A polynomial algorithm for the deterministic mean payoff game

Bruno Scherrer

March 16, 2022

Abstract

...

We consider an infinite-horizon game on a directed graph (X, E) between two players, MAX and MIN. For any vertex x, we write $E(x) = \{y; (x, y) \in E\}$ for the set of vertices that can be reached from x by following one edge and we assume $E(x) \neq \emptyset$. The set of vertices $X = \{1, 2, ..., n\}$ of the graph is partitionned into the sets X_+ and X_- of nodes respectively controlled by MAX and MIN. The game starts in some vertex x_0 . At each time step, the player who controls the current vertex chooses a next vertex by following an edge. So on and so forth, the choices generate an infinitely long trajectory $(x_0, x_1, ...)$. In the mean payoff game, the goal of MAX is to maximize

$$\lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t),$$

while that of MIN is to minimize

$$\lim \sup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t).$$

As a proxy to solve the mean payoff game, our technical developments will mainly consider the γ -discounted payoff for some $0 \le \gamma < 1$, where the goal of MAX is to maximize

$$\sum_{t=0}^{\infty} \gamma^t r(x_t)$$

while that of MIN is to minimize this quantity. SUMMARY

1 Notations and Preliminaries

M N

For any pair of policies $\mu: X_+ \to X$ for MAX and $\nu: X_-$ for MIN (mappings such that for all $x, \mu(x) \in E(x)$ and $\nu(x) \in E(x)$), let us write $P_{\mu,\nu}$ for the transition matrix: for all $(x,y) \in \{1,2,\ldots,n\}^2$, $P_{\mu,\nu}(x,y)$ equals 1 if and only if μ and ν induce a transition $x \to y$ and 0 else. Seeing the reward $r: X \to 0, 1, \ldots, R$ and any function $v: X \to \mathbb{R}$ as vectors of \mathbb{R}^n , consider the following Bellman operators

$$\begin{split} T_{\mu,\nu}v &= r + \gamma P_{\mu,\nu}v, \\ T_{\mu}v &= \min_{\nu} T_{\mu,\nu}v \\ \tilde{T}_{\nu}v &= \max_{\mu} T_{\mu,\nu}v \\ Tv &= \max_{\mu} T_{\mu}v = \min_{\nu} \tilde{T}_{\nu}v \end{split}$$

that are γ -contractions with respect to the max-norm. For all pairs of policies (μ, ν) , the value is

$$v_{\mu,\nu} = \sum_{t=0}^{\infty} (\gamma P_{\mu,\nu})^t g = (I - \gamma P_{\mu,\nu})^{-1} r$$

and is the only fixed point of $T_{\mu,\nu}$. Given any policy μ for MAX, the minimal value that MIN can obtain

$$v_{\mu} = \min_{\nu} v_{\mu,\nu}$$

is the fixed point of T_{μ} , and it is well known that any policy ν_{+} for MIN such that $T_{\mu,\nu_{+}}v_{\mu}=T_{\mu}v_{\mu}=v_{\mu}$ is optimal. Symmetrically, given any policy ν for MIN, the maximal value that MAX can obtain

$$\tilde{v}_{\mu} = \max_{\nu} v_{\mu,\nu}$$

is the fixed point of \tilde{T}_{ν} , and it is well known that any policy μ_{+} for MAX such that $T_{\mu_{+},\nu}v_{\mu}=\tilde{T}_{\nu}\tilde{v}_{\nu}=\tilde{v}_{\nu}$ is optimal. The optimal discounted payoff

$$v_* = \max_{\mu} \min_{\nu} v_{\mu,\nu}$$

is the fixed point of T. Let (μ_*, ν_*) be any pair of positional strategies such that $T_{\mu_*, \nu_*} v_* = T v_*$. It is well-known that (μ_*, ν_*) is optimal.

n-periodic policies

Finally, min-attractor

2 A quasi-optimality equation that is local

The equation $v_* = Tv_*$, that characterizes the optimal value of the game, is global in the sense that it is a system of equations that involves the values of all vertices. We shall begin by describing and prove a quasi-optimality equation that has the virtue of being local in the sense that it involves only the value of one vertex:

Lemma 1. Let v be any value function that satisfies $v \leq Tv$. If for some x, we have

$$[T^n v](x) - v(x) < \epsilon$$
,

Then

$$v(x) \ge v_*(x) - \frac{\epsilon}{1 - \gamma}.$$

Proof. First, observe that by the monotonicity of T, and since v < Tv, we have

$$v < Tv < T^2v < \dots < T^nv.$$

Let $\vec{\nu} = (\nu_1, \dots, \nu_n)$ be a policy such that

$$T^n v = \tilde{T}_{\vec{n}} v.$$

Assume MIN uses $\vec{\nu}$ to play n steps against the optimal policy μ_* of MAX from x. Consider the n vertices visited:

$$x_0 = x, x_1, x_2, \dots, x_n$$

Since there are n vertices, there necessarily exists $0 \le i < j \le n$ such that $x_i = x_j$. Let $\vec{\nu}_p = (\nu_1, \dots, \nu_{i-1})$, $\vec{\nu}_c = (\nu_i, \dots, \nu_{j-1})$ and $\vec{\nu}_{p'} = (\nu_j, \dots, \nu_n)$ so that $\vec{\nu} = \vec{\nu}_p \vec{\nu}_c \vec{\nu}_{p'}$.

Now, assume that against μ_* , MIN uses the non-stationary policy $\vec{\nu}' = \vec{\nu}_p(\vec{\nu}_c)^{\infty}$. The trajectory is made of a path followed by a cycle of length j-i that is repeated infinitely often:

$$\underbrace{x_0 = x, \ x_1, \ x_2, \ \dots, x_{i-1}}_{\text{path}}, \underbrace{x_i, \ x_{i+1}, \ \dots, \ x_{j-1}}_{\text{cycle}}, \underbrace{x_i, \ x_{i+1}, \ \dots, x_{j-1}}_{\text{cycle}}, \dots$$

The value of this game satisfies for any w,

$$\begin{split} v_{\mu_*,\vec{\nu}}(x) &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p} (T_{\mu_*,\vec{\nu}_c})^\infty w \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p} 0 + \gamma^i \mathbbm{1}_{x_i} \sum_{k=0}^\infty [(T_{\mu_*,\vec{\nu}_c})^{k+1} w - T_{\mu_*,\vec{\nu}_c})^k w] + \gamma^i \mathbbm{1}_{x_i} w \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p} w + \gamma^i \mathbbm{1}_{x_i} \sum_{k=0}^\infty \gamma^{(j-i)k} (P_{\mu_*,\vec{\nu}_c})^k (T_{\mu_*,\vec{\nu}_c} w - w) \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p} w + \gamma^i \mathbbm{1}_{x_i} (I - \gamma^{j-i} P_{\mu_*,\vec{\nu}_c})^{-1} (T_{\mu_*,\vec{\nu}_c} w - w) \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p} w + \frac{\gamma^i \mathbbm{1}_{x_i}}{1 - \gamma^{j-i}} (T_{\mu_*,\vec{\nu}_c} w - w) \end{split}$$

Take $w = T^{n-j}v$ and substract v(x), we obtain:

$$v_{\mu_*,\bar{\nu}}(x) - v(x) = \mathbb{1}_x (T_{\mu_*,\vec{\nu}_p} T^{n-j} v - v) + \frac{\gamma^i \mathbb{1}_{x_i}}{1 - \gamma^{j-i}} (T_{\mu_*,\vec{\nu}_c} T^{n-i} v - T^{n-i} v)$$

$$\leq \mathbb{1}_x (\tilde{T}_{\vec{\nu}_p} T^{n-j} v - v) + \frac{\gamma^i \mathbb{1}_{x_i}}{1 - \gamma^{j-i}} (\tilde{T}_{\vec{\nu}_c} T^{n-j} v - T^{n-j} v)$$

$$\leq \mathbb{1}_x (\tilde{T}_{\vec{\nu}_p} T^{n-i} v - v) + \frac{\gamma^i \mathbb{1}_{x_i}}{1 - \gamma^{j-i}} (\tilde{T}_{\vec{\nu}_c} T^{n-j} v - T^{n-j} v)$$

$$= \mathbb{1}_x (T^n v - v) + \frac{\gamma^i}{1 - \gamma^{j-i}} \mathbb{1}_{x_i} (T^{n-i} v - T^{n-j} v)$$

$$\leq \mathbb{1}_x (T^n v - v) + \frac{\gamma^i}{1 - \gamma^{j-i}} \mathbb{1}_x (T^n v - v)$$

$$\leq \frac{\epsilon}{1 - \gamma}.$$

The result follows by the fact that $v_{\mu_*,\nu_*}(x) \leq v_{\mu_*,\bar{\nu}}(x)$.

3 A non-stationary Policy Iteration algorithm

We consider the following algorithm that takes as main parameter a threshold ϵ . \vec{u}

Lemma 2. After at most $\frac{n(1-\gamma)(v_{\mu_*}-v_{\mu_0})}{\epsilon}$ iterations, the algorithm stops and return a policy μ such that

$$v_{\mu_*} - v_{\mu} \le nR + \frac{\epsilon}{1 - \gamma}$$

If one chooses γ sufficiently high and ϵ sufficiently small of order $\frac{1}{n^2}$ By Zwick we know that

$$||g_{\mu_*} - (1 - \gamma)v_{\mu_*}^{\gamma}|| \le 2n(1 - \gamma)R.$$

Therefore

$$||g_{\mu_*} - (1 - \gamma)v_{\mu}^{(\gamma)}|| \le 3n(1 - \gamma)R + \epsilon.$$

If we choose $\gamma = 1 - \frac{1}{12n^3R}$ and $\epsilon = \frac{1}{Rn^2}$, we get

$$||g_{\mu_*} - (1 - \gamma)v_{\mu}^{(\gamma)}|| \le \frac{1}{2n^2}.$$

and we can thus deduce the value g_{μ_*} .

4 A scaling variant

Theorem 1. The total number of iterations of the Policy Iteration algorithm is bounded by $n^3 \log R$.