13 Fonction exponentielle

I – Définition et premières propriétés

Il est possible de généraliser la démarche qui a permis d'introduire dans le chapitre précédent le nombre e : il suffit de remplacer le nombre 1 par un nombre réel *a* quelconque.

Il existe un unique nombre réel b tel que ln(b) = a. Et

• pour
$$a = 2$$
, $b = e^2$,

• pour
$$a = -1$$
, $b = e^{-1} = \frac{1}{e}$,

• et pour
$$a = n$$
, où $n \in \mathbb{Z}$, $b = e^n$.

Définition 13.1 – Le nombre b tel que ln(b) = a est appelé **exponentielle de** a et noté e^a .

On définit ainsi une nouvelle fonction, appelée **fonction exponentielle**, notée exp, définie sur \mathbb{R} et prenant ses valeurs dans $]0,+\infty[$.

Pour des raisons évidentes, on note le plus souvent $\exp(x) = e^x$.

Remarque 13.2 – La fonction exponentielle est la bijection réciproque de la fonction logarithme népérien :

$$]0, +\infty[$$
 $\xrightarrow{\ln} \mathbb{R}$ et en sens inverse $]0, +\infty[$ $\xleftarrow{\exp} \mathbb{R}$.

Proposition 13.3

Puisque les deux fonctions sont réciproques l'une de l'autre :

- Pour tout réel $x \in \mathbb{R}$, $e^x > 0$.
- Pour tout réel $x \in \mathbb{R}$ et tout réel strictement positif $y \in \mathbb{R}_+^*$, $y = e^x \iff x = \ln(y)$.
- Pour tout réel $x \in \mathbb{R}$, $\ln(e^x) = x$.
- Pour tout réel strictement positif $y \in \mathbb{R}_+^*$, $e^{\ln(y)} = y$.

Remarque 13.4 – Toujours en raison de la réciprocité et parce que ln(1) = 0, alors $e^0 = 1$.

Exemple 13.5 – Résoudre dans \mathbb{R} les équations suivantes.

•
$$e^x = 1$$

•
$$ln(x) = 2$$

•
$$e^{2t-1} = 1$$

•
$$\ln(3x) = \frac{1}{2}$$

Proposition 13.6 - Propriété fondamentale de l'exponentielle

Pour tous nombres réels $a \in \mathbb{R}$ et $b \in \mathbb{R}$,

$$e^{a+b} = e^a \times e^b$$
.

Corollaire 13.7

De cette propriété algébrique fondamentale découle plusieurs conséquences.

- Pour tout nombre réel $a \in \mathbb{R}$, $e^{-a} = \frac{1}{e^a}$.
- Pour tous nombres réels $a \in \mathbb{R}$ et $b \in \mathbb{R}$, $e^{a-b} = \frac{e^a}{e^b}$.
- Pour tout nombre réel $a \in \mathbb{R}$ et tout entier relatif $n \in \mathbb{Z}$, $e^{na} = (e^a)^n$.

Démonstration.

Exemple 13.8 – Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$. Simplifier le plus possible les expressions suivantes.

1.
$$\frac{e^{2x}}{e^x}$$

4.
$$(e^{2x})^3 \times (e^{-x})^2$$

$$2. \ \frac{\left(e^{x}\right)^{2}}{e^{x}}$$

5.
$$e^0 \times e^{-x} \times (e^x)^2$$

3.
$$\frac{e^x}{e^{-x}}$$

6.
$$\frac{e^x}{e^y} \times e^{y-x}$$

II - Étude de la fonction exponentielle

1 – Ensemble de définition

Proposition 13.9

La fonction exponentielle est définie pour tout $x \in \mathbb{R}$ et a ses valeurs dans \mathbb{R}_+^* , *i.e.* dans $]0, +\infty[$.

2 - Dérivée et variations

Proposition 13.10

La fonction exponentielle est dérivable sur \mathbb{R} et $\exp'(x) = \exp(x)$.

Démonstration.

Proposition 13.11 —

La fonction exponentielle est **continue** et **strictement croissante** sur \mathbb{R} .

Démonstration.

Proposition 13.12

Pour tous réels $a \in \mathbb{R}$ et $b \in \mathbb{R}$,

$$e^a = e^b \iff a = b$$
 et $e^a > e^b \iff a > b$.

Exemple 13.13 – Résoudre dans \mathbb{R} les équations et inéquations suivantes.

1.
$$\frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1}$$

2.
$$e^{x^2+x-1}=1$$

3.
$$e^{2x} \leqslant e^x$$

4.
$$e^{2x}e^{x^2} < 1$$

3 - Limites

Proposition 13.14

La fonction exponentielle a pour limite $+\infty$ en $+\infty$, *i.e.*

$$\lim_{x \to +\infty} e^x = +\infty.$$

La fonction exponentielle a pour limite 0 en $-\infty$, *i.e.*

$$\lim_{x \to -\infty} e^x = 0.$$

L'axe des abscisses est **asymptote horizontale** à la courbe d'équation $y = e^x$ en $-\infty$.

Exemple 13.15 – Calculer $\lim_{x \to +\infty} \exp\left(\frac{1}{x}\right)$, $\lim_{x \to 0^-} \exp\left(\frac{1}{x}\right)$ et $\lim_{x \to 0^+} \exp\left(\frac{1}{x}\right)$.

4 - Courbe représentative

- La fonction exponentielle est la fonction réciproque de la fonction logarithme népérien. Dans un repère orthonormé, leurs courbes représentatives sont symétriques par rapport à la droite \mathcal{D} d'équation y = x.
- Connaître l'allure des courbes des fonctions logarithme et exponentielle permet de retrouver graphiquement toutes les informations importantes à propos de ces deux fonctions.

5 - Croissances comparées

Proposition 13.16

Pour tout entier naturel non nul n,

$$\lim_{x \to -\infty} x^n e^x = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$$

En particulier lorsque n = 1,

$$\lim_{x \to -\infty} x e^x = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

Remarque 13.17 - Ces limites sont normalement des formes indéterminées.

Pour lever de telles indéterminations, on applique les résultats de *croissances comparées*. On retient que l'exponentielle "l'emporte" sur les puissances.

Exemple 13.18 – Calculer
$$\lim_{x \to -\infty} x^2 e^x$$
 et $\lim_{x \to +\infty} e^x - x$.

III – Étude d'une fonction de la forme exp(u)

Proposition 13.19

Soit u une fonction dérivable sur un intervalle I. La fonction composée $f = e^u$ est dérivable sur I et

$$\forall x \in I$$
, $f'(x) = u'(x) e^{u(x)}$.

On note parfois pour simplifier $(e^u)' = u'e^u$.

Exemple 13.20 – Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{x^3 - 4x^2 + 2x - 3}$. Calculer f'(x).

Exemple 13.21 – Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x^3 - 15x^2 + 36x - 25}$.

1. Calculer les limites de f en $-\infty$ et $+\infty$.

2. Étudier les variations de la fonction f.

IV - Primitives et fonction exponentielle

La fonction exponentielle étant désormais connue, on peut compléter le tableau des primitives usuelles en y ajoutant les deux lignes suivantes :

f est définie sur I par	une primitive F est donnée par
$f(x) = e^x$	$F(x) = e^x$
$f = u' e^u$	$F = e^u$

Remarque 13.22 – On peut remarquer en particulier qu'une primitive d'une fonction de la forme $f(x) = e^{ax}$ (avec $a \neq 0$) est donnée par

$$F(x) = \frac{1}{a} e^{ax}.$$

Exemple 13.23 – Calculer les primitives des fonctions suivantes sur \mathbb{R} .

1. $f(x) = e^{2x}$

- 2. $f(x) = e^{3x} e^{-x}$
- 3. $f(x) = x e^{x^2}$

1.

2.

3.