

A PREENCHER PELO ALUNO		
Nome completo		
Assinatura do aluno		
Prova de Matemática		
3.º Ciclo do Ensino Básico 2021		
9.º Ano de Escolaridade		
A PREENCHER PELO PROFESSOR CLASSIFICADOR		
Classificação em percentagem L (por cento)	
Correspondente ao nível		
Assinatura do professor		
Observações		
Duração da Prova (Caderno 1 + Caderno 2): 90 minutos.		Caderno 2: 8 Páginas

Esta prova não é uma Prova Final de Ciclo. É um instrumento de avaliação disponibilizado pelo IAVE, I.P. para uso em contexto escolar.

Caderno 2: 50 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora.

Transporte

7. Escreve o número $\frac{7^3}{7^8} \times 7^{-4}$ na forma de uma potência de base $\frac{1}{7}$.

Apresenta todos os cálculos que efetuares.

- 8. Uma agência de viagens organizou uma visita ao Centro Histórico de Guimarães, na qual participaram cinco famílias.
 - 8.1. O dono da agência decidiu oferecer, por sorteio, um prémio de uma estada de um fim de semana, num dos hotéis, a uma das cinco famílias.

A família da Beatriz é uma dessas famílias.

Qual é a probabilidade de a família da Beatriz vir a ser premiada?

- A $\square \frac{1}{3}$ B $\square \frac{1}{5}$ C $\square \frac{2}{3}$ D $\square \frac{3}{5}$

8.2. Nesta viagem participaram três raparigas, a Ana, a Bruna e a Clara, e três rapazes, o Daniel, o Eduardo e o Francisco.

Vão ser sorteadas, ao acaso, entre estes seis participantes, duas entradas para visitar a Casa da Memória, situada em Guimarães.

Qual é a probabilidade de o par contemplado com as entradas ser constituído por uma rapariga e um rapaz?

Apresenta o valor pedido na forma de fração irredutível.

Mostra como chegaste à tua resposta.

9. Na Figura 6, estão representadas, em referencial cartesiano, de origem no ponto O, parte do gráfico de uma função quadrática, f, e parte do gráfico de uma função de proporcionalidade inversa, g.

Sabe-se que:

- a função f é definida por $f(x) = ax^2$, com $a \neq 0$;
- $\bullet \ \ \text{os gráficos das funções} \ f \ \ e \ \ g \ \ \text{intersectam-se} \\ \ \ \text{no ponto} \ \ P , \ \text{de abcissa} \ \ 2 \ ;$
- o ponto A pertence ao gráfico da função g e tem coordenadas (4,3).

Determina o valor de a.

Apresenta todos os cálculos que efetuares.

Figura 6

10. Resolve a inequação seguinte.

$$-\frac{3x}{2} + \frac{6+x}{7} < \frac{1}{14}(x+3)$$

Apresenta o conjunto solução na forma de intervalo de números reais.

Apresenta todos os cálculos que efetuares.

11. Resolve a equação seguinte.

$$-4x^2 - 4x + 3 = 0$$

Apresenta as soluções na forma de fração irredutível.

Apresenta todos os cálculos que efetuares.

12. Na Figura 7, estão representados, em referencial cartesiano, de origem no ponto O, as retas r e se o ponto P.

Sabe-se que:

- as retas r e s são paralelas;
- a reta s é definida pela equação y = -3x + 5;
- ullet o ponto P pertence à reta r e tem coordenadas (3, 6).

Determina a equação da reta r na forma y = ax + b.

Apresenta todos os cálculos que efetuares.

Figura 7

13. Na Figura 8, estão representadas, em referencial cartesiano, de origem no ponto O, as retas definidas pelas equações y = -2x - 2, y = 3x - 2, y = -2x + 3 e y = x + 3.

O ponto I é o ponto de interseção de duas dessas retas.

Qual é o sistema de equações que permite determinar as coordenadas do ponto I?

A
$$\square$$
 $\begin{cases} y = x + 3 \\ y = 3x - 2 \end{cases}$ B \square $\begin{cases} y = x + 3 \\ y = -2x + 3 \end{cases}$ C \square $\begin{cases} y = -2x + 3 \\ y = x + 3 \end{cases}$ D \square $\begin{cases} y = -2x + 3 \\ y = 3x - 2 \end{cases}$

$$\mathbf{B} \quad \boxed{ \begin{cases} y = x + 3 \\ y = -2x + 3 \end{cases}}$$

$$\mathbf{c} \quad \boxed{} \begin{cases} y = -2x - 2x \\ y = x + 3 \end{cases}$$

$$D \qquad \begin{cases} y = -2x + 3 \\ y = 3x - 2 \end{cases}$$

Figura 8

14. A Figura 9 é uma fotografia do painel *Começar* do artista português Almada Negreiros, onde é possível observar uma sobreposição de traçados geométricos.

Figura 9

in https://gulbenkian.pt/almada-comecar/o-painel/

Na Figura 10, está representada a estrela de cinco pontas inscrita numa circunferência, que se encontra na parte central do painel.

Sabe-se que:

- ullet a circunferência tem centro no ponto ${\it O}$;
- os vértices A, B, C, D e E da estrela pertencem à circunferência;
- os arcos AB, BC, CD, DE e EA são iguais.
- **14.1.** Determina a amplitude, em graus, do ângulo AJC . Apresenta todos os cálculos que efetuares.

Figura 10

14.2.	Qual das isometrias seguintes transforma	o triângulo $[AGF]$ no triângulo $[CHI]$?
	A \square A reflexão de eixo BD	B \square A rotação de centro O e amplitude $180^{\rm o}$
	${f C} \ igsqcap A$ reflexão de eixo BO	$f D$ $igchip$ A rotação de centro $\it O$ e amplitude $\it 216^o$

15. Na tabela seguinte, estão indicados os três primeiros termos de uma sequência de números racionais. Cada termo desta sequência, com exceção do primeiro, obtém-se multiplicando o termo anterior por $\frac{1}{2}$.

1.º termo	2.º termo	3.º termo	
$\frac{1}{2}$	$\frac{1}{4}$	1/8	

Determina a ordem do termo da sequência que é igual a $\frac{1}{64}$.

Apresenta todos os cálculos que efetuares.

Se quiseres completar ou emendar alguma resposta, utiliza este espaço.

Caso o utilizes, não te esqueças de identificar claramente o item a que se refere cada uma das respostas completadas ou emendadas.

FIM DA PROVA

COTAÇÕES (Caderno 2)

Item											
				C	otação	(em po	ontos)				
7.	8.1.	8.2.	9.	10.	11.	12.	13.	14.1.	14.2.	15.	
6	4	6	6	6	6	6	4	6	4	6	60

TOTAL (Caderno 1 + Caderno 2)	100	
-------------------------------	-----	--