第五章作业答案

第六周

四: 5.4 (1, 2, 3, 4)

5.4-1
$$\tilde{x}(t) = 0.5e^{-j(\pi/4)}e^{j(\pi/4)t} + 0.5e^{j(\pi/4)}e^{-j(\pi/4)t}$$
 , 周期 $T = 8$, $\omega_0 = \pi/4$

$$F_{1}=0.5e^{-j(\pi/4)} \quad F_{-1}=0.5e^{j(\pi/4)} \quad F_{k}=0, k \neq \pm 1$$

$$5.4-2 \quad \omega_{0}=2\pi$$

$$x(t)=[1+\cos{(2\pi t)}]\cos{\left(6\pi t+\frac{\pi}{4}\right)}$$

$$=\cos{\left(6\pi t+\frac{\pi}{4}\right)}+\frac{1}{2}\cos{\left(8\pi t+\frac{\pi}{4}\right)}+\frac{1}{2}\cos{\left(4\pi t+\frac{\pi}{4}\right)}$$

$$=\cos{\left(3\omega_{0}t+\frac{\pi}{4}\right)}+\frac{1}{2}\cos{\left(4\omega_{0}t+\frac{\pi}{4}\right)}+\frac{1}{2}\cos{\left(2\omega_{0}t+\frac{\pi}{4}\right)}$$

$$=\frac{1}{2}e^{j\frac{\pi}{4}}e^{j3\omega_{0}t}+\frac{1}{2}e^{-j\frac{\pi}{4}}e^{-j3\omega_{0}t}+\frac{1}{4}e^{j\frac{\pi}{4}}e^{j4\omega_{0}t}+\frac{1}{4}e^{-j\frac{\pi}{4}}e^{-j4\omega_{0}t}+\frac{1}{4}e^{j\frac{\pi}{4}}e^{j2\omega_{0}t}+\frac{1}{4}e^{-j\frac{\pi}{4}}e^{-j2\omega_{0}t}$$

第七周

=: 5.7 (2, 4) 5.9 (1, 3) 5.11 (1) 5.14 (1-b) 5.15 (1)

四: 5.17 (1) 5.18 (1, 4)

日: 5.16 (1, 2)

5.7-2 $\tilde{x}[n] = cos(2\pi n/3) + sin(2\pi n/7)$

$$N = 21$$
, $\omega_0 = \frac{2\pi}{21}$

$$\begin{split} \tilde{x}[n] &= \frac{1}{2} \left(e^{j\frac{2}{3}\pi n} + e^{-j\frac{2}{3}\pi n} \right) + \frac{1}{2j} \left(e^{j\frac{2}{7}\pi n} - e^{-j\frac{2}{7}\pi n} \right) \\ &= \frac{1}{2} \left(e^{j7\frac{2\pi}{21}n} + e^{-j7\frac{2\pi}{21}n} \right) + \frac{1}{2i} \left(e^{j3\frac{2\pi}{21}n} - e^{-j3\frac{2\pi}{21}n} \right) \end{split}$$

$$F_7 = \frac{1}{2}$$
 $F_{-7} = \frac{1}{2}$ $F_3 = \frac{1}{2j} = -\frac{j}{2}$ $F_{-3} = \frac{j}{2}$

$$|F_7| = |F_{-7}| = |F_3| = |F_{-3}| = \frac{1}{2}$$

$$\theta_3 = -\frac{\pi}{2}$$
 $\theta_{-3} = \frac{\pi}{2}$ $\theta_k = 0(else)$

5.7-4 基波频率 $\Omega_0 = \frac{2\pi}{7}$, DFS 系数为 $\tilde{F}_k = \frac{1}{7} \frac{\sin(5\pi k/7)}{\sin(\pi k/7)} e^{-j\frac{4\pi}{7}k}, k \neq 7m$,

而
$$\tilde{F}_k = \frac{5}{7}, k = 7m, m \in 整数$$

$$\left|\tilde{F}_{k}\right| = \frac{1}{7} \left| \frac{\sin\left(5\pi k/7\right)}{\sin\left(\pi k/7\right)} \right|, k \neq 7m \quad , \quad \theta_{k} = -\frac{4\pi}{7}k, \tilde{F}_{k} > 0$$

$$\left| \tilde{F}_{k} \right| = \frac{1}{7} \left| \frac{\sin \left(5\pi k / 7 \right)}{\sin \left(\pi k / 7 \right)} \right|, k \neq 7m \quad , \quad \theta_{k} = -\frac{4\pi}{7} k, \tilde{F}_{k} > 0$$

$$\frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{2\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \left| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)} \right| \frac{4\pi / 7}{\sin \left(\pi k / 7 \right)}$$

5.9-1 一周期内, x[1] = x[7] = 4, x[3] = 4j, x[5] = -4j , 其余为 0 **5.9-3** 一周期内, x[0] = 6, x[2] = 2, x[4] = -2, x[6] = 2 , 其余为 0

5.9-3 一周期内,
$$x[0] = 6, x[2] = 2, x[4] = -2, x[6] = 2$$
 , 其余为 〔

5.11-1
$$F_k = \frac{1}{2(a+jk\pi)} Sa\left(\frac{k\pi}{2}\right)$$

5.14-1-b 1) b) $\tilde{x}[n] = j^n + (-1)^n$

$$N = 4, \ \Omega_0 = \frac{\pi}{2}$$

$$\tilde{x}[n] = j^n + (-1)^n = e^{j\Omega_0 n} + e^{j2\Omega_0 n}$$

$$\tilde{y}[n] = H(\Omega_0)e^{j\Omega_0 n} + H(2\Omega_0)e^{j2\Omega_0 n} = \frac{3}{5}j^n + \frac{1}{3}(-1)^n$$

5.15-1 $x(t) = e^{at}u(-t)$ a > 0

$$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt = \int_{0}^{\infty} e^{-at} e^{j\omega t} dt = \frac{a+j\omega}{a^2+\omega^2}$$

$$|X(\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$
 $\varphi(\omega) = \arctan \frac{\omega}{a}$

$$x[n] = a^n u[-n] \qquad |a| > 1$$

$$\tilde{X}(\Omega) = \sum_{n = -\infty}^{+\infty} x[n]e^{-j\Omega n} = \sum_{n = -\infty}^{0} a^n e^{-j\Omega n} = \sum_{n = 0}^{+\infty} a^{-n} e^{j\Omega n}$$
$$= \frac{a}{a - e^{j\Omega}} = \frac{a}{a - \cos \Omega - j \sin \Omega}$$

$$\left| \tilde{X}(\Omega) \right| = \frac{|a|}{\sqrt{(a - \cos \Omega)^2 + (\sin \Omega)^2}} = \frac{|a|}{\sqrt{a^2 + 1 - 2a\cos \Omega}}$$

$$\varphi(\Omega) = -\arctan\frac{-\sin\Omega}{a - \cos\Omega} = \arctan\frac{\sin\Omega}{a - \cos\Omega}$$

$$0 < a^{-1} < 1$$
 $-1 < a^{-1} < 0$

5.18-1
$$x[-2] = 4, x[0] = 1, x[3] = -1, x[6] = 3$$

$$x[n] = 4\delta[n+2] + \delta[n] - \delta[n-3] + 3\delta[n-6]$$

5.18-4
$$x[n] = \delta[n] - \frac{W}{\pi} \text{Sa}(Wn) = \frac{\pi - W}{\pi} \text{Sa}[(\pi - W)n]$$

5.16-1
$$x(t) = 0.5e^{j\pi/3}\delta(t+4) + 0.5e^{-j\pi/3}\delta(t-4)$$

5.16-2
$$x(t) = \frac{2j}{\pi} \sin t + \frac{3j}{\pi} \sin(2\pi t)$$