Extension to sparse regime and algorithm performance in smooth settings

Chanwoo Lee April 12, 2021

1 Algorithm performance in smooth settings

We assume that $\mathcal{A}_{\omega} \sim \text{Bernoulli}(\Theta_{\omega})$, where

$$\Theta_{\boldsymbol{\omega}} = f(\xi_{\omega_1}, \dots, \xi_{\omega_m}), \text{ for all } \boldsymbol{\omega} = (\omega_1, \dots, \omega_m) \in E,$$

where $f:[0,1]^m \to [0,1]$ is a symmetric function called hypergraphon such that $f(\xi_{\omega_1},\ldots,\xi_{\omega_m})=f(\xi_{\sigma(\omega_1)},\ldots,\xi_{\sigma(\omega_m)})$ for all permutation $\sigma:[n]\to[n]$. I checked our algorithm performance under this hypergraphon model with different symmetric function $f:[0,1]^3\to[0,1]$.

- Smooth 1: $f(x_1, x_2, x_3) = 1/(1 + \exp(-(x_1^2 + x_2^2 + x_3^2)))$.
- Smooth 2: $f(x_1, x_2, x_3) = x_1 x_2 x_3$.
- Smooth 3: $f(x_1, x_2, x_3) = \log(1 + \max(x_1, x_2, x_3))$.
- Smooth 4: $f(x_1, x_2, x_3) = \exp(-\min(x_1, x_2, x_3))$.

Figure 1 shows the distributions of Θ from each model when n = 100.

Figure 1: Empirical density of the probability tensor Θ for each smooth model (Smooth 1-4).

In hypergraphon model, there is no clusters. So I choose to use $k \in \{5, 10, 15, 20\}$ for each $n \in \{50, 100, 150, 200, 250\}$. I use functions_sbm for the updates. Figure 2 shows the MSE result according to different smooth models. It turns out that our algorithm works great in the smooth settings except small group size case in Smooth 3 and Smooth 4. I found that functions_sbm is sometimes trapped in local minimums from which

Add a plot for MSE vs. K for n= 50 under smooth model 1.

Our theory suggests a variance-bias trade off determined by k —> want to verify this from simulation as well.

Current simulation shows under-parameterized region where higher k is better. would be interesting to show the overparameterized region where higher k is worse as well.

functions_sbm2 escape. Figure 3 shows that functions_sbm2 succeeded to find the good optimal points where functions_sbm failed.

Figure 2: MSE error depending on smooth model, the number of node $n \in \{50, 100, 150, 200, 250\}$ and the number of clusters $k \in \{5, 10, 15, 20\}$. functions_sbm is used for the algorithm. functions_sbm is used on red lines (sbm) while functions_sbm2 on blue lines (sbm2).

Figure 3: MSE errors in Smooth 3 and 4 depending on the number of nodes. The cluster size is set to be 5 where previous functions_sbm failed to escape local minimums (Figure 2).

2 Extension to sparse regime

We denote $\rho \in [0, 1]$ as the sampling probability or the sparsity parameter. When the observed tensor $\mathcal{A} \in \{0, 1\}^{d_1 \times \cdots \times d_K}$ is complete, we interpret ρ as the sparsity parameter. On the other hand, we interpret ρ as the sampling probability when the data is incomplete, i.e.,

$$\mathbb{P}\left[\mathcal{A}_{\omega} \text{ is observed } |\Theta_{\omega}^{\text{true}}\right] = \rho.$$

If we assign missing entries as 0 in A, the marginal probability of observed network being connected has

$$\mathbb{P}(\mathcal{A}_{\omega} = 1) = \rho \Theta_{\omega}^{\text{true}},$$

for all $\rho \in E$ in both complete and incomplete cases. Here we choose to call the parameter ρ the sparsity parameter. Notice that when $\rho = 1$, the problem reduces to previous settings.

From known ρ , we estimate Θ^{true} by

$$\hat{\Theta} = \operatorname{cut}(\tilde{\Theta}), \quad \text{where } \tilde{\Theta} = \underset{\Theta \in \mathcal{P}_k}{\operatorname{arg\,min}} \sum_{\omega \in E} |\mathcal{A}_{\omega} - \rho \Theta_{\omega}|^2.$$
 (1)

With adaptation of the new parameter ρ , we modify previous theorems incorporating ρ .

2.1 Probability tensor estimation

Under k-piecewise constant hypergraphon model, we construct theoretical guarantees for estimated probability tensor from observed network tensor $\mathcal{A} \in \{0,1\}^{d_1 \times \cdots \times d_m}$.

Theorem 2.1 (Stochastic block model with the sparsity parameter ρ). Let $\hat{\Theta}$ be the estimator from (1). Suppose true probability tensor $\Theta^{\text{true}} \in \text{cut}(\mathcal{P}_k)$ for fixed block size k Then, there exists two constants $C_1, C_2 > 0$, such that

$$\frac{1}{n^m} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 \le \frac{C_1}{\rho} \left(\left(\frac{k}{n} \right)^m + \frac{\log k}{n^{m-1}} \right), \tag{2}$$

with probability at least $1 - \exp(-C_2(n \log k + k^m))$. Furthermore, expected mean square error is bounded by

$$\frac{1}{n^m} \mathbb{E} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 \leq \frac{C}{\rho} \left(\left(\frac{k}{n}\right)^m + \frac{\log k}{n^{m-1}} \right),$$

for some constant C > 0.

Remark 1. The sparsity parameter ρ makes both nonparametric and clustering rates worse by the same rate. For the nonparametric rate, the number of observation becomes $\mathcal{O}(\rho n^m)$ while the number of parameters remains the same as $\mathcal{O}(k^m)$. This reduced observation is reflected on the rate. Similarly, the number of possible k-clusters of n-vertices remains $\mathcal{O}(k^n)$ while the number of observation changes to $\mathcal{O}(\rho n^m)$. Therefore, the clustering rate is also reduced by ρ .

Now we assume that a hypergraphon f is α -Hölder continuous with a constant L. We define a block average on a set $E_{z^{-1}(a)}$ for a given membership function z, a membership vector a, and a tensor $\Theta \in ([n])^{\otimes m}$ as

$$\bar{\Theta}_a(z) = \frac{1}{|E_{z^{-1}(a)}|} \sum_{\boldsymbol{\omega} \in E_{z^{-1}(a)}} \Theta_{\boldsymbol{\omega}}.$$

Notice that we define $\Theta_{\omega} = f(\xi_{\omega_1}, \dots, \xi_{\omega_m})$ for all $\omega = (\omega_1, \dots, \omega_m) \in E$ where there is no sparsity parameter ρ . Therefore the following block approximation lemma remains the same.

Lemma 2.1 (Block approximation). Suppose the true parameter Θ^{true} admits the hypergraphon model with $f \in \mathcal{H}(\alpha, L)$. For every integer $k \leq n$, there exists $z^* : [n] \to [k]$, satisfying

$$\frac{1}{|E|} \sum_{a \in [k]^m} \sum_{\omega \in E_{(z^*)^{-1}(a)}} (\Theta_{\omega}^{\text{true}} - \bar{\Theta}_a(z^*))^2 \le m^2 L^2 \left(\frac{1}{k^2}\right)^{\alpha}.$$

Theorem 2.2 (Hölder continuous hypergraphon model with the sparsity parameter ρ). Suppose the true parameter Θ^{true} admits the hypergraphon model with $f \in \mathcal{H}(\alpha, L)$ Let Θ be the estimator from (1). Then, there exist two constants $C_1, C_2 > 0$ such that,

$$\frac{1}{n^m} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 \le C_1 \left((\rho n^m)^{\frac{-2\alpha}{m+2\alpha}} + \frac{\log n}{\rho n^{m-1}} \right),$$

with probability at least $1 - \exp\left(-C_2\left(n\log(\rho n^m) + (\rho n^m)^{\frac{m}{m+2\alpha}}\right)\right)$ uniformly over $f \in \mathcal{H}(\alpha, L)$. Furthermore, the expected mean square error is bounded by

$$\frac{1}{n^m}\mathbb{E}\|\hat{\Theta} - \Theta^{\mathrm{true}}\|_F^2 \leq C\left((\rho n^m)^{\frac{-2\alpha}{m+2\alpha}} + \frac{\log n}{\rho n^{m-1}}\right),$$
 consistency is achieved provided that rho > n^(-(m-2\alpha)) n^m = 1000 n^m =

for some constant C > 0.

the tolerance for sparsity improves as order increases. Agree with intuition? Remark 2. Notice that the recovery of the true probability tensor Θ^{true} is influenced by the expected number of observations, ρn^m . The probability $1 - \exp\left(-C_2\left(n\log(\rho n^m) + (\rho n^m)^{\frac{m}{m+2\alpha}}\right)\right)$ tells us that the sparsity parameter should be greater than $1/n^m$ to expect the meaningful MSE. Depending on constants m, α and the sparsity parameter ρ , convergence rate becomes

$$(\rho n^m)^{\frac{-2\alpha}{m+2\alpha}} + \frac{\log n}{\rho n^{m-1}} \asymp \begin{cases} (\rho n^m)^{\frac{-2\alpha}{m+2\alpha}} & \text{if } \rho \geq n^{1-m+2\alpha/m}, \\ \frac{\log n}{\rho n^{m-1}} & \text{if } \rho < n^{1-m+2\alpha/m}, \end{cases}$$

upto $\log n$ factors. The nonparametric rate tends to dominate the error when dense observation while the clustering rate dominates the error under the sparse regime.

3 Proof

Proof of Theorem 2.1

Proof. We consider two exclusive cases

- 1. Case 1: when $\|\hat{\Theta} \Theta^{\text{true}}\|_F \leq \sqrt{C(k^m + n \log k)/\rho}$, then we have directly (2).
- 2. Case 2: when $\|\hat{\Theta} \Theta^{\text{true}}\|_F > \sqrt{C(k^m + n \log k)/\rho}$.

By the definition of $\hat{\Theta}$ in (1), we have

$$\|\rho\hat{\Theta} - \rho\Theta^{\text{true}}\|_F^2 \le 2\langle\rho\hat{\Theta} - \rho\Theta^{\text{true}}, \mathcal{A} - \rho\Theta^{\text{true}}\rangle$$

$$= 2\|\rho\hat{\Theta} - \rho\Theta^{\text{true}}\|_F \left\langle \frac{\hat{\Theta} - \Theta^{\text{true}}}{\|\hat{\Theta} - \Theta^{\text{true}}\|_F}, \mathcal{A} - \rho\Theta^{\text{true}} \right\rangle.$$
(3)

Then,

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 \leq 2 \left| \left\langle \frac{\hat{\Theta} - \Theta^{\text{true}}}{\|\hat{\Theta} - \Theta^{\text{true}}\|_F}, \frac{\mathcal{A} - \rho \Theta^{\text{true}}}{\rho} \right\rangle \right| \leq 2 \sup_{\boldsymbol{M}, \boldsymbol{M}' \in \mathcal{M}} \sup_{\mathcal{C}, \mathcal{C}' \in ([0,1]^k)^{\otimes m}} \left| \left\langle \mathcal{T}(\boldsymbol{M}, \boldsymbol{M}', \mathcal{C}, \mathcal{C}'), \frac{\mathcal{A} - \rho \Theta^{\text{true}}}{\rho} \right\rangle \right|,$$

where $\mathcal{T} = \frac{\cot(\Theta(M,\mathcal{C}) - \cot(\Theta(M',\mathcal{C}'))}{\|\cot(\Theta(M,\mathcal{C}) - \cot(\Theta(M',\mathcal{C}'))\|_F}$. Under the event $\|\hat{\Theta} - \Theta^{\text{true}}\|_F > \sqrt{C(k^m + n \log k)/\rho}$ for some constant C, we have

$$|\mathcal{T}_{\omega}| \le \frac{1}{\|\hat{\Theta} - \Theta^{\text{true}}\|_F} \le \sqrt{\frac{\rho}{C(k^m + n \log k)}}, \text{ for all } \omega \in [n]^{\otimes m}.$$

Therefore, combination of Lemma 3.1 and 3.2 yields

$$\mathbb{P}\left(\sup_{\boldsymbol{M},\boldsymbol{M}'\in\mathcal{M}}\sup_{\boldsymbol{C},\boldsymbol{C}'\in([0,1]^k)^{\otimes m}}\left|\left\langle \mathcal{T}(\boldsymbol{M},\boldsymbol{M}',\boldsymbol{C},\boldsymbol{C}'),\frac{\mathcal{A}-\rho\Theta^{\text{true}}}{\rho}\right\rangle\right|\geq t\right) \\
\leq \exp\left(C'\left(k^m+n\log k\right)\right)\cdot\exp\left(-\min\left(\frac{\rho t^2}{24},\frac{t\sqrt{C\rho(k^m+n\log k)}}{4}\right)\right),$$

for some constant C' > 0. Setting $t = \sqrt{C_1(k^m + n \log k)/\rho}$ for sufficiently large C_1 depending C > 0 completes the proof.

Expectation bound follows from the probability tail bound.

Lemma 3.1. [Gao et al., 2016, Lemma 13] Let $\{A_{\omega}\}_{{\omega}\in E}$ be independent sub-Gaussian random variables with mean $\rho\Theta_{\omega}$ and proxy variance σ^2 , where $\Theta_{\omega}\in [-M,M]$, $\rho\in [0,1]$, and E is an index set. Then, for $|\lambda|\leq \rho/(M\vee\sigma)$, we have

$$\mathbb{E}e^{\lambda\left(\frac{A_{\omega}-\rho\Theta_{\omega}}{\rho}\right)} \le 2e^{(M^2+2\sigma^2)\lambda^2/\rho}.$$

Moreover, for $\sum_{\omega \in} c_{\omega}^2 = 1$,

$$\mathbb{P}\left\{ \left| \sum_{\omega \in E} c_{\omega} \left(\frac{\mathcal{A}_{\omega} - \rho \Theta_{\omega}}{\rho} \right) \right| \ge t \right\} \le 4 \exp\left\{ - \min\left(\frac{\rho t^2}{4(M^2 + 2\sigma^2)}, \frac{\rho t}{2(M \vee \sigma) \|c\|_{\infty}} \right) \right\},$$

for any t > 0.

Lemma 3.2. Let $\mathcal{X} \in (\mathbb{R}^n)^{\otimes m}$ be a random tensor drawn from any distributions. Denote \mathcal{B}_2 as a unit ball in $(\mathbb{R}^n)^{\otimes m}$ with $\|\cdot\|_2$ distance. Suppose that

$$\mathbb{P}(|\langle \mathcal{T}, \mathcal{X} \rangle| \ge t) \le \phi(t)$$
, for all $t > 0$ and $\mathcal{T} \in \mathcal{B}_2$, (4)

for some function $\phi \colon \mathbb{R}_+ \to [0,1]$. Define

$$\mathcal{B}_c = \left\{ \frac{\mathrm{cut}(\Theta(\boldsymbol{M}, \mathcal{C})) - \mathrm{cut}(\Theta(\boldsymbol{M}', \mathcal{C}'))}{\|\mathrm{cut}(\Theta(\boldsymbol{M}, \mathcal{C})) - \mathrm{cut}(\Theta(\boldsymbol{M}', \mathcal{C}'))\|_F} \colon \boldsymbol{M}, \boldsymbol{M}' \in \mathcal{M} \text{ and } \mathcal{C}, \mathcal{C}' \in ([0, 1]^k)^{\otimes m} \right\}$$

Then,

$$\mathbb{P}\left(\sup_{\mathcal{T}\in\mathcal{B}_{a}}|\langle\mathcal{T},\mathcal{X}\rangle|\geq t\right)\leq \exp(Ck^{m}+2n\log k)\phi(t/2),$$

for some constant C > 0.

Proof. Notice that

$$\operatorname{vec}(\Theta(\boldsymbol{M}_{1},\mathcal{C}_{1}) - \Theta(\boldsymbol{M}_{2},\mathcal{C}_{2})) = \underbrace{\left[\boldsymbol{M}_{1}^{\otimes m} - \boldsymbol{M}_{2}^{\otimes m}\right]}_{=:\boldsymbol{A} \in \{0,1\}^{n^{m} \times 2k^{m}}} \underbrace{\left[\boldsymbol{\operatorname{vec}}(\mathcal{C}_{1})\right]_{\boldsymbol{\operatorname{vec}}(\mathcal{C}_{2})}}_{=:\boldsymbol{\operatorname{c}} \in [0,1]^{2k^{m} \times 1}}.$$

With careful allocation, we always find a matrix $\tilde{A} \in \{0,1\}^{n^m \times 2k^m}$ such that,

$$\operatorname{vec}\left(\operatorname{cut}(\Theta(M_1,\mathcal{C}_1)) - \operatorname{cut}(\Theta(M_2,\mathcal{C}_2))\right) = \tilde{\boldsymbol{A}}\boldsymbol{c}.$$

Notice

$$\mathbb{P}\left(\sup_{\mathcal{T}\in\mathcal{S}}|\langle\mathcal{T},\mathcal{X}\rangle| \geq t\right) = \mathbb{P}\left(\sup_{\mathbf{M}_{1},\mathbf{M}_{2}\in\mathcal{M}}\sup_{\mathcal{C}_{1},\mathcal{C}_{2}\in([0,1]^{k})\otimes^{m}}\left\langle\frac{\operatorname{cut}(\Theta(\mathbf{M}_{1},\mathcal{C}_{1})) - \operatorname{cut}(\Theta(\mathbf{M}_{2},\mathcal{C}_{2}))}{\|\operatorname{cut}(\Theta(\mathbf{M}_{1},\mathcal{C}_{1})) - \operatorname{cut}(\Theta(\mathbf{M}_{2},\mathcal{C}_{2}))\|_{F}},\mathcal{X}\right) \geq t\right) \\
\leq \mathbb{P}\left(\sup_{\mathbf{M}_{1},\mathbf{M}_{2}\in\mathcal{M}}\sup_{\mathbf{c}\in\mathbb{R}^{2k^{m}}}\left\langle\frac{\tilde{\mathbf{A}}\mathbf{c}}{\|\tilde{\mathbf{A}}\mathbf{c}\|_{2}},\operatorname{vec}(\mathcal{X})\right\rangle \geq t\right) \\
\leq \sum_{\mathbf{M}_{1},\mathbf{M}_{2}\in\mathcal{M}}\mathbb{P}\left(\left\langle\frac{\tilde{\mathbf{A}}\mathbf{c}}{\|\tilde{\mathbf{A}}\mathbf{c}\|_{2}},\operatorname{vec}(\mathcal{X})\right\rangle \geq t\right).$$

Let $r := \operatorname{rank}(\tilde{A}) \leq 2k^m$ be the rank of \tilde{A} . Then we express $\tilde{A}c = \sum_{i=1}^r \lambda_i u_i v_i^T c = \sum_{i=1}^r (\lambda_i v_i^T c) u_i$, where u_i, v_i and λ_i are i-th singular vectors and singular value respectively. Defining $\boldsymbol{\alpha} = (\lambda_1 v_1^T c, \dots, \lambda_r v_r^T c) \in \mathbb{R}^r$, we have,

$$\sum_{\mathbf{M}_{1}, \mathbf{M}_{2} \in \mathcal{M}} \mathbb{P}\left(\left\langle \frac{\tilde{\mathbf{A}}\mathbf{c}}{\|\tilde{\mathbf{A}}\mathbf{c}\|_{2}}, \operatorname{vec}(\mathcal{X}) \right\rangle \geq t \right) = \sum_{\mathbf{M}_{1}, \mathbf{M}_{2} \in \mathcal{M}} \mathbb{P}\left(\left\langle \frac{\boldsymbol{\alpha}}{\|\boldsymbol{\alpha}\|_{2}}, (\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{r})^{T} \operatorname{vec}(\mathcal{X}) \right\rangle \geq t \right) \\
\leq \sum_{\mathbf{M}_{1}, \mathbf{M}_{2} \in \mathcal{M}} \mathbb{P}\left(\max_{\boldsymbol{c} \in \mathbb{R}^{r}} \left\langle \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|_{2}}, \boldsymbol{x} \right\rangle \geq t \right) \\
\leq \sum_{\mathbf{M}_{1}, \mathbf{M}_{2} \in \mathcal{M}} \mathbb{P}\left(\max_{\boldsymbol{c} \in \mathcal{S}} \left\langle \boldsymbol{c}, \boldsymbol{x} \right\rangle \geq t \right), \tag{5}$$

where we define $\boldsymbol{x} := (\boldsymbol{u}_1, \dots, \boldsymbol{u}_r)^T \operatorname{vec}(\mathcal{X}) \in \mathbb{R}^r$ and \mathcal{S} is a unit sphere in \mathbb{R}^r . Notice the upper bound (4) still holds for \boldsymbol{x} by the orthonormality of $(\boldsymbol{u}_1, \dots, \boldsymbol{u}_r)$. Let \mathcal{S}' be a 1/2-net of \mathcal{S} with respect to the Euclidean norm that satisfies $|\mathcal{S}'| \leq 6^r$. Observed that for every $\boldsymbol{c} \in \mathbb{R}^r$, there exists $\boldsymbol{c}' \in \mathcal{S}'$ such that $\|\boldsymbol{c} - \boldsymbol{c}'\|_2 \leq 1/2$. Then, we have

$$\begin{split} |\langle \boldsymbol{c}, \boldsymbol{x} \rangle| &\leq |\langle \boldsymbol{c} - \boldsymbol{c}', \boldsymbol{x} \rangle| + |\langle \boldsymbol{c}', \boldsymbol{x} \rangle| \\ &= \|\boldsymbol{c} - \boldsymbol{c}'\|_2 \left| \left\langle \frac{\boldsymbol{c} - \boldsymbol{c}'}{\|\boldsymbol{c} - \boldsymbol{c}'\|_2}, \boldsymbol{x} \right\rangle \right| + |\langle \boldsymbol{c}', \boldsymbol{x} \rangle| \\ &\leq \frac{1}{2} \sup_{\boldsymbol{c} \in \mathcal{S}} |\langle \boldsymbol{c}, \boldsymbol{x} \rangle| + |\langle \boldsymbol{c}', \boldsymbol{x} \rangle|. \end{split}$$

Taking sup and max on both side yields,

$$\sup_{\boldsymbol{c}\in\mathcal{S}}|\langle \boldsymbol{c},\boldsymbol{x}\rangle|\leq 2\max_{\boldsymbol{c}'\in\mathcal{S}'}|\langle \boldsymbol{c}',\boldsymbol{x}\rangle|.$$

Finally applying this result to (5) yields,

$$\mathbb{P}\left(\sup_{\mathcal{T}\in\mathcal{S}}|\langle \mathcal{T}, \mathcal{X}\rangle| \ge t\right) \le \sum_{M_1, M_2 \in \mathcal{M}} \mathbb{P}\left(\max_{\boldsymbol{c}' \in \mathcal{S}'} \langle \boldsymbol{c}', \boldsymbol{x}\rangle \ge t/2\right) \\
\le (k^{2n})6^r \phi(t/2) \\
\le \exp(Ck^m + 2n\log k)\phi(t/2),$$

where the last inequality used (4) and the fact $r \leq k^m$.

3.2 Proof of Theorm 2.2

Proof. First, we prove the probability tail bound. By Lemma 2.1, we can always find a block tensor Θ^* close to the true probability tensor Θ^{true} such that

$$\frac{1}{n^m} \|\Theta^* - \Theta^{\text{true}}\|_F^2 \le m^2 L^2 \left(\frac{1}{k^2}\right)^{\alpha}. \tag{6}$$

By triangular inequality,

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 \le 2 \underbrace{\|\hat{\Theta} - \Theta^*\|_F^2}_{\text{(i)}} + 2 \underbrace{\|\Theta^* - \Theta^{\text{true}}\|_F^2}_{\text{(ii)}}.$$
 (7)

Since we have the error bound (ii) as in (6), we find the upper bound of the error (i). Based on definition of $\hat{\Theta}$, we have the following inequality similar to (3).

$$\begin{split} \|\hat{\Theta} - \Theta^*\|_F^2 &\leq 2 \left\langle \hat{\Theta} - \Theta^*, \frac{\mathcal{A} - \rho \Theta^*}{\rho} \right\rangle \\ &= 2 \left(\left\langle \hat{\Theta} - \Theta^*, \frac{\mathcal{A} - \rho \Theta^{\text{true}}}{\rho} \right\rangle + \left\langle \hat{\Theta} - \Theta^*, \Theta^{\text{true}} - \Theta^* \right\rangle \right) \\ &\leq 2 \|\hat{\Theta} - \Theta^*\|_F \left(\left\langle \frac{\hat{\Theta} - \Theta^*}{\|\hat{\Theta} - \Theta^*\|_F}, \frac{\mathcal{A} - \rho \Theta^{\text{true}}}{\rho} \right\rangle + \|\Theta^{\text{true}} - \Theta^*\|_F \right). \end{split}$$

It suffices to bound the inner product term because of (6). Notice Θ^* is a block tensor such that $\Theta^* \in \text{cut}(\mathcal{P}(k))$. Therefore, by the same way in the proof of Theorem 2.1, we obtain

$$\mathbb{P}\left(\left\langle \frac{\hat{\Theta} - \Theta^*}{\|\hat{\Theta} - \Theta^*\|_F}, \frac{\mathcal{A} - \rho\Theta}{\rho} \right\rangle \ge t\right) \le \exp\left(C'\left(k^m + n\log k\right)\right) \cdot \exp\left(-\min\left(\frac{\rho t^2}{24}, \frac{t\sqrt{C\rho(k^m + n\log k)}}{4}\right)\right),$$

for some universal constants C, C' > 0. Setting $t = \sqrt{C''(k^m + n \log k)/\rho}$ for sufficiently large C'' depending C > 0 yields

(i)
$$\lesssim m^2 L^2 \left(\frac{1}{k}\right)^{2\alpha} + \frac{1}{\rho} \left(\left(\frac{k}{n}\right)^m + \frac{\log k}{n^{m-1}}\right)$$

with probability at least $1 - \exp\left(-C_2(n\log k + k^m)\right)$. Combinations of two error bounds in (7) and setting $k = \left\lceil (\rho n^m)^{\frac{1}{m+2\alpha}} \right\rceil$, completes the theorem.

The moment bound follows by the probability tail bound.

References

Chao Gao, Yu Lu, Zongming Ma, and Harrison H Zhou. Optimal estimation and completion of matrices with biclustering structures. *The Journal of Machine Learning Research*, 17(1):5602–5630, 2016.