

Chung-Fan CHIOU et al. Q76519 A REACTOR FOR... Filing Date: July 17, 2003 Brett S. Sylvester 202-663-7360

中華民國經濟部智慧財產局

INTELLECTUAL PROPERTY OFFICE MINISTRY OF ECONOMIC AFFAIRS REPUBLIC OF CHINA

茲證明所附文件,係本局存檔中原申請案的副本,正確無訛, 其申請資料如下:

This is to certify that annexed is a true copy from the records of this office of the application as originally filed which is identified hereunder:

申 請 日: 西元 2002 年 12 月 03 日

Application Date

申 請 案 號: 091135057

Application No.

申 請 人: 財團法人工業技術研究院

Applicant(s)

ारी होते सिर्ध सिर्ध

局 長 Director General

發文日期: 西元 2003 年 2 月 25 日

Issue Date

發文字號: 09220186300

Serial No.

申請日期:	IPC分類	id
申請案號:		2.0

(以上各欄)	由本局填富	登明專利說明書
	中文	微 陣列生物晶片反應器
發明名稱	英文	
	姓 名 (中文)	1. 邱創汎 2. 詹博淵 3. 何志偉
÷	(英文)	1. Chung-Fan Chiou 2. Bor-Iuan Jan 3. Chih-Wei Ho
發明人 (共4人)	國 籍 (中英文)	1. 中華民國 TW 2. 中華民國 TW 3. 中華民國 TW
(*4/\)	住居所(中文)	 新竹市南區柴橋里12鄰明湖路648巷122弄67號 屏東市仁愛里11鄰中華路373巷5號 苗栗縣通霄鎮通南里中山路5鄰16號
	住居所 (英 文)	1. 2. 3.
	名稱或 姓 名 (中文)	1. 財團法人工業技術研究院
	名稱或 姓 名 (英文)	1. INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
=	國 籍 (中英文)	1. 中華民國 TW
申請人(共1人)	住居所 (營業所) (中 文)	1. 新竹縣竹東鎮中興路四段一九五號 (本地址與前向貴局申請者相同)
i	住居所 (營業所) (英 文)	1.
•	代表人 (中文)	1. 翁正義
	代表人(英文)	1. Weng, Cheng-I

申請日期:		IPC分類					
申請案號:							
(ツレタ趣)							
(以上各欄由本局填註) 發明專利說明書							
_	中文	jt.					
發明名稱	英文						
	姓 名(中文)	4. 楊舒茹					
-	(英文)	4. Yang, Shu Ju					
發明人 (共4人)	國 籍 (中英文)	4. 中華民國 TW					
\ \\\ -2	住居所 (中 文)	4. 新竹市光復路一段108巷26弄20號					
	(英文)	4.					
	名稱或 姓 名 (中文)						
	名稱或 姓 名 (英文)						
=	國 籍 (中英文)						
申請人(共1人)	住居所 (營業所) (中 文)						
	住居所 (營業所) (英 文)						
	代表人 (中文)						
	代表人 (英文)						

四、中文發明摘要 (發明名稱:微陣列生物晶片反應器)

本發明係一種微陣列生物晶片反應器。上述微陣列生物晶片反應器包含:一第一構件,其具有一第一凹槽,可容納一樣品溶液或一微陣列生物晶片;以及一第二構件,係以可移動方式設置於第一構件上,其上具有一對應於第一凹槽之第二凹槽,其中設置一組電極,可與上述樣品溶液接觸。

المرأ أأج براء ويتوفيح بجاري والمناهي فالعداء الميجور

伍、(一)、本案代表圖為:第___2E____ 圖

(二)、本案代表圖之元件代表符號簡單說明:

A-A'~第2C圖之截面;

- 1~蓋體;
- 8~第一凹槽;
- 9~微陣列晶片。

陸、英文發明摘要 (發明名稱:)

一、本案已向			
國家(地區)申請專利	申請日期	案號	主張專利法第二十四條第一項優先品
. '			
			1
			•
二、□主張專利法第二十五	I.條之一第一項優欠	も權:	
申請案號:			
日期:			
三、主張本案係符合專利法	·第二十條第一項[]第一款但書或[]第二款但書規定之期間
日期:	•		
四、□有關微生物已寄存方	◇國外:		
寄存國家:			
寄存機構: 寄存日期:			
可仔口期: 寄存號碼:			
□有關微生物已寄存方	《國內(本局所指定	(之寄存機構):	
寄存機構:			
寄存日期:			
寄存號碼:			
□熟習該項技術者易が	、獲得,不須寄存。		
_			
•			

五、發明說明(1)

發明領域

本發明係有關於一種微陣列生物晶片反應器,特別是有關於包含電極之微陣列生物晶片反應器。 發明背景

為了因應以上生命科學研究的快速發展與生物資訊的大量取得,生物晶片發展的相關技術大量且快速地開發與改進,諸如表面化學、螢光檢測光譜學等相關技術、生物資品片製造技術、微点體系統相關技術、生物資訊學和分子生物學的相關技術等。換句話說,生物晶片是一項跨領域整合的發展技術,每一個環節的發展都會牽動生物晶片快速且正確取得生物資訊的重要目標。

以分子生物學為例,相關的發展技術包括樣品前處理(sample preparation)、基因定序(gene sequence)、探針的設計(probe design)、聚合酶連鎖反應(polymerase chain reaction, PCR)、電泳分離(electrophoresis)以

五、發明說明 (2)

及基因雜交反應(hybridization)相關技術等等。傳統的分子生物技術對於以上的相關操作所需花費的時間相當長,因此針對上述相關技術都有許多技術上的突破與改進,例如方便快速的樣品前處理試劑、多管道毛細電泳定序儀的開發、快速基因比對軟體對基因探針設計的幫助、微小化PCR晶片的發展、毛細電泳晶片的發展以及各式各樣加速雜交反應的各樣發明。

生物晶片的誕生,可使疾病檢測或生物資訊的取得時間大幅降低,例如,原本以細胞培養技術來檢測疾病或對斷菌種需要三至五天,甚至有時需作感染病原菌之抗藥性測試則須再花費數天到數十天,而運用生物晶片相關技術,則可縮短至6小時內便可取得相關資訊。然而,這6個小時的檢測時間,仍然無法因應某些疾病或醫療過程的實際需求,例如,有些疾病從診斷發現到死亡時間不超過一到兩日。所以,仍在發展中的生物晶片技術,研發人員紛紛將焦點擺在將生物晶片所需的檢測反應時間縮短的議題上。

要縮短檢測時間,就必須從檢驗過程中主要耗時的技術上著手,其中,在上述的6小時檢驗時間當中,PCR技術約需1.5小時,核酸雜交約需4小時,這兩項技術過程佔了整個生物晶片檢測過程約92%的時間。所以,如何縮短這兩項技術的檢測時間成為重點,目前,已有許多研發人員做了相當多的努力。

如Hybridization Helper 技術(US Patent

五、發明說明 (3)

5,030,557),其原理為利用一段核酸序列(即為Helper), 其與檢體核酸互補於探針(probe)核酸與檢體核酸雜交區 域之上或下游處,利用此一段核酸(Helper)與檢體核酸雜 交的特性,將檢體核酸拉直(解除原本凌亂捲曲之不利雜 交構型),以便進行雜交反應。

另外,還有一種技術,係由Gen-Probe公司所提出之專利發明,稱為Nucleic acid precipitating reagents (US patent 5,132,207)。其原理為利用不同之鹽類緩衝液,使檢體核酸易於沉澱於探針核酸附近,藉由如此的方法來增加檢體核酸的部分區域濃度,以促進雜交反應的進行。

還有一種技術,係由Chiron公司所提出之專利發明,稱為樹枝狀的核酸序列(Branched oligonucleotide multimer)技術(US Patent 5,624,802與5,594,118)。其原理為先利用一段探針,此段探針固定於晶片表面,用來捕捉檢體核酸。再利用一段樹枝狀的核酸序列(Branched oligonucleotide multimer,其與檢體核酸互補)接到檢體核酸之上;最後再以標示有螢光或放射線之核酸偵測子互補雜交於樹枝狀的核酸序列上。由於一個數枝狀的核酸序列可以有數十甚至於數百個偵測子雜交其上,可大大強化偵測強度,故可縮短雜交時間。

此外,一種稱為Volume exclusion agents 的技術(US Patent 4,886,741)係由Microprobe公司所提出之專利申請,其利用有機分子以形成網狀巨結構,而此網狀巨結構

and a Constitution of the Service of

五、發明說明(4)

可排除部分雜交緩衝液,使得檢體核酸的部分區域濃度大增,進而促進雜交反應的進行。

Becton Dickinson公司所提出之專利發明,稱為兩性碳氫聚合物(Amphipathic hydrocarbon polymer, AHP)的技術(US Patent 5,853,986),其利用兩性有機分子(親水性及厭水性)形成網狀巨結構。此網狀巨結構可排除部分雜交緩衝液,使檢體核酸的部分區域濃度大增,進而促進雜交反應的進行。

還有一種稱為動態雜交系統(Dynamic hybridization system)的裝置(US Patent 6,255,050),係由Lorne Park Research公司所提出之專利發明,其利用半渗透膜將探針核酸固定於半渗透膜上,另一方面,以氣動或真空壓縮等方式驅動流體(內含檢體核酸)朝半渗透膜方向流動。由於流體經過渗透膜時檢體核酸將會有延遲通過之現象,故檢體核酸將於半渗透膜附近造成積聚現象」,如此可提高檢體核酸的濃度,以提高雜交速率。究其原因,乃是不與探針核酸互補的檢體核酸可從半渗透膜的孔洞中通過。

美國Nanogen公司提出之發明專利US Patent 5,728,532、5,849,486、6,017,696以及6,099,803中,利用電極施加電壓來吸引帶負電性之生物分子,造成電極附近局部的濃度大為提高,而增加與表面所固定之生物探針分子的碰撞機率,以達到提高生物分子雜交速率之目的,同時也利用電極施加一反向電壓,來排除帶負電性之生物分子,利用所控制電壓大小來達到分辨單一鹼基差異之檢

五、發明說明 (5)

驗結果。

美國Genomic Solution公司提出的發明專利US
Patent 6,238,910,利用溫度控制微流道中生物樣品的流動,增加生物分子間碰撞之機率,以達到生物分子液體混合及加速雜交反應之目的。

根據Agilent公司所提出之美國專利6,258,593和6,186,659的發明,亦有針對生物分子雜交反應所設計之載片固定裝置,此一封閉的裝置可以有效地提供載片進行生物分子雜交反應時所需之空間,並且利用氣泡帶動溶液的方式加速樣品的混合,達到加速生物分子雜交反應之目的,同時此一裝置,亦增加了生物分子雜交反應操作之方便性。

另外,根據美國專利6,162,400的發明」,利用離心力帶動樣品溶液的流動,加速樣品分子的混合及增加與固定於載片上的生物分子之間的碰撞機率,加速生物分子雜交反應的進行。

上述雜交速率增加方法,多半是以提高檢體核酸濃度的方式,或將檢體拉直,或利用樹枝狀結構,或利用樣品液體的流動,增加生物分子間的碰撞機率等,這些讓核酸雜交加速的方法,仍有些許的限制,例如不少需在大尺度下才能運作。

發明概述

本發明之目的係提供一種微陣列生物晶片反應器,其包含:一第一構件,或稱為載體,其具有一第一凹槽,可

ر دران در شده المنظمة المنظمة

五、發明說明 (6)

本發明之另一目的係提供一種微陣列生物晶片反應 , 其包含:一篇件, 或稱為載體, 其具有一第一 槽, 可容納一含有一反應區之微陣列生物晶片;以及一 , 可容納一含有一反應區之微陣列生物晶片;以及 , 可容納一含有一反應區之微陣列生物晶片;以及 , 可容,或稱為蓋體,係以可移動方式設置於第一時 , 其上具有一對應於反應區之第二四槽,其中設 , 其上則電極,可與該樣品溶液接觸。以上述電極 , 可與該樣品溶液接觸改變任意二支電極 , 可控制上述樣品溶液中所含分子 之運動的速率與方向。

為了讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖示,作詳細說明如下:

發明之詳細說明

本發明微陣列生物晶片反應器之特徵在於包含一組以

والمراوا والمنافرة المجازي والمرواء وموادية

五、發明說明 (7)

上之電極,利用上述電極提供一個以上的電場,驅動生物晶片反應器中樣品溶液所含分子,使上述分子可以隨著電場方向之改變而改變其移動之方向,分子在移動過程中便會增加分子間的碰撞機率,因而增加生化反應之速率縮短反應時間。

本發明微陣列生物晶片反應器之實施例,此處以第2 與3圖兩種型態為例,上述反應器包含第一構件、第二構件以及一組以上之電極,第一構件即是如第2C與2D或3C與 3D圖所示之載體7,第二構件即是第2A與2B或3A與3B圖所

五、發明說明 (8)

示之蓋體1。上述蓋體1與載體7可以由有機或無機材料組成,上述有機材料包含,但不限於,合成橡膠、天然橡膠、合成高分子、聚乙烯→聚苯乙烯、聚丙烯以及聚氯乙烯。上述無機材料包含,但不限於,金屬、陶瓷材料、矽晶片以及玻璃。以下分別以第2圖與第3圖說明兩種實施型態。

本發明之一實施型態請參考第2圖,第2A-2B圖為蓋體 之 示 意 圖 , 而 第2C-2D 圖 為 載 體 之 示 意 圖 , 且 第2A 、2C 圖 為上視圖,而第2B、2D圖為正視圖,第2E圖為第2C圖A-A' 之 截 面 圖 。 第 2 C 、 2 D 與 2 E 圖 中 , 載 體 7 包 埋 有 一 微 陣 列 生 物晶片9,上有一第一凹槽8√可直接承載樣品溶液,其邊 界可設計為0型環,防止樣品溶液渗漏,且第一凹槽8的設 置 目 的 係 為 生 化 雜 交 反 應 進 行 時 , 提 供 足 夠 的 分 子 移 動 空 間 讓 生 物 分 子 進 行 反 應 。 第 2 A 與 2 B 圖 中 , 蓋 體 1 上 對 應 載 體上第一凹槽8之範圍內具有一組電極2,若有兩組以上, 或 甚 至 增 加 一 單 獨 之 電 極 , 對 應 於 原 來 各 組 電 極 設 置 , 可 自由變化設計,也可互相組合使用。當組合蓋體1與載體7 時,第一凹槽8成為一封閉空間,故依需要可在對應於第 一凹槽8的蓋體1上設置複數個孔洞5,以便注入或輸出樣 品溶液,或是反應後需要清洗時,可注入或輸出清洗溶 液,本實施例在玻片上係進行兩個反應點,因此設置兩個 孔洞5。此孔洞之設計目的係為了方便樣品以及清洗溶液 的進出,以完成生物分子雜交反應。此外,蓋體1以及載 體7之間可為一體成形之方式連結,以提供一固定體積之

五、發明說明 (9)

空間容納樣品溶液。

本發明之另一實施型態請參考第3圖,第3A-3B圖為蓋 體之示意圖,而第3C-3D圖為載體之示意圖,且第3A、3C 圖為上視圖,而第3B、3D圖為正視圖。第3C與3D圖中,載 體7表面具有第一凹槽8,係用以承載微陣列生物晶片,本 實施例中第一凹槽8為可放入一般載玻片的大小。|另載體7 上兩端亦設置有蓋體1與載體7之結合點6,可視需要增減 其數目或改變其位置。再請參考第3A-3B圖,蓋體1上與載 體7接觸面有一容納樣品溶液之第二凹槽3,其邊界4亦與 蓋體1材質相同,或者,邊界4也可以設計為0型環,防止 樣品溶液渗漏。第二凹槽3的設置目的係為生化雜交反應 進行時,提供足夠的分子移動空間讓生物分子進行反應。 蓋體1上容納樣品溶液之第二凹槽3範圍內具有一組電極 2 , 如前述, 電極組數或需另加一對應之單獨電極, 皆可 依需要改變,本實施例顯示之電極2設置於第二凹槽3兩 側。蓋體1係可移動式設置於載體7上,以結合點6連接, 結合點6可相應於載體7適當改變。此外,當組合蓋體1與 載體7時,第二四槽3成為一封閉空間,故依需要可在第二 凹槽3設置複數個孔洞5,以便注入或輸出樣品溶液,或是 反應後需要清洗時,可注入或輸出清洗溶液,本實施例在 玻片上係進行兩個反應點,因此設置兩個孔洞5。此孔洞 之設計目的係為了方便樣品以及清洗溶液的進出,以完成 生物分子雜交反應。

此外,上述之蓋體1、載體7或電極2不論採用何種材

五、發明說明(10)

料,皆必須不會與樣品溶液或清洗溶液發生反應。

採用本發明之微陣列生物晶片反應器進行反應之樣品溶液中,包含有機、無機或生物分子中,帶電荷之離子或不帶電荷之中性分子。上述有機分子包含,但不限於,有機酸、有機鹼或胺基酸。上述無機分子包含,但不限於雙股DNA、單股DNA、RNA、蛋白質或胜肽。

以下係採用本發明微陣列生物晶片反應器所進行之具體實施例。

實施例

採用本發明微陣列生物晶片反應器,配合一可調整電場強度、交流電場切換頻率以及可控制電場方向之電源供應器,在施加交流電場作用下所得之生物晶片反應結果與傳統生物晶片反應(靜置)之結果,如第4圖至第9圖所示。

首先,比較在生物分子探針濃度不同、樣品濃度固定

五、發明說明(11)

的情形下,採用本發明微陣列生物晶片反應器以及傳統分 子生物學方法進行雜交反應的情形。生物分子探針濃度分 **別為0.05, 0.1和0.5μM, 而具有螢光分子標幟之樣品濃** 度皆為1 μ M 。採用本發明之微陣列生物晶片反應器,利用 交流電壓±2.5V、60Hz之切換頻率,連續作用30分鐘進行 生物分子雜交反應,得到結果如第4A圖;採用傳統分子生 物學方法進行雜交反應,靜置30分鐘,得到結果如第4B 圖。比較兩組結果顯示,本發明利用交流電壓進行樣品混 合及分子微區域移動之方法,可以有效地增加生物分子雜 交反應之速率。本發明施加交流電壓加速雜交反應速率之 裝置可有效地提高雜交反應之效率與速率,達到75%以 上 , 甚 至 達 到 9 9 % ; 反 觀 傳 統 靜 置 方 法 所 得 到 的 結 果 落 差 相當大,甚至無法辨識其雜交反應之結果入換句話說,利 用交流電場以固定頻率持續作用於含有生物分子的樣品溶 液,可以有效地增加樣品溶液的均勻度,使得生物晶片進 行生物分子雜交反應時,生物分子彼此之間的碰撞機率相 當,因而得到較為一致的反應結果。

接著,將具有螢光分子標幟之樣品濃度降低至0.5 μM,以0.1和0.5μM的生物分子探針濃度,比較採用本發明微陣列生物晶片反應器以及傳統分子生物學方法進行雜交反應的情形。採用本發明之微陣列生物晶片反應器,將交流電壓提高至±10V、60Hz的切換頻率,連續作用30分鐘,進行生物分子雜交反應,得到之結果如第5A圖所示;採用傳統生物分子雜交反應,靜置30分鐘,得到之結果如

五、發明說明 (12)

第5B圖所示。即使在較低的樣品濃度作用下,由於提高交流電壓,仍可以看出以本發明微陣列生物晶片反應器,利用交流電壓進行樣品混合及分子微區域移動,可以較傳統方法有效地增加生物分子雜交反應之速率。

此外,仍以不同生物分子探針濃度,固定的樣品濃度,比較採用本發明微陣列生物晶片反應器以及傳統分子生物學方法進行雜交反應的情形。生物分子探針濃度仍然分別為0.05,0.1和0.5 µM,而具有螢光分子標幟之樣品濃度則為1 µM。採用本發明之微陣列生物晶片反應器,將交流電壓提高至±25V、60Hz的切換頻率,連續作用30分鐘,進行生物分子雜交反應,得到之結果如第6A圖所示;以傳統生物分子雜交反應,靜置30分鐘,得到之結果如第6B圖所示。比較結果顯示,以本發明微陣列生物晶片反應器,利用交流電壓進行樣品混合及分子微區域移動,可以較傳統方法有效地增加生物分子雜交反應之速率。

另外,以不同濃度生物探針,比較在 $0.5\sim10~\mu$ M濃度生物樣品下的傳統生物分子雜交方法與 $0.5~\mu$ M濃度生物樣品下採用本發明微陣列生物晶片反應器的結果。生物探針濃度分別為 $0.01\sim0.05\sim0.1$ 和 $0.5~\mu$ M,而具有螢光分子標幟之生物樣品濃度分別為 $0.5~\mu$ M(第7A圖)、 $1.0~\mu$ M(第7B圖)、 $5.0~\mu$ M(第7C圖)、 $10~\mu$ M(第7D圖)和 $0.5~\mu$ M(第7E圖)。第7A~7D圖係利用傳統雜交反應方法,採取在40~C恆溫靜置的方式反應4小時,完成生物分子雜交反應的結果。第7E圖則是利用本發明微陣列生物晶片反應器,在室

and the state of the state of

五、發明說明 (13)

接著,比較採用本發明微陣列生物晶片反應器與市售商品化雜交反應儀的結果。在生物樣品濃度10 nM存在下,採用本發明微陣列生物晶片反應器,施加交流電壓生10V、60Hz電壓頻率變化,進行生物分子雜交反應30分鐘,得到結果如第8A圖所示;同時,利用市售商品化雜交反應儀,在相同生物樣品濃度時分別進行1小時(如第8B圖所示)、2小時(如第8C圖所示)、4小時(如第8B圖所示)、12小時(如第8E圖所示)以及16小時(如第8F圖所示)生物分子雜交反應。結果顯示,相較於市售商品化雜交反應儀所得之雜交反應結果,本發明微陣列生物晶片反應器可以有

五、發明說明 (14)

效地達成快速生物分子雜交反應之目的。

此外,更進行本發明微陣列生物晶片反應器對於不同 活動自由度之生物分子探針之雜交反應影響測試。不同活 動自由度之生物分子探針係指生物分子探針與基板間不同 的連結,舉例來說,本發明所採用之A103之結構為如 5'-amino linker-TTTTTTTTTTTTTTTT-(探針序列)-3',03 之結構為如5'-TTTTTTTTTTTT-(探針序列)-3',以及P3 之 結 構 為 如 5' - a m i n o l i n k e r - (探 針 序 列) - 3' 。 三 種 不 同 生物分子探針濃度皆固定為 $0.5 \mu M$,樣品濃度亦固定為5μM。採用本發明微陣列生物晶片反應器,施加交流電壓 ± 10V、60Hz 切 换 頻 率 , 連 續 作 用30 分 鐘 , 進 行 生 物 分 子 雜交反應,得到之結果如第9A圖所示;採用傳統生物分子 雜 交 反 應 , 靜 置 3 0 分 鐘 , 得 到 之 結 果 如 第 9 B 圖 所 示 。 比 較 結 果 可 以 看 出 , 採 用 本 發 明 微 陣 列 生 物 晶 片 反 應 器 , 施 加 交流電壓進行樣品混合及分子微區域移動,可以有效地提 高生物分子雜交反應速率及專一性。因為交流電場的作 用 , 使 得 0 3 探 針 不 會 吸 附 於 晶 片 表 面 , 並 且 可 以 有 效 地 降 低後續生物分子雜交反又之非專一性反應。對於探針分子 之活動自由度的影響,活動自由度較佳的A103探針分子的 反應效果比活動自由度較差之P3探針分子反應結果較為均 勻。∖

結論

以上結果證明,採用本發明微陣列生物晶片反應器可以有效地加速生化反應之進行。並且在試驗過程中亦發

五、發明說明(15)

五、發明說明 (16)

上,理論上因著交流電場的作用而有較好的雜交反應結果,亦可從實驗結果得到明確地印證。

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此技藝人士,在不脫離本發明之精神和範圍之內,當可作各種之更動與潤飾。因此,本發明之保護範圍,當視後附之申請專利範圍所界定者為準。

圖式簡單說明

第1A~1E 圖為本發明實施例之五種電極佈放示意圖。 第2A~2E 圖為本發明微陣列暨生物晶片反應器實施例之蓋體(2A-2B)與載體(2C-2D)示意圖。第2A、2C 圖為上視圖,而第2B、2D 圖為正視圖,第2E 圖為第2C 圖A-A'之間截面圖。

第3A~3D 圖為本發明微陣列暨生物晶片反應器另一實施例之蓋體(3A-3B)與載體(3C-3D)示意圖。第3A、3C 圖為上視圖,而第3B、3D 圖為正視圖。

第4圖顯示不同濃度生物分子探針(0.05, 0.1, 以及0.5 μM)的雜交反應結果圖,具有螢光分子標幟之生物樣品濃度為1 μM。第4A圖係採用本發明微陣列生物晶片反應器,於交流電壓±2.5V, 60Hz連續作用30分鐘的條件下,進行雜交反應;而第4B圖係採用傳統分子生物學方法,靜置30分鐘,進行雜交反應。

第5圖顯示不同濃度生物分子探針(0.01, 0.05, 0.1 以及0.5μM)的雜交反應結果圖,具有螢光分子標幟之生物樣品濃度為0.5μM。第5A圖係採用本發明微陣列生物晶片反應器,於交流電壓±10V, 60Hz連續作用30分鐘的條件下,進行雜交反應;而第5B圖係採用傳統分子生物學方法,靜置30分鐘,進行雜交反應。

第6圖顯示不同濃度生物分子探針(0.05, 0.1以及0.5μM)的雜交反應結果圖,具有螢光分子標幟之生物樣品濃度為1μM。第6A圖係採用本發明微陣列生物晶片反應器,於交流電壓±25V, 60Hz連續作用30分鐘的條件下,進行

圖式簡單說明

雜交反應;而第6B圖係採用傳統分子生物學方法,靜置30⁶分鐘,進行雜交反應。

第7圖顯示不同濃度生物分子探針(0.01, 0.05, 0.1 以及0.5 μ M)的雜交反應結果圖。第7A~7D圖係採用傳統分子生物學方法,於40 $^{\circ}$ C 恆溫靜置4 小時的條件下,進行雜交反應,其中具有螢光分子標幟之生物樣品濃度分別為0.5 μ M(第7A圖)、1.0 μ M(第7B圖)、5.0 μ M(第7C圖)以及10 μ M(第7D圖)。第7E圖係採用本發明微陣列生物晶片反應器,於室溫下、交流電壓±10V,60Hz之電壓轉換頻率、連續作用30分鐘的條件下,進行雜交反應,其中具有螢光標幟之生物樣品濃度為0.5 μ M。

第8圖顯示濃度10nM之生物樣品存在下,雜交反應結果圖。第8A圖係採用本發明微陣列生物晶片反應器,於交流電壓±10V, 60Hz之電壓頻率變化、連續作用30分鐘的條件下,進行雜交反應;第8B~8F圖係採用市售商品化雜交反應儀,進行1小時(第8B圖)、2小時(第8C圖)、4小時(第8D圖)、12小時(第8E圖)以及16小時(第8F圖)之雜交反應。

第9圖顯示濃度0.5μM之三種不同生物分子探針A103,03以及P3的雜交反應結果圖,具有螢光分子標幟之生物樣品濃度為5μM。第9A圖係採用本發明微陣列生物晶片反應器,於交流電壓±10V,60Hz之電壓頻率變化、連續作用30分鐘的條件下,進行雜交反應;第9B圖係採用傳統生物分子學方法,靜置30分鐘,進行雜交反應。

圖式簡單說明 . .

符號之說明

- 1~蓋體;
- 2~電極;
- 3~第二凹槽;
- 4~第二凹槽邊界;
- 5~孔洞;
- 6~結合點;
- 7~ 載 體;
- 8~第一凹槽;
- 9~微陣列晶片。

- 1. 一種微陣列生物晶片反應器,其包含:
- 一第一構件,其具有一第一凹槽,可容納一樣品溶液;
 - 一第二構件,係設置於第一構件上;以及
- 一組電極,設置於第二構件上,可與該樣品溶液接觸。
- 2. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其中該第一構件與第二構件係由有機材料組成。
- 3. 如申請專利範圍第2項所述之微陣列生物晶片反應器,其中該有機材料包括合成橡膠、天然橡膠、合成高分子、聚乙烯、聚苯乙烯、聚丙烯或聚氯乙烯。
- 4. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其中該第一構件與第二構件係由無機材料組成。
- 5. 如申請專利範圍第4項所述之微陣列生物晶片反應器,其中該無機材料包含金屬、陶瓷材料、矽晶片或玻璃。
- 6. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其中該第二構件更包含複數個孔,以便組合第一構件與第二構件時與外界連通。
- 7. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其中該樣品溶液包含一分子。
- 8. 如申請專利範圍第7項所述之微陣列生物晶片反應器,其中該分子包括有機、無機或生物分子,且可為帶電荷之離子或不帶電之中性分子。

- - - - - - - - -

9. 如申請專利範圍第8項所述之微陣列生物晶片反應器,其中該有機分子包括有機酸、有機鹼或胺基酸。

Comment of the state of the

- 10. 如申請專利範圍第8項所述之微陣列生物晶片反應器,其中該無機分子包括金屬離子或無機鹽類。
- 11.如申請專利範圍第8項所述之微陣列生物晶片反應器,其中該生物分子包括雙股DNA、單股DNA、RNA、蛋白質或胜肽。
- 12. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其更包含一第二組電極,設置於該第二構件上。
- 13. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其更包含一單獨之電極,對應於該組電極設置於該第二構件上。
- 14. 如申請專利範圍第1、12或13項所述之微陣列生物晶片反應器,其中各組電極間可交互組合使用。
- 15. 如申請專利範圍第1、12或13項所述之微陣列生物晶片反應器,其中該電極係由包含金、銀、銅、鎮、白金或不鏽鋼組成。
- 16. 如申請專利範圍第1、12或13項所述之微陣列生物 晶片反應器,其中該第一構件、第二構件或電極不會與該 樣品溶液進行反應。
- 17. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其中該第二構件更包埋有一微陣列生物晶片。
- 18. 如申請專利範圍第1項所述之微陣列生物晶片反應器,其中該第一構件、第二構件之間為一體成形之方式連

結。

- 19. 一種微陣列生物晶片反應器,其包含:
- 一第一構件,其具有一第一凹槽,可容納一含有一反 應區之微陣列生物晶片;
- 一第二構件,係可移動式設置於第一構件上,其上具有一對應於該反應區之第二凹槽;以及
 - 一組電極,設置於第二凹槽中。
- 20. 如申請專利範圍第19項所述之微陣列生物晶片反應器,其中該第一構件、第二構件或微陣列生物晶片係由有機材料組成。
- 21. 如申請專利範圍第20項所述之微陣列生物晶片反應器,其中該有機材料包括合成橡膠、天然橡膠、合成高分子、聚乙烯、聚苯乙烯、聚丙烯或聚氯乙烯。
- 22. 如申請專利範圍第19項所述之微陣列生物晶片反應器,其中該第一構件、第二構件或微陣列生物晶片係由無機材料組成。
- 23. 如申請專利範圍第22項所述之微陣列生物晶片反應器,其中該無機材料包含金屬、陶瓷材料、矽晶片或玻璃。
- 24. 如申請專利範圍第19項所述之微陣列生物晶片反應器,其中該第二凹槽更包含複數個孔。
- 25. 如申請專利範圍第19項所述之微陣列生物晶片反應器,其更包含一第二組電極,設置於該第二凹槽中。
 - 26. 如申請專利範圍第19項所述之微陣列生物晶片反

應器,其更包含一單獨之電極,對應於該組電極設置於該第二構件上。

- 27. 如申請專利範圍第19、25或26項所述之微陣列生物晶片反應器,其中各組電極間可交互組合使用。
- 28. 如申請專利範圍第19、25或26項所述之微陣列生物晶片反應器,其中該電極係由包含金、銀、銅、鎳、白金或不鏽鋼組成。
- 29. 如申請專利範圍第19、25或26項所述之微陣列生物晶片反應器,其中該第一構件、第二構件或電極不會與該樣品溶液進行反應。

第2A圖

第2B圖

第2C圖

第2D圖

第2E圖

第3A圖

第3B圖

第3C圖

第3D圖

0.05

0.1

0.5 μΜ

第 48 圖

探針濃度

0.01 0.05 0.1 0.5 μΜ

第 5A 回回

螢光訊號

11822 11837 8961

36048 38917 27316

64914 56595

62541 63225

57946

58561

螢光訊號

1097 646 758

1578 4590 2909

11155 6429

4477 8238

4575

3756

探針濃度

0.01

0.05

0.1 0.5 μΜ

第 5B 回回

探針濃度

0.05 0.1 0.5 μΜ

螢光訊號

第 6A 回回

探針濃度

0.05

0.1 0.5 μM

螢光訊號

8325 14783 10670

11049 17053 20853

ABO 解 回回

探針濃度. 0.01 0.05 0.1 0.5 µM

螢光訊號

3501

32658

40549

52232

第74圖

探針濃度 0.01 0.05 0.1 0.5 μM

第 7B 圖

探針濃度. 0.01 0.05 0.1 0.5 μM

第70圖

32814

27541 27450 18207 29769 29208 32284 34573 36928

32814 32602 43957 31209

螢光訊號

25154

2065527450

探針濃度 0.01 0.05 0.1 0.5 μM

螢光訊號28377242963122825087439365635259075580396255861543595745845859166599915751158478

第70圖

0.01 0.05 0.1 0.5 μΜ

56595 63225

第 7 E 回向

題 Q8 第

第 8A 圖

图 38 第

第88圖

第 8F 圖

Charles of the control of

第 80 圖

探針濃度 螢光訊號 56428 48048 AlO3 545 0 ၀ 10705 7179 Р3 探針濃度 螢光訊號 14721 16212 AIO3 12165 4911 ္ဌ 5575 353 Р3

第 9A

回回

第 9B

回回

