McGill University Department of Mathematics and Statistics

MATH 254 Analysis 1, Fall 2015 Assignment 1

You should carefully work out **all** problems. However, you only have to hand in solutions to **problems 2, 5.**

This assignment is due Monday, September 21, at the end of the class in class. Late assignments will not be accepted.

1. Conjecture a formula for the sum

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)},$$

and prove your conjecture using Mathematical Induction.

2. Prove that the collection $\mathcal{F}(\mathbb{N})$ of all *finite* subsets of \mathbb{N} is countable.

3. Let E_n , $n = 1, 2, \cdots$ be an infinite sequence of sets. Let

$$\overline{E} = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_m, \qquad \underline{E} = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} E_m.$$

Prove that

$$\bigcap_{n=1}^{\infty} E_n \subseteq \underline{E} \subseteq \overline{E} \subseteq \bigcup_{n=1}^{\infty} E_n.$$

4.

5. Let $f: D \to E$ be a function and let $A \subseteq D$, $B \subseteq E$. Prove the following:

- (a) $f(f^{-1}(B)) \subseteq B$.
- (b) If f is surjective then $f(f^{-1}(B)) = B$.
- (c) $f^{-1}(f(A)) \supseteq A$.
- (d) If f is injective then $f^{-1}(f(A)) = A$.

6. Prove by induction that

$$\underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}}_{n \text{ nested square roots}} = 2\cos\left(\frac{\pi}{2^{n+1}}\right)$$

for all $n \in \mathbb{N}$.

<u>Hint</u>: The half-angle formula $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$ might be useful.

- 7. Recall that the binomial coefficient $\binom{n}{k}$ is defined as $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Prove by induction on n that $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ for all $n \in \mathbb{N}_0$. You may use, without proof, the well-known identity $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ for all $n \in \mathbb{N}_0$ and $1 \le k \le n$.
- 8. Let A be a countably infinite set and let $B \subseteq A$. Prove that B is countable.