UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELÉTRICA DISCIPLINA DE SISTEMAS DE CONTROLE 2

BRUNO WUSTRO

IGOR FACCHIN

JULIANA SANGUANINI

MURILO MARQUES

PROJETO DE CONTROLADOR DE TEMPERATURA

PATO BRANCO 2019

1 INTRODUÇÃO

Este relatório tem como objetivo detalhar o projeto e a implementação de um controlador de temperatura para um sistema a malha fechada. Deseja-se monitorar o comportamento do sistema térmico, controlando a temperatura para que seja atingido um nível especificado previamente.

Foram feitos ensaios para a modelagem teórica do sistema, de modo a obter a função de transferência da planta. Além disso, foi desenvolvido um atuador para alimentar o sistema, bem como o controlador. Uma vez montado o projeto, foi realizada uma simulação e a comparação dos resultados finais.

2 MODELAGEM TEÓRICA

Para modelar o sistema térmico utiliza-se a seguinte equação:

$$C = mc\Delta T \tag{1}$$

Em que Q é a quantidade de calor que é dada em kcal, m é a massa do sistema em kg, c é seu calor específico dado em cal/g.°C e ΔT é a variação na temperatura dada em °C. Sabe-se que a capacitância térmica C é dada pela equação:

$$C = mc (2)$$

Considerando que Q_i é a entrada de calor e Q_o é a saída de calor do sistema substituindo na equação 1 obtém-se:

$$Q_i - Q_o = C\Delta T \tag{3}$$

$$\frac{Q_i - Q_o}{dt} = \frac{CdT}{dt} \tag{4}$$

Sabe-se que:

$$\frac{Q_i}{dt} = h_i \tag{5}$$

$$\frac{Q_o}{dt} = h_c \tag{6}$$

Em que h_i e h_o são as taxas de entrada e de saída de calor do sistema respectivamente. Assim temos que:

$$h_i - h_o = \frac{cdT}{dt} \tag{7}$$

A resistência térmica é:

$$R_t = \frac{T}{h_o} \tag{8}$$

A resistência térmica pode ser obtida de modo aproximado de forma prática, aquecendo o sistema em malha aberta até que o sistema entre em regime, tal processo está melhor explicado na seção resistência experimental. Logo:

$$C\frac{dT}{dt} = h_i - \frac{T}{R_T} \tag{9}$$

$$C\frac{dT}{dt} + \frac{T}{R_T} = h_i \tag{10}$$

$$R_T C \frac{dT}{dt} + T = R_T h_i \tag{11}$$

Portanto a função de transferência G(s) à malha aberta é:

$$G(s) = \frac{T(s)}{h_i(s)} = \frac{R_T}{R_T C + 1}$$
 (12)

2.1 RESISTÊNCIA EXPERIMENTAL

O ensaio realizado constituiu-se de colocar 500mL de água em um recipiente metálico e registrou-se que a água estava a 26,7 °C então aplicou-se uma tensão de 20,0 V em uma resistência de 16,129 Ω que forneceu energia ao sistema. A energia era parcialmente transferida para água e o restante era dissipada no ambiente. O tempo de ensaio foi aproximadamente de 4 horas e 50 minutos. Foram coletadas 1720 amostras em intervalos de 10 segundos e a temperatura da água estabilizou em 74.5 °C.

Figura 1: Temperatura em função do tempo

Pelo gráfico, nota-se que, com exceção da perturbação em 11:49 a resposta assemelha-se a de um sistema de primeira ordem. Um sistema de primeira ordem

obedece a seguinte função de transferência:

$$G(s) = \frac{\alpha}{s + \alpha} \tag{13}$$

Onde α é o inverso do tempo que o sistema leva para atingir 63,2% do valor de temperatura em regime. Esse tempo foi de 3032 segundos.

$$\alpha = \frac{1}{1450} = 329,825 \cdot 10^{-6} Hz \tag{14}$$

A resistência do dispositivo aquecedor é dada por:

$$R = \frac{V^2}{P} = \frac{127^2}{1000} = 16,219\Omega \tag{15}$$

A entrada do sistema será dada pela potência obtida pela aplicação de uma tensão em uma resistência, cuja unidade de medida é em watts. A fim de obter essa potência em kCal/s, usa-se as seguintes relações:

$$W = \frac{J}{s} \tag{16}$$

$$J = 2,39 \cdot 10^{-4} kCal \tag{17}$$

O parâmetro h_i foi obtido por:

$$h_i = \frac{V^2 \cdot 2,39 \cdot 10^{-4}}{R} = \frac{20,0^2 \cdot 2,39 \cdot 10^{-4}}{16,129} = 5,27 \cdot 10^{-3}$$
 (18)

O ganho CC foi obtido com:

$$K_{cc} = R_T = \frac{T_f - Ti}{\Delta hi} = \frac{47,65}{5,927 \cdot 10^{-3}} = 8039,193$$
 (19)

E a função de transferência é:

$$G(s) = \frac{K_{cc}}{\tau s + 1} = \frac{8039}{3082s + 1} \tag{20}$$

Podemos também, estimar a função de transferência considerando que $C=mc=0,5\cdot 1$, e como $R_T=Kcc$, então $\tau=R_TC=8039,193\cdot 0,5=4019.496$ e portanto:

$$G(s) = \frac{8039}{4020s + 1} \tag{21}$$

2.2 VALIDAÇÃO DO MODELO

Figura 2: Comparação entre ensaio e modelo teórico

Nota-se que as funções de transferência G(s) e Gr(s) possuem um comportamento quase idêntico. Já em comparação com o ensaio, há uma discrepância devido a perturbação introduzida, porém ambas entram em regime permanente em temperaturas muito próximas.

2.3 ATUADOR

Precisa-se agora projetar um atuador para esta planta. Para isso será utilizado um relé de estado sólido SSR-4810 10 A / 480 VCA. O relé é uma chave acionada por corrente, que serve para ligar e desligar o circuito conforme necessário. Para acionar o relé, é necessário que seja projetado um sinal *PWM* que possa ter a razão cíclica variável de 0 a 100%. O sinal *PWM* será projetado utilizando uma série de amplificadores operacionais. Começa-se com um oscilador de relaxação como mostra a figura abaixo, gerando em sua saída um sinal retangular, que de acordo com MALVINO e BATES. (2007, p. 309):

"Analisando a carga e descarga exponencial do capacitor, pode-se deduzir a fórmula para o período da saída retangular:

$$T = 2RCln\frac{1+B}{1-B} \tag{22}$$

onde

$$B = \frac{R_1}{R_1 + R_2}$$
 (23)

Figura 3: Schmitt Trigger e integrador gerando uma onda quadrada e uma onda triangular

A saída do Schmitt Trigger não-inversor é uma onda retangular que aciona o integrador. A partir do integrador é gerada uma onda triangular que é realimentada, acionando o Schmitt Trigger. O Schmitt Trigger satura em dois valores, passando pelo integrador e comutando quando $V_{tri} = V_{rT}$. Segundo MALVINO (2007, p.311) tem-se que:

$$UTP = \frac{R1}{R2}V_{sat} \tag{24}$$

$$H = 2UTP (25)$$

$$V_{out(PP)} = H (26)$$

$$f = \frac{R_2}{4R_1R_3C_1} \tag{27}$$

A partir disso, tem-se que:

$$V_{out} = V_{tri(PP)} = 2UTP = \frac{2R_1}{R_2}V_{cc}$$
 (28)

Deseja-se que $V_{tri(PP)}=6V$ e f=6Hz, então:

$$\begin{cases} \frac{2R_1}{R_2} V_{cc} = 6V \\ \frac{R_2}{4R_1 R_3 C_1} = 6Hz \end{cases}$$
 (29)

Substituindo $V_{cc}=12V$, tem-se que:

$$\frac{2R_1}{R_2}12V = 6V \Rightarrow \frac{2R_1}{R_2}2 = 1 \Rightarrow R_2 = 4R_1 \tag{30}$$

Considerando $C_1=2, 2\mu F$ e substituindo $R_2=4R_1$ em $\frac{R_2}{4R_1R_3C_1}=6Hz$, obtém-se:

$$R_3 = 75,75k\Omega \tag{31}$$

Para o funcionamento correto do integrador, é necessário que $R_4 \geq 10R_3$. Portanto, $R_4 \geq 757, 57\Omega$. Na prática, usa-se para R_3 uma associação de resistores de 30k Ω e 47k Ω , e para R_4 utiliza-se um resistor de 1M Ω .

Dessa forma, obtém-se um sinal triangular que varia de -3 V a 3 V.

Figura 4: Saída do Schmitt Trigger

Esse sinal passa por um comparador, que deve receber uma onda triangular de 0 V a 6 V Por essa razão, é necessário condicionar o sinal obtido anteriormente, adicionando um *offset* de 3 V, utilizando o seguinte circuito:

Figura 5: Circuito de ajuste do sinal triangular

Fazendo a análise deste circuito, tem-se que:

$$V_{ctr} = V_{tri} \frac{\left(1 + \frac{R_6}{R_5}\right)}{\left(1 + \frac{R_7}{R_8}\right)} - V_{ee} \frac{R_6}{R_5} \tag{32}$$

Devido ao offset do circuito, tem-se que:

$$-V_{ee}\frac{R_6}{R_5} = 3V {(33)}$$

 $V_{ee}=-12V$, então:

$$R_5 = 4R_6$$
 (34)

A amplitude da onda triangular V_{ctr} deve se manter o mesmo, e para isso a relação da equação referente ao ganho da equação 32 deve ser unitária. Substituindo $R_5=4R_6$, obtém-se que $R_8=4R_7$. Na prática, escolhe-se $R_6=R_7=10k\Omega$ e $R_5=R_8=40k\Omega$. Dessa forma, V_{ctr} é um sinal triangular que varia de 0 à $\frac{V_{ce}}{2}$ com frequência de 6Hz.

Figura 6: Saída do circuito de ajuste do sinal triangular

Usando esse sinal em um comparador com tensão de referência ajustável, pode-se gerar um sinal PWM com razão cíclica variável de 0 a 100%.

Para poder testar o circuito, altera-se a tensão de referência utilizando um potenciômetro como mostra a figura abaixo.

Figura 7: Comparador

Analisando o circuito, tem-se que $V_{ref}=\frac{V_{cc}}{(1+\frac{R_{10}}{R_9})}$, dessa forma quando $R_{10}=0$, $V_{ref}=0$. Então V_{ot} é sempre maior que e V_{ref} e V_{pwm} satura em V_{cc} (RC=100%), quando $R_{10}=R_9$, $V_{ref}=\frac{V_{cc}}{2}$ e V_{pwm} satura em 0V (RC=0%). Se $R_{10}=x\cdot R_9$, onde 0< x<1, tem-se que $V_{ref}=\frac{V_{cc}\cdot x}{(1+x)}$, como $RC=\frac{V_{ref}}{V_{ot}}$ e $V_{ot-max}=\frac{v_{cc}}{2}$, tem-se que $RC=\frac{2x}{1+x}\cdot 100\%$. Como a tensão de referência é de $\frac{V_{cc}}{2}$, tem-se que $K_{pwm}=\frac{180}{6}=30$. Dessa forma, obtém-se um sinal PWM com pico de 12 V, frequência de 6 Hz e razão cíclica ajustável de 0 a 100%.

Figura 8: Sinal PWM

Como o relé de estado sólido não funciona com tensões negativas, é usado um driver MOSFET do tipo Totem-Pole bipolar para protegê-lo, como mostra a figura:

Figura 9: Driver MOSFET do tipo Totem-Pole bipolar

Por tradução livre, para BALOGH (2018):

"[O Totem-Pole] é um dos circuitos mais populares e de bom custobenefício, é necessário usar capacitores de desvio através do coletor dos transistores NPN e PNP para redução de possíveis ruídos, R_b pode ser dimensionado para oferecer a devida impedância para o MOSFET e R_g é opcional."

Por essas razões foi optado por usar $C_1=C_2=100nF,\,R_b=330k\Omega,$ para limitar a corrente $R=2,4k\Omega$ e por ser opcional, não foi utilizada a resistência R_g .

2.4 SENSOR

Uma vez que o sinal triangular tem uma amplitude de 0 V à 6 V, é preciso que o sensor varie de 0 V à 6 V, conforme a temperatura varia de 0°C à 100°C.

O sensor utilizado foi o PT1000, que é uma resistência que varia conforme há variação na temperatura. Ele é feito de platina e tem uma resistência de 1000 Ω quando a temperatura medida é de 0°C. No intervalo de 0°C a 100°C, a variação de resistência é aproximadamente linear. Dessa maneira, é possível determinar uma equação que descreve o comportamento do resistor em função da temperatura.

$$R(T) = 1000 + 3,8505T \tag{35}$$

Segundo o *datasheet*, é necessário que a corrente que passa pelo PT1000 seja baixa de tal modo que a dissipação de potência do sensor não produza calor suficiente para interferir na medida. Assim, foi definido que a corrente deve ser:

$$i_{sensor} \le 0, 1mA. \tag{36}$$

Primeiramente, é imprescindível que a resistência seja transformada em um sinal de tensão. Para isso, foi montado o seguinte circuito:

Figura 10: Circuito gerador de tensão a partir do sinal de temperatura

Analisando o circuito, tem-se que a tensão de saída é $V_{sen}=-\frac{V_{ee}R(T)}{R_{11}}$. Como a corrente no sensor é igual à corrente na resistência R_{11} , tem-se que $i_{sensor}=-\frac{V_{ee}}{R_{11}}$. Substituindo na equação 36, conclui-se que $R_{11}\geq 120k\Omega$.

$$V_{sen} = -\frac{(-12)}{120k}R(T)$$

$$V_{sen} = \frac{1}{10k}(1000 + 3,8505T)$$
(37)

Devido a resistência R(T) nunca ser nula, o sinal V_{sen} também nunca será nulo. Uma vez que o sinal precisa variar de 0V à 6V, é fundamental que seja aplicado um *offset* no sinal. Para isso, introduzimos o sinal V_{sen} no seguinte circuito:

Figura 11: Circuito para aplicar o offset no sinal

Analisando o circuito, encontra-se que a saída V_{off} é dada por:

$$V_{off} = \frac{1}{10k} (1000 + 3,8505T) \left(1 + \frac{R_{13}}{R_{12}} \right) - V_{cc} \frac{R_{13}}{R_{12}}$$
(38)

Para condizer com o funcionamento do sensor, precisa-se que $V_{off}=0$ quando a temperatura for 0°C. Então:

$$0 = \frac{1}{10k} (1000 + 3,8505 \cdot 0) \left(1 + \frac{R_{13}}{R_{12}} \right) - V_{cc} \frac{R_{13}}{R_{12}}$$

$$V_{cc} \frac{R_{13}}{R_{12}} = \frac{\left(1 + \frac{R_{13}}{R_{12}} \right)}{10}$$

$$R_{12} = (10V_{cc} - 1)R_{13}$$
(39)

A partir disso, conclui-se que $R_{12}=119R_{13}.$ Substituindo na equação (38), tem-se:

$$V_{off} = \frac{1359}{3500} mT \tag{40}$$

Também é essencial que, quando a temperatura for 100°C, a tensão do sinal seja igual a 6 V. Dessa forma aplica-se um ganho utilizando o circuito abaixo:

Figura 12: Circuito para aplicar um ganho no sinal

A saída do circuito é: $V_s = V_{off} \left(1 + \frac{R_{15}}{R_{14}}\right)$. Deseja-se que:

$$V_s = 6V|_{T=100} \Rightarrow 6 = \frac{1359}{3500} m \cdot 100 \cdot \left(1 + \frac{R_{15}}{R_{14}}\right) \Rightarrow$$

$$R_{15} = \frac{208641}{1359} R_{14}$$

$$R_{15} \approx 153, 53R_{14}$$

$$(41)$$

Com isso, é obtida a função do ganho do sensor: $\frac{V_s}{T}=\frac{21}{350}=0,06$. A partir do sinal V_s é colocado um *buffer* para que o sinal seja isolado e não sofra interferências do sensor:

Figura 13: Circuito *buffer* para o sinal V_s

2.5 COMPENSADOR

Para que possa ser projetado um compensador, é necessário gerar um sinal de erro. O sinal de erro é gerado a partir de uma referência e do sinal do sensor obtido anteriormente. Os sinais são aplicados em um circuito subtrator como demonstrado a seguir:

Figura 14: Circuito gerador do sinal de referência

O circuito funciona com um divisor de tensão feito a a partir de um resistor e um potenciômetro, ambos com o mesmo valor de resistência, pois assim a tensão V_{cc} de 12 V poderá ser dividida pela metade. Consequentemente, a tensão na entrada não-inversora do amplificador operacional irá variar de 0 V a 6 V, dependendo da posição do potenciômetro. Como o amplificador está operando na configuração de

buffer, a saída do circuito será um sinal que varia na mesma faixa de tensão, e será utilizado como referência.

Figura 15: Circuito subtrator

O sinal de referência, junto com o sinal de saída do *buffer* isolador, são colocados como entradas de um amplificador operacional que funciona como subtrator. Dessa forma, considerando que todas as resistências do circuito subtrator são iguais, o sinal de saída será $V_{erro} = V_{ref} - V_{bs}$.

2.6 PROJETO DO CONTROLADOR

2.6.1 Ganhos dos Sistema

Com a função de transferência da planta, inicia-se o projeto do controlador. Porém, para isso, deve-se considerar os ganhos do sistema. Como o ganho do sensor de temperatura encontrado foi de 0,06, esse ganho é inserido na planta. Outro ganho a ser considerado é o ganho que ajustará a referência do sistema. O ganho que ajusta a referência é de $\frac{1}{R} = \frac{1}{16,219}$, em que 16,219 é referente à resistência da chaleira. Além disso, há o ganho K_{ph} , que é de $2,39\cdot 10^{-4}$, como visto em (17). O ganho do relé de estado sólido é dado por $\frac{127^2}{6} = 2688,1667$. Para simplificar a equação, mutiplica-se os ganhos. o que resulta no ganho K.

$$K = K_{sensor} \cdot K_{rel\acute{e}} \cdot K_{ph} \cdot \frac{1}{R} = 2,3767 \cdot 10^{-3}$$
 (42)

$$G_s = K \cdot \frac{8039}{3082s + 1} = \frac{6,1994 \cdot 10^{-4}}{s + 3,24464}$$
 (43)

2.6.2 Controlador

De acordo com a teoria, um controlador proporcional integral (PI) zera o erro em regime permanente, que é o objetivo do projeto. O controlador pode ser definido por:

$$G_{PI} = K_P \frac{s + \frac{K_I}{K_P}}{s} \tag{44}$$

Pela equação acima, nota-se que o controlador PI adiciona um polo na origem em malha aberta. Pode-se anular o efeito desse polo fazendo com que o zero do compensador esteja próximo ao polo. Fechando a malha do sistema, obtém-se:

$$G_{cs} = \left(K_P + \frac{K_I}{s}\right) \frac{6,1994 \cdot 10^{-4}}{s + 3,2446 \cdot 10^{-4}} \tag{45}$$

$$T_s = \frac{6,1994 \cdot 10^{-4} \cdot (sK_P + K_I)}{s^2 + 6,1994 \cdot 10^{-4}(sK_P + K_I) + 3,2446 \cdot 10^{-4}}$$
(46)

Comparando T_s com a equação característica do sistema a malha fechada de segundo grau:

$$\frac{\omega_n^2}{s^2 + 2\omega_n \zeta s + \omega_n^2} = \frac{6,1994 \cdot 10^{-4} \cdot (sK_P + K_I)}{s^2 + 6,1994 \cdot 10^{-4} (sK_P + K_I) + 3,2446 \cdot 10^{-4}}$$
(47)

$$2\omega_n \zeta = 6,1994 \cdot 10^{-4} \cdot sK_P \tag{48}$$

$$\omega_n^2 = 6{,}1994 \cdot 10^{-4} \cdot (sK_P + K_I) \tag{49}$$

Tomando $\zeta=1$ para evitar sobressinal na resposta, para calcular ω_n adota-se o tempo de assentamento como 300s.

$$\omega_n = \frac{4}{\zeta t_s} = 13,30 \cdot 10^{-3} \tag{50}$$

A partir desses valores foi obtido os valores de K_P e K_I , sendo 43,0121 e 0,28678 respectivamente.

Para implementar o controlador com estes ganhos foram montados os seguintes circuitos:

Figura 16: Controlador integrador

Na figura 16, tem-se um integrador seguido de um inversor que possui a saída dada por $V_{int}=\frac{\frac{1}{R_{21}C_4}}{s+\frac{1}{C_4R_{22}}}V_{erro}$, escolhendo $C_4=2.2\mu F$, obtem-se a relação $K_i=0,28678=\frac{1}{R_{21}C_4}=\frac{1}{R_{21}2,2\mu}\Rightarrow R_{21}=\frac{M}{2,2\cdot0,28678}=1,5849M$, ná prática usa-se $R_{21}=1,6M\Omega$ e novamente $R_{22}\geq R_{21}$ para o circuito funcionar como um integrador, garantindo essa relação usa-se $R_{21}=20M\Omega$.

Já na figura 17 abaixo, o ganho proporcional encontra-se da relação $V_{pro}=V_{erro}(1+\frac{R_{24}}{R_{23}})$ ou seja, $K_p=43,0121=1+\frac{R_{24}}{R_{23}}\Rightarrow R_{24}=42,0121R_{23},$ comercialmente usa-se $R_{24}=39K\Omega eR_{23}=1K\Omega.$

Tendo os sinais V_{int} e V_{pro} , soma-se estes pelo circuito mostrado na figura 18, no qual considera-se $R_{25}=R_{27}=R_{26}=R_{28}=1K\Omega$ e dessa forma obtem-se $V_{pi}=V_{int}+V_{pro}$

Figura 17: Controlador proporcional

Figura 18: Controlador proporcional integral

Figura 19: Sinal PWM compensado, sinal do controlador pi e sinal triangular

3 RESULTADOS

3.0.1 Resultados Teóricos

Para verificar o funcionamento do projeto, foi feita uma simulação utilizando o *software* MATLAB. O controlador foi descrito usando o diagrama de blocos a seguir:

Figura 20: Diagrama de blocos do controlador

A partir desse sistema foi obtida a curva do sinal de saída para uma entrada equivalente à 70°C:

Figura 21: Sinal de saída do sistema simulado

Que condiz com o que foi projetado, uma vez que o tempo de assentamento foi de aproximadamente 300 segundos.

3.0.2 Resultados Experimentais

Uma vez que o circuito foi montado em uma *protoboard*, foram novamente colocados 500 ml de água no mesmo recipiente metálico usado anteriormente. Com a referência ajustada para 4,2 V, que equivale à 70°C, foi obtida a curva abaixo, capturada a partir de um multímetro medidor de temperatura:

Figura 22: Sinal de saída do sistema

Como observado, existe uma ultrapassagem do valor desejado, visto que a temperatura máxima registrada foi de 76,4°C. Isso pode ser atribuído ao fato de que a água tem uma convexão muito lenta, ou seja, existe uma diferença na temperatura na região que está mais próxima do sensor pra região mais distante. Dessa forma, a região que está mais próxima do aquecedor aquece mais que a região que está próxima do sensor, causando uma divergência na temperatura desejada. Nota-se que o valor começa em aproximadamente 25 °C, que é devido à temperatura ambiente. O atraso pra começar a aumentar a temperatura deve-se à diferença de tempo entre o início da captura e a ativação do sistema. Além disso, o tempo de assentamento foi de aproximadamente 340 segundos, o que condiz com o valor projetado de 300 segundos. A diferença do valor pode ser atribuída ao fato de que, devido à ultrapassagem, a água teve que esfriar um pouco antes de estabilizar, e isso acarretou num tempo de assentamento ligeiramente maior.

4 CONCLUSÃO

O objetivo do projeto era realizar o ajuste de temperatura de um sistema de acordo com um ponto de referência escolhido pelo operador. Foi utilizado o controlador PI para que o sistema tivesse um erro nulo em regime permanente e alcançasse a estabilidade de maneira mais rápida.

Devido à alguns problemas de ruído do sensor escolhido, dos erros dos componentes e da não homogeneidade do sistema, os resultados divergiram um pouco mas se mantiveram dentro do esperado.

Dessa forma, é possível afirmar que o objetivo foi cumprido de maneira satisfatória, uma vez que os parâmetros definidos para funcionamento do sistema foram os mesmos observados na prática.

REFERÊNCIAS

BALOGH, L. Fundamentals of MOSFET and IGBT Gate Driver Circuits. 2018. Disponível em: http://www.ti.com/lit/ml/slua618a/slua618a.pdf. Acesso em: 30 set. 2019.

BRAGA, Newton C. Relés de estado sólido. Instituto Newton Braga, 2014. Disponível em: ¡http://www.newtoncbraga.com.br/index.php/como-funciona/1436- art210.html¿. Acesso em: Novembro 2019.

BOYLESTAD, R. L.; NASHELSKY, L. Dispositivos eletrônicos e teoria de circuitos. Prentice-Hall do Brasil, 1984.

INCROPERA, Frank P. Fundamentos de Transferência de Calor e Massa. 6. ed. Rio de Janeiro: Ltc, 2008.

MALVINO, A. e BATES, D. J. Eletrônica. 7a ed. AMGH Editora Ltda. 2007. Vol. 2.

NISE, Norman S. CONTROL SYSTEMS ENGINEERING. California State Polytechnic University, Pomona: John Wiley and Sons, Inc., 2006.

OGATA, Katsuhiko. Engenharia de Controle Moderno.Livros Técnicos e Científicos Editora S.A, 2000.

INSTRUMENTS, Texas. TL08XX JFET - Input Operational Amplifiers. 1977. 50p.TI. Dallas, 1977. Disponível em: ¡http://www.ti.com.cn/cn/lit/ds/symlink/tl084.pdf¿. Acesso em: Setembro 2019.