Contents

1	Inti	roduzione
	1.1	Notazione ed elementi costitutivi
	1.2	Controllo in anello aperto e anello chiuso
	1.3	Progetto di un sistema di controllo
	1.4	
2	Sist	semi in forma di stato
	2.1	Sistemi continui
		2.1.1 Equazione di stato
		2.1.2 Equazione di uscita
	2.2	Sistemi discreti
	2.3	Esempio circuito elettrico
		2.3.1 Esempio con parametri che variano nel tempo
	2.4	Esempio carrello
	2.5	Esempio auto in rettilineo
	2.6	Esempio pendolo
	$\frac{2.7}{2.7}$	Traiettoria di un sistema
		2.7.1 Esempio
	2.8	Equilibrio di un sistema

Controlli Automatici T

Giuseppe Bumma

September 24, 2023

1 Introduzione

L'idea dei **controlli automatici** è sostituire l'intelligenza umana con un sistema automatico (come l'intelligenza artificiale) basata su leggi matematiche e/o algoritmi.

1.1 Notazione ed elementi costitutivi

Il sistema è un oggetto per il quale si vuole ottenere un comportamento desiderato.

Esempi di sistema sono: impianto (industriale), macchinario (braccio robotico, macchina a controllo numerico, etc...), veicolo (auto, velivolo, drone, etc...), fenomeno fisico (condizioni atmosferiche), sistema biologico, sistema sociale. L'obiettivo è che l'andamento nel tempo di alcune variabili segua un segnale di riferimento.

Altri elementi sono:

- Controllore: unità che determina l'andamento della variabile di controllo (ingresso);
- Sistema di controllo: sistema (processo) + controllore;
- Sistemi di controllo naturali: meccanismi presenti in natura, come quelli presenti nel corpo umano (temperatura corporea costante, ritmo cardiaco, etc...);
- Sistemi di controllo manuali: è presente l'azione dell'uomo;
- Sistemi di controllo automatico: uomo sostituito da un dispositivo.

1.2 Controllo in anello aperto e anello chiuso

Controllo in anello aperto ("feedforward"): il controllore utilizza solo il segnale di riferimento

Controllo in anello chiuso ("feedback" o retroazione): il controllore utilizza il segnale di riferimento e la variabile controllata ad ogni istante di tempo

Il controllo in retroazione è un paradigma centrale nei controlli automatici.

1.3 Progetto di un sistema di controllo

I passi passi per progettare un sistema di controllo sono:

- definizione delle specifiche: assegnazione comportamento desiderato, qualità del controllo, costo,...
- modellazione del sistema (controllo e test): complessità del modello (compromesso), definizione ingressi/uscite, codifica del modello, validazione in simulazione
- analisi del sistema: studio proprietà "strutturali", fattibilità specifiche
- sintesi legge di controllo: è basata su modello, analisi sistema controllato, stima carico computazionale
- simulazione sistema controllato: test su modello di controllo, test realistici (modello complesso, ritardi, quantizzazione, disturbi, ...)
- scelta elementi tecnologici: sensori/attuatori, elettronica di acquisizione/attuazione, dispositivo di elaborazione
- sperimentazione: hardware in the loop, prototipazione rapida, realizzazione prototipo definitivo

1.4 Esempio di sistema di controllo: circuito elettrico

La legge che usiamo per definire il circuito (il nostro sistema) è la legge delle tensioni

$$v_R(t) = v_G(t) - v_C(t)$$

le leggi del condensatore e del resistore sono

$$C \cdot \dot{v}_C(t) = i(t)$$
 $v_R(t) = R \cdot i(t)$

Scrivendo la formula in termini di $v_C(t)$ ("stato interno") e $v_G(t)$ ("ingresso di controllo")

$$\dot{v}_C(t) = \frac{1}{RC} \left(v_G(t) - v_C(t) \right)$$

2 Sistemi in forma di stato

2.1 Sistemi continui

I sistemi continuti sono sistemi in cui il tempo è una variabile reale: $t \in \mathbb{R}$

$$\dot{x}(t) = f\left(x(t), u(t), t\right)$$
 equazione di stato
$$\dot{y}(t) = h\left(x(t), u(t), t\right)$$
 equazione (trasformazione) di uscita

Definiamo inoltre t_0 come tempo iniziale e $x(t_0) = x_0$ come stato iniziale.

$$\mathbf{N.B.}\ \dot{x}(t) := \frac{d}{dt}x(t).$$

Notazione:

- $x(t) \in \mathbb{R}^n$ stato del sistema all'istante t
- $u(t) \in \mathbb{R}^m$ ingresso del sistema all'istante t
- $y(t) \in \mathbb{R}^p$ uscita del sistema all'istante t

$$x(t) = \begin{bmatrix} x_1(t) \\ \dots \\ \dots \\ \dots \\ x_n(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} u_1(t) \\ \dots \\ \dots \\ u_m(t) \end{bmatrix} \qquad y(t) = \begin{bmatrix} y_1(t) \\ \dots \\ \dots \\ y_p(t) \end{bmatrix}$$

Da notare che x(t) è un vettore mentre $x_1, ..., x_n$ sono scalari. x(t) è una variabile interna che descrive il comportamento del sistema.

2.1.1 Equazione di stato

L'equazione di stato è un'equazione ordinaria (ODE) vettoriale del primo ordine (cioè l'ordine massimo delle derivate è 1)

$$\dot{x}_1(t) = f_1(x(t), u(t), t)$$

$$\dots$$

$$\dot{x}_n(t) = f_n(x(t), u(t), t)$$

 \mathbb{R}^n è detto spazio di stato, con n ordine del sistema. La funzione di stato è $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dots \\ \dots \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} f_1(x(t), u(t), t) \\ \dots \\ \dots \\ \vdots \\ f_n(x(t), u(t), t) \end{bmatrix} := f(x(t), u(t), t)$$

Avere solo derivate prime non è limitato, perché ad esempio posso inserire una prima variabile come derivata prima e una seconda variabile come derivata prima della prima variabile.

2.1.2 Equazione di uscita

L'equazione di uscita è un'equazione algebrica

$$y_1(t) = h_1(x(t), u(t), t)$$
...
$$y_p(t) = h_p(x(t), u(t), t)$$

 $h: \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R} \to R^p$ funzione di uscita

$$\begin{bmatrix} y_1(t) \\ \dots \\ \dots \\ y_p(t) \end{bmatrix} = \begin{bmatrix} h_1(x(t), u(t), t) \\ \dots \\ \dots \\ h_p(x(t), u(t), t) \end{bmatrix} := h(x(t), u(t), t)$$

Se la soluzione x(t) a partire da un istante iniziale t_0 è univocamente determinata da $x(t_0)$ e $u(\tau)$ con $\tau \geq t_0$, allora il sistema è detto **causale**, cioè lo stato dipende solo da ciò che accede in passato.

Sotto opportune ipotesi di regolarità della funzione f si dimostra esistenza e unicità della soluzione dell'equazione (differenziale) di stato (Teorema di Cauchy-Lipschitz).

2.2 Sistemi discreti

Nei sistemi discreti il tempo t è una variabile intera, $t \in \mathbb{Z}$.

$$x(t+1) = f\left(x(t), u(t), t\right)$$
 equazione di stato
$$y(t) = h\left(x(t), u(t), t\right)$$
 equazione (trasformazione) di uscita

L'equazione di stato è un'equazione alle differenze finite (FDE).

Notazione:

- $x(t) \in \mathbb{R}^n$ stato del sistema all'istante t
- $u(t) \in \mathbb{R}^m$ ingresso del sistema all'istante t
- $y(t) \in \mathbb{R}^p$ uscita del sistema all'istante t

x(t), u(t) e y(t) sono uguali ai sistemi continui.

Per modellare sistemi discreti nel codice basta un ciclo for.

2.3 Esempio circuito elettrico

Riprendiamo l'esempio del circuito elettrico; la formula trovata è

$$\underbrace{\dot{v}_C(t)}_{\dot{x}(t)} = \frac{1}{RC} \underbrace{\left(v_G(t) - v_C(t)\right)}_{u(t)}$$

In questo caso lo stato del sistema x(t) è caratterizzato dalla variabile $v_C(t)$, l'ingresso dalla variabile $v_G(t)$. Supponiamo quindi di misurare (con un sensore) la tensione ai capi della resistenza, allora l'uscita del nostro sistema sarà $v_R(t)$

$$\dot{x}(t) = \frac{1}{RC} \left(u(t) - x(t) \right) \qquad f(x, u) = \frac{1}{RC} (u - x)$$

da notare che in questo caso f non è funzione del tempo.

$$v_R(t) = v_G(t) - v_C(t) \Longrightarrow y(t) = u(t) - x(t)$$

2.3.1 Esempio con parametri che variano nel tempo

Supponiamo che la resistenza sia una funzione del tempo

$$R(t) = \overline{R}\left(1 - \frac{1}{2}e^{-t}\right)$$

allora

$$\dot{x}(t) = \frac{1}{R(t)C} \left(u(t) - x(t) \right) \qquad \qquad f(x, u, t) = \frac{1}{R(t)C} (u - x)$$

in questo caso f è funzione del tempo.

2.4 Esempio carrello

La legge che usiamo è la legge di Newton, prendendo z come posizione del centro di massa

$$M\ddot{z} = -F_e + F_m$$

con M massa e F_e data da

$$F_e(z(t), t) = k(t)z(t)$$

quindi la nostra equazione diventa

$$M\ddot{z}(t) = -k(t)z(t) + F_m(t)$$

Siccome nella nostra formula compare una derivata seconda di una variabile ci conviene definire lo stato del sistema con la variabile stessa e la derivata prima della variabile.

Definiamo quindi $x_1 := z$ e $x_2 := \dot{z}$, con stato $x := [x_1 x_2]^T$, e $u := F_m$ (ingresso).

Quindi possiamo scrivere, tenendo conto che $\dot{x}_2(t) = \ddot{z}$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{u(t)}{M}$$

$$f(x,u) = \begin{bmatrix} f_1(x,u) \\ f_2(x,u) \end{bmatrix} := \begin{bmatrix} x_2 \\ -\frac{k}{M}x_1 + \frac{u}{M} \end{bmatrix}$$

Supponiamo di misurare z(t) (sensore posizione), allora y := z

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{u(t)}{M}$$

$$y(t) = x_1(t)$$

Sia k(t) = k e, ricordando la formula dell'energia cinetica $E_k = \frac{1}{2}mv^2$ e la formula dell'energia elastica $U = \frac{1}{2}k\,\Delta x^2$, consideriamo come uscita l'energia totale $E_T(t) = \frac{1}{2}(kz^2(t) + M\dot{z}^2(t))$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{u(t)}{M}$$

$$y(t) = \frac{1}{2}\left(k(t)x_1^2(t) + Mx_2^2(t)\right)$$

quindi $h(x) := \frac{1}{2}(kx_1^2 + Mx_2^2).$

N.B. Il risultato (l'uscita) vale, di solito, solo per il mio modello, in base a come l'ho impostato; nella realtà potrebbe essere diverso.

2.5 Esempio auto in rettilineo

Scriviamo la legge di Newton

$$M\ddot{z} = F_{\text{drag}} + F_m$$

con M massa e F_{drag} data da

$$F_{\rm drag} = -b\dot{z}$$

Definiamo $x_1 := z$ e $x_2 := \dot{z}$ (stato $x := [x_1 x_2]^T$) e $u := F_m$ (ingresso). Supponiamo di misurare z(t) (sensore posizione), allora y := z

$$\begin{aligned} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{b}{M} x_2(t) + \frac{1}{M} u(t) \\ y(t) &= x_1(t) \end{aligned}$$

Proviamo a progettare un sistema per il cruise control.

L'equazione della dinamica è

$$M\ddot{z}(t) = -b\dot{z}(t) + F_m(t)$$

Siccome siamo interessati a controllare la velocità e non la posizione, allora consideriamo come stato solo la velocità: $x := \dot{z}$, $u := F_m$. Supponiamo di misurare $\dot{z}(t)$ (sensore velocità), allora y := x

$$\dot{x}(t) = -\frac{b}{M}x(t) + \frac{1}{M}u(t)$$
$$y(t) = x(t)$$

2.6 Esempio pendolo

Scriviamo l'equazione dei momenti

$$M\ell^2\ddot{\theta} = C_{\rm grav} + C_{\rm drag} + C_m$$

con M massa e C_{grav} e C_{drag} date da

$$C_{\text{gray}} = Mg\ell\sin(\theta)$$
 $C_{\text{drag}} = -b\dot{\theta}$

con b coefficiente d'attrito.

Scriviamo l'equazione della dinamica, partendo dalla formula iniziale dei momenti

$$\ddot{\theta}(t) = -\frac{g}{\ell}\sin(\theta(t)) - \frac{b}{M\ell^2}\dot{\theta}(t) + \frac{1}{M\ell^2}C_m(t)$$

Definiamo quindi $x_1 := \theta$ e $x_2 := \dot{\theta}$ (stato $x := [x_1 x_2]^T$) e $u := C_m$ (ingresso). Supponiamo di misurare θ (sensore angolo), allora $y := \theta$

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t) \\ y(t) &= x_1(t) \end{split}$$

Se misuriamo invece la posizione verticale, allora $y := -\ell \cos(\theta)$

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t) \\ y(t) &= -\ell \cos(\theta) \end{split}$$

2.7 Traiettoria di un sistema

Dato un istante iniziale t_0 e uno stato iniziale x_{t_0} , la funzione del tempo (x(t), u(t)), $t > t_0$, che soddisfa l'equazione di stato $\dot{x}(t) = f(x(t), u(t), t)$ si dice traiettoria (movimento) del sistema. In particolare, x(t) si dice traiettoria dello stato. Consistentemente, y(t) si dice traiettoria dell'uscita.

N.B. per sistemi senza ingresso (quindi non forzati) la traiettoria dello stato x(t), $t > t_0$ è determinata solo dallo stato iniziale x_{t_0} .

2.7.1 Esempio

Definiamo un sistema con stato x e stato iniziale x_0

$$x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad x_0 := \begin{bmatrix} 5 \\ 3 \end{bmatrix} \qquad t_0 = 0$$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = u(t)$$

Assegno a x_1, x_2 e u(t) le seguenti equazioni

$$\overline{x_1}(t) = 5 + 3t + t^2$$

$$\overline{x_2}(t) = 3 + 2t$$

$$\overline{u}(t) = 2$$

Se le equazioni di $\overline{x_1}$ e $\overline{x_2}$ soddisfano le condizioni iniziali e la funzione di stato $(\dot{x}_1$ e $\dot{x}_2)$ allora quelle equazioni sono la traiettoria del sistema.

Infatti

$$\overline{x_0} = \begin{bmatrix} 5+3t+t^2 \\ 3+2t \end{bmatrix}_{t=0} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

$$\overline{x_0} = \begin{bmatrix} 5+3t+t^2 \\ 3+2t \end{bmatrix}_{t=0} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} 5+3t+t^2 \\ 3+2t \end{bmatrix} = \begin{bmatrix} 3+2t \\ 2 \end{bmatrix}$$

2.8 Equilibrio di un sistema

Dato un sistema (non forzato) $\dot{x}(t) = f(x(t), t)$, uno stato x_e si dice equilibrio del sistema se $x(t) = x_e$, $t \ge t_0$ è una traiettoria del sistema.

Dato un sistema (forzato) $\dot{x}(t) = f(x(t), u(t), t)$, (x_e, u_e) si dice coppia di equilibrio del sistema se $(x(t), u(t)) = (x_e, u_e)$, $t \ge t_0$, è una traiettoria del sistema.

Per un sistema (tempo invariante continuo) $\dot{x}(t) = f(x(t), u(t))$ data una coppia di equilibrio (x_e, u_e) vale $f(x_e, u_e) = 0$. Se il sistema è non forzato, dato un equilibrio x_e vale $f(x_e) = 0$.