

EE140 Introduction to Communication Systems Lecture 8

Instructor: Prof. Lixiang Lian

ShanghaiTech University, Fall 2022

Architecture of a (Digital) Communication System

Contents

- Noise in Modulation Systems
 - Review
 - Noise in DSB-SC Receiver
 - Noise in SSB Receiver
 - Noise in AM Receiver
 - Noise in Angle Modulation

Noise

White Gaussian Noise

Additive white Gaussian noise (AWGN) model

Noisy receiver model

- Narrowband Noise:
 - $f_c \gg B_T$, filtered noise n(t): stationary narrowband Gaussian noise

$$n(t) = n_c(t)\cos(2\pi f_c t + \theta) - n_s(t)\sin(2\pi f_c t + \theta)$$
In-phase component

Quadrature component

Low-pass noise process

EE140: Introduction to Communication Systems

Narrowband Noise:

- Let n(t) be a zero-mean, stationary and Gaussian noise, then $n_c(t)$ and $n_s(t)$ satisfy the following properties
 - $n_c(t)$ and $n_s(t)$ are zero-mean, jointly stationary and jointly Gaussian process
 - Means: $E[n(t)] = E[n_c(t)] = E[n_s(t)] = 0$
 - Variances(power): $E[n^2(t)] = E[n_c^2(t)] = E[n_s^2(t)] = N_0 B_T$
 - PSD: $S_{n_c}(f) = S_{n_s}(f) = \text{Lp}[S_n(f f_c) + S_n(f + f_c)]$
 - Correlation function:
 - $R_{n_c}(\tau) = R_{n_s}(\tau)$, $R_n(0) = R_{n_c}(0) = R_{n_s}(0)$
 - $R_{n_c n_s}(\tau) = -R_{n_c n_s}(-\tau)$ (odd), $R_{sc}(0) = R_{cs}(0) = 0$.
 - Cross-PSD: $S_{n_c n_s}(f) = j \operatorname{Lp}[S_n(f f_c) S_n(f + f_c)]$
 - $R_{n_c n_s}(\tau) \equiv 0, \forall \tau$, if $Lp[S_n(f f_c) S_n(f + f_c)] = 0$.

Noisy receiver model

- Input SNR (Predetection SNR):
 - The ratio of the average power of the modulated signal $x_c(t)$ to the average power of the filtered noise n(t), both measured at the receiver input.

-
$$SNR_i = \frac{P_T}{N_0 B_T}$$
 or $SNR_T = \frac{P_T}{N_0 B_T}$

Noisy receiver model

- Output SNR (Postdetection SNR):
 - The ratio of the average power of the demodulated signal to the average power of the noise, both measured at the receiver output.
 - Type of modulation, type of demodulation
 - SNR_o or SNR_D

Baseband model

- Baseband SNR (Channel SNR):
 - The ratio of the average power of the modulated signal to the average power of the noise in the message bandwidth
 - The total noise power in the message bandwidth: $\frac{N_0}{2}2W = N_0W$
 - The total signal power P_T
 - Baseband SNR: $SNR_c = \frac{P_T}{N_0 W}$

Performance Comparison

Detection Gain (SNR Gain):

$$\frac{SNR_o}{SNR_i} \quad \text{or} \quad \frac{SNR_D}{SNR_T} \qquad SNR_T = \frac{P_T}{N_0B_T} \quad \text{Bandwidth of Modulated signal}$$

Figure of Merit for the receiver

$$\frac{SNR_o}{SNR_c} \quad \text{or} \quad \frac{SNR_D}{SNR_c} \qquad SNR_c = \frac{P_T}{N_0W} \quad \text{Message bandwidth}$$

Contents

- Noise in Modulation Systems
 - Review
 - Noise in DSB-SC Receiver
 - Noise in SSB Receiver
 - Noise in AM Receiver
 - Noise in Angle Modulation

Noise in DSB-SC Receiver

Coherent DSB detector

- DSB Signal: $x_c(t) = A_c m(t) \cos(2\pi f_c t + \theta)$
- White Gaussian Noise: w(t)
- Predetection filter: $B_T = 2W$
- $e_2(t) = A_c m(t) \cos(2\pi f_c t + \theta) + n_c(t) \cos(2\pi f_c t + \theta) n_s(t) \sin(2\pi f_c t + \theta)$
- Predetection SNR:

$$SNR_T = \frac{\frac{1}{2}A_c^2P}{2N_0W}, \quad P = \overline{m^2}$$

Noise in DSB-SC Receiver

Coherent DSB detector

- $e_3(t) = [A_c m(t)\cos(2\pi f_c t + \theta) + n_c(t)\cos(2\pi f_c t + \theta) n_s(t)\sin(2\pi f_c t + \theta)] 2\cos(2\pi f_c t + \theta) = A_c m(t) + A_c m(t)\cos(4\pi f_c t + 2\theta) + n_c(t) + n_c(t)\cos(4\pi f_c t + 2\theta) n_s(t) \sin(4\pi f_c t + 2\theta)$
- $y_D(t) = A_c m(t) + n_c(t)$ (linearity)
- Postdetection SNR:

$$SNR_D = \frac{A_c^2 P}{2N_0 W}, \quad \frac{P = \overline{m^2}}{n_c^2(t)} = \frac{P = \overline{m^2}}{n_c^2(t)} = \frac{N_0 B_T}{N_0 W}$$

Noise in DSB-SC Receiver

Coherent DSB detector

$$P_T = \frac{1}{2}A_c^2P \qquad SNR_T = \frac{P_T}{2N_0W}$$
 Detection gain: $\frac{SNR_D}{SNR_T} = 2$
$$SNR_D = \frac{P_T}{N_0W}$$
 Figure of Merit: $\frac{SNR_D}{SNR_c} = 1$

Contents

- Noise in Modulation Systems
 - Review
 - Noise in DSB-SC Receiver
 - Noise in SSB Receiver
 - Noise in AM Receiver
 - Noise in Angle Modulation

Noise in SSB Receiver

Coherent detector

- SSB Signal: $x_c(t) = A_c[m(t)\cos(2\pi f_c t + \theta) \pm \widehat{m}(t)\sin(2\pi f_c t + \theta)]$
- Predetection filter: $B_T = W$
- $e_2(t) = A_c[m(t)\cos(2\pi f_c t + \theta) \pm \widehat{m}(t)\sin(2\pi f_c t + \theta)] + n_c(t)\cos(2\pi f_c t + \theta)$ $\theta - n_s(t)\sin(2\pi f_c t + \theta)$
- Predetection SNR: $SNR_T = \frac{A_c^2 P}{N_0 W}$

$$\begin{split} S_T &= A_c^2 \overline{[m(t)\cos(2\pi f_c t + \theta) \pm \widehat{m}(t)\sin(2\pi f_c t + \theta)]^2} \qquad N_T = N_0 B_T = N_0 W \\ &= A_c^2 \left[\frac{1}{2} \overline{m(t)^2} + \frac{1}{2} \overline{\widehat{m}(t)^2} \right] \\ &= A_c^2 \overline{m(t)^2} \qquad \text{EE140: Introduction to Communication Systems} \end{split}$$

Noise in SSB Receiver

Coherent detector

- $y_D(t) = A_c m(t) + n_c(t)$
- postdetection SNR: $SNR_D = \frac{A_C^2 P}{N_0 W}$

EE140: Introduction to Communication Systems

Noise in SSB Receiver

Coherent detector

$$P_T = A_c^2 P \qquad SNR_T = \frac{P_T}{N_0 W}$$
 Detection gain: $\frac{SNR_D}{SNR_T} = 1$
$$SNR_D = \frac{P_T}{N_0 W}$$
 Figure of Merit: $\frac{SNR_D}{SNR_C} = 1$

Coherent demodulation of both DSB and SSB results in performance equivalent to baseband.

Contents

- Noise in Modulation Systems
 - Review
 - Noise in DSB-SC Receiver
 - Noise in SSB Receiver
 - Noise in AM Receiver
 - Noise in Angle Modulation

Noise in AM Receiver

Envelope detector

- AM Signal: $x_c(t) = A_c[1 + am_n(t)]\cos(2\pi f_c t + \theta)$
- Predetection filter: $B_T = 2W$
- $e_2(t) = A_c[1 + am_n(t)]\cos(2\pi f_c t + \theta) + n_c(t)\cos(2\pi f_c t + \theta) n_s(t)\sin(2\pi f_c t + \theta) = r(t)\cos[2\pi f_c t + \theta + \phi(t)],$
 - Predetection SNR: $SNR_T = \frac{\frac{A_C^2}{2} \left[1 + a^2 \overline{m_n^2}\right]}{2N_0 W}$
 - Envelope: $r(t) = \sqrt{\{A_c[1 + am_n(t)] + n_c(t)\}^2 + n_s(t)^2}$

Noise in AM Receiver

Envelope detector

$$- y_D(t) = \sqrt{\{A_c[1 + am_n(t)] + n_c(t)\}^2 + n_s(t)^2}$$

- When SNR_T is large ($|A_c[1 + am_n(t)] + n_c(t)| \gg |n_s(t)|$): $y_D(t) \cong A_c am_n(t) + n_c(t)$ (after removal of DC component)
 - Postdetection SNR: $SNR_D = \frac{A_c^2 a^2 \overline{m_n^2}}{2N_0 W}$
 - When SNR_⊤ is large

$$SNR_{T} = \frac{\frac{A_{c}^{2}}{2} \left[1 + a^{2} \overline{m_{n}^{2}} \right]}{2N_{0}W}$$

$$SNR_{D} = \frac{A_{c}^{2} a^{2} \overline{m_{n}^{2}}}{2N_{0}W}$$
Detection gain:
$$\frac{SNR_{D}}{SNR_{T}} = \frac{2a^{2} \overline{m_{n}^{2}}}{1 + a^{2} \overline{m_{n}^{2}}}$$

$$= 2\mu$$

$$P_{T} = \frac{A_{c}^{2}}{2} \left[1 + a^{2} \overline{m_{n}^{2}} \right]$$

$$SNR_{C} = \frac{A_{c}^{2}}{2} \left[1 + a^{2} \overline{m_{n}^{2}} \right]$$

$$N_{0}W$$
Figure of Merit:
$$\frac{SNR_{D}}{SNR_{C}} = \frac{a^{2} \overline{m_{n}^{2}}}{1 + a^{2} \overline{m_{n}^{2}}}$$

$$= \mu < 1$$

The noise performance of an AM receiver is always inferior to that of a DSB-SC, SSB receiver.

Noise in AM Receiver

Envelope detector

- $-e_{2}(t) = A_{c}[1 + am_{n}(t)]\cos(2\pi f_{c}t + \theta) + n_{c}(t)\cos(2\pi f_{c}t + \theta) n_{s}(t)\sin(2\pi f_{c}t + \theta) = A_{c}[1 + am_{n}(t)]\cos(2\pi f_{c}t + \theta) + r_{n}(t)\cos[2\pi f_{c}t + \theta + \phi_{n}(t)]$
- When SNR_T is small ($|A_c[1 + am_n(t)]| \ll |r_n(t)|$):
 - $y_D(t) \cong r_n(t) + A_c[1 + am_n(t)] \cos[\phi_n(t)]$

Threshold Effect (loss of message at low SNR): Every nonlinear detector exhibits a threshold effect.

Performance of AM Demod

- Synchronous detection vs envelope detection
 - In synchronous detection, the output signal and noise always remain additive and the curve-slope is a constant, independent of input SNR.
 - The nonlinear behavior of envelope detection declines the SNR performance when input noise increases.

Contents

- Noise in Modulation Systems
 - Review
 - Noise in DSB-SC Receiver
 - Noise in SSB Receiver
 - Noise in AM Receiver
 - Noise in Angle Modulation

Noise in Angle Modulation

Noise in Angle Modulation Receiver

- Received signal: $x_r(t) = A_c \cos[2\pi f_c t + \theta + \phi(t)] + w(t)$
- Bandpass filter: $f_c, B_T = 2(D+1)W$
- $-e_1(t) = A_c \cos[2\pi f_c t + \theta + \phi(t)] + n_c(t) \cos(2\pi f_c t + \theta)$ $n_s(t)\sin(2\pi f_c t + \theta) = A_c\cos[2\pi f_c t + \theta + \phi(t)] + r_n(t)\cos[2\pi f_c t + \theta]$ $\theta + \phi_n(t)$
 - $r_n(t)$: Rayleigh-distributed noise envelope; $\phi_n(t)$: uniformly distributed noise phase
 - Predetection SNR (input SNR): $SNR_T = \frac{\frac{A_C^2}{2}}{N_0 B_T}$

Noise in Angle Modulation

Noise in Angle Modulation Receiver

$$- e_1(t) = A_c \cos[2\pi f_c t + \theta + \phi(t)] + r_n(t) \cos[2\pi f_c t + \theta + \phi_n(t)]$$

= $R(t) \cos[2\pi f_c t + \theta + \phi(t) + \phi_e(t)]$

$$- \phi_e(t) = \tan^{-1} \left\{ \frac{r_n(t) \sin[\phi_n(t) - \phi(t)]}{A_c + r_n(t) \cos[\phi_n(t) - \phi(t)]} \right\}$$

- Phase Deviation of the receiver input:
 - $\psi(t) = \phi(t) + \phi_e(t)$ (phase error due to noise)
- When SNR_T is large ($A_c \gg r_n(t)$ most of the time):

•
$$\phi_e(t) \approx \tan^{-1} \left\{ \frac{r_n(t) \sin[\phi_n(t) - \phi(t)]}{A_c} \right\}$$
 when $x \ll 1, \tan^{-1}(x) \approx x$

$$\approx \frac{r_n(t) \sin[\phi_n(t) - \phi(t)]}{A_c}$$

$$= \frac{n_s(t)}{A_c}$$
Resultant
$$\phi_e(t) = \phi_e(t)$$

Noise in Phase Modulation

- PM Demodulator
 - $e_1(t) = R(t) \cos[2\pi f_c t + \theta + \psi(t)]$
 - Phase deviation: $\psi(t) = \phi(t) + \phi_e(t)$
 - Signal: $\phi(t) = k_p m(t)$
 - Phase error: $\phi_e(t) = \frac{n_s(t)}{A_c}$
 - Demodulated output of PM:
 - $y_D(t) = K_D \psi(t) = K_D k_p m(t) + K_D \frac{n_s(t)}{A_c}$
 - Output signal power: $S_{DP} = K_D^2 k_p^2 \overline{m^2}$
 - Bandwidth of the $n_s(t)$: $\frac{B_T}{2} > W \rightarrow \text{postdetection lowpass}$ filter with bandwidth W

Predetection noise

Quadrature component

Noise in Phase Modulation

- PM Demodulator
 - Demodulated output of PM:

•
$$y_{DP}(t) = K_D \psi(t) = K_D k_p m(t) + K_D \frac{n_s(t)}{A_c}$$

- Output signal power: $S_{DP} = K_D^2 k_p^2 \overline{m^2}$
- Output noise power: $N_{DP} = 2 \frac{K_D^2}{A_c^2} N_0 W$

• Postdetection SNR(output SNR): $SNR_D = \frac{K_D^2 k_p^2 \overline{m^2}}{2\frac{K_D^2}{A_c^2} N_0 W} = \frac{A_c^2 k_p^2 \overline{m^2}}{2N_0 W}$

Noise in Phase Modulation

- PM Demodulator
 - When SNR_T is large

$$k_p m(t) = k_p |m(t)|_{max} m_n(t)$$

$$P_T = \frac{A_c^2}{2} \qquad SNR_T = \frac{P_T}{N_0 B_T}$$
 Detection gain:
$$\frac{SNR_D}{SNR_T} = \frac{k_p^2 \overline{m^2} B_T}{W}$$

$$SNR_D = \frac{P_T k_p^2 \overline{m^2}}{N_0 W}$$

Detection gain:
$$\frac{SNR_D}{SNR_T} = \frac{k_p^2 \overline{m^2} B_T}{W}$$

$$SNR_c = \frac{P_T}{N_0 W}$$

Figure of Merit:
$$\frac{SNR_D}{SNR_C} = \frac{k_p^2 \overline{m}^2}{N_0 W}$$
$$= (k_p | m(t) |_{max})^2 \overline{m_n^2}$$

For $k_p >> 1$, $B_T \approx$ $2\Delta f \propto k_p |m(t)|_{max}$

Tradeoff between bandwidth and noise performance in PM system

FM Demodulator

- $-e_1(t) = R(t) \cos[2\pi f_c t + \theta + \psi(t)]$
 - Phase deviation: $\psi(t) = \phi(t) + \phi_e(t)$
 - Signal: $\phi(t) = 2\pi f_d \int_0^t m(\tau) d\tau$
 - Phase error: $\phi_e(t) = \frac{n_s(t)}{4}$
- Demodulator output:

•
$$y_D(t) = \frac{1}{2\pi} K_D \frac{d\psi(t)}{dt} = K_D f_d m(t) + \left[\frac{K_D}{2\pi A_c} \frac{dn_s(t)}{dt} \right]$$

- Output signal power: $S_{DF} = K_D^2 f_d^2 \overline{m^2}$
- Noise at the output of discriminator:

$$- S_{nF}(f) = \left(\frac{K_D}{2\pi A_c}\right)^2 |j2\pi f|^2 S_{n_S}(f) = \frac{K_D^2}{A_c^2} N_0 f^2, |f| < \frac{1}{2} B_T$$

$$X(t) \longrightarrow H(t) \qquad y(t) = \frac{K_D}{2\pi A_c} \frac{dx(t)}{dt}$$

$$S_y(f) = \left| \frac{K_D}{2\pi A_c} \cdot j2\pi f \right|^2 S_x(f)$$

$$S_{y}(f) = \left| \frac{K_{D}}{2\pi A_{c}} \cdot j2\pi f \right|^{2} S_{x}(f)$$

- FM Demodulator
 - Output noise:
 - Noise at the output of discriminator:

» Power spectral density:
$$S_{nF}(f) = \frac{K_D^2}{A_c^2} N_0 f^2$$
, $|f| < \frac{1}{2} B_T$

- $-\frac{B_T}{2}$ > W → postdetection lowpass filter with bandwidth W to remove the out-of-band noise
- Output noise power: $N_{DF} = \frac{K_D^2}{A_c^2} N_0 \int_{-W}^{W} f^2 df = \frac{2K_D^2 N_0 W^3}{3A_c^2}$
- Postdetection SNR (output SNR):

$$- SNR_D = \frac{K_D^2 f_d^2 \overline{m^2}}{\frac{2K_D^2 N_0 W^3}{3A_c^2}} = \frac{3A_c^2 f_d^2 \overline{m^2}}{2N_0 W^3}$$

- FM Demodulator
 - When SNR_T is large

$$f_d m(t) = f_d |m(t)|_{max} m_n(t)$$

$$\frac{f_d^2 \overline{m^2}}{W^2} = \left(\frac{f_d |m(t)|_{max}}{W}\right)^2 \overline{m_n^2} = D^2 \overline{m_n^2}$$

$$P_{T} = \frac{A_{c}^{2}}{2} \qquad SNR_{T} = \frac{P_{T}}{N_{0}B_{T}}$$

$$SNR_{D} = \frac{3P_{T}f_{d}^{2}\overline{m^{2}}}{N_{0}W^{3}}$$

$$SNR_{c} = \frac{P_{T}}{N_{c}W}$$

Detection gain: $\frac{SNR_D}{SNR_T} = \frac{3f_d^2\overline{m^2}B_T}{W^3}$ $= 6D^2(D+1)\overline{m_n^2}$ Figure of Merit: $\frac{SNR_D}{SNR_c} = \frac{3f_d^2\overline{m^2}}{W^2}$

 $=3D^2\overline{m_n^2}$

For D>>1,
$$B_T \approx 2DW \longrightarrow \frac{SNR_D}{SNR_C} = \frac{3}{4} (\frac{B_T}{W})^2 \overline{m_n^2}$$

Tradeoff between bandwidth and noise performance in FM system

- Comparison of FM and AM
 - When SNR_T is large, and $m(t) = A_m \cos(2\pi f_m t)$
 - FM: Postdetection SNR (Output SNR):

•
$$SNR_D = \frac{3A_c^2 f_d^2 \overline{m^2}}{2N_0 W^3} = \frac{3A_c^2 f_d^2 A_m^2}{4N_0 W^3} = \frac{3A_c^2 \Delta f^2}{4N_0 W^3} = \frac{3A_c^2 \beta^2}{4N_0 W}$$

- Figure of merit: $\frac{SNR_D}{SNR_C} = \frac{3}{2}\beta^2$
- Bandwidth: $B_{FM} \approx 2\beta f_m$

- $\Delta f = f_d A_m, \beta = \frac{\Delta f}{W}$
- AM: 100 percent modulation (a=1)
 - Figure of merit: $\frac{SNR_D}{SNR_C} = \frac{a^2 \overline{m_n^2}}{1 + a^2 \overline{m_n^2}} = \frac{1}{3}$
 - Bandwidth: $B_{AM} = 2f_m$
- Noise performance: FM>AM at the cost of excessive bandwidth.
- FM: Exchange of bandwidth for improved noise performance.
 EE140: Introduction to Communication Systems

When SNR_T is small (Threshold effect)

- 1.Threshold is related to β , which is 8dB \sim 11dB, and it increases as β increases.
- 2. Above threshold, SNR_o increases linearly with SNR_i . Larger $\beta \rightarrow Larger SNR_o$.
- 3. Below threshold, SNR_o will be significantly deteriorated when SNR_i decreases.
- 4. FM threshold reduction: Phase-locked loop demodulator (on the order of 2 to 3 dB)

• Pre-emphasis and De-emphasis

Pre-emphasis and de-emphasis: message signal unchanged, effectively increase the output SNR of the FM system

Pre-emphasis and de-emphasis

– Total noise power output:

$$\begin{split} - & N_{DF} = \int_{-W}^{W} |H_{de}(f)|^2 S_{nF}(f) df \\ & = \frac{K_D^2}{A_c^2} N_0 f_3^2 \int_{-W}^{W} \frac{f^2}{f_3^2 + f^2} df = 2 \frac{K_D^2}{A_c^2} N_0 f_3^3 \left(\frac{W}{f_3} - \tan^{-1} \frac{W}{f_3} \right) = 2 \frac{K_D^2}{A_c^2} N_0 W f_3^2 \left(1 - \frac{f_3}{W} \tan^{-1} \frac{W}{f_3} \right) \\ - & \text{If } f_3 \ll W, N_{DF} \approx 2 \frac{K_D^2}{A_c^2} N_0 W f_3^2 \end{split}$$

- Output SNR: $SNR_D = \frac{A_c^2 f_d^2 \overline{m^2}}{2N_0 W f_o^2}$
- Figure of merit: $\frac{SNR_D}{SNR_C} = \frac{f_d^2 \overline{m^2}}{f_c^2}$ $\frac{SNR_D}{SNR_C} = \frac{3f_d^2 \overline{m^2}}{W^2}$

Without emphasis:

$$\frac{SNR_D}{SNR_c} = \frac{3f_d^2 \overline{m^2}}{W^2}$$

- When $f_3 \ll W$, the improvement gained through the use of pre-emphasis and de-emphasis is about $\frac{W^2}{f_2^2}$, which can be very significant in noisy environment.
- Emphasis is widely used in the commercial FM radio transmission and reception.

Comparison of CW Modulation Systems

	Modulation system	Output SNR	Transmission Bandwidth	Equipment Complexity	Typical Applications
	Baseband	$\frac{P_T}{N_0W}$	W		
	DSB with coherent demodulation	$\frac{P_T}{N_0W}$	2 <i>W</i>	Medium	Analog instrumentation, multiplexing
	SSB with coherent demodulation	$rac{P_T}{N_0W}$	W	Complicated	Point-to-point voice, multiplexing
	AM with envelope detection (above threshold) or AM with coherent demodulation	$\mu \frac{P_T}{N_0 W}$ $(\frac{1}{3} \frac{P_T}{N_0 W} \text{ if } a=1)$	2W	Simple	Broadcast radio, point-to-point voice
	PM above threshold	$k_p^2\overline{m^2}rac{P_T}{N_0W} \ (rac{1}{2}eta^2rac{P_T}{N_0W})$	$2(D+1)W$ $(2(\beta+1)f_m)$	Medium	Telemetry, digital data
	FM above threshold (without preemphasis)	$3D^{2}\overline{m_{n}^{2}}\frac{P_{T}}{N_{0}W}$ $(\frac{3}{2}\beta^{2}\frac{P_{T}}{N_{0}W})$	$\frac{2(D+1)W}{(2(\beta+1)f_m)}$	Medium	Broadcast radio, mobile radio
_	FM above threshold (with preemphasis)	$D^{2}\overline{m_{n}^{2}}\frac{W^{2}}{f_{3}^{2}}\frac{P_{T}}{N_{0}W}$ $\left(\frac{1}{2}\beta^{2}\frac{W^{2}}{f_{3}^{2}}\frac{P_{T}}{N_{0}W}\right)$	$\frac{2(D+1)W}{(2(\beta+1)f_m)}$	Medium	Broadcast radio, mobile radio

Comparison of CW Modulation Systems

Sinusoidal modulating wave, same baseband SNR

EE140: Introduction to Communication Systems

Thanks for your kind attention!

Questions?