Trees are fun

Paweł Gelar

Warsaw 11.2022

Contents

- Introduction to decision trees
- Building a tree (CART)
- Oecision trees properties
- Ensemble learning
- Boosting
- Pseudo-case study

2/31

Paweł Gelar Drzewka

Introduction to decision trees

3/31

Paweł Gelar Drzewka Warsaw 11.2022

Tree as seen in nature

Figure: A tree

Tree as seen in data science

Figure: A normal tree

A little bit different perspective of the trees

Figure: 2D-plane division of a tree

6/31

Paweł Gelar Drzewka Warsaw 11.2022

Building a tree (CART)

Building a tree (CART)

 Paweł Gelar
 Drzewka
 Warsaw 11.2022
 7/31

Classification and Decision Tree (CART)

What is CART?

CART is the algorithm used to build trees in most packages (Scikit-Learn in Python, rpart in R)

CART algorithm

- Find the best split i.e. pair (k, t_k) of feature k and value t_k minimising $J(k, t_k)$ (1)
- Repeat on every created subset until end conditions apply
- Assign values to leaves

$$J(k, t_k) = \frac{m_{left}}{m} G_{left} + \frac{m_{right}}{m} G_{right}$$
 (1)

where:

m - number (sum of weights) of all samples

 $m_{left/right}$ - number (sum of weights) of samples in left/right subset

 $G_{\mathsf{left/right}}$ - value of the criterion function on left/right subset

Paweł Gelar Drzewka Warsaw 11.2022 8/31

Decision functions - classification

Gini impurity

$$G = 1 - \sum_{i=1}^{k} p_i^2 \tag{2}$$

Entropy

$$H = -\sum_{i=1}^{k} p_i log_2(p_i)$$
 (3)

where:

k - number of classes

 p_i - fraction of class i members in given node

9/31

Paweł Gelar Drzewka Warsaw 11.2022

Decision functions - regression

Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$
 (4)

where:

m - number of points in given node

 y_i - target value of i-th datapoint

 \hat{y}_i - predicted value of i-th datapoint

Friedman MSE

Upgraded version of the MSE recommended in the Sklearn documentation

Decision trees properties

11/31

A quick puzzle

Figure: How's gonna look a decision tree build on this dataset?

 Pawet Gelar
 Drzewka
 Warsaw 11.2022
 12 / 31

Greediness

Figure: Total mess

13/31

Paweł Gelar Drzewka Warsaw 11.2022

Non-robustness

Figure: Two decision tree models trained on very similar data

Overfitting

Figure: Overgrown and restricted tree

 Paweł Gelar
 Drzewka
 Warsaw 11.2022
 15/31

Outliers

Trees are insensitive to outliers (unlike many models e.g. linear regression on the left)

Variables transformation

Single variable transformations have no effect on decision tree (if they preserve order of the datapoints

Rotating dataset

Figure: Decision tree before and after rotating the dataset

Regularising hyperparameters

- splitter
- max_depth
- min_samples_split
- min_samples_leaf
- max_features
- max_leaf_nodes
- class_weight in classifier (not regularising)

19/31

Summary (decision tree)

Pros:

- Usually no data preprocessing is required
- Computationally lightweight (both learning and inference)
- "White box" models (explainable)
- Can estimate probability of belonging to class

Cons:

- Prone to overfitting
- Extremely non-robust
- Decision function is constant almost everywhere
- Greedy (doesn't find optimal solution)

Ensemble learning

21/31

Paweł Gelar Drzewka Warsaw 11.2022

Voting classifiers

- Hard voting
 - Every voting classifier makes prediction. Class with the most single predictions is predicted
 - Can be used with any classifiers
- Soft voting
 - Class with the highest average probability is predicted
 - Can be used only with classifiers returning probabilities

Making models a little independent

- Learning on different dataset:
 - Pasting
 - Bagging (bootstrap aggregating)
- Making models random
 - Random splitting (splitter='random')
 - Random choosing subset of features
 - Even more randomness extremely randomized trees (Extra-Trees)
- Smaller models

Boosting

24 / 31

Paweł Gelar Drzewka War

AdaBoost (Adaptive Boosting)

Trees are build on weighted dataset.

Bigger weights are asigned to datapoints, on which the model performed poorly.

Figure: Component trees of boostting model

25 / 31

Paweł Gelar Drzewka Warsaw 11.2022

AdaBoost (Adaptive Boosting)

Figure: Model predictions (3/11/100) estimators

 Paweł Gelar
 Drzewka
 Warsaw 11.2022
 26 / 31

Gradient boosting

In histogram boosting estimators learn on residuals of previous models

Figure: Estimators in gradient boosting

xgboost (eXtreme Gradient Boosting)

xgboost is heavily optimised library for gradient boosting available on many platforms (Python, R, Julia, Scala, C++ more)

dmlc XGBoost

Pseudo-case study

 Paweł Gelar
 Drzewka
 Warsaw 11.2022
 29 / 31

Data

- tweet_length
- hashtag_count
- numbers_reference_count
- time_reference_count
- geopolitical_reference_count
- has_link
- has_emoji
- 96D embedding of tweet text
- 9 96D embedding of tweet keyword

Thanks for your attention

