Gated recurrent units for activity recognition

Deep neural networks application on self collected dataset

Andrea Mascari - Davide Pivato

TABLE OF CONTENTS

1 The Topic

O2 Pre-Processing phase

Applications and experiments

04 Results

The Topic: Activity Recognition

ECG Signals

Heart rate monitor to record electrical activity of the heart in ECG signals

VS

Rest vs Walk

Binary classification task between two main activities

The Dataset

Hand collected data

Detection time of about 1m 💍

Seven subjects 🔑

Age and sex independent 😹

The Goal of Generalization

QRS Complexes

01

We were interested on catching peculiarities of the heartbeat's shape

Train and Test sets

02

Five subjects in train

Two subjects in test

Extend Knowledge

03

Activity recognition ability should hold when predicting unseen subjects

Data pre-processing

Segmentation

Single-beat sequence extraction from the signal, using QRS detection

Normalization

Standard scaling to reduce the range and the variance of values.

Data augmentation

SMOTE technique to increase the samples of the minority class

Key Features

SMOTE

Synthetic generated data from minority class

STANDARD SCALING

Performed by subtracting the mean and dividing by standard deviation

QRS DETECTION

Detection of the QRS complex in the signals

Exploratory Data Analysis

Normalized ECG values Histogram

PCA Visualization

Applications Timeline

Convolutional neural network

To extract local dependencies

01

02

GRU units

Injecting memory in the process

Autoencoders

As weights initialization for the network

Convolutional neural network

Suitable architecture to process images

Proposed a 1d-convolutional network to process the signal inputs

Implemented to compare the performance with the recurrent classifier

GRU cells

Type of recurrent neural network architecture

Capture long time in sequential data

have fewer parameters than LSTM and are therefore faster to train and require less memory to store

Recurrent network classifier

Output Dense Layer (1) - sigmoid

Gru Layer (8) - tanh

Starting Dense Layer (16) - relu

Input (100,)

Autoencoder

Compressing input representation in a more dense one

Idea of injecting preliminary representation in the classifier

Initialize the dense layer weights with the weights learned by the undercomplete autencoder

RESULTS

	Accuracy	Std	Precision	Recall	F1-score
Dense + GRU	90.0%	2.1%	97.2%	83.0%	89.5
AE + Classifier	87.4%	4.2%	97.2%	84.3%	90.3
DeepCNN	74.2%	0.7%	82.1%	77.0%	79.5

