

UNIVERSIDADE FEDERAL DO CEARÁ

Campus de Quixadá

Prof. Fabio Dias OXD0041-Projeto e Análise de Algoritmos - Manhã AP2 2024.2

Nome:

_____ Matrícula:

 Execute o algoritmo Dijkstra para o grafo abaixo, primeiro usando o vértice a. Mostre os valores de d e π e os vértices que estão na lista de prioridade Q no início de cada iteração.

	_	_	l.	c	d	e	f
Iter.		a	b	-=-			
1	π	-		-	~	-	00
	d	0	(3D)	W	(<u>~</u>	2	w.
	Q	101	Box	Cy C	11 0	1 4	
2	π	-	a '	A		Q	_
1	d	0	3	6	00	8	00
	Q	P	e	day.	Q, D	-	
3	π	-	A	Y	7	20	
	d	0	3	5	41	8	17
	Q	C	0,0	1-8-	>		0
4	π	_	.^	Po	· Or	Q	· Do
	d	0	3	5	37	7	13
1	Q	d	10.	a ·			-13
5	π		2	D.	-0	100	0
	d	0	3	~	40	7	12
-	Q	C.	di-				12
6	π -	-101	X	0	0	0	4
·	d	A	3	22	10	3	97
+	Q	Va	<u></u>	0	10	7	706
	V	-49					

2. Execute o algoritmo Prim para o grafo abaixo. Mostre os valores de *d* e π e os vértices que estão na lista de prioridade *Q* no início de cada iteração.

Iter.		a	b	С	d	e	f	g
1	π	-	-	-	_	_	_	_
	d	0	8	00	∞	∞	00	∞
	Q	O	20,6	di	0, &	1 00	•	
2	π	-	Q	, Q	To	-0	0	-
	d	Q	8	0	8	00	9	8
	Q	7	Ca	1 11	Pr.	0/_		
3	π	-	B	יס'	0-	26	9	-
	d	18	_6	6	8	10	6	00
1	Q	78	udi	4 1×	4,01			
4	π	-	6	Ď,	1	e	6	-
	d	P	6	6	112	10	6	∞
5	Q	-0	2	King	} ^~	-		
3	π	•	$\downarrow g$	مگر	1	16	C	F
	d	19	6	6	12	10	6	11
6	Q	0	/ 21	8	-	10		
6	π	-	13'	T.O.	1	en	2	F .
	d	Ų,		6	10	10	6	11
7	Q		4 9	-		-		
'	π	-		9	8	LE	6	0
	d	- 0	6	0	10	10	6	9
	Q		9_					
			U					

Nota: _

3. São dados n objetos e W caixas. Cada objeto i tem um peso w_i , com $0 < w_i \le 1$ e um grupo g_i ao qual o objeto pertence. Cada caixa tem capacidade 1, ou seja, a soma dos pesos dos objetos colocados em uma caixa não pode ultrapassar 1. Além disso, em cada caixa devemos ter no máximo um objeto de cada grupo. Desejamos colocar o máximo de objetos nas W caixas. Escreva um algoritmo guloso para resolver esse problema. Depois aplique seu algoritmo na instância abaixo.

W = 3										\	1
Objetos	1	2	3	4	5	6	7	8	9	10	<u> </u>
w	0.7	0.3	0.5	0.5	0.3	0.9	0.1	0.4	0.8	70.5	0.3
g	1	2	1	4	2	3	2	1	4	2	3

[2,5 pontos] 4. Uma subsequência contígua de uma sequência S é uma subsequência de elementos consecutivos de S. Por exemplo, se

S = (5, 15, -30, 10, -5, 40, 10), então (15, -30, 10) é uma subsequência contígua de S, mas (5, 15, 40) não é. Escreva um algoritmo de programação dinâmica para a seguinte tarefa: receba como entrada uma sequência de números $(a_1, a_2, ..., a_n)$ e devolva a subsequência contígua cuja soma é máxima (uma subsequência de tamanho zero tem soma zero). No exemplo anterjor, a resposta seria a subsequência (10, -5, 40, 10) cuja soma é 55. Obrigatoriamente, você precisa definir o subproblema e a função matemática que calcula a solução ótima do subproblema baseado nas soluções de outros subproblemas de tamanho menores, como visto em sala de aula, e depois o algoritmo de baixo para cima.

Dica: Para cada $j \in 1, 2, ..., n$, considere subsequências contíguas terminando exatamente na posição j.