

(19)日本国特許庁(IP)

(12)公開特許公報 (A)

(11) 特許出願公開番号 特開 2003 — 277195

(P2003-277195A) (43)公開日 平成15年10月2日(2003.10.2)

(51) Int. Cl. ⁷	識別記号	F I		テーマコート	(参考)
C30B 29/38		C30B-29/38	D	4G077	
H01L 21/205		H01L 21/205		5F041	
33/00		33/00	С	5F045	
H01S 5/323	610	H01S 5/323 61	10	5F073	

		審査請求	未請求 請求項の数11 OL (全14頁)
(21)出願番号	特願2002-84963 (P 2002-84963)	(71)出願人	000004237 日本電気株式会社
(22) 出願日	平成14年 3 月 26日 (2002. 3. 26)	(71)出願人	東京都港区芝五丁目7番1号 000005120 日立電線株式会社
		(72)発明者	東京都千代田区大手町一丁目6番1号 碓井 彰 東京都港区芝5丁目7番1号 日本電気株
		(74)代理人	式会社内 100110928 弁理士 速水 進治

最終頁に続く

32

31

(54) 【発明の名称】 I I I - V族窒化物系半導体基板およびその製造方法

(57)【要約】

【課題】反りの小さい自立したIII-V族窒化物系半導体基板を提供する。

【特許請求の範囲】

【請求項1】 自立したIII-V族窒化物系半導体基板 であって、転位密度の低い側の面の転位密度をn╷、転 位密度の高い側の面の転位密度をn゚としたとき、n゚ /n,の値が750未満であることを特徴とするIIIー V族窒化物系半導体基板。

1 .

【請求項2】 請求項1に記載のIII-V族窒化物系半 導体基板において、n₁ が1×10° c m⁻²以下である ことを特徴とするIII-V族窒化物系半導体基板。

【請求項3】 自立したIII-V族窒化物系半導体基板 において、刃状転位密度の低い側の面の転位密度を m,、刃状転位密度の高い側の面の転位密度をm。とし たとき、m』/m」の値が1000未満であることを特 徴とするIII-V族窒化物系半導体基板。

【請求項4】 請求項3に記載のIII-V族窒化物系半 導体基板において、m, が5×10⁷ cm²以下である ことを特徴とするIII-V族窒化物系半導体基板。

【請求項5】 請求項1乃至4いずれかに記載のIII-V族窒化物系半導体基板において、厚みが30μm以上 1 mm以下であることを特徴とするIII-V族窒化物系 半導体基板。

【請求項6】 請求項1乃至5いずれかに記載のIII-V族窒化物系半導体基板において、GaNまたはA1G a Nからなる層を含むことを特徴とするIII-V族窒化 物系半導体基板。

【請求項7】 異種基板の上部にIII-V族窒化物系半 導体層を形成する工程と、

前記III-V族窒化物系半導体層と前記異種基板とを分 離する工程と、

前記III-V族窒化物系半導体層の前記異種基板を分離 した側の面に対して、転位密度を低減する処理を行う工 程と、を含むことを特徴とするIII-V族窒化物系半導 体基板の製造方法。

【請求項8】 異種基板の上部にIII-V族窒化物系半 導体層をエピタキシャル成長により形成した後、前記II I-V族窒化物系半導体層と前記異種基板とを分離する 工程を含むIII-V族窒化物系半導体基板の製造方法で あって、前記III-V族窒化物系半導体層の成長中、ま たは前記III-V族窒化物系半導体層の成長後、115 O℃以上の温度で熱処理を行うことを特徴とするIIIー V族窒化物系半導体基板の製造方法。

【請求項9】 請求項8に記載のIII-V族窒化物系半 導体基板の製造方法において、前記III-V族窒化物系 半導体層の前記異種基板を分離した側の面に対して、転 位密度を低減する処理を行う工程を含むことを特徴とす るIII-V族窒化物系半導体基板の製造方法。

【請求項10】 請求項7または9に記載のIII-V族 窒化物系半導体基板の製造方法において、転位密度を低 減する前記処理は、前記III-V族窒化物系半導体層に ついて、前記異種基板を分離した側から100μm以上 50 ial Lateral Overgrowth)技術が知られている。ELO

にわたる領域を除去する工程を含むことを特徴とするII I-V族窒化物系半導体基板の製造方法。

【請求項11】 請求項7、9または10に記載のIII V族窒化物系半導体基板の製造方法において、転位密 度を低減する前記処理は、前記III-V族窒化物系半導 体層を、1150℃以上の温度で熱処理する工程を含む ことを特徴とするIII-V族窒化物系半導体基板の製造 方法。

【発明の詳細な説明】

10 [0001]

> 【発明の属する技術分野】本発明は、III-V族窒化物 系半導体基板およびその製造方法に関するものである。 [0002]

【従来の技術】窒化物半導体材料は、禁制帯幅が充分大 きく、バンド間遷移も直接遷移型であるため、短波長発 光素子への適用が盛んに検討されている。また、電子の 飽和ドリフト速度が大きいこと、ヘテロ接合による2次 元キャリアガスの利用が可能なこと等から、電子素子へ の応用も期待されている。

【0003】これらの素子を構成する窒化物半導体層 20 は、有機金属気相成長法 (MOVPE) 、分子線気相成 長法 (MBE)、ハイドライド気相成長法 (HVPE) 等の気相成長法を用いて下地基板上にエピタキシャル成 長を行うことにより得られる。ところが、この窒化物半 導体層と格子定数の整合する下地基板が存在しないた め、良質の成長層を得ることが困難であり、得られる窒 化物半導体層中には多くの結晶欠陥が含まれていた。こ の結晶欠陥は、素子特性の向上を阻害する要因となるこ とから、これまで、窒化物半導体層中の結晶欠陥を低減 30 する検討が盛んに行われてきた。

【0004】結晶欠陥の比較的少ないIII族元素窒化物 系結晶を得るための方法として、サファイア等の異種基 板上に低温堆積緩衝層(バッファ層)を形成し、その上 にエピタキシャル成長層を形成する方法が知られてい る。低温堆積緩衝層を用いた結晶成長法では、まず、サ ファイア等基板上にAlNまたはGaNを500℃付近 で堆積し、アモルファス状の膜ないし一部多結晶を含む 連続膜を形成する。これを1000℃付近に昇温するこ とで一部を蒸発させ、また結晶化することで、密度の高 40 い結晶核を形成する。これを成長の核として比較的結晶 性のよいGaN膜が得られる。しかしながら、低温堆積 緩衝層を形成する方法を用いても、貫通転位や空孔パイ プなどの結晶欠陥が相当程度存在し、現在望まれている ような高性能の素子を得るには不充分であった。

【0005】そこで、結晶成長用の基板としてGaN基 板を用い、この上に素子部を構成する半導体多層膜を形 成する手法が盛んに検討されている。以下、こうした結 晶成長用のGaN基板を、自立GaN基板と称する。自 立GaN基板を得るための手法として、ELO (Epitax

とは、下地基板にストライプ状開口部を有するマスクを 形成し、開口部からラテラル成長させることにより転位 の少ないGaN層を得る技術である。特開平11-25 1253号公報では、このELO技術を用いてサファイ ア基板上にGaN層を形成した後、サファイア基板をエ ッチング等により除去し、自立GaN基板を得ることが 提案されている。

【0006】一方、ELOの手法をさらに発展させた手法としてFIELO(Facet-Initiated Epitaxial Late ral Overgrowth)技術(A. Usui et al., Jpn. J. Appl. 10 Phys. Vol. 36 (1997) pp. L. 899-L. 902))が開発されている。この技術は、酸化シリコンマスクを用いて選択成長を行う点でELOと共通するが、その際、マスク開口部にファセットを形成する点で相違している。ファセットを形成することにより、転位の伝搬方向を変え、エピタキシャル成長層の上部に至る貫通転位を低減するものである。この方法を用いることにより、たとえばサファイア等の下地基板上に厚膜のGaN層を成長させ、その後下地基板を除去することにより、結晶欠陥の比較的少ない良質の自立GaN基板を得ることができる。20

[0007]

【発明が解決しようとする課題】しかしながら、このような方法で作製した自立GaN基板には解決すべき課題も残されていた。その最も大きな課題は反りの発生である。例えばサファイア基板を除去した自立GaN基板では、成長面を上にして、凹面状に反っていることが知られている。この反りの曲率半径は数十cm程度にも達する。この反りが大きいと、これを基板としてデバイス用の層構造をMOVPE装置などで成長する場合に、基板ホルダーに基板が密着できないため温度分布が生じて均つな組成、不純物分布などが得られない。また、均一なリングラフィが困難となるため、デバイスの歩留まりが大きく損なわれる。この反りの大きさはもちろん小さいほどよいが、曲率半径として1m以上とすることが望まれる。

【0008】本発明は上記事情に鑑みなされたものであって、反りの小さいIIIーV族窒化物系半導体自立基板を提供することを目的とする。

[00009]

【課題を解決するための手段】本発明者らの検討によれ 40 ば、自立基板の反りは、基板表面と裏面とのそれぞれの面で平均した転位(特に刃状転位)密度が異なり、基板中で分布を持つためであることが原因していることが判明した。すなわち、基板の一方の面と他方の面との転位密度の差が大きいほど、その反りは大きくなるのである。従って、反りを低減するためには、この転位密度の分布を制御することが極めて重要となる。

【0010】一方の面と他方の面との刃状転位密度の差が転位の勾配が基板の反りをもたらすことについては、次のように考えることができる。六方晶GaNにおいて

は、結晶粒が高密度で存在しており、異種基板との格子不整合によって、結晶粒同士にわずかな回転のずれが存在するために、その境界には刃状転位が多数存在することになる。刃状転位密度と結晶粒サイズの間にはほぼ線形な関係が認められ、この結晶粒の大きさ d。と基板内部に蓄積される歪の大きさ (ε)には、

$\varepsilon = \Delta / d_{u} \qquad (1)$

という関係式が成り立つ。ここで、Δは、ほぼ、刃状転位のバーガースベクトルに等しい。従って、一方の面と他方の面で転位密度が異なる基板が存在すると、この歪の大きさが基板内部で異なり、それが原因で反りが発生する。

【0011】実際に、異種基板上にGaN層をエピタキシャル成長させた後、異種基板を除去することにより自立GaN基板を作製した場合、基板とGaN層との界面において、格子不整合に由来して10" ~ 10 " cm

² の高い刃状転位密度となる。このような結晶でも、ララテラル成長をはじめとする種々の低転位化技術や、厚膜成長によって、GaN層表面では10°~10° c m⁻² 程度の転位密度まで下がる。このような基板の反りは、通常、一方の面の刃状転位密度が10° c m⁻² 程度で、他方の面の刃状転位密度が10° c m⁻² 程度となる。厚さが200μmの自立GaN基板の場合には、反りの曲率半径はおよそ20cmと非常に大きくなり、このままではデバイス応用に供することは困難である。一方、刃状転位密度が高い側の面でその値が10° c m⁻² 程度と小さくなれば、反りの曲率半径は10m程度と反りが大きく改善され、デバイス応用に適した基板を得ることができる。

【0012】以上、特に刃状転位密度の制御によって基板の反りを抑制できる理由について述べたが、同様に、 刃状転位密度を含む全転位密度を制御することによって も基板の反りを有効に抑制できる。

【0013】本発明は、上記観点に基づいてなされたものであり、全転位密度、特に刃状転位密度の制御によって基板の反りを抑制するものである。

【0014】本発明によれば、自立したIII-V族窒化物系半導体基板であって、転位密度の低い側の面の転位密度をn,、転位密度の高い側の面の転位密度をn。としたとき、n。/n,の値が750未満であることを特徴とするIII-V族窒化物系半導体基板が提供される。

【0015】本発明によれば、基板の反りが顕著に改善される。反りの低減効果が安定的に得られることから、 製造安定性の点でも優れる。

【0016】このIII-V族窒化物系半導体基板において、n, は、好ましくは 1×10^8 cm 2 以下、より好ましくは 1×10^7 cm 2 以下とすることができる。こうすることで、良好な結晶品質を実現しつつ反りを効果的に抑制することができる。

次のように考えることができる。六方晶GaNにおいて 50 【0017】また本発明によれば、自立したIII-V族

窒化物系半導体基板において、刃状転位密度の低い側の面の転位密度を m_1 、刃状転位密度の高い側の面の転位密度を m_2 としたとき、 m_2 / m_1 の値が1000未満であることを特徴とするIII-V族窒化物系半導体基板が提供される。

【0018】本発明によれば、基板の反りが顕著に改善される。反りの低減効果が安定的に得られることから、 製造安定性の点でも優れる。

【0019】このIII-V族窒化物系半導体基板において、m, は、好ましくは 5×10^7 c m^2 以下、より好 10 ましくは 5×10^6 c m^2 以下とすることができる。こうすることで、良好な結晶品質を実現しつつ反りを効果的に抑制することができる。

【0020】さらに本発明によれば、異種基板の上部に III-V族窒化物系半導体層を形成する工程と、前記III -V族窒化物系半導体層と前記異種基板とを分離する工程と、前記III-V族窒化物系半導体層の前記異種基板 を分離した側の面に対して、転位密度を低減する処理を 行う工程と、を含むことを特徴とするIII-V族窒化物 系半導体基板の製造方法が提供される。

【0021】また本発明によれば、異種基板の上部にIII-V族窒化物系半導体層をエピタキシャル成長により形成した後、前記III-V族窒化物系半導体層と前記異種基板とを分離する工程を含むIII-V族窒化物系半導体基板の製造方法であって、前記III-V族窒化物系半導体層の成長中、または前記III-V族窒化物系半導体層の成長後、1150℃以上の温度で熱処理を行うことを特徴とするIII-V族窒化物系半導体基板の製造方法が提供される。この製造方法において、III-V族窒化物系半導体層の前記異種基板を分離した側の面に対して、転位密度を低減する処理を行う工程を含む構成とすることができる。

【0022】上記製造方法によれば、基板の反りが顕著 に改善された自立III-V族窒化物系半導体基板を安定 的に得ることができる。

【0023】このIII-V族窒化物系半導体基板の製造方法において、転位密度を低減する前記処理は、前記II-V族窒化物系半導体層について、前記異種基板を分離した側から100μm以上にわたる領域を除去する工程を含む構成とすることができる。

【0024】また、このIII-V族窒化物系半導体基板の製造方法において、転位密度を低減する処理は、III-V族窒化物系半導体層を、1150℃以上の温度で熱処理する工程を含む構成とすることができる。こうすることで、転位密度を効果的に低減できる。なお、処理時間は好ましくは10分以上とする。また、転位密度を安定的に低減する観点からは、1200℃以上の温度で熱処理を行うことがより好ましい。

【0025】なお、本発明における転位密度および刃状 転位密度は、面内の平均密度をいう。たとえばマスク成 長によって作製したIII-V族窒化物系半導体基板の場合、製造方法によっては基板面内で転位密度が異なる場合がある。このような面内転位密度分布が存在する場合、平均転位密度や平均刃状転位密度を上記範囲内の値となるように構成することで、基板の反りを効果的に低減することができる。

[0026]

【発明の実施の形態】本発明における「自立した」基板とは、自らの形状を保持でき、ハンドリングに不都合が生じない程度の強度を有する基板をいう。このような強度を具備するようにするため、自立基板の厚みは、好ましくは30 μ m以上、より好ましくは50 μ m以上とする。また、素子形成後の劈開の容易性等を考慮し、自立基板の厚みは、好ましくは1mm以下、より好ましくは300 μ m以下とする。あまり厚さが厚いと劈開が困難となり、劈開面に凹凸が生じる。この結果、たとえば半導体レーザ等に適用した場合、反射のロスによるデバイス特性の劣化が問題となる。

【0028】本発明は、自立基板の転位密度、特に刃状 転位密度の低減によって基板の反りを抑制するものであ る。一般に転位のキャラクタとして、「刃状 (edg e) | 、「螺旋 (screw) | といった名称が用いら れる。この刃状転位および螺旋転位は、転位線の走る方 30 向に対してバーガースベクトルトがそれぞれ、垂直、平 行な場合を示している。刃状と螺旋のキャラクタが混ざ った場合、すなわち転位線に対してバーガースベクトル bが斜めのときは「混合 (mixed)」転位と呼ぶ。 ここで、一本の転位内で、バーガースベクトルトの方向 に対して転位線方向が変化する場合がある。転位は必ず しも真っ直ぐに走っているとは限らず、むしろ曲がって いる場合が多い。極端な例として転位線が輪状に形成さ れている場合を考えると、バーガースベクトルbと平行 に走る部分は螺旋転位となり、バーガースベクトルbと 40 垂直に走る部分は刃状転位となる。本発明における「刃 状転位」とは、このように転位の一部が刃状転位となっ ている場合も含む。

【0029】転位キャラクタの判別は、たとえば透過電子顕微鏡(TEM)により行うことができる。TEM観察の際に選択された回折格子面の法線ベクトル(「回折ベクトル」と呼ぶ。)gと転位線のバーガースベクトル bが垂直である場合、すなわち、それぞれのベクトルの内積がゼロ(回折ベクトルg・バーガースベクトルb=0)の場合に転位のコントラストが消滅することになる。このことを利用することにより、未知の転位される。

転位密度は、面内の平均密度をいう。たとえばマスク成 50 る。このことを利用することにより、未知の転位キャラ

7

クタ (刃状、螺旋、混合)を決定することができる。 【0030】また、転位キャラクタは、化学溶液によって選択的にエッチングし、その結果形成された窪み(エッチピット)の形状および深さの観察結果から判別することもできる。

【OO31】本発明における自立したIII-V族窒化物 系半導体基板は、異種基板上にFIELOあるいはペン ディオエピタキシにより形成した後、かかる異種基板を 除去することにより形成することができる。このような 方法で作製した場合、表面転位密度の少ない基板を安定 10 的に製造することができる。FIELOは、複数の開口 部を有するマスクを形成し、開口部を成長領域としてフ アセット構造を形成しながらGaN層を気相成長させる 方法である。隣接する開口部から成長したG a N結晶が 合体して、転移の伝搬方向が基板と平行な方向に変化 し、表面転移密度の低いGaN層が得られる。このGa N層と異種基板を分離することにより、高品質の自立G a N基板を得ることができる。一方、ペンディオエピタ キシは、まず、異種基板上にA1、Ga1、N(0≤x≤ 1) からなる低温バッファー層を形成し、次いでこの上 20 $CAl_yGa_{1-y}N$ (0 $\leq y \leq 1$) からなる第一の結晶層 を形成する。この結晶層の上に複数のストライプ状開口 部を有するマスクを形成した後、エッチングを行い、ス トライプ状の第一のA1、Ga,-, N層を形成する。そし て、これを起点としてAl_z Ga_{1-z} N (0 \leq z \leq 1) 結晶を気相成長させ、厚膜のAl、Gall、Nからなる 第二の単結晶層を形成する。その後、第二の単結晶層と 異種基板を分離することにより、高品質の自立基板を得 ることができる。

【0032】ところが、こうした方法により基板を作製 30 した場合、転位が低減され、良好な結晶品質が得られるが、反りについてはより促進される方向となる。素子形成面については転位が効果的に低減される一方、素子形成面と反対側の面については転位が多量に残存した状態となるため、低転位化を図ることにより、かえって基板表面と裏面における転位密度の比が通常よりも増大するからである。本発明はこうした低転位基板に適用した場合、顕著な効果を発揮し、良好な結晶品質を実現しつつ反りを効果的に抑制することができる。

[0033]

【実施例】以下、実施例により本発明をさらに詳細に説明する。なお、実施例中、「全転位密度」および「刃状転位密度」は、基板表面や基板裏面の平均密度を意味する。

【0034】実施例1

本実施例では、前述のFIELOを用いてサファイア基板上にGaNエピタキシャル層を成長させ、その後、サファイア基板を除去することにより自立GaN基板を関し、評価した。以下、本実施例に係る自立GaN基板の作製方法について図1を参照して説明する。

【0035】まず図1(a)のようにサファイア基板1 1を用いて、GaNエピタキシャル層12を成長させ、 その上に、ストライブ状の開口部を有する酸化シリコン マスク13を形成し、図2に示したHVPE成長装置に セットする。この装置では、III族元素のハロゲン化物 であるGaC1を基板に輸送できる装置であり、GaC 1は、導入管22からH2もしくはN2といったキャリ アガスとともに供給されるHClとGa金属21との反 応で生成される。基板領域で、GaClと導入管23か ら供給されるNH。とが混合され、これらが反応しなが ら基板24上でGaNが気相成長する。基板領域の温度 は電気炉25で1000℃に設定した。また、原料とな るGaCl分圧、NH。分圧を基板領域でそれぞれ、5 ×10³ a t m、0.3 a t m とした。この条件で成 長速度は約50μm/hである。ドーピング原料ガスで あるSiH。C1。は、ドーピングガス導入管26から 基板領域に供給することでドーピングを行い、図1

(b) のような約 350μ m厚のSieドープしたGaN層14を成長させた。

【0036】この基板を反応管から取り出し、図1

(c) のようにサファイア基板と当該基板から数 μ m程度のG a N 層を取り除き、自立G a N 基板 1 5 を得た。サファイア基板を除去する方法としては、例えば、機械的研磨または、強アルカリ性、あるいは強酸性薬品によりエッチングすることが可能である。また、荷電ビームあるいは中性ビームによって物理的エッチングを行っても良い。さらに、サファイア基板は透過するが、G a N では吸収される紫外線レーザ光を照射して、界面付近を融解して除去することもできる。

【0037】この自立GaN基板15の転位密度を調べ た結果、サファイア基板を除去した側の面では、5×1 0°cm2であり、一方成長面では、1×10°cm 2 という値が得られた。このうち刃状転位に関して は、それぞれ、4. 5×10° c m⁻²、3. 5×10 ⁵ c m⁻² という値が得られた。ここで転位密度の測定 には、特に基板の裏面のように転位密度が10°cm ² を超える場合には、平面および断面の透過型電子顕 微鏡(TEM)観察を行い、それ以下の転位密度の場合 には、化学溶液によって選択的にエッチングし、その結 40 果形成された窪み (エッチピット) の数を光学顕微鏡も しくは走査電子顕微鏡を用いて計数した。エッチピット の形状には大きく二種があり、比較的底の浅いピットが 刃状転位と対応している。この検証は、エッチピットの 出た試料の断面透過型電子顕微鏡を用いて、暗視野像を とり、電子線のgベクトルと転位線の方向との関係から 転位のバーガースベクトルを決定できるので、これから 転位の種類が判定できる。

【0038】得られた自立GaN基板15の反りを測定したところ、その曲率半径として、30cmという値が50得られた。この反りの測定手法として、例えばX線ロッ

キングカーブ測定から簡便で精度が良い結果を得ること ができる。すなわち、反っている試料を横方向にXだけ 移動させたときのブラッグ角の変化 θ B を調べること で、曲率半径ρは、

 $(1/\rho) = d\theta_0/dx$ なる関係式で得ることができる。

【OO39】次に、図1(d)のように、サファイア基 板を除去した側の面について約150μmにわたる領域 16を除去し、自立GaN基板17を得た。この除去に みを選択的にエッチングできるために、特にGaN層の 裏面(成長面とは反対側)をエッチングするために便利 である。この他にも、エッチングの選択性がなくとも、 GaN表面にSiO。などの保護膜を形成することで裏 面の化学的エッチングが可能であり、また、機械的研磨 によっても除去することができる。

【0040】この結果、自立GaN基板17のサファイ ア基板を除去した側の面の全転位密度は5×10°cm - * 、刃状転位密度は、3×10⁷ cm^{- *} と低くなっ た。この基板の反りを測定したところ、曲率半径は5m と反りが大幅に改善された。この上にInGaN系レー ザ構造を成長して、レーザの試作を行ったが、リソグラ フィ時に反りの影響で、露光に不均一が出ることはな く、歩留まりが大きく向上した。

【0041】 実施例2

本実施例では、前述のELO技術 (S. Nakamura, et a 1., Jpn. J. Appl. Phys., vol 36 (1997) p. L1130) を用い てサファイア基板上にGaNエピタキシャル層を成長さ せ、その後、サファイア基板を除去することにより自立 GaN基板を作製し、評価した。以下、本実施例に係る 30 自立GaN基板の作製方法について図4を参照して説明 する。

【0042】まずサファイア基板41を用いて、薄いG a N層 4 2 をエピタキシャル成長させ、その上に、Ga Nの [1-100] 方向にストライプ状開口部を有する 酸化シリコンマスク43を形成し、トリメチルガリウム (TMGa) およびNH。を主原料とするMOVPE法 により、図4 (b) のように 10μ mの厚さに平坦なG a N層 4 4 を成長した。

【0043】次にこの基板を前述の図2に示したHVP E成長装置にセットした。基板領域の温度は電気炉25 で1000℃に設定した。また、原料となるGaC1分 圧、NH。分圧を基板領域でそれぞれ、5×10°a tm、0.3 a tmとした。この条件で成長速度は約5 Oμm/hである。また、ドーピング原料ガスであるS iH₂Cl₂は、ドーピングガス導入管26から基板領 域に供給することでドーピングを行った。これにより図 4 (c) のように約350μm厚のSiをドープしたG a N層 45を基板上に成長させた。その後、基板を反応

10

ファイア基板と当該基板から数μm程度のGaN層を取 り除き、自立基板の形態を有するGaN層45を得た。 サファイア基板を除去する方法としては、例えば、機械 的研磨または、強アルカリ性、あるいは強酸性薬品によ りエッチングすることが可能である。また、荷電ビーム あるいは中性ビームによって物理的エッチングを行って も良い。さらに、サファイア基板は透過するが、GaN では吸収される紫外線レーザ光を照射して、界面付近を 融解して除去することもできる。このGaN層45の転 は溶融KOHを用いた。このエッチング液では、N面の 10 位密度を調べた結果、サファイア基板を除去した側の面 では、1. 5×10° cm⁻² であり、一方成長面で は、2×10° cm⁻² という値が得られた。このうち 刃状転位に関しては、それぞれ、 $1 \times 10^{\circ}$ c m $^{-2}$ 、 1×10° cm⁻² という値が得られた。

> 【0044】得られたGaN層45(自立GaN基板) の反りを測定したところ、その曲率半径として、1 mと いう値が得られた。

> 【0045】次に、図1 (d) のように、サファイア基 板を除去した側の面について約150 µmにわたる領域 を除去した。この除去には溶融KOHを用いた。このエ ッチング液では、N面のみを選択的にエッチングできる ために、特にGaN基板の裏面(成長面とは反対側)を エッチングするために便利である。この他にも、エッチ ングの選択性がなくとも、GaN表面にSiO。などの 保護膜を形成することで裏面の化学的エッチングが可能 であり、また、機械的研磨によっても除去することがで きる。

【0046】この結果、GaN層45のサファイア基板 を除去した側の面の全転位密度は5×10°cm²、 刃状転位密度は、2.5×10°cm-2と低くなっ た。この基板の反りを測定したところ、曲率半径は3 m と反りが大幅に改善された。この上にInGaN系レー ザ構造を成長して、レーザの試作を行ったが、リソグラ フィ時に反りの影響で、露光に不均一が出ることはな く、歩留まりが大きく向上した。

【0047】実施例3

本実施例では、PENDEOとよばれる技術(T.S. Zhel eva, MRS Internet J. Nitride Semicond. Res., 4S11, G 3.38(1999)) を用いてサファイア基板上にGaNエピタ 40 キシャル層を成長させ、その後、サファイア基板を除去 することにより自立G a N基板を作製し、評価した。以 下、本実施例に係る自立G a N基板の作製方法について 図5を参照して説明する。

【0048】まずサファイア基板51を用いて、薄いG a Nエピタキシャル層 5 2 の上に、G a Nの [1-10 0] 方向にストライプ状開口部を有する酸化シリコンマ スク53を形成した後、ドライエッチング法などによ り、図5 (b) のようにGaNエピタキシャル層52の 一部、および、サファイア基板の一部54のエッチング 管から取り出し、図1(c)で示したのと同様にしてサ 50 を行う。次いでトリメチルガリウム(TMGa)および NH。を主原料とするMOVPE法により、図5 (c) のように 10μ mの厚さに平坦なGaN層55を成長する。ドライエッチング部分の一部は空隙となって残存する。

【0050】この基板を反応管から取り出し、図1

(c) と同様にしてサファイア基板と当該基板から数 μ m程度のG a N層を取り除き、自立基板としての形態を有するG a N層 S 6を得た。サファイア基板を除去する方法としては、例えば、機械的研磨または、強アルカリ性、あるいは強酸性薬品によりエッチングすることが可能である。また、荷電ビームあるいは中性ビームによって物理的エッチングを行っても良い。さらに、サファイア基板は透過するが、G a Nでは吸収される紫外線レーザ光を照射して、界面付近を融解して除去することもできる。このG a N層 S 6 の転位密度を調べた結果、サファイア基板を除去した側の面では平均して、S 3×10° cm² であり、一方成長面では、S 3×10° cm² という値が得られた。このうち刃状転位に関しては、それぞれ、S 4×10° cm² 、S 1. S 2×10° cm² 300 にかう値が得られた。

【0051】得られた自立基板としての形態を有するGaN層56の反りを測定したところ、その曲率半径として、80cmという値が得られた。

【0052】次に、図1(d)と同様にして、サファイア基板を除去した側の面について約 150μ mにわたる領域を除去した。この除去には溶融KOHを用いた。このエッチング液では、N面のみを選択的にエッチングできるために、特にGaN基板の裏面(成長面とは反対側)をエッチングするために便利である。この他にも、エッチングの選択性がなくとも、GaN表面にSiO2などの保護膜を形成することで裏面の化学的エッチングが可能であり、また、機械的研磨によっても除去することができる。

【0053】この結果、GaN B56 の、 悲板除去した側の面の全転位密度は、 $3.5\times10^{*}$ cm $^{-2}$ 、 刃状 転位密度は、 $1\times10^{*}$ cm $^{-2}$ と低くなった。この悲 板の反りを測定したところ、曲率半径は4 mと反りが大幅に改善された。

【0054】この上にInGaN系レーザ構造を成長し あり、一方成長面では、 $8\times10^5~cm^{-2}$ と転位密な、レーザの試作を行ったが、リソグラフィ時に反りの 50 の大幅な改善が見られた。このうち刃状転位に関して

影響で、露光に不均一が出ることはなく、歩留まりが大きく向上した。

【0055】 実施例4

本実施例では、熱処理によって自立GaN基板表面の転位密度を制御する。以下、本実施例に係る自立GaN基板の作製方法について図3を参照して説明する。

【0056】まずサファイア基板31を用いて、GaN低温バッファ層32上に、前述の図2のHVPE成長装置を用いてGaN低温バッファ層32を成長した(図3(a))。装置内の基板領域で、GaClと導入管23から供給されるNH。とが混合し、反応しながら基板24上にGaNが気相成長する。基板領域の温度は電気炉25で1000℃に設定した。また、原料となるGaCl分圧、NH。分圧を基板領域でそれぞれ、 $5\times10^{\circ}$ atm、0.3 atmとした。この条件で成長速度は約50 μ m/hである。また、ドーピング原料ガスであるSiH2Cl2は、ドーピングガス導入管26から基板領域に供給することでドーピングを行った。これにより、約200 μ m厚のSiをドープしたGaN層33をエピタキシャル成長させた。

【0057】この後、基板を反応管から取り出し、サファイア基板31、GaN低温バッファ層32およびGaN層33の一部を除去した(図3(b))。なお、図3(a)に示すGaN層33は、図3(b)において、自立GaN基板35、および自立GaN基板から除去されたGaN層34に分割されている。GaN層34は数十 μ m程度とした。

【0058】サファイア基板31の除去方法としては、例えば、機械的研磨または、強アルカリ性、あるいは強30酸性薬品によりエッチングすることが可能である。また、荷電ビームあるいは中性ビームによって物理的エッチングを行っても良い。さらに、サファイア基板は透過するが、GaNでは吸収される紫外線レーザ光を照射して、界面付近を融解して除去することもできる。

【 0 0 5 9 】以上のようにして得られた自立 G a N 基板 3 5 の転位密度を調べた結果、サファイア基板を除去した側の面では、 9×1 0 $^{\circ}$ c m^{-2} であり、- 方成長面では、 1×1 0 7 c m^{-2} という値が得られた。このうち刃状転位に関しては、それぞれ、 7×1 0 $^{\circ}$ c

m²、5×10⁶ cm² という値が得られた。この 自立GaN基板35の反りを測定したところ、その曲率 半径は90cmと大きな値が得られた。

【0060】この自立Ga N基板 35 を電気炉に入れ、NH。雰囲気で1200℃で24時間熱処理を行った。NH。雰囲気としたのは、熱処理の間に分解を防ぐためであるが、試料を密封できれば特にNH。を供給しなくとも良い。熱処理の後、転位密度を調べた結果、サファイア基板を除去した側の面では、 4×10^7 cm 2 であり、一方成長面では、 8×10^5 cm 2 と転位密度の大幅な改善が見られた。このうち刃状転位に関して

は、それぞれ、1×10⁷ cm⁻²、3×10⁵ cm - ² という値が得られた。熱処理後の自立G a N基板 3 5の反りを測定したところ、その曲率半径として6mと なり、反りも大幅に改善された。

【0061】この上にInGaN系レーザ構造を成長し て、レーザの試作を行ったが、リソグラフィ時に反りの 影響で、露光に不均一が出ることはなく、歩留まりが大 きく向上した。

【0062】実施例5

本実施例では、エピタキシャル成長中に熱処理過程を挿 10 入することによって自立G a N基板表面の転位密度を制 御する。以下、本実施例に係る自立G a N 基板の作製方 法について説明する。

【0063】本実施例では、サファイアC面基板を用 い、前述の図2のHVPE装置を用い、図3に示した工 程によりGaN層の成長を行った。このとき、図6に示 すような温度シーケンスに従ってGaN層33の成長お よび熱処理を行った。成長中のGaC1分圧は5×10 - 3 a t m、NH。分圧は0.3 a t mとした。

【0064】はじめに炉内温度を1200℃に設定し、 H。気流中でサファイア基板のサーマルクリーニングを 行った。次に、炉内温度を500℃に下げ、GaN低温 バッファ層32を堆積した。その後炉内温度を1000 **℃**に上げ、**GaN**層を**50** μ m成長した。ここで一旦原 料供給を停止し、熱処理を行った。すなわち、NH。雰 囲気中で炉内温度を1400℃まで上昇させ、そのまま 10分間保持した。さらに炉内温度を500℃まで下 げ、そのまま5分間保持した。この一連の熱処理終了 後、再び炉内温度を1000℃まで上昇させた。引き続 いてGaN層をさらに150μm成長させ、合計膜厚2 30 00μmのGaN層33を得た。

【0065】この後、基板を反応管から取り出し、サフ ァイア基板31、GaN低温バッファ32およびGaN 層33の一部を除去した(図3(b))。なお、図3 (a) に示すGaN層33は、図3 (b) において、自 立GaN基板35、および自立GaN基板から除去され たGaN層34に分割されている。GaN層34は数十 μm程度とした。サファイア基板31の除去方法として は、前述した方法を採用することができる。

【0066】以上のようにして得られた自立GaN基板 40 35の転位密度を調べた結果、サファイア基板を除去し た側の面では、 4×10^7 c m $^{-2}$ であり、成長面で は、5×10°cm⁻²という値が得られた。このうち 刃状転位に関しては、それぞれ、1.5×10°cm - º 、2×10° c m^{- º} という値が得られた。このG a N層の反りを測定したところ、その曲率半径は7mで あった。熱処理過程を行わずに成長した場合にはサファ イア基板を除去した側の面では、9×10°cm-°で あり、一方成長面では、1×10⁷ cm⁻² であった。

m⁻²、5×10°cm⁻²という値となった。このG a N層の反りを測定したところ、その曲率半径は90c mと反りが大きい基板であったことから、成長中に熱処 理過程を挿入することによって、反りを大幅に改善でき

【0067】実施例6

本実施例では、エピタキシャル成長中に複数回の熱処理 過程を挿入することによって、自立GaN基板表面の転 位密度をさらに高精度に制御する。以下、本実施例に係 る自立G a N基板の作製方法について説明する。

【0068】本実施例では、サファイア C 面基板を用 い、前述の図2のHVPE装置を用い、図3に示した工 程によりGaN層の成長を行った。このとき、図7に示 すような温度シーケンスに従ってGaN層33の成長お よび熱処理を行った。成長中のGaCl分圧は5×10 "atm、NH。分圧は0.3atmとした。

【0069】はじめに炉内温度を1200℃に設定し、 H。雰囲気中でサファイア基板のサーマルクリーニング を行った。次に、炉内温度を500℃に下げ、低温バッ ファ層33を堆積した。その後炉内温度を1000℃に 上げ、GaN層を25μm成長した。ここで一旦原料供 給を停止し、熱処理を行った。すなわち、NH。雰囲気 中で炉内温度を1400℃まで上昇させ、そのまま10 分間保持した。さらに炉内温度を500℃まで下げ、そ のまま5分間保持した。この一連の熱処理終了後、再び 炉内温度を1000℃まで上昇させた。以降、GaN層 を25μm成長するごとに同様の成長中断と熱処理を行 い、合計膜厚200μmのGaN層33を得た。

【0070】この後、基板を反応管から取り出し、サフ ァイア基板31、GaN低温バッファ層32およびGa N層33の一部を除去した(図3(b))。なお、図3 (a) に示すGaN層33は、図3(b) において、自 立GaN基板35、および自立GaN基板から除去され たGaN層34に分割されている。GaN層34は数十 μ m程度とした。なお、サファイア基板 3 1 の除去方法 としては、前述した方法を採用することができる。

【0071】以上のようにして得られた自立GaN基板

35の転位密度を調べた結果、サファイア基板を除去し た側の面では、2×10⁷ c m⁻² であり、一方成長面 では、4×10° cm⁻² という値が得られた。このう ち刃状転位に関しては、それぞれ、9×10° c m⁻²、1.5×10°cm⁻²という値が得られた。 このGaN基板の反りを測定したところ、その曲率半径 は10mであった。熱処理過程を行わずに成長した場合 にはサファイア基板を除去した側の面では、9×10° c m⁻² であり、一方成長面では、1×10⁷ c m⁻² であった。このうち刃状転位に関しては、それぞれ、7 ×10° cm²、5×10° cm²という値となっ た。このGaN基板の反りを測定したところ、その曲率 このうち刃状転位に関しては、それぞれ、7×10°c 50 半径は90cmと反りが大きい基板であったことから、

15

成長中に熱処理過程を挿入することによって、反りを大 幅に改善できた。

【0072】実施例7

本実施例では、熱処理を行うことによって自立GaN基 板表面の転位密度を制御するものであり、自立基板を熱 処理する際、素子形成面をマスクで覆う方法を採用して いる。以下、本実施例に係る自立G a N基板の作製方法 について説明する。

【0073】本実施例では、サファイアC面基板を用 い、前述の図2のHVPE装置を用い、図3に示したエ 10 000未満の場合(図9に刃状転位密度比1000のラ 程によりGaN層の成長を行った。まずサファイア基板 31上にGaN低温バッファ層32を形成した。つづい てGaN層33を以下のようにして成長させた。まず図 2の装置内の基板領域の温度は電気炉25で1000℃ に設定し、原料となるGaCl分圧、NH。分圧を基板 領域でそれぞれ、5×10⁻³ a t m、0.3 a t m と した。この条件で成長速度は約50μm/hである。ま た、ドーピング原料ガスであるSiH₂Cl₂は、ドー ピングガス導入管26から基板領域に供給することでド ーピングを行った。以上のようにして、約200μm厚 20 のSiをドープしたGaN層33を成長させた。

【0074】この後、基板を反応管から取り出し、サフ ァイア基板31、GaN低温バッファ層32およびGa N層33の一部を除去した(図3(b))。なお、図3 (a) に示すGaN層33は、図3(b) において、自 立GaN基板35、および自立GaN基板から除去され たGaN層34に分割されている。GaN層34は数十 μm程度とした。なお、サファイア基板31の除去方法 としては、前述した方法を採用することができる。

【0075】以上のようにして得られた自立GaN基板 30 35の転位密度を調べた結果、サファイア基板を除去し た側の面では、9×10°cm⁻²であり、成長面で は、1×10⁷ c m⁻² という値が得られた。このうち 刃状転位に関しては、それぞれ、7×10°cm²、 5×10°cm²という値が得られた。このGaN層 の反りを測定したところ、その曲率半径は90 cmと反 りが大きい基板となった。

【0076】次に、この自立GaN基板35の全面をS iO。膜で覆った。成膜はCVDによって行った。これ によって、高温で熱処理を行ってもGaN基板の分解を 40 防ぐことができる。続いてこの自立GaN基板35を電 気炉に入れ、大気中、1600℃で2時間の熱処理を行 った。熱処理の後、転位密度を調べた結果、サファイア 基板を除去した側の面では、6×10⁷ cm² であ り、一方成長面では、9×10°cm-2と転位密度の 大幅な改善が見られた。このうち刃状転位に関しては、 それぞれ、4×10⁷ cm⁻²、3.5×10⁵ cm ^{- 2} という値が得られた。このG a N基板の反りを測定 したところ、その曲率半径として3.5mとなり、反り も大幅に改善され、InGaN系レーザ構造を成長し

て、レーザの試作を行ったが、リソグラフィ時に反りの 影響で、露光に不均一が出ることはなく、歩留まりが大 きく向上した。

16

【0077】上記実施例の結果を表1、表2にまとめ た。また、得られた自立GaN基板の表面および裏面の 転位密度比と基板曲率半径との関係を図8および図9に 示した。図8および図9の結果からわかるように、全転 位密度比が750未満の場合(図8に全転位密度比75 0のラインを示した。)、および、刃状転位密度比が1 インを示した。)に、顕著に曲率半径が増加し、反りが 低減されることがわかる。

[0078]

【表1】

【0079】 【表2】

	17.							
例 4	処理有り	4×107	8×105	1 × 1 0 7	3×105	20	33	හ
実施例4	未処理	9 × 1 0 ⁹	1×10 ⁷	7×10³	5×10 ⁶	006	1400	0.9
列3	処理有り	3.5×108	. ↓	1×108	1	120	83	4
実施例3	未処理	9 0 L X E	3×10 ⁶	2. 4×10 ⁹	1. 2×10 ⁶	1000	2000	0.8
例2	処理有り	5×108	1	2. 6×108	Ţ	250	250	3
実施例2	未処理	1.5×10°	2×106	1×103	1×10 ⁶	750	1000	
例 1	処理有り	5×10 ⁷	J	3×107	ļ	50	86	5
実施例1	未処理	5×10°	1×106	4. 5×10 ⁹	3.5×105	5000	13000	0.3
		基板を除去した 側の面	成長面	基板を除去した 側の面	欢 医田	密度比	心密度 比	数 (
		転位密度	(cm ⁻²)	刃状転位密度	(cm ⁻²)	全転位密度比	刃状転位密度比	一种 (m)

表

表2

		実施例 5		実施例6		実施例7	
	100	未処理	処理有り	未処理	処理有り	未処理	処理有り
転位密度 (om ⁻²)	基板を除去した 側の面	9×10 ⁹	4×10 ⁷	9×10 ⁹	2×10 ⁷	9×10 ⁹	6×10 ⁷
	成長面	1×10 ⁷	5×10 ⁶	1×10 ⁷	4×10 ⁶	1×10 ⁷	9×10 ⁵
刃状転位密度 (cm ⁻²)	基板を除去した 側の面	7×10 ⁹	1.5×10 ⁷	7×10 ⁹	9×10 ⁶	7×10 ⁹	4×10 ⁷
	成長面	5×10 ⁶	2×10 ⁶	5×10 ⁶	1.5×10 ⁶	5×10 ⁶	3.5×10
全転位	密度比	900	8	900	-5	900	67
刃状転位密度比		1400	7.5	1,400	6	1400	114
	:半径 n)	0. 9	7	0. 9	10	0. 9	3.5

【0080】以上、実施例に基づいて本発明を説明した が、これらは例示であり、それらの各プロセスの組合せ 等にいろいろな変形例が可能なこと、またそうした変形 例も本発明の範囲にあることは当業者に理解されるとこ ろである。たとえば、実施例5、実施例6において、サ ファイア基板除去後、さらに転位低減のための処理を行 20 【符号の説明】 ってもよい。たとえば、異種基板を分離した側から10 0 μ m以上にわたる領域を除去する工程を実施してもよ い。また、自立GaN基板を1150℃以上の温度で熱 処理する工程を実施してもよい。また、実施例では自立 GaN基板の製造方法を例に挙げたが、自立AlGaN 基板に適用することもできる。

[0081]

【発明の効果】以上説明したように本発明によれば、基 板内の転位密度、特に刃状転位密度を制御しているた め、反りの小さい自立したIII-V族窒化物系半導体基 板が安定的に得られる。

【0082】本発明の基板を用いることにより、設計通 りの発光素子や電子素子を歩留まり良く製造することが 可能となる。

【図面の簡単な説明】

【図1】本発明に係る自立G a N基板の製造工程の一例 を説明するための工程断面図である。

【図2】実施例に示すGaN成長に用いたハイドライド 気相成長装置の模式図である。

【図3】本発明に係る自立GaN基板の製造工程の一例 40 を説明するための工程断面図である。

【図4】本発明に係る自立GaN基板の製造工程の一例 を説明するための工程断面図である。

【図5】本発明に係る自立GaN基板の製造工程の一例 を説明するための工程断面図である。

【図6】本発明に係る自立GaN基板の製造工程におけ る温度プロファイルの例を説明するための工程断面図で ある。

【図7】本発明に係る自立GaN基板の製造工程におけ る温度プロファイルの例を説明するための工程断面図で 50 ある。

【図8】自立GaN基板の表面および裏面の全転位密度 比と基板曲率半径との関係を示す図である。

【図9】自立GaN基板の表面および裏面の刃状転位密 度比と基板曲率半径との関係を示す図である。

- 11 サファイア基板
- 12 GaNエピタキシャル層
- 13 酸化シリコンマスク
- 14 GaN層
- 15 自立GaN基板
- 16 領域
- 17 自立GaN基板
- 21 Ga金属
- 2 2 導入管
- 30 23 導入管
 - 24 基板
 - 25 電気炉
 - 26 ドーピングガス導入管
 - 31 サファイア基板
 - 32 GaN低温バッファ層
 - 33 GaN層
 - 34 GaN層
 - 35 自立GaN基板
 - 41 サファイア基板
 - 42 GaN層
 - 43 酸化シリコンマスク
 - 44 GaN層
 - 45 GaN層
 - 51 サファイア基板
 - 52 GaNエピタキシャル層
 - 53 酸化シリコンマスク
 - 54 サファイア基板の一部
 - 55 GaN層
 - 56 GaN屬

フロントページの続き

(72) 発明者 柴田 真佐知 茨城県土浦市木田余3550番地 日立電線株 式会社アドバンスリサーチセンタ内

(72)発明者 大島 祐一 茨城県土浦市木田余3550番地 日立電線株 式会社アドバンスリサーチセンタ内 Fターム(参考) 4G077 AA02 AA03 BE15 DB05 DB08

ED06 EF01 FE02 FE11 FJ03

HA02 HA12 TA04 TB04 TB05

TK01

5F041 AA40 CA22 CA40 CA64 CA73

5F045 AA04 AB14 AC03 AC12 AC19

AD14 AF09 AF20 BB11 BB12

DA67

5F073 CA01 CB05 DA04 EA28

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-277195

(43)Date of publication of application: 02.10.2003

(51)Int.CI.

C30B 29/38 H01L 21/205 H01L 33/00 H01S 5/323

(21)Application number: 2002-084963

(71)Applicant:

NEC CORP

HITACHI CABLE LTD

(22)Date of filing:

26.03.2002

(72)Inventor:

USUI AKIRA

SHIBATA MASATOMO

OSHIMA YUICHI

(54) GROUP III-V NITRIDE-BASED SEMICONDUCTOR SUBSTRATE AND METHOD FOR PRODUCING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a self-standing group III-V nitride-based semiconductor substrate with reduced warp.

SOLUTION: The self-standing GaN substrate having a surface dislocation density of 4 \times 107 cm-2, a rear surface dislocation density of 8 \times 105 cm-2 and a dislocation density ratio of 50 is obtained by first epitaxially growing a GaN layer 33 on a sapphire substrate 31 through a GaN low temperature buffer layer 32, then taking the substrate out of a reaction tube, removing the sapphire substrate 31, the GaN low temperature buffer layer 32 and a part of the GaN layer 33 to obtain a self-standing GaN substrate 35 (Figure 3 (b)), thereafter placing the self-standing GaN substrate 35 in an electric furnace, and subjecting the self-standing GaN substrate 35 to heat-treatment at 1,200° C under an NH3 atmosphere for 24 h. The warp of the self-standing GaN substrate is significantly reduced.

