Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr inż. Marcin Kacprowicz

poniedziałek, 12:00

Radosław Grela 216769 Jakub Wąchała 216914

Zadanie 2: Lingwistyczne podsumowania baz danych

1. Cel

2. Wprowadzenie

2.1. Funkcja trapezoidalna

Funkcja trapezoidalna przyjmuje 4 parametry a, b, c, d, dla których spełniony jest warunek a \leq b \leq c \leq d. Jej wzór jest następujący [1]:

$$\mu_A(x) = \begin{cases} \frac{x-a}{b-a} & \text{gdy } x \in (a, b), \\ 1 & \text{gdy } x \in [b, c], \\ \frac{d-x}{d-c} & \text{gdy } x \in (c, d), \\ 0 & \text{w przeciwnym razie.} \end{cases}$$
 (1)

2.2. Funkcja trójkątna

Funkcja trójkątna jest szczególnym przypadkiem funkcji trapezoidalnej. Przyjmuje ona trzy parametry a, b, c, dla których zachodzi warunek a \leq b

 \leq c. Te parametry określają punkty "załamania" tej funkcji. Jej wzór jest następujący [4]:

$$\mu_A(x) = \begin{cases} \frac{x-a}{b-a} & \text{gdy } x \in (a, b), \\ 1 & \text{gdy } x = b, \\ \frac{c-x}{c-b} & \text{gdy } x \in (b, c), \\ 0 & \text{w przeciwnym razie.} \end{cases}$$
 (2)

2.3. Funkcja Gaussowska

Funkcja Gaussowska jest definiowana przez 2 parametry które określają środek funkcji oraz jej szerokość. Wzór jest następujący [3]:

$$\mu_A(x) = e^{\left(-\left(\frac{x-\bar{x}}{\sigma}\right)^2\right)}$$
 (3)

gdzie

- \bar{x} jest środkiem funkcji,
- σ określa szerokość krzywej Gaussowskiej.

3. Miary jakości

3.1. Degree of truth

Degree of truth to suma przynależności wszystkich rozważanych krotek do podsumowania lingwistycznego. Dla kwantyfikatorów relatywnych:

$$T_1 = \mu_Q(\frac{r}{m}) \tag{4}$$

natomiast dla kwantyfikatorów absolutnych

$$T_1 = \mu_Q(r) \tag{5}$$

gdzie

$$r = \sum_{i=1}^{m} \mu_S(d_i) \tag{6}$$

a m to liczba krotek w bazie danych.

3.2. Degree of imprecision

Degree of imprecision określa stopień precyzyjności sumaryzatora. Dany jest wzorem:

$$T_2 = 1 - \left(\prod_{j=1}^n \text{in}(S_j)\right)^{1/n}$$
 (7)

gdzie $in(S_j)$ to stopień rozmycia wyrażony wzorem $in(s_j) = \frac{|supp(S_j)|}{|supp(X)|}$ a z kolei $supp(\cdot)$ oznacza nośnik zbioru rozmytego.

3.3. Degree of covering

Degree of covering reprezentuje, stopień, w jakim nośnik sumaryzatora pokrywa się z nośnikiem kwalifikatora. Dany jest wzorem:

$$T_3 = \frac{\sum_{i=1}^m t_i}{\sum_{i=1}^m h_i} \tag{8}$$

gdzie dla zdań z kwalifikatorem:

$$t_i = \begin{cases} 1 & \text{gdy } \mu_S(d_i) > 0 \ \land \ \mu_W(d_i) > 0 \\ 0 & \text{w przeciwnym razie.} \end{cases}$$

$$h_i = \begin{cases} 1 & \text{gdy } \mu_W(d_i) > 0 \\ 0 & \text{w przeciwnym razie.} \end{cases}$$

a dla zdań bez kwalifikatora:

$$t_i = \begin{cases} 1 & \text{gdy } \mu_S(d_i) > 0 \\ 0 & \text{w przeciwnym razie.} \end{cases}$$

$$h_i = 1$$

3.4. Degree of appropriateness

Degree of appropriateness definiuje, jak dużo krotek przynależy do sumaryzatora, czyli czy określone podsumowanie jest odpowiednie dla zestawu danych. Dany jest wzorem:

$$T_4 = \left| \prod_{j=1}^n r_j - T_3 \right| \tag{9}$$

gdzie

$$r_j = \frac{\sum_{i=1}^m g_{ij}}{m} \tag{10}$$

natomiast $g_{ij} = \begin{cases} 1 & \text{gdy } \mu_{S_j}(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$

3.5. Length of a summary

Length of a summary określa jakość podsumowania na podstawie złożoności sumaryzatora, czyli im więcej składowych sumaryzatora złożonego, ty niższa wartość tej miary. Dany jest wzorem:

$$T_5 = 2 \cdot \left(\frac{1}{2}\right)^{|S|} \tag{11}$$

gdzie |S| to liczba zbiorów rozmytych z jakich złożony jest sumaryzator.

3.6. Degree of quantifier imprecision

Degree of quantifier imprecision przedstawia w jakim stopniu precyzyjny jest kwantyfikator. Im mniejszy nośnik zbioru rozmytego tym wyższa jest jego precyzja. Dany jest wzorem:

$$T_6 = 1 - in(Q) = 1 - \frac{|supp(Q)|}{|\mathcal{X}_Q|}$$
 (12)

gdzie $|\mathcal{X}_Q| = 1$ dla kwantyfikatora relatywnego, natomiast dla kwantyfikatora absolutnego $|\mathcal{X}_Q| = m$, czyli liczba krotek w bazie danych.

3.7. Degree of quantifier cardinality

Degree of quantifier cardinality opisuje stopień precyzji kwantyfikatora, im większa kardynalność kwantyfikatora tym jest on mniej precyzyjny. Dany jest wzorem:

$$T_7 = 1 - \frac{|Q|}{|\mathcal{X}_Q|} \tag{13}$$

gdzie $|\cdot| = clm(\cdot)$ - całka z funkcji przynależności zbioru rozmytego (czyli pole pod jego wykresem).

3.8. Degree of summarizer cardinality

Degree of summarizer cardinality opisuje stopień precyzji sumaryzatora, im mniejsza kardynalność sumaryzatora tym jest on bardziej przecyzyjny. Dany jest wzorem:

$$T_8 = 1 - \left(\prod_{j=1}^n \frac{|S_j|}{|\mathcal{X}_j|}\right)^{\frac{1}{n}} \tag{14}$$

gdzie n to liczba zbiorów rozmytych z jakich stworzony jest sumaryzator.

3.9. Degree of qualifier imprecision

Degree of qualifier imprecision określa, w jakim stopniu precyzyjny jest kwalifikator. Im szerszy nośnik zbioru rozmytego tym niższa jest jego precyzja. Dany jest wzorem:

$$T_9 = 1 - \operatorname{in}(W) \tag{15}$$

gdzie in(W) to stopień rozmycia zbioru rozmytego W.

3.10. Degree of qualifier cardinality

Degree of qualifier cardinality opisuje stopień precyzji kwalifikatora, im większa jest kardynalność kwalifikatora, tym jest on mniej precyzyjny. Dany jest wzorem:

$$T_{10} = 1 - \frac{|W|}{|\mathcal{X}_g|} \tag{16}$$

3.11. Length of qualifier

Length of qualifier wyznacza jakość podsumowania na podstawie złożoności kwalifikatora. Im bardziej złożony kwalifikator, tym jakość podsumowania jest gorsza. Dany jest wzorem:

$$T_{11} = 2 \cdot \left(\frac{1}{2}\right)^{|W|} \tag{17}$$

gdzie |W| to liczba zbiorów rozmytych, z jakich stworzony jest kwalifikator.

4. Opis implementacji

Program został stworzony w języku C#. Graficzny interfejs użytkownika został stworzony przy wykorzystaniu Windows Presentation Foundation. W programie wykorzystaliśmy bibliotekę AForge. Poniżej przedstawiamy uproszczony diagram UML naszego programu.

Rysunek 1. Diagram UML.

- Klasa Summarizers odpowiada za poszczególne sumaryzatory, np "młody", "wysoki"
- CSVReader odpowiada za wczytanie pliku csv z danymi do programu
- FifaDatabase odpowiada za bazę danych, czyli przechowywanie wszystkich rekordów
- FuzzySet to klasa odpowiadająca za zbiór rozmyty
- Klasy TrapezoidFunction, GaussianFunction, TriangularFunction odpowiadaja za odpowiednie funkcje przynależności
- FifaPlayer to klasa, która reprezentuje krotkę bazy danych
- Quantifiers jest klasą odpowiedzialną za kwantyfikatory
- Linguistic Variable to klasa reprezentująca zmienną lingwistyczną.

5. Materialy i metody

5.1. Baza danych

Do przeprowadzania badań oraz do generowania podsumowań wykorzystaliśmy bazę danych dotyczącą piłkarzy z gry FIFA 20. Pochodzi ona ze źródła [2]. Składa się ona z 18278 rekordów posiadających 104 atrybuty. Do naszego projektu skorzystamy z 11. Są to następujące atrybuty:

1. Wiek - age - wartość z przedziału [16, 42]

- 2. Wzrost (w cm) height cm wartość z przedziału [156, 205]
- 3. Waga (w kg) weight kg wartość z przedziału [50, 110]
- 4. Ocena ogólna overall wartość z przedziału [48, 94]
- 5. Wykończenie attacking finishing wartość z przedziału [2, 95]
- 6. Dribbling skill dribbling wartość z przedziału [4, 97]
- 7. Podkręcenie piłki skill curve wartość z przedziału [6, 94]
- 8. Długie podania skill long passing wartość z przedziału [8, 92]
- 9. Sprint movement sprint speed wartość z przedziału [11, 96]
- 10. Siła strzału power_shot_power wartość z przedziału [14, 95]

Każda z kolumn jest typu całkowitego.

5.2. Zmienne lingwistyczne

5.2.1. Wiek

Należy zauważyć, że wiek w przypadku zawodnika piłki nożnej oceniany jest w inny sposób niż wiek przeciętnego człowieka.

- (16-21) bardzo młody
- (20-25) młody
- (24-32) średni
- (31-42) stary

Etykieta	a	b	c	d
bardzo młody	16	16	18	21
mlody	20	22	24	25
$\acute{ m s}{ m redni}$	24	26	29	32
stary	31	34	42	42

Tabela 1. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Wiek.

Rysunek 2. Funkcja przynależności (trapezoidalna) dla atrybutu Wiek.

5.2.2. Wzrost

- (156-166) niski
- (164-177) średni
- (175-188) wysoki
- (186-205) bardzo wysoki

Etykieta	a	b	c
niski	156	156	166
${ m \acute{s}redni}$	164	170	177
wysoki	175	182	188
bardzo wysoki	186	205	205

Tabela 2. Przyporządkowane parametry funkcji trójkątnej dla atrybutu Wzrost.

Rysunek 3. Funkcja przynależności (trapezoidalna) dla atrybutu Wzrost.

5.2.3. Waga

- (50-65) bardzo chudy
- (55-85) chudy
- (75-105) średni
- (95-110) gruby

Etykieta	\bar{x}	σ
bardzo chudy	50	8
chudy	70	8
${ m \acute{s}redni}$	90	8
gruby	110	8

Tabela 3. Przyporządkowane parametry funkcji gaussowskiej dla atrybutu Waga.

Rysunek 4. Funkcja przynależności (gaussowska) dla atrybutu Waga.

5.2.4. Ocena ogólna

- (48-65) słaby
- (60-75) średni
- (70-87) dobry
- (85-94) bardzo dobry

Etykieta	a	b	С	d
słaby	48	48	59	65
$\acute{ m s}{ m redni}$	60	65	70	75
dobry	70	78	85	87
bardzo dobry	85	90	94	94

Tabela 4. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Ocena ogólna.

Rysunek 5. Funkcja przynależności (trapezoidalna) dla atrybutu Ocena ogólna.

5.2.5. Wykończenie

- (2-35) bardzo słabe
- (30-60) słabe
- (50-80) średnie
- (75-87) dobre
- (85-95) bardzo dobre

Etykieta	a	b	С	d
bardzo słabe	2	2	25	35
slabe	30	35	50	60
$\acute{ m s}{ m rednie}$	50	55	75	80
dobre	75	80	85	87
bardzo dobre	85	90	95	95

Tabela 5. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Wykończenie.

Rysunek 6. Funkcja przynależności (trapezoidalna) dla atrybutu Wykończenie.

5.2.6. Dribbling

- (4-35) bardzo słaby
- (30-60) słaby
- (50-70) średni
- (68-87) dobry
- (85-97) bardzo dobry

Etykieta	a	b	С	d
bardzo słaby	4	4	25	35
slaby	30	35	50	60
$\acute{ m s}{ m redni}$	50	55	68	70
dobry	68	73	85	87
bardzo dobry	85	90	97	97

Tabela 6. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Dribbling.

Rysunek 7. Funkcja przynależności (trapezoidalna) dla atrybutu Dribbling.

5.2.7. Podkręcenie piłki

- (6-35) bardzo słabe
- (30-60) słabe
- (50-70) średnie
- (68-87) dobre
- (85-94) bardzo dobre

Etykieta	a	b	c
bardzo słabe	6	6	35
${ m slabe}$	20	35	60
$\acute{ m s}{ m rednie}$	50	60	70
dobre	68	75	87
bardzo dobre	85	94	94

Tabela 7. Przyporządkowane parametry funkcji trójkątnej dla atrybutu Podkręcenie piłki.

Rysunek 8. Funkcja przynależności (trójkątna) dla atrybutu Podkręcenie piłki.

5.2.8. Długie podania

- (8-35) bardzo słabe
- (30-60) słabe
- (50-70) średnie
- (68-85) dobre
- (82-92) bardzo dobre

Etykieta	a	b	С	d
bardzo słabe	8	8	25	35
slabe	30	35	50	60
$\acute{ m s}{ m rednie}$	50	55	68	70
dobre	68	73	80	85
bardzo dobre	82	85	92	92

Tabela 8. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Długie podania.

Rysunek 9. Funkcja przynależności (trapezoidalna) dla atrybutu Długie podania.

5.2.9. Sprint

- (11-35) bardzo wolny
- (30-55) wolny
- (50-70) średni
- (68-86) szybki
- (84-96) bardzo szybki

Etykieta	a	b	c	d
bardzo wolny	11	11	25	35
wolny	30	35	48	55
$\acute{ m s}{ m redni}$	50	55	68	70
szybki	68	73	80	86
bardzo szybki	84	90	96	96

Tabela 9. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Sprint.

Rysunek 10. Funkcja przynależności (trapezoidalna) dla atrybutu Sprint.

5.2.10. Siła strzału

- (14-50) słaba
- (45-65) średnia
- (62-82) duża
- (80-95) bardzo duża

Etykieta	a	b	С	d
słaba	14	14	45	50
$\acute{ m s}{ m rednia}$	45	50	60	65
$du\dot{z}a$	62	68	80	82
bardzo duża	80	88	95	95

Tabela 10. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Siła strzału.

Rysunek 11. Funkcja przynależności (trapezoidalna) dla atrybutu Siła strzału.

5.3. Kwantyfikator względny

Poniżej przedstawiliśmy wartości parametrów oraz wykres funkcji przynależności dla kwantyfikatora względnego. Liczba rekordów w naszej bazie danych wynosi 18278, wykres zawiera się w wartościach [0, 1].

Etykieta	a	b	c	d
prawie nikt	0,000	0,000	0,055	0,164
mniejszość	0,109	0,164	0,383	0,438
połowa	0,410	0,438	0,547	0,574
większość	0,547	$0,\!602$	0,821	$0,\!875$
prawie wszyscy	0,821	0,903	1,000	1,000

Tabela 11. Przyporządkowane parametry funkcji trapezoidalnej dla kwantyfikatora względnego.

Rysunek 12. Funkcja przynależności kwantyfikatora względnego.

6. Wyniki

Poniżej przedstawiamy przykładowe zdania podsumowaujące bazę danych wygenerowane przez nas program.

```
Almost none of quite high football players have very bad dribbling.

[0 0,847 0,207 0,054 1 0,836 1 0,161 0,589 1 1] T = 0,4016100871046277

Almost none of quite high football players have bad dribbling.

[0 0,688 0,362 0,05 1 0,836 1 0,25 0,589 1 1] T = 0,40653074017121027

Almost none of quite high football players have average dribbling.

[0 0,469 0,496 0,035 1 0,836 1 0,175 0,589 1 1] T = 0,395984074296969

Almost none of quite high football players have good dribbling.

[0,284 0,77 0,174 0,056 1 0,836 1 0,184 0,589 1 1] T = 0,510185767781858

Almost none of quite high football players have very good dribbling.

[1 0,994 0,003 0,003 1 0,836 1 0,208 0,589 1 1] T = 0,797984074296969

Less of quite high football players have very bad dribbling.

[1 0,847 0,207 0,054 1 0,671 1 0,161 0,589 1 1] T = 0,791709547111193

Less of quite high football players have bad dribbling.

[1 0,688 0,362 0,05 1 0,671 1 0,25 0,589 1 1] T = 0,7966302001777754
```

Rysunek 13. Zdania jednopodmiotowe wygenerowane przez program.

```
Almost all of attackers in comparision to defenders have average finishing.

0,873 0,574 0,61 0,184 1 0,821 1 0,167 0,996 0,5 1 0,7602126593702425

Almost all of attackers in comparision to those defenders, who are short, have average finishing.

0,869 0,574 0,61 0,184 1 0,821 1 0,167 0,996 0,5 1 0,7587948977382706

Almost all of those attackers, who are short, in comparision to defenders, have average finishing.

0,873 0,574 0,61 0,184 1 0,821 1 0,167 0,996 0,5 1 0,7603985636347756

More attackers than defenders have average finishing.

0,828 0,574 0,61 0,184 1 0,821 1 0,167 0,996 0,5 1 0,7422758182521565
```

Rysunek 14. Zdania wielopodmiotowe wygenerowane przez program.

7. Dyskusja

8. Wnioski

Literatura

- [1] Niewiadomski, Adam. Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions. Akademicka Oficyna Wydawnicza EXIT. Warszawa, 2008. ISBN 978-83-60434-40-6
- [2] https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset
- [3] https://pracownik.kul.pl/files/31717/public/Funkcje_przynaleznosci.pdf [do-stęp 07.05.2020]
- $[4] \ http://ii.uwb.edu.pl/rudnicki/wp-content/uploads/2016/02/P07.pdf \ [dostepos.05.2020]$