BEST AVAILABLE COPY

実用新案登録願(43)

昭和 54年 10月 17日

特許庁長官殿

1 考案の名称アンデン・キサンリョウアンチソウチ圧電式残量検知装置

2 考 案 者

3 実用新案登録出願人

在 所 大阪府門真市大字門真1006番地名 称 (582)松下電器産業株式会社代表者 山 下 俊 彦

4 代 理 人 〒 571

住 所 大阪府門真市大字門真1006番地

松下電器産業株式会社內/

氏 名 (5971) 弁理士 中 尾 敏 男 (ほか 1名) (

〔連絡先 電話(東京)437-1121 特許分室〕

5 添付書類の目録

(1) 明 細 書/ (2) 図 面/

(3) 委任状

(4) 願書副本

1 通 1 通 1 通

1102/

54 144233

遞

6 前記以外の代理人

低 所 大阪府門真市大字門真1006番地 松下電器産業株式会社内

L 名 (6152) 弁理士 粟 野 重 孝

ゔ

61421

- オ条の名称
 田電式残量検知装置
- 2. 実用新案登録請求の範囲
 - (1) 一面の中央部に圧電磁器板を固定した振動板を、この振動板の基本振動の節部近傍で弾性体を介してケース内壁に固定するとともに、前記ケースの内部に中継板を設け、前記圧電磁器板の電極および振動板を可撓性を有する細いリード線に電気的に接続してなる圧電式残量検知装置。
 - (2) ケースに複数の取付端子を設け、この取付端子を、該取付端子を結ぶ平面がケースの外面より外側に位置するように形成してなる実用新案登録請求の範囲第1項記載の圧電式残量検知装置。
- 3、考案の詳細な説明

本考案は粉体,流体などの残量を検知する圧電 式**獨**量検知装置に関するものであり、出力信号の 温度特性が良好であるとともに、装置の取付状態 が変っても、出力信号変化が小さな圧電式残量検

61021

2

知装置を提供せんとするものである。

従来の残量検知装置(以下センサと呼ぶ)は、 第6図に示すごとく、金属の振動板1の内面に圧 電磁器板2を貼合せ、この振動板1および圧電磁 器板2の表面電極3,3'にリード線5,4,4' をそれぞれ配線した後、ケース6に振動板を固定 している。

ここで、粉体や液体の容器にこのセンサを取り付け、リード線4,4′,5を外部回路と接続して圧電磁器板2に信号を加えると、振動板1を基本を振力で共振させることが出来場所で共振力が振力を拡大を出力電圧しか得られる。とのようにして出力電圧の大小で、ないでは流体の量が減少して振動で振動するため、ないでは流体の最がにして振幅で振動するとが出来る。

ところで従来のセンサにおいて、共振時の振動 板1は第7図に示すごとくケース6への固定部分 が大きく振動するため、振動板 1 をケース 6 に固定しても、振動がケース 6 に伝わりケース 6 を含めたセンサ全体が振動することになる。したがあることになるのかのケース 6 やりース 6 やりのからである 7 をりん 7 をりん

また、ケース6と振動板1の固定は一般に接着 剤が使用されているが、振動板1とケース6との 固定部が大きく振動する場合には、周囲温度が変 化すると接着剤の硬度が変化するため、振動板1 の振動状態が変化して共振周波数や出力電圧が大 きく変化するという不都合があった。

さらに、圧電磁器板2の貼合されている振動板1の中央部は、振動板1の振幅が最大になっているため、リード線4,4′,5が太くて固いと振動が抑制されたり、周囲温度の変化や衝撃等によりリード線が変形すると振動が妨げられて共振周波数や出力電圧が変化するという不都合があった。

4

本考案は以上のような不都合がなく、取付状態 や周囲温度変化等の影響が極めて小さく、安定し た出力信号の得られるセンサを得んとするもので ある。

以下その一実施例を第1図~第4図,第8図を 用いて説明する。

に引き出される。なお、取付端子6'を結ぶ平面は第2のケース6の外面よりも外側に位置するように一段高く構成され、第5図に示すごとく液槽の取付板10に固定された際、取付板10と第2のケース6との間に空隙が存在するよう構成されている。

上記構成により次のような効果が得られる。

1 振動板1が振動の節部近傍で第1のケース 7に固定されており、かつシリコンゴム等の弾 性体9を介して第1のケース7に固定されてい るため、振動板1の振動が第2のケース7に伝 わる度合が非常に少ない。

2 第1のケースでに若干の振動が伝わっても、取付端子 6'-6'を結ぶ平面が第2のケース 6 の外面より外に位置するため、第5図に示すごとくセンサは取付端子 6'以外で取付板10に接触することはなく、したがってセンサの固定状態により共振周波数や出力電圧が変化する度合は従来例に比較して著るしく少なくなる。

3 さらに、振動板1が振動の節部近傍で弾性

6 .

的に固定されているため、周囲温度の変化に伴って振動板1が第1のケース7からストレスを 殆んど受けることがなく、共振周波数や出力電 圧の温度変化が極めて小さい。第8図ィに従来 例の共振周波数の温度特性を示す。また同図ロ に本考案によるセンサの温度特性を示す。

第4図に本考案の一実施例を示す。第1図と同様に、振動板1は振動の節部近傍で弾性体9により第1のケースで保持されるとともに、同様の弾性体11により、第1のケースで保持されている。前記保持体12にはプリント基板2の表面電極3、3が固定され、圧電磁器板2の表面電極3、3が固定され、圧電磁器板2の表面電極3、3が固定され、にかかの直径の・1~0・3 程度の軟銅線のごとき細い可撓性のあるリード線14,14′,15 でこの中継板13に連絡されている。そして、外部引出しリード線4,4′,5 がさらに中継板13に接続される。

以上説明したように本考案によれば、圧電磁器板を固定した振動板を、振動板の基本振動の節部近傍でケース内壁に固定するとともに、ケース内部に中継板を設け、圧電磁器板の表面電極と振動板を細い可撓性を有するリード線にて前記中継板

8

を介して外部引出し用リード線と電気的に接続することにより、振動板の振動がケースに伝わることが殆んどなく、また温度変化に対しても共振周波数や出力電圧が殆んど影響を受けることはなく、さらに圧電磁器板および振動板の振動がリード線により妨げられることもない。

また、ケースに設けた複数の取付端子を、それらを結ぶ面がケース外面に外側に位置するように形成することにより、たとえケースに若干の振動が伝ってもそれが外部に逃げることはなく、したがってセンサの固定状態により共振周波数や出力電圧が変化する度合は著しく少なくなる。

4、図面の簡単な説明

第1図は本考案の基本構成を示す断面図、第2図は第1図に示す圧電式残量検知装置の斜視図、第3図は振動板の振動姿態を示す図、第4図は本考案の一実施例における圧電式残量検知装置の断面図、第5図は同装置の使用状態を示す図、第6図は従来の圧電式残量検知装置の断面図、第7図は従来の振動板の振動姿態を示す図、第8図は本

考案と従来例の温度特性を比較して示す図である。 1 ・・・・・振動板、2・・・・・・圧電磁器板、3,3′ ・・・・・電極、4,4′,5・・・・・外部引出しリード 線、6・・・・・第2のケース、7・・・・・第1のケース、9,11・・・・・弾性体、13・・・・・中継板、 14,14′,15・・・・・可撓性を有する細いリード 線。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 1 図

第 2 図

第 3 図

61421/3

代理人の氏名 弁理士 中 尾 敏 男 ほか1名 第 4 図

第 5 図

6142773

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 6 図

第 7 図

第 8 図

614213/3

代理人の氏名 弁理士 中 局 敏 男 ほか1名

(Translation)

Case: Microfilm of Japanese Utility Model Application No. 144233/1979 (JP U.M. Laid-Open Publication No. 61421/1981)

Title: Piezoelectric Remaining Amount Sensor

Applicant: Matsushita Electric Industrial Co., Ltd., Japan

Claims:

A piezoelectric remaining amount sensor, comprising:
 a vibration plate;

a piezoelectric ceramic plate fixed on a surface of the vibration plate at its center part, the piezoelectric ceramic plate being secured to an inner wall of a case through an elastic body near a fundamental vibration node of the vibration plate; and

a relay plate disposed in the case; wherein

an electrode of the piezoelectric ceramic plate and the vibration plate are electrically connected to an external lead-out wire through the relay plate by a thin, flexible lead wire.

The piezoelectric remaining amount sensor according to claim
 wherein

a plurality of attachment terminals are disposed on the case such that a plane connecting the attachment terminals is disposed outside an outer surface of the case.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.