DM₄ Mathématiques

Problème 1

1. Les événements E_1 et E_2 sont certains. Au $1^{\underline{\operatorname{er}}}$ et au $2^{\underline{\operatorname{nd}}}$ duel, le gagnant n'est pas encore désigné, peu importe les gagnants de ces duels. Pour calculer la probabilité de l'événement E_3 , on passe au complémentaire : l'événement \bar{E}_3 correspond à « le joueur 0 ou le joueur 1 ne gagne pas le duel. » Ainsi, en notant G_k^i l'événement « le joueur A_k gagne le i-ème duel, » on a $\bar{E}_3 = (G_0^1 \cap G_0^2 \cap G_0^3) \cup (G_1^1 \cap G_1^2 \cap G_1^3)$, et cette union est disjointe. D'où

$$\begin{split} P(\bar{E}_3) &= P(G_0^1 \cap G_0^2 \cap G_0^3) + P(G_1^1 \cap G_1^2 \cap G_1^3) \\ &= P(G_0^1) \times P(G_0^2 \mid G_0^1) \times P(G_0^3 \mid G_0^1 \cap G_0^2) \\ &+ P(G_1^1) \times P(G_1^2 \mid G_1^1) \times P(G_1^3 \mid G_1^1 \cap G_1^2) \\ &= 2 \times \left(\frac{1}{2}\right)^3 = \frac{1}{4} \end{split}$$

On en déduit que $P(E_3) = 1 - P(\bar{E}_3) = \frac{3}{4}$. On a bien $\frac{1}{2}P(E_2) + \frac{1}{4}P(E_1) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} = P(E_3)$.

2. Soit $n\geqslant 3$. On pose U_k l'événement « il n'y a pas encore de gagnant désigné et le joueur A_k remporte le duel k, » et V_k l'événement « il n'y a pas encore de gagnant désigné et le joueur A_{k-1} remporte le duel k. » Ainsi, $E_n=U_n\cup V_n$ et cette union est disjointe. Ainsi, $P(E_n)=P(U_n)+P(V_n)$. D'une part, on a que $U_n=E_{n-1}\cap G_k^k$, donc $P(U_n)=P(E_{n-1})\times P(G_k^k\mid E_{n-1})=\frac{1}{2}P(E_{n-1})$. D'autre part, on a $V_n=E_{n-2}\cap G_{k-1}^{k-1}\cap G_{k-1}^k$, d'où $P(V_n)=P(E_{n-2})\times P(G_{k-1}^{k-1}\mid E_{n-2})\times P(G_{k-1}^k\mid E_{n-2}\cap G_{k-1}^{k-1})=\frac{1}{2}\times \frac{1}{2}\times P(E_{n-2})$. On en déduit donc que

$$\forall n \geqslant 3, \quad P(E_n) = \frac{1}{2}P(E_{n-1}) + \frac{1}{4}P(E_{n-2}).$$
 (931)

3. On pose, pour $n \ge 3$, $u_n = P(E_n)$. Ainsi, d'après (\Re_1) ,

$$\forall n \geqslant 3, \quad u_n = \frac{1}{2}u_{n-1} + \frac{1}{4}u_{n-2}.$$

L'équation caractéristique de (\Re_1) est $x^2 = \frac{1}{2}x + \frac{1}{4}$. On résout donc $4x^2 - 2x - 1 = 0$. Le discriminant de ce trinôme est $\Delta = 20 > 0$. On en déduit que les racines de cette équation caractéristique sont

$$x_1 = \frac{2 + \sqrt{20}}{8} = \frac{1 + \sqrt{5}}{4}$$
 et $x_2 = \frac{2 + \sqrt{20}}{8} = \frac{1 - \sqrt{5}}{4}$.

Ainsi, il existe deux constantes réelles λ et μ que l'on peut déterminer à l'aide de u_1 et u_2 , telles que

$$P(E_n) = u_n = \lambda \times x_1^n + \mu \times x_2^n.$$

4. L'événement E_{n+1} est inclus dans E_n , ainsi la suite $(E_n)_{n\in\mathbb{N}}$ est décroissante (au sens de l'inclusion). Ainsi, par continuité décroissante, on a

$$P\Big(\bigcap_{n=2}^{\infty} E_n\Big) = \lim_{n \to \infty} P(E_n) = 0$$

comme $|r_1|<1$ et $|r_2|<1$. L'événement, que l'on notera W, « le tournoi désignera un vainqueur » est le complémentaire de l'événement $\bigcap_{n=2}^{\infty} E_n$. Ainsi, $P(W)=1-P(\bigcap_{n=2}^{\infty} E_n)=0$.

Problème 2

1. Soient $u, v \in \exists$. On a

$$\begin{split} \det \left(G(u,v) \right) &= \left\langle u \mid u \right\rangle \ \left\langle v \mid v \right\rangle - \left\langle v \mid u \right\rangle \ \left\langle u \mid v \right\rangle \\ &= \left\| u \right\|^2 \left\| v \right\|^2 - \left\langle u \mid v \right\rangle^2 \ \text{par symétrie} \\ &= \left(\left\| u \right\| \left\| v \right\| - \left\langle u \mid v \right\rangle \right) \left(\left\| u \right\| \left\| v \right\| + \left\langle u \mid v \right\rangle \right) \\ &= \left(\left\| u \right\| \left\| v \right\| - \left\langle u \mid v \right\rangle \right) \left(\left\| - u \right\| \left\| v \right\| - \left\langle (-u) \mid v \right\rangle \right) \\ &\geqslant 0 \ \text{par inégalité de Cauchy-Schwarz.} \end{split}$$

Ce déterminant est nul si, et seulement si u et v sont colinéaires (d'après l'égalité de Cauchy-Scharz). Ainsi, u et v non colinéaires est un condition nécessaire et suffisante pour que det G(u,v) soit strictement positif.

2. (a) On calcule, pour $(i, j) \in [1, n]^2$,

$$(G(v_1, \dots, v_n))_{i,j} = \langle v_i \mid v_j \rangle$$

$$= \left\langle \sum_{k=1}^n a_{k,i} e_k \mid \sum_{k=1}^n a_{k,j} e_k \right\rangle$$

$$= \sum_{k=1}^n a_{k,i} \left\langle e_k \mid \sum_{p=1}^n a_{p,j} e_p \right\rangle$$

$$= \sum_{k=1}^n \sum_{p=1}^n a_{k,i} a_{p,j} \left\langle e_k \mid e_p \right\rangle$$

$$= \sum_{k=1}^n a_{k,i} a_{k,j} \text{ car la base } (e_1, \dots, e_n) \text{ est orthonormée}$$

$$= \sum_{k=1}^n (A^\top)_{i,k} (A)_{k,j}$$

$$= (A^\top \cdot A)_{i,j}$$

D'où $G(v_1,\ldots,v_n)=A^{\top}\cdot A$.

- (b) On a det $G(v_1, \ldots, v_n) = \det(A^{\top} \cdot A) = \det A^{\top} \times \det A = \det^2 A \geqslant 0$.
- (c) On cherche à montrer que Ker $A=\operatorname{Ker} G(v_1,\dots,v_n)$. Soit $X\in \mathcal{M}_{n,1}(\mathbb{R})$. Montrons que $A\cdot X=0$ si, et seulement si $A^{\top}\cdot A\cdot X=0$, d'après (a). On remarque que, si $A\cdot X=0$, alors $A^{\top}\cdot (A\cdot X)=0$. Réciproquement, si $A^{\top}\cdot A\cdot X=0$, alors $(A\cdot X)^{\top}\cdot A\cdot X=X^{\top}\cdot A^{\top}\cdot A^{\top}\cdot X=0$. Mais, avec le produit scalaire canonique sur $\mathcal{M}_{n,n}(\mathbb{R})$, on a $\langle AX\mid AX\rangle=0$, d'où AX=0. D'après (a), $\operatorname{Ker} G(v_1,\dots,v_n)=A^{\top}\cdot A$. Ainsi, d'après le théorème du rang,

$$\operatorname{rg} A = \dim(\operatorname{Im} A) = \dim \mathcal{M}_{n,1}(\mathbb{R}) - \dim(\operatorname{Ker} A)$$

$$= \dim \mathcal{M}_{n,1}(\mathbb{R}) - \dim G(v_1, \dots, v_n)$$

$$= \dim(\operatorname{Im} G(v_1, \dots, v_n))$$

$$= \operatorname{rg} G(v_1, \dots, v_n)$$

(d) On sait que, pour $j\in [\![1,n]\!]$, $v_j=\sum_{i=0}^n a_{i,j}e_j$. On a donc bien $\dim(\operatorname{Im} A)=\dim \operatorname{Vect}(v_1,\dots,v_n)$. D'où, d'après la question précédente,

$$\dim \operatorname{Vect}(v_1,\ldots,v_n) = \dim (\operatorname{Im} G(v_1,\ldots,v_n)).$$

3. (a) On a

$$G(v_1, \dots, v_n, z) = \begin{pmatrix} \langle v_1 \mid v_1 \rangle & \dots & \langle v_1 \mid v_n \rangle & \langle v_1 \mid z \rangle \\ \vdots & \ddots & \vdots & \vdots \\ \langle v_n \mid v_1 \rangle & \dots & \langle v_n \mid v_n \rangle & \langle v_n \mid z \rangle \\ \langle z \mid v_1 \rangle & \dots & \langle z \mid v_n \rangle & \langle z \mid z \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \langle v_1 \mid v_1 \rangle & \dots & \langle v_1 \mid v_n \rangle & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \langle v_n \mid v_1 \rangle & \dots & \langle v_n \mid v_n \rangle & 0 \\ 0 & \dots & 0 & \|z\|^2 \end{pmatrix}$$

Le déterminant de cette matrice diagonale par blocs est le produit des déterminants de chaque bloc, d'où

$$\det G(v_1, \dots, v_n, z) = \det G(v_1, \dots, v_n) \cdot ||z||^2.$$

(b) On exprime $y \in F$ dans la base (v_1, \ldots, v_n) : soient y_1, \ldots, y_n tels que $y = \sum_{i=0}^n y_i v_i$.

$$G(v_1, \dots, v_n, y + z) = \begin{pmatrix} \langle v_1 \mid v_1 \rangle & \dots & \langle v_1 \mid v_n \rangle & \langle v_1 \mid y + z \rangle \\ \vdots & \ddots & \vdots & \vdots \\ \langle v_n \mid v_1 \rangle & \dots & \langle v_n \mid v_n \rangle & \langle v_n \mid y + z \rangle \\ \langle y + z \mid v_1 \rangle & \dots & \langle y + z \mid v_n \rangle & \langle y + z \mid y + z \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \langle v_1 \mid v_1 \rangle & \dots & \langle v_1 \mid v_n \rangle & \langle v_1 \mid z \rangle \\ \vdots & \ddots & \vdots & \vdots \\ \langle v_n \mid v_1 \rangle & \dots & \langle v_n \mid v_n \rangle & \langle v_n \mid z \rangle \\ \langle y + z \mid v_1 \rangle & \dots & \langle y + z \mid v_n \rangle & \langle z \mid y + z \rangle \end{pmatrix}$$

en appliquant soustrayant les p premières colonnes, multipliées par $y_i: C_{n+1} \leftarrow C_{n+1} - \sum_{i=1}^n y_i C_i$, où les C_i sont les colonnes de la matrice. Ainsi, on a

$$G(v_1, \dots, v_n, y + z) = \begin{pmatrix} \langle v_1 \mid v_1 \rangle & \dots & \langle v_1 \mid v_n \rangle & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \langle v_n \mid v_1 \rangle & \dots & \langle v_n \mid v_n \rangle & 0 \\ \langle y + z \mid v_1 \rangle & \dots & \langle y + z \mid v_n \rangle & \langle z \mid z \rangle \end{pmatrix}.$$

Cette matrice est triangulaire par blocs, d'où,

$$\det G(v_1, \dots, v_n, y + z) = \det G(v_1, \dots, v_n) \cdot ||z||^2.$$

(c) Soit $x \in E$. On pose $y = p(x) \in F$ et $z = x - p(x) \in F^{\perp}$. D'où, d'après la question précédente,

$$d(x, F) = ||z|| = \sqrt{\frac{\det G(v_1, \dots, v_n, x)}{\det G(v_1, \dots, v_n)}}.$$

La racine carrée est bien définie d'après la question (2b).

4. (a) On remarque que, pour tout couple $(i, j) \in [0, n-1]^2$, on a

$$\langle X^i \mid X^j \rangle = \int_0^1 t^i \cdot t^j dt = \left[\frac{t^{i+j+1}}{i+j+1} \right]_0^1 = \frac{1}{i+j+1} = (H_n)_{i,j}.$$

Ainsi, la matrice H_n est donc la matrice de Gram pour le produit scalaire dans $\mathbb{R}_{n-1}[X]: H_n = G(1,X,\ldots,X^{n-1})$. La famille $(1,X,\ldots,X^{n-1})$ étant une base de $\mathbb{R}_{n-1}[X]$, elle est libre, d'où det $G(1,X,\ldots,X^n) \neq 0$, d'après la question (2a) car det $A = \det_{\mathfrak{B}}(1,X,\ldots,X^n)$, pour une base orthonormalisée \mathfrak{B} . La matrice H_n est donc inversible.

(b) D'après le théorème des moindres carrés, la fonction $P \in \mathbb{R}_{n-1}[X] \mapsto \|X^n - P\|$ atteint un minimum pour $P = p(X^n)$, où p est la projection orthogonale de $\mathbb{R}_n[X]$ sur $\mathbb{R}_{n-1}[X]$. D'où, en posant $p(X^n) = a_0 + a_1X + \cdots + a_{n-1}X^{n-1}$, la fonction f admet un minimum avec $(a_0, a_1, \ldots, a_{n-1})$, les coefficients de $p(X^n)$. Avec ces coefficients, la valeur de f est alors $\|X^n - p(X^n)\|^2$. Or, $\|X^n - p(X^n)\| = d(X^n, \mathbb{R}_{n-1}[X])$, et, d'après la question (3c), on a,

$$||X^n - p(X^n)||^2 = \frac{\det G(1, X, \dots, X^{n-1}, X^n)}{\det G(1, X, \dots, X^{n-1})} = \frac{\det H_{n+1}}{\det H_n}.$$

Problème 3

- . (a) On considère la série entière $\sum \frac{x^n}{n!}$, dont la somme vaut la fonction exp. La série $\sum \frac{1}{n!}$ converge, d'où (\mathcal{P}_1) . La limite $\lim_{x\to 1^-} \exp x$ existe et est finie ; elle vaut e, d'où (\mathcal{P}_2) .
 - (b) On considère la série entière $\sum (-x)^n$, qui converge vers la fonction $f: x \mapsto \frac{1}{1+x}$. La série $\sum (-1)^n$ diverge, elle ne vérifie donc pas (\mathcal{P}_1) . Mais, f admet une limite finie en $1: f(1) = \frac{1}{2}$, d'où (\mathcal{P}_2) .
 - (c) On considère la série entière $\sum \frac{x^n}{n}$, qui converge vers la fonction $f: x \mapsto \ln(1-x)$. La série $\sum \frac{1}{n}$ diverge, elle ne vérifie donc pas (\mathcal{P}_1) . Et, $\lim_{x \to 1^-} \ln(1-x) = -\infty$, elle ne vérifie donc pas (\mathcal{P}_2) .
 - (d)