

Cow Social Interaction: Disease Transmission

Social interactions

Ultra-Wide Band technology

- Collecting positions of all cows every second
- Spatial interactions
- Real time information

Social networks

- Dynamics
- stERGM

Separable Temporal

Spatial interactions

Spatial contacts

Oow: 2

Cow: 3

Cow: 4

Spatial interaction

Spatial contacts

What was consider as social contact?

Spatial contacts

Separate temporal exponential random graph models (STERGM)

Network dimensions

Unidimensional data

Multidimensional data

Longitudinal data

Spatial interactions

Spatial interactions

0	1	1	0	1	1	0	0	1
1	0	1	1	0	0	1	0	0
1	1	0	1	1	0	0	0	1
0	1	1	0	1	0	1	1	1
1	0	1	1	0	1	1	0	1
1	0	0	0	1	0	1	0	0
0	1	0	1	1	1	0	0	1
0	0	0	1	0	0	0	0	1
1	0	1	1	1	0	1	1	0

0	1	7	0	1	1	0	0	1
1		1	1			1		0
1	1		1	1				1
0	1	1		1		1	1	1
1		1	1		1	1		1
1				1		1		0
0	1		1	1	1			1
0			1					1
1	0	1	1	1	0	1	1	0

0	1		X		1		Х	1
1		Χ	1			1		0
1	Χ		Χ	1	Χ			1
Χ	1	Χ		1		1	Χ	Χ
Χ		1	1		1	1	Χ	1
1		Χ		1		1	Χ	0
0	1		1	1	1		Χ	Χ
Χ			Χ	Χ	Χ	Χ		1
1	0	1	Χ	1	0	Χ	1	0
0	1	1	Х	Х	1	0	Х	1

Day 1

Day 2

• Exponential random graph models (ERGMs):

	Pa	rity	TimeinArea	AGEnet
	Match	Factor	Cov	Cov
$ Y_{ij} = 0$	1	0 0	0.22+0.43	1
	0	0 1	0.22+0.33	0
$Y_{jk} = 1$	0	1 1	0.56+0.33	0
$Y_{im} = 1$	1	0 0	0.22+0.13	0
			1	•

Parity

• Separable temporal exponential random graph models (stERGMs):

$(Y_{ij,t+1} = 1 Y_{ij,t} = y_{ij,t})$	Pa	rity	TimeInArea	AGEnet	
$(I_{ij,t+1} - I_{ij,t} - y_{ij,t})$	Match	Factor	Cov	Cov	
	1	0 0	0.22+0.43	1	Formation
1	0	0 1	0.22+0.33	0	
0	0	1 1	0.56+0.33	0	Persistence
1	1	0 0	0.22+0.13	0	

Homophily				
	Formation	Persistance	Formation	Persistance
Parity	(+) ***	(+) ***	(+) ***	(+) ***
Early life	(+) **	(+) *	-	-
Pedigree	(+) **	(+)	-	-

Network dimensions

Network dimensions

HR similarity

UDsim

Endogenous parameters

Endogenous parameters

Triangles

	Formation	Persistance
Triangles	(+) ***	(+) ***
Parity	(+) ***	(+) ***
Early life	(+) ***	(+) *
Pedigree	(+) ***	n.s.

Triangles

Marina, H., Fikse, W.F. & Rönnegård, L. (2024). Social network analysis to predict social behavior in dairy cattle. *JDS Communications*. Elsevier.

Network evolution

- TP describe the structural properties and characteristics of the networks
- Quantify the influence of the nodes in the networks
- TP's repeatability indicate how constant is the social role of the animals over time

r ²				
	Feeding area	Resting area	Feeding area	Resting area
Degree	0.26-0.31	0.25-0.33	0.14	0.33
Betweenness	0.21-0.24	0.37-0.39	0.20	0.23
Closeness	0.23-0.24	0.38-0.40	0.12	0.32
Eigenvector	0.33-0.34	0.41-0.42	0.12	0.38

h ²			
	Feeding area	Resting area	
Degree	0.07-0.11	0.08-0.16	
Betweenness	0.09-0.09	0.09-0.15	
Closeness	0.08-0.11	0.09-0.17	
Eigenvector	0.10-0.14	0.07-0.20	

Practical applications

Understanding the dynamics of social networks could contribute to:

- Identifying social abnormal behaviour
- The stability of the social structure of dairy cattle
- The design of prevention protocols for transmissible diseases

Practical applications

Understanding the dynamics of social networks could contribute to:

- Identifying social abnormal behaviour
- The stability of the social structure of dairy cattle
- The design of prevention protocols for transmissible diseases

Predict social behaviour

Predict social behaviour

Practical applications

Understanding the dynamics of social networks could contribute to:

- Identifying social abnormal behaviour
- The stability of the social structure of dairy cattle
- The design of prevention protocols for transmissible diseases

Research ongoing

DigiGuard: Digitization for Mastitis Prevention and Resilience Enhancement in dairy cows

DigiGuard: Digitization for Mastitis Prevention and Resilience Enhancement in dairy cows

Simplified: β: Risk of becoming infected

γ: Ability to recover.

Underlying indirect genetic effect of sociability in dairy cattle

GitHub

