Klausurprotokoll Mafi 1 Ersttermin 06.02.2020

1. Aussagenlogik

- a) Zeigen einer Aussage mittels Wahrheitstabelle $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$
- b) Beweisen derselben Aussage mittels Umformungen.
- c) Ergebnismenge explizit angeben: $\{(1,b)|b \in \{1,2\}\} \cap (\{1,2\} \times P(\{\emptyset,1\}))$
- d) Seien A, B, C Mengen. Zeigen oder widerlegen: $A \neq B \Rightarrow A \cup C \neq A \cup C$

2. Relationen, Funktionen

- a) Zeigen, ob $a R b \Leftrightarrow_{def} a^n b^n = n \cdot a n \cdot b$ Äquivalenzrelation ist.
- b) Zeigen, ob $R = \{(x, y, z) \in \mathbb{R}^3 | x = max(y, z) \lor y = max(x, z) \}$ Äquivalenzrelation ist.
- c) Hasse Diagramm aller partieller Ord. die a als inf und b als sup haben $M = \{a, b, c\}$
- d) Beispiel einer injektiven, nicht surjektiven Funktion angeben und beweisen.
- e) Beispiel einer surjektiven, nicht injektiven Funktion angeben und beweisen.

3. Induktion

- a) Vollständige induktion $\sum_{i=0}^{n} (i^2 i) = \frac{(n-1)n(n+1)}{3}$
- b) Verallgemeinerte Induktion $fib(n) \le (\frac{7}{4})^n$ (Fibonacci Sequenz)

4. Verbände

- a, b) Beweisen, dass ein Verband (nicht) distributiv ist
- c)?
- d) Ist $U = (\mathbb{N}, \mathbb{I})$; $V = (\mathbb{N}, \leq)$; $f: U \to V$; $f(n) = n \square$ und/oder \square -Homomorphismus?

5. Algebraische Strukturen

Gegeben Monoid $M = \langle \{a, b\}, \bigoplus \rangle$, $\bigoplus \Leftrightarrow_{def} Konkatenation$ (Zeichenketten)

- a) Zeigen ob $M_1 = \{w \in M | |w| \text{ ist gerade}\}\$ ein Untermonoid ist.
- b) Zeigen ob $M_2 = \{w \in M \mid w \text{ enth\"alt nicht die Zeichenkette "abba"}\}$ ein Untermonoid ist.
- c) Verknüpfungstafel einer Gruppe explizit angeben
- d) Sind $f: \mathbb{Z}^6 \to \mathbb{Z}^7$, f(n) = n; $g: \mathbb{Z}^7 \to \mathbb{Z}^2$, $g(n) = n \mod 2$ Gruppenhomomorphismen?

6. Basen, Untervektorräume

- a) Basis und Dimension angeben (Beweis 3&4): V_1 , V_2 , $V_3 = V_1 \cup V_2$, $V_4 = V_1 + V_2$
- b) Zeigen ob angegebene Räume Unterräume sind

7. Lineare Gleichungssysteme

- a) Darstellende Matrix einer linearen Gleichung $\varphi((x_1, x_2, x_3, x_4)^t) = ...$ angeben
- b) Berechne $Kern(\phi)$
- c) Berechne $Bild(\varphi)$

8. Determinante einer Matrix

- a) Berechne $det(A \cdot A^t)$, $A \in \mathbb{R}^{3x3}$
- b) Angeben für welche $x \in \mathbb{R}$ eine \mathbb{R}^{4x4} Matrix invertierbar ist. Entwicklung nach Spalte.

9. Darstellende Matrix, Basiswechsel

a) Gegeben $U = \mathbb{R}^3$, $\varphi: U \to U$ Basen $B, B' \in \mathbb{R}^3$. Berechne $B_{R'}[\varphi \circ \varphi]_R$

10. Wissensfragen

- a) Term (X) ist eine Tautologie.
- b) $\mathbb{N}^{\{0,1\}}$ und $\{0,1\}^{\mathbb{N}}$ sind gleichmächtig.
- c) Eine lineare Abbildung $\varphi \in \mathbb{R}^{3x4}$ ist nie injektiv.
- d) Es gibt unendlich viele Paare endlicher Isomorphismen.
- e) Die Menge der \mathbb{R}^{nxn} , $n \ge 2$ Matrizen bildet zusammen mit der Matrix-Addition und -Multiplikation einen kommutativen Ring mit Einselement.

