GTV Reference Manual

Generated by Doxygen 1.5.2

Mon Feb 4 13:50:03 2008

Contents

1	GTV	Module Index	1
	1.1	GTV Modules	1
2	GTV	Data Structure Index	3
	2.1	GTV Data Structures	3
3	GTV	Module Documentation	5
	3.1	Cell	5
	3.2	Delaunay tetrahedralization	8
	3.3	Facets	10
	3.4	Geometric tests	13
	3.5	Logging functions	14
	3.6	Status codes	15
	3.7	Point location in a volume	16
	3.8	Parent entities	17
	3.9	GTV tetrahedra	19
	3.10	Volume	27
4	GTV	Data Structure Documentation	33
	4.1	GtvCell Struct Reference	33
	4.2	GtvCellClass Struct Reference	34
	4.3	GtvFacet Struct Reference	35
	4.4	GtvFacetClass Struct Reference	36
	4.5	GtvTetrahedron Struct Reference	37
	4.6	GtvTetrahedronClass Struct Reference	38
	4.7	GtvVolume Struct Reference	39
	1 0	GtvVolumeClass Struct Pafarance	40

Chapter 1

GTV Module Index

1.1 GTV Modules

Here is a list of all modules:

П	. 5
launay tetrahedralization	. 8
cets	. 10
ometric tests	. 13
gging functions	. 14
tus codes	. 15
nt location in a volume	
rent entities	
V tetrahedra	. 19
lume	. 27

2 GTV Module Index

Chapter 2

GTV Data Structure Index

2.1 GTV Data Structures

Here are the data structures with brief descriptions:

GtvCell	33
GtvCellClass	34
GtvFacet	35
GtvFacetClass	36
GtvTetrahedron	37
GtvTetrahedronClass	38
GtvVolume	39
GtvVolumeClass	40

Chapter 3

GTV Module Documentation

3.1 Cell

Data Structures

- struct GtvCell
- struct GtvCellClass

Functions

- GtvCellClass * gtv_cell_class (void)
- GtvCell * gtv_cell_new (GtvCellClass *klass, GtvFacet *f1, GtvFacet *f2, GtvFacet *f3, Gtv-Facet *f4)
- GSList * gtv_cell_neighbours (GtvCell *c, GtvVolume *v)
- GtvCell * gtv_cell_new_from_vertices (GtvCellClass *klass, GtvFacetClass *facet_class, GtsEdgeClass *edge_class, GtsVertex *v1, GtsVertex *v2, GtsVertex *v3, GtsVertex *v4)
- GSList * gtv_edge_cells (GtsEdge *e, GtvVolume *v)
- GSList * gtv_vertex_cells (GtsVertex *p, GtvVolume *v)

3.1.1 Function Documentation

3.1.1.1 GtvCellClass* gtv_cell_class (void)

The basic class for cells (volume elements) in GTV.

Returns:

```
the GtvCellClass (p. 34)
```

3.1.1.2 GSList* gtv_cell_neighbours (GtvCell * c, GtvVolume * v)

Find the neighbours of a GtvCell (p. 33).

Parameters:

```
c a GtvCell (p. 33);
```

```
v a GtvVolume (p. 39), or NULL.
```

Returns:

a GSList of the cells of v, or any cells if v is NULL, which share a facet with c.

3.1.1.3 GtvCell* gtv_cell_new (GtvCellClass * klass, GtvFacet * f1, GtvFacet * f2, GtvFacet * f3, GtvFacet * f4)

Make a new GtvCell (p. 33) from four facets which must define a proper tetrahedron.

Parameters:

```
klass a GtvCellClass (p. 34);
f1 a GtvFacet (p. 35);
f2 another GtvFacet (p. 35);
f3 a further GtvFacet (p. 35);
f4 one more GtvFacet (p. 35);
```

Returns:

```
the new GtvCell (p. 33).
```

3.1.1.4 GtvCell* gtv_cell_new_from_vertices (GtvCellClass * klass, GtvFacetClass * facet_class, GtsEdgeClass * edge_class, GtsVertex * v1, GtsVertex * v2, GtsVertex * v3, GtsVertex * v4)

Generate a new cell from four GtsVertex's, making use of any existing **GtvFacet** (p. 35)'s which connect them.

Parameters:

```
klass a GtvCellClass (p. 34)
facet_class a GtvFacetClass (p. 36)
edge_class a GtsEdgeClass
v1 a GtsVertex
v2 a GtsVertex
v3 a GtsVertex
v4 a GtsVertex
```

Returns:

```
the new GtvTetrahedron (p. 37)
```

3.1.1.5 GSList* gtv_edge_cells (GtsEdge * e, GtvVolume * v)

Find the **GtvCell** (p. 33)'s which use a given GtsEdge.

Parameters:

```
e a GtsEdge
```

3.1 Cell 7

```
v a GtvVolume (p. 39)
```

Returns:

a GSList of the GtvCell (p. 33)'s of v which contain e, NULL if e is not used by any cells.

3.1.1.6 GSList* gtv_vertex_cells (GtsVertex * p, GtvVolume * v)

Find the GtvCell (p. 33)'s which use a given GtsVertex

Parameters:

```
p a GtsVertexv a GtvVolume (p. 39)
```

Returns:

a GSList of the **GtvCell** (p. 33)'s of v which contain e, NULL if e is not used by any cells.

3.2 Delaunay tetrahedralization

Functions

- GtvCell * gtv_delaunay_check (GtvVolume *v)
- gint gtv_delaunay_add_vertex_to_cell (GtvVolume *v, GtsVertex *p, GtvCell *c)
- gboolean gtv_facet_is_regular (GtvFacet *f)
- gint gtv_delaunay_remove_vertex (GtvVolume *v, GtsVertex *p)

3.2.1 Function Documentation

3.2.1.1 gint gtv_delaunay_add_vertex_to_cell (GtvVolume * v, GtsVertex * p, GtvCell * c)

Add a GtsVertex to a **GtvCell** (p. 33) of a **GtvVolume** (p. 39), restoring the Delaunay property of the volume, using the method of Edelsbrunner, H. and Shah, N. R., Algorithmica 15:223–241, 1996 and Lawson, C., Computer Aided Geometric Design, 3:231–246, 1986, as described in Ledoux, H., 'Computing the 3D Voronoi diagram robustly: An easy explanation', 4th International Symposium on Voronoi Diagrams in Science and Engineering, 2007.

Parameters:

```
v a GtvVolume (p. 39);
p a GtsVertex to add to p;
c a GtvCell (p. 33) to add p to.
```

Returns:

GTV_SUCCESS (p. 15) on success, non-zero if p is already part of c or coincides with a vertex of c.

3.2.1.2 GtvCell* gtv_delaunay_check (GtvVolume * v)

Check whether a **GtvVolume** (p. 39) satisfies the Delaunay property.

Parameters:

v volume to check

Returns:

a non-Delaunay **GtvCell** (p. 33) of v if v is non-Delaunay, NULL otherwise.

3.2.1.3 gint gtv_delaunay_remove_vertex (GtvVolume * v, GtsVertex * p)

Remove a GtsVertex from a GtvVolume (p. 39) and restore the Delaunay property.

Parameters:

```
v a GtvVolume (p. 39);p a GtsVertex.
```

Returns:

GTV_SUCCESS (p. 15) if p has been successfully removed.

$\textbf{3.2.1.4} \quad \textbf{gboolean gtv_facet_is_regular} \ (\textbf{GtvFacet} * \textbf{\textit{f}})$

Check if a **GtvFacet** (p. 35) is regular. A facet is regular if neither of the tetrahedra using it has the apex of the opposite tetrahedron inside its circumsphere. Boundary facets and isolated facets are also considered regular.

Parameters:

f a GtvFacet (p. 35).

Returns:

TRUE if f is regular, FALSE otherwise.

3.3 Facets

Data Structures

- struct GtvFacet
- struct GtvFacetClass

Functions

- GtvFacet * gtv_facet_new (GtvFacetClass *klass, GtsEdge *e1, GtsEdge *e2, GtsEdge *e3)
- GtvCell * gtv_facet_is_boundary (GtvFacet *f, GtvVolume *v)
- gint **gtv_facet_tetrahedra_vertices** (**GtvFacet** *f, GtsVertex **v1, GtsVertex **v2, GtsVertex **v3, GtsVertex **v4, GtsVertex **v5)
- gint gtv_facet_tetrahedra (GtvFacet *f, GtvTetrahedron **t1, GtvTetrahedron **t2)
- GtvFacet * gtv_facet_from_vertices (GtsVertex *v1, GtsVertex *v2, GtsVertex *v3)
- gboolean gtv_facet_has_vertex (GtvFacet *f, GtsVertex *v)
- gboolean gtv_facet_has_edge (GtvFacet *f, GtsEdge *e)
- GtvCell * gtv_edge_is_boundary (GtsEdge *e, GtvVolume *v)

3.3.1 Function Documentation

3.3.1.1 GtvCell* gtv_edge_is_boundary (GtsEdge * e, GtvVolume * v)

Check if a GtsEdge lies on the boundary of a GtvVolume (p. 39).

Parameters:

```
e a GtsEdge;v a GtvVolume (p. 39) or NULL.
```

Returns:

a **GtvCell** (p. 33) which uses e and is on the boundary of v.

3.3.1.2 GtvFacet* gtv_facet_from_vertices (GtsVertex * v1, GtsVertex * v2, GtsVertex * v3)

Find a GtvFacet (p. 35) which uses three given GtsVertex's.

Parameters:

```
v1 a GtsVertex;v2 a GtsVertex;v3 a GtsVertex.
```

Returns:

a GtvFacet (p. 35) which uses v1, v2 and v3, if it exists, NULL otherwise.

3.3 Facets 11

```
3.3.1.3 gboolean gtv_facet_has_edge (GtvFacet * f, GtsEdge * e)
```

Check if a GtvFacet (p. 35) uses a GtsEdge.

Parameters:

```
f a GtvFacet (p. 35);
e a GtsEdge;
```

Returns:

TRUE if f use e, FALSE otherwise.

3.3.1.4 gboolean gtv_facet_has_vertex (GtvFacet * f, GtsVertex * v)

Check if a GtvFacet (p. 35) uses a GtsVertex.

Parameters:

```
f a GtvFacet (p. 35);
v a GtsVertex;
```

Returns:

TRUE if f use v, FALSE otherwise.

3.3.1.5 GtvCell* gtv_facet_is_boundary (GtvFacet * f, GtvVolume * v)

Check if a GtvFacet (p. 35) lies on the boundary of a GtvVolume (p. 39).

Parameters:

```
f a GtvFacet (p. 35);
v a GtvVolume (p. 39) or NULL.
```

Returns:

a **GtvCell** (p. 33) which uses f and is on the boundary of v.

3.3.1.6 GtvFacet* gtv_facet_new (GtvFacetClass * klass, GtsEdge * e1, GtsEdge * e2, GtsEdge * e3)

Make a new GtvFacet (p. 35) from three edges which must define a proper triangle.

Parameters:

```
klass a GtvFacetClass (p. 36);e1 a GtsEdge;e2 a GtsEdge;e3 a GtsEdge.
```

Returns:

a new GtvFacet (p. 35) or NULL if the edges do not define a valid triangle.

3.3.1.7 gint gtv_facet_tetrahedra (GtvFacet * f, GtvTetrahedron ** t1, GtvTetrahedron ** t2)

Find the tetrahedra which use a **GtvFacet** (p. 35).

Parameters:

```
f a GtvFacet (p. 35)
t1 a GtvTetrahedron (p. 37) which uses f or NULL if f is isolated;
t2 a GtvTetrahedron (p. 37) which uses f or NULL if f is a boundary facet.
```

Returns:

GTV_SUCCESS on success.

3.3.1.8 gint gtv_facet_tetrahedra_vertices (GtvFacet * f, GtsVertex ** v1, GtsVertex ** v2, GtsVertex ** v3, GtsVertex ** v4, GtsVertex ** v5)

Find the vertices of the tetrahedra sharing a particular facet. If f is used by only one tetrahedron, v5 will be NULL. If f is an isolated facet, i.e. not used by any tetrahedra, all the vertices will be NULL.

Parameters:

```
f a GtvFacet (p. 35)
v1 a vertex of a tetrahedron using f;
v2 a vertex of a tetrahedron using f;
v3 a vertex of a tetrahedron using f;
v4 a vertex of a tetrahedron using f;
v5 a vertex of a tetrahedron using f.
```

Returns:

GTV_SUCCESS on success.

3.4 Geometric tests

3.4 Geometric tests

Functions

• gdouble **gtv_point_in_sphere** (GtsPoint *p, GtsPoint *p1, GtsPoint *p2, GtsPoint *p3, GtsPoint *p4)

• gboolean **gtv_points_are_collinear** (GtsPoint *p1, GtsPoint *p2, GtsPoint *p3)

3.4.1 Function Documentation

3.4.1.1 gdouble gtv_point_in_sphere (GtsPoint * p, GtsPoint * p1, GtsPoint * p2, GtsPoint * p3, GtsPoint * p4)

Check whether a point lies inside a sphere defined by four GtsPoint's.

Parameters:

```
p a GtsPoint;p1 a GtsPoint;p2 a GtsPoint;p3 a GtsPoint;p4 a GtsPoint;
```

Returns:

positive value if p lies inside the sphere, zero if it lies on the sphere and a negative value if it lies outside.

3.4.1.2 gboolean gtv_points_are_collinear (GtsPoint * p1, GtsPoint * p2, GtsPoint * p3)

Check if three points are collinear by checking their orientation in three dimensions.

Parameters:

```
p1 a GtsPoint;p2 a GtsPoint;p3 a GtsPoint.
```

Returns:

TRUE if p1, p2 and p3 are collinear, FALSE otherswise.

3.5 Logging functions

Functions

• gint **gtv_logging_init** (FILE *f, gchar *p, GLogLevelFlags log_level, gpointer exit_func)

3.5.1 Function Documentation

3.5.1.1 gint gtv_logging_init (FILE *f, gchar *p, GLogLevelFlags log_level , gpointer $exit_func$)

Initialize GTV logging

Parameters:

```
    f file stream for messages
    p string to prepend to messages
    log_level maximum logging level to handle (see g_log)
    exit_func function to call if exiting on an error
```

Returns:

GTV_SUCCESS on success

3.6 Status codes

3.6 Status codes

Enumerations

```
enum GtvStatus {
    GTV_FAILURE = -1, GTV_SUCCESS = 0, GTV_NULL_PARAMETER = 1, GTV_WRONG_TYPE = 2,
    GTV_VERTEX_PRESENT = 3, GTV_COINCIDENT_VERTEX = 4, GTV_VERTEX_NOT_IN_CELL = 5, GTV_REPEATED_PARAMETER = 6,
    GTV_VERTEX_ON_HULL = 7 }
enum GtvIntersect {
    GTV_ON = 0, GTV_IN = 1, GTV_ON_FACET = 2, GTV_ON_EDGE = 3,
    GTV_ON_VERTEX = 4 }
```

3.6.1 Enumeration Type Documentation

3.6.1.1 enum GtvIntersect

Status codes returned by GTV functions which check if a vertex inside, outside or on the surface of a simplex, e.g. a tetrahedron.

Enumerator:

```
GTV_ON vertex lies outside tetrahedron
GTV_IN vertex lies on tetrahedron surface
GTV_ON_FACET vertex lies strictly inside tetrahedron
GTV_ON_EDGE vertex lies on a facet of tetrahedron
GTV_ON_VERTEX vertex lies on an edge of tetrahedron
```

3.6.1.2 enum GtvStatus

Status codes returned by GTV functions.

Enumerator:

```
GTV_FAILURE unspecified failure
GTV_SUCCESS function succeeded
GTV_NULL_PARAMETER a parameter was NULL
GTV_WRONG_TYPE a parameter was of the wrong type
GTV_VERTEX_PRESENT vertex already present in tetrahedralization
GTV_COINCIDENT_VERTEX vertex in tetrahedralization has the same coordinates
GTV_VERTEX_NOT_IN_CELL the vertex to be added is not inside the cell
GTV_REPEATED_PARAMETER two or more input parameters are identical
GTV_VERTEX_ON_HULL vertex lies on the convex hull of a tetrahedralization
```

3.7 Point location in a volume

Functions

• GtvCell * gtv_point_locate_slow (GtsPoint *p, GtvVolume *volume, GtvCell *guess)

3.7.1 Function Documentation

```
3.7.1.1 GtvCell* gtv_point_locate_slow (GtsPoint * p, GtvVolume * volume, GtvCell * guess)
```

Find a GtvCell (p. 33) in a given volume which encloses a GtsPoint by testing all of the cells.

Parameters:

```
p a GtsPoint;
volume a GtvVolume (p. 39) to search for the location of p;
guess ignored, included for compatibility with other location functions.
```

Returns:

a **GtvCell** (p. 33) containing *p* or NULL if *p* is not in *v*.

3.8 Parent entities 17

3.8 Parent entities

Functions

```
• GtvFacet * gtv_edge_has_parent_volume (GtsEdge *e, GtvVolume *v)
```

- GtvCell * gtv_facet_has_parent_volume (GtvFacet *f, GtvVolume *v)
- gboolean gtv_cell_has_parent_volume (GtvCell *c, GtvVolume *v)
- guint gtv_edge_facet_number (GtsEdge *e, GtvVolume *v)
- guint gtv_facet_cell_number (GtvFacet *f, GtvVolume *v)

3.8.1 Function Documentation

```
3.8.1.1 gboolean gtv_cell_has_parent_volume (GtvCell * c, GtvVolume * v)
```

Check if a GtvCell (p. 33) belongs to a given GtvVolume (p. 39).

Parameters:

```
c a GtvCell (p. 33);v a GtvVolume (p. 39).
```

Returns:

TRUE if c belongs to v, FALSE otherwise.

3.8.1.2 guint gtv_edge_facet_number (GtsEdge * e, GtvVolume * v)

Count the number of facets using an edge.

Parameters:

```
e a GtsEdge;v a GtvVolume (p. 39).
```

Returns:

the number of facets of v which contain e.

3.8.1.3 GtvFacet* gtv_edge_has_parent_volume (GtsEdge * e, GtvVolume * v)

Check if a GtsEdge has a given parent volume.

Parameters:

```
e a GtsEdge;v a GtvVolume (p. 39).
```

Returns:

a **GtvFacet** (p. 35) of v containing e, NULL otherwise.

3.8.1.4 guint gtv_facet_cell_number (GtvFacet * f, GtvVolume * v)

Count the number of cells using a facet.

Parameters:

```
f a GtvFacet (p. 35);v a GtvVolume (p. 39).
```

Returns:

the number of cells of v which contain f.

3.8.1.5 GtvCell* gtv_facet_has_parent_volume (GtvFacet * f, GtvVolume * v)

Check if a GtvFacet (p. 35) has a given parent volume.

Parameters:

```
f a GtvFacet (p. 35);v a GtvVolume (p. 39).
```

Returns:

a **GtvCell** (p. 33) of v containing f, NULL otherwise.

3.9 GTV tetrahedra

3.9 GTV tetrahedra

Data Structures

- struct GtvTetrahedron
- struct GtvTetrahedronClass

Functions

- GtvTetrahedronClass * gtv_tetrahedron_class (void)
- gint gtv_tetrahedron_set (GtvTetrahedron *tetrahedron, GtvFacet *f1, GtvFacet *f2, GtvFacet *f3, GtvFacet *f4)
- GtvTetrahedron * gtv_tetrahedron_new (GtvTetrahedronClass *klass, GtvFacet *f1, GtvFacet *f2, GtvFacet *f3, GtvFacet *f4)
- gint **gtv_tetrahedron_vertices** (**GtvTetrahedron** *t, GtsVertex **v1, GtsVertex **v2, GtsVertex **v3, GtsVertex **v4)
- gdouble gtv_tetrahedron_volume (GtvTetrahedron *t)
- gboolean gtv_tetrahedron_has_facet (GtvTetrahedron *t, GtvFacet *f)
- GtvTetrahedron * gtv_tetrahedron_from_facets (GtvFacet *f1, GtvFacet *f2, GtvFacet *f3, GtvFacet *f4)
- GtvTetrahedron * gtv_tetrahedron_is_duplicate (GtvTetrahedron *t)
- gdouble **gtv_point_in_tetrahedron_sphere** (GtsPoint *p, **GtvTetrahedron** *t)
- GtvIntersect gtv_point_in_tetrahedron (GtsPoint *p, GtvTetrahedron *t, gpointer *s)
- GtvTetrahedron * gtv_tetrahedron_large (GtvTetrahedronClass *klass, gdouble len)
- GtvFacet * gtv_tetrahedra_common_facet (GtvTetrahedron *t1, GtvTetrahedron *t2)
- GtvTetrahedron * gtv_tetrahedron_opposite (GtvTetrahedron *t, GtvFacet *f)
- gdouble gtv_tetrahedron_orientation (GtvTetrahedron *t)
- gint gtv_tetrahedron_facets (GtvTetrahedron *t, GtvFacet **f1, GtvFacet **f2, GtvFacet **f3, GtvFacet **f4)
- gint gtv tetrahedron invert (GtvTetrahedron *t)
- GtsVertex * gtv_tetrahedron_vertex_opposite (GtvTetrahedron *t, GtvFacet *f)
- GtvFacet * gtv_tetrahedron_facet_opposite (GtvTetrahedron *t, GtsVertex *v)
- gboolean **gtv_tetrahedron_is_okay** (**GtvTetrahedron** *t)
- GtvTetrahedron * gtv_tetrahedron_new_from_vertices (GtvTetrahedronClass *klass, Gtv-FacetClass *facet_class, GtsEdgeClass *edge_class, GtsVertex *v1, GtsVertex *v2, GtsVertex *v3, GtsVertex *v4)
- GtvFacet * gtv_point_in_tetrahedron_facet (GtvTetrahedron *t, GtsPoint *p)
- gint **gtv_tetrahedron_opposite_vertices** (**GtvTetrahedron** *t, GtsVertex *v, GtsVertex **v1, GtsVertex **v2, GtsVertex **v3)
- gint gtv_tetrahedron_orient (GtvTetrahedron *t)

3.9.1 Function Documentation

3.9.1.1 GtvIntersect gtv_point_in_tetrahedron (GtsPoint * p, GtvTetrahedron * t, gpointer * s)

Check if a GtsPoint lies in a **GtvTetrahedron** (p. 37).

Parameters:

p a GtsPoint;

```
t a GtvTetrahedron (p. 37);
```

s if NULL, ignored; if not NULL, set to the vertex, edge or facet of t which p intersects, or NULL if p lies strictly inside or strictly outside t.

Returns:

GTV_OUT if *p* is strictly outside *t* and GTV_IN if it lies strictly inside *t*. If *p* lies on the surface of *t*, returns GTV_IN if *s* is NULL, or GTV_ON_FACET, GTV_ON_EDGE or GTV_ON_VERTEX if it lies on a facet, edge or vertex of *t* respectively.

3.9.1.2 GtvFacet* gtv_point_in_tetrahedron_facet (GtvTetrahedron * t, GtsPoint * p)

Find the facet of a **GtvTetrahedron** (p. 37) on which lies a GtsPoint.

Parameters:

```
t a GtvTetrahedron (p. 37);p a GtsPoint.
```

Returns:

the facet of t which contains p, i.e. p lies in the plane of the facet and inside or on its boundary.

3.9.1.3 gdouble gtv_point_in_tetrahedron_sphere (GtsPoint * p, GtvTetrahedron * t)

Check whether a point lies inside or outside the circumsphere of a tetrahedron.

Parameters:

```
p a GtsPoint;t a GtvTetrahedron (p. 37).
```

Returns:

positive value if p lies inside t, zero if lies on t and a negative value if it lies outside t.

3.9.1.4 GtvFacet* gtv_tetrahedra_common_facet (GtvTetrahedron * t1, GtvTetrahedron * t2)

Find the facet shared by two tetrahedra.

Parameters:

```
t1 a GtvTetrahedron (p. 37);t2 another GtvTetrahedron (p. 37).
```

Returns:

the **GtvFacet** (p. 35) between t1 and t2, if they neighbour each other, NULL otherwise.

3.9 GTV tetrahedra

3.9.1.5 GtvTetrahedronClass* gtv_tetrahedron_class (void)

The basic class for tetrahedra in GTV.

Returns:

```
the GtvTetrahedronClass (p. 38)
```

3.9.1.6 GtvFacet* gtv_tetrahedron_facet_opposite (GtvTetrahedron * t, GtsVertex * v)

Find the face of a tetrahedron which is opposite a specified vertex.

Parameters:

```
t GtvTetrahedron (p. 37);
```

v GtsVertex opposite to which a **GtvFacet** (p. 35) is to be found.

Returns:

GtvFacet (p. 35) of t which is opposite v, if v is on t, NULL otherwise.

3.9.1.7 gint gtv_tetrahedron_facets (GtvTetrahedron * t, GtvFacet ** f1, GtvFacet ** f2, GtvFacet ** f3, GtvFacet ** f4)

Find the facets of a tetrahedron.

Parameters:

```
t GtvTetrahedron (p. 37);
f1 GtvFacet (p. 35) of first face;
f2 GtvFacet (p. 35) of second face;
f3 GtvFacet (p. 35) of third face;
f4 GtvFacet (p. 35) of fourth face;
```

Returns:

GTV_SUCCESS on success.

3.9.1.8 GtvTetrahedron* gtv_tetrahedron_from_facets (GtvFacet * f1, GtvFacet * f2, GtvFacet * f3, GtvFacet * f4)

Find a tetrahedron which uses a set of facets.

Parameters:

```
f1 a GtvFacet (p. 35);f2 a GtvFacet (p. 35);f3 a GtvFacet (p. 35);f4 a GtvFacet (p. 35).
```

Returns:

a **GtvTetrahedron** (p. 37) which uses f1, f2, f3 and f4, if one exists, NULL otherwise.

3.9.1.9 gboolean gtv_tetrahedron_has_facet (GtvTetrahedron * t, GtvFacet * f)

Check if a tetrahedron has a given facet.

Parameters:

```
t a GtvTetrahedron (p. 37);
f a GtvFacet (p. 35).
```

Returns:

TRUE if t contains f, FALSE otherwise.

3.9.1.10 gint gtv_tetrahedron_invert (GtvTetrahedron * t)

Invert a tetrahedron by changing the order of two faces. This will change the sign of the tetrahedron volume.

Parameters:

```
t GtvTetrahedron (p. 37) to invert.
```

Returns:

GTV_SUCCESS on success.

3.9.1.11 GtvTetrahedron* gtv_tetrahedron_is_duplicate (GtvTetrahedron * t)

Check if a tetrahedron is duplicated.

Parameters:

```
t a GtvTetrahedron (p. 37);
```

Returns:

NULL if t is unique, otherwise the **GtvTetrahedron** (p. 37) which duplicates t.

3.9.1.12 gboolean gtv_tetrahedron_is_okay (GtvTetrahedron * *t*)

Check that a GtvTetrahedron (p. 37) has positive volume and is not a duplicate.

Parameters:

```
t GtvTetrahedron (p. 37) to check.
```

Returns:

TRUE if t is okay, FALSE otherwise.

3.9 GTV tetrahedra

3.9.1.13 GtvTetrahedron* gtv_tetrahedron_large (GtvTetrahedronClass * klass, gdouble len)

Generate a 'large' tetrahedron which can be used to enclose a Delaunay tetrahedralization under construction.

Parameters:

```
klass a GtvTetrahedronClass (p. 38); len a length.
```

Returns:

```
a GtvTetrahedron (p. 37) with vertices at (0,0,len), (0,len, -len), (len, -len, -len) and (-len, -len, -len).
```

3.9.1.14 GtvTetrahedron* gtv_tetrahedron_new (GtvTetrahedronClass * klass, GtvFacet * f1, GtvFacet * f2, GtvFacet * f3, GtvFacet * f4)

Generate a new tetrahedron from four GtvFacet (p. 35)'s

Parameters:

```
klass a GtvTetrahedronClass (p. 38)

f1 GtvFacet (p. 35)

f2 GtvFacet (p. 35)

f3 GtvFacet (p. 35)

f4 GtvFacet (p. 35)
```

Returns:

```
the new GtvTetrahedron (p. 37)
```

```
3.9.1.15 GtvTetrahedron* gtv_tetrahedron_new_from_vertices (GtvTetrahedronClass * klass, GtvFacetClass * facet_class, GtsEdgeClass * edge_class, GtsVertex * v1, GtsVertex * v2, GtsVertex * v3, GtsVertex * v4)
```

Generate a new tetrahedron from four GtsVertex's, making use of any existing **GtvFacet** (p. 35)'s which connect them.

Parameters:

```
klass a GtvTetrahedronClass (p. 38)
facet_class a GtvFacetClass (p. 36)
edge_class a GtsEdgeClass
v1 a GtsVertex
v2 a GtsVertex
v3 a GtsVertex
v4 a GtsVertex
```

Returns:

```
the new GtvTetrahedron (p. 37)
```

3.9.1.16 GtvTetrahedron* gtv_tetrahedron_opposite (GtvTetrahedron* t, GtvFacet * f)

Find the tetrahedron neighbouring a specified tetrahedron on a given side.

Parameters:

```
t a GtvTetrahedron (p. 37)
f a GtvFacet (p. 35) of t
```

Returns:

the **GtvTetrahedron** (p. 37) which neighbours t on the side f, if there is one, otherwise NULL.

3.9.1.17 gint gtv_tetrahedron_opposite_vertices (GtvTetrahedron * t, GtsVertex * v, GtsVertex ** v1, GtsVertex ** v2, GtsVertex ** v3)

Find the three vertices of a **GtvTetrahedron** (p. 37) opposite a given GtsVertex of the tetrahedron, respecting the orientation of the tetrahedron. On exit, v1, v2 and v3 will be the vertices of the facet of t opposite v, such that the orientation of v, v1, v2 and v3 will be the same as that of the tetrahedron itself, including the sign.

Parameters:

```
t a GtvTetrahedron (p. 37);
v a GtsVertex;
v1 a GtsVertex;
v2 a GtsVertex;
v3 a GtsVertex.
```

Returns:

GTV_SUCCESS or GTV_FAILURE if *v* is not a vertex of *t*.

3.9.1.18 gint gtv_tetrahedron_orient (GtvTetrahedron * t)

Orient the facets of a tetrahedron so that it has non-negative volume.

Parameters:

```
t a GtvTetrahedron (p. 37);
```

Returns:

GTV_SUCCESS on success, i.e. t has positive volume.

3.9.1.19 gdouble gtv_tetrahedron_orientation (GtvTetrahedron * *t*)

Find the orientation of the vertices of a tetrahedron. This is an approximation of six times the signed volume of the tetrahedron.

3.9 GTV tetrahedra

Parameters:

```
t a GtvTetrahedron (p. 37).
```

Returns:

a positive value if the tetrahedron apex lies above the plane of the other three points, taken in cyclic order; a negative value if it lies below that plane and zero if it lies in the plane.

```
3.9.1.20 gint gtv_tetrahedron_set (GtvTetrahedron * tetrahedron, GtvFacet * f1, GtvFacet * f2, GtvFacet * f3, GtvFacet * f4)
```

Set the facets of a **GtvTetrahedron** (p. 37). A check is performed to ensure that the facets define a valid tetrahedron.

Parameters:

```
tetrahedron,: a GtvTetrahedron (p. 37);
f1,: a GtvFacet (p. 35);
f2,: a GtvFacet (p. 35);
f3,: a GtvFacet (p. 35);
f4,: a GtvFacet (p. 35).
```

Returns:

GTV_SUCCESS on success.

3.9.1.21 GtsVertex* gtv_tetrahedron_vertex_opposite (GtvTetrahedron * t, GtvFacet * f)

Find the vertex of a tetrahedron which is opposite a specified face.

Parameters:

```
t GtvTetrahedron (p. 37);f GtvFacet (p. 35) opposite to which a GtsVertex is to be found.
```

Returns:

GtsVertex of *t* which is opposite *f* , if *f* is on *t* , NULL otherwise.

```
3.9.1.22 gint gtv_tetrahedron_vertices (GtvTetrahedron * t, GtsVertex ** v1, GtsVertex ** v2, GtsVertex ** v3, GtsVertex ** v4)
```

Extract the vertices of a tetrahedron. These are ordered so that vI is opposite the first face of t and so on.

Parameters:

```
t a GtvTetrahedron (p. 37);v1 a GtsVertex;v2 a GtsVertex;
```

```
v3 a GtsVertex;v4 a GtsVertex.
```

Returns:

GTV_SUCCESS on success.

3.9.1.23 gdouble gtv_tetrahedron_volume (GtvTetrahedron *t)

Find the signed volume of a tetrahedron.

Parameters:

```
t a GtvTetrahedron (p. 37).
```

Returns:

the signed volume of *t*; if this is negative, you might want to use **gtv_tetrahedron_invert** (p. 22) or **gtv_tetrahedron_orient** (p. 24) to reorient the vertices.

3.10 Volume 27

3.10 Volume

Data Structures

- struct GtvVolume
- struct GtvVolumeClass

Functions

- GtvVolumeClass * gtv_volume_class (void)
- GtvVolume * gtv_volume_new (GtvVolumeClass *klass, GtvCellClass *cell_class, GtvFacetClass *facet_class, GtsEdgeClass *edge_class, GtsVertexClass *vertex_class)
- gint gtv_volume_add_cell (GtvVolume *v, GtvCell *c)
- gint gtv_volume_remove_cell (GtvVolume *v, GtvCell *c)
- gint gtv_volume_write (GtvVolume *v, FILE *f)
- guint **gtv_volume_read** (**GtvVolume** *v, GtsFile *f)
- gint gtv_volume_foreach_cell (GtvVolume *v, GtsFunc func, gpointer data)
- gint gtv_volume_foreach_facet (GtvVolume *v, GtsFunc func, gpointer data)
- gint **gtv_volume_foreach_edge** (**GtvVolume** *v, GtsFunc func, gpointer data)
- gint gtv_volume_foreach_vertex (GtvVolume *v, GtsFunc func, gpointer data)
- gint gtv_volume_stats (GtvVolume *v, GtvVolumeStats *s)
- gint gtv_volume_print_stats (GtvVolume *v, FILE *f)
- gint gtv_volume_boundary (GtvVolume *v, GtsSurface *s)
- gdouble gtv_volume_volume (GtvVolume *v)
- GtsVertex * gtv_volume_nearest_vertex (GtvVolume *v, GtsPoint *p)
- gint gtv_volume_write_tetgen (GtvVolume *v, gchar *stub)

3.10.1 Function Documentation

```
3.10.1.1 gint gtv_volume_add_cell (GtvVolume * v, GtvCell * c)
```

```
Add a GtvCell (p. 33) to a GtvVolume (p. 39).
```

Parameters:

- v GtvVolume (p. 39)
- c GtvCell (p. 33)

Returns:

GTV_SUCCESS on success.

3.10.1.2 gint gtv_volume_boundary (GtvVolume * v, GtsSurface * s)

Add the boundary facets of a GtvVolume (p. 39) to a GtsSurface.

Parameters:

- v GtvVolume (p. 39)
- s GtsSurface to take boundary facets

Returns:

GTV_SUCCESS on success

3.10.1.3 GtvVolumeClass* gtv_volume_class (void)

Generate the class definition for the **GtvVolume** (p. 39) type.

Returns:

GtvVolumeClass (p. 40).

3.10.1.4 gint gtv_volume_foreach_cell (GtvVolume * v, GtsFunc func, gpointer data)

Execute a function for each cell of a GtvVolume (p. 39).

Parameters:

```
v GtvVolume (p. 39);func a GtsFunc to be evaluated for each cell;
```

data data to be passed to function.

Returns:

GTV_SUCCESS on success.

3.10.1.5 gint gtv_volume_foreach_edge (GtvVolume * v, GtsFunc func, gpointer data)

Execute a function for each edge of a GtvVolume (p. 39).

Parameters:

```
v GtvVolume (p. 39);
func a GtsFunc to be evaluated for each edge;
```

data data to be passed to function.

Returns:

GTV_SUCCESS on success.

3.10.1.6 gint gtv_volume_foreach_facet (GtvVolume * v, GtsFunc func, gpointer data)

Execute a function for each facet of a **GtvVolume** (p. 39).

Parameters:

```
v GtvVolume (p. 39);
```

func a GtsFunc to be evaluated for each facet; *data* data to be passed to function.

Returns:

GTV_SUCCESS on success.

3.10 Volume 29

3.10.1.7 gint gtv_volume_foreach_vertex (GtvVolume * v, GtsFunc func, gpointer data)

Execute a function for each vertex of a GtvVolume (p. 39).

Parameters:

```
v GtvVolume (p. 39);func a GtsFunc to be evaluated for each vertex;data data to be passed to function.
```

Returns:

GTV_SUCCESS on success.

3.10.1.8 GtsVertex* gtv_volume_nearest_vertex (GtvVolume * v, GtsPoint * p)

Find the vertex of a tetrahedralization which is nearest a GtsPoint.

Parameters:

```
v a GtvVolume (p. 39);p a GtsPoint.
```

Returns:

the vertex of v which is closest to p, NULL in case of an error.

3.10.1.9 GtvVolume* gtv_volume_new (GtvVolumeClass * klass, GtvCellClass * $cell_class$, GtvFacetClass * $facet_class$, GtsEdgeClass * $edge_class$, GtsVertexClass * $vertex_class$)

Generate a new GtvVolume (p. 39)

Parameters:

```
klass GtvVolumeClass (p. 40) for new volume cell_class GtvCellClass (p. 34) facet_class GtvFacetClass (p. 36) edge_class GtsEdgeClass vertex_class GtsVertexClass
```

Returns:

```
the new GtvVolume (p. 39)
```

3.10.1.10 gint gtv_volume_print_stats (GtvVolume * v, FILE * f)

Print out basic statistics about a **GtvVolume** (p. 39)

Parameters:

```
v GtvVolume (p. 39)
```

f file pointer

Returns:

GTV_SUCCESS on success

3.10.1.11 guint gtv_volume_read (GtvVolume * v, GtsFile * f)

Read a volume from file, adding its cells to the **GtvVolume** (p. 39) v.

Parameters:

```
v GtvVolume (p. 39) to add cells to;f GtsFile to read from.
```

Returns:

GTV_SUCCESS on success, otherwise the line number where the error occurred.

3.10.1.12 gint gtv_volume_remove_cell (GtvVolume * v, GtvCell * c)

Remove a **GtvCell** (p. 33) from a **GtvVolume** (p. 39). If gtv_allow_floating_cells is FALSE, the cell will be destroyed if it is not used by any other **GtvVolume** (p. 39).

Parameters:

```
v GtvVolume (p. 39);
```

c GtvCell (p. 33) to remove.

Returns:

GTV_SUCCESS on success.

3.10.1.13 gint gtv_volume_stats (GtvVolume * v, GtvVolumeStats * s)

Find basic statistics for a volume

Parameters:

- v GtvVolume (p. 39)
- s GtvVolumeStats to fill with data

Returns:

GTV_SUCCESS on success

3.10 Volume 31

3.10.1.14 gdouble gtv_volume_volume (GtvVolume * v)

Volume of a **GtvVolume** (p. 39), found as the sum of the cell volumes.

Parameters:

```
v GtvVolume (p. 39)
```

Returns:

volume of v

3.10.1.15 gint gtv_volume_write (GtvVolume * v, FILE * f)

Write a **GtvVolume** (p. 39) to file. The file's first line is the number of vertices, edges, facets and cells respectively, followed by the class of each in the volume. There then follow the vertex coordinates, one vertex per line, and then the edges, facets and cells.

Parameters:

```
v GtvVolume (p. 39) to write; f file pointer.
```

Returns:

GTV_SUCCESS on success.

3.10.1.16 gint gtv_volume_write_tetgen (GtvVolume * v, gchar * stub)

Write a **GtvVolume** (p. 39) to .node and .ele files which can be read by tetgen, to allow checking and comparisons.

Parameters:

```
v a GtvVolume (p. 39); stub the stub file name. Files will be written to stub.node and stub.ele.
```

Returns:

GTV_SUCCESS on success.

Chapter 4

GTV Data Structure Documentation

4.1 GtvCell Struct Reference

4.1.1 Detailed Description

Basic tetrahedral cell derived from GtvTetrahedron (p. 37), used to build up GtvVolume (p. 39)'s.

4.2 GtvCellClass Struct Reference

4.2.1 Detailed Description

The basic cell class, derived from the GtvTetrahedronClass (p. 38).

4.3 GtvFacet Struct Reference

4.3.1 Detailed Description

Triangular facet used to form **GtvTetrahedron** (p. 37)'s.

4.4 GtvFacetClass Struct Reference

4.4.1 Detailed Description

The basic facet class, derived from the GtsTriangleClass.

4.5 GtvTetrahedron Struct Reference

4.5.1 Detailed Description

Basic tetrahedral cell made up of four GtvFacet (p. 35)'s.

4.6 GtvTetrahedronClass Struct Reference

4.6.1 Detailed Description

The basic tetrahedron class.

4.7 GtvVolume Struct Reference

4.7.1 Detailed Description

Opaque data structure for the GTV volume.

4.8 GtvVolumeClass Struct Reference

4.8.1 Detailed Description

The basic class for a **GtvVolume** (p. 39)

Index

Cell, 5	delaunay, 8
cell	gtv_delaunay_check
gtv_cell_class, 5	delaunay, 8
gtv_cell_neighbours, 5	gtv_delaunay_remove_vertex
gtv_cell_new, 6	delaunay, 8
gtv_cell_new_from_vertices, 6	gtv_edge_cells
gtv_edge_cells, 6	cell, 6
gtv_vertex_cells, 7	gtv_edge_facet_number
-	parent, 17
delaunay	gtv_edge_has_parent_volume
gtv_delaunay_add_vertex_to_cell, 8	parent, 17
gtv_delaunay_check, 8	gtv_edge_is_boundary
gtv_delaunay_remove_vertex, 8	facet, 10
gtv_facet_is_regular, 8	gtv_facet_cell_number
Delaunay tetrahedralization, 8	parent, 17
	gtv_facet_from_vertices
facet	facet, 10
gtv_edge_is_boundary, 10	gtv_facet_has_edge
gtv_facet_from_vertices, 10	facet, 10
gtv_facet_has_edge, 10	gtv_facet_has_parent_volume
gtv_facet_has_vertex, 11	parent, 18
gtv_facet_is_boundary, 11	gtv_facet_has_vertex
gtv_facet_new, 11	facet, 11
gtv_facet_tetrahedra, 11	gtv_facet_is_boundary
gtv_facet_tetrahedra_vertices, 12	facet, 11
Facets, 10	gtv_facet_is_regular
	delaunay, 8
Geometric tests, 13	gtv_facet_new
geometry	facet, 11
gtv_point_in_sphere, 13	gtv_facet_tetrahedra
gtv_points_are_collinear, 13	facet, 11
GTV tetrahedra, 19	gtv_facet_tetrahedra_vertices
gtv_cell_class	facet, 12
cell, 5	GTV_FAILURE
gtv_cell_has_parent_volume	status, 15
parent, 17	GTV_IN
gtv_cell_neighbours	status, 15
cell, 5	gtv_logging_init
gtv_cell_new	logging, 14
cell, 6	GTV_NULL_PARAMETER
gtv_cell_new_from_vertices	status, 15
cell, 6	GTV_ON
GTV_COINCIDENT_VERTEX	status, 15
status, 15	GTV_ON_EDGE
gtv_delaunay_add_vertex_to_cell	status, 15

42 INDEX

GTV_ON_FACET gtv_tetrahedron_vertex_opposite status, 15 tetrahedron, 25 GTV_ON_VERTEX gtv tetrahedron vertices tetrahedron, 25 status, 15 gtv_point_in_sphere gtv_tetrahedron_volume geometry, 13 tetrahedron, 26 gtv_point_in_tetrahedron gtv_vertex_cells tetrahedron, 19 cell, 7 gtv point in tetrahedron facet GTV_VERTEX_NOT_IN_CELL tetrahedron, 20 status, 15 gtv_point_in_tetrahedron_sphere GTV_VERTEX_ON_HULL tetrahedron, 20 status, 15 GTV_VERTEX_PRESENT gtv_point_locate_slow locate, 16 status, 15 gtv_points_are_collinear gtv_volume_add_cell geometry, 13 volume, 27 GTV_REPEATED_PARAMETER gtv_volume_boundary status, 15 volume, 27 GTV SUCCESS gtv_volume_class status, 15 volume, 28 gtv tetrahedra common facet gtv volume foreach cell tetrahedron, 20 volume, 28 gtv_tetrahedron_class gtv_volume_foreach_edge tetrahedron, 20 volume, 28 gtv tetrahedron facet opposite gtv volume foreach facet tetrahedron, 21 volume, 28 gtv_tetrahedron_facets gtv_volume_foreach_vertex tetrahedron, 21 volume, 28 gtv_tetrahedron_from_facets gtv volume nearest vertex tetrahedron, 21 volume, 29 gtv_tetrahedron_has_facet gtv_volume_new tetrahedron, 21 volume, 29 gtv_volume_print_stats gtv tetrahedron invert volume, 29 tetrahedron, 22 gtv_tetrahedron_is_duplicate gtv_volume_read tetrahedron, 22 volume, 30 gtv_tetrahedron_is_okay gtv_volume_remove_cell tetrahedron, 22 volume, 30 gtv_tetrahedron_large gtv_volume_stats tetrahedron, 22 volume, 30 gtv_volume_volume gtv tetrahedron new volume, 30 tetrahedron, 23 gtv_tetrahedron_new_from_vertices gtv_volume_write tetrahedron, 23 volume, 31 gtv_tetrahedron_opposite gtv_volume_write_tetgen tetrahedron, 23 volume, 31 gtv_tetrahedron_opposite_vertices GTV_WRONG_TYPE tetrahedron, 24 status, 15 gtv_tetrahedron_orient GtvCell, 33 GtvCellClass, 34 tetrahedron, 24 gtv_tetrahedron_orientation GtvFacet, 35 tetrahedron, 24 GtvFacetClass, 36 gtv_tetrahedron_set GtvIntersect tetrahedron, 25 status, 15

INDEX 43

GtvStatus	gtv_tetrahedron_large, 22
status, 15	gtv_tetrahedron_new, 23
GtvTetrahedron, 37	gtv_tetrahedron_new_from_vertices, 23
GtvTetrahedronClass, 38	gtv_tetrahedron_opposite, 23
GtvVolume, 39	gtv_tetrahedron_opposite_vertices, 24
GtvVolumeClass, 40	gtv_tetrahedron_orient, 24
,	gtv_tetrahedron_orientation, 24
locate	gtv_tetrahedron_set, 25
gtv_point_locate_slow, 16	gtv_tetrahedron_vertex_opposite, 25
logging	gtv_tetrahedron_vertices, 25
gtv_logging_init, 14	gtv_tetrahedron_volume, 26
Logging functions, 14	gtv_tetraneuron_volume, 20
Logging functions, 14	Volume, 27
	volume
parent	
gtv_cell_has_parent_volume, 17	gtv_volume_add_cell, 27
gtv_edge_facet_number, 17	gtv_volume_boundary, 27
gtv_edge_has_parent_volume, 17	gtv_volume_class, 28
gtv_facet_cell_number, 17	gtv_volume_foreach_cell, 28
gtv_facet_has_parent_volume, 18	gtv_volume_foreach_edge, 28
Parent entities, 17	gtv_volume_foreach_facet, 28
Point location in a volume, 16	gtv_volume_foreach_vertex, 28
,	gtv_volume_nearest_vertex, 29
status	gtv_volume_new, 29
GTV_COINCIDENT_VERTEX, 15	gtv_volume_print_stats, 29
GTV_FAILURE, 15	gtv_volume_read, 30
GTV_IALLORE, 15 GTV_IN, 15	gtv_volume_remove_cell, 30
	gtv_volume_stats, 30
GTV_NULL_PARAMETER, 15	
GTV_ON, 15	gtv_volume_volume, 30
GTV_ON_EDGE, 15	gtv_volume_write, 31
GTV_ON_FACET, 15	gtv_volume_write_tetgen, 31
GTV_ON_VERTEX, 15	
GTV_REPEATED_PARAMETER, 15	
GTV_SUCCESS, 15	
GTV_VERTEX_NOT_IN_CELL, 15	
GTV_VERTEX_ON_HULL, 15	
GTV_VERTEX_PRESENT, 15	
GTV_WRONG_TYPE, 15	
GtvIntersect, 15	
GtvStatus, 15	
Status codes, 15	
Status codes, 15	
tetrahedron	
gtv_point_in_tetrahedron, 19	
gtv_point_in_tetrahedron_facet, 20	
gtv_point_in_tetrahedron_sphere, 20	
gtv_tetrahedra_common_facet, 20	
gtv_tetrahedron_class, 20	
gtv_tetrahedron_facet_opposite, 21	
gtv_tetrahedron_facets, 21	
gtv_tetrahedron_from_facets, 21	
gtv_tetrahedron_has_facet, 21	
gtv_tetrahedron_invert, 22	
gtv_tetrahedron_is_duplicate, 22	
gtv_tetrahedron_is_okay, 22	
Stv_tetranearon_15_okay, 22	