Lecture 11 Conditioning of Least Squares Problems; Stability of Least Squares Algorithms

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

1 Conditioning of Least Squares Problems

Stability of Least Squares Algorithms

Accuracy of Backward Stable Algorithm

Theorem

If a backward stable algorithm $\tilde{\mathbf{f}}$ is used to solve a problem \mathbf{f} with condition number κ using floating-point numbers satisfying the two axioms, then

$$\|\tilde{\mathbf{f}}(\mathbf{x}) - \mathbf{f}(\mathbf{x})\| / \|\mathbf{f}(\mathbf{x})\| = O(\kappa(\mathbf{x})\epsilon_{machine})$$

Accuracy of Backward Stable Algorithm

Theorem

If a backward stable algorithm ${\bf f}$ is used to solve a problem ${\bf f}$ with condition number κ using floating-point numbers satisfying the two axioms, then

$$\|\tilde{\mathbf{f}}(\mathbf{x}) - \mathbf{f}(\mathbf{x})\| / \|\mathbf{f}(\mathbf{x})\| = O(\kappa(\mathbf{x})\epsilon_{machine})$$

Proof

Backward stability means $\mathbf{f}(\mathbf{x}) = \mathbf{f}(\tilde{\mathbf{x}})$ for $\tilde{\mathbf{x}}$ such that

$$\|\tilde{\mathbf{x}} - \mathbf{x}\|/\|\mathbf{x}\| = O(\epsilon_{machine})$$

Definition of condition number gives

$$\|\mathbf{f}(\tilde{\mathbf{x}}) - \mathbf{f}(\mathbf{x})\| / \|\mathbf{f}(\mathbf{x})\| \leqslant (\kappa(\mathbf{x}) + o(1)) \|\tilde{\mathbf{x}} - \mathbf{x}\| / \|\mathbf{x}\|$$

where $o(1) \to 0$ as $\epsilon_{machine} \to 0$.

Combining the two gives desired result.

Outline

1 Conditioning of Least Squares Problems

Stability of Least Squares Algorithms

Four Conditioning Problems

• Least squares problem: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$ with full rank and $\mathbf{b} \in \mathbb{C}^m$,

$$\min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|$$

- It is solution is $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$. Another quantity is $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b}$, where $\mathbf{P} = \mathbf{A}\mathbf{A}^+ = \mathbf{A}(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$ (i.e., orthogonal projection of \mathbf{b} onto range of \mathbf{A}) (refer to figure)
- Consider A and b as input data, and x and y as output. We then have four conditioning problems:

Input \ Output	у	x
b	$\kappa_{\mathbf{b} \to \mathbf{y}}$	$\kappa_{\mathbf{b} \to \mathbf{x}}$
Α	$\kappa_{A o y}$	$\kappa_{A o x}$

• These conditioning problems are important and subtle.

Some Prerequisites

- We focus on the second column, namely $\kappa_{{f b}
 ightarrow {f x}}$ and $\kappa_{{f A}
 ightarrow {f x}}$
- However, understanding $\kappa_{\mathbf{b} \to \mathbf{y}}$ and $\kappa_{\mathbf{A} \to \mathbf{y}}$ is prerequisite
- Three quantities: (All in 2-norms)
 - Condition number of A:

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^+\| = \sigma_1/\sigma_n$$

Angle between **b** and **y**:

$$\theta = \cos^{-1} \frac{\|\mathbf{y}\|}{\|\mathbf{b}\|}, \ (0 \leqslant \theta \leqslant \pi/2)$$

• Orientation of **y** with $range(\mathbf{A})$:

$$\eta = \frac{\|\mathbf{A}\| \|\mathbf{x}\|}{\|\mathbf{y}\|}, \ (1 \leqslant \eta \leqslant \kappa(\mathbf{A}))$$

- Intuition: The larger θ is, the more sensitive ${\bf y}$ is in terms of relative error
- Analysis: $\mathbf{y} = \mathbf{Pb}$, so

$$\kappa_{\mathbf{b} \to \mathbf{y}} = \frac{\|\mathbf{P}\|}{\|\mathbf{y}\|/\|\mathbf{b}\|} = \frac{\|\mathbf{b}\|}{\|\mathbf{y}\|} = \frac{1}{\cos \theta}$$

where $\|\mathbf{P}\| = 1$

Input \ Output	у	x
b	$\frac{1}{\cos \theta}$	
Α		

- Intuition: The larger θ is, the more sensitive ${\bf y}$ is in terms of relative error
- Analysis: $\mathbf{y} = \mathbf{Pb}$, so

$$\kappa_{\mathbf{b} \to \mathbf{y}} = \frac{\|\mathbf{P}\|}{\|\mathbf{y}\|/\|\mathbf{b}\|} = \frac{\|\mathbf{b}\|}{\|\mathbf{y}\|} = \frac{1}{\cos \theta}$$

$Input \setminus Output$	у	х
b	$\frac{1}{\cos \theta}$	
Α		

• Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?

- Intuition: The larger θ is, the more sensitive ${\bf y}$ is in terms of relative error
- Analysis: $\mathbf{y} = \mathbf{Pb}$, so

$$\kappa_{\mathbf{b} \to \mathbf{y}} = \frac{\|\mathbf{P}\|}{\|\mathbf{y}\|/\|\mathbf{b}\|} = \frac{\|\mathbf{b}\|}{\|\mathbf{y}\|} = \frac{1}{\cos \theta}$$

where $\|\mathbf{P}\|=1$

Input \ Output	у	x
b	$\frac{1}{\cos \theta}$	
Α		

- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?
- Answer: when $\delta \mathbf{b} \in range(\mathbf{A})$

- Intuition: It depends on how sensitive ${\bf y}$ is to ${\bf b}$, and how ${\bf y}$ lies within $range({\bf A})$
- Analysis: $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$, so

$$\kappa_{\mathbf{b} \rightarrow \mathbf{x}} = \frac{\|\mathbf{A}^+\|}{\|\mathbf{x}\|/\|\mathbf{b}\|} = \|\mathbf{A}^+\| \frac{\|\mathbf{b}\|}{\|\mathbf{y}\|} \frac{\|\mathbf{y}\|}{\|\mathbf{x}\|} = \|\mathbf{A}^+\| \frac{1}{\cos \theta} \frac{\|\mathbf{A}\|}{\eta} = \frac{\kappa(\mathbf{A})}{\eta \cos \theta}$$

where $\eta = \|\mathbf{A}\| \|\mathbf{x}\| / \|\mathbf{y}\|$

1	/ y	
Input \ Output	у	x
b	$\frac{1}{\cos \theta}$	$\frac{\kappa(\mathbf{A})}{\eta\cos\theta}$
Α		

• Assume $\cos\theta=O(1)$, $\kappa_{{\bf b}\to{\bf x}}=\frac{\kappa({\bf A})}{\eta\cos\theta}$ can lie anywhere between 1 and $O(\kappa({\bf A}))!$

- Assume $\cos\theta=O(1)$, $\kappa_{\mathbf{b}\to\mathbf{x}}=\frac{\kappa(\mathbf{A})}{\eta\cos\theta}$ can lie anywhere between 1 and $O(\kappa(\mathbf{A}))!$
- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?

- Assume $\cos\theta=O(1)$, $\kappa_{\mathbf{b}\to\mathbf{x}}=\frac{\kappa(\mathbf{A})}{\eta\cos\theta}$ can lie anywhere between 1 and $O(\kappa(\mathbf{A}))!$
- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?
- Answer: When $\delta {\bf b}$ is in subspace spanned by left singular vectors corresponding to smallest singular values

- Assume $\cos\theta=O(1)$, $\kappa_{{\bf b}\to{\bf x}}=\frac{\kappa({\bf A})}{\eta\cos\theta}$ can lie anywhere between 1 and $O(\kappa({\bf A}))!$
- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?
- Answer: When $\delta {\bf b}$ is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?

- Assume $\cos \theta = O(1)$, $\kappa_{\mathbf{b} \to \mathbf{x}} = \frac{\kappa(\mathbf{A})}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(\mathbf{A}))!$
- Question: When the maximum is attained for perturbation $\delta \mathbf{b}$?
- Answer: When $\delta \mathbf{b}$ is in subspace spanned by left singular vectors corresponding to smallest singular values
- Question: What if A is a nonsingular matrix?
- Answer: $\kappa_{\mathbf{b} \to \mathbf{x}} = \frac{\kappa(\mathbf{A})}{\eta \cos \theta}$ can lie anywhere between 1 and $O(\kappa(\mathbf{A}))$

Sensitivity of \mathbf{x} , \mathbf{y} to Perturbations in \mathbf{A}

- ullet The relationship are nonlinear, because $range({f A})$ changes due to $\delta {f A}$
- Intuitions:
 - The larger θ is, the more sensitive **y** is in terms of relative error.
 - Tilting of $range(\mathbf{A})$ depends on $\kappa(\mathbf{A})$.
 - For \mathbf{x} , it depends where \mathbf{y} lies within $range(\mathbf{A})$

$Input \setminus Output$	у	x
b	$\frac{1}{\cos \theta}$	$\frac{\kappa(\mathbf{A})}{\eta\cos heta}$
Α	$\leq \frac{\kappa(\mathbf{A})}{\cos \theta}$	$\kappa(\mathbf{A}) + \frac{\kappa(\mathbf{A})^2 \tan \theta}{\eta}$

- For second row, bounds are not necessarily tight
- Assume $\cos\theta=O(1),\ \kappa_{{\bf A}\to{\bf x}}$ can lie anywhere between $\kappa({\bf A})$ and $O(\kappa({\bf A})^2)$

Condition Numbers of Linear Systems

- Linear systems $\mathbf{A}\mathbf{x} = \mathbf{b}$ for nonsingular $\mathbf{A} \in \mathbb{C}^{m \times m}$ is a special case of least squares problems, where $\mathbf{y} = \mathbf{b}$
- If m=n, then $\theta=0$, so $\cos\theta=1$ and $\tan\theta=0$

Input \ Output	у	х
b	1	$\frac{\kappa(\mathbf{A})}{\eta}$
Α	$\leq \kappa(\mathbf{A})$	$\kappa(\mathbf{A})$

Outline

① Conditioning of Least Squares Problems

2 Stability of Least Squares Algorithms

Algorithms for Solving Least Squares Problems

- There are many variants of algorithms for solving least squares problems
 - Householder QR (with/without pivoting, explicit or implicit Q):
 Backward stable
 - Classical Gram-Schmidt: Unstable
 - Modified Gram-Schmidt with explicit Q: Unstable
 - Modified Gram-Schmidt with augmented system of equations with implicit Q: Backward stable
 - Normal equations (solve $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$): Very unstable
 - Singular value decomposition: Stable and most accurate
- Note that in general, only SVD is robust for solving rank deficient least squares problems

Backward Stability of Householder Triangularization

Theorem

Let the full-rank least squares problem be solved using Householder triangularization on a computer satisfying the two axioms of floating point numbers. The algorithm is backward stable in the sense that the computed solution $\tilde{\mathbf{x}}$ has the property

$$\|(\mathbf{A} + \delta \mathbf{A})\tilde{\mathbf{x}} - \mathbf{b}\| = \min, \ \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} = O(\epsilon_{machine})$$

for some $\delta \mathbf{A} \in \mathbb{C}^{m \times n}$

- Backward stability of the algorithm is true whether $\hat{\mathbf{Q}}^*\mathbf{b}$ is computed via explicit formation of $\hat{\mathbf{Q}}$ or computed implicitly
- Backward stability also holds for Householder triangularization with arbitrary column pivoting $\mathbf{AP} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$

Gram-Schmidt Orthogonalization

- Note that Gram-Schmidt orthogonalization in general is unstable, due to loss of orthogonality
- However, Gram-Schmidt can be stabilized using an augmented system of equations:
 - Compute QR of augmented matrix: $[\mathbf{Q}, \mathbf{R}_1] = mgs([\mathbf{A}, \mathbf{b}])$
 - Extract **R** and $\hat{\mathbf{Q}}^* \mathbf{b}$ for \mathbf{R}_1 : $\mathbf{R} = \mathbf{R}_1(1:n,1:n)$; $\mathbf{Q}\mathbf{b} = \mathbf{R}_1(1:n,n+1)$
 - Back solve: $\mathbf{x} = \mathbf{R} \backslash \mathbf{Q} \mathbf{b}$

Theorem

The solution of the full-rank least squares problem by Gram-Schmidt orthogonality is backward stable in the sense that the computed solution $\tilde{\mathbf{x}}$ has the property

$$\|(\mathbf{A} + \delta \mathbf{A})\tilde{\mathbf{x}} - \mathbf{b}\| = \min, \ \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} = O(\epsilon_{machine})$$

for some $\delta \mathbf{A} \in \mathbb{C}^{m \times n}$, provided that $\hat{\mathbf{Q}}^* \mathbf{b}$ is formed implicitly.

Other Methods

• The method of normal equation solves $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

Theorem

The solution of the full-rank least squares problem via normal equation is unstable. Stability can be achieved, however, by restriction to a class of problems in which $\kappa(\mathbf{A})$ is uniformly bounded above or $\tan\theta/\eta$ is uniformly bounded below.

• Solution using SVD: $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*, \mathbf{x} = \mathbf{V}\hat{\mathbf{\Sigma}}^{-1}\hat{\mathbf{U}}^*\mathbf{b}$

Theorem

The solution of the full-rank least squares problem by the SVD is backward stable.