

6. GAIA – ZIRKUITUAK ANALIZATZEKO OINARRIZKO METODOAK

2018-2019 Ikasturtea Irakaslea: Jose Manuel Gonzalez Teknologia Elektronikoko Saila 5128 – Bilboko Ingeniaritza Eskola (II Eraikina) josemanuel.gonzalezp@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Mailen metodoa
- 2. Gainezarmen printzipioa
- 3. Thévenin-en teorema
- 4. Norton-en teorema
- 5. Thévenin-en eta Norton-en zirkuitu baliokideen arteko erlazioa
- 6. Potentziaren transferentzia maximoaren teorema

1. MAILEN METODOA

Adarretako korronteak ← Mailetako korronteak

- Maila-korrontea: Mailaren perimetroan dauden elementu guztietatik igarotzen den korrontea
- Adar korrontea: Adar batetik igarotzen diren mailetako korronte guztien batura

1. MAILEN METODOA

o Ebazpidea:

- Mailak aurkitu (MK → Ezezagun kopurua)
- 2. Mailen korronteen noranzkoak esleitu arbitrarioki
- 3. KVL erabiliz ekuazioak planteatu
 - o Arazoa: Korronte sorgailuak...
- 4. Sistema ebatzi
- 5. Adarretako korronteak kalkulatu
- 6. Zirkuituaren soluzioa eman.

o Adibidea:

2. GAINEZARMEN PRINTZIPIOA

- o Definizioa: Zirkuitu lineal batean sorgailu independente bat baino gehiago badago, emaitza orokorra sorgailu guztiek banan-banan sortzen dituzten emaitza partzialak batuz lortzen da, beste guztiak ez baleude bezala sorgailu bakoitza bere aldetik kontuan hartuz
- o Egin behar dena sorgailua independente guztiak anulatzea da

2. GAINEZARMEN PRINTZIPIOA

o Ebazpidea:

- Zenbatu sorgailu independente kopurua
- Esleitu korronteen noranzkoak arbitrarioki
- 3. Anulatu sorgailu denak bat kenduta
- Esleitu korronteak baina EZ arbitrarioki
- Eman zirkuitu sinple honen soluzioa[™]
- 6. Hartu beste sorgailu independente bat eta anulatu beste guztiak
- 7. Bueltatu 4. puntura sorgailu guztiak ebatzi arte
- 8. Eman zirkuitu orokorraren soluzioa
- 9. Eman eskatzen den erantzuna

o Adibidea:

M

7

3. THÉVENIN-EN TEOREMA

o **Definizioa:** Edozein zirkuitu lineal seriean konektatutako tentsio-sorgailu batek eta erresistentzia batek osatutako sistema sinple batez ordezka daiteke

- V_{Th}: A eta B puntuen arteko potentzial-diferentzia, bi puntu hauen artean zirkuitu irekia izanik
- o R_{Th}/Z_{Th}: A eta B puntuen arteko inpedantzia baliokidea sorgailu independente guztiak anulatuz

3. Thévenin-en teorema

o Ebazpidea:

- Zein zirkuituaren baliokidea lortu nahi den identifikatu / A eta B puntuak identifikatu
- 2. V_{th} lortu
 - A eta B puntuen artean zirkuitu irekia jarri
 - 2. A eta B puntuen arteko tentsioa lortu
- 3. R_{th}/Z_{th} lortu
 - 1. Sorgailu independente guztiak anulatu
 - 2. A eta B puntuen arteko inpedantzia baliokidea lortu
- 4. Zirkuitu baliokidea marraztu
- o Adibideak: Lortu A eta B puntuen artean Thévenin baliokidea

9

4. NORTON-EN TEOREMA

 Definizioa: Edozein zirkuitu lineal paraleloan konektatutako korronte-sorgailu batek eta erresistentzia batek osatutako sistema sinple batez ordezka daiteke

- I_{nor}: A puntutik B puntura igarotzen den korrontea, bi puntu hauen artean zirkuitulaburra dagoenean
- R_{nor}/Z_{nor}: A eta B puntuen arteko inpedantzia baliokidea sorgailu independente guztiak anulatuz

3. NORTON-EN TEOREMA

o Ebazpidea:

- Zein zirkuituaren baliokidea lortu nahi den identifikatu / A eta B puntuak identifikatu
- 2. I_{nor} lortu
 - 1. A eta B puntuen artean zirkuitulaburra jarri
 - 2. A puntutik B puntura igarotzen den korrontea kalkulatu
- 3. R_{nor}/Z_{nor} lortu
 - Sorgailu independente guztiak anulatu
 - 2. A eta B puntuen arteko inpedantzia baliokidea lortu
- 4. Zirkuitu baliokidea marraztu
- Adibideak: Lortu A eta B puntuen artean Norton baliokidea

5. Thévenin-en eta Norton-en zirkuitu baliokideen arteko erlazioa

Thévenin baliokidean Norton baliokidea kalkulatzen dugu:

o Thévenin baliokidean Norton baliokidea kalkulatzen dugu:

6. POTENTZIAREN TRANSFERENTZIA MAXIMOAREN TEOREMA

o **Definizioa:** Zirkuitu bateko bi punturen artean xurgatzen den potentzia maximoa izatea nahi bada, tartean konektatu beharreko erresistentziaren balioak, zirkuitu beraren bi puntu horien arteko Thévenin-en erresistentzia baliokidearen berdina izan behar du.

o Xurgatutako potentzia:

$$P_R = RI_R^2 = R \left(\frac{V_{Th}}{R_{Th} + R}\right)^2$$

o Maximo bat:

$$R = R_{Th}$$

11