Lexical alignment: IBM models 1 and 2 MLE via EM for categorical distributions

Wilker Aziz

April 7, 2017

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

the black dog	□ *
the nice dog	□∪
the black cat	⊡ ⊛
a dog chasing a cat	

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

Is there anything we could say about this language?

the black dog the nice dog the black cat a dog chasing a cat $\square \otimes$

the black dog $\square \circledast$ the nice dog $\square \cup$ the black cat $\square \circledast$ a dog chasing a cat $\square \triangleleft \square$

A few hypotheses:

▶ □ ⇐⇒ dog

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ←⇒ cat
- ▶ ⊛ ⇔ black

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ (*) ⇔ black
- nouns seem to preceed adjectives

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ (*) ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed

the black dog the nice dog the black cat $\odot \circledast$ a dog chasing a cat $\odot \lhd \Box$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ ⊛ ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- chasing may be expressed by and perhaps this language is OVS

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ * ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- ► chasing may be expressed by < and perhaps this language is OVS</p>
- or perhaps chasing is realised by a verb with swapped arguments

Probabilistic lexical alignment models

This lecture is about operationalising this intuition

- through a probabilistic learning algorithm
- ► for a non-probabilistic approach see for example [Lardilleux and Lepage, 2009]

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Imagine you are given a text

the black dog	o cão preto
the nice dog	o cão amigo
the black cat	o gato preto
a dog chasing a cat	um cão perseguindo um gato

Now imagine the French words were replaced by placeholders

the black dog	F_1 F_2 F_3
the nice dog	$F_1 F_2 F_3$
the black cat	$F_1 F_2 F_3$
a dog chasing a cat	$F_1 \ F_2 \ F_3 \ F_4 \ F_5$

Now imagine the French words were replaced by placeholders

$$\begin{array}{c|cccc} \text{the black dog} & F_1 \ F_2 \ F_3 \\ \text{the nice dog} & F_1 \ F_2 \ F_3 \\ \text{the black cat} & F_1 \ F_2 \ F_3 \\ \text{a dog chasing a cat} & F_1 \ F_2 \ F_3 \ F_4 \ F_5 \end{array}$$

and suppose our task is to have a model explain the original data

Now imagine the French words were replaced by placeholders

$$\begin{array}{c|cccc} \text{the black dog} & F_1 \ F_2 \ F_3 \\ \text{the nice dog} & F_1 \ F_2 \ F_3 \\ \text{the black cat} & F_1 \ F_2 \ F_3 \\ \text{a dog chasing a cat} & F_1 \ F_2 \ F_3 \ F_4 \ F_5 \end{array}$$

and suppose our task is to have a model explain the original data by generating each French word from exactly one English word

Generative story

For each sentence pair independently,

- 1. observe an English sentence e_1, \dots, e_m and a French sentence length n
- 2. for each French word position j from 1 to n
 - 2.1 select an English position a_j
 - 2.2 conditioned on the English word e_{a_j} , generate f_j

Generative story

For each sentence pair independently,

- 1. observe an English sentence e_1, \dots, e_m and a French sentence length n
- 2. for each French word position j from 1 to n
 - 2.1 select an English position a_j
 - 2.2 conditioned on the English word e_{a_j} , generate f_j

We have introduced an alignment which is not directly visible in the data

Observations:

the black dog | o cão preto

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

Observations:

the black dog o cão preto

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (A_1, E_{A_1} \to F_1) \ (A_2, E_{A_2} \to F_2) \ (A_3, E_{A_3} \to F_3)$

Observations:

the black dog o cão preto

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $| (1, E_{A_1} \to F_1) (A_2, E_{A_2} \to F_2) (A_3, E_{A_3} \to F_3)$

Observations:

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog
$$\mid$$
 $(1, \text{the} \rightarrow \text{o}) \ (A_2, E_{A_2} \rightarrow F_2) \ (A_3, E_{A_3} \rightarrow F_3)$

Observations:

the black dog o cão preto

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \text{the} \rightarrow \text{o}) \ (3, E_{A_2} \rightarrow F_2) \ (A_3, E_{A_3} \rightarrow F_3)$

Observations:

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, {\sf the} \to {\sf o}) \ (3, {\sf dog} \to {\sf c\~ao}) \ (A_3, E_{A_3} \to F_3)$

Observations:

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \mathsf{the} \to \mathsf{o}) \ (3, \mathsf{dog} \to \mathsf{c\~{a}o}) \ (2, E_{A_3} \to F_3)$

Observations:

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \text{the} \rightarrow \text{o}) \ (3, \text{dog} \rightarrow \text{cão}) \ (2, \text{black} \rightarrow \text{preto})$

Observations:

Imagine data is made of pairs:
$$(a_j,f_j)$$
 and $e_{a_j}\to f_j$ the black dog \mid $(1,\text{the}\to\text{o})$ $(3,\text{dog}\to\text{cão})$ $(2,\text{black}\to\text{preto})$ the black dog \mid $(1,\text{the}\to\text{o})$ $(1,\text{the}\to\text{cão})$ $(1,\text{the}\to\text{preto})$

Observations:

Imagine data is made of pairs:
$$(a_j,f_j)$$
 and $e_{a_j}\to f_j$ the black dog \mid $(1,\text{the}\to\text{o})$ $(3,\text{dog}\to\text{cão})$ $(2,\text{black}\to\text{preto})$ the black dog \mid $(1,\text{the}\to\text{o})$ $(1,\text{the}\to\text{cão})$ $(1,\text{the}\to\text{preto})$ the black dog \mid $(a_1,e_{a_1}\to f_1)$ $(a_2,e_{a_2}\to f_2)$ $(a_3,e_{a_3}\to f_3)$

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Mixture models

- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Mixture models

- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Generative story

- 1. select a mixture component $z \sim P(Z)$
- 2. generate an observation from it $x \sim P(X|Z=z)$

Mixture models

- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Marginal likelihood

$$P(x_1^m) = \prod_{i=1}^m \sum_{z=1}^c P(X = x_i, Z = z)$$
 (1)

$$= \prod_{i=1}^{m} \sum_{k=z}^{c} P(Z=z)P(X=x_i|Z=z)$$
 (2)

Interpretation

Missing data

- lacktriangle Let Z take one of c mixture components
- ▶ Assume data consists of pairs (x, z)
- x is always observed
- ightharpoonup y is always missing

Interpretation

Missing data

- ▶ Let Z take one of c mixture components
- ▶ Assume data consists of pairs (x, z)
- x is always observed
- y is always missing

Inference: posterior distribution over possible Z for each x

$$P(Z=z|X=x) = \frac{P(Z=z, X=x)}{\sum_{k=1}^{c} P(Z=k, X=x)}$$
(3)

$$= \frac{P(Z=z)P(X=x|Z=z)}{\sum_{k=1}^{c} P(Z=k)P(X=x|Z=k)}$$
 (4)

Non-identifiability

Different parameter settings, same distribution

Suppose
$$\mathcal{X}=\{a,b\}$$
 and $c=2$ and let $P(Z=1)=P(Z=2)=0.5$

Z	X = a	X = b
1	0.2	0.8
2	0.7	0.3
P(X)	0.45	0.55

Z	X = a	X = b
1	0.7	0.3
2	0.2	0.8
P(X)	0.45	0.55

Non-identifiability

Different parameter settings, same distribution

Suppose
$$\mathcal{X}=\{a,b\}$$
 and $c=2$ and let $P(Z=1)=P(Z=2)=0.5$

Z	X = a	X = b
1	0.2	0.8
2	0.7	0.3
P(X)	0.45	0.55

Z	X = a	X = b
1	0.7	0.3
2	0.2	0.8
P(X)	0.45	0.55

Problem for parameter estimation by hillclimbing

Maximum likelihood estimation

Expectation-Maximisation algorithm

E-step:

lacktriangle complete data using the posterior $P(Z_1^m|x_1^m)$

M-step:

- climb the likelihood surface
- $\begin{array}{c} \bullet \text{ for categorical distributions } P(O=o|C=c) = \theta_{c,o} \\ c \text{ and } o \text{ are categorical} \\ 0 \leq \theta_{c,o} \leq 1 \quad \text{and} \quad \sum_{o \in \mathcal{O}} \theta_{c,o} = 1 \end{array}$

$$\theta_{c,o} = \frac{\mathbb{E}[n(c \to o|Z_1^m)]}{\sum_{o'} \mathbb{E}[n(c \to o'|Z_1^m)]}$$
 (5)

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Constrained mixture model

Constrained mixture model

mixture components are English words

Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned

Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned
- a_j acts as an indicator for the mixture component that generates French word f_j
- e₀ is occupied by a special NULL component

IBM1: marginal likelihood

Marginal likelihood

$$P(f_1^n|e_0^m) = \sum_{a_1=0}^m \cdots \sum_{a_n=0}^m P(f_1^n, a_1^n|e_{a_j})$$
 (6)

$$= \sum_{a_1=0}^{m} \cdots \sum_{a_n=0}^{m} \prod_{j=1}^{n} P(a_j|m,n) P(f_j|e_{a_j})$$
 (7)

$$= \prod_{j=1}^{n} \sum_{a_{j}=0}^{m} P(a_{j}|m,n) P(f_{j}|e_{a_{j}})$$
 (8)

IBM1: posterior

Posterior

$$P(a_1^n|f_1^n, e_0^m) = \frac{P(f_1^n, a_1^n|e_0^m)}{P(f_1^n|e_0^m)}$$
(9)

Factorised

$$P(a_j|f_1^n, e_0^m) = \frac{P(a_j|m, n)P(f_j|e_{a_j})}{\sum_{i=0}^m P(i|m, n)P(f_j|e_i)}$$
(10)

Parameterisation

Alignment distribution: uniform

$$P(A|M=m, N=n) = \frac{1}{m+1}$$
 (11)

Lexical distribution: categorical

$$P(F|E=e) = \operatorname{Cat}(F|\theta_e) \tag{12}$$

- where $\theta_e \in \mathbb{R}^{v_F}$
- \bullet $0 \le \theta_{e,f} \le 1$
- $\blacktriangleright \sum_{f} \theta_{e,f} = 1$

MLE via EM

E-step:

$$\mathbb{E}[n(\mathsf{e} \to \mathsf{f}|A_1^n)] = \sum_{a_1=0} \cdots \sum_{a_n=0} P(a_1^n|f_1^n, e_0^m) n(c \to d|A_1^n)$$

$$= \sum_{a_1=0}^m \cdots \sum_{A_n=0}^m \prod_{j=1}^n P(a_j|f_1^n, e_0^m) \mathbb{1}_{\{\mathsf{e}\}}(e_{a_j}) \mathbb{1}_{\{\mathsf{f}\}}(f_j)$$
(14)

$$= \prod_{i=1}^{n} \sum_{i=0}^{m} P(A_j = i | f_1^n, e_0^m) \mathbb{1}_{\{e\}}(e_i) \mathbb{1}_{\{f\}}(f_j)$$
 (15)

M-step:

$$\theta_{e,f} = \frac{\mathbb{E}[n(e \to f|A_1^n)]}{\sum_{f'} \mathbb{E}[n(e \to f'|A_1^n)]}$$
(16)

EM algorithm

Repeat until convergence to a local optimum

- 1. For each sentence pair
 - 1.1 compute posterior per alignment link
 - 1.2 accumulate fractional counts
- 2. Normalise counts for each English word

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Alignment distribution

Positional distribution

$$P(A_i|M=m, N=n) = \operatorname{Cat}(A|\lambda_{i,m,n})$$

- lacktriangle one distribution for each tuple (j, m, n)
- support must include length of longest English sentence
- extremely over-parameterised!

Alignment distribution

Positional distribution

$$P(A_j|M=m, N=n) = \operatorname{Cat}(A|\lambda_{j,m,n})$$

- one distribution for each tuple (j, m, n)
- support must include length of longest English sentence
- extremely over-parameterised!

Jump distribution

[Vogel et al., 1996]

- ▶ define a jump function $\delta(a_j, j, m, n) = a_j \left\lfloor j \frac{m}{n} \right\rfloor$
- $P(A_j|m,n) = \operatorname{Cat}(\Delta|\lambda)$
- lacktriangle Δ takes values from -longest to +longest

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Limitations of IBM1-2

- too strong independence assumptions
- categorical parameterisation suffers from data sparsity
- EM suffers from local optima

Extensions

Dirichlet priors and posterior inference [Mermer and Saraclar, 2011]

Log-linear distortion parameters and variational Bayes [Dyer et al., 2013]

First-order dependency (HMM) [Vogel et al., 1996]

E-step requires dynamic programming [Baum and Petrie, 1966]

References I

- L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov chains. *Annals of Mathematical Statistics*, 37:1554–1563, 1966.
- Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameterization of ibm model 2. In *Proceedings* of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N13-1073.
- Adrien Lardilleux and Yves Lepage. Sampling-based multilingual alignment. In *Proceedings of the International Conference RANLP-2009*, pages 214–218, Borovets, Bulgaria, September 2009. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/R09-1040.

References II

Coskun Mermer and Murat Saraclar. Bayesian word alignment for statistical machine translation. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 182–187, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2032.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.

HMM-based word alignment in statistical translation. In Proceedings of the 16th Conference on Computational Linguistics - Volume 2, COLING '96, pages 836–841, Stroudsburg, PA, USA, 1996. Association for Computational Linguistics. doi: 10.3115/993268.993313. URL http://dx.doi.org/10.3115/993268.993313.