ALGO QCM

- 1. Dans un arbre binaire, un noeud ne possédant pas de fils est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe
 - (d) feuille
- 2. Dans un arbre binaire, le chemin obtenu à partir de la racine en ne suivant que des liens gauches est?
 - (a) le chemin droit
 - (b) le bord gauche
 - (c) la branche gauche
 - (d) le chemin gauche
- 3. Dans un arbre binaire, un noeud possédant juste 1 fils droit est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe à droite
 - (d) point simple à droite
- 4. Un arbre binaire non vide est un arbre de taille?
 - (a) ≥ -1
 - (b) $\geqslant 0$
 - (c) ≥ 1
- 5. Un arbre binaire localement complet est un arbre binaire dont?
 - (a) tous les noeuds sont simples
 - (b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite
 - (c) tous les noeuds sont doubles sauf sur le dernier niveau
 - (d) tous les noeuds sont doubles
- 6. Un arbre binaire dont tous les noeuds sont simples est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - (d) localement complet
 - (e) filiforme

- 7. Si LCE(B) définit la longueur de cheminement externe de B (un arbre binaire), alors PME(B) la profondeur moyenne externe de B est égale à?
 - (a) LCE(B)/f avec f le nombre de feuilles de B
 - (b) LCE(B)/n avec n le nombre de noeuds de B
 - (c) LCE(B)/n avec n le nombre de noeuds externes de B
 - (d) LCE(B).n avec n le nombre de noeuds externes de B
- 8. L'arbre défini par $B = \{E, 0, 1, 00, 01, 000, 001, 0010, 0011, 00100, 00101\}$ est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - (d) localement complet
 - (e) quelconque
- 9. Dans le parcours profondeur d'un arbre binaire, quels ordres sont des ordres induits?
 - (a) Préfixe
 - (b) Infixe
 - (c) Intermédiaire
 - (d) Suffixe
- 10. Combien d'ordre de passages induit le parcours en profondeur main gauche d'un arbre binaire?
 - (a) 1
 - (b) 2
 - (c) 2 et demi
 - (d) 3
 - (e) 4

QCM N°16

lundi 29 janvier 2018

Question 11

Soit (u_n) une suite réelle.

- a. Si (u_n) tend vers 0, il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}, n \geqslant N \Longrightarrow u_n < \ln(2)$
- b. Si (u_n) tend vers 2, il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n \geqslant N \Longrightarrow u_n > \ln(2)$
- C. Si (u_n) converge vers 0, $(\cos(n)u_n)$ converge vers 0
- d. Si (u_n) converge vers 1, $(\cos(n)u_n)$ converge vers 1
- e. rien de ce qui précède

Question 12

Soit (u_n) une suite réelle.

- a. Si (u_n) converge vers 1, (u_{n^2}) converge vers 1
- b) Si (u_n) converge vers 1, (u_n^2) converge vers 1
 - c. Si (u_n) converge vers 1, (u_n) converge vers 1
- d. Si (u_n) converge vers 1, $(\cos(n)u_n)$ est bornée
- e, rien de ce qui précède

Question 13

- a. Toute suite réelle croissante et minorée tend vers $+\infty$
- b Toute suite réelle croissante et bornée converge
- C. Toute suite réelle décroissante et non minorée tend vers $-\infty$
- (d) Toute suite réelle croissante et non majorée tend vers $+\infty$
- e. rien de ce qui précède

Question 14

Soit (u_n) une suite réelle. Alors

- (a) (u_{n^2}) est une suite extraite de (u_n)
- b. (u_{n^2-n}) est une suite extraite de (u_n)
- C. (u_{2n+1}) est une suite extraite de (u_n)
- d. rien de de qui précède

Question 15

Soit (u_n) une suite réelle telle que $\forall n \in \mathbb{N} \quad \exists K \in \mathbb{R} \quad |u_n| \leqslant K$. Alors

- a. (u_n) est bornée
- b. (u_n) converge
- (c.) rien de ce qui précède

Question 16

Soit $(u_n) = \left(\sum_{k=0}^n \left(\frac{1}{2}\right)^k\right)$. Alors (u_n)

- a. converge vers 0
- b. n'a pas de limite
- c. converge vers 1
- d. diverge vers $+\infty$
- (e. rien de ce qui précède

Question 17

Soient (u_n) et (v_n) deux suites réelles telles que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$.

- a. Si (v_n) est croissante, (u_n) est majorée
- b. Si (v_n) est décroissante, (u_n) est minorée
- c. Si (v_n) converge, (u_n) converge
- d. Si (v_n) est bornée, (u_n) est bornée
- e. rien de ce qui précède

Question 18

Soit $P \in \mathbb{R}[X]$. On suppose que 2 est une racine double de P c'est-à-dire une racine d'ordre de multiplicité exactement égal à 2. Alors

- a. $(X-2)^2$ divise P
- b. P''(2) = 0
- (c) P(2) = P'(2) = 0 et $P''(2) \neq 0$
- d. P(2) = P'(2) = P''(2) = 0 et $P'''(2) \neq 0$
- e. rien de ce qui précède

Question 19

Soit (u_n) une suite réelle.

- a. Si (u_n) converge alors (u_n) prend un nombre fini de valeurs
- b. Si (u_n) prend un nombre fini de valeurs, alors elle converge
- c. Si pour tout $n \in \mathbb{N}$, $0 \leq u_n \leq 1$, alors (u_n) converge
- d. Si pour tout $n \in \mathbb{N}, \, u_n 1 \leqslant \frac{1}{n+1}$ alors (u_n) converge vers 1
- e. rien ce ce qui précède

Question 20

Soit $(a,b) \in \mathbb{N}^{*2}$ tel que 3a=2b. Alors

- a. 3 | b
- b. a divise 2b
- c. a divise b
- d. $a \wedge b = 1$
- e. rien de ce qui précède

- 21. What is the name of the protagonist in this novel?A) Alain SmithB) Winston Smith
- C) Winston Churchill
- D) Smith Adam
- 22. Where does Winston work?
- A) The Ministry of Truth
- B) The Ministry of Love
- C) The Ministry of Justice
- D) The Ministry of War
- 23. Who is Big Brother?
- A) Winston's elder brother.
- B) The United States.
- C) A TV show.
- D) A black haired man with a moustache who is full of power and mysterious calm.
- 24. What is thought crime? What happens to perpetrators of it?
- A) Killing people. They are killed.
- B) Thinking about killing people. They are imprisoned.
- C) Thinking things against the Party's beliefs. They are caught during the night without any trial, their records are erased.
- D) Thinking intelligent things. Nothing happens to them.
- 25. Who is Emmanuel Goldstein?
- A) The Big Brother.
- B) The enemy of the people, the primal traitor.
- C) Winston's boss.
- D) The President of Oceania.

	26. What activity does Winston partake due to which he could be punished to death?
	A) Trying to kill someone.
	B) Opening a diary.
	C) Reading a book.
	D) Trying to travel.
	27. What does Winston write about?
	A) A bombing by a plane into the ocean where women and children are present.
	B) A war.
	C) A journey.
	D) A life in a totalitarian regime.
	28. The official language of Oceania was
	A) English
	B) Oceanial
	C) German
20	D) Newspeak
	29. In Oceania, the Ministry that was responsible for war, was known as
	A) The Ministry of War
	B) The Ministry of Justice
	C) The Ministry of Peace
	D) The Ministry of Solution
	30. 'And it was exactly at this moment that the significant thing happened-if, indeed, it did happen.' What was the significant thing that happened?
	A) Winston met a woman.
	B) Winston exchanged glances with O'Brien.
	C) The speaker fell.
	D) Everyone started laughing.

Questions are based on Unit 1 and 2 chapter of the MOOC "Video Game Design History"

NB. The sentence "check all that apply" indicates that more than one correct answer is possible.

- 31. How does changing the number of tokens or pits in mancala change the game?
 - a. Gameplay does not change.
 - b. Gameplay is faster with added tokens.
 - c. Strategies do not have to change.
 - d. None of the above
- 32. Which moves are legal moves in backgammon? (check all that apply)
 - a. Moving your token to an empty space surrounded by two occupied spaces.
 - b. Moving your token to a space occupied by one opponent's token.
 - c. Moving your token to a space occupied by two or more opponent's tokens.
 - d. All of the above
- 33. Who introduced doubling in backgammon, and in what year?
 - a. Arthur Wellesley, 1st Duke of Wellington, in 1800
 - b. Henri de Toulouse-Lautrec, celebrated painter, 1887
 - c. Prince Philip, Duke of Edinburgh, in 1925
 - d. None of the above
- 34. What is an affordance?
 - a. How much money you can spend on a game
 - b. A specific type of garneplay
 - c. A possible action allowed by the characteristics of a physical or virtual object
 - d. All of the above
- 35. What is not an affordance of decks of cards and sets of dominoes?
 - a. they are static
 - b. they are inexpensive
 - c. they are popular
 - d. All of the above
- 36. What is the main feature of all dice games?
 - a. Luck is more important than skill
 - b. A player's skill is essential in winning.
 - c. They rely mostly on the player knowing the odds
 - d. None of the above
- 37. The game Mancala, some specialists think, originated from
 - a. Simulating the placement of stones during building.
 - b. Accounting for sheep or grain sheaves.
 - c. Rituals to invoke rain or desired weather.
 - d. None of the above.
- 38. What are some of the elements of structured games? (check all that apply)
 - a. Wood
 - b. Rules
 - c. Goals
 - d. None of the above
- 39. As evidence of the impact of culture on games, which of the following is specific to chess?
 - a. Community
 - b. Undifferentiated pieces
 - c. Pure strategy
 - d. None of the above
- 40. Which sentences explains the reference to these ancient games as "folk" games?
 - a. Game companies targeted uneducated masses, known as "folk"
 - b. The games were never played by the elites.
 - c. The games maintained their popularity and evolved because people played them.
 - d. Like the makers of folk music, the game makers themselves had no education.

EPITA-S2 2017/20 18

Q.C.M n°10 de Physique

41- Une masse m glisse sur la piste AB représentée sur le schéma ci-dessous :

$$(OA = OB = R)$$

Le travail d'une force de frottement constante f sur le trajet AB est

a)
$$W(\vec{f}) = -f.R.\cos(\theta)$$

a)
$$W(\vec{f}) = -f.R.\cos(\theta)$$
 b) $W(\vec{f}) = -f.R.(1 - \cos(\theta))$ (c) $W(\vec{f}) = -f.R.\theta$

42- On considère le schéma de la question (41). Le travail d'une force de frottement constante f sur le trajet BC est

a)
$$W(\vec{f}) = f.BC$$

a)
$$W(\vec{f}) = f.BC$$
 b) $W(\vec{f}) = -f.BC$ c) $W(\vec{f}) = 0$

c)
$$W(\vec{f}) = 0$$

43- Laquelle parmi les forces citées ci-dessous n'est pas conservative ?

- a) Force de frottement \vec{f}
- b) Poids \vec{P}
- c) Tension du ressort \vec{T}
- d) Force électrique $\overrightarrow{F_e}$

44- Le travail d'une force perpendiculaire au déplacement est :

- a) strictement positif b) nul
- c) dépendant de la vitesse d) strictement négatif

45- L'énergie mécanique E_m d'un pendule simple qui oscille sans frottement vérifie :

a)
$$\frac{dE_m}{dt} = 0$$

b)
$$\frac{dE_m}{dt} > 0$$

c)
$$E_m$$
 diminue

46- On considère un oscillateur formé d'un ressort de coefficient de raideur k et d'une masse m, l'équation différentielle de ce mouvement est : $x + \frac{k}{x}x = 0$. La pulsation propre ω_0 de cette oscillateur vérifie :

a)
$$\omega_0^2 = \frac{m}{k}$$

b)
$$\omega_0 = 2\pi \sqrt{\frac{m}{k}}$$

$$\bigcirc \omega_0^2 = \frac{k}{m}$$

a)
$$\omega_0^2 = \frac{m}{k}$$
 b) $\omega_0 = 2\pi \sqrt{\frac{m}{k}}$ c) $\omega_0^2 = \frac{k}{m}$ d) $\omega_0 = 2\pi \sqrt{\frac{k}{m}}$

47- La période de l'oscillateur de la question (46) est d'expression :

a)
$$T = \frac{m}{k}$$

b)
$$T = 2\pi \sqrt{\frac{k}{m}}$$

a)
$$T = \frac{m}{k}$$
 b) $T = 2\pi \sqrt{\frac{k}{m}}$ c) $T = 2\pi \sqrt{\frac{m}{k}}$ d) $T = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$

$$d) T = \frac{1}{2\pi} \sqrt{\frac{m}{k}}$$

48- Sur la figure ci-dessous, une masse m oscille sans frottement sur l'axe (Ox). L'énergie totale du système (masse + ressort) est

On précise que le point O $(x_0 = 0)$ représente la position d'équilibre.

a)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

b)
$$E_m = \frac{1}{2}m(x)^2 + mgz$$

c)
$$E_m = \frac{1}{2}m(x)^2 + kx$$

(d)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

49- La dérivée par rapport au temps de l'énergie cinétique du système (question 48) est

a)
$$\frac{dE_c}{dt} = m.x$$

a)
$$\frac{dE_c}{dt} = m.\dot{x}$$
 (b) $\frac{dE_c}{dt} = mxx$ (c) $\frac{dE_c}{dt} = m.x\dot{x}$

c)
$$\frac{dE_c}{dt} = m.xx$$

50- La dérivée par rapport au temps de l'énergie potentielle du système (question 48) vérifie :

a)
$$\frac{dE_p}{dt} = k.x$$

b)
$$\frac{dE_p}{dt} = k x x$$

c)
$$\frac{dE_p}{dt} = 0$$

a)
$$\frac{dE_p}{dt} = k.x$$
 b) $\frac{dE_p}{dt} = kxx$ c) $\frac{dE_p}{dt} = 0$ d) $\frac{dE_p}{dt} = kxx$

QCM - Electronique

Pensez à bien lire les guestions ET les réponses proposées (attention à la numérotation des réponses)

- **Q1.** Quand on associe 2 résistances R_1 et R_2 en parallèle, on conserve :
 - a- La tension aux bornes de $R_{\mathbf{1}}$
- c- Rien du tout

- b- Le courant qui traverse R₁
- Q2. Une résistance placée en série avec un générateur de courant modifie-t-elle l'intensité du courant délivré par ce générateur ?
 - a- OUI

b- NON

c- Ça dépend.

Q3. Quelle est la bonne formule ?

a.
$$U = R_3 \cdot I_0 + E_3$$

$$\text{b.} \quad U = \frac{I_0 - \frac{E_1}{R_1} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_0}}$$

c.
$$U = \frac{I_0 - \frac{E_1}{R_1} - \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

$$\text{d.} \quad U = \frac{I_0 - \frac{E_1}{R_1} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

Soit un courant sinusoïdal $i(t) = I \cdot \sqrt{2} \cdot \sin(\omega t + \varphi)$

- **Q4.** Par convention, I est une grandeur réelle positive, en Ampère.
 - a. VRAI

- b. FAUX
- **Q5.** Quelle relation est correcte ? T représente la période de i(t) et f, sa fréquence.
- a. $f = \frac{2.\pi}{\omega}$
- b. $f = \frac{\omega}{2.\pi}$
- c. $\omega = 2.\pi.T$
- d. $\frac{\omega}{T} = \frac{2.\pi}{f}$
- **Q6.** L'expression $\sqrt{\frac{1}{T}\int_0^T i^2(t)dt}$ représente la valeur efficace de i(t).
 - (a.) VRAI

b. FAUX

Q7. La valeur moyenne de i(t)est :

a.
$$< i > = I.\sqrt{2}$$

c.
$$< i >= 0$$

b.
$$< i > = I$$

d.
$$\langle i \rangle = \frac{I}{\sqrt{2}}$$

La valeur efficace du courant variable i(t) est la valeur du courant continu I qui dissiperait, dans la même résistance, la même énergie (le même nombre de joules) que i(t), pendant la même durée.

Soit le signal ci contre :

Q9. La valeur moyenne de v(t) vaut :

d.
$$-5V$$

Q10. La valeur efficace de v(t) vaut :

(a)
$$5.\sqrt{2} V$$

c.
$$5.\sqrt{3} V$$

c.
$$5.\sqrt{3} V$$

d. $-\sqrt{50.\frac{7}{3}} V$

QCM 2

Architecture des ordinateurs

Lundi 29 janvier 2018

11. Quelle valeur peut-être codée sur n bits signés ?

A.
$$-2^{n-1}-1$$

B.
$$-2^{n-1}$$

C.
$$2^{n}-1$$

D.
$$2^n$$

12. $1000110100_2 =$

A.
$$100011010000_2 \times 2^2$$

B.
$$100011_2 \times 16$$

C.
$$10001101000000_2 \times 2^{-4}$$

D.
$$10001101_2 \times 2^{-2}$$

13. $100000000000000_2 =$

A.
$$2^{14} - 2^{13}$$

Soit le nombre suivant : $0,000001_2 \times 2^4$

14. Choisir la réponse correcte :

A. Sa mantisse
$$(m)$$
 est $0,000001$,

B. Sa mantisse
$$(m)$$
 est 0 ,

C. Sa mantisse
$$(m)$$
 est 1 ,

D. Sa mantisse
$$(m)$$
 est $0,1$,

15. Choisir la réponse correcte :

- A. Pour normaliser la mantisse, il faut décaler la virgule vers la gauche.
- B. Pour normaliser la mantisse, il faut décaler la virgule vers la droite.
- C. La mantisse ne peut pas être normalisée.
- D. Sa mantisse est normalisée.

Architecture des ordinateurs - EPITA - S2 - 2017/2018

- 16. Comment reconnaît-on le codage d'un NaN?
 - A. E = 000...0 et $M \neq 000...0$
 - B. E = 000...0 et M = 111...1
 - C. E = 111...1 et $M \neq 000...0$
 - D. E = 111...1 et M = 000...0
- 17. Quelle est la taille du champ M pour un nombre codé en simple précision ?
 - A. 8 bits
 - B. 11 bits
 - C. 23 bits
 - D. 52 bits
- - A. NaN
 - B. $+\infty$
 - C. −∞
 - D. Aucune de ces réponses.
- 19. Donnez la représentation IEEE 754, en simple précision, du nombre suivant : -120,25
- 20. Donnez la représentation décimale associée au codage IEEE 754 suivant : 4044 4000 0000 0000 16
 - A. 40
 - B. 40,5
 - C. 20,25
 - D. 20