

Universidade Tecnológica Federal do Paraná Curso de Engenharia de Computação CSD21 - Matemática Discreta Prof. Luiz Celso Gomes Jr.

Lista de Exercícios #1

Guilmour H. D. Rossi¹
Março, 2016.

- I) Usando os métodos de demonstração direta, contraposição ou contradição prove que:
- A) A soma de dois números pares é par.
- 1. Prova: Suponha que somamos dois números pares.
- 2. Logo, a+b, com a=2k e b=2k' para a,b,k e $k'\in\mathbb{Z}$.
- 3. Então, a + b = 2k + 2k'.
- 4. Assim, a + b = 2(k + k').
- 5. Logo, a+b=2c, com c=(k+k') e $c\in\mathbb{Z}$.
- 6. Portanto, o resultado é par.
- B) O produto de dois números pares é par.
- 1. Prova: Suponha que multiplicamos dois números pares.
- 2. Logo, $a \cdot b$, com a = 2k e b = 2k' para a, b, k e $k' \in \mathbb{Z}$.
- 3. Então, $a \cdot b = (2k) \cdot (2k')$.
- 4. Assim, $a \cdot b = 2(2 \cdot k \cdot k')$.
- 5. Logo, $a \cdot b = 2c$, onde $c = (2 \cdot k \cdot k')$ e $c \in \mathbb{Z}$.
- 6. Portanto, o resultado é par.

1contato@guilmour.com

- C) $n! < n^n$. Se fatorarmos um número n, então ele será menor que n^n .
- 1. Prova: Supomos que n! seja maior que n^n , em todo n>0, para que (n-1) e $n\in\mathbb{Z}$.
- 2. Logo, $n! > n^n$.
- 3. Então, $n! n^n > 0$.
- 4. Onde, $n! = n \cdot (n-1)!$ e $n^n = n \cdot (n^{n-1})$.
- 5. Assim $(n \cdot (n-1)!) (n \cdot (n^{n-1}) > 0$.
- 6. Logo, $(n \cdot (k)) (n \cdot (k')) > 0$, com k = (n-1)! e $k' = n^{n-1}$.
- 7. Então, $n \cdot (k k') > 0$.
- 8. Se n > 0, obrigatoriamente k k' > 0.
- 9. Logo, $(n-1)! n^{n-1} > 0$ sempre.
- 10. Logo, 0-1>0, se aplicarmos o caso básico de n=1.
- 12. O que é um absurdo, pois $-1 \ge 0$.
- 13. Portanto, $n! < n^n$.
- D) A soma de três inteiros consecutivos é divisível por 3.
- 1. Prova: Supomos a soma de três números inteiros.
- 2. Então, n+(n+1)+(n+2), com $n\in\mathbb{Z}$.
- 3. Assim, n + (n+1) + (n+2) = (n+n+n) + (1+2), associativamente.
- 4. Logo, n + (n+1) + (n+2) = (3n) + 3.
- 5. Logo, n + (n+1) + (n+2) = 3(n+1).
- 6. Então, n + (n+1) + (n+2) = 3k, tal que k = (n+1) e $k \in \mathbb{Z}$.
- 7. Portanto, a soma de três números inteiros consecutivos é divisível por 3.
- E) Se n^2 é impar então n é impar.
- 1. Prova: Suponha que n é par.
- 2. Logo, n=2k, com $n \in k \in \mathbb{Z}$
- 3. Então, $n^2 = (2k)^2$.
- 4. Assim, $n^2 = (2k \cdot 2k)$.
- 5. Onde, $n^2 = 2(2 \cdot k^2)$.
- 6. Sendo, $n^2 = 2c$, com $c = (2 \cdot k^2)$ e $c \in \mathbb{Z}$.
- 7. Portanto, n^2 também é par. Provando por contraposição que se n^2 é ímpar então n também será ímpar.

- F) Se $x \cdot y$ é impar então x e y são ambos impares.
- 1. Prova: Supomos que x e y são pares.
- 2. Logo, x=2k e y=2k', com x,y,k e $k'\in\mathbb{Z}$.
- 3. Então, $x \cdot y = 2k \cdot 2k'$.
- 4. Logo, $x \cdot y = (2 \cdot 2) \cdot (k \cdot k')$.
- 5. Assim, $x \cdot y = 2(2 \cdot k \cdot k')$.
- 6. Onde, $x \cdot y = 2c$, tal que $c = (2 \cdot k \cdot k')$ e $c \in \mathbb{Z}$.
- 7. Portanto $x \cdot y$ também é par. Então, por contraposição, temos que se o resultado de $x \cdot y$ é ímpar, logo x e y também são ambos ímpares.

G) Inteiros consecutivos não podem ser ambos pares.

- 1. Prova: Supomos que inteiros consecutivos são pares.
- 2. Então, n=2k e (n+1)=2k', com n,k e $k'\in\mathbb{Z}$.
- 3. Logo, n = 2k e ((2k) + 1) = 2k', substituindo.
- 4. Assim, (2k+1) = 2k'.
- 5. Onde temos uma contradição; já que um número par não pode ser um número ímpar.

II) Prove usando indução matemática que:

- A) $1 + 3 + 5 + ... + (2n 1) = n^2$.
- 1. Passo básico: $P(n) = n^2$. $P(1) = 1^2 = 1$.
- 2. Hipótese: P(k) é verdadeiro $\forall k \geq 1$ com $k \in \mathbb{Z}$.
- 3. Mostrar que $P(k+1) = 1+3+5+...+(2k-1)+(2(k+1)-1)= \boxed{(k+1)^2}$
- 3.1. P(k+1) = 1+3+5+...+(2k-1)+(2(k+1)-1).
- 3.2. $= k^2 + (2(k+1) 1).$
- 3.3. $= k^2 + (2k + 2 1).$
- 3.4. $= k^2 + 2k + 1$.
- 3.5. $= (k+1)^2$

- B) $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$.
- 1. Passo básico: $P(n) = 2^{n+1} 1$. $P(1) = 2^{1+1} 1 = 2^2 1 = 3 = 1 + 2$.
- 2. Hipótese: P(k) é verdadeiro $\forall k \geq 1$ com $k \in \mathbb{Z}$.
- 3. Mostrar que $P(k+1) = 1 + 2 + 2^2 + ... + 2^n + 2^{n+1} = 2^{(n+1)+1} 1 = 2^{n+2} 1$
- 3.1. $P(k+1) = 1 + 2 + 2^2 + \dots + 2^n + 2^{n+1}$.
- 3.2. $=2^{n+1}-1+2^{n+1}.$
- $=2^{n+1}+2^{n+1}-1.$ 3.3.
- $= 2(2^{n+1}) 1.$ 3.4.
- $=2^{n+1+1}-1.$ 3.5.
- $= 2^{n+2} 1$. 3.6.
- C) $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$.
- 1. Passo básico: $P(n) = \frac{n(n+1)}{2}$. $P(1) = \frac{1(1+1)}{2} = \frac{2}{2} = 1$.
- 2. Hipótese: P(k) é verdadeiro $\forall k \geq 1$ com $k \in \mathbb{Z}$.
- 3. Mostrar que $P(k+1) = 1 + 2 + 3 + \dots + n + (n+1) = \frac{(n+1)((n+1)+1)}{2} = \left| \frac{(n+1)(n+2)}{2} \right|$
- 3.1. $P(k+1) = 1 + 2 + 3 + \dots + n + (n+1)$.
- $=\frac{n(n+1)}{2}+(n+1).$ 3.2.
- $=\frac{n(n+1)+2(n+1)}{2}$. 3.3.
- 3.4. $= \frac{n^2 + n + 2n + 2}{2}.$
- 3.5.
- $= \frac{n^2 + 3n + 2}{2}.$ $= \left\lceil \frac{(n+1)(n+2)}{2} \right\rceil.$ 3.6.
- $\mathtt{D})\mathbf{2}^n > \mathbf{n}.$
- 1. Passo básico: $P(n) = 2^n > n$. $P(1) = 2^1 > 1 = 2 > 1$.
- 2. Hipótese: $P(k) = 2^k > k$. $\forall k \ge 1$ com $k \in \mathbb{Z}$.
- 3. Mostrar que $P(k+1) = 2^{k+1} > (k+1)$
- 3.1. $P(k) = 2^k > k$.
- 3.2. $= 2 \cdot 2^k > 2 \cdot k$.
- 3.3. $= 2^{k+1} > k + k$.
- 3.4. $= 2^{k+1} > (k+1)$, já que $k \ge 1$.

$E)2^{2n}$ - 1 é divisível por 3.

- 1. Passo básico: $P(n) = 2^{2n} 1$; $P(1) = 2^{2 \cdot (1)} 1 = 4 1 = 3$; $\frac{3}{3} = 1$.
- 2. Hipótese: $P(k) = 2^{2k} 1 = 3b$, $\forall b, k \ge 1 \in \mathbb{Z}$.
- 3. Mostrar que $P(k+1) = 2^{2(k+1)} 1 = 3c$, com $c \in \mathbb{Z}$.
- 3.1. $P(k+1) = 2^{2(k+1)} 1$.
- $3.2. = 2^{2k+2} 1.$
- 3.3. $= 2^{2k} \cdot 2^2 1.$
- 3.4. $= 2^{2k} 1 \cdot 2^2.$
- 3.5. $= 3b \cdot 2^2$, da nossa hipótese indutiva.
- 3.6. $= 3b \cdot 2 \cdot 2$.
- 3.7. $= 3(b \cdot 2 \cdot 2).$
- 3.6. = 3c, com $c = (b \cdot 2 \cdot 2)$.

F) $n^2 > 3n$ para $n \ge 4$.

- 1. Passo básico: $P(n) = n^2 > 3n$; $P(4) = 4^2 > 3(4) = 16 > 12$.
- 2. Hipótese: $P(k) = k^2 > 3k$, $\forall k \ge 4$ com $k \in \mathbb{Z}$.
- 3. Mostrar que $(k+1)^2 > 3(k+1)$
- 3.1. $P(k+1) = (k+1)^2$.
- 3.2. $= k^2 + 2k + 1.$
- 3.3. > 3k + 2k + 1, pela hipótese da indução.
- 3.4. $\geq 3k + 8 + 1$, pois $k \geq 4$.
- 3.5. $\geq 3k + 9$.
- 3.6. > 3k + 9 6.
- 3.7. > 3k + 3.
- 3.8. > 3(k+1)

- G) $2^{n+1} < 3^n$ para n > 1.
- 1. Passo básico: $P(n) = 2^{n+1} < 3^n$; $P(2) = 2^{2+1} < 3^2 = 2^3 < 3^2 = 8 < 9$.
- 2. Hipótese: $P(k) = 2^{k+1} < 3^k$, $\forall k > 1 \in \mathbb{Z}$.
- 3. Mostrar que $P(k+1) = 2^{(k+1)+1} < 3^{k+1} = 2^{k+2} < 3^{k+1}$
- 3.1. $P(k) = 2^{k+1} < 3^k$.
- $3.2 = 2 \cdot 2^{k+1} < 2 \cdot 3^k.$
- $3.3 \qquad = 2^{k+1+1} < 3^{k+1}$
- $3.4 \qquad = \boxed{2^{k+2} < 3^{k+1}}.$
- H) $\mathbf{1}^3 + \mathbf{2}^3 + \mathbf{3}^3 + \dots \mathbf{n}^3 = \frac{n^2(n+1)^2}{4}$.
- 1. Passo básico: $P(n) = \frac{n^2(n+1)^2}{4}$; $P(1) = \frac{1^2(1+1)^2}{4} = \frac{1(2)^2}{4} = \frac{4}{4} = 1$.
- 2. Hipótese: $P(k) = \frac{k^2(k+1)^2}{4}$ é verdadeiro $\forall k \geq 1$.
- 3. Mostrar que $P(k+1)=1^3+2^3+3^3+\dots$ $k^3+(k+1)^3=\frac{(k+1)^2((k+1)+1)^2}{4}=\frac{(k+1)^2(k+2)^2}{4}$.
- 3.1. $P(k+1) = 1^3 + 2^3 + 3^3 + \dots k^3 + (k+1)^3$.
- $=\frac{k^2(k+1)^2}{4}+(k+1)^3$, pela hipótese indutiva. 3.2.
- $= (k+1)^2(\frac{k^2}{4} + k + 1).$ 3.3
- 3.4
- $= (k+1)^{2} \left(\frac{k^{2}+4k+4}{4}\right).$ $= \left[\frac{(k+1)^{2} \cdot (k+2)^{2}}{4}\right].$ 3.5