sine basis 02

Statistics: p-values adjusted for search volume

Set-	set-level cluster-level					peak-level						
	C					· - / - \					mm mm mm	
p		P _{FWE-0}	corrFDR-co	rr [^] E	$p_{ m uncorr}$	P _{FWE-c}	g orrFDR-co	orr	(<u>_</u>	$p_{\scriptstyle{ ext{uncorr}}}$		
						1.000	0.985	2.52	2.52	0.006	-46	38 -2
		1.000	0.802	11	0.336	1.000	0.922	2.88	2.87	0.002	54	-30 54
		1.000	0.802	4	0.574	1.000	0.922	2.87	2.86	0.002	20	22 40
		1.000	0.729	20	0.197	1.000	0.922	2.87	2.86	0.002	24	-8 -22
						1.000	0.994	2.50	2.49	0.006	18	-14 -18
		1.000	0.802		0.336	1.000	0.927	2.84	2.83	0.002	-16	-50 72
		1.000	0.461	42	0.070	1.000	0.927	2.82	2.81	0.002	24	-54 -52
						1.000	0.946	2.73	2.72	0.003	16	-68 -44
		1.000		10	0.360	1.000	0.927	2.81	2.80	0.003	36	-46 14
		1.000		22	0.177	1.000	0.927	2.81	2.80	0.003	0	30 24
		1.000		11	0.336	1.000	0.927	2.81	2.79	0.003	20	-16 20
		1.000		19	0.208	1.000	0.927	2.81	2.79	0.003	56	28 8
		1.000		8	0.414	1.000	0.927	2.80	2.79	0.003	-8	-68 48
		1.000		5	0.525	1.000	0.927	2.80	2.79	0.003	-32	56 -46
		1.000		15 28	0.262 0.131	1.000 1.000	0.927 0.927	2.79 2.79	2.77 2.77	0.003	-12 -10	-14 20 64 2
		1.000	0.013	20	0.131	1.000	0.927	2.57	2.56	0.005	- 10	62 -2
		1.000	0.802	10	0.360	1.000	0.970	2.78	2.77	0.003	24	62 8
		1.000		13	0.296	1.000	0.927	2.78	2.77	0.003	10	-10 18
		1.000		7	0.447	1.000	0.927	2.77	2.76	0.003	-38	-18 -6
		1.000		<i>,</i> 7	0.447	1.000	0.927	2.77	2.76	0.003	4	64 12
		1.000		6	0.483	1.000	0.930	2.76	2.75	0.003	Ō	-62 54

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 7.1 6.9 7.3 mm mm mm; 3.5 3.4 3.7 {voxels}

Expected voxels per cluster, $\langle k \rangle = 12.855$ Volume: 1663728 = 207966 voxels = 4303.3 resels

Expected number of clusters, $\langle c \rangle = 185.23$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 44.67 voxels)

FWEp: 5.065, FDRp: Inf, FWEc: 294, FDRo? 466