Московский физико-технический институт Физтех-школа прикладной математики и информатики Математическая логика и теория алгоритмов, весна 2022

Семинар 17: Построение неразрешимых и неперечислимых множеств; универсальные машины Тьюринга, условия задач с указаниями и решениями

Нетрудно доказывать существование неразрешимых множеств из соображений мощности.

1. Докажите, что в любом бесконечном множестве найдётся неразрешимое подмножество.

Указание: разрешимых подмножеств счётное число, а всех — континуум.

2. Докажите, что существует последовательность $A_0 \subset A_1 \subset A_2 \subset \ldots$, такая что A_{2k} разрешимо, а A_{2k+1} неразрешимо.

Указание: достаточно сделать так, чтобы все A_{2k} были разрешимы и все $A_{2k+2} \setminus A_{2k+1}$ были бесконечны.

3. Пусть $f: \mathbb{N} \to \mathbb{N}$ — неубывающая функция, стремящаяся к бесконечности. Докажите, что существует неразрешимое множество A, такое что для любого k множество $A \cap \{0, 1, \dots, k\}$ содержит не более f(k) элементов.

Указание: нужно рассмотреть точки, в которых происходят «скачки» f. Каждую из них можно добавить или не добавить в множество. Это даст континуум вариантов, в каждом из которых выполнено условие на мощность.

Для более явного построения неразрешимых множеств, а также построения перечислимых неразрешимых множеств нужен инструментарий универсальных вычислимых функций. Функция $U \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ называется универсальной вычислимой, если она вычислима и для любой вычислимой функции $f \colon \mathbb{N} \to \mathbb{N}$ найдётся такое число n, что при всех x выполнено U(n,x) = f(x). Машина Тьюринга \mathcal{U} от двух аргументов называется универсальной, если получив на вход код машины Тьюринга M от одного аргумента и слово x, она возвращает результат работы машины M на входе x. Формально, $\mathcal{U}(\langle M \rangle, x) = M(x)$.

4. Покажите, что универсальная машина Тьюринга существует. (Т.е. опишите, как она должна работать).

Указание: основная сложность состоит в том, что у машины \mathcal{U} должно быть фиксированное число состояний и фиксированный алфавит, а у машины M и то, и другое может быть произвольным. Поэтому нужно выбрать способ кодирования T. Например, можно записывать команды в такой форме: $q10011a1011 \rightarrow q11011a100R$, где q с последующим двоичным числом это код состояния, a с последующим двоичным числом — код символа. Аналогично нужно кодировать и конфигурации. Для реализации шага машины нужно найти нужную команду в программе и реализовать её.

5. Докажите, что универсальная машина Тьюринга вычисляет универсальную вычислимую функцию.

Решение: если $f: \mathbb{N} \to \mathbb{N}$ вычислима, то для некоторой машины Тьюринга M при любом x выполнено M(x) = f(x). Тогда $\mathcal{U}(\langle M \rangle, x) = f(x)$, что и даёт универсальность.

6. Пусть при любом фиксированном n функция V(n,x) вычислима как функция от x. Может ли V быть невычислимой как функция двух аргументов?

Указание: может, например, V(n,x) = f(n) для невычислимой f.

7. При любом фиксированном n функция V(n,x) вычислима как функция от x, а при любом фиксированном x функция V(n,x) вычислима как функция от n. Может ли V быть невычислимой как функция двух аргументов?

Указание: тоже может, например, $V(n,x) = f(\min\{n,x\})$ для невычислимой f.

8. Известно, что для любой вычислимой функции $f: \mathbb{N} \to \mathbb{N}$ найдётся такое число n, что при всех x выполнено V(n,x) = f(x). Может ли V быть невычислимой?

Указание: может, например, V(n,x) = U(f(n),x) для универсальной вычислимой U и невычислимой биекции f.

9. Докажите, что не существует универсальной тотально вычислимой функции, т. е. всюду определённой функции $U \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, такой что для любой всюду определённой вычислимой функции $f \colon \mathbb{N} \to \mathbb{N}$ найдётся такое число n, что при всех x выполнено U(n,x) = f(x).

Решение: Предположим, что такая функция существует. Тогда диагональная функция d(n) = U(n,n) также всюду определена и вычислима. То же верно и для функции d'(n) = d(n) + 1. По свойству универсальности должно найтись число p, такое что для всех n верно U(p,n) = d'(n). Но тогда при подстановке n = p получаем U(p,p) = d'(p) = U(p,p) + 1, что в силу тотальности даёт противоречие.

10. Докажите, что существует универсальная функция для класса всех вычислимых функций, принимающих только значения 0 и 1.

Указание: нужно взять обычную универсальную вычислимую функцию и заменить все значения больше 1 на 1.

11. Докажите, что существует универсальное перечислимое множество, т.е. такое множество $W \subset \mathbb{N} \times \mathbb{N}$, что среди множеств $W \cap (\{i\} \times \mathbb{N})$ встречаются все перечислимые подмножества \mathbb{N} .

Указание: это область определения универсальной вычислимой функции.

12. Существует ли универсальное разрешимое множество?

Указание: нет, доказывается диагональным методом аналогично несуществованию универсальной тотально вычислимой функции.

13. Докажите, что существует вычислимая функция, совпадающая с любой другой хотя бы на одном аргументе (в частности, обе могут быть не определены).

Указание: это диагональная функция U(n,n).

Функция f продолжает функцию g, если f(n) = g(n) при всех n, на которых g определена.

14. Докажите, что существует вычислимая функция, не имеющая всюду определённого вычислимого продолжения.

Указание: это вновь диагональная функция U(n,n) или её сдвиг U(n,n)+1. Её всюду определённое вычислимое продолжение позволит прийти к противоречию диагональным методом.

15. Докажите, что область определения любой вычислимой функции, не имеющей всюду определённого вычислимого продожения, является перечислимым, но не разрешимым множеством.

Указание: если бы оно было разрешимым, то функцию можно было бы продолжить до всюду определённой.

16. Докажите, что множество $S = \{n \mid U(n,n) \text{ определено}\}$ является перечислимым, но не разрешимым множеством.

Указание: следует из предыдущих задач.

17. Докажите, что множество $H = \{(n,x) \mid U(n,x) \text{ определено}\}$ является перечислимым, но не разрешимым множеством.

Указание: если бы H было разрешимым, то и S было бы разрешимым как пересечение H и разрешимого $S = \{(n, n) \mid n \in \mathbb{N}\}.$

18. Докажите, что существует вычислимая функция, не имеющая всюду определённого вычислимого продолжения и принимающая только значения 0 и 1.

Указание: нужно взять диагональ универсальной функции из задачи 10.

19. Докажите, что существуют непересекающиеся перечислимые множества A и B, для которых не существует разрешимого R, такого что $A \subset R$ и $B \cap R = \emptyset$. (Такие множества называются неотделимыми). Докажите, что такие множества можно построить по любой функции из предыдущей задачи, а также опишите явную конструкцию.

Решение: рассмотрим функцию f из предыдущей задачи. Пусть $A = \{x \mid f(x) = 1\}$, а $B = \{x \mid f(x) = 0\}$. Если найдётся искомое в задаче разрешимое R, то его характеристическая функция $\chi_R(x)$ будет всюду определённым вычислимым продолжением f.

20. Докажите, что существует счётное число попарно непересекающихся попарно неотделимых множеств.

Указание: нужно взять диагональ d(x) обычной универсальной функции и рассмотреть множества $A_i = \{x \mid d(x) = i\}.$

21. Приведите пример разрешимого множества A и вычислимой функции f, такой что образ f(A) не разрешим. Может ли эта функция быть всюду определена?

Указание: можно взять $A = \mathbb{N}$, а f такой, что перечислимое неразрешимое множество K является областью значений f. При этом f может быть и всюду определена.

Говорят, что множество A m-сводится к множеству B, если существует такая вычислимая функция $f \colon \mathbb{N} \to \mathbb{N}$, что $x \in A \Leftrightarrow f(x) \in B$. Обозначение: $A \leqslant_m B$.

22. Докажите, что если $A \leqslant_m B$ и $B \leqslant_m C$, то $A \leqslant_m C$.

Указание: $x \in A \Leftrightarrow f(x) \in B \Leftrightarrow g(f(x)) \in C$.

23. Докажите, что если A разрешимо, то $A \leqslant_m B$ для всех B кроме \varnothing и \mathbb{N} .

Указание: Нужно выбрать $b_1 \in B$ и $b_0 \notin B$, затем положить $f(x) = \begin{cases} b_1, & x \in A; \\ b_0, & x \notin A. \end{cases}$

24. Известно, что $A \leq_m B$ и $B \leq_m A$. Верно ли, что A = B?

Указание: нет. Из предыдущего любые 2 нетривиальных разрешимых множества друг к другу сводятся.

25. Докажите, что если B разрешимо и $A \leq_m B$, то A разрешимо.

Указание: $\chi_A(x) = \chi_B(f(x))$.

26. Докажите, что если B перечислимо и $A \leq_m B$, то A перечислимо.

Указание: если B = Dom g, то $A = \text{Dom}(g \circ f)$.

27. Докажите, что если $A \leqslant_m B$, то $\overline{A} \leqslant_m \overline{B}$.

Указание: подойдёт та же самая сводящая функция.

28. Докажите, что если B коперечислимо (т.е. \overline{B} перечислимо) и $A \leqslant_m B$, то A коперечислимо.

Указание: следует из двух предыдущих задач.

29. Пусть U — универсальная функция, полученная из универсальной машины Тьюринга. Докажите, что множество $H_0 = \{n \mid U(n,0) \text{ определено}\}$ является перечислимым, но не разрешимым множеством.

Решение: рассмотрим программу n_p , которая на любом входе (в том числе, на входе 0) запускает U(p,p). Текст такой программы можно написать, зная p, так что преобразование p в n_p будет всюду определённым и вычислимым. При этом $p \in S \Leftrightarrow n_p \in H_0$. Таким образом, $S \leqslant_m H_0$, и поскольку S неразрешимо, то и H_0 тоже.

30. Докажите, что при некоторых n множество $\{x \mid U(n,x) \text{ определено}\}$ является перечислимым, но не разрешимым. Приведите пример n, при котором оно будет разрешимо.

Указание: нужно взять такое n, что U(n,x)=U(x,x). С другой стороны, можно взять такое n, что U(n,x)=1 при всех x.

31. Докажите, что множество $T = \{n \mid U(n, x) \text{ определено при всех } x\}$ не является ни перечислимым, ни коперечислимым.

Указание: нужно показать, что $S \leqslant_m T$ и $\overline{S} \leqslant_m T$. Например, можно взять такие сводимости: p преобразуется в n_p , такое что $U(n_p,x)=U(p,p)$, и в m_p , такое что

$$U(m_p, x) = \begin{cases} \text{не опр.}, & U(p, p) \text{ останавливается за } x \text{ шагов;} \\ 1, & \text{иначе.} \end{cases}$$

32. Докажите, что множество $H_{01} = \{n \mid U(n,0) \text{ определено, а } U(n,1) \text{ не определено}\}$ не является ни перечислимым, ни коперечислимым.

Указание: вновь нужно рассмотреть 2 сводимости. В первой нужно $U(n_p,0) = U(p,p)$, а $U(n_p,1)$ не определено. Во второй: $U(m_p,0) = 1$, а $U(m_p,1) = U(p,p)$

33. Докажите, что множество $FD = \{n \mid U(n,x) \text{ определено для конечного числа } x\}$ не является ни перечислимым, ни коперечислимым.

Указание: подойдёт та же сводимость, что и в задаче 31.