# 特征降维





- ◆ 特征降维
- ◆ 低方差过滤
- ◆ 主成分分析PCA
- ◆ 相关系数法



- 1. 理解特征降维的作用
- 2. 知道低方差过滤法
- 3. 知道相关系数法
- 4. 掌握PCA 进行降维



# 特征降维

• 为什么要进行特征降维?

特征对训练模型时非常重要的;用于训练的数据集包含一些不重要的特征,可能导致模型泛化性能不佳

eg:某些特征的取值较为接近,其包含的信息较少

eg:希望特征独立存在对预测产生影响,两个特征同增同减非常相关,不会给模型带来更多的信息

- 特征降维目的?
  - 指在某些限定条件下,降低特征个数
  - 特征降维涉及的知识面比较多, 当前阶段常用的方法:
    - (1) 低方差过滤法
    - (2) PCA(主成分分析)降维法
    - (3) 相关系数(皮尔逊相关系数、斯皮尔曼相关系数)



# 特征降维 - 低方差过滤法

• 低方差过滤法:指的是删除方差低于某些阈值的一些特征

• 特征方差小: 特征值的波动范围小, 包含的信息少, 模型很难学习到信息

• 特征方差大: 特征值的波动范围大, 包含的信息相对丰富, 便于模型进行学习

- 低方差过滤API
  - sklearn.feature\_selection.VarianceThreshold(threshold = 0.0)
     实例化对象用于删除所有低方差特征
  - variance\_obj.fit\_transform(X)X:numpy array格式的数据[n samples,n features]
  - 返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征



# 低方差过滤

## #1.导入依赖包

from sklearn.feature\_selection import VarianceThreshold import pandas as pd

#### #2. 读取数据集

data = pd.read\_csv('data/垃圾邮件分类数据.csv') print(data.shape) # (971, 25734)

## #3. 使用方差过滤法

transformer = VarianceThreshold(threshold=0.1)
data = transformer.fit\_transform(data)
print(data.shape) # (971, 1044)



# 主成分分析PCA

• 主成分分析(Principal Component Analysis, PCA)

PCA 通过对数据维数进行压缩,尽可能降低原数据的维数(复杂度) 损失少量信息,在此过程中可能会舍弃原有数据、创造新的变量。



- 主成分分析API
  - sklearn.decomposition.PCA(n\_components=None)

将数据分解为较低维数空间

n components: 小数表示保留百分之多少的信息; 整数表示减少到多少特征 eg: 由20个特征减少到10个

- mypcaobj.fit\_transform(X)
- 返回值:转换后指定维度的array



## 主成分分析PCA

### #1. 导入依赖包

from sklearn.decomposition import PCA from sklearn.datasets import load\_iris

#### # 2. 加载数据集

x, y = load\_iris(return\_X\_y=True) print(x[:5])

### #3. PCA,保留指定比例的信息

transformer = PCA(n\_components=0.95)
x\_pca = transformer.fit\_transform(x)
print(x\_pca[:5])

#### #4. PCA, 保留指定数量特征

transformer = PCA(n\_components=2)
x\_pca = transformer.fit\_transform(x)
print(x\_pca[:5])



## 特征降维 - 相关系数

- 为什么会使用相关系数?
  - 相关系数: 反映特征列之间(变量之间)密切相关程度的统计指标
  - 常见2个相关系数:皮尔逊相关系数、斯皮尔曼相关系数
  - 相关系数的值介于-1与+1之间,即-1≤r≤+1。其性质如下:

当r>0时,表示两变量正相关,r<0时,两变量为负相关

当 |r| = 1 时,表示两变量为完全相关,当r = 0时,表示两变量间无相关关系

当 0 < |r| < 1时,表示两变量存在一定程度的相关。

且|r|越接近1,两变量间线性关系越密切; |r|越接近于0,表示两变量的线性相关越弱

- 一般可按三级划分:
  - (1) |r| < 0.4为低度相关;
  - (2) 0.4≤ |r| < 0.7为显著性相关;
  - (3) 0.7 ≤ |r| <1为高度线性相关。



# 皮尔逊相关系数

$$r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

• 举个例子:已知广告投入x特征与月均销售额y之间的关系,经过皮尔逊相关系数计算,为高度相关

| 年广告费投入 | 月均销售额 |  |  |
|--------|-------|--|--|
| 12.5   | 21.2  |  |  |
| 15.3   | 23.9  |  |  |
| 23.2   | 32.9  |  |  |
| 26.4   | 34.1  |  |  |
| 33.5   | 42.5  |  |  |
| 34.4   | 43.2  |  |  |
| 39.4   | 49.0  |  |  |
| 45.2   | 52.8  |  |  |
| 55.4   | 59.4  |  |  |
| 60.9   | 63.5  |  |  |

| 序号 | 广告投入(万元)<br>× | 月均销售额(万元)<br>y | x^2      | y <sup>2</sup> | ху       |
|----|---------------|----------------|----------|----------------|----------|
| 1  | 12.5          | 21.2           | 156.25   | 449.44         | 265.00   |
| 2  | 15.3          | 23.9           | 234.09   | 571.21         | 365.67   |
| 3  | 23.2          | 32.9           | 538.24   | 1082.41        | 763.28   |
| 4  | 26.4          | 34.1           | 696.96   | 1162.81        | 900.24   |
| 5  | 33.5          | 42.5           | 1122.25  | 1806.25        | 1423.75  |
| 6  | 34.4          | 43.2           | 1183.36  | 1866.24        | 1486.08  |
| 7  | 39.4          | 49.0           | 1552.36  | 2401.00        | 1930.60  |
| 8  | 45.2          | 52.8           | 2043.04  | 2787.84        | 2386.56  |
| 9  | 55.4          | 59.4           | 3069.16  | 3528.36        | 3290.76  |
| 10 | 60.9          | 63.5           | 3708.81  | 4032.25        | 3867.15  |
| 合计 | 346.2         | 422.5          | 14304.52 | 19687.81       | 16679.09 |

$$\frac{10 \times 16679.09 - 346.2 \times 422.5}{\sqrt{10 \times 14304.52 - 346.2^2}\sqrt{10 \times 19687.81 - 422.5^2}} = 0.9942$$



# 斯皮尔曼相关系数

$$RankIC = 1 - rac{6\sum d_i^2}{n(n^2-1)}$$

n为等级个数,d为成对变量的等级差数

| 身高 (X) | 等级  | 睡眠时间 (Y) | 等级 | di  | di <sup>2</sup> |
|--------|-----|----------|----|-----|-----------------|
| 160    | 3.5 | 7.6      | 3  | 0.5 | 0.25            |
| 168    | 5   | 8.0      | 4  | 1   | 1               |
| 174    | 6   | 8.8      | 5  | 1   | 1               |
| 141    | 1   | 7.5      | 2  | -1  | 1               |
| 160    | 3.5 | 6.9      | 1  | 2.5 | 6,25            |
| 159    | 2   | 8.9      | 6  | -4  | 16              |
| 176    | 7   | 9.0      | 7  | 0   | 0               |



# 相关系数

#### #1.导入依赖包

import pandas as pd from sklearn.feature\_selection import VarianceThreshold from scipy.stats import pearsonr from scipy.stats import spearmanr from sklearn.datasets import load iris

## # 2. 读取数据集(鸢尾花数据集)

data = load\_iris()

data = pd.DataFrame(data.data, columns=data.feature\_names)

## #3. 皮尔逊相关系数

corr = pearsonr(data['sepal length (cm)'], data['sepal width (cm)']) print(corr, '皮尔逊相关系数:', corr[0], '不相关性概率:', corr[1])

# (-0.11756978413300204, 0.15189826071144918) 皮尔逊相关系数: -0.11756978413300204 不相关性概率: 0.15189826071144918

## #4. 斯皮尔曼相关系数

corr = spearmanr(data['sepal length (cm)'], data['sepal width (cm)']) print(corr, '斯皮尔曼相关系数:', corr[0], '不相关性概率:', corr[1])

# SpearmanrResult(correlation=-0.166777658283235, pvalue=0.04136799424884587) 斯皮尔曼相关系数: -0.166777658283235 不相关性概率: 0.04136799424884587



## 1特征降维

指在某些限定条件下,降低特征个数

## 2 低方差过滤法

删除方差低于某些阈值的一些特征

## 3 PCA主成分分析

通过数据压缩实现特征降维,在此过程中去除特征之间的线性相关性

## 4 相关系数法

皮尔逊相关系数、斯皮尔曼相关系数,通过相关系数法可以实现减少特征的目的







- 1、下列关于PCA的说法错误的是(单选题):
  - A) 它可以通过sklearn.decomposition.PCA来实现降维
  - B) 它的目的是要找到特征数据中的主要成分,然后删除所有非主要成分数据
  - C) PCA中的n\_components参数可以指定为小数
  - D) PCA中的n\_components参数可以指定为整数

答案: B



传智教育旗下高端IT教育品牌