Типы уравнений

Бирюк Илья Александрович 2 октября 2024 г.

Содержание

1		3
2	Метрические характеристики графов	3

1

Теорема: Пусть G-(n,m) граф, k - число компонент связности

Тогда: $n - k \le m \le \frac{(n-k)(n-k+1)}{2}$

Доказательство:

 $m \leq n-k$ - Доказывается по мат индукции

 $m \le \frac{(n-k)(n-k+1)}{2} - \frac{n}{2}$

Нарисовать 1

Берём $k \ge 2$

Самый экстримальный случай, изолированные вершины и K_{n-k+1} , тогда число рёбер $C_{n-k+1}^2 = \frac{(n-k)(n-k+1)}{2}$ Теорема: Пусть G связный граф и $e \in E(G)$

- 1. Если е принадлежит некоторому циклу, то G е связен
- 2. Если е не, то G-е содержит ровно 2 компоненты связности

Доказательство:

- 1. $e = uv \in E(G)$
- 2. Разорвём связь, тогда наш граф разделим на две части $u \in G_u$ и $v \in G_v x \in V(G)$

2 Метрические характеристики графов

Для параграфа: G - связен

Определение: Расстояние d(u,v) между вершинами $u \neq v$ графа G - длинна кратчайшей простой цепи, если u=v, то d(u,v)=0

Свойства:

- 1. $d(u,v) \ge 0$ и $d(u,v) = 0 \leftrightarrow u = v, \forall u,v \in V(G)$ Свойство неотррицательности
- 2. $d(u,v) = d(v,u), \forall u,v \in V(G)$ Свойство симметрии
- 3. $d(u,v) \le d(u,w) + d(w,u), \forall u,v \in V(G)$ свойство треугольников

Определение: Экстриситент вершины - $e(v) = maxd(v, u), v \in V(G)$ (максимальное расстояние от вершины до другой какой-либо вершины графа)

Определение: радиус графа - $r(G) = \min e(v), v \in V(G)$

Определение: диаметр графа - $d(G) = \max e(v), v \in V(G)$

Определение: Вершина в графа ж называется центральной, если e(v) = r(G) и перефирической, если e(v) = d(G) Определение: Центр графа, множество всех его центральных вершин, перефирия, перефирийных.

Пример 2

Теорема: Для любого графа и существует граф ж, центр которого порождает н. Доказательство: 3 Теорема: Для любого связного графа ж верно: $r(G) \leq diam(G) \leq 2r(G)$ Доказательство: $r(G) \leq diam(G)$ - очевидно $diam(G) \leq 2r(G)$ 4