CS6730: Probabilistic Graphical Models Homework-2 answers

Arulkumar S (CS15D202)

February 18, 2018

Answers

Q-1

X_2X_3	00	01	10	11
0	0	0	0	0
1	0	0	0	0

$$Z = 0$$

X_2X_3	00	01	02	10	11	12	20	21	22
0	0	0	0	0	0	1	0	1	0
1	0	0	1	0	0	1	0	0	0
2	0	1	0	1	0	0	0	0	0

$$Z = 6$$

Q-2

$$P(X1=x_1, X2=x_2, X3=x_3, X4=x_4) = \frac{1}{Z}\psi_1(x_1, x_2).\psi_2(x_2, x_3).\psi_3(x_3, x_4).\psi_4(x_1, x_4).\psi_5(x_2, x_4)$$

Markov network \mathcal{H}

$$Q(X1 = x_1, X2 = x_2, X3 = x_3, X4 = x_4) = \frac{1}{Z}\psi_1(x_1, x_2, x_4).\psi_2(x_2, x_3, x_4)$$

 $Q(X1=x_1,X2=x_2,X3=x_3,X4=x_4)=\frac{1}{Z}\psi_1(x_1,x_2,x_4).\psi_2(x_2,x_3,x_4)$ The number of parameters required to represent distribution $Q=2a^3$ (max clique = 3)

The number of parameters required to represent distribution $P = 5a^2$ (max clique = 2) For large values of a, $2a^3 > 5a^2$

Q-3

two distinct factor settings $P(X_i = 1|Y = j) = 0.9$ if i = j and 0.1 otherwise

1.
$$\psi(X_i = 1, Y = j) = 9$$
 $\forall i = \{1, 2, \dots n\}$ & $(i = j)$
 $\psi(X_i = 1, Y = j) = 1$ $\forall i = \{1, 2, \dots n\}$ & $(i \neq j)$
 $\psi(X_i = 0, Y = j) = 9$ $\forall i = \{1, 2, \dots n\}$ & $(i \neq j)$
 $\psi(X_i = 0, Y = j) = 1$ $\forall i = \{1, 2, \dots n\}$ & $(i = j)$

2.
$$\psi(X_i = 1, Y = j) = 90$$
 $\forall i = \{1, 2, \dots n\}$ & $(i = j)$
 $\psi(X_i = 1, Y = j) = 10$ $\forall i = \{1, 2, \dots n\}$ & $(i \neq j)$
 $\psi(X_i = 0, Y = j) = 90$ $\forall i = \{1, 2, \dots n\}$ & $(i \neq j)$
 $\psi(X_i = 0, Y = j) = 10$ $\forall i = \{1, 2, \dots n\}$ & $(i \neq j)$

Markov network for just the features $x_1, x_2 \dots x_n$

factors = $\psi(x_1, x_2, x_3, \dots x_n)$

Q-4

Markov network \mathcal{H}'

 $\mathcal{I}(\mathcal{H}') \backslash \mathcal{I}(\mathcal{G})$

- $x_2 \perp \!\!\! \perp x_5 | x_7 \in \mathcal{I}(\mathcal{H}'), \notin \mathcal{I}(\mathcal{G})$
- $x_3 \perp \!\!\! \perp x_4 | x_6 \in \mathcal{I}(\mathcal{H}'), \notin \mathcal{I}(\mathcal{G})$
- $x_1 \perp \!\!\! \perp x_2 | x_4 \in \mathcal{I}(\mathcal{H}'), \notin \mathcal{I}(\mathcal{G})$

Moralized Markov network $\mathcal H$ equivalent to $\mathcal G$

Please refer figure 1.

Figure 1: Moralized markov network

Largest conditional independence in Moralized Markov network ${\mathcal H}$

 $x_3, x_6 \perp \!\!\! \perp x_2, x_5, x_7, x_8 | x_1, x_4$

$\mathcal{I}(\mathcal{G}) \backslash \mathcal{I}(\mathcal{H}')$

- $x_1 \perp \!\!\! \perp x_2 \in \mathcal{I}(\mathcal{G}), \notin \mathcal{I}(\mathcal{H}')$
- $x_3 \perp \!\!\! \perp x_4 | x_1 \in \mathcal{I}(\mathcal{G}), \notin \mathcal{I}(\mathcal{H}')$
- $x_5 \perp \!\!\! \perp x_2 \in \mathcal{I}(\mathcal{G}), \notin \mathcal{I}(\mathcal{H}')$
- $x_2 \perp \!\!\! \perp x_3 | x_1 \in \mathcal{I}(\mathcal{G}), \notin \mathcal{I}(\mathcal{H}')$
- $x_6 \perp \!\!\! \perp x_7 | x_4 \in \mathcal{I}(\mathcal{G}), \notin \mathcal{I}(\mathcal{H}')$

Q-5

Q-6

$$P(X_1, X_2, X_3, X_4, X_5, X_6) = \frac{1}{Z}\psi_1(X_1, X_2).\psi_2(X_2, X_3).\psi_3(X_3, X_4).\psi_4(X_4, X_5).\psi_5(X_5, X_6).\psi_6(X_6, X_1)$$

Markov network \mathcal{H}

Triangulated graph \mathcal{H}'

Distribution factors according to $\mathcal{H}' = \frac{1}{Z}\psi_1^{\mathcal{H}'}(X_1, X_2, X_3).\psi_2^{\mathcal{H}'}(X_1, X_3, X_4).\psi_3^{\mathcal{H}'}(X_1, X_4, X_5).\psi_4^{\mathcal{H}'}(X_1, X_5, X_6)$

Distribution P using the form of factors in the triangulated graph \mathcal{H}'

$$P(X_1, X_2, X_3, X_4, X_5, X_6) = \frac{1}{Z} \left(\sum_{X_2} \psi_1^{\mathcal{H}'}(X_1, X_2, X_3) \right) \cdot \left(\sum_{X_1} \psi_1^{\mathcal{H}'}(X_1, X_2, X_3) \right) \cdot \left(\sum_{X_1} \psi_2^{\mathcal{H}'}(X_1, X_3, X_4) \right) \cdot \left(\sum_{X_1} \psi_3^{\mathcal{H}'}(X_1, X_4, X_5) \right) \cdot \left(\sum_{X_1} \psi_4^{\mathcal{H}'}(X_1, X_5, X_6) \right) \cdot \left(\sum_{X_5} \psi_4^{\mathcal{H}'}(X_5, X_5, X_6) \right) \cdot \left(\sum_{X_5} \psi_4^{\mathcal{H}'}(X$$

 $\mathcal{I}(\mathcal{H}) \backslash \mathcal{I}(\mathcal{H}')$

- $x_1 \perp \!\!\! \perp x_3, x_4, x_5 | x_2, x_6 \in \mathcal{I}(\mathcal{H}), \notin \mathcal{I}(\mathcal{H}')$
- $x_3 \perp \!\!\! \perp x_5, x_6, x_1 | x_2, x_4 \in \mathcal{I}(\mathcal{H}), \notin \mathcal{I}(\mathcal{H}')$
- $x_4 \perp \!\!\! \perp x_6, x_1, x_2 | x_3, x_5 \in \mathcal{I}(\mathcal{H}), \notin \mathcal{I}(\mathcal{H}')$
- $x_5 \perp \!\!\! \perp x_1, x_2, x_3 | x_6, x_4 \in \mathcal{I}(\mathcal{H}), \notin \mathcal{I}(\mathcal{H}')$
- $x_4 \perp \!\!\! \perp x_1 | x_5, x_2 \in \mathcal{I}(\mathcal{H}), \notin \mathcal{I}(\mathcal{H}')$
- $x_4 \perp \!\!\! \perp x_1 | x_6, x_3 \in \mathcal{I}(\mathcal{H}), \notin \mathcal{I}(\mathcal{H}')$

Q-7

Triangulated graph

A triangulated graph is a graph in which for every cycle of length L ¿ 3, there is an edge joining two nonconsecutive vertices. This property is satisfied for the graph in Figure 2. Hence the given graph is triangulated.

An MC-ordering: 6, 5, 4, 3, 2, 1

Figure 2: Markov graph \mathcal{H}

Variable eliminated	Variables involved	Resulting function	Computation time
6	1,5,6	$ au_1(1,5)$	a^3
5	1,4,5	$ au_1(1,4)$	a^3
4	1,3,4	$ au_1(1,3)$	a^3
3	1,2,3	$ au_1(1,2)$	a^3
2	1,2	$ au_1(1)$	a^2
1	1	-	a

Table 1: Elimination order: 6,5,4,3,2,1

Computation steps required to compute the partition function

Consider the elimination ordering : 6, 5, 4, 3, 2, 1. Refer table 1. Computation steps: $O(a^3)$

Computation steps required to compute the partition function in order 1,2,3,4,5,6 Refer table 2.

Variable eliminated	Variables involved	Resulting function	Computation time
1	1,2,3,4,5,6	$\tau_1(2,3,4,5,6)$	a^6
2	2,3,4,5,6	$\tau_1(3,4,5,6)$	a^5
3	3,4,5,6	$ au_1(4,5,6)$	a^4
4	4,5,6	$ au_1(5,6)$	a^3
5	5,6	$ au_{1}(6)$	a^2
6	6	-	\overline{a}

Table 2: Elimination order: 1,2,3,4,5,6

Computation steps: $O(a^6)$