Patterns Within Random Permutations Some Open (and Recently Closed) Questions

Cheyne Homberger

January 22, 2014

Permutations: Representation/Notation

Definition

An *n*-permutation is a bijection $p:[n] \to [n]$. The set of all *n*-permutations is denoted by \mathfrak{S}_n .

Two/One-Line Notation

1	2	3	4	5
\downarrow	\	\downarrow	\downarrow	\downarrow
3	5	1	4	2

Plotting Permutations

Definition

If $\pi=\pi_1\pi_2\cdots\pi_n$ is a permutation written in one line notation, then the *plot* of π is the set of points

$$\{(1, \pi_1), (2, \pi_2), \cdots (n, \pi_n)\} \subset \mathbb{R}^2$$

Plotting Permutations

Definition

If $\pi=\pi_1\pi_2\cdots\pi_n$ is a permutation written in one line notation, then the *plot* of π is the set of points

$$\{(1, \pi_1), (2, \pi_2), \cdots (n, \pi_n)\} \subset \mathbb{R}^2$$

•

•

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that $A \sim B$ if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that $A \sim B$ if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

~

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that $A \sim B$ if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that $A \sim B$ if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Permutation Patterns

Definition

Let $\pi=\pi_1\pi_2\cdots\pi_n$ and $\sigma=\sigma_1\sigma_2\cdots\sigma_k$ be two permutations written in one-line notation. π contains σ as a pattern (written $\sigma\prec\pi$) if there is some subsequence $\pi_{i_1}\pi_{i_2}\dots\pi_{i_k}$ which is in the same relative order as the entries of σ (i.e., $\pi_{i_j}<\pi_{i_k}$ if and only if $\sigma_j<\sigma_k$).

Permutation Patterns

Definition

Let $\pi=\pi_1\pi_2\cdots\pi_n$ and $\sigma=\sigma_1\sigma_2\cdots\sigma_k$ be two permutations written in one-line notation. π contains σ as a pattern (written $\sigma\prec\pi$) if there is some subsequence $\pi_{i_1}\pi_{i_2}\dots\pi_{i_k}$ which is in the same relative order as the entries of σ (i.e., $\pi_{i_j}<\pi_{i_k}$ if and only if $\sigma_j<\sigma_k$).

$$35142 \qquad \succ \qquad 213$$

 $1234\ 1243\ 1324\ 1342\ 1423\ 1423\ 2134\ 2134\ 2314\ 2314\ 2413\ 2431\ 3124\ 3142\ 3214\ 3214\ 3412\ 3421\ 4123\ 4123\ 4213\ 4231\ 4312\ 4312\ 4312$

Posets

Posets

Definition

Let \mathcal{P} be a poset, and $A \subset \mathcal{P}$. A is a downset if it is closed downwards (i.e., $x \in A$ and y < x implies $y \in A$). An upset is a subset which is closed upwards.

Fact

The complement of a downset is an upset.

Posets

Definition

Let \mathcal{P} be a poset, and $A \subset \mathcal{P}$. A is a downset if it is closed downwards (i.e., $x \in A$ and y < x implies $y \in A$). An upset is a subset which is closed upwards.

Fact

The complement of a downset is an upset.

Definition

A downset in the permutation pattern poset is called a *permutation class*.

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n>0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n>0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

$$C(x) = xC(x)^2 + 1$$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n>0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n>0} c_n x^n$.

Question

Definition

A *NS Lattice path* of length 2n (or semilength n) is a sequence of vectors from the set $\{\langle 1,1\rangle,\langle 1,-1\rangle\}$ such that their sum is $\langle 2n,0\rangle$.

Questions

Questions

Q1) How many NS lattice paths are there of semilength n?

Questions

Q1) How many NS lattice paths are there of semilength n?

A1)
$$\binom{2n}{n}$$
.

Questions

- Q1) How many NS lattice paths are there of semilength n?
- A1) $\binom{2n}{n}$.
- Q2) How many NS lattice paths are there of semilength n which never pass below the line y=0?

1

1 2

Let p_n be the number of NS paths of length 2n that don't cross below the x-axis, and let $P = \sum_{n \geq 0} p_n x^n$.

Let p_n be the number of NS paths of length 2n that don't cross below the x-axis, and let $P = \sum_{n \geq 0} p_n x^n$.

Let p_n be the number of NS paths of length 2n that don't cross below the x-axis, and let $P = \sum_{n=0}^{\infty} p_n x^n$.

Let p_n be the number of NS paths of length 2n that don't cross below the x-axis, and let $P = \sum_{n=0}^{\infty} p_n x^n$.

Let p_n be the number of NS paths of length 2n that don't cross below the x-axis, and let $P = \sum_{n \ge 0} p_n x^n$.

$$P = 1 + xP + x^{2}P^{2} + x^{3}P^{3} + x^{4}P^{4} + x^{5}P^{5} + \cdots$$

Catalan Numbers

Catalan Numbers

Fact

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = \sum_{n \ge 0} \frac{1}{n + 1} {2n \choose n} x^n.$$

Catalan Numbers

Fact

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = \sum_{n \ge 0} \frac{1}{n + 1} {2n \choose n} x^n.$$

The numbers $c_n = \frac{1}{n+1} \binom{2n}{n}$ are called the Catalan numbers. The first few numbers in the sequence are

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862 \cdots$$

Two Catalan Recurrences

$$C(x) = xC(x)^2 + 1$$
 and $C(x) = 1 + xC(x) + x^2C(x) + \cdots$

Two Catalan Recurrences

$$C(x) = xC(x)^2 + 1$$
 and $C(x) = 1 + xC(x) + x^2C(x) + \cdots$

$$c_0 = 1$$
, $c_i = 0$ for $i < 0$

$$c_n = \sum_{i+j=n-1} c_i c_j$$

$$c_n = c_{n-1} + \sum_{i+j=n-2} c_i c_j + \sum_{i+j+k=n-3} c_i c_j c_k + \cdots$$

Question

What does a 123-avoiding permutation look like?

$$\pi =$$
 4 7 6 2 5 1 3

$$\pi = 4762513$$

•

•

$$\pi =$$
 4 7 6 2 5 1 3

$$\pi=$$
 4 7 6 2 5 1 3

$$\pi =$$
 4 7 6 2 5 1 3

Counting Patterns

Introduction

Example

The permutation 3 5 1 2 4 contains the pattern 3 1 2 three times.

Introduction

Example

The permutation 3 5 1 2 4 contains the pattern 3 1 2 three times.

Example

The set $\{2341, 1234, 4321\}$ contains the pattern 123 exactly 5 times.

Introduction

Example

The permutation 3 5 1 2 4 contains the pattern 3 1 2 three times.

Example

The set $\{2341, 1234, 4321\}$ contains the pattern 123 exactly 5 times.

Notation

Let $f_{\sigma}(S)$ denote the number of occurrences of σ within the set S.

Question

How many times does the pattern 1324 occur within the set of all n-permutations? That is, what is

$$f_{1324}(\mathfrak{S}_n)$$
?

Answer

Let X be a random variable denoting the number of 1324 patterns in a random n-permutation. Then $\mathbb{E}[X] = f_{1324}(\mathfrak{S}_n)/n!$.

Answer

Let X be a random variable denoting the number of 1324 patterns in a random n-permutation. Then $\mathbb{E}\left[X\right] = f_{1324}(\mathfrak{S}_n)/n!$. Let $X_{i,j,k,l}$ be the random variable equal to 0 or 1, which indicates whether the ith, jth, kth, and lth entries form a 1324 pattern. Then

$$X = \sum_{1 \le i < k < l \le n} X_{i,j,k,l}$$

Answer

Let X be a random variable denoting the number of 1324 patterns in a random n-permutation. Then $\mathbb{E}[X] = f_{1324}(\mathfrak{S}_n)/n!$. Let $X_{i,j,k,l}$ be the random variable equal to 0 or 1, which indicates whether the ith, jth, kth, and lth entries form a 1324 pattern.

Then

$$X = \sum_{1 \le i < j < k < l \le n} X_{i,j,k,l}$$
$$\mathbb{E}[X] = \sum_{1 \le i < j < k < l \le n} \mathbb{E}[X_{i,j,k,l}]$$

Answer

Let X be a random variable denoting the number of 1324 patterns in a random n-permutation. Then $\mathbb{E}[X] = f_{1324}(\mathfrak{S}_n)/n!$. Let $X_{i,j,k,l}$ be the random variable equal to 0 or 1, which indicates whether the ith, jth, kth, and lth entries form a 1324 pattern.

Then

$$X = \sum_{1 \le i < j < k < l \le n} X_{i,j,k,l}$$

$$\mathbb{E}[X] = \sum_{1 \le i < j < k < l \le n} \mathbb{E}[X_{i,j,k,l}]$$

$$= \sum_{1 \le i < j < k < l \le n} \frac{1}{4!}$$

Answer

Let X be a random variable denoting the number of 1324 patterns in a random n-permutation. Then $\mathbb{E}\left[X\right] = f_{1324}(\mathfrak{S}_n)/n!$.

Let $X_{i,j,k,l}$ be the random variable equal to 0 or 1, which indicates whether the ith, jth, kth, and lth entries form a 1324 pattern.

Then

$$X = \sum_{1 \le i < j < k < l \le n} X_{i,j,k,l}$$

$$\mathbb{E}[X] = \sum_{1 \le i < j < k < l \le n} \mathbb{E}[X_{i,j,k,l}]$$

$$= \sum_{1 \le i < j < k < l \le n} \frac{1}{4!} = \binom{n}{4} \frac{1}{4!}.$$

Therefore

$$f_{1324}(\mathfrak{S}_n) = \binom{n}{4} \frac{n!}{4!}.$$

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern.

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern.

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern.

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern.

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13
5	68	0	81	81	81	109
6	392	0	500	500	500	748
7	2063	0	2794	2794	2794	4570

Previous Results

Theorem (Bóna)

In Av_n 132, the pattern 123 is the least common, 321 is the most common, and $f_{213} = f_{231} = f_{312}$.

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13
5	68	0	81	81	81	109
6	392	0	500	500	500	748
7	2063	0	2794	2794	2794	4570

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13
5	68	0	81	81	81	109
6	392	0	500	500	500	748
7	2063	0	2794	2794	2794	4570

Av 123

length	123	132	213	231	312	321
3	0	1	1	1	1	1

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13
5	68	0	81	81	81	109
6	392	0	500	500	500	748
7	2063	0	2794	2794	2794	4570

Av 123

length	123	132	213	231	312	321
3	0	1	1	1	1	1
4	0	9	9	11	11	16

Av 132

length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13
5	68	0	81	81	81	109
6	392	0	500	500	500	748
7	2063	0	2794	2794	2794	4570

Av 123

length	123	132	213	231	312	321
3	0	1	1	1	1	1
4	0	9	9	11	11	16
5	0	57	57	81	81	144
6	0	312	312	500	500	1016
7	0	1578	1578	2794	2794	6271

Patterns Within Av 123

Theorem (Cheng, Eu, Fu)

$$f_{12}(Av_n 123) = 4^{n-1} - {2n-1 \choose n}.$$

Theorem (Cheng, Eu, Fu)

$$f_{12}(Av_n 123) = 4^{n-1} - {2n-1 \choose n}.$$

Fact

$$(f_{12} + f_{21})(Av_n(123)) = \binom{n}{2}c_n.$$

Fact

$$2f_{132} + 2f_{231} + f_{321} = \binom{n}{3}c_n.$$

Fact

$$2f_{132} + 2f_{231} + f_{321} = \binom{n}{3}c_n.$$

Proof.

Rewrite the left hand side as

$$f_{132} + f_{213} + f_{231} + f_{312} + f_{321}$$

Proposition

$$(4f_{132} + 2f_{231})(Av_n(123)) = (n-2)f_{12}(Av_n(123)).$$

Proposition

$$(4f_{132} + 2f_{231})(Av_n(123)) = (n-2)f_{12}(Av_n(123)).$$

Proof.

Rewrite as

$$(n-2)f_{12} - f_{132} - f_{213} = f_{231} + f_{312} + f_{132} + f_{213}.$$

Both sides count the number of length three patterns with at least one non-inversion.

Definition

We say that a permutation $p = p_1 p_2 \dots p_n$ is decomposable if there exists an integer k so that each of the entries $p_1, \dots p_k$ is greater than each of the entries $p_{k+1}, \dots p_n$. Otherwise, we say that p is indecomposable

Definition

We say that a permutation $p = p_1 p_2 \dots p_n$ is decomposable if there exists an integer k so that each of the entries $p_1, \dots p_k$ is greater than each of the entries $p_{k+1}, \dots p_n$. Otherwise, we say that p is indecomposable

Example

The permutation 356412 is decomposable, as the entries 3564 are larger than the entries 12

Definition

We say that a permutation $p = p_1 p_2 \dots p_n$ is decomposable if there exists an integer k so that each of the entries $p_1, \dots p_k$ is greater than each of the entries $p_{k+1}, \dots p_n$. Otherwise, we say that p is indecomposable

Example

The permutation 356412 is decomposable, as the entries 3564 are larger than the entries 12

Definition

Denote by $\operatorname{Av}_n^*(123)$ the set of indecomposable *n*-permutations which avoid 123.

Fact $|Av_n^*(123)| = c_{n-1}.$

Fact $|Av_n^*(123)| = c_{n-1}.$

Proof.

$$\begin{bmatrix} \mathsf{Av}_n^*(123) \\ \\ \mathsf{Av}_n^*(123) \\ \\ \end{bmatrix}.$$

 $Av_n^*(123)$

Fact $|Av_n^*(123)| = c_{n-1}.$

Proof.

$$= \begin{bmatrix} Av_n^*(123) \\ Av_n^*(123) \\ & \ddots \\ & & \\ Av_n^*(123) \end{bmatrix}$$

$$C(x) = 1 + C^*(x) + C^*(x)^2 + \ldots = \frac{1}{1 - C^*(x)}$$

Fact
$$|Av_n^*(123)| = c_{n-1}$$
.

Proof.

Av_n(123)
$$= \begin{bmatrix} Av_n^*(123) & & & \\ Av_n^*(123) & & & \\ & & \ddots & \\ & & & Av_n^*(123) \end{bmatrix}$$

$$C(x) = 1 + C^*(x) + C^*(x)^2 + \dots = \frac{1}{1 - C^*(x)}$$

$$C^*(x) = \frac{C(x) - 1}{C(x)} = \frac{(xC(x)^2 + 1) - 1}{C(x)} = xC(x).$$

Fact $|Av_n^*(123)| = c_{n-1}.$

Alternate Proof.

$$\mathsf{Av}_n(123) = \mathsf{Av}_n(123)$$

$$= \mathsf{Av}_n(123)$$

$$C(x) = C^*(x)C(x) + 1$$

$$C^*(x) = \frac{C(x) - 1}{C(x)} = \frac{(xC(x)^2 + 1) - 1}{C(x)} = xC(x).$$

Solving the System

Conjectures

Solving the System

Conjectures

$$C(x)A(x) = xJ(x)C'(x)$$

$$A^{*}(x) + B^{*}(x) = \sum_{n \geq 0} f_{213} (Av_{n}^{*} 132)x^{n}$$

$$B^{*}(x)C(x) = 2xB(x)$$

$$A(x) + B(x) = 2\sum_{n \geq 0} (f_{213} (Av_{n}^{*} 132) + f_{231} (Av_{n}^{*} 132))x^{n}$$

$$A(x) + B(x) = xB^{*}(x)$$

$$J^{*}(x) = 2A^{*}(x)$$

Solving the System

Corollary

$$C(x)A(x) = xJ(x)C'(x)$$

$$A^{*}(x) + B^{*}(x) = \sum_{n \geq 0} f_{213} (Av_{n}^{*} 132)x^{n}$$

$$B^{*}(x)C(x) = 2xB(x)$$

$$A(x) + B(x) = 2\sum_{n \geq 0} (f_{213} (Av_{n}^{*} 132) + f_{231} (Av_{n}^{*} 132))x^{n}$$

$$A(x) + B(x) = xB^{*}(x)$$

$$J^{*}(x) = 2A^{*}(x)$$

The Lemma

The Lemma

Lemma

$$A^*(x) = \frac{x^3 C(x)}{(1 - 4x)^{3/2}}$$

$$f_{213}(p) = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$f_{213}(p) = \binom{2}{2} + \binom{2}{2}$$

$$f_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2}$$

$$f_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2} + \binom{1}{2}$$

$$f_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$f_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$f_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$f_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$f_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$f_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2} + \binom{1}{2} = 5$$

$$H(x, u) =$$

$$H(x, u) = ux(H(x, u) + 1)C(x) + xC(x)H(x, u)$$

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$
$$A^*(x) = \sum_{n \ge 0} {k \choose 2} h_{n-1,k} x^n$$

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$A^*(x) = \sum_{n \ge 0} {k \choose 2} h_{n-1,k} x^n$$

$$A^*(x) = \frac{x\partial_u^2 H(x)|_{u=1}}{2}$$

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$A^*(x) = \sum_{n \ge 0} {k \choose 2} h_{n-1,k} x^n$$

$$A^*(x) = \frac{x \partial_u^2 H(x)|_{u=1}}{2}$$

$$= \frac{x^3 C(x)}{(1 - 4x)^{3/2}}$$

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$A^*(x) = \sum_{n \ge 0} {k \choose 2} h_{n-1,k} x^n$$

$$A^*(x) = \frac{x \partial_u^2 H(x)|_{u=1}}{2}$$

$$= \frac{x^3 C(x)}{(1 - 4x)^{3/2}}$$

$$= x^3 + 7x^4 + 38x^5 + 187^6 + \dots$$

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$A^*(x) = \sum_{n \ge 0} {k \choose 2} h_{n-1,k} x^n$$

$$A^*(x) = \frac{x \partial_u^2 H(x)|_{u=1}}{2}$$

$$= \frac{x^3 C(x)}{(1 - 4x)^{3/2}}$$

$$= x^3 + 7x^4 + 38x^5 + 187^6 + \dots$$

Corollary

$$f_{231}(Av_n 123) = f_{231}(Av_n 132)$$

$$A(x) = \frac{x-1}{2(1-4x)} - \frac{3x-1}{2(1-4x)^{3/2}}$$

$$B(x) = \frac{3x-1}{(1-4x)^2} - \frac{4x^2 - 5x + 1}{(1-4x)^{5/2}}$$

$$D(x) = \frac{8x^3 - 20x^2 + 8x - 1}{(1-4x)^2} - \frac{36x^3 - 34x^2 + 10x - 1}{(1-4x)^{5/2}}$$

$$a_n = \frac{n+2}{4} \binom{2n}{n} - 3 \cdot 2^{2n-3}$$

$$b_n = (2n-1)\binom{2n-3}{n-2} - (2n+1)\binom{2n-1}{n-1} + (n+4) \cdot 2^{2n-3}$$

$$d_{n} = \frac{1}{6} {2n+5 \choose n+1} {n+4 \choose 2} - \frac{5}{3} {2n+3 \choose n} {n+3 \choose 2}$$

$$+ \frac{17}{3} {2n+1 \choose n-1} {n+2 \choose 2} - 6 {2n-1 \choose n-2} {n+1 \choose 2} - (n+1) \cdot 4^{n-1}.$$

$$a_n \sim \sqrt{\frac{n}{\pi}} 4^n$$
 $b_n \sim \frac{n}{2} 4^n$
 $d_n \sim \frac{8}{3} \sqrt{\frac{n^3}{\pi}} 4^n$.

Larger patterns

Lemma

$$2A(x) +2B(x) +D(x) = \frac{x^3}{6}(C(x))'''$$

 $4A(x) +2B(x) = x^3(J(x)/x^2)'$

Larger patterns

Lemma

$$2A(x) +2B(x) +D(x) = \frac{x^3}{6}(C(x))'''$$

 $4A(x) +2B(x) = x^3(J(x)/x^2)'$

Theorem

For large enough n, the descending pattern of length k occurs more often than any other length k pattern in $Av_n(123)$.

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Note

The increasing and decreasing patterns are not always the extremes of the class: $f_{123}(\text{Av}\,2413) = f_{321}(\text{Av}\,2413)$

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Note

The increasing and decreasing patterns are not always the extremes of the class: $f_{123}(\text{Av}\,2413) = f_{321}(\text{Av}\,2413)$

 $1234\ 1243\ 1324\ 1342\ 1423\ 1423\ 2134\ 2134\ 2314\ 2314\ 2413\ 2431\ 3124\ 3142\ 3214\ 3214\ 3412\ 3412\ 4123\ 4123\ 4123\ 4213\ 4231\ 4312\ 4312\ 4312$

