CENTRE DE VANVES

MINISTERE DE L'EDUCATION NATIONALE

CENTRE NATIONAL D'ENSEIGNEMENT A DISTANCE

AGREGATION DE MATHEMATIQUES -407-

A.2075.D.03

PROFESSEUR : M. C. SERVIEN

Devoir 3 - Série 5

COMPOSITION D'ANALYSE 1981

Durée : 6 heures

PRÉAMBULE

Tous les polynômes considérés dans ce problème sont à coefficients complexes, les fonctions polynomiales étant définies sur C.

A. Notations.

Les propriétés mentionnées ci-dessous en A. 3. et A. 4. n'ont pas à être démontrées.

A. 1. D désigne le disque unité fermé : $D = \{z \in \mathbb{C} \mid |z| \leq 1\}$.

U désigne le disque unité ouvert : $U = \{z \in \mathbb{C} \mid |z| < 1\}$.

 Γ désigne le cercle unité : $\Gamma = \{z \in \mathbb{C} \mid |z| = 1\}$.

A. 2. A tout polynôme A non identiquement nul, de degré k, on associe le polynôme A* défini de la manière suivante :

si
$$A(z) = a_0 + a_1 z + ... + a_k z^k \quad (a_k \neq 0),$$

alors
$$A^*(z) = \overline{a_k} + \overline{a_{k-1}} z + ... + \overline{a_0} z^k$$
.

A. 3. H désigne l'espace de Hilbert des (classes de) fonctions de carré intégrable sur Γ par rapport à la mesure de Lebesgue, pour le produit scalaire :

$$(f | g) = \frac{1}{2 \pi} \int_0^{2\pi} f(e^{it}) \overline{g(e^{it})} dt.$$

La norme correspondante sera notée || . || .

A. 4. Soit P un polynôme non identiquement nul. H_P désigne l'ensemble des (classes de) fonctions f telles que le produit f P appartienne à H.

Le produit scalaire $(f \mid g)_P = \frac{1}{2 \pi} \int_0^{2\pi} f(e^{it}) |P(e^{it})|^2 dt$ munit H_P d'une structure d'espace de Hilbert. La norme correspondante sera notée $\|\cdot\|_P$.

A. 5. Pour tout entier naturel n, E_n désigne l'espace vectoriel des polynômes dont le degré ne dépasse pas n, y compris le polynôme 0.

B. Propriété admise.

On utilisera sans démonstration le résultat suivant : étant donné un polynôme P non identiquement nul, il existe une suite unique (Φ_n) $n \in \mathbb{N}$ de polynômes telle que :

- 1° Φ_n soit de degré exactement n, pour tout n appartenant à \mathbb{N} ;
- 2º le coefficient du terme de degré n de Φ_n soit strictement positif pour tout $n \in \mathbb{N}$;
- 3° les Φ_n forment une famille orthonormée dans H_P .

Pour tout entier naturel n, on notera k_n le coefficient du terme de degré n de Φ_n .

PREMIÈRE PARTIE OUESTIONS PRÉLIMINAIRES

Certains des résultats de cette partie seront utiles pour la suite du problème.

- I.1. Soit A un polynôme non identiquement nul.
 - a. Quels sont, en fonction des zéros de A, les zéros de A*, ainsi que leurs ordres de multiplicité?
 - b. Comparer |A(z)| et $|A^*(z)|$ pour z appartenant à Γ .
- I.2. Soit A un polynôme non identiquement nul ayant au moins un zéro dans U. Montrer qu'il existe au moins un polynôme B tel que :
 - 1º B n'ait aucun zéro dans U;
 - $2^{\circ} \mid A(z) \mid = \mid B(z) \mid \text{pour tout } z \text{ de } \Gamma;$
 - $3^{\circ} \mid A(z) \mid < \mid B(z) \mid \text{ pour tout } z \text{ de U};$
 - 4° B ait un degré inférieur ou égal à celui de Λ.

Trouver un polynôme A auquel on puisse associer un polynôme B de degré strictement inférieur au degré de A, et vérifiant les propriétés 1° à 4° ci-dessus. Trouver un polynôme A pour lequel ce soit impossible.

- I.3. Soient A un polynôme n'ayant aucun zéro dans U, et & un réel strictement positif. Montrer qu'il existe un polynôme B tel que :
 - $1^{\circ} B(0) = A(0);$
 - 2º B n'ait aucun zéro dans D;
 - 3° pour tout z de Γ , $|A(z)| \leq (1 + \varepsilon) |B(z)|$.
 - I.4. Soit A un polynôme. Établir :

a. l'égalité A (0) =
$$\frac{1}{2\pi} \int_{0}^{2\pi} A(e^{it}) dt$$
;

b. l'inégalité | A (0) |
$$^{2} \le \frac{1}{2 \pi} \int_{0}^{2 \pi} |A(e^{it})|^{2} dt$$
.

I.5. Soit P un polynôme non identiquement nul. La suite $(\Phi_n)_{n \in \mathbb{N}}$ qui lui est associée (partie B du Préambule) est-elle totale dans H_p ?

DEUXIÈME PARTIE

P est un polynôme non identiquement nul; $(\Phi_n)_{n\in\mathbb{N}}$ est la famille orthonormée de H_P qui lui est associée, conformément au B du Préambule.

- II.1. Soient a un nombre complexe et n un entier naturel. Montrer que, lorsque A parcourt l'intersection de E_n et de la sphère unité de H_P , l'expression $\mid A(a) \mid$ passe par un maximum. Déterminer les polynômes A pour lesquels ce maximum, que l'on notera M_n (a), est obtenu.
 - II.2. On suppose que a n'est pas nul. Comparer $M_n\left(\overline{a^{-1}}\right)$ et $M_n\left(a\right)$.
- II.3. Pour un entier naturel n donné, soit S_n la fonction de deux variables complexes définie par S_n $(x, y) = \sum_{j=0}^n \overline{\Phi_j(x)} \Phi_j(y)$.

Déduire de ce qui précède l'identité $S_n(x, y) = (\bar{x}y)^n S_n(\bar{y}^{-1}, \bar{x}^{-1})$, pour x et y différents de zéro.

II.4. Montrer que, pour tout nombre complexe z, $S_n(0, z) = k_n \Phi_n^*(z)$ et établir l'égalité $\sum_{j=0}^{n} |\Phi_j(0)|^2 = k_n^2$.

II.5. On suppose |a| < 1. Montrer que, pour tout entier positif n, le polynôme $S_n(a, z)$ ne s'annule pour aucun z de U.

En déduire que, si n est un entier positif, tous les zéros de Φ_n appartiennent à D.

TROISIÈME PARTIE

P est toujours un polynôme non identiquement nul.

- III.1. Soit n un entier strictement positif. Montrer que, lorsque A parcourt l'ensemble des polynômes de la forme $A(z) = z^n + B(z)$ avec $B \in E_{n-1}$, la norme $\|A\|_P$ passe par un minimum, et que ce minimum est obtenu pour un polynôme A unique que l'on déterminera. On notera m_n ce minimum; exprimer m_n à l'aide de k_n .
 - III.2. Montrer que la suite $(m_n)_{n>0}$ est convergente.

On notera m la limite de cette suite.

- III.3. Montrer, en considérant le polynôme $\frac{1}{k_n}$ Φ_n^* , que l'on a, pour tout entier strictement positif $n, m_n \ge |P(0)|$.
 - III.4. On suppose, dans cette question, que P n'a aucun zéro dans D.
 - a. Montrer que, pour tout réel strictement positif ε , il existe un polynôme T tel que $\sup_{z \in D} |T(z) \frac{1}{P(z)}| < \varepsilon$.
 - b. Montrer que, si & est assez petit,

$$m^2 \leq \frac{1}{\mid T(0)\mid^2} \frac{1}{2\pi} \int_0^{2\pi} \mid T(e^{it}) P(e^{it})\mid^2 dt.$$

- c. Montrer que m = |P(0)|.
- III.5. Étendre le résultat de la question III.4.c. au cas où P n'a aucun zéro dans U.
- III.6. P est maintenant quelconque (non identiquement nul). Exprimer m en fonction des zéros de P contenus dans U et de P (0), ou de l'une des dérivées de P en 0.
- III.7. En déduire la nature de la série $\sum_{j=0}^{\infty} |\Phi_j(0)|^2$ et donner une expression de sa somme si cette série est convergente.

QUATRIÈME PARTIE

P est un polynôme non identiquement nul, dont on désignera par d le degré. Les polynômes Φ_n sont associés à P comme précédemment.

IV.1. a. Montrer que, pour tout entier naturel n, il existe un polynôme R_n unique, appartenant à E_n , tel que :

$$\frac{1}{2 \pi} \int_{0}^{2 \pi} |1 - P(e^{it}) R_n(e^{it})|^2 dt = \inf_{A \in E_n} \frac{1}{2 \pi} \int_{0}^{2 \pi} |1 - P(e^{it}) A(e^{it})|^2 dt.$$

Exprimer R_n à l'aide des polynômes Φ_j .

- b. Montrer que si P est à coefficients réels, il en est de même pour R_n .
- c. Montrer que R_n est identiquement nul si, et seulement si P(0) = 0.
- d. On suppose que P (0) n'est pas nul. Montrer que R_n n'a aucun zéro dans U.

P est désormais un polynôme de degré d, tel que P (0) \neq 0. Les polynômes R_n sont définis comme ci-dessus. Soit, pour tout entier naturel n, P_n l'unique polynôme appartenant à E_d rendant minimale l'expression

$$\frac{1}{2\pi} \int_{0}^{2\pi} |1 - R_n(e^{it}) A(e^{it})|^2 dt,$$

lorsque A parcourt Ed.

IV.2. Montrer que, si P n'a aucun zéro dans U, la suite $(R_n)_{n \in \mathbb{N}}$ converge dans H_P vers $\frac{1}{P}$.

La réciproque de cette propriété est-elle exacte?

IV.3. Montrer que, si P n'a aucun zéro dans U, la suite $(P_n)_{n \in \mathbb{N}}$ converge vers P. On précisera éventuellement le mode de convergence.

IV.4. Montrer que, si P est astreint à la seule condition $P(0) \neq 0$, la suite $(P_n)_{n \in \mathbb{N}}$ converge vers un polynôme que l'on déterminera.

IV.5. Pétant toujours de degré d, avec $P(0) \neq 0$, soit d' un entier supérieur à d. Les polynômes R_n sont définis comme précédemment, et pour chaque entier naturel n, on appelle p_n , d l'unique polynôme de E_d rendant minimale l'expression $\frac{1}{2\pi} \int_0^{2\pi} |1 - R_n| (e^{it}) |A| (e^{it}) |a| dt$ lorsque A parcourt $E_{d'}$.

Que peut-on dire de la suite des polynômes $(P_{n,d'})_{n \in \mathbb{N}}$, d' étant fixé?

IV.6. Retrouver à partir de ce qui précède une démonstration du fait suivant : si deux polynômes sans zéros dans U ont même module sur Γ , ils sont proportionnels.

•

· 7**P**

•