

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Formas de Onda
 - Simplificação de Expressões Booleanas por Mapa de Karnaugh de 2 variáveis
- o Mapa de Karnaugh de 3 e 4 variáveis

Revisão

- o Formas de Onda
- Simplificação de Expressões Booleanas por Mapa de Karnaugh de 2 variáveis

Formas de Onda

Mostram o comportamento de uma função lógica durante um intervalo de tempo

Exemplo:

Porta OR

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Tabela Verdade: Representa uma situação <u>estática</u>
Mostra todos os valores que as entradas podem
assumir, mas <u>não mostra a variação</u> desses valores
durante um intervalo de <u>tempo</u>

Formas de Onda

Representação dinâmica da função lógica Exemplo: Porta OR

A	В	5
0	0	0
0	1	1
1	0	1
1	1	1

Mapa de Karnaugh

- É uma representação gráfica (visual) da tabela verdade
- É usado para simplificar expressões ou circuitos lógicos

Nomenclatura do Mapa de Karnaugh

	A	В	S
$A=0,B=0 \Rightarrow \overline{A} \ \overline{B}$	0	0	1
$A=0,B=1 \Rightarrow \overline{A} B$	0	1	0
$A=1,B=0 \Rightarrow A \overline{B}$	1	0	1
$A=1,B=1 \Rightarrow A B$	1	1	0

Mapa de Karnaugh para 2 variáveis

TV para 2 variáveis

A	В	S
0	0	S ₁
0	1	S ₂
1	0	S ₃
	_	

Mapa de Karnaugh para 2 variáveis

Cada quadrante do Mapa de Karnaugh corresponde a uma linha da Tabela Verdade

Mapa de Karnaugh para 2 variáveis

TV para 2 variáveis

A	В	5
0	0	S ₁
0	1	S ₂
1	0	5 ₃

1

Mapa de Karnaugh para 2 variáveis

O "endereço" de cada quadrante só muda em 1 bit em relação ao seu vizinho

Exemplo

Caso 1:

5

Caso 2:

Caso 3:

Caso 4:

0	0	1
0	1	0
1	0	1
1	1	0

Expressão da Tabela Verdade $S=\overline{A}.\overline{B}+A.\overline{B}$

Simplificação da Expressão por <u>Álgebra de Boole</u>

$$S=\overline{A}.\overline{B}+A.\overline{B}$$

$$S=\overline{B}.(\overline{A+A})$$

Os dois termos da expressão diferem apenas pela variável A

Isso indica que a expressão independe de $A \Rightarrow pode-se$ eliminar A da expressão

Exemplo

A B 5

Caso 1: 0 0 1

Caso 2: 0 1 0

Caso 3: 1 0 1

Caso 4: 1 1

Expressão da Tabela Verdade $S=\overline{A}.\overline{B}+A.\overline{B}$

Simplificação da Expressão por Mapa de Karnaugh

No mapa, os termos adjacentes podem ser agrupados para simplificar a expressão (igual à Álgebra, mas de forma visual)

O termo agrupado elimina uma variável \Rightarrow S= \overline{B}

0

(B é o "endereço" do par de "1s", ou seja, a intersecção das variáveis que não " mudam")

Aula de Hoje

- o Mapa de Karnaugh de 3 variáveis
- o Mapa de Karnaugh de 4 variáveis
- o Exercícios

Mapa de Karnaugh para 3 variáveis

Nomenclatura do Mapa de Karnaugh

	A	В	C	5
$A=0,B=0,C=0 \Rightarrow \overline{A} \ \overline{B} \ \overline{C}$	0	0	0	S ₁
$A=0,B=0,C=1 \Rightarrow \overline{A} \ \overline{B} \ C$	0	0	1	S ₂
$A=0,B=1,C=0 \Rightarrow \overline{A} \ B \ \overline{C}$	0	1	0	S ₃
$A=0,B=1,C=1 \Rightarrow \overline{A} B C$	0	1	1	54
$A=1,B=0,C=0 \Rightarrow A \overline{B} \overline{C}$	1	0	0	S ₅
$A=1,B=0,C=1 \Rightarrow A \overrightarrow{B} C$	1	0	1	S ₆
$A=1,B=1,C=0 \Rightarrow A B \overline{C}$	1	1	0	S ₇
$A=1,B=1,C=1 \Rightarrow A B C$	1	1	1	S ₈

Mapa de Karnaugh para 3 variáveis

TV para 3 variáveis

A	В	С	5
0	0	0	S ₁
0	0	1	S ₂
0	1	0	S ₃
0	1	1	S ₄
1	0	0	S ₅ S ₆
1	0	1	S ₆
1	1	0	S ₇
1	1	1	5 ₈

Mapa de Karnaugh para 3 variáveis

Mapa de Karnaugh para 3 variáveis

TV para 3 variáveis

A	В	C	5
0	0	0	S ₁
0	0	1	S ₂
0	1	0	S ₃
0	1	1	54
4			

0

Mapa de Karnaugh para 3 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Octeto

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Pares

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Exercícios

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

1)

A	В	С	5
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

→Expressão da TV | S=\(\overline{ABC} + \overline{ABC} +

Expressão Simplificada a partir do MK $S=\overline{AC}+A\overline{C}+\overline{BC}$

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh OUTRA SOLUÇÃO

→Expressão da TV S=ABC+ABC+ABC+ABC

Expressão Simplificada a partir do MK $S=\overline{AC}+A\overline{C}+A\overline{B}$

Obs.: As duas simplificações resultam em expressões diferentes, mas o comportamento do circuito é o mesmo (pode-se verificar isso através da Tabela Verdade de cada uma das expressões)

S=AC+AC+BC

Expressões com o mesmo comportamento $S = \overline{AC} + A\overline{C} + A\overline{B}$

Exercícios

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

2)

A	В	С	5
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

2)

A	В	С	5
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

→Expressão da TV S=ABC+ABC+ABC+ABC

Expressão Simplificada a partir do MK S=C+AB

Exercícios

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

3)

A	В	C	5
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

→Expressão da TV S=ABC+ABC+ABC+ABC+ABC

Expressão Simplificada a partir do MK $S=\overline{A}+C$

Exercícios

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

4)

A	В	C	5
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

4)

A	В	С	5
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

→Expressão da TV S=ABC+ABC+ABC+ABC+ABC

Expressão Simplificada a partir do MK $S=\overline{AB}+B\overline{C}+AC$

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh OUTRA SOLUÇÃO

4)

A	В	С	5
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

→Expressão da TV S=ABC+ABC+ABC+ABC+ABC

Expressão Simplificada a partir do MK $S=\overline{BC}+\overline{AC}+AB$

Exercícios

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

5)

A	В	С	5
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

5)

A	В	С	5
	<u> </u>)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

→Expressão da TV S=ABC+ABC+ABC+ABC

Expressão Simplificada a partir do MK $S=\overline{AC}+\overline{AB}+B\overline{C}+\overline{ABC}$

Mapa de Karnaugh para 4 variáveis

Nomenclatura do Mapa de Karnaugh

_					•
	A	В	С	D	5
$A=0,B=0,C=0,D=0 \Rightarrow \overline{A} \ \overline{B} \ \overline{C} \ \overline{D}$	0	0	0	0	S ₁
$A=0,B=0,C=0,D=1 \Rightarrow \overline{A} \overline{B} \overline{C} D$	0	0	0	1	5 ₂
$A=0,B=0,C=1,D=0 \Rightarrow \overline{A} \overline{B} C \overline{D}$	0	0	1	0	5 ₃
$A=0,B=0,C=1,D=1 \Rightarrow \overline{A} \overline{B} C D$	0	0	1	1	54
$A=0,B=1,C=0,D=0 \Rightarrow \overline{A} \ \overline{B} \ \overline{C} \ \overline{D}$	0	1	0	0	S ₅
$A=0,B=1,C=0,D=1 \Rightarrow \overline{A} \ \overline{B} \ \overline{C} \ D$	0	1	0	1	S ₆
$A=0,B=1,C=1,D=0 \Rightarrow \overline{A} B C \overline{D}$	0	1	1	0	5 ₇
$A=0,B=1,C=1,D=1 \Rightarrow \overline{A} \ \underline{B} \ \underline{C} \ \underline{D}$	0	1	1	1	5 ₈
$A=1,B=0,C=0,D=0 \Rightarrow A \overline{B} \overline{C} \overline{D}$	1	0	0	0	S ₉
$A=1,B=0,C=0,D=1 \Rightarrow A \overline{B} \overline{C} D$	1	0	0	1	S ₁₀
$A=1,B=0,C=1,D=0 \Rightarrow A \overline{B} C \overline{D}$	1	0	1	0	S ₁₁
$A=1,B=0,C=1,D=1 \Rightarrow A B C D$	1	0	1	1	S ₁₂
$A=1,B=1,C=0,D=0 \Rightarrow A B \overline{C} \overline{D}$	1	1	0	0	S ₁₃
$A=1,B=1,C=0,D=1 \Rightarrow A B \overline{C} \underline{D}$	1	1	0	1	S ₁₄
$A=1,B=1,C=1,D=0 \Rightarrow A B C \overline{D}$	1	1	1	0	S ₁₅
$A=1,B=1,C=1,D=1 \Rightarrow A B C D$	1	1	1	1	S ₁₆

Mapa de Karnaugh para 4 variáveis

TV para 4 variáveis

A	В	С	D	5
0	0	0	0	S ₁
0	0	0	1	S ₂
0	0	1	0	S ₃
0	0	1	1	S ₄
0	1	0	0	S ₅
0	1	0	1	S ₅ S ₆
0	1	1	0	S ₇
0	1	1	1	S ₈
1	0	0	0	S ₉
1	0	0	1	S ₁₀
1	0	1	0	S ₁₁
1	0	1	1	S ₁₂
1	1	0	0	S ₁₃
1	1	0	1	S ₁₄
1	1	1	0	S ₁₅
1	1	1	1	S ₁₆

Mapa de Karnaugh para 4 variáveis

	<u>c</u>				_
A	S ₁	S ₂	S ₄	S ₃	В
A	S ₅	S ₆	S ₈	S ₇	В
•	S ₁₃	S ₁₄	S ₁₆	S ₁₅	
A	S ₉	S ₁₀	S ₁₂	S ₁₁	В
•	٥	٥		D	

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Hexa

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Exemplos de Agrupamentos

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Exemplos de Agrupamentos

Quadra

Exemplos de Agrupamentos

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Pares

Exercícios

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

1)	Α	В	С	D	5
-					
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	1
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	1
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	1

Soluções

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

Expressão da TV

din

Exercícios

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

7	٦
_	4

	· J			
Α	В	С	D	5
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Soluções

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

Exercícios

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

	3)	A	В	С	D	5
		0	0	0	0	1
		0	0	0	1	0
		0	0	1	0	1
		0	0	1	1	0
		0	1	0	0	1
		0	1	0	1	1
		0	1	1	0	1
		0	1	1	1	1
		1	0	0	0	1
		1	0	0	1	0
		1	0	1	0	1
		1	0	1	1	0
١		1	1	0	0	1

0

Soluções

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

Expressão da TV

S=ĀBCD+ĀBCD+ĀBCD+ĀBCD+ĀBCD+ĀBCD+ĀBCD+ABCD +ABCD+ABCD+ABCD

din

Diversão para Casa

Minimize as expressões usando Mapa de Karnaugh

1) Expressão

S=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

2) Expressão

Resumo da Aula de Hoje

Tópicos mais importantes:

 Simplificação de circuitos por Mapas de Karnaugh 3 e 4 variáveis

