HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

THUẬT TOÁN ỨNG DỤNG

THUẬT TOÁN HÌNH HỌC

ONE LOVE. ONE FUTURE.

NỘI DUNG

- Công thức cơ bản
- Tìm bao lồi
- Kiểm tra 1 điểm nằm trong đa giác lồi


```
Điểmstruct Point {double x, y;};
```

- Đường thẳng ax + by + c = 0
 struct Line {
 double a, b, c;
 };
- Vector \overrightarrow{AB} của hai điểm $A(x_A, y_A)$ và $B(x_B, y_B)$ $\overrightarrow{AB} = (x_B x_A, y_B y_A)$

- 3 điểm $A(x_A, y_A)$, $B(x_B, y_B)$ và $C(x_C, y_C)$ thẳng hàng khi:
- $\overrightarrow{AB} = k \times \overrightarrow{AC}$
- $x_B x_A = k \times (x_C x_A)$
- $y_B y_A = k \times (y_C y_A)$
- Để tránh phép chia cho 0: $(x_A x_B) \times (y_A y_C) = (x_A x_C) \times (y_A y_B)$

• Tích vô hướng của $\overrightarrow{OA}(x_a,y_a)$ và $\overrightarrow{OB}(x_b,y_b)$

•
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = x_a x_b + y_a y_b = |\overrightarrow{OA}| |\overrightarrow{OB}| \cos \alpha = \sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2} \cos \alpha$$
,

$$\Rightarrow \cos \alpha = \frac{x_a x_b + y_a y_b}{\sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2}}$$

- Vẽ đường thẳng d vuông góc với \overrightarrow{OA} , dựa vào $\cos \alpha$ ta có:
 - \circ Nếu $\overrightarrow{OA} \cdot \overrightarrow{OB} > 0$ thì A và B cùng phía so với đường thẳng d
 - \circ Nếu $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$ thì B nằm trên đường thẳng d
 - \circ Nếu $\overrightarrow{OA} \cdot \overrightarrow{OB} < 0$ thì A và B khác phía so với đường thẳng d


```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
long long dot product(Point &O, Point &A, Point &B) {
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * xb + 1LL * ya * yb;
int main(){
    Point O(2,5); Point A(5,6); Point B(6,2);
    double cos = dot_product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "cos = " << cos << endl;</pre>
```


cos = 0.56921


```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
long long dot product(Point &O, Point &A, Point &B) {
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * xb + 1LL * ya * yb;
int main(){
    Point O(2,5); Point A(5,6); Point B(1,1);
    double cos = dot_product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "cos = " << cos << endl;</pre>
```


cos = -0.536875

- Tích có hướng của $\overrightarrow{OA}(x_a,y_a)$ và $\overrightarrow{OB}(x_b,y_b)$
- $\overrightarrow{OA} \times \overrightarrow{OB} = x_a y_b y_a x_b = |\overrightarrow{OA}| |\overrightarrow{OB}| \sin \alpha$

$$\overrightarrow{OA} \times \overrightarrow{OB} = x_a y_b - y_a x_b = \sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2} \sin \alpha , \qquad \sin \alpha = \frac{x_a y_b - y_a x_b}{\sqrt{x_a^2 + y_a^2} \sqrt{x_b^2 + y_b^2}}$$

- Vẽ đường thẳng d trùng với \overrightarrow{OA} , dựa vào $\sin \alpha$ ta có:
 - 0 Nếu $\overrightarrow{OA} \times \overrightarrow{OB} > 0$ thì B ở bên trái so với đường thằng d (hướng xoay từ tia \overrightarrow{OA} đến tia \overrightarrow{OB} là **ngược** chiều kim đồng hồ)
 - \circ Nếu $\overrightarrow{OA} imes \overrightarrow{OB} = 0$ thì B nằm trên đường thẳng d
 - 0 Nếu $\overrightarrow{OA} \times \overrightarrow{OB} < 0$ thì B nằm bên phải so đường thẳng d (hướng xoay từ tia \overrightarrow{OA} đến tia \overrightarrow{OB} là **cùng** chiều kim đồng hồ)
- Trị tuyệt đối của tích có hướng của hai vector \overrightarrow{OA} và \overrightarrow{OB} bằng hai lần diện tích tam giác OAB.

```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
long long cross product(Point &O, Point &A, Point &B) {
    //tich vo huong 2 vector (0,A).(0,B)
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * vb - 1LL * va * xb;
int main(){
    Point O(2,5); Point A(5,6); Point B(1,1);
    double sin = cross product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "sin = " << sin << endl;</pre>
```


sin = -0.843661


```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
double dist(Point &a, Point &b) {
    long long x = a.x - b.x; long long y = a.y - b.y;
    return sqrt(1LL * x*x + 1LL * y*y);
long long cross product(Point &O, Point &A, Point &B) {
    //tich vo huong 2 vector (0,A).(0,B)
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * vb - 1LL * va * xb;
int main(){
    Point O(2,5); Point A(5,6); Point B(0,6);
    double sin = cross product(0,A,B)*1.0/(dist(0,A)*dist(0,B));
    cout << "sin = " << sin << endl;</pre>
```


sin = 0.707107

- Gọi đường thẳng l_{AB} đi qua hai điểm $A(x_A,y_A)$ và $B(x_B,y_B)$
 - Vector $\overrightarrow{AB} = (x_B x_A, y_B y_A)$
 - Vector vuông góc $\overrightarrow{v} = (y_A y_B, x_B x_A)$
 - Mọi điểm P(x,y) nằm trên đường thẳng l_{AB} thì có $\overrightarrow{AP} \cdot \overrightarrow{v} = 0$

$$(x - x_A)(y_A - y_B) + (y - y_A)(x_B - x_A) = 0$$

• Phương trình đường thẳng l_{AB} là ax + by + c = 0

$$a = y_A - y_B$$

$$b = x_B - x_A$$

$$c = x_A y_B - y_A x_B$$

Ví dụ: đường thẳng đi qua A(5, 6) và B(2, 5) có phương
 trình: (6-5)x + (2-5)y + (5x5 – 6x2) = 0 hay x – 3y + 13 = 0


```
struct Point {
    int x, y;
   Point(int x, int y) : x(x), y(y) {}
};
struct Line{
    int a,b,c;
};
void makeLine(Point& A, Point& B, Line& L){
   L.a = A.y - B.y;
   L.b = B.x - A.x;
   L.c = A.x*B.y - A.y*B.x;
int main(){
    Point A(5,6); Point B(2,5); Line L;
   makeLine(A,B,L);
    cout << L.a << "x" << " + " << L.b << "y + " << L.c << " = 0";
```


- Đường thẳng l_{AB} đi qua hai điểm $A(x_A,y_A)$ và $B(x_B,y_B)$
 - $(y_A y_B)x + (x_B x_A)y + (x_Ay_B y_Ax_B) = 0$ (1)
- Khoảng cách từ điểm $C(x_C,y_C)$ đến đường thẳng l_{AB} là d
- Diện tích tam giác *ABC* là:

•
$$S_{ABC} = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2} = \frac{|\overrightarrow{AB}| \times d}{2} \Rightarrow d = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{|\overrightarrow{AB}|}$$

- $\frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{|\overrightarrow{AB}|} = \frac{|(x_B x_A)(y_C y_A) (y_B y_A)(x_C x_A)|}{\sqrt{(x_B x_A)^2 + (y_B y_A)^2}}$ (2)
- Từ (1) và (2), nếu đường thẳng l có phương trình là ax + by + c = 0 thì khoảng cách từ điểm $P(x_P, y_P)$ xuống đường thẳng l sẽ là:
- $dist(l,P) = \frac{|ax_P + by_P + c|}{\sqrt{a^2 + b^2}}$

- Hai đoạn thẳng AB và CD cắt nhau khi:
 - \circ C và D không nằm cùng phía so với đường thẳng l_{AB} : $\overrightarrow{(AB} \times \overrightarrow{AC})(\overrightarrow{AB} \times \overrightarrow{AD}) \leq 0$
 - \circ A và B không nằm cùng phía so với đường thẳng $l_{CD}: \overline{(CD} \times \overline{CA})(\overline{CD} \times \overline{CB}) \leq 0$
- Tọa độ giao điểm $O(x_0, y_0)$ của hai đường thẳng:
 - O Phương trình đường thẳng l_{AB} : $a_1x + b_1y + c_1 = 0$
 - O Phương trình đường thẳng l_{CD} : $a_2x + b_2y + c_2 = 0$

$$x_{0} = \frac{c_{2}b_{1} - c_{1}b_{2}}{a_{1}b_{2} - a_{2}b_{1}}$$
$$y_{0} = \frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}$$


```
struct Point {
    int x, y;
    Point(int x, int y) : x(x), y(y) {}
};
struct Line{
    int a,b,c;
};
void makeLine(Point& A, Point& B, Line& L){
    L.a = A.y - B.y; L.b = B.x - A.x; L.c = A.x*B.y - A.y*B.x;
void intersection(Line& L1, Line& L2){
    double x = (L2.c*L1.b - L1.c*L2.b)*1.0/(L1.a*L2.b - L2.a*L1.b);
    double y = (L1.c*L2.a - L2.c*L1.a)*1.0/(L1.a*L2.b - L2.a*L1.b);
    cout << "Giao diem = (" << x << "," << y << ")" << endl;</pre>
int main(){
    Point A(3,1); Point B(6,4); Line LAB;
    Point C(2,5); Point D(7,0); Line LCD;
    makeLine(A,B,LAB); makeLine(C,D,LCD);
                                           intersection(LAB,LCD);
```

- Một đa giác được tạo thành bởi 1 đường gấp khúc không tự cắt với các cạnh $P_0P_1,\,P_1P_2,\,P_2P_3,\,...,\,P_{n-1}P_0$
- Trong đó đỉnh P_i có tọa độ (x_i, y_i)
 - \circ Cố định một đỉnh P_0
 - o Tính tổng *S*:

•
$$S = \sum_{i=1}^{n-2} \overrightarrow{P_0 P_i} \times \overrightarrow{P_0 P_{i+1}}$$

• Diện tích của đa giác là $\frac{|S|}{2}$

Tìm bao lồi (P.08.13.05)

- ullet Cho một tập n điểm P_i , tìm đa giác lồi có diện tích nhỏ nhất chứa tất cả các điểm đã cho.
- Dữ liệu
 - Dòng 1: chứa số nguyên dương *n* (3 <= *n* <= 100000)
 - Dòng i+1 (i=1,2,...,n): chứa 2 số nguyên x_i,y_i là tọa độ của điểm P_i (-1000 <= x_i,y_i <= 1000)
- Kết quả
 - Dòng 1: ghi số nguyên dương *m* là số điểm (đỉnh của đa giác) trên bao lồi tìm được
 - Dòng i + 1 (i = 1, 2, ..., m): ghi 2 số nguyên là tọa độ của điểm thứ i của bao lồi tìm được

stdout
4
5 3
8 7
3 7
2 5

Tìm bao lồi (P.08.13.05)

- Cho một tập n điểm P_i , tìm đa giác lồi có diện tích nhỏ nhất chứa tất cả các điểm đã cho.
- Thuật toán **Graham Scan**
 - Tìm điểm bên trái dưới nhất là điểm chắc chắn thuộc bao lồi. Cho điểm này thành điểm P_0
 - Sắp xếp n-1 điểm còn lại theo góc với gốc là điểm P_0 .
 - Tạo một stack rỗng S và thêm P_0 và P_1 vào S
 - Với n-2 điểm còn lại lặp lại các bước sau với từng điểm P_i :
 - Lặp đi lặp lại việc xóa điểm ở đỉnh của stack S chừng nào CCW của 3 điểm sau không dương:
 - (a) Điểm kề (trong stack) với điểm ở đỉnh của stack S
 - (b) Điểm ở đỉnh của stack S
 - (c) Điểm P_i
 - Thêm P_i vào stack S
 - Kết thúc ta được bao lồi là các đỉnh theo thứ tự cùng chiều kim đồng hồ khi lấy từ stack S ra.

Tìm bao lồi (P.08.13.05)

- Hàm counterclockwise xác định chiều quay tia OA đến OB
- CCW(O, A, B) được định nghĩa bằng

0, nếu
$$\overrightarrow{OA} \times \overrightarrow{OB} = 0$$

-1, nếu $\overrightarrow{OA} \times \overrightarrow{OB} < 0$
+1, nếu $\overrightarrow{OA} \times \overrightarrow{OB} > 0$

Tìm bao lồi (P.08.13.05) – MÃ GIẢ

```
struct Point {
    int x, y;
};
Point P[N];
int n;
vector<Point> C;
void input(){
    read n;
    for(int i = 0; i < n; i++)
       read P[i].x, P[i].y;
```

```
dist2(Point a, Point b) {
   x = a.x - b.x;
    y = a.y - b.y;
    return x*x + y*y;
cross product(Point 0, Point A, Point B) {
    //tich vo huong 2 vector (0,A).(0,B)
   xa = A.x - 0.x; ya = A.y - 0.y;
    xb = B.x - 0.x; yb = B.y - 0.y;
    return xa * vb - va * xb;
cmp(Point A, Point B){
    cp = cross product(P[0],A,B);
    return cp == 0? dist2(P[0],A) < dist2(P[0],B) : cp > 0;
ccw(Point a, Point b, Point c) {
    cp = cross product(a, b, c);
    return cp == 0 ? 0 : (cp < 0 ? -1 : 1);
```

Tìm bao lồi (P.08.13.05) – MÃ GIẢ

```
solve(){
    // find lowest point
    k = 0;
    for i = 1 to n - 1 do {
        if(P[i].y < P[k].y \text{ or } P[i].y == P[k].y \text{ and } P[i].x < P[k].x) k = i;
    swap(P[0],P[k]);// let P[0] be the lowest point
    sort(P+1,P+n,cmp);
    C.push_back(P[0]); C.push_back(P[1]);
    for i = 2 to n-1 do {
        while(C.size() > 1 and ccw(C[C.size()-2], C[C.size()-1], P[i]) <= 0)
            C.pop_back();
        C.push back(P[i]);
    print C[0], C[1], . . ., C[C.size-1];
```

```
main(){
    input();
    solve();
```

Tìm bao lồi (P.08.13.05) - CODE

```
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5;
struct Point {
    int x, y;
    Point():x(0),y(0){}
    Point(int x, int y) : x(x), y(y) {}
};
Point P[N]:
int n;
vector<Point> C;
void input(){
    cin >> n;
    for(int i = 0; i < n; i++)
    cin >> P[i].x >> P[i].y;
```

```
long long dist2(Point &a, Point &b) {
    long long x = a.x - b.x;
   long long y = a.y - b.y;
    return 1LL * x*x + 1LL * y*y;
long long cross product(Point &O, Point &A, Point &B) {
   //tich vo huong 2 vector (0,A).(0,B)
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * vb - 1LL * va * xb;
bool cmp(Point& A, Point& B){
    long long cp = cross product(P[0],A,B);
    return cp == 0? dist2(P[0],A) < dist2(P[0],B) : cp > 0;
int ccw(Point &a, Point &b, Point &c) {
    long long cp = cross product(a, b, c);
   return cp == 0 ? 0 : (cp < 0 ? -1 : 1);
```

Tìm bao lồi (P.08.13.05) - CODE

```
void solve(){
   // find lowest point
    int k = 0;
    for(int i = 1; i < n; i++){
        if(P[i].y < P[k].y || P[i].y == P[k].y && P[i].x < P[k].x) k = i;
    swap(P[0],P[k]);// let P[0] be the lowest point
    sort(P+1,P+n,cmp);
    C.push_back(P[0]); C.push_back(P[1]);
    for(int i = 2; i < n; i++){
        while(C.size() > 1 && ccw(C[C.size()-2], C[C.size()-1],P[i]) \leftarrow 0)
            C.pop back();
        C.push_back(P[i]);
    for(int i = 0; i < C.size(); i++)
         cout << "(" << C[i].x << "," << C[i].y << ") ";
    cout << endl;</pre>
```

```
int main(){
    input();
    solve();
    return 0;
```

Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06)

- Cho n điểm P_1, P_2, \ldots, P_n trên mặt phẳng, tọa độ nguyên. Cho K điểm T_1, T_2, \ldots, T_k . Hãy kiểm tra xem tập điểm P_1, P_2, \ldots, P_n có tạo thành đa giác lồi hay không? Nếu có thì kiểm tra mỗi điểm trong số T_1, T_2, \ldots, T_k có nằm trong (hoặc trên cạnh) của đa giác lồi đó hay không? (các điểm đều có tọa độ nguyên nằm trong khoảng từ -1000 đến 1000)
- Dữ liệu
 - Dòng 1: ghi số nguyên dương n (3 <= n <= 10000)
 - Dòng i+1 (i=1,2,...,n): ghi 2 số nguyên là tọa độ x và y của điểm P_i
 - Dòng n+2: ghi số nguyên dương K (1 <= K <= 100000)
 - Dòng k + n + 2 (k = 1, 2, ..., K): ghi 2 số nguyên là tọa độ x và y của điểm T_k
- Kết quả
 - Dòng thứ k: ghi giá trị 1 nếu tập điểm P_1,P_2,\ldots,P_n có tạo thành đa giác lồi và điểm Tk nằm trong trong trên cạnh đa giác đó; và ghi ra 0, nếu ngược lại

stdin	stdout
4	0
5 6	1
3 7	1
2 5	0
5 3	
4	
8 7	
45	
3 7	
00	

Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06)

- Cho đa giác lồi n điểm P[i], kiểm tra xem điểm T có nằm trong đa giác lồi đã cho hay không?
- Kiểm tra xem điểm T có nằm cùng phía với điểm P[n-1] so với đường thẳng đi qua P[0] và P[1] hay không.
- Kiểm tra xem điểm T có nằm cùng phía với điểm P[1] so với đường thẳng đi qua P[0] và P[n-1] hay không.
- Sử dụng tìm kiếm nhị phân để tìm điểm P[i] thỏa mãn điểm P[i+1] nằm khác phía với điểm P[1] so với đường thẳng đi qua P[0] và T, và điểm P[i] nằm cùng phía với điểm P[1] so với đường thẳng đi qua P[0] và T.
- T nằm trong đa giác khi P[0] và T nằm cùng phía so với đường thẳng đi qua P[i] và P[i+1].

Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06) – MÃ GIẢ

```
ccw(Point a, Point b, Point c) {
    cp = cross_product(a, b, c);
    return cp == 0 ? 0 : (cp < 0 ? -1 : 1);
}

same_side(Point a, Point b, Point c, Point d) {
    // return true if c and d are in the same side of the line (a,b)
    sc = ccw(a, b, c);
    sd = ccw(a, b, d);
    return sc * sd >= 0;
}
```


Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06) – MÃ GIẢ

```
checkInSideConvexHull(vector<Point> C, Point q) {
   last = C.size() - 1;
   if (same_side(C[0], C[1], C[last], q) and // C[last] và q cùng phía đối với
                                             // C[0]C[1]
         same_side(C[0], C[last], C[1], q)) {// C[1] và q khác phía đối với
                                             // C[last]C[0]
     l = 1; r = C.size() - 1;
     while (r - 1 > 1) do {
       mid = (1 + r) / 2;
        if (same_side(C[0], C[mid], C[last], q)) 1 = mid; else r = mid;
     if ( not same_side(C[1], C[r], C[0], q))
       return false;
     else return true;
   return false;
```


Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06) – CODE

```
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+1;
struct Point {
    int x, y;
    Point():x(0),y(0){}
    Point(int x, int y) : x(x), y(y) {}
};
Point P[N];
int n;
vector<Point> C;
Point 0; // goc
long long dist2(Point &a, Point &b) {
    long long x = a.x - b.x;
    long long y = a.y - b.y;
    return 1LL * x*x + 1LL * y*y;
```

```
long long cross_product(Point &O, Point &A, Point &B) {
   //tich co huong 2 vector (0,A) \times (0,B)
    long long xa = A.x - 0.x; long long ya = A.y - 0.y;
    long long xb = B.x - 0.x; long long yb = B.y - 0.y;
    return 1LL * xa * yb - 1LL * ya * xb;
bool cmp(Point& A, Point& B){
    long long cp = cross product(0,A,B);
    return cp == 0 ? dist2(0,A) < dist2(0,B) : cp > 0;
int ccw(Point &a, Point &b, Point &c) {
    long long cp = cross_product(a, b, c);
    return cp == 0 ? 0 : (cp < 0 ? -1 : 1);
bool same_side(Point &a, Point &b, Point &c, Point &d) {
   // return true if c and d are in the same side of the line (a,b)
    int sc = ccw(a, b, c);
    int sd = ccw(a, b, d);
    return sc * sd >= 0;
```


Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06) – CODE

```
void computeConvexHull(Point* P, int n){
 C.clear(); int k = 0;
 for(int i = 1; i < n; i++){
   if(P[i].y < P[k].y ||
     P[i].y == P[k].y && P[i].x < P[k].x) k = i;
 swap(P[0],P[k]);// let P[0] be the lowest point
 0 = P[0];// update goc
 sort(P+1,P+n,cmp);
 C.push_back(P[0]); C.push_back(P[1]);
 for(int i = 2; i < n; i++){
   while(C.size() > 1
       && ccw(C[C.size()-2], C[C.size()-1],P[i]) <= 0)
      C.pop back();
   C.push_back(P[i]);
```

```
int checkInSideConvexHull(vector<Point> P, Point& T) {
 int last = P.size() - 1;
  if (same_side(P[0], P[1], P[last], T) &&
                   same_side(P[0], P[last], P[1], T)) {
   int l = 1; int r = P.size() - 1;
   while (r - 1 > 1) {
     int mid = (1 + r) >> 1;
     if (same side(P[0], P[mid], P[last], T)) 1 = mid;
     else r = mid;
    if (!same_side(P[1], P[r], P[0], T)) return 0;
   else return 1;
 return 0;
```

Kiểm tra 1 điểm nằm trong đa giác lồi (P.08.13.06) – CODE

```
int main(){
 scanf("%d",&n);
 for(int i = 0; i < n; i++){
   scanf("%d%d",&(P[i].x),&(P[i].y));
 computeConvexHull(P,n);
 int res = 1;
 if(C.size() != n) res = 0;
 int K;
 scanf("%d",&K);
 for(int k = 1; k <= K; k++){
             scanf("%d%d",&x,&y);
   int x,y;
   Point p(x,y);
   if(res == 1)
     res = checkInSideConvexHull(C,p);
   printf("%d\n",res);
 return 0;
```


THANK YOU!