Experimental Physics EP1 MECHANICS

- Fluid mechanics -

Rustem Valiullin

https://www.physgeo.uni-leipzig.de/en/fbi/applied-magnetic-resonance

Elastic modulus

Tensile stress
$$=\frac{F}{A} \left[\frac{N}{m^2} \right]$$

Strain
$$=\frac{\Delta}{2}$$

degree of deformation

Young's or elastic modulus

$$Y = \frac{\text{stress}}{\text{strain}} = \frac{F/A}{\Delta l/l} \quad \left[\frac{N}{m^2}\right]$$

Material	Y, GPa (TS, MPa)
Rubber	0.01-0.1
Wood	~10 (50)
Aluminum	70 (90)
Glass	50-90 (50)
Silicon	185
Steel	200 (520)
Diamond	1220

Shear modulus

Shear stress

$$=\frac{F}{A} \quad \left[\frac{N}{m^2}\right]$$

$$=\frac{\Delta x}{h} = \tan \theta$$

Shear modulus

$$G = \frac{F/A}{\Delta x/h} \quad \left[\frac{N}{m^2}\right]$$

Material	G, GPa	
Rubber	0.0006	
Aluminum	25.5	
Glass	26	
Steel	80	
Diamond	478	

Bulk modulus

$$=\frac{F}{A} \left[\frac{N}{m^2}\right]$$

$$=\frac{\Delta V}{V}$$

$$B = -\frac{F/A}{\Delta V/V} \quad \left\lceil \frac{N}{m^2} \right\rceil$$

Water expands by about 9% upon freezing. What pressure would it then create in a bottle?

~ 200 MPa

1 km down a see the pressure of water rises by 10 MPa. What is the water density there?

Material	G, GPa	
Air	~10-4	
Water	2.2	
Glass	35-50	
Steel	160	
Diamond	442	

Fluids

- > Elastic stress
- > Shear stress
- Bulk stress

Compressibility:

$$\kappa \equiv \frac{1}{B} = -\frac{1}{V} \frac{dV}{dP}$$

Pressure
$$P = \frac{F}{A}$$

$F_{\text{bot}} = F_{\text{top}} + mg = F_{\text{top}} + \rho A h g$

$$P_{\text{bot}} - P_{\text{top}} = \rho hg$$

Pascal's principle:

Pressure applied to an enclosed fluid is transmitted to every point of the fluid and to the walls of the container.

Basic equation of hydrostatics

$$grad(P) \equiv \frac{\partial P}{\partial x}\hat{\imath} + \frac{\partial P}{\partial y}\hat{\jmath} + \frac{\partial P}{\partial z}\hat{k}$$

$$dF_{net,x} = P(x)dA - P(x + dx)dA$$

$$P(x + dx) - P(x) = dP = \frac{\partial P}{\partial x} dx$$

$$dF_{net, x} = -\frac{\partial P}{\partial x} dx dA = -\frac{\partial P}{\partial x} dV$$

$$dF_{net, y} = -\frac{\partial P}{\partial y} dy dA = -\frac{\partial P}{\partial y} dV$$

$$dF_{net, z} = -\frac{\partial P}{\partial z} dz dA = -\frac{\partial P}{\partial z} dV$$

Under equilibrium:

$$grad(P) = \nabla P = \vec{f}$$

Hydraulic pressure

$$P_{\text{atm}} = \rho g h$$

$$P_1 = \frac{F_1}{A_1}$$
 = $P_2 = \frac{F_2}{A_2}$

Buoyancy

$$F_{t} = -(P_{0} \cdot 2a^{2} + \rho g h \cdot 2a^{2})$$

$$F_{t} = P_{0} \cdot 2a^{2} + \rho g (h + a) \cdot 2a^{2}$$

$$F_{t} = \rho g 2a^{3} = \rho V g$$

$$F_{t} = \rho g 2a^{3} = \rho V g$$
buoyant force

Archimed's principle:

A body submerged in a fluid is acted (buoyed up) by a force equal to the weight of the displaced fluid.

Equilibrium (under water):
$$\rho_f gV = \rho_w gV \implies \rho_f = \rho_w$$

Equilibrium (floating):
$$\rho_f g V' = \rho_w g V \quad \Rightarrow \quad \frac{V'}{V} = \frac{\rho_w}{\rho_f}$$

$$mg = 0.285 \,\mathrm{N}$$
 $T = 0.855 \,\mathrm{N}$ $\rho - ?$

$$\rho = \rho_w \left(1 + \frac{T}{mg} \right)^{-1} \approx 0.25 \times 10^3 \text{ kg/m}^3$$

Surface tension

$$\sigma = \frac{dE}{dA}$$

 $\sigma = \frac{dE}{dA} \quad \text{- specific surface energy}$

$$[\sigma] = \frac{J}{m^2} = \frac{N}{m}$$
 - surface tension

$$\Delta U_g = -mg\Delta y$$

$$\Delta U_s = -\sigma (A_f - A_i) = -\sigma \cdot l \Delta y \cdot 2$$

$$\sigma = \frac{mg}{2l}$$

$$dU_s = \sigma \Big(4\pi (R + dR)^2 - 4\pi R^2 \Big)$$

$$F = -\frac{dU_s}{dR} \qquad F = \frac{P}{A}$$

$$P_{\text{cohesive}} = \frac{2\sigma}{R}$$

Capillary effects

The Young equation:

$$\sigma_{\rm lg}\cos\theta_{\rm c} + \sigma_{\rm sl} = \sigma_{\rm sg}$$

Contact	Degree of	Strength of interaction:	
angle	wetting	SolLiq.	LiqLiq.
$\theta = 0$	Perfect wetting	strong	weak
0 < θ < 90°	high wettability	strong	strong
		weak	weak
90°≤θ<180°	low wettability	weak	strong
θ = 180°	perfectly non-wetting	weak	strong

$$\sigma\cos\theta_c\cdot 2\pi R = \pi R^2 h \rho_l g$$

$$h = \frac{2\sigma\cos\theta_c}{\rho_l gR}$$
 capillary action

Viscous flow

$$f_{v} = -\eta A \frac{\Delta v}{\Delta z} = -\eta A \frac{dv}{dz}$$

viscosity or dynamic viscosity

$$F_{\text{net,p}} + f_v = 0$$

$$F_{\text{net,p}} = -\Delta P \cdot \pi r_a^2$$

$$f_v = \eta \cdot 2\pi r_a \Delta x \frac{dv}{dr_a}$$

$$\int_{P}^{r} r_a dr_a = \frac{2\eta \Delta x}{\Delta P} \int_{0}^{v_r} dv$$

laminar flow

$$v_r = -\frac{\left(R^2 - r^2\right)}{4\eta} \frac{\Delta P}{\Delta x}$$

Hagen-Poiseuille law:

$$I_{v} = -\frac{\pi}{8\eta} \frac{\Delta P}{\Delta x} R^{4}$$

Continuity

$$\Delta V = A_1 v_1 \Delta t = A_2 v_2 \Delta t$$

$$I_{\scriptscriptstyle V}={\it vA}$$
 - volume flow rate $\,=\,$ constant

- continuity equation

$$v_n A_n = v_t A_t$$

$$\frac{1}{2} m v_n^2 = mgl$$

$$v_t = \left(\frac{d}{D}\right)^2 \sqrt{2gl}$$

$$v_t = 3 \text{ m/s}$$

What pressure should the pump provide?

Bernoulli's equation

$$\Delta U = mgh_1 - mgh_2$$

$$\Delta E_k = \frac{m}{2} \left(v_1^2 - v_2^2 \right)$$

$$W_{2} = \int -F_{2}dx = -P_{2}A_{2}(-\Delta x_{2})$$

$$W_{1} = \int F_{1}dx = P_{1}A_{1}(-\Delta x_{1})$$

$$\Delta W = P_2 V_2 - P_1 V_1 = P_2 V - P_1 V$$

$$P_2V - P_1V = \rho Vgh_1 - \rho Vgh_2 + \frac{1}{2}\rho Vv_1^2 - \frac{1}{2}\rho Vv_2^2$$

$$P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2 = P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2$$

Bernoulli's equation

$$P + \rho g h + \frac{1}{2} \rho v^2 = \text{const}$$

Applications of Bernoulli's equation

$$P_0 + \rho g h \approx P_0 + \frac{1}{2} \rho v_2^2$$

$$v_2 = \sqrt{2gh}$$

Torichelli's law

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$
 $P_1 + \frac{1}{2}\rho v_2^2 = \text{const}$

Magnus effect

Physics of an airfoil

To remember!

- ➤ <u>Pascal's principle</u>: pressure applied to an enclosed liquid is transmitted to any point.
- > <u>Archimed's principle</u>: a body submerged in fluid is buoyed up with a force equal to the weight of the displaced fluid.
- ➤ Intermolecular forces: <u>surface tension</u> and <u>capillarity</u>.
- > For steady-state flow of an incompressible fluid the volume flow rate is constant (continuity).
- ➤ <u>Bernoulli's equation</u> conservation of total mechanical energy applied to fluids.
- ➤ Pouseuille's law: fluid velocity is inversely proportional to the distance from the wall.

