リカレント構造適応型 Deep Belief Network による時系列データの学習

鎌田 真*・市村 匠**

Adaptive Structural Learning Method of Recurrent Deep Belief Network for Time Series Analysis

Shin Kamada* and Takumi Ichimura**

Deep Belief Network (DBN), which is well known to be a kind of Deep Learning methods, has a deep network architecture that can represent multiple features of input patterns hierarchically. Each layer employs a pre-trained Restricted Boltzmann Machine (RBM). In DBN model including RBMs, we may meet the difficulties in finding the optimal network structure and the best set of weights and threshold values. For the solution, we developed the adaptive structure learning method of DBN that can discover an optimal number of hidden neurons for given input data in a RBM by neuron generation / annihilation algorithm, and hidden layers in DBN by the extension of the algorithm. Moreover, the Long Short-Term Memory (LSTM) model can make an accurate prediction for a time series data set. The network architecture of LSTM has been proposed in various ways and can represent high accurate prediction for the benchmark data set, but the problems related to the optimal structure and some parameters still remains. In this paper, the adaptive structure model of RBM and DBN is applied to the LSTM model and the effectiveness was verified by 10-fold cross validation on benchmark data sets.

Key Words: adaptive structural learning, restricted Boltzmann machine, deep belief network, long short-term memory, time-series data set

1. はじめに

Deep Learning (深層学習) と呼ばれる人工知能の手法が注目されている。産業分野における工場計測データや医療分野における医療検診データなど,クラウドサーバと連携してデータの収集をリアルタイムで行ない,膨大に収集されたデータから隠れた特徴を抽出したり,つぎに出現する時系列データの予測を行なう学習システムなどが注目を集め,実用化が期待されている 1 .

Deep Learning とは大規模な階層構造をもったニューラルネットワークにおける学習法である^{2),3)}. 従来の階層型ニューラルネットワークとの最大の違いは事前学習にあるといわれている. 各層ごとに教師なし学習を行なうことで入力データに含まれる確率分布 (事前知識) を学習し, 事前学習した複数の特徴を階層的に組み合わせることで, データの特徴を高い精

- * 広島市立大学大学院情報科学研究科 広島市安佐南区大塚東 3-4-1
- ** 県立広島大学経営情報学部 広島市南区宇品東 1-1-71
- * Graduate School of Information Sciences, Hiroshima City University, 3–4–1 Ozukahigashi, Asaminami-ku, Hiroshima
- ** Faculty of Management and Information Systems, Prefectural University of Hiroshima, 1–1–71 Ujinahigashi, Minami-ku, Hiroshima

(Received October 20, 2017) (Revised February 18, 2018) 度で表現することができる.Convolutional Neural Network $(CNN)^{4}$ は高い分類精度をもつ Deep Learning 手法として知られているが,学習には高性能なハードウェアが必要で,計算コストがかかることが問題である.また CNN のみならず一般的な Deep Learning の最適なネットワーク構造は入力データの分布に応じて異なり,パラメタ設定は試行錯誤的に求める必要がある.

われわれはこのような問題を解決するために、入力データに応じて適切なネットワーク構造を探索する構造適応型学習法を、尤度の概念を取り入れた Deep Learning 手法である Restricted Boltzmann Machine (RBM) $^{5)}$ および事前学習した RBM を階層化し学習する Deep Belief Network (DBN) $^{6)}$ において開発している $^{7)}$. 構造適応型学習法では、入力データ空間に応じて適切な RBM の隠れニューロン数および DBN の隠れ層数が学習中に自動で探索され、画像ベンチマークデータセット CIFAR-10 および CIFAR-100 $^{8)}$ に対し従来手法よりも高い分類精度が得られている $^{9)\sim11}$.

近年の IoT における工場の計測データや経年変化が記録される医療検診データなどのビックデータの分析において、上記の画像のような分類問題だけでなく、時系列データを予測する機能が求められている。時系列データの学習についてはリカレントニューラルネットワーク (RNN) が知られている。従来の RNN モデルでは、ネットワークの隠れ層にループ構造をもたせることで時間によって遷移する時系列データの特徴

を表現しているが、データの長期に亘る系列を上手く取り扱う ことができず、短期的な記憶のみしか表現できないことが問題 であった $^{12)}$. これは、RNN の隠れ層のループ構造を時系列 を軸にして展開すると非常に深い多層ニューラルネットワー クと見なすことができるが、これにより長期的に学習した記憶 を再認識できる期間に限界があったためである. これに対し RNN の一種である Long Short-Term Memory (LSTM) 12) では、RNN のループ構造に入出力ゲート、忘却ゲートと呼ば れる特殊なゲートを組み込むことで,長期的な記憶を表現で きるようになった.一方、RBM モデルにおける時系列デー タ学習モデルでは、Hinton などが開発した Temporal RBM (TRBM), Recurrent TRBM (RTRBM) ¹³⁾, また Bengio などが開発した Recurrent Neural Network RBM (RNN-RBM) ¹⁴⁾が知られている. 著者らはこの中で精度が高いと されている RNN-RBM に構造適応型学習法のニューロン生 成/消滅アルゴリズムを組み込み、音声データやモーション キャプチャなどの時系列ベンチマークデータセットに対し高 い精度で予測可能な手法を開発した15),16). 本論文ではさら に構造適応型学習により適切な隠れニューロン数を求めた後, 学習係数の調整を行ないながらネットワークを再学習(微調 整) することで分類精度を向上させる手法を提案する. 提案 するリカレント構造適応型 DBN の時系列ベンチマークテス トに対する予測精度について 10-fold クロスバリデーション テストを行なった結果を報告する.

本論文の構成はつぎのとおりである。2章では、従来のRBM およびDBN モデルについて概要を説明する。また本研究において開発した構造適応型RBM におけるニューロン生成/消滅アルゴリズム、また層の自動生成を行なう構造適応型DBN について述べる。提案した構造適応型RBM および構造適応型DBN は、CIFAR-10 や CIFAR-100 などの画像分類問題に対し高い分類精度を示すことができたが、3章ではこれを時系列データに適用したリカレント構造適応型RBM およびリカレント構造適応型DBN を提案し、さらに学習係数の調整方法について説明する。4章において、提案手法のベンチマークテストを用いた性能を評価を行なう。

2. 構造適応型 Deep Belief Network による学習法

2.1 Restricted Boltzmann Machine

RBM 5)は **Fig. 1** のように可視層と隠れ層の 2 層から構成されるネットワーク構造をもち、確率分布に基づいて入力データに含まれる特徴を隠れニューロン上で学習することができる教師なし学習モデルである。 通常の Boltzmann Machine はすべてのニューロン間に接続がある相互結合型モデルであるが 17)、RBM には各層内のニューロン間の結合はない。このため層内のニューロン間の結合に対する計算量を削減できるだけでなく、隠れ層の各ニューロンごとに独立した確率分布を学習することができる。

RBM では与えられた入力データに対して (1) 式のエネルギー関数を最小にするパラメタ $\theta = \{b, c, W\}$ が最尤

Fig. 1 Network structure of RBM

推定により求められる。ここで、 $\boldsymbol{b}=\{b_1,\cdots,b_i,\cdots b_I\}$ 、 $\boldsymbol{c}=\{c_1,\cdots,c_j,\cdots,c_J\}$ 、 $\boldsymbol{W}=\{W_{11},\cdots W_{ij},\cdots,W_{IJ}\}$ である。

$$E(\boldsymbol{v}, \boldsymbol{h}) = -\sum_{i} b_{i} v_{i} - \sum_{j} c_{j} h_{j} - \sum_{i} \sum_{j} v_{i} W_{ij} h_{j},$$
(1)

$$p(\boldsymbol{v},\boldsymbol{h}) = \frac{1}{Z} \exp(-E(\boldsymbol{v},\boldsymbol{h})), \tag{2}$$

$$Z = \sum_{\boldsymbol{v}} \sum_{\boldsymbol{h}} \exp(-E(\boldsymbol{v}, \boldsymbol{h}))$$
 (3)

ここで、 v_i は i 番目の可視ニューロンの状態変数、 h_i は j 番 目の隠れニューロンの状態変数である. b_i は v_i に対するパラ メタ, c_i は h_i に対するパラメタ, W_{ii} は v_i と h_i 間の重みで ある. $v \in \{0,1\}^I$ と $h \in \{0,1\}^J$ はそれぞれ可視層と隠れ層 に含まれるニューロンの状態変数のベクトルであり、 $I \geq J$ は可視ニューロン数、隠れニューロン数である。(2) 式は入力 v と h の確率分布である. (3) 式の Z は分配関数 (partition function) であり、v と h のすべての 2 値のパタンの組み合 わせに対するエネルギーを示す. 最適なパラメタ θ は与えら れた入力データの尤度 $p(v|\theta)$ を最大化することで求められる が、モデルの尤度に含まれる分配関数 Z の計算は現実的に困 難である. そのため、この値を推定するために Contrastive Divergence (CD) 法 ¹⁸⁾のサンプリングによって近似が行な われる. このサンプリングの過程で条件付き確率である連続 値が2値に変換されてしまい、機械学習が収束するための条 件である連続性を満たさない状態を生じることが考えられる. この問題に対して文献 19) では、RBM の各パラメタの変分 がリップシッツ連続で、その上限がシャッテンノルムにより 与えられ、これを満たすことで学習が収束することが示され ている. これらの式の導出については、文献 20) を参照され たい.

2.2 Deep Belief Network

Deep Belief Network (DBN) は、事前学習を行なった RBM を複数積み重ねることで入力データの特徴を階層的に学習することができる Deep Learning 手法である $^{6)}$. **Fig. 2** は 4 つの RBM をもつ DBN のネットワーク構造を示している. 入力データを $\mathbf{h}^0 = \mathbf{v}$ とすると,l (> 0) 層目の RBM の j 番目の隠れニューロンの発火確率は (4) 式のように定義される.

$$p(h_j^l = 1 | \mathbf{h}^{l-1}) = sigm(c_j^l + \sum_i W_{ij}^l h_i^{l-1})$$
 (4)

Fig. 2 Hierarchical network structure of DBN

ここで、 c_j^l と W_{ij}^l はそれぞれ l 層目の RBM の j 番目の隠れニューロンのパラメタと i, j 番目の重みである。sigm() はシグモイド関数で、文献 6) と同じ関数を使用している。DBN 自体は RBM を積み重ねたモデルであるため教師なし学習モデルであるが、最上位層に出力層を加え、ソフトマックス法などにより計算された出力値と教師信号との誤差 (損失) を最小化することで、教師あり学習として適用できる (Fine-Tuning)・ソフトマックス法では、与えられた入力データがカテゴリ k に属する確率 y_k が (5) 式により求められる。

$$y_k = \frac{\exp(z_k)}{\sum_{j=1}^M \exp(z_j)}$$
 (5)

ここで、 z_j は出力層における j 番目のニューロン出力活性値である。M は出力層のニューロン数である。

2.3 ニューロン生成/消滅アルゴリズム 7)

入力データに対して適切なニューロン数を求める構造適応型学習法については、1)ニューロンの枝刈りを行なう手法²¹⁾、2)ほかのクラスタリング手法の結果により構造を求める手法²²⁾、3)ニューロンの生成を行なう手法²³⁾の3種類のアプローチが主に知られている。1)の手法では、枝刈りを行なうために大きなネットワークから始める必要があるので、Deep Learningのような大きなネットワークが必要な学習では、構造やパラメタなどの初期計算コストが必要となり、結果として大きな計算資源が必要となる。2)の手法では、Deep Learning自体の精度を直接利用するのではなく、ほかの手法を用いた結果をDeep Learningの学習に利用することになるため、計算結果はクラスタリング手法の精度に依存することになる。3)の手法では、1)と2)の手法と比べて、学習中にニューロンの増減を自己組織的に求めることが可能である点に優位性がある。

3) の手法として、従来の階層型ニューラルネットワークでは、学習中に更新される重みの変分ベクトルを用いて隠れニューロン数を入力データに対して適応的に変更する手法が提案されている 24 . **Fig. 3** は学習が進むにつれて重みの変分ベクトルが収束する過程を示している。入力データに対して十分な隠れニューロン数があれば、Fig. 3 のように学習が進むにつれて重みの変分は小さくなり、ある一定の値に収束す

 ${\bf Fig.\,3}\quad {\bf Convergence\ situation\ of\ walking\ distance}$

ると考えられる.一方,この条件を満たさず重みが収束しない場合は,学習データに対するネットワークの表現能力が不足しており,データのパタンを隠れニューロン上で表現できていないことが原因だと考えられる.このような場合,関連する位置に十分な数の隠れニューロンを挿入することでデータのパタンを表現できると考えられる.文献 24) では学習中における重みの変分ベクトルを Walking Distance (WD) と定義している.WD は (6) 式により, $\tau-1$ 回目までの学習によるパラメタの変分と τ 回目の学習のパラメタの変分の和により計算される.

$$WD_{j}[\tau] = \gamma_{W}WD_{j}[\tau - 1] + (1 - \gamma_{W})Met(\boldsymbol{W}_{j}[\tau], \boldsymbol{W}_{j}[\tau - 1])$$
(6)

ここで, $W_j[\tau]$ は τ 回目の学習における隠れニューロンj に関連する重みである.Met はベクトル間の距離を計算する関数で,本論文ではユークリッド距離 $Met(a,b)=\sum_{i=1}^N\sqrt{(a_i-b_i)^2}$ を用いる. γ_W は $\tau-1$ 回目までの変分と τ 回目の変分の影響度を調整するパラメタで $0<\gamma_W<1$ である. 文献 24)ではある一定回数の訓練後,隠れニューロンj の $WD_j[\tau]$ の値があらかじめ定められた閾値よりも大きい場合,その隠れニューロンの重みを 2 分割し,新しく隠れニューロンを追加する手法が提案されている.

Fig. 4 Variation for parameters $\theta = \{b, c, W\}$ in RBM

上記の階層型ニューラルネットワークと異なり、RBM には 3 種類の学習パラメタ $\theta = \{b, c, W\}$ がある. われわれの調 査では、RBM 学習における3つのパラメタは、隠れニューロ ンに関するパラメタ c と重み W が隠れニューロンの学習状況 によって変化し、入力に関するパラメタ b が入力データの分布 に応じて変化することがわかった $^{25)}$. **Fig. 4** は, MNIST $^{26)}$ と呼ばれる手書き文字データセットにおける RBM の学習中 の b, c, W の変分として WD を示している. MNIST は数字 の 0 から 9 の手書き文字画像のデータセットである。60,000 枚の訓練画像を用いて学習して、10,000枚のテスト画像を用 いて分類精度を評価する問題である。各画像は 28×28 ピク セルのグレースケールで表現された画像である. 各パラメタ の WD は (6) 式の $WD_j[\tau]$ の計算方法により求めた. すな わち、 $\tau-1$ 回目までの学習による変分と、 τ 回目の学習の変 分の和に基づいて、各パラメタの変分が計算される。ここで RBM の学習アルゴリズムには Stochastic Gradient Descent (SGD) 5)を用い, 学習率は 0.1, 学習のバッチサイズは 100 とした. 予備実験では, 100 個の隠れニューロンがあれば, MNIST の学習が適切に行なわれたが、ここではデータに対し 隠れニューロン数が不足し、パラメタの変分が振動する状態 を調査するため、隠れニューロン数は 10 個とした. Fig. 4 に 示すように各パラメタの変分は学習が進むにつれて徐々に小 さくなった. 特に、パラメタbやWの値は、学習の初期に急 速に下がり、30回目の反復計算以降では大きな変化は見られ なかった. 一方, c の値は 30 回目の反復計算以降においても, b や W の値よりも大きく変化しており、42 回や 53 回目の反 復計算付近において振動している状態が見られた. このよう な傾向は MNIST だけでなく、CIFAR-10 や CIFAR-100 な どのほかのデータセットに対しても見られた. そこで、本論 文では、bは入力に関するパラメタであるため考慮せず、cと W は隠れニューロンの学習状況に依存するパラメタである ため、この2つの変分の積空間を用いた指標を考え、ニュー ロン生成の条件を(7)式に示すように定義した.

$$WD_{c_{j}} \cdot WD_{W_{j}} > \theta_{G},$$

$$WD_{c_{i}} = \gamma_{c}WD_{c_{i}}$$

$$(7)$$

$$+(1 - \gamma_c)(|c_j[\tau] - c_j[\tau - 1]|),$$

$$WD_{W_j} = \gamma_W WD_{W_j}$$

$$+(1 - \gamma_W) Met(\mathbf{W}_j[\tau], \mathbf{W}_j[\tau - 1])$$
 (9)

ここで、 WD_{c_i} 、 WD_{W_i} はそれぞれ j 番目の隠れニューロ ンに関するパラメタと重みに関する学習の変分であり、0以 上の値をとる. これらは、(6) 式と同様の計算方法で求めら れ, 隠れニューロン i に関連する c_i と W_i の変分が観察さ れる. θ_G はニューロン生成に関する閾値であり $\theta_G > 0$ の値 をとる. θ_G の値が小さくなるに従って、ニューロン生成条件 は満たされやすくなる. 学習中に(7)式を満たす隠れニュー ロンがある場合、該当する隠れニューロンの属性を継承した ニューロンが (10) 式のように生成され, **Fig. 5**(a) のように 隣接する位置に挿入される.このとき,元のパラメタ値に,微 小な値として平均 0、標準偏差 σ の正規乱数 $N(0,\sigma^2)$ をノ イズとして加えることで、ニューロン生成後の学習によるパ ラメタの変化が親のニューロンと全く同じ方向に進むことを 抑制し、親とわずかに異なる特徴を学習させることができる. 本論文では、微小な振動を与えるために、 $\sigma = 0.1$ とした. な お,加算するノイズのパラメタ σ については, c_i と W_{ij} で 同じ値を使用しているが、両者の取り得る範囲に大きな違い はなく、さらに本論文で使用している値 ($\sigma = 0.1$) であれば、 元の範囲を大きく超えるような値にはならないため、個別の 値を設定していない.

$$c_j^{new} = c_j + N(0, \sigma^2), \ W_{ij}^{new} = W_{ij} + N(0, \sigma^2)$$
 (10)

一方,入力データに対して十分な数の隠れニューロンが生成された後,そのうち出力に寄与していない,すなわち冗長な値を出力する隠れニューロンが存在する場合がある. 構造適応型 RBM では,一定の学習の後,(11)式を満たす隠れニューロンが存在すれば,該当する隠れニューロンを Fig. 5(b)のように消去する.(11)式ではすべての入力データに対する隠れニューロンの出力値の平均を観察し,その値が一定の閾値以下のニューロンを冗長なニューロンとみなし,削除する.

$$\frac{1}{N}\sum_{n=1}^{N}p(h_{j}=1|\boldsymbol{v}_{n})<\theta_{A} \tag{11}$$

ここで、 $p(h_j=1|v_n)$ は n 番目の入力データ v_n を与えた際 の隠れニューロン h_j の発火確率を示している。 θ_A はニューロン消滅にかかわる閾値であり、 $0<\theta_A<1$ の値をとる。 θ_A が大きくなるに従って、ニューロン消滅が適用されやすくなる。ニューロン生成と消滅に関するパラメタ θ_G 、 θ_A は事前に適切な値を与える。これらの値は学習データの次元数やサンプル数、および隠れニューロン数に関連すると考えている。たとえば、データ数が多いほどデータの特徴に関係して各パラメタの振動は大きくなる傾向があるため、 θ_G は小さく設定し、ニューロン生成を起きやすくする。初期の隠れニューロン数が少ない場合も同様にする。一方、データに対し隠れニューロン数が少なすぎる場合は、冗長な値を出力するニュー

(a) Neuron Generation

(b) Neuron Annihilation

Fig. 5 Adaptive learning method of RBM

ロンが少なくなるため、 θ_A の値を大きくしてもニューロン 消滅があまり起こらない。これらのパラメタの与え方の 1 つの方法として、予備実験の結果では、 θ_G を少し低い値 (例:0.001) にし、 θ_A を少し高い値 (例:0.100) にすることでうまく学習できている。ただし、 θ_A が高すぎる場合は、必要以上のニューロン消滅が生じるため、この値はニューロン消滅と関連して定める必要がある。なお、(11) 式では活性化していないニューロンを削除しているが、逆のアプローチとして、どんなサンプルに対しても常に反応するニューロンを削除する方法も考えられる。このアプローチについては、今後研究を行なっていく予定である。

2.4 層の生成条件⁹⁾

従来の階層型ニューラルネットワークでは、学習状況の訓練 誤差に応じて新しい隠れ層を生成する手法がある ²³⁾. 一方, Deep Learning のように、従来よりも大規模なネットワーク 構造をもつ手法では、層を自動で決めるよりも試行錯誤的に 決定する方が一般的である. DBN では、各層において RBM による事前学習を行ない、1 層ずつ層を積み重ねていくことで、ネットワークの表現能力が上がる ²⁷⁾. しかしながら、層の数が多くなると、層の生成により必ずしも分類精度が上がるとは限らないため、一般的には、試行錯誤的に層の生成を行なう必要がある. 本論文では、事前学習において学習が適切に行なわれれば、上位層ほど与えられた入力データに対するエネルギーやパラメタの変化が小さくなることを用いて、DBN における層の生成条件を提案する.

構造適応型 RBM におけるニューロン生成アルゴリズムでは学習中の WD (パラメタ c と W の変分)を観察したが、構造適応型 DBN $^{9)}$ では個々の RBM ではなくネットワーク全体の WD とエネルギーを (12) 式と (13) 式を用いて観察した.

$$\sum_{l=1}^{k} WD^{l} > \theta_{L1},\tag{12}$$

$$\sum_{l=1}^{k} E^l > \theta_{L2} \tag{13}$$

ここで, $WD^l = \sum_{j=1}^J (WD^l_{c_j} \cdot WD^l_{W_j})$ であり, $WD^l_{c_j}$ と $WD^l_{W_j}$ はそれぞれ l 層目の RBM における c_j と W_j に関する WD を示している. E^l はエネルギー関数である. θ_{L1} , θ_{L2} はあらかじめ与えられる閾値である.ある k 層目の RBM の学習中に(12)式および(13)式を同時に満たす場合,入力 データに対するネットワーク全体の表現能力が不足している と考え,k 層目の学習が終了した時点で,k+1 層目の RBM を生成し学習を行なう.ここでも RBM のニューロン生成アルゴリズムと同様に,k+1 層目の RBM のパラメタ b,c,w の初期値が k 層目の RBM から継承される.

提案手法の構造適応型 RBM および DBN は画像ベンチマークテスト CIFAR-10 および CIFAR-100 に対し従来のモデルよりも高い分類精度を示した $^{9)\sim11}$). 本論文では画像の分類だけでなく時系列データの予測を行なうため,3章で構造適応型学習法のアルゴリズムを時系列データに適用する方法を提案する.

リカレント構造適応型 DBN による時系列データの 学習

3.1 RBM における時系列学習モデル

時系列データの学習モデルとしては通常のニューラルネッ トワークではリカレントニューラルネットワーク (RNN) や RNN の一種である LSTM が知られているが、RBM モデル においては Temporal RBM (TRBM), Recurrent TRBM (RTRBM) が知られている ¹³⁾. **Fig. 6**, **Fig. 7** はそれぞれ TRBM と RTRBM のモデルを示している. 長さ T の時系列 入力データの系列を $V = \{v^{(1)}, \cdots, v^{(t)}, \cdots, v^{(T)}\}$ とする と、TRBM、RTRBM は時刻 t における隠れニューロンの出 力 $\boldsymbol{h}^{(t)}$ を時刻 t+1 のネットワークに伝搬させることで、過去 の時系列に関する文脈を表現する. RNN-RBM は RTRBM を改良したモデルである¹⁴⁾. RNN-RBM では通常の RBM の可視層と隠れ層に加え,過去の時系列に関する文脈を表現 する状態 $\boldsymbol{u}^{(t)}$ をもつ. ある時刻 t の入力 $\boldsymbol{v}^{(t)}$ に対する可視 層と隠れ層のパラメタ $\boldsymbol{b}^{(t)}$, $\boldsymbol{c}^{(t)}$ が, 時刻 t-1 の状態 $\boldsymbol{u}^{(t-1)}$ のみから (14) 式, (15) 式によって求められる. 時刻 t の状 態 $\boldsymbol{u}^{(t)}$ は時刻 t の入力 $\boldsymbol{v}^{(t)}$ と時刻 t-1 の状態 $\boldsymbol{u}^{(t-1)}$ から (16) 式のように更新される.

$$\boldsymbol{b}^{(t)} = \boldsymbol{b} + \boldsymbol{W}_{uv} \boldsymbol{u}^{(t-1)}, \tag{14}$$

$$c^{(t)} = c + W_{uh} u^{(t-1)}, (15)$$

$$u^{(t)} = \sigma(u + W_{uu}u^{(t-1)} + W_{vu}v^{(t)})$$
 (16)

ここで、 σ () は活性化関数であり、文献 14) では tanh 関数 が用いられており、本論文でもこれを用いている. **Fig. 8** は RNN-RBM における計算の流れを示している. $\boldsymbol{u}^{(0)}$ は 状態の初期値で任意の値が与えられる. RNN-RBM の学習 は各時刻 t において計算された $\boldsymbol{b}^{(t)}$ 、 $\boldsymbol{c}^{(t)}$ と重み \boldsymbol{W} を用い

Fig. 6 Network structure of TRBM

Fig. 7 Network structure of RTRBM

Fig. 8 Network structure of RNN-RBM

Algorithm 1 Adaptive RNN-RBM

```
Set initial parameter \boldsymbol{u}^{(0)}.
for all v^{(t)} (1 \le t \le T) do
  Calculate \boldsymbol{b}^{(t)} and \boldsymbol{c}^{(t)} from \boldsymbol{u}^{(t-1)} by Eq. (14) and
  Update \boldsymbol{u}^{(t)} from \boldsymbol{u}^{(t-1)} and \boldsymbol{v}^{(t)} by Eq. (16)).
Calculate cost between v^{(t)} and h^{(t)} by CD-k.
Calculate gradients for the parameters \boldsymbol{\theta} by BPTT and up-
date them.
for all hidden neuron j do
  if the neuron generation process is not completed then
     if the neuron generation condition is satisfied with
     Eq. (7) then
        A new hidden neuron j+1 is generated and inserted.
     end if
  else
     if the neuron annihilation condition is satisfied with
        The hidden neuron j is annihilated.
     end if
  end if
end for
```

て、 $v^{(t)}$ と $h^{(t)}$ 間の学習が通常の RBM と同じように行なわれ (一般的に CD 法), 誤差が計算される. 時刻 T までの誤差を計算した後, T から過去に遡るように学習パラメタ $\theta = \{b,c,W,u,W_{uv},W_{uh},W_{vu},W_{uu}\}$ の勾配が BPTT (Back Proagation Through Time) $^{28)}$ により計算され, 更新される.

Algorithm 2 Adaptive RNN-DBN

```
Set 1-th input V_{(1)} and initial value of parameters \theta_{(1)}. for 1 \leq l \leq L do

Make pre-training l-th RBM for given V_{(l)} and \theta_{(l)}.

if the neuron layer conditions are satisfied with Eq. (12) and Eq. (13) during the learning then

The layer l+1 is generated.

Calculate l-th input V_{(l+1)} and set initial value of parameters \theta_{(l+1)}.

else

The layer generation is stopped.

end if
end for
```


Fig. 9 Network structure of RNN-DBN

3.2 リカレント構造適応型 RBM とリカレント構造適応型 DBN

本節では、提案するリカレント構造適応型 RBM およびリ カレント構造適応型 DBN について述べる. リカレント構造 適応型 RBM は, 文献 14) の RNN-RBM に構造適応型 RBM におけるニューロン生成/消滅アルゴリズムを取り入れた手 法である. RNN-RBM は通常の RBM と比べて、1) 時刻 tの入力に対するパラメタ $\boldsymbol{b}^{(t)}$ と $\boldsymbol{c}^{(t)}$ が過去の時刻t-1の状 態から計算される, 2) 勾配計算に BPTT が使われる, という 点において異なっているが、RBM の学習法自体に変わりは なく、通常の RBM と同様に CD 法による学習が行なわれる. CD 法では与えられた入力データに対し目的関数を最小化す るパラメタb, c, W を学習する. そのため学習中のパラメタ の変分が大きい場合, 入力データに対する表現能力を補うた め、ニューロン生成を行なう手法を取り入れることができる と考えた 15). すなわち学習中に (6) 式を用いて隠れニューロ ンに関するパラメタcと重みWの変分を観察し、(7)式を満 たすと該当するニューロンの生成が行なわれる. また (11) 式 を満たすと該当するニューロンが削除される. Algorithm 1 は、リカレント構造適応型 RBM においてある入力データを

Fig. 10 Learning rate

学習する1ステップのアルゴリズムを示している.

また複数の事前学習されたリカレント構造適応型 RBM を階層化して学習するリカレント構造適応型 DBN を提案する. 文献 $^{14)}$ には RNN-RBM を階層化する手法については述べられていない。本論文では,2.2 節で述べた DBN の学習法をリカレント構造適応型 DBN に応用した $^{16)}$. すなわち l 層の隠れニューロンの出力は l+1 層の可視ニューロンの入力として見なされる。 Fig. 9 は 3 つの RNN-RBM をもつリカレント構造適応型 DBN を示している。リカレント構造適応型 RBM では時刻 t の入力 $v^{(t)}$ に対する隠れニューロンの出力 $h^{(t)}$ が求まるため,この出力をつぎの層の入力とすることで,2 層以降においても適切な隠れニューロン数を求めながら階層化を行なうリカレント構造適応型 DBN を提案する。Algorithm 2 はリカレント構造適応型 DBN のアルゴリズムを示している。

3.3 学習係数調整によるネットワークの再学習

構造適応型学習における学習終了時点では入力データに含 まれる特徴を表現するために適当と考えられる隠れニューロ ン数をもったネットワークが形成される。しかしながら、適 当と考えられる隠れニューロン数が求められたとしても,学 習係数などのパラメタによっては、学習は収束するものの誤 差の値が小さくならないことがある。また、訓練データに出 現するパタンに100%に近い精度で予測できたとしても、テ ストデータに含まれるパタンを識別できず過学習の状態のよ うな結果を出力することがある. このような過学習が生じる 理由は、隠れニューロンが訓練データのみに出現するパタン の学習に留まり、テストデータに含まれる訓練データのパタ ン以外の特徴に対して正確に反応できないことが理由として 考えられる. 特に学習係数の値が小さければ、テストデータ に含まれる汎用性をもった特徴を探索することができないた め, 学習係数の値を増加させ探索領域を広げる必要がある. そこで、構造適応型学習により適切な隠れニューロン数が求 まった後、学習係数の調整を行ないながらネットワークを再 学習(微調整)することで、分類精度の向上を試みた.

Deep Learning において学習係数は重要なパラメタの1つであり、この値を学習中に調整する手法がある。一般的には、

学習初期に学習係数を高い値に設定し、学習が進むにつれて値を減少させる調整方法が知られている^{29),30)}. これにより、大域的かつ局所的な探索を行なうことができ、効果的に学習を行なうことができる.一方、学習途中において学習係数を適切な範囲で増加させることで、Deep Learning の分類精度が向上することが報告されている^{31),32)}. 本論文では、学習初期に学習係数を調整するのではなく、構造適応型学習により適切と考えられるネットワーク構造を求めた後に学習係数の調整を行なうため、学習係数を徐々に下げるのではなく、文献 31),32) のようにわずかに増加させることで、精度を向上を図った.本論文では (17) 式のように学習係数の値を増加する方向で調整した.

$$\epsilon(\tau) = \epsilon(\tau - 1) \times \lambda, \ \lambda > 1$$
 (17)

ここで、 $\epsilon(\tau)$ は学習回数 τ 時点の学習係数を示している。 λ は学習係数の増加に関する係数である。本論文では予備 実験により、学習開始時点の学習係数 $\epsilon(0)=0.001$ で、 $\lambda=\{1.001,1.005,1.010,1.015\}$ の 4 種類とし、100 回の 学習を行なうことで学習係数を **Fig. 10** のように変化させた.

4. 実 験

4.1 データセット

提案手法の性能を評価するために、時系列ベンチマークテスト "Nottingham" ³³⁾と "CMU" ³⁴⁾を用いた、Nottingham は 88 個の階調で表現される MIDI 形式のピアノの音声データで、694 個の訓練データと 170 個のテストデータから構成される。各データからは約 210 個の長さ (約 60 秒程度) の時系列データを取得できる。CMU はカーネギーメロン大学によって収集されているモーションキャプチャのデータセットである。2017 年 9 月時点で 6 種類のカテゴリ (23 種類のサブカテゴリ) に分類された 2,605 個のデータが利用可能である。各データについては 30 個以上のマーカーを取り付けられた人の一連の動作 (約 30 秒程度) を記録した時系列データである。これらのデータについて、10-fold クロスバリデーションテストを行ない、予測精度を評価した。

4.2 実験結果

4.1 節で述べたデータセットに対して従来の RNN-RBM (RT), 構造適応型 RNN-RBM (RA), 従来の RNN-DBN (DT), 構造適応型 RNN-DBN (DA) の手法を用いて, 学習を行なった. 従来の RNN-RBM (RT) は文献 14) で提案されているモデルであり, 従来の RNN-DBN (DT) は従来の RNN-RBM (RT)を用いて階層化を行なったモデルである. 構造適応型 RNN-RBM (RA) および構造適応型 RNN-DBN (DA) の各層の学習後, (17) 式による学習係数の調整を用いて学習した手法を, それぞれ RAL, DAL とし,性能を比較した. 本論文では, 勾配の学習手法を Stochastic Gradient Descent (SGD), 学習係数を 0.001, バッチサイズは 100, 学習の最大反復回数を 200 回, 初期隠れニューロン数を 200 とした. 構造適応型 RBM のパラメタ

Fig. 11 Learning results on nottingham (layer 1)

として、 θ_G = $\{0.001,0.005,0.010,0.050,0.100\}$, θ_A = $\{0.001,0.005,0.010,0.050,0.100\}$ の 25 通りの組み合わせで実験を行なった、構造適応型 DBN のパラメタとして、 $\theta_{L1}=0.1$, $\theta_{L2}=0.1$ とした、これらのパラメタの値は予備実験の結果、最良の組み合わせであったものである、RAL、DAL では、100 回の追加の反復学習を行ない、このとき、 $\lambda=\{1.001,1.005,1.010,1.015\}$ の 4 通りによる性能を比較した、実験における学習にはつぎのスペックをもつ PC を用いた、CPU = Intel(R) 24Core Xeon E5-2670 v3 2.3 GHz、GPU = Tesla K80 4992 Core 24 GB × 3、Memory = 64 GB、OS = CentOS 6.7 64 bit.

Fig. 11 はデータセット Nottingham に対する RT と RA の学習状況を示している. Fig. 11 (a) から Fig. 11 (e) まで,

 ${\bf Table~1} \quad {\bf Prediction~accuracy~of~traditional~RNN-RBM}$

		Accuracy		
Dataset	N	Ave.	Std.	
Nottingham	10	0.803	0.009	
	50	0.817	0.008	
	100	0.884	0.013	
	150	0.891	0.013	
	200	0.877	0.013	
CMU	100	0.713	0.009	
	150	0.623	0.009	
	200	0.694	0.012	
	250	0.717	0.011	
	300	0.707	0.010	

Fig. 12 Learning results on CMU (layer 1)

それぞれ学習の各反復に対する (1) 式によるエネルギー,誤差,(6) 式による W と c の変分,隠れニューロン数を示している.RT では,Fig. 11 (c),Fig. 11 (d) に示すように 40 回目や 55 回目などの反復においてパラメタの変分が大きく振動している箇所が見られた.このことが原因となって,Fig. 11 (a) や Fig. 11 (b) の学習後半 (100 回目以降の反復)で示すように,RT ではエネルギーや誤差が小さな値にならなかったと考えられる.一方,RA では,40 回目の反復まで,RT と同様にパラメタの変分が振動している部分が見られたが,それ以降の学習では,Fig. 11 (e) に示すように,適切と考えられるニューロン数の生成と消滅が行なわれたため,パラメタの変分,エネルギー,誤差が徐々に小さな値に変化した.このような傾向は,Fig. 12 に示すように,データセット CMU

でも見られた.

Table 1 はデータセット Nottingham と CMU のテストデータに対する RT の予測精度を示している. Table 2 は、RA に対し同様の実験結果の一部 (パラメタの組み合わせの中、最も良い結果のみ)を示している. ここで、Table 1 と Table 2 における "N" は隠れニューロン数、"Ave." と "Std." はテストデータに対する予測精度 (単位:%)で、クロスバリデーションにおける平均と標準偏差を示している. "Init. Parameter"は初期パラメタで、"Obtained Structure" は学習後の構造を示している. Table 1 の RT の分類精度は、Nottinghamに対し、初期隠れニューロン数が 150 の場合 0.891、CMUに対し、初期隠れニューロン数が 250 の場合 0.717 となり、最も予測精度が高くなった. 一方、Table 2 の RA では、多

Table 2 Prediction accuracy of adaptive RNN-RBM

Init	t. Parai	meter	Obtained Structure	Accu	racy
N	θ_G	θ_A	N	Ave.	Std.
50	0.001	0.001	204±08	0.957	0.008
		0.100	201±04	0.958	0.013
	0.005	0.001	190±07	0.965	0.009
		0.100	175±03	0.975	0.014
	0.010	0.001	181±02	0.967	0.014
		0.100	173±02	0.965	0.010
	0.050	0.001	170±07	0.959	0.007
		0.100	144±16	0.944	0.010
	0.100	0.001	112±01	0.923	0.007
		0.100	110±03	0.928	0.012
100	0.001	0.001	221±08	0.957	0.012
		0.100	181±07	0.954	0.008
	0.005	0.001	192±07	0.965	0.009
		0.100	183±03	0.978	0.010
	0.010	0.001	178±02	0.971	0.014
		0.100	171±02	0.977	0.010
	0.050	0.001	150±07	0.969	0.013
		0.100	143±16	0.958	0.012
	0.100	0.001	140±01	0.953	0.007
		0.100	142±03	0.963	0.014
150	0.001	0.001	211±08	0.957	0.011
		0.100	204±07	0.958	0.013
	0.005	0.001	193±07	0.958	0.009
		0.100	195±03	0.965	0.014
	0.010	0.001	181±02	0.968	0.012
		0.100	175±02	0.965	0.013
	0.050	0.001	157±07	0.949	0.009
		0.100	152±16	0.958	0.010
	0.100	0.001	153±01	0.953	0.007
	0.100	0.001	153±01 140±03	0.953	0.007
	0.100	0.001	153±01 140±03 Dataset: CMU	0.953 0.938	0.007
Init	0.100 t. Parai	0.100	140±03		0.012
Init N	t. Parai	0.100 meter	140±03 Dataset: CMU	0.938	0.012
N		0.100	140±03 Dataset: CMU Obtained Structure	0.938 Accu	0.012 racy
N	t. Parai θ_G	0.100 meter θ_A	140±03 Dataset: CMU Obtained Structure N	Accu Ave.	0.012 racy Std.
N	t. Parai θ_G	$\begin{array}{c} 0.100 \\ \\ \text{meter} \\ \theta_A \\ 0.001 \end{array}$	$\begin{array}{c} 140\pm03 \\ \text{Dataset: CMU} \\ \text{Obtained Structure} \\ \text{N} \\ 262\pm08 \end{array}$	0.938 Accu Ave. 0.727	0.012 racy Std. 0.012
N	t. Parai θ_G 0.001	0.100 meter θ_A 0.001 0.100	$\begin{array}{c} 140{\pm}03 \\ \text{Dataset: CMU} \\ \text{Obtained Structure} \\ \text{N} \\ 262{\pm}08 \\ 251{\pm}07 \\ \end{array}$	0.938 Accu Ave. 0.727 0.728	0.012 racy Std. 0.012 0.013
N	t. Parai θ_G 0.001	0.100 meter θ_A 0.001 0.100 0.001	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07	0.938 Accu Ave. 0.727 0.728 0.718	0.012 racy Std. 0.012 0.013 0.009
N	t. Parar θ_G 0.001	$\begin{array}{c} 0.100 \\ \hline \\ meter \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715	0.012 racy Std. 0.012 0.013 0.009
N	t. Parar θ_G 0.001	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721	racy Std. 0.012 0.013 0.009 0.009 0.010
N	t. Paran θ_G 0.001 0.005	$\begin{array}{c} 0.100 \\ \hline \\ meter \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715	racy Std. 0.012 0.013 0.009 0.009 0.010 0.013
N	t. Paran θ_G 0.001 0.005	$\begin{array}{c} \text{0.100} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722	racy Std. 0.012 0.013 0.009 0.009 0.010 0.013 0.013
N	1. Param θ_G 1. 0.001 1. 0.005 1. 0.010	$\begin{array}{c} \text{0.100} \\ \\ \text{meter} \\ \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16	Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722 0.715	0.012 racy Std. 0.012 0.013 0.009 0.010 0.013 0.013 0.009
N 150	1. Param θ_G 1. 0.001 1. 0.005 1. 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722 0.715 0.711	0.012 racy Std. 0.012 0.013 0.009 0.010 0.013 0.013 0.009 0.010
N 150	t. Parai θ_G 0.001 0.005 0.010 0.050	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722 0.715 0.711 0.717	0.012 racy Std. 0.012 0.013 0.009 0.010 0.013 0.013 0.013 0.009 0.010 0.009
N 150	t. Parai θ_G 0.001 0.005 0.010 0.050	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.715 0.715 0.711 0.717 0.718	racy Std. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.013 0.009 0.010 0.009
N 150	θ_G 0.001 0.005 0.010 0.050 0.100	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07	0.938 Accu Ave. 0.727 0.728 0.715 0.721 0.715 0.722 0.715 0.711 0.717 0.718 0.722 0.718	racy Std. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.010 0.009 0.010 0.009 0.010 0.009
N 150	θ_G 0.001 0.005 0.010 0.050 0.100	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ \end{array}$	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07 260±07	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.715 0.715 0.711 0.717 0.718	no.012 racy Std. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.009 0.010 0.009 0.010 0.009
N 150	$\begin{array}{c} \text{t. Paral} \\ \theta_G \\ 0.001 \\ \hline 0.005 \\ 0.010 \\ \hline 0.050 \\ \hline 0.100 \\ 0.001 \\ \hline 0.005 \\ \end{array}$	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07 260±07 263±03 250±02	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.715 0.717 0.718 0.722 0.715 0.719 0.722 0.722	racy Std. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.010 0.009 0.010 0.009 0.010 0.009 0.010
N 150	θ_G 0.001 0.005 0.010 0.001 0.001 0.001	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07 260±07 263±03 250±02 241±02	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.729 0.731	0.012 Std. 0.012 0.013 0.009 0.009 0.013 0.013 0.009 0.010 0.009 0.012 0.008 0.009 0.009 0.014 0.013
N 150	$\begin{array}{c} \text{t. Paral} \\ \theta_G \\ 0.001 \\ \hline 0.005 \\ 0.010 \\ \hline 0.050 \\ \hline 0.100 \\ 0.001 \\ \hline 0.005 \\ \end{array}$	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07 263±03 250±02 241±02	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.725 0.721 0.725	racy Std. 0.012 0.013 0.009 0.009 0.013 0.009 0.010 0.013 0.009 0.010 0.009 0.012 0.008 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010
N 150	θ_G 0.001 0.005 0.010 0.005 0.010 0.005 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 190±03 281±08 280±07 260±07 263±03 250±02 241±02 230±07	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722 0.711 0.717 0.718 0.722 0.719 0.722 0.722 0.725 0.725 0.725	0.012 Std. d. 0.012 Std. d. 0.012 Std. d. 0.012 Std. d. 0.013 O.009 0.009 0.010 0.010 0.009 0.012 0.009 0.009 0.009 0.009 0.009 0.009 0.0012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
N 150	θ_G 0.001 0.005 0.010 0.001 0.001 0.001	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07 263±03 250±02 241±02 230±07 223±16 220±01	0.938 Accu Ave. 0.727 0.728 0.715 0.721 0.715 0.722 0.715 0.717 0.718 0.722 0.719 0.722 0.722 0.722 0.722 0.722 0.722	0.012 Std. d. 0.012 Std. d. 0.012 Std. d. 0.013 0.009 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.012 0.008 0.009 0.014 0.013 0.009 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.007
N 150	θ_G 0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.005 0.010 0.010	$\begin{array}{c} \text{0.100} \\ \\ \hline \\ \theta_A \\ \\ 0.001 \\ 0.100 \\ 0.100 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 200±07 199±16 195±01 190±03 281±02 260±07 260±07 263±03 250±02 241±02 233±07 223±16 220±01 219±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.731 0.725 0.725 0.723 0.723	0.012 Std. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.013 0.009 0.010 0.013 0.009 0.010 0.013 0.013 0.013 0.013 0.013 0.013 0.013
N 150	θ_G 0.001 0.005 0.010 0.005 0.010 0.005 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 200±07 199±16 195±01 190±03 281±08 280±07 263±03 250±02 241±02 230±07 223±16	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.711 0.717 0.718 0.722 0.722 0.722 0.722 0.723 0.725 0.725 0.721 0.725 0.721 0.725 0.722 0.721 0.725 0.721	racy Std. 0.012 Std. 0.013 0.009 0.009 0.010 0.013 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.014 0.013 0.013 0.013 0.013 0.013 0.013
N 150	θ_G 0.001 0.005 0.010 0.050 0.100 0.005 0.010 0.005 0.010 0.005 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 281±08 280±07 263±03 250±02 241±02 230±07 223±16 220±01 219±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.722 0.722 0.722 0.722 0.731 0.725 0.721 0.713 0.719 0.713	0.012 Std. d. 0.012 0.012 0.013 0.009 0.010 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.009 0.009 0.009 0.014 0.009 0.009 0.014 0.003 0.009 0.009 0.009 0.009 0.014 0.003 0.003 0.003 0.003 0.007 0.0008
N 150	θ_G 0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.005 0.010 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 280±07 263±03 250±02 241±02 230±07 223±16 220±01 219±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.722 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.723 0.723 0.719 0.713 0.719 0.719 0.719 0.719 0.706	0.012 Std. 0.012 0.013 0.009 0.009 0.010 0.013 0.009 0.010 0.009 0.010 0.009 0.010 0.008 0.009 0.010 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 0.009
N 150	$\begin{array}{c} \text{t. Paral} \\ \theta_G \\ 0.001 \\ \hline 0.005 \\ 0.010 \\ \hline 0.050 \\ \hline 0.100 \\ \hline 0.005 \\ \hline 0.010 \\ \hline 0.005 \\ \hline 0.010 \\ \hline 0.005 \\ \hline 0.0005 \\ \hline 0.100 \\ \hline 0.0005 \\ \hline \end{array}$	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 190±03 281±08 280±07 260±07 263±03 250±02 241±02 230±07 223±16 220±01 2119±03	0.938 Accu Ave. 0.727 0.728 0.715 0.721 0.715 0.722 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.723 0.723 0.723 0.719 0.713 0.719 0.706	0.012 Std. d. 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 0.009 0.010 0.009 0.010
N 150	θ_G 0.001 0.005 0.010 0.050 0.100 0.005 0.010 0.005 0.010 0.005 0.010	$\begin{array}{c} \textbf{meter} \\ \theta_A \\ \textbf{0.001} \\ \textbf{0.100} \\ \textbf{0.001} $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 200±07 199±16 195±01 190±03 281±08 280±07 260±07 263±03 250±02 241±02 230±07 223±16 220±01 219±03 299±08 285±07	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.731 0.722 0.731 0.723 0.719 0.713 0.719 0.713 0.719 0.710	0.012 Std. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.009 0.010 0.009 0.012 0.008 0.009 0.014 0.013 0.003 0.013 0.007 0.014 0.012 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
N 150	θ_G 0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.005 0.010 0.005 0.010 0.005 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 200±07 199±16 195±01 190±03 281±08 280±07 263±03 250±02 241±02 230±07 223±16 220±01 219±03 299±08 285±07 289±07 273±03 280±02 273±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.721 0.717 0.718 0.722 0.715 0.719 0.722 0.723 0.719 0.719 0.719 0.706 0.711 0.714	0.012 Std. 0.012 Std. 0.013 0.009 0.009 0.010 0.013 0.009 0.010 0.009 0.012 0.008 0.009 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 0.007 0.010
N 150	$\begin{array}{c} \text{t. Paral} \\ \theta_G \\ 0.001 \\ \hline 0.005 \\ 0.010 \\ \hline 0.050 \\ \hline 0.100 \\ \hline 0.005 \\ \hline 0.010 \\ \hline 0.005 \\ \hline 0.010 \\ \hline 0.005 \\ \hline 0.0005 \\ \hline 0.100 \\ \hline 0.0005 \\ \hline \end{array}$	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 201±02 200±07 199±16 195±01 190±03 281±08 280±07 263±03 250±02 241±02 230±07 223±16 220±01 219±03 299±08 285±07 289±07 273±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.711 0.717 0.718 0.722 0.719 0.722 0.723 0.729 0.721 0.725 0.721 0.725 0.721 0.725 0.721 0.713 0.719 0.706 0.711 0.713 0.719	0.012 Std. d. 0.012 0.013 0.009 0.010 0.013 0.009 0.010 0.013 0.009 0.010 0.009 0.010 0.009 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	θ_G 0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.005 0.010 0.005 0.010 0.005 0.010	$\begin{array}{c} \text{meter} \\ \theta_A \\ 0.001 \\ 0.100 \\ 0.001 $	140±03 Dataset: CMU Obtained Structure N 262±08 251±07 240±07 243±03 240±02 200±07 199±16 195±01 190±03 281±08 280±07 263±03 250±02 241±02 230±07 223±16 220±01 219±03 299±08 285±07 289±07 273±03 280±02 273±03	0.938 Accu Ave. 0.727 0.728 0.718 0.715 0.721 0.715 0.721 0.717 0.718 0.722 0.715 0.719 0.722 0.723 0.719 0.719 0.719 0.706 0.711 0.714	0.012 Std. 0.012 Std. 0.013 0.009 0.009 0.010 0.013 0.009 0.010 0.009 0.012 0.008 0.009 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 0.007 0.010

くのパラメタの組み合わせにおいて RT よりも高い予測精度が得られた。特に、 $\theta_G=0.001$ 、 $\theta_A=0.100$ に設定した場合、データセット (Nottingham、CMU) および初期ニューロン数に依存せず、RT よりも高い予測精度が得られた。最も高い予測精度は、Nottingham に対し、0.978 (N=100, $\theta_G=0.005$, $\theta_A=0.100$)、CMU に対し、0.731 (N=200,

 $\theta_G=0.010$, $\theta_A=0.100$) となり、RT の最良の結果よりも高い値となった。また、このとき RA で得られたニューロン数は、Nottingham に対し 183、CMU に対し 241 となったが、同じ構造を初期値として RT に与えて学習した場合、予測精度は Nottingham に対し 0.890、CMU に対し 0.717 となり、RA のほうが高い予測精度が得られた。すなわち、RA は適切なニューロン数を発見するだけでなく、学習の精度自体も向上させる効果があることがわかった。

Table 3 は, Table 1 と Table 2 で示した RT, RA の最 良の結果と RAL, DA, DAL の結果を示している。パラメタ の組み合わせについては、Table 1 と Table 2 で得られた最 良の結果を使用した、ここで、"Time(min)" は学習にかかっ た実行時間(単位:分)である.アンダーラインは、学習係数 の調整による学習を適用する前の RA と DA の最良の結果を 示している. 実験の結果、どちらのデータセットについても、 RT および DT よりも、RA および DA のほうが高い予測精 度を示すことができ、その値はデータセット Nottingham で は、RA が 0.978、DA が 0.980、データセット CMU では、 RA が 0.731, DA が 0.823 となった. **Table 4** は, DA の 各層における予測精度を示している.層を生成することによ り,予測精度が徐々に向上していることがわかる. また,構造 適応型学習の後,学習係数の調整による学習を行なった結果, 学習にかかる計算時間は増加したものの、 $\lambda = 1.005$ (RAL-2, DAL) の場合, 予測精度が最も向上した. データセット Nottingham では、RA が 0.015, DA が 0.014, データセッ ト CMU では、RA が 0.034、DA が 0.058 増加し、われわ れの提案手法の中で、最も高い精度となった.一方、RAL-1 で示すように、 $\lambda = 1.001$ の場合は学習係数が低すぎたため、 RA と予測精度は変わらなかった. 逆に, RAL-3 や RAL-4 で示すように、 $\lambda = 1.010$ や $\lambda = 1.015$ の場合は予測精度 が悪くなった.これは、学習係数が増加しすぎたため、入力 データ空間の確率分布を探索する範囲を超えてしまったため だと考えられる。また、RALの学習精度に関し、最良の結果 となったパラメタ $\lambda = 1.005$ (RAL-2)の周辺の値について、 0.001 刻みで $\lambda = \{1.002, 1.003, 1.004, 1.006, 1.007, 1.008\}$ の値を調査したところ、10回の試行平均で、データセット Nottingham に対し、順に 0.980, 0.990, 0.992, 0.991, 0.991, 0.982 となり、データセット CMU に対し、順に 0.739, 0.763, 0.763, 0.763, 0.735, 0.731 となった. この結果から、最も 高い精度は $\lambda = 1.005$ の場合に得られたが、その周辺である $\lambda = \{1.004, 1.006\}$ の場合でも、この値に近い予測精度は得ら れた. なお, 学習係数の値を調整しなかった場合 ($\lambda = 1.000$), 減少させた場合 ($\lambda = 0.095$) において学習を行なったところ, データセット Nottingham および CMU ともに, RA の場合 と予測精度は変わらなかった.

5. おわりに

Deep Learning と呼ばれる機械学習の手法がさまざまな分野で高い能力を示しており、現実世界の問題に応用されてい

Table 3 Prediction accuracy ($\lambda = \{1.001, 1.005, 1.010, 1.015\}$)

Dataset: Nottingham					
				racy	
Model	Parameter	λ	Ave.	Std.	Time(min)
RT	Traditional RBM (Initial Neurons: 150)	-	0.891	0.013	71.5
RA	Adaptive RBM (Initial Neurons: 100, $\theta_G = 0.005, \theta_A = 0.100$)	-	0.978	0.010	70.3
RAL-1	Adaptive RBM (Tuning the learning rate with λ)	1.001	0.978	0.012	87.7
RAL-2	Adaptive RBM (Tuning the learning rate with λ)	1.005	0.993	0.011	88.3
RAL-3	Adaptive RBM (Tuning the learning rate with λ)	1.010	0.971	0.011	87.8
RAL-4	Adaptive RBM (Tuning the learning rate with λ)	1.015	0.970	0.010	87.9
DT	Traditional DBN (Layers: 5)	-	0.898	0.010	315.2
DA	Adaptive DBN (Layers: 5, $\theta_{L1} = 0.10, \theta_{L2} = 0.10$)	-	0.980	0.008	294.5
DAL	Adaptive DBN (Tuning the learning rate with λ)	1.005	0.994	0.009	357.3
Datacat: CMII					

Dataset: CMU

			Accuracy		
Model	Parameter	λ	Ave.	Std.	Time(min)
RT	Traditional RBM (Initial Neurons: 250)	-	0.717	0.011	53.8
RA	Adaptive RBM (Initial Neurons: 200, $\theta_G = 0.010, \theta_A = 0.100$)	-	0.731	0.013	52.6
RAL-1	Adaptive RBM (Tuning the learning rate with λ)	1.001	0.731	0.009	68.4
RAL-2	Adaptive RBM (Tuning the learning rate with λ)	1.005	0.765	0.012	68.5
RAL-3	Adaptive RBM (Tuning the learning rate with λ)	1.010	0.706	0.012	68.0
RAL-4	Adaptive RBM (Tuning the learning rate with λ)	1.015	0.702	0.010	68.1
DT	Traditional DBN (Layers: 6)	-	0.708	0.011	312.6
DA	Adaptive DBN (Layers: 6, $\theta_{L1} = 0.10, \theta_{L2} = 0.10$)	-	0.823	0.009	294.5
DAL	Adaptive DBN (Tuning the learning rate with λ)	1.005	0.881	0.010	362.1

Table 4 Prediction accuracy for each layer in adaptive RNN-

Dataset: Nottingham				
	Accuracy			
No. of layers	Ave.	Std.		
1	0.978	0.010		
2	0.979	0.012		
3	0.979	0.012		
4	0.980	0.010		
5	0.980	0.008		
Dataset: CMU				

	Accuracy		
No. of layers	Ave.	Std.	
1	0.731	0.013	
2	0.765	0.012	
3	0.789	0.013	
4	0.818	0.010	
5	0.822	0.010	
6	0.823	0.009	

る. Deep Learning の手法として、畳込みニューラルネット ワークがよく使われているが、計算量が多いことと、パラメ タの設定が難しいと考えられ、学習モデルの構築には多くの 経験が必要である. 本研究では、統計的なモデルで、ネット ワーク構造が CNN に比べて簡素である RBM, DBN に着目 し,学習中にニューロンの生成/消滅を行なうことで適切な 構造を求める構造適応型 DBN およびこれを用いた時系列学 習モデルを開発している. 本論文では構造適応型学習により 適切なネットワークを求めた後に、学習係数を調整しながら ネットワークの再学習(微調整)を行なうことでより高い予測 精度を実現するネットワークを構築した. 今回は λ を用いて 学習係数を単調に増加させたが、今後はネットワークの状態 や予測精度に関する影響を考慮した上で、適切な学習係数を 自動で調整する手法を開発する.

謝辞 本研究開発は総務省 SCOPE (受付番号:162308002) の委託および JSPS 科研費 (課題番号: JP17J11178) の助成 を受けたものです. また有益なご助言をいただきました査読 者に感謝の意を表します.

参考文献

- 1) T. Lyons and M. Skitmore: Project risk management in the Queensland engineering construction industry: A survey, International Journal of Project Management, 22-1, 51/61 (2012)
- 2) Y. Bengio: Learning Deep Architectures for AI, Foundations and Trends in Machine Learning archive, 2-1, 1/127
- 3) Q.V. Le: Building high-level features using large scale unsupervised learning, Proc. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 8595/8598 (2013)
- 4) Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard and L.D. Jackel: Backpropagation applied to handwritten zip code recognition, Neural Computation, 1-4, 541/551 (1989)
- 5) G.E. Hinton: A Practical Guide to Training Restricted Boltzmann Machines, Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science (LNCS, 7700), 599/619, Springer (2012)
- 6) G.E. Hinton, S. Osindero and Y. Teh: A fast learning algorithm for deep belief nets, Neural Computation, 18-7, 1527/1554 (2006)
- 7) S. Kamada and T. Ichimura: An Adaptive Learning Method of Restricted Boltzmann Machine by Neuron Generation and Annihilation Algorithm, Proc. of 2016 IEEE

- International Conference on Systems, Man, and Cybernetics (IEEE SMC 2016), 1273/1278 (2016)
- 8) A. Krizhevsky: Learning Multiple Layers of Features from Tiny Images, master's thesis, University of Toronto (2009)
- 9) 鎌田, 市村: 忘却機能を持った Deep Belief Network による 構造適応型学習, 計測自動制御学会第 9 回コンピューテーショ ナル・インテリジェンス研究会講演論文集, 92/97 (2016)
- 10) S. Kamada and T. Ichimura: A Structural Learning Method of Restricted Boltzmann Machine by Neuron Generation and Annihilation Algorithm, Neural Information Processing, Lecture Notes in Computer Science (LNCS, 9950), 372/380, Springer (2016)
- 11) S. Kamada and T. Ichimura: An Adaptive Learning Method of Deep Belief Network by Layer Generation Algorithm, Proc. of 2016 IEEE Region 10 Conference (TEN-CON), 2971/2974 (2016)
- 12) Y. Bengio, P. Simard and P. Frasconi: Learning longterm dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 5-2, 157/166 (1994)
- I. Sutskever, G.E. Hinton and W.T. Graham: The Recurrent Temporal Restricted Boltzmann Machine, Proc. of Advances in Neural Information Processing Systems 21 (NIPS 2008), 1601/1608 (2009)
- 14) N. Boulanger-Lewandowski, Y. Bengio and P. Vincent: Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription, Proc. of the 29th International Conference on Machine Learning (ICML2012), 1159/1166 (2012)
- 15) 鎌田, 市村, 丸山:構造適応型 Deep Belief Network による時系列データの分析, 計測自動制御学会第 10 回コンピューテーショナル・インテリジェンス研究会講演論文集, 73/78 (2016)
- 16) T. Ichimura and S. Kamada: Adaptive Learning Method of Recurrent Temporal Deep Belief Network to Analyze Time Series Data, Proc. of the International Joint Conference on Neural Networks (IJCNN 2017), 2346/2353 (2017)
- 17) D.H. Ackley, G.E. Hinton and T.J. Sejnowski: A Learning Algorithm for Boltzmann Machines, Cognitive Science, 9-1, 147/169 (1985)
- 18) G.E. Hinton: Training products of experts by minimizing contrastive divergence, Neural Computation, 14-8, 1771/1800 (2002)
- 19) D. Carlson, V. Cevher and L. Carin: Stochastic Spectral Descent for Restricted Boltzmann Machines, Proc. of the Eighteenth International Conference on Artificial Intelligence and Statistics, 111/119 (2015)
- 20) 鎌田,藤井,市村:Lipschitz 連続による Restricted Boltzmann Machine のエネルギー安定性に関する一考察, 2015 IEEE SMC Hiroshima Chapter Young Researchers WorkShop, 53/56 (2015)
- 21) 佐藤,中野:探索枝刈りによる複素多層パーセプトロン探索の 高速化,計測自動制御学会第5回コンピューテショナル・イ ンテリジェンス研究会講演論文集,91/96 (2014)
- 22) L. Bruzzone and D.F. Prieto: A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images, IEEE Trans. Geoscience and Remote Sensing, 37-2, 1179/1184 (1999)
- 23) S.E. Fahlman and C. Lebiere: The cascade-correlation learning architecture, Proc. of Advances in Neural Information Processing Systems 2 (NIPS 1989), 524/532 (1990)
- 24) T. Ichimura, S. Oeda, M. Suka and K. Yoshida: A learning method of immune multi-agent neural networks, Neural Computing and Applications, 14-2, 132/148 (2005)
- 25) 鎌田, 市村, 原:ニューロン生成/消滅アルゴリズムによる構造適応型 Restricted Boltzmann Machine, 計測自動制御学会第8回コンピューテーショナル・インテリジェンス研究会講

- 演論文集, 90/96 (2015)
- 26) Y. LeCun, C. Cortes and C.J.C. Burges: THE MNIST DATABASE of handwritten digits, http://yann.lecun.com/exdb/mnist/ (2017 年 9 月 21 日閲覧)
- 27) Y. Bengio, L. Pascal, P. Dan and H. Larochelle: Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19 (NIPS 2006), 153/160 (2007)
- 28) D.E. Rumelhart, G.E. Hinton and R.J. Williams: Learning internal representations by error propagation, Parallel Distributed Processing: Explorations in the microstructure of cognition, 1, 318/362, MIT Press (1986)
- 29) G.D. Magoulas and M.N. Vrahatis: Adaptive Algorithms For Neural Network Supervised Learning: A Deterministic Optimization Approach, Intl. J. of Bifurcation and Chaos, 16-7, 1929/1950 (2006)
- 30) M. Riedmiller and H. Braun: A direct adaptive method for faster backpropagation learning: The RPROP algorithm, Proc. of IEEE International Conference on Neural Networks, 1, 586/591 (1993)
- 31) L.N. Smith: Cyclical Learning Rates for Training Neural Networks, Proc. of 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 464/472 (2017)
- 32) T. Schaul, S. Zhang and Y. LeCun: No more pesky learning rates, Proc. of the 30th International Conference on Machine Learning (PMLR), 28-3, 343/351 (2013)
- 33) Nottingham: http://www-etud.iro.umontreal.ca/ ~boulanni/icml2012 (2017 年 9 月 21 日閲覧)
- 34) CMU Graphics Lab Motion Capture Database: http://mocap.cs.cmu.edu/ (2017 年 9 月 21 日閲覧)

「著者紹介]

.....

田 真(学生会員)

COHO

2014 年県立広島大学大学院情報科学研究科を修了. NTT アドバンステクノロジ (株) を経て, 2015 年に広島市立大学大学院情報科学研究科博士後期課程に進学. 2014 年から県立広島大学の研究補助員 (臨時職員) として勤務. 2017 年から日本学術振興会特別研究員 (DC2). Deep Learning, 自己組織化マップ, 人工免疫システムに関する研究開発に従事.

5 村 匠(正会員)

1997 年桐蔭横浜大学大学院工学研究科博士後期課程修了.博士(工学).広島市立大学情報科学部を経て2010 年県立広島大学経営情報学部准教授.2014 年同大学教授.2015 年同大学地域連携センター長(兼職).2017 年同大学高度人工知能プロジェクト研究センター長(兼職).Deep Learning,ニューラルネットワーク,進化計算,人工免疫システム,医療診断支援システムなどの研究開発に従事.2011 年から IEEE SMC Hiroshima Chapterの Chair を4年間を務めた.