```
In [1]: # Project 3: Predict BAC Stock Price Using Machine Learning and Macroecol
# 1) Build ML models to predict BAC's next day price using historical st
# peer financial stocks (JPM, MS, C, WFC), and key macroeconomic var (VI.
# Oil Prices, and Gold Price)

# 2) Perform feature engineering

# 3) Apply different ML algorithms such as Decision Tree, Random Forest,
# Neighbors (KNN) models

# 4) Evaluate the model based on R square, rmse, mse, mae and other metr.
```

In [2]: # Import neccessary data science packages
import numpy as np
import pandas as pd
import yfinance as yf

```
In [3]: # 'BAC' => Bank of America Corp (peer finance stock)
    # 'JPM' => JP Morgan Chase & Co. (peer finance stock)
    # 'MS' => Morgan Stanley (peer finance stock)
    # 'C' => Citi Group (peer finance stock)
    # 'WFC' => Wells Fargo & Co (peer finance stock)
    # 'SPY' => S&P500 ETF (Market Index)
    # '^VIX' => CB0E Volatility Index (market fear indicator)
    # '^TNX' => 10Y US Treasury Yield (Interest Rate Indicator)
    # 'DX-Y.NYB' => US Dollar Index (Strength of US Dollar)
    # 'CL=F' => # Crude Oil Future (Inflation/energy proxy)
    # 'GC=F' => Gold Futures (safe asset)
```

In [4]: # Download the data from yahoo finance

tickers = ['BAC','JPM', 'MS', 'C', 'WFC', 'SPY', '^VIX', '^TNX', 'DX-Y.N' data = yf.download(tickers, start = '2002-01-01', end = '2025-01-01')['C data

Out [4]:

Ticker	BAC	С	CL=F	DX-Y.NYB	GC=F	JPM	MS	
Date								
2002- 01-02	17.843855	276.156769	21.010000	115.790001	278.899994	18.587128	27.954092	75.13
2002- 01-03	17.824017	276.373352	20.370001	116.110001	278.200012	19.083126	28.764050	75.98
2002- 01-04	18.101761	281.516418	21.620001	116.330002	278.899994	19.942179	30.191624	76.49
2002- 01-07	17.886364	278.214081	21.480000	116.330002	278.600006	19.891054	29.963816	75.95
2002- 01-08	17.600115	267.981903	21.250000	116.830002	278.899994	19.737631	29.336084	75.77
2024- 12-24	44.101688	69.952347	70.099998	108.260002	2620.000000	239.589233	125.215462	599.49
2024- 12-26	44.270622	70.297180	69.620003	108.129997	2638.800049	240.409912	126.171379	599.53
2024- 12-27	44.061939	69.952347	70.599998	108.000000	2617.199951	238.462036	124.919815	593.22
2024- 12-30	43.634636	69.351349	70.989998	108.129997	2606.100098	236.632812	123.924477	586.45
2024- 12-31	43.674385	69.351349	71.720001	108.489998	2629.199951	237.018433	123.894913	584.32

5810 rows × 11 columns

In [5]: # Information about your data data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 5810 entries, 2002-01-02 to 2024-12-31

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
		5789 non-null	 floot64
0	BAC		float64
1	C	5789 non-null	float64
2	CL=F	5779 non-null	float64
3	DX-Y.NYB	5807 non-null	float64
4	GC=F	5775 non-null	float64
5	JPM	5789 non-null	float64
6	MS	5789 non-null	float64
7	SPY	5789 non-null	float64
8	WFC	5789 non-null	float64
9	^TNX	5783 non-null	float64
10	^VIX	5789 non-null	float64

dtypes: float64(11)
memory usage: 544.7 KB

In [6]: # Statistical Summary of Data data.describe()

Out [6]:

Ticker	BAC	С	CL=F	DX-Y.NYB	GC=F	JPM	М
count	5789.000000	5789.000000	5779.000000	5807.000000	5775.000000	5789.000000	5789.00000
mean	22.095994	110.073951	66.811741	90.834779	1212.050857	60.711951	37.52045
std	10.042737	110.526008	24.071656	10.092432	555.276716	49.422008	23.83538
min	2.470939	7.663626	-37.630001	71.330002	278.100006	8.205750	6.46061
25%	12.736433	36.660908	48.520000	81.879997	732.649994	25.016428	21.58594
50%	22.863873	50.757572	66.230003	90.779999	1253.000000	37.881187	29.30907
75%	29.551432	197.121552	84.514999	97.825001	1648.750000	89.981766	42.48669
max	47.207829	383.228149	145.289993	120.239998	2788.500000	247.479630	133.03035

```
In [7]: # How many missing values are present in my dataset
         data.isnull().sum()
Out[7]: Ticker
         BAC
                      21
         C
                      21
         CL=F
                      31
         DX-Y.NYB
                      3
         GC=F
                      35
         JPM
                      21
                      21
         MS
         SPY
                      21
         WFC
                      21
         ^TNX
                      27
         ^VIX
                      21
         dtype: int64
In [8]: # What can we do with missing data?
         # 1) Drop the values
         # 2) Forward Fill => Carries forward the last known value
         # 3) Backward Fill => Filling the value backward
         # 4) Average of the particular stock
         # 5) Interpolation => Linear Interpolation or Cubic Spline Interpolation
In [9]: # Eg: Forward Fill
         #df = [100, np.nan, np.nan, 200]
         # df = df.fillna(method = 'ffill') or df = df.ffill()
         # df = [100, 100, 100, 200]
In [10]: # Eg: Backward Fill
         \#df = [100, np.nan, np.nan, 200]
         # df = [100,200,200,200]
In [11]: | # Average
         #df = [100, np.nan, np.nan, 200]
         #df = [100, 150, 150, 200]
         \#(200+100)/2 = 150
```

```
In [12]: # Appplying forward fill on my dataset
data = data.ffill()
data.head()
```

Out[12]:

Ticker	BAC	С	CL=F	DX-Y.NYB	GC=F	JPM	MS	SPY
Date								
2002- 01-02	17.843855	276.156769	21.010000	115.790001	278.899994	18.587128	27.954092	75.131638
2002- 01-03	17.824017	276.373352	20.370001	116.110001	278.200012	19.083126	28.764050	75.983566
2002- 01-04	18.101761	281.516418	21.620001	116.330002	278.899994	19.942179	30.191624	76.490845
2002- 01-07	17.886364	278.214081	21.480000	116.330002	278.600006	19.891054	29.963816	75.951057
2002- 01-08	17.600115	267.981903	21.250000	116.830002	278.899994	19.737631	29.336084	75.775467

In [13]: # How many missing values are present in my dataset data.isnull().sum()

Out[13]: Ticker

BAC 0 0 CL=F 0 DX-Y.NYB 0 GC=F 0 JPM 0 0 MS SPY 0 WFC 0 ^TNX 0 ^VIX dtype: int64

In [14]: # Correlation in our data
data.corr()

Out[14]:

Ticker	BAC	С	CL=F	DX- Y.NYB	GC=F	JPM	MS	SPY	
Ticker									
BAC	1.000000	0.461779	-0.070637	0.360871	0.071502	0.569557	0.786216	0.544844	0.3
С	0.461779	1.000000	-0.328865	-0.056293	-0.753355	-0.404546	-0.078854	-0.429433	-0.5
CL=F	-0.070637	-0.328865	1.000000	-0.513374	0.436498	0.117551	0.110137	0.140270	0.1
DX- Y.NYB	0.360871	-0.056293	-0.513374	1.000000	0.165210	0.527508	0.509171	0.542913	0.4
GC=F	0.071502	-0.753355	0.436498	0.165210	1.000000	0.787185	0.581200	0.810607	0.6
JPM	0.569557	-0.404546	0.117551	0.527508	0.787185	1.000000	0.902370	0.987253	0.8
MS	0.786216	-0.078854	0.110137	0.509171	0.581200	0.902370	1.000000	0.901737	0.6
SPY	0.544844	-0.429433	0.140270	0.542913	0.810607	0.987253	0.901737	1.000000	0.8
WFC	0.342323	-0.509659	0.149889	0.449883	0.694652	0.834764	0.660625	0.824806	1.0
^TNX	0.381009	0.716295	-0.045080	0.055238	-0.526051	-0.196493	0.098139	-0.243903	-0.3
^VIX	-0.214983	-0.165584	-0.111997	0.003703	-0.022830	-0.136455	-0.153446	-0.126401	-0.3

```
In [15]: import matplotlib.pyplot as plt
          # Create a larger picture
          plt.figure(figsize = (16,9))
          # Plot each stock
          plt.plot(data.index, data['BAC'], label = 'BAC: Bank of America', linewi
          plt.plot(data.index, data['C'], label = 'C: Citi Group', linewidth = 2)
          plt.plot(data.index, data['JPM'], label = 'JPM: JP Morgan Chase & Co.',
          plt.plot(data.index, data['MS'], label = 'MS: Morgan Stanley', linewidth
plt.plot(data.index, data['WFC'], label = 'WFC: Wells Fargo', linewidth
          plt.plot(data.index, data['SPY'], label = 'SPY: S&P 500 ETF', linewidth
          # Title, label for X & Y Axis
          plt.title('Stock Price Comparision: Major Banks vs S&P500', fontsize = 2
          plt.xlabel('Date', fontsize = 16)
          plt.ylabel('Close Price ($)', fontsize = 16)
          # Add grid lines for readability
          plt.grid(True, linestyle = '--', alpha = 0.5)
          # Customize leaend
          plt.legend(fontsize = 12, loc = 'upper left')
          # Show the plot
          plt.tight_layout()
          plt.show()
```


In [16]: data.head()

Out[16]:

Ticker	BAC	С	CL=F	DX-Y.NYB	GC=F	JPM	MS	SPY
Date								
2002- 01-02	17.843855	276.156769	21.010000	115.790001	278.899994	18.587128	27.954092	75.131638
2002- 01-03	17.824017	276.373352	20.370001	116.110001	278.200012	19.083126	28.764050	75.983566
2002- 01-04	18.101761	281.516418	21.620001	116.330002	278.899994	19.942179	30.191624	76.490845
2002- 01-07	17.886364	278.214081	21.480000	116.330002	278.600006	19.891054	29.963816	75.951057
2002- 01-08	17.600115	267.981903	21.250000	116.830002	278.899994	19.737631	29.336084	75.775467

```
In [18]: # Feature Engineering
         df = pd.DataFrame(index = data.index)
         # Create lag features - Stock Data
         df['JPM(t-1)'] = data['JPM'].shift(1)
         df['BAC(t-1)'] = data['BAC'].shift(1)
         df['MS(t-1)'] = data['MS'].shift(1)
         df['C(t-1)'] = data['C'].shift(1)
         df['WFC(t-1)'] = data['WFC'].shift(1)
         df['SPY(t-1)'] = data['SPY'].shift(1)
         # Create lag features - Macroeconmic Data
         df['VIX(t-1)'] = data['^VIX'].shift(1)
         df['10Y_Yield(t-1)'] = data['^TNX'].shift(1)
         df['Gold Futures(t-1)'] = data['GC=F'].shift(1)
         df['US Dollar Index(t-1)'] = data['DX-Y.NYB'].shift(1)
         df['Crude Oil Futures(t-1)'] = data['CL=F'].shift(1)
         # Technical Indicators = Moving Average and Rolling Volatility
         df['BAC_MA5'] = data['BAC'].rolling(window = 5).mean().shift(1)
         df['BAC MA10'] = data['BAC'].rolling(window = 10).mean().shift(1)
         df['BAC Volatility5'] = data['BAC'].pct change(5).shift(1)
         # Create Target Variable
         df['Target'] = data['BAC']
         # Drop nan values
         df = df.dropna()
         df
```

Out[18]:

	JPM(t-1)	BAC(t-1)	MS(t-1)	C(t-1)	WFC(t-1)	SPY(t-1)	VIX(t-1)	10Y_Yiek
Date								
2002- 01-16	19.364363	17.415894	29.402170	269.173035	11.796279	74.884499	22.700001	4.8
2002- 01-17	18.668945	17.231676	28.395838	264.517151	11.804087	73.369247	23.450001	4.8
2002- 01-18	18.842793	17.322374	29.295429	270.147522	11.871764	73.922081	22.250000	4.9
2002- 01-21	18.362141	17.231676	28.777010	270.472290	11.811899	73.583878	22.520000	4.8
2002- 01-22	18.362141	17.231676	28.777010	270.472290	11.811899	73.583878	22.520000	4.8
2024- 12-24	235.713257	43.614761	122.643349	68.740494	69.810455	592.906433	16.780001	4.5
2024- 12-26	239.589233	44.101688	125.215462	69.952347	70.849594	599.496582	14.270000	4.5
2024- 12-27	240.409912	44.270622	126.171379	70.297180	71.017845	599.536499	14.730000	4.5
2024- 12-30	238.462036	44.061939	124.919815	69.952347	70.374565	593.225464	15.950000	4.€
2024- 12-31	236.632812	43.634636	123.924477	69.351349	69.681808	586.455811	17.400000	4.5

5800 rows × 15 columns

```
In [19]: # Train our ML Algo
# a) Tell what is X variables and my Y Variable - Supervised ML Algo
# b) Split our data into training and testing (90:10)
# c) Apply ML Algo
# d) Do Prediction
# e) Evaluate the model based on R2, rmse and mse
# f) Visualtion => Actual vs Forecasted
```

```
In [20]: # a) Tell what is X variables and my Y Variable
X = df.drop('Target', axis = 1)
Y = df['Target']
```

```
In [21]: # b) Split our data into training and testing (90:10)
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, shuffle = False)
```

In [22]: # c) Apply ML Algo: Decision Tree from sklearn.tree import DecisionTreeRegressor dt_model = DecisionTreeRegressor(max_depth = 4) # Calling the DT Model dt_model.fit(X_train, Y_train) # Train my DT Model from sklearn.ensemble import RandomForestRegressor rf_model = RandomForestRegressor(n_estimators = 100) rf_model.fit(X_train, Y_train) from sklearn.neighbors import KNeighborsRegressor knn_model = KNeighborsRegressor(n_neighbors = 5) knn_model.fit(X_train, Y_train) from sklearn.svm import SVR svr_model = SVR() svr_model.fit(X_train, Y_train)

Out[22]:

```
▼ SVR
SVR()
```

```
In [23]: # d) Do Prediction: X_test and Y_test are my actual values
dt_pred = dt_model.predict(X_test)
rf_pred = rf_model.predict(X_test)
knn_pred = knn_model.predict(X_test)
svr_pred = svr_model.predict(X_test)
```

In [24]: # Actual vs Predicted = Decision Tree result = pd.DataFrame(Y_test.index) result['Actual'] = Y_test.values result['DT Prediction'] = dt_pred result['RF Prediction'] = rf_pred result['KNN Prediction'] = knn_pred result['SVR Prediction'] = svr_pred result

Out [24]:

	Date	Actual	DT Prediction	RF Prediction	KNN Prediction	SVR Prediction
0	2022-09-12	32.954315	32.296849	32.291239	31.683958	33.265019
1	2022-09-13	31.767696	32.296849	32.776533	31.435372	33.574653
2	2022-09-14	31.646227	32.296849	31.895538	31.481785	32.224309
3	2022-09-15	32.244205	32.296849	31.812615	31.474262	32.349457
4	2022-09-16	31.879822	32.296849	32.189596	31.285307	32.301870
575	2024-12-24	44.101688	43.194882	43.130004	34.293399	35.082096
576	2024-12-26	44.270622	43.194882	43.255614	34.293399	35.195891
577	2024-12-27	44.061939	43.194882	43.936081	34.293399	34.808955
578	2024-12-30	43.634636	43.194882	43.227344	34.293399	35.070863
579	2024-12-31	43.674385	43.194882	43.248914	34.293399	35.078503

580 rows × 6 columns

```
In [25]: # e) Evaluate the model based on R2, rmse and mse
          from sklearn.metrics import r2 score, mean squared error
          def evaluate_model(y_true, y_pred, model_name):
              r2 = r2_score(y_true, y_pred)
              mse = mean_squared_error(y_true, y_pred) # mse: mean squared error
              rmse = np.sqrt(mse) # rmse: root means sqaured error
              print("Model Name:", model_name)
              print("R2 Value", r2)
              print("MSE", mse)
              print("RMSE", rmse)
              print("\n")
          # Y test = Actual Value
          # dt pred, rf pred = Predicted Value
          evaluate_model(Y_test, dt_pred, "Decision Tree")
          evaluate_model(Y_test, rf_pred, "Random Forest")
evaluate_model(Y_test, knn_pred, "K Nearest Neighbor")
          evaluate_model(Y_test, svr_pred, "Support Vector Regressor")
```

Model Name: Decision Tree R2 Value 0.9582605359398104 MSE 1.338860276907111 RMSE 1.1570913001604977

Model Name: Random Forest R2 Value 0.9838263249812169 MSE 0.5187965754190673 RMSE 0.7202753469466155

Model Name: K Nearest Neighbor R2 Value -0.5904608252834846 MSE 51.01658272081046 RMSE 7.14258935686565

Model Name: Support Vector Regressor R2 Value 0.012732827952213976 MSE 31.66817852388099 RMSE 5.627448669146702

```
In [26]: # f) Visualtion => Actual vs Forecasted
         # Plot figure => tell figure size
         plt.figure(figsize = (14,8))
         \#Plot Actual Value and Predicted Value (X = Date, Y = Stock Price)
         plt.plot(Y_test.index, Y_test, label = 'Actual Bank of America Stock Pri
         plt.plot(Y_test.index, dt_pred, label = 'Decision Tree Prediction', line
         plt.plot(Y_test.index, rf_pred, label = "Random Forest Prediction", line
         plt.plot(Y_test.index, knn_pred, label = "K Nearest Neighbor Prediction"
         plt.plot(Y test.index, svr pred, label = "Support Vector Regressor Predi
         # Highlight title, xlabel, and ylabel
         plt.title("Actual vs Predicted Bank of America Stock Price")
         plt.xlabel('Date')
         plt.ylabel('Price ($)')
         plt.grid(alpha = 0.5)
         plt.legend()
         plt.show()
```


In [27]: # What all features are important? importance = dt_model.feature_importances_ features_name = X_train.columns df_features = pd.DataFrame({'Feature':features_name, 'Importance': importance' = features = df_features.sort_values(by = 'Importance', ascending = faltance')

Out [27]:

Feature	Importance
BAC(t-1)	1.0
JPM(t-1)	0.0
MS(t-1)	0.0
C(t-1)	0.0
WFC(t-1)	0.0
SPY(t-1)	0.0
VIX(t-1)	0.0
10Y_Yield(t-1)	0.0
Gold_Futures(t-1)	0.0
US_Dollar_Index(t-1)	0.0
Crude_Oil_Futures(t-1)	0.0
BAC_MA5	0.0
BAC_MA10	0.0
BAC_Volatility5	0.0
	JPM(t-1) MS(t-1) C(t-1) WFC(t-1) SPY(t-1) VIX(t-1) 10Y_Yield(t-1) Gold_Futures(t-1) US_Dollar_Index(t-1) Crude_Oil_Futures(t-1) BAC_MA5 BAC_MA10

```
In [28]: from sklearn.tree import plot_tree

plt.figure(figsize = (20,10))
plot_tree(dt_model, feature_names = X.columns, filled = True, rounded = plt.title("Decision Tree Flowchart")
plt.show()
```


Thank You!!