92

Indian Institute of Technology Patna MA201: Mathematics III Mid Semester Exam (11-09-2012)

Time: 2hrs Max. Marks: 30

Note: Answer all questions. Give precise and brief answer. Standard formulae may be used.

Q.1. Answer all parts at one place.

[1+1+1+1+1+1+1]

- a. Find M such that $|z^5 4| \le M$ for all $|z| \le 1$.
- b. The set $S = \{z : 1 < |z| < 3\}$ is an Open set. (True / False).
- c. Find $\oint \frac{\sin z}{z-2} dz$, where C is circle of radius 1.
- d. Is $f(z) = \cos(x iy)$ analytic?
- e. Log(z-i) is analytic at all points in z-plane except for $x=\cdots$ and $y=\cdots$.
- f. Find all z such that $e^z = -2$.
- g. Find the radius of convergence for $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$.
- Q.2. Find limit $\lim_{z\to 0} \frac{Rez}{|z|}$ [3]
- Q.3. Show that f'(z) exists for $f(z) = \sin x \cosh y + i \cos x \sinh y$ [3]
- Q.4 Find principle value of $(1-i)^{4i}$. [3]
- Q.5. Find all the roots of $\sin z = \cosh 4$. [4]
- Q.6. Suppose that f(z) and $\overline{f(z)}$ both are analytic in a Domain D. Hence prove that f(z) must be constant throughout D.
- Q.7. Given that $u(x,y) = e^{-x}(x \sin y y \cos y)$ is a harmonic function throughout xy plane. Find harmonic conjugate of u(x,y) and hence the corresponding analytic function. [3]
- Q.8. Find the value of following integrals around the circle (C) |z-i|=2 in positive sense:
- a. $\oint_C \frac{1}{z+4} dz$,
- b. $\oint_C \frac{1}{z^2+4} dz,$

You are expected to conduct yourself honestly and ethically, and are obliged to refrain from acts, which you know violate the academic integrity of the Institute.