

Partha Pratim Das

Objectives 8
Outline

Decomposition
Practice Problems

Practice Problems

Preservation

Practice Problems

Module Summary

Database Management Systems

Module 25: Relational Database Design/5

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 25

Partha Pratin Das

Objectives & Outline

Lossless Join
Decomposition
Practice Problem

Dependency Preservation
Practice Problem

Module Summa

• Studied Algorithms for Properties of Functional Dependencies

Module Objectives

Module 25

Partha Pratir Das

Objectives & Outline

Lossless Join
Decomposition
Practice Problem

Dependency Preservation

Practice Problem

Module Summa

- To Understand the Characterizations for Lossless Join Decomposition
- To Understand the Characterizations for Dependency Preservation

Module Outline

Module 25

Partha Pratii Das

Objectives & Outline

Decomposition
Practice Problems

Dependency Preservation Practice Problem

Module Summar

- Lossless Join Decomposition
- Dependency Preservation

Partha Pratio

Objectives Outline

Lossless Join Decomposition

Dependency Preservation

Module Summa

Lossless Join Decomposition

Lossless Join Decomposition

Module 25

Partha Pratir Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Dependency Preservation Practice Problems • For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r)$$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :
 - $\circ R_1 \cap R_2 \to R_1$
 - $\circ R_1 \cap R_2 \to R_2$
- The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies

To Identify whether a decomposition is lossy or lossless, it must satisfy the following conditions:

- $R_1 \cup R_2 = R$
- $R_1 \cap R_2 \neq \phi$ and
- $R_1 \cap R_2 \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$

Lossless Join Decomposition (2): Example

Module 25

Partha Prati Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Preservation
Practice Problems

- Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)
- Having dependencies: S# \rightarrow Sname, S# \rightarrow City, (S#, P#) \rightarrow Qty
- Decompose as: Supplier($\underline{S\#}$, Sname, City, Qty): Parts($\underline{P\#}$, Qty)
- Take Natural Join to reconstruct: **Supplier** ⋈ **Parts**

S#	Sname	City	P #	Qty	S#	Sname	City	Qty	P#	Qty	S#	Sname	City	P #	Qty
3	Smith	London	301	20	3	Smith	London	20	301	20	3	Smith	London	301	20
5	Nick	NY	500	50	5	Nick	NY	50	500	50	5	Nick	NY	500	50
2	Steve	Boston	20	10	2	Steve	Boston	10	20	10	5	Nick	NY	20	10
5	Nick	NY	400	40	5	Nick	NY	40	400	40	2	Steve	Boston	20	10
5	Nick	NY	301	10	5	Nick	NY	10	301	10	5	Nick	NY	400	40
											5	Nick	NY	301	10
											2	Steve	Boston	301	10

- We get extra tuples! Join is Lossy!
- Common attribute **Qty** is not a superkey in **Supplier** or in **Parts**
- Does not preserve (S#, P#) → Qty

Lossless Join Decomposition (3): Example

Module 25

Partha Prati Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Dependency Preservation Practice Problems Module Summar Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)

• Having dependencies: S# \rightarrow Sname, S# \rightarrow City, (S#, P#) \rightarrow Qty

• Decompose as: Supplier(S#, Sname, City): Parts(S#, P#, Qty)

• Take Natural Join to reconstruct: **Supplier** ⋈ **Parts**

S#	Sname	City	P #	Qty	S #	Sname	City	S#	P #	Qty	S #	Sname	City	P #	Qty
3	Smith	London	301	20	3	Smith	London	3	301	20	3	Smith	London	301	20
5	Nick	NY	500	50	5	Nick	NY	5	500	50	5	Nick	NY	500	50
2	Steve	Boston	20	10	2	Steve	Boston	2	20	10	2	Steve	Boston	20	10
5	Nick	NY	400	40	5	Nick	NY	5	400	40	5	Nick	NY	400	40
5	Nick	NY	301	10	5	Nick	NY	5	301	10	5	Nick	NY	301	10

- We get back the original relation. Join is Lossless.
- Common attribute **S**# is a superkey in **Supplier**
- Preserves all dependencies

Lossless Join Decomposition (4): Example

Module 25

Lossless Join Decomposition

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B, B \rightarrow C\}$

- Can be decomposed in two different ways
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{B\} \text{ and } B \to BC$
 - Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition:
 - $R_1 \cap R_2 = \{A\}$ and $A \to AB$
 - Not dependency preserving (cannot check $B \to C$ without computing $R_1 \bowtie R_2$)

25.9

Partha Pratir Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Preservation
Practice Problems

• Check if the decomposition of R into D is lossless:

- a) $R(ABC) : F = \{A \to B, A \to C\}. D = R_1(AB), R_2(BC)$
- b) $R(ABCDEF): F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, E \rightarrow F\}.$ $D = R_1(AB), R_2(BCD), R_3(DEF)$
- c) $R(ABCDEF): F = \{A \rightarrow B, C \rightarrow DE, AC \rightarrow F\}. D = R_1(BE), R_2(ACDEF)$
- d) $R(ABCDEG): F = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$
 - i) $D1 = R_1(AB), R_2(BC), R_3(ABDE), R_4(EG)$
 - ii) $D2 = R_1(ABC), R_2(ACDE), R_3(ADG)$
- e) $R(ABCDEFGHIJ): F = \{AB \rightarrow C, B \rightarrow F, D \rightarrow IJ, A \rightarrow DE, F \rightarrow GH\}$
 - i) $D1 = R_1(ABC), R_2(ADE), R_3(BF), R_4(FGH), R_5(DIJ)$
 - ii) $D2 = R_1(ABCDE), R_2(BFGH), R_3(DIJ)$
 - iii) $D3 = R_1(ABCD), R_2(DE), R_3(BF), R_4(FGH), R_5(DIJ)$

artha Pratii Das

Objectives Outline

Lossless Join Decompositio Practice Problem

Dependency Preservation

Module Summa

Dependency Preservation

Dependency Preservation

Module 25

Partha Pratii Das

Objectives Outline

Lossless Join Decomposition Practice Problem

Dependency Preservation Practice Problems • Let F_i be the set of dependencies F^+ that include only attributes in R_i

o A decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup \cdots \cup F_n)^+ = F^+$$

• If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive

Let R be the original relational schema having FD set F. Let R_1 and R_2 having FD set F_1 and F_2 respectively, are the decomposed sub-relations of R. The decomposition of R is said to be preserving if

- $F_1 \cup F_2 \equiv F$ {Decomposition Preserving Dependency}
- If $F_1 \cup F_2 \subset F$ {Decomposition NOT Preserving Dependency} and
- $F_1 \cup F_2 \supset F$ {this is not possible}

Dependency Preservation (2): Testing

Module 25

Dependency Preservation

```
• To check if a dependency \alpha \to \beta is preserved in a decomposition of R into D = \{R_1, R_2, \dots, R_n\} we
  apply the following test (with attribute closure done with respect to F)
```

• The **restriction** of F^+ to R_i is the set of all functional dependencies in F^+ that include only attributes of R_i .

```
\circ compute F^+:
   for each schema R_i in D do
      begin
         F_i = the restriction of F^+ to R_i:
      end
   F' = \phi
   for each restriction F<sub>i</sub> do
      begin
         F' = F' \cup F_i
      end
   compute F'^+:
   if (F'^+ = F^+) then return (true)
                    else return (false):
```

• The procedure for checking dependency preservation takes exponential time to compute F⁺ and $(F_1 \cup F_2 \cup \cdots \cup F_n)^+$

Dependency Preservation (3): Example

Module 25

Partha Pratii Das

Objectives Outline

Lossless Join Decomposition Practice Problem

Dependency Preservation Practice Problems • R(A, B, C, D, E, F) $F = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}$

- Decomposition: **R1**(A, B, C, D) **R2**(B, F) **R3**(D, E)
 - \circ A o BCD, BC o AD are preserved on table R1
 - \circ $B \rightarrow F$ is preserved on table R2
 - \circ $D \to E$ is preserved on table R3
 - \circ We have to check whether the remaining FDs: $A \rightarrow E$, $A \rightarrow F$, $BC \rightarrow E$, $BC \rightarrow F$ are preserved or not.

R1	R2	R3
$F_{1}=\{\mathbf{A}\rightarrow ABCD,\ \mathbf{B}\rightarrow B,\ \mathbf{C}\rightarrow C,\ \mathbf{D}\rightarrow D,\\ \mathbf{AB}\rightarrow ABCD,\ \mathbf{BC}\rightarrow ABCD,\ \mathbf{CD}\rightarrow CD,\ \mathbf{AD}\rightarrow ABCD\\ \mathbf{ABC}\rightarrow ABCD,\ \mathbf{ABD}\rightarrow ABCD,\ \mathbf{ACD}\rightarrow ABCD\\ \mathbf{BCD}\rightarrow ABCD\}$	$F_2 = {\mathbf{B} \to BF, \mathbf{F} \to F}$	$F_3 = \{ \mathbf{D} \to DE, \mathbf{E} \to E \}$

- $\circ \ F' = F_1 \cup F_2 \cup F_3.$
- Checking for: $\mathbf{A} \to E$, $\mathbf{A} \to F$ in F'^+
 - \triangleright $A \rightarrow D$ (from R1), $D \rightarrow E$ (from R3) : $A \rightarrow E$ (By Transitivity)
 - \triangleright $A \rightarrow B$ (from R1), $B \rightarrow F$ (from R2) : $A \rightarrow F$ (By Transitivity)
- Checking for: $BC \to E$, $BC \to F$ in F'^+
 - \triangleright BC \rightarrow D (from R1), D \rightarrow E (from R3) : BC \rightarrow E (By Transitivity)

hd B
ightharpoonup F (from R2) : BCightharpoonup F (By Augmentation)

Hence all dependencies are preserved.

Dependency Preservation (4): Example

Module 25

Partha Pratin Das

Objectives Outline

Lossless Join Decomposition Practice Problem

Dependency Preservation Practice Problems Module Summar • \mathbf{R} (A, B, C, D) $\mathbf{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$

 $\mathbf{F} = \{A \to B, B \to C, C \to D, D \to A\}$ • Decomposition: $\mathbf{R1}(A, B) = \mathbf{R2}(B, C) = \mathbf{R3}(C, D)$

- \circ $A \rightarrow B$ is preserved on table R1
 - \circ $B \to C$ is preserved on table R2
 - \circ \rightarrow C is preserved on table R2
 - $\circ \ \ C \to D \text{ is preserved on table R3}$
 - \circ We have to check whether the one remaining FD: $D \rightarrow A$ is preserved or not.

R1	R2	R3
$F_1 = \{ \mathbf{A} \to AB, \ \mathbf{B} \to BA \}$	$F_2 = \{ \mathbf{B} \to BC, \mathbf{C} \to CB \}$	$F_3 = \{ \mathbf{C} \to CD, \ \mathbf{D} \to DC \}$

- $\circ F' = F_1 \cup F_2 \cup F_3.$
- Checking for: $\mathbf{D} \rightarrow A$ in $\mathbf{F'}^+$
 - $ho D \to C$ (from R3), $C \to B$ (from R2), $B \to A$ (from R1) : $D \to A$ (By Transitivity) Hence all dependencies are preserved.

Dependency Preservation (5): Testing

Module 25

Partha Pratir Das

Objectives Outline

Lossless Join
Decomposition
Practice Problem

Dependency Preservation Practice Problems • To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into R_1, R_2, \dots, R_n we apply the following test (with attribute closure done with respect to F)

```
o result = \alpha

while (changes to result) do

for each R_i in the decomposition

t = (result \cap R_i)^+ \cap R_i

result = result \cup t
```

- o If result contains all attributes in β , then the functional dependency $\alpha \to \beta$ is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup \cdots \cup F_n)^+$

Dependency Preservation (6): Example

Module 25

Partha Prat Das

Objectives Outline

Lossless Join Decomposition Practice Proble

Dependency Preservation Practice Problems Module Summar

- R(ABCDEF):. $F = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}$
- $Decomp = \{ABCD, BF, DE\}$
- On projections:

ABCD (R1)	BF (R2)	DE (R3)
$\begin{array}{c} A \to BCD \\ BC \to AD \end{array}$	$B\toF$	$D\toE$

- Need to check for: $A \rightarrow BCD$, $A \rightarrow EF$, $BC \rightarrow AD$, $BC \rightarrow E$, $BC \rightarrow F$, $B \rightarrow F$, $D \rightarrow E$
- (BC) + /F1 = ABCD. (ABCD) + /F2 = ABCDF. (ABCDF) + /F3 = ABCDEF. Preserves $BC \rightarrow E$, $BC \rightarrow F$ $BC \rightarrow AD$ (R1), $AD \rightarrow E$ (R3) implies $BC \rightarrow E$ $B \rightarrow F$ (R2) implies $BC \rightarrow F$
- (A) + /F1 = ABCD. (ABCD) + /F2 = ABCDF. (ABCDF) + /F3 = ABCDEF. Preserves $A \rightarrow EF$ $A \rightarrow B$ (R1), $B \rightarrow F$ (R2) implies $A \rightarrow F$ $A \rightarrow D$ (R1), $D \rightarrow E$ (R3) implies $A \rightarrow E$

Dependency Preservation • $R(ABCDEF): F = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}.$ Decomp $\{ABCD, BF, DE\}$

On projections:

ABCD (R1)	BF (R2)	DE (R3)
$A \to B, A \to C, A \to D, BC \to A, BC \to D$	$B\toF$	$D\toE$

- Infer reverse FD's:
 - \circ B + /F = BF : B \rightarrow A cannot be inferred
 - \circ $C + /F = C : C \rightarrow A$ cannot be inferred
 - \circ D + /F = DE : D \rightarrow A and D \rightarrow BC cannot be inferred
 - \circ A + /F = ABCDEF : A \rightarrow BC can be inferred, but it is equal to A \rightarrow B and A \rightarrow C
 - \circ $F + /F = F : F \rightarrow B$ cannot be inferred
 - \circ E + /F = E : E \rightarrow D cannot be inferred
- Need to check for: $A \rightarrow BCD$, $A \rightarrow EF$, $BC \rightarrow AD$, $BC \rightarrow E$, $BC \rightarrow F$. $B \rightarrow F$. $D \rightarrow E$
 - \circ (BC) + /F = ABCDEF. Preserves BC \rightarrow E, BC \rightarrow F
 - \circ (A) + /F = ABCDEF. Preserves $A \rightarrow EF$

Partha Pratim Das 25 18

Practice Problems on Dependency Preservation

Module 25

Partha Prati Das

Objectives Outline

Lossless Join Decomposition Practice Proble

Dependency Preservation Practice Problems

Module Summai

• Check whether the decomposition of R into D is preserving dependency:

- a) $R(ABCD): F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}. D = \{AB, BC, CD\}$
- b) $R(ABCDEF): F = \{AB \rightarrow CD, C \rightarrow D, D \rightarrow E, E \rightarrow F\}. D = \{AB, CDE, EF\}$
- c) $R(ABCDEG): F = \{AB \rightarrow C, AC \rightarrow B, BC \rightarrow A, AD \rightarrow E, B \rightarrow D, E \rightarrow G\}. D = \{ABC, ACDE, ADG\}$
- d) $R(ABCD): F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B\}. D = \{AB, BC, BD\}$
- e) $R(ABCDE): F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}. D = \{ABCE, BD\}$

Module Summary

Module 25

Partha Pratir Das

Objectives Outline

Lossless Join Decomposition

Preservation

Practice Problems

Module Summary

• Understood the Characterization for and Determination of Lossless Join

• Understood the Characterization for and Determination of Dependency Preservation

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".