Workshop 1 Induction Exercises

Exercise 1. Prove, by induction, that for any real number $r \neq 1$ and any integer $n \geq 1$,

$$1 + r + r^{2} + \dots + r^{n} = \frac{1 - r^{n+1}}{1 - r}$$

Exercise 2. Use induction to prove that for every integer $n \geq 1$,

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Exercise 3. Let x > -1. Prove, by induction, that for every integer $n \ge 1$,

$$(1+x)^n \ge 1 + nx.$$

Exercise 4.* Use induction to prove the following.

- a. For all integers $n \ge 1$, n(n+1) is even.
- b. For all integers $n \ge 1$, $n^3 n$ is divisible by 6.

Exercise 5.* Let a_n denote the number of subsets of $\{1, 2, 3, ..., n\}$ (including the empty set and the set itself).

- a. Show that $a_n = 2a_{n-1}$. (No need for induction here.)
- b. Guess a formula for the value of a_n and use induction to prove you are right.