Chapter 1. 한눈에 보는 머신러닝

[왕초보 머신러닝 파티 시즌 2] POSTECH GSAI 박사과정 이성헌

1.1 머신러닝이란?

- 머신러닝은 **명시적인 프로그래밍 없이** 컴퓨터가 학습하는 능력을 갖추게 하는 연구 분야다._아서 새뮤얼, 1959
 - 머신러닝은 문제 푸는 방법을 일일이 가르쳐주는 것이 아니라 **문제집만 던져주면 컴퓨터가 독학하는 것**이다. _이성헌, 2022

• 전통적인 접근 방법 : Rule Based Model

• 머신러닝 접근 방법 : Data Based Model

Rule Based Model

- 데이터의 패턴을 직접 설계 해야함
- 새로운 패턴을 찾으려면 새 알고리즘을 만들어야 함
- 데이터가 많으면 계산 복잡도가 커질 수 있음
- 문제에 대한 전문적인 지식을 필요로 함
- 모델의 결과에 대해 이론적으로 설명하기 용이함
- 데이터가 적어도 잘 작동하는 모델을 설계할 수 있음

Data Based Model

- 데이터의 패턴을 스스로 학습함
- 새로운 패턴도 스스로 찾음
- 많은 양의 데이터를 처리하는 것에 특화됨
- 상대적으로 문제에 대한 지식을 덜 요구함
- 모델의 결과에 대해 이론적으로 설명하기 어려움
- 데이터가 적으면 모델의 신뢰도를 얻기 어려움

Data Mining

- 데이터로부터 유용한 패턴을 자동적으로 추출하는 기법
- 머신러닝의 솔루션을 분석해 어려운 문제를 더 잘 이해할 수 있음
 - Ex) Random Forest Model ☐ Feature Importance

1.4.1 지도 학습과 비지도 학습

• 지도학습: 답지가 있는 문제집으로 공부하는 모델.

훈련 데이터

• 1.4.1 지도 학습과 비지도 학습

- 지도학습: 답지가 있는 문제집으로 공부하는 모델.
- Prediction function \bar{f} 을 최대한 f에 가깝게 근사시키는 것이 목적.

- 1.4.1 지도 학습과 비지도 학습
 - 비지도학습: 답지가 없는 문제를 푸는 모델
 - 군집: 유사한 패턴의 데이터끼리 묶는 문제

ISTJ

세상의 소금형

한번 시작한 일은 끝까지 해내는 사람들

ISFJ

임금 뒤편의 권력형

성실하고 온화하며 협조를 잘하는 사람들

INFJ 예언자형

사람과 관련된 뛰어난 통찰력을 가지고 있는 사람들

과학자형

INTJ

전체적인 부분을 조합하여 비전을 제시하는 사람들

ISTP

백과사전형

논리적이고 뛰어난 상황 적응력을 가지고 있는 사람들

ISFP

성인군자형

따뜻한 감성을 가지고 있는 겸손한 사람들

INFP 잔다르크형

이상적인 세상을 만들어 가는 사람들

INTP

아이디어 뱅크형

비평적인 관점을 가지고 있는 뛰어난 전략가들

ESTP

수완좋은 활동가형

친구, 운동, 음식 등 다양한 활동을 선호하는 사람들

ESFP

사교적인 유형

분위기를 고조시키는 우호적 사람들

ENFP 스파크형

열정적으로 새로운 관계를 만드는 사람들

ENTP 발명기형

풍부한 상상력을 가지고 새로운 것에 도전하는 사람들

ESTJ

사업가형

사무적, 실용적, 현실적으로 일을 많이하는 사람들

ESFJ

친선도모형

친절과 현실감을 바탕으로 타인에게 봉사하는 사람들

ENFJ

언변능숙형

타인의 성장을 도모하고 협동하는 사람들

ENTJ

지도자형

비전을 가지고 사람들을 활력적으로 이끌어가는 사람들

• 1.4.1 지도 학습과 비지도 학습

- 비지도학습: 답지가 없는 문제를 푸는 모델
 - 군집: 유사한 패턴의 데이터끼리 묶는 문제
 - 주어진 데이터 셋 χ 에 대하여, χ 가 따르는 분포를 추정하는 문제
 - K-means clustering, DBSCAN, t-SNE ...

• 1.4.1 지도 학습과 비지도 학습

- 비지도학습: 답지가 없는 문제를 푸는 모델
 - 이상(특이)치탐지: 정상 데이터에 섞인 소량의 이상(특이)치를 감지

1.4 머신러닝시스템의 종류

• 1.4.1 지도 학습과 비지도 학습

- 비지도학습: 답지가 없는 문제를 푸는 모델
 - 이상(특이)치탐지 : 정상 데이터에 섞인 소량의 이상(특이)치를 감지

1.4 머신러닝시스템의 종류

• 강화학습 (Reinforcement Learning)

• 에이전트와 환경이 상호작용하며 최적의 행동을 찾아나가는 모델

• 1.5.1 충분하지 않은 양의 훈련 데이터

- 머신러닝은 데이터가 많을 수록 더 많은 패턴을 더 정확히 학습합니다.
- 문제를 많이 풀어봐야 시험을 잘 칠 수 있는 것과 마찬가지.
- 그러나, 실전에서 좋은 데이터를 충분히 많이 얻기는 어렵습니다.

• 1.5.2 대표성 없는 훈련 데이터

- 훈련 데이터가 모집단을 잘 대표해야 정확한 모델을 얻을 수 있습니다.
- 지엽적인 문제만 풀어서는 좋은 성적을 얻기 힘든 것과 마찬가지.
- 그러나, 생각보다 편향된 데이터가 수집되기가 쉽습니다.

• 1.5.3 낮은 품질의 데이터

- 훈련 데이터에 에러, 이상치, 노이즈 등이 적어야 잘 작동합니다.
- 오류가 많은 문제집을 풀면 좋은 성적을 얻기 힘든 것과 마찬가지.
- 훈련 데이터의 품질을 정제하고 가공하는 것을 Data Cleansing이라고 합니다.

• 1.5.4 관련 없는 특성

- 훈련 데이터에 쓸모 없는 특성은 적고, 좋은 특성이 많아야 좋은 모델을 얻습니다.
- "쓰레기를 넣으면 쓰레기가 나온다."
- 특성 공학 (Feature engineering)

• 1.5.5 훈련 데이터 과대적합(Overfitting)

- 모델이 훈련 데이터에 대하여 성급한 일반화를 하지 않도록 유의해야합니다.
- "우리 아이가 내신 점수는 잘 받는데, 모의고사만 치면 점수가 떨어져요"
- 오버피팅을 해결하는 것도 중요하지만, 오버피팅이 일어났는지 판단하는 것도 중요.

• 1.5.6 훈련 데이터 과소적합(Underfitting)

- 모델은 데이터의 복잡도를 충분히 반영할만큼 복잡해야합니다.
- "작년 물수능만 보고 준비하면 올해 불수능에서 큰코다칩니다"
- 더 복잡한 모델을 선택하거나 더 좋은 특성을 제공해줍니다.

훈련시킨 모델이 얼마나 좋은지 어떻게 판단할까?

- 훈련 데이터로 오차를 판단해볼까? (NO!)
- 실제 서비스에 바로 론칭해볼까? (NO!)
- 테스트 데이터를 따로 만들어두고 모델을 평가한다! (YES!)

Test data

1.6.1 하이퍼파라미터 튜닝과 모델 선택

• 모델 A를 사용할까? 모델 B를 사용할까?

Test set으로 두 모델의 일반화 오차를 평가해서 선택

1.6.1 하이퍼파라미터 튜닝과 모델 선택

• 모델 A의 파라미터를 어떻게 결정할까?

Validation set(⊂ Train set)으로 평가 (Cross-Validation)

1.6.1 하이퍼파라미터 튜닝과 모델 선택

K-fold Cross Validation (CV)

Pipeline Summary

