Probability 1

MML 6.1

Marek Petrik

8/28/2023

Probability Space

Formal model of randomness and uncertainty

- - Set of possible outcomes
- Event space (sigma algebra): $\mathcal{F} \subset (2^{\Omega})$ • $\{\emptyset, \{3\}, \{\epsilon\}, \{M\}, \{3,\epsilon\}, \{3,M\}, \{3,\epsilon\}, \{3,M\}, \{3,\epsilon,M\}\}$
- Probability function: $P \colon \mathcal{F} \to [0,1]$
- Example: Seeing students at school

 Trelative probability of coming class.

 P(\$13) = if I see a student, probability of
 it being John

P(\$1,173) = see a student => prob of John or Mary

Abstract

L = [01] = Real #5

from [01]

set of all subsets of A

Probability of observing an event $P({33}) = 0.5$ $P({M}) = 0.25$

P(3M3) = 0.75

Probability Space: Properties

- Outcome space: Set Ω
 Finite or infinite
- Event space (sigma algebra): $\mathcal{F}\subset 2^\Omega$, Suppose $A_1\in\mathcal{F}$, $A_2\in\mathcal{F}$
 - Contains sample space: $\Lambda \in \mathcal{F}$
 - Closed under complements: $A \setminus A_1 \in \mathcal{F}$
 - Closed under countable unions: A, v A2 e F
 - Closed under countable intersections: A, nA2 & F
- Probability measure: $P \colon \mathcal{F} \to [0, 1]$
 - Mesure of sample space equals 1: $P(\Omega) = 1$ | See a student
 - Countably additive: $P(A_1 \cup A_2) = P(A_1) + P(A_2)$ when $A_1 \cap A_2 = \emptyset$ (disjoint)

Random Variable

A $\underline{\mathcal{T}\text{-valued}}$ random variable X (upper case!) is a function:

$$X\colon\Omega\to\mathcal{T}\qquad \text{T is type of property}$$
 Examples $\Omega=\{J,E,M\}$: Represents people's properties
$$\mathcal{T}=\mathbb{R}=\text{ real numbers}$$
 height $H\colon\mathbb{L}\to\mathbb{R}\qquad H(J)=1.8\qquad H(M)=1.9\qquad H(E)=1.6$ (inm)
$$G\colon\Omega\to\mathbb{R}$$
 gender $G\colon\Omega\to\mathbb{R}$ in $G(E)=F$ $G(M)=F$

Random Variable: Common Types

- 1. Continuous (real-valued) (infinite J)
 Height, Weight, Temperature, Brightness, Profit, ...
- 2. Discrete (finite J)

 Species, Element, Color, City ...

Random Variable: Pre-image (inverse)

The basis of making probability Statements Pre-image $X^{-1} \colon \mathcal{T} \to 2^{\Omega}$ defined as $X^{-1}(x) = \{\omega \in \Omega \mid X(\omega) = \omega\} \in \mathcal{F} = \text{event space}$ elements with the property Examples $\Omega = \{J, E, M\}$: G(J) = m, G(E) = f, G(M) = f(j'(m) = {]} (-1(F) = {E,M}

Probability Distribution

Always associated with a random variable for some $X \colon \Omega \to \mathcal{T}$

Probability Distributions Describes a Random Variable

Wikipedia is a good reference for their properties

Discrete random variable:

- · Bernoulli: Heads or tails
- · Binomial: Number of heads
- · Geometric: Coin flips until heads
- · Poisson: Number of customers

Continuous random variable:

- · Normal: Central limit theorem
- Multivariate normal: Height and weight
- Laplace: Extreme weather events

Regression vs Classification

Predicting target: $Y: \Omega \to \mathcal{T}$

Regression: continuous target $\mathcal{T} = \mathbb{R}$

- Profits
- Probability of survival

Classification: discrete target: \mathcal{T} is finite

- Color
- State
- Year (could be either)

Machine Learning Choices ...

Source: http://scikit-learn.org/stable/tutorial/machinelearningmap/index.html