Study Notes of Matrix and Tensor

Pei Zhong

March 23, 2024

Contents

1	Prob	pability and Distributions	3
	1.1	Introduction	3
	1.2	Sets	3
	1.3	The Probability Set Function	3
	1.4	Conditional Probability and Independence	5
	1.5	Random variables	5
	1.6	Discrete Random Variables	6
	1.7	Continuous Random Variables	6
	1.8	Expectation of a Random Variable	6
	1.9	Some Special Expectations	6
		1.9.1 The Moment Generating Function	6
	1.10	Homework	7
	1.11	Reference	7
2	Mul	tivariate Distributions	8
	2.1	Distributions of Two Random Variables	8
	2.2	Transformations: Bivariate Random Variables	10
	2.3	Conditional Distributions and Expectations	10
	2.4	Independent Random Variables	10
	2.5	The Correlation Coefficient	10
	2.6	Homework	10
	2.7	Reference	12

Preface

The notes mainly refer to:

- Introduction to Mathematical Statistics 8th Edition
- lecture note
- Study Guide

Chapter 1

Probability and Distributions

1.1 Introduction

Definition 1.1

If an experiment can be repeated under the same conditions it is a random experiment. The set of every possible outcome of an experiment is the sample space, denoted C.

Remark. For an experiment, the sample space is not unique. For example, When talking about the temperature in an area, we can define the sample space as $\mathcal{C} = (-\infty, \infty)$ or $\mathcal{C} = [a, b]$. For a specific random experiment, we can use different sample spaces to describe it. However, it is worth studying how to describe it with an appropriate sample space.

Note/Definition. Notationally, we denote the elements of the sample space with lower case letters such as a, b, c. Subsets of the sample space are *events* and we denote them with upper case letters such as A, B, C.

Definition 1.2

If an experiment is performed N times and a specific event occurs f times, then f is the frequency of the event and f/N is the relative frequency of the event.

1.2 Sets

1.3 The Probability Set Function

We need to define a set function that assigns a probability to the events (subsets of sample space \mathcal{C}). We denote the colletion of events as \mathcal{B} . If \mathcal{C} is finite set, then we hope to assign a probability to all events (that is, to define a probability set function on the power set of \mathcal{C}). More generally, we require that \mathcal{B} (the colletion of events) to satisfy: (1) the sample space \mathcal{C} itself is an event, (2) the complement of every event is again an event, and (3) every countable union of events is again an event. Symbolically, this means (1) $\mathcal{C} \in \mathcal{B}$, (2) if $A \in \mathcal{B}$ then $A^c \in \mathcal{B}$, and (3) if $A_1, A_2, ... \in \mathcal{B}$ then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. Combining (2) and (3), we see by DeMorgan's Law (for countable unions) that

if $A_1, A_2, ... \in \mathcal{B}$ then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{B}$. So the collection of events \mathcal{B} is closed under complements, countable unions, and countable intersections. Such a collection of sets form a σ -algebra.

Definition 1.3

A collection of events $\{A_n | n \in I\}$ (where I is some indexing set) such that $A_i \cap A_j = \emptyset$ is a mutually exclusive collection of events.

Definition 1.4

Let \mathcal{C} be a sample space and let \mathcal{B} be the set of all events (thus, \mathcal{B} is a σ -field). Let P be a real-valued function defined on \mathcal{B} . Then P is a probability set function if P satisfies the following three conditions:

- (1) $P(A) \ge 0$ for $A \in \mathcal{B}$.
- (2) P(C) = 1.
- (3) If $\{A_n\}$ is a mutually exclusive collection of events, then $P(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} P(C_n)$.

Theorem 1.1

For each event $A \in \mathcal{B}$, $P(A) = 1 - P(A^c)$.

Theorem 1.2

The probability of the null set is zero; that is, $P(\emptyset) = 0$.

Theorem 1.3

If A and B are events such that $A \subset B$, then $P(A) \leq P(B)$.

Theorem 1.4

For each event $A \in \mathcal{B}$ we have $0 \leqslant P(A) \leqslant 1$.

Theorem 1.5

If A and B are events in C, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Theorem 1.6

Let $\{A_n\}$ be a nondecreasing sequence of events (ie. $A_n \subseteq A_{n+1}$). Then

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n) = P(\bigcup_{n=1}^{\infty} A_n).$$

Let $\{A_n\}$ be a nonincreasing sequence of events (ie. $A_n \supseteq A_{n+1}$). Then

$$\lim_{n\to\infty} P(A_n) = P(\lim_{n\to\infty} A_n) = P(\cap_{n=1}^{\infty} A_n).$$

Theorem 1.7

Let $\{A_n\}$ be an arbitrary sequence of events. Then

$$P(\bigcup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} P(A_n).$$

1.4 Conditional Probability and Independence

The idea behind conditional probability is that the initial sample space \mathcal{C} has been replaced with some subset $A \subset \mathcal{C}$.

Definition 1.5

Let B and A be events with P(A)>0. Then the conditional probability of B given A as $P(B|A)=\frac{P(A\cap B)}{P(A)}$.

Note/Definition. If A and B are events where P(A) > 0 then $P(A \cap B) = P(A)P(B|A)$ by Definition 1.5. This is called the multiplication rule also.

Definition 1.6

Let A and B be two events. Then A and B are Independent is $P(A \cap B) = P(A)P(B)$.

1.5 Random variables

Definition 1.7

Consider a random experiment with a sample space \mathcal{C} . A function X which assigns to each $c \in \mathcal{C}$ one and only one real number X(c) = x is a random variable. The space (or range) of X is the set of real numbers $\mathcal{D} = \{x | x = X(c) \text{ for some } c \in \mathcal{C}\}$. If \mathcal{D} is a countable set then X is a discrete random variable and if \mathcal{D} is an interval of real numbers then X is a continuous random variable.

Definition 1.8

Let X be a random variable. Then its cumulative distribution function (cdf) $F : \mathbb{R} \to [0, 1]$ is defined as follows:

$$F(x) = P(X \leqslant x).$$

Theorem 1.8

1.6 Discrete Random Variables

1.7 Continuous Random Variables

1.8 Expectation of a Random Variable

1.9 Some Special Expectations

1.9.1 The Moment Generating Function

Recall ethe McLaurin series

$$f(\alpha) = e^{\alpha} = \sum_{m=0}^{\infty} \frac{\alpha^m}{m!},$$

if we write the random variable

$$e^{tX} = \sum_{m=0}^{\infty} \frac{t^m}{m!} X^m,$$

then its expectation value defines something called the moment generating function (mgf)

$$M(t) = E(e^{tX}) = \sum_{m=0}^{\infty} \frac{t^m}{m!} E(X^m).$$

If we take the mth derivative of the mgf, evaluated at t=0, we get the mth $(m \ge 1)$ moment:

$$M^m(0) = E(X^m).$$

For this to work, the mgf has to be defined in a neighborhood of the origin, i.e., for -h < t < h where h > 0 is some positive number.

Definition 1.9

Let X be a random variable such that for some h>0, the expectation of e^{tX} exists for -h < t < h. The moment generating function (or mgf) of X is the function $M(t) = E(e^{tX})$ for -h < t < h.

Remark. When a moment generating function exists, we must have for t=0 that M(0)=E(1)=1.

1.10 Homework

Exercise 1.1

Show that the moment generating function of the random variable X having the pdf $f(x)=\frac{1}{3}$, -1< x< 2, zero elsewhere, is

$$M(t) = \begin{cases} \frac{e^{2t} - e^{-t}}{3t} & t \neq 0\\ 1 & t = 0. \end{cases}$$

Solve For $t \neq 0$,

$$M(t) = E(e^{tX}) = \int_{-\infty}^{+\infty} e^{tx} f(x) dx = \int_{-1}^{2} \frac{1}{3} e^{tx} dx = \frac{1}{3} \frac{e^{tx}}{t} \Big|_{x=-1}^{x=2} = \frac{e^{2t} - e^{-t}}{3t}.$$

And M(0) = 1 when a moment generating function exists and so the result follows.

1.11 Reference

- lecture note
- Probability and Distributions
- Sample space is unique?
- proof of 1.3

Chapter 2

Multivariate Distributions

2.1 Distributions of Two Random Variables

Definition 2.1

Given a random experiment with a sample space \mathcal{C} , consider two random variables X_1 and X_2 which assign to each element c of \mathcal{C} one and only one ordered pair of numbers (X_1, X_2) is a random vector. The space of (X_1, X_2) is the set of ordered pairs $\mathcal{D} = \{(x_1, x_2) | x_1 = X_1(c), x_2 = X_2(c), x \in \mathcal{C}\}.$

Definition 2.2

Let \mathcal{D} be the space associated with the random vectors (X_1, X_2) . For $A \subset \mathcal{D}$ we call A an event. The cumulative distribution function (cdf) for (X_1, X_2) is

$$F_{X_1,X_2}(x_1,x_2) = P(\{X_1 \leqslant x_1\} \cap \{X_2 \leqslant x_2\})$$
(2.1)

for $(x_1, x_2) \in \mathbb{R}^2$. This is the *joint cumulative distribution function* of (X_1, X_2) . If F_{X_1, X_2} is continuous then random variable (X_1, X_2) is said to be continuous.

Definition 2.3

A random vector (X_1, X_2) is a discrete random vector if its space \mathcal{D} is finite or countable. (Hence X_1 and X_2 both must be discrete.) The joint probability mass function of (X_1, X_2) is $p_{X_1, X_2}(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$ for all $(x_1, x_2) \in \mathcal{D}$.

Definition 2.4

If for random vector (X_1, X_2) with cumulative distribution function F_{X_1, X_2} , there is a function $f_{X_1, X_2} : \mathbb{R}^2 \to \mathbb{R}$ such that

$$F_{X_1,X_2}(x_1,x_2) = \int_{-\infty}^{x_1} \int_{\infty}^{x_2} f_{X_1,X_2}(w_1,w_2) dw_1 dw_2.$$

Then f_{X_1,X_2} is the joint probability density function (pdf) of (X_1,X_2) . The support of (X_1,X_2) is the set of all points (x_1,x_2) for which $f_{X_1,X_2}(x_1,x_2) > 0$, denoted \mathcal{S} .

<u>Remark.</u> In this course, continuous random vectors will have joint probability density functions that determine the cumulative distribution function. By the Fundamental Theorem of Calculus (applied twice)

$$\frac{\partial^2 F_{X_1, X_2}(x_1, x_2)}{\partial x_1 \partial x_2} = f_{X_1, X_2}(x_1, x_2).$$

For event $A \in \mathcal{D}$, we have

$$P((X_1, X_2) \in A) = \int \int_A f_{X_1, X_2}(x_1, x_2) dx_1 dx_2.$$

Remark. We can find the distribution of random variable X_1 and X_2 (called marginal distribution) based on the joint distribution of (X_1, X_2) . We have

$${X \leqslant x_1} = {X_1 \leqslant x_1} \cap {-\infty < X_2 < \infty},$$

so with F_{x_1} , the cumulative distribution function of X_1 we get for $x_1 \in \mathbb{R}$

$$F_{X_1}(x_1) = P(X \leqslant x_1) = P(X_1 \leqslant x_1, -\infty < X_2 < \infty)$$

= $\lim_{x_2 \to \infty} F_{X_1, X_2}(x_1, x_2).$

We can similarly find the marginal distribution F_{X_2} in terms of F_{X_1,X_2} . In the continuous case,

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_2,$$

$$f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_1.$$

2.2 Transformations: Bivariate Random Variables

2.3 Conditional Distributions and Expectations

2.4 Independent Random Variables

2.5 The Correlation Coefficient

2.6 Homework

Exercise 2.1

Let the joint pdf of *X* and *Y* be given by

$$f(x,y) = \begin{cases} \frac{2}{(1+x+y)^3} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

- (a) Compute the marginal pdf of X and the conditional pdf of Y, given X=x.
- (b) For a fixed X = x, compute E(1 + x + Y | x) and use the result to compute E(Y | x).

Solve (a) By the definition of marginal probability density function:

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \int_0^{\infty} \frac{2}{(1+x+y)^3} dy \stackrel{t=1+x+y}{=} \int_{1+x}^{\infty} \frac{2}{t^3} dt$$

$$= -t^{-2}|_{t=1+x}^{t=\infty}|_{t=1+x}^{t=1+x}^{t=\infty}|_{t=1+x}^{t=\infty}|_{t=1+x}^{t=\infty}|_{t=1+x}^{t=\infty}|_{t=1+x$$

Hence, $f_X(x) = \begin{cases} \frac{1}{(1+x)^2} & 0 < x < \infty \\ 0 & \text{elsewhere} \end{cases}$ and $f_Y(y) = \begin{cases} \frac{1}{(1+y)^2} & 0 < y < \infty \\ 0 & \text{elsewhere} \end{cases}$. The conditional probability density function of Y given X = x is

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{2}{(1+x+y)^3}}{\frac{1}{(1+x)^2}} = \frac{2(1+x)^2}{(1+x+y)^3}, \text{ for } 0 < x < \infty.$$

Hence,
$$f_{Y|X}(y|x) = \begin{cases} \frac{2(1+x)^2}{(1+x+y)^3} & 0 < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

(b) The conditional expectation of g(Y) = 1 + X + Y given X = x is

$$\begin{split} E(1+x+Y|x) &= \int_{-\infty}^{\infty} g(y) f_{Y|X}(y|x) dy \\ &= \int_{0}^{\infty} (1+x+y) \frac{2(1+x)^2}{(1+x+y)^2} dy \\ &\stackrel{t=1+x+y}{=} \int_{1+x}^{\infty} \frac{2(1+x)^2}{t^2} dt = -\frac{2(1+x)^2}{t} |_{t=1+x}^{t=\infty} = 2(1+x). \end{split}$$

Since
$$E(1+x+Y|x) = 1+x+E(Y|x)$$
, $E(Y|x) = 2(1+x)-(1+x) = (1+x)$.

Let X_1, X_2, X_3 be iid with common pdf $f(x) = \exp(-x)$, $0 < x < \infty$, zero elsewhere. Evaluste: (a) $P(X_1 < X_2 | X_1 < 2X_2)$. (b) $P(X_1 < X_2 < X_3 | X_3 < 1)$.

(a)
$$P(X_1 < X_2 | X_1 < 2X_2)$$
.

(b)
$$P(X_1 < X_2 < X_3 | X_3 < 1)$$

Solve The joint common pdf of X_1, X_2 is

$$f_{X_1, X_2}(x_1, x_2) = \begin{cases} e^{-(x_1 + x_2)} & 0 < x_1 < \infty, 0 < x_2 < \infty \\ 0 & \text{elsewhere} \end{cases}$$

The joint common pdf of X_1, X_2, X_3 is

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = \begin{cases} e^{-(x_1+x_2+x_3)} & 0 < x_1 < \infty, 0 < x_2 < \infty, 0 < x_3 < \infty \\ 0 & \text{elsewhere} \end{cases}$$

(a) Since

$$P(X_1 < X_2, X_1 < 2X_2) = \int_0^\infty dx_1 \int_{x_1}^\infty e^{-(x_1 + x_2)} dx_2 = \int_0^\infty -e^{-x_1} e^{-x_2} \Big|_{x_2 = x_1}^{x_2 = \infty} dx_1$$

$$= \int_0^\infty 0 - (-e^{-2x_1}) dx_1$$

$$= -\frac{1}{2} e^{-2x_1} \Big|_{x_1 = 0}^{x_1 = \infty}$$

$$= \frac{1}{2}$$

and

$$P(X_1 < 2X_2) = \int_0^\infty dx_1 \int_{\frac{x_1}{2}}^\infty e^{-(x_1 + x_2)} dx_2 = \int_0^\infty -e^{-x_1} e^{-x_2} \Big|_{x_2 = \frac{x_1}{2}}^{x_2 = \infty} dx_1$$

$$= \int_0^\infty 0 - (-e^{-x_1} e^{-\frac{x_1}{2}}) dx_1$$

$$= -\frac{2}{3} e^{-\frac{3}{2}x_1} \Big|_{x_1 = 0}^{x_1 = \infty}$$

$$= \frac{2}{3},$$

$$P(X_1 < X_2 | X_1 < 2X_2) = \frac{P(X_1 < X_2, X_1 < 2X_2)}{P(X_1 < 2X_2)} = \frac{\frac{1}{2}}{\frac{2}{3}} = \frac{3}{4}.$$

2.7 Reference

- chapter 2
- **2.1**
- 2.3