Kinematics of Exclusive (not sure) Meson Electroproduction

C. Ayerbe

This document generated by ChatGPT-5, NEEDS a deep review and cross-check everything is correct.

1 Reaction Overview

We consider the exclusive electroproduction reaction

$$e(k) + p(P) \rightarrow e'(k') + \pi(p_{\pi}) + N'(P'),$$

in the one–photon exchange approximation. The incoming electron has energy E and scatters to E' at angle θ_e . The target proton is at rest in the laboratory.

Four-momenta

$k = (E, \vec{k})$	incoming electron,
$k' = (E', \vec{k}')$	scattered electron,
$q = k - k' = (\nu, \vec{q})$	virtual photon,
$P = (M_p, \vec{0})$	target proton,
$p_{\pi} = (E_{\pi}, \vec{p}_{\pi})$	produced pion,
P' = recoil nucleon.	

2 Basic Invariants

$$Q^2 \equiv -q^2 = 4EE'\sin^2\frac{\theta_e}{2},\tag{1}$$

$$\nu \equiv E - E',\tag{2}$$

$$|\vec{q}| = \sqrt{\nu^2 + Q^2},\tag{3}$$

$$W^{2} \equiv (P+q)^{2} = M_{p}^{2} + 2M_{p}\nu - Q^{2}. \tag{4}$$

3 Two-body CM kinematics

Treat the hadronic final state as the two-body system $\gamma^*(q) + p(P) \to \pi(p_\pi) + N'(P')$. In the hadronic CM (center-of-mass) frame the pion momentum magnitude is

$$p^* \equiv |\vec{p}_{\pi}^*| = \frac{1}{2W} \sqrt{[W^2 - (M_p + M_{\pi})^2][W^2 - (M_p - M_{\pi})^2]},$$
 (5)

and the pion four-vector in the CM (choosing $\phi^* = 0$) is

$$p_{\pi}^{*\mu} = (E_{\pi}^*, p^* \sin \theta^*, 0, p^* \cos \theta^*), \qquad E_{\pi}^* = \sqrt{M_{\pi}^2 + (p^*)^2}.$$

4 Relation between t and θ^*

The Mandelstam variable t used in the code is

$$t = (q - p_{\pi})^2.$$

In the CM frame t can be expressed (implicitly) through θ^* ; the code searches for the θ^* that yields the desired t_{target} . Numerically one solves

$$t(\theta^*) = (q_{\text{lab}} - p_{\pi}^{\text{lab}}(\theta^*))^2 \stackrel{!}{=} t_{\text{target}},$$

where $p_{\pi}^{\mathrm{lab}}(\theta^{*})$ is obtained by boosting the CM pion along the CM velocity.

5 Boost and rotation steps (as implemented)

- 1. Compute kinematic invariants: Q^2 , ν , W.
- 2. Compute CM pion momentum p^* from W.
- 3. Build the pion four-vector in the CM: $p_{\pi}^{*\mu}$ (with chosen θ^* and $\phi^* = 0$).
- 4. Compute the virtual-photon 3-vector in the lab from electron kinematics:

$$\vec{q}_{\text{lab}} = \vec{k} - \vec{k}' \approx (-E' \sin \theta_e, 0, E - E' \cos \theta_e),$$

and its magnitude $|\vec{q}| = \sqrt{\nu^2 + Q^2}$.

5. The hadronic CM moves along \vec{q} with velocity

$$\boldsymbol{\beta}_{\rm CM} = \frac{|\vec{q}|}{M_n + \nu} \, \hat{q}.$$

The code performs a *vector* Lorentz boost of $p_{\pi}^{*\mu}$ by $\boldsymbol{\beta}_{\text{CM}}$ to obtain p_{π}^{μ} in the true laboratory coordinates.

6. Compute $t = (q - p_{\pi})^2$ in the lab; iterate/solve for θ^* so that $t = t_{\text{target}}$.

6 Laboratory pion observables

Given the lab pion three-vector \vec{p}_{π} :

$$|\vec{p}_{\pi}| = \sqrt{p_x^2 + p_y^2 + p_z^2},$$
 (6)

$$p_{\pi,\perp}^{\text{(beam)}} = \sqrt{p_x^2 + p_y^2},\tag{7}$$

$$\theta_{\pi}^{\text{lab}} = \arccos\left(\frac{p_z}{|\vec{p}_{\pi}|}\right).$$
 (8)

7 Alternative transverse definitions and the user formula

The code computes and compares several commonly used quantities:

• CM transverse momentum:

$$k_{\pi}^{(\mathrm{CM})} = p^* \sin \theta^*.$$

• Lab transverse wrt beam:

$$k_{\pi}^{(\mathrm{beam})} = p_{\pi,\perp}^{(\mathrm{beam})}.$$

• Lab transverse wrt \vec{q} :

$$k_{\pi}^{(q)} = |\vec{p}_{\pi}| \sin \theta_{pq}, \quad \text{with} \quad \cos \theta_{pq} = \frac{\vec{p}_{\pi} \cdot \vec{q}}{|\vec{p}_{\pi}||\vec{q}|}.$$

• Your requested formula (implemented exactly in the code):

$$k_{\pi}^{(\text{user})} = \sqrt{|\vec{p}_{\pi}|^2 + |\vec{q}|^2 - 2|\vec{p}_{\pi}||\vec{q}|\cos\theta_{pq}}$$
.

Note this is algebraically equivalent to the magnitude of $|\vec{p}_{\pi} - \vec{q}|$.

8 Figures

Figure 1: Reaction scheme for exclusive pion electroproduction in the one–photon exchange approximation.

Figure 2: Kinematic geometry: beam axis z, virtual-photon direction \vec{q} , and lab pion momentum \vec{p}_{π} . The inset shows the q-aligned (CM-like) frame where the CM pion angle θ^* is defined.

9 Short derivation flow (how equations are chained in the code)

- 1. Inputs: $E, E_{\text{beam}}, Q^2, t_{\text{target}}$.
- 2. From E, E' compute ν and $|\vec{q}|$ and then W.
- 3. From W compute p^* (two-body CM momentum).
- 4. For a trial θ^* build $p_{\pi}^{*\mu}$ and boost to lab with $\boldsymbol{\beta}_{\text{CM}}$ along \vec{q} .
- 5. Rotate the q-aligned lab vectors into the beam lab (if necessary) so that pion components are given w.r.t. the beam $+\hat{z}$.
- 6. Compute $t(\theta^*) = (q p_{\pi})^2$; iterate on θ^* until $t(\theta^*) = t_{\text{target}}$.
- 7. Extract lab observables $p_{\pi}, \theta_{\pi}^{\text{lab}}, p_{\perp}$ and compute any chosen definition of k_{π} .