Sprawozdanie MNUM Projekt nr.3 Zadanie 3.32

Kajetan Kaczmarek

7 maja 2018

- 1. Opis zastosowanych algorytmów:
 - (a) W pierwszym zadaniu, tj. znalezienie zer dla funkcji

$$f(x) = 0.5x\cos(x) - \ln(x)$$

użyłem dwóch metod. Założeniami dla obywdu metod była a) ciągłość, co jest oczywiste dla ww. funkcji, oraz b) różne znaki na krańcach przedziału, do czego odnoszę się poniżej. Zastosowane metody:

- Metoda bisekcji
 - W metodzie bisekcji na początek liczony jest punkt wypadający pomiędzy podanymi wejściowymi punktami, tj. $x=\frac{a+b}{2}$ dla p. wejściowych a i b. Następnie sprawdzamy czy punkt ten jest naszym zerem z podaną dokładnością eps, czyli czy |f(x)| < eps. Jeśli tak jest kończymy wykonywanie algorytmu, jeśli nie to sprawdzamy warunek f(a)f(b) < i w zależności od wyniku zastępujemy lewy lub prawy koniec przedziału w którym szukamy wyliczonym x, tak, aby krańce przedziału nadal miały przeciwne znaki. Alternatywnym warunkiem wyjściowym z pętli jest |a-b| < eps, czyli zbliżenie się do siebie punktów a i b tak, że dalsze obliczenia są niemożliwe.
- Metoda Siecznych
 Metoda siecznych jest podobna do metody bisekcji szukamy
 zer przez zawężanie zakresu poszukiwań, warunki końcowe są
 więc takie same. Różny jest jednak algorytm wyznaczania ko lejnego punktu: tutaj kolejne punkty wyznaczamy ze wzoru

$$x_i = x_{i-1} - f(x_{i-1}) \frac{x_{i-1} - x_{i-2}}{f(x_{i-1}) - f(x_{i-2})}$$

Tak że łączenie kolejnych punktów daje nam sieczne naszej funkcji f(x) i przybliża jej zera. W ten sposób kolejne punkty są łączone prostą a jej przecięcie z osią x wyznacza kolejny punkt

- Uwaga techniczna założeniami obydwu metod są różne znaki funkcji na krańcach przedziału. Jako że warunek ten nie jest spełniony dla zadanego przedziału w mojej funkcji, a do tego ww. metody znajdują tylko jedno zero, podzieliłem zadany przedział [2,11] na dwa mniejsze , tj. [2,7] i [7,11] tak aby w każdym znajdowało się jedno zero, i aby spełniały one założenia metod.
- (b) W drugim zadaniu, tj. znalezienie zer wielomianu $f(x) = 2x^4 + 5x^3 2x^2 + 3x^3 + 7$ zastosowałem metody :
 - Metoda Newtona Metoda Newtona, zwana inaczej metodą stycznych , opiera się na wykorzystaniu iteracjnego wzoru

$$x_i = x_{i-1} - \frac{f(x)}{f(x)'}$$

, który wynika z rozwinięcia funkcji w szereg Taylora, czyli

$$f(x) = f(x_n) + f'(x_n)(x - x_n)$$

. Metoda Newtona jest lokalnie zbieżna, dla punktów zbytnio oddalonych od p. zerowego może nie dawać rezultatów.

• Metoda Mullera MM2

Ogólną ideą metod Mullera jest przybliżanie lokalnie funkcji w okolicy zera przez funkcję kwadratową. Jest pewnym uogólnieniem metody siecznych, z dodaną liniową interpolacją pomiędzy kolejnymi punktami. Werjsa MM2 algorytmu, użyta w moim rozwiązaniu, zakłada użycie wartości wielomianu i jego pierwszej oraz drugiej pochodnej w danym punkcie. Kolejne punkty wyliczamy z wzoru

$$x_{k+1} = x_k + z_{min},$$

gdzie z_{min} jest jedną z wartości

$$z_{+/-} = \frac{-2f(x_k)}{f'(x_k) + / - \sqrt{(f'(x_k))^2 - 2f(x_k)f''(x_k)}}$$

w zależności od modułu mianownika - wybieramy tę z większym modułem

2. Kod moich programów

• Funkcja main dla pierwszego zadania

```
imax = 50:
       3
       xs1 = secants(11,7,10e-5,imax); %Pierwsze zero funkcji metoda
 6
       xs2 = secants(7,2,10e-5,imax); %Drugie zero funkcji metoda siecznych
 8
9
        \begin{array}{l} Ans = [\,xb1\,(\,imax\,-\,1)\,\,,xb2\,(\,imax\,-\,1)\,\,,xs1\,(\,imax\,-\,1)\,\,,xs2\,(\,imax\,-\,1)\,\,]\,;\,\,\,\%\\ Wektor\,\,z\,\,rozwiazaniami\,\,\,dla\,\,\,ulatwienia\,\,rysowania \end{array} 
10
      X=2:0.1:11; % Nasz przedział z probkowaniem co 0.1 Y=arrayfun\left(@(x)~fzad\left(x\right),X\right); %Wyliczenie wartości naszej funkcji do narysowania wykresu
11
12
13
        \mathbf{figure}\;;\;\%\;\;\mathsf{Ponizszy}\;\;\mathsf{kod}\;\;\mathsf{rysuje}\;\;\mathsf{wykres}
14
        plot(X,Y);% Rysowanie wykresu funkcji
hold on;
\frac{16}{17}
      hold on;
plot (Ans, 0, '-o', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', '[0.5, 0.5, 0.5]); % Rysowanie miejsc zerowych hold on;
line ([11 11], get (hax, 'YLim'), 'Color', [1 0 0])
line ([7 7], get (hax, 'YLim'), 'Color', [1 0 0])
line ([7 7], get (hax, 'YLim'), 'Color', [0 1 0])
line ([2 2], get (hax, 'YLim'), 'Color', [0 1 0])
18
19
21
23
       hold off;
```

 Pomocnicza funkcja licząca wartości naszej funkcji podanej dla zadania

```
 \begin{array}{lll} 1 & function \ f = fzad(x) \ \% \ Funkcja \ pomocnicza \ obliczajaca \ wartosci \ funkcji \\ & podanej \ w \ zadaniu \\ 2 & f = 0.5*x*cos(x) - log(x); \end{array}
```

Funkcja licząca zera funkcji metodą bisekcji

```
function \ [x] = bisect(a,b,eps\;,\;imax) \ \% \ Funkcja \ realizujaca \ metode
     x = zeros(imax - 1, 1);

i = 1;
3
      while abs( a - b ) > eps && i < imax% Warunek koncowy - punkty
            pomiedzy ktorymi liczymy zblizyły sie na odległosc abs
x0 = (a + b) / 2; % Policzenie punktu pomiedzy p. wejsciowymi
if(abs(fzad(x0)) < eps) % Warunek koncowy - policzenie zera z
dokładnościa eps
 8
 9
                   break;
10
                   if (fzad(x0) * fzad(a) <0) % W zalezności od tego z ktorej
                        ---(-0) * izau(a) <0) % W zaleznosci od tego z ktorej strony wypadl punkt x podmieniamy wartosc a lub b na x b = x0;
11
12
                   else
                  \begin{array}{ll} a \,=\, x0\,; \\ \\ \text{end} \end{array}
14
             end
16
             x(i) = x0;
18
             i = i + 1;
20
      x(imax -1) = x0;
```

• Funkcja licząca zera funkcji metodą siecznych

```
6
7
      end
       \begin{array}{lll} & 1 & 1 & 1 \\ x & = zeros(imax - 1 & ,1); \\ f1 & = fzad(x1); \% & Policzenie & wartosci & funkcji & w & p. & wejsciowych \\ f2 & = fzad(x2); \end{array}
10
12
        if(f1 < f2) % Zamienienie miejscami punktow jesli wartosc w x1 jest
                 mniejsza niz w x2
                a = x1;

x1 = x2;
14
15
                x_1 - x_2,

x_2 = a;

f_1 = f_{zad}(x_1);

f_2 = f_{zad}(x_2);
16
17
18
19
20
21
        while abs(x2-x1)>eps && i<imax% Warunek koncowy - jesli punkty
                pomiedzy którymi liczymy zbliza sie do odleglości eps x0=x1-(f1*(x1-x2))/(f1-f2); % Obliczenie nastepnego punkty
22
                 f = fzad(x0);
23
                \begin{array}{ll} if \, (abs \, (f) < eps) \, \% \, \, Warunek \, \, koncowy \, - \, & znalezienie \, \, zera \, \, z \\ \\ dokladnoscia \, \, do \, \, eps \end{array}
25
26
                         break;
27
                 \begin{array}{l} x(i) = x0; \\ i = i+1; \\ x2 = x1; \ \% \ Zmiana \ na \ punkty \ dla \ nastepnej \ iteracji \\ f2 = f1; \end{array} 
28
29
30
31

    \begin{array}{rcl}
      \mathbf{x} 1 & = & \mathbf{x} 0; \\
      \mathbf{f} 1 & = & \mathbf{f};
    \end{array}

32
34
        x(imax -1) = x0;
```

• Funkcja main dla drugiego zadania

• Funkcja licząca zera funkcji metodą Newtona

• Funkcja licząca zera funkcji metodą Mullera

```
1 function [x,y] = muller(eps, x0, imax)
2
3 % Dane wej ciowe
4 A = [2 5 -2 3 7]; % Macierz wspołczynnikow wielominau
5 B = [8 15 -4 3]; % Macierz wspołczynnikow pochodnej wielomianu A
6 C = [24 30 -4]; % Macierz wspołczynnikow pochodnej drugiego stopnia wielomianu A
7
8 x = zeros(imax - 1,1);
```

```
y = zeros(imax - 1,1);

i = 1;
11
       while \ abs\left( \,polyval\left( A,x0\,\right) \ \right) \ > \ eps \ \&\& \ i \ < \ imax
13
14
15
               sqr \ = \ sqrt \left( \ polyval \left( B, x0 \right) \hat{\ } 2 \ - \ 2*polyval \left( A, x0 \right)*polyval \left( C, x0 \right) \right);
16
17
               \begin{array}{l} zpl \, = \, -2*polyval\,(A,x0)\,/(\,polyval\,(B,x0)\, +\, sqr\,\,)\,; \\ zmin \, = \, -2*polyval\,(A,x0)\,/(\,polyval\,(B,x0)\, -\, sqr\,\,)\,; \end{array}
18
19
               if abs((polyval(B,x0) - sqr))>abs((polyval(B,x0) + sqr))
x0 = x0 + zmin;
               x0 =
20
21
                       x0 = x0 + zpl;
22
23
\frac{24}{25}
               x(i)=x0;
               y(i)= polyval(A,x0);
i= i +1;
26
28
```

Funkcja licząca zera funkcji metodą Newtona z uwzględnieniem deflacji

```
\begin{array}{ll} function \ [\,x\,,y\,] = newtonDef(\,eps\,,x0\,,\ imax\,)\% \ Modyfikacja \ metody \ Newtona \ z \\ uwzgl. \ deflacji \ liniowej \end{array}
        % Dane wej ciowe A = \begin{bmatrix} 2 & 5 & -2 & 3 & 7 \end{bmatrix}; \ \% \ \text{Macierz wspolczynnikow wielominau} \\ B = \ \text{polyder}(A); \ \% \ \text{Macierz wspolczynnikow pochodnej wielomianu} \ A
         r = size(A) - 1;

r = r(2);
        xm = \dot{x}0;
10
11
        x = zeros(r, 1);

y = zeros(r - 1,1);
12
14
         \begin{array}{lll} \mbox{for} & j = 1 \colon r & & \\ & \mbox{while abs(polyval(A,x0))} > \mbox{eps \&\& } i < \mbox{imax} \\ & \mbox{x0} = \mbox{x0} - (\mbox{polyval(A,x0)}) / \mbox{polyval(B,x0)}); \\ & \mbox{i} = i + 1; & & \end{array}
16
18
19
20
                    A = deflation(A, x0);
21
22
                   B = polyder(A);
                   i = 1;
x(j) = x0;
y(j) = polyval(A,x0);
23
24
25
26
```

Funkcja licząca zera funkcji metodą Mullera z uwzględnieniem deflacji

```
\begin{array}{ll} function \ [x\,,y] = mullerDef (eps \,,\, x0 \,,\, imax) \ \% \ modyfikacja \ alg \,. \ Mullera \ z \\ uwzglednieniem \ deflacji \ liniowej \end{array}
  1
        \% Dane wej ciowe A=\begin{bmatrix}2&5&-2&3&7\end{bmatrix}; \ \% \ \text{Macierz wspolczynnikow wielominau} \\ B=\begin{bmatrix}8&15&-4&3\end{bmatrix}; \ \% \ \text{Macierz wspolczynnikow pochodnej wielomianu} \ A \\ C=\begin{bmatrix}24&30&-4\end{bmatrix}; \ \% \ \text{Macierz wspolczynnikow pochodnej drugiego stopnia} \\ \text{wielomianu} \ A \\ \end{bmatrix}
         r = size(A) - 1;

r = r(2);
10
         xm = \dot{x}0;
11
         x = zeros(r - 1,1);

y = zeros(r - 1,1);

i = 1;

for j = 1:r
12
13
14
15
\frac{16}{17}
                     sqr \ = \ sqrt\left( \ polyval\left(B,x0\right) \hat{\ }2 \ - \ 2*polyval\left(A,x0\right)*polyval\left(C,x0\right) \right);
18
19
                              \begin{array}{l} {\tt zpl} \, = \, -2*{\tt polyval}(A,x0) \, / \, (\, {\tt polyval}(B,x0) \, + \, {\tt sqr} \, \, ) \, ; \\ {\tt zmin} \, = \, -2*{\tt polyval}(A,x0) \, / \, (\, {\tt polyval}(B,x0) \, - \, {\tt sqr} \, \, ) \, ; \end{array}
20
21
22
                               if abs((polyval(B,x0) - sqr))>abs((polyval(B,x0) + sqr))
```

3. Wyniki:

• Dla zadania pierwszego obydwie metody zwróciły zbliżone wyniki, tj.

Metoda	Zero nr.1	Zero nr. 2
Metoda Bisekcji	7.27703857421875	5.38775634765625
Metoda Siecznych	7.27702154631274	5.38773923503257

4. Wnioski:

Dla metod z pierwszego punktu:
 Metoda bisekcji zbiega liniowo, a jej błąd jest związany jedynie z ilością iteracji. Z kolei metoda siecznych zbiega szybciej, jednak dla zbyt dużego przedziału [a,b] może nie osiągnąć wyniku,

- szczególnie jeżeli występuje punkt gdzie f'(x)=0. Dla podanaje funkcji obydwie metody dały satysfakcjonujące rezultaty
- Dla metod z drugiego punktu: Obydwie metody okazały się dość skuteczne i dla podanych wartości startowych skutecznie znajdowały wartości miejsc zerowych. Dla wybranego przeze mnie przedziału Metoda MM2 była skuteczniejsza i znajdowała pierwiastki w mniejszej liczbie iteracji. Pozwoliła ona również znaleźć wartości pierwiastków urojonych. Jako że były one swoimi sprzężeniami, metoda znalazła tylko jeden z nich.

Iteracja	Metoda	Bisekcji	Metoda	Bisekcji	Metoda	Siecznych	Metoda	Siecznych	
	1 prz	edział	2 przedział		1 pr	1 przedział		2 przedział	
Dane	X	Y	X	Y	X	Y	X	Y	
1	9	-6.2973	4.5000	-1.9784	7.9037	-2.2637	5.0779	-0.7175	
2	8	-2.6614	5.7500	0.7267	7.2118	0.1841	6.0558	1.1489	
3	7.5000	-0.7150	5.1250	-0.6066	7.2638	0.0383	5.4538	0.1452	
4	7.2500	0.0777	5.4375	0.1098	7.2775	-0.0013	5.3667	-0.0471	
5	7.3750	-0.2986	5.2812	-0.2417			5.3880	0.0006	
6	7.3125	-0.1051	5.3594	-0.0636					
7	7.2812	-0.0123	5.3984	0.0238					
8	7.2656	0.0330	5.3789	-0.0197					
9	7.2734	0.0104	5.3887	0.0021					
10	7.2773	-0.0009	5.3838	-0.0088					

Tablica 1: Wyniki metody Bisekcji i Siecznych

X_0	-6		-5	.500	-5	
Dane	X	Y	X	Y	X	Y
1	-4.769	439.495	-4.411	282.809	-4.058	170.154
2	-3.898	130.539	-3.655	82.062	-3.424	47.484
3	-3.324	35.443	-3.179	20.895	-3.055	10.815
4	-3.007	7.449	-2.946	3.630	-2.907	1.351
5	-2.895	0.737	-2.885	0.211	-2.882	0.033
6	-2.882	0.010	-2.881	0.001	-2.881	0
7	-2.881	0	-2.881	0	-2.881	0
8						
9						

Tablica 2: Wyniki metody Newtona cz. 1

X_0	-4.500		-4		-3.500	
Dane	X	Y	X	Y	X	Y
1	-3.715	92.767	-3.387	42.867	-3.094	13.761
2	-3.214	24.080	-3.037	9.510	-2.918	1.963
3	-2.960	4.430	-2.902	1.100	-2.883	0.068
4	-2.887	0.301	-2.882	0.022	-2.881	0
5	-2.881	0.002	-2.881	0	-2.881	0
6	-2.881	0				
7						
8						
9						

Tablica 3: Wyniki metody Newtona cz. $2\,$

X_0	{	3	-2.500		-2	
Dane	X	Y	X	Y	X	Y
1	-2.894	0.664	-3.212	23.950	0.143	7.403
2	-2.882	0.008	-2.959	4.397	-2.541	-12.183
3	-2.881	0	-2.887	0.297	-3.114	15.368
4			-2.881	0.002	-2.924	2.319
5			-2.881	0	-2.883	0.093
6					-2.881	0
7					-2.881	0
8						
9						

Tablica 4: Wyniki metody Newtona cz. $3\,$

X_0	-1.500		-	1	-0.500	
Dane	X	Y	X	Y	X	Y
1	-0.944	-0.238	-0.929	-0.027	-1.081	-2.160
2	-0.927	-0.002	-0.927	0	-0.934	-0.101
3	-0.927	0	-0.927	0	-0.927	0
4					-0.927	0
5						
6						
7						
8						
9						

Tablica 5: Wyniki metody Newtona cz. $4\,$

X_0	0		0.5	500	1	
Dane	X	Y	X	Y	X	Y
1	-2.333	-15.123	-1.022	-1.307	0.318	7.934
2	-4.316	248.641	-0.930	-0.043	-1.946	-14.579
3	-3.591	71.539	-0.927	0	-0.256	6.026
4	-3.144	17.787	-0.927	0	-1.493	-8.632
5	-2.934	2.878			-0.946	-0.255
6	-2.884	0.138			-0.927	-0.002
7	-2.881	0			-0.927	0
8	-2.881	0				
9						

Tablica 6: Wyniki metody Newtona cz. $5\,$

X_0	1.500		2		2.500	
Dane	X	Y	X	Y	X	Y
1	0.911	13.236	1.353	26.481	1.753	51.905
2	0.170	7.479	0.763	11.018	1.143	18.696
3	-2.507	-12.868	-0.139	6.532	0.519	8.863
4	-3.193	22.161	-1.847	-13.590	-0.937	-0.141
5	-2.952	3.945	-0.629	3.393	-0.927	-0.001
6	-2.886	0.245	-0.988	-0.827	-0.927	0
7	-2.881	0.001	-0.928	-0.019		
8	-2.881	0	-0.927	0		
9			-0.927	0		

Tablica 7: Wyniki metody Newtona cz. 6

X_0	-6		-5	.500	-5	
Dane	X	Y	X	Y	X	Y
1	-4.293+1.135i	44.904-338.682i	-3.970+0.996i	22.933-217.825i	-3.650+0.849i	7.994-130.893i
2	-3.562+0.027i	66.899-4.224i	-3.355+0.033i	38.931-3.854i	-3.167+0.039i	19.663-3.460i
3	-2.790-0.228i	-6.902 + 9.575i	-2.819-0.022i	-3.100+1.006i	-2.872-0.004i	-0.466+0.228i
4	-2.877-0.002i	-0.231 + 0.096i	-2.881+	0.003-0.004i	-2.881+	0
5	-2.881+	0	-2.881-	0	-2.881+	0
6						
7						
8						
9						

Tablica 8: Wyniki metody Mullera cz. 1

X_0	-4.500		_	4	-3.500	
Dane	X	Y	X	Y	X	Y
1	-3.335+0.688i	-1.361-71.042i	-3.027+0.495i	-6.408-32.008i	-2.731+0.182i	-8.234-6.658i
2	-3.010+0.043i	7.535-2.891i	-2.905+0.032i	1.217-1.735i	-2.878-0.002i	-0.195+0.109i
3	-2.881-0.001i	-0.026+0.040i	-2.881	0.001	-2.881	0
4	-2.881	-	-2.881	0		
5						
6						
7						
8						
9						

Tablica 9: Wyniki metody Mullera cz. $2\,$

X_0	-3		-2.5	500	-2	
Dane	X	Y	X	Y	X	Y
1	-2.881	-0.032	-2.900	1.015	-1.226	-4.381
2	-2.881	0	-2.881	0	-0.934	-0.105
3			-2.881	0	-0.927	0
4						
5						
6						
7						
8						
9						

Tablica 10: Wyniki metody Mullera cz. $3\,$

X_0	-1.500		_	1	-0.500	
Dane	X	Y	X	Y	X	Y
1	-0.986	-0.810	-0.927	-0.001	-0.927	-0.011
2	-0.927	-0.001	-0.927	0	-0.927	0
3	-0.927	0				
4						
5						
6						
7						
8						
9						

Tablica 11: Wyniki metody Mullera cz. $4\,$

X_0	0		0.5	500	1		
Dane	X	Y	X	Y	X	Y	
1	-1.266	-5.004	0.162 + 0.957i	8.452-2.850i	0.560 + 0.637i	5.328 + 1.923i	
2	-0.938	-0.157	0.637 + 0.895i	1.052 + 0.467i	0.647 + 0.953i	-0.104-0.381i	
3	-0.927	0	0.654 + 0.940i	-0.001-0.001i	0.654 + 0.940i	0	
4			0.654 + 0.940i	0	0.654 + 0.940i	0	
5							
6							
7							
8							
9							

Tablica 12: Wyniki metody Mullera cz. $5\,$

X_0	1.500			2	2.500	
Dane	X	Y	X	Y	X	Y
1	0.892 + 0.588i	5.893 + 7.559i	1.217 + 0.633i	7.791 + 18.269i	1.542 + 0.717i	11.503 + 37.932i
2	0.654 + 0.907i	0.572 + 0.568i	0.743 + 0.910i	-0.895 + 2.300i	0.865 + 0.980i	-4.859+4.415i
3	0.654 + 0.940i		0.654 + 0.940i	-0.010+0.004i	0.652 + 0.945i	-0.066-0.122i
4	0.654 + 0.940i		0.654 + 0.940i		0.654 + 0.940i	
5						
6						
7						
8						
9						

Tablica 13: Wyniki metody Mullera cz. $6\,$