Particle spectrograph

Wave operator and propagator

-	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$ $\alpha_{1}^{\#1}$ α_{β} $\alpha_{1}^{\#1}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$t_{1}^{\#1}$	$ au_1^{\#2}$
$ \alpha^{\beta} $	$\frac{1}{k^2 (2 r_3 + r_5)}$	0	0	0	0	0	0
$+^{\alpha\beta}$	0	0	0	0	0	0	0
$+^{\alpha eta}$	0	0	0	0	0	0	0
$+^{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$r_1^{\#2} + \alpha$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$+^{\alpha}$	0	0	0	0	0	0	0
.#2 +α 1- +α	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

Quadratic (free) action $S_{F} == \begin{cases} S_{F} = S$
--

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\sharp 1}{}_{\alpha\beta\chi}$		$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2^{+}}^{\#1}\dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0	$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$f_2^{#1} \dagger^{\alpha\beta}$	0	0	0	$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	$\sigma_2^{\#1}\dagger^{lphaeta\chi}$	0	0	0

												$\omega_{0}^{\#1}$		$f_0^{\# \pm} + \frac{i \sqrt{2} kt}{\sqrt{0}}$	$\omega_{0}^{\#1} + 0$	
וכומנטופ	ities											$\sigma_{0}^{\#1}$	0	0	0 β	0
مر عومه	Multiplicities	1	1	1	3	Ж	Э	3	5	5	25	$\tau_0^{#2}$	$\left(\frac{2k}{2}\right)^2 t_3 = 0$	$\frac{1}{10^{2}t_{3}}$ 0	0	0
all 1.57 y				== 0	$_{1}^{\#2}\alpha == 0$						ints:	$\tau_0^{\#1}$	$\begin{vmatrix} - & i \sqrt{2} k \\ - (1+2k^2)^2 t_3 \end{vmatrix}$	$\begin{array}{c c} & 2k^2 \\ \hline & (1+2k^2)^2 t_3 \end{array}$	0	0
Joan de compandimos/gaage gemenators	SO(3) irreps	0 ==	0 ==	$ik \sigma_0^{\#1}$	$' + 2ik \sigma_1^{\#2}\alpha$	0 == ,	<i>t</i> β == 0	0 == <i>θ</i> κ	0 == χ _θ χ	<i>t</i> β == 0	Total constraints:	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
500	SO(3	$\sigma_{0}^{\#1}$ =	$\tau_{0}^{\#2} =$	$\tau_{0}^{\#1}$ -	$\tau_{1}^{\#2\alpha}$	$\tau_{1}^{\#_{1}\alpha}$	$\tau_1^{\#1} \alpha \beta$	$\sigma_1^{\#2}\alpha\beta$	$\sigma_{2}^{#1}{}^{\alphaeta\chi}$	$\tau_2^{\#1}\alpha\beta$	Tota		$r_{0}^{#1}$ †	$\tau_{0}^{\#1}$ $+$	$\tau_{0}^{\#2} +$	$J_0^{\#1}$ †

 $\sqrt{2} kt_3$

 $2\,k^2\,t_3$

0 0

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$