## Appendix A: An illustrative example

In this section, we provide an illustrative example of OAPMSAM-2DPR problem. There are 10 parts and 2 identical AM machines. The width and length of each build are both 20. The time spent per unit volume (VT), the time spent for powder-layering (HT) and the setup time (SET) are set as 0.04, 0.7 and 2, respectively. Unit production cost  $\alpha$  is set to 1. Details of other parameters are listed in Table 5. A feasible solution and an optimal solution are presented in Figure 8.

**Table 5.** Parameters of parts

| Part p | 1    | 2    | 3    | 4    | 5   | 6   | 7   | 8   | 9   | 10  |
|--------|------|------|------|------|-----|-----|-----|-----|-----|-----|
| $U_p$  | 32   | 27   | 15   | 40   | 20  | 37  | 31  | 24  | 31  | 10  |
| $W_p$  | 19   | 13   | 16   | 10   | 11  | 8   | 17  | 7   | 5   | 5   |
| $l_p$  | 9    | 15   | 12   | 12   | 9   | 8   | 7   | 8   | 13  | 12  |
| $h_p$  | 19   | 18   | 20   | 12   | 11  | 8   | 6   | 5   | 9   | 17  |
| $v_p$  | 1201 | 3006 | 2224 | 1056 | 796 | 225 | 259 | 235 | 332 | 822 |

In the feasible solution, see Figure 8(a), the accepted parts are  $\{1,4,5,6,7,8,9,10\}$ , and the parts packed into build 1, build 2 and build 3 are  $\{4,5,7\}$ ,  $\{8,9\}$  and  $\{1,6,10\}$ , respectively. These parts are placed as shown in Figure 8(a), without exceeding the 2D dimensions of the build. Consequently, the processing times for build 1, build 2 and build 3 are 94.84 (i.e.,  $2+0.7\times12+0.04\times(1056+796+259)$ ), 30.98 ( $2+0.7\times9+0.04\times(235+332)$ ) and 105.22 ( $2+0.7\times19+0.04\times(1201+225+822)$ ), respectively. Build 1 and build 2 are assigned to machine 1 for processing, while build 3 is assigned to machine 2 for processing. The makespan and the revenue are 125.82 and 225 (i.e., 32+40+20+37+31+24+31+10), respectively. Therefore, the profit of the feasible solution is 225-125.82=99.18.

In the optimal solution, see Figure 8(b), the accepted parts are {1, 4, 5, 6, 7, 8, 9}, and the parts packed into build 1, build 2 and build 3 are {4, 5, 9}, {7} and {1, 6, 8}, respectively. Similarly, we can calculate the processing times for build 1, build 2 and

build 3 as 81.74, 16.56 and 97.76, respectively. The makespan and the revenue are 98.3 and 215, respectively. Therefore, the profit of the optimal solution is 116.7.



Figure 8. An illustrative example with 10 parts and 2 AM machines

## **Appendix B: Explanation of Constraints (7)–(11)**

Constraints (7) – (11) define the positional relationships between two parts placed within the same build. Specifically, for parts j and k placed within the same build, if the left-hand side of Constraint (8) is equal to 1, with  $o_{jk}^X = 1$ , and the left-hand side of Constraint (10) is equal to 0, then part j is positioned to the left of part k along the X-axis, ensuring no horizontal overlap (as illustrated in Figure 9(a)). If the left-hand side of Constraint (8) is equal to 0 and the left-hand side of Constraint (10) is equal to 1, with  $o_{jk}^Y = 1$ , then part j is placed below part k along the Y-axis, ensuring no vertical overlap (see Figure 9(b)). If both the left-hand sides of Constraints (8) and (10) are equal to 1, with  $o_{jk}^X = 1$  and  $o_{jk}^Y = 1$ , then part j is positioned to the left and below part k along both the X- and Y-axes, maintaining complete spatial separation (see Figure 9(c)). Constraints (7) and (9) are used to determines the X-axis and Y-axis coordinates of parts. Constraint (11) ensures that Constraints (8) and (10) cannot both be zero, thereby enforcing non-overlapping placement.



Figure 9. Positional relationship of two parts packed in the same build

## **Appendix C: Justification of cuts validity**

The following theorems are presented to demonstrate the validity of the Benders cuts  $(V_4)$  and  $(V_5)$ .

**Theorem 1.** Benders cuts  $(V_4)$  and  $(V_5)$  are valid.

**Proof.** Let the set  $P_b$  contains all the parts allocated to build b. But the allocation of parts in set  $P_b$  does not satisfy the two-dimensional constraint. This means that one needs at least two builds to pack these parts. Let set  $J_m^h$  contains all the parts that are assigned to machine m in the subsequent iteration h. Thus, we consider two cases.

Case 1:  $J_m^h \cap P_b = P_b$ . This case means that in the subsequent iteration h, all the parts in set  $P_b$  are assigned to machine m, i.e.,  $\sum_{p \in P_b} A_{pm} = |P_b|$ . By adding this into Cuts  $(V_4)$  and  $(V_5)$ , we can obtain  $F_m \ge 2$  and  $HM_m \ge min_{p \in P_b}(h_p)$ , which indicates that the cut is valid.

Case 2:  $J_m^h \cap P_b \neq P_b$ . This case means that at least one part  $p^* \in P_b$  is removed from set  $J_m^h$ , i.e.,  $A_{p^*m} = 0$ . Therefore, we can obtain  $\sum_{p \in P_b} A_{pm} < |P_b|$ . Thus, the right side of Cuts  $(V_4)$  and  $(V_5)$  becomes non-positive and we can obtain  $F_m \geq 0$  and  $HM_m \geq 0$ . This indicates that Cuts  $(V_4)$  and  $(V_5)$  will not remove new feasible solutions in the subsequent iterations.

To conclude, the cuts will limit the values of variables  $F_m$  and  $HM_m$  in the subsequent iterations and will not remove new feasible solutions. Thus, Cuts  $(V_4)$  and  $(V_5)$  are valid.

## Appendix D: Detailed computational results for computation

The results presented in Tables 3 and 4 of the main text report the average objective value, average computation time, and average optimality gap across these four runs. To ensure transparency and reproducibility, the detailed computational outcomes for each individual run are provided in this appendix. Specifically, Tables 6-10 present the results of small-sized instances with |P|=10,15,20,25 and 30 , respectively, corresponding to the aggregated outcomes summarized in Table 4. Tables 11-13 provide the detailed results for large-sized instances with |P|=40,50 and 60, respectively, corresponding to the summary in Table 5. The symbol "—" indicates that the corresponding run did not return a result within the time limit of 3600 seconds.

**Table 6.** Computational results for small-sized instances with |P|=10

| Insta | nces     |       | Model 1 |              |       | Model 2 | }            |       | LBBD   |              | NI    | LBBD_V | 4V5          |
|-------|----------|-------|---------|--------------|-------|---------|--------------|-------|--------|--------------|-------|--------|--------------|
| P     | M        | Obj   | Time/s  | Gap/%        | Obj   | Time/s  | Gap/%        | Obj   | Time/s | Gap/%        | Obj   | Time/s | Gap/%        |
|       | 2        | 82.7  | 11.6    | 0.0          | 82.7  | 5.3     | 0.0          | 82.7  | 4.3    | 0.0          | 82.7  | 1.8    | 0.0          |
| 10    | 2        | 103.0 | 8.4     | 0.0          | 103.0 | 7.8     | 0.0          | 103.0 | 6.8    | 0.0          | 103.0 | 2.4    | 0.0          |
| 10    | 2        | 74.4  | 11.4    | 0.0          | 74.4  | 5.5     | 0.0          | 74.4  | 2.5    | 0.0          | 74.4  | 1.6    | 0.0          |
|       | 2        | 84.9  | 3.5     | 0.0          | 84.9  | 1.8     | 0.0          | 84.9  | 0.6    | 0.0          | 84.9  | 1.3    | 0.0          |
|       | 3        | 117.5 | 197     | 0.0          | 117.5 | 64.9    | 0.0          | 117.5 | 9.2    | 0.0          | 117.5 | 2.2    | 0.0          |
| 10    | 3        | 145.4 | 215     | 0.0          | 145.4 | 8.2     | 0.0          | 145.4 | 1.6    | 0.0          | 145.4 | 1.3    | 0.0          |
| 10    | 3        | 110.1 | 56.4    | 0.0          | 110.1 | 21.1    | 0.0          | 110.1 | 13.3   | 0.0          | 110.1 | 2.7    | 0.0          |
|       | 3        | 107.5 | 38.2    | 0.0          | 107.5 | 14.5    | 0.0          | 107.5 | 7.9    | 0.0          | 107.5 | 0.8    | 0.0          |
|       | 4        | 140.1 | 619     | 0.0          | 140.1 | 10.9    | 0.0          | 140.1 | 18.6   | 0.0          | 140.1 | 2.3    | 0.0          |
| 10    | 4        | 160.4 | 184     | 0.0          | 160.4 | 6.8     | 0.0          | 160.4 | 4.0    | 0.0          | 160.4 | 1.4    | 0.0          |
| 10    | 4        | 132.0 |         | 2.6          | 132.0 | 20.6    | 0.0          | 132.0 | 64.3   | 0.0          | 132.0 | 2.7    | 0.0          |
|       | 4        | 134.1 |         | 4.5          | 134.1 | 14.9    | 0.0          | 134.1 | 6.0    | 0.0          | 134.1 | 3.0    | 0.0          |
| Aver  | age(opt) | 116.0 | 712     | $3.5^{(10)}$ | 116.0 | 15.2    | $0.0^{(12)}$ | 116.0 | 11.6   | $0.0^{(12)}$ | 116.0 | 2.0    | $0.0^{(12)}$ |

**Table 7.** Computational results for small-sized instances with |P|=15

| Insta | nces     |       | Model 1 |             |       | Model 2 | :            |       | LBBD   |                     | NI    | NLBBD_V4V5 |              |
|-------|----------|-------|---------|-------------|-------|---------|--------------|-------|--------|---------------------|-------|------------|--------------|
| P     | M        | Obj   | Time/s  | Gap/%       | Obj   | Time/s  | Gap/%        | Obj   | Time/s | Gap/%               | Obj   | Time/s     | Gap/%        |
|       | 2        | 126.2 | 305     | 0.0         | 126.2 | 39.6    | 0.0          | 126.2 | 7.6    | 0.0                 | 126.2 | 6.1        | 0.0          |
| 15    | 2        | 177.7 | 30.2    | 0.0         | 177.7 | 12.0    | 0.0          | 177.7 | 10.0   | 0.0                 | 177.7 | 3.9        | 0.0          |
| 13    | 2        | 170.6 | 37.8    | 0.0         | 170.6 | 8.2     | 0.0          | 170.6 | 2.4    | 0.0                 | 170.6 | 2.5        | 0.0          |
|       | 2        | 103.9 | 69.2    | 0.0         | 103.9 | 6.2     | 0.0          | 103.9 | 1.4    | 0.0                 | 103.9 | 0.4        | 0.0          |
|       | 3        | 173.9 | _       | 1.6         | 178.1 | 2165    | 0.0          | 178.1 | 415    | 0.0                 | 178.1 | 37.2       | 0.0          |
| 15    | 3        | 227.7 | 1670    | 0.0         | 227.7 | 755     | 0.0          | 227.7 | 408    | 0.0                 | 227.7 | 12.2       | 0.0          |
| 13    | 3        | 199.5 | _       | 1.3         | 199.5 | 1646    | 0.0          | 199.5 | 828    | 0.0                 | 199.5 | 8.6        | 0.0          |
|       | 3        | 135.3 | 1216    | 0.0         | 135.3 | 350     | 0.0          | 135.3 | 172    | 0.0                 | 135.3 | 3.6        | 0.0          |
|       | 4        | 203.5 | _       | 40.0        | 217.4 | 1453    | 0.0          | 217.4 | _      | 2.1                 | 217.4 | 127        | 0.0          |
| 15    | 4        | 269.9 | _       | 10.9        | 271.4 | 874     | 0.0          | 271.4 | 418    | 0.0                 | 271.4 | 40.3       | 0.0          |
| 13    | 4        | 230.6 | _       | 15.5        | 232.9 | 564     | 0.0          | 232.9 | 680    | 0.0                 | 232.9 | 29.8       | 0.0          |
|       | 4        | 168.2 |         | 22.7        | 168.2 | 2012    | 0.0          | 168.2 | 913    | 0.0                 | 168.2 | 56.5       | 0.0          |
| Avera | age(opt) | 182.3 | 2077    | $7.6^{(6)}$ | 184.1 | 824     | $0.0^{(12)}$ | 184.1 | 621    | 0.2 <sup>(11)</sup> | 184.1 | 27.3       | $0.0^{(12)}$ |

**Table 8.** Computational results for small-sized instances with |P|=20

| Insta | nces     |       | Model 1 |         |       | Model 2 |             |       | LBBD   |             | NI    | LBBD_V | 4V5          |
|-------|----------|-------|---------|---------|-------|---------|-------------|-------|--------|-------------|-------|--------|--------------|
| P     | M        | Obj   | Time/s  | Gap/%   | Obj   | Time/s  | Gap/%       | Obj   | Time/s | Gap/%       | Obj   | Time/s | Gap/%        |
|       | 2        | 123.6 | _       | 8.9     | 123.6 | 210     | 0.0         | 123.6 | 37.2   | 0.0         | 123.6 | 11.6   | 0.0          |
| 20    | 2        | 164.8 | 1626    | 0.0     | 164.8 | _       | 1.4         | 164.8 | 137    | 0.0         | 164.8 | 61.7   | 0.0          |
| 20    | 2        | 123.9 | 575     | 0.0     | 123.9 | 206     | 0.0         | 123.9 | 31.2   | 0.0         | 123.9 | 9.6    | 0.0          |
|       | 2        | 126.0 |         | 11.6    | 126.0 | 571     | 0.0         | 126.0 | 34.9   | 0.0         | 126.0 | 14.9   | 0.0          |
|       | 3        | 183.9 | _       | 57.7    | 183.5 | _       | 5.8         | 184.2 | _      | 1.5         | 184.2 | 180    | 0.0          |
| 20    | 3        | 241.2 | _       | 6.1     | 239.7 | _       | 3.7         | 242.1 |        | 0.9         | 242.1 | 134    | 0.0          |
| 20    | 3        | 186.4 | _       | 2.5     | 185.2 | _       | 2.4         | 186.4 | _      | 2.3         | 186.4 | 124    | 0.0          |
|       | 3        | 190.6 | _       | 29.5    | 197.8 | _       | 2.3         | 197.8 | _      | 1.3         | 197.8 | 73.2   | 0.0          |
|       | 4        | 221.5 | _       | 17.4    | 235.1 | _       | 4.2         | 235.1 | _      | 1.4         | 235.1 | 909    | 0.0          |
| 20    | 4        | 283.9 | _       | 51.5    | 290.8 | _       | 4.0         | 291.2 | _      | 2.4         | 291.7 | _      | 1.8          |
| 20    | 4        | 230.3 | _       | 46.8    | 235.2 | _       | 4.4         | 238.0 | _      | 4.2         | 238.0 | 3372   | 0.0          |
|       | 4        | 240.1 |         | 59.8    | 246.9 |         | 5.0         | 247.3 |        | 3.7         | 247.8 | 2690   | 0.0          |
| Avera | age(opt) | 193.4 | 3183    | 24.3(2) | 196.0 | 2782    | $2.8^{(3)}$ | 196.7 | 2420   | $1.5^{(4)}$ | 196.8 | 932    | $0.2^{(11)}$ |

**Table 9.** Computational results for small-sized instances with |P|=25

| Insta | nces     |       | Model 1 |         |       | Model 2 |             | _ |       | LBBD   |             | N     | NLBBD_V4V5 |             |  |
|-------|----------|-------|---------|---------|-------|---------|-------------|---|-------|--------|-------------|-------|------------|-------------|--|
| P     | M        | Obj   | Time/s  | Gap/%   | Obj   | Time/s  | Gap/%       |   | Obj   | Time/s | Gap/%       | Obj   | Time/s     | Gap/%       |  |
|       | 2        | 171.0 | _       | 64.0    | 178.2 | _       | 2.3         |   | 178.5 | 471    | 0.0         | 178.5 | 68.5       | 0.0         |  |
| 25    | 2        | 184.4 | _       | 27.9    | 187.8 | _       | 2.9         |   | 188.6 | 192    | 0.0         | 188.6 | 121        | 0.0         |  |
| 23    | 2        | 212.4 | _       | 57.6    | 214.9 | _       | 3.1         |   | 215.6 | 674    | 0.0         | 215.6 | 273        | 0.0         |  |
|       | 2        | 213.6 | _       | 54.9    | 215.5 | _       | 0.8         |   | 215.5 | 394    | 0.0         | 215.5 | 25.2       | 0.0         |  |
|       | 3        | 245.3 | _       | 93.7    | 256.0 | _       | 4.0         |   | 255.6 | _      | 4.0         | 256.8 | _          | 1.2         |  |
| 25    | 3        | 267.1 | _       | 71.6    | 276.8 | _       | 3.9         |   | 277.4 | _      | 3.4         | 279.8 | _          | 0.5         |  |
| 23    | 3        | 279.8 | _       | 64.7    | 288.6 | _       | 4.7         |   | 291.3 | _      | 3.2         | 291.3 | _          | 2.0         |  |
|       | 3        | 275.5 | _       | 66.3    | 277.0 |         | 3.1         |   | 280.6 | _      | 1.6         | 280.6 | 67.3       | 0.0         |  |
|       | 4        | 299.2 | _       | 67.1    | 309.1 | _       | 5.2         |   | 312.1 | _      | 4.0         | 315.6 | _          | 0.9         |  |
| 25    | 4        | 327.8 | _       | 53.6    | 333.6 | _       | 4.7         |   | 337.2 | _      | 2.7         | 337.8 | _          | 1.8         |  |
| 23    | 4        | 335.1 | _       | 32.5    | 341.8 | _       | 4.3         |   | 344.8 | _      | 2.5         | 344.8 | _          | 1.1         |  |
|       | 4        | 328.4 | _       | 50.8    | 329.2 |         | 3.8         |   | 333.5 | _      | 2.6         | 333.7 |            | 0.5         |  |
| Avera | age(opt) | 261.6 | 3600    | 64.5(0) | 267.4 | 3600    | $3.6^{(0)}$ |   | 269.2 | 2544   | $2.0^{(4)}$ | 269.9 | 2146       | $0.6^{(5)}$ |  |

**Table 10.** Computational results for small-sized instances with |P|=30

| Insta | ances     |       | Model 1 | 1           |       | Model 2 | 2           |       | LBBD   |             | NI    | LBBD_V | 4V5     |
|-------|-----------|-------|---------|-------------|-------|---------|-------------|-------|--------|-------------|-------|--------|---------|
| P     | M         | Obj   | Time/s  | Gap/%       | Obj   | Time/s  | Gap/%       | Obj   | Time/s | Gap/%       | Obj   | Time/s | Gap/%   |
|       | 2         | 195.5 | _       | 133         | 206.8 | _       | 1.8         | 206.8 | 679    | 0.0         | 206.8 | 120    | 0.0     |
| 30    | 2         | 195.2 | _       | 141         | 222.7 | _       | 5.4         | 224.6 | _      | 1.2         | 224.6 | 376    | 0.0     |
| 30    | 2         | 205.8 | _       | 163         | 232.7 | _       | 5.7         | 235.5 | _      | 2.3         | 235.5 | 767    | 0.0     |
|       | 2         | 206.3 | _       | 197         | 210.5 | _       | 5.7         | 211.7 | _      | 2.6         | 211.8 | 385    | 0.0     |
|       | 3         | 278.9 | _       | 92.8        | 290.3 | _       | 5.4         | 295.6 | _      | 2.5         | 295.6 | _      | 0.7     |
| 30    | 3         | 287.9 | _       | 92.8        | 307.4 | _       | 4.2         | 310.8 | _      | 2.4         | 310.8 | _      | 0.6     |
| 30    | 3         | 304.2 | _       | 98.7        | 336.9 | _       | 6.2         | 338.7 | _      | 5.0         | 337.8 | _      | 2.8     |
|       | 3         | 270.7 |         | 131         | 279.8 |         | 10.8        | 288.6 | _      | 5.7         | 287.5 |        | 2.6     |
|       | 4         | 339.7 | _       | 87.6        | 351.2 | _       | 6.0         | 354.9 | _      | 3.4         | 357.9 | _      | 1.3     |
| 30    | 4         | 335.7 | _       | 72.5        | 362.4 | _       | 5.0         | 366.7 | _      | 2.7         | 366.9 | _      | 1.3     |
| 50    | 4         | 371.1 | _       | 74.3        | 405.2 | _       | 5.4         | 409.0 | _      | 3.9         | 410.5 | _      | 1.7     |
|       | 4         | 317.5 |         | 106         | 355.3 |         | 9.8         | 358.9 | _      | 5.5         | 359.0 |        | 4.8     |
| Aver  | rage(opt) | 275.7 |         | $115^{(0)}$ | 296.8 |         | $6.0^{(0)}$ | 300.2 | 3356   | $3.1^{(1)}$ | 300.2 | 2537   | 1.32(4) |

**Table 11.** Computational results for large-sized instances with |P|=40

| Insta | ances |       | Model 2 | ļ     |       | LBBD   |       | N     | LBBD_V | 4V5   |
|-------|-------|-------|---------|-------|-------|--------|-------|-------|--------|-------|
| P     | M     | Obj   | Time/s  | Gap/% | Obj   | Time/s | Gap/% | Obj   | Time/s | Gap/% |
|       | 4     | 499.9 | _       | 18.4  | 545.8 | _      | 5.0   | 548.3 | _      | 4.5   |
| 40    | 4     | 394.2 | _       | 10.5  | 394.1 | _      | 7.1   | 399.0 | _      | 5.3   |
| 40    | 4     | 466.6 | _       | 13.6  | 489.2 | _      | 5.4   | 488.1 | _      | 4.7   |
|       | 4     | 349.7 |         | 27.7  | 400.9 |        | 7.1   | 405.5 | _      | 5.8   |
|       | 5     | 528.9 | _       | 25.8  | 624.9 | _      | 3.8   | 624.0 | _      | 4.4   |
| 40    | 5     | 453.1 | _       | 10.3  | 466.9 | _      | 4.9   | 464.2 | _      | 5.1   |
| 40    | 5     | 475.7 | _       | 28.8  | 557.4 | _      | 6.5   | 568.3 | _      | 5.0   |
|       | 5     | 457.0 | _       | 15.2  | 470.0 | _      | 8.4   | 483.5 | _      | 5.9   |
|       | 6     | 633.2 | _       | 13.4  | 682.3 | _      | 3.0   | 683.1 | _      | 3.1   |
| 40    | 6     | 500.1 | _       | 8.6   | 515.9 | _      | 3.0   | 516.1 | _      | 2.9   |
| 40    | 6     | 484.4 | _       | 39.1  | 619.1 | _      | 5.9   | 628.6 | _      | 5.0   |
|       | 6     | 462.8 |         | 26.4  | 543.9 |        | 4.2   | 543.2 |        | 5.0   |
| Av    | erage | 475.5 | _       | 19.8  | 525.9 | _      | 5.4   | 529.3 | _      | 4.7   |

**Table 12.** Computational results for large-sized instances with |P|=50

| Insta | ances  |       | Model 2 |       |       | LBBD   |       | N     | LBBD_V | 4V5   |
|-------|--------|-------|---------|-------|-------|--------|-------|-------|--------|-------|
| P     | M      | Obj   | Time/s  | Gap/% | Obj   | Time/s | Gap/% | Obj   | Time/s | Gap/% |
|       | 4      | 442.0 | _       | 26.7  | 490.4 | _      | 12.2  | 517.3 | _      | 5.3   |
| 50    | 4      | 329.8 | _       | 71.2  | 509.3 | _      | 5.8   | 518.2 |        | 4.2   |
| 30    | 4      | 572.2 | _       | 15.2  | 593.3 | _      | 8.2   | 602.3 | _      | 6.5   |
|       | 4      | 516.2 | _       | 15.2  | 547.3 | _      | 4.7   | 541.7 | _      | 6.2   |
|       | 5      | 417.6 | _       | 53.5  | 582.8 | _      | 8.5   | 595.4 | _      | 4.8   |
| 50    | 5      | 340.9 | _       | 93.6  | 605.9 | _      | 4.5   | 608.0 | _      | 5.5   |
| 30    | 5      | 655.7 | _       | 15.8  | 629.1 | _      | 17.6  | 706.4 | _      | 5.5   |
|       | 5      | 342.1 |         | 101   | 617.7 |        | 7.7   | 634.4 | _      | 5.4   |
|       | 6      | 536.1 | _       | 32.1  | 374.5 | _      | 87.5  | 662.4 | _      | 4.7   |
| 50    | 6      | 459.0 | _       | 59.4  | 646.2 | _      | 9.2   | 686.5 | _      | 4.0   |
| 30    | 6      | 305.7 | _       | 173   | 760.8 | _      | 7.1   | 786.8 | _      | 4.2   |
|       | 6      | 450.7 | _       | 67.8  | 703.0 | _      | 5.7   | 714.2 | _      | 3.7   |
| Av    | verage | 447.3 | _       | 60.4  | 588.4 | _      | 14.9  | 631.1 | _      | 5.0   |

**Table 13.** Computational results for large-sized instances with |P|=60

| Insta | ances  |       | Model 2 | ,     |    |      | LBBD   |       | N     | LBBD_V | 4V5   |
|-------|--------|-------|---------|-------|----|------|--------|-------|-------|--------|-------|
| P     | M      | Obj   | Time/s  | Gap/% | (  | Obj  | Time/s | Gap/% | Obj   | Time/s | Gap/% |
|       | 4      | 638.5 | _       | 23.4  | 59 | 99.0 | _      | 28.5  | 723.7 | _      | 6.1   |
| 60    | 4      | 530.9 | _       | 34.6  | 64 | 16.2 | _      | 7.2   | 658.5 |        | 5.6   |
| 00    | 4      | 599.2 | _       | 38.1  | 70 | 06.1 | _      | 14.1  | 758.1 | _      | 6.5   |
|       | 4      | 558.1 | _       | 19.9  | 60 | )1.2 | _      | 10.0  | 613.7 |        | 6.3   |
|       | 5      | 259.9 | _       | 250   | 56 | 54.9 | _      | 56.6  | 847.3 | _      | 5.3   |
| 60    | 5      | 273.4 | _       | 200   | 73 | 30.5 | _      | 9.8   | 762.0 | _      | 5.3   |
| 00    | 5      | 370.3 | _       | 156   | 68 | 30.6 | _      | 35.7  | 889.3 | _      | 4.7   |
|       | 5      | 716.8 | _       | 32.4  | 69 | 93.0 | _      | 7.8   | 708.4 |        | 4.9   |
|       | 6      | 744.4 | _       | 35.3  | 91 | 13.8 | _      | 7.5   | 943.5 |        | 4.8   |
| 60    | 6      | 436.4 | _       | 105   | 5( | 9.2  | _      | 73.3  | 845.4 |        | 3.8   |
| 00    | 6      | 532.3 | _       | 95.8  | 69 | 91.9 | _      | 48.3  | 989.7 |        | 3.6   |
|       | 6      | 173.2 |         | 379   | 67 | 74.2 |        | 21.7  | 769.4 |        | 6.0   |
| Av    | verage | 486.1 | _       | 114.1 | 66 | 67.6 | _      | 26.7  | 792.4 | _      | 5.2   |