

Reminder

Week 02: 01_AbgabeInfo.pdf

Website

- Kategorien
 - Shapes / Pattern
 - Image manipulation
 - Etc.
- Vorschaubild pro Kategorie
- Baut eine «coole» Website!

Schlusspräsentation

- 10-30 Minuten
 - Variiert je nach Anzahl Schüler. Mehr Infos später
- Webseite zeigen (inklusive Übersicht)
- Sketches pro Kategorie aufzeigen
 - Interessante Entdeckungen / Algorithmen?
- Individuelle Arbeit aufzeigen
 - Zuerst: Implementation abstrakt (Erklärung ohne Code)
 - Dann: Code durchgehen und erklären
- Wo habt ihr euch Inspiration geholt? Gefällt euch ein Künstler? Motive? Hobby? -> Aufzeigen!

Baut eine «coole» Website!

 Dann: Code durchgehen und erklaren
 Wo habt ihr euch Inspiration geholt? Gefällt euch ein Künstler? Motive? Hobby? -> Aufzeigen!

Reminder

Week 02: 01_ AbgabeInfo.pdf

Abgabe

- VornameName.zip mit
- Dem Projekt als Ordner
- Anleitung.pdf wie man das Projekt bei sich laufen lassen kann
 - Link zu Github / Gitlab / Bitbucket /... (public!)
- Projektbeschrieb.pdf vom individuellen Projekt
 - Erläuterung und Erklärung, wie der Code dazu funktioniert
- · Praesentation.pdf
- Video.mp4: Dauer 1min 5min
 - FullHD, .mp4
 - FullHD, .mp4

Careful

Tight program on the last day:

08:10 - 08:15	Installieren, aufsetzen
08:15 - 08:30	Präsentation 1
08:30 - 08:45	Präsentation 2
08:45 - 09:00	Präsentation 3
09:00 - 09:15	Präsentation 4
09:15 - 09:30	Präsentation 5
09:30 - 09:45	Präsentation 6
09:45 - 10:05	PAUSE
10:05 - 10:20	Präsentation 7
10:20 - 10:35	Präsentation 8
10:35 - 10:50	Präsentation 9
10:50 - 11:05	Präsentation 10
11:05 - 11:20	Präsentation 11
11:20 - 11:40	BUFFER

Hand in deadline

The Sunday before the last course day at 23:59!

Missing the deadline will result in consequences such as additional assignments!

Expected output

- 01:
 - Two starting sketches based on color / random / interactivity / shapes / patterns / strokes
 - At least one own sketch based on what you learned so far
- 02:
 - Your own image filter
 - Sort image pixels by ...
 - Resize image based on interactivity
 - Combine images
 - Image glitch effect
 - Random dithering effect
- 03:
 - Code with the shape looking like a "pipe"
 - Individual agent based on randomness and state changes
 - Implementation of abstract algorithm (Circles)
 - Experiment with collision/shapes and forms

Expected output

- 04:
 - L-System
 - With minimal ruleset for 'F', 'f', '+', '-', '[' and ']'
 - Implement of at least four fractals in your L-System
 - Create/Modify two L-Systems (Colors, StrokeWeight, Interactivity, Randomness)
- 05:
 - Markov chain generator with shakespear.txt as input
 - Wordcloud
- 06:
 - Implementation of conways game of life
 - And another game of life with your own creative twist
- 07:
 - Class challenge

Amount of sketches

Expected sketches

You can leave out up to 4 of the previously yellow-marked sketches.

Reminder

Week 02: 01_Info.pdf

See next slides!

Individuelles Projekt

- Ihr werdet Zeit kriegen, um 1-n Sketches zu entwerfen
- Das individuelle Projekt sollte auf dem Gelernten aufbauen und dies erweitern, oder ein neuer Algorithmus sein
- Fügt Interaktion hinzu

Individual project ideas

Mandelbrot or julia set

- Mandelbrot set
- Complex numbers

https://de.wikipedia.org/wiki/Julia-Menge

Data visualization

- «US Elevation Tiles»
- Potential to make it interactive
- Could be data driven
- Could point out a social problem

https://www.reddit.com/r/dataisbeautiful/comments/jslbn9/us_elevation_tiles_oc/

Bresenham's line algorithm

- Problem: How to draw a line?
- Extension: Midpoint circle algorithm

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Algorithms with fonts

- Analysing and sorting letters of a text
- Example sketches

https://zewang.info/Generative-Typography

Algorithms with sound / music

- p5.js sound library
- Example sketch

https://www.generativehut.com/post/using-processing-for-music-visualization

Visualize sort algorithms

Selection and explanation of sorting algorithms

https://www.youtube.com/watch?v=Cq7SMsQBEUw

https://www.w3resource.com/csharp-exercises/searching-and-sorting-algorithm/searching-and-sorting-algorithm-exercise-3.php

Noise and perlin noise

- Explanation
- Another explanation
- Show usage of perlin noise
 - In 1D, 2D, 3D

https://blog.hirnschall.net/perlin-noise/

https://rtouti.github.io/graphics/perlin-noise-algorithm

Voronoi diagram

- Explore usage of voronoi
- Bowyer Watson algorithm
- Fortune's sweep line algorithm

https://www.reddit.com/r/zenshards/

Bézier curve

- p5.js bezier
- Movable points (interactivity)
- CSS cubic-bezier

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

Ulam spiral

Variants

https://en.wikipedia.org/wiki/Ulam_spiral

Point clouds

- Example sketch
- X, Y, Z, R, G, B, [...]
- Check values!
 - Colors could be mapped to 0-1, or 0-255
- Animation: Lerp from pointcloud A to pointcloud
 B

https://docs.nframes.com/features/sure -products/3d-point-cloud/

https://blog.allplan.com/en/point-clouds

Vector field

- Example
- Multiple points
- Use with fluid simulation

https://en.wikipedia.org/wiki/Vector_field

Wave collapse function

- Ascii-art
- Level generation
- Sudoku solver
- Maze generator

https://robertheaton.com/2018/12/17/wavefunction-collapse-algorithm/

Maze algorithm

- Perfect Maze
- Imperfect maze
- Variations with different size
- Pathfinding

https://en.wikipedia.org/wiki/Maze_generation_algorithm

Swarm simulation

- Example
- Mouse interactivity
- Explanation
- Boids algorithm

https://p5js.org/examples/simulate-flocking.html

Kaleidoscope

- Example
- Mouse interactivity
- Change of colors
- Define mirror axis (0-n)

https://www.maxpixel.net/Kaleidoscope-Floral-Pattern-Glowing-Background-6955371

Edge detection algorithm

- Example sketch
 - This is not good enough

https://medium.datadriveninvestor.com/understanding-edge-detection-sobel-operator-2aada303b900

Kuwuhara filter

• Explanation

https://github.com/yeataro/TD-Anisotropic-Kuwahara

Illusions

- Look up illusions and (re)create them in p5js
- Static is ok
- Animated is prefered

Wolfram cellular automata

- Rules and explanation
- Make it 2D, then 3D
- Implement different rules (90, 94 etc)
- Add mouse zoom/rotation

https://mathworld.wolfram.com/ElementaryCellularAutomaton.html

Penrose tiles

- Example sketch
- Look up the usage of penrose tiles
- How can you achieve variety?

https://en.wikipedia.org/wiki/Penrose_tiling

Koch curve

- Example Sketch
- Make it infinite zoomable
- Try the Koch antisnowflake and other variations

https://en.wikipedia.org/wiki/Koch_snowflake

A* pathfinding visualized

- Study Dijkstras Algorithm
- Explanation
- Visualize it!

https://www.geeksforgeeks.org/a-search-algorithm/

Binary space partition

- Explanation
- Doom and BSP
- Procedural 2D Maps
- Visualize it in 2D, then 3D

https://www.geeksforgeeks.org/binary-space-partitioning/

Image to ascii algorithm

- Implement an image to ascii algorithm
- Explanation and shadings
- Another explanation
- And another one

https://en.wikipedia.org/wiki/ASCII_art

Estimate π

- Implement different variations to estimate pi
 - I.E: Monte Carlo Method
- Visualize the steps

https://www.101computing.net/estimating-piusing-the-monte-carlo-method/

And many more!

- List of algorithms
- Got own ideas? Share them!