Avance de Proyecto Identificación facial con pocas muestras por clase

Martín Villanueva¹

¹Departamento de Informática Universidad Técnica Federico Santa María

Máquinas de Aprendizaje, 2015

Outline

- 1 El Problema
 - Identificación facial
 - Datasets
- 2 Propuestas de solución
 - Linear Discriminant Analysis
 - Multi-class SVM
 - Convolutional Neural Networks
 - Dissimilarity SVM

Outline

- 1 El Problema
 - Identificación facial
 - Datasets
- 2 Propuestas de solución
 - Linear Discriminant Analysis
 - Multi-class SVM
 - Convolutional Neural Networks
 - Dissimilarity SVM

Definición del Problema

El problema tratado consiste en, dadas una *pocas* muestras de imágenes faciales de distintos individuos, generar un algoritmo que permita identificar correctamente a cada individuo, dada una imagen distinta a las anteriores. Más formalmente:

- Se define $S_{tr} = \{\mathbf{s}_1, \dots, \mathbf{s}_M\}$ como el conjunto de entrenamiento con imágenes faciales de K individuos.
- El problema de identificación es, dada una imagen de test p, determinar cuál de las K clases del conjunto de entrenamiento S_{tr} corresponde.
- Se restringe el problema a casos donde cada clase posee pocas muestras en S_{tr} , lo cual es una situación bastante realista.

Datasets

Los datasets a ocupar corresponden a Faces94 y Faces95. Los cuales tiene las siguientes características respectivamente:

- Faces94: 153 individuos, 20 imágenes por individuo, resolución 200 × 180, hombres y mujeres, fondo fijo, poca variación en escalamiento, poca variación de posición de la imagen y condiciones de iluminación, y considerables variaciones en expresiones faciales.
- **Faces95**: 72 individuos, 20 imágenes por individuo, resolución 200 × 180, hombres y mujeres, fondo con sombra, considerable variación en escalamiento, poca variación en posición de imagen, iluminación variable, y variaciones considerable en expresiones faciales.

Faces94

Figura: Imágenes características de un individuo en Faces94

Faces95

Figura: Imágenes características de un individuo en Faces95

Otras consideraciones

Para emular las restricciones del problema, se sigue la siguiente metodología

- Para cada uno **Faces94** y **Faces95** se generan 20 training y testing sets respectivos.
- Cada training set se genera tomando 3-5 muestras aleatorias por cada individuo, dejando el resto de las 15-17 imágenes restantes en el testing set.
- Luego, para cada dataset (Faces94 o Faces95) hay en total 60 sets de training y testing respectivos.
- La presentación de resultados, se realiza con Errorbars (t-student 95 % de confianza) del error rate sobre los 20 datasets respectivos.

Outline

- 1 El Problema
 - Identificación facial
 - Datasets
- 2 Propuestas de solución
 - Linear Discriminant Analysis
 - Multi-class SVM
 - Convolutional Neural Networks
 - Dissimilarity SVM

LDA

- La implementación ocupada corresponde la de Scikit-Learn. Para cada una de las clases (personas) genera un función discriminante lineal δ_k , que permite diferenciar a cada una de las clases.
- Supuestos Fuertes: 1) La probabilidad multivariada de las características $P(x_m|y=k)$ se distribuye normal, y 2) La matriz de covarianza para cada una de las clases es igual.
- Como LDA es un modelo generativo (sin hiperparámetros), no es necesario realizar cross-validation para el modelo. Permite ahorrar gran tiempo de computación.

LDA: Resultados en Faces94

Figura: Resultados obtenidos con LDA en Faces94

LDA: Resultados en Faces95

Figura: Resultados obtenidos con LDA en Faces95

Multi-class SVM

- Support Vector Machines (SVM) es un método de clasificación binario (adaptable a problemas de múltiples clases), que encuentra la frontera de decisión lineal óptima (hiperplano óptimo) separadora de las clases.
- Implementación y entrenamiento de multiclass SVM's con kernels tanto lineales como RBF. La implementación de Scikit-Learn advierte: "SVC implement one-against-one" approach (Knerr et al., 1990) for multi- class classification".
- Se utilizan ν -SMV's, debido a que facilita la configuración del parámetro de holgura $\nu \in (0,1]$, y a su interpretación.
- Selección de hiperparámetros ν y γ (en kernels rbf) se realiza stratified cross-validation. Para que esto tenga sentido, el número de folds debe ser igual al número de muestras por clase.

Reducción de dimensionalidad

- **Problema:** Las dimensiones de las imágenes (200×180=36000) corresponden al total de features de cada foto. Esto hace necesario ocupar reducción de dimensionalidad para tomar las características realmente importantes (aquellas que permiten diferencias entre las clases) y mejorar los tiempos de entrenamientos y eficiencia.
- Como técnica de reducción de dimensionalidad, se ha decidido ocupar LDA, representación también conocida como Fisher-Faces (reducción de dimensionalidad supervisada).
- Idea: Proyectar la data en espacio donde se maximice la interclass variance y minimice la intra-class variance.

Reducción de dimensionalidad (2)

Figura: LDA como reducción de dimensionalidad

■ El número de máximo de discriminantes es mín(dim, K-1), por lo tanto en un problema con muchas más dimensiones (features) qué clases, la reducción de dimensionalidad es considerablemente.

Resultados linear SVM Faces94

Figura: Resultados obtenidos con linear SVM en Faces94

Resultados linear SVM Faces94 (2)

Figura: Comparación de resultados obtenidos con linear SVM en Faces94

Resultados linear SVM Faces95

Figura: Resultados obtenidos con linear SVM en Faces95

Resultados linear SVM Faces95 (2)

Figura: Comparación de resultados obtenidos con linear SVM en Faces95

Resultados RBF SVM Faces94

Figura: Resultados obtenidos con RBF SVM en Faces94

Resultados RBF SVM Faces94 (2)

Figura: Comparación de resultados obtenidos con RBF SVM en Faces94

Resultados RBF SVM Faces95

Figura: Resultados obtenidos con RBF SVM en Faces95

Resultados RBF SVM Faces95 (2)

Figura: Comparación de resultados obtenidos con RBF SVM en Faces95

Análisis de resultados

- Linear-SVM tiene un buen resultado en general, superando a LDA (mejor capacidad de generalización).
- Para faces94, ocupar modelos que aumenten la complejidad (como RBF SVM) sólo empeora los resultados.
- Para faces95 RBF SVM se comporta mejor, pero no supera a los otros dos algoritmos anteriores.

Convolutional Neural Networks

CNN

:-(..

D-SVM

- Hasta ahora, todos los método tratados resuelven el problema de identificación como K-class clasification.
- El método aquí propuesto, transformar el espacio de representación de los datos, reduciendo el problema a clasificación binaria.
- Para esto se debe mapear los datos desde el Image Space al Difference Space.
- Se definen entonces dos conjuntos, C₁ y C₂; El primero corresponde al within-class differences set y contiene las disimilitudes entre datos de la misma clase. El segundo es between-class difference set y contiene las disimilitudes entre datos de distinta clase.

D-SVM (2)

Definition

Dea $S_{tr} = \{\mathbf{s}_1, \dots, \mathbf{s}_M\}$ el conjunto de entrenamiento con K individuos. Para indicar que dos individuos pertenecen a la misma clase se denota $\mathbf{s}_i \sim \mathbf{s}_j$, y en caso contrario $\mathbf{s}_i \nsim \mathbf{s}_j$. Se define adicionalmente la función de disimilitud $\phi: R^N \times R^N \to R^S$ con $S \leq N$, como aquella función que mapea dos imagenes, hacia el difference space. Luego es posible definir

$$C_1 = \{ \phi(\mathbf{s}_i, \mathbf{s}_j) \mid \mathbf{s}_i \sim \mathbf{s}_j \}$$
 (1)

$$C_2 = \{ \phi(\mathbf{s}_i, \mathbf{s}_j) \mid \mathbf{s}_i \nsim \mathbf{s}_j \}$$
 (2)

D-SVM (2)

- El entrenamiento de la D-SVM (Dissimilarity SVM), tiene como entradas los conjuntos C_1 y C_2 .
- Como resultado de la clasificación se obtiene la superficie de decisión

$$f(\mathbf{x}) = \sum_{m}^{M_s} \alpha_m y_m K(\mathbf{v}_m, \mathbf{x}) + b = 0$$

donde la función f(x) puede ocuparse de discriminante para determinar si un dato pertenece a una clase u otra.

D-SVM (3)

El proceso de identificación es como sigue:

- Sea **p** la imagen a identificar sobre un conjunto de imágenes conocidas S_{tr} . Se computa la representación en el difference space: $\phi(\mathbf{p}, \mathbf{s_i}) \ \forall \mathbf{s_i} \in S_{tr}$.
- Evaluar la función de discriminante $f(\mathbf{x})$ sobre cada uno de los resultados anteriores.
- La clase de pertenencia será aquella para la cual $f(\phi(\mathbf{p}, \mathbf{s_i}))$ sea la menor posible:

$$\underset{i}{\operatorname{argmin}} \ f(\phi(\mathbf{p}, \mathbf{s_i})) \tag{3}$$

Local Binary Pattern (1)

Idea: Forma de representación de imágenes, como una composición de micro-patrones que describen las estructuras presentes en estas. Los distintos patrones que emergen corresponden a las características presentes en las imágenes.

Fig. 1. The basic LBP operator.

Figura: Local Binary Pattern Operator

Local Binary Pattern (2)

Fig. 2.4 The 58 different uniform patterns in (8, R) neighborhood

Figura: Uniform Local Binary Patterns

Histograma Espacial de Características

- Cada uno de estos 59 patrones representan una característica, y la frecuencia o distribución (histogramas) de estas definen las estructuras presentes en las imágenes.
- Sin embargo se requiere también de información espacial, acerca de donde se encuentran estas características.

Figura: Histograma espacial de características

Método Propuesto

El modelo propuesto difiere de aquel propuesto por P. Jonathon Philips en Support Vector Machines Applied to Face Recognition, en la función $\phi(\cdot,\cdot)$ de mapeo al difference space. Sean dos imágenes representadas en la forma de histograma espacial $(\mathbf{h_1},\mathbf{h_2})$ con S histogramas, luego la función es

Definition

 $\phi(\mathbf{h_1},\mathbf{h_2})=\mathbf{d}=(d_1,\cdots,d_S)$ tal que $\mathbf{d_i}$ corresponde a la diferencia existente entre los histogramas *i*-ésimos de las respectivas imágenes. Tal diferencia se computa con la función:

$$\chi^{2}(x,y) = \sum_{k} \frac{(x_{k} - y_{k})^{2}}{x_{k} + y_{k}}$$

Detalles de Implementación

- Cuando existen s muestras por clase, se pueden hacer $\binom{s}{2}$ combinaciones para formar el conjunto C_1 .
- El conjunto C_2 se forma tomando aleatoriamente igual cantidad $\binom{s}{2}$ de pares de datos de distinta clase.
- El valor que obtiene la función discriminante $f(\mathbf{x})$, se promedia para los datos que pertenecen a la misma clase en S_{tr}

Resultados D-SVM Faces94

Figura: Resultados obtenidos con D-SVM en Faces94

Resultados D-SVM Faces94 (2)

Figura: Comparación de resultados obtenidos con D-SVM en Faces94

Resultados D-SVM Faces95

Figura: Resultados obtenidos con D-SVM en Faces95

☐ Dissimilarity SVM

Resultados D-SVM Faces95 (2)

Figura: Comparación de resultados obtenidos con D-SVM en Faces95