- 7. a. What do you think is true of common external tangents \overline{AB} and \overline{CD} ? Prove it.
 - b. Will your results in part (a) be true if the circles are congruent?

- **8.** Given: \overline{TR} and \overline{TS} are tangents to $\bigcirc O$ from T; $m \angle RTS = 36$
 - a. Copy the diagram. Draw \overline{RS} and find $m \angle TSR$ and $m \angle TRS$.
 - **b.** Draw radii \overline{OS} and \overline{OR} and find $m \angle ORS$ and $m \angle OSR$.
 - c. Find $m \angle ROS$.
 - d. Does your result in part (c) support one of your conclusions about angles in Classroom Exercise 5? Explain.
- **9.** Draw $\bigcirc O$ with perpendicular radii \overrightarrow{OX} and \overrightarrow{OY} . Draw tangents to the circle at X and Y.
 - a. If the tangents meet at Z, what kind of figure is OXZY? Explain.
 - **b.** If OX = 5, find OZ.
- 10. Given: \overline{PT} is tangent to $\bigcirc O$ at T; $\overline{TS} \perp \overline{PO}$ Complete the following statements.
 - a. TS is the geometric mean between ? and.
 - **b.** TO is the geometric mean between ? and .
 - c. If OS = 6 and SP = 24, $TS = \frac{?}{}$ and TP =

11. Given: RS is a common internal tangent to $\bigcirc A$ and $\bigcirc B$.

- B 12. Discover and prove a theorem about two lines tangent to a circle at the endpoints of a diameter.
 - 13. Is there a theorem about spheres related to the theorem in Exercise 12? If so, state the theorem.
 - 14. Quad. ABCD is circumscribed about a circle. Discover and prove a relationship between AB + DCAD + BC.

15. PA, PB, and RS are tangents. why PR + RS + SP =Explain PA + PB.

