METODO DI GAUSS-SEIDEL

al passot
$$\times$$
 (w+) si interestation i valor \times ; (w+) se disposable

 \times (w+) = $\frac{1}{2}$ [bi - $\frac{1}{2}$ ai \times (w+) - $\frac{\pi}{2}$ ai \times (w)

 \times (w+) = $\frac{1}{2}$ [bi - $\frac{1}{2}$ ai \times (w+) - $\frac{\pi}{2}$ ai \times (w)

 \times (w)

 \times (w)

 \times (w)

 \times (w)

 \times (w)

 \times successive over relaxation

we R

 \times (w+) = $\frac{\pi}{2}$ (w) \times (w+) - $\frac{\pi}{2}$ ai \times (w) + $\frac{\pi}{2}$ aii \times (w)

 \times (1 - ω) \times (w)

 \times (w)

Teorema di convergeu 2 a 1) Se A & a cominanza diagonale Stretta per righe aii > Z | a i;

allora Jacobi Che Gauss Seidel sono eonvergenti 2) Se A é SPD allara GS é convergente 3) Se A e SPD allora JOR converge se 02 w 2 2/9 (D-1A) 4) Se A e SPD allora SOR converge se ocwc2 Hetodi di Richardson $Y(u) = b - A \times (u)$ $P(x^{(u+i)}-x^{(u)}) + Q_{x}\cdot r^{(u)}$ metodi stazionari du = a = costante non stazionari du = g(u)

METODI DEL GRADIENTE Gradiente => metodo di Richardson non 8tazion ano · Per matrici simuet viche e SPD $|| \times (\alpha) - \alpha \times (\alpha) - \alpha \times ||^2 = \min || \times (\alpha) - \alpha \times ||^$ $\overline{D}(y) = \frac{1}{2} \sqrt{1} A y - \frac{1}{2} \overline{D}$ Junzione di energia del sistema V Q (9) = 1 (ATHA) 8 - 6 = A 8 - 6 = 0 t p(x)=0=> eq. a résolvere il sistema liveare \times (u+1) = \times (u) + \otimes u \triangleright (u) Die Cenghezza del passo lungo la due zione P(u) e la direzione di discesa $X^{(0)} \in \mathbb{R}^m$ assegnator $Y = b - A \times Y^{(0)}$ per $X = 0, \dots, V$, ter precodiution above P Z (u) = \(\tau \) A 2 (w) 7 2 (w)

