

厦门大学《微积分 I-1》课程期中试卷

试卷类型: (理工类A卷) 考试日期: 2016.11.12

1.	分数	阅卷人

(10分) 求下列极限:

(1)
$$\lim_{x \to \infty} \left(x^2 + x^{\frac{2}{3}} \right) \left(e^{\frac{2}{x^2}} - e^{\frac{1}{x^2 + x + 1}} \right);$$

(2)
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+2n}} \right) \circ$$

2.	分数	阅卷人

(20分) 求下列极限:

(1)
$$\lim_{x\to 0} \left(\frac{2^x+3^x+4^x+5^x}{4}\right)^{\frac{1}{x}};$$

$$(2) \lim_{x \to 1} \frac{x - x^x}{1 - x + \ln x};$$

(3)
$$\lim_{x \to 0} \frac{(\sin x - x)(x^2 + \ln(1 - x^2))}{x^3 \left(e^{-\frac{x^2}{2}} - \cos x\right)};$$

(1)
$$\lim_{x \to 0} \left(\frac{2^x + 3^x + 4^x + 5^x}{4} \right)^{\frac{1}{x}};$$
 (2) $\lim_{x \to 1} \frac{x - x^x}{1 - x + \ln x};$
(3) $\lim_{x \to 0} \frac{(\sin x - x)(x^2 + \ln(1 - x^2))}{x^3 \left(e^{-\frac{x^2}{2}} - \cos x\right)};$ (4) $\lim_{x \to \infty} \left[e^{\frac{1}{x}} (x^2 - x + 1) - \sqrt{1 + x^4} \right].$

3.	分数	阅卷人

(10分) 设函数 $f(x) = \begin{cases} x^k \sin \frac{1}{x}, & x < 0, \\ x^2 + a, & x \ge 0, \end{cases}$ 要使 f(x) 在 \mathbb{R} 上 一阶导数连续,数 k, a 应如何取值。

4.	分数	阅卷人

(10分) 证明数列 $x_1 = 2$, $x_{n+1} = \sqrt{3x_n}$, n = 1, 2, 3, ... 极限存在,并求出极限。

5.	分数	阅卷人

[] (10分) 求星形线 $\begin{cases} x = a\cos^3\theta \\ y = a\sin^3\theta \end{cases}$ 在 $\theta = \frac{\pi}{4}$ 处的二阶导数 $\frac{d^2y}{dx^2}$ 的值。

6.	分数	阅卷人

(10分) 设函数 f(x) 在 [0,2] 上连续,在 (0,2) 内可导,且 $f(0)\cdot f(2)>0, f(0)\cdot f(1)<0$ 。证明存在 $\xi\in(0,2)$,使 得 $f'(\xi)=2f(\xi)$ 。

7.	分数	阅卷人

(10分) 设函数 f(x) 在 [0,n] 上连续(n 为自然数, $n \ge 2$), f(0) = f(n)。 证明存在 $\xi, \xi + 1 \in [0,n]$,使得 $f(\xi) = f(\xi + 1)$ 。

8.	分数	阅卷人

(10分) 已知函数 $f(x) = \arctan x + \sin x$,求 $f^{(11)}(0)$ 。

9. 分数 阅卷人

(10分) 设函数 f(x) 在 \mathbb{R} 上三阶可导,并且满足 $\forall x \in \mathbb{R}, |f(x)| \le 1, |f'''(x)| \le 1$ 。证明: $\forall x \in \mathbb{R}, |f'(x)|^3 \le \frac{9}{8}$ 。