머신러닝 분반

병원 개/폐업분류 예측

14기 박상준 | 통계학과 2017250438

15기 김제성 | 산업경영공학부 2020170861

15기 신윤 | 통계학과 2020150450

15기 정영희 | 미디어학부 2020240032

Contents

01

Raw data EDA 라이브러리 설치 및 데이터 불러오기

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from imblearn.over_sampling import ADASYN
#model
from sklearn.model_selection import train_test_split, KFold
from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score
import sklearn
from sklearn.metrics import accuracy_score
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier, VotingClassifier
from sklearn.model_selection import cross_val_score, cross_val_predict
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.linear_model import LogisticRegression
from catboost import CatBoostClassifier
#import optuna
import optuna
from optuna.samplers import TPESampler
```

```
#import train file
train_df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/2022-1 ML/9565_hospital_data/train.csv")
#import test file
test_df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/2022-1 ML/9565_hospital_data/test.csv")
```


손익계산서

손익계산서

매출액

매출원가

매출총이익

판매비 및 일반관리비

영업이익

영업외수익

영업외비용

법인세차감전순이익

법인세

당기순이익

손익계산서

revenue

- salescost

매출총이익

- sga

영업이익

- + noi
- noe

법인세차감전순이익

- ctax

profit

손익계산서

손익계산서

revenue

- salescost

매출총이익

- sga

영업이익

- + noi
- noe

법인세차감전순이익

- ctax

profit

판매비 및 일반관리비(sga)

+ 의료비용(salescost)

총의료비용 (new_salescost)

재무상태표

자산 변수 존재 X 유동자산 liquidAsset 당좌자산 quickAsset 재고자산 inventoryAsset

비유동자산 nonCAsset 투자자산 유형자산 tanAsset 무형자산 부채 debt 유동부채 liquidLiabilities 비유동부채 NCLiabilities

자본 netAsset
자본금
이익잉여금 surplus

재무상태표

자산 변수존재 X 유동자산 liquidAsset 당좌자산 quickAsset 재고자산 inventoryAsset

비유동자산 nonCAsset 투자자산 유형자산 tanAsset 무형자산 부채 debt 유동부채 liquidLiabilities 비유동부채 NCLiabilities

자본 netAsset
자본금
이익잉여금 surplus

자산(totalAsset) = 유동자산 + 비유동자산

OC 변수 변환

```
X_num['0C'] = X_num['0C'].replace('open', 1)
X_num['0C'] = X_num['0C'].replace(' close', 0)
```

OC: 영업/폐업 분류, 2018년 폐업은 2017년 폐업으로 간주

변수 추가: 연속형 변수

안정성, 활동성, 수익성, 성장성

4가지 측면의 다양한 재무비율 변수들을 생성해보면서 최적의 모델 구축

26 36	구분
	유동비율
	당좌비율
안정성 비율	부채비율 🕶
비율	자기자본비율
	타인자본의존도
	비유동비율
활동성	총자산회전율♥
활동성 비율	유형자산회전율
	의료수익의료이익률
د داده	의료수익순이익률
수익성 비율	총자산의료이익률
16	총자산순이익률 💙
	자기자본순이익률
	총자산증가율♥
성장성 비율	자기자본증가율
비율	의료수익증가율
	순이익증가율 🗸

변수 추가: 연속형 변수

부채비율: 부채/자기자본 * 100

총자산회전율: 의료수익/총자산

의료수익의료이익률: (의료수익-의료비용)/의료수익 * 100

의료수익순이익률: 의료수익/의료이익 * 100

총자산의료이익률: (의료수익-의료비용) / 총자산 * 100

총자산의료수익률: 의료수익/ 총자산 * 100

총자산증가율: (당기총자산-전기총자산)/전기총자산 * 100

의료수익증가율: (당기의료수익-전기의료수익)/전기의료수익 * 100

순이익증가율: (당기순이익-전기순이익)/전기순이익 * 100

변수 추가: 범주형 변수

지역변수 도입

남부	중부	광역시
경상북도, 경상남도, 전라북도,	충청북도, 충청남도, 경기도,	서울시, 인천시, 대전시, 대구시,
전라남도, 제주도	강원도	부산시, 울산시, 세종시, 광주시

변수 값 조정

재무상태표 식 일치시키기

부채(debt) = 유동부채(liquidLiabilities) + 고정부채 (NCLiabilities) 총자산(totalAsset) = 유동자산(liquidAsset) + 비유동자산(nonCAsset) 자기자본(netAsset) = 총자산(totalAsset) - 부채(debt)

	차병	변	2017년 12월	31일	현재	대변	
		유 동	당좌자산	부	유동부칙	Н	
자	자	자 산	재고자산	채	고정부치	Н	자
자금의 운용	산	비유동 (고 정) 자 산	투자자산 유형자산 무형자산	자 본	기본금 이익잉이 기타자본		자 금 의 조 달
		자산	총계 = 부채	총계 +	자본 총계	I	

행 삭제 및 결측치 변환

Train set의 행에 결측치가 하나라도 있으면 삭제 새로 생성한 연속형 변수에 이상치가 있을 경우 행 삭제 손익계산서/재무상태표의 변수들이 다 0일 때:

- 결측값으로 변환하고 삭제하지 않음
- 값을 채우기 위하여 Iterative Imputer 진행

<이상치가 있었던 부채비율 변수의 히스토그램>

최종 선택 변수 ✓

Data preprocessing PCA

연속형 변수들에 대하여 PCA 진행 > 총 7개의 주성분 선택

	설명가능한 분산 비율	기여율	누적기여뮬
pca1	4.563353e+00	3.033738e-01	0.303374
pca2	2.351461e+00	1.563262e-01	0.459700
pca3	1.511853e+00	1.005087e-01	0.560209
pca4	1.482646e+00	9.856699e-02	0.658776
pca5	1.094021e+00	7.273102e-02	0.731507
рсаб	9.289376e-01	6.175618e-02	0.793263
pca7	8.789552e-01	5.843334e-02	0.851696
pca8	8.000715e-01	5.318911e-02	0.904885
pca9	5.602363e-01	3.724476e-02	0.942130
pca10	3.663000e-01	2.435179e-02	0.966482
pca11	2.773468e-01	1.843814e-02	0.984920
pca12	1.514136e-01	1.006604e-02	0.994986
pca13	7.502153e-02	4.987465e-03	0.999973
pca14	3.989785e-04	2.652427e-05	1.000000
pca15	2.031653e-29	1.350652e-30	1.000000

Data preprocessing ADASYN

데이터 불균형 해결

AutoML

PyCaret을 통한 모델 선택

Data Preparation

Model Training

Hyperparameter Tuning

Analysis & Interpretability

Model Selection

Experiment Logging

```
[] # pycaret에 없는 모델 설치
!pip install xgboost
!pip install --upgrade xgboost
!pip install catboost

[] !pip install pycaret[full]

[] from pycaret,utils import enable_colab
enable_colab()

[] !pip install pycaret[full]

[] # import pycaret
import pycaret
from pycaret,classification import *
```


AutoML

PyCaret을 통한 모델 선택

```
model = setup(
    data = X_train,
    target = "OC",
    fold = 5
                          Description
                                                  Value
                              session_id
                                                   3633
                                  Target
                                                     OC
                             Target Type
                                                  Binary
                          Label Encoded
 3
                                             0.0: 0, 1.0: 1
                           Original Data
                                                (448, 11)
 5
                          Missing Values
                                                   False
 6
                        Numeric Features
                                                     10
 7
                      Categorical Features
                                                      0
                         Ordinal Features
                                                   False
 9
                 High Cardinality Features
                                                   False
 10
                 High Cardinality Method
                                                   None
                    Transformed Train Set
 11
                                                (313, 10)
```

	Model	Ассигасу	AUC	Recall	Prec.	F1	Карра	MCC	TT (Se	ec)
et	Extra Trees Classifier	0.9681	0.9720	0.9625	0.9752	0.9683	0.9362	0.9372	0.5	538
gbc	Gradient Boosting Classifier	0.9554	0.9890	0.9498	0.9640	0.9562	0.9107	0.9120	0.1	100
lightgbm	Light Gradient Boosting Machine	0.9521	0.9916	0.9498	0.9575	0.9529	0.9042	0.9056	0.1	144
rf	Random Forest Classifier	0.9490	0.9887	0.9435	0.9573	0.9498	0.8979	0.8992	0.5	546
catboost	CatBoost Classifier	0.9489	0.9910	0.9435	0.9575	0.9495	0.8978	0.8996	2.9	944
ada	Ada Boost Classifier	0.9458	0.9737	0.9058	0.9869	0.9441	0.8917	0.8955	0.1	102
xgboost	Extreme Gradient Boosting	0.9456	0.9893	0.9433	0.9497	0.9462	0.8912	0.8919	1.0	074
dt	Decision Tree Classifier	0.9329	0.9333	0.9121	0.9542	0.9324	0.8658	0.8672	0.0	016
svm	SVM - Linear Kernel	0.9074	0.0000	0.8871	0.9316	0.9069	0.8149	0.8189	0.0	014
knn	K Neighbors Classifier	0.9041	0.9635	0.8429	0.9645	0.8991	0.8087	0.8161	0.1	134
Ir	Logistic Regression	0.9040	0.9719	0.8746	0.9371	0.9010	0.8086	0.8153	0.8	840

모델 설명

Extra Trees Classifier

주요 하이퍼파라미터

n_estimators : 전체 트리 개수

max_depth : 트리의 최대 깊이

min_samples_split

: 내부 노드를 분할하는데 필요한 최소 샘플 수

최종 모델

Stack_models()

[70] blend4_stack = stack_models(estimator_list=top4_model)

	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС
0	0.9683	0.9667	0.9355	1.0000	0.9667	0.9364	0.9383
1	0.9524	0.9808	0.9688	0.9394	0.9538	0.9047	0.9051
2	0.9683	0.9929	0.9688	0.9688	0.9688	0.9365	0.9365
3	0.9677	1.0000	0.9355	1.0000	0.9667	0.9355	0.9374
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
/lean	0.9713	0.9881	0.9617	0.9816	0.9712	0.9426	0.9435
SD	0.0156	0.0128	0.0243	0.0243	0.0153	0.0312	0.0309

[71] final_model = finalize_model(blend4_stack)

[72] prediction = predict_model(final_model, data = X_test)

Stacking 기법으로 새로운 모델 구축

131 qsongeel **qs** 9시간전

데이콘 최종 제출 결과 0.90476의 점수로 131위

Conclusion | 프로젝트 고감 및 의의

새로운 변수를 생성하고 의미 없는 변수를 골라내는 과정에서 데이터에 대한 도메인 지식이 매우 중요함을 깨달음

결축치를 제거하고 대체하는 기준에 대해서 많은 고민을 해보았고 또 이를 수행하는 과정도 매우 다양한 방법이 존재함을 느낌

AutoML을 사용해봄으로써 모델 선택 과정에 새로운 접근 방식을 접해볼 수 있었음