Attorney Docket No.: 03678.0103.CPUS00

THE AMENDMENTS

1. (Currently Amended) A method of reducing intraocular pressure comprising administering to a subject a pharmaceutical composition comprising an effective amount of a compound of Formula I, its diasteromers diastereomers, enantiomers, tautomers, or pharmaceutically acceptable salts thereof:

$$G_5$$
 G_6
 G_1
 G_2
 G_3
 G_2
 G_4
 G_3
 G_4
 G_3
 G_4
 G_4
 G_4
 G_5
 G_4
 G_5
 G_4
 G_5
 G_7
 G_8
 G_8
 G_9
 G_9

wherein:

 $X_1 = O$, NR, S, CF₂, CF₃ or CN with the proviso that when $X_1 = CF_3$ or CN, then R_4 is absent; or X_1 represents a bond from the pyrimidine ring to R_4 or S;

 $X_2 = H$, F, Cl, Br, I, CN, OR_{87} , SR_{87} , $NR_{9}R_{137}$, CF_{37} , or alkyl, eycloalkyl, arylalkyl, arylalkenyl, arylalkynyl, $C(O)R_{167}$, $C(O)NR_{16}R_{18}$ or heterocycle of 5 to 7 members;

 $X_3 = H, CN, OR_{19}, SR_{19}, NR_{23}R_{28}, CF_3$, alkyl, cycloalkyl, $C(O)R_{32}$, $C(O)OR_{33}$, $C(O)NR_{34}R_{35}$, arylalkyl, aryl, arylalkynyl, or a heterocycle of 5 to 7 members;

 $R=H,\,OR_1,\,alkyl,\,cycloalkyl,\,arylalkyl,\,aryl,\,C(O)R_2,\,C(O)OR_3\cdot or\,C(O)NR_1R_2;$

R₁, R₇, R₁₀, R₂₂, R₂₄, R₂₇, R₃₁, R₃₃ and R₃₅ are each independently H, alkyl, cycloalkyl, arylalkyl or aryl;

Attorney Docket No.: 03678.0103.CPUS00

R₂ = H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members; or

R₁ and R₂ taken together can form a heterocyclic ring of 5 to 7 members;

R₃, R₆, R₈, R₁₂, R₁₅, R₁₇, R₂₁, R₂₆ and R₃₀ are independently alkyl, cycloalkyl, arylalkyl or aryl;

 $R_4 = H$, alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, $C(O)R_5$,

 $C(O)OR_6$ or $C(O)NR_5R_7$;

R₅, R₁₄, R₁₄, R₁₆, R₁₈, R₂₀, R₂₅, R₂₉, R₃₂ and R₃₄ are independently H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

 $R_9 = H$, OR_{10} , alkyl, cycloalkyl, arylalkyl, aryl, $C(O)R_{11}$, $C(O)OR_{12}$ or $C(O)NR_{10}R_{11}$;

R₁₃ = H, alkyl, cycloalkyl, arylalkyl, aryl, C(O)R₁₄ or C(O)OR₁₅;

 $R_{19} = alkyl$, cycloalkyl, arylalkyl, or aryl, $C(O)R_{20}$, $C(O)OR_{21}$ or $C(O)NR_{20}R_{22}$;

R₂₃ = H, OR₂₄, alkyl, cycloalkyl, arylalkyl, aryl, C(O)R₂₅, C(O)OR₂₆ or C(O)NR₂₅R₂₇;

where R₂₆ and R₂₉ taken together can form a heterocyclic ring of 6 or 7 members;

or R_2 and R_4 , R_2 and R_{57} , R_{10} and R_{117} , R_{9} and R_{137} , R_{10} and R_{147} , R_{9} and R_{147} , R_{11} and R_{147} , R_{9} and

R₁₅, R₁₁ and R₁₅, R₁₆ and R₁₈, R₂₀ and R₂₂, R₂₅ and R₂₇, R₂₃ and R₂₈, R₂₄ and R₂₈, R₂₅ and R₂₈,

R₂₅ and R₂₉, R₂₉ and R₃₁ or R₃₄ and R₃₅ are optionally taken together to form a heterocyclic ring of 5 to 7 members;

 $E = O or CH_2$;

 E_1 and E_2 independently are H or F; or

E₁ and E₂, when taken together, form a carbon-carbon bond;

 $Y_1 = 0$ or F, with the proviso that when $Y_1 = F$, then M_1 is absent; or

Y₁ represents a bond from the point of ring attachment to M₁;

 $Y_2 = 0$ or F, with the proviso that when $Y_2 = F$, then M_2 is absent; or

Y₂ represents a bond from the point of ring attachment to M₂;

M₁ and M₂ are independently H, alkyl, cycloalkyl, arylalkyl, aryl, C(O)M₃, C(O)OM₄, or C(O)NM₂M₅;

M₃ = H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

 M_4 = alkyl, cycloalkyl, arylalkyl or aryl;

M₅ = H, alkyl, cycloalkyl, arylalkyl, or aryl; or

M₃ and M₅ taken together form a heterocyclic ring of 5 to 7 members;

when $Y_1 = Y_2 = 0$, M_1 and M_2 optionally are bonds from the oxygen atoms of Y_1 and Y_2 ,

Attorney Docket No.: 03678.0103.CPUS00

respectively, to a carbon atom of an acetal-, ketal- or orthoester group E3;

wherein E_3 is $Q(A_1)(A_2)$;

wherein Q is a carbon atom;

A₁ = H, CF₃, alkyl, cycloalkyl, arylalkyl or aryl;

A₂ = H, OA₃, CF₃, alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members;

A₃ = alkyl, cycloalkyl, arylalkyl or aryl; or

where A₁ and A₂, when taken together, form a carbocyclic ring of 5 or 6 members, with or without unsaturation, and with or without substitution; or

 $M_1Q(\Lambda_1)(\Lambda_2)M_2$ is taken together to form a carbonyl bonded to Y_1 and Y_2 , such that a cyclic carbonate is formed;

 Y_1M_1 and Y_2M_2 are independently OH, F, or H;

Z = O, $NZ_3 NH$, CH_2 , CHF, CF_2 , CCl_2 , or CHCl;

 Z_1 and Z_2 are independently O or S;

Z₃ = H, alkyl, cycloalkyl, arylalkyl, aryl or a heterocyclic ring of 5 to 7 members;

 $G_1 = O_1 \cdot S_2 \cdot CH_2 \cdot O_1 \cdot CH(O_1) \cdot O_1 \cdot S_2 \cdot CH_2 \cdot O_1 \cdot O_2 \cdot O_2$

 $G_2 = CH_2 \cdot C(CH_2 \cdot OJ_3)$, CCH_3 , CCF_3 , or $C(CO_2 \cdot J_4)$;

 $G_3 = CH_2$, CHF, CF₂, $\frac{CH(OJ_5)}{OT} \frac{OT}{OT} \frac{CH(NJ_6J_7)}{OT} CH(OH)$ or $CH(NHJ_7)$;

 $G_4 = CH_2$, CHF, CF_2 , $CH(OJ_9)$, or $CH(NJ_{11}J_{12})$ CH(OH) or $CH(NHJ_{13})$;

 $G_5 = CH_2$, CHF, CF₂, CH(OJ₁₅), or CH(NJ₁₆J₁₇) CH(OH) or CH(NHJ₁₇);

 $G_6 = CH_2$, $CH(CH_3)$, $CH(CH_2)$, $CH(CF_3)$, $CH(OJ_{10})$, $CH(CH_2OJ_{10})$, $CH(CH_2OH)$:

CH(CH₂(NJ₂₁J₂₃)), or CH(CO₂J₂₂), with the provision that when $G_1 = O$ or S, then G_6 does not equal CH(OH); and

the number of hydrogen atoms bonded to the G_1 - G_6 ring atoms is limited to a maximum of 8; also with the provision that the number of nitrogen atoms bonded to the G_1 - G_6 ring atoms in Formula I is limited to a maximum of 2;

J₁ = H, alkyl, eycloalkyl, arylalkyl, aryl, or C(O)J₂;

J₂, J₆, J₈, J₁₀, J₁₁, J₁₄, J₁₆, J₁₈, J₂₀, J₂₂, and J₂₄ are independently H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

 J_3 = alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_2$;

 J_4 = alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

Attorney Docket No.: 03678.0103.CPUS00

J₅ = H, alkyl, cycloalkyl, arylalkyl, aryl, or C(O)J₆;

 J_{7} , J_{13} , and J_{17} — H, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{8}$ are independently H, C(O)H, or C(O)alkyl;

 $J_9 = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)J_{10}$, $CH(CH_3)(CO_2J_{11})$, or $CH(CH_3)(C(O)NJ_{11}J_{12})$; $J_{12} = H$, alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, an amino acid radical of 2 to 12 carbon atoms with or without hetero atoms, or a peptide radical comprising 2 to 10 amino acid units;

J₁₃ = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₁₄;

 $J_{15} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{16}$;

J₁₇ = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₁₈;

 $J_{19} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{20}$;

 $J_{21} = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)J_{22}$ or heterocyclic ring of 5 to 7 members;

 $J_{23} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{24}$; or

J₆ and J₇, J₁₁ and J₁₂, J₁₁ and J₁₃, J₁₆ and J₁₇ or J₂₁ and J₂₃ are optionally taken together to form a heterocyclic ring of 5 to 7 members; or

where J₂₂ and J₂₄, when taken together, form a heterocyclic ring of 5 to 7 members or a bicyclic imide comprising 4 to 12 carbons, with or without unsaturation and/or with or without substitution; or

when $G_1 = CH(OJ_1)$ and $G_2 = C(CH_2OJ_3)$, J_1 and J_3 optionally are bonds from the oxygen atoms of G_1 and G_2 , respectively, to a carbon atom of an acetal , ketal—or orthoester group G_7 ; wherein $G_7 = Q_1(T_1)(T_2)$; or

when $G_2 = C(CH_2OJ_3)$ and $G_3 = CH(OJ_5)$, J_3 and J_5 optionally are bonds from the oxygen atoms of G_2 and G_3 , respectively, to a carbon atom of an acetal , ketal or orthoester group G_8 ; wherein $G_8 = Q_1(T_1)(T_2)$; or

when G_3 = CH(OJ₅) and G_4 = C(CHOJ₉), J_5 and J_9 optionally are bonds from the oxygen atoms of G_3 and G_4 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_9 ; wherein $G_9 = Q_1(T_1)(T_2)$; or

when $G_4 = C(CHOJ_9)$ and $G_5 = CH(OJ_{15})$, J_9 and J_{15} optionally are bonds from the oxygen atoms of G_4 and G_5 , respectively, to a carbon atom of an acetal, ketal or orthoester group G_{10} ; wherein $G_{10} = Q_1(T_1)(T_2)$; or