Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-4. (cancelled)

Claim 5. (currently amended) A method as set forth in Claim 2, wherein T_{min} has a value in a range of 0.01 to \overline{To} 1.0 secs. and wherein T_{max} has a value in a range of 60 to 120 secs.

Claim 6. (new) A method of regulating TCP/IP connection requests which await service in a system by a TCP/IP connection control table to prevent overload thereof, said method comprising the steps of:

monitoring usage of said system on a dynamic basis,

based upon said usage, dynamically computing a time-out value T_{ho} which defines the time duration that a TCP connection request may await service by said system,

removing from said TCP/IP connection control table all TCP/IP connection requests which have been awaiting service in said TCP/IP stack for a duration exceeding $T_{ho;\,and}$

setting $T_{ho} = T_{min}$ when N>N_{abs}, when N> N_{limit} setting $T_{ho} = \max \{T_{min}, T'_{ho}/A\}$, where T'_{ho} is a previously existing value of T_{ho} , where A>1, where N is the current usage of the table, and where $0 \le N_{limit} \le N_{size}$, and when $N \le N_{limit}$, setting $T_{ho} = \min\{T_{max}, A*T'_{ho}\}$;

wherein said TCP/IP connection control table has size N_{size} and an upper bound for usable table size of $N_{\text{abs}} \leq N_{\text{size}}$, and where values of T_{ho} are dynamically computed in a range $[T_{\text{min}}, T_{\text{max}}]$.

- Claim 7. (new) A method as set forth in Claim 6, comprising the steps of:
- a) defining a plurality of table usage value N_i spanning an increasing range of $N_i = 0$ to $N_i = N_{size}$,
- b) associating a corresponding plurality of time durations T_i spanning a decreasing range of $T_i=T_{max}$ to $T_i=T_{min}$, and
- c) comparing current table usage N to N_i and setting T_{ho} to a corresponding value T_i .