Picard Groups of Abelian Varieties

Let \mathbf{k} be a field and \mathbf{k} its algebraic closure. Let A be an abelian variety over \mathbf{k} .

1 Pullback along group operations

Theorem 1 (Theorem of the cube). Let X, Y, Z be proper varieties over \mathbf{k} and \mathcal{L} a line bundle on $X \times Y \times Z$. Suppose that there exist $x \in X(\mathbf{k}), y \in Y(\mathbf{k}), z \in Z(\mathbf{k})$ such that the restriction $\mathcal{L}|_{\{x\} \times Y \times Z}$, $\mathcal{L}|_{X \times \{y\} \times Z}$ and $\mathcal{L}|_{X \times Y \times \{z\}}$ are trivial. Then \mathcal{L} is trivial.

Proof. Yang: To be completed.

Remark 2. If we assume the existence of the Picard scheme, then the Theorem 1 can be deduced from the Rigidity Lemma. Consider the morphism

$$\varphi: X \times Y \to \text{Pic}(Z), \quad (x,y) \mapsto \mathcal{L}|_{\{x\} \times \{y\} \times Z}.$$

Since $\varphi(x,y) = \mathcal{O}_Z$, φ factors through $\operatorname{Pic}^0(Z)$. Then the assumption implies that φ contracts $\{x\} \times Y$, $X \times \{y\}$ and hence it maps $X \times Y$ to a point. Thus $\varphi(x',y') = \mathcal{O}_Z$ for every $(x',y') \in X \times Y$. Then by Grauert's theorem, we have $\mathcal{L} \cong p^*p_*\mathcal{L}$ where $p: X \times Y \times Z \to X \times Y$ is the projection. Note that $p_*\mathcal{L} \cong \mathcal{L}|_{X \times Y \times \{z\}} \cong \mathcal{O}_{X \times Y}$. Hence \mathcal{L} is trivial.

Lemma 3. Let A be an abelian variety over \mathbf{k} , $f, g, h : X \to A$ morphisms from a variety X to A and \mathcal{L} a line bundle on A. Then we have

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}.$$

Proof. First consider $X = A \times A \times A$, $p: X \to A$, $(x_1, x_2, x_3) \mapsto x_1 + x_2 + x_3$, $p_{ij}: X \to A$, $(x_1, x_2, x_3) \mapsto x_i + x_j$ for $1 \le i \le 3$ and $p_i: X \to A$, $(x_1, x_2, x_3) \mapsto x_i$ for $1 \le i \le 3$. Then the conclusion follows from the theorem of the cube by taking $\mathcal{L}' = p^* \mathcal{L}^{-1} \otimes p_{12}^* \mathcal{L} \otimes p_{13}^* \mathcal{L} \otimes p_{23}^* \mathcal{L} \otimes p_1^* \mathcal{L}^{-1} \otimes p_2^* \mathcal{L}^{-1} \otimes p_3^* \mathcal{L}^{-1}$ and considering the restriction to $\{0\} \times A \times A$, $A \times \{0\} \times A$ and $A \times A \times \{0\}$.

In general, consider the morphism $\varphi = (f, g, h) : X \to A \times A \times A$ and pull back the above isomorphism along φ .

Proposition 4. Let A be an abelian variety over \mathbf{k} , $n \in \mathbb{Z}$ and \mathcal{L} a line bundle on A. Then we have

$$[n]_{\mathcal{A}}^{*}\mathcal{L} \cong \mathcal{L}^{\otimes \frac{1}{2}(n^{2}+n)} \otimes [-1]_{\mathcal{A}}^{*}\mathcal{L}^{\otimes \frac{1}{2}(n^{2}-n)}.$$

Proof. For n=0,1, the conclusion is trivial. For $n\geq 2$, we can use the previous lemma on $[n-2]_A,[1]_A,[1]_A$ and induct on n. Hence we have

$$[n]_{\mathcal{A}}^{*}\mathcal{L} \cong [n-1]_{\mathcal{A}}^{*}\mathcal{L} \otimes [n-1]_{\mathcal{A}}^{*}\mathcal{L} \otimes [2]_{\mathcal{A}}^{*}\mathcal{L} \otimes [1]_{\mathcal{A}}^{*}\mathcal{L}^{-1} \otimes [1]_{\mathcal{A}}^{*}\mathcal{L}^{-1} \otimes [n-2]_{\mathcal{A}}^{*}\mathcal{L}^{-1}.$$

Then the conclusion follows from induction. Yang: To be completed.

Date: September 18, 2025, Author: Tianle Yang, My Homepage

Definition 5. Let A be an abelian variety over \mathbf{k} and \mathcal{L} a line bundle on A. We say that \mathcal{L} is symmetric if $[-1]_A^*\mathcal{L} \cong \mathcal{L}$ and antisymmetric if $[-1]_A^*\mathcal{L} \cong \mathcal{L}^{-1}$.

Theorem 6 (Theorem of the square). Let A be an abelian variety over \mathbf{k} , $x,y \in A(\mathbf{k})$ two points and \mathcal{L} a line bundle on A. Then

$$t_{x+y}^* \mathcal{L} \otimes \mathcal{L} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L}.$$

Proof. Yang: To be completed.

Remark 7. We can define a map

$$\Phi_{\mathcal{L}}: A(\mathbf{k}) \to \operatorname{Pic}(A), \quad x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}.$$

Then theorem of the square implies that $\Phi_{\mathcal{L}}$ is a homomorphism of groups. When we vary \mathcal{L} , the map

$$\Phi_{\square}$$
: $\operatorname{Pic}(A) \to \operatorname{Hom}_{\operatorname{Grp}}(A(\mathbf{k}), \operatorname{Pic}(A)), \quad \mathcal{L} \mapsto \Phi_{\mathcal{L}}$

is also a group homomorphism. For any $x \in A(\mathbf{k})$, we have

$$\Phi_{t_v^*\mathcal{L}} = \Phi_{\mathcal{L}}$$

by Theorem 6. In the other words,

$$\Phi_{\mathcal{L}}(x) \in \operatorname{Ker} \Phi_{\square}, \quad \forall \mathcal{L} \in \operatorname{Pic}(A), x \in A(\mathbf{k}).$$

If we assume the scheme structure on $\operatorname{Pic}(A)$, then $\Phi_{\mathcal{L}}$ is a morphism of scheme and factors through $\operatorname{Pic}^0(A)$. Let $K(\mathcal{L}) := \operatorname{Ker} \Phi_{\mathcal{L}}$, then $K(\mathcal{L})$ is a subgroup scheme of A. We give another description of $K(\mathcal{L})$. From this point, when $K(\mathcal{L})$ is finite, we can recover the dual abelian variety $A^{\vee} = \operatorname{Pic}_{A/\mathbf{k}}^0$ as the quotient $A/K(\mathcal{L})$.

2 Projectivity

In this subsection, we work over the algebraically closed field k.

Proposition 8. Let A be an abelian variety over k and D an effective divisor on A. Then |2D| is base point free.

Proof. Yang: To be completed.

Theorem 9. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. TFAE:

- (a) the stabilizer Stab(D) of D is finite;
- (b) the morphism $\phi_{|2D|}$ induced by the complete linear system |2D| is finite;
- (c) D is ample;
- (d) $K(\mathcal{O}_A(D))$ is finite.

Proof. Yang: To be completed.

Picard	groups	of	abelian	varieties

Theorem 10. Let A be an abelian variety over k. Then A is projective.

Proof. Yang: To be completed.

Corollary 11. Let A be an abelian variety over \mathbb{k} and D a divisor on A. Then D is pseudo-effective if and only if it is nef, i.e. $\operatorname{Psef}^1(A) = \operatorname{Nef}^1(A)$.

Proof. Yang: To be completed.

3 Dual abelian varieties

In this subsection, we work over the algebraically closed field k.

Proposition 12. Let A be an abelian variety over \mathbf{k} and \mathcal{L} an ample line bundle on A. Then the homomorphism $\Phi_{\mathcal{L}}: A(\mathbb{k}) \to \operatorname{Pic}(A)$ factors through $\operatorname{Pic}^{0}(A)$ and $A(\mathbb{k}) \to \operatorname{Pic}^{0}(A)$ is surjective.

Proof. Yang: To be completed.

Definition 13. Let A be an abelian variety over \mathbb{k} . We define the *dual abelian variety* of A to be $A/K(\mathcal{L})$ for some ample line bundle \mathcal{L} on A. We denote it by A^{\vee} .

Theorem 14. Let A be an abelian variety over \mathbf{k} . Then the dual abelian variety A^{\vee} does not depend on the choice of the ample line bundle \mathcal{L} . Moreover, there is a natural bijection $A^{\vee}(\mathbf{k}) \to \operatorname{Pic}^0(A)$.

Proof. Yang: To be completed.

Proposition 15. Let A be an abelian variety over \mathbf{k} . Then the dual abelian variety A^{\vee} is also an abelian variety and the natural map $A \to A^{\vee\vee}$ is an isomorphism.

Proof. Yang: To be completed.

Proposition 16. There exists a unique line bundle \mathcal{P} on $A \times A^{\vee}$ such that for every $y = \mathcal{L} \in A^{\vee} = \operatorname{Pic}^{0}(A)$, we have $\mathcal{P}|_{A \times \{y\}} \cong \mathcal{L}$.

Proof. Yang: To be completed.

4 The Néron-Severi group

Theorem 17. Let A be an abelian variety over k. The we have an inclusion $NS(A) \hookrightarrow Hom_{Grp}(A, A^{\vee})$ given by Yang: To be completed.