Human Information Processor I

Human Information Processor (Card, Moran, Newell)

- Unified model
 - several aspects of cognitive
 psychology into a unified picture
 - Recognize-act cycle
 - Simplified (limited) model
- Intended audience
 - Computer Scientists
- Predicting human behavior
 - Human performance while using the computer
- Human mind as an information processing system
- Practical and influential

Subsytems of the Model Human Processor

- Each system with memory and processor
 - Memory: capacity, decay time, code type (physical, acoustic, visual, semantic)
 - Processor: cycle time
- Perceptual system
 - sensors and memories (visual image store and auditory image store)
 - symbolically codes the output of the sensory system
- Cognitive system
 - receives symbolically coded info from working memory
 - matches info in long term memory
 - make **decision** about how to respond
- Motor system
 - carries out response

Simple Reaction Time

- see α on screen
- coded representation in the visual image store (α')
- visually coded symbol in
 Working Memory (α")
- → Perceptual Processor cycle (T_P)
- occurrence of the stimulus connected with a response (i.e. decide how to respond)
- → Cognitive Processor cycle (T_C)
- carry out physical movement
- \rightarrow Motor Processor cycle (T_M)

Perceptual System - Eye

Central Vision

- fovea
- 2 degrees across
- details obtained

Peripheral Vision

- retina
- orientation
- intensity

Head Movement

- If $>30^{\circ}$ away from fovea

Perceptual Processor

- Physical store from our senses: see/hear/smell...
- From physical perception to abstract concept
 - color, shape, orientation, brightness, movement to "B" or "circle"
- Coded for transfer to working memory
 - Progressive decoding
 - Example: 10ms/letter
 - Selective decoding
 - Spatial
 - Pre-attentive: color, direction...
- Capacity
 - Example: 17 letters

Pre-attentive perception: How many 3s?

Pre-attentive perception: How many 3s?

358922659865986554897689269898 **3**2769285460986772098 **3**4579802790759047098279085790847729087590827908754 **3**790472190790709811450

Where are the cherries?

From Information Visualization, C. Ware

Where are the cherries?

From Information Visualization, C. Ware

Other examples of pre-attentive variables

From Information Visualization, C. Ware

Pre-attentive Task

- Tasks which can be performed in less than 250ms
 - human visual system cannot decide to change its focus of attention
- Require only "a single glance" at the image being displayed
- Pre-attentive properties to assist in performing visual tasks
 - target detection
 - boundary detection
 - counting/estimation

http://www.csc.ncsu.edu/faculty/healey/PP/

Perceptual Processor

- Decay: 200ms [90-1000] (half-time)
- Half-life: time after which probability of retrieval < .5

Fig. 2. Typical stimulus materials. Col. 1: 3, 5, 6, 6-massed. Col. 2: 3/3, 4/4, 3/3/3, 4/4/4 L&N.

• difficult to remember what is on the screen for more than 200 ms

Perceptual Processor

- Cycle time = Unit impulse response
 - Time that takes before human claims to see it after impulse
 - Time response of the visual system to a very brief pulse of light
 - Quantum experience: 100ms [50~200]
 - Perceptual Fusion
 - Causality
 - [30/sec] 3 clicks in each 100 ms cycle time are fused into a single percept

Perceptual Processor – Cycle Time

- Cycle time could vary according to conditions
 - "Variable Perceptual Processor Rate Principle"
 - The perceptual processor cycle time varies inversely with stimulus intensity
- Bloch's Law (1885): $I \cdot t = k$, t < cycle time
 - I: intensity of stimulus
 - t: lasting time of stimulus
 - example: Pulse of light lasting 10 ms with 50 has the same appearance as a pulse of 20 ms with intensity of 25

Example: Moving Picture Rate

• Example 1. Compute the frame rate at which frames of a moving picture must be refreshed to give illusion of movement.

At least one frame within perceptual processor cycle time

Frame rate > 1/(cycle time) = 1/100 = 10 frame/sec

Perceptual Causality

- Perceptual Fusion: Two stimuli within a perceptual processor cycle appear fused
- → the first event appears to *cause* the other

- 1/(PP cycle time) fps = 10 fps (frame per second)
- → perceived as a moving picture
- UI responses < PP cycle time
- → appear instantaneous

Perceptual Causality

• Perceptual Fusion: Two stimuli within a perceptual processor cycle appear *fused* → the first event appears to *cause* the other

Working Memory

The working memory is your register set

- Access in chunks
 - Task dependent construct
 - 7 +/- 2 (Miller)
- working memory decay with time
 - Content dependant
 - Limited attention span
 - 5s attention span seems like a good idea, since after that you will be losing most of the information mit to longer term memory • 5s attention span seems like a
 - commit to longer term memory
 - "external cognition tool" like writing on a piece of paper

Working Memory: Decay Rate

- Effect of **interference**
- 7 [5~226] sec half-life (73 for 1 chunk)
- Long-term memory kicks in

Working Memory: Interference

Say the color of each words

Tree Yellow

Computer Green

Baby Red

Cat Blue

Graph Purple

Clock Black

see also:

Working Memory: Chunks

chunks

- Activated elements in Long-Term memory
- Unit of memory or perception
- Depends on presentation and what you already know
- "BCSBMICRA" vs. "CBSIBMRCA"

- Chunks can be related to other chunks
- Activation spread in LTM \rightarrow interfere with old ones
 - ROBIN ROBERT BIRD WING FLY ···
 - Limited amount of activation resource → decay

Working Memory: Capacity

- Pure capacity: 3 [2.5~4.1] chunks
 - Number of immediately preceding digits recallable from a long series when the series unexpectedly stops
- Effective capacity (augmented by the use of LTM)
 - e.g., Longest number that can be repeated back
 - -7 ± 2 [5~9] chunks (Miller, 1953)
 - Fastman can do 81 chunks
 - 81 decimal digits presented at a uniform rate of 1 digit per sec

Long term memory

- Very large (or infinite) capacity
 - Semantic encoding
 - A network of related chunks, accessed associatively from the WM
- Associative access
 - Fast read: 70ms
 - can be accessed by pattern matching during each processing cycle
 - Expensive write: 10s
 - noisy
 - Several Rehearsal and/or recall
 - information is stored in a semantic encoding not in perceptual information
- Context at the time of acquisition is key for retrieval

Long-Term Memory

- Knowledge repository
- Unlimited capacity and little decay (no erasure)
- Retrieval could fail:
 - No effective associations
 - Interference by similar associations (<u>light</u>/dark vs. <u>light</u>/heavy)
- To remember something later
 - Associate it with items already in LTM in novel ways
 - Elaborative Rehearsal vs. Maintenance Rehearsal (repetition)

Cognitive Processor

- (Recognize-Act) Cycle time: 70ms
 - Recognize: contents of WM initiate associatively-linked actions in LTM
 - Act: modify contents of WM
- Cognitive Processing Rate: 70[25~170]
 - Typical matching time
 - Digits: 33ms
 - Colors: 38ms
 - *Geometry: 50ms...*
- Variable Cognitive Processor Rate Principle
 - Cycle time is shorter when greater effort is induced
 - by increased task demands or information loads
 - Also decrease with practice

Cognitive Processor

- Parallel in recognition phase, serial in action phase
 - Can be aware of many things at once
 - One locus of attention at a time (i.e. cannot do more than one at a time)
 - *Eastern 401, December 1972*
 - Crew focused on checking the landing gear indicator bulb,
 - Meanwhile the aircraft is loosing altitude (horn, warning indicator...),
 - Aircraft crashed in the Everglades
 - see "The Humane Interface" by Raskin, p25
 - But what about driving, reading signs, and talking can all be kept going?
 - Skilled intermittent allocation of control actions to each task
 - Interrupt-driven time-sharing sytems

Stay in the Flow

- a key to good interface design
 - users have only one focus of attention at a time
 - divide it between your interface and what they are doing
 - Optimal: spend all their time on what they are doing
 - spend effort to maintain what is on their working memory (X)
 - interface have to leave as little a cognitive foot print as possible
- Flow: The Psychology of Optimal Experience
 - by Mihaly Csikszentmihalyi
- Thinking, Fast and Slow
 - by Daniel Kahnenman

Human Performance

- To address uncertainties in parameters of Model Human
 Processor → three versions of the MHP model
 - Slowman: worst performance
 - Fastman: best performance
 - Middleman: nominal performance

Motor System

- Receive input from the cognitive processor
- Execute motor programs (not step-by-step)
 - Pianist: up to 16 finger movements per second
 - Point of no-return for muscle action
 - Part of the learning process is to transfer from cognitive to muscle memory

Closed Loop vs. Open Loop

Closed Loop

- Feedback from perception through cognitive to motor
- Examples?

Open Loop

- Control is planned in advance and motor executes without perception or cognitive
- Examples?

Motor Processor

- Open Loop: MP to issue commends
 - 5sec/ 68 pen reversals = 74 ms
 - Motor processor cycle time
- Closed Loop: corrections using visual feedback
 - Perception + Decision(Cognition) + Motor cycle times
 - = (5 sec)/(20 corrections) = 250 ms
- Cycle time: 70 [30~100] ms

5 sec

Put it together: Fitts' law (tapping task)

$$T = I_M \log_2(D/S + 0.5)$$

Fitts's Law

$$T = I_M \log_2(2D/S)$$

$$T = I_M \log_2(D/S+1)$$

 $T = I_M \log_2(D/S + 0.5)$

T: movement time

S: target width

D: distance to target

 I_{M} : index of performance

63 msec/bit [22~122 ms/bit], (fastman~slowman)

 $\log_2(2D/S)$: index of difficulty

Figure 1. Reciprocal tapping apparatus. The task was to hit the center plate in each group alternately without touching either side (error) plate.

Fitts' Law

- The time to move the hand to the target $T = n(\tau_P + \tau_C + \tau_M)$
 - τ_P : observe the hand
 - τ_C : decide on the correction
 - τ_M : do the correction
- Let X_i be the distance remaining to the target after the *i*-th correction (X_0 =D)
- Let ε be the relative accuracy of movement: $\varepsilon = X_i/X_{i-1}$

$$X_1 = \varepsilon X_0 = \varepsilon D$$

$$X_2 = \varepsilon X_I = \varepsilon^2 D$$

$$X_n = \varepsilon^n D < 1/2 S$$
 (stop condition)

$$n = -\log_2(2D/S)/\log_2 \varepsilon$$

$$T = I_M \log_2(2D/S)$$

where
$$I_M = -(\tau_P + \tau_C + \tau_M) / \log_2 \varepsilon$$
 (≈ 63 msec/bit)

Implications: Fitts' Law

All paths taken by adult participants to click on a 32 pixel target at a distance of 256 pixels.

Hourcade, J. P., Bederson, B. B., Druin, A., & Guimbretière, F. (2004) Accuracy, Target Reentry and Fitts' Law: Performance of Preschool Children Using Mice, *Transactions on Computer-Human Interaction*, New York: ACM, 11 (4), pp. 357-386.

Implication: Fitts' Law

All paths taken by 5 year-old participants to click on a 32 pixel target at a distance of 256 pixels.

Implication: Fitts' Law

All paths taken by 4 year-old participants to click on a 32 pixel target at a distance of 256 pixels.

Fitts's Law

• Relies on "Closed Loop" control of Motor System

• Implications:

- Larger (Closer) targets are easier to click
- Macintosh menu bar is faster to use (correction time)
- Pie menu is faster than popup menu

Power Law of Practice

$$T_n = T_1 n^{-\alpha}$$

- The time to do a task decreases with practice
- The rate of decrease is proportional to a power of the amount of practice
- Typical values for α are [.2~.6]

Learning

("Learning and memory" Anderson)

Power law of learning

