TRIGONOMETRY VOLUME IV

1st SECONDARY

FEEDBACK

Determine el ángulo y/o la razón trigonométrica que falta.

Resolución:

I.
$$sen 30^{\circ}$$
. $csc 30^{\circ} = 1$

II.
$$\cos 50^{\circ}$$
 . $\sec 50^{\circ} = 1$

Recordar:

$$sen \alpha \cdot csc \alpha = 1$$

$$\cos\alpha \cdot \sec\alpha = 1$$

$$\tan \alpha \cdot \cot \alpha = 1$$

2

Complete los casilleros en blanco según corresponda.

Resolución:

$$1. \cos \beta = \frac{3}{5} \qquad \qquad \sec \beta = \boxed{\frac{5}{3}}$$

II.
$$tan\theta = \frac{9}{5}$$
 $cot\theta = \frac{5}{9}$

III.
$$\csc\alpha = 3$$
 $\sec \alpha = \frac{1}{3}$

Recordar:

$$cosx = \frac{a}{b} \implies secx = \frac{b}{a}$$

$$tanx = \frac{m}{n} \longrightarrow cotx = \frac{n}{m}$$

$$senx = \frac{p}{q} \implies cscx = \frac{q}{p}$$

Alessandro y Raúl tienen a y b Resolución: años, respectivamente. $sen(3a + 10)^{\circ} \cdot csc(4a - 7)^{\circ} = 1$ Averigüe quién de los dos es el mayor si se cumplen las siguientes condiciones:

$$sen(3a + 10)^{\circ} \cdot csc(4a - 7)^{\circ} = 1$$

$$tan(5b - 7)^{\circ} \cdot cot(4b + 11)^{\circ} = 1$$

Recordar:

 $sen\alpha \cdot csc\alpha = 1$

 $\tan\alpha \cdot \cot\alpha = 1$

$$sen(3a + 10)^{\circ} \cdot csc(4a - 7)^{\circ} = 3a + 10 = 4a - 7$$

$$10 + 7 = 4a - 3a$$

Alessandro: 17 = a

$$tan(5b - 7)^{\circ} \cdot cot(4b + 11)^{\circ} = 1$$

 $\rightarrow 5b - 5 = 4b + 11$
 $5b - 4b = 11 + 5$
Raúl: $b = 16$

: El mayor es Alessandro

Calcule $M = \frac{a+b}{c}$ si $sen2a = cos70^{\circ}$ $tanb = cot40^{\circ}$ $sec42^{\circ} = csc4c$

Recordar:

$$sen\theta = cos\beta$$

$$tan\theta = cot\beta$$

$$sec\theta = csc\beta$$

Resolución:

 $sen2a = cos70^{\circ}$

$$\rightarrow 2a + 70^{\circ} = 90^{\circ}$$

$$2a = 20^{\circ}$$

$$a = 10^{\circ}$$

$$\rightarrow 42^{\circ} + 4c = 90^{\circ}$$
$$4c = 48^{\circ}$$

$$c = 12^{\circ}$$

4 - - 1-

 $tanb = cot40^{\circ}$

$$\rightarrow b + 40^{\circ} = 90^{\circ}$$

$$b = 50^{\circ}$$

Calculamos:

$$M = \frac{10^{\circ} + 50^{\circ}}{12^{\circ}}$$

$$M = \frac{60^{\circ}}{12^{\circ}}$$

$$\therefore$$
 M = 5

Calcule el valor de sen2n, si

$$\tan(25^{\circ} - 7m) = \cot(2n + 7m + 35^{\circ})$$

Recordar:

$$\mathbf{Si} \, \theta + \beta = 90^{\circ}$$

Resolución:

Por propiedad:

$$25^{\circ} - 7m + 2n + 7m + 35^{\circ} = 90^{\circ}$$

$$2n + 60^{\circ} = 90^{\circ}$$

$$2n = 30^{\circ}$$

$$n = 15^{\circ}$$

Calculamos
$$sen2n = sen2(15^{\circ}) = sen30^{\circ}$$

$$=\frac{1}{2}$$

Si
$$\alpha + \beta = 90^{\circ}$$
, además $\tan \alpha = \frac{5}{7}$; efectúe

$$P = 21\cot\beta - 1$$

Recordar:

$$\mathbf{Si} \ x + y = 90^{\circ}$$

tan x = cot y

Resolución:

Como
$$\alpha + \beta = 90^{\circ}$$
 tan $\alpha = \cot \beta$

Pero
$$\tan \alpha = \frac{5}{7} \rightarrow \cot \beta = \frac{5}{7}$$

Calculamos $P = 21\cot\beta - 1$

$$P = 21 \left(\frac{5}{2}\right) - 1$$

 $\therefore P = 14$

Calcule el valor de $M = \cot(4x + 5^{\circ})$ si

$$sen(4x + 10^{\circ}) \cdot csc(3x + 20^{\circ}) = 1$$

Resolución:

Por propiedad:

$$4x + 10^{\circ} = 3x + 20^{\circ}$$

$$4x - 3x = 20^{\circ} - 10^{\circ}$$

$$x = 10^{\circ}$$

Recordar:

Calculamos
$$M = \cot(4x + 5^{\circ})$$

$$M = \cot(4 \cdot 10^{\circ} + 5^{\circ}) = \cot 45^{\circ} = 1$$

$$\therefore M = 1$$

Calcule el valor de $K = sen(3\beta + 7^{\circ})$, si

$$tan(\beta + 20^{\circ}) = cot(3\beta + 30^{\circ})$$

Resolución:

Por propiedad:
$$\beta + 20^{\circ} + 3\beta + 30^{\circ} = 90^{\circ}$$

$$4\beta + 50^{\circ} = 90^{\circ}$$

$$4\beta = 40^{\circ}$$

$$\beta = 10^{\circ}$$

Recordar:

Si
$$x + y = 90^{\circ}$$

$$tan x = cot y$$

Calculamos $K = sen(3\beta + 7^{\circ})$

$$K = sen(3 \cdot 10^{\circ} + 7^{\circ}) = sen37^{\circ} = \frac{3}{5}$$

$$\therefore \mathbf{K} = \frac{3}{5}$$

Calcule el valor de φ si

$$sen7\phi \cdot sec20^{\circ} = 1$$

Recordar:

•RT de < complementarios Si $\alpha + \beta = 90^{\circ}$

$sec \alpha = csc \beta$

RT recíprocas

$$sen\theta \cdot csc\theta = 1$$

Resolución:

¡No es recíproca!

$$sen7\phi \cdot sec20^{\circ} = 1$$

$$sen7\phi \cdot csc70^\circ = 1$$

$$\rightarrow 7\phi = 70^{\circ}$$

Calcule el valor de tan(x + y) si

$$\tan(2x + 15^{\circ}) \cdot \cot(4x - 25^{\circ}) = 1$$

 $\sec(2y + 16^{\circ}) = \csc(y + 23^{\circ})$

Resolución:

•
$$tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1$$

Por RT recíprocas:

$$\Rightarrow 2x + 15^{\circ} = 4x - 25^{\circ}$$

$$40^{\circ} = 2x$$

$$20^{\circ} = x$$

•
$$\sec(2y + 16^{\circ}) = \csc(y + 23^{\circ})$$

Por RT de ∢ complementarios:

$$\rightarrow 2y + 16^{\circ} + y + 23^{\circ} = 90^{\circ}$$
$$3y + 39^{\circ} = 90^{\circ}$$
$$3y = 51^{\circ}$$

$$y = 17^{\circ}$$

Calculamos
$$tan(x + y) = tan(20^{\circ} + 17^{\circ}) = tan 37^{\circ} = \frac{3}{4}$$

