Power Series Solutions to the Bessel Equation

Department of Mathematics
IIT Guwahati

The Bessel equation

The equation

$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0,$$
 (1)

where α is a nonnegative constant, is called the Bessel equation of order α .

The point $x_0 = 0$ is a regular singular point. We shall use the method of Frobenius to solve this equation.

Thus, we seek solutions of the form

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}, \quad x > 0,$$
 (2)

with $a_0 \neq 0$.

Differentiation of (2) term by term yields

$$y'=\sum_{n=0}^{\infty}(n+r)a_nx^{n+r-1}.$$

Similarly, we obtain

$$y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r-2}.$$

Substituting these into (1), we obtain

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + \sum_{n=0}^{\infty} a_n x^{n+r+2} - \sum_{n=0}^{\infty} \alpha^2 a_n x^{n+r} = 0.$$

This implies

$$x^{r}\sum_{n=0}^{\infty}[(n+r)^{2}-\alpha^{2}]a_{n}x^{n}+x^{r}\sum_{n=0}^{\infty}a_{n}x^{n+2}=0.$$

Now, cancel x^r , and try to determine a_n 's so that the coefficient of each power of x will vanish.

For the constant term, we require $(r^2 - \alpha^2)a_0 = 0$. Since $a_0 \neq 0$, it follows that

$$r^2 - \alpha^2 = 0,$$

which is the indicial equation. The only possible values of r are α and $-\alpha$.

Case I. For $r = \alpha$, the equations for determining the coefficients are:

$$[(1+\alpha)^2 - \alpha^2]a_1 = 0 \text{ and},$$

$$[(n+\alpha)^2 - \alpha^2]a_n + a_{n-2} = 0, n \ge 2.$$

Since $\alpha \geq 0$, we have $a_1 = 0$. The second equation yields

$$a_n = -\frac{a_{n-2}}{(n+\alpha)^2 - \alpha^2} = -\frac{a_{n-2}}{n(n+2\alpha)}.$$
 (3)

Since $a_1 = 0$, we immediately obtain

$$a_3 = a_5 = a_7 = \cdots = 0.$$

For the coefficients with even subscripts, we have

$$\begin{split} a_2 &= \frac{-a_0}{2(2+2\alpha)} = \frac{-a_0}{2^2(1+\alpha)}, \\ a_4 &= \frac{-a_2}{4(4+2\alpha)} = \frac{(-1)^2 a_0}{2^4 2! (1+\alpha)(2+\alpha)}, \\ a_6 &= \frac{-a_4}{6(6+2\alpha)} = \frac{(-1)^3 a_0}{2^6 3! (1+\alpha)(2+\alpha)(3+\alpha)}, \end{split}$$

and, in general

$$a_{2n} = \frac{(-1)^n a_0}{2^{2n} n! (1+\alpha)(2+\alpha)\cdots(n+\alpha)}.$$

Therefore, the choice $r = \alpha$ yields the solution

$$y(x) = a_0 x^{\alpha} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} n! (1+\alpha)(2+\alpha) \cdots (n+\alpha)} \right).$$

Note: The ratio test shows that the power series formula converges for all $x \in \mathbb{R}$.

For x < 0, we proceed as above with x^r replaced by $(-x)^r$. Again, in this case, we find that r satisfies

$$r^2 - \alpha^2 = 0.$$

Taking $r = \alpha$, we obtain the same solution, with x^{α} is replaced by $(-x)^{\alpha}$. Therefore, the function $y_{\alpha}(x)$ is given by

$$y_{\alpha}(x) = a_0|x|^{\alpha} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} n! (1+\alpha)(2+\alpha) \cdots (n+\alpha)}\right)$$
(4)

is a solution of the Bessel equation valid for all real $x \neq 0$.

Case II. For $r = -\alpha$, determine the coefficients from

$$[(1-\alpha)^2-\alpha^2]a_1=0$$
 and $[(n-\alpha)^2-\alpha^2]a_n+a_{n-2}=0$.

These equations become

$$(1-2\alpha)a_1 = 0$$
 and $n(n-2\alpha)a_n + a_{n-2} = 0$.

If 2α is not an integer, these equations give us

$$a_1 = 0$$
 and $a_n = -\frac{a_{n-2}}{n(n-2\alpha)}, n \ge 2.$

Note that this formula is same as (3), with α replaced by $-\alpha$. Thus, the solution is given by

$$y_{-\alpha}(x) = a_0 |x|^{-\alpha} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} n! (1-\alpha)(2-\alpha) \cdots (n-\alpha)} \right),$$
(5)

which is valid for all real $x \neq 0$.

Euler's gamma function and its properties

For $s \in \mathbb{R}$ with s > 0, we define $\Gamma(s)$ by

$$\Gamma(s) = \int_{0+}^{\infty} t^{s-1} e^{-t} dt.$$

The integral converges if s > 0 and diverges if $s \le 0$. Integration by parts yields the functional equation

$$\Gamma(s+1)=s\Gamma(s).$$

In general,

$$\Gamma(s+n)=(s+n-1)\cdots(s+1)s\Gamma(s), \text{ for every } n\in\mathbb{Z}^+.$$

Since $\Gamma(1)=1$, we find that $\Gamma(n+1)=n!$. Thus, the gamma function is an extension of the factorial function from integers to positive real numbers. Therefore, we write

$$\Gamma(s) = \frac{\Gamma(s+1)}{s}, \;\; s \in \mathbb{R}^+.$$

Using this gamma function, we shall simplify the form of the solutions of the Bessel equation. With $s=1+\alpha$, we note that

$$(1+\alpha)(2+\alpha)\cdots(n+\alpha)=\frac{\Gamma(n+1+\alpha)}{\Gamma(1+\alpha)}.$$

Choose $a_0 = \frac{2^{-\alpha}}{\Gamma(1+\alpha)}$ in (4), the solution for x>0 can be written

$$J_{\alpha}(x) = \left(\frac{x}{2}\right)^{\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n+1+\alpha)} \left(\frac{x}{2}\right)^{2n}.$$

The function J_{α} defined above for x > 0 and $\alpha \ge 0$ is called the Bessel function of the first kind of order α .

When α is a nonnegative integer, say $\alpha = p$, the Bessel function $J_p(x)$ is given by

$$J_{p}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+p)!} \left(\frac{x}{2}\right)^{2n+p}, \quad (p=0,1,2,\ldots).$$

This is also a solution of the Bessel equation for x < 0.

Figure : The Bessel functions J_0 and J_1 .

If $\alpha > 0$, $\alpha \notin \mathbb{Z}^+$, define a new function $J_{-\alpha}(x)$ (replacing α by $-\alpha$)

$$J_{-\alpha}(x) = \left(\frac{x}{2}\right)^{-\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n+1-\alpha)} \left(\frac{x}{2}\right)^{2n}, \ x>0.$$

With $s = 1 - \alpha$, we note that

$$\Gamma(n+1-\alpha)=(1-\alpha)(2-\alpha)\cdots(n-\alpha)\Gamma(1-\alpha).$$

Thus, the series for $J_{-\alpha}(x)$ is the same as that for $y_{-\alpha}(x)$ in (5) with $a_0 = \frac{2^{\alpha}}{\Gamma(1-\alpha)}$, x > 0. If α is not positive integer, $J_{-\alpha}$ is a solution of the Bessel equation for x > 0.

If $\alpha \notin \mathbb{Z}^+$, $J_{\alpha}(x)$ and $J_{-\alpha}(x)$ are linearly independent on x>0. The general solution of the Bessel equation for x>0 is

$$y(x) = c_1 J_{\alpha}(x) + c_2 J_{-\alpha}(x).$$

Useful recurrence relations for J_{α}

• $\frac{d}{dx}(x^{\alpha}J_{\alpha}(x)) = x^{\alpha}J_{\alpha-1}(x).$

$$\frac{d}{dx}(x^{\alpha}J_{\alpha}(x)) = \frac{d}{dx}\left\{x^{\alpha}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!\,\Gamma(1+\alpha+n)}\left(\frac{x}{2}\right)^{2n+\alpha}\right\}$$

$$= \frac{d}{dx}\left\{\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+2\alpha}}{n!\,\Gamma(1+\alpha+n)2^{2n+\alpha}}\right\}$$

$$= \sum_{n=0}^{\infty}\frac{(-1)^{n}(2n+2\alpha)x^{2n+2\alpha-1}}{n!\,\Gamma(1+\alpha+n)2^{2n+\alpha}}.$$

Since
$$\Gamma(1 + \alpha + n) = (\alpha + n)\Gamma(\alpha + n)$$
, we have

$$\frac{d}{dx}(x^{\alpha}J_{\alpha}(x)) = \sum_{n=0}^{\infty} \frac{(-1)^n 2x^{2n+2\alpha-1}}{n! \Gamma(\alpha+n)2^{2n+\alpha}}$$

$$= x^{\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(1+(\alpha-1)+n)} \left(\frac{x}{2}\right)^{2n+\alpha-1}$$

$$= x^{\alpha}J_{\alpha-1}(x).$$

The other relations involving J_{α} are:

•
$$\frac{d}{dx}(x^{-\alpha}J_{\alpha}(x)) = -x^{-\alpha}J_{\alpha+1}(x).$$

•
$$\frac{\alpha}{x}J_{\alpha}(x)+J'_{\alpha}(x)=J_{\alpha-1}(x)$$
.

•
$$\frac{\alpha}{x}J_{\alpha}(x)-J'_{\alpha}(x)=J_{\alpha+1}(x)$$
.

•
$$J_{\alpha-1}(x) + J_{\alpha+1}(x) = \frac{2\alpha}{x}J_{\alpha}(x)$$
.

•
$$J_{\alpha-1}(x) - J_{\alpha+1}(x) = 2J'_{\alpha}(x)$$
.

Note: Workout these relations.

*** End ***

