2.2 下列函数在何处可导?何处不可导?何处解析?何处不

,一个发表为0.

解析?

さらならい。

(1)
$$f(z) = \overline{z} \cdot z^2$$
;

解
$$f(z) = \overline{z} \cdot z^2 = \overline{z} \cdot z \cdot z = |z|^2 \cdot z$$

= $(x^2 + y^2)(x + iy)$

$$=x(x^2+y^2)+iy(x^2+y^2),$$

这里
$$u(x,y) = x(x^2 + y^2), v(x,y) = y(x^2 + y^2).$$

$$u_x = x^2 + y^2 + 2x^2$$
, $v_y = x^2 + y^2 + 2y^2$,

$$u_{y}=2xy, \qquad \qquad n$$

要
$$u_x = v_y, u_y = -v_x$$
, 当且仅当 $x = y = 0$, 而 u_x, u_y, v_x, v_y 均连续, 故 $f(z)$ = $z \cdot z^2$ 仅在 $z = 0$ 处可导, 处处不解析.

(2)
$$f(z) = x^2 + iy^2$$
;

解 这里
$$u=x^2$$
, $v=y^2$, $u_x=2x$, $u_y=0$, $v_x=0$, $v_y=2y$, 四个偏导数均续, 但 $u_x=v_y$, $u_y=v_y=0$, $v_y=0$, $v_y=0$, $v_y=0$, $v_y=0$, $v_y=0$

连续,但 $u_x = v_y, u_y = -v_x$ 仅在x = y处成立,故f(z)仅在x = y上^{间身}, 处处不解析.