SIEMENS

LOGICAL LAYER Verification Plan

Name: Ali Ahmed

Name: Karim Samy

Name: Walid Salah

Name: Mohamed Salah

Table of Contents

In	troduction:	1
V	erification Environment:	2
	Test Environment:	2
	System Verilog Mailboxes:	3
	Stimulus Generator:	3
	Driver:	4
	Monitor:	4
	Scoreboard:	4
	Reference Model:	5
	Virtual Sequencer:	5
	Transaction Flow:	8
D	esign Limitations:	. 11
S	YSTEM Level VERIFICATION:	. 12
	Interfaces:	. 12
	Interface 1 ports (Upper Layer Interface):	. 13
	Interface 2 Ports (Electrical Layer Interface):	. 14
	Interface 3 Ports(Configuration Space Interface):	. 15
	ENVIRONMENTS TRANSACTIONS:	. 15
	Transport Layer Transaction	. 15
	Configuration Spaces Transaction	. 16
	Electrical Layer transactions:	. 16
	USB4 Logical Layer Flow	. 18
	Test Scenarios	. 22
	Traceability Matrix:	. 23
	Task Breakdown:	. 24
	Duration of each task:	. 25

Introduction:

This Document contains the full verification plan proposal for the Logical Layer Architecture. For this Design, we will make a Class-based Verification Environment to be able to test all design features in an efficient and organizable way. The Document flow will be as follows:

First, The Verification IP(VIP) Architecture will be presented along with a thorough description of the role of each component.

Next, full description of the transaction flow through the environment will be represented to visualize the operation of the Environment.

Moreover, Interfaces definition that connects the Environment to the Logical layer will be fully analyzed.

Furthermore, The Design Operational Flow along with the test Scenarios will be represented.

Finally, A traceability matrix will be constructed which is used to make sure that the created test scenarios actually test all the Design features.

Last Page will contain the Complete Task breakdown with the assigned tasks to each team member along with the expected time of completion.

Verification Environment:

Test Environment:

This class contains all the VIP components:

- Reference Model
- Virtual Sequencer
- 3 interfaces:
 - > Upper Layer Interface
 - > Electrical Layer Interface
 - > Configuration Spaces Interface
- 3 Agents for each Interface which includes:
 - > Stimulus Generator
 - Driver
 - Monitor

- 3 Scoreboard for the 3 Agents
- Mailboxes for communication
 - > S2d mb: connects the Stimulus Generator to the Driver
 - ➤ Scr_mod: Connects the Stimulus Generator to the Reference Model
 - ➤ Log_mon: Connects the Monitor to the Scoreboard
 - ➤ Mod_scr: Connects the Reference Model to the Scoreboard
 - ➤ Sqcr_agnt: Connects the Virtual Sequencer to the Agent

System Verilog Mailboxes:

System Verilog Mailboxes enables the communication between the classes using 2 simple functions:

- put(transaction): used to send transactions to the mailbox.
- .get(transaction): used to receive transactions from the mailbox.

The Mailboxes will be used to connect the operation of all mentioned components together to be able to perform the verification tasks in the correct order seamlessly to test the Logical layer in a fast and efficient way.

Stimulus Generator:

Configuration space registers Configuration Space Stimulus Generator

It is the responsibility of the stimulus generator to create different test scenarios to test the required features of the design.

It combines all inputs into a packet/ transaction and sends the data to the driver via a mailbox when the driver is ready to send the next transaction through the Virtual interface.

Simulation ends when no more transactions are remaining to be sent by the stimulus generator.

Driver:

A driver has the responsibility to generate the Pin level signals of the logical layer based on the transaction contents taken received from the Stimulus generator via a mailbox.

Monitor:

The main task for monitor is to capture any activity on the DUT signals (either inputs or outputs). The monitor assigns the pin level signal (from the interface) to the transaction/packet then send the transaction to the scoreboard via a mailbox.

Scoreboard:

Upper Layer-Scoreboard

Electrical Layer-Scoreboard Electrical Layer-Scoreboard

This is where the comparison between the DUT outputs and the golden reference is made to verify that the design works as expected.

We will need 3 Scoreboards where each scoreboard will receive a type of transaction based on the interface assigned to it.

Also, Functional Coverage takes place inside the Scoreboard in order to keep track of the progress of testing after each test scenario being applied. Based on the exit coverage criteria for each DUT, the Functional Coverage reports determine whether the design verification is done or not.

Reference Model:

Reference Model

This is a golden reference that mimics the operation of the logical layer using a simpler, not necessarily synthesizable, model. This model takes its inputs from the 3 agents' Stimulus generator.

The reference Model then delivers the Expected output to a Scoreboard via a mailbox connecting them together.

Virtual Sequencer:

Virtual Sequencer

The Virtual Sequencer Synchronizes the operation between all 3 Stimulus generators in order to drive signals in the correct order from and to the Logical Layer.

Reference Model:

The primary objective of the reference model is to receive input from the generator and produce the expected output. This output is then compared with the actual output in the scoreboard to determine the presence of any errors.

Architecture:

• We want to check the input for each phase by getting the expected output of this phase to push this value into scoreboard.

SBTX Controller:

Step1: read from configuration stimulus generator data and write it on side band memory and check SB_TX output from controller be high.

Step2: wait transaction from electrical stimulus generator for AT transaction and check the correction then out from controller transaction response.

Step3: detect from electrical stimulus generator 16 order sets then out 2 order sets with respect to the type from controller selector and out it on the score board.

Step4: wait data from the transport stimulus generator electrical stimulus generator then forward it on score board to check it with output from DUT.

Notes:

- L_disable bin acts as enable for data out on electrical score board throw mailbox.
- -we can read or write from configuration stimulus generator data during transfer data form lane adapter.

Transaction Flow:

Step 1:

- ☐ The stimulus generator sends a scenario transaction to the **driver and Golden**Reference's mailbox.
- \Box The **.put method** is used to push data into the mailboxes.

Step 2:

- ☐ The driver obtains the stimulus from the mailbox using .get() function.
- ☐ The generator is **blocked** from sending any other data until the **event (done)** is triggered by the driver.

Step 3:

☐ According to the obtained transaction, the driver assigns data to the virtual interface every clock cycle.

Step 4:

- ☐ Driver triggers the **event** (**done**).
- ☐ The stimulus generator is now **unblocked** and is free to send the **next** transaction.

Step 5:

- ☐ Monitor obtains the interface contents (inputs/ outputs).
- ☐ Creates the transaction.

Step 6:

 \square Monitor sends data to the scoreboard's mailbox connected via the **.put function**

Step 7:

- ☐ The scoreboard receives both transactions from the golden reference and the monitor.
- ☐ Performs direct comparison between the inputs.
- ☐ Proceeds to check the DUT outputs to verify its functionality.

Design Limitations:

- 1. No Logical Layer Encoding:
 - ➤ The logical layer should provide encoding mechanisms; however, it won't be part of this implementation and will rely on an external encoding/decoding block for this functionality.
- 2. No Compliance Testing:
 - There are no built-in compliance testing features within the logical layer.
- 3. No Low Power States:
 - ➤ The logical layer does not support low power states, meaning it operates at full power without power-saving features.
- 4. No Re-timers
 - The connecting cable is assumed to be always passive (have no re-timers)

SYSTEM Level VERIFICATION:

Interfaces:

For maximum Verification Flexibility, the Interface will be divided into 3 interfaces representing 3 different Entities:

- 1) Upper layer Protocols
- 2) Electrical layer (Opposite Router)
- 3) Configuration Spaces

Interface 1 ports (Upper Layer Interface):

Name	size	description
	Operating C	Clocks
clk	1	Local clock
gen2_fsm_clk	1	1.212 GHz Clock frequency
gen3_fsm_clk	1	2.424 GHz Clock frequency
gen4_fsm_clk	1	4.95 GHz Clock frequency
	Interface Si	gnals
rst	1	Reset
tansport_layer_data_in	[7:0]	Packet transmitter/ receiver that connects to the transport layer
tansport_layer_data_out	[7:0]	Packet transmitter/ receiver that connects to the transport layer
	Internal Sig	gnals
generation_speed	Enum (GEN)	Indicates the Generation speed to determine the operating clock frequency. - Gen2 - Gen3 - Gen4
phase	3	Indicates the current operating phase. - 1> phase 1 - 2> phase 2 - 3> phase 3 - 4> phase 4 - 5> phase 5

Interface 2 Ports (Electrical Layer Interface):

Name	size	Description		
Operating Clocks				
clk	1	Local clock		
SB_clock	1	Sideband Clock: 1 MHz		
gen2_lane_clk	1	2 nd generation lane Clock: 10 GHz		
gen3_lane_clk	1	3 rd generation lane Clock: 20 GHz		
gen4_lane_clk	1	4 th generation lane Clock: 40 GHz		
		Interface Signals		
sbrx	1	Sideband receiver		
lane_0_rx	1	Packet/ ordered set receiver		
lane_1_rx	1	Packet/ ordered set receiver		
sbtx	1	Sideband transmitter		
lane_0_tx	1	Packet/ ordered set transmitter		
lane_1_tx	1	Packet/ ordered set transmitter		
		Internal Signals		
generation_speed	Enum (GEN)	Indicates the Generation speed to determine the operating clock frequency. - Gen2 - Gen3 Gen4		
phase	3	Indicates the current operating phase. - 1> phase 1 - 2> phase 2 - 3> phase 3 - 4> phase 4 - 5> phase 5		

Interface 3 Ports (Configuration Space Interface):

Name	size	description
	Operating (Clocks
clk	1	Local clock
gen4_fsm_clk	1	4 th generation lane Clock: 40 GHz
Interface Signals		
lane_disable	1	Disable the FSM Control Unit block
c_data_in	[7:0]	Data read from the configuration spaces
c_read	1	Read flag for the configuration spaces
c_write	1	Write flag for the configuration spaces
c_address	[7:0]	Address to read/write to the configuration space
c_data_out	[7:0]	Data to be written in the configuration spaces

ENVIRONMENTS TRANSACTIONS:

Transport Layer Transaction

Bin name	Size(bits)	Description
T_DATA	8	Refer to data between transport layer and electrical layer.
phase	3	
Gen_speed	Enum (GEN)	Indicates the generation speed to be used. - 00'b> gen2 - 01'b> gen3 - 10'b> gen4

Configuration Spaces Transaction

Bin name	Size(bits)	Description
lane_disable	1	Disable the FSM Control Unit block
c_data_in	[7:0]	Data read from the configuration spaces -40'h: In case of USB4 -??'h: In case of Gen4
c_data_out	[7:0]	Data to be written in the configuration spaces
c_read	1	Read flag for the configuration spaces
c_write	1	Write flag for the configuration spaces
c_address	[7:0]	Address to read/write to the configuration space

Electrical Layer transactions:

Bin name	Size(bits)	Description
sbrx	1	SBRX (for sending data to the DUT) Always "1" starting from the training phase except when sending LT_Fall command.
transaction_type	Enum (tr_type)	-000'b: none -001'b: LT_Fall -010'b: AT_cmd -011'b: AT_rsp -100'b: LT_Fall_wrong -101'b: AT_cmd_wrong -110'b: AT_rsp_wrong
read_write	1	Indicates whether the AT operation is read or write0'b: read -1'b: write
address	8	Address of the register being read from or written to.
len	7	Number of bytes to read/write. Shall not be greater than 64.
cmd_rsp_data	24	Cmd: Data to be written Rsp: Data read Note:

		-Bit 5 in byte 1 in register 12 = 1 in case of GEN3 support.
		-Bit 2 in byte 2 in register 12 = 1 in case of GEN4 support.
		- If both bits = 0, therefore GEN2 support.
		in cour ons o, mererore C21 (2 support
		**Length in standard: Not more than 64 bytes (we
		assumed 3 bytes only for simplicity).
o_sets	Enum	Refer to type of Ordered set.
	(OS_type)	-1000'b: refer to SLOS 1.
		-1001'b: refer to SLOS 2.
		-1010'b: refer to TS1 for (Gen 2,3).
		-1011'b: refer to TS2 for (Gen 2,3).
		-1100'b: refer to TS1 for gen 4.
		-1101'b: refer to TS2 for gen 4.
		-1110'b: refer to TS3 for gen 4. -1111'b: refer to TS4 for gen 4.
		-1111 b. leter to 134 for gen 4.
		-MSB refers to whether there are O_sets or no.
		(* 0xxx'b: refer to no O_sets.
		* 1xxx'b: refer to there are O_sets.)
gen_speed	Enum	Indicates the generation.
	(GEN)	-00'b> gen2
		-01'b> gen3
		-10'b> gen4
electrical_to_transport	8	Data sent after training between electrical layer and
•		transport layer.
phase	3	-001'b>we are in phase 1
		-010'b> we are in phase 2
		-011'b> we are in phase 3 -100'b> we are in phase 4
		-100 b> we are in phase 4 -101'b> we are in phase 5
		default> we aren't in any phase "sbtx = 0"
tr_os	2	Indicates whether the driver will send transaction
11_0 5	2	or ordered set.
sbtx	1	SBTX (for receiving data from the DUT)
transport_to_electrical	8	Data sent after training between electrical layer and
		transport layer.
crc_received	16	Crc field received in the AT cmd and AT rsp
order	4	Indicates the order of the TS ordered set
lane	Enum	Indicates lane that the data is associated with.
	(LANE)	-00> None
		-01> lane_0
		-10> lane_1
		-11> both

USB4 Logical Layer Flow

No.	Flow	Description			
1	Reset	SBTX should be "0" once the reset is asserted.			
	Phase 1: initial condition acquisition				
2	Detection of USB4 capability	The logical layer should send signal via c_read/write, c_address to acquire the required data about the connection			
3	Detection of USB4 generation	If USB4 connection is detected, the layer then proceeds with the same manner to obtain information about the USB4 version (gen2 or gen3 or gen4?)			
	Pha	ase 2: Router Detection			
		 Once SBRX is detected high, the SBTX should turn high as well. 			
4	Router Detection	• If the USB4 Port receives a Transaction while it is still in Phase 2, it may ignore or drop the Transaction.			
	Phase 3: Exchange of lane parameters				
5	Lane parameter request	The router is required to send AT transaction via the SBTX which have the address of the register 12 to be read from the sideband of the other router			
6	Saving requested lane parameters	The router should detect the parameters that were requested via an AT Response on its SBRX and save their values internally.			
7	Response to an AT command	The router should then respond to the AT command received on its SBRX by sending the reg 12 SB register via its SBTX			
	Phase 4: Link Training				
		Gen4			
8	TS1 state behavior	 Layer should send at least 16 TS1s with indication field = 2h on lane_0_tx and lane_1_tx Remain in this state until it receives (on lane_x_rx): Received TS1 with indication field = 2h Or Received TS2 			

9	TS2 state behavior	 Layer should send at least 16 TS2s with indication field = 4h on lane_0_tx and lane_1_tx Remain in this state until it receives (on lane_x_rx): Received TS2 with indication field = 4h Or Received TS3
10	TS3 state behavior	 Layer should send at least 16 TS3s with indication field = 6h on lane_0_tx and lane_1_tx Remain in this state until it receives (on lane_x_rx): Received TS3 with indication field = 6h Or Received TS4
11	TS4 state behavior	Layer should send TS4 in increasing order of counter field until it reaches value = Fh
		Gen2 and Gen3
12	SLOS1 state behavior	 Layer should send 2 SLOS1 Remain in this state until it receives 2 SLOS1 (on lane_x_rx).
13	SLOS2 state behavior	 Layer should send 2 SLOS2 Remain in this state until it receives 2 SLOS2 (on lane_x_rx).
14	TS1 state behavior	 Layer should send 32 TS1 for gen 2 and 16 TS1 for gen 3 Remain in this state until it receives 2 TS1 (on lane_x_rx).
15	TS2 state behavior	 Layer should send 16 TS2 for gen 2 and 8 TS2 for gen 3 Remain in this state until it receives 2 TS2 (on lane_x_rx).
16	Training Disable	If lane_disable bit inside the configuration space changed to 1, the layer should be disabled and no ordered sets should be sent or processed and SBTX should be zeros.

17	Timeout	If the layer remains for tTrainingAbort time in the same state, the layer should repeat the process of initialization again from phase 3.		
	Phase 5: 7	Γransport layer transmission		
18	Packet transmission from its own router transport layer to another router	Any payload received via the transport_layer_data port should be forwarded to the lane_x_tx in parallel		
19	Packet transmission from another router to its own router transport layer	Any payload received via the lane_x_rx should be forwarded to the transport_layer_data port.		
20	CL0 Disable	If lane_disable bit inside the configuration space changed to 1, the layer should be disabled and no packets should be forwarded. And SBTX should be zeros.		
		Disconnections		
21	LT_fall transaction behavior	 Should begin phase 1 again. Load the configuration spaces and SB registers with the default values as required by the specifications And SBTX should be zeros 		
22	SBRX low behavior	Should begin phase 1 again.SBTX should be zeros		
Outputs default behavior				
23	SBTX	 Should be = 0 when the router just turned on or no connection is still established. Should be = 1 when there is a link connection with other routers but no transactions to be sent. 		
Dropping Transactions				

24	Dropping LT Transactions	The LT transactions will be dropped if the received CLSE symbol (byte 2) is not the bitwise complement of the LSE symbol (byte 1).
25	Dropping AT Transactions	 The AT transactions will be dropped if the received CRC transaction is invalid. The AT transactions will be dropped if the transaction has no data and no CRC field.
	М	anaging wrong inputs
26	Unsupported Generation	If the connection type stored in the configuration unit is not supported (not gen2, gen3 or gen4), the logical layer shall not proceed the CLd substates.
27	Ignoring unexpected ordered sets	 If the negotiated speed is gen2 or gen3, and the received ordered sets are incorrect or related to gen4. If the negotiated speed is gen 4, and the received ordered sets are incorrect or related to gen2 or gen3.
28	Ignoring incorrect transactions	If the received transaction on the SBRX is incorrect, the transactions' fsm will act according to its current state.
29	Ignoring write commands in read-only SB register locations	If the link partner sends AT command to write in a RO SB register location, the logical layer shall ignore this write command.

Test Scenarios

Testing Scenario	Tested Feature	Notes	Time Estimate
Basic Logical Layer flow (1)	Different Generations: • Gen2 • Gen3 • Gen4	No other generations are possible	4 days From 20/2/2024 to 24/2/2024
Basic Logical Layer Flow (2)	C_DISABLE during Operation: Training (phase 4) CL0 (phase 5)	Should be applied during phase 4 or 5 only	2 days From 24/2/2024 to 26/2/2024
Basic Logical Layer Flow (3)	Disconnection due to: • LT_FALL transaction • SBRX low for tDisconnectRx time	 LT_Fall should be applied during the CL0 state. SBRX may go low during any phase 	4 days From 20/2/2024 to 24/2/2024
	Fault injected scenarios		
Mixing Ordered Sets	Restarting Training	Gen2 or gen3 ordered sets:	2 days From 24/2/2024 to 26/2/2024
Wrong AT response	Retransmission of AT commands for wrong responses	Wrong response can be due toWrong CRCNon-existing Gen	2 days From 26/2/2024 to 28/2/2024
Wrong AT Read command	Ignoring non-existing SB addresses read		2 days

		From 26/2/2024 to 28/2/2024
Wrong AT Write command	Refusal of writing in Read Only SB registers	2 days From 28/2/2024 to 30/2/2024
Wrong LT_Fall command	Ignoring Wrong disconnection	2 days From 28/2/2024 to 30/2/2024

Traceability Matrix:

Test Scenario	Tested Features						
	Gen2 operation	Gen3 operation	Gen4 operation	Configuration Space Disable	LT_fall Disconn	SBRX low Disconn	Fault handling
	Basic Testing						
Basic Logical Layer flow (1)							
Basic Logical Layer Flow (2)							
Basic Logical Layer Flow (3)							
	Advanced Testing						
Mixing ordered sets							
Wrong AT response							
Wrong AT Read command							
Wrong AT Write command							
Wrong LT_Fall							

Task Breakdown:

Tas	sk	Team Member Responsible	Expected Completion TIME	
	Electrical layer Agent	Ali Ahmed & Karim Samy		
Build Verification Environment (Implementation)	Configuration space Agent	Karim Samy	9/2/2024	
(Implementation)	Upper layer Agent	Ali Ahmed		
Build Refere	ence Model	Mohamed Salah & Walid Salah	9/2/2024	
Build Verificatio (Integr	ation)	Ali Ahmed & Karim Samy	10/2/2024	
Build Verificatio (Integration		All	14/2/2024	
Basic Logical Layer Flow (1) Scenario	Development Running Debugging	Ali Ahmed & Karim Samy	24/2/2024	
Basic Logical Layer Flow (2) Scenario	Development Running Debugging	Ali Ahmed & Karim Samy	26/2/2024	
Basic Logical Layer Flow (3) Scenario	Development Running Debugging	Mohamed Salah & Walid Salah	24/2/2024	
Mixing Ordered Sets	Development Running Debugging	Mohamed Salah & Walid Salah	26/2/2024	
Wrong AT response	Development Running Debugging	Ali Ahmed & Karim Samy	28/2/2024	
Wrong AT Read command	Development Running Debugging	Mohamed Salah & Walid Salah	28/2/2024	
Wrong AT Write command	Development Running Debugging	Ali Ahmed & Karim Samy	30/2/2024	
Wrong LT_Fall	Development Running Debugging	Mohamed Salah & Walid Salah	30/2/2024	

AI				
Build Verification Environment (Implementation)	To be decided	To be decided		
Build Reference Model	To be decided	To be decided		
Build Verification Environment (Integration with DUT)	To be decide	To be decided		
Teset Scenarios	To be decided	To be decided		

Duration of each task:

Та	Time			
Build Verification Environment (Implementation)				
Configuration	4 hrs			
Configuration S ₁	pace's Sequence	2 hrs		
Upper Lay	er's Agent	4	hrs	
Upper Layer	's Sequence	1	hr	
	Driver	26 hrs		
Electrical Layer's Agent	Monitor	37 hrs		
Electrical Lay	15 hrs			
All the Sco	1.5 hr			
All Transactions	2 hrs			
Virtual S	3 hrs			
Build Reference Model	Modelling diagram	15 hrs		
	Codding 1 (CRC, Serializer, SB registers,)	20 hrs Avg time po		
	Build phases	38 hrs	(4.13 hrs/day)	
	Debugging and connect with environment	20 hrs		

Build Verification (Integral	3 hrs	
Build Verification (Integration		
	Development	
Basic Logical Layer Flow (1) Scenario	Running	
(1) Section (1)	Debugging	
Davis I saisal I sassa Flass	Development	
Basic Logical Layer Flow (2) Scenario	Running	
(2) Section to	Debugging	
Davis I saisal I sassa Flass	Development	
Basic Logical Layer Flow (3) Scenario	Running	
(3) Section (3)	Debugging	
	Development	
Mixing Ordered Sets	Running	
	Debugging	
	Development	
Wrong AT response	Running	
	Debugging	
	Development	
Wrong AT Read command	Running	
	Debugging	
Wrong AT Write	Development	
command	Running	
Communa	Debugging	
	Development	
Wrong LT_Fall	Running	
	Debugging	