Devoir 6 devoir pour le 15 mars 2021 version corrigée le 1er mars

Soit $\Sigma = \{a, b, c, d, e, f, g\}$ un alphabet et soit $L_1 = \{w \in \Sigma^* : w \text{ est un palindrome}\}$, $L_2 = \{w \in \{0, 1\}^* : |w|_{01} = |w|_{10}\}$. Utiliser le théorème de Myhill-Nerode pour prouver que

- 1. L_1 n'est pas régulier.
- 2. L_2 est régulier.
- 3. Soit $M=(Q,\Sigma,\delta,s,F)$ l'AFD défini par $\Sigma=\{a,b,c\},\ Q=\{q_0,\dots,q_8\},\ s=q_0,\ F=\{q_1,q_8\}$ et

	a	b	С
q_0	q_2	q_3	q_5
\mathbf{q}_1	q_8	q_8	q_4
q_2	q_2	q_2	q_1
q_3	q_3	q_3	q_1
q_4	q_4	q_4	q_4
q_5	q_4	q_4	q_6
q_6	q_4	q_4	q_4
q_7	q_7	q_7	q_1
$\mathbf{q_8}$	q_8	q_8	q_7

- (a) Quel est le langage L=L(M)? Décrivez-le par une expression régulière.
- (b) Trouvez l'automate minimal pour L voir page 2!).
- (c) Utiliser votre connaissance de L pour trouver les classes d'équivalence de R_L et donc l'AFD minimal pour L. Comparez avec votre réponse obtenue dans 3b

Utilisez le tableau suivant (ou facsimile) pour montrer les itérations nécessaires et définissez clairement l'automate minimal. N'oubliez pas de dire dans l'automate minimal quels états de l'aitomate de départ sont identifiés.

Pour vous aider. les états acceptant sont en gras.

8									
7									
6									
5									
4									
3									
2									
1									
0									
	0	1	2	3	4	5	6	7	8