Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №7 по курсу «Дискретный анализ»

 $\begin{array}{ccc} & \text{Студент:} & \text{Т.}\,\,\rlap{/}\text{Д.}\,\,\text{Голубев} \\ \Pi \text{реподаватель:} & \text{А.}\,\text{А.}\,\,\text{Кухтичев} \end{array}$

Группа: М8О-306Б-22

Дата: Оценка: Подпись:

Лабораторная работа №7

Задача: Задана матрица натуральных чисел A размерности $n \times m$. Из текущей клетки можно перейти в любую из 3-х соседних, стоящих в строке с номером на единицу больше, при этом за каждый проход через клетку (i,j) взымается штраф $A_{i,j}$. Необходимо пройти из какой-нибудь клетки верхней строки до любой клетки нижней, набрав при проходе по клеткам минимальный штраф.

1 Описание

Требуется решить задачу методом динамического программирования.

В [1] сказано: «Динамическое программирование, как и метод "разделяй и властвуй позволяет решать задачи, комбинируя решения вспомогательных подзадач». Соответственно, требуется разбить задачу на подзадачи, из которых мы будем формировать решение.

Я предлагаю создать дополнительную матрицу dp размера $n \times m$, в которой на позиции (i,j) будет находится минимально возможный штраф, с которым можно прийти в клетку (i,j) матрицы A. Тогда ответ (минимальный штраф) будет вычисляться как минимум из последней строки матрицы dp.

Значение элемента с индексами i, j в матрице dp вычисляется как $min(dp_{i-1,j-1}, dp_{i-1,j}, dp_{i-1,j+1}) + A_{i,j}$.

Сложность данного решения – $O(n \cdot m)$, где n – количество строк в матрице, m – количество столбцов.

2 Исходный код

main.cpp	
uint16_t Min(const	Поиск минимума в векторе.
std::vector <int64_t>& vec)</int64_t>	
uint16_t FindMinFareIndex(uint16_t	Поиск минимального штрафа среди
n, uint16_t m, const	верхних соседей.
$std::vector < std::vector < int64_t \&$	
dp, uint16_t i, uint16_t j)	
std::vector <point> FindPath(uint16_t</point>	Поиск пути с минимальным штрафом.
n, uint16_t m, const	
std::vector <std::vector<int64_t>&</std::vector<int64_t>	
(dp)	
std::pair <int64_t, std::vector<point=""></int64_t,>	Функция решения задачи.
Solve(uint16_t n, uint16_t m, const	
std::vector <std::vector<int64_t>&</std::vector<int64_t>	
matrix)	

 $^{1 \}parallel \texttt{using Point = std::pair<uint16_t, uint16_t>;}$

3 Консоль

```
cat-mood@nuclear-box:~/programming/mai-da-labs/lab07/build$ ./lab07_exe
3  3
3  1  2
7  4  5
8  6  3
8
(1,2) (2,2) (3,3)
```

4 Тест производительности

Тест производительности представляет из себя следующее: Решение с использованием динамического программирования сравнивается с наивным обходом всех решений на матрице 10×10 .

```
cat-mood@nuclear-box:~/programming/mai-da-labs/lab07/build$ ./benchmark <test1.txt
naive's time: 8573ms
my solution's time: 53ms

cat-mood@nuclear-box:~/programming/mai-da-labs/lab07/build$ ./benchmark <test2.txt
naive's time: 8662ms
my solution's time: 54ms

cat-mood@nuclear-box:~/programming/mai-da-labs/lab07/build$ ./benchmark <test3.txt
naive's time: 8303ms
my solution's time: 52ms</pre>
```

Как видно, моё решение работает быстрее.

5 Выводы

Выполнив седьмую лабораторную работу по курсу «Дискретный анализ», я решил задачу с помощью динамического программирования. В ходе работы столкнулся с проблемой разбиения основной задачи на подзадачи и изначально пошёл неверным путём. Впоследствии переосмыслил задачу и решил верно.

Список литературы

[1] Томас X. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ. - 3-е изд. - М.: ООО "И. Д. Вильямс 2013. - 1328 с.