MATH 102: IDEAS OF MATH

WORKSHEET 14

Definition 1. Given a pair of sets A and B, suppose that each element $x \in A$ is associated to a unique element f(x) of B. Then f is said to be a function from A to B. This is denoted by

$$f:A\to B$$
.

A is called the *domain* of f, B is called the *codomain* of f. The set $\{f(x): x \in A\}$ is called the *range* of f.

Question 1. What is the vertical line test?

Definition 2. A function $f: A \to B$ is *injective* (of *one-to-one*) if $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

Question 2. Give a few examples of injective function.

Date: Nov 14, 2024.

Question 3. Give an equivalent definition of injectivity using contrapositivity.

Definition 3. A function $f: A \to B$ is *surjective* (of *onto*) if for every $b \in B$, there exists some $a \in A$ such that f(a) = b.

Question 4. Give a few examples of injective function.

Definition 4. A function is bijective if it is both injective and surjective.

Question 5. (1) Write a strategy to prove injectivity.

(2) Write a strategy to prove surjectivity.

Question 6. Let \mathbb{R}^+ denote the nonnegative real numbers. Prove the following.

(a) $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$ is not injective, surjective or bijective.

(b) $g: \mathbb{R}^+ \to \mathbb{R}$ where $g(x) = x^2$ is injective, but not surjective or bijective.

(c) $h: \mathbb{R} \to \mathbb{R}^+$ where $h(x) = x^2$ is surjective, but not injective or bijective.

(d) $k: \mathbb{R}^+ \to \mathbb{R}^+$ where $k(x) = x^2$ is injective, surjective and bijective.

Definition 5. Let A, B be sets. A Cartesian product of A and B, denoted by $A \times B$ is the set of all ordered pair (x, y), where $x \in A$ and $y \in B$.

$$A \times B = \{(x, y) : x \in A, y \in B\}.$$

Question 7. Prove the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where f(x,y) = (x+2y,2x+3y) is a bijection.