Profesor: Borja Rey Seoane

ANEXO IV

REGEX

Módulo: Desenvolvemento Web en Contorno Cliente

Ciclo: **DAW**

Introdución

As **expresións regulares** (REGEX¹ ou REGEXP), en ocasións tamén chamadas **expresións racionais** son un mecanismo de xeración de patróns de busca e comparación baseado en secuencias de carácteres. Orixinalmente naxeron coma ferramenta matemática, tal e coma as concebiu o seu principal creador, Stephen Cole Kleene, en 1951.

As REGEX permiten definir patróns complexos de coincidencia de texto, o que facilita tarefas como a validación de formatos, a substitución de fragmentos dun texto, ou a extracción de información específica.

Na actualidade a súa difusión é tal que son soportadas pola grande maioría de linguaxes de programación, sistemas operativos e por unha vasta estensión de *softwares* de todo tipo.

¹ Do inglés *REGular EXpression*.

Conceptos básicos

Podemos estruturar esta guía de introdución ás REGEX en torno a seis conceptos básicos:

- Letras e números.
- Meta-carácteres.
- Cuantificadores.
- Grupos e alternativas.
- Clases de carácteres.
- Ancoras.

Letras e números

As **letras** e **números** son os carácteres máis básicos que podemos empregar nas expresións regulares. Cando son incluídos directamente nunha REGEX, vaise a esixir a coincidencia literal do mesmo carácter dentro do texto.

Vexamos algúns exemplos:

- A expresión regular a coincidirá con calquera aparición da letra "a" nunha cadea:
 - o Cadea: "pato"
 - o Coincidencia: "a"
- A expresión 123 coincidirá coa secuencia exacta de números "123".
 - o Cadea: "a túa puntuación foi 123 puntos"
 - o Coincidencia: "123"
- A expresión abc123 coincidirá coa secuencia exacta "abc123".
 - o Cadea: "A clave é abc123"
 - o Coincidencia: "abc123"
- A expresión [a-zA-Z] coincidirá con calquera letra maiúscula ou minúscula do alfabeto inglés.
 - o Cadea: "Galicia"
 - o Coincidencias: "G", "a", "l", "i", "c", "i", "a"

Meta-carácteres

Os **meta-carácteres** (en ocasións chamados simplemente comodíns) son aqueles carácteres que teñen un significado especial nas expresións regulares. Non coinciden co seu valor literal, senón que representan patróns máis complexos.

Velaquí algúns exemplos:

- A expresión . (punto) coincidirá con calquera carácter individual (ou ausencia del), agás co salto de liña.
 - o Regex: a.c
 - o Cadea: "abc ac acd"
 - o Coincidencias: "abc", "ac"
- A expresión \d coincidirá con calquera díxito do 0 ao 9.
 - o Regex: \d\d\d
 - o Cadea: "O número é 123"
 - o Coincidencia: "123"
- A expresión \w coincidirá con calquera carácter da palabra (letras, números ou o guión baixo)
 - o Regex: \w+
 - o Cadea: "A miña variable é var_1"
 - o Coincidencias: "A", "miña", "variable", "é", "var 1"
- A expresión \s coincidirá con calquera espazo en branco (incluíndo espazos, tabulacións ou saltos de liña).
 - o Regex: \s
 - o Cadea: "Ola Mundo"
 - Coincidencia: " " (só o espazo entre as palabras)

Cuantificadores

Os **cuantificadores** permiten definir cantas veces debe aparecer un carácter ou grupo de carácteres nunha coincidencia.

De seguido algúns exemplos:

- A expresión * coincidirá cero ou máis veces coa expresión asociada.
 - o Regex: ab*
 - o Cadea: "a, ab, abb"
 - o Coincidencias: "a", "ab", "abb"
- A expresión + coincidirá unha ou máis veces coa expresión asociada.
 - o Regex: ab+
 - o Cadea: "a, ab, abb"
 - o Coincidencias: "ab", "abb" (non coincide con "a" porque non ten "b")
- A expresión ? coincidirá unha vez ou ningunha coa expresión asociada.
 - o Regex: colou?r
 - o Cadea: "color, colour, colr"
 - o Coincidencias: "color", "colour"

- A expresión {n} coincidirá exactamente n veces coa expresión asociada.
 - o Regex: $\d{4}$
 - o Cadea: "O ano 2024 foi intenso"
 - o Coincidencia: "2024" (catro díxitos)
- A expresión {n, } coincidirá polo menos n veces coa expresión asociada.
 - o Regex: $\d{2,}$
 - o Cadea: "10, 123, 12345"
 - o Coincidencias: "10", "123", "12345"
- A expresión {n,m} coincidirá entre n e m veces coa expresión asociada.
 - o Regex: $\d{2,4}$
 - o Cadea: "10, 123, 12345"
 - o Coincidencias: "10", "123" (pero non "12345", porque ten 5 díxitos)

Grupos e alternativas

Os **grupos** permiten agrupar partes dunha expresión regular entre si, namentres que as **alternativas** permiten definir opcións entre diferentes patróns.

Algúns exemplos do anterior:

- A expresión de grupo () permitirá agrupar unha parte da REGEX.
 - o Regex: (abc) +
 - o Cadea: "abc abc abc"
 - o Coincidencia: "abc abc abc" (todo o grupo coincide repetidamente)
- A expresión de alternativa | permitirá escoller entre varias opcións.
 - o Regex: a|b
 - o Cadea: "ac bd"
 - o Coincidencias: "a", "b"
- As expresións tamén poden combinar grupos con cuantificadores.
 - o Regex: (ab) +
 - o Cadea: "ab ab abcd"
 - o Coincidencias: "ab ab"

Clases de carácteres

As **clases de carácteres** definen un conxunto de carácteres empregando os corchetes para acoutar. Calquera carácter dentro dos corchetes implicará unha coincidencia.

Algúns exemplos disto poden ser:

- Clases básicas: [abc] coincidirá con "a", "b" ou "c".
 - o Regex: [abc]
 - o Cadea: "defabc"
 - o Coincidencias: "a", "b", "c"
- Rangos de carácteres: [a-m] coincidirá con calquera letra minúscula do alfabeto inglés que estea entre a "a" e a "m".
 - o **Regex:** [a-z]
 - o Cadea: "gato"
 - o Coincidencias: "g", "a", "t", "o"
- Clases negativa: [^abc] coincidirá con calquera carácter que non sexa "a", "b" ou "c".
 - o Regex: [^abc]
 - o Cadea: "abcdxyz"
 - o Coincidencias: "d", "x", "y", "z"
- Conxunto de caracteres específicos: [aeiou] coincide con calquera vogal minúscula.
 - o Regex: [aeiou]
 - o Cadea: "exemplo"
 - o Coincidencias: "e", "e", "o"
- **Díxitos e letras:** [0-9A-Fa-f] coincide con calquera díxito ou letra hexadecimal (0-9 e A-F -en maiúsculas ou en minúsculas-).
 - o Regex: [0-9A-Fa-f]
 - o Cadea: "123ABCdef"
 - o Coincidencias: "1", "2", "3", "A", "B", "C", "d", "e", "f"

Algunhas clases que compre salientar son aquelas que teñen nome propio, como son:

- [:alpha:] é a clase correspondente aos carácteres alfabéticos (maiúsculos e minúsculos).
- [:digit:] é a clase correspondente ás cifras da numeración árabe.
- [:alnum:] é a clase correspondente á unión das dúas anteriores (carácteres alfanuméricos).
- [:punct:] é a clase correspondente aos carácteres de puntuación (sendo estes ! "

```
# $ % & ' ( ) * + , - . / : ; < = > ? @ [ \ ] ^ _ ` { | } ~ . )
```

- [:graph:] é a clase correspondente á unión das dúas anteriores, isto é aos carácteres típicos de escritura (alfanuméricos máis os de puntuación).
- [:blank:] é a clase correspondente ao espazo e a tabulación.
- [:cntrl:] é a clase correspondente aos carácteres de control (en ASCII son aqueles cuxos códigos octais van do 037 ao 177).

- [:lower:] é a clase correspondente aos carácteres alfabéticos minúsculos.
- [:upper:] é a clase correspondente aos carácteres alfabéticos maiúsculos.
- [:print:] é a clase correspondente aos carácteres imprimibles, é dicir, os alfanuméricos, os de puntuación e o espazo.
- [:space:] é a clase correspondente aos carácteres de espazamento (tabulación, nova liña, tabulación vertical, sangría, retorno de carro e espazo).
- [:xdigit:] é a clase correspondente aos díxitos hexadecimais (aqueles que son letras poden ir tanto en maiúsculos coma en minúsculos).

Áncoras

As **áncoras** son símbolos que permiten establecer a posición na que debe coincidir o patrón dentro da cadea de texto.

Exemplos de uso das áncoras serían:

- A expresión ^ indicará o inicio dunha cadea (é dicir, cadeas que inicien con esa expresión que figure a continuación do circumflexo).
 - o Regex: ^Ola
 - o Cadea: "Ola Mundo"
 - o Coincidencia: "Ola" (só ao inicio da cadea)
- A expresión \$ indicará o remate dunha cadea (é dicir, cadeas que rematen coa expresión que figure xusto antes do símbolo do dólar).
 - o Regex: mundo\$
 - o Cadea: "Ola mundo"
 - o Coincidencia: "mundo" (só ao final da cadea)
- A expresión \b coincidirá co límite dunha palabra (xa sexa no comezo ou no remate).
 - o Regex: \bcarro (palabras que comecen por "carro")
 - o Cadea: "O carro está aquí, pero non a carroza."
 - o Coincidencia: "carro", "carro" (a parte coincidente de "carroza")
- A expresión \B coincidirá só cando non haxa límite de palabra.
 - o Regex: \Bola
 - o Cadea: "ola a todos, pasádeme a bola"
 - o Coincidencia: "ola" (a que fai parte de "bola")

Bibliografía

- Eloquent JavaScript. (2018). Regular Expressions. [online] Dispoñible en:
 https://eloquentjavascript.net/09_regexp.html [Accedido o 10 de outubro de 2024].
- Friedl, J.E.F. (2006). Mastering Regular Expressions (3ª ed.). Sebastopol: O'Reilly Media.
- JavaScript.info. (2020). Expresións regulares. [online] Dispoñible en: https://javascript.info/regular-expressions [Accedido o 10 de outubro de 2024].
- MDN Web Docs. (2024). Regular expressions JavaScript | MDN. [online] Dispoñible en: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
 [Accedido o 10 de outubro de 2024].
- Regex101. (2024). Online regex tester and debugger. [online] Dispoñible en: https://regex101.com/ [Accedido o 10 de outubro de 2024].
- W3Schools. (2024). JavaScript Regular Expressions. [online] Dispoñible en: https://www.w3schools.com/js/js_regexp.asp [Accedido o 10 de outubro de 2024].

ÍNDICE

INTRODUCIÓN	1
CONCEPTOS BÁSICOS	2
LETRAS E NÚMEROS	2
Meta-carácteres	2
Cuantificadores	3
GRUPOS E ALTERNATIVAS	4
CLASES DE CARÁCTERES	4
ÁNCORAS	6
BIBLIOGRAFÍA	7