Novo Espaço – Matemática A, 11.º ano

Proposta de teste de avaliação [março - 2020]

Ano / Turma: _____ N.º: ____

Data: - ____ - _

1. Na figura está representado, num referencial o.n. Oxy, o pentágono regular [ABCDE].

Sabe-se que:

- os vértices A e B pertencem a Ox;
- $\blacksquare \overline{AB} = 2$;
- θ é a inclinação, em graus, da reta BC.

Qual das seguintes expressões representa o declive da reta AE?

(A)
$$\frac{1}{\tan \theta}$$

(B)
$$-\cos\theta$$

(C)
$$-\tan\theta$$

(D)
$$\frac{1}{\cos\theta}$$

- Determina o produto escalar $\overrightarrow{BA} \cdot \overrightarrow{BC}$. Apresenta o resultado arredondado às centésimas. 1.2.
- 2. Na figura está representada uma caixa, num referencial o.n. Oxyz, com a forma de um prisma, em que as bases são trapézios.

Sabe-se que:

. a face [OABC] está contida no plano xOy;

. a face [OCDE] está contida no plano yOz;

. o ponto F tem coordenadas (8, 0, 2);

. o plano *EFG* é definido pela equação:

$$x+4z-16=0$$

- 2.1. Determina as coordenadas do ponto A.
- A superfície esférica de equação $(x-8)^2 + y^2 + z^2 = 100$ interseta o semieixo positivo Oy 2.2. no ponto C.

Determina a amplitude do ângulo CFE. Apresenta o resultado, em graus, arredondado às décimas.

Considera a sucessão (u_n) definida por: **3.**

$$u_n = \begin{cases} \frac{n^2}{4} & \text{se } n \le 4\\ \sin\left(\frac{n\pi}{2}\right) & \text{se } n > 4 \end{cases}$$

- 3.1. Qual das afirmações seguintes é verdadeira?

 - (A) A sucessão (u_n) é limitada. (B) A sucessão (u_n) é uma progressão aritmética.

 - (C) A sucessão (u_n) é crescente. (D) A sucessão (u_n) é uma progressão geométrica.
- **3.2.** A soma de 50 termos consecutivos da sucessão a começar no 5.º termo é igual a:
 - **(A)** -1
- **(B)** 0
- (C) $\frac{\sqrt{2}}{2}$
- **(D)** 1

4. Seja (v_n) a sucessão definida por:

$$\begin{cases} v_1 = -2 \\ v_{n+1} = n + 2v_n, \ \forall n \in \mathbb{N} \end{cases}$$

Sabe-se que (v_n) é uma progressão aritmética.

- Mostra que $v_n = -n-1$. **4.1.**
- Considera (w_n) a sucessão tal que $w_n = \frac{v_n}{2n+1}$, $\forall n \in \mathbb{N}$. 4.2.

Determina o número de termos da sucessão (w_n) que não pertencem à vizinhança $V_{0,01}\left(-\frac{1}{2}\right)$.

Em relação a uma progressão geométrica (u_n) , sabe-se que $u_1 = \frac{1}{18}$ e que três termos 5. consecutivos são representados por: a, a+1 e a+4.

Determina a ordem do último destes três termos.

6. Em relação a uma sucessão (u_n) , sabe-se que.

•
$$\forall n \in \mathbb{N}, \quad u_{n+1} > u_n$$

•
$$\forall n \in \mathbb{N}, u_n < 5$$

Justifica, de forma clara, as afirmações seguintes:

- **6.1.** Se $\lim (u_n) = a$, então $a \neq 6$.
- **6.2.** A sucessão (u_n) é convergente.
- 7. Num parque de estacionamento, o custo da 1.ª hora é 0,20 €. Cada uma das horas seguintes tem um acréscimo de 25% ao custo da hora anterior.

Seja (u_n) a sucessão em que o termo geral u_n representa o custo da n-ésima hora de estacionamento.

Sabe-se que uma viatura esteve estacionada durante 12 horas no parque de estacionamento.

Determina o custo da última hora de estacionamento e o custo total.

Apresenta os resultados em euros arredondados às centésimas.

Na tua resolução deves apresentar o termo geral da sucessão (u_n) e a expressão da soma dos n primeiros termos.

FIM

Cotações													Total
Questões	1.1.	1.2.	2.1.	2.2.	3.1.	3.2.	4.1	4.2.	5.	6.1.	6.2.	7.	
Pontos	15	15	10	20	15	15	20	20	20	15	15	20	200