Math 460. Applied Data Mining. Exam 3

Similar problems and solutions to Problem 1, 2 and 3 can be found here. Take photos of your answers and submit it to Canvas.

Problem 1.

Given the data.

	Age	Sex	Survived
A	27	Μ	0
В	30	\mathbf{F}	1
\mathbf{C}	80	\mathbf{F}	1
D	50	\mathbf{M}	0
\mathbf{E}	60	\mathbf{F}	0
F	70	F	1

- a. Let G be a female of 55 years old. Use 1NN to predict whether G is survived (Survived =1) or not (Survived = 0). Does the prediction change if used 3NN?
- b. Given the following data, use 1NN and 3NN to predict the salary for G (a female of 55 years old).

	Age	Sex	Salary (k)
A	27	\mathbf{M}	80
В	30	\mathbf{F}	70
\mathbf{C}	80	\mathbf{F}	90
D	50	\mathbf{M}	60
\mathbf{E}	60	\mathbf{F}	10
F	70	F	100

Problem 2.

Given the data. Consider x as 1 and o as 0.

With EB = 1.4, EA = 3, EC = 3, ED = 4,

- a. Use the uniform weights to calculate the predicted probability and the prediction of 3NN for E.
- b. Use the **distance weights** to calculate the predicted probability and the prediction of **3NN** for E.
- c. Use the distance weights to calculate the predicted probability and the prediction of 4NN for E.

Problem 3 Given the utility matrix

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	3	4	
User 1	3	1	2	3	3
User 2	2	3	4	3	5
User 3	3	3	1	4	4
User 4	1	5	5	4	2

Should we recommend Item 5 to Alice? Calculate her estimated rating on Item 5 to answer the question. Recommend the item if Alice's rating is 4 or above.

- a. Use user-based KNN, with k=2 and Manhantan distance.
- b. Use item-based KNN, with k=3 and cosine similarity.