PROBLEM SET 5 - OPERATIONAL AMPLIFIER

5.2 The op amp in the circuit in Fig. P5.2 is ideal.

- a) Calculate v_o if $v_a = 4$ V and $v_b = 0$ V.
- b) Calculate v_o if $v_a = 2$ V and $v_b = 0$ V.
- c) Calculate v_o if $v_a = 2$ V and $v_b = 1$ V.
- d) Calculate v_o if $v_a = 1$ V and $v_b = 2$ V.
- e) If $v_b = 1.6$ V, specify the range of v_a such that the amplifier does not saturate.

Figure P5.2

5.3 Find i_o in the circuit in Fig. P5.3 if the op amp is ideal.

Figuro PJ.3

- The op amp in the circuit in Fig. P5.5 is ideal. Calculate the following:
 - a) v_a
 - b) v_o
 - c) i_a
 - d) i_o

Figure P5.5

5.7 The op amp in the circuit of Fig. P5.7 is ideal.

P

- a) What op amp circuit configuration is this?
- b) Calculate v_o .

Figure P5.7

Figure P5.8

- **5.9** A circuit designer claims the circuit in Fig. P5.9 will produce an output voltage that will vary between ± 5 as v_g varies between 0 and 5 V. Assume the op amp is ideal.
 - a) Draw a graph of the output voltage v_o as a function of the input voltage v_g for $0 \le v_g \le 5$ V.
 - b) Do you agree with the designer's claim?

Figure P5.9

- What circuit configuration is shown in this fig-
- Find v_o if $v_a = 1.2$ V, $v_b = -1.5$ V, and $v_c =$ b)
- The voltages v_a and v_c remain at 1.2 V and c) 4 V, respectively. What are the limits on $v_{\rm b}$ if the op amp operates within its linear region?

Figure P5.16

- Assume that the ideal op amp in the circuit seen in 5.20 Fig. P5.20 is operating in its linear region.
 - Show that $v_o = [(R_1 + R_2)/R_1]v_s$.
 - What happens if $R_1 \to \infty$ and $R_2 \to 0$? b)
 - Explain why this circuit is referred to as a voltc) age follower when $R_1 = \infty$ and $R_2 = 0$.

Figure P5.20

5.32

Design the difference-amplifier circuit in Fig. P5.32 so that $v_o = 10(v_b - v_a)$, and the voltage source v_b sees an input resistance of $220 \,\mathrm{k}\,\Omega$. Specify the values of R_a , R_b , and R_f . Use the ideal model for the op amp.

Figure P5.32

5.33 Select the values of R_b and R_f in the circuit in Fig. P5.33 so that

$$v_o = 2000(i_b - i_a).$$

The op amp is ideal.

Figure P5.33

