Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp

Content

1	Prin	ncipal Schematic for HTPA80x64d	2
2	Pin	Assignment – Bottom View	2
3	Opt	ical Orientation	4
4	Ord	er Code Example	5
5	App	olication note	6
6	Seri	al Order of Frame	6
7	Cha	racteristics	8
	7.1	Common Specifications	8
	7.2	Optical characteristics	8
	7.3	Electrical Specifications	8
8	SPI	Timings HTPA80x64d	10
9	SPI	Communication	11
	9.1	Write Command	11
	9.2	Read Command	11
	9.3	Sensor Commands	12
	9.4	EEPROM communication	16
	9.5	SPI Example Sequences – Init and Read Thermopile Array	17
1() T	emperature calculation	18
	10.1	Ambient Temperature	19
	10.2	Thermal Offset	20
	10.3	Electrical Offset	20
	10.4	Vdd Compensation	21
	10.5	Object Temperature	22
1	1 E	xample calculation	24
	11.1	Pixel Masking	26
	11.2	Look-up Table	28
1′	2	Autor Dimonsions	20

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 2 of 29

1 Principal Schematic for HTPA80x64d

Figure 1: Schematic for HTPA80x64d

2 Pin Assignment – Bottom View

Figure 2: pin-allocation

^{*} EE_Enable: The slave select is used to switch communication between sensor and EEPROM.

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 3 of 29

Pin	Symbol	Description
1	VDD	Positive supply voltage
2	VSS	Negative supply voltage / Ground (0V) (connected to housing)
3	EE_Enable	Digital I/O, Sensor/EEPROM select
4	MISO	Digital I/O, Serial data out of sensor
5	MOSI	Digital I/O, Serial data in of sensor
6	SCLK	Digital I/O, Serial clock

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 4 of 29

3 Optical Orientation

Figure 3: Optical orientation

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 5 of 29

4 Order Code Example

Figure 4: Examplary order code

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 6 of 29

5 Application note

This Application Note is giving a short recommendation for the connection of the HTPA80x64d to achieve the best performance. Adding 100 nF and 47 μ F are improving the stability of the supply voltage.

Figure 5: Recommended circuit for operation

The Sensor can be powered directly via 3.35 V if the supply voltage is stable enough, this has to be measured before and tested with the sensor. It is important to not insert any inductor or otherwise the noise will increase.

6 Serial Order of Frame

The sensor is divided into two parts (top and bottom half) which are again separated into 4 blocks. The readout order is shown below for the different blocks.

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 7 of 29

Block 0 (top)
Block 1 (top)
Block 2 (top)
Block 3 (top)
Block 3 (bottom)
Block 2 (bottom)
Block 1 (bottom)
Block 0 (bottom)

Figure 6; Division of blocks

Whenever a conversion is started the block x of the top and bottom half are measured at the same time. Each block consists of 640 Pixel that are sampled fully parallel. The readout order on the bottom half is mirrored compared to the top half so that the central lines are always read last.

Figure 7: 80x64d readout order for active pixel

The electrical offsets are sampled according to the top and bottom half. The matching rows for the corresponding electrical offsets and active Pixel are marked with the same color. The conversion of the electrical offsets is started by setting the BLIND bit during the start command, see 9.3.

Figure 8: 80x64d readout order for electrical offsets

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 8 of 29

7 Characteristics

7.1 Common Specifications

Technology n-poly/p-poly Si Element Resistance approx. 300 kOhms

Sensitivity approx. 450 V/W without optics and filter

Thermal pixel time constant <4 ms
Digital Interface SPI
Analog Output No

selectable Clock 1 to 13 MHz EEPROM size 256 kBit

Pitch $90 \mu m$ Absorber size $44 \mu m$ Max. Framerate 200 Hz

(complete frame with maximum SPI and sensor clock speed and reduced ADC resolution)

5120 sensitive elements

7.2 Optical characteristics

Focal length: 10.5 mm ("L" equals the focal length of the lens)

F-Number: 0.95

Field of view: 39 x 31 deg

Lens coating: LWP-Coating 7.7

Cut On (Tr. 5%): $7.7 \mu m \pm 0.3 \mu m$

7.3 Electrical Specifications

Absolute Maximum Ratings:

Table 1: Absolute Maximum Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		-0.3		3.6	V
Voltage at All inputs and outputs	V _{IO}		-0.3		V _{DD} +0.3	V
Storage Temperature	T _{STG}		-40		85	Deg. C

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 9 of 29

Table 2: Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current (sensor running)	I_{DD}		20	25	30	mA
Supply Current (sensor in idle state)	I_{DD}		tbd	tbd	tbd	mA
Standby Current (sensor in sleep state)	I_{SBY}		tbd	tbd	10	μΑ
Operation Temperature	T _A		-20		65	Deg. C
ESD-Protection		Human body model 100pF + 1k5Ohm	2.0			kV

Table 3: Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input						
Internal Clock frequency	F _{CLK}		1	5	13	MHz
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm
Bias current	I _{BIAS}		1	3	13	μΑ
BPA current	I_{BPA}		0.2	1.5	4.0	μΑ
Input voltage high	V_{IH}		$0.7xV_{DD}$			V
Input voltage low	V_{IL}				$0.3 \text{xV}_{\text{DD}}$	V
PTAT						
Temperature range			-20		65	Deg. C
PTAT gradient			tbd	174	tbd	K/V

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp

Page 10 of 29

Table 4: Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	F _{CHP}			20		kHz
Preamplifier Noise	N _{PA}	at 20 kHz		72		nV/HZ ^{1/2}
Frame rate (Full Array)	FR1		1.8	8.9	21.9	Hz
Frame rate (Quarter Array)	FR4		7.2	35.6	87.6	HZ
ADC pos. Reference	V_{REFP}	REF_CAL 00		1.529		
		REF_CAL 01		1.442		V
		REF_CAL 10		1.355		V
		REF_CAL 11		1.268		
ADC neg. Reference	V _{REFN}	REF_CAL 00		0.850		
		REF_CAL 01		0.901		V
		REF_CAL 10		0.968		V
		REF_CAL 11	-	1.056		
ADC resolution	ADC _{LSB}	at 16 Bit	6.5		20.7	μV

8 SPI Timings HTPA80x64d

Figure 9: SPI Timings HTPA80x64d

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp

Page 11 of 29

Table 5: SPI Timings

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
SPI clock frequency	F _{CLK}		10		MHz
low pulse duration	T _{CLK,lo}	30			ns
high pulse duration	T _{CLK,hi}	40			ns
data set up time	T _{SU,data}	30			ns
data hold time	T _{hd,data}	10			ns
start setup time	T _{SU,start}	50			ns
stop setup time	T _{SU,stop}	50			ns
Time between STOP/ START	T _{buf}	200			ns

9 SPI Communication

The chip uses the 8-bit command for accessing configuration and sensor data.

9.1 Write Command

In case of a write access to an internal register the command is followed by the data byte.

Figure 10: Write command

9.2 Read Command

To read data from the chip first the read command must be sent. The command initiates the read sequence and the first bit of read bytes will be set on MISO with falling edge of SCLK after last command bit. There can be as many byte reads as required.

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp Page 12 of 29

Figure 11: Read command

9.3 Sensor Commands

The sensor has several registers that can be written and read, they are listed below.

Addr / CMD 0x1A (7 Bit!) / 0x01 Config Reg 6 5 4 3 2 0 VDD MEAS **BLIND** Name **RFU BLOCK** START WAKEUP Default 0 0 0 0

Table 6: Configuration register (write only)

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished. The BLOCK selects one of the four multiplexed array blocks.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel and the setting of the BLOCK is ignored.

If VDD MEAS bit is set the VDD voltage is measured instead of the PTAT value.

RFU means reserved for future use and can be subject to change.

Table 7: Status Register (read only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x02								
Status Reg	7	6	5	4	3	2	1	0		
Name	RI	FU	BLC	OCK	RFU	VDD_MEAS	BLIND	EOC		
Default	0	0	0 0 0 0					0		

If the EOC flag is set a previous started conversion has been finished.

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp

Page 13 of 29

Table 8: Trim Register 1 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)3					
Trim Reg 1	7	7 6 5 4 3 2 1						0
Name	RI	FU	REF_	CAL		MBIT	TRIM	
Default	0	0	0	1	1	1	0	0

REF_CAL: selectable amplification

MBIT_TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution

(Default: m=12)

Table 9: Trim Register 2 (write only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x04							
Trim Reg 2	7	7 6 5 4 3 2 1 0							
Name		RFU BIAS TRIM TOP							
Default	0	0	0	0	0	1	0	1	

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 3µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 10: Trim Register 3 (write only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x05						
Trim Reg 3	7	7 6 5 4 3 2 1 0						0
Name		RFU BIAS TRIM BOT					BOT	
Default	0	0	0	0	0	1	0	1

BIAS_TRIM_BOT: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 3µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 11: Trim Register 4 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0	06					
Trim Reg 4	7	6	5	4	3	2	1	0
Name	RI	-TU			CLK '	TRIM		
Default	0	0	0	1	0	1	0	1

CLK_TRIM: $0 \text{ to } 63 \implies 1 \text{MHz to } 13 \text{MHz}$

(Default: 5MHz)

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes about:

$$t_{FR4} = \frac{32 \cdot \left(2^{MBIT} + 4\right)}{F_{CLK}} \approx 27ms @ 5MHz$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp

Page 14 of 29

Table 12: Trim Register 5 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)7					
Trim Reg 5	7	6	5	4	3	2	1	0
Name		RFU			BP	A TRIM T	OP	
Default	0	0	0	0	1	1	0	0

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Table 13: Trim Register 6 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)8					
Trim Reg 6	7	6	5	4	3	2	1	0
Name		RFU			BPA	A TRIM B	OT	
Default	0	0	0	0	1	1	0	0

BPA_TRIM_BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Table 14: Trim Register 7 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x()9					
Trim Reg 7	7	6	5	4	3	2	1	0
Name		PU SDA TRIM PU SCL TRIM						
Default	1	0	0	0	1	0	0	0

PU_SDA_TRIM: select internal pull up resistor on SDA (Default: 100kOhm)

PU SCL TRIM: (Default: 100kOhm) select internal pull up resistor on SCL

"1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Table 15: Read Data 1 Command (Top Half of Array)

CMD	0x0A							
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB						
3. Byte / 4. Byte		Pixel (0+BLOCK*640) MSB / LSB						
5. Byte / 6. Byte		Pixel (1+BLOCK*640) MSB / LSB						
1281. Byte / 1282. Byte	Pixel (127+BLOCK*640) MSB / LSB							

Table 16: Read Data 2 Command (Bottom Half of Array)

CMD	0x0B	0x0B						
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT 2 MSB / LSB or Vdd 2 MSB / LSB						
3. Byte / 4. Byte		Pixel (5040-BLOCK*640) MSB / LSB						
5. Byte / 6. Byte		Pixel (5041-BLOCK*640) MSB / LSB						
161. Byte / 162. Byte	Pixel (5119-BLOCK*640) MSB / LSB							

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp

Page 15 of 29

163. Byte / 164. Byte	Pixel (4960-BLOCK*640) MSB / LSB
165. Byte / 166. Byte	Pixel (4961-BLOCK*640) MSB / LSB
321. Byte / 322. Byte	Pixel (5039-BLOCK*640) MSB / LSB
323. Byte / 324. Byte	Pixel (4880-BLOCK*640) MSB / LSB
1281. Byte / 1282. Byte	Pixel (4559-BLOCK*640) MSB / LSB

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere. A new initialized readout proceeds at this stopped byte, but the index is reset when a new conversion has been started.

If the VDD_MEAS bit (Bit 2 in Config 0x01) is set then the Vdd is sampled instead of the PTAT.

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are sampled and can be read similar to the active pixel:

Table 17: Read Data electrical offsets (Top Half of Array)

CMD	0x0A							
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB						
3. Byte / 4. Byte		electrical offset (0) MSB / LSB						
5. Byte / 6. Byte		electrical offset (1) MSB / LSB						
1281. Byte / 1282. Byte		electrical offset (639) MSB / LSB						

Table 18: Read Data electrical offsets (Bottom Half of Array)

Read Data electrical offsets (Bottom Half of Array)

Read Data electrical off	sets (Botton	n Half of Ar	ray)						
Addr / CMD	0x0B	0x0B							
Read Data	7	6	5	4	3	2	1	0	
1. Byte / 2. Byte		PTAT 2 MSB / LSB or Vdd 2 MSB / LSB							
3. Byte / 4. Byte		electrical offset (1200) MSB / LSB							
5. Byte / 6. Byte		electrical offset (1201) MSB / LSB							
•••									
161. Byte / 162. Byte			electi	rical offset (1279) MSB	/ LSB			
163. Byte / 164. Byte	electrical offset (1120) MSB / LSB								
•••									
1281. Byte / 1282. Byte	electrical offset (719) MSB / LSB								

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere. A new initialized readout proceeds at this stopped byte, but the index is reset when a new conversion has been started.

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 16 of 29

9.4 EEPROM communication

The built-in EEPROM (25AA256 from Microchip) consists of 32 blocks of 1K x 8-bit. The chip select of the EEPROM is set to 000 (A2 to A0). For further information please see the corresponding datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/21822D.pdf

mail: info@heimannsensor.com

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp

Page 17 of 29

9.5 SPI Example Sequences – Init and Read Thermopile Array

CONFIG_REG	WAKEUP
0x01	0x01

TRIM_REG1	MBIT_TRIM
0x03	0x0C

TRIM_REG2	BIAS_TRIML
0x04	0x0C

TRIM_REG3	BIAS_TRIMR
0x05	0x0C

TRIM_REG4	CLK_TRIM
0x06	0x14

TRIM_REG5	BPA_TRIML
0x07	0x0C

TRIM_REG6	BPA_TRIMR
0x08	0x0C

CONFIG_REG	START WAKEUP
0x01	0x09

STATUS_REG	STATUS
0x02	??

WAIT 30ms

STATUS_REG	STATUS
0x02	??

READ_DATA 1	PTAT1 MSB	PTAT1 LSB	P0,0 MSB	P0,0 LSB	 Px,y MSB	Px,y LSB
0x0A	??	??	??	??	 ??	??

READ_DATA 2	PTAT2 MSB	PTAT2 LSB	P0,0 MSB		 Px,y MSB	
0x0B	??	??	??	??	 ??	??

CONFIG_REG	SLEEP
0x01	0x00

Internet

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 18 of 29

10 Temperature calculation

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

80x64d	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0x0000		PixCmi	in [float]			PixCma	ax [float]		gradScale			TN as 16 bi	t unsigned	epsilon		
0x0010											MBIT(calib)	BIAS(calib)	CLK(calib)	BPA(calib)	PU(calib)	
0x0020			Arraytype				VD	DTH1	VDI	TH2						
0x0030						PTAT-grad	dient (float)			PTAT-off	set (float)		PTAT	(Th1)	PTAT	(Th2)
0x0040															VddScGrad	VddScOff
0x0050					GlobalOff	Globa	alGain									
0x0060	MBIT(user)	BIAS(user)	CLK(user)	BPA(user)	PU(user)											
0x0070						Devi	iceID									NrOfDefPix
0x0080																
0x0090							DeadPi	xAdr as 16	bit unsigne	ed values						
0x00A0																
0x00B0								DeadP	ixMask							
0x00C0				DeadP	ixMask							free t	o use			
								free t	o use							
								1100 t	0 000							
0x0800																
	VddCompGrad stored as 16 bit sigend values															
0x11F0																
0x1200																
						\	/ddComp(Off stored a	s 16 bit si	gend value	S					
0x1BF0																
0x1C00																
							ThGrad	ij stored as	8 bit signe	d values						
0x2FF0																
0x3000																
		ThOffset _{il} stored as 16 bit signed values														
0x57F0																
0x5800																
							Pij Stor	ed as 16 b	it unsigned	values						
0x7FF0																

Figure 12: EEPROM overview 80x64d

All values are stored as unsigned 8 bit values unless they are specified otherwise. The little endian format is used for larger values. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration (see chapter 9.3 on how to set them).

We recommend the usage of calibration settings of MBIT (stored in 0x1A), BIAS (0x1B), CLK (0x1c), BPA (0x1D) and PU (0x1E).

MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user.

The temperature calculation is only valid if the same settings are used that have been set during calibration!

TN is the tablenumber and has to match the given tablenumber in the sample code.

GlobalOff is stored as an 8 bit signed value, GlobalGain and VddCalib are both stored as 16 bit unsigned.

VDDTH1 and VDDTH2 is the used supply voltage during calibration measured by the sensor itself and stored in Digits.

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 19 of 29

The corresponding order of $ThGrad_{ij}$, $ThOffset_{ij}$ and P_{ij} to the Pixelnumber is given by the following overview:

ThGrad _{0,0} \rightarrow Pixel 0	ThGrad₀,1 → Pixel 1		ThGrad _{0,79} → Pixel 79
ThGrad₁,0 → Pixel 80	ThGrad₁,1 → Pixel 81		ThGrad₁,79 → Pixel 179
ThGrad₃₁,0 → Pixel 248	$0 \text{ ThGrad}_{31,1} \rightarrow \text{Pixel } 248^{\circ}$	1	ThGrad _{31,79} →Pixel 2559
ThGrad _{32,0} → Pixel 504	$0 \text{ThGrad}_{32,1} \longrightarrow \text{Pixel } 504^{\circ}$	1	ThGrad _{32,79} →Pixel 5119
ThGrad _{33,0} → Pixel 496	0 ThGrad₃₃,₁ → Pixel 496°	1	ThGrad₃₃,79→Pixel 5039
•			
•			
ThGrad _{63,0} → Pixel 256	$0 \text{ ThGrad}_{63,1} \longrightarrow \text{Pixel } 256^{\circ}$	1	ThGrad _{63,79} →Pixel 2639

Figure 13: Readout order 80x64d

The order of $VddCompGrad_{ij}$ and $VddCompOff_{ij}$ is similar to the electrical Offsets and have to be used block by block.

Figure 14: Readout order of VDDCompGrad 80x64d

10.1 Ambient Temperature

The ambient temperature (Ta) is calculated from the average measured PTAT value, the $PTAT_{gradient}$ and the $PTAT_{offset}$.

$$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset}$$
 (Value is given back in dK)

where:

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 20 of 29

 $PTAT_{gradient}$ is the gradient of the PTAT stored in the EEPROM as a float value

 $PTAT_{offset}$ is the offset of the PTAT stored in the EEPROM as a float value

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8}$$
 is the average measured PTAT value

10.2 Thermal Offset

The thermal offset of the sensor needs to be subtracted for each pixel to compensate for any thermal drifts.

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{ij}$$

where:

ij represents the row (i) and column (j) of the pixel

 $V_{ii Comp}$ is the thermal offset compensated voltage

 V_{ii} is the raw pixel data (digital), readout from the RAM

ThGrad; is the thermal gradient, stored in the EEPROM from 0x740 to 0xF3F

ThOffset;; is the thermal offset, stored in the EEPROM from 0xF40 to 0x173F

gradScale is the scaling coefficient for the thermal gradient stored in the EEPROM

10.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a subtraction so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for the top half is done by using the following formula:

$$V_{ij_Comp}$$
* = V_{ij_Comp} - $elOffset[(j+i\cdot80):640]$

and the bottom half analogue with this formula:

$$V_{ij_Comp} * = V_{ij_Comp} - elOffset[(j+i\cdot80):640+640]$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp

Page 21 of 29

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 $V_{ii\ Comp}$ * is the thermal and electrical offset compensated voltage

is the thermal offset compensated voltage V_{ij_Comp}

elOffset [ij] is the electrical offset belonging to Pixel ij

i:640is the rest of the integer division of i by 640 (e.g. 642:640=2)

10.4 Vdd Compensation

A supply voltage compensation called VddComp is used to take care of supply voltage changes. In order to use this compensation the supply voltage of the sensor (Vdd) has to be measured by the sensor from time to time by setting the configuration register and the average of Vdd 1 and Vdd 2 is resulting in Vdd (similar like $PTAT_{av}$).

The compensation for the top half is done by using the following formula:

$$VDD_{av} = \frac{\sum_{i=0}^{7} VDD_i}{8}$$

$$V_{ij_{VDDComp}} = V_{ij_{Comp}^*}$$

$$-\frac{\left(\frac{VddCompGrad[(j+i\cdot80)\%640]\cdot PTAT_{av}}{2^{VDDScGrad}} + VddCompOff[(j+i\cdot80)\%640]\right)}{2^{VDDScOff}}$$

$$\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}} \right) \cdot \left(PTAT_{av} - PTAT_{TH1} \right) \right)$$

and the bottom half analogue with this formula:

$$V_{ij_{VDDComp}} = V_{ij_{Comp}*}$$

$$-\frac{\left(\frac{VddCompGrad[(j+i\cdot80)\%640+640]\cdot PTAT_{av}}{2^{VDDScGrad}}+VddCompOff[(j+i\cdot80)\%640+640]\right)}{2^{VDDScOff}}$$

$$\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}} \right) \cdot \left(PTAT_{av} - PTAT_{TH1} \right) \right)$$

where:

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp

Page 22 of 29

ij represents the row (i) and column (j) of the pixel

is the Vdd compensated voltage $V_{ii\ VDDComp}$

 $V_{ii\ Comp}*$ is the thermal and electrical offset compensated voltage

VddCompGrad[ij] is the VddComp gradient belonging to Pixel ij

VddCompOff [ij] is the VddComp offset belonging to Pixel ij

i%640 is the rest of the integer division of i by 640 (e.g. 642%640=2)

is the average measured supply voltage of the sensor in Digits VDD_{av}

VddScGrad is a scaling coefficient and stored in the EEPROM 0x4E

is a scaling coefficient and stored in the EEPROM 0x4F *VddScOff*

is the supply voltage during calibration 1 stored in the EEPROM 0x26, 0x27 VDD_{TH1}

 VDD_{TH2} is the supply voltage during calibration 2 stored in the EEPROM 0x28, 0x29

is the PTAT value of calibration 1 stored in the EEPROM 0x3C, 0x3D $PTAT_{TH1}$

is the PTAT value of calibration 2 stored in the EEPROM 0x3E, 0x3F $PTAT_{TH2}$

10.5 Object Temperature

The calculation of the object temperature is done by using a look-up table and doing a bi-linear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c". If you do not have the file, please ask Heimann Sensor for support.

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \frac{epsilon}{100} \cdot \frac{GlobalGain}{10000}$$

where:

is the sensitivity coefficient for each pixel $PixC_{ii}$

is the stored sensitivity coefficient scaled to 16 bit P_{ii}

is the minimum sensitivity coefficient, used for scaling $PixC_{min}$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp Page 23 of 29

 $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

GlobalGain is a factor for fine tuning of the sensitivity for all Pixel

Leading to a compensation of the pixel voltage

$$V_{ij_PixC} = \frac{V_{ij_VDDComp} \cdot \text{PCSCALEVAL}}{PixC_{ij}}$$

where:

 V_{ij_PixC} is the sensitivity compensated IR voltage

PCSCALEVAL is a defined scaling coefficient, typically set to $1 \cdot 10^8$

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 24 of 29

11 Example calculation

Example values:

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8} = 38152 Digits$$

$$PTAT_{gradient} = 0.0211 \, dK/Digit$$

$$PTAT_{offset} = 2195.0 \ dK$$

$$V_{00} = 34435 \ Digits$$

$$elOffset[0] = 34240$$

$$gradScale = 17$$

$$THGrad_{00} = 87 \rightarrow signcheck 87$$

$$THOffset_{00} = 65506 \rightarrow signcheck - 30$$

$$VDD_{av} = 35000$$

$$VDD_{TH1} = 33942$$

$$VDD_{TH2} = 36942$$

$$PTAT_{TH1} = 30000$$

$$PTAT_{TH2} = 42000$$

$$VddCompGrad[0] = 10356 \rightarrow signcheck \ 10356$$

$$VddCompOff[0] = 51390 \rightarrow signcheck - 14146$$

VddScGrad = 16

$$VddScOff = 23$$

$$PixC_{00} = 1 \cdot 10^8$$

$$PCSCALEVAL = 1 \cdot 10^8$$

Calculation of ambient temperature:

$$Ta = PTAT_{av} \cdot PTAT_{oradient} + PTAT_{offset} = 38152 \cdot 0.0211 + 2195.0 \ dK = 3000 \ dK$$

Compensation of thermal offset:

$$V_{00_Comp} = V_{00} - \frac{ThGrad_{00} \cdot PTAT_{av}}{2gradScale} - ThOffset_{00} = 34435 - \frac{87 \cdot 38152}{2^{17}} - (-30) = 34439$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.15: 2018.08.03 Schnorr/Lupp Page 25 of 29

Compensation of electrical offset:

$$V_{00_Comp}$$
* = V_{00_Comp} - $elOffset[0]$ = 34439 - 34240 = 199

Compensation of supply voltage:

$$\begin{split} V_{ij_VDDComp} &= V_{ij_Comp} * - \frac{\left(\frac{VddCompGrad[0] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[0]\right)}{2^{VddScOff}} \\ &\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right) \cdot (PTAT_{av} - PTAT_{TH1})\right) \\ &= 199 - \frac{\left(\frac{10356 \cdot 38152}{2^{16}} - 14146\right) \cdot \left(35000 - 33942 - 2038\right)}{2^{23}} = 199 - (1) = 198 \end{split}$$

Table 19: Example look-up table

TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_PixC} = \frac{198 \cdot 1 \cdot 10^8}{1.087 \cdot 10^8} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of $4026 \text{ dK} = 129.4 \,^{\circ}\text{C}$.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 26 of 29

A global Offset (GlobalOff) is used for fine tuning of the measured object temperature and has to be added to the object temperature. This value is stored in the EEPROM.

11.1 Pixel Masking

A maximum of 24 defect Pixels are allowed on the complete array, this means that at least 99.5 % of the Pixels are working correctly. The amount of defect Pixels is given in the EEPROM at address 0x007F and is named *NrOfDefPix*. *DeadPixAdr* is the address of the defect Pixels and *DeadPixMask* determines the neighbours that should be used for masking the pixel. A simple averaging of all selected nearest neighbours is done to overwrite the temperature value of these Pixel.

The order of the top and bottom half is the same as the readout order. The neighbours to use is given in a binary format and the order is shown in the overview below in decimal and binary values for the top and bottom half.

top half

128	1	2
64	DeadPix	4
32	16	8

0b1000 0000	0b0000 0001	0b0000 0010
0b0100 0000	DeadPix	0b0000 0100
0b0010 0000	0b0001 0000	0b0000 1000

bottom half

32	16	8
64	DeadPix	4
128	1	2

0b0010 0000	0b0001 0000	0b0000 1000
0b0100 0000	DeadPix	0b0000 0100
0b1000 0000	0b0000 0001	0b0000 0010

Example values for the masking:

NrOfDefPix = 0x03

 $DeadPixAdr[0] = 0x002D \rightarrow Pixel 45$

 $DeadPixAdr[1] = 0x031F \rightarrow Pixel 799$

 $DeadPixAdr[2] = 0x1054 \rightarrow Pixel 3461$

 $DeadPixMask[0] = 0x7C \rightarrow 0b01111100 \text{ (top)}$

 $DeadPixMask[1] = 0x8F \rightarrow 0b10001111 (top)$

 $DeadPixMask[2] = 0xFE \rightarrow 0b111111110 (bot)$

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp

Page 27 of 29

According to the sample values 3 Pixels are defect and need to be interpolated. 2 Pixels are on the top and 1 Pixel on the bottom half. Assuming that the neighbouring Pixels are having the temperature data stated below and the green marked cells are used for averaging (according to DeadPixMask) then the interpolated temperature will be the following:

Pixel
$$45 = \frac{3007 + 3008 + 3008 + 3011 + 3009}{5} dK = \frac{15043}{5} dK \approx 3009 dK$$

Pixel $799 = \frac{3010 + 3012 + 3005 + 3008 + 3009}{5} dK = \frac{15044}{5} dK \approx 3009 dK$
Pixel $3461 = \frac{3010 + 3012 + 3005 + 3007 + 3008 + 3009}{7} dK = \frac{21059}{7} dK \approx 3008 dK$

All values are given in dK

3007	Pixel 45	3008
3008	3011	3009

Pixel 44	Pixel 45	Pixel 46
Pixel 124	Pixel 125	Pixel 126

3010	3012	3005	
3007	Pixel 799	3008	
3008	3011	3009	

Pixel 718	Pixel 719	Pixel 720	
Pixel 798	Pixel 799	Pixel 800	
Pixel 878	Pixel 879	Pixel 880	

3010	3012	3005	
3007	Pixel 3461	3008	
3008	3011	3009	

Pixel 3380	Pixel 3381	Pixel 3382
Pixel 3460	Pixel 3461	Pixel 3462
Pixel 3540	Pixel 3541	Pixel 3542

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 28 of 29

11.2 Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an exemplary data for one optics.

dig \ Ta[dK]	2782	2882	2982	3082	3182	3282	3382
-256 -192		- Ol	0	1159 2211	1804 2407	2115 2576	2343 2727
-128 -64	∃ To	o in o	dΚ	2605 2873	2742 2986	2872 3097	2995 3206
0	<u> </u>			3082	3182	3282	3382
64 128	2993 3167	3078 3243	3166 3322	3256 3405	3347 3491	3440 3579	3534 3669
128	3316	3243	3459	3537	3619	3703	3790
256	3448 3565	3512	3582	3656	3734	3816	3901 4003
320 384	3673	3626 3731	3693 3794	3764 3864	3840 3938	3920 4016	4003
448	3771	3827	3889	3956	4029	4105	4186
512 576	3863 3948	3916 4000	3977 4059	4043 4124	4114 4194	4189 4269	4269 4348
640	4028	4079	4137	4200	4270	4344	4423
704 768	4104 4176	4154 4224	4210 4280	4273 4342	4342 4410	4415 4484	4494 4561
832	4244	4292	4346	4408	4476	4549	4626
896 960	4309 4371	4356 4417	4410 4471	4471 4532	4538 4599	4611 4671	4689
1024	4431	4476	4530	4590	4657	4729	4806
1088 1152	4488 4543	4533 4588	4586 4641	4646 4700	4713 4767	4785 4839	4862
1216	4597	4641	4693	4753	4819	4891	496
1280 1344	4648 4698	4692 4742	4744 4793	4803 4852	4869 4918	4941 4990	5018 5068
1408	4746	4790	4841	4900	4966	5038	5115
1472 1536	4793 4839	4836 4881	4888 4933	4946 4991	5012 5057	5084 5129	5162 5207
1600	4883	4926	4933	5035	5101	5173	5251
1664	4926	4968	5019	5078	5144	5216	5294
1728 1792	4968 5009	5010 5051	5061 5102	5120 5160	5185 5226	5258 5299	5336 537
1856	5049	5091	5142	5200	5266	5338	5417
1920 1984	5088 5126	5130 5168	5180 5218	5239 5277	5305 5343	5377 5416	5456 5494
2048	5164	5205	5256	5314	5380	5453	5532
2112 2176	5200 5236	5242 5277	5292 5328	5351 5386	5417 5453	5490 5526	5569 5609
2240	5271	5312	5363	5421	5488	5561	5640
2304 2368	5305 5339	5347 5380	5397 5431	5456 5490	5522 5556	5595 5629	5675 5705
2432	5372	5413	5464	5523	5589	5663	5742
2496 2560	5405 5437	5446 5478	5496 5528	5555 5587	5622 5654	5695 5728	5775 5800
2624	5468	5509	5560	5619	5685	5759	5840
2688 2752	5499 5529	5540 5570	5590	5649 5680	5716 5747	5790 5821	5871 5902
2816	5559	5600	5621 5651	5710	5777	5821	590
2880	5588	5629	5680 5709	5739 5768	5806	5881 5910	5962
2944 3008	5617 5646	5658 5687	5737	5798	5836 5864	5939	5992 602
3072	5674	5715	5765	5825	5893	5968	6049
3136 3200	5701 5729	5742 5770	5793 5820	5853 5880	5920 5948	5996 6023	6078
3264	5756	5797	5847	5907	5975	6051	6133
3328 3392	5782 5808	5823 5849	5874 5900	5934 5960	6002 6028	6078 6104	6160 6187
3456	5834	5875	5926	5986	6054	6130	6213
3520 3584	5859 5885	5900 5926	5951 5977	6012 6037	6080 6105	6156 6182	6239 6269
3648	5909	5950	6001	6062	6131	6207	6290
3712 3776	5934 5958	5975 5999	6026 6050	6086 6111	6155 6180	6232 6257	6315 6340
3840	5982	6023	6074	6135	6204	6281	636
3904	6006	6047	6098	6159	6228	6305	6389
3968 4032	6029 6052	6070 6093	6121 6145	6182 6205	6252 6275	6329 6352	6413
4096	6075	6116	6167	6228	6298	6376	6460
4160 4224	6097 6120	6139 6161	6190 6213	6251 6274	6321 6344	6399 6421	6484
4288	6142	6183	6235	6296	6366	6444	6529
4352 4416	6164 6185	6205 6227	6257 6278	6318 6340	6388 6410	6466 6488	6552 6574
4480	6207	6248	6300	6361	6432	6510	659
4544 4608	6228 6249	6269 6290	6321 6342	6383 6404	6453 6475	6532 6553	6618 6639
4672	6269	6311	6363	6425	6496	6575	666
4736 4800	6290 6310	6332 6352	6384 6404	6446 6466	6516 6537	6596 6616	6682 6703
4864	6330	6372	6424	6486	6558	6637	672
4928 4992	6350 6370	6392 6412	6444 6464	6507 6527	6578 6598	6657 6678	674- 676
5056	6390	6431	6484	6546	6618	6698	678
5120	6409	6451 6470	6503	6566 6585	6638	6718 6737	6805
5184 5248	6447	6489	6542	6605	6677	6737	684
5312	6466	6508	6561	6624	6696	6776	686
5376 5440	6485 6504	6527 6546	6580 6598	6643 6661	6715 6734	6795 6815	688 690
5504	6522	6564	6617	6680	6752	6833	692
5568 5632	6540 6558	6582 6600	6635 6654	6699 6717	6771 6789	6852 6871	694 ⁻
5696	6576	6618	6672	6735	6808	6889	697
5760 5824	6594 6612	6636 6654	6690 6707	6753 6771	6826 6844	6907 6926	699 701
5888	6629	6672	6725	6789	6862	6944	7033
5952 6016	6647 6664	6689 6706	6742 6760	6806 6824	6879 6897	6961 6979	705°
6080	6681	6723	6777	6841	6914	6997	708
6144 6208	6698 6715	6741 6757	6794 6811	6858 6875	6932 6949	7014 7031	710 712
6272	6732	6774	6828	6892	6966	7031	712
6336	6748	6791	6845	6909	6983	7066	7156
6400 6464	6765 6781	6807 6824	6861 6878	6926 6942	7000 7016	7083 7100	7174 719
6528	6797	6840	6894	6959	7033	7116	7207
	6813	6856	6910	6975	7050	7133	7224
6592 6656	6830	6872	6927	6991	7066	7149	7241

6848	6877	6920	6974	7039	7114	7198	7290
6912	6892	6936	6990	7055	7130	7214	7306
6976	6908	6951	7006	7071	7146	7230	7322
7040	6923	6966	7021	7086	7162	7246	7338
7104	6939	6982	7036	7102	7177	7262	7354
7168	6954	6997	7052	7102	7177	7277	7370
7232	6969	7012	7067	7133	7208	7293	7386
7296	6984	7027	7082	7148	7223	7308	7401
7360	6999	7042	7097	7163	7239	7324	7417
7424	7014	7057	7112	7178	7254	7339	7432
7488	7028	7072	7127	7193	7269	7354	7447
7552	7043	7086	7141	7207	7284	7369	7462
7616	7057	7101	7156	7222	7298	7384	7478
7680	7072	7115	7171	7237	7313	7399	7493
7744	7086	7130	7185	7251	7328	7414	7507
7808	7100	7144	7199	7266	7342	7428	7522
7872	7114	7158	7214	7280	7357	7443	7537
7936	7129	7172	7228	7294	7371	7457	7552
8000	7143	7186	7242	7309	7386	7472	7566
8064	7156	7200	7256	7323	7400	7486	7581
8128	7170	7214	7270	7337	7414	7500	7595
8192	7184	7228	7284	7351	7428	7515	7609
8256	7198	7242	7298	7365	7442	7529	7624
8320	7211	7255	7311	7378	7456	7543	7638
8384	7225	7269	7325	7392	7470	7557	7652
8448	7238	7282	7338	7406	7483	7570	7666
8512	7252	7296	7352	7419	7497	7584	7680
8576	7265	7309	7365	7433	7511	7598	7694
8640	7278	7322	7379	7446	7524	7612	7708
8704	7291	7336	7392	7460	7538	7625	7721
8768	7304	7349	7405	7473	7551	7639	7735
8832	7317	7362	7418	7486	7564	7652	7748
8896	7330	7375	7431	7499	7578	7665	7762
8960	7343	7388	7444	7512	7591	7679	7775
9024	7356	7401	7457	7525	7604	7692	7789
9088	7369	7413	7470	7538	7617	7705	7802
9152	7382	7426	7483	7551	7630	7718	7815
9216	7394	7439	7496	7564	7643	7731	7828
9280	7407	7451	7508	7577	7656	7744	7841
9344	7419	7464	7521	7589	7668	7757	7854
9408	7432	7476	7533	7602	7681	7770	7867
9472	7444	7489	7546	7614	7694	7783	7880
9536	7456	7501	7558	7627	7706	7795	7893
9600	7468	7513	7571	7627	7719	7808	7893
9664	7481	7526	7583	7652	7731	7821	7919
9728	7493	7538	7595	7664	7744	7833	7931
9792	7505	7550	7607	7676	7756	7846	7944
9856	7517	7562	7619	7688	7768	7858	7956
9920	7529	7574	7631	7701	7781	7870	7969
9984	7541	7586	7643	7713	7793	7883	7981
10048	7553	7598	7655	7725	7805	7895	7994
10112	7564	7610	7667	7737	7817	7907	8006
10176 10240	7576 7588	7621	7679 7691	7749	7829	7919 7931	8018
10240	7588	7633 7645	7703	7760 7772	7841 7853	7943	8030 8042
10368	7611	7656	7714	7784	7865	7955	8055
10432	7622	7668	7726	7796	7876	7967	8067
10496	7634	7679	7737	7807	7888	7979	8078
10560	7645	7691	7749	7819	7900	7991	8090
10624	7657	7702	7760	7830	7911	8002	8102
10688	7668	7713	7772	7842	7923	8014	8114
10752	7679	7725	7783	7853	7935	8026	8126
10816	7690	7736	7794	7865	7946	8037	8138
10880	7702	7747	7806	7876	7957	8049	8149
10944	7713	7758	7817	7887	7969	8060	
11008	7724	7769	7828	7899	7980	8072	8161 8172
11072	7735	7781	7839	7910	7991	8083	8184
11136	7746	7792	7850	7921	8003	8094	8195
11200	7757	7803	7861	7932	8014	8106	8207
11264	7767	7813	7872	7943	8025	8117	8218
11328	7778	7824	7883	7954	8036	8128	8229
11392	7789	7835	7894	7965	8047	8139	8241
11456	7800	7846	7905	7976	8058	8150	8252
11456	7800 7811	7846 7857	7905 7916	7976	8069	8150 8161	8252 8263
11584	7821	7867	7926	7998	8080	8173	8274
11648	7832	7878	7937	8008	8091	8183	8285
11712	7842	7889	7948	8019	8102	8194	8296
11776	7853	7899	7958	8030	8112	8205	8307
11840	7863	7910	7969	8040	8123	8216	8318
11904	7874	7920	7980	8051	8134	8227	8329
11968	7884	7931	7990	8062	8145	8238	8340
12032	7895	7941	8000	8072	8155	8248	8351
12096	7905	7951	8011	8083	8166	8259	8362
12160	7915	7962	8021	8093	8176	8270	8372
12224	7925	7972	8032	8104	8187	8280	8383
12288	7936	7982	8042	8114	8197	8291	8394
12352	7946	7992	8052	8124	8208	8301	8404
12416	7956	8003	8062	8135	8218	8312	8415
12480	7966	8013	8073	8145	8228	8322	8426
12544	7976	8023	8083	8155	8239	8333	8436
12608	7986	8033	8093	8165	8249	8343	8446
	7996	8043	8103	8175	8259	8353	8457
12672 12736	8006	8053	8113	8185	8269	8364	8467
12800	8016	8063	8123	8195	8279	8374	8478
12864	8026	8073	8133	8205	8290	8384	8488
12928	8035	8082	8143	8215	8300	8394	8498
12992	8045	8092	8153	8225	8310	8404	8508
13056	8055	8102	8162	8235	8320	8414	8519
13120	8065	8112	8172	8245	8330	8424	8529
13184	8074	8122	8182	8255	8340	8435	8539
13248	8084	8131	8192	8265	8349	8444	8549
13312	8094	8141	8201	8275	8359	8454	8559
13376	8103	8150	8211	8284	8369	8464	8569
13440	8113	8160	8221	8294	8379	8474	8579
13504	8122	8170	8230	8304	8389	8484	8589
13568	8132	8179	8240	8313	8398	8494	8599
13632	8141	8189	8249	8323	8408	8504	8609
13696	8151	8198	8259	8333	8418	8513	8619
13760	8160	8207	8268	8342	8427	8523	8628
13824	8169	8217	8278	8352	8437	8533	8638
13888	8179	8226	8287	8361	8446	8542	8648
13952	8188	8236	8297	8370	8456	8552	8658

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.15: 2018.08.03 Schnorr/Lupp Page 29 of 29

12 Outer Dimensions

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet