Numerics for SDE Alvise Sembenico

Homework 1

1 Exercise 1

2 Exercise 2

In this exercise we will prove the following equality:

$$\int_{0}^{T} t \, dW(t) = TW(T) - \int_{0}^{T} W(t) \, dt \tag{1}$$

Look at the left hand side, by taking it's forward Euler we obtain

$$I_1 = \int_0^T t dW(t) = \sum_{n=0}^{N-1} t_n (W(t_{n-1} - W(t_n))).$$
 (2)

Applying the hint, i.e. using the Abel's summation by parts we get

$$\sum_{n=0}^{N-1} t_n(W(t_{n-1} - W(t_n))) = t_N W(t_N) - t_0 W(t_0) - \sum_{k=1}^{N-1} W(t_k)(t_k - t_{k-1})$$

$$= TW(T) - \sum_{k=1}^{N-1} W(t_k)(t_k - t_{k-1}).$$

What is left to prove is the convergence in L_2 of the right hand side, i.e. the following equation.

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\int_0^T W(t)dt - \sum_{k=1}^{N-1} W(t_k)(t_k - t_{k-1})\right)^2\right] = 0.$$
 (3)

Let's fix $t_n - t_{n-1} = \Delta t$ for every $n \ge 0$. Using the linearity of the integral, we can rewrite it as follows

$$\mathbb{E}\left[\left(\sum_{n=0}^{N-1} \int_{t_{n-1}}^{t_n} W(t)dt - \sum_{k=1}^{N-1} W(t_k)(t_k - t_{k-1})\right)^2\right] = \mathbb{E}\left[\left(\sum_{n=0}^{N-1} \int_{t_{n-1}}^{t_n} W(t) - W(t_n)dt\right)^2\right]$$

$$= \sum_{n=0}^{N-1} \mathbb{E}\left[\int_{t_{n-1}}^{t_n} W(t) - W(t_n)dt\right]$$

$$= \sum_{n=0}^{N-1} \mathbb{E}\left[e_n^2\right].$$

Where e_n is n-th error term. Moreover, in the last equation we dropped the cross terms since $\mathbb{E}\left[e_ie_j\right] = 0$ by the properties of the Brownian motion.

Numerics for SDE Alvise Sembenico

Next, we compute $\mathbb{E}\left[e_n^2\right]$ for every $n\geq 0$.

$$\mathbb{E}\left[e_{n}^{2}\right] = \mathbb{E}\left[\left(\int_{t_{n}}^{t_{n-1}} W(t) - W(t_{n})dt\right)^{2}\right]$$

$$= \mathbb{E}\left[\int_{t_{n}}^{t_{n-1}} \int_{t_{n}}^{t_{n-1}} \left(W(t) - W(t_{n})dt\right) \left(W(t) - W(t_{n})ds\right)\right]$$

$$= \mathbb{E}\left[\int_{t_{n}}^{t_{n-1}} \int_{t_{n}}^{t_{n-1}} \left(W(t) - W(t_{n})\right) \left(W(t) - W(t_{n})\right) dt ds\right].$$

Where we used twice Fubini's Theorem. We also use Fubini for the following equality.

$$\mathbb{E}\left[\int_{t_n}^{t_{n-1}} \int_{t_n}^{t_{n-1}} \left(W(t) - W(t_n)\right) \left(W(t) - W(t_n)\right) dt ds\right] = \int_{t_n}^{t_{n-1}} \int_{t_n}^{t_{n-1}} \mathbb{E}\left[\left(W(t) - W(t_n)\right) \left(W(t) - W(t_n)\right) dt ds\right]$$