STAT 500

Correlation and its Connection to Simple Linear Regression

Population Correlation Coefficient

- Measure of linear relationship between two quantitative variables (X and Y) in population.
- Denoted as ρ .
- Defined as

$$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - E(X))(Y - E(Y))]}{\sigma_X \sigma_Y}$$

Properties of ρ

- $-1 \le \rho \le 1$
 - Perfect linear relationship ho = -1 or ho = 1
 - No linear relationship: $\rho = 0$
- Sign of ρ indicates direction of relationship
 - Negative linear relationship between X and Y: $\rho < 0$
 - Positive linear relationship between X and Y: $\rho > 0$
- ullet Strength of relationship indicated by $|\rho|$

Properties of ρ

- \bullet ρ is invariant to the choice of scale for X and/or Y.
 - -X = height, Y = weight
 - Same ρ whether X is measured in in. or cm.
 - Same ρ whether Y is measured in lbs. or kg.

Sample Correlation Coefficient

• Estimate ρ by taking a sample from population and calculating r.

$$r = \frac{1}{n-1} \left(\frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{S_X S_Y} \right)$$

• r has the same properties as ρ .

Hypothesis Test for ρ

To determine whether two variables X and Y have a linear relationship, we can also use r to conduct a hypothesis test for ρ : $H_0: \rho = 0$ vs. $H_a: \rho \neq 0$.

- We can do a t-test for this null hypothesis.
- ullet Note that b_1 is a function of r

$$b_1 = r \left(\frac{S_Y}{S_X} \right)$$

- b_1 and r have same sign
- Inference for β_1 and ρ produce same test statistic, distribution, p-value, decision, and conclusion.

Differences between Correlation and Slope

Correlation

- Focus is relationship between X and Y
- Use when there is not a clear response variable

Slope

- Focus is explaining change in values of Y with x
- Use when there is a clear response variable

r and R^2

• r is a function of R^2

$$r = \pm \sqrt{R^2} \qquad r^2 = R^2$$

- ullet r is a numerical summary of the direction and strength of the linear relationship between X and Y.
- \mathbb{R}^2 is a numerical summary of the percentage of variability in Y that can be explained by the linear regression with x.

STAT 500

Model Diagnostics for Simple Linear Regression Models

SLR Model and Assumptions

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 where ϵ_i i.i.d. $N(0, \sigma^2)$

- ullet Values of Y_i are independent (independent random errors).
- ullet Values of x_i are fixed.
- ullet $\mu_{Y|x_i}$ is a linear function of x_i
- Homogeneous error variance: $Var(\epsilon_i) = \sigma^2$
- Normally distributed errors: ϵ_i i.i.d. $N(0, \sigma^2)$

Independence

- Check independence of observations through details of data collection.
- Beware of
 - Observations over time
 - Clustering of observations
 - Spatial elements to observations
- Crucial assumption must use other methods if violated.

Fixed Values of x

- Assume *x* is measured without error.
- Check through variable definition and through details of data collection.
- ullet If violated, model the error in x using a random effect.

Linearity

- ullet Scatterplot Plot of Y_i versus x_i : linear pattern
- ullet Residual Plot Plot of residuals e_i versus x_i : no pattern
- Violations of linearity
 - Transform Y_i values so that relationship with x_i is linear.
 - Common transformations: log transformation and power transformation $(Y^2, Y^3, \sqrt{Y}, \text{ etc.})$
 - Conduct analysis with transformed Y values.
 - Undo transformation in drawing conclusions.

Normality and Homogeneous Variance Residuals

Residuals are approximations for random errors:

$$e_i = Y_i - \hat{Y}_i = Y_i - (b_o + b_1 x_i)$$
 for $i = 1, 2, ..., n$

- Important properties of residuals
 - $-\sum_i e_i = 0$
 - $-\sum_{i} x_i e_i = \sum_{i} \widehat{Y}_i e_i = 0$
 - Residuals are negatively correlated

$$e_i \sim N\left(0, \sigma^2\left(1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}\right)\right)$$

Regression Analysis - Residuals

Residuals do not have homogeneous variances

$$e_i \sim N\left(0, \sigma^2\left(1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}\right)\right)$$

Sometimes use

$$r_i = e_i / \sqrt{MSE \left(1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}\right)}$$

(known as studentized residuals)

Residual Plots

- Plot residuals versus predicted values
 - detect nonconstant variance
 - * Look for changes in variability around the horizontal line at 0.
 - * Megaphone shaped pattern: variability of e_i increases or decreases as x_i increases.
 - detect nonlinearity
 - detect outliers

Residual Plots

- Plot residuals versus X
 - In simple linear regression, this is the same as above.
 - In multiple regression, it will be useful.
- Plot residuals versus other possible predictors (e.g., time)
 - Detect important lurking variable
- Plot residuals vs lagged residuals
 - Detect correlated errors
- Normal probability plot of residuals
 - detect nonnormality

Remedies for Model Violations

- Transformation of Y
- Adding/modifying predictors
- More sophisticated models and/or estimation procedures
 - Weighted least squares for nonhomogeneous variance
 - Time series models for correlated errors
 - Robust regression methods for nonnormality
- These will be described more fully under multiple regression

Case Diagnostics

- Leverage
- Outliers
- Influential Points

Case Diagnostics - Leverage

- ullet Extreme values of x are called high leverage cases because they exert a large "pull" on SLR
- Measure of "potential" influence of observation on SLR
- Leverage of the *i*th observation is:

$$h_i = \left(\frac{1}{n-1}\right) \left(\frac{x_i - \bar{x}}{s_x}\right)^2 + \frac{1}{n}$$

 \bullet Properties of h_i

$$-1/n \le h_i \le 1$$

$$-\sum_{i=1}^{n} h_i = 2 \qquad \overline{h} = 2/n$$

Case Diagnostics - Leverage

- ullet Often use 4/n or 6/n as a guide for determining large h_i
- ullet In addition to an absolute cutoff, look for large h_i by examining the distribution of h_i values across observations

Case Diagnostics - Outliers

- ullet Extreme Y_i value for a given x_i
- Three assessment methods
 - Residuals
 - Internally studentized residuals
 - Externally studentized residuals

Case Diagnostics - Residuals

Residuals

$$e_i = Y_i - \hat{Y}_i$$

- $Var(e_i) = \sigma^2(1 h_i)$
- Observations with higher leverage will have residuals with smaller variability.

Case Diagnostics - Residuals

• Internally studentized residuals

$$r_i = \frac{e_i}{\sqrt{MSE(1 - h_i)}}$$

- \bullet r_i will have mean zero and approximately equal variance
- Outliers will inflate MSE
- ullet r_i is called STUDENT in SAS

Case Diagnostics - Residuals

Externally studentized residuals

$$t_i = \frac{e_i}{\sqrt{MSE_{(-i)}(1 - h_i)}}$$

where $\mathsf{MSE}_{(-i)}$ is MSE without the ith observation

- \bullet t_i will have mean zero and approximately equal variance
- ullet t_i is called RSTUDENT in SAS

Case Diagnostics - Outliers

Studentized residual values with absolute value

- Less than 2 are fine
- Between 2 and 3 indicate potential outliers
- Greater than 3 indicate outliers

Case Diagnostics - Outliers

- Outliers inflate value of $\hat{\sigma}^2$
- ullet Will lower values of test statistics t and F
- Will inflate widths of confidence intervals for parameters and prediction intervals

Case Diagnostics - Influence

- Concerned about unusual cases that have a big influence on both:
 - \hat{Y}_i for some x_i
 - estimated slope $\hat{\beta}_1$
- Could delete the case, refit model and examine the change

Case Diagnostics - Influence

• COOK'S D - effect of deleting the *i*-th case on the least squares regression model

$$D_i = \left(\frac{r_i^2}{2}\right) \left(\frac{h_i}{1 - h_i}\right)$$

- ullet D_i is large when r_i is large and h_i is large
- $D_i > 2 * \sqrt{2/n}$ indicates substantial influence