BUEC-333 Statistical analysis of economic data

Summer 2015

Table of contents

Normality, and the CLT

- I will link random sampling to normality using the Central Limit Theorem (CLT)
- How do you get an RV with a normal distribution?
 - 1. The RV simply is normal
 - 2. It is a linear combination of Normal RVs
 - Average
 - Sum
 - It is a sum/average of many random variables

Central Limit Theorem

The **CLT** states:

"The **mean** of a number of independent, identically distributed random variables will tend to be **normally** distributed, regardless of their distribution, if the number of different random variables is **large** enough."

Main example: sample mean \bar{X}

Example: die

- 6 possible outcomes: {1,2,3,4,5,6}
- Each happens with probability 1/6
- So, the probability distribution looks like:

Probability distribution for one throw

(assuming fair 6-sided dice)

Simulations

- ► Use the computer to "throw" many times (*N*)
- Look at the sampling distribution of the average
- ► Look at what happens as *N* increases

Changing N

- As we increase the number of die throws N ...
- Sampling distribution gets closer to a normal: CLT
- ▶ Variance decreases: if $Var(X) = \sigma^2$, then

$$\operatorname{Var}(\bar{X}) = \sigma^2/N$$

Figure: N = 1

Figure: N = 2

Figure: N = 10

Figure: *N* = 100

Figure: *N* = 1000