עקומים ריבועיים

עקום ריבועי מתואר ע"י פולינום ריבועי בשני משתנים

$$P(x,y) = Ax^{2} + Bx + Cy^{2} + Dy + Exy + F = 0$$

בקורס הזה נניח כמעט תמיד שE=0 (ראו הערה בסוף). בנוסף נרצה להיפטר מהגורמים שלE=0 מבצעים את בעזרת

בקור ס רואד נכיד בעט ונגוו x,y בעט ווער בטורן, בנוסף נו צור לוהצטר מונגר בעט ווער בטורן, בעזרונ $Ax^2+Bx=A(x+\frac{B}{2})^2-A\frac{B^2}{4}$ השלמה לריבוע $Ax^2+Bx=A(x+\frac{B}{2})^2-A\frac{B^2}{4}$ מבחינה גאומטרית, ההשלמה לריבוע לאחר ההשלמה לריבוע נישאר עם פולינום מהצורה $a(x-x_0)^2+b(y-y_0)^2+c=0$ זה היזת המרכז. למשל $a(x-x_0)^2+(y-2)^2$

- $\pm c^2$ אם נוחיות לפי הסימן מפרים על . $rac{x^2}{a^2}+rac{y^2}{b^2}=\pm c^2$ נפריד מקרים לפי הסימן אל מחיות מסתכל על העקום. 1.
- (א) שסכום המרחק שלהם מהמוקדים (x,y) שסכום ($a\geq b$ מהמוקדים המרחק המרחק אליפסה (בה"כ ב"כ הנקודות ($a\geq b$ האליפסה (בה"כ ב"כ ב"כ המרחק שלהם מעגל ברדיוס (ac=bc הוא בירים ($\pm\sqrt{a^2c^2-b^2c^2},0$) $\pm (0,bc)$ ו $\pm (ac,0)$ הן

- עם הרדיוס וגם בראשית וגם הרדיוס שואף המוקדים מו $c^2\to 0$ עם לב שכאשית. נשים בראשית וגם בראשית י נכן כב $\frac{x^2}{a^2}+\frac{y^2}{b^2}=0$ (ב) לאפס, כלומר בעצם מקבלים אליפסה "מנוונת".
 - . מאחר ו $\frac{x^2}{a^2}+\frac{y^2}{b^2}\geq 0>-c^2$ מאחר היקה. מאחר מאחר מאחר מאחר היקה. מאחר מאחר ו $\frac{x^2}{a^2}+\frac{y^2}{b^2}\geq 0>-c^2$ (ג)
 - (a,b>0) בה"כ $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\pm c^2$ בה"כ (בה"כ שוב לשם הנוחיות נסתכל על y^2 בה"כ (בה"כ 2.
- $(\pm\sqrt{a^2c^2+b^2c^2},0)$ היפרבולה. כל הנקודות (x,y) שהפרש המרחקים שלהן היפרבולה. כל הנקודות ב(x,y) שהפרש היפרבולה. כל הנקודות (x,y) שווה ל $rac{x}{a}-rac{y}{b}=rac{c^2}{rac{x}{a}+rac{y}{b}} o 0$ נקבל ש $y\geq 0$ עבור $x o\infty$ עבור $x o\infty$ נשים לב שאפשר לרשום עובר $x o\infty$ נשים לב שאפשר לרשום אום מידיים לב שאפשר לרשום מידיים אום מידיים לב שאפשר לרשום אום מידיים אום (כי הנחנו ש0>0, כלומר העקומה שואפת לישר $y=\frac{b}{a}x$, ואם $y=\frac{b}{a}$ אז העקומה תשאף ל $y=\frac{b}{a}$. אותו (כי הנחנו ש $x=\frac{b}{a}$), כלומר ההיפרבולה "שואפת" לישרים $y=\pm b$ באינסוף. נקודת החיתוך עם ציר האיקס היא $c^2=rac{x^2}{a^2}-rac{0}{b^2}$, כלומר $c^2=rac{x^2}{a^2}$
- באמת ואז באמת לראשית שואפות ביר האיקס שנקודות הקודמת, נקבל שנקודות בדוגמא בדוגמא בדוגמא בדוגמא בדוגמא באמת בדוגמא כ $c\to 0$ בדוגמא בדוגמא בדוגמא ביר בדוגמא הישרים שנחתכים בראשית ביל ביל $a^2x^2=b^2y^2$ נקבל ש $a^2x^2=b^2y^2$ נקבל ש
- עניף קטעיף את אותה את כפל ה $\frac{y^2}{b^2}-\frac{x^2}{a^2}=c^2$ את המשוואה את כפל בי (-1) כפל בי ע"י כפל בי (-1) נעני יע"י כפל בי (-1) נקבל את המשוואה אותה אותה את המשוואה כמו בסעיף x,y מתחלפים.

1

- xy=c היפרבולה חשובה נוספת שאינה מהצורה הקנונית היא
- $(x^2=a^2c^2>0$ נקבל שני קווים אנכיים (עבור $x^2=\pm a^2c^2$, כלומר $\frac{x^2}{a^2}=\pm c^2$ נקבל שy=0 נקבל שני קווים אנכיים (עבור y=0 את נקבל אז נקבל (אם y=0). בצורה דומה אם המקדם של y=0 וקבוצה ריקה (אם y=0). בצורה דומה אם המקדם של y=0 וקבוצה ריקה (אם y=0). בצורה דומה אם המקדם של y=0 קווים אופקיים.
 - .5 שאר המקרים מתקבלים ע"י כפל ב(-1) כדי לקבל את אחד מהמקרים מתקבלים ע"י כפל ב

איז עמיד ניתן לכתוב אותו ע"י, או תמיד $ax^2+bxy+cy^2=d$ מהצורה כללי מהצוע (למתקדמים) אם נתון עקום ריבועי לכתוב אותו

$$.\left(x,y\right)\left(\begin{array}{cc}a&\frac{b}{2}\\\frac{b}{2}&c\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=d$$

 (v_1,v_2) אז מקבלים את העקום (v_1,v_2) אז מקבלים את העקום (v_1,v_2) אז מקבלים את העקום (v_1,v_2) , רק שהוא מיושר למערכת צירים הנקבעת ע"י (v_1,v_2) העצמיים הם (v_1,v_2) אז מקבלים את המטריצה (v_1,v_2) הע"ע הם (v_1,v_2) המתאימים לוקטורים העצמיים (v_1,v_2) בי (v_1,v_2) בי

 $\{(x,y)\mid f(x,y)=C\}$ תהא הקבוצה C, הוא הפונקציה של הפונקציה קו גובה $f(x,y):\mathbb{R}^2 o\mathbb{R}$ תהא

הוא איחוד f(x,y)=C שימו לב שלמרות השם, קו גובה הוא לא בהכרח קו. למשל f(x,y)=xy ולכל f(x,y)=C הוא איחוד של שני קווים.

 $x \neq \pm y$ בתחום ההגדרה בתחום $f(x,y) = rac{2x^2 - y^2 - 1}{x^2 - y^2}$ שענה של הגובה של מצאו את מצאו מצאו סענה

הקנונית בצורה בגובה f(x,y)=C הוא הפתרונות של הפתרונות הפתרונות בצורה הקנונית.

$$C = f(x,y) \iff (2-C)x^2 + (C-1)y^2 = 1$$

נפריד למקרים לפי הסימן של 2-C ו 2-C לפריד לתחומים:

- $x=\pmrac{1}{\sqrt{2-C}}$ ו y=0 אז C-1<0 ו היפרבולה. נקודות חיתוך מקבלים היפרבולה ב-C ולכן ולכן מקבלים היפרבולה. נקודות חיתוך אז מ
 - . מקבלים אנכיים שני שני אלו אלו $x=\pm 1$ מקבלים ישרים מקבC=1
- . $(\pm \frac{1}{\sqrt{2-C}},0)$ ו ($0,\pm \frac{1}{\sqrt{C-1}}$) אני המקדמים שני ולכן מקבלים אליפסה. נקודות חיתוך עם הצירים הן 1 < C < 2
 - . מקבלים $y^2=1$ כלומר $y=\pm 1$ כלומר $y^2=1$ מקבלים :C=2
 - $y = rac{1}{\sqrt{C-1}}$ ו x = 0 בעוד ש נקודות חיתוך שוב היפרבולה שוב C-1>0 בעוד ש 2-C<0 אז יו

 $y,x=\pm y$ הקווי גובה לא יכולים להיחתך! הקווי גובה שרשמנו למעלה כן נחתכים, אבל החיתוך נעשה רק כאשר הערה: קווי גובה של הפונקציה.

 $lpha\in\mathbb{R}$ טענה מנונה המשוואה $lpha(x^2+1)+y^2=1$ כל גורת העקום עבור עבור סענה 0.5 טענה

-lpha, 1-lpha את המשוואה לפי הסימן על המכונית $-lpha^2+y^2=1-lpha$. עתה נפריד למקרים לפי הסימן של

- - . בראשית. בודדת בודדת לכן נקבל , $x^2+y^2=0$ יהיה :lpha=1 .2
 - . המקדמים של 1- $\alpha>0$ וגם וגם x^2,y^2 של נקבל ולכן המקדמים וו $1-\alpha>0$. .3
 - . העקום יהיה $y=\pm 1$ ולכן $y^2=1$ העקום יהיה :lpha=0 .4
 - . בעוד ש $\alpha < 0$ ולכן מקבלים היפרבולה. $1 \alpha > 0$ נקבל ש $0 > \alpha$.