$\underset{24}{24}$

25

Mathreex ICPC Team Notebook 2024

Contents

-	T D		4	6.11 Gauss elim prime
1	Tem	plate	1	6.12 Gauss elim xor
	1.1	Template	1	6.13 GSS
				6.14 Josephus
2	Gra	oh	2	6.15 Matrix
-				6.16 Mobius
	2.1	BFS Algorithm	2	
	2.2	DFS Algorithm	2	6.17 Mobius inversion
	2.3	FloodFill Algorithm	2	6.18 NTT
	2.4	Dijkstra's Algorithm	2	6.19 Pollard rho
	2.5	Floyd Warshall's Algorithm	2	6.20 Pollard rho optimization
	2.6	MST (Kruskal's Algorithm)	2	6.21 Prime factors
	2.7	Union Find Structure	2	
	2.8	2-SAT Kosaraju	3	
				6.23 Sieve
	2.9	2-SAT Tarjan	3	6.24 Simpson rule
	2.10	Bellman Ford	3	6.25 Stanford simplex
	2.11	Block cut	3	
	2.12	Bridges and articulations	4 _	a
	2.13	Dinic	₄ 7	Strings
	2.14	Dominator tree	5	7.1 KMP
	2.15	Erdos gallai	5	7.2 Algorithm Z
	2.16	Eulerian path	5	7.3 Rabin Karp
	2.17	Fast Kuhn		7.4 Aho-Corasick
	2.18	Find cycl 3 4 · · · · · · · · · · · · · · · · · ·		7.5 Hashing
	2.19	Hungarian		7.6 Manacher
	2.20	Hungarian navarro	6	7.7 Suffix Array
	2.21	Kahn	7	
	2.22	Kosaraju	7	0.1
	2.23	Kuhn	8	Others
	2.24	LCA	8	8.1 Grundy (Nim Game)
	2.25	Max weight LCA	8	
	2.26	Min cost max flow	8	
			9	
	2.27	Prim		7 75 1 4
	2.28	Small to large	⁹ 1	Template
	2.29	SPFA	9	remplace
	2.30	Stanford Stoer Wagner	9	
	2.31	Tarjan	10	
	2.32	Zero one BFS	10 1.	l Template
			10 L .	
			10 1.]	-
9	DES			-
3	DFS		10	-
3	3.1	Coin Change	10	#include <bits stdc++.h=""></bits>
3	3.1 3.2	Coin Change	10 10 10	
3	3.1	Coin Change	10	#define mp make_pair
3	3.1 3.2	Coin Change	10 10 10	<pre>#define mp make_pair #define pb push_back</pre>
3	3.1 3.2 3.3	Coin Change	10 10 10 10	<pre>#define mp make_pair #define pb push_back #define ppb pop_back</pre>
	3.1 3.2 3.3 3.4	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences	10 10 10 10	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size()</pre>
3	3.1 3.2 3.3 3.4 Que	Coin Change	10 10 10 10 10 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first</pre>
	3.1 3.2 3.3 3.4 Que :	Coin Change	10 10 10 10 10 11 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second</pre>
	3.1 3.2 3.3 3.4 Que	Coin Change	10 10 10 10 10 11	<pre>#define mp make_pair #define pb push_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++)</pre>
	3.1 3.2 3.3 3.4 Que :	Coin Change	10 10 10 10 10 11 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define f second #define forn(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++)</pre>
	3.1 3.2 3.3 3.4 Que : 4.1 4.2	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences	10 10 10 10 10 11 11 11 11	<pre>#define mp make_pair #define pb push_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++)</pre>
	3.1 3.2 3.3 3.4 Que : 4.1 4.2 4.3	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences . Py Prefix sum . Prefix sum 2D . Fenwick Tree . Fenwick Tree 2D .	10 10 10 10 11 11 11 11 11 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define f second #define forn(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++)</pre>
	3.1 3.2 3.3 3.4 Que 4.1 4.2 4.3 4.4 4.5	Coin Change . Knapsack Longest Common Subsequence Longest Increasing Subsequences Ty Prefix sum Prefix sum 2D Fenwick Tree . Fenwick Tree 2D General Segtree .	10 10 10 10 11 11 11 11 11 11 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std;</pre>
	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4	Coin Change . Knapsack Longest Common Subsequence Longest Increasing Subsequences Ty Prefix sum Prefix sum 2D Fenwick Tree . Fenwick Tree 2D General Segtree .	10 10 10 10 11 11 11 11 11 11 11 11 11 1	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define f second #define forn(i, n) for (int i = 0; i < n; i++) #define forn(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll;</pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6	Coin Change . Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree . Fenwick Tree 2D General Segtree Sum Lazytree	10 10 10 10 11 11 11 11 11 11 11 11 11 1	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define al(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define forn(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto & (a) : (x)) using namespace std; typedef long long ll; typedef vector<int> vi;</int></pre>
	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences . ry Prefix sum . Prefix sum 2D . Fenwick Tree . Fenwick Tree 2D . General Segtree . Sum Lazytree .	10 10 10 10 11 11 11 11 11 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define f second #define forn(i, n) for (int i = 0; i < n; i++) #define forn(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll;</pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences . Py Prefix sum Prefix sum 2D Fenwick Tree . Fenwick Tree 2D General Segtree . Sum Lazytree . metry 2D Library	10 10 10 10 11 11 11 11 11 11 11 11 12 12	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define al(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define forn(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto & (a) : (x)) using namespace std; typedef long long ll; typedef vector<int> vi;</int></pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences . Py Prefix sum Prefix sum 2D Fenwick Tree . Fenwick Tree 2D General Segtree . Sum Lazytree . metry 2D Library	10 10 10 10 11 11 11 11 11 11	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define s second #define f first #define forn(i, n) for (int i = 0; i < n; i++) #define forn(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long l1; typedef vector<int> vi; typedef vector<il> vl;</il></int></pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1	Coin Change . Knapsack . Longest Common Subsequence . Longest Increasing Subsequences . Prefix sum . Prefix sum 2D . Fenwick Tree . Fenwick Tree 2D . General Segtree . Sum Lazytree . metry . 2D Library . 3D Library .	10 10 10 10 11 11 11 11 11 11 11 11 12 12	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define pb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define first #define forst #define forx(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto & (a) : (x)) using namespace std; typedef long long l1; typedef vector<int> vi; typedef vector<il> vl; void solve() {</il></int></pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library Closest points	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 14	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll; typedef vector<il> vl; typedef vector<il> vl; void solve() { // code here }</il></il></pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library Closest points Convex Hull	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 14	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define pb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define first #define forst #define forx(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto & (a) : (x)) using namespace std; typedef long long l1; typedef vector<int> vi; typedef vector<il> vl; void solve() {</il></int></pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3 5.4	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library Closest points Convex Hull	10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 14 14 15	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define pb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forx(i, x, n) for (int i = 0; i < n; i++) #define each(a, x) for (auto & (a) : (x)) using namespace std; typedef long long l1; typedef vector<1l> v1; typedef vector<1l> v1; void solve() { // code here } int main() {</pre>
5	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3 5.4 5.5	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library 3D Library Closest points Convex Hull Point in convex polygon	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 14 15 15	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define forx(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll; typedef vector<il> vl; typedef vector<il> vl; void solve() { // code here }</il></il></pre>
4	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3 5.4 5.5	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library 3D Library Closest points Convex Hull Point in convex polygon	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 15 15	<pre>#define mp make_pair #define pb push_back #define ppb pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define s second #define first #define forn(i, n) for (int i = 0; i < n; i++) #define forn(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll; typedef vector<ll> vl; void solve() { // code here } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);</ll></pre>
5	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3 5.4 5.5 Mat 6.1	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library 3D Library Closest points Convex Hull Point in convex polygon	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 14 15 15	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define plo pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define fox(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll; typedef vector<int> vi; typedef vector<int> vi</int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></pre>
5	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3 5.4 5.5	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 3D Library 3D Library Closest points Convex Hull Point in convex polygon h Basics	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 15 15	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define plo pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define fox(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll; typedef vector<int> vi; typedef vector<int> vi</int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></pre>
5	3.1 3.2 3.3 3.4 Que: 4.1 4.2 4.3 4.4 4.5 4.6 Geo: 5.1 5.2 5.3 5.4 5.5 Mat 6.1	Coin Change Knapsack Longest Common Subsequence Longest Increasing Subsequences ry Prefix sum Prefix sum 2D Fenwick Tree Fenwick Tree 2D General Segtree Sum Lazytree metry 2D Library 2D Library 3D Library Closest points Convex Hull Point in convex polygon h Basics Advanced	10 10 10 10 11 11 11 11 11 11 11 12 12 12 14 14 15 15 16 16	<pre>#define mp make_pair #define pb push_back #define pb pop_back #define plo pop_back #define all(a) (a).begin(), (a).end() #define sz(a) (int)a.size() #define f first #define s second #define forn(i, n) for (int i = 0; i < n; i++) #define fox(i, x, n) for (int i = x; i < n; i++) #define each(a, x) for (auto &(a) : (x)) using namespace std; typedef long long ll; typedef vector<int> vi; typedef vector<int> vi</int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></pre>

6.5

2 Graph

2.1 BFS Algorithm

2.2 DFS Algorithm

2.3 FloodFill Algorithm

```
int n, m;
int dir[2][4] = {{0,0,1,-1}, {1,-1,0,0}};

vector<vector<int>> tab, visi;

int floodfill(int x, int y) {
    if(x < 0 || y < 0 || x >= n || y >= m || visi[x][y] || tab[x][y] == 0)
        return;
    visi[x][y] = 1;
    int ret = 1;
    for(int i = 0; i < 4; i++)
        ret += floodfill(x + dir[0][i], y + dir[1][i]);
    return ret;
}</pre>
```

2.4 Dijkstra's Algorithm

```
typedef long long ln;
const long long INF = 4e18;

vector<ll> dijkstra(vector<vector<pair<ll, ll>>> graph, int n, int initial_node) {
    vector<ll> dis(n + 1, INF);
    dis[initial_node] = 0;

priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>> pq;
    pq.push({0, initial_node});
    while (!pq.empty()) {
        pll minor = pq.top();
        pq.pop();
        ll actual_cost = minor.f;
        int node = minor.s;
        if (dis[node] < actual_cost)
        continue;</pre>
```

```
for (auto to : graph[node])
{
   int neighbor = to.f;
   ll cost = to.s;
   if (dis[node] + cost < dis[neighbor])
   {
      dis[neighbor] = dis[node] + cost;
      pq.push({dis[neighbor], neighbor});
   }
}
return dis;
}</pre>
```

2.5 Floyd Warshall's Algorithm

2.6 MST (Kruskal's Algorithm)

```
typedef long long 11;
11 kruskal(vector<pair<11, pair<int, int>>> edges, int n)
  sort(all(edges));
 UnionFind dsu(n + 1);
  int countEdges = 0;
  11 res = 0;
  for (auto edge : edges)
    11 weight = edge.f;
    int u = edge.s.f;
    int v = edge.s.s;
    if (dsu.join(u, v))
      countEdges++;
      res += weight;
    if (countEdges == n - 1)
      return res:
  if (countEdges < n - 1)</pre>
   return -1:
  return res:
```

2.7 Union Find Structure

```
struct UnionFind
{
    vector<int> p;
    UnionFind(int n) : p(n, -1) {}
    int find(int x)
    {
        if (p[x] == -1)
            return x;
        return p[x] = find(p[x]);
    }
    bool join(int x, int y)
    {
            x = find(x), y = find(y);
            if (x == y)
            return 0;
            p[y] = x;
            return 1;
        }
};
```

2.8 2-SAT Kosaraju

```
* 2-SAT (TELL WHETHER A SERIES OF STATEMENTS CAN OR CANNOT BE FEASIBLE AT THE SAME TIME)
* Time complexity: O(V+E)
                -> number of variables, 1-indexed
* Usage: n
       p = v(i) -> picks the "true" state for variable i
        p = nv(i) \rightarrow picks the "false" state for variable i, i.e. i
        add(p, q) \rightarrow add\ clause\ (p\ v\ q)\ (which\ also\ means\ p => q,\ which\ also\ means\ q => p)
        run2sat() -> true if possible, false if impossible
        val[i] -> tells if i has to be true or false for that solution
int n, vis[2*N], ord[2*N], ordn, ent, emp[2*N], val[N];
vector<int> adj[2*N], adjt[2*N];
// for a variable u with idx i
// u is 2*i and !u is 2*i+1
// (a \ v \ b) == !a -> b ^ !b -> a
int v(int x) { return 2*x;
int nv(int x) { return 2*x+1; }
// add clause (a v b)
void add(int a, int b) {
       adj[a^1].push_back(b);
       adj[b^1].push_back(a);
       adjt[b].push_back(a^1);
       adjt[a].push_back(b^1);
void dfs(int x) {
       vis[x] = 1:
       for(auto v : adj[x]) if(!vis[v]) dfs(v);
       ord[ordn++] = x;
void dfst(int x) {
       cmp[x] = cnt, vis[x] = 0;
       for(auto v : adjt[x]) if(vis[v]) dfst(v);
bool run2sat(){
       for(int i = 1; i <= n; i++) {
    if(!vis[v(i)]) dfs(v(i));</pre>
              if(!vis[nv(i)]) dfs(nv(i));
       for(int i = ordn-1; i >= 0; i--)
              if(vis[ord[i]]) cnt++, dfst(ord[i]);
       for(int i = 1; i <= n; i ++) {
              if(cmp[v(i)] == cmp[nv(i)]) return false;
              val[i] = cmp[v(i)] > cmp[nv(i)];
       return true:
int main () {
              for (int i = 1; i <= n; i++) {
                             if (val[i]); // i-th variable is true
                                         // i-th variable is false
                             else
```

2.9 2-SAT Tarjan

```
// 2-SAT - O(V+E)
// For each variable x, we create two nodes in the graph: u and !u
// If the variable has index i, the index of u and !u are: 2*i and 2*i+1
// Adds a statment u => v
void add(int u, int v) {
    adj[u].pb(v);
    adj[v^1].pb(u^1);
}

//0-indexed variables; starts from var_0 and goes to var_n-1
for(int i = 0; i < n; i++){
    tarjan(2*i), tarjan(2*i + 1);
    //cmp is a tarjan variable that says the component from a certain node
    if(cmp[2*i] == cmp[2*i + 1]) //Invalid
    if(cmp[2*i] < cmp[2*i] + 1]) //Var_i is true
    else //Var_i is false

//its just a possible solution!</pre>
```

2.10 Bellman Ford

```
* BELLMAN-FORD ALGORITHM (SHORTEST PATH TO A VERTEX - WITH NEGATIVE COST)
* Time complexity: O(VE)
* Usage: dist[node]
* Notation: m:
                      number of edges
                      number of vertices
          n:
          (a, b, w): edge between a and b with weight w
                     starting node
          s:
const int N = 1e4+10; // Maximum number of nodes
vector<int> adj[N], adjw[N];
int dist[N], v, w;
memset(dist, 63, sizeof(dist));
dist[0] = 0;
for (int i = 0; i < n-1; ++i)
       for (int u = 0; u < n; ++u)
              for (int j = 0; j < adj[u].size(); ++j)
    v = adj[u][j], w = adjw[u][j],</pre>
                     dist[v] = min(dist[v], dist[u]+w);
```

2.11 Block cut

```
// Tarjan for Block Cut Tree (Node Biconnected Componentes) - O(n + m)
#define pb push back
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+5;
// Regular Tarjan stuff
int n, num[N], low[N], cnt, ch[N], art[N];
vector<int> adj[N], st;
int lb[N]; // Last block that node is contained
int bn; // Number of blocks
vector<int> blc[N]; // List of nodes from block
void dfs(int u, int p) {
        num[u] = low[u] = ++cnt;
        ch[u] = adj[u].size();
        st.pb(u):
        if (adj[u].size() == 1) blc[++bn].pb(u);
        for(int v : adj[u]) {
                 if (!num[v]) {
                          dfs(v, u), low[u] = min(low[u], low[v]);
                         if (low[v] == num[u]) {
    if (p != -1 or ch[u] > 1) art[u] = 1;
                                  blc[++bn].pb(u);
                                  while(blc[bn].back() != v)
                                           blc[bn].pb(st.back()), st.pop_back();
                 else if (v != p) low[u] = min(low[u], num[v]), ch[v]--;
```

2.12 Bridges and articulations

2.13 Dinic

```
// Dinic - O(V^2 * E)
// Bipartite graph or unit flow - O(sqrt(V) * E)
// Small flow - O(F * (V + E))
// USE INF = 1e9!
* DINIC (FIND MAX FLOW / BIPARTITE MATCHING)
* Time complexity: O(EV^2)
* Usage: dinic()
       add_edge(from, to, capacity)
* add_edge(src, 1, 1); add_edge(1, snk, 1); add_edge(2, 3, INF);
* \ add\_edge(src,\ 2,\ 1); \quad add\_edge(2,\ snk,\ 1); \quad add\_edge(3,\ 4,\ INF);
* add_edge(src, 2, 1); add_edge(3, snk, 1);
* add_edge(src, 2, 1); add_edge(4, snk, 1); => dinic() = 4
******************************
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+1, INF = 1e9;
struct edge {int v, c, f;};
int n, src, snk, h[N], ptr[N];
vector<edge> edgs;
vector<int> g[N];
void add_edge (int u, int v, int c) {
      int k = edgs.size();
       edgs.push_back({v, c, 0});
      edgs.push_back({u, 0, 0});
g[u].push back(k);
       g[v].push back(k+1);
```

```
void clear() {
               memset(h, 0, sizeof h);
               memset(ptr, 0, sizeof ptr);
               edgs.clear();
               for (int i = 0; i < N; i++) g[i].clear();</pre>
               snk = N-1;
bool bfs() {
       memset(h, 0, sizeof h);
       queue<int> q;
       h[src] = 1;
       a.push(src);
       while(!q.empty()) {
    int u = q.front(); q.pop();
               for(int i : g[u]) {
                       int v = edgs[i].v;
                       if (!h[v] and edgs[i].f < edgs[i].c)</pre>
                               q.push(v), h[v] = h[u] + 1;
       return h[snk];
int dfs (int u, int flow) {
       if (!flow or u == snk) return flow;
       for (int &i = ptr[u]; i < g[u].size(); ++i) {</pre>
               edge &dir = edgs[g[u][i]], &rev = edgs[g[u][i]^1];
               int v = dir.v;
               if (h[v] != h[u] + 1) continue;
               int inc = min(flow, dir.c - dir.f);
               inc = dfs(v, inc);
               if (inc) {
                       dir.f += inc, rev.f -= inc;
                       return inc;
       return 0:
int dinic() {
       int flow = 0;
       while (bfs()) {
               memset(ptr, 0, sizeof ptr);
               while (int inc = dfs(src, INF)) flow += inc;
       return flow;
//Recover Dinic
void recover() {
       for(int i = 0; i < edgs.size(); i += 2){</pre>
               //edge (u -> v) is being used with flow f
               if(edgs[i].f > 0) {
                       int v = edgs[i].v;
                       int u = edgs[i^1].v;
* FLOW WITH DEMANDS
\star 1 - Finding an arbitrary flow
* Assume a network with [L, R] on edges (some may have L = 0), let's call it old network.
\star Create a New Source and New Sink (this will be the src and snk for Dinic).
* Modelling Network:
* 1) Every edge from the old network will have cost R - L
* 2) Add an edge from New Source to every vertex v with cost:
   Sum(L) for every (u, v). (sum all L that LEAVES v)
* 3) Add an edge from every vertex v to New Sink with cost:
* Sum(L) for every (v, w). (sum all L that ARRIVES v)
* 4) Add an edge from Old Source to Old Sink with cost INF (circulation problem)
* The Network will be valid if and only if the flow saturates the network (max flow == sum(L))
* To find min flow that satisfies just do a binary search in the (Old Sink -> Old Source) edge
* The cost of this edge represents all the flow from old network
* Min flow = Sum(L) that arrives in Old Sink + flow that leaves (Old Sink -> Old Source)
int main () {
               clear();
               return 0:
```

2.14 Dominator tree

```
// a node u is said to be dominating node v if, from every path from the entry point to v you have to
      pass through u
// so this code is able to find every dominator from a specific entry point (usually 1)
// for directed graphs obviously
const int N = 1e5 + 7;
vector<int> adj[N], radj[N], tree[N], bucket[N];
int sdom[N], par[N], dom[N], dsu[N], label[N], arr[N], rev[N], cnt;
void dfs(int u) {
        cnt++;
        arr[u] = cnt;
       rev[cnt] = u;
label[cnt] = cnt;
sdom[cnt] = cnt;
dsu[cnt] = cnt;
        for(auto e : adj[u]) {
                if(!arr[e]) {
                        par[arr[e]] = arr[u];
                radj[arr[e]].push_back(arr[u]);
int find(int u, int x = 0) {
        if(u == dsu[u]) {
                return (x ? -1 : 11):
        int v = find(dsu[u], x + 1);
        if(v == -1) {
                return u:
        if(sdom[label[dsu[u]]] < sdom[label[u]]) {</pre>
                label[u] = label[dsu[u]];
        dsu[u] = v;
        return (x ? v : label[u]);
void unite(int u, int v) {
// in main
dfs(1);
for(int i = cnt; i >= 1; i--) {
        for(auto e : radj[i]) {
                sdom[i] = min(sdom[i], sdom[find(e)]);
        if(i > 1) {
                bucket[sdom[i]].push_back(i);
        for(auto e : bucket[i]) {
                int v = find(e);
                if(sdom[e] == sdom[v]) {
                         dom[e] = sdom[e];
                } else {
                         dom[e] = v;
        if(i > 1) {
                unite(par[i], i);
for(int i = 2; i <= cnt; i++) {
        if(dom[i] != sdom[i]) {
                dom[i] = dom[dom[i]];
        tree[rev[i]].push_back(rev[dom[i]]);
        tree[rev[dom[i]]].push_back(rev[i]);
```

2.15 Erdos gallai

```
// Erdos-Gallai - O(nlogn)
// check if it's possible to create a simple graph (undirected edges) from
// a sequence of vertice's degrees
bool gallai(vector<int> v) {
    vector<ll> sum;
    sum.resize(v.size());
```

```
sort(v.begin(), v.end(), greater<int>());
sum[0] = v[0];
for (int i = 1; i < v.size(); i++) sum[i] = sum[i-1] + v[i];
if (sum.back() % 2) return 0;

for (int k = 1; k < v.size(); k++) {
    int p = lower_bound(v.begin(), v.end(), k, greater<int>()) - v.begin();
    if (p < k) p = k;
    if (sum[k-1] > lll*k*(p-1) + sum.back() - sum[p-1]) return 0;
}
return 1;
```

2.16 Eulerian path

```
vector<int> ans, adj[N];
int in[N];
void dfs(int v) {
         while(adj[v].size()){
                  int x = adj[v].back();
                  adj[v].pop_back();
dfs(x);
         ans.pb(v);
// Verify if there is an eulerian path or circuit
for(int i = 0; i < n; i++) if(adj[i].size() != in[i]){</pre>
         if(abs((int)adj[i].size() - in[i]) != 1) //-> There is no valid eulerian circuit/path
if(v.size()){
         if(v.size() != 2) //-> There is no valid eulerian path
         if(in[v[0]] > adj[v[0]].size()) swap(v[0], v[1]);
if(in[v[0]] > adj[v[0]].size()) //-> There is no valid eulerian path
adj[v[1]].pb(v[0]); // Turn the eulerian path into a eulerian circuit
for(int i = 0; i < cnt; i++)</pre>
         if(adj[i].size()) //-> There is no valid eulerian circuit/path in this case because the graph
ans.pop_back(); // Since it's a curcuit, the first and the last are repeated
reverse(ans.begin(), ans.end());
int bg = 0; // Is used to mark where the eulerian path begins
if(v.size()){
         for (int i = 0: i < ans.size(): i++)
                  if(ans[i] == v[1] and ans[(i + 1)%ans.size()] == v[0]){
   bg = i + 1;
                            break;
```

2.17 Fast Kuhn

```
const int N = 1e5+5;
int x, marcB[N], matchB[N], matchA[N], ans, n, m, p;
vector<int> adj[N];
bool dfs(int v) {
    for (int viz = adj[v][i];
        if(marcB[viz] == 1) continue;
        marcB[viz] == 1) i| dfs(matchB[viz])) {
        matchB[viz] = viz;
        matchA[v] = viz;
        return true;
    }
    int main() {
```

```
for (int i = 0; i<=n; i++) matchA[i] = -1;
for (int j = 0; j<=m; j++) matchB[j] = -1;

bool aux = true;
while (aux){
    for (int j=1; j<=m; j++) marcB[j] = 0;
    aux = false;
    for (int i=1; i<=n; i++){
        if (matchA[i] != -1) continue;
        if (dfs (i)) {
            ans++;
            aux = true;
        }
    }
}
//...</pre>
```

2.18 Find cycl 3 4

```
#include <bits/stdc++.h>
using lint = int64_t;
constexpr int MOD = int(1e9) + 7;
constexpr int INF = 0x3f3f3f3f3f;
constexpr int NINF = 0xcfcfcfcf;
constexpr lint LINF = 0x3f3f3f3f3f3f3f3f3f3f;
#define endl '\n'
const long double PI = acosl(-1.0);
int cmp_double(double a, double b = 0, double eps = 1e-9) {
        return a + eps > b ? b + eps > a ? 0 : 1 : -1;
using namespace std:
#define P 1000000007
#define N 330000
int n, m;
vector<int> go[N], lk[N];
int w[N], deg[N], pos[N], id[N];
bool circle3() {
        int ans = 0;
        for(int i = 1; i <= n; i++) w[i] = 0;
        for (int x = 1; x <= n; x++) {
    for (int y : 1k[x]) w[y] = 1;
    for (int y : 1k[x]) for (int z:1k[y]) if (w[z]) {
                          ans=(ans+go[x].size()+go[y].size()+go[z].size() - 6);
                          if(ans) return true;
                 for(int y:1k[x]) w[y] = 0;
        return false;
bool circle4() {
        for(int i = 1; i <= n; i++) w[i] = 0;</pre>
        for (int x = 1; x \le n; x++) {
                 for(int y:go[x]) for(int z:lk[y]) if(pos[z] > pos[x]) {
                          ans = (ans+w[z]);
                          w[z]++;
                          if(ans) return true;
                 for(int y:go[x]) for(int z: lk[y]) w[z] = 0;
        return false;
inline bool cmp(const int &x, const int &y) {
        return deg[x] < deg[y];</pre>
        cin.tie(nullptr) ->sync_with_stdio(false);
        cin >> n >> m;
        int x, y;
for(int i = 0; i < n; i++) {</pre>
                cin >> x >> y;
```

```
for(int i = 1; i <= n; i++) {</pre>
          deg[i] = 0, go[i].clear(), lk[i].clear();
while (m--) {
          int a, b;
          cin >> a >> b;
          deg[a]++, deg[b]++;
          go[a].push_back(b);
          go[b].push_back(a);
for(int i = 1; i <= n; i++) id[i]= i;
sort(id+1, id+1+n, cmp);</pre>
for(int i = 1; i <= n; i++) pos[id[i]]=i;
for(int x = 1; x <= n; x++) {</pre>
          for(int y:go[x]) {
                   if(pos[y]>pos[x]) lk[x].push_back(y);
};
if(circle3()) {
    cout << "3" << endl;</pre>
          return 0:
};
if(circle4()) {
          cout << "4" << endl;
          return 0:
cout << "5" << endl;
return 0;
```

2.19 Hungarian

```
// Hungarian - O(m*n^2)
// Assignment Problem
int pu[N], pv[N], cost[N][M];
int pairV[N], way[M], minv[M], used[M];
void hungarian() {
    for(int i = 1, j0 = 0; i <= n; i++) {</pre>
                  pairV[0] = i;
memset(minv, 63, sizeof minv);
                    memset(used, 0, sizeof used);
                              used[j0] = 1;
                              int i0 = pairV[j0], delta = INF, j1;
                              for (int j = 1; j \le m; j++) {
                                       if(used[j]) continue;
                                       int cur = cost[i0][j] - pu[i0] - pv[j];
                                       if(cur < minv[j]) minv[j] = cur, way[j] = j0;
if(minv[j] < delta) delta = minv[j], j1 = j;</pre>
                             for(int j = 0; j <= m; j++) {
    if(used[j]) pu[pairV[j]] += delta, pv[j] -= delta;
    else minv[j] -= delta;</pre>
                              j0 = j1;
                    } while(pairV[j0]);
                              int j1 = way[j0];
                             pairV[j0] = pairV[j1];
                              j0 = j1;
                    } while(10);
// for(int j = 1; j <= m; j++)
// if(pairV[j]) ans += cost[pairV[j]][j];
```

2.20 Hungarian navarro

```
// Hungarian - O(n^2 + m) template/bool is_max = false, class T = int, bool is_zero_indexed = false> struct Hungarian {
```

```
bool swap_coord = false;
        int lines, cols;
        T ans;
        vector<int> pairV, way;
        vector<bool> used;
        vector<T> pu, pv, minv;
        vector<vector<T>> cost;
        Hungarian(int _n, int _m) {
                if (_n > _m) {
                         swap(_n, _m);
                         swap coord = true;
                 lines = _n + 1, cols = _m + 1;
                 clear();
                 cost.resize(lines);
                 for (auto& line : cost) line.assign(cols, 0);
        void clear() {
                 pairV.assign(cols, 0);
                 way.assign(cols, 0);
                 pv.assign(cols, 0);
                 pu.assign(lines, 0);
        void update(int i, int j, T val) {
                 if (is_zero_indexed) i++, j++;
                 if (is_max) val = -val;
                 if (swap_coord) swap(i, j);
                 assert(i < lines);
                 assert(j < cols);</pre>
                 cost[i][j] = val;
                   _INF = numeric_limits<T>::max();
                 for (int i = 1, j0 = 0; i < lines; i++) {
                         pairV[0] = i;
                         minv.assign(cols, INF);
                         used.assign(cols, 0);
                                  used[j0] = 1;
                                  int i0 = pairV[j0], j1;
T delta = _INF;
for (int j = 1; j < cols; j++) {</pre>
                                          if (used[j]) continue;
                                          for (int j = 0; j < cols, j++) {
    if (used[ji) pu[pairV[j]] += delta, pv[j] -= delta;
    else minv[j] -= delta;</pre>
                                  j0 = j1
                         } while (pairV[j0]);
                                  int j1 = way[j0];
                                  pairV[j0] = pairV[j1];
                                  j0 = j1;
                         } while (j0);
                 for (int j = 1; j < cols; j++) if (pairV[j]) ans += cost[pairV[j]][j];</pre>
                 if (is_max) ans = -ans;
                 if (is_zero_indexed) {
                         for (int j = 0; j + 1 < cols; j++) pairV[j] = pairV[j + 1], pairV[j]--;
pairV[cols - 1] = -1;</pre>
                 if (swap_coord) {
                         vector<int> pairV_sub(lines, 0);
                         for (int j = 0; j < cols; j++) if (pairV[j] >= 0) pairV_sub[pairV[j]] = j;
swap(pairV, pairV_sub);
                 return ans:
template <bool is_max = false, bool is_zero_indexed = false>
struct HungarianMult : public Hungarian<is_max, long double, is_zero_indexed> {
        using super = Hungarian<is_max, long double, is_zero_indexed>;
```

};

```
HungarianMult(int _n, int _m) : super(_n, _m) {}
        void update(int i, int j, long double x) {
               super::update(i, j, log2(x));
};
```

2.21 Kahn

```
* KAHN'S ALGORITHM (TOPOLOGICAL SORTING)
* Time complexity: O(V+E)
* Notation: adj[i]: adjacency matrix for node i
                  number of vertices
         n:
          e:
                  number of edges
          a, b: edge between a and b
inc: number of incoming arcs/edges
                   queue with the independent vertices
           tsort: final topo sort, i.e. possible order to traverse graph
vector <int> adj[N];
int inc[N]; // number of incoming arcs/edges
// undirected graph: inc[v] <= 1
// directed graph: inc[v] == 0
for (int i = 1; i <= n; ++i) if (inc[i] <= 1) q.push(i);
while (!q.empty()) {
       int u = q.front(); q.pop();
       for (int v : adj[u])
              if (inc[v] > 1 \text{ and } --inc[v] \ll 1)
                     q.push(v);
```

2.22 Kosaraju

```
* KOSARAJU'S ALGORITHM (GET EVERY STRONGLY CONNECTED COMPONENTS (SCC))
\star Description: Given a directed graph, the algorithm generates a list of every
\star strongly connected components. A SCC is a set of points in which you can reach \star every point regardless of where you start from. For instance, cycles can be
* every point regardies of where you scall from for instance, system of a Scall from the second of a greater SCC.

* This algorithm starts with a DFS and generates an array called "ord" which stores vertices according to the finish times (i.e. when it reaches "return").

* Then, it makes a reversed DFS according to "ord" list. The set of points
* visited by the reversed DFS defines a new SCC.
* One of the uses of getting all SCC is that you can generate a new DAG (Directed *
* Acyclic Graph), easier to work with, in which each SCC being a "supernode" of
* the DAG.
* Time complexity: O(V+E)
 * Notation: adj[i]: adjacency list for node i
              adjt[i]: reversed adjacency list for node i
              ord: array of vertices according to their finish time
              ordn:
                         ord counter
              scc[i]: supernode assigned to i
              scc cnt: amount of supernodes in the graph
*******************************
const int N = 2e5 + 5:
vector<int> adj[N], adjt[N];
int n, ordn, scc_cnt, vis[N], ord[N], scc[N];
void dfs(int u) {
         vis[u] = 1;
         for (auto v : adj[u]) if (!vis[v]) dfs(v);
         ord[ordn++] = u;
void dfst(int u) {
         scc[u] = scc_cnt, vis[u] = 0;
for (auto v : adjt[u]) if (vis[v]) dfst(v);
// add edge: u -> v
void add_edge(int u, int v) {
         adj[u].push_back(v);
```

```
adjt[v].push_back(u);
//Undirected version:
        int par[N];
        void dfs(int u) {
                vis[u] = 1;
                for (auto v : adj[u]) if(!vis[v]) par[v] = u, dfs(v);
                ord[ordn++] = u;
        void dfst (int u) {
                scc[u] = scc\_cnt, vis[u] = 0;
                for (auto v : adj[u]) if (vis[v] and u != par[v]) dfst(v);
        // add edge: u -> v
        void add_edge(int u, int v){
               adj[u].push_back(v);
                adj[v].push_back(u);
*/
// run kosaraju
void kosaraju() {
        for (int i = 1; i <= n; ++i) if (!vis[i]) dfs(i);</pre>
        for (int i = ordn - 1; i >= 0; --i) if (vis[ord[i]]) scc_cnt++, dfst(ord[i]);
```

2.23 Kuhn

```
* KUHN'S ALGORITHM (FIND GREATEST NUMBER OF MATCHINGS - BIPARTITE GRAPH)
* Time complexity: O(VE)
* Notation: ans:
                number of matchings
         b[j]:
                 matching edge b[j] <-> j
         adj[i]: adjacency list for node i
         vis:
                visited nodes
                counter to help reuse vis list
// TIP: If too slow, shuffle nodes and try again.
int x, vis[N], b[N], ans;
bool match(int u) {
      if (vis[u] == x) return 0;
      vis[u] = x;
      for (int v : adj[u])
            if (!b[v] or match(b[v])) return b[v]=u;
for (int i = 1; i <= n; ++i) ++x, ans += match(i);</pre>
// Maximum Independent Set on bipartite graph
MIS + MCBM = V
// Minimum Vertex Cover on bipartite graph
MVC = MCBM
```

2.24 LCA

2.25 Max weight LCA

```
// Using LCA to find max edge weight between (u, v)
const int N = 1e5+5; // Max number of vertices
const int K = 20;
                                                                     // Each 1e3 requires ~ 10 K
const int M = K+5;
int n;
                                                                          // Number of vertices
vector <pii> adj[N];
int vis[N], h[N], anc[N][M], mx[N][M];
 \begin{tabular}{ll} \be
                          vis[u] = 1;
                          for (auto p : adj[u]) {
                                                   int v = p.st;
int w = p.nd;
                                                     if (!vis[v]) {
                                                                                h[v] = h[u]+1;
                                                                                anc[v][0] = u;
                                                                                mx[v][0] = w;
                                                                                dfs(v);
void build () {
                         // cl(mn, 63) -- Don't forget to initialize with INF if min edge!
                          anc[1][0] = 1;
                          dfs(1):
                         for (int j = 1; j <= K; j++) for (int i = 1; i <= n; i++) {
    anc[i][j] = anc[anc[i][j-1]][j-1];
    mx[i][j] = max(mx[i][j-1], mx[anc[i][j-1]][j-1]);</pre>
int mxedge (int u, int v) {
                          int ans = 0;
                          if (h[u] < h[v]) swap(u, v);
                          for (int j = K; j >= 0; j--) if (h[anc[u][j]] >= h[v]) {
                                                     ans = max(ans, mx[u][j]);
                                                     u = anc[u][j];
                          if (u == v) return ans;
                          for (int j = K; j >= 0; j--) if (anc[u][j] != anc[v][j]) {
                                                    ans = max(ans, mx[u][j]);
                                                     ans = max(ans, mx[v][j]);
                                                    u = anc[u][j];
v = anc[v][j];
                          return max({ans, mx[u][0], mx[v][0]});
```

2.26 Min cost max flow

```
// USE INF = 1e9!
* MIN COST MAX FLOW (MINIMUM COST TO ACHIEVE MAXIMUM FLOW)
* Description: Given a graph which represents a flow network where every edge has *
* a capacity and a cost per unit, find the minimum cost to establish the maximum
* possible flow from s to t.
* Note: When adding edge (a, b), it is a directed edge!
* Usage: min_cost_max_flow()
       add_edge(from, to, cost, capacity)
* Notation: flw: max flow
         cst: min cost to achieve flw
* Testcase:
* add_edge(src, 1, 0, 1); add_edge(1, snk, 0, 1); add_edge(2, 3, 1, INF);
* add_edge(src, 2, 0, 1); add_edge(2, snk, 0, 1); add_edge(3, 4, 1, INF);
* add_edge(src, 2, 0, 1); add_edge(3, snk, 0, 1); 
* add_edge(src, 2, 0, 1); add_edge(4, snk, 0, 1); => flw = 4, cst = 3
// w: weight or cost, c : capacity
struct edge {int v, f, w, c; };
```

```
int n, flw_lmt=INF, src, snk, flw, cst, p[N], d[N], et[N];
vector<int> g[N];
void add_edge(int u, int v, int w, int c) {
         int k = e.size();
         g[u].push_back(k);
         g[v].push_back(k+1);
         e.push_back({ v, 0, w, c });
         e.push_back({ u, 0, -w, 0 });
void clear() {
         flw lmt = INF:
         for(int i=0; i<=n; ++i) g[i].clear();</pre>
void min_cost_max_flow() {
         flw = 0, cst = 0;
         while (flw < flw_lmt) {</pre>
                  memset(et, 0, (n+1) * sizeof(int));
                  memset(d, 63, (n+1) * sizeof(int));
                  deque<int> q;
                  q.push_back(src), d[src] = 0;
                  while (!q.empty()) {
    int u = q.front(); q.pop_front();
    et[u] = 2;
                            for(int i : g[u]) {
                                     edge &dir = e[i];
                                     int v = dir.v;
                                     \textbf{if} \ (\texttt{dir.f} \, < \, \texttt{dir.c} \, \, \, \textbf{and} \, \, \, \texttt{d[u]} \, + \, \texttt{dir.w} \, < \, \texttt{d[v]}) \, \, \, \{ \,
                                              d[v] = d[u] + dir.w;
                                              if (et[v] == 0) q.push_back(v);
                                              else if (et[v] == 2) q.push_front(v);
                                              et[v] = 1;
p[v] = i;
                  if (d[snk] > INF) break;
                  int inc = flw_lmt - flw;
                  for (int u=snk; u != src; u = e[p[u]^1].v) {
                            edge &dir = e[p[u]];
                            inc = min(inc, dir.c - dir.f);
                  for (int u=snk; u != src; u = e[p[u]^1].v) {
                            edge &dir = e[p[u]], &rev = e[p[u]^1];
                           dir.f += inc:
                           rev.f -= inc:
                           cst += inc * dir.w;
                  if (!inc) break;
```

2.27 Prim

```
// Prim - MST O(ElogE)
vi adj[N], adjw[N];
int vis[N];

priority_queue<pii>> pq;
pq.push(mp(0, 0));

while (!pq.empty()) {
    int u = pq.top().nd;
    pq.pop();
    if (vis[u]) continue;
    vis[u]=1;
    for (int i = 0; i < adj[u].size(); ++i) {
        int v = adjw[u][i];
        int w = adjw[u][i];
        if (!vis[v]) pq.push(mp(-w, v));
    }
}</pre>
```

2.28 Small to large

```
// Imagine you have a tree with colored vertices, and you want to do some type of query on every
      subtree about the colors inside
// complexity: O(nlogn)
vector<int> adj[N], vec[N];
int sz[N], color[N], cnt[N];
void dfs_size(int v = 1, int p = 0) {
        sz[v] = 1;
        for (auto u : adj[v]) {
               if (u != p) {
                       dfs_size(u, v);
                        sz[v] += sz[u];
                }
void dfs(int v = 1, int p = 0, bool keep = false) {
        int Max = -1, bigchild = -1;
        for (auto u : adj[v]) {
               if (u != p && Max < sz[u]) {</pre>
                       Max = sz[u];
                       bigchild = u;
        for (auto u : adj[v]) {
               if (u != p && u != bigchild) {
                       dfs(u, v, 0);
        if (bigchild != -1) {
                dfs(bigchild, v, 1);
                swap(vec[v], vec[bigchild]);
        vec[v].push_back(v);
        cnt[color[v]]++;
        for (auto u : adj[v]) {
               if (u != p && u != bigchild) {
                       for (auto x : vec[u]) {
                               cnt[color[x]]++;
                                vec[v].push_back(x);
        // now here you can do what the query wants
        // there are cnt[c] vertex in subtree v color with c
        if (keep == 0) {
                for (auto u : vec[v]) {
                        cnt[color[u]]--;
```

2.29 SPFA

```
// Shortest Path Faster Algoritm O(VE)
int dist[N], inq[N];

cl(dist,63);
queuexint> q;
q.push(0); dist[0] = 0; inq[0] = 1;

while (!q.empty()) {
    int u = q.front(); q.pop(); inq[u]=0;
    for (int i = 0; i < adj[u].size(); ++i) {
        int v = adj[u][i], w = adjw[u][i];
        if (dist[v] > dist[u] + w) {
            dist[v] = dist[u] + w;
            if (!inq[v]) q.push(v), inq[v] = 1;
    }
}
```

2.30 Stanford Stoer Wagner

```
memset (reach, 0, sizeof (reach));
memset(last, 0, sizeof(last));
for (int j=1; j<=N; j++)</pre>
         if (use[j]==0) {t=j;break;}
for (int j=1; j<=N; j++)</pre>
        if (use[j]==0) reach[j]=a[t][j],last[j]=t;
visit[t]=1;
for (int j=1; j<=N-i; j++)</pre>
         for (int k=1; k<=N; k++)</pre>
                 if ((visit[k]==0)&&(reach[k]>maxc)) maxc=reach[k],maxk=k;
         c2=maxk, visit [maxk]=1;
for (int k=1; k<=N; k++)</pre>
                  if (visit[k]==0) reach[k]+=a[maxk][k],last[k]=maxk;
c1=last[c2];
for (int j=1; j<=N; j++)</pre>
         if (use[j]==0) sum+=a[j][c2];
ans=min(ans, sum);
use[c2]=1;
for (int j=1; j<=N; j++)</pre>
         if ((c1!=j)&&(use[j]==0)) {a[j][c1]+=a[j][c2];a[c1][j]=a[j][c1];}
```

2.31 Tarjan

```
// Tarjan for SCC and Edge Biconnected Componentes - O(n + m)
vector<int> adj[N];
stack<int> st;
bool inSt[N];
int id[N], cmp[N];
int cnt, cmpCnt;
void clear(){
        memset(id, 0, sizeof id);
        cnt = cmpCnt = 0;
int tarjan(int n) {
        id[n] = low = ++cnt;
        st.push(n), inSt[n] = true;
        for(auto x : adj[n]){
                if(id[x] and inSt[x]) low = min(low, id[x]);
                else if(!id[x]) {
                        int lowx = tarjan(x);
                        if(inSt[x])
                                 low = min(low, lowx);
        if(low == id[n]){
                while(st.size()){
                        int x = st.top();
inSt[x] = false;
                         cmp[x] = cmpCnt;
                         st.pop();
                         if(x == n) break;
                cmpCnt++;
        return low:
```

2.32 Zero one BFS

```
// 0-1 BFS - O(V+E)
const int N = 1e5 + 5;
int dist[N];
vector<pii> adj[N];
deque<pii> dq;

void zero_one_bfs (int x){
    cl(dist, 63);
    dist[x] = 0;
```

```
dq.push_back({x, 0});
while(!dq.empty()) {
    int u = dq.front().st;
    int ud = dq.front().nd;
    dq.pop_front();
    if(dist[u] < ud) continue;
    for(auto x : adj[u]) {
        int v = x.st;
        int w = x.nd;
        if(dist[u] + w < dist[v]) {
            dist[v] = dist[u] + w;
            if(w) dq.push_back({v, dist[v]});
            else dq.push_front({v, dist[v]});
        }
    }
}</pre>
```

3 DFS

3.1 Coin Change

3.2 Knapsack

```
1l knapsack(ll W, vi weights, vi profits, int n) {
  vectorviv dp(n + 1, vi(W + 1));
  forn(i, n + 1) {
    forn(w, W + 1) {
      if (i == 0 | | w == 0) dp[i][w] = 0;
      else if (weights[i - 1] <= w)
        dp[i][w] = max(
            profit[i - 1] + dp[i - 1][w - weights[i - 1]],
        dp[i - 1][w]);
    else
        dp[i][w] = dp[i - 1][w];
    }
}
return dp[n][W];
}</pre>
```

3.3 Longest Common Subsequence

```
int lcs(string &s1, string &s2) {
  int m = sz(s1), n = sz(s2);

vector<vi> dp(m + 1, vi(n + 1, 0));
  forx(i, 1, m + 1) {
    forx(j, 1, n + 1) {
        dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
        if (s1[i - 1] == s2[j - 1]) dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);
    }
}

return dp[m][n];
}
```

3.4 Longest Increasing Subsequences

```
int lis(vi &original) {
    vi aux;
    forn(i, sz(original)) {
        auto it = lower_bound(all(aux), original[i]);
        if (it == aux.end()) aux.pb(original[i]);
        else *it = original[i];
    }
    return sz(aux);
}
```

4 Query

4.1 Prefix sum

```
void solve() {
    ll n, q, x, y;
    cin >> n >> q;

vl nums(n), prefix(n + 1);
    forn(i, n) cin >> nums[i], prefix[i + 1] = prefix[i] + nums[i];

forn(i, q) {
    cin >> x >> y;
    cout << prefix[y] - prefix[x - 1] << '\n';
    }
}</pre>
```

4.2 Prefix sum 2D

```
void solve() {
  11 n, q;
cin >> n >> q;
  vector<string> s(n); // 0-index
   vector\langle vl \rangle prefix(n + 1, vl(n + 1)); // 1-index
  forn(i, n) {
     forn(j, n) {
      11 value = s[i][j] == '*';
prefix[i + 1][j + 1] = (value
                                     + prefix[i][j + 1]
                                     + prefix[i + 1][j]
                                     - prefix[i][j]);
  while (q--) {
    11 x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
x1--, y1--, x2--, y2--;
     11 \text{ sum} = (\text{prefix}[x2 + 1][y2 + 1]
                 - prefix[x1][y2 + 1]
                 - prefix[x2 + 1][y1]
                 + prefix[x1][y1]); // O-index query
     cout << sum << '\n';
```

4.3 Fenwick Tree

```
struct BIT { // 1-index
    v1 bit;
    l1 n;

BIT(int n) : bit(n+1), n(n) {}

11 lsb(int i) { return i & -i; }

void add(int i, l1 x) {
```

```
for (; i <= n; i += lsb(i)) bit[i] += x;
}

ll sum(int r) {
    ll res = 0;
    for (; r > 0; r -= lsb(r)) res += bit[r];
    return res;
}

ll sum(int l, int r) {
    return sum(r) - sum(l-1);
}

void set(int i, ll x) {
    add(i, x - sum(i, i));
};
```

4.4 Fenwick Tree 2D

```
struct BIT2D {
  vector<vl> bit;
  11 n, m;
 BIT2D(11 n, 11 m) : bit(n + 1, vector<11>(m + 1)), n(n), m(m) {}
  11 lsb(11 i) {
   return i & -i;
  void add(int row, int col, ll x) {
    for (int i = row; i <= n; i += lsb(i)) {
  for (int j = col; j <= m; j += lsb(j)) {</pre>
          bit[i][j] += x;
  11 sum(int row, int col) {
    11 res = 0;
    for (int i = row; i > 0; i -= lsb(i)) {
  for (int j = col; j > 0; j -= lsb(j)) {
        res += bit[i][j];
    return res;
  11 sum(int x1, int y1, int x2, int y2) {
    return (sum(x2, y2)
             - sum(x1 - 1, y2)
             - sum(x2, y1 - 1)
             + sum(x1 - 1, y1 - 1));
  void set(int x, int y, ll val) {
    add(x, y, val - sum(x, y, x, y));
};
```

4.5 General Segtree

```
struct Node {
    11 a = 0;
    Node (11 val = 0) : a(val) {}
};

Node e() {
    Node node;
    return node;
}

Node op(Node a, Node b) {
    Node node;
    node.a = a.a ^ b.a;
    return node;
}

struct Segtree {
    vector(Node> nodes;
    11 n;
}
```

```
void init(int n) {
    auto a = vector<Node>(n, e());
    init(a);
  void init(vector<Node>& initial) {
    nodes.clear();
    n = initial.size();
    int size = 1;
    while (size < n) {
      size *= 2;
    nodes.resize(size * 2);
    build(0, 0, n-1, initial);
  void build(int i, int sl, int sr, vector<Node>& initial) {
      nodes[i] = initial[sl];
    } else {
      11 \text{ mid} = (s1 + sr) >> 1;
      build(i*2+1, sl, mid, initial);
      build(i*2+2, mid+1,sr,initial);
      nodes[i] = op(nodes[i*2+1], nodes[i*2+2]);
  void update(int i, int sl, int sr, int pos, Node node) {
   if (sl <= pos && pos <= sr) {
  if (sl == sr) {</pre>
        nodes[i] = node;
      } else {
        int mid = (s1 + sr) >> 1;
        update(i \star 2 + 1, sl, mid, pos, node);
        update(i * 2 + 2, mid + 1, sr, pos, node);
        nodes[i] = op(nodes[i*2+1], nodes[i*2+2]);
  void update(int pos, Node node) {
  update(0, 0, n - 1, pos, node);
  Node query(int i, int sl, int sr, int l, int r) {
    if (1 <= s1 && sr <= r) {
      return nodes[i];
    } else if(sr < 1 || r < sl) {</pre>
      return e();
    } else {
      int mid = (sl + sr) / 2;
      auto a = query(i \star 2 + 1, sl, mid, l, r);
      auto b = query(i * 2 + 2, mid + 1, sr, 1, r);
      return op(a, b);
  Node query(int 1, int r) {
    return query(0, 0, n - 1, 1, r);
  Node get(int i) {
    return query(i, i);
};
```

4.6 Sum Lazytree

```
void update(int i, int sl, int sr, int l, int r, ll diff) {
        if (lazySum[i]) {
                  sum[i] += (sr - sl + 1) * lazySum[i];
                  if (sl != sr) {
                          lazySum[i * 2 + 1] += lazySum[i];
                          lazySum[i * 2 + 2] += lazySum[i];
                  lazySum[i] = 0;
        if (1 <= sl && sr <= r) {
    sum[i] += (sr - sl + 1) * diff;</pre>
                 if (sl != sr) {
                          lazySum[i * 2 + 1] += diff;
                          lazySum[i * 2 + 2] += diff;
         } else if (sr < 1 || r < s1) {
         } else {
                  int mid = (s1 + sr) >> 1;
                 update(i * 2 + 1, sl, mid, l, r, diff);
update(i * 2 + 2, mid + 1, sr, l, r, diff);
                  sum[i] = sum[i * 2 + 1] + sum[i * 2 + 2];
void update(int 1, int r, 11 diff) {
        assert(1 <= r);
         assert (r < n):
        update(0, 0, n - 1, 1, r, diff);
11 query(int i, int s1, int sr, int 1, int r) {
        if (lazySum[i]) {
                  sum[i] += lazySum[i] * (sr - sl + 1);
                  if (sl != sr) {
                          lazySum[i * 2 + 1] += lazySum[i];
lazySum[i * 2 + 2] += lazySum[i];
                  lazySum[i] = 0;
        if (1 <= s1 && sr <= r) {
                 return sum[i];
         } else if (sr < 1 || r < sl) {</pre>
                 return 0;
         } else {
                  int mid = (sl + sr) >> 1;
                  return query(i * 2 + 1, sl, mid, l, r) + query(i * 2 + 2, mid + 1, sr, l, r);
11 query(int 1, int r)
        assert(1 <= r);
         assert(r < n):
        return query(0, 0, n - 1, 1, r);
```

5 Geometry

};

5.1 2D Library

```
typedef long double lf;
const lf EPS = le=81;
const lf EPS = le=81;
const lf EPS = 0.01; //Keep = 0 for integer coordinates, otherwise = EPS
const lf INF = 5e9;
enum {OUT, IN,ON};
struct pt {
    lf x,y;
    pt(){}
    pt(lf a , lf b): x(a), y(b){}

pt operator - (const pt &q ) const {
    return {x - q.x , y - q.y };
    }

pt operator + (const pt &q ) const {
    return {x + q.x , y + q.y };
}
```

```
pt operator * (const 1f &t ) const {
    return {x * t , y * t };
  pt operator / (const lf &t ) const {
    return {x / t , y / t };
  \verb|bool operator| < (|const|pt|&q|) |const| \{ |const| |const| |const| \}
    if( fabsl( x - q.x ) > E0 ) return x < q.x;
    return y < q.y;
  void normalize() {
    lf norm = hypotl( x, y );
if( fabsl( norm ) > EPS )
      x /= norm, y /= norm;
};
pt rot90( pt p ) { return { -p.y, p.x }; }
pt rot(pt p, lf w) {
  return { cosl( w ) * p.x - sinl( w ) * p.y, sinl( w ) * p.x + cosl( w ) * p.y };
1f norm2(pt p) { return p.x * p.x + p.y * p.y; }
lf dis2(pt p, pt q) { return norm2(p-q); }
lf norm(pt p) { return hypotl ( p.x, p.y ); }
lf dis(pt p, pt q) { return norm( p - q ); }
lf dot(pt p, pt q) { return p.x * q.x + p.y * q.y; }
lf cross(pt p, pt q) { return p.x * q.y - q.x * p.y; }
lf orient(pt a, pt b, pt c) { return cross( b - a, c - a ); };
lf angle(pt a, pt b) { return atan2(cross(a, b), dot(a, b)); }
// rad => * 180.0 / M P1
lf angle2(pt a, pt b) { return acos(dot(a, b) / abs(a) / abs(b)); }
lf abs(pt a) { return sqrt(a.x * a.x + a.y * a.y); }
lf proj(pt a, pt b) { return dot(a, b) / abs(b) }
bool in_angle( pt a, pt b, pt c, pt p ) {
    //assert( fabsl( orient( a, b, c ) ) > E0 );
  if( orient( a, b, c ) < -E0 )</pre>
    return orient(a, b, p) >= -E0 || orient(a, c, p) <= E0;
  return orient(a, b, p) >= -E0 && orient(a, c, p) <= E0;
struct line {
  pt nv;
lf c;
  line( pt _nv, lf _c ) : nv( _nv ), c( _c ) {}
  line( lf _a, lf _b, lf _c ) : nv( {_b, -_a} ), c( _c ) {}
  line ( pt p, pt q ) {
    nv = \{ p.y - q.y, q.x - p.x \};
    c = -dot(p, nv);
  lf eval( pt p ) { return dot( nv, p ) + c; }
  1f distance2( pt p ) {
    return eval( p ) / norm2( nv ) * eval( p );
  lf distance( pt p ) {
    return fabsl( eval( p ) ) / norm( nv );
  pt projection( pt p ) {
    return p - nv * ( eval( p ) / norm2( nv ) );
  bool contains(const pt& r) {
    return fabs(cross(nv, r) - c) < EPS;
pt lines_intersection( line a, line b ) {
  lf d = cross( a.nv, b.nv );
  //assert ( fabsl ( d ) > E0 );
  If dx = a.nv.y * b.c - a.c * b.nv.y;
  lf dy = a.c \star b.nv.x - a.nv.x \star b.c;
  return { dx / d, dy / d };
```

line bisector(pt a, pt b) {

```
pt nv = (b - a), p = (a + b) * 0.5L;
  lf c = -dot( nv, p );
  return line( nv, c );
struct Circle {
 pt center;
  Circle( pt p, lf rad ) : center( p ), r( rad ) {};
 Circle( pt p, pt q ) {
  center = ( p + q ) * 0.5L;
    r = dis(p, q) * 0.5L;
  Circle( pt a, pt b, pt c ) {
  line lb = bisector( a, b ), lc = bisector( a, c );
    center = lines_intersection( lb, lc );
    r = dis(a, center);
  int contains( pt &p ) {
  lf det = r * r - dis2( center, p );
    if( fabsl( det ) <= E0 ) return ON;</pre>
    return ( det > E0 ? IN : OUT );
1:
lf part(pt a, pt b, lf r) {
 lf l = abs(a-b);
  pt p = (b-a)/1;
lf c = dot(a, p), d = 4.0 * (c*c - dot(a, a) + r*r);
  if (d < EPS) return angle (a, b) * r * r * 0.5;
  d = sqrt(d) * 0.5;
  1f s = -c - d, t = -c + d;
  if (s < 0.0) s = 0.0; else if (s > 1) s = 1;
  if (t < 0.0) t = 0.0; else if (t > 1) t = 1;
  pt u = a + p*s, v = a + p*t;
  \textbf{return} \ (\texttt{cross}\,(\texttt{u},\ \texttt{v})\ +\ (\texttt{angle}\,(\texttt{a},\ \texttt{u})\ +\ \texttt{angle}\,(\texttt{v},\ \texttt{b})\,)\ \star\ \texttt{r}\ \star\ \texttt{r})\ \star\ \texttt{0.5};
lf circle_poly_intersection( Circle c, vector<pt> p){
  lf ans = 0;
  int n = p.size();
  for (int i = 0; i < n; i++) {
    ans += part(p[i]-c.center, p[(i+1)%n]-c.center, c.r);
  return abs(ans);
vector< pt > circle_line_intersection( Circle c, line 1 ) {
 lf h2 = c.r * c.r - 1.distance2( c.center );
if( fabs1( h2 ) < EPS ) return { 1.projection( c.center ) };</pre>
  if( h2 < 0.0L ) return {};</pre>
  pt dir = rot90( 1.nv );
  pt p = 1.projection( c.center );
  1f t = sqrtl( h2 / norm2( dir ) );
  return { p + dir * t, p - dir * t };
vector< pt > circle_circle_intersection( Circle c1, Circle c2 ) {
 pt dir = c2.center - c1.center;
lf d2 = dis2( c1.center, c2.center );
  if ( d2 <= E0 ) {
    //assert( fabsl( c1.r - c2.r ) > E0 );
    return {};
  1f td = 0.5L * (d2 + c1.r * c1.r - c2.r * c2.r);
  1f h2 = c1.r * c1.r - td / d2 * td;
  pt p = c1.center + dir \star ( td / d2 );
  if( fabs1( h2 ) < EPS ) return { p };</pre>
  if( h2 < 0.0L ) return {};</pre>
  pt dir_h = rot90(dir) \star sqrt1( h2 / d2 );
  return { p + dir_h, p - dir_h };
vector< pt > convex_hull( vector< pt > v ) {
  sort( v.begin(), v.end() );//remove repeated points if needed
  const int n = v.size();
  if(n < 3) return v;
  vector< pt > ch(2 * n);
  for( int i = 0; i < n; ++ i ) {</pre>
    while( k > 1 \&\& \text{ orient( } ch[k-2], \ ch[k-1], \ v[i] ) <= E0 )
```

```
--k:
    ch[k++] = v[i];
  const int t = k;
  for ( int i = n - 2; i >= 0; -- i ) {
    \textbf{while} ( \ k > t \ \&\& \ orient ( \ ch[k-2], \ ch[k-1], \ v[i] \ ) \ <= \ E0 \ )
    ch[k++] = v[i];
  ch.resize(k-1);
  return ch;
vector<pt> minkowski( vector<pt> P, vector<pt> Q ) {
  rotate( P.begin(), min_element( P.begin(), P.end() ), P.end() );
  rotate( Q.begin(), min_element( Q.begin(), Q.end() ), Q.end() );
  P.push_back(P[0]), P.push_back(P[1]);
  Q.push_back(Q[0]), Q.push_back(Q[1]);
  size_t i = 0, j = 0;
  while(i < P.size() - 2 || j < Q.size() - 2) {
      ans.push_back(P[i] + Q[j]);
      if dt = cross( P[i + 1] - P[i], Q[j + 1] - Q[j]);
if(dt >= E0 && i < P.size() - 2) ++i;
if(dt <= E0 && j < Q.size() - 2) ++j;</pre>
  return ans:
vector< pt > cut( const vector< pt > &pol, line l ) {
  for( int i = 0, n = pol.size(); i < n; ++ i ) +</pre>
    1f s1 = 1.eval(pol[i]), s2 = 1.eval(pol[(i+1)%n]);
    if( s1 >= -EPS ) ans.push_back( pol[i] );
    if( ( s1 < -EPS \&\& s2 > EPS ) || ( <math>s1 > EPS \&\& s2 < -EPS ) ) {
      line li = line( pol[i], pol[(i+1)%n]);
      ans.push_back( lines_intersection( 1, li ) );
  return ans:
int point_in_polygon( const vector< pt > &pol, const pt &p ) {
  for( int i = 0, n = pol.size(); i < n; ++ i ) {</pre>
    lf c = orient(p, pol[i], pol[(i+1)%n]);
if( fabsl( c ) <= E0 && dot( pol[i] - p, pol[(i+1)%n] - p ) <= E0 ) return ON;</pre>
    if( c > 0 && pol[i].y <= p.y + E0 && pol[(i+1)%n].y - p.y > E0 ) ++wn;
    if( c < 0 && pol[(i+1)%n].y <= p.y + E0 && pol[i].y - p.y > E0 ) --wn;
  return wn ? IN : OUT:
int point_in_convex_polygon( const vector < pt > &pol, const pt &p ) {
  int low = 1, high = pol.size() - 1;
  while ( high - low > 1 ) {
    int mid = ( low + high ) / 2;
    if( orient( pol[0], pol[mid], p ) >= -E0 ) low = mid;
    else high = mid:
  if( orient( pol[0], pol[low], p ) < -E0 ) return OUT;</pre>
  if( orient( pol[low], pol[high], p ) < -E0 ) return OUT;
if( orient( pol[high], pol[0], p ) < -E0 ) return OUT;</pre>
  if( low == 1 && orient( pol[0], pol[low], p ) <= E0 ) return ON;
if( orient( pol[low], pol[high], p ) <= E0 ) return ON;</pre>
  if( high == (int) pol.size() -1 && orient( pol[high], pol[0], p ) <= E0 ) return ON;</pre>
  return IN:
```

5.2 3D Library

```
typedef double T;
struct p3 {
    T x, y, z;
    // Basic vector operations
p3 operator + (p3 p) { return {x+p.x, y+p.y, z+p.z }; }
p3 operator - (p3 p) { return {x - p.x, y - p.y, z - p.z}; }
p3 operator * (T d) { return {x*d, y*d, z*d}; }
p3 operator / (T d) { return {x / q, y / d, z / d}; } // only for floating point
// Some comparators
bool operator == (p3 p) { return tie(x, y, z) == tie(p.x, p.y, p.z); }
bool operator != (p3 p) { return !operator == (p); }
```

```
p3 zero {0, 0, 0 };
T operator | (p3 v, p3 w) { /// dot
  return v.x*w.x + v.y*w.y + v.z*w.z;
p3 operator * (p3 v, p3 w) { /// cross
  return { v.y*w.z - v.z*w.y, v.z*w.x - v.x*w.z, v.x*w.y - v.y*w.x };
 T sq(p3 v) \{ return v | v; \}
double abs(p3 v) { return sqrt(sq(v)); }
p3 unit (p3 v) { return v / abs(v); }
double angle(p3 v, p3 w) {
  double cos_theta = (v | w) / abs(v) / abs(w);
  return acos(max(-1.0, min(1.0, cos_theta)));
T orient(p3 p, p3 q, p3 r, p3 s) { /// orient s, pqr form a triangle return (q - p) * (r - p) | (s - p);
T orient_by_normal(p3 p, p3 q, p3 r, p3 n) { /// same as 2D but in n-normal direction
  return (q - p) * (r - p) | n;
struct plane {
  p3 n; T d;
   /// From normal n and offset d
  plane(p3 n, T d): n(n), d(d) {}
   /// From normal n and point P
   plane(p3 n, p3 p): n(n), d(n | p) {}
   /// From three non-collinear points P,Q,R
   plane(p3 p, p3 q, p3 r): plane((q - p) * (r - p), p) \{\}
   /// - these work with T = int
   T side(p3 p) { return (n | p) - d; }
   double dist(p3 p) { return abs(side(p)) / abs(n); }
  plane translate(p3 t) {return {n, d + (n | t)}; }
/// - these require T = double
   plane shift_up(double dist) { return {n, d + dist * abs(n)}; }
  p3 proj(p3 p) { return p - n * side(p) / sq(n); }
  p3 refl(p3 p) { return p - n * 2 * side(p) / sq(n); }
struct line3d {
  p3 d, o;
   /// From two points P, Q
   line3d(p3 p, p3 q): d(q - p), o(p) {}
/// From two planes p1, p2 (requires T = double)
   line3d(plane p1, plane p2) {
    d = p1.n * p2.n;
     o = (p2.n * p1.d - p1.n * p2.d) * d / sq(d);
   ^{\prime}/// - these work with T = int
   double sq_dist(p3 p) { return sq(d * (p - o)) / sq(d); }
   double dist(p3 p) { return sqrt(sq_dist(p));
   bool cmp_proj(p3 p, p3 q) { return (d | p) < (d | q); }
   /// - these require T = double
   p3 proj(p3 p) { return o + d * (d | (p - o)) / sq(d); }
   p3 refl(p3 p) { return proj(p) * 2 - p; }
  p3 inter(plane p) { return o - d * p.side(o) / (p.n | d); }
double dist(line3d 11, line3d 12) {
  p3 n = 11.d * 12.d;
   if(n == zero) // parallel
    return 11.dist(12.o);
   return abs((12.o - 11.o) | n) / abs(n);
p3 closest_on_line1(line3d 11, line3d 12) { /// closest point on 11 to 12
   p3 n2 = \overline{12.d} * (11.d * 12.d);
   return 11.0 + 11.d * ((12.0 - 11.0) | n2) / (11.d | n2);
double small_angle(p3 v, p3 w) { return acos(min(abs(v | w) / abs(v) / abs(w), 1.0)); }
double angle(plane p1, plane p2) { return small_angle(p1.n, p2.n); }
bool is_parallel(plane p1, plane p2) { return p1.n * p2.n == zero; }
bool is_perpendicular(plane pl, plane p2) { return (pl.n | p2.n) == 0; } double angle(line3d l1, line3d l2) { return small_angle(l1.d, l2.d); } bool is_parallel(line3d l1, line3d l2) { return l1.d * 12.d == zero; } bool is_perpendicular(line3d l1, line3d l2) { return (l1.d | 12.d) == 0; } double angle(plane p, line3d l) { return_pI / 2 - small_angle(p.n, l.d); }
bool is_parallel(plane p, line3d l) { return (p.n | 1.d) == 0; }
bool is_perpendicular(plane p, line3d 1) { return p.n * 1.d == zero; }
line3d perp_through(plane p, p3 o) { return line(o, o + p.n); }
plane perp_through(line3d 1, p3 o) { return plane(l.d, o); }
```

5.3 Closest points

```
long long dist2(pair<int, int> a, pair<int, int> b) {
  return 1LL * (a.F - b.F) * (a.F - b.F) + 1LL * (a.S - b.S) * (a.S - b.S);
}
pair<int, int> closest_pair(vector<pair<int, int>> a) {
```

```
int n = a.size();
assert (n >= 2);
vector<pair<pair<int, int>, int>> p(n);
for (int i = 0; i < n; i++) p[i] = {a[i], i};
sort(p.begin(), p.end());
int 1 = 0, r = 2;
long long ans = dist2(p[0].F, p[1].F);
pair<int, int> ret = {p[0].S, p[1].S};
while (r < n) {
 while (1 < r \& \& 1LL * (p[r].F.F - p[1].F.F) * (p[r].F.F - p[1].F.F) >= ans) 1++;
 for (int i = 1; i < r; i++) {</pre>
   long long nw = dist2(p[i].F, p[r].F);
   if (nw < ans) {</pre>
     ans = nw:
      ret = {p[i].S, p[r].S};
 <u>r</u>++;
```

5.4 Convex Hull

```
int orientation(pt a, pt b, pt c) {
    lf v = a.x + (b.y - c.y) + b.x + (c.y - a.y) + c.x + (a.y - b.y);
    if (v < 0) return -1; // clockwise</pre>
  if (v > 0) return 1; // counter-clockwise
  return 0;
bool cw(pt a, pt b, pt c, bool include_collinear) {
  int o = orientation(a, b, c);
  return o < 0 || (include_collinear && o == 0);</pre>
bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
void convex_hull(vector<pt>& a, bool include_collinear) {
  pt p0 = *min_element(all(a), [](pt a, pt b) {
    return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
  sort(all(a), [&p0](const pt& a, const pt& b) {
    int o = orientation(p0, a, b);
      return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.y) * (p0.y - a.y)
              < (p0.x - b.x) * (p0.x - b.x) + (p0.y - b.y) * (p0.y - b.y);
    return o < 0:
  });
  if (include_collinear) {
    int i = sz(a) - 1;
    while (i \ge 0 \&\& collinear(p0, a[i], a.back())) i--;
    reverse(a.begin() + i + 1, a.end());
   for (int i = 0; i < sz(a); i++) {
    while (sz(st) > 1 && !cw(st[sz(st) - 2], st.back(), a[i], include_collinear))
      st.pop_back();
    st.push_back(a[i]);
lf area(const vector<pt>& fig) {
   lf res = 0:
   for (unsigned i = 0; i < fig.size(); i++) {</pre>
    pt p = i ? fig[i - 1] : fig.back();
    pt q = fig[i];
    res += (p.x - q.x) * (p.y + q.y);
  return fabs(res) / 2;
lf areaPolygon(const vector<pt>& fig) {
  lf area = 0;
int n = fig.size();
  for (int i = 0; i < n; i++) {
  int j = (i + 1) % n;</pre>
    area += fig[i].x * fig[i].y;
area -= fig[j].x * fig[j].y;
```

```
return fabs(area) / 2;
```

5.5 Point in convex polygon

```
struct pt {
     long long x, y;
     pt() {}
     pt(long long _x, long long _y) : x(_x), y(_y) {}
     pt operator+(const pt &p) const { return pt(x + p.x, y + p.y); }
     pt operator-(const pt &p) const { return pt(x - p.x, y - p.y); }
    long long cross(const pt &p) const { return x * p.x + y * p.x; } long long dot (const pt &p) const { return x * p.x + y * p.y; } long long cross(const pt &p) const { return x * p.x + y * p.y; } long long cross(const pt &a, const pt &b) const { return (a - *this).cross(b - *this); } long long dot(const pt &a, const pt &b) const { return (a - *this).dot(b - *this); }
     long long sqrLen() const { return this->dot(*this); }
bool lexComp(const pt &1, const pt &r) {
     return 1.x < r.x || (1.x == r.x && 1.y < r.y);
int sgn(long long val) { return val > 0 ? 1 : (val == 0 ? 0 : -1); }
vector<pt> seq;
pt translation;
int n:
bool pointInTriangle(pt a, pt b, pt c, pt point) {
   long long s1 = abs(a.cross(b, c));
     long long s2 = abs(point.cross(a, b)) + abs(point.cross(b, c)) + abs(point.cross(c, a));
void prepare(vector<pt> &points) {
     n = points.size();
     int pos = 0;
     for (int i = 1; i < n; i++) {
         if (lexComp(points[i], points[pos]))
              pos = i;
     rotate(points.begin(), points.begin() + pos, points.end());
     seq.resize(n);
     for (int i = 0; i < n; i++)
         seq[i] = points[i + 1] - points[0];
     translation = points[0];
bool pointInConvexPolygon(pt point) {
     point = point - translation;
     if (seq[0].cross(point) != 0 &&
              sgn(seq[0].cross(point)) != sgn(seq[0].cross(seq[n - 1])))
          return false:
     if (seq[n - 1].cross(point) != 0 &&
              sgn(seq[n-1].cross(point)) != sgn(seq[n-1].cross(seq[0])))
         return false;
     if (seq[0].cross(point) == 0)
         return seq[0].sqrLen() >= point.sqrLen();
     int 1 = 0, r = n - 1;
     while (r - 1 > 1) {
         int mid = (l + r) / 2;
         int pos = mid:
         if (seq[pos].cross(point) >= 0)
              1 = mid:
         else
              r = mid:
     return pointInTriangle(seq[pos], seq[pos + 1], pt(0, 0), point);
bool isIn(const vector<pt>& v, pt p) {
  int n = sz(v);
  if (n < 3) return false;</pre>
   lf angleSum = 0:
   for (int i = 0; i < n; i++) {
    pt a = v[i];
pt b = v[(i + 1) % n];
    double angle = atan2(b.y - p.y, b.x - p.x) - atan2(a.y - p.y, a.x - p.x);
if (angle >= M PI) angle -= 2 * M PI;
     if (angle <= -M_PI) angle += 2 * M_PI;</pre>
     angleSum += angle;
```

```
return fabs(fabs(angleSum) - 2 * M_PI) < 1e-9;</pre>
```

6 Math

6.1 Basics

```
// Greatest Common Divisor & Lowest Common Multiple
ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
11 lcm(ll a, ll b) { return a/gcd(a, b)*b; }
// Multiply caring overflow
11 mulmod(11 a, 11 b, 11 m = MOD) {
        11 r=0;
        for (a \% = m; b; b >> = 1, a = (a * 2) \% m) if (b \& 1) r = (r + a) \% m;
        return r:
// Another option for mulmod is using long double
ull mulmod(ull a, ull b, ull m = MOD) {
        ull q = (ld) a * (ld) b / (ld) m;
        ull r = a * b - q * m;
        return (r + m) % m;
// Fast exponential
11 fexp(11 a, 11 b, 11 m = MOD) {
        11 r=1:
        for (a %= m; b; b>>=1, a=(a*a)%m) if (b&1) r=(r*a)%m;
        return r;
```

6.2 Advanced

```
/* Line integral = integral(sqrt(1 + (dy/dx)^2)) dx */
/\star Multiplicative Inverse over MOD for all 1..N - 1 < MOD in O(N)
Only works for prime MOD. If all 1..MOD - 1 needed, use N = MOD */
11 inv[N];
inv[1] = 1;
for (int i = 2; i < N; ++i)
        inv[i] = MOD - (MOD / i) * inv[MOD % i] % MOD;
/* Catalan
If you have any function f(n) is [0, n-1] = (2n)! / ((n+1)! * n!) = \dots
If you have any function f(n) (there are many) that follows this sequence (0-indexed): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440 than it's the Catalan function */
11 cat[N];
cat[0] = 1;
for (int i = 1; i + 1 < N; i++) // needs inv[i + 1] till inv[N - 1]
         cat[i] = 211 * (211 * i - 1) * inv[i + 1] % MOD * cat[i - 1] % MOD;
/* Floor(n / i), i = [1, n], has <= 2 * sqrt(n) diff values.
 Proof: i = [1, sqrt(n)] has sqrt(n) diff values.
 For i = [sqrt(n), n] we have that 1 \le n / i \le sqrt(n)
 and thus has <= sqrt(n) diff values.
/* 1 = first number that has floor(N / 1) = x
 r = last number that has floor(N / r) = x
 N / r >= floor(N / 1)
 r <= N / floor(N / 1) */
for (int 1 = 1, r; 1 \le n; 1 = r + 1) {
        r = n / (n / 1);
         // floor(n / i) has the same value for 1 <= i <= r
/* Recurrence using matriz
h[i + 2] = a1 * h[i + 1] + a0 * h[i]
 [h[i] \ h[i-1]] = [h[1] \ h[0]] * [a1 \ 1] ^ (i - 1)
```

```
/* Fibonacci in O(\log(N)) with memoization
 f(0) = f(1) = 1
 f(2*k) = f(k)^2 + f(k-1)^2
 f(2*k+1) = f(k)*[f(k) + 2*f(k-1)] */
/* Wilson's Theorem Extension
 B = b1 * b2 * \dots * bm \pmod{n} = +-1, all bi \le n such that gcd(bi, n) = 1
 if (n \le 4 \text{ or } n = (\text{odd prime}) \hat{k} \text{ or } n = 2 * (\text{odd prime}) \hat{k}) B = -1; \text{ for any } k
 else B = 1; */
/* Stirling numbers of the second kind
 S(n, k) = Number of ways to split n numbers into k non-empty sets
 S(n, 1) = S(n, n) = 1
 S(n, k) = k * S(n - 1, k) + S(n - 1, k - 1)
 Sr(n, k) = S(n, k) with at least r numbers in each set
 Sr(n, k) = k * Sr(n - 1, k) + (n - 1) * Sr(n - r, k - 1)
 S(n-d+1,\ k-d+1)=S(n,\ k) where if indexes i, j belong to the same set, then |i-j|>=d */
/* Burnside's Lemma
 |Classes| = 1 / |G| * sum(K ^ C(q)) for each q in G
 G = Different permutations possible
 C(g) = Number of cycles on the permutation g
 K = Number of states for each element
 Different ways to paint a necklace with N beads and K colors:
G = \{(1, 2, \dots, N), (2, 3, \dots, N, 1), \dots (N, 1, \dots, N-1)\}
gi = (i, i+1, \dots, i+N), (taking mod N to get it right) i = 1 \dots N
 i \rightarrow 2i \rightarrow 3i \dots, Cycles in gi all have size n / gcd(i, n), so C(gi) = gcd(i, n)

Ans = 1 / N * sum(K ^ gcd(i, n)), i = 1 \dots N
 (For the brave, you can get to Ans = 1 / N * sum(euler\_phi(N / d) * K ^ d), d | N) */
/* Mobius Inversion
 Sum of gcd(i, j), 1 \le i, j \le N?
 sum\left(k->N\right)\ k\ \star\ sum\left(i->N\right)\ sum\left(j->N\right)\ [gcd\left(i,\ j\right)\ ==\ k],\ i\ =\ a\ \star\ k,\ j\ =\ b\ \star\ k
 = \, \mathit{sum}\,(k -\!\!>\!\! N) \quad k \ * \ \mathit{sum}\,(a -\!\!>\!\! N/k) \quad \mathit{sum}\,(b -\!\!>\!\! N/k) \quad [\mathit{gcd}\,(a,\ b) \ == \ 1]
 = \mathit{sum}\,(k -> N) \ k \ \star \ \mathit{sum}\,(a -> N/k) \ \mathit{sum}\,(b -> N/k) \ \mathit{sum}\,(d -> N/k) \ [d \ | \ a] \ \star \ [d \ | \ b] \ \star \ \mathit{mi}\,(d)
 = sum(k -> N) \ k \ + sum(d -> N/k) \ mi(d) \ + floor(N / kd)^2, \ 1 \ = kd, \ 1 <= N, \ k \ | \ 1, \ d \ = 1 \ / \ k \ = sum(1 -> N) \ floor(N / 1)^2 \ + sum(k | 1) \ k \ + mi(1 / k)
 If f(n) = sum(x \mid n) (g(x) + h(x)) with g(x) and h(x) multiplicative, than f(n) is multiplicative Hence, g(1) = sum(k \mid 1) \ k + mi (1 / k) is multiplicative = sum(1-N) floor(N / 1)^2 2 + g(1) + f)
/* Frobenius / Chicken McNugget
n, m given, gcd(n, m) = 1, we want to know if it's possible to create N = a * n + b * m
N, a, b >= 0
The greatest number NOT possible is n \, * \, m \, - \, n \, - \, m
We can NOT create (n - 1) * (m - 1) / 2 numbers */
```

6.3 Discrete log

```
// O(sgrt(m))
// Solve c * a^x = b \mod(m) for integer x >= 0.
// Neturn the smallest x possible, or -1 if there is no solution // If all solutions needed, solve c*a^*x = b \mod(m) and (a*b)*a^*y = b \mod(m) // x + k * (y + 1) for k > e 0 are all solutions
// Works for any integer values of c, a, b and positive m
// 0^x = 1 \mod(m) returns x = 0, so you may want to change it to -1
// You also may want to change for 0^x = 0 \mod(1) to return x = 1 instead
// We leave it like it is because you might be actually checking for m^x = 0^x \mod(m)
// which would have x = 0 as the actual solution.
if(c == b)
                return 0:
        11 q = qcd(a, m):
        if(b % g) return -1;
        if (g > 1) {
                 11 r = discrete_log(c * a / g, a, b / g, m / g);
                 return r + (r >= 0);
        unordered_map<11, 11> babystep;
        11 n = 1, an = a % m;
                 a0
         // set n to the ceil of sart(m):
        while (n * Ori < m) n++, an = (an * a) % m;
        // babysteps:
        11 bstep = b;
        for(11 i = /0; i <= n; i++) {
                babystep[bstep] = i;
```

6.4 Euler Phi

```
// Euler phi (totient)
int ind = 0, pf = primes[0], ans = n;
while (lll+pf+pf <= n) {
        if (n%pf==0) ans -= ans/pf;
        while (n%pf==0) n /= pf;
        pf = primes[++ind];
}
if (n != 1) ans -= ans/n;

// IME2014
int phi[N];
void totient() {
        for (int i = 1; i < N; ++i) phi[i]=i;
        for (int i = 2; i < N; i+=2) phi[i]>>=1;
        for (int j = 3; j < N; j+=2) if (phi[j]==j) {
            phi[j]--;
            for (int i = 2*j; i < N; i+=j) phi[i]=phi[i]/j*(j-1);
        }
}</pre>
```

6.5 Extended euclid

```
// Extended Euclid:
void euclid(ll a, ll b, ll &x, ll &y) {
        if (b) euclid(b, a%b, y, x), y -= x*(a/b);
         else x = 1, y = 0;
// find (x, y) such that a*x + b*y = c or return false if it's not possible
// [x + k*b/gcd(a, b), y - k*a/gcd(a, b)] are also solutions bool diof(11 a, 11 b, 11 c, 11 &x, 11 &y){
        euclid(abs(a), abs(b), x, y);
11 g = abs(__gcd(a, b));
        if(c % g) return false;
        x \star = c / q;
         y *= c / g;
         if(a < 0) x = -x;
         if(b < 0) y = -y;
         return true;
// auxiliar to find_all_solutions
void shift_solution (11 &x, 11 &y, 11 a, 11 b, 11 cnt) {
        x += cnt * b;
         y -= cnt * a;
// Find the amount of solutions of
// ax + by = c
// in given intervals for x and y
11 find_all_solutions (11 a, 11 b, 11 c, 11 minx, 11 maxx, 11 miny, 11 maxy) {
        ll x, y, g = __gcd(a, b);
if(!diof(a, b, c, x, y)) return 0;
         a /= g; b /= g;
         int sign_a = a>0 ? +1 : -1;
         int sign_b = b>0 ? +1 : -1;
         shift_solution (x, y, a, b, (minx - x) / b);
         if (x < minx)</pre>
                 shift_solution (x, y, a, b, sign_b);
         if (x > maxx)
                 return 0:
         int 1x1 = x;
         shift\_solution (x, y, a, b, (maxx - x) / b);
         if (x > maxx)
                 shift_solution (x, y, a, b, -sign_b);
```

```
int rx1 = x;
          shift_solution (x, y, a, b, - (miny - y) / a);
         if (y < miny)</pre>
                   shift_solution (x, y, a, b, -sign_a);
         if (y > maxy)
                   return 0;
         int 1x2 = x;
          shift\_solution (x, y, a, b, - (maxy - y) / a);
         if (y > maxy)
                  shift_solution (x, y, a, b, sign_a);
         int rx2 = x;
         if (1x2 > rx2)
                  swap (1x2, rx2);
         int 1x = max (1x1, 1x2);
         int rx = min(rx1, rx2);
         if (lx > rx) return 0;
         return (rx - 1x) / abs(b) + 1;
bool crt_auxiliar(ll a, 11 b, 11 m1, 11 m2, 11 &ans){
         11 x, y;
         if(!diof(m1, m2, b - a, x, y)) return false;
         ll lcm = m1 / __gcd(m1, m2) * m2;
ans = ((a + x % (lcm / m1) * m1) % lcm + lcm) % lcm;
         return true:
// find ans such that ans = a[i] \mod b[i] for all 0 \le i \le n or return false if not possible
// ans + k * lcm(b[i]) are also solutions
bool crt(int n, ll a[], ll b[], ll &ans){
         if(!b[0]) return false;
         ans = a[0] % b[0];
11 1 = b[0];
         for(int i = 1; i < n; i++) {
  if(!b[i]) return false;</pre>
                  if(!crt_auxiliar(ans, a[i] % b[i], 1, b[i], ans)) return false;
1 *= (b[i] / _gcd(b[i], 1));
         return true:
```

6.6 FFT

```
// Fast Fourier Transform - O(nlogn)
// Use struct instead. Performance will be way better!
typedef complex<ld> T;
T a[N], b[N];
struct T
         ld x, y;
T(): x(0), y(0) {}
         T(1d a, 1d b=0) : x(a), y(b) {}
         T operator/=(ld k) { x/=k; y/=k; return (*this); }
         T operator*(T a) const { return T(x*a.x - y*a.y, x*a.y + y*a.x); }
T operator+(T a) const { return T(x*a.x, y*a.y); }
         T operator-(T a) const { return T(x-a.x, y-a.y);
} a[N], b[N];
// a: vector containing polynomial
// n: power of two greater or equal product size
// Use iterative version!
void fft_recursive(T* a, int n, int s) {
         if (n == 1) return;
         T tmp[n];
         for (int i = 0; i < n/2; ++i)
                 tmp[i] = a[2*i], tmp[i+n/2] = a[2*i+1];
         fft_recursive(&tmp[0], n/2, s);
         fft_recursive(&tmp[n/2], n/2, s);
         T wn = T(\cos(s*2*PI/n), \sin(s*2*PI/n)), w(1,0);
         for (int i = 0; i < n/2; i++, w=w*wn)
                 a[i] = tmp[i] + w*tmp[i+n/2],
a[i+n/2] = tmp[i] - w*tmp[i+n/2];
void fft(T* a, int n, int s) {
         for (int i=0, j=0; i<n; i++) {
```

```
if (i>j) swap(a[i], a[j]);
for (int l=n/2; (j^=1) < 1; l>>=1);
         for (int i = 1; (1<<i) <= n; i++) {</pre>
                   int M = 1 << i;
                   int K = M >> 1;
                   T wn = T(\cos(s*2*PI/M), \sin(s*2*PI/M));
                  for(int j = 0; j < n; j += M) {
    T w = T(1, 0);</pre>
                            for (int l = j; 1 < K + j; ++1) {
   T t = w*a[1 + K];
   a[1 + K] = a[1]-t;</pre>
                                      a[1] = a[1] + t;
                                      w = wn*w:
                  }
// assert n is a power of two greater of equal product size
// n = na + nb; while (n&(n-1)) n++;
void multiply(T* a, T* b, int n) {
         fft(a,n,1);
         fft(b,n,1);
         for (int i = 0; i < n; i++) a[i] = a[i]*b[i];</pre>
         fft(a.n.-1);
         for (int i = 0; i < n; i++) a[i] /= n;
// Convert to integers after multiplying:
// (int) (a[i].x + 0.5);
```

6.7 FFT Tourist

```
// FFT made by tourist. It if faster and more supportive, although it requires more lines of code.
// Also, it allows operations with MOD, which is usually an issue in FFT problems.
namespace fft {
       typedef double dbl;
        struct num {
               dbl x, y,
               num() \{ x = y = 0; \}
                num(dbl x, dbl y) : x(x), y(y) {}
        inline num operator+ (num a, num b) { return num(a.x + b.x, a.y + b.y); }
        inline num operator- (num a, num b) { return num(a.x - b.x, a.y - b.y); }
        inline num operator* (num a, num b) { return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x)
        inline num conj(num a) { return num(a.x, -a.y); }
        int base = 1:
        vector<num> roots = {{0, 0}, {1, 0}};
        vector<int> rev = {0, 1};
        const dbl PI = acosl(-1.0);
        void ensure_base(int nbase) {
                if(nbase <= base) return;</pre>
                rev.resize(1 << nbase);
                for(int i=0; i < (1 << nbase); i++) {</pre>
                        rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
                roots.resize(1 << nbase);
                while (base < nbase) {
                        dbl \ angle = 2*PI / (1 << (base + 1));
                        for (int i = 1 << (base - 1); i < (1 << base); i++) {
                                roots[i << 1] = roots[i];
                                dbl \ angle_i = angle * (2 * i + 1 - (1 << base));
                                roots[(i << 1) + 1] = num(cos(angle_i), sin(angle_i));
                        base++;
        void fft(vector<num> &a, int n = -1) {
               if(n == -1) {
                       n = a.size():
                assert((n & (n-1)) == 0);
                int zeros = builtin ctz(n);
                ensure_base(zeros);
                int shift = base - zeros;
```

```
for(int i = 0; i < n; i++) {
                  if(i < (rev[i] >> shift)) {
                           swap(a[i], a[rev[i] >> shift]);
         for(int k = 1; k < n; k <<= 1) {
                  for (int i = 0; i < n; i += 2 * k) {
                           for(int j = 0; j < k; j++) {
                                     num z = a[i+j+k] * roots[j+k];
                                    a[i+j+k] = a[i+j] - z;
                                    a[i+j] = a[i+j] + z;
        }
vector<num> fa, fb;
vector<int> multiply(vector<int> &a, vector<int> &b) {
         int need = a.size() + b.size() - 1;
         int nbase = 0;
         while((1 << nbase) < need) nbase++;</pre>
         ensure_base(nbase);
         int sz = 1 \ll nbase;
         if(sz > (int) fa.size()) {
                  fa.resize(sz):
         for(int i = 0; i < sz; i++) {
                  int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = num(x, y);</pre>
         fft(fa, sz);
         num r(0, -0.25 / sz);
         for(int i = 0; i \le (sz >> 1); i++) {
                  int j = (sz - i) & (sz - 1);
num z = (fa[j] * fa[j] - conj(fa[i] * fa[i])) * r;
                  if(i != j) {
                           fa[j] = (fa[i] * fa[i] - conj(fa[j] * fa[j])) * r;
                  fa[i] = z;
         fft(fa, sz);
         vector<int> res(need);
         for(int i = 0; i < need; i++) {</pre>
                 res[i] = fa[i].x + 0.5;
         return res;
vector<int> multiply_mod(vector<int> &a, vector<int> &b, int m, int eq = 0) {
         int need = a.size() + b.size() - 1;
         int nbase = 0;
         while ((1 << nbase) < need) nbase++;
         ensure_base(nbase);
         int sz = 1 << nbase;</pre>
         if (sz > (int) fa.size()) {
                  fa.resize(sz):
         for (int i = 0; i < (int) a.size(); i++) {</pre>
                  int x = (a[i] % m + m) % m;
                  fa[i] = num(x & ((1 << 15) - 1), x >> 15);
         fill(fa.begin() + a.size(), fa.begin() + sz, num {0, 0});
         fft(fa, sz);
         if (sz > (int) fb.size()) {
                  fb.resize(sz);
         if (eq) {
                  copy(fa.begin(), fa.begin() + sz, fb.begin());
         else (
                  for (int i = 0; i < (int) b.size(); i++) {
                          int x = (b[i] % m + m) % m;
fb[i] = num(x & ((1 << 15) - 1), x >> 15);
                  fill(fb.begin() + b.size(), fb.begin() + sz, num {0, 0});
                  fft(fb, sz);
         dbl ratio = 0.25 / sz;
         num r2(0, -1);
         num r3(ratio, 0);
         num r4(0, -ratio);
         num r5(0, 1);
for (int i = 0; i <= (sz >> 1); i++) {
                  int j = (sz - i) & (sz - 1);
num al = (fa[i] + conj(fa[j]));
num a2 = (fa[i] - conj(fa[j])) * r2;
                  num b1 = (fb[i] + conj(fb[j])) * r3;
num b2 = (fb[i] - conj(fb[j])) * r4;
                  if (i != j) {
                           num c1 = (fa[j] + conj(fa[i]));
                           num c2 = (fa[j] - conj(fa[i])) * r2;
num d1 = (fb[j] + conj(fb[i])) * r3;
```

6.8 FWHT

```
// Fast Walsh-Hadamard Transform - O(nlogn)
// Multiply two polynomials, but instead of x^a \star x^b = x^(a+b)
// we have x^a * x^b = x^a (a XOR b).
// WARNING: assert n is a power of two!
void fwht(ll* a, int n, bool inv) {
        for(int 1=1; 2*1 <= n; 1<<=1) {
                  for(int i=0; i < n; i+=2*1) {
                           for(int j=0; j<1; j++) {</pre>
                                    11 u = a[i+j], v = a[i+l+j];
                                    a[i+j] = (u+v) % MOD;
                                    a[i+l+j] = (u-v+MOD) % MOD;
                                    // % is kinda slow, you can use add() macro instead // #define add(x,y) (x+y >= MOD ? x+y-MOD : x+y)
        if(inv) {
                  for(int i=0; i<n; i++) {
                         a[i] = a[i] / n;
/* FWHT AND
        Matrix : Inverse
                  -1 1
void fwht_and(vi &a, bool inv) {
        vi ret = a;
        11 u, v;
        int tam = a.size() / 2;
         for(int len = 1; 2 * len <= tam; len <<= 1) {</pre>
                  for(int i = 0; i < tam; i += 2 * len) {</pre>
                           for(int j = 0; j < len; j++) {
    u = ret[i + j];
    v = ret[i + len + j];</pre>
                                    if(!inv) {
                                             ret[i + j] = v;
                                             ret[i + len + j] = u + v;
                                    else {
                                             ret[i + j] = -u + v;
                                             ret[i + len + j] = u;
         a = ret;
/* FWHT OR
        Matrix : Inverse
```

6.9 Gauss elim

```
//Gaussian Elimination
//double A[N][M+1], X[M]
// if n < m, there's no solution
// column tholds the right side of the equation
// X holds the solutions

for(int j=0; j<m; j++) { //collumn to eliminate
    int l = j;
    for(int i=j+1; i<n; i++) //find largest pivot
        if(abs(A[i[j])>abs(A[1][j]))
        l=i;
    if(abs(A[i[j])) < EPS) continue;
    for(int k = 0; k < m+1; k++) { //Swap lines
        swap(A[1][k],A[j][k]);
    }
    for(int i = j+1; i < n; i++) { //eliminate column
        double t=A[i][j]/A[j][j];
        for(int k = j; k < m+1; k++)
        A[i][k]-=t*A[j][k];
    }
}

for(int i = m-1; i >= 0; i--) { //solve triangular system
    for(int j = m-1; j > i; j--)
        A[i][m] - A[i][j]*X[j];
    X[i]=A[i][m]/A[i][i];
}
```

6.10 Gauss elim ext

```
// Gauss-Jordan Elimination with Scaled Partial Pivoting
// Extended to Calculate Inverses - O(n^3) // To get more precision choose m[j][i] as pivot the element such that m[j][i] / mx[j] is maximized.
// mx[j] is the element with biggest absolute value of row j.
ld C[N][M]; // N = 1000, M = 2*N+1;
int row, col;
bool elim() {
        for(int i=0; i<row; ++i) {
                  int p = i; // Choose the biggest pivot
                  for(int j=i; j<row; ++j) if (abs(C[j][i]) > abs(C[p][i])) p = j;
                  for(int j=i; j<col; ++j) swap(C[i][j], C[p][j]);</pre>
                  if (!C[i][i]) return 0;
                  ld c = 1/C[i][i]; // Normalize pivot line
                  for(int j=0; j<col; ++j) C[i][j] *= c;</pre>
                  for (int k=i+1; k < col; ++k) {
                           \label{eq:continuous} \mbox{ld c = -C[k][i]; // Remove pivot variable from other lines}
                           for(int j=0; j<col; ++j) C[k][j] += c*C[i][j];</pre>
         // Make triangular system a diagonal one
        for(int i=row-1; i>=0; --i) for(int j=i-1; j>=0; --j) {
```

```
1d c = -C[j][i];
                  for(int k=i; k<col; ++k) C[j][k] += c*C[i][k];</pre>
         return 1;
// Finds inv, the inverse of matrix m of size n \times n.
// Returns true if procedure was successful
\label{eq:bool} \mbox{bool inverse(int } \mbox{n, } \mbox{ld } \mbox{m[N][N], } \mbox{ld inv[N][N]) } \mbox{\{}
         for (int i=0; i<n; ++i) for (int j=0; j<n; ++j)</pre>
                  C[i][j] = m[i][j], C[i][j+n] = (i == j);
         row = n, col = 2*n;
bool ok = elim();
         for(int i=0; i<n; ++i) for(int j=0; j<n; ++j) inv[i][j] = C[i][j+n];</pre>
// Solves linear system m*x = y, of size n x n
bool linear_system(int n, ld m[N][N], ld *x, ld *y) {
         for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) C[i][j] = m[i][j];
         for (int j = 0; j < n; ++j) C[j][n] = x[j];
         row = n, col = n+1;
         bool ok = elim();
         for(int j=0; j<n; ++j) y[j] = C[j][n];</pre>
         return ok:
```

6.11 Gauss elim prime

6.12 Gauss elim xor

```
// Gauss Elimination for xor boolean operations
// Return false if not possible to solve // Use boolean matrixes 0-indexed
// n equations, m variables, O(n * m * m)
// eq[i][j] = coefficient of j-th element in i-th equation
// r[i] = result of i-th equation
// Return ans [j] = xj that gives the lexicographically greatest solution (if possible)
// (Can be changed to lexicographically least, follow the comments in the code)
// WARNING!! The arrays get changed during de algorithm
bool eq[N][M], r[N], ans[M];
bool gauss_xor(int n, int m) {
        for (int i = 0; i < m; i++)
                 ans[i] = true;
        int lid[N] = {0}; // id + 1 of last element present in i-th line of final matrix
        int 1 = 0;
        for(int i = m - 1; i >= 0; i--) {
                 for(int j = 1; j < n; j++)
    if(eq[j][i]) { // pivot</pre>
                                   swap(eq[1], eq[j]);
swap(r[1], r[j]);
                 if(l == n || !eq[1][i])
```

```
continue;
      lid[1] = i + 1;
      for (int j = 1 + 1; j < n; j++) { // eliminate column
             if(!eq[j][i])
                   continue;
             for (int k = 0; k \le i; k++)
                   eq[j][k] ^= eq[1][k];
             r[j] ^= r[1];
      1++:
ans[j] = true;
             r[i] ^= eq[i][j];
      if(lid[i])
             ans[lid[i] - 1] = r[i];
      else if(r[i])
             return false;
return true:
```

6.13 GSS

```
double gss(double 1, double r) {
    double m1 = r-(r-1)/gr, m2 = 1+(r-1)/gr;
    double m1 = r-(r-1)/gr, m2 = 1+(r-1)/gr;
    double f1 = f(m1), f2 = f(m2);
    while (fabs(1-r)>EPS) {
        if (f1>f2) 1=m1, f1=f2, m1=m2, m2=1+(r-1)/gr, f2=f(m2);
        else r=m2, f2=f1, m2=m1, m1=r-(r-1)/gr, f1=f(m1);
    }
    return 1;
}
```

6.14 Josephus

```
// UPMG
/* Josephus Problem - It returns the position to be, in order to not die. O(n)*/
/* With k=2, for instance, the game begins with 2 being killed and then n+2, n+4, ... */
11 josephus(11 n, 11 k) {
    if(n==1) return 1;
    else return (josephus(n-1, k)+k-1)*n+1;
}

/* Another Way to compute the last position to be killed - O(d * log n) */
11 josephus(11 n, 11 d) {
    11 K = 1;
    while (K <= (d - 1)*n) K = (d * K + d - 2) / (d - 1);
    return d * n + 1 - K;
}</pre>
```

6.15 Matrix

6.16 Mobius

```
// 1 if n == 1
// 0 \text{ if exists } x \mid n (x^2) == 0
// else (-1)^k, k = \#(p) \mid p is prime and n p == 0
//Calculate Mobius for all integers using sieve
//O(n*log(log(n)))
void mobius() {
         for(int i = 1; i < N; i++) mob[i] = 1;</pre>
         for(11 i = 2; i < N; i++) if(!sieve[i]){</pre>
                  for (11 j = i; j < N; j += i) sieve[j] = i, mob[j] \star= -1; for (11 j = i\stari; j < N; j += i\stari) mob[j] = 0;
//Calculate Mobius for 1 integer
int mobius(int n) {
         if(n == 1) return 1;
         int p = 0;
         for (int i = 2; i*i <= n; i++)
                 if(n%i == 0){
                            if (n%i == 0) return 0;
         if(n > 1) p++;
         return p&1 ? -1 : 1;
```

6.17 Mobius inversion

6.18 NTT

```
// Number Theoretic Transform - O(nlogn)
 // if long long is not necessary, use int instead to improve performance
const int mod = 20 * (1 << 23) +1;
const int root = 3:
11 w[N]:
// a: vector containing polynomial
 // n: power of two greater or equal product size
// n: power or two greater or equal product stre
void ntt(l1* a, int n, bool inv) {
    for (int i=0, j=0; i<n; i++) {
        if (i>j) swap(a[i], a[j]);
        for (int l=n/2; (j=1) < 1; l>>=1);
             // TODO: Rewrite this loop using FFT version
             ll k, t, nrev;
             w[0] = 1;
            w[0] = 1;
b = exp(root, (mod-1) / n, mod);
for (int i=1; i<=n; i++) w[i] = w[i-1] * k % mod;
for (int i=2; i<=n; i<<=1) for (int j=0; j<n; j+=i) for (int l=0; l<(i/2); l++) {
    int x = j+1, y = j+l+(i/2), z = (n/i) * l;
    t = a[y] * w[inv ? (n-z) : z] % mod;
    a[y] = (a[z] - t + mod) % mod;
    a[x] = (a[j+1] + t) % mod;</pre>
             nrev = exp(n, mod-2, mod);
             if (inv) for(int i=0; i<n; ++i) a[i] = a[i] * nrev % mod;</pre>
 // assert n is a power of two greater of equal product size
// n = na + nb; while (n\&(n-1)) n++; void multiply (11* a, 11* b, int n) {
            ntt(a, n, 0);
             ntt(b, n, 0);
             for (int i = 0; i < n; i++) a[i] = a[i] *b[i] % mod;
             ntt(a, n, 1);
```

6.19 Pollard rho

```
// factor(N, v) to get N factorized in vector v
// O(N ^ (1 / 4)) on average
// Miller-Rabin - Primarily Test O(|base|*(logn)^2)
ll addmod(ll a, ll b, ll m){
    if(a >= m - b) return a + b - m;
    return a + b;
}

ll mulmod(ll a, ll b, ll m){
    ll ans = 0;
    while(b){
        if(b & 1) ans = addmod(ans, a, m);
            a = addmod(a, a, m);
            b >>= 1;
    }
    return ans;
}

ll fexp(ll a, ll b, ll n){
```

```
11 r = 1;
         while(b){
                   if(b & 1) r = mulmod(r, a, n);
                   a = mulmod(a, a, n);
                   b >>= 1;
         return r;
bool miller(ll a, ll n) {
         if (a >= n) return true;
         11 s = 0, d = n - 1;
while (d % 2 == 0) d >>= 1, s++;
         if (x == 1 | | x == n - 1) return true;
for (int r = 0; r < s; r++, x = mulmod(x,x,n)){</pre>
                   if (x == 1) return false;
                   if (x == n - 1) return true;
         return false;
bool isprime(ll n){
         if(n == 1) return false;
         int base[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
for (int i = 0; i < 12; ++i) if (!miller(base[i], n)) return false;</pre>
         return true:
11 pollard(ll n) {
         11 x, y, d, c = 1;
if (n % 2 == 0) return 2;
         while(true){
                   while (true) {
                             x = addmod(mulmod(x, x, n), c, n);
                             y = addmod(mulmod(y, y, n), c, n);
                             y = addmod(mulmod(y, y, n), c, n);
                             if (x == y) break;
                             d = \underline{gcd(abs(x-y), n)};
                             if (d > 1) return d;
                   c++:
vector<ll> factor(ll n){
         if (n == 1 || isprime(n)) return {n};
         11 f = pollard(n);
         vector<11>1 = factor(f), r = factor(n / f);
         1.insert(l.end(), r.begin(), r.end());
         sort(l.begin(), l.end());
         return 1;
//n < 2,047 \text{ base} = \{2\};
//n < 9,080,191 \text{ base} = {31, 73};
//n < 2,152,302,898,747 base = {2, 3, 5, 7, 11};
//n < 318,665,857,834,031,151,167,461 base = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
//n < 3,317,044,064,679,887,385,961,981 base = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41};
```

6.20 Pollard rho optimization

```
// We recomend you to use pollard-rho.cpp! I've never needed this code, but here it is.
// This uses Brent's algorithm for cycle detection
std::mt19937 rng((int) std::chrono::steady_clock::now().time_since_epoch().count());
ull func (ull x, ull n, ull c) { return (mulmod(x, x, n) + c) % n; //f(x) = (x^2 + c) % n; }
ull pollard(ull n) {
        // Finds a positive divisor of n
        ull x, y, d, c;
        if(n % 2 == 0) return 2;
        if(isprime(n)) return n;
        while(1) {
                y = x = 2; d = 1;
                pot = lam = 1;
                while(1) {
                        c = rng() % n:
                        if(c != 0 and (c+2) %n != 0) break;
                while(1) {
                        if(pot == lam) {
                               x = y;
```

```
pot <<= 1;
                                lam = 0;
                        y = func(y, n, c);
                         lam++;
                        d = gcd(x >= y ? x-y : y-x, n);
                        if (d > 1) {
                                if (d == n) break;
                                else return d;
void fator(ull n, vector<ull> &v) {
        // prime factorization of n, put into a vector v.
        // for each prime factor of n, it is repeated the amount of times
        // ex : n == 120, v = {2, 2, 2, 3, 5};
        if(isprime(n)) { v.pb(n); return; }
        vector<ull> w, t; w.pb(n); t.pb(1);
        while(!w.empty()) {
                ull bck = w.back();
ull div = pollard(bck);
                if(div == w.back()) {
                        int amt = 0;
                        for(int i=0; i < (int) w.size(); i++) {</pre>
                                int cur = 0;
                                 while (w[i] % div == 0) {
                                        w[i] /= div;
                                         cur++;
                                 amt += cur * t[i];
                                if(w[i] == 1) {
                                         swap(w[i], w.back());
                                         swap(t[i], t.back());
                                         w.pop_back();
                                         t.pop_back();
                        while(amt--) v.pb(div);
                        int amt = 0;
                        while(w.back() % div == 0) {
                                w.back() /= div;
                                amt++;
                         amt *= t.back();
                        if(w.back() == 1) {
                                w.pop_back();
                                t.pop_back();
                        w.pb(div);
                        t.pb(amt);
        // the divisors will not be sorted, so you need to sort it afterwards
        sort(v.begin(), v.end());
```

6.21 Prime factors

```
// Prime factors (up to 9*10^13. For greater see Pollard Rho)
vi factors;
int ind=0, pf = primes[0];
while (pf*pf <= n) {
    while (n8pf == 0) n /= pf, factors.pb(pf);
    pf = primes[++ind];
}
if (n != 1) factors.pb(n);</pre>
```

6.22 Primitive root

6.23 Sieve

```
// Sieve of Erasthotenes
int p[N]; vi primes;
for (11 i = 2; i < N; ++i) if (!p[i]) {
    for (11 j = i*i; j < N; j+=i) p[j]=1;
        primes.pb(i);
}</pre>
```

6.24 Simpson rule

6.25 Stanford simplex

```
// Two-phase simplex algorithm for solving linear programs of the form
       maximize
       subject to Ax <= b
                    x >= 0
// INPUT: A -- an m x n matrix
         b -- an m-dimensional vector
          c -- an n-dimensional vector
          x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
          above, nan if infeasible)
^{\prime\prime} // To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include mits>
using namespace std;
typedef long double DOUBLE;
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
```

```
typedef vector<int> VI;
const DOUBLE EPS = 1e-9;
struct LPSolver
         int m, n;
         VI B, N,
         m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
                  for (int i = 0, i < m, i++) for (int j = 0, j < n, j++) D[i][j] = A[i][j]; for (int i = 0, i < m; i++) {B[i] = n + i; D[i][n] = -1, D[i][n + 1] = b[i]; } for (int j = 0, j < n, j++) {N[j] = j; D[m][j] = -c[j]; }
                  N[n] = -1; D[m + 1][n] = 1;
         void Pivot(int r, int s) {
                   for (int i = 0; i < m + 2; i++) if (i != r)
                  for (int j = 0; j < m + 2; i+v) if (i != 1)

for (int j = 0; j < n + 2; j+t) if (j != s)

D[i][j] -= D[r][j] * D[i][s] / D[r][s];

for (int j = 0; j < n + 2; j+t) if (j != s) D[r][j] /= D[r][s];

for (int i = 0; i < m + 2; i+t) if (i != r) D[i][s] /= -D[r][s];
                   D[r][s] = 1.0 / D[r][s];
                   swap(B[r], N[s]);
         bool Simplex(int phase) {
                  int x = phase == 1 ? m + 1 : m;
                   while (true) {
                            int s = -1:
                            for (int j = 0; j <= n; j++) {</pre>
                                     if (phase == 2 && N[j] == -1) continue;
                                     if (s == -1 \mid | D[x][j] < D[x][s] \mid | D[x][j] == D[x][s] && N[j] < N[s])
                            if (D[x][s] > -EPS) return true;
                            int r = -1;
                            for (int i = 0; i < m; i++) {
                                    [r]) r = i;
                            if (r == -1) return false;
                            Pivot(r, s);
         DOUBLE Solve(VD &x) {
                  int \mathbf{r} = 0;
                  for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i; if (D[r][n + 1] < -EPS) {
                            Pivot(r, n);
                            if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return -numeric_limits<DOUBLE>::
                                   infinity();
                            for (int i = 0; i < m; i++) if (B[i] == -1) {
                                     int s = -1:
                                     for (int j = 0; j <= n; j++)
    if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j]</pre>
                                                      < N[s]) s = j;
                                     Pivot(i, s);
                   if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
                   x = VD(n);
                   for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];
                   return D[m][n + 1];
};
int main() {
         const int m = 4;
         const int n = 3;
         DOUBLE A[m][n] = {
                   { 6, -1, 0 },
                   \{-1, -5, 0\},
                   { 1, 5, 1 },
                   \{-1, -5, -1\}
         DOUBLE _b[m] = { 10, -4, 5, -5 };

DOUBLE _c[n] = { 1, -1, 0 };
         VVD A(m);
         VD b(\_b, \_b + m);
         VD c(_c, _c + n);
         for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);</pre>
         LPSolver solver(A, b, c);
         VD x;
         DOUBLE value = solver.Solve(x);
```

```
cerr << "VALUE: " << value << endl; // VALUE: 1.29032
cerr << "SOLUTION:"; // SOLUTION: 1.74194 0.451613 1
for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
cerr << endl;
return 0;</pre>
```

7 Strings

7.1 KMP

```
vi kmp_builder(string &s, int n) {
    vi dp(n, 0);
    int j = 0;
    forx(i, 1, n) {
        while (j && s[i] != s[j]) j = dp[j - 1];

        if (s[i] == s[j]) dp[i] = ++j;
        else dp[i] = 0;
    }

    return dp;
}

// Return all occurrences of the pattern in the text
    vi kmp(string &t, string &p) {
        string q = p + "#" + t;
        vi v = kmp_builder(q, sz(q));
        vi res;
        forn(i, sz(q)) if (v[i] == sz(p)) res.pb(i - 2 * sz(p) + 1);
        return res;
}
```

7.2 Algorithm Z

7.3 Rabin Karp

```
const 11 mod[2] = {1000000007, 998244353};
const 11 px[2] = {29, 31};

v1 rabin_karp(string &s, string &p) {
  v1 ss[2], pp[2], ppx[2];
  for (11 i = 0; i < 2, i++)
        ss[i] = rolling_hash(s, px[i], mod[i]),
        pp[i] = rolling_hash(p, px[i], mod[i]);

vi res;
  for (int i = 0; i + sz(p) - 1 < sz(s); i++) {
        11 ok = 1;
        for (11 j = 0; j < 2; j++) {
            int fh = fast_hash(ss[j], px[j], mod[j], i, i + sz(p) - 1) % mod[j];
            ok &= (fh == pp[j].back());
        }
        if (ok) res.pb(i + 1);
    }

    return res;</pre>
```

7.4 Aho-Corasick

```
const int K = 26;
struct Vertex
    int next[K];
    bool output = false;
    int p = -1;
    char pch;
    int link = -1;
    int go[K];
    \label{eq:vertex} \mbox{Vertex}\left(\mbox{int } p{=}{-}1\mbox{, char } \mbox{ch}{=}{'}\,\$'\,\right) \mbox{ : } p\left(p\right)\mbox{, pch}\left(\mbox{ch}\right) \mbox{ } \{
         fill (begin (next), end (next), -1);
         fill(begin(go), end(go), -1);
};
vector<Vertex> t(1);
void aho_init() {
  t.clear();
  t.pb(Vertex());
void add_string(string const& s) {
    int v = 0:
    for (char ch : s) {
         int c = ch - 'a';
         if (t[v].next[c] == -1) {
    t[v].next[c] = t.size();
              t.emplace_back(v, ch);
         v = t[v].next[c];
    t[v].output = true;
int go(int v, char ch);
int get_link(int v) {
    if (t[v].link == -1) {
   if (v == 0 || t[v].p == 0)
             t[v].link = 0;
              t[v].link = go(get_link(t[v].p), t[v].pch);
    return t[v].link;
int go(int v, char ch) {
    int c = ch - 'a';
if (t[v].go[c] == -1) {
         if (t[v].next[c] != -1)
             t[v].go[c] = t[v].next[c];
         else
              t[v].go[c] = v == 0 ? 0 : go(get_link(v), ch);
    return t[v].go[c];
vector<int> search_in_text(const string& text) {
  vector<int> occurrences;
  int v = 0;
  for (int i = 0; i < text.size(); i++) {</pre>
    char ch = text[i];
    v = go(v, ch);
    for (int u = v; u != 0; u = get_link(u)) {
      if (t[u].output) {
         occurrences.push_back(i);
  return occurrences;
```

7.5 Hashing

```
const int K = 2;
struct Hash {
   const 11 MOD[K] = {999727999, 1070777777};
   const 11 P = 1777771;
```

```
vector<11> h[K], p[K];
   Hash(string &s) {
     int n = s.size();
     for (int k = 0; k < K; k++) {
       h[k].resize(n + 1, 0);
       p[k].resize(n + 1, 1);
       for(int i = 1; i \le n; i++) {
 h[k][i] = (h[k][i-1] * P + s[i-1]) % MOD[k];
          p[k][i] = (p[k][i - 1] * P) % MOD[k];
   vector<ll> get(int i, int j) { // hash [i, j]
    j++;
vector<ll> r(K);
for(int k = 0; k < K; k++) {
    r(k] = (h[k][j] - h[k][i] * p[k][j - i]) % MOD[k];</pre>
       r[k] = (r[k] + MOD[k]) % MOD[k];
     return r;
};
// Other
ll pow(ll b, ll e, ll m) {
  11 res = 1;
   for (; e; e >>= 1, b = (b * b) % m)
  if (e & 1) res = (res * b) % m;
  return res:
ll inv(ll b, ll e, ll m) {
   return pow(pow(b, e, m), m - 2, m);
vl rolling_hash(string &s, ll p, ll m) {
  11 n = sz(s);
  vl v(n, 0);
   \begin{aligned} v[0] &= (s[0]) \ \text{\% m;} \\ \text{for } (11 \ i = 1; \ i < n; \ i++) \\ v[i] &= (v[i-1] + (s[i] \ \star \ \text{pow}\,(p, \ i, \ m)) \ \text{\% m;} \end{aligned} 
  return v;
11 fast_hash(v1 &v, 11 p, 11 m, 11 i, 11 j) {
    return (((v[j] - (i ? v[i - 1] : 0) + m) % m) * inv(p, i, m)) % m;
// Hash 128
#define bint __int128
struct Hash {
  bint MOD=212345678987654321LL, P=1777771, PI=106955741089659571LL;
   vector<bint> h,pi;
   Hash(string& s){
     assert ((P*PI) %MOD==1);
     h.resize(s.size()+1);pi.resize(s.size()+1);
     h[0]=0;pi[0]=1;
     bint p=1:
     forx(i,1,s.size()+1){
       h[i] = (h[i-1]+p*s[i-1]) %MOD;
       pi[i] = (pi[i-1]*PI) %MOD;
       p = (p * P) %MOD;
  11 get(int s, int e){
     return (((h[e]-h[s]+MOD)%MOD)*pi[s])%MOD;
};
```

7.6 Manacher

```
/* Find palindromes in a string
f = 1 para pares, 0 impar
a a a a a a
1 2 3 3 2 1 f = 0 impar
0 1 2 3 2 1 f = 1 par centrado entre [i-1,i]
Time: O(n)
*/
void manacher(string &s, int f, vi &d) {
   int l = 0, r = -1, n = s.size();
   d.assign(n, 0);
   for (int i = 0; i < n; i++) {
      int k = (i > r ? (1 - f) : min(d[l + r - i + f], r - i + f)) + f;
      while (i + k - f < n && i - k >= 0 && s[i + k - f] == s[i - k]) ++k;
      d[i] = k - f; --k;
      if (i + k - f > r) l = i - k, r = i + k - f;
}
```

7.7 Suffix Array

```
struct suffix {
        int index:
        int rank[2];
1:
int cmp(struct suffix a, struct suffix b) {
        return (a.rank[0] == b.rank[0])? (a.rank[1] < b.rank[1] ?1: 0):</pre>
                         (a.rank[0] < b.rank[0] ?1: 0);
int *buildSuffixArray(char *txt, int n) {
        struct suffix suffixes[n];
        for (int i = 0; i < n; i++) {</pre>
                suffixes[i].index = i;
suffixes[i].rank[0] = txt[i] - 'a';
                 suffixes[i].rank[1] = ((i+1) < n)? (txt[i + 1] - 'a'): -1;
        sort(suffixes, suffixes+n, cmp);
        int ind[n];
        for (int k = 4; k < 2*n; k = k*2)
                int rank = 0;
                 int prev_rank = suffixes[0].rank[0];
                 suffixes[0].rank[0] = rank;
                 ind[suffixes[0].index] = 0;
                 for (int i = 1; i < n; i++) {
                         if (suffixes[i].rank[0] == prev_rank &&
                                         suffixes[i].rank[1] == suffixes[i-1].rank[1]) {
                                 prev_rank = suffixes[i].rank[0];
suffixes[i].rank[0] = rank;
                         } else {
                                 prev_rank = suffixes[i].rank[0];
                                 suffixes[i].rank[0] = ++rank;
                         ind[suffixes[i].index] = i;
                 for (int i = 0; i < n; i++) {
                         int nextindex = suffixes[i].index + k/2;
                         suffixes[i].rank[1] = (nextindex < n)?
                                                                   suffixes[ind[nextindex]].rank[0]: -1;
                 sort(suffixes, suffixes+n, cmp);
        int *suffixArr = new int[n];
        for (int i = 0; i < n; i++)
                 suffixArr[i] = suffixes[i].index;
        return suffixArr;
void printArr(int arr[], int n)
        for (int i = 0; i < n; i++)</pre>
               cout << arr[i] << " ";
        cout << endl:
void solve() {
        char txt[] = "banana";
        int n = strlen(txt);
        int *suffixArr = buildSuffixArray(txt, n);
        cout << "Following is suffix array for " << txt << endl;
        printArr(suffixArr, n);
```

8 Others

8.1 Grundy (Nim Game)

#define PLAYER1 1

<u> </u>		
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$
$ \lim_{n \to \infty} a_n = a $	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $n = n + 1 =$
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an <i>n</i> element set into <i>k</i> cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)^n$	15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)^n$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \ \binom{n}{n-1}$	
22. $\binom{n}{0} = \binom{n}{n-1}$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,
25. $\left\langle {0\atop k}\right\rangle = \left\{ {1\atop 0}\right\}$	if $k = 0$, otherwise 26. $\begin{cases} r \\ 1 \end{cases}$	$\binom{n}{2} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
28. $x^n = \sum_{k=0}^n \binom{n}{k}$	$\left. \left\langle {x+k \atop n} \right\rangle, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^m$	
		32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,
$34. \; \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n-1}{k}$	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{n} \left\{ \begin{array}{c} x \\ x \end{array} \right\}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \!\! \binom{x+n-1-k}{2n},$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$

$$\mathbf{38.} \ \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{m}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \ \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{x+k}{2n},$$

$$\mathbf{40.} \ \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k}, \qquad \qquad \mathbf{41.} \ \begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m} (-1)^{m-k},$$

$$\mathbf{42.} \ \begin{Bmatrix} m+n+1 \\ m \end{Bmatrix} = \sum_{k=0}^{m} k \binom{n+k}{k}, \qquad \qquad \mathbf{43.} \ \begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \binom{n+k}{k},$$

$$\mathbf{44.} \ \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \mathbf{45.} \ (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

$$\mathbf{46.} \ \begin{Bmatrix} n \\ n-m \end{Bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

$$\mathbf{47.} \ \begin{bmatrix} n \\ n-m \end{bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$
 49.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

$$\begin{array}{ccc}
 \left[n-m\right] & \xrightarrow{k} & \left(m+k\right) & \left(n+k\right) & \left(k\right) \\
 49. & \begin{bmatrix} n \\ \ell+m \end{bmatrix} & \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} & = \sum_{k} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} & \begin{pmatrix} n \\ k \end{pmatrix}.
\end{array}$$

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$

$$3(T(n/2) - 3T(n/4) = n/2)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$3^{\log_2 n - 1}(T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$.

Summing the right side we get
$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let
$$c = \frac{3}{2}$$
. Then we have
$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so $T_{i+1} = 2T_i = 2^{i+1}$.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is q_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} \operatorname{Multiply} \text{ and sum:} \\ \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:

$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$
$$= x \left(2 \sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i \right)$$
$$= \sum_{i \geq 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

1	$n \sim 0.17100$,	€ ~ 4.1	1020, $_{1}\sim$ 0.01121, $_{2}\sim$	1.01000, $\psi = \frac{1}{2} \sim 0.01000$
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{-b}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	Ja
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$
6	64	13	34	then P is the distribution function of X . If
7	128	17	Euler's number e : $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then
8	256	19	2 0 24 120	$P(a) = \int_{-a}^{a} p(x) dx.$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J_{-\infty}$ Expectation: If X is discrete
10	1,024	29	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	*
11	2,048	31	(117 (117	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	J −∞ J −∞
15	32,768	47	, , , ,	Variance, standard deviation:
16 17	65,536 131,072	53 59	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$
18	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$
19	524,288	67	Factorial, Stirling's approximation:	For events A and B: $Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$
21	2,097,152	73		iff A and B are independent.
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	_
23	8,388,608	83	(e) (n) Ackermann's function and inverse:	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
24	16,777,216	89		For random variables X and Y :
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
26	67,108,864	101	$(a(i-1,a(i,j-1)) i,j \ge 2$	if X and Y are independent.
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X].
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	Bayes' theorem: $\Pr[B A \Pr[A]$
30	1,073,741,824	113		$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:
32	4,294,967,296	131	h-1	n n
	Pascal's Triangl	e	Poisson distribution: $e^{-\lambda} \lambda^k$	$\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] + $
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathbb{E}[X] = \lambda.$	
	1 1		Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	$k=2$ $i_i < \cdots < i_k$ $j=1$ Moment inequalities:
1 3 3 1			V 2110	
1 4 6 4 1			The "coupon collector": We are given a random coupon each day, and there are n	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$
1 5 10 10 5 1			different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$
1 6 15 20 15 6 1			tion of coupons is uniform. The expected	Geometric distribution: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^$
1 7 21 35 35 21 7 1			number of days to pass before we to collect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$
1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1			nH_n .	
1 9 30 84 120 120 84 30 9 1 1 10 45 120 210 252 210 120 45 10 1			···in.	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$
1 10 45 120 210 252 210 120 45 10 1				$\kappa=1$

Pythagorean theorem:

$$C^2 = A^2 + B^2$$
.

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$
$$\cot x \cot y \mp 1$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y}$$

$$\sin 2x = 2 \sin x \cos x,$$
 $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x},$
 $\cos 2x = \cos^2 x - \sin^2 x,$ $\cos 2x = 2 \cos^2 x - 1,$

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1$$

v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceg - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\begin{split} \sinh x &= \frac{e^x - e^{-x}}{2}, & \cosh x &= \frac{e^x + e^{-x}}{2}, \\ \tanh x &= \frac{e^x - e^{-x}}{e^x + e^{-x}}, & \operatorname{csch} x &= \frac{1}{\sinh x}, \\ \operatorname{sech} x &= \frac{1}{\cosh x}, & \coth x &= \frac{1}{\tanh x}. \end{split}$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1,$$
 $\tanh^2 x + \operatorname{sech}^2 x = 1,$ $\coth^2 x - \operatorname{csch}^2 x = 1,$ $\sinh(-x) = -\sinh x,$ $\cosh(-x) = \cosh x,$ $\tanh(-x) = -\tanh x,$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

 $\sinh 2x = 2\sinh x \cosh x,$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x$$
, $\cosh x - \sinh x = e^{-x}$,
 $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$, $n \in \mathbb{Z}$,

$$2\sinh^2\frac{x}{2} = \cosh x - 1$$
, $2\cosh^2\frac{x}{2} = \cosh x + 1$.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	$\overline{1}$	0	∞

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

Law of cosines: $c^2 = a^2 + b^2 - 2ab \cos C.$ Area.

$$\begin{split} A &= \frac{1}{2}hc, \\ &= \frac{1}{2}ab\sin C, \\ &= \frac{c^2\sin A\sin B}{2\sin C}. \end{split}$$

Heron's formula:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}}$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$e^{ix} e^{-ix}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$
$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x = \frac{\sinh ix}{i},$$

$$\cos x = \cosh ix,$$

$$\tan x = \frac{\tanh ix}{i}$$

The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \bmod n.$$

$$\mu(i) = \begin{cases} (n-1)! = -1 \mod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

Definitions:

Loop An edge connecting a vertex to itself.

Directed Each edge has a direction. SimpleGraph with no loops or multi-edges.

A sequence $v_0e_1v_1\ldots e_\ell v_\ell$.

WalkTrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

connected ComponentΑ maximal subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph deg(v)Degree of v

Maximum degree $\Delta(G)$

 $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number G^c Complement graph

 K_n Complete graph K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)y = mx + b(m, -1, b)

x = c(1,0,-c)Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{x \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)}$$

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. George Bernard Shaw

Derivatives:

$$\mathbf{1.} \ \frac{d(cu)}{dx} = c\frac{du}{dx}, \qquad \quad \mathbf{2.} \ \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}, \qquad \quad \mathbf{3.} \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \textbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \textbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

$$\frac{d(e^{cu})}{dx} = u \frac{dx}{dx} + v \frac{dy}{dx},$$

4.
$$\frac{1}{dx} = nu$$
 $\frac{1}{dx}$, 5. $\frac{1}{dx} = \frac{1}{u^2}$
7. $\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$,

8.
$$\frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$20. \ \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$21. \ \frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

$$22. \ \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

$$24. \ \frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \, \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) \, dx = \int u \, dx + \int v \, dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

11.
$$\int \cot x \, dx = \ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, 13. $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

15.
$$\int \arccos \frac{d}{a} dx = \arccos \frac{d}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$
16. $\int \arctan \frac{d}{a} dx = \arctan \frac{d}{a} - \frac{d}{a} \ln(a^2 + x^2), \quad a > 0,$
17. $\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax) \cos(ax)),$
18. $\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax) \cos(ax)),$
19. $\int \sec^2 x \, dx = \tan x,$
20. $\int \csc^3 x \, dx = -\cot x,$
21. $\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$
22. $\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$
23. $\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$
24. $\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$
25. $\int \sec^n x \, dx = \frac{\tan^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1,$
26. $\int \csc^n x \, dx = \frac{-\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1,$
27. $\int \sinh x \, dx = \ln |\cot x|,$
30. $\int \coth x \, dx = \ln |\sinh x|,$
31. $\int \operatorname{sech} x \, dx = \arctan \sinh x,$
32. $\int \operatorname{csch} x \, dx = \ln |\tan x|,$
33. $\int \sinh^2 x \, dx = \frac{1}{4} \sin(2x) - \frac{1}{2x},$
34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$
35. $\int \operatorname{sech} x \, dx = \tanh x,$
36. $\int \operatorname{arcsinh} \frac{x}{x} \, dx = x \arcsin \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$
37. $\int \operatorname{arctanh} \frac{x}{x} \, dx = x \operatorname{arctanh} \frac{x}{x} + \frac{a}{2} \ln |a^2 - x^2|,$
38. $\int \operatorname{arccosh} \frac{x}{x} \, dx - \left\{ x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$
37. $\int \operatorname{arctanh} \frac{x}{x} \, dx = x \operatorname{arctanh} \frac{x}{x} + \frac{a}{2} \ln |a^2 - x^2|,$
40. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{\pi}{a}, \quad a > 0,$
41. $\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \arcsin \frac{\pi}{a}, \quad a > 0,$
42. $\int (a^2 - x^2)^{3/2} \, dx = \frac{1}{8} (\sin x) \, dx + \int (a^2 - x^2)^{3/2} \, dx = \frac{1}{8} (\sin x) \, dx + \int (a^2 - x^2)^{3/2} \, dx = \frac{1}{8} (a^2 - x^2)^{3/2} \, d$

60. $\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$

61. $\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$

$$\begin{aligned} &\textbf{62.} \ \int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a}\arccos\frac{a}{|x|}, \quad a > 0, \qquad \textbf{63.} \ \int \frac{dx}{x^2\sqrt{x^2\pm a^2}} = \mp \frac{\sqrt{x^2\pm a^2}}{a^2x}, \\ &\textbf{64.} \ \int \frac{x\,dx}{\sqrt{x^2\pm a^2}} = \sqrt{x^2\pm a^2}, \qquad \textbf{65.} \ \int \frac{\sqrt{x^2\pm a^2}}{x^4}\,dx = \mp \frac{(x^2+a^2)^{3/2}}{3a^2x^3}, \\ &\textbf{66.} \ \int \frac{dx}{ax^2+bx+c} = \begin{cases} \frac{1}{\sqrt{b^2-4ac}} \ln \left| \frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac-b^2}} \arctan \frac{2ax+b}{\sqrt{4ac-b^2}}, & \text{if } b^2 < 4ac, \end{cases} \\ &\textbf{67.} \ \int \frac{dx}{\sqrt{ax^2+bx+c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax-b}{\sqrt{b^2-4ac}}, & \text{if } a < 0, \end{cases} \\ &\textbf{68.} \ \int \sqrt{ax^2+bx+c}\,dx = \frac{2ax+b}{4a}\sqrt{ax^2+bx+c} + \frac{4ax-b^2}{8a}\int \frac{dx}{\sqrt{ax^2+bx+c}}, \\ &\textbf{69.} \ \int \frac{x\,dx}{\sqrt{ax^2+bx+c}} = \frac{\sqrt{ax^2+bx+c}}{a} - \frac{b}{2a}\int \frac{dx}{\sqrt{ax^2+bx+c}}, \\ &\textbf{70.} \ \int \frac{dx}{x\sqrt{ax^2+bx+c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2+bx+c}+bx+2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx+2c}{|x|\sqrt{b^2-4ac}}, & \text{if } c < 0, \end{cases} \\ &\textbf{71.} \ \int x^3\sqrt{x^2+a^2}\,dx = (\frac{1}{3}x^2-\frac{2}{15}a^2)(x^2+a^2)^{3/2}, \\ &\textbf{72.} \ \int x^n \sin(ax)\,dx = -\frac{1}{a}x^n \sin(ax) - \frac{n}{a}\int x^{n-1}\cos(ax)\,dx, \end{cases} \\ &\textbf{74.} \ \int x^n e^{ax}\,dx = \frac{x^n e^{ax}}{a} - \frac{n}{a}\int x^{n-1}e^{ax}\,dx, \end{cases} \end{aligned}$$

75. $\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$

76. $\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$

Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$ E f(x) = f(x+1).Fundamental Theorem: $f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$ $\sum_{i=0}^{b} f(x)\delta x = \sum_{i=0}^{b-1} f(i).$ Differences $\Delta(cu) = c\Delta u$, $\Delta(u+v) = \Delta u + \Delta v,$ $\Delta(uv) = u\Delta v + E v\Delta u,$ $\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$ $\Delta(H_r) = x^{-1}$, $\Delta(2^x) = 2^x,$ $\Delta(H_x) = x - \frac{1}{2}, \qquad \Delta(z) - z,$ $\Delta(c^x) = (c - 1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$ Sums: $\sum cu \, \delta x = c \sum u \, \delta x,$ $\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x.$ $\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$ $\sum x^{\underline{n}} \delta x = \frac{x^{\underline{n+1}}}{\underline{n+1}},$ $\sum x^{-1} \delta x = H_x$ $\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$ Falling Factorial Powers: $x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0.$ $x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$ $x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}$ Rising Factorial Powers: $x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$ $x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$ Conversion: $x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$ $=1/(x+1)^{-n}$

$$x^{\underline{n}} = (-1)^{n}(-x)^{n} = (x - n + 1)^{n}$$

$$= 1/(x + 1)^{-\overline{n}},$$

$$x^{\overline{n}} = (-1)^{n}(-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$= 1/(x - 1)^{-\underline{n}},$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{k},$$

$$x^{\overline{n}} = \sum_{k=1}^{n} {n \brack k} x^{k}.$$

Taylor's series:

Taylor's series:
$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!} f^{(i)}(a).$$
 Expansions:
$$\frac{1}{1 - x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{i=0}^{\infty} x^i,$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power se

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(x) = \sum_{i=0}^{\infty} a_i x^i = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i},$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Expansions:

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{\frac{n}{n}} = \sum_{i=0}^{\infty} \binom{i}{n} x^i, \\ x^{\overline{n}} = \sum_{i=0}^{\infty} \binom{n}{i} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n! x^i}{i!}, \\ \left(\ln \frac{1}{1-x}\right)^n = \sum_{i=0}^{\infty} \binom{n}{i} \frac{n! x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_{2i} x^{2i}}{(2i)!}, \\ \tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i} (2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) =$$

$$\left(\frac{1}{x}\right)^{\overline{-n}} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i}B_{2i}x^{2i}}{(2i)!},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_a^b G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

 $00 \ \ 47 \ \ 18 \ \ 76 \ \ 29 \ \ 93 \ \ 85 \ \ 34 \ \ 61 \ \ 52$ 11 57 28 70 39 94 45 02 63 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i ,
 $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$\begin{split} F_i &= F_{i-1} {+} F_{i-2}, \quad F_0 = F_1 = 1, \\ F_{-i} &= (-1)^{i-1} F_i, \\ F_i &= \frac{1}{\sqrt{5}} \left(\phi^i - \hat{\phi}^i \right), \end{split}$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$