Start Epoch: Oct 02

Start Epoch: Oct 07

Start Epodi' Oct 11

Start Epoch: Oct 31

Different models yield different orbits.

The JBD model is no longer adequate, as perturbing forces from other celestial bodies are significant.

I would include both the Sun & the Moon to formulate a 4BD model. As shown on the DAST plot, 4BD model yields a very different trajectory than the BBD/ZBP models. Which includes more information and the most prease model.

Different efoch dates result in different orbits. This is because the instial perturbing and various are different on different dates. as the sun of the Moon travel to a new location on each starting epoch.

6)

2-Body Model				
Epoch started at Oct 02				
а	е	r_p	Energy	h
642597.2321436529	0.9851116625286942	9567.204450281739	-0.3101479601540618	87006.93811984058
r_f	v_f	$ heta_f^*$	FPA	γ_f
10269.96775330297	8.775202664023691	30.44591518638943	74.89397904730147	90-FPA
		Epoch started at Oct 07		
а	e	r_p	Energy	h
642597.2321435203	0.9851116625286909	9567.204450281906	-0.3101479601541257	87006.93811984187
r_f	v_f	$ heta_f^*$	FPA	γ_f
10265.85447641848	8.776974651037763	30.3607605394309	74.93621346465579	90-FPA
Epoch started at Oct 11				
а	е	r_p	Energy	h
642597.2321431228	0.9851116625286817	9567.20445028191	-0.3101479601543176	87006.93811984058
r_f	v_f	$ heta_f^*$	FPA	γ_f
10320.54251699518	8.753501640830207	31.47053627960411	74.38580551918359	90-FPA
Epoch started at Oct 31				
а	e	r_p	Energy	h
642597.2321433731	0.9851116625286874	9567.204450281926	-0.3101479601541968	87006.93811984095
r_f	v_f	$ heta_f^*$	FPA	γ_f
10296.27563262954	8.763894368715579	30.98396494457327	74.62712404704764	90-FPA

Earth-Moon Model				
Epoch started at Oct 02				
а	е	r_p	Energy	h
611081.9368294963	0.9864681475638223	8269.070595590416	-0.3261432039442014	80916.67719289198
r_f	v_f	$ heta_f^*$	FPA	γ_f
351854.764881928	1.270206148368623	165.103625238773	10.43097057102369	90-FPA
		Epoch started at Oct 07		
а	е	r_p	Energy	h
568615.5303199108	0.9862777820948763	7802.666211287308	-0.350500839535408	78597.80079343601
r_f	v_f	$ heta_f^*$	FPA	γ_f
767270.9877892353	0.5813833215959732	173.4300446756124	10.14833636275611	90-FPA
Epoch started at Oct 11				
а	e	r_p	Energy	h
534046.8754593359	0.9838860081436503	8605.627002060715	-0.3731886280180576	82493.2671290264
r_f	v_f	$ heta_f^*$	FPA	γ_f
1058758.731050387	0.08112193837241011	180.2721757758503	106.1640354628631	90-FPA
Epoch started at Oct 31				
а	е	r_p	Energy	h
598379.0985296473	0.9866057097736284	8014.863311100716	-0.3330668154013496	79665.95881541379
r_f	v_f	$ heta_f^*$	FPA	γ_f
536833.927752162	0.9049149278620259	169.5816777286275	9.438735725806545	90-FPA

Earth-Sun Model				
Epoch started at Oct 02				
а	е	r_p	Energy	h
1374260.227141098	0.3629441741642292	875480.4839146261	-0.1450236402203158	689653.835945731
r_f	v_f	θ_f^*	FPA	γ_f
1794644.783314038	0.3926368297625418	157.4172570571872	78.1607626550163	90-FPA
Epoch started at Oct 07				
а	e	r_p	Energy	h
1221145.815373773	0.3281311006054918	820449.8949753863	-0.1632075533002563	659045.4907352207
r_f	v_f	$ heta_f^*$	FPA	γ_f
1621761.562295125	0.4063861269034955	180.8152329472982	90.3981085160806	90-FPA
		Epoch started at Oct 11		
а	е	r_p	Energy	h
1119682.777263637	0.3554269666259336	721717.3241575218	-0.1779970405877497	624439.7105371114
r_f	v_f	$ heta_f^*$	FPA	γ_f
1465821.609704632	0.4334343476506163	200.6292171111442	100.6273753547192	90-FPA
Epoch started at Oct 31				
а	e	r_p	Energy	h
810221.2538031581	0.7506193882429439	202053.4719320005	-0.2459824644373248	375489.6005505422
r_f	v_f	$ heta_f^*$	FPA	γ_f
405205.1976832372	1.214675062777516	260.2542060283752	130.2802242493301	90-FPA

Earth-Moon-Sun Model					
Epoch started at Oct 02					
а	e	r_p	Energy	h	
1159599.715702167	0.4116794226768316	682216.3742056809	-0.1718698427149222	619580.8687841462	
r_f	v_f	θ_f^*	FPA	γ_f	
1632524.793409209	0.3802423176146617	174.9363998882631	86.47542833862009	90-FPA	
	Epoch started at Oct 07				
а	е	r_p	Energy	h	
800569.8795779545	0.5860720757080043	331378.2285043956	-0.2489479380051962	457712.0364187732	
r_f	v_f	θ_f^*	FPA	γ_f	
910015.4162193869	0.6149261822566867	223.8797304936007	125.1210507729914	90-FPA	
		Epoch started at Oct 11			
а	е	r_p	Energy	h	
524418.1654380752	0.9141641594817735	45013.87401340352	-0.3800406505436623	185324.0034256037	
r_f	v_f	θ_f^*	FPA	γ_f	
1002965.08547173	0.1864478511880883	180.7259460699941	97.67832268082154	90-FPA	
Epoch started at Oct 31					
а	е	r_p	Energy	h	
814842.7805605406	0.8278984313496098	140235.7207379147	-0.2445873308381021	319649.6573430056	
r_f	v_f	$ heta_f^*$	FPA	γ_f	
308746.8247208884	1.446678625116222	101.8317693704417	45.69635960605956	90-FPA	

Examply 'p's, there is no scenario where collision occurs.

Pertubation from the Moon reduces rp.
It does not occur at the start of epoch.

$$M_f = \int_{-3}^{10} (t_f - t_p) = 1.5708 \text{ rad} = 90^\circ$$

$$= \left[-0.1188 \, \overline{r_0} - 1.4949 \, \times 10^4 \, \overline{v_3} \, \text{km}\right]$$

$$r = \frac{P}{1 + e \cos \theta^*} = 1.7433 \, \times 10^9 \, \text{km}$$

$$\overline{V} = \frac{n\alpha^2}{rr_0} \cdot \sin(E - E_0) \, \overline{r}_0 + \left\{ 1 - \frac{\alpha}{r} \left[1 - \cos(E - E_0) \right] \right\} \, \overline{V}_0$$

$$= \left[-6.5950 \times 10^{-5} \, \overline{r}_0 - 0.1188 \, \overline{V}_0 \right] + \left\{ 1 - \frac{\alpha}{r} \left[1 - \cos(E - E_0) \right] \right\} \, \overline{V}_0$$

$$\overline{\Gamma} = \left\{ \left[1 - \frac{\Gamma}{\rho} \left[1 - \cos \left(\theta^{*} - \theta_{0}^{*} \right) \right] \right\} \overline{\Gamma} + \frac{r_{0}r}{\sqrt{\mu_{P}}} \sin \left(\theta^{*} - \theta_{0}^{*} \right) \overline{V_{0}}$$

$$= \frac{-0.1188}{f(\theta^{+} \cdot \theta^{*})} \frac{1}{f(\theta^{+} \cdot \theta^{*})} \frac{1}{f(\theta^{+}$$

$$\sigma$$
) Find \vec{r} , \vec{v} , \vec{r} , \vec{v} , \vec{p} , \vec{E} , $(t-t_p)$

$$\theta^{*} = \theta - \omega = /205^{\circ}$$
 descending orbit

$$\delta = \omega s^4 \left(\frac{\sqrt{NR}}{V \cdot V} \right) = \left(\frac{29,0659}{29,0659} \right) \text{ descending orbit.}$$

$$\overrightarrow{V} = (1.7895 \times 10^{5} \widehat{r} \times m)$$

$$\overrightarrow{V} = V \cdot (5.187 \widehat{r} + \cos 37.\widehat{\theta}) = (-.563 \widehat{r} + 1.081 \widehat{\theta} \times \sin 5)$$

$$C_{3} = \begin{bmatrix} -C & 552 \\ -5 & C & 552 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 7071 & 0 & 7071 & 0 \\ -07071 & 2 & 7071 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

6)

check output at teto

Satl.EarthMJ2000Eq.X 13353.66685000691 Satl.EarthMJ2000Eq.Y -158511.404929191

Satl.EarthMJ2000Eq.Z -81970.96799742116

Satl.EarthMJ2000Eq.VX 0.8810382912635342 Satl.EarthMJ2000Eq.VY 0.7412445372022063 Satl.EarthMJ2000Eq.VZ -0.06667456756496955

These values matches the calculation above.

()
$$t_2 - t_2 = t - t_2 + 3 \times 24 \times 3600 = 1.2481 \text{ NO}^{5} \text{ Sec}$$
 $M_{\lambda} = \int_{a_3}^{a_3} (t_3 - t_4) = 1.7294 \text{ rad} = 99.0985^{\circ}$
 $E_{\alpha} = 2.2108 \text{ md} = 126.6716^{\circ}$
 $O_{\alpha}^{\pm} = 2. tan^{-1} \left(ton \frac{E_3}{2} \cdot \int_{1-E}^{-L} \right) = 2.6496 \text{ rad} \left\{ 151.8108^{\circ} \right\}$
 $V_{\alpha} = \left(1 - E(0) \cdot \frac{E_3}{2} \right) = 1.7327 \times 10^{3} \text{ Fm}$
 $V_{\alpha} = \left(\frac{M_{\alpha}}{2} - \frac{M_{\alpha}}{2} \right) = 0.5416 \text{ rad} = \left[81.0292^{\circ} \right] \text{ Alanday tree}$
 $V_{\alpha}^{\text{reh}} = 1.7127 \times 10^{5} \hat{r} + \text{tm}$
 $V_{\alpha}^{\text{reh}} = 1.7127 \times 10^{5} \hat{r} + \text{tm}$
 $V_{\alpha}^{\text{reh}} = V_{\alpha} \cdot \left(\sin x \hat{r} + \cos \hat{\theta} \right) = 0.6463 \hat{r} + 1.0411 \hat{g} + 1.0$

Results from CMAT matches the calculation above.

126.6716481422899 151.8108243820068 99.09846892850742 58.97084250302141

4)

in = Vi . in = -1.1852 km/s < 0, descending orbit

$$\Theta_{i}^{*} = \pm \omega S^{-1} \left((\frac{P_{i}}{r_{i}} - 1) \cdot \frac{1}{e} \right)$$

= + 33.8428

$$t_{i}^{-t_{p}} = M_{i} / \int_{\alpha^{3}}^{\mu} \int_{\alpha^{3}}^{\alpha^{3}} \int_{\alpha^{3$$

Periapsi3 is below the fundamental plane because ADP is negative, (thus descends below tout plane) $\mathcal{O}_{AN}^{*} = -W = 90.825^{\circ}$ $\mathcal{O}_{PN}^{*} = 180^{\circ} + 90^{\circ}.8250^{\circ} = 270.8250^{\circ}$