4.2.1 直线与圆的位置关系

0.1 教学重难点

重点 熟练掌握直线与圆的位置关系及其判定办法,能切实解决弦长问题,切线问题;

难点 灵活应用直线与圆的位置关系及其判定办法求解相关题目.

1 直线与圆的位置关系

圆心到直线的距离: d, 圆的半径: r

- 相离
- *d > r*
- 没有交点

- 相切
- d=r
- 有一个交点

- 相交
- d < r
- 有两个交点

2 直线与圆的位置关系判定方法

圆 $C: (x-a)^2 + (y-b)^2 = r^2(r>0)$

直线 l: Ax + By + C = 0

2.1 几何法判定

借助圆心到直线的距离 d 与半径 r 的大小关系进行判定:

• $d > r \iff$ 相离

• $d=r\Longleftrightarrow$ 相切

提醒:

$$d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$$

• $d < r \iff$ 相交

2.1.1 几何法判定——例题

例 1. 判断直线 l 与圆 C 的位置关系:

圆 $C: x^2 + y^2 - 2x - 24 = 0$

直线 l: x + y - 2 = 0.

练习 1: 判断直线 l 与圆 C 的位置关系: 圆 $C: x^2 + y^2 - 2x - 24 = 0$,直线 l: 4x - 3y + 21 = 0.

2.2 代数法判定

借助直线与圆的公共点的个数进行判定:

$$\left\{\begin{array}{ll} (x-a)^2+(y-b)^2=r^2\\ Ax+By+C=0 \end{array}\right. \Longrightarrow$$
 关于 $x(y)$ 的一元二次方程

则其解的个数对应于线圆交点个数

- $\Delta < 0 \iff$ 没有交点 \iff 相离

2.2.1 代数法判定——例题

例 2: 判断直线 l 与圆 C 的位置关系: 圆 $C: x^2 + y^2 = 4$, 直线 l: y = 2x + 1.

练习 2: 判断直线 l 与圆 C 的位置关系: 圆 $C: x^2 + y^2 - 2x - 1 = 0$, 直线 l: x + y - 2 = 0.

2.3 例题研究

例 3: 若直线 ax + y = 1 与圆 $(x - 1)^2 + (y - 2)^2 = 1$ 有两个不同的交点,求 a 的取值范围.

练习 3: 直线 y = kx + 2 与圆 $x^2 + y^2 = 1$ 没有公共点,则 k 的取值范围是_____.

2.3.1 弦长问题

例 4:求直线 $x - \sqrt{3}y + 2\sqrt{3} = 0$ 被圆 $x^2 + y^2 = 4$ 截得的弦长.

例 5: 直线过点 (4,0), 且被圆 $x^2 + y^2 - 2x - 2y - 7 = 0$ 所截得的弦长最长,求直线的方程为.

2.4 知识小结

1. 直线与圆的位置关系判定:

相离 \iff $d > r \iff \Delta < 0$

相切 \iff $d = r \iff \Delta = 0$

相交 \iff $d < r \iff \Delta > 0$

其中, 判别式 Δ 的来源:

$$\left\{\begin{array}{ll} (x-a)^2+(y-b)^2=r^2\\ Ax+By+C=0 \end{array}\right. \implies$$
 关于 $x(y)$ 的一元二次方程

2. 弦长问题:

半径: r, 弦心距: d

弦长: $|AB| = 2|BM| = 2\sqrt{r^2 - d^2}$

课后作业

《课时作业(二十八)》