9/21

Nathan Keough

Acknowledgements: Utilized the study session, recieved help on 1.3.7 from other students, proofs finished independently.

Wade 1.3.4

Prove that a lower bound of a set need not be unique but the infimum of a given set E is unique.

Proof.

We must show that:

- (1) Lower bound need not be unique.
- (2) inf are unique.
- ① Consider a set $E \subseteq \mathbb{R} \ni E \neq \emptyset$ and E is bounded below, so, $\exists m \in \mathbb{R} \ni x \geq m \forall x \in E$.

Now, consider $n \leq m$, thus $\forall x \in E, x \geq n$.

It has been shown that two lower bounds of a set E may exist,

- : a lower bound for a set need not be unique.
- ② Assume there exists two inf of a set $E \subseteq \mathbb{R}$, i_1, i_2 respectively whereby both are lower bounds of E. Then, $i_1 \le x$ and $i_2 \le x \forall x \in E$. By definition of infimum, $i_1 \le i_2 \le x$ and $i_2 \le i_1 \le x$ must be true. The only case where this holds is when $i_1 = i_2$.
 - : the infimum of a given set E is unique.

Wade 1.3.7

a. Prove that if x is an upper bound of a set $E \subseteq \mathbb{R}$ and $x \in E$, then x is the supremum of E.

Proof.

Consider a nonempty set $E \subseteq \mathbb{R}$ that is bounded above and let $x \in E$. Let $x \in m \forall$ upper bounds m of E.

 $x \in m \implies \forall y \in E, y \leq x.$

Since $x \in E$, $x \le m$ By definition of supremum, $y \le x \le m$ $\implies \sup E = x$.

- \therefore if x is an upper bound of a set $E \subseteq \mathbb{R}$ and $x \in E$, then x is the supremum of E.
- b. Make and prove an analogous statement for the infimum of E.

Proof.

Consider a nonempty set $E\subseteq\mathbb{R}$ that is bounded above and let $x\in E.$ Let $x\in n\forall$ upper bounds n of E.

 $x \in n \implies \forall y \in E, y \ge x.$

Since $x \in E$, $x \ge n$ By definition of infimum, $x \ge y \ge n \implies \inf E = x$.

c. Show by example that the converse of each of these statements is false. Take for example, the set E=(0,1). Neither 0 nor 1 are in the set, yet the infinum and supremum of E is inf E=0, sup E=1. \therefore since inf E=0, sup E=1 and $0,1\notin E$, the converse of these statement must be false.