

Instituto Tecnológico de Tlaxiaco

Heroica Ciudad de Tlaxiaco; Oax.,23/Abril/2024

TECNOLÓGICO NACIONAL DE MÉXICO

INSTITUTO TECNOLÓGICO DE TLAXIACO

Presenta:

Magaly Nicolas Sánchez

N. Control 20620150

Carrera:

Ingeniería en Sistemas Computacionales

Semestre:

8US ISC

Asignatura:

Inteligencia Artificial

U3 - Reglas y Búsqueda

Docente:

Osorio Salinas Edwar

Figure 7.11 Standard logical equivalences. The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

Ejemplos de equivalencia lógicas para cada sentencia

· Conmutatividad

- 1. Conmutatividad of Λ : $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$
 - ↑ α ∧ β): "Hace sol y está despejado."
 - ₹ (β ∧ α): "Está despejado y hace sol."
 - \uparrow (α \land β) \equiv (β \land α): "Hace sol" como "Está despejado"
- **2.** Conmutatividad of V: $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$
 - † (α V β): "Tengo hambre o quiero pizza."
 - † (β V α): "Quiero pizza o tengo hambre."
 - \uparrow (α V β) \equiv (β V α): "Tengo hambre" o "Quiero pizza"

··· Asociatividad

- 1. Asociatividad of Λ : $((\alpha \land \beta) \land \gamma)$
 - $((\alpha \land \beta) \land y)$: "(Es lunes y estoy trabajando) y estoy en casa."
 - \Box ($\alpha \wedge (\beta \wedge \gamma)$): "Es lunes y (estoy trabajando y estoy en casa)."
 - ((α Λ β) Λ γ): "Es lunes" y "Estoy trabajando" y "Estoy en casa"
- 2. Asociatividad of V: $((\alpha \lor \beta) \lor \gamma)$
 - ((α V β) V γ): "(Tengo un perro o tengo un gato) o tengo un pez."
 - (α V (β V γ)): "Tengo un perro o (tengo un gato o tengo un pez)."
 - ((α V β) V γ): "(Tengo un perro o tengo un gato) o tengo un pez."

- ••• Eliminación de la doble negación: $\neg(\neg\alpha) = \alpha$
 - Tage: "No es el caso que no hace sol", es decir, "Hace sol".
 - ¬(¬α): "No es el caso que Juan no estudie matemáticas", es decir, "Juan estudia matemáticas".
- ••• Contraposición: $(\alpha \rightarrow \beta) = (\neg \beta \rightarrow \neg \alpha)$
 - α: "Si estudias, aprobarás el examen."
 - β: "Apruebas el examen."

La contrapositiva sería:

- 🗓 ¬β: "No apruebas el examen."
- 🖆 ¬α: "No estudias."
- ($\alpha \rightarrow \beta$) = ($\neg \beta \rightarrow \neg \alpha$): "Si estudias, aprobarás el examen" es "Si no apruebas el examen, entonces no estudias".
- **Eliminación de la implicación:** $(\alpha \rightarrow \beta) = (\neg \alpha \lor \beta)$
 - † α: "Es lunes."
 - β : "Voy al trabajo."
 - \uparrow (α \rightarrow β) = (\neg α ∨ β): "No es lunes o voy al trabajo".
- **Eliminación del bicondicional:** $\alpha \leftrightarrow \beta = (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$.
 - α:"Es un cuadrado".
 - β : "Tiene cuatro lados iguales".
 - $(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$: "Si algo es un cuadrado, entonces tiene cuatro lados iguales, y si algo tiene cuatro lados iguales, entonces es un cuadrado".

··· Ley de Morgan

- 1. Negación de una conjunción: $\neg (\alpha \land \beta) = (\neg \alpha \lor \neg \beta)$
 - \uparrow $\neg(\alpha \land \beta)$: No es cierto que sea lunes y sea verano"
 - ↑ ¬αν¬β: "No es cierto que sea lunes o no es cierto que sea verano".
- **2.** Negación de una disyunción: $\neg (\alpha \lor \beta) = (\neg \alpha \land \neg \beta)$
 - \uparrow ¬ $(\alpha \lor \beta)$: "No es cierto que sea fin de semana o esté de vacaciones"
 - \uparrow (¬ α ∧¬ β): "No es cierto que sea fin de semana y no es cierto que esté de vacaciones".
- ••• Distribución of Λ sobre V: $(\alpha \land (\beta \lor \gamma)) = ((\alpha \land \beta) \lor (\alpha \land \gamma))$
 - \Box ($\alpha \land (\beta \lor \gamma)$): Hace sol y es fin de semana o estoy de vacaciones".

 $(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$: "Hace sol y es fin de semana o hace sol y estoy de vacaciones".

Distribución of V sobre Λ : $(\alpha \lor (\beta \land \gamma)) = (\alpha \lor \beta) \land (\alpha \lor \gamma)$

- † $(\alpha \lor (\beta \land \gamma))$: "Hace sol o es fin de semana y estoy de vacaciones".
- † (α V β) \wedge (α V γ): "Hace sol o es fin de semana y hace sol o estoy de vacaciones".

Ex. De Morgan Rules

$$\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$$

$$\neg(\alpha \lor \beta) \equiv (\neg\alpha \land \neg\beta)$$

р	q	pΛq	¬(p ∧ q)	¬р	¬q	(¬p)∨(¬q)
V	٧	V	F	F	F	F
V	F	F	V	F	V	V
F	٧	F	V	V	F	V
F	F	F	V	V	V	V

Práctica De Morgan Rules: ¬ (p ∧ q):

- 1. p: No hay vida en Marte, q: No hay vida en Júpiter
 - a) No hay vida en Marte o no hay vida en Júpiter
 - b) No hay vida en Marte ni en Júpiter
 - c) No hay vida en Marte o hay vida en Júpiter
 - d) Hay vida en máximo uno de los dos planetas
- 2. p: Todo esta perdido, q: No hay esperanza
 - a) No todo esta perdido y hay esperanza
 - b) No todo esta perdido, pero no hay esperanza
 - c) No todo esta perdido o no hay esperanza

d) Todo esta perdido pero hay esperanza

3. p: No hay jugadores de lacrosse bajos, p: No hay jugadores de fútbol altos

- a) Todos los jugadores de lacrosse son bajos o todos los jugadores de futbol son altos
- b) Algunos jugadores de lacrosse son bajos o algunos jugadores de futbol son altos
- c) Algunos jugadores de lacrosse son bajos y todos los jugadores de futbol son altos
- d) Todos los jugadores de lacrosse son bajos y todos los jugadores de futbol son altos