X-ray Imaging

BME/EECS 516 X-ray Lecture #2

Announcements

- HW #5 due today
- MRI Project due Tuesday 11/21
- Tuesday, 11/14 guest lectures from local medical imaging industry
 - David Sarment from Xoran Technologies
 - John Seamans (UM) formerly with Delphinus Medical and GE Healthcare
- US and MRI Demos 11/21 during class time. More info to come...

Physics - Radiation

- a process in which energetic streams of particles or photons travel through a medium or space
- X-ray photon appropriate amount of interaction for imaging
- Behavior of Radiation Along a Line:

$$N(x) = N(0) \exp \overset{\mathcal{R}}{\overset{x}{\circ}} - \overset{x}{\overset{0}{\circ}} m(x') dx' \div \overset{0}{\overset{\circ}{\circ}}$$

X-ray Tube

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/imgqua/xtube.gif

- 1. Inelastic (energy absorbing) scattering with atomic electrons
 - An electron with enough energy can eject an orbital electron out of the inner shell of a metal atom.
 - Electrons from higher energy level fill up the vacancy
 - X-ray photon are emitted from spontaneous energy state transitions.

- The process produce discrete emission spectrum –spectral lines.
 "Characteristic" x-ray energies for W
 - 58.5 keV
 - Any combination of shell transition energies (e.g. 3.2 and 61.7 keV).
- Bohr model accounts for absorption/generation of discrete valued energies.

Bremsstrahlung "Braking"
 Radiation – accelerated electrons scattered by a strong electric field near the high-Z nuclei. X-rays have continuous spectrum

- Thick target (anode)
 - Modeled as a series of thin targets.
 - Each thin target produces a new uniform spectrum, but with a lower peak energy.
 - Resultant spectrum is approximately linear from a peak at 0 keV to 0 at E.

The x-ray Spectrum

 Spectrum will have a combination of Bohr (discrete) energies and Bremsstrahlung

The x-ray Spectrum

• The x-ray spectrum is function of photon energy: $I_0 = I_0(E)$

 I represents energy/unit time/unit area or power/unit area.

Attenuation Coefficient

- The x-ray spectrum is a function of photon energy E: $I_0 = I_0(E)$
- The attenuation function is also a function of E: $\mu = \mu(x,y,z,E)$.
- The intensity at the output to form image: $I_d(x,y) = \int_E I_0(E) \exp\left(-\int \mu(x,y,z,E) dz\right) dE$

 I_d tells us nothing about z or E – it only gives us x,y information.

Attenuation Coefficient

- Two important material properties affecting μ : tissue density ρ and the atomic number Z
 - Because most x-ray photon/tissue interactions are photon/electron interactions.
- Attenuation is caused by x-ray photon interaction with the matter

X-ray Photon Interactions

- Rayleigh-Thompson Scattering spontaneous, very low energy phenomenon
- Photoelectric Absorption low energy phenomenon
- Compton Scattering mid energy phenomenon
- Pair Production high energy phenomenon
- In general, attenuation coefficient constituents:

$$\mu(E) = \mu_{rt}(E) + \mu_{pe}(E) + \mu_{cs}(E) + \mu_{pp}(E)$$

Photoelectric Absorption

- Absorption of photon by interacting with a tightly bound electron
- Leads to ejection of an electron vacancy filled by an electron falling into it from the next shell
- If the ejected electron kinetic energy (=
 Absorbed photon energy) is less than binding
 energy of the electron, the electron is unable to
 escape the material.

Photoelectric Absorption

photoelectric effect increases rapidly with atomic number, Z and with decreasing photon energy.

 \circ Dominates μ in the lower energy part of the diagnostic spectrum (<50 keV)

Compton Scattering

- Scatting of photons by an elastic collision with a free electron in the outer shell.
- Part of the x-ray energy is transferred to the electron; the rest taken by the scattered "degraded" photon.
- Elastic collisions preserve E and momentum (p).

Compton Scattering

 $\circ \mu_{cs}$ is nearly constant across diagnostic spectrum

• Compton scatter comes mostly from atomic electrons (μ_{cs} is proportional to ρ)

 At higher E, Compton scatter dominates over the PE effect.

Total Linear Attenuation Coefficient for Photons

The combined coefficient

$$\mu(E) = \mu_{rt}(E) + \mu_{pe}(E) + \mu_{cs}(E) + \mu_{pp}(E)$$

X-ray Attenuation Coefficients for muscle, fat, bone

Note - mass attenuation coefficient: μ/ρ

Macovski – Fig. 3.7

FIG. 3.7 X-ray attenuation coefficients for muscle, fat, and bone, as a function of photon energy.

Topics for Today

Source geometry and magnification

Finite source sizes

Source Issues

Parallel X-ray Imaging
System
Practical X-ray Sources

Parallel X-ray Imaging System

In
$$I_{d}(x,y) = I_{0} \exp\left(-\int \mu(x,y,z)dz\right)$$

However, there are essentially no practical medical projection x-ray systems where the source has parallel rays.

Parallel X-ray Imaging System

 Some scanning systems may achieve parallel rays - appropriate for industrial inspection operations, but too slow for medical applications.

Practical X-ray Sources – two main issues

 Geometric distortions due to point geometry – "depth dependent magnification."

Practical X-ray Sources – two main issues

Resolution loss (blurring) due to finite (large) source sizes

Point Source Geometry Intensity Variations

Point Source Geometry

• Find expressions for the image intensity, $I_d(x_d, y_d)$, for a point source geometry

$$I_d(x_d, y_d) = I_i(x_d, y_d) \exp\left(-\int \mu(x, y, z) dr\right)$$

Point Source Geometry

- o (x_d, y_d) coordinate system in the output detector plane.
- (x,y,z) coordinate system of the object.
- o $I_i(x_d, y_d)$ spatially variant incident intensity replaces I_o .
- The integration is along some path r with variable of integration dr.
- $\circ I_d(x_d, y_d)$ image intensity

- Incident intensity maximal at the center and falls off towards the edges.
 - Increases in distance from the source
 - Rays obliquely striking the detector.

Intensity - power/unit area - expression for the intensity I_i :

$$I_i = \frac{\text{(photons)(mean photon E)}}{\text{(unit area)(exposure time)}} = \frac{kN}{a} \frac{\Omega}{4\pi}$$

- k scaling coefficient
- N number of photon emitted during the observation time
- $\Omega/4\pi$ fraction of the surface of a sphere that is subtended by pixel area a.

 $\circ \Omega$ – solid angle

• For a pixel of area a at some position angle θ away from the origin, the part of a sphere covered will be $a \cos \theta$. Thus:

$$\frac{\Omega}{4\pi} = \frac{a\cos\theta}{4\pi r^2} \quad \text{or} \quad \Omega = \frac{a\cos\theta}{r^2}$$

- Intensity at the origin of the detector $I_0 = I_i(0,0)$.
 - At the origin, $\theta = 0$
 - Distance from the source to the detector r = d

$$\Omega = a/d^2 \text{ and } I_0 = I_i(0,0) = \frac{kN}{4\pi d^2}$$

o Intensity, I_0 , falls off with $1/d^2$ as the detector moves away from the source.

$$I_0 = \frac{kN}{4\pi d^2} \Rightarrow k = I_0 \frac{4\pi d^2}{N}$$

$$I_i = \frac{kN}{a} \frac{\Omega}{4\pi} = I_0 d^2 \frac{\cos \theta}{r^2} \qquad \cos \theta = \frac{d}{r}$$

$$I_i = I_0 \cos^3 \theta = I_0 \left(\frac{d}{r}\right)^3$$

- $\cos^3 \theta$ (or its representation) *incident intensity* obliquity term has two components
 - $\cos^2 \theta$ term increase in distance from the source to the detector
 - $\cos \theta$ term rays obliquely striking the detector

 Put this expression in the coordinate system of the detector using and

$$r_d^2 = x_d^2 + y_d^2 \qquad r^2 = d^2 + r_d^2$$

$$I_i(x_d, y_d) = I_0 \left(\frac{d}{\sqrt{d^2 + r_d^2}}\right)^3 = I_0 \frac{1}{\left(1 + \left(\frac{r_d}{d}\right)^2\right)^{3/2}}$$

Question

- A chest x-ray system has a detector plane of 40x40 cm. The distance between the xray tube and the detector plane is 20 cm. At the edge of the detector plane, the x-ray intensity is ____ of the intensity at the center.
 - A) sqrt(1/2)
 - B) sqrt(1/8)
 - C) sqrt(1/27)
 - D) sqrt(1/125)

Question

- A chest x-ray system has a detector plane of 40x40 cm. The distance between the xray tube and the detector plane is 20 cm. At the edge of the detector plane, the x-ray intensity is ____ of the intensity at the center.
 - A) sqrt(1/2)
 - B) sqrt(1/8)
 - C) sqrt(1/27)
 - D) sqrt(1/125)
 - Answer B) $\cos^3 \frac{\pi}{4} = 0.35$

Questions?

Point Source Geometry Intensity Variations

Point Geometry Magnificataion

Practical X-ray Sources

Point Source

• A point in the object (x,y) at depth z - it will strike the detector at a position $(x_d, y_d) = \left(x \frac{d}{z}, y \frac{d}{z}\right)$

 $M(z) = \frac{d}{z}$ - magnification factor for an object at depth z.

Point Source Magnification

• Attenuation coefficient at location (x_d, y_d) in output coordinates

$$I_d(x_d, y_d) = I_i(x_d, y_d) \exp\left(-\int \mu(x, y, z) dr\right)$$

$$\mu(x, y, z) = \mu \left(\frac{x_d}{M(z)}, \frac{y_d}{M(z)}, z \right)$$

$$I_i(x_d, y_d) = I_0 \frac{1}{\left(1 + \left(\frac{r_d}{d}\right)^2\right)^{3/2}}$$

Point Source Magnification

• Attenuation coefficient at location (x_d, y_d) in output coordinates

$$I_d(x_d, y_d) = \frac{I_0}{\left(1 + \left(\frac{r_d}{d}\right)^2\right)^{3/2}} e^{-\int \mu\left(\frac{x_d}{M(z)}, \frac{x_d}{M(z)}, z\right) dr}$$

Not a point source anymore

 First consider a "thin" object. Let the attenuation coefficient be:

$$\mu(x, y, z) = \tau(x, y)\delta(z - z_0)$$

$$I_d(x_d, y_d) = I_0 \exp\left(-\int \tau \left(\frac{x_d}{M(z)}, \frac{y_d}{M(z)}\right) \delta(z - z_0) dz\right)$$

$$= I_0 \exp \left(-\tau \left(\frac{x_d}{M(z_0)}, \frac{y_d}{M(z_0)}\right)\right)$$

o $M = M(z_0) = d/z_0$ - is the *object* magnification factor

 \circ Including the I_i term:

$$I_d(x_d, y_d) = I_i \exp\left(-\tau \left(\frac{x_d}{M}, \frac{y_d}{M}\right)\right) = I_i t \left(\frac{x_d}{M}, \frac{y_d}{M}\right)$$

where $t = \exp(-\tau)$ is the *transmission* function

Consider a finite source function s(x,y) and a very small pinhole transmission function:

Now the image is an image of the source with the source magnification factor,

$$I_d(x_d, y_d) = ks \left(\frac{x_d}{m}, \frac{y_d}{m}\right) \qquad m = m(z) = -\frac{d-z}{z}$$

- k scaling factor that is proportional to the area of the pinhole
- If I_d is to represent the impulse response of the system

- The area of the pinhole: $\iint \delta(x, y) dx dy = 1$
- Capture efficiency of the pinhole

$$\eta = \frac{\text{pinhole area}}{4\pi z^2} = \frac{1}{4\pi z^2}$$

Total number of photon emitted

$$N = \iint s(x, y) dx dy$$

- Total number of photons to get through the pinhole $N\eta = \frac{N}{4\pi z^2}$
- The same number at the detector

$$\iint ks \left(\frac{x_d}{m}, \frac{y_d}{m}\right) dx_d dy_d = kNm^2 = \frac{N}{4\pi z^2}$$

Hence, the scaling coefficient is

$$k = \frac{1}{4\pi z^2 m^2}$$

$$I_d(x_d, y_d) = \frac{1}{4\pi z^2 m^2} s\left(\frac{x_d}{m}, \frac{y_d}{m}\right)$$

o let the pinhole be at position (x',y') $t(x,y) = \delta(x-x', y-y')$

- The image of the source is now located at $(x_d = Mx', y_d = My')$
- The impulse response function is:

$$h(x_d, y_d; x', y') = I_d(x_d, y_d) = \frac{1}{4\pi z^2 m^2} s \left(\frac{x_d - Mx'}{m}, \frac{y_d - My'}{m} \right)$$

 Now we can calculate the image for an arbitrary transmission function using the superposition integral – recall linear system in FT lectures.

$$I_d(x_d, y_d) = \iint t(x'y')h(x_d, y_d; x', y')dx'dy'$$

$$= \frac{1}{4\pi z^2 m^2} \iint t(x'y') s\left(\frac{x_d - Mx'}{m}, \frac{y_d - My'}{m}\right) dx' dy' \text{ and sub } Mx' = x$$

$$= \frac{1}{4\pi z^2 m^2 M^2} \iint t\left(\frac{x}{M}, \frac{y}{M}\right) s\left(\frac{x_d - x}{m}, \frac{y_d - y}{m}\right) dx dy$$

$$= \frac{1}{4\pi d^2 m^2} s\left(\frac{x_d}{m}, \frac{y_d}{m}\right) * *t\left(\frac{x_d}{M}, \frac{y_d}{M}\right)$$

- The final image is equal to the convolution of the magnified source and the magnified object.
 - The object is blurred by the source function.

The frequency domain equivalent:

$$F_{2D}\{I_d(x_d, y_d)\} = \frac{1}{4\pi z^2} S(mu, mv) T(Mu, Mv)$$

- The object is magnified by M(z₀) and blurred by m(z₀)
 - $m(z_0) = -(d-z_0)/z_0 = 1-d/z_0$
 - $M(z_0) = d/z_0$
- If $z_0 = 1/3$ d, object is magnified by ? and blurred by ?

- The object is magnified by M(z₀) and blurred by m(z₀)
 - $m(z_0) = -(d-z_0)/z_0 = 1-d/z_0$
 - $M(z_0) = d/z_0$
- If z₀ = 1/3 d, object is magnified by 3 times and blurred by -2 magnified source

- The object is magnified by M(z₀) and blurred by m(z₀)
 - $m(z_0) = -(d-z_0)/z_0 = 1-d/z_0$
 - $M(z_0) = d/z_0$
- If $z_0 = 1/3$ d, object is magnified by ? and blurred by ?

• If $z_0 = \frac{2}{3} \frac{d}{d}$, object is magnified by ? and blurred by ?

- The object is magnified by M(z₀) and blurred by m(z₀)
 - $m(z_0) = -(d-z_0)/z_0 = 1-d/z_0$
 - $M(z_0) = d/z_0$
- If z₀ = 1/3 d, object is magnified by 3 times and blurred by -2 magnified source
- If z₀ = 2/3 d, object is magnified by 1.5 times and blurred by -0.5 magnified source

- To minimize source blurring, we should
 - A) position the subject as close to the source as possible
 - B) position the subject right in the middle between the source and the detector
 - C) position the subject immediately next to or on top of the detector

- To minimize the blurring, we should
 - A) position the subject as close to the source as possible
 - B) position the subject right in the middle between the source and the detector
 - C) position the subject immediately next to or on top of the detector
 - Answer: C)

- To minimize the magnification of the object on the image, we should
 - A) position the subject as close to the source as possible
 - B) position the subject right in the middle between the source and the detector
 - C) position the subject immediately next to or on top of the detector

- To minimize the magnification of the object on the image, we should
 - A) position the subject as close to the source as possible
 - B) position the subject right in the middle between the source and the detector
 - C) position the subject immediately next to or on top of the detector
 - Answer: C)

- When |m| is made small, i.e., the depth plane as far from the source as possible: $z_0 \rightarrow d$
 - The least blurring
 - Reduces geometric distortions
 - Common practice for x-ray imaging is to position the subject immediately next to or on top of the detector

- If the thickness of the body is not a limiting factor, then let d, $z \rightarrow \infty$.
 - Make the system close to a parallel ray geometry with $|m| = \rightarrow 0$ and M $\rightarrow 1$.
 - Main problem: $I_0 \propto 1/d^2 \rightarrow 0$ and SNR $\propto \sqrt{I_0} \rightarrow 0$.
- Make s(x,y) as small as possible to reduce blurring, but might reduce the number of photons created and thus reduce SNR.

- For a complex object, make $\mu(x,y,z) = \sum \tau_i(x,y) \delta(z-z_i)$ and each plane will have its own magnification factors.
 - gives you some idea of how blurring and magnification might affect different parts of a real object differently.

Questions?

Overall System Response

Object Blurring

Overall System Response

- \circ The detector response $h(r_d)$
- Add the detector response to the other system elements. The overall system response is:

$$I_d(x_d, y_d) = \frac{1}{4\pi d^2 m^2} s\left(\frac{x_d}{m}, \frac{y_d}{m}\right) **t\left(\frac{x_d}{M}, \frac{y_d}{M}\right) **h(r_d)$$

Overall System Response

The impulse response function

$$h(x_d, y_d) = \frac{1}{4\pi d^2 m^2} s\left(\frac{x_d}{m}, \frac{y_d}{m}\right) * *h(r_d)$$

 For a circularly symmetric source function:

$$h(x_d, y_d) = \frac{1}{4\pi d^2 m^2} s\left(\frac{r_d}{m}\right) * *h(r_d)$$

True or False

 The detector blurs the magnified object, not the source

 The magnified source also blurs the magnified object

 Source and object have the same magnification factors

True or False

 The detector blurs the magnified object, not the source True

The magnified source also blurs the magnified object
 True

 Source and object have the same magnification factors

False

Object Blurring

Examine the response in the coordinate system of the object (x,y) rather than the detector (x_d, y_d) :

$$I(x,y) = ks \left(\frac{Mx}{m}, \frac{My}{m}\right) **t(x,y) **h(Mr_d)$$
• Effective magnification of source: $\left|\frac{m}{M}\right| = \frac{d-z}{d}$

- Effective magnification of the detector response $\frac{1}{z}$

Object Blurring

- The two magnified blurring effects are in competition:
 - To make the source blurring (d-z)/d small, make $z \rightarrow d$
 - To make the detector blurring z/d small, make $z \rightarrow 0$

Object Blurring

o Comments:

- For most x-ray systems, the detector response is very small and the source is almost always bigger. Therefore, we would like to make z → d.
- For other kinds of systems, e.g. digital fluoroscopy systems, the detector resolution is a bit larger and for these systems an intermediate z may be appropriate.

Questions?

Over all System Response Object Blurring

X-ray Detection

X-ray Detection – Photographic Film

- Traditional x-ray detector film based
 - Not used anymore
- Films are generally not very sensitive to x-rays, so x-rays must first be converted to visible light by a scintillator

 Materials such as sodium iodide (NaI) can "convert" an X-ray photon to a visible photon

X-ray Detection – Photographic Film

X-ray Detection – Image Plate

- Photo-stimulable phosphors (PSPs) are sensitive to X-rays (often called image plates)
 - Can store weak radioactive signal in a phosphor plate
 - Can be stimulated with visible light and produce a luminescent signal (image readout with a laser)
 - require higher X-ray exposure needs intensifying screens.
 - Film X-ray equipment requires no modification to use them.

Flat Panel Detector

- Scintillator layer of gadolinium oxysulfide or cesium iodide converts x-rays to light.
- A silicon-on glass detector array (mix between LCD and digital camera sensor chip) is behind the scintillator layer.
- Each pixel on the glass detector contains a photodiode – generates electronic signal for producing a digital image.
- Typical pitch: 100 μm, 2-4k pixels/side

Flat Panel Detector

Advantages

- Electronic storage
- More sensitive allows a lower dose of radiation
- Faster and cheaper than film.
- Lighter, more durable, smaller in volume, more accurate, and have much less image distortion than image plates.
- Can be produced in larger sizes

Flat Panel Detectors

Philips C-arm

Detector Issues

- In selecting detector characteristics, we will have a resolution/SNR trade-off
 - The thicker detectors have better SNR, but a larger impulse response (i.e. worse resolution)

Questions?

X-ray Detection

SNR and Noise in X-ray system

Noise in X-ray system

 X-ray images are created from intensity values that are related to the number of photons(N) that strike a detector element in a finite period of time (from intensity I)

o In X-ray,
$$SNR = \frac{\overline{S}}{\sigma_S} = \frac{N}{\sqrt{N}} = \sqrt{N}$$

SNR of a Poisson Measurement

- SNR increases as the square root of the number of photons.
 - SNR increases as the square root of the dose to the patient.

• By averaging together two neighboring pixels, roughly double the photon counts and improve the SNR by $\sqrt{2}$.

SNR of a Poisson Measurement

Poisson distributions as the mean increases from 3 to 50

SNR of a Poisson Measurement

Poisson distributions (subtract the mean and divide the x-axis by the mean)

Noise in Detectors

Consider an output to an x-ray

We define a number of quantities

Noise in Detectors

We define a number of quantities

- •Contrast: $C = \Delta S / \overline{S}$
- oSignal to Noise Ratio: $SNR = \overline{S} / \sigma_s$
- Contrast to Noise Ratio:

$$CNR = \Delta S / \sigma_s = C \cdot SNR$$

Noise in Detectors

 Suppose the incident x-ray photons arriving at the detector are Poisson(N) and that the detector has efficiency η

$$SNR_{\text{det}} = \frac{\eta N}{\sqrt{\eta N}} = \sqrt{\eta N}$$

Example - Contrast

Photon energy = 90 keV

- \circ Bone $\mu_{\rm b} = 0.4 \; {\rm cm}^{-1}$
- \circ Muscle $\mu_{\rm m} = 0.2~{\rm cm}^{-1}$

• Calculate contrast $C = \frac{\Delta S}{\bar{S}}$. To simplify, use parallel x-ray beams.

Example: Contrast

o Muscle only:

$$I_m = I_0 e^{-m_m \cdot 8} = I_0 e^{-0.2 \cdot 8} = 0.202 I_0$$

o Muscle + bone:

$$I_{m+b} = I_0 e^{-m_m \times (8-3) - m_b \times 3} = I_0 e^{-0.2 \times 5 - 0.4 \times 3} = 0.111 I_0$$

O Calculate contrast:

$$C = \frac{DS}{S} = \frac{I_m - I_{m+b}}{I_m} = \frac{0.202I_0 - 0.111I_0}{0.202I_0} = 0.45$$

Questions

SNR and noise