

Review

Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover

Caroline K. Glidden^{1,8,*}, Nicole Nova^{1,8,*}, Morgan P. Kain^{1,2}, Katherine M. Lagerstrom¹, Eloise B. Skinner^{1,3}, Lisa Mandle^{1,2,4}, Susanne H. Sokolow^{4,5}, Raina K. Plowright⁶, Rodolfo Dirzo^{1,4}, Giulio A. De Leo^{1,4,7}, and Erin A. Mordecai¹

¹Department of Biology, Stanford University, Stanford, CA 94305, USA

SUMMARY

Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence — while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity — we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.

Introduction

The COVID-19 pandemic has brought the threat of zoonoses into the public spotlight, creating widespread demand for better management of the ecological sources of disease spillover and emergence. However, even prior to this pandemic, there has been an increasing recognition amongst experts of the ties between healthy ecosystems and human health. This has led to broader support for global conservation initiatives and spurred the United Nations' adoption of sustainable development goals (the 2030 Agenda). The prevention of zoonotic spillovers is a biosecurity imperative with a patent connection to the humanwildlife interface; thus, efforts are underway to identify solutions that both promote biodiversity conservation and facilitate zoonotic disease management¹. However, given our incomplete understanding of the mechanisms linking biodiversity to infectious disease spillover, a clear vision of how to effect positive solutions for both human health and the environment is needed. Increased attention to, and resources for, zoonotic disease prevention make it an opportune time to study the mechanisms connecting changes in biodiversity with zoonotic disease spillover, and to identify (potentially synergistic) solutions for biodiversity conservation and global health.

There has been a contentious debate about the existence and generality of the relationship between biodiversity and disease: in particular, the extent to which maintaining biodiversity protects against disease via a dilution effect versus the alternative possibility that biodiversity can increase infectious disease transmission via an amplification effect (see for example references²⁻⁹). With a few notable exceptions¹⁰⁻¹⁶, this debate has largely focused on correlations between host-species richness and the prevalence of pathogens in host reservoir populations. However, this narrow way of framing the impacts of species richness on host prevalence in most of the empirical literature provides limited insight into the range of mechanisms by which biodiversity affects disease, rendering it difficult to integrate into public health interventions. Here, we expand the focus to the broader mechanistic relationships among a variety of biodiversity components and the zoonotic spillover process. We then follow with a review of general principles with applied relevance. Finally, we highlight opportunities where ongoing

²Natural Capital Project, Stanford University, Stanford, CA 94305, USA ³Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia

⁴Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA

⁵Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA

⁶Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA

⁷Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA

⁸These authors contributed equally

^{*}Correspondence: cglidden@stanford.edu (C.K.G.), nicole.nova@stanford.edu (N.N.) https://doi.org/10.1016/j.cub.2021.08.070

 $\label{lem:figure 1.} \textbf{ The anthropogenic disturbance, biodiversity change, and spillover cascade.}$

To understand mechanisms connecting anthropogenic disturbance with spillover via biodiversity change, it is imperative to investigate how anthropogenic disturbance impacts biodiversity, and how those effects drive the perforation of the layers (intermediate processes) leading to spillover (shown using four case studies from Table 1 as examples). Zoonotic spillover arises from the alignment of multiple processes (depicted as layers). Apart from human susceptibility to infection, we found that each layer can be affected by biodiversity change, especially when considering biodiversity along multiple axes (Box 1). Connecting biodiversity change to explicit processes helps us to better understand how, when, and why biodiversity change impacts zoonotic disease risk. Numbers next to each layer correspond to the eight case studies highlighted in Table 1. All references for these case studies are included in Table 1.

conservation initiatives could consider and possibly integrate these mechanisms further in order to reduce disease spillover risks (Figure 1, Table 1, and Table 2).

Biodiversity encompasses all forms of variability among living organisms and the ecological complexes of which they are a part; these different forms of variability have long been studied and summarized into related but alternative definitions of biodiversity by other ecological fields¹⁷ (Box 1). Change in taxonomic diversity, including species richness, is often an observable outcome of changes in other types of biodiversity, which more explicitly guide conservation efforts such as the loss of functional groups, changes in interaction networks, and heterogeneity in habitat composition. Identifying how these underlying axes drive proximate changes in ecosystem processes like disease transmission is critical for responding to human-mediated (that is, anthropogenic) change 10-16. Zoonotic spillover is influenced by many ecological processes before a pathogen actually spills over into a human host. Therefore, changes in biodiversity can mechanistically affect spillover through several pathways including effects on the density, distribution, and susceptibility of reservoir hosts, as well as pathogen prevalence, infectiousness, survival, dissemination, and reservoir hosthuman contact^{18,19} (Figure 1). Once in the recipient (human) host, a series of biological and epidemiological factors determine whether onward transmission is possible^{18–21} (Figure 1). To harmonize spillover prevention and biodiversity conservation, a clear mechanistic understanding is needed of how increases and decreases in multiple aspects of biodiversity, from individuals to populations to communities to ecosystems, influence spillover processes (Figure 1).

This review focuses on how infectious-disease systems change with shifts in biodiversity, highlighting case studies that suggest causal mechanisms (Figure 1 and Table 1). We group case studies based on the leading International Union for Conservation of Nature-classified threats to biodiversity. Although examples that mechanistically link environmental change to zoonotic spillover via at least one metric of biodiversity change are scarce, our review identifies emerging generalities across disease systems and anthropogenic disturbances. We find the best support for an influence of functional, interaction, ecosystem phenological, and landscape diversity on spillover risk but recognize that there are additional dimensions of

Wildlife trade

and urbanization

Taxonomic and interaction

diversity (increased)

162,166,167

8

Table 1. Case studies of mechanisms connecting anthropogenic disturbance with biodiversity change and the subsequent effects on infectious disease spillover. Infectious disease case studies Anthropogenic Biodiversity change Mechanisms of No. in disturbance (type and direction) biodiversity change Spillover layers affected Disease impacts Figure 1 References 33 1 Agricultural Functional diversity Loss of large consumers Wildlife host density and Increased prevalence of expansion and (decreased) increases rodent richness distribution, and pathogen Bartonella in rodents in intensification and abundance prevalence Kenya 63 2 Landscape diversity Resources become limited. Wildlife host density and Increased prevalence and (decreased) pushing animals into humandistribution, and pathogen spillover (zoonotic modified landscapes prevalence; human transmission) of P. knowlesi exposure to pathogen in Borneo 21 Urbanization Ecosystem phenological Resources become limited, Wildlife host density and Increased prevalence, 3 diversity (decreased) pushing migrating animals to distribution, pathogen shedding, and spillover form resident populations in prevalence, and pathogen of Hendra virus human-modified landscapes shedding; human exposure to pathogen 120,125 Climate change Functional diversity Polar species replaced by Wildlife host density and Increased spillover risk of (increased) migrating nonpolar species distribution; pathogen rabies in Alaska as a polar (via predation and resource survival and spread; reservoir of rabies (Arctic fox) competition) human exposure to is being replaced by a more pathogen human-landscape adaptable reservoir species (red fox) 130,131 5 Taxonomic and Drought and reduction in Wildlife host density Increased spillover risk of interaction diversity water resources lead to and distribution E. coli in Botswana (increased) increased density and diversity of hosts around shared water resources 136.137 Taxonomic, functional, 6 Invasive species Introduction of Burmese Human exposure to Increased spillover risk of and interaction diversity python reduces abundance pathogen Everglade virus in Florida as (decreased) of large- and medium-sized mosquito disease vectors feed on rodent reservoirs mammals more frequently 169,171,173,174 Wildlife trade Wildlife host susceptibility 7 Taxonomic, genetic, Removal of wild, mostly large-Increased spillover risk of Ebola in the Congo Basin as functional, interaction, bodied animals (via hunting, to infection, and pathogen and landscape diversity trapping, transfer, killing) or shedding; pathogen survival demand for wild meat from (decreased) overfishing directly reduces and spread; human exposure small-bodied mammals such as bats (Ebola reservoirs) abundance and diversity of to pathogen terrestrial and marine wildlife increases (hunters and preparers of the bushmeat species are exposed to bat bites, scratches, or blood)

Figure 1 illustrates the overall framework for linking anthropogenic disturbance to biodiversity change to disease spillover via the spillover layers being affected in each case study.

shedding

Wildlife host density and

distribution, susceptibility

to infection, and pathogen

Increased wildlife susceptibility

pathogen shedding and spread

to infection, reservoir density,

of SARS viruses

Wildlife markets aggregate

increasing host richness

that is unique to markets

and the food supply chain

novel assemblages of hosts,

	Year				Potential extensions for		
Initiative	founded	Description	Biodiversity goals	Potential health goals?	preventing spillover	Generality	References
The Bonn Challenge	2011	Launched by the Government of Germany and the International Union for Conservation of Nature to reduce deforestation and promote ecosystem restoration	Obtain pledges for 150 million hectares of degraded and deforested landscapes globally on which to begin restoration by 2020 (which was successfully reached in 2017) and 350 million hectares by 2030	Improve human health, well- being, and livelihood by conserving and restoring degraded or deforested landscapes (no mention of infectious disease burden or spillover per se)	Landscape restoration of wildlife habitat, especially for large-bodied predators and consumers, could potentially help reduce spillover risk driven by increase in rodent abundance due to competitor and predator release related to agriculture and deforestation	1-3	175
Convention on Biological Diversity	1992	A list of goals (2020–2050) for sustainable nature-based solutions for improving planetary health and human well-being, set by the United Nations	Address mitigation of biodiversity loss and anthropogenic disturbances	Improve human health and well-being (no mention of infectious disease burden or spillover <i>per se</i>)	The Convention on Biological Diversity handbooks, including in 2020, do not mention actionable next steps for implementing nature-based solutions. How nature-based solutions may target spillover prevention merits further investigation	1–3	195,221
Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora	1973	A global agreement (182 countries) to regulate the international wildlife trade and ban trade of endangered species	Support surveillance efforts to track species under threat in the international wildlife trade and control illegal wildlife trade activity	Mission statement does not include the prevention of spillover (or improving human health or well-being)	CITES could adopt a pathogen screening regulation scheme to be implemented by all of its member countries to prevent the global spread of emerging diseases that may also hurt endangered wild populations	2,4	189,158
Thirty-By-Thirty Resolution to Save Nature	2020	Part of a global effort, spearheaded by the Wyss Campaign for Nature, National Geographic Society, and over 100 organizations	The Natural Resources Defense Council proposed a 'commitment to protect nature and life on Earth' urging the US federal government to conserve at least 30% of US lands and 30% of ocean regions by the year 2030	Mission statement does not recognize the additional human health benefits of reduced spillover risk via the proposed conservation efforts (e.g. conservation of wildlife habitat and corridors for safe passage of wildlife between intact habitats)	Wildlife corridors would aid conservation of natural predators and large consumers, which could help reduce spillover risk of zoonotic disease where predators keep reservoir populations in check (e.g. rodents) or where corridors help migrations of large herbivores (e.g. caribou) reducing brucellosis risk	1–3	176,177,222,223

Table 2. Continued											
Initiative	Year founded	Description	Biodiversity goals	Potential health goals?	Potential extensions for preventing spillover	Generality	References				
Payments for Ecosystem Services (PES) Program in Costa Rica	1997	PES requires those who benefit from ecosystem services to compensate stewards of these services (e.g. landowners keeping forests intact should be compensated for the services their forests provide, such as carbon sequestration, clean air, and clean rivers)	Forest conservation and restoration aimed to improve biodiversity conservation and other recognized ecosystem services (e.g. watershed services, carbon sequestration, and landscape beauty)	PES programs do not explicitly include infectious disease or spillover prevention	Spillover prevention could be embedded in existing efforts (or be introduced as its own ecosystem service). PES schemes that conserve contiguous and diverse forests could potentially benefit spillover prevention by reducing density of small-bodied mammal reservoir hosts, and intact forests serve as carbon sinks (thereby mitigating climate change effects on spillover)	1–3	178,179				
Project Finance for Permanence (PFP)	2010	A model that includes restoring and conserving contiguous intact ecosystems. PFP programs, e.g. Amazon Region Protected Areas (ARPA), are funded by foundations, NGOs (e.g. WWF), and government agencies	Aims to improve the abundance and management of intact ecosystems. ARPA intends to create, consolidate, and maintain a 60-million-hectare network of protected areas in the Brazilian Amazon	Although not a specific PFP objective, ARPA has likely reduced cases of malaria transmission in the Inner Amazon by slowing the rate of deforestation. This example highlights the potential joint benefits of the PFP model for conservation and public health	Spillover prevention is not yet incorporated in PFP programs, although they could be extended to zoonotic spillover prevention via similar mechanisms to PES programs	1–3	182,183,224				

Several initiatives are listed along with the four generalities discussed in the main text section 'Incorporating concepts of ecological diversity to mitigate spillover risk' that may be considered applicable. Generality numbers in the tables refer to: 1) Large, intact habitat reduces overlap among host species and promotes wildlife health; 2) Loss of predators and competitors reduces regulation of reservoir host and vector populations; 3) Reservoir hosts are better adapted to human-modified systems; and 4) Human activity may increase opportunities for novel interspecies contacts.

Review

Box 1. Dimensions of biodiversity.

There are a number of dimensions that comprise 'biodiversity', each with multiple axes affecting zoonotic spillover risk. Below are a handful of examples described by Naeem et al.²², with suggestions for how to measure and track each aspect using the universally developed Group on Earth Observations Biodiversity Observation Network's essential biodiversity variables (EBVs)²²⁵.

- **Genetic diversity** includes aspects of genomic variability, including nucleotide, allelic, chromosomal, and genotypic variation. Genetic diversity has yet to be studied in the context of biodiversity change and zoonotic disease risk; however, multiple reviews^{14,15} have described how observable patterns in taxonomic diversity are likely, at least in part, the result of genotypic variation governing phenotypic variation in host physiology and behavior (that is, host resistance, tolerance, and competence) and thus can influence zoonotic disease risk. EBVs: Intraspecific genetic diversity, Genetic differentiation.
- Taxonomic diversity refers to the number and relative abundance of taxa (for example, species, genera, and higher levels of taxonomic organization). Disease–diversity relationships are typically described within the context of species richness. One example relevant to spillover is an increase in diversity of host species, so that vectors take 'wasted bites' on non-competent hosts. In many cases, change in taxonomic diversity per se does not influence zoonotic disease spillover; however, change in the other dimensions of biodiversity are evident through changes in taxonomic diversity. EBVs: Species distributions, Species abundances, Community abundance, Taxonomic/phylogenetic diversity.
- Functional diversity refers to the variation in the degree of expression of multiple functional traits: that is, the different types of processes in a community that are important to its structure and dynamic stability. Examples relevant to spillover include loss of predators and competitors and increase in abundance of generalist, synanthropic animals. EBV: Trait diversity.
- Interaction diversity refers to the number and relative abundance of interactions among species in a community²²⁶. These biotic interactions include contact, competition, facilitation, and predation. Examples relevant to spillover include a loss of interactions regulating reservoir host species or an increased number of novel cross-species interactions via crowding. EBV: Interaction diversity.
- Ecosystem phenological diversity is the diversity in the phenological dates of life within an ecosystem (for example, flowering time). Phenological diversity is a subset of temporal diversity, which is broadly thought of as change in biodiversity over time. An example relevant to spillover is the reduction in the seasonal availability of resources, which in turn affects sedentary movement and eating habits. EBV: Phenology.
- Landscape diversity* is composed of compositional and configuration diversity. Landscape compositional diversity includes diversity of habitat patches, and configuration diversity includes the number, size, and arrangement of habitat patches. An example relevant to spillover is an increase in the number of reservoir habitat patches while decreasing their size, thereby providing increased opportunity for reservoir host-human or host-vector contact. *Note that landscape ecologists commonly refer to 'landscape diversity' as 'heterogeneity'. EBVs: Live cover fraction, Ecosystem distribution.

biodiversity not explicitly studied that are likely to influence spillover (for example, genetic diversity²²). Within our description of the generalities, we identify ongoing sustainability initiatives that could incorporate spillover prevention, emphasizing how reframing the discussion about biodiversity and disease may facilitate win-win outcomes for health and the environment.

Anthropogenic disturbance, biodiversity change, and disease spillover

Land conversion, agricultural intensification, and urbanization

As of 2019, agricultural expansion and intensification were the leading causes of biodiversity loss ¹⁷. Agricultural development both clears and fragments previously intact ecosystems, creating edge habitats that increase human encroachment on wildlife, homogenizing landscapes to reduce availability of natural resources for wildlife, and releasing pesticides, fertilizers, and antimicrobial compounds into the environment. Urbanization, characterized by the presence of built environments, similarly clears intact ecosystems while increasing air, water, light, and land pollution²³. Moreover, urbanization significantly increases human density: 70% of the world's population is expected to live in urban areas by 2050²⁴. All of these factors contribute to

population declines or even local extinctions of species^{25–27} and may influence the dynamics of infectious diseases that have an important environmental component in their transmission cycle²⁸.

Clearing intact ecosystems for agriculture, urbanization, and other land modifications (including development of forestry) drives the loss of large- and medium-bodied animals (that is, defaunation) while supporting the persistence or growth of populations of small-bodied animals^{29–32}. Recent research has made it clear that loss of functional diversity (defined in Box 1) due to non-random patterns of defaunation has significant effects on zoonotic spillover risk^{10,11,16,33–39}. Increase in disease spillover risk due to changes in functional diversity of animal communities may occur through the expansion or invasion of opportunistic zoonotic hosts that thrive in human-modified landscapes or through the cascading effect of human-induced extirpation of predators and competitors of zoonotic species, as described below.

Small-bodied mammals are common pathogen reservoirs, with the rodent and bat orders containing the highest number of known zoonotic hosts 40-43. Certain taxa of small-bodied animals are likely to predominate in human-modified landscapes due to traits that make them adaptable to living in proximity to

Figure 2. Taxa and habitats affected by agricultural intensification, urbanization, and species invasion.

(A) The competent rodent host species (Saccostomus mearnsei) of Bartonella in Kenya (image courtesy of Hillary Young). Reduced functional diversity, due to loss of large consumers and driven by agricultural expansion and intensification, increases rodent richness and abundance and thus Bartonella spillover risk. (B) The natural habitat of the flying fox (a fruit bat of the genus Pteropus) is threatened by land conversion and urbanization (reducing ecosystem phenological diversity), which in turn aggregates flying foxes at higher densities in urban areas and brings humans into closer proximity with these natural reservoirs of Hendra virus (photo by Elizabeth Shanahan). (C) Supplemental feeding of elk (Cervus canadensis) during winter months in Yellowstone National Park (image courtesy of United States Geological Survey). Agricultural conversion of land in North America has limited the availability of natural winter-feeding grounds for elk (reduced ecosystem phenological diversity). Large populations are dependent on supplemental feeding, reducing migration and promoting high density aggregations, thus increasing the risk of brucellosis spillover to livestock and humans. (D) A Burmese python (Python bivittatus) in the Everglades in Florida, USA (photo by Anne Devan-Song). This invasive species has reduced biodiversity in the Everglades (taxonomic, functional, and interaction diversity), thereby increasing the rate at which vectors feed on competent hosts of Everglade virus and thus spillover risk in this region.

humans^{44,45}. These traits, including diet and habitat generalism, fast-paced life history, high population density, and proximity with human settlements are positively correlated with zoonotic reservoir status 12,34,41. On a global scale, the richness and abundance of zoonotic hosts (especially birds, bats, and rodents) positively correlate with the degree of human-mediated land modification^{34,46}. Local studies in Kenva, Tanzania, and Madagascar found that this change in functional diversity, such that communities are dominated by animals with traits conducive to adaptation to human environments, increases zoonotic disease risk: rodent communities in croplands had a higher proportion of competent zoonotic reservoir hosts and higher prevalence of zoonotic pathogens than in unmanaged areas 16,35,47.

Loss of functional diversity in ecological communities may also be driven by the loss of predators and competitors that help regulate populations of reservoir hosts and vectors. Land conversion can drive the replacement of large herbivores with small herbivores, altering the overall effect of herbivores on the plant community and ecosystem as a whole 33,48. In savanna ecosystems in central Kenya, exclusion of large herbivores through fencing, an experimental simulation of what often occurs with agricultural intensification, resulted in changes in the plant community and competitive release of small herbivores, leading to the increase in abundance of competent rodent hosts (Saccostomus mearnsei) and prevalence of Bartonella and its vectors^{33,49} (Figure 1, Table 1, and Figure 2A). Predators of reservoir hosts and vectors might also exert a crucial role in modulating the risk of disease spillover for humans 10,11. In Senegal, the construction of the Diama dam in 1986 to prevent saltwater intrusion and support agricultural intensification blocked the migration of a native predator (the giant river prawn, Macrobrachium vollenhoveni) that consumes snail vectors and free-living Schistosoma spp., resulting in increased transmission of vector-borne parasites to humans³⁶. These findings have been linked to construction of other large dams as well, and the subsequent increases in schistosomiasis transmission throughout Africa³⁸. In terrestrial zoonotic disease systems, the presence of leopards may decrease risk of rabies transmission to humans by preying on stray dogs in Mumbai, India³⁷. Further, predator loss can trigger significantly more complex trophic cascades. The loss of wolves in the northeastern United States was followed by an increase in coyotes. This resulted in increased predation by coyotes on mesopredators (such as foxes), leading to a dramatic reduction of predators of small mammals that control the abundance of rodents that carry Lyme disease 11. This release of competent rodent reservoir hosts from predation has been linked to expansions in Lyme disease in the last two decades 10,11.

In general, land conversion for agriculture can affect landscape diversity (Box 1), thereby altering species distributions and changing contact patterns between wildlife and humans⁵⁰⁻⁵². Landscape diversity can be described as compositional diversity (including patch-type diversity, defined as richness of habitat types among patches) and configuration diversity (including number, size, and arrangement of habitat patches). These aspects of landscape diversity have nonlinear and complex responses to anthropogenic change⁵³. As many existing biodiversity initiatives center around land conservation and restoration, including landscape diversity in the biodiversity-disease discussion is crucial for identifying synergistic solutions for biodiversity conservation and preventing

Review

zoonotic spillover. Within monocultures, all metrics of landscape diversity are reduced. However, in relation to intact ecosystems, moderate agricultural conversion has various effects on patchtype diversity, decreases patch size and thus variation in patch size, and increases the distance among intact habitat patches^{54–56}. Fragmenting of habitat into small patches can shift the distribution of reservoir species, causing them to aggregate at high densities near humans and increasing their contacts with humans, previously unencountered mammals, and vectors — thereby increasing potential for transmission⁵⁷. For example, Plasmodium knowlesi malaria is expanding in Malaysia and across Southeast Asia, partially due to forest loss and agricultural land conversion⁵⁸⁻⁶³. These disturbances drive the primary reservoir hosts, long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (Macaca nemestrina), to occupy small forest fragments within or next to agricultural areas where they overlap with anthropophilic mosquito vectors and people^{63–65}. This shift in distribution not only increases the density of reservoirs, potentially increasing transmission among reservoir hosts, but also increases potential for macaque-vector-human transmission⁶³ (Table 1). High profile zoonotic pathogens, such as Ebola virus, may similarly spill over in forest fragments^{66,67}, highlighting the links between changes in landscape configuration and diversity on zoonotic spillover risk.

Shifts in landscape diversity that skew functional diversity towards favoring reservoir hosts may also increase the risk of zoonotic spillover by antimicrobial-resistant organisms. Runoff from antibiotic-fed livestock forms wastewater lagoons where diverse bacteria mix. There they face strong selective pressures to evolve and share (via horizontal gene transfer) genes conferring resistances to those antibiotics^{68,69}. This also occurs in aquaculture waters⁷⁰, wastewater from antibiotic-treated crops⁷¹, and effluent from wastewater treatment plants⁷². Wildlife that come in contact with polluted waters or soils can pick up these antimicrobial-resistant bacteria and transport them to both neighboring and distant croplands or livestock operations. where they can spill over to people^{73–77}. Global rates of antimicrobial resistance are on the rise, driven by the misuse of antibiotics in both clinical settings and agriculture, with an estimated 700,000 deaths worldwide caused by antimicrobial-resistant bacterial infections⁷⁸. Although existing research on wild animal reservoirs of antimicrobial-resistant bacteria is severely limited 19, initial studies show that animal populations proximate or adaptable to human-modified habitats have higher prevalence of antimicrobial-resistant bacteria than animals with little to no contact with humans⁸⁰, perhaps due to higher host competency and/or exposure rates to these potentially infectious agents. Smith et al.80 found that the prevalence of antimicrobial-resistant bacteria in agricultural areas decreased as the amount of native habitat increased, possibly due to reduced contact between birds and livestock runoff. As a result, landscape composition and configuration may reduce the likelihood of birds becoming inoculated with and transmitting antimicrobial-resistant bacteria. Landscape diversity may decrease antimicrobial-resistance risk both by protecting croplands from livestock wastewater runoff and by providing vegetation that acts as a natural ecosystem filter81. The effect of biodiversity changes on antimicrobial-resistance spillover is severely understudied but warrants significant attention 79,80 given the threat of antimicrobial-resistant bacteria to global public health 82 .

Land conversion can also reduce the phenological diversity of natural ecosystems and food sources (that is, diversity of temporal or cyclical biological cycles; see 'Ecosystem phenological diversity', defined in Box 1), which can cause nomadic and migrating species to forgo migration in favor of occupying the same habitat year-round. In some cases, formation of resident populations may shift reservoir-host dynamics and alter zoonotic spillover risk, particularly when loss of seasonal, high-quality natural resources is paired with provisioning of non-seasonal, subpar food⁸³. For example, the reservoir hosts of Hendra virus, the Pteropus spp. fruit bats, form large nomadic groups that track seasonally abundant nectar sources. Loss of optimal winter resources, at least in part due to habitat loss, drives these animals into small resident groups feeding on permanent, suboptimal food within and around cities^{21,84,85} (Figure 1, Figure 2B, and Table 1). Not only does this bring these bats into closer proximity to humans but also food stress associated with these suboptimal resources may promote viral shedding, increasing the likelihood of the virus spilling into amplifying hosts (that is, hosts in which a pathogen can rapidly replicate to high concentrations, for example horses in this case) and humans⁸⁶. Similarly, agricultural conversion has limited the availability of high-quality winter resources for elk, which serve as reservoir hosts of Brucella abortus (Figure 2C). Large elk populations are now supported by lower-quality supplemental feeding, which reduces migration and promotes high-density aggregations, thereby increasing the spread of Brucella among these animals and potentially spillover to livestock⁸⁷⁻⁹⁰. Climate change may further exacerbate loss of phenological diversity and interrelated shifts in animal movement; however, this has not been explicitly linked to zoonotic spillover⁹¹.

Finally, the rural to urban transition that has occurred over time has released local economies from dependence on local agriculture and opened up trade of goods, services, and ideas with more distant places⁹². Through trade with rural areas, urbanization interacts with other biodiversity threats to drive changes in zoonotic spillover; for example, via introduction of pathogens through the wildlife trade and introduction of invasive species⁹³. Drastic reduction of non-human-adapted animals in completely converted land (that is, cities) may reduce the frequency of spillover of novel zoonotic pathogens⁹⁴. At the same time, interactions between urbanization and other anthropogenic disturbances creates circumstances for pathogen introduction, especially if pathogens can be sustained via human-human transmission. For example, urban centers serve as hubs for long-distance shipping, with urban wildlife markets often containing higher densities and diversity of wildlife. Thus, urban wildlife markets create unique assemblages of species, subsequently increasing the likelihood of novel cross-species transmission⁹⁵. Then, in the rare case where the biology of the pathogen allows frequent human-human transmission (for example, high infectivity to humans, asymptomatic transmission, aerosol transmission¹⁹), the large and dense human populations found in cities can facilitate rapid pathogen spread, resulting in large epidemics⁹⁴ or even pandemics. Spread of novel zoonotic pathogens may be mitigated by increased health and subsequent reduced susceptibility in affluent urban areas⁹⁶.

Figure 3. Taxa and habitats affected by climate change and wildlife trade.

(A) An Arctic fox (Vulpes lagopus) in Alaska (image courtesy of Alaska Department of Fish and Game). Climate change may increase functional diversity in polar and temperate regions as native fauna. such as the Arctic fox, is being replaced by northwardly range-shifting species, such as the red fox (B; Vulpes vulpes) (photo by Peter Hudson). This could potentially increase rabies spillover to humans in Alaska as the red fox is generally a more human-landscape adaptable reservoir species. (C) Several species aggregating around a small water hole in southern Africa (photo by Nick Fox). In the tropics and sub-tropics, climate change is reducing water availability, which may increase taxonomic and interaction diversity. This in turn could increase spillover risk of E. coli as more hosts start to share common water resources. (D) Elephants in Tarangire National Park, Tanzania, protected from poaching (photo by Peter Hudson). The wildlife trade is reducing wild elephant populations and other large-bodied animals, thereby decreasing biodiversity (taxonomic, genetic, functional, interaction, and landscape diversity) and leading to a higher demand for meat from small-bodied mammals such as bats, potentially increasing spillover risk of Ebola and other disease borne by small mammals.

However, the opposite may be true in urban areas that are unplanned or designed to oppress groups of people (that is, without centralized infrastructure and equitable distribution of resources). In these areas, human health might be compromised by increased pollution, lack of affordable healthcare, and limited access to healthy food and clean water^{93,97}.

Climate change

С

Species may respond to climate change through phenotypic plasticity98, rapid adaptive evolution99, and altitudinal and latitudinal range shifts to the edge of their geographic ranges 100-102. Alternatively, species may undergo local population extinctions. range shifts, or even global extinction 103-107. Further, the velocity of rising temperatures varies across different regions of the world, affecting species and populations differently 108. Together these responses can drive biodiversity change in complex, nonlinear, and interdependent ways. Here, we focus on case studies of range shifts in response to rapid anthropogenic climate change, as it is the most immediately observable impact of climate change on wildlife hosts that harbor zoonotic pathogens 109,110. Plastic, adaptive, and local declines or extirpation responses are currently well researched 111-113, with the amphibian decline being perhaps the most emblematic case¹¹⁴, but they are rarely connected to pathogen spillover.

The abundance of different species with certain traits or ecosystem functions (for example, diet, habitat, activity patterns, etc.), and thus functional diversity, may decline with range shifts, especially at high latitudes, although taxonomic diversity (Box 1) of some systems may increase with range shifts 115–117. This is largely attributed to generalists outnumbering specialists in systems impacted by global change, as generalists are able to thrive in a variety of ecological conditions, including human-modified landscapes, whereas specialists need specific resources and/or habitats to survive. At the same time, correlative analyses suggest that zoonotic reservoirs are more likely to be generalist

species^{34,39,118}, as they are more likely to live in closer proximity to people and contact a wider range of other host species. Further, climate-induced loss of forest habitat may lead to an increase in abundance of extreme generalists with zoonotic reservoir potential, as in the case of the highly adaptable deer mice harboring Sin Nombre virus¹¹⁹.

The Alaskan Arctic is currently exhibiting climate-induced shifts in host species, with an increase in the abundance of zoonotic hosts more likely to contact humans. Before contemporary climate change, the ranges of Arctic and red foxes (Figure 3A,B), both of which serve as reservoir hosts for rabies, were separated¹²⁰. However, with climate change, the home range of the generalist red fox has expanded northward, encroaching on the territory of the Arctic fox, which is more of a habitat specialist 121. Arctic fox numbers were already in decline due to other effects of climate change, such as the loss of sea ice and tundra habitat as well as loss of lemming prey, but red foxes are expediting this decline through intraguild predation and competition for resources 122-124. As Arctic fox populations are replaced by red fox populations, the red fox will become the primary reservoir for rabies spillover. As immigrant red foxes increasingly interact with resident Arctic foxes, this shift in the reservoir community will likely increase epizootic peaks of rabies, increasing both the transmission rate and the overall density of susceptible individuals 125. Further, because the largerbodied red fox displays more aggressive behavior than the Arctic fox¹²⁰, and because it is more adaptable to human-dominated landscapes, contact rates between wild rabies reservoirs and dogs or humans might increase, thus increasing rabies spillover risk (Figure 1, Table 1, and Figure 3A,B).

Climate change may reduce other dimensions of biodiversity beyond functional diversity. For instance, climate change may reduce landscape diversity by reducing patch diversity and subsequently increase the likelihood of cross-species transmission

Review

through increased habitat overlap and taxonomic diversity in confined areas 126. For instance, the melting of sea ice alters, disrupts, or even prevents migration patterns of animals such as wild caribou¹²⁷, increasing the chance of intermingling among caribou and with other wild or domestic ungulates. Thus, people who rely on caribou and/or other livestock might be at higher risk of brucellosis spillover under a warming climate in temperate regions¹²⁸. Similarly, in water-stressed parts of Africa, extreme droughts can force many animals - that may previously have used different water bodies and had little to no contact with one another, such as humans, wildlife, and livestock - to congregate at common water sources 129,130 (Figure 3C), increasing traffic and reducing water quality due to elevated fecal loads. In Chobe National Park, Botswana, these patterns and processes are associated with increased loads of Escherichia coli, the leading cause of diarrheal outbreaks 130. Following drought events in and around Chobe National Park, heavy seasonal rainfall and flooding mobilize pathogen-containing feces, subsequently leading to human diarrheal outbreaks in neighboring communities¹³¹ (Table 1). Further, these water sources have the potential to serve as melting pots of antimicrobial resistant bacteria and sources of novel pathogen emergence 132.

Invasive species

Invasive species (that is, organisms that establish and spread outside their native range) present a significant threat to ecosystems and human well-being by negatively impacting native biodiversity and ecosystem services ¹³³. Through processes such as predation, competition, and environmental modification, invasive species can drastically decrease the biodiversity of an ecosystem; an estimated 30 species of invasive predators alone are responsible for at least 58% of all bird, mammal, and reptile extinctions globally ¹³⁴. Invasive species can indirectly impact infectious disease by altering the structure and composition of the native community in ways that either increase or decrease pathogen transmission.

Altering a native community in a way that increases zoonotic spillover risk has been empirically demonstrated for the Everglade virus, a mosquito-borne zoonotic virus. The introduction of the Burmese python (Python bivittatus; Figure 2D) to the Florida Everglades has led to large-scale declines in functional and taxonomic mammalian diversity due to predation and subsequent precipitous loss of large and small-bodied mammals 135,136. With the loss of deer, racoons, and opossums as food sources for blood-sucking arthropods, mosquito vectors of Everglades virus turned increasingly to the primary reservoir host of the virus, the hispid cotton rat (Sigmodon hispidus). This has resulted in higher rates of Everglade virus infection in mosquitoes, potentially increasing the risk of virus exposure to humans 136,137. The Burmese python–Everglade virus case study is a clear example of the dilution effect: higher taxonomic diversity of hosts reduces disease risk because the vector takes 'wasted bites' (from a pathogen-transmission perspective) on non-competent hosts. The loss of taxonomic diversity therefore increases disease spillover risk, with the dilution effect most commonly occurring for vector-borne, zoonotic pathogens, as is the case here9.

In contrast, introduction of invasive species can sometimes reduce transmission of infectious disease from vectors to people through predation on various vector life stages: for example,

larvivorous fish preying on malaria vectors¹³⁸ and crayfish consuming schistosome intermediate hosts¹³⁹. However, despite crayfish lowering the risk of schistosomiasis by voraciously consuming snail intermediate hosts and free-living parasites, invasive crayfish compromised other dimensions of human health by consuming rice and degrading canal banks with their burrows¹⁴⁰. Consequently, in scenarios where invasive species reduce disease risk there can still be a tension between biodiversity impacts of invasive species and their specific ecological roles in infectious-disease dynamics.

Invasive species may also affect infectious-disease dynamics by acting as vectors or reservoir hosts \$^{40,47,141-143}\$, sharing pathogens with native species \$^{144-146}\$, or providing resources for reservoirs and/or vectors \$^{143,147}\$. In these cases, biodiversity conservation via invasive species control may simultaneously reduce zoonotic spillover risk \$^{143}\$. The same processes that drive species introductions, including global trade and travel, may also drive disease emergence, suggesting that win–win solutions for protecting ecosystems from species invasion and humans from pathogen spillover might be possible, albeit potentially challenging from a technical or political perspective \$^{148}\$.

Wildlife hunting, trade, and consumption

One in five vertebrate species is impacted by trade 149, with some wildlife facing population declines and/or species extinction due, mainly or in part, to the impacts of wildlife trade — some legal but primarily illegal (for example, tigers, rhinoceroses, elephants, sharks, and pangolins) 150,151 (Figure 3D). The illegal wildlife trade is estimated to be the world's second largest underground business (hypothesized to be a 5-20 billion-dollar industry) after narcotics¹⁵². The legal wildlife trade, estimated to be an even larger business (300 billion-dollar industry), also poses a threat to biodiversity as the majority of legal wildlife trade (78%) is composed of wild-caught animals, as opposed to those reared in captivity¹⁵³. The local increase or decrease of biodiversity, as well as novel contacts made during translocation and trade between species that do not co-occur naturally in the wild, may drive spillover and disease emergence, as explained below.

Epidemiological and genetic analyses have linked wildlife hunting, trade, and consumption to spillover and spread of many high-profile zoonotic pathogens: rabies virus, Crimean-Congo hemorrhagic fever virus, the plague-causing bacteria *Yersinia pestis*, monkeypox virus, coronaviruses, HIV, Marburg, and Ebola viruses 150,151,153–156. However, in order to stop or mitigate the spillover process, we need to better understand the mechanisms linking the wildlife trade to the eco-epidemiological process of spillover (Figure 1).

The wildlife trade highlights how anthropogenic pressures can increase spillover risk via a direct increase in both taxonomic diversity and the number of interactions across taxa on very small spatial scales (see 'Interaction diversity' defined in Box 1). Throughout the supply chain, the wildlife trade brings together high densities of species that typically would not contact each other in natural habitats. These unique assemblages and interactions can promote cross-species transmission, increasing the likelihood that a pathogen may be transmitted to amplifying hosts and/or humans 154,157–163. Trade may also impact the spillover process by promoting pathogen shedding from animals because of stress during transportation and unsanitary

conditions at markets 154,157-163. For example, the ancestor to SARS-CoV-1 is suspected to have been transmitted from horseshoe bats (most likely Rhinolophus sinicus) to palm civets, two species that do not interact in wild settings. However, palm civets served as amplifying or intermediate hosts within wildlife markets, bringing the virus in closer proximity to humans 164-166. Seroprevalence and virological testing surveys of civets on farms versus those brought to markets in Guangdong, China suggest that palm civets were exposed to the virus at the end of the supply chain 165-167. In a study in Vietnam, the prevalence of coronaviruses in field rats caught or reared for human consumption and sold in markets was more than double that of field rats in the wild¹⁶². Further, coronavirus prevalence was ten times higher in field rats sold or served in restaurants compared with field rats in the wild¹⁶². Thus, the wildlife trade creates opportunities for increased transmission among multiple wild animal species and puts humans in closer proximity to stressed and infected wildlife, fueling the potential for spillover of pathogens (Figure 1 and Table 1).

The wildlife trade for human consumption can take on various forms, including commercial harvesting of wild animals on land and at sea. Together, these interact to amplify the effects of overharvesting, leading to a decrease of many types of biodiversity, such as taxonomic, genetic, functional, interaction, and landscape diversity (Box 1). For example, the wild meat trade in Ghana, which has driven population declines of some mammalian species in the last few decades, correlates with local declines in fish supply, probably due to commercial overfishing off the coast 168,169. Conceivably, during periods when the demand for wild meat is high, hunters and people involved with butchering and preparation are at a higher risk of disease spillover from bites, scratches, and contacts with bodily fluids of animals that serve as pathogen reservoirs. In the Congo basin and other regions where pathogens have recently emerged, wild meat serves as an important protein source in impoverished households. This makes the banning of wild meat a controversial topic 170 even though genetic and epidemiological evidence suggest that wild meat consumption has contributed to the rise of emerging diseases and recent outbreaks via spillover from wildlife to humans of pathogens like Ebola (Table 1), HIV, Marburg, and monkeypox viruses 154,171,172. In Cameroon, simian foamy viruses regularly spill over and infect wild meat hunters, but no human-human transmission has yet been established 154. Conversely, although HIV has adapted to undergo humanhuman transmission, phylogenetic analyses suggest that approximately ten spillover events occurred over the past century before it eventually evolved to cause a pandemic, suggesting that frequent spillover during bushmeat hunting was critical for its emergence¹⁵¹.

Overexploitation of wild meat and other anthropogenic pressures have also been correlated with a decrease in the proportion of large-bodied mammals and an increase in the proportion of small-bodied mammals brought to market ^{173,174}. As a result, preliminary research suggests that overharvesting of wildlife may influence the types of wild animals that hunters and consumers are contacting, potentially presenting new zoonotic spill-over risks. However, mechanistic links between change in composition of wildlife markets and zoonotic disease risk have not yet been established.

Incorporating concepts of ecological diversity to mitigate spillover risk

Although mechanistic research linking changes in biodiversity to zoonotic spillover risk is limited due to expense and logistical challenges, by considering more mechanism-based changes in biodiversity, we collect enough empirical examples to propose four general concepts that have potential to inform biodiversity conservation. These generalities may motivate further integration of biodiversity and zoonotic pathogen spillover research, potentially opening more avenues of funding and facilitating the incorporation of multi-disciplinary methods for collecting and analyzing data. To illustrate this application of our synthesis, we identify ongoing biodiversity and sustainability initiatives that could use these generalities to incorporate spillover prevention. Using the framework we propose may, for example, help to avoid unintended harms from biodiversity conservation or broaden the benefits of biodiversity conservation. Echoing Halsey⁸, we distinguish between generality, that which is mostly considered true, and universality, that which is considered true in all possible contexts. These four generalities (described below) may be more or less applicable for different ecosystems and disease threats.

Generality number 1: Large, intact habitat reduces overlap among host species and promotes wildlife health

Loss of spatially and phenologically diverse habitat alters the spatiotemporal distributions of reservoirs, leading to increased overlap with other vertebrate hosts, vectors, and humans. This generality suggests an opportunity: preserving and restoring large, contiguous, and heterogeneous habitats could minimize harmful contact between humans and wildlife and between host species that do not commonly interact (for example, a reservoir and an amplifying host). Such an approach might additionally reduce the density of reservoir hosts and subsequent intraspecific contact and transmission. The Bonn Challenge¹⁷⁵, Thirty-by-Thirty Resolution to Save Nature 176,177, Payments for Ecosystem Services 178–180, and Project Finance for Permanence projects 181-183 all include conservation and/or restoration of natural ecosystems but do not incorporate spillover prevention in project design and implementation (Table 2). Intact and diverse contiguous landscapes may also promote landscape immunity, defined as ecological conditions that maintain and strengthen immunity in resident fauna so as to reduce pathogen susceptibility and shedding, particularly for potential reservoir species including bats and rodents 184,185. Further, targeted habitat conservation and restoration could encourage previous migration patterns by re-creating or maintaining phenological diversity of high-quality food sources, such as nectar resources for $bats^{21,143}$. However, in some cases, resource provisioning through invasive species, crops, and even waste disposal practices - may reduce migration even when endemic, phenologically diverse habitats are available 186,187. More research differentiating the impact of habitat restoration versus limiting human provisions is needed. Importantly, some biodiversity conservation initiatives, such as Payment for Ecosystem Services in Costa Rica¹⁷⁹, include agroforestry, which could hypothetically increase human exposure risk to zoonotic disease 188. In these cases, the effect of landscape diversity and specific agroforestry practices on spillover should be considered so as not to put biodiversity conservation and public health at odds. Overall,

Review

studying the mechanistic effect of landscape diversity and ecosystem phenological diversity on each spillover process (Figure 1) should lead to new insights that can guide evidence-based policy for both conserving natural ecosystems and reducing spillover risk.

Generality number 2: Loss of predators and competitors reduces regulation of reservoir host and vector populations

Loss of large consumers and predators (changes in functional diversity) can result in increased abundance of animals with fast growth rates and relatively small ranges, such as rodent reservoirs and arthropod vectors. Regulation of poaching (for example, via the Convention on International Trade in Endangered Species 189 initiative) and habitat conservation, preservation, and restoration of contiguous, intact ecosystems could support populations of large predators and herbivores 174,190,191. In turn, predators and large consumers may be important in ecotones between intact and anthropogenic landscapes, where they can regulate populations of small-bodied reservoirs that thrive in human-modified areas. The initiatives aimed to restore and conserve habitat in Table 2 could be adapted to support populations of wildlife that help regulate rodent populations. For example, the Thirty-by-Thirty Resolution to Save Nature 176,177 proposes conservation of wildlife habitat and corridors for safe passage of wildlife between intact habitats. This plan could be improved by configuring habitats and corridors to best support populations of keystone predators and large consumers in areas of zoonotic disease risk. More research is needed to understand the impacts that large herbivores and predators have on zoonotic disease regulation, especially within and around ecotones. If more evidence supports a beneficial effect of conserving predators and large herbivores for reducing spillover risk without increasing human-wildlife conflict, conservation of predators and large consumers may offer another promising solution.

Generality number 3: Reservoir hosts are better adapted to human-modified systems

Human modification further affects functional diversity by changing habitats and shifting communities toward dominance by species that are resilient to anthropogenic disturbance or thrive in human-dominated landscapes. Change in functional diversity towards such 'synanthropic' species has been observed across taxonomic groups of vertebrates including rodents, birds, and carnivores. Similar effects have been observed for disease vectors: generalists thrive in urban areas and have high capacity to transmit pathogens to humans^{38,192,193}. Integrative approaches, such as direct management of invasive rodents and vectors or indirect management through preserving intact habitat and mitigating impacts of climate change to reduce range shifts of reservoirs and vectors, are likely necessary 143,194. Initiatives that guide policy and coordinate action to protect biodiversity from multiple anthropogenic threats, such as the Convention on Biological Diversity¹⁹⁵, may be particularly well suited to prevent spillover from these human-adapted reservoirs and vectors. For example, the Convention on Biological Diversity sets global priorities and coordinates global action on invasive species and climate change, providing a platform to jointly manage invasive reservoir hosts and vectors while advocating for climate resilient ecosystems on a global scale.

Generality number 4: Human activity may increase opportunities for novel interspecies contacts

Commercial wildlife trade, introduction of invasive species, and transportation of livestock and companion animals are activities that increase interaction diversity, introduce more opportunities for cross-species transmission, and facilitate the emergence of new pathogens with zoonotic spillover potential. The Convention on International Trade in Endangered Species¹⁸⁹ aims to control the illegal wildlife trade but does not include objectives that prevent spillover. Adopting global regulations on pathogen screening and ethical and sanitary animal husbandry standards in the international wildlife trade could be a natural next step in advancing management of zoonotic spillover. Overall, regulations and initiatives that reduce diversity of novel interspecies interactions should be adjusted to incorporate spillover prevention.

Other international initiatives are currently working towards sustainable solutions for promoting both public health and conservation, such as the UN Sustainable Development Goals 196, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Nature's Contributions to People 197, International Union for Conservation of Nature's Global Standards for Nature-Based Solutions 198, Bridge Collaborative 199, Pan American and World Health Organizations (PAHO/WHO) Climate Change and Health 200, Global Health Security Agenda 201, and the collaboration among Food and Agriculture Organization (FAO), World Organisation for Animal Health (OIE), and WHO (FAO-OIE-WHO Collaboration) 202. The initiatives included in Table 2 have not yet incorporated spillover prevention.

We emphasize that the initiatives described here must only be implemented based upon local context, centered around the needs, demands, and culture of the local people. A number of global restoration and conservation efforts have been criticized as colonialist and thus detrimental to vulnerable and marginalized groups of people. For example, the Bonn Challenge has been criticized for foresting historically savannah ecosystems, thereby impacting ecosystem function and rangeland livelihoods²⁰³. The Payment for Ecosystem Services in Costa Rica has been rebuked as not adequately compensating people for the service they provide²⁰⁴. Further, Thirty by Thirty has been challenged for disproportionately, negatively impacting Indigenous communities via exclusion from land ownership and management, despite the outsized, positive effect that some Indigenous practices have on biodiversity²⁰⁵. These initiatives may be improved by creating context-dependent management plans that are designed around and implemented by local communities and Indigenous groups. One way to achieve this is through conservation of land via Indigenous Protected Areas: although defined differently depending on the country, Indigenous Protected Areas are generally large areas of intact ecosystems managed or co-managed by Indigenous groups. More than 46% of national reserves within Australia are Indigenous Protected Areas²⁰⁶, and a small but increasing proportion of protected land in Canada is comprised of Indigenous Protected Areas (for example, Thaidene Nëné Indigenous Protected Area, the homeland of the Łutsel K'é Dene First Nation)²⁰⁷. The United States and countries with similar Thirty by Thirty goals can and should create similar protected areas. Another successful model

is Health in Harmony's programs in Borneo, Madagascar, and Brazil, which start with 'radical listening' within rainforest communities to co-develop community-based conservation and health programs that reduce deforestation and provide affordable healthcare access²⁰⁸.

We additionally emphasize that biodiversity conservation is not a panacea for zoonotic spillover prevention, and many systems are too complex or understudied to define clear links between biodiversity change and spillover risk. For example, highly diverse multi-host, multi-vector systems such as West Nile Virus, Ross River virus^{209,210}, leishmaniasis²¹¹, and Chagas disease²¹² require more studies to document ecological drivers of reservoir and vector abundances and capacities to transmit disease. Further, reservoir host species that contribute most to transmission may be variable along geographic and land-use gradients^{213–218}. Even when conservation-related levers for spillover prevention exist, their impacts should be compared to those of other approaches (including economic and biomedical) and implemented from a community-based, environmental-justice perspective. Thus, sustainable solutions for alleviating zoonotic disease burden while conserving biodiversity should be evaluated based on specific knowledge of the socio-ecological context¹.

Conclusions and future directions

We identified mechanistic evidence in the literature that anthropogenically driven biodiversity change may increase zoonotic spillover risk. Several common themes emerged. First, the loss of intact habitat increases overlap between reservoirs and other vertebrate hosts, vectors, and humans. Second, loss of largebodied consumers and predators (defaunation) can result in increased abundance of rodent reservoirs. Third, human-modified landscapes change the functional diversity of species assemblages, increasing the proportion of species that are able to adapt and thrive in anthropogenic environments, and thereby increasing human exposure to zoonotic pathogens. Fourth, other forms of anthropogenic disturbance generated by agriculture and trade of domestic animals and wildlife lead to the introduction of invasive species and increase interaction diversity, facilitating opportunities for cross-species transmission and thus the potential for emergence of novel pathogens with zoonotic spillover potential. Hence, anthropogenic drivers of biodiversity change interact in complex ways, including synergies and both direct and indirect effects. The combined impacts of many different anthropogenic disturbances may exacerbate the effects of biodiversity change on spillover risk.

Certain disease systems are either understudied or too complex to elucidate the effects of biodiversity changes on spillover risk. In addition, some components of the spillover process (Figure 1) are better studied than others in this context. Based on our review, the effects of biodiversity changes on wild-life-host susceptibility, pathogen shedding, and pathogen prevalence in the reservoir are three important steps of spillover that are understudied and warrant further investigation. These aspects are difficult to observe²¹⁹, but another possible reason that they have been understudied could be a lack of appreciation for how wildlife health — and not just presence or absence of disease agents — may affect zoonotic spillover risk. When exposed to stress from anthropogenic activities, wildlife hosts may experience suppressed immunity, rendering them more susceptible

to opportunistic infections, more pathogen shedding, and altered behavior that further increases their exposure to pathogens 185,220. Thus, increased pathogen surveillance and health assessments of wildlife may be useful for understanding mechanisms by which environmental stressors affect wild animal health and lead to changes in the process of disease spillover to people and domestic animals. Finally, there is an urgent need for spatially and temporally replicated field studies incorporating biodiversity change, pathogen dynamics, and wildlife host immunology 184,185, in addition to human health outcomes.

The world is undergoing rapid anthropogenic change with detrimental effects on biodiversity and the health of organisms, including humans. Efforts are underway to combat the impact of anthropogenic disturbances on biodiversity. However, since biodiversity change may affect zoonotic disease spillover through multiple mechanisms, it is imperative that biodiversity conservation efforts also incorporate actions to prevent spillover. Spillover is an issue not only for public health, but also for conservation of threatened wildlife. Here, we argue that reframing discussions of biodiversity and disease around a more inclusive definition of biodiversity and considering the context of each of the complex social-ecological systems in which the spillover process occurs (Figure 1 and Box 1) are essential to highlight mechanistic links between biodiversity and zoonotic spillover. This approach sheds light on how to develop sustainable interventions that prevent zoonotic spillover while protecting biodiversity—to the benefit of both humans and the environment.

ACKNOWLEDGEMENTS

We thank Gretchen Daily, Elizabeth Hadly, and members of the Mordecai Lab (Alexander Becker, Devin Kirk, Marissa Childs, Lisa Couper, Johanna Farner, Mallory Harris, Isabel Dewel, Gowri Vadmal) for thoughtful feedback on early drafts of the manuscript. We are grateful to Hillary Young, Elizabeth Shanahan, Anne Devan-Song, Peter Hudson, Nick Fox, Paul Cross from the United States Geological Survey, and Kimberlee Beckmen and Riley Woodford from the Alaska Department of Fish and Game for providing photographs. We thank the anonymous reviewers for feedback that significantly improved this manuscript. C.K.G., E.A.M. and L.M. were supported by the National Science Foundation (NSF; DEB-2011147, with the Fogarty International Center). N.N. was supported by the Philanthropic Educational Organization (PEO) Scholar Award from the International Chapter of the PEO Sisterhood, and the Stanford Data Science Scholars program. M.P.K. and L.M. were supported by the Natural Capital Project. S.H.S. and G.A.D.L. were partially supported by the NSF (DEB-2011179), the Belmont Forum of Climate Environment and Health and NSF initiative (ICER-2024383), and a Lyme disease seed grant from Stanford University, Department of Psychiatry and Behavioral Sciences. R.K.P. was funded by the DARPA PREEMPT program (Cooperative Agreement: D18AC00031), the NSF (DEB-1716698), and the USDA National Institute of Food and Agriculture (Hatch project 1015891). E.A.M. was also supported by the NSF (DEB-1518681), the National Institute of General Medical Sciences (R35GM133439), the Terman Award, the Stanford King Center for Global Development, the Stanford Woods Institute for the Environment, and the Stanford Center for Innovation in Global Health.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

 Hopkins, S.R., Sokolow, S.H., Buck, J.C., De Leo, G.A., Jones, I.J., Kwong, L.H., LeBoa, C., Lund, A.J., MacDonald, A.J., Nova, N., et al. (2020). How to identify win–win interventions that benefit human health and conservation. Nat. Sustain. 4, 298–304.

- 2. Randolph, S.E., and Dobson, A.D.M. (2012). Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139, 847-863.
- 3. Lafferty, K.D., and Wood, C.L. (2013). It's a myth that protection against disease is a strong and general service of biodiversity conservation: Response to Ostfeld and Keesing. Trends Ecol. Evol. 28, 503-504.
- 4. Ostfeld, R.S., and Keesing, F. (2013). Straw men don't get Lyme disease: response to Wood and Lafferty. Trends Ecol. Evol. 28, 502-503.
- 5. Salkeld, D.J., Padgett, K.A., and Jones, J.H. (2013). A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679-686.
- 6. Wood, C.L., Lafferty, K.D., DeLeo, G., Young, H.S., Hudson, P.J., and Kuris, A.M. (2014). Does biodiversity protect humans against infectious disease? Ecology 95, 817-832.
- 7. Civitello, D.J., Cohen, J., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A., Ortega, C.N., Sauer, E.L., Sehgal, T., Young, S., et al. (2015). Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. USA 112, 8667-8671.
- 8. Halsey, S. (2019). Defuse the dilution effect debate. Nat. Ecol. Evol. 3, 145–146.
- 9. Rohr, J.R., Civitello, D.J., Halliday, F.W., Hudson, P.J., Lafferty, K.D., Wood, C.L., and Mordecai, E.A. (2020). Towards common ground in the biodiversity-disease debate. Nat. Ecol. Evol. 4, 24-33.
- 10. Ostfeld, R.S., and Holt, R.D. (2004). Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front. Ecol. Environ. 2, 13-20.
- 11. Levi, T., Kilpatrick, A.M., Mangel, M., and Wilmers, C.C. (2012). Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. USA 109, 10942-10947.
- 12. Johnson, P.T.J., de Roode, J.C., and Fenton, A. (2015). Why infectious disease research needs community ecology. Science 349, 1259504.
- Levi, T., Massey, A.L., Holt, R.D., Keesing, F., Ostfeld, R.S., and Peres, C.A. (2016). Does biodiversity protect humans against infectious disease? Comment. Ecology 97, 536-542.
- 14. Ostfeld, R.S., and Keesing, F. (2012). Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157-182.
- 15. Johnson, P.T.J., Ostfeld, R.S., and Keesing, F. (2015). Frontiers in research on biodiversity and disease. Ecol. Lett. 18, 1119-1133.
- 16. Young, H.S., McCauley, D.J., Dirzo, R., Nunn, C.L., Campana, M.G., Agwanda, B., Otarola-Castillo, E.R., Castillo, E.R., Pringle, R.M., Veblen, K.E., et al. (2017). Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160116.
- 17. Diaz, S., Settele, E., Brondizio, E., Ngo, H., Gueze, J., Agard, A., Balvanera, K., Brauman, S., Buthchart, K., Chan, L., et al. (2019). IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Bonn Germany: IPBES secretariat), p. 1148, https://doi.org/10.5281/zenodo.
- 18. Plowright, R.K., Parrish, C.R., McCallum, H., Hudson, P.J., Ko, A.I., Graham, A.L., and Lloyd-Smith, J.O. (2017). Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502-510.
- Wasik, B.R., de Wit, E., Munster, V., Lloyd-Smith, J.O., Martinez-So-brido, L., and Parrish, C.R. (2019). Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190017.
- 20. Lloyd-Smith, J.O., George, D., Pepin, K.M., Pitzer, V.E., Pulliam, J.R.C., Dobson, A.P., Hudson, P.J., and Grenfell, B.T. (2009). Epidemic dynamics at the human-animal interface. Science 326, 1362-1367.

- 21. Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., Reid, P.A., McFarlane, R.A., Martin, G., et al. (2015). Ecological dynamics of emerging bat virus spillover. Proc. R. Soc. B Biol. Sci. 282, 20142124.
- 22. Naeem, S., Duffy, J.E., and Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. Science 336, 1401-1406.
- 23. Bai, X., McPhearson, T., Cleugh, H., Nagendra, H., Tong, X., Zhu, T., and Zhu, Y.-G. (2017). Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215-240.
- 24. United Nations, Department of Economic and Social Affairs, Population Division (2019). World Urbanization Prospects 2018. Highlights (New York: United Nations), https://population.un.org/wup/Publications/ Files/WUP2018-Highlights.pdf
- 25. Krebs, J.R., Wilson, J.D., Bradbury, R.B., and Siriwardena, G.M. (1999). The second Silent Spring? Nature 400, 611-612.
- 26. Laurance, W.F., Sayer, J., and Cassman, K.G. (2014). Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29,
- 27. Estrada, A., Garber, P.A., Rylands, A.B., Roos, C., Fernandez-Duque, E., Fiore, A.D., Nekaris, K.A.-I., Nijman, V., Heymann, E.W., Lambert, J.E., et al. (2017). Impending extinction crisis of the world's primates: Why primates matter. Sci. Adv. 3, e1600946.
- 28. Rohr, J.R., Barrett, C.B., Civitello, D.J., Craft, M.E., Delius, B., DeLeo, G.A., Hudson, P.J., Jouanard, N., Nguyen, K.H., Ostfeld, R.S., et al. (2019). Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456.
- Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B.C., et al. (2011). Trophic downgrading of planet Earth. Science 333, 301–306.
- 30. Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B., and Collen, B. (2014). Defaunation in the Anthropocene. Science 345, 401-406.
- Graham, S.I., Kinnaird, M.F., O'Brien, T.G., Vågen, T.-G., Winowiecki, L.A., Young, T.P., and Young, H.S. (2019). Effects of land-use change on community diversity and composition are highly variable among functional groups. Ecol. Appl. 29, e01973.
- 32. Gutiérrez-Granados, G., and Dirzo, R. (2021). Logging drives contrasting animal body-size effects on tropical forest mammal communities. For. Ecol. Manag. 481, 118700.
- 33. Young, H.S., Dirzo, R., Helgen, K.M., McCauley, D.J., Billeter, S.A., Kosoy, M.Y., Osikowicz, L.M., Salkeld, D.J., Young, T.P., and Dittmar, K. (2014). Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proc. Natl. Acad. Sci. USA 111, 7036-7041.
- 34. Gibb, R., Redding, D.W., Chin, K.Q., Donnelly, C.A., Blackburn, T.M., Newbold, T., and Jones, K.E. (2020). Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398-402.
- 35. McCauley, D.J., Salkeld, D.J., Young, H.S., Makundi, R., Dirzo, R., Eckerlin, R.P., Lambin, E.F., Gaffikin, L., Barry, M., and Helgen, K.M. (2015). Effects of land use on plague (Yersinia pestis) activity in rodents in Tanzania. Am. J. Trop. Med. Hyg. 92, 776-783.
- 36. Sokolow, S.H., Huttinger, E., Jouanard, N., Hsieh, M.H., Lafferty, K.D., Kuris, A.M., Riveau, G., Senghor, S., Thiam, C., N'Diaye, A., et al. (2015). Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc. Natl. Acad. Sci. USA 112, 9650-9655.
- 37. Braczkowski, A.R., O'Bryan, C.J., Stringer, M.J., Watson, J.E., Possingham, H.P., and Beyer, H.L. (2018). Leopards provide public health benefits in Mumbai, India. Front. Ecol. Environ. 16, 176-182.
- 38. Sokolow, S.H., Jones, I.J., Jocque, M., La, D., Cords, O., Knight, A., Lund, A., Wood, C.L., Lafferty, K.D., Hoover, C.M., et al. (2017). Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160127.

- Johnson, C.K., Hitchens, P.L., Pandit, P.S., Rushmore, J., Evans, T.S., Young, C.C.W., and Doyle, M.M. (2020). Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc. Biol. Sci. 287, 20192736.
- de Faria, M.T., Calderwood, M.S., Athanazio, D.A., McBride, A.J.A., Hartskeerl, R.A., Pereira, M.M., Ko, A.I., and Reis, M.G. (2008). Carriage of Leptospira interrogans among domestic rats from an urban setting highly endemic for leptospirosis in Brazil. Acta Trop. 108, 1–5.
- Han, B.A., Schmidt, J.P., Bowden, S.E., and Drake, J.M. (2015). Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. USA 112, 7039–7044.
- Luis, A.D., O'Shea, T.J., Hayman, D.T.S., Wood, J.L.N., Cunningham, A.A., Gilbert, A.T., Mills, J.N., and Webb, C.T. (2015). Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol. Lett. 18, 1153–1162.
- Han, B.A., Kramer, A.M., and Drake, J.M. (2016). Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577.
- Purvis, A., Gittleman, J.L., Cowlishaw, G., and Mace, G.M. (2000). Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952.
- Cusack, J. (2011). Characterising small mammal responses to tropical forest loss and degradation in Northern Borneo using capturemark-recapture methods. Unpublished masters dissertation (Imperial College London), https://www.iccs.org.uk/wp-content/thesis/consci/ 2011/Cusack.pdf.
- Mendoza, H., Rubio, A.V., García-Peña, G.E., Suzán, G., and Simonetti, J.A. (2019). Does land-use change increase the abundance of zoonotic reservoirs? Rodents say yes. Eur. J. Wildl. Res. 66, 6.
- Herrera, J.P., Wickenkamp, N.R., Turpin, M., Baudino, F., Tortosa, P., Goodman, S.M., Soarimalala, V., Ranaivoson, T.N., and Nunn, C.L. (2020). Effects of land use, habitat characteristics, and small mammal community composition on Leptospira prevalence in northeast Madagascar. PLoS Negl. Trop. Dis. 14, e0008946.
- 48. Young, H.S., McCauley, D.J., Helgen, K.M., Goheen, J.R., Otárola-Castillo, E., Palmer, T.M., Pringle, R.M., Young, T.P., and Dirzo, R. (2013). Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna. J. Ecol. 101, 1030–1041.
- Titcomb, G., Allan, B.F., Ainsworth, T., Henson, L., Hedlund, T., Pringle, R.M., Palmer, T.M., Njoroge, L., Campana, M.G., Fleischer, R.C., et al. (2017). Interacting effects of wildlife loss and climate on ticks and tick-borne disease. Proc. R. Soc. B Biol. Sci. 284, 20170475.
- Benton, T.G., Vickery, J.A., and Wilson, J.D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188.
- Chace, J.F., and Walsh, J.J. (2006). Urban effects on native avifauna: a review. Landscape Urban Plan. 74, 46–69.
- Durán, A.P., Green, J.M.H., West, C.D., Visconti, P., Burgess, N.D., Virah-Sawmy, M., and Balmford, A. (2020). A practical approach to measuring the biodiversity impacts of land conversion. Methods Ecol. Evol. 11, 910–921.
- Mladenoff, D.J., White, M.A., Pastor, J., and Crow, T.R. (1993). Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecol. Appl. 3, 294–306.
- Watson, J.E.M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J.C., Murray, K., Salazar, A., et al. (2018). The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610.
- Gibbons, P., and Boak, M. (2002). The value of paddock trees for regional conservation in an agricultural landscape. Ecol. Manag. Restor. 3, 205–210
- Urrutia, A.L., González-Gónzalez, C., Van Cauwelaert, E.M., Rosell, J.A., García Barrios, L., and Benítez, M. (2020). Landscape heterogeneity of peasant-managed agricultural matrices. Agric. Ecosyst. Environ. 292, 106797

- Bloomfield, L.S.P., McIntosh, T.L., and Lambin, E.F. (2020). Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa. Landscape Ecol. 35, 985–1000.
- Chang, M.S., Hii, J., Buttner, P., and Mansoor, F. (1997). Changes in abundance and behaviour of vector mosquitoes induced by land use during the development of an oil palm plantation in Sarawak. Trans. R. Soc. Trop. Med. Hyg. 91, 382–386.
- Cox-Singh, J., Davis, T.M.E., Lee, K.-S., Shamsul, S.S.G., Matusop, A., Ratnam, S., Rahman, H.A., Conway, D.J., and Singh, B. (2008). *Plasmo-dium knowlesi* malaria in humans is widely distributed and potentially lifethreatening. Clin. Infect. Dis. 46, 165–171.
- Brock, P.M., Fornace, K.M., Parmiter, M., Cox, J., Drakeley, C.J., Ferguson, H.M., and Kao, R.R. (2016). *Plasmodium knowlesi* transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 143, 389–400.
- Fornace, K.M., Abidin, T.R., Alexander, N., Brock, P., Grigg, M.J., Murphy, A., William, T., Menon, J., Drakeley, C.J., and Cox, J. (2016). Association between landscape factors and spatial patterns of *Plasmodium knowlesi* infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208.
- Manin, B.O., Ferguson, H.M., Vythilingam, I., Fornace, K., William, T., Torr, S.J., Drakeley, C., and Chua, T.H. (2016). Investigating the contribution of peri-domestic transmission to risk of zoonotic malaria infection in humans. PLoS Negl. Trop. Dis. 10, e0005064.
- 63. Davidson, G., Chua, T.H., Cook, A., Speldewinde, P., and Weinstein, P. (2019). Defining the ecological and evolutionary drivers of *Plasmodium knowlesi* transmission within a multi-scale framework. Malar. J. 18, 66.
- Brant, H.L., Ewers, R.M., Vythilingam, I., Drakeley, C., Benedick, S., and Mumford, J.D. (2016). Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15, 370.
- Vythilingam, I., Wong, M.L., and Wan-Yussof, W.S. (2018). Current status of *Plasmodium knowlesi* vectors: a public health concern? Parasitology 145, 32–40.
- Rulli, M.C., Santini, M., Hayman, D.T.S., and D'Odorico, P. (2017). The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci. Rep. 7, 41613.
- 67. Olivero, J., Fa, J.E., Farfán, M.Á., Márquez, A.L., Real, R., Juste, F.J., Leendertz, S.A., and Nasi, R. (2020). Human activities link fruit bat presence to Ebola virus disease outbreaks. Mammal. Rev. 50, 1–10.
- 68. Tymensen, L., Zaheer, R., Cook, S.R., Amoako, K.K., Goji, N., Read, R., Booker, C.W., Hannon, S.J., Neumann, N., and McAllister, T.A. (2018). Clonal expansion of environmentally adapted *Escherichia coli* contributes to propagation of antibiotic resistance genes in beef cattle feedlots. Sci. Total Environ. 637–638, 657–664.
- Zhang, M., Liu, Y.-S., Zhao, J.-L., Liu, W.-R., He, L.-Y., Zhang, J.-N., Chen, J., He, L.-K., Zhang, Q.-Q., and Ying, G.-G. (2018). Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems. Sci. Total Environ. 639, 1421–1431.
- Lulijwa, R., Rupia, E.J., and Alfaro, A.C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquac. 12, 640–663.
- Taylor, P., and Reeder, R. (2020). Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. 1, 1.
- 72. Sabri, N.A., Schmitt, H., Van der Zaan, B., Gerritsen, H.W., Zuidema, T., Rijnaarts, H.H.M., and Langenhoff, A.A.M. (2020). Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 8, 102245.
- Bonnedahl, J., and Järhult, J.D. (2014). Antibiotic resistance in wild birds. Ups. J. Med. Sci. 119, 113–116.
- 74. Rivadeneira, P., Hilson, C., Justice-Allen, A., and Jay-Russell, M. (2016). Pathogen risks related to the movement of birds frequenting livestock and fresh produce growing areas in the southwestern U.S. Proc. Vertebr. Pest Conf. 27, 258–263.

- Borges, C.A., Cardozo, M.V., Beraldo, L.G., Oliveira, E.S., Maluta, R.P., Barboza, K.B., Werther, K., and Ávila, F.A. (2017). Wild birds and urban pigeons as reservoirs for diarrheagenic *Escherichia coli* with zoonotic potential. J. Microbiol. 55, 344–348.
- 76. Ishibashi, S., Sumiyama, D., Kanazawa, T., and Murata, K. (2019). Prevalence of antimicrobial-resistant *Escherichia coli* in endangered Okinawa rail (*Gallirallus okinawae*) inhabiting areas around a livestock farm. Vet. Med. Sci. 5, 563–568.
- Navarro-Gonzalez, N., Castillo-Contreras, R., Casas-Díaz, E., Morellet, N., Concepción Porrero, M., Molina-Vacas, G., Torres, R.T., Fonseca, C., Mentaberre, G., Domínguez, L., et al. (2018). Carriage of antibioticresistant bacteria in urban versus rural wild boars. Eur. J. Wildl. Res. 64 60
- O'Neill, J. (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations (London, UK: The Review on Antimicrobial Resistance), https://wellcomecollection.org/works/rdpck35v.
- Lagerstrom, K.M., and Hadly, E.A. (2021). The under-investigated wild side of *Escherichia coli*: genetic diversity, pathogenicity and antimicrobial resistance in wild animals. Proc. R. Soc. B Biol. Sci. 288, 20210399.
- Smith, O.M., Edworthy, A.B., Taylor, J.M., Jones, M.S., Tormanen, A.P., Kennedy, C.M., Fu, Z., Latimer, C.E., Cornell, K.A., Michelotti, L.A., et al. (2020). Agricultural intensification heightens food safety risks posed by wild birds. J. Appl. Ecol. 57, 2246–2257.
- Karp, D.S., Gennet, S., Kilonzo, C., Partyka, M., Chaumont, N., Atwill, E.R., and Kremen, C. (2015). Comanaging fresh produce for nature conservation and food safety. Proc. Natl. Acad. Sci. USA 112, 11126–11131.
- 82. Dhingra, S., Rahman, N.A.A., Peile, E., Rahman, M., Sartelli, M., Hassali, M.A., Islam, T., Islam, S., and Haque, M. (2020). Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health 8, 535668.
- Becker, D.J., Streicker, D.G., and Altizer, S. (2018). Using host species traits to understand the consequences of resource provisioning for host-parasite interactions. J. Anim. Ecol. 87, 511–525.
- 84. Plowright, R.K., Foley, P., Field, H.E., Dobson, A.P., Foley, J.E., Eby, P., and Daszak, P. (2011). Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (*Pteropus* spp.). Proc. Biol. Sci. 278, 3703–3712.
- Kessler, M.K., Becker, D.J., Peel, A.J., Justice, N.V., Lunn, T., Crowley, D.E., Jones, D.N., Eby, P., Sánchez, C.A., and Plowright, R.K. (2018). Changing resource landscapes and spillover of henipaviruses. Ann. N. Y. Acad. Sci. 1429, 78–99.
- Plowright, R.K., Peel, A.J., Streicker, D.G., Gilbert, A.T., McCallum, H., Wood, J., Baker, M.L., and Restif, O. (2016). Transmission or withinhost dynamics driving pulses of zoonotic viruses in reservoir–host populations. PLoS Negl. Trop. Dis. 10, e0004796.
- Smith, B.L. (2001). Winter feeding of elk in western North America. J. Wildl. Manag. 65, 173–190.
- 88. Jones, J.D., Kauffman, M.J., Monteith, K.L., Scurlock, B.M., Albeke, S.E., and Cross, P.C. (2014). Supplemental feeding alters migration of a temperate ungulate. Ecol. Appl. 24, 1769–1779.
- Brennan, A., Cross, P.C., Portacci, K., Scurlock, B.M., and Edwards, W.H. (2017). Shifting brucellosis risk in livestock coincides with spreading seroprevalence in elk. PLoS One 12, e0178780.
- Couch, C.E., Wise, B.L., Scurlock, B.M., Rogerson, J.D., Fuda, R.K., Cole, E.K., Szcodronski, K.E., Sepulveda, A.J., Hutchins, P.R., and Cross, P.C. (2021). Effects of supplemental feeding on the fecal bacterial communities of Rocky Mountain elk in the Greater Yellowstone Ecosystem. PLoS One 16, e0249521.
- Lin, Y., and Hyyppä, J. (2019). Characterizing ecosystem phenological diversity and its macroecology with snow cover phenology. Sci. Rep. 9, 15074.

- Berdegué, J.A., Rosada, T., and Bebbington, A.J. (2014). The rural transformation. In International Development: Ideas, Experience, and Prospects, B. Currie-Alder, R. Kanbur, D.M. Malone, and R. Medhora, eds. (Oxford: Oxford University Press), pp. 463–478.
- Santiago-Alarcon, D., and MacGregor-Fors, I. (2020). Cities and pandemics: urban areas are ground zero for the transmission of emerging human infectious diseases. J. Urban Ecol. 6, juaa012.
- Faust, C.L., McCallum, H.I., Bloomfield, L.S.P., Gottdenker, N.L., Gillespie, T.R., Torney, C.J., Dobson, A.P., and Plowright, R.K. (2018). Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483.
- Naguib, M.M., Li, R., Ling, J., Grace, D., Nguyen-Viet, H., and Lindahl, J.F. (2021). Live and wet markets: food access versus the risk of disease emergence. Trends Microbiol. 29, 573–581.
- Wood, C.L., McInturff, A., Young, H.S., Kim, D., and Lafferty, K.D. (2017).
 Human infectious disease burdens decrease with urbanization but not with biodiversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160122.
- 97. Moore, M., Gould, P., and Keary, B.S. (2003). Global urbanization and impact on health. Int. J. Hyg. Environ. Health 206, 269–278.
- Bonamour, S., Chevin, L.-M., Charmantier, A., and Teplitsky, C. (2019).
 Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180178.
- Catullo, R.A., Llewelyn, J., Phillips, B.L., and Moritz, C.C. (2019). The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007.
- Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B., and Thomas, C.D. (2011).
 Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026.
- 101. Nogués-Bravo, D., Rodríguez-Sánchez, F., Orsini, L., de Boer, E., Jansson, R., Morlon, H., Fordham, D.A., and Jackson, S.T. (2018). Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776.
- Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
- 103. Ceballos, G., Ehrlich, P.R., and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. USA 114, E6089–E6096.
- 104. Román-Palacios, C., and Wiens, J.J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 117, 4211–4217.
- 105. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377.
- 106. Hetem, R.S., Fuller, A., Maloney, S.K., and Mitchell, D. (2014). Responses of large mammals to climate change. Temperature 1, 115–127.
- 107. Waller, N., Gynther, I., Freeman, A., Lavery, T.H., and Leung, L. (2017). The Bramble Cay melomys *Melomys rubicola* (Rodentia: Muridae): a first mammalian extinction caused by human-induced climate change? Wildl. Res. 44, 9-21.
- Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., and Ackerly, D.D. (2009). The velocity of climate change. Nature 462, 1052–1055.
- Waits, A., Emelyanova, A., Oksanen, A., Abass, K., and Rautio, A. (2018).
 Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713.
- Carlson, C.J., Albery, G.F., Merow, C., Trisos, C.H., Zipfel, C.M., Eskew, E.A., Olival, K.J., Ross, N., and Bansal, S. (2020). Climate change will drive novel cross-species viral transmission. bioRxiv. https://doi.org/ 10.1101/2020.01.24.918755.
- 111. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. *37*, 637–669.
- Couper, L., Farner, J., Caldwell, J., Childs, M., Harris, M., Kirk, D., Nova, N., Shocket, M., Skinner, E., Uricchio, L., et al. (2021). How will mosquitoes adapt to climate warming? eLife 10, e69630.

- 113. Réale, D., McAdam, A.G., Boutin, S., and Berteaux, D. (2003). Genetic and plastic responses of a northern mammal to climate change. Proc. R. Soc. B Biol. Sci. 270, 591–596.
- 114. Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167.
- 115. Davey, C.M., Chamberlain, D.E., Newson, S.E., Noble, D.G., and Johnston, A. (2012). Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578.
- Hof, A.R., Jansson, R., and Nilsson, C. (2012). Future climate change will favour non-specialist mammals in the (sub)Arctics. PLoS One 7, e52574.
- 117. Brustolin, M.C., Nagelkerken, I., Ferreira, C.M., Goldenberg, S.U., Ullah, H., and Fonseca, G. (2019). Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species. Glob. Chang. Biol. 25, 3539–3548.
- 118. Walsh, M.G., and Hossain, S. (2020). Population structure and diet generalism define a preliminary ecological profile of zoonotic virus hosts in the Western Ghats, India. Epidemics 33, 100416.
- 119. Lehmer, E.M., Korb, J., Bombaci, S., McLean, N., Ghachu, J., Hart, L., Kelly, A., Jara-Molinar, E., O'Brien, C., and Wright, K. (2012). The interplay of plant and animal disease in a changing landscape: the role of sudden aspen decline in moderating Sin Nombre virus prevalence in natural deer mouse populations. EcoHealth 9, 205–216.
- 120. Hersteinsson, P., and MacDonald, D.W. (1992). Interspecific competition and the geographical distribution of red and arctic foxes *Vulpes vulpes* and *Alopex lagopus*. Oikos 64, 505–515.
- Elmhagen, B., Tannerfeldt, M., Verucci, P., and Angerbjörn, A. (2000).
 The arctic fox (*Alopex lagopus*): an opportunistic specialist. J. Zool. 251, 139–149.
- Rodnikova, A., Ims, R.A., Sokolov, A., Skogstad, G., Sokolov, V., Shtro, V., and Fuglei, E. (2011). Red fox takeover of arctic fox breeding den: an observation from Yamal Peninsula, Russia. Polar Biol. 34, 1609.
- 123. Berteaux, D., Thierry, A.-M., Alisauskas, R., Angerbjörn, A., Buchel, E., Doronina, L., Ehrich, D., Eide, N.E., Erlandsson, R., Flagstad, Ø., et al. (2017). Harmonizing circumpolar monitoring of Arctic fox: benefits, opportunities, challenges and recommendations. Polar Res. 36, https://doi.org/10.1080/17518369.2017.1319602.
- 124. Elmhagen, B., Berteaux, D., Burgess, R.M., Ehrich, D., Gallant, D., Henttonen, H., Ims, R.A., Killengreend, S.T., Niemimaa, J., Norén, K., et al. (2017). Homage to Hersteinsson and Macdonald: climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36, https://doi.org/10.1080/17518369.2017.1319109.
- 125. Simon, A., Tardy, O., Hurford, A., Lecomte, N., Bélanger, D., and Leighton, P. (2019). Dynamics and persistence of rabies in the Arctic. Polar Res. 38, 3366.
- 126. Plowright, R.K., Cross, P.C., Tabor, G.M., Almberg, E., and Hudson, P.J. (2012). Climate change and infectious disease dynamics. In New Directions in Conservation Medicine: Applied Cases of Ecological Health, A.A. Aguirre, R.S. Ostfield, and P. Daszak, eds. (Oxford: Oxford University Press), pp. 111–121.
- Post, E., Bhatt, U.S., Bitz, C.M., Brodie, J.F., Fulton, T.L., Hebblewhite, M., Kerby, J., Kutz, S.J., Stirling, I., and Walker, D.A. (2013). Ecological consequences of sea-ice decline. Science 341, 519–524.
- 128. Hueffer, K., Parkinson, A.J., Gerlach, R., and Berner, J. (2013). Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control. Int. J. Circumpolar Health 72, 19562.
- Clifford, D., Kazwala, D.R., and Coppolillo, P. (2008). Evaluating and managing zoonotic disease risk in rural Tanzania. figshare. Journal contribution, https://doi.org/10.6084/m9.figshare.156276.v1.
- 130. Fox, J.T., and Alexander, K.A. (2015). Spatiotemporal variation and the role of wildlife in seasonal water quality declines in the Chobe River, Botswana. PLoS One 10, e0139936.

- 131. Alexander, K.A., Heaney, A.K., and Shaman, J. (2018). Hydrometeorology and flood pulse dynamics drive diarrheal disease outbreaks and increase vulnerability to climate change in surface-water-dependent populations: A retrospective analysis. PLoS Med. 15, e1002688.
- 132. Sanderson, C.E., Fox, J.T., Dougherty, E.R., Cameron, A.D.S., and Alexander, K.A. (2018). The changing face of water: a dynamic reflection of antibiotic resistance across landscapes. Front. Microbiol. 9, 1894.
- Dasgupta, P. (2021). Economics of Biodiversity: The Dasgupta Review (London, UK: HM Treasury).
- Doherty, T.S., Glen, A.S., Nimmo, D.G., Ritchie, E.G., and Dickman, C.R. (2016). Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. USA 113, 11261–11265.
- 135. Dorcas, M.E., Willson, J.D., Reed, R.N., Snow, R.W., Rochford, M.R., Miller, M.A., Meshaka, W.E., Andreadis, P.T., Mazzotti, F.J., Romagosa, C.M., et al. (2012). Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. USA 109, 2418–2422.
- 136. Hoyer, I.J., Blosser, E.M., Acevedo, C., Thompson, A.C., Reeves, L.E., and Burkett-Cadena, N.D. (2017). Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol. Lett. 13, 804.
- 137. Burkett-Cadena, N.D., Blosser, E.M., Loggins, A.A., Valente, M.C., Long, M.T., Campbell, L.P., Reeves, L.E., Bargielowski, I., and McCleery, R.A. (2021). Invasive Burmese pythons alter host use and virus infection in the vector of a zoonotic virus. Commun. Biol. 4, 804.
- 138. Walshe, D.P., Garner, P., Adeel, A.A., Pyke, G.H., and Burkot, T.R. (2017). Larvivorous fish for preventing malaria transmission. Cochrane Database Syst. Rev. 12, CD008090.
- 139. Mkoji, G.M., Hofkin, B.V., Kuris, A.M., Stewart-Oaten, A., Mungai, B.N., Kihara, J.H., Mungai, F., Yundu, J., Mbui, J., Rashid, J.R., et al. (1999). Impact of the crayfish *Procambarus clarkii* on *Schistosoma haematobium* transmission in Kenya. Am. J. Trop. Med. Hyg. 61, 751–759.
- 140. Angeler, D.G., Sánchez-Carrillo, S., García, G., and Alvarez-Cobelas, M. (2001). The influence of *Procambarus clarkii* (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiologia 464, 89–98.
- 141. De Lima, H., De Guglielmo, Z., Rodríguez, A., Convit, J., and Rodriguez, N. (2002). Cotton rats (Sigmodon hispidus) and black rats (Rattus rattus) as possible reservoirs of Leishmania spp. in Lara State, Venezuela. Mem. Inst. Oswaldo Cruz 97, 169–174.
- 142. Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 507.
- 143. Reaser, J.K., Witt, A., Tabor, G.M., Hudson, P.J., and Plowright, R.K. (2021). Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restor. Ecol. 29, e13357.
- 144. Tompkins, D.M., White, A.R., and Boots, M. (2003). Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett. 6, 189–196.
- 145. Colla, S.R., Otterstatter, M.C., Gegear, R.J., and Thomson, J.D. (2006). Plight of the bumble bee: Pathogen spillover from commercial to wild populations. Biol. Conserv. 129, 461–467.
- 146. Mordecai, E.A. (2013). Consequences of pathogen spillover for cheat-grass-invaded grasslands: coexistence, competitive exclusion, or priority effects. Am. Nat. 181, 737–747.
- 147. Allan, B.F., Dutra, H.P., Goessling, L.S., Barnett, K., Chase, J.M., Marquis, R.J., Pang, G., Storch, G.A., Thach, R.E., and Orrock, J.L. (2010). Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl. Acad. Sci. USA 107, 18523–18527.

- 148. Lodge, D.M., Williams, S., MacIsaac, H.J., Hayes, K.R., Leung, B., Reichard, S., Mack, R.N., Moyle, P.B., Smith, M., Andow, D.A., et al. (2006). Biological invasions: Recommendations for U.S. policy and management. Ecol. Appl. 16, 2035-2054.
- 149. Scheffers, B.R., Oliveira, B.F., Lamb, I., and Edwards, D.P. (2019). Global wildlife trade across the tree of life. Science 366, 71-76.
- 150. Zhang, L., Hua, N., and Sun, S. (2008), Wildlife trade, consumption and conservation awareness in southwest China. Biodivers. Conserv. 17, 1493-1516.
- 151. Rosen, G.E., and Smith, K.F. (2010). Summarizing the evidence on the international trade in illegal wildlife. EcoHealth 7, 24-32.
- 152. Wyler, L.S., and Sheikh, P.A. (2013). International Illegal Trade in Wildlife: Threats and U.S. Policy (Washington, DC: Congressional Research Service), https://fas.org/sgp/crs/misc/RL34395.pdf.
- 153. Smith, K.M., Zambrana-Torrelio, C., White, A., Asmussen, M., Machalaba, C., Kennedy, S., Lopez, K., Wolf, T.M., Daszak, P., Travis, D.A., et al. (2017). Summarizing US wildlife trade with an eye toward assessing the risk of infectious disease introduction. EcoHealth 14, 29-39.
- 154. Wolfe, N.D., Switzer, W.M., Carr, J.K., Bhullar, V.B., Shanmugam, V., Tamoufe, U., Prosser, A.T., Torimiro, J.N., Wright, A., Mpoudi-Ngole, E., et al. (2004). Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932-937
- 155. Gómez, A., and Aguirre, A.A. (2008). Infectious diseases and the illegal wildlife trade. Ann. N. Y. Acad. Sci. 1149, 16-19.
- 156. Pavlin, B.I., Schloegel, L.M., and Daszak, P. (2009). Risk of importing zoonotic diseases through wildlife trade, United States. Emerg. Infect. Dis. 15. 1721-1726.
- 157. Bell, D., Roberton, S., and Hunter, P.R. (2004). Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1107-1114.
- 158. Travis, D.A., Watson, R.P., and Tauer, A. (2011). The spread of pathogens through trade in wildlife. Rev. Sci. Tech. 30, 219-239.
- 159. Greatorex, Z.F., Olson, S.H., Singhalath, S., Silithammavong, S., Khammavong, K., Fine, A.E., Weisman, W., Douangngeun, B., Theppangna, W., Keatts, L., et al. (2016). Wildlife trade and human health in Lao PDR: An assessment of the zoonotic disease risk in markets. PLoS One 11, e0150666.
- 160. Judson, S.D., Fischer, R., Judson, A., and Munster, V.J. (2016). Ecological contexts of index cases and spillover events of different Ebolaviruses. PLoS Pathog. 12, e1005780.
- 161. Cantlay, J.C., Ingram, D.J., and Meredith, A.L. (2017). A review of zoonotic infection risks associated with the wild meat trade in Malaysia. Eco-Health 14, 361-388.
- 162. Huong, N.Q., Nga, N.T.T., Long, N.V., Luu, B.D., Latinne, A., Pruvot, M., Phuong, N.T., Quang, L.T.V., Hung, V.V., Lan, N.T., et al. (2020). Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013-2014. PLoS One 15, e0237129.
- 163. Kasper, K., Schweikhard, J., Lehmann, M., Ebert, C.L., Erbe, P., Wayakone, S., Nguyen, T.Q., Le, M.D., and Ziegler, T. (2020). The extent of the illegal trade with terrestrial vertebrates in markets and households in Khammouane Province, Lao PDR. Nat. Conserv. 41, 25-45.
- 164. Hu, B., Zeng, L.-P., Yang, X.-L., Ge, X.-Y., Zhang, W., Li, B., Xie, J.-Z., Shen, X.-R., Zhang, Y.-Z., Wang, N., et al. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698.
- 165. Ye, Z.-W., Yuan, S., Yuen, K.-S., Fung, S.-Y., Chan, C.-P., and Jin, D.-Y. (2020). Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 16, 1686-1697
- 166. Nova, N. (2021). Cross-species transmission of coronaviruses in humans and domestic mammals, what are the ecological mechanisms driving transmission, spillover, and disease emergence? Front. Public Health 9, 717941.

- 167. Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Zheng, H., Wan, K., Liu, Q., et al. (2005). Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892-11900.
- 168. Africanews (2019). Ghana running out of sea food due to overfishing, https://www.africanews.com/2019/07/30/overfishing.
- 169. Brashares, J.S., Arcese, P., Sam, M.K., Coppolillo, P.B., Sinclair, A.R.E., and Balmford, A. (2004). Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180-1183.
- 170. Eskew, E.A., and Carlson, C.J. (2020). Overselling wildlife trade bans will not bolster conservation or pandemic preparedness. Lancet Planet. Health 4, e215-e216.
- 171. Leroy, E.M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment, J.-M., Bermejo, M., Smit, S., Karesh, W., Swanepoel, R., et al. (2004). Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303, 387-390.
- 172. Kurpiers, L.A., Schulte-Herbrüggen, B., Ejotre, I., and Reeder, D.M. (2016). Bushmeat and emerging infectious diseases: Lessons from Africa. In Problematic Wildlife: A Cross-Disciplinary Approach, F.M. Angelici, ed. (Cham: Springer International Publishing), pp. 507-551.
- 173. Fa, J.E., Olivero, J., Farfán, M.Á., Márquez, A.L., Duarte, J., Nackoney, J., Hall, A., Dupain, J., Seymour, S., Johnson, P.J., et al. (2015). Correlates of bushmeat in markets and depletion of wildlife. Conserv. Biol. 29, 805-815.
- 174. Ripple, W.J., Newsome, T.M., Wolf, C., Dirzo, R., Everatt, K.T., Galetti, M., Hayward, M.W., Kerley, G.I.H., Levi, T., Lindsey, P.A., et al. (2015). Collapse of the world's largest herbivores. Sci. Adv. 1, e1400103.
- 175. Bonn Challenge (2020). About the Challenge, https://www.bonnchallenge. org/about. (Accessed 7 June 2021.)
- 176. Chase, A., and O'Shea, H. (2020). Saving nature will take bold action: "Thirty by Thirty". Natural Resources Defense Council Expert Blog, https://www.nrdc.org/experts/alison-chase/saving-nature-will-take-boldaction-thirty-thirty.
- 177. Campaign for Nature, https://www.campaignfornature.org. (Accessed 7 June 2021.)
- 178. Schomers, S., and Matzdorf, B. (2013). Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosyst. Serv. 6, 16-30.
- 179. Sánchez-Azofeifa, G.A., Pfaff, A., Robalino, J.A., and Boomhower, J.P. (2007). Costa Rica's payment for environmental services program: intention, implementation, and impact. Conserv. Biol. 21, 1165-1173.
- 180. Grima, N., Singh, S.J., Smetschka, B., and Ringhofer, L. (2016). Payment for ecosystem services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 17, 24-32.
- 181. Fondo Nacional de Financiamiento Forestal (2018). FONAFIFO completed projects, https://www.fonafifo.go.cr/en/conozcanos/ proyectos-finalizados/. (Accessed 7 June 2021.)
- 182. World Wildlife Fund (2015). Project Finance for Permanence: Key Outcomes and Lessons Learned, https://www.worldwildlife.org/publications/ project-finance-for-permanence-key-outcomes-and-lessons-learned.
- 183. Redstone Strategy Group (2011). Project Finance for Permanence: Lessons from Landscape-scale Conservation Deals, https://www. redstonestrategy.com/wp-content/uploads/2016/07/2013-01-04-PFP-Paper.pdf.
- 184. Plowright, R.K., Reaser, J.K., Locke, H., Woodley, S.J., Patz, J.A. Becker, D.J., Oppler, G., Hudson, P.J., and Tabor, G.M. (2021). Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Health 5, e237-e245.
- 185. Becker, D.J., Albery, G.F., Kessler, M.K., Lunn, T.J., Falvo, C.A., Czirják, G.Á., Martin, L.B., and Plowright, R.K. (2020). Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972-995.

- Tortosa, F.S., Caballero, J.M., and Reyes-López, J. (2002). Effect of rubbish dumps on breeding success in the white stork in southern Spain. Waterbirds 25, 39–43.
- Satterfield, D.A., Maerz, J.C., and Altizer, S. (2015). Loss of migratory behaviour increases infection risk for a butterfly host. Proc. R. Soc. B Biol. Sci. 282, 20141734.
- 188. Rosenstock, T.S., Dawson, I.K., Aynekulu, E., Chomba, S., Degrande, A., Fornace, K., Jamnadass, R., Kimaro, A., Kindt, R., Lamanna, C., et al. (2019). A planetary health perspective on agroforestry in sub-Saharan Africa. One Earth 1, 330–344.
- World Wildlife Fund (2021). Convention on International Trade in Endangered Species of Wild Fauna and Flora, https://www.worldwildlife.org/pages/cites. (Accessed 7 June 2021.)
- Stoner, C., Caro, T., Mduma, S., Mlingwa, C., Sabuni, G., and Borner, M. (2007). Assessment of effectiveness of protection strategies in Tanzania based on a decade of survey data for large herbivores. Conserv. Biol. 21, 635–646.
- McIntosh, A.R., McHugh, P.A., Plank, M.J., Jellyman, P.G., Warburton, H.J., and Greig, H.S. (2018). Capacity to support predators scales with habitat size. Sci. Adv. 4, eaap7523.
- 192. Vittor, A.Y., Pan, W., Gilman, R.H., Tielsch, J., Glass, G., Shields, T., Sánchez-Lozano, W., Pinedo, V.V., Salas-Cobos, E., Flores, S., et al. (2009). Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am. J. Trop. Med. Hyg. 81, 5–12.
- 193. Xia, S., Dweck, H., Lutomiah, J., Sang, R., McBride, C., Rose, N., Ayala, D., and Powell, J. (2021). Larval breeding sites of the mosquito Aedes aegypti in forest and domestic habitats in Africa and the potential association with oviposition evolution. Authorea, https://doi.org/10.22541/au.161717899.92634794/v1.
- 194. Sokolow, S.H., Nova, N., Pepin, K.M., Peel, A.J., Pulliam, J.R.C., Manlove, K., Cross, P.C., Becker, D.J., Plowright, R.K., McCallum, H., et al. (2019). Ecological interventions to prevent and manage zo-onotic pathogen spillover. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180342.
- 195. Convention on Biological Diversity (2019). POST2020 Global Biodiversity Framework: Updated synthesis of the proposals of parties and observers on the structure of the post-2020 global biodiversity framework and its targets, https://www.cbd.int/doc/c/ef28/32d6/ 883b8de693927c8baa2e4dda/post2020-prep-01-inf-03-en.pdf.
- 196. United Nations Department of Economic and Social Affairs. The 17 Goals, https://sdgs.un.org/goals. (Accessed 7 June 2021.)
- 197. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Nature's contributions to people, http:// www.ipbes.net/glossary/natures-contributions-people. (Accessed June 7, 2021.)
- 198. International Union for Conservation of Nature (2020). IUCN global standard for NbS, https://www.iucn.org/theme/nature-based-solutions/ resources/iucn-global-standard-nbs. (Accessed 7 June 2021.)
- Bridge Collaborative, https://bridgecollaborativeglobal.org/. (Accessed 7 June 2021.)
- Pan American Health Organization. Climate Change and Health, https:// www.paho.org/en/topics/climate-change-and-health. (Accessed 7 June 2021.)
- 201. Global Health Security Agenda, https://ghsagenda.org/. (Accessed 7 June 2021.)
- FAO, OIE, and WHO (2010). The FAO-OIE-WHO Collaboration. A tripartite concept note, https://www.who.int/foodsafety/zoonoses/final_ concept note Hanoi.pdf.
- Vetter, S. (2020). With power comes responsibility a rangelands perspective on forest landscape restoration. Front. Sustain. Food Syst. 4, 549483.
- Arriagada, R.A., Sills, E.O., Ferraro, P.J., and Pattanayak, S.K. (2015). Do payments pay off? Evidence from participation in Costa Rica's PES Program. PLoS One 10, e0131544.

- 205. Agrawal, A., Bawa, K., Brockington, D., Brosius, P., D'Souza, R., DeFries, R., Dove, M.R., Duffy, R., Kabra, A., Kothari, A., et al. An open letter to the lead authors of 'Protecting 30% of the planet for nature: costs, benefits and implications, https://openlettertowaldronetal.wordpress.com/. (Accessed 14 August 2021.)
- Australian Government, Department of Agriculture, Water and the Environment. Indigenous Protected Areas, https://www.environment.gov. au/land/indigenous-protected-areas. (Accessed 14 August 2021.)
- Government of Canada, Parks Canada. Thaidene Nene National Park Reserve, https://www.pc.gc.ca/en/pn-np/nt/thaidene-nene/gestion-management/protected. (Accessed 14 August 2021.)
- 208. Jones, I.J., MacDonald, A.J., Hopkins, S.R., Lund, A.J., Liu, Z.Y.-C., Fawzi, N.I., Purba, M.P., Fankhauser, K., Chamberlin, A.J., Nirmala, M., et al. (2020). Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proc. Natl. Acad. Sci. USA 117, 28515–28524.
- 209. Stephenson, E.B., Peel, A.J., Reid, S.A., Jansen, C.C., and McCallum, H. (2018). The non-human reservoirs of Ross River virus: a systematic review of the evidence. Parasit. Vectors 11, 188.
- 210. Kain, M.P., Skinner, E., van den Hurk, A.F., McCallum, H., and Mordecai, E. (2021). Physiology and ecology combine to determine host and vector importance for Ross River virus. eLife 10, e67018.
- 211. Stephens, C.R., González-Salazar, C., Sánchez-Cordero, V., Becker, I., Rebollar-Tellez, E., Rodríguez-Moreno, Á., Berzunza-Cruz, M., Balcells, C.D., Gutiérrez-Granados, G., Hidalgo-Mihart, M., et al. (2016). Can you judge a disease host by the company it keeps? Predicting disease hosts and their relative importance: a case study for leishmaniasis. PLoS Negl. Trop. Dis. 10, e0005004.
- 212. Jansen, A.M., Xavier, S.C. das C., and Roque, A.L.R. (2018). *Trypanosoma cruzi* transmission in the wild and its most important reservoir hosts in Brazil. Parasit. Vectors *11*, 502.
- 213. Kilpatrick, A.M., Daszak, P., Jones, M.J., Marra, P.P., and Kramer, L.D. (2006). Host heterogeneity dominates West Nile virus transmission. Proc. Biol. Sci. 273, 2327–2333.
- 214. Brown, H.E., Childs, J.E., Diuk-Wasser, M.A., and Fish, D. (2008). Ecological factors associated with West Nile virus transmission, north-eastern United States. Emerg. Infect. Dis. 14, 1539–1545.
- Bradley, C.A., Gibbs, S.E.J., and Altizer, S. (2008). Urban land use predicts West Nile virus exposure in songbirds. Ecol. Appl. Publ. Ecol. Soc. Am. 18, 1083–1092.
- 216. Bowden, S.E., Magori, K., and Drake, J.M. (2011). Regional differences in the association between land cover and West Nile virus disease incidence in humans in the United States. Am. J. Trop. Med. Hyg. 84, 234–238.
- 217. Nolan, M.S., Schuermann, J., and Murray, K.O. (2013). West Nile Virus infection among humans, Texas, USA, 2002–2011. Emerg. Infect. Dis. 19, 137–139.
- 218. Kain, M.P., and Bolker, B.M. (2019). Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data. Parasit. Vectors 12, 395.
- Plowright, R.K., Becker, D.J., McCallum, H., and Manlove, K.R. (2019).
 Sampling to elucidate the dynamics of infections in reservoir hosts.
 Philos. Trans. R. Soc. B Biol. Sci. 374, 20180336.
- 220. Baker, S.E., Cain, R., van Kesteren, F., Zommers, Z.A., D'Cruze, N., and Macdonald, D.W. (2013). Rough trade: Animal welfare in the global wild-life trade. BioScience 63, 928–938.
- 221. International Union for the Conservation of Nature, Commission on Ecosystem Management. Nature-based Solutions, https://www.iucn.org/commissions/commission-ecosystem-management/our-work/nature-based-solutions. (Accessed June 7, 2021.)
- 222. US Department of the Interior, US Department of Agriculture, US Department of Commerce, Council on Environmental Quality (2021). Conserving and Restoring America the Beautiful (Washington, DC: US Department of the Interior), https://www.doi.gov/sites/doi.gov/files/report-conserving-and-restoring-america-the-beautiful-2021.pdf.

- 223. Natural Resources Defense Council. 30x30: NRDC's commitment to protect nature and life on Earth, https://www.nrdc.org/30x30-nrdcscommitment-protect-nature-and-life-earth. (Accessed 7 June 2021.)
- 224. MacDonald, A.J., and Mordecai, E.A. (2019). Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218.
- 225. The Group on Earth Observations Biodiversity Observation Network. What are EBVs? https://geobon.org/ebvs/what-are-ebvs/. (Accessed 10 August 2021.)
- 226. Dyer, L.A., Walla, T.R., Greeney, H.F., Stireman III, J.O., and Hazen, R.F. (2010). Diversity of interactions: A metric for studies of biodiversity. Biotropica 42, 281–289.