3.3 Common Distributions and CLT with Dice

MBC 638

Data Analysis and Decision Making

2 of 69

Probability Distributions

3 of 69

Probability Distributions

Increase efficiency of our decision making

4 of 69

Probability Distributions

- Increase efficiency of our decision making
- Describe likelihood of a future event

5 of 69

Probability Distributions

- Increase efficiency of our decision making
- Describe likelihood of a future event
 - Probability of something happening

9 of 69

- Discrete
 - Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - Continuous uniform
 - o Normal
 - Exponential

- Discrete
 - o Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - Continuous uniform
 - Normal
 - Exponential

11 of 69

- Discrete
 - Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

- Discrete
 - Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - Continuous uniform
 - Normal
 - Exponential

13 of 69

- Discrete
 - Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

- Discrete
 - o Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

15 of 69

- Discrete
 - Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

- Discrete
 - o Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

17 of 69

Common Probability Distributions: Features

18 of 69

Common Probability Distributions: Features

Function

19 of 69

Common Probability Distributions: Features

- Function
- Formula

Common Probability Distributions: Features

- Function
- Formula
- Shape

21 of 69

Common Probability Distributions: Features

- Function
- Formula
- Shape
- Mean

22 of 69

Common Probability Distributions: Features

- Function
- Formula
- Shape
- Mean
- Variance

23 of 69

Common Probability Distributions: Features

- Function
- Formula
- Shape
- Mean
- Variance
- Applications

Common Probability Distributions: Features

- Function
- Formula
- Shape
- Mean
- Variance
- Applications

25 of 69

Discrete uniform

Common Probability Distributions: Discrete or Continuous

- Discrete
 - Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - Continuous uniform
 - Normal
 - Exponential

35 of 69

Common Probability Distributions: Discrete or Continuous

- Discrete
 - o Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

Common Probability Distributions: Discrete or Continuous

- Discrete
 - o Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - Continuous uniform
 - Normal
 - Exponential

37 of 69

Common Probability Distributions: Discrete or Continuous

- Discrete
 - o Discrete uniform
 - Hypergeometric
 - Binomial
 - Poisson
- Continuous
 - o Continuous uniform
 - Normal
 - Exponential

38 of 69

Our *Permission* to Use the Normal Distribution

Our *Permission* to Use the Normal Distribution

• We know:

40 of 69

Our *Permission* to Use the Normal Distribution

- We know:
 - o Shape

41 of 69

Our *Permission* to Use the Normal Distribution

- We know:
 - Shape
 - Formula

42 of 69

Our *Permission* to Use the Normal Distribution

- We know:
 - Shape
 - Formula
 - ∘ Z-tables

1533

45 of 69

The Central Limit Theorem

• Was discovered by Abraham de Moivre in 1733

The Central Limit Theorem

- Was discovered by Abraham de Moivre in 1733
- Asserts that the sample mean is normally distributed regardless of the population's distribution

47 of 69

The Central Limit Theorem

- Was discovered by Abraham de Moivre in 1733
- Asserts that the sample mean is normally distributed regardless of the population's distribution
 - Example: We have no idea about distribution or shape of Hank's data.

48 of 69

The Central Limit Theorem

- Was discovered by Abraham de Moivre in 1733
- Asserts that the sample mean is normally distributed regardless of the population's distribution
 - Example: We have no idea about distribution or shape of Hank's data.
 - The larger our sample, the closer our sample mean to normal.

49 of 69

n = 1

50 of 69

Die Example: n = 1

51 of 69

Die Example: n = 1

• Single die rolls fulfill a discrete uniform distribution.

Die Roll Frequency Distribution, n = '1

56 of 69

Die Example: n = 2

Die Example: n = 2

• Average the rolls.

58 of 69

Die Example: n = 2

- Average the rolls.
- Average of 6 and 4 is 5.

66 of 69

Die Example: Conclusions

• A single die produces a discrete uniform distribution.

Die Example: Conclusions

- A single die produces a discrete uniform distribution.
- As we increase sample size, the distribution of means approaches normal.

68 of 69

Die Example: Conclusions

- A single die produces a discrete uniform distribution.
- As we increase sample size, the distribution of means approaches normal.
- Remember:

69 of 69

Die Example: Conclusions

- A single die produces a discrete uniform distribution.
- As we increase sample size, the distribution of means approaches normal.
- Remember:
 - "No matter what the parent looks like, the child will be normal, especially by age 30."
 - I.e., no matter the shape of the parent distribution, the distribution of sample means approach normal as the sample size, n increases.
 - \circ n = 30 is large.