

Pré-processando os FASTQ's

Marcel Caraciolo, CTO marcel@genomika.com.br

Pipeline

Terminology

Types of Illumina fragment libraries

single-end

independent reads

paired-end

two inwardly oriented reads separated by ~200 nt

mate-paired

two outwardly oriented reads separated by ~3000 nt

Read Sequences Quality Control

Garbage in = garbage out

- Contaminated with other samples?
- Sample barcodes removed?
- Adaptor sequences trimmed?
 - RNAseq, MiSeq data
- Trim ends of reads with poor quality?
 - de novo Assembly
- Know your data
 - Paired reads? Relative orientations?
 - Technology specific concerns?
 - Indels with 454

Read Sequences

FASTQ Format

```
@HWI-EAS216_91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBBBBBBBBAAAA>@AABA?BBBBAAB??>A?
```

Line 1: @read name

Line 2: called base sequence

Line 3: +read name (optional after +)

Line 4: base quality scores

FASTQ format

Standard Format for NGS data

Conversion can be done from sff, fasta + qual, . . .

Extension of the Fasta format

Text-based formats (easy to use!)

If not compressed, it can be huge http://en.wikipedia.org/wiki/FASTQ_format

Decipher base quality scores

Probability of Error = $10^{-Q/10}$

(This is a Phred score, also used for other types of qualities.)

- * Very low quality scores can mean something special Illumina Q ≤ 3 means something like: "I'm lost, you might want to stop believing sequencing cycles from here on out."
- * In older FASTQ files, the formula and ASCII offset might differ. Consult: http://en.wikipedia.org/wiki/FASTQ format

Example of Illumina Data

- Most bases have high qualities (Q>30).
- Overall qualities are well calibrated*.

Example of Illumina Data

base quality score

FASTQC

Quality Assurance tool for FASTQ sequences

FastQC website:

http://www.bioinformatics.babraham.ac.uk

FastQC report documentation:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

Good Illumina dataset:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc/fastqc_report.html

Bad Illumina dataset:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc/fastqc_report.html

FASTQC

- Report basic statistics on your data
- Identify issues with your data

Basic Statistics

Measure	Value			
Filename	tmp.fastq			
File type	Conventional base calls			
Encoding	Illumina 1.5			
Total Sequences	250000			
Filtered Sequences	0			
Sequence length	101			
%GC	51			

№FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Kmer Content

Useful reports

- Should I trim low quality bases?
 - Per-base sequence quality Report
 - based on all sequences
- Do I need to remove adapter sequences?
 - Overrepresented sequences Report
 - based on 1st 200,000 sequences
- How complex is my library?
 - Sequence duplication levels Report
 - estimate based on 1st 200,000 sequences

Per Base Sequencing Quality

Quality scores across all bases (Illumina >v1.3 encoding)

Per Sequencing Quality

Per Base Sequencing content

Per Base GC Content

Per Sequencing Nucleotide Content

Per Base N content

Sequence Length Distribution

Duplicate Sequences Distribution

Overrepresented K-mers

Overrepresented K-mers

- What is a k-mer?
- Create a sliding window of size k, move it over all your reads and count occurrence of k-mers
- We can use this to correct sequencing errors!

DNA: ACGTGTAACGTGACGTTGGA

ACGTG
CGTGT

CGTGTA

Overrepresented K-mers

Concept: Rare k-mers are seq. errors Need > 15X coverage

ACGTGGTTACCCTTAAA

Sequencing Process: PCR primers

PCR primers

NGS adaptors & Cutadpt

NGS adaptors & Cutadpt

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATATCGTATGC	1547768	38.192098035156306	TruSeq Adapter, Index 1 (98% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGC	146635	3.61830603513262	TruSeq Adapter, Index 1 (100% over 50bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCAAGATATCGTATGC	6639	0.16382128255358863	TruSeq Adapter, Index 1 (97% over 41bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATTTCGTATGC	6462	0.15945370204267054	TruSeq Adapter, Index 1 (98% over 50bp)
GATCGGAAGACCACGTCTGAACTCCAGTCACATTACGATATCGTATGC	5433	0.1340625136486891	TruSeq Adapter, Index 1 (97% over 41bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATAACGATATCGTATGC	5147	0.1270052931621209	TruSeq Adapter, Index 1 (97% over 41bp)
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACCACGATATCGTATGC	4703	0.11604932849066535	TruSeq Adapter, Index 1 (97% over 41bp)

Very important if your DNA fragment is shorter than read length

Coverage

 Coverage/depth is how many times that your data covers the genome (on average)

• Example:

N: Number of reads: 5 mill

L: Read length: 100

G: Genome size: 5 Mbases

$$\bullet$$
 C = $5*100/5 = 100X$

On average there are 100 reads covering each position in the genome

$$C = N \times \frac{L}{G}$$

Pré-processando os FASTQ's

Marcel Caraciolo, CTO marcel@genomika.com.br