

CDS501: PRINCIPLES & PRACTICES OF DATA SCIENCE & ANALYTICS

Data Exploration and Treatment

Introduction

- Attribute and Target identification
- Missing values detection and treatment
- Outlier detection and treatment
- Attribute transformation
- Data Analysis and Visualization

Attribute and Target Identification

- Identify the Predictors/Features/Attributes (input) and Target (output)
- Attributes are variables that are used to determine (predict) the Target
- Target is the variable that needs to be predicted
- Identify the data type of the attributes and target e.g. numerical, categorical etc.

Predictor and Target Identification

SkinThickness [‡]	Insulin [‡]	BMI [‡]	DiabetesPedigreeFunction [‡]	Age [‡]	Outcome
35	0	33.6	0.627	50	1
29	0	26.6	0.351	31	0
0	0	23.3	0.672	32	1
23	94	28.1	0.167	21	0
35	168	43.1	2.288	33	1
0	0	25.6	0.201	30	0
32	88	31.0	0.248	26	1
0	0	35.3	0.134	29	0
45	543	30.5	0.158	53	1
0	0	0.0	0.232	54	1

Attributes (Input)

Target (Output)

Suppose the problem is to predict 'Outcome'

Data Type Identification

SkinThickness [‡]	Insulin [‡]	BMI =	DiabetesPedigreeFunction [‡]	Age =	Outcome
35	0	33.6	0.627	50	
29	0	26.6	0.351	31	
0	0	23.3	0.672	32	
23	94	28.1	0.167	21	
35	168	43.1	2.288	33	
0	0	25.6	0.201	30	
32	88	31.0	0.248	26	
0	0	35.3	0.134	29	
45	543	30.5	0.158	53	
0	0	0.0	0.232	54	

Discrete Numerical Discrete Continuous Numerical Numerical Continuous Numerical Discrete Nominal Numerical Categorical

Predictor and Target Identification

*	miles_per_gallon ‡	cylinders 🕀	weight ‡	model_year ‡	origin 🗘
105	12	8	4906	73	1
106	13	8	4654	73	1
107	12	8	4499	73	1
108	18	6	2789	73	1
109	20	4	2279	73	3
110	21	4	2401	73	1
111	22	4	2379	73	3
112	18	3	2124	73	3
113	19	4	2310	73	1
114	21	6	2472	73	1
115	26	4	2265	73	2
116	15	8	4082	73	1
117	16	8	4278	73	1
118	29	4	1867	73	2

Target Attributes (Output) (Input)

Suppose the problem is to predict 'miles_per_gallon'

Data Type Identification

*	miles_per_gallon 💠	cylinders 🗼	weight ‡	model_year 🍦	origin 🗘
105	12	8	4906	73	1
106	13	8	4654	73	1
107	12	8	4499	73	1
108	18	6	2789	73	1
109	20	4	2279	73	3
110	21	4	2401	73	1
111	22	4	2379	73	3
112	18	3	2124	73	3
113	19	4	2310	73	1
114	21	6	2472	73	1
115	26	4	2265	73	2
116	15	8	4082	73	1
117	16	8	4278	73	1
118	29	4	1867	73	2

Continuous Numerical Discrete Continuous Numerical Numerical Discrete Numerical

Nominal Categorical

Data Treatment

Missing values may produce ineffective predictive models

- Missing Completely at Random (MCAR)
- Not common
- Missing values on a given attribute is not associated with other attributes (no particular reason for the missing values)
- Missing values are randomly distributed across all observations
- A respondent decide to declare his/her income after tossing a coin
- Clinical samples might be damaged or contaminated in the lab

- Missing at Random (MAR)
- More common
- Missing values can be associated with other attributes
- Missing values are not randomly distributed across examples but are distributed within one or more sub-examples
- Men more likely to tell you their weight than women

- Missing Not at Random
- Missing value is related to the reason it's missing
- Weighing scale mechanism wear out over time
- Sensor node failure due to battery runs out of power

- Listwise deletion delete the rows (examples)
- Listwise deletion can be used if the number of samples is large
- Could introduce bias into the dataset

•	custid ‡	sex ‡	is.employed ‡	income ‡	marital.stat ‡	health.ins ‡	housing.type	recent.move ‡	num.vehicles ‡	age ‡	st
582	829195	М	FALSE	3030	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	55.0000	0
583	829722	F	NA	NA.	Wido wed	TRUE	Homeowner free and clear	FALSE	0	78.0000	Τe
584	830245	М	TRUE	120300	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	48.0000	0
585	830758	F	TRUE	4390	Never Married	FALSE	Rented	TRUE	1	24.0000	М
586	831497	М	TRUE	95000	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	NA	Ш
587	832435	М	TRUE	55001	Married	TRUE	Homeowner free and clear	FALSE	3	48.0000	N
588	832866	М	NA	6000	Divorced/Separated	FALSE	Homeowner with mortgage/loan	FALSE	2	NA	W
589	832949	М	TRUE	54000	Divorced/Separated	TRUE	Rented	FALSE	1	42.0000	K
590	833321	М	FALSE	30900	Never Married	FALSE	Homeowner with mortgage/loan	FALSE	2	51.0000	М
591	835830	F	TRUE	51000	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	41.0000	W
592	837381	М	TRUE	NA	Never Married	TRUE	NA	NA	NA	20.0000	Vi
593	841342	M	TRUE	NA	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	62.0000	Τe
594	843811	F	TRUE	40000	Never Married	TRUE	Homeowner with mortgage/loan	FALSE	1	146.6802	In
595	844007	M	NA	0	Married	FALSE	NA	NA	NA	46.0000	C
596	845421	F	FALSE	4300	Married	TRUE	Rented	FALSE	0	27.0000	0
597	846713	М	NA	250	Never Married	TRUE	NA	NA	NA	45.0000	FI
598	847156	М	TRUE	72000	Married	TRUE	Homeowner with mortgage/loan	FALSE	2	52.0000	C

- Pairwise deletion delete the cell (examples)
- Pairwise deletion needs to be used if the dataset is small
- Analysis will be based on sets with different number of samples (rows)

•	custid ‡	sex ‡	is.employed	income ‡	marital.stat ‡	health.ins	housing.type	recent.move ‡	num.vehicles ‡	age ‡	st
582	829195	М	FALSE	3030	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	55.0000	0
583	829722	F	NA	NA	Wido wed	TRUE	Homeowner free and clear	FALSE	0	78.0000	Te
584	830245	М	TRUE	120300	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	48.0000	0
585	830758	F	TRUE	4390	Never Married	FALSE	Rented	TRUE	1	24.0000	М
586	831497	М	TRUE	95000	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	NA	Ш
587	832435	М	TRUE	55001	Married	TRUE	Homeowner free and clear	FALSE	3	48.0000	N
588	832866	М	NA	6000	Divorced/Separated	FALSE	Homeowner with mortgage/loan	FALSE	2	NA	W
589	832949	М	TRUE	54000	Divorced/Separated	TRUE	Rented	FALSE	1	42.0000	Kı
590	833321	М	FALSE	30900	Never Married	FALSE	Homeowner with mortgage/loan	FALSE	2	51.0000	М
591	835830	F	TRUE	51000	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	41.0000	W
592	837381	М	TRUE	NA	Never Married	TRUE	NA	NA	NA	20.0000	Vi
593	841342	М	TRUE	NA	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	62.0000	Te
594	843811	F	TRUE	40000	Never Married	TRUE	Homeowner with mortgage/loan	FALSE	1	146.6802	In
595	844007	М	NA	0	Married	FALSE	NA	NA	N/A	46.0000	C
596	845421	F	FALSE	4300	Married	TRUE	Rented	FALSE	0	27.0000	О
597	846713	М	NA	250	Never Married	TRUE	NA	NA		45.0000	FI
598	847156	М	TRUE	72000	Married	TRUE	Homeowner with mortgage/loan	FALSE	2	52.0000	C

- Dropping Attributes
- Dropping attributes can be used if the attributes are not relevant or if the percentage is too high (subjective)

•	custid ‡	sex ‡	is.emplo	yed 🗦	income ‡	marital.stat ‡	health.ins	† housing.type †	recent.n	nove 🔅	num.vehicles	age ‡	st
582	829195	М	FALSE		3030	Married	TRUE	Homeowner with mortgage/loan	FALSE		1	55.0000	0
583	829722	F	NA		NA	Wido wed	TRUE	Homeowner free and clear	FALSE		0	78.0000	Te
584	830245	М	TRUE		120300	Married	TRUE	Homeowner with mortgage/loan	FALSE		1	48.0000	0
585	830758	F	TRUE		4390	Never Married	FALSE	Rented	TRUE		1	24.0000	М
586	831497	М	TRUE		95000	Married	TRUE	Homeowner with mortgage/loan	FALSE		3	NA	III
587	832435	М	TRUE		55001	Married	TRUE	Homeowner free and clear	FALSE		3	48.0000	N
588	832866	М	NA		6000	Divorced/Separated	FALSE	Homeowner with mortgage/loan	FALSE		2	NA	W
589	832949	М	TRUE		54000	Divorced/Separated	TRUE	Rented	FALSE		1	42.0000	Kı
590	833321	М	FALSE		30900	Never Married	FALSE	Homeowner with mortgage/loan	FALSE		2	51.0000	М
591	835830	F	TRUE		51000	Married	TRUE	Homeowner with mortgage/loan	FALSE		3	41.0000	W
592	837381	М	TRUE		NA	Never Married	TRUE	NA	NA		NA	20.0000	Vi
593	841342	М	TRUE		NA	Married	TRUE	Homeowner with mortgage/loan	FALSE		3	62.0000	Τe
594	843811	F	TRUE		40000	Never Married	TRUE	Homeowner with mortgage/loan	FALSE		1	146.6802	In
595	844007	М	NA		0	Married	FALSE	NA	NA		NA	46.0000	C
596	845421	F	FALSE		4300	Married	TRUE	Rented	FALSE		0	27.0000	0
597	846713	М	NA		250	Never Married	TRUE	NA	NA		NA	45.0000	FI
598	847156	М	TRUE		72000	Married	TRUE	Homeowner with mortgage/loan	FALSE		2	52.0000	C

- Fill missing values with estimated values (mean/median imputation)
- Imputation needs to be used if the dataset is small
- Could reduce the variability of the data if there are many missing values

_	custid ‡	sex ‡	is.employed ‡	income ‡	marital.stat ‡	health.ins	† housing.type †	recent.move ‡	num.vehicles ‡	age ‡	st
582	829195	М	FALSE	3030	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	55.0000	0
583	829722	F	NA M	ean/med	i⁄a n wed	TRUE	Homeowner free and clear	FALSE	0	78.0000	Τe
584	830245	М	TRUE	120300	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	48.0000	0
585	830758	F	TRUE	4390	Never Married	FALSE	Rented	TRUE	1	24.0000	М
586	831497	М	TRUE	95000	Married	TRUE	Homeowner with mortgage/loan	FALSE	mean	/media	ηII
587	832435	М	TRUE	55001	Married	TRUE	Homeowner free and clear	FALSE	3	48.0000	N
588	832866	М	NA	6000	Divorced/Separated	FALSE	Homeowner with mortgage/loan	FALSE	mean	/media	Ŋ۱
589	832949	М	TRUE	54000	Divorced/Separated	TRUE	Rented	FALSE	1	42.0000	Ke
590	833321	М	FALSE	30900	Never Married	FALSE	Homeowner with mortgage/loan	FALSE	2	51.0000	М
591	835830	F	TRUE	51000	Married	TRUE	Homeowner with mortgage/loan	FALSE	3	41.0000	W
592	837381	М	TRUE	NA	Never Married	TRUE	Similar case e.g. Hom	eowner	NA	20.0000	Vi
593	841342	М	TRUE m	ean/med	i⁄a∙n ied	TRUE	Homeowner with mortgage/loan		3	62.0000	Τe
594	843811	F	TRUE	40000	Never Married	TRUE	Homeowner with mortgage/loan	FALSE	1	146.6802	In
595	844007	MSimil	ar case e.g.	False o	Married	FALSE	NA	NA	NA	46.0000	C
596	845421	F	FALSE	4300	Married	TRUE	Rented	FALSE	0	27.0000	0
597	846713	М	NA	250	Never Married	TRUE	NA	NA	NA	45.0000	Fl
598	847156	М	TRUE	72000	Married	TRUE	Homeowner with mortgage/loan	FALSE	2	52.0000	C

Fill missing values with estimated values (regression imputation)

•	custid 🗦	sex ‡	is.employed ‡	income ‡	marital.stat ‡	health.ins ‡	housing.type	recent.move ‡	num.vehicles ‡	age ‡	st
582	829195	М	FALSE	3030	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	55.0000	0
583	829722	F	NA	NA	Wido wed	TRUE	Homeo wner free and clear	FALSE	0	78.0000	Te
584	830245	М	TRUE	120300	Married	TRUE	Homeowner with mortgage/loan	FALSE	1	48.0000	0
585	830758	F	TRUE	4390	Never Married	FALSE	Rented	TRUE	1	24.0000	М
586	831497	М	TRUE	95000	Married	TDIIE	Homeowner with mortgage/loan	EVI &E	3	NA	Ш
587	832435	М	TRUE	55001	a B			•	3	48.0000	N
588	832866	М	NA	6000	COU		•	•	2	NA	W
589	832949	М	TRUE	54000	in			•	1	42.0000	K
590	833321	М	FALSE	30900			•	•	2	51.0000	М
591	835830	F	TRUE	51000		• •	•	•	3	41.0000	W
592	837381	М	TRUE	NA	•	•			NA	20.0000	Vi
593	841342	М	TRUE	NA		• •	•		3	62.0000	Τe
594	843811	F	TRUE	40000		•	•		1	146.6802	In
595	844007	М	NA	0		• •			NA	46.0000	C
596	845421	F	FALSE	4300	•	•			0	27.0000	0
597	846713	М	NA	250					NA	45.0000	FI
598	847156	М	TRUE	72000				age	2	52.0000	С

Outliers

 Observations that are appear far away and diverges from the overall pattern

Outliers

- Artificial outliers (errors)
 - Human error data collection, data entry
 - Measurement error most common; faulty device, instrument
 - Sampling error pick the wrong samples e.g. measuring the height of football players but include basketball players
 - Data processing error errors occur during data manipulation and extraction e.g. wrong computation
 - Intentional outlier involving sensitive data e.g. income, amount of assets
- Natural outliers
 - Not due to error
 - Valid data

Visualization – boxplot, scatter, density plot etc.

Visualization – histogram, scatter, density plot etc.

- Outliers are values that fall out of the expected range
- Interquartile (IQR) Rule
 - Calculate the IQR for the data, IQR = Q3 Q1
 - $S = 1.5 \times IQR$
 - UB = Q3 + S
 - LB = Q1 S
 - Valid range $LB \le X \le UB$

- Empirical rule (68-95-99.7 rule) states that 99.7% of data observed following a normal distribution lies within 3 standard deviations of the mean
- Any observation more than 3 σ can be considered rare

Copyright © 2021 Halim Noor, USM

Standard Score (Z Score)

Measure of how far a data point is from the mean

$$z = \frac{(x - \mu)}{\sigma}$$

- Assume: range of valid data is $-2\sigma < x < 2\sigma$, $\mu = 150$ and $\sigma = 25$
- x = 180, z = 1.2 (within the range x not outlier)
- x = 210, z = 2.4 (beyond the range x outlier)

Handling Outliers

- Binning values categorize the values into groups (numerical to categorical data)
- Trimming remove the outliers
- Winsorization replace with the upper or lower bound values
- Imputation with mean, median or mode

- Normalization
 - Change the values of numeric columns to a common scale
 - Income: range from 0 50000
 - Age: range from 0 100
 - Scale: 0 to 1
 - $\bullet \ \acute{x}_i = \frac{(x_i x_{min})}{(x_{max} x_{min})}$
- Standardization
 - Change the data to have a mean of zero and standard deviation of 1

•
$$\dot{x}_i = \frac{x_i - \mu}{\sigma}$$

- Binning
 - Converting numerical data to categorical data

- Reducing right skewness
- Logarithm
 - Cannot be applied to negative values
 - $\dot{x}_i = \log x_i$
- Square Root
 - Cannot be applied to negative values

•
$$\dot{x}_i = \sqrt{x_i}$$

- Reducing left skewness
- Squares

•
$$\dot{x}_i = x_i^2$$

- Cubes
 - $\dot{x}_i = x_i^3$

- Deriving new attribute(s) from existing attributes
- number_of_rooms_per_household = total_rooms/households
- population_per_household = population/households
- number_of_bedrooms_per_room = total_bedrooms/total_rooms

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
5	-122.25	37.85	52.0	919.0	213.0	413.0	193.0	4.0368	269700.0	NEAR BAY
6	-122.25	37.84	52.0	2535.0	489.0	1094.0	514.0	3.6591	299200.0	NEAR BAY
7	-122.25	37.84	52.0	3104.0	687.0	1157.0	647.0	3.1200	241400.0	NEAR BAY
8	-122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804	226700.0	NEAR BAY
9	-122.25	37.84	52.0	3549.0	707.0	1551.0	714.0	3.6912	261100.0	NEAR BAY

Data Analysis & Visualization

- Numerical data
- Central tendency mean, median, mode

- Numerical data
- Central tendency mean, median, mode
- Measure of dispersion variance, standard deviation, range, quartile, interquartile range (IQR), skewness

^{*} Cover more in next topics

- Use visualization to analyze the data
 - Boxplot

- Use visualization to analyze the data
 - Boxplot
 - Histogram
 - Density

Univariate Analysis – Categorical

 Frequency table to count the number of times the value (observation) occurs

Origin	Frequency
1	249
2	70
3	79

Univariate Analysis – Categorical

Bar chart or pie chart to visualize data

Bivariate Analysis

- Determine the relationship between two attributes
- Analysis between any combination of categorical and numerical
 - Numerical and numerical
 - Numerical and categorical
 - Categorical and numerical
 - Categorical and categorical

Bivariate Analysis

Use visualization such as scatter plot

Bivariate Analysis

- To determine the strength of relationship
 - Covariance
 - Correlation
 - Statistical inference/test e.g. chi-square test, t test, ANOVA test

^{*} Cover more in next topics

End