对 2021 年 CGMO 第二题的推广及证明

张峻铭1 程昱皓2

¹ 南开大学 数学科学学院 ² 清华大学 求真书院

2021 年 CGMO 第二题的题干如下:

题目 1. 给定 $\triangle ABC$ 及其内心 I、A-旁心 J, X、Y 为 $\bigcirc (ABC)$ 上两点,满足 $\angle AXI = \angle AYJ = 90^\circ$,K 是 BC 上一点,满足 KI = KJ. 求证:AK 平分线段 XY.

本文中我们将证明如下推广形式:

题目 2. 给定 $\triangle ABC$, 平面上 U、V 两点满足 $\triangle ABU \stackrel{+}{\sim} \triangle AVC$, $\odot (ABC)$ 上两点 X、Y 满足 $\angle AXU = \angle AYV = 90^{\circ}$. K 是 BC 上一点,满足 KU = KV. 证明:若 U 关于 $\triangle ABC$ 的 垂足圆与 BC 相切,则 AK 平分线段 XY.

显然当 U 为 $\triangle ABC$ 的内心时, 题目 2 退化为题目 1.

下面的讨论均在**题目 2** 的记号下进行,并设 AX、AY 分别交 BC 于 Y'、X',记以 A 为中心, $AB \cdot AC$ 为幂, $\angle BAC$ 角平分线为轴的反演反射变换为 φ ,在此变换下,B 与 C 互变、U 与 V 互变, $\varphi(\odot(ABC)) = BC$. 一个简单的观察可以告诉我们如下引理:

引理 1. $XY//BC \iff \angle AUY' = 90^{\circ}$.

证明.
$$\angle AUY' = 90^\circ \iff \varphi(Y) = Y' \iff \angle XAB = \angle CAY \iff XY//BC$$
.
接下来我们分两部分来进行证明**题目 2**,第一部分是要证明下面这个结果:

引理 2. 若 U 关于 $\triangle ABC$ 的垂足圆与 BC 相切,则 XY//BC.

证明. 设 U 关于 $\triangle ABC$ 的等角共轭点为 U^* , U^* 关于 $\triangle ABC$ 的垂足三角形为 $\triangle DEF$,则此时 U、 U^* 、D 共线,由于 $BU \perp DF$, $\angle UBC = \angle FDU = 90^\circ - \angle FED$,又 $AU \perp EF$ 、 $CU \perp DE$, $\angle UBC = \angle AUC - 90^\circ$. 考虑 $\odot (UBC)$ 在 U 处的切线,设其交 BC 于 T,则 $\angle AUT = 180^\circ - \angle AUC + \angle UBC = 90^\circ$,设 AT 与 $\odot (ABC)$ 的第二交点为 P,则

$$TP \cdot TA = TB \cdot TC = TU^2$$
,

故 $\angle APU = \angle AUT = 90^{\circ}$,于是 $P \equiv X$ 且 $T \equiv Y'$. 由引理 1 即知 XY//BC.

第二部分则是由 XY//BC 去推出 AK 平分 XY.

引理 3. 若 XY//BC, 则 AK 平分线段 XY.

证明. XY//BC 说明 $\triangle AUY' \sim \triangle AVX'$. 下面采用复数法,以点本身的标签表示其对应的复数. 设

$$\frac{Y' - U}{A - U} = k\mathbf{i},$$

则 $\frac{X'-V}{A-V}=-k\mathbf{i}$,于是设 X'Y'、UV 中点分别为 K'、W,有 $\frac{K'-W}{U-V}=-\frac{k}{2}\mathbf{i}$,故 $K'W\perp UV$,即 $K\equiv K'$. 于是 AK 平分 Y'X',亦平分 XY.

由引理 2 和引理 3 就证明了题目 2.

注 1. 当然我们可以对满足 "U 关于 $\triangle ABC$ 的垂足圆与 BC 相切"的点 U 的轨迹进行更进一步的讨论,由于 U 与其等角共轭点连线垂直于 BC,这个轨迹固然是 BC 垂直方向上无穷远点为枢点的主等角共轭三次曲线. 但另一方面,如果回顾引理 1 的证明,我们可以将满足 XY//BC 的点 U 的构造方式抽象如下:给定平面上两点 A、A' (此处取为 A 关于 \odot (ABC) 的对径点) 及一直线 l:=BC,X 为以 AA' 为直径的圆上一动点,AX 交 l 于 Y',则以 AY' 为直径的圆与 A'X 的交点恰为 U. 如果读者熟悉 QL-Cu1 (国内所谓"巨龙曲线"的性质),可以发现 U 的轨迹恰好为以 A 为 Miquel 点、以 BC 中垂线为 Newton 线的 QL-Cu1. 由于 $\triangle ABC$ 的三顶点、内心、三旁心、A 在 BC 上的投影、A' 以及两圆环点均在上述两条三次曲线上,故由至多十点确定一条三次曲线,这两条三次曲线必然是同一条,如此同样也可完成对引理 1 的证明,其中细节就不在本文中讨论了,[1] 或许是一个好的补充。

参考文献

[1] 张峻铭, 巨龙曲线上的加法群,https://mp.weixin.qq.com/s/S6uCQioGVoqyj0_Q13hIKw