1 Write out the following models of elementary/intermediate statistical analysis in the matrix form

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

(a) A one-variable quadratic polynomial regression model

$$y_i = \alpha_0 + \alpha_1 x_i + \alpha_2 x_i^2 + \epsilon_i \text{ for } (i = 1, 2, ..., 5).$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{pmatrix}, \beta = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix}, \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{pmatrix}$$

 $y = X\beta + \epsilon$ in this model is therefore:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{pmatrix}$$

(b) A two-factor ANCOVA model without interactions

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma(x_{ijk} - \bar{x}) + \epsilon_{ijk}$$
 for $i = 1, 2, j = 1, 2$, and $k = 1, 2$.

This model describes an 8-dimensional data space, where the column of centered x values may be calculated as follows:

$$\mathbf{y} = \begin{pmatrix} y_{111} \\ y_{112} \\ y_{121} \\ y_{122} \\ y_{211} \\ y_{212} \\ y_{221} \\ y_{222} \end{pmatrix}, \epsilon = \begin{pmatrix} \epsilon_{111} \\ \epsilon_{112} \\ \epsilon_{121} \\ \epsilon_{122} \\ \epsilon_{211} \\ \epsilon_{212} \\ \epsilon_{221} \\ \epsilon_{222} \end{pmatrix}, \mathbf{x}_c = (\mathbf{I} - \frac{1}{n}\mathbf{J}) \begin{pmatrix} x_{111} \\ x_{112} \\ x_{121} \\ x_{122} \\ x_{211} \\ x_{212} \\ x_{221} \\ x_{221} \\ x_{221} - \bar{x} \\ x_{221} - \bar{x} \\ x_{221} - \bar{x} \\ x_{222} - \bar{x} \end{pmatrix}$$

The design matrix **X** and regression coefficient vector β are given by:

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & x_{111} - \bar{x} \\ 1 & 1 & 0 & 1 & 0 & x_{112} - \bar{x} \\ 1 & 1 & 0 & 0 & 1 & x_{121} - \bar{x} \\ 1 & 1 & 0 & 0 & 1 & x_{122} - \bar{x} \\ 1 & 0 & 1 & 1 & 0 & x_{211} - \bar{x} \\ 1 & 0 & 1 & 1 & 0 & x_{212} - \bar{x} \\ 1 & 0 & 1 & 0 & 1 & x_{221} - \bar{x} \\ 1 & 0 & 1 & 0 & 1 & x_{222} - \bar{x} \end{pmatrix}, \, \beta = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \\ \gamma \end{pmatrix}$$

Putting these together gives the model:

$$\begin{pmatrix} y_{111} \\ y_{112} \\ y_{121} \\ y_{122} \\ y_{211} \\ y_{212} \\ y_{221} \\ y_{222} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & x_{111} - \bar{x} \\ 1 & 1 & 0 & 1 & 0 & x_{112} - \bar{x} \\ 1 & 1 & 0 & 0 & 1 & x_{121} - \bar{x} \\ 1 & 1 & 0 & 0 & 1 & x_{122} - \bar{x} \\ 1 & 0 & 1 & 1 & 0 & x_{211} - \bar{x} \\ 1 & 0 & 1 & 1 & 0 & x_{212} - \bar{x} \\ 1 & 0 & 1 & 0 & 1 & x_{221} - \bar{x} \\ 1 & 0 & 1 & 0 & 1 & x_{222} - \bar{x} \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \\ \gamma \end{pmatrix} + \begin{pmatrix} \epsilon_{111} \\ \epsilon_{112} \\ \epsilon_{121} \\ \epsilon_{222} \\ \epsilon_{211} \\ \epsilon_{222} \\ \epsilon_{221} \\ \epsilon_{222} \end{pmatrix}$$

*

2 Use eigen() function in R to compute the eigenvalues and eigenvectors of

$$\mathbf{V} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

Then use R to find and "inverse square root" of this matrix. That is, find a symmetric matrix **W** such that $\mathbf{WW} = \mathbf{V}^{-1}$.

(a) Eigenvalues and Eigenvectors

I ran the following R-code using eigen() eigen to calculate eigenvalues and eigenvectors. A small function lvector() calls xtable() and print() in order to generate latex output below (see appendix).

```
V <- matrix(c(3, -1, 1, -1, 5, -1, 1, -1, 3), 3,3, byrow=TRUE)
lvector(as.matrix(eigen(V)$values), dig=0)
for (i in 1:3){
lvector(as.matrix(eigen(V)$vectors[,i]))
}</pre>
```

The eigenvalues are

$$\lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}$$

With corresponding eigenvectors:

$$\mathbf{e_1} = \begin{pmatrix} 0.41 \\ -0.82 \\ 0.41 \end{pmatrix}, \mathbf{e_2} = \begin{pmatrix} 0.58 \\ 0.58 \\ 0.58 \end{pmatrix}, \mathbf{e_3} = \begin{pmatrix} 0.71 \\ 0.00 \\ -0.71 \end{pmatrix}.$$

(b) Inverse Square Root

In order to find the "inverse square root", spectral decomposition was performed, as outlined below. **U** is a matrix made up of the eigenvectors of **V** in columns, and **D** is a matrix with **V**'s eigenvalues along the diagonal. **V** and **V**⁻¹ have the same eigenvectors, denoted \mathbf{u}_i below, and a square non-singular matrix with eigenvalues λ_i 's will have an inverse with eigenvalues given by λ_i^{-1} .

$$V = UDU^{T} = \sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}$$

$$V^{1/2} = UD^{1/2}U^{T} = \sum_{i=1}^{n} \lambda_{i}^{1/2} u_{i} u_{i}^{T}$$

$$V^{-1} = UD^{-1}U^{T} = \sum_{i=1}^{n} \lambda_{i}^{-1} u_{i} u_{i}^{T}$$

$$V^{-1/2} = UD^{-1/2}U^{T} = \sum_{i=1}^{n} \lambda_{i}^{-1/2} u_{i} u_{i}^{T}$$

V_inv = solve(V)
C = as.matrix(eigen(V_inv)\$vectors)
D_sqrt = diag(lapply(eigen(V_inv)\$values, sqrt))
W = C%*%D_sqrt%*%t(C)
lvector(W, dig=4)

$$\mathbf{W} = \begin{pmatrix} 0.6140 & 0.0564 & -0.0931 \\ 0.0564 & 0.4646 & 0.0564 \\ -0.0931 & 0.0564 & 0.6140 \end{pmatrix}$$

And a comparison between **WW** and V^{-1} :

Prod = W%*%W
lvector(Prod)
lvector(solve(V))

$$\mathbf{WW} = \begin{pmatrix} 0.39 & 0.06 & -0.11 \\ 0.06 & 0.22 & 0.06 \\ -0.11 & 0.06 & 0.39 \end{pmatrix}, \mathbf{V}^{-1} = \begin{pmatrix} 0.39 & 0.06 & -0.11 \\ 0.06 & 0.22 & 0.06 \\ -0.11 & 0.06 & 0.39 \end{pmatrix}$$

3 Consider the matrices

$$\mathbf{A} = \begin{pmatrix} 4 & 4.001 \\ 4.001 & 4.002 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 4 & 4.001 \\ 4.001 & 4.002001 \end{pmatrix}$.

Obviously, these matrices are nearly identical. Use R and compute the determinants and inverses of these matrices. (Even though the original two matrices are nearly the same, $\mathbf{A}^{-1} \approx -3\mathbf{B}^{-1}$. This shows that small changes in the elements of nearly singular matrices can have big effects on some matrix operations.)

(a) Determinants and Inverses.

Both determinants were determined using \det () in R and are nearly zero. The determinant of A is -1.00000000513756e-06 and the determinant of B is 2.9999999764467e-06.

$$\mathbf{A}^{-1} = \begin{pmatrix} -4001999.98 & 4000999.98 \\ 4000999.98 & -3999999.98 \end{pmatrix} \text{ and } \mathbf{B}^{-1} = \begin{pmatrix} 1334000.33 & -1333666.67 \\ -1333666.67 & 1333333.33 \end{pmatrix}$$

#\$\$

$$-3\mathbf{B}^{-1} = \begin{pmatrix} -4002001.00 & 4001000.00 \\ 4001000.00 & -4000000.00 \end{pmatrix}$$

4 Write an R function to conduct projection, e.g. with the name project()

The input is the given design matrix X, and the output is the projection matrix P_X for projecting a vector onto the column space of X.

In the following code, I define a function project() which accepts a matrix as an input and uses the t() and ginv() functions to calculate the transpose and inverse. $P_X = X(X^TX)^-X^T$ is returned. I also ran a few tests, first using the matrix V defined in problem 2 to make sure the projection is symmetric and idempotent. I also tested the results of scalar and V0 (matrix of all zero) inputs.

```
library(MASS)
project <- function (X) \{X\%\%(ginv(t(X)\%\%X))\%\%(X)\}
lvector(project(V))
lvector(project(V)%*%project(V))
lvector(t(project(V)))
lvector(project(3))
                                              (1.00)
lvector(project(matrix(c(0,0,0,0),2,2)))
```

- 5 Consider the (non-full-rank) two-way "effect model" with interactions in the Example (d) in lecture.
- (a) Determine which of the parametric functions below are estimable:

$$\alpha_1, \alpha_2 - \alpha_a, \mu + \alpha_1 + \beta_1 + \delta_{11}, \delta_{12}, \delta_{12} - \delta_{11} - (\delta_{22} - \delta_{21})$$

For those that are estimable, find $\mathbf{c}^T(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$, such that $\mathbf{c}^T(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{Y}$ produces the estimate of $\mathbf{C}^T\beta$.

Example (d) described a two-way model to study trees of types A and B treated with either old or new fungicide. Each response variable, y_{ijk} represents the response of variety i to fungicide j of the tree with index k, where i = 1, 2, j = 1, 2, and k = 1, 2.

The model, $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ in example (d) is:

$$\begin{pmatrix} y_{111} \\ y_{112} \\ y_{121} \\ y_{122} \\ y_{211} \\ y_{212} \\ y_{221} \\ y_{222} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \\ \delta_1 1 \\ \delta_1 2 \\ \epsilon_{211} \\ \epsilon_{212} \\ \epsilon_{221} \\ \epsilon_{222} \end{pmatrix}$$

The only regression coefficients or combinations that can be estimated can be written in the form $\mathbf{c}^{T}\beta$, where the vector \mathbf{c} is in the row space of the design matrix \mathbf{X} (equivalent to the column space of \mathbf{X}^{T}).

There are 5 parametric functions in this question:

- 1. α_1 , $c^T = (0, 1, 0, 0, 0, 0, 0, 0, 0)$. This is not in the column space of \mathbf{X}^T , so it is not estimable.
- 2. $\alpha_2 \alpha_1$, $c^T = (0, -1, 1, 0, 0, 0, 0, 0, 0)$ This is not in the column space of \mathbf{X}^T , so it is not estimable.
- 3. $\mu + \alpha_1 + \beta_1 + \delta_{11}$, $c^T = (1, 1, 0, 1, 0, 1, 0, 0, 0)$ This is in the column space of \mathbf{X}^T , so it is estimable.
- 4. δ_{12} , $c^T = (0,0,0,0,0,0,1,0,0)$. Not in the column space of \mathbf{X}^T and therefore not estimable.
- 5. $\delta_{12} \delta_{11} (\delta_{22} \delta_{21}), c^T = (0, 0, 0, 0, 0, -1, 1, 1, -1)$. This is in the column space of \mathbf{X}^T , so it is estimable.

We can use R to find $\mathbf{c}^{\mathbf{T}}(X^TX)^-X^T$ for $\mu + \alpha_1 + \beta_1 + \delta_1 1$ and $\delta_1 2 - \delta_1 1 - (\delta_2 2 - \delta_2 1)$.

$$\mathbf{c}_{\mu+\alpha_1+\beta_1+\delta_1\mathbf{1}}^{\mathbf{T}}(\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathbf{T}} = \begin{pmatrix} 0.50 & 0.50 & -0.00 & -0.00 & -0.00 & -0.00 & 0.00 \end{pmatrix}$$

and

$$\mathbf{c}_{\delta_{12}-\delta_{11}-(\delta_{22}-\delta_{21})}^{\mathbf{T}}(\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathbf{T}} = \begin{pmatrix} -0.50 & -0.50 & 0.50 & 0.50 & 0.50 & -0.50 & -0.50 \end{pmatrix}$$

(b) For the parameter vector β written in the order used in class, consider the hypothesis H_0 : $C\beta = 0$ for

Is this hypothesis testable? Explain.

No, this hypothesis is not fully testable. This hypothesis asks whether the parametric function $\alpha_1 - \alpha_2$ (represented by the first row of \mathbf{C}) is zero and the parametric function $\delta_1 1 - \delta_1 2 - \delta_2 1 + \delta_2 2$ is zero (second row). The second row of \mathbf{C} is in the column space of \mathbf{X}^T so it would be testable. However, the first row is not, the function $\alpha_1 - \alpha_2$ is not estimable and therefore not testable.

6 Appendix: Tangled R-code

```
library (xtable)
lvector \leftarrow function(x, dig = 2, dsply=rep("f", ncol(x)+1)) {
 x \leftarrow xtable(x, align=rep("", ncol(x)+1), display=dsply, digits=dig) # We repeat empty string 6 times
 print(x, floating=FALSE, tabular.environment="pmatrix",
   hline.after=NULL, include.rownames=FALSE, include.colnames=FALSE)
 }
lvector(as.matrix(lapply(1:5, function(x) paste("y_", x, sep="")), dsply=c("s", "s")))
x \leftarrow as.matrix(lapply(1:5, function(x) paste("x_", x, sep="")))
x2 \leftarrow as.matrix(lapply(1:5, function(x) paste("x2_",x,sep="")))
X \leftarrow cbind(rep(1,5), x, x2)
lvector(X, dig=0)
lvector(as.matrix(lapply(1:5, function(x) paste("epsilon_", x, sep="")), dsply=c("s","s")))
V \leftarrow matrix(c(3, -1, 1, -1, 5, -1, 1, -1, 3), 3,3, byrow=TRUE)
lvector(as.matrix(eigen(V) $values), dig=0)
for (i in 1:3){
lvector (as. matrix (eigen (V) $vectors [, i]))
V_{inv} = solve(V)
C = as.matrix(eigen(V_inv)$vectors)
D_sqrt = diag(lapply(eigen(V_inv)$values, sqrt))
W = C\% *\%D   sqrt\% *\%t (C)
lvector (W, dig=4)
Prod = W%*W
lvector (Prod)
lvector(solve(V))
A \leftarrow matrix(c(4, 4.001, 4.001, 4.002), 2, 2, byrow=T)
B \leftarrow matrix(c(4, 4.001, 4.001, 4.002001), 2, 2, byrow=T)
library (MASS)
project \leftarrow function (X) \{X\%*\%(ginv(t(X)\%*\%X))\%*\%t(X)\}
lvector(project(V))
lvector(project(V)%*%project(V))
lvector(t(project(V)))
lvector(project(3))
lvector (project (matrix (c(0,0,0,0),2,2)))
X \leftarrow matrix(c(rep(1,8), rep(1,4), rep(0,8), rep(1,4),
```

```
\begin{split} rep(c(1,1,0,0),2), & rep(c(0,0,1,1),2), \\ rep(c(1,1,rep(0,8)),3), & 1,1), nrow=8, ncol=9, & byrow=FALSE) \\ ct3 &<- & matrix(c(1,1,0,1,0,1,0,0,0), nrow=1) \\ ct5 &<- & matrix(c(0,0,0,0,0,-1,1,1,-1), & nrow=1) \\ lvector(ct3%*%ginv(t(X)%*%X)%*%t(X)) \\ lvector(ct5%*%ginv(t(X)%*%X)%*%t(X)) \end{split}
```