1.1 Bernoulli 过程与 Poisson 过程

1.1.1 基本概念

定义 令 (ω, \mathcal{J}, P) 为概率空间,T 为指标集,S 为状态空间 (相空间), $\forall t \in T, \omega \in \Omega, X_t(\omega) \in S$, X_t 为随机变量, $\{X_t : t \in T\}$ 称为一个**随机过程(stochastic process)**; $\forall \omega_0 \in \Omega$, $X_t(\omega_0)$ 称为一个样本轨道(sample path)。

定义 随机变量 $\{N(t): t \geq 0\}$ 称为计数过程,如果满足

- 1. $N(t) \ge 0$, 取整数值
- 2. $\forall t > s \ge 0, N(t) \ge N(s)$
- 3. N(t) N(s) 表示时间 (s,t] 时间内的事件数

一般记第 n 次到达的时间为 Y_n ,则有到达时间序列 $\{Y_n\}_{n=1}^{\infty}$; 定义 $\{T_n\}_{n=1}^{\infty}$,满足 $T_1=Y_1,\ T_i=Y_i-Y_{i-1}(i>1)$ 。

REMARK:

- 1. X_t 记为 X(t) 时强调函数性质
- 2. T 通常解释为时间,可以为离散或者连续
- $3. X_t$ 称为过程在 t 时刻的状态,S 可以为离散或者连续
- 4. $X_t(\omega) = X(t,\omega)$ 视为 (t,ω) 的函数

1.1.2 Bernoulli 过程

<u>定义</u> T 为离散时间,记为 $\{1,2,\ldots,n,\ldots\}$ 。 X_1,X_2,\ldots 独立同分布且 $X_i\sim B(p)$, X_i 可以视为第 i 次实验成功与否。 $\{X_n\}_{n=1}^{\infty}$ 记为 Bernoulli 过程。

REMARK:

- 1. X_1, X_2, \ldots 相互独立 $\iff \forall n, X_1, X_2, \ldots, X_n$ 相互独立
- 2. \forall certain n, $\{X_{n+1}, X_{n+2}, \dots\}$ 仍为 Bernoulli 过程。

1.1.3 Bernoulli 过程的性质

首次到达(相邻两次到达)的分布:几何分布

 $\underline{\mathbf{E}\mathbf{X}}$ 令 T= 首次试验成功的时间,则 $P(T=m)=p(1-p)^{m-1}(m=1,2,\dots)$

性质 无记忆性

$$P(T-n=m|T>m) = \frac{P(T=n+m,T>n)}{P(T>n)} = \frac{p(1-p)^{n+m}}{1-\sum_{k\geq 1} p(1-p)^{k-1}} = p(1-p)^{m-1} = P(T=m)$$
(1.1)

第 k 次到达时间的分布: 负二项分布

定义 对于 Bernoulli 过程 $\{T_n\}_{n=1}^{\infty}$, 令

$$P(Y_k = m) = P(第 m 次成功, 且前 m 次成功了 k 次) = {m-1 \choose k-1} p^k (1-p)^{m-k}$$

Bernoulli 过程的分裂

若每次到达的时间以q的概率保留下来,则保留下来的过程为Bernoulli 过程,参数为pq。

Bernoulli 过程的合并

两个独立的 Bernoulli 过程合并,结果仍为 Bernoulli 过程,且参数为 p+q-pq。

1.1.4 Poisson 过程

平稳增量过程

定义 如果增量 $X(t+\tau) - X(t)$ 的分布仅与 τ 有关,而与 t 无关,则称为平稳增量过程。

独立增量过程

<u>定义</u> 时刻 t 以前发生的事件数 [即 N(t)] 必须独立于时刻 t 与 t+s 之间发生的事件数 [N(t+s)-N(t)],则该过程为独立增量过程。

Poisson 过程

定义 1 计数过程 $\{N(t): t \geq 0\}$ 称为 Poisson 过程,如果满足

- 1. N(0) = 0
- 2. 过程有平稳独立增量
- 3. 存在 $\lambda > 0$,满足 $h \to 0$ 时, $P(N(h) = 1) = \lambda h + o(h)$
- 4. $P(N(h) \ge 2) = o(h)$

定义 2

- 1. N(0) = 0
- 2. 过程有独立增量
- 3. $\forall s, t \ge 0, P\{N(t+s) N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$

1.1.5 Poisson 过程的性质

Poisson 过程的分裂

<u>定理</u> 假设 Poisson 过程过程中每次发生的事件分为 I 型和 II 型,以概率 p 为 I 型,否则为 II 型。 $N_1(t), N_2(t)$ 分别表示 (0,t] 内两种事件的数目,则

- 1. $N(t) = N_1(t) + N_2(t)$
- 2. $\{N_1(t): t \geq 0\}, \{N_2(t): t \geq 0\}$ 为 Poisson 过程,且到达率分别为 $\lambda p, \lambda (1-p)$
- 3. 这两个过程相互独立

Poisson 过程的合并

定理 已知 $\{N_1(t): t \geq 0\}$, $\{N_2(t): t \geq 0\}$ 为相互独立的 Poisson 过程,到达率分别为 λ_1, λ_2 ,令 $N(t) = N_1(t) + N_2(t)$,则 $\{N(t): t \geq 0\}$ 为 Poisson 过程,其到达率为 $\lambda_1 + \lambda_2$ 。且 时间 N_1 先发生的概率为 $\frac{\lambda_1}{\lambda_1 + \lambda_2}$,事实上,对于每个发生的事件,其属于 N_i 的概率为 $\frac{\lambda_i}{\lambda_1 + \lambda_2}$ 。

条件作用

已知 [0,t] 内发生了一次事件,则该事件发生在 $[0,s](s \le t)$ 上的概率为

$$P(Y_1 \le s | N(t) = 1) = \frac{P(N(s) = 1, N(t) - N(s) = 0)}{P(N(t) = 1)} = \frac{P(N(s) = 1)P(N(t) - N(s) = 0)}{P(N(t) = 1)}$$
$$= \frac{\lambda s e^{-\lambda s} \cdot e^{-\lambda(t-s)}}{\lambda t e^{-\lambda t}} = \frac{s}{t}$$

 $\implies N(t) = 1$ 条件下, $Y_1 \sim U(0,t)$ 。

<u>定理</u> $N(t_2) = n$ 的条件下,对于 $t_1 < t_2$, $N(t_1) \sim B(n, \frac{t_1}{t_2})$ 。相当于在 $[0, t_2]$ 上均匀分布随机放置 n 个到达点,第 j 次到达即为第 j 阶次序统计量。

<u>定理</u> N(t)=n 的条件下,事件发生的 n 个时刻 Y_1,Y_2,\ldots,Y_n 的联合 pdf 为

$$f(t_1, \dots, t_n) = \frac{n!}{t^n} \tag{1.2}$$

证明. 已知条件等价于

$$T_1 = 1, T_2 = t_2 - t_1, \dots, T_n = t_n - t_{n-1}, T_{n+1} > t - t_n$$

这里 T_i 为间隔事件, $T_i \stackrel{iid}{\sim} Exp(\lambda)$ 。 Y_1, \ldots, Y_n 的 pdf 就等价于 T_1, \ldots, T_n 的 pdf

$$f(t_1, \dots, t_n | N(t) = n) = \frac{f(t_1, \dots, t_n, n)}{P(N(t) = n)}$$

$$= \frac{\lambda e^{-\lambda t_1} \dots \lambda e^{-\lambda (t_n - t_{n-1})} \cdot e^{-\lambda (t - t_n)}}{\frac{(\lambda t)^n}{n!} e^{-\lambda t}}$$

$$= \frac{n!}{t^n}$$

因此有生成 Poisson 过程的另一种方式:

- 1. 根据 $N(t) \sim P(\lambda t)$ 生成 (0,t] 内事件发生数
- 2. 假定 N(t) = n,则取 $U_1, \ldots, U_n \stackrel{iid}{\sim} U(0,t)$
- 3. $\diamondsuit Y_j = U_{(j)}, j = 1, 2, \dots, n$

次序统计量

设有 X_1, \ldots, X_n 独立同分布,令 $X_{(i)} = \min\{X_1, \ldots, X_n\}$ $(1 \le i \le n)$,则 $X_{(i)}$ 为 i 阶次序统计量。

设 X_i 的 pdf 为 f(x), cdf 为 F(x), 则

 $X_{(j)} = x \iff X_1, \dots, X_n$ 中有 j-1 个取值 < x,且有 n-j 个取值 > x,可以不严格 地推导出 $X_{(j)}$ 的 pdf。

$$P(x \le X_{(j)} \le x + dx) \approx \binom{n}{j-1, n-j, 1} F^{j-1}(x) (1 - F(x))^{n-j} f(x) dx$$

$$f_j(x) = \frac{n!}{(j-1)!(n-j)!} F^{j-1}(x) (1 - F(x))^{n-j} f(x)$$
(1.3)

由此定义联合分布 pdf...

1.1.6 Poisson 过程的推广

非齐次 Poisson 过程

定义 计数过程 $\{N(t): t \geq 0\}$ 称为到达率为 $\lambda(t)(\lambda(t) > 0)$ 的 Poisson 过程,如果

- 1. N(0) = 0
- 2. 具有独立增量
- 3. $P(N(t+h) N(t) = 1) = \lambda(t)h + o(h)$
- 4. P(N(t+h) N(t) > 2) = o(h)

若令 $m(t) = \int_0^t \lambda(k) dk$,则

$$P(N(t+s) - N(t) = n) = e^{m(t+s) - m(t)} \frac{(m(t+s) - m(t))^n}{n!}$$

其中 m(t+s)-m(t) 即为这段时间内的期望事件数。该过程没有平稳增量性质。

复合 Poisson 过程

<u>定义</u> $\{N(t): t \geq 0\}$ 为 Poisson 过程, X_i iid 且与 N(t) 相互独立,令 $Z(t) \triangleq \sum_{i=1}^{N(t)} X_i$,则 Z_t 为复合 Poisson 过程。定理

- 1. Z(t) 有独立增量性质
- 2. 若 $E(X_i^2) \leq \infty$,则 $E(Z(t)) = \lambda t E(X_i), Var(Z(t)) = \lambda t E(X_i^2)$ (用矩母函数证明)

条件 Poisson 过程

定义 设 $\Lambda > 0$ 为随机变量,当 $\Lambda = \lambda$ 时,计数过程 $\{N(t): t \geq 0\}$ 为到达率为 λ 的 Poisson 过程,则称 N(t) 为条件 Poisson 过程。 N(t) 不是一个 Poisson 过程。

<u>定理</u> $E(\Lambda) < \infty$,则 $E(N(t)) = tE(\Lambda), Var(N(t)) = t^2 Var(\Lambda) + tE(\Lambda)$

若事件间隔 X_i 的分布不限定为指数分布,则计数过程称为**更新过程**

1.1. Summary		
到达过程	Bernoulli 过程	Poisson 过程
到达时间	离散	连续
到达率	p 每次试验	λ 单位时间
相邻两次到达间隔	几何分布	指数分布
t 内到达次数的分布	二项分布	Poisson 分布
第 k 次到达	负二项分布	Gamma 分布

表 1.1: Summary

1.2 离散时间 Markov 链

1.2.1 基本概念

指标集 T 离散,不妨记 $T = \{0, 1, 2, \dots\}$ 。

状态空间 S 离散,不妨记 $T = \{0, 1, 2, ...\}$

<u>定义</u> (Markov 链) $\{X_n, n = 0, 1, ...\}$ 为随机过程, $X_i \in S$, 若 $\forall n \geq 0$ 及任意状态 $i, j, i_0, ..., i_{n-1}$, 有

$$P(X_{n+1} = j | X_1 = 1, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$
(1.4)

则称 $\{X_n, n=0,1,\dots\}$ 为离散时间 Markov 链。可以导出:

$$P(X_0 = i_0, \dots, X_n = i_n)$$

$$= P(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1}) P(X_0 = i_0, \dots, X_{n-1} = i_{n-1})$$

$$= P(X_n = i_n | X_{n-1} = i_{n-1}) P(X_0 = i_0, \dots, X_{n-1} = i_{n-1})$$

$$= \dots$$

$$= P(X_n = i_n | X_{n-1} = i_{n-1}) \dots P(X_1 = i_1 | X_0 = i_0) P(X_0 = i_0)$$

<u>定义</u> $P(X_{n+1} = j | X_n = i)$ 称为 Markov 链的(一步) <u>转移概率</u>。当它与 n 无关时,称 Markov 链关于时间是**齐次** 的,记

$$P_{ij}^{(n)} = P_{ij} = P(X_{n+1} = j | X_n = i)$$
(1.5)

将 $P \triangleq (P_{ij})$ 称为转移概率矩阵。

- 1. 状态有限(无限)时,对应称为有(无)限链
- 2. 路径概率 $P(X_k = i_k) = P_{i_0 i_1} \cdots P_{i_{n-1} i_n}$
- 3. 转移概率矩阵描述了一个 n 个点带自环的完全图

<u>例</u> (随机游走) $S = \{0, \pm 1, \pm 2, \dots\}, p \in (0, 1)$ 。 $P(X_i = 1) = p, P(X_i = 0) = 1 - p$,令 $Y_n = \sum_{i=0}^n X_i$,则 $\{Y_n\}$ 称为随机游走模型。 $P_{i,i+1} = p, P_{i,i-1} = 1 - p$ 。

例 (赌博模型) $S = \{0, 1, ..., n\}$, 0 和 n 为吸收态, $P_{0,0=1}, P_{n,n} = 1$ 。此模型称为具有吸收壁的有限随机游走。

1.2.2 C-K 方程

定义 n 步转移概率为 $P_{ij}^{(n)} riangleq P(X_n = j | X_0 = i)$,由于时间齐次性, $P(X_{m+n} = j | X_m = i) = P_{ij}^{(n)}$,即与 m 无关。规定 $P_{ij}^{(n)} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases} = \delta_{ij}$ 。

<u>定理</u> (Chapman-Kolmogorov 方程) $\forall m, n \geq 0, \forall i, j \in S$, 有

$$P_{ij}^{(m+n)} = \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n)}$$
(1.6)

证明.
$$P(X_{m+n} = j | X_0 = i_0, \dots, X_m = k) = P(X_{m+n} = j | X_m = k)$$

<u>定理</u> 若记 $P^{(n)} \triangleq (P_{ij}^{(n)})$, 则 $P^{(n)} = P^n, P^{(n+m)} = P^{(n)}P^{(m)}$ 。

计算 X_n 的边际分布

$$P(X_n = j) = \sum_{i \in S} P(X_0 = i) P(X_n = j | X_0 = i)$$

$$= \sum_{i \in S} P(X_0 = i) P_{ij}^n$$
(1.7)

矩阵形式: 记 $\vec{\beta}_n = (\beta_{n_1}, \beta_{n_2} \dots), \beta_{n_i} \triangleq P(X_n = i), 则 \vec{\beta}_n = \vec{\beta}_0 P^n$ 。

1.2.3 状态的分类

称状态 i 可达状态 j,若 $\exists n \geq 0, P_{ij}^{(n)} > 0$ 。若相互可达,则记为 $i \leftrightarrow j$ 。 定义(可达)

- 1. 自返性: $i \leftrightarrow i$
- 2. 对称性: $i \leftrightarrow j \iff j \leftrightarrow i$
- 3. 传递性

显然, \leftrightarrow 定义了一个 S 上的等价关系,将所有状态划分为若干个等价类。若一条 Markov 链 上仅有一个类,则称其为不可约的。

记 $f_{ij}^{(n)}$ 表示从 i 经过 n 次转移后,<mark>首次</mark>到达 j 的概率。则**首达**概率

$$f_{ij}^{(n)} = P(X_n = j, X_k \neq j, k = 1, 2, \dots, n - 1 | X_0 = i)$$

额外定义平凡情况 $f_{ij}^{(0)} = \delta_{ij}$ 。 注意区别 $P_{ij}^{(n)}$ 与 $f_{ij}^{(n)}$ 。

 $f_{ij} \triangleq \sum_{n=1}^{\infty} f_{ij}^{(n)}$ 表示从 i 出发经有限步可达 j 的概率。

若 $f_{ii} = 1$,则称状态 i 为**常返** (recurrent),否则 i 为**瞬时** (transient) 的。

★定理(常返态的等价判定)

- i 为常返态 \iff $\sum_{n=0}^{\infty} P_{ii}^{(n)} = +\infty$ i 为瞬时态 \iff $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \frac{1}{1-f_{i:}}$

证明. 引理: $P_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} P_{jj}^{(n-k)}$

$$\sum_{n=0}^{\infty} P_{ii}^{(n)} = P_{ii}^{(0)} + \sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}$$

$$= P_{ii}^{(0)} + \left(\sum_{n=1}^{\infty} f_{ii}^{(k)}\right) \left(\sum_{k=1}^{\infty} P_{ii}^{(k)}\right)$$

$$= 1 + f_{ii} \sum_{k=0}^{\infty} P_{ii}^{(k)}$$

$$= \frac{1}{1 - f_{ii}} (\stackrel{\text{Th}}{\leftarrow} f_{ii} < 1)$$

因此 $\sum_{k=0}^{\infty} P_{ii}^{(k)}$ 收敛 $\iff f_{ii} < 1$ 。

性质(常返态的命运)

1. 令 $I_n = [X_n = i]$, 则 $\sum_{n=0}^{\infty}$ 为经过状态 i 的次数,

$$E(\sum_{n=0}^{\infty} I_n | X_0 = i) = \sum_{n=0}^{\infty} P(I_n = 1 | X_0 = i) = \sum_{n=0}^{\infty} P_{ii}^{(n)}$$

为从 i 出发的链回到 i 的期望次数

- 2. 若 i 常返,则从 i 出发时以概率 1 有限步回到 i
- 3. 若 i 非常返,则从 i 出发以概率 $P = 1 f_i i > 0$ 回不到 i,从而从 i 出发的链恰好经过 i 的次数为 k 的概率为 $f_{ii}^{k-1}(1 f_{ii})$ (几何分布),所以只能返回有限次,最后永远离开

★定理(常返态的事实)

- 1. 若 $i \leftrightarrow j$, 则 i 和 j 同时为常返态或者非常返态
- 2. 常返态 i 所能到达的一切状态均与 i 相互可达,即**从常返态出发不能到达非常返态**
- 3. 在一个有限 Markov 链上,从任意非常返态出发,最终必然到达常返态
- 4. 一个有限 Markov 链至少有一个常返态
- 5. 一个有限 Markov 链若不可约,则所有状态均为常返态

<u>例子</u> (随机游走) 当 $p = \frac{1}{2}$ 时常返, 当 $p \neq \frac{1}{2}$ 时非常返。

<u>定理</u> 若 $i \leftrightarrow j$,且 i 为常返态,则 $f_{ji} = 1$

定义 若集合 $\{n|n \ge 1, P_{ii}^{(n)} > 0\}$ 非空,则其最大公约数 d = d(i) 称为状态 i 的周期。若 d > 1,则称状态 i 是周期的;若 d = 1 则称 i 是非周期的。若链中所有状态的周期都为 d,则称 d 为该链的周期。若链中所有状态周期都为 1,则称该链是非周期的;否则称其为周期的。

定理 若 $i \leftrightarrow j$, 则 i 的周期与 j 相等。

<u>定理</u> 若一个不可约 Markov 链周期为 d,其状态空间 S 存在唯一的**划分** $\{S_1, S_2, \ldots, S_d\}$,且使得从 S_r 中任意状态出发,任 1 步转移必然进入 S_{r+1} 中。实际上,若将状态 i 固定在 S_d 中,则有

$$S_r = \{j | \exists n \in \mathbb{N}, s.t. P_{ij}^{(nd+r)} > 0\}$$

对于任意 Markov 链,其状态空间存在划分 $\{C_0, C_1, C_2, ...\}$,其中 C_0 为所有非常返态构成的集合, $C_n (n \ge 1)$ 不可约。

1.2.4 稳态性质

定义 $\vec{\beta} = (\beta_i)_{i \in S}$ 为概率分布,若

$$\vec{\beta}P = \vec{\beta} \ (i.e.\beta_j = \sum_{i \in S} \beta_i P_{ij})$$

则称 $\vec{\beta}$ 为该 Markov 链的**平稳分布 (stationary distribution)**。

若 $\vec{\beta}$ 为 X_0 的分布 (即 $P(X_0 = j) = \beta_j$),则 $X_n (n \ge 1)$ 的分布都为 $\vec{\beta}$,从而 $\{X_n : n \ge 0\}$ 为**平稳过程**。

平稳分布为边际分布,不是条件分布,一般地有

$$P(X_{n+1} = j | X_n = i) = P_{ij} \neq P(X_{n+1} = j)$$

<u>定义</u> 设 i 为常返态,定义 $\mu_i \triangleq \sum_{n=1}^{\infty} n f_{ii}^{(n)}$ 为由 i 出发再返回 i 所需的平均时间(步数)。 若 $\mu_i < +\infty$,则称 i 为正常返的 (positive recurrent);

若 $\mu_i = +\infty$,则称 i 为零常返的 (null recurrent)。 μ_i 越小,返回越频繁。

★定理 若 i 常返且周期为 d , 则

$$\lim_{n \to \infty} P_{ii}^{(nd)} = \frac{d}{\mu_i} \tag{1.8}$$

当 $\mu_i = +\infty$ 时, $\frac{d}{\mu_i} = 0$ 。(不证) <u>定理</u> i 为零常返态或非常返态 $\iff \lim_{n \to \infty} P_{ii}^{(n)} = 0$

证明.
$$i$$
 为零常返 $\Longrightarrow \mu_i = +\infty \Longrightarrow \lim_{n \to \infty} P_{ii}^{(nd)} = 0$
又知 $P_{ii}^{(m)} = 0, m$ 不被 d 整除,故 $\lim_{n \to \infty} P_{ii}^{(n)} = 0$
 i 非常返 $\Longrightarrow \sum_{n=0}^{\infty} P_{ii}^{(n)} < +\infty \Longrightarrow \lim_{n \to \infty} P_{ii}^{(n)} = 0$

 $i \leftrightarrow j$, 常返, 则 i = j 同时为正常返或零常返。 定理

<u>定理</u> 若 j 为非常返或零常返,则 $\forall i \in S$ 都有 $\lim_{n \to \infty} P_{ij}^{(n)} = 0$ 。有限链不可能又零常返态,从而不可约有限 Markov 链所有状态都是正常返的。若 Markov 链有零常返态

若 i 正常返且周期为 1,则称 i 为**遍历的 (ergodic)**;若一个 Markov 链中所有状态 都是遍历的,则称该链是遍历的。

★定理 对于不可约、非周期的 Markov 链,

- (1) 若它是遍历的,则 $\pi_j = \lim_{n \to \infty} P_{ij}^{(n)}$ 是该链的唯一平稳分布
- (2) 若状态都是非常返的或是零常返的,则平稳分布不存在

某次课 1.3

1. 若它是遍历的,则 $\pi_j = \lim_{n \to \infty}$

 $\vec{\pi}P = \vec{\pi}$

证明.

$$\forall M, \sum_{j=0}^{M} P_{ij}^{(n)} \leq \sum_{j=0}^{\infty} P_{ij}^{(n)} = 1$$

$$P_{ij}^{(n+1)} = \sum_{k=0}^{\infty} P_{ik}^{(n)} P_{kj} \geq \sum_{k=0}^{M} P_{ik}^{(n)} P_{kj}$$

$$P_{ij}^{(n)} \geq \sum_{k=0}^{\infty} P_{ik}^{(n)} P_{kj} = 1$$

 $\underline{\underline{c}\,\underline{\mathsf{V}}}$ 若 $\pi_j = \lim_{n \to \infty} P_{ij}^{(n)}$ 存在,则 $\vec{\pi} = (\pi_0, \pi_1, \dots)$ 称为该链的**极限分布**。 性质

1.
$$\lim_{n \to \infty} P^{(n)} = \lim_{n \to \infty} P^n = \begin{bmatrix} \vec{\pi} \\ \vec{\pi} \\ \vdots \end{bmatrix}$$

- 2. 对于一切初始分布 $\vec{\beta}$, $\lim_{n\to\infty} \vec{\beta}P^n = \vec{\pi}$
- 3. 一个链具有平稳分布并不意味着有极限分布
- 4. 若链不可约且遍历,则极限分布式链唯一的平稳分布
- 5. 可以证明,有限链总存在平稳分布;若其不可约,则平稳分布唯一

1.3.1 可逆性

(平稳分布当状态空间规模非常大时难以计算)

<u>定义</u> $\pi_j \geq 0, \sum_i \pi_i = 1$,若满足以下<u>可逆性条件</u>:

$$\pi_i P_{ij} = \pi_j P_{ji}, \forall i, j \in S \tag{1.9}$$

则称该链对于 元 可逆。

定理 若 P 相对于 $\vec{\pi}$ 可逆, 则 $\vec{\pi}$ 为链的平稳分布。

证明.
$$\sum_i \pi_i P_{ij} = \sum_i \pi_j P_{ji} = \pi_j (\sum_i P_{ji}) = \pi_j \implies \vec{\pi} P = \vec{\pi}$$