Mains.2.B.1-14

ai24btech11030 - Shiven Bajpai

Section - B 1) z and w are two non zero complex numbers such that |z| = |w| and $Arg(z) + Arg(w) = \pi$

a) Re(z) > 0 b) Re(z) < 0 c) Re(z) > 3 d) Re(z) > 2

c) ω

b) $-\overline{\omega}$

2) If |z-4| < |z-2|, its solution is given by

(2002)

(2002)

d) $-\omega$

then z equals

a) $\overline{\omega}$

	centre of a circle which z_2 are complex number		$ z - z_1 = a \text{ and } z - z_1 = a$	$ z_2 = b$ (2002)
a) an ellipse	b) a hyperbola	c) a circle	d) none of the	hese
4) If z and w are the Arg (w) = $\frac{\pi}{2}$ then	two non-zero complex $\overline{z}w$ is equal to	numbers such tha	at $ zw = 1$ and Au	rg(z) - (2003)
a) - <i>ι</i>	b) 1	c) -1	d) ι	
	two roots of the equation origin, Z_1 and Z_2 form			Further (2003)
a) $a^2 = 4b$	b) $a^2 = b$	c) $a^2 = 2b$	d) $a^2 = 3b$	
b) $x = 4n$, where c) $x = 2n$, where	nere n is any positive i n is any positive integ n is any positive integ nere n is any positive i	er er		(2003)
7) Let z and w be c equals	complex numbers such	that $\overline{z} + \iota \overline{w} = 0$ and	$arg(zw) = \pi$ then	arg (z) (2004)
a) $\frac{5\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{3\pi}{4}$	d) $\frac{\pi}{4}$	
8) If $z = x - \iota y$ and	$z^{\frac{1}{3}} = p + \iota q$, then			
	_	$\frac{x}{p} + \frac{y}{q}$ $rac{y^2 + q^2}$		
is equal to				(2004)

d) 1

9) If $ z^2 - 1 = z ^2 +$	1, then z lies on			(2004)	
a) an ellipseb) the imaginary a	uxis	c) a circled) the real axis			
10) If the cube roots of are	of unity are 1, ω , ω^2	then the roots of the ed	quation $(x-1)^3$	6 + 8 = 0, (2004)	
a) $-1, -1 + 2\omega, -1 - 2\omega^2$ b) $-1, -1, -1$			c) $-1, 1 - 2\omega, 1 - 2\omega^2$ d) $-1, 1 + 2\omega, 1 + 2\omega^2$		
11) If z_1 and z_2 are tw - $arg(z_2)$ is equal		nbers such that $ z_1 + z_2 $	$= z_1 + z_2 $, the	n $arg(z_1)$ (2005)	
a) $\frac{\pi}{2}$	b) -π	c) 0	d) $\frac{\pi}{2}$		
12) If					
	C	$\omega = \frac{z}{z - \frac{1}{3}\iota}$			
and $ \omega = 1$, then	z lies on	J		(2005)	
a) an ellipse	b) a circle	c) a straight line	d) a parabo	ola	
13) The value of $\sum_{k=1}^{10}$	$\frac{1}{1}\left(\sin\left(\frac{2k\pi}{11}\right) + \iota\cos\left(\frac{2k\pi}{11}\right)\right)$	$\left(\frac{k\pi}{1}\right)$ is		(2006)	
a) ι	b) 1	c) - <i>i</i>	d) -1		
14) If $z^2 + z + 1 = 0$,	where z is a comple	ex number, then the value	ue of		
	$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2$	$+\left(z^3+\frac{1}{z^3}\right)^2+\cdots+\left(z^6\right)^2$	$+\frac{1}{z^6}\bigg)^2$		
is				(2006)	
a) 18	b) 54	c) 6	d) 12		

c) 2

b) -1

a) -2