BIS_19, ИУ7-53Б, Авдейкина Валерия

СОДЕРЖАНИЕ

ВВЕДЕНИЕ			•
0.1	Обзор	вейвлет-шума	4
Обзор	метод	а вейвлет-шума	4
	0.1.1	Получение из R^{\downarrow}	4
	0.1.2	Получение $R^{\downarrow}\uparrow$	
	0.1.3	Получение N	١
СПИС	сок и	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	6

ВВЕДЕНИЕ

За последние 15 лет генерация текстур не перестала быть актуальной задачей компьютерной графики и упоминается в (источники). Таким образом, возникает необходимость нахождения методов, которые позволят облегчить решение этой задачи.

Существует ряд методов, суть которых заключается в использовании шумов — генераторов последовательностей случайных чисел [1]. Одним из таких методов является метод вейвлет-шума (вейвлет-шум), который будет рассмотрен далее [2; 3].

0.1 Обзор вейвлет-шума

Вейвлет-шум основывается на вейвлет-функциях – функции независимой переменной, имеющие вид коротких волн (то есть, их среднее значение равно нулю), которые можно сдвигать и масштабировать вдоль оси независимой переменной с помощью соответствующих параметров [4—6].

Пример вейвлета можно наблюдать на рис. 1.

[рисунок 1 – пример графика вейвлет функции]

Множество вейвлетов, которые могут быть получены с помощью линейной комбинации некоторых функций, называется семейством вейвлетов, а эти функции – базисными функциями семейства. [4—7].

Входными данными метода будет являться изображение R

Выходными данными метода будет являться изображение N

Авторы [2] представляют алгоритм вейвлет-шума тремя семантическими шагами:

- 1. получение R^{\downarrow} ;
- 2. получение $R^{\downarrow} \uparrow$;
- 3. получение N.

Пример визуализации получения результата алгоритма можно наблюдать на рис. 2.

[рисунок 2 — пример визуализации получения из R[N]

В [2] авторы вводят следующие операции: повышение разрешения изображения, повышение разрешения изображения, вычитание изображений. Если изображение X представляется с помощью последовательности $X=(...,x_i,...)$, где x_i – число, то упомянутые операции можно представить как ... [описание операций]

Тогда представленные ранее шаги можно рассмотреть более подробно.

0.1.1 Получение из R^{\downarrow}

Пусть R представлено формулой 2

[формула 2 - R через свои коэф-ты]

Используя операцию понижения разрешения и используя формулу 2:

[формула $3-R^{\downarrow},\,r^{\downarrow},$ коэффициенты из R]

0.1.2 Получение $R^{\downarrow}\uparrow$

Используя операцию повышения разрешения и используя формулу 3: [формула $4-R^{\downarrow}\uparrow,\,r^{\downarrow}\uparrow,$ коэффициенты из R]

0.1.3 Получение N

[еще парочка формул и их описание, но у меня прокрастинаторские лапки и я пишу это в 21.58]

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. A Survey of Procedural Noise Functions [Электронный ресурс]. URL: https://doi.org/10.1111/j.1467-8659.2010.01827.x (дата обращения: 11.11.2023).
- 2. Robert L. Cook T. D. Wavelet Noise [Электронный ресурс]. URL: https://graphics.pixar.com/library/WaveletNoise/paper.pdf (дата обращения: 11.11.2023).
- 3. Procedural Noise/Categories [Электронный ресурс]. URL: https://physbam.stanford.edu/cs448x/old/Procedural_Noise(2f)Categories. html (дата обращения: 11.11.2023).
- 4. Л. С. Крыжевич В. Г. К. ЗАДАЧА ОЧИСТКИ ИЗОБРАЖЕНИЯ ОТ ШУМА И ВЕЙВЛЕТ-ПОДХОДЫ К ЕЕ РЕШЕНИЮ // АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ В ОБЛАСТИ МАТЕМАТИКИ, ИНФОРМАТИКИ, ФИЗИКИ И МЕТОДИКИ ИХ ИЗУЧЕНИЯ В СОВРЕМЕННОМ ОБРАЗОВАТЕЛЬНОМ ПРОСТРАНСТВЕ. 2016. Т. 1, № 1. С. 39—44.
- 5. *Смоленцев Н. К.* Основы теории вейвлетов. Вейвлеты в MATLAB. Москва : ДМК Пресс, 2014. С. 628.
- 6. $\mathit{Малла}\ \mathit{C}.$ Вэйвлеты в обработке сигналов. Москва : Мир, 2005. С. 671.
- 7. Meyer Y. Wavelets: Algorithms and applications. Philadelphia : S.I.A.M., 1993. C. 129.