FUNDAMENTALS OF MACHINE LEARNING

AA 2023-2024

Prova Intermedia (FACSIMILE)

2 Novembre, 2023

Istruzioni: Niente libri, niente appunti, niente dispositivi elettronici, e niente carta per appunti. Usare matita o penna di qualsiasi colore. Usare lo spazio fornito per le risposte. Instructions: No books, no notes, no electronic devices, and no scratch paper. Use pen or pencil. Use the space provided for your answers.

This exam has 5 questions, for a total of 100 points and 10 bonus points.

No	me:
Ma	tricola:
1. M	ultiple Choice: Select the correct answer from the list of choices.
(a) [5 points] True or False: Adding an L_2 regularizer to least squares regression will reduce variance. \bigcirc True \bigcirc False
(b	b) [5 points] True or False: A zero-mean Gaussian Prior (i.e. $p(\mathbf{w}) = \mathcal{N}(0, \sigma I)$) on model parameters in a MAP estimate corresponds to adding an L2 regularization term (e.g. $ \mathbf{w} _2$) to the loss in an MLE estimate. \bigcirc True \bigcirc False
(c	(c) [5 points] True or False: In the Primal Form of the SVM, increasing hyperparameter C will decrease the complexity of the resulting classifier. \bigcirc True \bigcirc False
(d) [5 points] True or False: The Maximum a Priori and Maximum likelihood solution for linear regression are always equivalent. \bigcirc True \bigcirc False
(e	e) [5 points] If a hard-margin support vector machine tries to minimize $ \mathbf{w} _2$ subject to $y_n(\mathbf{w}^T\mathbf{x}_n+b) \geq 2$, what will be the size of the margin?
	$\bigcirc \ \frac{1}{ \mathbf{w} } \ \bigcirc \ \frac{2}{ \mathbf{w} } \ \bigcirc \ \frac{1}{2 \mathbf{w} } \ \bigcirc \ \frac{1}{4 \mathbf{w} }$
(f	(i) [5 points] The posterior distribution of B given A is:
	$\bigcirc P(B \mid A) = \frac{P(A B)P(A)}{P(B)}$
	$\bigcirc P(B \mid A) = \frac{P(A,B)P(B)}{P(A)}$
	$\bigcap P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$
	$\bigcirc P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A,B)}$
(g	(5) [5 points] Let \mathbf{w}^* be the solution obtained using unregularized least-squares regression. What solution will you obtain if you scale all input features by a factor of c before solving?
	$\bigcirc c\mathbf{w}^* \bigcirc c^2\mathbf{w}^* \bigcirc \frac{1}{c^2}\mathbf{w}^* \bigcirc \frac{1}{c}\mathbf{w}^*$
	Total Question 1: 35

2.		-	iswer : Select ALL correct choices: there may be more than one correct choice, but there is t one correct choice.
	(a)	[5 points]	What are support vectors?
		0	The examples \mathbf{x}_n from the training set required to compute the decision function $f(\mathbf{x})$ in an SVM.
		\bigcirc	The class means.
		\circ	The training samples farthest from the decision boundary.
		\bigcirc	The training samples \mathbf{x}_n that are on the margin (i.e. $y_n f(\mathbf{x}_n) = 1$).
	(b)		Which of the following are true about the relationship between the MAP and MLE estimators regression?
		\bigcirc	They are equal if $p(\mathbf{w}) = 1$.
		\bigcirc	They are equal if $p(\mathbf{w}) = \mathcal{N}(0, \sigma)$ for very small σ .
		\bigcirc	They are never equal.
		\bigcirc	They are equal in the limit of infinite training samples.
	(c)		You train a linear classifier on 10,000 training points and discover that the training accuracy 7%. Which of the following, done in isolation, has a good chance of improving your training
			Add novel features.
			Train on more data.
			Train on less data.
		_	Regularize the model.
	(d)	[5 points]	What assumption does the quadratic Bayes generative classifier make about class-conditional
			re matrices?
			That they are equal.
		_	That they are diagonal.
		_	That their determinants are equal.
		_	None of the above.
	(e)	the bias?	Which of the following are reasons why you might adjust your model in ways that increase
		_	You observe high training error and high validation error. You have few data points.
		_	You observe low training error and high validation error.
		_	Your data are not linearly separable.
	(f)	_	Which of the following are true of polynomial regression (i.e. least squares regression with
	(1)		(i.e. least squares regression with all basis mapping)?
		\bigcirc	If we increase the degree of polynomial, we increase variance.
		\bigcirc	The regression function is nonlinear in the model parameters.
		\bigcirc	The regression function is linear in the original input variables.
		\bigcirc	If we increase the degree of polynomial, we decrease bias.
	(g)	[5 points]	Which of the following classifiers can be used on non linearly separable datasets?
	, - ,	0	The hard margin SVM.
		Ō	Logistic regression.
		Ö	The linear generative Bayes classifiers.
		Ō	Fisher's Linear Discriminant.
			Total Question 2: 35

3. [15 points] Assume the class conditional distributions for a two-class classification problem are $p(\mathbf{x} \mid \mathcal{C}_1) = \mathcal{N}(\boldsymbol{\mu}_1, \beta^{-1}I)$ and $p(\mathbf{x} \mid \mathcal{C}_2) = \mathcal{N}(\boldsymbol{\mu}_2, \beta^{-1}I)$. Show that the optimal decision boundary is *linear*, i.e. that it can be written as $H = \{\mathbf{x} \mid \mathbf{w}^T\mathbf{x} + b = 0\}$ for some \mathbf{w} and b.

Hint: Remember that points \mathbf{x} on the optimal decision boundary will satisfy $p(C_1 \mid \mathbf{x}) = p(C_2 \mid \mathbf{x})$, and that the formula for the multivariate Gaussian density is:

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\}$$

4. [15 points] Assume we have a training set of only two points (one from each class):

$$\mathcal{D} = \{([0,0],-1),([2,0],+1)\}$$

Solve for the optimal hard margin primal SVM parameters ${\bf w}$ and b for this dataset.

5. [10 points (bonus)] Show that the Maximum a Posteriori (MAP) solution to a supervised learning problem is equivalent to the Maximum Likelihood solution if $p(\mathbf{w}) = C$ for some constant $C \in \mathbb{R}$.

P(W/P) x P(D(W/P(W))