Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	24 + a = 2.1020	3p
	a = 2016	2p
2.	$\Delta = 16 - 4m$	3p
	$16 - 4m = 0 \Rightarrow m = 4$	2p
3.	$(3^{-1})^{2x-3} = 3^3 \Leftrightarrow -2x+3=3$	3 p
	x = 0	2 p
4.	Mulțimea A are 25 de elemente, deci sunt 25 de cazuri posibile	1p
	Sunt 5 numere raționale în mulțimea A, deci sunt 5 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{25} = \frac{1}{5}$	2p
5.	$d \perp BC \Rightarrow m_d \cdot m_{BC} = -1$ și, cum $m_{BC} = 1$, obținem $m_d = -1$	2p
	Deoarece $A \in d$, ecuația dreptei d este $y - y_A = m_d (x - x_A)$, adică $y = -x + 1$	3 p
6.	$\frac{BC}{\sin A} = 2R \Rightarrow R = \frac{2\sqrt{2}}{2 \cdot \frac{\sqrt{2}}{2}} =$	3p
	= 2	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ $\begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$	
	$A(0) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	2 p
	=0+0+0-0-1-0=-1	3p
b)	$\begin{vmatrix} 1 & a & a^2 \\ 1 & a & a^2 \end{vmatrix}$	
	$\det(A(a)) = \begin{vmatrix} 1 & a & a^2 \\ 1 & -1 & 1 \\ 1 & 1 & -a \end{vmatrix} = (3a-1)(a+1)$	2p
	Pentru orice număr real a , $a \ne -1$ și $a \ne \frac{1}{3}$, obținem $\det(A(a)) \ne 0$, deci matricea $A(a)$ este inversabilă	3p
c)	Sistemul are soluție unică, deci $a \neq -1$ și $a \neq \frac{1}{3}$; pentru fiecare număr real a , $a \neq -1$ și	
	$a \neq \frac{1}{3}$, obţinem $x_0 = \frac{-4a}{(3a-1)(a+1)}$ şi $y_0 = \frac{2(2-3a)}{3a-1}$	2p
	Cum $x_0 = y_0 \Leftrightarrow 3a^2 - a - 2 = 0$, obținem $a = -\frac{2}{3}$ sau $a = 1$	3 p

2.a)	x * y = -xy + 2x + 2y - 4 + 2 =	2p
	=-x(y-2)+2(y-2)+2=2-(x-2)(y-2), pentru orice numere reale x şi y	3 p
b)	$x * x = 2 - (x - 2)^2$	2p
	$2 - (x - 2)^2 = 1 \Leftrightarrow (x - 2)^2 = 1 \Leftrightarrow x = 1 \text{ sau } x = 3$	3 p
c)	Cum $m*n*p = 2 + (m-2)(n-2)(p-2)$, obţinem $(m-2)(n-2)(p-2) = 0$	2p
	m=2 sau $n=2$ sau $p=2$, deci produsul numerelor m , n și p este divizibil cu 2	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (e^x)' + (\ln x)' + 1' =$	2p
	$=e^{x}+\frac{1}{x}+0=e^{x}+\frac{1}{x}, x \in (0,+\infty)$	3 p
b)	f(1) = e + 1, f'(1) = e + 1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = (e+1)x$	3 p
c)	$f'(x) > 0$ pentru orice $x \in (0, +\infty)$, deci f este strict crescătoare pe $(0, +\infty)$	2p
	Cum $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(e^x + \ln x + 1 \right) = -\infty$, $f(1) > 0$ și f este continuă, atunci ecuația $f(x) = 0$ are soluție unică în intervalul $(0,1)$	3 p
2.a)	$I_0 = \int_0^1 \frac{x}{x+3} dx = \int_0^1 \left(1 - \frac{3}{x+3}\right) dx = \left(x - 3\ln(x+3)\right) \Big _0^1 =$	3p
	$=1-3\ln 4+3\ln 3=1+3\ln \frac{3}{4}$	2p
b)	$I_{n+1} + 3I_n = \int_0^1 \frac{x^{n+2} + 3x^{n+1}}{x+3} dx = \int_0^1 \frac{x^{n+1}(x+3)}{x+3} dx = \int_0^1 x^{n+1} dx =$	3 p
	$= \frac{x^{n+2}}{n+2} \Big _{0}^{1} = \frac{1}{n+2}, \text{ pentru orice număr natural } n$	2p
c)	$nI_n = n \int_0^1 \frac{x^{n+1}}{x+3} dx = \int_0^1 \left(x^n\right)^n \frac{x^2}{x+3} dx = x^n \cdot \frac{x^2}{x+3} \Big _0^1 - \int_0^1 x^n \cdot \frac{x^2+6x}{(x+3)^2} dx = \frac{1}{4} - \int_0^1 x^n \left(1 - \frac{9}{(x+3)^2}\right) dx$	2p
	pentru orice număr natural nenul <i>n</i>	
	Cum $0 \le \int_{0}^{1} x^{n} \left(1 - \frac{9}{(x+3)^{2}} \right) dx \le \int_{0}^{1} x^{n} dx = \frac{1}{n+1}$ pentru orice număr natural nenul n , obținem	3p
	$\lim_{n \to +\infty} nI_n = \frac{1}{4}$	