Typically-Correct Derandomization for Small Time and Space

 $\frac{3/21/18}{\text{HUJI CS Theory Seminar}}$

¹Supported by the NSF GRFP under Grant No. DGE1610403.

Time, space, and randomness

▶ Suppose $L \in \mathbf{BPTISP}(T, S)$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem [Klivans, van Melkebeek '02]:

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem [Klivans, van Melkebeek '02]:
 - Assume SAT has exponential circuit complexity

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem [Klivans, van Melkebeek '02]:
 - Assume SAT has exponential circuit complexity
 - ▶ Then $L \in \mathbf{DTISP}(\mathsf{poly}(T), S)$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ▶ Theorem [Klivans, van Melkebeek '02]:
 - Assume SAT has exponential circuit complexity
 - ▶ Then $L \in \mathbf{DTISP}(\mathsf{poly}(T), S)$
- ► **Theorem** [Nisan, Zuckerman '96]:

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ▶ Theorem [Klivans, van Melkebeek '02]:
 - Assume SAT has exponential circuit complexity
 - ▶ Then $L \in \mathbf{DTISP}(\mathsf{poly}(T), S)$
- ► **Theorem** [Nisan, Zuckerman '96]:
 - ▶ Suppose $S \ge T^{\Omega(1)}$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ▶ Theorem [Klivans, van Melkebeek '02]:
 - Assume SAT has exponential circuit complexity
 - ▶ Then $L \in \mathbf{DTISP}(\mathsf{poly}(T), S)$
- ► **Theorem** [Nisan, Zuckerman '96]:
 - ▶ Suppose $S > T^{\Omega(1)}$
 - ▶ Then $L \in \mathbf{DSPACE}(S)$

(runtime $2^{\Theta(S)}$)

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - $S = S(n) \ge \log n$
- ► Theorem:

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem:
 - ▶ Suppose $T \le n \cdot \text{poly}(S)$

▶ Think $T = \widetilde{O}(n)$, $S = O(\log n)$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem:
 - ▶ Suppose $T \le n \cdot \text{poly}(S)$
 - ► Then there is a **DSPACE**(S) algorithm for L...

▶ Think $T = \widetilde{O}(n)$, $S = O(\log n)$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem:
 - ▶ Suppose $T \le n \cdot \text{poly}(S)$
 - ► Then there is a **DSPACE**(S) algorithm for L...
 - …that succeeds on the vast majority of inputs of each length.
- ▶ Think $T = \widetilde{O}(n)$, $S = O(\log n)$

- ▶ Suppose $L \in \mathbf{BPTISP}(T, S)$
 - $T = T(n) \ge n$
 - ▶ $S = S(n) \ge \log n$
- ► Theorem:
 - ▶ Suppose $T \le n \cdot \text{poly}(S)$
 - ► Then there is a **DSPACE**(S) algorithm for L...
 - …that succeeds on the vast majority of inputs of each length.
- ▶ Think $T = \widetilde{O}(n)$, $S = O(\log n)$
 - ▶ [Saks, Zhou '95]: Space $\Theta(\log^{1.5} n)$

- - ▶ If only we had some randomness...

- ▶ Is $110100001101001111100101011111011010100011100 \in L$?
 - If only we had some randomness...

▶ Let A be a randomized algorithm

- - ▶ If only we had some randomness...

- Let A be a randomized algorithm
- ▶ Naïve derandomization: Run A(x,x)

- ▶ Is $1101000011010011111001010110111011010100011100 \in L$?
 - If only we had some randomness...

- ▶ Let A be a randomized algorithm
- ▶ Naïve derandomization: Run A(x,x)
- ▶ Might fail on all x because of correlations between input, coins

1. Find algorithm A where most random strings are good for all inputs simultaneously

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ► [Goldreich, Wigderson '02]: Undirected s-t connectivity

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ▶ [Goldreich, Wigderson '02]: Undirected s-t connectivity
 - ► [Arvind, Torán '04]: Solvable group isomorphism

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ► [Goldreich, Wigderson '02]: Undirected s-t connectivity
 - ► [Arvind, Torán '04]: Solvable group isomorphism
- 2. Extract randomness from input using specialized extractor

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ► [Goldreich, Wigderson '02]: Undirected s-t connectivity
 - [Arvind, Torán '04]: Solvable group isomorphism
- 2. Extract randomness from input using specialized extractor
 - ▶ [Zimand '08]: Sublinear time algorithms

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ► [Goldreich, Wigderson '02]: Undirected s-t connectivity
 - [Arvind, Torán '04]: Solvable group isomorphism
- 2. Extract randomness from input using specialized extractor
 - ► [Zimand '08]: Sublinear time algorithms
 - [Shaltiel '11]: Two-party communication protocols, streaming algorithms, BPAC⁰

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ► [Goldreich, Wigderson '02]: Undirected s-t connectivity
 - [Arvind, Torán '04]: Solvable group isomorphism
- 2. Extract randomness from input using specialized extractor
 - ► [Zimand '08]: Sublinear time algorithms
 - [Shaltiel '11]: Two-party communication protocols, streaming algorithms, BPAC⁰
- 3. Plug input into seed-extending pseudorandom generator

- 1. Find algorithm A where most random strings are good for all inputs simultaneously
 - ► [Goldreich, Wigderson '02]: Undirected s-t connectivity
 - ► [Arvind, Torán '04]: Solvable group isomorphism
- 2. Extract randomness from input using specialized extractor
 - ▶ [Zimand '08]: Sublinear time algorithms
 - [Shaltiel '11]: Two-party communication protocols, streaming algorithms, BPAC⁰
- 3. Plug input into seed-extending pseudorandom generator
 - ► [Kinne, van Melkebeek, Shaltiel '12]: Multiparty communication protocols, **BPAC**⁰ with symmetric gates

Our technique: "Out of sight, out of mind"

1101000011010011111001010110111011010100011100

Our technique: "Out of sight, out of mind"

► Use part of the input as a source of randomness while *A* is processing the rest of the input

Our technique: "Out of sight, out of mind"

► Use part of the input as a source of randomness while *A* is processing the rest of the input

(Additional ideas needed to make this work...)

Randomness extractors

 $lackbox (k,arepsilon) ext{-extractor Ext}:\{0,1\}^\ell imes\{0,1\}^d o\{0,1\}^s$

Randomness extractors

- (k, ε) -extractor Ext : $\{0, 1\}^{\ell} \times \{0, 1\}^{d} \rightarrow \{0, 1\}^{s}$
- ► Assume X has "at least k bits of randomness" (min-entropy)

Randomness extractors

- (k, ε) -extractor Ext : $\{0,1\}^{\ell} \times \{0,1\}^{d} \rightarrow \{0,1\}^{s}$
- ► Assume X has "at least k bits of randomness" (min-entropy)
- Assume Y is uniform random, independent of X

Randomness extractors

- (k, ε) -extractor Ext : $\{0,1\}^{\ell} \times \{0,1\}^{d} \rightarrow \{0,1\}^{s}$
- ► Assume X has "at least k bits of randomness" (min-entropy)
- Assume Y is uniform random, independent of X
- ▶ Then $\operatorname{Ext}(X,Y) \sim_{\varepsilon} U_s$

Randomness extractors

- (k, ε) -extractor Ext : $\{0,1\}^{\ell} \times \{0,1\}^{d} \rightarrow \{0,1\}^{s}$
- ► Assume X has "at least k bits of randomness" (min-entropy)
- Assume Y is uniform random, independent of X
- ▶ Then $\operatorname{Ext}(X,Y) \sim_{\varepsilon} U_s$
- ▶ Think $s \approx k$ and $d \approx \log(\ell/\varepsilon)$.

► Length = length of longest path

- ► Length = length of longest path
- ► Size = # vertices

- ► Length = length of longest path
- ► Size = # vertices
- ▶ Time $\widetilde{O}(n)$, space $O(\log n) \implies \text{length } \widetilde{O}(n)$, size poly(n)

- ▶ Length = length of longest path
- ► Size = # vertices
- ▶ Time $\widetilde{O}(n)$, space $O(\log n)$ \Longrightarrow length $\widetilde{O}(n)$, size poly(n)

▶ $\mathcal{P}(v; x, y)$ = the terminal vertex reached if you start from vertex v, read input $x \in \{0, 1\}^n$, use random bits $y \in \{0, 1\}^T$

Nisan's generator

▶ **Theorem** (Nisan '92): There is a pseudorandom generator

NisGen:
$$\{0,1\}^s \to \{0,1\}^T$$
 (1)

that fools programs of size poly(n):

$$\mathcal{P}(v; x, U_T) \sim_{\varepsilon} \mathcal{P}(v; x, \mathsf{NisGen}(U_s))$$
 (2)

Nisan's generator

▶ **Theorem** (Nisan '92): There is a pseudorandom generator

NisGen:
$$\{0,1\}^s \to \{0,1\}^T$$
 (1)

that fools programs of size poly(n):

$$\mathcal{P}(v; x, \mathbf{U_T}) \sim_{\varepsilon} \mathcal{P}(v; x, \mathsf{NisGen}(U_s))$$
 (2)

• Seed length $s = O(\log^2 n)$

Nisan's generator

▶ **Theorem** (Nisan '92): There is a pseudorandom generator

NisGen:
$$\{0,1\}^s \to \{0,1\}^T$$
 (1)

that fools programs of size poly(n):

$$\mathcal{P}(v; x, \frac{U_T}{V}) \sim_{\varepsilon} \mathcal{P}(v; x, \mathsf{NisGen}(U_s))$$
 (2)

- ▶ Seed length $s = O(\log^2 n)$
- ▶ Runs in space $O(\log n)$ given two-way access to seed

► **Theorem**: Suppose we're given

- ► **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$

- ► **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0,1\}^n$

- ► **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0,1\}^n$
 - ▶ Initial vertex v_0 .

- ► **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0,1\}^n$
 - ▶ Initial vertex v_0 .

Can approximately sample from $\mathcal{P}(v_0; x, U_T)$ using

- ▶ **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0,1\}^n$
 - ▶ Initial vertex *v*₀.

Can approximately sample from $\mathcal{P}(v_0; x, U_T)$ using

► Space $O(\log n)$

- ▶ **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0,1\}^n$
 - ▶ Initial vertex v_0 .

Can approximately sample from $\mathcal{P}(v_0; x, U_T)$ using

- ► Space $O(\log n)$
- ► Randomness polylog *n*

- ▶ **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0,1\}^n$
 - ▶ Initial vertex *v*₀.

Can approximately sample from $\mathcal{P}(v_0; x, U_T)$ using

- ► Space $O(\log n)$
- Randomness polylog n (one-way access!)

- ▶ **Theorem**: Suppose we're given
 - ▶ Program \mathcal{P} of size poly(n), length $T = \widetilde{O}(n)$
 - ▶ Input $x \in \{0, 1\}^n$
 - ▶ Initial vertex *v*₀.

Can approximately sample from $\mathcal{P}(v_0; x, U_T)$ using

- ► Space $O(\log n)$
- ► Randomness polylog *n* (one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Restriction of a program

Restriction of a program

Restriction of a program

110100001101001111001010110111011010100011100

110100001101001111001010110111011010100011100

1. Initialize $v := v_0$. Repeat polylog(n) times:

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$ 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$ 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$

 - 1.3 Let $z = NisGen(Ext(x|_I, y))$

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

2. Output *v*

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

2. Output v

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

- 2. Output v
- ► Runs in $O(\log n)$ space!

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

- 2. Output *v*
- ► Runs in $O(\log n)$ space!
 - $O(\log n)$ bits to store I, y, v

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

- 2. Output *v*
- ► Runs in $O(\log n)$ space!
 - $O(\log n)$ bits to store I, y, v
 - $ightharpoonup O(\log n)$ bits to run Ext, NisGen

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

- 2. Output *v*
- ► Runs in O(log n) space!
 - $O(\log n)$ bits to store I, y, v
 - $ightharpoonup O(\log n)$ bits to run Ext, NisGen
- ▶ We can give NisGen two-way access to its seed, because we have two-way access to x

- 1. Initialize $v := v_0$. Repeat polylog(n) times:
 - 1.1 Pick a random contiguous block $I \subseteq [n]$
 - 1.2 Pick a random $y \in \{0,1\}^{O(\log n)}$
 - 1.3 Let z = NisGen(Ext(x|I, y))
 - 1.4 Update

$$v:=\mathcal{P}|_{[n]\setminus I}(v;x,z)$$

- 2. Output *v*
- ► Runs in $O(\log n)$ space!
 - $O(\log n)$ bits to store I, y, v
 - ▶ O(log n) bits to run Ext, NisGen
- We can give NisGen two-way access to its seed, because we have two-way access to x
- ► Randomness polylog *n* (one-way access!)

Extractors are good samplers

▶ **Lemma** [Zuckerman '97]:

Extractors are good samplers

- ► **Lemma** [Zuckerman '97]:
 - ▶ Suppose Ext : $\{0,1\}^{\ell} \times \{0,1\}^{d} \rightarrow \{0,1\}^{s}$ is a (k,ε) -extractor

Extractors are good samplers

- ▶ **Lemma** [Zuckerman '97]:
 - ▶ Suppose Ext : $\{0,1\}^{\ell} \times \{0,1\}^{d} \to \{0,1\}^{s}$ is a (k,ε) -extractor
 - ▶ For any $F: \{0,1\}^s \to V$, for most x,

$$F(U_s) \sim_{\varepsilon \cdot |V|/2} F(\operatorname{Ext}(x, U_d)).$$

Extractors are good samplers

- ▶ Lemma [Zuckerman '97]:
 - ▶ Suppose Ext : $\{0,1\}^{\ell} \times \{0,1\}^{d} \to \{0,1\}^{s}$ is a (k,ε) -extractor
 - ▶ For any $F: \{0,1\}^s \to V$, for most x,

$$F(U_s) \sim_{\varepsilon \cdot |V|/2} F(\operatorname{Ext}(x, U_d)).$$

 $\blacktriangleright \ (\# \ \mathsf{bad} \ x \le 2^{k+1} |V|)$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

First hybrid distribution

1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n] \setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let $z = NisGen(Ext(x|_I, y))$
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$
- # bad x bounded by

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$
- # bad x bounded by

$$\underbrace{\left(2^{O(\log^2 n)} \cdot \mathsf{poly}(n)\right)}_{\# \mathsf{bad} \times |_I}$$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$
- # bad x bounded by

$$\underbrace{(2^{O(\log^2 n)} \cdot \operatorname{poly}(n))}_{\text{\# bad } x|_I} \cdot \underbrace{(2^{n - \log^{100} n})}_{\text{\# } x|_{[n] \setminus I}}.$$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$
- # bad x bounded by

$$\underbrace{\left(2^{O(\log^2 n)} \cdot \operatorname{poly}(n)\right)}_{\text{\# bad } x|_I} \cdot \underbrace{\left(2^{n-\log^{100} n}\right)}_{\text{\# } x|_{[n]\setminus I}} \cdot \underbrace{\left(n\right)}_{\text{\# } I}$$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n] \setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$
- # bad x bounded by

$$\underbrace{(2^{O(\log^2 n)} \cdot \operatorname{poly}(n))}_{\# \operatorname{bad} x|_I} \cdot \underbrace{(2^{n - \log^{100} n})}_{\# x|_{[n] \setminus I}} \cdot \underbrace{(n)}_{\# I} \cdot \underbrace{(\operatorname{poly}(n))}_{\# v}$$

True algorithm

- 1. Pick random $y \in \{0,1\}^{O(\log n)}$
- 2. Let z = NisGen(Ext(x|I, y))
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n] \setminus I}(v; x, z)$
- ► Consider $F(y') = \mathcal{P}|_{[n]\setminus I}(v; x, \mathsf{NisGen}(y'))$
- # bad x bounded by

$$\underbrace{\left(2^{O(\log^2 n)} \cdot \operatorname{poly}(n)\right)}_{\text{\# bad } x|_I} \cdot \underbrace{\left(2^{n-\log^{100} n}\right)}_{\text{\# } x|_{[n]\setminus I}} \cdot \underbrace{\left(n\right)}_{\text{\# } I} \cdot \underbrace{\left(\operatorname{poly}(n)\right)}_{\text{\# } v} \ll 2^n$$

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

First hybrid distribution

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

Second hybrid distribution

First hybrid distribution

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

Second hybrid distribution

1. Pick random $z \in \{0,1\}^T$

First hybrid distribution

- 1. Pick random $y' \in \{0,1\}^{O(\log^2 n)}$
- 2. Let z = NisGen(y')
- 3. Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$

Second hybrid distribution

- 1. Pick random $z \in \{0, 1\}^T$
- 2. Update $v := \mathcal{P}|_{[n] \setminus I}(v; x, z)$

Second hybrid distribution

- 1. Initialize $v := v_0$
- 2. Repeat polylog(n) times:
 - 2.1 Pick random $I \subseteq [n]$
 - 2.2 Pick random $z \in \{0, 1\}^T$
 - 2.3 Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- 3. Output *v*

Second hybrid distribution

- 1. Initialize $v := v_0$
- 2. Repeat polylog(n) times:
 - 2.1 Pick random $I \subseteq [n]$
 - 2.2 Pick random $z \in \{0, 1\}^T$
 - 2.3 Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- 3. Output *v*

Target distribution

Second hybrid distribution

- 1. Initialize $v := v_0$
- 2. Repeat polylog(n) times:
 - 2.1 Pick random $I \subseteq [n]$
 - 2.2 Pick random $z \in \{0, 1\}^T$
 - 2.3 Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- 3. Output *v*

Target distribution

1. Pick random $z \in \{0,1\}^T$

Second hybrid distribution

- 1. Initialize $v := v_0$
- 2. Repeat polylog(n) times:
 - 2.1 Pick random $I \subseteq [n]$
 - 2.2 Pick random $z \in \{0, 1\}^T$
 - 2.3 Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- 3. Output *v*

Target distribution

- 1. Pick random $z \in \{0,1\}^T$
- 2. Output $\mathcal{P}(v_0; x, z)$

Second hybrid distribution

- 1. Initialize $v := v_0$
- 2. Repeat polylog(n) times:
 - 2.1 Pick random $I \subseteq [n]$
 - 2.2 Pick random $z \in \{0, 1\}^T$
 - 2.3 Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- 3. Output *v*

Target distribution

- 1. Pick random $z \in \{0, 1\}^T$
- 2. Output $\mathcal{P}(v_0; x, z)$

▶ In each phase, make $n/\log^{100} n$ steps through program w.h.p.

Second hybrid distribution

- 1. Initialize $v := v_0$
- 2. Repeat polylog(n) times:
 - 2.1 Pick random $I \subseteq [n]$
 - 2.2 Pick random $z \in \{0, 1\}^T$
 - 2.3 Update $v := \mathcal{P}|_{[n]\setminus I}(v; x, z)$
- 3. Output v

Target distribution

- 1. Pick random $z \in \{0,1\}^T$
- 2. Output $\mathcal{P}(v_0; x, z)$

- ▶ In each phase, make $n/\log^{100} n$ steps through program w.h.p.
- After polylog(n) phases, reach terminal vertex w.h.p.

Corollary:

- ► Corollary:
 - ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$

Corollary:

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- ► There is a **BPTISP** $(\tilde{O}(n), \log n)$ algorithm for L that uses just polylog n random bits...

Corollary:

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- ► There is a **BPTISP** $(\tilde{O}(n), \log n)$ algorithm for L that uses just polylog n random bits...
- …that succeeds on the vast majority of inputs of each length.

The Nisan-Zuckerman generator

► **Theorem** (Nisan, Zuckerman '96): For every constant *c*, there is a pseudorandom generator

NZGen :
$$\{0,1\}^d \to \{0,1\}^{\log^c n}$$

that fools programs of size poly(n):

$$\mathcal{P}(v; x, U_{\log^c n}) \sim_{\varepsilon} \mathcal{P}(v; x, \mathsf{NZGen}(U_d)).$$

The Nisan-Zuckerman generator

► **Theorem** (Nisan, Zuckerman '96): For every constant *c*, there is a pseudorandom generator

NZGen:
$$\{0,1\}^d \to \{0,1\}^{\log^c n}$$

that fools programs of size poly(n):

$$\mathcal{P}(v; x, \frac{U_{\log^c n}}) \sim_{\varepsilon} \mathcal{P}(v; x, \mathsf{NZGen}(U_d)).$$

▶ Seed length $d \le O(\log n)$

The Nisan-Zuckerman generator

► **Theorem** (Nisan, Zuckerman '96): For every constant *c*, there is a pseudorandom generator

NZGen:
$$\{0,1\}^d \to \{0,1\}^{\log^c n}$$

that fools programs of size poly(n):

$$\mathcal{P}(v; x, U_{\log^c n}) \sim_{\varepsilon} \mathcal{P}(v; x, \mathsf{NZGen}(U_d)).$$

- ▶ Seed length $d \le O(\log n)$
- ► Runs in space $O(\log n)$

▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- Corollary:

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- ▶ Corollary:
 - ► There is a $\mathsf{BPTISP}(\widetilde{O}(n), \log n)$ algorithm for L that uses just $O(\log n)$ random bits...

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- ► Corollary:
 - ► There is a **BPTISP** $(\widetilde{O}(n), \log n)$ algorithm for L that uses just $O(\log n)$ random bits...
 - …that succeeds on the vast majority of inputs of each length.

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- ► Corollary:
 - ► There is a **BPTISP** $(\widetilde{O}(n), \log n)$ algorithm for L that uses just $O(\log n)$ random bits...
 - ▶ ...that succeeds on the vast majority of inputs of each length.
- Corollary:

Eliminating randomness

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- Corollary:
 - ► There is a **BPTISP** $(\widetilde{O}(n), \log n)$ algorithm for L that uses just $O(\log n)$ random bits...
 - …that succeeds on the vast majority of inputs of each length.
- ▶ Corollary:
 - ► There is a **DSPACE**(log *n*) algorithm for *L*...

Eliminating randomness

- ▶ Suppose $L \in \mathbf{BPTISP}(\widetilde{O}(n), \log n)$
- Corollary:
 - ► There is a $\mathsf{BPTISP}(\widetilde{O}(n), \log n)$ algorithm for L that uses just $O(\log n)$ random bits...
 - …that succeeds on the vast majority of inputs of each length.
- ▶ Corollary:
 - ▶ There is a **DSPACE**(log *n*) algorithm for *L*...
 - …that succeeds on the vast majority of inputs of each length.

▶ Adleman's argument shows $BPL \subseteq L/poly$

- lacktriangle Adleman's argument shows $\mathbf{BPL} \subseteq \mathbf{L}/\operatorname{poly}$
- ▶ Fortnow, Klivans '06: **BPL** \subseteq **L**/O(n)

- ▶ Adleman's argument shows $BPL \subseteq L/poly$
- ▶ Fortnow, Klivans '06: **BPL** \subseteq **L**/O(n)
- ► Goldreich, Wigderson '02: Critical threshold at *n* bits of advice

- ▶ Adleman's argument shows $BPL \subseteq L/poly$
- ▶ Fortnow, Klivans '06: **BPL** \subseteq **L**/O(n)
- ► Goldreich, Wigderson '02: Critical threshold at *n* bits of advice
 - ▶ Roughly: Derandomization with < n bits of advice ⇒ typically-correct derandomization with no advice</p>

▶ Theorem: BPL $\subseteq L/(n + O(\log^2 n))$.

- ▶ Theorem: BPL \subseteq L/($n + O(\log^2 n)$).
- ▶ The algorithm: Given $x \in \{0,1\}^n$, $a \in \{0,1\}^{n+O(\log^2 n)}$:

- ▶ Theorem: BPL \subseteq L/($n + O(\log^2 n)$).
- ▶ The algorithm: Given $x \in \{0,1\}^n$, $a \in \{0,1\}^{n+O(\log^2 n)}$:
 - ► For every $y \in \{0,1\}^{O(\log n)}$, run **BPL** algorithm with randomness NisGen(Ext(a,y))

- ▶ Theorem: BPL \subseteq L/($n + O(\log^2 n)$).
- ▶ The algorithm: Given $x \in \{0,1\}^n$, $a \in \{0,1\}^{n+O(\log^2 n)}$:
 - ► For every $y \in \{0,1\}^{O(\log n)}$, run **BPL** algorithm with randomness NisGen(Ext(a,y))
 - Output majority answer

- ► Theorem: BPL $\subseteq L/(n + O(\log^2 n))$.
- ▶ The algorithm: Given $x \in \{0,1\}^n$, $a \in \{0,1\}^{n+O(\log^2 n)}$:
 - ► For every $y \in \{0,1\}^{O(\log n)}$, run **BPL** algorithm with randomness NisGen(Ext(a, y))
 - Output majority answer
- ▶ **Proof of correctness**: # bad a bounded by

$$\underbrace{(2^{O(\log^2 n)})}_{\text{bad a for each } x} \cdot \underbrace{(2^n)}_{\text{\# } x} < 2^{|a|}$$

▶ **Theorem**: If $L \in \mathsf{BPL}$ admits a $\mathsf{DSPACE}(\log n)$ algorithm A that fails on ε -fraction of inputs, then

$$L \in \mathbf{L}/(n-\log_2(1/\varepsilon)+O(\log^2 n)).$$

▶ **Theorem**: If $L \in \mathbf{BPL}$ admits a $\mathbf{DSPACE}(\log n)$ algorithm A that fails on ε -fraction of inputs, then

$$L \in \mathbf{L}/(n-\log_2(1/\varepsilon)+O(\log^2 n)).$$

Idea: Run A and algorithm with advice

▶ **Theorem**: If $L \in \mathsf{BPL}$ admits a $\mathsf{DSPACE}(\log n)$ algorithm A that fails on ε -fraction of inputs, then

$$L \in \mathbf{L}/(n-\log_2(1/\varepsilon)+O(\log^2 n)).$$

- ▶ Idea: Run A and algorithm with advice
- Advice only needs to be good for atypical x

▶ **Theorem**: If $L \in \mathsf{BPL}$ admits a $\mathsf{DSPACE}(\log n)$ algorithm A that fails on ε -fraction of inputs, then

$$L \in \mathbf{L}/(n-\log_2(1/\varepsilon)+O(\log^2 n)).$$

- ▶ Idea: Run A and algorithm with advice
- Advice only needs to be good for atypical x
- ▶ (Detail: Make advice algorithm "zero-error" using $RL \subseteq SC$ trick)

Derandomizing quasilinear-time, log-space with advice

► Corollary: For every constant c,

$$\mathsf{BPTISP}(\widetilde{O}(n), \log n) \subseteq \mathsf{L}/(n - \log^c n).$$

Sublinear advice

- ► **BPTISP**_{TM}(*T*, *S*): Time-*T* space-*S* multitape Turing machines
- ▶ **Theorem**: For every constant *c*,

$$\mathsf{BPTISP}_{\mathsf{TM}}(\widetilde{O}(n), \log n) \subseteq \mathbf{L} / \left(\frac{n}{\log^c n}\right).$$

Beyond quasilinear time

► Theorem:

$$\mathsf{BPTISP}_{\mathsf{TM}}(n^{1.99}, \log n) \subseteq \mathsf{L}/(n-n^{\Omega(1)}).$$

▶ Allender et al. '99: Circuit lower bounds ⇒ **NL** = **UL**

- ► Allender et al. '99: Circuit lower bounds ⇒ **NL** = **UL**
- ▶ Reinhard, Allender '00: NL ⊆ UL/ poly

- ► Allender et al. '99: Circuit lower bounds ⇒ **NL** = **UL**
- ▶ Reinhard, Allender '00: NL ⊆ UL/ poly
- ▶ van Melkebeek, Prakriya '17: $NL \subseteq USPACE(\log^{3/2} n)$

- ► Allender et al. '99: Circuit lower bounds ⇒ **NL** = **UL**
- ▶ Reinhard, Allender '00: NL ⊆ UL/ poly
- ▶ van Melkebeek, Prakriya '17: $NL \subseteq USPACE(\log^{3/2} n)$
- ▶ Theorem: $NL \subseteq UL/(n + \log^2 n)$

- ▶ Allender et al. '99: Circuit lower bounds ⇒ **NL** = **UL**
- ▶ Reinhard, Allender '00: NL ⊆ UL/ poly
- ▶ van Melkebeek, Prakriya '17: $NL \subseteq USPACE(\log^{3/2} n)$
- ▶ Theorem: $NL \subseteq UL/(n + \log^2 n)$
- ▶ **Theorem:** For every constant *c*,

$$\mathsf{NTISP}(\widetilde{O}(n), \log n) \subseteq \mathsf{USPACE}(\widetilde{O}(\log n))/(n - \log^c n).$$

Main open problem

► Typically-correct derandomization of **BPL**?

Main open problem

- ► Typically-correct derandomization of **BPL**?
- ▶ Thanks! Questions?