

Theoretische Informatik

D. Flumini, L. Keller, O. Stern

Übungsblatt 1

Alphabete, Wörter und Sprachen

Abgabe: Kalenderwoche 39

Aufgabe 1.

Gegeben seien die Alphabete $\Sigma_1 = \{a, b, c, \dots, z\}, \Sigma_2 = \{+, -, *, /\}$ und $\Sigma_3 = \{0, 1, 2, \dots, 9\}$ sowie die Wörter $w_1 = \varepsilon, w_2 = 5 + 2 - 3, w_3 = a + 5, w_4 = a^3uk^4$ und $w_5 = abbeec$.

- (a) Bestimmen Sie die Längen der Wörter w_1 bis w_5 sowie die Länge des Wortes: w_1xw_2efg
- (b) Bestimmen Sie für die Wörter w_1 bis w_5 , zu welcher Sprache Σ_1^+ , Σ_2^* und Σ_3^4 diese jeweils gehören könnten.
- (c) Bestimmen Sie für die Wörter w_1 und w_5 , über welchem der Alphabete Σ_1 , Σ_2 und Σ_3 diese jeweils sein könnten.

Hinweis: In den Wörtern w_1 , w_2 , w_3 , w_4 und w_5 sind keine Leerzeichen enthalten. 10 Punkte

Aufgabe 2.

Beantworten Sie folgende Aufgaben.

- (a) Listen Sie alle Präfixe, Suffixe und Teilwörter des Wortes u = 123 auf.
- (b) Welche Teilwörter des Wortes v = sugusu sind gleichzeitig auch Präfix und Suffix von v?

10 Punkte

Aufgabe 3.

Entscheiden Sie für folgende Sprachen über $\Sigma = \{a, 1, x\}$, ob sie endlich oder unendlich sind. Begründen Sie Ihre Antwort.

- (a) $L_1 = \{ a, aa, x1a, xxx1a \}$
- (b) $L_2 = \{ x^{5*n-4*n} \mid n \in \mathbb{N} \text{ ist gerade } \}$
- (c) $L_3 = \{ w \in \Sigma^* \mid |w|_a = 6 \}$
- (d) $L_4 = \{ w \in \Sigma^{655} \mid |w|_x < |w|_1 \}$

Hinweis: Die Notation $|w|_a$ bezeichnet die Anzahl der Vorkommen des Zeichens a im Wort w.

10 Punkte

Zusatzaufgabe 1.

Entscheiden Sie, ob die nachfolgenden Aussagen wahr oder falsch sind:

Optional

Aussage	Wahr	Falsch
Eine Sprache darf nur eine endliche Anzahl von Wörtern enthalten.		
Die Sprache L sei eine Konkatenation aus den Sprachen		
$A = \{w \mid w \text{ ist ungerade und } w > 448\} \text{ und } B = \{w \mid w \text{ ist prim}\}.$		
Es gibt mindestens ein Wort aus der Sprache L , welches sowohl		
zur Sprache A als auch zur Sprache B gehört.		
Ein Wort kann nicht unendlich gross sein.		
$\Sigma^* = \Sigma^+ - \{\varepsilon\}$		
Gegeben sind die Sprachen $L = \{\}$ und $K = \{\varepsilon\}$. In diesem Fall ist		
L = K.		
Das leere Wort ε ist auch in der leeren Sprache enthalten.		
Unter der Konkatenation von Sprachen versteht man die Vereinigung der		
zugrundeliegenden Alphabete.		