Limited evidence of test-retest reliability in infant-directed speech preference in a large 1 preregistered infant experiment 2 Melanie S. Schreiner^{1,2}, Martin Zettersten^{3,4}, Christina Bergmann⁵, Michael C. Frank⁶, Tom Fritzsche⁷, Nayeli Gonzalez-Gomez⁸, Kiley Hamlin⁹, Natalia Kartushina¹⁰, Danielle J. Kellier¹¹, Nivedita Mani^{1,2}, Julien Mayor¹⁰, Jenny Saffran³, Mohinish Shukla¹², Priya Silverstein^{13, 14}, Melanie Soderstrom¹⁵, & Matthias Lippold^{1,2} ¹ University of Goettingen ² Leibniz Science Campus PrimateCognition ³ University of Wisconsin-Madison ⁴ Princeton University 10 ⁵ Max Planck Insitute for Psycholinguistics 11 ⁶ Stanford University 12 ⁷ University of Potsdam 13 ⁸ Oxford Brookes University ⁹ University of British Columbia ¹⁰ University of Oslo ¹¹ University of Pennsylvania 17 ¹² Università di Padova 18 ¹³ Institute for Globally Distributed Open Research 19

¹⁴ Ashland University

¹⁵ University of Manitoba

22 Author Note

21

Acknowledgements. This work was supported in part by a Leibniz ScienceCampus
Primate Cognition seed fund awarded to MSc and ML, a grant from the Research Council
of Norway (project number 301625) and its Centres of Excellence funding scheme (project
number 223265) awarded to NK, an ERC Grant (agreement number 773202 – ERC 2017,
"BabyRhythm") awarded to MSh, a ManyBabies SSHRC Partnership Development Grant
awarded to MSo, and a grant from the NSF awarded to MZ (NSF DGE-1747503).

- Conflict of Interest Statement. The authors declare that there are no conflicts of interest for this work.
- Data Availability Statement. All code for reproducing the paper is available at https://github.com/msschreiner/MB1T. Data and materials are available on OSF (https://osf.io/zeqka/?view_only=e027502f4e7f49408cfb2cba38f7b506).
- CRediT author statement. Outside of the position of the first, the second, and
 the last author, authorship position was determined by sorting authors' last names in
 alphabetical order. An overview of authorship contributions following the CRediT
 taxonomy can be viewed here: https://docs.google.com/spreadsheets/d/
 1jDvb0xL1U6YbXrpPZ1UyfyQ7yYK9aXo002UaArqy35U/edit?usp=sharing.
- Correspondence concerning this article should be addressed to Melanie S. Schreiner,
 Gosslerstr. 14, 37073 Göttingen. E-mail: melanie.schreiner@psych.uni-goettingen.de

41 Abstract

Test-retest reliability — establishing that measurements remain consistent across multiple testing sessions — is critical to measuring, understanding, and predicting individual differences in infant language development. However, previous attempts to establish 44 measurement reliability in infant speech perception tasks are limited, and reliability of frequently-used infant measures is largely unknown. The current study investigated the test-retest reliability of infants' preference for infant-directed speech (hereafter, IDS) over adult-directed speech (hereafter, ADS) in a large sample (N=158) in the context of the ManyBabies1 collaborative research project (hereafter, MB1; Frank et al., 2017; ManyBabies Consortium, 2020). Labs were asked to bring in participating infants for a second appointment retesting infants on their IDS preference. This approach allowed us to estimate test-retest reliability across three different methods used to investigate preferential listening in infancy: the head-turn preference procedure, central fixation, and eye-tracking. 53 Overall, we found no consistent evidence of test-retest reliability in measures of infants' 54 speech preference (overall r = .09, 95% CI [-.06,.25]). While increasing the number of trials 55 that infants needed to contribute for inclusion in the analysis revealed a numeric growth in 56 test-retest reliability, it also considerably reduced the study's effective sample size. 57 Therefore, future research on infant development should take into account that not all experimental measures may be appropriate for assessing individual differences between 59 infants. 60

61 Keywords: language acquisition; speech perception; infant-directed speech; 62 adult-directed speech; test-retest reliability

Word count: 5072

Limited evidence of test-retest reliability in infant-directed speech preference in a large

preregistered infant experiment

Obtaining a quantitative measure of infants' cognitive abilities is an extraordinarily difficult endeavor. The most frequent way to assess what infants know or prefer is to track overt behavior. However, measuring overt behavior at early ages presents many challenges: participants' attention span is short, they do not follow instructions, their mood can change instantly, and their behavior is often inconsistent. Therefore, most measurements are noisy and the typical sample size of an infant study is small (around 20 infants per group), resulting in low power (Oakes, 2017). In addition, there is individual and environmental variation that may add even more noise to the data (e.g., Johnson & Zamuner, 2010). Despite these demanding conditions, reliable and robust methods for assessing infants' behavior are critical to understanding development.

In order to address these challenges, the ManyBabies collaborative research 76 consortium was formed to conduct large-scale, conceptual, consensus-based replications of 77 seminal findings to identify sources of variability and establish best practices for 78 experimental studies in infancy (Frank et al., 2017). The first ManyBabies collaborative research project (hereafter, MB1, ManyBabies Consortium, 2020) explored the reproducibility of the well-studied phenomenon that infants prefer infant-directed speech 81 (hereafter, IDS) over adult-directed speech (hereafter, ADS, Cooper & Aslin, 1990). Across 82 many different cultures, infants are commonly addressed in IDS, which typically is characterized by higher pitch, greater pitch range, and shorter utterances, compared to the language used between interacting adults (Fernald et al., 1989). A large body of behavioral studies finds that infants show increased looking times when hearing IDS compared to ADS stimuli across ages and methods (Cooper & Aslin, 1990; see Dunst, Gorman, & Hamby, 2012 for a meta-analysis). This attentional enhancement is also documented in neurophysiological studies showing increased neural activation during IDS compared to

ADS exposure (Naoi et al., 2012; Zangl & Mills, 2007). IDS has also been identified as facilitating early word learning. In particular, infants' word segmentation abilities (Floccia et al., 2016; Schreiner & Mani, 2017; Singh, Nestor, Parikh, & Yull, 2009; Thiessen, Hill, & Saffran, 2005) and their learning of word-object associations (Graf Estes & Hurley, 2013; Ma, Golinkoff, Houston, & Hirsh-Pasek, 2011) are enhanced in the context of IDS. In sum, several lines of evidence suggest that IDS is beneficial for early language development.

Within MB1, 67 labs contributed data from 2,329 infants showing that babies 96 generally prefer to listen to IDS over ADS. Nevertheless, the overall effect size of d=0.3597 was smaller than a previously reported meta-analytic effect size of d = 0.67 (Dunst et al., 98 2012). The results revealed several additional factors that influenced the effect size. First, 99 older infants showed a larger preference of IDS over ADS. Second, the stimulus language 100 was linked to IDS preference, with North American English learning infants showing a 101 larger IDS preference than infants learning other languages. Third, comparing the different 102 methods employed, the head-turn preference procedure yielded the highest effect size, while 103 the central fixation paradigm and eye-tracking methods revealed smaller effects. Finally, 104 exploratory analyses assessed the effect of different inclusion criteria. Across methods, 105 using stricter inclusion criteria led to an increase in effect sizes despite the larger proportion of excluded participants (see also Byers-Heinlein, Bergmann, & Savalei, 2021). 107

However, there is a difference between a result being reliable in a large sample of 108 infants and the measurement of an individual infant being reliable. In studies tracking 109 individual differences, the measured behavior during an experimental setting is often used 110 to predict a cognitive function or specific skill later in life. Individual differences research of this kind often has substantial implications for theoretical and applied work. For example, 112 research showing that infants' behavior in speech perception tasks can be linked to later 113 language development (see Cristia, Seidl, Junge, Soderstrom, & Hagoort, 2014 for a 114 meta-analysis) has the potential to identify infants at risk for later language delays or 115 disorders. A necessary precondition for this link to be observable is that individual 116

differences between infants can be measured with high reliability at these earlier stages, in order to ensure that measured inter-individual variation mainly reflects differences in children's abilities rather than measurement error. How reliable are the measures used in infancy research?

Previous attempts to address the reliability of measurements have typically been 121 limited to adult populations (Hedge, Powell, & Sumner, 2018; Oliveira, Hayiou-Thomas, & 122 Henderson, 2023), or have been conducted with small sample sizes (e.g., Colombo, 123 Mitchell, & Horowitz, 1988; Houston, Horn, Qi, Ting, & Gao, 2007). For example, Houston 124 et al. (2007) tested 10 9-month-old infants' speech discrimination in a visual habituation 125 procedure in two test sessions 1-3 days apart and found a large correlation (r = .7). These 126 data were subsequently included in a much larger systematic investigation of test-retest 127 reliability in infant speech perception (Cristia, Seidl, Singh, & Houston, 2016). Cristia et 128 al. (2016) analyzed 13 different experiments assessing test-retest reliability in infant speech 129 perception tasks, with the retest session occurring 0-18 days after the first session. The 130 experiments were conducted at three different labs with different implementations of the 131 individual studies. Hence, it was only after completed data collection that the data was 132 pooled together by the different labs revealing potential confounds. Nevertheless, the 133 results showed that reliability was extremely variable across the different experiments and labs and low overall (meta-analytic r = .07). 135

In sum, there remains limited evidence and considerable uncertainty about the
test-retest reliability of infant looking time measures. Against this background, the current
study investigated test-retest reliability of infants' performance in a speech preference task.
Within MB1, a multi-lab collaboration, we examined whether infants' preferential listening
behavior to IDS and ADS is reliable across two different test sessions. By collecting data
from multiple labs, we were able to conduct a preregistered, large-scale analysis of
test-retest reliability within a standardized looking-time task that yields reliable condition
effects in infants. In addition to assessing overall test-retest reliability, we also planned to

investigate the influence of several potential moderators on the reliability of IDS
preference: the experimental method, infants' age and linguistic background, and the time
between test sessions.

One main moderator analysis of interest was whether there were any differences in 147 test-retest reliability between three widely used methods: central fixation (CF), 148 eye-tracking (ET), and the head-turn preference procedure (HPP). Exploring differences in 149 CF, ET, and HPP, Junge et al. (2020) provided experimental and meta-analytic evidence 150 in favor of using the HPP in speech segmentation tasks. Similarly, the MB1 project 151 reported an increase in the effect size for HPP compared to CF and ET (ManyBabies 152 Consortium, 2020). HPP requires gross motor movements relative to other methods, such 153 as CF and ET paradigms, for which subtle eye movements towards a monitor located in 154 front of the child are sufficient. One possible explanation for the stronger effects with HPP 155 may be a higher sensitivity to the contingency of the presentation of auditory stimuli and 156 infants' head turns away from the typical forward-facing position. While these findings 157 suggest that HPP may be a more sensitive index of infant preference, they do not 158 necessarily imply higher reliability for individual infants' performance using HPP. For 159 example, Marimon and Höhle (2022) found no evidence for test-retest reliability when testing infants' prosodic preferences using the HPP method across three testing sessions, each 7-8 days apart on average. It remains an open question whether the same measures 162 that produce larger effect sizes at the group-level also have higher test-retest reliability for 163 individual infants (Byers-Heinlein, Bergmann, et al., 2021). In the current study, we 164 therefore assessed whether HPP yields higher test-retest reliability compared to CF and 165 ET in looking-time measures of IDS preference. 166

In our second set of moderator analyses, we aimed to address whether characteristics
of the infant, specifically their age and linguistic background, were associated with
differences in test-retest reliability. In MB1, older infants yielded larger effect sizes. Given
that older infants have had more linguistic experience, we predicted that their preference

may be more stable than that of younger infants. Infants also varied with respect to their 171 linguistic background. All infants were tested using a North American English (hereafter, 172 NAE) stimulus set, which was either their native or non-native language. We predicted 173 that infants for whom NAE was not their native language — and who therefore had little 174 or no experience with NAE — would demonstrate more variable and less reliable looking 175 behavior than English-learning infants. Finally, we assessed whether time between test and 176 retest influenced the reliability of the preference measure. Specifically, we investigated 177 whether test-retest reliability decreased for participants with longer durations between 178 their first and second test session. 179

180 Method

1 Preregistration

We preregistered the current study on the Open Science Framework

(https://osf.io/v5f8t). Section S1 in the Supplementary Materials contains additional notes

on the preregistration decisions and any deviations from the preregistered analytic plan.

Data Collection

A call was issued to all labs participating in the original MB1 study on January 29th,
2018 (ManyBabies Consortium, 2020). The collection of retest session data was initially set
to end on May 31st, 2018, one month after the end date of the original MB1 project. Due
to the fact that the original MB1 project extended the time frame for data collection and
the late start of data collection for the MB1 test-retest study, we also allowed participating
labs to continue data collection past the scheduled end date.

Participants

Contributing labs were asked to recruit monolingual participants between the ages of 194 6 to 12 months. If participating labs could not commit to test either of these age groups, 195 they were also allowed to recruit participants from the youngest age group of 3- to 196 6-month-olds and/or the oldest age group of 12- to 15-month-olds. Labs were asked to 197 contribute half (n=16) or full samples (n=32); however, a lab's data was included in the 198 study regardless of the number of included infants. The study was approved by each lab's 199 respective ethics committee and parental consent was obtained for each infant prior to 197 participation in the study.

Our final sample consisted of 158 monolingual infants from 7 different labs (Table 1).

In order to be included in the study, infants needed a minimum of 90% first language

exposure, to be born full term with no known developmental disorders, and normal hearing

and vision. We excluded 18 additional participants (see Data exclusion section for details).

The mean age of infants included in the study was 245 days (approximately 8.06 months;

range: 108 – 373 days).

207 Materials

Visual stimuli. The visual stimuli and instructions were identical to MB1. For the
CF paradigm and ET, labs used a multicolored static checkerboard as the fixation stimulus
as well as a multicolored moving circle with a ringing sound as an attention-getter between
trials. For the HPP method, labs used their standard procedure, as in MB1.

Auditory stimuli. Our study was faced with a critical design choice: what stimuli
to use to assess test-retest reliability. One constraint on our study was that, since it was a
follow-on to MB1, any stimulus we used would always be presented after the MB1 stimuli.
One option would be simply to bring back infants and have them hear exactly the same
stimulus materials. A weakness of this design would be the potential for stimulus

familiarity effects, however, since infants would have heard the materials before. Further 217 complicating matters, infants might show a preference for or against a familiar stimulus 218 depending on their age (Hunter & Ames, 1988). The ideal solution then would be to create 219 a brand new stimulus set with the same characteristics. Unfortunately, because of the 220 process of how MB1 stimuli were created, we did not have enough normed raw recordings 221 available to make brand new stimulus items that conformed to the same standards as the 222 MB1 stimuli. We therefore chose an intermediate path: we reversed the ordering of MB1 223 stimuli. A second set of naturalistic IDS and ADS recordings of mothers either talking to 224 their infant or to an experimenter was created for the retest session by reversing the order 225 of clips within each sequence of the original study. This resulted in eight reordered 226 sequences of natural IDS and eight reordered sequences of natural ADS with a length of 18 227 seconds each. Average looking times in MB1 were always lower than 9s per trial, even for the youngest children on the earliest trials (the group who looked the longest on average), 229 so most children in MB1 did not hear the second half of most trials. Thus, by reversing the order, we had a perfectly matched stimulus set that was relatively unfamiliar to most 231 infants. The disadvantage of this design was that infants who looked longer might be more 232 likely to hear a familiar clip heard in the previous session. If infants then showed a familiarity preference — an assumption which might not be true — the end result could be 234 to inflate our estimates of test-retest reliability slightly, since longer lookers would on 235 average look longer at retest due to their familiarity preference. We view this risk as 236 relatively low, but do note that it is a limitation of our design. In addition to the 16 237 reversed-order IDS and ADS speech stimuli, we used the identical training stimuli of piano 238 music from MB1. 230

Procedure. Infants were retested using the identical procedure as during the first testing day: CF, HPP, or ET. Participating labs were asked to schedule test and retest sessions 7 days apart with a minimum number of 1 day and a maximum number of 31 days. However, infants whose time between test and retest exceeded 31 days were still

included in the analyses (n = 3). The mean number of days between test and retest was 10 (range: 1 - 49).

A total of 18 trials, including two training, eight IDS, and eight ADS trials, were

presented in one of four pseudo-randomized orders. Trial length was either infant-controlled

or fixed depending on the lab's standard procedure¹: a trial stopped either if the infant

looked away for 2 seconds or after the total trial duration of 18 seconds. The online coding

experimenter and the parent listened to music masked with the stimuli of the study via

noise-cancelling headphones. If the experimenter was in an adjacent room separate from

the testing location, listening to masking music was optional for the experimenter.

In total, 18 participants were excluded from the analysis. 4 Data exclusion. 253 participants were excluded for being preterm (defined as a gestation time of less than 37 254 weeks). 6 participants were excluded due to session errors involving an experimenter error 255 (e.g., inaccurate coding or presentation of retest stimuli on the first test session). 256 Individual trials were excluded if they were marked as trial errors (5.45\% of remaining 257 trials), i.e., if the infant was reported as fussy, an experimental or equipment error 258 occurred, or there was parental interference during the task (e.g., if the parent spoke with 250 the infant during the trial). Trials were also excluded if the minimum looking time of 2 s 260 was not met (12.60% of the remaining trials). If a participant was unable to contribute at 261 least one IDS and one ADS trial for either test or retest after trial-level exclusions, all data 262 of that participant was excluded from the test-retest analyses (12 additional participants). 263

Results Results

265 IDS preference

First, we conducted confirmatory analyses examining infants' preference for IDS in both sessions. Two-samples t-tests comparing the difference in average looking time

¹ Labs using CF or HPP had infant-controlled trial length whereas labs using ET had fixed trial length.

Table 1
Statistics of the included labs. N refers to the number of infants included in the final analysis.

Lab	Method	Language	Mean age (days)	N
InfantCog-UBC	central fixation	English	147	7
babylab-potsdam	HPP	German	227	22
babyling-oslo	eye-tracking	Norwegian	249	10
brookes-babylab	central fixation	English	267	18
infantll-madison	HPP	English	230	30
lancslab	eye-tracking	English	236	16
wsi-goettingen	HPP	German	242	16
wsi-goettingen	central fixation	German	280	39

between IDS and ADS to zero revealed that infants showed a preference of IDS over ADS 268 in Session 1, t(157) = 6.47, p < .001, and Session 2, t(157) = 4.19, p < .001, replicating the 269 main finding from MB1 (Table 2). 68.35% of infants in Session 1 and 63.29% of infants in 270 Session 2 showed a preference for IDS. In order to test whether there was a difference in 271 the strength of the preference effect across sessions, we fit a linear mixed-effects model 272 predicting infants' average difference in looking time between IDS and ADS from test 273 session (1 vs. 2), including by-lab and by-participant random intercepts. There was no 274 significant difference in the magnitude of infants' preference between the two sessions, 275 β =-0.30, SE=0.24, p=.208.

277 Reliability

We assessed test-retest reliability in two planned, confirmatory analyses. First, we fit
a linear mixed-effects model predicting IDS preference in Session 2 from IDS preference in

Trial type	Session 1 Mean	Session 1 SD	Session 2 Mean	Session 2 SD
ADS	7.71	2.77	6.96	2.92
IDS	8.76	2.84	7.75	2.75

Table 2

Average looking times (in seconds) for each session and condition

Session 1, including a by-lab random intercept. The results revealed no significant 280 relationship between IDS preference in Session 1 and 2 (Table 3). Second, we calculated 281 the Pearson correlation coefficient. While a simple correlation coefficient might 282 overestimate the test-retest reliability in our sample because it does not control for the 283 differences between different labs and methods (HPP, CF, and ET), we felt it was 284 important to also conduct a Pearson correlation as it is commonly used to assess reliability. 285 The size of the correlation coefficient was not statistically different from zero and the 286 estimate was small, r = .09, 95% CI [-.06, .25], t(156) = 1.19, p = .237. Moreover, no 287 significant correlations emerged in each sample considered separately (Figure 1; see 288 Supplementary Materials S3 for a meta-analytic approach). 41.77% of the infants reversed 289 their direction of preference for IDS versus ADS from the test to the retest session. 290

To investigate the test-retest reliability of each specific method, we computed Pearson correlation coefficients and the same mixed-effects model described above for HPP, CF, and ET separately (Table 4) in additional exploratory analyses. None of the three methods showed evidence of test-retest reliability. Neither the Pearson correlation coefficients nor the coefficients of the multilevel analysis were significant, all p-values > 0.12. In planned secondary analyses, we found that time between test sessions, participant age, method, and language background did not moderate the relationship between IDS preference in Session and Session 2 (see Supplementary Materials S2). Taken together, we find no significant evidence of test-retest reliability across our preregistered analyses.

Table 3

Coefficient estimates from a linear mixed effects model predicting IDS preference in Session 2.

	Estimate	SE	t	p
Intercept	0.87	0.46	1.92	0.10
IDS Preference Session 1	0.04	0.09	0.41	0.68

Figure 1. Correlation between IDS Preference in Session 1 and Session 2 in each lab and method. Dots indicate individual participants. Error bands represent 95 percent confidence intervals. The dashed line indicates no preference (i.e., a value of zero) for the first and second session, respectively.

Table 4

Coefficient estimates from a linear mixed effects

model predicting IDS preference in Session 2 and

Pearson correlation coefficient for each method

separately.

Method	beta	SE	p	Pearson r
central fixation	-0.20	0.12	0.12	0.08
HPP	0.15	0.14	0.28	0.13
eye-tracking	0.03	0.16	0.84	0.02

Exploratory analyses with different inclusion criteria

To this point, all analyses were performed using the inclusion criteria from MB1, 301 which required only that infants contribute at least one trial per condition for inclusion 302 (i.e., one IDS and one ADS trial). However, more stringent inclusion criteria yielded larger 303 effect sizes in MB1. We therefore conducted exploratory analyses assessing test-retest 304 reliability after applying progressively stricter inclusion criteria, requiring two, four, six, 305 and eight valid trials per condition. Applying stricter criteria — and thereby increasing the 306 number of test trials — increased reliability numerically from r = 0.07 to r = 0.34 (Figure 307 2). In part due to a decrease in sample size, only one of these correlations was statistically 308 significant (when requiring six trial pairs): two valid trial pairs, t(152) = 0.90, p = .367; 309 four valid trial pairs, t(143) = 1.03, p = .306; six valid trial pairs, t(98) = 2.23, p = .028; eight valid trial pairs — all trials in both sessions — t(22) = 1.68, p = .108. The analyses 311 provide tentative evidence that stricter inclusion criteria may lead to higher test-retest 312 reliability, but at the cost of substantial decreases in sample size (see Supplementary 313 Materials S4 for additional analyses, including moderator analyses using a more restricted 314 sample). 315

Figure 2. IDS preferences of both sessions plotted against each other for each inclusion criterion. n indicates the number of included infants, r is the Pearson correlation coefficient as the indicator for reliability.

Correlations between sessions for number of trials contributed and overall looking time

In exploratory analyses, we also investigated whether there were stable individual
differences in (a) the number of trials an infant contributed across the two test sessions and
(b) infants' overall looking times.

Number of trials contributed. We found a strong positive correlation between number of trials contributed during the first and the second session, r = .58, 95% CI [.47, .67], t(160) = 9.00, p < .001 (Figure 3A). In other words, if infants contributed a higher number of trials in one session, compared to other infants, they were likely to contribute a higher number of trials in their next session. This finding is consistent with the hypothesis that how attentive infants are throughout an experiment (and hence how many trials they contribute) is a stable individual difference, at least for some infant looking time tasks.

Overall looking times. To what extent are participants looking times between the 328 two sessions related? To test this question, we investigated whether participants' overall 320 looking times — irrespective of condition — were correlated between the first and second 330 session. There was a robust correlation between average looking time in Session 1 and 331 Session 2: infants with longer looking times during their first session also tended to look 332 longer during their second session, r = .45, 95% CI [.31, .57], t(156) = 6.28, p < .001333 (Figure 3B). This relationship held even after controlling for number of trials, b = 0.42, 334 95% CI [0.27, 0.58], t(154) = 5.52, p < .001, and participants' average age b = 0.44, 95% CI 335 [0.30, 0.59], t(155) = 6.16, p < .001, across the two test sessions in linear regression models. Finally, we found similar correlations in average looking time to IDS stimuli in Session 1 and 2, r = .38, 95% CI [.24, .51], t(156) = 5.19, p < .001, and ADS stimuli in Session 1 and 338 2, r = .40, 95% CI [.26, .53], t(156) = 5.49, p < .001 (Figure 3C; see Supplementary 339 Materials S8 and S9 for further details, including an investigation of item-level 340 correlations). 341

Figure 3. (A) Correlation between the number of trials contributed in Session 1 and Session 2. Each data point represents one infant. Colored lines represent linear fits for each method. (B) Overall correlations in average looking time (in s) between Session 1 and 2. (C) Correlations in average looking time (in s) between sessions, split by IDS/ADS condition.

342

General Discussion

The current study investigated the test-retest reliability of infants' preference for IDS 343 over ADS. As spin-off of the original MB1 project, we tested the IDS preference of infants 344 in two separate test sessions to assess the extent to which their pattern of preference would 345 remain consistent. While we replicated the original effect of infants' speech preference for 346 IDS over ADS for both the test and retest session on the group-level, we found that infants' speech preference measures showed no evidence of test-retest reliability. In other words, we were unable to detect stable individual differences in infants' preference for IDS. This finding is consistent with past research suggesting low test-retest reliability in other 350 infant paradigms (Cristia et al., 2016; Marimon & Höhle, 2022). Given that most experimental procedures conducted in infant research are interested in the comparison of groups, individual differences between participants within a specific condition are usually 353 minimized by the experimental procedure while differences between conditions are 354 maximized. Therefore, infant preference measures may be a good approach for capturing 355 group-level phenomena, but may be less appropriate for examining individual differences in 356 development. 357

Assessing the influence of different moderators on test-retest reliability yielded similar 358 deceiving results. While previous research suggests that HPP may be a more sensitive index 359 of infant preference and speech segmentation abilities (Junge et al., 2020; ManyBabies 360 Consortium, 2020), we find no evidence for higher test-retest reliability for HPP relative to 361 ET and CF. Similarly, our planned analyses with various other moderators such as time between test sessions, infants' language background, and infants' age did not appear to exert a discernible impact on the test-retest reliability of infants' speech preference. One possible explanation may be that these analyses are largely underpowered as by far fewer 365 labs contributed to the study than we had anticipated by the time of the preregistration. 366 Alternatively, method, time between test session, infants' language background, and age 367

may simply not moderate the relationship of infant preference in the two test sessions.

Consistent with general psychometric theory (e.g., DeBolt, Rhemtulla, & Oakes, 369 2020), stricter inclusion criteria — and consequently a larger number of included test trials 370 per participant — tended to increase the magnitude of the correlation between test 371 sessions. However, this association was based on exploratory analyses and was in part only 372 observed descriptively, and hence should be interpreted with caution. A similar effect on 373 the group-level was found in the MB1 project, where a stricter inclusion criterion led to 374 bigger effect sizes (ManyBabies Consortium, 2020). As in MB1, higher reliability through 375 strict exclusions came at a high cost. In particular, with the strictest criterion, only a small 376 portion of the original sample size (24 out of 158 infants) could be included in the final 377 sample. In other words, applying stricter criteria leads to a higher drop-out rate and can 378 dramatically reduce the sample size. In the case of studies in the field of developmental 379 science, where there are many practical restrictions in collecting large samples of infants 380 (e.g., birth rate in the area, restricted lab capacities, budget restrictions), a strict drop-out 381 criterion may often be difficult to implement. Note that studies in developmental science 382 already have above-average drop-out rates (Miller, 2017). In addition, drop out may not be 383 random, and so having high drop-out rates can further limit the generalizability of a study. In fact, the number of trials individual infants contributed was highly correlated between test sessions in the current study (see Supplementary Materials S6). Particularly in the context of turning individual differences measures into diagnostic tools, high drop-out rates 387 have an additional limitation of not being broadly usable. 388

Even under best-case scenarios, reliability remained quite low. For example, when restricting the sample to infants contributing at least 6 trials in each condition in both sessions, we obtained a correlation of r = 0.22 and an intra-class correlation coefficient of α = 0.36. As Byers-Heinlein, Bergmann, et al. (2021) outline, low measurement reliability severely restricts power for detecting relationships between measures. Using the same approach as Byers-Heinlein, Bergmann, et al. (2021), we estimate that over 682 infants

would be needed to have at least 80% power to observe a true correlation of r=.3 between two measurements, assuming an intra-class correlation coefficient as large as that observed in our restricted sample ($\alpha=0.36$). Even a very large true correlation of r=.7 would require a sample size of over 120 infants. In other words, even under optimistic estimates of reliability based on strict inclusion criteria, the low reliability of IDS preference measures would severely limit the feasibility of individual difference and longitudinal research using current methods.

An alternative approach to increasing the number of valid trials is to increase the 402 number of experimental trials. This approach seeks to increase the likelihood that 403 participants will contribute sufficient trials (after trial-level exclusions) to allow for precise 404 individual-level estimates (DeBolt et al., 2020; see also Silverstein, Feng, Westermann, 405 Parise, & Twomey, 2021). While this approach is promising, it may not always be feasible, 406 because the attention span of a typical infant participant is limited. Therefore, prolonging 407 the experimental procedure to maximize the absolute number of trials is often challenging 408 in practice. Other avenues for obtaining higher numbers of valid trials may include changes 409 in the procedure (e.g., Egger, Rowland, & Bergmann, 2020) or implementing multi-day test 410 sessions (Fernald & Marchman, 2012).

As our results are only based on the phenomenon of IDS preference (albeit, with 412 three widely used methods: HPP, CF, ET) it is essential to further assess the underlying 413 reliability of preferential looking measures within other areas of speech perception 414 (Marimon & Höhle, 2022). While most infants prefer IDS over ADS (Dunst et al., 2012), 415 patterns of preferential looking in other tasks (e.g., speech segmentation) are often inconsistent and difficult to predict (Bergmann & Cristia, 2016). These inconsistencies in 417 looking behavior are especially important to consider in the context of relating a direction of preference to later language development, and can sometimes lead to seemingly 419 contradictory findings. That is, both familiarity and novelty responses have been suggested 420 to be predictive of infants' later linguistic abilities (DePaolis, Vihman, & Keren-Portnoy, 421

2014; Newman, Ratner, Jusczyk, Jusczyk, & Dow, 2006; Newman, Rowe, & Ratner, 2016).
In light of our findings, researchers conducting longitudinal studies with experimental data
from young infants predicting future outcomes should be cautious, as there may be large
intra-individual variability affecting preference measurement.

While we observed limited evidence for test-retest reliability using preference 426 measures, we observed robust correlations for average looking times between session 1 and 427 2, both overall and for IDS and ADS stimuli considered separately (see also Supplementary 428 Materials S8 for an investigation of item-level correlations). This finding is consistent with 429 past results in infant looking time studies finding robust correlations in average looking 430 times across multiple sessions (Marimon & Höhle, 2022). It also raises an apparent puzzle: 431 why are overall looking times for ADS and IDS stimuli correlated, while difference scores 432 are not? One explanation is that infants have stable individual differences in how long they 433 look to stimuli, but little or no stable individual differences in their preference for one 434 stimulus type over another. This only partially explains the current pattern of results, 435 however, because IDS looking time in Session 1 predicted IDS looking time in Session 2 436 even when controlling for ADS looking time, and vice versa (see Supplementary Materials 437 S8). In other words, the condition-specific looking time correlations are not fully explained 438 by overall looking behavior. Another long-established explanation is that difference scores 439 tend to have poor measurement reliability, because difference scores combine error from individual measurements into a composite score and increasing the ratio of error relative to the variance between participants (Hedge et al., 2018; Lord, 1956). Given the limitations of difference scores (and composite scores in general), one goal for future research will be to assess the use of trial-by-trial model-based approaches for estimating reliability (Haines et al., 2020; Rouder & Haaf, 2019).

446 Limitations

While we had an above-average sample size for a study in infant research, we were 447 unable to approach the number of participants collected within the original MB1 study. In 448 addition to a delayed call, the extra effort of having to schedule a second lab visit for each 440 participant and the fact that there were already other collaborative studies taking place 450 simultaneously (MB1B, Byers-Heinlein, Tsui, Bergmann, et al., 2021; MB1G, 451 Byers-Heinlein, Tsui, Van Renswoude, et al., 2021), might have contributed to a low 452 participation rate. A higher sample size and a larger number of participating labs from different countries would have enabled us to conduct a more highly-powered test of differences in test-retest reliability across different methods, language backgrounds, and participant age.

A further limitation concerns the stimuli. While the order of the audio recording clips 457 presented to infants within a given trial differed between the first and second session, the 458 exact same stimulus material as in MB1 was used in both sessions. In particular, all 459 children heard the exact same voices in Session 1 and in Session 2. From a practical point 460 of view, this was the most straightforward solution for coordinating the experiment within 461 the larger MB1 project. However, familiarity effects might have influenced infants' looking 462 behavior. Infants with longer looking times in their first session might have had more 463 opportunity to recognize familiar audio clips in their second session. For infants with short 464 looking times, familiar audio clips would only occur towards the end of second-session 465 trials, thus offering infants less opportunity to recognize voices from their first session. Therefore, inconsistent familiarity with the stimulus material in the second session across infants might have artificially lowered test-retest reliability. On the other hand, one factor that mitigates this concern is that infants' looking times generally declined in Session 2 469 compared to Session 1 (consistent with past work, e.g. Marimon & Höhle, 2022; Santolin, 470 Garcia-Castro, Zettersten, Sebastian-Galles, & Saffran, 2021), limiting opportunities for 471

infants to encounter previously experienced stimulus material.

473 Conclusion

Following the MB1 protocol, the current study could not detect test-retest reliability
in measures of infants' preference for IDS over ADS. Subsequent analyses provided
tentative evidence that stricter criteria for the inclusion of participants may enhance
test-retest reliability at the cost of high drop-out rates. Developmental studies relying on
stable individual differences between their participants need to consider the underlying
reliability of their measures, and we recommend a broader assessment of test-retest
reliability in infant research.

References

498

- Bergmann, C., & Cristia, A. (2016). Development of infants' segmentation of words from native speech: A meta-analytic approach. *Developmental Science*, 19(6), 901–917.
- Byers-Heinlein, K., Bergmann, C., & Savalei, V. (2021). Six solutions for more reliable infant research. *Infant and Child Development*, e2296.
- Byers-Heinlein, K., Tsui, A. S. M., Bergmann, C., Black, A. K., Brown, A.,

 Carbajal, M. J., ... Wermelinger, S. (2021). A multilab study of bilingual

 infants: Exploring the preference for infant-directed speech. Advances in

 Methods and Practices in Psychological Science, 4(1), 2515245920974622.
- Byers-Heinlein, K., Tsui, R. K.-Y., Van Renswoude, D., Black, A. K., Barr, R.,

 Brown, A., ... Singh, L. (2021). The development of gaze following in

 monolingual and bilingual infants: A multi-laboratory study. *Infancy*, 26(1),

 4–38.
- Colombo, J., Mitchell, D. W., & Horowitz, F. D. (1988). Infant visual attention in
 the paired-comparison paradigm: Test-retest and attention-performance
 relations. *Child Development*, 1198–1210.
 - Cooper, R. P., & Aslin, R. N. (1990). Preference for infant-directed speech in the first month after birth. *Child Development*, 61(5), 1584–1595.
- Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. *Child Development*, 85(4), 1330–1345.
- Cristia, A., Seidl, A., Singh, L., & Houston, D. (2016). Test–retest reliability in infant speech perception tasks. *Infancy*, 21(5), 648–667.
- DeBolt, M. C., Rhemtulla, M., & Oakes, L. M. (2020). Robust data and power in infant research: A case study of the effect of number of infants and number of trials in visual preference procedures. *Infancy*, 25(4), 393–419.

- DePaolis, R. A., Vihman, M. M., & Keren-Portnoy, T. (2014). When do infants 508 begin recognizing familiar words in sentences? Journal of Child Language, 41(1), 509 226-239.510 Dunst, C., Gorman, E., & Hamby, D. (2012). Preference for infant-directed speech 511
- in preverbal young children. Center for Early Literacy Learning, 5(1), 1–13. 512 Retrieved from 513 http://www.earlyliteracylearning.org/cellreviews/cellreviews v5 n1.pdf 514
- Egger, J., Rowland, C. F., & Bergmann, C. (2020). Improving the robustness of 515 infant lexical processing speed measures. Behavior Research Methods, 52(5), 516 2188-2201.517
- Fernald, A., & Marchman, V. A. (2012). Individual differences in lexical processing 518 at 18 months predict vocabulary growth in typically developing and late-talking 519 toddlers. Child Development, 83(1), 203–222. 520
- Fernald, A., Taeschner, T., Dunn, J., Papousek, M., Boysson-Bardies, B. de, & 521 Fukui, I. (1989). A cross-language study of prosodic modifications in mothers' 522 and fathers' speech to preverbal infants. Journal of Child Language, 16(3), 523 477-501.524
- Floccia, C., Keren-Portnoy, T., DePaolis, R., Duffy, H., Delle Luche, C., Durrant, 525 S., ... Vihman, M. (2016). British english infants segment words only with 526 exaggerated infant-directed speech stimuli. Cognition, 148, 1–9. 527
- Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., ... 528 Yurovsky, D. (2017). A collaborative approach to infant research: Promoting 529 reproducibility, best practices, and theory-building. Infancy, 22(4), 421–435. 530 https://doi.org/10.1111/infa.12182 531
- Graf Estes, K., & Hurley, K. (2013). Infant-directed prosody helps infants map 532 sounds to meanings. Infancy, 18(5), 797-824. 533 https://doi.org/10.1111/infa.12006

- Haines, N., Kvam, P. D., Irving, L. H., Smith, C., Beauchaine, T. P., Pitt, M. A., ...

 Turner, B. (2020). Theoretically Informed Generative Models Can Advance the

 Psychological and Brain Sciences: Lessons from the Reliability Paradox
- Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. *Behavior Research Methods*, 50(3), 1166–1186.
- Houston, D. M., Horn, D. L., Qi, R., Ting, J. Y., & Gao, S. (2007). Assessing speech discrimination in individual infants. *Infancy*, 12(2), 119–145.

[Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/xr7v3

538

553

554

- Hunter, M. A., & Ames, E. W. (1988). A multifactor model of infant preferences for novel and familiar stimuli. *Advances in Infancy Research*, 5, 69–95.
- Johnson, E., & Zamuner, T. (2010). Using infant and toddler testing methods in language acquisition research. In E. Blom & S. Unsworth (Eds.), Experimental methods in language acquisition research (pp. 73–93). Amsterdam: John Benjamins Publishing Company.
- Junge, C., Everaert, E., Porto, L., Fikkert, P., Klerk, M. de, Keij, B., & Benders, T.

 (2020). Contrasting behavioral looking procedures: A case study on infant

 speech segmentation. *Infant Behavior and Development*, 60, 101448.
 - Lord, F. M. (1956). The measurement of growth. Educational and Psychological Measurement, 16, 421–437. https://doi.org/10.1177/001316445601600401
- Ma, W., Golinkoff, R. M., Houston, D. M., & Hirsh-Pasek, K. (2011). Word learning in infant-and adult-directed speech. Language Learning and

 Development, 7(3), 185–201.
- ManyBabies Consortium. (2020). Quantifying sources of variability in infancy
 research using the infant-directed-speech preference. Advances in Methods and
 Practices in Psychological Science, 3(1), 24–52.
 - Marimon, M., & Höhle, B. (2022). Testing prosodic development with the headturn

- preference procedure: A test-retest reliability study. Infant and Child

 Development, e2362.
- Miller, S. A. (2017). Developmental research methods. Sage publications.
- Naoi, N., Minagawa-Kawai, Y., Kobayashi, A., Takeuchi, K., Nakamura, K.,
 Yamamoto, J., & Shozo, K. (2012). Cerebral responses to infant-directed speech
 and the effect of talker familiarity. *Neuroimage*, 59(2), 1735–1744.
- Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006).

 Infants' early ability to segment the conversational speech signal predicts later

 language development: A retrospective analysis. *Developmental Psychology*,

 42(4), 643.
- Newman, R., Rowe, M. L., & Ratner, N. B. (2016). Input and uptake at 7 months predicts toddler vocabulary: The role of child-directed speech and infant processing skills in language development. *Journal of Child Language*, 43(5), 1158–1173.
- Oakes, L. M. (2017). Sample size, statistical power, and false conclusions in infant looking-time research. *Infancy*, 22(4), 436–469.
- Oliveira, C. M., Hayiou-Thomas, M. E., & Henderson, L. M. (2023). The reliability
 of the serial reaction time task: Meta-analysis of test-retest correlations. *Royal*Society Open Science, 10(7), 221542. https://doi.org/10.1098/rsos.221542
- Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individual differences in experimental tasks. *Psychonomic Bulletin & Review*, 26(2), 452–467.

 https://doi.org/10.3758/s13423-018-1558-y
- Santolin, C., Garcia-Castro, G., Zettersten, M., Sebastian-Galles, N., & Saffran, J.

 R. (2021). Experience with research paradigms relates to infants' direction of

 preference. *Infancy*, 26(1), 39–46. https://doi.org/10.1111/infa.12372
- Schreiner, M. S., & Mani, N. (2017). Listen up! Developmental differences in the impact of IDS on speech segmentation. *Cognition*, 160, 98–102.

Silverstein, P., Feng, J., Westermann, G., Parise, E., & Twomey, K. E. (2021). 589 Infants learn to follow gaze in stages: Evidence confirming a robotic prediction. 590 Open Mind, 1-15. 591 Singh, L., Nestor, S., Parikh, C., & Yull, A. (2009). Influences of infant-directed 592 speech on early word recognition. Infancy, 14(6), 654–666. 593 Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech 594 facilitates word segmentation. Infancy, 7(1), 53–71. 595 https://doi.org/10.1207/s15327078in0701_5 596 Zangl, R., & Mills, D. L. (2007). Increased brain activity to infant-directed speech 597 in 6-and 13-month-old infants. Infancy, 11(1), 31–62. 598 https://doi.org/10.1207/s15327078in1101_2