Somma diretta di sottospazi.

Sia V uno spazio vettoriale, ed U, W sottospazi di V. Si dice che V e' la somma diretta di U e W, e si scrive

$$V = U \oplus W$$

se, per definizione, sono soddisfatte le seguenti due condizioni:

- 1. V = U + W;
- 2. $U \cap W = \{0\}.$

Ricordiamo che la proprieta' V = U + W significa che ogni vettore \mathbf{v} di V si scrive come somma $\mathbf{v} = \mathbf{u} + \mathbf{w}$ di un vettore \mathbf{u} di U e di un vettore \mathbf{w} di W.

Proposizione. Sia V uno spazio vettoriale di dimensione finita, ed U, W sottospazi di V. Sono equivalenti le seguenti proprieta':

- (i) $V = U \oplus W$;
- (ii) $V = U + W e \dim V = \dim U + \dim W$;
- (iii) $\dim V = \dim U + \dim W \ e \ \dim(U \cap W) = 0;$
- (iv) $\dim V = \dim U + \dim W \ e \ U \cap W = \{\mathbf{0}\};$
- (v) per ogni vettore $\mathbf{v} \in V$ esiste un unico vettore $\mathbf{u} \in U$ ed un unico vettore $\mathbf{w} \in W$ tali che $\mathbf{v} = \mathbf{u} + \mathbf{w}$;
 - (vi) per ogni base \mathcal{U} di U ed ogni base \mathcal{W} di W l'unione $\mathcal{U} \cup \mathcal{W}$ e' una base di V;
- (vii) esiste una base \mathcal{U} di U ed esiste una base \mathcal{W} di W tali che l'unione $\mathcal{U} \cup \mathcal{W}$ e' una base di V.

Dimostrazione. Cominciamo col provare che (i) implica (ii). Se vale (i) allora V = U + W per definizione, e poiche $U \cap W = \{0\}$ allora $\dim(U \cap W) = 0$ e dalla formula di Grassmann segue che $\dim V = \dim(U + W) = \dim U + \dim W - \dim(U \cap W) = \dim U + \dim W$.

Sempre per la formula di Grassmann abbiamo $\dim(U \cap W) = \dim U + \dim W - \dim(U + W) = \dim U + \dim W - \dim V = 0$. Cio' prova che (ii) implica (iii). Inoltre (iii) implica (iv) perche' $\dim(U \cap W) = 0$ equivale a dire che $U \cap W = \{0\}$.

Ora andiamo a provare che (iv) implica (v). Le ipotesi (iv) insieme alla formula di Grassmann ci dicono che dim $V = \dim(U+W)$. Quindi V = U+W. E percio' per ogni $\mathbf{v} \in V$ esistono $\mathbf{u} \in U$ e $\mathbf{w} \in W$ tali che $\mathbf{v} = \mathbf{u} + \mathbf{w}$. Per concludere occorre provare che \mathbf{u} e \mathbf{w} sono *unici*. Supponiamo allora che $\mathbf{v} = \mathbf{u} + \mathbf{w} = \mathbf{u}' + \mathbf{w}'$ con \mathbf{u}, \mathbf{u}' in U e \mathbf{w}, \mathbf{w}' in W. Allora il vettore $\mathbf{z} := \mathbf{u} - \mathbf{u}' = \mathbf{w}' - \mathbf{w}$ appartiene ad $U \cap W$. Ma per ipotesi $U \cap W$ e' lo spazio nullo per cui $\mathbf{z} = \mathbf{0}$, cioe' $\mathbf{u} = \mathbf{u}'$ e $\mathbf{v} = \mathbf{v}'$.

Supponiamo che sia soddisfatta la proprieta' (v), e siano $\mathcal{U} := \{\mathbf{u}_1, \dots, \mathbf{u}_h\}$ e $\mathcal{W} := \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ basi qualunque di U e di W. Sia \mathbf{v} un vettore qualunque di V. Per ipotesi possiamo scrivere $\mathbf{v} = \mathbf{u} + \mathbf{w}$ secondo opprtuni vettori $\mathbf{u} \in U$ e $\mathbf{w} \in W$. In corrispondenza di tali vettori esistono pesi a_i e b_j tali che $\mathbf{u} = a_1\mathbf{u}_1 + \dots + a_h\mathbf{u}_h$ e $\mathbf{w} =$

 $b_1\mathbf{w}_1+\cdots+b_k\mathbf{w}_k$. Quindi $\mathbf{v}=a_1\mathbf{u}_1+\cdots+a_h\mathbf{u}_h+b_1\mathbf{w}_1+\cdots+b_k\mathbf{w}_k$, e cio' prova che $\mathcal{U}\cup\mathcal{W}$ e' un sistema di generatori di V. Per provare la proprieta' (vi) rimane da dimostrare che $\mathcal{U}\cup\mathcal{W}$ e' linearmente indipendente. Sia allora $\mathbf{0}=a_1\mathbf{u}_1+\cdots+a_h\mathbf{u}_h+b_1\mathbf{w}_1+\cdots+b_k\mathbf{w}_k$ una relazione tra i vettori di $\mathcal{U}\cup\mathcal{W}$. Poiche' $\mathbf{0}=a_1\mathbf{u}_1+\cdots+a_h\mathbf{u}_h+b_1\mathbf{w}_1+\cdots+b_k\mathbf{w}_k=\mathbf{0}+\mathbf{0}$, per l'unicita' della decomposizione (ipotizzata nella proprietas' (v)) deve essere $a_1\mathbf{u}_1+\cdots+a_h\mathbf{u}_h=\mathbf{0}$ e $b_1\mathbf{w}_1+\cdots+b_k\mathbf{w}_k=\mathbf{0}$. Poiche' \mathcal{U} e \mathcal{W} sono indipendenti allora tutti i pesi a_i e b_j devono essere nulli. Cio' prova che la relazione $\mathbf{0}=a_1\mathbf{u}_1+\cdots+a_h\mathbf{u}_h+b_1\mathbf{w}_1+\cdots+b_k\mathbf{w}_k$ deve essere banale, cioe' che $\mathcal{U}\cup\mathcal{W}$ e' linearmente indipendente.

Poiche' e' ovvio che (vi) implica (vii), per concludere la dimostrazione della Proposizione ci sara' sufficiente dimostrare che (vii) implica (i). Siano allora \mathcal{U} una base di U e \mathcal{W} una base di W tali che $\mathcal{U} \cup \mathcal{W}$ sia una base per V. Allora e' ovvio che V = U + W e che dim $V = \dim U + \dim W$. Ancora per la formula di Grassmann deduciamo che dim $(U \cap W) = 0$, cioe' $U \cap W = \{\mathbf{0}\}$.

Nozioni analoghe si possono dare nel caso di piu' di due sottospazi. A tale proposito siano U_1, \ldots, U_r sottospazi di uno spazio V. Diremo che V e' la somma di U_1, \ldots, U_r , e scriveremo $V = U_1 + \cdots + U_r$, se $V = Span(U_1 \cup \cdots \cup U_r)$, cioe' se ogni vettore \mathbf{v} di V si puo' scrivere sotto la forma $\mathbf{v} = \mathbf{u}_1 + \cdots + \mathbf{u}_r$, con $\mathbf{u}_i \in U_i$. Diremo invece che V e' la somma diretta dei sottospazi U_1, \ldots, U_r , e scriveremo $V = U_1 \oplus \cdots \oplus U_r$, se sono soddisfatte le seguenti due condizioni:

1.
$$V = U_1 + \cdots + U_r$$
;

2. per ogni
$$i = 1, ..., r$$
 si ha $U_i \cap (U_1 + \cdots + U_{i-1} + \widehat{U_i} + U_{i+1} + \cdots + U_r) = \{0\}.$

Con argomenti simili a quelli adoperati nella dimostrazione della Proposizione precedente si puo' provare la seguente generalizzazione:

Proposizione. Sia V uno spazio vettoriale di dimensione finita, ed U_1, \ldots, U_r sottospazi di V. Sono equivalenti le seguenti proprieta':

- (i) $V = U_1 \oplus \cdots \oplus U_r$;
- (ii) $V = U_1 + \cdots + U_r \ e \dim V = \dim U_1 + \cdots + \dim U_r;$
- (iii) $\dim V = \dim U_1 + \dots + \dim U_r$ e, per ogni $i = 1, \dots, r$, si ha

$$\dim \left[U_i \cap (U_1 + \dots + U_{i-1} + \widehat{U_i} + U_{i+1} + \dots + U_r) \right] = 0;$$

(iv) dim
$$V = \dim U_1 + \dots + \dim U_r$$
 e, per ogni $i = 1, \dots, r$, si ha
$$U_i \cap (U_1 + \dots + U_{i-1} + \widehat{U_i} + U_{i+1} + \dots + U_r) = \{\mathbf{0}\};$$

- (v) per ogni vettore $\mathbf{v} \in V$ esistono e sono unici vettori $\mathbf{u}_1 \in U_1, \dots, \mathbf{u}_r \in U_r$ tali che $\mathbf{v} = \mathbf{u}_1 + \dots + \mathbf{u}_r$;
 - (vi) per ogni base \mathcal{U}_i di U_i l'unione $\mathcal{U}_1 \cup \cdots \cup \mathcal{U}_r$ e' una base di V;
- (vii) per ogni i = 1, ..., r esiste una base \mathcal{U}_i di U_i tale che l'unione $\mathcal{U}_1 \cup \cdots \cup \mathcal{U}_r$ e' una base di V.