НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №2.1

з дисципліни

"Інтелектуальні вбудовані системи"

на тему

"ДОСЛІДЖЕННЯ ПАРАМЕТРІВ АЛГОРИТМУ ДИСКРЕТНОГО

ПЕРЕТВОРЕННЯ ФУР'Є"

Виконала:

студентка групи ІП-84

Романова Вікторія Андріївна

номер залікової книжки: 8418

Перевірив:

ас. кафедри ОТ

Регіда П. Г.

Варіант № 18

n = 10 # Число гармонік в сигналі

w_max = 1500 # Гранична частота

N = 256 # Кількість дискретних відліків

Теоретичні відомості

В основі спектрального аналізу використовується реалізація так званого дискретного перетворювача Фур'є (ДПФ) з неформальним (не формульним) поданням сигналів, тобто досліджувані сигнали представляються послідовністю відліків x(k)

$$F_{x}(p) = \sum_{k=0}^{N-1} x(k) \cdot e^{-jk\Delta t p \Delta \omega}$$

$$\omega \to \omega_p \to p\Delta\omega \to p$$
 $\Delta\omega = \frac{2\pi}{T}$

На всьому інтервалі подання сигналів T, 2π - один період низьких частот. Щоб підвищити точність треба збільшити інтервал T.

$$t \to t_k \to k\Delta t \to k$$
; $\Delta t = \frac{T}{N} = \frac{1}{k_{min}} \cdot f' z p$.

ДПФ - проста обчислювальна процедура типу звірки (тобто Σ -е парних множень), яка за складністю також має оцінку $\mathbf{N}^2 + \mathbf{N}$. Для реалізації ДПФ необхідно реалізувати поворотні коефіцієнти ДПФ:

$$W_{N}^{pk} = e^{-jk\Delta t\Delta\omega p}$$

Ці поворотні коефіцієнти записуються в ПЗУ, тобто ϵ константами.

$$W_N^{pk} = e^{\displaystyle -\,jk\,\frac{T}{N}\,p\frac{2\pi}{T}} = e^{\displaystyle -\,j\frac{2\pi}{N}\,pk}$$

 W_N^{pk} не залежать від **T**, а лише від розмірності перетворення **N**. Ці коефіцієнти подаються не в експоненційній формі, а в тригонометричній.

$$W_N^{pk} = \cos\left(\frac{2\pi}{N}pk\right) - j\sin\left(\frac{2\pi}{N}pk\right)$$

Ці коефіцієнти повторюються (тому і **p** до **N-1**, і **k** до **N-1**, а (**N-1**) • (**N-1**)) з періодом **N**(2π).. Т.ч. в ПЗУ треба зберігати N коефіцієнтів дійсних і уявних частин. Якщо винести знак коефіцієнта можна зберігати **N/2** коефіцієнтів.

2π/N- деякий мінімальний кут, на який повертаються ці коефіцієнти. У ПЗУ окремо зберігаються дійсні та уявні частини компілюють коефіцієнтів. Більш загальна форма ДПФ представляється як:

$$F_{x}(p) = \sum_{k=0}^{N-1} x(k) \cdot W_{N}^{pk}$$

ДПФ дуже зручно представити у вигляді відповідного графа. Приклад: граф 4-х точкового ДПФ. ($k = \overline{0,3}$; $p = \overline{0,3}$)

Коефіцієнти зручно представити у вигляді таблиці:

p k	0	1	2	3
0	\mathbf{W}_{4}^{0}	\mathbf{W}_{4}^{0}	\mathbf{W}_{4}^{0}	\mathbf{W}_{4}^{0}
1	\mathbf{W}_{4}^{0}	\mathbf{W}_4^1	W ₄ ²	W_4^3
2	\mathbf{W}_{4}^{0}	W ₄ ²	\mathbf{W}_{4}^{0}	W ₄ ²
3	\mathbf{W}_{4}^{0}	W_4^3	W ₄ ²	W_4^1

Різних тут всього 4 коефіцієнта:

$$W_4^0 = \cos\left(\frac{2\pi}{4}\cdot 0\right) - j\sin\left(\frac{2\pi}{4}\cdot 0\right) = 1$$
 $(W_4^1 = -j; W_4^2 = -1; W_4^3 = +j)$

Спеціальна схема реалізації ДПФ з активним використанням пауз між відліками

При реалізації ДПФ можна організувати обробку в темпі надходження даних. Реалізація схеми в БПФ з активним використанням пауз на 4-х точках виглядає так:

Ця схема сильно залежить от Δt и N.

Лістинг коду

import math import matplotlib.pyplot as plt

from lab11.main import Signal

```
def w(pk, N):
  fi = 2 * math.pi / N * pk
  return complex(math.cos(fi), -math.sin(fi))
def f(p, N):
  res = 0
  for k in range(N):
     res += s.xt[k] * w(p * k, N)
  return res
def dpf(N):
  sequence = range(N)
  spector = [f(freq, N) for freq in sequence]
  modules = list(map(lambda x: abs(x), spector))
  plt.xlabel('Частота')
  plt.ylabel('Амплітуда')
  plt.plot(sequence, modules)
s = Signal()
dpf(s.N)
plt.show()
```

Результати виконання

Висновок

Було проведено ознайомлення з принципами реалізації спектрального аналізу випадкових сигналів на основі алгоритму перетворення Фур'є, вивчення та дослідження особливостей даного алгоритму з використанням засобів моделювання і сучасних програмних оболонок.