UNIVERSIDAD MAYOR DE SAN ANDRES FACULTAD DE CIENCIAS PURAS Y NATURALES CARRERA DE INFORMATICA

INFORME

Docente: Lic. Brígida Carvajal Blanco

Universitario: Nelson Alexander Mamani Villazante

Materia: Análisis Numérico

Fecha: 10 de octubre de 2024

La temperatura de ebullición del agua T_B a varias altitudes h se presenta en la siguiente tabla. Determina una ecuación lineal de la forma $T_B = mh + b$ que se ajuste mejor a los datos. Usa la ecuación para calcular la temperatura de ebullición a $5000 \ m$. Realiza una gráfica de los puntos y de la ecuación.

h (ft)	-1,000	0	3,000	8,000	15,000	22,000	28,000
T (°F)	213.9	213.9	206.2	196.2	184.4	172.6	163.1

Ahora utilizando el método de Newton y Lagrange queremos saber:

- A que temperatura en grados Farenheit hierbe el agua a una altitud de 5000m sobre el nivel del mar
- A que temperatura en grados Farenheit hierbe el agua en la ciudad de la Paz
- A que temperatura en grados Farenheit hierbe el agua en la ciudad de El Alto Primero averiguamos la altitud a la que se encuentran la ciudad de la paz y la ciudad de el alto.

	metros	pies
5000 164		16404,2
LA PAZ	3640	11942,26
EL ALTO	4150	13615,49

En Excel utilizamos el método de Newton

Realizamos los cálculos en Excel

#	h(ft)	T(°F)
0	-1000	213,9
1	0	212
2	3000	206,2
3	8000	196,2
4	15000	184,4
5	22000	172,6
6	28000	163,1

Interpolación por el método de Newton

	Х	у	1er nivel	2do nivel	3er nivel
0	3000	206,2	-0,002	2,61905E-08	-1,37845E-12
			-		
1	8000	196,2	0,00168571	-2,94283E-22	
			-		•
2	15000	184,4	0,00168571		
3	22000	172,6			

Ahora Calculamos:

- la interpolación a 5000 metros

5000	16404,2	?			
		f[x0] + f[x0,x1] (x-x0) + f[x0,x1,x2] (x-			
		x0) (x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x1)			
	p(x)=	x2)			
	P(x=16404,4)=	182,123948	°F		
				CALCULAMOS	
	Dato Real	181,76	°F	EL ERROR=	0,36394849

- Calcular para la ciudad de La Paz

LA PAZ					
3640	11942,26	?			
	p(x)=	f[x0] + f[x0,x1] (x-x0) + f[x0,x1,x2] (x-x0) (x-x1) + f[x0,x1,x2,x3] (x-x0) (x-x1) (x-x2)			
	P(x=11942,26)=	189,387353	°F		
	Dato Real	185	°F	CALCULAMOS EL ERROR=	4,38735308

- Calcular para la Ciudad De el Alto

EL ALTO					
4150	13615,49				
	p(x)=	f[x0] + f[x0,x1] (x-x0) + f[x0,x1,x2] (x-x0) (x-x1) + f[x0,x1,x2,x3] (x-x0) (x-x1) (x-x2)			
	P(x=13615,49)=	186,644031	°F		
	Dato real	186,8	°F	CALCULAMOS EL ERROR=	0,15596857

Ahora hacemos los cálculos con el método de Lagrange

Temperatura a la que el agua hierve a 5000 metros

Temperatura a la que el agua hierve en la ciudad de La Paz

Temperatura a la que el agua hierve en la ciudad de El Alto

Calculadora de polinomios de Lagrange

Puntos de datos, un punto por línea, separados por el espacio

3000 206,2

8000 196,2

15000 184,4

22000 172,6

28000 163,1

Puntos de interpolación 13615,49

Grafica comparativa de los resultados

Conclusión

Ambos métodos de interpolación son útiles y aplicables en diferentes contextos. El método de Newton es más eficiente cuando se tiene un conjunto de datos que puede modificarse frecuentemente, ya que permite agregar o eliminar puntos sin recalcular todo el polinomio. Por otro lado, el método de Lagrange es preferible cuando se trabaja con un conjunto de puntos fijo y se busca una implementación más directa, aunque es menos eficiente si se añaden o eliminan puntos.

En general, el método de Newton es más versátil y eficiente para aplicaciones prácticas, mientras que el método de Lagrange es más intuitivo y adecuado para situaciones de aprendizaje o casos con pocos puntos.