Algorithms and Their Applications - Greedy Algorithms -

Won-Yong Shin

May 25th, 2020

- Greedy technique
 - Constructs a solution to an *optimization problem* piece by piece through a sequence of choices that are:
 - Feasible
 - Locally optimal
 - *Irrevocable* (i.e., once made, it cannot be changed on subsequent steps)
 - For some problems, yields an **optimal solution** for every instance
 - For most, *does not* but can be useful for fast approximations

Applications of the Greedy Strategy

- *Optimal* solutions:
 - Change making for "normal" coin denominations
 - Minimum spanning tree (MST)
 - Single-source shortest paths
 - Simple scheduling problems

• Approximations:

- Traveling salesman problem (TSP)
- Knapsack problem
- Other combinatorial optimization problems

Toy Example: Change-Making Problem

- Change-making problem
 - Given unlimited amounts of coins of denominations $d_1 > d_2 \dots > d_m$, give change for amount n with the *least number* of coins
- Example
 - d_1 = 25 (quarter), d_2 = 10 (dime), d_3 = 5 (nickel), d_4 = 1 (penny) and n = 48
 - Greedy solution:
 - 1 quarter, 2 dimes, and 3 pennies
- Greedy solution is
 - optimal for "normal" set of denominations
 - <u>may not</u> be optimal for arbitrary coin denominations
 - E.g., $d_1 = 25$, $d_2 = 10$, $d_3 = 1$ and n = 30

- Spanning tree of an undirected connected graph G
 - A connected *acyclic* subgraph of *G* that includes **all of** *G*'s **vertices**
- Minimum spanning tree (MST) of a weighted, connected graph G
 - A spanning tree of *G* of **minimum** total weight
 - E.g., telecommunications in cable-line infrastructure
- Example:

- Two algorithms for finding an MST for a weighted graph
 - Prim's algorithm
 - Kruskal's algorithm

Operations:

- Start with tree T_1 consisting of *one* (any) vertex and "grow" tree *one vertex at a time* to produce MST through a series of expanding subtrees $T_1, T_2, ..., T_n$
- On each iteration, construct T_{i+1} from T_i by adding vertex not in T_i that is closest to those already in T_i (this is a "greedy" step!)
- Stop when **all vertices** are included
- Correctness proof (by induction)
 - Does Prim's algorithm always yield an MST? yes
 - Basis of the induction: T_0 consists of a single vertex
 - Inductive step:
 - Assume that T_{i-1} is a part of some MST
 - Start from contradiction
 - A cycle must be formed by adding e_i

Example of Prim's Algorithm (1/3)

Tree vertices

Remaining vertices

$$a(-, -)$$

b(**a**, **3**)
$$c(-, \infty)$$
 $d(-, \infty)$ $e(a, 6)$ $f(a, 5)$

5

$$c(b, 1) d(-, \infty) e(a, 6)$$

f(b, 4)

5

8

Example of Prim's Algorithm (2/3)

Tree vertices Remaining vertices

c(b, 1)

d(c, 6) e(a, 6) f(b, 4)

f(b, 4) d(f, 5) e(f, 2)

e(f, 2) d(f, 5)

d(f, 5) cf. priority queue

Prim's Algorithm – Time Efficiency (1/2)

- Assumption 1
 - The case where a graph is represented by its weight matrix the priority queue is implemented as an *unordered* array

Efficiency: $\Theta(|V|^2)$

Prim's Algorithm – Time Efficiency (2/2)

- Assumption 2
 - The case where a graph is represented by its adjacency lists the priority queue is implemented as a *min-heap*

```
MST-PRIM(G, w, r)
    for each u \in G.V
         u.key = \infty
         u.\pi = NIL
                                                   O(V)
   r.key = 0
    Q = G.V
                                                                                 Binary min-heap
    while Q \neq \emptyset
                                                   O(V \log V)
         u = \text{EXTRACT-MIN}(Q)
 8
         for each v \in G.Adj[u]
                                                  O(E \log V)
             if v \in Q and w(u, v) < v.key
 9
10
                  v.\pi = u
11
                  v.kev = w(u, v)
```

Efficiency: $(|V| - 1 + |E|) O(\log |V|) = O(|E| \log |V|)$

Using min-heap in Prim's Algorithm

Step 3

Step 2

Step 4

Operations:

- Sort the *edges in nondecreasing order* of lengths
- "Grow" tree *one edge at a time* to produce MST through a series of expanding forests $F_1, F_2, ..., F_{n-1}$
- On each iteration, add the next edge on the sorted list unless this would create a cycle
- (If it would, skip the edge)

Observation

A new cycle is created iff the new edge connects two vertices already connected by a path (i.e., the two vertices belong to the same connected component)

Creating a cycle

Not creating a cycle

Example of Kruskal's Algorithm (1/3)

Tree edges

Sorted list of edges

bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

bc 1 bc **ef** ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8

Example of Kruskal's Algorithm (2/3)

Tree edges Sorted list of edges bc ef **ab** bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8 ef 2 bc ef ab **bf** cf af df ae cd de 1 2 3 4 4 5 5 6 6 8 ab 3 bc ef ab bf cf af **df** ae cd de 1 2 3 4 4 5 5 6 6 8 bf 4

df 5

Example of Kruskal's Algorithm (3/3)

Notes About Kruskal's Algorithm

- Some notes
 - Algorithm looks easier than Prim's but is harder to implement (checking for cycles!)
 - Cycle checking
 - *Union-find* algorithms
 - Check whether two vertices belong to the same tree

subset representatives	
element index	representative
1	1
2	1
3	3
4	1
5	1
6	3

Shortest Paths - Dijkstra's algorithm

- Single source shortest paths problem
 - Given a weighted connected graph *G*, find shortest paths from source vertex *s* to each of the other vertices
- <u>Dijkstra's algorithm</u>
 - Similar to Prim's MST algorithm, with a different way of computing numerical labels
 - Among vertices not already in the tree, it finds vertex u with the smallest sum $d_v + w(v,u)$
 - *v* is a vertex for which shortest path has been already found on preceding iterations (such vertices form a tree)
 - d_v is the length of the shortest path form **source** to v
 - w(v,u) is the length (weight) of edge from v to u

Example of Dijkstra's Algorithm (1/2)

Tree vertices

Remaining vertices

$$a(-, 0)$$

b(**a**, **3**) c(-,
$$\infty$$
) d(a, 7) e(-, ∞)

$$c(b, 3+4) d(b, 3+2) e(-, \infty)$$

Example of Dijkstra's Algorithm (2/2)

Tree vertices

Remaining vertices

$$c(b, 7) e(d, 5+4)$$

 $e(d,\,9)$

Dijkstra's Algorithm – Time Efficiency

- Assumption 1
 - The case where a graph is represented by its weight matrix and the priority queue is implemented as an *unordered* array
 - Efficiency: $\Theta(|V|^2)$
- Assumption 2
 - The case where a graph is represented by its adjacency lists the priority queue is implemented as a *min-heap*
 - **Efficiency:** $(|V| 1 + |E|) O(\log |V|) = O(|E| \log |V|)$