(19) 世界知的所有権機関 国際事務局

] (00) | 01| | 01| | 01| | 02| | 03|

(43) 国際公開日 2004年11月18日 (18.11.2004)

PCT

(10) 国際公開番号 WO 2004/100280 A1

(51) 国際特許分類7: B22D 11/06, C22C 28/00 H01L 35/34, 35/16,

(21) 国際出願番号:

PCT/JP2004/006493

(22) 国際出願日:

2004年5月7日(07.05.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2003-130618

2003年5月8日(08.05.2003)

(71) 出願人 (米国を除く全ての指定国について): 石川 島播磨重工業株式会社 (ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO., LTD.) [JP/JP]; ₹100-8182 東京都千代田区 大手町二丁目 2 番 1 号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 太田 稔智 (OTA, Toshinori) [JP/JP]; 〒100-8182 東京都 千代田 区 大手町二丁目 2 番 1 号 石川島播磨重工業株式 会社内 Tokyo (JP). 吉澤 廣喜 (YOSHIZAWA, Hiroki) [JP/JP]; 〒100-8182 東京都 千代田区 大手町二丁目 2番1号石川島播磨重工業株式会社内 Tokyo (JP). 藤田 浩一 (FUJITA,Kouiti) [JP/JP]; 〒100-8182 東京 都 千代田区 大手町二丁目 2 番 1 号 石川島播磨 重工業株式会社内 Tokyo (JP). 今井 功 (IMAI,Isao) [JP/JP]; 〒100-8182 東京都 千代田区 大手町二丁目 2番1号石川島播磨重工業株式会社内 Tokyo (JP). 東松 剛 (TOSHO,Tsuyoshi) [JP/JP]; 〒059-0013 北海 道 登別市 幌別町 6-1 8-3 Hokkaido (JP). 西池 氏 裕 (NISHIIKE, Ujihiro) [JP/JP]; 〒153-0051 東京都 目

[続葉有]

(54) Title: THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT THEREFROM, THERMOELECTRIC MODULE INCLUDING THERMOELECTRIC SEMICONDUCTOR ELEMENT AND PROCESS FOR PRODUCING THESE

(54) 発明の名称: 熱電半導体材料、該熱電半導体材料による熱電半導体素子、該熱電半導体素子を用いた熱電モ ジュール及びこれらの製造方法

- I...PREPARE METAL MIXTURE COMPOSED OF STOICHIOMETRIC COMPOSITION OF THERMOELECTRIC SEMICONDUCTOR
 COMPLEX COMPOUND HAVING EXCESS TO ADDED THERETO
 a...MELT IN MELTING CRUCIBLE
- a...MELT IN MELTING GROUNG ROLL (PERIPHERAL SPEED 5 m/s OR LESS)
 TO EFFECT SOLIDIFICATION INTO THERMOELECTRIC SEMICONDUCTOR
- MATERIAL OF 30 JM OR MORE THICKNESS

 CHARGE IN MOLD THERMOELECTRIC SEMICONDUCTOR MATERIALS SO

 AS TO EFFECT LAMINATING THEREOF IN PLATE THICKNESS DIRECTION
 AND IN SUBSTANTALLY PARALLEL RELATIONSHIP

 d...HEAT TO 380° TO 500°C AND RETAIN FOR A WHILE SO AS TO EFFECT
- SINITERING

 "...APPLY PRESSURE SO THAT SHEAR FORCE IS EXERTED IN MONOAXIAL

 DIRECTION PARALLEL TO DIRECTION OF THERMOELECTRIC SEMICONDUCTOR MATERIAL LAMINATING

(57) Abstract: Thermoelectric semiconductor material (10) of plate form having Te-rich phases finely dispersed in a complex compound semiconductor phase wherein the directions of extension of C-face of most crystal grains are uniformalized is produced by a process comprising preparing a metal mixture composed of (Bi-Sb)₂Te₃ composition having excess Te added thereto, melting the metal mixture and solidifying the melt on the surface of cooling roll of 5 m/sec or less peripheral speed so that the plate thickness is 30 μ m or more. Further, thermoelectric semiconductor material (17) having crystal orientation characteristics such that not only the directions of extension of C-face of hexagonal structure of crystal grains but also the C-axis directions thereof are nearly uniformalized is produced by laminating thermoelectric semiconductor materials (10) in the direction of plate thickness, effecting solidification molding thereof into molded item (12) and carrying out plastic deformation of the molded item (12) so that shear force is applied in a monoaxial direction approximately parallel to the main lamination direction of thermoelectric semiconductor materials (10). As a result, an enhancement of thermoelectric performance index can be attained through enhancement of crystalline orientation properties.

(57) 要約: (Bi-Sb)₂Te₃系の組成に対して過剰のTeを加えた金属混 合物を調製し、また金属混合物を溶融させた後、周速が5m/秒以 下の冷却ロールの表面にて厚さが30μm以上となるよう凝固させ て、複合化合物半導体相中にTeリッチ相を微細に分散させ且つ 大部分の結晶粒のC面の延びる方向が揃った板状の熱電半導体素 材10を製造し、さらに熱電半導体素材10を板厚方向に積層し、 固化成形して成形体12を形成した後、成形体12を熱電半導体素 材10の主な積層方向にほぼ平行な一軸方向に剪断力が作用する ように塑性変形させて、結晶粒の六方晶構造のC面の延びる方向 と、C軸方向が共にほぼ揃った結晶配向性を有する熱電半導体材 料17を製造する。この結果、結晶配向性を高めて熱電性能指数 を向上させる。

黒区 上目黒 3-3-1 4 株式会社エコ・トゥエンティーワン内 Tokyo (JP).

- (74) 代理人: 志賀正武, 外(SHIGA, Masatake et al.); 〒 104-8453 東京都中央区八重洲2丁目3番1号 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

1

明細書

発明の名称

熱電半導体材料、該熱電半導体材料による熱電半導体素子、 該熱電半導体素子を用いた熱電モジュール及びこれらの製造方法

技術分野

本発明は、熱電冷却、熱電加熱及び熱電発電等に使用する熱電半導体材料、熱電半導体素子、熱電モジュール及びこれらの製造方法に関するものである。

背景技術

熱電半導体の熱電特性を利用して熱電冷却、熱電加熱及び熱電発電を行わせる 装置は、いずれもその基本構成として、図27にその一例の概略を示す如く、P型の熱電半導体素子2と、N型の熱電半導体素子3とを金属電極4を介し接合してPN素子対を形成してなる熱電モジュール1を、複数個直列に配列して接続した構成を備えている。

上記のような熱電半導体素子 2 及び 3 を形成させる熱電半導体の 1 種としては、5 B族であるピスマス(Bi)及びアンチモン(Sb)から選択される 1 種又は 2 種の元素と、6 B族であるテルル(Te)及びセレン(Se)から選択される 1 種又は 2 種の元素とからなる複合化合物を用いた熱電半導体があり、これは主に 5 B族(Bi及びSb)の原子数と、6 B族(Te及びSe)の原子数の比が 2:3 になる組成、すなわち、(Bi-Sb) $_2$ (Te-Se) $_3$ 系の組成の合金を材料としている。

ところで、上述した熱電半導体材料とする(Bi-Sb) $_2$ (Te-Se) $_3$ 系

の組成を有する合金は、六方晶系の構造を有しており、この結晶構造に起因して、 電気的、熱的に異方性を有し、上記結晶構造の〈1 1 0〉方向、すなわち、六方 晶構造のC面の方向に沿って電気又は熱を作用させることにより、C軸方向に電 気や熱を作用させる場合に比して良好な熱電性能が得られることが知られている。

このために、従来は、上記所要の組成となるように調製した原料合金を、加熱、溶融して溶融合金とした後、ゾーンメルト法等の一方向凝固法によって熱電性能の良好な方位へ結晶の成長方向を制御しながら単結晶或いは多結晶の溶製材を熱電半導体材料として製造し、この溶製材に対し、組成変動の少ない部分を切り出し加工する等、所要の加工を施すことで特性のよい素子を製造するようにしていた。

ところが、上記ゾーンメルト法により単結晶化したインゴットは、その結晶構造に起因して著しい劈開性を有するため、上記溶製材を熱電半導体材料として切出し加工等を実施することにより熱電半導体素子を製造しようとすると、機械的強度が足りず、割れや欠けが発生して歩留まりが悪くなるという問題が生じていた。そのため熱電半導体素子に加工する熱電半導体材料の強度を向上させつつ、熱電性能を向上させることが望まれている。

このように熱電半導体の強度及び熱電性能を向上させるために提案されている 手法の一つとしては、上記と同様に一方向凝固法により製造した熱電半導体材料 としての溶製材を、更に六方晶構造のC面方向に剪断力が加わるように押出し加 工又は圧延加工することにより材料強度を高める手法がある(たとえば、特許文 献1参照)。

又、他の手法としては、一般に、多結晶体である金属材料にて各結晶粒の方位 が分散分布していると、上記金属材料は等方性を示すが、塑性加工等の加工に伴 って結晶粒が特定の方向に配列されると、個々の結晶粒の有する結晶異方性が巨 視的な特性として現れ、金属材料が全体で異方性を示すようになること(たとえ ば、非特許文献1参照)に鑑みて、合金原料の溶製材を粉砕して一旦粉末化し、この粉末を焼結して焼結体を形成することによって材料強度の向上を図ると共に、上記粉末の焼結時に各粉末がそれぞれランダムな向きのまま一体化されることに伴って組織中における結晶方位の配向がランダムになって配向性が低下してしまっている上記焼結体を、一軸方向に圧延したり(たとえば、特許文献2参照)、押出し成形加工したり(たとえば、特許文献3、特許文献4参照)、或いは、据え込み鍛造することにより塑性変形させて(たとえば、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10参照参照)、組織内の結晶の配向度を向上させるようにする手法が従来提案されている。

すなわち、上記焼結体に押圧力を作用させて塑性変形を生じさせることにより、 組織を構成する結晶を押圧力の作用する方向と直交する方向に扁平に塑性変形させて、劈開面が圧縮方向に垂直になるように配向させることができることを利用し、一軸加圧の圧延や鍛造では、六方晶構造のC面を圧縮方向(押圧方向)と垂直に配向させるようにし、押出し成形加工では、六方晶構造のC面を押出し方向(押圧方向)に沿って配向させるようにすることにより、熱電性能の良好な方向へ結晶を配向させた熱電半導体材料を調製するようにしてある。

ところで、一般に、熱電半導体の製造に用いる材料の熱電性能は、以下の式で 評価される。

$$Z = \alpha^2 \cdot \sigma / \kappa = \alpha^2 / (\rho \cdot \kappa)$$

ここで、Z:性能指数、 α :ゼーベック係数、 σ :電気伝導率、 κ :熱伝導率、 ρ :比抵抗、である。

したがって、熱電半導体材料の熱電性能(性能指数:Z)を向上させるためにはゼーベック係数 (α) 又は電気伝導率 (σ) の値を増加させるか、熱伝導率 (κ) を低下させた原料合金材料を使用すればよいことがわかる。

このことから、結晶粒径を小さくして熱伝導率(κ)を小さくすることにより、

熱電性能(性能指数: Z)を向上させることが考えられた。しかし、上述した如き原料合金の溶製材を粉砕してなる粉末を用いた手法では、いずれも粉末の大きさが結晶粒径であるため粉砕による結晶粒の微細化にも限界がある。

そこで、熱電半導体材料の強度と熱電性能を向上させる更に他の手法としては、原料合金を溶融させて溶融合金とした後、該溶融合金を回転させた回転ロールの表面へ噴射する回転ロール法、あるいは、上記溶融合金を所要のガスの気流中に噴射するガスアトマイズ法等の液体急冷法により薄帯、箔片又は粉体状にしてなる熱電半導体素材を形成し、この際、該熱電半導体素材の組織内に微細結晶粒を形成すると共に、組織の内部に高密度の歪み及び欠陥を導入させておき、該熱電半導体素材を粉砕して粉状とした後、該粉状の熱電半導体素材を熱処理してから固化成形して熱電半導体材料を製造することにより、熱処理したり固化成形させるときに上記欠陥による歪みを駆動力として再結晶粒を形成させて、粒界の存在により熱伝導率(κ)を低減させて熱電性能(性能指数: Z)の向上を図るものが提案されている(たとえば、特許文献11参照)。

上記の如く溶融合金を急冷することにより薄帯、箔片や粉体状の熱電半導体素材を形成させるときに用いる回転ロールの回転速度としては、従来は急冷による微細結晶の生成と熱流方向への結晶成長を効果的に行わせるために、周速を2~80m/秒に設定することが提案されており(たとえば、特許文献12参照)、この場合、上記回転ロールの周速が2m/秒未満では急冷速度が十分に得られず、又、80m/秒以上でも急冷速度を十分に得られないとされている。

又、薄帯、箔片や粉体状の熱電半導体素材の固化成形を行うときの加熱条件としては、加圧しながら $200\sim400$ で又は $400\sim600$ でに、 $5\sim150$ 分保持させるようにすることが提案されている(たとえば、特許文献13参照)。

更に、熱電半導体材料の熱電性能を向上させる他の手法としては、(Bi-Sb)。 $(Te-Se)_3$ 系の原料合金の溶融合金を回転ロールにて急冷して形成さ

せた薄帯、箔片又は粉体状の熱電半導体素材に、Agを添加、混合した後、焼結して固化成形させることにより、結晶粒界にAgを分散させて比抵抗ρを低下させることにより熱電性能(性能指数: Z)の向上を図るようにすることも提案されている(たとえば、特許文献14参照)。

なお、上記液体急冷法のうち、回転ロール法では、回転ロールの表面に噴射された溶融合金は、回転ロールとの接触面側からロール外周方向へ向けて冷却されることに伴って、溶融合金の凝固が膜厚方向に起こり、その結果、結晶粒の六方晶構造の基底面であるC面が膜厚方向に起立した箔状の熱電半導体素材が得られることが知られている。

そこで、この回転ロール法により製造した熱電半導体素材の結晶配向を有効利用する手法として、上記熱電半導体素材を膜厚方向に層状に積層し、これを膜厚方向と平行に押圧して焼結することにより熱電半導体材料を製造する手法が提案されている(たとえば、特許文献15参照)。

更に、上記と同様に、回転ロール法により製造した熱電半導体素材を、膜厚方向に層状に積層した後、積層方向に平行に押圧して一体化してなる積層体を、積層方向と直交する方向から押圧することにより、上記積層体を形成するべく積層方向と平行な方向から押圧するときに結晶配向が乱れてしまう各熱電半導体素材間の積層界面部分の結晶配向性を改善させるようにしたり(たとえば、特許文献16参照)、上記と同様の箔状粉の如き熱電半導体素材を膜厚方向に層状に積層してなる積層体を、積層方向と直交する少なくとも3つの方向から押圧して、結晶配向性を高め、更に、上記押圧により結晶配向性の高められた積層体を、積層方向と平行な方向に押出し成形加工することにより、結晶配向性を更に向上させた熱電半導体材料を製造する手法も提案されている(たとえば、特許文献17参照)。

なお、近年、熱電変換材料は、更なる高性能化と高信頼性が望まれ、性能の向

上と共に機械的強度の向上と加工性の良好さも望まれている。すなわち、たとえば、レーザー発信器の冷却用に熱電半導体を用いる場合は、1mm以下の寸法を有するN型及びP型の熱電半導体素子をモジュール化して用いるようにしてあり、したがって、機械的強度としては、インゴット状の熱電半導体材料から1mm以下の寸法の熱電半導体素子を欠けなく切り出せるような強度が要求されるようになってきている。

〔先行技術文献一覧〕

- (1) 特許文献1:特開平11-163422号公報
- (2)特許文献2:特開昭63-138789号公報
- (3)特許文献3:特開2000-124512号公報
- (4)特許文献4:特開2001-345487号公報
- (5) 特許文献 5: 特開 2002-118299号公報
- (6) 特許文献 6: 特開平 10-178218 号公報
- (7)特許文献7:特開2002-151751号公報
- (8) 特許文献8:特開平11-261119号公報
- (9) 特許文献 9: 特開平 10-178219 号公報
- (10)特許文献10:特開2002-111086号公報
- (11) 特許文献11:特開2000-36627号公報
- (12)特許文献12:特開2000-286471号公報
- (13)特許文献13:特開2000-332307号公報
- (14)特許文献14:特開平8-199281号公報
- (15) 特許文献15:特許第2659309号公報
- (16)特許文献16:特開2001-53344号公報
- (17)特許文献17:特開2000-357821号公報
- (18) 非特許文献 1:加藤寛、吉川敬治, 「柱状晶組織を有するAl-Cu合金の弾性係数」, 材料, 昭和56年4月, 第30巻, 第331号, p. 85

ところが、特許文献1に示されたように、熱電半導体原料合金の溶製材を塑性

変形させて熱電半導体材料を製造しても、該熱電半導体材料の機械的強度をあまり高めることができないという問題がある。

したがって、単結晶や一方向性凝固材のような溶製材は、材料の劈開面に沿って割れ易いという問題を克服することが難しく、又、結晶配向性が揃っているにも拘らず、製法が限られているため、更に性能を向上させる方法は少ないというのが現状である。

一方、多結晶体の熱電半導体材料を製造する手法のうち、特許文献 2 乃至特許 文献 1 0 に示されたように、合金原料の溶製材を粉砕してなる粉末を焼結した後、該焼結体に対し、圧延や押出し成形加工や据え込み鍛造により塑性変形を生じさせる手法では、熱電半導体材料の機械的強度を高いものとすることができると考えられるが、溶製材の粉末では、粉末の大きさが結晶粒径となっており、結晶粒の微細化に限界があることから熱伝導率(κ)の低減に不利であり、このため熱電性能をあまり高くすることができないと共に、粉末の焼結は、各粉末ごとに組織の配向性がランダムな配置となった状態で行なわれるため、この組織配向性が乱れた状態の焼結体を塑性変形させたとしても、得られる熱電半導体材料の組織内における結晶配向性をあまり高いものとすることができないという問題がある。

更に、特許文献11に開示された手法では、粒内の欠陥除去のために熱処理や焼結をして電気伝導率 (σ)を向上させ、結晶粒界のフォノンの散乱により熱伝導率 (κ)を低減させるようにしてあるが、多結晶体であれば粒界は必ずあり、電気伝導率の向上と熱伝導率の低減効果の両立は困難であるというのが現状である。又、粒界付近は不純物が濃縮されて電気抵抗が低くなるが、主な体積成分である粒内は逆に半導体化して電気抵抗が増加するという問題がある。

なお、箔や粉体状の熱電半導体素材を製造するときの回転ロールの回転速度条件として、特許文献12には、回転ロールの周速を2~80m/秒に設定することが開示されているが、該特許文献12には、このように周速が設定された回転

ロールを使用して製造された箔や粉体状の熱電半導体素材を固化成形して熱電半 導体材料を製造する場合の具体的な工程は何ら示されていない。

又、液体急冷法により製造した熱電半導体素材を焼結するときの加熱条件として、特許文献13には200~600℃の温度範囲に設定することが開示されているが、これは、上記熱電半導体素材内の組織内における結晶配向性を乱すことなく焼結できるようにするための温度条件を設定するものであって、後述する本発明の熱電半導体素材の固化成形時の設定温度のように、熱電半導体素材の固化成形時に低融点のTeリッチ相の偏析、分相脱落、液体析出等を完全に行わせないようにするための温度範囲とは全く異なるものである。

更に、特許文献 14によって提案されている如く、結晶粒界にAgを分散させて比抵抗(ρ)を低下させることにより熱電性能の向上を図る手法では、Agは(Bi-Sb) $_2$ (Te-Se) $_3$ 系の熱電半導体におけるドーパントになるために、その添加量を厳密に調整しなければならないという問題と径時変化の問題がある。

上記特許文献 1 5 に示されている手法では、回転ロール法により製造した箔状の熱電半導体素材を膜厚方向に積層して固化成形してあるために、膜厚方向と平行に押圧するときに、積層された熱電半導体素材の積層界面部分の結晶配向性が 乱れるという問題がある。

又、回転ロール法により製造した箔状の熱電半導体素材を膜厚方向に積層した後、この積層体に対し、特許文献16に示されているように、積層方向と直交する方向、あるいは、特許文献17に示されているように、積層方向と直交する少なくとも3つの方向から押圧すれば、組織の結晶配向性を向上させることができると考えられるが、この場合における結晶配向性の向上は、六方晶構造のC面の方向を上記熱電半導体素材の積層方向に起立させることにより行なわれるものであって、各結晶粒の六方晶構造のC軸方向を揃えることができるものではなく、

したがって、上記特許文献17に示されているように、その後、積層方向に押圧 して押出し成型加工を更に行なったとしても、上記結晶粒の六方晶構造のC軸の 配向性を揃えることはできない。

なお、上記特許文献 2 乃至特許文献 1 7 にて従来提案されている多結晶体の熱電半導体材料の製造方法では、固化成形して熱電半導体材料を製造するための素材となる溶製材の粉末や、液体急冷法による薄帯、箔片、粉体状の熱電半導体素材は、いずれも粒径が細かく、このため、比表面積が大きくて素材表面が酸化され易いという問題がある。又、表面酸化を防ぐべく、たとえ上記各素材を還元処理するようにしたとしても、焼結時に酸素に触れさせないようにしてモールド中に入れなければならないこと等、対処すべき操作が多く存在し、そのような対処をしたとしても、酸化の影響を低減させることが難しいという問題もある。

又、上記各素材は粒径が細かいために、焼結をするときに焼結後の密度が上がり難く、たとえば、回転ロール法等により製造した細かい箔状の熱電半導体素材を475℃で焼結しても密度を98~99%までしか高めることができず、粉体を用いて焼結する場合には、粒径にもよるが95%程度の密度しか得られず、電気伝導率の低下につながる虞が生じるという問題もある。

更に、一般のホットプレスでは焼結後の組織を緻密にするために細かい粉を用いており、粉体が細かいほど、空気分が増えて嵩密度は増えるが、加重を加えて緻密にすることができるということが広く知られていることから、特許文献15乃至特許文献17に示されたものでは、回転ロール法により製造した箔状の熱電半導体素材を層状に積層した後、固化成形する際、上記箔状の熱電半導体素材としては細かいものを用いるようにしているが、ホットプレスによる焼結後の組織の緻密化は、粉体の流動と、粉体自体の塑性変形の結果として生じる現象であることから、上記特許文献15乃至特許文献17に示されたように細かい箔状の熱電半導体素材を固化成形する場合には、各熱電半導体素材の塑性変形する部分が大きく、箔の有していた結晶配向性が崩れてしまう部分が多く存在するようにな

るため、C面配向が大きく崩れやすいという問題もある。

発明の開示

そこで、本発明は、組織中における結晶粒の配向性が高く、且つ含まれる酸素 濃度を低減させることができて、熱電性能を更に向上させることができる熱電半 導体材料、該熱電半導体材料による熱電半導体素子、該熱電素子を用いた熱電モ ジュール、及び、これらの製造方法を提供することを目的とする。

本発明は、上記課題を解決するために、所要の熱電半導体の組成を有する原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の主な積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してなる熱電半導体材料とする。

上記熱電半導体材料の製造時に、原料合金を冷却部材表面に接触させると、結晶粒の六方晶構造のC面が板厚方向にほぼ平行に延びるよう配向される熱電半導体素材が得られる。この熱電半導体素材を板厚方向にほぼ層状に積層して固化成形させると、形成される成形体中でも結晶粒のC面の延びる方向は積層方向に配向されたまま保持される。更に、上記成形体を、上記結晶粒のC面の延びる方向とほぼ一致する上記熱電半導体の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように押圧して塑性変形させると、上記結晶粒は剪断力の作用する方向に扁平化されて、C面の延びる方向は上記塑性変形時の剪断力の作用する方向に揃えられたまま保持されると同時に、結晶粒のC軸方向が上記塑性変形させるための押圧方向とほぼ平行に配向されるようになる。したがって、得られる熱電半導体材料は、組織中にて結晶粒の六方晶構造のC面の延びる方向及びC軸方向が共に揃えられた状態となるため、上記C面の延びる方向に電流や熱を作用させるよう設定すれば、高い熱電性能を得ることができる。

したがって、所要の熱電半導体の組成としてある原料合金を溶融させた後、該溶融合金を冷却部材表面に接触させて板状の熱電半導体素材とし、次に、該熱電半導体素材を板厚方向にほぼ平行に積層させて固化成形して成形体を形成し、次いで、該成形体を、上記熱電半導体素材の主な積層方向にほぼ直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力を作用させて塑性加工して熱電半導体材料を形成する熱電半導体材料の製造方法とすることにより、上記熱電性能のよい熱電半導体材料を得ることができる。

又、所要の化合物熱電半導体の化学量論組成を有する複合化合物半導体相と、 上記組成に過剰のTeを含んでなるTeリッチ相とを複合した相を有してなる熱 電半導体材料とすると、該熱電半導体材料中には、結晶粒子の粒界が存在すると 同時に、複合化合物半導体相とTeリッチ相の複合した相の存在により結晶歪み を生成させることができて、この結晶歪みの導入により熱伝導率を低減できるこ とから、この熱伝導率の低減により性能指数の向上を図ることができる。

更に、所要の化合物熱電半導体の化学量論組成に、過剰のTeを加え、得られた原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してなる熱電半導体材料とすると、上述した結晶粒の六方晶構造のC面の延びる方向及びC軸方向がほぼ揃った高い結晶配向性を備えることができ、且つ上記複合化合物半導体相とTeリッチ相の複合した相の存在により熱伝導率を低減させることができることから、性能指数の更なる向上を図ることが可能になる。

したがって、原料合金の組成を、所要の化合物熱電半導体の化学量論組成に、 過剰のTeを加えてなる組成とする熱電半導体材料の製造方法とすることにより、 上記した高い結晶配向性と、複合化合物半導体相とTeリッチ相の複合した相を 共に有した性能指数の高い熱電半導体を得ることができる。

上記において、原料合金の組成を、(Bi-Sb) $_2$ Te $_3$ 系の化学量論組成に 過剰のTeを加えてなる組成、具体的には、原料合金の組成を、 $7\sim10$ 原子% のBiと、 $30\sim33$ 原子%のSbと、60原子%のTeとからなる化合物熱電 半導体の化学量論組成に、 $0.1\sim5$ %の過剰のTeを加えてなる組成とすることにより、上述したような高い熱電性能を備えたP型の熱電半導体材料を得ることができる。

一方、原料合金の組成を、Bi₂(Te-Se)₃系の化学量論組成に過剰のTeを加えてなる組成、具体的には、原料合金の組成を、40原子%のBiと、 $50\sim59$ 原子%のTeと、 $1\sim10$ 原子%のSeとからなる化合物熱電半導体の化学量論組成に、 $0.01\sim10$ %の過剰のTeを加えてなる組成とすることにより、上述したような高い熱電性能を備えたN型の熱電半導体材料を得ることができる。

更に、熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにすることにより、熱電半導体素材中のTeリッチ相を液相とさせないか、あるいは、たとえ液相になったとしても少量に限定した状態で固化成形できるようになるため、P型やN型の複合化合物半導体の相に対して、該各組成に過剰のTeを含むTeリッチ相をそれぞれ微細に分散させた多相組織構造を保有するP型或いはN型の熱電半導体材料を形成できる。

更に又、原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させるようにする方法、具体的には、冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも

 30μ m以上となるような速度で回転させた回転ロールを用いるようにする方法とすることにより、原料合金の溶融合金の冷却部材に接触した側に微細な結晶核を形成し、そこから厚さ方向に大きな結晶粒が成形するようゆっくり凝固させることができて、熱電半導体素材を 30μ m以上の厚さのものとして形成でき、この際、結晶粒を、その六方晶構造のC面が上記熱電半導体素材の厚さ方向のほぼ全長に亘って延びるように形成させることができると共に、原料合金の組成がTeを過剰に含んでなる組成としてある場合には、極微的には、(Bi-Sb)2Te3系のP型の複合化合物半導体の相又はBi2(Te-Se)3系のN型の複合化合物半導体の相に対して、それぞれの組成に過剰のTeを含んでなるTeリッチ相をアモルファス化させることなく分相させることができて、Teリッチ相が複合化合物半導体の結晶粒内や粒界に異相として析出又は異相核として生成して結晶歪みを内包した構造の熱電半導体素材を得ることができる。

又、上記熱電半導体素材は原料合金の溶融合金がゆっくり冷却されて形成されることに伴って、厚みが厚いと同時に幅が広くなっているため、個々の熱電半導体素材の体積を大きくでき、このため比表面積を、サイズの小さい粉末等に比して小さくすることができるため、表面が酸化される虞を低減でき、このため熱電半導体素材の電気伝導率の低下を防止できる。

上記において、熱電半導体素材を固化成形するときの加熱を多段加熱法により行うようにする方法とすると、熱電半導体素材を固化成形すべく加熱するときに、加熱源の加熱位置に偏りがあったとしても、積層された熱電半導体素材を、全体を均等に上記固化成形時に所望される温度に達するよう昇温させることができる。そのため、熱電半導体素材の固化成形により形成される成形体を、全体に亘り均質なものとすることができることから、該成形体の塑性変形加工により製造される熱電半導体材料を、全体に亘り均質なものとすることができる。又、原料合金の組成がTeを過剰に含んでなる組成としてある場合には、上記過剰成分を粒界で溶かすことができて、粒界の接合を向上させることができる。

又、塑性加工工程の途中に、一回以上の全方位静水圧工程を行うようにする方

法とすることにより、成形体を塑性変形させるときに、座屈の発生を防止できると共に、塑性変形時における変形速度を均一化することができ、このため上記塑性変形により形成される熱電半導体材料の組織を均一化することができる。

上記した如く、結晶粒の六方晶構造のC面の延びる方向及びC軸方向が共に揃った結晶配向性のよい熱電半導体材料を、該熱電半導体材料を形成すべく成形体を塑性変形加工するときに剪断力を作用させた一軸方向にほぼ垂直な面を電極接合面とすることができるように切り出し加工してなる熱電半導体素子とすることにより、電流や熱を上記結晶粒のC面の延びる方向にほぼ平行に作用させることができるようになるため、該熱電半導体素子の熱電性能を高いものとすることができる。

したがって、上述した如き熱電半導体材料を、成形体の塑性変形加工時に剪断力の作用する一軸方向にほぼ垂直な面を電極接合面とすることができるように切り出し加工して熱電半導体素子を形成する熱電半導体素子の製造方法とすることにより、上記熱電性能の向上した熱電半導体素子を得ることができる。

上記した如き結晶配向性の整った熱電性能の高い熱電半導体素子として、P型の熱電半導体素子とN型の熱電半導体素子を形成し、該各P型とN型の熱電半導体素子を、熱電半導体材料を形成すべく成形体の塑性変形加工を行うときに押圧力を作用させた軸方向と、該押圧により剪断力の作用した方向に共にほぼ直交する方向に並べて配置すると共に、該P型とN型の熱電半導体素子を金属電極を介し接合してなるPN素子対を備えた構成を有する熱電モジュールとすると、該熱電モジュールの使用時に温度変化に伴って生じる上記金属電極の伸長、収縮変形による応力を、上記P型及びN型の各熱電半導体素子に対し、それぞれの結晶粒の六方晶構造のC面に平行な方向に作用させることができるため、上記金属電極が伸長、収縮変形しても上記各熱電半導体素子の組織中にて結晶の層間剥離が生じる虞を防止できて、上記熱電モジュールの強度、耐久性を向上させることができる。

したがって、上述した如き熱電半導体素子としてP型とN型の各熱電半導体素子を用意して、該P型とN型の各熱電半導体素子を、成形体の塑性変形加工時に押圧力を作用させた軸方向と、該押圧により剪断力を作用させた一軸方向に共にほぼ直交する方向に並べて配置すると共に、上記P型とN型の各熱電半導体素子を金属電極を介し接合してPN素子対を形成するようにする熱電モジュールの製造方法とすることにより、上記耐久性や強度の高められた熱電モジュールを得ることができる。

このような本発明によれば、以下の如き優れた効果を発揮する。

- (1) 所要の熱電半導体の組成を有する原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の主な積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してなる熱電半導体材料としてあるので、板状の熱電半導体素材を固化成形物してなる成形体を更に押圧して塑性変形させることで強度を高めることができると共に、組織中の結晶粒を、その六方晶構造のC面の延びる方向のみならずC軸方向をも揃えることができて、結晶配向性の非常に高いものとすることができることから、上記各結晶粒のC面の延びる方向に電流及び熱の作用する方向を設定することにより、熱電性能の向上を図ることができる。
- (2)したがって、所要の熱電半導体の組成としてある原料合金を溶融させた後、 該溶融合金を冷却部材表面に接触させて板状の熱電半導体素材とし、次に、該熱 電半導体素材を板厚方向にほぼ平行に積層させて固化成形して成形体を形成し、 次いで、該成形体を、上記熱電半導体素材の主な積層方向にほぼ直交する平面内 で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方 向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断 力を作用させて塑性加工して熱電半導体材料を形成する熱電半導体材料の製造方 法とすることにより、上記熱電性能のよい熱電半導体材料を得ることができる。

- (3) 又、所要の化合物熱電半導体の化学量論組成を有する複合化合物半導体相と、上記組成に過剰のTeを含んでなるTeリッチ相とを複合した相を有してなる熱電半導体材料とすると、該熱電半導体材料中には、結晶粒子の粒界が存在すると同時に、複合化合物半導体相とTeリッチ相の複合した相の存在により結晶歪みを生成させることができて、この結晶歪みの導入により熱伝導率を低減できることから、この熱伝導率の低減により性能指数の向上を図ることができる。
- (4) 更に、所要の化合物熱電半導体の化学量論組成に、過剰のTeを加え、得られた原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してなる熱電半導体材料とすると、上述した結晶粒の六方晶構造のC面の延びる方向及びC軸方向がほぼ揃った高い結晶配向性を備えることができ、且つ上記複合化合物半導体相とTeリッチ相の複合した相の存在により熱伝導率を低減させることができることから、性能指数の更なる向上を図ることが可能になる。
- (5) したがって、原料合金の組成を、所要の化合物熱電半導体の化学量論組成に、過剰のTeを加えてなる組成とする熱電半導体材料の製造方法とすることにより、上記した高い結晶配向性と、複合化合物半導体相とTeリッチ相の複合した相を共に有した性能指数の高い熱電半導体を得ることができる。
- (6)上記において、原料合金の組成を、(Bi-Sb) $_2$ Te $_3$ 系の化学量論組成に過剰のTeを加えてなる組成、具体的には、原料合金の組成を、 $7\sim10$ 原子%のBiと、 $30\sim33$ 原子%のSbと、60原子%のTeとからなる化合物熱電半導体の化学量論組成に、 $0.1\sim5$ %の過剰のTeを加えてなる組成とすることにより、上述したような高い熱電性能を備えたP型の熱電半導体材料を得ることができる。

- (7) 一方、原料合金の組成を、 Bi_2 ($Te-Se)_3$ 系の化学量論組成に過剰のTe を加えてなる組成、具体的には、原料合金の組成を、40原子%のBi と、 $50\sim59$ 原子%のTe と、 $1\sim10$ 原子%のSe とからなる化合物熱電半導体の化学量論組成に、 $0.01\sim10$ %の過剰のTe を加えてなる組成とすることにより、上述したような高い熱電性能を備えたN型の熱電半導体材料を得ることができる。
- (8) 更に、熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにすることにより、熱電半導体素材中のTeリッチ相を液相とさせないか、あるいは、たとえ液相になったとしても少量に限定した状態で固化成形できるようになるため、P型やN型の複合化合物半導体の相に対して、該各組成に過剰のTeを含むTeリッチ相をそれぞれ微細に分散させた多相組織構造を保有するP型或いはN型の熱電半導体材料を形成できる。
- (9) 更に又、原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させるようにする方法、具体的には、冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μ m以上となるような速度で回転させた回転ロールを用いるようにする方法とすることにより、原料合金の溶融合金の冷却部材に接触した側に微細な結晶核を形成し、そこから厚さ方向に大きな結晶粒が成形するようゆっくり凝固させることができて、熱電半導体素材を30 μ m以上の厚さのものとして形成でき、この際、結晶粒を、その六方晶構造のC面が上記熱電半導体素材の厚さ方向のほぼ全長に亘って延びるように形成させることができると共に、原料合金の組成がTeを過剰に含んでなる組成としてある場合には、極微的には、(Bi-Sb)2 Te3系のP型の複合化合物半導体の相又はBi2(Te-Se)3系のN型の複

合化合物半導体の相に対して、それぞれの組成に過剰のTeを含んでなるTeリッチ相をアモルファス化させることなく分相させることができて、Teリッチ相が複合化合物半導体の結晶粒内や粒界に異相として析出又は異相核として生成して結晶歪みを内包した構造の熱電半導体素材を得ることができる。

又、上記熱電半導体素材は原料合金の溶融合金がゆっくり冷却されて形成されることに伴って、厚みが厚いと同時に幅が広くなっているため、個々の熱電半導体素材の体積を大きくでき、このため比表面積を、サイズの小さい粉末等に比して小さくすることができるため、表面が酸化される虞を低減でき、このため熱電半導体素材の電気伝導率の低下を防止できる。

- (10)上記において、熱電半導体素材を固化成形するときの加熱を多段加熱法により行うようにする方法とすると、熱電半導体素材を固化成形すべく加熱するときに、加熱源の加熱位置に偏りがあったとしても、積層された熱電半導体素材を、全体を均等に上記固化成形時に所望される温度に達するよう昇温させることができる。そのため、熱電半導体素材の固化成形により形成される成形体を、全体に亘り均質なものとすることができることから、該成形体の塑性変形加工により製造される熱電半導体材料を、全体に亘り均質なものとすることができる。又、原料合金の組成がTeを過剰に含んでなる組成としてある場合には、上記過剰成分を粒界で溶かすことができて、粒界の接合を向上させることができる。
- (11)又、塑性加工工程の途中に、一回以上の全方位静水圧工程を行うようにする方法とすることにより、成形体を塑性変形させるときに、座屈の発生を防止できると共に、塑性変形時における変形速度を均一化することができ、このため上記塑性変形により形成される熱電半導体材料の組織を均一化することができる。
- (12)上記した如く、結晶粒の六方晶構造のC面の延びる方向及びC軸方向が 共に揃った結晶配向性のよい熱電半導体材料を、該熱電半導体材料を形成すべく 成形体を塑性変形加工するときに剪断力を作用させた一軸方向にほぼ垂直な面を 電極接合面とすることができるように切り出し加工してなる熱電半導体素子とす

ることにより、電流や熱を上記結晶粒のC面の延びる方向にほぼ平行に作用させることができるようになるため、該熱電半導体素子の熱電性能を高いものとすることができる。

- (13)したがって、上述した如き熱電半導体材料を、成形体の塑性変形加工時に剪断力の作用する一軸方向にほば垂直な面を電極接合面とすることができるように切り出し加工して熱電半導体素子を形成する熱電半導体素子の製造方法とすることにより、上記熱電性能の向上した熱電半導体素子を得ることができる。
- (14)上記した如き結晶配向性の整った熱電性能の高い熱電半導体素子として、P型の熱電半導体素子とN型の熱電半導体素子を形成し、該各P型とN型の熱電半導体素子を、熱電半導体材料を形成すべく成形体の塑性変形加工を行うときに押圧力を作用させた軸方向と、該押圧により剪断力の作用した方向に共にほぼ直交する方向に並べて配置すると共に、該P型とN型の熱電半導体素子を金属電極を介し接合してなるPN素子対を備えた構成を有する熱電モジュールとすると、該熱電モジュールの使用時に温度変化に伴って生じる上記金属電極の伸長、収縮変形による応力を、上記P型及びN型の各熱電半導体素子に対し、それぞれの結晶粒の六方晶構造のC面に平行な方向に作用させることができるため、上記金属電極が伸長、収縮変形しても上記各熱電半導体素子の組織中にて結晶の層間剥離が生じる虞を防止できて、上記熱電モジュールの強度、耐久性を向上させることができる。
- (15)したがって、上述した如き熱電半導体素子としてP型とN型の各熱電半導体素子を用意して、該P型とN型の各熱電半導体素子を、成形体の塑性変形加工時に押圧力を作用させた軸方向と、該押圧により剪断力を作用させた一軸方向に共にほぼ直交する方向に並べて配置すると共に、上記P型とN型の各熱電半導体素子を金属電極を介し接合してPN素子対を形成するようにする熱電モジュールの製造方法とすることにより、上記耐久性や強度の高められた熱電モジュールを得ることができる。

図面の簡単な説明

- 図1は、本発明の熱電半導体材料の製造方法の実施の一形態におけるフローを 示す図である。
 - 図2は、図1の徐冷箔製造工程で用いる装置の概要を示す図である。
- 図3は、図1の徐冷箔製造工程にて形成される熱電半導体素材を示す概略斜視図である。
- 図4は、図1の徐冷箔製造工程にて形成される熱電半導体素材の厚さと、冷却ロールの周速との相関性を示す図である。
- 図5は、図1の徐冷箔製造工程にて形成される熱電半導体素材の幅と、冷却ロールの周速との相関性を示す図である。
- 図6Aは、図1の固化成形工程にて形成された成形体の組織構造を示すもので、 断面を示す図面代用写真である。
- 図6Bは、図1の固化成形工程にて形成された成形体の組織構造を示すもので、 反回転ロール接触面側の表面を示す図面代用写真である。
 - 図7Aは、図1の固化成形工程にて形成される成形体を示す概略斜視図である。
- 図7Bは、図1の固化成形工程にて形成される成形体を示すもので、熱電半導体素材の積層構造を模式的に示す斜視図である。
 - 図7 Cは、図7 Bの一部を切断して示す拡大斜視図である。
- 図8Aは、図1の塑性変形工程で用いる塑性加工装置を示すもので、成形体の 塑性変形前の初期状態を示す概略切断側面図である。
 - 図8Bは、図8AのA-A方向矢視図である。
- 図8 Cは、図1の塑性変形工程で用いる塑性加工装置を示すもので、成形体の 塑性変形による熱電半導体材料を形成した状態を示す概略切断側面図である。
- 図8Dは、図1の塑性変形工程で用いる塑性加工装置を示すもので、位置固定 用リングを備えた形式のものを示す図8Bに対応する図である。
- 図9Aは、図1の塑性変形工程で形成される熱電半導体材料を示す概略斜視図である。

図9Bは、図1の塑性変形工程で形成される熱電半導体材料を示すもので、結晶粒の配向性を模式的に示す斜視図である。

図10は、図1の徐冷箔製造工程における冷却ロールの周速と、該徐冷箔製造工程にて形成される熱電半導体素材を用いて図1の塑性変形工程にて形成される 熱電半導体材料の熱伝導率との相関性を示す図である。

図11は、図1の徐冷箔製造工程における冷却ロールの周速と、該徐冷箔製造工程にて形成される熱電半導体素材を用いて図1の塑性変形工程にて形成される 熱電半導体材料の電気伝導率との相関性を示す図である。

図12は、図1の徐冷箔製造工程における冷却ロールの周速と、該徐冷箔製造工程にて形成される熱電半導体素材を用いて図1の塑性変形工程にて形成される 熱電半導体材料のゼーベック係数との相関性を示す図である。

図13は、図1の徐冷箔製造工程における冷却ロールの周速と、該徐冷箔製造工程にて形成される熱電半導体素材を用いて図1の塑性変形工程にて形成される 熱電半導体材料のキャリア濃度との相関性を示す図である。

図14は、図1の徐冷箔製造工程における冷却ロールの周速と、該徐冷箔製造工程にて形成される熱電半導体素材を用いて図1の塑性変形工程にて形成される 熱電半導体材料の性能指数との相関性を示す図である。

図15は、図1の徐冷箔製造工程にて形成される熱電半導体素材の厚さと酸素 濃度との相関性を示す図である。

図16は、図1の徐冷箔製造工程にて形成される熱電半導体素材の幅寸法と酸素濃度との相関性を示す図である。

図17は、図1の徐冷箔製造工程における冷却ロールの周速と、該徐冷箔製造 工程にて形成される熱電半導体素材の酸素濃度との相関性を示す図である。

図18は、図1の徐冷箔製造工程にて製造される熱電半導体素材中の酸素濃度 と、該熱電半導体素材を用いて形成される熱電半導体材料の性能指数との相関性 を示す図である。

図19は、本発明の熱電半導体材料の製造方法の実施の他の形態におけるフローを示す図である。

図20Aは、図19の全方位静水圧工程の実施に用いる塑性加工装置を示すも

ので、成形体の塑性変形前の初期状態を示す概略切断側面図である。

図20Bは、図20AのB-B方向矢視図である。

図20Cは、図19の全方位静水圧工程の実施に用いる塑性加工装置を示すもので、所要量の塑性変形させた成形体に対し全方位静水圧を作用させる状態を示す概略切断側面図である。

図21は、本発明の熱電半導体素子の製造方法の手順を示すもので、熱電半導体材料をスライスする状態、スライスされたウェハー及びウェハーより切り出された熱電半導体素子を示す概略斜視図である。

図22は、本発明の熱電モジュールの実施の一形態を示す概略斜視図である。

図23は、図22の熱電モジュールの比較例を示す概略斜視図である。

図24Aは、図1の塑性変形工程で用いる塑性加工装置の他の例を示す概略切 断側面図である。

図24Bは、図24AのC-C方向矢視図である。

図25Aは、図1の塑性変形工程として、他の装置により行う例を示すもので、 大圧下プレス装置により成形体を塑性変形させる状態を示す概要図である。

図25Bは、図1の塑性変形工程として、他の装置により行う例を示すもので、圧延装置により成形体を塑性変形させる状態を示す概要図である。

図26は、本発明の製造方法により製造した熱電モジュールの熱電性能を他の製造方法により製造した熱電モジュールと比較した結果を示す図である。

図27は、従来の熱電モジュールの一例の概略を示す斜視図である。

発明を実施するための最良の形態

以下、本発明の実施の形態を図面を参照して説明する。

図1乃至図18は、本発明の熱電半導体材料の製造方法の実施の一形態を示す もので、図1にフローを示す如く、基本的には、熱電半導体の原料合金を構成す る各金属を所要の割合で混合して合金仕込みをした後、溶融して溶融合金とし、 該溶融合金を、後述する冷却法により形成される熱電半導体素材の厚さの90% 以上が急冷にならない速度でゆっくり冷却(徐冷)し、凝固させて熱電半導体素 材となる薄い板状の箔(徐冷箔)を製造し、次に、該製造された熱電半導体素材としての徐冷箔を、モールド内にて板厚方向にほぼ平行に積層充填した後、後述する所要の加熱条件で固化成形して成形体を形成し、次いで、該成形体を、上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断応力が掛かるように荷重を加えて押圧することにより塑性変形させて熱電半導体材料を製造するようにする。

具体的にN型の熱電半導体材料及びN型半導体素子の製造方法について述べると、先ず、成分調整工程 I において、N型の熱電半導体の原料合金の化学量論組成を調製すべく、B i とS e とT e を、それぞれB i : 40原子%、S e : $1\sim 10$ 原子%、T e : $50\sim 59$ 原子%の組成となるように秤量して、該各秤量された金属を混合することによりB i $_2$ (T e - S e) $_3$ 系の組成とし、更に、上記B i $_2$ (T e - S e) $_3$ 系の組成の全量に対して質量比で $0.01\sim 10$ %のT e を過剰に加えて、T e 過剰の非化学量論の組成となるようにして合金仕込みをする。なお、この際、N型の熱電半導体を形成させるためのドーパント、たとえば、H g、A g、C u やハロゲン等のドーパントを所要量添加するようにしてもよい。

次に、徐冷箔製造工程IIとして、図2に示す如く、上記成分調製工程Iにて混合して仕込んだ金属混合物を、還元ガス雰囲気、不活性ガス雰囲気又は真空等の低酸素濃度雰囲気を保持できるようにした容器5内に設置してある石英製の溶融るつぼ6内に入れ、加熱コイル7で加熱することにより溶融させて溶融合金8とした後、該溶融合金8を、冷却部材としての水冷ロール等の回転ロール9の表面に供給して凝固させることにより素材厚さが少なくとも30μm以上となる熱電半導体素材10としての徐冷箔が形成できるように、上記溶融るつば6内の溶融合金8を、周速が5m/秒以下の速度となるように低速で回転させた回転ロール9の表面に供給して凝固させ、これにより図3に示す如き薄い板状の熱電半導体素材10としての徐冷箔を製造する。

なお、上記回転ロール9の回転速度は、周速を2m/秒以下に設定することが

望ましい。これは、回転ロール9の周速を5m/秒以下にすると、図4に示すグラフより明らかなように、製造される熱電半導体素材10としての徐冷箔の厚さを30μm以上に厚くすることができると共に、回転ロール9の表面にて溶融合金8を凝固させて熱電半導体素材10を形成させるときに、該形成される熱電半導体素材10の厚さの90%以上が急冷にならないような速度で凝固させることができ、このため、図3に示す如く、該熱電半導体素材10の組織中に形成される結晶粒11を、熱電半導体素材10としての徐冷箔の板厚方向のほぼ全長に亘る長さのものとすることができて、結晶配向性のよい熱電半導体素材10を形成でき、更に、回転ロール9の周速を2m/秒以下にすると、熱電半導体素材10の厚さを約70μm以上に効率よく増加させることができるためである。又、上記の如く、回転ロール9の回転速度を、周速が5m/秒以下に設定することにより、図5に示すグラフより明らかなように、製造される熱電半導体素材10としての徐冷箔の幅寸法も大とすることができるため、熱電半導体素材10の一つずつの体積を増加させることができるようにしてある。

なお、図3では熱電半導体素材10の組織中における結晶粒11を模式的に六角形で示してあるが、この六角形は、上記結晶粒11の六方晶構造の実際の結晶格子を示すものではなく、説明の便宜上、該六角形の面により結晶粒11の六方晶構造のC面の向きを概略的に示すと共に、又、上記六角形の扁平する方向により結晶粒11の扁平する方向、すなわち、結晶粒11の配向する方向性を概略的に示すようにしたものである。以降の図でも同様とする。

これにより、上記原料合金の溶融合金 8 は、回転ロール 9 上に供給されて徐冷されることによって回転ロール 9 との接触面側よりロール外周方向へ溶融合金 8 の厚み方向にゆっくりと順次冷却され、このため図 3 に示す如く、結晶粒 1 1 の六方晶構造 C 面の延びる方向の大部分が板厚方向(図中矢印 t で示す方向)に揃えられながら、B i $_2$ T e $_3$ 及び B i $_2$ S e $_3$ の複合化合物半導体相の結晶構造がそれぞれ形成されて固化されると同時に、上記溶融合金 8 の組成中には B i $_2$ (T

e-Se) 3系の化学量論組成に過剰となるようTeが加えてあるため、極微的には Bi_2Te_3 又は Bi_2Se_3 の各複合化合物半導体相の結晶粒内や粒界に、 Bi_2Te_3 又は Bi_2Se_3 の組成に対して過剰のTeを含んでなるTeリッチ相がアモルファス化することなく分相して、該Teリッチ相が微細に分散してなる構造、すなわち、 Bi_2 ($Te-Se)_3$ 系の複合化合物半導体等の結晶粒内や粒界に異相(Teリッチ相)を析出又は異相核を生成して結晶歪みを内包した構造を有すると考えられる熱電半導体素材 10 が得られる。

図6A,図6Bは、上記徐冷箔製造工程IIにて製造された熱電半導体素材10における組織構造の走査型電子顕微鏡(SEM)像を示すもので、図6Aは、上記熱電半導体素材10の断面を、回転ロール9との接触面側を上側として配置した状態で示し、又、図6Bは、上記熱電半導体素材10の反回転ロール接触面側の表面構造を示すものである。

上記図6Aより明らかなように、上記徐冷箔製造工程IIでは、厚さ寸法が30 μm以上となる熱電半導体素材10を形成させることができると共に、回転ロール9との接触面側では、該回転ロール9との接触により溶融合金8が急冷されることに伴って生じた小さい結晶粒が見られるが、この小さい結晶粒は、回転ロール9との接触面側の表層部にのみ形成されるものであって、該小さい結晶粒の存在する表層部以外の厚さ方向の90%以上の領域では、上記熱電半導体素材10の板圧寸法のほぼ全長に亘って板厚方向に配向する大きな結晶粒11を形成させることができる。

又、図 6 Bより明らかなように、上記熱電半導体素材 1 0 の組織構造としては、板圧方向に延びるように扁平して配向される B i_2 (Te-Se) $_3$ 系の複合化合物半導体等の結晶粒 1 1 の結晶粒内や粒界に異相(Te リッチ相)の結晶粒 1 1 a が生成されている。

なお、上記徐冷箔製造工程IIにて製造される熱電半導体素材10は、以下に述べる固化成形工程IIIに送る前に、混入している粒径の小さい粉末を篩にかけて予め除去するようにしておいてもかまわない。

次いで、固化成形工程IIIとして、還元ガス雰囲気、不活性ガス雰囲気又は10 Pa以下の真空等の低酸素濃度雰囲気を保持できるようにした容器(図示せず) 内にて、上記徐冷箔製造工程IIにて製造された熱電半導体素材10の徐冷箔を、 ほぼ平行に板厚方向(矢印 t 方向)に積層配置するよう図示しないモールドに充 填した後、焼結すると共に加圧することにより固化成形して所要形状、たとえば、 図7A,図7B,図7Cに示す如く、後述する塑性変形工程IVにて使用する塑性 加工装置13における拘束部材15間の幅と対応する所要の幅寸法を有する直方 体状の成形体12を製造する。

なお、図7Bは、成形体12の構造の基本構成である熱電半導体素材10としての徐冷箔の積層構造を模式的に示すものであり、図7Cは、上記図7Bの熱電半導体素材10の積層構造の一部を拡大して示すものである。

上記焼結のときの反応条件としては、所要の圧力、たとえば、14.7MPa以上の圧力を付与しながら、上記徐冷箔製造工程IIにて製造した熱電半導体素材 6中に存在する 420 ℃程度で液相化することがある低融点のTe リッチ相の偏析、分相脱落、液体析出等を完全に行わせないように、500 ℃以下となる温度条件、好ましくは、420 ℃以上 450 ℃以下の温度まで加熱して、該温度にて、短時間、たとえば、5 秒から 5 分程度保持することにより焼結を行わせるようにする。

なお、この焼結の際の温度条件範囲の下限は380℃以上とする。これは、焼 結温度が380℃未満の場合には、成形体12の密度が上がらないためである。

更に、上記焼結の際は、焼結対象物に温度分布の偏りを生じさせることなく焼 結対象物を全体に亘りほば均一に上記所要の焼結温度条件に到達させることがで きるように、多段加熱を行うようにする。

ここで、多段加熱とは、焼結対象物を図示しない所要の加熱源を用いて上記所要の焼結温度条件まで昇温させるときに、途中で1回以上、所要期間、たとえば、10秒以上に亘り上記加熱源による加熱を一時停止させたり、加熱源による加熱

量を低下させて焼結対象物の昇温速度を一時遅くなるよう変化させることにより、 上記加熱停止期間あるいは昇温速度低下期間に焼結対象物自体の熱伝導を利用し て該焼結対象物全体の温度の均一化を図り、このようにして昇温途中の温度で全 体の温度を均一化させた後、焼結対象物を更に加熱するようにすることにより、 焼結対象物をほば均一に最終到達温度である上記焼結温度条件まで昇温させるよ うにする手法である。

したがって、途中で焼結対象の温度の均一化を図ることにより、加熱源による加熱個所に偏りがあったとしても焼結温度到達時における温度分布の偏在化を抑制できるようにしてある。この場合の焼結に用いる加熱装置 (加熱炉) としては、通常のホットプレスや通電ホットプレス、パルス通電ホットプレス等を用いるようにしてもよい。又、上記加熱停止期間や、昇温速度低下期間は、10秒以上に限定されるものではなく、加熱源の加熱能力や、焼結対象物の大きさ等に応じて任意に設定すればよい。

上記徐冷箱製造工程IIにて形成される熱電半導体素材10としての徐冷箔は幅と厚さが大きく、そのまま積層すると嵩が増えて積層物中には隙間が多く存在するようになるが、固化成形工程IIIにおいて上記熱電半導体素材10を積層した後、加圧しながら焼結すると、上記各熱電半導体素材10間の隙間を埋めるようにそれぞれの熱電半導体素材10の原子が動き、この原子の動きに伴って、熱電半導体素材10同士の隙間が埋められるよう各熱電半導体素材10同士が接触するよう塑性変形され、この塑性変形されて接触された熱電半導体素材10の界面同士が接合される。

この際、熱電半導体素材10の変形に伴い該熱電半導体素材10の板厚方向にほぼ揃うように配向されていた結晶粒11のC面の配向性が多少乱れるが、体積的には大部分が崩れることはなく、したがって、図7Bに示すように、上記成形体12を構成する各熱電半導体素材10の徐冷箔中では、結晶粒11の配向性が、図3に示した熱電半導体素材10の単体の場合とほぼ同様な配向性(矢印t方向)として保持される。そのため、従来の如く細かい熱電半導体素材を焼結していた場合のように、結晶粒のC面の配向性が大きく崩れる虞を防止できる。

又、上記成形体12は、熱電半導体素材10としての厚さが厚く且つ幅寸法の大きい徐冷箔を、板厚方向にほぼ平行に積層した後、固化成形しているため、熱電半導体素材10同士の隙間を容易に低減させることができて、形成される成形体12の密度を、同様の組成の複合化合物半導体を理想的な結晶構造とした場合の密度に比して99.8%程度以上まで向上させることが可能になる。

その後、塑性変形工程IVとして、還元ガス雰囲気、不活性ガス雰囲気又は真空等の低酸素濃度、たとえば、酸素分圧 0.2 Pa以下の雰囲気を保持できるようにした図示しない密封容器内にて、図 8 A,図 8 B,図 8 Cに示す如く、ベース 1 4 上の左右位置に、ほぼ平行な対抗面部を備えた一対の板状の拘束部材 1 5 を、上記成形体 1 2 の幅方向の寸法(成形体 1 2 を構成する熱電半導体素材 1 0 の主な積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向の寸法)と対応する所要間隔を隔てて立設し、且つ該左右の拘束部材 1 5 の内側に、パンチ 1 6 を上下方向スライド自在に配置すると共に、該パンチ 1 6 を図示しない昇降駆動装置により上記左右の拘束部材 1 5 の上方位置から各拘束部材 1 5 の内側における下部位置まで荷重を付加しながら下降させることができるようにし、更に、上記ベース 1 4、拘束部材 1 5、パンチ 1 6 の所要位置に図示しない加熱装置を備えてなる構成の塑性加工装置 1 3 を用意しておき、図 8 Aに示す如く、上記パンチ 1 6 を、拘束部材 1 5 の上部位置に引き上げた状態にて、該各拘束部材 1 5 同士の内側における中央部に、上記固化成形工程IIIにて形成される成形体 1 2 を、該成形体 1 2 の長手方向が上下方向に沿って配置されると共に、該成形体 1 2 を

構成する熱電半導体素材10の積層方向(熱電半導体素材10の板厚方向に同じ矢印 t 方向)が左右の拘束部材15と平行な配置となるようにし、且つ該成形体12の幅方向両側面を上記左右の拘束部材15の内側面に接触させるよう配置し、次に、加熱装置により上記成形体12を470℃以下、好ましくは450℃以下の温度条件に加熱した状態にて、図8Aに二点鎖線で示す如く、昇降駆動装置により上記パンチ16を下降させて上記成形体12に対し上方より所要荷重の押圧力を作用させ、これにより、該成形体12を、熱電半導体素材10の積層方向に平行な一軸方向に展延させるよう塑性変形させて、図8Cに示す如く、直方体状の熱電半導体材料17を製造するようにする。

上記塑性加工装置13にて、パンチ16による押圧力を成形体12に対し上方より作用させると、該成形体12は、幅方向への変形が左右の拘束部材15により拘束されているため、拘束部材15と平行な方向、すなわち、成形体12における熱電半導体素材10の積層方向(矢印t方向)への変形のみが許容され、このため該積層方向に平行な一軸方向に剪断力が作用させられ、これにより、上記塑性変形前の成形体12を構成していた熱電半導体素材10の徐冷箔は、積層界面が破壊されて隣接するもの同士が互いに一体化されると共に、上記成形体12における熱電半導体素材10の板厚方向と平行な方向に六方晶構造のC面が延びるよう配向されていた結晶粒11は、上記剪断力が作用する方向に扁平に塑性変形されつつ、劈開面が押圧方向に垂直になるよう配向されてゆく。

したがって、図9Aに示す如き上記成形体12の塑性変形加工後に形成される 熱電半導体材料17の組織中では、図9Bに結晶配向性を模式的に示すように各 結晶粒11は、その六方晶構造のC面が、成形体12の展延方向、すなわち、変 形前の成形体12における熱電半導体素材10の積層方向(矢印t方向)に平行 に延びるよう変形され、同時に大部分の結晶粒11は、そのC軸方向が上記塑性 加工時における圧縮方向(図中矢印pで示す方向)に揃うように配向させられる。 なお、図9Bにおける六角形は結晶粒11の配向性を示しているに過ぎず、実際 の結晶粒11の大きさを反映するものではない。 なお、上記塑性加工装置13は、成形体12の塑性変形加工時には左右の各拘束部材15に外向きの大きな応力が作用するようになるため、図8Dに示す如く、上記左右の拘束部材15の外周側を取り囲むように、一連の位置固定用リング15aを設けた構成として、上記左右の拘束部材15に作用する応力を、上記位置固定用リング15aに受けさせるようにしてもよい。

このように、上記本発明のN型の熱電半導体材料17は、原料合金の溶融合金8を回転ロール9を用いて徐冷、凝固させることにより、結晶粒11を板厚方向に配向させると共に、ほぼ板厚方向の全長に亘る長いものとさせて結晶配向性が向上され且つ結晶粒内あるいは粒界にTeリッチ相を低融点異相として析出させた構造を有してなる熱電半導体素材10を、結晶配向性を維持させたままで且つBi2(Te-Se)3系の複合化合物半導体相に上記Teリッチ相を微細に分散させた組織構造を保持させたまま固化成形して成形体12を形成して、該成形体12を、熱電半導体素材10の積層方向となる該熱電半導体素材10の板厚方向にほぼ平行な一軸方向にのみ展延させてなる構造を有しているので、粒界の存在による効果と共に、粒内や粒界における異相の存在により結晶歪みを生成させることができて、この結晶歪みの生成により熱伝導率の低減を図ることができると共に、熱電半導体材料17の全体に亘り、結晶粒11を、その六方晶構造のC面の延びる方向及びC軸方向をほぼ揃えることができることから、上記各結晶粒11のC面の延びる方向に電流及び熱の流通方向を設定することにより、熱電性能(性能指数:2)の向上を図ることができる。

すなわち、図4にて説明した如く、 30μ m以上の厚さを有する熱電半導体素材10を得ることができるよう回転ロール9の周速を5m/秒と低速に設定するようにしてあるため、図10に示す如き熱電半導体素材10としての徐冷箔の製造時における回転ロール9の回転速度と、上記熱電半導体素材10より上述の工程を経て製造される熱電半導体材料17の熱伝導率(κ) との関係から明らかなように、回転ロール9の回転速度を上記のように遅くすることにより、製造される熱電半導体材料17の熱伝導率(κ) を、回転ロール9の回転速度が速い場合

の熱電半導体素材10を用いて製造した場合に比して高めることができる。

又、図11に示す如き熱電半導体素材10としての徐冷箔の製造時における回転ロール9の回転速度と、製造される熱電半導体材料17の電気伝導率 (σ) との関係から明らかなように、回転ロール9の回転速度を上記のように遅くすることにより、製造される熱電半導体材料17の電気伝導率 (σ) を、回転ロール9の回転速度が速い場合の熱電半導体素材10を用いた場合に比して高めることができる。

更に、図12に示した如き熱電半導体素材10としての徐冷箔の製造時における回転ロール9の回転速度と、製造される熱電半導体材料17のゼーベック係数 (α) との関係から明らかなように、回転ロール9の回転速度を遅くすることにより、製造される熱電半導体材料17のゼーベック係数 (α) を、回転ロール9の回転速度が速い場合の熱電半導体素材10を用いた場合に比して高めることができる。

更に又、図13に示した如き熱電半導体素材10としての徐冷箔の製造時における回転ロール9の回転速度と、製造される熱電半導体材料17中のキャリア濃度との関係から明らかなように、回転ロール9の回転速度を遅くすることにより、製造される熱電半導体材料17中のキャリア濃度を、回転ロール9の回転速度が速い場合の熱電半導体素材10を用いた場合に比して高めることができる。

したがって、図14に示した如き熱電半導体素材10としての徐冷箔の製造時における回転ロール9の回転速度と、製造される熱電半導体材料17の性能指数(Z)との関係から明らかなように、回転ロール9の回転速度を遅くして製造した熱電半導体素材10より上述した手順を経て製造される熱電半導体材料17の性能指数(Z)を、回転ロール9の回転速度が速い場合の熱電半導体素材10を用いた場合に比して高めることができる。

更に、上記本発明の熱電半導体材料11では、図4にて示したように、回転ロール9の回転速度を遅くすることにより、製造される熱電半導体素材10としての徐冷箔の厚さを厚くできることに伴って比表面積を低減でき、このため、図15に示した熱電半導体素材10としての徐冷箔の厚さと、赤外線吸収法により測定した該熱電半導体素材10に含有される酸素濃度との関係から明らかなように、熱電半導体素材10の酸化を抑制することができて、該熱電半導体素材10より製造される熱電半導体材料17中における酸素濃度の低減化を図ることができる。

又、図5にて示したように、回転ロール9の回転速度を遅くすることにより、 製造される熱電半導体素材10としての徐冷箔の幅寸法を大とすることができる ことに伴っても比表面積を低減でき、このため、図16に示した熱電半導体素材 10としての徐冷箔の幅と、赤外線吸収法により測定した該熱電半導体素材10 に含有される酸素濃度との関係から明らかなように、上記と同様に熱電半導体素 材10の酸化を抑制することができて、製造される熱電半導体材料17中におけ る酸素濃度の低減化を図ることができる。

したがって、図17に示す如き回転ロール9の回転速度と、熱電半導体材料17中の酸素濃度との関係より明らかなように、上記回転ロール9の回転速度を遅くすることによって、製造される熱電半導体材料17中に含まれる酸素濃度を低減させることができるため、酸化による電気伝導率 (σ) の低下を防止することが可能になる。

よって、図18にて示す如き熱電半導体素材10としての徐冷箔中の酸素濃度と性能指数との関係からも明らかなように、製造される熱電半導体材料17中に含まれる酸素濃度を低減させることにより、上記熱電半導体材料17の熱電性能を向上させることができる。

なお、上記製造されるN型の熱電半導体材料 17 の電気伝導率 (σ) やゼーベック係数 (α) は、N型熱電半導体の組成の基準となるBi , (Te-Se) 。系

の組成におけるTeとSeの比を調整することにより制御できる。

又、本発明の熱電半導体材料の製造方法の実施の他の形態としては、図19にフローを示す如く、上記と同様の熱電半導体材料の製造手順における塑性変形工程IVにおいて、成形体12を押圧して熱電半導体素材10の徐冷箔の積層方向と平行な一軸方向に剪断力を作用させて所要形状まで塑性変形させるときに、該塑性変形自体を行わせる一軸剪断力作用工程IV-1の途中、たとえば、低変形率のとき等に、一回以上の全方位静水圧工程IV-2を行うようにしてもよい。ここで、全方位静水圧工程IV-2とは、成形体12の塑性変形時に、変形方向にある面に、上記変形途中の成形体12を接触させて一時変形を拘束した状態で、一定時間圧力をかけ続ける工程のことをいう。

したがって、上記全方位静水圧工程IV-2を実施する場合は、図20A,図20B,図20Cに示す如く、図8A,図8B,図8Cに示した塑性加工装置13と同様の構成において、左右の拘束部材15の間における前後方向両側位置に、ほぼ平行な対向面部を備えた前後一対の拘束部材18を所要間隔を隔てて設けて、上記左右の拘束部材15の間の領域の前後両側をそれぞれ閉塞させた構成として、固化成形工程IIIにて形成される成形体12を井記左右の拘束部材15同士の内側における中央部に、上記成形体12を構成する熱電半導体素材10の積層方向が左右の拘束部材15の面と平行になるように配置するときに、上記成形体12と前後の拘束部材18との間に、上記成形体12の変形代となる所要の隙間が形成されるようにしてあり、且つ上記左右及び前後の各拘束部材15,18に周囲を囲まれる空間に対応した平面形状を有するパンチ16aを、図示しない昇降駆動装置により上記空間内で上下方向に昇降移動できるように備え、更に、ベース14、拘束部材15,18、パンチ16aの所要位置に図示しない加熱装置を備えてなる塑性加工装置13aを用意し、又、図8A,図8B,図8Cに示した塑性加工装置13も共に用意しておく。

塑性加工工程IVを行う場合は、先ず、図20A, 図20Bに示す如く、固化成

形工程IIIにて形成した成形体12を、上記塑性加工装置13aの左右の拘束部材 15同士の間の中央部に配置した後、上述した塑性変形工程IVと同様の温度条件、 圧力条件となるようにしてパンチ16 a を昇降駆動装置により下降させて、該下 降するパンチ16aにより上記成形体12に対し上方より押圧力を作用させると、 図20Aに二点鎖線で示す如く、上記成形体12は、幅方向の両側が左右の拘束 部材15により拘束されているため、該成形体12を構成する熱電半導体素材1 0の積層方向にほぼ平行となる前後の一軸方向に剪断力が作用させられて前後方 向に扁平するように塑性変形させられて一軸剪断力作用工程IV-1が行なわれ、 その後、該前後方向への塑性変形が進行することにより、図20Cに示す如く、 上記成形体12の塑性変形物は前後の拘束部材18に当接させられる。この状態 において、上記パンチ16aにより上方から更に押圧力を作用させると、上記成 形体12の変形物は、幅方向両側が左右の拘束部材15により拘束されると同時 に、前後方向両側が前後の拘束部材18により拘束されて変形が阻止されるため、 上記パンチ16aより与えられる押圧力は、上記成形体12の変形物に対して全 方位に亘る静水圧として作用させられ、これにより全方位静水圧工程IV-2が行 われるようになる。

しかる後、上記塑性加工装置13aより前後の拘束部材18に突き当たるまで前後方向へ展延(塑性変形)された成形体12の塑性変形物を取り出し、該成形体12の塑性変形物を、図8A,図8B,図8Cにて説明したと同様にして、塑性加工装置13の左右の拘束部材15同士の間の中央部に配置した後、パンチ16を下降させて上記成形体12の塑性変形物を更に上方より押圧することにより、上記成形体12の塑性変形物を、塑性変形前の成形体12を構成する熱電半導体素材10の積層方向にほぼ平行な一軸方向となる前後方向に剪断力を作用させて更に展延させて一軸剪断力作用工程IV-1を実施し、これにより熱電半導体材料17を製造するようにする。

なお、上記全方位静水圧工程IV-2は、2回以上行ってもよく、この場合には、 前後方向の拘束部材18同士の間隔が段階的に広くなる複数の塑性加工装置13 aを用意して、前後方向の拘束部材18の間隔が狭いものから順に使用して、上記と同様にパンチ16aの下降させることにより固化成形工程IIIにて形成した成形物12に対し押圧力を上方より作用させて熱電半導体素材10の積層方向にほぼ平行な一軸方向に剪断力を作用させて、初期状態からの変形量が順次大きくなるように塑性変形させた後、前後の拘束部材18により変形を拘束した状態で全方位静水圧を作用させるようにし、最終的に前後方向の拘束部材18のない塑性加工装置13により前後方向へ展延させるよう塑性変形させるようにすればよい。

この場合、一軸剪断力作用工程IV-1にて塑性変形途中の成形体12に対し、上記全方位静水圧工程IV-2を行うことで、上記塑性変形途中の成形体12を稠密化できるため、塑性加工装置13にて最終的に塑性変形加工される成形体12に座屈が生じる虞を防止することができると共に、塑性変形方向の先端部となる前後方向両端部を前後の拘束部材18に押し付けることにより、該成形体12を、塑性変形途中の段階でその前後両端部の形状を整えることができることから、成形体12の変形する変形速度を均一化することができ、このため製造される熱電半導体材料17の組織の均一性を向上させることが可能になる。

更に、上記全方位静水圧工程IV-2を行うと、前後の拘束部材18に成形体12の前後両端部が突き当たることで該成形体12の前後両端部では、結晶粒11のC面配向性が多少乱れる虞があるが、最終的に塑性加工装置13にて、前後方向を拘束することなく成形体12を構成する熱電半導体素材10の積層方向とほば平行な一軸方向へ剪断力を作用させながら展延させるようにしてあるので、製造される熱電半導体材料17は、前後方向両端部においても結晶粒11のC面方向及びC軸方向をほぼ揃えることが可能となる。

更に、本発明の熱電半導体材料の製造方法では、図19に示す如く、上記塑性変形工程IVの後工程として、応力歪み処理工程Vを設けて、該応力歪み処理工程Vにて、塑性変形工程IVにて所要形状に塑性変形されて製造された熱電半導体材料17を、たとえば、350℃~500℃、30分~24時間等、所定温度に所

定の時間に亘り保持することにより、結晶格子の転位や空孔等の熱処理による減少や再配列を行わせることにより、上記塑性変形工程IVにおける塑性変形加工に伴って生じ、熱電半導体材料17の組織中に残留する応力歪みを解消させるようにしてもよい。上記応力歪み処理工程Vは、上記温度条件を24時間以上保持したとしても同様の効果を得られことは明らかである。

更に又、上記応力歪み処理工程VIの後工程として、欠陥濃度制御工程VIIを設けて、該欠陥濃度制御工程VIIにて、上記応力歪み処理工程VIにて残留応力歪みが除去された熱電半導体材料17を、所定の時間、所定の温度に保持することにより、上記熱電半導体材料17中における欠陥濃度を変化させ、これにより電気伝導率(σ)とゼーベック係数(α)を制御するようにしてもよい。

すなわち、上記塑性変形工程IVにて製造される熱電半導体材料17は、成形体12を構成する熱電半導体素材10が有していた構造、すなわち、Bi2(Te-Se)3系の複合化合物半導体等の結晶粒内や粒界に異相(Teリッチ相)を保持している。この過剰のTeは、Bi2(Te-Se)3系の熱電半導体の一成分であるため、上記熱電半導体材料17を熱処理すると、Bi2(Te-Se)3系の主成分部分と反応し、主成分の欠陥を埋める効果が得られることとなる。Ag等のドーパントが主成分部分にわずかに入ると、大きく性能変化が生じ、このようなドーパントは界面にあるだけでも大きな影響があり、高温での使用や熱処理で、主成分部分に拡散侵入すると、大きく性能変化が生じてしまう虞があるのに対し、上記過剰のTeによる熱電半導体材料17中の欠陥濃度の変化は、ドーパントの効果を打ち消す、あるいは、助長する効果が得られると考えられる。

次に、本発明の熱電半導体素子の製造方法として、図1乃至図18の実施の形態にて製造されたN型の熱電半導体材料17を用いてN型熱電半導体素子3aを製造する場合について説明する。

この場合、上記N型熱電半導体材料17は、その組織構造の全体に亘り結晶粒

11の六方晶構造のC面の延びる方向及びC軸方向が揃ったものとしてあるので、 上記配向性の整った結晶粒11の配向性を考慮して、結晶粒11の六方晶構造の C面の延びる方向に電流及び熱の流通方向を設定することができるように切り出 し加工して熱電半導体素子3aを形成するようにする。

具体的には、上記N型の熱電半導体材料17は、図9Bに示した如く、各結晶粒の六方晶構造のC面が、成形体12の塑性変形時の展延方向(矢印t方向)に延び、且つC軸が上記塑性変形時の押圧方向(矢印p方向)にほぼ揃った状態とされているものであるため、先ず、図21の上段に示す如く、上記熱電半導体材料17を、成形体12塑性変形時の展延方向(矢印t方向)の所要間隔位置にて、該展延方向に垂直な面でスライスして、図21の中段に示す如きウェハー19を切り出す。

これにより、上記ウェハー19では結晶粒11の六方晶構造のC面が厚さ方向 に延びた状態で配向されるようになる。

したがって、次に、上記ウェハー19の厚さ方向の両端面に、図示しないメッキ処理装置によるメッキ処理等を行うことにより導電材処理面20を形成させた後、該導電材処理されたウェハー19を、図21の中段に二点鎖線で示す如く、上記熱電半導体材料17製造時の成形体12の押圧方向(矢印p方向)に垂直な面と、上記押圧方向(矢印p方向)及び熱電半導体材料17製造時における展延方向(矢印t方向)の二軸で規定される面にて切断し、図21の下段に示す如き直方体形状に切り出す(ダイシングする)ことによりN型熱電半導体素子3aを製造する。

これにより、上記N型熱電半導体素子3 a は、図21の下段に示す如く、上記 導電材処理したウェハー19の導電材処理面20に対応する導電材処理の行われ た一組の対向面20の方向(図中矢印tで示す熱電半導体材料17製造時の展延 方向と同じ方向)に結晶粒11の六方晶構造のC面が長く延び、且つ結晶粒11 のC軸が上記導電材処理面20と直角な二軸方向のうち、上記熱電半導体材料1 7製造時の押圧方向(図中矢印p方向)に揃った結晶構造とされる。

したがって、上記導電材処理面20に金属電極(図示せず)を取り付けることにより、六方晶構造のC面方向のみならずC軸方向にも配向性の整った結晶粒11を備えた組織構造を有し、且つ上記結晶粒11の六方晶構造のC面方向に電流や熱を作用させることができるものとして、熱電性能のよいN型熱電半導体素子3aを得ることができる。

次に、P型の熱電半導体材料を製造する場合について説明する。この場合は、図1に示したフローの成分調整工程 I において、P型の熱電半導体の原料合金の化学量論組成を調製すべく、B i とS bとT e を、それぞれB i:7~10原子%、S b:30~33原子%、T e:60原子%の組成となるように秤量して、該各秤量された金属を混合することにより(B i - S b) $_2$ T e $_3$ 系の組成とし、更に、上記(B i - S b) $_2$ T e $_3$ 系の組成の全量に対して質量比で0.1~5%のT e を過剰に加えた組成となるようにして合金仕込みをする。なお、この際、P型の熱電半導体を形成させるためのドーパント、たとえば、Ag、Pb等のドーパントを所要量添加するようにしてもよい。

次いで、上記N型の熱電半導体材料17を製造する場合と同様に、徐冷箔製造工程IIにて、図2に示した装置を用いて、上記成分調整工程Iにて混合した金属混合物の溶融合金8を、溶融るつば6の直径0.5mmのノズルから、周速が5m/秒以下、望ましくは周速2m/秒以下で低速回転させた回転ロール9の表面に供給して、徐冷して凝固させることにより板状の熱電半導体素材10(徐冷箔)を製造する。

ここで、回転ロール9の周速を5m/秒以下、望ましくは2m/秒以下に設定するのは、上記N型の熱電半導体素材10を形成させる場合と同様に、生成する徐冷箔の厚さを30μm以上と厚くし、望ましくは厚さ70μm以上の徐冷箔を形成させて、結晶配向性がよく且つ板厚方向のほぼ全長に亘るよう結晶粒11を

大きくした熱電半導体素材10を得ることができるようにすると共に、製造される熱電半導体素材10として徐冷箔の幅寸法を大きくして、単一の熱電半導体素材10の体積を増加させて、比表面積を低減できるようにするためである。

これにより、上記P型の熱電半導体素材10は、上述したN型の熱電半導体素材10と同様に、回転ロール9上にて冷却されるときに、板厚方向に結晶配向性が揃えられながらBi₂Te₃及びSb₂Te₃の複合化合物半導体相の結晶構造が各々形成されて固化されると同時に、極微的にはBi₂Te₃又はSb₂Te₃の各複合化合物半導体相の結晶粒内や粒界に、上記Bi₂Te₃又はSb₂Te₃の組成に対して過剰のTeを含んでなるTeリッチ相がアモルファス化することなく分相して、該Teリッチ相が微細に分散してなる構造、すなわち、(Bi-Sb)₂Te₃系の複合化合物半導体等の結晶粒内や粒界に異相(Teリッチ相)を析出又は異相核を生成して結晶歪みを内包した構造を有すると考えられる熱電半導体素材10が得られ、且つ該熱電半導体素材10では、図3に示したものと同様に、結晶粒11がほぼ板厚方向に板厚の寸法に達するように長く延びた状態とされる。なお、上記熱電半導体素材10は、後述する固化成形工程IIIの前に予め篩にかけて粉末を除去するようにしてもよい。

次いで、固化成形工程IIIとして、上記徐冷箔製造工程IIにて製造されたP型の 熱電半導体素材10の徐冷箔を、板厚方向にほぼ平行に積層配置するようにして 図示しないモールドに充填した後、上記N型の組成を有する成形体12製造時と 同様の圧力条件、温度条件、及び、多段加熱法を用いて焼結することにより、積 層された各熱電半導体素材10を、該各熱電半導体素材10同士の隙間を埋めて 互いに接するよう塑性加工しながら固化成形して、図7A、図7B、図7Cに示 したものと同様の直方体状の成形体12を製造する。

これにより、上記 P型の熱電半導体素材 10 中に形成されていた Te リッチ相は、焼結中に液相とならないか、あるいは、たとえ液相になったとしても少量に限られるため、上記 $Bi_2 Te_3$ 及び $Sb_2 Te_3$ の組成を有する複合化合物半導体

の相と、これらの組成に対して過剰のTeを含むTeリッチ相を微細に分散させた組織構造を保有したまま成形体12が形成される。

その後、塑性変形工程IVとして、上記N型の熱電半導体材料17を製造する場合と同様に、図8A,図8B,図8C,図8Dに示した如き塑性加工装置13により、上記成形体12を、500℃以下、好ましくは350℃以下に加熱した状態にて、熱電半導体素材10の積層方向にほぼ平行な一軸方向にのみ展延させるように塑性変形させてP型の熱電半導体材料17を製造するようにする。上記加熱温度条件は、Teの過剰量に依存して変化し、Te過剰分が少ないほど高温で処理するようにする。

これにより、熱電半導体素材10の積層方向にのみ剪断力が作用させられることによって、図9A,図9Bに示したものと同様に、成形体12の内部にて、熱電半導体素材10の板厚方向に配向されていた結晶粒11は、上記剪断力が作用する一軸方向へ扁平に塑性変形されつつ、劈開面が押圧方向にほぼ垂直になるよう配向されて、各結晶粒11の六方晶構造のC面が展延方向(図9A,図9Bにおける矢印 t 方向)に延びるよう変形され、同時に大部分の結晶粒11のC軸が上記塑性変形時における圧縮方向(図9A,図9Bにおける矢印 p 方向)に配向した状態のP型の熱電半導体材料17が形成される。

したがって、上記P型の熱電半導体材料17においても、上記N型の熱電半導体材料17と同様に、粒界の存在による効果と共に、粒内や粒界における異相の存在により結晶歪みを生成させ、この結晶歪みの生成により熱伝導率 (κ) の低減を図ることができ、更に、各結晶粒11の六方晶構造のC面の延びる方向、及び、C軸方向をほぼ揃えることができることから、上記結晶粒11のC面の延びる方向に電流及び熱の作用する方向を設定することにより、熱電性能(性能指数: Z) の向上を図ることができる。

更に又、厚さ及び幅が大きくて、このため比表面積の小さいP型の熱電半導体素材10を製造し、これを固化成形してP型の熱電半導体材料17を製造するよ

うにしてあるため、該熱電半導体材料 1 7 中に含まれる酸素濃度を低減させることができて、酸化による電気伝導率(σ)の低下を防止でき、このためにも熱電半導体材料 1 7 の熱電性能の向上化を図ることができる。

なお、上記P型の熱電半導体材料17の電気伝導率 (σ) やゼーベック係数 (α) は、P型半導体の組成の基準となる $(Bi-Sb)_2 Te_3$ 系の組成におけるBiとSbの比を調整することにより制御できる。又、上記P型の熱電半導体材料17を製造するときに、図19に示した塑性変形工程IVにおける全方位静水圧工程IV-2や、塑性変形工程IVの後工程としての応力歪み処理工程V及び欠陥濃度制御工程VIを実施するようにしてもよい。

次に、上記方法により製造されるP型熱電半導体材料17を用いてP型熱電半導体素子2aを製造する場合について説明する。

この場合、上記P型熱電半導体材料17においても、図9A,図9Bに示した N型熱電半導体材料17と同様に、組織構造の全体に亘り大部分の結晶粒11の 六方晶構造のC面が、成形体12の塑性変形時の展延方向(図9A,図9Bにおける矢印t方向)に延び、且つC軸が上記塑性変形時の押圧方向(図9A,図9Bにおける矢印p方向)にほぼ揃った状態とされて形成されていることから、上記P型熱電半導体材料17を、図21に示したN型熱電半導体素子3aの製造方法と同様に、先ず、図21の上段に示す如く、成形体12の塑性変形時の展延方向(矢印t方向)の所要間隔位置にて、該展延方向にほぼ垂直な面でスライスして、図21の中段に示す如きウェハー19として切り出した後、該ウェハー19の厚さ方向の両端面に、導電材処理を行って導電材処理面20を形成させ、次に、該ウェハー19を切り出し加工することにより、図21の下段に示す如きN型熱電半導体素子3aと同様の直方体形状のP型熱電半導体素子2aを製造する。

これにより、上記P型熱電半導体素子2aは、上述したN型熱電半導体素子3 aと同様に、導電材処理の行われた一組の対向面20の方向に結晶粒11の六方 晶構造のC面が長く延び、且つ結晶粒11のC軸が上記導電材処理面20と直角な二軸方向のうち、上記熱電半導体材料17製造時の押圧方向(矢印p方向)に揃った結晶構造とされることから、熱電性能のよいものとすることができる。

更に、本発明の実施の更に他の形態として、上記本発明の方法により製造した P型及びN型熱電半導体素子2a及び3aを用いた熱電モジュール及びその製造 方法について説明する。

図22は、本発明の熱電モジュール1aを示すもので、図27に示した従来の 熱電モジュール1と同様にPN素子対を形成するときに、上記本発明の製造方法 によりそれぞれ製造された上記P型熱電半導体素子2aとN型熱電半導体素子3 aを、結晶粒11の六方晶構造のC面の延びる方向、及び、C軸方向に共に直交 する方向に並べて配置し、該各熱電半導体素子2a,3aの結晶粒11のC面の 延びる方向に対向する面に形成されている導電材処理面19同士を金属電極4を 介し接合するようにする。

これにより、上記本発明の熱電モジュール1 aでは、結晶粒11のC面の延びる方向及びC軸方向が共にほぼ揃えられているP型熱電半導体素子2 aとN型熱電半導体素子3 aに対し、上記結晶粒11のC面の延びる方向に電流や熱を作用させることができるため、熱電性能のよい熱電モジュール1 aを得ることができる。

又、上記熱電モジュール1 a を用いて熱電冷却、熱電加熱、熱電発電等を行うときには、上記金属電極4が温度変化に伴って伸長、収縮するため、一つの金属電極4で接合された隣接するP型とN型の各熱伝半導体素子2 a と 3 a の間には、近接、離反する方向の応力が作用するようになるが、上記本発明の熱電モジュール1 a では、P N素子対を形成するときに、図2 2 に示した如く、一つの金属電極4で接合される隣り合う熱電半導体素子2 a と 3 a を、結晶粒 1 1 の C 面方向の同一面内に配置するようにしてあるため、上記金属電極4の伸長、収縮に伴う

応力を、各結晶粒11に対してC面と平行な方向にのみ作用させることができ、したがって、上記応力が作用したとしても、該各熱電半導体素子2a及び3aの組織内にて、六方晶構造の結晶粒11の層間が剥離される虞を防止できるため、上記熱電半導体素子2a及び3aの劈開による損傷を防止できて、熱電モジュール1aの強度及び耐久性を向上させることが可能になる。すなわち、比較例として図23に示す如く、上記P型とN型の各熱電半導体素子2aと3aを、結晶粒11の六方晶構造のC軸方向に並べて配置した状態にて、該各熱電半導体素子2aと3aを金属電極4を介し接合してPN素子対を形成させた場合には、上記金属電極4の温度変化に伴う伸長、収縮変形による応力は、上記各熱伝半導体素子2aと3aに対して結晶粒11のC軸方向に沿って作用し、したがって、該結晶粒11の六方晶構造の層間を剥離させるように作用するため、この場合には、熱電半導体素子2a及び3aに容易に劈開による損傷が発生してしまうものと考えられるが、上記本発明の熱電モジュール1aでは、このような損傷の発生を防止できる。

なお、本発明は上記実施の形態のみに限定されるものではなく、熱電半導体材料の製造方法の固化成形工程IIIにおける熱電半導体素材10の固化成形(焼結)するときの処理条件は、380℃以上500℃以下、好ましくは、420℃以上450℃以下に5秒から5分保持するものとして示したが、400℃以下で時間をかけながら焼結することも可能であり、更に、複合化合物半導体相中に分散させた低融点のTeリッチ相の偏析、分相脱落、液体析出等を完全に行わせないように温度条件及び加熱時間を設定すれば、プレス、圧延、押出しにより塑性変形を加えて成形体12を形成させるようにすることも可能なこと、塑性変形工程IVで用いる塑性加工装置13としては、左右の拘束部材15の内側にてパンチ16を昇降可能に備えてなる構造として、上記左右の拘束部材15の内側の中央部に成形体12を配置して、該成形体12をパンチ16にて上方から押圧することにより、上記成形体12を、熱電半導体素材10の積層方向に平行な一軸方向となる前後両側へ展延させるものとして示したが、図24A、図24Bに示す如く、塑性加工装置13を、ペース14上における左右の拘束部材15の間の一端側位

置に、成形体12の前後方向の一方への変形(展延)を拘束できるようにした拘 東部材15bを更に設けてなる構成として、成形体12を塑性変形させるときに、 最初に上記左右の拘束部材15と上記拘束部材15bに接するように成形体12 を配置し、その後、図21の上段に二点鎖線で示す如く、パンチ16にて上記成 形体12を上方より押圧することで、該成形体12を反拘束部材15b側となる 一方向へのみ展延させるようにしてもよいこと、図20A, 図20B, 図20C に示した全方位静水圧工程IV-2で用いる塑性加工装置13aは、左右方向の拘 東部材15と前後方向の拘束部材18の外周側に、図8Dに示したと同様の位置 固定用リング15aを設けて、成形体12の塑性変形加工時に上記各拘束部材1 5, 18に対して外向きに作用する応力を受けさせるようにしてもよく、又、全 方位静水圧工程IV-2を二回以上実施する場合、前後方向の拘束部材18の間隔 の異なる複数基の塑性加工装置13aを用意することに代えて、前後方向の拘束 部材18を任意の間隔に調整可能な形式の塑性加工装置13aを用いるようにし てもよいこと、熱電半導体の原料合金の組成としては、P型、N型のいずれの場 合も熱電半導体複合化合物の化学量論組成に、過剰のTeを添加してなるものと して示したが、Teに代えて、Bi、Se、Sbのいずれかの元素を、熱電半導 体複合化合物の化学量論組成に過剰に加えた組成としてもよいこと、又、過剰の Teを添加しない熱電半導体複合化合物の化学量論組成の原料合金に対し、本発 明の熱電半導体材料、熱電半導体素子、熱電モジュールの製造方法を適用しても よく、この場合は、該熱電半導体材料17の組織中における結晶粒11の配向性 の向上に伴う熱電性能の向上が期待できること、更に、上記においてはN型の熱 電半導体の原料合金の化学量論組成としては、 Bi_2 (Te-Se) $_3$ 系の3元素 系のものを示したが、 Bi_2Te_3 系の2元素系、あるいは(<math>Bi-Sb) $_2Te_3$ 系に微量のSeを加えてなる4元素系の化学量論組成の原料合金に対し、本発明 の熱電半導体材料、熱電半導体素子、熱電モジュールの製造方法を適用してもよ く、又、P型の熱電半導体複合化合物の化学量論組成としては、(Bi-Sb) $_2$ T e $_3$ 系の 3 元素系の組成を示したが、B i $_2$ (T e - S e) $_3$ 系に微量の S b を 加えてなる4元素系の化学量論組成の原料合金に対し、本発明の熱電半導体材料、 熱電半導体素子、熱電モジュールの製造方法を適用してもよいこと、熱電半導体

素材10の徐冷箔を板厚方向に積層し固化成形してなる成形体12に対し、上記熱電半導体素材10の積層方向にほぼ平行な一軸方向に剪断力を作用させることにより塑性変形させて熱電半導体材料17を製造する場合には、塑性加工装置13,13aを用いるものとして示したが、図25Aに示す如く、互いに近接、離反する方向に移動可能な一対のダイ22を備えた大圧下プレス装置21や、図25Bに示す如く、圧延ロール24を備えた圧延装置23により、上記成形体12を、熱電半導体素材10の主な積層方向に進行させながら、該積層方向と直角な一軸方向より押圧するようにしてもよく、この場合は、上記熱電半導体素材10の積層方向及び押圧方向に共に直角な方向には摩擦が作用するため広がらないか広がるとしてもわずかな変形量で抑えることができるため、特に拘束部材は必要としないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。

〔実施例〕

本発明の熱電半導体素子の製造方法に基づいて製造したP型とN型の熱電半導体素子2a,3aによりPN素子対を形成して熱電モジュール1aを製造し、他の製造方法により製造した熱電モジュールと熱電性能を比較した。

その結果、上記本発明により製造した熱電モジュール1 a の熱電性能は図26に●及び○で示す如き性能指数が得られた。

これは、P型熱電半導体素子及びN型熱電半導体素子を、いずれも従来法である熱電半導体素材のホットプレスのみにより製造した場合(図26に△で示す)、及び、N型熱電半導体素子2aは本発明の熱電半導体素子の製造方法に基づいて製造する一方、P型熱電半導体素子は熱電半導体素材のホットプレスのみにより製造した場合(図26に◇及び◆で示す)に比して、高い熱電性能が得られることが判明した。

請求の範囲

- 1. 所要の熱電半導体の組成を有する原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の主な積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してなることを特徴とする熱電半導体材料。
- 2. 所要の化合物熱電半導体の化学量論組成を有する複合化合物半導体相と、 上記組成に過剰のTeを含んでなるTeリッチ相とを複合した相を有してなることを特徴とする熱電半導体材料。
- 3. 所要の化合物熱電半導体の化学量論組成に、過剰のTeを加え、得られた原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してなることを特徴とする熱電半導体材料。
- 4. 化合物熱電半導体の化学量論組成を、($Bi-Sb)_2 Te_3$ 系の組成とした請求項2記載の熱電半導体材料。
- 5. 化合物熱電半導体の化学量論組成を、($Bi-Sb)_2 Te_3$ 系の組成とした請求項3記載の熱電半導体材料。
- 6. 化合物熱電半導体の化学量論組成を、 Bi_2 ($Te-Se)_3$ 系の組成とした請求項2記載の熱電半導体材料。
- 7. 化合物熱電半導体の化学量論組成を、 Bi_2 ($Te-Se)_3$ 系の組成とした請求項3記載の熱電半導体材料。
- 8. 所要の熱電半導体の組成を有する原料合金からなる板状の熱電半導体素材を、ほぼ層状に積層充填し固化成形して成形体とし、該成形体を、上記熱電半導体素材の主な積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工して熱電半導体材料とし、該熱電半導体材料を、上記成形体の塑性変形加工時に剪断力の作用する一軸方向にほぼ垂直な面を電極接合面とすることができるよ

うに切り出し加工してなることを特徴とする熱電半導体素子。

- 9. 板状の熱電半導体素材を、所要の化合物熱電半導体の化学量論組成を有する複合化合物半導体相と、上記組成に過剰のTeを含んでなるTeリッチ相とを複合した相を有してなるものとした請求項8記載の熱電半導体素子。
- 10. 化合物熱電半導体の化学量論組成を、(Bi-Sb)₂Te₃系の組成とした請求項9記載の熱電半導体素子。
- 11. 化合物熱電半導体の化学量論組成を、 Bi_2 (Te-Se) $_3$ 系の組成とした請求項 9 記載の熱電半導体素子。
- 12. P型の熱電半導体の組成を有する原料合金からなる板状の熱電半導体素材と、N型の熱電半導体の組成を有する原料合金からなる板状の熱電半導体素材を、それぞれほぼ層状に積層充填し固化成形して成形体とし、該P型とN型の熱電半導体組成を有する成形体を、それぞれ上記熱電半導体素材の主な積層方向に直角又は直角に近い一軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように塑性変形加工してP型及びN型の熱電半導体材料とし、該P型とN型の各熱電半導体材料より、上記成形体の塑性変形加工時に剪断力の作用する一軸方向にほぼ垂直な面を電極接合面とすることができるよう切り出し加工してそれぞれ形成してなるP型とN型の各熱電半導体素子を、上記成形体の塑性変形加工時に押圧力を作用させた軸方向と、該押圧により剪断力の作用した方向に共にほぼ直交する方向に並べて配置すると共に、該P型とN型の各熱電半導体素子を金属電極を介し接合して形成してなるPN素子対を備えた構成を有することを特徴とする熱電モジュール。
- 13. P型及びN型の板状の各熱電半導体素材を、それぞれ所要の化合物熱電半導体の化学量論組成を有する複合化合物半導体相と、上記組成に過剰のTeを含んでなるTeリッチ相とを複合した相を有してなるものとした請求項12記載の熱電モジュール。
- 14. P型の化合物熱電半導体の化学量論組成を、(Bi-Sb) $_2$ Te $_3$ 系の組成とした請求項13記載の熱電モジュール。
- 15. N型の化合物熱電半導体の化学量論組成を、 Bi_2 ($Te-Se)_3$ 系の組成とした請求項13記載の熱電モジュール。

- 16. 所要の熱電半導体の組成としてある原料合金を溶融させた後、該溶融合金を冷却部材表面に接触させて板状の熱電半導体素材とし、次に、該熱電半導体素材を板厚方向にほぼ平行に積層させて固化成形して成形体を形成し、次いで、該成形体を、上記熱電半導体素材の主な積層方向にほぼ直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力を作用させて塑性加工して熱電半導体材料を形成することを特徴とする熱電半導体材料の製造方法。
 - 17. 原料合金の組成を、所要の化合物熱電半導体の化学量論組成に、過剰の Teを加えてなる組成とする請求項16記載の熱電半導体材料の製造方法。
 - 18. 原料合金の組成を、7~10原子%のBiと、30~33原子%のSbと、60原子%のTeとからなる化合物熱電半導体の化学量論組成に、0.1~5%の過剰のTeを加えてなる組成とした請求項17記載の熱電半導体材料の製造方法。
 - 19. 原料合金の組成を、40原子%のBiと、 $50\sim59$ 原子%のTeと、 $1\sim10$ 原子%のSeとからなる化合物熱電半導体の化学量論組成に、 $0.01\sim10$ %の過剰のTeを加えてなる組成とした請求項17記載の熱電半導体材料の製造方法。
 - 20. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項17記載の熱電半導体材料の製造方法。
- 21. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項18記載の熱電半導体材料の製造方法。
- 22. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項19記載の熱電半導体材料の製造方法。
- 23. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が

急冷にならない速度で上記溶融合金を冷却して凝固させる請求項16記載の熱電 半導体材料の製造方法。

- 24. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項17記載の熱電半導体材料の製造方法。
- 25. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項18記載の熱電 半導体材料の製造方法。
- 26. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項19記載の熱電 半導体材料の製造方法。
- 27. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項20記載の熱電 半導体材料の製造方法。
- 28. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項21記載の熱電 半導体材料の製造方法。
- 29. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項22記載の熱電半導体材料の製造方法。
- 30. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項1

- 6記載の熱電半導体材料の製造方法。
- 31. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項1 7記載の熱電半導体材料の製造方法。
- 32. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項1 8記載の熱電半導体材料の製造方法。
- 33. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項1 9記載の熱電半導体材料の製造方法。
- 34. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項2 0記載の熱電半導体材料の製造方法。
- 35. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項2 1記載の熱電半導体材料の製造方法。
- 36. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項2 2記載の熱電半導体材料の製造方法。
- 37. 所要の熱電半導体の組成としてある原料合金を溶融させた後、該溶融合金を冷却部材表面に接触させて板状の熱電半導体素材とし、次に、該熱電半導体素材を板厚方向にほぼ平行に積層させて固化成形して成形体を形成し、次いで、該成形体を、上記熱電半導体素材の主な積層方向にほぼ直交する平面内で交叉す

る二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力を作用させて塑性加工して熱電半導体材料を形成し、しかる後、該熱電半導体材料を、上記成形体の塑性変形加工時に剪断力の作用する一軸方向にほぼ垂直な面を電極接合面とすることができるように切り出し加工して熱電半導体素子を形成することを特徴とする熱電半導体素子の製造方法。

- 38. 原料合金の組成を、所要の化合物熱電半導体の化学量論組成に、過剰の Teを加えてなる組成とする請求項37記載の熱電半導体素子の製造方法。
- 39. 化合物熱電半導体の化学量論組成を、(Bi-Sb)₂Te₃系の組成と する請求項38記載の熱電半導体素子の製造方法。
- 40. 原料合金の組成を、7~10原子%のBiと、30~33原子%のSbと、60原子%のTeとからなる化合物熱電半導体の化学量論組成に、0.1~5%の過剰のTeを加えてなる組成とする請求項39記載の熱電半導体素子の製造方法。
- 41. 化合物熱電半導体の化学量論組成を、Bi₂(Te-Se)₃系の組成と する請求項38記載の熱電半導体素子の製造方法。
- 42. 原料合金の組成を、40原子%のBiと、50~59原子%のTeと、1~10原子%のSeとからなる化合物熱電半導体の化学量論組成に、0.01~10%の過剰のTeを加えてなる組成とする請求項41記載の熱電半導体素子の製造方法。
- 43. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項37記載の熱電半導体素子の製造方法。
- 44. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項38記載の熱電半導体素子の製造方法。
- 45. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項39記載の熱電半導体素子の製造方法。

- 46. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項40記載の熱電半導体素子の製造方法。
- 47. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項41記載の熱電半導体素子の製造方法。
- 48. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項42記載の熱電半導体素子の製造方法。
- 49. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項37記載の熱電 半導体素子の製造方法。
- 50. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項38記載の熱電半導体素子の製造方法。
- 51. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項39記載の熱電 半導体素子の製造方法。
- 52. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項40記載の熱電半導体素子の製造方法。
- 53. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項41記載の熱電 半導体素子の製造方法。

- 54. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項42記載の熱電半導体素子の製造方法。
- 55. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項43記載の熱電 半導体素子の製造方法。
- 56. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項44記載の熱電半導体素子の製造方法。
- 57. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項45記載の熱電半導体素子の製造方法。
- 58. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項46記載の熱電半導体素子の製造方法。
- 59. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項47記載の熱電半導体素子の製造方法。
- 60. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項48記載の熱電半導体素子の製造方法。
- 61. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、

凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30μm以上となるような速度で回転させた回転ロールを用いるようにする請求項37記載の熱電半導体素子の製造方法。

- 62. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項3 8記載の熱電半導体素子の製造方法。
- 63. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項3 9記載の熱電半導体素子の製造方法。
- 64. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 0記載の熱電半導体素子の製造方法。
- 65. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 1記載の熱電半導体素子の製造方法。
- 66. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 2記載の熱電半導体素子の製造方法。
- 67. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 3記載の熱電半導体素子の製造方法。
- 68. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30

μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 4記載の熱電半導体素子の製造方法。

- 69. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 5記載の熱電半導体素子の製造方法。
- 70. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 6記載の熱電半導体素子の製造方法。
- 71. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 7記載の熱電半導体素子の製造方法。
- 72. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項4 8記載の熱電半導体素子の製造方法。
- 73. P型の熱電半導体の組成としてある原料合金と、N型の熱電半導体の組成としてある原料合金を、個別に溶融させた後、それぞれの溶融合金を冷却部材の表面にて徐冷してP型の熱電半導体組成を有する板状の熱電半導体素材とN型の熱電半導体組成を有する板状の熱電半導体素材とN型の各熱電半導体素材を、それぞれ板厚方向にほぼ平行に積層させて固化成形して成形体を形成し、次いで、該P型の熱電半導体の組成を有する成形体及びN型の熱電半導体組成を有する各成形体を、それぞれ上記熱電半導体素材の主な積層方向にほぼ直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の主な積層方向にほば平行な一軸方向に剪断力を作用させて塑性加工してP型とN型の熱電半導体材料をそれぞれ形成し、該P型とN型の各熱電半導体材料を、上記成形体の塑性変

形加工時に剪断力の作用する一軸方向にほぼ垂直な面を電極接合面とすることができるよう切り出し加工してP型とN型の各熱電半導体素子をそれぞれ形成させ、しかる後、該P型とN型の各熱電半導体素子を、上記成形体の塑性変形加工時に押圧力を作用させた軸方向と、該押圧により剪断力を作用させた一軸方向に共にほぼ直交する方向に並べて配置すると共に、上記P型とN型の各熱電半導体素子を金属電極を介し接合してPN素子対を形成することを特徴とする熱電モジュールの製造方法。

- 74. 原料合金とするP型及びN型の各熱電半導体の組成を、それぞれ所要の化合物熱電半導体の化学量論組成に、過剰のTeを加えてなる組成とする請求項73記載の熱電モジュールの製造方法。
- 75. P型の化合物熱電半導体の化学量論組成を、(Bi-Sb) $_2$ Te $_3$ 系の組成とする請求項74記載の熱電モジュールの製造方法。
- 76. P型熱電半導体の原料合金の組成を、 $7\sim10$ 原子%のBiと、 $30\sim33$ 原子%のSbと、60原子%のTeとからなる化合物熱電半導体の化学量論組成に、 $0.1\sim5$ %の過剰のTeを加えてなる組成とする請求項75記載の熱電モジュールの製造方法。
- 77. N型の化合物熱電半導体の化学量論組成を、B i_2 (Te-Se) $_3$ 系の組成とする請求項74記載の熱電モジュールの製造方法。
- 78. N型熱電半導体の原料合金の組成を、40原子%のBiと、 $50\sim59$ 原子%のTeと、 $1\sim10$ 原子%のSeとからなる化合物熱電半導体の化学量論組成に、 $0.01\sim10$ %の過剰のTeを加えてなる組成とする請求項 77記載の熱電モジュールの製造方法。
- 79. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項74記載の熱電モジュールの製造方法。
- 80. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項75記載の熱電モジュールの製造方法。
- 81. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上

- 500℃以下となる温度に加熱することにより行わせるようにする請求項76記載の熱電モジュールの製造方法。
- 82. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項77記載の熱電モジュールの製造方法。
- 83. 熱電半導体素材の固化成形を、加圧すると共に素材温度を380℃以上500℃以下となる温度に加熱することにより行わせるようにする請求項78記載の熱電モジュールの製造方法。
- 84. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項73記載の熱電モジュールの製造方法。
- 85. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項74記載の熱電 モジュールの製造方法。
- 86. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項75記載の熱電モジュールの製造方法。
- 87. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項76記載の熱電モジュールの製造方法。
- 88. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項77記載の熱電モジュールの製造方法。
- 89. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材

を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が 急冷にならない速度で上記溶融合金を冷却して凝固させる請求項78記載の熱電 モジュールの製造方法。

- 90. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項79記載の熱電モジュールの製造方法。
- 91. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項80記載の熱電モジュールの製造方法。
- 92. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項81記載の熱電モジュールの製造方法。
- 93. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項82記載の熱電モジュールの製造方法。
- 94. 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項83記載の熱電モジュールの製造方法。
- 95. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項7 3記載の熱電モジュールの製造方法。
- 96. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30

μm以上となるような速度で回転させた回転ロールを用いるようにする請求項74記載の熱電モジュールの製造方法。

- 97. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項7 5記載の熱電モジュールの製造方法。
- 98. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項7 6記載の熱電モジュールの製造方法。
- 99. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、 凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項7 7記載の熱電モジュールの製造方法。
- 100. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項78記載の熱電モジュールの製造方法。
- 101. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項79記載の熱電モジュールの製造方法。
- 102. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項80記載の熱電モジュールの製造方法。
- 103. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求

- 項81記載の熱電モジュールの製造方法。
- 104. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項82記載の熱電モジュールの製造方法。
- 105. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求項83記載の熱電モジュールの製造方法。
- 106. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項84記載の熱電モジュールの製造方法。
- 107. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項85記載の熱電モジュールの製造方法。
- 108. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項86記載の熱電モジュールの製造方法。
- 109. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項87記載の熱電モジュールの製造方法。
- 110. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項88記載の熱電モジュールの製造方法。

- 111. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項89記載の熱電モジュールの製造方法。
- 112. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項90記載の熱電モジュールの製造方法。
- 113. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項91記載の熱電モジュールの製造方法。
- 114. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項92記載の熱電モジュールの製造方法。
- 115. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項93記載の熱電モジュールの製造方法。
- 116. 冷却部材として、該冷却部材表面に原料合金の溶融合金を供給して冷却、凝固させることにより形成される板状の熱電半導体素材の厚さが少なくとも 30 μm以上となるような速度で回転させた回転ロールを用いるようにする請求 項94記載の熱電モジュールの製造方法。

図 1

図 2

図 3

図 4

図 5

4/19

図 6 A

図 6 B

5/19

図 7 B

図 7 C

図 9 A

図 9 B

図10

図11

図12

図13

図14

図15

図16

図17

図18

13/19

図19

14/19

15/19

図22

図23

図 2 4 A

図24B

18/19

図25A

図25B

図26

図27

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/006493

A OT ADDITOT	CATION OF GUIDIEGE A CAMPED			
Int.Cl	CATION OF SUBJECT MATTER 7 H01L35/34, H01L35/16, B22D11	/06, C22C28/00		
According to In	ternational Patent Classification (IPC) or to both nation	nal classification and IPC		
B. FIELDS SI				
Minimum docur Int.Cl	mentation searched (classification system followed by c H01L35/34, H01L35/16, B22D11	lassification symbols) /06, C22C28/00		
Documentation	searched other than minimum documentation to the ext	ent that such documents are included in the	e fields searched	
Jitsuyo	Jitsuyo Shinan Koho 1922—1996 Toroku Jitsuyo Shinan Koho 1994—2004 Kokai Jitsuyo Shinan Koho 1971—2004 Jitsuyo Shinan Toroku Koho 1996—2004			
Electronic data	base consulted during the international search (name of	data base and, where practicable, search te	erms used)	
C. DOCUME	NTS CONSIDERED TO BE RELEVANT		• .	
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
Y X	JP 2003-037302 A (Yamaha Cor 07 February, 2003 (07.02.03) Claim 1; Par. Nos. [0034], [(Family: none)	,	1,3,5,7-116 2,4,6	
Y			1,3,5,7-116	
* Special cate "A" document d	ocuments are listed in the continuation of Box C. gories of cited documents: lefining the general state of the art which is not considered icular relevance	See patent family annex. "T" later document published after the inte date and not in conflict with the application the principle or theory underlying the interval.	ation but cited to understand	
"E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family		
				06 July
Japanes	ng address of the ISA/ se Patent Office	Authorized officer		
Facsimile No. Telephone No. Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/006493

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N	
Y	JP 2000-124512 A (Komatsu Ltd.), 28 April, 2000 (28.04.00), Claim 2 & US 6313392 B1 & KR 2000028741 A	1,3,5,7-116	
. Y	JP 2001-160633 A (Aisin Seiki Co., Ltd.), 12 June, 2001 (12.06.01), Par. Nos. [0086] to [0089]; Figs. 11 to 14 (Family: none)	1,3,5,7-116	
Y	JP 05-335628 A (Chubu Electric Power Co., Inc.), 17 December, 1993 (17.12.93), Claims 2 to 3; Par. No. [0019] (Family: none)	2,4,6,9-11, 13-15,17-19 38-42,74-78	
Y	JP 2001-053344 A (Komatsu Ltd.), 23 February, 2001 (23.02.01), Table 2 & US 6319744 B1	20-22,43-48 79-83	
Y .	JP 2000-286471 A (Yamaha Corp.), 13 October, 2000 (13.10.00), Full text (Family: none)	23-29,49-60, 84-94	
Y	JP 10-117021 A (Komatsu Ltd.), 06 May, 1998 (06.05.98), Par. No. [0011] & EP 235702 A & US 4764212 A	30-36,61-72, 95-116	
	•	·	
-			
	. ·		

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2004/006493

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Claims 1, 3, 5 and 7-116 are directed to an invention involving a step of applying pressure in a monoaxial direction perpendicular to laminating direction so that shear force is exerted in a monoaxial direction parallel to the laminating direction, thereby effecting plastic deformation working.
Claims 2, 4 and 6 are directed to an invention relating to a thermoelectric semiconductor material having Te-rich phases.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl7 H01L35/34、H01L35/16、B22D11/06、C22C28/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl7 H01L35/34、H01L35/16、B22D11/06、C22C28/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報 1971-2004年

日本国登録実用新案公報 1994-2004年

日本国実用新案登録公報 1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連する	エ 1 57 は と 15 マ - ナーナト	
引用文献の	ると認められる文献	•
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2003-037302 A (ヤマハ株式会社) 2003.02.07、請求項1、【0034】、【0044】、	1, 3, 5, 7-116
X .	【0028】 (ファミリーなし)	2, 4, 6
Y	JP 2002-1111086 A (株式会社小松製作所) 2002.0 4.12、請求項2、【0056】、図9 & WO 98/1161 2 A1 & EP 959507 A1 & CN 12333	1, 3, 5, 7–116
	47 A & KR 2000036119 A & US 62 74802 B1	

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以: 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

06.07.2004

国際調査報告の発送日

20, 7, 2004

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 加藤 浩一

4 M 8617

電話番号 03-3581-1101 内線 3462

	自外的正式口	国际山限番号 ドレーノ J P 2 0	04/000493
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引田文献名 Bび一部の笠正が即本とる b まは この間は b ま は コーナー 関連する		
Y	明水少粒面。		請求の範囲の番号
	JP 2000-124512 A (株式会社小松製作所) 2000.0 1,3,5,7-116 4.28、請求項2 & US 6313392 B1 & KR 2		
	000028741 A	0 2 B 1 & KK 2	
Y	JP 2001-160633 A (7	イシン精機株式会社)200	1, 3, 5, 7-116
	[1.06.12, [0086] - [0089],	図11-14(ファミリ	
	ーなし)		
Y	JP 05-335628 A (中部電	力烘弌今社)1002 12 17	0 4 6 0 11 1
	請求項2-3、【0019】 (ファミリ	クルス会社) 1993. 12. 17、 一なし)	2, 4, 6, 9-11, 1 3-15, 17-19, 3
			8-42, 74-78
•			3 12,11
Y	JP 2001-053344 A (株	式会社小松製作所)2001.0	20-22, 43-48,
	2.23、表2 & US 6319744	B 1	79-83
Y	JP 2000-286471 A (*)	マハ井十今社) 2000 10 1	22-20 40 60
-	3、全文 (ファミリーなし)	7、水瓜云红)2000.101	23-29, 49-60, 84-94
		•	04 34
Y	JP 10-117021 A (株式会	社小松製作所) 1998.05.0	30-36, 61-72,
	6、【0011】 & EP 23570	02 A & US 47	95-116
`	64212 A		
			·
	2		·
			· ·
·			
ļ			
1			
		·	
]			
			.
.			,
.			
			ļ
		·	

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなかった。
1. 🗌 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。
つまり、
·
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
ない国際出願の部分に係るものである。つまり、
3. [_] 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
使って記載されていない。 -
第Ⅲ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
請求の範囲1、3、5、7-116は、積層方向に直角の一軸方向より押圧することで、該
積層方向に平行な一軸方向に剪断力を掛けて、塑性変形加工する工程を有する発明である。
請求の範囲2、4、6は、Teリッチ相を有する熱電半導体材料に関する発明である。
明水の胆四~、4、0は、10ソツノ和で行りる然电干等予的がに関りる完別である。
·
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
の範囲について作成した。
2. 図 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
加調査手数料の納付を求めなかった。
<u> </u>
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
付のあった次の請求の範囲のみについて作成した。
· ·
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
されている発明に係る次の請求の範囲について作成した。
, '
追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。