CSCI/MATH 2113 Discrete Structures

Appendix 3 Countable and Uncountable Sets

Alyssa Motas

April 12, 2021

Contents

1	Car	dinality	
	1.1	Definition of bijection	•
	1.2	Definition of same cardinality	•
	1.3	Properties of sets	2
	1.4	Finite and infinite sets	2
	1.5	Countable	2
	1.6	Finite and infinite sequence	,
	1.7	Sequence of distinct elements	(
	1.8	Subset of an infinite countable set is countable	(
	1.9	Cantor's diagonal argument	(
		1.9.1 Example	8
	1.10	Countable sets	8
	1.11	Powerset	(

1 Cardinality

Counting: Typical questions include:

- What is |A|?
- Is it the case that |A| < |B|?
- Is it the case that |A| = |B|?

For finite sets, we have

- Count |A|, say |A| = n.
- Count |B|, say |B| = m.
- Compare n and m.

What about for infinite sets? How do $|\mathbb{N}|$ and $|\mathbb{Z}|$ compare? What about $|\mathbb{N}|$ and $|\mathbb{R}|$?

1.1 Definition of bijection

For any nonempty sets A, B the function $f: A \to B$ is called a *one-to-one* correspondence if f is both one-to-one and onto.

1.2 Definition of same cardinality

If A, B are two nonempty sets, we say that A has the same size, or cardinality, as B and we write $A \sim B$, if there exists a one-to-one correspondence $f: A \to B$.

Example: $|\mathbb{N}| = |2\mathbb{N}| = \{n \in \mathbb{N} \mid n \text{ is even}\}$. To see this, consider the function $f : \mathbb{N} \to 2\mathbb{N}$. We have

- $f(n) = f(m) \Rightarrow 2n = 2m \Rightarrow n = m$, so f is injective.
- $x \in 2\mathbb{N} \Rightarrow x = 2y$ for $y \in \mathbb{N} \Rightarrow f(y) = x \Rightarrow f$ is surjective.

Another example is $|\mathbb{N}| = |3\mathbb{N}|$ since $g : \mathbb{N} \to 3\mathbb{N}$.

1.3 Properties of sets

Let A, B, C be sets. Then:

- |A| = |A|
- $|A| = |B| \Rightarrow |B| = |A|$
- |A| = |B| and $|B| = |C| \Rightarrow |A| = |C|$.

Proof. • $1_A: A \to A$ is bijective.

- If |A| = |B|, then $\exists f : A \to B$ bijection $\Rightarrow f$ is invertible $\Rightarrow f^{-1} : B \to A$ is invertible $\Rightarrow \exists g : B \to A$ bijective $\Rightarrow |B| = |A|$.
- |A| = |B| and |B| = |C| $\Rightarrow \exists f : A \to B, \exists g : B \to C$ both bijective $\Rightarrow g \circ f : A \to C$ is bijective $\Rightarrow \exists h : A \to C$ bijective $\Rightarrow |A| = |C|$.

1.4 Finite and infinite sets

Any set A is called a *finite* set if $A = \emptyset$ or if $|A| = |\{1, 2, 3, ..., n\}|$ for some $n \in \mathbb{Z}^+$. When $A = \emptyset$ we say that A has no elements and write |A| = 0. In the latter case, A is said to have n elements and we write |A| = n. When a set A is not finite, then it is called *infinite*.

Question: Is it the case that A, B infinite $\Rightarrow |A| = |B|$? Nope.

1.5 Countable

A set A is called *countable* (or *denumberable*) if (1) A is finite or (2) $|A| = |\mathbb{Z}^+|$.

Examples:

• $2\mathbb{N}$ and $3\mathbb{N}$ are countable.

• \mathbb{Z} is countable. Define $f: \mathbb{N} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ -\left(\frac{(x+1)}{2}\right) & \text{if } x \text{ is odd.} \end{cases}$$

We show that f is injective: Suppose f(x) = f(y).

- If x and y are even, then

$$f(x) = \frac{x}{2} = \frac{y}{2} = f(y)$$

so x = y.

- If x and y are odd, then

$$f(x) = -\frac{x+1}{2} = -\frac{y+1}{2} = f(y)$$

so x = y.

- If x is odd and y is even, then

$$f(x) = -\frac{x+1}{2} = \frac{y}{2} = f(y) \Rightarrow y = -x - 1$$

but -x-1 < 0 and $y \ge 0$ so this is a contradiction.

Thus, f is an injection. Show that f is a surjection: for all $y \in \mathbb{Z}$ we have

- If y = 0, then f(1) = 0
- If y > 0, then $2y \in \mathbb{Z}^+$ and $f(2y) = \frac{2y}{2} = y$
- If y < 0, then $-2y+1 \in \mathbb{Z}^+$ and f(-2y+1) = -[(-2y+1)-1]/2 = -(-2y)/2 = y.

Therefore, f is a surjection and $|\mathbb{N}| = |\mathbb{Z}|$.

1.6 Finite and infinite sequence

For $n \in \mathbb{Z}^+$, a finite sequence of n terms is a function f whose domain is $\{1, 2, 3, ..., n\}$. Such a sequence is usually written as an ordered set $\{x_1, x_2, x_3, ..., x_n\}$, where $x_i = f(i)$ for all $1 \le i \le n$.

An *infinite sequence* is a function g having \mathbb{Z}^+ as ots dp,aom. This type of sequence is generally denoted by the *ordered* set $\{x_i\}_{i\in\mathbb{Z}^+}$ or $\{x_1,x_2,x_3,\ldots\}$, where $x_i=g(i)$ for all $i\in\mathbb{Z}^+$.

1.7 Sequence of distinct elements

If A is a nonempty countable set, then A can be written as a sequence of distinct elements.

1.8 Subset of an infinite countable set is countable

If S is a countable set and $A \subseteq S$, then A is countable.

Proof. When S is finite, this is clear. When S is infinite, then

- if A is finite, there is nothing to show.
- if A is infinite then we define a bijection from \mathbb{N} to A.

Let $f: \mathbb{N} \to S$ be a bijection (which exists by assumption). Define $\overline{f}: \mathbb{N} \to A$

$$\overline{f}(0) = f(n_0)$$
 where $n_0 = \min\{n \in \mathbb{N} \mid f(n) \in A\}$

$$\overline{f}(1) = f(n_1)$$
 where $n_1 = \min\{n \in \mathbb{N} \setminus \{n_0\} \mid f(n) \in A\}.$

In general,

$$\overline{f}(k) = f(n_k)$$
 where $n_k = \min\{n \in \mathbb{N} \setminus \{n_{k-1}\} \mid f(n) \in A\}.$

Corollary: If $\exists f: A \to \mathbb{N}$ injective then A is countable.

Proof. Then
$$f[A] \subseteq \mathbb{N}$$
 and $|A| = |f[A]|$. So, A is countable.

1.9 Cantor's diagonal argument

The set $(0,1] = \{x \mid x \in \mathbb{R} \text{ and } 0 < x \le 1\}$ is not a countable set.

Proof. If (0,1] were countable, then we could write this set as a sequence of distinct terms: $(0,1] = \{r_1, r_2, r_3, \dots\}$. To avoid two representations we agree to write real numbers in (0,1] such as 0.5 as $0.499\ldots$ So, no element in (0,1] is represented by a decimal expansion that terminates. We have

$$r_1 = 0.a_{11}a_{12}a_{13}a_{14} \dots$$

$$r_2 = 0.a_{21}a_{22}a_{23}a_{24} \dots$$

$$r_3 = 0.a_{31}a_{32}a_{33}a_{34} \dots$$

$$\vdots$$

$$r_n = 0.a_{n1}a_{n2}a_{n3}a_{n4} \dots$$

:

where $a_{ij} \in \{0, 1, 2, 3, \dots, 8, 9\}$ for all $i, j \in \mathbb{Z}^+$. Consider the real number $r = 0.b_1b_2b_3, \dots$, where for each $k \in \mathbb{Z}^+$,

$$b_k = \begin{cases} 3, & \text{if } a_{kk} \neq 3\\ 7, & \text{if } a_{kk} = 3. \end{cases}$$

Then $r \in (0,1)$, but for every $k \in \mathbb{Z}^+$, we have $r \neq r_k$. So, $r \notin \{r_1, r_2, r_3, \dots\}$. This contradicts our assumption that $(0,1] = \{r_1, r_2, r_3, \dots\}$.

Corollary: $|(0,1]| \neq |\mathbb{N}|$. In fact, $|(0,1]| > |\mathbb{N}|$. When a set is not countable, it is termed *uncountable*. So, (0,1] is uncountable.

Corollary: The set \mathbb{R} (of all real numbers) is an uncountable set.

Proof. If \mathbb{R} were countable, then the subset (0,1] would be countable. \square

Remark: If $X \subseteq S$, then

- if S is countable, then X is countable;
- ullet if X is uncountable, then S is uncountable.

Examples:

- $\mathbb{N} \subseteq \mathbb{Q}$ and $\mathbb{Q} \subseteq \mathbb{R}$.
- $\mathbb{R} \subseteq \mathbb{C}$ so \mathbb{C} is uncountable.
- $\mathbb{R} \subseteq \mathbb{R} \cup \{i\}$ so $\mathbb{R} \cup \{i\}$ is uncountable.

1.9.1 Example

Consider the points in the Cartesian plane on the unit circle $x^2 + (y-1)^2 = 1$. How large is this set $S = \{(x,y) \mid x,y \in \mathbb{R} \text{ and } x^2 + (y-1)^2 = 1\}$? That is, is S countable or uncountable?

We have a unit circle centered at C(0,1). This circle is tangent to the real number line (or x-axis) at the point where x=0. The point P, on the circumference, has coordinates (0,2).

This way, we obtain a one-to-one correspondence between the elements of S and the set \mathbb{R} . Hence $|S| = |\mathbb{R}|$, so S is another uncountable set.

1.10 Countable sets

• $\mathbb{N} \times \mathbb{N}$ is countable.

Proof. Define the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by $f(a,b) = 2^a 3^b$. The result will follow if we can show that f is one-to-one. For $(m,n), (u,v) \in \mathbb{N} \times \mathbb{N}$, $f(m,n) = f(u,v) \Rightarrow 2^m 3^n = 2^u 3^v \Rightarrow m = u, n = v$. Consequently, f is one-to-one and $\mathbb{N} \times \mathbb{N}$ is countable.

• $\mathbb{Z} \times \mathbb{Z}$ is countable.

Proof. We know $\exists g: \mathbb{Z} \to \mathbb{N}$ bijective. Hence

$$q \times q : \mathbb{Z} \times \mathbb{Z} \to \mathbb{N} \times \mathbb{N}$$

is a bijection. But we have $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ bijective. Hence

$$g \circ (f \times f) : \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$$

is a bijection.

• \mathbb{Q} is countable.

Proof. For
$$q \in \mathbb{Q}$$
, we have $q = \frac{n}{d}$ (reduced) \Rightarrow $(n, d) \in \mathbb{Z}^2$.

Remark: \mathbb{Q} is dense in \mathbb{R} .

$$x, y \in \mathbb{R} \Rightarrow \exists q \in \mathbb{Q}, x \le q \le y.$$

 $\mathbb{Q} \times \mathbb{Q}$ is dense in $\mathbb{R} \times \mathbb{R}$, and $\mathbb{R} \times \mathbb{R} \setminus \mathbb{Q} \times \mathbb{Q}$ is uncountable.

1.11 Powerset

If A is a set, then $|A| < |\mathcal{P}(A)|$.

Proof. True if $A = \emptyset$. If $A \neq \emptyset$, define

$$f: A \to \mathcal{P}(A)$$
.

f is an injection so $|A| \leq |\mathcal{P}(A)|$. Now suppose $g: A \to \mathcal{P}(A)$ is a surjection. Define

$$B = \{ a \in A \mid a \notin g(a) \}.$$

Then $B \subseteq A$, so $B \in \mathcal{P}(A)$, so $\exists a \in A$ such that g(a) = B (g surjective).

- if $a \in B$, then $a \notin g(a)$ so $a \notin B$.
- if $a \notin B$, then $a \notin g(a)$ so $a \in B$. (Contradiction)

Corollary: $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \dots$