Breaking the wall — building an infrastructure to enable multi-disciplinary analyses for social sciences and the Internet of Things

Darren Bell

Repository Architect – UK Data Service

IASSIST 2018: Once Upon A Data Point: Sustaining Our Data Storytellers

30 May 2018

30,000 foot view

- More data was created in 2017 than the previous 5,000 years of humanity.
- Only 0.5% is actually being analysed operationally
- Biotech, Energy, IoT, Healthcare, Automotive, Space, Deep sea explorations, Cybersecurity, Social media, Telecom, Consumer electronics, Manufacturing, Gaming and Entertainment are just some
- It will be critical for organizations to deploy or employ platforms that have the capability to consume huge amounts of data and present that data in a way that helps them make the right decisions.
- This is leading to frenetic competition among enterprises and startups. If data is the new oil, who gets to process and refine it?

Repository Infrastructures

- A "repository" is a collection of lifecycles, functions and processes
- There will always be new data, new file formats, new objects and new tech – this is business as usual
- BUT "Big Data"/NNFD is different. The architecture remains the same but demands a different parallel infrastructure.
- This new infrastructure enables new research methods and hopefully opens up new research funding opportunities
- We do not expect the repository "architecture" to change significantly

A future and a USP

- "Big Data" tech gives us opportunities at a smaller scale for reevaluating how we process and re-use social science data
- Keynote at "Data for Policy" Conference in Sept 2017 London: Policy value comes from crossing domains – this is "collective intelligence"
- RDA 11th Plenary Berlin:
 "in the modern world, data is no longer composed of static files"

A secure, trusted platform for crossdisciplinary linkage

- 1. Secure machine-assisted linkage with privacy guarantees
- 2. Dynamic creation and re-use of derived information products
- 3. Cast-iron provenance chains
- 4. Domain-agnostic research
- PAST Relational Databases and files small and tightly structured
- PRESENT Big Data lots of it but chaotic
- FUTURE "Intelligent Enterprise" when all this data is tagged, processed and joined up

Hadoop in one slide

- Hadoop started out from a 2003 paper: "The Google File System"
 https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
- Hadoop is the name for a bunch of different pieces of software that allows you to <u>store</u> and <u>process</u> data across a network (more commonly called a "cluster") of computers.
- You can use some or all of these pieces of software. We use some.
- This **cluster** of computers can consist of two or ten thousand computers (or "nodes").
- This cluster effectively functions as a single supercomputer
- In a nutshell, it's affordable supercomputing for the masses

What problem does Hadoop solve in practice?

I have a 2 Terabyte dataset I want to analyse

 I cannot load it into Excel, SPSS etc. on my PC

Answer: split the file across many PCs

Hadoop "cluster" with 10 "nodes" (could be 10,000)

LINKED DATA – from a grid to a "graph"

PETS Dataset

DDI4 allows us to do data as a graph – it can be pets, energy or social science

Dog

Satan

Summary so far

- IoT data is about things and events. What we must be able to do is contextualise it.
- That could be people (SocScience), weather (Environment), places (Geospatial)
- HADOOP LETS US STORE ALL THIS DATA IN ONE PLACE
- A GRAPH LETS US ANALYSE THIS DATA IN A STRUCTURE THAT MORE NATURALLY REFLECTS THE CONNECTIONS BETWEEN THE DATA AND THE METADATA
- For us, Big Data is not just about the Big. It's where scale intersects new data paradigms like linked data and graphs.

Smart Meter Research Portal Sep 2019

Core Principles

- Open Source
- FAIR
- Scalable
- Standards-based
- TDR Compliant
- Domain-agnostic

Data Platform: The repository now

Data Platform:

Repository Target

SPSS/STATA etc.

Streaming Energy Data

Other data sources e.g. from devices

A few hundred Terabytes and can scale up to Petabytes

2. Select (and link/aggregate) 3a. Simple viz 3b. Generate bespoke data product Drill down to virtual lab Researchers tools of choice **UK Data Service**

DDI4: data/metadata

ODRL: access-control

Or from this...

Pick pre-built datasets from the catalogue

Plus this...

Build your own

Semantic Platform

Unified approach to any re-usable components.

CVs

Code Lists

Category Schemes

Taxonomies

Thesauri

Ontologies – particularly GeoSpatial

- VocBench 3 management tool (http://vocbench.uniroma2.it/)
- This underpins the ability to perform machine-assisted harmonisation

Access Platform

Unify:

- Consents
- Rights
- Licensing
- Access Mediation

in a single infrastructure.

ODRL (open digital rights language) provides a machine-actionable "vocabulary" to formally describe these entities.

Assets have

Policies consisting of

Rules (Permissions, Obligations and Prohibitions)

which apply to Parties

and which determine Actions

which may have Constraints

Access Platform: ODRL example

```
"@context": {
   "odrl": "http://www.w3.org/ns/odrl/2/"
   "@type": "odrl:Agreement",
   "@id": "http://ukdataservice.ac.uk/policy:12",
   "target": "http://ukdataservice.ac.uk/asset:2000",
    "assigner": "http://ukdataservice.ac.uk/organisation:55",
   "permission": [{
       "assignee": "http://ukdataservice.ac.uk/guest:0001",
       "action": "odrl:viewmetadata"
   11,
   "permission": [{
       "assignee": "http://ukdataservice.ac.uk/group:122",
       "action": "odrl:download"
   11
=>
```

For Study 2000, ONS (organisation #55) have declared that guest users can view the metadata and UK users (group #122) can download the study

The DSaaP ecosystem

Apache Ranger

Demo

Final messages

- The computational power of Hadoop enables management of complexity
- Unification of metadata and data at lifecycle, function and process level
- From dissemination of files (an archive)
 to enabling digital resources (a research data infrastructure)
- Concept driven data discovery at the variable level and lower
- Standards based around semantic web and DDI4
- Interoperability across domains
- Unified access model based on standard information model (ODRL)
- Derived and reproducible information products

Questions

Darren Bell

dbell@essex.ac.uk

