

Лекция 10. Модели

«Урок, который я извлек, касается всего статистического анализа и заключается в том, что даже самые точные измерения или вычисления не должны противоречить здравому смыслу» - Чарльз Уиллан (Голая статистика)

Данила Недбаев 27.04.2023

Начнем с определения

Модель - это инструмент анализа данных, который используется для создания прогнозов и оптимизации процессов в различных сферах, включая экономику, финансы, инженерию и медицину.

Модель - это математическое, статистическое или компьютерное представление реальной системы или явления, которое используется для анализа данных и прогнозирования поведения системы в различных условиях.

Модель - это упрощенное представление сложной системы, которое помогает аналитикам лучше понять ее особенности и принимать решения на основе этого понимания.

Разминка

Какие модели вы знаете? Можете поднять руку и назвать свой вариант устно, а можете просто написать свои мысли в чат

Простой пример

Вы - владельцы кофейни

Продажи за W1

2000

Капучино х 100

Апельсиновый сок х 50

Продажи за W2

3000

Апельсиновый сок х 150

Продажи за W3

?

Пример чуть сложнее

Знакомимся своронкой вашей кофейни

Без духоты

Дадим еще немного вводных

данных

Пусть:

- 1. Мы открываем по одной новой кофейне каждый месяц, кофейни открываем в одинаковых районах и имеем один и тот же трафик по объему.
- 2. В марте, мае и декабре случается сезонные пики и рядом с кофейнями ходит в полтора раза больше людей;
- 3. Доля старичков будет расти линейно от 0% в 1ый месяц работы до 35% на десятый месяц. Пользователи уникальные и делают один заказ в месяц.

Задание на дом №1

Посчитайте количество заказов по итогу года экспансии

На примерах мы затронули процесс аппроксимации

Аппроксимация - это процесс построения простой модели, которая приближает нас к пониманию сложной системы или явления.

Аппроксимация может использоваться для того, чтобы упростить модель, сократить время вычислений и уменьшить количество данных, необходимых для построения модели. Часто проявляется в виде допущений при вычислениях.

Когда вам нужно построить модель какого-то сложного процесса или оценить потенциальный эффект от внесения какого-то изменения в продукт, вам на помощь приходит аппроксимация.

Однако стоит быть очень осторожным с тем что мы допускаем и проверять любые вводные.

Для чего нужно строить модели?

Обычно вы сначала найдете вопрос или проблему, а затем решите моделировать процесс, чтобы получить конкретный ответ или проверить чей-то готовый вывод альтернативным путем.

Важно понимать, что бывает наоборот: имея расплывчатую задачу, либо нелокализованную проблему, вы сначала построите модель текущего процесса, <u>чтобы получить</u> представление «изнутри», как улучшить процесс или где теория не соответствует практике.

А какие виды моделей бывают?

Математические модели

модели, основанные на математических уравнениях. Они могут использоваться для прогнозирования поведения системы в различных условиях. Например, модель экономического роста может использоваться для прогнозирования изменений в экономике на основе различных факторов, таких как инфляция, безработица и т.д.

Статистические модели

модели, основанные на статистических данных. Они могут использоваться для анализа данных и прогнозирования поведения системы. Например, модель регрессии может использоваться для прогнозирования цены на недвижимость на основе различных факторов, таких как количество комнат, площадь и т.д.

Компьютерные модели

модели, которые используют компьютеры для моделирования поведения системы. Они могут использоваться для анализа больших объемов данных и прогнозирования поведения системы в различных условиях. Например, модель машинного обучения распространения эпидемии при учете множества факторов.

Физические модели

модели, которые основаны на физических уравнениях и принципах. Они могут использоваться для моделирования поведения физических систем, таких как течение жидкости или электрическое поле. Например, модель течения жидкости может использоваться для прогнозирования изменений в течении реки на основе различных факторов, таких как скорость ветра, температура и т.д.

10

Важные нюансы при работе с моделями

Целевая переменная, набор метрик и область их определения

Объем продаж, кол-во клиентов, выручка, ...

Параметры, их область значений

Кол-во дней в периоде, Меню, Акции, Конкуренты, и многое-многое другое...

Решение об экстраполяции

А если бы мы делали прогноз на квартал / год?

«Устойчивость» полученных выводов

Что нам лучше продавать?

финансовые модели

финансовую модель можно использовать для прогнозирования доходности инвестиций на основе различных факторов, таких как ставки процента, инфляция, рыночные условия и т.д.

Вы хотите открыть свою кофейню. Размер инвестиций 300к рублей.

Как оценить доходность ваших вложений?

На чем мы зарабатываем?

- Маржа с продажи товаров
- Размещение рекламы
- Чаевые

Что мы тратим?

- Себестоимость продуктов и товаров;
- Налоги;
- Аренда;
- фОТ;
- Амортизация оборудования;
- Прочие издержки.

Финансовые модели

Месяц	0	1	2	3	4	5	6	7	8	9	10	11	12
Инвестиции	-300												
Выручка	0	50	55	61	67	73	81	89	97	107	118	130	143
Маржа		40%	40%	40%	40%	40%	40%	41%	41%	41%	41%	41%	41%
Прибыль	0	20	22	24	27	30	33	36	40	44	48	53	58
CF	-300	-280	-258	-234	-207	-177	-145	-109	-69	-26	22	75	134

Мы инвестировали 300 тыс. рублей, а за год заработали 434 тыс. рублей. Мы в плюсе?

ROI =
$$\frac{(\text{доход - затраты})}{\text{затраты}}$$
 x 100% ROI = 45%

$$NPV = \sum_{1}^{n} \frac{Pk}{(1+i)^n} - IC$$

n – период расчета;

Pk – денежные потоки за выбранный период времени;

і – ставка дисконтирования;

IC – размер первоначальных вложений

Обычно ставка дисконтирования берется как 15% годовых.

NPV -	-280	-259	-235	-210	-182	-152	-119	-83	-44	-2	44	95

Рекламная

кампания

20 тыс. руб.

Так как все было онлайн, вы смогли посчитать, что кампания привела вам 100 человек.

200 vs 1 200

За 6 месяцев работы по получаем с пользователей в 6 раз больше, чем потратили на их привлечение. Хорошее соотношение 1:4.

CAC

200 руб.

Customer acquisition cost – расходы организации на привлечение одного пользователя

Как посчитать LTV?

LTV -> Когортный анализ, а можно и аппроксимацией.

$$LTV = ARPU * LT$$

Пусть гость берет в кофейне 2 чашки кофе за 250 рублей в месяц, а наша маржа при этом 40%. $ARPU = \sum GP * Margin$ И пусть LT = 6 месяцев

LTV (Life Time Value)

валовая прибыль, которую средний пользователь принесет за все время использования продукта ! Валовая прибыль — это разница между выручкой и всеми переменными затратами, которые напрямую ассоциированы с реализованной продукцией или услугой (COGS или Cost of Goods Sold).

Хороший пример

Пример модели роста

Month	LG_number	Volume_rub		
фев.21		218	39525927	
апр.21		561	60780987	
ноя.20		221	44873845	
янв.21		222	47372236	
дек.20		223	58804445	
мар.21		326	61965168	

В какие месяца наблюдался рост/спад оборотов? Как это можно объяснить?

Month	Volume_rub	Points
ноя.20	44,87	221
дек.20	58,80	223
янв.21	47,37	222
фев.21	39,53	218
мар.21	61,97	326
апр.21	95,97	561

 Сортировка месяцев и формат таблицы

 Рубли перевели в млн. рублей

Пример модели роста

В какие месяца наблюдался рост/спад оборотов? Как это можно объяснить?

Month	Volume_rub	Points	Vol/Point	Seasonality
ноя.20	44,87	221	203	99.7%
дек.20	58,80	223	264	129.6%
янв.21	47,37	222	213	104.6%
фев.21	39,53	218	181	88.9%
мар.21	61,97	326	190	93.3%
апр.21	95,97	561	171	84.0%

Av vol/point

203,67

Дальше будет немного Питона

Перейдем к прогнозированию временных рядов

Используя датасет о стоимости кофе из Kaggle нам нужно построить модель прогнозирования стоимости кофе в будущем

Вам было полезно?