Digital Signal Processing

Gautam Singh

1

1

1

2

4

CONTENTS

- 1 Software Installation
- 2 Digital Filter
- 3 Difference Equation
- 4 Z-transform
- 5 Impulse Response
- 6 DFT and FFT 6
- 7 Exercises 8

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands (commands may change depending on Linux distro)

- \$ sudo apt update && sudo apt upgrade \$ sudo apt install libffi-dev libsndfile1 python3-scipy python3-pip python3numpy python3-matplotlib \$ pip3 install cffi pysoundfile
- 2 Digital Filter
- 2.1 Download the sound file using

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900-
assignments/
main/
Assignment_01
/codes/
Sound_Noise.
wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find?

Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.

2.3 Write the python code for removal of out of band noise and execute the code.

Solution: Download the source code using

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/2_3.py

and execute it using

1

2.4 The output of the python script 2.3 Problem is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following C code calculates y(n).

> \$ wget https://raw. githubusercontent .com/goats-9/ ee3900assignments/ main/codes/3 2.c

figs/3_2.png

Run it using

The following code plots Fig. (3.1).

\$ wget https://raw. githubusercontent .com/goats-9/ ee3900assignments/ main/codes/3 2.py

Execute it using

Solution: From (4.1),

$$\mathcal{Z}\lbrace x(n-k)\rbrace = \sum_{n=-\infty}^{\infty} x(n-k)z^{-n}$$
 (4.4)

Fig. 3.1: Plot of x(n) and y(n)

$$=\sum_{n=-\infty}^{\infty}x(n)z^{-n-k} \tag{4.5}$$

$$= z^{-k} \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (4.6)

$$= z^{-k}X(z) \tag{4.7}$$

Putting k = 1 gives (4.2). For the given x(n), we have

$$X(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$$

$$+ 2z^{-4} + z^{-5}$$

$$+ 2z^{-1} + 2z^{-2} + 3z^{-3}$$

$$+ 4z^{-4} + 2z^{-5} + z^{-6}$$

$$(4.9)$$

$$+4z^{-4} + 2z^{-5} + z^{-6} (4.9)$$
$$= z^{-1}X(z) (4.10)$$

4.2 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.11}$$

from (3.2) assuming that the Z-transform is a (4.3)linear operation.

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: Applying (4.7) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.12)

$$\implies \frac{Y(z)}{X(z)} = \frac{1+z^{-2}}{1+\frac{1}{2}z^{-1}} \tag{4.13}$$

4.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.15)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.16}$$

Solution: We see using (4.14) that

$$\mathcal{Z}\left\{\delta\left(n\right)\right\} = \delta\left(0\right) = 1 \tag{4.17}$$

and from (4.15),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.18)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.19}$$

using the fomula for the sum of an infinite geometric progression.

4.4 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.20)

Solution:

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \sum_{n=0}^{\infty} \left(az^{-1}\right)^{n} \tag{4.21}$$

$$= \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.22}$$

4.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.23)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discrete Time Fourier Transform* (DTFT) of h(n).

Solution: The following code plots Fig. (4.1).

\$ wget https://raw. githubusercontent .com/goats-9/ ee3900assignments/ main/ Assignment_01 /codes/4_5.py

The figure can be generated using

Using (4.13), we observe that $|H(e^{j\omega})|$ is given by

$$|H(e^{j\omega})| = \left| \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} \right|$$

$$= \sqrt{\frac{(1 + \cos 2\omega)^2 + (\sin 2\omega)^2}{\left(1 + \frac{1}{2}\cos \omega\right)^2 + \left(\frac{1}{2}\sin \omega\right)^2}}$$
(4.24)

$$=\sqrt{\frac{2(1+\cos 2\omega)}{\frac{5}{4}+\cos \omega}}\tag{4.26}$$

$$=\sqrt{\frac{2(2\cos^2\omega)}{\frac{5}{4}+\cos\omega}}\tag{4.27}$$

$$=\frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}\tag{4.28}$$

Thus,

$$\left| H\left(e^{J(\omega + 2\pi)} \right) \right| = \frac{4|\cos(\omega + 2\pi)|}{\sqrt{5 + 4\cos(\omega + 2\pi)}} \quad (4.29)$$

$$= \frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}} \tag{4.30}$$

$$= |H(e^{j\omega})| \tag{4.31}$$

and so its fundamental period is 2π .

4.6 Express h(n) in terms of $H(e^{j\omega})$.

Solution: We have,

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.32)

However,

$$\int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega = \begin{cases} 2\pi & n=k\\ 0 & \text{otherwise} \end{cases}$$
 (4.33)

 $figs/4_5.png$

Fig. 4.1: Plot of $|H(e^{j\omega})|$ against ω

and so,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.34}$$

$$=\frac{1}{2\pi}\sum_{k=0}^{\infty}\int_{-\pi}^{\pi}h(k)e^{\mathrm{d}\omega(n-k)}d\omega\tag{4.35}$$

$$= \frac{1}{2\pi} 2\pi h(n) = h(n) \tag{4.36}$$

which is known as the Inverse Discrete Fourier Transform. Thus,

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.37)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} e^{j\omega n} d\omega \qquad (4.38)$$

5 IMPULSE RESPONSE

5.1 Using long division, compute h(n) for n < 5 from H(z).

Solution: We substitute $x := z^{-1}$, and write

$$\begin{array}{r}
2x - 4 \\
\frac{1}{2}x + 1) \overline{\smash{\big)}\ x^2 + 1} \\
\underline{-x^2 - 2x} \\
-2x + 1 \\
\underline{2x + 4} \\
5
\end{array}$$

So.

$$H(z) = -4 + 2z^{-1} + \frac{5}{1 + \frac{1}{2}z^{-1}}$$
 (5.1)

$$= -4 + 2z^{-1} + 5\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n}$$
 (5.2)

$$=1-\frac{1}{2}z^{-1}+5\sum_{n=2}^{\infty}\left(-\frac{1}{2}\right)^{n}z^{-n}$$
 (5.3)

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n} + 4 \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n} \quad (5.4)$$

$$=\sum_{n=-\infty}^{\infty}u(n)\left(-\frac{1}{2}\right)^{n}z^{-n}+$$

$$\sum_{n=-\infty}^{\infty} u(n-2) \left(-\frac{1}{2}\right)^{n-2} z^{-n} \tag{5.5}$$

Therefore, from (4.1),

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (5.6)$$

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.7}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.13),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.8)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.9)

using (4.20) and (4.7).

5.3 Sketch h(n). Is it bounded? Convergent?

Solution: The following code plots Fig. (5.1).

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/5_2.py

and execute it using

\$ python3 5 2.py

figs/5_2.png

Fig. 5.1: h(n) as the inverse of H(z)

We see that h(n) is bounded. For large n, we see that

$$h(n) = \left(-\frac{1}{2}\right)^n + \left(-\frac{1}{2}\right)^{n-2} \tag{5.10}$$

$$= \left(-\frac{1}{2}\right)^n (4+1) = 5\left(-\frac{1}{2}\right)^n \tag{5.11}$$

$$\implies \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} \tag{5.12}$$

and therefore, $\lim_{n\to\infty} \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} < 1$. Hence, we see that h(n) converges.

5.4 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.13}$$

Is the system defined by (3.2) stable for the impulse response in (5.7)?

Solution: Note that

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.14)

$$=2\left(\frac{1}{1+\frac{1}{2}}\right)=\frac{4}{3}\tag{5.15}$$

Thus, the given system is stable. The limit is verified at

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/5_3.py

and the code can be run using

\$ python3 5_3.py

5.5 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (5.16)

This is the definition of h(n).

Solution: The following code plots Fig. (5.2). Note that this is the same as Fig. (5.1).

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/5_4.py

and executed using

\$ python3 5_4.py

5.6 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.17)

Comment. The operation in (5.17) is known as *convolution*.

Solution: The following code plots Fig. (5.3). Note that this is the same as y(n) in Fig. (3.1).

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/5_5.py

figs/5_4.png

Fig. 5.2: h(n) as the inverse of H(z)

and executed using

We use Toeplitz matrices for convolution

$$\mathbf{y} = \mathbf{x} \otimes \mathbf{h}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & . & . & . & 0 \\ h_2 & h_1 & . & . & . & 0 \\ h_3 & h_2 & h_1 & . & . & 0 \\ . & . & . & . & . & . & . \\ 0 & . & . & h_3 & h_2 & h_1 \\ 0 & . & . & . & h_2 & h_1 \\ 0 & . & . & . & 0 & h_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
(5.18)

5.7 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.20)

Solution: From (5.17), we substitute k := n - k to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.21)

$$=\sum_{n-k=-\infty}^{\infty}x\left(n-k\right)h\left(k\right)\tag{5.22}$$

$$= \sum_{k=-\infty}^{\infty} x (n-k) h(k)$$
 (5.23)

Fig. 5.3: y(n) from the definition

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. (6.1) and computes X(k) and Y(k). Note that this is the same as y(n) in Fig. (3.1).

and executed using

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the code from

figs/6_3.png

figs/6_4.png

Fig. 6.1: y(n) from the DFT

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/6 4.py

and execute it using

Observe that Fig. (6.2) is the same as y(n) in Fig. (3.1).

6.5 Wherever possible, express all the above equations as matrix equations.

Solution: We use the DFT Matrix, where $\omega = e^{-\frac{j2k\pi}{N}}$, which is given by

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(6.4)

i.e. $W_{jk} = \omega^{jk}$, $0 \le j, k < N$. Hence, we can write any DFT equation as

$$\mathbf{X} = \mathbf{W}\mathbf{x} = \mathbf{x}\mathbf{W} \tag{6.5}$$

Fig. 6.2: y(n) using FFT and IFFT

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (6.6)

Using (6.3), the inverse Fourier Transform is given by

$$\mathbf{x} = \mathcal{F}^{-1}(\mathbf{X}) = \mathbf{W}^{-1}\mathbf{X} = \frac{1}{N}\mathbf{W}^{\mathbf{H}}\mathbf{X} = \frac{1}{N}\mathbf{X}\mathbf{W}^{\mathbf{H}}$$
(6.7)

$$\implies \mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \tag{6.8}$$

where H denotes hermitian operator. We can rewrite (6.2) using the element-wise multiplication operator as

$$\mathbf{Y} = \mathbf{H} \cdot \mathbf{X} = (\mathbf{W}\mathbf{h}) \cdot (\mathbf{W}\mathbf{x}) \tag{6.9}$$

The plot of y(n) using the DFT matrix in Fig. (6.3) is the same as y(n) in Fig. (3.1). Download the code using

\$ wget https://raw. githubusercontent .com/goats-9/ ee3900assignments/ main/

and run it using

figs/6_5.png

Fig. 6.3: y(n) using the DFT matrix

7 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

7.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (7.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:** The implementation is at

\$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900assignments/
main/
Assignment_01
/codes/7 1.py

and can be run using

7.2 Repeat all the exercises in the previous sections for the above a and b.

Solution: For the given values, the difference equation is

$$y(n) - (4.44) y(n-1) + (8.78) y(n-2)$$

$$- (9.93) y(n-3) + (6.90) y(n-4)$$

$$- (2.93) y(n-5) + (0.70) y(n-6)$$

$$- (0.07) y(n-7) = (5.02 \times 10^{-5}) x(n)$$

$$+ (3.52 \times 10^{-4}) x(n-1) + (1.05 \times 10^{-3}) x(n-2)$$

$$+ (1.76 \times 10^{-3}) x(n-3) + (1.76 \times 10^{-3}) x(n-4)$$

$$+ (1.05 \times 10^{-3}) x(n-5) + (3.52 \times 10^{-4}) x(n-6)$$

$$+ (5.02 \times 10^{-5}) x(n-7)$$

$$(7.2)$$

From (7.1), we see that the transfer function can be written as follows

$$H(z) = \frac{\sum_{k=0}^{N} b(k)z^{-k}}{\sum_{k=0}^{M} a(k)z^{-k}}$$

$$= \sum_{i} \frac{r(i)}{1 - p(i)z^{-1}} + \sum_{j} k(j)z^{-j}$$
 (7.4)

where r(i), p(i), are called residues and poles respectively of the partial fraction expansion of H(z). k(i) are the coefficients of the direct polynomial terms that might be left over. We can now take the inverse z-transform of (7.4) and get using (4.20),

$$h(n) = \sum_{i} r(i)[p(i)]^{n} u(n) + \sum_{j} k(j)\delta(n-j)$$
(7.5)

Substituting the values,

$$h(n) = [(2.76) (0.55)^{n} + (-1.05 - 1.84J) (0.57 + 0.16J)^{n} + (-1.05 + 1.84J) (0.57 - 0.16J)^{n} + (-0.53 + 0.08J) (0.63 + 0.32J)^{n} + (-0.53 - 0.08J) (0.63 - 0.32J)^{n} + (0.20 + 0.004J) (0.75 + 0.47J)^{n} + (0.20 - 0.004J) (0.75 - 0.47J)^{n}]u(n) + (-6.81 × 10^{-4}) \delta(n)$$
(7.6)

The values r(i), p(i), k(i) and thus the impulse response function are computed and plotted at

```
$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900-
assignments/
main/
Assignment_01
/codes/7_2_1.
py
```

The filter frequency response is plotted at

```
$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900-
assignments/
main/
Assignment_01
/codes/7_2_2.
py
```

Observe that for a series $t_n = r^n$, $\frac{t_{n+1}}{t_n} = r$. By the ratio test, t_n converges if |r| < 1. We note that observe that |p(i)| < 1 and so, as h(n) is the sum of convergent series, we see that h(n) converges. From Fig. (7.1), it is clear that h(n) is bounded. From (4.1),

$$\sum_{n=0}^{\infty} h(n) = H(1) = 1 < \infty \tag{7.7}$$

Therefore, the system is stable. From Fig. (7.1), h(n) is negligible after $n \ge 64$, and we can apply a 64-bit FFT to get y(n). The following code uses the DFT matrix to generate y(n) in Fig. (7.3).

```
$ wget https://raw.
githubusercontent
.com/goats-9/
ee3900-
assignments/
main/
Assignment_01
/codes/7_2_3.
py
```

The codes can be run all at once by typing

figs/7_2_1.png

Fig. 7.1: Plot of h(n)

- 7.3 What is the sampling frequency of the input signal?
 - **Solution:** Sampling frequency $f_s = 44.1$ kHZ.
- 7.4 What is type, order and cutoff frequency of the above Butterworth filter?
 - **Solution:** The given Butterworth filter is low pass with order 4 and cutoff frequency 4 kHz.
- 7.5 Modifying the code with different input parameters and to get the best possible output.

Solution: A better filtering was found on setting the order of the filter to be 7.

Fig. 7.2: Filter frequency response

Fig. 7.3: Plot of y(n)