F I S C O G U A R D

HERRAMIENTA DE PREDICCIÓN DE INGRESO Y ANÁLISIS DE RIESGO FISCAL

NUESTROS DATOS

DataSet de UCI Machine Learning Repository

- 14 variables atributo más una variable objetivo.
- Datos demográficos y socioeconómicos recogidos en el censo de EEUU

Column	Non-Null Count	Dtype
age	32561	int64
workclass	32561	object
fnlwgt	32561	int64
education	32561	object
education-num	32561	int64
marital-status	32561	object
occupation	32561	object
relationship	32561	object
race	32561	object
sex	32561	object
capital-gain	32561	int64
capital-loss	32561	int64
hours-per-week	32561	int64
native-country	32561	object
income	32561	object

L I M P P I E Z A Y A N Á L I S I S

EXTRACCIÓN DE VARIABLES

Variables sintéticas, Ordinales y Dummies

Educacion_superior
Edad_ajustada
Extranjero
horas_puesto

ESCALADO Y TRANSFORMACIÓN

Favoreciendo igualdad de magnitudes y redistribución de desplazamientos

BALANCEO DEL TARGET

Método SMOTE

GENERACIÓN DE CLUSTERS

Nueva variable predictora en función de las agrupaciones de un modelo no supervisado

income

0 0.75919

1 0.24081

CORRELACIONES

Despues de generar las variables necesarias y procesar bien nuestra muestra de datos, obtuvimos correlaciones interesantes

M O D E L A D O Y E V A L U A C I Ó N

Seleción de variables Modelos de clasificación y RN

Para decidir que variables eran relevantes y se debían incluir en según qué modelo se utilizó SelectKBest y Feature Importances (Modelos de árboles)

Se pusieron a prueba todos los grandes conocidos en el mundo de algoritmos de clasificación.

precision recall accuracy 0.843697 0.668364 0.678733 SVC CAT 0.871027 0.700191 0.748809 0.735201 **LGBM** 0.823123 0.610788 0.761093 0.854870 0.502808 0.800246 0.560811 0.792489 0.823584 0.737747 0.611287

Evaluación

Resumen de lo encontrado con los diferentes modelos

*El modelo de RN no superó la eficiencia de modelos más sencillos

DECISION

S E L E C C I Ó N D E L M O D E L O

Catboostclassifier fue el modelo que mejores resultados aportó en general y por ello el seleccionado. Foco en el Recall

NUESTRA VISIÓN DE FUTURO

- Datos robustos que nos dan una base sólida sobre la que trabajar
- Clasificador "ligero" que nos asegurará identificar en un 70 % a los individuos que cobren por encima de un rango específico
- Extracción de nuevos datos de relevancia para el organismo contratador
- Desarrollo e implantación de una nueva arquitectura más elaborada para la red neuronal

GRACIAS

Todo el código y los detalles en el repositorio de GitHub