On a Class of Permutation Polynomials over Finite Fields

November 21, 2013

Abstract

1 Results

Definition 1.1. Sea $a = \alpha^i, b = \alpha^j$ y \sim la relacion definida por $(a,b) \sim (a',b')$ $<=> a' = \alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})}, b' = \alpha^{j+h(\frac{p-1}{d_1})}$

Proposition 1.2. \sim definida arriba es una relación de equivalencia.

Proof. 1. Sea $a=\alpha^i, b=\alpha^j$ y escoja h=0. Entonces $a'=\alpha^{i+0(\frac{p-1}{d_1}-\frac{p-1}{d_2})}=\alpha^i=a$ y $b'=\alpha^{j+0(\frac{p-1}{d_1})}=\alpha^j=b$. Por lo tanto $(a,b)\sim(a,b)$ y la relacion es reflexiva.

renexiva. 2. Sea $a=\alpha^i, b=\alpha^j, a'=\alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})}$ y $b'=\alpha^{j+h(\frac{p-1}{d_1})}$ entonces $(a,b)\sim(a',b')$. Queremos encontrar l tal que $a=\alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})+l(\frac{p-1}{d_1}-\frac{p-1}{d_2})}$ y $b=\alpha^{j+h(\frac{p-1}{d_1})+l(\frac{p-1}{d_1})}$. Escoja $l=d_1d_2-h$, entonces obtenemos: $\alpha^{i+d_1d_2(\frac{p-1}{d_1}-\frac{p-1}{d_2})}=\alpha^i=a$ y $\alpha^{j+d_1d_2(\frac{p-1}{d_1})}=\alpha^j=b$. Por lo tanto $(a',b')\sim(a,b)$ y la relacion es simetrica

simetrica. 3. Suponga que $a=\alpha^i,\ b=\alpha^j,\ a'=\alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})},\ b'=\alpha^{j+h(\frac{p-1}{d_1})},\ a''=\alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})+l(\frac{p-1}{d_1}-\frac{p-1}{d_2})},\ b''=\alpha^{j+h(\frac{p-1}{d_1})+l(\frac{p-1}{d_1})}.$ Por lo tanto $(a,b)\sim(a',b')$ y $(a',b')\sim(a'',b'')$. Ahora note que $a''=\alpha^{i+(h+l)(\frac{p-1}{d_1}-\frac{p-1}{d_2})},\ b''=\alpha^{j+(h+l)(\frac{p-1}{d_1})},$ por lo tanto $(a,b)\sim(a'',b'')$ y la relacion es transitiva.

Como la relacion es reflexiva, simetrica y transitiva, concluimos que es una relacion de equivalencia.

Proposition 1.3. Sea [a,b] la clase de equivalencia de (a,b). Si $(a',b') \in [a,b]$, entonces $|V_{a',b'}| = |V_{a,b}|$

Proof.Sea α la raiz primitiva del cuerpo finito.

$$F_{a',b'}(\alpha^{k+1}) = \alpha^{k+1} ((\alpha^{k+1})^{\frac{p-1}{d_1}} + \alpha^{i + \frac{p-1}{d_1} - \frac{p-1}{d_2}} (\alpha^{k+1})^{\frac{p-1}{d_2}} + \alpha^{j + \frac{p-1}{d_1}})$$

$$= \alpha^{k+1} ((\alpha^{k})^{\frac{p-1}{d_{1}}} \cdot \alpha^{\frac{p-1}{d_{1}}} + \alpha^{i} \cdot \frac{\alpha^{\frac{p-1}{d_{1}}}}{\alpha^{\frac{p-1}{d_{2}}}} (\alpha^{k})^{\frac{p-1}{d_{2}}} \cdot \alpha^{\frac{p-1}{d_{2}}} + \alpha^{j} \cdot \alpha^{\frac{p-1}{d_{1}}})$$

$$= \alpha^{\frac{p-1}{d_{1}}+1} \cdot \alpha^{k} ((\alpha^{k})^{\frac{p-1}{d_{1}}} + \alpha^{i} (\alpha^{k})^{\frac{p-1}{d_{2}}} + \alpha^{j})$$

$$= C \cdot F_{a,b}(\alpha^{k}), \text{ donde } C = \alpha^{\frac{p-1}{d_{1}}+1}$$

En general para cada termino de $F_{a,b}(\alpha^k)$ va a haber un termino correspondiente de $F_{a',b'}(\alpha^{k+1})$ donde $a' = \alpha^{i+h(\frac{p-1}{d_1} - \frac{p-1}{d_2})}$ y $b' = \alpha^{j+h(\frac{p-1}{d_1})}$. Por otra parte, debe ser el caso de que $|V_{F_{a,b}}| = |V_{F_{a',b'}}|$.

Sea $f: V_{a',b'} \to \alpha^{\frac{p-1}{d_1}} V_{a,b}$ dada por $f(F_{a',b'}(\alpha^{k+1})) = \alpha^{\frac{p-1}{d_1}+1} F_{a,b}(\alpha^k)$. Suponga que $f(F_{a',b'}(\alpha^{k_1+1})) = f(F_{a',b'}(\alpha^{k_2+1}))$ donde $k_1, k_2 \in \mathbb{F}_q$. Considere $f(F_{a',b'}(\alpha^{k_1+1}))$

$$= f(\alpha^{k_1+1}((\alpha^{k_1+1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_1+1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{\frac{p-1}{d_1}+1}(\alpha^{k_1}((\alpha^{k_1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_1+1}(\alpha^{\frac{p-1}{d_1}}((\alpha^{k_1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_1+1}((\alpha^{k_1+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2} + \frac{p-1}{d_2}}(\alpha^{k_1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= \alpha^{k_1+1}((\alpha^{k_1+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}}(\alpha^{k_1+1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= F_{a',b'}(\alpha^{k_1+1})$$

Luego considere $f(F_{a',b'}(\alpha^{k_2+1}))$

$$= f(\alpha^{k_2+1}((\alpha^{k_2+1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_2+1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{\frac{p-1}{d_1}+1}(\alpha^{k_2}((\alpha^{k_2})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_2})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_2+1}(\alpha^{\frac{p-1}{d_1}}((\alpha^{k_2})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_2})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_2+1}((\alpha^{k_2+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_2}}(\alpha^{k_2})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= \alpha^{k_2+1}((\alpha^{k_2+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}}(\alpha^{k_2+1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= F_{a',b'}(\alpha^{k_2+1})$$

En conclusión $F_{a',b'}(\alpha^{k_1+1})=F_{a',b'}(\alpha^{k_2+1})$ por lo tanto f es una función 1-1

Considere un elemento en el campo de valores dado por $\alpha^{\frac{p-1}{d_1}} F_{a,b}(\alpha^k)$

$$\alpha^{\frac{p-1}{d_1}} F_{a,b}(\alpha^k) = \alpha^{\frac{p-1}{d_1}+1} (\alpha^k ((\alpha^k)^{\frac{p-1}{d_1}} + \alpha^i (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k+1} (\alpha^{\frac{p-1}{d_1}} ((\alpha^k)^{\frac{p-1}{d_1}} + \alpha^i (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k+1} ((\alpha^{k+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} + \frac{p-1}{d_2}} (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= \alpha^{k+1} ((\alpha^{k+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} (\alpha^{k+1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= F_{a',b'}(\alpha^{k+1})$$

En conclusión para cada elemento en el campo de valores, $\alpha^{\frac{p-1}{d_1}}F_{a,b}(\alpha^k)$, existe un elemento en el dominio, $F_{a',b'}(\alpha^{k+1})$. Por lo tanto f es una función sobre.

Proposition 1.4. Si $d_2 = d_1 \cdot h$, entonces $|[a, b]| = d_2$

Proof. Suponga que $d_2=d_1h$, $a=\alpha^i$, $b=\alpha^j$. Note que podemos obtener los elementos de [a,b] aplicando la transformación $f:(a,b)\to (a\cdot\alpha^{(\frac{p-1}{d_1}-\frac{p-1}{d_2})},b\cdot\alpha^{(\frac{p-1}{d_1})})$ multiples veces. Ahora note que:

$$f(a \cdot \alpha^{i+(d_2-1)(\frac{p-1}{d_1} - \frac{p-1}{d_2})}, b \cdot \alpha^{j+(d_2-1)(\frac{p-1}{d_1})})$$
(1.1)

$$= \left(\alpha^{i+d_2(\frac{p-1}{d_1} - \frac{p-1}{d_2})}, \alpha^{j+d_2(\frac{p-1}{d_1})}\right) \tag{1.2}$$

$$= (\alpha^{i+d_1h(\frac{p-1}{d_1})-d_2(\frac{p-1}{d_2})}, \alpha^{j+d_1h(\frac{p-1}{d_1})})$$
(1.3)

$$= (\alpha^{i+h(p-1)-(p-1)}, \alpha^{j+h(p-1)}) \tag{1.4}$$

$$= (\alpha^i, \alpha^j) \tag{1.5}$$

Por lo tanto al aplicar la transformacion d_2 veces, tendremos una cadena de elementos en [a,b]. Ahora suponga que existe $c < d_2$ y $\alpha^{i+c(\frac{p-1}{d_1}-\frac{p-1}{d_2})} = \alpha^i$ y $\alpha^{j+c(\frac{p-1}{d_1})} = \alpha^j$. Esto implica que $\alpha^{c(\frac{p-1}{d_1}-\frac{p-1}{d_2})} = 1$, luego $\alpha^{c(\frac{p-1}{d_1})-c(\frac{p-1}{d_2})} = 1$, esto solo es posible si $c \mid d_1$ y $c \mid d_2$, pero $c < d_2$. Por contradiccion, d_2 es el elemento mas pequeno tal que esto ocurre. Por lo tanto la cantidad de elementos en la clase de equivalencia [a,b] es de tamano d_2 .

Proposition 1.5. Suponga que $d_2 = d_1 \cdot h + r$, $1 \le r \ge d_1$. Entonces, $|[a, b]| = \frac{d_1 \cdot d_2}{?}$

Proposition 1.6. El número de polinomios $F_{a',b'}(x)$ con $|V_{a,b}|$ es un múltiplo de |[a,b]|