Equations delle onde

Of
$$u - c^2 \Delta u = 0$$
 in $Q \subseteq \mathbb{R}^{n+1}$
 $c \in \mathbb{R}$ é une costoute e si serve $Q \times (Q + \infty)$
 c^2 nell'epressione per assicurare les cou $Q \subseteq \mathbb{R}^n$

vou-repativité del coefficiente che moltiplice

 Δu .

Shedierous soupre il caso n=1, quindi S2 ⊆ 1R.

Il caso
$$\Omega = R$$

$$\partial_{+}^{2}u - c^{2}\partial_{x}^{2}u = 0 \quad \text{in } \mathbb{R} \times (0, +\infty)$$

Scrivious:

$$(\partial_{t} + c\partial_{x})[(\partial_{t} - c\partial_{x})u] = 0 \quad \text{in } \mathbb{R} \times (o, +\infty)$$

$$(\partial_{t} + c\partial_{x})[(\partial_{t}u - c\partial_{x}u]$$

$$(\partial_{t}(\partial_{t}u - c\partial_{x}u) + c\partial_{x}[\partial_{t}u - c\partial_{x}u]$$

$$(\partial_{t}u - c\partial_{x}u) + c\partial_{x}[\partial_{t}u - c\partial_{x}u]$$

Pouraus:

$$\sigma(x_it) := \partial_t u(x_it) - c\partial_x u(x_it)$$

da wi

Durque l'ep. delle oude à specialente ad en sisteme di due epue soui del trasporto liveani.

La (i) é un'ep. del trosporto del tipo di quelle già studiate. Jue poniamo una condisione inisiale per risolable:

 $= u_1(x) - e_{u_0}(x)$

Oss. Poiche l'epus rione delle onde è del scando ordine in tempo, sene asseprane due condirioni iniziali, precisamente:

$$u = u_0$$
, $x \in \mathbb{R}$, $t = 0$.
Qu= u_1 , $x \in \mathbb{R}$, $t = 0$.

La soluzione di (i) si scrive:

$$\vartheta(x_it) = \vartheta_0(x_{-et}) \longrightarrow dato initiale per \vartheta$$

$$= u_1(x_{-et}) - eu_0(x_{-et}).$$

Nota o, troviamo a risolvendo

$$\begin{cases} \partial_t u - c \partial_x u = \emptyset, & \text{in } \mathbb{R} \times (0, +\infty) \\ u = u_0, & \text{in } \mathbb{R}, t = 0. \end{cases}$$

la rovita é che il termine forzante vou à recessariannente

Risoluzione dell'epuss. del tresporto linere con termine for = Zante van vullo

· caratteristicle:
$$\frac{dx}{dt} = -c \Rightarrow x(t) = -et + x_0$$

(Xo ER proble dous conatteristica)

· restribione alla conatteristiche:

$$\hat{u}(t) := u(x(t),t)$$

$$\frac{d\hat{u}}{dt} = \partial_t u(x(t),t) + \partial_x u(x(t),t) \cdot \frac{dx(t)}{dt}$$

$$= \partial_t u(x(t),t) - e\partial_x u(x(t),t)$$

$$= \partial_t u(x(t),t)$$

da cui:

$$\int_{0}^{t} \frac{d\hat{u}(s)}{ds} ds = \int_{0}^{t} \sigma(x(s), s) ds$$

$$\hat{u}(t) - \hat{u}(0) = \int_{0}^{t} \sigma(x(s), s) ds$$

$$\hat{u}(t) = \hat{u}(0) + \int_{0}^{t} \sigma(x(s), s) ds$$

$$u(x(t), t) = u(x(0), 0) + \int_{0}^{t} \sigma(x(s), s) ds$$

$$w(x(t),t) = wo(x(t)+ct) + \int_0^t v(x(s),s)ds$$

$$= wo(x(t)+ct)$$

$$+ \int_0^t \left[w_1(x(s)-cs)-cwo(x(s)-cs)\right]$$

$$ds$$

=
$$u_0(x(t)+ct)$$

+ $\int_0^t \left[u_1(-cs+x_0-cs)\right] ds$.
- $cu_0(-cs+x_0-cs)$] ds .

Da quests es pressione, preso sur generico punto $(x,t)\in\mathbb{Q}$ in cui calcolore la solutione u, abbiano che la carate teristica passante per (x,t) ha equestare $X=-ct+x_0$ e quindi $x_0=x+ct$ da cui:

$$u(x_{i}t) = u_{0}(x+ct) + \int_{0}^{t} \left[u_{1}(x+ct-2cs) - cu_{0}(x+ct-2cs)\right] ds$$

$$= u_{0}(x+ct) + \int_{0}^{x-ct} \left[u_{1}(x) - cu_{0}(x)\right] \left(-\frac{1}{2c}\right) dx$$

$$= x+ct-2cs$$

$$x+ct$$

$$= u_{0}(x+ct) + \frac{1}{2c} \int_{x-ct}^{x+ct} [u_{1}(\xi) - cu_{0}(\xi)] d\xi$$

$$= u_{0}(x+ct) + \frac{1}{2c} \int_{x-ct}^{x+ct} u_{1}(\xi) d\xi$$

$$- \frac{1}{2c} \cdot c \int_{x-ct}^{x+ct} u_{0}(\xi) d\xi$$

$$= u_{0}(x+ct) - u_{0}(x-ct)$$

$$= u_{0}(x+ct) - \frac{1}{2} u_{0}(x+ct) + \frac{1}{2} u_{0}(x-ct)$$

$$+ \frac{1}{2c} \int_{x-ct}^{x+ct} u_{1}(\xi) d\xi$$

Tue definitions:

$$u(x;t) = \frac{1}{2} \left(u_0(x+ct) + u_0(x-ct) \right) + \frac{1}{20} \int_{x-ct}^{x+ct} u_1(z) dz$$

Puesto formule di rappresente sione delle sobresione delle probleme di Cauchy per l'epuestione delle sude:

$$\begin{cases} Q_t^2 u - c^2 \partial_x^2 u = 0 & \text{in } \mathbb{R} x(0, +\infty) \\ u = u_0 \\ \partial_t u = u_1 \end{cases} \text{ in } \mathbb{R}, t = 0$$

si chiama formula di d'Alembert.

Casi particolori

· Se 4=0:

$$u(x_{i}t) = \frac{1}{2} \left(u_{0}(x+ct) + u_{0}(x-ct) \right)$$

· Se uo = 0:

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(x) dx$$
.

Sia $U_{1}(\xi) = \int_{\infty}^{\xi} u_{1}(y) dy$

une primitive de uz. Alors:

$$u(x_{t}t) = \frac{1}{2c} \left(U_{1}(x+ct) - U_{1}(x-ct) \right)$$

le solutione le cerca le strutture di due profilie d'onde de viaggions in veri opposi con relocité costanti di uquele modulo (cl.