MÉTODO DA BISSEÇÃO Número mínimo de iterações, usando o erro absoluto

MAT 271 – CÁLCULO NUMÉRICO –PER3/2021 Professor Amarísio Araújo – DMA/UFV

RELEMBRANDO: CRITÉRIO DE PARADA

O CRITÉRIO DE PARADA DO MÉTODO DA BISSEÇÃO FICA ASSIM: Se o erro (absoluto ou relativo) entre dois termos consecutivos, x_n e x_{n+1} for menor que um dado ε ($\varepsilon > 0$), então para-se o método e x_{n+1} é o valor aproximado de \bar{x} ($\bar{x} \approx x_{n+1}$), com erro (absoluto ou relativo) menor que ε .

Usando o erro absoluto:

Se $|x_{n+1}-x_n|<\varepsilon$, então x_{n+1} é a aproximação da solução exata \bar{x} com erro absoluto menor que ε .

Usando o erro relativo:

Se $\frac{|x_{n+1}-x_n|}{|x_{n+1}|} < \varepsilon$, então x_{n+1} é a aproximação da solução exata \bar{x} com erro relativo menor que ε .

O número ε é um indicador de precisão do método e, nos métodos aqui trabalhados, será tomado como uma potência inteira negativa de 10, ou seja: $\varepsilon=10^{-k}$, $k\varepsilon\mathbb{N}$ ($\varepsilon=0.1$; $\varepsilon=0.01$; $\varepsilon=0.001$...) (tão pequeno quanto seja necessário, dependendo da natureza do problema).

VOLTANDO AO EXEMPLO DA AULA ANTERIOR

Solução aproximada da equação $x^3 + cos x = 0$.

Como vimos em aula anterior, esta equação possui uma única solução \bar{x} no intervalo [-1,0], sendo a função $f(x)=x^3+cosx$ contínua em [-1,0], com f(-1)=-0.45469<0 e f(0)=1>0. Vamos usar o método da bisseção para encontrar uma aproximação de \bar{x} , com erro absoluto menor que $\varepsilon=0.1$.

RESOLVENDO O EXEMPLO

$$f(x) = x^3 + \cos x$$
, $f(-1) = -0.45469 < 0$ e $f(0) = 1 > 0$.

ATENÇÃO: CALCULADORA EM RADIANOS!!

Temos:
$$a_0 = -1$$
 e $b_0 = 0$. Então $x_1 = \frac{-1+0}{2} = -0.5$.

Decidindo sobre o novo intervalo de busca: $f(x_1) = f(-0.5) = 0.7525 > 0$, sinal contrário de $f(a_0) = f(-1) < 0$. Logo: $a_1 = a_0 = -1$ e : $b_1 = x_1 = -0.5$.

Temos:
$$a_1 = -1$$
 e $b_1 = -0.5$. Então $x_2 = \frac{-1 - 0.5}{2} = -0.75$.

$$|x_2 - x_1| = 0.25 > 0.1$$

Decidindo sobre o novo intervalo de busca: $f(x_2) = f(-0.75) = 0.3098 > 0$, sinal contrário de $f(a_1) = f(-1) < 0$. Logo: $a_2 = a_1 = -1$ e : $b_2 = x_2 = -0.75$.

Temos:
$$a_2 = -1$$
 e $b_2 = -0.75$. Então $x_3 = \frac{-1 - 0.75}{2} = -0.875$.

$$|x_3 - x_2| = 0.125 > 0.1$$

Decidindo sobre o novo intervalo de busca: $f(x_3) = f(-0.875) = -0.0289 < 0$, mesmo sinal de $f(a_2) = f(-1) < 0$. Logo: $a_3 = x_3 = -0.875$ e : $b_3 = b_2 = -0.75$.

RESOLVENDO O EXEMPLO

Temos:
$$a_3 = -0.875$$
 e $b_3 = -0.75$. Então $x_4 = \frac{-0.875 - 0.75}{2} = -0.8125$. $|x_4 - x_3| = 0.0625 < 0.1$

$$|x_4 - x_3| = 0.0625 < 0.1$$

Portanto $\bar{x} \approx x_4 = -0.8125$, com erro absoluto menor que $\varepsilon = 0.1$

NÚMERO MÍNIMO DE ITERAÇÕES, COM O ERRO ABSOLUTO

 \triangleright No método da bisseção, é possível determinar o menor valor de n para que x_{n+1} seja a aproximação da solução exata \bar{x} , com erro absoluto menor que um dado ε , isto é, para que $|x_{n+1} - \bar{x}| < \varepsilon$.

Como \bar{x} está entre a_n e x_{n+1} ou entre x_{n+1} e b_n podemos concluir que: $|x_{n+1} - \bar{x}| < |x_{n+1} - a_n|$

Como
$$x_{n+1}-a_n>0$$
, $x_{n+1}=\frac{a_n+b_n}{2}$ e $b_n-a_n=\frac{b_0-a_0}{2^n}$, tem-se que:

$$|x_{n+1} - \bar{x}| < |x_{n+1} - a_n| = x_{n+1} - a_n = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} = \frac{b_0 - a_0}{2^{n+1}} \qquad |x_{n+1} - \bar{x}| < \frac{b_0 - a_0}{2^{n+1}}$$

Então, se queremos $|x_{n+1} - \bar{x}| < \varepsilon$, basta exigir que $\frac{b_0 - a_0}{2^{n+1}} < \varepsilon$.

$$|x_{n+1} - \bar{x}| < \frac{b_0 - a_0}{2^{n+1}}$$

NÚMERO MÍNIMO DE ITERAÇÕES, COM O ERRO ABSOLUTO

Então, se queremos $|x_{n+1} - \bar{x}| < \varepsilon$, basta exigir que $\frac{b_0 - a_0}{2^{n+1}} < \varepsilon$.

$$\frac{b_0 - a_0}{2^{n+1}} < \varepsilon \Longrightarrow \log\left(\frac{b_0 - a_0}{2^{n+1}}\right) < \log \varepsilon$$

$$\Longrightarrow \log(b_0 - a_0) - \log 2^{n+1} < \log \varepsilon$$

$$\Longrightarrow \log(b_0 - a_0) - (n+1)\log 2 < \log \varepsilon$$

$$\Longrightarrow n > \frac{\log(b_0 - a_0) - \log \varepsilon}{\log 2} - 1$$

$$\log x = \log_{10} x$$

NÚMERO MÍNIMO DE ITERAÇÕES NO MÉTODO DA BISSEÇÃO, USANDO O ERRO ABSOLUTO

Portanto n deve ser o menor inteiro positivo tal que $n > \frac{\log(b_0 - a_0) - \log \varepsilon}{\log 2} - 1$

EXEMPLO

Considerando o exemplo anterior da equação $x^3 + cos x = 0$, se quisermos encontrar uma aproximação da solução \bar{x} em [-1,0], com erro absoluto menor que $\varepsilon = 0.01$, podemos saber qual o valor mínimo de n para que x_{n+1} seja esta aproximação.

Lembremos que, no exemplo, determinamos a aproximação com erro absoluto menor que $\varepsilon = 0.1$, obtendo a aproximação $x_4 = -0.8125$, ou seja, correspondente a n = 3.

Usando a relação
$$n > \frac{\log(b_0 - a_0) - \log \varepsilon}{\log 2} - 1$$
 com $a_0 = -1$, $b_0 = 0$ e $\varepsilon = 0.01 = 10^{-2}$:

$$n > \frac{\log(0 - (-1)) - \log 10^{-2}}{\log 2} - 1 \Longrightarrow n > \frac{2}{\log 2} - 1 \Longrightarrow n > 5.6438 \Longrightarrow n \ge 6$$

Portanto n=6 é o menor valor de n para garantir uma aproximação da solução da equação $x^3+cosx=0$, usando o método da bisseção, com erro absoluto menor que $\varepsilon=0.01$. Ou seja, na resolução anterior do exemplo, bastariam mais três iterações para chegar a essa aproximação $\bar{x}\approx x_7$.

USANDO TABELA (COMO NA APOSTILA)

Aproximação da solução \bar{x} da equação $x^3 + cos x = 0$ no intervalo [-1,0], com erro absoluto menor que $\varepsilon = 0.01$.

$$f(x) = x^3 + \cos x$$
, $a_0 = -1$, $b_0 = 0$.

n	a_n	b_n	x_{n+1}	$f(a_n)$	$f(b_n)$	$f(x_{n+1})$	$ x_{n+1}-x_n $
0	-1	0	-0.5	-0.45469	1	0.75258	
1	-1	-0.5	-0.75	-0.45469	0.75258	0.309813	0.25
2	-1	-0.75	-0.875	-0.45469	0.309813	-0.02892	0.125
3	-0.875	-0.75	-0.8125	-0.02892	0.309813	0.15131	0.0625
4	-0.875	-0.8125	-0.84375	-0.02892	0.15131	0.06398	0.03125
5	-0.875	-0.84375	-0.859375	-0.02892	0.06398	0.018241	0.015625
6	-0.875	-0.859375	-0.8671875	-0.02892	0.018241	-0.005163	0.00781

< 0.01

USANDO TABELA (COMO NA APOSTILA)

$$f(x) = x^3 + \cos x$$
, $a_0 = -1$, $b_0 = 0$.

n	a_n	b_n	x_{n+1}	$f(a_n)$	$f(b_n)$	$f(x_{n+1})$	$ x_{n+1}-x_n $
0	-1	0	-0.5	-0.45469	1	0.75258	
1	-1	-0.5	-0.75	-0.45469	0.75258	0.309813	0.25
2	-1	-0.75	-0.875	-0.45469	0.309813	-0.02892	0.125
3	-0.875	-0.75	-0.8125	-0.02892	0.309813	0.15131	0.0625
4	-0.875	-0.8125	-0.84375	-0.02892	0.15131	0.06398	0.03125
5	-0.875	-0.84375	-0.859375	-0.02892	0.06398	0.018241	0.015625
6	-0.875	-0.859375	-0.8671875	-0.02892	0.018241	-0.005163	0.00781

ATENÇÃO: ERRO NESTES VALORES NA APOSTILA $|f(x_7)| = 0.005163 < 0.01$

Obs: Um critério de parada poderia ser também: parar o método quando $|f(x_{n+1})| < \varepsilon$