

Reações em meio aquoso

Prof° MSc. Flávio Olimpio Sanches Neto

Nas últimas aulas...

- Estrutura atômica;
- Ligação quimica e geometria molecular;
- Estequiometria;
- Reações em meio aquoso

Por que estudar reações em meio aquoso?

Solução é uma mistura homogênea de duas ou mais substâncias.

O **soluto** é (são) a(s) substância(s) presente(s) em menor(es) quantidade(s).

O solvente é a substância presente em grande quantidade.

<u>Solução</u>	<u>Solvente</u>	<u>Soluto</u>	
Refrigerante (I)	H_2O	Açúcar, CO ₂	
Ar (g)	N_2	O _{2,} Ar, CH ₄	
Solda mole (s)	Pb	Sn	

Solução aquoso de KMnO₄

Um **eletrólito** é uma substância que, dissolvida em água, resulta em solução que pode conduzir corrente elétrica.

Um **não eletrólito** é uma substância que, dissolvida em água, resulta em solução que não conduz corrente elétrica.

O solvente é a substância presente em grande quantidade.

Não eletrólito

Eletrólito fraco

Eletrólito forte

Propriedades eletrolíticas

Conduz eletricidade em solução ?

Cátions (+) e Ânions (-)

Eletrólito forte – 100% dissociado

NaCl (s)
$$\longrightarrow$$
 Na⁺ (aq) + Cl⁻ (aq)

Eletrólito fraco – não está completamente dissociado

$$CH_3COOH(l) + H_2O(l) \longrightarrow CH_3COO^-(aq) + H^+(aq)$$

Hidratação é o processo pelo qual íons ficam rodeados por moléculas de água dispostas de uma maneira específica.

Não eletrólito não conduz eletricidade?

Não existem cátions (+) e ânions (-) em solução

$$C_6H_{12}O_6(s) \xrightarrow{H_2O} C_6H_{12}O_6(aq)$$

Tabela 4.1 Classificação dos solutos em solução aquosa

Eletrólitos fortes	Eletrólitos fracos	Não eletrólitos
HCl	CH₃COOH	(NH ₂) ₂ CO (ureia)
HNO ₃	HF	CH ₃ OH (metanol)
HClO ₄	HNO ₂	C ₂ H ₅ OH (etanol)
H ₂ SO ₄ *	NH_3	C ₆ H ₁₂ O ₆ (glicose)
NaOH	H ₂ O**	C ₁₂ H ₂₂ O ₁₁ (sacarose)
Ba(OH) ₂		
Compostos iônicos		

^{*} H2SO4 tem dois sons H+ ionizáveis, mas apenas um dos sons H+ é completamente ionizado.

^{**} A água pura é um eletrólito extremamente fraco.

Reações de Precipitação

Precipitado – sólido insolúvel que separa da solução.

$$\downarrow \qquad \qquad \downarrow \\ \text{Pb(NO}_3)_2 (aq) + 2\text{KI} (aq) \longrightarrow \text{PbI}_2 (s) + 2\text{KNO}_3 (aq)$$

Equação molecular

$$Pb^{2+}(aq) + 2NO_3(aq) + 2K^+(aq) + 2I^-(aq) \longrightarrow PbI_2(s) + 2K^+(aq) + 2NO_3(aq)$$

Equação iônica

$$Pb^{2+}(aq) + 2l^{-}(aq) \longrightarrow Pbl_{2}(s)$$

Equação iônica líquida

K⁺ e NO₃ são íons **espectadores**

Reações de Precipitação

Precipitação de Iodeto de Chumbo

$$Pb^{2+}(aq) + 2l^{-}(aq) \longrightarrow Pbl_{2}(s)$$

Solubilidade é a máxima quantidade de soluto que pode ser dissolvida em uma certa quantidade de solvente a uma dada temperatura.

Tabela 4.2 Regras de solubilidade para compostos iônicos em água a 25°C

Compostos solúveis	Exceções
Compostos contendo íons de metais alcalinos (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ e o íon amônio (NH ₄ ⁺)	
Nitratos (NO ₃ ⁻), acetatos (CH ₃ COO ⁻), bicarbonatos (HCO ₃ ⁻), cloratos (ClO ₃ ⁻) e percloratos (ClO ₄ ⁻)	
Haletos (Cl ⁻ , Br ⁻ , I ⁻) Sulfatos (SO ₄ ²⁻)	Haletos de Ag ⁺ , Hg ₂ ²⁺ e Pb ²⁺ . Sulfatos de Ag ⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ₂ ²⁺ e Pb ²⁺
Compostos insolúveis	Exceções
Carbonatos (CO ₃ ²⁻), fosfatos (PO ₄ ³⁻), cromatos (CrO ₄ ²⁻), sulfetos (S ²⁻)	Compostos contendo íons de metais alcalinos e o íon amônio
Hidróxidos (OH ⁻)	Compostos contendo íons de metais alcalinos e o íon Ba ²⁺

Solubilidade

Exemplos de compostos iônicos insolúveis

Reações ácido-base

Propriedades gerais de ácidos e bases

- Os ácidos têm um sabor azedo. O vinagre, por exemplo, deve o seu sabor ao ácido acético, e o limão, bem como outras frutas cítricas, contêm ácido cítrico.
- Os ácidos causam mudanças de cor nos corantes vegetais.
- Reage com certos metais para produzir gás hidrogênio.

$$2HCl(aq) + Mg(s) \longrightarrow MgCl_2(aq) + H_2(g)$$

Reage com carbonatos e bicarbonatos para produzir dióxido de carbono.

$$2HCI(aq) + CaCO_3(s) \longrightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$$

 $HCI(aq) + NaHCO_3(s) \longrightarrow NaCI(aq) + H_2O(I) + CO_2(g)$

As soluções aquosas de ácidos conduzem eletricidade.

Reações ácido-base

Propriedades gerais de ácidos e bases

- As bases têm sabor amargo.
- As bases são escorregadias ao tato, por exemplo, os sabões, que contêm bases, apresentam esta característica.
- As bases causam mudanças de cor nos corantes vegetais, por exemplo, provocam alterações na cor do tornassol de vermelho para azul.
- As soluções aquosas de bases conduzem eletricidade.

Teorias ácido-base

*Teoria de Arrhenius:

Ácidos são compostos em solução aquosa que ionizam, produzindo como íon positivo apenas o cátion hidrogênio (H⁺) ou, mais corretamente, o íon H₃O⁺, denominado íon hidrônio ou hidroxônio.

Bases ou hidróxidos são compostos que, por dissociação iônica, liberam, como ion negativo, apenas o ânion hidróxido (OH-), também chamado de hidroxila ou oxidrila.

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

*Teoria de Brönsted-Lowry:

Ácido é a espécie química que doa prótons. Já uma base é o receptor de prótons.

$$HCN + H_2O \rightarrow CN^- + H_3O^+$$

$$CN^- + H_3O^+ \rightarrow HCN + H_2O$$

*Teoria de Lewis:

Um ácido de Lewis é um receptor de um par de elétrons e uma base de Lewis é uma doadora de um par de elétrons.

Reação de neutralização

$$HCI(aq) + NaOH(aq) \longrightarrow NaCI(aq) + H2O(l)$$

$$H^{+}(aq) + \Omega^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \longrightarrow Na^{+}(aq) + \Omega^{-}(aq) + H2O(I)$$

$$H^+$$
 (aq) + OH^- (aq) \longrightarrow H2O (/)

Reação de neutralização

Reação de neutralização envolvendo um eletrólito fraco

$$HCN(aq) + NaOH(aq) \longrightarrow NaCN(aq) + H2O(l)$$

HCN
$$(aq) + Na^{+}(aq) + OH^{-}(aq) \longrightarrow Na^{+}(aq) + CN^{-}(aq) + H2O(I)$$

$$HCN(aq) + OH^{-}(aq) \longrightarrow CN^{-}(aq) + H2O(I)$$

Reações de oxidação-redução

Reações de transferência de elétrons

Figura 4.9 O magnésio entra em combustão com o oxigênio e forma óxido de magnésio.

$$O_2 + 4e^- \longrightarrow 2O^{2-}$$

meia-reação de redução (ganha e-)

$$2Mg + O_2 + 4e^- \longrightarrow 2Mg^{2+} + 2O^{2-} + 4e^-$$

 $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$

Reações de oxidação-redução

