KECERDASAN BUATAN(AI)

Disusun untuk memenuhi Tugas Mata Kuliah Kecerdasan Buatan: Reasoning

Zabrina Virgie 1302223055

M Arifin Ilham 1302223061

Kelas: SE-46-04

PROGRAM STUDI S1 REKAYASA PERANGKAT LUNAK

FAKULTAS INFORMATIKA

UNIVERSITAS TELKOM

2025

I. PERANCANGAN FUZZY

A. Jumlah dan Nama Linguistik Setiap Atribut Input

Sistem dibuat menggunakan 2 atribut utama sebagai parameter penilaian restoran:

1. <u>Kualitas Servis</u> menggambarkan tingkat pelayanan yang diberikan oleh restoran, yang terdiri dari kecepatan pelayanan, keramahan staf, kebersihan, dan kenyamanan. Kualitas servis dinyatakan dengan rentang nilai 0-100. Variabel linguistik untuk atribut Kualitas Servis terdiri dari tiga kategori:

Buruk	Pelayanan lambat, staf kurang ramah, atau kebersihan yang tidak terjaga		
Sedang	Pelayanan cukup baik namun masih memiliki beberapa kekurangan		
Baik	Pelayanan cepat, staf sangat ramah, dan lingkungan sangat bersih juga		
	nyaman		

2. <u>Harga</u> menggambarkan kisaran harga menu yang ada pada restoran. Harga direpresentasikan dalam rentang 25.000 - 55.000 rupiah (berdasarkan harga per porsi). Variabel linguistik untuk atribut Harga terdiri dari tiga kategori:

Murah	Restoran dengan harga yang terjangkau dan ekonomis
Sedang	Restoran dengan harga menengah yang umum di pasaran
Mahal	Restoran dengan harga mahal di atas rata-rata

B. Bentuk dan Batas Fungsi Keanggotaan Input

Untuk merepresentasikan derajat keanggotaan setiap nilai input terhadap kategori linguistiknya, digunakan fungsi keanggotaan. Dalam sistem ini, seluruh variabel linguistik menggunakan fungsi *triangular membership function*. Pemilihan fungsi segitiga dilakukan karena relatif sederhana namun efektif dalam merepresentasikan data linguistik, serta memiliki komputasi yang lebih ringan dibandingkan fungsi Gaussian atau bentuk lainnya.

- 1. Fungsi Keanggotaan Kualitas Servis (0-100)
 - a) Buruk: Fungsi segitiga dengan titik (0, 25, 50)
 - 1) Nilai 0-25: Semakin rendah nilai, semakin tinggi derajat keanggotaan "Buruk"
 - 2) Nilai 25: Memiliki derajat keanggotaan penuh (1.0) untuk kategori "Buruk"
 - 3) Nilai 25-50: Derajat keanggotaan "Buruk" menurun secara linear dari 1.0 menjadi 0
 - b) Sedang: Fungsi segitiga dengan titik (30, 50, 70)
 - 1) Nilai 30-50: Derajat keanggotaan "Sedang" meningkat secara linear dari 0 menjadi 1.0
 - 2) Nilai 50: Memiliki derajat keanggotaan penuh (1.0) untuk kategori "Sedang"
 - 3) Nilai 50-70: Derajat keanggotaan "Sedang" menurun secara linear dari 1.0 menjadi 0
 - c) Baik: Fungsi segitiga dengan titik (60, 80, 100)

- 1) Nilai 60-80: Derajat keanggotaan "Baik" meningkat secara linear dari 0 menjadi 1.0
- 2) Nilai 80: Memiliki derajat keanggotaan penuh (1.0) untuk kategori "Baik"
- 3) Nilai 80-100: Semakin tinggi nilai, semakin tinggi derajat keanggotaan "Baik"
- 2. Fungsi Keanggotaan Harga (25.000-55.000)
 - a) Murah: Fungsi segitiga dengan titik (25.000, 27.500, 35.000)
 - 1) Nilai 25.000-27.500: Semakin rendah nilai, semakin tinggi derajat keanggotaan "Murah"
 - 2) Nilai 27.500: Memiliki derajat keanggotaan penuh (1.0) untuk kategori "Murah"
 - 3) Nilai 27.500-35.000: Derajat keanggotaan "Murah" menurun secara linear dari 1.0 menjadi 0
 - b) Sedang: Fungsi segitiga dengan titik (30.000, 40.000, 45.000)
 - 1) Nilai 30.000-40.000: Derajat keanggotaan "Sedang" meningkat secara linear dari 0 menjadi 1.0
 - 2) Nilai 40.000: Memiliki derajat keanggotaan penuh (1.0) untuk kategori "Sedang"
 - 3) Nilai 40.000-45.000: Derajat keanggotaan "Sedang" menurun secara linear dari 1.0 menjadi 0
 - c) Mahal: Fungsi segitiga dengan titik (40.000, 50.000, 55.000)
 - 1) Nilai 40.000-50.000: Derajat keanggotaan "Mahal" meningkat secara linear dari 0 menjadi 1.0
 - 2) Nilai 50.000: Memiliki derajat keanggotaan penuh (1.0) untuk kategori "Mahal"
 - 3) Nilai 50.000-55.000: Semakin tinggi nilai, semakin tinggi derajat keanggotaan "Mahal"

C. Aturan Inferensi (Fuzzy Rules)

Dalam sistem ini, terdapat 9 aturan inferensi yang dibentuk dari kombinasi dua atribut input dengan masing-masing tiga kategori linguistik. Aturan-aturan ini dirancang dengan mempertimbangkan preferensi umum konsumen, dimana restoran ideal memiliki kualitas servis yang baik dengan harga yang terjangkau.

Berikut 9 aturan yang diimplementasikan dalam sistem:

Aturan 1	Jika Servis Baik dan Harga Murah = Tinggi	Restoran dengan pelayanan	
		prima dan harga terjangkau tentu	
		sangat disukai konsumen	
Aturan 2	Jika Servis Baik dan Harga Sedang = Tinggi	Kualitas pelayanan yang baik	
		tetap memiliki nilai tinggi	
		meskipun dengan harga	
		menengah	

Aturan 3	Jika Servis Baik dan Harga Mahal = Sedang	Pelayanan prima dengan harga premium masih cukup diminati untuk kesempatan khusus
Aturan 4	Jika Servis Sedang dan Harga Murah = Sedang	Pelayanan standar dengan harga ekonomis masih memberikan nilai yang memadai
Aturan 5	Jika Servis Sedang dan Harga Sedang = Sedang	Representasi restoran pada umumnya dengan pelayanan dan harga yang standar
Aturan 6	Jika Servis Sedang dan Harga Mahal = Rendah	Konsumen cenderung mengharapkan pelayanan yang lebih baik untuk harga yang mahal
Aturan 7	Jika Servis Buruk dan Harga Murah = Sedang	Harga murah dapat menjadi kompensasi untuk pelayanan yang kurang memuaskan
Aturan 8	Jika Servis Buruk dan Harga Sedang = Rendah	Pelayanan buruk dengan harga standar kurang diminati konsumen
Aturan 9	Jika Servis Buruk dan Harga Mahal = Rendah	Kombinasi pelayanan buruk dan harga mahal merupakan yang paling tidak disukai

D. Metode Defuzzifikasi

Metode yang digunakan adalah *Weighted Average*, menghitung nilai keluaran nyata berdasarkan bobot dari setiap aturan fuzzy yang aktif dan nilai keluaran yang diasosiasikan dengan masing-masing aturan tersebut.

Rumus: $Z = (\Sigma (\alpha_i \times z_i)) / (\Sigma \alpha_i)$

Keterangan:

- 1) α_i = derajat keanggotaan (output dari inferensi fuzzy) dari aturan ke-i
- 2) z_i = nilai crisp yang mewakili keluaran linguistik dari aturan ke-i
- 3) Z = hasil akhir defuzzifikasi

Tabel Representasi Output Linguistik ke Nilai Crisp/Nyata:

Output Linguistik	Nilai Crisp (z)
Rendah	30
Sedang	60
Tinggi	90

Contoh Perhitungan:

Aturan	Output Linguistik	Derajat Keanggotaan (α)	Nilai Crisp (z)	$\alpha \times z$
1	Tinggi	0.7	90	63.0
2	Sedang	0.5	60	30.0
3	Rendah	0.2	30	6.0

$$Z = (63.0 + 30.0 + 6.0) / (0.7 + 0.5 + 0.2) = 99.0 / 1.4 \approx 70.71$$

Maka skor kelayakan akhir untuk restoran tersebut adalah 70.71.

Metode ini dipilih karena:

- 1) Sederhana dan efisien dihitung tanpa library eksternal.
- 2) Menghasilkan nilai akhir yang mencerminkan pengaruh semua aturan fuzzy aktif.
- 3) Umum digunakan dalam sistem fuzzy Mamdani untuk output numerik.

E. Bentuk dan Batas Fungsi Keanggotaan Output

Output sistem adalah Skor Kelayakan dengan rentang nilai 0-100 (berupa skor numerik hasil defuzzifikasi

Batas	Rendah	Sedang	Tinggi
≤ 30	Ya (+1)	-	-
30 - 60	-	Ya (+1)	-
60 - 90	-	-	Ya (+1)
> 90	-	-	Ya (+1)

Ketiga himpunan output menggunakan fungsi triangular membership function, dengan bentuk:

- 1) Rendah : segitiga dengan titik (0, 0), (30, 1), (60, 0)
- 2) Sedang: segitiga dengan titik (30, 0), (60, 1), (90, 0)
- 3) Tinggi: segitiga dengan titik (60, 0), (90, 1), (100, 0).

II. SOURCE CODE DAN OUTPUT

```
fungsi_keanggotaan_segitiga(nilai, a, b, c):
if nilai <= a or nilai >= c:
                                                                                                                                                 aturan.append(('sedang', min(fz_servis['rendah'], fz_harga['murah'])))
aturan.append(('rendah', min(fz_servis['rendah'], fz_harga['sedang'])))
aturan.append(('rendah', min(fz_servis['rendah'], fz_harga['mahal'])))
            | return 0 | return 0 | return 0 | return (nilai <= b: | return (nilai - a) / (b - a) | return (c - nilai) / (c - b)
                                                                                                                                           return {
   'rendah': fungsi_keanggotaan_segitiga(nilai_servis, 0, 25, 50),
   'sedang': fungsi_keanggotaan_segitiga(nilai_servis, 30, 50, 70),
   'tinggi': fungsi_keanggotaan_segitiga(nilai_servis, 60, 80, 100)
                                                                                                                                               if baca_data_csv(nama_file):
    kumpulan_data = []
    with open(nama_file, 'r') as file:
    next(file)
    for baris in file:
        elemen = baris.strip().split(',')
        if len(elemen) != 3:
            continue
        id_data = int(elemen[0])
        nlimi_serv = float(elemen[1])
        nlimi_serv = float(elemen[2])
        kumpulan_data = append((id_data, nilmi_serv, nilmi_hrg))
    return kumpulan_data
                 urn (
"murah": fungsi_keanggotaan_segitiga(nilai_harga, 25000, 27500, 35000),
"sedang": fungsi_keanggotaan_segitiga(nilai_harga, 30000, 40000, 45000),
"mahal": fungsi_keanggotaan_segitiga(nilai_harga, 40000, 50000, 55000)
        def hasil_output(label_output):
             referensi = {
    'rendah': 30,
    'sedang': 60,
    'tinggi': 90
                                                                                                                                            def simpan_ke_csv(nama_file, daftar_terbaik):
    with open(nama_file, 'w') as file:
    file.write('Dj.Servis, imaga_Skor\n')
    for id_data, serv, hrg, skor in daftar_terbaik:
    file.write('file_datab]_serv_ings]_(skor:.zf)\n')
        def evaluasi_fuzzy(fz_servis, fz_harga):
    aturan = []
            aturan.append(('tinggi', min(fz_servis['tinggi'], fz_harga['murah'])))
aturan.append(('tinggi', min(fz_servis['tinggi'], fz_harga['sedang'])))
aturan.append(('sedang', min(fz_servis['tinggi'], fz_harga['mahal'])))
                                                                                                                                           def program_utama();
    sumber_file = 'restoran.csv
    file_output = 'peringkat.cs
            aturan.append(('sedang', min(fz_servis['sedang'], fz_harga['murah'])))
aturan.append(('sedang', min(fz_servis['sedang'], fz_harga['sedang'])))
aturan.append(('rendah', min(fz_servis['sedang'], fz_harga['mahal'])))
                                                                                                                                                daftar_data = baca_data_csv(sumber_file)
peringkat = []
            def program_utama():
                   for id_data, nilai_s, nilai_h in daftar_data:
                           s_fuzzy = nilai_servis_fuzzy(nilai_s)
                           h_fuzzy = nilai_harga_fuzzy(nilai_h)
                          hasil_aturan = evaluasi_fuzzy(s_fuzzy, h_fuzzy)
                        skor_akhir = proses_defuzzifikasi(hasil_aturan)
                         peringkat.append((id_data, nilai_s, nilai_h, skor_akhir))
                 peringkat.sort(key=lambda x: x[3], reverse=True)
top5 = peringkat[:5]
                  simpan_ke_csv(file_output, top5)
                  print(|"Berikut 5 restoran terbaik hasil sistem fuzzy:")
                       print(f'ID: {data[θ]}, Servis: {data[1]}, Harga: {data[2]}, Skor: {data[3]:.2f}')
             if __name__ == '__main__':
                    program_utama()

✓ TERMINAL

PS C:\telkom university\semester 6\Ai\fuzzy_restoran> python restoran.py
     Berikut 5 restoran terbaik hasil sistem fuzzy:
     ID: 55, Servis: 76.0, Harga: 34027.0, Skor: 90.00
     ID: 3, Servis: 71.0, Harga: 34107.0, Skor: 90.00
     ID: 13, Servis: 79.0, Harga: 35119.0, Skor: 90.00
     ID: 22, Servis: 99.0, Harga: 39211.0, Skor: 90.00
     ID: 25, Servis: 94.0, Harga: 34513.0, Skor: 90.00
 OPS C:\telkom university\semester 6\Ai\fuzzy_restoran>
```