EECE 629 – MACHINE PATTERN RECOGNITION (Fall 2017)

Assignment #3

Due Date: 10/31/2017 (Tuesday)

Note: This is an individual assignment, no group submission is accepted.

1. Suppose in a c-category supervised learning environment we sample the full distribution $p(\mathbf{x})$ and subsequently train a PNN classifier according to Algorithm 1.

Algorithm 1 (PNN training)

1 begin initialize
$$j = 0, n = \#$$
patterns
2 do $j \leftarrow j + 1$

3 normalize: $x_{jk} \leftarrow x_{jk} / \left(\sum_{i}^{d} x_{ji}^{2}\right)^{1/2}$
4 train: $w_{jk} \leftarrow x_{jk}$
5 if $x \in \omega_i$ then $a_{ic} \leftarrow 1$
6 until $j = n$

- a. Show that even if there are unequal category priors and hence unequal numbers of points in each category, the recognition method properly accounts for such priors.
- b. Suppose we have trained a PNN with the assumption of equal category priors, but later wish to use it for a problem having the cost matrix λ_{ij} , representing the cost of choosing category ω_i when in fact the pattern came from ω_j . How should we do this?
- c. Suppose instead we know a cost matrix λ_{ij} before training. How shall we train a PNN for minimum risk?
- 2. Consider the following set of two-dimensional vectors from three categories:

u	⁾ 1	μ	$^{\prime}2$	ω_3		
x_1	x_2	x_1	x_2	x_1	x_2	
10	0	5	10	2	8	
0	-10	0	5	-5	2	
5	-2	5	5	10	-4	

- a. Plot the decision boundary resulting from the nearest-neighbor rule just for categorizing ω_1 and ω_2 . Find the sample means \mathbf{m}_1 and \mathbf{m}_2 and on the same figure sketch the decision boundary corresponding to classifying \mathbf{x} by assigning it to the category of the nearest sample mean.
- b. Repeat (a) for categorizing only ω_1 and ω_3 .
- c. Repeat (a) for categorizing only ω_2 and ω_3 .
- d. Repeat (a) for a three-category classifier, classifying ω_1 , ω_2 , and ω_3 .

3. Computer Problem.

	ω_1			ω_2			ω_3		
sample	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	0.28	1.31	-6.2	0.011	1.03	-0.21	1.36	2.17	0.14
2	0.07	0.58	-0.78	1.27	1.28	0.08	1.41	1.45	-0.38
3	1.54	2.01	-1.63	0.13	3.12	0.16	1.22	0.99	0.69
4	-0.44	1.18	-4.32	-0.21	1.23	-0.11	2.46	2.19	1.31
5	-0.81	0.21	5.73	-2.18	1.39	-0.19	0.68	0.79	0.87
6	1.52	3.16	2.77	0.34	1.96	-0.16	2.51	3.22	1.35
7	2.20	2.42	-0.19	-1.38	0.94	0.45	0.60	2.44	0.92
8	0.91	1.94	6.21	-0.12	0.82	0.17	0.64	0.13	0.97
9	0.65	1.93	4.38	-1.44	2.31	0.14	0.85	0.58	0.99
10	-0.26	0.82	-0.96	0.26	1.94	0.08	0.66	0.51	0.88

Consider *k*-nearest-neighbor density estimations in different numbers of dimensions.

- a. Write a program to find the k-nearest-neighbor density for n (unordered) points in one dimension. Use your program to plot such a density estimate for the x_1 values in category ω_3 in the table above for k = 1, 3, and 5.
- b. Write a program to find the *k*-nearest-neighbor density estimate for *n* points in two dimensions. Use your program to plot such a density estimate for the $(x_1, x_2)^t$ values in ω_2 for k = 1, 3, and 5.
- c. Write a program to find the k-nearest-neighbor density estimate for the three-dimensional data from the three categories in the table above. Use your program with k = 1, 3, and 5 to estimate the relative densities at the following points: $(-0.41, 0.82, 0.88)^t$, $(0.14, 0.72, 4.1)^t$, and $(-0.81, 0.61, -0.38)^t$.