# AU313 - Application Robotique Dronique

Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011



 Introduction
 Architectures
 BE
 Orocos
 Introduction
 Architectures
 BE
 Orocos

 000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00
 000000000000

# AU313 - Application Robotique Dronique

Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011

Architectures

Introduction

Architectures

ВЕ

Orocos

| ( □ | ▶ ∢ | ø | <b>&gt;</b> 4 | ▶ ∢ | 豊 → | - 1 | もつるい |
|-----|-----|---|---------------|-----|-----|-----|------|

Orocos

|      |    | CARLASE ASE SONG |
|------|----|------------------|
|      |    |                  |
|      |    |                  |
|      |    |                  |
| es   | BE | Orocos           |
| 0000 | 00 | 00000000000000   |

#### Définition

SEM AU313 - ARD

Introduction

Introduction

#### Introduction

SEM AU313 - ARD

Introduction Robots Autonomie

Architectures

ВЕ

Orocos

SEM AU313 - ARD

Introduction

O
OOOOOOO

Robot (étym.: robota (tchèque), travail, corvée)

Architectu

un robot est un système mécanique poly-articulé mû par des actionneurs et commandé par un calculateur qui est destiné à effectuer une grande variété de tâches.

#### 4□ > 4∰ > 4 ½ > 4 ½ > ½ 90,0

|                 | SEM AU313 - ARD |                                                             |                                           |                                                                                                                                           |
|-----------------|-----------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                 |                                                             |                                           |                                                                                                                                           |
| Orocos          | Introduction    | Architectures                                               | BE                                        | Orocos                                                                                                                                    |
| 000000000000000 | 00000000        | 00000000000                                                 | 00                                        | 000000000000000                                                                                                                           |
|                 |                 |                                                             |                                           |                                                                                                                                           |
|                 |                 | Orocos   Introduction   00000000000000000000000000000000000 | Orocos I <b>ntroduction</b> Architectures | Orocos         Introduction         Architectures         BE           0000000000000000         00●000000         000000000000         00 |

# Origine

- Robot utilisé pour la première fois en 1921 par Karel Capek dans sa pièce Rossum's Universal Robots;
- Robotique émployé pour la première fois par Isaak Asimov en 1941
  - ► I, robot, 1950 ► Foundation, 1951



Isaak Asimov (1965)

# Robots manipulateurs

- Robots industriels: chaînes de montage, manipulation de produits chimiques, . . .
- ► Robots d'assistance médicale



SEM AU313 - ARD



+ 다 + 4명 > 4분 > 1분 - 9억

 SEM AU313 - ARD

| Introduction | Architectures<br>00000000000 | BE<br>00 | Orocos<br>0000000000000000 | Introduction | Architectures<br>00000000000 | BE<br>00 | Orocos<br>000000000000000 |
|--------------|------------------------------|----------|----------------------------|--------------|------------------------------|----------|---------------------------|
| Robots       |                              |          |                            | Robots       |                              |          |                           |

#### Robots d'exploration

- Exploration planétaire
- Exploration d'épaves ou de décombres
- ► Déminage, zones radioactives, ...







#### Robots de service

- ► Transport de marchandises
- ► Robots ménagers
- ► Aide aux personnes







| 4 |  | 4 | ð | <b>.</b> | 4 | æ | 4 | æ |  | æ | 200 |
|---|--|---|---|----------|---|---|---|---|--|---|-----|
|   |  |   |   |          |   |   |   |   |  |   |     |

| SEM AU313 - ARD |                              |          |                           | SEM AU313 - ARD          |                              |          |                           |  |
|-----------------|------------------------------|----------|---------------------------|--------------------------|------------------------------|----------|---------------------------|--|
| Introduction    | Architectures<br>00000000000 | BE<br>00 | Orocos<br>000000000000000 | Introduction<br>○○○○○●○○ | Architectures<br>00000000000 | BE<br>oo | Orocos<br>000000000000000 |  |
| Robots          |                              |          |                           | Autonomie                |                              |          |                           |  |

# Robots ludiques





#### Boucle de décision

Un robot est capable d'extraire de l'information à partir de son environnement et d'utiliser ses connaissances pour décider comment agir. Un robot est équipé de capteurs et

| 4 | • | 4 | ð | ٢ | 4 | Ē | Þ | 4 | ē | Þ | Ē | 9 | ۹ | C |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

| SEM AU313 - ARD        |                              |          |                            | SEM AU313 - ARD         |                              |          |                           |  |
|------------------------|------------------------------|----------|----------------------------|-------------------------|------------------------------|----------|---------------------------|--|
| Introduction<br>○○○○○○ | Architectures<br>00000000000 | BE<br>00 | Orocos<br>0000000000000000 | Introduction<br>○○○○○○○ | Architectures<br>00000000000 | BE<br>oo | Orocos<br>000000000000000 |  |
| Autonomie              |                              |          |                            | Autonomie               |                              |          |                           |  |

# Capteurs / Effecteurs

#### Capteurs :

- Caméra
- ► Sonar
- ► Détecteur de lumière
- ► Boussole
- ► GPS
- ▶ Détecteur de chaleur
- Effecteurs:
  - ► Roues
  - ► Bras
- ▶ Jambes
- Pinces

#### Tâches

- Les robots ont un ensemble de tâches à réaliser;
- Leur exécution consomme du temps et des ressources ;
- ▶ Des contraintes (temporelles, spatiales, ...) peuvent leur être asso ciées.

| Introduction | Architectures | BE | Orocos           | Introduction | Architectures | BE | Orocos          |
|--------------|---------------|----|------------------|--------------|---------------|----|-----------------|
| oooooooo     | 0000000000    | 00 | 0000000000000000 | 00000000     | ●0000000000   | 00 | 000000000000000 |
|              |               |    |                  | 1. 6 1. 60   |               |    |                 |

#### Programmation

#### Introduction

#### Architectures

Introduction
Approche sub-symbolique
Approche par couches
Approche par composants

BF

#### Orocos

L'intelligence artificielle d'un robot se résume à un ensemble de programmes écrits sur un ordinateur :

- les programmes sont écrits dans un langage de programmation;
- ▶ ils s'exécutent grâce au contrôleur du robot ;
- ils prennent en entrée les informations obtenues des capteurs et en sortie envoient des ordres aux effecteurs.

|                           |                            | 4 🗆 1    | ) 4 DF                     | *                        |               | 4 □      | ) 4 DF 1 4 E 1 4 E 1 E 1 9) Q (* |
|---------------------------|----------------------------|----------|----------------------------|--------------------------|---------------|----------|----------------------------------|
| SEM AU313 - ARD           |                            |          |                            | SEM AU313 - ARD          |               |          |                                  |
| Introduction<br>000000000 | Architectures<br>⊙●○○○○○○○ | BE<br>oo | Orocos<br>0000000000000000 | Introduction<br>00000000 | Architectures | BE<br>oo | Orocos<br>0000000000000000       |
| Introduction              |                            |          |                            | Approche sub-symboli     | que           |          |                                  |

# Programmes

#### L'intelligence artificielle d'un robot permet par exemple :

- ▶ l'analyse d'images;
- ► sa localisation et sa navigation;
- ▶ la gestion des interactions (communications, interfaces);
- la planification et la prise de décision ;
- le contrôle de l'exécution des tâches.

# Approche sub-symbolique, ascendante ou bottom-up

- ▶ 1986, Rodney Brooks: "Elephants don't play chess"
  - ► L'essentiel pour un robot est d'abord de survivre
  - ▶ Des composants réactifs plutôt que cognitifs
  - La complexité peut émerger de la somme de comportements simples
- ► Vision modeste mais réaliste
  - ▶ Objectifs modestes : labyrinthes, autonomie énergétique, . . .
  - ► Etude de la boucle perception-action
  - La réactivité et l'adaptation deviennent des enjeux cruciaux

|                           |               | 4 🗆 1    | PADPRAERAER E VOC         | .*                       |               | ₹ □      | ) 1 m / 1 = / 1 = / 2     |
|---------------------------|---------------|----------|---------------------------|--------------------------|---------------|----------|---------------------------|
| SEM AU313 - ARD           |               |          |                           | SEM AU313 - ARD          |               |          |                           |
| Introduction<br>000000000 | Architectures | BE<br>oo | Orocos<br>000000000000000 | Introduction<br>00000000 | Architectures | BE<br>oo | Orocos<br>000000000000000 |
| A 1 1 1 1 1 1             |               |          |                           | A 1 1 1 1 1 1            |               |          |                           |

# Approche traditionnelle

# Contrôle Contrôle Controle Co

# Approche comportementale



| 00000000                   |    |                 |              |               |    |                 |
|----------------------------|----|-----------------|--------------|---------------|----|-----------------|
| 000000000 0000000000       | 00 | 000000000000000 | 000000000    | 000000000000  | 00 | 000000000000000 |
| Introduction Architectures | BE | Orocos          | Introduction | Architectures | BE | Orocos          |

# Approche comportementale



# Architecture LAAS



| SEM AU313 - ARD      |               |          |                           | SEM AU313 - ARD      |               |          |                          |  |
|----------------------|---------------|----------|---------------------------|----------------------|---------------|----------|--------------------------|--|
| Introduction         | Architectures | BE<br>oo | Orocos<br>000000000000000 | Introduction         | Architectures | BE<br>oo | Orocos<br>00000000000000 |  |
| Approche par couches |               |          |                           | Approche par couches |               |          |                          |  |

# Architecture Claraty (NASA)



# Architecture T-REx (MBARI)



| Assesshe assessments |                        |    |                 | A               |               |    |                 |  |
|----------------------|------------------------|----|-----------------|-----------------|---------------|----|-----------------|--|
| 000000000            | 000000000000           | 00 | 000000000000000 | 000000000       | 0000000000    | 00 | 000000000000000 |  |
| Introduction         | Architectures          | BE | Orocos          | Intro duction   | Architectures | BE | Orocos          |  |
| SEM AU313 - ARD      |                        |    |                 | SEM AU313 - ARD |               |    |                 |  |
|                      | (마) (마) (공) (공) 공 인((Y |    |                 |                 |               |    |                 |  |

# Architecture ProCoSA (Onera)



# Architecture BIP (LAAS/VeriMAG)



SEM AU313 - ARD SEM AU313 - ARD

#### Approche par composants

# Architecture Orocos (Univ. Leuven, Onera, NASA, ...)



#### Introduction

Architectures

ΒE

Sujet

Oroco

|                          |                              | <b>←</b> □ | > 4 <b>□</b> > 4 ≧ > 4 ≧ > | *                        |                              | 4 □      | > (間) (目) (目) 目 り(()      |
|--------------------------|------------------------------|------------|----------------------------|--------------------------|------------------------------|----------|---------------------------|
| SEM AU313 - ARD          |                              |            |                            | SEM AU313 - ARD          |                              |          |                           |
| Introduction<br>00000000 | Architectures<br>00000000000 | BE<br>●o   | Orocos<br>000000000000000  | Introduction<br>00000000 | Architectures<br>00000000000 | BE<br>o● | Orocos<br>000000000000000 |
| Sujet                    |                              |            |                            | Sujet                    |                              |          |                           |

# Sujet du BE

- Mission d'exploration de zones, et d'extinction d'incendies
  - navigation
  - ► exploration
  - ► analyse d'images
  - prise de décision, planification



# Sujet du BE

- ► Développement de composants robotiques
  - ► Analyse d'images simplifiée
  - Sous l'environnement Orocos
- ▶ Déploiement d'une architecture robotique
  - ► Navigation, Prise d'images, Analyse d'images
- ► Supervision de mission

| Þ | 4 🗗 > | ∢ ≣ | F ← E | F = E | 2000 |
|---|-------|-----|-------|-------|------|



| SEM AU313 - ARD |               |    |                 | SEM AU313 - ARD |               |    |                 |  |
|-----------------|---------------|----|-----------------|-----------------|---------------|----|-----------------|--|
| Intro duction   | Architectures | BE | Orocos          | Introduction    | Architectures | BE | Orocos          |  |
| 000000000       | 00000000000   | 00 | 000000000000000 | 000000000       | 00000000000   | 00 | •00000000000000 |  |
|                 |               |    |                 | Orocos          |               |    |                 |  |

#### Orocos

#### ntroduction

Architectures

ВЕ

#### Orocos

Orocos Compos

Composants Déploiement

Supervision

Une librairie en C++ qui permet :

- ▶ de créer des composants exécutables, distribuables ;
- de spécifier des communications temps-réel et "thread-safe" entre composants;
- de charger et d'exécuter des scripts (programmes / machines à état) en temps-réel;
- d'accéder aux différents attributs des composants et des communications.

(ロ > 4周 > 4 至 > 4 至 > 至 のQ(P)

4回 > 4回 > 4回 > 4 差 > 4 差 > 差 めなみ

SEM AU313 - ARD

SEM AU313 - ARD

|              |               |    |                                         | 6 .          |               |    |                 |
|--------------|---------------|----|-----------------------------------------|--------------|---------------|----|-----------------|
| 000000000    | 00000000000   | 00 | 000000000000000000000000000000000000000 | 000000000    | 00000000000   | 00 | 000000000000000 |
| Introduction | Architectures | BE | Orocos                                  | Introduction | Architectures | BE | Orocos          |
|              |               |    |                                         |              |               |    |                 |

#### Interface d'un composant



#### Etats d'un composant



40 + 40 + 42 + 42 +

|                           |                              |          |                                               | •                        |                              |          | 0      |
|---------------------------|------------------------------|----------|-----------------------------------------------|--------------------------|------------------------------|----------|--------|
| SEM AU313 - ARD           |                              |          |                                               | SEM AU313 - ARD          |                              |          |        |
| Introduction<br>000000000 | Architectures<br>00000000000 | BE<br>oo | Orocos<br>00000000000000000000000000000000000 | Introduction<br>00000000 | Architectures<br>00000000000 | BE<br>oo | Orocos |
| Composants                |                              |          |                                               | Composants               |                              |          |        |

# Code

```
class Mapping: public RTT:: TaskContext, MappingAlg {
    MatchingParameters pMatch;
    RTT: Property cstd::string > CalibrationFile;
    RTT:: Property cstd::string > CalibrationFile;
    RTT:: Property cstd::vector < double > MapFrame;
    RTT:: ReadDataPort < mage_t > image_port;
    RTT:: ReadDataPort < water > position_port;
    RTT:: ReadDataPort < vector > position_port;
    RTT:: WriteDataPort < vector > attitude_port;
    RTT:: WriteDataPort < td::vector < int > > obstacles;
    RTT:: WriteDataPort < mage_t > map_port;
    RTT:: Command < bool(void) > build_command;
```

# Mapping(const std::string& name): RTT::TaskContext(name, PreOperational), CalibrationFile ("CalibrationFile", "/comment/", ""), MapFrame("MapFrame", "/comment/", vector<double>(5.0)), position\_port("Position"), attitude\_port("Attitude"), image\_port("MapCounter"), obstacles("MapCounter"), build\_command("build", &Mapping::build, this) { ports()->addEventPort(&image\_port); ports()->addPort(&ittude\_port); ports()->addPort(&ittude\_port); ports()->addPort(&obstacles); ports()->addPort(&ittude\_port); ports()->addPort(&ittude\_port); properties()->addPort(&ittude\_port); properties()->addPorety(&pMatch); properties()->addPorety(&ittude\_port); properties()->addPort@ittude\_port); properties()->addPort@ittude\_port); properties()->addPort@ittude\_port); properties()->a

 SEM AU313 - ARD

 SEM AU313 - ARD

 Introduction occosion occosi

#### Code

```
virtual bool startHook() {
    // EVA properties
    pMatch. fill(pObsDetect);
    // Isit EVA parameters
    initParameters(calibration);
    if (log().getLoglevel() >= Logger::Info)
        dtim_Camera_showIntrinsicParam(&pIntrin);
    // Init Map
    eva_cartoInitialisation(origin_north, ..., &map);
    return true;
};
virtual void stopHook() {
    if (!flaglst) freeEVA();
    flaglst = true;
};
```

#### Code

```
virtual void updateHook() {
   img = image port.Get();
   if (limg) {
      log(Error) << "Inputuimageuisuempty!" << endl;
      return;
}
Vector v = position port.Get();
Vector w = attitude port.Get();
setExtrinsicParameters(v, w);
if (flag1st) {
      flag1st = false;
      createEVA();
      return;
}
// Detection
double pct = detect();
log() << pct << "u\mu\mu\mu\chicot pixelsuareuobstacles" << endl;
if (log() getloglevel() >= Logger::Debug)
      eva logEva_print2screen(& perfo);
// Mapping
mapping();
}
```

SEM AU313 - ARD SEM AU313 - ARD

| Introduction | Architectures | BE | Orocos             | Introduction | Architectures | BE | Orocos   |  |
|--------------|---------------|----|--------------------|--------------|---------------|----|----------|--|
| 000000000    | 00000000000   | oo | 000000000000000000 | 000000000    | 00000000000   | oo | 00000000 |  |
| C            |               |    |                    | C            |               |    |          |  |

#### Execution



#### Interconnexion des composants

#### Flot de données

- ► Connexion entre deux ports,
  - ▶ Lock-free
- ► Politique de la connexion :
  - ▶ donnée unique partagée (DATA) ou bufferisée (BUFFER)

40 > 460 > 48 > 48 > 3

- ► taille du buffer
- ► valeur initiale
- ► Chaque composant peut :
  - Lire ou écrire dans son port,
  - ► Connaitre l'état de la connexion,
  - Savoir si la donnée reçue est nouvelle.

|                           |                              |          |                    |                          |                              |          | 0      |
|---------------------------|------------------------------|----------|--------------------|--------------------------|------------------------------|----------|--------|
| SEM AU313 - ARD           |                              |          |                    | SEM AU313 - ARD          |                              |          |        |
| Introduction<br>000000000 | Architectures<br>00000000000 | BE<br>oo | Orocos<br>00000000 | Introduction<br>00000000 | Architectures<br>00000000000 | BE<br>oo | Orocos |
| Composants                |                              |          |                    | Déploiement              |                              |          |        |

40 > 40 > 42 > 42 > 2 900

#### Interconnexion des composants

#### Flot de services

SEM AU313 - ARD

Déploiement

- Connexion des opérations (services fournis) d'un composant aux méthodes (services requis) d'un autre,
- ▶ Utilise le nom du service et la signature des fonctions,
- ► Le code associé (la fonction C++) est exécuté :
  - ► Dans la tâche du fournisseur (le fournisseur doit l'autoriser).
  - ► Dans la tâche du demandeur (le demandeur doit l'autoriser),
  - Dans une tâche de fond de la RTT (si personne ne veut l'exécuter).
- Le demandeur peut choisir d'attendre le retour de la fonction (bloquant) ou non.

# Déploiement

#### Architecture



|                               | ∢ □      | › (레) (토) (토) (토) ( 토) (이익( | •                        |                              | ∢ □      | > (∰ > ( E > ( E >  E ) ≪ Q ( C ) |
|-------------------------------|----------|-----------------------------|--------------------------|------------------------------|----------|-----------------------------------|
|                               |          |                             | SEM AU313 - ARD          |                              |          |                                   |
|                               |          |                             |                          |                              |          |                                   |
| Architectures<br>000000000000 | BE<br>oo | Orocos                      | Introduction<br>00000000 | Architectures<br>00000000000 | BE<br>oo | Orocos                            |

Déploiement

#### OCL::DeploymentComponent



#### Fichier XML

```
<
```

SEM AU313 - ARD SEM AU313 - ARD

| Introduction | Architectures | BE | Orocos                   | Introduction | Architectures | BE | Orocos      |
|--------------|---------------|----|--------------------------|--------------|---------------|----|-------------|
| oooooooo     | 00000000000   | 00 | ○○○○○○○○○ <b>○○○●</b> ○○ | 000000000    | 00000000000   | 00 | ○○○○○○○○○○○ |
| Déploiement  |               |    |                          | Su pervision |               |    |             |

#### Fichier XML

```
<struct name="Camera" type="RoboTlS::Vision::FirewireCamera"></struct>
<struct name="Zoning" type="Ressac::Zoning"></struct>
<struct name="Planning" type="Planning::PlannerHMDP"></struct>
<struct name="Navigation" type="Ressac::Navigation OutSerial"></struct>
<struct name="Ressac">
<struct name="Ressac">
<struct name="Ressac">
<simple name="StateMachineScript" type="string">
</simple name="StateMachineScript" type="string">
</simple name="StateMachineScript" type="string">
</simple name="StateMachineScript" type="string">
</simple name="StateMachineScript" type="string">
</struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct></struct>
```

#### Machine à états



| SEM AU313 - ARD | SEM AU313 - ARD |
|-----------------|-----------------|

| Introduction | Architectures | BE | Orocos         |
|--------------|---------------|----|----------------|
| 00000000     | 00000000000   | 00 | 00000000000000 |
|              |               |    |                |
|              |               |    |                |

# Fichier OSD

```
StateMachine SearchAndRescue {
    param zone z
    var zones zone_list
    initial state Init {
        transition select InitialGo
    }
    state InitialGo {
        entry {
            do Navigation.goto(z.center)
        }
        transition select InitialExplore
    }
} state Zoning {
    entry {
        do Zoning.extract()
        set zone_list = Zoning.zone_list.Get()
    }
    transition if zone_list.size == 0 then select LoadProblem
        transition if zone_list.size == 0 then select GotoBase
    }
} ...
```

4 D > 4 D > 4 E > 4 E > E 990

SEM AU313 - ARD