Global Computing Lab:

Performance Portable Plasma Simulations for the Exascale Era

Nigel Tan

Performance Portable Plasma Simulations for the Exascale Era

- Collaboration between GCLab and Los Alamos National Laboratory
- Nigel Tan (UTK), Bob Bird (LANL), Michela Taufer(UTK)

Vector Particle-In-Cell (VPIC)

- State of the art plasma simulation code solving the Vaslov-Maxwell equations
- Performance focused PIC code
 - 32 bit floating point arithmetic
 - Heavy use of vector intrinsics
- Only CPUs and KNL supported
 - Would require full rewrite to run on GPU
 - Want portable, performant, and modern code

Supercomputer	CPU	Accelerator
Summit/Sierra	Power9	Tesla V100
Trinity	Xeon	Xeon Phi Knight Landing
Perlmutter	Ерус	Tesla
Aurora	Xeon	Intel Xe
Frontier	Ерус	Radeon Instinct

*VPIC would require at least 3 ports just to run on the major US supercomputers

Challenges!

- Legacy codebase
 - Lots of macros
 - Few comments
 - Already parallelized kernels are difficult to understand
- Accuracy
 - Are our answers too wrong?

Porting Methodologies

- Data layout & movement
 - 3 Copies of data
 - Array of Structs to Struct of Arrays
 - Use subviews to reduce data movement

Porting Methodologies

Communication

Original VPIC

Weak Scaling

- Near ideal scaling on 2048 Summit nodes with 12288 GPUs
- At most ~10% loss using nearly half of Summit

Strong Scaling

$$\Phi(a,p,H) = \begin{cases} \frac{|H|}{\sum_{i \in H} \frac{1}{e_i(a,p)}} & \text{if i is supported } \forall i \in H \\ 0 & \text{otherwise} \end{cases}$$

1. Pennycook, Simon J. et al. "A Metric for Performance Portability." ArXiv abs/1611.07409 (2016): n. pag.

VPIC Version	中(CPU) App. Eff.	Ф(GPU) App. Eff.	Ф(All) App. Eff.
Base	61.26%	0%	0%
SIMD	100%	0%	0%
Kokkos	48.89%	100%	52.74%

