Homework 2

Please submit the solution to gradescope by 11:59 PM, Sept 26, Thursday.

Name: Ivy Nangalia

PID: 730670491

Problem 1 Sales Data Analysis (35 Points)

Dataset: You will work with a simulated dataset representing the monthly sales data for a fictional company over a period of 3 years (36 months). The dataset is provided as a NumPy array.

1.0 . Setup and Initialization

Import NumPy and initialize the dataset as a NumPy array.

1.1 Monthly Analysis (15 Points)

Using the sales_data array, perform the following tasks:

- 1. Calculate the total sales for each year, and store the result in a NumPy array total sales per year. Display the total sales per year. (2 points)
- 2. Calculate the average monthly sales for each year, and store the result in a NumPy array average_monthly_sales_per_year. Display the average_monthly_sales_per_year. (2 points)
- 3. Calculate the average season sales for each year, and store the result in a 3 by 4 NumPy array average_season_sales_per_year. Each row represent a year, and each column represent a season. Display the average season_sales_per_year. (6 points)

4. Identify the month with the highest sales and the month with the lowest sales on average over the three year period. Store the numerical representation (1-12) of the month in the variables max_sales_month and min_sales_month. (5 points)

You can assume the years are in chronological order. For example, the first value represents sales in January of Year 1 and the last value represents sales in December of Year 3.

```
In [ ]: sales_data = sales_data.reshape(3,12)
        total_sales_per_year = sales_data.sum(axis=1)
        total_sales_per_year
Out[]: array([3016, 4093, 5401])
In [ ]: average_monthly_sales_per_year = np.mean(sales_data, axis=1)
        average_monthly_sales_per_year
Out[]: array([251.33333333, 341.08333333, 450.08333333])
In [ ]: average_season_sales_per_year = np.mean(sales_data.reshape(3, 4, 3), axis=2
        average_season_sales_per_year
Out[]: array([[222.66666667, 254.66666667, 258.66666667, 269.33333333],
                [306.33333333, 344.
                                          , 345.33333333, 368.66666667],
                [420.66666667, 448.
                                          , 456.6666667, 475.
                                                                       ]])
In [ ]: average_per_month = np.mean(sales_data, axis=0)
        highest_month = average_per_month.argmax() + 1 # to convert to the month nu
        lowest month = average per month.argmin() + 1
        # printing the name of the month for fun
        months: dict = {
            1: "January", 2: "February", 3: "March", 4: "April", 5: "May", 6: "June
            7: "July", 8: "August", 9: "September", 10: "October", 11: "November",
        print(f"{months[highest month]} had the highest average monthly sales (${st
              f"while {months[lowest_month]} had the lowest average sales monthly (
```

December had the highest average monthly sales (\$378.0), while January had the lowest average sales monthly (\$307.33333333333).

1.2 Growth Rate Calculation (5 Points)

Write a function calculate_growth_rate(data) that takes the sales_data array as input and returns the growth rates for each month in a NumPy array. You can assume the growth rate for the first month is 0.01.

Calculate the monthly growth rate of sales using the formula:

```
\operatorname{growthrate}[i] = \frac{\operatorname{salesdata}[i] - \operatorname{salesdata}[i-1]}{\operatorname{salesdata}[i-1]}
```

Display the result of calculate_growth_rate(sales_data).

```
In [ ]: def calculate_growth_rate(data):
            shape = data.shape
            data = data.flatten()
            rate_array = np.zeros(len(data))
            rate_array[0] = 0.01
            for i in range(1, len(data)):
                rate_array[i] = (data[i] - data[i-1])/data[i-1]
            return rate_array.reshape(shape)
In [ ]: rates = calculate_growth_rate(sales_data)
        rates
Out[]: array([[ 0.01
                         , 0.04830918, 0.12442396, 0.10245902, -0.08178439,
                 0.00404858, 0.10080645, -0.04761905, -0.06538462, 0.09053498,
                -0.00754717, 0.06463878],
               [ 0.10714286, -0.04516129, 0.05743243, 0.08626198, -0.01176471, 
                 0.05952381, -0.05898876, -0.0238806, 0.14373089, -0.04278075,
                 0.05027933, -0.0106383 ],
               [0.08870968, 0.06666667, -0.0162037, 0.07058824, -0.02637363,
                 0.00677201, -0.01569507, 0.08656036, -0.04821803, -0.01101322,
                 0.10022272, -0.0242915]
```

1.3 Growth Rate Summary (5 Points)

Identify the following months:

- The months in the past three years saw the largest increase and the largest decrease in sales (i.e. from January to February of Year 1 we saw the largest decrease in sales)
- The month on average with the largest increase and largest decrease in sales

Show both the python code and conclusion.

```
In []: rates = rates.reshape(-1, 12) # reshaping to use indecies for months and ye
year_month_array = np.array([range(1,37)])
year_month_array = year_month_array.reshape(3,12)
largest_increase = rates.argmax() + 1
largest_decrease = rates.argmin() + 1

def month_scale(month: int):
    year: int = 1
    while month > 12:
        month -= 12
        year += 1
```

```
return (month, year)

largest_increase_month = month_scale(largest_increase)
largest_decrease_month = month_scale(largest_decrease)

print(f"We saw the largest sales increase from {months[largest_increase_monf" of Year {largest_increase_month[1]}.")

print(f"We saw the largest sales decrease from {months[largest_decrease_monf" of Year {largest_decrease_month[1]}.")
```

We saw the largest sales increase from August to September of Year 2. We saw the largest sales decrease from April to May of Year 1.

```
In []: # average monthly values
    average_rates_monthly = np.mean(rates, axis=0)
    highest_average_month = average_rates_monthly.argmax() + 1
    lowest_average_month = average_rates_monthly.argmin() + 1
    print("Across all years, on average, " +
        f"{months[highest_average_month]} saw the largest average increase in s
        f"while {months[lowest_average_month]} saw the largest average decrea
```

Across all years, on average, April saw the largest average increase in sale s (\$+0.08643641083941041), while May saw the largest average decrease in sale es (\$-0.0399742396243599).

1.4 Moving Average (5 points)

Calculate the 3-month moving average of the sales_data and store the result in a NumPy array called moving_average. The calculation starts from the third month in Year 1.

The three-period moving average for month t is calculated as:

$$ext{MA}_3(t) = rac{x_t + x_{t-1} + x_{t-2}}{3}.$$

Where:

- x_t is the sales in month t,
- x_{t-1} is the sales in month t-1,
- x_{t-2} is the sales in month t-2.

Display the moving_average.

```
In []:
    def calc_moving_average(data):
        shape = data.shape
        data = data.flatten()
        moving_averages = np.zeros(len(data))
        for i in range(2, len(data)):
```

1.5 Sales Anomaly Detection (5 points)

Write a function sales_anomaly_detection(sales_data) that takes the sales_data array as input, identify months where sales were significantly higher or lower than the previous month's sales (more than 12% change), and returns a dictionary mapping the month number (1-36) to the sales data for all anomalous months.

Display the result of sales anomaly detection(sales data).

```
In [ ]: def sales_anomaly_detection(data):
            anomalies = {}
            rates = calculate_growth_rate(data)
            for i in range(0, len(rates)):
                if abs(rates[i]) > 0.12:
                    anomalies[i] = rates[i]
            return anomalies
In [ ]: def sales anomaly detection(data):
            anomalies = {}
            rates = calculate growth rate(data).flatten()
            rate_indecies = np.argsort(abs(rates))[::-1]
            for index in rate_indecies:
                if rates[index] > 0.12:
                    anomalies[index] = rates[index]
            return anomalies
In [ ]: print(sales_anomaly_detection(sales_data))
```

Problem 2: Analysis on the diamonds dataset (65 points)

{20: 0.1437308868501529, 2: 0.12442396313364056}

Here is a brief description of the key columns in the **diamonds** dataset from Seaborn:

Carat: The weight of the diamond (continuous variable). Larger diamonds have higher carat values.

Cut: The quality of the diamond's cut (categorical variable).

Color: The diamond's color grade (categorical variable).

Clarity: The clarity of the diamond (categorical variable), which indicates how free the diamond is from internal flaws (inclusions) or external blemishes. It ranges from IF (Internally Flawless) to I3 (Included).

Depth: The total depth percentage (continuous variable). It's the ratio of the depth of the diamond to its average diameter.

Table: The width of the diamond's top relative to its widest point (expressed as a percentage).

Price: The price of the diamond in US dollars (continuous variable).

x : Length of the diamond in millimeters (continuous variable).

y: Width of the diamond in millimeters (continuous variable).

z : Depth of the diamond in millimeters (continuous variable).

This dataset provides valuable features for exploring the relationship between various attributes and the price of diamonds.

- 2.1 Load the dataset from a diamonds.csv. (1 point)
- 2.2 How many different levels are there in the cut column? Provide the names of all levels. (4 points)
- 2.3 Create three new columns, x_{in_n} , y_{in_n} , and z_{in_n} , which convert the units of the original x, y, and z from millimeters to inches. Print the new table. (5 points)
- 2.4 Create a new column called Normalized_depth, which scales the depth values between 0 and 1. (10 points)

The equation to normalize the depth column is given as:

$$\mathrm{depth}_{\mathrm{normalized}} = \frac{\mathrm{depth} - \min(\mathrm{depth})}{\max(\mathrm{depth}) - \min(\mathrm{depth})}$$

Where:

- depth is the original value,
- min(depth) is the minimum value in the depth column,
- $\max(\text{depth})$ is the maximum value in the depth column.

Print the new table.

- 2.5 Select the rows from the entire table where clarity is SI2. Drop the columns color and clarity. Print the selected table. (5 points)
- 2.6 Suppose we have a linear model that predicts the price of a diamond using the carat value:

```
Predicted Price = 7769 \times \text{carat} - 2262.
```

In the selected table from 2.5, create a new column called Predicted_Price, which contains the predicted price using the above formula. Display the new table. (10 points)

- 2.7 In the new table from 2.6, calculate the difference between the actual price and the predicted price. How many rows have a prediction error that is smaller than 20% of the actual price? (5 points)
- 2.8 Sort the table in 2.7 by 'carat' column in increasing order. Display the first 3 rows and last 3 rows of the sorted table. (5 points). Concatenate the first 3 rows and last 3 rows into a new table. (5 points) (10 points in total)
- 2.9 In the table from 2.7, what is the value of carat that has the smallest prediction error? What is the value of carat that has the largest prediction error. (5 points)
- 2.10 In the original entire table, calculate the average prices for each level of cut. Display the result as a pd.Series. Does a better cut lead to a higher price? (10 points)

```
In []: import pandas as pd
   diamonds = pd.read_csv("diamonds.csv")
   diamonds.head()
```

```
Out[]:
            Carat
                       Cut Color Clarity depth table Price
                                                                  Х
                                                                        У
                                                                              Z
              0.23
                                 Ε
                                       SI2
                                             61.5
                                                   55.0
                                                          326 3.95 3.98
         0
                       Ideal
                                                                           2.43
              0.21 Premium
                                 Ε
                                                                3.89
                                                                     3.84
                                       SI1
                                             59.8
                                                    61.0
                                                          326
                                                                            2.31
         2
             0.23
                      Good
                                 Ε
                                      VS1
                                             56.9
                                                   65.0
                                                          327
                                                                4.05 4.07
                                                                            2.31
             0.29 Premium
                                 VS2
         3
                                             62.4
                                                    58.0
                                                          334
                                                                4.20
                                                                    4.23
                                                                           2.63
         4
              0.31
                      Good
                                 J
                                       SI2
                                             63.3
                                                   58.0
                                                          335
                                                                4.34 4.35
                                                                           2.75
         diamonds["Cut"].unique()
Out[]: array(['Ideal', 'Premium', 'Good', 'Very Good', 'Fair'], dtype=object)
In []:
         diamonds["x_in_inch"] = diamonds["x"].transform(lambda x: x/25.5)
         diamonds["y_in_inch"] = diamonds["y"].transform(lambda x: x/25.5)
         diamonds["z_in_inch"] = diamonds["z"].transform(lambda x: x/25.5)
         diamonds
Out[]:
                            Cut Color Clarity depth table Price
                 Carat
                                                                       X
                                                                             У
                                                                                   z x_in_in
              0
                  0.23
                            Ideal
                                     Ε
                                            SI2
                                                  61.5
                                                        55.0
                                                                326
                                                                     3.95
                                                                          3.98
                                                                                2.43
                                                                                       0.1549
                        Premium
                                     Ε
                                            SI1
                                                                    3.89
                                                                          3.84
                                                                                2.31
                   0.21
                                                  59.8
                                                         61.0
                                                                326
                                                                                       0.1525
              2
                                                                    4.05
                                                                          4.07
                                                                                2.31
                  0.23
                           Good
                                     Ε
                                           VS1
                                                  56.9
                                                        65.0
                                                                327
                                                                                       0.1588
              3
                   0.29
                        Premium
                                           VS2
                                                                    4.20
                                                                          4.23
                                                  62.4
                                                        58.0
                                                               334
                                                                                2.63
                                                                                       0.1647
                                                                                2.75
              4
                   0.31
                           Good
                                      J
                                            SI2
                                                  63.3
                                                        58.0
                                                               335
                                                                    4.34 4.35
                                                                                       0.1701
                                            SI1
         53935
                  0.72
                           Ideal
                                     D
                                                  60.8
                                                         57.0
                                                              2757
                                                                     5.75
                                                                          5.76
                                                                                3.50
                                                                                      0.2254
                   0.72
                                                                     5.69
                                                                           5.75
                                                                                       0.2231
         53936
                           Good
                                     D
                                            SI1
                                                  63.1
                                                        55.0
                                                              2757
                                                                                3.61
                            Very
         53937
                  0.70
                                     D
                                            SI1
                                                  62.8
                                                        60.0
                                                              2757
                                                                     5.66
                                                                          5.68
                                                                                3.56
                                                                                       0.2219
                           Good
                                                  61.0
         53938
                  0.86
                        Premium
                                     Н
                                            SI2
                                                        58.0
                                                              2757
                                                                     6.15
                                                                           6.12
                                                                                3.74
                                                                                       0.2411
                                            SI2
                                                              2757
                                                                     5.83
                                                                          5.87
                                                                                3.64
         53939
                  0.75
                                     D
                                                  62.2
                                                        55.0
                                                                                      0.2286
                            Ideal
        53940 rows × 13 columns
         diamonds["Normalized_depth"] = ((
              diamonds["depth"] - diamonds["depth"].min())
              (diamonds["depth"].max() - diamonds["depth"].min())
```

diamonds	
----------	--

:[]:		Carat	Cut	Color	Clarity	depth	table	Price	X	У	z	x_in_in
	0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43	0.1549
	1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31	0.1525
	2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31	0.1588
	3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63	0.1647
	4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75	0.1701
	•••	•••		•••	•••	•••	•••	•••			•••	
	53935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50	0.2254
	53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61	0.2231
	53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56	0.2219
	53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74	0.2411
	53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64	0.2286

53940 rows × 14 columns

Out

```
In []: # selecting SI2 clarity rows
    SI2_df = diamonds[diamonds['Clarity'] == 'SI2']
    SI2_df = SI2_df.drop(labels=["Color", "Clarity"], axis=1)

In []: # creating the prediction price
    SI2_df["Predicted_Price"] = (7769 * SI2_df["Carat"]) - 2262
    SI2_df
```

Out[]:		Carat	Cut	depth	table	Price	х	у	Z	x_in_inch	У
	0	0.23	Ideal	61.5	55.0	326.0	3.95	3.98	2.43	0.154902	
	4	0.31	Good	63.3	58.0	335.0	4.34	4.35	2.75	0.170196	
	13	0.31	Ideal	62.2	54.0	344.0	4.35	4.37	2.71	0.170588	
	14	0.20	Premium	60.2	62.0	345.0	3.79	3.75	2.27	0.148627	
	16	0.30	Ideal	62.0	54.0	348.0	4.31	4.34	2.68	0.169020	
		•••		•••	•••	•••					
	53915	0.77	Ideal	62.1	56.0	2753.0	5.84	5.86	3.63	0.229020	(
	53928	0.79	Premium	61.4	58.0	2756.0	6.03	5.96	3.68	0.236471	(
	53938	0.86	Premium	61.0	58.0	2757.0	6.15	6.12	3.74	0.241176	(
	53939	0.75	Ideal	62.2	55.0	2757.0	5.83	5.87	3.64	0.228627	
	Predicted_Price	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
9195 rows × 13 columns											
In []:	<pre># creating prediction error SI2_df["Prediction_Error"] = abs(SI2_df["Price"] - SI2_df["Predicted_Price"] print(f"{len(SI2_df[SI2_df["Prediction_Error"] < 0.2])}"</pre>										
	+ " rows have a prediction error that is smaller than 20% of the actual pri										
	ce.	. р. са.								астаат р	_
In []:	<pre>sorted_table = SI2_df["Carat"].sort_values(ascending=True) result = pd.concat([sorted_table.head(3), sorted_table.dropna().tail(3)]) # dropna because 2/3 of the last values are NaN result</pre>										
Out[]:	14 0.20 43989 0.21 0 0.23 27518 3.01 26100 3.04 27638 3.04 Name: Carat, d	type:	float64								

In []: carats = SI2_df["Prediction_Error"].groupby(SI2_df["Carat"]).mean()

carats_concat = pd.concat([carats.head(3), carats.tail(3)])

carats = carats.sort_values()

carats_concat

```
Out[]: Carat
        2.67
                0.010958
        2.42
                0.020053
        2.57
                0.023314
        0.23
                2.257825
        0.21
                2.600279
        0.20
                3.052754
        Name: Prediction_Error, dtype: float64
In [ ]: cut = diamonds["Price"].groupby(diamonds["Cut"]).mean()
        cut.sort_values(ascending=False)
Out[]: Cut
        Premium
                     4584.257704
        Fair
                     4358.757764
        Very Good
                     3981.759891
        Good
                     3928.864452
```

A better cut does not necessarily lead to a higher price. Although the "Premium" diamonds have the highest average price, it's led by "Fair" diamonds, which is not the next best cut.

Ideal

3457.541970

Name: Price, dtype: float64