Facial Keypoints Detection

The Next Breakthrough in Computer Vision

— Sirisha Bhupathi and Abhi Sharma

Faces Are Important

What are facial key points or landmarks?

- Eyes, nose, mouth position and shape identifiers
- x & y coordinates

Why track these key points?

Baseline Blink/Closed Upward Leftward

- Biometrics / face recognition
- Tracking faces in images and video
- Analysing facial expressions
- Detecting dysmorphic facial signs for medical diagnosis
- Instagram filters

The Project

Objective: Predict locations of **15** key points

- Source: Kaggle <u>Facial Keypoints Detection</u>
- Data:
 - o 7k training and 2k test, 96 x 96 images
 - 0-255 grayscale values for images
 - 0-96 x & y coordinates for keypoints
- Score Metric: RMSE of test predictions
- Leaderboard Scores: #1: 1.53; #50: 2.56; Highest: 50
- <u>Our goal</u>: Place top 50; RMSE < 2.56

Data

- Consists of multiple individuals
- Some people are repeated with different poses and different lighting conditions
- Mostly clean data (no cropped or blurry or distorted images)
- 30 key points (15 pairs) are given for each sample

We Made A Plan

- Preprocessing
 - 1. Missing values
 - 2. Separate out labels (Y) from images (X)
- **Step1:** Base NN Model
- **Step2:** Base CNN Model and Tune

- 1. Apply different augmentations (increase samples 9x)
- 2. Careful when picking transformations (cropping, zooming etc.)
- Step4: Expand and tune CNN
- Submission to Kaggle
- Productionizing model (Run on Containers + Cloud)

Initial Model - Baseline NN

Goal:

- Simple Neural Network Model, no CNN input 9126 & output 30
- Set up working pipeline for data processing and Kaggle submission

Missing Values	Data Values	NN Architecture	Model Fitting	RMSE	0.7 -	1							Training	j Lo
Previous value	0-255 images 0-96 key points	1: 128(ReLu)	Epochs: 200 Batch size: All	36.54	0.6 -							_	Test Los	is
Previous value	Scaled inputs 0-1	1: 128(Sigmoid)	u	Errored out	0.5 - v 0.4 -									
Previous value	Scaled 0-1	1: 500 (ReLu) 2: 100 (Sigmoid)	u	4.13	0.4 - 0.3 -									
Avg Values	Scaled 0-1	"	Epochs: 100	3.96	0.2 -									
"	"	((Epoch: 50	9.82	0.1 -	-								
((· · ·	+ Dropout(0.5)	Epoch: 100	7.71	0.0 -	-								_
ш	"	No dropout + 1000(ReLu)	ш	3.97		0	25	50	75	100 Epoch	125	150	175	2

How good was it?

Our base NN model RMSE: 3.96

RMSE for simple average model: ~4.0!!!!

CNN Model Learnings

- Scaling: Biggest factor for accuracy improvement
- Activation: LeakyReLU better than Relu
- **Kernel size**: Speed vs. accuracy
- Filters and layers: Incremental addition & gradual increase
- **Epochs**: Speed vs. overfitting
- Batch size: Optimal batch size for speed of convergence

Choose Top 5 performing models on Dev set

Kaggle final score: 2.316

CNN Final Model

```
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),padding='same', use_bias=True ,input_shape=(96,96,1)))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(2,2))
                                                                              0.006
                                                                                                                --- Training Loss
model.add(Conv2D(64, kernel_size=(3,3),padding='same', use_bias=True))
                                                                                                                    Test Loss
model.add(LeakyReLU(alpha=0.1))
                                                                              0.005
model.add(MaxPooling2D(2,2))
                                                                              0.004
model.add(Conv2D(128, kernel_size=(3,3),padding='same', use_bias=True))
                                                                            § 0.003
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(2,2))
                                                                              0.002
model.add(Conv2D(256, kernel_size=(3,3),padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.1))
                                                                              0.001
model.add(MaxPooling2D(2,2))
                                                                              0.000
                                                                                           20
                                                                                                   40
                                                                                                           60
                                                                                                                   80
                                                                                                                          100
model.add(Conv2D(512, kernel_size=(3,3),padding='same', use_bias=True))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(2,2))
model.add(Flatten())
model.add(Dense(500, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(100, activation='relu'))
model.add(Dense(30, activation='sigmoid'))
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse', 'mae'])
history = model.fit(train_images_2d, train_labels, epochs = 100, batch_size = 100, validation_split = 0.2)
```

Augmentation

Tested several augmentation techniques:

- 1. Image Rotation (only multiples of 90)
- 2. Noise Addition (Gaussian, Poisson, Salt & Pepper)
- 3. Brightness / Darkness
- 4. Translation (Left and Right)
- 5. Blurring

Did not try other augmentations:

- 1. Partial Rotations (45 degrees)
- 2. Image Zoom
- 3. Horizontal Flip (Hard to place KeyPoints)
- 4. Image Distortion
- 5. Random Cropping

Augmentation

Training with Augmentation

With Noise

With Blurring, Noise, Rotation, Translation

With Blurring, Noise

With Blurring, Noise, Bright / Dark

Productionize Training

- Motivation was to standardize and scale training for large datasets
- Thinking beyond 7000 images. Augmented size is 63k.
- Steps are given <u>here</u>
- IBM Cloud Volta 100 GPU architecture
- Containerizing + cloud has its benefits:
 - 1. Better control over compute environment
 - 2. Can manage dependencies in a customized way (Pillow, OpenCv)
 - 3. Faster training time (dedicated compute + CUDA runtime + GPUs)
 - 4. Can be reproduced when dockerized
- Reduced training time from 4.8 min per epoch to 3 seconds per epoch

```
Total params: 7,268,670
                                 Trainable params: 7,264,318
Trainable params: 7,264,318
                                 Non-trainable params: 4,352
Non-trainable params: 4,352
                                 Epoch 1/50
Epoch 1/50
                                 81/81 [============= ] - 288s 4s/step
                                 mse: 0.1379 - val mae: 0.3180
Epoch 2/50
                                 Epoch 2/50
mse: 0.0108 - val mae: 0.0889
                                 Epoch 3/50
```

Final Thoughts

- CNNs > Vanilla NN (for image) 41.5% improvement from baseline
- Augmentation didn't give the expected benefit we were hoping to see
- Rely on NN Architecture instead
- Careful on augmentations applied Parity with Test Data
- Containerizing and productionizing training has many benefits
- Still room for improvement approx 44% behind the leaderboard
- Can try other methods:
 - Pre-trained architectures (VGG, ResNet, GoogLeNet, Transfer Learning)
 - Auto-NN tuning (Hyperopt, Keras tuner)
 - NN Ensembles with cross validation
 - Go beyond Images as features

/207_Final_Project_Final_v4 rigCNN, new NN, 3×3 (version 31/32)			00107	2.31658			
#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	Las
1	^ 1	olegra			1.28236	4	4)
50	Alex Staravoitau		9	2.56286	2	4y	