

Semantic Visualization for Spherical Representation

Tuan M. V. Le and Hady W. Lauw KDD 2014

Visualize Document Collections

 To present the contents/semantics/themes/etc of the documents.

To show the similarities among documents in a collection.

Topic Model

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Model Not Intended for Visualization

Semantic Visualization Problem

Our Approach for Semantic Visualization

Spherical

L²-normalized vector

+ Document: V_n

+ Topic: τ_z

Semantic

Topic distribution

Embedding

Visualization coordinates

+ Document: x_n

+ Topic: ϕ_z

School of **Information Systems**

Data Representation – Word Space

Spherical

- Richer feature representations
 - ➤ tf, tf-idf,...
- Model directly absences of word.
- Similarity is based on cosine distance:
 - ➤ Not sensitive to document length.

Von Mises–Fisher distribution (vMF):

$$f_p(x; \mu, \kappa) = C_p(\kappa) \exp(\kappa \mu^T x)$$

Data Representation – Topic Space

Each document is represented as a point on the topic simplex

Semantic

Topic distribution

Topic Representation

 Each topic is represented as a point on the sphere (word space)

Multinomial (Sum up to 1)

	Probability
Word 1	0.7
Word 2	0.2
Word 3	0.1

Spherical (Unit length)

	Weight
Word 1	0.95
Word 2	0.27
Word 3	0.14

Relationship between Topic Distributions and Visualization Coordinates

Semantic

Embedding

Topic distribution

Visualization coordinates

- + Document: \mathcal{X}_n
- + Topic: φ_{z}

 $P(z_1 | d) > P(z_2 | d) > P(z_3 | d)$

Shorter visualization distance means greater topic probability.

$$P(z|d_n) = P(z|x_n, \Phi) = \frac{\exp(-\frac{1}{2}||x_n - \phi_z||^2)}{\sum_{z'=1}^{Z} \exp(-\frac{1}{2}||x_n - \phi_{z'}||^2)}$$

School of **Information Systems**

Spherical Semantic Embedding

The observed L2-normalized word vector of d_n

L2-normalized word vector of topic *z*

Visualization coordinate of document d_n

Visualization coordinate of topic z

Generative Process

- 1. Draw the corpus mean direction: $\mu \sim \text{vMF}(m, \kappa_0)$
- 2. For each topic $z = 1, \ldots, Z$:
 - Draw z's coordinate: $\phi_z \sim \text{Normal}(0, \beta^{-1}I)$
 - Draw z's spherical direction: $\tau_z \sim \text{vMF}(\mu, \xi)$
- 3. For each document d_n , where $n = 1, \ldots, N$:
 - Draw d_n 's coordinate: $x_n \sim \text{Normal}(0, \gamma^{-1}I)$
 - Derive d_n 's topic distribution:

$$\theta_{n,z} = P(z|x_n, \Phi) = \frac{\exp(-\frac{1}{2}||x_n - \phi_z||^2)}{\sum_{z'=1}^{Z} \exp(-\frac{1}{2}||x_n - \phi_{z'}||^2)}$$

- Derive d_n 's spherical average: $\tau_n = \frac{\sum_{z=1}^Z \theta_{n,z} \cdot \tau_z}{\|\sum_{z=1}^Z \theta_{n,z} \cdot \tau_z\|}$
- Draw d_n 's spherical direction: $\nu_n \sim \text{vMF}(\tau_n, \kappa)$

Parameter Estimation

Variational EM with MAP estimation.

Comparative Methods

20News Dataset (20 Categories)

a. 20*News*

Visualization Comparison

SSE (Spherical)

PLSV (Multinomial)

Conclusion

- Spherical Semantic Embedding (SSE) is designed for data with spherical representation.
- Promising applications for integrated modeling:
 - semantic-rich visualizations
 - assigning categories to documents

