Data Representation Test

1.	Briefly describe why binary code is commonly used in computer hardware[1]	14.	Calculate the following binary sum:[1]]
2.	How many bits in a byte?[1]		+ <u>11011</u>	
3.	In the binary number 10101010 ₂ what is the value of the MSB? [1]	15.	Show the binary representations for -13_{10} in a. signed magnitude and b. two's complement[2]	1
4.	Make a table counting upwards from 0 to 16 ₁₀ in decimal, binary, octal and hexadecimal[3]	16.	a. Find the binary two's complement representations of +12 ₁₀ and -10 ₁₀ .	-
5.	Briefly explain the difference between value and representation, giving an example [3]		b. Use your answers to subtract 10 from 12. Show yo working.	
ô.	Which of the following are not valid hex values? a. FEC ₁₆ b. DEAD ₁₆ c. FUN ₁₆ d. 1234 ₁₆ e. EGAD ₁₆ [1]	17.	Do the following statements describe fixed or floating point representations, both or neither? a. It's fast b. Provides the best resolution c. Copes with a wide range of numbers d. Implementation is complicated e. Can't represent some values f. Is described by an international standard	
7.	What is 2742 ₈ in binary? [1]			
8.	Convert 1011001011111001 ₂ to hex[1]		g. Can represent any value	
9.	Convert 42 ₁₀ to binary [1]		h. Allows simple multiplication by two [4]]
10.	Convert 73 ₈ to hex[1]	18.	Using 4 bit binary arithmetic, illustrate overflow error wan example. Describe IEEE 754 single precision floating point representation using a labelled diagram.	
11.	Convert 1101100100 ₂ to decimal[1]]
12.	Convert 4000 ₁₀ to octal [1]	19.		
13.	Calculate the following binary sum:[1] 10100111 + <u>01110001</u>]