CNN 기초

컴퓨터 비전를 중심으로

Dec 2020

합성곱 신경망 기초

전결합 신경망

● 전결합 신경망 (Fully Connected: FC)

● 합성곱을 통한 공간적 특성추출

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) **Spatially share** parameters of each filter

● 합성곱이란?

1,	1,0	1,	0	0							
0,,0	1,	1,0	1	0		1	0	1	4		
0,,1	0,	1,	1	1	\otimes	0	1	0			
0	0	1	1	0		1	0	1			
0	1	1	0	0			filter		feat	ure r	nap

● 합성곱이란?

1	1,	1,0	0,,1	0							
0	1,0	1,	1,0	0	80 <u>-</u> - 60 V	1	0	1	4	თ	
0	0,,1	1,0	1,,1	1	\otimes	0	1	0			
0	0	1	1	0		1	0	1			
0	1	1	0	0			filter		feat	ure r	map

● 합성곱이란?

1	1	1	0	0							
0	1	1	1	0		1	0	1	4	3	4
0	0	1,	1,,	1,	\otimes	0	1	0	2	4	3
0	0	1,	1,	O~		1	0	1	2	3	4
0	1	1,	0,,	0,,			filter		feat	ure r	nap

● 3x32x32 이미지

● 3x32x32 이미지

● 첫번째 활성 맵

● 두번째 활성 맵

• 여기서 depth는 필터의 개수임.

• 6개의 필터로 6개의 활성 맵을 만든다.

● 2개의 이미지에 대해 6개의 필터로 6개짜리 2세트의 활성맵을 만든다.

● 합성곱의 적층

• RELU 층의 추가로 진정한 활성맵을 만든다.

● 필터의 시각화 및 의미

첫번째 합성곱층은은 국지적 이미지 템플릿이다. (방향성 모서리, 색상 대조 등)

AlexNet: 64 filters, each 3x11x11

● 공간적 이해

Input: 7x7

Filter: 3x3

● 공간적 이해

Input: 7x7

Filter: 3x3

● 공간적 이해

Input: 7x7

Filter: 3x3

7

● 공간적 이해

Input: 7x7

Filter: 3x3

● 공간적 이해

1	ı	ı		

Input: 7x7

Filter: 3x3

Output: 5x5

● 일반적으로 입력 크기가 W이고 필터크기가 K이면 출력은 W-k+1이다.

7

• 패딩(padding)

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

Filter: K make output have

Padding: P same size as input!

Output: W - K + 1 + 2P

• 스트라이드(Stride)

Input: 7x7

Filter: 3x3

Stride: 2

• 스트라이드(Stride)

Input: 7x7

Filter: 3x3

Stride: 2

• 스트라이드(Stride)

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

● 일반적으로 입력 크기가 W이고 필터크기가 K이면 패딩이 P 그리고 Stride가 S이면 출력은 (W-K+2P)/S+1이다.

● 1x1 합성곱

● 2D 대 1D 합성곱

● 2D 대 3D 합성곱

풀링층의 이해

● 풀링: 다운샘플링

max pool with 2x2 filters and stride 2

6	8
3	4

- 1. 차원의 축소
- 작은 변화에 대한 불변성
- 3. 학습할 파라미터 없다.

완전결합층 (Fully Connected Layer: FC)

• Fatten -> FC

• 고전적 구조: [Conv, ReLU, Pool]xN, flatten, [FC, ReLU]XN, FC

● Softmax와 Cross-Entropy 비용함수를 통한 분류

softmax
$$(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

$$J(\theta) = \sum_i y^{(i)} \log(\hat{y}^{(i)})$$

합성곱 신경망의 발전

• ImageNet 대회

2012: AlexNet. First CNN to win.

- 8 layers, 61 million parameters

2013: ZFNet

- 8 layers, more filters

2014:VGG

- 19 layers

2014: GoogLeNet

- "Inception" modules
- 22 layers, 5million parameters

2015: ResNet

- 152 layers

업샘플링

● ImangeNet 대회: 이미지 분할

업샘플링

● Max Unpooling: 다운샘플링과 업샘플링이 대칭이 되도록 Up&Un샘플링

Max Unpooling

Use positions from pooling layer

1	2	
3	4	→

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

업샘플링

● 언풀링 (풀링을 푸는 것)

Input: 2 x 2 Output: 4 x 4

● 원합성곱과 전치합성곱

● 원합성곱(3x3 필터의 0 패딩, 스트라이드 2 합성곱

● 2x2의 출력에서 5x5의 입력으로 되돌리는 전치합성곱

업샘플링

● 전치 업샘플링의 여러이름: transposed convolution, Deconvolution, Upconvolution, Fractionally strided convolution, Backward strided convolution

● 3x3 합성곱, 스트라이드 1, 패드 1

Input: 4 x 4

● 3x3 합성곱, 스트라이드 1, 패드 1

Input: 4 x 4

● 3x3 합성곱, 스트라이드 1, 패드 1

Input: 4 x 4

● 3x3 합성곱, 스트라이드 2, 패드 1

Input: 4 x 4 Output: 2 x 2

● 3x3 합성곱, 스트라이드 2, 패드 1

Input: 4 x 4 Output: 2 x 2

● 3x3 합성곱, 스트라이드 2, 패드 1

Dot product between input and filter

Input: 4 x 4

● 3x3 합성곱, 스트라이드 2, 패드 1

Convolution with stride > 1 is "Learnable Downsampling" Can we use stride < 1 for "Learnable Upsampling"?

Dot product between input and filter

Input: 4 x 4

● 3x3 합성곱, 스트라이드 2

Input: 2 x 2

• 3x3 합성곱, 스트라이드 2

● 3x3 합성곱, 스트라이드 2

Filter moves 2 pixels in output for every 1 pixel in input Weight filter by input value and copy to output Input: 2 x 2 Output: 4 x 4

● 3x3 합성곱, 스트라이드 2

● 3x3 합성곱, 스트라이드 2

업샘플링

● Transpose 업샘플링: 1d 예시

● 위의 경우, 3X1 필터로 stride=2인 경우로 정확하게 2배 (2x2=4)로 만들기 위해서는 output의 한 픽셀을 제거할 필요가 있음.

전치 업샘플링

• 왜 전치인가?

전치 업샘플링

• 왜 전치인가?

©Nrupatunga

채널별 합성곱

● 채널별 합성곱 (Depthwise Convolution)

● 채널별로 합성곱 실행 즉 채널방향이 아니라 공간 방향으로만 합성곱실행

채널별 합성곱 + 채널방향 합성곱

● 채널별 합성곱 이후 채널방향 개별 포인트 합성곱 (Depthwise Separable Convolution)

● 1단계에서는 공간방향으로 2단계에서는 채널방향으로 합성곱 실행한다.

개별 포인트 합성곱

● 개별 포인트 합성곱 (Pointwise Convolution)

● 채널 방향으로 압축을 해 채널 수를 줄인다.