Jin Gu

Department of Automation, Tsinghua University

Email: jgu@tsinghua.edu.cn Phone: (010) 62794294-866

Chapter 8

Inference as Optimization:

Cluster Graph & Belief Propagation

2021 Fall Jin Gu (古槿)

Outlines

- Variable Elimination (消元法)
 - Simple case: linear chain Bayesian networks
 - VE in complex graphs
 - Inferences in HMMs and linear-chain CRFs
- Exact Inference: Clique Tree
 - Cluster graph and clique tree
 - Message passing: sum product
 - Message passing: belief update
 - Constructing clique tree

Outlines

- From clique tree to loopy cluster graph
- Bethe cluster graph or cluster graph
- Belief propagation as variational inference
- Extensions of belief propagation
 - Generalized belief propagation
 - Convex belief propagation
 - Expectation propagation

—

Symbols

 Φ A set of factors over a set of variables χ

 ψ Potential

 ϕ Factor

τ Auxiliary factor during variable elimination. Also called "message".

U Cluster graph

 C_i A subset $C_i \subseteq \chi$, associated with a cluster/clique node in cluster/clique graph.

 $\alpha(\phi)$ Assignment of a factor to a cluster, for example: $Scope[\phi] \subseteq C_i$

 $S_{i,j} \subseteq C_i \cap C_j$ Sepset associated with edge between C_i and C_j

 \mathcal{T} Cluster tree

 $\delta_{i \to j}(X)$ Message about $X \subseteq \chi$ send from C_i to C_j

 $\beta_i(C_i)$ Belief of clique C_i

 $\mu_{i,j}(S_{i,j})$ Belief of sepset $S_{i,j}$

Chapter 8 Cluster Graph & Belief Propagation

Textbook1

Chapter 9.2-9.3 Variable Elimination

Chapter 10.1-10.3 Clique Tree & Message Passing

Chapter 11.2 Exact Inference as Optimization

Chapter 11.3.1-11.3.3 General Cluster Graph & Message Passing

Chapter 11.3.5 Construction of Cluster Graph

*Chapter 11.3.5 Varational Analysis

Textbook2

Chapter 20 Exact Inference for Graphical Models

Chapter 22 More Variational Inference

Other references

Wainwright MJ, Michael IJ. **Graphical models, exponential families, and variational inference**. *Foundations and Trends*® *in Machine Learning*, 1(1-2):1-305.

$$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$$

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a,b,c,d,e)$$

• By the chain rule for probabilities:

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a,b,c,d,e)$$

$$= \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$

• Rearranging terms ...

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$

$$= \sum_{d} \sum_{c} \sum_{b} P(c|b)P(d|c)P(e|d) \sum_{a} P(a)P(b|a)$$

• Perform the innermost summation

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) \sum_{a} P(a) P(b \mid a)$$

$$= \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b)$$

Rearrange and then sum again

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c | b) P(d | c) P(e | d) p(b)$$

$$= \sum_{d} \sum_{c} P(d | c) P(e | d) \sum_{b} P(c | b) p(b)$$

$$= \sum_{d} \sum_{c} P(d | c) P(e | d) p(c)$$

General Bayesian Networks

Example: a simplified lung disease diagnostic network

- We want to compute P(D)
- Need to eliminate: V,S,X,T,L,A,B

Initial factors

P(V)P(S)P(T|V)P(L|S)P(B|S)P(A|T,L)P(X|A)P(D|A,B)

 $\phi_{V}(V)\phi_{S}(S)\phi_{T}(T,V)\phi_{L}(L,S)\phi_{R}(B,S)\phi_{A}(A,T,L)\phi_{X}(X,A)\phi_{D}(D,A,B)$

- We want to compute P(D)
- Need to eliminate: V,S,X,T,L,A,B

$$\phi_{V}(V)\phi_{S}(S)\phi_{T}(T,V)\phi_{L}(L,S)\phi_{B}(B,S)\phi_{A}(A,T,L)\phi_{X}(X,A)\phi_{D}(D,A,B)$$

Eliminate: V

Compute:

$$\tau_1(T) = \sum_{V} \phi_V(V) \phi_T(T, V)$$

Note: $\tau_1(T) = P(T)$

- We want to compute P(D)
- Need to eliminate: S,X,T,L,A,B

$$\tau_1(T)\phi_S(S)\phi_L(L,S)\phi_B(B,S)\phi_A(A,T.L)\phi_X(X,A)\phi_D(D,A,B)$$

Eliminate: 5

Compute:
$$\tau_2(L,B) = \sum_V \phi_S(S) \phi_L(L,S) \phi_B(B,S)$$

$$\tau_1(T)\tau_2(B,L)\phi_A(A,T.L)\phi_X(X,A)\phi_D(D,A,B)$$

- We want to compute P(D)
- Need to eliminate: X,T,L,A,B

$$\tau_1(T)\tau_2(B,L)\phi_A(A,T.L)\phi_X(X,A)\phi_D(D,A,B)$$

Eliminate: X

Compute:
$$au_3(A) = \sum_X \phi_X(X, A)$$

$$\tau_1(T)\tau_2(B,L)\phi_A(A,T.L)\tau_3(A)\phi_D(D,A,B)$$

Note: $\tau_3(A) = 1$ for all values of A!!

- We want to compute P(D)
- Need to eliminate: T,L,A,B

$$\underline{\tau_1(T)}\tau_2(B,L)\underline{\phi_A(A,T.L)}\tau_3(A)\phi_D(D,A,B)$$

Eliminate: T

Compute:
$$\tau_4(A, L) = \sum_T \tau_1(T) \phi_A(A, T, L)$$

$$\tau_4(A,L)\tau_2(B,L)\tau_3(A)\phi_D(D,A,B)$$

- We want to compute P(D)
- Need to eliminate: *L*,*A*,*B*

Eliminate: L

Compute:
$$\tau_5(A, B) = \sum_L \tau_4(A, L)\tau_2(B, L)$$

- We want to compute P(D)
- Need to eliminate: A,B

$$\tau_5(A,B)\tau_3(A)\phi_D(D,A,B)$$

Compute:
$$\tau_6(B, D) = \sum_{A} \tau_5(A, B) \tau_3(A) \phi_D(D, A, B)$$

- We want to compute P(D)
- Need to eliminate: B

$$\tau_6(B, D)$$

Eliminate: **B**

Compute:
$$\tau_7(D) = \sum_{R} \tau_6(B, D)$$

Note: $\tau_7(D)$ is P(D)

Dealing with Evidence

• How do we deal with evidence?

- Suppose get evidence V = v, S = s, D = d
- We want to compute P(L, V = v, S = s, D = d)

Dealing with Evidence

- Compute P(L, V = v, S = s, D = d)
- Initial factors, after setting evidence:

$$\phi_{V}(V)\phi_{S}(S)\phi_{T}(T,V)\phi_{L}(L,S)\phi_{B}(B,S)\phi_{A}(A,T,L)\phi_{X}(X,A)\phi_{D}(d,A,B)$$

$$\widetilde{\phi}_{V}()\widetilde{\phi}_{S}()\widetilde{\phi}_{T}(T)\widetilde{\phi}_{L}(L)\widetilde{\phi}_{B}(B)\phi_{A}(A, T, L)\phi_{X}(X, A)\widetilde{\phi}_{D}(A, B)$$

• Want to compute P(L)

• Step 1: Moralizing

• Want to compute P(L)

- Moralizing
- Eliminating **V**

$$\tau_1(T) = \sum_{V} \phi_V(V) \phi_T(T, V)$$

• Want to compute P(L)

- Moralizing
- Eliminating V
- Eliminating **5**

$$\tau_2(L,B) = \sum_V \phi_S(S) \phi_L(L,S) \phi_B(B,S)$$

• Want to compute *P(L)*

- Moralizing
- Eliminating V
- Eliminating 5
- Eliminating X

$$\tau_3(A) = \sum_X \phi_X(X, A)$$

• Want to compute *P(D)*

- Moralizing
- Eliminating V
- Eliminating 5
- Eliminating X
- Eliminating **T**

$$\tau_5(A, B) = \sum_T \tau_4(A, L) \tau_2(B, L)$$

• Want to compute P(D)

- Moralizing
- Eliminating V
- Eliminating 5
- Eliminating X
- Eliminating T
- Eliminating L $\tau_5(A,B) = \sum_L \tau_4(A,L)\tau_2(B,L)$

• Want to compute *P(D)*

- Moralizing
- Eliminating V
- Eliminating 5
- Eliminating X
- Eliminating T
- Eliminating L
- Eliminating A, B

$$\tau_{6}(B,D) = \sum_{A} \tau_{5}(A,B)\tau_{3}(A)\phi_{D}(D,A,B)$$
$$\tau_{7}(D) = \sum_{B} \tau_{6}(B,D)$$

VE: Inferences in HMMs and CRFs

- Please recall the graphic representations of HMMs, MEMMs and linear-chain CRFs
- Given X, the backbone of Y is the same

Compute $P(X|\theta)$

$$\alpha_{t}(i) = P(x_{1},...,x_{t},y_{t} = i \mid \theta)$$

VE: Forward Algorithm

• Initialization:

• Induction:

$$\alpha_1(i) = \pi_i e_{i,x_1}$$

$$\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} \alpha_{t}(j) t_{j,i}\right] e_{i,x_{t+1}}$$
• Termination:

$$P(X | \theta) = \sum_{i=1}^{N} \alpha_{T}(i)$$

VE Disadvantages

- We need to traverse the whole graph for each run of reference
- Many intermediate results during previous runs of variable elimination can be re-used
 - For example, if we have run the reference of P(D), to infer P(X), results for eliminating V, S, T, L, A, B can be re-used
 - We can directly re-start from P(A)

VE Disadvantages

- For the induced undirected graph of BN (moralized & chordal), the basic structures are the cliques (maximal)
- If we can pre-calculate the marginal distributions defined on maximal cliques, the inferences may save many re-calculations

Can we design an algorithm to achieve this goal?

Clique Tree: A Concrete Example

- Clique Tree
 - For a chordal graph
 - A tree-like structure by cliques (maximal)

Two important features:

- Tree and family preserving
- Running intersection property

Clique Tree: A Concrete Example

- Tree and family preserving
 - Factors ϕ_i are defined on cliques
 - Edges are defined on the sepset $S_{i,j}$ of two directly connected cliques
- Running intersection property
 - Any variable X only exists in a **unique** subpath along the tree

Clique Tree: A Concrete Example

Assign local CPDs to factors

The **clique tree** is an equivalent representation of P as the original factorization representation

Exact Inference: Clique Trees

- Exploits factorization of the distribution for efficient inference, similar to variable elimination
 - Advantage: avoid unnecessary (or repeated)
 computations if repeated queries are needed
- Distribution (un-normalized) can be represented by **clique tree** with associated factors
 - $-\tilde{P}_{\Phi}(\mathcal{X}) = \prod_{\phi_i \in \Phi} \phi_i(\mathcal{X}_i)$
 - For Bayesian networks, factors are local CPDs
 - For Markov networks, factors are clique potentials

Message Passing: Sum Product on Clique Tree

• Goal: Compute P(J)

- Set initial factors at each cluster as products
- C_1 : Eliminate C, sending $\delta_{1\to 2}(D)$ to C_2
- C_2 : Eliminate D, sending $\delta_{2\rightarrow 3}(G,I)$ to C_3
- C₃: Eliminate I, sending $\delta_{3\rightarrow 5}(G,S)$ to C₅
- C_4 : Eliminate H, sending $\delta_{4\to5}(G,J)$ to C_5
- C₅: Obtain P(J) by summing out G,S,L

Message Passing: Sum Product on Clique Tree

• Goal: Compute P(J)

- Set initial factors at each cluster as products
- C_1 : Eliminate C, sending $\delta_{1\to 2}(D)$ to C_2
- C_2 : Eliminate D, sending $\delta_{2\rightarrow 3}(G,I)$ to C_3
- C_3 : Eliminate I, sending $\delta_{3\to 5}(G,S)$ to C_5
- C₅: Eliminate SL, sending $\delta_{5\rightarrow4}(G,J)$ to C₄
- C₄: Obtain P(J) by summing out H,G

Clique Tree Message Passing

- Let T be a clique tree and $C_1,...C_k$ its cliques
 - Multiply factors of each clique, resulting in initial potentials as each factor is assigned to some clique $\alpha(\phi)$ then we have

$$\beta_{j}^{0}[C_{j}] = \prod_{\phi:\alpha(\phi)=j} \phi \qquad \prod_{\phi} \phi = \prod_{j=1}^{k} \beta_{j}^{0}[C_{j}]$$

- Define C_r as the root cluster
- Start from tree leaves and move inward

Clique Tree Message Passing: Example

- Root C_6
 - Legal ordering I: 1,2,3,4,5,6
 - Legal ordering II: 2,5,1,3,4,6
 - Illegal ordering: 3,4,1,2,5,6

Clique Tree Calibration

- Calibration (校准): the sending messages of two adjacent cliques should be equal
- For calculating the probability of any variable, we need a more efficient algorithm to do the calculations rather than repeating above sum operations for each clique
- Obviously, there are some information during message passing which can be re-used to calculate the probability of other variables

Clique Tree Calibration

- We say that cluster C_i is **ready** to transmit to neighbor C_j when C_i has messages from all its neighbors except C_j .
- When C_i is ready, it can compute the message $\delta_{i \to j}(S_{i,j})$ by multiplying its initial potential β_i^0 (final potential β_i) with all the coming messages $\delta_{k \in \{Nb_i j\} \to i}$ and then eliminate the variables not in the sepset $C_i S_{i,j}$

Clique Tree Calibration: Example

Clique Tree Calibration: Example

Clique Tree Calibration: Sum-Product

```
Procedure Initialize-Cliques (
Algorithm 10.2 Calibration using sum-product message p
         Procedure CTree-SP-Calibrate (
                        // Set of factors
                                                                                                                     for each clique C_i
                      // Clique tree over \Phi
                                                                                                                        \psi_i(\boldsymbol{C}_i) \leftarrow \prod_{\phi_i : \alpha(\phi_i)=i} \underline{\phi}
             Initialize-Cliques
                                                                                                                 Procedure SP-Message (
             while exist i, j such that i is ready to transmit to j
                                                                                                                              // sending clique
                 \delta_{i \to j}(S_{i,j}) \leftarrow \text{SP-Message}(i,j)
                                                                                                                           // receiving clique
             for each clique i
                                                                                                                   \begin{array}{l} \psi(\boldsymbol{C}_i) \leftarrow \ \psi_i \cdot \prod_{k \in (\mathrm{Nb}_i - \{j\})} \delta_{k \to i} \\ \tau(\boldsymbol{S}_{i,j}) \leftarrow \ \sum_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \psi(\boldsymbol{C}_i) \end{array}
                \beta_i \leftarrow \psi_i \cdot \prod_{k \in \mathrm{Nb}_i} \delta_{k \to i}
             return \{\beta_i\}
                                                                                                                    return \tau(S_{i,j})
```


Clique Tree Calibration: Sum-Product

• After calibration, the final factors associated with cliques are updated to the marginal distributions (or factors) over the cliques

Clique Tree Calibration

- If X appears in multiple cliques, they must agree
 - A clique tree with potentials $\beta_i[C_i]$ is said to be calibrated if for all neighboring cliques C_i and C_j :

$$-\sum_{C_i-S_{i,j}}\beta_i(C_i) = \sum_{C_j-S_{i,j}}\beta_j(C_j)$$

• Advantage: compute posteriors for all the cliques using only twice passes

Calibrated Clique Tree as Distribution

- A calibrated clique tree is more than simply a data structure that stores the results of probabilistic inference for all of the clique in the tree.
- It can also be viewed as an alternative representation of the measure \tilde{P}_{ϕ} (un-normalized distribution).
- We can easily prove:

The product of the marginal distributions (or factors) of all the cliques divided by the marginal factors of all the sepsets

$$\prod_{i} \beta_{i}\left(C_{i}\right)$$

$$\prod_{(C_{i} \leftrightarrow C_{j}) \in T} \mu_{i,j}\left(S_{i,j}\right)$$

Calibrated Clique Tree as Distribution

Bayesian network

Clique tree

For calibrated tree

$$P(C \mid B) = \frac{P(B, C)}{P(B)} = \frac{\beta_2[B, C]}{P(B)} = \frac{\beta_2[B, C]}{\sum_{C} \beta_2[B, C]} = \frac{\beta_2[B, C]}{\sum_{A} \beta_1[A, B]}$$

Joint distribution can thus be written as

$$P(A, B, C) = P(A, B)P(C \mid B) = \frac{\beta_1[A, B]\beta_2[B, C]}{\mu_{1,2}[B]}$$

Calibrated trees can be alternative representations of the distributions.

They are equal!

To Random-Order Message Passing

• In the above sum-product message passing, a factor *i* can transmit a message to *j* only if it has received all the other messages (factor is ready)

• Can the factor *i* transmit a message to its neighbors when it is not ready?

Message Passing: Belief Update

- Recall the clique tree calibration algorithm
 - Upon calibration the final potential at i is:

$$\beta_i = \beta_i^0 \prod_{k \in N_i} \delta_{k \to i}$$

 A message from i to j sums out the non-sepset variables from the product of initial potential and all other messages

$$\delta_{i \to j} = \sum_{C_i - S_{i,j}} \beta_i^0 \prod_{k \in N_i - \{j\}} \delta_{k \to i}$$

 Can also be viewed as multiplying all messages and dividing by the message from j to i

$$\delta_{i \to j} = \frac{\sum_{C_i - S_{i,j}} \beta_i^0 \prod_{k \in N_i} \delta_{k \to i}}{\delta_{j \to i}} = \frac{\sum_{C_i - S_{i,j}} \pi_i}{\delta_{j \to i}}$$

Message Passing: Belief Update

Bayesian network

Clique tree

- Root: C₂
- C_1 to C_2 Message: $\delta_{1\to 2}(X_2) = \sum_{X_1} \beta_1^0[X_1, X_2] = \sum_{X_1} P(X_1)P(X_2 \mid X_1)$
- C_2 to C_1 Message: $\delta_{2\to 1}(X_2) = \sum_{X_3} \beta_2^0 [X_2, X_3] \delta_{3\to 2}(X_3)$
- Alternatively compute $\beta_2[X_2, X_3] = \delta_{1\rightarrow 2}(X_2)\delta_{3\rightarrow 2}(X_3)\beta_2^0[X_2, X_3]$
- And then:

$$\delta_{2\to 1}(X_2) = \frac{\sum_{X_3} \beta_2[X_2, X_3]}{\delta_{1\to 2}(X_2)} = \sum_{X_3} \frac{\beta_2[X_2, X_3]}{\delta_{1\to 2}(X_2)} = \sum_{X_3} \beta_2^0[X_2, X_3] \delta_{3\to 2}(X_3)$$

• Thus, the two approaches are equivalent

Message Passing: Belief Update

- Based on the observation above, belief update
 - Different message passing scheme
 - Each clique C_i maintains its fully updated beliefs β_i
 - product of initial messages and messages from neighbors
 - Store at each sepset $S_{i,j}$ the previous message $\mu_{i,j}$ passed regardless of the direction
 - When passing a message, divide by previous $\mu_{i,j}$
 - Claim: message passing is correct regardless of the clique that sent the last message
 - This is called belief update

Algorithm for Belief Update

Algorithm 10.3 Calibration using belief propagation in clique tree

```
Procedure CTree-BU-Calibrate (
        // Set of factors
        // Clique tree over \Phi
  Initialize-CTree
  while exists an uninformed clique in T
     Select (i-j) \in \mathcal{E}_T
     BU-Message(i, j)
  return \{\beta_i\}
Procedure Initialize-CTree (
  {f for} each clique {m C}_i
    \beta_i \leftarrow \prod_{\phi : \alpha(\phi)=i} \phi
```

for each edge $(i-j) \in \mathcal{E}_{\mathcal{T}}$

 $\mu_{i,j} \leftarrow 1$

The BU is arbitrary. You can randomly choose any edge in the clique graph for the update. At convergence:

```
\sum_{C_i - S_{i,j}} \beta_i = \sum_{C_j - S_{i,j}} \beta_j
```

```
Procedure BU-Message (
    i, // sending clique
    j // receiving clique
)

\sigma_{i 	o j} \leftarrow \sum_{C_i - S_{i,j}} \beta_i
// marginalize the clique over the sepset
\beta_j \leftarrow \beta_j \cdot \frac{\sigma_{i 	o j}}{\mu_{i,j}}
\mu_{i,j} \leftarrow \sigma_{i 	o j}
```

Clique Tree Invariant for BU

- BU maintains distribution invariant property
 - Upon calibration we have

$$P(\mathbf{U}) = \frac{\prod_{C_i \in T} \beta_i [C_i]}{\prod_{(C_i \leftrightarrow C_j) \in T} \mu_{i,j}(S_{i,j})}$$

- Initially this invariant holds obviously
- At each update step invariant is also maintained
 - Message only changes π_j and $\mu_{i,j}$
 - We need to prove $\frac{\beta_j^U}{\mu_{i,j}^U} = \frac{\beta_j}{\mu_{i,j}}$
 - This is exactly the message passing step $\beta_j^U = \beta_j \mu_{i,j}^U / \mu_{i,j}$

Belief update re-parameterizes P at each step

Inference on Calibrated Clique Trees

- Single variable inference
 - The posterior of a target variable X can be directly computed by eliminating the redundant variables from a clique that contains X
- Inference outside a clique
- Inference with increment (or evidence)

After calibration, the final factors associated with cliques are updated to the marginal distributions (or factors) over the cliques

Answering Queries Outside a Clique

Algorithm 10.4 Out-of-clique inference in clique tree

```
Procedure CTree-Query (
    T, // Clique tree over \Phi
   \{\beta_i\}, \{\mu_{i,j}\}, // Calibrated clique and sepset beliefs for T
   Y // A query
  Let T' be a subtree of T such that Y \subseteq Scope[T']
   Select a clique r \in \mathcal{V}_{\mathcal{T}'} to be the root
  \Phi \leftarrow \beta_r
   for each i \in \mathcal{V}_{\mathcal{T}}'
     \phi \leftarrow \frac{\beta_i}{\mu_{i,p_r(i)}}
     \Phi \leftarrow \Phi \cup \{\phi\}
   Z \leftarrow Scope[T'] - Y
   Let \prec be some ordering over Z
   return Sum-Product-VE(\Phi, Z, \prec)
```

$$P(Y') = \frac{\prod_{i \in V_{T'}} \beta_i}{\prod_{(i-j) \in \varepsilon_{T'}} \mu_{i,j}}$$
$$Y \subseteq Y' = Scope(T')$$

Find a minimal sub-path on the clique tree which contains all the query variables!

Answering Queries with Increments

- Introducing evidence Z=z
- Compute posterior of X where X is in a clique with Z
 - Since clique tree is calibrated, multiply the clique that contains X and Z with indicator function I(Z=z) and sum out irrelevant variables
- Compute posterior of X if not sharing a clique with Z
 - Introduce indicator function I(Z=z) into some clique containing Z and propagate messages along path to clique containing X
 - Sum out irrelevant factors from clique containing X

Comments on Calibrated Clique Trees

- What is a calibrated clique tree?
 - From the initial factors $\psi(C_i)$ or ψ_i generated from BNs/MNs, a clique tree is calibrated if we get the joint distributions $\beta(C_i)$ or β_i associated with all nodes (cliques) and the joint distributions $\mu_{i,j}$ of all sepsets in the tree. We can use either sum product or belief update to do the calibration.

Comments on Calibrated Clique Trees

• What is a calibrated clique tree?

- Why does a clique tree need to be calibrated?
 - All CPDs/factors in BNs/MNs are equivalently transformed as calibrated factors and messages in clique tree. The joint distribution is invariant for the calibrated beliefs and all the steps of BU.
 - The calibrated factors β_i and messages $\mu_{i,j}$ are the marginal distributions of the variables defined on the factors/sepsets in the clique tree.

Comments on Calibrated Clique Trees

- What is a calibrated clique tree?
- Why does a clique tree need to be calibrated?

- What is the advantage of clique tree?
 - In most cases, the structure of clique tree is simpler than the original BNs/MNs. Inference will be more efficient.
 - Belief propagation can be easily extended to approximate inference

Constructing Clique Trees

- Goal: construct a tree that is family preserving and obeys the running intersection property
- Triangulate the graph to construct a chordal graph H
 - NP-hard to find triangulation where the largest clique in the resulting chordal graph has minimum size
- Find cliques in H and make each a node in the graph
 - Finding maximal cliques is NP-hard
 - Can start with families and grow greedily
- Construct a tree over the clique nodes
 - Use maximum spanning tree on an undirected graph whose nodes are maximal cliques and edge weight is $|C_i \cap C_j|$
 - Can show that resulting graph obeys running intersection

Limitations of Clique Tree

- Hard to construct induced graph & clique tree in large graph
- Inefficiency for Markov networks with loops

Pairwise Markov Network

From Clique Tree to Loopy Cluster Graph

- Can we directly define clusters on the cliques of the original rather than induced graph?
- The message passing strategy cannot stop due to the problem of *message circulating*

BP in pairwise MRF using Loopy CG

Figure 2. Message-passing recursions underlying the BP algorithm. *Left:* Approximate marginal (belief) estimates combine the local observation potential with messages from neighboring nodes. *Right:* A new outgoing message (red) is computed from all other incoming messages (blue).

Approximate marginal by multiplying initial beliefs and all the incoming messages A new message by multiplying initial beliefs and all the incoming messages except *i*

BP in pairwise MRF using Loopy CG

Figure 2. Message-passing recursions underlying the BP algorithm. *Left:* Approximate marginal (belief) estimates combine the local observation potential with messages from neighboring nodes. *Right:* A new outgoing message (red) is computed from all other incoming messages (blue).

- 1 Input: node potentials $\psi_s(x_s)$, edge potentials $\psi_{st}(x_s, x_t)$;
- 2 Initialize messages $m_{s\to t}(x_t)=1$ for all edges s-t;
- 3 Initialize beliefs $bel_s(x_s) = 1$ for all nodes s;
- 4 repeat
- Send message on each edge $m_{s \to t}(x_t) = \sum_{x_s} \left(\psi_s(x_s) \psi_{st}(x_s, x_t) \prod_{u \in \text{nbr}_s \setminus t} m_{u \to s}(x_s) \right);$ Update belief of each node $\text{bel}_s(x_s) \propto \psi_s(x_s) \prod_{t \in \text{nbr}_s} m_{t \to s}(x_s);$
- 7 **until** beliefs don't change significantly;
- 8 Return marginal beliefs $bel_s(x_s)$;

NOTE: normalize to 1 after each iteration

BP in pairwise MRF using Loopy CG

Let's show an example

Figure 2. Message-passing recursions underlying the BP algorithm. *Left:* Approximate marginal (belief) estimates combine the local observation potential with messages from neighboring nodes. *Right:* A new outgoing message (red) is computed from all other incoming messages (blue).

BP in Loopy Cluster Graph (General)

```
Procedure CGraph-SP-Calibrate (
             // Set of factors
    Φ.
           // Generalized cluster graph \Phi
   Initialize-CGraph
   while graph is not calibrated
      Select (i-j) \in \mathcal{E}_{\mathcal{U}}
      \delta_{i \to j}(S_{i,j}) \leftarrow \text{SP-Message}(i,j)
   for each clique i
      \beta_i \leftarrow \psi_i \cdot \prod_{k \in \text{Nb}_i} \delta_{k \to i}
   return \{\beta_i\}
Procedure Initialize-CGraph (
    \mathcal{U}
   for each cluster C_i
  \beta_i \leftarrow \prod_{\phi : \alpha(\phi)=i} \phi for each edge (i-j) \in \mathcal{E}_{\mathcal{U}}
      \delta_{i \to j} \leftarrow 1
      \delta_{i \to i} \leftarrow 1 Put initial factors
                          into different cliques
```

```
Procedure SP-Message (
    i, // sending clique
    j // receiving clique
) \psi(C_i) \leftarrow \psi_i \cdot \prod_{k \in (\mathrm{Nb}_i - \{j\})} \delta_{k \rightarrow i}
\tau(S_{i,j}) \leftarrow \sum_{C_i - S_{i,j}} \psi(C_i)
return \tau(S_{i,j})
```


Markov Network

Loopy Cluster Graph

Comments for BP in Loopy Graph

- Initialize all the beliefs and messages as 1, so any cluster can send its messages at the beginning
- Don't require messages are equal in both directions
- Maintain the factor beliefs by multiplying initial beliefs/potentials with all the incoming messages
- Send messages by multiplying initial beliefs/potentials with all the incoming messages except the target cluster (eliminating the beliefs of the variables not in the sepset)

Please read the #2 Textbook, Chapter 22.2.2, Page 770

Running Intersection Property

- For any variable, if a variable X exists in cluster C_i and C_j , there exists only a single path between the two clusters, all the clusters on the path contain the variable X
- If a cluster graph follows running intersection property, the calibrated beliefs are *approximate* marginal potentials of the clusters
 - Beliefs do not change over time

$$-\operatorname{Or} \sum_{C_i - S_{i,j}} \beta_i = \sum_{C_j - S_{i,j}} \beta_j$$

Bethe Cluster Graph or Factor Graph

- Two types of nodes
 - Factor nodes defined on cliques
 - Variable nodes defined on variables
- Factor graph ensures running interaction property
- Two types of messages
 - From factors to variables (simply eliminate other variables)
 - From variables to factors

Bethe graph can easily calculate the *approximate marginal* of single variable

The Problem of Convergence

- The first concern of belief propagation is the convergence
- If converged, another concern is that the calibrated beliefs are not equal to the correct marginal potentials

Do we have some heuristic solutions?

The Problem of Convergence

- Several improvements
 - Message scheduling: residual belief propagation,
 order the messages according to their changes
 - Minimum spanning tree: each time select a different spanning tree of the cluster graph and do calibration

--

Can we find a theoretical explanation of belief propagation on cluster graph?

An application to a 11*11 *Ising* model

Extensions of Belief Propagation

Generalized belief propagation

Convex belief propagation

Expectation propagation

•

Region Graph (for Generalized BP)

A *node* (or a *factor*) denotes a *region* (sub-graph)

The *regions* are *hierarchically* cut and linked by *directed* edges

A factor can be defined on any sub-graph rather than only clique

References for Belief Propagation

• Textbook #2: Chapter 22. More variational inference

• Wainwright MJ, Michael IJ. **Graphical models, exponential families, and variational inference**. Foundations and Trends® in Machine Learning, 1(1-2):1-305.

BP as Variational Inference

- The major advance of the theoretical analysis of belief propagation is that Yedidia *et al.* (2000, 2005) shows these approaches are maximizing an approximate energy functional
- This result connected the algorithmic developments in the field with literature on free-energy approximations developed in statistical mechanics (Bethe 1935; Kikuchi 1951), such as mean field inference

Basic Idea of Variational Inference

- To infer P(X), find another distribution Q(X) which can approximate it
 - Target distribution: P(X)
 - Proposal distribution: Q(X)
 - Q is restricted to a family of distribution with simple form
 - KL divergence: $D_{KL}(Q||P)$ or $D_{KL}(P||Q)$
 - $D_{KL}(Q||P) = E_{X \sim Q} \left(\ln \left(\frac{Q}{P} \right) \right)$
 - Aim: $\min_{Q} D_{KL}(Q||P)$
- Structured variational inference
 - Define Q(X) based on the graph with simple structure
 - E.g. A graph with no edge (*mean fields algorithm*)

Comments On the Two Divergences

- Assume Q(X) is restricted as Gaussians
 - Forward KL (M-projection): $D_{KL}(P||Q)$
 - Backward KL (I-projection): $D_{KL}(Q||P)$

Forward KL: Q should cover P > 0

Backward KL: Q should model one of the peaks in P > 0

Q: Why backward KL is commonly used?

Calculations in Variational Inferences

• I-projection

- General conditional target distribution P(X|Z=z)

$$- D_{KL}(Q||P) = E_{X\sim Q} \left(\ln \frac{Q(X)}{P(X|z)} \right)$$

$$\cdot P(X|z) = P(X,z)/P(z)$$

$$- D_{KL}(Q||P) = E_{X\sim Q} \left(\ln \frac{Q(X)}{P(X,z)} \right) + \ln P(z)$$

$$- \ln P(z) - D_{KL}(Q||P) = -E_{X\sim Q} \left(\ln \frac{Q(X)}{P(X,z)} \right)$$

$$- E_{X\sim Q} \left(\ln P(X,z) \right) + H(Q(X))$$

- Two key questions:
 - Q1: How to choose the family of the proposal distribution?
 - Q2: How to maximize the above energy functional?

Exact Inference as Optimization

- Energy functional
 - $-D_{KL}(Q||P_{\Phi}) = \ln Z \left(H_Q(X) + \sum_{\phi \in \Phi} E_Q(\phi)\right)$
 - The second term is energy functional $F[\tilde{P}_{\Phi}, Q]$
- For a clique tree with clique C_i , we have a set of beliefs $Q(\beta_i, \mu_{i,j})$ not calibrated). Its energy functional:
 - $-\tilde{P}_{\Phi} = \prod_{i} \psi_{i}$ (ψ_{i} is the initial factor for each clique)
 - $-\tilde{F}[\tilde{P}_{\Phi},\boldsymbol{Q}] = \sum_{i} H_{\beta_{i}}(C_{i}) \sum_{i} H_{\mu_{i,i}}(S_{i,j}) + \sum_{i} E_{\beta_{i}}[\ln \psi_{i}]$

Exact Inference as Optimization

- If Q is calibrated as Q^* , we can conclude that
 - $-\tilde{F}[\tilde{P}_{\Phi}, Q^*] = \max_{\mathbf{Q}} \tilde{F}[\tilde{P}_{\Phi}, \mathbf{Q}] = \ln Z$
- Because the distribution is invariant for any calibrated beliefs, the relative entropy is minimized as 0
- Transform SP/BU algorithm as optimization

```
CTree-Optimize-KL:  \begin{aligned} & \textbf{Find} & Q = \{\beta_i: i \in \mathcal{V}_T\} \cup \{\mu_{i,j}: (i-j) \in \mathcal{E}_T\} \\ & \textbf{maximizing} & - \textbf{\textit{D}}(Q \| P_{\Phi}) \\ & \textbf{subject to} \end{aligned} \\ & \mu_{i,j}[s_{i,j}] & = \sum_{\textbf{\textit{C}}_i - \textbf{\textit{S}}_{i,j}} \beta_i(\textbf{\textit{c}}_i) \quad \forall (i-j) \in \mathcal{E}_T, \forall s_{i,j} \in \textit{Val}(\textbf{\textit{S}}_{i,j}) \\ & \sum_{\textbf{\textit{c}}_i} \beta_i(\textbf{\textit{c}}_i) & = 1 \qquad \forall i \in \mathcal{V}_T. \end{aligned}
```

The End of Chapter 8

Cluster graph is another data structure for efficient inferences of PGMs