AIA02

Group H: Qinshan Dai, 406464, qinshan.dai@campus.tu-berlin.de ,Elektrotechnik, Master; Yang Li, 408458, yang.li@campus.tu-berlin.de, Automotive Systems, Master; Raphael Schymczyk, 349690, raphael1@mail.tu-berlin.de, Wirtschaftsingenieurwesen, Master;

Karel Smejkal, 388638, karel.smejkal@campus.tu-berlin.de, Computer Science, Master

Course: *Automatic Image Analysis* Due date: 14:00, *May* 24th, 2019

Answers

Question 1

1. The unnormalized FD of a given template object is calculated as $\begin{cases} 1000 + i1000 & \text{if } u = 0 \end{cases}$

$$\forall \mu \in \{0, ..., 99\} : F(\mu) = \begin{cases} 1000 + i1000, & \text{if } \mu = 0\\ 100 + i100, & \text{if } \mu = 1\\ 0, & \text{otherwise} \end{cases}$$

The represented object is:

- (i) a circle
- (ii) a square
- (iii) an ellipse
- (iv) a triangle.

The object is located in the image at:

- (i) (1000,1000)
- (ii) (100,100)
- (iii) (10,10)
- (iv) (1,1)

The number of used boundary points is:

- (i) 1000
- (ii) 100
- (iii) 20
- (iv) 10

Question 2

Figures b)-d) depict the amplitude of each component of a complex-valued Fourier descriptor obtained from the original descriptor (amplitude shown in Figure a)) by several transformations.

Denote for each case (b-d) to which effects the computed descriptor is invariant or robust.

	i)translation	ii)rotation	iii) scale	iv) noise
b)			<mark>invariant</mark>	
c)	<mark>invariant</mark>			
d)				<mark>invariant</mark>

Note: roration could be invariant for each case as we can't see it in amplitude