Источник № 0001 - Труба котельной

Исходные данные:

Источники выделения загрязняющих веществ:

Котлы водогрейные 2 шт

Вид топлива - природный газ.

Расход топлива - 30,048 тыс.м3/год Время работы - 4344 час/год Расход топлива - 6,917127 м3/час Расход топлива - 0,001921 м3/сек

Потери тепла от механической неполноты сгорания q 0 Низшая теплота сгорания топлива Q = 33,65988 Мдж/нм3

Вр - расчетный расход топлива, определяемый по формуле (кг/с, т/год.)

 Вр = В (1-q4/100)
 Вр тм3/год 30,048

 Вр м3/сек: 0,001921

 Фактическая мощность всех котлов
 Qт квт= 115

Расчет выбросов загрязняющих веществ в атмосферу выполнялся согласно "Методики определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час", М.,1999 г.

Расчет объема сухих дымовых газов

Объем сухих дымовых газов при нормальных условиях рассчитывается по уравнению:

Va=V0r +(a-1) V0 - V0н2о

где V0r, V0,- V0н2о - соответственно объемы воздуха, дымовых газов и водяных паров при стехиометрическом сжигании одного килограмма (1 нм3) топлива, нм3/кг, (нм3/нм3) для твердого и жидкого топлива расчет выполняют по химическому составу сжигаемого топлива по формулам:

V0 = 0.0889(C`+0,375S`) + 0,265H` - 0,0333O`	Vo=	13,44818
V0H2O= 0,111H` + 0,0124W` + 0,0161Vo	Vон2о=	3,05412
$V0r = 1.866(C) + 0.3755)/100 + 0.79V0 + 0.8N^{1}/100 + V0H20$	V0r =	15.07899

для топлива		Газ
с`- содержание углерода,	%	75,07
S`-содержание серы (орг	ан.и колчед),%	0
Н`- содержание водорода	a,%	25,564
О` - содержание кислоро,	да,%	0
N` - содержание азота,%		0
W -влажность рабочей ма	ассы топлива,%	0
а - коэффициент разбавле	ения,	1,08
Q - низшая теплота сгора	ния топлива, Мдж/кг	33,65988
Ar - зольность топлива		0
Va =	= 13,10073 нм3	3/кг

Расчет концентраций бенз/а/пирена в уходящих газах котлов малой мощности при сжигании природного газа.

Концентрацию бенз/а/пирена в сухих дымовых газах котлов малой мощности при

сжигании природного газа Сбп (мг/нм3),расчитывают по формуле:

для промтеплоэнергетических котлов

$$Cбп = 0.001*(0.059+0.079*0.001*q)/e3.5(a-1)*Kд*Kp*Kст$$

где:

Q - низшая теплота сгорания топлива, Мдж/кг	Q =	33,65988
g - теплонапряжение топочного объема кВт/м3 q= Bp*Q/ Vт	q=	21,55831
Вр - расчетный расход топлива на номинальной нагрузке,м3/сек Вр =В(1-q	4/100)	0,001921
Vт - объем топочной камеры, м3 n= 1	VT=	3
Кр - коэффициент, учитывающий рециркуляцию газов, приложение E(E2)	Кр=	1
Кд - коэффициент, учитывающий нагрузку котла, приложение Е (Е1)	Кд=	1,5
Кст - коэффициент, учитывающий влияние ступенчатого сжигания, прилож	кение Е (ЕЗ)	2,1

Расчет выбросов оксида азота при сжигании природного газа

Суммарное количество оксидов азота в пересчете на двуокись азота (г/сек, т/год), выбрасываемь в атмосферу с дымовыми газами при сжигании природного газа, расчитываетс по формуле:

$$MNOx = Bp * Q * KNO * b1 * br * b2 * (1-b3) * (1-b4) * kn$$

Вр - расчетный расход топлива, определяемый по формуле (м3/с, тм3/год.)

Bp = B (1-q4/100)	Вртм3/год	30,048
	Вр м3/сек	0,001921
Q - низшая теплота сгорония топлива Мдж/кг	Q =	33,65988
KNO - удельный выброс окислов азота г/Мдж		
для водогрейных котлов K = 0,013* Qт^0,5 +0,03	KNO =	0,033306
для паровых котлов K = 0,01*D^0,5+0,03		
Qт -фактическая тепловая мощность котла, Qт=Bp*Q	QT=	0,064675
b1 - коэффициент, учитывающий температуру воздуха, b =1+0,002(t-30)		0,984
b2 - коэффициент, учитывающий влияние избытка воздуха,		1,225
b3 - коэффициент, учитывающий влияние рециркуляции газов, b3=0,17*r^0	,5	0
b4-коэффициент, учитывающий ступенчатый ввод воздуха в топочную каме	ру	0
br - коэффициент, учитывающий принципиальную конструкцию горелки,		1
для дутьевых горелок - 1,0; для инжекционных - 1,6; двухступенчатого сх	кигания - 0,7	•
kn -коэффициент пересчета		

при определении выбросов в граммах в секунду kn = 1 при определении выбросов в тоннах в год kn = 0,001

В связи с установленными раздельными ПДК оксида NO и диоксида азота NO2 и с учетом трансформации оксида азота в атмосферном воздухе суммарные выбросы оксидов азота разделяются на составляющие:

MNO = 0,1	.3 * MNOx	MNO2 = 0.8 * MNOx
MNOx =	0,002597 г/сек	0,040605 т/год
MNO =	0,000338 г/сек	0,005279 т/год
MNO2 =	0,002077 г/сек	0,032484 т/год

Расчет количества выбросов оксида углерода

Оценка суммарного количества выбросов оксида углерода выполняется по соотношению:

$$Mco = 0.001*B*q3*R Q(1-q4/100)$$

где:

М со - суммарное количество выбросов СО г/с, т/год.

В - расход топлива г/с, т/год

q3 - потери тепла, вследствии химической неполноты сгорания топлива, % = 0,2

R - коэффициент, учитывающий долю потери тепла вследствии химической неполноты сгорания топлива, принимается для твердого топлива - 1,0

мазута - 0,65

газа - 0,5 R= 0,5

0

Q - низшая теплота сгорания натурального топлива Мдж/кг 33,65988

q4 - потери тепла, вследствии механической неполноты сгорания топлива, % =

Мсо = 0,006467 г/сек 0,000101 т/год

Выброс загрязняющих веществ при сжигании газа:

Наименование 3В Выброс, г/сек Выброс, т/год Азота диоксид (0301) 0,002077 0,032484 Азота оксид (0304) 0,000338 0,005279 Углерода оксид (0337 0,006467 0,000101 Бенз/а/пирен (0703) 3,99E-09 6,23E-08

Источник №0002 - Труба продувочной свечи

При превышении рабочего давления в газопроводе происходит выбос газа через сбро клапан газорегулярного пункта.

Предусмотрен сбросный трубопровод

диаметр

32 MM

высота

6 м

Для регулирования с высокого давления до среднего предусматривается установка ГР: типа ГРУ-13-2Н-У1.

Газорегуляторный пункт оснащен сбросным клапаном ПСК-50

Расход газа на проверку срабатывания ПСК в соответсвии с РД 153-39.4-079-01 определяется с паспортной пропускной способностью сбросного устройства и временем затраченным на данную технологическую операцию.

Пропускная способность сбросных предохранительных клапанов ПСК-50 при увеличен давления в газопроводе сверх заданного на 15% составляет 7-20 м3/час на среднем давлении, 0,2-0,5 м3/час на низком давлении

давление газа на входе

0.6 МПа

600000 Па

давление на выходе

0,003 МПа

3000 Па 20 м3/час

Количество газа, подлежащего сбросу предохранительно- сбросным клапаном, при наличии перед регулятором давления крана шарового определяется по формуле (СНиП 2. 04.08 - 87):

Q =

0,0005*Qr

Q метана =

20 *0,0005 =

0,01 м3/час

или

0,0019 г/сек

Годовое количество выбросов метана:

0,0019 *600*12 =

Пропускная способность сбросных предохранительных клапанов

13,68 г/год

1,37Е-05 т/год

Выброс этилмеркаптана рассчитывается исходя из нормы одоризации газа:

16 г этилмеркаптана на 1000 м3 газа и составит:

Q этилмер. =

16 * 0,117/3600/1000 8,44E-09

г/сек

Годовой расход этилмеркаптана:

8,44E-09

*600*12 = 6,08Е-05 г/год

6,08E-11

т/год

В расчетах приземных концентраций загрязняющих веществ с применением нормативной методі расчета ОНД-86 должны использоваться мощности выбросов ЗВ в атмосферу, М(г/с), отнесенные 20-ти минутному интервалу времени

$$M = Q / 1200$$

где:

Q - суммарная масса 3B, выброшенная в атмосферу из рассматриваемого источника в течении времени его действия - Т.

Q = Mu * T

Т - время действия источника в (с).

600 сек

Величина используемая в расчетах загрязнения атмосферы составит:

Метан

0,00095

г/с

1,37Е-05 т/год

Этилмеркаптан

4,22E-09

г/с

6,08Е-11 т/год

Максимально разовый и валовый выброс загрязняющих веществ от данного источника составляе

0410 Метан 0,00095 г/с

1,37Е-05 т/год

1728 Этантиол 4,22E-09 г/c

6,08Е-11 т/год

Государственному учету и нормированию подлежат следующие вещества:

0410 Метан 0,00095 г/с

1,37Е-05 т/год

сной

У

ии

ики

К

T:

РАСЧЁТ ВАЛОВЫХ ВЫБРОСОВ

Площадка 01

Стационарный источник загрязнения 6003, режим ИЗАВ: 1

Источник выделения: 001, Открытая стоянка

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

- 1. Расчет выбросов от различных групп автомобилей ведется по "Методике проведения инвентаризация выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий". М,1998.п2., с учетом дополнений 1999 г.
- 2. Расчет выбросов от дорожных машин ведется по "Методике проведения инвентаризация выбросов загрязняющих веществ в атмосферу для баз дорожной техники". М,1998.п2.

Выброс загрязняющих веществ одним автомобилем данной группы в день при выезде с территории или помещения стоянки (M1ik) и возврате (M2ik) расчитывается по формулам (2.1), (2.2), из [1]: (расчетная схема 1)

M1ik = mnpik * tnp + mLik * L1 + mxxik * txx1,
$$\Gamma$$
 (1)
M2ik = mLik * L2 + mxxik * txx2, Γ (2)

Где mnpik - удельный выброс вещества при прогреве двигателя автомобиля, г/мин.

mLik - пробеговый выброс вещества автомобилем, г/км

mxxik - удельный выброс вещества при работе двигателя на холостом ходу, г/мин

tnp - время прогрева двигателя, мин

txx1, txx2 - время работы двигателя на холостом ходу при выезде и возврате. txx2 = txx1 = 1 мин.

L1, L2 - пробег автомобиля по территории стоянки, км

Валовый выброс вещества автомобилями данной группы рассчитывается раздельно для каждого периода по формуле (2.7) из [1]:

$Mi\kappa = aB \cdot (M1i\kappa + M2i\kappa) \cdot Nk \cdot Dp \cdot 10-6, т / год$ (3)

где ав - коэффициент выпуска (выезда), ав = Nкв/Nk

Nкв - среднее количество автомобилей данной группы, выходящих со стоянки в сутки

Nk - общее количество автомобилей данной группы на территории или в помещении стоянки

Dp - количество рабочих дней в расчетном периоде (холодном, теплом, переходном)

Для определения общего валового выброса, валовые выбросы одноименных веществ по периодам года суммируются

Максимально разовый выброс вещества рассчитывается для каждого периода по формуле:

$$Gi\kappa = MAX(M1i\kappa,M2i\kappa) \cdot N'\kappa / Tr / 60, r / c (4)$$

где MAX(M1iк,M2iк) - максимум из выбросов вещества при выезде и въезде автомобиля данной группы, г

Tr - период времени в минутах, характеризующийся максимальной интенсивностью выезда (въезда) автомобилей на стоянку N'к - наибольшее количество автомобилей данной группы, выезжающих со стоянки (въезжающих на стоянку) в течение периода времени Tr

Из полученных значений G для разных групп автомобилей и расчетных периодов выбирается максимальное.

Если в течение периода времени Tr выезжают (въезжают) автомобили разных групп, то их разовые выбросы суммируются.

Коэффициент трансформации окислов азота в NO2, kno2 = 0.8 Коэффициент трансформации окислов азота в NO, kno = 0.13

Стоянка: Обособленная, имеющая непосредственный выезд на дорогу общего

пользования (расчетная схема 1)

Условия хранения: Открытая или закрытая неотапливаемая стоянка без средств подогрева

Расчетный период: Переходный период (t> = -5 и t< = 5)

Температура воздуха за расчетный период, град. C, t = 5

Период максимальной интенсивности выезда техники со стоянки, мин, Tr = 20

Тип машины: Автобусы карбюраторные особо малые габаритной длиной до 5.5 м (СНГ)

Тип топлива: Бензин А-76, АИ-92

Экологический контроль не проводится

Dp, сут	Nk, шт.	Nkв, шт.	N'k, шт.	L1, км	L2, км
181	1	1	1	0.01	0.01

Примесь: 0337 Углерода оксид

```
mπpiκ = 8.19

mLiκ = 25.65

mxxiκ = 4.5

M1iκ = mπpiκ · tπp + mLiκ · L1 + mxxiκ · txx1 = 8.19 · 4 + 25.65 · 0.01 + 4.5 · 1 = 37.5

M2iκ = mLiκ · L2 + mxxiκ · txx2 = 25.65 · 0.01 + 4.5 · 1 = 4.76

Miκ = ab · (M1iκ + M2iκ) · Nk · Dp · 10-6 = 1.0 · (37.5 + 4.76) · 1 · 181 · 10-6 = 0.007651

Giκ = (mπpiκ · tπp + mLiκ · L1 + mxxiκ · txx1) · N'κ / Tr / 60 = (8.19 · 4 + 25.65 · 0.01 + 4.5 · 1) · 1 / 20 / 60 = 0.03126
```

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/

```
\begin{split} &m\pi pi\kappa = 0.9 \\ &mLi\kappa = 3.15 \\ &mxxi\kappa = 0.4 \\ &M1i\kappa = m\pi pi\kappa \cdot t\pi p + mLi\kappa \cdot L1 + mxxi\kappa \cdot txx1 = 0.9 \cdot 4 + 3.15 \cdot 0.01 + 0.4 \cdot 1 = 4.03 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 3.15 \cdot 0.01 + 0.4 \cdot 1 = 0.4315 \\ &Mi\kappa = ab \cdot (M1i\kappa + M2i\kappa) \cdot Nk \cdot Dp \cdot 10 - 6 = 1.0 \cdot (4.03 + 0.4315) \cdot 1 \cdot 181 \cdot 10 - 6 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 3.15 \cdot 0.01 + 0.4 \cdot 1 = 0.4315 \\ &Mi\kappa = ab \cdot (M1i\kappa + M2i\kappa) \cdot Nk \cdot Dp \cdot 10 - 6 = 1.0 \cdot (4.03 + 0.4315) \cdot 1 \cdot 181 \cdot 10 - 6 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 + 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa = mLi\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2 = 0.00 \\ &M2i\kappa \cdot L2 + mxxi\kappa \cdot txx2
```

```
0.000808
```

```
Giκ = (mπpiκ · tπp + mLiκ · L1 + mxxiκ · txx1) · N'κ / Tr / 60 = (0.9 \cdot 4 + 3.15 \cdot 0.01 + 0.4 \cdot 1) · 1 / 20 / 60 = 0.00336
```

РАСЧЕТ выбросов оксидов азота:

```
mπpiκ = 0.07

mLiκ = 0.6

mxxiκ = 0.05

M1iκ = mπpiκ · tπp + mLiκ · L1 + mxxiκ · txx1 = 0.07 \cdot 4 + 0.6 \cdot 0.01 + 0.05 \cdot 1 = 0.336

M2iκ = mLiκ · L2 + mxxiκ · txx2 = 0.6 \cdot 0.01 + 0.05 \cdot 1 = 0.056

Miκ = ab · (M1iκ + M2iκ) · Nk · Dp · 10-6 = 1.0 \cdot (0.336 + 0.056) \cdot 1 \cdot 181 \cdot 10-6 = 0.000071

Giκ = (mπpiκ · tπp + mLiκ · L1 + mxxiκ · txx1) · N'κ / Tr / 60 = (0.07 \cdot 4 + 0.6 \cdot 0.01 + 0.05 \cdot 1) \cdot 1 / 20 / <math>60 = 0.00028
```

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота диоксид

```
Валовый выброс, т/год, Mno2 = kno2 · Miк = 0.8 \cdot 0.000071 = 0.0000568
Максимальный разовый выброс,г/с, Gno2 = kno2 · Giк = 0.8 \cdot 0.00028 = 0.000224
```

Примесь: 0304 Азот (II) оксид

```
Валовый выброс, т/год, Mno = kno · Miк = 0.13 \cdot 0.000071 = 0.00000923
Максимальный разовый выброс,г/с, Gno = kno · Giк = 0.13 \cdot 0.00028 = 0.0000364
```

Примесь: 0330 Сера диоксид

```
мпрік = 0.0144 мLік = 0.099 М1ік = мпрік · tпр + мLік · L1 + мххік · tхх1 = 0.0144 \cdot 4 + 0.099 \cdot 0.01 + 0.012 \cdot 1 = 0.0706 М2ік = мLік · L2 + мххік · txx2 = 0.099 \cdot 0.01 + 0.012 \cdot 1 = 0.013 Мік = ав · (М1ік + М2ік) · Nk · Dp · 10-6 = 1.0 \cdot (0.0706 + 0.013) \cdot 1 \cdot 181 \cdot 10-6 = 0.00001513 Giк = (мпрік · tпр + mLiк · L1 + мххік · txx1) · N'к / Tr / 60 = (0.0144 \cdot 4 + 0.099 \cdot 0.01 + 0.012 \cdot 1) \cdot 1 / <math>20 / 60 = 0.0000588
```

Код	Наименование	tпр,ми	тпрік	txx1	тххік	mLiк,	G, г/с	М, т/г
3B	3B	Н	,	,	,	г/км		
			г/мин	МИН	г/мин			
033	Углерода оксид	4	8.19	1	4.5	25.6	0.03126	0.00765
7						5		1
270	Бензин	4	0.9	1	0.4	3.15	0.00336	0.00080
4	(нефтяной,							8
	малосернистый							
) /в пересчете							
	на углерод/							
030	Азота диоксид	4	0.07	1	0.05	5.7e-	0.00022	
1						05	4	
030	Азот (II) оксид	4	0.07	1	0.05	0.6	3.6e-05	9e-06
4								
033	Сера диоксид	4	0.014	1	0.012	0.09	5.883e-	1.513e-
0	-					9	05	05

ИТОГО выбросы по периоду: Переходный период (t > = -5 и t < = 5) Температура воздуха за расчетный период, град. C, t = 5

ВСЕГО по периоду: Переходный период (t>=-5 и t<=5)						
Код	Наименование ЗВ	Выброс г/с	Выброс т/год			
0337	Углерода оксид	0.03126	0.007651			
2704	Бензин (нефтяной,	0.00336	0.000808			
	малосернистый) /в					
	пересчете на					
	углерод/					
0301	Азота диоксид	0.000224	5.7e-05			
0330	Сера диоксид	5.883e-05	1.513e-05			
0304	Азот (II) оксид	3.6e-05	9e-06			

ИТОГО ВЫБРОСЫ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота диоксид	0.000224	5.7e-05
0304	Азот (II) оксид	3.6e-05	9e-06
0330	Сера диоксид	5.883e-05	1.513e-05
0337	Углерода оксид	0.03126	0.007651
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.00336	0.000808

Максимально-разовые выбросы достигнуты в переходный период

РАСЧЁТ ВАЛОВЫХ ВЫБРОСОВ

Площадка 01

Стационарный источник загрязнения 6003, режим ИЗАВ: 1

Передвижной источник загрязнения: Движение и работа транспорта по территории (автобус)

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

- 1. Расчет выбросов от различных групп автомобилей ведется по "Методике проведения инвентаризация выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий". М,1998.п2., с учетом дополнений 1999 г.
- 2. Расчет выбросов от дорожных машин ведется по "Методике проведения инвентаризация выбросов загрязняющих веществ в атмосферу для баз дорожной техники". М,1998.п2.

Выброс загрязняющих веществ одним автомобилем данной группы в день при движении по территории предприятия рассчитывается с использованием формулы (2.11) из [1]

M1iκ = mLiκ · L1, r (1)

где mLiк - пробеговый выброс вещества автомобилем при движении по территории предприятия, г/км L1 - пробег автомобиля по территории предприятия, км/день

Максимальный выброс от 1 автомобиля данной группы в течении периода времени Tr рассчитывается с использованием формулы (2.13) из [1]:

 $M2i\kappa = mLi\kappa \cdot L2, r(2)$

где L2 - максимальный пробег автомобиля за Tr мин, км Tr - период времени в минутах, характеризующийся максимальной интенсивностью движения автотранспорта по территории предприятия

Валовый выброс вещества автомобилями данной группы рассчитывается раздельно для каждого периода по формуле (2.11) из [1]:

 $Mik = M1ik \cdot NkB \cdot Dp \cdot 10-6$, т / год (3)

где Nкв - среднее количество автомобилей данной группы, двигающихся по территории предприятия в сутки Dp - количество рабочих дней в расчетном периоде (теплый, переходный, холодный)

Для определения общего валового выброса валовые выбросы одноименных веществ от разных групп автомобилей и разных расчетных периодов года суммируются

Максимально разовый выброс от автомобилей данной группы рассчитывается по формуле:

 $Gi\kappa = M2i\kappa \cdot N'\kappa / Tr / 60, r / c (4)$

где N'к - наибольшее количество машин данной группы, двигающихся в течение периода времени Tr минут

Из полученных значений G для разных групп автомобилей и расчетных периодов выбирается максимальное.

Если одновременно двигаются автомобили разных групп, то их разовые выбросы суммируются

Коэффициент трансформации окислов азота в NO2, kno2 = 0.8 Коэффициент трансформации окислов азота в NO, kno = 0.13

Расчетный период: Переходный период (t> = -5 и t< = 5)

Температура воздуха за расчетный период, град. C, t = 5

Период максимальной интенсивности движения техники по территории п/п, мин,

```
Tr = 20
```

Тип машины: Автобусы карбюраторные особо малые габаритной длиной до 5.5 м (СНГ)

Тип топлива: Бензин А-76, АИ-92

Экологический контроль не проводится

Dp, сут	Nk, шт.	Nkв, шт.	N'k, шт.	L1, км	L2, км
181	1	1	1	0.1	0.1

Примесь: 0337 Углерода оксид

```
mLiκ = 25.65

mxxiκ = 4.5

M1iκ = mLiκ \cdot 0.1 = 25.65 \cdot 0.1 = 2.565

Miκ = ab \cdot M1iκ \cdot Nk \cdot Dp \cdot 10-6 = 1 \cdot 2.565 \cdot 1 \cdot 181 \cdot 10-6 = 0.000464

M2iκ = mLiκ \cdot L2 = 25.65 \cdot 0.1 = 2.565

Giκ = M2iκ \cdot N'κ / Tr / 60 = 2.565 \cdot 1 / 20 / 60 = 0.002138
```

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/

```
\begin{split} m\text{Li}\kappa &= 3.15 \\ mxxi\kappa &= 0.4 \\ M1i\kappa &= m\text{Li}\kappa \cdot 0.1 = 3.15 \cdot 0.1 = 0.315 \\ Mi\kappa &= a\text{B} \cdot \text{M1i}\kappa \cdot 1 \cdot 181 \cdot 10\text{-}6 = 1 \cdot 0.315 \cdot 1 \cdot 181 \cdot 10\text{-}6 = 5.7\text{e-}05 \\ M2i\kappa &= m\text{Li}\kappa \cdot \text{L2} = 3.15 \cdot 0.1 = 0.315 \\ Gi\kappa &= M2i\kappa \cdot \text{N'}\kappa \, / \, \text{Tr} \, / \, 60 = 0.315 \cdot 1 \, / \, 20 \, / \, 60 = 0.0002625 \end{split}
```

РАСЧЕТ выбросов оксидов азота:

```
\begin{split} m\text{Lik} &= 0.6 \\ mxxik &= 0.05 \\ M1ik &= m\text{Lik} \cdot \text{L1} = 0.6 \cdot 0.1 = 0.06 \\ Mik &= a\text{B} \cdot \text{M1ik} \cdot 1 \cdot 181 \cdot 10 \cdot 6 = 1 \cdot 0.06 \cdot 1 \cdot 181 \cdot 10 \cdot 6 = 0.00001086 \\ M2ik &= m\text{Lik} \cdot \text{L2} = 0.6 \cdot 0.1 = 0.06 \\ Gik &= M2ik \cdot \text{Nk} / \text{Tr} / 60 = 0.06 \cdot 1 / 20 / 60 = 0.00005 \end{split}
```

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота диоксид

Валовый выброс, $\tau/\text{год}$, Mno2 = kno2 · Miк = $0.8 \cdot 0.00001086 = 8.7\text{e}-06$

Максимальный разовый выброс, Γ /с, Gno2 = kno2 · Giк = $0.8 \cdot 0.00005 = 4e-05$

Примесь: 0304 Азот (II) оксид

Валовый выброс, т/год, Mno = kno · Miк = $0.13 \cdot 0.00001086 = 1.4e-06$

Максимальный разовый выброс, Γ/c , $Gno = kno \cdot Gik = 0.13 \cdot 0.00005 = 6.5e-06$

Примесь: 0330 Сера диоксид

 $mLi\kappa = 0.099$

 $mxxi\kappa = 0.012$

 $M1i\kappa = mLi\kappa \cdot L1 = 0.099 \cdot 0.1 = 0.0099$

 $Mik = aB \cdot M1ik \cdot Nk \cdot Dp \cdot 10-6 = 1 \cdot 0.0099 \cdot 1 \cdot 181 \cdot 10-6 = 1.79e-06$

 $M2i\kappa = mLi\kappa \cdot L2 = 0.099 \cdot 0.1 = 0.0099$

 $Gi\kappa = M2i\kappa \cdot N'\kappa / Tr / 60 = 0.0099 \cdot 1 / 20 / 60 = 8.25e-06$

Код ЗВ	Наименование 3В	mLiк, г/км	G, г/с	М, т/г
0337	Углерода оксид	25.65	0.002138	0.000464
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/	3.15	0.0002625	5.7e-05
0301	Азота диоксид	0.6	4e-05	8.7e-06
0304	Азот (II) оксид	0.6	6.5e-06	1.4e-06
0330	Сера диоксид	0.099	8.25e-06	1.79e-06

ИТОГО выбросы по периоду: Переходный период (t> = -5 и t< = 5)

Температура воздуха за расчетный период, град. C, t = 5

ВСЕГО по периоду: Переходный период (t>=-5 и t<=5)					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0337	Углерода оксид	0.002138	0.000464		
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.0002625	5.7e-05		
0301	Азота диоксид	4e-05	8.7e-06		
0330	Сера диоксид	8.25e-06	1.79e-06		
0304	Азот (II) оксид	6.5e-06	4e-05		

ИТОГО ВЫБРОСЫ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота диоксид	4e-05	8.7e-06
0304	Азот (II) оксид	6.5e-06	1.4e-06

0330	Сера диоксид	8.25e-06	1.79e-06
0337	Углерода оксид	0.002138	0.000464
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.0002625	5.7e-05

Максимально-разовые выбросы достигнуты в переходный период