Propriedades de Números Pares e Ímpares

Definições de Paridade

- Um número inteiro n é **par** se $\frac{n}{2} \in \mathbb{Z}$. Isso equivale a dizer que existe $k \in \mathbb{Z}$ tal que n = 2k.
- Um número inteiro n é **ímpar** se $\frac{n-1}{2} \in \mathbb{Z}$. Isso equivale a dizer que existe $k \in \mathbb{Z}$ tal que n = 2k + 1.

1. Se n é par, então n^2 é par

Prova: Se n é par, então n=2k para algum $k \in \mathbb{Z}$. Logo,

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Como $2k^2 \in \mathbb{Z}$, segue que $\frac{n^2}{2} \in \mathbb{Z}$. Portanto, n^2 é par.

2. Se n é impar, então n^2 é impar

Prova: Se n é impar, então n = 2k + 1 para algum $k \in \mathbb{Z}$. Logo,

$$n^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$$

Como $2k^2 + 2k \in \mathbb{Z}$, n^2 tem a forma 2m + 1, logo é ímpar.

3. Se n^2 é ímpar, então n é ímpar

Prova por contrarrecíproca: Se n fosse par, então $n=2k \Rightarrow n^2=4k^2=2(2k^2)$, que é par. Logo, se n^2 é ímpar, n não pode ser par, ou seja, n é ímpar.

4. Se n é par, então n não é impar

Prova por contradição: Suponha que n seja par e ímpar:

$$n = 2k$$
 e $n = 2m + 1 \Rightarrow 2k = 2m + 1 \Rightarrow k - m = \frac{1}{2}$

Isso contradiz o fato de que $k,m\in\mathbb{Z}$. Logo, n não pode ser par e ímpar ao mesmo tempo.

5. Todo número inteiro é par ou ímpar, mas não ambos

Prova: Seja $n \in \mathbb{Z}$. Se $\frac{n}{2} \in \mathbb{Z}$, então n é par. Se não, então n = 2k + 1 para algum $k \in \mathbb{Z}$, ou seja, n é impar.

Já mostramos que um número não pode ser par e ímpar ao mesmo tempo. Portanto, todo número inteiro é ou par ou ímpar, e nunca os dois.