DA-IICT, B.Tech, Sem III

Autumn2016

- 1. A dipole \vec{p} is at a distance r from a point charge q and oriented so that \vec{p} makes an angle θ with the vector \vec{r} from q to \vec{p} .
 - (a) What is the force on \vec{p} ?
 - (b) What is the force on q?

soln

In both the parts it is easier if we take the dipole along \hat{z} .

(a) Due to q at the origin the force on the dipole \vec{p} is

$$\vec{F} = (\vec{p}\cdot)\vec{\nabla})\vec{E} = p\frac{\partial \vec{E}}{\partial z}$$

where $\vec{E} = \frac{q}{4\pi\epsilon_0} \frac{\hat{r}}{r^2} = \frac{q}{4\pi\epsilon_0} \frac{\vec{r}}{r^3}$

$$\vec{F}_p = \frac{qp}{4\pi\epsilon_0} \frac{\partial}{\partial z} \left(\frac{\vec{r}}{r^3} \right)$$

$$= \frac{qp}{4\pi\epsilon_0} \left[\vec{r} \frac{\partial}{\partial z} \left(\frac{1}{r^3} \right) + \frac{1}{r^3} \frac{\partial \vec{r}}{\partial z} \right]$$

$$= \frac{qp}{4\pi\epsilon_0} \left[-\frac{3z\vec{r}}{r^5} + \frac{\hat{z}}{r^3} \right]$$

$$= \frac{q}{4\pi\epsilon_0} \left[-\frac{(3\vec{p} \cdot \vec{r})\vec{r}}{r^5} + \frac{\vec{p}}{r^3} \right]$$

$$= -\frac{q}{4\pi\epsilon_0 r^3} \left[(3\vec{p} \cdot \hat{r})\hat{r} - \vec{p} \right]$$

(b) For this part we place the dipole at the origin.

The electric field at q due to \vec{p} is

$$\vec{E} = \frac{1}{4\pi\epsilon_0 r^3} \left[3(\vec{p} \cdot \hat{r}')\hat{r}' - \vec{p} \right]$$

Now $\vec{r}' = -\vec{r}$ (used in part (a)).

 $\therefore \hat{r}' = -\hat{r}.$

 \therefore force on q is

$$\vec{F}_q = a\vec{E} = \frac{q}{4\pi\epsilon_0 r^3} \left[3(\vec{p} \cdot \hat{r})\hat{r} - \vec{p} \right]$$

We see that the forces are equal and opposite.

2. \vec{p}_1 and \vec{p}_2 are perfect dipoles a distance r apart. \vec{p}_2 is along \vec{r} while \vec{p}_1 is orthogonal to \vec{r} . Calculate the torque on the dipoles. Are they equal and opposite?

soln

To calculate torque on \vec{p}_2 we consider \hat{z} along \vec{p}_1 . So at \vec{p}_2 the electric field is

$$\vec{E}_{p1} = \frac{p_1}{4\pi\epsilon_0 r^3} \left(2\cos\theta \hat{r} + \sin\theta \hat{\theta} \right)$$

$$= \frac{p_1}{4\pi\epsilon_0 r^3} \hat{\theta} \quad \text{since} \quad \theta = \frac{\pi}{2}$$

$$\therefore \quad \vec{\tau}_{p2} = \vec{p}_2 \times \vec{E}_{p1} = \frac{p_1 p_2}{4\pi\epsilon_0 r^3} (-\hat{n})$$

where \hat{n} is a normal to the paper outward.

To calculate the torque on \vec{p}_1 due to \vec{p}_2 we consider the origin at \vec{p}_2 with \hat{z} along \hat{p}_2 .

$$\vec{E}_{p2} \text{ at } \vec{p}_1 = \frac{p_2}{4\pi\epsilon_0 r^3} \left(2\cos\theta \hat{r} + \sin\theta \hat{\theta} \right)$$

$$\frac{p_2}{4\pi\epsilon_0 r^3} (-2\hat{r})$$

$$\therefore \vec{\tau}_{p1} = \vec{p}_1 \times \vec{E}_{p2} = \frac{2p_1 p_2}{4\pi\epsilon_0 r^3} (-\hat{n})$$

Note that the torques are not equal and opposite. Did you expect them to be so?

- 3. A sphere of radius R carries a polarization $\vec{P}(\vec{r}) = k\vec{r}$
 - (a) Calculate the bound charges ρ_b and σ_b and the electric field caused due to them inside and outside the sphere.
 - (b) Find the electric field using the Gauss' law for the displacement vector \vec{D} given as $\oint_{S} \vec{D} \cdot \hat{n} da = Q_{f(enc)} .$

soln:

(a)

The bound volume charge density is given as

$$\rho_b = -\vec{\nabla} \cdot \vec{P} = -3k$$

$$\sigma_b = \vec{P} \cdot \hat{n} = kR$$

The given electrostatic configuration has a spherical symmetry. So by Gauss's law inside the sphere r < R we have

$$E_{in}4\pi r^2 = -\frac{3k}{\epsilon_0} \frac{4}{3}\pi r^3$$

This gives $\vec{E}_{in} = -\frac{k\vec{r}}{\epsilon_0}$. Outside the sphere r > R we have

$$E_{out}4\pi r^2 = \frac{1}{\epsilon_0} \left[-3k\frac{4}{3}\pi R^3 + kR \times 4\pi R^2 \right] = 0$$

This gives $\vec{E}_{out} = 0$.

(b)

Since there is no free charges anywhere we have $Q_{f(enc)} = 0$. So using the Gauss' law for the displacement vector we get $\vec{D} = 0$ everywhere.

Since $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ we have $\vec{E} = -\frac{\vec{P}}{\epsilon_0}$.

This directly gives

$$\vec{E}_{in} = -\frac{\vec{P}}{\epsilon_0} = -\frac{k\vec{r}}{\epsilon_0}$$
, and $\vec{E}_{out} = 0$

4. A point charge q is imbedded at the center of a sphere of linear dielectric material with susceptibility χ_e and radius R. Find the electric field, the polarization, and the bound charge densities, ρ_b and σ_b . What is the total bound charge on the surface? Where is the compensating negative bound charge located?

soln

The problem has a spherical symmetry.

Consider a Gaussian sphere of radius r. We have $D4\pi r^2 = q$.

$$\therefore D = q/4\pi r^2.$$

$$D = \epsilon_0 E + P = \epsilon_0 E + \epsilon_0 \chi_e E = \epsilon_0 (1 + \chi_e) E$$

$$\therefore E = \frac{D}{\epsilon_0 (1 + \chi_e)} = \frac{q}{4\pi \epsilon_0 (1 + \chi_e) r^2}$$

Polarization $\vec{P} = \epsilon_0 \chi_e \vec{E}$.

$$\therefore P = \frac{\chi_e}{1 + \chi_e} \frac{q}{4\pi r^2}$$
Hence $\vec{\nabla} \cdot \vec{P} = 0$ for $r > 0$

$$\therefore \rho_b = -\vec{\nabla} \cdot \vec{P} = 0$$

On the surface of the sphere

$$\sigma_b = \vec{P} \cdot \hat{r} = \frac{\chi_e}{(1 + \chi_e)} \frac{q}{4piR^2}$$

Total bound charge on the surface of the sphere is $\frac{\chi_e}{1+\chi_e}q$. Since the total bound charge has to be 0, the remaining bound charge is concentrated at the center surrounding the point charge. We can write

$$\rho_b = -\vec{\nabla} \cdot \vec{P} = -\frac{\chi_e}{1 + \chi_e} q \delta^{(3)}(\vec{r})$$

Inside the dielectric the charge q is screened by ρ_b and reduces the electric field

5. At the interface between one linear dielectric and another the electric field lines bend. Show that $\tan \theta_2 / \tan \theta_1 = \epsilon_2 / \epsilon_1$ assuming there is no free charge at the boundary. Refer to fig.1 below.

3

soln:

$$\vec{D}_1 = \epsilon_0 \epsilon_1 \vec{E}_1$$
 and $\vec{D}_2 = \epsilon_0 \epsilon_2 \vec{E}_2$

Since there are no free charges at the interface

$$D_1^{\perp} = D_2^{\perp}$$

$$\therefore \epsilon_0 \epsilon_1 E_1 \cos \theta_1 = \epsilon_0 \epsilon_2 E_2 \cos \theta_2$$

$$\therefore \epsilon_1 E_1 \cos \theta_1 = \epsilon_2 E_2 \cos \theta_2 \tag{1}$$

The parallel component of electric field must be equal.

$$\therefore E_1 \sin \theta_1 = E_2 \sin \theta_2 \tag{2}$$

From 1 and 2 we have

$$\frac{\tan \theta_1}{\epsilon_1} = \frac{\tan \theta_2}{\epsilon_2} \quad \Longrightarrow \quad \frac{\tan \theta_1}{\tan \theta_2} = \frac{\epsilon_2}{\epsilon_1}$$

- 6. Suppose the field inside a large piece of dielectric is \vec{E}_0 , so that the electric displacement is $\vec{D}_0 = \epsilon_0 \vec{E}_0 + \vec{P}$.
 - (a) If we have a narrow cylindrical(needle-like) cavity inside the material running parallel to \vec{P} find the field near the center of the cavity in terms of \vec{E}_0 and \vec{P} . Also find the displacement at the center of the cavity in terms of \vec{D}_0 and \vec{P} ..
 - (b) Do the same for a thin wafer shaped cavity perpendicular to \vec{P} .

soln:

(a) The tangential component of the electric field along the cylindrical walls of the cavity must be continuous.

$$\therefore \vec{E} = \vec{E}_0$$

$$\vec{D} = \epsilon_0 \vec{E}_0 = \vec{D}_0 - \vec{P}$$

(b) Here we use the boundary condition on the perpendicular component of \vec{D} since there are no free charges.

Near the center of the cavity

$$\vec{D} = \vec{D}_0$$

$$\vec{E} = \frac{1}{\epsilon_0} \vec{D}_0 = \vec{E}_0 + \frac{1}{\epsilon_0} \vec{P}$$