden case	0	Success	8	0.0612 sec	9.05 KB
Testca	ise 12	Easy	Hidden case	0	Success	8	0.0652 sec	9.29 KB

QUESTION 2

Score 92

Binary Search Iterative Modified > Coding

QUESTION DESCRIPTION

No Comments

Create a function named binary_search_iterative_modified which takes the following two inputs:

- 1. list An input list (sorted data)
- 2. item An item to search in the list

and search for the item in the list. If item is not found, add the item to the list and return its index.

```
>>> binary_search_iterative_modified([0, 1, 2, 8, 13, 17, 19, 32, 42], 8)
3
>>> binary_search_iterative_modified([0, 1, 2, 3, 8, 13, 17, 19, 32, 42],
-1)
0
```

```
INTERVIEWER GUIDELINES
 def binary_search_iterative_modified(lst,item):
     low = 0
     high = len(lst)-1
     i = (low + high)//2
     j = low + high
     while j>0:
        if lst[i] == item:
            return i
         elif lst[i]<item:</pre>
             low = i+1
         elif lst[i]>item:
            high = i-1
         i = (low + high)//2
         j = j//2
      lst.insert(low,item)
      return low
```

CANDIDATE ANSWER

```
1 '''def binary_search_iterative(lst,item):
2    high=len(lst)-1
3    low=0
4    mid=0
```

```
while low<=high:
 6
         mid=(high+low)//2
          if lst[mid]<item:
 8
              low=mid+1
         elif lst[mid]>item:
             high=mid-1
          else:
              return mid
      return -1'''
14 def binary_search_iterative_modified(lst,item):
      high=len(lst)-1
      low=0
     mid=0
     while low<=high:
         mid=(high+low)//2
          if lst[mid] < item:
              low=mid+1
         elif lst[mid]>item:
              high=mid-1
          else:
              return mid
      if item<mid:
          lst.insert(mid,item)
          return mid
      elif item>mid:
          lst.insert(mid+1,item)
          return mid+1
      '''found=binary_search_iterative(lst,item)
       if found==-1:
          lst.append(item)
          lst.sort()
          return binary_search_iterative(lst,item)
      else:
          return found'''
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample case	Success	6	0.0753 sec	9.02 KB
Testcase 1	Easy	Sample case	Success	6	0.0406 sec	9.11 KB
Testcase 2	Easy	Hidden case	Success	8	0.0776 sec	8.8 KB
Testcase 3	Easy	Hidden case	Success	8	0.0839 sec	9.09 KB
Testcase 4	Easy	Hidden case	Success	8	0.0532 sec	8.93 KB
Testcase 5	Easy	Hidden case	Success	8	0.0601 sec	8.91 KB
Testcase 6	Easy	Hidden case	Success	8	0.0515 sec	8.97 KB
Testcase 7	Easy	Hidden case	Success	8	0.0601 sec	9.04 KB
Testcase 8	Easy	Hidden case	Success	8	0.0443 sec	9.27 KB
Testcase 9	Easy	Hidden case	Success	8	0.0384 sec	9.09 KB
Testcase 10	Easy	Hidden case		8	0.0485 sec	9.28 KB
Testcase 11	Easy	Hidden case	Wrong Answer	0	0.0738 sec	8.99 KB
Testcase 12	Easy	Sample case	Success	8	0.0459 sec	9.03 KB
Comments						

Score 100

Binary Search Recursive > Coding

QUESTION DESCRIPTION

Implement the binary search algorithm with recursive approach.

Write a function named binary search recursive, which takes the following inputs:

- 1. list An input list (sorted data)
- 2. item An item to search in the list
- 3. low Low index of data list
- 4. high High index of data list

and return the index of item; -1 otherwise.

```
>>> binary_search_recursive( [0, 1, 2, 8, 13, 17, 19, 32, 42], 19, 0, 8)
6
>>> binary_search_recursive( [0, 1, 2, 8, 13, 17, 19, 32, 42], 3, 0, 8)
-1
```

```
def binary_search_recursive(lst, item, low, high):
    if low > high:
        return -1
    elif lst[(low+high)//2]==item:
        return (low+high)//2
    elif lst[(low+high)//2]
    elif lst[(low+high)//2]
    return binary_search_recursive(lst, item, ((low+high)//2)+1,
high)
    else:
        return binary_search_recursive(lst, item, low, ((low+high)//2)-1)
```

CANDIDATE ANSWER

```
def binary_search_recursive(lst,item,low,high):
    mid=(high+low)//2
    if lst[mid] == item:
        return mid
    elif low > high:
        return -1
    else:
        if lst[mid]<item:
            return binary_search_recursive(lst,item,mid+1,high)
        #low=mid+1
        else:
        return binary_search_recursive(lst,item,low,mid-1)
    return binary_search_recursive(lst,item,low,mid-1)</pre>
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample case	Success	9	0.0524 sec	9.07 KB
Testcase 1	Easy	Sample case	Success	9	0.065 sec	8.98 KB

Testca	se 2 E	asy	Hidden case	0	Success	9	0.0702 sec	9.11 KB
Testca	se 3 E	asy	Hidden case	0	Success	9	0.1339 sec	8.91 KB
Testca	se 4 E	asy	Hidden case	0	Success	9	0.0584 sec	9.31 KB
Testca	se 5 E	asy	Hidden case	Ø	Success	9	0.0696 sec	8.88 KB
Testca	se 6 E	asy	Hidden case	0	Success	9	0.0891 sec	8.91 KB
Testca	se 7 E	asy	Hidden case	Ø	Success	9	0.0676 sec	9.03 KB
Testca	se 8 E	asy	Hidden case	Ø	Success	9	0.0475 sec	9.19 KB
Testca	se 9 E	asy	Hidden case	Ø	Success	10	0.0467 sec	8.91 KB
Testca	se 10 E	asy	Sample case	0	Success	9	0.0649 sec	9.27 KB

QUESTION 4

Score 100

Binary Search Recursive Modified > Coding

QUESTION DESCRIPTION

Write a function named binary_search_recursive_modified, which takes the following inputs:

- 1. list An input list (sorted data)
- 2. item An item to search in the list
- 3. low Low index of data list
- 4. high High index of data list

and search for the item in the list. If item is not found, add the item to the list and return its index.

```
>>> binary_search_recursive_modified([0, 1, 2, 8, 13, 17, 19, 32, 42], 3, 0, 8) 3
>>> binary_search_recursive_modified([0, 1, 2, 8, 13, 17, 19, 32, 42], 17, 0, 8) 5
```

```
INTERVIEWER GUIDELINES

def binary_search_recursive_modified(lst, item, low, high):
    if low > high :
        lst.insert(low,item)
        return low
    elif lst[(low+high)//2]==item:
        return (low+high)//2
    elif lst[(low+high)//2]
    elif lst[(low+high)//2]
elif lst[(low+high)//2]
item:
    return binary_search_recursive_modified(lst, item,

((low+high)//2)+1, high)
    elif lst[(low+high)//2]>item:
        return binary_search_recursive_modified(lst, item, low,
((low+high)//2)-1)
```

CANDIDATE ANSWER

```
def binary_search_recursive_modified(lst,item,low,high):
    mid=(high+low)//2
```

```
if lst[mid] == item:
    return mid

lelif low > high:
    return mid+1

else:
    if lst[mid] < item:
        return binary_search_recursive_modified(lst,item,mid+1,high)

#low=mid+1

else:
    return binary_search_recursive_modified(lst,item,low,mid-1)

return binary_search_recursive_modified(lst,item,low,mid-1)</pre>
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample case	Success	8	0.0443 sec	9.15 KB
Testcase 1	Easy	Sample case	Success	8	0.0389 sec	9.14 KB
Testcase 2	Easy	Hidden case	Success	8	0.0594 sec	9.07 KB
Testcase 3	Easy	Hidden case	Success	8	0.1002 sec	9.09 KB
Testcase 4	Easy	Hidden case	Success	8	0.0399 sec	8.98 KB
Testcase 5	Easy	Hidden case	Success	8	0.0517 sec	9.02 KB
Testcase 6	Easy	Hidden case	Success	8	0.038 sec	9.12 KB
Testcase 7	Easy	Hidden case	Success	8	0.0857 sec	8.87 KB
Testcase 8	Easy	Hidden case	Success	8	0.0349 sec	8.96 KB
Testcase 9	Easy	Hidden case	Success	10	0.0915 sec	9.16 KB
Testcase 10	Easy	Hidden case	Success	10	0.0605 sec	8.96 KB
Testcase 11	Easy	Sample case	Success	8	0.0401 sec	9.1 KB

QUESTION 5

Score 100

Updating Student Record > Coding

QUESTION DESCRIPTION

Using binary search approach, write a function named update_record, which takes the following inputs:

- 1. students_records Nested List of Tuples. Each tuple of the list represents student's data.
- 2. ID An ID of a student whose data has to be updated
- 3. record title type of data that has to be updated
- 4. data A new data which should replace record_title data

and update the record of students' data associated to specific ID.

If **ID** is given as the data to be updated, then return a message that **ID** cannot be updated. If **ID** is not found in students_records, then return a message that Record not found.

NOTE: The type of record_title input can be "ID", "Email", "Mid1" or "Mid2". Please use the same spelling for these types in your code, because the same have been used in test cases.

```
student_records = [("aa02822", "ea02822", 80, 65), ("ea02822", "ea02822@st.habib.edu.pk", 80, 65),
```

```
("fa08877", "fa08877@st.habib.edu.pk", 66, 67),
    ("gh04588", "gh04588@st.habib.edu.pk", 33, 50)]

>>> update_record(students_records, "aa02822", "ID", "aa02456")
ID cannot be updated

>>> update_record(students_records, "aa02822", "Email",
    "aa02822@st.habib.edu.pk")
[("aa02822", "aa02822@st.habib.edu.pk", 80, 65),
    ("ea02822", "ea02822@st.habib.edu.pk", 80, 65),
    ("fa08877", "fa08877@st.habib.edu.pk", 66, 67),
    ("gh04588", "gh04588@st.habib.edu.pk", 33, 50)]

>>> update_record(students_records, 'f08877', "Mid2", 50)
Record not found
```

CANDIDATE ANSWER

```
2 def binary search iterative(lst,item):
      high=len(lst)-1
      low=0
 4
      mid=0
      while low<=high:
         mid=(high+low)//2
          if lst[mid]<item:
              low=mid+1
         elif lst[mid]>item:
              high=mid-1
          else:
              return mid
     return -1
15 def update record(student records, ID, record title, data):
      if record title=="ID":
           return "ID cannot be updated"
      ID lst=[]
      for i in student records:
           ID lst.append(i[0])
      found=binary search iterative(ID lst,ID)
      if found==-1:
           return "Record not found"
       if record title=="Email":
           tup=(student records[found][0], data, student records[found]
27 [2], student records [found] [3])
           student records[found]=tup
           return student_records
       if record title=="Mid1":
           tup=(student records[found][0], student_records[found]
33 [1], int(data), student records[found][3])
          student records[found]=tup
          return student_records
       if record title=="Mid2":
           tup=(student records[found][0],student records[found]
39 [1], student records [found] [2], int (data))
```

student	records[found]=tup
return :	student_records

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample case	Success	20	0.073 sec	8.86 KB
Testcase 1	Easy	Sample case	Success	20	0.0426 sec	9.29 KB
Testcase 2	Easy	Sample case	Success	20	0.0365 sec	9.1 KB
Testcase 3	Easy	Sample case	Success	20	0.0782 sec	9.04 KB
Testcase 4	Easy	Sample case	Success	20	0.0875 sec	9.18 KB

QUESTION 6

Score 100

Length of the Line > Coding

QUESTION DESCRIPTION

Using Binary Search, write a function named length of line, which takes two inputs:

- 1. points_lists The list containing nested lists of starting and ending x and y coordinates of different lines. For e.g: [[(x1, y1), (x2, y2)], [(x1, y1), (x2, y2)], [(x1, y1), (x2, y2)]].
- 2. length The length of a line.

Now determine, if any line present in the points_lists has a same length as that of required length.

Return the index of that line. If the line is not found, return -1.

Hint: Estimate the length of a line with the help of distance formula.

```
>>> length_of_line([[(2,4),(4,6)], [(1,2),(4,6)], [(4,0),(6,6)]], 5.0)

1

>>> length_of_line([[(2,4),(4,6)], [(1,2),(4,6)],[(4,0),(6,6)]], 6.32)

2

>>> length_of_line([[(2,4),(4,6)], [(1,2),(4,6)],[(4,0),(6,6)]], 1.0)

-1
```

CANDIDATE ANSWER

```
import math
def binary_search_iterative(lst,item):
    high=len(lst)-1
    low=0
    mid=0
    while low<=high:
        mid=(high+low)//2
    if lst[mid]<item:
        low=mid+1
    elif lst[mid]>item:
        high=mid-1
    else:
```

```
return mid

return -1

def length_of_line(points_list,length):

dist_srch=[]

for i in points_list:

dist=math.sqrt((i[1][0]-i[0][0])**2+(i[1][1]-i[0][1])**2)

dist_srch.append(round(dist,2))

return binary_search_iterative(dist_srch,length)
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Sample case	Success	25	0.0531 sec	9.06 KB
Testcase 1	Easy	Sample case	Success	25	0.0533 sec	8.99 KB
Testcase 2	Easy	Sample case	Success	25	0.0621 sec	9.11 KB
Testcase 3	Easy	Sample case	Success	25	0.0626 sec	8.95 KB

QUESTION 7

Needs Review

Score 100

Finding Multiple > Coding

QUESTION DESCRIPTION

Using binary and linear search approaches, write a function named finding_multiple, which takes the following inputs:

- 1. lst list of items (sorted data)
- 2. item the item needs to be searched in the lst

and return the list of all the indexes where the item is found in the lst, otherwise return empty list.

```
>>> finding_multiple([0, 1, 2, 8, 13, 17, 17, 17, 17, 19, 32, 42], 17)
[5, 6, 7, 8]
>>> finding_multiple([0, 1, 2, 8, 13, 17, 17, 17, 17, 19, 32, 42], 34)
[]
```

CANDIDATE ANSWER

```
2 def finding_multiple(lst,item):
     high=len(lst)-1
4
     low=0
     mid=0
     final=[]
     while low<=high:
8
        mid=(high+low)//2
         if lst[mid]<item:</pre>
              low=mid+1
         elif lst[mid]>item:
              high=mid-1
         else:
             m=mid
              while m<len(lst) and lst[m] == item:
                  final.append(m)
```

```
m=mid-1
                 while m \ge 0 and lst[m] == item:
                      final.insert(0,m)
                      m-=1
                 return final
       return []
   TESTCASE
               DIFFICULTY
                                TYPE
                                             STATUS
                                                        SCORE
                                                                  TIME TAKEN
                                                                                MEMORY USED
  Testcase 0
                             Sample case
                                           Success
                                                          15
                                                                  0.0478 sec
                                                                                    9.27 KB
                   Easy
  Testcase 1
                             Sample case
                                           Success
                                                                  0.0658 sec
                                                                                    8.88 KB
                   Easy
                                                          17
                                           Success
                                                                                    8.92 KB
  Testcase 2
                   Easy
                             Hidden case
                                                                  0.0532 sec
                                                                  0.0718 sec
                                                                                    8.95 KB
  Testcase 3
                   Easy
                             Hidden case

    Success

                                                          17
  Testcase 4
                   Easy
                             Sample case
                                           Success
                                                          17
                                                                  0.0563 sec
                                                                                    8.91 KB
                                                                                    8.9 KB
  Testcase 5
                   Easy
                             Hidden case

    Success

                                                          17
                                                                  0.0715 sec
No Comments
```

PDF generated at: 19 Apr 2023 10:40:52 UTC

m+=1