Análisis Matemático I,

2º Doble Grado Informática-Matemáticas

Capítulo I: ESTRUCTURA EUCLÍDEA Y TOPOLOGIA DE \mathbb{R}^N

Tema 5: COMPLITUD

María D. Acosta

Universidad de Granada

15-10-2020

Sucesión de Cauchy. Espacio completo

Definición

Una sucesión $\{x_n\}$ de elementos de un espacio métrico (E,d) es de **Cauchy** si se verifica

$$\forall \varepsilon > 0, \ \exists m \in \mathbb{N} : p, q \ge m \Rightarrow d(x_p, x_q) \le \varepsilon,$$

equivalentemente,

$$\forall \varepsilon > 0, \ \exists m \in \mathbb{N} : \ (n \geq m, \ k \in \mathbb{N}) \Rightarrow d(x_{n+k}, x_n) \leq \varepsilon.$$

Un espacio métrico E es **completo** si toda sucesión de Cauchy en E converge (en E).

Un espacio normado y completo para la métrica asociada a la norma es un **espacio de Banach**.

Es inmediato comprobar que en un espacio métrico toda sucesión convergente es de Cauchy. $(\mathbb{Q},|.|)$ es un ejemplo de que el recíproco de esta afirmación no es cierto.

Complitud

Ejemplos

- 1) \mathbb{R} es completo.
- **2)** \mathbb{Q} no es completo.

Proposición

Si X es un espacio vectorial y $\| \ \| \ y \ \| \ \|$ dos normas equivalentes en X. Entonces las sucesiones de Cauchy para ambas normas coinciden.

Por tanto, bajo las mismas hipótesis (X, || ||) es un espacio de Banach si, y sólo si, lo es (X, || || ||).

Complitud

Proposición

Una sucesión $\{x_n\}$ en \mathbb{R}^N es de Cauchy si, y sólo si, $\{x_n(k)\}$ es de Cauchy para cada $1 \le k \le N$.

Por tanto, $(\mathbb{R}^N, \| \|)$ es un espacio de Banach, para cualquier norma $\| \|$ en \mathbb{R}^N .

Usando la caracterización secuencial de la adherencia y el Teorema de Heine-Borel-Lebesgue se obtiene el siguiente resultado:

Proposición

Sea (E, d) un espacio métrico y $A \subset E$.

- 1. Si A es completo, es cerrado.
- 2. Si (E, d) es completo y $A = \overline{A}$, entonces (A, d_A) es completo.
- 3. Si A es compacto, entonces (A, d_A) es completo.

Complitud

Es fácil dar ejemplos que prueban que el recíproco de las afirmaciones anteriores no es cierto en general.

Recordamos que si (E, d) y (F, ρ) son espacios métricos, y $f : E \longrightarrow F$ es una aplicación, f es contractiva si se verifica

$$\exists 0 \leq M < 1 : \ \rho(f(x), f(y)) \leq Md(x, y), \quad \forall x, y \in E.$$

Ejemplo

Si I es un intervalo, $f:I \longrightarrow \mathbb{R}$ es derivable y existe $\alpha < 1$ tal que

$$|f'(x)| \le \alpha, \forall x \in I,$$

entonces f es contractiva.

Teorema del punto fijo de Banach

Sea (E,d) un espacio métrico completo no vacío. Si $f: E \longrightarrow E$ es una aplicación contractiva, entonces f tiene un único punto fijo. Es decir, existe un único $x \in E$ tal que f(x) = x.

Demostración: Probamos primero que, como máximo, hay un punto fijo. Sea $\alpha < 1$ un real tal que

$$d(f(x), f(y)) \le \alpha d(x, y), \quad \forall x, y \in E.$$

Supongamos que $x, y \in E$ son tales que f(x) = x y f(y) = y. Entonces

$$d(x,y) = d(f(x), f(y)) \le \alpha d(x,y).$$

Como $\alpha < 1$ ha de ser d(x, y) = 0, luego x = y.

Probaremos ahora la existencia de un punto fijo de f.

Como $E \neq \emptyset$, elegimos $x_0 \in E$. Definimos $x_{n+1} = f(x_n), \ \forall n \in \mathbb{N} \cup \{0\}$. Probaremos que la sucesión es de Cauchy.

Por ser f contractiva tenemos que

$$d(x_2, x_1) = d(f(x_1), f(x_0)) \le \alpha d(x_1, x_0).$$

Suponiendo que se verifica

$$d(x_{n+1},x_n)\leq \alpha^n d(x_1,x_0),$$

designaldad que hemos comprobado para n = 1, tenemos que

$$d(x_{n+2}, x_{n+1})) = d(f(x_{n+1}), f(x_n)) \le \alpha d(x_{n+1}, x_n) \le \alpha \alpha^n d(x_1, x_0) = \alpha^{n+1} d(x_1, x_0).$$

Por tanto, hemos probado que

$$d(x_{n+1}, x_n) \le \alpha^n d(x_1, x_0), \quad \forall n \in \mathbb{N}.$$
 (1)

Probamos ahora que $\{x_n\}$ es de Cauchy. Si $n, m \in \mathbb{N}$, usando (1) tenemos que

$$d(x_{n+m}, x_n) \le \sum_{k=0}^{m-1} d(x_{n+k+1}, x_{n+k}) \le \sum_{k=0}^{m-1} \alpha^{n+k} =$$

$$\alpha^n \sum_{k=0}^{m-1} \alpha^k \le \alpha^n \sum_{k=0}^{\infty} \alpha^k = \frac{\alpha^n}{1-\alpha}.$$

Hemos usado que $0 \le \alpha < 1$, luego la serie $\sum_n \alpha^n$ converge. Como $\{\alpha^n\} \to 0$, de la desigualdad anterior se deduce que $\{x_n\}$ es una sucesión de Cauchy en E.

Por ser (E,d) completo, $\{x_n\}$ converge. Sea $x=\lim\{x_n\}$. Como f es contractiva, es continua. Luego $\{f(x_n)\} \to f(x)$.

Dado que

$$x_{n+1} = f(x_n), \quad \forall n \in \mathbb{N},$$

tomando límites en la igualdad anterior obtenemos que x = f(x), luego f tiene un punto fijo.

De la desigualdad

$$d(x_{n+m},x_n) \leq \frac{\alpha^n}{1-\alpha}, \quad \forall n,m \in \mathbb{N},$$

para n fijo, si hacemos $m \to \infty$, como la distancia es continua, obtenemos que

$$d(x,x_n) \leq \frac{\alpha^n}{1-\alpha}, \quad \forall n \in \mathbb{N}.$$