

Vysoké učení technické v Brně Fakulta informačních technologií

Mikroprocesorové a vestavěné systémy 2020 / 2021

Řízení a měření s LED pásky využívajícími BLE a IQRF

1 Úvod

Cílem této práce bylo navržení a sestrojení LED kontroléru, který by nahradil můj původní LED kontrolér z roku 2016¹. Tento původní návrh má velkou řadu nevýhod, protože pro spínání LED pádků jsou zde použity NPN tranzistory v Darlingtonově zapojení , pro ochranu proti přepólování je zde použita obyčejná usměrňovací dioda, IQRF modul nepoužívá DPA framework.

2 Popis ovládání

Zařízení lze ovládat pomocí technologií Bluetooth Low Energy a IQRF. Dále na desce plošných spojů se nachází 3 tlačítka, jedno slouží pro restart ESP32, druhé pro přepnutí ESP32 to programovacího módu a třetí slouží pro připojení do IQRF sítě.

2.1 Bluetooth Low Energy

Zařízení má jméno LED Controller v2.0. A obsahuje profil GAT pro vyčítání hodnoty napětí na vstupu. Tento profil používá GATT službu pro binární senzory s UUID 0x183B, tato služba implementuje GATT charakteristiku pro napětí s UUID 0x2B18.

2.2 **IQRF**

Protože jsem nestihl implementovat Custom DPA Handler s IQRF standary pro světla a senzory, který by dokázal komunikovat přes UART s ESP32, tak je prozatím nutné použít komunikovat po UARTU pomocí odpovídající DPA periferie.

Nejdříve je nutné pomocí následujícího DPA požadavku (01.00.0C.00.FF.FF.07) inicializovat UART periferii.

NADR (Adresa)	PNUM (Periferie)	PCMD (Příkaz)	HWPID	Baud rate
01	OC (UART)	00 (Open)	FF.FF	07 (115 200 Bd)

Pro nastavení intenzity osvětlení (hodnoty se nacházejí v intervalu (0; 100)) na jednotlivých barevných kanálech je potřeba přes UART odeslat text ve formátu setDuty, <číslo_kanálu>, <hodnota_intenzity>. Pro nastavení žlutého světla je potřeba odeslat následující DPA požadavky:

- 01.00.0C.02.FF.FF.0A.73.65.74.44.75.74.79.2c.30.2c.31.30.30 odešle text setDuty,0,100,
- 01.00.0C.02.FF.FF.0A.73.65.74.44.75.74.79.2c.31.2c.31.30.30 odešle text setDuty,1,100,
- 01.00.0C.02.FF.FF.0A.73.65.74.44.75.74.79.2c.32.2c.30 odešle text setDuty,2,0.

Pro získání aktuální hodnoty intenzity je potřeba odeslat přes UART text ve formátu getDuty, <číslo_kanálu> a aktuální intenzita je umístěna v posledním bajtu odpovědi.

Pro získání aktuální hodnoty vstupního napětí je potřeba odeslat přes UART text getInputVoltage a hodnota napětí v milivoltech se nachází v posledních dvou bajtech.

¹https://github.com/Roman3349/led-controller

NADR (Adresa)	PNUM (Periferie)	PCMD (Příkaz)	HWPID	Timeout	Data
01	0C (UART)	02 (Write & Read)	FF.FF	0A (0.1 s)	Data

3 Schéma zapojení

4 Způsob řešení

O veškerou logiku se stará ESP32, které komunikuje s IQRF modulem po sběrnici UART, pomocí ADC a odporového děliče měří vstupní napětí a pomocí PWM reguluje intenzitu osvětlení. Části programu pro ESP32 byly převzaty z dokumentace aplikačního rámce ESP-IDF². Části Custom DPA handleru byly převzaty z ukázek z IQRF Startup balíčku³.

5 Závěr

Navržený systém řízení a měření LED pásků byl navržen a realizován ve formě funkčního vzorku. Bohužel jsem nestihl implementovat komunikaci se senzorem proudu INA219 po sběrnici I2C, chybí profily GATT pro manipulaci s intenzitou osvětlení barevných kanálů jednotlivých LED pásků, chybí implementace IQRF standardů pro světla a ve standardu pro senzory chybí vyčítání vstupního napětí. Dále v návrhu desky plošných spojů je chyba, které znemožňuje použití 2. a 3. kanálu pro 2. RGB LED pásek.

Video naleznete na https://www.romanondracek.cz/imp.mp4.

²https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html

³https://static.iqrf.org/IQRF_Startup_Package_OS404D_TR-7xD_200918.zip