

DATA STRUCTURES AND ALGORITHMS

Lecture 3: Complexity Analysis

Lecturer: Mohsin Abbas

National University of Modern Languages, Islamabad

- Given two or more algorithms to solve the same problem, how do we select the best one?
- Some criteria for selecting an algorithm:
 - Is it easy to implement, understand, modify?
 - How long does it take to run it to completion?
 - How much of computer memory does it use?
- Software engineering is primarily concerned with the first criteria.
- In this course we are interested in the second and third criteria.

- Time complexity:
 - The amount of time that an algorithm needs to run to completion
 - Better algorithm is the one which runs faster
 - Has smaller time complexity
- Space complexity:
 - The amount of memory an algorithm needs to run

• In this lecture, we will focus on analysis of time complexity

HOW TO CALCULATE RUNNING TIME

Most algorithms transform input objects into output objects

- The running time of an algorithm typically grows with input size
 - Idea: analyze running time as a function of input size

HOW TO CALCULATE RUNNING TIME

Most important factor affecting running time is usually the size of the input

```
int find_max( int array[], int n ) {
    int max = array[0];
    for ( int i = 1; i < n ; i++ ) {
        if ( array[i] > max ) {
            max = array[i];
        }
    }
    return max;
}
```

- Regardless of the size n of an array the cost will always be same.
 - Every element in the array is checked one time

• Even on inputs of the same size, running time can be very different

```
int search( int array[], int n, int x ) {
    int loc = 0;
    for ( int i = 0; i < n; i++ ) {
        if ( array[i] == x ) {
            loc = i;
        }
     }
    return loc;
}</pre>
```

- Idea: Analyze running time for different cases.
 - Best case
 - Worst case
 - Average case

HOW TO CALCULATE RUNNING TIME

- Best case running time is usually not very useful
- Average case time is very useful but often hard to determine
- Worst case running time is easier to analyze
 - Crucial for real-time applications such as games, finance and robotics

EXPERIMENTAL EVALUATIONS OF RUNNING TIMES

- Write a program implementing the algorithm
- Run the program with inputs of varying size
- Use clock methods to get an accurate measure of the actual running time
- Plot the results

Experimental evaluation of running time is very useful but

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment
- In order to compare two algorithms, the same hardware and software environments must be used

- Uses a pseudo-code description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

- Each machine instruction is executed in a fixed number of cycles
 - We may assume each operation requires a fixed number of cycles
- Idea: Use abstract machine that uses steps of time instead of sec's
 - Each elementary operation takes 1 steps
- Example of operations:
 - Retrieving/storing variables from memory
 - Variable assignment
 - Integer operations
 - Logical operations
 - Bitwise operations
 - Relational operations
 - Memory allocation and de-allocation

new, delete

- Operations 1,2,8 are executed once
- Operations 4,5,6,7: Once per each iteration of for loop n iteration
- Operation 3 is executed n+1 times
- The complexity function of the algorithm is : T(n) = 5n + 4

ANALYZING AN ALGORITHM – GROWTH RATE

• Estimated running time for different values of n:

• n = 10

=> 54 steps

• n = 100

=> 504 steps

• n = 1000

=> 5004 steps

• n = 1,000,000

=> 5,000,004 steps

As n grows, number of steps T(n) grow in linear proportion to n

EXAMPLE


```
int search( int array[], int n, int x ) {
    int loc = 0;
    for ( int i = 0; i < n; i++ ) {
        if ( array[i] == x ) {
            loc = i;
    return loc;
```

```
int binary_search( int arr[], int left, int
right, int num ) {
    while( left <= right ) {</pre>
        int mid = left + ( right - left ) / 2;
        if ( arr[mid] == num ) {
            return mid;
        if ( arr[mid] < num ) {
            left = mid + 1;
        else {
            right = mid - 1;
    return -1;
```


- Changing the hardware/software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- Thus we focus on the big-picture which is the growth rate of an algorithm
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm sumArray

- The growth rate is not affected by
 - Constant factors or
 - Lower-order terms
- Examples:
 - 10^2 n + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

- Consider the two functions:
 - $f(n) = n^2$
 - $g(n) = n^2 3n + 2$
- Around n = 0, they look very different
 - $f(0) = 0^2 = 0$
 - $g(0) = 0^2 3(0) + 2 = 2$

GROWTH RATE — EXAMPLE

• Yet on the range n = [0, 1000], f(n) and g(n) are (relatively) indistinguishable

- The absolute difference is large, for example,
 - $f(1000) = 1000^2 = 1,000,000$
 - $g(1000) = 1000^2 3(1000) + 2 = 997,002$
- But the relative difference is very small

$$\left| \frac{f(1000) - g(1000)}{f(1000)} \right| = 0.002998 < 0.3\%$$

• The difference goes to zero as $n \rightarrow \infty$

- The growth rate is not affected by
 - Constant factors or
 - Lower-order terms
- Examples:
 - 10²n + 10⁵ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function
- How do we get rid of the constant factors to focus on the essential part of the running time?
 - Asymptotic Analysis

- Indicates the upper or highest growth rate that the algorithm can have
 - Ignore constant factors and lower order terms
 - Focus on main components of a function which affect its growth

Definition: Given functions f(n) and g(n)

- We say that f(n) is O(g(n))
- If there are positive constants c and n₀ such that
 - $f(n) \le cg(n)$ for $n \ge n_0$

BIG-OH NOTATION — EXAMPLES

- 7n-2 is O(n)
 - Need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c.n$ for $n \ge n_0$
 - True for c = 7 and $n_0 = 1$
- $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - Need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c.n^3$ for $n \ge n_0$
 - True for c = 4 and $n_0 = 21$
- $3 \log n + 5 \text{ is } O(\log n)$
 - Need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \log n$ for $n \ge n_0$
 - True for c = 8 and $n_0 = 2$

Simple Assignment

- a = b
- O(1)

Simple Loops

- for(i=0; i<n; i++) { s; }
- O(n)

Nested Loops

- for(i=0; i<n; i++)
 for(j=0; j<n; j++) { s; }</pre>
- O(n²)

Loop index doesn't vary linearly

```
h = 1;
while ( h <= n ) {
    S;
    h = 2 * h;
}</pre>
```

- h takes values 1, 2, 4, ... until it exceeds n
- There are $1 + \log_2 n$ iterations
- 0(log₂ n)

Loop index depends on outer loop index

```
for( j = 0; j <= n; j++ ) {
    for( k = 0; k < j; k++ ) {
        S;
    }
}</pre>
```

• Inner loop executed 0, 1, 2, 3,, n times

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• O(n²)

• Big-Omega

- f(n) is $\Omega(g(n))$
- If there is a constant c > 0 and an integer constant $n_0 \ge 1$
- Such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

• Big-Theta

- f(n) is $\Theta(g(n))$
- If there are constants $c_1 > 0$ and $c_2 > 0$ and an integer constant $n_0 \ge 1$
- Such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$

INTUITION FOR ASYMPTOTIC NOTATION

• Big-Omega

• f(n) is O(g(n)) - if f(n) is asymptotically less than or equal to g(n)

• Big-Omega

- f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- Note: f(n) is $\Omega(g(n))$ if and only if g(n) is O(f(n))

Big-Theta

- f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)
- Note: f(n) is Θ(g(n)) if and only if
 - g(n) is O(f(n)) and
 - f(n) is O(g(n))

- Even though in this course we focus on the asymptotic growth using big-Oh notation, practitioners do care about constant factors occasionally.
- Suppose we have 2 algorithms:
 - Algorithm A has running time 30000n
 - Algorithm B has running time 3n²
- Asymptotically, algorithm A is better than algorithm B.
- However, if the problem size you deal with is always less than 10000, then the quadratic one is faster.

- In this lecture we have studied:
 - Complexity of Algorithm
 - Different ways to measure Complexity
 - Analyzing an Algorithm
 - Growth Rate

Question?