Spatial Filtering

Spatial Filtering

CS 450: Introduction to Digital Signal and Image Processing

Slides created by Dr. Bryan Morse **BYU Computer Science**

 $\mathrel{\bigsqcup_{\mathsf{Introduction}}}$

Neighborhood Operations

- ▶ Output is a function of a pixel's value and its neighbors
- ► Example (8-connected neighbors):

$$g(x,y) = \operatorname{Op} \left(\begin{array}{cccc} f(x-1,y-1) & , & f(x,y-1) & , & f(x+1,y-1) & , \\ f(x-1,y) & , & f(x,y) & , & f(x+1,y) & , \\ f(x-1,y+1) & , & f(x,y+1) & , & f(x+1,y+1) & , \end{array} \right)$$

▶ Possible operations: sum, weighted sum, average, weighted average, min, max, median, ...

Spatial Filtering

Introduction

Spatial Filtering

- ▶ The most common neighborhood operation is to multiply each of the pixels in the neighborhood by a weight and add them together.
- ▶ The local weights are sometimes called a *mask* or *kernel*.

Local	Neighborhood	

Loodi Holgilbolllood				
f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)		
f(x-1,y)	f(x,y)	f(x+1,y)		
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)		

Mask

w(-1,-1)	w(0,-1)	w(1,-1)
w(-1,0)	w(0,0)	w(1,0)
w(-1,1)	w(0,1)	w(1,1)

$$g(x,y) = \sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) f(x+s,y+t)$$

Spatial Filtering Introduction

Spatial Filtering

4 m > 4 m >

Spatial Filtering

Introduction

Convolution

- ▶ Spatial filtering is often referred to as convolution.
- ▶ Or we say we *convolve* the image by a kernel or mask.
- Properly speaking, convolution uses a flipped kernel: (we'll go into why later)

Local Neighborhood

f(x-1,y-1)	f(x,y-1)	f(x+1,y-1)
f(x-1,y)	f(x,y)	f(x+1,y)
f(x-1,y+1)	f(x,y+1)	f(x+1,y+1)

Mask

w(1,1)	w(0,1)	w(-1,1)
w(1,0)	w(0,0)	w(-1,0)
w(1,-1)	w(0,-1)	w(-1,-1)

$$g(x,y) = \sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) f(x-s,y-t)$$

Spatial Filtering Introduction

Spatial Filtering

Applications:

- Smoothing
- Sharpening
- Edge detection

patial Filtering

Smoothing

Smoothing

- Already talked about averaging multiple images together to reduce the variance of the noise.
- With one image (signal), you can't average multiple images together.
- Why not average multiple pixels together?
- What does this assume?

Advantage: Less Noise Disadvantage: Blurring

Spatial Filterin

 $\mathrel{dash}_{\mathsf{Smoothing}}$

Smoothing

- Any kernel with all-positive weights causes smoothing or blurring.
- ► They are also called *low-pass filters* (more on this later)
 - Audio: diminishes high frequency sounds while allowing low-frequency sounds to pass
 - ► Images: reduces rapid changes/transitions
- ► To cause averaging (instead of just summation), have to normalize by the sum of the weights:

$$g(x,y) = \frac{\sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) f(x+s,y+t)}{\sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t)}$$

Spatial Filtering

Smoothing

Image Smoothing

Blurring with successively larger uniform kernels:

Spatial Filtering

Smoothing Kernels

Changing the weights shapes the smoothing:

1	1	1	1	1	1	1
1	1	1	1	2	1	2
1	1	1	1	1	1	1

1	2	1
2	4	2
1	2	1

Can be any size:

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

(D) (B) (E) (E) E

Spatial Filtering

Nonlinear Smoothing

- Convolution is linear, but many neighborhood operators are not.
- One set of nonlinear smoothing operators are order-statistic filters:
 - Median
 - ▶ Unlike averaging, the result is a value from the original image
 - ► One method of (attempted) edge-preserving smoothing
 - Very good for "salt and pepper" noise (occasional dark, light pixels)
 - ► Trimmed-mean
 - ► Throw out the high and low values, average the rest
 - Less likely to be affected by outlying neighborhood values

4 D F 4 B F 4 B F B F 9 9 9

Spatial Filtering

Smoothing

Median Filtering

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)