

TEAM 17 FINAL PROJECT

Jesse Choi, Darren Leong, Nicole Liu, Sungwoo Noh

TEAM MEMBERS

JESSE CHOI

Data Analyst

SUNGWOO NOH

Data Architect

DARREN LEONG

Project Manager

NICOLE LIU

Data Engineer

Recommendation

Goal: Find the most unrestrictive policies that keep the growth rate of deaths below 1% and the growth rate of new cases below 3% on a 30-day rolling average?

Our recommendation are policies:

C2: Workplace Closing

C5: Closing Public Transport

C6: Stay at Home Requirements

C2, C5, C6 are the least restrictive policies that consistently keep growth rates of cases and deaths below 3% and 1% respectively, in spring (March-May).

Death/Population Ratio

Growth Rate of Death/Policies

Canada: Growth Rate of Death with Policies v.s. Date

New Zealand: Growth Rate of Death with Policies v.s. Date

O

Correlation Matrices

Canada: New Zealand:

Correlation Between Growth Rates of Cases and Deaths to Each Policy Correlation Between Growth Rates of Cases and Deaths to Each Policy

Very high correlations between independent variables...

Multiple Linear Regression for Canada

Cases Growth:

Deaths Growth

Multiple Linear Regression for New Zealand

Multiple Linear Regression for New Zealand Cases Growth:

```
Regression Coefficients: [-6.28779710e-03 8.14685894e-02 -7.95026130e+12 7.95026130e+12 -1.24752376e-01 8.42185913e-02 -9.60715828e-03 0.00000000e+00] exptained_variance: 0.0553 r2: 0.055 MAE: 0.056 MSE: 0.0068
```

Deaths Growth

RMSE: 0.0824

```
Regression Coefficients: [-1.77794009e-02 4.53013140e-02 2.96062551e+11 -2.96062551e+11 (1.13035230e-02 -1.35137377e-04) 1.75469088e-02 0.00000000e+00]
```


Recommendation

Goal: Find the most unrestrictive policies that keep the growth rate of deaths below 1% and the growth rate of new cases below 3% on a 30-day rolling average?

Our recommendation are policies:

C2: Workplace Closing

C5: Closing Public Transport

C6: Stay at Home Requirements

C2, C5, C6 are the least restrictive policies that consistently keep growth rates of cases and deaths below 3% and 1% respectively, in spring (March-May).

architecture

data flow

limitations

- none countries have a similar population size to Caladan (3.2 mil)
- some countries had more restrictions than others in winter so death rate decreased in spring
- Policies in Caladan may not be directly applicable due to cultural, economic, or health infrastructure differences

future improvements

- figure out how to normalize all the data from the countries & make it comprehensive
- employing more advanced machine learning models could enhance the predictiveness of the project

thanks! :D