Section 3.7 Differentials

$$1. \quad f(x) = x^2$$
$$f'(x) = 2x$$

Tangent line at (2, 4):
$$y - f(2) = f'(2)(x - 2)$$

 $y - 4 = 4(x - 2)$

$$y = 4x - 4$$

x	1.9	1.99	2	2.01	2.1
$f(x) = x^2$	3.6100	3.9601	4	4.0401	4.4100
T(x)=4x-4	3.6000	3.9600	4	4.0400	4.4000

2.
$$f(x) = \frac{6}{x^2} = 6x^{-2}$$

$$f'(x) = -12x^{-3} = \frac{-12}{x^3}$$

Tangent line at $\left(2, \frac{3}{2}\right)$:

$$y - \frac{3}{2} = \frac{-12}{8}(x - 2) = \frac{-3}{2}(x - 2)$$
$$y = -\frac{3}{2}x + \frac{9}{2}$$

x	1.9	1.99	2	2.01	2.1
$f(x)=\frac{6}{x^2}$	1.6620	1.5151	1.5	1.4851	1.3605
$T(x)=-\frac{3}{2}x+\frac{9}{2}$	1.65	1.515	1.5	1.485	1.35

$$3. \quad f(x) = x^5$$

$$f'(x) = 5x^4$$

Tangent line at (2, 32):

$$y - f(2) = f'(2)(x - 2)$$

$$y - 32 = 80(x - 2)$$

$$y = 80x - 128$$

x	1.9	1.99	2	2.01	2.1
$f(x)=x^5$	24.7610	31.2080	32	32.8080	40.8410
T(x) = 80x - 128	24.0000	31.2000	32	32.8000	40.0000

$$4. \quad f(x) = \sqrt{x}$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

Tangent line at $(2, \sqrt{2})$:

$$y - f(2) = f'(2)(x - 2)$$

$$y - \sqrt{2} = \frac{1}{2\sqrt{2}}(x - 2)$$

$$y = \frac{x}{2\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$5. \quad f(x) = \sin x$$

$$f'(x) = \cos x$$

Tangent line at (2, sin 2):

$$y - f(2) = f'(2)(x - 2)$$

$$y - \sin 2 = (\cos 2)(x - 2)$$

$$y = (\cos 2)(x - 2) + \sin 2$$

x	1.9	1.99	2	2.01	2.1
$f(x) = \sqrt{x}$	1.3784	1.4107	1.4142	1.4177	1.4491
$T(x) = \frac{x}{2\sqrt{2}} + \frac{1}{\sqrt{2}}$	1.3789	1.4107	1.4142	1.4177	1.4496

x	1.9	1.99	2	2.01	2.1
$f(x) = \sin x$	0.9463	0.9134	0.9093	0.9051	0.8
$T(x) = (\cos 2)(x - 2) + \sin 2$	0.9509	0.9135	0.9093	0.9051	0.8

6.
$$f(x) = \log_2 x = \frac{\ln x}{\ln 2}$$
, (2, 1)

$$f'(x) = \frac{1}{x \ln 2}$$

$$f'(2) = \frac{1}{2 \ln 2}$$

Tangent line at (2, 1):
$$y - 1 = \frac{1}{2 \ln 2}(x - 2)$$

$$y = \frac{1}{2 \ln 2} x + 1 - \frac{1}{\ln 2}$$

х	1.9	1.99	2	2.01	2.1
$f(x) = \log_2 x$	0.9260	0.9928	1	1.0072	1.0704
$T(x) = \frac{1}{2 \ln 2} x + 1 - \frac{1}{\ln 2}$	0.9279	0.9928	1	1.0072	1.0721

7.
$$y = f(x) = 0.5x^3, f'(x) = 1.5x^2, x = 1, \Delta x = dx = 0.1$$

$$\Delta y = f(x + \Delta x) - f(x)$$

$$dy = f'(x) dx$$

$$= f(1.1) - f(1)$$

$$= 1.5x^2 dx$$

$$= 1.5(1)^2(0.1)$$

$$= 0.15$$

8.
$$y = f(x) = 6 - 2x^2$$
, $f'(x) = -4x$, $x = -2$, $\Delta x = dx = 0.1$

$$\Delta y = f(x + \Delta x) - f(x)$$
 $2 \quad dy = f'(x) dx$

$$2 dv - f'(x) d$$

= 0.8

$$= f(-1.9) - f(-2)$$

$$= -4(-2)(0.1)$$

$$= 6 - 2(-1.9)^2 - (6 - 2(-2)^2)$$

$$= -1.22 - (-2) = 0.78$$

9.
$$y = f(x) = x^4 + 1$$
, $f'(x) = 4x^3$, $x = -1$, $\Delta x = dx = 0.01$

$$\Delta y = f(x + \Delta x) - f(x) \qquad dy = f'(x) dx$$

$$= f(-0.99) - f(-1) \qquad = f'(-1)(0.01)$$

$$= \left[(-0.99)^4 + 1 \right] - \left[(-1)^4 + 1 \right] \approx -0.0394 \qquad = (-4)(0.01) = -0.04$$

10.
$$y = f(x) = 2 - x^4$$
, $f'(x) = -4x^3$, $x = 2$, $\Delta x = dx = 0.01$
 $\Delta y = f(x + \Delta x) - f(x)$ $dy = f'(x) dx$
 $= f(2.01) - f(2)$ $= (-4x^3) dx$
 $\approx -14.3224 - (-14) = -0.3224$ $= -4(2)^3(0.01)$
 $= -0.32$

$$11. \quad y = 3x^2 - 4$$
$$dy = 6x \, dx$$

12.
$$y = 3x^{2/3}$$

 $dy = 2x^{-1/3} dx = \frac{2}{x^{1/3}} dx$

13.
$$y = x \tan x$$

 $dy = (x \sec^2 x + \tan x) dx$

14.
$$y = \csc 2x$$

 $dy = (-2\csc 2x \cot 2x)dx$

15.
$$y = \frac{x+1}{2x-1}$$

 $dy = -\frac{3}{(2x-1)^2} dx$

16.
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
$$dy = \left(\frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}}\right)dx = \frac{x - 1}{2x\sqrt{x}}dx$$

17.
$$y = \sqrt{9 - x^2}$$

 $dy = \frac{1}{2}(9 - x^2)^{-\frac{1}{2}}(-2x) dx = \frac{-x}{\sqrt{9 - x^2}} dx$

18.
$$y = x\sqrt{1-x^2}$$

 $dy = \left(x\frac{-x}{\sqrt{1-x^2}} + \sqrt{1-x^2}\right)dx = \frac{1-2x^2}{\sqrt{1-x^2}}dx$

19.
$$y = 3x - \sin^2 x$$

 $dy = (3 - 2\sin x \cos x) dx = 3(3 - \sin 2x) dx$

20.
$$y = \frac{\sec^2 x}{x^2 + 1}$$

$$dy = \left[\frac{(x^2 + 1)2 \sec^2 x \tan x - \sec^2 x (2x)}{(x^2 + 1)^2} \right] dx$$

$$= \left[\frac{2 \sec^2 x (x^2 \tan x + \tan x - x)}{(x^2 + 1)^2} \right] dx$$

21.
$$y = \ln\sqrt{4 - x^2} = \frac{1}{2}\ln(4 - x^2)$$

 $dy = \frac{1}{2}\left(\frac{-2x}{4 - x^2}\right)dx = \frac{-x}{4 - x^2}dx$

22.
$$y = e^{-0.5x}\cos 4x$$

 $dy = \left[e^{-0.5x}(-4\sin 4x) + (-0.5)e^{-0.5x}\cos 4x\right]dx$
 $= e^{-0.5x}[-4\sin 4x - 0.5\cos 4x]dx$

23.
$$y = x \arcsin x$$

$$dy = \left(\frac{x}{\sqrt{1 - x^2}} + \arcsin x\right) dx$$

24.
$$y = \arctan(x - 2)$$

 $dy = \frac{1}{1 + (x - 2)^2} dx$

25. (a)
$$f(1.9) = f(2 - 0.1) \approx f(2) + f'(2)(-0.1)$$

 $\approx 1 + (1)(-0.1) = 0.9$

(b)
$$f(2.04) = f(2 + 0.04) \approx f(2) + f'(2)(0.04)$$

 $\approx 1 + (1)(0.04) = 1.0$

26. (a)
$$f(1.9) = f(2 - 0.1) \approx f(2) + f'(2)(-0.1)$$

 $\approx 1 + (-\frac{1}{2})(-0.1) = 1.05$

(b)
$$f(2.04) = f(2 + 0.04) \approx f(2) + f'(2)(0.04)$$

 $\approx 1 + (-\frac{1}{2})(0.04) = 0.98$

27. The denominator in Step 2 should be $(12x^2)^{2/3} = \sqrt[3]{144x^4}.$

$$dy = \frac{1}{3} (12x^2)^{-2/3} (24x) dx$$

$$= \frac{8x}{\sqrt[3]{144x^4}} dx$$

$$= \frac{4}{\sqrt[3]{18x}} dx$$

28. The Chain Rule should have been used for cos 2x.

If
$$y = x^2 \cos 2x$$
, then

$$dy = (2x \cos 2x - 2x^2 \sin 2x) dx.$$

29. (a)
$$g(2.93) = g(3 - 0.07) \approx g(3) + g'(3)(-0.07)$$

 $\approx 8 + (-\frac{1}{2})(-0.07) = 8.035$

$$\approx g(3) + g'(3)(0.1)$$

(b)
$$g(3.1) = g(3 + 0.1) \approx g(3) + g'(3)(0.1)$$

 $\approx 8 + (-\frac{1}{2})(0.1) = 7.95$

30. (a)
$$g(2.93) = g(3 - 0.07) \approx g(3) + g'(3)(-0.07)$$

 $\approx 8 + (3)(-0.07) = 7.79$

(b)
$$g(3.1) = g(3 + 0.1) \approx g(3) + g'(3)(0.1)$$

 $\approx 8 + (3)(0.1) = 8.3$

31.
$$x = 10 \text{ in.}, \Delta x = dx = \pm \frac{1}{32} \text{ in.}$$

(a)
$$A = x^2$$

 $dA = 2xdx$

$$\Delta A \approx dA = 2(10) \left(\pm \frac{1}{32}\right) = \pm \frac{5}{8} \text{ in}^2$$

(b) Percent error:

$$\frac{dA}{A} = \frac{5/8}{100} = \frac{5}{800} = \frac{1}{100} = 0.00625 = 0.625\%$$

32. (a)
$$C = 64 \text{ cm}$$

$$\Delta C = dC = \pm 0.9 \text{ cm}$$

$$C = 2\pi r \Rightarrow r = \frac{C}{2\pi}$$

$$A = \pi r^2 = \pi \left(\frac{C}{2\pi}\right)^2 = \frac{1}{4\pi}C^2$$

$$dA = \frac{1}{2\pi}C dC = \frac{1}{2\pi}(64)(\pm 0.9) = \frac{\pm 28.8}{\pi}$$

$$\frac{dA}{A} = \frac{28.8/\pi}{\lceil 1/(4\pi) \rceil (64)^2} \approx 0.028125 = 2.8\%$$

(b)
$$\frac{dA}{A} = \frac{[1/(2\pi)]C dC}{[1/(4\pi)]C^2} = \frac{2 dC}{C} \le 0.03$$

$$\frac{dC}{C} \le \frac{0.03}{2} = 0.015 = 1.5\%$$

33.
$$x = 15$$
 in., $\Delta x = dx = \pm 0.03$ in.

(a)
$$V = x^3$$

$$dV = 3x^2 dx$$

$$\Delta V \approx dV = 3(15)^2(\pm 0.03) = \pm 20.25 \text{ in}^3$$

(b)
$$S = 6x^2$$

$$dS = 12xdx$$

$$\Delta S \approx dS = 12(15)(\pm 0.03) = \pm 5.4 \text{ in.}^2$$

(c) Percent error of volume:

$$\frac{dV}{V} = \frac{20.25}{15^3} = 0.006 \text{ or } 0.6\%$$

Percent error of surface area:

$$\frac{dS}{S} = \frac{5.4}{6(15)^2} = 0.004 \text{ or } 0.4\%$$

34.
$$r = 8 \text{ in.}, dr = \Delta r = \pm 0.02 \text{ in.}$$

(a)
$$V = \frac{4}{3}\pi r^3$$

$$dV = 4\pi r^2 dr$$

$$\Delta V \approx dV = 4\pi (8)^2 (\pm 0.02) = \pm 5.12\pi \text{ in.}^3$$

(b)
$$S = 4\pi r^2$$

$$dS = 8\pi r dr$$

$$\Delta S \approx dS = 8\pi(8)(\pm 0.02) = \pm 1.28\pi \text{ in.}^2$$

(c) Percent error of volume:

$$\frac{dV}{V} = \frac{5.12\pi}{\frac{4}{3}\pi(8)^2} = 0.0075 \text{ or } 0.75\%$$

Percent error of surface area:

$$\frac{dS}{S} = \frac{1.28\pi}{4\pi(8)^2} = 0.005 \text{ or } 0.5\%$$

35.
$$T = 2.5 x + 0.5 x^2$$
, $\Delta x = dx = 26 - 25 = 1$, $x = 25$
 $dT = (2.5 + x)dx = (2.5 + 25)(1) = 27.5 \text{ mi}$
Percentage change $= \frac{dT}{T} = \frac{27.5}{375} \approx 7.3\%$

36. Because the slope of the tangent line is greater at x = 900 than at x = 400, the change in profit is greater at x = 900 units.

37.
$$dH = -\frac{401,493,267}{2,000,000} \frac{e^{369,444/(50t+19,793)}}{(50t+19,793)^2} dt$$

At $t = 72$ and $dt = 1$, $dH \approx -2.65$.

38. $h = 50 \tan \theta$

$$\theta = 71.5^{\circ} = 1.2479 \text{ radians}$$

$$dh = 50 \sec^2 \theta \cdot d\theta$$

$$\left| \frac{dh}{h} \right| = \left| \frac{50 \sec^2(1.2479)}{50 \tan(1.2479)} d\theta \right| \le 0.06$$
$$\left| \frac{9.9316}{2.9886} d\theta \right| \le 0.06$$

$$|d\theta| \le 0.018$$

39. Let
$$f(x) = \sqrt{x}$$
, $x = 100$, $dx = -0.6$.
 $f(x + \Delta x) \approx f(x) + f'(x) dx$

$$= \sqrt{x} + \frac{1}{2\sqrt{x}}dx$$

$$f(x + \Delta x) = \sqrt{99.4}$$

 $\approx \sqrt{100} + \frac{1}{2\sqrt{100}}(-0.6) = 9.97$

Using a calculator: $\sqrt{99.4} \approx 9.96995$

40. Let
$$f(x) = \sqrt[3]{x}$$
, $x = 27$, $dx = -1$.

$$f(x + \Delta x) \approx f(x) + f'(x) dx = \sqrt[3]{x} + \frac{1}{3\sqrt[3]{x^2}} dx$$

 $\sqrt[3]{26} \approx \sqrt[3]{27} + \frac{1}{3\sqrt[3]{27^2}} (-1) = 3 - \frac{1}{27} \approx 2.9630$

Using a calculator, $\sqrt[3]{26} \approx 2.9625^5$

41. Let
$$f(x) = \sqrt[4]{x}$$
, $x = 625$, $dx = -1$.

$$f(x + \Delta x) \approx f(x) + f'(x) dx = \sqrt[4]{x} + \frac{1}{4\sqrt[4]{x^3}} dx$$

$$f(x + \Delta x) = \sqrt[4]{624} \approx \sqrt[4]{625} + \frac{1}{4(\sqrt[4]{625})^3} (-1)$$

$$= 5 - \frac{1}{500} = 4.998$$

Using a calculator, ⁴√624 ≈ 4.9980.

42. Let
$$f(x) = x^3, x = 3, dx = -0.01$$
.

$$f(x + \Delta x) \approx f(x) + f'(x) dx = x^3 + 3x^2 dx$$

 $f(x + \Delta x) = (2.99)^3 \approx 3^3 + 3(3)^2(-0.01)$

$$f(x + \Delta x) = (2.99)^3 \approx 3^3 + 3(3)^2(-0)$$

= 27 - 0.27 = 26.73

Using a calculator: $(2.99)^3 \approx 26.7309$

43.
$$f(x) = \sqrt{x+4}$$

$$f'(x) = \frac{1}{2\sqrt{x+4}}$$

At
$$(0, 2)$$
, $f(0) = 2$, $f'(0) = \frac{1}{4}$

Tangent line:
$$y - 2 = \frac{1}{4}(x - 0)$$

$$y = \frac{1}{4}x + 2$$

44.
$$f(x) = \tan x$$

$$f'(x) = \sec^2 x$$

$$f(0) = 0$$

$$f'(0) = 1$$

Tangent line at
$$(0, 0)$$
: $y - 0 = (x - 0)$

$$y = x$$

45. (a) Let
$$f(x) = \sqrt{x}$$
, $x = 4$, $dx = 0.02$,
 $f'(x) = 1/(2\sqrt{x})$.
Then
 $f(4.02) \approx f(4) + f'(4) dx$
 $\sqrt{4.02} \approx \sqrt{4} + \frac{1}{2\sqrt{4}}(0.02) = 2 + \frac{1}{4}(0.02)$.

(b) Let
$$f(x) = \tan x, x = 0, dx = 0.05, f'(x) = \sec^2 x.$$

Then $f(0.05) \approx f(0) + f'(0) dx$
 $\tan 0.05 \approx \tan 0 + \sec^2 0(0.05) = 0 + 1(0.05).$

46. Yes. y = x is the tangent line approximation to $f(x) = \sin x$ at (0, 0).

$$f'(x) = \cos x$$
$$f'(0) = 1$$

Tangent line:
$$y - 0 = 1(x - 0)$$

 $y = x$

47. True,
$$\frac{\Delta y}{\Delta x} = \frac{dy}{dx} = a$$

- 48. True
- 49. False

Let
$$f(x) = \sqrt{x}$$
, $x = 1$, and $\Delta x = dx = 3$. Then $\Delta y = f(x + \Delta x) - f(x) = f(4) - f(1) = 1$ and $dy = f'(x) dx = \frac{1}{2\sqrt{1}}(3) = \frac{3}{2}$.

So, $dy > \Delta y$ in this example.

$$f(x) = \cos^{-1} x \Rightarrow x = \cos y$$

$$\frac{d}{dx} \cos y = \frac{d}{dx} x$$

$$-\sin y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = -\frac{1}{\sin y}$$

$$= -\frac{1}{\sqrt{1 - \cos^2 y}} = -\frac{1}{\sqrt{1 - x^2}}$$

Tangent line at $\left(\frac{1}{2}, \frac{\pi}{3}\right)$:

$$y - f\left(\frac{1}{2}\right) = f'\left(\frac{1}{2}\right)(x - 2)$$
$$y - \frac{\pi}{3} = \frac{1}{\sqrt{1 - \frac{1}{4}}}(x - 2)$$
$$y = -\frac{2\sqrt{3}}{3}x + \frac{\sqrt{3} + \pi}{3}$$

At
$$x = 0.52$$
, $y = \frac{-2\sqrt{3}}{3}(0.52) + \frac{\sqrt{3} + \pi}{3} \approx 1$.

So, the answer is C.

51.
$$y = x^{2} \ln x$$
$$dy = \left(x^{2} \cdot \frac{1}{x} + 2x \ln x\right) dx$$
$$= \left(x + 2x \ln x\right) dx$$

So, the answer is A.

52.
$$y = f(c) = f'(c)(x - c)$$

 $y = f(3) + f'(3)(x - 3)$
 $y = 8 + 22(x - 3)$
 $y = 22x - 58$
 $f(2.9) = 22(2.9) - 58 = 5.8$
So, the answer is B.

53. (a)
$$P = 100xe^{-x/400}$$

 $P' = 100x\left(-\frac{1}{400}e^{-x/400}\right) + 100e^{-x/400} = -\frac{1}{4}xe^{-x/400} + 100e^{-x/400}$
(b) $P'(x) = 0$
 $-\frac{1}{4}xe^{-x/400} + 100e^{-x/400} = 0$
 $100e^{-x/400} = \frac{1}{4}xe^{-x/400}$
 $400 = x$

The profit is maximum when x = 400 units.

(c) Change in profit:

$$f(130) - f(120) = 100(130)e^{-130/400} - 100(120)e^{-120/400} \approx $503$$

Percent change:

$$P = 100xe^{-x/400}, \Delta x = dx = 130 - 120 = 10, x = 120$$

$$dP = \left[100x\left(-\frac{1}{400}e^{-x/400}\right) + 100e^{-x/400}\right]dx$$

$$= \left[100(120)\left(-\frac{1}{400}e^{-120/400}\right) + 100e^{-120/400}\right](10)$$

$$= 700e^{-0.3}$$

Percent change =
$$\frac{dp}{p} = \frac{700e^{-0.3}}{12,000e^{-0.3}} \approx 5.8\%$$