

1	1. A method of processing digital signals to be transmitted in analog				
2	form, said method comprising:				
3	converting a digital signal to produce an analog signal image at a radio				
4	frequency; and				
5	using said analog signal image at said radio frequency for transmission.				
1	2. The method of claim 1 comprising:				
2	positioning said digital signal within a conversion bandwidth defined as one-				
3	half the rate of said converting.				
1	The method of claim 1 comprising:				
2	receiving a plurality of digital signals;				
3 -	positioning said digital signals in non-overlapping portions of a conversion				
4	bandwidth defined as one-half the rate of said converting;				
5	converting said digital signals to produce analog signal images at different				
6	transmission frequencies; and				
7	using said analog signal images for transmission.				
l	4. The method of claim 3 wherein said step of using includes:				
2	providing an analog signal image onto a path;				
3	amplifying said analog signal image on said path; and				
4	transmitting said amplified analog signal image using at least one antenna.				
1	5. The method of claim 4 wherein said steps of providing, amplifying and				
2	transmitting include:				
3	providing a first analog signal image of a first frequency band on a first path				
4	and a second analog signal image of a second frequency band on a second path;				

1

5	amplifying said first analog signal image on said first path and said second	
6	analog signal image on said second path; and	
7	transmitting said first amplified analog signal image on a first antenna and	
8	8 said second amplified analog signal image on a second antenna.	
1	6. The method of claim 4 further comprising:	

- filtering a plurality of analog signal images at different frequency bands to
 provide at least one analog signal image of a frequency band corresponding to each of
 a plurality of paths.
- 7. The method of claim 4 further comprising:
 selectively producing on each of a plurality of paths at least one analog signal
 image of a frequency band corresponding to each of said plurality of paths.
- 1 8. The method of claim 1 further comprising:
 2 adjusting a conversion rate for converting said digital signal to produce said
 3 analog signal image at said RF frequency.
- 9. The method of claim 1 further comprising:
 adjusting a frequency for said digital signal to be converted into analog form
 to produce said analog signal image at said RF frequency.
- 1 10. A method of processing digital signals to be transmitted in analog
 2 form, said method comprising the steps of:
 3 converting a digital signal to produce a projected analog signal image; and
 4 using said projected analog signal image at said frequency to produce analog
 5 signals for transmission.
 - 11. The method of claim 10 comprising:

1

1

9

14.

- 1 12. The method of claim 10 comprising: 2 receiving a plurality of digital signals; 3 positioning said digital signals in non-overlapping portions of a conversion 4 bandwidth defined as one-half the rate of said conversion frequency; 5 converting said digital signals to produce said projected analog signal images at frequencies greater than said conversion bandwidth; and 6 7 using said projected analog signal images for transmission.
- 13. The method of claim 12 wherein said step of using includes: 2 providing a projected analog signal image onto a path; 3 amplifying said projected analog signal image on said path; and 4 transmitting said amplified analog signal image using at least one antenna.
- The method of claim 13 wherein said steps of providing, amplifying 2 and transmitting further include: 3 providing a first projected analog signal image of a first frequency band on a 4 first path and a second projected analog signal image of a second frequency band on a 5 second path; 6 amplifying said first projected analog signal image on said first path and said 7 second projected analog signal image on said second path; and 8 transmitting said first amplified analog signal image on a first antenna and
- 1 15. The method of claim 13 wherein said step of providing further 2 includes:

said second amplified analog signal image on a second antenna.

3	filtering a plurality of said projected analog signal images at different				
4	frequency bands to provide at least one projected analog signal image of a frequency				
5	band corresponding to each of a plurality of paths.				
l	16. The method of claim 13 wherein said steps of providing further				
2	includes:				
3	selectively producing on each of a plurality of paths at least one projected				
4	analog signal image of a frequency band corresponding to each of said plurality of				
5	paths.				
1	17. The method of claim 10 further comprising:				
2	adjusting a conversion rate for converting said digital signal to produce said				
3	projected analog signal image at said frequency.				
1	18. The method of claim 10 further comprising:				
2	adjusting a digital frequency for said digital signal to be converted into analog				
3	form to produce said projected analog signal image at said frequency.				
	1				
1	19 A transmitter comprising:				
2	a digital to analog converter configured to receive a digital signal and convert				
3	said digital signal into analog form, thereby producing an analog signal image at a				
4	radio frequency; and				
5	transmitter circuitry configured to use said analog signal image at said radio				
6	frequency for transmission.				
l	20. The transmitter of claim 19 comprising:				
2	signal processing circuitry configured to position said digital signal within a				
3	conversion bandwidth defined as one-half the rate of converting said digital signal				
4	into analog form.				

1	21. The transmitter of claim 19 comprising:			
2	signal processing circuitry configured to receive a plurality of digital signals			
3	and to position said digital signals in non-overlapping portions of a conversion			
4	bandwidth defined as one-half the rate of said converting;			
5	said digital to analog converter configured to convert said digital signals to			
6	produce analog signal images at different transmission frequencies; and			
7	said transmitter circuitry configured to use said analog signal images for			
8	transmission.			
	•			
1	22. The transmitter of claim 19 wherein said transmitter circuitry			
2	comprising:			
3	a path for carrying said analog signal image;			
4	an amplifier on said path for amplifying said analog signal image on said path			
5	and			
6	at least one antenna for transmitting said amplified analog signal image.			
1	23. The method of claim 21 wherein said transmitter circuitry comprises:			
2	signal distribution circuitry configured to receive said analog signal images			
3	from said digital to analog converter and to provide a first analog signal image of a			
4	first frequency band on a first path and a second analog signal image of a second			
5	frequency band on a second path;			
6	a first amplifier on said first path for amplifying said first analog signal image			
7	on said first path;			
8	a second amplifier on said second path for amplifying said second analog			
9	signal image on said second path;			
10	a first antenna connected to said first path for transmitting said first amplified			
11	analog signal image; and			
12	a second antenna connected to said second path for transmitting said second			
13	amplified analog signal image.			

for transmission.

9

1	24.	The transmitter of claim 19, said transmitter configured to adjust a			
2	conversion rate for said digital to analog converter to produce said analog signal				
3	image at said radio frequency.				
1	25.	The transmitter of claim 19, said transmitter configured to adjust a			
2	digital frequency for said digital signal to be converted into analog form to produce				
3	said analog signal image at said radio frequency.				
1	26.	A transmitter comprising:			
2	a digital to analog converter configured to receive a digital signal and convert				
3	said digital signal into analog form, thereby producing a projected analog signal				
4	image; and	•			
5	transn	nitter circuitry configured to use said projected analog signal image to			
6	produce analogous	og signals for transmission.			
1	27.	The transmitter of claim 26 comprising:			
2	signal	processing circuitry configured to position said digital signal within a			
3	conversion bandwidth defined as one-half the rate of said conversion frequency.				
l	28.	The transmitter of claim 26 comprising:			
2	signal processing circuitry configured to receive a plurality of digital signals				
3	and to position said digital signals in non-overlapping portions of said conversion				
4	bandwidth;				
5	said digital to analog converter configured to convert said digital signals to				
6	produce projected analog signal images at frequencies greater than said conversion				
7	bandwidth; and				
8	said t	ransmitter circuitry configured to use said projected analog signal images			

signal image at said frequency.

1	29. The transmitter of claim 26 wherein said transmitter circuitry includes:		
2	a path for carrying said projected analog signal image;		
3	an amplifier on said path for amplifying said projected analog signal image on		
4	said path; and		
5	at least one antenna for transmitting said amplified analog signal image.		
1	30. The transmitter of claim 27 wherein said transmitter circuitry		
2	comprises:		
3	signal distribution circuitry configured to receive said projected analog signal		
4	images from said digital to analog converter and to provide a first projected analog		
5	signal image of a first frequency band on a first path and a second projected analog		
6	signal image of a second frequency band on a second path;		
7	a first amplifier on said first path for amplifying said first projected analog		
8	signal image on said first path;		
9	a second amplifier on said second path for amplifying said second projected		
10	analog signal image on said second path;		
11	a first antenna connected to said first path for transmitting said first amplified		
12	analog signal image; and		
13	a second antenna connected to said second path for transmitting said second		
14	amplified analog signal image.		
1	31. The transmitter of claim 26, said transmitter configured to adjust a		
2	conversion rate for said digital to analog converter to produce said projected analog		

32. The transmitter of claim 26, said transmitter configured to adjust a digital frequency for said digital signal to be converted into analog form to produce said projected analog signal image at said frequency.