

intel digital readiness

Alfor Future Workforce

Module 21: 전통적인 컴퓨터 비전에서 AI까지

법률 고지사항

- Intel® 디지털 준비 프로그램 및 Intel® AI for Future Workfork 프로그램은 Intel Corporation에서 개발했습니다.
- © Intel Corporation. Intel, Intel 로고 및 기타 Intel 마크는 Intel Corporation 또는 자회사의 상표입니다. 다른 이름 및 브랜드는 다른 사람의 재산으로 주장될 수 있습니다. 프로그램 날짜와 수업 계획은 변경될 수 있습니다.
- Intel 기술에는 활성화된 하드웨어, 소프트웨어 또는 서비스 활성화가 필요할 수 있습니다.
- 모든 제품과 구성 요소는 안전을 보장 할 수 없습니다.
- 결과물은 추정되거나 시뮬레이션 되었습니다.
- Intel은 타사 데이터를 제어하거나 감사하지 않습니다. 정확성을 평가하려면 다른 출처를 참조해야 합니다.
- 당신이 투자한 비용과 그에 대한 결과물은 다를 수 있습니다.

전통적인 컴퓨터 비전 + Al

Al for Future Workforce

학습 효과

- 이 워크샵이 끝나면 다음을 수행할 수 있습니다.
- 1. 규칙 기반 접근 방식과 기계 학습 접근 방식 구분
- 2. 기능 선택이 무엇인지 설명
- 3. 관련 기능을 선택하는 것이 중요한 이유 설명
- 4. 정밀도와 리콜이 무엇인지 설명
- 5. 기계 학습 모델이 무엇에 유용할 수 있는지 자세히 설명
- 6. 분류 모델 학습을 위한 기본 단계 열거
- 7. 분류를 수행할 수 있는 애플리케이션 개발

시작하겠습니다!

우리는 기계에게 무엇을 가르칠 수 있나요?

어떤 예가 있을까요?

Al for Future Workforce

분류

분류

위치

이미지 분할

물체 감지

기계 학습

훈련 이미지/데이터 샘플

이미지는 일관된 형식으로 사전 처리되고 기능이 추출됩니다.

다음 기능이 포함될 수 있음:

- 픽셀강도
- 색
- 모양
- 조직
- 기타 이미지 설명자

학습된 모델의 효율성 평가

결과의 몇 %가 정확하게 분류되는지 계산하는 것 외에도 [(A+D)/(A+B+C+D), 정밀도 [A/(A+B)] 및 회수 [A/(A+C)]는 평가에 유용한 다른 척도입니다.

예측/현실	TRUE	FALSE		
TRUE	TRUE POSITIVE (A)	FALSE POSITIVE (B)		
FALSE	FALSE NEGATIVE (C)	TRUE NEGATIVE (D)		

다양한 지속 가능한 개발 목표를 달성하기 위해 컴퓨터 비전을 어떻게 적용할 수 있는지 아직도 생각하고 있나요?

1. No Poverty	2. Zero Hunger	3. Good Health and Well Being	4. Quality Education	5. Gender Equality	6. Avoid Wasting Water	7. Affordable and Clean Energy	8. Decent Work and Economic Growth	9. Industry, Innovation and Infrastructure
10. Reduced Inequalities	11. Sustainable Cities and Communities	12. Responsible Production and Consumption	13. Climate Action	14. Life Below Water	15. Life On Land	16. Peace, Justice and Strong Institutions	17. Partnerships for the Goals	

AI 및 농업 - 자동 수확기

AI와 농업

컴퓨터는 어떻게 볼 수 있습니까?

컴퓨터가 보는 것을 이해하게 하려면 어떻게 해야 합니까?

자기 주도 학습

Jupyter Notebook 사용 방법

- 위아래로 탐색하려면 키보드의 위아래 화살표 키를 사용할 수 있습니다.
- 이 통합 문서의 코드를 실행하려면 코드 블록을 선택하고 Shift + Enter를 누릅니다.
- 코드 블록을 편집하려면 Enter 키를 누릅니다.

시작하기 전에 원본 노트북을 복사해 두면 문제가 발생할 경우 항상 원본을 다시 참조할 수 있습니다

Link <u>here</u>

진행이 막히면 다시 해보세요.

시도한 후에도 계속 막힌다면 찾아보고/검색하고/도움을 요청하세요.

주요 내용

데이터 데이터 수집 데이터 준비

모델 분할 테스트/교육 데이터 모델 학습

예측 성능 평가

고려 사항:

- 일관된 데이터 형식
- 전처리
- 기능 선택
- 훈련 데이터의 관련성
- 훈련 데이터의 양

기계 학습 알고리즘 탐구:

- K 최근접 이웃
- 보조 벡터 머신

평가:

- 정도
- 상기
- 원인이해

이 기술은 일부입니다. 이 워크샵 이후에도 계속 배우도록 합니다.

어떻게 찾았나요?

프로젝트 [1/2]

잘 쉬었나요?

4인 1조로 팀을 구성해보세요.

프로젝트

익은 바나나와 덜 익은 바나나를 분류하는 간단한 애플리케이션을 만듭니다. 카메라 앞에 노란색 바나나를 놓으면 화면에 "RIPE BANANAS"(수확 준비 완료)가 표시됩니다. 각각 다른 레벨의 프로젝트가 있습니다.

- Level 1: 카메라 앞에 노란색 바나나를 놓았을 때 "RIPE BANANA"를 표시하고 바나나를 떼면 "RIPE BANANA"를 표시하지 않는 간단한 애플리케이션을 만듭니다.카메라 앞에 노란색 바나나를 놓았을 때 "RIPE BANANA"를 표시하고 바나나를 떼면 "RIPE BANANA"를 표시하지 않는 간단한 애플리케이션을 만듭니다.
- Level 2: 카메라 앞에 녹색 바나나를 놓으면 "UNRIPE BANANA"가 표시됩니다.

각각 다른 레벨의 프로젝트가 있습니다.

- Level 3: 현지화를 수행하고 카메라 이미지 내에서 바나나가 있는 위치 주위에 경계 상자를 자동으로 그립니다.
- Level 4: 시스템과 정확히 같은 색상/크기가 아닐 수 있는 다른 사람의 익거나 덜 익은 바나나를 사용해도 시스템이 계속 작동합니까? (강사는 어느 바나나가 충분히 익은 것인지 판단합니다)

각각 다른 레벨의 프로젝트가 있습니다.

• Level 5: 팀은 이 개념을 다른 실제 문제(예: 건강한 작물 대고사된 작물의 밭 검사)에 적용할 수 있는 방법을 공유합니다. 개념 증명을 입증하면 보너스 점수를 줍니다.

참고: 시스템이 익은 바나나를 10초 이내에(이상적으로는 즉시) 인식해야 합니다. 모든 것이 카메라를 통해 작동해야 합니다. 컴퓨터가 RIPE(익은) 바나나를 인식하도록 하기 위해 키보드/마우스를 만질 수 없습니다.

코딩을 시작하기 전 계획하고 전략을 세우세요.

- 컴퓨터가 바나나를 인식하게 하려면 어떻게 해야 할까요?
- 이 실험의 배경을 제어하는 데 도움이 될까요?
- 어떤 속성이나 기술을 사용할 수 있습니까? 색? 모양? 조직? 더 많은 옵션이 있습니까?

하프 타임!

각 팀은 진행 상황을 공유합니다

- 어느 레벨까지 도달 했는지.
- 가장 크게 성공한 것은 무엇이며 시스템을 보여주기 전에 극복하고 싶은 문제에 대해 3개의 문장으로 설명하세요.
- 다른 사람에게 도움을 주거나 조언할 내용이 있나요? 비슷한 도전을 한 사람이 있나요?

프로젝트 [2/2]

프로젝트

익은 바나나와 덜 익은 바나나를 분류하는 간단한 애플리케이션을 만듭니다. 카메라 앞에 노란색 바나나를 놓으면 화면에 "RIPE BANANAS"(수확 준비 완료)가 표시됩니다.

각각 다른 레벨의 프로젝트가 있습니다.

- Level1&2: 카메라 앞에 노란색 바나나를 놓으면 "RIPE BANANA"가 표시되고 녹색 바나나에는 "UNRIPE BANANA"가 표시되는 간단한 애플리케이션을 만듭니다.
- Level 3: 카메라 이미지 내에서 바나나가 있는 위치 주위에 자동으로 경계 상자를 그립니다.
- Level 4: 다른 사람의 익은/ 덜 익은 바나나를 사용하는 경우에도 시스템이 작동합니까?
- Level 5: 팀은 이 개념을 다른 실제 문제(예: 건강한 작물 대 고사된 작물의 밭 검사)에 적용할 수 있는 방법을 공유합니다. 개념 증명을 입증하면 보너스 점수를 줍니다

프로젝트 쇼케이스

각각 다른 레벨의 프로젝트가 있습니다.

- Level1&2: 카메라 앞에 노란색 바나나를 놓으면 "RIPE BANANA"가 표시되고 녹색 바나나에는 "UNRIPE BANANA"가 표시되는 간단한 애플리케이션을 만듭니다.
- Level 3: 카메라 이미지 내에서 바나나가 있는 위치 주위에 자동으로 경계 상자를 그립니다.
- Level 4: 다른 사람의 익은/ 덜 익은 바나나를 사용하는 경우에도 시스템이 작동합니까?
- Level 5: 팀은 이 개념을 다른 실제 문제(예: 건강한 작물 대 고사된 작물의 밭 검사)에 적용할 수 있는 방법을 공유합니다. 개념 증명을 입증하면 보너스 점수를 줍니다

각 팀 발표 순서

1. 컴퓨터에서 프로그램을 실행하십시오. 실행이 시작되면 프레젠테이션이 끝날 때까지 키보드/마우스를 터치할 필요가 없습니다.

2. 60초 타이머 시작

- 잘 익은 바나나 인식하기 (최소 2회) [10포인트]
- 덜 익은 바나나 인식(최소 2회) [10포인트]
- 인식된 개체 주위에 표시되는 경계 상자 [10pts]
- 최소 2개의 다른 팀의 바나나도 인식하는가[10포인트]

3. <u>120초 추가 타이머 시작</u>

• 유사한 기술을 다른 실제 문제에 적용할 수 있는 방법 공유

사진을 이용한 개념 증명 시 가산점 [10점]

모두 수고하셨습니다!

다른 시스템의 한계는 무엇입니까?

오늘은 기본적인 기계 학습 모델을 만들었습니다.

분류

물체 감지

만약에

강력한 사전 학습 모델을 쉽게 배포할 수 있습니까?

NCS2의 도움으로 엣지 디바이스에서도 작동

모든 모델을 처음부터 학습하는 대신 사전학습된 모델을 사용하는 것은 어떻습니까?

관심이 있다면 다음 워크샵에 참여하세요.

요약

intel digital readiness

오늘 배운 이미지 처리 기술 하나를 공유하세요!

오늘 배운 것 중 개인적으로 유용하다고 생각하는 한 가지를 공유하십시오!

오늘 배운 내용으로 함께 하고 싶은/하고 싶은 한 가지를 공유하세요!

학습 효과 재요약

- 이 모듈이 끝나면 다음을 수행할 수 있습니다.
- 1. 규칙 기반 접근 방식과 기계 학습 접근 방식 구분
- 2. 기능 선택이 무엇인지 설명
- 3. 관련 기능을 선택하는 것이 중요한 이유 설명
- 4. 정밀도와 리콜이 무엇인지 설명
- 5. 기계 학습 모델이 무엇에 유용할 수 있는지 자세히 설명
- 6. 분류 모델 학습을 위한 기본 단계 열거
- 7. 분류를 수행할 수 있는 애플리케이션 개발

퀴즈

Link <u>here</u>

적용

- 오늘 배운 것을 어떻게 이 수업의 맥락을 넘어 어떻게 적용하고 싶습니까?
- 오늘 배운 것을 어떻게 보는지, 현재의 세계에서 도움이 되나요?
- 현대 CV 응용 프로그램의 가장 큰 도전 과제는 무엇입니까?

