Конспект лекции 17/9/19

Булевы функции

Функцией f:X o Y называется такое $f\subset X imes Y$, что $orall x\exists !y:(x,y)\in f.$ y=f(x) значение функции.

Функция называется **инъекцией**, если она различные значения переводит в различные: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Функция называется **сюрьекцией**, если $\forall y \;\; \exists x: y = f(x)$. Часто произносится "отображение на"

Пример: $h: \mathbb{Z} \to \mathbb{Z}, h(x) = x+17$ - сюрьекция и инъекция одновременно. Такие функции называются биекцией.

Множество всех функций из X в Y, $\{f:X o Y\}$ обозначается Y^X . Можно заметить, что всех возможных способов задать функцию y^n , где |Y|=y, |X|=n. Это одна из причин такой записи.

В этой главе рассматривается $Y=\mathbb{B}=\{0,1\}$, $X=\mathbb{B}^n$, т.е. рассматриваются функции $f:\mathbb{B}^n o\mathbb{B}, f(x_1,x_2,...,x_n)\mapsto y$

Таблица истинности - таблица, сопоставляющая каждому возможному набору аргументов $y \in \mathbb{B}$

Различных функций от булевых аргументов n всего 2^{2^n}

Для
$$n=0:\mathbb{B}^0=\{[]\}, 2^{2^0}=2$$

Примеры булевых функций

Примечание: Столбцы кроме первого - значения соотвествующих функций

Примечание: 0 и 1 должны быть жирные

Примечание: тут 0 не тот же, что в первой таблице:

```
bool zero_first()
    return 0;
bool zero_second(bool x)
    return 0;
```

аргумент	0	X	отрицание	1
0	0	0	1	1
1	0	1	0	1

Отрицание обозначается также $!x, \overline{x}, \neg x$

P-1 - первый проектор - возвращает первый аргумент

Штрих Шерфера должен быть более вытянутым, но тех так не умеет

аргумент х	аргумент у	0	конъюнкция (<i>u</i>), & \wedge	×	P_1	4	P_2
0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1
1	0	0	0	1	1	0	0
1	1	0	1	0	1	0	1
XOL.	онкция, <i>или</i> , ∨ трелка Пирса, пог		обр. $ eg P_2$ импликация \leftarrow	$\neg F$		импл., след. $ ightarrow$	штрих Шерфера ▽, nand

nd

На любое число аргументов обобщаются $0,1,P_n$, хог (=1, если среди аргументов нечетное число единиц (как сложение по модулю 2)), и проч. Стрелка Пирса и штрих Шерфера не обобщаются. Общепринятого обобщения равенства нет.

Некоторые булевы функции трех аргументов

< x,y,z> - большинство, медиана, majority, median - равна 1, если большинство аргументов равно 1.

Тернарный оператор: !x?y:z - возвращает либо у, либо z в зависимости от x. Немного отличается от его записи в java/C, там x?z:y. Также называется демультиплексор.

x,y,z	<x,y,z></x,y,z>	(!x)?y:z
000	0	0
001	0	0
010	0	1

x,y,z	<x,y,z></x,y,z>	(!x)?y:z
011	1	1
100	0	0
101	1	1
110	1	0
111	1	1

Представление функции формулой

 ${\cal F}$ - множество булевых функций. Будем называть его элементы связками, а ${\cal F}$ - системой связок.

Формулой называется строка, построенная по следующим правилам:

$$f(x_1,..,x_n)$$
, x_i - формула

$$g$$
 - связка, $g \in F$, $g: \mathbb{B}^k o \mathbb{B}$

$$h_1,h_2,..h_k$$
 - формула

Тогда
$$g(h_1,h_2,..,h_k)$$
 - формула

Прим. в скобки один аргумент можно не брать, инфиксная запись - когда бинарный оператор ставится между операндами.

Пример: $F=\{\wedge,\vee,\neg\}.\,\,x,y$ - аргументы

$$\wedge (\neg(x),x) \Leftrightarrow \neg x \wedge x \ \lor (\wedge (\neg(x),x),y) \Leftrightarrow (\neg x \wedge x) \lor y$$

$$arphi$$
 - формула, $arphi(x_1..x_n)$ $arphi=x_i\Rightarrow arphi(x_1..x_n)=x_i$

Для одной и той же функции может быть несколько различных формул.

Какими системами связок можно задать все функции $f:\mathbb{B}^n o\mathbb{B}$?

Опр. f сохраняет 0, если f(0,..0)=0. Множество всех таких f называется F_0

Опр. f сохраняет 1, если f(1,..1)=1. Множество всех таких f называется F_1

Лемма Если $F\subset F_0$ и g построено с помощью формулы с использованием системы связок F , то $g\in F_0$

Докажем это индукцией обходом дерева разбора.

База: высота = 1, подходят только
$$f(x)=x$$
 и $f(x)=0$

Переход: понятия не имею, честно

Лемма 2: то же самое, только для F_1

Опр. Дано: аргументы $x_1...x_n$. Формула является совершенной дизъюктивной нормальной формой, если она состоит из произвольного числа скобок, между каждой из которых производится \vee , в каждой из этих скобок расположено n литералов $\in \{x_1...x_n, \neg x_1, ... \neg x_n\}$, между которыми происходит только \wedge и в каждой скобке каждый аргумент встречается только один раз.

Теорема Любая функция, кроме тождественного нуля, может быть записана в СДНФ.

 \mathcal{L} -во: рассмотрим таблицу истинности f. Так как это не тожд. 0, хотя бы одна строка соответствует 1. Рассмотрим эти строки. Для каждой из этих строк выпишем переменные, равные 1 без отрицания, а переменные равные 0, с отрицанием, и проведем **И** над всеми.

Пример: строка 0011, f(0,0,1,1)=1. Тогда выпишем $(\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4)$.

Докажем, что uлu по всем этим термам равно исходной f.

Опр. Система связок F называется **базисом**, если любую функцию можно представить в виде формулы в этой системе связок. Множество всех функций, представимых в виде формулы в F, обозначается \overline{F} . Более научно: $\forall f \in \overline{F}$.

Теорема $\{\land,\lor,\lnot\}$ - базис