$H \to \tau \tau$ Mass Estimation Using Boosted Regression Trees

Sina Bahrasemani, Dugan O'Neil, Quentin Buat

Simon Fraser University; Atlas Collaboration, CERN

sbahrase@sfu.ca doniel@sfu.ca qbuat@sfu.ca

The God Particle

- Matter particles: the building blocks of matter occur in two basic types called quarks and leptons.
- Forces & carrier particles: particles of matter transfer discrete amounts of energy by exchanging bosons with each other.
- ☐ Higgs particle is the Golden Glue of Standard Model of Particle Physics
- ☐ Higgs particle gives mass to elementery particles

Higgs Physics at LHC

- \Box LHC is colliding proton-proton beams with $E_{com} = 13 TeV$
- \Box LHC produces $\approx 6 \times 10^8$ inelastic collisions per second
- \square From 10⁹ pp-collisions $\approx ONE$ Higgs Boson produced
- \Box $H \to \tau \tau$ has the highest B.R. among leptons \Rightarrow key to understand Higgs couplings to leptons.
- \square Mass is one the best handles to extract signals from enormuos backgrounds
- $\square\,H\to\tau\tau$ Difficult final state: 2 to 6 neutrinos, depending on the decay sub-channel

$M_{H \to \tau\tau}$ Estimators

- Transverse Mass: $M_T = \sqrt{m_1^2 + m_2^2 + 2(E_{T,1}E_{T,2} \vec{p}_{T,1}.\vec{p}_{T,2})}$
- Simplest calculation, well-defined for every events
- ▶ Very limited, not using all kinematics
- Collinear Mass:
- ► Assume neutrinos are emitted in the same direction as visible decays → reduce the phase space to more boosted events
- ▶ Better resolution than the transverse mass
- Missing Mass Calculator:
- \triangleright Use kinematics of the events from simulation to 'guess' the most likely $M_{\tau\tau}$ value event-by-event
- ▶ Resolving an under-constrained system of 6to8 unknowns → scanning the phase space of key parameters
- \triangleright Scan $E_{T,x}, E_{T,y}, \phi_1, \phi_2 \&$ derive a weight function
- \triangleright Use this weight to evaluate $M_{\tau\tau}$ for each event

Regression Trees

- Linear regressions are global models: a single predictive formula which holds all over dataset range.
- □ Correlations among the variables makes the prediction very complicated & The number of the free parameters grows very fast. ⇒ nonlinear regression
- ☐ An alternative to the nonlinear regression is to partition the sample to smaller subsamples recursively until get chunks simple enough to model.
- ☐ Prediction trees use the tree to represent the recursive partition.
- Regression Trees can be quite sensitive to the statistical fluctuation in the input samples, ...
- ☐ It's possible to use an ensemble of weak regressor (decision trees) and combine them to get a stronger regressor.

Trainig Regression Tree for $M_{H\tau\tau}$

• Goal:

▶ Predicting the invariant mass of ditau system using the visible tau decay products kinematics.

• Training sample:

 $\triangleright pp \to H[X] \to \tau\tau[X']$ Monte Carlo (full ATLAS detector with 5GeV spacing) $60GeV \le M_H \le 200GeV$ ($\approx 20k$ events per mass point)

• Training Algorithm:

- ▶ Machine Learning Software: Scikit-Learn
- >Splitting nodes condition: Minimum square error
- \triangleright Stoping condition: Minimum leaf size > 0.02% of the sample size

BRT $M_{H\to\tau\tau}Calculator$

- BRT mass calculator is quite competitive with MMC mass calculator
- Predicted mass from BRT and MMC is shifted by a constant.
- The mass distribution resolution is almost the same
- BRT and MMC have almost the same power in sparating singal from background

For rare processes, like $H\to \tau\tau$ separating signal from enormous background is absolutely crucial. Also invariant mass distribution can be directly used to search for new resonances

Conclusion

☑BRT has reached the physics performance of the most commonly used di-tau mass calculator; the MMC

 \square BRT is roughly 3000x faster than MMC.

- ▶ Mass reconstruction is the single slowest part of doing the analysis of ATLAS $H \to \tau \tau$ events.
- re-tuning the MMC for changing experimental conditions is very slow (months) while, retraining the BRT is super-fast (minutes)
- ▶ Being so fast ⇒ There is the potential in future to exceed the physics performance