Байесовское мультимоделирование: вариационный вывод-2

Московский Физико-Технический Институт

2021

Вариационная оценка, ELBO

Вариационная оценка Evidence, Evidence lower bound — метод нахождения приближенного значения аналитически невычислимого распределения $p(\mathbf{w}|\mathfrak{D},\mathbf{h})$ распределением $q(\mathbf{w}) \in \mathfrak{Q}$. Получение вариационной нижней оценки обычно сводится к задаче минимизации

$$\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathfrak{D})) = -\int_{\mathbf{w}} q(\mathbf{w})\log \frac{p(\mathbf{w}|\mathfrak{D})}{q(\mathbf{w})} d\mathbf{w} = \mathsf{E}_{\mathbf{w}}\log p(\mathfrak{D}|\mathbf{w}) - \mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})).$$

Вариационный вывод и expectation propogation (Bishop)

Аппроксимация Лапласа и вариационная оценка

Вариационный вывод: наивная интерпретация

Вариационная оценка обоснованности получается путем приближения заранее определенным параметрическим непрерывным распределением (нормальным) апостериорного распределения. Задача получения вариационной оценки сводится к минимизиации

$$\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathfrak{D})) = -\int_{\mathbf{w}} q(\mathbf{w})\log \frac{p(\mathbf{w}|\mathfrak{D})}{q(\mathbf{w})} d\mathbf{w} = \mathsf{E}_{\mathbf{w}}\log p(\mathfrak{D}|\mathbf{w}) - \mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})).$$

МСМС и вариационный вывод

Идея МСМС: Порождаем сэмплы из простого распределения и принимаем их, если заданное отношение больше порога:

$$\min\left(1, \frac{\rho(\boldsymbol{w}^{\tau}|\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{h})}{\rho(\boldsymbol{w}^{\tau-1}|\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{h})}\right),$$

где \mathbf{w}^{τ} выбирается на основе предыдущего сэмпла:

$$\mathbf{w}^{\tau} = T(\mathbf{w}^{\tau-1}).$$

Salimans et al., 2014: будем интерпретировать последовательность применения оператора $\mathcal T$ как оптимизацию вариационной оценки:

$$T^1 \circ \dots T^{\eta}(\mathbf{w}) o
ho(\mathbf{w}^{ au}|\mathbf{y}, \mathbf{X}, \mathbf{h}).$$

Maclaurin et. al, 2015: в качестве оператора T будем рассматривать оператор оптимизации. Откажемся от отклонения сэмплов по порогу.

Оператор оптимизации, Maclaurin et. al, 2015

Определение

Назовем оператором оптимизации алгоритм T выбора вектора параметров ${\boldsymbol w}'$ по параметрам предыдущего шага ${\boldsymbol w}$:

$$\mathbf{w}' = T(\mathbf{w}).$$

Определение

Пусть L — дифференцируемая функция потерь.

Оператором градиентного спуска назовем следующий оператор:

$$T(\mathbf{w}) = \mathbf{w} - \beta \nabla L(\mathbf{w}, \mathbf{y}, \mathfrak{D}).$$

Градиентный спуск для оценки правдоподобия

Рассмотрим максимизацию совместного распределения параметров:

$$L = -\log p(\mathfrak{D}, \boldsymbol{w}|\boldsymbol{h}) = -\sum_{\mathfrak{D} \in \mathfrak{D}} \log p(\mathfrak{D}|\boldsymbol{w}, \boldsymbol{h}) p(\boldsymbol{w}|\boldsymbol{h})$$

Проведем оптимизацию нейросети из r различных начальных приближений $\boldsymbol{w}_1, \dots, \boldsymbol{w}_r$ с использованием градиентного спуска:

$$\mathbf{w}' = T(\mathbf{w}).$$

Векторы параметров $\mathbf{w}_1, \dots, \mathbf{w}_r$ соответствуют некоторому скрытому распределению $q(\mathbf{w})$.

Энтропия

Формулу вариационной оценки можно переписать с использованием энтропии:

$$\log p(\mathfrak{D}|\mathbf{f}) \ge \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathfrak{D}, \mathbf{w}|\mathbf{h})}{q(\mathbf{w})} d\mathbf{w} =$$

$$\mathsf{E}_{q(\mathbf{w})}[\log p(\mathfrak{D}, \mathbf{w}|\mathbf{h})] + \mathsf{S}(q(\mathbf{w})),$$

где S(q(w)) — энтропия:

$$S(q(\mathbf{w})) = -\int_{\mathbf{w}} q(\mathbf{w}) \log q(\mathbf{w}) d\mathbf{w}.$$

Градиентный спуск для оценки правдоподобия

Утверждение 3

Пусть L — липшицева функция, оператор оптимизации — биекция. Тогда разность энтропии на различных шагах оптимизации вычисляется как:

$$S(q'(w)) - S(q(w)) \simeq \frac{1}{r} \sum_{g=1}^{r} (-\beta Tr[H(w'^g)] - \beta^2 Tr[H(w'^g)]).$$

Итоговая оценка на шаге оптимизации au:

$$\log \hat{p}(\boldsymbol{Y}|\mathfrak{D},\boldsymbol{h}) \sim \frac{1}{r} \sum_{g=1}^{r} L(\boldsymbol{w}_{\tau}^{g},\mathfrak{D},\boldsymbol{Y}) + S(q^{0}(\boldsymbol{w})) +$$

$$+\frac{1}{r}\sum_{b=1}^{\tau}\sum_{g=1}^{r}\left(-\beta \text{Tr}[\boldsymbol{H}(\boldsymbol{w}_{b}^{g})]-\beta^{2}\text{Tr}[\boldsymbol{H}(\boldsymbol{w}_{b}^{g})\boldsymbol{H}(\boldsymbol{w}_{b}^{g})]\right),$$

 $oldsymbol{w}_b^g$ — вектор параметров старта g на шаге b, $\mathsf{S}(q^0(oldsymbol{w}))$ — начальная энтропия.

Переобучение, Maclaurin et. al. 2015

Градиентный спуск не минимизирует дивергенцию $\mathsf{KL}(q(\boldsymbol{w})||p(\boldsymbol{w}|\mathfrak{D},\boldsymbol{h}))$. При приближении к моде распределения снижается оценка Evidence, что интерпретируется как пересубчение модели.

Стохастическая динамика Ланжевена

Модификация стохастического градиентного спуска:

$$T = \mathbf{w} - \beta \nabla L + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \frac{\alpha}{2})$$

где шаг оптимизации lpha изменяется с количеством итераций:

$$\sum_{\tau=1}^{\infty} \beta_{\tau} = \infty, \quad \sum_{\tau=1}^{\infty} \beta_{\tau}^{2} < \infty.$$

Утверждение [Welling, 2011]. Распределине $q^{\tau}(\mathbf{w})$ сходится к апостериорному распределению $p(\mathbf{w}|\mathbf{X},\mathbf{f})$.

Изменение энтропии с учетом добавленного шума:

$$\hat{\mathsf{S}}\big(q^{\tau}(\boldsymbol{w})\big) \geq \frac{1}{2}|\boldsymbol{w}|\mathsf{log}\big(\mathsf{exp}\big(\frac{2\mathsf{S}(q^{\tau}(\boldsymbol{w}))}{|\boldsymbol{w}|}\big) + \mathsf{exp}\big(\frac{2\mathsf{S}(\epsilon)}{|\boldsymbol{w}|}\big)\big).$$

Стохастическая динамика Ланжевена в генеративных моделях

Altieri et al., 2015: будем сэмплировать скрытую переменную z и приближать его распределение к максимуму вариационной оценки с использованием динамики Ланжевена.

Стохастическая динамика Ланжевена

Распределение параметров после 2000 итераций:

Reparametrization trick: проблемы

Идея репараметризации:

$$arepsilon = \mathcal{S}_{m{ heta}}(m{w}), \quad m{w} = \mathcal{S}_{m{ heta}}^{-1}(arepsilon).$$

Тогда:

$$\nabla \theta \mathsf{E}_q f(\mathbf{w}) = \mathsf{E}_q \nabla_{\theta} f(S_{\theta}^{-1}(\varepsilon)) = \mathsf{E}_q \nabla_{\mathbf{w}} f(S_{\theta}^{-1}(\varepsilon)) \nabla_{\theta} S^{-1}(\varepsilon).$$

Пример:

$$w \sim \mathcal{N}(\mu, \sigma^2) \rightarrow S(w) = \frac{w - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Проблема: часто получение S^{-1} вычислительно дорого.

Implicit reparametrization trick

$$\nabla_{\boldsymbol{\theta}} E_q f(\boldsymbol{w}) = \mathsf{E}_q \nabla_{\boldsymbol{w}} f(\boldsymbol{w}) \nabla_{\boldsymbol{\theta}} \boldsymbol{w}.$$

Применим формулу полной производной к $\varepsilon = S_{\theta}(\textbf{\textit{w}})$:

$$abla_{m{w}}S_{m{ heta}}(m{w})
abla_{m{ heta}}m{w}+
abla_{m{ heta}}S_{m{ heta}}(m{w})=0
ightarrow$$

$$egin{aligned} ightarrow
abla_{m{ heta}} \mathbf{w} &= -(
abla_{m{w}} S_{m{ heta}}(m{w}))^{-1}
abla_{m{ heta}} S_{m{ heta}}. \end{aligned}$$

Получили формулу без обратной функции к S.

Для одномерных пространств в качестве S можно взять, например:

$$S(\mathbf{w}) = F(\mathbf{w}|\mathbf{\theta}) \sim \mathcal{U}(0,1).$$

Table 4: Test negative log-likelihood (lower is better) for VAE on MNIST. Mean \pm standard deviation over 5 runs. The von Mises-Fisher results are from [9].

Prior	Variational posterior	D=2	D=5	D = 10	D = 20	D = 40
$\mathcal{N}(0,1)$	$\mathcal{N}(\mu,\sigma^2)$	131.1 ± 0.6	107.9 ± 0.4	92.5 ± 0.2	88.1 ± 0.2	88.1 ± 0.0
Gamma(0.3, 0.3)	$Gamma(\alpha, \beta)$	132.4 ± 0.3	108.0 ± 0.3	94.0 ± 0.3	90.3 ± 0.2	90.6 ± 0.2
Gamma(10, 10)	$\operatorname{Gamma}(\alpha,\beta)$	135.0 ± 0.2	107.0 ± 0.2	92.3 ± 0.2	88.3 ± 0.2	88.3 ± 0.1
Uniform(0,1)	$\mathrm{Beta}(lpha,eta)$	128.3 ± 0.2	107.4 ± 0.2	94.1 ± 0.1	88.9 ± 0.1	88.6 ± 0.1
Beta(10, 10)	$\mathrm{Beta}(lpha,eta)$	131.1 ± 0.4	106.7 ± 0.1	92.1 ± 0.2	87.8 ± 0.1	${f 87.7} \pm 0.1$
$\operatorname{Uniform}(-\pi,\pi)$	$vonMises(\mu, \kappa)$	127.6 ± 0.4	107.5 ± 0.4	94.4 ± 0.5	90.9 ± 0.1	91.5 ± 0.4
vonMises(0, 10)	$vonMises(\mu,\kappa)$	130.7 ± 0.8	107.5 ± 0.5	92.3 ± 0.2	87.8 ± 0.2	87.9 ± 0.3
$\operatorname{Uniform}(S^D)$	von Mises Fisher ($\pmb{\mu}, \kappa)$	132.5 ± 0.7	108.4 ± 0.1	93.2 ± 0.1	89.0 ± 0.3	90.9 ± 0.3

Дискретные распределения: релаксация

Дискретные распределения в вариационном выводе

Релаксация:

- Распределение Дирихле (если использовать Implicit reparametrization trick)
- Gumbel-softmax:

$$p(\mathbf{w}) = \Gamma(k)\tau^{k-1}(\sum_{i=1}^k \alpha_i/w_i)^{-k} \prod_{i=1}^k (\alpha_i/w_i\tau + 1)$$

- ▶ Возможна репараметризация
- ▶ нет аналитической формы для KL
- Invertible Gaussian reparametrization:

$$p(\mathbf{w}) = \bar{\text{softmax}}(\alpha), \quad \alpha \sim \mathcal{N},$$

(в знаменатель softmax добавляется константа для гарантии обратимости функции)

- ▶ Возможна репараметризация
- $\blacktriangleright KL(\mathbf{w}_1|\mathbf{w}_2) = KL(\alpha_1|\alpha_2)$
- ► Интерпретация параметров сильно сложнее, чем у GS или Дирихле

Локальная репараметризация

Пусть $y = \text{ReLU}(\boldsymbol{X} \, \boldsymbol{W})$ и матрица параметров \boldsymbol{W} распределена нормально: $w_{i,j} \sim \mathcal{N}(\mu_{i,j}, \sigma_{i,j}^2).$

Тогда результатом линейной операции $\boldsymbol{X}\boldsymbol{W}$ будет гауссовая матрица:

$$\mathbf{G} = \mathbf{X} \mathbf{W}, \quad G_{i,j} \sim \mathcal{N}(\sum_{k} x_{i,k} \mu_{k,j}, \sum_{k} x_{i,k}^2 \sigma_{k,j}^2).$$

Вместо сэмлирования полноценного вектора параметров для каждого элемента батча на каждом шаге оптимизации, сэмплируем элементы из \boldsymbol{G} (то, что идет перед ReLU).

Если \mathbf{w} принимает значения из дискретного набора значений, то пользуясь ЦПТ (в формулировке Ляпунова):

$$\sum_{k} x_{i,k} w_{k,j} \sim \mathcal{N}(\cdot,\cdot).$$

Значит, к дискретным значения также можно применить локальную репараметризацию.

Дивергенция Реньи

$$D_{\alpha}(p(\mathbf{w})|q(\mathbf{w})) = \frac{1}{\alpha-1}\log\int p(\mathbf{w})^{\alpha}q(\mathbf{w})^{1-\alpha}d\mathbf{w}.$$

Table 1: Special cases in the Rényi divergence family.

	α	Definition	Notes
		$f(n) = n(\theta)$	Kullback-Leibler (KL) divergence,
	$\alpha \to 1$	$\int p(oldsymbol{ heta}) \log rac{p(oldsymbol{ heta})}{q(oldsymbol{ heta})} doldsymbol{ heta}$	used in VI ($KL[q p)$) and EP ($KL[p q)$)
	$\alpha = 0.5$	$-2\log(1-\mathrm{Hel}^2[p q])$	function of the square Hellinger distance
	0	$-\log \int_{p(\boldsymbol{\theta})>0} q(\boldsymbol{\theta}) d\boldsymbol{\theta}$	zero when $supp(q) \subseteq supp(p)$
	$\alpha \to 0$		(not a divergence)
	$\alpha = 2$	$-\log(1-\chi^2[p q])$	proportional to the χ^2 -divergence
	0. \ 0.0	$\log \max_{\boldsymbol{\theta} \in \Theta} \frac{p(\boldsymbol{\theta})}{q(\boldsymbol{\theta})}$	worst-case regret in
	$\alpha \to +\infty$		minimum description length principle (19/21

Литература и прочие ресурсы

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- MacKay D. J. C., Mac Kay D. J. C. Information theory, inference and learning algorithms. Cambridge university press, 2003.
- Salimans, Tim, Diederik Kingma, and Max Welling, 2015. Markov chain monte carlo and variational inference: Bridging the gap
- Altieri: http://approximateinference.org/accepted/AltieriDuvenaud2015.pdf
- Stephan Mandt, Matthew D. Hoffman, David M. Blei, 2017. Stochastic Gradient Descent as Approximate Bayesian Inference
- Бахтеев О. Ю., Стрижов В. В. Выбор моделей глубокого обучения субоптимальной сложности //Автоматика и телемеханика. 2018. – № 8. – С. 129-147.
- Figurnov M., Mohamed S., Mnih A. Implicit reparameterization gradients //arXiv preprint arXiv:1805.08498. 2018.
- Jang E., Gu S., Poole B. Categorical reparameterization with gumbel-softmax //arXiv preprint arXiv:1611.01144. 2016.
- Potapczynski A., Loaiza-Ganem G., Cunningham J. P. Invertible gaussian reparameterization: Revisiting the gumbel-softmax //arXiv preprint arXiv:1912.09588. 2019.
- Maddison C. J., Mnih A., Teh Y. W. The concrete distribution: A continuous relaxation of discrete random variables //arXiv preprint arXiv:1611.00712. – 2016.
- Shayer O., Levi D., Fetaya E. Learning discrete weights using the local reparameterization trick //arXiv preprint arXiv:1710.07739. 2017.
- Li Y., Turner R. E. Rényi Divergence Variational Inference //arXiv preprint arXiv:1602.02311. 2016.