4 A spring is kept horizontal by attaching it to points A and B, as shown in Fig. 4.1.

Fig. 4.1

Point A is on a movable slider and point B is on a fixed support. A cart of mass 1.7 kg has horizontal velocity v towards the slider. The cart collides with the slider. The spring is compressed as the cart comes to rest. The variation of compression x of the spring with force F exerted on the spring is shown in Fig. 4.2.

Fig. 4.2

Fig. 4.2 shows the compression of the spring for $F = 1.5\,\mathrm{N}$ to $F = 4.5\,\mathrm{N}$. The cart comes to rest when F is 4.5 N.

(a) Fig. 4.2 to

(i)	show that the compression of the spring obeys Hooke's law,			
	ra			

	(ii)	determine the spring cor	estant of the spring,
			spring constant =
	(iii)	determine the elastic prought to rest.	otential energy $\emph{E}_{ extsf{P}}$ stored in the spring due to the cart being
			<i>E</i> _P = J [3]
(b)			e cart as it makes contact with the slider. Assume that all the proverted to the elastic potential energy of the spring.
			1 101
			speed = ms ⁻¹ [2]