# NLP methods for crypto price prediction

A. Kipriyanov G. Kuzmin

**ICEF** 

December 18, 2022

### Idea of the research

- Cryptocurrency people's money
- Easy access by millions of people
- Social networks (Facebook<sup>1</sup>, Twitter, Reddit, etc)
- Pure speculative value creation, no underlying asset
- Retrieve sentiment ⇒ forecast the direction of the return
- Compare with more traditional econometric and ML models

<sup>&</sup>lt;sup>1</sup>parent company 'Meta' is recognized as an extremist organization and banned on the territory of the Russian Federation

# Data (1/2)

#### Typical Reddit posts:



We collect Score, Subreddit, Title, Post Text, ID, Total Comments, Date

# Data (2/2)

Yahoo!Finance: Bitcoin, Ethereum, USDT, USDC, Binance Coin and Dogecoin



# NLP (1/3)

### Marking Data

| negative (-1) | neutral (0)             | positive (1) |
|---------------|-------------------------|--------------|
| return < -2%  | return $\in$ [-2%; +2%] | return > +2% |

#### TF-IDF

$$tf = \frac{\text{\# of the word in the text file}}{\text{total \# of all words in the text file}}$$

$$idf = log(\frac{\text{\# of other text files}}{\text{\# of text files with this word}})$$

$$tf - idf = tf \times idf$$

- Support Vector Machine (SVM) to perform classification
- Does not count semantic similarity between words

## NLP(2/3)

#### Word2Vec

- Attaching semantic numeric vector to each word and obtaining aggregated one for the post
- Finding similar semantic vectors via cosine similarity

### KNN prediction algorithm

| For post $i = 1$ to $M + V$ ( $M$ - train sample, $V$ - test sample):                                                                                                                   |                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Step 1:</b> for $m = 1$ to $M$ : if $i \notin M$ , estimate their cosine similarity $(d_{im})$ <b>Step 2:</b> Select $KNN(\text{highest }d)$ and take initial sentiments (logreturn) | Step 4: $s_t = \frac{\sum\limits_{\{m \in KNN\}} d_{im}^3}{K}$                                                                          |  |
| Step 3:                                                                                                                                                                                 | Step 5:                                                                                                                                 |  |
| $Sent_t = rac{\sum\limits_{\{m \in KNN\}} d_{im}^3 	imes Initial \ Sent}{\sum\limits_{\{m \in KNN\}} d_{im}^3}$                                                                        | $s_{pred} = rac{\sum\limits_{t=1}^{N} s_t}{N};  Sent_{pred} = rac{\sum\limits_{t=1}^{N} Sent_t 	imes s_t}{\sum\limits_{t=1}^{N} s_t}$ |  |

# NLP (3/3)

| TF-IDF + SVM        | Word2Vec + KNN             |
|---------------------|----------------------------|
| Train 80%, Test 20% | 2 days to predict next day |
| Expanding window    | Rolling window             |
| F-beta=0.7027       | F-beta=0.6071              |
| MSE=1.3067          | MSE=1.1429                 |

### **Limitations and Improvements**

#### TF-IDF:

- Add additional factors, such as posts' length, binary for emoji-es and presence of video materials
- Other alternative classification techniques could be used such as logit,
   Random Forests

#### Word2Vec

Extremely computationally extensive, that is why, we should check the
performance with the training data larger than posts within two days

### Potential applications:

Constructing trading algorithm, based on predicted marking: (positive (1)  $\rightarrow$  Buy, neutral (0)  $\rightarrow$  Hold, negative (-1)  $\rightarrow$  Sell)

# Competing methodologies (1/2)

- Polynomial regression
  - Lags of BTC, ETH, BNB and DOGE Returns, Lags of BTC Volume and Range, Score and Total Comments
  - Train-validation-test split: 6-2-2
  - $CV \Rightarrow power = 1$
  - MSE = 0.9185
- Random Forest
  - Lags of BTC, ETH, BNB and DOGE Returns, Lags of BTC Volume and Range, Score and Total Comments
  - Train-test split: 8-2
  - 10-fold CV  $\Rightarrow$  # trees = 520
  - MSE = 0.0337
- GARCH (1,1)
  - Return of BTC
  - Train-test split: 8-2
  - MSE = 0.0464

# Competing methodologies (2/2)

- ANN
  - forecasts of Polynomial regression, Random Forest and GARCH (1,1)
  - 2 hidden layers, 4096 neurons each plus a concatenation layer
  - MSE = 0.03507
- ANN+
  - forecasts of all models plus lags of data
  - 2 hidden layers, 4096 neurons each plus a concatenation layer
  - MSE = 1.3806
- RNN
  - Return of BTC
  - Simple RNN layer
  - MSE = 0.0248

### Improvements and Further Research

- Increase the data set
- Try more sophisticated ANN (eg. LSTM)
- Parce pictures and determine the sentiment using the body of the post

## Improvements and Further Research

- Increase the data set
- Try more sophisticated ANN (eg. LSTM)

• Parce pictures and determine the sentiment using the body of the post

