Total No	o. of Questions : 8]	SEAT No. :
PA-1 4	499	[Total No. of Pages : 3
	[5926] 119	. 8
	T.E. (Information Techno	ology)
	THEORY OF COMPUTA	
	(2019 Pattern) (Semester - I	
	(2019 attent) (Selfiester - 1) (314441)
<i>Time</i> : 2 ¹	½ Hours]	[Max. Marks : 70
Instructi	ions to the candidates.	
1)	Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or	
2)	Neat diagrams must be drawn wherever necessar	ry.
3)	Figures to the right indicate full marks.	
<i>4</i>)	Assume suitable data, if necessary.	
	0.	
Q1) a)	What is a Regular Grammar? Explain type	es of regular grammar. [5]
b)	Simplify the following CFG.	[6]
- /		
	$S \rightarrow ABA$	
	$A \rightarrow aA \mid \varepsilon$	
	$B \rightarrow bB \mid \epsilon$	
c)	What is ambiguous grammar? Show th	at the following grammar is
	ambiguous and find the equivalent unamb	iguous grammar. [7]
	$E \rightarrow E + E E * E (E) I$	
	$I \rightarrow a \mid b$	iguous grammar. [7]
	OR	

- Write CFG for the language L= $\{a^i \ b^j \ c^k \ | \ i=j+k \ \ j, \ k > 1\}$. **[6] Q2**) a)
 - b)
 - Check whether the given language is CFL or not L={ $a^nb^nc^n|n>=0$ }. [6] Covert the following RLG to FA. [6] $S \rightarrow 0A \mid 1B \mid 0 \mid 1$ $A \rightarrow 0S \mid 1B \mid 1$ $B \rightarrow 0A \mid 1S$ c)

$$S \rightarrow 0A \mid 1B \mid 0 \mid 1$$

$$A \rightarrow 0S \mid 1B \mid 1$$

$$B \rightarrow 0A | 1S$$

Q 3)	a)	Define Post machine.	[3]
	b)	Design a PDA for accepting language L= { $w c w^R w \in (a, b)^*$ }.	[6]
	c)	Define Push down Automata. Explain different types of PDA. Explain two applications of PDA. OR	olain [8]
Q4)	a)	Design a Pushdown Automata for the following language	[7]
		$L = \{a^n c b^n \mid n \ge 1\}$	
	b)	Convert the grammar	[6]
		$S \rightarrow 0S1 \mid A$	
		Α ΙΑΟ S ε	
		to PDA that accepts the same language by empty stack.	
	c)	Compare Finite Automata and Pushdown Automata.	[4]
Q5)	a)	Write a note on Universal turing Machine.	[5]
	b)	Explain post correspondance problem with a suitable example.	[6]
	c)	Construct a Turing machine to find 2's complement of a binary number	r.[7]
		OR OR	
Q6)	a)	Design a Turing Machine to increment value of binary number by one	e.[8]
	b)	Write short notes on	[6]
		i) Unsolvable problems	
		ii) Applications of Turing Machine	
	c)	What are recursive and recursively enumerable languages?	[4]

Q7) a)	What is a Traveling Salesman Problem? Justify that it is a NP-class problem. [8]
b)	Write short notes on [9]
	i) A Simple Un-decidable problem
	ii) Measuring Complexity
	OR
Q8) a)	Explain Cook's theorem in detail. [8]
b)	Explain in detail the Node-Cover Problem. [9]
	* * * * * * * * * * * * * * * * * * *