PASS – Année 2022/2023

UE1.1 CHIMIE

Fiche de cours : ATOMES & MOLÉCULES

LISTE DES SYMBOLES DES FICHES DE COURS				
•	 Notion tombée au concours PASS : Une étoile → 1 seule fois Deux étoiles → 2 fois Trois étoiles → 3 fois ou plus 			
*	 Notion tombée au concours PACES : ○ Une étoile ★ → 1 seule fois ○ Deux étoiles ★ ★ → 2 fois ○ Trois étoiles ★ ★ → 3 fois ou plus 			
NEW	Nouveauté au programme cette année			
	■ Partie de cours renvoyant à un outil de méthodologie			

PLAN DU COURS

LES ATOMES

La structure de l'atome

Structure de l'atome d'Hydrogène

L'atome polyélectronique

Le tableau périodique des éléments

Description

Propriétés des éléments

Couche de valence

Définition

Exemples de couche de valence

Notion d'électronégativité

LES MOLÉCULES

Les types de liaisons

Approche qualitative de la covalence

Le modèle de Lewis

La théorie RPEV

La théorie des Orbitales Moléculaires

La théorie de l'Hybridation

Les Complexes

Généralités

La théorie du champ cristallin

Exemple de complexes

Propriétés des complexes

LES ATOMES

	LES ATOMES				
	LA STRUCTURE DE L'ATOME				
Atome	 Plus petite partie d'un élément existant à l'état non combiné Électriquement neutre Constitué de particules élémentaires : d'un noyau protons + neutrons chargé ⊕ concentre la masse de l'atome responsable des propriétés physiques de l'atome d'un ou plusieurs électrons gravitent autour du noyau constituent un nuage électronique chargés ⊕ responsables des propriétés chimiques de l'atome 				
Électron	 Il est défini par : un niveau énergétique (E) (théorie des quanta) un mouvement autour du noyau 4 nombres quantiques issus de l'équation de Schrödinger : n : nombre quantique principal ℓ : nombre quantique secondaire m : nombre quantique magnétique orbital s : nombre quantique de spin 				
Exemple	Structure de l'atome d'Hydrogène (un seul électron autour du noyau)				

LA STRUCTURE ÉLECTRONIQUE DE L'ATOME D'HYDROGÈNE

NOMBRES QUANTIQUES ASSOCIÉS À L'ÉLECTRON ★★◎

■ Un électron est défini par un quadruplet de nombres quantiques (n, ℓ, m, s) •

Nombre quantique	Notion associée	Contraintes			
n Principal	n > 0 n = 1, 2, 3,		n = 1 → couche K n = 2 → couche L n = 3 → couche M		
ℓ Secondaire (ou Azimutal)	Sous-couche	ℓ peut prendre n valeurs $0 \le \ell \le n-1$	$\ell = 0 \rightarrow \text{sous-couche s}$ $\ell = 1 \rightarrow \text{sous-couche p}$ $\ell = 2 \rightarrow \text{sous-couche d}$ $\ell = 3 \rightarrow \text{sous-couche f}$		
m Magnétique orbital	Orientation spatiale de l'orbitale	m peut prendre $2\ell + 1$ valeurs $-\ell \le m \le +\ell$			
s Spin	Orientation de l'électron dans un champ magnétique	2 valeurs +½ et -½	s = +½ → électron représenté par ↑ s = -½ → électron représenté par ↓		

NOMBRES QUANTIQUES ASSOCIÉS À L'ÉLECTRON

TABLEAU RÉCAPITULATIF DES ORBITALES

A l'état fondamental, l'électron de l'atome d'hydrogène se trouve sur le niveau K

n	Couche	ℓ	Sous-couche	m	Orbitale(s)
1	К	0	1 s	0	□ 1s
2	L	0 1	2 s 2 p	0 -1;0;+1	□ 2s □□□ 2p
3	М	0 1 2	3s 3p 3d	0 -1;0;+1 -2;-1;0;+1;+2	3s 3p 3d

LA STRUCTURE ÉLECTRONIQUE DE L'ATOME D'HYDROGÈNE

ORBITALES ATOMIQUES (OA)

- Une orbitale atomique (OA) représente un volume de l'espace dans lequel la probabilité de présence de l'électron est maximale
- C'est une forme simple, une surface limite, centrée sur le noyau, qui englobe un domaine dans lequel on a 95 % de chances de trouver un électron
- Une **orbitale atomique** est définie par un **triplet de nombres quantiques (n, ℓ, m)**
- Plus n est grand, plus la taille de l'orbitale atomique est grande
- Une orbitale atomique est représentée par une case quantique :
- Chaque orbitale peut contenir au maximum 2 électrons (de spin opposé)

LA STRUCTURE ÉLECTRONIQUE DE L'ATOME D'HYDROGÈNE

THÉORIE DES QUANTA

- Les niveaux d'énergie (E) de l'électron de l'atome d'hydrogène sont quantifiés
- Dans le cas de l'atome d'Hydrogène :

$$E (eV) = -13.6 / n^2$$

- E = énergie de l'électron dans la couche électronique définie par le nombre quantique principal n (unité = eV)
- n = nombre quantique principal définissant la couche électronique

Pour l'atome d'hydrogène, les sous-couches correspondant au même n ont la même énergie (leurs niveaux sont dits dégénérés)

STRUCTURE ÉLECTRONIQUE DE L'ATOME POLYÉLECTRONIQUE ***

- Structure électronique = configuration électronique = formule électronique
- La structure électronique d'un atome polyélectronique doit respecter 3 règles / principes

Principe d'exclusion

- Dans un atome donné, 2 électrons ne peuvent pas avoir leurs 4 nombres quantiques identiques
- Dans une même case quantique, deux électrons de même triplet (n, ℓ , m) doivent différer par le nombre quantique de spin s
- Ainsi, une orbitale contient au maximum 2 électrons de spin opposé

de Pauli

1 électron célibataire ou non apparié

2 électrons appariés

Règle de Hund

- L'énergie nécessaire pour apparier 2 électrons dans une même case est supérieure à celle qui permet de disposer les électrons célibataires dans des cases différentes de la sous-couche.
- Ainsi, le maximum d'électrons célibataires doit être disposé (spin vers le haut) dans les orbitales d'une sous-couche, avant de les apparier ★★★
- Exemple: à l'état fondamental, dans une sous-couche p contenant 3 électrons, on placera 1 électron par orbitale :

- L'énergie des sous-couches d'un même niveau n va varier à cause de l'effet d'écran
 - o Effet d'écran : les électrons internes font écran entre le noyau et un électron i : cela modifie l'interaction entre eux.
- Le remplissage des sous-couches se fait par ordre d'énergie croissant :

Règle de Klechkowski

- o Les OA s contiennent au maximum 2 électrons
- Les OA p contiennent au maximum 6 électrons
- Les OA d contiennent au maximum 10 électrons
- $4d^{10}$ 4s² 3d¹⁰ \circ 1s² 2s² 2p⁶ 3s² $3p^6$ 4p⁶ 5p⁶
- 2 inversions à bien connaître : (4s 3d) et (5s 4d)

Exceptions à la règle de Klechkowski

Exceptions: Des OA s ou d pleines ou à moitié pleines ont une plus grande stabilité ⇒ un électron d'une orbitale s migre donc dans une orbitale d.

Demi-saturation:

 $ns^2 (n-1)d^4 \Rightarrow ns^1 (n-1)d^5$

Chrome : Cr (Z=24) : $4s^1 3d^5 \star$

Molybdène : Mo (Z=42) : $5s^1 4d^5 \star$

Saturation:

 $ns^2 (n-1)d^9 \Rightarrow ns^1 (n-1)d^{10}$

- Cuivre : Cu (Z=29) : $4s^1 \ 3d^{10} \ \star$
- Argent : Ag (Z=47) : $5s^1 \ 4d^{10} \star \star$
- Or : Au (Z=79) : $6s^1$ $5d^{10}$

STRUCTURE ÉLECTRONIQUE DE L'ATOME POLYÉLECTRONIQUE				
Structure électronique complète	 Dans l'ordre de remplissage : Fe (Z=26) : 1s² 2s² 2p6 3s² 3p6 4s² 3d6 Remarque : une formule donnant les sous-couches dans l'ordre des n croissants est juste sauf si la question porte sur l'ordre énergétique des sous-couches : Fe (Z=26) : 1s² 2s² 2p6 3s² 3p6 3d6 4s² 			
Structure électronique réduite	 Remplacement de la première partie de la formule par celle qui correspond au gaz rare qui précède : Fe (Z=26) : [Ar] 4s² 3d⁶ 			
Structure électronique d'un cation issu des éléments de transition	 Structure électronique d'un cation issu d'un élément de transition: la sous-couche 4s perd un électron (se vide) avant la 3d ★★★ Exemples: Ti (Z=22): [Ar] 4s² 3d² ⇒ Ti²+: [Ar] 4s⁰ 3d² Fe (Z=26): [Ar] 4s² 3d6 ⇒ Fe³+: [Ar] 4s⁰ 3d⁵ 			

LE TABLEAU PÉRIODIQUE DES ÉLÉMENTS

Classement des éléments par numéros atomiques Z croissants

7 lignes

- Les lignes sont appelées les périodes.
- Le nombre affecté à la période est aussi le nombre quantique principal n de la couche externe.

18 colonnes

- Les colonnes sont appelées les groupes.
- Dans un groupe, les éléments ont le même nombre d'électrons (même configuration électronique) sur la couche externe.

- Les blocs sont nommés selon le type de la dernière orbitale occupée de la couche externe.
 - : frontière entre métaux et non métaux

Métaux

- Ils sont situés à gauche du tableau périodique, sauf H qui n'est pas un métal *
- Conducteurs (chaleur, électricité)
- Ductiles (déformation plastique)
- Tendance à donner des ions positifs
- Hg (mercure) = seul métal liquide à pression standard et à 25°C

Non métaux

- Ils sont situés à droite du tableau périodique sauf H qui est un non métal et à gauche
- Mauvais conducteurs (isolants)
- Tendance à donner des ions négatifs
- Certains éléments sont trouvés sous forme gazeuse (soit mono soit polyatomique) : $N_{2(g)}$; $O_{2(g)}$; $F_{2(g)}$; $Cl_{2(g)} \neq P_{2(g)}$; $P_{2(g)}$; $P_{$
- Br (brome) = seul non métal liquide à pression standard et à 25°C sous forme Br₂

LE TABLEAU PÉRIODIQUE PROPRIÉTÉS DES ÉLÉMENTS				
Groupe	Famille	Couche externe Propriétés		
1 sauf H ★	Alcalins	ns^1 (n $ eq 1$)	 Alcalins à connaitre : Li, Na, K Eléments électropositifs et réducteurs Cèdent facilement leur unique électron de valence (pour retrouver la configuration du gaz rare qui précède) et former des cations monovalents (Na⁺; K⁺) Réagissent violemment avec l'eau (sous forme métal (exemple : Na)) 	
Hydrogène	e (H) :	Ionisation diff	(1s¹): H n'est pas un alcalin ★ icile: H⁺ = simple proton qui ne se retrouve jamais seul n électron supplémentaire pour former l'ion hydrure H⁻	
2	Alcalino-terreux ★☆	ns² (n ≠ 1)	 Alcalino-terreux à connaitre : Be, Mg, Ca ☐ Tendance à perdre deux électrons (pour retrouver la configuration du gaz rare qui précède) et former des cations divalents (Ca²⁺; Mg²⁺) qui donnent des sels ioniques (CaCl₂ et MgCl₂) Be a un comportement différent : il forme plutôt des composés covalents du fait de sa plus petite taille (ex : BeCl₂ covalent) ★ 	
3 à 12	Éléments de transition = Métaux de transition	Remplissage des orbitales d	 Connaissance préférable des éléments de la 1ère série de transition (4ème période) Peuvent former des complexes □ Peuvent perdre un ou plusieurs électrons (degrés d'oxydation variés) Ex : Fe²+ (ion ferreux) ★ et Fe³+ (ion ferrique) 	
16	Chalcogènes ★★★	ns² np⁴ ★★★	 Chalcogènes à connaitre : O, S ★ Forment facilement des anions chargés 2- (pour retrouver la configuration du gaz rare qui suit) 	
17	Halogènes ★	ns² np⁵	 Halogènes à connaitre : F, Cl, Br, I ◆ Sont sous forme de molécules X₂ stables Eléments électronégatifs Gagnent facilement un électron (pour retrouver la configuration du gaz rare qui suit) et former des anions monovalents (F⁻; Cl⁻; Br⁻; l⁻) Se lient facilement à H pour donner des acides (exemple : HCl : acide chlorhydrique) 	
18	Gaz nobles = Gaz rares	1s² ns² np ⁶	 Gaz nobles à connaitre : He, Ne, Ar, Kr, Xe Couche externe totalement remplie ⇒ très stables Habituellement « chimiquement inertes », mais certains peuvent former des composés chimiques (exemple : XeF₄) 	

	COUCHE DE VALENCE *				
Électrons de valence	 ■ Electrons participant aux liaisons entre atomes ■ Pour les éléments des blocs « s » et « p » : ○ électrons situés dans les sous-couches ns et np avec n le plus grand * 				
Couche de valence des blocs s et p	 Couche occupée correspondant au nombre quantique n le plus grand ★ Les éléments d'un groupe donné dans la classification périodique (colonne) ont une couche de valence dont le profil est similaire LEWIS donne une représentation schématique de la couche de valence en terme de doublets (deux électrons appariés dans une même case quantique notés) et d'électrons célibataires (notés ●) permettant ensuite de relier cette structure à la représentation des molécules. 				
Exemples de couches externes A CONNAITRE * * *	Monovalent H IFI O N N Hydrogène Fluor Oxygène Azote Carbone Chlore Soufre Phosphore Etat fondamental Etat excité tétravalent				

NOTION D'ÉLECTRONÉGATIVITÉ (EN)				
Définition	 L'électronégativité mesure l'aptitude d'un atome A à attirer vers lui le doublet de la liaison qui l'associe à l'atome B. 			
Variation dans le tableau périodique	 Augmentation de gauche à droite dans une période Augmentation de bas en haut dans un groupe Fluor = élément le plus électronégatif ★ Ordre des premiers termes à connaitre : F > O > Cl ≈ N ★ EN (N) ≈ EN (Cl) Les gaz rares ne sont pas considérés pour cette notion 			

LES MOLÉCULES

LES DIFFÉRENTS TYPES DE LIAISONS ENTRE ATOMES			
Ionique pure	 Liaison forte Attraction entre charges ⊕ et ⊖ Exemple : cristal ionique de Na⁺ et Cl⁻ Non développée dans le cours 		
Covalente pure	 Liaison forte Résulte de la mise en commun d'électrons entre atomes identiques Exemple : Cl₂ 		
Iono-covalente ou Covalente mixte	 Liaison forte % de liaison covalente et de liaison ionique au sein d'une même liaison Résulte de la mise en commun d'électrons entre atomes ayant des électronégativités différentes Exemple : H-Cl 		
Métallique	 Liaison forte Cohésion du solide métallique assurée par la délocalisation de certains électrons dans des « bandes » d'énergie - Non développée dans le cours 		
Hydrogène	 Liaison faible Non abordée dans le cours 		
Van der Waals	 Liaison faible Non abordée dans le cours 		

APPROCHE QUALITATIVE DE LA COVALENCE REPRÉSENTATION DE LEWIS				
Liaison Covalente Normale	 Chaque atome fournit un électron pour former la liaison A → B → B Exemple : Cl₂ : CI · + · CI CI CI CI 			
Liaison Covalente de Coordination	 Liaison covalente de coordination = liaison donneur-accepteur = liaison dative Les deux électrons de la liaison proviennent du même atome A * + B			
Règle du duet	 Concerne l'Hydrogène H tend à s'entourer d'un duet (= 2) d'électrons (couche externe identique à He) 			
Règle de l'octet	 Un élément tend à s'entourer d'un octet (= 8) électrons (couche électronique externe identique à celle du gaz rare qui suit). Les éléments de la 2ème période : pas plus de 8 électrons sur la couche de valence Exemple : NH₃ : l'atome d'azote est entouré de 8 électrons : 			
Hypervalence	 Les éléments à partir de la 3ème période : possibilité de dépasser 8 électrons sur la couche de valence (due à l'existence des orbitales 3d) : notion d'hypervalence Exemple : PCl₅ : l'atome de phosphore doit scinder en deux son DnL de pour pouvoir former 5 liaisons avec 5 atomes de chlore l'atome de phosphore est entouré de 10 électrons ⇒ il est hypervalent : P* → CII CIII CIIII CIII CIIII <l< th=""></l<>			

LES DIFFÉRENTS TYPES DE LIAISONS COVALENTES

■ Simple liaison = toujours liaison σ

- Résulte d'un recouvrement AXIAL de deux orbitales
- La liaison σ autorise la libre rotation

Liaison σ

de deux orbitales sexemple : H-H

- d'une orbitale s et d'une orbitale p
- exemple : H-O dans H₂O

- de deux orbitales p
- exemple : CI-CI

• Se forme après une liaison σ dans le cas de liaison multiple (double ou triple)

- Résulte d'un recouvrement LATÉRAL de deux orbitales p parallèles entre elles et dans le même plan
 - \circ Dans le cas d'une double liaison : la liaison π résulte d'un recouvrement latéral de deux orbitales $\mathbf{p}_{\mathbf{z}}$
 - O Dans le cas d'une triple liaison : une liaison π résulte d'un recouvrement latéral de deux orbitales p_z , et l'autre liaison π résulte d'un recouvrement latéral de deux orbitales p_y (les orbitales p_z et p_y sont perpendiculaires entre elles)

Liaison

π

La liaison π empêche la libre rotation

Cas d'une double liaison :
 Exemple : O₂ : O=O (1σ + 1π) :

- Cas d'une triple liaison :
- Exemple : N_2 : $N \equiv N (1\sigma + 2\pi)$:

En pratique

- Une simple liaison est constituée d'une liaison σ
- Une double liaison est constituée d'une liaison σ et d'une liaison π
- Une triple liaison est constituée d'une liaison σ et de deux liaisons π

	APPROCHE QUALITATIVE DE LA COVALENCE LA THÉORIE RPEV
Théorie RPEV	 Théorie de la <u>Répulsion des Paires Electroniques de la couche de Valence</u> (théorie de Gillespie et Nyholm) Permet de trouver la géométrie d'une molécule
Principe	 Les électrons des liaisons (L) et des doublets non-liants (DnL) se repoussent par interaction « électrostatique » de façon à s'aérer au maximum dans l'espace La géométrie la plus favorable est celle qui minimise les interactions entre tous ces doublets (L et DnL)
Nomenclature RPEV	 Pour les molécules de type AXnEm ② : A = atome central X = atomes liés à l'atome central A (simple, double ou triple liaison) n = nombre de X E = doublet non liant ② m = nombre de E m + n = p = nombre de sommets ② que possède la molécule ⇒ Géométrie
Règles de fonctionnement de la RPEV	 Les liaisons simples, doubles ou triples sont considérées de la même façon Le nuage électronique d'un DnL est plus volumineux que celui d'une L ⇒ tendance à la déformation de la structure L'importance des répulsions pour un même angle est : DnL-DnL > DnL-L > L-L Les répulsions sont d'autant plus fortes que l'angle entre les doublets est faible (répulsions à 120° et 180° négligeables)
Géométrie Globale vs Disposition des atomes	 Géométrie globale d'une molécule ②: elle tient compte des atomes et des DnL autour de l'atome central A Disposition des atomes d'une molécule ③: elle ne tient pas compte des DnL de l'atome central A
Supplément : Hybridation de l'atome central	 Déterminer la nomenclature RPEV de la molécule (AXnEm) Calculer le nombre de sommets : p = m + n Si p = 2 sommets ⇒ hybridation sp de l'atome central Si p = 3 sommets ⇒ hybridation sp² de l'atome central Si p = 4 sommets ⇒ hybridation sp³ de l'atome central

LA THÉORIE RPEV LES DIFFÉRENTES FORMES DE MOLÉCULES ★★★					
Liaisons (ou atomes X)	Doublets Non-liants (E)	Sigle RPEV	Forme de la molécule	Géométrie globale ★	Disposition des atomes
2	0	AX ₂	•••	Linéaire	Linéaire
3	0	AX ₃	~		Triangulaire
2	1	$AX_2E_1 = AX_2E$		Triangulaire	Coudée
4	0	AX₄ ⊙			Tétraédrique
3	1	AX ₃ E ₁ = AX ₃ E ⊙	.	Tétraédrique	Pyramide à base triangle ★
2	2	AX ₂ E ₂			Coudée
5	0	AX₅ ★		Bi-pyramide à base triangle	Bi-pyramide à base triangle ★★★
4	1	AX ₄ E ₁ = AX ₄ E ★	(5.17)		Bascule ★©
3	2	AX₃E₂ ★★			T ***
2	3	AX ₂ E ₃			Linéaire
6	0	AX ₆	7 H	Bi-pyramide à base carrée ★۞	Bi-pyramide à base carrée
5	1	AX ₅ E ₁ = AX ₅ E ★	27		Pyramide à base carrée
4	2	AX ₄ E ₂	77		Plan carré

LA THÉORIE DES ORBITALES MOLÉCULAIRES (OM)

Orbitales Moléculaires (OM)

- Une orbitale moléculaire est une combinaison linéaire d'orbitales atomiques (hybrides ou non): notion de recouvrement des orbitales atomiques lorsque 2 atomes se rapprochent.
- Le recouvrement de deux Orbitales Atomiques (OA) conduit à deux Orbitales Moléculaires (OM) :
 - \circ Une **OM liante** (σ ou π) qui est basse en énergie et qui stabilise la liaison
 - O Une **OM anti-liante (σ* ou π*)** plus élevée en énergie et qui déstabilise la liaison
- Le recouvrement des deux OA peut être :
 - AXIAL \Rightarrow OM de type σ et σ^*
 - LATÉRAL \Rightarrow OM de type π et π *

LA THÉORIE DES ORBITALES MOLÉCULAIRES (OM) DIAGRAMME POUR UNE MOLÉCULE DIATOMIQUE A-A Il ne concerne que les molécules diatomiques avec 2 atomes identiques : molécules de type A-A. **Principe** Seules les OA de valence des atomes sont représentées Les e- de valence se positionnent en premier dans les OM de plus basse énergie en respectant les règles de Pauli et Hund Energie de σ_{px} < énergie de π_{py} et π_{pz} \star Energie de π_{py} et π_{pz} < énergie de σ_{px} (diagramme symétrique) (inversion σ/π) Position du Pour les molécules : O₂; F₂ ★ Pour les molécules : Li₂ ; Be₂ ; B₂ ; C₂ ; N₂ niveau σ_{px} par rapport aux niveaux π_{pv} et π_{pz} en fonction du ру Z des atomes ру de la 2° période 2s 2s **2**s 2s Α σ。 Α $\sigma_{\scriptscriptstyle S}$ Si la molécule possède au moins un électron célibataire, elle a des propriétés Magnétisme paramagnétiques. * Si la molécule ne possède aucun électron célibataire, elle est diamagnétique. $N = (n - n^*) / 2$ Lorsque l'ordre de liaison est égal à 0, N = ordre de liaison (= nombre de la molécule n'existe pas o Exemple: He2 Ordre de liaisons existant entre les atomes unis) **n** = nombre d'électrons liants dans les liaison N Lorsque l'ordre de liaison est différent orbitales σ et π (stabilisent la liaison) de 0, la molécule peut théoriquement n* = nombre d'électrons anti-liants se former ★ dans les orbitales σ^* et π^* (déstabilisent la liaison)

LA THÉORIE DES ORBITALES MOLÉCULAIRES (OM) DIAGRAMME POUR LA MOLÉCULE O2 σ^*_{px} 2px 2py 2pz Diagramme 0 0 La molécule possède deux électrons célibataires, elle a des propriétés paramagnétiques (non décrit par Lewis) ★ L'ordre de liaison de la molécule est: N = (8 - 4) / 2 = 2**Propriétés** ⇒ double liaison entre les deux O (conforme à la théorie de Lewis) de O₂ $\circ = \circ$ Configuration électronique de la molécule O₂ : $1{\sigma_s}^2 \ 1{\sigma_s}^{*2} \ 2{\sigma_s}^{*2} \ 2{\sigma_s}^{*2} \ 2{\sigma_{px}}^2 \ 2{\pi_{py}}^2 \ 2{\pi_{pz}}^2 \ 2{\pi_{py}}^{*1} \ 2{\pi_{pz}}^{*1}$

LA THÉORIE DE L'HYBRIDATION

Principe

- Lorsque les atomes se combinent pour former des molécules, leurs orbitales atomiques (s, p, d) se transforment pour donner des orbitales hybrides (sp, sp², sp³d, sp³d² et d²sp³)
- Cette théorie permet de prédire la géométrie de la molécule autour de l'atome hybridé
- 2 points importants :
 - \circ Les e- participant aux liaisons σ et aux doublets non-liants (DnL) participent à l'hybridation
 - \circ Les e- participant aux **liaisons** π **sont exclus de l'hybridation** (les OA contenant ces électrons ne s'hybrident pas)
- Exemple 1 : le Carbone dans CH₄ :
- lacktriangle Pour former **4 liaisons** σ avec 4 H, C passe dans un état excité:

1 OA s + 3 OA p ⇒ 4 OA hybrides sp³

Hybridation

sp³ ★★

- Géométrie tétraédrique (angles = 109°28)
- La liaison σ autorise la libre rotation
- Exemple 2 : l'Azote dans NH₃ :
- N forme 3 liaisons σ avec 3 H, et conserve son DnL \star :

■ 1 OA s + 3 OA p \Rightarrow 4 OA hybrides sp³

 Géométrie tétraédrique (angles < 109°28 car le DnL est plus volumineux que les liaisons). Angles = 107°.

LA THÉORIE DE L'HYBRIDATION

■ Exemple 1 : le Carbone dans l'éthylène (C₂H₄) :

• Chaque atome de carbone forme 3 liaisons σ et 1 liaison π (exclue de l'hybridation)

Hybridation sp²

- 1 OA s + 2 OA p ⇒ 3 OA hybrides sp²
- 1 OA p non-hybridée sur chaque C
- Géométrie trigonale plane (angles = 120°)
- Les e- contenus dans les OM σ sont localisés entre les noyaux \Rightarrow liaisons solides
- Les e- contenus dans l'OM π sont loin des noyaux (diffus) \Rightarrow liaisons réactives
- La liaison π empêche la libre rotation
- Exemple 2 : C et O dans le méthanal = formol = formaldéhyde (H₂CO) :

- C forme 3 liaisons σ et 1 liaison π (exclue de l'hybridation): 1 OA s + 2 OA p \Rightarrow 3 OA hybrides sp² et 1 OA p reste non-hybridée
- O forme 1 liaison σ et 1 liaison π (exclue de l'hybridation) et possède 2 DnL: 1 OA s + 2 OA p \Rightarrow 3 OA hybrides sp² et 1 OA p reste non-hybridée
- Géométrie trigonale plane (angles = 120°)

■ Exemple : le Carbone dans l'acétylène (C₂H₂) * :

Hybridation sp

• Chaque atome de carbone forme 2 liaisons σ et 2 liaisons π (exclues de l'hybridation) \star

- 1 OA s + 1 OA p ⇒ 2 OA hybrides sp
- 2 OA p non-hybridées sur chaque C
- Géométrie linéaire (angles = 180°)

LES COMPLEXES		
Généralités	 Les complexes résultent de l'association entre : un atome ou un cation central issu des métaux de transition (ex : Mn²+, Fe²+, Fe³+, Cu+) des ligands classés en 2 catégories :	
Charge	 Conservation des charges dans un complexe : Charge du complexe = charge du métal + (nombre de ligands x charge d'un ligand) ★★★☆☆ La charge du métal correspond au degré d'oxydation du métal ★☆ Exemple : Fe³+correspond au fer de degré d'oxydation (+ III) 	
Géométrie	■ Les complexes possédant 6 ligands (seuls complexes étudiés) ont tous une géométrie octaédrique (bipyramide à base carrée) ②	

LES COMPLEXES

LA THÉORIE DU CHAMP CRISTALLIN

 A l'approche des ligands, l'énergie des OA d du métal de transition central varie : il y a levée de dégénérescence ⇒ les OA d se séparent en deux groupes dε et dγ

Généralités

Δ₀ est l'énergie de dédoublement des orbitales d = champ

 Δ_0 est d'autant plus grande que l'interaction entre les ligands et les e- d est forte

■ E_{app} est l'énergie d'appariement des électrons

POUR UN LIGAND À CHAMP FORT

* *

• Forte interaction entre les ligands et les e- d du métal :

$\Delta_0 > E_{app}$

- \Rightarrow le niveau dε est rempli avec appariement <u>avant</u> le niveau dγ:
- 1) e- célibataires dans le niveau dε
- 2) appariement des e- dans le niveau de
- 3) e- célibataires dans le niveau dy
- 4) appariement des e- dans le niveau dγ
- Ligands à champ fort :
 - o CN⁻ ★ 🌣
 - O NH₃
 - o CO ★

POUR UN LIGAND À CHAMP FAIBLE ★★★☆

 Faible interaction entre les ligands et les e- d du métal :

$\Delta_0 < E_{app}$

- \Rightarrow le niveau dγ est rempli <u>avant</u> appariement des électrons sur le niveau dε: \odot
- e- célibataires dans le niveau dε
- 2) e- célibataires dans le niveau dy
- 3) appariement des e- dans le niveau dε
- 4) appariement des e- dans le niveau dγ
- Ligands à champ faible :
 - O H₂O ★★★
 - o CI
 - o Br
 - o I

Couleur des complexes

Ordre de

remplissage

des électrons

- Elle dépend du champ induit par les ligands
- Elle est due à une transition électronique de type d-d, au cours de laquelle un électron passe du niveau dε sur le niveau d γ .

Cette transition résulte de l'absorption d'un photon de longueur d'onde (λ) donnée
 La couleur observée pour le complexe est la couleur complémentaire de la couleur absorbée. Φ

LES COMPLEXES HYBRIDATION DES OA DU MÉTAL			
Hybridation d ² sp ³ ★★★�	Hybridation sp³d² ★★★�		
 Il n'y a pas d'électron du métal central sur le niveau dγ ⇒ Les orbitales 3dγ sont choisies en priorité pour réaliser l'hybridation : 3dγ-4s-4p ⇒ 6 OA hybrides d²sp³ 	 Il y a au moins un électron du métal central sur le niveau dγ ⇒ Les orbitales 3dγ ne peuvent pas être utilisées pour réaliser l'hybridation ⇒ Il faut utiliser les orbitales 4d : 4s-4p-4d ⇒ 6 OA hybrides sp³d² 		
d ² sp ³ 3dγ 4s 4p	sp ³ d ² 4s 4p 4d		

LES COMPLEXES PROPRIÉTÉS MAGNÉTIQUES DES COMPLEXES			
PROPRIETES IVIAGINETIQUES DES COIVIPLEXES			
Diamagnétisme et paramagnétisme	 Si tous les électrons du métal sont appariés : diamagnétisme (magnétisme faible qui existe généralement dans toute matière). Si le métal possède des électrons célibataires : paramagnétisme prédominant (le paramagnétisme (fort) dû aux électrons célibataires prédomine nettement sur le diamagnétisme inhérent aux autres électrons). Dans ce cas on pourra simplifier en disant que le complexe est paramagnétique. *** 		
	Le moment magnétique (M) est de la forme :		
Moment magnétique d'un complexe paramagnétique	 M = √n.(n + 2) μ_B ∴ n = nombre d'électrons célibataires dans le complexe. ∴ μ_B = magnéton de Bohr (unité de M) 		
	 Remarque 1 : le calcul de n permet de connaître la force du ligand • Remarque 2 : le premier chiffre de la valeur du moment magnétique M donne le nombre n d'électrons célibataires dans le complexe 		