Above all, 10\$, 35, 5k\$ $(k \ge 4, k \in \mathbb{Z})$ can be get.

	A Treat
= 5f(4k-1) + 6.4k	anothern of intertion
= 5 (5f(4k-2) + 6.4k	-1)+6.4k
s	a dealer prove pelos del
= 5(5((5f(1)+6.	4')+6.42)+)+6.4k
= 5k+6(5k-1.4'+5	k-2.42+ +5°.4k) (d-0) And Andrews
= 5k + 6.4k. (4)	Court - aktor) & level a warm
= 5k + 6.4k. 4((=)k-1	
= 25.5k- 24.4k	M-6-10-6-10-6-10-6) & hejahie-s
= 25.5 logon - 24n	Les Lung & Arthology
okia nira ho okaka os	last step is because the a ship
04 (a) If n=1 or 2 there	are 2 one-to-one function.
	one function since A > B .
•	
	or *====================================
	on got 101, we sky live no
	ign to 1,2,,n-1, others are o.
There are n-1 fur	nctions. send 120 = \$25 \$01 + \$01
PHOAPESA-ARE & PERTE	we prove for my had beed
Q.S. First choose the rank of	of 2 pairs of (3). (2) (8) A (8) 9 made a
If we want to choose	a pair in rank x, there are (4).
The standard the want	of 2 single, (2), with each there o
hen choose the runk	or z sings
/4) I A 12	(H) (H)
(4) choose of suits.	1/4)/41
Total, (13)(4)(4)(1)	(4)(4) choices. in and for middle

Date

 $\binom{240}{120} = \frac{240!}{(120!)^2}$ Q6.

> First we calculate how many factor, 2 and 11 in 120! # of factor $|1| = \lfloor \frac{|20|}{|1|} \rfloor + \lfloor \frac{|20|}{|1|^2} \rfloor = |0+0=|0|$

of factor $z = \lfloor \frac{120}{2} \rfloor + \lfloor \frac{120}{2^2} \rfloor + \lfloor \frac{120}{2^2} \rfloor + \cdots + \lfloor \frac{120}{2^2} \rfloor + \lfloor \frac{120}{2^2} \rfloor$

= 60 + 30 + 15 + 7 + 3 + 1 + 0 = 116

Then, similarly, calculate factor 2 and 11 in 240! # of factor $|1| = \left| \frac{240}{11} \right| + \left| \frac{240}{11} \right| = 21 + 1 = 22$

of factor $2 = \sum_{i=1}^{8} \left\lfloor \frac{240}{2^i} \right\rfloor = 120 + 60 + 30 + 15 + 7 + 3 + 1 + 0 = 236$ Hence $\binom{240}{120} = \frac{240!}{(120!)^2} = \frac{2^{236} \times 11^{22} \times \cdots}{(2^{116} \times 11^{10} \times \cdots)^2} = 2^{4} \times 11^{2} \times \cdots$

and 242 = 2×112, 50 242 (240)

- For (a, b), a mod 5 and b mod 5 can be 0,1,2,3,4 There're 25 values of (a mod 5; b mod 5) So we need 26 pair to guarantee.
- If there're n people in this party, a person can know 0,1, --, n-1. Q8. Discuss by cases.
 - O Suppose each person knows at least 1 others, a person can know 1, 2, ---, n-1 others, but there're n people. From pigeonhole principle, at least 2 people know the same number of others.
 - There exist person who know only o people. Then no one can know all n-1 people, so a person can know 0, 1, ---, n-z people. Similarly, from pigeonhole priciple we can get the conclusion. About Above all, there're 2 people who know the same number of other.