LES EFFETS ELECTRONIQUES

Introduction

Dans une molécule, un même groupe fonctionnel peut présenter une réactivité différente selon son environnement. Cette réactivité est causée soit par l'effet inductif soit par l'effet mésomère.

I- L'effet inductif

La polarisation d'une liaison covalente entre 2 atomes d'électronégativité différente induit un déplacement du nuage électronique le long de la liaison σ: c'est l'effet inductif.

□ 1- Effet inductif donneur (+I):

Atomes ou groupes d'atomes qui augmentent la densité électronique du carbone, qui est généralement le centre réactif étudié.

2- Effet inductif attracteur (-I):
Atomes ou groupes d'atomes qui diminuent la densité électronique du centre réactif étudié.

Gpt à effet (-I)

Remarques

- 2- l'effet inductif est additif

II- Influence des effets électroniques sur l'acidité et la basicité

a- Effet attracteur

L'effet -I induit une augmentation de l'acidité et donc une diminution de la basicité

$$CH_3$$
-COOH pKa= 4.75 $CICH_2$ -COOH pKa= 2.81 CI_2 CH-COOH pKa= 1.3 CI_3 C-COOH pKa= 1

b- Effet donneur

L'effet +I induit une augmentation de la basicité

II- l'effet mésomère (M)

La mésomérie est une façon de décrire le déplacement de certains e dans une molécule; elle concerne:

- Les e des liaisons π
- Les doublets d'e-libres
- Les charges

C'est le phénomène de conjugaison qui entraine la délocalisation de ces e.

Cas possibles de délocalisation OU conjugaison

1- conjugaison entre deux doublets d'électrons π

- -La délocalisation implique une stabilisation de la molécule.
- -Les atomes participants aux structures délocalisées doivent être coplanaires.
- La règle de l'octet doit être respectée.
 - Toutes les formes mésomères doivent avoir la même charge.

Cas de délocalisation orientée:

2- conjugaison entre un doublet d'électrons π et un DNL

EXP 1: CI-CH=CH-CH3

Remarque: Le Chlore a un effet mésomère donneur (+M) et un effet inductif attracteur.

l'effet Mésomère est plus important que l'effet inductif

EXP2: phénol

Le groupement OH a un effet mésomère donneur (+M)

3- conjugaison entre un doublet d'électrons π et une case vide

4- conjugaison entre un doublet d'électrons libres et une case vide

Exp: CH₃-CH-CH⁺-OH

Influence des effets électroniques sur la stabilité du carbocation

$$CH_3 - CH - CH_2 - CH$$

Groupements à effet mésomère

EFFET (M+)	EFFET (M-)
-OR, -SR, -NR _{2,} -OCOR	-NO ₂ , -CN, -COR,
, -Br, -I, -Cl,-F,	-CO ₂ R, -NO,
phenyl	-CONHR, Phenyl

R= H ou groupement alkyl

