Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный технический университет имени Н.Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Теоретическая информатика и компьютерные технологии

Лабораторная работа №4 по курсу «Численные методы»

«Сравнение численных решений краевой задачи методом прогонки и методом стрельбы»

Выполнила:

студентка группы ИУ9-

62Б

Самохвалова П. С.

Проверила:

Домрачева А. Б.

Цель:

Сравнить погрешности, получаемые при численном решении краевой задачи для линейного дифференциального уравнения второго порядка методом прогонки и методом стрельбы.

Постановка задачи:

Вариант 21

$$p = 1$$
, $q = -2$, $f(x) = cos(x) - 3sin(x)$, $y_0 = 1$, $y'_0 = 2$

Получить численное решение краевой задачи для линейного дифференциального уравнения второго порядка методом прогонки

- 1. Написать и отладить процедуру для решения трехдиагональной линейной системы методом прогонки.
- 2. Решить аналитически задачу Коши

$$y'' + py' + qy = f(x), \quad y(0) = y_0, \quad y'(0) = y'_0$$

и по найденному решению задачи Коши y(x) вычислить b = y(1).

- 3. Найти численное решение (x_i, y_i) , i = 0, ..., n краевой задачи для того же уравнения с краевыми условиями y(0) = a, y(1) = b при n = 10.
- 4. Найти погрешность численного решения $||y \widetilde{y}|| = max \quad |y(x_i) \widetilde{y}_i|, \quad 0 \le i \le n.$

Получить численное решение краевой задачи для линейного дифференциального уравнения второго порядка методом стрельбы

1. Решить аналитически задачу Коши

$$y'' + py' + qy = f(x), \quad y(0) = y_0, \quad y'(0) = y'_0$$

и по найденному решению задачи Коши y(x) вычислить b = y(1).

- 2. Найти численное решение (x_i, y_i) , i = 0, ..., n краевой задачи для того же уравнения с краевыми условиями y(0) = a, y(1) = b при n = 10.
- 3. Найти погрешность численного решения $||y \widetilde{y}|| = max \quad |y(x_i) \widetilde{y}_i|, \quad 0 \le i \le n.$

Сравнить данные методы

Описание методов:

Численное решение краевой задачи для линейного дифференциального уравнения второго порядка методом прогонки

Краевая задача для линейного дифференциального уравнения второго порядка имеет вид

$$y'' + p(x)y' + q(x)y = f(x)$$
$$y(0) = a, \quad y(1) = b$$

Требуется найти частное решение уравнения, отвечающее краевым условиям.

Приближенным численным решением задачи называется сеточная функция (x_i, y_i) , i = 0, ..., n, заданная в (n + 1)-й точке $x_i = ih$, h = 1/n

Обозначим через $p_i = p(x_i), q_i = q(x_i), f_i = f(x_i)$ значения коэффициентов уравнения в точках x_i (узлах сетки), i = 0, ..., n. Применяя разностную аппроксимацию произвоных по формулам численного дифференцирования, получим приближённую систему уравнений относительно ординат сеточной функции y_i :

$$\frac{y_{i+1} - 2y_i + 2y_i - 1}{h^2} + p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i = f_i$$

или после преобразований

$$y_{i-1}(1 - \frac{h}{2}p_i) + y_i(h^2q_i - 2) + y_{i+1}(1 + \frac{h}{2}p_i) = h^2f_i, \quad i = 1, ..., n-1$$

с краевыми условиями

$$y_0 = a, \quad y_n = b$$

Система является разностной системой с краевыми условиями и представляет собой трехдиагональную систему линейных алгебраических уравнений (n+1)-го порядка. Трехдиагональную линейную систему следует решать методом прогонки.

Решение краевой задачи методом стрельбы

Рассмотрим краевую задачу для линейного дифференциального уравнения второго порядка:

$$y'' + p(x)y' + q(x)y = f(x)$$

$$y(a) = A, \quad y(b) = B$$

Разобьём отрезок [a, b] на n частей точками $x_0, x_1, ..., x_n$, где $x_i = a + ih$, h = (b - a)/n, а производные в уравнении во всех внутренних точках заменим их разностными аналогами

$$y'_{i} = \frac{y_{i+1} - y_{i-1}}{2h}, y''_{i} = \frac{y_{i+1} - 2y_{i} + y_{i+1}}{h^{2}}, \quad i = 1, 2, ..., n-1$$

Будем искать решения, удовлетворяющие условиям

$$y_0[0] = A, \quad y_0[1] = D_0$$

 $y_1[0] = 0, \quad y_1[1] = D_1$

(используются обозначения $y_0[i]=y_0(x_i), y_1[i]=y_1(x_i)$). Для уменьшения вычислительной погрешности обычно берут $D_0=A+O(h), D_1=O(h)$

Для определения y_0 и y_1 получим уравнения

$$\frac{y_0[i+1] - 2y_0[i] + y_0[i-1]}{h^2} + p_i \frac{y_0[i+1] - y_0[i-1]}{2h} + q_i y_0[i] = f_i$$

$$\frac{y_1[i+1] - 2y_1[i] + y_1[i-1]}{h^2} + p_i \frac{y_1[i+1] - y_1[i-1]}{2h} + q_i y_1[i] = 0$$

Отсюда имеем:

$$y_0[i+1] = \frac{f_i h^2 + (2 - q_i h^2) y_0[i] - (1 - p_i \frac{h}{2}) y_0[i-1]}{1 + p_i \frac{h}{2}}$$

$$y_1[i+1] = \frac{(2 - q_i h^2) y_1[i] - (1 - p_i \frac{h}{2}) y_1[i-1]}{1 + p_i \frac{h}{2}}$$

$$i = 1, 2, ..., n-1$$

$$y_0[0] = A, \quad y_0[1] = D_0$$

$$y_1[0] = 0, \quad y_1[1] = D_1$$

После того как величины $y_0[2], ..., y_0[n], y_1[2], ..., y_1[n]$ последовательно определены, находим C_1 из уравнения $y_0[n] + C_1y_1[n] = B$, т. е. $C_1 = \frac{B - y_0[n]}{y_1[n]}$. Искомое решение задачи находим теперь по формулам

$$y[i] = y_0[i] + C_1 y_1[i], \quad i = 0, 1, ..., n$$

Листинг 1. Решение краевой задачи методом прогонки и методом стрельбы

import math

```
def func(x):
    return math.cos(x) - 3 * math.sin(x)

def y_solution(x):
    return math.exp(x) + math.sin(x)
```

```
n = 10
a = 0
b = 1
h = (b - a) / n
y_0 = 1
y_n = y_solution(1)
f = [0] * (n + 1)
x = [0] * (n + 1)
p = [1] * (n + 1)
q = [-2] * (n + 1)
for i in range(n + 1):
    x[i] = a + h * i
    f[i] = func(x[i])
a = [0]
b = [0]
c = [0]
d = [0]
for i in range(1, n):
    b.append(h * h * q[i] - 2)
for i in range(2, n):
    a.append(1 - h / 2 * p[i])
for i in range(1, n-1):
    c.append(1 + h / 2 * p[i])
for i in range(1, n):
    if i == 1:
        d.append(h * h * f[i] - y_0 * (1 - h / 2 * p[i]))
    elif i == (n - 1):
        d.append(h * h * f[i] - y_n * (1 + h / 2 * p[i]))
```

```
else:
        d.append(h * h * f[i])
nm = n - 1
alpha = [0] * nm
beta = [0] * nm
for i in range(1, nm):
    alpha[i] = -c[i] / (a[i-1] * alpha[i-1] + b[i])
    beta[i] = (d[i] - a[i - 1] * beta[i - 1]) / 
              (a[i-1] * alpha[i-1] + b[i])
y = [0] * (n + 1)
y[0] = y_0
y[n] = y_n
y[nm] = (d[nm] - a[nm - 1] * beta[nm - 1]) / 
                  (a[nm - 1] * alpha[nm - 1] + b[nm])
for i in range (nm - 1, 0, -1):
    y[i] = alpha[i] * y[i + 1] + beta[i]
y_right = [0] * (n + 1)
for i in range(n + 1):
    y_right[i] = y_solution(x[i])
for i in range(n + 1):
    print("{:20} {:20} {:20} ".format(str(x[i]), str(y_right[i]),
                                           str(y[i]),
                                           str(abs(y_right[i] - y[i])))
print()
e1 = 0
for i in range(n + 1):
```

```
m = abs(y_right[i] - y[i])
    if m > e1:
        e1 = m
print(e1)
print()
y0 = [0] * (n + 1)
y1 = \lceil 0 \rceil * (n + 1)
y0[0] = y_0
y0[1] = y_0 + h
y1[1] = h
for i in range(1, n):
    y0[i + 1] = (f[i] * h * h + (2 - q[i] * h * h) * y0[i] -
                 (1 - p[i] * h / 2) * y0[i - 1]) / (1 + p[i] * h / 2)
    y1[i + 1] = ((2 - q[i] * h * h) * y1[i] - (1 - p[i] * h / 2) *
                 y1[i - 1]) / (1 + p[i] * h / 2)
c1 = (y_n - y0[n]) / y1[n]
y = [0] * (n + 1)
for i in range(n + 1):
    y[i] = y0[i] + c1 * y1[i]
for i in range(n + 1):
    print("{:20} {:20} {:20} ".format(str(x[i]), str(y_right[i]),
                                            str(y[i]),
                                            str(abs(y_right[i] - y[i])))
print()
e2 = 0
for i in range(n + 1):
    m = abs(y_right[i] - y[i])
```

if
$$m > e2$$
:
 $e2 = m$

print(e2)

print()

print(e1 - e2)

Результаты работы:

В результате решения задачи Коши аналитически

$$y'' + py' + qy = f(x), \quad y(0) = y_0, \quad y'(0) = y'_0$$

при

$$p = 1$$
, $q = -2$, $f(x) = cos(x) - 3sin(x)$, $y_0 = 1$, $y'_0 = 2$

было получено решение

$$y = e^x + \sin(x)$$

Таблица значений, полученных при решении краевой задачи методом прогонки:

Точка	Правильное значение	Полученное значение	Погрешность
0.0	1.0	1	0.0
0.1	1.205004334722476	1.2051111084120076	0.00010677368953171396
0.2	1.420072088955231	1.4202661696625054	0.0001940807072744466
0.3000000000000000004	1.6453790142373428	1.6456406624584896	0.0002616482211468263
0.4	1.881243039949921	1.8815514625506524	0.00030842260073149497
0.5	2.128146809304331	2.1284794139881162	0.0003326046837850427
0.60000000000000001	2.3867612737855444	2.3870929393272875	0.00033166554174313134
0.70000000000000001	2.6579703947081676	2.65827273914253	0.00030234443436238934
0.8	2.9428970193919906	2.9431376494882873	0.00024063009629671228
0.9	3.242930020784433	3.243071746807069	0.00014172602263595735
1.0	3.5597528132669414	3.5597528132669414	0.0

Максимальная погрешность при решении краевой задачи методом прогонки равна $\varepsilon_1 = 0.0003326046837850427$

Таблица значений, полученных при решении краевой задачи методом стрельбы:

Точка	Правильное значение	Полученное значение	Погрешность
0.0	1.0	1.0	0.0
0.1	1.205004334722476	1.2051111084120065	0.00010677368953060373
0.2	1.420072088955231	1.4202661696625036	0.00019408070727267024
0.3000000000000000004	1.6453790142373428	1.6456406624584874	0.00026164822114460584
0.4	1.881243039949921	1.8815514625506493	0.00030842260072838634
0.5	2.128146809304331	2.1284794139881127	0.00033260468378149
0.60000000000000001	2.3867612737855444	2.3870929393272844	0.0003316655417400227
0.70000000000000001	2.6579703947081676	2.658272739142527	0.0003023444343592807
0.8	2.9428970193919906	2.9431376494882846	0.00024063009629404775
0.9	3.242930020784433	3.243071746807068	0.00014172602263462508
1.0	3.5597528132669414	3.5597528132669414	0.0

Максимальная погрешность при решении краевой задачи методом стрельбы равна $\varepsilon_2 = 0.00033260468378149$

Выводы:

В результате выполнения лабораторной работы были изучены методы прогонки и стрельбы решения краевой задачи для линейного дифференциального уравнения второго порядка, была написала реализация данных методов на языке программирования python. Максимальная погрешность при решении краевой задачи методом прогонки равна $\varepsilon_1=0.0003326046837850427$. Максимальная погрешность при решении краевой задачи методом стрельбы равна $\varepsilon_2=0.00033260468378149$. Максимальная погрешность решения краевой задачи методом прогонки на 3.552713678800501e-15 превосходит максимальную погрешность решения краевой задачи методом стрельбы: $\varepsilon_1-\varepsilon_2=3.552713678800501e-15$.