

ອີເລັກ ໂຕຣນິກຂັ້ນສູງ

Advanced Electronics

ສອນໂດຍ: ອຈ. ປທ. ແກ້ວກັນລະຍາ ສີຫາລາດ

Tel & WhatsApp: 020 55607618

Email: ke.sihalath.nuol.edu.la

ບິດທີ 1

ທຣານຊິດເຕີສະໜາມໄຟຟ້າ

(Field Effect Transistor)

ຈຸດປະສົງ

ເພື່ອສຶກສາການໄບແອັດທຣານຊິດເຕີສະໜາມໄຟຟ້າ

- ໂຄງສ້າງແລະການທໍາງານຂອງ JFET
- ໂຄງສ້າງແລະການທຳງານຂອງ MOSFET
- ເສັ້ນຄຸນລັກສະນະຖ່າຍໂອນຂອງ JFET
- ເສັ້ນຄຸນລັກສະນະຖ່າຍໂອນຂອງ MOSFET

1. FET: Field Effect Transistor

• ເຟດເປັນອຸປະກອນສານເຄິ່ງຕົວອີກຊະນິດໝຶ່ງ ທີ່ມີປະໂຫຍດແລະນຳມາໃຊ້ ງານກັນຫຼາຍ ສຳລັບທຣານຊິດເຕີ BJT ມີຂໍ້ເສຍຈະມີຄວາມກິດກັ້ນທາງ ເບື້ອງຂາເຂົ້າ (Input Impedance) ຄ່ອນຂ້າງຕ່ຳ ດັ່ງນັ້ນເມື່ອມາໃຊ້ໃນວົງ ຈອນທີ່ຕ້ອງການ Input Impedance ສູງໆ ຈະຕ້ອງອອກແບບວົງຈອນ ຄ່ອນຂ້າງຍາກ ແຕ່ ບັນຫານີ້ຈະໝົດໄປຖ້າຫາກໃຊ້ເຟດແທນທຣານຊິສເຕີ ເນື່ອງຈາກ ວ່າມີ Input Impedance ສູງ

1.1 FET: Field Effect Transistor

FET ຄືອຸປະກອນສານເຄິ່ງຕົວນຳທີ່ອາໃສ່ສະໜາມໄຟຟ້າຄວບຄຸມການໄຫຼຂອງກະແສFET ຈັດໃນຮູບແບບປະເພດ Unipolar Device ເພາະວ່າກະແສທີ່ໄຫຼໃນ Channel ເປັນການ ເຄື່ອນທີ່ຂອງພາຫະປະເພດດງວ ໂດຍສະຫຼຸບ FET ຊະນິດຕ່າງໆ ແບ່ງໄດ້ດັ່ງນີ້:

- 1. JFET (Junction Field Effect Transistor)
 - N Channel
 - P Channel
- 2. MOSFET (Metal Oxide Semiconductor FET)
 - D-MOSFET (Depletion Type)
 - N Channel
 - P Channel
 - E-MOSFET(Enhancement Type)
 - N Channel

1.1 FET: ຊະນິດຂອງທຣານຊິດເຕີສະໜາມໄຟຟ້າ

1.1 FET: ຊະນິດຂອງທຣານຊິດເຕີສະໜາມໄຟຟ້າ

1.2 FET: JFET: ໂຄງສ້າງ ແລະ ການທຳງານ

Current Control Device

Voltage Control Device

1.2 FET: JFET: ໂຄງສ້າງ ແລະ ການທຳງານ: <u>n channel</u>

```
ມີຂາ 3 ຂາ: ຂາເດຣນ (Drain : D)
ແລະ ຂາຊອດ (Source : S)
ຕໍ່ທີ່ n-channel, ສ່ວນຂາເກດ (Gate: G)
ຕໍ່ທີ່ p-type
```


JFET n-channel

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: <u>n channel</u>

ການທຳງານຂອງ JFET ຈະອະທິບາຍ 2 ກໍລະນີຄື:

ແຮງໄຟທີ່ຂາ G ແລະຂາ S ມີຄ່າເທົ່າສູນ ($V_{GS} = 0$)

ແຮງໄຟທີ່ຂາ G ແລະຂາ S ມີຄ່າເປັນລົບ (V_{GS} ເປັນລົບ)

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: <u>n channel</u>

ຂະນະທີ່ $\mathbf{V}_{\mathrm{GS}} = \mathbf{0}$

ຈາກຮູບລຸ່ມນີ້ເມື່ອຈ່າຍແຮງໄຟ V_{DD} ຈາກແຫຼ່ງຈ່າຍ ແຮງໄຟໃຫ້ມີຄ່າເທົ່າກັບ V_{DS} ກຳນົດໃຫ້ $V_{GS} = 0$ ອີເລັກຕຣອນຈະດູດມາທີ່ຂາ \mathbf{D} ເຮັດໃຫ້ກະແສ $\mathbf{I}_{\mathbf{D}}$ ໄຫຼຜ່ານ n-channel ກ່າຍເປັນກະແສ I_s ດັ່ງນັ້ນ $I_D = I_S$ ແລະມີຄວາມທານຕ້ານຂອງ *n*-channel ເປັນຕົວຈຳກັດກະແສ

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: *n channel*

ຂະກະ $olimits_{\mathrm{GS}} = \mathbf{0} olimits_{\mathrm{GS}} = \mathbf{0} olimits_{\mathrm{GS}} = \mathbf{0}$

ຈາກຮູບສະແດງຄວາມສຳພັນ ${
m I}_{
m D}$ ກັບ ${
m V}_{
m DS}$ ເມື່ອ \mathbf{V}_{DS} ມີຄ່າເພີ່ມຂຶ້ນພຸງນ້ອຍດຸງວ ($V_{DS} < V_P$); In ກໍ່ຈະເພີ່ມຂຶ້ນໃນລັກສະນະເຊີງເສັ້ນ (ຕາມກົດ ຂອງໂອມ) ຂະນະທີ່ V_{ກຽ} ມີຄ່າຕ່ຳຄວາມ ຕ້ານທານຂອງ JFET ຈະມີຄ່າຄົງທີ່ (ເມື່ອ \mathbf{V}_{DS} ເພີ່ມຂຶ້ນບໍລິເວນ Depletion ຈະຂະຫຍາຍຕົວ ຫຼາຍຂຶ້ນເຮັດໃຫ້ຄວາມກວ້າງຂອງ channel ລົດ ລົງຄວາມຕ້ານທານຈຶ່ງເພີ່ມຂຶ້ນ)

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: <u>n channel</u>

ຂະນະທີ່ $\mathbf{V}_{\mathrm{GS}} = \mathbf{0}$

ຈາກຮູບຂະນະ V_{DS} ເພີ່ມຂຶ້ນຈົນເຮັດໃຫ້ບໍລິເວນ ປອດພາຫະທັງ 2 ບໍລິເວນສຳພັດກັນເອີ້ນວ່າ: $\frac{Pinch-off}{V_{DS}}$ ທີ່ຈຸດນີ້ເອີ້ນວ່າ: ແຮງດັນ ປຣິນອ້ອບ (Pinch-off Voltage: V_P) ແລະເຮັດ ຈະໃຫ້ I_D ເກີດການອື່ມຕົວ (I_{DSS}) ຫຼືສະພາບທີ່ JFET ມີ I_D ສູງສຸດຂອງ JFET ຄ່ຳ I_{DSS} ເກີດ ຂຶ້ນ ເມື່ອ $\mathbf{V}_{\mathbf{GS}} = 0$ ແລະ $(\mathbf{V}_{\mathbf{DS}} \geq |\mathbf{V}_{\mathbf{P}}|)$

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: <u>n channel</u>

ຂະນະທີ່ ${f V}_{GS}$ ເປັນລົບ

V_{GS} ເປັນແຮງໄຟທີ່ໃຊ້ຄວບຄຸມ JFET ມີຄວາມສຳ ພັນກັບ I_D ແລະ V_{DS} ຄືກັນກັບ I_B ທີ່ມີຄວາມສຳພັນ ກັບ I_C ແລະ V_{CE} ໃນຣານຊິດເຕີ BJT ສໍາລັບ JFET n-channel ຈະໃຊ້ແຮງໄຟ V_{GS} ເປັນຕົວ ຄວບຄຸມທີ່ມີ ຄ່າເປັນລົບ ຈາກຮູບ ເມື່ອຈ່າຍໄຟ $V_{GS} = -1V$ ຈະໃຫ້ຂາ G ໄດ້ຮັບໄບແອັດປັ້ນທີ່ບໍລິເວນ ປອດພາຫະຂະຫຍາຍຕົວຢູ່ແລ້ວ ຈຶ່ງເຮັດໃຫ້ລະດັບການ ອຶ່ມຕົວຂອງ \mathbf{I}_{D} ($\mathbf{I}_{\mathrm{DSS}}$) ແລະ \mathbf{V}_{DS} ທີ່ຕົວມີຄ່າລຸດລົງ

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: *n channel*

ຂະນະທີ່ ${ m V}_{ m GS}$ ເປັນລົບ

ຈາກຮູບຈະລຸດລົງເລື້ອຍໆ ເມື່ອ V_{GS} ເປັນລົບຫຼາຍຂຶ້ນຕາມລຳດັບ ດັ່ງນັ້ນຄ່າ V_P ຈຶ່ງລຸດລົງຕາມເສັ້ນ

ທາງ ໂລຄັດຂອງພິນອ້ອບ (Locus of Pinch off Values) ເຊີ່ງມີລັກສະນະ ເປັນ Parabola ຖ້າ V_{GS} ມີຄ່ຳເປັນ ລິບເພີ່ມຂຶ້ນເລື່ອຍໆ ຈົນກະທັ່ງ

 $V_{GS} = V_P$ จะไถ้ $I_D = 0 \text{ mA}$

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: <u>n channel</u>

ຂະນະທີ່ $m V_{GS}$ ເປັນລົບ

ບໍລິເວນຂວາມືຂອງ Locus Pinch off Values ຄືບໍລິເວນອື່ມຕົວ (Saturation Region) ຖ້ານຳໃຊ້ໃນວົງຈອນຂະຫຍາຍຈະໄດ້ສັນຍານອອກ ມາເປັນເຊີງເສັ້ນ ຕ່າງກັບ ບໍລິເວນອື່ມຕົວຂອງ BJT ເຊີ່ງບໍ່ສາມາດນຳເອົາໄປ ໃຊ້ໃນການຂະຫຍາຍສັນຍານໄດ້ ເພາະ ຈະເຮັດໃຫ້ສັນຍານ Output ຜິດພຸ້ງນ

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: *p channel*

JFET p-channel ມີໂຄງສ້າງຄືກັນ n-channel ແຕ່ມີການສະຫຼັບຕຳແໜ່ງ ສານເຄິ່ງຕົວນຳຊະນິດ n ແລະສານເຄິ່ງຕົວນຳຊະນິດ p ດັ່ງຮູບ

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: <u>p channel</u>

ຈາກຮູບ ຈະເຫັນວ່າກະແສທັງໝົດຈະມີ ທິດທາງປິ້ນກັນ ເນື່ອງຈາກບໍ່ກຳເນີດ ແຮງໄຟທີ່ຈ່າຍໃຫ້ມີຂົ້ວປັ້ນກັນເມື່ອ ແຮງໄຟ V_{GS} ທີ່ເປັນບວກມີຄ່າເພີ່ມ ຂື້ນເຮັດໃຫ້ບໍລິເວນປອດພາຫະ ຂະຫຍາຍຕົວ ນອກຈາກນີ້ $m V_{DS}$ ສະແດງຄ່າລົບ (ແທນຄ່າບວກໃນ ກໍລະນີ *n*-channel)

21/03/2022 Le

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ: *p channel*

ດັ່ງຮູບ ເມື່ອ V_{DS} ມີຄ່າລົບເພີ່ມຂຶ້ນເລື່ອຍໆ ຈົນເຖິງລະດັບທີ່ເຮັດໃຫ້ເສັ້ນສະແດງສູງຂຶ້ນຢ່າງໄວວາ ໂດຍບໍ່ ມີຂອບເຂດຈຳກັດອຸປະກອນດັ່ງກ່າວນັ້ນຈະເກີດຄວາມເສຍຫາຍ (Breakdown)

ຖ້າຫາກເຮົາຮູ້ຄ່າ V_{DS} ສູງສຸດ \mathbb{C}^{2} \mathbb{C}^{2}

(Breakdown Region)

1.2 FET: ໄຄງສ້າງ ແລະ ການທຳງານ:

- ການຖ່າຍ ໂອນເປັນຄຸນລັກສະນະຂອງ I_D ກັບ V_{GS} ຈາກຮູບຂ້າງລຸ່ມ ໂດຍເລີ່ມຕື້ນຈາກ ການນຳຄ່າ ດັ່ງນີ້:
 - ullet $V_{
 m GS}=0$ V ມັນຈະເຮັດໃຫ້ $I_{
 m D}=I_{
 m DSS}$
 - ullet $V_{GS}=V_{P}$ มันจะเธ็ดใต้ $I_{D}=0$ mA
- ການຂຽນເສັ້ນສະແດງການຖ່າຍ ໂອນເຮັດໄດ້ໂດຍການຂີດເສັ້ນທາງແນວນອນຈາກ $V_{GS} = -1V$; -2V ແລະ -3V ໄປຍັງແກນ I_D ແລະ ຂະຫຍາຍໄປສູ່ອິກແກນອື່ນ

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

ນຳເອົາສົມຜົນຊັອກເລ່ (Shockley) ມາໃຊ້

ຄ່າ I_{DSS} ແລະ V_P ຈະກຳນົດຂອບເຂດຂອງເສັ້ນສະແດງຂອງແກນທັງສອງສ່ວນຂອງເສັ້ນ

ສະແດງ ຫາໄດ້ໂດຍໃຊ້ສົມຜົນຂອງ Shockley

ເມື່ອແທນຄ່າ $V_{GS}=0$ ແທນຄ່າລົງໃນສົມຜົນລຸ່ມນີ້

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$= I_{DSS} \left(1 - \frac{0}{V_{P}} \right)^{2} = I_{DSS} \left(1 - 0 \right)^{2}$$

$$I_D = I_{DSS}\big|_{V_{GS} = 0}$$

ນຳເອົາສົມຜົນຊັອກເລ່ (Shockley) ມາໃຊ້

ເມື່ອແທນຄ່າ $V_{GS}=V_P$ ແທນຄ່າລົງໃນສົມຜົນລຸ່ມນີ້

$$\begin{split} I_D &= I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \\ &= I_{DSS} \left(1 - \frac{V_P}{V_P} \right)^2 = I_{DSS} \left(1 - 1 \right)^2 \\ I_D &= 0 \big|_{V_{GS} = V_P} \end{split}$$

ນຳເອົາສົມຜົນຊັອກເລ່ (Shockley) ມາໃຊ້

ສຳລັບ I_D ໃນຮູບເສັ້ນຖ່າຍ ໂອນ ຖ້າເຮົາແທນຄ່າ $V_{GS} = -1V$

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$= 8mA \left(1 - \frac{-1V}{-4V} \right)^{2} = 8mA \left(1 - \frac{-1V}{-4V} \right)^{2} = 8mA (0.75)^{2}$$

$$I_{D} = 4.5mA$$

ນຳເອົາສົມຜົນຊັອກເລ່ (Shockley) ມາໃຊ້

ໃນທາງປິ້ນກັນ ເມື່ອຕ້ອງການຫາຄ່າ V_{GS} ໃນຮູບຂອງ I_{D} ຈະໄດ້ສົມຜົນດັ່ງນີ້

$$V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$

ຖ້າຕ້ອງການຫາຄ່າ
$$\Rightarrow V_{GS} = V_P \bigg(1 - \sqrt{\frac{I_D}{I_{DSS}}} \bigg)$$

$$V_{GS} \text{ if } I_D = 4.5 \text{mA}$$

$$= -4V \bigg(1 - \sqrt{\frac{4.5 mA}{8 mA}} \bigg)^2$$

$$= -4V \bigg(1 - \sqrt{0.5625} \bigg) = -4V \bigg(1 - 0.75 \bigg)$$

$$= -1V$$

ໃຊ້ວິທີລັດ

ເນື່ອງຈາກການຂູງນເສັ້ນຖ່າຍ ໂອນເລື່ອຍໆ ເຮົາຈຶ່ງຄວນຮູ້ວິທີລັດ ເພື່ອງ່າຍຕໍ່ການຂູງນ ເສັ້ນຖ່າຍ ໂອນແລະມີຂັ້ນຕອນດັ່ງນີ້:

- 1. ກຳນົດ $m V_{GS} = 0V,
 m V_{GS} = V_{P}$
- 2. ກຳນົດ $V_{GS} = 1/2V_{P}$
- 3. ກຳນົດ $I_D = I_{DSS} / 2$

ໃຊ້ວິທີລັດ

ເມື່ອກຳນົດ
$$V_{\rm GS}=0$$
V ຈະໄດ້
$$I_{\rm D}=I_{\rm DSS}\left(1-\frac{V_{\rm GS}}{V_{\rm P}}\right)^2$$

$$I_{\rm D}=I_{\rm DSS}\quad\text{ແລະ ເມື່ອກຳນົດ}$$

$$V_{\rm GS}=V_{\rm P}\text{ ຈະໄດ້ }I_{\rm D}=0 \qquad \qquad =I_{\rm DSS}\left(1-\frac{V_{\rm P}/2}{V_{\rm P}}\right)^2=I_{\rm DSS}\left(1-\frac{1}{2}\right)^2=I_{\rm DSS}\left(0.5\right)^2$$
 ເມື່ອກຳນົດ $V_{\rm GS}=1/2V_{\rm P}$
$$I_{\rm D}=I_{\rm DSS}\left(0.25\right)$$
 ກ່ຳຈະໄດ້

$$I_D = \frac{I_{DSS}}{4} \bigg|_{V_{GS} = V_P/2}$$

ໃຊ້ວິທີລັດ

ເມື່ອກຳນົດ $I_D = I_{DSS}/2$ ແລ້ວແທນລົງໃນສົມຜົນກໍ່ຈະໄດ້

$$\begin{split} V_{GS} &= V_{P} \left(1 - \sqrt{\frac{I_{D}}{I_{DSS}}} \right) \\ &= V_{P} \left(1 - \sqrt{\frac{I_{DSS} / 2}{I_{DSS}}} \right) = V_{P} \left(1 - \frac{1}{2} \right) = V_{P} (1 - \sqrt{0.5}) \end{split}$$

$$V_{GS} \cong 0.3V_P\big|_{I_D = I_{DSS}/2}$$

1.4 FET: MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ

MOSFET (Metal Oxide Semiconductor FET) ແບ່ງອອກເປັນ 2 ປະເພດ ຄື:

- D-MOSFET (Depletion Type)
 - *n* Channel
 - *p* Channel
- E-MOSFET(Enhancement Type)
 - n Channel
 - p Channel

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: *n-channel*

ໂຄງສ້າງຂອງ D-MOSFET n-channel ມີຂາ Drain (D) ແລະຂາ Source (S) ຈະຕໍ່ກັບສານ n ໂດຍທີ່ສານ n ຖືກຕໍ່ເຖິງ ກັນໂດຍ n-channel ໂດຍທີ່ n-channel ຖືກຕໍ່ກັບຂາ Gate (G) ໂດຍມີ SiO2 (ຊິລິຄອນໄດອັອກໄຊ) ບາງໆ ຂັ້ນສານ n ຈະຢູ່ເທີງສານ p-substrate ເຊິ່ງສາມາດຕໍ່ ຂາໄດ້ອີກໜຶ່ງຂາ ເອີ້ນວ່າ: SS.

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: *n-channel*

ການທຳງານກຳນົດໃຫ້ $V_{GS}=0$ ໃນຈາກຮູບ ຈ່າຍໄຟ V_{DD} ທີ່ຂາ S ແລະຂາ G ຈະເຮັດ ໃຫ້ ຂາ D ດຶງດູດອີເລັກຕຣອນອິດສະຫຼະຜ່ານ n-channel ແລະເຮັດໃຫ້ກະແສ $I_D=I_S=I_{DSS}$ ໄຫຼຜ່ານ n-channel ໄດ້

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: <u>n-channel</u>

D-MOSFET n-channel ສາມາດທຳງານໄດ້ 2 modes:

ຖ້າຈ່າຍແຮງໄຟລົບໃຫ້ D-MOSFET ແບບ n-channel ຈະທຳງານໃນໂມດ

Depletion ແຕ່ຖ້າຈ່າຍແຮງໄຟບວກໃຫ້ມັນຈະທຳງານໃນໂມດ Enhancement ສ່ວນ D
MOSFET ແບບ p-channel ຈະທຳງານຄ້າຍຄືກັນເມື່ອໄດ້ຮັບແຮງໄຟທີ່ມີຂາກົງກັນຂ້າມກັບ
n-channel

ມອສເຟດປະເພດ Enhancement ຫຼື E-MOSFET ຈະມີໂຄງ ສ້າງບາງຢ່າງທີ່ຄ້າຍຄື ກັບ D-MOSFET ແຕ່ຈະທຳງານສະເພາະໂມດ Enhancement ເທົ່ານັ້ນ

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: <u>n-channel</u>

D-MOSFET n-channel ทำๆามใบ modes: Depletion

ຈາກຮູບຖ້າຈ່າຍ V_{GS} ມີຄ່າເປັນລົບ (-1V) ຈ່າຍທີ່ຂາ G ຈະຍູ້ອີ ເລັກຕຣອນອິດສະຫຼະເຄື່ອນໄປຍັງສານ P ແລະຈະດຶງໂຮນຈາກສານ p ເຮັດໃຫ້ອີເລັກຕຣອນແລະໂຮນລວມຕົວກັນໃໝ່ (Recombination Process) ຈຶ່ງເກີດການລຸດຈຳນວນອີເລັກຕຣອນອິດສະຫຼະໃນ n-channel ທີ່ມີໄວ້ສຳ ລັບການນຳກະແສ ເມື່ອ V_{GS} ມີຄ່າເປັນລົບຫຼາຍເທົ່າໃດກໍຈະເຮັດການລວມຕົວ ກັນໃໝ່ ຫຼາຍຂຶ້ນແລະອີເລັກຕຣອນອິດສະຫຼະໃນ n-channel ກໍ່ຈະມີຈຳນວນ ລຸດລົງ ຈຶ່ງເວົ້າໄດ້ວ່າ: ຖ້າ V_{GS} ມີຄ່າລົບຫຼາຍຂຶ້ນ ແລະ I_{D} ຈະມີຄ່ານ້ອຍລົງ ເຮົາເອີ້ນວ່າ: ການທຳງານໃນໂມດ Depletion

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: *n-channel*

D-MOSFET n-channel ทำๆามใบ modes: Depletion

ຄຸນລັກສະນະຂອງ D-MOSFET ຈະຄືກັນກັບ JFET

ເມື່ອ $\mathbf{V}_{\mathrm{GS}}=0$ ຈະໄດ້ $I_D=I_{\mathrm{DSS}}^{\bullet}$ ແຕ່ຖ້າ $\mathbf{V}_{\mathrm{GS}}<\mathbf{0}$ ຈະໄດ້ $I_D< I_{\mathrm{DSS}}$ ສົມຜົນຂອງກະແສ I_D ຄືກັບກະແສ I_D ຂອງ JFET

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: <u>n-channel</u>

D-MOSFET n-channel ทำๆามใบ modes: Enhancement

ຖ້າຈ່າຍ V_{GS} ມີຄ່າເປັນບວກປ້ອນໃຫ້ຂົ້ວ G ຄວາມແຕກຕ່າງຂອງແຮງໄຟທີ່ຂົ້ວ G ຈະດຶງດູດອີເລັກຕຣອນຈາກສານເຄິ່ງຕົວນຳ P ມາຍັງບໍລິເວນ SiO_2 ເຮັດໃຫ້ພາຫະການນຳ ກະແສແລະສະພາບການນຳກະແສຂອງແຊນແນວເພີ່ມຂຶ້ນ ດັ່ງນັ້ນກະແສ I_D ມີຄ່າເພີ່ມຂຶ້ນ ຫຼາຍກວ່າ I_{DSS} ການທຳງານຂະນະທີ່ V_{GS} ເປັນບວກເອີ້ນວ່າ: ການທຳງານໃນໂມດ Enhancement

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: <u>n-channel</u>

D-MOSFET n-channel ทำๆามใบ modes : Enhancement.

ເມື່ອ $V_{GS}>0$ ຈະໄດ້ $I_D>I_{DSS}$ ສົມຜົນຂອງກະແສ I_D ຄືກັບກະແສ I_D ຂອງ JFET (ແທນ \mathbf{V}_{GS} ເປັນຄ່ຳບວກ)

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: *p-channel*

ຈາກເສັ້ນສະແດງຄຸນລັກສະນະຮູບລຸ່ມນີ້ ເຮົາເຫັນວ່າທິດທາງຂອງກະແສ ແລະແຮງໄຟຕ່າງໆຈະປິ້ນກັນ I_D ຈະເພີ່ມຂຶ້ນຈາກຈຸດ $Cut\ off\ \dot{M}\ V_{GS} = V_P$

ຂະນະທີ່ V_{GS} ມີຄ່າເປັນບວກລຸດລົງ ເຮັດໃຫ້ I_D ເພີ່ມຢ່າງຕໍ່ເນື່ອງຈົນ ກາຍຄ່າ I_{DSS} ເມື່ອ V_{GS} ມີຄ່າເປັນລົບເພີ່ມຂຶ້ນ ສາມາດນຳໃຊ້ສົມຜົນຂອງ Shockley ແຕ່ລະວັງເຄື່ອງໝາຍ V_{GS} ແລະ V_P ໃນສົມຜົນ (ຄືຈະຕ້ອງມີເຄື່ອງ ໝາຍເປັນບວກ)

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ: *p-channel*

1.4 FET: D-MOSFET: ໂຄງສ້າງ ແລະ ການທຳງານ

ສັນຍາລັກ D-MOSFET

ໂຄງສ້າງແລະຂອບເຂດການທຳງານຂອງ D-MOSFET ແລະ E-MOSFET ຈະມີລັກສະນະຄ້າຍຄືກັນ ແຕ່ເສັ້ນຄຸນລັກສະນະຂອງອີມອສເຟດ ແຕກຕ່າງກັນ ແຕ່ຈະໃຊ້ສົມຜົນຂອງ Shockley ມາວິເຄາະຈະບໍ່ສາມາດນຳໃຊ້ ໄດ້ໂຄງສ້າງຂອງ E-MOSFET ແລະ ກະແສ I_D ຍັງບໍ່ເກີດຂຶ້ນຈົນກວ່າກະທັ້ງ V_{GS} ມີຄ່າສູງເຖິງຄ່າສະເພາະຄ່າໜຶ່ງ (Threshold)

ປະກອບຂຶ້ນຈາກສານ p ທີ່ເປັນສານ ເຄິ່ງຕົວນຳທີ່ເຮັດຈາກຊິລິຄອນ ຂາ D ແລະ S ຈະຕໍ່ ກັບບໍລິເວນທີ່ມີການກະຕຸ້ນ n ທາງ ເບື້ອງນອກທີ່ເປັນໂລຫະ ນອກນັ້ນບາງຄັ້ງຈະ ຂົ້ວ SS ເຂົ້າກັບສານ p ຖ້າສັງເກດຈະເຫັນວ່າບໍ່ມີຊ່ອງທາງ ຜ່ານ (no-channel) ລະຫວ່າງບໍລິເວນກະ ຕຸ້ນ n ທັງສອງ ນັ້ນຄືຄວາມແຕກຕ່າງເບື້ອງ ຕົ້ນລະຫວ່າງໂຄງສ້າງຂອງອີມອສເຟດແລະ

ດີມອສເຟດ

E-MOSFET n-channel: ภามทำๆานຂອງ

Enhancement-MOSFET ເມື່ອ $V_{GS} > 0$

E-MOSFET ສາມາດທຳງານໄດ້ສະເພາະໃນ

Enhancement mode

ກຳນົດໃຫ້ V_{GS} =0V ແລະຈ່າຍ V_{DS} ທີ່ມີຄ່າເປັນ ບວກໃຫ້ຂາ S ກັບ Dໂດຍຂາ SS ຕໍ່ລວມກັບ S ດັ່ງຮູບ ລຸ່ມນີ້ ຈະເກີດການໃຫ້ໄບແອັດປິ້ນທີ່ຮອຍຕໍ່ N-P (ບໍລິເວນ ທີ່ມີການກະຕຸ້ນ N ກັບ P) ເນື່ອງຈາກບໍ່ມີເສັ້ນທາງການ ເຊື່ອມຕໍ່ຫຼື channel ລະຫວ່າງຂາ D ແລະຂາ S ເຮັດໃຫ້ ເກີດການຕ້ານການໄຫຼຂອງອີເລັກຕອນກະແສ ${
m I_D}\!\!=\!\!0$ ແຕກ ຕ່າງກັບ D-MOSFET ແລະJFET ເຊີງມີກະແສ $I_D = I_{DSS}$ ท้าจ่าย V_{DS} และ V_{GS} มิค่าเป็นบอกถั่วฐบ ເຮັດໃຫ້ຂາ D ກັບ G ມີປະຈຸເປັນບວກທີ່ຂາ G ຈະຍູ້ໂຮນ ເຂົ້າໄປໃນສານ P ແລະດຶງອີເລັກຕອນໃນສານ P ອອກ

ຂະນະທີ່ V_{GS} ເພີ່ມຂຶ້ນການລວມຕົວຂອງ ອີເລັກຕຣອນໃກ້ກັບຊັ້ນ SiO, ກໍ່ຈະເພີ່ມ ຂຶ້ນຂະນະ ດງວກັນນັ້ນບໍລິເວນທີ່ມີການກະຕຸ້ນ n ເກີດການ ໜ່ງວນຳຈາກແຮງໄຟ V_{GS} ເຮັດໃຫ້ I_{D} ມີທິດທາງ ກົງກັນຂ້າມກັບອີເລັກຕຣອນໄຫຼລະຫວ່າງຂົ້ວ D ກັບS ລະດັບ V_{GS} ທີ່ເຮັດໃຫ້ I_{D} ໄຫຼເຮົາເອີ້ນແຮງ ໄຟນີ້ວ່າ: Threshold: V_T ໃນສະເປັກກຳນົດໃຫ້ $m V_T$ เป็น $m V_{GS(Th)}$

ຖ້າເພີ່ມ V_{GS} ໃຫ້ສູງຂຶ້ນ I_{D} ກໍ່ຈະເພີ່ມຂຶ້ນແຕ່ຖ້າ V_{GS} ມີຄ່າຄົງທີ່ແລະເພີ່ມຄ່າ V_{DS} ຈະເຮັດໃຫ້ I_{D} ເຖິງຈຸດອື່ມຕົວ ເນື່ອງຈາກຂົ້ວບວກຂອງ $V_{
m DS}$ ດຶງດູດອີເລັກຕຣອນຈຶ່ງເຮັດ ໃຫ້ປ່າຍຂອງຊ່ອງທາງໜຸ່ງວນຳບໍລິເວນໃກ້ຂົ້ວ D ແຄບລົງ ເຂົ້າໃກ້ລະດັບ Pinch-off (beginning) ດັ່ງຮູບ ເມື່ອນຳ KVL ມາພິຈາລະນາລະຫວ່າງຂາ D ກັບ G

$$V_{DG} = V_{DS} - V_{GS}$$

E-MOSFET n-channel : ภามทำวามຂອງ Enhancement-MOSFET

- ຈາກເສັ້ນຄຸນລັກສະນະຂອງອີມອສເຟດຂະນະທີ່ $m V_{T}$ =2V ທີ່ $m V_{GS}$ =8V ເຮັດ ໃຫ້ $m V_{DS}$ ອຶ່ມຕົວ ($m V_{DSsat}$ =

6V) ຈຶ່ງມີຄວາມສຳພັນກັນດັ່ງນີ້

$$V_{DS(sat)} = V_{GS} - V_{T}$$

E-MOSFET n-channel : ການທຳງານຂອງ Enhancement-MOSFET

• V_{GS} ຈະມີຄ່າເປັນບວກເທົ່ານັ້ນ; ເມື່ອ V_{GS} ເພີ່ມຂຶ້ນຈະເຮັດໃຫ້ I_D ເພີ່ມຂຶ້ນຄືກັນ; ແຕ່ຖ້າ V_{GS} ຄົງທີ່ ແລ້ວ ເພີ່ມ V_{DS} ຈະເຮັດໃຫ້ I_D ມີຄ່າອິ່ມຕົວ (I_{DSS}); ທີ່ຄ່າ saturation ຫຼື ຈຸດ transition ຈະໄດ້ຄວາມສຳພັນ

• ເມື່ອ V_T ຄົງທີ່ແລະ V_{GS} ຍິ່ງມີຄ່າສູງຂຶ້ນເທົ່າໃດ V_{DSsat} ກໍ່ສູງຂຶ້ນ ຕາມຖ້າ $V_T=2V$ ຕຳແໜ່ງນີ້ $I_D=0$ mA ດັ່ງນັ້ນຈຶ່ງເຮັດໃຫ້ຖ້າວ່າ V_{GS} ມີຄ່າຕ່ຳກວ່າ V_T ຄ່າ I_D ຂອງ ອີມອສເຟດຈະເປັນສູນເມື່ອບໍ່ມີກະແສໄຫຼ

$$I_D = K(V_{GS} - V_T)^2$$

K: ຄືຄ່າຄົງທີ່ຂອງໂຄງສ້າງອີມອສເຟດ

$$K = \frac{I_{D(on)}}{(V_{GS(on)})^2}$$

• ເມື່ອ $I_{D(on)}$ ແລະ $V_{GS(on)}$ ເປັນກະແສແລະແຮງໄຟທີ່ເຮັດໃຫ້ເກີດຈຸດສະເພາະໃນເສັ້ນ ສະແດງຄຸນລັກສະນະ

ຕົວຢ່າງທີ່ 1.1: ເມື່ອ $I_{D(on)} = 10 \mathrm{mA}$ ແລະ $V_{GS(on)} = 8 \mathrm{V}$ ຈົ່ງຊອກຫາ I_D ?

$$K = \frac{I_{D(on)}}{(V_{GS(on)})^2} = \frac{10mA}{(8V)^2} = \frac{10mA}{64V^2}$$
$$= 0.156 \frac{mA}{V^2}$$

$$I_D = K(V_{GS} - V_T)^2 = 0.156 \frac{\text{mA}}{V^2} (4V - 2V)^2$$

= 0.624mA

ໂຄງສ້າງຂອງ E-MOSFET ແບບ p-channel ຈະມີລັກສະນະ ຄືກັບກັບແບບ n-channel ດັ່ງຮູບລຸ່ມນີ້

สัมยาลัท E-MOSFET

ຈົບບົດຮຸງນທີ 1