

FUNDAMENTOS DE COMPUTADORES 1° Curso del Grado en Ingeniería Informática

TEMA 1

Problemas resueltos

Problemas resueltos del tema 1

- **1.** Convertir a base diez los siguientes números:
 - a) 1001100010.101₂
 - b) 610327.5246₈
 - c) C9FAB.67E₁₆

Solución:

- a) $1001100010.101_2 = 1 \times 2^9 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} =$ **610.625**
- b) $610327.5246_8 = 6 \times 8^5 + 1 \times 8^4 + 3 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 5 \times 8^{-1} + 2 \times 8^{-2} + 4 \times 8^{-3} + 6 \times 8^{-4} = 200919.66552$
- c) C9FAB.67E₁₆ = 12 x 16⁴ + 9 x 16³ +15 x 16² +10 x 16¹ +11 x 16⁰ + 6 x 16⁻¹ + 7 x 16^{-2} + 14 x 16^{-3} = **827307.4058**
- **2.** Volver a convertir los resultados obtenidos en el ejercicio anterior a las respectivas bases de origen y comprobar que los nuevos resultados se corresponden con los datos de partida.

Solución:

a) Para realizar la conversión a binario de la cantidad **610.625** actuamos de la siguiente forma:

Parte entera: Dividimos sucesivamente por 2 y obtenemos: 1001100010₂

<u>Parte fraccionaria</u>: Multiplicamos sucesivamente por 2 y obtenemos: **0.101**₂

El resultado final lo obtenemos colocando a la izquierda y a la derecha de la coma de decimales la parte entera y la parte fraccionaria, respectivamente, como se indica a continuación:

$$610.625 = 1001100010.101_2$$

b) Para realizar la conversión a octal de la cantidad **200919.66552** actuamos de la siguiente forma:

Parte entera: Dividimos sucesivamente por 8 y obtenemos: 6103278

Parte fraccionaria: Multiplicamos sucesivamente por 8 y obtenemos: 0.5245₈

El resultado final lo obtenemos colocando a la izquierda y a la derecha de la coma de decimales la parte entera y la parte fraccionaria, respectivamente, como se indica a continuación:

$$200919.66552 = 610327.5245_8$$

La pequeña discrepancia en el resultado es debida a los decimales despreciados en la conversión de octal a decimal.

c) Para realizar la conversión a hexadecimal de la cantidad **827307.4058** actuamos de la siguiente forma:

Parte entera: Dividimos sucesivamente por 16 y obtenemos: C9FAB₁₆

Parte fraccionaria: Multiplicamos sucesivamente por 16 y obtenemos: 0.67E₁₆

El resultado final lo obtenemos colocando a la izquierda y a la derecha de la coma de decimales la parte entera y la parte fraccionaria, respectivamente, como se indica a continuación:

$$827307.4058 = C9FAB.67E_{16}$$

- **3.** Transformar los siguientes números decimales a BCD Natural, BCD Aiken, BCD 5-4-2-1 y BCD exceso 3.
 - a) 6259.34
 - b) 3910.82
 - c) 7543.21

Solución:

a) 6259.34

BCD Natural	0110	0010	0101	1001	0011	0100
BCD Aiken	1100	0010	1011	1111	0011	0100
BCD 5-4-2-1	1001	0010	1000	1100	0011	0100
BCD exceso 3	1001	0101	1000	1100	0110	0111

b) 3910.82

BCD Natural	0011	1001	0001	0000	1000	0010
BCD Aiken	0011	1111	0001	0000	1110	0010
BCD 5-4-2-1	0011	1100	0001	0000	1011	0010
BCD exceso 3	0110	1100	0100	0011	1011	0101

c) 7543.21

BCD Natural	0111	0101	0100	0011	•	0010	0001
BCD Aiken	1101	1011	0100	0011		0010	0001
BCD 5-4-2-1	1010	1000	0100	0011		0010	0001
BCD exceso 3	1010	1000	0111	0110		0101	0100

- **4.** Transformar a decimal los siguientes números:
 - a) 01010111.01001000 (BCD Natural)
 - b) 1110.001111001011 (BCD Aiken)
 - c) 01001000.101111100 (BCD 5-4-2-1)
 - d) 010001010011.1001 (BCD Exceso 3)

Solución:

a) 01010111.01001000 (BCD Natural) = **57.48**

b) 1110.001111001011 (BCD Aiken) = **8.365**

c) 01001000.101111100 (BCD 5-4-2-1) = **45.89**

d) 010001010011.1001 (BCD Exceso 3) = **120.6**

5. Generar un código Johnson de 6 bits.

Solución:

Dígito decimal	Código Johnson de 6 bits
0	000000
1	000001
2	000011
3	000111
4	001111
5	011111
6	111111
7	111110
8	111100
9	111000
10	110000
11	100000

6. Generar un código de paridad impar a partir de un código BCD 5-4-2-1.

Solución:

Dígito decimal	BCD 5-4-2-1 con bit de paridad impar
0	0000 1
1	0001 0
2	0010 0
3	0011 1
4	0100 0
5	1000 0
6	1001 1
7	1010 1
8	1011 0
9	1100 1

7. Generar un código de Hamming a partir de un código Gray de 3 bits.

Solución:

$$2^c \ge m + c + 1$$

Para c=3 tenemos $\rightarrow 2^3 \ge 3+3+1$, por lo que añadiremos 3 bits al código original.

Sobre las combinaciones del código final se realizarán 3 detecciones de paridad $(D_2, D_1 \ y \ D_0)$, cuyos resultados indicarán la situación del bit erróneo, en caso de que lo hubiera, según la siguiente tabla:

$D_2 D_1 D_0$	Bit erróneo
0 0 0	Ninguno
0 0 1	b_1
0 1 0	b_2
0 1 1	b_3
1 0 0	b_4
1 0 1	b_5
1 1 0	b_6

Las detecciones de paridad tendrán las siguientes expresiones:

$$D_0=b_1\oplus b_3\oplus b_5$$

$$D_1 = b_2 \oplus b_3 \oplus b_6$$

$$D_2 = b_4 \oplus b_5 \oplus b_6$$

Los bits a añadir serán b1, b2 y b4, y sus valores se calcularán mediante las siguientes expresiones:

$$b_1 = b_3 \oplus b_5$$

$$b_2 = b_3 \oplus b_6$$

$$b_4 = b_5 \oplus b_6$$

Así, el código resultante quedará como sigue:

Número decimal	$b_6 b_5 b_4 b_3 b_2 b_1$
0	0 0 0 0 0 0
1	0 0 0 1 1 1
2	0 1 1 1 1 0
3	0 1 1 0 0 1
4	1 1 0 0 1 1
5	1 1 0 1 0 0
6	1 0 1 1 0 1
7	1 0 1 0 1 0