MOwNiT - rozwiązywanie układów równań liniowych metodami iteracyjnymi

Paweł Podedworny 12.06.2024

1 Opis ćwiczenia

Dany jest układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$. Elementy macierzy \mathbf{A} są zadane wzorem:

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = (-1)^j \frac{m}{j} & \text{dla } j > i \\ a_{i,i-1} = \frac{m}{i} \\ a_{i,j} = 0 & \text{dla } j < i-1 \end{cases}$$
 we wszystkich przypadkach $i, j = 1, 2, \dots, n$

Podane parametry to: m = 2, 5 oraz k = 8.

Przyjęto wektor x jako dowolną permutację n-elementową permutację ze zbioru 1, -1 i obliczenie wektora b.

1.1 Zadanie 1

Metodą Jacobiego rozwiązanie układu równań liniowych $\mathbf{A}\mathbf{x} = \mathbf{b}$ (przyjmując jako niewiadomą wektor x), przyjmując kolejno kryterium stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

2.
$$||Ax^{(i)} - b|| < \rho$$

Obliczenia wykonać dla różnych rozmiarów układu n, dla różnych wektorów początkowych, a także różnych wartości ρ w kryteriach stopu. Wyznaczenie liczby iteracji oraz sprawdzenie różnic w czasie obliczeń dla obu kryteriów stopu. Sprawdzenie dokładności obliczeń.

1.2 Zadanie 2

Znalezienie dowolną metodą promienia spektralnego **macierzy iteracji** (dla różnych rozmiarów układu - takich, dla których znajdowane były rozwiązania układu). Sprawdzenie, czy spełnione są założenia o zbieżności metody dla zadanego układu.

Opisanie metody znajdowania promienia spektralnego.

2 Dane techniczne

Komputer z systemem Windows 10×64 Procesor: AMD Ryzen $5 \times 3600 \times 3.60 \text{GHz}$

Pamięć RAM: 16GB 3200MHz Środowisko: DataSpell 2023.3.4

Język: Python 3.11 z biblioteką numpy

3 Realizacja ćwiczenia

3.1 Zadanie 1

Do stworzenia macierzy A oraz przeprowadzenia kolejnych opisanych działań skorzystałem z metod biblioteki numpy. Jako początkowy wektor x przyjąłem naprzemienną kombinację 1 i -1 zaczynając zawsze od 1. Następnie wymnażając macierz i wektor uzyskałem wektor b.

Wykorzystana w tym zadaniu metoda Jacobiego [1] to metoda iteracyjna do rozwiązywania układów równań. Bazuje na podziale macierzy współczynników na sumę trzech macierzy: przekątniowej, poddiagonalnej i naddiagonalnej. Iteracyjnie aktualizuje się wektor rozwiązania, stosując wzór:

$$x^{(k+1)} = D^{-1} \cdot (b - (L+U) \cdot x^{(k)})$$

gdzie:

- \bullet D to macierz diagonalna składająca się z głównych elementów macierzy A,
- \bullet L to macierz dolna trójkątna składająca się z elementów poniżej diagonali macierzy A,
- ullet U to macierz górna trójkątna składająca się z elementów powyżej diagonali macierzy A,
- ullet b to wektor wyrazów wolnych,
- $x^{(k)}$ to przybliżone rozwiązanie w k-tej iteracji.

Z powyższego wzoru otrzymujemy wzór roboczy:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right] \quad a_{ii} \neq 0, \quad \forall i \in \{1, \dots, n\}$$

gdzie:

- a_{ii} to element macierzy A,
- b_i to i element wektora b,
- $x_i^{(k)}$ to *i* element przybliżonego rozwiązania w *k*-tej iteracji.

Operacje opisane powyższym wzorem zostały wykonane za pomocą metod dostarczonych przez bibliotekę numpy. Obliczenia były wykonywane dla $\rho=[1e-1,1e-3,1e-5,1e-7,1e-9,1e-11]$. Testowane rozmiary układów zaczynały się od n=5 zwiększając się co 25 aż do 430 dołączając do zbioru 500 oraz 1000.

Do obliczenia czasów działania algorytmu skorzystałem z biblioteki timeit.

Normę używaną w obu kryteriach stopu wyliczono za pomocą funkcji linalg.norm z biblioteki numpy.

Korzysta ona z normy euklidesowej:

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

3.2 Zadanie 2

Aby odnaleźć macierz iteracji musimy przedstawić ją w postaci sumy macierzy:

$$A = B + R$$

gdzie:

- \bullet B jest macierzą, dla której łatwo można wyznaczyć macierz odwrotną B^{-1}
- ullet R jest pozostałą częścia macierzy A

Macierz B przyjąłem jako macierz diagonalną. Następnie po połączeniu podstawowego wzoru z podanym otrzymujemy:

$$A \cdot x = (B+R) \cdot x = b$$
$$B \cdot x = -R \cdot x + b$$
$$B \cdot x = -(A-B) \cdot x + b$$

Wyznaczone równanie możemy zapisać w postaci iteracyjnej:

$$B \cdot x^{(i+1)} = -(A - B) \cdot x^{(i)} + b$$
$$x^{(i+i)} = -B^{-1} \cdot (A - B) \cdot x^{(i)} + B^{-1} \cdot b$$
$$x^{(i+1)} = I - B^{-1} \cdot A \cdot x^{(i)} + B^{-1} \cdot b$$

Macierz $I - B^{-1} \cdot A$ oznaczamy jako M i nazywamy macierzą iteracji. Promieniem spektralnym macierzy jest moduł wartości własnej o maksymalnej wartości bewzględnej. Wartościami własnymi macierzy nazywami pierwiastki wielomianu charakterytstycznego dla tej macierzy:

$$\omega_A(\lambda) = det(A - \lambda I)$$

Do obliczenia wartości własnych wielomianu skorzystałem z funkcji biblioteki numpy limalg.eigvals. Następnie warunkiem koniecznym i wystarczającym zbieżności macierzy jest warunek:

$$\rho(M) < 1$$

Został on sprawdzony iteracyjnie dla każdego wyliczonego promienia spektralnego.

4 Przeprowadzanie obliczeń

Do wyznaczenia błędów dla pojedynczych testów skorzystałem z normy maksumium. Wyliczonym błędem była maksymalna wartość sposród wartości bezwględnych różnic kolejnych współrzędnych wektorów:

$$\max_{i=1,\dots,n} \left\{ |x_i - \overline{x}_i| \right\}$$

gdzie x_i i \overline{x}_i to elementy wektorów x i \overline{x} .

4.1 Zadanie 1 - wyniki

4.1.1 Wektor początkowy [0, 0, ...]

n	ρ								
"	0.1	0.001	1e-05	1e-07	1e-09	1e-11			
5	2	4	7	9	12	14			
30	3	5	7	9	12	14			
55	3	5	7	9	12	14			
80	3	5	7	9	12	14			
105	3	5	7	9	12	14			
130	3	5	7	9	12	14			
155	3	5	7	9	12	14			
180	3	5	7	9	12	14			
205	3	5	7	9	12	14			
230	3	5	7	9	12	14			
255	3	5	7	9	12	14			
280	3	5	7	9	12	14			
305	3	5	7	9	12	14			
330	3	5	7	9	12	14			
355	3	5	7	9	12	14			
380	3	5	7	9	12	14			
405	3	5	7	9	12	14			
430	3	5	7	9	12	14			
500	3	5	7	9	12	14			
1000	3	5	7	9	12	14			

Tabela 1: Liczba iteracji dla różnych wartości n dla wektora [0, 0, ...] i pierwszego kryterium stopu

				ρ		
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	2	4	7	9	12	14
30	3	5	7	9	12	14
55	3	5	7	9	12	14
80	3	5	7	9	12	14
105	3	5	7	9	12	14
130	3	5	7	9	12	14
155	3	5	7	9	12	14
180	3	5	7	9	12	14
205	3	5	7	9	12	14
230	3	5	7	9	12	14
255	3	5	7	9	12	14
280	3	5	7	9	12	14
305	3	5	7	9	12	14
330	3	5	7	9	12	14
355	3	5	7	9	12	14
380	3	5	7	9	12	14
405	3	5	7	9	12	14
430	3	5	7	9	12	14
500	3	5	7	9	12	14
1000	3	5	7	10	12	14

Tabela 2: Liczba iteracji dla różnych wartości n
 dla wektora $[0,\,0,\,\ldots]$ i drugiego kryterium stopu

Jak możemy zobaczyć z tabel 1. oraz 2. liczby iteracji dla wektora początkowego składającego się z samych zer, daje nam prawie identyczne wyniki dla obu kryterii stopu. Dla danego ρ wartości niczym się nie różnią prócz pojedynczych testów.

		ρ								
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11				
5	0.03203668	0.00078881	0.00000267	0.00000007	0.00000000	0.00000000				
30	0.00586995	0.00013075	0.00000240	0.00000008	0.00000000	0.00000000				
55	0.00697123	0.00014847	0.00000232	0.00000008	0.00000000	0.00000000				
80	0.00804614	0.00015937	0.00000228	0.00000008	0.00000000	0.00000000				
105	0.00883454	0.00016729	0.00000230	0.00000008	0.00000000	0.00000000				
130	0.00945857	0.00017350	0.00000233	0.00000008	0.00000000	0.00000000				
155	0.00997413	0.00017863	0.00000235	0.00000008	0.00000000	0.00000000				
180	0.01041403	0.00018299	0.00000237	0.00000008	0.00000000	0.00000000				
205	0.01079715	0.00018678	0.00000238	0.00000008	0.00000000	0.00000000				
230	0.01113688	0.00019013	0.00000240	0.00000008	0.00000000	0.00000000				
255	0.01144172	0.00019314	0.00000241	0.00000008	0.00000000	0.00000000				
280	0.01171845	0.00019586	0.00000242	0.00000009	0.00000000	0.00000000				
305	0.01197159	0.00019836	0.00000243	0.00000009	0.00000000	0.00000000				
330	0.01220504	0.00020065	0.00000244	0.00000009	0.00000000	0.00000000				
355	0.01242148	0.00020278	0.00000245	0.00000009	0.00000000	0.00000000				
380	0.01262335	0.00020477	0.00000245	0.00000009	0.00000000	0.00000000				
405	0.01281238	0.00020663	0.00000246	0.00000009	0.00000000	0.00000000				
430	0.01299021	0.00020837	0.00000247	0.00000009	0.00000000	0.00000000				
500	0.01343817	0.00021277	0.00000248	0.00000009	0.00000000	0.00000000				
1000	0.01550066	0.00023299	0.00000256	0.00000009	0.00000000	0.00000000				

Tabela 3: Wartości błędów dla różnych wartości n
 dla wektora $[0,\,0,\,\ldots]$ i pierwszego kryterium stopu

	ρ							
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11		
5	0.03203668	0.00078881	0.00000267	0.00000007	0.00000000	0.00000000		
30	0.00586995	0.00013075	0.00000240	0.00000008	0.00000000	0.00000000		
55	0.00697123	0.00014847	0.00000232	0.00000008	0.00000000	0.00000000		
80	0.00804614	0.00015937	0.00000228	0.00000008	0.00000000	0.00000000		
105	0.00883454	0.00016729	0.00000230	0.00000008	0.00000000	0.00000000		
130	0.00945857	0.00017350	0.00000233	0.00000008	0.00000000	0.00000000		
155	0.00997413	0.00017863	0.00000235	0.00000008	0.00000000	0.00000000		
180	0.01041403	0.00018299	0.00000237	0.00000008	0.00000000	0.00000000		
205	0.01079715	0.00018678	0.00000238	0.00000008	0.00000000	0.00000000		
230	0.01113688	0.00019013	0.00000240	0.00000008	0.00000000	0.00000000		
255	0.01144172	0.00019314	0.00000241	0.00000008	0.00000000	0.00000000		
280	0.01171845	0.00019586	0.00000242	0.00000009	0.00000000	0.00000000		
305	0.01197159	0.00019836	0.00000243	0.00000009	0.00000000	0.00000000		
330	0.01220504	0.00020065	0.00000244	0.00000009	0.00000000	0.00000000		
355	0.01242148	0.00020278	0.00000245	0.00000009	0.00000000	0.00000000		
380	0.01262335	0.00020477	0.00000245	0.00000009	0.00000000	0.00000000		
405	0.01281238	0.00020663	0.00000246	0.00000009	0.00000000	0.00000000		
430	0.01299021	0.00020837	0.00000247	0.00000009	0.00000000	0.00000000		
500	0.01343817	0.00021277	0.00000248	0.00000009	0.00000000	0.00000000		
1000	0.01550066	0.00023299	0.00000256	0.00000001	0.00000000	0.00000000		

Tabela 4: Wartości błędów dla różnych wartości n
 dla wektora $[0,\,0,\,\ldots]$ i drugiego kryterium stopu

Patrząc na wyniki w tabelach 3. oraz 4., możemy zobaczyć, że ponownie otrzymaliśmy prawie takie same wyniki dla obu kryteriów stopu. Jedyne odstępstwa widoczne są w pojedynczych przypadkach, które mogą wynikać z błędów zaokrąglania typów zmiennoprzecinkowych.

)		
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	0.00011250	0.00011640	0.00006850	0.00007820	0.00009500	0.00010910
30	0.00005170	0.00007180	0.00007200	0.00008330	0.00010820	0.00011490
55	0.00007730	0.00006380	0.00013220	0.00017060	0.00017460	0.00015570
80	0.00008080	0.00006700	0.00009820	0.00009830	0.00011380	0.00012440
105	0.00038060	0.00071810	0.00089630	0.00105040	0.00110620	0.00137160
130	0.00057150	0.00075180	0.00076270	0.00086530	0.00132250	0.00160300
155	0.00038740	0.00067950	0.00079070	0.00072500	0.00093890	0.00123270
180	0.00038100	0.00045280	0.00058510	0.00080420	0.00097770	0.00113510
205	0.00041120	0.00064580	0.00071190	0.00096150	0.00106690	0.00113480
230	0.00042860	0.00065900	0.00080900	0.00101120	0.00150130	0.00154170
255	0.00042400	0.00058590	0.00074990	0.00084750	0.00116690	0.00122370
280	0.00045930	0.00087500	0.00077230	0.00101800	0.00112850	0.00146590
305	0.00062370	0.00072360	0.00111160	0.00102800	0.00130940	0.00161480
330	0.00071770	0.00064320	0.00082320	0.00105600	0.00153800	0.00157540
355	0.00101910	0.00108290	0.00089200	0.00104510	0.00146550	0.00174710
380	0.00104790	0.00136220	0.00129690	0.00139390	0.00165740	0.00186990
405	0.00114030	0.00119220	0.00183840	0.00181920	0.00202240	0.00193490
430	0.00106380	0.00282580	0.00162590	0.00161790	0.00188150	0.00187440
500	0.00111040	0.00165740	0.00177350	0.00173240	0.00210960	0.00212160
1000	0.00552540	0.00511620	0.00692370	0.01400630	0.00607890	0.00627880

Tabela 5: Czasy wykonania w sekundach dla różnych wartości n dla wektora [0, 0, ...] i pierwszego kryterium stopu

n			ŀ)		
16	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	0.00011330	0.00007480	0.00010340	0.00016560	0.00015040	0.00017000
30	0.00010410	0.00008950	0.00011030	0.00012940	0.00015190	0.00017050
55	0.00009110	0.00007400	0.00009500	0.00014520	0.00016300	0.00017920
80	0.00009210	0.00007680	0.00009360	0.00011010	0.00013430	0.00015640
105	0.00057720	0.00128130	0.00143230	0.00175490	0.00231920	0.00307570
130	0.00056210	0.00090000	0.00087830	0.00187430	0.00232650	0.00229080
155	0.00059660	0.00082940	0.00109810	0.00127150	0.00151520	0.00225260
180	0.00064980	0.00074810	0.00144500	0.00136970	0.00202160	0.00190110
205	0.00063720	0.00093920	0.00121330	0.00153820	0.00191880	0.00315720
230	0.00092210	0.00142580	0.00194180	0.00262410	0.00291920	0.00358330
255	0.00096080	0.00132940	0.00179190	0.00243770	0.00327690	0.00341530
280	0.00080700	0.00097450	0.00135500	0.00152000	0.00208660	0.00224740
305	0.00076910	0.00119290	0.00153600	0.00171310	0.00218610	0.00242760
330	0.00104020	0.00152670	0.00139010	0.00176400	0.00215670	0.00274180
355	0.00116590	0.00146010	0.00168350	0.00200390	0.00247710	0.00294640
380	0.00112190	0.00197920	0.00239860	0.00285080	0.00370120	0.00427400
405	0.00133530	0.00159500	0.00183740	0.00224350	0.00274670	0.00284850
430	0.00121260	0.00163120	0.00193590	0.00239050	0.00268460	0.00312400
500	0.00148640	0.00180500	0.00213090	0.00232020	0.00303650	0.00446400
1000	0.00630940	0.00646260	0.00787010	0.00859830	0.00989910	0.01040740

Tabela 6: Czasy wykonania w sekundach dla różnych wartości n dla wektora [0, 0, ...] i drugiego kryterium stopu

W przypadku czasów wykonywania po raz pierwszy otrzymaliśmy jakieś różnice. Z tabel 5. oraz 6. możemy zobaczyć, że czasy wykonania dla drugiego kryterium stopu są większe od pierwszego. Wpływ na to ma fakt mnożenie całej macierzy A względem nowo wyliczonego wektora x. Trzeba jednak podkreślić, że różnice nie są bardzo zauważalne. Może to wynikać z dobrej optymalizacji biblioteki numpy do obliczeń na macierzach.

4.1.2 Wektor początkowy [100, -100, ...]

	ρ								
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11			
5	5	8	10	13	15	18			
30	6	8	10	13	15	18			
55	6	8	10	13	15	18			
80	6	8	10	13	15	18			
105	6	8	10	13	15	18			
130	6	8	10	13	15	18			
155	6	8	10	13	15	18			
180	6	8	10	13	15	18			
205	6	8	10	13	15	18			
230	6	8	10	13	15	18			
255	6	8	10	13	15	18			
280	6	8	10	13	15	18			
305	6	8	10	13	15	18			
330	6	8	10	13	15	18			
355	6	8	10	13	15	18			
380	6	8	10	13	15	18			
405	6	8	10	13	15	18			
430	6	8	10	13	15	18			
500	6	8	10	13	15	18			
1000	6	8	10	13	15	18			

Tabela 7: Liczba iteracji dla różnych wartości n dla wektora [100, -100, ...] i pierwszego kryterium stopu

$\mid \mid \mid \mid \mid \mid \mid \mid \mid \mid $				ρ		
"	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	6	8	10	13	15	18
30	6	8	10	13	15	18
55	6	8	10	13	15	18
80	6	8	10	13	15	18
105	6	8	10	13	15	18
130	6	8	10	13	15	18
155	6	8	10	13	15	18
180	6	8	10	13	15	18
205	6	8	10	13	15	18
230	6	8	10	13	15	18
255	6	8	10	13	15	18
280	6	8	10	13	15	18
305	6	8	10	13	15	18
330	6	8	10	13	15	18
355	6	8	10	13	15	18
380	6	8	10	13	15	18
405	6	8	10	13	15	18
430	6	8	10	13	15	18
500	6	8	10	13	15	18
1000	6	8	10	13	15	18

Tabela 8: Liczba iteracji dla różnych wartości n dla wektora [100, -100, ...] i drugiego kryterium stopu

Z tabel 7 oraz 8 widzimy, że w stosunku do początkowego wektora zerowego liczba iteracji lekko wzrosła, jednakże ponownie wyniki dla obu kryterii stopu są prawie identyczne.

)		
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	0.06864039	0.00033275	0.00000748	0.00000003	0.00000000	0.00000000
30	0.01973649	0.00032769	0.00000680	0.00000003	0.00000000	0.00000000
55	0.02118610	0.00032018	0.00000650	0.00000003	0.00000000	0.00000000
80	0.02204760	0.00031516	0.00000631	0.00000003	0.00000000	0.00000000
105	0.02266334	0.00031142	0.00000617	0.00000003	0.00000000	0.00000000
130	0.02314150	0.00030842	0.00000607	0.00000003	0.00000000	0.00000000
155	0.02353316	0.00030594	0.00000598	0.00000003	0.00000000	0.00000000
180	0.02386429	0.00030380	0.00000590	0.00000003	0.00000000	0.00000000
205	0.02415153	0.00030194	0.00000586	0.00000003	0.00000000	0.00000000
230	0.02440482	0.00030029	0.00000592	0.00000003	0.00000000	0.00000000
255	0.02463160	0.00029880	0.00000597	0.00000003	0.00000000	0.00000000
280	0.02483669	0.00029745	0.00000602	0.00000003	0.00000000	0.00000000
305	0.02502406	0.00029621	0.00000606	0.00000003	0.00000000	0.00000000
330	0.02519637	0.00029537	0.00000610	0.00000003	0.00000000	0.00000000
355	0.02535599	0.00029695	0.00000614	0.00000003	0.00000000	0.00000000
380	0.02550455	0.00029842	0.00000618	0.00000003	0.00000000	0.00000000
405	0.02564358	0.00029980	0.00000621	0.00000003	0.00000000	0.00000000
430	0.02577415	0.00030110	0.00000624	0.00000003	0.00000000	0.00000000
500	0.02610262	0.00030436	0.00000632	0.00000003	0.00000000	0.00000000
1000	0.02835640	0.00031930	0.00000667	0.00000003	0.00000000	0.00000000

Tabela 9: Wartości błędów dla różnych wartości n
 dla wektora [100, -100, ...] i pierwszego kryterium stopu

n			ŀ)		
16	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	0.01509448	0.00033275	0.00000748	0.00000003	0.00000000	0.00000000
30	0.01973649	0.00032769	0.00000680	0.00000003	0.00000000	0.00000000
55	0.02118610	0.00032018	0.00000650	0.00000003	0.00000000	0.00000000
80	0.02204760	0.00031516	0.00000631	0.00000003	0.00000000	0.00000000
105	0.02266334	0.00031142	0.00000617	0.00000003	0.00000000	0.00000000
130	0.02314150	0.00030842	0.00000607	0.00000003	0.00000000	0.00000000
155	0.02353316	0.00030594	0.00000598	0.00000003	0.00000000	0.00000000
180	0.02386429	0.00030380	0.00000590	0.00000003	0.00000000	0.00000000
205	0.02415153	0.00030194	0.00000586	0.00000003	0.00000000	0.00000000
230	0.02440482	0.00030029	0.00000592	0.00000003	0.00000000	0.00000000
255	0.02463160	0.00029880	0.00000597	0.00000003	0.00000000	0.00000000
280	0.02483669	0.00029745	0.00000602	0.00000003	0.00000000	0.00000000
305	0.02502406	0.00029621	0.00000606	0.00000003	0.00000000	0.00000000
330	0.02519637	0.00029537	0.00000610	0.00000003	0.00000000	0.00000000
355	0.02535599	0.00029695	0.00000614	0.00000003	0.00000000	0.00000000
380	0.02550455	0.00029842	0.00000618	0.00000003	0.00000000	0.00000000
405	0.02564358	0.00029980	0.00000621	0.00000003	0.00000000	0.00000000
430	0.02577415	0.00030110	0.00000624	0.00000003	0.00000000	0.00000000
500	0.02610262	0.00030436	0.00000632	0.00000003	0.00000000	0.00000000
1000	0.02835640	0.00031930	0.00000667	0.00000003	0.00000000	0.00000000

Tabela 10: Wartości błędów dla różnych wartości n
 dla wektora [100, -100, ...] i drugiego kryterium stopu Podobnie jak w liczbie iteracji z tabel 9 oraz 10 widzimy, że wartości błędów znów są prawie identyczne.

				9		
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	0.00013540	0.00013450	0.00025660	0.00019050	0.00016710	0.00020370
30	0.00011350	0.00012170	0.00013080	0.00020200	0.00016960	0.00014860
55	0.00009170	0.00017800	0.00012030	0.00012260	0.00013070	0.00015200
80	0.00009880	0.00011720	0.00013570	0.00013140	0.00013870	0.00015890
105	0.00067070	0.00082350	0.00098810	0.00151860	0.00160540	0.00175840
130	0.00074040	0.00081280	0.00091330	0.00137180	0.00135970	0.00220350
155	0.00075700	0.00079060	0.00102800	0.00125930	0.00151410	0.00176410
180	0.00068780	0.00074600	0.00108640	0.00125920	0.00141060	0.00170450
205	0.00068910	0.00087840	0.00114510	0.00132700	0.00137580	0.00188190
230	0.00079380	0.00103950	0.00120410	0.00158350	0.00170920	0.00177110
255	0.00081850	0.00092780	0.00106590	0.00145700	0.00145760	0.00176910
280	0.00072980	0.00081120	0.00105530	0.00153150	0.00142000	0.00157810
305	0.00077620	0.00098770	0.00097740	0.00126890	0.00145890	0.00200750
330	0.00106190	0.00094750	0.00115670	0.00140630	0.00161190	0.00180410
355	0.00132870	0.00137710	0.00161010	0.00179710	0.00156900	0.00195630
380	0.00108600	0.00145190	0.00158880	0.00172870	0.00191190	0.00234930
405	0.00115870	0.00150090	0.00190550	0.00232110	0.00204300	0.00226330
430	0.00122050	0.00159620	0.00211400	0.00226060	0.00213760	0.00256930
500	0.00159440	0.00205670	0.00223790	0.00201790	0.00235510	0.00285390
1000	0.00586270	0.00730400	0.00641560	0.00803980	0.00729560	0.00808730

Tabela 11: Czasy wykonania w sekundach dla różnych wartości n dla wektora [100, -100, ...] i pierwszego kryterium stopu

				2		
n	0.1	0.001	1e-05	1e-07	1e-09	1e-11
5	0.00013430	0.00011100	0.00012670	0.00015290	0.00017620	0.00019910
30	0.00009080	0.00009480	0.00018330	0.00014730	0.00018890	0.00021770
55	0.00011170	0.00010340	0.00011650	0.00014220	0.00015910	0.00018550
80	0.00011580	0.00010870	0.00012640	0.00020050	0.00017400	0.00019920
105	0.00132680	0.00166560	0.00217130	0.00250230	0.00308810	0.00372290
130	0.00115360	0.00138330	0.00150550	0.00218420	0.00249330	0.00296350
155	0.00101780	0.00147950	0.00174210	0.00219270	0.00260990	0.00311770
180	0.00106680	0.00135210	0.00156660	0.00222470	0.00235400	0.00294870
205	0.00107690	0.00175840	0.00220130	0.00246660	0.00250060	0.00273040
230	0.00113940	0.00142690	0.00166260	0.00215210	0.00241750	0.00384490
255	0.00154630	0.00217030	0.00222930	0.00290850	0.00339030	0.00351200
280	0.00127210	0.00158210	0.00202640	0.00253500	0.00305120	0.00357120
305	0.00139180	0.00156780	0.00201760	0.00302510	0.00357300	0.00422250
330	0.00189990	0.00199790	0.00233060	0.00349650	0.00328440	0.00374340
355	0.00183790	0.00207260	0.00191510	0.00259840	0.00359820	0.00386030
380	0.00161780	0.00192720	0.00241830	0.00288520	0.00311290	0.00375740
405	0.00164290	0.00192410	0.00238420	0.00286720	0.00315810	0.00357270
430	0.00174270	0.00202100	0.00243400	0.00302640	0.00456040	0.00535730
500	0.00332050	0.00368640	0.00370880	0.00379570	0.00488510	0.00639580
1000	0.01026550	0.01096350	0.01004000	0.01167500	0.01142450	0.01422360

Tabela 12: Czasy wykonania w sekundach dla różnych wartości n
 dla wektora [100, -100, \ldots] i drugiego kryterium stopu

Tak jak można się było spodziewać, z tabel 11 oraz 12 wynika, że czas wykonywania obliczeń dla drugiego kryterium stopu jest dłuższy od pierwszego. Dla układu składającego się z 1000 niewiadomych czasy wykonania są o ok. średnio 50% dłuższe.

4.2 Zadanie 2 - wyniki

n	Promień spektralny
5	0.156250
30	0.156250
55	0.156250
80	0.156250
105	0.156250
130	0.156250
155	0.156250
180	0.156250
205	0.156250
230	0.156250
255	0.156250
280	0.156250
305	0.156250
330	0.156250
355	0.156250
380	0.156250
405	0.156250
430	0.156250
500	0.156250
1000	0.156250

Tabela 13: Promienie spektralne dla różnych wartości n

Jak możemy zobaczyć z tabeli 13. wartości promieni dla kilku cyfr znaczących w ogóle się od siebie nie różnią na przestrzeni kilkuset różnych rozmiarów układów.

5 Wnioski

Po przeprowadzonych testach mogliśmy zobaczyć, że wyniki w obrębie tego samego wektora początkowego prawie w ogóle od siebie się nie różniły. Jedynym elementem był wydłużony czas wykonywania dla drugiego kryterium stopu. Wpływ na to miał fakt konieczności wymnożenia całej macierzy A z nowo wyliczonym wektorem x.

Co również wyszło z testów, kwestia rozmiaru układu nie ma prawie żadnego znaczenia. Dla danego ρ dostawaliśmy prawie zawsze taką samą liczbę iteracji oraz wartości błędów. Z tego mogliśmy zobaczyć pewny związek, im więcej iteracji tym dokładniejsze wyniki otrzymywaliśmy.

Z testów wynika, że dla podanej macierzy wybór kryterium stopu ma wpływ tylko na czas wykonywania obliczeń, wartości błędów i liczby iteracji są prawie takie same.

Dla każdej badanej wartości n spełnione były założenia o zbieżności metody dla zadanego układu. Dodatkowo mogliśmy zauważyć, że prawie dla każdego rozmiaru macierzy otrzymywaliśmy prawie takie same wartości promienia spektralnego. Możemy zatem przypuszczać, że metoda będzie zbieżna dla dowolnej wartości n.

Literatura

[1] Wikipedia, Jacobi method, https://en.wikipedia.org/wiki/Jacobi method