Билет № 14. Существование односторонних пределов у монотонных функций.

Определения

Монотонность: $X \subset \mathbb{R}, X \neq \emptyset, f: X \to \mathbb{R}$

- f нестрого возрастает на X, если $\forall x_1, x_2 \in X : x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$
- f нестрого убывает на X, если $\forall x_1, x_2 \in X : x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$

Точные грани:

$$\sup_{x \in X} f(x) := \sup\{f(x) : x \in X\}$$
$$\inf_{x \in X} f(x) := \inf\{f(x) : x \in X\}$$

Критерий супремума: $M \in \overline{\mathbb{R}} = \sup_{x \in X} f(x) \iff$

- $\forall x \in X : f(x) \leq M$
- $\forall M' < M \ \exists x' \in X : M' < f(x') < M$

Односторонние окрестности:

$$\dot{U}^+_{\delta}(x_0) = (x_0, x_0 + \delta)$$
 (правая проколотая) $\dot{U}^-_{\delta}(x_0) = (x_0 - \delta, x_0)$ (левая проколотая)

Односторонние пределы: $X \subset \mathbb{R}, X \neq \emptyset, x_0$ — предельная точка X

- $\bullet \lim_{\substack{x \to x_0 + 0 \\ x \in X}} f(x) := \lim_{\substack{x \to x_0 \\ x \in X \cap \dot{U}_{\delta}^+(x_0)}} f(x)$
- $\bullet \lim_{\substack{x \to x_0 0 \\ x \in X}} f(x) := \lim_{\substack{x \to x_0 \\ x \in X \cap \dot{U}_{\bar{h}}^-(x_0)}} f(x)$

Теорема

 $X\subset\mathbb{R},\,X
eq\varnothing,\,x_0$ — левая предельная точка $X\ (\forall\delta>0:X\cap\dot{U}^-_\delta(x_0)
eq\varnothing),$ f — нестрого возрастает на X. Тогда:

$$\lim_{\substack{x \to x_0 - 0 \\ x \in X}} f(x) = \sup_{x \in X} f(x)$$

Аналогично для нестрого убывающей f и правостороннего предела ${\bf c}$ inf.

Доказательство:

Обозначим $M = \sup_{x \in X} f(x) \in \overline{\mathbb{R}}.$

Случай 1: $M \in \mathbb{R}$

 $\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in X : f(x_{\varepsilon}) \in U_{\varepsilon}(M)$

Т.к. f нестрого возрастает, то $\forall x \geq x_{\varepsilon}, x \in X, x < x_0$:

$$f(x) \in U_{\varepsilon}(M)$$

1

Причём $f(x) \ge f(x_{\varepsilon}) > M - \varepsilon$

Если $x_0 \in \mathbb{R}$, то возьмём $\delta(\varepsilon) = x_0 - x_{\varepsilon}$ Тогда $\forall x \in X \cap \dot{U}^-_{\delta(\varepsilon)}(x_0)$:

 $f(x) \in U_{\varepsilon}(M)$

Случай 2: $M=+\infty$

 $\forall \varepsilon > 0 \; \exists x_{\varepsilon} \in X : f(x_{\varepsilon}) > \frac{1}{\varepsilon}$ Т.к. f нестрого возрастает, то $\forall x \geq x_{\varepsilon}, \; x \in X, \; x < x_0$:

$$f(x) \ge f(x_{\varepsilon}) > \frac{1}{\varepsilon}$$

Если $x_0 \in \mathbb{R}$, то $\delta(\varepsilon) = x_0 - x_\varepsilon$ Если $x_0 = +\infty$, то $\delta(\varepsilon) = \frac{1}{|x_0|+1}$ В обоих случаях $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0$:

 $\forall x \in X \cap \dot{U}_{\delta(\varepsilon)}^{-}(x_0) \Rightarrow f(x) \in U_{\varepsilon}(M)$ Следовательно, $\lim_{\substack{x \to x_0 - 0 \\ x \in X}} f(x) = M$.