Temporal-Difference Learning

Deboroto Das Robin

Kent State University

October 15, 2018

Future AI Methods Requirements

- Scalable : MC is scalable but DP not
- Model Free :
 - Not restricted to specific model : DL, CNN, all are model based
- Prediction Based
- Learns & predicts dynamically from environment : self driving car/drone

Techniques

- DP:
 - Neither model free nor scalable
 - Considers all possible steps
 - Bootstraps: pupdates existing estimates
- MC:
 - Doesn't bootstraps
 - Estimates using sample of an episode
 - Visits all states & actions to a terminal state(full episode), finding out G_t
- TD:
 - Combines goodness of MC
 & DP

TD Prediction

Policy Evaluation (the prediction problem):

for a given policy π , compute the state-value function ν_{π}

Recall: Simple every-visit Monte Carlo method:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

target: the actual return after time t

The simplest temporal-difference method TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\underbrace{R_{t+1} + \gamma V(S_{t+1})}_{|} - V(S_t) \right]$$

target: an estimate of the return

TD(0)

- TD(0) or one step TD (update the value function after any individual step)
- Only wait until the next time step to update the value estimates
- MC wait for full episode

$$\begin{aligned} & \text{Monte Carlo} \quad V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)] \end{aligned}$$

$$& \text{TD Learning} \quad V(S_t) \leftarrow \underbrace{V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]}_{\text{Previous estimate}} \underbrace{ \frac{V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]}{\text{Discounted value on the next step}} \end{aligned}$$

• More generalized $TD(\lambda)$ available in next chapters

TD(0) Algorithm

Algorithm is

```
Tabular TD(0) for estimating v_{\pi}
```

```
Input: the policy \pi to be evaluated Initialize V(s) arbitrarily (e.g., V(s)=0, for all s\in \mathbb{S}^+) Repeat (for each episode): Initialize S Repeat (for each step of episode): A\leftarrow action given by \pi for S Take action A, observe R, S' V(S)\leftarrow V(S)+\alpha \left[R+\gamma V(S')-V(S)\right]
```

- until S is terminal
- Error at each step = R_{t+1} + γ $V(S_{t+1})$ $V(S_t)$

Advantages of TD Prediction Methods)

- Do not require a model of the environment, only experience
- TD, but not MC, methods can be fully incremental
 - You can learn before knowing the final outcome
 - Do not wait for full episode
- Less memory : Don't look all steps like DP
- Less peak computation
- Converges like MC : given certain assumptions

Optimality of TD(0)

Assume we have finite amount of experience: 10 episodes or 100 time steps for a Random Walk scenario

- Batch Update :
 - time step t: time to move to next step
 - TD prediction equation: $V(S_t) = V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
 - Increment =

$$\alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

- At each t, increment is caculated **But** $V(S_t)$ is updated after 100 steps
- If α is small, under batch update TD(0) converges to single answer
- MC also converges to single(but different) answer

Performance of TD(0)

- ullet Optimal solution requires : for N states
 - N^2 memory & N^3 computation
 - Infesible for large problem
- TD reaches to convergence faster than MC
 - I am not clear about the logic !!!!
 - certainty-equivalence estimate I am not clear about that
- For large state-space problem TD is only feasible solution

On-policy / Off-policy

- On-Policy:
 - attempt to evaluate or improve the policy(π) used to make decisions
 - Example : SARSA
- Of-Policy:
 - ullet attempt to evaluate or improve the policy other than π
 - Example : Q-Learning

Sarsa: State-Action-Reward-State-Action

- Simple TD :
 - Moves from S_t to S_{t+1}
 - Learns predicting optimal state
 - Action is defined by **Policy** π
 - \bullet π is not changed
- On-Policy:
 - Changes π
 - How:
 - Instead of $S_t \longrightarrow S_{t+1}$ Do $Q(S_t, A_t) \longrightarrow Q(S_{t+1}, A_{t+1})$
 - State action pair is learned $\longrightarrow \pi$ is changed
 - Actions are updated $A \longrightarrow A'$

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Initialize Q(s, a), for all $s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot)$ Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., $\epsilon\text{-greedy})$

Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ϵ -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]$

 $S \leftarrow S' : A \leftarrow A' :$

until S is terminal

Q-Learning:

- Of-Policy :
 - Does not change π
 - How:
 - Instead of $S_t \longrightarrow S_{t+1}$ Do $Q(S_t, A_t) \longrightarrow Q(S_{t+1}, A_{t+1})$
 - State action pair is learned $\longrightarrow \pi$ is changed
 - Actions are **NOT** updated: NO $A \longrightarrow A'$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize Q(s,a), for all $s \in S$, $a \in A(s)$, arbitrarily, and Q(terminal-state)Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy) Take action A, observe R, S'

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

 $S \leftarrow S'$

until S is terminal