

Public Key Encryption from trapdoor permutations

The RSA trapdoor permutation

# Review: trapdoor permutations

Three algorithms: (G, F, F<sup>-1</sup>)

- G: outputs pk, sk. pk defines a function  $F(pk, \cdot): X \rightarrow X$
- F(pk, x): evaluates the function at x
- F<sup>-1</sup>(sk, y): inverts the function at y using sk

#### **Secure** trapdoor permutation:

The function  $F(pk, \cdot)$  is one-way without the trapdoor sk

# Review: arithmetic mod composites

Let 
$$N = p \cdot q$$
 where p,q are prime 
$$Z_N = \{0,1,2,...,N-1\} \quad ; \quad (Z_N)^* = \{\text{invertible elements in } Z_N \}$$

Facts: 
$$x \in Z_N$$
 is invertible  $\Leftrightarrow$   $gcd(x,N) = 1$ 

- Number of elements in  $(Z_N)^*$  is  $\varphi(N) = (p-1)(q-1) = N-p-q+1$ 

Euler's thm: 
$$\forall x \in (Z_N)^* : x^{\varphi(N)} = 1$$

# The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

# The RSA trapdoor permutation

**G**(): choose random primes  $p,q \approx 1024$  bits. Set **N=pq**. choose integers **e**,**d** s.t. **e** · **d** = **1** (mod  $\phi$ (N)) output pk = (N, e), sk = (N, d)

F( pk, x ): 
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 ; RSA(x) = x<sup>e</sup> (in  $\mathbb{Z}_N$ )

$$F^{-1}(sk, y) = y^d$$
;  $y^d = RSA(x)^d = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^k \cdot x = x^k$ 

# The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

$$Pr[A(N,e,y) = y^{1/e}] < negligible$$

where p,q  $\stackrel{R}{\leftarrow}$  n-bit primes, N $\leftarrow$ pq, y $\stackrel{R}{\leftarrow}$ Z<sub>N</sub>\*

## Review: RSA pub-key encryption (ISO std)

(E<sub>s</sub>, D<sub>s</sub>): symmetric enc. scheme providing auth. encryption.

H:  $Z_N \rightarrow K$  where K is key space of  $(E_s, D_s)$ 

- G(): generate RSA params: pk = (N,e), sk = (N,d)
- E(pk, m): (1) choose random x in  $Z_N$

(2) 
$$y \leftarrow RSA(x) = x^e$$
,  $k \leftarrow H(x)$ 

(3) output  $(y, E_s(k,m))$ 

• **D**(sk, (y, c)): output  $D_s(H(RSA^{-1}(y)), c)$ 

## Textbook RSA is insecure

### Textbook RSA encryption:

- public key: **(N,e)** Encrypt:  $\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$  (in  $Z_N$ )
- secret key: (N,d) Decrypt:  $c^d \rightarrow m$

## Insecure cryptosystem!!

Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme!

# A simple attack on textbook RSA



Suppose k is 64 bits: 
$$k \in \{0,...,2^{64}\}$$
. Eve sees:  $c = k^e$  in  $Z_N$ 

If 
$$\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$$
 where  $\mathbf{k_1}$ ,  $\mathbf{k_2} < 2^{34}$  (prob.  $\approx 20\%$ ) then  $\mathbf{c/k_1}^e = \mathbf{k_2}^e$  in  $\mathbf{Z_N}$ 

Step 1: build table: 
$$c/1^e$$
,  $c/2^e$ ,  $c/3^e$ , ...,  $c/2^{34e}$ . time:  $2^{34}$ 

Step 2: for 
$$k_2 = 0,..., 2^{34}$$
 test if  $k_2^e$  is in table. time:  $2^{34}$ 

Output matching  $(k_1, k_2)$ . Total attack time:  $\approx 2^{40} << 2^{64}$ 

Dan Boneh

**End of Segment**