BCC pre-processing

Stephen Coleman

10/02/2020

Data

Read in the data and check the format:

```
data loc <- "../Raw data/"
filenames <- c(
  "BRCA.exp.348.med.csv",
  "BRCA.348.precursor.txt",
  "rppaData-403Samp-171Ab-Trimmed.txt",
  "BRCA.Methylation.574probes.802.txt"
GE <- read.csv(paste0(data_loc, "BRCA.exp.348.med.csv"), header = TRUE)
miRNA <- read.csv(paste0(data_loc, "BRCA.348.precursor.txt"), header = TRUE)
Protein <- read.table(paste0(data_loc, "rppaData-403Samp-171Ab-Trimmed.txt"), header = TRUE)
Meth <- read.table(paste0(data_loc, "BRCA.Methylation.574probes.802.txt"), header = TRUE)
orig_datafiles <- list(GE, miRNA, Protein, Meth) %>%
 magrittr::set_names(c("GE", "miRNA", "Protein", "Meth"))
dim(GE)
## [1] 17814
               349
dim(miRNA)
## [1] 1046 349
dim(Protein)
## [1] 171 404
dim(Meth)
## [1] 574 802
# View the head of the data
head(GE[, 1:5])
         NAME TCGA.A1.A0SH.O1A.11R.A084.07 TCGA.A1.A0SJ.O1A.11R.A084.07
##
## 1
       ELM02
                                  0.162208
                                                                0.577708
## 2 CREB3L1
                                  1.338000
                                                               -0.483500
                                  0.044063
## 3
       RPS11
                                                               -0.258062
## 4
        PNMA1
                                  0.249500
                                                                0.682250
## 5
        MMP2
                                  1.843833
                                                               -0.531000
## 6 C10orf90
                                  0.184500
                                                                0.127500
```

```
TCGA.A1.A0SK.01A.12R.A084.07 TCGA.A1.A0S0.01A.22R.A084.07
## 1
                                                       -0.375208
                         1.113042
                                                       -1.628750
## 2
                        -1.558500
## 3
                         0.119813
                                                       -0.542063
## 4
                         0.867750
                                                       -0.139750
## 5
                        -1.674833
                                                       -1.838167
## 6
                         -0.843750
                                                       -0.363750
head(miRNA[, 1:5])
             Gene TCGA.A8.A07E.01A.11R TCGA.A8.A09C.01A.11R TCGA.A8.A084.01A.21R
##
## 1 hsa-let-7a-1
                              4629.4498
                                                   5437.9616
                                                                          7340.861
## 2 hsa-let-7a-2
                              9384.9411
                                                  10872.5343
                                                                         14676.347
## 3 hsa-let-7a-3
                              4742.0152
                                                   5596.5660
                                                                          7457.106
## 4
      hsa-let-7b
                             31208.3577
                                                  25291.9778
                                                                         71135.465
                                                  1250.5346
## 5
       hsa-let-7c
                              2414.6069
                                                                          1003.195
## 6
                              537.4601
                                                                           606.083
       hsa-let-7d
                                                   597.8165
##
    TCGA.A8.A091.01A.11R
## 1
                9232.1420
## 2
               18276.1584
## 3
                9207.9908
## 4
               85803.7544
## 5
                1438.2719
## 6
                 419.4695
# head(Protein[, 1:5])
# head(Meth[, 1:5])
For integrative clutstering we need common samples across datasets. Find these.
# Match columns (samples) between sources
namesExp <- names(GE)[2:349]</pre>
namesmiRNA <- names(miRNA)[2:349]
namesProtein <- names(Protein)[2:404]
namesMeth <- names(Meth)</pre>
head(namesExp)
## [1] "TCGA.A1.AOSH.O1A.11R.AO84.O7" "TCGA.A1.AOSJ.O1A.11R.AO84.O7"
## [3] "TCGA.A1.A0SK.O1A.12R.A084.07" "TCGA.A1.A0SO.01A.22R.A084.07"
## [5] "TCGA.A2.A04N.01A.11R.A115.07" "TCGA.A2.A04P.01A.31R.A034.07"
head(namesProtein)
## [1] "TCGA.C8.A138.01A.21.A13D.20" "TCGA.AO.A03L.01A.31.A13A.20"
## [3] "TCGA.A2.AOSV.O1A.21.A13A.20" "TCGA.A2.AOSW.O1A.21.A13A.20"
## [5] "TCGA.BH.AOCO.O1A.11.A13B.20" "TCGA.AN.AOAK.O1A.11.A13B.20"
# Matching samples present
namesExp <- substr(namesExp, 1, 16)</pre>
namesmiRNA <- substr(namesmiRNA, 1, 16)
namesProtein <- substr(namesProtein, 1, 16)
MatchProt <- match(namesExp, namesProtein, nomatch = 0)</pre>
MatchMeth <- match(namesExp, namesMeth, nomatch = 0)</pre>
```

Convert to matrix format and set row names

```
miRNA_names <- miRNA[, 1]
miRNA <- miRNA[, 2:349]
miRNA.mat <- as.matrix(miRNA[, order(namesmiRNA)]) %>%
  set_rownames(miRNA_names)
Protein.mat <- Protein[, 2:404]</pre>
Protein.mat <- as.matrix(Protein.mat[, MatchProt]) %>%
  set_rownames(Protein[, 1])
Meth.mat <- as.matrix(Meth[, MatchMeth]) %>%
  set_rownames(row.names(Meth))
             <- as.matrix(GE[,2:349])
Exp.mat
reduced_matrix_data <- list(Exp.mat, miRNA.mat, Protein.mat, Meth.mat) %%
  magrittr::set_names(c("GE", "miRNA", "Protein", "Meth"))
How much missingness is present?
# How many missing entries in our data
print(lapply(reduced_matrix_data, function(x){
  sum(is.na(x))
}
))
## $GE
## [1] 1119
## $miRNA
## [1] 0
##
## $Protein
## [1] 0
##
## $Meth
## [1] 0
\hbox{\it\# The only dataset with NAs is the Gene expression data}\\
dim(reduced_matrix_data$GE)
## [1] 17814
ge_missingness <- rowSums(is.na(reduced_matrix_data$GE))</pre>
ge_missingness[ge_missingness > 0] %>%
 hist(main = "Count of NAs in each gene in GE data (0's excluded)",
       xlab = "Number of NAs present")
```

Count of NAs in each gene in GE data (0's excluded)

As the Gene Expression contains actual NA's we will impute missing values using knn with k = 10 (the default setting).

```
# Impute missing values via KNN (K=10) for the Gene expression data
Exp.mat <- impute.knn(Exp.mat)
Exp.mat <- Exp.mat$data %>%
    set_rownames(GE[,1])

reduced_matrix_data$GE <- Exp.mat</pre>
```

We might also be interested in the number of 0's present in the datasets as this could represent missing data.

```
# Check how many 0's there are in the datasets (possibly these are missing points too!)
print(lapply(reduced_matrix_data, function(x){
    sum(x == 0)
}
))
```

```
## $GE
## [1] 1240
##
## $miRNA
## [1] 211498
##
## $Protein
## [1] 0
##
## $Meth
## [1] 0
```

```
\# The GE and miRNA datasets both have 0 entries, check how many genes have 0's
print(lapply(reduced_matrix_data, function(x){
  sum(rowSums(x == 0) > 0)
}
))
## $GE
## [1] 740
##
## $miRNA
## [1] 840
## $Protein
## [1] 0
##
## $Meth
## [1] 0
ge_zeroness <- rowSums(reduced_matrix_data$GE == 0)</pre>
ge_zeroness[ge_zeroness > 0] %>%
  hist(main = "Count of 0's in each gene in GE data (0's excluded)",
       xlab = "Number of 0's present")
```

Count of 0's in each gene in GE data (0's excluded)

Count of 0's in each gene in miRNA data

Number of 0's present

Count of 0's in each gene in miRNA data (0's excluded)


```
# There's a far greater number of 0 entries in the miRNA compared to the GE;
# also, no gene in the GE dataset has more than 3 associated 0 entries
```

Now we visualise the effect of the preprocessing steps by mapping the points to a 2D UMAP; colouring based upon their UMAP coordinates. We split the points based upon the median of the points in each direction, so points are assigned values based upon:

Table 1: Labels defined by UMAP coordinates.

Condition.in.UMAP.1	Condition.in.UMAP.2	Label
Greater than median	Greater than median	1
Greater than median	Less than median	2
Less than median	Greater than median	3
Less than median	Less than median	4

First consider the

Gene expression: pre-processing UMAP Coloured by UMAP coordinates


```
# Save UMAP plot
# ggsave(umap_file_names[1])

# Plot PCA with UMAP defined labels
autoplot(ge_pca, data = Exp.mat, colour = ge_labels) +
    labs(title = "Gene expression: pre-processing",
        subtitle = "Coloured by UMAP coordinates")
```

Gene expression: pre-processing Coloured by UMAP coordinates


```
# ggsave(file_names[[1]][1])

Exp.mat %>%
   apply(1, sd) %>%
   hist(main = "Standard deviation of genes in GE data (before processing)")
```

Standard deviation of genes in GE data (before processing)

processedExpression <- Exp.mat[apply(Exp.mat,1,sd)>1.5,] ###Filter to select only most variable genes
print(ncol(Exp.mat) - ncol(processedExpression))

```
## [1] 0
```

```
processedExpression %>%
  apply(1, sd) %>%
  hist(main = "Standard deviation of genes in GE data (post processing)")
```

Standard deviation of genes in GE data (post processing)

Count of 0's in each gene in GE data post-processing

Warning in if (value %in% columns) {: the condition has length > 1 and only the ## first element will be used

Gene expression: post–processing Coloured by UMAP coordinates

Gene expression: post–processing UMAP Coloured by UMAP coordinates

 $\#\ ggs ave ("~/Documents/PhD/Year_1/Consensus_clustering/Analysis/BCC_TCGA_data/Data/gene_expression_umap_instantial for the property of the$

Methylation: pre-processing UMAP Coloured by UMAP coordinates

Methylation: pre-processing Coloured by UMAP coordinates


```
# ggsave(file_names[[1]][2])

Meth.mat %>%
    apply(1, sd) %>%
    hist(main = "Methylation: Gene standard deviation (before processing)")
```

Methylation: Gene standard deviation (before processing)


```
Meth.mat %>%
  apply(1, mean) %>%
  hist(main = "Methylation: Gene mean (after processing)")
```

Methylation: Gene mean (after processing)

processedMethylation <- sqrt(Meth.mat) ##take square root of methylation data
p_meth_pca <- prcomp(processedMethylation)</pre>

```
processedMethylation %>%
  apply(1, sd) %>%
  hist(main = "Methylation: Gene standard deviation (after processing)")
```

Methylation: Gene standard deviation (after processing)


```
processedMethylation %>%
   apply(1, mean) %>%
   hist(main = "Methylation: Gene mean (after processing)")
```

Methylation: Gene mean (after processing)

Methylation: post-processing Coloured by UMAP coordinates


```
# ggsave(file_names[[2]][2])

p_meth_umap <- umap(processedMethylation)
p_meth_plt_data <- makeUMAPPlotData(p_meth_umap$layout, meth_labels)
plotUMAP(p_meth_plt_data) +
   labs(y="Petal length (cm)", x = "Sepal length (cm)")</pre>
```


miRNA: pre-processing UMAP Coloured by UMAP coordinates

miRNA: pre-processing Coloured by UMAP coordinates


```
# xlim(4e4, 5e4) +
  # ylim(5.5e3, 6.1e3)
\# miRNA_pca$x[(miRNA_pca$x[,1] < 4e4),1:2]
# summary(miRNA_pca$x[,1:2])
# miRNA_exclude <- row.names(miRNA_pca$x)[(miRNA_pca$x[,1] < 4e4 & miRNA_pca$x[,2] < 6.1e3)]
# indices_to_drop <- ! row.names(miRNA.mat) %in% miRNA_exclude</pre>
# miRNA_reduced <- miRNA.mat[which(indices_to_drop),]</pre>
# miRNA_labels_reduced <- miRNA_labels[which(indices_to_drop)]</pre>
#
# miRNA_pca_red <- prcomp(miRNA_reduced)</pre>
# autoplot(miRNA_pca_red, data = miRNA_reduced, colour = miRNA_labels_reduced) +
    labs(title = "miRNA: pre-processing",
         subtitle = "Coloured by UMAP coordinates")
# Save the PCA plot with UMAP colouring
# ggsave(file_names[[1]][3])
# Transform the data
miRNA_to_drop <- rowSums(miRNA.mat==0) < 348*0.5
             <- miRNA.mat[which(miRNA_to_drop),]</pre>
                      <- log(1+miRNA.mat) ##take log of miRNA data
processedmiRNA
# Take the PCA of the transformed data
```

Warning in if (value %in% columns) {: the condition has length > 1 and only the ## first element will be used

miRNA: post–processing Coloured by UMAP coordinates

miRNA: post–processing UMAP Coloured by UMAP coordinates


```
# ggsave("~/Documents/PhD/Year_1/Consensus_clustering/Analysis/BCC_TCGA_data/Data/miRNA_umap_post_proce
# Remove miRNAs with > 50% 0 entries
print(dim(miRNA.mat))
## [1] 423 348
miRNA.mat     <- miRNA.mat[rowSums(miRNA.mat==0) < 348*0.5,]
print(dim(miRNA.mat))
## [1] 423 348
protein_pca <- prcomp(Protein.mat)
autoplot(protein_pca)</pre>
```


protein_umap <- umap(Protein.mat)
plot(protein_umap\$layout)</pre>

protein_labels <- makeUMAPLabels(protein_umap\$layout)
protein_plt_data <- makeUMAPPlotData(protein_umap\$layout, protein_labels)
plotUMAP(protein_plt_data) +</pre>

```
labs(title = "Protein: pre-processing UMAP",
    subtitle = "Coloured by UMAP coordinates",
    x = "UMAP 1",
    y = "UMAP 2")
```

Protein: pre-processing UMAP Coloured by UMAP coordinates

Protein: pre-processing Coloured by UMAP coordinates

Protein: post–processing Coloured by UMAP coordinates


```
# ggsave(file_names[[2]][4])

p_protein_umap <- umap(processedProtein)
p_protein_plt_data <- makeUMAPPlotData(p_protein_umap$layout, protein_labels)
plotUMAP(p_protein_plt_data) +
    labs(title = "Protein: post-processing UMAP",
        subtitle = "Coloured by UMAP coordinates",
        x = "UMAP 1",
        y = "UMAP 2")</pre>
```

Protein: post–processing UMAP Coloured by UMAP coordinates

