Institute of Information Technology (IIT)

Jahangirnagar University

Lab Report: 05

Submitted by:

Name: Md. Shakil Hossain

Roll No: 2023

Lab Date: 08/08/2023

Submission Date: 18/08/2023

Lab Report # Day 05

Example 1:

Apply logistic íegíession techniques to píedict CHD based on the píovided featuíes in the attached Dataset. (Given fíamingham.csv)

Import Libraries & Read CSV File:

Code:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math %matplotlib inline

data=pd.read_csv("framingham.csv")
data.head()

Output:

1	nale	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	Ten'
0	1	39	4.0	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	80.0	77.0	
1	0	46	2.0	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	95.0	76.0	
2	1	48	1.0	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	75.0	70.0	
3	0	61	3.0	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	65.0	103.0	
4	0	46	3.0	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	85.0	85.0	
4																-

sns.heatmap(data.isnull(),cmap='cividis')

Output:

sns.countplot(x='TenYearCHD',hue='education',data=data)

Output:

<Axes: xlabel='TenYearCHD', ylabel='count'>

 $sns.countplot(x='TenYearCHD',hue='male',data=data,palette='RdBu_r')$

Output:

<Axes: xlabel='TenYearCHD', ylabel='count'>

 $sns.countplot(x='TenYearCHD',hue='currentSmoker',data=data,palette='rocket_r')$

Output:

<Axes: xlabel='TenYearCHD', ylabel='count'>

sns.displot(data['age'])

Output:

<seaborn.axisgrid.FacetGrid at 0x1e50a08aad0>


```
#Function

def fill_with_Data(cols):
    coloum=cols.keys()[0]
    female=cols[0]
    male=cols[1]

if pd.isnull(female):
    if male==1:
        return math.ceil(data[data['male']==1][coloum].mean())
    elif male==0:
        return math.ceil(data[data['male']==0][coloum].mean())

else:
    return female
```

```
#Clean Null Values

data['education'] = data[['education', 'male']].apply(fill_with_Data,axis=1)

data['cigsPerDay']=data[['cigsPerDay', 'male']].apply(fill_with_Data,axis=1)

data['BPMeds']=data[['BPMeds', 'male']].apply(fill_with_Data,axis=1)

data['totChol']=data[['totChol', 'male']].apply(fill_with_Data,axis=1)

data['BMI']=data[['BMI', 'male']].apply(fill_with_Data,axis=1)

data['heartRate']=data[['heartRate', 'male']].apply(fill_with_Data,axis=1)

data['glucose']=data[['glucose', 'male']].apply(fill_with_Data,axis=1)

sns.heatmap(data.isnull(),cmap='cividis')
```

Output:

<Axes: >

Building a Logistic Regression Model:

Code:

Train Test Split

from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(data.drop('TenYearCHD',axis=1), data['TenYearCHD'], test_size=0.3, random_state=101)

#Training

from sklearn.linear_model import LogisticRegression lrmodel=LogisticRegression(solver='lbfgs',max_iter=1000) lrmodel.fit(x_train,y_train)

Output:

▼ LogisticRegression

LogisticRegression(max_iter=1000)

Code:

#Predicting

predictions=lrmodel.predict(x_test)
predictions

Output:

array([0, 0, 0, ..., 0, 0, 0], dtype=int64)

Evaluation:

Code:

from sklearn.metrics import classification_report print(classification_report(y_test,predictions))

Output:

	precision	recall	f1-score	support	
0	0.87	0.99	0.92	1097	
1	0.44	0.06	0.11	175	
accuracy			0.86	1272	
macro avg	0.65	0.53	0.52	1272	
weighted avg	0.81	0.86	0.81	1272	