Sagar Parekh

☑ sagarp@vt.edu | 🄏 https://sagarparekh97.github.io/ | 🗣 Blacksburg, VA, USA

Education _

Virginia Polytechnic Institute and State University

Blacksburg

PhD in Mechanical Engineering

Sep. 2021 - Present

Nirma University

Ahmedabad

B. Tech. in Mechanical Engineering

Sep. 2015 - May. 2019

Research Projects _____

Graduate Student Researcher

Virgina Tech

Advisor: Dr. Dylan Losey

Sep. 2021 - Present

- · Working on a method to learn from multi-modal sensor data for applications in meat-processing
- Developed a method by combining representation learning with reinforcement learning to allow robots to co-adapt alongside human partner
- · Developed a method that enable robots to influence its human partner and quickly adapt to new humans
- Developed a self-supervised method to learn latent mapping without human demonstrations

Research Assistant

IIT Gandhinagar

Advisor: Dr. Vineet Vashista

Jan. 2019 - May. 2021

- Developed a human-in-the-loop control modality for multiple quadcopters collaboratively transporting a cable-suspended payload
- · Developed a quadcopter-payload experimental setup with a custom sensor suite for state feedback estimation
- · Conducted indoor and outdoor experiments for validating the developed control modality
- · Lead an investigative study to understand human-robot interaction in a shared control paradigm with a virtual quadcopter simulator

Publications _____

- [1] **Sagar Parekh**, and Dylan P. Losey. "Learning Latent Representations to Co-Adapt to Humans." arXiv preprint arXiv:2212.09586 (2022). [Link]
- [2] Sagar Parekh, Soheil Habibian, and Dylan P. Losey. "RILI: Robustly influencing latent intent." arXiv preprint arXiv:2203.12705 (2022). [Link]
- [3] Mehta, Shaunak A., **Sagar Parekh**, and Dylan P. Losey. "Learning latent actions without human demonstrations." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022. [Link]
- [4] Prajapati, Pratik, **Sagar Parekh**, and Vineet Vashista. "On-board cable attitude measurement and controller for outdoor aerial transportation." Robotica 40.5 (2022): 1650-1664. [Link]
- [5] Prajapati, Pratik, **Sagar Parekh**, and Vineet Vashista. "On the human control of a multiple quadcopters with a cable-suspended payload system." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. [Link]
- [6] Prajapati, Pratik, Sagar Parekh, and Vineet Vashista. "Collaborative transportation of cable-suspended payload using two quadcopters with human in the loop." 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE, 2019. [Link]

Technical Skills _____

Programming MATLAB, Python, Pytorch, OpenCV, ROS, Arduino

Softwares Unity3D, Unreal Engine

Interests Reinforcement Learning, Robot Learning, Learning from Demonstrations, Deep Learning

Robots FrankaEmika Panda, Fetch, Universal Robots UR10

Select Projects _____

Research Assistant IIT Gandhinagar

Advisor: Dr. Vineet Vashista Jan. 2019 - May. 2021

- Developed a quadcopter simulator using the the game development software Unity3D
- · Programmed the dynamics of a quadcopter as well as implemented an onboard assistive controller using C# script in Unity
- · Designed a serial communication protocol to receive RC inputs from Arduino to Unity

Autonomous Quadcopter for Disaster Relief

Nirma University

IdeaLabs Apr. 2018 - Mar. 2019

- · Developed a prototype quadcopter with a mechanical gripper arm to deliver aid packets for disaster relief
- Designed and fabricated the mechanical gripper with a payload carrying capacity of 250 grams
- Programmed the Pixhawk controller to operate the gripper as well as autonomously navigate using GPS

Autonomous Navigation of a Mobile Robot

Nirma University

Advisor: Dr. Mihir Chauhan Jan. 2018 - May. 2018

- Designed a mobile robot in Gazebo simulator in Robotic Operating System (ROS)
- Developed an autonomous navigation pipeline using Gmapping in ROS to map an unstructured environment and using Active Monte Carlo Localization (AMCL) for localisation in the map