Analysis of Variance

Overview

One-way analysis of variance (ANOVA) concepts and R

Connections between ANOVA and linear regression

Factorial ANOVA

2-way ANOVA and interactions

One-way analysis of variance (ANOVA)

One-way ANOVA

A **one-way analysis of variance (ANOVA)** is a parametric hypothesis test that can be used to examine if a set of means are all the same.

There is only one <u>hypothesis test!</u>

Just follow the 5 hypothesis tests steps!

One-way ANOVA

A **one-way analysis of variance (ANOVA)** is a parametric hypothesis test that can be used to examine if a set of means are all the same.

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

$$H_A$$
: $\mu_i \neq \mu_i$ for some i, j

Q: Have we run a test comparing multiple means yet?

A: Yes! Hope College Sudokus!

	5	3	2		7			8
6		1	5					2
2			9	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	9	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

How does the time of the day affect download speeds?

A college sophomore was interested in knowing whether the time of day affected the speed at which he could download files from the Internet.

To address this question, he placed a file on a remote server and then proceeded to download it at three different time periods of the day:

• 7AM, 5PM, 12AM

He downloaded the file 48 times in all, 16 times at each time of day, and recorded the time in seconds that the download took.

One-way ANOVA

A **one-way analysis of variance (ANOVA)** is a parametric hypothesis test that can be used to examine if a set of means are all the same.

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

$$H_A$$
: $\mu_i \neq \mu_j$ for some i, j

The statistic we use for a one-way ANOVA is the F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

One-way ANOVA — the central idea

If H₀ is true, the F-statistic will come from an F distribution with parameters

- $df_1 = K 1$
- $df_2 = N K$

The F-distribution is valid if these conditions are met:

- The data in each group should follow a normal distribution
- The variances in each group should be approximately equal

Checking ANOVA conditions ('assumptions')

- 1. We can check if the data in each group is relatively normal by visually examining the residuals between each point and its group mean:
 - Residuals as a function of the group mean
 - Q-Q plots
 - Histograms of residuals
- 2. We can check the equal variance condition by seeing if the ratio of the largest to smallest standard deviation is greater than 2
 - $s_{max}/s_{min} < 2$

Note: the one-way ANOVA is fairly robust to violations of these conditions.

Calculating the observed F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

K: the number of groups

N: total number of points

 \overline{X}_{tot} : the mean across all the data

 \overline{x}_i : the mean of group i

n_i: the number of points in group i

x_{ij}: the jth data point from group i

K = 3 different times of day

N = 48 total downloads (16 * 3)

 \overline{x}_{tot} : the mean speed across all data

 \overline{x}_i : the means for the ith time of day

 $n_i = 16$ downloads for each time of day

x_{ij}: the jth download at the ith time of day

Why use the F-Statistic?

Which dataset gives the strongest evidence that there is a difference in population means?

If H₀ is true, the data from all groups have the same means

- Similar means \bar{x}_i
- Similar spread s_i

If H₀ is not true, the data from all groups have different means

- Different means \overline{x}_i
- Smaller spreads s_i

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

The F statistic measures a fraction of:

variability between group means variability within each group

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

The F statistic measures a fraction of:

variability between group means

$$\approx \sigma^2$$

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

The F statistic measures a fraction of:

variability between group means

SE²

$$F = \frac{\text{between-group variability}}{\text{within-group variability}}$$

$$\frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

 $SE^2 \approx \sigma^2/n$

$$F = \frac{\approx \sigma^2}{\approx \sigma^2} \approx 1$$

Sum of Squares Group (SSG)

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1}\sum_{i=1}^{K}n_i(\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K}\sum_{i=1}^{K}\sum_{j=1}^{n_i}(x_{ij} - \bar{x}_i)^2}$$

$$F = \frac{\approx \sigma^2}{\approx \sigma^2} \approx 1$$

Mean Squares Group (MSG)

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

$$F = \frac{MSG}{\approx \sigma^2} \approx 1$$

Sum of Squares Error (SSE)

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

$$F = \frac{MSG}{\sim \sigma^2} \approx 1$$

Mean of Squares Error (MSE)

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

The F statistic measures a fraction of:

Same as what we saw in regression: SSTotal = SSG + SSE

ANOVA table

Source	df	Sum of Sq.	Mean Square	F-statistic	p-value
Groups	k – 1	SSG	$MSG = rac{SSG}{k-1}$	$F=rac{MSG}{MSE}$	Upper tail $F_{k-1,n-k}$
Error	n – k	SSE	$MSE = rac{SSE}{n-k}$		
Total	n – 1	SSTotal			

Where:

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_{tot})^2$$

$$SSG = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x}_{tot})^2$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

ANOVA table

Just as we saw for linear regression, we have the relationship:

$$SST = SSG + SSE$$

Where:

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_{tot})^2$$

$$SSG = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x}_{tot})^2$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

Running a one-way ANOVA

Step 1: State the null and alternative hypothesis

Step 2: Calculate the F-statistic on using actual data

Step 3: Create the appropriate F-distribution

Step 4: Calculate the p-value

Step 5: Make a decision

Check our underlying assumptions were met

Let's try it out in R!

Connections regression and categorical ANOVA

ANOVA as regression with only categorical predictors

Recall we can have categorical predictors with k levels in a regression model by using k -1 dummy variables:

 e.g., we would need two dummy variables to have different intercepts for Assistant, Associate and Full Professors

$$x_{i1} = \begin{cases} 1 & \text{if Assistant Professor} \\ 0 & \text{if Full Professor} \end{cases} \qquad x_{i2} = \begin{cases} 1 & \text{if Associate Professor} \\ 0 & \text{if Full Professor} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if Assistant Professor} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if Associate Professor} \\ \beta_0 + \epsilon_i & \text{if Full Professor} \end{cases}$$

ANOVA as regression with only categorical predictors

ANOVA as regression with only categorical predictors

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if Assistant Professor} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if Associate Professor} \\ \beta_0 + \epsilon_i & \text{if Full Professor} \end{cases}$$

Least squares prediction for \hat{y}_i is \overline{y}_k

$$y_i = \mu_k + \epsilon_i = \begin{cases} \mu_1 + \epsilon_i & \text{if Assistant Professor} \\ \mu_2 + \epsilon_i & \text{if Associate Professor} \\ \mu_3 + \epsilon_i & \text{if Full Professor} \end{cases}$$

Least squares prediction for \hat{y}_i is \overline{y}_k

$$\hat{y}_i = \hat{\mu}_k = \begin{cases} \hat{\mu}_1 & \text{if Assistant Professor} \\ \hat{\mu}_2 & \text{if Associate Professor} \\ \hat{\mu}_3 & \text{if Full Professor} \end{cases}$$

ANOVA decoposition

$$F = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{y}_i - \bar{y}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}$$

The ANOVA decomposes the variance as:

SSTotal = SSModel + SSkesidual

$$y_{ij} - \bar{y}_{tot} = (\hat{y}_{ij} - \bar{y}_{tot}) + (y_{ij} - \hat{y}_{ij})$$

$$(y_{ij} - \bar{y}_{tot})^2 = (\hat{y}_{ij} - \bar{y}_{tot})^2 + (y_{ij} - \hat{y}_{ij})^2$$

$$(y_{ij} - \bar{y}_{tot})^2 = (\bar{y}_{i} - \bar{y}_{tot})^2 + (y_{ij} - \bar{y}_{i})^2$$

$$\hat{y}_{ji} = \overline{y}_i$$

(the prediction for each class is the group mean)

Let's examine these relationships in R...

Factorial ANOVA

In a **one-way ANOVA** we model the response variable y as a function of **one** categorical predictor

In a **factorial ANOVA**, we model the response variable y as a function of **more than one** categorical predictor

Analogous to extending simple linear regression to multiple regression

Factorial ANOVA

For example, we could use a **two-way ANOVA** to assess how salaries differ for:

- a. Faculty ranks:
 - 1. Full
 - 2. Associate
 - 3. Assistant
 - 4. Lecturer
- b. Institution types:
 - 1. Extensive research institutions
 - 2. Liberal arts colleges

This would be called a 4 x 2 design

• 2 factors: the first has 4 levels and the second has 2 levels

Writing a one-way ANOVA in terms of effects

For a **one-way ANOVA**, we can state the null and alternative hypotheses as:

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

$$H_A$$
: $\mu_i \neq \mu_j$ for some i, j

We can also write values as our response variable y as:

$$y_i = \mu_k + \varepsilon_i$$

 $y_i = \mu + \alpha_k + \varepsilon_i$

Where:

μ: is the overall mean

 α_k : is the "effect" for level k

Writing a one-way ANOVA in terms of effects

For a **one-way ANOVA**, we can state the null and alternative hypotheses as:

$$H_0$$
: $\alpha_1 = \alpha_2 = ... = \alpha_k = 0$

 H_A : $\alpha_i \neq 0$ for some i

We can also write values as our response variable y as:

$$y_i = \mu_k + \varepsilon_i$$

 $y_i = \mu + \alpha_k + \varepsilon_i$

Where:

μ: is the overall mean

 α_k : is the "effect" for level k

Two-way ANOVA hypotheses

Our model for a two-way ANOVA is: $y_i = \mu + \alpha_i + \beta_k + \varepsilon_i$

For a **two-way ANOVA** (without interactions) there are two sets of hypotheses we can assess:

Main effect for A:

 H_0 : $\alpha_1 = \alpha_2 = ... = \alpha_J = 0$

 H_A : $\alpha_J \neq 0$ for some j

Main effect for B:

 H_0 : $\beta_1 = \beta_2 = ... = \beta_K = 0$

 H_A : $\beta_k \neq 0$ for some k

Where:

 α_i : is the "effect" for factor A at level j

 β_k : is the "effect" for factor B at level k

Two-way ANOVA in R

Source	df	Sum of Sq.	Mean Square	F-stat	p-value
Error	K - 1 J - 1 (K-1)(J-1) N - 1	SSA SSB SSE SSTotal	MSA = SSA/(K-1) MSB = SSB/(J-1) MSE = SSE/(K-1)(J-1)		$F_{K-1,(K-1)(J-1)}$ $F_{J-1,(K-1)(J-1)}$

Interactions

We can also examine whether there is an interaction between rank and institution type

• i.e., does the difference in salaries between faculty ranks differ across institution types?

This is similar to using the same slope vs. different slopes model for an interaction between a quantitative and categorical variable

$$y_i = \mu + \alpha_i + \beta_k + \gamma_{ik} + \varepsilon_i$$

Two-way ANOVA hypotheses

Main effect for A:

 H_0 : $\alpha_1 = \alpha_2 = ... = \alpha_1 = 0$

 H_A : $\alpha_i \neq 0$ for some j

Main effect for B:

 H_0 : $\beta_1 = \beta_2 = ... = \beta_K = 0$

 H_A : $\beta_k \neq 0$ for some k

Interaction effect:

 H_0 : All $\gamma_{ik} = 0$

 H_A : $\gamma_{ik} \neq 0$ for some j, k

Where:

 α_i : is the "effect" for factor A at level j

 β_k : is the "effect" for factor B at level k

 γ_{jk} : is the interaction between level j of factor A, and level k of factor B.

Two-way ANOVA in R with interaction

Source	$\mathrm{d}\mathrm{f}$	Sum of Sq.	Mean Square	F-stat	p-value
AxB	K - 1 J - 1 (K-1)(J-1) KJ(c - 1) N - 1	SSA SSB SSAB SSE SSTotal	$\begin{aligned} MSA &= SSA/(K-1) \\ MSB &= SSB/(J-1) \\ MSAB &= SSAB/(K-1)(J-1) \\ MSE &= SSE/(K-1)(J-1) \end{aligned}$	MSA/MSE MSB/MSE MSAB/MSE	$F_{K-1,KJ(c-1)}$ $F_{J-1,KJ(c-1)}$ $F_{(K-1)(J-1),KJ(c-1)}$

Interaction plots

Interaction plots can help us visualize main effects and interactions

- Plot the levels of one of the factors on the x-axis
- Plot the levels of the other factor as separate lines

Either factor can be on the x-axis although sometimes there is a natural choice

Interpreting interaction plots

Complete and balanced designs

Complete factorial design: at least one measurement for each possible combination of factor levels

 E.g., in a two-way ANOVA for factors A and B, if there are K levels for factor A, and J levels for factor B, then there needs to be at least one measurement for each of the KJ levels

Balanced design: the sample size is the same for all combination of factor levels

- E.g., there are the same number of samples in each of the KJ level combinations.
- The computations and interpretations for non-balanced designs are a bit harder.

Let's examine this in R...