DISKRETNA MATEMATIKA

Jovanka Pantović kabinet 607-VI pantovic@uns.ac.rs http://imft.ftn.uns.ac.rs/~vanja/DiskretnaMatematika

> Radojka Ciganović kabinet 607-VI Jelena Djokić

> > Novi Sad

Sadržaj predmeta

- Kombinatorika
 - osnovni principi prebrojavanja
 - klasični kombinatorni objekti
 - 3 particije skupova, Stirlingovi brojevi 2. vrste
 - rekurentne relacije
 - generativne funkcije
- Grafovi
 - osnovni pojmovi teorije grafova, reprezentacija grafa
 - povezanost, specijalne klase, izomorfizam grafova, operacije
 - stabla
 - planarni grafovi
 - 6 Ojlerovi i Hamiltonovi grafovi, Hamiltonove konture

PREDAVANJA #1

Osnovni principi prebrojavanja

- princip sume
- princip proizvoda
- Oirihleov princip
- princip bijekcije

Osnovni principi prebrojavanja

Za $n \in \mathbb{N}$, skup prvih n prirodnih brojeva je

$$\mathbb{N}_n := \{1, \dots, n\}$$

Prebrojavanje konačnog skupa X je određivanje broja n za koji postoji bijekcija

$$f: \mathbb{N}_n \to X$$
.

Princip zbira

Lemma

Ako su A i B disjunktni konačni skupovi ($A \cap B = \emptyset$), onda je

$$|A \cup B| = |A| + |B|.$$

Princip zbira

Lemma

Ako su A i B disjunktni konačni skupovi ($A \cap B = \emptyset$), onda je

$$|A \cup B| = |A| + |B|.$$

Teorema (princip sume)

Neka je $n \geq 2$ i A_1, \ldots, A_n po parovima disjunktni konačni skupovi tj. za sve $i, j \in \{1, \ldots, n\}$ sa osobinom $i \neq j$ važi $A_i \cap A_j = \emptyset$. Tada je

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \ldots + |A_n|.$$

Posledica

Neka su A_1,\ldots,A_n po parovima disjunktni skupovi i neka je $|A_i|=m$ za svako $i\in\{1,\ldots,n\}$. Tada je

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = n \cdot m.$$

Koliko rešenja ima nejednačina $|y-x| \leq 3$ u skupu $\{1,2,\ldots,30\}^2$?

Koliko rešenja ima nejednačina $|y-x| \le 3$ u skupu $\{1, 2, \dots, 30\}^2$?

Skup svih rešenja jednačine je $B_1 \cup \ldots \cup B_{30}$, gde je

$$B_x = \{(x,y) : y \in \{1,\dots,30\}, x-3 \le y \le x+3\}$$

$$= \{x\} \times A_x.$$

$$A_x = \{y \in \{1,2,\dots,30\} : x-3 \le y \le x+3\}$$

$$|B_1 \cup \dots \cup B_{30}| = |B_1| + \dots + |B_{30}| = |A_1| + \dots + |A_{30}|$$

$$= 4 + 5 + 6 + 24 \cdot 7 + 6 + 5 + 4 = 198.$$

7/16

Dat je pseudo-kod

- (1) for i=1 to n-1
- (2) for j = i + 1 to n
- (3) if (a[i] > a[j]) then
- $(4) \hspace{1cm} \mathtt{swap} \hspace{0.1cm} a[i] \hspace{0.1cm} \mathtt{and} \hspace{0.1cm} a[j];$

Koliko puta će biti urađeno poređenje iz koraka (3)?

$$B_i = \{i\} \times A_i$$

$$A_i = \{i+1, \dots, n\}, i = 1, \dots, n-1 \implies |A_i| = n-i.$$

$$|B_1 \cup \dots \cup B_{n-1}| = |A_1| + \dots + |A_n| = (n-1) + (n-2) + \dots + 1 = \frac{n(n-1)}{2}.$$

Princip proizvoda

Lema

Neka su A i B konačni skupovi. Broj elemenata skupa $A \times B$ jednak je

$$|A \times B| = |A| \cdot |B|.$$

Teorema (princip proizvoda)

Neka je $n \geq 2$ i neka su A_1, \ldots, A_n konačni skupovi. Tada je

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \cdot |A_2| \cdot \ldots \cdot |A_n|.$$

Koliko ukupno ima petocifrenih brojeva?

Koliko ukupno ima petocifrenih brojeva?

Neka je $A_i, i \in \{1, 2, 3, 4, 5\}$ skup cifara koje mogu biti na poziciji i.

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5$$

$$A_1 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A_2 = A_3 = A_4 = A_5 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$|A_1 \times A_2 \times A_3 \times A_4 \times A_5| = 9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 90000.$$

Koliko ima različitih nizova bitova dužine 8?

Rešenje. Nizovi bitova dužine 8 su elementi Dekatovog stepena A^8 skupa $A=\{0,1\}$. Kardinalnost tog skupa je

$$|A^8| = |A \times ... \times A| = |A|^8 = 2^8 = 256.$$

Neka su m_1, \ldots, m_n prirodni brojevi. Dat je pseudo-kod

- (1) k = 0
- (1) for $i_1 = 1$ to m_1
- (2) for $i_2 = 1$ to m_2
- $(3) \qquad \dots \dots$
- (4) for $i_n = 1$ to m_n
- (5) k := k+1

Koliko je k nakon izvršavanja datog koda?

Neka su m_1, \ldots, m_n prirodni brojevi. Dat je pseudo-kod

- (1) k = 0
- (1) for $i_1 = 1$ to m_1
- (2) for $i_2 = 1$ to m_2
- $(3) \qquad \dots \dots$
- (4) for $i_n = 1$ to m_n
- (5) k := k+1

Koliko je k nakon izvršavanja datog koda?

$$A_{i_j} = \{1, \dots, m_j\} \; j \in \{1, \dots, n\}$$
 - skup vrednosti koje uzima i_j

$$k = |A_{i_1} \times A_{i_2} \times \ldots \times A_{i_n}| = |A_{i_1}| \cdot |A_{i_2}| \ldots |A_{i_n}| = m_1 \cdot m_2 \ldots m_n.$$

Dirihleov princip ("Pigeonhole principle")

1834, Dirichlet

Theorem

Ako je m objekata smešteno u n kutija i m>n, onda postoji kutija u kojoj se nalaze bar dva objekta.

Proof.

Pretpostavimo suprotno, da u svakoj kutiji ima najviše jedan objekat. Tada je ukupan broj elemenata u kutijama jednak najviše n, što je u kontradikciji sa pretpostavkom da ima bar n+1 objekata.

Corollary

Neka je |A| = m, |B| = n i m > n. Ako je f funkcija skupa A u skup B, onda f nije 1 - 1.

Dokazati da za svaki prirodan broj n postoji prirodan broj koji je deljiv sa n i zapisuje se samo pomoću cifara 0 i 1.

Uopšteni Dirihleov princip

Theorem

Ako je m objekata smešteno u n kutija i m>n>1, onda postoji kutija u kojoj se nalazi bar $\lceil \frac{m}{n} \rceil$ objekata.

Proof.

Pretpostavimo suprotno, da ne postoji kutija koja ima bar $\lceil \frac{m}{n} \rceil$ objekata. To znači da u svakoj kutiji ima najviše $\lceil \frac{m}{n} \rceil - 1$ objekata. Tada je ukupan broj objekata u kutijama jednak najviše

$$m = n \cdot \left(\left\lceil \frac{m}{n} \right\rceil - 1 \right) < m\left(\left(\frac{m}{n} + 1 \right) - 1 = m$$

što daje kontradikciju.

Princip bijekcije

Teorema (princip bijekcije)

Dva neprazna skupa imaju isti broj elemenata ako i samo ako postoji bijekcija izmedju njih.