1 Lecture Review

1.1 Orthogonality of Subspaces

- 1. If V, W are vector subspaces of \mathbb{R}^n , we say that V and W are orthogonal if for every $v \in V$ and $w \in W$ we have $v^T w = 0$.
- 2. Given a vector subspace V of \mathbb{R}^n , we denote by V^{\perp} the set of all vectors $w \in \mathbb{R}^n$ which are orthogonal to all vectors in V; that is $v^T w = 0$ for every $v \in V$. We call V^{\perp} the orthogonal complement of V.
- 3. $(V^{\perp})^{\perp} = V$.
- 4. Given an $m \times n$ matrix A,

$$Col(A)^{\perp} = LeftNull(A), \quad Row(A)^{\perp} = Null(A).$$

1.2 Linear Transformations

1. Let V and W be vector spaces. A function T from V to W is linear if for every $v_1, v_2 \in V$ and $c_1, c_2 \in \mathbb{R}$ we have

$$T(c_1v_1 + c_2v_2) = c_1T(v_1) + c_2T(v_2).$$

2 Problems

- 1. Let V be a vector subspace of \mathbb{R}^n . Check that V^{\perp} is a vector space.
- 2. Find bases and dimensions for the four fundamental subspaces associated with the following matrices

(a)
$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 8 \end{pmatrix}$, (c) $\begin{pmatrix} 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$, (d) $\begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$.

- 3. Let A be an $m \times n$ matrix with full form singular value decomposition $U\Sigma V^T$. If A has rank r, find a basis for the following subspaces in terms of columns of U or V: (a) Col(A), (b) LeftNull(A), (c) Row(A), (d) Null(A).
- 4. Suppose $\mathbf{v} = (a, b, c) \in \mathbb{R}^3$ is a nonzero vector. Viewing \mathbf{v}^T as a 1×3 matrix, find a basis for: (a) $\operatorname{Col}(\mathbf{v}^T)$, (b) LeftNull(\mathbf{v}^T), (c) Row(\mathbf{v}^T). (d) Using the fact that $\operatorname{Row}(\mathbf{v}^T)^{\perp} = \operatorname{Null}(\mathbf{v}^T)$, explain how this shows that the orthogonal complement of a plane is spanned by its normal vector.
- 5. Let A be an $n \times n$ orthogonal matrix with column vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$. Show that the orthogonal complement of $\operatorname{span}(\mathbf{a}_1, \dots, \mathbf{a}_r)$ is $\operatorname{span}(\mathbf{a}_{r+1}, \dots, \mathbf{a}_n)$.
- 6. Suppose W is a vector subspace of \mathbb{R}^n . For any $\mathbf{v} \in \mathbb{R}^n$ check that $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$ for some $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$. Using the Pythagorean theorem, show that the vector $\mathbf{w} \in W$ which minimizes $\|\mathbf{v} \mathbf{w}\|$ is given by \mathbf{w}_1 .
- 7. Let V and W be vector spaces. Explain why a linear transformation T from V to W must send the zero vector in V to the zero vector in W.
- 8. Check whether the following maps are linear transformations:

(a)
$$T(x,y) = (x-y,x+y)$$
, (b) $T(x,y,z) = (x+1,y+1,z+1)$, (c) $T(x,y) = (xy,x)$, (d) $T(x,y,z) = (x+y+z,y+z,z)$.

For the instances where T is a linear transformation, can you find a matrix A such that

$$T(x,y) = A \begin{pmatrix} x \\ y \end{pmatrix}$$
 or $T(x,y,z) = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.