wherein R_{11a} is H; C_{1-10} alkyl; C_6 aryl; C_{7-10} alkylaryl; C_{3-7} cycloalkyl or C_{4-8} (alkylcycloalkyl) optionally substituted with carboxyl; or heterocycle- C_{1-6} alkyl;

and R_{11b} is C_{1-6} alkyl substituted with carboxyl, (C_{1-6} alkoxy)carbonyl or phenylmethoxycarbonyl; or C_{7-16} aralkyl substituted on the aromatic portion with carboxyl, (C_{1-6} alkoxy)carbonyl or phenylmethoxycarbonyl;

or R_{11a} and R_{11b} are joined to form a 3 to 7-membered nitrogen-containing ring optionally substituted with carbo yl or (C_{1-6} alkoxy) carbonyl;

or

b) when Q is N-Y, a is 0\or 1, b is 0 or 1, and

B is H, an acyl derivative of formula R₁₁-C(O)- or a sulfonyl of formula R₁₁-SO₂ wherein

 R_{1i} is (i) C_{1-i0} alky continually substituted with carboxyl or C_{1-6} alkanoyloxy; C_{1-6} alkoxy; or carboxyl substituted with 1 to 3 C_{1-6} alkyl substituents;

- (ii) C_{3-7} cycloalkyl or C_{4-10} alkylcycloalkyl, both optionally substituted with carboxyl, $(C_{1-6}$ alkoxy)carbonyl or phenylmethoxycarbonyl;
- (iii) C_6 or C_{10} aryl or C_{7-16} aralkyl optionally substituted with C_{1-6} alkyl, hydroxy, or amino optionally substituted with C_{1-6} alkyl; or
- (iv) Het optionally substituted with C_{1-6} alkyl, hydroxy, amino optionally substituted with C_{1-6} alkyl, or amido optionally substituted with C_{1-6} alkyl,

HOOC-(
$$C_{1-6}$$
alkyl)-N NCOO-(aryl or C_{1-6} alkylaryl) or

 R_6 , when present, is $C_{1.6}$ alkyl substituted with carboxyl;

 R_5 , when present, is C_{1-6} alkyl optionally substituted with carboxyl; and

c) when Q is either CH₂ or N-Y, then

 R_4 is $C_{1\text{--}10}$ alkyl, $C_{3\text{--}7}$ cycloalkyl or $C_{4\text{--}10}$ (alkylcycloalkyl);

z is oxo or thioxo;

 R_3 is C_{1-10} alkyl optionally substituted with carboxyl, C_{3-7} cycloalkyl or C_{4-10} (alkylcycloalkyl); W is a group of formula II:

wherein R_2 is C_{1-10} alkyl or C_{3-10} cycloalkyl optionally substituted with carboxyl or an ester or amide thereof; C_6 or C_{10} aryl or C_{7-16} aralkyl; or

W is a group of formula IIa:

wherein X is CH or N; and

 R_{2a} is divalent $C_{3.4}$ alkylene which together with X and the carbon atom to which X and R_{2a} are attached form a 5- or 6-membered ring, said ring optionally substituted with OH; SH; NH₂; carboxyl; R_{12} ; CH_2 - R_{12} , OR_{12} , $C(O)OR_{12}$, SR_{12} , NHR_{12} or $NR_{12}R_{12a}$ [:];

wherein R_{12} and R_{12a} are independently a saturated or unsaturated C_{3-7} cycloalkyl or C_{4-10} (alkyl cycloalkyl) being optionally mono-, di- or tri-substituted with R_{15} ,

or R_{12} and R_{12a} is a C_6 or C_{10} aryl or C_{7-16} aralkyl optionally mono-, di- or tri-substituted with R_{15} , or R_{12} and R_{12a} is Het or (lower alkyl)-Het optionally mono-, di- or tri-substituted with R_{15} .

wherein each R_{15} is independently $C_{1.6}$ alkyl; $C_{1.6}$ alkoxy; amino optionally monoor di-substituted with $C_{1.6}$ alkyl; sulfonyl; NO_2 ; OH; SH; halo; haloalkyl; amido optionally mono-substituted with $C_{1.6}$ alkyl, C_6 or C_{10} aryl, $C_{7.16}$ aralkyl, Het or (lower alkyl)-Het; carboxyl; carboxy(lower alkyl); C_6 or C_{10} aryl, $C_{7.16}$ aralkyl or

Het, said aryl, aralkyl or Het being optionally substituted with R₁₆;

wherein R₁₆ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino optionally mono- or disubstituted with C₁₋₆ alkyl; sulfonyl; NO₂; OH; SH; halo; haloalkyl; carboxyl; amide; or (lower alkyl)amide;

or X is CH or N; and R_{2a} is a divalent $C_{3.4}$ alkylene which together with X and the carbon atom to which X and R_{2a} are attached form a 5- or 6-membered ring which in turn is fused with a second 5-, 6- or 7-membered ring to form a bicyclic system wherein the second ring is substituted with OR_{12a} wherein R_{12a} is C_{7-16} aralkyl;

 R_{1a} is hydrogen, and R_1 is the side chain of an amino acid selected from the group consisting of cysteine (Cys), aminobutyric acid (Abu), norvaline (Nva) and allylglycine (AlGly); or R_{1a} and R_1 together form a 3- to 6-membered ring optionally substituted with R_{14} wherein R_{14} is $C_{1.5}$ alkyl. $C_{3.5}$ cycloalkyl, $C_{2.6}$ alkenyl. $C_{2.6}$ alkynyl, C_{6} aryl or $C_{7.40}$ aralkyl all optionally substituted with halo; and

A is hydroxy [or a pharmaceutically acceptable salt of ester thereof]; or C_{1-6} alkylamino, di(C_{1-6} alkylamino;

or a pharmaceutically acceptable salt or ester thereof.

Claim 23, line 7 (page 153, line 4), after "position with" insert --R₁₃, wherein --; line 8 (page 153, line 5), after "or 2, and" delete -- R₁₃, wherein --.

Claim 32, line 3, delete "all of which" and insert --each of which is--.

40. (Amended) A compound of formula (IA) [including] or the racemates, diastereoisomers [and] or optical isomers thereof

wherein Y is H or C_{1-6} alkyl;

a is 0 or 1;

b is 0 or 1;

B is as defined in claim 1, paragraph b);

 R_6 , R_5 , R_4 , z, R_3 , W, R_1 , R_{1a} and A are as defined in claim 1.

45. (Amended) A compound of formula IB [including] <u>or the</u> racemates, diastereoisomers [and] <u>or</u> optical isomers <u>thereof</u>:

$$\mathbf{B} = \begin{bmatrix} \mathbf{P}_{13} & \mathbf{P}_{14} & \mathbf{P}_{15} & \mathbf{P}_{1$$

wherein

B, a, b, R_6 , R_5 , Y, R_4 , Z, R_5 , and A are as defined in claim 1,

 R_{12} is R_{12} , OR_{12} , $C(O)OR_{12}$, SR_{12} , NHR_{12} or NR_{1} R_{-1} , wherein R_{11} and R_{124} are as defined in claim 1; and

 R_{14} is C_{1-6} alkyl, C_{2-6} alkenyl optionally substituted with halogen; C_{6-10} aryl or C_{7-10} aralkyl optionally substituted with halogen; or a pharmaceutically acceptable salt or ester

thereof.

Claim 54, line 2, delete "naphtylmethoxy" and insert - naphthylmethoxy

Claim 58, line 1, delete "the P1 segment" and insert -- P1--.

Claims 59 and 60, line of each claim, delete "said P1 segment" and insert -- P1--.

Claim 61, delete "said asymmetric carbon at position 1" and insert -- the C1 carbon atom--

Claim 63, Time 2, delete "all of which" and insert --each of which is--.

67. (Amended) A compound of formula IC [including] or the racemates, diastereoisomers [and] or optical isomers thereof:

wherein B is as defined in claim 1, paragraph a);

 R_4 , R_3 , W, R_{1a} , P, and Λ are as defined in claim 1.

Claim 96, line 2, delete "therapeutically" and insert --pharmaceutically--.