Algebra-2 (Inequality and Modulus)

Equal or Unequal?

We call a math statement an EQUATION
when both sides of the statement are equal
to each other.

- Example: 10 = 5 + 3 + 2

We call a math statement an INEQUALITY
when both sides of the statement are not
equal to each other.

- Example: $10 \ge 5 + 5 + 5$

You must be 18 or older to vote.

Your age must be "greater than **or** equal to 18", which is written:

$$Age \ge 18$$

A **solution** of an inequality is a number which when substituted for the variable makes the inequality a true statement.

For example: 50 is a solution of 2x+5 < 3x-6

because 2.50+5<3.50-6

ALWAYS EXPRESS THE ANSWER AS AN INTERVAL!

If x>11, the solution is $(11,\infty)$ If $x\leq 3$, the solution is $(-\infty,3]$

Graphing Inequalities

Graph x < 2

Graph x ≤ 2

Graph x > 2

Graph x ≥ 2

A "closed" circle () indicates we include the number.

An "open" circle (O) indicates we **DO NOT** include the number.

By shading in the number line we are indicating that all the numbers in the shade are also possible answers.

Addition property of inequalities:

If
$$A < B$$
 then, $A + c < B + c$

Subtraction property of inequalities:

If
$$A < B$$
, then $A - c < B - c$

Multiplication property of inequalities:

If
$$A < B$$
, then $cA < cB$

If
$$A < B$$
, then $-cA > -cB$

Division property of inequalities:

If
$$A < B$$
, then $\frac{A}{c} < \frac{B}{c}$

If
$$A < B$$
, then $\frac{A}{-c} > \frac{B}{-c}$

Solve the inequality for x:

(i)
$$x^2-17x+60 \ge 0$$

(ii)
$$(x+3)(2x-5)x \le 0$$

(iii)
$$(x^2+5)(x-7)(x+3) > 0$$

(iv)
$$(x-5)^2(x+1)^3(x-10)^3 \ge 0$$

Q.

$$\frac{(x-7)}{(x+8)} \le 0$$

Quantity A Quantity B

Number of integral values x can take 15

Ans C

Modulus (Absolute value)

"In life be like modulus so that the result is always positive or at least neutral." -HJ

In Mathematics if a number or quantity is —ve then it knocks the door of Modulus. Now I don't want be —ve anymore. Please make me +ve. Then modulus replies that you need to confine yourself into 2 walls(||) then only I can make you +ve.

$$|x| = x \text{ if } x \ge 0$$

= -x if x<0

$$|\mathbf{x}| = |\mathbf{-x}|$$

$$|\mathbf{x}|^2 = \mathbf{x}^2$$

Find the value of x?

$$|x-7| = 5$$

$$|2x-7| = -7$$

"God helps those who, helps themselves and modulus helps only negative."

 $x^2+5|x|+6=0$, Find the number of real solutions?

Ans: 0

Q. Find the minimum value of y?

$$y = 20 + |2x-7|$$

Ans: 20

a + minimum = minimum

a + maximum = maximum

a - Minimum = Maximum

a - maximum = minimum

Q.

$$|x+5|+|x-7|=28$$

Ans: 15,-13

$$|4-2x|+|x+7| = 30$$

Ans:

ME: I'M SAD.

THEM: THEN TURN IT INTO

SOMETHING POSITIVE!

ME: | I'M SAD |

Find the minimum value of y as well as value of x for which y is minimum?

(i)
$$y = |x+4| + |x-7|$$

Ans Min value = 11 for $-4 \le x \le 7$

(ii)
$$y = |2x-8| + |x+4|$$

Ans: Minimum value = 8 for x = 4

Q. |x-5| > 7, Solve for x?

Q.
$$|x+2| \le 10$$

Quantity A Quantity B
Number of integral values x can take 19

Soln: A

$$\begin{array}{ccc} \text{Q. } & a > 0 \\ & \underline{\text{Quantity A}} & \underline{\text{Quantity B}} \\ & & a^b & 0 \end{array}$$

Soln: A

Q. Quantity A Quantity B
$$\frac{2^{50}}{3^{50}} \qquad \frac{2^{50} + 7^{20}}{3^{50} + 7^{20}}$$

Soln: If $\frac{a}{b}$ <1 and a,b,x are positive

Then
$$\frac{a}{b} < \frac{a+x}{b+x} < \frac{a+2x}{b+2x}$$
.....

Answer is B.

Q.
$$x & y$$
 are positive
Quantity A
Quantity B
 xy
 $(xy)^2$

Soln: D

Q Quantity A
$$2 \times 3 \times 4 \dots \times 23$$

Soln: 5 to 23 are common both the sides. Remove common part and now compare the remaining values.

$$2\times3\times4$$
 = 24

Ans-C

Q. Quantity A

Quantity B

1

$$\frac{\sqrt{65} - \sqrt[3]{63}}{\sqrt{15}}$$

Soln: $\sqrt{65} > 8$, $\sqrt[3]{63} < 4 & \sqrt{15} < 4$

$$\frac{(>8)\text{-}(<4)}{(<4)} = \frac{>4}{<4} > 1$$

Ans: A

Q.
$$\sqrt[3]{m^4} = \frac{7}{11}$$

Quantity A

Quantity B

m

 $\frac{7}{11}$

Soln: If 0 < a < 1 and 0 < b < 1, then $a < a^b < 1$

If 0 < a < 1 and b > 1 then $a^b < a < 1$

If a>1 and 0<b<1 then $1<a^b<a$

If a>1 and b>1 then $1 < a < a^b$

Ans: A

 $9\frac{3}{4}$

Quantity B

$$9 + \frac{3}{4}$$

Ans C

Q. $N = 113 \times 133 \times 239 \times 169 \times 209$.

Quantity A

Quantity B

Increase in N when	113	Increase	in	N	when	169
is increased by 20		is increas	sed	by	20	

Soln: Answer is A

Q.x>y>0

Quantity A Quantity B

 $\left(\frac{x}{y} + \frac{y}{x}\right)$

Soln: For +ve numbers $AM \ge GM \ge HM$

Answer A

0.	Qua	ntii	V	A
\mathbf{V}	Vuu		L.y	4 3

Quantity B

The tens digit of $(4^{100} \times 5^{99})$ The tens digit of $(4^{100} \times 5^{101})$

Soln: C

Q.n is an integer

Quantity A

 $7.23{\times}10^{(n+1)}$

Quantity B

 $723{\times}10^{\text{(n-1)}}$

Soln: C