INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

6 - RELAÇÕES DE ORDENAMENTO

- 6.1) Conjuntos parcialmente ordenados (posets)
- 6.2) Extremos de posets
- 6.3) Reticulados
- 6.4) Álgebras Booleanas Finitas
- 6.5) Funções Booleanas

REVISÃO DE ÁLGEBRAS BOOLEANAS

- Pode-se tentar mostrar que um reticulado L é uma Álg. Booleana:
 - examinando o seu diagrama de Hasse
 - construindo diretamente um isomorfismo entre L e B_n ou entre L e $(P(S),\subseteq)$
- Pode-se tentar mostrar que um reticulado L não é Álg. Booleana:
 - verificando o número de elementos em L
 - conferindo as propriedades do seu ordenamento parcial
- Se L é uma Álg. Booleana, podemos usar qualquer das 14 propriedades básicas (->)
 - para manipular algebricamente ou
 - simplificar expressões envolvendo elementos de L.

Propriedades das Álgebras Booleanas (L, \leq)

1) $x \le y$ se e somente se $x \lor y = y$	2) $x \le y$ se e somente se $x \land y = x$
3) (a) $x \lor x = x$	$4) (a) x \lor y = y \lor x$
$(b) x \wedge x = x$	(b) $x \wedge y = y \wedge x$
	6) (a) $x \lor (x \land y) = x$
(b) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$	$(b) x \wedge (x \vee y) = x$
7) $\mathbf{O} \le x \le \mathbf{I}, \ \forall x \in L$	8) (a) $x \lor 0 = x$
	(b) $x \wedge \mathbf{O} = \mathbf{O}$
9) (a) $x \vee I = I$	10) (a) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
$(b) x \wedge \mathbf{I} = x$	(b) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
11) Todo elemento x tem um único x' tal que:	12) (a) ${f O}'={f I}$
(a) $x \vee x' = \mathbf{I}$ (b) $x \wedge x' = \mathbf{O}$	(b) $\mathbf{I}' = \mathbf{O}$
13) $(x')' = x$	14) (a) $(x \wedge y)' = x' \vee y'$
	$(b) (x \vee y)' = x' \wedge y'$

ÁLGEBRAS BOOLEANAS

- \blacksquare A partir de agora denotaremos B_1 simplesmente como B.
 - ullet B contém, portanto, apenas os elementos 0 e 1.
- Qualquer dos B_n pode ser descrito em termos de B:
- **Teorema 1:** Para todo $n \ge 1$, B_n é o produto $B \times B \times ... \times B$ consigo mesmo n vezes, de acordo com a ordem parcial produto.

Prova:

- ullet Por defi nição, B_n consiste de todas as n-tuplas de 0s e 1s
 - ou seja, todas as n-tuplas de elementos de B
- \blacksquare Portanto, em termos de conjunto, B_n é igual a $B \times B \times ... \times B$ (n fatores)
- Além disto, se $x = x_1 x_2 \dots x_n$ e $y = y_1 y_2 \dots y_n$ são elementos de B_n :
 - $m{\mathcal{L}} \quad x \leq y \quad \text{se e somente se} \quad x_k \leq y_k, \quad \text{para todo } k$
- Portanto, B_n , identifi cado com $B \times B \times ... \times B$ (n fatores), possui a ordem parcial produto.

FUNÇÕES SOBRE ÁLGEBRAS BOOLEANAS

- Tabelas com os valores de uma função f para todos os valores de um B_n são chamadas de "tabelas-verdade" para f.
 - Pois são análogas com as tabelas da Lógica, supondo que:
 - $oldsymbol{\circ}$ os x_k representam sentenças declarativas simples (proposições)
 - $f(x_1, x_2, \dots, x_n)$ representa uma sentença composta dos x_k 's
 - 0 = "sentença falsa" e 1 = "sentença verdadeira"

	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
	0	0	0	0
	0	0	1	1
	0	1	0	1
Exemplo:	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	0

FUNÇÕES SOBRE ÁLGEBRAS BOOLEANAS

Podem representar os requisitos de saída de um circuito computacional para quaisquer valores de entrada.

- Cada x_i representa um circuito de entrada capaz de assumir dois estados de tensão (0 e 1).
- A função f representa a resposta de saída desejada em todos os casos.
- Estes requisitos precisam ser definidos na etapa de projeto de qualquer circuito computacional

FUNÇÕES SOBRE ÁLGEBRAS BOOLEANAS

- Note que a especificação da função $f: B_n \to B$ é uma simples listagem de requisitos de circuito.
 - Ela não fornece indicação de como cumprir estes requisitos.
- Um importante modo de produzir funções de B_n para B é usando polinômios Booleanos.

POLINÔMIOS BOOLEANOS

- Um **polinômio Booleano** $p(x_1, x_2, ..., x_n)$, nas variáveis x_k , é definido recursivamente:
 - 1. x_1, x_2, \ldots, x_n são todos polinômios Booleanos.
 - 2. Os símbolos 0 e 1 são polinômios Booleanos.
 - 3. Se $p(x_1, x_2, ..., x_n)$ e $q(x_1, x_2, ..., x_n)$ são polinômios Booleanos, então também o serão:
 - $(p(x_1, x_2, \dots, x_n) \vee q(x_1, x_2, \dots, x_n))$
 - $(p(x_1, x_2, \dots, x_n) \land q(x_1, x_2, \dots, x_n))$
 - 4. Se $p(x_1, x_2, ..., x_n)$ é um polinômio Booleano, então $(p(x_1, x_2, ..., x_n))'$ também o é.
 - 5. Não existem polinômios Booleanos nas variáveis x_k além dos obtidos pelo uso repetido das regras anteriores.

POLINÔMIOS BOOLEANOS

Exemplos de polinômios Booleanos nas variáveis x,y e z:

$$p_1(x,y,z) = (x \vee y) \wedge z$$

$$p_2(x,y,z) = (x \vee y') \vee (y \wedge 1)$$

$$p_3(x,y,z) = (x \vee (y' \wedge z)) \vee (x \wedge (y \wedge 1))$$

$$p_4(x,y,z) = (x \vee (y \vee z')) \wedge ((x' \wedge z)' \wedge (y' \vee 0))$$

POLINÔMIOS

- Polinômios comuns: "expressões representando computações algébricas com números não-especificados".
 - Exemplos:

$$x^2y + z^4$$

$$y + yz + x^2y^2$$

$$x^3y^3 + xz^4$$

- Estão, portanto, sujeitos às regras usuais da aritmética.
- Logo, são equivalentes:

•
$$x^2 + 2x + 1$$
 e $(x+1)(x+1)$

•
$$x(xy+yz)(x+y)$$
 e $x^3y+2x^2yz+xyz^2$

Em ambos os casos, podemos transformar um no outro com manipulação algébrica.

POLINÔMIOS BOOLEANOS

- Polinômios Booleanos: "computações Booleanas com elementos não-especificados de B (0s e 1s)".
- Sujeitos às regras da aritmética Booleana:
 - regras obedecidas por ∧, ∨ e ′ nas álgebras Booleanas.
- Dois polinômios Booleanos são equivalentes se for possível transformar um no outro por manipulações Booleanas.

Polinômios X Funções

- Polinômios comuns produzem funções por substituição.
 - Exemplo: o polinômio $xy + yz^3$ produz a seguinte $f: \mathbb{R}^3 \to \mathbb{R}$:

$$f(x, y, z) = xy + yz^3$$

• uso: $f(3,4,2) = (3 \times 4) + (4 \times 2^3) = 12 + 32 = 44$

Similarmente, polinômios Booleanos envolvendo n variáveis produzem funções de B_n para B.

Polinômios X Funções Booleanas

■ Exemplo: Tabela verdade para a função Booleana $f: B_3 \to B$ determinada pelo polinômio Booleano:

$$p(x_1, x_2, x_3) = ((x_1 \land x_2) \lor (x_1 \lor (x_2' \land x_3)))$$

• Substituição das 2^3 triplas ordenadas de valores de B para x_1 , x_2 e x_3 :

x_1	x_2	x_3	$f(x_1, x_2, x_3) = ((x_1 \land x_2) \lor (x_1 \lor (x_2' \land x_3)))$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- Polinômios Booleanos podem ser representados simbolicamente.
- Polinômios básicos:

- Linhas à esquerda: variáveis
- Linha à direita: polinômio inteiro
- Símbolo para $x \vee y$: "porta OR"
- Símbolo para $x \wedge y$: "porta AND"
- Símbolo para x': "inversor"
- Nomes: tabelas verdade das funções $x \lor y$ e $x \land y$ são exatamente análogas às tabelas dos conectivos "or" e "and"

- Substituindo repetidamente estes símbolos, podemos representar qualquer polinômio Booleano como um diagrama lógico.
- **Exemplo**: Seja a função $f: B_3 \to B$ correspondente a $p(x,y,z) = ((x \land y) \lor (y \land z')).$
 - Tabela verdade:

x_1	y	z	$f(x,y,z) = (x \land y) \lor (y \land z')$	_
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	\Rightarrow
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

- **Exemplo (cont.)**: função f para $p(x,y,z)=((x\wedge y)\vee (y\wedge z'))$
 - Diagrama lógico:

- Seja p um polinômio Booleano em n variáveis.
- lacksquare Seja f a função correspondente de B_n para B.
 - f descreve o comportamento de um circuito com n entradas e uma saída.
- Diagrama lógico de p: descrição da construção deste circuito (em termos de portas).
 - Ou seja: se a função f pode ser produzida por um polinômio p, o diagrama lógico para p fornece uma maneira de construir um circuito com aquele comportamento.
- É comum que muitos polinômios diferentes produzam a mesma função.
 - Seus diagramas lógicos representarão modos alternativos de construir o circuito desejado.

- ▶ Vimos que, se uma função $f: B_n \to B$ é dada por um polinômio Booleano, é possível construir um diagrama lógico para ela
 - e, portanto, modelar a sua implementação
- Agora veremos que todas as funções de B_n para B podem ser representadas por polinômios Booleanos.
- Juntamente com um método para encontrar uma expressão Booleana que produz uma função dada.

- ullet Para $f:B_n\to B$, seja: $S(f)=\{b\in B_n\mid f(b)=1\}$
- **Teorema 2:** Sejam f, f_1 e f_2 três funções de B_n para B.
 - (a) Se $S(f) = S(f_1) \cup S(f_2)$, então: $f(b) = f_1(b) \vee f_2(b)$, $\forall b \in B_n$.
 - (b) Se $S(f) = S(f_1) \cap S(f_2)$, então: $f(b) = f_1(b) \wedge f_2(b)$, $\forall b \in B_n$.
 - Nota: " \vee "= LUB e " \wedge "= GLB (em B).
- **Prova de (a):** Seja $b \in B_n$:
 - Se $b \in S(f)$, então f(b) = 1. Daí:
 - uma vez que $S(f) = S(f_1) \cup S(f_2)$, deve acontecer:
 - $b \in S(f_1)$ ou $b \in S(f_2)$ (ou ambos)
 - em qualquer dos 3 casos: $f_1(b) \vee f_2(b) = 1$
 - **Se** $b \notin S(f)$, então f(b) = 0. Daí:
 - ullet deve acontecer: $b \notin S(f_1)$ e $b \notin S(f_2)$
 - ullet nos dois casos: $f_1(b) \wedge f_2(b) = 0$, ou seja: $f_1(b) \vee f_2(b) = 0$
 - **●** Logo, $\forall b \in B_n$ temos: $f(b) = f_1(b) \vee f_2(b)$.

Relembrando:

- $f:B_n\to B$ pode ser vista como uma função $f(x_1,x_2,\ldots,x_n)$
 - variáveis, cada uma assumindo 0 ou 1
- se $E(x_1, x_2, \dots, x_n)$ é uma expressão Booleana:
 - a função que ela produz é gerada substituindo-se todas as combinações de 0's e 1's para os x_i 's na expressão

Exemplo: Sejam as funções:

- $f_1: B_2 \to B$, produzida pela expressão E(x,y) = x'
- $f_2: B_2 \to B$, produzida pela expressão E(x,y) = y'
- $f: B_2 \to B$ (tabela)

x	$\mid y \mid$	$f_1(x,y)$	x	y	$f_2(x,y)$	x	y	f(x,y)
0	0	1	0	0	1	0	0	1
0	1	1	0	1	0	0	1	1
1	0	0	1	0	1	1	0	1
1	1	0	1	1	0	1	1	0

- Note que $S(f) = S(f_1) \cup S(f_2) = \{(0,0),(0,1)\} \cup \{(0,0),(1,0)\}.$
- Então o Teorema 2 garante que $f = f_1 \vee f_2$, de modo que:
 - $x' \vee y'$ é uma expressão Booleana que produz f.

- Note que toda $f: B_n \to B$, para a qual S(f) tenha exatamente um elemento, pode ser produzida por uma expressão Booleana.
- **Exemplo:** $f: B_2 \to B$ com tabela-verdade:

x	y	f(x,y)
0	0	0
0	1	1
1	0	0
1	1	0

- Note que $S(f) = \{(0,1)\}$:
 - f é 1 apenas para o elemento (0,1) de B_2
 - f(x,y) = 1 apenas quando x = 0 e y = 1
- O que também é verdade para a expressão: $E(x,y) = x' \wedge y$
 - logo: f é produzida por esta expressão

• Correspondência entre funções de B_2 que são 1 em apenas um elemento e as expressões Booleanas que as produzem:

S(f)	expressão que produz f
$\{(0,0)\}$	$x' \wedge y'$
$\{(0,1)\}$	$x' \wedge y$
$\{(0,0)\}$ $\{(0,1)\}$ $\{(1,0)\}$	$x \wedge y'$
$\{(1,1)\}$	$x \wedge y$

• Além disto, seja a $f: B_3 \to B$:

x	ig y	z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

- Note que $S(f) = \{(0,1,1)\}$:
 - f vale 1 apenas quando x = 0, y = 1 e z = 1
 - o que também é verdade para a expressão: $x' \wedge y \wedge z$
 - a qual deve, portanto, produzir f

- $m{P}$ $b \in B_n$ é uma seqüência (c_1, c_2, \dots, c_n) de comprimento n.
- Seja E_b a expressão Booleana: $\overline{x}_1 \wedge \overline{x}_2 \wedge \cdots \overline{x}_n$
 - $\overline{x}_k = x_k$ quando $c_k = 1$
 - $\overline{x}_k = x'_k$ quando $c_k = 0$
- Esta expressão é chamada de minterm.
- Toda função $f: B_n \to B$, para a qual S(f) é um único elemento de B_n , pode ser produzida por um minterm.
 - De fato, se $S(f) = \{b\}$, note que o minterm E_b produz f.
- Tudo isto leva para o resultado a seguir...

▶ Teorema 3: Toda função $f: B_n \to B$ é produzida por uma expressão Booleana.

Prova:

- Seja $S(f) = \{b_1, b_2, \dots, b_k\}$
- **▶** Para cada i, seja $f_i: B_n \to B$ defi nida por:
 - $f_i(b_i) = 1$
- Então $S(f_i) = \{b_i\}$, de modo que $S(f) = S(f_1) \cup \cdots \cup S(f_k)$.
- Daí, pelo Teorema anterior: $f = f_1 \lor f_2 \lor \cdots \lor f_k$
- ullet Como vimos, cada f_i é produzida pelo minterm E_{b_i} .
- ▶ Portanto, f é produzida pela expressão Booleana:

$$E_{b_1} \vee E_{b_2} \vee \cdots \vee E_{b_k} \qquad \Box$$

Exemplo: Seja a função $f: B_3 \to B$ dada por:

x	$\mid y \mid$	z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• $S(f) = \{(0,1,1), (1,1,1)\} \Rightarrow f$ é produzida pela expressão:

$$E(x, y, z) = E_{(0,1,1)} \lor E_{(1,1,1)} = (x' \land y \land z) \lor (x \land y \land z)$$

- No entanto, esta não é a expressão mais simples que produz f:
 - usando propriedades de Álgebras Booleanas, temos:

$$(x' \land y \land z) \lor (x \land y \land z) = (x' \lor x) \land (y \land z)$$
$$= 1 \land (y \land z)$$
$$= y \land z$$

• portanto, f também é produzida por $y \wedge z$.

- O processo de combinar minterms e simplificar a expressão resultante, pode ser sistematizado:
 - há vários modos
 - veremos um procedimento gráfico: mapas de Karnaugh
- Mapas de Karnaugh:
 - fácil manualmente, se n não é muito grande (2, 3 ou 4)
 - ullet se n é grande, há técnicas melhores para automatizar o processo

 $m{\rlap/}$ f é uma função de x e y.

Considere a seguinte matriz de "quadrados":

0 0	0 1
1 0	11

entradas b de B_2

	у'	У
X'	x'^ y'	x'^ y
X	x ^ y'	хлу

minterm E_b

Lembrar rótulos:

• linhas: x' e x

ullet colunas: y' e y

Exemplo: Seja a função $f: B_2 \to B$ dada por:

x	y	f(x,y)
0	0	1
0	1	1
1	0	0
1	1	0

Tabela-verdade de f

	у'	у
x'	1	1
X	0	0

Mapa de Karnaugh de f

• Como $S(f) = \{(0,0), (0,1)\}$, a expressão para f é:

$$(x' \land y') \lor (x' \land y) = x' \land (y' \lor y) = x'$$

- Quando os 1's de uma $f: B_2 \to B$ preenchem toda uma linha (coluna), o rótulo daquela linha (coluna) fornece a expressão para f.
 - Se os 1's preenchem apenas um quadrado, f é dada pelo minterm (completo) correspondente.
 - Em geral: quanto maior o quadrado de 1's, menor será a expressão de f.

- Se os 1's n\u00e3o est\u00e3o em um ret\u00e1ngulo, podemos decompor estes valores na uni\u00e3o de ret\u00e1ngulos.
 - Então, a expressão de f será o "∨" das expressões correspondentes a cada retângulo (pelo Teorema 2).

Exemplo: Seja a função $f: B_2 \to B$ dada por:

x	y	f(x,y)
0	0	1
0	1	1
1	0	1
1	1	0

Tabela-verdade de f

Mapa de Karnaugh de f

- Decompor os 1s nos dois retângulos mostrados.
- ullet Expressão para o retângulo horizontal: x'
- Expressão para o retângulo vertical: y'
- **Solution** Expressão para $f: x' \vee y'$

Exemplo (cont.):

Outra decomposição dos 1s em retângulos:

- Também correta.
- Mas leva para uma expressão mais complexa: $(y' \lor (x' \land y))$
- Conclusão: a decomposição em retângulos não é única
- Tentar usar os maiores retângulos possíveis.

- Caso $f: B_3 \to B$ (função de $x, y \in z$)
- Poderíamos construir um "cubo" de lado 2 para os valores de f, mas:
 - figuras 3D são inconvenientes
 - a idéia não poderia ser generalizada
- Em vez disto, usaremos um retângulo 2x4 do tipo:

	0 0	0 1	11	1 0
0	000	001	011	010
1	100	101	111	110

Tabela-verdade de f

Mapa de Karnaugh de f

Se os 1s de uma $f: B_3 \to B$ preenchem exatamente um destes retângulos sombreados, f é expressa por: x, y, z, x', y' ou z' (como indicado)

Exemplo:

• f corresponde à junção com " \lor " dos 4 minterms envolvidos:

$$(x' \wedge y' \wedge z') \vee (x' \wedge y' \wedge z) \vee (x \wedge y' \wedge z') \vee (x \wedge y' \wedge z) =$$

$$= ((x' \vee x) \wedge (y' \wedge z')) \vee ((x' \vee x) \wedge (y' \wedge z))$$

$$= (1 \wedge (y' \wedge z')) \vee (1 \wedge (y' \wedge z))$$

$$= (y' \wedge z') \vee (y' \wedge z)$$

$$= y' \wedge (z' \vee z) = y' \wedge 1 = y'$$

Pode-se mostrar que os outros 5 "rótulos" estão corretos.

Petângulo básico para n = 3:

- "Fechando-o" como um cilindro, cada uma das 6 regiões consiste em:
 - duas colunas adjacentes
 - metade superior ou inferior

Expressões Booleanas das 6 regiões básicas são as únicas a serem consideradas.

- \blacksquare Elas servem de rótulo para todos os mapas de B_3 para B.
- Se os 1s de uma $f: B_3 \to B$ compõem a intersecção de 2 ou 3 das regiões básicas:

expressão para $f = "\land"$ das expressões destas regiões

Exemplo: obtemos os 1s da função f dada por:

da intersecção das regiões:

- logo, a expressão Booleana para f é: $y' \wedge z'$
- Similar para as outras 3 colunas.

■ Exemplo: obtemos os 1s da função f dada por:

da intersecção das regiões:

■ logo, a expressão Booleana para esta f é: $z \wedge x'$

- Algo similar ao exemplo anterior ocorre para qualquer f com 1s em dois quadrados adjacentes.
- Existem 8 destas funções se vemos o retângulo como um cilindro.
 - Estamos incluindo casos do tipo:

• Cuja expressão é dada por: $z' \wedge x'$

Intersecção (não-vazia) de 3 regiões básicas: quadrado (minterm).

Exemplo: o 1 da função f dada por:

vem da intersecção de:

logo, a expressão Booleana para esta f é: $y' \wedge z \wedge x$

- Logo: sabendo os "rótulos", pode-se obter todos os minterms.
- Sabemos, portanto, computar expressões Booleanas para toda $f: B_3 \to B$ cujos 1s formem um retângulo de comprimento $2^n \times 2^m$ (n=0:1; m=0:2).
- Caso os 1s não formem um retângulo, sempre se pode descrevê-los como união destes retângulos:
 - expressão para $f = "\lor"$ das expressões de cada retângulo
- Quanto maiores os retângulos escolhidos, mais simples serão as expressões Booleanas resultantes.

Exemplo: Seja a função *f* dada por:

x	$\mid y \mid$	z	f(x,y,z)	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

- Uma decomposição dos 1s é mostrada.
- De onde se deduz que uma expressão Booleana para f é:

$$(y' \wedge z') \vee (x' \wedge y') \vee (y \wedge z)$$

Exemplo: Seja a função f dada por:

x	$\mid y \mid$	z	f(x, y, z)	
0	0	0	1	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

- Decomposição mostrada une a 1ra e a última colunas (cilindro).
- Expressão Booleana resultante: $z' \lor (x \land y)$

■ Entradas e rótulos para a função (de x,y,z,w) $f: B_4 \rightarrow B$:

	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0101	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

1ra-última colunas & 1ra-última linhas são adjacentes (toro)

- Composição de retângulos com lados de comprimento 1, 2 ou 4.
- Expressão p/ estes retângulos = intersecção dos retângulos a seguir:

Exemplo: Seja a função $f: B_4 \to B$ representada por:

- Segue a convenção: f(0101) = 1, f(0001) = 0, etc.
- Quadrado 2×2 central: " $w \wedge y$ "
- Quadrado 2×2 dos 4 cantos: " $w' \wedge y'$ "
- **■** Expressão Booleana para f: $(w \wedge y) \vee (w' \wedge y')$

Exemplo: Seja a função $f: B_4 \to B$ representada por:

● Expressão para f: $(z' \wedge y') \vee (x' \wedge y' \wedge z) \vee (x \wedge y \wedge z \wedge w)$

Funções Booleanas

Final deste item.

Dica: fazer exercícios sobre Funções Booleanas...