

CSC 202: Discrete Structures for Computer Science

Practice Problem Solutions

April 21, 2010

Problem 1

$$(p \leftrightarrow q) \land (\overline{p} \rightarrow r) \equiv (T \leftrightarrow T) \land (F \rightarrow T) \equiv T \text{ when } p = T, q = T, \text{ and } r = T.$$

Problem 2

Construct a truth table for the proposition $(p \lor q) \rightarrow (p \land q)$

p	q	(p V q)	$(p \land q)$	$(p \lor q) \to (p \land q)$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	F	T

Problem 3

Show that $(p \leftrightarrow q)$ is logically equivalent to $(p \rightarrow q) \land (q \rightarrow p)$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T

Problem 4

Show that $(p \land q) \rightarrow p$ is a tautology

p	q	$(p \land q)$	$(p \land q) \rightarrow p$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

Problem 5

Find a formula in disjunctive normal form that is equivalent to $(p \lor q) \to (p \land q)$

The truth table for this formula is given above. A formula in DNF that is equivalent to it is $(p \land q) \lor (\overline{p} \land \overline{q})$

Problem 6

- a) False
- b) True
- c) True
- d) True

Problem 7

 $P(P(\emptyset)) = P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$

Problem 8

If $A = \{1, 2\}$, $B = \{b\}$, and $C = \{one, two\}$, then $C \times B \times A = \{(one, b, 1\}, \{one, b, 2\}, \{two, b, 1\}, \{two, b, 2\}\}$.

Problem 9

 $A \cap \overline{A} = \{x : x \in A \land x \notin A\}$. But an element cannot both be in the set A and not be in the set A. So $\{x : x \in A \land x \notin A\}$ must be empty.

Problem 10

R(x,y) ="x = y + 1 or x = y - 1" is not reflexive since $x \ne x + 1$ and $x \ne x - 1$ for all integers x.

R(x,y) ="x = y + 1 or x = y - 1" is anti-reflexive since since $x \ne x + 1$ and $x \ne x - 1$ for all integers x.

R(x,y) ="x = y + 1 or x = y - 1" is symmetric since if x = y + 1 or x = y - 1, then y = x - 1 or y = x + 1 using basic algebra.

R(x,y) ="x = y + 1 or x = y - 1" is not anti-symmetric. Suppose x = y + 1 or x = y - 1 and y = x + 1 or y = x - 1. There are four cases:

- 1. x = y + 1 and y = x + 1. This isn't possible since it would mean that x = y + 1 = (x + 1) + 1 = x + 2.
- 2. x = y + 1 and y = x 1. While this is possible, it does mean that $x \neq y$.
- 3. x = y 1 and y = x + 1. Again this is possible, but it again means that $x \neq y$.
- 4. x = y 1 and y = x 1. This isn't possible since it would mean that x = y 1 = (x 1) 1 = x 2.

R(x,y) ="x = y + 1 or x = y - 1" is not transitive since for x = 3, y = 2, and z = 1, we have that x = y - 1 and y = z - 1 but $x \ne z + 1$ and $x \ne z - 1$.

Problem 11

- a) The relation is reflexive and symmetric.
- b) The relation is neither reflexive nor symmetric.
- c) The relation is not reflexive but is symmetric.

Problem 12

(b), (c), (e), and (f)

Problem 13

- a) True because all the odd numbers in D are positive.
- b) False. The counterexamples are x = 16, x = 26, x = 32, and x = 36.

Problem 14

- a) $(\exists x)[x(x+1) > 0 \land x \le 0 \land x \ge -1]$
- b) $(\exists x) (\exists y) (\exists z) [x y \text{ is even and } b c \text{ is even, but } a c \text{ is odd}]$

Problem 15

- a) True. If you choose -x, then x + (-x) = 0.
- b) False. There is no real number that when added to all real numbers, produces 0.