Introductions to Communication Medium

Presented by

Syed Shakil Mahmud

Lecturer

Department of Computer Science and Engineering Bangladesh Army International University of Science and Technology

Transmission Medium

Transmission Medium

Transmission media can be divided into two broad categories:

 Guided media include twisted-pair cable, coaxial cable, and fiberoptic

Guided Media

- ➤ Guided media, which are those that provide a conduit from one device to another, include twisted-pair cable, coaxial cable, and fiber-optic cable.
- A signal traveling along guided media is directed and contained by the physical limits of the medium
- Twisted-pair and coaxial cable use metallic (copper) conductors that accept an transport signals in the form of electric current
- Optical fiber is a glass cable that accepts and transports signals in the form of light

Twisted-Pair Cable

Consists of

- two conductors (normally copper)
- each with its own plastic insulation
- twisted together

Twisted-Pair Cable

- > One of the wires is used to carry signals to the receiver
- And the other is used as a ground reference
- > Receiver uses the difference between the two-level
- ➤ Interference (noise) and crosstalk may affect both wires and create unwanted signals
- The number of twists per unit of the length (e.g. inch) determines the quality of the cable
 - ➤ More twists mean better quality

Unshielded versus Shielded

- Two common twisted-pair cable used in communications
 - Unshielded twisted-pair (UTP)
 - Shielded twisted-pair (STP)
- STP has a metal foil or braided-mesh covering
 - Preventing the penetration of noise or crosstalk
 - It is bulkier and more expensive

Connectors

The most common UTP connector is RJ45

R J stands for Registered Jack

Applications

- Used in telephone Lines (UTP)
- DSL lines (UTP)
- Local area networks

Coaxial Cable

Coaxial Cable

- Carries signals of higher frequency ranges than twisted-pair cable
- Coax has a central core conductor of solid or stranded wire (usually copper)
- Encased in an outer conductor of metal foil, braid, or a combination of the two
- The outer metallic wrapping services as:
 - Shield against noise
 - Second conductor (completes the circuit)
- Outer conductor is also enclosed in an insulating sheath
- Whole cable is protected by a plastic cover

Coaxial Cable Connectors

- Coaxial cable connector is BNC (Bayone-Neill-Concelman)
- Figure shows the BNC connector, the BNC T connector, and the BNC terminator

Applications

- It was used in analog and digital telephone networks (replaced by fiber-optic)
- Cable TV networks (replaced by fiber-optic)
- Traditional Ethernet LANs

Fiber-Optic Cable

Fiber-Optic Cable

An optical fiber is a very thin strand of plastic or glass that is used to transmit messages via light

Fiber-Optic Connector

Fiber-optic use three different type of connectors

- 1. Subscriber Channel (SC) connector
 - Used in cable TV and it uses a push/pull locking system
- 2. The Straight-Tip (ST) connector
 - Used for connecting cable to networking devices
- 3. MT-RJ in new connector with the same size as RJ45

Fiber-Optic Connections

Applications

- It used in backbone networks
- For cable TV with coaxial cable (a hybrid network)

Advantages of Optical Fiber

Advantages over twisted-pair and coaxial

- Higher bandwidth
- Less signal attenuation
 - Signal with fiber-optic can run for 50 km with requiring regeneration
 - 5 km for coaxial or twisted-pair cable
- Immunity to electromagnetic interference
 - Electromagnetic noise cannot affect fiber-optic cables
- Resistance to corrosive materials
 - Glass is more resistant to corrosive materials than copper
- Light weight
- More immune to tapping
 - Fiber-optic cables definitely more immune to tapping than copper cables

Disadvantages of Optical Fiber

Disadvantages

- Installation/maintenance
 - Because it is new technology, need expertise
- Unidirectional
 - If we need bidirectional we need two fibers
- Cost
 - The cables and interfaces are expensive

Wireless transmission can be divided into:

- Radio waves
- Microwaves
- Infrared waves

Radio waves

- Radio waves: waves range in frequencies between 3 KHz and 1 GHz
- Microwaves: waves ranging in frequencies between 1 and 300 GHz
- Radio waves are omnidirectional (propagated in all directions)
- The sending and receiving antennas do not have to be aligned
- Useful for multicasting: Radio, television. Cordless phones and paging system

Microwaves

- Microwaves are unidirectional
- Antenna need to be aligned
- Advantage: pair of antenna can be aligned without interfering with another pair
- Microwave propagation is line-of-sight
- For long distance communication
 - Very tall towers
 - Repeater
- Very high-frequency microwaves cannot penetrate walls
 - Disadvantage if receiver inside a building

Applications

- Due to unidirectional properties, microwaves are useful when unicasting (one-to-one) communication
 - Cellular phones
 - Satellite networks
 - Wireless LANs

Infrared

- From 300 GHz to 400 THz (wavelengths from 1 mm to 770 nm)
- Use for short-range communication
- It has high frequency, cannot penetrate walls
 - Prevents interference between one system and another
 - Remote control not interfere with our neighbors
- Can not be used outside because sun's rays contain infrared waves (interference)
- (IrDA) Infrared Data Association established standards for communicating between devices:
 - Keyboards, mice, PCs and printers