Iteratieve Algoritmen

Bas Terwijn < b.terwijn@uva.nl>

Heuristieken / Programmeertheorie Minor Programmeren

Universiteit van Amsterdam

Algoritmen

Algoritmen

Random

Greedy

Greedy+Random

Constructief:

- Breadth first
- Depth first
- Iterative deepening

Iteratief:

- Hill Climber
- Simulated Annealing

Optimaal prunen

- Early constraint checking
- Archief
- Branch and Bound
- Dijkstra, A*
- Domein specifiek prunen

Niet-optimaal prunen

- Beam Search
- Greedy Lookahead
- Heuristieken

Population Based

- Plant Propagation
- Genetic Algorithm

Hill Climber, pseudo code

Kies een random start state

Herhaal:

Doe een kleine random aanpassing

Als de state is verslechterd:

Maak de aanpassing ongedaan

Hill Climber 22\$ 23\$ 20\$

Hill Climber 22\$ 23\$ 20\$

Maximaliseren of Minimaliseren

Convergentie

Convergentie

Restart Hill Climber, pseudo code

Kies een random start state

Herhaal tot na N-keer niet meer verbetert:

Doe een kleine random aanpassing

Als de state is verslechterd:

Maak de aanpassing ongedaan

Restart Hill Climber, pseudo code

Herhaal:

Kies een random start state

Herhaal tot na N-keer niet meer verbetert:

Doe een kleine random aanpassing

Als de state is verslechterd:

Maak de aanpassing ongedaan

Restart

Constraint relaxation

Constraint relaxation

Constraint relaxation, pseudo code

Herhaal:

Kies een random start state zonder constraint checks

Herhaal totdat N-keer niet meer verbetert:

Doe een kleine random aanpassing

Geef strafpunten voor constraint-schendingen

Als de state is verslechterd:

Maak de aanpassing ongedaan

Steepest Ascent Hill Climber

Steepest Ascent Hill Climber

Herhaal:

Kies een random start state

Herhaal totdat niet meer verbetert:

Doe beste van alle mogelijke kleine aanpassingen

Algoritmen

Algoritmen

Random

Greedy

Greedy+Random

Constructief:

- Breadth first
- Depth first
- Iterative deepening

Iteratief:

- Hill Climber
- Simulated Annealing

Optimaal prunen

- Early constraint checking
- Archief
- Branch and Bound
- Dijkstra, A*
- Domein specifiek prunen

Niet-optimaal prunen

- Beam Search
- Greedy Lookahead
- Heuristieken

Population Based

- Plant Propagation
- Genetic Algorithm

Metaal Annealing

• Kristalstructuur van metaal versterken

• Minimaliseren: acceptatiekans = 2(score_old - score_new)

• Minimaliseren: acceptatiekans = 2(score_old - score_new)

Wel of niet accepteren?

• acceptatiekans = 2(score_old - score_new) / temperatuur

• acceptatiekans = 2(score_old - score_new) / temperatuur

Simulated Annealing, pseudo code

Herhaal:

Kies een random start state

Kies start temperatuur

Herhaal N iteraties:

Doe een kleine random aanpassing

Als random() > kans(oud, nieuw, temperatuur):

Maak de aanpassing ongedaan

Verlaag temperatuur

Traveling Salesman, Demo

• Een verkoper zoekt de kortste route langs N steden en terug naar huis:

- Youtube Video:
 - https://www.youtube.com/watch?v=SC5CX8drAtU
 - Greedy
 - Random
 - Hill Climber
 - Simulated Annealing

N-Queens

N-Queens

Pattern works for even N that are not 6K + 2

```
not working
10
12
14
16
18
20
22
24
26
28
```

N-Queens, Demo

GitHub: https://github.com/bterwijn/NQueens

```
python3 -m NQueens.ConstructiveAlgorithms.Random 20 p
queensX: [16, 2, 7, 5, 18, 15, 9, 6, 3, 17, 8, 1, 19, 10, 14, 4, 0, 13, 11, 12]
            . . . . . . . Q . . . .
   . . . . . . . Q /. . . . . . .
. . . . . . 0 . . . . . . . . . . .
```

Algoritmen

Algoritmen

Random

Greedy

Greedy+Random

Constructief:

- Breadth first
- Depth first
- Iterative deepening

Iteratief:

- Hill Climber
- Simulated Annealing

Optimaal prunen

- Early constraint checking
- Archief
- Branch and Bound
- Dijkstra, A*
- Domein specifiek prunen

Niet-optimaal prunen

- Beam Search
- Greedy Lookahead
- Heuristieken

Population Based

- Plant Propagation
- Genetic Algorithm

Population based algorithms

Population based algorithms

Populatie van Hill Climbers: 6

Population based algorithms

- Paper:
 - Nature-Inspired Optimisation Approaches and the New Plant Propagation Algorithm
 - Abdellah Salhi, Eric S Fraga

Selecteer beste 6

State space
Populatie van Hill Climbers: 6

```
Require: objective f(x), x \in \mathbb{R}^n
  Generate a population P = \{p_i, i = 1, ..., m\}
  g \leftarrow 1
  for g \leftarrow 1 to g_{\text{max}} do
     compute N_i = f(p_i), \forall p_i \in P
     sort P in descending order of N
     create new population \phi
     for each p_i, i = 1, ..., m do {best m only}
        r_i \leftarrow \text{set of runners} where both the size of the
        set and the distance for each runner (individually) is
        proportional to the fitness N_i
        \phi \leftarrow \phi \cup r_i (append to population; death occurs by
        omission above}
     end for
     P \leftarrow \phi {new population}
  end for
  return P, the population of solutions
```


Populatie van Hill Climbers: 6

Number of runners:

$$n_r = \lceil n_{\max} N_i r \rceil$$

 $n_{\rm max}$ is the maximum number of runners to generate in this paper, $n_{\rm max}=5$.

 $r \in [0, 1]$ is a randomly chosen number

Distance of runner:

$$d_{r,j} = 2(1 - N_i)(r - 0.5)$$

Each $d_{r,j}$ will be in (-1,1).

for j = 1, ..., n, where n is the dimension of the search space.

$$x_j^* = x_j + (b_j - a_j)d_{r,j}$$

Genetic Algorithm

- Website:
 - https://www.tutorialspoint.com/genetic_algorithms

Genetic Algorithm

Genetic Algorithm

State space Populatie van Hill Climber

State space
Populatie van Hill Climber: 6


```
self.legger = legging = delay

self.tile = delay

self.file = delay

s
```


Heuristieken Programmeertheorie

Simulation Hypothesis

Andere population based algoritmen

- Ant colony optimization
- Artificial immune system
- Bee colony optimization
- Brain storm optimization
- Fireworks algorithm
- Particle swarm optimization

Population based, Demo

- Learn to walk, Roberto Mior (miorsoft.itch.io)
 - Youtube video:
 - www.youtube.com/watch?v=qtmG8mMGbpo

Algoritmen

Algoritmen

Random

Greedy

Greedy+Random

Constructief:

- Breadth first
- Depth first
- Iterative deepening

Iteratief:

- Hill Climber
- Simulated Annealing

Optimaal prunen

- Early constraint checking
- Archief
- Branch and Bound
- Dijkstra, A*
- Domein specifiek prunen

Niet-optimaal prunen

- Beam Search
- Greedy Lookahead
- Heuristieken

Population Based

- Plant Propagation
- Genetic Algorithm

Literatuur

Artificial Intelligence: A Modern Approach

Third Edition

Stuart J. Russell and Peter Norvig

Hfdstk 3.4 Breadth first, Depth first

Hfdstk 3.5 A*

Hfdstk 4.1 Hill Climber, Simulated Annealing

Hfdstk 6.3 Most Constraint Variable heuristic

Lecture video 2020, terugkijken

- Youtube playlist, Iteratieve algoritmen:
 - https://www.youtube.com/playlist?list=PLJBtJTYGPSzJaxroYW-6OH1NRuUFqpGER

Tips

- Eerst de basis algoritmen, daarna pas creatieve uitbreiding
- Houd je code zo simpel mogelijk
 - Johan Cruijff: "Voetbal is simpel. Wat moeilijk is, is simpel voetballen."
- Maak een klein probleempje om mee te testen
- Los je case eerst met de hand op voor goede heurstieken ideeën
- Doe leuke onderzoekjes, experimenteer
 - welke heuristiek/parameter-waarde werkt het best?
- Future work, wat zou ik gaan doen in vervolgonderzoek?