Overview

Contents

- 1. The phase-estimation problem
- 2. The phase-estimation procedure
 - Low precision warm-up
 - Quantum Fourier transform
 - General procedure
- 3. Integer factorization by phase estimation
 - Order finding by phase estimation
 - Integer factorization by order finding

1. The phase-estimation problem

Spectral theorem for unitary matrices

The *spectral theorem* is an important fact in linear algebra. Here is a statement of a special case of this theorem, for *unitary matrices*.

Spectral theorem for unitary matrices

Suppose U is an $N \times N$ unitary matrix.

There exists an orthonormal basis $\left\{|\psi_1\rangle,\dots,|\psi_N\rangle\right\}$ of vectors along with complex numbers

$$\lambda_1 = e^{2\pi i \theta_1}, \ldots, \lambda_N = e^{2\pi i \theta_N}$$

such that

$$U = \sum_{k=1}^{N} \lambda_k |\psi_k\rangle \langle \psi_k|$$

Spectral theorem for unitary matrices

Spectral theorem for unitary matrices

Suppose U is an $N \times N$ unitary matrix.

There exists an orthonormal basis $\left\{|\psi_1\rangle,\ldots,|\psi_N\rangle\right\}$ of vectors along with complex numbers

$$\lambda_1 = e^{2\pi i \theta_1}, \ldots, \lambda_N = e^{2\pi i \theta_N}$$

such that

$$U = \sum_{k=1}^{N} \lambda_k |\psi_k\rangle \langle \psi_k|$$

Each vector $|\psi_k\rangle$ is an eigenvector of U having eigenvalue λ_k :

$$U|\psi_k\rangle = \lambda_k|\psi_k\rangle = e^{2\pi i\theta_k}|\psi_k\rangle$$

Phase estimation problem

In the phase estimation problem, we're given two things:

- 1. A description of a unitary quantum circuit on n qubits.
- 2. An n-qubit *quantum state* $|\psi\rangle$.

We're $\frac{promised}{promised}$ that $|\psi\rangle$ is an eigenvector of the unitary operation U described by the circuit, and our goal is to approximate the corresponding eigenvalue.

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U

and an n qubit quantum state $|\psi\rangle$

Promise: $|\psi\rangle$ is an eigenvector of U

Output: An approximation to the number $\theta \in [0, 1)$ satisfying

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

Phase estimation problem

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U

and an n qubit quantum state $|\psi\rangle$

Promise: $|\psi\rangle$ is an eigenvector of U

Output: An approximation to the number $\theta \in [0, 1)$ satisfying

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

We can approximate θ by a fraction

$$\theta \approx \frac{y}{2^m}$$

for $y \in \{0, 1, ..., 2^m - 1\}$.

This approximation is taken "modulo 1."

2. The phase-estimation procedure

Given a circuit for U, we can create a circuit for a controlled-U operation:

Let's consider this circuit:

$$\begin{split} |\pi_0\rangle &= |\psi\rangle|0\rangle \\ |\pi_1\rangle &= \frac{1}{\sqrt{2}}|\psi\rangle|0\rangle + \frac{1}{\sqrt{2}}|\psi\rangle|1\rangle \\ |\pi_2\rangle &= \frac{1}{\sqrt{2}}|\psi\rangle|0\rangle + \frac{1}{\sqrt{2}}(U|\psi\rangle)|1\rangle = |\psi\rangle \otimes \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{e^{2\pi i\theta}}{\sqrt{2}}|1\rangle\right) \end{split}$$

$$\begin{split} |\pi_2\rangle &= |\psi\rangle \otimes \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{e^{2\pi i\theta}}{\sqrt{2}}|1\rangle\right) \\ |\pi_3\rangle &= |\psi\rangle \otimes \left(\frac{1+e^{2\pi i\theta}}{2}|0\rangle + \frac{1-e^{2\pi i\theta}}{2}|1\rangle\right) \end{split}$$

$$\left|\psi\right>\otimes\left(\frac{1+e^{2\pi\mathrm{i}\theta}}{2}\left|0\right>+\frac{1-e^{2\pi\mathrm{i}\theta}}{2}\left|1\right>\right)$$

Measuring the top qubit yields the outcomes 0 and 1 with these probabilities:

$$p_0 = \left| \frac{1 + e^{2\pi i \theta}}{2} \right|^2 = \cos^2(\pi \theta)$$
 $p_1 = \left| \frac{1 - e^{2\pi i \theta}}{2} \right|^2 = \sin^2(\pi \theta)$

Iterating the unitary operation

How can we learn more about θ ? One possibility is to apply the controlled-U operation twice (or multiple times):

Let's use two control qubits to perform the controlled-U operations — and then we'll see how best to proceed.

$$\begin{split} |\pi_1\rangle &= |\psi\rangle \otimes \frac{1}{2} \sum_{\alpha_0=0}^1 \sum_{\alpha_1=0}^1 |\alpha_1\alpha_0\rangle \\ |\pi_2\rangle &= |\psi\rangle \otimes \frac{1}{2} \sum_{\alpha_0=0}^1 \sum_{\alpha_1=0}^1 e^{2\pi i \alpha_0 \theta} |\alpha_1\alpha_0\rangle \end{split}$$

Let's use two control qubits to perform the controlled-U operations — and then we'll see how best to proceed.

$$\begin{split} |\pi_3\rangle &= |\psi\rangle \otimes \frac{1}{2} \sum_{\alpha_0=0}^1 \sum_{\alpha_1=0}^1 e^{2\pi i (2\alpha_1 + \alpha_0)\theta} |\alpha_1 \alpha_0\rangle \\ \\ &= |\psi\rangle \otimes \frac{1}{2} \sum_{x=0}^3 e^{2\pi i x\theta} |x\rangle \end{split}$$

$$\frac{1}{2} \sum_{x=0}^{3} e^{2\pi i x \theta} |x\rangle$$

What can we learn about θ from this state? Suppose we're promised that $\theta = \frac{y}{4}$ for $y \in \{0, 1, 2, 3\}$. Can we figure out which one it is?

Define a two-qubit state for each possibility:

$$\begin{split} |\varphi_{y}\rangle &= \frac{1}{2} \sum_{x=0}^{3} e^{2\pi i \frac{xy}{4}} |x\rangle \\ |\varphi_{0}\rangle &= \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle + \frac{1}{2} |2\rangle + \frac{1}{2} |3\rangle \\ |\varphi_{1}\rangle &= \frac{1}{2} |0\rangle + \frac{i}{2} |1\rangle - \frac{1}{2} |2\rangle - \frac{i}{2} |3\rangle \\ |\varphi_{2}\rangle &= \frac{1}{2} |0\rangle - \frac{1}{2} |1\rangle + \frac{1}{2} |2\rangle - \frac{1}{2} |3\rangle \\ |\varphi_{3}\rangle &= \frac{1}{2} |0\rangle - \frac{i}{2} |1\rangle - \frac{1}{2} |2\rangle + \frac{i}{2} |3\rangle \end{split}$$

These vectors are orthonormal — so they can be discriminated perfectly by a projective measurement.

$$\begin{split} |\varphi_{y}\rangle &= \frac{1}{2} \sum_{x=0}^{3} e^{2\pi i \frac{x \, y}{4}} |x\rangle \\ |\varphi_{0}\rangle &= \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle + \frac{1}{2} |2\rangle + \frac{1}{2} |3\rangle \\ |\varphi_{1}\rangle &= \frac{1}{2} |0\rangle + \frac{i}{2} |1\rangle - \frac{1}{2} |2\rangle - \frac{i}{2} |3\rangle \\ |\varphi_{2}\rangle &= \frac{1}{2} |0\rangle - \frac{1}{2} |1\rangle + \frac{1}{2} |2\rangle - \frac{1}{2} |3\rangle \\ |\varphi_{3}\rangle &= \frac{1}{2} |0\rangle - \frac{i}{2} |1\rangle - \frac{1}{2} |2\rangle + \frac{i}{2} |3\rangle \end{split}$$

The unitary matrix V whose *columns* are $|\phi_0\rangle$, $|\phi_1\rangle$, $|\phi_2\rangle$, $|\phi_3\rangle$ has this action:

$$V|y\rangle = |\phi_y\rangle$$
 (for every $y \in \{0, 1, 2, 3\}$)

We can identify y by performing the inverse of V then a standard basis measurement.

$$V^{\dagger}|\phi_{y}\rangle = |y\rangle$$
 (for every $y \in \{0, 1, 2, 3\}$)

Two-qubit phase estimation

$$\mathsf{QFT}_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \mathfrak{i} & -1 & -\mathfrak{i} \\ 1 & -1 & 1 & -1 \\ 1 & -\mathfrak{i} & -1 & \mathfrak{i} \end{pmatrix}$$

This matrix is associated with the *discrete Fourier transform* (for 4 dimensions).

When we think about this matrix as a unitary operation, we call it the quantum Fourier transform.

The complete circuit for learning $y \in \{0, 1, 2, 3\}$ when $\theta = y/4$:

Two-qubit phase estimation

The complete circuit for learning $y \in \{0, 1, 2, 3\}$ when $\theta = y/4$:

The outcome probabilities when we run the circuit, as a function of θ :

The quantum Fourier transform is defined for each positive integer N as follows.

$$\begin{split} \mathsf{QFT}_{\mathsf{N}} &= \frac{1}{\sqrt{N}} \sum_{\mathsf{x}=0}^{N-1} \sum_{\mathsf{y}=0}^{N-1} e^{2\pi i \frac{\mathsf{x}\,\mathsf{y}}{N}} |\mathsf{x}\rangle \langle \mathsf{y}| \\ \mathsf{QFT}_{\mathsf{N}} |\mathsf{y}\rangle &= \frac{1}{\sqrt{N}} \sum_{\mathsf{x}=0}^{N-1} e^{2\pi i \frac{\mathsf{x}\,\mathsf{y}}{N}} |\mathsf{x}\rangle \end{split}$$

$$QFT_N|y\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{\infty} e^{2\pi i \sqrt{N}} |x\rangle$$

- Example

$$QFT_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = H$$

— Example

$$\mathsf{QFT}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \frac{-1+\mathrm{i}\sqrt{3}}{2} & \frac{-1-\mathrm{i}\sqrt{3}}{2} \\ 1 & \frac{-1-\mathrm{i}\sqrt{3}}{2} & \frac{-1+\mathrm{i}\sqrt{3}}{2} \end{pmatrix}$$

The quantum Fourier transform is defined for each positive integer N as follows.

$$\begin{split} \mathsf{QFT}_{\mathsf{N}} &= \frac{1}{\sqrt{\mathsf{N}}} \sum_{\mathsf{x}=0}^{\mathsf{N}-1} \sum_{\mathsf{y}=0}^{\mathsf{N}-1} e^{2\pi i \frac{\mathsf{x}\,\mathsf{y}}{\mathsf{N}}} |\mathsf{x}\rangle \langle \mathsf{y}| \\ \mathsf{QFT}_{\mathsf{N}} |\mathsf{y}\rangle &= \frac{1}{\sqrt{\mathsf{N}}} \sum_{\mathsf{x}=0}^{\mathsf{N}-1} e^{2\pi i \frac{\mathsf{x}\,\mathsf{y}}{\mathsf{N}}} |\mathsf{x}\rangle \end{split}$$

- Example

$$QFT_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

The quantum Fourier transform is defined for each positive integer N as follows.

$$\begin{aligned} \mathsf{QFT}_{\mathsf{N}} &= \frac{1}{\sqrt{\mathsf{N}}} \sum_{\mathsf{x}=0}^{\mathsf{N}-1} \sum_{\mathsf{y}=0}^{\mathsf{N}-1} e^{2\pi i \frac{\mathsf{x}\,\mathsf{y}}{\mathsf{N}}} |x\rangle \langle \mathsf{y}| \\ \\ \mathsf{QFT}_{\mathsf{N}} |y\rangle &= \frac{1}{\sqrt{\mathsf{N}}} \sum_{\mathsf{x}=0}^{\mathsf{N}-1} e^{2\pi i \frac{\mathsf{x}\,\mathsf{y}}{\mathsf{N}}} |x\rangle \end{aligned}$$

- Example

$$\label{eq:qft} \mathsf{QFT}_8 = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \frac{1+i}{\sqrt{2}} & i & \frac{-1+i}{\sqrt{2}} & -1 & \frac{-1-i}{\sqrt{2}} & -i & \frac{1-i}{\sqrt{2}} \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & \frac{-1+i}{\sqrt{2}} & -i & \frac{1+i}{\sqrt{2}} & -1 & \frac{1-i}{\sqrt{2}} & i & \frac{-1-i}{\sqrt{2}} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & \frac{-1-i}{\sqrt{2}} & i & \frac{1-i}{\sqrt{2}} & -1 & \frac{1+i}{\sqrt{2}} & -i & \frac{-1+i}{\sqrt{2}} \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & \frac{1-i}{\sqrt{2}} & -i & \frac{-1-i}{\sqrt{2}} & -1 & \frac{-1+i}{\sqrt{2}} & i & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

The quantum Fourier transform is defined for each positive integer N as follows.

$$\mathsf{QFT}_{\mathsf{N}} \; = \; \frac{1}{\sqrt{\mathsf{N}}} \sum_{x=0}^{\mathsf{N}-1} \sum_{y=0}^{\mathsf{N}-1} e^{2\pi i \frac{x\cdot y}{\mathsf{N}}} |x\rangle\langle y| \; = \; \frac{1}{\sqrt{\mathsf{N}}} \sum_{x=0}^{\mathsf{N}-1} \sum_{y=0}^{\mathsf{N}-1} \omega_{\mathsf{N}}^{x\cdot y} |x\rangle\langle y|$$

Useful shorthand notation:

$$\omega_{N} = e^{\frac{2\pi i}{N}} = \cos\left(\frac{2\pi}{N}\right) + i\sin\left(\frac{2\pi}{N}\right)$$

Circuits for the QFT

We can implement QFT_N efficiently with a quantum circuit when N is a power of 2.

The implementation makes use of *controlled-phase* gates:

The implementation is $\underline{\textit{recursive}}$ in nature. As an example, here is the circuit for QFT $_{32}$:

Circuits for the QFT

Cost analysis

Let $s_{\,m}$ denote the number of gates we need for m qubits.

- For m = 1, a single Hadamard gate is required.
- For $m \ge 2$, these are the gates required:

```
s_{\,m-1} gates for the QFT on m-1 qubits m-1 controlled phase gates m-1 swap gates
```

1 Hadamard gate

$$s_{m} = \begin{cases} 1 & m = 1 \\ s_{m-1} + 2m - 1 & m \ge 2 \end{cases}$$

This is a *recurrence relation* with a closed-form solution:

$$s_m = \sum_{k=1}^m (2k-1) = m^2$$

Additional remarks:

- . The number of swap gates can be reduced.
- Approximations to QFT₂^m can be done at lower cost (and lower depth).

The general phase-estimation procedure, for any choice of m:

- Warning

If we perform each \mathbf{U}^k -operation by repeating a controlled- \mathbf{U} operation \mathbf{k} times, increasing the number of control qubits \mathbf{m} comes at a high cost.

$$\begin{split} |\pi\rangle &= |\psi\rangle \otimes \frac{1}{2^m} \sum_{y=0}^{2^m-1} \sum_{x=0}^{2^{m-1}} e^{2\pi i x (\theta - y/2^m)} |y\rangle \\ p_y &= \left| \frac{1}{2^m} \sum_{x=0}^{2^{m-1}} e^{2\pi i x (\theta - y/2^m)} \right|^2 \end{split}$$

Best approximations

Suppose $y/2^m$ is the best approximation to θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \le 2^{-(m+1)}$$

Then the probability to measure y will relatively high:

$$p_{y} \ge \frac{4}{\pi^2} \approx 0.405$$

Worse approximations

Suppose there is a better approximation to θ between $y/2^m$ and θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \ge 2^{-m}$$

Then the probability to measure y will be relatively low:

$$p_y \le \frac{1}{4}$$

Best approximations

Suppose $y/2^m$ is the best approximation to θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \le 2^{-(m+1)}$$

Then the probability to measure y will relatively high:

$$p_y \ge \frac{4}{\pi^2} \approx 0.405$$

Worse approximations

Suppose there is a better approximation to θ between $y/2^m$ and θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \ge 2^{-m}$$

Then the probability to measure y will be relatively low:

$$p_y \le \frac{1}{4}$$

Best approximations

Suppose $y/2^m$ is the best approximation to θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \le 2^{-(m+1)}$$

Then the probability to measure y will relatively high:

$$p_{y} \ge \frac{4}{\pi^2} \approx 0.405$$

Worse approximations

Suppose there is a better approximation to θ between $y/2^m$ and θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \ge 2^{-m}$$

Then the probability to measure y will be relatively low:

$$p_y \le \frac{1}{4}$$

Best approximations

Suppose y/2^m is the best approximation to A:

$$\left|\theta - \frac{y}{2^m}\right|_1 \le 2^{-(m+1)}$$

Then the probability to measure u will relatively high:

$$p_{y} \ge \frac{4}{\pi^2} \approx 0.405$$

Worse approximations

Suppose there is a better approximation to θ between $u/2^m$ and θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \ge 2^{-m}$$

Then the probability to measure u will be relatively low:

$$p_y \leq \frac{1}{4}$$

To obtain an approximation $y/2^m$ that is very likely to satisfy

$$\left|\theta - \frac{y}{2^m}\right|_1 < 2^{-m}$$

we can run the phase estimation procedure using m control gubits several times and take u to be the mode of the outcomes.

(The eigenvector lab) is unchanged by the procedure and can be reused as many times as needed.)

3. Integer factorization by phase estimation

The order-finding problem

For each positive integer N we define

$$\mathbb{Z}_N = \{0, 1, \dots, N-1\}$$

For instance, $\mathbb{Z}_1 = \{0\}$, $\mathbb{Z}_2 = \{0, 1\}$, $\mathbb{Z}_3 = \{0, 1, 2\}$, and so on.

We can view arithmetic operations on \mathbb{Z}_N as being defined modulo N.

— Example –

Let N = 7. We have $3 \cdot 5 = 15$, which leaves a remainder of 1 when divided by 7.

This is often expressed like this:

$$3 \cdot 5 \equiv 1 \pmod{7}$$

We can also simply write $3 \cdot 5 = 1$ when it's clear we're working in \mathbb{Z}_7 .

The elements $\alpha \in \mathbb{Z}_N$ that satisfy $gcd(\alpha, N) = 1$ are special.

$$\mathbb{Z}_{N}^{*} = \{ \alpha \in \mathbb{Z}_{N} : \gcd(\alpha, N) = 1 \}$$

Example

$$\mathbb{Z}_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$$

The order-finding problem

- Fact -

For every $a \in \mathbb{Z}_N^*$ there must exist a positive integer k such that $a^k = 1$. The smallest such k is called the <u>order</u> of a in \mathbb{Z}_N^* .

- Example -

For N = 21, these are the smallest powers for which this works:

$$1^1 = 1$$
 $5^6 = 1$ $11^6 = 1$ $17^6 = 1$
 $2^6 = 1$ $8^2 = 1$ $13^2 = 1$ $19^6 = 1$
 $4^3 = 1$ $10^6 = 1$ $16^3 = 1$ $20^2 = 1$

— Order-finding problem

Input: Positive integers α and N with $gcd(\alpha, N) = 1$.

Output: The smallest positive integer r such that $a^r \equiv 1 \pmod{N}$

No efficient classical algorithm for this problem is known — an efficient algorithm for order-finding implies an efficient algorithm for integer factorization.

Order-finding by phase-estimation

To connect the order-finding problem to phase estimation, consider a system whose classical state set is \mathbb{Z}_N .

For a given element $\alpha \in \mathbb{Z}_{N}^{*}$, define an operation as follows:

$$M_{\alpha}|x\rangle = |\alpha x\rangle$$
 (for each $x \in \mathbb{Z}_N$)

This is a *unitary operation* — but only because $gcd(\alpha, N) = 1!$

Example

Let N = 15 and $\alpha = 2$. The operation M_{α} has this action:

$$\begin{array}{llll} M_2|0\rangle = |0\rangle & M_2|5\rangle = |10\rangle & M_2|10\rangle = |5\rangle \\ M_2|1\rangle = |2\rangle & M_2|6\rangle = |12\rangle & M_2|11\rangle = |7\rangle \\ M_2|2\rangle = |4\rangle & M_2|7\rangle = |14\rangle & M_2|12\rangle = |9\rangle \\ M_2|3\rangle = |6\rangle & M_2|8\rangle = |1\rangle & M_2|13\rangle = |11\rangle \\ M_2|4\rangle = |8\rangle & M_2|9\rangle = |3\rangle & M_2|14\rangle = |13\rangle \end{array}$$

Order-finding by phase-estimation

To connect the order-finding problem to phase estimation, consider a system whose classical state set is \mathbb{Z}_N .

For a given element $\alpha \in \mathbb{Z}_N^*$, define an operation as follows:

$$M_{\alpha}|x\rangle = |\alpha x\rangle$$
 (for each $x \in \mathbb{Z}_N$)

This is a *unitary operation* — but only because $gcd(\alpha, N) = 1!$

Main idea

The eigenvalues of M_a are closely connected with the order of a.

By approximating certain eigenvalues with enough precision using phase estimation, we'll be able to compute the order.

Eigenvectors and eigenvalues

This is an eigenvector of M_a :

$$|\psi_0\rangle = \frac{|1\rangle + |\alpha\rangle + \dots + |\alpha^{r-1}\rangle}{\sqrt{r}}$$

The associated eigenvalue is 1:

$$\mathcal{M}_{\alpha}|\psi_{0}\rangle = \frac{|\alpha\rangle + |\alpha^{2}\rangle + \dots + |\alpha^{r}\rangle}{\sqrt{r}} = \frac{|\alpha\rangle + \dots + |\alpha^{r-1}\rangle + |1\rangle}{\sqrt{r}} = |\psi_{0}\rangle$$

To identify more eigenvectors, first recall that

$$\omega_{\rm r} = e^{2\pi i/r}$$

This is another eigenvector of M_{α} :

$$|\psi_1\rangle = \frac{|1\rangle + \omega_r^{-1}|\alpha\rangle + \dots + \omega_r^{-(r-1)}|\alpha^{r-1}\rangle}{\sqrt{r}}$$

Eigenvectors and eigenvalues

$$\begin{split} M_{\alpha}|\psi_{1}\rangle &= \frac{|\alpha\rangle + \omega_{r}^{-1}|\alpha^{2}\rangle + \cdots + \omega_{r}^{-(r-1)}|\alpha^{r}\rangle}{\sqrt{r}} \\ &= \frac{\omega_{r}|1\rangle + |\alpha\rangle + \omega_{r}^{-1}|\alpha^{2}\rangle + \cdots + \omega_{r}^{-(r-2)}|\alpha^{r-1}\rangle}{\sqrt{r}} \\ &= \omega_{r}\bigg(\frac{|1\rangle + \omega_{r}^{-1}|\alpha\rangle + \omega_{r}^{-2}|\alpha^{2}\rangle + \cdots + \omega_{r}^{-(r-1)}|\alpha^{r-1}\rangle}{\sqrt{r}}\bigg) \\ &= \omega_{r}|\psi_{1}\rangle \end{split}$$

Additional eigenvectors can be identified by similar reasoning...

For each $j \in \{0, ..., r-1\}$, this is an eigenvector of M_a :

$$\begin{split} |\psi_{j}\rangle &= \frac{|1\rangle + \omega_{r}^{-j}|\alpha\rangle + \cdots + \omega_{r}^{-j(r-1)}|\alpha^{r-1}\rangle}{\sqrt{r}} \\ M_{\alpha}|\psi_{j}\rangle &= \omega_{r}^{j}|\psi_{j}\rangle \end{split}$$

A convenient eigenvector

$$\begin{split} |\psi_1\rangle &= \frac{|1\rangle + \omega_r^{-1}|\alpha\rangle + \dots + \omega_r^{-(r-1)}|\alpha^{r-1}\rangle}{\sqrt{r}} \\ M_\alpha |\psi_1\rangle &= \omega_r |\psi_1\rangle = e^{2\pi i \frac{1}{r}} |\psi_1\rangle \end{split}$$

Suppose we're given $|\psi_1\rangle$ as a quantum state. We can attempt to learn r as follows:

- 1. Perform phase estimation on the state $|\psi_1\rangle$ and a quantum circuit implementing M_α . The outcome is an approximation $y/2^m\approx 1/r$.
- 2. Output $2^m/y$ rounded to the nearest integer:

$$round\left(\frac{2^{m}}{y}\right) = \left\lfloor \frac{2^{m}}{y} + \frac{1}{2} \right\rfloor$$

How much precision do we need to correctly determine r?

$$\left| \frac{y}{2^m} - \frac{1}{r} \right| \le \frac{1}{2N^2} \implies \text{round}\left(\frac{2^m}{y}\right) = r$$

Choosing $m = 2 \lg(N) + 1$ in phase estimation makes such an approximation likely.

A random eigenvector

$$\begin{split} |\psi_{j}\rangle &= \frac{|1\rangle + \omega_{r}^{-j}|\alpha\rangle + \dots + \omega_{r}^{-j(r-1)}|\alpha^{r-1}\rangle}{\sqrt{r}} \\ M_{\alpha}|\psi_{j}\rangle &= \omega_{r}^{j}|\psi_{1}\rangle = e^{2\pi i \frac{j}{r}}|\psi_{1}\rangle \end{split}$$

Suppose we're given $|\psi_j\rangle$ as a quantum state for a random choice of $j\in\{0,\ldots,r-1\}$. We can attempt to learn j/r as follows:

- 1. Perform phase estimation on the state $|\psi_j\rangle$ and a quantum circuit implementing M_α . The outcome is an approximation $y/2^m\approx j/r$.
- 2. Among the fractions $\mathfrak{u}/\mathfrak{v}$ in lowest terms satisfying $\mathfrak{u},\mathfrak{v}\in\{0,\ldots,N-1\}$ and $\mathfrak{v}\neq 0$, output the one closest to $\mathfrak{y}/2^m$. This can be done efficiently using the continued fraction algorithm.

How much precision do we need to correctly determine u/v = j/r?

$$\left|\frac{y}{2^m} - \frac{j}{r}\right| \leq \frac{1}{2N^2} \qquad \Rightarrow \qquad \frac{u}{v} = \frac{j}{r}$$

Choosing $m=2\lg(N)+1$ for phase estimation makes such an approximation likely. We might get unlucky: j could have common factors with r.

A random eigenvector

$$\begin{split} |\psi_{j}\rangle &= \frac{|1\rangle + \omega_{r}^{-j}|\alpha\rangle + \dots + \omega_{r}^{-j(r-1)}|\alpha^{r-1}\rangle}{\sqrt{r}} \\ M_{\alpha}|\psi_{j}\rangle &= \omega_{r}^{j}|\psi_{1}\rangle = e^{2\pi i\frac{j}{r}}|\psi_{1}\rangle \end{split}$$

Suppose we're given $|\psi_j\rangle$ as a quantum state for a random choice of $j\in\{0,\ldots,r-1\}$. We can attempt to learn j/r as follows:

- 1. Perform phase estimation on the state $|\psi_j\rangle$ and a quantum circuit implementing M_α . The outcome is an approximation $y/2^m\approx j/r$.
- 2. Among the fractions $\mathfrak{u}/\mathfrak{v}$ in lowest terms satisfying $\mathfrak{u},\mathfrak{v}\in\{0,\ldots,N-1\}$ and $\mathfrak{v}\neq 0$, output the one closest to $\mathfrak{y}/2^m$. This can be done efficiently using the continued fraction algorithm.

How much precision do we need to correctly determine u/v = j/r?

$$\left|\frac{y}{2^m} - \frac{j}{r}\right| \leq \frac{1}{2N^2} \qquad \Rightarrow \qquad \frac{u}{v} = \frac{j}{r}$$

If we can draw *independent samples*, for $j \in \{0, ..., r-1\}$ is chosen uniformly, we can recover r with high probability by computing the *least common multiple* of the values of v we observed.

Implementation

To find the order of $\alpha \in \mathbb{Z}_N^*$, we apply phase estimation to the operation M_α . Let's measure the cost as a function of $n = \lg(N)$.

Cost for each controlled unitary

Using the techniques from Lesson 6, we can implement M_a at cost $O(n^2)$.

We need to implement M_{α}^k for each k = 1, 2, 4, 8, . . . , 2^{m-1} . Each M_{α}^k can be implemented as follows:

Compute $b = a^k \pmod{N}$. Use a circuit for M_b .

The cost to implement $M_b = M_a^k$ is $O(n^2)$.

Implementation

To find the order of $\alpha \in \mathbb{Z}_N^*$, we apply phase estimation to the operation M_α . Let's measure the cost as a function of $n = \lg(N)$.

- Cost for phase estimation

- m Hadamard gates: cost O(n)
- m controlled unitary operations: cost $O(n^3)$
- Quantum Fourier transform: cost $O(n^2)$

Total cost: $O(n^3)$

Implementation

Remaining issue: getting one of the eigenvectors $|\psi_0\rangle,\ldots,|\psi_{r-1}\rangle$.

Solution: replace the eigenvector $|\psi\rangle$ with the state $|1\rangle$.

This works because of the following equation:

$$1\rangle = \frac{|\psi_0\rangle + \dots + |\psi_{r-1}\rangle}{\sqrt{r}}$$

The outcome is the same as if we chose $j\in\{0,1,\ldots,r-1\}$ uniformly and used $|\psi\rangle=|\psi_j\rangle.$

Factoring through order-finding

The following method succeeds in finding a factor of N with probability at least 1/2, provided N is odd and not a prime power.

Factor-finding method

- 1. Choose $\alpha \in \{2, ..., N-1\}$ at random.
- 2. Compute $d = \gcd(a, N)$. If $d \ge 2$ then output d and stop.
- 3. Compute the order r of a modulo N.
- 4. If r is even, then compute $d = \gcd(a^{r/2} 1, N)$. If $d \ge 2$, output d and stop.
- 5. If this step is reached, the method has failed.

- Main idea

1. By the definition of the order, we know that $a^r \equiv 1 \pmod{N}$.

$$a^r \equiv 1 \pmod{N}$$
 \iff N divides $a^r - 1$

2. If r is even, then

$$a^{r} - 1 = (a^{r/2} + 1)(a^{r/2} - 1)$$

Each prime dividing N must therefore divide either $(\alpha^{r/2} + 1)$ or $(\alpha^{r/2} - 1)$. For a random α , at least one of the prime factors of N is likely to divide $(\alpha^{r/2} - 1)$.