Homework 7

Chandler Swift

March 7, 2019

- 12 Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one:
 - (a) f(n) = n 1 is one-to-one:

Proof. Let $a, b \in \mathbb{Z}$, where f(a) = f(b). Since f(a) = f(b), a - 1 = b - 1. Adding 1 to both sides, a = b, so the elements are the same, and the sets are one-to-one.

- (b) $f(n) = n^2 + 1$ is not one-to-one, as both f(1) = f(-1) = 2.
- (c) $f(n) = n^3$ is one-to-one:

Proof. Let $a, b \in \mathbb{Z}$, where f(a) = f(b). Since f(a) = f(b), $a^3 = b^3$. Taking the cube root of each side, a = b, so the elements are the same, and therefore the sets are one-to-one.

- (d) $f(n) = \lceil n/2 \rceil$ is not one-to-one, as f(1) = f(2) = 1.
- 20 Give an example of a function from $\mathbb N$ to $\mathbb N$ which is
 - (a) one-to-one but not onto: $f(n) = n^2$
 - (b) onto but not one-to-one: $f(n) = \lceil n/2 \rceil$
 - (c) both onto and one-to-one (but diff erent from the identity function):

$$f(n) = \begin{cases} f(n) = n+1 & n \text{ is even} \\ f(n) = n-1 & n \text{ is odd} \end{cases}$$

- (d) neither one-to-one nor onto: f(n) = 0
- 22b Determine whether $f(x) = -3x^2 + 7$ is a bijection from \mathbb{R} to \mathbb{R} . This function is not a bijection, as f(1) = f(-1) = 4.
- 22c Determine whether f(x) = (x+1)/(x+2) is a bijection from \mathbb{R} to \mathbb{R} . This is not a function as f(-2) is undefined, which means it is also not a bijection. Additionally, there is no $x \in \mathbb{R}$ such that $f(x) = \frac{1}{2}$.
- 30 Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if
 - (a) f(x) = 1: $\{1, 1, 1, 1, 1\} = \{1\}$

- (b) f(x) = 2x + 1: $\{-1, 1, 5, 9, 15\}$
- (c) $f(x) = \lceil x/5 \rceil$: $\{0, 0, 1, 1, 2\} = \{0, 1, 2\}$
- (d) $f(x) = \lfloor (x^2 + 1)/3 \rfloor$: $\{0, 0, 1, 5, 16\} = \{0, 1, 5, 16\}$
- 36 If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.

Yes (assuming both have the same domain and codomain)

Proof. Suppose g is not one-to-one. Then there exists some x, y where $x \neq y$ in the domain of g where g(x) = (g)y. Because functions produce equal output for equal input, since g(x) = g(y), then f(g(x)) = f(g(y)), despite $x \neq y$. But we said $f \circ g$ is one-to-one: a contradiction! Therefore g must be one-to-one.

- 42 Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that
 - (a) $f(S \cup T) = f(S) \cup f(T)$

Proof. Let $x \in f(S) \cup f(T)$. Since $x \in f(S \cup T)$, then either $x \in f(S)$ or $x \in f(T)$. If $x \in f(S)$, then there exists some y in A such that f(y) = x. Since $y \in S \cup T$, either $y \in S$ or $y \in T$, so $y \in S \cup T$, and then $f(y) \in f(S \cup T)$. Thus, $f(S) \cup f(T) \subset f(S \cup T)$.

Similarly, let $x \in f(S \cup T)$. So there exists some $y \in A$ such that f(y) = x, so y is in $S \cup T$. This means that either $y \in S$ or $y \in T$, so $f(y) \in f(S)$ or f(y)inf(T). Thus, $f(S \cup T) \subset f(S) \cup f(T)$.

Since both are subsets of the other, $f(S \cup T) = f(S) \cup f(T)$.

(b) $F(S \cap T) \subset f(S) \cap f(T)$

Proof. Let $x \in f(S \cap T)$. Then $\exists y \in A$ such that f(y) = x. So $y \in S \cap T$, meaning that $y \in S$ and $y \in T$. Then $f(y) \in f(S) \wedge f(y) \in f(T)$, making $F(S \cap T) \subset f(S) \cap f(T)$.

- 76 Prove or disprove each of these statements:
 - (a) True

Proof. Let the integer n be the ceiling of x. Since n is an integer, the floor of n is $n = \lceil x \rceil$.

- (b) False: x = y = 1.5
- (c) True

Proof. Let the ceiling of x/4 be n, so $n-1 < x/4 \le n$, and $2n-2 < 2/x \le 2n$.

- (d) False: x = 3.5
- (e) True