

Lending Club Case Study

Abhinav Anand

Data Understanding

What is Lending Club?

- It is a marketplace for lending various type of loans like home loans, personal loans, business loans etc that matches borrower who are seeking a loan with investors looking to lend money and make a return.
- Basically when an applicant apply for loans, the company has to make decision for loan approval based on applicant's Profile:
 - If Person likely to pay the loan then not approving will result to business loss to the company.
 - If Person not likely to pay the loan i.e. loan likely to get default then approving the loan will result to business loss to the company.

Business Problem

- Lending loans to any risky customer can leads to financial losses.
- The credit loss is the amount of money lost by the lender when the borrower refuses to pay or runs away with the money owed since borrowers who default cause the largest amount of loss to the lenders. In this case, the customers labelled as 'charged-off' are the 'defaulters'.
- The Company need to find out what are driving factors for loan to getting defaulted.
- Help company to analyse the pattern in data and provide solution on how can they reduce loan defaulting hence cutting down credit loss.
 Identification of such applicants using EDA is the aim of this case study.

LOAN DATASET

- There are 39417 rows and 111 columns in the dataset.
- Loan status is the target column.
- It has following Categories:
- Fully paid: Applicant has fully paid the loan (the principal and the interest rate).
- Current: Applicant is in the process of paying the instalments, i.e. the tenure of the loan is not yet completed. These candidates are not labelled as 'defaulted'.
- Charged-off: Applicant has not paid the instalments in due time for a long period of time, i.e. he/she has defaulted on the loan.

Data Cleaning

Data Cleaning

- We have multiple column having missing value.
- Some of column having more than 30 percentage data missing so will be dropping them.
- For column having few missing value we use imputation.

								oc_open_co_ouy	100.000000	num nov accts	100.000000
id	0.000000	desc	32.580507	total pymnt inv	0.000000	tot_cur_bal	100.000000	bc_util	100.000000	num_rev_accts	
member_id	0.000000	purpose	0.000000	total_rec prncp	0.000000	open_acc_6m	100.000000	chargeoff_within_12_mths	0.140998	num_rev_tl_bal_gt_0	100.000000
loan_amnt	0.000000	title	0.027696	total_rec_princp	0.000000	open_il_6m	100.000000	delinq_amnt	0.000000	num sats	100.000000
funded_amnt	0.000000	zip_code	0.000000	total_rec_late_fee	0.000000	open_il_12m	100.000000	mo_sin_old_il_acct	100.000000	num tl 120dpd 2m	100.000000
funded amnt inv	0.000000	addr_state	0.000000	recoveries	0.000000	open il 24m	100.000000	mo sin old rev tl op	100.000000	'-	
term	0.000000	dti	0.000000	collection_recovery_fee	0.000000	mths since rcnt il	100.000000	mo sin rcnt rev tl op	100.000000	num_tl_30dpd	100.000000
int rate	0.000000	delinq_2yrs	0.000000	· · · · · · · · · · · · · · · · · · ·	0.178765	total bal il	100.000000	mo sin rcnt tl	100.000000	num_tl_90g_dpd_24m	100.000000
installment	0.000000	earliest_cr_line	0.000000	last_pymnt_d	0.000000	il_util	100.000000	mort acc	100.000000	num tl op past 12m	100.000000
grade	0.000000	inq_last_6mths	0.000000	last_pymnt_amnt	97.129693	open_rv_12m	100.000000	mths since recent bc	100.000000	pct tl nvr dlq	100.000000
sub_grade	0.000000	mths_since_last_delinq	64.662487	next_pymnt_d	0.005036	open_rv_24m	100.000000	mths since recent bc dlq	100.000000		
emp_title	6.191303	mths_since_last_record	92.985372	<pre>last_credit_pull_d collections_12_mths_ex_med</pre>	0.140998	max_bal_bc	100.000000	mths_since_recent_ing	100.000000	percent_bc_gt_75	100.000000
emp_length	2.706650	open_acc	0.000000		100.000000	all_util	100.000000	mths since recent revol deling	100.000000	pub_rec_bankruptcies	1.754916
home_ownership	0.000000	pub_rec	0.000000	mths_since_last_major_derog	0.000000	total_rev_hi_lim	100.000000	num_accts_ever_120_pd	100.000000	tax liens	0.098195
annual inc	0.000000	revol_bal	0.000000	policy_code		ing fi	100.000000	num actv bc tl	100.000000	tot hi cred lim	100.000000
verification status	0.000000	revol_util	0.125891	application_type	0.000000	total_cu_tl	100.000000	num_actv_rev_tl	100.000000		
issue d	0.000000	total_acc	0.000000	annual_inc_joint	100.000000	inq_last_12m	100.000000	num bc sats	100.000000	total_bal_ex_mort	100.000000
loan_status	0.000000	initial_list_status	0.000000	dti_joint	100.000000	acc_open_past_24mths	100.000000	num_bc_tl	100.000000	total_bc_limit	100.000000
_		out_prncp	0.000000	verification_status_joint	100.000000	avg_cur_bal	100.000000	num il tl	100.000000	total il high credit limit	100.000000
pymnt_plan	0.000000	out_prncp_inv	0.000000	acc_now_delinq	0.000000	bc_open_to_buy	100.000000		100.000000	dtype: float64	
url	0.000000	total pymnt	0.000000	tot_coll_amt	100.000000	1., 9	100 00000	num_op_rev_tl	100.000000	aryber imaro4	

Data Cleaning - Dropping Column with null values

- After Dropping all the columns having more than 30 percent null value we left with 53 columns.
- Below the list of columns that present in the dataset.

cla	ss 'pandas.core.frame.DataFr	ame'>		26	inq_last_6mths	39717 non-null	int64
	eIndex: 39717 entries, 0 to			27	open_acc	39717 non-null	int64
	columns (total 53 columns):			28	pub_rec	39717 non-null	int64
#	Column	Non-Null Count	Dtype	29	revol_bal	39717 non-null	int64
				30	revol_util	39667 non-null	object
0	id	39 717 non-null	int64	31	total acc	39717 non-null	int64
1	member_id	39717 non-null	int64	32	initial_list_status	39717 non-null	object
2	loan_amnt	39 71 7 non-null	int64	33	out prncp	39717 non-null	float64
3	funded_amnt	39717 non-null	int64		<u>-</u>		
4	funded_amnt_inv	39717 non-null	float64	34	out_prncp_inv	39717 non-null	float64
5	term	39717 non-null	object	35	total_pymnt	39717 non-null	
6	int_rate	39717 non-null	object	36	total_pymnt_inv	39717 non-null	float64
7	installment	39717 non-null	float64	37	total_rec_prncp	39717 non-null	float64
8	grade	39717 non-null	object	38	total_rec_int	39717 non-null	float64
9	sub_grade	39717 non-null	object	39	total_rec_late_fee	39717 non-null	float64
10	emp_title	37258 non-null	object	40	recoveries	39717 non-null	float64
11	emp_length	38642 non-null	object				
12 13	home_ownership annual inc	39717 non-null 39717 non-null	object float64	41	collection_recovery_fee	39717 non-null	float64
14	verification status	39717 non-null	object	42	last_pymnt_d	39646 non-null	
15	issue d	39717 non-null	object	43	last_pymnt_amnt	39717 non-null	float64
16	loan status	39717 non-null	object	44	last_credit_pull_d	39715 non-null	object
17	pymnt plan	39717 non-null	object	45	collections 12 mths ex med	39661 non-null	float64
18	url	39717 non-null	object	46	policy_code	39717 non-null	int64
19	purpose	39717 non-null	object	47	application type	39717 non-null	object
20	title	39706 non-null	object	48	acc_now_delinq	39717 non-null	int64
21	zip code	39717 non-null	object				
22	addr state	39 71 7 non-null	object	49	chargeoff_within_12_mths	39661 non-null	
23	dti	39 71 7 non-null	float64	50	delinq_amnt	39717 non-null	int64
24	delinq_2yrs	39717 non-null	int64	51	pub_rec_bankruptcies	39020 non-null	float64
25	earliest_cr_line	39717 non-null	object	52	tax_liens	39678 non-null	float64

Data Cleaning - Drop unnecessary columns

• There was some columns having only one value, so these are column which is not significant and does not impact the target variable. We have dropped those column.

		_	
for columns 2 ***********************************			term column
for columns 371 *******			int_rate column
7			grade column
35			sub_grade column
28820			emp_title column
11			emp_length column

tor columns unique values are in purpose column 14 **********************************
for columns unique values are in title column 19615 ***********************************
for columns unique values are in zip_code column 823
for columns unique values are in addr_state column 50 ***********************************
for columns unique values are in earliest_cr_line column 526 ***********************************
for columns unique values are in revol_util column 1089

for columns unique values are in last pymnt d column

for columns unique values are in last credit pull d column

Data Cleaning - Drop unnecessary columns

- There are some Customer behaviour variables which are not available at time of application of loan so, there are not important column which is deciding the loan status.
- We have dropped those columns and after dropping them our dataset is having 21 columns

```
loan amnt
                           int64
funded amnt inv
                         float64
installment
                         float64
annual inc
                         float64
dti
                         float64
ing last 6mths
                           int64
open acc
                           int64
pub rec
                           int64
total acc
                           int64
total pymnt
                         float64
                          object
term
int rate
                         float64
grade
                          object
sub grade
                          object
emp length
                          object
home ownership
                          object
verification status
                          object
issue d
                          object
loan status
                          object
```

```
]: 1 df_loan_new.shape
]: (39717, 21)

purpose object revol_util float64 dtype: object
```

Data Cleaning - Missing Value Treatment

• There were few missing value present in dataset for two columns, so we imputed values for revol_util by mean since it was numerical column and there was no outliers and emp_length by mode since it was categorical column.

	_		
In [219]:	1 df loan new.isn	2() sum()	
111 [219].	1 df_loan_new.isn	a().sum()	
Out[219]:	loan_amnt	0	
	<pre>funded_amnt_inv</pre>	0	
	installment	0	
	annual_inc	0	
	dti	0	
	inq_last_6mths	0	
	open_acc	0	
	pub_rec	0	
	total_acc	0	
	total_pymnt	0	
	term	0	
	int_rate	0	
	grade	0	
	sub_grade	0	
	emp_length	1075	
	home_ownership	0	
	verification_status	0	
	issue_d	0	
	loan_status	0	
	purpose	0	
	revol_util	50	
	dtype: int64		

:	1 df_loan_new.isna().sum()
:	loan_amnt	0
	funded_amnt_inv	0
	installment	0
	annual_inc	0
	dti	0
	inq_last_6mths	0
	open_acc	0
	pub_rec	0
	total_acc	0
	total_pymnt	0
	term	0
	int_rate	0
	grade	0
	sub_grade	0
	emp_length	0
	home_ownership	0
	verification_status	0
	issue_d	0
	loan_status	0
	purpose	0
	revol_util	0
	dtype: int64	

Data Cleaning - Outliers Detections and Treatments

- There were some columns where outliers were present, but we can see that much are value are close together.
- Instead of using IQR technique, we removed outliers based on percentile so that only the most extreme values removed from data set.
- After Removing outliers, we have 36758 rows in our final data set.

Data Analysis

Data Analysis – Univariate Analysis

For Numerical columns:

- We have plot histogram and distribution plot to check the spread of data.
- We Observed that most the data is right skewed because of presence of extreme values towards higher side.
- For loan amount and funded_amnt_inv most the loan is distributed around 5000.

Data Analysis – Univariate Analysis

For Categorical Columns:

- We observed that there is huge data imbalance for loan status and term columns.
- Most of loans are fully paid and most of them are for 36 months period.
- Most of the loans has taken for debt_consolidation purpose.
- In home_ownership column we can see that None has only 3 values, so we decided to merge value with other.

Data Analysis – Bivariate Analysis

We observed the following observation when loan are likely to get charge off:

- Loans amount which lend for 36 months.
- Derogatory Public Records between 0-20.
- Annual_inc_group between 31K-58K.

Data Analysis – Bivariate Analysis

We observed the following observation when loan are likely to get charge off:

- When loan amount is less than 10K.
- When Emp_length is 10.
- In 2011 maximum loan amount get defaulted may be because of financial crisis in USA.
- Loan issued in the month of December.

Data Analysis – Multivariate Analysis

We observed the following observation when loan are likely to get charge off:

- When loan amount more than 11K when loan lend for small business.
- There is no much difference for int_rate between 9-21% on loan_status but there is less chance for loan to get defaulted for 5-9% and 21-24%.
- There is less chance getting defaulted when loan amount is greater than 60000 for all home_ownership.

Data Analysis – Multivariate Analysis

- We observed that average of interest rate for the loan status having charged off is higher than loan status having fully paid.
- There some extreme value present for interest_rate for loan amount less than 30K.

Recommendations

Recommendations

Below is the scenario of loan likely to get defaulted:

- Loan taken for small business purpose.
- Loan issued for term that has 60 months slight chance but there is very less difference.
- Loan issued for verification_status inrespect the verification_status when amount is greater than 16K.
- For annual_inc_group inrespect the annual_inc_group.
- For int_rate_group when interest rate between 9%-21%.
- For annual_inc_group inrespect the revol_util_group.
- For annual_inc_group inrespect the installment_group.
- INT Rate Group having interest having between 13-16% likely to get charged off (defaulted)
- Open_acc_group having 6-10.
- Pub_rec_group having between 0-20.
- Annual_inc_group having between 31-58K.
- Revol_util_group having 60-80.
- Installment_Group having 107-199.
- Funded_Amnt_Inv_Group having 5K-10K but close for 0K-5K.
- Dti_group having 12-18.
- Inq_last_6mths having 0.
- Loan_amnt_group having 0-5K.
- Emp_length having 10.

THANK YOU