Boğaziçi University Department of Industrial Engineering IE 441 Planning for Engineers

Assignment 3: Project Management

Consider the following project information.

Activity		Normal Duration	Crashed Duration	Normal Cost (Thousand	Crashed Cost (Thousand		
Name	Predecessors	(days)	(days)	` TL)	TL)		
T1		3	2	220	320		
T2	T1	4	2	300	600		
Т3	T1	2	2	250	250		
T4	T2	5	3	420	880		
T5	T3	1	1	300	300		
Т6	T3,T9	2	2	400	400		
Т7	T4,T5	4	4	650	650		
Т8	T6,T7	3	3	900	900		
Т9	T1	5	5	420	420		
T10	Т9	3	3	280	280		
T11	T10	6	4	330	600		
T12	T2	8	8	720	720		
T13	T3,T4	9	6	300	720		
T14	T13	2	1	200	400		
T15	T11,T14	8	6	660	1000		
T16	T8,T15	0	0	0	0		

- 1. Using the Normal Durations,
 - a. Calculate the ES, EF, LF, LS times for each activity
 - b. Find the critical path and the project completion time, T1
 - c. Calculate Total Slack, Free Slack, Safety Slack, Independent Float for each activity
- 2. Using the Crashed Durations,
 - a. Calculate the ES, EF, LF, LS times for all activities
 - b. Find the critical path and the project completion time, T2
 - c. Calculate Total Slack, Free Slack, Safety Slack, Independent Float for each activity
- 3. Using the Crashed Durations and your answer to part (2) find all paths and their criticality level. Are there significant sub-critical paths?
- 4. Using the Time-Cost Trade-off LP model generate the entire Time-Cost profile for project completion times between T1 and T2.

- 5. Find the optimal project cost and completion time assuming a promised due date of 50 days. There is a fixed overhead cost of 100,000 TL per day during the project and a penalty cost of 450,000 TL per day the project is late.
- 6. Now consider that the (normal) durations of the project are only **most likely** durations and actually the durations are random variables with the following information (you can ignore crash durations and all costs from now on):

Activity Name	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12	T13	T14	T15	T16
Min Duration (a)	1	2	1	2	1	2	2	2	2	2	3	6	5	1	6	0
Most Likely Duration (m)	3	4	2	5	1	2	4	3	5	3	6	8	9	2	8	0
Max Duration (b)	5	7	4	7	2	3	5	4	6	7	9	12	11	4	9	0

- 7. Using the PERT approach, find the expected project completion time and its standard deviation.
- 8. What is the probability that the project completion time is less than 25 days?
- 9. Find sub-critical paths (with respect to mean durations) and their criticality level.
- 10. Does your answer to part (8) change in view of your answer to part (9)? Explain.