דף סיכום של סדרות וטורים

סדרות

 $(a_n)_{n=1}^{\infty} = \{a_1, a_2, a_3, \ldots\}.$

 $a_n \leq M$

 $a_n \ge m$

 $|a_n| < K$

סדרה היא רשימה מסודרת של מספרים ממשיים:

$a_1 = 1, a_2 = 1, a_3 = 1, \dots$	$a_n = 1$	סדרה קבועה:
$a_1 = 1, a_2 = 2, a_3 = 3, \dots$	$a_n = n$	
$a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}, \dots$	$a_n = \frac{1}{n}$	הסדרה ההרמונית:
$a_1 = -1, a_2 = 1, a_3 = -1, \dots$	$a_n = (-1)^n$	
$a_1 = -\frac{1}{2}, a_2 = \frac{1}{5}, a_3 = -\frac{1}{10}, \dots$	$a_n = \frac{(-1)^n}{n^2 + 1}$	

 $|a_n-L|<\epsilon$ מתקיים, n>N כך שלכל אכל אם לכל אם לכל ($(a_n)_{n=1}^\infty$ אם אם הוא הגבול אל הוא הגבול א $L = \lim_{n \to \infty} a_n$:סימון

> אם הגבול של (a_n) קיים אז אומרים כי הסדרה מתכנסת. אם הגבול של (a_n) לא קיים אז אומרים כי הסדרה מתבדרת.

מתבדרת
$$(-1)^n$$
 מתבדרת $(-1)^n$ $\lim_{n \to \infty} \frac{n}{n+1} = 1$ $\lim_{n \to \infty} \frac{1}{n} = 0$

יחידות של גבול: אם לסדרה קיים גבול אז הוא יחיד.

 $c\in\mathbb{R}$ ונתון $\lim_{n o\infty}b_n=B$, $\lim_{n o\infty}a_n=A$ אריתמטיקה / אשר גבולות: נתון סדרות מחון סדרות a_n,b_n אריתמטיקה

$$\lim_{n\to\infty} (c\cdot a_n) = c\cdot \lim_{n\to\infty} (a_n) = c\cdot A . 1$$

.
$$\lim_{n\to\infty} (a_n\pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = A\pm B$$
 .2

$$\lim_{n\to\infty}\left(a_n\cdot b_n\right)=\left(\lim_{n\to\infty}a_n\right)\cdot\left(\lim_{n\to\infty}b_n\right)=A\cdot B \ .3$$

$$\lim_{n \to \infty} \left(rac{a_n}{b_n}
ight) = rac{\lim\limits_{n \to \infty} a_n}{\lim\limits_{n \to \infty} b_n} = rac{A}{B}$$
 אם $B
eq 0$ (ולכן $B \neq 0$ עבור $B \neq 0$ עבור $B \neq 0$ אם 4.4

 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$ סדרות כך ש סדרות ($(c_n)_{n=1}^\infty$, $(b_n)_{n=1}^\infty$, $(a_n)_{n=1}^\infty$, $(a_n)_{n=1}^\infty$ (squeeze theorem) כלל הסנדוויץ' . $\lim_{n \to \infty} b_n = L$ אז $a_n \le b_n \le c_n$ מתקיים n > N אז רך שלכל אם קיים N

סדרות חסומות:

מתקיים n כך שלכל $M\in\mathbb{R}$ כיים קיים מלמעלה מתקיים מתקיים

תקרא חסם עליון של הסדרה. M

סומה מלמטה אם קיים $m\in\mathbb{R}$ כך שלכל n מתקיים $(a_n)_{n=1}^\infty$

תקרא חסם תחתון של הסדרה. m

 $(a_n)_{n=1}^\infty$ כך שלכל K>0 משומה אם היא חסומה מלמעלה וגם מלמטה. כלומר אם קיים כל מספר K כזה נקרא חסם מוחלט.

מונוטוניות:

מתקיים $n \geq N$ מתקיים אם קיים אם מונוטונית עולה מונוטונית עולה אם מונוטונית מונוטונית מונוטונית אם מחדיים $a_{n+1} \geq a_n$

מתקיים $n \geq N$ מונוטונית עולה ממש אם קיים אם מונוטונית מונוטונית ($a_n)_{n=1}^\infty$ $.a_{n+1} > a_n$

מתקיים $n \geq N$ מונוטונית אם קיים אם מונוטונית מונוטונית ($a_n)_{n=1}^\infty$ $a_{n+1} \leq a_n$

 $.a_{n+1} < a_n$

מתקיים $n \geq N$ מונוטונית יורדת ממש אם קיים N כך שלכל $(a_n)_{n=1}^\infty$

. מונוטונית אם היא מונוטונית עולה או יורדת $(a_n)_{n=1}^\infty$

מונוטונית ממש או יורדת ממש או היא מונוטונית ממש או יורדת ממש ($a_n)_{n=1}^\infty$

$$.2^{n-1} \leq n! \leq n^n$$
 $:n \geq 1$ לכל $.2^n \leq n! \leq n^n$ $:n \geq 3$ לכל לכל לכל איי

$$.2^n < n! < n^n$$
 : $n > 3$

גבול של סדרה שווה לגבול של הפונקציה:

. שלם. $a_n=f(n)$ סדרה ו- $a_n=f(n)$ כאשר כאשר $\lim_{n\to\infty}a_n=L$ אז ווה $\lim_{x\to\infty}f(x)=L$ פונקציה. אם $f:[1,\infty)\to\mathbb{R}$

מונוטוניות של סדרה והפוקנציה:

תהי $a_n=f(n)$ אז גם (עולה או מונוטונית (עולה f(x) מונוטונית פונקציה. אם $f:[1,\infty) o \mathbb{R}$ יורדת בהתאמה).

אם סדרה מתכנסת אז היא חסומה.

אם סדרה חסומה ומונוטונית אז היא מתכנסת.

$$\lim a_n=0 \quad \Leftrightarrow \quad \lim |a_n|=0 \qquad \qquad :0$$
 סדרה שואפת ל- 0 אם ורק אם הערך מוחלט שואף ל-

סדרות שימושיות:

L מתכנסת למספר סופי	חסומה	מונוטונית	יורדת	עולה	סדרה
√ ←	×	✓	\checkmark	✓	$a_n = 1$
× ⇐	×	√	×	\checkmark	$a_n = n$
√ ←	√	✓	√	×	$a_n = \frac{1}{n}$
× ←	✓	×	×	×	$a_n = (-1)^n$
× ←	√	×	×	×	$a_n = \frac{(-1)^n}{n^1 + 1}$
√ ←	√	√	×	✓	$a_n = 1 - \frac{1}{n}$

. הפרש הסדרה d -ו איבר הראשון ו- a_1 כאשר $a_1 = a_1 + (n-1)d$ הפרש הסדרה סדרה

$$\sum\limits_{n=1}^{N}a_{n}=rac{1}{2}\left(a_{1}+a_{N}
ight)=rac{1}{2}\left(2a_{1}+\left(N-1
ight)d
ight).$$
 כנום של סדרה חשבונית:

סדרה. מנת הסדרה מנדסית: $a_n=a_1q^{n-1}$ כאשר מיבר הראשון ו- $a_n=a_1q^{n-1}$

$$\sum_{n=1}^{N} a_n = rac{a_1 \left(1 - q^N
ight)}{1 - a}$$
 :יסנום של סדרה חנדסית:

טורים חיוביים

 $\displaystyle\lim_{n o\infty}a_n=0$ אזי מתכנס, מתכנס, אזי הכרחי להתכנסות טור: אם הטור אם הטור

 $\sum\limits_{k=1}^{\infty}a_{k}$ אז הטור אוווי מספיק להתבדרות טור: אם מספיק להתבדרות טור

:0 -שואף ל- מוחלט שואף ל- סדרה שואפת ל- סדרה שואף ל-

 $\lim_{n \to \infty} a_n = 0 \quad \Leftrightarrow \quad \lim_{n \to \infty} |a_n| = 0$

אריתמטיקה / חשבון של טורים:

יהי
$$\sum\limits_{n=1}^{\infty}c\cdot a_n$$
 מתכנס אז מתכנס . $c
eq 0\in\mathbb{R}$ יהי

אם
$$\sum\limits_{n=1}^{\infty}c\cdot a_n$$
 מתבדר אז $\sum\limits_{n=1}^{\infty}a_n$

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n.$$

. אם $\sum\limits_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ אז מתכנסים, אז $\sum\limits_{n=1}^{\infty}b_{n}$ -ו $\sum\limits_{n=1}^{\infty}a_{n}$ מתכנס

$$\sum\limits_{n=1}^{\infty}\left(a_{n}+b_{n}
ight)=\sum\limits_{n=1}^{\infty}a_{n}+\sum\limits_{n=1}^{\infty}b_{n}.$$
 מתקיים

אם (ואומרים כי הטור מתכנס החלט). מתכנס אז $\sum\limits_{n=0}^{\infty}a_{n}$ מתכנס אם מתכנס אם אם

מבחן האינטגרל להתכנסות של טורים חיוביים:

x>1 אם חיובית ומונוטונית יורדת לכל

$$\int_1^\infty dx\, f(x) \le S \le \int_1^\infty dx\, f(x) + f(1)$$
 מתכנס אז $S = \sum\limits_{k=1}^\infty f(k)$ מתבדר אז $\int_1^\infty dx\, f(x)$ מתבדר אם $\int_1^\infty dx\, f(x)$ מתבדר אז $\int_1^\infty dx\, f(x)$

התכנסות של טור ההרמוניה הכללי:

$$\sum_{n=0}^{\infty} rac{1}{n^k} egin{cases} k>1 & n \\ k\leq 1 & n \end{cases}$$
מתבדר

 $n\geq k$ לכל $a_n\leq b_n$ -שיות כך ש- b_n , סדרות סדרות היוו יהיו $\sum_{n=1}^\infty a_n$ מתכנס אז מתכנס.

. אם $\sum\limits_{n=1}^{\infty}b_{n}$ מתבדר אז $\sum\limits_{n=1}^{\infty}a_{n}$ אם

מבחן השוואה הגבולי: $\lim_{n\to\infty}\frac{a_n}{b_n}=L\neq 0 \,\,\text{-w.}$ יהיו b_n סדרות חיוביות כך ש b_n , a_n

אז $\sum\limits_{n=0}^{\infty}b_n$ מתכנס אם ורק אם מתכנס, מתכנס,

ו-, מתבדר אס $\sum\limits_{n=0}^{\infty}b_{n}$ אס מתבדר אס ורק אס מתבדר ה

 $q=\lim_{n o\infty}rac{a_{n+1}}{a_n}$ וקיים הגבול ו $\sum_{k=0}^\infty a_k$ מבחן דלמבר: נתון הטור

. אם q=1 המבחן אם נותן מתסנס. אם q>1 הטור מתסנס. אם q<1

 $q=\lim_{n o\infty}\left(a_{n}
ight)^{1/n}$ מבחן קושי: נתון הטור $\sum\limits_{n o\infty}a_{k}$ וקיים הגבול

אם q < 1 המבחן לא נותן תשובה. אם q > 1 המבחן אם מתסנס. אם q < 1

טור כללי

התכנסות של טורים כלליים: $\sum_{k=1}^\infty a_k \text{ מתכנס, ואומרים שהטור} \sum_{k=1}^\infty a_k$ מתכנס אז מתכנס או בהחלט $\sum_{k=1}^\infty a_k$ מתכנס אז מתכנס או בהחלט היים שהטור אם ואומרים בהחלט

.(Leibinz) אם $\sum\limits_{n=1}^{\infty}a_k$ מתבדר אבל ווו $\lim\limits_{n\to\infty}|a_n|=0$ אם אם המוד אם ווווווות אם $\sum\limits_{k=1}^{\infty}|a_k|$

.(conditionally convergent) מתכנס בתנאי $\sum\limits_{n=1}^\infty a_n$ מתכנס, אומרים שהטור $\sum\limits_{n=1}^\infty a_n$ מתבדר אבל הטור $\sum\limits_{n=1}^\infty a_n$

: נתון טור מחליף סימן אם הסדרה הסדרה אם הסדרה מקיימת את התנאים הבאים: (Leibniz) מבחן לייבניץ (בוון טור מחליף סימן

. אז הטור מתכנס, $\lim_{n \to \infty} a_n = 0$ (3) מונוטונית יורדת, $\{a_n\}$ (2) הטור (1)

טור חזקות

 $\sum_{n=1}^{\infty}a_nx^n$ טור חזקות הוא טור מצורה:

-R < x < R לכל מתכנס התכנסות: לכל טור חזקות $R \geq 0$ עבורו אור לכל לכל x<-R ומתבדר לכל x>R

נוסחת דלמבר לרדיוס התכנסות:

 $R = \lim_{n \to \infty} \left(\frac{1}{a_{-}}\right)^{1/n}.$ נוסחת קושי לרדיוס התכנסות:

 $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$