NUMBER THEORY handout 1 answers

$$\log_A(Rhythm)$$

August 22, 2023

§1 Problems

Problem 1.1 (2020 AIME II P.1). Find the number of ordered pairs of positive integers (m, n) such that $m^2 n = 20^{20}$.

answer. 231

Because $20^{20} = 2^{40}5^{20}$ (Prime factorisation), if $m^2n = 20^{20}$, there must be nonnegative integers a, b, c, and d such that $m = 2^a5^b$ and $n = 2^c5^d$. Then

$$2a + c = 40$$

and

$$2b + d = 20$$

The first equation has 21 solutions corresponding to a = 0, 1, 2, ..., 20, and the second equation has 11 solutions corresponding to b = 0, 1, 2, ..., 10. Therefore there are a total of $21 \cdot 11 = 231$ ordered pairs (m, n) such that $m^2 n = 20^{20}$.

Problem 1.2 (2019 AIME I P.1). Consider the integer

$$N = 9 + 99 + 999 + 9999 + \dots + \underbrace{99\dots99}_{321 \text{ digits}}.$$

Find the sum of the digits of N.

answer. 342

Write

$$N = (10 - 1) + (10^{2} - 1) + \dots + (10^{321} - 1)$$

$$= 10 + 10^{2} + 10^{3} + 10^{4} + 10^{5} + 10^{6} + \dots + 10^{321} - 321$$

$$= 1110 - 321 + 10^{4} + 10^{5} + 10^{6} + \dots + 10^{321}$$

$$= 789 + 10^{4} + 10^{5} + 10^{6} + \dots + 10^{321}$$

The sum of the digits of N is therefore equal to 7 + 8 + 9 + (321 - 3) = 342.

Problem 1.3 (1995 AIME P.6). Let $n = 2^{31}3^{19}$. How many positive integer divisors of n^2 are less than n but do not divide n?

answer. 589

We know that $n^2 = 2^{62}3^{38}$ must have $(62+1) \times (38+1)$ factors by its prime factorization. If we group all of these factors (excluding n) into pairs that multiply to n^2 , then one factor per pair is less than n, and so there are $\frac{63 \times 39 - 1}{2} = 1228$ factors of n^2 that are less than n. There are $32 \times 20 - 1 = 639$ factors of n, which clearly are less than n, but are still factors of n. Therefore, using complementary counting, there are $1228 - 639 = \boxed{589}$ factors of n^2 that do not divide n.

Problem 1.4 (2021 DIME P.1). Find the remainder when the number of positive divisors of the value

$$(3^{2020} + 3^{2021})(3^{2021} + 3^{2022})(3^{2022} + 3^{2023})(3^{2023} + 3^{2024})$$

is divided by 1000.

answer. 783

Let x be equal to 3^{2020} . Thus $(3^{2020} + 3^{2021})(3^{2021} + 3^{2022})(3^{2022} + 3^{2023})(3^{2023} + 3^{2024})$ is equal to (x + 3x)(3x + 9x)(9x + 27x)(27x + 81x), or

$$(3+1)x \cdot (3+9)x \cdot (9+27)x \cdot (27+81)x = 4 \cdot 12 \cdot 36 \cdot 108 \cdot 3^{8080}.$$

Finding the prime factorization of our expression gives

$$4 \cdot 12 \cdot 36 \cdot 108 \cdot 3^{8080} = 2^2 \cdot (2^2 \cdot 3) \cdot (2^2 \cdot 3^2) \cdot (2^2 \cdot 3^3) \cdot 3^{8080} = 2^8 \cdot 3^{8086}$$

For each divisor, we can choose a power of 2 from 0 to 8 and a power of 3 from 0 to 8086, so there are (8+1)(8086+1) divisors of $2^8 \cdot 3^{8086}$. Thus our answer is congruent to

$$9 \cdot 8087 \equiv 9 \cdot 87 \equiv \boxed{783} \pmod{1000}.$$

Problem 1.5 (2023 MBMT P.7). What is the largest integer n such that 3^n is a factor of 18! + 19! + 20!?

answer. 8

We first notice that each of the terms is divisible by 18! so we can factor it out. This gives us $18! + 19! + 20! = 18!(1 + 19 + 19 \cdot 20) = 18! \cdot (400)$. 400 has no factors of 3, so we just count the factors of 3 in 18!. There is 1 factor of 3 from 3, 6, 12, 15, and 2 factors of 3 from 9, 18. This adds to a total of 8 factors of 3, thus the answer is 8. \Box

Problem 1.6 (2022 BMT P.2). Compute the number of positive integer divisors of 100000 which do not contain the digit 0.

answer. 11

Note that $100000 = 2^5 \cdot 5^5$. Any multiple of 10 ends in a 0, so a divisor of $2^5 \cdot 5^5$ that does not contain a 0 is either not divisible by 2 or not divisible by 5. We consider the cases separately.

- A divisor of $2^5 \cdot 5^5$ that is not divisible by 5 will not contain the prime factor 5, and thus it is either 1 or only contains the prime factor 2, so it must be a power of 2. The powers of 2 up to 25 are 1, 2, 4, 8, 16, and 32.
- A divisor of $2^5 \cdot 5^5$ that is not divisible by 2 will not contain the prime factor 2, so it is either 1 or only contains the prime factor 5, and thus it must be a power of 5. The powers of 5 up to 5^5 are 1, 5, 25, 125, 625, and 3125.

Since 1 appears in both lists, the total number of divisors of $2^5 \cdot 5^5$ that do not contain a 0 is 6+6-1=11.

Problem 1.7 (2022 IOQM P.6). Let a, b be positive integers satisfying $a^3 - b^3 - ab = 25$. Find the largest possible value of $a^2 + b^3$.

answer. 43

$$a^{3} - b^{3} - ab = 25$$

$$a^{3} - b^{3} = 25 + ab$$

$$(a - b)(a^{2} + ab + b^{2}) = 25 + ab$$

$$(a - b)(a^{2} + b^{2}) + (a - b)ab = 25 + ab$$

By observing second term from LHS & RHS we conclude that a-b=1 (a,b)=(4,3) only possible which leads the answer to 43

Problem 1.8 (2007 PAMO P.5). For which positive integers n is $231^n - 222^n - 8^n - 1$ divisible by 2007?

answer. $2007 = 9 \times 223$. So taking mod 9, we have $6^n - 6^n - (-1)^n - 1$. So n is odd. Taking mod 223, we have $8^n - (-1)^n - 8^n - 1$. So n is odd again

Problem 1.9 (1983 AIME P. 8). What is the largest 2-digit prime factor of the integer $n = \binom{200}{100}$?

answer. 61

Expanding the binomial coefficient, we get $\binom{200}{100} = \frac{200!}{100!100!}$. Let the required prime be p; then $10 \le p < 100$. If p > 50, then the factor of p appears twice in the denominator. Thus, we need p to appear as a factor at least three times in the numerator, so 3p < 200. The largest such prime is $\boxed{61}$, which is our answer.

Problem 1.10 (1984 AIME P.2). The integer n is the smallest positive multiple of 15 such that every digit of n is either 8 or 0. Compute $\frac{n}{15}$.

answer. 592

Any multiple of 15 is a multiple of 5 and a multiple of 3.

Any multiple of 5 ends in 0 or 5; since n only contains the digits 0 and 8, the units digit of n must be 0.

The sum of the digits of any multiple of 3 must be divisible by 3. If n has a digits equal to 8, the sum of the digits of n is 8a. For this number to be divisible by 3, a must be divisible by 3. We also know that a > 0 since n is positive. Thus n must have at least three copies of the digit 8.

The smallest number which meets these two requirements is 8880. Thus the answer is $\frac{8880}{15} = \boxed{592}$.