

Grundlagen der Energietechnik Teil 3: Grundlagen der Leistungselektronik Vorlesung (1)

Prof. Dr.-Ing. Regine Mallwitz Institut für Elektrischen Maschinen, Antriebe und Bahnen - IMAB

Was machen wir heute?

- Einführung in die Lehrveranstaltung GENT-Teil 3 / Leistungselektronik
- Start mit den Inhalten der Vorlesung

Institut für Elektrische Maschinen, Antriebe und Bahnen (IMAB)

Professoren und Mitarbeiter:

- Prof. Dr.-Ing. Markus Henke (Elektrische Antriebe)
- Prof. Dr.-Ing. Regine Mallwitz (Leistungselektronik)
- Oberingenieur Dr.-Ing. Günter Tareilus
- 18 wissenschaftliche Mitarbeiter
- 7 Mitarbeiter in Werkstatt und Verwaltung

Räumlichkeiten:

Hans-Sommer-Str. 66 Braunschweig

Büros

Leistungselektronik-

Labore

Maschinenhalle

Hermann-Blenk-Str. 42 Braunschweig

Werkstatt

www.imab.de

IMAB - Lehrveranstaltungen an der TU Braunschweig

WS

SS

Leistungselektronik Elektr. Energietechnik (Maschinenbau) ss Grundlagen der el. Energietechnik ss Grundschaltungen der LE ws Leistungselektronische Systeme ws Angewandte Leistungselektronik ss

Praktikum Leistungselektronik

Praktikum Antriebssysteme für Elektrotanrzeuge

Praktikum Elektrische Maschinen ws

Elektrische Antriebe					
Master Bachelor	Grundlagen der el. Energietechnik	ss			
	Energietechnik für Umweltingenieure				
	Elektrische Antriebe	ws			
	Drehstromantriebe und deren Simulation				
Ma	Entwurf elektrischer Maschinen	ws			

Fahrzeugantriebe Antriebssysteme für den spurgebundenen Verkehr (Vorlesung "Elektrische Antriebe f. d. s. Verkehr") Elektrische Antriebe für Straßenfahrzeuge ws

Beispiel für Leistungselektronik: Energieversorgung Laptop

Akku (20V DC)

Adapter (Wandler)

Leistungselektronik

CNC Bohr- und Fräsmaschine (Antrieb)

Photovoltaik-Anlage (Wechsel-richter) [Quelle: SMA]

Bahn (Traktion, Boardversorgung)
[Quelle: wikipedia]

IT (Stromversorgung)

Förderband (Antrieb)

Energieversorgung (HGÜ für Anbindung Offshore-Windparks) [Quelle: TenneT]

Elektrofahrzeug (Traktion, Batterieladung) [Quelle: VW]

Kernspintomograph (Stromversorgung) [Quelle: Siemens]

- >> Anpassung elektrischer Energie an die jeweilige Applikation
- >> Sehr verschiedene Anwendungsgebiete

IMAB – Themen und Ausstattung

(1) Leistungselektronik für Schwerpunkt-Applikationen

- Regenerative Energiesysteme einschließlich Speicheranbindung in Netzen
- Antriebe und Hilfsstromversorgungen für Elektrofahrzeuge und Industrieantriebe
- Mobile Energieversorgungssysteme, z.B.
 Batterieadegeräte in Elektrofahrzeugen

- b) Experimentelle Bewertung und Optimierung
- c) Halbleiter auf Basis von Si, SiC, GaN

(3) Prüfstande für Vermessung von

- a) Leistungs-Halbleitern
- b) magnetischen Komponenten
- (4) Mehr als 660 m² LE-Laborfläche

 für Aufbau und Betrieb von elektrischen Maschinen und Leistungselektronik

Die AG Leistungselektronik am IMAB ist umfangreich ausgestattet:

Mehr als **660 m² Laborfläche** beherbergen

- Equipment für Aufbau, Betrieb, Test, Optimierung von
 - leistungselektronischen Wandlern (bis 500 kW)
 - elektrischen Maschinen (bis 300 kW)
- sowie Prüfstände für die elektrische und thermische Charakterisierung leistungselektronischer Bauelemente wie
 - Leistungs-Halbleiter-Schalter,
 - HF-Transformatoren, Induktivitäten, Kondensatoren.

Wechsellastteststand

Grundlagen der Energietechnik – Teil 3: Leistungselektronik

Informationen zum weiteren Ablauf der Lehrveranstaltung:

Dozenten:

Vorlesung: Prof. Dr.-Ing. Regine Mallwitz

Übung: M.Sc. Robert Keilmann

Leistungsnachweis:

 Schriftliche Klausur (1/3 leistungselektronische Themen mit Aufgaben ähnlich den Übungsaufgaben und Kurzfragen)

Material zur Vorlesung wird vor der Veranstaltung wird über StudIP zur Verfügung gestellt.

Hochschulinterne Dokumente, die nicht zur Weitergabe an Nichtteilnehmern der Vorlesung vorgesehen sind

Empfohlene Bücher zur Vorlesung

Uwe Probst:

Leistungselektronik für Bachelors.

Hanser Verlag.

29,90 €

Joachim Specovius:

Grundkurs Leistungselektronik.

Springer Verlag.

34,99 €

Manfred Michel:

Leistungselektronik.

Springer Verlag.

59,99€

Inhalt der Lehrveranstaltung

- 1. Einführung in die Leistungselektronik
 - 1.1. Aufgaben und Komponenten der Leistungselektronik
- 2. Leistungshalbleiter
 - 2.1. Bipolare Leistungshalbleiter: PN-Übergang, pn-Diode, Bipolartransistor, Thyristor, GTO
 - 2.2. Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT
- 3. Netzgeführte Stromrichter (Stromrichterschaltungen mit Dioden und Thyristoren)
 - 3.1. Gleichrichter ungesteuert
 - 3.1.1 Mittelpunktschaltungen: M1U, M2U, M3U
 - 3.1.2. Brückenschaltungen: B2U, B6U
 - 3.2. Gleichrichter gesteuert
 - 3.2.1. M1C, M2C, M3C, B2C, B6C
- 4. Selbstgeführte Stromrichter (Stromrichterschaltungen mit MOSFET und IGBT)
 - 4.1. Gleichstromsteller
 - 4.1.1. Tiefsetzsteller
 - 4.1.2. Hochsetzsteller
 - 4.1.3. Zweiquadrantensteller
 - 4.1.4. Vierquadrantensteller (Vollbrücke)
 - 4.2. Umrichter
 - 4.2.1. Umrichter mit Gleichspannungs-Zwischenkreis (ein- und dreiphasig)

Was machen wir heute?

- 1. Einführung in die Leistungselektronik
 - 1.1. Aufgaben und Komponenten der Leistungselektronik
- 2. Leistungshalbleiter
 - 2.1. Bipolare Leistungshalbleiter: PN-Übergang, pn-Diode, Bipolartransistor, Thyristor, GTO
 - 2.2. Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT
- 3. Netzgeführte Stromrichter (Stromrichterschaltungen mit Dioden und Thyristoren)
 - 3.1. Gleichrichter ungesteuert
 - 3.1.1 Mittelpunktschaltungen: M1U, M2U, M3U
 - 3.1.2. Brückenschaltungen: B2U, B6U
 - 3.2. Gleichrichter gesteuert
 - 3.2.1. M1C, M2C, M3C, B2C, B6C
- 4. Selbstgeführte Stromrichter (Stromrichterschaltungen mit MOSFET und IGBT)
 - 4.1. Gleichstromsteller
 - 4.1.1. Tiefsetzsteller
 - 4.1.2. Hochsetzsteller
 - 4.1.3. Zweiquadrantensteller
 - 4.1.4. Vierquadrantensteller (Vollbrücke)
 - 4.2. Umrichter
 - 4.2.1. Umrichter mit Gleichspannungs-Zwischenkreis (ein- und dreiphasig)

- Leistungselektronik wandelt die zur Verfügung stehende elektrische Energie für die Erfordernisse der jeweiligen Applikation um (*Energieumwandlung*)
 Sie ist damit das *Bindeglied zwischen der Energiequelle und dem Energieverbraucher*.
 Die Energieumwandlung erfolgt durch *Schaltbetrieb* und im Vergleich zur Analogtechnik verlustarm.
- Mess-, Steuer- und Regeleinrichtungen sind mit der Leistungselektronik eng verbunden und können zur Leistungselektronik gezählt werden.

Beispiel Photovoltaik (PV) – Wechselrichter

Anforderungen:

- Umwandlung DC_{variable} in AC_{Netz}
- MPP-Regelung des PV-Generators
- hoher Wirkungsgrad
- Sinusfilter (Einspeisung sinusförm. Stroms)
- $\cos \varphi = 0.8...1$ (Blindleistungsaufnahme)
- EMI-Filter (DC- und AC-Seite)

Wechselrichter in PV-Anlagen

[Quelle: SMA]

Beispiel: Elektrofahrzeug

Beispiel: e-Up! (Quelle: VW)

Gleichrichter: 1. M1U-Schaltung mit ohmscher Last

Kenngrößen der M1-Schaltung mit ohmscher Last:

Mittlere Gleichspannung

$$U_{dav} = \frac{2\hat{e}_1}{\omega T} = \frac{\hat{e}_1}{\pi}$$

325.2 250.0

125.0

-125.0

-250.0

-325.2

$$I_{dav} = \frac{\hat{e}_1}{\pi R_1}$$

$$U_{drms} = \frac{\hat{e}_1}{2}$$

$$P_d = \frac{E1^2}{2 \cdot R1}$$

$$S = E1 \cdot I_{RMS} = \frac{E1^2}{\sqrt{2} \cdot R1}$$

$$\lambda = \frac{1}{\sqrt{2}}$$

M1U-Schaltung mit ohmsch-induktiver Last

aufgenommene
Spannungs-ZeitFläche =
abgegebener
Spannungs-ZeitFläche!

Beispiel:

L1=300mH

Hier: kleiner Induktivitätswert!

M1U-Schaltung mit ohmsch-induktiver Last

M1U-Schaltung mit ohmsch-induktiver Last + Freilauf

aufgenommene
Spannungs-ZeitFläche =
abgegebener
Spannungs-ZeitFläche!

Braunschweig

M1U-Schaltung mit ohmsch-induktiver Last + Freilauf

Bei einer hinreichend großen Drossel fließt glatter Gleichstrom der Größe

$$I_d = (1,41*E1) / (\pi*R1)$$

Der Diodenstrom hat dann einen rechteckförmigen Verlauf!

Kenngrößen der M1-Schaltung mit ohmsch-induktiver Last + Freilauf

 Abgegebene Wirkleistung (Gleichstromseite)

$$P_d = I_d \cdot U_d = \frac{U_d^2}{R1}$$

Mittlere Gleichspannung

$$U_d = \frac{\sqrt{2}}{\pi} E1$$

$$P_d = \frac{U_d^2}{R1} = \frac{2E1^2}{\pi^2 R1}$$

Scheinleistung (Wechselstromseite)

$$S = E1 \cdot I_{RMS} = \frac{E1^2}{\pi \cdot R1}$$

Leistungsfaktor

$$\lambda = \frac{2}{\pi}$$

M1U-Schaltung mit ohmsch-kapazitiver Last

C1 verlängert die Leitdauer von R1, verkürzt jedoch die von D1!

M1U-Schaltung mit ohmsch-kapazitiver Last

→ Durch die verkürzte Leitdauer der Dioden erhöht sich der Stromspitzenwert und damit die effektive Strombelastung der Dioden!!!

M1U-Schaltung mit ohmsch-kapazitiver Last

Überschlägige Berechnung:

Maximale Spannung: U_{dmax}=ê₁

■ Minimale Spannung:
U_{dmin} = ê₁ - I_d · (T / C1)

Gleichstrom:

$$I_d = \frac{U_{d,\text{max}} + U_{d,\text{min}}}{2R_1} = \frac{\hat{e}_1}{R_1 + \frac{T}{2C_1}}$$

 $U_{d \min} = \hat{e}_1 - \frac{\hat{e}_1}{\frac{R_1 C_1}{T} + 0.5}$ $= \hat{e}_1 \left(1 - \frac{T}{R_1 C_1 + 0.5T} \right)$

> Spitzenstrom:

$$\hat{i}_{D1} = C_1 \cdot \omega \cdot \hat{e}_1 \cdot \cos \left(\arcsin \left(1 - \frac{T}{R_1 C_1 + 0.5T} \right) \right)$$

Welligkeit:

$$\Delta U = U_{d \text{ max}} - U_{d \text{ min}} = \frac{\hat{e}_1}{\frac{R_1 C_1}{T} + 0.5} = \hat{e}_1 \left(1 - \frac{T}{R_1 C_1 + 0.5T} \right)$$

Ströme in der M1U + RC

Näherung für obere Schranke

$$\hat{i}_{D1} = C_1 \cdot \frac{du}{dt} = C_1 \cdot \omega \cdot \hat{e}_1 \cdot \cos \left(\arcsin \left(1 - \frac{T}{R_1 C_1 + 0.5T} \right) \right)$$

→ liefert:

- $\hat{I}_{D1} = 87A$ bei $I_{d} = 3,1A$ ist $I_{RMS} = 14,09A$!!!
- → erhöhter effektiver Strom
- → erhöhte Scheinleistungsaufnahme!

In realen Anwendungen ist die Impedanz des 3~400V-Netzes von Null verschieden:

$$R_1 = R_2 = R_3 = 0.24\Omega$$

$$R_N=0,16\Omega$$

$$\omega L_1 = \omega L_2 = \omega L_3 = 0.15\Omega$$

$$\omega L_N = 0,10\Omega$$
 bei 50Hz

Typische Leistungsfaktoren P/S sind für die M1 + RC-Last daher <0,5

Vergleich der verschiedenen Belastungsfälle der M1U

	R- Last	RL-Last + Freilauf	RC-Last
Netz- stromverlauf			
Stromform- faktor I _{RMS} /I _{AV}	$\frac{\pi}{2}$	$\sqrt{2}$	$\Rightarrow \frac{\pi}{2}$
Leistungs- faktor P/S	$\frac{1}{\sqrt{2}}$	$\frac{2}{\pi}$	<0,5
Max. Ventil- spannung	ê	ê	2ê
Spitzenstrom/ Gleichstrom	π	1	>> TT

M1U - Zusammenfassung:

Aufbau und Funktionsweise (Spannungsverläufe, Stromverläufe) für

- Ohmsche Last
- Ohmsch-induktive Last (ohne und mit Freilaufdiode)
- Ohmsch-kapazitive Last

Was haben wir heute gemacht?

- Einführung in die Lehrveranstaltung
 - Ablauf und Themen der Lehrveranstaltung
 - Aufgaben der Leistungselektronik und Applikationsbeispiele
- Ungesteuerte Gleichrichter
 - Diode
 - M1U mit verschiedenen Lasten

Was kommt in der nächsten Vorlesung?

- Ungesteuerte Gleichrichter
 - M2U und M3U
 - B2U und B6U

Leistungselektronik @ Institut für Elektrische Maschinen, Antriebe und Bahnen

Prof. Dr.-Ing. Regine Mallwitz (Leistungselektronik)

M: r.mallwitz@tu-braunschweig.de

T.: +49 (0)531 3913901

M.Sc. Robert Keilmann

 $M: \ \underline{r.keilmann@tu-braunschweig.de}$

T.: +49 (0)531 3917910

www.imab.de

