5. Differentialrechnung: Inhalt

5 Differentialrechnung

- Ableitungen
- Differential
- Kritische Punkte
- Grenzwert von Brüchen
- Taylor-Entwicklung

Ableitung

Definition

Die Funktion f(x) heißt **differenzierbar** in x_0 , wenn der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{73}$$

existiert.

Der Grenzwert heißt **Ableitung** von f in x_0 und wird mit $f'(x_0)$ oder $\frac{df}{dx}(x_0)$ bezeichnet.

 $f'(x_0)$ ist die Steigung der Tangente an f(x) an der Stelle x_0 .

Ableitung

Differenzierbarkeit ist stärkere Eigenschaft als Stetigkeit:

Annahme: f(x) sei in x_0 differenzierbar. Daraus folgt mit $\Delta x = x - x_0$

$$\lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \cdot \Delta x$$
$$= f'(x_0) \lim_{\Delta x \to 0} \Delta x = 0.$$

 $\implies \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0), \text{ d.h. } f(x) \text{ ist stetig im Punkt } x_0.$

Mittelwertsatz der Differentialrechnung

Ist f(x) eine stetige Funktion im Intervall $a \le x \le b$ und für a < x < b differenzierbar, so gibt es mindestens einen Punkt c mit a < c < b, so dass

 $f'(c) = \frac{f(b) - f(a)}{b - a}.$ (74)

Beispiele für Ableitungen

Beispiel: Ableitung von $f(x) = x^2$

$$(\mathbf{x_0^2})' = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{x_0^2 + 2x_0 \, \Delta x + (\Delta x)^2 - x_0^2}{\Delta x} = \lim_{\Delta x \to 0} (2x_0 \, \Delta x + \Delta x) = \mathbf{2} \, \mathbf{x_0}$$

Beispiel: Ableitung von $f(x) = e^x$

$$\begin{aligned} (\boldsymbol{e}^{\mathbf{x}_{0}})' &= \lim_{\Delta x \to 0} \frac{e^{x_{0} + \Delta x} - e^{x_{0}}}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_{0}} \cdot e^{\Delta x} - e^{x_{0}}}{\Delta x} = e^{x_{0}} \cdot \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} \\ &= e^{x_{0}} \cdot \lim_{\Delta x \to 0} \frac{\left(1 + \Delta x + \frac{(\Delta x)^{2}}{2!} + \mathcal{O}(\Delta x)^{3}\right) - 1}{\Delta x} \\ &= e^{x_{0}} \cdot \lim_{\Delta x \to 0} \left(1 + \frac{\Delta x}{2!} + \mathcal{O}(\Delta x)^{2}\right) = e^{x_{0}} \quad (\text{mit } e^{x} = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}) \end{aligned}$$

Ableitungen elementarer Funktionen

f(x)	f'(x)
х ^а	a x ^{a-1}
$\frac{1}{x^a}$	$-\frac{a}{x^{a+1}}$
sin X	cos X
cos X	— sin <i>x</i>
tan X	$\frac{1}{\cos^2 x}$
cot X	$-\frac{1}{\sin^2 x}$
arcsin X	$\frac{1}{\sqrt{1-x^2}}$
arccos X	$-\frac{1}{\sqrt{1-x^2}}$
arctan X	$\frac{1}{1+x^2}$
arccot x	$-\frac{1}{1+x^2}$

f(x)	f'(x)
e^{x}	e^{x}
$\ln x $	$\frac{1}{x}$
sinh X	cosh <i>x</i>
cosh <i>x</i>	sinh <i>x</i>
tanh <i>x</i>	$\frac{1}{\cosh^2 x}$
coth <i>x</i>	$-\frac{1}{\sinh^2 x}$
arsinh x	$\frac{1}{\sqrt{1+x^2}}$
arcosh <i>x</i>	$\frac{1}{\sqrt{x^2-1}}$
artanh x	$\frac{\sqrt{1}}{1-x^2}$
arcoth x	$-\frac{1}{x^2-1}$

Differentiationsregeln

Konstantenregel

$$c'=0 \quad (\text{mit } c \in \mathbb{R})$$
 (75)

Faktorregel

$$(c \cdot f)' = c \cdot f' \quad (\text{mit } c \in \mathbb{R}) \tag{76}$$

Summenregel

$$(f \pm g)' = f' \pm g' \tag{77}$$

Produktregel

$$(f \cdot g)' = f' \cdot g + f \cdot g' \tag{78}$$

Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \tag{79}$$

Kettenregel

$$(f(g(x))' = f'(g(x)) \cdot g'(x)$$
 (80)

Differentiationsregeln

Beispiel Produktregel: $f(x) = \sin x \cdot \cos x$

$$(\sin X \cdot \cos X)' = (\sin X)' \cos X + \sin X \cdot (\cos X)' = \cos X \cdot \cos X + \sin X \cdot (-\sin X)$$
$$= \cos^2 X - \sin^2 X$$

Beispiel Quotientenregel: $f(x) = \tan x = \frac{\sin x}{\cos x}$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - \sin x \cdot (\cos x)'}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

Beispiel Kettenregel: $f(x) = (1 + x)^2$

Setze als innere Funktion g(x) := 1 + x.

$$\implies (f(g(x)))' = f'(g) \cdot g'(x) = (g^2)' \cdot (1+x)' = 2g \cdot 1 = 2(1+x)$$

Das Differential

Differentialquotient

Man nennt den Quotienten

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{81}$$

Differenzenquotient. Der Grenzwert für $\Delta x \to 0$ ist die erste Ableitung oder Differentialquotient von y = f(x):

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \tag{82}$$

Differential

dx und dy sind die Differentiale von x und y = f(x).

Es gilt dy = f'(x) dx.

Höhere Ableitungen

Da f'(x) auch eine Funktion ist, kann man ebenfalls deren Ableitung definieren:

Zweite Ableitung

Die 2. Ableitung von y = f(x) nach x ist definiert als der Grenzwert

$$\lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x} = f''(x)$$
 (83)

Weitere Schreibweisen:

$$y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} = \frac{d^2}{dx^2} f(x)$$

Allgemein schreibt man die n-te Ableitung von y = f(x) nach x als

$$y^{(n)} = \frac{d^n y}{dx^n} = \frac{d^n}{dx^n} f(x) = f^{(n)}(x).$$

23.03. - 09.04.2020

Extremwerte

Lokales Minimum:

Stelle, in deren Umgebung die Funktion keinen kleineren Wert hat.

Lokales Maximum:

Stelle, in deren Umgebung die Funktion keinen größeren Wert hat.

Notwendige bzw. hinreichende Kriterien:

$$f'(x_0) = 0 \land f''(x_0) < 0 \implies$$
 lokales Maximum.

$$f'(x_0) = 0 \land f''(x_0) > 0 \implies \text{lokales Minimum}.$$

$$f'(x_0) = 0 \land f''(x_0) = 0 \implies \text{im Allgemeinen kein Extremwert.}$$

- Wenn ein lokales Minimum der niedrigste Wert im Wertebereich ist, spricht man vom absoluten Minimum.
- Analog gilt dies f
 ür absolute Maxima.

Extremwerte

Maximum:

Minimum:

Wendepunkte

Wendepunkt:

Stelle, an der die Funktion ihr Krümmungsverhalten ändert.

Kriterium:

$$f''(x_0) = 0 \land f'''(x_0) \neq 0$$

• Ein Wendepunkt mit $f'(x_0) = 0$ heißt Sattelpunkt.

Regel von de l'Hôpital

Gesucht ist der Grenzwert $\lim_{x \to a} \frac{\phi(x)}{\psi(x)}$ mit entweder

$$\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x) = 0$$

oder

$$\lim_{x\to a}\phi(x) = \lim_{x\to a}\psi(x) = \infty.$$

Wenn die Funktionen in a differenzierbar sind, dann gilt:

Regel von de l'Hôpital

$$\lim_{x \to a} \frac{\phi(x)}{\psi(x)} = \lim_{x \to a} \frac{\phi'(x)}{\psi'(x)}$$
 (84)

Das Verfahren kann beliebig oft wiederholt werden.

