

Update on Ara

28/09/2022

Matteo Perotti

Matheus Cavalcante

Nils Wistoff

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Summary

Software

- Performance summary on GitHub
- Implement ideal dispatcher (questa)
- Gather performance data + Report
- Hardware (RTL + Backend)
 - Scale to 8 lanes
 - Merge FP Reductions

Fill benchmark pool

Benchmark report

Scale-up to 16 lanes

Bottleneck analysis

Improved verification

Software

- Extended "ideal dispatcher" analysis
- Still no Verilator Dynamic memory loading
- Use QuestaSim offline

Default System

Ideal Dispatcher System

Ideal issue rate from FIFO to Ara

Constant arithmetic intensity!

- Scale up to 8 lanes
 - Cannot close timing with hierarchical flow
 - Critical convoluted paths
 - From main sequencer to lanes
 - Different parallel trials:
 - Flat-system flow
 - Different floorplan shapes

Hier - 4 Lanes

Hier - 8 Lanes

Flat - 8 Lanes

Hier - 8 Lanes

Hier - 4 Lanes Hier - 8 Lanes Flat - 8 Lanes Hier - 8 Lanes

- 8 lanes Flat Flow
 - ~950 MHz in SS
 - Some spurious DRC violations
 - Add space between the caches
- Ongoing:
 - Different die shapes
 - 16 lanes Flat Flow

Further

- Software
 - Merge ideal dispatcher branch
 - Gather performance data + Report
- Hardware (RTL + Backend)
 - Try different die shapes
 - Close timing with 16 lanes

Fill benchmark pool
Benchmark report
Scale-up to 16 lanes
Bottleneck analysis
Improved verification