Dpt Industrial Engineering

Polymeric Materials Engineering
A.Y. 2018-2019
Prof. Luca Fambri

Group 3 // LAB SESSION N.4

Polymer Processing

<u>Compression Molding and compounding / Injection molding and shrinkage / Filament Analysis</u>

(Date) May 16th 2019 / Friday May 17th

List of components

Laboratory of Processing (Ground -2) Department of Industrial Engineering - Povo

> Assistant : Francesco Valentini or Denis Lorenzi or prof Luca Fambri

Processing of Plastics

Compression Molding and compounding / Injection molding and shrinkage / Filament Analysis

1) Compression Molding

s anlhesien Carver Press

Stainless Steel plates and Mylar (PET) foils / Frame dimension Temperature / Pressure / Time of Cycle. Water cooling PP amount and manual pellets distribution

P = 8 ton = 8.10 Kg F=8.62.9.81

Plate 1: production from pellets (initial weight and final plate size) →preparation of dumbbell specimens

LD 150 527 · 1BA

1B) Compounding (Internal Mixer)

L No min La 50 2in T= 200

Thermo Haake Rheomix 600: temperature, time, rotation blade, PP amount Final amount of compunded PP

Plate 2: production from compounded PP (initial weight and final plate size) → 32.05 → 30.50

Same info Plate 1 → preparation of dymbboll accounts.

Polymer description (Melt Flow data: from Lab Session 3 or Literature

2) Injection Molding Sample evaluation

9.97 × 9.07 × 171.99

ISO dumbbell specimens: section size 10.0 x 4.0 mm -

Measure the mold cavity: internal mold dimensions length-width-thickness

POM (bi-injected): length-width-thickness -> 9.74 × 3.94 7167,06,

PA11 (mono-injected): length-width-thickness $\rightarrow 9.86 \times 6.05 \times 168.98$

-PP-GF30 (white) and PP-GF35 black $_{a.80}$ $_{ imes 4.00}$ $_{ imes 171.86}$, $_{ imes 10.72} _{ imes 12}$

PA6-GF50 (and comment?) $q.qq \times 3.98 \times 154.71$

⇒ Shrinkage evaluation: longitudinal / transversal - thickness ovientation longitudinale

ASTM dumbbell specimens: section size 12.7 x 3.2 x 165 mm

Various materials: 3 type of recycled ABS (color and year); COC; Walks Proposed (commercial name-year); HDPE (Eltex yellow); PE/PP blend; PA11; TPU Land No. 33 1/2 (66.58)

Dimensions of dumbbell Weight of the sample (Dumbell+Sprue+Bar) D 11.6 x 3.35

TABLE (Material / W / length; width; thickness etc/.....

12.23 4

- ⇒ Shrinkage evaluation: longitudinal and transversal
- ⇒ Comparison of total weight and polymer density (assume a blend PE/PP 50%; COC from literature)

Dure costante, peso -> desta'
-> idealif.

predizier N/dtex estrapolati Luik serta · Scula lineare of 3) Filament analysis Step: DR esselb? a freddo Evaluate diameter as function of process conditions. Add titer (tex) Plot average fiber diameter versus collection rate -> bosso partendo da MFI diametro TABLE Calculate the Orientation factor (apparent Draw Ratio in spinning); = (diameter die / fiber diameter)² DR come Fullore Molrip. Stores Resulting fiber titer: tex and denier Assuming: PP density of 0.905 g/cc; stress at yield 25-30 MPa Stress at break and deformation at break Calculate load at break and tenacity

FINAL NOTES Various PP samples have been produced for mechanical characterization in the Lab Session of the Course "Materials Characterization " (prof A Pegoretti)

Summarize the results of processing

Table

Comparison of different processing technique for production of various samples

- i) Compression molding 1 (dumbbell from pellets)
- ii) Compounding in Rheomixer (tangential rate)
- iii) Compression molding 2 (dumbbell from compounded pellets after rheomixing)
- iv) As-spun fibers: rate of collection/rate of extrusion

References

Technical data sheet of PP HiRONlen V15 Nero Technical data sheet of PP