CIS5200: Machine Learning

Spring 2025

Homework 0

Release Date: January 16, 2025

Due Date: January 28, 2025

Name: Haoze Wu

PennKey: haozewu

Check out shorthands.sty for some convenient shortcuts

Reminder to show all work for full credit!

# 1 Written Questions

#### $\mathbf{A1}$

## Solution:

#### 1. Proof:

Considering one property of the determinant is that the determinant of a matrix product is the product of the corresponding determinants, that is,  $\det(AB) = \det(A) \det(B)$ , and the fact that  $AA^{-1} = I$ .

Thus, we have:  $\det(I) = \det(AA^{-1}) = \det(A)\det(A^{-1}) = 1$ .

Thus, we have  $\det(A) = \frac{1}{\det(A^{-1})}$  for any invertible real-valued square matrix A.

## 2. Partial Proof:

Proving the statement in the question is hard for me, but I can prove that for a symmetric, yet square and real valued matrix A this property holds.

According to the Spectral Theorem, for the real-valued matrix  $A \in \mathbb{R}^{n \times n}$ , all its eigenvalues are real and, moreover, we have  $A = \sum_{i=1}^{N} \lambda_i v_i v_i^T$  where  $\lambda_i$  is the i-th eigenvalue of A and  $v_1, v_2, \dots, v_n$  are a set of orthonormal unit vectors.

By definition, we have  $tr(A) = \sum_{i=1}^{n} a_{ii}$ , which is equivalent to  $tr(A) = tr(\sum_{i=1}^{n} \lambda_i v_i v_i^T) = \sum_{i=1}^{n} \lambda_i tr(v_i v_i^T)$ . And thus, we have  $tr(v_i v_i^T) = \sum_{j=1}^{n} (v_i v_i^T)_{jj} = 1$ . Thus, we can reach the conclusion that  $tr(A) = tr(\sum_{i=1}^{N} \lambda_i v_i v_i^T) = \sum_{i=1}^{n} \lambda_i$ .

3. This statement is incorrect. Consider the following matrix:  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ , its rank is 2 while it only has one non-zero eigenvalue 1, which is contradicted to the statement.

1. To calculate the nullspace of matrix A, we may solve the following equations:  $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ , which is equivalent to

$$2x_1 - x_2 = 0 
4x_1 - 2x_2 = 0$$
(1)

which leads to the relationship between  $x_1$  and  $x_2$ :  $x_2 = 2x_1$ . Thus, the nullspace of matrix A is spanned by the vector  $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ , which is a subspace of  $R^2$ .

2. We first perform the row redution on the matrix A:  $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$  Thus, the row space of matrix A is spanned by the vector  $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ , which is a subspace of  $R^2$ .

To test whether the vector  $[1,1]^T$  is in the row space of matrix A, is equivalent to test whether there exists a linear combination of the row vectors of matrix A that equals to the vector  $[1,1]^T$ , which is equivalent to solve the following equations:  $\alpha \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , which has no solution for the variable  $\alpha$ .

Thus, the vector  $[1,1]^T$  is not in the row space of matrix A.

1. By definition, we have  $\det(A - \lambda I) = 0$  for the eigenvalues of matrix A. Thus, we have

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)^2 - 1 = 0$$

$$\lambda^2 - 4\lambda + 3 = 0$$

$$(\lambda - 3)(\lambda - 1) = 0$$
(2)

Thus, the eigenvalues of matrix A are  $\lambda_1 = 3$  and  $\lambda_2 = 1$ . Then, we can use the fact that  $Ax = \lambda x$  to find the eigenvectors corresponding to an eigenvalue of matrix A: For  $\lambda_1 = 3$ , we have:

$$(A - 3I)x = 0$$

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(3)

which leads to the relationship between  $x_1$  and  $x_2$ :  $x_1 = x_2$ . Thus, the eigenvector corresponding to the eigenvalue 3 is  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ . For the second eigenvalue  $\lambda_2 = 1$ , we have:

$$(A - I)x = 0$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(4)

which leads to the relationship between  $x_1$  and  $x_2$ :  $x_1 = -x_2$ . Thus, the eigenvector corresponding to the eigenvalue 1 is  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

- 2. According to the property of the PSD matrix, a matrix A is PSD iff all its eigenvalues are non-negative. Thus, the matrix A is PSD since all its eigenvalues are non-negative as we have calculated in the previous question.
- 3. From the definition of the SVD, we have  $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$ , where  $u_i$  and  $v_i$  are the left and right singular vectors of matrix A and  $\sigma_i$  is the singular value of matrix A. And by the definition of the Spectral Theroem, we have  $A = \sum_{i=1}^{n} \lambda_i v_i v_i^T$ , where  $\lambda_i$  is the i-th eigenvalue of matrix A and  $v_1, v_2, \dots, v_n$  are a set of orthonormal unit vectors. Thus, we may rewrite the SVD in terms of the eigenvalues and eigenvectors of matrix A:  $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T = \sum_{i=1}^{n} \lambda_i v_i v_i^T$  Combined with the eigenvalues and eigenvectors we have calculated in the previous question,

after normalization, we have:  $A = 3\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} + 1\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ 

Here, the singular values of matrix A are equal to the eigenvalues of matrix A.

#### $\mathbf{A4}$

- 1. Let  $y = -w^T x$ , thus we have  $\nabla_x f(x) = \frac{\partial (f(y))}{\partial (y)} \frac{\partial (y)}{\partial x}$  For the first term, we have  $\frac{\partial (f(y))}{\partial (y)} = \frac{\partial (\frac{1}{1+e^y})}{\partial (y)} = -\frac{e^y}{(1+e^{-w^T}x)^2}$ . For the second term, we have  $\frac{\partial (y)}{\partial x} = \frac{\partial (-w^Tx)}{\partial x} = -w$ . Thus, we have  $\nabla_x f(x) = -\frac{e^{-w^Tx}}{(1+e^{-w^Tx})^2}w$ .
- 2. Rewrite  $f(x) = ||Ax-b||_2^2$ , we have  $f(x) = (Ax-b)^T(Ax-b) = x^TA^TAx 2b^TAx + b^Tb$ . Thus, for the gradient of f(x), we have  $\nabla_x f(x) = \nabla_x (x^TA^TAx 2b^TAx + b^Tb) = 2A^TAx 2A^Tb$ .

#### A5

#### **Solution**:

- 1. When the hyperplane passes through the origin, we have  $w^T x_0 + b = 0$  for the point  $x_0$  on the hyperplane and  $x_0$  is the origin, which indicates that the scalar b = 0.
- 2. To calculate the distance from any given point  $x_0$  to the hyperplane, we may use the definition of the distance:

$$\frac{|w^{T}x_{0} + b|}{||w||} 
= \frac{|w^{T}x_{0}|}{||w||}$$
(5)

#### **A6**

### **Solution:**

1. Given that  $||x||_{\infty} = 1$ , which is equivalent to max  $|x_i| = 1$ , we have:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \le \sqrt{\sum_{i=1}^n \max |x_i|^2} = n$$
 (6)

2. Given that  $||x||_2 = 1$ , which is equivalent to  $\sqrt{\sum_{i=1}^n x_i^2} = 1$ , and we then have  $\sqrt{\sum_{i=1}^n x_i^2} \le \sum_{i=1}^n \sqrt{x_i^2} = \sum_{i=1}^n |x_i|$ . Thus, we have  $||x||_1 = \sum_{i=1}^n |x_i| \ge \sqrt{\sum_{i=1}^n x_i^2} = 1$ .

#### **A7**

1. Consider the fact that a function is a convex function iff its second derivative is non-negative, we may calculate the second derivative of the function  $f(x) = x^3$ :

$$f'(x) = 3x^2$$

$$f''(x) = 6x$$
(7)

which is negative when x < 0. Thus, the function  $f(x) = x^3$  is not a convex function over R.

2. We start with calculating the second derivative of the function  $f(x) = x^4 + \alpha x^2$ :

$$f'(x) = 4x^3 + 2\alpha x$$
  
 $f''(x) = 12x^2 + 2\alpha$  (8)

which should be non-negative for all x over R. Thus, we have  $12x^2 + 2\alpha \ge 0$  for all x over R, which leads to  $\alpha \ge 0$ .

### $\mathbf{A8}$

**Solution:** We may use the conditional probability here:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(A)P(B|A)}{P(B)}$$
(9)

where event A is the the email is actually a spam while event B is that the email is flagged as a spam by the system, where P(A) = 1 - 0.8 = 0.2 and P(B) = 0.90 \* (1 - 0.80) + (1 - 0.95) \* 0.80 = 0.22. Thus, we have:

$$P(A|B) = \frac{0.2 * 0.90}{0.22}$$
  
= 0.8182 (10)

## $\mathbf{A9}$

- 1. Y is also a random variable following normal distribution with the mean as  $E[Y] = E[\sum_{i=1}^n a_i X_i] = \sum_{i=1}^n a_i E[X_i] = \sum_{i=1}^n a_i \mu_i$  and the variance as  $Var[Y] = Var[\sum_{i=1}^n a_i X_i] = \sum_{i=1}^n a_i^2 Var[X_i] = \sum_{i=1}^n a_i^2 \sigma_i^2$ . Thus,  $Y \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$ .
- 2. When  $\mu_1 = 0$  and  $\sigma_i^2 = 1$ ,  $X_i$  is vairable following the standard normal distribution.  $\Pr[\max_{1 \leq i \leq n} X_i > 2]$  is equivalent to  $1 \Pr[\max_{1 \leq i \leq n} X_i \leq 2]$ , which is equivalent to  $1 \Pr[X_1 \leq 2, X_2 \leq 2, \cdots, X_n \leq 2]$ , which is equivalent to  $1 \Pr[X_1 \leq 2] \Pr[X_2 \leq 2] \cdots \Pr[X_n \leq 2]$ , which is equivalent to  $1 (\Phi(2))^n$ .

#### **A10**

## Solution:

- 1. The probability of seeing any side among all six sides of this fair die is  $\frac{1}{6}$ . Thus, the expected number of rolls to see a 6 is  $E[X] = \frac{1}{\frac{1}{6}} = 6$ .
- 2. The probability of seeing a 6 after seeing another 6 is still  $\frac{1}{6}$ . Thus, the expected number of rolls is  $E[X] = \frac{1}{\frac{1}{6\times 6}} = 36$ .

# 2 Python Programming Questions



Figure 1: Figure for Q4 (MatplotLib)