$MA615_Assignment1$

Sky Liu 9/17/2018

Figure 1: Book Prints Exercise

Given the condition that a book has an average of 2 misprints on each page, the distribution of number of misprints (denoted at W) on this book is assumed by Poisson distribution:

```
Poisson(\lambda = 2).
```

The probability pk of more than k misprints on a page is:

```
pk = P(W > k) = 1 - P(W \le k) = 1 - ppois(k, lambda=2).
```

The probability of pages that is less than n and with more than k misprints (denoted as T) is:

```
P(T \le n) = \text{pbinom}(n, 50, p_k).
```

Our goal of this assignment is to produce a table that shows that P(T = n | k = 1, 2, ..., 49). In order to obtain this probability, first we need to know pk for each k.

In the table below, the second column refers to P(W=k), the third column refers to 1 - $P(W \le k)$ (cumsum(prob) is the cumulative probability $P(W \le k)$)

```
options(digits = 3)
options(scipen = 999)
#produce a dataframe containing $P(T = n | k = 1, 2, ..., 49)$
k <- 0:10
k <- c(k, 48, 49)
#P(W=k)
prob <- as.data.frame(dpois(x = 0:12, lambda = 2))
#pk = 1 - cumulative probability = P(W>k)
prob <- cbind(k, prob, cumsum(prob), 1 - cumsum(prob))
colnames(prob) <- c("k_value", "P(W=k)", "P(W>k)", "pk")
#from k = 10 to k = 49, the results are the same.
prob[12,1] <- "..."
p1.table <- kable(prob)
kable_styling(p1.table, bootstrap_options = "striped", full_width = FALSE, position = "left")</pre>
```

k_value	P(W=k)	P(W>k)	pk
0	0.135	0.135	0.865
1	0.271	0.406	0.594
2	0.271	0.677	0.323
3	0.180	0.857	0.143
4	0.090	0.947	0.053
5	0.036	0.983	0.017
6	0.012	0.995	0.005
7	0.003	0.999	0.001
8	0.001	1.000	0.000
9	0.000	1.000	0.000
10	0.000	1.000	0.000
	0.000	1.000	0.000
49	0.000	1.000	0.000

Next we need to culculate $P(T \le n)$ for k = 0, 1, ..., 49

```
options(digits = 3)
options(scipen = 999)
p2.table <- 0:49
p2.table <- as.data.frame(p2.table)</pre>
colnames(p2.table) <- c("n")</pre>
cp <- prob[, 4]</pre>
for (i in 1:11) {
  #producing columns of P(T \le n) for each k value between 0 and 49
  fc \leftarrow pbinom(q = 0:49, size = 50, prob = cp[i])
  fc <- as.data.frame(fc)</pre>
  colnames(fc) <- i - 1</pre>
  p2.table <- cbind(p2.table, fc)</pre>
\#from \ k = 10 \ to \ k = 49, the results are the same.
i <- 12
#producing columns of P(T \le n) for each k value between 11 and 48
fc \leftarrow pbinom(q = 0:49, size = 50, prob = cp[i])
fc <- as.data.frame(fc)</pre>
colnames(fc) <- "..."</pre>
p2.table <- cbind(p2.table, fc)</pre>
#producing columns of P(T \le n) for k = 49
fc \leftarrow pbinom(q = 0:49, size = 50, prob = cp[i])
fc <- as.data.frame(fc)</pre>
colnames(fc) <- 49</pre>
p2.table <- cbind(p2.table, fc)
p2.table <- kable(p2.table)</pre>
p2.table<-kable_styling(p2.table, bootstrap_options = "striped", full_width = FALSE, position = "left",
add_header_above(p2.table, c("P(T \) = 13), escape = FALSE)
```

	$P(T \le n k=0:49)$												
n	0	1	2	3	4	5	6	7	8	9	10		49
0	0.000	0.000	0.000	0.000	0.067	0.434	0.797	0.947	0.988	0.998	1	1	1
1	0.000	0.000	0.000	0.004	0.253	0.799	0.978	0.999	1.000	1.000	1	1	1
2	0.000	0.000	0.000	0.019	0.506	0.950	0.998	1.000	1.000	1.000	1	1	1
3	0.000	0.000	0.000	0.060	0.731	0.991	1.000	1.000	1.000	1.000	1	1	1
4	0.000	0.000	0.000	0.140	0.878	0.999	1.000	1.000	1.000	1.000	1	1	1
5	0.000	0.000	0.000	0.262	0.953	1.000	1.000	1.000	1.000	1.000	1	1	1
6	0.000	0.000	0.001	0.416	0.985	1.000	1.000	1.000	1.000	1.000	1	1	1
7	0.000	0.000	0.003	0.576	0.996	1.000	1.000	1.000	1.000	1.000	1	1	1
	0.000	0.000	0.008	0.720	0.999	1.000	1.000	1.000	1.000	1.000	1	1	1
9	0.000	0.000	0.018	0.831	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
10	0.000	0.000	0.039	0.908	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
11	0.000	0.000	0.076	0.954	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
12	0.000	0.000	0.133	0.979	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
13	0.000	0.000	0.212	0.991	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
14	0.000	0.000	0.312	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
15	0.000	0.000	0.427	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
16	0.000	0.000	0.547	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
17	0.000	0.000	0.662	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
18	0.000	0.001	0.762	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
19	0.000	0.002	0.843	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
20	0.000	0.004	0.903	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
21	0.000	0.010	0.944	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
22	0.000	0.020	0.970	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
23	0.000	0.038	0.985	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
24	0.000	0.068	0.993	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
25	0.000	0.114	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
26	0.000	0.178	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
27	0.000	0.262	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
28	0.000	0.362	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
29	0.000	0.473	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
30	0.000	0.588	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
31	0.000	0.695	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
32	0.000	0.789	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
33	0.000	0.864	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
34	0.001	0.918	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
35	0.002	0.955	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
36	0.005	0.977	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
37	0.014	0.989	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
38	0.032	0.996	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
39	0.068	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
40	0.131	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
41	0.229	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
42	0.364	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
43	0.524	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
44	0.686	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
45	0.825	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
46	0.921	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
47	0.973	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
48	0.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1
49	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1	1	1