Import Library

Import some library to get started

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

The Data

Create a dataframe to read the train dataset.

```
In [2]:
```

```
train = pd.read_csv(r'D:\Python DS analy\Internship\train.csv')
```

Check the basic information about the dataset.

```
In [3]:
```

```
train.head()
```

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s

Exploratory Data Analysis

EDA -- Checking out missing data .

```
In [4]:
```

```
train.isnull()
```

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False	False	False	False

4	Passen gerid	Sur Fixed	Pēkiss	Mane	F &Se ĕ	F Alge	SIbSp	Parish	Titalest	Flatse	Cabie	Embarked
886	False	False	False	False	False	False	False	False	False	False	True	False
887	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True	False
889	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True	False

891 rows × 12 columns

return the number of missing values in Train dataset

In [5]:

```
train.isnull().sum()
```

Out[5]:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

Missing Data

We can use seaborn to create a simple heatmap to see where we are missing data We are using seaborn library.

1

In [6]:

```
sns.heatmap(train.isnull())
```

Out[6]:

<AxesSubplot:>

If we glimpse at the data,we're missing some age information, we're missing a lot of cabin info and we're missing one row of embarked. We'll come back to this problem of missing data a little later. But before that lets focus on some exploratory data analysis on a visual level.

In [7]:

```
sns.set_style("whitegrid")
sns.countplot(x='Survived', data=train)
```

Out[7]:

<AxesSubplot:xlabel='Survived', ylabel='count'>

As we can see, in our sample of the total data, more than 500 people lost their lives, and less than 350 people survived (in the sample of the data contained in train.csv).

In [8]:

```
sns.set_style('whitegrid')
train['Survived'].value_counts().plot.pie(autopct='%1.1f%%', shadow=True, figsize=(4,4))
```

Out[8]:

<AxesSubplot:ylabel='Survived'>

As we can see, in our sample of the total data, 61.6% people lost their lives, and 38.4% people survived (in the sample of the data contained in train.csv).

In [9]:

```
sns.set_style("whitegrid")
sns.countplot(x='Survived', hue='Sex', data=train, palette='RdBu_r')
```

Out[9]:

<AxesSubplot:xlabel='Survived', ylabel='count'>

Over 400 men died, and around 100 survived. For women, less than a hundred died, and around 230 odd survived. Clearly, there is an imbalance here, as we expect.

In [10]:

```
sns.set_style("whitegrid")
sns.countplot(x='Survived', hue='Pclass', data=train, palette='rainbow')
```

Out[10]:

<AxesSubplot:xlabel='Survived', ylabel='count'>

Also it looks like the people who did not survive were from the part of 3rd class. People that did survive were from the higher classes.

Now lets try and understand the age of the onboard passengers.

In [11]:

```
sns.displot(train['Age'].dropna(),kde=False,color='darkred',bins=40)
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x14db908bb80>

There seems to be an interesting bi-modal distribution where there are quite a few young passengers between age 0 and 10. Then the average age tends to be around 20-35.

In [12]:

```
train['Age'].hist(bins=30,color='darkred')
```

Out[12]:

<AxesSubplot:>

In [13]:

```
sns.countplot(x='SibSp', data=train)
```

Out[13]:

<AxesSubplot:xlabel='SibSp', ylabel='count'>

- 1. Most of the passengers travel with 1 sibling/spouse.
- 2. Passengers having 1 sibling/spouse are more likely to survive compared to those not.
- 3. For those more than 1 siblings/spouses, the information is insufficient to provide any insight.

In [14]:

```
train['Fare'].hist(color='green',bins=40,figsize=(8,4))
```

Out[14]:

<AxesSubplot:>

400				
250				
350				

Cleaning Data

As we saw earlier there are few columns that are missing some data. We need to clean our dataset before we begin to train our logistic regression model. Lets first try and fill in the missing age values. I'm going to do this by filling in the missing age with the mean age of the passenger class that the passenger belongs to.

In [15]:

```
plt.figure(figsize=(12,7))
sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')
```

Out[15]:

<AxesSubplot:xlabel='Pclass', ylabel='Age'>

In [16]:

```
train.head()
```

Out[16]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s

```
Sex Age SibSp Parch
Passengerld Survived Pclass
                                                                                       Ticket
                                                                                                 Fare Cabin Embarked
                                Futrelle, Mrs. Jacques
                                                                                       13803
                                                                                               <del>53.1000</del>
                                 Heath (Lily May Peel)
                                     Allen, Mr. William
                    0
                            3
                                                         male 35.0
                                                                                      373450 8.0500
                                                                                                         NaN
                                                                                                                       S
                                               Henry
```

In [17]:

#Deleting Feature that we are not using for the Baseline

In [18]:

train.drop(['PassengerId','Name','Ticket','Cabin','Embarked','SibSp','Parch'], axis=1, i
nplace=True)

In [19]:

train.head()

Out[19]:

	Survived	Pclass	Sex	Age	Fare
0	0	3	male	22.0	7.2500
1	1	1	female	38.0	71.2833
2	1	3	female	26.0	7.9250
3	1	1	female	35.0	53.1000
4	0	3	male	35.0	8.0500

In [20]:

train.isnull()

Out[20]:

	Survived	Pclass	Sex	Age	Fare
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
886	False	False	False	False	False
887	False	False	False	False	False
888	False	False	False	True	False
889	False	False	False	False	False
890	False	False	False	False	False

891 rows × 5 columns

In [21]:

train.isnull().sum()

Out[21]:

Survived 0
Pclass 0
Sex 0
Age 177
Fare 0

dtype: int64

Basically, Age is one of the feature having a missing value.

Describe - Mean value is 29.

```
In [22]:
```

```
train['Age'].describe()
Out[22]:
        714.000000
count
mean
         29.699118
std
         14.526497
          0.420000
min
25%
         20.125000
         28.000000
50%
75%
         38.000000
        80.000000
max
Name: Age, dtype: float64
```

Fill missing value with mean value

```
In [23]:
```

```
train['Age'].fillna(train['Age'].mean(),inplace=True)
```

```
In [24]:
```

```
train.isnull().sum()
```

Out[24]:

Survived 0
Pclass 0
Sex 0
Age 0
Fare 0
dtype: int64

In, above we can see there are no missing value in the dataset .

I will now convert some of the categorical features in the dataset into dummy variables that our machine learning model can accept.

```
In [25]:
```

```
l_sex_dummies=pd.get_dummies(train['Sex'],drop_first=True)
```

Now, I can Concat dummie dataset with train dataset.

```
In [26]:
```

```
train= pd.concat([train,l_sex_dummies],axis=1)
```

Check the basic information about the dataset.

```
In [27]:
```

```
train.head()
```

Out[27]:

	Survived	Pclass	Sex	Age	Fare	male
0	0	3	male	22.0	7.2500	1
-						_

```
        1
        Survived
        Pclass
        female Sex
        38.0 Age
        71.2833 Fare male
        0 male

        2
        1
        3 female 26.0 7.9250 0
        0

        3
        1
        1 female 35.0 53.1000 0
        0

        4
        0
        3 male 35.0 8.0500 1
        1
```

DataSet concat and now, we can drop the Sex column fromt the dataset .

```
In [28]:
```

```
train.drop(['Sex'], axis=1, inplace=True )
```

Check the basic information about the dataset.

In [29]:

```
train.head()
```

Out[29]:

	Survived	Pclass	Age	Fare	male
0	0	3	22.0	7.2500	1
1	1	1	38.0	71.2833	0
2	1	3	26.0	7.9250	0
3	1	1	35.0	53.1000	0
4	0	3	35.0	8.0500	1

Train and build Classifier

Import Library StandardScaler

```
In [30]:
```

```
from sklearn.preprocessing import StandardScaler
sts =StandardScaler()
```

Now feature_Scale have two feature - Age and Fare .

```
In [31]:
```

```
feature_scale = ['Age','Fare']
train[feature_scale] = sts.fit_transform(train[feature_scale])
```

These 2 feature got feature skills . Now, as we already done with the data processing activity .

```
In [32]:
```

```
train.head()
```

Out[32]:

	Survived	Pclass	Age	Fare	male
0	0	3	-0.592481	-0.502445	1
1	1	1	0.638789	0.786845	0
2	1	3	-0.284663	-0.488854	0
3	1	1	0.407926	0.420730	0
4	0	3	0.407926	-0.486337	1

Now, we can split the dataset into X and Y variable . Basically , Survived(x) is a Target variable .

```
In [33]:
```

```
X= train.drop(['Survived'],axis=1)
y=train['Survived']
```

Import Some Library . GridSearchCV-Used for Model selection technique . these three are model DecisionTreeClassifier,KNeighborsClassifier,SVC, I dodn't know which model is fit for that dataset what we do used GridSearchCV to find the best model.

```
In [34]:
```

```
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
```

We used Model Selection Technique. In this there are key and value. keys are DecisionTreeClassifier,KNeighborsClassifier,SVC. and values are Model and param GridSearchCV is used to find the best best hyper parameter used for given model.

```
In [35]:
```

```
#create Param
model param ={
    'DecisionTreeClassifier':{
        'model':DecisionTreeClassifier(),
        'param':{
            'criterion':['gini','entropy']
    },
        'KNeighborsClassifier':{
        'model':KNeighborsClassifier(),
        'param':{
            'n neighbors': [5,10,15,20,25]
    },
        'SVC':{
        'model':SVC(),
        'param':{
            'kernel':['rbf','linear','sigmoid'],
            'C': [0.1, 1, 10, 100]
    }
```

Creating a for loop here i am passing these values to the GridSearch class . each model iterate and get the accuracy. and stored in the score variable.

```
In [36]:
```

```
scores =[]
for model_name, mp in model_param.items():
    model_selection = GridSearchCV(estimator=mp['model'],param_grid=mp['param'],cv=5,ret
urn_train_score=False)
    model_selection.fit(X,y)
    scores.append({
        'model': model_name,
        'best_score': model_selection.best_score_,
        'best_params': model_selection.best_params_
})
```

Score of individual models this is the command . I'm creating a new dataframe -df_model_score to get this score value .

```
In [37]:

df_model_score = pd.DataFrame(scores,columns=['model','best_score','best_params'])
df_model_score

Out[37]:
```

	model	best_score	best_params
0	DecisionTreeClassifier	0.776731	{'criterion': 'gini'}
1	KNeighborsClassifier	0.802492	{'n_neighbors': 5}
2	SVC	0.811481	{'C': 100, 'kernel': 'rbf'}

As per result, we decided SVC is best model to predict

```
In [38]:
model_svc = SVC(C= 100, kernel= 'rbf')
In [39]:
model_svc.fit(X, y)
Out[39]:
SVC(C=100)
```

Now, I have to predict test feature. Create a dataframe to read the test dataset.

```
In [40]:
test = pd.read_csv(r'D:\Python DS analy\Internship\test.csv')
```

```
In [41]:
test.head()
```

Out[41]:

Sex

Age Fare

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	s
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	s
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	s

Drop Unwanted feature

0 86

1

```
In [42]:

df = test.drop(['PassengerId','Name','Ticket','Cabin','Embarked','SibSp','Parch'], axis=
1 )

In [43]:

df.isnull().sum()

Out[43]:
Pclass 0
```

dtype: int64

In above, we saw some missing value. Now, we can fill this missing values with mean values.

```
In [44]:
```

```
df['Age'].fillna(df['Age'].mean(),inplace=True)
df['Fare'].fillna(df['Fare'].mean(),inplace=True)
```

I will now convert some of the categorical features in the dataset into dummy variables that our machine learning model can accept. And afterthat, we can drop sex column from the dataset.

```
In [45]:
```

```
l_sex_dummies=pd.get_dummies(df['Sex'],drop_first=True)
df= pd.concat([df,l_sex_dummies],axis=1)
df.drop(['Sex'], axis=1, inplace=True)
```

In [46]:

```
df.head()
```

Out[46]:

	Pclass	Age	Fare	male
0	3	34.5	7.8292	1
1	3	47.0	7.0000	0
2	2	62.0	9.6875	1
3	3	27.0	8.6625	1
4	3	22.0	12.2875	0

Implement feature scale on age and fare feature

```
In [47]:
```

```
df[feature_scale] = sts.fit_transform(df[feature_scale])
```

In [48]:

```
df.head()
```

Out[48]:

	Pclass	Age	Fare	male
0	3	0.334993	-0.498407	1
1	3	1.325530	-0.513274	0
2	2	2.514175	-0.465088	1
3	3	-0.259330	-0.483466	1
4	3	-0.655545	-0.418471	0

Now, we can predict the model with Svc

```
In [49]:
```

```
y_predicted = model_svc.predict(df)
```

Create a dataframe submission which holds the passangerId and Survived .

```
In [50]:
```

```
submission = pd.DataFrame({
         "PassengerId": test['PassengerId'],
         "Survived": y_predicted
})
```

Now Predict is done we can print the data

In [51]:

print(submission)

	PassengerId	Survived
0	892	0
1	893	0
2	894	0
3	895	0
4	896	1
413	1305	0
414	1306	1
415	1307	0
416	1308	0
417	1309	0

[418 rows x 2 columns]

Now, save this dataframe in csv file.

```
In [52]:
```

```
submission.to_csv('submission_for_internship.csv', index=False)
```

```
In [ ]:
```