Especificação do Projeto 2022.1 (2° Unidade)

Calculadora e Sensor de Infravermelho (IR)

1. Especificações

O projeto será a construção de uma calculadora utilizando os displays de 7 segmentos, com os números sendo colocados bit a bit através dos switches, e as operações sendo mapeadas nos Push buttons. Também deverá ser possível usar o sensor de infravermelho e o controle disponível na placa para realizar as operações.

2. Placa

2.1 Números

Os displays da esquerda corresponderão ao número **A** e o número **B**, deverão ser mapeados switches para que o número vá do **mínimo 0** ao **máximo 99**. Não é necessário implementar números negativos, qualquer número que exceda 99 deve ser tratado como se fosse o máximo.

O display com 4 números a direita será o de **Resposta**, deve-se implementar uma forma de mostrar o sinal de negativo quando precisar.

2.2 Operações

Os push buttons ao serem **pressionados** devem esperar até serem **soltos** para realizar a operação. As operações serão de **soma, subtração e multiplicação.** O quarto botão deve ser o botão de **ON/OFF** ao ser apertado todo o display deve ser ligado ou desligado.

2.3 Comportamento e Estados

O projeto deve ser feito através de uma estrutura de máquina de estados. O projeto deve começar desligado até o botão de **ON/OFF** ser apertado, o resultado estará zerado até um botão de operação ser apertado, e também será zerado quando for desligado.

Quando um botão de operação for pressionado o resultado deverá ser atualizado sempre que **A** e **B** mudarem. Quando for ele deve voltar para o estado inicial onde nenhuma operação foi selecionada.

Figura 1: Placa e posições

3. Infravermelho

Key	Key Code	Key	Key Code	Key	Key Code	Key	Key Code
A	0x0F	B	0x13	C	0x10	(1)	0x12
	0x01	2	0x02	3	0x03		0x1A
4	0x04	5	0x05	6	0x06	\bigcirc	0x1E
7	0x07	8	0x08	9	0x09		0x1B
	0x11	0	0x00	•	0x17	\bigcirc	0x1F
 	0x16		0x14	(0x18	×	0x0C

Figure 2: Controle

Figure 3: Botões e seus códigos

A placa possui o sensor de infravermelho no seu lado direito, ela usa o sensor *IRM-V538N7/TR1* com o controle com um chip codificador *uPD6121G*. O controle ao ser pressionado envia um sinal com **32** bits: Os primeiros **16** bits são o código do controle (será o mesmo para cada controle), **8** bits sendo o código da tecla que foi pressionada, os últimos **8** bits é o valor invertido das teclas.

O sensor de infravermelho da placa envia um sinal **Alto** quando não detecta infravermelho, e um sinal **Baixo** enquanto recebe. Então ao olhar o datasheet de como o controle envia os sinais deve se ter em mente que a placa os inverterá. As explicações a seguir foram explicados da *perspectiva da placa*:

- O pino do sensor ficará com um sinal **Alto** até um botão ser pressionado no controle.
- Depois receberá um sinal **Baixo** de **9ms**. Seguido por um sinal alto de **4.5ms**. Esse é o **sinal** inicial.
- Agora ela ficará recebendo sinais de bit a bit até receber 32 bits.
 - Receberá um sinal baixo padrão de ~0.5ms antes de cada bit.
 - Depois um sinal **Alto** com um tempo que pode variar, se o sinal for curto ele o bit é **0** se for um sinal longo o bit é **1**. O sinal longo tem a duração de no mínimo **1ms**.
 - Depois do último bit ele receberá mais um sinal baixo padrão e depois ficará em alto indefinidamente. Esse é o bit final.
- Caso o botão permaneça pressionado o controle após certo período mandará um sinal inicial modificado e o **bit final** logo após.

3.1 Botões

Os botões deverão condizer apenas com os botões de operação. Recomenda-se usar os botões A,B,C e ON/OFF para as operações de soma, subtração, multiplicação e ON/OFF respectivamente.

Figure 4: Sinal do ponto de vista da Placa

- When fosc = 455 kHz
 - (1) Remote (REM) output (from stage 2), transmission occurs only when key is kept depressed)

(2) Magnification of stage (1)

(3) Magnification of waveform (3)

(4) Magnification of waveform (2)

Figura 5: Sinais enviados pelo controle após o pressionar de um botão.

- (1) Visão completa da waveform
 - (2) Waveform completa
- (3) Waveform com o sinal inicial e alguns bits de exemplo
 - (4) Waveform ao manter o botão pressionado