CSE 211: Discrete Mathematics

(Due: 30/10/22)

Homework #1

Instructor: Dr. Zafeirakis Zafeirakopoulos Name: Student Id:

Assistant: Başak Karakaş

Course Policy: Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

• It is not a group homework. Do not share your answers to anyone in any circumstance. Any cheating means at least -100 for both sides.

- Do not take any information from Internet.
- No late homework will be accepted.
- For any questions about the homework, send an email to bkarakas2018@gtu.edu.tr
- Use LaTeX. You can work on the tex file shared with you in the assignment document.
- Submit both the tex and pdf files into Homework1. Name of the files should be "SurnameName_Id.tex" and "SurnameName_Id.pdf".

Problem 1: Sets (3+3+3+3=15 points)

Which of the following sets are equal? Show your work step by step.

- (a) $\{t : t \text{ is a root of } x^2 6x + 8 = 0\}$
- (b) {y : y is a real number in the closed interval [2, 3]}
- (c) $\{4, 2, 5, 4\}$
- **(d)** {4, 5, 7, 2} {5, 7}
- (e) {q: q is either the number of sides of a rectangle or the number of digits in any integer between 11 and 99}

Problem 2: Cardinality of Sets

(2+2+2+2=8 points)

What is the cardinality of each of these sets? Explain your answers.

- (a) {∅}
- (b) $\{\emptyset, \{\emptyset\}\}$
- (c) $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$
- (d) $\{\emptyset, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}\}$

(Solution)

Problem 3: Cartesian Product of Sets

(15 points)

Explain why $(A \times B) \times (C \times D)$ and $A \times (B \times C) \times D$ are not the same.

Problem 4: Cartesian Product of Sets in Algorithms

(25 points)

Let A, B and C be sets which have different cardinalities. Let (p, q, r) be each triple of $A \times B \times C$ where $p \in A$, $q \in B$ and $r \in C$. Design an algorithm which finds all the triples that are satisfying the criteria: $p \le q$ and $q \ge r$. Write the pseudo code of the algorithm in your solution.

For example: Let the set A, B and C be as $A = \{3, 5, 7\}$, $B = \{3, 6\}$ and $C = \{4, 6, 9\}$. Then the output should be : $\{(3, 6, 4), (3, 6, 6), (5, 6, 4), (5, 6, 6)\}$.

(Note: Assume that you have sets of A, B, C as an input argument.)

(Solution)

Algorithm 1: Pseudo Code of Your Algorithm

Input: The sets of A, B, C

if write a condition then

| Statements

else

| Statements

end

When you want to write a for loop, you can use:

for write a condition do

end

When you want to write a while loop, you can use:

while write a condition do

If you need to return, use **return**

end

For any additional things you have to do while writing your pseudo code, Google "How to use algorithm2e in Latex?".

Problem 5: Functions (16 points)

If f and f \circ g are one-to-one, does it follow that g is one-to-one? Justify your answer.

(Solution)

Problem 6: Functions

(7+7+7=21 points)

Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if

(a)
$$f(m,n) = 2m - n$$

(b)
$$f(m,n) = m^2 - n^2$$

(c)
$$f(m,n) = |m| - |n|$$

Problem 7: Functions

(Bonus 20 points)

Suppose that f is a function from A to B, where A and B are finite sets with |A| = |B|. Show that f is one-to-one if and only if it is onto.