

性能测试

--Linux 服务器监控

内容回顾

■ Controller介绍

- 作用:设计场景、运行场景并监控场景运行
- 主要菜单的功能

■场景设计

- 目标场景(验收测试,有非常明确的性能指标,结果是达到或达不到)
- Group:两个以上业务相互独立,用户量不成正比

内容回顾

- 百分比模式:模拟场景中用户分不同比例做不同的业务操作
- Scenario —Basic schedule: 收集不同用户负载量下, 各项性能指标
- Scenario—Real-world schedule
 - 做峰值测试
 - 模拟真实场景(拖拽的方式来模拟多少个用户启动,多少个用户停止)

■ 注意事项

 Run-Time Settings中Run Logic设置的迭代次数与Run Mode 中 Duration设置持续时间,优先级问题

内容回顾

- 设置Run Mode后脚本执行过程
- ■多机负载配置
 - 安装Load Generator模块
 - — 并启LoadRunner Agent Runtime Settings Configuration
 - 配置Load Genrators
- ■资源监控
 - CPU (Processer time)

内容回顾

- 内存(可用内存,内存错误量)
- 硬盘(读写速度, 队列长度)
- 网络带宽
- 数据库计数器

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- Linux监控工具nmon

Linux服务器监控概述

- ■服务器端操作系统
 - Windows
 - Linux
- 如果是Linux操作系统,怎样收集资源占用情况数据?

服务器资源监控

- ■测试范围及性能指标
 - CPU
 - 内存
 - 硬盘
 - 网络

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- linux监控工具nmon

top

- 能够实时监控系统的运行状态,并且可以按照CPU及内存使用量进行排序

	Mem :			基示高优勢級			74使用	ed,		iff (cache
KiB	Swap:	名 104 <u>年</u> 建装	:赤傑術	选数 104652	24 free	≘,	Q" üs	sed.	802132 as	vail Mem
P1	ID USE	R PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMAND
1574	5 edu	20	0	42224	3592	305 <mark>6</mark> R	0.3	0.4	0:00.02	_
	1 roo	t 42,0	, 0	37816	6008	4128 S	0.0	0 .16	0:03.05	systemd
讲和	2nroo		0	世往使用的原	0	共享内存S	0.05	存使明		k Greadd
XL13	3 roo	t 20	0	拟内存总量	0	0 S	0.0	0.0	0:00时即是	ksoftirqd/0
	5 roo	t 0	-20	0	0	0 S	0.0	0.0	0:00.00	kworker/0:0H
	7 roo	t 20	0	0	0	0 S	0.0	0.0	0:03.68	rcu_sched
	8 roo	t 20	0	0	0	0 S	0.0	0.0	0:00.00	rcu_bh
	9 roo	t rt	0	世程'	使用例、	未被换s	0.0	0.0	0:00.00	migration/0
1	lO roo	t rt	0	幽的	物理肉花	字大小0 s	0.0	0.0	0:00.15	watchdog/0
1	ll roo	t 20	0	0	0	0 s	0.0	0.0	0:00.00	kdevtmpfs
1	l2 roo	t 0	-20	0	0	0 S	0.0	0.0	0:00.00	netns
1	l3 roo	t 0	-20	0	0	0 S	0.0	0.0	0:00.00	perf

- top结果中常用交互命令(注意大写)
 - M: 根据驻留内存大小进行排序
 - P: 根据CPU使用百分比大小进行排序
 - T: 根据时间/累计时间进行排序

■ top -s 累积模式查看

```
edu@software:~$ top -s
top - 16:01:38 up 6:21, 1 user, load average: 0.00, 0.00, 0.00
Tasks: 102 total, 1 running, 101 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.3 us, 0.3 sy, 0.0 ni, 99.0 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
KiB Mem : 1016136 total, 469092 free, 49756 used, 497288 buff/cache
KiB Swap: 1046524 total, 1046524 free, 0 used. 801892 avail Mem
```

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
1513	root	20	0	0	0	0	S	0.3	0.0	0:07.62	kworker/0:2
1	root	20	0	37816	6008	4128	S	0.0	0.6	0:03.06	systemd
2	root	20	0	0	0	0	S	0.0	0.0	0:00.00	kthreadd
3	root	20	0	0	0	0	S	0.0	0.0	0:00.55	ksoftirqd/0
5	root	0	-20	0	0	0	S	0.0	0.0	0:00.00	kworker/0:0H
7	root	20	0	0	0	0	S	0.0	0.0	0:03.95	rcu_sched
			_								

- top -s 补充说明
 - load average: 系统的运行队列的平均利用率,也可以认为是可运行进程的平均数。三个值分别表示在最后的1分钟、5分钟、15分钟的平均负载值
 - top使用说明:在单核CPU中load average的值为1时,表示满负荷状态。多核CPU中满负荷load average的值为1*CPU核数

- CPU(s): 用户空间占用CPU百分比
- sy:内核空间占用CPU百分比
- ni: 用户进程空间内改变过优先级的进程占用CPU百分比
- id: 空闲CPU百分比
- wa: 等待输入输出的CPU时间百分比
- hi:硬件中断
- si:软件中断
- st:实时

服务器资源监控--top

■ memory:内存

- total: 物理内存总量

- used: 使用的物理内存总量

- free: 空闲内存总量

- buffers: 用作内核缓存的内存量

- Swap: 交换区总量

- used: 使用的交换区总量

- free: 空闲交换区总量

- cached: 缓冲的交换区总量

vmstat

- 展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,I/O读写情况
- 一般使用两个数字参数来完成的,第一个参数是采样的时间间隔数,单位是秒,第二个参数是采样的次数
- 如: vmstat 21(2表示每隔两秒采集一次服务器状态,1表示只采集一次)

- r表示运行队列(就是说多少个进程真的分配到CPU) 如果运行队列 过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。
- ■b表示阻塞的进程

- swpd 虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么该升级内存了或者把耗内存的任务迁移到其他机器
- free 空闲的物理内存的大小
- buff 缓存

- cache 用来记忆我们打开的文件,给文件做缓冲, (这里是 Linux/Unix的聪明之处, 把空闲的物理内存的一部分拿来做文件和 目录的缓存, 是为了提高 程序执行的性能, 当程序使用内存时, buffer/cached会很快地被使用)
- si 每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉

- so 每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上
- bi 块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte(I/O操作时查看读写速度)
- bo 块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。 bi和bo一般都要接近0,不然就是I/O过于频繁,需要调整
- in 每秒CPU的中断次数,包括时间中断

- cs 每秒上下文切换次数,例如我们调用系统函数,就要进行上下文 切换,线程的切换,也要进程上下文切换,这个值要越小越好,太 大了,要考虑调低线程或者进程的数目
- us 用户CPU时间
- sy 系统CPU时间,如果太高,表示系统调用时间长,例如是IO操作 频繁

- id 空闲 CPU时间,一般来说, id + us + sy = 100,一般id是空闲 CPU使用率, us是用户CPU使用率, sy是系统CPU使用率
- wt CPU等待I/O 的时间

- 实际使用中,有些场景会在一段时间内一直监控
 - 使用命令: vmstat 2
- 不监控时,直接结束此命令即可

edu	edu@software:~\$ vmstat 2													
procsmemory						swa	ap	io		-syst	em		cpu-	
r	b	swpd	free	buff	cache	si	so	bi	bo	in	CS	us	sy id w	a st
0	0	0	469380	18696	478620	0	0	17	20	47	100	0	0 100	0 0
0	0	0	469364	18696	478620	0	0	0	0	53	104	0	0 100	0 0
0	0	0	469364	18696	478620	0	0	0	0	47	92	0	0 100	0 0
0	0	0	469364	18696	478620	0	O	0	0	49	94	0	1 100	0 0
0	0	0	469364	18696	478620	0	0	0	0	47	92	0	0 100	0 0
_0	0	0	469364	18696	478620	0	0	0	0	50	94	0	0 100	0 0

top VS vmstat

■ 两者都可以监控服务器资源使用情况,但监控的点不同

top VS vmstat edu@software:~\$ top -s
top - 16:01:38 up 6:21, 1 user, load average: 0.00, 0.00, 0.00
Tasks: 102 total, 1 running, 101 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.3 us, 0.3 sy, 0.0 ni, 99.0 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
KiB Mem : 1016136 total, 469092 free, 49756 used, 497288 buff/cache
KiB Swap: 1046524 total, 1046524 free, 0 used. 801892 avail Mem

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
1513	root	20	0	0	0	0	S	0.3	0.0	0:07.62	kworker/0:2
1	root	20	0	37816	6008	4128	S	0.0	0.6	0:03.06	systemd
2	root	20	0	0	0	0	S	0.0	0.0	0:00.00	kthreadd
3	root	20	0	0	0	0	S	0.0	0.0	0:00.55	ksoftirqd/0
5	root	0	-20	0	0	0	S	0.0	0.0	0:00.00	kworker/0:0H
7	root	20	0	0	0	0	S	0.0	0.0	0:03.95	rcu_sched

```
edu@software:~$ vmstat 2
procs ------memory----- ---swap-- ----io---- -system-- -----cpu-----
     swpd free buff cache
                                          bi
                                                bo in cs us sy id wa st
 r b
                                si
                                     so
 0
   0
          0 469380 18696 478620
                                 0
                                    0
                                          17
                                                20
                                                     47
                                                        100
                                                            0 0 100
   0
          0 469364 18696 478620
                                           0
                                                     53
                                                        104
                                                             0
                                                                0 100
                                                                         0
   0
          0 469364 18696 478620
                                      0
                                            0
                                                     47
                                                         92
                                                             0
                                                               0 100
                                                                         0
   0
          0 469364 18696 478620
                                      0
                                            0
                                                     49
                                                         94
                                                             0
                                                               1 100
                                                                         0
          0 469364 18696 478620
                                           0
                                                     47
                                                         92
                                      0
                                                               0 100
                                                                         0
          0 469364 18696 478620
                                      0
                                                     50
                                                         94
                                                             0
                                                                0 100 0
                                                                        0
```

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- linux监控工具nmon

服务器CPU监控--mpstat

mpstat

- 安装: sudo apt-get install mpstat (Ubuntu 15及以下版本)
- 安装: sudo apt install sysstat (Ubuntu 16及以上版本)
- 可以查看多核CPU中每个计算核心的统计数据
- P (大写)表示监控哪个CPU, CPU在【0, CPU个数-1】中取值
- internal相邻的两次采样的间隔时间
- count采样的次数
- 如: mpstat -P023 (监控第一个CPU, 每隔2s采集一次数据, 共3次)

服务器CPU监控--mpstat

edu@software Linux 4.4.0-	_		ftware)	2	019年03月:	12日 _>	x86_64_	(1 CPU)		
16时44分50秒 16时44分50秒		%usr 0.15	%nice 0.03	%sys 0.14	%iowait 0.07	%irq 0.00	%soft 0.01		_	_	%idle 99.59
edu@software Linux 4.4.0-	_			20	019年03月1	.2日 _x	86_64_	(-	l CPU)		
16时45分32秒	all	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%gnice	%idle
16时45分34秒		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
16时45分34秒		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
16时45分34秒	all	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%gnice	%idle
16时45分36秒		0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	99.00
16时45分36秒		0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	99.00
16时45分36秒	all	%usr	%nice	%sys	%iowait	%irq	%soft	%steal	%guest	%gnice	%idle
16时45分38秒		0.00	0.00	0.00	3.00	0.00	0.00	0.00	0.00	0.00	97.00
16时45分38秒		0.00	0.00	0.00	3.00	0.00	0.00	0.00	0.00	0.00	97.00
Average: Average: Average:	CPU	%usr	%nice	%sys 9	%iowait	%irq	%soft	%steal	%guest	%gnice	%idle
	all	0.00	0.00	0.33	1.00	0.00	0.00	0.00	0.00	0.00	98.67
	0	0.00	0.00	0.33	1.00	0.00	0.00	0.00	0.00	0.00	98.67

服务器CPU监控--mpstat

■ mpstat注意

- 当没有参数时,mpstat则显示系统启动以后所有信息的平均值。有 interval时,第一行的信息自系统启动以来的平均信息。从第二行开 始,输出为前一个interval时间段的平均信息

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- linux监控工具nmon

服务器内存监控—free

free

- 监控系统的内存使用状态
- total: 总计物理内存的大小
- used: 已使用多大
- free: 可用有多少
- shared: 多个进程共享的内存总额
- buffer/cached磁盘缓存的大小

■常用选项

- -b: 以Byte为单位显示内存使用情况
- -k: 以KB为单位显示内存使用情况
- -m: 以MB为单位显示内存使用情况

服务器内存监控—free

edu@softwa	are:~\$ free -m					
	total	used	free	shared	buff/cache	available
Mem:	992	48	458	4	485	783
Swap:	1021	0	1021			

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- linux监控工具nmon

服务器网络监控---netstat

netstat

- 用于显示本机网络连接、运行端口、路由表等信息
- -s 显示网络统计信息
- -l: 仅列出有在Listen(监听)的服务状态
- -p: 显示建立相关链接的程序名
- -t (tcp): 显示tcp相关选项
- -u (udp): 显示udp相关选项
- -c: 每隔一个固定时间,执行该netstat命令

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- linux监控工具nmon

服务器磁盘监控---iostat

iostat

- 是对系统磁盘IO操作进行监控,它的输出主要显示磁盘的读写操作的统计信息,同时给出CPU使用情况
- iostat -x (指定设备名称)
- iostat -x sda 1 3(每隔1s种采集一次数据, 共3次)

目录

- Linux服务器监控概述
- ■服务器资源监控
- ■服务器CPU监控
- ■服务器内存监控
- ■服务器网络监控
- ■服务器磁盘监控
- linux监控工具nmon

■ nmon是一种各种Linux操作系统上广泛使用的监控与分析工具,相对于其它一些系统资源监控工具来说,nmon所记录的信息是比较全面的,它能在系统运行过程中实时地捕捉系统资源的使用情况,并且能输出结果到文件中,然后通过nmon_analyzer工具产生数据文件与图形化结果

- nmon安装:
 - sudo apt-get install nmon (sudo apt install nmon(高版本))
- nmon主要参数:
 - -f 输出文件,必选参数,nmon输出的文件名是默认名称 localhost_date_time.nmon
 - -F <filename> 这个参数和-f相同,只不过用户可以自己定义文件名称

河北解范太学软件学院 Software College of Hebei Normal University

- -s采集数据频率, 也就是保存数据的频率
- -c 采集数据次数
- -t 输出最消耗资源的进程数据
- -m 生成的数据文件的存放目录
- 使用举例
 - nmon -s 2 -c 3 -m /home/liu -F test.nmon

Linux 与Windows 操作系统互传文件

- 1两台主机能ping通;Linux主机有SSH服务,并且打开22端口;
 - (如果防火墙打开,设置22端口不被拦截,\$sudo ufw allow
 - sudo ufw allow ssh)
- 2 Linux 传Windows:
 - 从linux向windows传文件:
 - 在windows的cmd中输入 pscp 用户名@: linux中源文件路径 windows中目的路径

Linux 与Windows 操作系统互传文件

- 如: pscp root@192.168.0.100:/home/aaa.jpg G:/putty/
- 注意:使用pscp只能传文件,无法传目录,要传目录的话可以用psftp
- 3 Windows 向 Linux传文件:
 - 打开cmd窗口,输入命令: pscp 源文件路径 root@hostIp:目的路径
 - 如将aaa.jpg传到/home下,则使用如下命令:

pscp aaa.jpg root@192.168.0.101:/home

- nmon analyser Sheet
 - SYS_SUMM 系统汇总,蓝线为cpu占有率变化情况,粉线为磁盘IO的变化情况
 - AAA 关于操作系统以及nmon本身的一些信息
 - CPU_ALL 所有CPU概述,显示所有CPU平均占用情况
 - CPU_SUMM 每一个CPU在执行时间内的占用情况

- nmon analyser Sheet
 - DISKBUSY 磁盘组每个disk设备平均占用情况
 - DISKREAD 每个磁盘组的平均读情况
 - DISKSIZE 每个磁盘组的平均读写情况(块大小)
 - DISKWRITE 每个磁盘组的平均写情况
 - DISKXFER 每个磁盘组的I/O每秒操作
 - MEM 内存相关的主要信息,使用、空闲内存大小等

内容总结

- Linux服务器监控概述
- ■服务器资源监控
 - vmstat
 - top 命令的使用
- ■服务器CPU监控
 - vmstat

内容总结

- ■服务器内存监控
 - free
- ■服务器网络监控
 - netstat
- ■服务器磁盘监控
 - iostat

内容总结

- linux监控工具nmon
 - 安装
 - nmon
 - 输出到文件
 - 分析工具分析 (nmon analyser Sheet)

Question