Cairo University

Faculty of Computers and Artificial Intelligence

Department: Computer Science

Course Code: CS361

Course Title: Artificial Intelligence Instructor: Prof. Abeer El Korany

Ouestion 1 State True/False [5 marks]

Question 1 State True/Faise [5 marks]
1. Logic knowledge representation requires facts and rules to represent and reason about the real world ()
2. A Term is either an individual constant (a 0-ary function), or a variable, or an n-ary function applied to n terms: F(t1 t2tn).
3. Iterative Deepening Search is a way to make breadth search optimal for search problems with a constant state ()
4. The state space is the configuration of only possible states that represent the path from initial state to goal state ()
5. Knowledge is aggregation of only data to make decision making process more easier ()
Question 2 Complete the following statements [5 marks]
1. The blind search strategy which is complete, i.e., always finds a solution if there is one is called
2. The knowledge representation (KR) requirements for any AI system should be,

-
- 3. The process of deriving new knowledge from previous ones is called......
- 4. The following sentence "Ahmed has only two brothers" is represented as predicate logic as follows.....

Question 3[10]

A. Prove that
$$(P \lor Q) \land (R \lor P) \land (\neg Q \lor \neg R \lor P) \equiv P$$
 (2 mark)

B. Given the premises

(2 mark)

- 1) $(\exists x)P(x)$
- 2) $(\forall x)[P(x) \rightarrow Q(x)]$

give a series of steps concluding that $(\exists x)Q(x)$.

C. Consider the following FOL [6 marks]

- 1. \forall X vegetarian_meal (X) -> eat(ahmed,X)
- 2. \forall Y vegetarian_meal(Y) -> ~contain(Y,meat)
- 3. \forall Z meal(Z) $^{\land}$ at(Z, french-rest) -> vegtarian_meal(Z)
- 4. contain(escalop, meat)
- 5. at(carte du jour, french-rest)
- i. Convert each predicate logic statement to CNF

ii. Use resolution to ask: What meal would ahmed eat?

//Vegetarian meals contain no meat

//Ahmed only eats vegetarian food

//All meals at the French Restaurant are vegetarian

//Escalop contains meat

//Catre du jour is a meal at the French Restaurant