Artificial Intelligence

COMP3411 / 9814 http://www.cse.unsw.edu.au/~cs3411

Lecturer

Claude Sammut

- Professor in CSE, Head of Al Research Group
- Research in Machine Learning and Robotics
- Mentor for RoboCup Teams
- President-elect RoboCup Federation

Course Admin

Armin Chitizadeh

- Please direct all questions to WebCMS forum or mail to
 - cs3411@cse.unsw.edu.au
- Do not email or message Teams direct to lecturer or admin

Timetable

	Monday	Tuesday	Wednesday	Thursday		Friday
09:00 - 10:00						
10:00 - 11:00				Tut - H10A Adam Stucci	Tut - H10B Jorge Forseck Rauh Hain	
11:00 - 12:00				Tut - H11A (online) Jingying Gao	Tut - H11B Adam Stucci	
12:00 - 1300				Tut - H12A (online) Lina Phaijit	Tut - H12B Jorge Forseck Rauh Hain	
13:00 - 14:00				Tut - H13A (online) Armin Chitizadeh	Tut - H13B Raktim Kumar Mondol	
14:00 - 15:00				Tut - H14A Raktim Kumar Mondol	Tut - H14B (online) Lina Phaijit	Lecture (initially online, may later switch to synchronised in-person and
15:00 - 16:00				Tut - H15A Jingchen Li	Tut - H15B (online) Jingying Gao	streaming, depending on progress of pandemic)
16:00 - 17:00			Lecture (initially online, may later switch to synchronised in-person and	Tut - H16A Jingchen Li	Tut - H16B (online) Ryan De Belen	
17:00 - 18:00			streaming, depending on progress of pandemic)	Tut - H17A Maryam Hashem	Tut - H17B (online) Payal Bawal	
18:00 - 19:00			Tut - W18A (online) Ryan De Bellen	Tut - H18A Maryam Hashem	Tut - H18B (online) Payal Bawal	

Online Tutorials

- Most tutorials are full
- If you want to attend tuts online, in first week, pick the most suitable time and attend via BB Collaborate
- Tutor will count students so we can determine if and when to schedule additional classes

Course Outline

- Introduction & History
- Search and Problem Solving
- Knowledge Representation and Reasoning
- Al Programming
- Machine Learning
- Natural Language
- Robotics & Computer Vision

Related Courses

- COMP3431 Robot Software Architectures
- COMP4418 Knowledge Representation and Reasoning
- COMP9417 Machine Learning and Data Mining
- COMP9444 Neural Networks and Deep Learning
- COMP9491: Applied Artificial Intelligence
- COMP9517 Machine Vision
- VIP projects and 4th Year Thesis topics (incl RoboCup)

Texts & References

Recommended Text:

 David L. Poole and Alan K. Mackworth Artificial Intelligence: Foundations of Computational Agents, 2nd Edition

Additional reference material

- Stuart Russell and Peter Norvig, *Artificial Intelligence: a Modern Approach*, 3rd Edition, Prentice Hall, 2009.
- Ivan Bratko, *Programming in Prolog for Artificial Intelligence*, 4th Edition, Pearson, 2013.

Online Resources

- Text book: http://artint.info/2e/html/ArtInt2e.html
- AIPython: https://artint.info/AIPython
- SWI Prolog: https://www.swi-prolog.org/Download.html

Assessment

- Assessment will consist of:
 - Assignments 2 x 20 = 40%
 - Final Exam 60%
- To pass, you must score
 - at least 16/40 for the assignments
 - at least 24/60 for the exam
 - a combined mark of at least 50/100