

AD A 0 96388

14 NPS67-81-001

2

LEVEL II

# NAVAL POSTGRADUATE SCHOOL

## Monterey, California



DTIC  
ELECTED  
S MAR 16 1981 D  
B

|    |                                                             |
|----|-------------------------------------------------------------|
| 6  | TEMPERATURE DEPENDENCE OF GAS PROPERTIES IN POLYNOMIAL FORM |
| 10 | J. R. Andrews / Biblarz<br>Oscar                            |
| 11 | Jan [redacted] 81                                           |
| 12 | 132                                                         |

Approved for public release; distribution unlimited.

Prepared for:  
Naval Postgraduate School  
Monterey, Ca. 93940

251450

81 3 16 092

X DTIC FILE COPY

NAVAL POSTGRADUATE SCHOOL  
Monterey, California

Rear Admiral J. J. Ekelund  
Superintendent

D. A. Shrady  
Acting Provost

The work presented herein is the result of an attempt to make our earlier report (NPS-57Z174071A) more useful. No explicit sponsorship is identifiable.

Reproduction of all or part of this report is authorized.

This report was prepared by:

OSCAR BIBLARZ  
OSCAR BIBLARZ  
Associate Professor of Aeronautics

J. R. Andrews /<sup>03</sup>  
J. R. ANDREWS  
Commander, U.S. Navy

Reviewed by:

M. F. PLATZER  
M. F. PLATZER  
Chairman of Aeronautics

Released by:

William M. Tolles  
W. M. TOLLES  
Dean of Research

**UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1. REPORT NUMBER<br><b>NPS67-81-001</b>                                                                                                                                                                           | 2. GOVT ACCESSION NO.<br><b>AD-A096388</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3. RECIPIENT'S CATALOG NUMBER            |
| 4. TITLE (and Subtitle)<br><br><b>TEMPERATURE DEPENDENCE OF GAS PROPERTIES IN POLYNOMIAL FORM</b>                                                                                                                 | 5. TYPE OF REPORT & PERIOD COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
| 7. AUTHOR(s)<br><br><b>J. R. Andrews and O. Biblarz</b>                                                                                                                                                           | 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br><b>NAVAL POSTGRADUATE SCHOOL<br/>MONTEREY, CA 93940</b>                                                                                                        | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><br><b>NAVAL POSTGRADUATE SCHOOL<br/>Monterey, CA 93940</b>                                                                                                            | 12. REPORT DATE<br><b>5 January 1981</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                       | 13. NUMBER OF PAGES<br><b>130</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
|                                                                                                                                                                                                                   | 15. SECURITY CLASS. (of this report)<br><b>Unclassified</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
|                                                                                                                                                                                                                   | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br><b>Approved for public release, distribution unlimited.</b>                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><br><b>Thermodynamic properties<br/>Heat capacity<br/>Thermal conductivity<br/>Viscosity<br/>Second Virial Coefficients</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                 | Based on a least-squares polynomial approximation, a procedure introduced for calculating existing tabular values of thermodynamic and transport properties for common gases. The specific heat at constant pressure is given for 238 gases, the thermal conductivity for 55 gases, the dynamic viscosity for 58 gases, and the second and third virial coefficients for 14 gases. At sufficiently low pressures, ideal gas behavior prevails and temperature may be used as the single independent variable. The algorithm for nested multiplication is presented, optimized for hand-held or desktop. |                                          |

~~UNCLASSIFIED~~

~~SECURITY CLASSIFICATION OF THIS PAGE/When Data Entered~~

electronic calculators. Using the polynomial approximations and a suitable calculator, it is possible to duplicate existing reference source tabular values directly, obviating the need for interpolation or further reference to the tables per se. The accuracy of the calculated values can be within 0.5% of the tabular values. The polynomial coefficients are given in the International System of Units (SI). Methods are presented to calculate the temperature corresponding to a given property value. Extrapolation features of the polynomials are discussed.

DD Form 1473  
1 Jan '73  
S/N 0102-014-6601

~~UNCLASSIFIED~~

~~SECURITY CLASSIFICATION OF THIS PAGE/When Data Entered~~

## **ABSTRACT**

Based on a least-squares polynomial approximation, a procedure is introduced for calculating existing tabular values of thermodynamic and transport properties for common gases. The specific heat at constant pressure is given for 238 gases, the thermal conductivity for 55 gases, the dynamic viscosity for 58 gases, and the second and third virial coefficients for 14 gases. At sufficiently low pressures, ideal gas behavior prevails and temperature may be used as the single independent variable. The algorithm for nested multiplication is presented, optimized for hand-held or desktop electronic calculators. Using the polynomial approximations and a suitable calculator, it is possible to duplicate existing reference source tabular values directly, obviating the need for interpolation or further reference to the tables per se. The accuracy of the calculated values can be within 0.5% of the tabular values. The polynomial coefficients are given in the International System of Units (SI). Methods are presented to calculate the temperature corresponding to a given property value. Extrapolation features of the polynomials are discussed.

Accession Per  
NTIS CRASH  
NTIS TAB  
Unpublished  
C-100

## TABLE OF CONTENTS

|                                     | <u>Page No.</u> |
|-------------------------------------|-----------------|
| I      INTRODUCTION .....           | 1               |
| II     POLYNOMIAL CURVE FITS .....  | 4               |
| III    POLYNOMIAL EVALUATIONS ..... | 5               |
| IV    EXTRAPOLATION .....           | 8               |
| V    ITERATIVE METHODS .....        | 11              |
| VI   CONCLUSIONS .....              | 15              |
| VII   REFERENCES .....              | 16              |
| APPENDIX A .....                    | A-i             |
| APPENDIX B .....                    | B-i             |
| APPENDIX C .....                    | C-i             |
| APPENDIX D .....                    | D-i             |
| DISTRIBUTION LIST                   |                 |

## I. INTRODUCTION

Many important thermodynamic and transport properties of gaseous elements and compounds can be expressed purely and accurately as functions of temperature. The perfect gas behavior of simple compressible substances is a well documented example<sup>1-3</sup>. Data tables for such single-variable functions may be approximated with curve-fitting techniques reducing the tabular information to polynomial or exponential forms. Given these equations and a handheld or desktop electronic calculator, a user may retrieve the tabular information accurately and conveniently without interpolation or further reference to the original data sources. The objective of this work is to provide sufficiently simple polynomial fits which together with a modern electronic calculator present the most convenient method of handling the calculation of thermodynamic properties accurately. In all but the most detailed numerical work, the information presented here should prove to be advantageous over present tabular, graphical, or other methods. This report significantly expands the scope of our earlier work<sup>4</sup> by including basic properties of a large number of elements and compounds.

The gas properties for which polynomial equations are presented comprise the specific heat at constant pressure [ $C_p(T)$ ] for 238 gases in Appendix A, the thermal conductivity [ $k(T)$ ] for 55 gases in Appendix B, the dynamic viscosity [ $\mu(T)$ ] for 58 gases in Appendix C, and the second and third virial coefficients for 14 gases in Appendix D. The accuracy of reproduction of source data is within 0.5%. The correlating equations are presented in the International System of Units (SI). To further enhance the usefulness of this work, methods are given to reverse the dependent and independent variables (i.e., to calculate the temperature corresponding to a given property

value); these methods consist of either polynomials for the inverse calculation as given in the Appendixes or the iterative procedures discussed in Section 5.

In any effort such as this, consideration must be given to the range of validity of the polynomial fit in addition to its accuracy. Section 2 addresses these important topics. The possibility and limitation of extrapolation is discussed in Section 4. Also, the technique of nested multiplication is discussed in Section 3; this technique is a "natural" for the majority of electronic calculators presently available and provides for the convenient use of the information presented herein.

It should be noted that for a perfect or ideal gas (with variable heat capacities) having  $C_p$  in polynomial form is particularly useful. This is because the polynomials may be integrated easily, without risking any decrease in the accuracy of the results. The well known relations for a perfect or ideal gas are summarized below and Ref. 5 expands on the technique for generating the gas tables.

$$C_v = C_p - R \quad [\text{specific heat at constant volume}]$$

$$\gamma = C_p / (C_p - R) \quad [\text{ratio of heat capacities}]$$

$$h = \int C_p dT \quad [\text{enthalphy}]$$

$$u = h - RT \quad [\text{internal energy}]$$

$$\phi = \int C_p \frac{dT}{T} \quad [\text{entropy function}]$$

While the simplicity and utility of the perfect or ideal gas calculations is readily apparent, imperfect or real gas behavior is also important. In the Appendixes, therefore, two headings are often found, i.e., ideal gas and real gas. We also include in this work polynomial fits for the second

and third virial coefficients. These allow accurate representation of non-ideal behavior at densities as high as 0.7 of the critical value<sup>6</sup>.

The material in this report is intended to be used in conjunction with standard reference texts on thermodynamics, fluid dynamics, and heat transfer. The user is encouraged, moreover, to discover for himself how the simple polynomial fits aid in the handling of differential equations with variable coefficients.

## II. POLYNOMIAL CURVE FITS

The data source for Appendixes A, B, and C is the TRPC<sup>7-9</sup> series. The virial coefficients are found in the American Institute of Physics Handbook, 3rd Edition<sup>10</sup>. These sources are considered to be among the most accurate. The TRPC series reproduce a large number of original sources and present a critically evaluated consolidation of available data. The accuracy of duplication of reference-source values is included with the polynomial equations as part of the format in the Appendixes [see pp. A-viii, B-iii, C-iii, and Dii]. References 7-9 include their own third-degree polynomial fits; other polynomial expressions are also available<sup>11,12</sup> in most thermodynamic textbooks.

The most important consideration given in the curve fitting is the reliability of the data. Next to reliability, consideration is given to the greatest possible temperature range; reference source data are split along temperature intervals to achieve the most acceptable duplication accuracy. The equations presented are the lowest degree equations which achieve the desired accuracy over the temperature range stated.

### III. POLYNOMIAL EVALUATIONS

For the calculation of properties or the inverse calculation of the temperature, we have relied almost exclusively on polynomial fits, with the exception of some specific heat [ $C_p(T)$ ] forms which are exponential. The equations presented have the following forms:

#### Polynomial

$$FCTN(T) = B(0) + B(1)T + B(2)T^2 + \dots + B(N)T^N = \sum_{m=0}^N B(m)T^m$$

#### Exponential

$$\ln[FCTN(T)] = B(0) + B(1)T + \dots + B(N)T^N = \sum_{m=0}^N B(m)T^m$$

$$[e.g., \quad C_p(T) = (\text{const}) \exp \left[ \sum_{m=0}^N B(m)T^m \right]$$

The most efficient method of evaluating single-variable polynomials is "nested multiplication"<sup>13</sup>. Nested multiplication eliminates the need to raise "X" to the "Y" power and simplifies an N-th order polynomial evaluation to a sequence of multiplication/addition steps. Examples of nested multiplication are presented below.

#### A. Generalized Nested Multiplication Algorithm:

Given the N coefficients, B(0), B(1), B(2), ... B(N), for the polynomial function FCTN(T) and any value of the temperature " $T_i$ " within the range of validity

Set  $A(N) = B(N)$  [e.g.,  $A(6) = B(6)$ ]

For  $K = N, N-1, N-2, \dots, 1$ , Do

    Set  $A(K-1) = B(K-1) + T_i A(K)$

A(0) = FCTN( $T_i$ )

The above algorithm may be stated in words as follows: multiply the highest degree coefficient by the temperature value,  $T_i$ , and add to the next lower degree coefficient; multiply the sum by  $T_i$  and add to the next lower degree coefficient; multiply the sum by  $T_i$  ... Continue the process until the sum  $B(1)+A(2)T_i$  is calculated; multiply this sum by  $T_i$ . By just adding the  $B(0)$  coefficient to the previous product, the polynomial evaluation is completed for the chosen value of  $T_i$ .

**B. Specific Example of Nested Multiplication:**

Consider the calculation of the specific heat at constant pressure  $[C_p(T)]$  for carbon dioxide ( $CO_2$ ), ideal gas, at  $800^{\circ}K$ . From page A-9,

$$C_p(T) = 453.86462 + 1.5334795T - 4.195556E-04 T^2 \\ - 1.871946E-06 T^3 + 2.862388E-09 T^4 \\ - 1.6962E-12 T^5 + 3.717285E-16 T^6$$

$$\text{Set } A(6) = 3.717285E-16 ; T = 800$$

| Step-by-Step Procedures |               | Calculated Values |                  | A(N) |
|-------------------------|---------------|-------------------|------------------|------|
| (1)                     | 3.717285E-16  | B(6)              | = 3.717285E-16   | A(6) |
| (2)                     | X800          | XT <sub>i</sub>   | 2.973828E-13     |      |
| (3)                     | -1.6962E-12   | +B(5)             | -1.3988172E-12   | A(5) |
| (4)                     | X800          | XT <sub>i</sub>   | -1.11905376E-09  |      |
| (5)                     | +2.862388E-09 | +B(4)             | 1.74333424E-09   | A(4) |
| (6)                     | X800          | XT <sub>i</sub>   | 1.394667392E-06  |      |
| (7)                     | -1.871946E-06 | +B(3)             | -4.77278608E-07  | A(3) |
| (8)                     | X800          | XT <sub>i</sub>   | -3.818228864E-04 |      |
| (9)                     | -4.195556E-04 | +B(2)             | -8.013784864E-04 | A(2) |
| (10)                    | X800          | XT <sub>i</sub>   | -0.641102789     |      |
| (11)                    | +1.5334795    | +B(1)             | 0.892376711      | A(1) |
| (12)                    | X800          | XT <sub>i</sub>   | 713.9013687      |      |
| (13)                    | +453.86462    | +B(0)             | 1167.765989      | A(0) |

Rounding to two decimal places,  $A(0) = C_p(800K) = 1167.77 \text{ J/Kg K.}$

For programmable calculators, nested multiplication is extremely efficient and highly recommended. To preserve the add-multiply-add simplicity, negative coefficients should be stored as negative values.

#### IV. EXTRAPOLATION

With each polynomial equation there is a specified range of validity and an associated error estimate. The stated temperature range corresponds to that of the reference source. It is often highly desirable to know how the given polynomial expressions extrapolate. A limited polynomial extrapolation beyond the specified temperature range may often be possible but in indiscriminate extrapolation the accuracy will most likely suffer. In fact, polynomial fits are notoriously bad for certain type of curves outside of their specified range.

Clearly, it is inappropriate to look at every possible type of variation. Suffice it to say that for reasonably smooth, monotonic functions such as the viscosity, the thermal conductivity, and perhaps the heat capacity of polyatomic molecules, the polynomial fits will follow with some fidelity the trends outside of their specified range. If is anticipated that the heat capacity of diatomic molecules will be the most difficult for the polynomials to follow because of the "stepwise" nature of the curves<sup>14,15</sup>. We have chosen to present the heat capacity of nitrogen as an example. The ideal gas polynomial fits are given on pg. A-41; we choose the curve for the temperature range 590-1365°K. As the basis of comparison, we pick the theoretical<sup>14</sup> curve which represents the activation of the vibrational mode of the nitrogen molecule, using  $\theta_v = 3390^\circ\text{K}$ . Table I shows a listing of these calculations. It is seen that the polynomial results are within an acceptable  $\pm 0.5\%$  for the temperature range 500°K to 1600°K. Above and below this range the polynomial results quickly diverge as more or less anticipated. Certainly, a useful rule may be to stay within 100°K of the guaranteed range.

TABLE I

POLYNOMIAL COMPARISON,  $C_p$  FOR NITROGEN

| T (K) | CP/R THEO | CP/R POLY | %DIFF     |
|-------|-----------|-----------|-----------|
| 400   | 3.51513   | 3.55253   | -1.06371  |
| 500   | 3.55272   | 3.56516   | - .35014  |
| 600   | 3.6137    | 3.62092   | - .199842 |
| 700   | 3.68868   | 3.69739   | - .236274 |
| 800   | 3.76795   | 3.77981   | - .314853 |
| 900   | 3.84486   | 3.85952   | - .381236 |
| 1000  | 3.91588   | 3.9325    | - .424339 |
| 1100  | 3.97859   | 3.99775   | - .456325 |
| 1200  | 4.03582   | 4.05591   | - .497772 |
| 1300  | 4.08501   | 4.10757   | - .552173 |
| 1400  | 4.12787   | 4.15159   | - .574591 |
| 1500  | 4.16518   | 4.18432   | - .45953  |
| 1600  | 4.19768   | 4.19665   | .024718   |
| 1700  | 4.22606   | 4.17417   | 1.22786   |
| 1800  | 4.2509    | 4.09448   | 3.67977   |

The reader might ask at this point why bother with a polynomial when an exact expression is available. The answer to this question is two-fold: First, reliable analytical expressions are not available for most of the properties and, second, when available they tend to be much more cumbersome than the polynomial expressions presented here.

## V. ITERATIVE METHODS

It is often necessary to calculate the temperature from the known value of a property. This inverse problem is handled two ways, either a polynomial fit is given in Appendixes A, B, and C for the calculation of the absolute temperature as a function of the property or an iterative procedure is suggested. In this section we discuss such iterative methods.

Before proceeding, however, it is worth noting that when a second degree polynomials in T is given for the inverse calculation, the quadratic formula may be applied. If it works, this is by far the quickest way to a solution.

The polynomials presented have the absolute temperature (T) as the single independent variable and the property value (PV) as the dependent variable.  $FCTN(T_i)$  becomes the magnitude of the property value (PV) when the polynomial function is evaluated at  $T = T_i$ . Thus,  $FCTN(T_i) = |PV|$  at  $T = T_i$ . To enhance the usefulness of this work, three methods are provided for the calculation of temperature (T) as a function of a known or given property value, PV. The methods are (A) secant method, (B) Newton's method, and (C) fixed point iteration<sup>16</sup>. All three methods are iterative in nature.

The general form of the polynomials is

$$FCTN(T_i) = B(0) + B(1)T_i + B(2)T_i^2 + \dots + B(N)T_i^N$$

The iterative methods attempt to solve for the approximate root (the temperature) of the equation of the form

$$F(T_i) = PV - B(0) - B(1)T_i - B(2)T_i^2 - \dots - B(N)T_i^N = 0$$

All of the polynomials are both continuous and continuously differentiable over the temperature intervals specified. Although these conditions are necessary for iterative methods to converge to an approximate root,

they are not necessarily sufficient in all cases to assure convergence. Enough testing has been done with the polynomials presented, however, to give reasonable assurance of convergence with any of the three methods discussed.

The quadratic formula for the second degree polynomial is simply

$$T = \frac{-B(1) + \sqrt{B(1)^2 - 4 B(2)[B(0) - PV]}}{2 B(2)}$$

A. Secant or Interpolation Method<sup>13,16</sup>:

When it converges, the secant method does so very rapidly, generally more rapidly than either of the other two iterative methods discussed. Two initial values (guesses) for the temperature are required,  $T_{-1}$  and  $T_0$ . The initial temperature values selected may be the extremes of the valid temperature range noted with the polynomial sets.

Algorithm: Given  $(T_i) = 0$  and two (2) initial points,  $T_{-1}$  and  $T_0$

For  $n = 0, 1, 2, \dots$  until satisfied, do

$$\text{Calculate } T_{n+1} = T_n - F(T_n) \frac{(T_n - T_{n-1})}{F(T_n) - F(T_{n-1})}$$

In the special case when second degree polynomials given in the Appendix, the secant method algorithm reduces to:

For  $n = 0, 1, 2, \dots$  until satisfied, do

$$\text{Calculate } T_{n+1} = T_n - \frac{B(0) + B(1)T_n + B(2)T_n^2 - (PV)}{B(1) + B(2)(T_n + T_{n-1})}$$

Specific Example: Consider a second (2nd) degree polynomial for  $C_p(T)$ :  $FCTN (T_i) = 0.232829 + 1.43429E-05T_i + 3.56638E-09T_i^2$ . Assume a given property value  $C_p = 0.2567$  but the temperature is unknown. The

known property value (PV) is 0.2567 and  $T_{-1}$  and  $T_0$  are chosen arbitrarily at 200 and 2400 respectively. The following solution is provided:

| n | $T_{n-1}$ | $T_n$   | $T_{n+1}$            |
|---|-----------|---------|----------------------|
| 0 | 200       | 2400    | -                    |
| 1 | 2400      | 2400    | 1411.67              |
| 2 | 2400      | 1411.67 | 1286.97              |
| 3 | 1411.67   | 1286.97 | 1266.32              |
| 4 | 1286.97   | 1266.32 | 1265.87              |
| 5 | 1266.32   | 1265.87 | 1265.87* Convergence |

$$T_i = 1265.87 \text{ for } C_p(T_i) = 0.2567$$

### B. Newton's Method<sup>16</sup>:

Newton's method requires a single initial value for temperature,  $T_0$ , and the first derivative of the polynomial function,  $F(T_i) = 0$ . Newton's method tends to be sensitive to the  $T_0$  selection, the closer  $T_0$  is to the root,  $T_i$ , the more rapid it converges. For the polynomials presented, Newton's method generally converges without problems. It is recommended that the initial temperature value,  $T_0$ , be selected mid-range between the polynomial valid temperature limits.

Algorithm: Given  $F(T_i) = 0$  and a starting value,  $T_0$

For  $n = 0, 1, 2, \dots$  until satisfied, do

$$\text{Calculate } T_{n+1} = T_n - F(T_n)/F'(T_n)$$

For the special case of using a second degree polynomial from Appendix A, Newton's method reduces to the following:

For  $n = 0, 1, 2, \dots$  until satisfied, do

$$\text{Calculate } T_{n+1} = T_n - \frac{B(0) - (PV) + B(1)T_n + B(2)T_n^2}{B(1) + 2B(2)T_n}$$

C) Fixed Point Iteration:<sup>16</sup>

Fixed point iteration tends to converge the slowest of the three methods discussed. It does, however, provide the user with the function definition. Given the function,  $F(T_i) = 0$ , the user defines an iterative function,  $T = g(T_i)$ , such that the solution of the iterative function is also the solution to  $F(T_i) = 0$ .

Example: Given  $F(T_i) = 0 = B(0) + B(1)T_i + B(2)T_i^2 - (PV)$

$$\text{Then } T_i = g_i(T) = \frac{(PV) - B(2)T_i^2 - B(0)}{B(1)}$$

$$\text{Or } T_i = \left( \frac{(PV) - B(0) - B(1)T_i}{B(2)} \right)^{1/2}$$

Algorithm: Given  $F(T_i) = 0$ , a derived iterative function  $g(T)$ , and a single starting point,  $T_0$

For  $n = 0, 1, 2, \dots$  until satisfied, do

Calculate  $T_{n+1} = g(T_n)$

## VI. CONCLUSIONS

Within the constraints of a single independent variable (the absolute temperature), it is possible to calculate thermodynamic and transport properties of a large variety of gases accurately. The accuracy of the polynomial results is generally within  $\pm 0.5\%$  of the original tabular data. Since interpolation is "build-in", the effort is often no more time consuming than that of reading conventional tabular forms. The inverse problem, namely that of finding the temperature corresponding to a given property, can also be accurately carried out with the information given in this report.

Extrapolation beyond the established valid temperature range is possible but the accuracy of duplication of the property is dubious and cannot be quantified in most cases. The polynomials, however, do allow for a convenient "first guess" in most instances.

It is believed that the combination of simple polynomial representations with the technique of nested multiplication utilized in a modern electronic calculator will make the Gas Tables and other standard works obsolete in form. Integration and differentiation of the polynomials is, moreover, straightforward and virtually risk free so that they are attractive forms for numerical work, particularly with ideal gases. The advantages of simple polynomial representations become vividly clear when other correlation-equation forms are used, see for example the form of the viscosity given in Ref. 5 or 17.

## VII. REFERENCES

1. J. K. Keenan and J. Kaye, Gas Tables, John Wiley and Sons, Inc., New York (1948).
2. D. R. Stull, et al., JANAF Thermochemical Tables, Second Ed., NSRDS-NBS 37, National Standard Reference Data Series, NBS (June 1971).
3. P. E. Liley and W. R. Gambill, "Physical and Chemical Data", Chemical Engineers Handbook, Fifth Ed., (R. H. Perry and C. H. Hilton, Eds.) Sect. 3, McGraw-Hill, New York (1973).
4. J. R. Andrews and O. Biblarz, "Gas Properties Computational Procedure Suitable for Electronic Calculators", Naval Postgraduate School Report NPS-57Zi74071A (July 1974).
5. M. J. Zucrow and J. D. Huffman, Gas Dynamics, Vol. I, Chp 1, John Wiley and Sons, Inc., New York (1976).
6. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, Inc., New York (1954).
7. Y.S. Touloukian, P. E. Liley, and Saxena, Thermophysical Properties of Matter, Vol. 3 Thermal Conductivity, IFI/Plenum, New York - Washington (1970).
8. Y. S. Touloukian and T. Makita, Thermophysical Properties of Matter, Vol. 6 Specific Heat (plus Supplement) IFI/Plenum, New York-Washington (1976).
9. Y. S. Touloukian, S. C. Saxena, and P. Hestermans, Thermophysical Properties of Matter, Vol. 11 Viscosity, IFI/Plenum, New York-Washington (1976).
10. D. E. Gray (Ed), American Institute of Physics Handbook, 3rd Ed. McGraw-Hill, N.Y.
11. R. L. Sweierb and M. W. Beardsley, Bulletin No. 2, Ga. School of Technology Engr. Expl. Sta. (1938).
12. H. M. Spencer, et al., J. of Am. Chem. Soc., 67, 1859 (1945).
13. S.D. Conte and C. de Boor, Elementary Numerical Analysis, II Ed., McGraw-Hill, N.Y. (1972).
14. J.A. Fay, Molecular Thermodynamics, Addison-Wesley, Readings, Mass. (1965).
15. F. J. Pierce, Microscopic Thermodynamics, International Textbook Co., Scranton, Penn. (1968).

16. J. H. Pollard, Numerical and Statistical Techniques, Cambridge University Press, Cambridge (1977).
17. J.T.R. Watson, "Viscosity of Gases in Metric Units", National Engineering Laboratory, Edingburg, Her Majesty's Stationary Office (1972).

APPENDIX A  
TABLE A-I  
SUMMARY OF CONTENTS

SPECIFIC HEAT AT CONSTANT PRESSURE  
FOR GASEOUS ELEMENTS AND COMPOUNDS

| <u>NAME</u>                    | <u>FORMULA</u>                                                    | <u>AT.WT/ MOL WT</u> | <u>GAS CONST</u> | <u>APP A PAGE</u> |
|--------------------------------|-------------------------------------------------------------------|----------------------|------------------|-------------------|
| Acetone                        | C <sub>3</sub> H <sub>6</sub> O                                   | 58.081               | 143.150          | A-1               |
| Acetylene                      | C <sub>2</sub> H <sub>2</sub>                                     | 26.038               | 319.312          | A-1               |
| Air                            | -                                                                 | 28.966               | 287.037          | A-1               |
| Ammonia                        | NH <sub>3</sub>                                                   | 17.031               | 488.199          | A-2               |
| Argon                          | Ar                                                                | 39.948               | 208.129          | A-2               |
| Arsine                         | AsH <sub>3</sub>                                                  | 77.946               | 106.668          | A-2               |
| Arsine, Trideuterated          | AsD <sub>3</sub>                                                  | 80.964               | 102.692          | A-2               |
| Benzene                        | C <sub>6</sub> H <sub>6</sub>                                     | 78.115               | 106.437          | A-3               |
| Boron Fluoride Oxide, Trimeric | (BOF) <sub>3</sub>                                                | 137.426              | 60.500           | A-3               |
| Boron Tribromide               | BBr <sub>3</sub>                                                  | 250.538              | 33.186           | A-3               |
| Boron Trichloride              | BCl <sub>3</sub>                                                  | 117.170              | 70.959           | A-4               |
| Boron Trifluoride              | BF <sub>3</sub>                                                   | 67.806               | 122.619          | A-4               |
| Bromine                        | Br <sub>2</sub>                                                   | 159.818              | 52.024           | A-4               |
| Bromine (Monatomic)            | Br                                                                | 79.909               | 104.047          | A-5               |
| Bromine Chloride               | BrCl                                                              | 115.362              | 72.072           | A-5               |
| Bromine Fluoride               | BrF                                                               | 98.907               | 84.062           | A-5               |
| Bromine Pentafluoride          | BrF <sub>5</sub>                                                  | 174.901              | 47.537           | A-5               |
| Bromoform                      | CHBr <sub>3</sub>                                                 | 252.746              | 32.896           | A-5               |
| Bromomethane                   | CH <sub>3</sub> Br                                                | 94.944               | 87.571           | A-6               |
| Bromotrichloromethane          | CCl <sub>3</sub> Br                                               | 198.279              | 41.932           | A-6               |
| 1,3-Butadiene                  | (CH <sub>2</sub> CH) <sub>2</sub>                                 | 54.092               | 153.706          | A-6               |
| iso-Butane                     | i-C <sub>4</sub> H <sub>10</sub>                                  | 58.124               | 143.044          | A-6               |
| n-Butane                       | n-C <sub>4</sub> H <sub>10</sub>                                  | 58.124               | 143.044          | A-7               |
| 1-Butanol                      | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> OH                | 74.124               | 112.168          | A-7               |
| 2-Butanone                     | CH <sub>3</sub> CH <sub>2</sub> COCH <sub>3</sub>                 | 72.108               | 115.304          | A-7               |
| 1-Butene                       | CH <sub>2</sub> CHCH <sub>2</sub> CH <sub>3</sub>                 | 56.108               | 148.183          | A-7               |
| 2-Butene                       | (CH <sub>3</sub> CH) <sub>2</sub>                                 | 56.108               | 148.183          | A-8               |
| cis-2-Butene                   | (CH <sub>3</sub> CH) <sub>2</sub>                                 | 56.108               | 148.183          | A-8               |
| trans-2-Butene                 | (CH <sub>3</sub> CH) <sub>2</sub>                                 | 56.108               | 148.183          | A-8               |
| Butyl Ether                    | [CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> ] <sub>2</sub> O | 130.232              | 63.842           | A-8               |
| 1-Butyne                       | CHCCH <sub>2</sub> CH <sub>3</sub>                                | 54.092               | 153.706          | A-8               |
| 2-Butyne                       | (CH <sub>3</sub> C) <sub>2</sub>                                  | 54.092               | 153.706          | A-9               |
| Carbon (Atomic)                | C                                                                 | 12.0112*             | 692.217          | A-9               |
| Carbon Dioxide                 | CO <sub>2</sub>                                                   | 44.010               | 188.919          | A-9               |
| Carbon Disulfide               | CS <sub>2</sub>                                                   | 76.139               | 109.199          | A-10              |
| Carbon Monoxide                | CO                                                                | 28.011               | 296.828          | A-10              |
| Carbon Monosulfide             | CS                                                                | 44.075               | 188.640          | A-10              |

\*Atomic weight of carbon is 12.01115

TABLE A-I  
(CONT.)

| NAME                                       | FORMULA                                                         | AT. WT/<br>MOL WT | GAS<br>CONST | APP A<br>PAGE |
|--------------------------------------------|-----------------------------------------------------------------|-------------------|--------------|---------------|
| Carbon Suboxide                            | C <sub>3</sub> O <sub>2</sub>                                   | 68.032            | 122.211      | A-10          |
| Carbon Tetrabromide                        | CBr <sub>4</sub>                                                | 331.647           | 25.070       | A-10          |
| Carbon Tetrachloride                       | CCl <sub>4</sub>                                                | 153.823           | 54.051       | A-11          |
| Carbonyl Chloride                          | COClF                                                           | 82.462            | 100.826      | A-11          |
| Fluoride                                   |                                                                 |                   |              |               |
| Carbonyl Fluoride                          | COF <sub>2</sub>                                                | 66.007            | 125.961      | A-11          |
| Carbonyl Sulfide                           | COS                                                             | 60.075            | 138.400      | A-11          |
| Chlorine                                   | Cl <sub>2</sub>                                                 | 70.906            | 117.258      | A-12          |
| Chlorine (Monatomic)                       | Cl                                                              | 35.453            | 234.517      | A-12          |
| Chlorine Dioxide                           | ClO <sub>2</sub>                                                | 67.452            | 123.263      | A-12          |
| Chlorine Fluoride                          | ClF                                                             | 54.451            | 152.692      | A-12          |
| Chlorine Monoxide                          | Cl <sub>2</sub> O                                               | 86.905            | 95.671       | A-13          |
| Chlorine Oxide                             | ClO                                                             | 51.452            | 161.592      | A-13          |
| Chlorine Trifluoride                       | ClF <sub>3</sub>                                                | 92.448            | 89.935       | A-13          |
| Chlorodifluoromethane                      | CHClF <sub>2</sub>                                              | 86.469            | 96.154       | A-13          |
| (FREON-22)                                 |                                                                 |                   |              |               |
| Chlorodifluoromethane, CDClF <sub>2</sub>  |                                                                 | 87.475            | 95.048       | A-14          |
| Monodeuterated                             |                                                                 |                   |              |               |
| Chloroform                                 | CHCl <sub>3</sub>                                               | 119.378           | 69.647       | A-14          |
| Chlorofluoromethane                        | CH <sub>2</sub> ClF                                             | 68.478            | 121.415      | A-14          |
| Chloromethylidyne                          | CCl                                                             | 47.464            | 175.171      | A-15          |
| Chlorosilane                               | SiH <sub>3</sub> Cl                                             | 66.563            | 124.909      | A-15          |
| Chlorotrifluoro-                           | CClF <sub>3</sub>                                               | 104.459           | 79.594       | A-15          |
| methane (FREON-13)                         |                                                                 |                   |              |               |
| Cumene                                     | C <sub>6</sub> H <sub>5</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | 120.196           | 69.173       | A-15          |
| Cyanogen                                   | (CN) <sub>2</sub>                                               | 52.036            | 159.781      | A-15          |
| Cyanogen Chloride                          | CNCI                                                            | 61.471            | 135.256      | A-16          |
| Cyclohexane - See Hexane                   |                                                                 |                   |              |               |
| Cyclopropane - See Propane                 |                                                                 |                   |              |               |
| n-Decane                                   | C <sub>10</sub> H <sub>22</sub>                                 | 142.287           | 58.434       | A-16          |
| n-Deuterium                                | D <sub>2</sub>                                                  | 4.028             | 2064.131     | A-16          |
| Deuterium (monatomic)                      | D                                                               | 2.014             | 4128.262     | A-17          |
| Dibromomethane                             | CH <sub>2</sub> Br <sub>2</sub>                                 | 173.845           | 47.826       | A-17          |
| Dichlorodifluoro-                          | CCl <sub>2</sub> F <sub>2</sub>                                 | 120.914           | 68.762       | A-17          |
| methane (FREON-12)                         |                                                                 |                   |              |               |
| 1,1-Dichloro-1-                            | CH <sub>3</sub> CFCl <sub>2</sub>                               | 116.951           | 71.093       | A-17          |
| fluoroethane                               |                                                                 |                   |              |               |
| Dichlorofluoromethane                      | CHCl <sub>2</sub> F                                             | 102.924           | 80.782       | A-17          |
| (FREON-21)                                 |                                                                 |                   |              |               |
| Dichlorofluoromethane, CDCl <sub>2</sub> F |                                                                 | 103.930           | 80.000       | A-18          |
| Monodeuterated                             |                                                                 |                   |              |               |
| Dichloromethane                            | CH <sub>2</sub> Cl <sub>2</sub>                                 | 84.933            | 97.893       | A-18          |
| 1,1-Dichlorotetra-                         | CCl <sub>2</sub> FCF <sub>3</sub>                               | 170.922           | 48.644       | A-18          |
| fluoroethane                               |                                                                 |                   |              |               |

TABLE A-I  
(CONT.)

| NAME                                  | FORMULA                                                                                               | AT. WT/<br>MOL WT | GAS<br>CONST | APP A<br>PAGE |
|---------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|--------------|---------------|
| Dichlorotetrafluoroethane (FREON-114) | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub>                                                         | 170.922           | 48.644       | A-18          |
| 2,2-Dichloro-1,1,1-trifluoroethane    | F <sub>3</sub> CCHCl <sub>2</sub>                                                                     | 152.931           | 54.366       | A-18          |
| 1,1-Difluoroethylene                  | CH <sub>2</sub> CF <sub>2</sub>                                                                       | 64.035            | 129.840      | A-19          |
| Difluoromethane                       | CH <sub>2</sub> F <sub>2</sub>                                                                        | 52.024            | 159.817      | A-19          |
| Dimethylamine                         | (CH <sub>3</sub> ) <sub>2</sub> NH                                                                    | 45.085            | 184.415      | A-19          |
| 2,2-Dimethylbutane                    | CH <sub>3</sub> CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>3</sub>                                      | 86.178            | 96.478       | A-19          |
| 2,3-Dimethylbutane                    | [(CH <sub>3</sub> ) <sub>2</sub> CH] <sub>2</sub>                                                     | 86.178            | 96.478       | A-19          |
| 2,3-Dimethylhexane                    | (CH <sub>3</sub> ) <sub>2</sub> CHCH(CH <sub>3</sub> )(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | 114.233           | 72.784       | A-20          |
| 3,4-Dimethylhexane                    | [CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub> ] <sub>2</sub>                                   | 114.233           | 72.784       | A-20          |
| Dimethylpropane                       | C(CH <sub>3</sub> ) <sub>4</sub>                                                                      | 72.151            | 115.234      | A-20          |
| Dipropylene Glycol                    | (CH <sub>3</sub> CHOHCH <sub>2</sub> ) <sub>2</sub> O                                                 | 134.177           | 61.965       | A-20          |
| Dodecane                              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>10</sub> CH <sub>3</sub>                                      | 170.341           | 48.810       | A-20          |
| Ethane                                | C <sub>2</sub> H <sub>6</sub>                                                                         | 30.070            | 276.498      | A-21          |
| Ethane, Hexadeuterated                | C <sub>2</sub> D <sub>6</sub>                                                                         | 36.106            | 230.273      | A-21          |
| Ethanethiol                           | C <sub>2</sub> H <sub>5</sub> SH                                                                      | 62.134            | 133.812      | A-21          |
| Ethyl Acetate                         | CH <sub>3</sub> COOCH <sub>2</sub> CH <sub>3</sub>                                                    | 88.107            | 94.366       | A-21          |
| Ethyl Alcohol                         | C <sub>2</sub> H <sub>5</sub> OH                                                                      | 46.070            | 180.473      | A-22          |
| Ethylbenzene                          | C <sub>6</sub> H <sub>5</sub> C <sub>2</sub> H <sub>5</sub>                                           | 106.169           | 78.312       | A-22          |
| Ethyl Ether                           | C <sub>4</sub> H <sub>10</sub> O                                                                      | 74.124            | 112.168      | A-22          |
| Ethylene                              | C <sub>2</sub> H <sub>4</sub>                                                                         | 28.054            | 296.367      | A-22          |
| Ethylene Oxide                        | (CH <sub>2</sub> ) <sub>2</sub> O                                                                     | 44.054            | 188.732      | A-23          |
| 3-Ethylhexane                         | (CH <sub>3</sub> CH <sub>2</sub> ) <sub>2</sub> CH(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub>     | 114.233           | 72.784       | A-23          |
| 3-Ethyl-2-methylpentane               | (CH <sub>3</sub> ) <sub>2</sub> CHCH(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub>                     | 114.233           | 72.784       | A-23          |
| 3-Ethyl-3-methylpentane               | (CH <sub>3</sub> CH <sub>2</sub> ) <sub>3</sub> CCH <sub>3</sub>                                      | 114.233           | 72.784       | A-23          |
| Fluorine                              | F <sub>2</sub>                                                                                        | 37.997            | 218.816      | A-24          |
| Fluorine (monatomic)                  | F                                                                                                     | 18.9984           | 437.633      | A-24          |
| Fluoroethane                          | CH <sub>3</sub> CH <sub>2</sub> F                                                                     | 48.061            | 172.997      | A-24          |
| Fluoroethylene                        | CH <sub>2</sub> CHF                                                                                   | 46.045            | 180.571      | A-24          |
| Fluoroform, Monodeut.                 | CF <sub>3</sub> D                                                                                     | 71.020            | 117.070      | A-25          |
| Fluoromethane                         | CH <sub>3</sub> F                                                                                     | 34.033            | 244.298      | A-25          |
| Formaldehyde                          | HCHO                                                                                                  | 30.026            | 276.899      | A-25          |
| Formyl                                | HCO                                                                                                   | 29.019            | 286.518      | A-25          |
| Furan                                 | C <sub>4</sub> H <sub>4</sub> O                                                                       | 68.076            | 122.133      | A-25          |
| Helium                                | He                                                                                                    | 4.003             | 2077.022     | A-26          |
| n-Heptane                             | C <sub>7</sub> H <sub>16</sub>                                                                        | 100.206           | 82.973       | A-26          |
| Hexafluoroethane                      | (CF <sub>3</sub> ) <sub>2</sub>                                                                       | 138.013           | 60.243       | A-26          |
| n-Hexane                              | C <sub>6</sub> H <sub>14</sub>                                                                        | 86.178            | 96.478       | A-26          |

TABLE A-I  
(CONT.)

| NAME                                    | FORMULA                                                            | AT. WT/<br>MOL WT | GAS<br>CONST | APP A<br>PAGE |
|-----------------------------------------|--------------------------------------------------------------------|-------------------|--------------|---------------|
| Cyclohexane                             | C <sub>6</sub> H <sub>12</sub>                                     | 84.163            | 98.789       | A-27          |
| Hydrazine                               | N <sub>2</sub> H <sub>4</sub>                                      | 32.045            | 259.455      | A-27          |
| Hydrobromic Acid                        | HBr                                                                | 80.917            | 102.751      | A-27          |
| Hydrocyanic Acid                        | HCN                                                                | 27.026            | 307.644      | A-27          |
| Hydrofluoric Acid                       | HF                                                                 | 20.006            | 415.584      | A-28          |
| Hydrofluoric Acid,<br>Monodeuterated    | DF                                                                 | 21.012            | 395.686      | A-28          |
| Hydrogen                                | H <sub>2</sub>                                                     | 2.016             | 4124.289     | A-28          |
| Hydrogen (Monatomic)                    | H                                                                  | 1.008             | 8248.579     | A-29          |
| Hydrogen, Monodeut.                     | HD                                                                 | 3.022             | 2751.291     | A-29          |
| Hydrogen Chloride                       | HCl                                                                | 36.461            | 228.033      | A-29          |
| Hydrogen Iodide                         | HI                                                                 | 127.912           | 65.000       | A-29          |
| Hydrogen Peroxide                       | H <sub>2</sub> O <sub>2</sub>                                      | 34.015            | 244.433      | A-29          |
| Hydrogen Sulfide                        | H <sub>2</sub> S                                                   | 34.080            | 243.965      | A-30          |
| Hydrogen Sulfide,<br>Dideuterated       | D <sub>2</sub> S                                                   | 36.092            | 230.365      | A-30          |
| Hydrogen Sulfide,<br>Ditritiated        | T <sub>2</sub> S                                                   | 38.098            | 218.235      | A-30          |
| Hydrogen Sulfide,<br>Monodeuterated     | HDS                                                                | 35.086            | 236.970      | A-30          |
| Hydrogen Sulfide,<br>Monodeut/monotrit. | DTS                                                                | 37.095            | 224.136      | A-30          |
| Hydrogen Sulfide,<br>Monotritiated      | HTS                                                                | 36.089            | 230.384      | A-31          |
| Hydroxyl                                | OH                                                                 | 17.007            | 488.866      | A-31          |
| Iodine                                  | I <sub>2</sub>                                                     | 253.809           | 32.758       | A-31          |
| Iodine (monatomic)                      | I                                                                  | 126.9044          | 65.516       | A-31          |
| Iodine Bromide                          | IBr                                                                | 206.813           | 40.202       | A-31          |
| Iodine Chloride                         | ICl                                                                | 162.357           | 51.210       | A-31          |
| Iodine Fluoride                         | IF                                                                 | 145.903           | 56.985       | A-32          |
| Iodine Heptafluoride                    | IF <sub>7</sub>                                                    | 259.893           | 31.991       | A-32          |
| Iodine Pentafluoride                    | IF <sub>5</sub>                                                    | 221.896           | 37.469       | A-32          |
| Iodomethane                             | CH <sub>3</sub> I                                                  | 141.939           | 58.577       | A-32          |
| Isoprene                                | CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> | 68.120            | 122.055      | A-32          |
| Ketene                                  | H <sub>2</sub> CCO                                                 | 42.038            | 197.783      | A-33          |
| Krypton                                 | Kr                                                                 | 83.80             | 99.216       | A-33          |
| Mesitylene                              | C <sub>6</sub> H <sub>3</sub> (CH <sub>3</sub> ) <sub>3</sub>      | 120.196           | 69.173       | A-33          |
| Methane                                 | CH <sub>4</sub>                                                    | 16.043            | 518.251      | A-33          |
| Methane, Dideuterated                   | CH <sub>2</sub> D <sub>2</sub>                                     | 18.055            | 460.497      | A-34          |
| Methane, Dideut, Ditrit.                | CD <sub>2</sub> T <sub>2</sub>                                     | 22.073            | 376.671      | A-34          |
| Methane, Ditritiated                    | CH <sub>2</sub> T <sub>2</sub>                                     | 20.061            | 414.450      | A-34          |
| Methane, Monodeut.                      | CH <sub>3</sub> D                                                  | 17.049            | 487.670      | A-34          |

TABLE A-I  
(CONT.)

| NAME                                | FORMULA                                                                           | AT. WT/<br>MOL WT | GAS<br>CONST | APP A<br>PAGE |
|-------------------------------------|-----------------------------------------------------------------------------------|-------------------|--------------|---------------|
| Methane, Monodeut.,<br>Tritritiated | CD <sub>3</sub> T                                                                 | 23.076            | 360.299      | A-34          |
| Methane, Monotrit.                  | CH <sub>3</sub> T                                                                 | 18.052            | 460.575      | A-34          |
| Methane, Tetradeut.                 | CD <sub>4</sub>                                                                   | 20.067            | 414.325      | A-35          |
| Methane, Tetratrit.                 | CT <sub>4</sub>                                                                   | 24.079            | 345.291      | A-35          |
| Methane, Trideut.                   | CHD <sub>3</sub>                                                                  | 19.061            | 436.193      | A-35          |
| Methane, Trideut.,<br>Monotritiated | CD <sub>3</sub> T                                                                 | 21.070            | 394.602      | A-35          |
| Methane, Tritriated                 | CHT <sub>3</sub>                                                                  | 22.070            | 376.723      | A-35          |
| Methanethiol                        | CH <sub>3</sub> SH                                                                | 48.107            | 172.830      | A-35          |
| Methyl                              | CH <sub>3</sub>                                                                   | 15.035            | 552.995      | A-36          |
| Methyl Acetate                      | CH <sub>3</sub> COOCH <sub>3</sub>                                                | 74.080            | 112.234      | A-36          |
| Methyl Alcohol                      | CH <sub>3</sub> OH                                                                | 32.042            | 259.478      | A-36          |
| Methylamine                         | CH <sub>3</sub> NH <sub>2</sub>                                                   | 31.058            | 267.706      | A-36          |
| 2-Methylbutane                      | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH <sub>3</sub>                 | 72.151            | 115.234      | A-36          |
| 2-Methyl-2-<br>butanol              | (CH <sub>3</sub> ) <sub>2</sub> COHCH <sub>2</sub> CH <sub>3</sub>                | 88.151            | 94.319       | A-37          |
| 3-Methyl-1-<br>butanol              | (CH <sub>3</sub> ) <sub>2</sub> CH(CH <sub>2</sub> ) <sub>2</sub> OH              | 88.151            | 94.319       | A-37          |
| 3-Methyl-1-butyne                   | (CH <sub>3</sub> ) <sub>2</sub> CHCCH                                             | 68.120            | 122.055      | A-37          |
| Methyl Chloride                     | CH <sub>3</sub> Cl                                                                | 50.488            | 164.679      | A-37          |
| Methyl Cyanide                      | CH <sub>3</sub> CN                                                                | 41.053            | 202.527      | A-38          |
| Methyl Ether                        | (CH <sub>3</sub> ) <sub>2</sub> O                                                 | 46.070            | 180.473      | A-38          |
| Methylhydrazine                     | CH <sub>3</sub> NHNH <sub>2</sub>                                                 | 46.072            | 180.462      | A-38          |
| Methylidyne                         | CH                                                                                | 13.019            | 638.624      | A-38          |
| Methyl Isocyanide                   | CH <sub>3</sub> NC                                                                | 41.053            | 202.527      | A-38          |
| 2-Methylpentane                     | (CH <sub>3</sub> ) <sub>2</sub> CH(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | 86.178            | 96.478       | A-39          |
| 3-Methylpentane                     | [CH <sub>3</sub> CH <sub>2</sub> ] <sub>2</sub> CH(CH <sub>3</sub> )              | 86.178            | 96.478       | A-39          |
| 4-Methyl-2-<br>pentanone            | CH <sub>3</sub> COCH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | 100.162           | 83.009       | A-39          |
| 2-Methyl-1-<br>propanol             | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> OH                              | 74.124            | 112.168      | A-39          |
| 2-Methyl-2-propanol                 | (CH <sub>3</sub> ) <sub>3</sub> COH                                               | 74.124            | 112.168      | A-40          |
| 2-Methylpropene                     | (CH <sub>3</sub> ) <sub>2</sub> CCH <sub>2</sub>                                  | 56.108            | 148.183      | A-40          |
| Methyl Sulfide                      | (CH <sub>3</sub> ) <sub>2</sub> S                                                 | 62.134            | 133.812      | A-40          |
| Neon                                | Ne                                                                                | 20.183            | 411.947      | A-40          |
| Nitric Oxide                        | NO                                                                                | 30.006            | 277.088      | A-40          |
| Nitrogen                            | N <sub>2</sub>                                                                    | 28.013            | 296.798      | A-41          |
| Nitrogen (Monatomic)                | N                                                                                 | 14.0067           | 593.596      | A-41          |
| Nitrous Oxide                       | N <sub>2</sub> O                                                                  | 44.013            | 188.907      | A-41          |
| n-Nonane                            | C <sub>9</sub> H <sub>20</sub>                                                    | 128.260           | 64.824       | A-42          |
| n-Octane                            | C <sub>8</sub> H <sub>18</sub>                                                    | 114.233           | 72.784       | A-42          |

TABLE A-I  
(CONT.)

| NAME                   | FORMULA                                                                       | AT.WT/<br>MOL WT | GAS<br>CONST | APP A<br>PAGE |
|------------------------|-------------------------------------------------------------------------------|------------------|--------------|---------------|
| Oxygen                 | O <sub>2</sub>                                                                | 31.999           | 259.832      | A-42          |
| Oxygen (Monatomic)     | O                                                                             | 15.9994          | 519.664      | A-43          |
| Oxygen Fluoride        | OF <sub>2</sub>                                                               | 53.996           | 153.980      | A-43          |
| n-Pentane              | C <sub>5</sub> H <sub>12</sub>                                                | 72.151           | 115.234      | A-44          |
| 1-Pentanol             | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> OH                            | 88.151           | 94.319       | A-44          |
| 3-Pentanone            | (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> CO                              | 86.135           | 96.527       | A-44          |
| 1-Pentene              | CH <sub>2</sub> CH(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub>             | 70.135           | 118.547      | A-45          |
| 1-Pentyne              | HCCCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                            | 68.120           | 122.055      | A-45          |
| 2-Pentyne              | CH <sub>3</sub> CCCH <sub>2</sub> CH <sub>3</sub>                             | 68.120           | 122.055      | A-45          |
| Phosgene               | COCl <sub>2</sub>                                                             | 98.917           | 84.054       | A-45          |
| Phosphine              | PH <sub>3</sub>                                                               | 33.998           | 244.555      | A-46          |
| Phosphine, Trideut.    | PD <sub>3</sub>                                                               | 37.016           | 224.615      | A-46          |
| Phosphorus Trichloride | PCl <sub>3</sub>                                                              | 137.333          | 60.541       | A-46          |
| Phosphorus Trifluoride | PF <sub>3</sub>                                                               | 87.969           | 94.514       | A-46          |
| Propadiene             | C(CH <sub>2</sub> ) <sub>2</sub>                                              | 40.065           | 207.519      | A-46          |
| Propane                | C <sub>3</sub> H <sub>8</sub>                                                 | 44.097           | 188.545      | A-47          |
| Cyclopropane           | C <sub>3</sub> H <sub>8</sub>                                                 | 44.097           | 188.545      | A-47          |
| 1,2-Propanediol        | CH <sub>3</sub> CHOHCH <sub>2</sub> OH                                        | 76.096           | 109.261      | A-47          |
| 1-Propanol             | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> OH                            | 60.097           | 138.349      | A-47          |
| 2-Propanol             | (CH <sub>3</sub> ) <sub>2</sub> CHOH                                          | 60.097           | 138.349      | A-48          |
| Propylbenzene          | C <sub>6</sub> H <sub>5</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | 120.196          | 69.173       | A-48          |
| Propyl Ether           | [CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> ] <sub>2</sub> O             | 102.178          | 81.371       | A-48          |
| Propyne                | CH <sub>3</sub> CCH                                                           | 40.065           | 207.519      | A-48          |
| Silane                 | SiH <sub>4</sub>                                                              | 32.118           | 258.869      | A-49          |
| Silicon Tetrachloride  | SiCl <sub>4</sub>                                                             | 169.898          | 48.937       | A-49          |
| Silicon Tetrafluoride  | SiF <sub>4</sub>                                                              | 104.080          | 79.884       | A-49          |
| Styrene                | C <sub>6</sub> H <sub>5</sub> CHCH <sub>2</sub>                               | 104.153          | 79.828       | A-49          |
| Sulfur                 | S <sub>2</sub>                                                                | 64.128           | 129.652      | A-49          |
| Sulfur (monatomic)     | S                                                                             | 32.064           | 259.304      | A-49          |
| Sulfur Dichloride      | SCl <sub>2</sub>                                                              | 102.970          | 80.745       | A-50          |
| Sulfur Difluoride      | SF <sub>2</sub>                                                               | 70.061           | 118.673      | A-50          |
| Sulfur Dioxide         | SO <sub>2</sub>                                                               | 64.063           | 129.784      | A-50          |
| Sulfur Hexafluoride    | SF <sub>6</sub>                                                               | 146.054          | 56.926       | A-50          |
| Sulfur Monochloride    | S <sub>2</sub> Cl <sub>2</sub>                                                | 135.034          | 61.572       | A-50          |
| Sulfur Monoxide        | SO                                                                            | 48.063           | 172.987      | A-50          |
| Sulfur Tetrafluoride   | SF <sub>4</sub>                                                               | 108.058          | 76.943       | A-51          |
| Sulfur Trioxide        | SO <sub>3</sub>                                                               | 80.062           | 103.848      | A-51          |
| Sulfuryl Fluoride      | SO <sub>2</sub> F <sub>2</sub>                                                | 102.060          | 81.465       | A-51          |
| Thionyl Chloride       | SOCl <sub>2</sub>                                                             | 118.969          | 69.886       | A-51          |
| Thionyl Fluoride       | SOF <sub>2</sub>                                                              | 86.060           | 96.611       | A-51          |
| Thiophosgene           | CSCl <sub>2</sub>                                                             | 114.981          | 72.310       | A-51          |
| Toluene                | C <sub>7</sub> H <sub>8</sub>                                                 | 92.142           | 90.234       | A-52          |
| 1,1,1-Trichloroethane  | CH <sub>3</sub> CCl <sub>3</sub>                                              | 133.405          | 62.324       | A-52          |

TABLE A-I  
(CONT.)

| NAME                                                            | FORMULA                                                       | AT WT/<br>MOL WT | GAS<br>CONST | APP A<br>PAGE |
|-----------------------------------------------------------------|---------------------------------------------------------------|------------------|--------------|---------------|
| Trichlorofluoro-<br>methane (FREON-11)                          | CCl <sub>3</sub> F                                            | 137.369          | 60.526       | A-52          |
| Trichlorotrifluoro-<br>ethane (FREON-113)                       | C <sub>2</sub> Cl <sub>3</sub> F <sub>3</sub>                 | 187.377          | 44.372       | A-53          |
| Trichlorosilane                                                 | SiHCl <sub>3</sub>                                            | 135.453          | 61.382       | A-53          |
| 1,1,1-trichloro-2,2,2-<br>trifluoroethane                       | CF <sub>3</sub> CCl <sub>3</sub>                              | 187.377          | 44.372       | A-53          |
| 1,1,1-Trifluoroethane                                           | CH <sub>3</sub> CF <sub>3</sub>                               | 84.041           | 98.931       | A-53          |
| Trifluoroiodomethane                                            | CF <sub>3</sub> I                                             | 195.911          | 42.439       | A-54          |
| Trimethylamine                                                  | (CH <sub>3</sub> ) <sub>3</sub> N                             | 59.112           | 140.654      | A-54          |
| 2,3,4-Trimethyl-[ $(CH_3)_2CH$ ] <sub>2</sub> CHCH <sub>3</sub> |                                                               | 114.233          | 72.784       | A-54          |
| Water                                                           | H <sub>2</sub> O                                              | 18.015           | 461.513      | A-54          |
| Water, Dideuterated                                             | D <sub>2</sub> O                                              | 20.027           | 415.147      | A-55          |
| Xenon                                                           | Xe                                                            | 131.30           | 63.323       | A-55          |
| m-Xylene                                                        | C <sub>6</sub> H <sub>4</sub> (CH <sub>3</sub> ) <sub>2</sub> | 106.169          | 78.312       | A-55          |
| o-Xylene                                                        | C <sub>6</sub> H <sub>4</sub> (CH <sub>3</sub> ) <sub>2</sub> | 106.169          | 78.312       | A-56          |
| p-Xylene                                                        | C <sub>6</sub> H <sub>4</sub> (CH <sub>3</sub> ) <sub>2</sub> | 106.169          | 78.312       | A-56          |

APPENDIX A  
FORMAT EXAMPLE

The equations presented are for gaseous Acetylene (ideal gas)

The polynomial equation to calculate the specific heat ( $C_p$ ) in J/Kg K as a function of temperature (Kelvin)

| Formula               | Valid temperature range |
|-----------------------|-------------------------|
| ACETYLENE - Ideal gas | $C_2H_2$                |
|                       | 275-755K                |

$$C_p(T) = 399.896066 + 6.226492T - 7.433125E-03T^2 + 3.4974695E-06T^3$$

$$C_p(275) = 1622.79 \quad C_p(450) = 2015.32 \quad C_p(755) = 2369.03$$

std error est = 0.111 max error est = 1.0

$$C_p(T) = 1321.969854 + 1.9041159T - 7.913804E-04T^2 + 1.403319E-07T^3$$

$$C_p(755) = 2368.87 \quad C_p(1000) = 2575.04 \quad C_p(1365) = 2803.47$$

std error est = 0.111 max error est = 1.0

$$T(C_p) = 1717.26917 - 1.9064232C_p + 6.3328193E-04C_p^2$$

$$T(1622.79) = 291 \quad T(2368.87) = 755 \quad T(2803.47) = 1350$$

std error est = 5 max error est = 15

standard (or average) error estimate is  $\pm 5$  degrees Kelvin

The polynomial equation to calculate temperature (Kelvin) as a function of specific heat ( $C_p$ ) in J/Kg K

Using the polynomial presented, the calculated specific heat at 755K is 2369.03 J/Kg K.

Over the temperature range noted, the maximum error est is  $\pm 1$  J/Kg K.

FIGURE A-1

## APPENDIX A

### SPECIFIC HEAT AT CONSTANT PRESSURE FOR GASEOUS ELEMENTS AND COMPOUNDS

ACETONE - Ideal gas C<sub>3</sub>H<sub>6</sub>O 275-1365K

$$C_p(T) = 345.6240845 + 3.1344046T + 9.000608E-04T^2 - 1.9981015E-06T^3 \\ - 7.2481823E-10T^4 + 1.757756E-12T^5 - 5.94192596E-16T^6$$

$$C_p(275) = 1232.46 \quad C_p(700) = 2346.88 \quad C_p(1365) = 3189.13 \\ \text{std error est} = 0.791 \quad \text{max error est} = 1.25$$

275-1365K

$$T(C_p) = -537.70187 + 1.08064298C_p - 4.673706E-04C_p^2 + 9.857246E-08C_p^3$$

$$T(1232.46) = 269 \quad T(2346.88) = 698 \quad T(3189.13) = 1352$$

- std error est = 3 max error est = 13

ACETYLENE - Ideal gas C<sub>2</sub>H<sub>2</sub> 275-755K

$$C_p(T) = 399.896066 + 6.226492T - 7.433125E-03T^2 + 3.4974695E-06T^3$$

$$C_p(275) = 1622.79 \quad C_p(450) = 2015.32 \quad C_p(755) = 2369.03 \\ \text{std error est} = 0.111 \quad \text{max error est} = 1.0$$

755-1365K

$$C_p(T) = 1321.969854 + 1.9041159T - 7.913804E-04T^2 + 1.403319E-07T^3$$

$$C_p(755) = 2368.87 \quad C_p(1000) = 2575.04 \quad C_p(1365) = 2803.47 \\ \text{std error est} = 0.111 \quad \text{max error est} = 1.0$$

275-1365K

$$T(C_p) = 1717.26917 - 1.9064232C_p + 6.3328193E-04C_p^2$$

$$T(1622.79) = 291 \quad T(2368.87) = 755 \quad T(2803.47) = 1350$$

- std error est = 5 max error est = 15

AIR - Ideal gas 100-590K

$$C_p(T) = 1022.5294853 - 0.1758625T + 4.020605E-04T^2 - 4.8640623E-08T^3$$

$$C_p(100) = 1008.92 \quad C_p(350) = 1008.14 \quad C_p(590) = 1048.74 \\ \text{std error est} = 0.012 \quad \text{max error est} = 0.025$$

590-1365K

$$C_p(T) = 928.911894 + 0.0897769T + 3.2460657E-04T^2 - 2.62542E-07T^3$$

$$+ 5.99901E-11T^4$$

$$C_p(590) = 1048.22 \quad C_p(1000) = 1140.74 \quad C_p(1365) = 1196.81 \\ \text{std error est} = 0.22 \quad \text{max error est} = 0.5$$

590-1365K

$$T(C_p) = -100444.9907 + 275.16644C_p - 0.253212C_p^2 + 7.885293E-05C_p^3$$

$$T(1048.22) = 588 \quad T(1140.74) = 998 \quad T(1196.81) = 1361$$

$$\text{std error est} = 1.5 \quad \text{max error est} = 4$$

Note: For T(C<sub>p</sub>) calculations below 590K use the iterative procedures discussed in Section 5 and the following polynomial: 100-590K,  
 $C_p(T) = 1021.17215 - 0.1603904T + 3.5182525E-04T^2.$

AIR - Real gas

255-865K

$$Cp(T) = 1052.71406 - 0.3745355T + 8.361477E-04T^2 - 3.32111E-07T^3 - 4.683905E-11T^4$$

$$Cp(255) = 1005.87 \quad Cp(560) = 1042.26 \quad Cp(865) = 1113.2$$

std error est = 0.17 max error est = 0.4

Note: For T(Cp) calculations use the iterative procedures discussed in Section 5 and the following polynomial: 255-865K,  $Cp(T) = 996.831581 - 0.0322256T + 2.0181265E-04T^2$ .

AMMONIA - Ideal gas NH<sub>3</sub> 220-590K

$$Cp(T) = 1948.475605 - 0.81912827T + 5.424779E-03T^2 - 3.60715E-06T^3$$
$$Cp(220) = 1992.42 \quad Cp(400) = 2257.93 \quad Cp(590) = 2612.72$$

std error est = 0.12 max error est = 1.0

$$Cp(T) = 2124.419956 - 1.746889T + 8.22758E-03T^2 - 8.855634E-06T^3 + 4.420294E-09T^4 - 8.734964E-13T^5$$

$$Cp(590) = 2612.19 \quad Cp(1000) = 3296.27 \quad Cp(1365) = 3753.45$$

std error est = 0.36 max error est = 1.0

$$T(Cp) = -8836.6068 + 10.54741Cp - 4.154804E-03Cp^2 + 5.737145E-07Cp^3$$
$$T(1992.42) = 222 \quad T(2257.93) = 401 \quad T(2612.72) = 591$$

std error est = 0.8 max error est = 2.0

$$T(Cp) = -2501.9985 + 2.45231Cp - 7.299265E-04Cp^2 + 9.350415E-08Cp^3$$
$$T(2612.19) = 590 \quad T(3296.27) = 999 \quad T(3753.45) = 1364$$

std error est = 0.5 max error est = 2.0

ARGON - Ideal gas Ar 0-6000K

Cp = 520.34 (constant)

ARSINE AsH<sub>3</sub> 300-1000K

$$Cp(T) = 347.13902 + 0.231073T + 1.309066E-03T^2 - 1.577571E-06T^3 + 5.450638E-10T^4$$

$$Cp(300) = 496.1 \quad Cp(600) = 686.93 \quad Cp(1000) = 854.77$$

std error est = 1.13 max error est = 2.0

$$T(Cp) = -1935.0966 + 9.24965Cp - 1.33801E-02Cp^2 + 7.69057E-06Cp^3$$
$$T(496.1) = 300 \quad T(686.93) = 598 \quad T(854.77) = 998$$

std error est = 3.3 max error est = 5.0

ARSINE, Trideuterated AsD<sub>3</sub> 300-1000K

$$Cp(T) = 245.545853 + 1.09726T - 3.84163E-05T^2 - 8.056253E-07T^3 + 4.042793E-10T^4$$

$$Cp(300) = 552.79 \quad Cp(600) = 768.45 \quad Cp(1000) = 903.04$$

ARSINE, Trideuterated (continued)

std error est = 0.43 max error est = 2.0  

$$\begin{aligned} T(Cp) &= 8581.361485 - 52.568517Cp + 0.121435Cp^2 - 1.22502E-04Cp^3 \\ &\quad + 4.6727183E-08Cp^4 \\ T(552.79) &= 300 \quad T(768.45) = 599 \quad T(903.04) = 1000 \\ \text{std error est} &= 1.3 \quad \text{max error est} = 3.0 \end{aligned}$$
  
 BENZENE - Ideal gas C<sub>6</sub>H<sub>6</sub> 275-1365K

Cp(T) = -297.4345373 + 4.42278708T + 2.810036E-03T<sup>2</sup> - 1.136955E-05T<sup>3</sup>  

$$\begin{aligned} &\quad + 1.1190287E-08T^4 - 4.8717996E-12T^5 + 8.019155E-16T^6 \\ Cp(275) &= 951.57 \quad Cp(800) = 2415.38 \quad Cp(1365) = 3008.37 \\ \text{std error est} &= 0.67 \quad \text{max error est} = 1.3 \end{aligned}$$
  

$$\begin{aligned} T(Cp) &= 392.0602 - 0.648326Cp + 8.326166E-04Cp^2 - 3.4749E-07Cp^3 \\ &\quad + 5.9114275E-11Cp^4 \\ T(951.57) &= 278 \quad T(2415.38) = 799 \quad T(3008.37) = 1358 \\ \text{std error est} &= 1.6 \quad \text{max error est} = 7 \end{aligned}$$

BENZENE - Real gas 300-600K

Cp(T) = -283.22595 + 5.300935T - 2.4209348E-03T<sup>2</sup>  

$$\begin{aligned} Cp(300) &= 1089.17 \quad Cp(450) = 1611.96 \quad Cp(600) = 2025.8 \\ \text{std error est} &= 0.9 \quad \text{max error est} = 1.5 \end{aligned}$$
  

$$\begin{aligned} T(Cp) &= 129.444998 + 0.07207415Cp + 7.8699477E-05Cp^2 \\ T(1089.17) &= 301 \quad T(1611.96) = 450 \quad T(2025.8) = 598 \end{aligned}$$

BORON FLUORIDE OXIDE, (BOF)<sub>3</sub> 300-500K

Trimeric  

$$\begin{aligned} Cp(T) &= 79.2504 + 3.2856459T - 2.3282776E-03T^2 \\ Cp(300) &= 855.4 \quad Cp(400) = 1021 \quad Cp(500) = 1140 \\ \text{std error est} &= 0.6 \quad \text{max error est} = 1.0 \end{aligned}$$
  

$$\begin{aligned} T(Cp) &= 505.381375 - 0.9481142Cp + 8.275349E-04Cp^2 \\ T(855.4) &= 300 \quad T(1021) = 400 \quad T(1140) = 500 \\ \text{std error est} &= 0.4 \quad \text{max error est} = 1.0 \end{aligned}$$

BORON TRIBROMIDE BBr<sub>3</sub> 300-1000K

Cp(T) = 140.1554722 + 0.71322266T - 1.1636584E-03T<sup>2</sup> + 9.112207E-07T<sup>3</sup>  

$$\begin{aligned} &\quad - 2.780408E-10T^4 \\ Cp(300) &= 271.74 \quad Cp(650) = 312.72 \quad Cp(1000) = 322.9 \\ \text{std error est} &= 0.4 \quad \text{max error est} = 1.0 \end{aligned}$$

Note: For T(Cp) calculations use the iterative procedures discussed  
 in Section 5 and: Cp(T) = 212.708133 + 0.24356T - 1.35451E-04T<sup>2</sup>.

BORON TRICHLORIDE  $\text{BCl}_3$  100-1500K

$$\begin{aligned} \text{Cp}(T) &= 188.655802 + 1.888567T - 3.184433E-03T^2 + 2.8712E-06T^3 \\ &\quad - 1.3291673E-09T^4 + 2.474797E-13T^5 \\ \text{Cp}(100) &= 348.8 \quad \text{Cp}(800) = 668.19 \quad \text{Cp}(1500) = 697.22 \\ \underline{\text{std error est}} &= 0.5 \quad \underline{\text{max error est}} = 1.0 \end{aligned}$$

BORON TRIFLUORIDE  $\text{BF}_3$  145-645K

Ideal gas

$$\begin{aligned} \text{Cp}(T) &= 298.65561 + 1.865263T - 1.3085604E-03T^2 + 1.995E-07T^3 \\ \text{Cp}(145) &= 542.21 \quad \text{Cp}(400) = 848.16 \quad \text{Cp}(645) = 1010.89 \\ \underline{\text{std error est}} &= 0.24 \quad \underline{\text{max error est}} = 1.0 \end{aligned}$$

$$\begin{aligned} \text{Cp}(T) &= 466.430362 + 1.331415T - 8.914198E-04T^2 + 2.12377E-07T^3 \\ \text{Cp}(645) &= 1011.33 \quad \text{Cp}(1000) = 1118.80 \quad \text{Cp}(1365) = 1163.04 \\ \underline{\text{std error est}} &= 0.11 \quad \underline{\text{max error est}} = 1.0 \end{aligned}$$

$$\begin{aligned} \text{T(Cp)} &= 1438.87308 - 8.75606\text{Cp} + 0.020047\text{Cp}^2 - 1.908134E-05\text{Cp}^3 \\ &\quad + 6.971855E-09\text{Cp}^4 \\ \text{T}(542.21) &= 146 \quad \text{T}(848.16) = 399 \quad \text{T}(1010.89) = 642 \\ \underline{\text{std error est}} &= 0.6 \quad \underline{\text{max error est}} = 3.0 \end{aligned}$$

$$\begin{aligned} \text{T(Cp)} &= -180147.73 + 519.93406\text{Cp} - 0.5005\text{Cp}^2 + 1.613357E-04\text{Cp}^3 \\ \text{T}(1011.33) &= 653 \quad \text{T}(1118.80) = 1009 \quad \text{T}(1163.04) = 1362 \\ \underline{\text{std error est}} &= 5.2 \quad \underline{\text{max error est}} = 12 \end{aligned}$$

BROMINE - Ideal gas  $\text{Br}_2$  200-590K

$$\begin{aligned} \text{Cp}(T) &= 175.261725 + 0.304817T - 5.66955E-04T^2 + 3.5797E-07T^3 \\ &\quad + 1.30779E-11T^4 \\ \text{Cp}(200) &= 216.43 \quad \text{Cp}(400) = 229.72 \quad \text{Cp}(590) = 232.85 \\ \underline{\text{std error est}} &= 1.2E-02 \quad \underline{\text{max error est}} = 0.2 \end{aligned}$$

$$\begin{aligned} \text{Cp}(T) &= 223.7002 + 2.231436E-02T - 1.335276E-05T^2 + 3.0736E-09T^3 \\ \text{Cp}(590) &= 232.85 \quad \text{Cp}(1000) = 235.74 \quad \text{Cp}(1365) = 237.097 \\ \underline{\text{std error est}} &= 9.9E-03 \quad \underline{\text{max error est}} = 0.2 \end{aligned}$$

$$\begin{aligned} \text{T(Cp)} &= -649483.9088 + 2282.92562\text{Cp} + 48.1995412\text{Cp}^2 - 0.335799\text{Cp}^3 \\ &\quad + 5.93457E-04\text{Cp}^4 \\ \text{T}(216.43) &= 183 \quad \text{T}(229.72) = 402 \quad \text{T}(232.85) = 589 \\ \underline{\text{std error est}} &= 6.0 \quad \underline{\text{max error est}} = 17.0 \end{aligned}$$

$$\begin{aligned} \text{T(Cp)} &= 1327415.6666 - 11467.00468\text{Cp} + 24.77498\text{Cp}^2 \\ \text{T}(232.85) &= 601 \quad \text{T}(235.74) = 1013 \quad \text{T}(237.097) = 1348 \\ \underline{\text{std error est}} &= 7.0 \quad \underline{\text{max error est}} = 21 \end{aligned}$$

BROMINE (Monatomic) B 250-1500K

$Cp(T) = 264.48344899 - 2.672822E-02T + 4.013018E-05T^2 - 1.04915E-08T^3$   
 $Cp(250) = 260.14 \quad Cp(900) = 265.29 \quad Cp(1500) = 279.28$   
std error est = 0.4 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed  
in Section 5 and the following eqn: 250-1500K,  $Cp(T) = 260.01432$   
 $- 5.58942E-03T + 1.263795E-05T^2$ .  
-----  
BROMINE CHLORIDE BrCl 250-1500K

$Cp(T) = 194.97556 + 0.764857T - 2.058934E-03T^2 + 3.0416852E-06T^3$   
 $- 2.5048785E-09T^4 + 1.07526E-12T^5 - 1.870628E-16T^6$   
 $Cp(250) = 296.25 \quad Cp(900) = 325.06 \quad Cp(1500) = 328.89$   
std error est = 0.4 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed  
in Section 5 and the following eqn: 250-1500K,  $Cp(T) = 283.400876$   
 $+ 7.585277E-02T - 3.15832E-05T^2$ .  
-----  
BROMINE FLUORIDE BrF 250-1500K

$Cp(T) = 241.432653 + 0.456866T - 6.069283E-04T^2 + 3.694047E-07T^3$   
 $- 8.374216E-11T^4$   
 $Cp(250) = 323.16 \quad Cp(900) = 375.35 \quad Cp(1500) = 383.94$   
std error est = 0.4 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed  
in Section 5 and the following eqn: 250-1500K,  $Cp(T) = 266.492708$   
 $+ 0.291667T - 2.572893E-04T^2 + 7.705475E-08T^3$ .  
-----  
BROMINE PENTAFLUORIDE BrF<sub>5</sub> 250-1500K

$Cp(T) = -106.97977 + 4.406352T - 1.040336E-02T^2 + 1.362716E-05T^3$   
 $- 1.013227E-08T^4 + 3.9961242E-12T^5 - 6.484931E-16T^6$   
 $Cp(250) = 521.49 \quad Cp(900) = 733.47 \quad Cp(1500) = 750.86$   
std error est = 0.51 max error est = 1.0

BROMOFORM CHBr<sub>3</sub> 100-1500K

$Cp(T) = 142.57457 + 0.651772857T - 5.93501E-04T^2 + 1.831537E-07T^3$   
 $Cp(100) = 202.0 \quad Cp(900) = 381.95 \quad Cp(1500) = 403.0$   
std error est = 0.01 max error est = 0.1

Note: For T(Cp) calculations, use the iterative procedures discussed  
in Section 5 and the equation above.  
-----



iso-BUTANE - Real gas (continued)

- std error est = 1.7 - - - - - max error est = 6 -

n-BUTANE n-C<sub>4</sub>H<sub>10</sub> 265-755K

Ideal gas

$$Cp(T) = 236.65134 + 5.10573T - 4.16089E-04T^2 - 1.1450804E-06T^3$$

$$Cp(265) = 1539.14 \quad Cp(500) = 2542.36 \quad Cp(755) = 3361.49$$

std error est = 0.2 max error est = 1.0

755-1365K

$$Cp(T) = 4401.26486 - 13.90866545T + 3.471109E-02T^2 - 3.45278E-05T^3$$

$$+ 1.619382E-08T^4 - 2.966666E-12T^5$$

$$Cp(755) = 3360.77 \quad Cp(1000) = 3903.04 \quad Cp(1365) = 4436.19$$

std error est = 0.7 max error est = 1.5

265-1365K

$$T(Cp) = -372.95792 + 0.63692878Cp - 1.95552E-04Cp^2 + 3.149068E-08Cp^3$$

$$T(3360.77) = 754 \quad T(3903.04) = 1006 \quad T(4436.19) = 1353$$

- std error est = 3.5 - - - - - max error est = 12 -

1-BUTANOL CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>OH 395-605K

$$Cp(T) = 740069.2476 - 7408.748863T + 29.59687066T^2 - 5.88465E-02T^3$$

$$+ 5.82563958E-05T^4 - 2.297227E-08T^5$$

$$Cp(395) = 2048.05 \quad Cp(500) = 2241.28 \quad Cp(605) = 2555.35$$

std error est = 16.0 max error est = 23.0

Note: This is an extremely poor fit of the tabular data. The max error est of 23 represents an error of 1.2% of the table data.

2-BUTANONE CH<sub>3</sub>CH<sub>2</sub>COCH<sub>3</sub> 275-1275K

$$Cp(T) = 20.545066 + 7.021058T - 1.15892E-02T^2 + 1.631369E-05T^3$$

$$- 1.31136E-08T^4 + 4.917275E-12T^5 - 5.9919712E-16T^6$$

$$Cp(275) = 1346.65 \quad Cp(800) = 2655.8 \quad Cp(1275) = 3284.96$$

- std error est = 6.6 - - - - - max error est = 12 (0.9%)

1-BUTENE CH<sub>2</sub>CHCH<sub>2</sub>CH<sub>3</sub> 275-1500K

$$Cp(T) = 139.59317 + 4.97386775T + 1.700397E-03T^2 - 9.414594E-06T^3$$

$$+ 1.0035756E-08T^4 - 4.7956263E-12T^5 + 8.828364E-16T^6$$

$$Cp(275) = 1490.44 \quad Cp(900) = 3352.02 \quad Cp(1500) = 4097.32$$

std error est = 1.12 max error est = 2.5

275-1500K

$$T(Cp) = 739.649 - 1.1519803Cp + 8.633103E-04Cp^2 - 2.397716E-07Cp^3$$

$$+ 2.6524417E-11Cp^4$$

$$T(1490.44) = 277 \quad T(3352.02) = 896 \quad T(4097.32) = 1496$$

- std error est = 3.2 max error est = 6.0 -

2-BUTENE  $(CH_3CH)_2$  300-1000K

$Cp(T) = -53.440476 + 5.5916666T - 2.05714285E-03T^2$   
 $Cp(300) = 1438.92 \quad Cp(600) = 2560.99 \quad Cp(1000) = 3481.08$   
 $std\ error\ est = 0.23 \quad max\ error\ est = 1.0$   
 $T(Cp) = 470.8465 - 0.72122159Cp + 6.591403E-04Cp^2 - 2.020906E-07Cp^3$   
 $+ 2.435593E-11Cp^4$   
 $T(1438.92) = 300 \quad T(2560.99) = 600 \quad T(3481.08) = 999$   
 $std\ error\ est = 1.4 \quad max\ error\ est = 3$

cis-2-BUTENE  $(CH_3CH)_2$  275-1500K

$Cp(T) = 593.119884 - 0.25533449T + 1.75336E-02T^2 - 3.26788E-05T^3$   
 $+ 2.844997E-08T^4 - 1.2341584E-11T^5 + 2.139958E-15T^6$   
 $Cp(275) = 1313.49 \quad Cp(900) = 3258.39 \quad Cp(1500) = 4054.29$   
 $std\ error\ est = 1.3 \quad max\ error\ est = 3.0$   
 $T(Cp) = 367.106 - 0.531809Cp + 5.3353694E-04Cp^2 - 1.6407E-07Cp^3$   
 $+ 2.0168237E-11Cp^4$   
 $T(1313.49) = 277 \quad T(3258.39) = 896 \quad T(4054.29) = 1496$   
 $std\ error\ est = 3.5 \quad max\ error\ est = 5.0$

trans-2-BUTENE  $(CH_3CH)_2$  275-1500K

$Cp(T) = 725.45579 + 0.662269T + 1.2774909E-02T^2 - 2.40152E-05T^3$   
 $+ 2.06644E-08T^4 - 8.859714E-12T^5 + 1.5207345E-15T^6$   
 $Cp(275) = 1479.15 \quad Cp(900) = 3296.61 \quad Cp(1500) = 4068.29$   
 $std\ error\ est = 1.2 \quad max\ error\ est = 3.5$   
 $T(Cp) = 525.129 - 0.865304Cp + 7.3369042E-04Cp^2 - 2.134057E-07Cp^3$   
 $+ 2.4521456E-11Cp^4$   
 $T(1479.15) = 277 \quad T(3296.61) = 897 \quad T(4068.29) = 1496$   
 $std\ error\ est = 3 \quad max\ error\ est = 5.$

BUTYL ETHER  $[CH_3(CH_2)_3]_2O$  275-1275K

$Cp(T) = 2220.96497 - 15.85878T + 8.3621339E-02T^2 - 1.752393E-04T^3$   
 $+ 1.899729E-07T^4 - 1.0442973E-10T^5 + 2.2914465E-14T^6$   
 $Cp(275) = 1471.38 \quad Cp(800) = 2929.33 \quad Cp(1275) = 3333.16$   
 $std\ error\ est = 9.0 \quad max\ error\ est = 15.0$

1-BUTYNE  $CH_3CCH_2CH_3$  300-1500K

$Cp(T) = 138.2438 + 5.66515T - 4.1092457E-03T^2 + 1.692264E-06T^3$   
 $- 3.051742E-10T^4$   
 $Cp(300) = 1511.18 \quad Cp(800) = 2781.89 \quad Cp(1500) = 3556.61$   
 $std\ error\ est = 0.95 \quad max\ error\ est = 2.0$



## CARBON DIOXIDE - Real gas (continued)

T(760.75) = 205      T(1168.2) = 796      T(1310.6) = 1350  
std error est = 4.5      max error est = 17  
 CARBON DISULFIDE CS<sub>2</sub>      100-1500K

Cp(T) = 234.3967 + 2.083974T - 4.080167E-03T<sup>2</sup> + 4.899365E-06T<sup>3</sup>  
 - 3.4779E-09T<sup>4</sup> + 1.329115E-12T<sup>5</sup> - 2.100283E-16T<sup>6</sup>  
 Cp(100) = 406.56      Cp(800) = 754.66      Cp(1500) = 809.08  
std error est = 0.9      max error est = 2.0

CARBON MONOXIDE CO      255-1365K

Ideal gas

Cp(T) = 1020.802 + 0.382075T - 2.4945E-03T<sup>2</sup> + 6.81145E-06T<sup>3</sup>  
 - 7.93722E-09T<sup>4</sup> + 4.291972E-12T<sup>5</sup> - 8.903274E-16T<sup>6</sup>  
 Cp(255) = 1039.79      Cp(700) = 1113.16      Cp(1365) = 1242.76  
 std error est = 0.27      max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 255-1365K, Cp(T) = 1060.3 - 0.2338408T + 6.188684E-04T<sup>2</sup> - 2.584758E-07T<sup>3</sup>.

CARBON MONOXIDE - Real gas      275-1365K

Cp(T) = 1036.64564 + 0.2738793T - 2.16729E-03T<sup>2</sup> + 6.279075E-06T<sup>3</sup>  
 - 7.459832E-09T<sup>4</sup> + 4.072163E-12T<sup>5</sup> - 8.50011E-16T<sup>6</sup>  
 Cp(275) = 1042.02      Cp(700) = 1113.41      Cp(1365) = 1243.06  
 std error est = 0.26      max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the 3rd degree polynomial in the note above.

CARBON MONOSULFIDE CS      100-1500K

Cp(T) = 695.6713 - 0.590035T + 2.78573E-03T<sup>2</sup> - 4.25312E-06T<sup>3</sup>  
 + 3.1619707E-09T<sup>4</sup> - 1.16023E-12T<sup>5</sup> + 1.6791E-16T<sup>6</sup>  
 Cp(100) = 660.58      Cp(800) = 787.89      Cp(1500) = 833.81  
std error est = 1.1      max error est = 2.0

CARBON SUBOXIDE C<sub>3</sub>O<sub>2</sub>      275-1500K

ln[Cp(T)] = 5.7661716 + 6.399978E-03T - 1.20235687E-05T<sup>2</sup>  
 + 1.16497649E-08T<sup>3</sup> - 5.5686458E-12T<sup>4</sup> + 1.03973134E-15T<sup>5</sup>  
 Cp(275) = 924.22      Cp(800) = 1377.47      Cp(1500) = 1533.42  
 Note: Cp(T) = exp[fctn(T) above]      max error est = 36

CARBON TETRABROMIDE CBr<sub>4</sub>      300-1000K

Cp(T) = 195.977 + 0.3730265T - 3.99407E-04T<sup>2</sup> + 1.498015E-07T<sup>3</sup>  
 Cp(300) = 275.98      Cp(600) = 308.36      Cp(1000) = 319.4

CARBON TETRABROMIDE (Continued)

std error est = 1.86

max error est = 3.5

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 300-1000K, Cp(T) =  $228.26176 + 0.1975507T - 1.0812615E-04T^2$  - - - - -

CARBON TETRACHLORIDE  $CCl_4$  100-700K

Ideal gas

$$Cp(T) = 104.89579 + 2.318459T - 2.59822E-03T^2 - 2.90876E-06T^3 + 8.5781275E-09T^4 - 5.07917E-12T^5$$

$$Cp(100) = 308.66 \quad Cp(450) = 615.03 \quad Cp(700) = 662.94 \\ std\ error\ est = 0.4 \qquad \qquad \qquad max\ error\ est = 1.0$$

$$Cp(T) = 458.4405 + 0.526876T - 4.11842E-04T^2 + 1.1014289E-07T^3 \\ Cp(700) = 663.23 \quad Cp(1000) = 683.62 \quad Cp(1365) = 690.4 \\ std\ error\ est = 0.2 \qquad \qquad \qquad max\ error\ est = 1.0$$

$$T(Cp) = 4845.83 - 45.40359Cp + \frac{100-700K}{0.158658Cp^2} - 2.40639E-04Cp^3 + 1.362815E-07Cp^4 \\ T(308.66) = 108 \quad T(615.03) = 452 \quad T(662.94) = 686 \\ std\ error\ est = 4.5 \qquad \qquad \qquad max\ error\ est = 14$$

Note: For T(Cp) calculations from 700-1365K, use the iterative procedures discussed in Section 5 and the following eqn: 700-1365K,  $Cp(T) = 563.12016 + 0.198424T - 7.78963E-05T^2$  - - - - -

CARBONYL CHLORIDE  $COClF$  100-1500K

FLUORIDE

$$Cp(T) = 309.8366 + 0.908395T + 2.14223E-03T^2 - 7.3825E-06T^3 + 8.468816E-09T^4 - 4.393756E-12T^5 + 8.6745044E-16T^6$$

$$Cp(100) = 415.52 \quad Cp(800) = 884.22 \quad Cp(1500) = 965.61 \\ std\ error\ est = 2.7 \qquad \qquad \qquad max\ error\ est = 4.5$$

CARBONYL FLUORIDE  $COF_2$  100-1500K

$$Cp(T) = 500.9343 - 0.685575T + 9.023284E-03T^2 - 1.958117E-05T^3 + 1.949097E-08T^4 - 9.392863E-12T^5 + 1.769924E-15T^6$$

$$Cp(100) = 504.88 \quad Cp(800) = 1071.45 \quad Cp(1500) = 1195.03 \\ std\ error\ est = 3.9 \qquad \qquad \qquad max\ error\ est = 7.5$$

CARBONYL SULFIDE  $COS$  100-1500K

$$Cp(T) = 383.5831 + 1.008813T + 1.13734E-03T^2 - 5.397317E-06T^3 + 6.74814E-09T^4 - 3.689623E-12T^5 + 7.566326E-16T^6$$

$$Cp(100) = 491.08 \quad Cp(800) = 908.47 \quad Cp(1500) = 1002.78 \\ std\ error\ est = 3.2 \qquad \qquad \qquad max\ error\ est = 6.0$$

CHLORINE - Ideal gas Cl<sub>2</sub> 200-590K

$$Cp(T) = 333.73754 + 0.7763656T - 1.167902E-03T^2 + 6.302785E-07T^3$$

$$Cp(200) = 447.34 \quad Cp(400) = 497.76 \quad Cp(590) = 514.69$$

std error est = 0.15 max error est = 0.5

590-1365K

$$Cp(T) = 459.54857 + 0.1432384T - 9.84775E-05T^2 + 2.443506E-08T^3$$

$$Cp(590) = 514.8 \quad Cp(900) = 526.51 \quad Cp(1365) = 533.73$$

std error est = 0.14 max error est = 0.5

200-590K

$$T(Cp) = -164812.69 + 1056.14056Cp - 2.258534Cp^2 + 1.61435E-03Cp^3$$

$$T(447.34) = 193 \quad T(497.76) = 400 \quad T(514.69) = 581$$

std error est = 4.5 max error est = 12

Note: For T(Cp) calculations from 590-1365K, use the iterative procedures discussed in Section 5 and the following eqn; 590-

$$- 1365K, Cp(T) = 478.47124 + 7.90734E-02T - 2.858817E-05T^2 - - - - -$$

CHLORINE (Atomic) Cl 100-1500K

$$Cp(T) = 603.43652 - 0.43322T + 3.15819E-03T^2 - 7.17812E-06T^3$$

$$+ 7.4774E-09T^4 - 3.716555E-12T^5 + 7.151811E-16T^6$$

$$Cp(100) = 585.23 \quad Cp(800) = 635.29 \quad Cp(1500) = 611.49$$

std error est = 1.4 max error est = 2.5

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 100-1500K, Cp(T) =

$$- 549.25664 + 0.326977T - 3.6189E-04T^2 + 1.145343E-07T^3 - - - - -$$

CHLORINE DIOXIDE ClO<sub>2</sub> 100-1500K

$$Cp(T) = 474.2129 - 0.009513T + 3.445E-03T^2 - 7.92275E-06T^3$$

$$+ 7.90642E-09T^4 - 3.76735E-12T^5 + 6.99282E-16T^6$$

$$Cp(100) = 500.54 \quad Cp(800) = 802.25 \quad Cp(1500) = 855.11$$

- std error est = 1.3 max error est = 2.5 - - - - -

CHLORINE FLUORIDE ClF 250-1500K

$$Cp(T) = 415.24 + 0.88853T - 1.27775E-03T^2 + 9.74189E-07T^3$$

$$- 3.8041674E-10T^4 + 6.015904E-14T^5$$

$$Cp(250) = 571.31 \quad Cp(800) = 670.98 \quad Cp(1500) = 691.96$$

std error est = 0.4 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 250-1500K, Cp(T) =

$$- 464.27264 + 0.54434T - 4.614077E-04T^2 + 1.3377E-07T^3 - - - - -$$

CHLORINE MONOXIDE Cl<sub>2</sub>O      100-1500K

$$\begin{aligned} Cp(T) = & 335.591265 + 0.654343T + 4.97567E-04T^2 - 2.93811E-06T^3 \\ & + 3.65937E-09T^4 - 1.95317E-12T^5 + 3.902384E-16T^6 \\ Cp(100) = & 403.41 \quad Cp(900) = 640.62 \quad Cp(1500) = 659.25 \\ \text{std error est} = & 1.2 \quad \text{max error est} = 2.5 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 100-1500K, Cp(T) = 329.537164 + 0.83896T - 7.41912E-04T<sup>2</sup> + 2.20666E-07T<sup>3</sup>.

CHLORINE OXIDE ClO      100-1500K

$$\begin{aligned} Cp(T) = & 591.2772 - 0.598616T + 4.16749E-03T^2 - 8.65076E-06T^3 \\ & + 8.541837E-09T^4 - 4.10708E-12T^5 + 7.729816E-16T^6 \\ Cp(100) = & 565.25 \quad Cp(900) = 711.69 \quad Cp(1500) = 733.55 \\ \text{std error est} = & 1.5 \quad \text{max error est} = 3.0 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 100-1500K, Cp(T) = 515.3754 + 0.426933T - 2.91036E-04T<sup>2</sup> + 6.836113E-08T<sup>3</sup>.

CHLORINE TRIFLUORIDE ClF<sub>3</sub>      250-1500K

$$\begin{aligned} Cp(T) = & 80.2859 + 3.96595T - 9.1267E-03T^2 + 1.184492E-05T^3 \\ & - 8.82973E-09T^4 + 3.5203E-12T^5 - 5.80698E-16T^6 \\ Cp(250) = & 655.24 \quad Cp(900) = 868.87 \quad Cp(1500) = 887.998 \\ \text{std error est} = & 0.4 \quad \text{max error est} = 1.0 \end{aligned}$$

CHLORODIFLUOROMETHANE CHClF<sub>2</sub>      90-645K

(FREON-22)- Ideal gas

$$\begin{aligned} Cp(T) = & 317.0722 + 0.514191T + 5.95107E-03T^2 - 2.58911E-05T^3 \\ & + 6.22797E-08T^4 - 8.02754E-11T^5 + 4.084E-14T^6 \\ Cp(90) = & 396.31 \quad Cp(400) = 757.51 \quad Cp(645) = 935.32 \\ \text{std error est} = & 0.4 \quad \text{max error est} = 1.0 \end{aligned}$$

645-1365K

$$\begin{aligned} Cp(T) = & 276.0442 + 1.6021325T - 1.065933E-03T^2 + 2.585745E-07T^3 \\ Cp(645) = & 935.35 \quad Cp(900) = 1043.06 \quad Cp(1365) = 1134.52 \\ \text{std error est} = & 0.2 \quad \text{max error est} = 1.0 \end{aligned}$$

90-645K

$$\begin{aligned} T(Cp) = & 331.0157 - 3.35938Cp + 1.141036E-02Cp^2 - 1.36494E-05Cp^3 \\ & + 6.06808E-09Cp^4 \\ T(396.31) = & 92 \quad T(757.51) = 399 \quad T(935.32) = 646 \\ \text{std error est} = & 1.3 \quad \text{max error est} = 3.5 \end{aligned}$$

645-1365K

$$\begin{aligned} T(Cp) = & 242225.509 - 986.8453Cp + 1.510484Cp^2 - 1.028665E-03Cp^3 \\ & + 2.6358E-07Cp^4 \end{aligned}$$

## CHLORODIFLUOROMETHANE (Continued)

$T(935.35) = 644$        $T(1043.06) = 898$        $T(1134.52) = 1365$   
 $\underline{\underline{\text{std error est} = 1}}$        $\underline{\underline{\text{max error est} = 1}}$

CHLORODIFLUOROMETHANE,  $\text{CDCl}_2$       100-1000K  
 MONODEUTERATED

$Cp(T) = 355.67955 - 0.424395T + 1.121936E-02T^2 - 3.137704E-05T^3$   
 $+ 4.13097E-08T^4 - 2.71585E-11T^5 + 7.159286E-15T^6$   
 $Cp(100) = 397.92$        $Cp(600) = 938.49$        $Cp(1000) = 1084.09$   
 $\text{std error est} = 0.6$        $\text{max error est} = 1.0$

$T(Cp) = -2810.61 + 21.0917Cp - 6.179567E-02Cp^2 + 9.22238E-05Cp^3$   
 $- 6.82091E-08Cp^4 + 2.022326E-11Cp^5$   
 $T(397.92) = 100$        $T(938.49) = 598$        $T(1084.09) = 1000$   
 $\underline{\underline{\text{std error est} = 1.3}}$        $\underline{\underline{\text{max error est} = 2.5}}$

CHLOROFORM - Ideal gas  $\text{CHCl}_3$       100-755K

$Cp(T) = 189.1583 + 1.598713T - 1.340133E-03T^2 + 5.419056E-09T^3$   
 $+ 3.77955E-10T^4$   
 $Cp(100) = 335.67$        $Cp(500) = 677.78$        $Cp(755) = 757.42$   
 $\text{std error est} = 0.2$        $\text{max error est} = 1.0$

$T(Cp) = 402.7039 + 0.7755899T - 4.920244E-04T^2 + 1.152399E-07T^3$   
 $Cp(755) = 757.40$        $Cp(1000) = 801.51$        $Cp(1365) = 837.72$   
 $\text{std error est} = 0.2$        $\text{max error est} = 1.0$

$T(Cp) = 1673.1583 - 14.61295Cp + 4.77988E-02Cp^2 - 6.568945E-05Cp^3$   
 $+ 3.424226E-08Cp^4$   
 $T(335.67) = 104$        $T(677.78) = 500$        $T(757.42) = 753$   
 $\text{std error est} = 1.8$        $\text{max error est} = 3.5$

$T(Cp) = -179838.72 + 710.17532Cp - 0.936808Cp^2 + 4.14539E-04Cp^3$   
 $T(757.40) = 755$        $T(801.51) = 1000$        $T(837.72) = 1365$   
 $\underline{\underline{\text{std error est} = 0.8}}$        $\underline{\underline{\text{max error est} = 2.5}}$

CHLOROFUOROMETHANE  $\text{CH}_2\text{ClF}$       200-1000K

$Cp(T) = 638.4166 - 2.34596T + 1.549633E-02T^2 - 3.2233E-05T^3$   
 $+ 3.40267E-08T^4 - 1.8304265E-11T^5 + 3.978875E-15T^6$   
 $Cp(200) = 580.05$        $Cp(600) = 1019.35$        $Cp(1000) = 1257.1$   
 $\text{std error est} = 0.4$        $\text{max error est} = 1.0$

$T(Cp) = -1079.2262 + 4.074Cp - 4.3312E-03Cp^2 + 1.912603E-06Cp^3$   
 $T(580.05) = 200$        $T(1019.35) = 599$        $T(1257.1) = 997$   
 $\underline{\underline{\text{std error est} = 1.4}}$        $\underline{\underline{\text{max error est} = 3}}$

CHLOROMETHYLIDYNE CC1 300-1500K

$$\begin{aligned} \text{Cp}(T) = & 543.19413 + 0.651587T - 7.2857E-04T^2 + 3.84102E-07T^3 \\ & - 7.77988E-11T^4 \end{aligned}$$

$$\begin{aligned} \text{Cp}(300) = & 682.84 & \text{Cp}(800) = 762.97 & \text{Cp}(1500) = 783.78 \\ \text{std error est} = & 0.4 & & \text{max error est} = 1.0 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 300-1500K, Cp(T) =  $570.92334 + 0.48166T - 3.8583E-04T^2 + 1.066284E-07T^3$  -----

CHLOROSILANE SiH<sub>3</sub>Cl 100-1000K

$$\begin{aligned} \text{Cp}(T) = & 632.108 - 3.352308T + 2.6872E-02T^2 - 7.054946E-05T^3 \\ & + 9.37112E-08T^4 - 6.27597E-11T^5 + 1.67893E-14T^6 \\ \text{Cp}(100) = & 503.81 & \text{Cp}(500) = 1013.31 & \text{Cp}(1000) = 1343.14 \\ \text{std error est} = & 1.6 & & \text{max error est} = 3.0 \end{aligned}$$

CHLOROTRIFLUOROMETHANE CC1F<sub>3</sub> 200-1090K

(FREON-13) - Ideal gas

$$\begin{aligned} \text{Cp}(T) = & 77.23115 + 2.79399T - 3.680032E-03T^2 + 2.4349E-06T^3 \\ & - 6.56569E-10T^4 \\ \text{Cp}(200) = & 507.26 & \text{Cp}(600) = 869.66 & \text{Cp}(1090) = 976.9 \\ \text{std error est} = & 0.3 & & \text{max error est} = 1.0 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 200-1090, Cp(T) =  $137.21148 + 2.290486T - 2.25364E-03T^2 + 7.92858E-07T^3$  -----

CUMENE C<sub>6</sub>H<sub>5</sub>CH(CH<sub>3</sub>)<sub>2</sub> 275-1500K

$$\begin{aligned} \text{Cp}(T) = & 80.85313 + 2.55483T + 1.017634E-02T^2 - 2.428585E-05T^3 \\ & + 2.32E-08T^4 - 1.05785E-11T^5 + 1.8904E-15T^6 \\ \text{Cp}(275) = & 1164.81 & \text{Cp}(800) = 2735.13 & \text{Cp}(1500) = 3497.47 \\ \text{std error est} = & 1.7 & & \text{max error est} = 5 \end{aligned}$$

275-1500K

$$\begin{aligned} \text{T(Cp)} = & 622.8356 - 1.098344\text{Cp} + 1.04225E-03\text{Cp}^2 - 3.612275E-07\text{Cp}^3 \\ & + 4.95368E-11\text{Cp}^4 \end{aligned}$$

$$\begin{aligned} \text{T(1164.81)} = & 278 & \text{T(2735.13)} = 797 & \text{T(3497.47)} = 1489 \\ \text{std error est} = & 4.0 & & \text{max error est} = 14 \end{aligned}$$

CYANOGEN (CN)<sub>2</sub> 100-1500K

$$\begin{aligned} \text{Cp}(T) = & 311.4587 + 4.93727T - 1.16917E-02T^2 + 1.6521E-05T^3 \\ & - 1.31327E-08T^4 + 5.4334E-12T^5 - 9.1145E-16T^6 \\ \text{Cp}(100) = & 703.53 & \text{Cp}(800) = 1399.67 & \text{Cp}(1500) = 1563.02 \\ \text{std error est} = & 1.2 & & \text{max error est} = 2.5 \end{aligned}$$

CYANOGEN CHLORIDE CNC1 100-1500K

$$\begin{aligned} \text{Cp}(T) = & 287.6997 + 2.740703T - 6.197496E-03T^2 + 8.19973E-06T^3 \\ & - 6.1265E-09T^4 + 2.39758E-12T^5 - 3.82468E-16T^6 \end{aligned}$$

$$\text{Cp}(100) = 507.41 \quad \text{Cp}(800) = 888.09 \quad \text{Cp}(1500) = 963.14$$

- std error est = 1.1 - max error est = 2.5

CYCLOHEXANE - See HEXANE

CYCLOPROPANE - See PROPANE

n-DECANE - Ideal gas C<sub>10</sub>H<sub>22</sub> 300-700K

$$\begin{aligned} \text{Cp}(T) = & 240.7178 + 5.09965T - 6.29026E-04T^2 - 1.07155E-06T^3 \\ \text{Cp}(300) = & 1685.07 \quad \text{Cp}(500) = 2499.34 \quad \text{Cp}(700) = 3134.71 \\ \text{std error est} = & 0.1 \quad \text{max error est} = 1.0 \end{aligned}$$

700-1365K

$$\begin{aligned} \text{Cp}(T) = & -13534.589 + 91.4879T - 0.2207T^2 + 2.91406E-04T^3 \\ & - 2.153074E-07T^4 + 8.386E-11T^5 - 1.34404E-14T^6 \end{aligned}$$

$$\begin{aligned} \text{Cp}(700) = & 3134.09 \quad \text{Cp}(1000) = 3771.91 \quad \text{Cp}(1365) = 4258.15 \\ \text{std error est} = & 1.2 \quad \text{max error est} = 2.0 \end{aligned}$$

300-700K

$$\begin{aligned} \text{T(Cp)} = & -201.2556 + 0.4224556\text{Cp} - 1.10665E-04\text{Cp}^2 + 2.15458E-08\text{Cp}^3 \\ \text{T}(1685.07) = & 299 \quad \text{T}(2499.34) \approx 500 \quad \text{T}(3134.71) = 699 \\ \text{std error est} = & 0.3 \quad \text{max error est} = 1 \end{aligned}$$

700-1365K

$$\begin{aligned} \text{T(Cp)} = & 11052.013 - 13.05146\text{Cp} + 5.9256E-03\text{Cp}^2 - 1.1798E-06\text{Cp}^3 \\ & + 8.983E-11\text{Cp}^4 \end{aligned}$$

$$\begin{aligned} \text{T}(3134.09) = & 699 \quad \text{T}(3771.91) \approx 998 \quad \text{T}(4258.15) = 1362 \\ \text{std error est} = & 0.5 \quad \text{max error est} = 3 \end{aligned}$$

n-DEUTERIUM D<sub>2</sub> 200-645K

Ideal gas

$$\begin{aligned} \text{Cp}(T) = & 7264.2197 + 0.037477T - 7.05335E-04T^2 + 1.51166E-06T^3 \\ \text{Cp}(200) = & 7255.6 \quad \text{Cp}(400) = 7264.28 \quad \text{Cp}(645) = 7400.59 \\ \text{std error est} = & 0.2 \quad \text{max error est} = 1.0 \end{aligned}$$

645-1365K

$$\begin{aligned} \text{Cp}(T) = & 7583.3708 - 2.017012T + 3.3723E-03T^2 - 1.080913E-06T^3 \\ \text{Cp}(645) = & 7395.31 \quad \text{Cp}(1000) = 7857.75 \quad \text{Cp}(1365) = 6364.41 \\ \text{std error est} = & 0.2 \quad \text{max error est} = 1.0 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqns: 200-645K, Cp(T) = 7353.022 - 0.72328T + 1.2086E-03T<sup>2</sup>; 645-1365K, Cp(T) = 6629.115 + 1.06105T + 1.642087E-04T<sup>2</sup>.

DEUTERIUM ( Monatomic) D 55-1500K

- Cp(T) = 10.32 - constant - - - - -

DIBROMOMETHANE  $\text{CH}_2\text{Br}_2$  300-1000K

$\text{Cp}(T) = 104.624 + 0.911614T - 7.67807E-04T^2 + 2.58695E-07T^3$   
 $\text{Cp}(300) = 315.99 \quad \text{Cp}(600) = 431.06 \quad \text{Cp}(1000) = 507.13$   
std error est = 0.3 max error est = 1.0

300-1000K  
 $T(\text{Cp}) = -2029.747 + 17.57971\text{Cp} - 4.78704E-02\text{Cp}^2 + 4.927377E-05\text{Cp}^3$   
 $T(315.99) = 300 \quad T(431.06) = 600 \quad T(507.13) = 1001$

- std error est = 0.7 - - - - - max error est = 1.5

DICHLORODIFLUOROMETHANE 100-1365K  $\text{CCl}_2\text{F}_2$

(FREON-12) - Ideal gas

$\text{Cp}(T) = 115.7338 + 2.37887T - 2.812186E-03T^2 + 5.571888E-07T^3$   
+  $1.82207E-09T^4 - 1.6317E-12T^5 + 4.2395E-16T^6$   
 $\text{Cp}(100) = 326.22 \quad \text{Cp}(800) = 827.04 \quad \text{Cp}(1365) = 875.74$

- std error est = 0.3 - - - - - max error est = 1.0

1,1-DICHLORO-1-FLUORO-300-600K  $\text{CH}_3\text{CFCl}_2$   
ETHANE

$\text{Cp}(T) = 474 + 1.0T \quad T(\text{Cp}) = \text{Cp} - 474$

Note: There are only three (3) data points available from the  
- reference source. The accuracy cannot be adequately established.

DICHLOROFUOROMETHANE 100-755K  $\text{CHCl}_2\text{F}$

(FREON-21) - Ideal gas

$\text{Cp}(T) = 209.72 + 1.79069T - 3.45786E-03T^2 + 1.0810155E-05T^3$   
-  $2.22979E-08T^4 + 2.16214E-11T^5 - 7.79904E-15T^6$   
 $\text{Cp}(100) = 362.999 \quad \text{Cp}(450) = 720.25 \quad \text{Cp}(755) = 857.42$

std error est = 0.3 max error est = 1.0

755-1365K

$\text{Cp}(T) = 388.2867 + 1.023759T - 6.4682E-04T^2 + 1.50429E-07T^3$   
 $\text{Cp}(755) = 857.26 \quad \text{Cp}(1000) = 915.65 \quad \text{Cp}(1365) = 963.13$   
std error est = 0.2 max error est = 1.0

100-755K

$T(\text{Cp}) = 921.3768 - 7.7154\text{Cp} + 2.414285E-02\text{Cp}^2 - 3.033265E-05\text{Cp}^3$   
+  $1.446893E-08\text{Cp}^4$

$T(362.99) = 102 \quad T(720.25) = 449 \quad T(857.42) = 755$   
std error est = 1.1 max error est = 2.0

755-1365K

$T(\text{Cp}) = -122177 + 424.7354\text{Cp} - 0.493077\text{Cp}^2 + 1.923554E-04\text{Cp}^3$   
 $T(857.26) = 755 \quad T(915.65) = 999 \quad T(963.13) = 1364$   
std error est = 1.1 max error est = 2.0

DICHLOROFLUOROMETHANE, 100-1000K  $\text{CDCl}_2\text{F}$   
 MONODEUTERATED  
 $\text{Cp}(\text{T}) = 255.720254 + 0.689369\text{T} + 4.583258\text{E}-03\text{T}^2 - 1.3455115\text{E}-05\text{T}^3$   
 $+ 1.377348\text{E}-08\text{T}^4 - 4.9189282\text{E}-12\text{T}^5$   
 $\text{Cp}(100) = 358.36 \quad \text{Cp}(500) = 771.46 \quad \text{Cp}(1000) = 927.78$   
 $\underline{\text{std error est}} = 5.8 \quad \underline{\text{max error est}} = 10$   
DICHLOROMETHANE  $\text{CH}_2\text{Cl}_2$  275-1500K  
 $\text{Cp}(\text{T}) = 132.0712 + 2.141377\text{T} - 2.08642\text{E}-03\text{T}^2 + 1.059563\text{E}-06\text{T}^3$   
 $- 2.15869\text{E}-10\text{T}^4$   
 $\text{Cp}(275) = 583.97 \quad \text{Cp}(800) = 963.94 \quad \text{Cp}(1500) = 1132.88$   
 $\underline{\text{std error est}} = 0.9 \quad \underline{\text{max error est}} = 2.0$   
275-1500K  
 $\text{T}(\text{Cp}) = 5523.4 - 29.33479\text{Cp} + 5.93745\text{E}-02\text{Cp}^2 - 5.22736\text{E}-05\text{Cp}^3$   
 $+ 1.760695\text{E}-08\text{Cp}^4$   
 $\text{T}(583.97) = 278 \quad \text{T}(963.94) = 797 \quad \text{T}(1132.88) = 1491$   
 $\underline{\text{std error est}} = 5.0 \quad \underline{\text{max error est}} = 9$   
1,1-DICHLOROTETRAFLUORO- 275-600K  $\text{CCl}_2\text{FCF}_3$   
ETHANE  
 $\text{Cp}(\text{T}) = -104.2484 + 4.520335\text{T} - 8.19256\text{E}-03\text{T}^2 + 5.7332\text{E}-06\text{T}^3$   
 $\text{Cp}(275) = 638.51 \quad \text{Cp}(450) = 793.35 \quad \text{Cp}(600) = 897.00$   
 $\underline{\text{std error est}} = 0.01 \quad \underline{\text{max error est}} = 0.5$   
275-600K  
 $\text{T}(\text{Cp}) = 421.358 - 1.292708\text{Cp} + 1.66326\text{E}-03\text{Cp}^2$   
 $\text{T}(638.51) = 274 \quad \text{T}(793.35) = 443 \quad \text{T}(897.00) = 600$   
 $\underline{\text{std error est}} = 1.4 \quad \underline{\text{max error est}} = 2.5$   
DICHLOROTETRAFLUORO- 220-510K  $\text{C}_2\text{Cl}_2\text{F}_4$   
ETHANE (FREON-114)  
 $\text{Cp}(\text{T}) = -94.71864 + 4.57011\text{T} - 7.699598\text{E}-03\text{T}^2 + 4.89705\text{E}-06\text{T}^3$   
 $\text{Cp}(220) = 590.19 \quad \text{Cp}(400) = 814.8 \quad \text{Cp}(510) = 882.97$   
 $\underline{\text{std error est}} = 0.2 \quad \underline{\text{max error est}} = 1.0$   
220-510K  
 $\text{T}(\text{Cp}) = -1652.37 + 7.94254\text{Cp} - 1.184297\text{E}-02\text{Cp}^2 + 6.36623\text{E}-06\text{Cp}^3$   
 $\text{T}(590.19) = 219 \quad \text{T}(814.8) = 400 \quad \text{T}(882.97) = 510$   
 $\underline{\text{std error est}} = 0.5 \quad \underline{\text{max error est}} = 1.5$   
2,2-DICHLORO-1,1,1-TRI- 200-800K  $\text{F}_3\text{CCHCl}_2$   
FLUOROETHANE  
 $\text{Cp}(\text{T}) = 1319.2995 - 14.01811\text{T} + 8.407976\text{E}-02\text{T}^2 - 2.15252\text{E}-04\text{T}^3$   
 $+ 2.57008\text{E}-07\text{T}^4 - 1.15831\text{E}-10\text{T}^5$   
 $\text{Cp}(200) = 530.999 \quad \text{Cp}(500) = 866.97 \quad \text{Cp}(800) = 1021.81$   
 $\underline{\text{std error est}} = 0.5 \quad \underline{\text{max error est}} = 2.5*$   
~~\*Note:  $\text{Cp}(700) = 1114.17$  but table value is 984.~~

1,1-DIFLUOROETHYLENE CH<sub>2</sub>CF<sub>2</sub> 175-1175K

Cp(T) = 472.82 - 1.09967T + 1.798667E-02T<sup>2</sup> - 4.64504E-05T<sup>3</sup>  
+ 5.802696E-08T<sup>4</sup> - 3.622937E-11T<sup>5</sup> + 8.981685E-15T<sup>6</sup>  
Cp(175) = 631.01 Cp(600) = 1377.09 Cp(1175) = 1760.59  
std error est = 4.4 max error est = 8  
DIFLUOROMETHANE CH<sub>2</sub>F<sub>2</sub> 200-1000K

Cp(T) = 926.6998 - 4.228109T + 2.28603E-02T<sup>2</sup> - 4.39433E-05T<sup>3</sup>  
+ 4.39172E-08T<sup>4</sup> - 2.27523E-11T<sup>5</sup> + 4.84046E-15T<sup>6</sup>  
Cp(200) = 707.24 Cp(500) = 1144.26 Cp(1000) = 1620.95  
std error est = 0.5 max error est = 1.0  
200-1000K  
T(Cp) = -1024.354 + 3.046388Cp - 2.430315E-03Cp<sup>2</sup> + 8.15023E-07Cp<sup>3</sup>  
T(707.24) = 203 T(1144.26) = 500 T(1620.95) = 999  
std error est = 1.5 max error est = 3.5  
DIMETHYLAMINE (CH<sub>3</sub>)<sub>2</sub>NH 275-1475K

Cp(T) = 843.8386 - 1.419 1273T + 2.18139E-02T<sup>2</sup> - 4.059054E-05T<sup>3</sup>  
+ 3.603484E-08T<sup>4</sup> - 1.5961557E-11T<sup>5</sup> + 2.82084E-15T<sup>6</sup>  
Cp(275) = 1441.30 Cp(800) = 3156.13 Cp(1475) = 4128.28  
std error est = 2.4 max error est = 4.5  
275-1475K  
T(Cp) = 389.02765 - 0.587004715Cp + 5.4705492E-04Cp<sup>2</sup> - 1.6211353E-07Cp<sup>3</sup>  
+ 1.92366E-11Cp<sup>4</sup>  
T(1441.30) = 277 T(3156.13) = 798 T(4128.28) = 1471  
std error est = 3.5 max error est = 6  
2,2-DIMETHYLBUTANE CH<sub>3</sub>CH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub> 300-1000K

Cp(T) = 2581.4188 - 21.863667T + 0.11908912T<sup>2</sup> - 2.667096E-04T<sup>3</sup>  
+ 3.179459E-07T<sup>4</sup> - 1.9721679E-10T<sup>5</sup> + 5.005353E-14T<sup>6</sup>  
Cp(300) = 1671.79 Cp(600) = 2931.54 Cp(1000) = 3879.91  
std error est = 1.8 max error est = 2.5  
300-1000K  
T(Cp) = -245.69753 + 0.521407Cp - 1.6592016E-04Cp<sup>2</sup> + 2.9471092E-08Cp<sup>3</sup>  
T(1671.79) = 300 T(2931.54) = 599 T(3879.91) = 1001  
std error est = 1.6 max error est = 2.5  
2,3-DIMETHYLBUTANE [(CH<sub>3</sub>)<sub>2</sub>CH]<sub>2</sub> 300-1000K

Cp(T) = 734.10753 - 0.560625T + 2.23453E-02T<sup>2</sup> - 4.17216E-05T<sup>3</sup>  
+ 3.25804E-08T<sup>4</sup> - 9.52277E-12T<sup>5</sup>  
Cp(300) = 1691.27 Cp(600) = 2912.1 Cp(1000) = 3854.81  
std error est = 2.2 max error est = 4.5

2, 3-DIMETHYLBUTANE (Continued) 300-1000K

$$T(Cp) = -218.0723 + 0.473152Cp - 1.438724E-04Cp^2 + 2.6738645E-08Cp^3$$

$$T(1691.27) = 300 \quad T(2912.1) = 600 \quad T(3854.81) = 1000$$

std error est = 0.7 max error est = 1.5

2, 3-DIMETHYLHEXANE 395-520K

$$Cp(T) = 605.9 + 3.8822T \quad T(Cp) = [Cp - 605.9]/3.8822$$

Note: There are only three data points in the reference source.

The accuracy of the fits cannot be adequately estimated.

3, 4-DIMETHYLHEXANE 405-520K

$$Cp(T) = 594.01 + 3.881T \quad T(Cp) = [Cp - 594.01]/3.881$$

Note: There are only three data points in the reference source.

The accuracy of the fits cannot be adequately estimated.

DIMETHYLPROPANE  $C(CH_3)_4$  300-1500K

$$\ln[Cp(T)] = 6.1724277 + 5.9032424E-03T - 6.648126E-06T^2 \\ + 3.6018484E-09T^3 - 7.508868E-13T^4$$

$$**Cp(T) = \exp[fctn(T)]$$

$$Cp(300) = 1696.35 \quad Cp(800) = 3557.47 \quad Cp(1500) = 4554.55$$

std error est = 8.00674E-03 for  $\ln[Cp(T)]$

DIPROPYLENE GLYCOL  $(CH_3CHOHCH_2)_2O$  275-775K

$$Cp(T) = -1826.75484 + 36.04835T - 0.1900801T^2 + 5.610031E-04T^3 \\ - 9.03165E-07T^4 + 7.46426E-10T^5 - 2.482783E-13T^6$$

$$Cp(275) = 1280.09 \quad Cp(500) = 1801.43 \quad Cp(775) = 2155.97$$

std error est = 2.8 max error est = 3.5

$$T(Cp) = -395.8809 + 0.389689Cp + \frac{275-775K}{5.172082E-04Cp^2 - 4.901004E-07Cp^3} \\ + 1.31177E-10Cp^4$$

$$T(1280.09) = 275 \quad T(1801.43) = 501 \quad T(2155.97) = 771$$

std error est = 2.4 max error est = 5

DODECANE  $CH_3(CH_2)^{10}CH_3$  300-1500K

$$Cp(T) = 827.74543 - 0.177414T + 1.89547E-02T^2 - 3.681404E-05T^3 \\ + 3.299875E-08T^4 - 1.45863E-11T^5 + 2.55543E-15T^6$$

$$Cp(300) = 1720.17 \quad Cp(800) = 3374.57 \quad Cp(1500) = 4361.72$$

std error est = 5.0 max error est = 7.5

$$T(Cp) = 867.5699 - 1.28664Cp + \frac{300-1500K}{8.801372E-04Cp^2 - 2.28373E-07Cp^3} \\ + 2.333242E-11Cp^4$$

$$T(1720.17) = 301 \quad T(3374.57) = 798 \quad T(4361.72) = 1496$$

std error est = 4.5 max error est = 7.5

**ETHANE - Ideal gas C<sub>2</sub>H<sub>6</sub> 275-755K**

$C_p(T) = 531.9795 + 3.755877T + 1.789289E-03T^2 - 2.13225E-06T^3$   
 $C_p(275) = 1655.82 \quad C_p(500) = 2590.71 \quad C_p(755) = 3469.95$   
 std error est = 0.1 max error est = 1.0

755-1365K

$$Cp(T) = 3718.3729 - 10.891558T + 2.95115E-02T^2 - 2.95597E-05T^3$$

$$+ 1.382794E-08T^4 - 2.52553E-12T^5$$

$$Cp(755) = 3469.49 \quad Cp(1000) = 4081.02 \quad Cp(1365) = 4696.05$$

$$\text{std error est} = 0.4 \quad \text{max error est} = 1.0$$

$T(Cp) = 26.69485 - 0.0209973Cp + 1.77038E-04Cp^2 - 5.60605E-08Cp^3$   
 $+ 6.976759E-12Cp^4$   
 $T(1655.82) = 275 \quad T(2590.71) = 500 \quad T(3469.95) = 755$   
 std error est = 0.2 max error est = 1

$$\begin{aligned} & \text{755-1365K} \\ T(Cp) &= -3405.9176 + 2.9438457Cp - 7.63789E-04Cp^2 + 7.521499E-08Cp^3 \\ T(3469.49) &= 755 \quad T(4081.02) = 1000 \quad T(4696.05) = 1364 \\ \underline{\text{std error est}} &= 0.5 \quad \underline{\text{max error est}} = 1.5 \end{aligned}$$

**ETHANE , HEXADEUTERATED C<sub>2</sub>D<sub>6</sub> 275-365K**

$C_p(T) = 1100.6747 - 3.438783T + 2.9385375E-02T^2 - 3.3966273E-05T^3$   
 $C_p(275) = 1670.89 \quad C_p(315) = 1871.58 \quad C_p(365) = 2108.7$   
 std error est = 0.1 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the polynomial above.

**ETHANETHIOL**    C<sub>2</sub>H<sub>5</sub>SH                          300-1000K

$C_p(T) = 357.285 + 2.59852T + 1.61883E-03T^2 - 4.13005E-06T^3$   
 $+ 1.930025E-09T^4$   
 $C_p(300) = 1186.66 \quad C_p(700) = 2016.27 \quad C_p(1000) = 2374.61$   
 $\text{std error est} = 5.5 \quad \text{max error est} = 9.5$   
 $T(C_p) = -340.822 + 0.8964337C_p - 4.606323E-04C_p^2 + 1.352216E-07C_p^3$   
 $T(1186.66) = 300 \quad T(2016.27) = 702 \quad T(2374.61) = 1001$   
 $\text{std error est} = 4.8 \quad \text{max error est} = 6.5$

ETHYL ACETATE CH<sub>3</sub>COOCH<sub>2</sub>CH<sub>3</sub> 370-440K

$Cp(T) = -1312.0132 + 11.8064T - 1.1402197E-02T^2$   
 $Cp(370) = 1495.39 \quad Cp(400) = 1586.2 \quad Cp(440) = 1675.34$   
 std error est = 8.3 max error est = 15

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the equation above. The T(Cp) calculations may not agree well due to the std error ests above.

**ETHYL ALCOHOL C<sub>2</sub>H<sub>5</sub>OH      255-810K**  
 Ideal gas  
 $C_p(T) = 546.2212 + 3.8600396T - 1.023837E-03T^2 - 2.75659E-07T^3$   
 $C_p(255) = 1459.39 \quad C_p(500) = 2185.82 \quad C_p(810) = 2854.62$   
 $\text{std error est} = 0.3 \quad \text{max error est} = 1.5$   

$$\frac{810-1365K}{C_p(T) = 835.49557 + 3.1089285T - 4.372953E-04T^2 - 5.607147E-07T^3 + 2.0162334E-10T^4}$$
  
 $C_p(810) = 2855.62 \quad C_p(1100) = 3275.08 \quad C_p(1365) = 3538.29$   
 $\text{std error est} = 0.2 \quad \text{max error est} = 1.0$   

$$\frac{255-810K}{T(C_p) = -394.5867 + 0.668288C_p - 2.236847E-04C_p^2 + 4.805682E-08C_p^3}$$
  
 $T(1459.39) = 254 \quad T(2185.82) = 499 \quad T(2854.62) = 808$   
 $\text{std error est} = 0.7 \quad \text{max error est} = 2$   

$$\frac{810-1365K}{T(C_p) = -7130.17 + 7.512807C_p - 2.545385E-03C_p^2 + 3.11057E-07C_p^3}$$
  
 $T(2855.62) = 810 \quad T(3275.08) = 1100 \quad T(3538.29) = 1364$   
 $\text{std error est} = 0.2 \quad \text{max error est} = 2$   
**ETHYLBENZENE C<sub>6</sub>H<sub>5</sub>C<sub>2</sub>H<sub>5</sub>      275-1500K**  
 $C_p(T) = 88.81893 + 2.2813924T + 1.0434866E-02T^2 - 2.431028E-05T^3 + 2.3069044E-08T^4 - 1.0491076E-11T^5 + 1.87293E-15T^6$   
 $C_p(275) = 1116.01 \quad C_p(800) = 2647.73 \quad C_p(1500) = 3396.43$   
 $\text{std error est} = 1.9 \quad \text{max error est} = 6$   

$$\frac{275-1500K}{T(C_p) = 642.15192 - 1.1750234C_p + 1.1452373E-03C_p^2 - 4.0876E-07C_p^3 + 5.746896E-11C_p^4}$$
  
 $T(1116.01) = 278 \quad T(2647.73) = 797 \quad T(3396.43) = 1495$   
 $\text{std error est} = 3.9 \quad \text{max error est} = 8$   
**ETHYL ETHER C<sub>4</sub>H<sub>10</sub>O      310-600K**  
 $C_p(T) = -4053.47326 + 33.471276T - 6.7641844E-02T^2 + 5.094208E-05T^3$   
 $C_p(310) = 1339.87 \quad C_p(450) = 1953.22 \quad C_p(600) = 2681.72$   
 $\text{std error est} = 0.2 \quad \text{max error est} = 1.0$   

$$\frac{310-600K}{T(C_p) = 779.23434 - 1.052998C_p + 6.81429E-04C_p^2 - 1.17146E-07C_p^3}$$
  
 $T(1339.87) = 310 \quad T(1953.22) = 449 \quad T(2681.72) = 597$   
 $\text{std error est} = 1.5 \quad \text{max error est} = 3$   
**ETHYLENE - Ideal gas C<sub>2</sub>H<sub>4</sub>      275-755K**  
 $C_p(T) = 248.817245 + 4.864076T - 1.570483E-03T^2 - 2.3772E-07T^3$   
 $C_p(275) = 1462.73 \quad C_p(500) = 2258.52 \quad C_p(755) = 2923.67$   
 $\text{std error est} = 0.2 \quad \text{max error est} = 1.0$

ETHYLENE - Ideal gas (continued) 755-1365K

$$C_p(T) = 883.873 + 2.982773T + 2.684874E-04T^2 - 1.103103E-06T^3 + 3.3579064E-10T^4$$

$$C_p(755) = 2923.28 \quad C_p(1000) = 3367.82 \quad C_p(1365) = 3815.82 \\ \text{std error est} = 0.3 \quad \text{max error est} = 1.0$$

$$\frac{275-755K}{T(C_p) = -215.2115 + 0.46972C_p - 1.376816E-04C_p^2 + 3.0917277E-08C_p^3} \\ T(1462.73) = 274 \quad T(2258.52) = 500 \quad T(2923.67) = 754 \\ \text{std error est} = 0.5 \quad \text{max error est} = 2$$

$$\frac{755-1365K}{T(C_p) = -4851.525 + 4.91917C_p - 1.56526E-03C_p^2 + 1.842345E-07C_p^3} \\ T(2923.28) = 755 \quad T(3367.82) = 999 \quad T(3815.82) = 1364 \\ \text{std error est} = 0.5 \quad \text{max error est} = 1$$

ETHYLENE - Real gas 275-610K

$$C_p(T) = 452.40453 + 3.594527T + 1.099394E-03T^2 - 2.103391E-06T^3 \\ C_p(275) = 1480.3 \quad C_p(450) = 2100.9 \quad C_p(610) = 2576.72 \\ \text{std error est} = 1.5 \quad \text{max error est} = 2.5$$

Note: For  $T(C_p)$  calculations, use the iterative procedures discussed in Section 5 and the polynomial immediately above.

ETHYLENE OXIDE  $(CH_2)_2O$  275-1000K

$$C_p(T) = 1405.23696 - 8.747353T + 4.235163E-02T^2 - 6.972269E-05T^3 + 5.2382475E-08T^4 - 1.5060405E-11T^5 \\ C_p(275) = 1028.44 \quad C_p(600) = 1960.98 \quad C_p(1000) = 2608.89 \\ \text{std error est} = 5.0 \quad \text{max error est} = 7.5$$

$$\frac{275-1365K}{T(C_p) = -324.12166 + 0.929479C_p - 4.506574E-04C_p^2 + 1.107183E-07C_p^3} \\ T(1028.44) = 276 \quad T(1960.98) = 600 \quad T(2608.89) = 999 \\ \text{std error est} = 1.5 \quad \text{max error est} = 3$$

3-ETHYLHEXANE  $(CH_3CH_2)_2CH(CH_2)_2CH_3$  295-520K

$$C_p(T) = 1559.9 + 1.928T \quad T(C_p) = [C_p - 1559.9]/1.928$$

Note: There are only three data points in the reference source.

The accuracy of the fit cannot be adequately established.

3-ETHYL-2-METHYL-  $(CH_3)_2CHCH(C_2H_5)_2$  400-520K  
PENTANE

$$C_p(T) = 658.8 + 3.7806T \quad T(C_p) = [C_p - 658.8]/3.7806$$

Note: There are only three data points in the reference source.

The accuracy of the fit cannot be adequately established.

3-ETHYL-3-METHYL-  $(CH_3CH_2)_3CCH_3$  400-520K  
PENTANE

$$C_p(T) = 641.9 + 3.8767T \quad T(C_p) = [C_p - 641.9]/3.8767$$

Note: There are only three data points in the reference source.

The accuracy of the fit cannot be adequately established.

**FLUORINE F<sub>2</sub>**                    200-645K  
 Ideal gas  
 $C_p(T) = 658.25722 + 0.6751476T - 3.79745E-04T^2 + 2.235484E-09T^3$   
 $C_p(200) = 778.11 \quad C_p(450) = 885.38 \quad C_p(645) = 936.34$   
 $\text{std error est} = 0.01 \quad \text{max error est} = 1.0$   
645-1365K  
 $C_p(T) = 127.23948 + 3.72368T - 7.033226E-03T^2 + 6.867834E-06T^3$   
 $- 3.366543E-09T^4 + 6.5637923E-13T^5$   
 $C_p(645) = 936.51 \quad C_p(1000) = 975.36 \quad C_p(1365) = 995.65$   
 $\text{std error est} = 0.3 \quad \text{max error est} = 1.0$   
200-645K  
 $T(C_p) = 3954.34 - 11.05956C_p + 8.024798E-03C_p^2$   
 $T(778.11) = 207 \quad T(885.38) = 453 \quad T(936.34) = 634$   
 $\text{std error est} = 5.0 \quad \text{max error est} = 11$   
645-1365K  
 $T(C_p) = 112357.756 - 242.565496C_p + 0.131647C_p^2$   
 $T(936.51) = 654 \quad T(975.36) = 1008 \quad T(995.65) = 1351$   
 $\text{std error est} = 7.5 \quad \text{max error est} = 15.5$

**FLUORINE (Monatomic) F** 100-1500K

$C_p(T) = 925.04634 + 2.7925687T - 1.038958E-02T^2 + 1.78943E-05T^3$   
 $- 1.6070342E-08T^4 + 7.28505E-12T^5 - 1.315903E-15T^6$   
 $C_p(100) = 1116.77 \quad C_p(800) = 1131.45 \quad C_p(1500) = 1106.39$   
 $\text{std error est} = 1.7 \quad \text{max error est} = 3.5$

**FLUOROETHANE CH<sub>3</sub>CH<sub>2</sub>F** 100-1500K

$\ln[C_p(T)] = 6.471145519 + 2.09924177E-03T + 1.99348096E-06T^2$   
 $- 5.55076164E-09T^3 + 3.8054008E-12T^4 - 8.6180454E-16T^5$   
 $C_p(100) = 809.02 \quad C_p(800) = 2593.26 \quad C_p(1500) = 3268.33$   
 $\text{std error est} = 10.0 \quad \text{max error est} = 85$   
 \*\*Note:  $C_p(T) = \exp[fctn(T)]$

**FLUOROETHYLENE CH<sub>2</sub>CHF** 175-975K

$C_p(T) = 580.68945 - 1.7973376T + 2.027156E-02T^2 - 4.167712E-05T^3$   
 $+ 3.705407E-08T^4 - 1.2304487E-11T^5$   
 $C_p(175) = 696.34 \quad C_p(600) = 1643.20 \quad C_p(975) = 2113.99$   
 $\text{std error est} = 7.1 \quad \text{max error est} = 13.5$   
175-975K  
 $T(C_p) = -171.8982 + 0.671097C_p - 3.337414E-04C_p^2 + 1.285454E-07C_p^3$   
 $T(696.34) = 177 \quad T(1643.20) = 600 \quad T(2113.99) = 970$   
 $\text{std error est} = 5.5 \quad \text{max error est} = 10$

FLUOROFORM, MONODEUTERATED  $\text{CF}_3\text{D}$  100-1000K

$$\begin{aligned} \text{Cp}(T) = & 529.7845 - 1.9731807T + 1.8510456E-02T^2 - 4.45372E-05T^3 \\ & + 5.268778E-08T^4 - 3.146596E-11T^5 + 7.57734E-15T^6 \end{aligned}$$

$$\begin{aligned} \text{Cp}(100) = & 477.99 & \text{Cp}(600) = & 1124.68 & \text{Cp}(1000) = & 1329.02 \\ \text{std error est} = & 0.6 & & & & \text{max error est} = 1.0 \end{aligned}$$

100-1000K

$$\begin{aligned} T(\text{Cp}) = & -134.042 - 0.440011\text{Cp} + 3.65192E-03\text{Cp}^2 - 4.4091204E-06\text{Cp}^3 \\ & + 1.799033E-09\text{Cp}^4 \end{aligned}$$

$$\begin{aligned} T(477.99) = & 102 & T(1124.68) = & 596 & T(1329.02) = & 994 \\ \text{std error est} = & 5.8 & & & & \text{max error est} = 10 \end{aligned}$$

FLUOROMETHANE  $\text{CH}_3\text{F}$  200-1000K

$$\begin{aligned} \text{Cp}(T) = & 1472.3652 - 6.384875T + 0.0269437T^2 - 4.020256E-05T^3 \\ & + 2.816384E-08T^4 - 7.7050064E-12T^5 \end{aligned}$$

$$\begin{aligned} \text{Cp}(200) = & 994.09 & \text{Cp}(600) = & 1708.08 & \text{Cp}(1000) = & 2289.27 \\ \text{std error est} = & 0.8 & & & & \text{max error est} = 2.5 \end{aligned}$$

200-1000K

$$\begin{aligned} T(\text{Cp}) = & -2770.3792 + 6.5625134\text{Cp} - 5.26989E-03\text{Cp}^2 + 1.946297E-06\text{Cp}^3 \\ & - 2.543208E-10\text{Cp}^4 \end{aligned}$$

$$\begin{aligned} T(994.09) = & 209 & T(1708.08) = & 598 & T(2289.27) = & 1000 \\ \text{std error est} = & 4.7 & & & & \text{max error est} = 9.5 \end{aligned}$$

FORMALDEHYDE  $\text{HCHO}$  275-1500K

$$\begin{aligned} \text{Cp}(T) = & 1410.7255 - 3.85954T + 1.56866E-02T^2 - 2.25445E-05T^3 \\ & + 1.689E-08T^4 - 6.5741125E-12T^5 + 1.049515E-15T^6 \end{aligned}$$

$$\begin{aligned} \text{Cp}(275) = & 1153.51 & \text{Cp}(800) = & 1858.8 & \text{Cp}(1500) = & 2366.67 \\ \text{std error est} = & 2.0 & & & & \text{max error est} = 4.5 \end{aligned}$$

275-1500K

$$\begin{aligned} T(\text{Cp}) = & -302.25 - 0.79339952\text{Cp} + 2.386302E-03\text{Cp}^2 - 1.438642E-06\text{Cp}^3 \\ & + 2.990445E-10\text{Cp}^4 \end{aligned}$$

$$\begin{aligned} T(1153.51) = & 279 & T(1858.8) = & 798 & T(2366.67) = & 1497 \\ \text{std error est} = & 3.9 & & & & \text{max error est} = 7 \end{aligned}$$

FORMYL  $\text{HCO}$  300-1000K

$$\text{Cp}(T) = 978.65 + 0.6283T \quad T(\text{Cp}) = [\text{Cp} - 978.65]/0.6283$$

Note: There are only two data points in the reference source.

The accuracy of this fit cannot be adequately established.

FURAN  $\text{C}_4\text{H}_4\text{O}$  45-100K

$$\text{Cp}(T) = 1099.8 + 1.3061T \quad T(\text{Cp}) = [\text{Cp} - 1099.8]/1.3061$$

Note: There are only three data points in the reference source.

The accuracy of the fit cannot be adequately established.

## HELIUM He ALL TEMPERATURES

Cp(T) = 519.31 = Constant - - - - -  
 n-HEPTANE - Ideal gas C<sub>7</sub>H<sub>16</sub> 300-755K

$$\text{Cp}(T) = 94.626 + 5.860997T^4 - 1.9823132E-03T^2 - 6.886993E-08T^3 - 1.9379526E-10T$$

$$\text{Cp}(300) = 1671.09 \quad \text{Cp}(500) = 2508.83 \quad \text{Cp}(755) = 3297.1 \\ \text{std error est} = 0.2 \quad \text{max error est} = 1.0$$

755-1365K

$$\text{Cp}(T) = -740.308 + 10.893537T^4 - 1.265124E-02T^2 + 9.843763E-06T^3 - 4.3228296E-09T^5 + 7.863665E-13T^5$$

$$\text{Cp}(755) = 3297.54 \quad \text{Cp}(1000) = 3809.29 \quad \text{Cp}(1365) = 4312.15 \\ \text{std error est} = 0.3 \quad \text{max error est} = 1.0$$

300-755K

$$\text{T(Cp)} = -194.613 + 0.4265268\text{Cp}^2 - 1.1575878E-04\text{Cp}^3 + 2.2332567E-08\text{Cp}^3 \\ \text{T(1671.09)} = 299 \quad \text{T(2508.83)} = 500 \quad \text{T(3297.1)} = 754 \\ \text{std error est} = 0.5 \quad \text{max error est} = 1.5$$

755-1365K

$$\text{T(Cp)} = -4882.496 + 4.4329699\text{Cp}^2 - 1.260663E-03\text{Cp}^3 + 1.318505E-07\text{Cp}^3 \\ \text{T(3297.54)} = 755 \quad \text{T(3809.29)} = 999 \quad \text{T(4312.15)} = 1364$$

std error est = 0.9 - - - - - max error est = 2.5

HEXAFLUOROETHANE (CF<sub>3</sub>)<sub>2</sub> 175-1175K

$$\text{Cp}(T) = 659.43 - 2.9660847T + 2.168867E-02T^2 - 4.922597E-05T^3 + 5.4905868E-08T^4 - 3.068691E-11T^5 + 6.876342E-15T^6$$

$$\text{Cp}(175) = 587.42 \quad \text{Cp}(675) = 1148.43 \quad \text{Cp}(1175) = 1286.31 \\ \text{std error est} = 4.9 \quad \text{max error est} = 11.0$$

n-HEXANE - Ideal gas C<sub>6</sub>H<sub>14</sub> 275-755K

$$\text{Cp}(T) = 244.084 + 5.0862655T - 5.31415E-04T^2 - 1.0882839E-06T^3 \\ \text{Cp}(275) = 1579.99 \quad \text{Cp}(500) = 2518.33 \quad \text{Cp}(755) = 3312.93 \\ \text{std error est} = 0.2 \quad \text{max error est} = 1.0$$

755-1365K

$$\text{Cp}(T) = 4009.13 - 11.718687T + 0.0298761T^2 - 2.9593554E-05T^3 + 1.375164E-08T^4 - 2.4932142E-12T^5$$

$$\text{Cp}(755) = 3312.16 \quad \text{Cp}(1000) = 3831.41 \quad \text{Cp}(1365) = 4339.26 \\ \text{std error est} = 0.7 \quad \text{max error est} = 2.0$$

275-755K

$$\text{T(Cp)} = -209.84 + 0.4334954\text{Cp}^2 - 1.1488097E-04\text{Cp}^3 + 2.167164E-08\text{Cp}^3 \\ \text{T(1579.99)} = 274 \quad \text{T(2518.33)} = 499 \quad \text{T(3312.93)} = 753 \\ \text{std error est} = 0.6 \quad \text{max error est} = 2.5$$

755-1365K

$$\text{T(Cp)} = -5668.09 + 5.032992\text{Cp}^2 - 1.41023E-03\text{Cp}^3 + 1.437634E-07\text{Cp}^3 \\ \text{T(3312.16)} = 755 \quad \text{T(3831.41)} = 999 \quad \text{T(4339.26)} = 1364$$

n-HEXANE (continued)

std error est = 0.6 max error est = 2.5  
CYCLOHEXANE C<sub>6</sub>H<sub>12</sub> 300-1500K

$$Cp(T) = -143.687 + 2.2338877T + 1.5757957E-02T^2 - 3.322767E-05T^3 + 2.992193E-08T^4 - 1.3118055E-11T^5 + 2.278605E-15T^6$$

$$Cp(300) = 1259.7 \quad Cp(800) = 3270.77 \quad Cp(1500) = 4338.44$$

std error est = 2.0 max error est = 3.5

$$T(Cp) = 493.2108 - 0.6186162Cp + 5.38728E-04Cp^2 - 1.568782E-07Cp^3 + 1.7939201E-11Cp^4$$

$$T(1259.7) = 300 \quad T(3270.77) = 797 \quad T(4338.44) = 1494$$

std error est = 4.5 max error est = 10.0

HYDRAZINE N<sub>2</sub>H<sub>4</sub> 275-1475K

$$Cp(T) = 164.415 + 6.9555374T - 7.864965E-03T^2 + 4.8061401E-06T^3 - 1.14436786E-09T^4$$

$$Cp(275) = 1575.81 \quad Cp(675) = 2516.48 \quad Cp(1475) = 3319.06$$

std error est = 4.3 max error est = 6.5

$$T(Cp) = -382.0766 + 0.7822092Cp - 3.7974324E-04Cp^2 + 9.376375E-08Cp^3$$
$$T(1575.81) = 274 \quad T(2516.48) = 676 \quad T(3319.06) = 1459$$

std error est = 7.5 max error est = 16.0

HYDROBROMIC ACID HBr 350-1500K

$$Cp(T) = 395.3995 - 0.2258915T + 4.5013067E-04T^2 - 2.807402E-07T^3 + 6.0719708E-11T^4$$

$$Cp(350) = 360.35 \quad Cp(850) = 387.9 \quad Cp(1500) = 429.25$$

std error est = 0.4 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 350-1500K, Cp(T) = 333.6168303 ± 6.18710596E-02T ± 2.6754517E-06T<sup>2</sup>

HYDROCYANIC ACID HCN 100-1500K

$$Cp(T) = 1044.92 - 0.430188124T + 9.2162939E-03T^2 - 2.1505599E-05T^3 + 2.29172856E-08T^4 - 1.1686957E-11T^5 + 2.3027052E-15T^6$$

$$Cp(100) = 1074.74 \quad Cp(800) = 1749.31 \quad Cp(1500) = 2055.08$$

std error est = 7.2 max error est = 16.5

$$T(Cp) = -52339.698 + 171.0170866Cp - 0.2213524775Cp^2 + 1.4203695E-04Cp^3 - 4.51189157E-08Cp^4 + 5.7079687E-12Cp^5$$

$$T(1074.74) = 95 \quad T(1749.31) = 796 \quad T(2055.08) = 1507$$

std error est = 1.5 max error est = 7.5

HYDROFLUORIC ACID HF 100-1500K

$$\begin{aligned} \text{Cp}(T) = & 1460.773641 - 0.081301137T + 4.32324705E-04T^2 \\ & - 1.12701828E-06T^3 + 1.51594969E-09T^4 - 8.75540737E-13T^5 \\ & + 1.82375488E-16T^6 \\ \text{Cp}(100) = & 1455.98 \quad \text{Cp}(800) = 1477.23 \quad \text{Cp}(1500) = 1611.09 \\ \text{std error est} = & 0.4 \quad \text{max error est} = 1.0 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 100-1500K,  $\text{Cp}(T) = 1464.2305292 - 0.0715176125T + 1.1488975E-04T^2$ .

HYDROFLUORIC ACID, DF 300-1500K

## MONODEUTERATED

$$\begin{aligned} \text{Cp}(T) = & 1317.953085 + 0.736930447T - 2.979053E-03T^2 + 5.585763E-06T^3 \\ & - 4.8632489E-09T^4 + 2.04262374E-12T^5 - 3.37598227E-16T^6 \\ \text{Cp}(300) = & 1387.06 \quad \text{Cp}(800) = 1449.66 \quad \text{Cp}(1500) = 1617.95 \\ \text{std error est} = & 0.4 \quad \text{max error est} = 1.5 \end{aligned}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 300-1500K,  $\text{Cp}(T) = 1444.09476 - 0.35547209T + 6.1254815E-04T^2 - 1.9925363E-07T^3$ .

HYDROGEN - Ideal gas H<sub>2</sub> 100-425K

$$\begin{aligned} \text{Cp}(T) = & 5006.6253 + 101.569422T - 0.602891517T^2 + 2.7375894E-03T^3 \\ & - 8.4758275E-06T^4 + 1.43800374E-08T^5 - 9.8072403E-12T^6 \\ \text{Cp}(100) = & 11158.65 \quad \text{Cp}(325) = 14334.47 \quad \text{Cp}(425) = 14498.83 \\ \text{std error est} = & 3.2 \quad \text{max error est} = 6.5 \\ \text{Cp}(T) = & 14920.082 - 1.996917584T + 2.540615E-03T^2 - 4.7588954E-07T^3 \\ \text{Cp}(490) = & 14495.61 \quad \text{Cp}(850) = 14766.04 \quad \text{Cp}(1365) = 15717.7 \\ \text{std error est} = & 1.3 \quad \text{max error est} = 4 \end{aligned}$$

Note: For temperatures between 425-490, Cp = 14494.7 - constant.

HYDROGEN - Real gas 100-365K

$$\begin{aligned} \text{Cp}(T) = & 6436.5105 + 63.161307T - 0.1685728T^2 + 1.5229265E-04T^3 \\ \text{Cp}(100) = & 11219.21 \quad \text{Cp}(225) = 13848.52 \quad \text{Cp}(365) = 14437.83 \\ \text{std error est} = & 1.2 \quad \text{max error est} = 2 \\ \text{Cp}(T) = & 29616.406 - 51.4939245T + 0.304123881T^2 - 4.2495904E-03T^3 \\ & + 1.9472701E-05T^4 - 3.55632306E-08T^5 + 2.30568584E-11T^6 \\ \text{Cp}(365) = & 14440.87 \quad \text{Cp}(425) = 14506.73 \quad \text{Cp}(475) = 14512.49 \end{aligned}$$

HYDROGEN - Real gas (continued)

std error est = 2.0

max error est = 4.5

475-1255K

$$Cp(T) = 15009.352 - 2.2923455T + 2.869303E-03T^2 - 5.937169E-07T^3$$

$$Cp(475) = 14504.24 \quad Cp(875) = 14802.62 \quad Cp(1255) = 15478.11$$

std error est = 1.3

max error est = 5.5

HYDROGEN (Monatomic) H 100-1500K

- Cp(T) = 20622 = constant

HYDROGEN, MONODEUTERATED HD 0-1500K

$$Cp(T) = 9648.403 + 0.180166208T - 4.410482E-04T^2 + 3.02156-1E-05T^3$$
$$- 2.37468746E-09T^4 + 5.54340759E-13T^5$$

$$Cp(1) = 9648.58 \quad Cp(800) = 10266.28 \quad Cp(1500) = 11311.73$$

- std error est = 0.6 max error est = 1.5

HYDROGEN CHLORIDE HCl 365-1365K

Ideal gas

$$Cp(T) = 770.99488 + 0.26534577T - 9.9858498E-04T^2 + 1.7010329E-06T^3$$
$$- 1.1455977E-09T^4 + 2.736703E-13T^5$$

$$Cp(365) = 798.97 \quad Cp(850) = 843.13 \quad Cp(1365) = 918.63$$

std error est = 0.3 max error est = 1.0

Note: From 255-365K, Cp = 798.84 - constant.

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 365-1365K, Cp(T) =

$$841.8819 - 0.2461627T + 4.0609005E-04T^2 - 1.3558119E-07T^3$$

HYDROGEN IODIDE - Ideal gas HI 275-1365K

$$Cp(T) = 248.5266 - 0.15405244T + 3.53994265E-04T^2 - 2.5054778E-07T^3$$
$$+ 6.12525942E-11T^4$$

$$Cp(275) = 228.07 \quad Cp(875) = 252.82 \quad Cp(1365) = 273.24$$

std error est = 0.2 max error est = 1.0

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 275-1365K, Cp(T) =

$$214.2405 + 3.60151566E-02T + 6.81264406E-06T^2$$

HYDROGEN PEROXIDE H<sub>2</sub>O<sub>2</sub> 300-1500K

$$Cp(T) = 827.2894 + 1.66579757T - 6.5656617E-04T^2 + 4.920427E-08T^3$$

$$Cp(300) = 1269.27 \quad Cp(800) = 1764.92 \quad Cp(1500) = 2014.78$$

std error est = 0.6 max error est = 1.5

Note: For T(Cp) calculations, use the above equation and iteratives.

HYDROGEN SULFIDE - Ideal gas H<sub>2</sub>S 200-1365K

$$Cp(T) = 1001.424 - 0.442935517T + 2.03071482E-03T^2 - 1.946487E-06T^3 \\ + 8.5559054E-10T^4 - 1.51906275E-13T^5$$

$$Cp(200) = 979.81 \quad Cp(800) = 1250.81 \quad Cp(1365) = 1480.42 \\ \underline{\text{std error est} = 0.4} \quad \underline{\text{max error est} = 1.5}$$

HYDROGEN SULFIDE, D<sub>2</sub>S 100-1500K  
D<sup>1</sup>DEUTERATED

$$Cp(T) = 951.92162 - 0.636298T + 3.834902E-03T^2 - 5.1606288E-06T^3 \\ + 3.4347917E-09T^4 - 1.18396309E-12T^5 + 1.70442092E-16T^6$$

$$Cp(100) = 921.81 \quad Cp(800) = 1318.59 \quad Cp(1500) = 1548.24 \\ \underline{\text{std error est} = 0.7} \quad \underline{\text{max error est} = 1.5}$$

$$T(Cp) = -164765.798 + 671.44529Cp - 1.09343063Cp^2 + 8.8987356E-04Cp^3 \\ - 3.61561554E-07Cp^4 + 5.87557715E-11Cp^5$$

$$T(921.81) = 129 \quad T(1318.59) = 803 \quad T(1548.24) = 1505 \\ \underline{\text{std error est} = 8.5} \quad \underline{\text{max error est} = 29.0}$$

HYDROGEN SULFIDE, T<sub>2</sub>S 50-250K  
DITRITIATED

$$Cp(T) = 867.963 + 0.2747135T - 5.06698273E-03T^2 + 3.5644166E-05T^3 \\ - 6.07263928E-08T^4$$

$$Cp(50) = 873.08 \quad Cp(180) = 897.27 \quad Cp(250) = 939.54 \\ \underline{\text{std error est} = 0.5} \quad \underline{\text{max error est} = 1.5}$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 50-250K, Cp(T) = 884.648608 - 0.326396624T + 2.20660346E-03T<sup>2</sup>

HYDROGEN SULFIDE, HDS 50-1500K  
MONODEUTERATED

$$Cp(T) = 962.62194 - 0.35271253T + 1.90644836E-03T^2 - 1.27551132E-06T^3 \\ - 3.3335115E-10T^4 + 6.2782923E-13T^5 - 1.75469178E-16T^6$$

$$Cp(50) = 949.59 \quad Cp(800) = 1270.71 \quad Cp(1500) = 1499.5 \\ \underline{\text{std error est} = 1.3} \quad \underline{\text{max error est} = 2.5}$$

HYDROGEN SULFIDE, MONO-DTS 100-250K  
DEUTERATED/MONOTRITIATED

$$Cp(T) = 930.5966 - 0.671343T + 3.7680173E-03T^2 - 3.14889788E-06T^3$$

$$Cp(100) = 897.99 \quad Cp(175) = 911.63 \quad Cp(250) = 949.06 \\ \underline{\text{std error est} = 0.3} \quad \underline{\text{max error est} = 1.5}$$

$$T(Cp) = -1873390.367 + 6052.319684Cp - 6.51827856Cp^2 + 2.3405097E-03Cp^3 \\ T(897.99) = 109 \quad T(911.63) = 180 \quad T(949.09) = 257$$

$$\underline{\text{std error est} = 2.4} \quad \underline{\text{max error est} = 8.5}$$

HYDROGEN SULFIDE, MONO- HTS 50-1500K

TRITIATED

$$Cp(T) = 947.2175 - 0.6001111T + 3.4256972E-03T^2 - 4.2387292E-06T^3 \\ + 2.28571453E-09T^4 - 4.6662046E-13T^5$$

$$Cp(50) = 925.26 \quad Cp(800) = 1272.67 \quad Cp(1500) = 1477.19 \\ \text{std error est} = 2.2 \quad \text{max error est} = 6.5$$

HYDROXYL OH 0-1500K

$$Cp(T) = 1761.23799 - 0.2890543T + 7.1609328E-04T^2 - 3.6725166E-07T^3 \\ + 5.9334163E-11T^4$$

$$Cp(1) = 1760.95 \quad Cp(800) = 1824.56 \quad Cp(1500) = 1999.77 \\ \text{std error est} = 3.0 \quad \text{max error est} = 5.5$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 0-1500K,  $Cp(T) = 1758.418762 - 0.236699T + 5.4753303E-04T^2 - 1.89130827E-07T^3$

IODINE I<sub>2</sub> 250-1500K

$$Cp(T) = 131.03309 + 8.1451251E-02T - 1.4276222E-04T^2 + 1.088693E-07T^3 \\ - 2.9318658E-11T^4$$

$$Cp(250) = 144.06 \quad Cp(900) = 148.83 \quad Cp(1500) = 151.00 \\ \text{std error est} = 0.4 \quad \text{max error est} = 1.5$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 250-1500K,  $Cp(T) = 142.223033 + 1.13334775E-02T - 3.7835264E-06T^2$

IODINE (Monatomic) 55-1550K

Cp(T) = 164.50 - constant

IODINE BROMIDE IBr 250-1500K

$$Cp(T) = 160.52687 + 8.1079813E-02T - 1.175744E-04T^2 + 7.647269E-08T^3 \\ - 1.81218914E-11T^4$$

$$Cp(250) = 174.57 \quad Cp(800) = 181.87 \quad Cp(1500) = 183.96 \\ \text{std error est} = 0.5 \quad \text{max error est} = 1.5$$

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 250-1500K,  $Cp(T) = 170.84732 + 2.05167565E-02T - 8.09243496E-06T^2$

IODINE CHLORIDE ICl 250-1500K

$$Cp(T) = 186.45308 + 0.1656137T - 2.3408245E-04T^2 + 1.4813037E-07T^3 \\ - 3.44570338E-11T^4$$

## **IODINE CHLORIDE (continued)**

**Cp(250) = 215.41      Cp(800) = 230.86      Cp(1500) = 233.69**  
**std error est = 0.4      max error est = 1.5**

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn; 250-1500K,  $C_p(T) = 207.56253 + 4.364782E-02T - 1.811719E-05T^2$ .

**IODINE FLUORIDE IF 250-1500K**

$C_p(T) = 175.3521 + 0.26519153T - 3.3997426E-04T^2 + 1.9855293E-07T^3$   
 $- 4.316987E-11T^4$   
 $C_p(250) = 223.34 \quad C_p(800) = 253.9 \quad C_p(1500) = 259.77$   
 std error est = 0.4 max error est = 1.5

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 250-1500K,  $C_p(T) = 188.3318389 + 0.1798053T - 1.5965353E-04T^2 + 4.7953466E-08T^3$ .

**IODINE HEPTAFLUORIDE IF<sub>7</sub> 250-1000K**

$C_p(T) = -386.25397 + 6.988192T - 2.19E-02T^2 + 3.9399594E-05T^3$   
 $- 4.11419754E-08T^4 + 2.31307177E-11T^5 - 5.40722595E-15T^6$   
 $C_p(250) = 468.22 \quad C_p(600) = 647.34 \quad C_p(1000) = 683.05$   
 std error est = 0.5 max error est = 1.5

## IODINE PENTAFLUORIDE      $\text{IF}_5$      250-1500K

$$\begin{aligned} Cp(T) &= -58.2197 + 3.228146T - 7.466701E-03T^2 + 9.66136789E-06T^3 \\ &\quad - 7.133844E-09T^4 + 2.80488185E-12T^5 - 4.551596E-16T^6 \\ Cp(250) &= 407.87 \quad Cp(800) = 569.99 \quad Cp(1500) = 590.97 \\ \text{std error est} &= 0.5 \quad \text{max error est} = 1.5 \end{aligned}$$

IODOMETHANE  $\text{CH}_3\text{I}$  300–600K

$C_p(T) = 238.1717 \exp(0.0011T)$  max error est = 5.0%  
 ISOPRENE  $\text{CH}_3\text{C}(\text{CH}_3)\text{CHCH}_3$  275-1500K

ISOPRENE  $\text{CH}_2\text{C}(\text{CH}_3)\text{CHCH}_3$  275-1500K

$$C_p(T) = -396.2635 + 8.948094T - 1.0120624E-02T^2 + 7.068983E-06T^3 - 2.65012106E-09T^4 + 3.98613124E-13T^5$$

$$C_p(275) = 1431.57 \quad C_p(900) = 3109.24 \quad C_p(1500) = 3723.02$$

std error est = 1.9 max error est = 4.5

275-1500K

$$T(Cp) = 1061.69 - 1.77172Cp + 1.3189685E-03Cp^2 - 3.9005614E-07Cp^3 + 4.618566E-11Cp^4$$

$$T(1431.57) = 278 \quad T(3109.24) = 896 \quad T(3723.02) = 1492$$

std error est = 4.4 max error est = 8.5

KETENE      H<sub>2</sub>CCO      250-1500K

$$\begin{aligned} \text{Cp}(T) &= 399.1048 + 2.617846T + 5.971587E-04T^2 - 5.279979E-06T^3 \\ &\quad + 6.195382E-09T^4 - 3.1370787E-12T^5 + 6.0082048E-16T^6 \\ \text{Cp}(250) &= 1029.67 \quad \text{Cp}(800) = 1839.39 \quad \text{Cp}(1500) = 2235.20 \\ \text{std error est} &= 1.0 \quad \text{max error est} = 2.5 \end{aligned}$$

250-1500K

$$\begin{aligned} \text{T(Cp)} &= 2213.102 - 6.36729113\text{Cp} + 7.14666E-03\text{Cp}^2 - 3.3641974E-06\text{Cp}^3 \\ &\quad + 6.1602663E-10\text{Cp}^4 \\ \text{T}(1029.67) &= 254 \quad \text{T}(1839.39) = 796 \quad \text{T}(2235.20) = 1494 \\ \text{- std error est} &= 4.0 \quad \text{- max error est} = 8.5 \end{aligned}$$

KRYPTON      Kr      ALL TEMPERATURES

- Cp(T) = 248.05 - constant

MESITYLENE      C<sub>6</sub>H<sub>3</sub>(CH<sub>3</sub>)<sub>3</sub>      300-1500K

$$\begin{aligned} \text{Cp}(T) &= 240.097 + 2.177066T + 7.26309147E-03T^2 - 1.36166E-05T^3 \\ &\quad + 9.1161133E-09T^4 - 2.1807381E-12T^5 \\ \text{Cp}(300) &= 1247.79 \quad \text{Cp}(800) = 2677.81 \quad \text{Cp}(1500) = 3481.97 \\ \text{std error est} &= 1.5 \quad \text{max error est} = 2.5 \end{aligned}$$

300-1500K

$$\begin{aligned} \text{T(Cp)} &= 439.7914 - 0.759142\text{Cp} + 8.223984E-04\text{Cp}^2 - 2.963892E-07\text{Cp}^3 \\ &\quad + 4.24823947E-11\text{Cp}^4 \\ \text{T}(1247.79) &= 300 \quad \text{T}(2677.81) = 797 \quad \text{T}(3481.97) = 1500 \\ \text{- std error est} &= 2.9 \quad \text{- max error est} = 4.5 \end{aligned}$$

METHANE - Ideal gas      CH<sub>4</sub>      275-755K

$$\begin{aligned} \text{Cp}(T) &= 1916.5258 - 1.09269T + 8.696605E-03T^2 - 5.2291144E-06T^3 \\ \text{Cp}(275) &= 2164.97 \quad \text{Cp}(500) = 2890.69 \quad \text{Cp}(755) = 3799.38 \\ \text{std error est} &= 0.2 \quad \text{max error est} = 1.0 \end{aligned}$$

755-1365K

$$\begin{aligned} \text{Cp}(T) &= 10435.6 - 42.025284T + 8.849006E-02T^2 - 8.4304566E-05T^3 \\ &\quad + 3.9030203E-08T^4 - 7.1345169E-12T^5 \\ \text{Cp}(755) &= 3797.77 \quad \text{Cp}(1000) = 4491.5 \quad \text{Cp}(1365) = 5224.89 \\ \text{std error est} &= 1.0 \quad \text{max error est} = 2.5 \end{aligned}$$

275-755K

$$\begin{aligned} \text{T(Cp)} &= -1405.54 + 1.36736\text{Cp} - 3.55452E-04\text{Cp}^2 + 3.823585E-08\text{Cp}^3 \\ \text{T}(2164.97) &= 277 \quad \text{T}(2890.69) = 500 \quad \text{T}(3799.38) = 756 \\ \text{std error est} &= 0.5 \quad \text{max error est} = 2.5 \end{aligned}$$

755-1365K

$$\begin{aligned} \text{T(Cp)} &= -2892.182 + 2.2452\text{Cp} - 5.10113E-04\text{Cp}^2 + 4.52369E-08\text{Cp}^3 \\ \text{T}(3797.77) &= 755 \quad \text{T}(4491.5) = 1000 \quad \text{T}(5224.89) = 1365 \\ \text{std error est} &= 0.4 \quad \text{max error est} = 2.5 \end{aligned}$$

METHANE - Real gas

METHANE - Real gas (continued) 275-510K

$$Cp(T) = -12236.8831 + 262.518875T - 1.9826045T^2 + 7.840392E-03T^3 \\ - 1.70541464E-05T^4 + 1.9431809E-08T^5 - 9.08114724E-12T^6$$

$$Cp(275) = 2175.89 \quad Cp(375) = 2457.67 \quad Cp(510) = 2912.87 \\ \text{std error est} = 2.7 \quad \text{max error est} = 6.5$$

275-510K

$$T(Cp) = -742.678 + 0.58853377Cp - 5.46177054E-05Cp^2$$

$$T(2175.89) = 279 \quad T(2457.67) = 374 \quad T(2912.87) = 508$$

$$- \text{std error est} = 2.8 \quad - \text{max error est} = 5.5$$

METHANE, DIDEUTERATED  $\text{CH}_2\text{D}_2$  95-1275K

$$\ln[Cp(T)] = 7.6070340658 - 1.74744883E-03T + 9.23134494E-06T^2 \\ - 1.06684914E-08T^3 + 3.85790574E-12T^4$$

$$Cp(95) = 1836.3 \quad Cp(675) = 3475.02 \quad Cp(1275) = 4762.75$$

$$- \text{**Note: } Cp(T) = \exp[fctn(T)] \quad - \text{max error est} = 45.0$$

METHANE, DIDEUTERATED  $\text{CD}_2\text{T}_2$  95-1275K

DITRITIATED

$$Cp(T) = 1858.141 - 6.9817888T + 4.033067E-02T^2 - 6.835852E-05T^3 \\ + 5.20572E-08T^4 - 1.490558E-11T^5$$

$$Cp(95) = 1504.37 \quad Cp(675) = 3215.76 \quad Cp(1275) = 4180.76$$

$$- \text{std error est} = 3.0 \quad - \text{max error est} = 6.5$$

METHANE, DITRITIATED  $\text{CH}_2\text{T}_2$  95-1275K

$$Cp(T) = 1861.969 - 3.8411072T + 1.9495867E-02T^2 - 2.0658472E-05T^3 \\ + 7.0155845E-09T^4$$

$$Cp(95) = 1655.87 \quad Cp(675) = 3254.97 \quad Cp(1275) = 4379.07$$

$$- \text{std error est} = 7.2 \quad - \text{max error est} = 15.0$$

METHANE, MONODEUTERATED  $\text{CH}_3\text{D}$  95-1275K

$$\ln[Cp(T)] = 7.685260605 - 1.89630346E-03T + 8.85273067E-06T^2 \\ - 9.69191539E-09T^3 + 3.378275E-12T^4$$

$$Cp(95) = 1952.7 \quad Cp(675) = 3495.99 \quad Cp(1275) = 4905.71$$

$$- \text{**Note: } Cp(T) = \exp[fctn(T)] \quad - \text{max error est} = 9.5$$

METHANE, MONODEUTERATED,  $\text{CDT}_3$  95-1275K

TRITRITIATED

$$Cp(T) = 1792.8646 - 7.153158T + 4.2595806E-02T^2 - 7.46524585E-05T^3 \\ + 5.84466516E-08T^4 - 1.70935846E-11T^5$$

$$Cp(95) = 1438.36 \quad Cp(675) = 3150.99 \quad Cp(1275) = 4046.87$$

$$- \text{std error est} = 1.2 \quad - \text{max error est} = 2.5$$

METHANE, MONOTRITIATED  $\text{CH}_3\text{T}$  95-1275K

$$\ln[Cp(T)] = 7.623967385 - 1.89530858E-03T + 9.19540139E-06T^2 \\ - 1.02844644E-08T^3 + 3.63747258E-12T^4$$

METHANE, MONOTRITIATED (continued)

$C_p(95) = 1841.58$      $C_p(675) = 3382.78$      $C_p(1275) = 4684.41$   
~~- \*\*Note:  $C_p(T) = \exp[fctn(T)]$~~     ~~max error est = 11.5~~

METHANE, TETRADEUTERATED  $CD_4$     95-1275K

$\ln[C_p(T)] = 7.6175941054 - 4.03359764E-03T + 2.34289511E-05T^2$   
 $- 4.27574857E-08T^3 + 3.43557214E-11T^4 - 1.01858966E-14T^5$   
 $C_p(95) = 1655.58$      $C_p(675) = 3376.31$      $C_p(1275) = 4488.86$   
~~- \*\*Note:  $C_p(T) = \exp[fctn(T)]$~~     ~~max error est = 15.0~~

METHANE, TETRATRITIATED  $CT_4$     95-1275K

$C_p(T) = 1736.415 - 7.3850897T + 4.525255E-02T^2 - 8.1987002E-05T^3$   
 $+ 6.5925034E-08T^4 - 1.9662464E-11T^5$   
 $C_p(95) = 1378.16$      $C_p(675) = 3085.25$      $C_p(1275) = 3918.72$   
~~- std error est = 2.9~~    ~~max error est = 9.5~~

METHANE, TRIDEUTERATED  $CHD_3$     95-1275K

$C_p(T) = 1967.71 - 4.14269394T + 2.0693509E-02T^2 - 2.1823919E-05T^3$   
 $+ 7.39241354E-09T^4$   
 $C_p(95) = 1742.80$      $C_p(675) = 3422.62$      $C_p(1275) = 4627.45$   
~~- std error est = 8.8~~    ~~max error est = 15.0~~

METHANE, TRIDEUTERATED,  $CD_3T$     95-1275K  
 MONOTRITIATED

$C_p(T) = 1909.6275 - 6.445028T + 3.602721E-02T^2 - 5.7366078E-05T^3$   
 $+ 4.11246853E-08T^4 - 1.11879465E-11T^5$   
 $C_p(95) = 1576.57$      $C_p(675) = 3300.89$      $C_p(1275) = 4339.79$   
~~- std error est = 5.3~~    ~~max error est = 11.0~~

METHANE, TRITRITIATED  $CHT_3$     95-1275K

$C_p(T) = 1793.405 - 5.700601T + 3.260151E-02T^2 - 5.1462346E-05T^3$   
 $+ 3.64062843E-08T^4 - 9.77635312E-12T^5$   
 $C_p(95) = 1504.84$      $C_p(675) = 3160.29$      $C_p(1275) = 4127.4$   
~~- std error est = 3.6~~    ~~max error est = 6.5~~

METHANETHIOL  $CH_3SH$     300-1000K

$C_p(T) = 706.9902 + 0.0461346T + 6.2988574E-03T^2 - 1.0655555E-05T^3$   
 $+ 7.67648136E-09T^4 - 2.11193895E-12T^5$   
 $C_p(300) = 1057.08$      $C_p(700) = 1659.04$      $C_p(1000) = 1960.97$   
~~std error est = 0.5~~    ~~max error est = 2.5~~

300-1000K

 $T(C_p) = -689.19 + 1.5805785C_p - 8.9447465E-04C_p^2 + 2.6908387E-07C_p^3$   
 $T(1057.08) = 300$      $T(1659.04) = 700$      $T(1960.97) = 1000$   
~~- std error est = 0.4~~    ~~max error est = 1.5~~



2-METHYL-2-BUTANOL  $(\text{CH}_3)_2\text{COHCH}_2\text{CH}_3$  400-575K

$$\ln[\text{Cp}(T)] = 722.5726607 - 5.769804449T + 0.012524666T^2 + 1.60592914E-05T^3 - 1.06765564E-07T^4 + 1.57879296E-10T^5 - 7.86807765E-14T^6$$

$$\text{Cp}(400) = 2000.65 \quad \text{Cp}(500) = 2301.88 \quad \text{Cp}(575) = 2736.30$$

- \*\*Note:  $\text{Cp}(T) = \exp[f_{\text{ctn}}(T)]$  - - - - - max\_error\_est = 10.0

3-METHYL-1-BUTANOL  $(\text{CH}_3)_2\text{CH}(\text{CH}_2)_2\text{OH}$  450-500K

$$\text{Cp}(T) = 12449.8133 - 46.47211274T + 5.25188485E-02T^2$$
$$\text{Cp}(450) = 2172.43 \quad \text{Cp}(475) = 2225.12 \quad \text{Cp}(500) = 2343.47$$

std error est = 1.1 max error est = 4.5

450-500K

$$T(\text{Cp}) = -6275.55 + 5.7093249\text{Cp} - 1.20269088E-03\text{Cp}^2$$
$$T(2172.43) = 452 \quad T(2225.12) = 474 \quad T(2343.47) = 499$$

- std error est = 2.4 - - - - - max\_error\_est = 6.0

3-METHYL-1-BUTYNE  $(\text{CH}_3)_2\text{CHCCH}$  300-1500K

$$\text{Cp}(T) = 17.777 + 6.352748T - 4.78347376E-03T^2 + 1.9843222E-06T^3 - 3.49882302E-10T^4$$
$$\text{Cp}(300) = 1543.83 \quad \text{Cp}(800) = 2911.21 \quad \text{Cp}(1500) = 3709.89$$

std error est = 2.0 max error est = 4.5

300-1500K

$$T(\text{Cp}) = 1134.29 - 1.94512287\text{Cp} + 1.4522943E-03\text{Cp}^2 - 4.2842051E-07\text{Cp}^3 + 4.99658252E-11\text{Cp}^4$$
$$T(1543.83) = 300 \quad T(2911.21) = 799 \quad T(3709.89) = 1496$$

- std error est = 2.9 - - - - - max\_error\_est = 6.5

METHYL CHLORIDE  $\text{CH}_3\text{Cl}$  255-755K

Ideal gas

$$\text{Cp}(T) = 332.8997 + 1.6366402T - 3.801244E-05T^2 - 4.04253913E-07T^3$$
$$\text{Cp}(275) = 771.69 \quad \text{Cp}(500) = 1091.19 \quad \text{Cp}(755) = 1372.92$$

std error est = 0.2 max error est = 2.5

755-1365K

$$\text{Cp}(T) = 526.238 + 1.16955813T + 2.7488708E-04T^2 - 5.75072686E-07T^3 + 1.67250614E-10T^4$$
$$\text{Cp}(755) = 1372.8 \quad \text{Cp}(1000) = 1562.86 \quad \text{Cp}(1365) = 1752.91$$

std error est = 0.1 max error est = 1.0

255-755K

$$T(\text{Cp}) = -458.583 + 1.4667588\text{Cp} - 9.82376432E-04\text{Cp}^2 + 4.05810172E-07\text{Cp}^3$$
$$T(771.69) = 275 \quad T(1091.19) = 499 \quad T(1372.92) = 754$$

std error est = 0.5 max error est = 1.5

755-1365K

$$\text{Cp}(T) = -6942.55 + 14.831976\text{Cp} - 1.0193339E-02\text{Cp}^2 + 2.5303315E-06\text{Cp}^3$$
$$T(1372.8) = 755 \quad T(1562.86) = 999 \quad T(1752.91) = 1364$$

std error est = 0.6 max error est = 1.5

METHYL CYANIDE    CH<sub>3</sub>CN            290-1200K

$$Cp(T) = 1303.384 - 4.942871T + 2.849223E-02T^2 - 5.4871983E-05T^3 \\ + 5.3623977E-08T^4 - 2.63165765E-11T^5 + 5.11566313E-15T^6$$

$$Cp(290) = 1256.21 \quad Cp(650) = 1963.81 \quad Cp(1200) = 2567.87 \\ \text{std error est} = 1.7 \quad \text{max error est} = 4.5$$

290-1200K

$$T(Cp) = -813.42 + 1.58371Cp - 8.002791E-04Cp^2 + 1.8985947E-07Cp^3 \\ T(1256.21) = 290 \quad T(1963.81) = 648 \quad T(2567.87) = 1192$$

$$\text{std error est} = 4.4 \quad \text{max error est} = 9.5$$

METHYL ETHER    (CH<sub>3</sub>)<sub>2</sub>O            275-1275K

$$Cp(T) = 626.107 + 2.175166T + 2.77749E-03T^2 - 3.7041748E-06T^3 \\ + 1.1994434E-09T^4$$

$$Cp(275) = 1364.15 \quad Cp(675) = 2469.63 \quad Cp(1275) = 3406.78 \\ \text{std error est} = 7.2 \quad \text{max error est} = 15.5$$

275-1275K

$$T(Cp) = -687.49 + 1.161406Cp - 4.4639784E-04Cp^2 + 8.05362496E-08Cp^3 \\ T(1364.15) = 271 \quad T(2469.63) = 671 \quad T(3406.78) = 1273$$

$$\text{std error est} = 6.3 \quad \text{max error est} = 10.5$$

METHYLHYDRAZINE    CH<sub>3</sub>NHNH<sub>2</sub>            300-1500K

$$Cp(T) = -230.3353 + 8.3735806T - 1.038813E-02T^2 + 8.570289E-06T^3 \\ - 3.9110406E-09T^4 + 7.27987797E-13T^5$$

$$Cp(300) = 1548.29 \quad Cp(800) = 2844.7 \quad Cp(1500) = 3609.98 \\ \text{std error est} = 5.1 \quad \text{max error est} = 10.5$$

300-1500K

$$T(Cp) = 1646.485 - 2.833585Cp + 2.0125928E-03Cp^2 - 5.8370013E-07Cp^3 \\ + 6.66115245E-11Cp^4$$

$$T(1548.29) = 300 \quad T(2844.7) = 798 \quad T(3609.98) = 1498 \\ \text{std error est} = 4.7 \quad \text{max error est} = 7.5$$

METHYLLIDYNE    CH            300-1000K

$$Cp(T) = 2156.83 + 0.2622T \quad T(Cp) = [Cp - 2156.83]/0.2622$$

Note: There are only two data points in the reference source.

The accuracy of the fit cannot be adequately established.

METHYL ISOCYANIDE    CH<sub>3</sub>NC            275-755K

$$Cp(T) = 357.656 + 6.2401786T - 2.013433E-02T^2 + 4.623548E-05T^3 \\ - 5.0729918E-08T^4 + 2.0834756E-11T^5$$

$$Cp(275) = 1255.24 \quad Cp(500) = 1704.06 \quad Cp(755) = 2117.84 \\ \text{std error est} = 1.7 \quad \text{max error est} = 20.0$$

METHYL ISOCYANIDE (continued) 275-755K

$T(Cp) = -929.29 + 1.6998Cp - 8.2667574E-04Cp^2 + 1.88543E-07Cp^3$   
 $T(1255.24) = 275 \quad Cp(1704.06) = 500 \quad Cp(2117.84) = 754$   
- std error est = 0.9 max error est = 3.5

2-METHYLPENTANE  $(CH_3)_2CH(CH_2)_2CH_3$  300-1000K

$Cp(T) = 684.245 - 5.70106E-03T + 1.9830116E-02T^2 - 3.690549E-05T^3$   
 $+ 2.8436028E-08T^4 - 8.1932667E-12T^5$

$Cp(300) = 1681.22 \quad Cp(600) = 2896.28 \quad Cp(1000) = 3845.93$   
std error est = 2.0 max error est = 4.5

300-1000K

$T(Cp) = -220.405 + 0.475071Cp - 1.430724E-04Cp^2 + 2.652954E-08Cp^3$   
 $T(1681.22) = 300 \quad T(2896.28) = 600 \quad T(3845.93) = 1000$   
- std error est = 0.6 max error est = 2.5

3-METHYLPENTANE  $[CH_3CH_2]_2CH(CH_3)$  300-1000K

$Cp(T) = 1424.458 - 8.421426T + 6.009702E-02T^2 - 1.35448706E-04T^3$   
 $+ 1.5779472E-07T^4 - 9.48522387E-11T^5 + 2.3256203E-14T^6$

$Cp(300) = 1714.25 \quad Cp(600) = 2909.14 \quad Cp(1000) = 3850.03$   
std error est = 1.4 max error est = 3.5

300-1000K

$T(Cp) = -226.975 + 0.4721466Cp - 1.4127356E-04Cp^2 + 2.633499E-08Cp^3$   
 $T(1714.25) = 300 \quad T(2909.14) = 599 \quad T(3850.03) = 1000$   
- std error est = 0.7 max error est = 2.5

4-METHYL-2-PENTANONE  $CH_3COCH_2CH(CH_3)_2$  275-1275K

$Cp(T) = 266.655 + 4.794024T - 2.2291946E-03T^2 + 3.4395827E-07T^3$   
 $Cp(275) = 1423.58 \quad Cp(675) = 2592.73 \quad Cp(1275) = 3468.11$   
std error est = 7.0 max error est = 15.5

275-1275K

$T(Cp) = 892.053 - 1.68075Cp + 1.3909914E-03Cp^2 - 4.3712435E-07Cp^3$   
 $+ 5.3282889E-11Cp^4$

$T(1423.58) = 275 \quad T(2592.73) = 674 \quad T(3468.11) = 1268$   
- std error est = 8.1 max error est = 17.5

2-METHYL-1-PROPANOL  $(CH_3)_2CHCH_2OH$  390-600K

$Cp(T) = 66430.768 - 523.644673T + 1.572952115T^2 - 2.07471664E-03T^3$   
 $+ 1.01994038E-06T^4$

$Cp(390) = 1980.96 \quad Cp(500) = 2253.15 \quad Cp(600) = 2552.20$   
std error est = 8.1 max error est = 15.5

390-600K

$T(Cp) = -585.026 + 0.6296626Cp - 6.49129487E-05Cp^2$   
 $T(1980.96) = 407 \quad T(2253.15) = 504 \quad T(2552.20) = 599$   
- std error est = 7.9 max error est = 17.5

2-METHYL-2-PROPANOL  $(\text{CH}_3)_3\text{COH}$  360-590K

$$\begin{aligned}\text{Cp}(\text{T}) = & 1159558.4 - 14251.01382\text{T} + 72.825463058\text{T}^2 - 0.1978064\text{T}^3 \\ & + 3.0125819\text{E}-04\text{T}^4 - 2.4393359\text{E}-07\text{T}^5 + 8.2046497\text{E}-11\text{T}^6 \\ \text{Cp}(360) = & 2123.03 \quad \text{Cp}(450) = 2152.98 \quad \text{Cp}(590) = 2625.67 \\ \underline{\text{std error est}} = & 3.9 \quad \underline{\text{max error est}} = 10.5\end{aligned}$$

2-METHYLPROPENE  $(\text{CH}_3)_2\text{CCH}_2$  275-1500K

$$\begin{aligned}\text{Cp}(\text{T}) = & 360.3445 + 3.60460787\text{T} + 4.45078\text{E}-03\text{T}^2 - 1.2087027\text{E}-05\text{T}^3 \\ & + 1.1350898\text{E}-08\text{T}^4 - 5.08523225\text{E}-12\text{T}^5 + 8.992065\text{E}-16\text{T}^6 \\ \text{Cp}(275) = & 1494.14 \quad \text{Cp}(800) = 3122.69 \quad \text{Cp}(1500) = 4078.26 \\ \underline{\text{std error est}} = & 1.1 \quad \underline{\text{max error est}} = 8.0 \\ \underline{\text{275-1500K}} \\ \text{T}(\text{Cp}) = & 675.5 - 1.08191523\text{Cp} + 8.400338\text{E}-04\text{Cp}^2 - 2.3638415\text{E}-07\text{Cp}^3 \\ & + 2.637218\text{E}-11\text{Cp}^4 \\ \text{T}(1494.14) = & 277 \quad \text{T}(3122.69) = 798 \quad \text{T}(4078.26) = 1496 \\ \underline{\text{std error est}} = & 2.8 \quad \underline{\text{max error est}} = 5.5\end{aligned}$$

METHYL SULFIDE  $(\text{CH}_3)_2\text{S}$  300-1000K

$$\begin{aligned}\text{Cp}(\text{T}) = & -275.0796 + 10.650717\text{T} - 3.669097\text{E}-02\text{T}^2 + 8.1787615\text{E}-05\text{T}^3 \\ & - 9.94226515\text{E}-08\text{T}^4 + 6.1455998\text{E}-11\text{T}^5 - 1.51906388\text{E}-14\text{T}^6 \\ \text{Cp}(300) = & 1159.15 \quad \text{Cp}(600) = 1757.63 \quad \text{Cp}(1000) = 2314.99 \\ \underline{\text{std error est}} = & 0.7 \quad \underline{\text{max error est}} = 2.5 \\ \underline{\text{300-1000K}} \\ \text{T}(\text{Cp}) = & -553.78 + 1.1759729\text{Cp} - 5.4085555\text{E}-04\text{Cp}^2 + 1.3944132\text{E}-07\text{Cp}^3 \\ \text{T}(1159.15) = & 300 \quad \text{T}(1757.63) = 599 \quad \text{T}(2314.99) = 1000 \\ \underline{\text{std error est}} = & 1.0 \quad \underline{\text{max error est}} = 2.5\end{aligned}$$

NEON Ne Ideal gas ALL TEMPERATURES

$$\underline{\text{Cp}(\text{T}) = 1029.91 - \text{constant}}$$

NITRIC OXIDE - Ideal gas NO 110-1365K

$$\begin{aligned}\text{Cp}(\text{T}) = & 1188.304 - 1.4425597\text{T} + 3.465558\text{E}-03\text{T}^2 - 2.861451\text{E}-06\text{T}^3 \\ & + 4.0387214\text{E}-10\text{T}^4 + 6.1972525\text{E}-13\text{T}^5 - 2.4090578\text{E}-16\text{T}^6 \\ \text{Cp}(110) = & 1067.82 \quad \text{Cp}(800) = 1092.5 \quad \text{Cp}(1365) = 1179.32 \\ \underline{\text{std error est}} = & 0.3 \quad \underline{\text{max error est}} = 2.5\end{aligned}$$

NITRIC OXIDE - Real gas 165-645K

$$\begin{aligned}\text{Cp}(\text{T}) = & 1378.8188 - 3.82241\text{T} + 1.7887256\text{E}-02\text{T}^2 - 5.6028657\text{E}-05\text{T}^3 \\ & + 1.16489\text{E}-07\text{T}^4 - 1.32980437\text{E}-10\text{T}^5 + 6.13527678\text{E}-14\text{T}^6 \\ \text{Cp}(165) = & 1054.73 \quad \text{Cp}(400) = 997.68 \quad \text{Cp}(645) = 1054.39 \\ \underline{\text{std error est}} = & 0.3 \quad \underline{\text{max error est}} = 1.5\end{aligned}$$

NITRIC OXIDE - Real gas (continued) 645-1365K

$$\begin{aligned} \text{Cp}(T) &= 806.451 + 0.506398T - 2.0853977E-04T^2 + 2.8257004E-08T^3 \\ \text{Cp}(645) &= 1053.90 \quad \text{Cp}(1000) = 1132.57 \quad \text{Cp}(1365) = 1180.99 \\ \text{std error est} &= 0.2 \quad \text{max error est} = 1.5 \end{aligned}$$

645-1365K

$$\begin{aligned} \text{T(Cp)} &= -152350.55 + 425.34707\text{Cp} - 0.39764893\text{Cp}^2 + 1.2506075E-04\text{Cp}^3 \\ \text{T}(1053.90) &= 645 \quad \text{T}(1132.57) = 998 \quad \text{T}(1180.99) = 1361 \\ \text{std error est} &= 2.0 \quad \text{max error est} = 4.5 \end{aligned}$$

NITROGEN - Ideal gas N<sub>2</sub> 255-590K

$$\begin{aligned} \text{Cp}(T) &= 1088.047 - 0.355968T + 7.2907605E-04T^2 - 2.8861556E-07T^3 \\ \text{Cp}(255) &= 1039.9 \quad \text{Cp}(450) = 1049.2 \quad \text{Cp}(590) = 1072.54 \\ \text{std error est} &= 0.1 \quad \text{max error est} = 1.0 \end{aligned}$$

590-1365K

$$\begin{aligned} \text{Cp}(T) &= 1405.5077 - 2.1894566T + 4.7852898E-03T^2 - 4.540166E-06T^3 \\ &\quad + 2.08491259E-09T^4 - 3.7903033E-13T^5 \\ \text{Cp}(590) &= 1072.57 \quad \text{Cp}(1000) = 1167.06 \quad \text{Cp}(1365) = 1227.83 \\ \text{std error est} &= 0.1 \quad \text{max error est} = 1.5 \end{aligned}$$

Note: For T(Cp) calculations from 255-590K, use the iterative procedures discussed in Section 5 and the following eqn: 255-590K,  
 $\text{Cp}(T) = 1068.513739 - 0.20687009T + 3.63655082E-04T^2$ .

590-1365K

$$\begin{aligned} \text{Cp}(T) &= -126050.925 + 333.06633\text{Cp} - 0.295083212\text{Cp}^2 + 8.823403E-05\text{Cp}^3 \\ \text{T}(1072.57) &= 592 \quad \text{T}(1167.06) = 1000 \quad \text{T}(1227.83) = 1365 \\ \text{std error est} &= 0.8 \quad \text{max error est} = 4.5 \end{aligned}$$

NITROGEN - Real gas 255-1365K

$$\begin{aligned} \text{Cp}(T) &= 1058.5365 - 4.391145E-03T - 7.6852515E-04T^2 + 2.751091E-06T^3 \\ &\quad - 3.1245817E-09T^4 + 1.5407594E-12T^5 - 2.8488096E-16T^6 \\ \text{Cp}(255) &= 1041.43 \quad \text{Cp}(800) = 1122.09 \quad \text{Cp}(1365) = 1228.69 \\ \text{std error est} &= 0.2 \quad \text{max error est} = 1.0 \end{aligned}$$

NITROGEN (Monatomic) N 50-1500K

Cp(T) = 1485.0 - constant

NITROUS OXIDE - Ideal gas N<sub>2</sub>O 200-1365K

$$\begin{aligned} \text{Cp}(T) &= 419.153 + 2.2147124T - 2.922847E-03T^2 + 2.51402093E-06T^3 \\ &\quad - 1.21894601E-09T^4 + 2.4536593E-13T^5 \\ \text{Cp}(200) &= 763.42 \quad \text{Cp}(800) = 1188.6 \quad \text{Cp}(1365) = 1321.25 \\ \text{std error est} &= 0.2 \quad \text{max error est} = 1.5 \end{aligned}$$

NITROUS OXIDE (continued) 200-1365K

$$T(Cp) = 14575.3 - 61.673304Cp + 9.760584E-02Cp^2 - 6.8073563E-05Cp^3 + 1.8008804E-08Cp^4$$

$$T(763.42) = 207 \quad Cp(1188.6) = 798 \quad Cp(1321.25) = 1349 \\ \text{std error est} = 4.5 \quad \text{max error est} = 15.5$$

n-NONANE - Ideal gas C<sub>9</sub>H<sub>20</sub> 275-755K

$$Cp(T) = 234.445 + 5.1354876T - 6.79961E-04T^2 - 1.0363492E-06T^3$$

$$Cp(275) = 1573.73 \quad Cp(500) = 2502.65 \quad Cp(755) = 3278.13 \\ \text{std error est} = 0.2 \quad \text{max error est} = 10$$

755-1365K

$$Cp(T) = 4090.2728 - 12.293253T + 3.122246E-02T^2 - 3.12285246E-05T^3 + 1.46875287E-08T^4 - 2.6962143E-12T^5$$

$$Cp(755) = 3277.62 \quad Cp(1000) = 3782.27 \quad Cp(1365) = 4273.54 \\ \text{std error est} = 0.5 \quad \text{max error est} = 1.5$$

275-755K

$$T(Cp) = -224.99 + 0.4584096Cp - 1.27932559E-04Cp^2 + 2.413833E-08Cp^3$$

$$T(1573.73) = 274 \quad T(2502.65) = 499 \quad T(3278.13) = 753 \\ \text{std error est} = 0.7 \quad \text{max error est} = 4.5$$

755-1365K

$$T(Cp) = -5895.99 + 5.3023838Cp - 1.510136E-03Cp^2 + 1.5605569E-07Cp^3$$

$$T(3277.62) = 755 \quad T(3782.27) = 999 \quad T(4273.54) = 1364 \\ \text{std error est} = 0.6 \quad \text{max error est} = 2.5$$

n-OCTANE - Ideal gas C<sub>8</sub>H<sub>18</sub> 275-755K

$$Cp(T) = 214.4198 + 5.356905T - 1.17497E-03T^2 - 6.991155E-07T^3$$

$$Cp(275) = 1584.17 \quad Cp(500) = 2511.74 \quad Cp(755) = 3288.24 \\ \text{std error est} = 0.2 \quad \text{max error est} = 2.5$$

755-1365K

$$Cp(T) = 2435.9686 - 4.4681947T + 1.6684329E-02T^2 - 1.7885605E-05T^3 + 8.6428202E-09T^4 - 1.614265E-12T^5$$

$$Cp(755) = 3287.84 \quad Cp(1000) = 3795.05 \quad Cp(1365) = 4289.93 \\ \text{std error est} = 0.3 \quad \text{max error est} = 2.5$$

275-755K

$$T(Cp) = -200.8856 + 0.42218566Cp - 1.119355E-04Cp^2 + 2.1840378E-08Cp^3$$

$$T(1584.17) = 274 \quad T(2511.74) = 499 \quad T(3288.24) = 754 \\ \text{std error est} = 0.6 \quad \text{max error est} = 3.5$$

755-1365K

$$T(Cp) = -5575.87 + 5.022854Cp - 1.42858E-03Cp^2 + 1.47978204E-07Cp^3$$

$$T(3287.84) = 755 \quad T(3795.05) = 999 \quad T(4289.93) = 1364 \\ \text{std error est} = 0.7 \quad \text{max error est} = 2.5$$

OXYGEN - Ideal gas O<sub>2</sub> 255-590K

$$Cp(T) = 929.247 - 0.3220603T + 1.166523E-03T^2 - 7.1157865E-07T^3$$

$$Cp(255) = 911.18 \quad Cp(375) = 934.99 \quad Cp(590) = 999.15$$

## OXYGEN - Ideal gas (continued)

std error est = 0.1 max error est = 1.5

590-1365K

$$Cp(T) = 597.7293 + 1.183704T - 1.156226E-03T^2 + 5.82171E-07T^3 - 1.1772692E-10T^4$$

$$Cp(590) = 998.93 \quad Cp(1000) = 1089.65 \quad Cp(1365) = 1131.11 \\ \text{std error est} = 0.2 \qquad \qquad \qquad \text{max error est} = 1.5$$

255-590K

$$T(Cp) = -236734.7 + 726.57886Cp - 0.744909Cp^2 + 2.5566076E-04Cp^3$$

$$T(911.18) = 258 \quad T(934.99) = 376 \quad T(999.15) = 593$$

$$\text{std error est} = 0.9 \qquad \qquad \qquad \text{max error est} = 3.0$$

590-1365K

$$T(Cp) = -140010.9 + 416.5007Cp - 0.4145086Cp^2 + 1.386105E-04Cp^3$$

$$T(998.93) = 588 \quad T(1089.65) = 999 \quad T(1131.11) = 1361$$

$$\text{std error est} = 1.3 \qquad \qquad \qquad \text{max error est} = 5.5$$

## OXYGEN - Real gas

255-590K

$$Cp(T) = 953.3639 - 0.4638376T + 1.4358763E-03T^2 - 8.748782E-07T^3$$

$$Cp(255) = 913.95 \quad Cp(450) = 955.68 \quad Cp(590) = 999.85$$

$$\text{std error est} = 0.2 \qquad \qquad \qquad \text{max error est} = 1.5$$

590-1365K

$$Cp(T) = 219.422 + 3.319747T - 5.8573E-03T^2 + 5.63507E-06T^3 - 2.77339408E-09T^4 + 5.4687139E-13T^5$$

$$Cp(590) = 999.51 \quad Cp(1000) = 1090.42 \quad Cp(1365) = 1132.44$$

$$\text{std error est} = 0.3 \qquad \qquad \qquad \text{max error est} = 2.5$$

255-590K

$$T(Cp) = -295718.67 + 907.2036Cp - 0.92916735Cp^2 + 3.182752E-04Cp^3$$

$$T(913.95) = 262 \quad T(955.68) = 452 \quad T(999.85) = 592$$

$$\text{std error est} = 2.7 \qquad \qquad \qquad \text{max error est} = 6.5$$

590-1365K

$$T(Cp) = -132405.2 + 394.1196Cp - 0.392574Cp^2 + 1.3144876E-04Cp^3$$

$$T(999.51) = 588 \quad T(1090.42) = 1001 \quad T(1132.44) = 1365$$

$$\text{std error est} = 2.0 \qquad \qquad \qquad \text{max error est} = 4.5$$

OXYGEN (Monatomic) 0 100-1500K

$$Cp(T) = 1585.2189 - 1.215663T + 2.1959047E-03T^2 - 1.99642E-06T^3 + 8.9693573E-10T^4 - 1.5832808E-13T^5$$

$$Cp(100) = 1483.70 \quad Cp(800) = 1311.40 \quad Cp(1500) = 1303.03$$

$$\text{std error est} = 2.2 \qquad \qquad \qquad \text{max error est} = 4.5$$

OXYGEN FLUORIDE OF<sub>2</sub> 250-1500K

$$Cp(T) = 332.589 + 2.433234T - 3.634798E-03T^2 + 2.898411E-06T^3 - 1.1968015E-09T^4 + 2.0153116E-13T^5$$

$$Cp(250) = 754.53 \quad Cp(800) = 1012.72 \quad Cp(1500) = 1057.85$$

$$\text{std error est} = 0.6 \qquad \qquad \qquad \text{max error est} = 2.5$$

## OXYGEN FLUORIDE (continued)

Note: For T(Cp) calculations, use the iterative procedures discussed in Section 5 and the following eqn: 250-1500K,  $C_p(T) = 473.5175767 + 1.433681085T - 1.2241397E-03T^2 + 3.5368257E-07T^3$ .

**n-PENTANE - Ideal gas C<sub>5</sub>H<sub>12</sub> 275-755K**

$C_p(T) = 272.2797 + 4.8751313T - 7.26261E-05T^2 - 1.3441227E-06T^3$   
 $C_p(255) = 1488.43 \quad C_p(500) = 2523.67 \quad C_p(755) = 3333.14$   
 std error est = 0.2 max error est = 1.5

$$C_p(T) = \frac{755-1365K}{T} - 3335.717 - 8.6427T + 2.4429916E-02T^2 - 2.47927E-05T^3 + 1.16644237E-08T^4 - 3.12511209E-12T^5$$

$C_p(755) = 3332.45 \quad C_p(1000) = 3859.55 \quad C_p(1365) = 4378.1$   
 $\text{std error est} = 0.4 \quad \text{max error est} = 1.5$

$$T(Cp) = -212.8507 + 0.43514236Cp - \frac{1.13646E-04Cp^2}{255-755K} + 2.102165E-08Cp^3$$

$$T(1488.43) = 252 \quad T(2523.67) = 499 \quad T(3333.14) = 754$$

std error est = 0.6 max error est = 2.5  
 $T(C_p) = -5111.7 + 4.53933127C_p - \frac{755-1365K}{1.2637957E-03C_p^2} + 1.29008845E-07C_p^3$   
 $T(3332.45) = 755 \quad T(3859.55) = 999 \quad T(4378.1) = 1364$   
 std error est = 0.6 max error est = 2.5

## n-PENTANE - Real gas

PENTANE real gas ~~275-610~~  
 $C_p(T) = 568.52265 + 3.2610887T + 2.9780582E-03T^2 - 3.3016552E-06T^3$   
 $C_p(275) = 1621.87 \quad C_p(475) = 2435.62 \quad C_p(610) = 2916.51$   
 std error est = 1.1 max error est = 2.5

$T(Cp) = -24.41966 + 0.14680646Cp + \frac{275-610K}{2.40140066E-05Cp^2}$   
 $T(1621.87) = 277$        $T(2435.62) = 476$        $T(2916.51) = 608$   
 std error est = 1.0      max error est = 2.5

**1-PENTANOL**       $\text{CH}_3(\text{CH}_2)_3\text{OH}$       420-575K

$$\ln[C_p(T)] = 10.279185082 - 1.70935586E-02T + 3.51784187E-05T^2 - 2.23529412E-08T^3$$

**Cp(420) = 2098.13    Cp(500) = 2280.35    Cp(575) = 2516.24**  
**\*\*Note: Cp(T) = exp[fctn(T)]                       max error est = 31.5**

**3-PENTANONE**       $(\text{C}_3\text{H}_7)_2\text{CO}$       275-1275K

$$Cp(T) = 454.357 + 3.5460727T - 7.37756E-06T^2 - 1.42200623E-06T^3 + 5.2151059E-10T^4$$

## 3-PENTANONE (continued)

$T(C_p) = 613.076 - 1.234964C_p + \frac{275-1275K}{4}C_p^2 - 3.77839E-07C_p^3$   
 $+ 4.8618495E-11C_p^4$   
 $T(1402.39) = 276 \quad T(2904.59) = 874 \quad T(3394.43) = 1273$   
 $\underline{\text{std error est} = 4.6} \quad \underline{\text{max error est} = 12.5}$

1-PENTENE  $\text{CH}_2\text{CH}(\text{CH}_2)_2\text{CH}_3$  300-1000K

$C_p(T) = -2907.644 + 35.149484T - 0.12403026T^2 + 2.59522805E-04T^3$   
 $- 3.0126233E-07T^4 + 1.8150582E-10T^5 - 4.4468884E-14T^6$   
 $C_p(300) = 1450.01 \quad C_p(600) = 2583.63 \quad C_p(1000) = 3508.99$   
 $\underline{\text{std error est} = 0.7} \quad \underline{\text{max error est} = 2.0}$

$\underline{\text{300-1000K}}$

$T(C_p) = 687.768 - 1.0899882C_p + \frac{300-1000K}{4}C_p^2 - 2.5959466E-07C_p^3$   
 $+ 2.9687246E-11C_p^4$   
 $T(1450.01) = 300 \quad T(2583.63) = 600 \quad T(3508.99) = 999$   
 $\underline{\text{std error est} = 1.1} \quad \underline{\text{max error est} = 2.5}$

1-PENTYNE  $\text{HCCCH}_2\text{CH}_2\text{CH}_3$  300-1500K

$C_p(T) = 728.51 + 0.945078T + 1.1769974E-02T^2 - 2.4194313E-05T^3$   
 $+ 2.2017637E-08T^4 - 9.7690847E-12T^5 + 1.7071486E-15T^6$   
 $C_p(300) = 1573.93 \quad C_p(600) = 2480.27 \quad C_p(1500) = 3698.55$   
 $\underline{\text{std error est} = 2.3} \quad \underline{\text{max error est} = 5.5}$

$\underline{\text{300-1500K}}$

$T(C_p) = 1238.15 - 2.163448C_p + \frac{300-1500K}{4}C_p^2 - 4.685943E-07C_p^3$   
 $+ 5.38393765E-11C_p^4$   
 $T(1573.93) = 301 \quad T(2480.27) = 604 \quad T(3698.55) = 1493$   
 $\underline{\text{std error est} = 4.9} \quad \underline{\text{max error est} = 10.5}$

2-PENTYNE  $\text{CH}_3\text{CCH}_2\text{CH}_3$  300-1500K

$C_p(T) = 452.2996 + 2.3209779T + 5.95716E-03T^2 - 1.31102E-05T^3$   
 $+ 1.156122E-08T^4 - 4.958557E-12T^5 + 8.4360724E-16T^6$   
 $C_p(300) = 1412.97 \quad C_p(800) = 2741.04 \quad C_p(1500) = 3574.30$   
 $\underline{\text{std error est} = 2.2} \quad \underline{\text{max error est} = 4.5}$

$\underline{\text{300-1500K}}$

$T(C_p) = 921.43 - 1.691162C_p + \frac{300-1500K}{4}C_p^2 - 4.3702767E-07C_p^3$   
 $+ 5.350453E-11C_p^4$   
 $T(1412.97) = 300 \quad T(2741.04) = 799 \quad T(3574.30) = 1498$   
 $\underline{\text{std error est} = 3.9} \quad \underline{\text{max error est} = 7.5}$

PHOSGENE  $\text{COCl}_2$  100-1500K

$C_p(T) = 191.11 + 2.065565T - 3.2659378E-03T^2 + 2.8264054E-06T^3$   
 $- 1.2613311E-09T^4 + 2.2603022E-13T^5$

**PHOSGENE (continued)**

$C_p(100) = 367.71$        $C_p(800) = 757.91$        $C_p(1500) = 811.14$   
 $\underline{\underline{std\ error\ est = 1.8}}$        $\underline{\underline{max\ error\ est = 3.5}}$

**PHOSPHINE       $\text{PH}_3$       100-1500K**

$$C_p(T) = 1105.46 - 2.30246882T + 1.2040496E-02T^2 - 1.9018E-05T^3 \\ + 1.541445E-08T^4 - 6.4490826E-12T^5 + 1.0993473E-15T^6$$

$C_p(100) = 978.08$        $C_p(800) = 1720.90$        $C_p(1500) = 2142.31$   
 $\underline{\underline{std\ error\ est = 1.3}}$        $\underline{\underline{max\ error\ est = 2.5}}$

**PHOSPHINE, TRIDEUTERATED       $\text{PD}_3$       300-1000K**

$$C_p(T) = 577.57 + 1.8502044T + 7.1804343E-04T^2 - 2.132996E-06T^3 \\ + 9.1328895E-10T^4$$

$C_p(300) = 1147.06$        $C_p(700) = 1712.22$        $C_p(1000) = 1926.11$   
 $\underline{\underline{std\ error\ est = 0.4}}$        $\underline{\underline{max\ error\ est = 1.5}}$

$$T(C_p) = 4259.23 - 12.773886C_p + \frac{1.4525346E-02}{4}C_p^2 - 7.085359E-06C_p^3 \\ + 1.3141044E-09C_p^4$$

$T(1147.06) = 300$        $T(1712.22) = 700$        $T(1926.11) = 1000$   
 $\underline{\underline{std\ error\ est = 0.9}}$        $\underline{\underline{max\ error\ est = 3.5}}$

**PHOSPHORUS TRICHLORIDE       $\text{PCl}_3$       100-1500K**

$$C_p(T) = 118.82 + 2.8526816T - 7.620737E-03T^2 + 1.10669999E-05T^3 \\ - 8.9651026E-09T^4 + 3.799535E-12T^5 - 6.55658E-16T^6$$

$C_p(100) = 338.09$        $C_p(800) = 591.05$        $C_p(1500) = 600.84$   
 $\underline{\underline{std\ error\ est = 0.6}}$        $\underline{\underline{max\ error\ est = 1.5}}$

**PHOSPHORUS TRIFLUORIDE       $\text{PF}_3$       100-1500K**

$$C_p(T) = 250.76 + 1.7158179T - 4.21548E-04T^2 - 3.5547345E-06T^3 \\ + 5.2965343E-09T^4 - 3.00115347E-12T^5 + 6.166475E-16T^6$$

$C_p(100) = 415.07$        $C_p(800) = 881.29$        $C_p(1500) = 926.47$   
 $\underline{\underline{std\ error\ est = 1.8}}$        $\underline{\underline{max\ error\ est = 4.5}}$

**PROPADIENE       $\text{C}(\text{CH}_2)_2$       275-1500K**

$$C_p(T) = 252.095 + 4.5469778T - 4.231012E-04T^2 - 5.3604454E-06T^3 \\ + 6.62186899E-09T^4 - 3.3478109E-12T^5 + 6.3370948E-16T^6$$

$C_p(275) = 1391.92$        $C_p(800) = 2655.77$        $C_p(1500) = 3348.20$   
 $\underline{\underline{std\ error\ est = 0.9}}$        $\underline{\underline{max\ error\ est = 3.5}}$

**275-1500K**

$$T(C_p) = 1271.52 - 2.4411838C_p + \frac{1.9691654E-03}{4}C_p^2 - 6.3636372E-07C_p^3 \\ + 8.1224744E-11C_p^4$$

$T(1391.92) = 278$        $T(2655.77) = 798$        $T(3348.20) = 1495$

## PROPADIENE (continued)

- std error est = 3.3 max error est = 7.5

PROPANE - Ideal gas  $C_3H_8$  275-755K

$$Cp(T) = 84.1607 + 5.7701407T - 1.292127E-03T^2 - 6.9945925E-07T^3$$

$$Cp(275) = 1558.69 \quad Cp(500) = 2558.77 \quad Cp(755) = 3403.05$$

$$std\ error\ est = 0.2 \quad max\ error\ est = 1.5$$

755-1365K

$$Cp(T) = 3474.56 - 9.4956207T + 2.643558E-02T^2 - 2.6640384E-05T^3$$

$$+ 1.2466175E-08T^4 - 2.271073E-12T^5$$

$$Cp(755) = 3402.59 \quad Cp(1000) = 3969.24 \quad Cp(1365) = 4529.56$$

$$std\ error\ est = 0.4 \quad max\ error\ est = 1.5$$

275-755K

$$T(Cp) = -134.47 + 0.349Cp - 8.1104732E-05Cp^2 + 1.623344E-08Cp^3$$

$$T(1558.69) = 274 \quad T(2558.77) = 499 \quad T(3403.05) = 754$$

$$std\ error\ est = 0.6 \quad max\ error\ est = 2.5$$

755-1365K

$$T(Cp) = -4331.0 + 3.78505Cp - 1.0204888E-03Cp^2 + 1.02092847E-07Cp^3$$

$$T(3402.59) = 755 \quad T(3969.24) = 999 \quad T(4529.56) = 1364$$

- std error est = 0.6 max error est = 2.5

CYCLOPROPANE  $C_3H_8$  100-1000K

$$Cp(T) = 1304.37 - 9.76052T + 5.6216148E-02T^2 - 9.9085315E-05T^3$$

$$+ 7.8256763E-08T^4 - 2.34147557E-11T^5$$

$$Cp(100) = 798.99 \quad Cp(600) = 2604.79 \quad Cp(1000) = 3516.69$$

- std error est = 3.3 max error est = 8.5

1,2-PROPANEDIOL  $CH_3CHOHCH_2OH$  275-775K

$$Cp(T) = 840.077 + 1.432479T + 7.47762E-03T^2 - 1.398118E-05T^3$$

$$+ 7.503585E-09T^4$$

$$Cp(275) = 1551.65 \quad Cp(525) = 2200.05 \quad Cp(775) = 2640.29$$

$$std\ error\ est = 3.4 \quad max\ error\ est = 7.5$$

275-775K

$$T(Cp) = -170.21 + 0.384686Cp - 1.377934E-04Cp^2 + 4.859613E-08Cp^3$$

$$T(1551.65) = 276 \quad T(2200.05) = 527 \quad T(2640.29) = 779$$

- std error est = 2.1 max error est = 6.5

1-PROPANOL  $CH_3(CH_2)_2OH$  275-1500K

$$Cp(T) = -18.073 + 4.897967T + 4.1591909E-03T^2 - 1.714072E-05T^3$$

$$+ 1.9134617E-08T^4 - 9.587348E-12T^5 + 1.8328355E-15T^6$$

$$Cp(275) = 1382.08 \quad Cp(800) = 2962.56 \quad Cp(1500) = 3779.34$$

$$std\ error\ est = 2.2 \quad max\ error\ est = 4.5$$

275-1500K

$$T(Cp) = 805.72 - 1.316275Cp + 1.03367336E-03Cp^2 - 3.1066055E-07Cp^3$$

$$+ 3.7595022E-11Cp^4$$

1-PROPANOL (continued)

T(1382.08) = 278      T(2962.56) = 797      T(3779.34) = 1495  
std error est = 4.0                                    max error est = 9.5

2-PROPANOL  $(\text{CH}_3)_2\text{CHOH}$       275-1500K

$$\begin{aligned} \text{Cp}(T) = & 281.08 + 3.55930603T + 5.60782535E-03T^2 - 1.592439E-05T^3 \\ & + 1.567946E-08T^4 - 7.2127354E-12T^5 + 1.289756E-15T^6 \end{aligned}$$

Cp(275) = 1431.69      Cp(800) = 2961.18      Cp(1500) = 3789.51  
std error est = 2.5                                    max error est = 6.5

275-1500K

$$\begin{aligned} \text{T(Cp)} = & 712.46 - 1.195778\text{Cp} + 9.704307E-04\text{Cp}^2 - 2.9394792E-07\text{Cp}^3 \\ & + 3.576185E-11\text{Cp}^4 \end{aligned}$$

T(1431.69) = 277      T(2961.18) = 798      T(3789.51) = 1495  
std error est = 3.3                                    max error est = 6.5

PROPYLBENZENE  $\text{C}_6\text{H}_5(\text{CH}_2)_2\text{CH}_3$       300-1500K

$$\begin{aligned} \text{Cp}(T) = & 156.805 + 2.42815T + 9.353183E-03T^2 - 2.149015E-05T^3 \\ & + 1.9780312E-08T^4 - 8.6963805E-12T^5 + 1.499592E-15T^6 \end{aligned}$$

Cp(300) = 1286.98      Cp(800) = 2727.9      Cp(1500) = 3495.42  
std error est = 1.8                                    max error est = 4.0

300-1500K

$$\begin{aligned} \text{T(Cp)} = & 788.38 - 1.415034\text{Cp} + 1.254462E-03\text{Cp}^2 - 4.2097165E-07\text{Cp}^3 \\ & + 5.5624451E-11\text{Cp}^4 \end{aligned}$$

T(1286.98) = 300      T(2727.9) = 798      T(3495.42) = 1494  
std error est = 3.9                                    max error est = 7.5

PROPYL ETHER  $[\text{CH}_3(\text{CH}_2)_2]_2\text{O}$       275-1275K

$$\begin{aligned} \text{Cp}(T) = & 2220.965 - 15.85878T + 8.362134E-02T^2 - 1.752393E-04T^3 \\ & + 1.89973E-07T^4 - 1.0442973E-10T^5 + 2.2914465E-14T^6 \end{aligned}$$

Cp(275) = 1471.38      Cp(775) = 2885.54      Cp(1275) = 3333.43  
std error est = 9.0                                    max error est = 21.5

PROPYNE  $\text{CH}_3\text{CCH}$       275-1500K

$$\begin{aligned} \text{Cp}(T) = & 296.204 + 5.18992T - 4.4112215E-03T^2 + 2.621706E-06T^3 \\ & - 9.5357975E-10T^4 + 1.5122198E-13T^5 \end{aligned}$$

Cp(275) = 1439.14      Cp(800) = 2626.24      Cp(1500) = 3324.94  
std error est = 0.7                                    max error est = 3.5

275-1500K

$$\begin{aligned} \text{T(Cp)} = & 1475.3 - 2.85557\text{Cp} + 2.245565E-03\text{Cp}^2 - 7.110777E-07\text{Cp}^3 \\ & + 8.859352E-11\text{Cp}^4 \end{aligned}$$

T(1439.14) = 277      T(2626.24) = 798      T(3324.94) = 1496  
std error est = 2.7                                    max error est = 7.5

SILANE       $\text{SiH}_4$       100-1500K

$$\begin{aligned} \text{Cp}(T) = & 1250.39 - 4.4063697T + 0.02678T^2 - 4.8775018E-05T^3 \\ & + 4.4327926E-08T^4 - 2.0245577E-11T^5 + 3.687426E-15T^6 \\ \text{Cp}(100) = & 1033.1 \quad \text{Cp}(800) = 2390.97 \quad \text{Cp}(1500) = 2952.51 \\ \text{std error est} = & 5.8 \quad \text{max error est} = 20.5 \end{aligned}$$


---

SILICON TETRACHLORIDE     $\text{SiCl}_4$     100-1500K

$$\begin{aligned} \text{Cp}(T) = & 112.78 + 2.865988T - 7.278228E-03T^2 + 1.0156921E-05T^3 \\ & - 7.960333E-09T^4 + 3.27887075E-12T^5 - 5.517042E-16T^6 \\ \text{Cp}(100) = & 335.99 \quad \text{Cp}(800) = 617.09 \quad \text{Cp}(1500) = 630.84 \\ \text{std error est} = & 1.0 \quad \text{max error est} = 2.5 \end{aligned}$$

SILICON TETRAFLUORIDE     $\text{SiF}_4$     100-1500K

$$\begin{aligned} \text{Cp}(T) = & 142.66 + 3.045967T - 5.205945E-03T^2 + 5.425593E-06T^3 \\ & - 3.534804E-09T^4 + 1.32511825E-12T^5 - 2.1643323E-16T^6 \\ \text{Cp}(100) = & 400.28 \quad \text{Cp}(800) = 955.15 \quad \text{Cp}(1500) = 1011.97 \\ \text{std error est} = & 0.7 \quad \text{max error est} = 1.5 \end{aligned}$$

STYRENE       $\text{C}_6\text{H}_5\text{CHCH}_2$       275-1500K

$$\begin{aligned} \text{Cp}(T) = & -126.7 + 4.27917184T + 2.927387E-03T^2 - 1.2277425E-05T^3 \\ & + 1.2935809E-08T^4 - 6.1243779E-12T^5 + 1.11436976E-15T^6 \\ \text{Cp}(275) = & 1080.96 \quad \text{Cp}(800) = 2467.92 \quad \text{Cp}(1500) = 3116.28 \\ \text{std error est} = & 1.1 \quad \text{max error est} = 2.5 \end{aligned}$$

275-1500K

$$\begin{aligned} \text{T(Cp)} = & 913.36 - 1.888481\text{Cp} + 1.8311187E-03\text{Cp}^2 - 6.899175E-07\text{Cp}^3 \\ & + 1.01386298E-10\text{Cp}^4 \\ \text{T}(1080.96) = & 279 \quad \text{T}(2467.92) = 796 \quad \text{T}(3116.28) = 1493 \\ \text{std error est} = & 4.5 \quad \text{max error est} = 10.5 \end{aligned}$$

SULFUR       $\text{S}_2$       275-1500K

$$\begin{aligned} \text{Cp}(T) = & 376.86 + 0.6300876T - 7.88127E-04T^2 + 4.5750016E-07T^3 \\ & - 1.0076704E-10T^4 \\ \text{Cp}(275) = & 499.46 \quad \text{Cp}(800) = 569.24 \quad \text{Cp}(1500) = 580.95 \\ \text{std error est} = & 0.5 \quad \text{max error est} = 2.5 \end{aligned}$$

Note: For  $\text{T}(\text{Cp})$  calculations, use the iterative procedures discussed in Section 5 and the following eqn: 275-1500K,  $\text{Cp}(T) = 3409.44875 + 0.421901486T - 3.57102338E-04T^2 + 1.02449694E-07T$

SULFUR (Monatomic)     $\text{S}$       100-1500K

$$\begin{aligned} \text{Cp}(T) = & 504.485 + 2.3393178T - 8.5202771E-03T^2 + 1.43794546E-05T^3 \\ & - 1.26931826E-08T^4 + 5.67465485E-12T^5 - 1.0136105E-15T^6 \\ \text{Cp}(100) = & 666.38 \quad \text{Cp}(800) = 679.87 \quad \text{Cp}(1500) = 660.51 \\ \text{std error est} = & 1.2 \quad \text{max error est} = 3.0 \end{aligned}$$

SULFUR DICHLORIDE     $\text{SCl}_2$                   100-1500K

$$\begin{aligned} \text{Cp}(T) = & 239.65 + 1.59183756T - 3.52713E-03T^2 + 4.2688109E-06T^3 \\ & - 2.9106702E-09T^4 + 1.0505776E-12T^5 - 1.5627007E-16T^6 \end{aligned}$$

$$\text{Cp}(100) = 367.55 \quad \text{Cp}(800) = 552.47 \quad \text{Cp}(1500) = 561.14$$

- std error est = 0.9 - - - - - max error est = 2.5

SULFUR DIFLUORIDE     $\text{SF}_2$                   100-1500K

$$\begin{aligned} \text{Cp}(T) = & 446.1812 - 0.070297366T + 4.760524E-03T^2 - 1.189425E-05T^3 \\ & + 1.2720916E-08T^4 - 6.4083936E-12T^5 + 1.2442913E-15T^6 \end{aligned}$$

$$\text{Cp}(100) = 476.07 \quad \text{Cp}(800) = 783.59 \quad \text{Cp}(1500) = 817.97$$

- std error est = 3.5 - - - - - max error est = 8.0

SULFUR DIOXIDE     $\text{SO}_2$                   300-1365K

Ideal gas

$$\begin{aligned} \text{Cp}(T) = & 432.805 + 0.5994156T + 4.593367E-04T^2 - 1.433024E-06T^3 \\ & + 1.0409341E-09T^4 - 2.5313735E-13T^5 \end{aligned}$$

$$\text{Cp}(300) = 623.09 \quad \text{Cp}(700) = 793.33 \quad \text{Cp}(1365) = 876.40$$

std error est = 0.3 max error est = 1.5

300-1365K

$$\begin{aligned} T(\text{Cp}) = & 155222.71 - 877.595265\text{Cp} + 1.857197245\text{Cp}^2 - 1.7428909E-03\text{Cp}^3 \\ & + 6.1359879E-07\text{Cp}^4 \end{aligned}$$

$$T(623.09) = 309 \quad T(793.33) = 696 \quad T(876.40) = 1342$$

- std error est = 5.5 - - - - - max error est = 23.5

SULFUR HEXAFLUORIDE     $\text{SF}_6$                   100-1500K

$$\begin{aligned} \text{Cp}(T) = & 24.233 + 2.33532T + 1.4344428E-03T^2 - 1.05440664E-05T^3 \\ & + 1.3847595E-08T^4 - 7.6376433E-12T^5 + 1.56118585E-15T^6 \end{aligned}$$

$$\text{Cp}(100) = 262.88 \quad \text{Cp}(800) = 990.5 \quad \text{Cp}(1500) = 1056.46$$

- std error est = 5.7 - - - - - max error est = 11.5

SULFUR MONOCHLORIDE     $\text{S}_2\text{Cl}_2$                   100-1500K

$$\begin{aligned} \text{Cp}(T) = & 150.63 + 2.756806T - 7.3955367E-03T^2 + 1.07461656E-05T^3 \\ & - 8.69281614E-09T^4 + 3.6742817E-12T^5 - 6.31809797E-16T^6 \end{aligned}$$

$$\text{Cp}(100) = 362.27 \quad \text{Cp}(800) = 602.75 \quad \text{Cp}(1500) = 611.68$$

- std error est = 0.9 - - - - - max error est = 2.5

SULFUR MONOXIDE     $\text{SO}$                   300-1500K

$$\text{Cp}(T) = 498.98 + 0.54531131T - 3.97417036E-04T^2 + 1.0243734E-07T^3$$

$$\text{Cp}(300) = 629.57 \quad \text{Cp}(900) = 742.53 \quad \text{Cp}(1500) = 768.48$$

std error est = 0.7 max error est = 2.0

300-1500K

$$\begin{aligned} T(\text{Cp}) = & 2673548.1 - 15732.3334\text{Cp} + 34.6862568\text{Cp}^2 - 3.3963896E-02\text{Cp}^3 \\ & + 1.24657038E-05\text{Cp}^4 \end{aligned}$$

$$T(629.57) = 301 \quad T(742.53) = 902 \quad T(768.48) = 1513$$

SULFUR MONOXIDE (continued)

- std error est = 2.5 max error est = 15.5

SULFUR TETRAFLUORIDE SF<sub>4</sub> 100-1500K

$$\ln[Cp(T)] = 5.4481069265 + 5.31628197E-03T - 7.63297357E-06T^2 \\ + 4.87033913E-09T^3 - 1.14651855E-12T^4$$

$$Cp(200) = 514.49 \quad Cp(800) = 934.52 \quad Cp(1500) = 974.07$$

- \*\*Note: Cp(T) = exp[fctn(T)] max error est = 15.5

SULFUR TRIOXIDE SO<sub>3</sub> 100-1500K

$$Cp(T) = 332.45 + 0.76715644T + 2.18883267E-03T^2 - 6.4464146E-06T^3 \\ + 6.8053136E-09T^4 - 3.3274957E-12T^5 + 6.2860794E-16T^6$$

$$Cp(100) = 425.26 \quad Cp(800) = 908.35 \quad Cp(1500) = 995.38$$

- std error est = 1.4 max error est = 3.5

SULFURYL FLUORIDE SO<sub>2</sub>F<sub>2</sub> 100-1500K

$$Cp(T) = 188.38 + 1.51815532T + 1.6848848E-03T^2 - 8.08750268E-06T^3 \\ + 9.88024136E-09T^4 - 5.25778454E-12T^5 + 1.0506054E-15T^6$$

$$Cp(100) = 349.89 \quad Cp(800) = 939.92 \quad Cp(1500) = 1020.75$$

- std error est = 3.2 max error est = 7.5

THIONYL CHLORIDE SOC<sub>1</sub><sub>2</sub> 100-1500K

$$Cp(T) = 126.39 + 3.01522T - 8.0321113E-03T^2 + 1.2067313E-05T^3 \\ - 1.01854131E-08T^4 + 4.48266475E-12T^5 - 7.98302653E-16T^6$$

$$Cp(100) = 358.68 \quad Cp(800) = 664.14 \quad Cp(1500) = 687.57$$

- std error est = 1.4 max error est = 3.5

THIONYL FLUORIDE SOF<sub>2</sub> 100-1500K

$$Cp(T) = 252.57 + 1.591359T + 9.12985723E-05T^2 - 4.47083245E-06T^3 \\ + 6.1962479E-09T^4 - 3.45812419E-12T^5 + 7.09108083E-16T^6$$

$$Cp(100) = 408.73 \quad Cp(800) = 885.74 \quad Cp(1500) = 941.53$$

- std error est = 2.3 max error est = 5.5

THIOPHOSGENE CSCl<sub>2</sub> 275-1000K

$$Cp(T) = 59.14 + 3.3998836T - 8.5876389E-03T^2 + 1.1794626E-05T^3 \\ - 8.30715093E-09T^4 + 2.33820883E-12T^5$$

$$Cp(275) = 546.13 \quad Cp(600) = 660.37 \quad Cp(1000) = 697.07$$

std error est = 0.7 max error est = 2.5

275-1000K

$$T(Cp) = 488250.36 - 3272.97043Cp + 8.22103684Cp^2 - 9.17008593E-03Cp^3 \\ + 3.83549875E-06Cp^4$$

$$T(546.13) = 277 \quad T(660.37) = 589 \quad T(697.07) = 989$$

- std error est = 9.4 max error est = 21.5

TOLUENE C<sub>7</sub>H<sub>8</sub>

275-755K

Ideal gas

$$Cp(T) = -310.29 + 5.640685T - 2.81410224E-03T^2 + 2.4913887E-07T^3$$

$$Cp(275) = 1033.26 \quad Cp(500) = 1837.67 \quad Cp(755) = 2451.54$$

$$std\ error\ est = 0.2 \quad max\ error\ est = 2.0$$

755-1365K

$$Cp(T) = 109.89 + 4.64889983T - 2.404749E-03T^2 + 4.70371704E-07T^3$$

$$Cp(755) = 2451.48 \quad Cp(1000) = 2824.41 \quad Cp(1365) = 3171.35$$

$$std\ error\ est = 0.2 \quad max\ error\ est = 2.0$$

275-755K

$$T(Cp) = -62.5 + 0.441587267Cp - 1.62355359E-04Cp^2 + 4.8116433E-08Cp^3$$

$$T(1033.26) = 274 \quad T(1837.67) = 499 \quad T(2451.54) = 753$$

$$std\ error\ est = 0.7 \quad max\ error\ est = 3.0$$

755-1365K

$$T(Cp) = -6732.5 + 8.1967182Cp - 3.1808569E-03Cp^2 + 4.4184319E-07Cp^3$$

$$T(2451.48) = 755 \quad T(2824.41) = 999 \quad T(3171.35) = 1364$$

$$std\ error\ est = 0.9 \quad max\ error\ est = 2.5$$

TOLUENE - Real gas

300-610K

$$Cp(T) = 8.203797 + 4.000876T + 1.11409614E-04T^2 - 1.5192015E-06T^3$$

$$Cp(300) = 1177.48 \quad Cp(450) = 1692.72 \quad Cp(610) = 2145.36$$

$$std\ error\ est = 1.2 \quad max\ error\ est = 3.0$$

300-610K

$$T(Cp) = -91.3 + 0.44221698Cp - 1.4179088E-04Cp^2 + 4.099999E-08Cp^3$$

$$T(1177.48) = 300 \quad T(1692.72) = 450 \quad T(2145.36) = 610$$

$$std\ error\ est = 0.6 \quad max\ error\ est = 2.5$$

1,1,1-TRICHLOROETHANE

CH<sub>3</sub>CCl<sub>3</sub> 300-600K

$$Cp(T) = 558.306\exp(0.0011T)$$

$$Cp(300) = 776.59 \quad Cp(450) = 915.9 \quad Cp(600) = 1080.21$$

\*\*Note: The accuracy of this fit is within 5.0% of the reference source values. The estimated maximum error is 45.

TRICHLOROFLUORO-

CCl<sub>3</sub>F 90-700K (FREON-11)

METHANE - Ideal gas

$$Cp(T) = 88.42 + 2.6878447T - 4.66910945E-03T^2 + 3.96538806E-06T^3$$

$$- 1.311654E-09T^4$$

$$Cp(90) = 295.31 \quad Cp(450) = 660.02 \quad Cp(700) = 727.25$$

$$std\ error\ est = 0.3 \quad max\ error\ est = 2.5$$

700-1365K

$$Cp(T) = 398.846 + 0.85444834T - 6.7934387E-04T^2 + 1.8385308E-07T^3$$

$$Cp(700) = 727.14 \quad Cp(1000) = 757.8 \quad Cp(1365) = 766.99$$

$$std\ error\ est = 0.2 \quad max\ error\ est = 2.5$$

TRICHLOROFLUOROMETHANE (FREON-11) (continued)

90-700K

$$T(Cp) = 1858.9 - 17.09586Cp + 5.92007E-02Cp^2 - 8.71182475E-05Cp^3 \\ + 4.813565E-08Cp^4$$

T(295.31) = 96      T(660.02) = 451      T(727.25) = 693  
 std error est = 3.8      max error est = 9.5

Note: For T(Cp) calculations from 700-1365K, use the iterative procedures discussed in Section 5 and the following equations:  
 $700-1365K, Cp(T) = 573.5800054 + 0.306189477T - 1.21913823E-04T^2.$

TRICHLOROTRIFLUORO-  $C_2Cl_3F_3$  320-465K

ETHANE (FREON-113)

$$Cp(T) = 953.33 - 4.1752099T + 1.48443126E-02T^2 - 1.4511695E-05T^3$$

Cp(320) = 661.80      Cp(425) = 746.12      Cp(465) = 762.5  
 std error est = 0.1      max error est = 1.5

$$T(Cp) = -39428.5 + 169.22394Cp - 0.2413860737Cp^2 + 1.1549402E-04Cp^3$$

T(661.80) = 318      T(746.12) = 426      T(762.5) = 462  
 std error est = 1.7      max error est = 4.5

TRICHLOROSILANE  $SiHCl_3$  100-1000K

$$Cp(T) = 163.34 + 2.096026T - 3.3286844E-03T^2 + 2.57996254E-06T^3 \\ - 7.76498622E-10T^4$$

Cp(100) = 342.16      Cp(600) = 679.27      Cp(1000) = 734.15  
 std error est = 1.5      max error est = 3.5

$$T(Cp) = 9037.45 - 76.410239Cp + 0.238723665Cp^2 - 3.24312525E-04Cp^3 \\ + 1.64234225E-07Cp^4$$

T(342.16) = 101      T(679.27) = 602      T(734.15) = 990  
 std error est = 8.9      max error est = 15.5

1,1,1-TRICHLORO-2,2,2-TRI-  $CF_3CCl_3$  200-800K  
 FLUOROETHANE

$$Cp(T) = 185.89 + 1.4044747T + 2.6500078E-03T^2 - 1.18943003E-05T^3 \\ + 1.45980328E-08T^4 - 6.1337978E-12T^5$$

Cp(200) = 499.02      Cp(500) = 784.54      Cp(800) = 885.02  
 std error est = 0.7      max error est = 2.0

$$T(Cp) = 7781.2 - 49.265363Cp + 0.117538654Cp^2 - 1.2291743E-04Cp^3 \\ + 4.8509877E-08Cp^4$$

T(499.02) = 200      T(784.54) = 498      T(885.02) = 798  
 std error est = 4.3      max error est = 9.5

1,1,1-TRIFLUOROETHANE  $CH_3CF_3$  100-1500K

**1,1,1-TRIFLUOROETHANE (continued)**

$C_p(T) = 264.398 + 1.8040847T + 4.17525467E-03T^2 - 1.2539045E-05T^3$   
 $+ 1.3278592E-08T^4 - 6.49158273E-12T^5 + 1.2220205E-15T^6$   
 $C_p(100) = 475.28 \quad C_p(800) = 1591.93 \quad C_p(1500) = 1892.56$   
 $- \underline{\text{std error est}} = 1.7 \quad \underline{\text{max error est}} = 3.5$

**TRIFLUOROIODOMETHANE  $CF_3I$  100-1000K**

$C_p(T) = 103.14 + 1.255612T - 1.56065E-03T^2 + 9.460232E-07T^3$   
 $- 2.27049635E-10T^4$   
 $C_p(100) = 214.02 \quad C_p(600) = 469.59 \quad C_p(1000) = 517.08$   
 $\underline{\text{std error est}} = 0.4 \quad \underline{\text{max error est}} = 2.0$

Note: For  $T(C_p)$  calculations, use the iterative procedures discussed in Section 5 and the following eqn:  $100-1000K, C_p(T) = 110.51576796 + 1.161867871T - 1.20896094E-03T^2 + 4.5474783E-07T^3$

**TRIMETHYLAMINE  $(CH_3)_3N$  275-1475K**

$C_p(T) = 773.274 - 1.34861408T + 2.365832E-02T^2 - 4.5452006E-05T^3$   
 $+ 4.1145841E-08T^4 - 1.84648686E-11T^5 + 3.29518026E-15T^6$   
 $C_p(275) = 1454.01 \quad C_p(875) = 3384.35 \quad C_p(1475) = 4173.36$   
 $\underline{\text{std error est}} = 2.1 \quad \underline{\text{max error est}} = 5.5$

$\underline{\text{275-1475K}}$   
 $T(C_p) = 430.45 - 0.63430825C_p + 5.6407771E-04C_p^2 - 1.6640782E-07C_p^3$   
 $+ 1.9643825E-11C_p^4$   
 $T(1454.01) = 277 \quad T(3384.35) = 871 \quad T(4173.36) = 1471$   
 $\underline{\text{std error est}} = 3.4 \quad \underline{\text{max error est}} = 7.5$

**2,3,4-TRIMETHYL-  $[(CH_3)_2CH]_2CHCH_3$  400-520K**

PENTANE

$C_p(T) = 686.88 + 3.789T \quad T(C_p) = [C_p - 686.88]/3.789$   
There are only three data points in the reference source. The accuracy of this fit cannot be adequately established.

**WATER - Ideal gas  $H_2O$  275-1365K**

$C_p(T) = 1997.22 - 1.5513626T + 5.4600474E-03T^2 - 7.4448866E-06T^3$   
 $+ 5.92340976E-09T^4 - 2.54654038E-12T^5 + 4.50326153E-16T^6$   
 $C_p(275) = 1858.75 \quad C_p(800) = 2148.61 \quad C_p(1365) = 2527.54$   
 $\underline{\text{std error est}} = 0.6 \quad \underline{\text{max error est}} = 3.5$

$\underline{\text{275-1365K}}$   
 $T(C_p) = -138783.1 + 243.21339C_p - 0.1601304C_p^2 + 4.6992596E-05C_p^3$   
 $- 5.155188E-09C_p^4$   
 $T(1858.75) = 292 \quad T(2148.61) = 798 \quad T(2527.54) = 1360$   
 $\underline{\text{std error est}} = 5.0 \quad \underline{\text{max error est}} = 18.5$

WATER - Real gas

375-545K

$$\begin{aligned} Cp(T) = & -9151.27 + 124.55666T - 0.43018315T^2 + 2.5078185E-04T^3 \\ & + 1.51700823E-06T^4 - 3.1440734E-09T^5 + 1.82314019E-12T^6 \\ Cp(375) = & 2041.49 \quad Cp(500) = 1976.29 \quad Cp(545) = 1990.98 \\ \text{std error est} = & 0.5 \quad \text{max error est} = 2.5 \end{aligned}$$

535-1365K

$$\begin{aligned} Cp(T) = & 1855.87 - 0.12328108T + 8.33819257E-04T^2 - 2.7862857E-07T^3 \\ Cp(535) = & 1985.91 \quad Cp(1000) = 2287.78 \quad Cp(1365) = 2532.55 \\ \text{std error est} = & 0.2 \quad \text{max error est} = 1.5 \end{aligned}$$

Note: For T(Cp) calculations between 375-545K, use the iterative procedures discussed in Section and the following egn: 375-545K,  
 $Cp(T) = 7288.57944 - 31.60499289T + 6.19666037E-02T^2 - 4.001532E-05T^3$ .

535-1365K

$$\begin{aligned} T(Cp) = & -20093.67 + 24.866517Cp - 1.0260634E-02Cp^2 + 1.495574E-06Cp^3 \\ T(1985.91) = & 536 \quad T(2287.78) = 1000 \quad T(2532.55) = 1365 \\ \text{std error est} = & 0.7 \quad \text{max error est} = 3.5 \end{aligned}$$

-----  
WATER, DIDEUTERATED      D<sub>2</sub>O      0-1500K

$$\begin{aligned} Cp(T) = & 1692.39 + 0.531928T + 9.981787E-04T^2 - 1.32271877E-06T^3 \\ & + 6.3221224E-10T^4 - 1.140281E-13T^5 \\ Cp(1) = & 1692.92 \quad Cp(750) = 2267.77 \quad Cp(1500) = 2606.68 \\ \text{std error est} = & 1.5 \quad \text{max error est} = 3.5 \end{aligned}$$

0-1500K

$$\begin{aligned} T(Cp) = & -262435.28 + 620.045026Cp - 0.58727707Cp^2 + 2.7838713E-04Cp^3 \\ & - 6.59628036E-08Cp^4 + 6.2551268E-12Cp^5 \\ T(1692.92) = & 0 \quad T(2267.77) = 753 \quad T(2606.68) = 1499 \\ \text{std error est} = & 1.2 \quad \text{max error est} = 5.5 \end{aligned}$$

XENON - Ideal gas      Xe      ALL TEMPERATURES

- Cp(T) = 158.416 = constant -----

m-XYLENE      C<sub>6</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>      300-1500K

$$\begin{aligned} Cp(T) = & 112.448 + 2.48622T + 8.20559E-03T^2 - 1.897328E-05T^3 \\ & + 1.749458E-08T^4 - 7.7581914E-12T^5 + 1.35754047E-15T^6 \\ Cp(300) = & 1208.38 \quad Cp(800) = 2618.13 \quad Cp(1500) = 3385.32 \\ \text{std error est} = & 1.4 \quad \text{max error est} = 3.5 \end{aligned}$$

300-1500K

$$\begin{aligned} T(Cp) = & 793.3 - 1.4795435Cp + 1.3653586E-03Cp^2 - 4.736549E-07Cp^3 \\ & + 6.4258022E-11Cp^4 \\ T(1208.38) = & 300 \quad T(2618.13) = 798 \quad T(3385.32) = 1495 \\ \text{std error est} = & 3.8 \quad \text{max error est} = 8.5 \end{aligned}$$

**o-XYLENE**       $C_6H_4(CH_3)_2$       300-1500K

$$Cp(T) = 220.54 + 2.315837T + 8.00889E-03T^2 - 1.8267628E-05T^3 \\ + 1.67967527E-08T^4 - 7.4499897E-12T^5 + 1.30510608E-15T^6$$

$$Cp(300) = 1261.77 \quad Cp(800) = 2626.74 \quad Cp(1500) = 3387.23 \\ \text{std error est} = 1.0 \qquad \qquad \qquad \text{max error est} = 3.5$$

300-1500K

$$T(Cp) = 884.7 - 1.6751046Cp + 1.49528125E-03Cp^2 - 5.09322185E-07Cp^3 \\ + 6.778076E-11Cp^4$$

$$T(1261.77) = 300 \quad T(2626.74) = 798 \quad T(3387.23) = 1495$$

$$- \text{std error est} = 3.7 \quad - \text{max error est} = 8.5$$

**p-XYLENE**       $C_6H_4(CH_3)_2$       300-1500K

$$Cp(T) = 240.04 + 1.4903657T + 1.0968075E-02T^2 - 2.28936254E-05T^3 \\ + 2.05420776E-08T^4 - 8.9907546E-12T^5 + 1.56029453E-15T^6$$

$$Cp(300) = 1201.83 \quad Cp(800) = 2607.33 \quad Cp(1500) = 3381.23 \\ \text{std error est} = 0.9 \qquad \qquad \qquad \text{max error est} = 3.5$$

300-1500K

$$T(Cp) = -1458.07 + 4.050261Cp - 3.859663E-03Cp^2 + 1.9113335E-06Cp^3 \\ - 4.63203445E-10Cp^4 + 4.53602623E-14Cp^5$$

$$T(1201.83) = 300 \quad T(2607.33) = 801 \quad T(3381.23) = 1499$$

$$- \text{std error est} = 1.5 \quad - \text{max error est} = 4.5$$

**APPENDIX B**  
**TABLE B-I**  
**SUMMARY OF CONTENTS**

**THERMAL CONDUCTIVITY FOR  
 GASEOUS ELEMENTS AND COMPOUNDS**

| NAME                                     | FORMULA                                       | APP B PAGE |
|------------------------------------------|-----------------------------------------------|------------|
| Acetone                                  | C <sub>3</sub> H <sub>6</sub> O               | B-1        |
| Acetylene                                | C <sub>2</sub> H <sub>2</sub>                 | B-1        |
| Air                                      | -                                             | B-1        |
| Ammonia                                  | NH <sub>3</sub>                               | B-1        |
| Argon                                    | Ar                                            | B-2        |
| Benzene                                  | C <sub>6</sub> H <sub>6</sub>                 | B-2        |
| Boron Trifluoride                        | BF <sub>3</sub>                               | B-2        |
| Bromine                                  | Br <sub>2</sub>                               | B-3        |
| iso-Butane                               | i-C <sub>4</sub> H <sub>10</sub>              | B-3        |
| n-Butane                                 | n-C <sub>4</sub> H <sub>10</sub>              | B-3        |
| Carbon Dioxide                           | CO <sub>2</sub>                               | B-3        |
| Carbon Monoxide                          | CO                                            | B-4        |
| Carbon Tetrachloride                     | CCl <sub>4</sub>                              | B-4        |
| Chlorine                                 | Cl <sub>2</sub>                               | B-4        |
| Chlorodifluoromethane<br>(FREON-22)      | CHClF <sub>2</sub>                            | B-5        |
| Chloroform                               | CHCl <sub>3</sub>                             | B-5        |
| Chlorotrifluoromethane<br>(FREON-13)     | CClF <sub>3</sub>                             | B-5        |
| n-Decane                                 | C <sub>10</sub> H <sub>22</sub>               | B-5        |
| Deuterium                                | D <sub>2</sub>                                | B-5        |
| Dichlorodifluoromethane<br>(FREON-12)    | CCl <sub>2</sub> F <sub>2</sub>               | B-6        |
| Dichlorofluoromethane<br>(FREON-21)      | CHCl <sub>2</sub> F                           | B-6        |
| Dichlorotetrafluoroethane<br>(FREON-114) | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub> | B-6        |
| Ethane                                   | C <sub>2</sub> H <sub>6</sub>                 | B-6        |
| Ethyl Alcohol                            | C <sub>2</sub> H <sub>5</sub> OH              | B-7        |
| Ethyl Ether                              | C <sub>4</sub> H <sub>10</sub> O              | B-7        |
| Ethylene                                 | C <sub>2</sub> H <sub>4</sub>                 | B-7        |
| Fluorine                                 | F <sub>2</sub>                                | B-7        |
| Helium                                   | He                                            | B-7        |
| n-Heptane                                | C <sub>7</sub> H <sub>16</sub>                | B-8        |
| n-Hexane                                 | C <sub>6</sub> H <sub>14</sub>                | B-8        |
| Hydrogen                                 | H <sub>2</sub>                                | B-8        |
| Hydrogen Chloride                        | HCl                                           | B-9        |
| Hydrogen Iodide                          | HI                                            | B-9        |
| Hydrogen Sulfide                         | H <sub>2</sub> S                              | B-10       |

TABLE B-I  
(CONT.)

| NAME                                    | FORMULA                                       | APP B PAGE |
|-----------------------------------------|-----------------------------------------------|------------|
| Krypton                                 | Kr                                            | B-10       |
| Methane                                 | CH <sub>4</sub>                               | B-10       |
| Methyl Alcohol                          | CH <sub>3</sub> OH                            | B-10       |
| Methyl Chloride                         | CH <sub>3</sub> Cl                            | B-10       |
| Neon                                    | Ne                                            | B-11       |
| Nitric Oxide                            | NO                                            | B-11       |
| Nitrogen                                | N <sub>2</sub>                                | B-11       |
| Nitrogen Peroxide                       | NO <sub>2</sub>                               | B-12       |
| Nitrous Oxide                           | N <sub>2</sub> O                              | B-12       |
| n-Nonane                                | C <sub>9</sub> H <sub>20</sub>                | B-12       |
| n-Octane                                | C <sub>8</sub> H <sub>18</sub>                | B-13       |
| Oxygen                                  | O <sub>2</sub>                                | B-13       |
| n-Pentane                               | C <sub>5</sub> H <sub>12</sub>                | B-13       |
| Propane                                 | C <sub>3</sub> H <sub>8</sub>                 | B-13       |
| Radon                                   | Rn                                            | B-14       |
| Sulfur Dioxide                          | SO <sub>2</sub>                               | B-14       |
| Toluene                                 | C <sub>7</sub> H <sub>8</sub>                 | B-14       |
| Trichlorofluoromethane<br>(FREON-11)    | CCl <sub>3</sub> F                            | B-14       |
| Trichlorotrifluoroethane<br>(FREON-113) | C <sub>2</sub> Cl <sub>3</sub> F <sub>3</sub> | B-15       |
| Water (steam)                           | H <sub>2</sub> O                              | B-15       |
| Xenon                                   | Xe                                            | B-15       |

APPENDIX B  
FORMAT EXAMPLE

The equations presented are for gaseous Acetylene

The polynomial equation to calculate the thermal conductivity (k) in W/m K as a function of temperature (Kelvin)

|            | Formula  | Valid temperature range |
|------------|----------|-------------------------|
| -ACETYLENE | $C_2H_2$ | 200-650K                |

$$k(T) = -8.5510082E-02 + 1.461749E-03T - 9.4040526E-06T^2 + 3.242075E-08T^3 - 5.91795705E-11T^4 + 5.4937859E-14T^5 - 2.04661826E-17T^6$$

$$k(200) = 0.0116 \quad k(450) = 0.0394 \quad k(650) = 0.0619$$

$$std\ error\ est = 6.3E-05 \quad max\ error\ est = 7E-04$$

$$T(k) = \frac{200-650K}{58.2453 + 13908.7532k - 151692.6999k^2 + 1329757.4619k^3}$$

$$T(0.0116) = 201 \quad T(0.0394) = 452 \quad T(0.0619) = 653$$

$$std\ error\ est = 1.7 \quad max\ error\ est = 3.5$$

standard (or average) error estimate is  $\pm 1.7$  degrees Kelvin

The polynomial equation to calculate temperature (Kelvin) as a function of thermal conductivity in W/m K

Using the polynomial presented, the calculated thermal conductivity at 650K is 0.0619 W/m K.

Over the temperature range noted, the maximum error est is  $\pm 7E-04$  W/m K.

Using the polynomial presented, the calculated temperature for a given thermal conductivity of 0.0619 W/m K is 653K.

FIGURE B-1

APPENDIX B

THERMAL CONDUCTIVITY FOR  
GASEOUS ELEMENTS AND COMPOUNDS

**ACETONE**

**C<sub>3</sub>H<sub>6</sub>O**

280-500K

$$k(T) = -4.11573122E-04 + 4.79793901E-06T + 1.15976849E-07T^2$$

$$k(280) = 0.01002 \quad k(400) = 0.02006 \quad k(500) = 0.03098$$

$$\text{std error est} = 1.8E-05 \quad \text{max error est} = 4.0E-05$$

280-500K

$$T(k) = 136.464 + 15795.28787k - 132356.15338k^2$$

$$T(0.01002) = 281 \quad T(0.02006) = 400 \quad T(0.03098) = 499$$

$$\text{std error est} = 0.7 \quad \text{max error est} = 2.5$$

**ACETYLENE**

**C<sub>2</sub>H<sub>2</sub>**

200-650K

$$k(T) = -8.5510082E-02 + 1.461749E-03T - 9.4040526E-06T^2 \\ + 3.242075E-08T^3 - 5.91795705E-11T^4 + 5.4937859E-14T^5$$

$$- 2.04661826E-17T^6$$

$$k(200) = 0.0116 \quad k(450) = .0394 \quad k(650) = 0.0619$$

$$\text{std error est} = 6.3E-05 \quad \text{max error est} = 7E-04$$

200-650K

$$T(k) = 58.2453 + 13908.7532k - 151692.6999k^2 + 1329757.4619k^3$$

$$T(0.0116) = 201 \quad T(0.0394) = 452 \quad T(0.0619) = 653$$

$$\text{std error est} = 1.7 \quad \text{max error est} = 3.5$$

**AIR**

100-1500K

$$k(T) = -2.276501E-03 + 1.2598485E-04T - 1.4815235E-07T^2 \\ + 1.73550646E-10T^3 - 1.066657E-13T^4 + 2.47663035E-17T^5$$

$$k(100) = 9.0E-02 \quad k(800) = 0.0570 \quad k(1500) = 0.0872$$

$$\text{std error est} = 1.2E-04 \quad \text{max error est} = 2.5E-04$$

100-1500K

$$T(k) = -21.25887 + 12111.0665k - 2060.85234k^2 + 726814.383446k^3$$

$$T(.009) = 88 \quad T(.0570) = 797 \quad T(.0872) = 1501$$

$$\text{std error est} = 5.0 \quad \text{max error est} = 13.5$$

**AMMONIA**

**NH<sub>3</sub>**

250-900K

$$k(T) = 3.25332857E-02 - 2.56604839E-04T + 1.19984154E-06T^2 \\ - 1.8411802E-09T^3 + 1.450888E-12T^4 - 4.5463777E-16T^5$$

$$k(250) = 0.0198 \quad k(650) = 0.0733 \quad k(900) = 0.1147$$

$$\text{std error est} = 8.8E-05 \quad \text{max error est} = 2E-04$$

250-900K

$$T(k) = 59.78 + 10975.1917k - 54118.9276k^2 + 195945.59072k^3$$

$$T(.0198) = 257 \quad T(.0733) = 651 \quad T(.1147) = 902$$

$$\text{std error est} = 2.1 \quad \text{max error est} = 4.5$$

**ARGON**      Ar      100-2000K

$$k(T) = -5.2839462E-04 + 7.60706705E-05T - 6.4749393E-08T^2 + 5.41874502E-11T^3 - 3.22024235E-14T^4 + 1.17962552E-17T^5 - 1.86231745E-21T^6$$

$$k(100) = 6.48E-03 \quad k(800) = 0.03682 \quad k(2000) = 0.06921$$

$$\text{std error est} = 4.6E-05 \quad \text{max error est} = 1E-04$$

2000-6000K

$$k(T) = 1.93082997E-02 + 2.51961654E-05T - 1.67510345E-10T^2 + 1.34423776E-14T^3$$

$$k(2000) = 0.06914 \quad k(4000) = 0.11827 \quad k(6000) = 0.16736$$

$$\text{std error est} = 6.2E-05 \quad \text{max error est} = 1E-04$$

6000-10000K

$$k(T) = 9.646322815 - 8.33091359E-03T + 2.95984109E-06T^2 - 5.46353403E-10T^3 + 5.53001474E-14T^4 - 2.90734681E-18T^5 + 6.22212377E-23T^6$$

$$k(6000) = 0.16724 \quad k(8000) = 0.2483 \quad k(10000) = 0.4559$$

$$\text{std error est} = 2.9E-04 \quad \text{max error est} = 4E-04$$

100-2000K

$$T(k) = 6.817 + 13959.6435k + 48739.9133k^2 + 6473513.547817k^3 - 59362842.0531k^4$$

$$T(6.48E-03) = 101 \quad T(0.03682) = 801 \quad T(0.06921) = 1990$$

$$\text{std error est} = 2.5 \quad \text{max error est} = 11$$

2000-6000K

$$T(k) = -806.5 + 40519.97783k + 982.79608093k^2$$

$$T(0.06914) = 2000 \quad T(0.11827) = 4000 \quad T(0.16736) = 6002$$
~~$$\text{std error est} = 2.6 \quad \text{max error est} = 5.0$$~~

**BENZENE**      C<sub>6</sub>H<sub>6</sub>      250-600K

$$k(T) = 1.26398664E-02 - 8.09524147E-05T + 2.45397874E-07T^2$$

$$k(250) = 7.74E-03 \quad k(450) = 0.0259 \quad k(600) = 0.05241$$

$$\text{std error est} = 5E-05 \quad \text{max error est} = 1E-04$$

250-600K

$$T(k) = 119.7 + 20654.901668k - 382444.26277k^2 + 3143235.5389k^3$$

$$T(7.74E-03) = 258 \quad T(0.0259) = 453 \quad T(0.05241) = 604$$
~~$$\text{std error est} = 2.9 \quad \text{max error est} = 8.5$$~~

**BORON TRIFLUORIDE**      BF<sub>3</sub>      250-400K

$$k(T) = -0.013508927 + 1.74995767E-04T - 2.88441695E-07T^2 + 2.22936681E-10T^4$$

$$k(250) = 0.0157 \quad k(350) = 0.02196 \quad k(400) = 0.02461$$

$$\text{std error est} = 3.3E-05 \quad \text{max error est} = 1E-04$$

250-400K

$$T(k) = 118.06 + 3008.28162k + 343663.276584k^2$$

$$T(0.0157) = 250 \quad T(0.02196) = 350 \quad T(0.02461) = 400$$
~~$$\text{std error est} = 0.6 \quad \text{max error est} = 1.5$$~~

BROMINE       $\text{Br}_2$       250-350K

$k(T) = 1.836200284 - 3.09326519E-02T + 2.07612343E-04T^2$   
 $- 6.93057809E-07T^3 + 1.15148285E-09T^4 - 7.61810378E-13T^5$   
 $k(250) = 3.8E-03 \quad k(300) = 4.76E-03 \quad k(350) = 5.7E-03$   
 $\text{std error est} = 2.1E-05 \quad \text{max error est} = 1E-04$   
Note: The pressure dependence between 250-330K has been ignored.  
250-350K  
 $T(k) = 63.28 + 45883.69957k + 808725.8551494k^2$   
 $T(3.8E-03) = 249 \quad T(4.76E-03) = 300 \quad T(5.7E-03) = 351$   
~~- std error est = 1.6~~ ~~- max error est = 2.5~~  
iso-BUTANE     $i\text{-C}_4\text{H}_{10}$     270-500K  
 $k(T) = 7.7275075E-02 - 8.28249983E-04T + 3.48331547E-06T^2$   
 $- 5.71799839E-09T^3 + 3.50919304E-12T^4$   
 $k(270) = 0.01368 \quad k(400) = 0.02719 \quad k(500) = 0.03855$   
 $\text{std error est} = 3.7E-05 \quad \text{max error est} = 1E-04$   
270-500K  
 $T(k) = 95.54 + 15411.2231k - 219575.79653k^2 + 2403201.4742k^3$   
 $T(0.01368) = 271 \quad T(0.02719) = 401 \quad T(0.03855) = 501$   
~~- std error est = 0.8~~ ~~- max error est = 2.5~~  
n-BUTANE       $n\text{-C}_4\text{H}_{10}$     280-500K  
 $k(T) = 3.79912E-03 - 3.38011396E-05T + 3.15886537E-07T^2$   
 $- 2.25600514E-10T^3$   
 $k(280) = 0.01415 \quad k(400) = 0.02638 \quad k(500) = 0.03767$   
 $\text{std error est} = 2.5E-05 \quad \text{max error est} = 1E-04$   
280-500K  
 $T(k) = 128.42 + 11389.32096k - 41250.42160187k^2$   
 $T(0.01415) = 281 \quad T(0.02638) = 400 \quad T(0.03767) = 499$   
~~- std error est = 0.7~~ ~~- max error est = 2.0~~  
CARBON DIOXIDE     $\text{CO}_2$     200-600K  
 $k(T) = 2.971488E-03 - 1.33471677E-05T + 3.14443715E-07T^2$   
 $- 4.75106178E-10T^3 + 2.68500151E-13T^4$   
 $k(200) = 9.51E-03 \quad k(400) = 0.02441 \quad k(600) = 0.04034$   
 $\text{std error est} = 2.2E-05 \quad \text{max error est} = 1E-04$   
600-1000K  
 $k(T) = 6.085375E-02 - 3.63680275E-04T + 1.0134366E-06T^2$   
 $- 9.7042356E-10T^3 + 3.27864115E-13T^4$   
 $k(600) = 0.04036 \quad k(800) = 0.05595 \quad k(1000) = 0.06805$   
 $\text{std error est} = 5.6E-05 \quad \text{max error est} = 1.2E-04$

CARBON DIOXIDE (continued) 1000-1500K  
 $k(T) = -4.880854E-02 + 2.05275039E-04T - 1.15912553E-07T^3$   
 $+ 2.74425613E-11T^3$   
 $k(1000) = 0.0680 \quad k(1250) = 0.08027 \quad k(1500) = 0.09092$   
 $\text{std error est} = 4.9E-05 \quad \text{max error est} = 1E-04$

200-600K  
 $T(k) = 71.53 + 14079.598772k - 24697.758498k^2$   
 $T(9.51E-03) = 203 \quad T(0.02441) = 400 \quad T(0.04034) = 599$   
 $\text{std error est} = 1.1 \quad \text{max error est} = 3.5$

600-1000K  
 $T(k) = 389.988 - 335.1830848k + 137340.8296339k^2$   
 $T(0.04036) = 600 \quad T(0.05595) = 801 \quad T(0.06805) = 1003$   
 $\text{std error est} = 1.3 \quad \text{max error est} = 3.5$

1000-1500K  
 $T(k) = 438.195 - 2034.64765848k + 151207.6747921k^2$   
 $T(0.0680) = 999 \quad T(0.08027) = 1249 \quad T(0.09092) = 1503$   
 $\text{std error est} = 1.4 \quad \text{max error est} = 2.5$

CARBON MONOXIDE CO 100-1250K  
 $k(T) = -7.41704398E-04 + 9.87435265E-05T - 3.77511167E-08T^2$   
 $- 1.99334224E-11T^3 + 3.65528437E-14T^4 - 1.2427179E-17T^5$   
 $k(100) = 8.74E-03 \quad k(650) = 0.0471 \quad k(1250) = 0.07608$   
 $\text{std error est} = 4E-05 \quad \text{max error est} = 1E-04$

100-1250K  
 $T(k) = 12.162 + 8989.653527k + 97279.93110207k^2$   
 $T(8.74E-03) = 98 \quad T(0.0471) = 651 \quad T(0.07608) = 1259$   
 $\text{std error est} = 3.7 \quad \text{max error est} = 11.0$

CARBON TETRACHLORIDE CC14 250-500K  
 $k(T) = 7.8364705E-03 - 7.3966726E-05T + 3.78688851E-07T^2$   
 $- 5.67675082E-10T^3 + 2.88855251E-13T^4$   
 $k(250) = 5.27E-03 \quad k(400) = 9.9E-03 \quad k(500) = 0.01262$   
 $\text{std error est} = 1.1E-05 \quad \text{max error est} = 1E-04$

250-500K  
 $T(k) = 108.29 + 25202.5901427k + 442601.9142055k^2$   
 $T(5.27E-03) = 253 \quad T(9.9E-03) = 401 \quad T(0.01262) = 497$   
 $\text{std error est} = 1.7 \quad \text{max error est} = 5.5$

CHLORINE Cl<sub>2</sub> 240-700K  
 $k(T) = -5.6373517E-03 + 7.42811048E-05T - 1.39215986E-07T^2$   
 $+ 2.1640488E-10T^3 - 1.2881365E-13T^4$   
 $k(240) = 6.74E-03 \quad k(450) = 0.01404 \quad k(700) = 0.02144$   
 $\text{std error est} = 4.7E-05 \quad \text{max error est} = 1E-04$

CHLORINE (continued) 240-700K

$$T(k) = 172.043 - 13603.49935k + 5088112.16192k^2 - 265967414.84k^3 + 5207768348.464k^4$$

$$T(6.74E-03) = 240 \quad T(0.01404) = 450 \quad T(0.02144) = 698$$

- std error est = 1.7 - - - - - max\_error\_est = 5.5

CHLORODIFLUOROMETHANE  $\text{CHClF}_2$  250-500K

(FREON-22)

$$k(T) = - 4.0615383E-04 + 1.80841025E-05T + 6.18803419E-08T^2$$

$$k(250) = 7.98E-03 \quad k(400) = 0.01673 \quad k(500) = 0.02411$$

$$\text{std error est} = 2.4E-05 \quad \text{max error est} = 1E-04$$

250-500K

$$T(k) = 85.013 + 22663.6699172k - 228007.2338189k^2$$

$$T(7.98E-03) = 251 \quad T(0.01673) = 400 \quad T(0.02411) = 500$$

- std error est = 0.9 - - - - - max\_error\_est = 2.5

CHLOROFORM  $\text{CHCl}_3$  340-550K

$$k(T) = - 5.860675E-03 + 5.20017788E-05T - 3.8366916E-08T^2 + 3.64052602E-11T^3$$

$$k(340) = 8.82E-03 \quad k(400) = 0.01113 \quad k(550) = 0.01719$$

$$\text{std error est} = 2.5E-05 \quad \text{max error est} = 1E-04$$

340-550K

$$T(k) = 93.34 + 29378.466083k - 162781.2342915k^2$$

$$T(8.82E-03) = 340 \quad T(0.01113) = 400 \quad T(0.01719) = 550$$

- std error est = 0.7 - - - - - max\_error\_est = 1.5

CHLOROTRIFLUOROMETHANE  $\text{CClF}_3$  250-500K

(FREON-13)

$$k(T) = - 5.6286355E-03 + 5.68433027E-05T + 8.34249085E-09T^2$$

$$k(250) = 9.1E-03 \quad k(400) = 0.01844 \quad k(500) = 0.02488$$

$$\text{std error est} = 1.8E-05 \quad \text{max error est} = 1E-04$$

250-500K

$$T(k) = 98.24 + 16976.00664908k - 33295.38946655k^2$$

$$T(9.1E-03) = 250 \quad T(0.01844) = 400 \quad T(0.02488) = 500$$

- std error est = 0.3 - - - - - max\_error\_est = 1.5

n-DECANE  $\text{C}_{10}\text{H}_{22}$  250-500K

$$k(T) = - 5.88274E-03 + 3.72449646E-05T + 7.55109624E-08T^2$$

$$k(250) = 8.15E-03 \quad k(400) = 0.0211 \quad k(500) = 0.03162$$

$$\text{std error est} = 2.5E-05 \quad \text{max error est} = 1E-04$$

Note: Pressure dependence between 250-440K ignored.

Note: For  $T(k)$  calculations, use the iterative procedures discussed in Section 5 and the polynomial presented above. - - -

DEUTERIUM  $\text{D}_2$  25-400K

$$k(T) = - 5.698206E-03 + 8.4468815E-04T - 3.02792058E-06T^2$$

$$+ 1.1004468E-08T^3 - 2.1022893E-11T^4 + 1.58585846E-14T^5$$

## DEUTERIUM (continued)

$k(25) = 0.01369$        $k(250) = 0.12154$        $k(400) = 0.1762$   
 $\text{std error est} = 2.2E-04$        $\text{max error est} = 4E-04$

25-400K

$T(k) = 0.5886 + 1513.21300425k + 4346.0399915k^2$   
 $T(0.01369) = 22$        $T(0.12154) = 249$        $T(0.1762) = 402$   
 $\text{std error est} = 1.5$        $\text{max error est} = 2.5$

DICHLORODIFLUOROMETHANE  $\text{CCl}_2\text{F}_2$  250-500K

(FREON-12)

$k(T) = -3.233077E-03 + 3.50076218E-05T + 2.7686436E-08T^2$   
 $- 2.30654304E-12T^3$   
 $k(250) = 7.21E-03$        $k(400) = 0.01505$        $k(500) = 0.0209$   
 $\text{std error est} = 2.6E-05$        $\text{max error est} = 1E-04$

250-500K

$T(k) = 95.995 + 22495.971645k - 152316.4895525k^2$   
 $T(7.21E-03) = 250$        $T(0.01505) = 400$        $T(0.0209) = 500$   
 $\text{std error est} = 0.5$        $\text{max error est} = 1.5$

DICHLOROFUOROMETHANE  $\text{CHCl}_2\text{F}$  250-450K

(FREON-21)

$k(T) = -3.70498999E-03 + 5.72092142E-05T - 1.13430816E-07T^2$   
 $+ 1.98784186E-10T^3$   
 $k(250) = 6.61E-03$        $k(350) = 0.01095$        $k(450) = 0.01718$   
 $\text{std error est} = 3.9E-05$        $\text{max error est} = 1E-04$

250-450K

$T(k) = 52.34 + 34343.090676k - 655593.6727497k^2$   
 $T(6.61E-03) = 251$        $T(0.01095) = 350$        $T(0.01718) = 449$   
 $\text{std error est} = 0.9$        $\text{max error est} = 2.0$

DICHLOROTETRAFLUOROETHANE  $\text{C}_2\text{Cl}_2\text{F}_4$  250-500K

(FREON-114)

$k(T) = 1.5549359E-02 - 7.41226495E-05T + 1.96794871E-07T^2$   
 $k(250) = 9.32E-03$        $k(400) = 0.01739$        $k(500) = 0.02769$   
 $\text{std error est} = 2.6E-05$        $\text{max error est} = 1E-04$

250-500K

$T(k) = -127.377 + 58481.31774k - 2155849.717k^2 + 31248863.5628k^3$   
 $T(9.32E-03) = 256$        $T(0.01739) = 402$        $T(0.02769) = 502$   
 $\text{std error est} = 2.5$        $\text{max error est} = 6.5$

ETHANE  $\text{C}_2\text{H}_6$  200-1000K

$k(T) = -3.83815197E-02 + 5.47282126E-04T - 2.80760648E-06T^2$   
 $+ 8.74854603E-09T^3 - 1.369896E-11T^4 + 1.05765043E-14T^5$   
 $- 3.16347435E-18T^6$   
 $k(200) = 0.01002$        $k(600) = 0.06838$        $k(1000) = 0.16391$   
 $\text{std error est} = 1.9E-04$        $\text{max error est} = 3E-04$

200-1000K

$T(k) = 128.505 + 8110.832388k - 17342.93335k^2$   
 $T(0.01002) = 208$        $T(0.06838) = 602$        $T(0.16391) = 992$

ETHYL ALCOHOL    C<sub>2</sub>H<sub>5</sub>OH            250-500K

k(T) = - 2.46663E-02 + 1.5589255E-04T - 8.22954822E-08T<sup>2</sup>  
k(250) = 9.17E-03      k(400) = 0.02453      k(500) = 0.03271  
std error est = 2.8E-05                               max error est = 1E-04

Note: Pressure dependence between 250-350K ignored.

250-500K

T(k) = 183.774 + 6437.651482775k + 97730.4282729k<sup>2</sup>  
T(9.17E-03) = 251      T(0.02453) = 400      T(0.03271) = 499  
std error est = 0.7                                       max error est = 2.0

ETHYL ETHER    C<sub>4</sub>H<sub>10</sub>O            250-500K

k(T) = - 7.0819597E-04 + 1.855898E-05T + 1.14117826E-07T<sup>2</sup>  
k(250) = 0.01106      k(400) = 0.02497      k(500) = 0.0371  
std error est = 1.8E-05                               max error est = 1E-04

Note: Pressure dependence between 250-300K ignored.

250-500K

T(k) = 106.1 + 14272.722424k - 99605.2245926k<sup>2</sup>  
T(0.01106) = 252      T(0.02497) = 400      T(0.0371) = 499  
std error est = 0.9                                       max error est = 2.5

ETHYLENE    C<sub>2</sub>H<sub>4</sub>            200-450K

k(T) = 0.1690142 - 2.71392927E-03T + 1.71636899E-05T<sup>2</sup>  
- 5.16435832E-08T<sup>3</sup> + 7.74044499E-11T<sup>4</sup> - 4.59993653E-14T<sup>5</sup>  
k(200) = 8.75E-03      k(350) = 0.02743      k(450) = 0.04262  
std error est = 7.0E-05                               max error est = 1.2E-04

200-450K

T(k) = 108.663 + 12177.1554k - 168879.6154k<sup>2</sup> + 1672295.794854k<sup>3</sup>  
T(8.75E-03) = 203      T(0.02743) = 350      T(0.04262) = 450  
std error est = 1.3                                       max error est = 3.5

FLUORINE    F<sub>2</sub>            90-800K

k(T) = 3.3854087E-04 + 8.27103562E-05T + 5.27622468E-08T<sup>2</sup>  
- 7.51472474E-11T<sup>3</sup>  
k(90) = 8.16E-03      k(400) = 0.03706      k(800) = 0.0618  
std error est = 5.9E-05                               max error est = 1E-04

Note: For T(k) calculations, use the iterative procedures discussed in Section 5 and the polynomial presented above.

HELIUM    He            25-300K

k(T) = 1.028793E-02 + 8.51625139E-04T - 3.14258034E-06T<sup>2</sup>  
+ 1.02188556E-08T<sup>3</sup> - 1.3477236E-11T<sup>4</sup>  
k(25) = 0.02977      k(200) = 0.1151      k(300) = 0.14969  
std error est = 1.2E-04                               max error est = 2E-04

## HELIUM (continued)

300-500K

$$k(T) = -7.761491E-03 + \frac{8.66192033E-04}{T} - \frac{1.5559338E-06}{T^2}$$

$$+ \frac{1.40150565E-09}{T^3}$$

$$k(300) = 0.1499 \quad k(400) = 0.17946 \quad k(500) = 0.21154$$

$$\text{std error est} = 1.1E-04 \quad \text{max error est} = 2E-04$$

500-1500K

$$k(T) = -9.0656E-02 + \frac{9.37593087E-04}{T} - \frac{9.13347535E-07}{T^2}$$

$$+ \frac{5.55037072E-10}{T^3} - \frac{1.26457196E-13}{T^4}$$

$$k(500) = 0.21128 \quad k(1000) = 0.3622 \quad k(1500) = 0.4938$$

$$\text{std error est} = 8.9E-04 \quad \text{max error est} = 1.3E-03$$

1500-5000K

$$k(T) = 5.26198E-02 + \frac{3.31365073E-04}{T} - \frac{2.81816958E-08}{T^2}$$

$$+ \frac{2.1409764E-12}{T^3}$$

$$k(1500) = 0.4935 \quad k(3250) = 0.9054 \quad k(5000) = 1.2725$$

$$\text{std error est} = 2E-03 \quad \text{max error est} = 3E-03$$

100-5000K

$$T(k) = -99.57 + 2433.072575k + 1810.239628k^2 - 448.9582131k^3$$

$$T(0.1151) = 204 \quad T(0.4938) = 1489 \quad T(1.2725) = 5003$$

$$\underline{\text{std error est} = 6.5} \quad \underline{\text{max error est} = 15.0}$$
n-HEPTANE  $C_7H_{16}$ 250-1000K

$$k(T) = -4.606147E-02 + \frac{5.95652224E-04}{T} - \frac{2.98893153E-06}{T^2}$$

$$+ \frac{8.44612876E-09}{T^3} - \frac{1.2292738E-11}{T^4} + \frac{9.01270236E-15}{T^5}$$

$$- \frac{2.62961437E-18}{T^6}$$

$$k(250) = 0.0082 \quad k(500) = 0.0326 \quad k(1000) = 0.0971$$

$$\text{std error est} = 1.2E-04 \quad \text{max error est} = 4E-04$$

Note: Pressure dependence between 250-370K ignored.

250-1000K

$$T(k) = 156.21 + 12828.33732k - \frac{81042.0901}{k^2} + 390630.82849k^3$$

$$T(8.2E-03) = 256 \quad T(0.0326) = 502 \quad T(0.0971) = 995$$

$$\underline{\text{std error est} = 2.9} \quad \underline{\text{max error est} = 9.0}$$
n-HEXANE  $C_6H_{14}$ 250-1000K

$$k(T) = 1.287757E-03 - \frac{2.00499443E-05}{T} + \frac{2.37858831E-07}{T^2}$$

$$- \frac{1.60944555E-10}{T^3} + \frac{7.71027297E-14}{T^4}$$

$$k(250) = 8.9E-03 \quad k(600) = 0.0501 \quad k(1000) = 0.1353$$

$$\text{std error est} = 2.9E-04 \quad \text{max error est} = 6E-04$$
250-1000K

$$T(k) = 162.609 + 11501.7075k - \frac{63679.79437}{k^2} + 182669.90973k^3$$

$$T(8.9E-03) = 260 \quad T(0.0501) = 602 \quad T(0.1353) = 1006$$

$$\underline{\text{std error est} = 3.5} \quad \underline{\text{max error est} = 11.0}$$
HYDROGEN  $H_2$ 100-500K

$$k(T) = 2.009705E-02 + \frac{3.234622E-04}{T} + \frac{2.1637249E-06}{T^2}$$

$$- \frac{6.49151204E-09}{T^3} + \frac{5.52407932E-12}{T^4}$$

$$k(100) = 0.0681 \quad k(300) = 0.1813 \quad k(500) = 0.2566$$

## HYDROGEN (continued)

std error est = 3.4E-04 max error est = 6E-04

$$\begin{aligned} & \text{500-1500K} \\ k(T) &= 0.1083105 + 2.21163789E-04T + 2.26380948E-07T^2 \\ &\quad - 1.74258636E-10T^3 + 4.6468625E-14T^4 \end{aligned}$$

$$\begin{aligned} k(500) &= 0.2566 & k(1000) &= 0.4281 & k(1500) &= 0.5965 \\ \text{std error est} &= 3.5E-04 & & & \text{max error est} &= 7E-04 \end{aligned}$$

$$\begin{aligned} & \text{1500-2000K} \\ k(T) &= -0.28107269 + 1.09703479E-03T - 5.27318283E-07T^2 \\ &\quad + 1.2403865E-10T^3 \end{aligned}$$

$$\begin{aligned} k(1500) &= 0.5966 & k(1750) &= 0.6886 & k(2000) &= 0.7960 \\ \text{std error est} &= 3.7E-04 & & & \text{max error est} &= 6E-04 \end{aligned}$$

$$\begin{aligned} & \text{100-500K} \\ T(k) &= -18.63 + 1990.8944k - 4723.849445k^2 + 19136.37907k^3 \\ T(0.0681) &= 101 & T(0.1813) &= 301 & T(0.2566) &= 505 \\ \text{std error est} &= 1.8 & & & \text{max error est} &= 5.5 \end{aligned}$$

$$\begin{aligned} & \text{500-1500K} \\ T(k) &= -228.573 + 2791.61736k + 187.56000746k^2 \\ T(0.2566) &= 500 & T(0.4281) &= 1001 & T(0.5965) &= 1503 \\ \text{std error est} &= 1.4 & & & \text{max error est} &= 5.0 \end{aligned}$$

$$\begin{aligned} & \text{1500-2000K} \\ T(k) &= -930.817 + 5242.1851374k - 1959.321732k^2 \\ T(0.5966) &= 1499 & T(0.6886) &= 1750 & T(0.796) &= 2001 \\ \text{std error est} &= 1.0 & & & \text{max error est} &= 3.0 \end{aligned}$$

## HYDROGEN CHLORIDE HCl 200-700K

$$\begin{aligned} k(T) &= 1.2288265E-04 + 3.20474254E-05T + 1.02223086E-07T^2 \\ &\quad - 1.99696412E-10T^3 + 1.16463692E-13T^4 \\ k(200) &= 9.2E-03 & k(400) &= 0.0195 & k(700) &= 0.0321 \\ \text{std error est} &= 2.8E-05 & & & \text{max error est} &= 1E-04 \end{aligned}$$

$$\begin{aligned} & \text{200-700K} \\ T(k) &= 61.98 + 13391.474616k + 203362.8049798k^2 \\ T(9.2E-03) &= 202 & T(0.0195) &= 400 & T(0.0321) &= 701 \\ \text{std error est} &= 1.2 & & & \text{max error est} &= 2.5 \end{aligned}$$

## HYDROGEN IODIDE HI 250-1000K

$$\begin{aligned} k(T) &= -4.35678828E-04 + 2.3083046E-05T - 3.77024198E-09T^2 \\ &\quad + 1.18389384E-12T^3 \\ k(250) &= 5.1E-03 & k(600) &= 0.0123 & k(1000) &= 0.0201 \\ \text{std error est} &= 2.7E-05 & & & \text{max error est} &= 1E-04 \end{aligned}$$

$$\begin{aligned} & \text{250-1000K} \\ T(k) &= 11.898 + 45338.55831k + 197725.8013557k^2 \\ T(5.1E-03) &= 248 & T(0.0123) &= 599 & T(0.0201) &= 1003 \\ \text{std error est} &= 1.4 & & & \text{max error est} &= 3.5 \end{aligned}$$

HYDROGEN SULFIDE    H<sub>2</sub>S        220-400K

k(T) = - 5.2404334E-03 + 6.7759251E-05T - 4.05425325E-09T<sup>2</sup>  
k(220) = 0.0095            k(300) = 0.0147            k(400) = 0.0212  
std error est = 2.9E-05                                  max error est = 1E-04

220-400K

T(k) = 77.82 + 14874.853457k + 14686.9999k<sup>2</sup>  
T(9.5E-03) = 220            T(0.0147) = 300            T(0.0212) = 400  
std error est = 0.5                                          max error est = 2.0

KRYPTON                   Kr        120-700K

k(T) = 4.6142E-05 + 3.48571058E-05T - 1.20386082E-08T<sup>2</sup>  
k(120) = 4.06E-03            k(400) = 0.01206            k(700) = 0.01855  
std error est = 1.7E-05                                  max error est = 1E-04

120-700K

T(k) = 21.254 + 22220.36563k + 761572.7864265k<sup>2</sup>  
T(4.06E-03) = 124            T(0.01206) = 400            T(0.01855) = 696  
std error est = 1.8                                          max error est = 4.5

METHANE                   CH<sub>4</sub>        100-1000K

k(T) = -1.3401499E-02 + 3.6630706E-04T - 1.82248608E-06T<sup>2</sup>  
+ 5.93987998E-09T<sup>3</sup> - 9.1405505E-12T<sup>4</sup> + 6.7896889E-15T<sup>5</sup>  
- 1.95048736E-18T<sup>6</sup>  
k(100) = 0.0101            k(500) = 0.067            k(1000) = 0.169  
std error est = 3E-04                                          max error est = 6E-04

100-1000K

T(k) = -19.358 + 11993.5848k - 98202.38989k<sup>2</sup> + 631750.65118k<sup>3</sup>  
- 1542230.678766k<sup>4</sup>  
T(0.0101) = 92            T(0.067) = 502            T(0.169) = 994  
std error est = 2.8                                          max error est = 6.5

METHYL ALCOHOL           CH<sub>3</sub>OH        300-550K

k(T) = -2.0298675E-02 + 1.21910927E-04T - 2.23748473E-08T<sup>2</sup>  
k(300) = 0.0143            k(425) = 0.0275            k(550) = 0.040  
std error est = 3.8E-05                                  max error est = 1E-04

300-550K

T(k) = 173.252 + 8599.676374k + 20535.0012k<sup>2</sup>  
T(0.0143) = 300            T(0.0275) = 425            T(0.040) = 550  
std error est = 0.4                                          max error est = 1.5

METHYL CHLORIDE           CH<sub>3</sub>Cl        250-750K

k(T) = - 2.8950296E-03 + 2.42340563E-05T + 6.9670016E-08T<sup>2</sup>  
k(250) = 7.5E-03            k(400) = 0.0179            k(750) = 0.0545  
std error est = 1.1E-04                                          max error est = 2.5E-04

NEON

Ne

50-500K

$k(T) = 2.201564E-03 + 2.27517163E-04T - 2.9729466E-07T^2$   
 $+ 2.08844136E-10T^3$   
 $k(50) = 0.0129 \quad k(250) = 0.0438 \quad k(500) = 0.0677$   
 $\text{std error est} = 3.4E-05 \quad \text{max error est} = 1E-04$

500-1000K  
 $k(T) = -0.0223377 + 2.83448846E-04T - 2.57636449E-07T^2$   
 $+ 1.01142695E-10T^3$   
 $k(500) = 0.0676 \quad k(750) = 0.088 \quad k(1000) = 0.1046$   
 $\text{std error est} = 1.4E-04 \quad \text{max error est} = 2E-04$

1000-5000K  
 $k(T) = 0.013526582 + 1.21904517E-04T - 4.05606888E-08T^2$   
 $+ 1.14406524E-11T^3 - 1.65850704E-15T^4 + 9.29114306E-20T^5$   
 $k(1000) = 0.1047 \quad k(2500) = 0.1878 \quad k(5000) = 0.2929$   
 $\text{std error est} = 2.9E-04 \quad \text{max error est} = 4E-04$

50-500K  
 $T(k) = 12.8374 + 2245.3161k + 73055.0207k^2$   
 $T(0.0129) = 54 \quad T(0.0438) = 251 \quad T(0.0677) = 500$   
 $\text{std error est} = 1.4 \quad \text{max error est} = 4$   
500-1000K  
 $T(k) = 1971.304 - 65338.30244k + 844869.0777k^2 - 2954030.585k^3$   
 $T(0.0676) = 503 \quad T(0.088) = 751 \quad T(0.1046) = 1000$   
 $\text{std error est} = 2.0 \quad \text{max error est} = 5.5$

1000-5000K  
 $T(k) = -305.725 + 9215.50632k + 30228.47906k^2$   
 $T(0.1047) = 991 \quad T(0.1878) = 2491 \quad T(0.2929) = 4987$   
 $\text{std error est} = 9.0 \quad \text{max error est} = 14.5$

NITRIC OXIDE

NO

130-1000K

$k(T) = 2.695164E-03 + 3.8477785E-05T + 3.79042336E-07T^2$   
 $- 1.3449086E-09T^3 + 2.15784789E-12T^4 - 1.64052333E-15T^5$   
 $+ 4.79750187E-19T^6$   
 $k(130) = 0.0117 \quad k(600) = 0.0462 \quad k(1000) = 0.0724$   
 $\text{std error est} = 4.5E-05 \quad \text{max error est} = 1E-04$

130-1000K  
 $T(k) = 20.91 + 7794.64895k + 140783.3849k^2 - 857527.26795k^3$   
 $T(0.0117) = 130 \quad T(0.0462) = 597 \quad T(0.0724) = 998$   
 $\text{std error est} = 2.1 \quad \text{max error est} = 4.5$

NITROGEN

N<sub>2</sub>100-1500K

$k(T) = -1.5231785E-03 + 1.18879965E-04T - 1.2092845E-07T^2$   
 $+ 1.15567802E-10T^3 - 6.36537349E-14T^4 + 1.47167023E-17T^5$   
 $k(100) = 9.26E-03 \quad k(500) = 0.03861 \quad k(1500) = 0.0842$   
 $\text{std error est} = 5.2E-05 \quad \text{max error est} = 2E-04$

NITROGEN (continued) 1500-3500K

$k(T) = 0.7282944 - 1.54313282E-03T + 1.3535933E-06T^2$   
 $- 5.5158517E-10T^3 + 1.08449625E-13T^4 - 8.26807569E-18T^5$   
 $k(1500) = 0.08382 \quad k(2500) = 0.14079 \quad k(3500) = 0.19131$   
 $\text{std error est} = 3.2E-04 \quad \text{max error est} = 4E-04$

100-1500K

$T(k) = 38.19 + 5560.90414k + 186184.03159k^2 - 521677.344982k^3$   
 $T(9.26E-03) = 105 \quad T(0.03861) = 500 \quad T(0.0842) = 1515$   
 $\text{std error est} = 3.5 \quad \text{max error est} = 15.0$

1500-3500K

$T(k) = -15930.55 + 638350.15799k - 9332889.30298k^2 + 67699225.76k^3$   
 $- 237257633.7266k^4 + 322622404.826k^5$   
 $T(0.08382) = 1497 \quad T(0.14079) = 25 \quad T(0.19131) = 3497$   
 $\text{std error est} = 5.5 \quad \text{max error est} = 12.5$

NITROGEN PEROXIDE NO<sub>2</sub> 440-640K

$k(T) = 8.90074818 - 8.02940254E-02T + 2.89756384E-04T^2$   
 $- 5.2147063E-07T^3 + 4.6839284E-10T^4 - 1.6796286E-13T^5$   
 $k(440) = 0.03309 \quad k(540) = 0.03752 \quad k(640) = 0.04479$   
 $\text{std error est} = 4.1E-05 \quad \text{max error est} = 2E-04$

440-640K

$T(k) = -550.995 + 42497.74266k - 357393.73223k^2$   
 $T(0.03309) = 464 \quad T(0.03752) = 540 \quad T(0.04479) = 635$   
 $\text{std error est} = 7.5 \quad \text{max error est} = 15.0$

NITROUS OXIDE N<sub>2</sub>O 190-1000K

$k(T) = 6.9918875E-03 - 7.16238986E-05T + 6.16971397E-07T^2$   
 $- 1.13449444E-09T^3 + 9.64569615E-13T^4 - 3.11996398E-16T^5$   
 $k(200) = 9.71E-03 \quad k(600) = 0.04182 \quad k(1000) = 0.07042$   
 $\text{std error est} = 6.8E-05 \quad \text{max error est} = 1.2E-04$

190-1000K

$T(k) = 89.979 + 11746.9788k + 2979.32622k^2 + 193154.99479k^3$   
 $T(9.71E-03) = 204 \quad T(0.04182) = 601 \quad T(0.07042) = 999$   
 $\text{std error est} = 2.3 \quad \text{max error est} = 5.5$

n-NONANE C<sub>9</sub>H<sub>20</sub> 250-1000K

$k(T) = -0.01073559242 + 7.71447107E-05T + 1.70209517E-10T^2$   
 $k(250) = 8.56E-03 \quad k(600) = 0.03561 \quad k(1000) = 0.06658$   
 $\text{std error est} = 3.0E-05 \quad \text{max error est} = 1E-04$

250-1000K

$T(k) = 139.123 + 12954.464853k - 366.184555k^2$   
 $T(8.56E-03) = 250 \quad T(0.03561) = 600 \quad T(0.06658) = 1000$   
 $\text{std error est} = 0.4 \quad \text{max error est} = 1.5$

n-OCTANE      C<sub>8</sub>H<sub>18</sub>      250-500K

k(T) = -4.0139194E-03 + 3.38796092E-05T + 8.19291819E-08T<sup>2</sup>  
k(250) = 9.58E-03      k(400) = 0.02265      k(500) = 0.03341  
std error est = 2.9E-05                                  max error est = 1E-04  
Note: Pressure dependence between 250-390K ignored.

250-500K

T(k) = 121.451 + 14436.05859k - 93780.6879k<sup>2</sup>  
T(9.58E-03) = 251      T(0.02265) = 400      T(0.03341) = 499  
std error est = 0.6                                          max error est = 2.5

OXYGEN      O<sub>2</sub>      100-1000K

k(T) = -7.6727798E-04 + 1.03560076E-04T - 4.62034365E-08T<sup>2</sup>  
+ 1.51980292E-11T<sup>3</sup>  
k(100) = 9.14E-03      k(600) = 0.04802      k(1000) = 0.07179  
std error est = 9E-05                                          max error est = 2E-04  
1000-1500K  
k(T) = -0.18654526 + 7.05649428E-04T - 7.71025034E-07T<sup>2</sup>  
+ 4.02143777E-10T<sup>3</sup> - 7.84907953E-14T<sup>4</sup>  
k(1000) = 0.07173      k(1250) = 0.0846      k(1500) = 0.097  
std error est = 2E-05                                          max error est = 1E-04

100-1000K

T(k) = 11.465 + 9137.13572k + 65064.9850077k<sup>2</sup>  
T(9.14E-03) = 100      T(0.04802) = 600      T(0.07179) = 1003  
std error est = 1.2                                          max error est = 3.5

1000-1500K

T(k) = -212.8193 + 14703.836485k + 30477.8067k<sup>2</sup>  
T(0.07173) = 999      T(0.0846) = 1249      T(0.097) = 1500  
std error est = 1.0                                          max error est = 2.5

n-PENTANE      C<sub>5</sub>H<sub>12</sub>      250-500K

k(T) = -6.17042124E-03 + 5.06949328E-05T + 6.81013431E-08T<sup>2</sup>  
k(250) = 0.01076      k(375) = 0.02242      k(500) = 0.0362  
std error est = 3.2E-05                                          max error est = 1E-04  
Note: Pressure dependence between 250-300K ignored.

250-500K

T(k) = 120.404 + 12797.2192k - 64302.207166k<sup>2</sup>  
T(0.01076) = 251      T(0.02242) = 375      T(0.0362) = 499  
std error est = 0.4                                          max error est = 2.5

PROPANE      C<sub>3</sub>H<sub>8</sub>      200-500K

k(T) = -1.07682209E-02 + 8.38590352E-05T + 4.22059864E-08T<sup>2</sup>  
k(200) = 7.69E-03      k(350) = 0.02375      k(500) = 0.04171  
std error est = 3.6E-05                                          max error est = 1E-04

**PROPANE (continued)** 200-500K

$$T(k) = 123.418 + 10224.285427k - 28865.4345095k^2$$

$$T(7.69E-03) = 200 \quad T(0.02375) = 350 \quad T(0.04171) = 500$$

$$\underline{\text{std error est}} = 0.4 \quad \underline{\text{max error est}} = 2.0$$

**RADON** Rn 200-1000K

$k(T) = -8.228225E-05 + 1.2546552E-05T + 7.9101118E-10T^2$   
 $- 5.2693994E-12T^3 + 2.42034894E-15T^4$

$$k(200) = 2.52E-03 \quad k(600) = 6.91E-03 \quad k(1000) = 0.01041$$
 $\underline{\text{std error est}} = 1.5E-05 \quad \underline{\text{max error est}} = 1E-04$ 

200-1000K

$$T(k) = 37.13 + 61362.656052k + 2966201.713917k^2$$

$$T(2.52E-03) = 211 \quad T(6.91E-03) = 603 \quad T(0.01041) = 997$$
 $\underline{\text{std error est}} = 2.5 \quad \underline{\text{max error est}} = 11.5$ 

**SULFUR DIOXIDE** SO<sub>2</sub> 270-900K

$k(T) = -1.86270694E-02 + 3.19110134E-04T - 1.73644245E-06T^2$   
 $+ 5.09847985E-09T^3 - 7.53585825E-12T^4 + 5.48078289E-15T^5$   
 $- 1.56355469E-18T^6$

$$k(270) = 8.51E-03 \quad k(550) = 0.02285 \quad k(900) = 0.03998$$
 $\underline{\text{std error est}} = 1E-04 \quad \underline{\text{max error est}} = 3E-04$ 

270-900K

$$T(k) = 72.882 + 27366.02837k - 431142.085k^2 + 6765624.30409k^3$$

$$T(8.51E-03) = 279 \quad T(0.02285) \approx 554 \quad T(0.03998) = 910$$
 $\underline{\text{std error est}} = 4.5 \quad \underline{\text{max error est}} = 11.5$ 

**TOLUENE** C<sub>7</sub>H<sub>8</sub> 250-600K

$k(T) = 5.33882E-02 - 4.90263636E-04T + 1.84066272E-06T^2$   
 $- 2.5107707E-09T^3 + 1.28558132E-12T^4$

$$k(250) = 0.01165 \quad k(450) = 0.02943 \quad k(600) = 0.04615$$
 $\underline{\text{std error est}} = 4.9E-05 \quad \underline{\text{max error est}} = 1E-04$ 

250-600K

$$T(k) \approx 49.184 + 21881.4208k - 392934.468835k^2 + 3878149.983735k^3$$

$$T(0.01165) = 257 \quad T(0.02943) = 452 \quad T(0.04615) = 603$$
 $\underline{\text{std error est}} = 2.5 \quad \underline{\text{max error est}} = 8.0$ 

**TRICHLOROFLUOROMETHANE** CCl<sub>3</sub>F 250-500K

(FREON-11)

$$k(T) \approx -4.57326E-03 + 4.23785103E-05T - 2.44200245E-09T^2$$

$$k(250) = 5.87E-03 \quad k(400) = 0.01199 \quad k(500) = 0.01601$$
 $\underline{\text{std error est}} = 2.5E-05 \quad \underline{\text{max error est}} = 1E-04$ 

Note: Pressure dependence between 250-300K ignored.

250-500K

$$T(k) = 108.8 + 23844.731142k + 37285.038633k^2$$

$$T(5.87E-03) = 250 \quad T(0.01199) = 400 \quad T(0.01601) = 500$$
 $\underline{\text{std error est}} = 0.7 \quad \underline{\text{max error est}} = 1.5$

TRICHLOROTRIFLUORO-       $C_2Cl_3F_3$       250-400K  
 ETHANE (FREON-113)  
 $k(T) = 6.2276996E-03 - 3.53066526E-05T + 1.33788515E-07T^2$   
 $k(250) = 5.76E-03$        $k(350) = 0.01026$        $k(400) = 0.01351$   
 $std\ error\ est = 2.1E-05$        $max\ error\ est = 1E-04$   
 Note: Pressure dependence between 250-320K ignored.  
250-400K  
 $T(k) = -22.79 + 68493.0493k - 4352430.586665k^2 + 118681269.374k^3$   
 $T(5.76E-03) = 250$        $T(0.01026) = 350$        $T(0.01351) = 401$   
 $std\ error\ est = 0.6$        $max\ error\ est = 1.5$   
 WATER (STEAM)       $H_2O$       280-900K  
 $k(T) = -2.65056964E-02 + 3.1147143E-04T - 9.84019456E-07T^2$   
 $+ 1.92787663E-09T^3 - 1.68859732E-12T^4 + 5.48194497E-16T^5$   
 $k(280) = 0.01644$        $k(500) = 0.0358$        $k(900) = 0.078$   
 $std\ error\ est = 1.6E-04$        $max\ error\ est = 3E-04$   
280-900K  
 $T(k) = 28.726 + 17529.1632k - 157109.059k^2 + 971929.43672k^3$   
 $T(0.01644) = 279$        $T(0.0358) = 500$        $T(0.078) = 901$   
 $std\ error\ est = 1.6$        $max\ error\ est = 3.5$   
 XENON       $Xe$       200-750K  
 $k(T) = 1.355426E-06 + 2.03984913E-05T - 5.53807454E-09T^2$   
 $k(200) = 3.86E-03$        $k(500) = 8.82E-03$        $k(750) = 0.01219$   
 $std\ error\ est = 3.9E-06$        $max\ error\ est = 1E-04$   
200-750K  
 $T(k) = 23.4897 + 40124.516223k + 1585115.24618k^2$   
 $T(3.86E-03) = 202$        $T(8.82E-03) = 501$        $T(0.01219) = 748$   
 $std\ error\ est = 1.0$        $max\ error\ est = 2.5$

APPENDIX C  
TABLE C-I  
SUMMARY OF CONTENTS

DYNAMIC VISCOSITY ( $\times 10^{-6}$ ) OF  
GASEOUS ELEMENTS AND COMPOUNDS

| NAME                                     | FORMULA                                       | APP C PAGE |
|------------------------------------------|-----------------------------------------------|------------|
| Acetone                                  | C <sub>3</sub> H <sub>6</sub> O               | C-1        |
| Acetylene                                | C <sub>2</sub> H <sub>2</sub>                 | C-1        |
| Air                                      | -                                             | C-1        |
| Ammonia                                  | NH <sub>3</sub>                               | C-1        |
| Argon                                    | Ar                                            | C-2        |
| Benzene                                  | C <sub>6</sub> H <sub>6</sub>                 | C-2        |
| Bromine                                  | Br <sub>2</sub>                               | C-2        |
| Bromotrifluoromethane                    | CF <sub>3</sub> Br                            | C-3        |
| iso-Butane                               | i-C <sub>4</sub> H <sub>10</sub>              | C-3        |
| n-Butane                                 | n-C <sub>4</sub> H <sub>10</sub>              | C-3        |
| Carbon Dioxide                           | CO <sub>2</sub>                               | C-3        |
| Carbon Monoxide                          | CO                                            | C-3        |
| Carbon Tetrachloride                     | CCl <sub>4</sub>                              | C-4        |
| Carbon Tetrafluoride                     | CF <sub>4</sub>                               | C-4        |
| Chlorine                                 | Cl <sub>2</sub>                               | C-4        |
| Chlorodifluoromethane<br>(FREON-22)      | CHClF <sub>2</sub>                            | C-4        |
| Chloroform                               | CHCl <sub>3</sub>                             | C-5        |
| Chloropentafluoroethane                  | C <sub>2</sub> ClF <sub>5</sub>               | C-5        |
| Chlorotrifluoromethane<br>(FREON-13)     | CClF <sub>3</sub>                             | C-5        |
| Deuterium                                | D <sub>2</sub>                                | C-5        |
| Dichlorodifluoromethane<br>(FREON-12)    | CCl <sub>2</sub> F <sub>2</sub>               | C-5        |
| Dichlorofluoromethane<br>(FREON-21)      | CHCl <sub>2</sub> F                           | C-6        |
| Dichlorotetrafluoroethane<br>(FREON-114) | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub> | C-6        |
| Ethane                                   | C <sub>2</sub> H <sub>6</sub>                 | C-6        |
| Ethyl Alcohol                            | C <sub>2</sub> H <sub>5</sub> OH              | C-6        |
| Ethyl Ether                              | C <sub>4</sub> H <sub>10</sub> O              | C-6        |
| Ethylene                                 | C <sub>2</sub> H <sub>4</sub>                 | C-7        |
| Fluorine                                 | F <sub>2</sub>                                | C-7        |
| Helium                                   | He                                            | C-7        |
| n-Heptane                                | C <sub>7</sub> H <sub>16</sub>                | C-7        |
| n-Hexane                                 | C <sub>6</sub> H <sub>14</sub>                | C-8        |
| Hydrogen                                 | H <sub>2</sub>                                | C-8        |
| Hydrogen Chloride                        | HCl                                           | C-8        |
| Hydrogen Iodide                          | HI                                            | C-9        |

TABLE C-I  
(CONT.)

| NAME                                    | FORMULA                                       | APP C PAGE |
|-----------------------------------------|-----------------------------------------------|------------|
| Hydrogen Sulfide                        | H <sub>2</sub> S                              | C-9        |
| Iodine                                  | I <sub>2</sub>                                | C-9        |
| Krypton                                 | Kr                                            | C-9        |
| Methane                                 | CH <sub>4</sub>                               | C-10       |
| Methyl Alcohol                          | CH <sub>3</sub> OH                            | C-10       |
| Methyl Chloride                         | CH <sub>3</sub> Cl                            | C-10       |
| Neon                                    | Ne                                            | C-10       |
| Nitric Oxide                            | NO                                            | C-11       |
| Nitrogen                                | N <sub>2</sub>                                | C-11       |
| Nitrogen Peroxide                       | NO <sub>2</sub>                               | C-11       |
| Nitrous Oxide                           | N <sub>2</sub> O                              | C-11       |
| Octafluorocyclobutane                   | C <sub>4</sub> F <sub>8</sub>                 | C-12       |
| n-Octane                                | C <sub>8</sub> H <sub>18</sub>                | C-12       |
| Oxygen                                  | O <sub>2</sub>                                | C-12       |
| n-Pentane                               | C <sub>5</sub> H <sub>12</sub>                | C-12       |
| Propane                                 | C <sub>3</sub> H <sub>8</sub>                 | C-12       |
| Propylene                               | C <sub>3</sub> H <sub>6</sub>                 | C-13       |
| Sulfur Dioxide                          | SO <sub>2</sub>                               | C-13       |
| Toluene                                 | C <sub>7</sub> H <sub>8</sub>                 | C-13       |
| Trichlorofluoromethane<br>(FREON-11)    | CCl <sub>3</sub> F                            | C-13       |
| Trichlorotrifluoroethane<br>(FREON-113) | C <sub>2</sub> Cl <sub>3</sub> F <sub>3</sub> | C-13       |
| Trifluoromethane                        | CHF <sub>3</sub>                              | C-14       |
| Water                                   | H <sub>2</sub> O <sup>3</sup>                 | C-14       |
| Xenon                                   | Xe                                            | C-14       |

APPENDIX C  
FORMAT EXAMPLE

The equations presented are for gaseous Acetylene

The polynomial equation to calculate the dynamic viscosity ( $\mu$ ) in N s/m<sup>2</sup> as a function of temperature (Kelvin)

| ACETYLENE | Formula                                                     | Valid temperature range                                                                                  |
|-----------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|           | $C_2H_2$                                                    | <u>270-600K</u>                                                                                          |
|           | $\mu(T) = -0.4486325 + 3.92559E-02T - 1.1077158E-05T^2$     |                                                                                                          |
|           | $\mu(270) = 9.34$                                           | $\mu(400) = 13.48$                                                                                       |
|           | std error est = 4.04E-03                                    | $\mu(600) = 19.12$                                                                                       |
|           |                                                             | max error est = 0.01                                                                                     |
|           |                                                             | <u>270-600K</u>                                                                                          |
|           | $T(\mu) = 31.82 + 21.5671447\mu + 0.4252123\mu^2$           |                                                                                                          |
|           | $T(9.34) = 270$                                             | $T(13.48) = 400$                                                                                         |
|           | std error est = 0.3                                         | $T(19.12) = 600$                                                                                         |
|           | standard (or average) error estimate is ±0.3 degrees Kelvin | max_error_est = 1.5                                                                                      |
|           |                                                             | Using the polynomial presented, the calculated temperature for a given $\mu = 19.12E-06N s/m^2$ is 600K. |
|           |                                                             |                                                                                                          |

\*\*\*Note: All of the values for dynamic viscosity ( $\mu$ ) MUST be multiplied by 1E-06.

FIGURE C-1

APPENDIX C

DYNAMIC VISCOSITY (x 1E-06) OF  
GASEOUS ELEMENTS AND COMPOUNDS

|                                                                          |                     |                      |
|--------------------------------------------------------------------------|---------------------|----------------------|
| ACETONE                                                                  | $C_3H_6O$           | <u>250-650K</u>      |
| $\mu(T) = 3.996401 + 1.51018819E-03T + 4.44247E-05T^2 - 2.47973E-08T^3$  |                     |                      |
| $\mu(250) = 6.76$                                                        | $\mu(400) = 10.12$  | $\mu(650) = 16.94$   |
| std error est = 1.906E-02                                                |                     | max error est = 0.04 |
|                                                                          | <u>250-650K</u>     |                      |
| $T(\mu) = -191.27 + 84.748208\mu - 3.388215\mu^2 + 7.7871645E-02\mu^3$   |                     |                      |
| $T(6.76) = 251$                                                          | $T(10.12) = 400$    | $T(16.94) = 651$     |
| std error est = 0.9                                                      |                     | max error est = 2    |
| ACETYLENE                                                                | $C_2H_2$            | <u>270-600K</u>      |
| $\mu(T) = -0.4486325 + 3.92559E-02T - 1.1077158E-05T^2$                  |                     |                      |
| $\mu(270) = 9.34$                                                        | $\mu(400) = 13.48$  | $\mu(600) = 19.12$   |
| std error est = 4.04E-03                                                 |                     | max error est = 0.01 |
|                                                                          | <u>270-600K</u>     |                      |
| $T(\mu) = 31.82 + 21.5671447\mu + .42521234\mu^2$                        |                     |                      |
| $T(9.34) = 270$                                                          | $T(13.48) = 400$    | $T(19.12) = 600$     |
| std error est = 0.3                                                      |                     | max error est = 1.5  |
| AIR                                                                      |                     | <u>80-600K</u>       |
| $\mu(T) = -0.98601 + 0.09080125T - 1.17635575E-04T^2 + 1.2349703E-07T^3$ |                     |                      |
| $- 5.7971299E-11T^4$                                                     |                     |                      |
| $\mu(80) = 5.59$                                                         | $\mu(350) = 20.81$  | $\mu(600) = 30.31$   |
| std error est = 1.47E-02                                                 |                     | max error est = 0.07 |
|                                                                          | <u>600-2000K</u>    |                      |
| $\mu(T) = 4.8856745 + 5.43232E-02T - 2.4261775E-05T^2 + 7.9306E-09T^3$   |                     |                      |
| $- 1.10398E-12T^4$                                                       |                     |                      |
| $\mu(600) = 30.32$                                                       | $\mu(1200) = 46.55$ | $\mu(2000) = 62.27$  |
| std error est = 1.98E-02                                                 |                     | max error est = 0.05 |
|                                                                          | <u>80-600K</u>      |                      |
| $T(\mu) = 23.211 + 8.59256\mu + 0.342764\mu^2$                           |                     |                      |
| $T(5.59) = 82$                                                           | $T(20.81) = 350$    | $T(30.31) = 600$     |
| std error est = 0.7                                                      |                     | max error est = 1.5  |
|                                                                          | <u>600-2000K</u>    |                      |
| $T( ) = 92.81 + 3.601092\mu + 0.43380968\mu^2$                           |                     |                      |
| $T(30.32) = 601$                                                         | $T(46.55) = 1200$   | $T(62.27) = 1999$    |
| std error est = 1.0                                                      |                     | max error est = 2.5  |
| AMMONIA                                                                  | $NH_3$              | <u>200-1000K</u>     |
| $\mu(T) = 0.3639 + 2.999278E-02T + 1.25282E-05T^2 - 7.033645E-09T^3$     |                     |                      |
| $\mu(200) = 6.81$                                                        | $\mu(600) = 21.35$  | $\mu(1000) = 35.85$  |
| std error est = 3.57E-02                                                 |                     | max error est = 0.08 |

AMMONIA (continued) 200-1000K  
 $T(\mu) = 20.22 + 27.09159\mu + 2.94502348E-03\mu^2$   
 $T(6.81) = 205 \quad T(21.35) = 600 \quad T(35.85) = 995$   
 $\underline{\text{std error est}} = 2.2 \quad \underline{\text{max error est}} = 5.0$   
 ARGON Ar 60-540K  
 $\mu(T) = 1.22573 + 5.9456964E-02T + 1.897011E-04T^2 - 8.171242E-07T^3$   
 $+ 1.2939183E-09T^4 - 7.5027442E-13T^5$   
 $\mu(60) = 5.32 \quad \mu(350) = 25.72 \quad \mu(540) = 35.55$   
 $\text{std error est} = 1.95E-02 \quad \text{max error est} = 0.03$   
540-2200K  
 $\mu(T) = 4.03764 + 7.3665688E-02T - 3.3867E-05T^2 + 1.127158E-08T^3$   
 $- 1.585569E-12T^4$   
 $\mu(540) = 35.58 \quad \mu(1250) = 61.35 \quad \mu(2200) = 85.06$   
 $\text{std error est} = 0.03 \quad \text{max error est} = 0.05$   
60-540K  
 $T(\mu) = 12.722 + 9.0267675\mu + 0.161221378\mu^2$   
 $T(5.32) = 65 \quad T(25.72) = 351 \quad T(35.55) = 537$   
 $\text{std error est} = 1.7 \quad \text{max error est} = 5.0$   
540-2200K  
 $\mu(T) = 108.244 + 3.305827\mu + 0.24958985\mu^2$   
 $T(35.58) = 542 \quad T(61.35) = 1250 \quad T(85.06) = 2195$   
 $\underline{\text{std error est}} = 1.1 \quad \underline{\text{max error est}} = 5.0$   
 BENZENE C<sub>6</sub>H<sub>6</sub> 270-650K  
 $\mu(T) = 0.39324 + 2.24768E-02T + 8.090553E-06T^2 - 7.8349307E-09T^3$   
 $\mu(270) = 6.90 \quad \mu(400) = 10.18 \quad \mu(650) = 16.27$   
 $\text{std error est} = 0.02 \quad \text{max error est} = 0.04$   
270-650K  
 $T(\mu) = 12.343 + 36.249\mu + 0.177428\mu^2$   
 $T(6.90) = 272 \quad T(10.18) = 400 \quad T(16.27) = 649$   
 $\underline{\text{std error est}} = 0.9 \quad \underline{\text{max error est}} = 2.0$   
 BORON TRIFLUORIDE BF<sub>3</sub> 190-700K  
 $\mu(T) = 1.401165 + 5.644982E-02T - 1.4088857E-05T^2$   
 $\mu(190) = 11.62 \quad \mu(400) = 21.73 \quad \mu(700) = 34.01$   
 $\text{std error est} = 1.9E-02 \quad \text{max error est} = 0.03$   
190-700K  
 $T(\mu) = -38.33 + 19.737077\mu - 0.0468724\mu^2 + 3.08592457E-03\mu^3$   
 $T(11.62) = 190 \quad T(21.73) = 400 \quad T(34.01) = 700$   
 $\underline{\text{std error est}} = 0.5 \quad \underline{\text{max error est}} = 1.5$   
 BROMINE Br<sub>2</sub> 280-800K  
 $\mu(T) = 0.8027126 + 4.9413942E-02T - 1.70534854E-06T^2$   
 $\mu(280) = 14.50 \quad \mu(500) = 25.08 \quad \mu(800) = 39.24$   
 $\text{std error est} = 4.35E-02 \quad \text{max error est} = 0.21$

BROMINE (continued) 280-800K  
 $\mu(T) = -51.3 + 24.52145\mu - 0.153459363\mu^2 + 2.0985285E-03\mu^3$   
 $T(14.50) = 278 \quad T(25.08) = 500 \quad T(39.24) = 801$   
~~std error est = 0.7~~ ~~max error est = 1.5~~

BROMOTRIFLUOROMETHANE  $CF_3Br$  230-500K  
 $\mu(T) = -1.62177 + 0.0694797T - 4.550649E-05T^2 + 2.0833526E-08T^3$   
 $\mu(230) = 12.20 \quad \mu(350) = 18.01 \quad \mu(500) = 24.35$   
~~std error est = 0.02~~ ~~max error est = 0.09~~

230-500K  
 $T(\mu) = 33.415 + 13.0473238\mu + 0.25127636\mu^2$   
 $T(12.20) = 230 \quad T(18.01) = 350 \quad T(24.35) = 500$   
~~std error est = 0.4~~ ~~max error est = 1.5~~

iso-BUTANE  $i-C_4H_{10}$  270-520K  
 $\mu(T) = -0.102505 + 2.6972076E-02T - 4.2918193E-06T^2$   
 $\mu(270) = 6.87 \quad \mu(400) = 10.00 \quad \mu(520) = 12.76$   
~~std error est = 6.5E-03~~ ~~max error est = 0.02~~

270-520K  
 $T(\mu) = 7.628 + 35.967103\mu + 0.3272017\mu^2$   
 $T(6.87) = 270 \quad T(10.00) = 400 \quad T(12.76) = 520$   
~~std error est = 0.3~~ ~~max error est = 1.5~~

n-BUTANE  $n-C_4H_{10}$  270-520K  
 $\mu(T) = -0.01099487 + 2.634504E-02T - 3.54700854E-06T^2$   
 $\mu(270) = 6.84 \quad \mu(400) = 9.96 \quad \mu(520) = 12.73$   
~~std error est = 5.9E-03~~ ~~max error est = 0.02~~

270-520K  
 $T(\mu) = 3.12 + 37.1408242\mu + 0.271992359\mu^2$   
 $T(6.84) = 270 \quad T(9.96) = 400 \quad T(12.73) = 520$   
~~std error est = 0.3~~ ~~max error est = 1.5~~

CARBON DIOXIDE  $CO_2$  170-2000K  
 $\mu(T) = -0.8095191 + 6.0395329E-02T - 2.824853E-05T^2 + 9.843776E-09T^3$   
 $- 1.47315277E-12T^4$   
 $\mu(170) = 8.69 \quad \mu(1100) = 42.39 \quad \mu(2000) = 62.17$   
~~std error est = 3E-02~~ ~~max error est = 0.1~~

170-2000K  
 $T(\mu) = 25.166 + 15.2582\mu + 0.1780093719\mu^2 + 1.4129E-03\mu^3$   
 $T(8.69) = 172 \quad T(42.39) = 1099 \quad T(62.17) = 2001$   
~~std error est = 1.3~~ ~~max error est = 5.0~~

CARBON MONOXIDE  $CO$  80-1500K  
 $\mu(T) = -0.524575 + 7.9606E-02T - 7.82295E-05T^2 + 6.2821488E-08T^3$   
 $- 2.83747E-11T^4 + 5.317831E-15T^5$   
 $\mu(80) = 5.37 \quad \mu(800) = 35.38 \quad \mu(1500) = 51.63$

## CARBON MONOXIDE (continued)

std error est = 2.62E-02 max error est = 0.03

$$T(\mu) = 21.08 + 10.0217\mu + \frac{80-1500K}{0.289517\mu^2} + 1.4002864E-03\mu^3$$

T(5.37) = 83 T(35.38) = 800 T(51.63) = 1503

std error est = 1.3 max error est = 3.5

CARBON TETRACHLORIDE CC<sub>4</sub> 280-800K

$$\mu(T) = -1.5110416 + 4.3798388E-02T - 2.02626E-05T^2 + 6.144E-09T^3$$

$\mu(280) = 9.30 \quad \mu(550) = 17.47 \quad \mu(800) = 23.71$

std error est = 2.2E-02 max error est = 0.04

$$T(\mu) = 53.258 + 19.890474\mu + \frac{280-800K}{0.489386918\mu^2}$$

T(9.30) = 281 T(17.47) = 550 T(23.71) = 800

std error est = 0.9 max error est = 2.5

CARBON TETRAFLUORIDE CF<sub>4</sub> 230-500K

$$\mu(T) = -1.235676 + 7.815327E-02T - 6.115548E-05T^2 + 2.95168E-08T^3$$

$\mu(230) = 13.86 \quad \mu(400) = 22.13 \quad \mu(500) = 26.24$

std error est = 2.7E-03 max error est = 0.01

$$T(\mu) = 37.74 + 9.70199\mu + \frac{230-500K}{0.30144808\mu^2}$$

T(13.86) = 230 T(22.13) = 400 T(26.24) = 500

std error est = 0.1 max error est = 1.0

CHLORINE Cl<sub>2</sub> 270-800K

$$\mu(T) = -1.81447 + 5.814046E-02T - 2.299287E-05T^2 + 5.015775E-09T^3$$

$\mu(270) = 12.31 \quad \mu(550) = 24.04 \quad \mu(800) = 32.55$

std error est = 0.08 max error est = 0.15

$$T(\mu) = 56.456 + 14.237878\mu + \frac{270-800K}{0.262332581\mu^2}$$

T(12.31) = 271 T(24.04) = 550 T(32.55) = 798

std error est = 2.5 max error est = 5.0

CHLORODIFLUOROMETHANE CHClF<sub>2</sub> 250-500K

(FREON-22)

$$\mu(T) = -0.7369597 + 4.9394676E-02T - 1.2112332E-05T^2$$

$\mu(250) = 10.85 \quad \mu(400) = 17.08 \quad \mu(500) = 20.93$

std error est = 0.02 max error est = 0.03

$$T(\mu) = 23.086 + 18.911\mu + \frac{250-500K}{0.18471282\mu^2}$$

T(10.85) = 250 T(17.08) = 400 T(20.93) = 500

std error est = 0.3 max error est = 2.0

**CHLOROFORM**      **CHCl<sub>3</sub>**      **250-650K**

$\mu(T) = -0.389489 + 3.6808E-02T - 2.72048E-06T^2 - 3.194456E-09T^3$   
 $\mu(250) = 8.59 \quad \mu(450) = 15.33 \quad \mu(650) = 21.51$   
 std error est = 0.022 max error est = 0.09

$$T(\mu) = 23.48 + 24.644568\mu + \frac{250-650K}{0.207098\mu^2}$$

T(8.59) = 250      T(15.33) = 450      T(21.51) = 649  
 std error est = 0.8      max error est = 3.5

**CHLOROPENTAFLUOROETHANE C<sub>2</sub>C<sub>1</sub>F<sub>5</sub> 250-500K**

$\mu(T) = 0.357912 + 4.440886E-02T - 1.014652E-05T^2$   
 $\mu(250) = 10.83 \quad \mu(400) = 16.50 \quad \mu(500) = 20.03$   
 std error est = 3.5E-03 max error est = 0.01

$T(\mu) = 0.2646 + 20.875165\mu + 0.203445135\mu^2$   
 $T(10.83) = 250 \quad T(16.50) = 400 \quad T(20.03) = 500$   
 std error est = 0.2 max error est = 1.0

**CHLOROTRIFLUOROMETHANE**    CC<sub>1</sub>F<sub>3</sub>    230-500K

(FREON-13)  $\mu(T) = 4.018574 + 2.3020865E-02T + 5.190552E-05T^2 - 4.09445E-08T^3$   
 $\mu(230) = 11.56 \quad \mu(400) = 18.91 \quad \mu(500) = 23.39$   
 std error est = 4.4E-03 max error est = 0.01

$$\begin{aligned} T(\mu) &= -53.645 + 25.566055\mu - 8.24565722E-02\mu^2 \\ T(11.56) &= 231 \quad T(18.91) = 400 \quad T(23.39) = 499 \\ \text{std error est} &= 0.5 \quad \text{max error est} = 2.5 \end{aligned}$$

**DEUTERIUM**      D<sub>2</sub>      15-500K

$$\mu(T) = -0.0374066 + 0.07422285T - 1.98491852E-04T^2 + 4.0366E-07T^3 - 3.18855544E-10T^4$$

$\mu(15) = 1.03$        $\mu(300) = 12.68$        $\mu(500) = 17.98$   
std error est = 4.5E-02      max error est = 0.09

$$T(\mu) = -0.449 + 13.1729602\mu + \frac{15-500K}{0.8102567096\mu^2}$$

$$T(1.03) = 14 \quad T(12.68) = 297 \quad T(17.98) = 498$$

DIGITAL PROFILE VEROMETRUM 261 E 250 5000

$$\begin{aligned} & \text{CHLORODIFLUOROMETHANE } \text{CCl}_2\text{F}_2 \text{ } 250-500 \\ & (\text{FREON-12}) \\ & \mu(T) = -0.904423 + 5.03878E-02T - 1.7884615E-05T^2 \\ & \mu(250) = 10.57 \quad \mu(400) = 16.39 \quad \mu(500) = 19.82 \\ & \text{at } 25^\circ\text{C} = 5.35 \text{ E-02} \quad \text{at } 50^\circ\text{C} = 0.01 \end{aligned}$$

DICHLORODIFLUOROMETHANE (continued) 250-500K

$T(\mu) = 38.998 + 16.2507676\mu + 0.3528873\mu^2$   
 $T(10.57) = 250 \quad T(16.39) = 400 \quad T(19.82) = 500$   
std error est = 0.2 max error est = 1.5

DICHLOROFLUOROMETHANE  $\text{CHCl}_2\text{F}$  280-500K

(FREON-21)  
 $\mu(T) = 0.033118573 + 4.03724167E-02T - 5.7792208E-06T^2$   
 $\mu(280) = 10.88 \quad \mu(400) = 15.26 \quad \mu(500) = 18.77$   
std error est = 5.8E-03 max error est = 0.01

280-500K  
 $T(\mu) = 2.23 + 24.1579854\mu + 0.1253726\mu^2$

$T(10.88) = 280 \quad T(15.26) = 400 \quad T(18.77) = 500$   
std error est = 0.2 max error est = 1.5

DICHLOROTETRAFLUOROETHANE  $\text{C}_2\text{Cl}_2\text{F}_4$  230-500K

(FREON-114)  
 $\mu(T) = 4.649332 + 9.784407E-03T + 5.818667E-05T^2 - 4.542242E-08T^3$   
 $\mu(230) = 9.43 \quad \mu(400) = 14.97 \quad \mu(500) = 18.41$   
std error est = 6.2E-03 max error est = 0.01

230-500K  
 $T(\mu) = -87.64 + 35.9444125\mu - 0.2222265\mu^2$

$T(9.43) = 232 \quad T(14.97) = 401 \quad T(18.41) = 499$   
std error est = 0.7 max error est = 2.5

ETHANE  $\text{C}_2\text{H}_6$  190-1000K

$\mu(T) = -0.5107728 + 3.76582E-02T - 1.59412113E-05T^2 + 3.906E-09T^3$   
 $\mu(190) = 6.10 \quad \mu(600) = 17.19 \quad \mu(1000) = 25.11$   
std error est = 3.3E-02 max error est = 0.03

190-1000K  
 $T(\mu) = 43.829 + 20.323073\mu + 0.7026353\mu^2$

$T(6.10) = 194 \quad T(17.19) = 601 \quad T(25.11) = 997$   
std error est = 2.2 max error est = 4.5

ETHYL ALCOHOL  $\text{C}_2\text{H}_5\text{OH}$  270-600K

$\mu(T) = -0.0633595 + 3.2071347E-02T - 6.25079576E-06T^2$   
 $\mu(270) = 8.14 \quad \mu(400) = 11.77 \quad \mu(600) = 16.93$   
std error est = 3.9E-03 max error est = 0.01

270-600K  
 $T(\mu) = 10.415 + 29.22028895\mu + 0.330513733\mu^2$

$T(8.14) = 270 \quad T(11.77) = 400 \quad T(16.93) = 600$   
std error est = 0.2 max error est = 1.5

ETHYL ETHER  $\text{C}_4\text{H}_{10}\text{O}$  250-650K

$\mu(T) = -0.82017 + 2.98341946E-02T - 4.938627E-06T^2 - 2.82999E-09T^3$   
 $\mu(250) = 6.29 \quad \mu(450) = 11.35 \quad \mu(650) = 15.71$

## ETHYL ETHER (continued)

std error est = 0.02 max error est = 0.03  
 $T(\mu) = 51.2 + 27.634314\mu + 0.6622779\mu^2$   
 $T(6.29) = 251 \quad T(11.35) = 450 \quad T(15.71) = 649$   
 std error est = 0.9 max error est = 3.5  
 - - - - -

ETHYLENE C<sub>2</sub>H<sub>4</sub> 190-1500K

$\mu(T) = -0.3919492 + 0.040557T - 1.6439973E-05T^2 + 3.7310454E-09T^3$   
 $\mu(190) = 6.75 \quad \mu(800) = 23.44 \quad \mu(1500) = 36.05$   
 std error est = 2.6E-02 max error est = 0.05  
 $T(\mu) = 23.3 + 22.4670445\mu + 0.34307964\mu^2 + 4.8478305E-03\mu^3$   
 $T(6.75) = 192 \quad T(23.44) = 801 \quad T(36.05) = 1506$   
 std error est = 1.1 max error est = 6.5

FLUORINE F<sub>2</sub> 90-500K

$\mu(T) = -1.3474535 + 0.1088684T - 1.032287E-04T^2 + 6.02076E-08T^3$   
 $\mu(90) = 7.66 \quad \mu(350) = 26.69 \quad \mu(500) = 34.81$   
 std error est = 3E-02 max error est = 0.1  
 $T(\mu) = 23.06 + 7.555066\mu + 0.176432568\mu^2$   
 $T(7.66) = 91 \quad T(26.69) = 350 \quad T(34.81) = 500$   
 std error est = 0.7 max error est = 2.5

HELIUM He 1-500K

$\mu(T) = 0.39414 + 0.17213335T - 1.38733E-03T^2 + 8.020045E-06T^3$   
 $- 2.4278655E-08T^4 + 3.641644E-11T^5 - 2.14117E-14T^6$   
 $\mu(1) = 0.56 \quad \mu(250) = 17.53 \quad \mu(500) = 28.17$   
 std error est = 9.2E-02 max error est = 0.19

$\mu(T) = 7.442412 + 4.6649873E-02T - 1.0385665E-05T^2 + 1.35269E-09T^3$   
 $\mu(500) = 28.34 \quad \mu(1500) = 58.61 \quad \mu(2500) = 80.29$   
 std error est = 4E-02 max error est = 0.09

$T(\mu) = -2.78 + 4.7805365\mu + 0.702059\mu^2 - 8.7384854E-03\mu^3$   
 $T(.56) = 0 \quad T(17.53) = 250 \quad T(28.17) = 494$   
 std error est = 2.2 max error est = 7.0

$T(\mu) = -15.4944 + 11.26614\mu + 0.249906096\mu^2$   
 $T(28.34) = 505 \quad T(58.61) = 1503 \quad T(80.29) = 2500$   
 std error est = 1.9 max error est = 5.5

n-HEPTANE C<sub>7</sub>H<sub>16</sub> 270-580K

n-HEPTANE (continued)      270-580K  
 $\mu(T) = 1.540097 + 1.095157E-02T + 1.800664E-05T^2 - 1.36379E-08T^3$   
 $\mu(270) = 5.54 \quad \mu(400) = 7.93 \quad \mu(580) = 11.29$   
 $\text{std error est} = 3.1E-03 \quad \text{max error est} = 0.01$   
270-580K  
 $T(\mu) = -31.9 + 55.191463\mu - 9.495688E-02\mu^2$   
 $T(5.54) = 271 \quad T(7.93) = 400 \quad T(11.29) = 579$   
 ~~$\text{std error est} = 0.6$~~        ~~$\text{max error est} = 1.5$~~   
n-HEXANE      C<sub>6</sub>H<sub>14</sub>      270-900K

$\mu(T) = 1.545412 + 1.150809E-02T + 2.722165E-05T^2 - 3.269E-08T^3$   
 $+ 1.245459E-11T^4$   
 $\mu(270) = 6.06 \quad \mu(600) = 12.80 \quad \mu(900) = 18.29$   
 $\text{std error est} = 4.6E-03 \quad \text{max error est} = 0.01$   
270-900K  
 $T(\mu) = -35.27 + 53.9008\mu - 0.760933\mu^2 + 3.349925E-02\mu^3$   
 $T(6.06) = 271 \quad T(12.80) = 600 \quad T(18.29) = 901$   
 ~~$\text{std error est} = 0.5$~~        ~~$\text{max error est} = 2.0$~~   
HYDROGEN      H<sub>2</sub>      10-500K

$\mu(T) = -0.135666 + 6.84115878E-02T - 3.928747E-04T^2 + 1.8996E-06T^3$   
 $- 5.23104E-09T^4 + 7.4490972E-12T^5 - 4.250937E-15T^6$   
 $\mu(10) = 0.51 \quad \mu(250) = 7.90 \quad \mu(500) = 12.72$   
 $\text{std error est} = 9.6E-03 \quad \text{max error est} = 0.03$   
500-2000K  
 $T(\mu) = 2.72941 + 2.3224377E-02T - 7.6287854E-06T^2 + 2.92585E-09T^3$   
 $- 5.2889938E-13T^4$   
 $\mu(500) = 12.77 \quad \mu(1250) = 24.26 \quad \mu(2000) = 33.61$   
 $\text{std error est} = 3.3E-02 \quad \text{max error est} = 0.05$   
10-500K  
 $T(\mu) = -7.126 + 19.551451\mu + 1.6191086\mu^2$   
 $T(0.51) = 3 \quad T(7.90) = 248 \quad T(12.72) = 503$   
 $\text{std error est} = 2.9 \quad \text{max error est} = 7.0$   
500-2000K  
 $T(\mu) = -116.25 + 39.399135\mu + 0.69646657\mu^2$   
 $T(12.77) = 500 \quad T(24.26) = 1249 \quad T(33.61) = 1995$   
 ~~$\text{std error est} = 2.5$~~        ~~$\text{max error est} = 6.0$~~   
HYDROGEN CHLORIDE      HCl      250-650K

$(T) = -10.37895 + 0.146304667T - 3.3750673E-04T^2 + 5.204805E-07T^3$   
 $- 3.066023E-10T^4$   
 $(250) = 12.04 \quad (450) = 21.97 \quad (650) = 30.33$   
 $\text{std error est} = 0.143 \quad \text{max error est} = 0.25$

HYDROGEN CHLORIDE (continued) 250-650K

$$T(\mu) = 54.8 + 14.1533\mu + 0.17335227\mu^2$$

$$T(12.04) = 250 \quad T(21.97) = 449 \quad T(30.33) = 644$$

std error est = 3.9 max error est = 7.5

HYDROGEN IODIDE HI 250-650K

$$\mu(T) = -0.8210072 + 6.96502E-02T - 1.1987247E-05T^2$$

$$\mu(250) = 15.84 \quad \mu(400) = 25.12 \quad \mu(650) = 39.39$$

std error est = 2.6E-02 max error est = 0.09

$$T(\mu) = 18.0 + 13.73048\mu + 5.8615567E-02\mu^2$$

$$T(15.84) = 250 \quad T(25.12) = 400 \quad T(39.39) = 650$$

std error est = 0.6 max error est = 2.0

HYDROGEN SULFIDE H<sub>2</sub>S 270-500K

$$\mu(T) = -1.880078 + 5.29022575E-02T - 1.49125874E-05T^2$$

$$\mu(270) = 11.32 \quad \mu(400) = 16.89 \quad \mu(500) = 20.84$$

std error est = 1.6E-02 max error est = 0.03

$$T(\mu) = 46.59 + 17.386465\mu + 0.2091804\mu^2$$

$$T(11.32) = 270 \quad T(16.89) = 400 \quad T(20.84) = 500$$

std error est = 0.5 max error est = 1.5

IODINE I<sub>2</sub> 370-700K

$$\mu(T) = -9.77787 + 0.12652959T - 2.34192527E-04T^2 + 2.94743E-07T^3$$

$$- 1.409635E-10T^4$$

$$\mu(370) = 17.26 \quad \mu(550) = 25.11 \quad \mu(700) = 31.29$$

std error est = 4E-02 max error est = 0.04

$$T(\mu) = 11.76 + 19.2390557\mu + 8.7220577E-02\mu^2$$

$$T(17.26) = 370 \quad T(25.11) = 550 \quad T(31.29) = 699$$

std error est = 0.9 max error est = 2.5

KRYPTON Kr 100-1500K

$$\mu(T) = -0.465233 + 9.9000315E-02T - 4.278998E-05T^2 + 1.9612E-09T^3$$

$$+ 1.0362237E-11T^4 - 3.592904E-15T^5$$

$$\mu(100) = 9.01 \quad \mu(800) = 55.42 \quad \mu(1500) = 83.55$$

std error est = 5.5E-02 max error est = 0.3

$$T(\mu) = 15.03 + 9.1084\mu + 6.7458509E-02\mu^2 + 4.33414E-04\mu^3$$

$$T(9.01) = 103 \quad T(55.42) = 801 \quad T(83.55) = 1500$$

std error est = 1.3 max error est = 6.5

METHANE      CH<sub>4</sub>      70-1000K

$$\mu(T) = 0.2968267 + 3.711201E-02T + 1.218298E-05T^2 - 7.02426E-08T^3 \\ + 7.543269E-11T^4 - 2.7237166E-14T^5$$

$$\mu(70) = 2.93 \quad \mu(550) = 18.24 \quad \mu(1000) = 27.54 \\ \text{std error est} = 3E-02 \quad \text{max error est} = 0.09$$

$$70-1000K \quad T(\mu) = 2.184 + 23.32102\mu + 0.179160065\mu^2 + 1.0455235E-02\mu^3 \\ T(2.93) = 72 \quad T(18.24) = 551 \quad T(27.54) = 999$$

$$\text{std error est} = 1.4 \quad \text{max error est} = 3.5$$

METHYL ALCOHOL      CH<sub>3</sub>OH      250-650K

$$\mu(T) = 1.1979 + 0.0245028T + 1.8616274E-05T^2 - 1.3067482E-08T^3 \\ \mu(250) = 8.28 \quad \mu(400) = 13.14 \quad \mu(650) = 21.40 \\ \text{std error est} = 3.2E-02 \quad \text{max error est} = 0.04$$

$$250-650K \quad T(\mu) = -4.983 + 31.162925\mu - 2.8760994E-02\mu^2 \\ T(8.28) = 251 \quad T(13.14) = 400 \quad T(21.40) = 649 \\ \text{std error est} = 1.1 \quad \text{max error est} = 2.5$$

METHYL CHLORIDE      CH<sub>3</sub>Cl      250-660K

$$\mu(T) = 0.282322 + 0.0364907T - 2.48976E-06T^2 \\ \mu(250) = 9.25 \quad \mu(400) = 14.48 \quad \mu(660) = 23.28 \\ \text{std error est} = 2.4E-02 \quad \text{max error est} = 0.04$$

$$250-660K \quad T(\mu) = -6.86 + 27.202172\mu + 6.180147E-02\mu^2 \\ T(9.25) = 250 \quad T(14.48) = 400 \quad T(23.28) = 660 \\ \text{std error est} = 0.7 \quad \text{max error est} = 2.0$$

NEON      Ne      20-450K

$$\mu(T) = -0.261473 + 0.2007328T - 7.54726E-04T^2 + 2.5795522E-06T^3 \\ - 4.7146844E-09T^4 + 3.3937307E-12T^5 \\ \mu(20) = 3.47 \quad \mu(250) = 27.95 \quad \mu(450) = 41.59 \\ \text{std error est} = 4E-02 \quad \text{max error est} = 0.09$$

$$450-1200K \quad \mu(T) = 9.5675148 + 8.4038686E-02T - 3.2087447E-05T^2 + 7.366716E-09T^3 \\ \mu(450) = 41.56 \quad \mu(850) = 62.34 \quad \mu(1200) = 76.94 \\ \text{std error est} = 2.9E-02 \quad \text{max error est} = 0.06$$

$$20-450K \quad T(\mu) = 0.08 + 4.9693056\mu + 0.141318424\mu^2 \\ T(3.47) = 19 \quad T(27.95) = 249 \quad T(41.59) = 451 \\ \text{std error est} = 0.5 \quad \text{max error est} = 2.5$$

NEON (continued) 450-1200K  
 $T(\mu) = -1.85 + 5.337484\mu + 0.1336294\mu^2$   
 $T(41.56) = 451 \quad T(62.34) = 850 \quad T(76.94) = 1200$   
~~- std error est = 0.6~~ ~~max error est = 2.0~~  
 NITRIC OXIDE NO 110-1500K  
 $\mu(T) = -0.80134 + 8.61223E-02T - 8.053232E-05T^2 + 6.3144787E-08T^3$   
 $- 2.8327E-11T^4 + 5.325217E-15T^5$   
 $\mu(110) = 7.78 \quad \mu(800) = 39.03 \quad \mu(1500) = 57.33$   
~~std error est = 2.6E-02~~ ~~max error est = 0.06~~  
 $T(\mu) = 22.84 + 9.70756\mu + 0.2197071\mu^2 + 1.0689525E-03\mu^3$   
 $T(7.78) = 112 \quad T(39.03) = 800 \quad T(57.33) = 1503$   
~~- std error est = 1.1~~ ~~max error est = 3.5~~  
 NITROGEN N<sub>2</sub> 80-2200K  
 $\mu(T) = 0.025465 + 7.5336535E-02T - 6.51566245E-05T^2 + 4.34945E-08T^3$   
 $- 1.5622457E-11T^4 + 2.249666E-15T^5$   
 $\mu(80) = 5.66 \quad \mu(1250) = 46.06 \quad \mu(2200) = 63.51$   
~~std error est = 3.9E-02~~ ~~max error est = 0.11~~  
 $T(\mu) = 23.03 + 9.279727\mu + 0.3237956\mu^2 + 1.14361184E-03\mu^3$   
 $T(5.66) = 86 \quad T(46.06) = 1249 \quad T(63.51) = 2211$   
~~- std error est = 1.5~~ ~~max error est = 11.0~~  
 NITROGEN PEROXIDE NO<sub>2</sub> 300-450K  
 $\mu(T) = 785.544557 - 8.749203T + 3.6259252E-02T^2 - 6.5336018E-05T^3$   
 $+ 4.3577125E-08T^4$   
 $\mu(300) = 13.02 \quad \mu(370) = 19.47 \quad \mu(450) = 24.09$   
~~std error est = 9.4E-02~~ ~~max error est = 0.2~~  
 $T(\mu) = 318.245 - 8.8194949\mu + 0.5945482\mu^2$   
 $T(13.02) = 304 \quad T(19.47) = 372 \quad T(24.09) = 451$   
~~- std error est = 2.7~~ ~~max error est = 6.0~~  
 NITROUS OXIDE N<sub>2</sub>O 180-1500K  
 $\mu(T) = -1.4347 + 6.345024E-02T - 3.307219E-05T^2 + 1.3455025E-08T^3$   
 $- 2.4171922E-12T^4$   
 $\mu(180) = 8.99 \quad \mu(800) = 34.06 \quad \mu(1500) = 52.50$   
~~std error est = 2.3E-02~~ ~~max error est = 0.04~~  
 $T(\mu) = 30.57 + 15.037308\mu + 0.1758553\mu^2 + 1.3549377E-03\mu^3$   
 $T(8.99) = 181 \quad T(34.06) = 800 \quad T(52.50) = 1501$   
~~- std error est = 0.8~~ ~~max error est = 2.5~~

OCTAFLUOROCYCLOBUTANE C<sub>4</sub>F<sub>8</sub> 270-440K

$$\mu(T) = -21.702187 + 0.29705496T - 1.1162856E-03T^2 + 2.126056E-06T^3 - 1.53345928E-09T^4$$

$$\mu(270) = 10.82 \quad \mu(350) = 13.67 \quad \mu(440) = 16.52$$

std error est = 1.2E-02 max error est = 0.15

$$T(\mu) = 51.767 + 13.95912177\mu + 0.574077\mu^2$$

$$T(10.82) = 270 \quad T(13.67) = 350 \quad T(16.52) = 439$$

$$- \text{std error est} = 0.6 \quad - \text{max error est} = 2.0$$

n-OCTANE C<sub>8</sub>H<sub>18</sub> 300-650K

$$\mu(T) = 0.8324354 + 1.40045E-02T + 8.793765E-06T^2 - 6.8403E-09T^3$$

$$\mu(300) = 5.64 \quad \mu(450) = 8.29 \quad \mu(650) = 11.77$$

$$\text{std error est} = 2.1E-02 \quad \text{max error est} = 0.04$$

$$T(\mu) = -8.63 + 53.900825\mu + 0.167701848\mu^2$$

$$T(5.64) = 301 \quad T(8.29) = 450 \quad T(11.77) = 649$$

$$- \text{std error est} = 1.2 \quad - \text{max error est} = 3.5$$

OXYGEN O<sub>2</sub> 80-2000K

$$\mu(T) = -0.397863 + 8.7605894E-02T - 7.064124E-05T^2 + 4.6287E-08T^3 - 1.690435E-11T^4 + 2.534147E-15T^5$$

$$\mu(80) = 6.18 \quad \mu(1100) = 51.43 \quad \mu(2000) = 73.17$$

$$\text{std error est} = 3.1E-02 \quad \text{max error est} = 0.08$$

$$T(\mu) = 19.02 + 9.362836\mu + 0.185555\mu^2 + 7.899354E-04\mu^3$$

$$T(6.18) = 84 \quad T(51.43) = 1099 \quad T(73.17) = 2007$$

$$- \text{std error est} = 1.5 \quad - \text{max error est} = 7.0$$

n-PENTANE C<sub>5</sub>H<sub>12</sub> 270-550K

$$\mu(T) = 0.2416119 + 2.307305E-02T - 1.52727E-06T^2$$

$$\mu(270) = 6.36 \quad \mu(400) = 9.23 \quad \mu(550) = 12.47$$

$$\text{std error est} = 8.2E-03 \quad \text{max error est} = 0.02$$

$$T(\mu) = -9.73 + 43.0470668\mu + 0.14747898\mu^2$$

$$T(6.36) = 270 \quad T(9.23) = 400 \quad T(12.47) = 550$$

$$- \text{std error est} = 0.4 \quad - \text{max error est} = 1.5$$

PROPANE C<sub>3</sub>H<sub>8</sub> 270-600K

$$\mu(T) = -0.3543711 + 3.080096E-02T - 6.99723E-06T^2$$

$$\mu(270) = 7.45 \quad \mu(450) = 12.09 \quad \mu(600) = 15.61$$

$$\text{std error est} = 5.9E-03 \quad \text{max error est} = 0.01$$

**PROPYLENE**      C<sub>3</sub>H<sub>6</sub>      210-360K

$\mu(T) = -1.1116324 + 0.03663067T - 1.2184874E-05T^2$   
 $\mu(210) = 6.04$        $\mu(300) = 8.78$        $\mu(360) = 10.50$   
std error est = 4.4E-03      max error est = 0.01

210-360K

$T(\mu) = 36.1 + 25.971212587\mu + 0.4652205\mu^2$   
 $T(6.04) = 210$        $T(8.78) = 300$        $T(10.50) = 360$   
- std error est = 0.2 - - - - - max error est = 1.5

**SULFUR DIOXIDE**      SO<sub>2</sub>      200-1250K

$\mu(T) = -1.141748 + 0.051281456T - 1.3886282E-05T^2 + 2.15266E-09T^3$   
 $\mu(200) = 8.58$        $\mu(650) = 26.92$        $\mu(1250) = 45.47$   
std error est = 3.7E-02      max error est = 0.08

200-1250K

$T(\mu) = 43.076 + 16.9625\mu + 0.20754597\mu^2$   
 $T(8.58) = 204$        $T(26.92) = -50$        $T(45.47) = 1243$   
- std error est = 2.2 - - - - - max error est = 9.0

**TOLUENE**      C<sub>7</sub>H<sub>8</sub>      330-550K

$\mu(T) = -2.2639265 + 3.8294535E-02T - 2.9042466E-05T^2 + 1.6824E-08T^3$   
 $\mu(330) = 7.82$        $\mu(450) = 10.62$        $\mu(550) = 12.81$   
std error est = 2E-02      max error est = 0.04

330-550K

$T(\mu) = 42.866 + 32.181384\mu + 0.579136617\mu^2$   
 $T(7.82) = 330$        $T(10.62) = 450$        $T(12.81) = 550$   
- std error est = 0.9 - - - - - max error est = 2.0

**TRICHLOROFLUOROMETHANE**      CCl<sub>3</sub>F      230-500K

(FREON-11)  
 $\mu(T) = 4.6926597 + 5.81068E-03T + 6.427175E-05T^2 - 4.712105E-08T^3$   
 $\mu(230) = 8.86$        $\mu(400) = 14.28$        $\mu(500) = 17.78$   
std error est = 6E-03      max error est = 0.01

230-500K

$T(\mu) = -188.137 + 63.015166\mu - 2.19224063\mu^2 + 4.64365E-02\mu^3$   
 $T(8.86) = 230$        $T(14.28) = 400$        $T(17.78) = 500$   
- std error est = 0.3 - - - - - max error est = 1.5

**TRICHLOROTRIFLUOROETHANE**      C<sub>2</sub>Cl<sub>3</sub>F<sub>3</sub>      230-400K

(FREON-113)  
 $\mu(T) = 1.5959133 + 3.483849E-02T - 1.8833849E-05T^2$   
 $\mu(230) = 8.61$        $\mu(350) = 11.48$        $\mu(400) = 12.52$   
std error est = 4.9E-03      max error est = 0.01

230-400K

$T(\mu) = 23.38 + 10.69495544\mu + 1.547242767\mu^2$   
 $T(8.61) = 230$        $T(11.48) = 350$        $T(12.52) = 400$   
- std error est = 0.3 - - - - - max error est = 2.0

TRIFLUOROMETHANE CHF<sub>3</sub> 230-500K

$\mu(T) = -2.100796 + 6.3910783E-02T - 2.41926655E-05T^2$   
 $\mu(230) = 11.32 \quad \mu(400) = 19.59 \quad \mu(500) = 23.81$   
 std error est = 5.7E-03 max error est = 0.01

230-500K

$T(\mu) = 52.246 + 12.98628777\mu + 0.243660334\mu^2$   
 $T(11.32) = 230 \quad T(19.59) = 400 \quad T(23.81) = 500$   
 std error est = 0.2 max error est = 1.5

WATER H<sub>2</sub>O 280-1000K

$\mu(T) = -3.07514683 + 4.069249E-02T + 5.20585924E-09T^2$   
 $\mu(280) = 8.32 \quad \mu(650) = 23.38 \quad \mu(1000) = 37.62$   
 std error est = 3.3E-03 max error est = 0.01

280-1000K

$T(\mu) = 75.57 + 24.574084\mu - 7.7339827E-05\mu^2$   
 $T(8.32) = 280 \quad T(23.38) = 650 \quad T(37.62) = 1000$   
 std error est = 0.08 max error est = 1.0

XENON Xe 120-1500K

$\mu(T) = 1.89178728 + 6.0506328E-02T + 8.1793523E-05T^2 - 2.051E-07T^3$   
 $+ 2.0164963E-10T^4 - 9.5234E-14T^5 + 1.7662669E-17T^6$   
 $\mu(120) = 10.02 \quad \mu(800) = 53.65 \quad \mu(1500) = 83.33$   
 std error est = 4.2E-02 max error est = 0.07

120-1500K

$T(\mu) = 7.02702 + 11.3664655\mu + 0.0360854\mu^2 + 5.165008E-04\mu^3$   
 $T(10.02) = 125 \quad T(53.65) = 800 \quad T(83.33) = 1504$   
 std error est = 1.5 max error est = 4.5

APPENDIX D  
TABLE D-I  
SUMMARY OF CONTENTS

THE VIRIAL COEFFICIENTS  
FOR GASEOUS ELEMENTS AND COMPOUNDS

| NAME                             | FORMULA          | APP D PAGE |
|----------------------------------|------------------|------------|
| Air (Dry, CO <sub>2</sub> -free) | -                | D-1        |
| Argon                            | Ar               | D-1        |
| Carbon Dioxide                   | CO <sub>2</sub>  | D-1        |
| Deuterium                        | D <sub>2</sub>   | D-1        |
| Helium                           | He               | D-2        |
| Hydrogen                         | H <sub>2</sub>   | D-2        |
| Krypton                          | Kr               | D-2        |
| Methane                          | CH <sub>4</sub>  | D-2        |
| Neon                             | Ne               | D-3        |
| Nitrogen                         | N <sub>2</sub>   | D-3        |
| Oxygen                           | O <sub>2</sub>   | D-3        |
| Water Vapor                      | H <sub>2</sub> O | D-4        |
| 'Heavy' Water Vapor              | D <sub>2</sub> O | D-4        |
| Xenon                            | Xe               | D-4        |

TABLE D-II Third Virial Coefficients                   D-5

APPENDIX D  
FORMAT EXAMPLE

The equation/s is for gaseous Neon

The polynomial equation to calculate the SECOND virial coefficient [B(T)] in cm<sup>3</sup>/mol as a function of temperature (Kelvin)

| Formula | Valid Temperature Range |
|---------|-------------------------|
| NEON    | <u>Ne</u>               |
|         | <u>80-200K</u>          |

$$B(T) = -108.0286 + 2.354366T - 2.011992E-02T^2 + 8.1876808E-05T^3 - 1.28414363E-07T^4$$

$$B(80) = -11.79 \quad B(140) = 2.57$$

std error est = 0.04

The standard (or average) error estimate over the temperature range noted is ±0.04 cm<sup>3</sup>/mol.

Using the polynomial presented, the calculated second virial coefficient at 200K is 7.60 cm<sup>3</sup>/mol.

Over the temperature range noted, the maximum error est is ±0.08 cm<sup>3</sup>/mol.

$$B(200) = 7.60$$

max error est = 0.08

FIGURE D-1

APPENDIX D

SECOND VIRIAL COEFFICIENTS  
FOR GASEOUS ELEMENTS AND COMPOUNDS

|                                                                                                                                                                                         |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| AIR (Dry, CO <sub>2</sub> -Free)                                                                                                                                                        | <u>100-150K</u>  |
| B(T) = -1502.0253 + 31.45448274T - 0.279362289T <sup>2</sup> + 1.1746791E-03T <sup>3</sup><br>- 1.91779611E-06T <sup>4</sup>                                                            |                  |
| B(100) = -167.30      B(125) = -109.17      B(150) = -75.85<br>std error est = 4.3E-02                                    max error est = 0.1                                           |                  |
|                                                                                                                                                                                         | <u>150-350K</u>  |
| B(T) = -871.7496 + 14.673657T - 0.1155472T <sup>2</sup> + 5.15056917E-04T <sup>3</sup><br>- 1.32633153E-06T <sup>4</sup> + 1.84350813E-09T <sup>5</sup> - 1.0723866E-12T <sup>6</sup>   |                  |
| B(150) = -75.88      B(250) = -19.77      B(350) = 0.42<br>std error est = 0.2                                    max error est = 0.6                                                   |                  |
|                                                                                                                                                                                         | <u>350-1400K</u> |
| B(T) = -113.0307 + 0.6191348T - 1.1961097E-03T <sup>2</sup> + 1.2117027E-06T <sup>3</sup><br>- 6.19795E-10T <sup>4</sup> + 1.2599233E-13T <sup>5</sup>                                  |                  |
| B(350) = 0.53      B(800) = 24.75      B(1400) = 31.21<br>std error est = 0.092                                    max error est = 0.35                                                 |                  |
| ARGON      Ar                                                                                                                                                                           | <u>80-250K</u>   |
| B(T) = -2602.5842 + 71.103308T - 0.8814188T <sup>2</sup> + 5.9930164E-03T <sup>3</sup><br>- 2.3043749E-05T <sup>4</sup> + 4.704073E-08T <sup>5</sup> - 3.96383723E-11T <sup>6</sup>     |                  |
| std error est = 0.35      B(200) = -48.36      max error est = 0.9                                                                                                                      |                  |
|                                                                                                                                                                                         | <u>250-1500K</u> |
| B(T) = -195.60895 + 1.2604989T - 3.370398E-03T <sup>2</sup> + 4.9626165E-06T <sup>3</sup><br>- 4.0932672E-09T <sup>4</sup> + 1.76812575E-12T <sup>5</sup> - 3.1081026E-16T <sup>6</sup> |                  |
| B(250) = -27.93      B(700) = 15.23      B(1500) = 24.79<br>std error est = 0.16                                    max error est = 0.4                                                 |                  |
| CARBON DIOXIDE      CO <sub>2</sub>                                                                                                                                                     | <u>250-1000K</u> |
| B(T) = -1495.9175 + 11.9968622T - 4.31032436E-02T <sup>2</sup> + 8.501674E-05T <sup>3</sup><br>- 9.4651135E-08T <sup>4</sup> + 5.57671E-11T <sup>5</sup> - 1.3516095E-14T <sup>6</sup>  |                  |
| B(250) = -180.84      B(700) = -1.08      B(1000) = 14.31<br>std error est = 0.35                                    max error est = 1.0                                                |                  |
| DEUTERIUM      D <sub>2</sub>                                                                                                                                                           | <u>85-420K</u>   |
| B(T) = -104.569 + 2.1780589T - 1.84434317E-02T <sup>2</sup> + 8.7373826E-05T <sup>3</sup><br>- 2.36196123E-07T <sup>4</sup> + 3.3976588E-10T <sup>5</sup> - 2.0138934E-13T <sup>6</sup> |                  |
| B(85) = -9.93      B(300) = 13.66      B(420) = 15.45<br>std error est = 0.7                                    max error est = 0.2                                                     |                  |

|                                                                                              |                  |                      |
|----------------------------------------------------------------------------------------------|------------------|----------------------|
| HELIUM                                                                                       | He               | <u>20-200K</u>       |
| $B(T) = -34.55944 + 2.7175236T - 7.238207E-02T^2 + 1.0230434E-03T^3$                         |                  |                      |
| - 7.80158414E-06T <sup>4</sup> + 3.01349506E-08T <sup>5</sup> - 4.60368796E-11T <sup>6</sup> |                  |                      |
| B(20) = -2.13                                                                                | B(100) = 11.57   | B(200) = 12.30       |
| std error est = 0.14                                                                         |                  | max error est = 0.25 |
| <u>275-1400K</u>                                                                             |                  |                      |
| $B(T) = 16.797 - 2.974167E-02T + 5.9985787E-05T^2 - 6.536E-08T^3$                            |                  |                      |
| + 3.4774704E-11T <sup>4</sup> - 7.17233967E-15T <sup>5</sup>                                 |                  |                      |
| B(275) = 11.98                                                                               | B(600) = 10.38   | B(1400) = 8.40       |
| std error est = 0.04                                                                         |                  | max error est = 0.09 |
| <u>HYDROGEN H<sub>2</sub> 25-100K</u>                                                        |                  |                      |
| $B(T) = -552.3468 + 37.9672515T - 1.2583684T^2 + 2.3661885E-02T^3$                           |                  |                      |
| - 2.55707365E-04T <sup>4</sup> + 1.479355E-06T <sup>5</sup> - 3.547909E-09T <sup>6</sup>     |                  |                      |
| B(25) = -106.23                                                                              | B(50) = -33.48   | B(100) = -2.52       |
| std error est = 0.1                                                                          |                  | max error est = 0.25 |
| <u>120-420K</u>                                                                              |                  |                      |
| $B(T) = -28.6784 + 0.2390086T + 1.6559E-03T^2 - 2.0165055E-05T^3$                            |                  |                      |
| + 7.74730172E-08T <sup>4</sup> - 1.3371575E-10T <sup>5</sup> + 8.80146735E-14T <sup>6</sup>  |                  |                      |
| B(120) = 2.00                                                                                | B(350) = 15.32   | B(420) = 16.11       |
| std error est = 0.04                                                                         |                  | max error est = 0.1  |
| <u>KRYPTON Kr 125-200K</u>                                                                   |                  |                      |
| $B(T) = -3767.455 + 79.33045T - 0.7427849T^2 + 3.65588424E-03T^3$                            |                  |                      |
| - 9.2488483E-06T <sup>4</sup> + 9.5193755E-09T <sup>5</sup>                                  |                  |                      |
| B(125) = -284.18                                                                             | B(160) = -178.36 | B(200) = -117.39     |
| std error est = 0.03                                                                         |                  | max error est = 0.1  |
| <u>200-400K</u>                                                                              |                  |                      |
| $B(T) = -1195.697 + 14.577052T - 8.36262E-02T^2 + 2.714544E-04T^3$                           |                  |                      |
| - 5.095532E-07T <sup>4</sup> + 5.16988543E-10T <sup>5</sup> - 2.19801246E-13T <sup>6</sup>   |                  |                      |
| B(200) = -117.62                                                                             | B(300) = -51.00  | B(400) = -22.89      |
| std error est = 0.04                                                                         |                  | max error est = 0.1  |
| <u>400-1500K</u>                                                                             |                  |                      |
| $B(T) = -285.26 + 1.490866T - 3.3921494E-03T^2 + 4.3542916E-06T^3$                           |                  |                      |
| - 3.1988343E-09T <sup>4</sup> + 1.253671E-12T <sup>5</sup> - 2.030971E-16T <sup>6</sup>      |                  |                      |
| B(400) = -22.87                                                                              | B(800) = 13.17   | B(1500) = 27.00      |
| std error est = 0.05                                                                         |                  | max error est = 0.1  |
| <u>METHANE CH<sub>4</sub> 110-200K</u>                                                       |                  |                      |
| $B(T) = -4564.8011 + 108.37155T - 1.1344657T^2 + 6.2125655E-03T^3$                           |                  |                      |
| - 1.742442E-05T <sup>4</sup> + 1.9820625E-08T <sup>5</sup>                                   |                  |                      |
| B(110) = -333.94                                                                             | B(160) = -161.93 | B(200) = -105.07     |
| std error est = 0.04                                                                         |                  | max error est = 0.1  |

METHANE (continued) 200-400K

$$B(T) = -1161.958 + 14.527312T - 8.4895E-02T^2 + 2.7964493E-04T^3$$

$$- 5.300204E-07T^4 + 5.396463E-10T^5 - 2.28570436E-13T^6$$

$$B(200) = -105.11 \quad B(300) = -42.35 \quad B(400) = -15.73$$

$$\text{std error est} = 0.04 \quad \text{max error est} = 0.07$$

400-1500K

$$B(T) = -263.0827 + 1.39774T - 3.15891435E-03T^2 + 4.03489206E-06T^3$$

$$- 2.954616E-09T^4 + 1.155816E-12T^5 - 1.87089616E-16T^6$$

$$B(400) = -15.75 \quad B(900) = 22.15 \quad B(1500) = 31.90$$

$$\text{std error est} = 0.06 \quad \text{max error est} = 0.15$$

NEON Ne 80-200K

$$B(T) = -108.0286 + 2.354366T - 2.011992E-02T^2 + 8.1876808E-05T^3$$

$$- 1.28414363E-07T^4$$

$$B(80) = -11.79 \quad B(140) = 2.57 \quad B(200) = 7.60$$

$$\text{std error est} = 0.04 \quad \text{max error est} = 0.08$$

200-1000K

$$B(T) = -18.52 + 0.253489T - 8.9773E-04T^2 + 1.76985156E-06T^3$$

$$- 1.98866447E-09T^4 + 1.1902623E-12T^5 - 2.9438917E-16T^6$$

$$B(200) = 7.61 \quad B(600) = 13.77 \quad B(1000) = 14.30$$

$$\text{std error est} = 0.03 \quad \text{max error est} = 0.05$$

NITROGEN N<sub>2</sub> 100-150K

$$B(T) = -1934.0 + 49.775958T - 0.5771643T^2 + 3.5473302E-03T^3$$

$$- 1.12452359E-05T^4 + 1.45225962E-08T^5$$

$$B(100) = -159.85 \quad B(125) = -103.84 \quad B(150) = -71.41$$

$$\text{std error est} = 0.05 \quad \text{max error est} = 0.09$$

150-325K

$$B(T) = -1038.812 + 19.7330247T - 0.17557828T^2 + 8.834965E-04T^3$$

$$- 2.567272E-06T^4 + 4.0252916E-09T^5 - 2.6402379E-12T^6$$

$$B(150) = -71.65 \quad B(230) = -23.12 \quad B(325) = -0.36$$

$$\text{std error est} = 0.04 \quad \text{max error est} = 0.09$$

325-1400K

$$B(T) = -156.96 + 1.0434304T - 2.717715E-03T^2 + 3.9752575E-06T^3$$

$$- 3.3108834E-09T^4 + 1.462975E-12T^5 - 2.65735587E-16T^6$$

$$B(325) = -0.39 \quad B(800) = 27.37 \quad B(1400) = 33.50$$

$$\text{std error est} = 0.05 \quad \text{max error est} = 0.1$$

OXYGEN O<sub>2</sub> 100-200K

$$B(T) = -2793.674 + 78.48548T - 1.0166435T^2 + 7.34716756E-03T^3$$

$$- 3.052873E-05T^4 + 6.8392904E-08T^5 - 6.4137155E-11T^6$$

$$B(100) = -197.47 \quad B(150) = -90.79 \quad B(200) = -49.99$$

$$\text{std error est} = 0.035 \quad \text{max error est} = 0.08$$

OXYGEN (continued) 200-400K  
B(T) = -499.657 + 5.4925876T - 2.7027447E-02T<sup>2</sup> + 7.1352086E-05T<sup>3</sup>  
- 9.750388E-08T<sup>4</sup> + 5.4294996E-11T<sup>5</sup>

B(200) = -50.05      B(300) = -15.69      B(400) = -0.60  
std error est = 0.03                                  max error est = 0.05

400-1400K  
B(T) = -165.1965 + 1.0063385T - 2.541077E-03T<sup>2</sup> + 3.630033E-06T<sup>3</sup>  
- 2.9679937E-09T<sup>4</sup> + 1.29213468E-12T<sup>5</sup> - 2.318393E-16T<sup>6</sup>  
B(400) = -0.61      B(900) = 21.01      B(1400) = 25.90  
std error est = 0.02                                  max error est = 0.05

WATER VAPOR      H<sub>2</sub>O      430-720K

B(T) = -39636.088 + 319.317424T - 1.039708598T<sup>2</sup> + 1.69863388E-03T<sup>3</sup>  
- 1.38836432E-06T<sup>4</sup> + 4.53516028E-10T<sup>5</sup>  
B(430) = -316.78      B(530) = -147.27      B(720) = -96.19  
std error est = 0.6                                  max error est = 1.3

'HEAVY' WATER VAPOR      D<sub>2</sub>O      430-720K

B(T) = -40275.7499 + 324.5981063T - 1.057308467T<sup>2</sup> + 1.7280874E-03T<sup>3</sup>  
- 1.41303458E-06T<sup>4</sup> + 4.6177338E-10T<sup>5</sup>  
B(430) = -320.24      B(550) = -133.22      B(720) = -56.19  
std error est = 0.6                                  max error est = 1.5

XENON      Xe      220-500K

B(T) = -2694.3436 + 32.305283T - 0.181532587T<sup>2</sup> + 5.744002E-04T<sup>3</sup>  
- 1.04996174E-06T<sup>4</sup> + 1.03791638E-09T<sup>5</sup> - 4.30480244E-13T<sup>6</sup>  
B(200) = -230.65      B(400) = -69.84      B(550) = -31.53  
std error est = 0.05                                  max error est = 0.1

500-1500K  
B(T) = -490.2594 + 2.20020277T - 4.4278794E-03T<sup>2</sup> + 5.059897E-06T<sup>3</sup>  
- 3.3321925E-09T<sup>4</sup> + 1.17879258E-12T<sup>5</sup> - 1.735293E-16T<sup>6</sup>  
B(500) = -38.78      B(1000) = 15.03      B(1500) = 30.09  
std error est = 0.05                                  max error est = 0.1

TABLE D-II

THE THIRD VIRIAL COEFFICIENTS  
OF GASEOUS ELEMENTS AND COMPOUNDS\*

| T, K | He  | Ne | Ar | Kr | Xe | N <sub>2</sub> | O <sub>2</sub> | Air | H <sub>2</sub> | D <sub>2</sub> | H <sub>2</sub> O | D <sub>2</sub> O | CO <sub>2</sub> | CH <sub>4</sub> |
|------|-----|----|----|----|----|----------------|----------------|-----|----------------|----------------|------------------|------------------|-----------------|-----------------|
| 25   |     |    |    |    |    |                |                |     | 14             |                |                  |                  |                 |                 |
| 30   |     |    |    |    |    |                |                |     | 16             |                |                  |                  |                 |                 |
| 35   |     |    |    |    |    |                |                |     | 14.3           |                |                  |                  |                 |                 |
| 40   |     |    |    |    |    |                |                |     | 12.1           |                |                  |                  |                 |                 |
| 45   |     |    |    |    |    |                |                |     | 10.7           |                |                  |                  |                 |                 |
| 50   |     |    |    |    |    |                |                |     | 9.6            |                |                  |                  |                 |                 |
| 55   |     |    |    |    |    |                |                |     | 8.9            |                |                  |                  |                 |                 |
| 60   | 2.7 | 4  |    |    |    |                |                |     | 8.4            |                |                  |                  |                 |                 |
| 70   | 2.5 | 4  |    |    |    |                |                |     | 7.4            |                |                  |                  |                 |                 |
| 80   | 2.4 | 4  | 7  |    |    |                |                |     | 6.9            |                |                  |                  |                 |                 |
| 90   | 2.3 | 4  | 9  |    |    |                |                |     | 6.4            |                |                  |                  |                 |                 |
| 100  | 2.2 | 4  | 12 |    |    |                |                |     | 6.1            | 6              |                  |                  |                 |                 |
| 110  | 2.1 | 3  | 16 |    |    |                |                |     | 5.9            | 5              |                  |                  |                 |                 |
| 120  | 2.0 | 3  | 20 |    |    |                |                |     | 5.7            | 5              |                  |                  |                 |                 |
| 130  | 1.9 | 3  | 23 |    |    |                |                |     | 5.5            | 5              |                  |                  |                 |                 |
| 140  | 1.8 | 3  | 25 |    |    |                |                | 28  | 5.4            | 5              |                  |                  |                 |                 |
| 150  | 1.7 | 3  | 23 |    |    |                |                | 26  | 5.3            | 5              |                  |                  |                 |                 |
| 160  | 1.6 | 3  | 22 |    |    | 26             | 23             | 24  | 5.2            | 5              |                  |                  |                 |                 |
| 180  | 1.5 | 3  | 20 |    |    | 21             | 20             | 21  | 5.0            | 5              |                  |                  |                 |                 |
| 200  | 1.3 | 3  | 18 |    |    | 19             | 17             | 19  | 4.8            | 5              |                  |                  |                 |                 |
| 220  | 1.2 | 3  | 16 | 33 |    | 17             | 15             | 18  | 4.6            | 5              |                  |                  |                 |                 |
| 240  | 1.1 | 3  | 15 | 30 |    | 16             | 13             | 17  | 4.5            | 5              |                  |                  |                 |                 |
| 260  | 1.1 | 3  | 13 | 28 |    | 15             | 12             | 16  | 4.4            | 5              |                  |                  |                 |                 |
| 273  | 1.1 | 3  | 12 | 27 | 62 | 15             | 11             | 15  | 4.2            | 5              |                  | 57               | 29              |                 |
| 280  | 1.0 | 3  | 12 | 26 | 59 | 15             | 11             | 15  | 4.1            | 5              |                  | 56               | 28              |                 |
| 300  | 1.0 | 2  | 11 | 24 | 54 | 14             | 10             | 15  | 3.9            | 5              |                  | 52               | 26              |                 |
| 320  | 1.0 | 2  | 11 | 23 | 50 | 14             |                | 14  | 3.6            | 5              |                  | 49               | 25              |                 |
| 340  | .9  | 2  | 10 | 21 | 46 | 14             |                | 14  | 3.4            | 5              |                  | 45               | 24              |                 |
| 360  | .8  | 2  | 9  | 20 | 41 | 13             |                |     | 3.2            | 5              |                  | 42               | 22              |                 |
| 380  | .8  | 2  | 9  | 19 | 36 | 13             |                |     | 3.0            | 4              |                  | 38               | 19              |                 |
| 400  | .7  | 2  | 9  | 18 | 34 | 13             |                |     | 2.9            | 4              |                  | 36               | 17              |                 |
| 420  | .7  |    | 9  | 18 | 32 | 12             |                |     |                | 3              |                  | 32               | 16              |                 |
| 440  |     |    | 8  | 17 | 30 | 12             |                |     |                |                |                  |                  | 15              |                 |
| 460  |     |    | 8  | 16 | 28 | 12             |                |     |                |                |                  |                  | 14              |                 |
| 480  |     |    | 8  | 16 | 26 | 12             |                |     |                |                |                  |                  | 14              |                 |
| 500  |     |    | 7  | 15 | 24 | 12             |                |     | -100           | -150           |                  |                  | 14              |                 |
| 525  |     |    | 7  | 15 | 22 |                |                |     | -53            | -64            |                  |                  | 12              |                 |
| 550  |     |    | 7  | 14 | 20 |                |                |     | -17            | -20            |                  |                  | 12              |                 |
| 575  |     |    | 7  | 14 | 18 |                |                |     | +2             | 0              |                  |                  | 11              |                 |
| 600  |     |    | 7  | 13 |    |                |                |     | 9              | 8              |                  |                  | 11              |                 |
| 650  |     |    |    | 13 |    |                |                |     | 12             | 12             |                  |                  |                 |                 |
| 700  |     |    |    | 12 |    |                |                |     | 10             | 12             |                  |                  |                 |                 |

\*Units: 100 cm<sup>6</sup>/mol<sup>2</sup>

**DISTRIBUTION LIST**

|                                                                                                                       | <u>No. of Copies</u> |
|-----------------------------------------------------------------------------------------------------------------------|----------------------|
| 1. Defense Technical Information Center<br>Cameron Station<br>Alexandria, Virginia 22314                              | 2                    |
| 2. Library, Code 0212<br>Naval Postgraduate School<br>Monterey, California 93940                                      | 2                    |
| 3. Office of Research Administration<br>Code 012A<br>Naval Postgraduate School<br>Monterey, California 93940          | 2                    |
| 4. Chairman, Department of Aeronautics, Code 67P1<br>Naval Postgraduate School<br>Monterey, California 93940          | 1                    |
| 5. Chairman, Department of Physics and Chemistry, Code 61<br>Naval Postgraduate School<br>Monterey, California 93940  | 1                    |
| 6. Chairman, Department of Meteorology, Code 63<br>Naval Postgraduate School<br>Monterey, California 93940            | 1                    |
| 7. Chairman, Department of Mechanical Engineering, Code 69<br>Naval Postgraduate School<br>Monterey, California 93940 | 1                    |
| 8. Department of Aeronautics, Code 67<br>Naval Postgraduate School<br>Monterey, California 93940                      | 1                    |
| Professor D. J. Collins                                                                                               | 1                    |
| Professor A. E. Fuhs                                                                                                  | 1                    |
| Professor D. W. Netzer                                                                                                | 1                    |
| Professor R. P. Shreeve                                                                                               | 1                    |
| Professor R. D. Zucker                                                                                                | 1                    |
| Professor T. H. Cawain                                                                                                | 1                    |
| Professor O. Biblarz                                                                                                  | 1                    |
| (Copies for use by students)                                                                                          | 100                  |
| 9. NASA Lewis Research Center<br>ATTN: Librarian<br>21000 Brookpark Road<br>Cleveland, Ohio 44135                     | 1                    |

|                                                                                                                                | <u>No. of Copies</u> |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 10. NASA Langley Research Center<br>ATTN: Librarian<br>Langley Station<br>Hampton, Virginia 23565                              | 1                    |
| 11. NASA Ames Research Center<br>ATTN: Library<br>NAS Moffett Field, California                                                | 1                    |
| 12. Naval Weapons Center<br>ATTN: Code 753-Technical Library<br>China Lake, California 93555                                   | 1                    |
| 13. Naval Air Systems Command<br>ATTN: AIR-310C, Dr. Rossenwasser<br>ATTN: AIR-6042, Technical Library<br>Washington, DC 20360 | 1<br>1               |
| 14. Dr. John Satkowski<br>Office of Naval Research, Code 473<br>Washington, DC 20360                                           | 1                    |
| 15. Dr. P. E. Liley<br>Purdue Industrial Research Park<br>2595 Yaeger Road<br>West Lafayette, IN 47906                         | 10                   |
| 16. Prof. J. E. Hoffman<br>Mechanical Engineering<br>Purdue University<br>West Lafayette, IN 47906                             | 1                    |
| 17. Prof. W. M. Rohsenow<br>Mechanical Engineering<br>MIT<br>Cambridge, MA 02139                                               | 1                    |
| 18. Prof. H. W. Liepmann<br>GALCIT<br>California Institute of Technology<br>Pasadena, CA 91100                                 | 1                    |
| 19. Prof. G. J. Van Wylen<br>University of Michigan<br>Ann Arbor, Michigan 48103                                               | 1                    |

|                                                                                                           | <u>No. of Copies</u> |
|-----------------------------------------------------------------------------------------------------------|----------------------|
| 20. Prof. W. C. Reynolds<br>Mechanical Engineering<br>Stanford University<br>Stanford, CA 93905           | 1                    |
| 21. CDR J. R. Andrews<br>c/o Department of Aeronautics<br>Naval Postgraduate School<br>Monterey, CA 93940 | 5                    |