TÀI LIỆU ĐƯỢC SỬ DỤNG CHO MÔN THI TOÁN KINH TẾ

Họ tên : **Trần Hậu Kiên**MSSV : **0330666**

Mã 1:

```
B = [-0.21, -0.28, 0.05;
       0.19, 0.01, -0.26;
        0.39, -0.12, -0.06]
 g = [-0.9; 3.8; -2.9]
q = norm(B, inf)
6 % Lặp điểm bất động
7 \times 0 = [0; 2; -1]
8 for k = 1:5
     x = B*x0 + g
     ss = q / (1-q) * norm(x-x0, inf)
      x0 = x;
11
12 end
13 % Lặp Gauss - Seidel
14 \times 0 = [0; 2; -1]
15 for k = 1:5
      x = x0;
16
      for i = 1:3
17
          x(i) = B(i, :) * x + g(i);
18
      end
19
20
      ss = norm(x-x0, inf)
21
      x0 = x;
```

```
23 end
```

Mã 2:

```
X = [-1, 0, 1, 2]
_{2} Y = [4, 3, 2, 7]
d = zeros(4, 4);
d(1, :) = Y
5 | for k = 2:4
     for i = 1:5-k
          d(k, i) = d(k-1, i+1) - d(k-1, i);
     end
9 end
10 d
11 syms t x
12 P = 0;
13 for k = 0:3
     N = d(k+1, 1) / factorial(k); % d(k+1, 4-k)
     for i = 0:k-1
         N = N * (t - i);
                                      % t + i
16
     end
17
     P = P + N;
18
19 end
20 P = subs(P, t, (x-X(1)) / 1) % X(4)
expand(P)
```

Mã 3:

```
X = [1, 1.3, 1.7, 2]
                                      % VD2: X = [-0.7, 1.7, -4.9, 3.1, -1.3]
                                      \% VD2: Y = [-2.9, -1.1, -2.9, 1.5, 0.8]
  Y = [1.8, 1.4, 1.1, 1.5]
                                      % VD2: Z = [7.1, 5.8, -3.1, -1, -8.7]
                                      % VD2: syms x y
4 syms x
5 cs = [1, x, log(x)]
                                      % VD2: [1, x, y]
_{6} V = zeros(4, 3)
                                      % VD2: zeros(5, 3)
7 for i = 1:3
     V(:, i) = subs(cs(i), X); % VD2: subs(cs(i), {x, y}, {X, Y})
9 end
10 V
  A = V \cdot * V
```

```
12 b = V' * Y'

13 c = linsolve(A, b)

14 P = vpa(dot(c, cs), 6)

15 P0 = vpa(subs(P, X), 6)

16 d = vpa(Y - P0, 6)

17 e = vpa(norm(d), 6)

18 % V' * Z'

% các hệ số của P(x), P(x,y)

% VD2: subs(P, {x, y}, {X, Y})

% VD2: Z - P0
```

Mã 4:

```
f = 0(x) x^3 - x^2 - 3
2 syms x
g fplot(f(x), [1, 4])
4 diff(f(x))
5 fplot(diff(f(x)), [1, 4])
6 diff(f(x), 2)
7 fplot(diff(f(x), 2), [1, 4])
8 f(1)
9 f (4)
fplot(abs(diff(f(x), 2)), [1, 4])
11 M = 22
12 syms t
df = 0(x) subs(diff(f(t)), x)
 m = min(abs(df(1)), abs(df(4)))
14
                                               x_{n-1}
15 \times 0 = 4
16 for n = 1:3
17
      n
      x = vpa(x0 - f(x0) / df(x0), 6)
                                               % x_n
18
      e = vpa(M / 2 / m * (x - x0)^2, 6)
19
                                               % \varepsilon_n
      x0 = x;
20
21 end
```

Mã 5:

```
f = @(x) 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2
```

Mã 6:

```
X = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
Y = [0.69, 0.87, 1.07, 1.29, 1.52, 1.77, 2.03, 2.31, 2.6]

% Hình thang
I = 0
for i = 2:9
    I = I + (X(i) - X(i-1)) * (Y(i) + Y(i-1)) / 2;
end
I

% Simpson
I = 0
for i = 1:4
    I = I + (X(2*i+1) - X(2*i-1)) * (Y(2*i+1) + 4*Y(2*i) + Y(2*i-1)) / 6;
end
I
end
I
```

Mã 7:

```
[x, f] = linprog(c, A, b, Ae, be, l, u)
                                      Mã 8:
f = Q(x, y) x * exp(y)
2 % Chia lưới
a = 0; b = 1; c = 1; d = 1.4;
a = 5; m = 4;
b = (b-a)/n, k = (d-c)/m
6 % Các phép tính lặp lại nhiều lần
_{7} aL = "A(r, r-1) = 1;"
                                               \% hệ số của u_{i-1,i}
8 aR = "A(r, r+1) = 1;"
                                               9 aD = "A(r, r-n+1) = (h/k)^2;"
                                               \% . . . . . u_{i,i-1}
10 aU = "A(r, r+n-1) = (h/k)^2;"
                                               \% . . . . u_{i,i+1}
                                               % h^2 f(x_i, y_i), chưa có dấu ; để còn
11 lh = "B(r) = h^2 * f(a+i*h, b+j*k)"
   nối phép tính
                                               -g(x_{i-1}, y_i)
sL = "- g(a+(i-1)*h, b+j*k)"
                                               -g(x_{i+1}, y_i)
13 sR = "-g(a+(i+1)*h, b+j*k)"
sD = "- (h/k)^2 * g(a+i*h, b+(j-1)*k)" % -(\frac{h}{k})^2 g(x_i, y_{j-1})
sU = "- (h/k)^2 * g(a+i*h, b+(j+1)*k)" (-(\frac{h}{k})^2 g(x_i, y_{i+1}))
16 % Lập hệ phương trình
17 A = zeros((n-1)*(m-1));
18 B = zeros((n-1)*(m-1), 1);
19 for i = 1:n-1
                                              % duyệt từng cột trên hình
     for j = 1:m-1
20
           r = (j-1)*(n-1) + i;
                                              % phương trình thứ <math>r
21
           A(r, r) = -2 * ((h/k)^2 + 1); % hệ số của <math>u_{ij}
22
           if i == 1 && j == 1
                                              % góc dưới trái
23
               eval(aR + aU + lh + sL + sD + ";")
24
           end
25
                                      % góc trên trái
           if i == 1 \&\& j == m-1
26
              eval(aR + aD + lh + sL + sU + ";")
27
28
           end
           if i == n-1 \&\& j == 1 % góc dưới phải
29
               eval(aL + aU + lh + sR + sD + ";")
30
           end
31
           if i == n-1 \&\& j == m-1
                                             % góc trên phải
32
               eval(aL + aD + lh + sR + sU + ";")
```

```
end
           if i == 1 && 1 < j && j < m-1</pre>
                                                            % cạnh trái
                eval(aR + aD + aU + lh + sL + ";")
36
37
           if i == n-1 && 1 < j && j < m-1
                                                            % cạnh phải
38
               eval(aL + aD + aU + lh + sR + ";")
39
           end
40
           if j == 1 && 1 < i && i < n-1
                                                            % cạnh dưới
                eval(aL + aR + aU + lh + sD + ";")
42
           end
43
           if j == m-1 && 1 < i && i < n-1
                                                            % cạnh trên
44
                eval(aL + aR + aD + lh + sU + ";")
45
46
           end
           if 1 < i && i < n-1 && 1 < j && j < m-1
               eval(aL + aR + aD + aU + lh + ";")
48
           end
49
       end
50
51 end
52 A
53 B
54 % Giải hệ và hiển thị kết quả
u = linsolve(A, B)
sol = flipud(reshape(u, n-1, m-1)')
57 % So sánh với nghiệm đúng
u = 0(x, y) x * exp(y)
U = zeros(n-1, m-1)
60 for i = 1:n-1
      for j = 1:m-1
           x = a + i*h; y = b + j*k;
62
           U(i, j) = u(x, y);
63
      end
64
65 end
66 U
67 flip(U')
function val = g(x, y) % khai báo trước ở ô cuối cùng của số tay
\mathbf{69} \quad \mathbf{if} \quad \mathbf{x} \quad == \quad \mathbf{0}
```

```
val = 0;
70
71 end
72 \quad if \quad x == 1
   val = exp(y);
73
74 end
_{75} if y == 1
  val = \exp(1) * x;
76
77 end
y = 1.4
   val = exp(1.4) * x;
79
80 end
81 end
```

Mã 9:

```
X = [-1, 0, 1, 2]
_{2} Y = [4, 3, 2, 7]
3 syms x
_{4} P = 0
5 for i = 1:4
     L = 1;
6
     for j = 1:4
         if j ~= i
           L = L * (x - X(j)) / (X(i) - X(j));
         end
10
     end
11
     L
12
     expand(L)
13
     P = P + Y(i) * L;
14
15 end
16 expand(P)
```

Mã 10:

```
if i ~= j
9
               B(i, j) = -A(i, j) / A(i, i);
10
           end
11
       end
12
      g(i) = b(i) / A(i, i);
13
14 end
15 B
16 g
17 % Lặp điểm bất động
x = [0; 0; 0]
19 for k = 1:5
      k
      x = B*x + g
22 end
23 % Lặp Gauss - Seidel
x = [0; 0; 0]
_{25} for k = 1:5
      k
26
      for i = 1:3
           x(i) = B(i, :) * x + g(i);
      end
29
      Х
31 end
```

Mã 11:

Mã 12:

```
% VD2: f = 0(x, y) [x*y(1) - y(2), y(1) + y(2) - 1]
f = 0(x, y) y - x
                             % VD3: f = Q(x, y) [y(2), y(3), x*y(3) - y(1)]
X = [0, 0.2, 0.3, 0.5] % VD2: X = [1, 1.1, 1.3, 1.5]
                             % VD3: X = [-1, -0.8, -0.6, -0.5]
5 y = 2
                             % VD2: y = [-1, 2]
                             % VD3: y = [1, 0, -2]
7 for n = 1:2
      h = X(n+1) - X(n);
8
      k1 = h * f(X(n), y);
9
      k2 = h * f(X(n) + h/2, y + k1/2);
10
      k3 = h * f(X(n) + h/2, y + k2/2);
11
      k4 = h * f(X(n) + h, y + k3);
12
      y = y + (k1 + 2*k2 + 2*k3 + k4) / 6
13
14 end
```

Mã 13:

```
15 % Dạo hàm cấp 2: công thức 3 điểm
16 for i = 2:5
17     (Y(i+1) - 2*Y(i) + Y(i-1)) / h^2
18 end
19 (Y(3) - 2*Y(2) + Y(1)) / h^2
20 (Y(6) - 2*Y(5) + Y(4)) / h^2
```

Mã 14:

```
f = Q(x) \exp(2*x) .* \sin(3*x)
_{2} X = linspace(0, 2, 9)
3 Y = f(X)
4 syms x
5 % Hình thang
_{6} I = 0
7 for i = 2:9
   I = I + (X(i) - X(i-1)) * (Y(i) + Y(i-1)) / 2;
9 end
10 I
11 diff(f(x), 2)
simplify (diff(f(x), 2))
fplot(abs(diff(f(x), 2)), [0, 2])
_{14} M2 = 700
15 M2 * (2 - 0)^3 / 12 / 8^2
16 % Simpson
17 I = 0
18 for i = 1:4
     I = I + (X(2*i+1) - X(2*i-1)) * (Y(2*i+1) + 4*Y(2*i) + Y(2*i-1))
     ) / 6;
20 end
21 I
22 diff(f(x), 4)
simplify (diff(f(x), 4))
24 fplot(abs(diff(f(x), 4)), [0, 2])
_{25} M4 = 4500
```

```
^{26} M4 * (2 - 0)^5 / 180 / 8^4
```

Mã 15:

```
f = @(x) x.^2/10 - 2*sin(x)

syms t

df = @(x) subs(diff(f(t)), x)

d2f = @(x) subs(diff(f(t), 2), x)

x = 2.5

f(x)

for n = 1:3
    x = vpa(x - df(x) / d2f(x), 6)
    vpa(f(x), 6)

end
```

Mã 16:

Mã 17:

```
11 end
```

Mã 18:

```
f = @(x) x^3 + 2*x - 1 % khai báo hàm số f(x) = x^3 + 2x - 1
                                \% \rightarrow -1
2 f(0)
3 f(2)
                                \% \rightarrow 11
a = 0;
  b = 2;
6 for n = 1:5
       c = (a+b) / 2;
       if f(c) == 0
           С
10
           break
       elseif f(a) * f(c) < 0
11
           b = c;
12
       else
            a = c;
14
       end
15
       ss = b - a
16
       [n, a, b, ss] % n, a_n, b_n, \varepsilon_n
17
18 end
```

Mã 19: