

PROJECT CONCEPT NOTE

CARBON OFFSET UNIT (CoU) PROJECT

Title: 11.998 MW bundle of Small Scale Hydro Power project by Government of Arunachal Pradesh

Version 2.0

Date 27-03-2022

First CoU Issuance Period: 8 years

Date: 01/01/2014 to 31/12/2021

Project Concept Note (PCN) CARBON OFFSET UNIT (CoU) PROJECT

BASIC INFORMATION						
Title of the project activity	11.998 MW bundle of Small Scale Hydro Power project by Government of Arunachal Pradesh					
Scale of the project activity	Small Scale					
Completion date of the PCN	27-03-2022					
Project participants	Creduce Technologies Private Limited (Representator) Government of Arunachal Pradesh (Project Proponent)					
Host Party	India					
Applied methodologies and standardized baselines	Applied Baseline Methodology: AMS-I.D: "Grid connected renewable electricity generation", version 18 Standardized Methodology: Not Applicable.					
Sectoral scopes	01 Energy industries (Renewable/Non-Renewable Sources)					
Estimated amount of total GHG emission reductions	To be estimated during verification [An ex-ante estimate is 37,837 CoUs per year]					

SECTION A. Description of project activity

A.1. Purpose and general description of Carbon offset Unit (CoU) project activity >>

The proposed project activity involves construction and operation of 19 Micro and Small Scale hydel projects in the state of Arunachal Pradesh in India. The project activity has been essentially conceived to generate clean energy by utilizing the hydro potential of the flowing stream. The project is a run of the river type with minimum environmental impacts and will reduce inhabitants' dependence on fossil fuels. This in turn will lead to reduction of greenhouse gas (GHG) emissions by an estimated 37,837 tonnes of CO₂e / year during the crediting period.

Total cumulative installed capacity of the project would be 11.998 MW with an annual gross energy generation of 42,041 MWh. These 19 Micro and Small Scale hydel projects will deliver electricity to the villages in the vicinity, through a mix of National and Regional transmission networks and will also supply power to different commercial customers in the region.

All the Micro and Small Scale hydel projects are being developed by Department of Hydro Power Development (DHPD), Govt. of Arunachal Pradesh and are being managed by DHPD divisions, which have been constituted for each project. These projects will provide energy security and will contribute to the sustainable development of the region. There will also be significant improvement in the quality of life of the villagers.

Purpose of the project activity:

The main purpose of the project activity is to generate renewable electrical energy through sustainable means without causing any negative impact on the environment, and to contribute to climate change mitigation efforts.

Apart from the generation of electrical power, the project also contributes to the following.

- a) Sustainable development of the region.
- b) Rural development, as all the projects are located in rural areas.
- c) Generation of additional employment for the local stakeholders.

The proposed project activity is promoted by Government of Arunachal Pradesh (herein after called as project proponent 'PP'). The proposed project activity is installation and operation of 19 Micro and Small Scale Hydel Power off-grid Projects comprising of multiple units of hydro Turbine and Generators with an aggregated installed capacity of 11.998 MW whose Technical and Commissioning details are shown in **Annexure-I**.

The net generated electricity from the project activity is supplied to the rural population for household and commercial application via grid network. In pre-project scenario, electricity delivered to the grid by the project activity would have otherwise been generated by the operation of fossil fuel-based grid-connected power plants and by the addition of new fossil fuel-based generation sources in the grid. As the nature of the hydro project, no fossil fuel is involved for power generation in the project activity. The electricity produced by the project is directly contributing to climate change mitigation by reducing the anthropogenic emissions of greenhouse gases into the atmosphere by displacing an equivalent amount of power at grid.

Hence, project activity is displacing the estimated annual net electricity generation i.e., 42,041 MWh from the Indian grid system, which otherwise would have been generated by the operation of fossil fuel-based grid-connected power plants. The estimated annual CO2e emission reductions by the project activity are expected to be 37,837 tCO2e.

The estimated annual average and the total CO₂e emission reductions by the project activity is expected to be 37,837 tCO₂e, whereas actual emission reduction achieved during the first CoU period shall be submitted as a part of first monitoring and verification.

Since the project activity will generate electricity through hydro energy, a clean renewable energy source it will not cause any negative impact on the environment and thereby contributes to climate change mitigation efforts.

Project's Contribution to Sustainable Development

Indian economy is highly dependent on "Coal" as fuel to generate energy and for production processes. Thermal power plants are the major consumers of coal in India and yet the basic electricity needs of a large section of population are not being met. This results in excessive demands for electricity and places immense stress on the environment.

Changing coal consumption patterns will require a multi-pronged strategy focusing on demand, reducing wastage of energy and the optimum use of renewable energy (RE) sources. This project is a greenfield activity where grid power is the baseline. The renewable power generation is gradually contributing to the share of clean & green power in the grid; however, grid emission factor is still on higher side which defines grid as distinct baseline.

The Government of India has stipulated following indicators for sustainable development in the interim approval guidelines for such projects which are contributing to GHG mitigations. The Ministry of Environment, Forests & Climate Change, has stipulated economic, social, environment and technological well-being as the four indicators of sustainable development. It has been envisaged that the project shall contribute to sustainable development using the following ways:

Social well-being: The project would help in generating direct and indirect employment benefits accruing out of ancillary units for manufacturing of the hydro turbine generator and for maintenance during operation of the project activity. It will lead to development of infrastructure around the project area in terms of improved road network, etc. and will also directly contribute to the development of renewable infrastructure in the region.

Economic well-being: Being a renewable resource, using hydro energy to generate electricity contributes to conservation precious natural resources. The project contributes to the economic sustainability through promotion of decentralization of economic power, leading to diversification of the national energy supply, which is dominated by conventional fuel based generating units. Locally, improvement in infrastructure will provide new opportunities for industries and economic activities to be setup in the area. Apart from getting better employment opportunities, the local people will get better prices for their land, thereby resulting in overall economic development.

<u>Technological well-being:</u> The project activity leads to the promotion of 11.998 MW Micro and Small Scale hydro turbine generators into the region and will promote practice for small scale industries to reduce the dependence on carbon intensive energy supply to meet the captive requirement of electrical energy and also increasing energy availability and improving quality of power under the service area. Hence, the project leads to technological well-being.

Environmental well-being: The project utilizes hydro energy for generating electricity which is a clean source of energy. The project activity will not generate any air pollution, water pollution or solid waste to the environment which otherwise would have been generated through fossil fuels. Also, it will contribute to reduction GHG emissions. Thus, the project causes no negative impact on the surrounding environment contributing to environmental well-being.

With regards to ESG credentials:

At present specific ESG credentials have not been evaluated, however, the project essentially contributes to various indicators which can be considered under ESG credentials. Some of the examples are as follows:

Under Environment:

The following environmental benefits are derived from the project activity:

- Produces renewable electricity without any GHG emissions.
- Run-of-river hydro power plant with little impact on the surrounding ecology.
- No increase in volume of reservoir and no land inundation, hence no disturbance to the natural habitat.

For the PP, energy sale pattern is now based on renewable energy due to the project and it also contributes to GHG emission reduction and conservation of depleting energy sources associated with the project baseline. Hence, project contributes to ESG credentials.

Under Social:

The social well-being is assessed by contribution to improvement in living standards of the local community. The project activity is located in remote villages of industrially backward region in the state of Arunachal Pradesh. The implementation of the project activity would provide job opportunities to the local community; contribute in poverty alleviation of the local community and development of basic amenities to community leading to improvement in living standards of the community.

Under Economics:

Economic well-being refers to additional investment consistent with the needs of the local community. The project activity is associated with a significant investment. This investment is quite significant in a rural area. These activities would contribute to the economic well-being of the local community. The project activity has also provided direct and indirect job opportunities to the local community during construction and shall provide permanent job opportunities during operation. During operation of the project activity, many persons has been employed directly, apart from indirect employment, which would augur well for the economic well-being of the community.

A.2 Do no harm or Impact test of the project activity>>

There was no harm identified form the project and hence no mitigations measures are applicable.

Rational: as per 'Central Pollution Control Board (Ministry of Environment & Forests, Govt. of India)', final document on revised classification of Industrial Sectors under Red, Orange, Green and White Categories (07/03/2016), it has been declared that hydro project activity falls under the "White category". White Category projects/industries do not require any Environmental Clearance such as 'Consent to Operate' from PCB as such project does not lead to any negative environmental impacts. Additionally, as per Indian Regulation, Environmental and Social Impact Assessment is not required for Hydro Projects.

A.3. Location of project activity >>

Country : India

State : Arunachal Pradesh

District : West Siang, Shi Yomi, Changlang, Anjaw

Below table contains location details of the projects.

Sr. No.	Project Name	Latitude and Longitude	Village	Town/City	District	
1	Kamba SHEP	28.296175 N, 94.655766 E	Goli Balek Village	Kamba	West Siang	
2	Liromoba MHS	28°5'48.84" N, 94°28'52.70" E	Ligo Village	Liromoba	West Siang	
3	Mechuka MHS	28°35'9.32"N, 94°7'39.11"E	Mechuka	Mechuka	Shi Yomi	
4	Tato MHS	28°30'50.1"N, 94°21'35.44"E	Tato	Tato	Shi Yomi	
5	Solegamang MHS	28°33'38.44"N, 94°10'59.96"E	Lingdungloti	Mechuka	Shi Yomi	
6	Yingko Sikong MHS	28°32'11.22"N, 94°15'36.1"E	Rapum	Mechuka	Shi Yomi	
7	Sisir Nallah MHS	28°29'57.48"N, 94°25'2.5"E	Tadogitu	Tato	Shi Yomi	
8	Sirikorang MHS	28°38'38.3"N, 94°4'43.5"E	Lhallung	Mechuka	Shi Yomi	
9	Namchik Phase - I MHS	27°24' 03"N, 96°11' 10" E	Renuk	Manmao	Changlang	
10	Namchik Phase - II MHS	27°17' 01"N, 96°07' 14" E	Renuk Manmao		Changlang	
11	Tissue Ph-II MHS	27°60'20.63"N, 95°44'14.95"E	Jungsam	Changlang	Changlang	
12	Tinning MHS	27°9'23.24"N, 95°47'2.28"E	Lunglung	Changlang	Changlang	
13	Jongkey Nallah MHS	27°7'N, 95°41'E	Sumlam	Changlang	Changlang	
14	Chicklong MHS	27°0'30.97"N, 95°44'54.31"E	Hanalthung	Changlang	Changlang	
15	Matinallah MHS	27°53'33"N, 96°49'55"E	Chequenty	Hawai	Anjaw	
16	Yapak Nallah MHS	28°06'22"N, 97°00'02"E	Yapak	Walong	Anjaw	
17	Krawti Nallah MHS	28°13'50"N, 97°01'20"E	Krawti	Kibithoo	Anjaw	
18	Kachopani MHS	25º 35' N, 96º 20' E	Taflagam	Chaglagam	Anjaw	
19	Teepani MHS	28º 30' N, 95º 20' E	Chipro	Hayuliang	Anjaw	

The representative location map of the project locations is indicated below:

(Courtesy: google images and www.mapofindia.com)

A.4. Technologies/measures>>

The project activity involves various technologies of hydro turbine generators with internal electrical lines connecting the project activity with local evacuation facility. Project-wise Technical Specifications can be referred in the below table:

Sr. No.	Project Name	Unit Capacity (kW)	No. of units	Total Capacity (MW)
1	Kamba SHEP	2000	3	6
2	Liromoba MHS	1000	2	2
3	Mechuka MHS	25	6	0.15
4	Tato MHS	(50 + 20)	(2 + 2)	0.14
5	Solegamang MHS	50	1	0.05
6	Yingko Sikong MHS	50	1	0.05
7	Sisir Nallah MHS	8	1	0.008
8	Sirikorang MHS	250	2	0.5
9	Namchik Phase - I MHS	250	2	0.5
10	Namchik Phase - II MHS	150	2	0.3
11	Tissue Ph-II MHS	250	2	0.5
12	Tinning MHS	25	2	0.05
13	Jongkey Nallah MHS	50	1	0.05
14	Chicklong MHS	75	2	0.15
15	MATINALLAH MHS	(250 + 50)	(2 + 1)	0.55
16	YAPAK NALLAH MHS	100	2	0.2
17	KRAWTI NALLAH MHS	50	2	0.1
18	KACHOPANI MHS	100	2	0.2
19	TEEPANI MHS	250	2	0.5
Tot	al Micro and Small Scale Hydro	Power bundle (in MW)	11.998

The hydro turbines machine specifications and their commissioning dates can be found in Annexure I.

In the absence of the project activity the equivalent amount of electricity would have otherwise been generated by the operation of fossil fuel-based grid-connected power plants and fed into unified India grid system, hence baseline scenario of the project activity is the grid-based electricity system, which is also the pre-project scenario as discussed in the previous section.

A.5. Parties and project participants >>

Party (Host)	Participants
India	Creduce Technologies Private Limited (Representator)
	Contact person: Shailendra Singh Rao Mobile: +91 9016850742, 9601378723 Address: 2-O-13,14 Housing Board Colony, Banswara, Rajasthan - 327001, India
	Government of Arunachal Pradesh (Developer) Address: Vidyut Bhawan, Itanagar, Arunachal Pradesh 791111, India.

A.6. Baseline Emissions>>

The baseline scenario identified at the PCN stage of the project activity is:

• Grid

In the absence of the project activity, the equivalent amount of electricity would have been generated by the operation of fossil fuel-based grid-connected power plants and fed into NEWNE grid or Regional grid, which is carbon intensive due to use of fossil fuels. Hence, baseline scenario of the project activity is the grid-based electricity system, which is also the pre-project scenario.

Schematic diagram showing the baseline scenario:

Project Scenario:

NEWNE – North East West and North-East Grid, is now a part of unified Indian Grid system.

Baseline Scenario:

As per the approved consolidated methodology AMS-I.D. Version 18, if the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following:

"The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

The project activity involves setting up of a new plant to harness the green power from Hydro energy and to supply the produced power to the grid. In the absence of the project activity, the equivalent amount of power would have been supplied by the Indian grid, which is fed mainly by fossil fuel fired plants. Hence, the baseline for the project activity is the equivalent amount of power produced at the Indian grid.

A.7. Debundling>>

This project activity is not a debundled component of a larger project activity.

SECTION B. Application of methodologies and standardized baselines

B.1. References to methodologies and standardized baselines >>

SECTORAL SCOPE:

01, Energy industries (Renewable/Non-renewable sources)

TYPE:

I - Renewable Energy Projects

CATEGORY:

AMS. I.D. (Title: "Grid connected renewable electricity generation", version 18)

B.2. Applicability of methodologies and standardized baselines >>

The project activity involves generation of grid connected electricity from the construction and operation of a new hydro power-based power project. The project activity has installed capacity of 11.998 MW which will qualify for a small-scale project activity under Type-I of the Small-Scale methodology. The project status is corresponding to the methodology AMS-I.D., version 18 and applicability of methodology is discussed below:

	Applicability Criterion	Project Case
1.	This methodology comprises renewable energy generation units, such as photovoltaic, hydro, tidal/wave, wind, geothermal and renewable biomass: (a) Supplying electricity to a national or a regional grid; or (b) Supplying electricity to an identified consumer facility via national/regional grid through a contractual arrangement such as wheeling.	The project activity involves setting up of a renewable energy (hydro) generation plant that exports electricity to the fossil fuel dominated electricity grid (Indian Grid system). Thus, the project activity meets this applicability conditions.
2.	Illustration of respective situations under which each of the methodology (i.e., AMS-I.D: Grid connected renewable electricity generation", AMS-I.F: Renewable electricity generation for captive use and mini-grid" and AMS-I.A: Electricity generation by the user) applies is included in Table 2	According to the point 1 of the Table 2 in the methodology – "Project supplies electricity to a national/ regional grid" is applicable under AMS I.D. As the project activity supplies the electricity to Indian Grid system grid which is a regional grid, the methodology AMS-I.D. is applicable.
3.	This methodology is applicable to project activities that: (a) Install a Greenfield plant; (b) Involve a capacity addition in (an) existing plant(s); (c) Involve a retrofit of (an) existing plant(s); (d) Involve a rehabilitation of (an) existing plant(s); or (e) Involve a replacement of (an) existing plant(s).	The Project activity involves the installation of new power plant at a site where there was no renewable energy power plant operating prior to the implementation of the project activity. Thus, Project activity is a Greenfield plant and satisfies this applicability condition (a).

Applicability Criterion	Project Case
 4. Hydro power plants with reservoirs that satisfy at least one of the following conditions are eligible to apply this methodology: (a) The project activity is implemented in existing reservoir, with no change in the volume of the reservoir; or (b) The project activity is implemented in existing reservoir, where the volume of the reservoir(s) is increased and the power density as per definitions given in the project emissions section, is greater than 4 W/m² 	As the project activity is a run-off river type hydro power plant, this criterion is not relevant for the project activity.
(c) The project activity results in new reservoirs and the power density of the power plant, as per definitions given in the project emissions section, is greater than 4 W/m2	
5. If the new unit has both renewable and non-renewable components (e.g., a wind/diesel unit), the eligibility limit of 15 MW for a small-scale CDM project activity applies only to the renewable component. If the new unit co-fires fossil fuel, the capacity of the entire unit shall not exceed the limit of 15 MW.	The cumulative capacity of the project activity is 11.998 MW with no provision of Co-firing fossil fuel. Hence, meeting with this criterion.
6. Combined heat and power (co-generation) systems are not eligible under this category	This is not relevant to the project activity as the project involves only hydro power generating units.
7. In the case of project activities that involve the capacity addition of renewable energy generation units at an existing renewable power generation facility, the added capacity of the units added by the project should be lower than 15 MW and should be physically distinct from the existing units.	There is no other existing renewable energy power generation facility at the project site. Therefore, this criterion is not applicable.
8. In the case of retrofit or replacement, to qualify as a small-scale project, the total output of the retrofitted or replacement power plant/unit shall not exceed the limit of 15 MW.	The project activity is a new installation, it does not involve any retrofit measures nor any replacement and hence is not applicable for the project activity.
9. In the case of landfill gas, waste gas, wastewater treatment and agro-industries projects, recovered methane emissions are eligible under a relevant Type III category. If the recovered methane is used for electricity generation for supply to a grid, then the baseline for the electricity component shall be in accordance with procedure prescribed under this methodology. If the recovered methane is used for heat generation or cogeneration other applicable Type-I methodologies such as "AMS I. C.: Thermal energy production with or without electricity" shall be explored.	This is not relevant to the project activity as the project involves only hydro power generating units.

Applicability Criterion	Project Case
10. In case biomass is sourced from dedicated plantations,	1 3
the applicability criteria in the tool "Project emissions	activity as the project involves only
from cultivation of biomass" shall apply.	hydro power generating units.
	_

B.3. Applicability of double counting emission reductions >>

There is no double accounting of emission reductions in the project activity due to the following reasons:

- Project is uniquely identifiable based on its location coordinates,
- Project has dedicated commissioning certificate and connection point,
- Project is associated with energy meters which are dedicated to the consumption point for project developer

B.4. Project boundary, sources and greenhouse gases(GHGs)>>

As per applicable methodology AMS-I.D. Version 18, "The spatial extent of the project boundary includes the project power plant and all power plants connected physically to the electricity system that the project power plant is connected to."

Thus, the project boundary includes the Hydro Turbine Generators and the Indian grid system.

Source	ee	Gas	Included?	Justification/Explanation
	Grid	CO ₂	Yes	CO2 emissions from electricity generation in fossil fuel fired power plants
3asel	connected	CH ₄	No	Minor emission source
	electricity	N ₂ O	No	Minor emission source
	generation	Other	No	No other GHG emissions were emitted from the project
Greenmena		CO ₂	No	No CO ₂ emissions are emitted from the project
ject	Hydro Power	CH ₄	No	Project activity does not emit CH ₄
Project	Project	N ₂ O	No	Project activity does not emit N ₂ O
	Activity	Other	No	No other emissions are emitted from the project

B.5. Establishment and description of baseline scenario >>

This section provides details of emission displacement rates/coefficients/factors established by the applicable methodology selected for the project.

As per para 19 of the approved consolidated methodology AMS-I.D. Version 18, if the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following:

"The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

The project activity involves setting up of a new hydro power plant to harness the green power from hydro energy and to use for sale to national grid i.e., India grid system through PPA arrangement. In the absence of the project activity, the equivalent amount of power would have been generated by the operation of grid-connected fossil fuel-based power plants and by the addition of new fossil fuel-based generation sources into the grid. The power produced at grid from the other conventional sources which are predominantly fossil fuel based. Hence, the baseline for the project activity is the equivalent amount of power produced at the Indian grid.

A "grid emission factor" refers to a CO₂ emission factor (tCO₂/MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO₂/MWh for the 2014-2020 years as a fairly conservative estimate for Indian projects not previously verified under any GHG program. Also, for the vintage 2021, the combined margin emission factor calculated from CEA database in India results into higher emission than the default value. Hence, the same emission factor has been considered to calculate the emission reduction under conservative approach.

Net GHG Emission Reductions and Removals

Thus, $ER_y = BE_y - PE_y - LE_y$

Where:

ER_y = Emission reductions in year y (tCO₂/y)
BE_y = Baseline Emissions in year y (tCO₂/y)
PE_y = Project emissions in year y (tCO₂/y)
LE_y = Leakage emissions in year y (tCO₂/y)

Baseline Emissions

Baseline emissions include only CO₂ emissions from electricity generation in power plants that are displaced due to the project activity. The methodology assumes that all project electricity generation above baseline levels would have been generated by existing grid-connected power plants and the addition of new grid-connected power plants.

The baseline emissions are to be calculated as follows:

$$BE_y = EG_{PJ,y} \times EF_{grid,y}$$

Where:

BE _y	=	Baseline emissions in year y (t CO ₂)
EG _{PJ,y}	=	Quantity of net electricity generation that is produced and fed into the grid as a result of the implementation of this project activity in year y (MWh)
EF _{grid,y}	=	UCR recommended emission factor of 0.9 tCO ₂ /MWh has been considered, this is conservative as compared to the combined margin grid emission factor which can be derived from Database of Central Electricity Authority (CEA), India. (Reference: General Project Eligibility Criteria and Guidance, UCR Standard, page 4)

Project Emissions

As per paragraph 39 of AMS-I.D. (version 18, dated 28/11/2014), for most renewable energy project activities emission is zero.

Hence, PEy = 0

Leakage

As per paragraph 22 of AMS-I.D. version-18, 'If the energy generating equipment is transferred from another activity, leakage is to be considered.' In the project activity, there is no transfer of energy generating equipment and therefore the leakage from the project activity is considered as zero.

Hence, LEy=0

The actual emission reduction achieved during the first CoU period shall be submitted as a part of first monitoring and verification. However, for the purpose of an ex-ante estimation, following calculation has been submitted:

Estimated annual baseline emission reductions (BEy)

- $=42,041 \text{ MWh/year} \times 0.9 \text{ tCO}_2/\text{MWh}$
- $= 37,837 \text{ tCO}_2/\text{year}$ (i.e., 37,837 CoUs/year)

B.6. Prior History>>

The project activity is a small-scale hydro project and was not applied under any other GHG mechanism prior to this registration with UCR. Also, project has not been applied for any other environmental crediting or certification mechanism. Hence project will not cause double accounting of carbon credits (i.e., COUs).

B.7. Changes to start date of crediting period >>

There is no change in the start date of crediting period i.e. 01/01/2014. However, for projects commissioned after 01/01/2014, the start date of crediting period will be from the actual date of commissioning mentioned in Annexure I.

B.8. Permanent changes from PCN monitoring plan, applied methodology or applied standardized baseline >>

Not applicable.

B.9. Monitoring period number and duration>>

First Monitoring Period: 8 years

01/01/2014 to 31/12/2021 (inclusive of both dates)

B.10. Monitoring plan>>

Data and Parameters available at validation (ex-ante values):

Data / Parameter	UCR recommended emission factor
Data unit	tCO ₂ /MWh
Description	A "grid emission factor" refers to a CO ₂ emission factor (tCO ₂ /MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO ₂ /MWh for the 2014 - 2020 years as a fairly conservative estimate for Indian projects not previously verified under any GHG program. Hence, the same emission factor has been considered to calculate the emission reduction under conservative approach.
Source of data	https://a23e347601d72166dcd6- 16da518ed3035d35cf0439f1cdf449c9.ssl.cf2.rackcdn.com//Documents/ /UCRStandardNov2021updatedVer2_301121081557551620.pdf
Value applied	0.9
Measurement methods and procedures	-
Monitoring frequency	Ex-ante fixed parameter
Purpose of Data	For the calculation of Emission Factor of the grid
Additional Comment	The combined margin emission factor as per CEA database (current version 16, Year 2021) results into higher emission factor. Hence for 2021 vintage UCR default emission factor remains conservative.

Data / Parameter	EG _{BL, y}
Data unit	MWh/year
Description	Quantity of net electricity supplied to the grid as a result of the implementation of the project activity in year y (MWh)
Source of data	Monthly Joint Meter Readings (JMRs)
Measurement	Data Type: Measured
procedures (if any):	Monitoring equipment: Energy Meters are used for monitoring Recording Frequency: Continuous monitoring and Monthly recording from Energy Meters, Summarized Annually Archiving Policy: Paper & Electronic
	Calibration frequency: 5 years (as per CEA provision)
	Generally, the calculation is done by the Authority/Discom and the project proponent has no control over the authority for the calculation. Therefore, based on the joint meter reading certificates/credit notes, the project shall raise the invoice for monthly payments.
	In case the monthly JMR provides net export quantity, the same will be directly considered for calculation. However, if the JMR does not directly provide "net electricity" units, then quantity of net electricity supplied to the grid shall be calculated using the parameters reflected in the JMR.
	For example, the difference between the measured quantities of the grid export and the import will be considered as net export:
	$EG_{PJ,y} = EG_{Export} - EG_{Import}$
Measurement Frequency:	Monthly
Value applied:	To be applied as per actual data
QA/QC procedures	Calibration of the Main meters will be carried out once in five (5) years
applied:	as per National Standards (as per the provision of CEA, India) and
	faulty meters will be duly replaced immediately as per the provision of
	power purchase agreement.
	Cross Checking:
	Quantity of net electricity supplied to the grid will be cross checked
	from the invoices raised by the project participant to the grid.
Purpose of data:	The Data/Parameter is required to calculate the baseline emission.
Any comment:	All the data will be archived till a period of two years from the end of the crediting period.

ANNEXURE-I (Technical Specification and Commissioning Details of each unit of the projects)

Project Name	Kamba SHEP			Lirome	oba MHS	Mechuka MHS					
Unit No.	1 2 3		1	2	1	2	3	4	5	6	
Capacity (in kW)	2000	2000	2000	1000	1000	25	25	25	25	25	25
Type of Turbine	Francis Turbine		Francis Turbine		Propeller Type (Kaplan)						
Date of Comission	10-04-2010		04-2010 08-06-2009		12-05-2015						
Main Meter Serial No.	2318695 2318693 2318694		CE-03031M	-	NF29	NF30	NF31	NF32	NF33	NF34	
Main Meter Make	ABB ABB ABB		CABS Electra	-	Trinity	Trinity	Trinity	Trinity	Trinity	Trinity	

Project Name	Tato MHS				Solegamang MHS	Yingko Sikong MHS	Sisir Nallah MHS	Sirikora	ing MHS	Namchik Phase - I MHS	
Unit No.	1	2	3	4	1	1	1	1	2	1	2
Capacity (in kW)	50	50	20	20	50	50	8	250	250	250	250
Type of Turbine	Propeller Type (Kaplan)				Crossflow	Crossflow	Pelton Wheel	Horizontal Francis		Horizontal Francis	
Date of Comission	12-04-2014				23-07-2013	25-07-2013	28-04-2021	14-08-2013		2021	
Main Meter Serial No.	DT-108	DT-109	DT-110	DT-111	NH2331	BEM-34	MFM383A	EM6436	EM6438	-	-
Main Meter Make	Nippen	Nippen	Nippen	Nippen	Trinity	Bentex RK	Selec	Schneider	Schneider	-	-

Project Name	Namchik Ph	nase - II MHS	Tissue P	h-II MHS	Tinni	ng MHS	Jongkey Nallah MHS	Chicklong MHS	
Unit No.	1	2	1	2	1	2	1	1	2
Capacity (in kW)	150	150	250 250		25	25	50	75	75
Type of Turbine	Crossflow	Crossflow	Horizontal Francis		Crossflow	Crossflow	Crossflow	Crossflow	Crossflow
Date of Comission	2019		07-09-2020		22-0	7-2014	26-09-2012	26-09-2012	26-09-2012

Project Name	M ATINALLAH MHS		YAPAK NALLAH MHS		KRAWTI NALLAH MHS		KACHO PANI M HS		TEE PANI M HS		
Unit No.	1	2	3	1	2	1	2	1	2	1	2
Capacity (in kW)	250	250	50	100	100	50	50	100	100	250	250
Type of Turbine	Turgo Jet	Pelton	Axial	Horizontal Francis		Crossflow	Crossflow	Horizontal Francis		Horizontal Francis	
Date of Comission	2005	2018	2018	2006		2011	2011	01-08-2014		01-07-2009	