

Introduction to causal inference

Roni Kobrosly, PhD

By the end of this tutorial, you should be able to

- Understand the pitfalls of observational data analysis
- Know the various types of causal relationships to look out for
- Describe the hierarchy of statistical analyses, causal inference, and experiments
- Start conducting preliminary causal analyses on your own data
- Confidently explore the topic on your own (now that you have a solid foundational understanding of causal thinking)

Does Vitamin D supplementation prevent severe covid symptoms?

An alternative reality

An alternative reality

Experiments (AKA A/B Tests, AKA Randomized Controlled Trials)

Experiments (AKA A/B Tests, AKA Randomized Controlled Trials)

Experiments (AKA A/B Tests, AKA Randomized Controlled Trials)

Experiments won't always save us

NOT ETHICAL: randomly assign some people to be exposed to lead paint while others are not, then see which group is more likely to develop neurological disorders.

NOT FEASIBLE: modify household incomes in neighborhoods, to see if reducing a neighborhood's income inequality reduces the local crime rate.

A simple hierarchy...

Weaker causal claims

Stronger causal claims

statistical associations / correlations

causal inference

randomized experiments

Easier

Less easy

Causal Inference vs Typical ML Project Questions

Causal Inference:

- How does improving neighborhood income inequality reduce neighborhood crime rate?
- How does increasing or decreasing the price of a product would impact demand?
- What would be the impact on the number of people with diabetes if we enacted a policy to reduce the average amount of sugar consumed per day by X grams.

Typical ML:

- Can I cluster neighborhoods by their characteristics and tell a story about these different segments and how it relates to crime rates?
- Can I predict whether someone will convert from a lead to a customer?
- How well can I predict whether a patient will be diagnosed with diabetes later in life?

A causal graph

Four types of causal relationships...

- Always want to control for / condition on confounders in inferential modeling
- Confounding changes the effect size and possibly statistical significance of your association of interest
- Confounders can also flip the direction of your association of interest
- A model will ideally control for confounding, but leftover confounding in a model is named "residual confounding"

- Positive confounding: confounder introduces a bias that pushes association of interest away from the "null"
- Negative confounding: confounder biases association towards the "null"

Violent crime in your city!

Summer weather induces a false association between ice cream sales and violent crime

Summer weather induces a false association between ice cream sales and violent crime

If you control for the season, any ice cream-violent crime association in your dataset will disappear

2) Colliders

Colliders

Colliders

Colliders

- Never want to control for / condition on colliders
- Conditioning on a common effect causes collider bias, which can be in positive or negative direction

3) Mediators

Mediators

Mediators

Mediators

- Controlling for a mediator will nullify associations of interest
- There are statistical tests of mediation you can use to help determine causal relationships in observational data

4) Unrelated Predictors

Unrelated predictors

Unrelated predictors

Unrelated predictors

- If they are unrelated to your independent variable / treatment / exposure of interest, there is no harm in controlling for them.
- In fact, leaving them in could improve model performance.

G-computation

1) Start with a set of participants for whom we have complete treatment, outcome, and covariate data

ID#	Covar 1	Covar 2	treat	outcome
1	• • •	• • •	1	20
2	• • •	• • •	1	15
3	• • •	• • •	0	10
4	• • •	• • •	0	10
5	• • •	• • •	1	20

2) Train a model that predicts the outcome from all covariates and treatment variable. Aim for high recall and precision.

ID#	Covar 1	Covar 2	treat	outcome
1	• • •	• • •	1	20
2	• • •	• • •	1	15
3	• • •	• • •	0	10
4	• • •	• • •	0	10
5	• • •	• • •	1	20

3) "Force" every observation in the dataset to receive the treatment

ID#	Covar 1	Covar 2	treat	outcome
1	• • •	• • •	1	20
2	• • •	• • •	1	15
3	•••	•••	1	10
4	•••	•••	1	10
5	•••	• • •	1	20

4) Predict outcome values with these covariate and treatment values

ID#	Covar 1	Covar 2	treat	outcome	\widehat{O}_{treat}
1	• • •	• • •	1	20	22.5
2	• • •	• • •	1	15	16.0
3	• • •	• • •	1	10	14.0
4	• • •	• • •	1	10	17.0
5	• • •	• • •	1	20	22.5

5) Now "force" every observation to not receive treatment, And make outcome predictions again

ID#	Covar 1	Covar 2	treat	outcome	\widehat{O}_{treat}	$ \hat{O}_{untreat} $
1	• • •	• • •	0	20	22.5	18.5
2	• • •	• • •	0	15	16.0	14.0
3	• • •	• • •	0	10	14.0	11.5
4	•••	• • •	0	10	17.0	13.0
5	• • •	• • •	0	20	22.5	19.5

6) Calculate the average difference between treated and untreated outcome estimates

ID#	\widehat{O}_{treat}	$\widehat{O}_{untreat}$	Δ
1	22.5	18.5	4.0
2	16.0	14.0	2.0
3	14.0	11.5	2.5
4	17.0	13.0	4.0
5	22.5	19.5	3.0

Notebook exercise #1

Causal dose-response curve estimation (AKA estimating the causal curve)

Treatment

Treatment

Treatment

Treatment

Treatment

Treatment

Estimating the "causal curve"

GPS is an extension of the standard propensity score method. It is the treatment assignment density calculated at a particular treatment value

- 1) Calculate the GPS associated with each treatment value observation
- 2) Fit a curve of treatment values predicting outcome values, adjusted for the GPS
- 3) The resulting treatment against outcome curve is your causal dose response curve (AKA your causal curve)

Notebook exercise #2

Closing thoughts: troubleshooting

- Having domain knowledge and understanding the data-generating process is often way more productive than just throwing an algo at the problem
- There is value in trying multiple techniques to understand their range of estimates (but use p-value correction if you're running lots of analyses)
- You'll never be able to capture all confounders, but do aim to capture the major ones
- If your results don't make sense and your code isn't buggy, you're probably missing a big source of bias
- Causal inference and modeling is powerful but still not as trustworthy as running a proper experiment. Approach all results with healthy skepticism.

Closing thoughts: the perils of multiple testing...

Statistics

Priya Ranganathan, C. S. Pramesh¹, Marc Buyse^{2,3}

Department of Anaesthesiology,
Tata Memorial Centre, ¹Department
of Surgical Oncology, Division of
Thoracic Surgery, Tata Memorial
Centre, Mumbai, Maharashtra, India,
²International Drug Development
Institute, San Francisco, California,
USA, ³Department of Biostatistics,
Hasselt University, Hasselt, Belgium

Common pitfalls in statistical analysis: The perils of multiple testing

Closing thoughts: be humble, it's likely your research or business idea doesn't work!

TEAMS V INDIVIDUALS FEATURES V

BLOG CONTENT SPONSORSHIP

Radar / Business

The Sobering Truth About the **Impact of Your Business Ideas**

By Eric Colson, Daragh Sibley and Dave Spiegel

October 26, 2021