

Algorithmen I Tutorium 33

Woche 11 | 06. Juli 2018

Daniel Jungkind (daniel.jungkind@student.kit.edu)

INSTITUT FÜR THEORETISCHE INFORMATIK

Inhalt

Spannbäume

Jarník-Prim

Kruskal

Schwarzes Brett + Klausurinfos!

- Achtung: Blatt #11 hat 20 Punkte, Abgabe bis Freitag, 13.07. um 15:00 Uhr!
- Gesamtpunkte der ÜBs stehen fest: Blatt #11 ist das letzte ⇒ 130 P insgesamt!
 - ⇒ für 25 % mind. notwendig: 32.5 P
 - ⇒ für 50 % mind. notwendig: 65 P
 - \Rightarrow für 75 % mind. notwendig: 97.5 P
- Klausur selbst am 04.09.2018 von 8–10 Uhr (rechtzeitig anmelden!)
- Cheatsheet für Klausur beidseitig erlaubt! :D

SPANNBÄUME

Spannung pur!

Ein paar Definitionen

■ Für heute: Alle Graphen G = (V, E) ungerichtet, zusammenhängend, mit positiven Kantengewichten

- Für heute: Alle Graphen G = (V, E) ungerichtet, zusammenhängend, mit positiven Kantengewichten
- **Spannbaum**: Baum (V, T) von G (also $T \subseteq E$), "spannt G auf" (= zusammenhängend)

- Für heute: Alle Graphen G = (V, E) ungerichtet, zusammenhängend, mit positiven Kantengewichten
- **Spannbaum**: Baum (V, T) von G (also $T \subseteq E$), "spannt G auf" (= zusammenhängend)
- Bekannte Algorithmen, die (irgendwelche) Spannbäume bestimmen:
 - Tiefensuche
 - Breitensuche
 - Dijkstra

- Für heute: Alle Graphen G = (V, E) ungerichtet, zusammenhängend, mit positiven Kantengewichten
- **Spannbaum**: Baum (V, T) von G (also $T \subseteq E$), "spannt G auf" (= zusammenhängend)
- Bekannte Algorithmen, die (irgendwelche) Spannbäume bestimmen:
 - Tiefensuche
 - Breitensuche
 - Dijkstra
- Spannbaum hat **Gewicht** $\sum_{t \in T} c(t)$

- Für heute: Alle Graphen G = (V, E) ungerichtet, zusammenhängend, mit positiven Kantengewichten
- **Spannbaum**: Baum (V, T) von G (also $T \subseteq E$), "spannt G auf" (= zusammenhängend)
- Bekannte Algorithmen, die (irgendwelche) Spannbäume bestimmen:
 - Tiefensuche
 - Breitensuche
 - Dijkstra
- Spannbaum hat **Gewicht** $\sum_{t \in T} c(t)$
- Minimaler Spannbaum (MST = Minimum Spanning Tree): Spannbaum mit minimalem Gewicht

- Für heute: Alle Graphen G = (V, E) ungerichtet, zusammenhängend, mit positiven Kantengewichten
- **Spannbaum**: Baum (V, T) von G (also $T \subseteq E$), "spannt G auf" (= zusammenhängend)
- Bekannte Algorithmen, die (irgendwelche) Spannbäume bestimmen:
 - Tiefensuche
 - Breitensuche
 - Dijkstra
- Spannbaum hat **Gewicht** $\sum_{t \in T} c(t)$
- Minimaler Spannbaum (MST = Minimum Spanning Tree): Spannbaum mit minimalem Gewicht
- Minimales Gewicht ist eindeutig, minimaler Spannbaum jedoch i. A. nicht

Aufgabe 1: Scharf hinsehen

Gebt zu folgendem Graphen einen MST an:

Lösung zu Aufgabe 1

Die Schnitteigenschaft ("Cut Property")

■ Sei $U \dot{\cup} W = V$ irgendeine "Aufteilung" von V und $C = \{\{u, w\} \in E \mid u \in U, w \in W\}$ alle "Brücken dazwischen" (genannt **Schnitt**)

06. Juli 2018

Die Schnitteigenschaft ("Cut Property")

- Sei $U \dot{\cup} W = V$ irgendeine "Aufteilung" von V und $C = \{\{u, w\} \in E \mid u \in U, w \in W\}$ alle "Brücken dazwischen" (genannt **Schnitt**)
- \Rightarrow Schnitteigenschaft: Die leichteste Kante $e \in C$ kann in einem MST verwendet werden.

Die Schnitteigenschaft ("Cut Property")

- Sei $U \dot{\cup} W = V$ irgendeine "Aufteilung" von V und $C = \{\{u, w\} \in E \mid u \in U, w \in W\}$ alle "Brücken dazwischen" (genannt **Schnitt**)
- \Rightarrow Schnitteigenschaft: Die leichteste Kante $e \in C$ kann in einem MST verwendet werden.
- Warum?

Die Schnitteigenschaft ("Cut Property")

- Sei $U \dot{\cup} W = V$ irgendeine "Aufteilung" von V und $C = \{\{u, w\} \in E \mid u \in U, w \in W\}$ alle "Brücken dazwischen" (genannt **Schnitt**)
- \Rightarrow Schnitteigenschaft: Die leichteste Kante $e \in C$ kann in einem MST verwendet werden.
 - Warum?
 - \Rightarrow Betrachte MST T. U und W in T durch e verbunden?
 - ⇒ Ja: √
 - \Rightarrow **Nein**: Dann U und W durch andere Kante $e' \in C$ verbunden, und e' darf **nicht schwerer** als e sein (sonst f minimal) $\Rightarrow e$ und e' austauschbar.

Die Kreiseigenschaft ("Cycle Property")

• Sei $C \subseteq E$ ein (beliebiger) Kreis in G

Die Kreiseigenschaft ("Cycle Property")

- Sei $C \subseteq E$ ein (beliebiger) Kreis in G
- ⇒ Kreiseigenschaft:

Für einen MST T von G wird die **schwerste** Kante $e \in C$ **nicht** benötigt.

Die Kreiseigenschaft ("Cycle Property")

- Sei $C \subseteq E$ ein (beliebiger) Kreis in G
- ⇒ Kreiseigenschaft:
 Für einen MST T von G wird die schwerste Kante e ∈ C nicht benötigt.
 - Warum?

Die Kreiseigenschaft ("Cycle Property")

- Sei $C \subseteq E$ ein (beliebiger) Kreis in G
- \Rightarrow Kreiseigenschaft:

Für einen MST T von G wird die **schwerste** Kante $e \in C$ **nicht** benötigt.

- Warum?
 - \Rightarrow Angenommen, $e \in T$ und dafür leichtere Kreiskante $e' \notin T$: Durch **Austausch** von e und e' wird Gewicht von T kleiner
 - $\Rightarrow \mbox{\ensuremath{\sl}{}} T \mbox{ minimal} \Rightarrow \mbox{\ensuremath{M}} \mbox{\ensuremath{\sl}} \mbox{sen } e \mbox{ rausschmeißen}.$

Ein Algorithmus für MSTs: Jarník-Prim

⇒ **Idee**: Schnitteigenschaft irgendwie ausnutzen!

Ein Algorithmus für MSTs: Jarník-Prim

- ⇒ Idee: Schnitteigenschaft irgendwie ausnutzen!
 - 1. Starte ab beliebigem $s \in V$, setze $S := \{s\}$
 - 2. Erweitere Knotenmenge S und Baum T schrittweise um die minimale Verbindungskante zu $V\setminus S$

Ein Algorithmus für MSTs: Jarník-Prim

- ⇒ **Idee**: Schnitteigenschaft irgendwie ausnutzen!
 - 1. Starte ab beliebigem $s \in V$, setze $S := \{s\}$
 - 2. Erweitere Knotenmenge S und Baum T schrittweise um die minimale Verbindungskante zu $V\setminus S$
 - lacksquare Schnittkantenmenge C zwischen S und $V\setminus S$
 - ⇒ Verwalte sie in einer PriorityQueue PQ

Ein Algorithmus für MSTs: Jarník-Prim

- ⇒ Idee: Schnitteigenschaft irgendwie ausnutzen!
 - 1. Starte ab beliebigem $s \in V$, setze $S := \{s\}$
 - 2. Erweitere Knotenmenge S und Baum T schrittweise um die minimale Verbindungskante zu $V\setminus S$
 - lacktriangle Schnittkantenmenge C zwischen S und $V\setminus S$
 - ⇒ Verwalte sie in einer PriorityQueue PQ
- √ Funktioniert dank Schnitteigenschaft


```
function Jarník-Prim(G = (V, E)) // sieht aus wie Dijkstra
    pick any s \in V
    d := (\infty, ..., \infty): array[1...n] of \mathbb{R} // Distanz zu Knotenmenge S, nicht zu
     s \in VI
    parent := (\bot, ..., \bot) : array[1...n] of V
    PQ = \langle s \rangle: PriorityQueue
    parent[s] := s
    while PQ \neq \emptyset do
         u := PQ.deleteMin(), \quad d[u] := 0
        foreach e = \{u, v\} \in E do
             if c(e) < d[v] then
               d[v] := c(e)
                 parent[v] := u
                 if v \in PQ then PQ.decreaseKey(v)
                else
                       PQ.insert(v)
    return \{ (parent[v], v) \mid s \neq v \in V \}
```


Hier klicken, um das Beispiel zu überspringen.

Spannbäume – Beispiel Jarník-Prim

Spannbäume – Beispiel Jarník-Prim

Spannbäume – Jarník-Prim

Laufzeit von Jarník-Prim: same as Dijkstra

Im Worst-Case m-mal decreaseKey

+ Genau n-mal deleteMin und insert

Spannbäume – Jarník-Prim

Laufzeit von Jarník-Prim: same as Dijkstra

Im Worst-Case m-mal decreaseKey

- Genau n-mal deleteMin und insert
- = Mit binärem Heap: $O((m+n) \log n)$

Spannbäume – Jarník-Prim

Laufzeit von Jarník-Prim: same as Dijkstra

Im Worst-Case m-mal decreaseKey

- + Genau n-mal deleteMin und insert
- = Mit binärem Heap: $O((m+n) \log n)$
- = Mit Fibonacci-Heap: $O(m + n \log n)$ (amortisiert und mit höheren konstanten Faktoren)

Spannbäume - Kruskal

Rosinen rauspicken mit Kruskal

■ Idee: Baum (bzw. Wald) schrittweise wachsen lassen

Spannbäume – Kruskal

Rosinen rauspicken mit Kruskal

- Idee: Baum (bzw. Wald) schrittweise wachsen lassen
- ⇒ Durchlaufe Kanten nach aufsteigendem Gewicht: Nehme Kante zum Wald dazu, falls dadurch kein Kreis entsteht (also wenn die Kante zwei separate Bäume vereinigt)

Spannbäume – Kruskal

Rosinen rauspicken mit Kruskal

- Idee: Baum (bzw. Wald) schrittweise wachsen lassen
- ⇒ Durchlaufe Kanten nach aufsteigendem Gewicht: Nehme Kante zum Wald dazu, falls dadurch kein Kreis entsteht (also wenn die Kante zwei separate Bäume vereinigt)
- Am Ende: Alle ausgewählten Kanten ergeben einen MST

Spannbäume - Kruskal

Rosinen rauspicken mit Kruskal

- Idee: Baum (bzw. Wald) schrittweise wachsen lassen
- ⇒ Durchlaufe Kanten nach aufsteigendem Gewicht: Nehme Kante zum Wald dazu, falls dadurch kein Kreis entsteht (also wenn die Kante zwei separate Bäume vereinigt)
- Am Ende: Alle ausgewählten Kanten ergeben einen MST
- √ Funktioniert dank Schnitt- und Kreiseigenschaft

Hier klicken, um das Beispiel zu überspringen.

Implementierung

Wollen dafür effizient...

- ...herausfinden, zu welcher Menge ein Element gehört (find)
- ...die Mengen zweier Elemente vereinigen (union)

⇒ Eine neue Datenstruktur!

Fürs Grobe...

■ Repräsentiere Menge $M \subseteq \{1...n\}$ durch **beliebiges** Element $w \in M$

⇒ Eine neue Datenstruktur!

Fürs Grobe...

- Repräsentiere Menge $M \subseteq \{1...n\}$ durch **beliebiges** Element $w \in M$
- Intern: *M* wird als **Baum**, *w* als **Wurzel** von *M* behandelt

⇒ Eine neue Datenstruktur!

Fürs Grobe...

- Repräsentiere Menge $M \subseteq \{1...n\}$ durch **beliebiges** Element $w \in M$
- Intern: *M* wird als **Baum**, *w* als **Wurzel** von *M* behandelt
- \Rightarrow Verwalte parent : array[1...n] of 1...n, wobei parent[v] = $v \Leftrightarrow v$ ist Wurzel Am Anfang: parent[v] := v // Alle Elemente sind eigene Wurzel

...

⇒ Eine neue Datenstruktur!

Fürs Grobe...

- Repräsentiere Menge $M \subseteq \{1...n\}$ durch **beliebiges** Element $w \in M$
- Intern: M wird als **Baum**. w als **Wurzel** von M behandelt
- \Rightarrow Verwalte parent : array[1...n] of 1...n, wobei $parent[v] = v \Leftrightarrow v \text{ ist Wurzel}$ Am **Anfang**: parent[v] := v // Alle Elemente sind eigene Wurzel

...und für die Effizienz

 \Rightarrow Verwalte rank = (0, ..., 0) : array[1...n] of 0... log n, wobei $rank[v] = \begin{cases} H\"{o}he \text{ von Baum von } v \\ \text{(ohne Pfadkompression)} \end{cases}, \quad v \text{ ist Wurzel} \\ garbage, \qquad v \text{ ist keine V} \end{cases}$ v ist **keine** Wurzel

Union-Find – Operationen

Finden

Abbildung: Pfadkompression

Union-Find – Operationen

Vereinigen

```
procedure union(a', b' : 1...n)
   if a \neq b then
       // union by rank
       if rank[a] < rank[b] then
          parent[a] := b
       else
          parent[b] := a
          if rank[a] = rank[b] then
          rank[a] ++
```

Abbildung: Union-by-rank

Spannbäume – Kruskal

Kruskal – Pseudocode

```
function Kruskal(G = (V, E))

forest := new UnionFind(n)

T := \emptyset

Sort(E) by c(\cdot)

foreach e = \{u, v\} \in E do

if forest.find(u) \neq forest.find(v) then

T := T \cup \{e\}
forest.union(u, v)

return T
```

Spannbäume - Kruskal

Laufzeit von Kruskal

 $O(m \log m)$ fürs Sortieren von E

Spannbäume – Kruskal

Laufzeit von Kruskal

 $O(m \log m)$ fürs Sortieren von E

$$+ O(m \cdot \alpha_T(m, n))$$
 für $m \times find() + n \times union()$ laut VL

$$pprox \mathcal{O}(m\cdot 5)$$
 (Inv. Ackermannfunktion $\alpha_T(\cdot,\cdot)\leqslant 5$ for all sane inputs)

Spannbäume – Kruskal

Laufzeit von Kruskal

 $O(m \log m)$ fürs Sortieren von E

- $+ O(m \cdot \alpha_T(m, n))$ für $m \times \text{find}() + n \times \text{union}()$ laut VL $\approx O(m \cdot 5)$ (Inv. Ackermannfunktion $\alpha_T(\cdot, \cdot) \leqslant 5$ for all sane inputs)
- $= O(m \log m).$

Bei Kantengewichten in \mathbb{Z}_+ sogar schneller möglich.

Die Union-Find-Datenstruktur bei Kruskals Algorithmus repräsentiert den bisher gefundenen MST.

?

Die Union-Find-Datenstruktur bei Kruskals Algorithmus repräsentiert den bisher gefundenen MST.

Falsch.

Bloß interne Hierarchie für die Knoten. MST-Kanten tauchen da drin gar nicht auf.

Die Union-Find-Datenstruktur bei Kruskals Algorithmus repräsentiert den bisher gefundenen MST.

Falsch.

Bloß interne Hierarchie für die Knoten. MST-Kanten tauchen da drin gar nicht auf.

Dijkstra ist zur Bestimmung eines MST bei gerichteten Graphen (mit nichtnegativen Kantengewichten) geeignet.

?

Die Union-Find-Datenstruktur bei Kruskals Algorithmus repräsentiert den bisher gefundenen MST.

Falsch.

Bloß interne Hierarchie für die Knoten. MST-Kanten tauchen da drin gar nicht auf.

Dijkstra ist zur Bestimmung eines MST bei gerichteten Falsch. Graphen (mit nichtnegativen Kantengewichten) geeignet.

Dijkstra bestimmt im Allgemeinen **keinen M**ST (und MST auf gerichteten Graphen nicht in dieser VL).

Sowohl der Algorithmus von Jarník-Prim als auch Kruskals Algorithmus funktionieren auch bei negativen Kantengewichten.

?

Sowohl der Algorithmus von Jarník-Prim als auch Kruskals Algorithmus funktionieren auch bei negativen Kantengewichten.

(JP braucht kleine Anpassung: d[u] muss beim Rausholen aus der PQ auf $-\infty$ gesetzt werden.)

Sowohl der Algorithmus von Jarník-Prim als auch Kruskals Algorithmus funktionieren auch bei negativen Kantengewichten. Wahr.

(JP braucht kleine Anpassung: d[u] muss beim Rausholen aus der PQ auf $-\infty$ gesetzt werden.)

Dijkstra funktioniert nicht, wenn negative Kantengewichte vorhanden sind.

?

Sowohl der Algorithmus von Jarník-Prim als auch Kruskals Algorithmus funktionieren auch bei negativen Kantengewichten.

Wahr.

(JP braucht kleine Anpassung: d[u] muss beim Rausholen aus der PQ auf $-\infty$ gesetzt werden.)

Dijkstra funktioniert nicht, wenn negative Kantengewichte vor-Falsch. handen sind.

Dijkstra funktioniert nicht, wenn es negative **Zyklen** gibt (⇒ Endlosschleife).

Ansonsten bestimmt Dijkstra auch mit negativen Kantengewichten korrekte kürzeste Pfade, aber in deutlich schlechterer Laufzeit.

Sowohl der Algorithmus von Jarník-Prim als auch Kruskals Wahr. Algorithmus funktionieren auch bei negativen Kantengewichten.

(JP braucht kleine Anpassung: d[u] muss beim Rausholen aus der PQ auf $-\infty$ gesetzt werden.)

Dijkstra funktioniert nicht, wenn negative Kantengewichte vor-Falsch. handen sind.

Dijkstra funktioniert nicht, wenn es negative **Zyklen** gibt (⇒ Endlosschleife).

Ansonsten bestimmt Dijkstra auch mit negativen Kantengewichten korrekte kürzeste Pfade, aber in deutlich schlechterer Laufzeit.

Bellman-Ford bestimmt stets einen **beliebigen** Spannbaum.

Sowohl der Algorithmus von Jarník-Prim als auch Kruskals Algorithmus funktionieren auch bei negativen Kantengewichten.

(JP braucht kleine Anpassung: d[u] muss beim Rausholen aus der PQ auf $-\infty$ gesetzt werden.)

Dijkstra funktioniert nicht, wenn negative Kantengewichte vorhanden sind.

Dijkstra funktioniert nicht, wenn es negative **Zyklen** gibt $(\Rightarrow$ Endlosschleife).

Ansonsten bestimmt Dijkstra auch **mit** negativen Kantengewichten **korrekte kürzeste Pfade**, aber in **deutlich schlechterer Laufzeit**.

Bellman-Ford bestimmt stets einen **beliebigen** Spannbaum. **Falsch.**

Nur wenn keine negativen Zyklen vorhanden sind!

Aufgabe 2: Streaming MST

Gegeben sei ein ungerichteter zusammenhängender Graph G=(V,E) mit n Knoten, m Kanten und positiven Kantengewichten. Die Knoten sind lokal gespeichert, die Kanten sind hingegen zunächst **unbekannt** und können nur **stückweise** (und in zufälliger Reihenfolge) aus dem Netz angefordert und im Speicher gehalten werden, da **nur** O(n) **Platz** zur Verfügung steht. Gebt einen Algorithmus an, der unter diesen Einschränkungen einen MST von G bestimmt.

Lösung zu Aufgabe 2

- Verwende eine Union-Find-Datenstruktur (wie bei Kruskal).
- Falls die neu angeforderte Kante zwei Teilbäume verbindet, füge sie hinzu.
- Falls sie zwei Knoten im selben Teilbaum verbindet, füge sie provisorisch hinzu, schmeiße auf dem Pfad zwischen den Knoten die schwerste Kante raus.
- Laufzeit in O(m ⋅ n), da bei der Bestimmung des Pfades maximal n − 1 Kanten abgelaufen werden (es sind zu jedem Zeitpunkt maximal n Kanten im Graphen enthalten).

Aufgabe 3: Streaming MST mit Dünger

Wie bei Aufgabe 2:

Gegeben sei ein ungerichteter zusammenhängender Graph G = (V, E) mit n Knoten, m Kanten und positiven Kantengewichten. Die Knoten sind lokal gespeichert, die Kanten sind hingegen zunächst **unbekannt** und können nur **stückweise** (und in zufälliger Reihenfolge) aus dem Netz angefordert und im Speicher gehalten werden, da **nur** O(n) **Platz** zur Verfügung steht. Gebt einen Algorithmus an, der unter diesen Einschränkungen einen MST von G bestimmt.

Er darf **nur** $O(m \log n)$ **Rechenzeit benötigen**.

Lösung zu Aufgabe 3

Wir besorgen uns Kanten-Pakete mit jeweils *n* Kanten.

Mit dem **ersten** Paket bestimmen wir (mit Kruskal) einen Minimum Spanning Forest (MSF) und entfernen alle anderen Kanten.

Restliche Pakete behandeln wir so:

- Füge die n neuen Kanten zum Graphen hinzu
- Bestimme auf diesem neuen Graphen mit (maximal) 2n 1 Kanten einen MSF und entferne alle anderen Kanten
- \Rightarrow Laufzeit in $O(m \log n)$, denn:

Jeder dieser ca. $\frac{m}{n}$ Schritte benötigt Zeit in $O(n \log n)$.

Aufgabe 4: Ein Algorithmus mit Ecken und Kanten

Erneut betrachten wir einen ungerichteten zusammenhängenden Graphen G = (V, E) mit $V = \{1...n\}$ und Kantengewichten in $\{1, 3\}$. G sei in Form eines Adjazenzfeldes gegeben. Gebt einen Algorithmus an, der in O(m) einen MST von G berechnet (und begründet das Laufzeitverhalten).

Lösung zu Aufgabe 4

Getweaktes Jarník-Prim:

- Komplette PriorityQueue wäre **overkill** \Rightarrow **stattdessen** zwei einfache Queues Q_1 und Q_3 (eine für jedes Kantengewicht)
- Merke zu jedem Knoten Pointer in die Queue (oder ⊥)
- ⇒ insert, deleteMin und decreaseKey in O(1) durch einfaches Pointer-Umhängen
- \Rightarrow Laufzeit: O(n+m) = O(m)(da für zusammenhängende Graphen $n \in O(m)$).

Lösung zu Aufgabe 4

Getweaktes Jarník-Prim:

- Komplette PriorityQueue wäre **overkill** \Rightarrow **stattdessen** zwei einfache Queues Q_1 und Q_3 (eine für jedes Kantengewicht)
- Merke zu jedem Knoten Pointer in die Queue (oder ⊥)
- ⇒ insert, deleteMin und decreaseKey in O(1) durch einfaches Pointer-Umhängen
- \Rightarrow Laufzeit: O(n+m) = O(m) (da für zusammenhängende Graphen $n \in O(m)$).

(Eine clevere Alternative wäre, die Kanten mit **Bucketsort** zu sortieren und dann **Kruskal** draufloszulassen ⇒ Laufzeit:

$$O\left(m\cdot\alpha_T(m,n)\right)\stackrel{\text{realistisch}}{\approx}O(5\cdot m)=O(m)$$
. Aber Achtung, α_T ist **nicht** konstant, deshalb " \approx "!)

Danke für eure Aufmerksamkeit! (2)

FERRY TALES

