Algoritmos inspirados en la naturaleza

La evolución

La evolución

- Cambia las características heredadas de una población sobre generaciones sucesivas.
 - Características heredables
 - ADN
 - Cambio o variación genética
 - Mutaciones: pequeños cambios aleatorios
 - Recombinación: mezcla de genes mediante la reproducción

La fuerza de la evolución

Selección natural, sobrevivencia del más apto

Las variaciones genéticas que mejoran la probabilidad de sobrevivencia y reproducción se vuelven más comunes en generaciones sucesivas

Selección Natural

¿Qué es lo que nos enseñó la evolución?

- Las especies actuales son versiones con variación genética de las especies anteriores
- La evolución está impulsada por la selección natural. La supervivencia del más apto (Survival of the fittest)

¿Qué tiene que ver con ML?

Aptitud (fitness) →

Restricciones en optimización

Individuos en una especie \rightarrow

Parámetros (o hiperparámetros) en optimización

Algoritmos Evolutivos

- Se inspiran en la evolución biológica
- Se basan en una población: generan, mantienen y optimizan una población de soluciones
- Algoritmos genéticos
- Programación evolutiva
- Estrategias de evolución
- Evolución diferenciada

Piezas de los Algoritmos Evolutivos Representación: cada solución potencial al problema

Función objetivo: para evaluar la solución (fitness)

Operadores de variación: Mutación y crossover

Selección y reproducción: sobrevivencia del más apto

Pseudocódigo

- Generar una población inicial de soluciones
- Evaluar el fitness de cada individuo
- Repetir hasta condición
 - Seleccionar: Seleccionar padres en base al fitness
 - Recombinar: Aplicar operaciones de crossover
 - Mutar: Aplicar variaciones aleatorias a los individuos
 - Evaluar: evaluar el fitness de cada individuo
 - Reproducir: Pasar a la siguiente generación los individuos más aptos
- Seleccionar la mejor solución de la población

Gráficamente

Basado en: Introduction to evolutionary computing, A.E. Eiben, J.E. Smith

Representación

- Una forma de codificar las soluciones
- Función objetivo (fitness) f(x), donde x es la solución
- Cada solución x es llamada fenotipo.
- La representación de la solución es llamada genotipo.
- Las operaciones de variación se realizan en el genotipo
- Los fenotipos se evalúan usando la función objetivo
- La representación mapea el fenotipo y el genotipo

Representación

- El método de representación depende del problema
- Se puede usar:
 - Representación Binaria
 - Representación de números reales
 - Representación de llaves aleatorias
 - Otros específicos al problema

Representación Binaria

- Tradicionalmente la forma más popular de representación
- Cada solución es una cadena de bits con una longitud L
- Se usa una función de codificación y decodificación para mapear los fenotipos a los genotipos.

Función de codificación

 Convertir números a representación binaria es trivial, pero no usamos la forma "tradicional"

Función de codificación

 $\vec{a} \in \{0,1\}^L$ Cadena de bits de longitud L La solución x está compuesto de x_D variables $x_i \in [u_i, v_i]$ Cada variable x_i puede estar en un intervalo $[u_i, v_i]$

Para codificar cada variable:

- 1. Dividir $\vec{a} \in \{0,1\}^L$ en n segmentos de igual longitud $\vec{s}_i \in \{0,1\}^{\frac{L}{n}}$, $i=1,\ldots,n$
- 1. Decodificar cada segmento en un entero K_i , $i=1,\ldots,n$ y $K_i=\sum_{j=0}^{\frac{L}{n}}\vec{s}_{ij}\times 2^j$
 - Pasar cada segmento binario al número que representa, ej.. 1111 a 15
- 2. Aplicar la función de codificación: $h(K_i) = u_i + K_i \times \frac{v_i u_i}{2n 1}$
 - Mapear linealmente el número entero del paso 2 al intervalo de la variable x_i

Ejemplo

- $x = \{x_1, x_2, x_3\}$ y $x \in [-5,5]$
- Usando una cadena de bits de longitud L=12
- Tenemos 3 segmentos de tamaño $\frac{12}{3} = 4$ bits

Hasta ahora

Tenemos una forma de representar el problema

Una forma de evaluar el problema: función objetivo (fitness)

Falta una forma de explorar soluciones: operadores de variación

Falta una forma de guiar el algoritmo a mejores soluciones (explotación): **selección y reproducción**

Mutación

• Voltear cada bit con una probabilidad p_m

• Normalmente $p_m=rac{1}{L'}$ pero puede ser hasta ½

• Original: 00101011

• Mutado: 0<u>1</u>1010<u>0</u>1

Mutación

- Si la probabilidad de mutación es baja, puede verse como pequeñas perturbaciones al genotipo de los padres.
- Los descendientes mutados serán muy similares a los padres, lo cual implica que se encuentren cercanos en el espacio de búsqueda
- Si combinamos esto con selección, lo que hace es explorar el espacio cercano aleatoriamente.

Recombinación (Crossover)

- Aleatoriamente seleccionar dos padres para el crossover
- 1-point crossover: seleccionar un único punto de crossover e intercambiar la data mas allá del punto
- N-point crossover:
 - seleccionar múltiples puntos de crossover
 - Alternar el intercambio entre los puntos
- Uniform crossover: por cada punto tiene con probabilidad 50%, de ser intercambiado.

Selección de padres

La selección se realiza previo a la mayoría de operadores

Énfasis en explotar las mejores soluciones

- Seleccionar uno o más soluciones buenas
- Soluciones inferiores también serán seleccionadas, pero con menor probabilidad. ¿Por qué?

Formas de seleccionar

Selección Proporcional

Selección por Ranking

Selección Truncada

Selección por Torneo

Selección Proporcional

- Similar a una rueda de la fortuna
- La probabilidad de seleccionar al individuo i es

$$p_i = \frac{f_i}{\sum_{j=1}^M f_j}$$

Donde f_i es el valor del fitness del individuo, y M es el número de individuos

- No se permiten valores negativos del fitness
- Individuos con fitness alto tienen mayor probabilidad de sobrevivir, pero igualmente pueden ser eliminados
- Individuos con fitness bajo, pueden ser seleccionados (ayuda con escapar óptimos local)

Problemas

- En generaciones iniciales, podemos tener "super individuos" con valores muy altos en el fitness
 - Problema: convergencia prematura en un óptimo local
- En generaciones posteriores, puede no haber mucha separación entre individuos
 - Problema: convergencia lenta

¿Cómo mantener la presión de selección?

• En lugar de usar el valor f_i directamente, se va a escalar proporcionalmente f'_i .

$$f'_i = a + b * f_i$$

Donde a y b son constantes y se definen generalmente como

$$a = \max(f)$$

$$b = \frac{\min(f)}{M}$$

Donde *M* es el número de individuos

Selección Proporcional

$$p_i = \frac{f'_i}{\sum_{j=1}^M f'_j}$$

Selección por Ranking

- Ordenar la población *M* del mejor al peor según el fitness.
- Solo se considera el ranking.

$$\mathcal{X}_{M-1}, \mathcal{X}_{M-2}, \dots, \mathcal{X}_0$$

- Seleccionar los top γ individuos con probabilidad $p(\gamma)$, donde $p(\gamma)$ es una función de ranking
 - Lineal
 - Exponencial
 - Power
 - Geométrica

Ranking Lineal

$$p(\gamma) = \frac{\alpha + (\beta - \alpha) * \frac{\gamma}{M - 1}}{M}$$

Donde la suma de todas las probabilidades es 1.

La expectativa es:

- El individuo más apto, va a ser seleccionado β veces
- El peor individuo es seleccionado α veces

Selección Truncada

- Ordenar los individuos de mayor a menor según el valor de fitness
- Seleccionar una proporción de los top.
- Top 50%, o top 30% usualmente

Selección por torneo

- Selección por torneo de tamaño k
 - Seleccionar aleatoriamente una muestra P de k individuos de la población total
 - 2) Seleccionar el individuo en P con el fitness más alto
 - 3) Repetir 1 y 2 hasta generar suficientes descendientes

Torneo binario k=2 es el más popular

Selección de la nueva generación

- Controla como los algoritmos generan la nueva generación
- Generacional vs Steady State
 - Generacional: es el "Estándar", usa todos los nuevos individuos para reemplazar los peores individuos en la generación para crear la nueva población.
 - Steady State: emplea pocos o incluso un individuo para reemplazar a la población.
- n-Elitista: siempre copia los n mejores individuos a la siguiente generación

Representación con números reales

Un vector con números reales representa cada variable de la solución

No hay diferencias entre fenotipo y genotipo

Mejor precisión

Debemos redefinir mutación y crossover

Mutación con números reales

Mutación uniforme

 Reemplaza el cromosoma con un valor seleccionado de forma uniforme de un rango de valores

Mutación gaussiana

 Reemplaza el cromosoma con un valor seleccionado de forma gaussiana de un rango de valores

Recombinación (crossover) real

Aleatoriamente seleccionar dos padres y aplicar operaciones de crossover

$$\mathbf{x}^{(1)} = \left\{ x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)} \right\}$$
$$\mathbf{x}^{(2)} = \left\{ x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)} \right\}$$

- Flat
- Simple
- Aritmetico completo
- Aritmetico local
- Aritmetico único

Flat: Un descendiente ${m h}=\{h_1,h_2,\dots,h_n\}$ es generado donde cada cromosoma h_i es generado uniformemente del intervalo dado por $x_i^{(1)}$ y $x_i^{(2)}$

Simple: Elegir un punto de crossover, los cromosomas posteriores al punto se intercambian.

Aritmetico completo: Dos descendientes

$$\mathbf{h}^{(1)} = \left\{ h_1^{(1)}, h_2^{(1)}, \dots, h_n^{(1)} \right\}$$
$$\mathbf{h}^{(2)} = \left\{ h_1^{(2)}, h_2^{(2)}, \dots, h_n^{(2)} \right\}$$

Donde

$$h_i^{(1)} = ax_i^{(1)} + (1-a)x_i^{(2)}$$

$$h_i^{(2)} = ax_i^{(2)} + (1-a)x_i^{(1)}$$

Y a es un numero aleatorio entre 0 y 1. Todos los genes usan el mismo a

Aritmetico local: Lo mismo que aritmético completo, pero cada gen utiliza un a diferente.

Aritmetico único: Se selecciona un gen aleatorio. Ese gen es reemplazado por el promedio de los padres. El resto es copiado tal cual

Y hay muchos más

http://bib.irb.hr/datoteka/640222.CEC 2013.pdf

• https://phys.org/news/2013-04-virtual-squishy-creatures-evolve-evolutionary.html

Programación Evolutiva

- Cada gen es una operación
- Operadores matemáticos, +,-,*,/, log, sum, pow
- Booleanos, And, Or, Not, Xor
- Funciones de memoria, escribir, leer,
- Estructuras de control, if then else, for
- Otros, mover, girar, abrir

Las funciones deben ser suficientemente complejas para la tarea, pero no tan complidadas.

La función debe aceptar todas las entradas válidas.

(división entre 0?)

