

Universidad de El Salvador Facultad de Ingeniería y Arquitectura Escuela de Ingeniería de Sistemas Informáticos Análisis Numérico.

Guía de ejercicios No.5

1) Construir el polinomio de interpolación de Lagrange de orden 2 de la función $f(x) = e^x$, en el intervalo [-1,1], utilizando como puntos de interpolación

$$x_0 = -1$$
, $x_1 = 0$, y $x_2 = 1$

2) Considere la siguiente tabla de datos, obtenga el polinomio interpolante de Lagrange de grado 2 y encuentre una aproximación de f(7)

i	х	f(x)	
0	6	2/3	
1	9	1/3	
2	11.5	4/17	

3) Construir el polinomio de interpolación de diferencias divididas de orden 3 para la función $f(x)=e^{-x}$, en el intervalo [0,4], utilizando como puntos de interpolación $x_0=1$, $x_1=0.36788$, $x_2=0.13534$, $x_3=0.04979$, y $x_4=0.01832$

4) Considere la siguiente tabla de datos, obtenga el polinomio interpolante de Newton (Diferencias divididas) de grado 3 y encuentre una aproximación de f(11.3)

i	х	f(x)	
0	6	0.66667	
1	9	0.333333	
2	11.5	0.235294	
3	11.7	0.229885	

a) Aproxime f(0.05) utilizando diferencias divididas progresivas mediante la siguiente tabla.
b) Con los datos de la siguiente tabla y utilizando diferencias divididas regresivas, aproximar f(0.65)

Х	0.0	0.2	0.4	0.6	0.8
f(x)	1.00000	1.22140	1.49182	1.82212	2.22554

a) Aproxime f(0.2) utilizando diferencias divididas progresivas mediante la siguiente tabla.
b) Con los datos de la siguiente tabla y utilizando diferencias divididas regresivas, aproximar f(0.8)

Х	0.0	0.1	0.3	0.6	1.0
f(x)	-6.00000	-5.89483	-5.65014	-5.17788	-4.28172