Uma solução adaptativa baseada em aprendizado por reforço para contenção do tráfego de mensagens de controle em FANETs

Universidade Estadual de Campinas Instituto de Computação

Uma solução adaptativa baseada em aprendizado por reforço para contenção do tráfego de mensagens de controle em FANETs

Aluno: Orientador: Coorientadora: Elcio Pereira de Souza Junior Leandro Aparecido Villas Esther Luna Colombini

Agenda

- Introdução
- Motivação
- Objetivos
- Trabalhos Relacionados
- Modelo Proposto
- Avaliação

Introdução

- Utilização de VANTs
- Cenário multi VANT FANETs
- Desafio → Comunicação

Introdução FANETs

Figura 1: MANET, VANET e FANET.¹

- Grau de mobilidade
- Padrão de mobilidade
- Densidade dos nós
- Mudanças topológicas

- Modelo de rádio propagação
- Consumo energético
- Poder computacional
- Localização

¹Ilker Bekmezci, Ozgur Koray Sahingoz e Samil Temel. "Flying Ad-Hoc Networks (FANETs): A survey". in Ad Hoc Networks 11.3 (2013), pp. 1254-1270. issn: 1570-8705. doi:https://doi.org/10.1016/j.adhoc. 2012.

Introdução

Comunicação

Características:

- Topologia dinâmica
- Links intermitentes
- Segmentação da rede
- Baixos intervalos de conexão

Desafios:

- Mobilidade
- Recursos do sistema
- Roteamento

Motivação

Broadcast Storming:

O compartilhamento do meio de comunicação e o acesso simultâneo dos dispositivos pode ocasionar em uma inundação broadcast, deteriorando o desempenho da rede.

Recursos do sistema:

Utilizar da vasta disponibilidade de informações referentes ao estado do VANT a fim de melhorar a performance da rede.

Autonomia:

Permitir que cada dispositivo da rede possa identificar e se adaptar ao cenário que está imerso.

Objetivo

Construção de uma solução adaptativa baseada em aprendizado por reforço que permita a otimização do tráfego de mensagens de controle em FANETs.

- Propor um modelo baseado em aprendizado por reforço para a otimização do envio de mensagens de controle;
- Construir um módulo de aprendizado que seja dinâmico aos estados da FANET;
- 3. Avaliar se o modelo proposto é capaz de aprimorar a qualidade do serviço em redes ad-hoc voadoras.

Trabalhos Relacionados

ABPP³

- Mobilidade como principal fator de ajuste
- alta velocidade = baixo intervalo
- baixa velocidade = alto intervalo

e: erro de previsão de posição

e': taxa de mudança de erro

b: intervalo de envio de mensagens

⁴X. Li and J. Huang, "ABPP: An Adaptive Beacon Scheme for Geographic Routing in FANET," 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Taipei, Taiwan, 2017, pp. 293–299, doi: 10.1109/PDCAT.2017.00055.

Trabalhos Relacionados ABPP³

- Melhora na sobrecarga do beacon
 e taxa de entrega de pacotes
- Aplicável a diferentes
 protocolos geográficos
- Limitações em altas velocidades
- Modelos de predição degrada em ambientes dinâmicos

e: erro de previsão de posição

e': taxa de mudança de erro

b: intervalo de envio de mensagens

⁴X. Li and J. Huang, "ABPP: An Adaptive Beacon Scheme for Geographic Routing in FANET," 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Taipei, Taiwan, 2017, pp. 293–299, doi: 10.1109/PDCAT.2017.00055.

Trabalhos Relacionados CAPONE²

- Novo paradigma de rede conhecido como SDN-FANET
- Organização hierárquica da rede
- Algoritmo para clusterização e previsão de posicionamento

³Cumino P., Maciel K., Tavares T., Oliveira H., Rosário D., Cerqueira E., "Cluster-Based Control Plane Messages Management in Software-Defined Flying Ad-Hoc Network". in Sensors. 2020; 20(1):67. https://doi.org/10.3390/s20010067

Trabalhos Relacionados CAPONE²

- + Aumento da taxa de entrega de pacotes e redução do consumo energético e overhead
- Cenários densos: suscetível a sobrecarga do controlador

³Cumino P., Maciel K., Tavares T., Oliveira H., Rosário D., Cerqueira E., "Cluster-Based Control Plane Messages Management in Software-Defined Flying Ad-Hoc Network". in Sensors. 2020; 20(1):67. https://doi.org/10.3390/s20010067

Trabalhos Relacionados EE-Hello¹

- Algoritmo de intervalo de saudação adaptável
- Análise do espaço aéreo e número de dispositivos

²I. Mahmud and Y. Cho, "Adaptive Hello Interval in FANET Routing Protocols for Green UAVs," in IEEE Access, vol. 7, pp. 63004-63015, 2019, doi: 10.1109/ACCESS.2019.2917075.

Trabalhos Relacionados EE-Hello¹

- + 25% de redução do consumo energético
- Restrição do espaço aéreo
- Inserção de dados offline

²I. Mahmud and Y. Cho, "Adaptive Hello Interval in FANET Routing Protocols for Green UAVs," in IEEE Access, vol. 7, pp. 63004-63015, 2019, doi: 10.1109/ACCESS.2019.2917075.

Visão Geral

- ____
 - O agente é treinado em ambiente simulado;
 - 0 treinamento é individual;
 - Estima-se que o comportamento individual de múltiplos agentes forneça uma otimização global da rede.

Eventos de Interesse

Figura 3: Eventos de interesse, segmentação e conexão total dos nós.

Deep Q Network

 $Q^*: State \times Action \rightarrow \mathbb{R}$

- Algoritmo livre de modelo (que se baseia apenas em experiências)
- A rede neural mapeia os estados de entrada para pares (ação, valor Q)
- Espaço de ações discreto

Input States

Estado ou Entrada

Entrada ou Estado:

- Position_[t-1,t]
- Range
- Energy_[t-1,t]
- Vizinhança_[t-1,t]

- Time_[t-1,t]
- Tx_[t-9,t]
- Rx_[t-9,t]
- Actions_[t-9,t]

Ação

Saída ou Ações:

- Novo intervalo de comunicação a ser atribuído;
- Intervalo entre [0.5, 10]s.

Reforço

 $reward = \left[\left(\left| Rx_t - Rx_{t-1} \right|^{hello} - \left| Tx_t - Tx_{t-1} \right|^{hello} \right) \times \left(\sum_{i=1}^t \frac{Rx_i^{hello} + Tx_i^{hello}}{Rx_i^{control} + Tx_i^{control}} \right) - \left(energy_{t-1} - energy_t \right) * 10 \right]$

Variação de mensagens recebidas e enviadas do tipo hello

Razão entre mensagens do tipo hello e as demais

energia residual

Reforço

Modelo Simplificado:

Modelagem binária em relação ao número de mensagens de controle do tipo Hello, enviadas e recebidas $(Tx_{[t-1,t]} e Rx_{[t-1,t]})$.

Aplicação

- ____
 - Wifi: IEEE 802.11b, taxa 2 Mb/s em modo ad hoc
 - Aplicação: 8 pacotes de 1024 bytes por segundo
 - Range de Transmissão: 150 metros

NS3: Simulador Open-Source, baseado em eventos discretos, destinado a pesquisa e uso educacional de sistemas de internet

Cenário

Figura 4: Topologia 1.

Figura 4: Topologia 2.

Figura 4: Topologia 3.

Métricas

- Overhead;
- Taxa de Transferência;
- Taxa de perda de pacotes;
- Consumo energético de transmissão;
- Avaliação das políticas.

Avaliação Desafios

Avaliação

Próximos Passos

Próximos passos:

- Finalizar a implementação do Q-Learning e executar testes nas topologias propostas;
- Construção e testes no cenário esparso atribuindo mobilidade aos nós.

Agradecimentos

Prof. Leandro A. Villas
Prof^a. Esther L. Colombini

Computer Networks
Laboratory

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Laboratório de Robótica e Sistemas Cognitivos

Instituto de Computação e a Unicamp

Obrigado!

