Examenul de bacalaureat national 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore.

A. MECANICĂ Test 19

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Indiferent de tipul traiectoriei, în timpul miscării unui mobil, directia vectorului viteză momentană este:
- a. perpendiculară pe directia vectorului accelerație
- b. aceeasi cu a vectorului acceleratie
- c. normală la trajectorie
- d. tangentă la trajectorie

(3p)

- 2. Unitatea de măsură J (joule) corespunde mărimii fizice exprimate prin produsul dintre:
- a. energie si distantă
- b. putere și durată
- c. energie și durată
- d. putere si distantă

(3p)

- **3.** Adriana și Bogdan se joacă cu o săniuță pe o porțiune de pârtie, înclinată față de orizontală cu unghiul α . Adriana lasă săniuta să alunece până ajunge la Bogdan, care o lansează apoi spre Adriana. Cei doi observă că la coborâre săniuta alunecă uniform. Aceasta se întâmplă deoarece în timpul coborârii:
- a. energia mecanică totală a săniuței se conservă
- b. energia potentială a sistemului săniută Pământ rămâne mereu aceeasi
- c. rezultanta forțelor care acționează asupra săniuței este nulă
- d. forța de frecare dintre săniuță și pârtie poate fi neglijată

- 4. Modulul fortei elastice F care ia nastere într-un fir elastic deformat depinde de alungirea x a firului ca în graficul alăturat. Constanta elastică a acestui fir este:
- **a.** 500 N/m
- **b.** 400 N/m
- **c.** 200 N/m
- **d.** 5 N/m
- 5. O persoană ridică o ladă pe un plan înclinat, tractând-o cu un cablu. Coeficientul de frecare la alunecare dintre ladă și planul înclinat are valoarea egală cu 1,0. La un moment dat, cablul se rupe și lada începe să coboare uniform pe planul înclinat. Unghiul format de planul înclinat cu planul orizontal este de:
- **a.** 30°
- **b.** 45°

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un autoturism de teren cu masa $M = 2000 \,\mathrm{kg}$ tractează o rulotă cu masa $M = 1000 \,\mathrm{kg}$. În timpul deplasării

cu viteza constantă v = 54 km/h, pe drum orizontal, forta de tensiune din sistemul de cuplaj are valoarea $T_1 = 400 \,\mathrm{N}$. Forțele de rezistență la înaintare întâmpinate de autoturism și de rulotă se consideră proporționale cu greutățile.

a. Autoturismul accelerează, pe drum orizontal, din repaus până la v = 54 km/h, în timpul $\Delta t = 10 \text{ s}$. Considerând că acceleratia este constantă, iar fortele de rezistentă la înaintare nu depind de viteză, calculati valoarea forței de tensiune din sistemul de cuplaj în acest caz.

- b. Calculați puterea medie a motorul autoturismului în timpul deplasării precizate la punctul a...
- **c.** Calculati valoarea absolută a acceleratiei din timpul frânării autoturismului care se deplasa cu viteza v = 54 km/h , pentru a-l opri, pe drum drept, pe distanta $d = 50 \,\mathrm{m}$. În timpul frânării acceleratia rămâne constantă.
- d. Calculati valoarea fortei de tensiune din sistemul de cuplaj în timpul urcării cu aceeasi viteză constantă v. a unei pante înclinate cu unghiul α față de orizontală ($\sin \alpha = 0,1$; $\cos \alpha = 1$).

III. Rezolvati următoarea problemă:

(15 puncte)

Un sportiv, aflat pe o platformă situată la 10 m fată de sol, lansează vertical în sus o minge de oină având masa m = 140 g, cu viteza inițială de 20 m/s. Forțele de rezistență la înaintare datorate aerului sunt neglijabile. Considerând că energia potențială gravitațională a sistemului minge - Pământ este nulă la nivelul solului, determinați:

- a. raportul dintre energia potențială și energia cinetică a mingii la momentul inițial;
- b. de câte ori este mai mare energia potențială maximă decât energia potențială inițială;
- c. lucrul mecanic efectuat de greutatea mingii din momentul inițial până în momentul în care mingea atinge solul (considerând că mingea **nu** lovește platforma);
- d. impulsul mingii în momentul în care energia cinetică si energia potentială au aceeasi valoare.

Probă scrisă la Fizică A. Mecanică

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Test 19

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între

parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Energia internă a unei cantități date de gaz considerat ideal nu se modifică într-o:
- a. comprimare izobară
- b. încălzire izocoră
- c. destindere izotermă
- d. destindere adiabatică
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, mărimea fizică definită prin raportul reprezintă: $\nu \cdot \Lambda T$
- a. căldură specifică b. căldură molară c. energie internă d. capacitate calorică (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I a mărimii fizice exprimate prin produsul $p \cdot \Delta V$ este:
- **b.** mol c. kg (3p)
- 4. O cantitate de gaz, considerat ideal, este supusă procesului termodinamic $1 \rightarrow 2 \rightarrow 4$ reprezentat în figura alăturată în coordonate V-T. Valoarea minimă a presiunii gazului este atinsă în starea:

d. 1

5. O cantitate de gaz, considerat ideal, aflată inițial într-o stare (1) la temperatura $T_1 = 300 \, \text{K}$ se destinde adiabatic până într-o stare (2). Din această stare gazul primește izocor o cantitate de căldură egală cu lucrul mecanic efectuat în destinderea adiabatică, ajungând astfel într-o stare (3). Temperatura gazului în starea (3) este:

- a. 300 K
- **b.** 250 K
- c. 200 K
- **d.** 100 K
- (3p)

II. Rezolvați următoarea problemă:

(15 puncte)

Un cilindru, izolat adiabatic de exterior, este împărțit în două compartimente egale printr-un perete termoconductor fix. Într-un compartiment se află $v_1 = 0,1$ mol de heliu $(\mu_{He} = 4 \text{ g/mol})$ la temperatura inițială

 $t_1=27^{\circ}\mathrm{C}$, iar în celălalt compartiment o cantitate de azot $v_2=3v_1$ $\left(\mu_{N_2}=28~\mathrm{g/mol}\right)$ la temperatura inițială

 $t_2=37^{\circ}\mathrm{C}$. Heliul și azotul se pot considera gaze ideale, iar $C_{V_{He}}=1,5R,~C_{V_{No}}=2,5R$. Determinați:

- a. numărul de atomi de heliu;
- b. valoarea raportului dintre presiunea inițială a azotului si cea a heliului;
- c. valoarea temperaturii la care ajung gazele după stabilirea echilibrului termic;
- d. masa molară a amestecului obținut după îndepărtarea peretelui despărțitor.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un mol de heliu, considerat gaz ideal, este închis etanș într-un cilindru cu piston mobil. Deplasarea pistonului are loc fără frecări. Gazul se află într-o stare (1) la temperatura $T_1 = 400 \,\mathrm{K}$. Din această stare gazul se destinde izoterm până într-o stare (2) în care presiunea este jumătate din cea inițială, apoi este răcit izobar până la volumul inițial, ajungând într-o stare (3) după care este încălzit izocor până revine în starea inițială. Căldura molară la volum constant a heliului este $C_V = 1,5R$. Se consideră $\ln 2 \cong 0,7$.

- **a.** Reprezentați grafic procesul $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ în coordonate p-V.
- **b.** Determinați variatia energiei interne în transformarea $2 \rightarrow 3$.
- c. Calculați căldura cedată de gaz mediului exterior pe durata unui ciclu.
- **d.** Calculati lucrul mecanic total schimbat de gaz cu mediul exterior.

Examenul de bacalaureat naţional 2020 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Test 19

Se consideră sarcina electrică elementară $e = 1.6 \cdot 10^{-19}$ C

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Rezistenta electrică a unui conductor liniar aflat la o anumită temperatură depinde:
- a. direct proportional de mărimea tensiunii electrice aplicate
- **b.** invers proportional de aria sectiunii transversale a conductorului
- c. invers proportional de lungimea conductorului

d. direct proportional de intensitatea curentului care-l străbate

(gp)

2. Puterea maximă debitată de o sursă cu tensiunea electromotoare E și rezistență interioară r într-un circuit exterior cu rezistența electrică variabilă este dată de relația:

a.
$$P_{\text{max}} = \frac{4E^2}{r}$$

b. $P_{\text{max}} = \frac{E^2}{r}$

c. $P_{\text{max}} = \frac{E^2}{2r}$ **d.** $P_{\text{max}} = \frac{E^2}{4r}$

(3p)

- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimată prin produsul $U \cdot I \cdot \Delta t$ este:
- a. W

(3p)

4. În figura alăturată este redată dependența puterii disipate de pătratul intensității curentului P prin rezistor, pentru trei rezistoare diferite având rezistențele electrice R_1 , R_2 și R_3 . Relația între valorile rezistențelor electrice este:

a. $R_1 < R_2 < R_3$

b. $R_1 > R_2 > R_3$

c. $R_2 > R_1 > R_3$

d. $R_1 > R_3 > R_2$

(3p)

5. Un fir conductor are rezistența electrică R. Prin unirea capetelor acestuia, se realizează un conductor circular. Măsurând rezistența electrică a conductorului circular între două puncte opuse ale unui diametru se obține valoarea de 2Ω . Rezistența electrică R a întregului fir este:

a. 8Ω

b. 4Ω

(3p)

II. Rezolvaţi următoarea problemă:

O baterie având tensiunea electromotoare E și rezistența interioară r este conectată la bornele circuitului din figura alăturată. Rezistențele electrice ale rezistoarelor din circuit sunt $R_1 = 4\Omega$, $R_2 = 6\Omega$ și $R_3 = 1,6\Omega$.

Când întrerupătorul k este deschis, ampermetrul ideal $(R_{A} \cong 0 \Omega)$ indică un curent $I' = 1.5 \,\mathrm{A}$, iar când întrerupătorul k este închis ampermetrul indică un curent $I = 2 \,\mathrm{A}$. Se neglijează rezistența electrică a conductoarelor de legătură. Determinati:

a. rezistența electrică echivalentă a circuitului exterior când întrerupătorul k este închis;

b. rezistența interioară a bateriei;

 ${f c.}$ intensitatea curentului electric prin rezistorul R_2 când întrerupătorul k este închis;

d. intensitatea curentului electric indicat de ampermetru când întrerupătorul k este închis dacă rezistența sa este $R_A = 1.6 \Omega$.

III. Rezolvați următoarea problemă:

(15 puncte)

La bornele unui acumulator cu tensiunea electromotoare E = 24 V se conectează o grupare paralel de două becuri având puterile nominale $P_1 = 24 \text{ W}$ și $P_2 = 36 \text{ W}$ și aceeași tensiune nominală $U_n = 12 \text{ V}$. Becurile funcționează la valorile nominale de tensiune și putere. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- a. energia electrică consumată de ambele becuri într-o oră de funcționare;
- **b.** puterea electrică totală debitată de acumulator;
- c. rezistenţa interioară a acumulatorului;
- d. randamentul transferului de putere de la sursă la gruparea celor două becuri.

Examenul de bacalaureat national 2020 Proba E, d) FIZICA

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

D. OPTICĂ Test 19

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Indicele de refractie absolut al diamantului este 2,5 iar al sticlei este 1,5. Raportul dintre viteza luminii în diamant si viteza luminii în sticlă este:
- **b.** 1.67 **c.** 1.5 **d.** 0.60 **a.** 2.5 (gc)
- 2. Convergenta unui sistem alipit format din trei lentile sferice subtiri, având distantele focale: 10 cm, 20 cm si respectiv 40 cm este:
- $a. 2.5 \text{ m}^{-1}$ **d.** $2,5 \text{ m}^{-1}$ **b.** -0.5 m^{-1} **c.** 0,5 m⁻¹ (3p) h_1/h_2

5

4

3

2

1

0

3. În figura alăturată este reprezentat raportul dintre înăltimea h_1 a unui obiect luminos, liniar, plasat perpendicular pe axa optică principală a unei lentile convergente si înălțimea h2 a imaginii sale reale prin lentilă, în funcție de distanța d₁ dintre obiect și lentilă. Distanța focală a lentilei este:

- **b.** 40 cm;
- c. 20 cm;
- **d.** 10 cm
- 4. Două unde luminoase sunt coerente între ele dacă:
- a. diferența de fază este constantă în timp și frecvențele sunt diferite
- **b.** diferenta de fază este constantă în timp si frecventele sunt egale
- c. diferenta de fază este variabilă în timp si frecventele sunt egale
- d. diferenta de fază este variabilă în timp si frecventele sunt diferite
- 5. Raza unui indicator laser cade pe suprafata unui lichid, venind din aer, sub unghiul de incidentă de 60°. Raza reflectată și cea refractată sunt perpendiculare. Indicele de refracție al lichidului este de aproximativ:

a. 0,50 **b.** 0,58 **c.** 1,41 **d.** 1,73

II. Rezolvaţi următoarea problemă:

(15 puncte)

(3p)

(3p)

 d_1 [cm]

10 20 30 40 50

Pe un banc optic se află un obiect luminos liniar, un ecran și o lentilă sferică subțire, convergentă, cu convergența 5 m⁻¹. Notăm cu d_1 distanța dintre obiect și focarul principal obiect al lentilei și cu d_2 distanța dintre focarul principal imagine al lentilei și ecranul poziționat astfel încât să obținem imaginea clară a

- a. Calculati distanta focală a lentilei.
- b. Determinati distanta dintre ecran si obiect pentru care obiectul si imaginea sa reală au aceeasi dimensiune transversală.
- c. Demonstrați faptul că distanța focală a lentilei poate fi calculată extrăgând rădăcina pătrată din produsul distantelor d_1 si d_2 .
- **d.** Determinați distanța dintre ecran și lentilă dacă $d_1 = 25$ cm.

III. Rezolvati următoarea problemă:

(15 puncte)

O sursă de lumină coerentă S, ce emite o radiație cu lungimea de undă λ , este așezată pe axa de simetrie a unui dispozitiv Young la distanta d=0.25 m de planul fantelor. Distanta dintre fante este $2\ell=0.88$ mm , iar distanta de la planul fantelor la ecran este D=1.6 m. Pe ecran se observă figura de interferentă, interfranja fiind egală cu 0,80 mm.

- a. Determinati valoarea lungimii de undă a radiatiei utilizate.
- b. Determinati distanta, măsurată pe ecran, între a treia franjă întunecoasă situată de o parte a axei de simetrie si franja luminoasă de ordinul patru situată de aceeași parte a axei de simetrie.
- c. Se deplasează sursa de lumină monocromatică S, în planul desenului și perpendicular pe axa de simetrie, cu distanța h = 0.75 mm. Determinați distanța Δx_0 pe care se deplasează maximul central.
- **d.** Se plasează în fața unei fante o lamă transparentă de grosime $e_1 = 4,4 \,\mu\text{m}$ și indice de refracție n_1 . Se constată că maximul central revine pe axa de simetrie a dispozitivului. Determinați valoarea indicelui de refracție al lamei.

Probă scrisă la Fizică D. Optică