Clustering

TOTAL POINTS 15

1. Which statement is NOT TRUE about k-means clustering?	3 points	
k-means divides the data into non-overlapping clusters without any cluster-internal structure.		
○ The		
objective of k-means, is		
to form clusters in such a way that		
similar samples go into a cluster, and dissimilar samples fall		
into different clusters.		
 As k-means is an iterative algorithm, it guarantees that it will always converge to the global optimum. 		
Which of the following are characteristics of DBSCAN? Select all that apply.	3 points	
✓ DBSCAN can find arbitrarily shaped clusters.		
✓ DBSCAN can find a cluster completely surrounded by a different cluster.		
DBSCAN can find a cluster completely surrounded by a different cluster.		
DBSCAN has a notion of noise, and is robust to outliers.		
DBSCAN does not require one to specify the number of clusters such as k in k-means		
3. Which of the following is an application of clustering?	3 points	
Customer churn prediction		
O Price estimation		
Customer segmentation		
Sales prediction		
4. Which approach can be used to calculate	3 points	
dissimilarity of objects in clustering?		
Minkowski distance		
C Euclidian distance		
Ocsine similarity		
All of the above		
5. How is a center point (centroid) picked for each cluster in k-means?	3 points	
We can randomly choose some observations out of the data set and use these observations as the initial mean	ns.	
✓ We can create some random points as centroids of the clusters.		
We can select it through correlation analysis.		
I, Guodong Zhang, understand that submitting another's work as my own can result in zero credit for	6 P P	
this assignment. Repeated violations of the Coursera Honor Code may result in removal from this course or deactivation of my Coursera account.		
Learn more about Coursera's Honor Code		
C	Cubroit	