FTP_Alg Quick Sort and Counting Sort

jungkyu.canci@hslu.ch

HS2024

Quicksort

Divide

Partition (rearrange) the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] is less than or equal to A[q], which is, in turn, less than or equal to each element of A[q+1..r]. Compute the index q as part of this partitioning procedure.

Conquer

Sort the two subarrays A[p..q-1] and A[q+1..r] by recursive calls to quicksort.

Combine

Because the subarrays are already sorted, no work is needed to combine them: the entire array A[p..r] is now sorted.

```
 \begin{array}{ll} \text{QUICKSORT}(A,p,r) \\ 1 & \text{if } p < r \\ 2 & q = \text{PARTITION}(A,p,r) \\ 3 & \text{QUICKSORT}(A,p,q-1) \\ 4 & \text{QUICKSORT}(A,q+1,r) \end{array}
```

Quicksort

The key to the algorithm is the PARTITION procedure, which rearranges the subarray A[p..r] in place.

```
PARTITION(A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

8 return i + 1
```

In this version of quicksort we have q = r. Lines 3–6, the following invariant must hold true:

1. If
$$p \le k \le i$$
, then $A[k] \le x$.

2. If
$$i + 1 \le k \le j - 1$$
, then $A[k] > x$.

3. If
$$k = r$$
, then $A[k] = x$.

Quicksort: the two cases of PARTITION

▶ if A[j] > x: increment j

 $\leq x$

▶ if $A[j] \le x$: increments i, swap A[i] and A[j], increments j.

> x

Quicksort Step by Step

	p,i			j				r
(d)	2	8	7	1	3	5	6	4

Worst-Case Partitioning

We have the worst case, when at each partitioning of n elements, the subroutine produces one subproblem with n-1 elements and one with 0 elements. Since the partitioning costs $\Theta(n)$, we have

$$T(n) = T(n-1) + T(0) + \Theta(n).$$

One can see (Exercise) that $T(n) = \Theta(n^2)$.

Best-Case Partitioning

We have the best case, when at each partitioning the two subproblems have no more than n/2 elements (by partitioning n elements). In this case we have

$$T(n) = 2T(n/2) + \Theta(n)$$

and we have already seen that in this case we have $T(n) \in O(n \log n)$.

Balanced Partitioning

We present this following example where the partition algorithm produces a 9-to-1 proportional split.

From this pictures one sees that $T(n) = O(n \log n)$. The same reasoning can be also done for a 99-to-1 proportional partitioning!

Intuition for Average-Case

In average partititon produces "bad" and "good" splits.

Suppose that good and bad split alternate. A bad split followed by a good split produce three subarrays of size 0, $\frac{n-1}{2}-1$ and $\frac{n-1}{2}$ so the combined partition cost is

$$\Theta(0) + \Theta\left(\frac{n-1}{2} - 1\right) + \Theta\left(\frac{n-1}{2}\right) = \Theta(n).$$

We can say that in average "good splits compensate bad splits".

A Randomized Version of Quicksort

Instead of always taking as pivot in quicksort the element A[r], we could randomize the process by calling a random choice of the index i for choosing the pivot A[q] = A[i].

One can see that we have the worst case, when the randomly chosen i is such that A[i] is the highest value in the array and so the partitioning produce a split with a n-1 subproblem. As we have seen if this happens to each iteration, the running time is $\Theta(n^2)$.

Expected running time

- ► We could repeat the same reasoning that we have considered in the slide "Intuition for Average-Case".
- If we had only good splits the height of the tree of the subproblems would be $O(\log n)$, where at each level we will have cost $\Theta(n)$.
- Now in a "generic" situation we could assume that we add some extremely unbalanced split among the good ones.
- ▶ By considering the block of balanced split with the successive unbalance we will have something, which costs $\Theta(n)$, and we will have at most $O(\log n)$ of such blocks.
- Thus the expected running time is $\Theta(n \log n)$. One can prove it by using the expected value on the random variable **running** time (e.g. see the book "Introduction to Algorithms"...)
- ightharpoonup One can calculate explicitly the constants coming out in T(n) in the expected case and see that they are quite small in comparison with merge sort.

Sorting in linear time

- So far we have revised some sorting algorithms that use some comparison arguments for sorting the objects (merge sort, heapsort, quicksort).
- We have seen that in all these above procedures, there exist cases where the running time is $\Theta(n)$, with n the number of elements to be sorted.
- It is possible to prove that every sorting algorithms that use comparison methods, there exist cases where the running time is $\Theta(n)$.
- ▶ There exist some sorting algorithms, that run in linear time, i.e. in O(n), where we use some extra information for sorting problem. Here we present **counting sort**.
- We apply counting sort, when we know that the inputs elements are n integers between 0 and k, for a known positive integer k.
- ▶ When k = O(n), counting sort runs in $\Theta(n)$ time.


```
COUNTING-SORT (A, B, k)

1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]] + 1

6 \#C[i] now contains the number of elements equal to i.

7 for i = 1 to k

8 C[i] = C[i] + C[i - 1]

9 \#C[i] now contains the number of elements less than or equal to i.

10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]] - 1
```

The procedure starts by creating an array C that tell us the number of elements having key i for each $0 \le i \le k$. The step after is to change C, which now tells us the number of elements having key < i for each 0 < i < k.

Then the procedure creates the array B containing the sorted list by using the info in C.

Counting Sort: Running Time

- ▶ The for loop of lines 2-3 takes $\Theta(k)$ time.
- ▶ The for loop of lines 4-5 takes $\Theta(n)$ time.
- ▶ The for loop of lines 7-8 takes $\Theta(k)$ time.
- ▶ The for loop of lines 10-12 takes $\Theta(n)$ time.
- The other lines are comments (or the input), thus the running time is $\Theta(k+n)$.
- If the procedure is applied with $k = \Theta(n)$, the running time is $\Theta(n)$ (so in linear time with respect n).