#### COMPSCI 689

#### Lecture 12: Optimization for Neural Networks

#### Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst



Slides by Benjamin M. Marlin (marlin@cs.umass.edu).

#### Outline

- 1 Optimizing Neural Networks
- 2 SGD
- 3 Descent Directions
- 4 Adaptive Step Sizes
- 5 Regularization
- 6 Normalization

Unlike GLMs and SVMs, deep neural network models have many local optima.

- Unlike GLMs and SVMs, deep neural network models have many local optima.
- They can also have other types of complex features including many saddle points, large nearly flat regions, and highly ill-conditioned curvature.



Normalization

0000

Deep feedforad not

- Unlike GLMs and SVMs, deep neural network models have many local optima.
- They can also have other types of complex features including many saddle points, large nearly flat regions, and highly ill-conditioned curvature.
- The computational cost of computing objective functions and gradients can also be very high.

 $N^3f(N^2f(N\times)))$ 



- Unlike GLMs and SVMs, deep neural network models have many local optima.
- They can also have other types of complex features including many saddle points, large nearly flat regions, and highly ill-conditioned curvature.
- The computational cost of computing objective functions and gradients can also be very high.
- All of these factors combine to make neural network learning quite difficult for large, deep models, resulting in the need for more specialized algorithms and model components.

#### Outline

- 1 Optimizing Neural Networks
- 2 SGD
- 3 Descent Directions
- 4 Adaptive Step Sizes
- 5 Regularization
- 6 Normalization

# The ERM Gradient Approximation

■ In ERM, the goal is to minimize empirical risk:

$$R_{\mathcal{D}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y_n, f_{\theta}(\mathbf{x}_n))$$

# The ERM Gradient Approximation

■ In ERM, the goal is to minimize empirical risk:

$$R_{\mathcal{D}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y_n, f_{\theta}(\mathbf{x}_n))$$

Recall that the empirical risk  $R_{\mathcal{D}}(\theta)$  is an unbiased estimate of the expected risk (loss) under  $p_*(\mathbf{x}, y)$  when the data are sampled from  $p_*(\mathbf{x}, y)$ .

# The ERM Gradient Approximation

0000000

SGD

■ In ERM, the goal is to minimize empirical risk:

$$R_{\mathcal{D}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y_n, f_{\theta}(\mathbf{x}_n))$$

- Recall that the empirical risk  $R_{\mathcal{D}}(\theta)$  is an unbiased estimate of the expected risk (loss) under  $p_*(\mathbf{x}, y)$  when the data are sampled from  $p_*(\mathbf{x}, y)$ .
- Similarly, the gradient of the empirical risk  $g_{\mathcal{D}}(\theta)$  is an unbiased estimate of the gradient of the expected risk.

$$g_{\mathcal{D}}(\theta) = \nabla_{\theta} R_{\mathcal{D}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} L(y_n, f_{\theta}(\mathbf{x}_n))$$

**Optimizing Neural Networks** 

# The ERM Gradient Approximation

■ In ERM, the goal is to minimize empirical risk:

$$R_{\mathcal{D}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y_n, f_{\theta}(\mathbf{x}_n))$$

- Recall that the empirical risk  $R_{\mathcal{D}}(\theta)$  is an unbiased estimate of the expected risk (loss) under  $p_*(\mathbf{x}, y)$  when the data are sampled from  $p_*(\mathbf{x}, y)$ .
- Similarly, the gradient of the empirical risk  $g_{\mathcal{D}}(\theta)$  is an unbiased estimate of the gradient of the expected risk.

$$g_{\mathcal{D}}(\theta) = \nabla_{\theta} R_{\mathcal{D}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} L(y_n, f_{\theta}(\mathbf{x}_n))$$

Importantly, this is true for any N > 0.

# **ERM Gradient Properties**

■ Under independent sampling, the weak law of large numbers shows that the standard deviation of the gradient vector elements scales with  $1/\sqrt{m}$  where  $m \le N$  is the number of samples used to compute the gradient estimate.

#### **ERM Gradient Properties**

- Under independent sampling, the weak law of large numbers shows that the standard deviation of the gradient vector elements scales with  $1/\sqrt{m}$  where  $m \le N$  is the number of samples used to compute the gradient estimate.
- This indicates that there is a diminishing return on the computation required to form a gradient estimate as *m* increases.

#### **ERM Gradient Properties**

- Under independent sampling, the weak law of large numbers shows that the standard deviation of the gradient vector elements scales with  $1/\sqrt{m}$  where  $m \le N$  is the number of samples used to compute the gradient estimate.
- This indicates that there is a diminishing return on the computation required to form a gradient estimate as *m* increases.
- For example, if we use m = 100 data cases, the standard deviation would be proportional to 1/10. However, if you do 10 times more computation (m = 1000), the standard deviation would be proportional to about 1/30. A reduction of only a factor of 3.

#### Stochastic Gradient Descent

These results suggest that a good strategy for reducing the computational cost of optimizing  $R_{\mathcal{D}}(\theta)$  is to approximate the required gradients using a random sub-sample  $\mathcal{D}'$  of the available data:  $g_{\mathcal{D}'}(\theta) \approx g_{\mathcal{D}}(\theta)$  for  $\mathcal{D}' \subset \mathcal{D}$ .

#### Stochastic Gradient Descent

- These results suggest that a good strategy for reducing the computational cost of optimizing  $R_{\mathcal{D}}(\theta)$  is to approximate the required gradients using a random sub-sample  $\mathcal{D}'$  of the available data:  $g_{\mathcal{D}'}(\theta) \approx g_{\mathcal{D}}(\theta)$  for  $\mathcal{D}' \subset \mathcal{D}$ .
- In the literature, this is known as a "mini-batch" algorithm. More formally, such methods are referred to as stochastic approximation algorithms because they draw a new subset of data from  $\mathcal{D}$  at random on every iteration.

#### Stochastic Gradient Descent

- These results suggest that a good strategy for reducing the computational cost of optimizing  $R_{\mathcal{D}}(\theta)$  is to approximate the required gradients using a random sub-sample  $\mathcal{D}'$  of the available data:  $g_{\mathcal{D}'}(\theta) \approx g_{\mathcal{D}}(\theta)$  for  $\mathcal{D}' \subset \mathcal{D}$ .
- In the literature, this is known as a "mini-batch" algorithm. More formally, such methods are referred to as stochastic approximation algorithms because they draw a new subset of data from  $\mathcal{D}$  at random on every iteration.
- When these ideas are combined with gradient descent, the result is a method called *stochastic gradient descent* or SGD.

# The SGD Algorithm

#### Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule  $\epsilon_1, \epsilon_2, \dots$ Require: Initial parameter  $\boldsymbol{\theta}$   $k \leftarrow 1$ while stopping criterion not met do
Sample a minibatch of m examples from the training set  $\{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\}$  with corresponding targets  $\boldsymbol{y}^{(i)}$ .
Compute gradient estimate:  $\hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Apply update:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}$   $k \leftarrow k + 1$ end while

# Convergence of SGD

Since the gradient  $g_{\mathcal{D}'}(\theta)$  is stochastic with respect to  $g_{\mathcal{D}}(\theta)$ ,  $g_{\mathcal{D}'}(\theta)$  is not guaranteed to converge to zero as the number of SGD iterations goes to infinity for any constant step size  $\epsilon$ .



# Convergence of SGD

- Since the gradient  $g_{\mathcal{D}'}(\theta)$  is stochastic with respect to  $g_{\mathcal{D}}(\theta)$ ,  $g_{\mathcal{D}'}(\theta)$  is not guaranteed to converge to zero as the number of SGD iterations goes to infinity for any constant step size  $\epsilon$ .
- Instead, the theory of stochastic approximation requires that the sequences of step sizes goes to zero to offset the inherent noise in  $g_{\mathcal{D}'}(\theta)$ .

# Convergence of SGD

- Since the gradient  $g_{\mathcal{D}'}(\theta)$  is stochastic with respect to  $g_{\mathcal{D}}(\theta)$ ,  $g_{\mathcal{D}'}(\theta)$  is not guaranteed to converge to zero as the number of SGD iterations goes to infinity for any constant step size  $\epsilon$ .
- Instead, the theory of stochastic approximation requires that the sequences of step sizes goes to zero to offset the inherent noise in  $g_{\mathcal{D}'}(\theta)$ .
- It is sufficient for the sequence of step sizes to satisfy:

$$\sum_{k=1}^{\infty} \epsilon_k = \infty, \quad \sum_{k=1}^{\infty} \epsilon_k^2 < \infty$$

$$(X \leq k + \infty) \quad (X \leq k + \infty) \quad (X \leq k + \infty)$$

# Step Size Rules

■ A step size proportional to 1/k will satisfy this step size condition.

# Step Size Rules

- A step size proportional to 1/k will satisfy this step size condition.
- In practice, more complex rules like the following are sometimes used, even through they violate summability:

en through they violate summability: 
$$\epsilon_k = \begin{cases} (1 - \frac{k}{t})\alpha + \frac{k}{t}\beta & k \leq t \\ \beta & k > t \end{cases}$$

# Step Size Rules

- A step size proportional to 1/k will satisfy this step size condition.
- In practice, more complex rules like the following are sometimes used, even through they violate summability:

$$\epsilon_k = \begin{cases} (1 - \frac{k}{t})\alpha + \frac{k}{t}\beta & k \le t \\ \beta & k > t \end{cases}$$

■ This is typically used with  $\beta \approx 0.01\alpha$  and  $t \approx 100(N/M)$  where N is the size of the data set and m is the batch size.

■ While the algorithm works if you draw a random sample on every iteration, it is more common to first randomly shuffle the data, then break it into N/m contiguous blocks of size m < N.

- While the algorithm works if you draw a random sample on every iteration, it is more common to first randomly shuffle the data, then break it into N/m contiguous blocks of size m < N.
- We then loop through the blocks in order. This version of the algorithm has identical properties to when new random samples are drawn.

- While the algorithm works if you draw a random sample on every iteration, it is more common to first randomly shuffle the data, then break it into N/m contiguous blocks of size m < N.
- We then loop through the blocks in order. This version of the algorithm has identical properties to when new random samples are drawn.
- In the literature, an "epoch" of training refers to one complete pass through all of the N/m batches of data. At the end of an epoch, all data cases have been used exactly one time.

- While the algorithm works if you draw a random sample on every iteration, it is more common to first randomly shuffle the data, then break it into N/m contiguous blocks of size m < N.
- We then loop through the blocks in order. This version of the algorithm has identical properties to when new random samples are drawn.
- In the literature, an "epoch" of training refers to one complete pass through all of the N/m batches of data. At the end of an epoch, all data cases have been used exactly one time.
- Learning time is often described in terms of epochs instead of iterations.

#### Outline

- 1 Optimizing Neural Networks
- 2 SGD
- 3 Descent Directions
- 4 Adaptive Step Sizes
- 5 Regularization
- 6 Normalization

The local curvature of the objective function  $R_{\mathcal{D}}(\theta)$  is given by the Hessian matrix of  $R_{\mathcal{D}}(\theta)$ .

- The local curvature of the objective function  $R_{\mathcal{D}}(\theta)$  is given by the Hessian matrix of  $R_{\mathcal{D}}(\theta)$ .
- Let  $H_{\mathcal{D}}(\theta)$  be the hessian matrix of  $R_{\mathcal{D}}(\theta)$  at  $\theta$ .

- The local curvature of the objective function  $R_D(\theta)$  is given by the Hessian matrix of  $R_D(\theta)$ .
- Let  $H_{\mathcal{D}}(\theta)$  be the hessian matrix of  $R_{\mathcal{D}}(\theta)$  at  $\theta$ .
- A significant factor in the speed of a gradient-based optimization method is the conditioning of the Hessian matrix.





- The local curvature of the objective function  $R_{\mathcal{D}}(\theta)$  is given by the Hessian matrix of  $R_{\mathcal{D}}(\theta)$ .
- Let  $H_{\mathcal{D}}(\theta)$  be the hessian matrix of  $R_{\mathcal{D}}(\theta)$  at  $\theta$ .
- A significant factor in the speed of a gradient-based optimization method is the conditioning of the Hessian matrix.
- The condition number of the hessian is given below where  $\lambda_{max}$  is the maximum magnitude eigenvalue of  $H_{\mathcal{D}}(\theta)$  and  $\lambda_{min}$  is the minimum magnitude eigenvalue of  $H_{\mathcal{D}}(\theta)$ :

$$\kappa(H_{\mathcal{D}}(\theta)) = \frac{|\lambda_{max}|}{|\lambda_{min}|}$$

■ A large condition number means that the objective function increases very rapidly in one direction and very slowly in another orthogonal direction.

- A large condition number means that the objective function increases very rapidly in one direction and very slowly in another orthogonal direction.
- Empirically, deep neural networks suffer from ill-conditioning during optimization, often exhibiting large differences in curvature in different directions.

- A large condition number means that the objective function increases very rapidly in one direction and very slowly in another orthogonal direction.
- Empirically, deep neural networks suffer from ill-conditioning during optimization, often exhibiting large differences in curvature in different directions.
- A different, but equally difficult problem occurs when the objective function is almost flat so that  $g_D(\theta) \approx 0$ . Empirically, this problem also occurs in neural network optimization.

# Conditioning

- A large condition number means that the objective function increases very rapidly in one direction and very slowly in another orthogonal direction.
- Empirically, deep neural networks suffer from ill-conditioning during optimization, often exhibiting large differences in curvature in different directions.
- A different, but equally difficult problem occurs when the objective function is almost flat so that  $g_{\mathcal{D}}(\theta) \approx 0$ . Empirically, this problem also occurs in neural network optimization.
- Newton's method (locally) removes these curvature problems, but it can't be used when the Hessian has negative eigenvalues, which also often occurs with neural networks!

# Gradient Clipping

One commonly used heuristic for dealing with large curvature directions is gradient clipping.

# Gradient Clipping

- One commonly used heuristic for dealing with large curvature directions is gradient clipping.
- This method computes the gradient as usual, and then clips the gradient magnitude using a re-normalization step if it exceeds a given threshold.

# **Gradient Clipping**

- One commonly used heuristic for dealing with large curvature directions is gradient clipping.
- This method computes the gradient as usual, and then clips the gradient magnitude using a re-normalization step if it exceeds a given threshold.
- This stops SGD from taking overly large step in regions where the curvature is very large.



### Momentum

■ Momentum is an approach for dealing with differential curvature by taking steps in an accumulated gradient.

#### Momentum

- Momentum is an approach for dealing with differential curvature by taking steps in an accumulated gradient.
- When the gradient vector consistently has a component in a given direction, the magnitude of that component is amplified over iterations.

### Momentum

- Momentum is an approach for dealing with differential curvature by taking steps in an accumulated gradient.
- When the gradient vector consistently has a component in a given direction, the magnitude of that component is amplified over iterations.
- The optimization dynamics mimic a ball with mass rolling down the objective function surface (subject to drag).



### SGD with Momentum

#### Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

**Require:** Learning rate  $\epsilon$ , momentum parameter  $\alpha$ 

Require: Initial parameter  $\theta$ , initial velocity v

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$  with corresponding targets  $\boldsymbol{y}^{(i)}$ .

Compute gradient estimate:  $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$ 

Compute velocity update:  $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$ .

Apply update:  $\theta \leftarrow \theta + v$ .

end while

### SGD with Nesterov Momentum

#### Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

**Require:** Learning rate  $\epsilon$ , momentum parameter  $\alpha$ 

**Require:** Initial parameter  $\theta$ , initial velocity v

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{x^{(1)}, \ldots, x^{(m)}\}$  with corresponding labels  $y^{(i)}$ .

Apply interim update:  $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$ .

Compute gradient (at interim point):  $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)}).$ 

Compute velocity update:  $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$ .

Apply update:  $\theta \leftarrow \theta + v$ .

end while



### Outline

- 1 Optimizing Neural Networks
- 2 SGD
- 3 Descent Directions
- 4 Adaptive Step Sizes
- 5 Regularization
- 6 Normalization

# Adaptive Step Sizes

■ Another way to deal with ill-conditioned problems is to define a different step size for every parameter and to adapt these step sizes over time.

# Adaptive Step Sizes

- Another way to deal with ill-conditioned problems is to define a different step size for every parameter and to adapt these step sizes over time.
- Current methods do this by re-scaling the individual gradient components using an accumulated gradient magnitude. This amplifies persistently small gradient values and damps persistently large gradient values.

# Adaptive Step Sizes

- Another way to deal with ill-conditioned problems is to define a different step size for every parameter and to adapt these step sizes over time.
- Current methods do this by re-scaling the individual gradient components using an accumulated gradient magnitude. This amplifies persistently small gradient values and damps persistently large gradient values.
- Examples of this type of method include RMSProp and Adam. These methods can also be combined with momentum.

### RMSProp with Nesterov Momentum

#### Algorithm 8.6 RMSProp algorithm with Nesterov momentum

**Require:** Global learning rate  $\epsilon$ , decay rate  $\rho$ , momentum coefficient  $\alpha$ 

**Require:** Initial parameter  $\boldsymbol{\theta}$ , initial velocity  $\boldsymbol{v}$ 

Initialize accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{x^{(1)}, \ldots, x^{(m)}\}$  with corresponding targets  $y^{(i)}$ .

Compute interim update:  $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$ .

Compute gradient:  $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)}).$ 

Accumulate gradient:  $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$ .

Compute velocity update:  $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \frac{\epsilon}{\sqrt{\boldsymbol{r}}} \odot \boldsymbol{g}$ .  $(\frac{1}{\sqrt{\boldsymbol{r}}} \text{ applied element-wise})$ 

Apply update:  $\theta \leftarrow \theta + v$ .

end while

### Outline

- 1 Optimizing Neural Networks
- 2 SGD
- 3 Descent Directions
- 4 Adaptive Step Sizes
- 5 Regularization
- 6 Normalization

■ Early stopping is a (very) heuristic method for regularization that uses a validation set to halt learning when overfitting is detected.

- Early stopping is a (very) heuristic method for regularization that uses a validation set to halt learning when overfitting is detected.
- Weight decay is the term often used in the neural network literature for a standard two norm squared regularization on the weights.

- Early stopping is a (very) heuristic method for regularization that uses a validation set to halt learning when overfitting is detected.
- Weight decay is the term often used in the neural network literature for a standard two norm squared regularization on the weights.
- Dropout is a heuristic method for regularization based on randomly zeroing the output of a randomly selected collection of inputs/hidden units on each iteration.

- Early stopping is a (very) heuristic method for regularization that uses a validation set to halt learning when overfitting is detected.
- Weight decay is the term often used in the neural network literature for a standard two norm squared regularization on the weights.
- Dropout is a heuristic method for regularization based on randomly zeroing the output of a randomly selected collection of inputs/hidden units on each iteration.
- Empirically, Dropout seems to give a consistent improvement when training deep networks, but it is still not completely understood.

### Outline

- 1 Optimizing Neural Networks
- 2 SGD
- 3 Descent Directions
- 4 Adaptive Step Sizes
- 5 Regularization
- 6 Normalization

Normalization methods aim to modify learning dynamics by partially decoupling the effect of parameter updates across different parts of the network.

- Normalization methods aim to modify learning dynamics by partially decoupling the effect of parameter updates across different parts of the network.
- This can help to speed up learning for models by partially mitigating the effect of higher order interaction between parameter values during learning.

- Normalization methods aim to modify learning dynamics by partially decoupling the effect of parameter updates across different parts of the network.
- This can help to speed up learning for models by partially mitigating the effect of higher order interaction between parameter values during learning.
- This often allows for larger learning rates and enables faster model learning.

Suppose  $\mathbf{h}_n \in \mathbb{R}^K$  is the vector of hidden unit values for layer l and data case n. The batch normalization transformation is:

$$\mathbf{h}'_{kn} = \beta_k + \gamma_k \left( \frac{\mathbf{h}_{kn} - \mu_k}{\sqrt{\epsilon + \sigma_k^2}} \right)$$

Suppose  $\mathbf{h}_n \in \mathbb{R}^K$  is the vector of hidden unit values for layer l and data case n. The batch normalization transformation is:

$$\mathbf{h}'_{kn} = \beta_k + \gamma_k \left( \frac{\mathbf{h}_{kn} - \mu_k}{\sqrt{\epsilon + \sigma_k^2}} \right)$$

In this expression  $\mu_k$  is the mean of  $\mathbf{h}_{kn}$  computed over a minibatch of m data cases, and  $\sigma_k^2$  is the corresponding variance of  $\mathbf{h}_{kn}$  computed over the same minibatch of m data cases.

Suppose  $\mathbf{h}_n \in \mathbb{R}^K$  is the vector of hidden unit values for layer l and data case n. The batch normalization transformation is:

$$\mathbf{h}'_{kn} = \beta_k + \gamma_k \left( \frac{\mathbf{h}_{kn} - \mu_k}{\sqrt{\epsilon + \sigma_k^2}} \right)$$

- In this expression  $\mu_k$  is the mean of  $\mathbf{h}_{kn}$  computed over a minibatch of m data cases, and  $\sigma_k^2$  is the corresponding variance of  $\mathbf{h}_{kn}$  computed over the same minibatch of m data cases.
- This transformation sets the mean and variance of hidden unit k, to  $\gamma_k$  and  $\beta_k$  respectively. Both parameters are learned.

Suppose  $\mathbf{h}_n \in \mathbb{R}^K$  is the vector of hidden unit values for layer l and data case n. The batch normalization transformation is:

$$\mathbf{h}'_{kn} = \beta_k + \gamma_k \left( \frac{\mathbf{h}_{kn} - \mu_k}{\sqrt{\epsilon + \sigma_k^2}} \right)$$

- In this expression  $\mu_k$  is the mean of  $\mathbf{h}_{kn}$  computed over a minibatch of m data cases, and  $\sigma_k^2$  is the corresponding variance of  $\mathbf{h}_{kn}$  computed over the same minibatch of m data cases.
- This transformation sets the mean and variance of hidden unit k, to  $\gamma_k$  and  $\beta_k$  respectively. Both parameters are learned.
- This means that instead of the hidden unit statistics being a complex function of the parameters in earlier parts of the model, they depend only on the local parameters  $\gamma_k$  and  $\beta_k$ .

■ Batch normalization thus provides robustness to changes in the inputs to a given layer that are caused by changes in layers below it during learning, allowing it to provide more stable inputs to the next layer.

- Batch normalization thus provides robustness to changes in the inputs to a given layer that are caused by changes in layers below it during learning, allowing it to provide more stable inputs to the next layer.
- While there are still higher-order interactions across layers and there may still be ill-conditioning for the weights within a layer, this type of normalization has been shown to be very helpful for some learning problems.

- Batch normalization thus provides robustness to changes in the inputs to a given layer that are caused by changes in layers below it during learning, allowing it to provide more stable inputs to the next layer.
- While there are still higher-order interactions across layers and there may still be ill-conditioning for the weights within a layer, this type of normalization has been shown to be very helpful for some learning problems.
- Other techniques like weight normalization and layer normalization attempt to improve on the properties of batch normalization such as limits on the batch size.