

10/578943

JAP20 Rec'd PCT/PTO 08 MAY 2006

SEQUENCE LISTING

<110> The Regents of the University of Colorado, a Body Corporate
Kim, Soo Hyun
Dinarello, Charles A.
Azam, Tania

<120> Compositions and Methods for Regulation of Tumor Necrosis Factor Alpha

<130> UTC 08870

<140> PCT/US2004/037578

<141> 2004 11 12

<160> 27

<170> PatentIn version 3.2

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 1

ctgtcccgag tctggacttt

20

<210> 2

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 2

gcaaagggtgg tggtcagtat c

21

<210> 3

<211> 396

<212> DNA

<213> Homo sapiens

<400> 3

atgtgcttcc cgaaggcctt ctctgatgac atgaagaagc tgaaggcccg aatgcaccag

60

gctatagaaa gatttatga taaaatgcaa aatgcagaat caggacgtgg acaggtgatg

120

tcgagcctgg cagagctgga ggacgacttc aaagagggtt acctggagac agtggcggct

180

tattatgagg agcagcaccc agagctcaact cctctacttg aaaaagaaag agatggatta

240

cggtgccgag gcaacagatc ccctgtcccg gatgttggagg atcccgcAAC cgaggagcct

300

ggggagagct tttgtgacaa gtcctacgga gccccacggg gggacaagga ggagctgaca

360

ccccagaagt gctctgaacc ccaatcctca aaatga

396

<210>	4					
<211>	567					
<212>	DNA					
<213>	Homo sapiens					
<400>	4					
atgtgcttcc	cgaaggcct	ctctgatgac	atgaagaagc	tgaaggcccg	aatgcaccag	60
gccatagaaa	gatttatga	taaaatgcaa	aatgcagaat	caggacgtgg	acaggtgatg	120
tcgagcctgg	cagagctgga	ggacgacttc	aaagagggct	acctggagac	agtggcggct	180
tattatgagg	agcagcaccc	agagctcaact	cctctacttg	aaaaagaag	agatggatta	240
cggtgccgag	gcaacagatc	ccctgtcccg	gatgttgagg	atcccgcAAC	cgaggagcct	300
ggggagagct	tttgtgacaa	ggtcatgaga	tggttccagg	ccatgctgca	gcggctgcag	360
acctgggtggc	acggggttct	ggcctgggtg	aaggagaagg	tggtggccct	ggtccatgca	420
gtgcaggccc	tctggaaaca	gttccagagt	ttctgctgct	ctctgtcaga	gctcttcatg	480
tccttttcc	agtcc tacgg	agccccacgg	ggggacaagg	aggagctgac	accccagaag	540
tgctctgaac	cccaatcctc	aaaatga				567
<210>	5					
<211>	705					
<212>	DNA					
<213>	Homo sapiens					
<400>	5					
atgtgcttcc	cgaaggcct	ctctgatgac	atgaagaagc	tgaaggcccg	aatggtaatg	60
ctcctcccta	cttctgctca	ggggttgggg	gcctgggtct	cagcgtgtga	cactgaggac	120
actgtggac	acctggacc	ctggagggac	aaggatccgg	ccctttggtg	ccaactctgc	180
ctctcttac	agcaccaggc	catagaaaga	tttatgata	aaatgcaaaa	tgcagaatca	240
ggacgtggac	aggtgatgac	gagcctggca	gagctggagg	acgacttcaa	agagggctac	300
ctggagacag	tggcggctta	ttatgaggag	cagcacccag	agctcactcc	tctacttgaa	360
aaagaaaagag	atggattacg	gtgccgaggc	aacagatccc	ctgtcccgaa	tgttggaggat	420
cccgcaaccg	aggagcctgg	ggagagcttt	tgtgacaagg	tcatgagatg	gttccaggcc	480
atgctgcagc	ggctgcagac	ctggtggcac	ggggttctgg	cctgggtgaa	ggagaaggtg	540
gtggccctgg	tccatgcagt	gcaggccctc	tggaaacagt	tccagagttt	ctgctgctct	600
ctgtcagagc	tcttcatgac	ctctttccag	tcctacggag	ccccacgggg	ggacaaggag	660
gagctgacac	cccagaagtg	ctctgaaccc	caatcctcaa	aatga		705
<210>	6					
<211>	537					
<212>	DNA					
<213>	Homo sapiens					

<400> 6
 atgaagaagc tgaaggccccg aatgcaccag gccatagaaa gattttatga taaaatgcaa 60
 aatgcagaat caggacgtgg acaggtgatg tcgagcctgg cagagctgga ggacgacttc 120
 aaagagggct acctggagac agtggcggt tattatgagg agcagcaccc agagctcact 180
 cctctacttg aaaaagaaaag agatggatta cggtgccgag gcaacagatc ccctgtcccg 240
 gatgttgagg atcccgcac acgaggagcct ggggagagct tttgtgacaa ggtcatgaga 300
 tggttccagg ccatgctgca gcggctgcag acctggtggc acggggttct ggctgggtg 360
 aaggagaagg tggtgccct ggtccatgca gtgcaggccc tctggaaaca gttccagagt 420
 ttctgctgct ctctgtcaga gctcttcatg tcctcttcc agtcctacgg agccccacgg 480
 ggggacaagg aggagctgac accccagaag tgctctgaac cccaatcctc aaaaatga 537

<210> 7
 <211> 131
 <212> PRT
 <213> Homo sapiens

<400> 7

Met Cys Phe Pro Lys Val Leu Ser Asp Asp Met Lys Lys Leu Lys Ala
 1 5 10 15

Arg Met His Gln Ala Ile Glu Arg Phe Tyr Asp Lys Met Gln Asn Ala
 20 25 30

Glu Ser Gly Arg Gly Gln Val Met Ser Ser Leu Ala Glu Leu Glu Asp
 35 40 45

Asp Phe Lys Glu Gly Tyr Leu Glu Thr Val Ala Ala Tyr Tyr Glu Glu
 50 55 60

Gln His Pro Glu Leu Thr Pro Leu Leu Glu Lys Glu Arg Asp Gly Leu
 65 70 75 80

Arg Cys Arg Gly Asn Arg Ser Pro Val Pro Asp Val Glu Asp Pro Ala
 85 90 95

Thr Glu Glu Pro Gly Glu Ser Phe Cys Asp Lys Ser Tyr Gly Ala Pro
 100 105 110

Arg Gly Asp Lys Glu Glu Leu Thr Pro Gln Lys Cys Ser Glu Pro Gln
 115 120 125

Ser Ser Lys
 130

<210> 8
<211> 188
<212> PRT
<213> Homo sapiens

<400> 8

Met Cys Phe Pro Lys Val Leu Ser Asp Asp Met Lys Lys Leu Lys Ala
1 5 10 15

Arg Met His Gln Ala Ile Glu Arg Phe Tyr Asp Lys Met Gln Asn Ala
20 25 30

Glu Ser Gly Arg Gly Gln Val Met Ser Ser Leu Ala Glu Leu Glu Asp
35 40 45

Asp Phe Lys Glu Gly Tyr Leu Glu Thr Val Ala Ala Tyr Tyr Glu Glu
50 55 60

Gln His Pro Glu Leu Thr Pro Leu Leu Glu Lys Glu Arg Asp Gly Leu
65 70 75 80

Arg Cys Arg Gly Asn Arg Ser Pro Val Pro Asp Val Glu Asp Pro Ala
85 90 95

Thr Glu Glu Pro Gly Glu Ser Phe Cys Asp Lys Val Met Arg Trp Phe
100 105 110

Gln Ala Met Leu Gln Arg Leu Gln Thr Trp Trp His Gly Val Leu Ala
115 120 125

Trp Val Lys Glu Lys Val Val Ala Leu Val His Ala Val Gln Ala Leu
130 135 140

Trp Lys Gln Phe Gln Ser Phe Cys Cys Ser Leu Ser Glu Leu Phe Met
145 150 155 160

Ser Ser Phe Gln Ser Tyr Gly Ala Pro Arg Gly Asp Lys Glu Glu Leu
165 170 175

Thr Pro Gln Lys Cys Ser Glu Pro Gln Ser Ser Lys
180 185

<210> 9
<211> 234
<212> PRT
<213> Homo sapiens

<400> 9

Met Cys Phe Pro Lys Val Leu Ser Asp Asp Met Lys Lys Leu Lys Ala

1

5

10

15

Arg Met Val Met Leu Leu Pro Thr Ser Ala Gln Gly Leu Gly Ala Trp
20 25 30

Val Ser Ala Cys Asp Thr Glu Asp Thr Val Gly His Leu Gly Pro Trp
35 40 45

Arg Asp Lys Asp Pro Ala Leu Trp Cys Gln Leu Cys Leu Ser Ser Gln
50 55 60

His Gln Ala Ile Glu Arg Phe Tyr Asp Lys Met Gln Asn Ala Glu Ser
65 70 75 80

Gly Arg Gly Gln Val Met Ser Ser Leu Ala Glu Leu Glu Asp Asp Phe
85 90 95

Lys Glu Gly Tyr Leu Glu Thr Val Ala Ala Tyr Tyr Glu Glu Gln His
100 105 110

Pro Glu Leu Thr Pro Leu Leu Glu Lys Glu Arg Asp Gly Leu Arg Cys
115 120 125

Arg Gly Asn Arg Ser Pro Val Pro Asp Val Glu Asp Pro Ala Thr Glu
130 135 140

Glu Pro Gly Glu Ser Phe Cys Asp Lys Val Met Arg Trp Phe Gln Ala
145 150 155 160

Met Leu Gln Arg Leu Gln Thr Trp Trp His Gly Val Leu Ala Trp Val
165 170 175

Lys Glu Lys Val Val Ala Leu Val His Ala Val Gln Ala Leu Trp Lys
180 185 190

Gln Phe Gln Ser Phe Cys Cys Ser Leu Ser Glu Leu Phe Met Ser Ser
195 200 205

Phe Gln Ser Tyr Gly Ala Pro Arg Gly Asp Lys Glu Glu Leu Thr Pro
210 215 220

Gln Lys Cys Ser Glu Pro Gln Ser Ser Lys
225 230

<210> 10
<211> 178
<212> PRT
<213> Homo sapiens

<400> 10

Met Lys Lys Leu Lys Ala Arg Met His Gln Ala Ile Glu Arg Phe Tyr
1 5 10 15

Asp Lys Met Gln Asn Ala Glu Ser Gly Arg Gly Gln Val Met Ser Ser
20 25 30

Leu Ala Glu Leu Glu Asp Asp Phe Lys Glu Gly Tyr Leu Glu Thr Val
35 40 45

Ala Ala Tyr Tyr Glu Glu Gln His Pro Glu Leu Thr Pro Leu Leu Glu
50 55 60

Lys Glu Arg Asp Gly Leu Arg Cys Arg Gly Asn Arg Ser Pro Val Pro
65 70 75 80

Asp Val Glu Asp Pro Ala Thr Glu Glu Pro Gly Glu Ser Phe Cys Asp
85 90 95

Lys Val Met Arg Trp Phe Gln Ala Met Leu Gln Arg Leu Gln Thr Trp
100 105 110

Trp His Gly Val Leu Ala Trp Val Lys Glu Lys Val Val Ala Leu Val
115 120 125

His Ala Val Gln Ala Leu Trp Lys Gln Phe Gln Ser Phe Cys Cys Ser
130 135 140

Leu Ser Glu Leu Phe Met Ser Ser Phe Gln Ser Tyr Gly Ala Pro Arg
145 150 155 160

Gly Asp Lys Glu Leu Thr Pro Gln Lys Cys Ser Glu Pro Gln Ser
165 170 175

Ser Lys

<210> 11
<211> 5000
<212> DNA
<213> Homo sapiens

<400> 11
gcctagggtg gaccctattt caatatgact ggtgtccttt ggaaagggga aagggggaca 60
gtcacaccca ggcagaacgt gatgaagatg aagatggcca tctacaaggg caggagaaac 120
ctgaacagaa tcccagctcc gggccctcag aaggacccca cgctgcccac attgaccttg 180
gacctccagc ctgcagatcg tgagggaaga gacgtttcg acttagggcc ctttgtcgtg 240

gtacttcctt agtttggccc caggaaacca tcccaaaggc aagggcgtgg ttgtgctcag	300
ctgggggaag ggggctgggg gccgtgagga ggaggtggga ggcccagcca ggctggaggg	360
tcagaacccg tggagctaga agagcccgta ggggagcccc aagattgctg agaccagtga	420
ccttcggccc cagatggcct tgccttgcc cagaagggtc agaaggacct ggtcagccaa	480
gctcagacag ccggcaggat gccttccacc ctgcagaggg tcctatcttgc tcccacaggt	540
agatctacat caccactagc caccctcca acgtgcacag gcccctgccc tcacggcgcc	600
cctcttaggt ccggcagttc ctgcctcctt ctgatccaga agtttctctg gcctctggag	660
ccggggcaca cctcatgcaa ggacagggtc caaattcctt tgccttgga tcccacttgg	720
ctgacgtcac cttcctgtac tcagggagtt tccccagcca gctgtcccga gtctggactt	780
tccctctgcc cctccccact ctcaggctgg tgggtgggg aaagcagccc attcctgggc	840
tcagagactc ccaccccagc tcagagggag caggggcccga gccagggacg gaccctcatt	900
cctcccaggg accccagacc tctgtcttc tcgggtaagt ctccatctct gtctgtctct	960
gtctctgtct ctgtcttgt ctgttttca cgcaactcagc aaggcctcct gccctgagag	1020
aggctccgccc cactaaaaaaa cactttcccc ataaaaccag ctgagtattt gtgccaggaa	1080
gactgcgtgc agaagggtgac tgtctcagtg gagctgggtc atctcaggtg gggagttggg	1140
gtccccgaag gtgaggaccc tctggggagg agggtgcttc tctgagacac tttctttcc	1200
tcacacctgt tcctcgccag caggccttgg ctccctgaac ttttggccgc catgtgcttc	1260
ccgaaggtaa gtgagaggct gcgtgtgctt ttgtggcat gtctgaaaac agaccgtaag	1320
ggtgcggtg ccctcagttt tccccaggt gcctgtgtgt cagggctcag tcaggggcac	1380
ccagcggcag gaggatagtg atggggtag ggtgcgtgc gaggcgctgg aggtcatatg	1440
tgtcgaaaaac gctggagaac ggcaggggtg tggatgagag ggagcacctg tcccaggagc	1500
ccttcacagc ccggaaagcc cggggcaggg gtggggcagg gctctgctgg aaacgactcg	1560
gagaatgctt ctctcagagg cccgctcagc tgggtggcc caagagcaag gcctgtgtgg	1620
gtcctgggtt ctctcctcc tttcctgggt tccctccgac ctcccatcct ctaccactgc	1680
cccaccgcaa atgctaggcc caccacaccc tccagggagc tcttcggcct gtgacaatag	1740
gggttccat gatgtggcct ggctcaggtt caggacagtg acccggagga cacatggctc	1800
ccgcatgtcg gcacggtgct gcttcaccc tgggtcctgg gaaatcaggc tagcggtatg	1860
ggaccatcgc tgcctgaaag tgtgcagaca gctgccctgc ccagaatatg tccccaggcc	1920
ctgcgcactc tgtgggtgac tgtcaccact ctatagtggg ggaaaccagg catgtcacc	1980
ccgagactag gcccggacg tgggggctca gcggggattc tgtgggtgc ctctggcctc	2040
tgtggatgca gccacgtgac tgcaggcagg aatggcccg gacctgtggg tctgcatgtt	2100
ggcagtccggg aagagtggca ggtttaggg tggacctacc tggcacccca aatattaatc	2160

agctcatcag agaggaatgg ctgctgttac cttctcaatt gtcataccc taaacatttt	2220
ttccttggcc aactctcacc tgggaccata gtggttgtgg gaaacccagc tgagccagcc	2280
tgctccagga cagtgtccat cctcccgtgt gtgtacatgg ggggtgtgt gtgtgcaggg	2340
aggacacccc ggcccacgca ggcccctgctc ttgtgaggag gggtcaccta ggcccacgca	2400
ggcccctgctc ttgtgaggag gggtcaccta ggcccacgca ggcccctgctc ttgtgaggag	2460
gggtcaccta ggcccacgca ggcccctgctc ttgtgaggag gggtcaccta ggcccacgca	2520
ggcccctgctc ttgtgaggag gggtcaccta ggcccacgca ggcccctgctc ttgtgaggag	2580
ccagctgagc cggctcctga gagaagcgct ttctgagtcg ttgcaggac agccctggcc	2640
ggtctttcca ggctgtgagg ggctcctggg actgctgtct cctcttatcc tgtacctctg	2700
ccatgtgtct ctgtgtgtgt gtgtgtgtgt gtgtgtgtgt ataaattatc	2760
ctggaggaaa ggttaaggtg acacatggag actgagtgac accgttattt ccgcaggtcc	2820
tctctgatga catgaagaag ctgaaggccc gaatggtaat gtcctccct acttctgctc	2880
aggggttggg ggcctgggtc tcagcgtgtg acactgagga cactgtggga cacctgggac	2940
cctggaggga caaggatccg gccccttggt gccaactctg cctctttca cagcaccagg	3000
ccatagaaag attttatgt aaaatgc当地 atgcagaatc aggacgtgga caggtgggtg	3060
gatttccct caggcaccag gtcacatgtc cccgccccca ggcactccac cctgtgtggg	3120
gctcagggtg agaaggatga agagggaccc acaggctccc tcacccctta ccgtgggcaa	3180
atgcttgcac ctgggtggca gtgagtgccc gggtggggga tctggacgcc cggggagact	3240
gagggaggca tccaagcccc agggctcctt gagaaacaa caggggtgcc agacgtggcc	3300
cgggccccctg gctggggcca gttcgggggtg tgtggagct gaggactcac tgggctttag	3360
gactgactga tgtgggtgc agaggaggct tggcctgga accgagtgct ttgttcctaa	3420
caggtgtatgt cgagcctggc agagctggag gtgagccgtg gcctccccct ccaccaagct	3480
tagtccctgg gtcttaggtc ccacaggaca ctgggtctgg gccccgggtc cccttggaa	3540
tcacctggac cagtggggc cacagtggga agggggcagg caggagcagc atgaaccccc	3600
tgtgccctcc tctccccagg acgacttcaa agagggctac ctggagacag tggcggctta	3660
ttatgaggag cagcacccag ttagtatgac acacccatct gggcaccttgc ctttccctca	3720
cctctgcctt gtctttctt tctttcttgc ttttgttta tttgagacag agtctcgctc	3780
tgtcgccctag gctggagtgc agtggcatga tctggctca ctgcaacctc caaatctcg	3840
gtttaagtga ttctccctgac tcagcctgac aagttagttgg gactacaggc acccgccacc	3900
actccaggct gatTTTTT gtgtgtgttt ttagtagaga ccaggtttca ccatgtttgc	3960
caggctggtc ttgaactcct aaccttgggt tccgtctgccc ttggcctccc aaagtgtga	4020
gattacagggc atgagccacc gggcccagcc aacccctgccc ctgtcttgcgtt gttgggtggg	4080

cagggtgtgc	ccagccccctg	agcttgggtt	ggagggctgg	gagtacacgc	ctagctggga	4140
cctgcccatt	gcctcaactcc	tcacacagt	gcacagccct	caaggcacga	tgagggccct	4200
gacctggta	ccaagcagac	acacccatcc	tgtcaactgcc	atggaggtga	atgcagagga	4260
gggggactct	ggaaaaagtc	cctttgccc	acggggctgt	ggttgggaaa	ccaacacctg	4320
tgggcctccg	tctcccaagg	tcaggaaaag	gctgagaggc	ctgggtgtgg	ccagggcctg	4380
gggctgacac	ccccacactac	agaccctgaa	tggtgctccc	attccacagg	agctcaactcc	4440
tctacttgaa	aaagaaaagag	atggattacg	gtgccgaggc	aacagatccc	ctgtcccgga	4500
tgtttaggat	cccgcaaccg	aggagcctgg	ggagagcttt	tgtgacaagg	tcatgagatg	4560
gttccaggcc	atgctgcagc	ggctgcagac	ctggtggcac	ggggttctgg	cctgggtgaa	4620
ggagaaggta	gtggccctgg	tccatgcagt	gcaggccctc	tggaaacagt	tccagagttt	4680
ctgctgctct	ctgtcagagc	tcttcatgtc	ctctttccag	tcctacggag	ccccacgggg	4740
ggacaaggag	gagctgacac	cccagaagt	ctctgaaccc	caatcctcaa	aatgaagata	4800
ctgacaccac	ctttgcctc	cccggtcaccg	cgcacccacc	ctgacccctc	cctcagctgt	4860
cctgtgcccc	gccctctccc	gcacactcag	tcccccgtcc	tggcgttcct	gccgcagctc	4920
tgacctggta	ctgtcgccct	ggcatcttaa	taaaacctgc	ttataactcc	ctggcagggg	4980
agataccatg	atcgccggagg					5000

<210> 12

<211> 285

<212> DNA

<213> Mus musculus

<400> 12

accgtcacat	tgcccaaacac	ttgcttacaa	atctagaact	cttggtttgc	aacctgccaa	60
ccttctttt	tgcttccct	gtttttctc	ctaggaagt	tgttaagaca	gtacccctgt	120
atacttacct	ggcagggggag	ataccatgat	cacgaaggta	gttttcccag	ggcgaggctt	180
atccattgca	ctccggatgt	gctgacccct	gcgatttccc	caaatgcggg	aaactcgact	240
gcataattt	tggttagtggg	ggactgcgtt	cccgctctcc	cctgg		285

<210> 13

<211> 26

<212> PRT

<213> Homo sapiens

<400> 13

Leu	Lys	Ala	Arg	Met	His	Gln	Ala	Ile	Glu	Arg	Phe	Tyr	Asp	Lys	Met
1						5			10					15	

Gln	Asn	Ala	Glu	Ser	Gly	Arg	Gly	Gln	Val
			20				25		

<210> 14
<211> 46
<212> PRT
<213> Homo sapiens

<400> 14

Val Met Leu Leu Pro Thr Ser Ala Gln Gly Leu Gly Ala Trp Val Ser
1 5 10 15

Ala Cys Asp Thr Glu Asp Thr Val Gly His Leu Gly Pro Trp Arg Asp
20 25 30

Lys Asp Pro Ala Leu Trp Cys Gln Leu Cys Leu Ser Ser Gln
35 40 45

<210> 15
<211> 108
<212> DNA
<213> Homo sapiens

<400> 15
ccgaagggtcc tctctgatga catgaagaag ctgaaggccc gaatgcacca ggctatagaa 60
agattttatg ataaaatgca aaatgcagaa tcaggacgtg gacaggtg 108

<210> 16
<211> 179
<212> PRT
<213> Equus caballus

<400> 16

Met Gly Tyr Pro Lys Thr Ser Arg Glu Asp Asn Glu Arg Trp Lys Ile
1 5 10 15

Arg Phe His Ser Thr Leu Asp Arg Trp Leu Asp Asp Ile Glu Val Gln
20 25 30

Ser Gln Gly Glu Glu Gln Val Asp Leu Gly Leu Glu Asp Leu Glu Glu
35 40 45

Lys Phe Ser Glu Asn Ile Leu Asp Ala Val Glu Glu His His Gln Lys
50 55 60

Asn Asn Ser Glu Ser Ala Pro Leu Leu Pro Asp Val Lys Pro Arg Leu
65 70 75 80

Arg Arg Arg Ala Gln Lys Ser Ser Val Leu Asn Pro Glu Pro Glu Gly
85 90 95

Pro Gly Ile Leu Gln Val Glu Ala Leu Glu Ala Pro Glu Pro Glu Glu

100

105

110

Ser Phe Trp Val Arg Ala Trp Arg Ser Phe Met Gly Met Leu Gln Arg
115 120 125

Leu Lys Gln Arg Trp Gln Ala Val Leu Ala Trp Val Arg Glu Lys Val
130 135 140

Ala Ala Gly Trp Gln Ala Leu Cys Ser Val Ala Gln Ser Ile Asn Ser
145 150 155 160

Val Leu Glu Ser Phe Cys Ser Tyr Met Ala Gly Leu Phe Arg Tyr His
165 170 175

Ile Gln Val

<210> 17

<211> 170

<212> PRT

<213> Bos taurus

<400> 17

Met Cys Phe Ala Lys Gly Val Pro Tyr Asp Gln Ala Ser Leu Arg Ser
1 5 10 15

Ile Met His Lys Arg Val Asp Asp Phe Cys Asp Lys Met Gly Asn Glu
20 25 30

Pro Glu Glu Ala Gln Met Glu Ala Ala Leu Asp Glu Thr Glu Glu Gly
35 40 45

Leu Ser Glu Asp Ile Cys Glu Phe Ile Glu Asp His Ile Gln Glu Asn
50 55 60

Leu Pro Glu Ser Leu Gln Glu Ser Ser Pro Leu Leu Gln Glu Ala Arg
65 70 75 80

Gln Gly Val Arg Arg Arg Ile Gln Arg Pro Ser Val Ser Ala Arg Leu
85 90 95

Glu Val Gln Asn Pro Glu Glu Ser Ile Trp Ala Arg Ala Leu Gly Arg
100 105 110

Phe Gln Val Ile Leu Gln Ser Leu Gln Gln Arg Cys Trp Asp Ala Leu
115 120 125

Thr Trp Leu Arg Glu Lys Ala Val Thr Phe Leu Glu Ala Ile Cys Ser

130

135

140

Val Val Lys Ala Val Leu Gly Val Leu Thr Asp Phe Cys Ser Ser Val
145 150 155 160

Gly Gln Leu Phe Gly Asn Leu Ile Gln Val
165 170

<210> 18
<211> 125
<212> PRT
<213> Equus caballus

<400> 18

Met Gly Tyr Pro Lys Thr Ser Arg Glu Asp Asn Glu Arg Trp Lys Ile
1 5 10 15

Arg Phe His Ser Thr Leu Asp Arg Trp Leu Asp Asp Ile Glu Val Gln
20 25 30

Ser Gln Gly Glu Glu Gln Val Cys Gln Cys Ala Pro Thr Pro Cys Ser
35 40 45

Arg Asn Leu Gly Gly Arg Val Val Thr Met Thr Met Arg Arg Lys Asn
50 55 60

Val Pro Pro Gln Val Asp Leu Gly Pro Leu Thr Ser Pro Phe Ser Gln
65 70 75 80

Arg Thr Phe Arg Ser Asp Leu Cys His Leu Pro Thr Leu Asp Leu Ser
85 90 95

Leu Thr Thr Ser Leu Thr Ser Leu Leu Cys Thr Ala Trp Pro Pro Cys
100 105 110

Pro Pro Cys Thr Ser Cys Ser Gly Phe Leu Leu Gln Val
115 120 125

<210> 19
<211> 482
<212> DNA
<213> Equus caballus

<400> 19
gcacgagctc gtgccgtgtc ctgagaggcc cttggggcag gcacagcccc tggaatcctg 60
agctgccatg ggctacccca agacgtccag agaagacaat gaacgttggaa agatccgatt 120
tcacagcact tttagaccggt ggcttgatga tatcgaagtt caatcccaag gagaggaaca 180
ggtgtgtcag tgtgctccca cgccctgctc ccgtaacctc gggggtcggg tggtcacgat 240

gacgatgagg aggaagaacg tgccaccta ggtcgattt ggccctttga cgtccccctt 300
ttcacagaga accttcagaa gtgaccttg ccacctgcct acccttgacc tgccttgac 360
cacctccctc acctccctgc tgtgcacagc ctggccaccc tgcccaccat gcacttcctg 420
ctcaggtttc cttctgcagg tctgacttgt ggctccagcg catatgtctt aataaagttg 480
tg 482

<210> 20
<211> 815
<212> DNA
<213> Equus caballus

<400> 20
ctgagaggcc cttggggcag gcacagcccc tggaaatcctg agctgccatg ggctacccca 60
agacgtccag agaagacaat gaacgttgga agatccgatt tcacagcact ttagaccggt 120
ggcttgatga tatcgaagtt caatcccaag gagaggaaca ggtcgattt ggcttagaag 180
acctggagga aaaattcagt gaaaacattc ttgacgcccgt ggaggagcac catcagaaga 240
acaactcaga atctgcgcct ttacttcctg acgtgaagcc caggttacgt cgccagagctc 300
agaagtccctc tgtcctcaac cctgaacctg agggtccagg gatcctgcaa gttgaggctc 360
tagaggcacc cgagcctgaa gaaagctttt gggtcagagc atggaggtcg ttcatgggaa 420
tgctacagcg actgaagcag aggtggcagg ctgtactggc ctgggtgcga gagaaggtgg 480
ctgctggctg gcagggcccta tgcagtgtgg cccagtcctat taatagtgtg cttgagagtt 540
tctgctccta tatggctggg ttgttttaggt accacatcca ggtctagggg gccccatggg 600
gtccaggagg ggtagccaca cttgcagcc cttgacgtc cccctttca cagagaacct 660
tcagaagtga ccttgccac ctgcctaccc ttgacctgac cttgaccacc tccctcacct 720
cttgctgtg cacagcctgg ccaccctgcc caccatgcac ttccctgctca ggtttccctc 780
tgcaggtctg acttggctt ccagcgcata gtctt 815

<210> 21
<211> 724
<212> DNA
<213> Bos taurus

<400> 21
cgattcccg ggatgctcag ctggagctct ggctgcagga tctcagggtcc ctccggagg 60
accctaagcc accatgtgct tcgctaaggg agtcccatat gaccaggctt ctctgaggtc 120
cataatgcac aaacgggtgg atgatttctg tgataagatg ggaaatgaac cagaagaagc 180
acagatggag gcagccctag atgagacgga ggagggactc agcgaggaca tctgtgaatt 240
catagaagat cacattcaag agaaccttcc cgaatccctg caggagtcca gtcccttgct 300
tcaggaagca cggcaaggag tacgcccgcag aatccagaga ctttcagttt ctgcccgtct 360

ggaggtccag aatccggaag agagcatctg ggccagagcc ctggggaggt tccaagtaat 420
tctgcagagt ctccagcagc ggtgttggga tgcgctcacc tggctgcggg agaaggcggt 480
gaccttcctg gaggccatct gcagtgttgt gaaggccgtc ttggagtgc tgacggattt 540
ctgctcctct gtggggcagc tcttcggaaa cctcatccag gtctaggagc cgtaggttgt 600
tctggaggaa ctccctccta tctaggagc cctgcaccat ccccttccca gaaaccatct 660
tgtgaagcga cctttgcact cctgctcacc cttgaccat cctttaactg ccctcacctc 720
ctgt 724

<210> 22
<211> 218
<212> PRT
<213> Bos taurus

<400> 22

Met Cys Phe Thr Lys Arg Asp Pro Arg Val Leu Ala Ser Phe Arg Val
1 5 10 15

Leu Met Val Arg Ser Ser Phe Pro Arg Ile Ala Gly Val Arg Glu Ala
20 25 30

Trp Val Leu Leu Gly Glu Ala Glu Asn Ile Leu Ala His Leu Gly Pro
35 40 45

Ser Arg Glu Lys Asn Arg Asp Ser Phe Thr Gln Val His Leu Cys Ser
50 55 60

Gln His Asn Leu Val Asp Glu Phe Phe Asp Thr Met Glu Asn Glu Pro
65 70 75 80

Glu Gly Ala Gln Met Glu Ala Val Leu Ala Glu Thr Lys Glu Lys Phe
85 90 95

Ile Lys Asp Ala Phe Lys Val Met Asp Asn His Ile Gln Glu Asn Ser
100 105 110

Pro Glu Thr Leu Lys Glu Ser Ser Pro Leu Leu Gln Glu Ala Arg Gln
115 120 125

Glu Val Arg Cys Arg Ile Gln Arg Arg Ser Val Ser Thr Ser Leu Glu
130 135 140

Val Gln Asn Pro Glu Glu Ser Ile Trp Ala Arg Ala Leu Arg Gln Phe
145 150 155 160

Leu Gly Ile Leu Gln Ser Phe Leu Ser Gly Cys Arg Asp Ala Leu Thr

165

170

175

Trp Leu Trp Glu Lys Ala Ala Ala Cys Leu Gln Ala Ile Cys Ser Ala
180 185 190

Val Glu Ala Leu Trp Glu Val Leu Thr Asp Phe Cys Ser Phe Val Gly
195 200 205

Gln Leu Leu Cys Arg Ser Leu Ile Gln Val
210 215

<210> 23
<211> 863
<212> DNA
<213> Bos taurus

<400> 23
cgggatctca gctggagctc tggctgcagg atctcaggtc ccagcggcag gaccctaagc 60
caccatgtgc ttcactaaga gagacccacg tgtcctggct tccttcaggg tgttaatggt 120
aagaagctca tttccacgta tagctggggt tcgggaggcc tgggtctgc tgggtgaagc 180
tgagaacatt ctggcccact tgggacccacg cagggagaag aaccgagatt cttttactca 240
agtccatctc tgttcacagc acaaccttgt agatgaattt ttcgatacaa tggaaaatga 300
accagaagga gcacagatgg aggcagtctc agcagagact aaggagaaat tcatcaagga 360
cgcctttaaa gtcatggata atcacattca agagaacagt cccgaaaccc tgaaggagtc 420
cagtccttgc cttcaggaag cacggcaaga agtacgctgc agaatccaga gacgctccgt 480
ctccacctct ctggaggtcc agaatccgga agagagcatc tgggcccagag ccctgcggca 540
gttcttgggc attctgcaga gtttcctgtc cgggtgtcgg gatgcgtca cctggctgtg 600
ggagaaggcc gcggcctgcc tacaggccat ctgcagtgcg gtggaggccc tctgggaagt 660
gctcacggat ttctgctct ttgttggca gctcttatgc agaagcctca tccaggtcta 720
agagcctcac atggttctgg aggagccccca cctcattcag aaggccctgt acgatgcct 780
tcccggaaac catcttctga agcgacctt accctcctgc tcaccctga cccatccttt 840
aactgccttc ccctcctgtc ctg 863

<210> 24
<211> 127
<212> PRT
<213> Ovis aries

<400> 24

Met Cys Phe Ala Arg Gly Val Pro His Asp Gln Ala Ser Leu Arg Ser
1 5 10 15

Met Leu His Thr Trp Val Asp His Val Cys Asp Lys Met Gly Asn Glu
20 25 30

Pro Glu Glu Ala Gln Met Glu Ala Ala Leu Ala Glu Met Glu Glu Glu
35 40 45

Leu Ser Lys Asp Val Cys Glu Ser Trp Lys Ile Thr Phe Lys Arg Thr
50 55 60

Phe Pro Asn Pro Cys Arg Ser Pro Val Pro Cys Phe Arg Lys Arg Ser
65 70 75 80

Lys Lys Tyr Ala Ala Glu Ser Arg Asp Pro Gln Ser Leu Pro Val Trp
85 90 95

Arg Thr Arg Asn Arg Lys Arg Ala Ser Gly Pro Glu Pro Cys Gly Gly
100 105 110

Ser Glu Val Phe Cys Gly Val Ser Gly Ser Gly Val Ala Met Tyr
115 120 125

<210> 25
<211> 811
<212> DNA
<213> Ovis aries

<400> 25
ctgcggtacc ggtccggatt cccgggcgag acagtgcgtca gctggagctc tggctgcagg 60
atctcagatc ccagccggag gaccctaatac caccatgtgc ttgcgttaggg gagtcccaca 120
tgaccaggct tctctgagga gcatgctgca cacctgggtg gatcatgtct gtgataagat 180
ggaaatgaa ccagaagaag cacagatgga ggcagcccta gcagagatgg aggaggaact 240
cagcaaggat gtctgtgaat catggaagat cacattcaag agaacccccc cgaatccctg 300
caggagtcca gtcccttgct tcaggaagcg cagcaagaag tacgccccag aatccagaga 360
ccctcagtct ctgcctgtct ggaggaccag aaaccggaag agagcatctg ggccagagcc 420
ctgcggcggt tccgaggttt tctgcggagt ctctggcagc ggtgttcgca tgtactgacc 480
tggctgcagg agaaggcggc ggcctgcctg gaggccgtct gcagtgcggc gaagaccatc 540
tggggagtgc tgacggattt ctgctcctct gtggggcagc tcttcagaaa cctcatccag 600
gtcttaggac cccaggtcgt tcttgaggaa ctgctcctca tctagaaggc cctgcacaat 660
ccccttccca gaaaccatct tctgaagcga cctttaccct cctgttcacc cttcaccaat 720
cctttaactg ccctcacctc ctgtctgcag ggacgacacc acaacatcaa gccaggttc 780
ccttctccaa gtctgacccg tctgtcaggg a 811

<210> 26
<211> 141
<212> PRT
<213> Sus scrofa

<400> 26

Met Arg Gly Val Ser Ala Thr Arg Thr Leu Pro Lys Ala Gly Pro Gln
1 5 10 15

Pro Arg Ser Gly Leu Gly Leu Pro Leu Pro Arg Arg Val Pro Glu Pro
20 25 30

Pro Pro Ile Pro Ala Glu Ser Ser Pro Leu Leu Asn Glu Val Arg Gln
35 40 45

Gly Val Arg Ser Arg Val Arg Arg Pro Pro Gly His Asn Gln Pro His
50 55 60

Tyr Ala Leu Ala Val Arg Glu Pro Arg Gln Ser Thr Phe Arg Arg Ile
65 70 75 80

Leu Glu Leu Phe Glu Glu Met Leu Lys Arg Leu Gln Gln Arg Trp Arg
85 90 95

Gly Ala Leu Ala Trp Val Gln Glu Arg Ala Ala Ala Cys Phe Arg Gly
100 105 110

Leu Cys Arg Ala Leu Glu Ala Phe Trp Ser Leu Val Gln Ser Phe Cys
115 120 125

Ser Ser Met Gly His Ala Phe Gly Ser Val Ile Gln Val
130 135 140

<210> 27
<211> 603
<212> DNA
<213> Sus scrofa

<400> 27

atgacttgga gggaaactga gcggccaggc ccagccccctg ggaaaagtcc tggggtctgt 60
ggggctgttg gcaggaaagc agcctgtgtc caaggcgggg catgaggggg gtgtctgcc 120
ccaggactct cccaaaggca gggcctcagc caaggtcagg actggggctg cctctcccc 180
ggcggtcccc tgaaccaccc cccatccctg cagaatccag tcctctgctc aacgaagtcc 240
ggcagggagt ccgttctaga gtccgaaggc ctccctggcca caaccagcca cattatgcgc 300
tagcggtccg ggagcccagg cagagcactt tcagacgcat ctttgagctg ttggaggaaa 360
tgctgaagcg cctgcagcag aggtggaggg gtgcctggc ttgggtgcag gaaaggctg 420

ctgcctgctt ccggggcttg tgcagggccc ttgaagcttt ctggagcctg gtgcagagtt	480
tttgctcctc catggggcac gccttcggga gtgtcatcca ggtctaaggt gctccaggtg	540
aaataagagt ttctagagca caacctcccc ctgccttggc taaaaaggca gctgtaagcc	600
ttt	603