Metody numeryczne 2021/2022: lista 1

- 1. Znajdź rozwinięcie binarne liczb:
 - (a) 13
 - (b) 175
- 2. Znajdź rozwinięcie binarne następujących liczb:
 - (a) 1/10
 - (b) 1/3
 - (c) 1.5_{10} (indeks 10 oznacza, że liczba podana jest w systemie dziesiętnym)
- 3. Tymczasowo przyjmijmy następującą (uproszczoną) reprezentację liczb zmiennoprzecinkowych:

$$x = \underbrace{(s_m)}_{\text{znak}} \underbrace{b_{m1} b_{m2} b_{m3} b_{m4}}_{\text{mantysa}} \underbrace{(s_w) b_{w1} b_{w2}}_{\text{wykładnik}} = (-1)^{s_m} \left(\frac{b_{m1}}{2} + \frac{b_{m2}}{4} + \frac{b_{m3}}{8} + \frac{b_{m4}}{16} \right) \times 2^{(-1)^{s_w} (2 \cdot b_{w1} + 1 \cdot b_{w2})}.$$

Ponadto, zastosujmy najprostszą możliwą metodę zaokrąglania – przy konwersji liczb i podczas kroków pośrednich obliczeń odrzucamy wszelkie "nadmiarowe" bity (urywanie), np. (0)101011101(1)10 \rightarrow (0)1010(1)10. Używając tego formatu zapisu, oblicz $r=x_1-x_2$, gdzie $x_1=0.50000$ i $x_2=0.46875$. Porównaj rezultat z wynikiem dokładnym.

- 4. Załóżmy, że liczby x i y są obarczone błędami, odpowiednio δx i δy . Omów, jak te błędy wpływają na wielkości (a) x+y, (b) x-y, (c) $x\cdot y$, (d) x/y.
- 5. Przybliżmy pochodną funkcji f w punkcie x przez iloraz $\frac{f(x+h)-f(x)}{h}$. Przyjmij, że względne błędy wynikające z zaokrągleń są rzędu (a) 10^{-16} i (b) 10^{-7} (skąd te wartości?). Jakie są pozostałe źródła niepewności? Dobierz optymalną wartość h dla przypadków (a) i (b).
- 6. (Zadanie numeryczne NUM1) Napisz program wyliczający przybliżenie pochodnej ze wzorów:
 - (a) $D_h f(x) \equiv \frac{f(x+h) f(x)}{h}$,
 - (b) $D_h f(x) \equiv \frac{f(x+h) f(x-h)}{2h}$.

Przeanalizuj, jak zachowuje się błąd $|D_h f(x) - f'(x)|$ dla funkcji $f(x) = \cos(x)$ oraz punktu x = 0.3 przy zmianie parametru h dla różnych typów zmiennoprzecinkowych (float, double). Wykreśl $|D_h f(x) - f'(x)|$ w funkcji h w skali logarytmicznej. Poeksperymentuj również używając innych funkcji.

- 7. Pokaż, że norma indukowana macierzy $||\mathbf{A}||_{pq} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_q}{||\mathbf{x}||_p}$ jest istotnie normą $(p, q = 1, 2, \infty)$.
- 8. Znajdź normę (indukowaną przez normę euklidesową) macierzy

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

9. (trudniejsze zadanie) Znajdź normę (indukowaną przez normę euklidesową) macierzy

$$\mathbf{C} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right).$$

- 10. Pokaż, że współczynnik uwarunkowania $\kappa = ||\mathbf{A}|| \cdot ||\mathbf{A}^{-1}||$ macierzy symetrycznej rzeczywistej \mathbf{A} można wyrazić za pomocą jej wartości własnych λ_i jako $\kappa = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}$.
- 11. Zadana jest macierz

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1.000001 \end{array} \right).$$

Rozwiąż dwa układy równań $\mathbf{A}\mathbf{x} = \mathbf{y}_1$ i $\mathbf{A}\mathbf{x} = \mathbf{y}_2$ przyjmując $\mathbf{y}_1 \equiv (8, 8)$ oraz $\mathbf{y}_1 \equiv (8, 8.00001)$. Porównaj i przedyskutuj wyniki. W tym celu wyznacz współczynnik uwarunkowania macierzy \mathbf{A} .

1

12. (Zadanie numeryczne NUM2) Zadane są macierze

$$\mathbf{A}_1 = \left(\begin{array}{cccccc} 2.40827208 & -0.36066254 & 0.80575445 & 0.46309511 & 1.20708553 \\ -0.36066254 & 1.14839502 & 0.02576113 & 0.02672584 & -1.03949556 \\ 0.80575445 & 0.02576113 & 2.45964907 & 0.13824088 & 0.0472749 \\ 0.46309511 & 0.02672584 & 0.13824088 & 2.05614464 & -0.9434493 \\ 1.20708553 & -1.03949556 & 0.0472749 & -0.9434493 & 1.92753926 \end{array} \right)$$

oraz

$$\mathbf{A}_2 = \left(\begin{array}{ccccc} 2.61370745 & -0.6334453 & 0.76061329 & 0.24938964 & 0.82783473 \\ -0.6334453 & 1.51060349 & 0.08570081 & 0.31048984 & -0.53591589 \\ 0.76061329 & 0.08570081 & 2.46956812 & 0.18519926 & 0.13060923 \\ 0.24938964 & 0.31048984 & 0.18519926 & 2.27845311 & -0.54893124 \\ 0.82783473 & -0.53591589 & 0.13060923 & -0.54893124 & 2.6276678 \end{array}\right)$$

Zdefiniujmy wektory $\mathbf{b} \equiv (5.40780228, 3.67008677, 3.12306266, -1.11187948, 0.54437218)^T$ oraz $\mathbf{b}' \equiv \mathbf{b} + (10^{-5}, 0, 0, 0, 0)^T$. Używając wybranego pakietu algebry komputerowej lub biblioteki numerycznej, rozwiąż równania $\mathbf{A}_i \mathbf{y}_i = \mathbf{b}$ oraz $\mathbf{A}_i \mathbf{y}_i' = \mathbf{b}'$ dla i = 1, 2. Wyznacz $\Delta_i \equiv ||\mathbf{y}_i - \mathbf{y}_i'||_2$ oraz zinterpretuj różnicę wartości Δ_1 i Δ_2 .