

Chapter 04. 동적 계획법 #1

Clip 01 | [2748] 피보나치수 2 동적 계획법이란?

점화식을 잘 유도하는 방법

Clip 02 | [11727] 2*n 타일링 2 기준 점과 방법의 수

Clip 03 | [2156] 포도주 시식 중복을 허용하지 않는 순열 생성 Clip 04 | [11047] 동전 0 최소 동전의 개수를 찾는 그리디

Clip 05 | [2294] 동전 2 최소 동전의 개수를 찾는 DP

Clip 06 | [2293] 동전 1 가치의 경우의 수를 찾는 DP Clip 07 | [2624] 동전 바꿔주기 개수 제한이 있는 동전 교환

Clip 08 | [12865] 평범한 배낭 배낭의 최대 가치를 위한 DP

Ch04. 동적 계획법 #1

1. [2748] 피보나치 수 2

동적 계획법?

정의

복잡한 문제를 작은 하위 문제로 나눠 해결하고,

그 결과를 조합하여 최종 해답을 얻는 알고리즘 설계 기법

작은 부분 문제들의 해를 미리 구해서 중복 계산을 방지

동적 계획법?

필수 조건

- 최적 부분 구조 (Optimal Substructure)
 - 큰 문제의 최적 해가 작은 문제의 최적 해를 포함
- 중복 부분 문제 (Overlapping Subproblems)
 - 같은 부분 문제가 여러 번 반복되어야 함

동적 계획법?

최적 부분 구조

• 큰 문제의 최적 해가 작은 문제의 최적 해를 포함

ex) 피보나치 수 n번째 피보나치 수를 f(n) 이라고 표현하면

- f(n) = f(n-1) + f(n-2)
- f(n-1) = f(n-2) + f(n-3)
- f(n-2) = f(n-3) + f(n-4)

동적 계획법?

중복 부분 문제 (Overlapping Subproblems)

• 같은 부분 문제가 여러 번 반복되어야 함

- fibo(5): 1회
- fibo(4): 1회
- fibo(3): 2회
- fibo(2): 3회
- fibo(1): 2회

동적 계획법?

중복 부분 문제 (Overlapping Subproblems)

• 같은 부분 문제가 여러 번 반복되어야 함

부분 문제가 여러 번 반복되지 않는다면?

반복되는 연산을 줄이는 목적에 부합하지 않음

재사용하는 않는 문제의 정답을 모두 메모리에 저장하면 사용하지 않는 메모리만 낭비됨

동적 계획법?

접근 방법

하향식 접근 (Memoization)

- 계산한 결과를 메모리에 저장하고 재사용
- 재귀식 접근
- 상대적으로 입력이 적은 경우에 사용

상향식 접근 (Tabulation)

- 하위 문제의 결과를 표에 저장
- 입력이 많은 경우에 적합
- 하위 문제가 한번에 구해지지 않는 경우에 사용

BOJ2748: 피보나치 수2

1. 하향식 접근

```
static long[] memo = new long[91];
static long fibo(int n) {
  if (n == 1 || n == 2) return 1;
  if(memo[n] != 0) return memo[n];
  memo[n] = fibo(n - 1) + fibo(n - 2);
  return memo[n];
}
```

n번째 피보나치 수를 구하기 위해 하향(n-1, n-2)접근 한다

BOJ2748: 피보나치 수2

2. 상향식 접근 (1)

[1]	[2]	[3]	[4]	[5]	[6]
1	1	2	1+2		

{i-1}, {i-2} 번째 피보나치 수를 구하고, {i}번째에 상향 반영한다

BOJ2748: 피보나치 수2

2. 상향식 접근 (1)

```
static long[] dp = new long[91];
static long fibo2(int n) {
    dp[1] = dp[2] = 1;
    for(int i = 3; i <= n; i++)
        dp[i] = dp[i - 1] + dp[i -2];
    return dp[n];
}</pre>
```

{i-1}, {i-2} 번째 피보나치 수를 구하고, {i}번째에 상향 반영한다

BOJ2748: 피보나치 수2

2. 상향식 접근 (2)

[1]	[2]	[3]	[4]	[5]	[6]
1	1	? + 1	? + 1		

{i} 번째 피보나치 수를 {i + 1}, {i + 2} 번째에 누적 합으로 반영한다

BOJ2748: 피보나치 수2

2. 상향식 접근 (2)

```
static long[] dp = new long[93];
static long fibo3(int n) {
  dp[1] = 1;
  for (int i = 1; i <= n; i++) {
    dp[i + 1] += dp[i];
    dp[i + 2] += dp[i];
  return dp[n];
```

{i-1}, {i-2} 번째 피보나치 수를 구하고, {i}번째에 상향 반영한다

BOJ2748: 피보나치 수2

동적 계획법 잘 짜는 법?

- 1. 문제의 요구사항을 점화식의 결과가 되도록 유도한다
- 2. 문제를 작은 부분문제로 쪼갠다
 - 단, {i} 번째 문제는 {i k} 번째 부분문제를 활용할 수 있도록 쪼갠다
- 3. 동적 배열의 차원 수를 줄일 수 있는지 한번 더 검토한다

BOJ11727: 2*N 타일링 2

문제 요약

- 2 * N 직사각형을 채우는 방법의 수 (1 <= n <= 1,000)
 - 방법의 수를 10,007로 나눈 나머지를 출력
- 타일
 - 1 * 2
 - 2 * 1
 - 2 * 2

[11727] 2*N 타일링 2

BOJ11727: 2*N 타일링 2

문제 요약

입력 데이터

출력 데이터

3

BOJ11727: 2*N 타일링 2

문제 분석

- 문제의 요구사항: 방법의 수
- d[n] = 2 * n 영역을 채우는 방법의 수

기준점 하나를 잡고 생각해보자 가장 오른쪽 위의 영역은 무슨 종류의 타일로 채워질까?

BOJ11727: 2*N 타일링 2

문제 분석

Type1. (2 * 1)

Type2. (1 * 2)

Type3. (2 * 2)

BOJ11727: 2*N 타일링 2

문제 분석

Type1. (2 * 1)

우측 상단을 (2 * 1)로 채운다면?

[1, N-1] 구간이 모두 비어있다

2 * (n-1) 영역을 채우는 <mark>방법의 수</mark>를 구하면 된다 → d[n-1]

d[n] = 2 * n 영역을 채우는 <mark>방법의 수</mark>

BOJ11727: 2*N 타일링 2

문제 분석

우측 상단을 (2 * 2)로 채운다면?

[1, N-2] 구간이 모두 비어있다

2 * (n-2) 영역을 채우는 <mark>방법의 수</mark>를 구하면 된다 → d[n-2]

d[n] = 2 * n 영역을 채우는 <mark>방법의 수</mark>

BOJ11727: 2*N 타일링 2

문제 분석

Type2. (1 * 2)

우측 상단을 (1 * 2)로 채운다면?

[1, N-2] 구간이 모두 비어있다 (2, N-1), (2, N) 가 비어있다

어떻게 계산을 해야할까?

BOJ11727: 2*N 타일링 2

문제 분석

(2, N-1), (2, N) 을 채우는 방법의 수?

저 공간에 들어갈 수 있는 타일은 (1 * 2) 타일 하나밖에 없다

- → 경우의 수가 1개 뿐이다
- \rightarrow d[n-2]

BOJ11727: 2*N 타일링 2

문제 분석

Type1. (2 * 1)

Type3. (2 * 2)

Type2. (1 * 2)

d[n] 을 채우는 방법의 수

BOJ11727: 2*N 타일링 2

구현

d[n] 을 채우는 방법의 수

$$d[1] = 1$$

 $d[2] = 3$

BOJ11727: 2*N 타일링 2

구현

```
d[1] = 1;
d[2] = 3;
for (int i = 3; i <= n; i++) {
   d[i] = (d[i - 1] + d[i - 2] + d[i - 2]) % 10007;
}</pre>
```


BOJ2156: 포도주 시식

문제 요약

- N개의 잔에 포도주가 담겨있음 (포도주 양: <= 1000)
- 잔의 개수 (1 <= n <= 10,000)
- 규칙
 - 잔을 고르면 모두 마시고 원래위치에 두어야 한다
 - 연속으로 놓여있는 3잔을 마실 수 없다
- 최대한 합이 커지도록 선택

BOJ2156: 포도주 시식

문제 요약

	입력 데이터	
6 10 13 9 8		
1		

	출력 데이터
33	

BOJ2156: 포도주 시식

- 문제 요구사항: 최대 포도주의 양
 - d[n]? = n번째 잔까지 선택한 <mark>최대 포도주의 양</mark>
 - 조건에 따라서 점화식의 차원이 더 늘어날 수 있다

BOJ2156: 포도주 시식

- 연속해서 3잔의 포도주를 선택할 수 없다
 - {N}번을 선택하지 않은 경우
 - {N-1}을 선택하지 않고 {N} 번을 선택한 경우
 - {N-1}을 선택하고, {N}번을 선택한 경우
 - {N-2}, {N-1}, {N}을 모두 선택할 수는 없다

BOJ2156: 포도주 시식

- [case 0] {N}번을 선택하지 않은 경우
 - d[0][n]
- [case 1] {N-1}을 선택하지 않고 {N}번을 선택한 경우
 - d[1][n]
- [case 2] {N-1}을 선택하고, {N}번을 선택한 경우
 - d[2][n]

BOJ2156: 포도주 시식

문제 분석

[case 0] {N}번을 선택하지 않은 경우

d[0][n]

N-1을 선택한 경우의 수 중에 가장 큰 값을 고른다

max(d[0][n-1], d[1][n-1], d[2][n-1])

BOJ2156: 포도주 시식

문제 분석

[case 1] {N-1}을 선택하지 않고 {N}번을 선택한 경우 • d[1][n]

N-1을 선택하지 않았으므로: d[0][n-1] N을 선택했으므로: wine[n]

 \rightarrow d[0][n-1] + wine[n]

BOJ2156: 포도주 시식

문제 분석

[case 2] {N-1}을 선택하고, {N}번을 선택한 경우 • d[2][n]

N-1을 선택 했으므로: d[1][n-1] (d[2][n-1] 이 아닌 이유는?) N을 선택했으므로: wine[n]

 \rightarrow d[1][n-1] + wine[n]

BOJ2156: 포도주 시식

- [case 0] {N}번을 선택하지 않은 경우
 - d[0][n] = max(d[0][n-1], d[1][n-1], d[2][n-1])
- [case 1] {N-1}을 선택하지 않고 {N}번을 선택한 경우
 - d[1][n] = d[0][n-1] + wine[n]
- [case 2] {N-1}을 선택하고, {N}번을 선택한 경우
 - d[2][n] = d[1][n-1] + wine[n]

BOJ2156: 포도주 시식

BOJ2156: 포도주 시식

BOJ2156: 포도주 시식

와인	6	10	13	9	8	1
			max			
[0]	0	6	16	→ 23		
[1]	6	10	19	25		
[2]	0	16	23	28		

BOJ2156: 포도주 시식

와인	6	10	13	9	8	1
				max		
[0]	0	6	16	23 -	→ 28	
[1]	6	10	19	25	31	
[2]	0	16	23	28	33	

BOJ2156: 포도주 시식

와인	6	10	13	9	8	1
					max	
[0]	0	6	16	23	28	→ 33
[1]	6	10	19	25	31	29
[2]	0	16	23	28	33	32

BOJ2156: 포도주 시식

구현

와인	6	10	13	9	8	1
						max
[0]	0	6	16	23	28	33
[1]	6	10	19	25	31	29
[2]	0	16	23	28	33	32

최종 정답은 N번째 잔을 고르지 않을 수도 있으므로 d[*][n] 중에 가장 큰 값을 출력한다

BOJ2156: 포도주 시식

```
d[0][1] = 0;
d[1][1] = wine[1];
d[2][1] = wine[1];
for(int i = 2; i <= n; i++) {
  d[0][i] = Math.max(d[0][i - 1],
Math.max(d[1][i - 1], d[2][i - 1]));
  d[1][i] = d[0][i - 1] + wine[i];
  d[2][i] = d[1][i - 1] + wine[i];
```


BOJ11047: 동전 0

문제 요약

- N종류의 동전이 주어짐 (1<= N <= 10)
- 동전을 조합해서 K가치를 만들어야 함 (1 <= K <= 1억)
- 동전의 최소 개수를 구하기
- 단, 동전은 배수관계로 주어짐

BOJ11047: 동전 0

문제 요약

입력 데이터
10 4200
1
5
10
50
100
500
1000
5000
10000
50000

	출력 데이터	
6		

1000 * 4 100 * 2

BOJ11047: 동전 0

문제 분석

• 단, 동전은 배수관계로 주어짐

- 위 조건에 의해 그리디로 풀이가 가능함
 - 이후의 동전 1, 2 문제에서 동적계획법으로 접근
- 왜 그리디가 가능할까?

BOJ11047: 동전 0

- 5원
- 10원
- 20원
- 40원

- {i}번째 동전과 {i+1}번째 동전이 배수관계라면?
- 무조건 큰 액수의 동전을 먼저 사용하는 것이 좋다
- {i}번째 동전으로 만들 수 있는 액수는 {i-1}, {i-2}번째 동전으로도 만들 수 있다

BOJ11047: 동전 0

- 동전은 큰 액수부터 선택하여 사용
- 잔액은 동전의 액수로 나눈 몫만큼 사용
 - 나머지 값보다 작거나 같은 액수의 동전을 골라서 위 과정을 반복

BOJ11047: 동전 0

```
int count = 0;
for (int i = n - 1; i >= 0; i--) {
   if (k >= coin[i]) {
      count += k / coin[i];
      k %= coin[i];
   }
}
```

- 입력이 오름차순 정렬되어 있으므로 역순으로 선택
- 동전이 잔액을 초과하면 안되 므로 몫만큼 사용
- 남은 금액은 작거나 같은 동전 을 찾아 위의 과정을 반복

BOJ2294: 동전 2

문제 요약

- N종류의 동전이 주어짐 (1<= N <= 100)
- 동전을 조합해서 K가치를 만들어야 함 (1 <= K <= 10,000)
- 동전의 최소 개수를 구하기 (불가능하면 -1 출력)

BOJ2294: 동전 2

- 문제 요구사항: k 원을 만드는 동전의 최소 개수
- d[k]: 동전의 최소 개수
 - 점화 관계를 어떻게 작성해야 할까?

BOJ2294: 동전 2

- d[k]: 동전의 최소 개수
 - d[1..k-1] 까지의 결과를 알고 있다고 가정
- 방법1:
 - 이미 만든 금액을 {i}로 취급
 - dp[i + coin[j]] = min(dp[i + coin[j]], dp[i] + 1)
- 방법2:
 - 만들려는 금액을 {i}로 취급
 - dp[i] = min(dp[i], dp[i coin[j]] + 1)

BOJ2294: 동전 2

문제 분석

방법1

- 이미 만든 금액을 {i}로 취급
- 만들 수 있는 금액에 동전의 액수를 더해서 새로운 경우 생성
- 이미 만든 적이 있는 방법과 비교해서 최솟값 선택
- dp[i + coin[j]] = min(dp[i + coin[j]], dp[i] + 1)

BOJ2294: 동전 2

- 방법1:
 - dp[i + coin[j]] = min(dp[i + coin[j]], dp[i] + 1)
- ex) 5원을 만드는 최소 개수가 2개를 알고 있을 때 3원과 10원 동전을 들고 있는 경우

	 5	•••	8(5+3)	•••	15 (5+10)
dp[]	2		2 + 1		2 + 1
					1

BOJ2294: 동전 2

문제 분석

방법2

- 만들려는 금액을 {i}로 취급
- {i}에서 동전의 액수를 뺀 금액에서 경우의 수를 가져오기
- 이미 만든 적이 있는 방법과 비교해서 최솟값 선택
- dp[i] = min(dp[i], dp[i coin[j]] + 1)

BOJ2294: 동전 2

- 방법2
 - dp[i] = min(dp[i], dp[i coin[j]] + 1);
- ex) 15원을 만들려고 할때 3원과 10원 동전을 들고 있는 경우

	•••	5(15-10)	•••	12(15-3)	•••	15
dp[]		2		1		1+1
		I				

BOJ2294: 동전 2

구현

```
for (int i = 1; i <= k; i++) {
   dp[i] = 100001;
for (int i = 0; i < n; i++) {
   coin[i] = sc.nextInt();
  <u>if</u> (coin[i] <= k)
     dp[coin[i]] = 1;
```

초기화

- dp배열에 최대 액수보다큰 값을 넣는다
- 가지고 있는 동전에는 경우의 수에 1을 넣는다

BOJ2294: 동전 2

구현

방법 1

```
for (int i = 1; i <= k; i++) {
    for (int j = 0; j < n; j++) {
        if (i + coin[j] <= k)
            dp[i + coin[j]] = Math.min(dp[i + coin[j]], dp[i] + 1);
        }
    }
}</pre>
```

방법 2

```
for (int i = 1; i <= k; i++) {
    for (int j = 0; j < n; j++) {
        if (i - coin[j] >= 0)
            dp[i] = Math.min(dp[i], dp[i - coin[j]] + 1);
      }
}
```


BOJ2293: 동전 1

문제 요약

- N종류의 동전이 주어짐 (1<= N <= 100)
- 동전을 조합해서 K가치를 만들어야 함 (1 <= K <= 10,000)
- K가치를 만드는 경우의 수를 구하기

BOJ2293: 동전 1

- 동전 1과 유사한 문제
- 문제 요구사항: k원을 만드는 경우의 수
 - d[k]: 경우의 수
- 동일하게 두가지 방법으로 접근 가능하다

BOJ2293: 동전 1

- d[k]: 경우의 수
 - d[1..k-1] 까지의 결과를 알고 있다고 가정
- 방법1:
 - 이미 구한 경우의 수를 {j}로 취급
 - dp[j + coin[i]] += dp[j]
- 방법2:
 - 구하려는 경우의 수를 {j}로 취급
 - dp[j] += dp[j coin[i]]

BOJ2293: 동전 1

- 방법1
 - dp[j + coin[i]] += dp[j]
- ex) 5원을 만드는 경우의 수가 있을 때 3원과 10원 동전을 들고 있는 경우

	•••	5	•••	8(5+3)	•••	15 (5+10)
dp[]		2		? + 2		? + 2
		\vdash				1

BOJ2293: 동전 1

- 방법2
 - dp[j] += dp[j coin[i]]
- ex) 15원을 만드는 경우의 수를 찾으려는 경우 3원과 10원 동전을 들고 있는 경우

	•••	5(15-10)	•••	12(15-3)	•••	15
dp[]		2		1		2+1

BOJ2293: 동전 1

구현

방법 1

```
for(int i = 0; i < n; i++) {
  for(int j = 0; j + coin[i] <= k; j++) {
    dp[j + coin[i]] += dp[j];
  }
}</pre>
```

방법 2

```
for(int i = 0; i < n; i++) {
   for(int j = coin[i]; j <= k; j++) {
      dp[j] += dp[j - coin[i]];
   }
}</pre>
```


BOJ2624: 동전 바꿔주기

문제 요약

- T원의 지폐를 동전으로 바꿔줘야 함
 - 1 <= T <= 10,000
- 동전마다 개수 제한이 있음 (n: 동전 개수, k: 동전 가지 수)
 - (1 <= n <= 1,000) (1 <= k <= 100)
- 교환 가능한 경우의 수

BOJ2624: 동전 바꿔주기

- 직전에 클립에서 풀이한 '동전1' 과 유사한 문제
- 동전 사용가능 개수에 제한이 있음
- 문제 요구 사항: 동전 교환 방법의 가지 수
 - d[t] = t원을 교환하는 방법 수
- 동적배열의 차원을 늘려 정보를 추가해보자

BOJ2624: 동전 바꿔주기

- 문제 요구 사항: 동전 교환 방법의 가지 수
 - d[?][t] = t원을 교환하는 방법 수
- 동전은 k개가 주어진다.
 - {i}번째 동전을 고려할 때, {i-1}번째 동전까지 사용한 경우에서 값을 가져와 생각해볼 수 있다
- d[k][t] = k번째 동전까지 사용했을 때 t원을 교환하는 방법의 수

BOJ2624: 동전 바꿔주기

문제 분석

d[k][t] = k번째 동전까지 사용했을 때 t원을 교환하는 방법의 수

ex)

- 3번째 동전을 사용했을 때, {1} {2} {5} {10} 원을 만들 수 있었고
- 4번째 동전의 가치가 v원이라면?
 - {1 + v}, {2 + v}, {5 + v}, {10 + v} 원을 만들 수 있다
 - 경우의 수는 3번째 동전에서 계산한 횟수를 그대로 사용한다

$$d[4][1 + v] += d[3][1]$$
 $d[4][5 + v] += d[3][5]$
 $d[4][2 + v] += d[3][2]$ $d[4][10 + v] += d[3][10]$

[2624] 동전 바꿔주기

BOJ2624: 동전 바꿔주기

- d[k][t] = k번째 동전까지 사용했을 때 t원을 교환하는 방법의 수
- 단, 동전의 개수에 제한이 있으므로, 반복문을 통해 제한한다

```
for (int cnt = 0; cnt <= coinCount; cnt++) {
  int nextValue = value + coinPrice * cnt;
  // 점화식 작성
}
```

[2624] 동전 바꿔주기

구현

BOJ2624: 동전 바꿔주기

```
for (int i = 1; i <= k; i++) {
  int coinPrice = sc.nextInt();
  int coinCount = sc.nextInt();
  for (int value = 0; value <= t; value++) {</pre>
     for (int cnt = 0; cnt <= coinCount; cnt++) {</pre>
       int nextValue = value + coinPrice * cnt;
       if (nextValue > t) break;
       dp[i][nextValue] += dp[i - 1][value];
```

- 매 동전을 입력 받으면서
- {i-1}번째 동전을 이용해서 만든 가치를 경우의 수를 {i}번째 동전에 반영해 준다
- 단 만들려는 가치가 최대가치
 t 를 넘지 않도록 제한한다

[2624] 동전 바꿔주기

BOJ2624: 동전 바꿔주기

최적화

```
int nextValue = value + coinPrice * cnt;
dp[i][nextValue] += dp[i - 1][value];
```

- 동적 배열의 차원 수를 줄일 수 있을까?
 - {i}번째 동전을 사용한 가치는 오직 {i-1} 번째 동전만 참조한다
 - value 변수는 동전의 종류와 상관 없이 0부터 t까지 모든 범위를 갱신한다
- 따라서 특정 가치에 대한 경우의 수를, 동전단위로 제한하지 않고 한번에 계산해도 동일한 결과를 얻을 수 있다

```
for (int j = t; j >= 0; j--) {
  for (int cnt = 1; cnt <= coinCount; cnt++) {
    int nextValue = j + coinPrice * cnt;
    if (nextValue > t) break;
    d[nextValue] += d[j];
  }
}
```


BOJ12865: 평범한 배낭

문제 요약

- 배낭에 최대한 가치 있는 물건을 넣기
 - 물건의 수 1 <= N <= 100
- 각 물건은 {무게 W} {가치 V} 상태를 가짐
 - (1 <= W <= 100,000) (0 <= V <= 1,000)
- 배낭에는 최대 K 무게까지 담을 수 있음
 - 1 <= K <= 100,000

BOJ12865: 평범한 배낭

- 물건을 분할해서 담을 수 없다
 (가치 / 무게) 순으로 배낭에 담으면, 빈 공간이 생길 수 있다
- 무게가 넘지 않으면서
 최대한의 가치를 가지도록 생각해야 한다
- 문제 요구 사항: 배낭에 담긴 물건들의 최대 가치
 - d[k] = 무게를 k까지 담았을 때 최대 가치

BOJ12865: 평범한 배낭

문제 분석

무게: 5 가치: 3

무게: 10 가치: 5 무게: 8 가치: 5

무게: 7 가치: 2

- 만들려는 무게를 기준으로
- 새로 들어오는 물건의 무게를 배열의 인덱스에 더하고
- 가치를 배열의 값에 더해 최대 값 갱신이 되는지 체크한다

	•••	[5](15-10)	•••	[8](15-7)	 [15]
dp[]		3		5	3+5 5+2
		1		t	

BOJ12865: 평범한 배낭

구현

```
int dp[] = new int[k + 1];
for(int i = 0; i < n; i++) {
   int w = sc.nextInt();
   int v = sc.nextInt();
   for(int j = k; j >= w; j--) {
      dp[j] = Math.max(dp[j], dp[j - w] + v);
   }
}
```

현재 입력받은 물건의 무게: w, 가치: v 일 때

(j) 무게를 만들기 위해 w만큼 공간이 비어있는 상태의 최대 가치에 v를 더한다