Combinational Circuits

Computer Fundamentals Escuela Politécnica Superior. U.A.M

Unit 2 - Index

U2. Combinatioanl circuits

- **U2.1.** Combinational logic implementation. Logic functions.
- **U2.2.** Basic combinatorial circuits
 - U2.2.1. Decodifier.
 - **U2.2.2.** Multiplexer and Demultiplexer.
 - U2.2.3. Codifiers.
 - U2.2.4. Code converter.
 - **U2.2.5.** Bit comparator.
- U2.3. Using decodifiers and multiplexers as function generators.

U2. Combinational circuits

- Circuit without memory, outputs are a function of one or more of the inputs.
- For a certain combination of input variables a deterministic output is obtained (after a certain delay).

- Represent the truth table for the function
- Simplify the function (Karnaugh map).
- Construct the combinational circuit with the lowest number of logic gates.
 - Most efficient NAND or NOR (number of Transistors)

Example 1: Given a circuit of 4 inputs representing a binary number (ABCD). The circuit has an output Z_1 that must be activated (Z_1 =1) when the binary number is a multiple of 3 and an output of Z_2 that must be activated when the binary number is a multiple of 2.

Example 1:

#	A	В	С	D	Z_1	Z ₂
0	0	0	0	0	1	1
1	0	0	0	1	0	0
2		0	1	0	0	1
0 1 2 3 4 5 6 7 8 9	0 0	0 0 0 1 1	O 1 1 0 0 1 1 0 0	1 0	0 1	
4	0	1	0	0	0	0 1
5	0	1	0		0	0
6	0	1 1 0	1	0	0 1 0	1
7	0 1	1	1	1	0	0
8	1	0	0	0	0	1
9	1	0	0	1 0 1 0	0 1	0
10	1	0	1	0 1	0	1
11	1	0 0 0 1	1	1	0	0
12	1		0	0	0 1	1
13	1	1	0 0 1	1	0	0
14	1	1	1	0 1	0	1
15	1	1	1	1	1	0

Example 1:

Eicuela

Politécnia Superior

#	A	В	С	D	Z ₁	Z ₂
0	0	0	0	0	1	
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0	0	0	1	1 0 0 1 0 0 1 0	1 0 1 0 1 0
2	0	0	1	0	0	1
3	0	0	1	1	1	0
4	0	O 1 1 1 1 0 0	0	0	0	1
5	0	1	0	1	0	0
6	0	1	1	0	1	1
7	0	1	1	1	0	0
8	1	0	0	0	0	1
9	1	0	0	1	1	0 1 0 1
10	1	0	1	0	0	1
11	1	0	1	1	0	
12	1	1	0	0	1	O 1
	0 0 0 0 0 0 0 1 1 1 1 1	O 1 1 1	O O 1 1 O O 1 1 O O 1 1	0 1 0 1 0 1 0 1 0 1 0	0 1 0 0	0
14	1	1	1	0	0	O 1
15	1	1	1	1	1	0

$$Z_1 = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}CD + \overline{A}BC\overline{D} + AB\overline{C}\overline{D} + ABCD + A\overline{B}\overline{C}D$$

$$Z_2 = \overline{D}$$

- Incompletely specified Functions
 - Output values defined for a subset of input values
 - Non defined output values are represented as "X".
 - When solving Karnaugh table "X"s are taken as 0 or 1, as convenient.

- Incompletely specified Function
 - Example 2: Example 1 defined from 0 to 9

#	A	В	С	D	Z ₁	Z ₂
0	0	0	0	0	1	1
0 1 2 3 4 5 6 7 8 9 10	0 0 0 0 0 0 1	0 0 0 0 1 1	0	1	0	
2	0	0	1	0		1
3	0	0	1	1	0 1 0	0 1 0 1 0
4	0	1	0	0	0	1
5	0	1	0	1	0	0
6	0	1	1	0	0 1 0	1
7	0	1	1	1	0	0
8		0	0	0	0	1
9	1	0	0	1	1	0
10	1	0	1	0	X	X
11	1	0	1	1	X	X
12	1	1	0	0	X	X
11 12 13	1	1 0 0 0 0 1 1	O O 1 1 O O 1 1 O O 1	O 1 O 1 O 1 O 1 O	0 1 X X X X	0 1 0 X X X X
14	1		1	0	X	X
15	1	1	1	1	X	X

- Incompletely specified Function
 - Example 2: Example 1 defined from 0 to 9

#	A	В	C	D	Z ₁	Z ₂
0	0	0	0	0		1
1	0 0 0 0 0 0 1 1 1	0	0	1	0	0
2	0	0	1	0	0	1
3	0	0	1	1	1	0
4	0	1	0	0	0	1
5	0	1	0	1	0	0
6	0	1	1	0	1	1
7	0	1	1	1	0	0
8	1	0	0	0	0	1
9	1	0	0	1	1	0
10	1	0	1	0	X	X
11	1	0	1	1	X	X
12	1	1	0	0	X	X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1	O O O O O O O O O O O O O O O O O O O	O O 1 1 O O 1 1 O O 1 1 O O	0 1 0 1 0 1 0 1 0 1 0	1 0 0 1 0 0 1 X X X X X X	1 0 1 0 1 0 1 0 X X X X
14	1	1	1	0	X	X
15	1	1	1	1	X	X

U2.2. Basic combinational circuits

- Decodifier (n-2ⁿ): n inputs y 2ⁿ outputs (only one active).
- Codifier (2ⁿ-n): n inputs (one or more active) y lg₂n outputs.
- Multiplexer (n-1): n inputs, 1 output y lg₂n control signals.
- Demultiplexer (1-n): 1 input, n outputs y lg₂n control signals.
- Code converter (n-m): n inputs y m outputs, without relation between them.
- Other common combinational circuits:
 - Comparators
 - Semiadders y Adders

- Combinatorial circuit of n inputs and 2ⁿ outputs.
- Activates an unique output for each combination of inputs.
- Decodifier 2-4. 2 inputs and 2² = 4 outputs
 - Truth table and equations:

A_1	A_0	O ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$O_0 = \overline{A_1} \cdot \overline{A_0}$$
 $O_1 = \overline{A_1} \cdot A_0$
 $O_2 = A_1 \cdot \overline{A_0}$
 $O_3 = A_1 \cdot A_0$

Decodifier 2-4. Logic circuit:

Squematic circuit:

Block diagram:

- Decodifier 2-4 with ENABLE signal
 - ENABLE = 1: Decodifier works normally
 - ENABLE = 0: No output active. Circuit "disabled"
 - Truth table and equations:

E	A_1	A_0	<i>O</i> ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

$$O_0 = \mathbf{E} \cdot \overline{A_1} \cdot \overline{A_0}$$
 $O_1 = \mathbf{E} \cdot \overline{A_1} \cdot A_0$
 $O_2 = \mathbf{E} \cdot A_1 \cdot \overline{A_0}$
 $O_3 = \mathbf{E} \cdot A_1 \cdot A_0$

Decodifier 2-4 with ENABLE signal. Logic circuit:

Schematic circuit:

Block diagram:

• Decodifier 3-8. 3 inputs and $2^3 = 8$ outputs

- Truth table and equations

A ₂	A_1	A ₀	O ₇	O ₆	O ₅	O ₄	O ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

$$O_0 = \mathbf{m}_0 = \overline{A_2} \cdot \overline{A_1} \cdot \overline{A_0}$$
 $O_1 = \mathbf{m}_1 = \overline{A_2} \cdot \overline{A_1} \cdot A_0$
 $O_2 = \mathbf{m}_2 = \overline{A_2} \cdot A_1 \cdot \overline{A_0}$
 $O_3 = \mathbf{m}_3 = A_2 \cdot \overline{A_1} \cdot \overline{A_0}$
 \vdots
 $O_7 = \mathbf{m}_7 = A_2 \cdot A_1 \cdot A_0$

Logic functions with DEC

Example: A) Design F with a decodifier 4-16 and an OR-gate

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0 0 0 0 0	0	1	1	0
0	1	0	0	0
0	1	0	1	0 1 0 0
0	1	1	0	0
0	1	1	0	0
1 1 1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1 1	1	1	0	1 0 1 0 1 0 0
1	1	1	1	o

- Eicuela Politécnia Superior
- Asociate variables of the logic function to the inputs of the decodifier.
- Equivalent to the sum of products.

- Combinatorial circuit with n inputs and log₂n outputs
 - **Elementary Codifier**: Each single input line activated, codifies at the ouput an specific number (the input number).

What happens if more than one input is active?

 Priority Codifier: If several input lines are activated, the output number is the one for the line with the highest priority (MSB)

Priority codifier 8-3 with ENABLE

 Among all active inputs, priority is assigned to the input with the highest index.

Truth table

E	I_7	I_6	I_5	I_4	I_3	I_2	I_1	Io	A ₂	A_1	A_0
0	X	X	X	X	X	X	X	X	0	0	0
1	1	X	X	X	X	X	X	X	1	1	1
1	0	1	X	X	X	X	X	X	1	1	0
1	0	0	1	X	X	X	X	X	1	0	1
1	0	0	0	1	X	X	X	X	1	0	0
1	0	0	0	0	1	X	X	X	0	1	1
1	0	0	0	0	0	1	X	X	0	1	0
1	0	0	0	0	0	0	1	X	0	0	1
1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0

Priority codifier 8-3 with ENABLE

Equations:

$$A_{0} = (I_{7} + \overline{I_{7}} \overline{I_{6}} I_{5} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} I_{2} I_{1}) E$$

$$A_{1} = (I_{7} + \overline{I_{7}} I_{6} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} I_{2}) E$$

$$A_{2} = (I_{7} + \overline{I_{7}} I_{6} + \overline{I_{7}} \overline{I_{6}} I_{5} + \overline{I_{7}} \overline{I_{6}} I_{5} I_{4}) E$$

Priority codifier 8-3 with ENABLE

Circuit:

- Data transmission from a selectable input to an unique output.
- It has n control lines that select (multiplex) one of the 2ⁿ input lines and transmit it to the output.
- Each combination of control lines activates a gate.
- Two input types:
 - Data input
 - Control input

Multiplexer 4-1. 4 inputs (data), 2 inputs (control) y 1 output

– Truth table, equation and circuit:

S ₁	S ₀	Output (Z)
0	0	Io
0	1	\mathtt{I}_1
1	0	I_2
1	1	I_3

Squematic circuit:

AND3B1

AND3B1

AND3B1

Block diagram:

Superior

Multiplexer 8-1 with ENABLE signal. 8 inputs (data), 4 inputs (control) y 1 output

Truth table and equation

E	S ₂	S ₁	S ₀	Z
0	X	X	X	0
1	0	0	0	Io
1	0	0	1	I_1
1	0	1	0	I_2
1	0	1	1	I_3
1	1	0	0	I_4
1	1	0	1	I_5
1	1	1	0	I ₆ I ₇
1	1	1	1	I_7

$$Z = (S_2 S_1 S_0 I_7 + S_2 S_1 \overline{S_0} I_6 + S_2 \overline{S_1} S_0 I_5 + S_2 \overline{S_1} \overline{S_0} I_4 + \overline{S_2} S_1 S_0 I_3 + \overline{S_2} S_1 \overline{S_0} I_2 + \overline{S_2} \overline{S_1} S_0 I_1 + \overline{S_2} \overline{S_1} \overline{S_0} I_0) E$$

Multiplexer 8-1 with ENABLE signal

Logic functions with MUX

Example: B) Design F with a Multiplexer 8-1

Α	В	С	D	F	
0	0	0	0	1	h
0	0	0	1	1	
0	0	1	0 1	0	וֹ
0	0	1 1	1	1	ا
0	1	0	0 1	0	-
0	1	0	1	1	
0	1	1	0	0	ו
0	1	1	0	0	j
1	0	0	0 1	1	
1		0	1	0	
1	0	1	0 1	1	
1	0	1	1	0	IJ
1	1	0	0	1	
1	1	0	1	0	
0 0 0 0 0 0 0 0 1 1 1 1 1	1 1	1	0 1 0 1	1 0 1 0 1 0 0 1 0 1 0	
1	1	1	1	0	

Eicuela

Politêcnia

Superior

 $\{ ext{If is O1, input is put on D} \}$

 $\{ ext{If is 00, input is put on 0} \}$

F If is 10, input is put on F

- 1. Asociate variables (A,B,C,D,...) to control inputs $(S_n...S_2,S_1,S_0)$.
- 2. Variables not associated with control are part of the inputs of the MUX
- 3. Variables associated with control are NEVER part of the inputs of the MUX
- 4. Some MUX inputs can be '0' or '1'

U2.2.2 Demultiplexer

- They perform reversely to a multiplexer
- Data transmission can be directed from an unique input to a selectable output.
- Using n control lines, transmits (demultiplex) data from its unique input data line towards one of its 2ⁿ outputs.
- It is equivalent to a decodifier with ENABLE, being the data line equivalent to ENABLE.

U2.2.2 Demultiplexer

- Demultiplexer 1-4. 1 input (data), 2 inputs (control) and 4 outputs
 - Truth table and equations:

S ₁	S ₀	<i>O</i> ₃	O ₂	<i>O</i> ₁	<i>O</i> ₀
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

$$O_0 = \overline{S_1} \cdot \overline{S_0} \cdot I$$
 $O_1 = \overline{S_1} \cdot S_0 \cdot I$
 $O_2 = S_1 \cdot \overline{S_0} \cdot I$
 $O_3 = S_1 \cdot S_0 \cdot I$

U2.2.2 Demultiplexer

• Demultiplexer 1-4. Circuit:

Schematic circuit:

Block diagram:

- Each input word of n bits is converted or translateed to another word of m bits at the output.
- There may not be any relationship between input and output number of lines.
- Both words express the same information in different codes.

- BCD converter to 7 segments
 - Accepts BCD code (0..9) in its 4 inputs and outputs 7 lines correspondent to the 7 segments of the display.
 - Logic block diagram:

- BCD conversor to 7 segments
 - Segments corresponding to digits are:

Digit	Activated segments				
0	a,b,c,d,e,f				
1	b,c				
2	a,b,d,e,g				
3	a,b,c,d,g				
4	b,c,f,g				
5	a,c,d,f,g				
6	a,c,d,e,f,g				
7	a,b,c				
8	a,b,c,d,e,f,g				
9	a,b,c,d,f,g				

- BCD conversor to 7 segments
 - Truth table:

Digito	Entradas Salidas de segmentos										
Decimal	D	С	В	Α	а	Ь	С	d	е	f	9
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X

U2.2.5. Bit comparator

- **Bit comparator:** circuit with 2 inputs and 3 outputs used to compare bits
- 2-bit comparator: Truth table, equations and circuit

A	В	A>B	A=B	A <b< th=""></b<>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

$$A > B = A\overline{B}$$
 $A = B = \overline{A}B$
 $A < B = \overline{A}B$

