NAME: KELVIN J ANIL REG NO: 21BCE0002

COLAB LINK:

https://colab.research.google.com/drive/1SweHvjCMbcwP8uwN4NqPOsHUkAKqdEZB?usp=sharing

1. Download the dataset: Dataset

2. Load the dataset into the tool.

- Univariate Analysis
- Bi- Variate Analysis
- Multi-Variate Analysis

4. Perform descriptive statistics on the dataset.

	escriptive describe()	Statistics				
	culmen	_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	
col	ınt	342.000000	342.000000	342.000000	342.000000	11.
me	an	43.921930	17.151170	200.915205	4201.754386	
st	d	5.459584	1.974793	14.061714	801.954536	
mi	in	32.100000	13.100000	172.000000	2700.000000	
25	%	39.225000	15.600000	190.000000	3550.000000	
50	%	44.450000	17.300000	197.000000	4050.000000	
75	%	48.500000	18.700000	213.000000	4750.000000	
ma	ax	59.600000	21.500000	231.000000	6300.000000	

5. Check for Missing values and deal with them.

```
[12] # Checking for missing values
     df.isnull().any()
    species
    island
                         False
    culmen_length_mm
                         True
    culmen_depth_mm
                         True
    flipper_length_mm
                         True
                          True
    body_mass_g
                          True
    dtype: bool
# Checking how many missing values
     df.isnull().sum()
island
    culmen_length_mm
    culmen_depth_mm
    flipper length mm
    body\_mass\_g
                         10
    dtype: int64
```

6. Find the outliers and replace them outliers


```
[24] # there are no outliers in this dataset
```

7. Check the correlation of independent variables with the target

```
# correlation
df.corr().species.sort_values(ascending=False)

species 1.000000
flipper_length_mm 0.850819
body_mass_g 0.747547
culmen_length_mm 0.728706
sex -0.003823
island -0.635659
culmen_depth_mm -0.741282
Name: species, dtype: float64
```

8. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le_sex = LabelEncoder()
le_species = LabelEncoder()
le_island = LabelEncoder()
df["sex"] = le_sex.fit_transform(df["sex"])
df["species"] = le_species.fit_transform(df["species"])
df["island"] = le_island.fit_transform(df["island"])
df.head()
    species island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g sex
0
                                 39.10
                                                                                    3750.0
                                                                                                   Ш
2
                                  40.30
3
                                 44.45
4
                                  36.70
```

9. Split the data into dependent and independent variables.

10. Scaling the data

- 11. Split the data into training and testing
- 12.check the training and testing data shape.

