CHAPTER 1

MINE FIELD

SECTION 1

MINEFIELD LAYING CALCULATION

- 0101. <u>Introduction</u>. Being sapper officers, we are entrusted with the task to counter enemy's mobility vis-a-vis to help own mobility. Mines when emplaced on ground help in counter mobility and when lifted or breached from ground help in mobility. A set drill for minefield laying ensures minimum time and order to execute a minefield laying operation. Drill reduces reaction time and increases execution speed in response to certain battlefield situations.
- 0102. A field company of a division engineer battalion can lay a minefield of 1800 yards in one night (ideal 10 hour). Three field engineer platoon of the company can lay 600 yards of minefield each.

0103. Organization of Engineer Company.

RESTRICTED

0104. **Organization.** The organization for normal drill for mine laying is as under:

Serial	Party	P	Personnel		Equipment (Note)	Remarks	
	-	Officer	NCO	OR			
1.	Setting Out	1 (Officer In Charge)			Compass, Note book	Minefield record	
			1(2IC)		Light(v), Compass, Prodder	Show the place of clusters	
				2	Compass(i), Pickets, Lamps, Sledge hammer or maul		
2.	Carrying		1	6	Haversacks, Vehicles(i)	Mine Dump	
3.	Digging		1	11	Shovels, Pick axes (ii)	NCO to take long prodder	
4.	Anti Personnel (AP)		1	4	Dibbers, Shovels (iv), Pliers	NCO to take long prodder	
5.	Irregular Outer Edge (IOE)		2	3	Compass, Shovels, Pick axes, Dibbers, Vehicles, Sledge hammer, Pickets, Pliers		
6.	Wiring		1	3	Sledge hammer or mauls, Pickets(i), Barbed Wire, Perimeter sign, Vehicles		
7.	Temporary protective Wire		1	3	Sledge hammer, Pickets (i), Barbed Wire, Perimeter signs	When Require	

Note: i. As per requirement.

ii. Not required in soft soil.

iii. Required only for anti-personal mine number 6.

iv. Required for shrapnel mine.

v. Required at night.

0105. **Formulas Required for Calculation**.

Serial	Calculation	Formula	Remarks
1.	Number of	Desired density / Standard density	Standard Density
	Strips		=1/3
2.	Cluster per	Frontage X 1/3 (Standard Density)	
	Strip		
3.	Anti Tank	{(Number of mixed strip + Number	
	Mines	of Anti Tank Strip) X Number of	
		cluster/Strip+ number of IOE group	
		X Number of IOE cluster/Group} +	
	A	10%	
4.	Anti Personnel	(3 X number of mixed strip X	
	Mines	Number of cluster/Strip + 3 X	
	Willes	number of IOE group X Number of IOE cluster/Group) + 10%	
5.	Long Picket	$\{(Frontage + 2 X Depth) / 20\} + 1\}$	The extra 1
<i>J</i> .	Long I leket	+ 10%	picket is needed
		1 10/0	at one of the
			corners
6.	Short Picket	{(Frontage/20 + 2 X Total Troop + 2	Comers
		X Number of strips) + (Number of	
		strips X Frontage/100) + (2 X	
		number of IOE groups)} + 10 %	
7.	Barbed Wire	(3 X Frontage + 4 X Depth) / 100	A barbed wire
	Coil		coil has 130 ^x of
			wire. But for ease
			of calculation and
			omitting the 10%
			reserve, a factor
			of 100 can be
			used instead of
0	Perimeter	(2 V Ementage + 2 V Denth) / 40	130.
8.	Sign Posting	(2 X Frontage + 2 X Depth) / 40 + 10%	
9.	Tracing Tape	(Number of strips X Frontage + 2 X	
٦.	Tracing rape	Depth + Length of guide tape)/50 +	
		10%	
L		10/0	

0106. Transportation.

a. **For Equipment**. Transportation needed depends upon the amount of stores as calculated above. The following is a guideline to determine the number of 3 ton lorry needed for carrying the stores.

Serial	Equipment	Туре	Weight	No per
				3 ton
1	Anti Tank mine	Anti Tank Mine Mark V	12 lbs	440
1.	And Tank inine	Anti Tank Mine Mark VII	30 lbs	180
2.	Anti Personnel	Anti Personnel Mine	10 lbs	528
	mine	Shrapnel Mark II		
		Apers Mine No. 6	8 ozs	4500
3.	Barbed Wire	130 yard length	ı	24 coils
4.	Long Pickets	-	-	100
5.	Short Picket	-	-	50
6.	Perimeter Signs	-	-	75

b. For Manpower.

(1) 1x 3-ton lorry: 28 person without equipment.

(2) 1x ¹/₄-ton jeep: For Officer In Charge.

(3) 1x 1-ton pick up: For administration purpose.

(4) 1x Ambulance: For medical purpose.

0107. <u>Time Calculation</u>. One engineer platoon working in day, without enemy interference, in good ground and with a carry not exceeding 200 yards (from dump to site) can lay by hand:

Serial	Cluster	Without Trip Wire			With Trip Wire		
		Day	Moonlit Night	Night	Day	Moonlit Night	Night
1.	Anti Tank	200	133.33	100	-	-	-
2.	Anti Personnel	100	66.67	50	75	50	37.5
3.	Mixed	100	66.67	50	75	50	37.5

Note:

- 1. In case of night multiply the amount of the day by $\frac{1}{2}$ and in moonlit night by $\frac{2}{3}$.
- 2. The output of an infantry platoon is $\frac{1}{2}$ that of an engineer platoon.
- 3. The output of an engineer platoon assisted by an infantry platoon is $1\frac{1}{2}$ times that of an engineer platoon.

0107. **Example.**

Given Data. a.

Frontage $= 2500^{x}$ (1) $= 900^{x}$ (2) Depth $=1\frac{2}{3}=\frac{5}{3}$

(3) Density =2

(4) Number of mixed strip =6(5) Number of IOE group (6) Number of Cluster per group =8

(7) Total turning points = 5 per srip

30% of the mixed clusters of the outer row of mixed strip is trip wired (8)

(9).Troops available = $3 \times Field$ Engineer platoon.

b. Calculation.

(1) Number of Strips. We know,

Number of strips = desired density ÷ standard density

$$= \frac{5}{3} \div \frac{1}{3}$$
$$= 5$$

Number of mixed strip = 2

Number of Anti tank strip = (5-3) = 3

(2) **Number of Cluster Per Strip.** We know,

Cluster per strip = Frontage x Standard density

$$= 2500 \times \frac{1}{3}$$
= 833.33
$$\cong 834$$

c. Mines.

Anti Tank mines. We know. (1)

Number of Anti Tank mines = {(number of mixed strip + number of Anti-Tank strip)x number of cluster per strip + number of IOE group x number of IOE cluster per group} + 10%

(2) **Anti Personnel Mines**. We know,

Number of Anti Personnel mines = (3x number of mixed strip x number of cluster per strip + 3 x number of IOE group x noumber of IOE cluster per group) + 10%

= (3x2x834+3x6x8) + 10%= 5148 + 10%= 5148 + 514.8= 5662.8 $\cong 5663$ Anti personnel Mines

d. **Store Calculation**.

(1) **Pickets**.

(a) **Long Picket**. We know,

Number of long pickets =[{(Frontage + 2 x Depth) \div 20}+1]+10% =[{(2500+2 x 900) \div 20}+1] + 10% = {(4300 \div 20)+1}+10% = (215+1)+10% = 216+21.6 = 237.6 \cong 238 Long pickets.

(b) **Short Picket**. We know,

Number of short pickets = {(Frontage \div 20xTotal TP+2 x no of strips)+(no of strips x frontage \div 100)+(2 x no of IOE gps)} + 10 %

= {(2500 \div 20+2x5x5+2x5)+(5x2500 \div 100)+(2x6)}+10%

= {(125+50+10)+125+12}+10%

= 322+10%

= 322+32.2

= 354.2 \cong 355 Short pickets

(2) **Barbed Wire**. We know,

Barbed wire coil = $(3 \times \text{Frontage} + 4 \times \text{Depth}) \div 100$ = $(3 \times 2500 + 4 \times 900) \div 100$ = $11100 \div 100$ = 111 Barbed Wire Coil

(3) **Perimeter Sign Posting**. We know,

Number of perimeter sign posting = $(2x \text{ Frontage} + 2 \text{ x Depth}) \div 40 + 10\%$ $= \frac{2x2500 + 2x900}{40} + 10\%$ = 170 + 10% = 170 + 17 = 187 Perimeter sign posting

1-6 RESTRICTED

(4) **Tracing Tape**. We know,

Number of roll of tracing tape requirement = (number of strips x frontage + 2 x depth+ Length of guide tape) + 50 + 107

Note: Assumed guide tape = 200^x

e. <u>Transport</u>.

(1). **Mines.**

We know, 440 Anti tank mines are carr in 1 3-ton So, 4640 Anti tank mines are carry in $\frac{4640}{440}$ 3-ton = 10.55

$$= 10.55$$

$$\cong 11 \text{ 3-ton lorry}$$

4500 Apers Mine No-6 are carr in 1 3-ton lorry So, 5663 Apers Mine No-6 is carr in $\frac{5663}{4500}$ 3ton lorry = 1.26 \approx 2 3-ton lorry.

(2) <u>Perimeter Fencing</u>. Combination of the stores that 1 3-ton lorry can carry are:

(a)	Barbed wire	= 24 coil.
(b)	Long pickets	= 100
(c)	Short pickets	= 50
(d)	Perimeter signs	= 75

Now dividing it to the require number of items we get,

(e) Barbed wire
$$111 \div 24$$

= 4.63 \approx 5 3-ton lorry

(f) Long pickets
$$238 \div 100$$

= 2.38

≅3 3-ton lorry

(g) Short pickets
$$355 \div 50$$

= 7.1
 $\cong 8$ 3-ton lorry

(h) Perimeter Signs $187 \div 75 = 2.49 \cong 3$ 3-ton lorry,

Taking highest value, we get number of 3-ton lorry required = 8 3-ton

(3) **For Personnel**.

Total manpower available =
$$3 \times 51$$

= 153

28 person can be carry in 1 3-ton lorry

So, 153 person can be carry in
$$\frac{153}{28}$$

= 5.46
 \cong 6-3ton lorry

f. Time Required.

- (1) We are given with 3x Field Engineer Platoon.
- (2) <u>Laying capability</u>.
 - (a) Anti tank cluster.

In moon lit =
$$3 \times 200 \times \frac{2}{3} = 400$$
 cluster per hour.
In dark night = $3 \times 200 \times \frac{1}{2} = 300$ cluster per hour.

(b) <u>Mixed cluster</u>.

In moon lit =
$$3 \times 100 \times \frac{2}{3} = 200$$
 cluster per hour.
In dark night = $3 \times 100 \times \frac{1}{2} = 150$ cluster per hour.

(c) Tripped wire cluster.

In moon lit =
$$3 \times 75 \times \frac{2}{3} = 200$$
 cluster/hour.
In dark night = $3 \times 75 \times \frac{1}{2} = 112.2$ cluster/hour.

≅112 cluster/hour.

(3) <u>Moon Condition</u>.

- (a) <u>D-Day</u>.

 3rd quarter 3rd day

 Moon light will not be upto = (52x3)= 156 minutes.
- (b) $\underline{D+1Day}$. 3rd quarter 4th day Moon light will not be upto = (52x4) = 208 minutes

(4) **Outer Strip (Mixed Strip)**

Number of cluster = 834Number of cluster in outer row $= \frac{834}{2} = 417$. No of tripped wire in outer strip $= 471 \times \frac{30}{100}$ = 125.1 $\cong 126$

In dark night, 112 tripped wire cluster laid in 60 minutes So, 126 tripped wire cluster laid in = $\frac{126 \times 60}{120}$ minutes = 67.5 minutes ≈ 68 minutes

Dark hour left = (156-68) = 88 minutes.

In dark night,

In 60 minutes cluster (mixed) laid = 150In 88 minutes cluster (mixed) laid = $\frac{88 \times 150}{60}$ minutes. = 220 minutes.

Left clusters = 834 - (126+220) = 834-346 = 488 cluster (mixed)

In moon lit night,

200 cluster laid in 60 minutes

So, 488 cluster laid in = $\frac{60 \times 488}{200}$ minutes. = 146.4 \approx 147 minutes.

Total time required = (156+147) minutes.

= 303 minutes. = 5 hours 3 minutes.

Time left with night = 11 hours -5hour 3 minutes.

= 5 hours 57 minutes.

(5) **2nd Strip (Anti Tank Strip)**.

Number of clusters =834

In moon lit,

400 Anti tank cluster laid in = 60 minutes 834 Anti tank cluster laid in = $\frac{60 \times 834}{400}$

= 125.1 minutes ≅ 126 minutes

Night hour left = 5 hr 57 minutes - 126 minutes

= 3 hr 51 minutes

(6) 3rd Strip (Anti Tank Strip)

Number of clusters= 834

In moon lit,

400 Anti tank cluster laid in = 60 minutes 60×834 834 Anti tank cluster laid in 400

= 125.1 minutes ≅126 minutes

Night hour left = 5 hours 57 minutes -126 minutes

= 1 hours 45 minutes

≅ 105 minutes

(7) 4th Strip (Anti Tank Strip)

In moon lit,

In 60 min, Anti tank mines laid =400 $=\frac{400 \, x \, 105}{60}$ In 105 min, Anti tank mines laid

=700= 134

=(834-700)Clusters left

The next mines will be laid in D+1 day

In dark night,

300 clusters laid in 60 min

 $=\frac{60 \times 134}{300}$ So, 134 cluster laid in

= 26.8 minutes $\approx 27 \text{ minutes}$

(8) <u>Fifth Strip (Mixed Strip)</u>

Dark hour left = (208-27) minutes

= 181 minutes

In dark night,

112 tripped wire cluster laid in 60 minutes 126 tripped wire cluster laid in $=\frac{60 \times 126}{112}$

= 67.5 minutes ≈ 68 minutes

Dark hours left = (181-68) minutes

= 113 minutes

In dark night,

In 60 min mixed cluster laid = 150

In 113 minutes mixed cluster laid = $\frac{150 \times 113}{60}$

= 282.5 $\cong 282$

Cluster left = 834 (126+282)

= 426 mixed cluster.

In moon lit night,

200 cluster (mixed) laid in 60 minutes

426 cluster (mixed) laid in $= \frac{60 \times 426}{200}$

= 127.8 minutes \approx 128 minutes

Total time required = (181+128) minutes

= 309 minutes = 5 hour 9 minutes

g. **Summary of Calculation**

(1) **Minefield Laying.**

- (a) <u>Start Time</u>. 1830 hours D-Day
- (b) <u>Completion Time</u>. 0006 D+1Day
- (c) <u>Total Anti Tank Mine</u>. 4640
- (d) <u>Total Anti Personnel Mine</u>. 5663
- (e) <u>Transport Required</u>. 23 3-ton lorry.

0108-0200 Reserve.