НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет Программной Инженерии и Компьютерной Техники

Информатика

Лабораторная работа № 6

Выполнил студент Хоанг Тхе Вьет

Группа: № Р3132

Преподаватель: Белокон Юлия Алексеевна

г. Санкт-Петербург 2024

задачник кванта

клеток mn/2 костями домино (прямоугольниками 1 х 2 клетки, разуммеется; мы считаем одно из чисел m и n чётным).

а) Докажите, что $p_{2,n} = f_n$ - последовательность, задаваемая соотношением $f_{n+1} = f_n + f_{n-1}$; $f_1 = 1, f_2 = 2$ (последовательность Фибоначчи). В)* Докажите, что (для чётных n) верны оценки

$$(3/2)^{n^2/2} < p_{n,n} < 2^{n^2/2}$$

n	F_{n}
1	1
2	2
3	3 5
4	5
5	8
6	13
7	2 1
8	3 4
9	5 5
1 0	8 9

прямоугольника 2n можно добавить справа вертикальные домино, к любому покрытию прямоугольника 2(n-1) - два горизонтальных домино, и этим способом получаются по разу все покрытия прямоугольника 2(n+1). Отсюда $f_{n+1} = f_n + f_{n-1}$. Равенства $f_1 = 1$, $f_2 = 2$ очевидны. Несколько следующих значений f_n приведены в таблице на полях. Числа этой последовательности - числа Фибоначчи - встречаются в самых разнообразных задачах комбинаторики , геометрии, анализа. Для них можно написать явные формулы, выразив f_n в виде суммы двух геометрических прогрессий:

$$f_n = b_1 q_1^n + b_2 q_2^n$$

где q_1, q_2 - корни уравнения $q^2 = q + 1$ (т.е $q_i = (1 \pm \sqrt{5})/2$) а b_i определяются начальными условиями $f_0 = f_1 = 1$; в результате получаем формулу Бинэ:

$$f_n = (q_1^{n+1} - q_2^{n+1})/\sqrt{5}$$

Поскольку $|q_2|<1$, при болиших n получаем $f_n\approx Bq_1^n$, где $q_1=(1+\sqrt{5})/2\approx 1,61803...;$ B -константа,

$$B = (1 + \sqrt{5})/(2\sqrt{5})$$

Для решения задачи Б) удобно использовать оценку $f_n > (3/2)^n$, верную при $n \ge 5$. Её легко доказать по индукции: $f_5 = 8 > (3/2)^5 = 243/32$, $f_6 = 13 > (3/2)^6 = 729/64$; если $f_{n-1} > (3/2)^{n-1}$ и $f_n > (3/2)^n$, то

 $f_{n+1} = f_n + f_{n-1} > (3/2)^{n-1}(3/2+1) > (3/2)^{n+1}$, поскольку (3/2) + 1 = 5/2 > 9/4.

В задаче Б) левое неравенство (оценку снизу) для n=4 можно проверить непосредственно: $p_{4,4}=36$ (это - 25=5.5 покрытий двух горизонтальных прямоугольников 2x4, и ещё 11 покрытий, а $(3/2)^8 < 32 < 36$, поскольку $3^5 < 2^8$, $3^3 < 2^5$.

Для $n \ge 6$ оценку снизу можно получить, рассмотреть лишь покрытия n/2 горизонтальных полосок 2n клеток: поскольку $f_n > (3/2)^n$, то

$$p_{n,n} > (f_n)^{n/2} > (3/2)^{n^2/2}$$

задачник кванта

 $\Phi 1368$. Велосипедное колесо радиусом R=50cm немного деформировали -оно осталось полоским, но превратилось в эллипс с разностью полуоссей $\Theta=a-b=1cm$. При какой скорости качения этого колеса по горизонтальной поверхности оно начнёт подпрыгивать?