Теоретические основы информатики (концептуальные модели и математические основы)

Лекция № 1. Элементы теории вероятностей

А.С. Шундеев

Содержание

- Оистемы множеств
- Мера и интеграл Лебега
- 3 Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
- Измеримость супремума

Основной целью данного раздела является введение понятий

- σ -алгебры,
- измеримого пространства,
- измеримого отображения.

Основной целью данного раздела является введение понятий

- σ -алгебры,
- измеримого пространства,
- измеримого отображения.

Это необходимо для более глубокого понимания определений борелевской σ -алгебры и стандартного измеримого пространства.

Содержание

- Оистемы множеств
 - Метрические пространства
 - Измеримые пространства
 - Прямое произведение измеримых пространств
- Мера и интеграл Лебега
- ③ Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
- 5 Измеримость супремума

Метрические пространства

Определение 1.1.

Метрическим пространством называется пара (M, ρ) , где M – непустое множество, а функция $\rho: M \times M \longrightarrow \mathbb{R}_+$, называемая метрикой (расстояние), удовлетворяет следующим условиям:

- 1. ho(x,y) = 0 тогда и только тогда, когда x = y;
- 2. $\rho(x,y)=\rho(y,x)$ для любых $x,y\in\mathsf{M}$ (симметричность);
- 3. $\rho(x,y)\leqslant \rho(x,z)+\rho(z,y)$ для любых $x,y,z\in \mathsf{M}$ (неравенство треугольника).

Метрические пространства

Определение 1.1.

Метрическим пространством называется пара (M, ρ) , где M – непустое множество, а функция $\rho: M \times M \longrightarrow \mathbb{R}_+$, называемая метрикой (расстояние), удовлетворяет следующим условиям:

- 1. ho(x,y) = 0 тогда и только тогда, когда x = y;
- 2. ho(x,y)=
 ho(y,x) для любых $x,y\in \mathsf{M}$ (симметричность);
- 3. $\rho(x,y)\leqslant \rho(x,z)+\rho(z,y)$ для любых $x,y,z\in \mathsf{M}$ (неравенство треугольника).

Замечание

Замена в определении 1.1 условия 1 на условие

 $\mathbf{1'}.~~
ho(x,x)=\mathbf{0}$ для любого $x\in\mathsf{M}$;

приводит к определению псевдометрического пространства. При этом функция ρ будет называться псевдометрикой.

Метрические пространства

Пример 1.1.

В качестве M возьмём \mathbb{R} , \mathbb{Q} или \mathbb{N} . Положим $\rho_{\mathrm{abs}}:=|x-y|$ $(x,y\in\mathsf{M})$. Пара $(\mathsf{M},\rho_{\mathrm{abs}})$ является метрическим пространством.

Метрические пространства

Пример 1.1.

В качестве M возьмём \mathbb{R} , \mathbb{Q} или \mathbb{N} . Положим $\rho_{abs}:=|x-y|$ $(x,y\in \mathsf{M})$. Пара (M,ρ_{abs}) является метрическим пространством.

Пример 1.2.

Определим функцию

$$ho_{ ext{arctan}}(x,y)\coloneqqig|\operatorname{\mathsf{arctan}}(x)-\operatorname{\mathsf{arctan}}(x)ig|\quad (x,y\in\overline{\mathbb{R}}),$$

где формально считаем $\arctan(-\infty)=-\frac{\pi}{2}$ и $\arctan(\infty)=\frac{\pi}{2}$. Пара $(\overline{\mathbb{R}},\rho_{\arctan})$ является метрическим пространством.

Метрические пространства

Пример 1.3.

На любом непустом множестве М метрикой будет

$$ho_{0-1}(x,y)\coloneqq\left\{egin{array}{ll} \mathsf{0}, & ext{если} & x=y; \ \mathsf{1}, & ext{иначе}, \end{array}
ight.$$

где $x,y\in\mathsf{M}.$

Метрические пространства

Пример 1.3.

На любом непустом множестве М метрикой будет

$$ho_{0-1}(\pmb{x},\pmb{y}) \coloneqq \left\{egin{array}{ll} \pmb{\mathsf{0}}, & ext{если} & \pmb{x} = \pmb{y}; \ \pmb{\mathsf{1}}, & ext{иначе}, \end{array}
ight.$$

где $x, y \in M$.

Пример 1.4.

Пусть задано метрическое пространство (M,ρ) и непустое подмножество $M'\subseteq M$. Тогда пара (M',ρ) является метрическим пространством.

Метрические пространства

Пример 1.5.

Пусть заданы два метрических пространства (M_1, ρ_1) и (M_2, ρ_2) . На множестве $M_1 \times M_2$ метриками будут

$$\rho_{\text{max}} := \max \left\{ \rho_1(x_1, y_1), \rho_2(x_2, y_2) \right\},
\rho_{\text{sum}} := \rho_1(x_1, y_1) + \rho_2(x_2, y_2),
\rho_{\text{sqrt}} := \left[\rho_1(x_1, y_1)^2 + \rho_2(x_2, y_2)^2 \right]^{1/2},$$

где $x_1, y_1 \in \mathsf{M}_1$ и $x_2, y_2 \in \mathsf{M}_2$.

Метрические пространства

Пример 1.5.

Пусть заданы два метрических пространства (M_1, ρ_1) и (M_2, ρ_2) . На множестве $M_1 \times M_2$ метриками будут

$$\begin{array}{lll} \rho_{\max} & := & \max \big\{ \rho_1(x_1,y_1), \rho_2(x_2,y_2) \big\}, \\ \rho_{\text{sum}} & := & \rho_1(x_1,y_1) + \rho_2(x_2,y_2), \\ \rho_{\text{sqrt}} & := & \big[\rho_1(x_1,y_1)^2 + \rho_2(x_2,y_2)^2 \big]^{1/2}, \end{array}$$

где $x_1, y_1 \in \mathsf{M}_1$ и $x_2, y_2 \in \mathsf{M}_2$.

Метрическое пространство может быть определено через нормированное пространство.

Метрические пространства

Определение 1.2.

Нормированным пространством называется пара $(L, \|\cdot\|)$, где L – линейное пространство над полем \mathbb{R} , а функция $\|\cdot\|: L \longrightarrow \mathbb{R}_+$, называемая нормой, удовлетворяет следующим условиям:

- ullet $\|x\|=0$ тогда и только тогда, когда x=0;
- ullet $\|\lambda x\|=|\lambda|\|x\|$ для любых $\lambda\in\mathbb{R}$ и $x\in\mathsf{L}$;
- $||x+y|| \le ||x|| + ||y||$ для любых $x,y \in L$.

Метрические пространства

Определение 1.2.

Нормированным пространством называется пара $(L,\|\cdot\|)$, где L – линейное пространство над полем \mathbb{R} , а функция $\|\cdot\|:L\longrightarrow\mathbb{R}_+$, называемая нормой, удовлетворяет следующим условиям:

- $\|x\| = 0$ тогда и только тогда, когда x = 0;
- ullet $\|\lambda x\|=|\lambda|\|x\|$ для любых $\lambda\in\mathbb{R}$ и $x\in\mathsf{L}$;
- $||x+y|| \le ||x|| + ||y||$ для любых $x,y \in L$.

Заметим, что пара $(\mathsf{L}, \rho_{\|\cdot\|})$, где $\rho_{\|\cdot\|}\coloneqq \|x-y\|$ для всех $x,y\in \mathsf{L}$, является метрическим пространством. При этом говорят, что метрика $\rho_{\|\cdot\|}$ порождена нормой $\|\cdot\|$.

Метрические пространства

Замечание

Отказ от первого условия в определении 1.2 приводит к понятиям *полунормы* и *полунормированного пространства*. Полунорма может принимать нулевое значение и на ненулевых элементах линейного пространства.

Метрические пространства

Замечание

Отказ от первого условия в определении 1.2 приводит к понятиям *полунормы* и *полунормированного пространства*. Полунорма может принимать нулевое значение и на ненулевых элементах линейного пространства.

Следует отметить, что точно также, как норма порождает метрику, полунорма порождает псевдометрику.

Метрические пространства

Замечание

Отказ от первого условия в определении 1.2 приводит к понятиям *полунормы* и *полунормированного пространства*. Полунорма может принимать нулевое значение и на ненулевых элементах линейного пространства.

Следует отметить, что точно также, как норма порождает метрику, полунорма порождает псевдометрику.

Пример 1.6.

В пространстве \mathbb{R}^n ($n \in \mathbb{N}$) нормами будут

$$\|\mathbf{x}\|_1 := \sum_{k=1}^n |x_k|, \quad \|\mathbf{x}\|_2 := \left(\sum_{k=1}^n x_k^2\right)^{1/2}, \quad \|\mathbf{x}\|_{\infty} := \max\{|x_1|, \dots, |x_k|\},$$

где
$$\mathbf{x}=(x_1,\ldots,x_n)^t\in\mathbb{R}^n$$
.

Метрические пространства

Для произвольного метрического пространства (M, ρ) определим понятия открытого и замкнутого множества.

Метрические пространства

Для произвольного метрического пространства (M, ρ) определим понятия открытого и замкнутого множества.

Определение 1.3.

Открытым шаром радиуса r>0 с центром в точке $x\in M$ называется множество $B(x,r):=\{y\in M: \rho(x,y)< r\}.$

Метрические пространства

Для произвольного метрического пространства (M, ρ) определим понятия открытого и замкнутого множества.

Определение 1.3.

Открытым шаром радиуса r>0 с центром в точке $x\in M$ называется множество $B(x,r):=\{y\in M: \rho(x,y)< r\}.$

Определение 1.4.

Множество $G\subseteq M$ называется открытым, если для любой его точки $x\in G$ существует r>0 такое, что $B(x,r)\subseteq G$.

Метрические пространства

Для произвольного метрического пространства (M, ρ) определим понятия открытого и замкнутого множества.

Определение 1.3.

Открытым шаром радиуса r>0 с центром в точке $x\in M$ называется множество $B(x,r):=\{y\in M: \rho(x,y)< r\}.$

Определение 1.4.

Множество $G\subseteq M$ называется открытым, если для любой его точки $x\in G$ существует r>0 такое, что $B(x,r)\subseteq G$.

Определение 1.5.

Множество $F\subseteq \mathsf{M}$ называется замкнутым, если его дополнение F^c открыто.

Метрические пространства

Множества М и \varnothing одновременно являются открытыми и замкнутыми. Любые объединения и конечные пересечения открытых множеств являются открытыми множествами. Любые пересечения и конечные объединения замкнутых множеств являются замкнутыми множествами.

Метрические пространства

Для произвольного метрического пространства (M, ρ) определим понятия, связанные со сходимостью последовательностей его элементов.

Метрические пространства

Для произвольного метрического пространства (M, ρ) определим понятия, связанные со сходимостью последовательностей его элементов.

Определение 1.6.

Последовательность $\{x_n\}_{n\in\mathbb{N}}$ называется фундаментальной, если для любого $\varepsilon>0$ существует номер N такой, что для любых $n,m\geqslant N$ выполняется неравенство $\rho(x_n,x_m)<\varepsilon$.

Метрические пространства

Для произвольного метрического пространства (M,ρ) определим понятия, связанные со сходимостью последовательностей его элементов.

Определение 1.6.

Последовательность $\{x_n\}_{n\in\mathbb{N}}$ называется фундаментальной, если для любого $\varepsilon>0$ существует номер N такой, что для любых $n,m\geqslant N$ выполняется неравенство $\rho(x_n,x_m)<\varepsilon$.

Определение 1.7.

Последовательность $\{x_n\}_{n\in\mathbb{N}}$ сходится к элементу x (x является пределом этой последовательности), если $\lim_{n\to\infty} \rho(x_n,x)=0$.

Метрические пространства

Определение 1.8.

Метрики ρ_1 и ρ_2 , заданные на непустом множестве M, называются эквивалентыми, если существуют константы $C_1, C_2 > 0$ такие, что

$$C_1\rho_1(x,y)\leqslant \rho_2(x,y)\leqslant C_2\rho_1(x,y)\quad (x,y\in \mathsf{M}).$$

Метрические пространства

Определение 1.8.

Метрики ρ_1 и ρ_2 , заданные на непустом множестве M, называются эквивалентыми, если существуют константы $C_1, C_2 > 0$ такие, что

$$C_1\rho_1(x,y)\leqslant \rho_2(x,y)\leqslant C_2\rho_1(x,y)\quad (x,y\in \mathsf{M}).$$

На вещественной прямой $\mathbb R$ метрики ρ_{abs} и ρ_{arctan} являются эквивалентными. В пространстве $\mathbb R^n$ метрики, порождённые нормами $\|\cdot\|_1$, $\|\cdot\|_2$ и $\|\cdot\|_\infty$, являются эквивалентными. На декартовых произведениях метрических пространств метрики ρ_{max} , ρ_{sum} и ρ_{sqrt} также будут эквивалентными.

Метрические пространства

Определение 1.8.

Метрики ρ_1 и ρ_2 , заданные на непустом множестве M, называются эквивалентыми, если существуют константы $C_1, C_2 > 0$ такие, что

$$C_1\rho_1(x,y)\leqslant \rho_2(x,y)\leqslant C_2\rho_1(x,y)\quad (x,y\in \mathsf{M}).$$

На вещественной прямой $\mathbb R$ метрики ρ_{abs} и ρ_{arctan} являются эквивалентными. В пространстве $\mathbb R^n$ метрики, порождённые нормами $\|\cdot\|_1, \|\cdot\|_2$ и $\|\cdot\|_\infty$, являются эквивалентными. На декартовых произведениях метрических пространств метрики ρ_{max} , ρ_{sum} и ρ_{sqrt} также будут эквивалентными.

Эквивалентные метрики определяют одни и те же системы открытых и замкнутых множеств. Фундаментальные (сходящиеся) последовательности у эквивалентных метрик совпадают.

Метрические пространства

Определение 1.9.

Метрическое пространство называется полным, если каждая фундаментальная последовательность в этом пространстве имеет предел.

Метрические пространства

Определение 1.9.

Метрическое пространство называется полным, если каждая фундаментальная последовательность в этом пространстве имеет предел.

Метрическое пространство (\mathbb{R}, ρ_{abs}) полное. Метрическое пространство (\mathbb{Q}, ρ_{abs}) не является полным.

Метрические пространства

Определение 1.10.

Пусть (M, ρ) – метрическое пространство и $A \subseteq M$. Пересечение всех замкнутых множеств, содержащих A, называется замыканием множества A и обозначается через \overline{A} .

Метрические пространства

Определение 1.10.

Пусть (M, ρ) – метрическое пространство и $A\subseteq M$. Пересечение всех замкнутых множеств, содержащих A, называется замыканием множества A и обозначается через \overline{A} .

Определение 1.11.

Если $\overline{A} = M$, то говорят, что A всюду плотное в M множество.

Метрические пространства

Определение 1.10.

Пусть (M, ρ) – метрическое пространство и $A\subseteq M$. Пересечение всех замкнутых множеств, содержащих A, называется замыканием множества A и обозначается через \overline{A} .

Определение 1.11.

Если $\overline{A} = M$, то говорят, что A всюду плотное в M множество.

Определение 1.12.

Метрическое пространство называется сепарабельным, если в нём существует не более чем счётное всюду плотное множество.

Метрические пространства

Определение 1.10.

Пусть (M, ρ) – метрическое пространство и $A\subseteq M$. Пересечение всех замкнутых множеств, содержащих A, называется замыканием множества A и обозначается через \overline{A} .

Определение 1.11.

Если $\overline{A} = M$, то говорят, что A всюду плотное в M множество.

Определение 1.12.

Метрическое пространство называется сепарабельным, если в нём существует не более чем счётное всюду плотное множество.

Метрическое пространство (\mathbb{R}, ρ_{abs}) сепарабельное. Метрическое пространство (\mathbb{R}, ρ_{0-1}) не является сепарабельным.

Метрические пространства

Определение 1.13.

Полное и сепарабельное метрическое пространство называется польским пространством.

Метрические пространства

Определение 1.13.

Полное и сепарабельное метрическое пространство называется польским пространством.

Метрическое пространство \mathbb{R}^n с метрикой, порождённой нормой $\|\cdot\|_1$ ($\|\cdot\|_2$, $\|\cdot\|_\infty$), является польским пространством. Непустое замкнутое подмножество польского пространства является польским пространством.

Метрические пространства

Определение 1.13.

Полное и сепарабельное метрическое пространство называется польским пространством.

Метрическое пространство \mathbb{R}^n с метрикой, порождённой нормой $\|\cdot\|_1$ ($\|\cdot\|_2$, $\|\cdot\|_\infty$), является польским пространством. Непустое замкнутое подмножество польского пространства является польским пространством.

Определение 1.14.

Пусть заданы два метрических пространства (M_1, ρ_1) и (M_2, ρ_2) . Отображение $f: M_1 \longrightarrow M_2$ называется непрерывным, если для любого открытого множества $U \subseteq M_2$ множество $f^{-1}(U)$ является открытым в (M_1, ρ_1) .

Содержание

- Оистемы множеств
 - Метрические пространства
 - Измеримые пространства
 - Прямое произведение измеримых пространств
- Мера и интеграл Лебега
- ③ Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
- 5 Измеримость супремума

Измеримые пространства

Определение 1.15.

Система подмножеств $\mathcal{S}\subseteq 2^\Omega$ непустого множеств Ω называется σ -алгеброй, если выполняются следующие свойства:

- $\Omega \in \mathcal{S}$;
- ullet для любого $A \in \mathcal{S}$ верно, что $A^c \in \mathcal{S}$;
- ullet для любой последовательности $\{A_k\in\mathcal{S}\}_{k\in\mathbb{N}}$ верно, что $igcup_{k\in\mathbb{N}}A_k\in\mathcal{S}.$

Множество Ω называется единицей σ -алгебры \mathcal{S} , а её элементы – измеримыми множествами. Пара (Ω,\mathcal{S}) называется измеримым пространством.

Измеримые пространства

Из определения σ -алгебры следует, что она содержит пустое множество и замкнута относительно теоретико-множественных операций \cup , \cap , \setminus и \triangle . Кроме того, σ -алгебра замкнута относительно взятия не более чем счётного числа пересечений своих элементов.

Измеримые пространства

Из определения σ -алгебры следует, что она содержит пустое множество и замкнута относительно теоретико-множественных операций \cup , \cap , \setminus и \triangle . Кроме того, σ -алгебра замкнута относительно взятия не более чем счётного числа пересечений своих элементов.

Пример 1.7.

Примерами σ -алгебр являются $\{\varnothing,\Omega\}$ и 2^Ω . Первая из них является самой «бедной». Она содержится в любой другой σ -алгебре. Вторая из них, наоборот, является самой «богатой». Она включает в себя любую другую σ -алгебру, заданную на Ω . Каждое непустое подмножество $A\subseteq\Omega$ определяет σ -алгебру вида $\{\varnothing,A,A^c,\Omega\}$.

Измеримые пространства

Из определения σ -алгебры следует, что она содержит пустое множество и замкнута относительно теоретико-множественных операций \cup , \cap , \setminus и \triangle . Кроме того, σ -алгебра замкнута относительно взятия не более чем счётного числа пересечений своих элементов.

Пример 1.7.

Примерами σ -алгебр являются $\{\varnothing,\Omega\}$ и 2^Ω . Первая из них является самой «бедной». Она содержится в любой другой σ -алгебре. Вторая из них, наоборот, является самой «богатой». Она включает в себя любую другую σ -алгебру, заданную на Ω . Каждое непустое подмножество $A\subseteq\Omega$ определяет σ -алгебру вида $\{\varnothing,A,A^c,\Omega\}$.

Прежде, чем перейти к рассмотрению более содержательных примеров, введём ряд определений.

Измеримые пространства

Определение 1.16.

Для семейства подмножеств $\mathcal{C}\subseteq 2^\Omega$ непустого множества Ω через $\sigma\{\mathcal{C}\}$ будем обозначать наименьшую σ -алгебру, заданную на Ω и содержащую \mathcal{C} . Будем также говорить, что $\sigma\{\mathcal{C}\}$ порождена \mathcal{C} .

Измеримые пространства

Определение 1.16.

Для семейства подмножеств $\mathcal{C}\subseteq 2^\Omega$ непустого множества Ω через $\sigma\{\mathcal{C}\}$ будем обозначать наименьшую σ -алгебру, заданную на Ω и содержащую \mathcal{C} . Будем также говорить, что $\sigma\{\mathcal{C}\}$ порождена \mathcal{C} .

Наименьшая σ -алгебра $\sigma\{\mathcal{C}\}$ всегда существует и единственна. Она представляет собой пересечение всех σ -алгебр, содержащих \mathcal{C} .

Измеримые пространства

Определение 1.16.

Для семейства подмножеств $\mathcal{C}\subseteq 2^\Omega$ непустого множества Ω через $\sigma\{\mathcal{C}\}$ будем обозначать наименьшую σ -алгебру, заданную на Ω и содержащую \mathcal{C} . Будем также говорить, что $\sigma\{\mathcal{C}\}$ порождена \mathcal{C} .

Наименьшая σ -алгебра $\sigma\{\mathcal{C}\}$ всегда существует и единственна. Она представляет собой пересечение всех σ -алгебр, содержащих \mathcal{C} .

Определение 1.17.

Пусть (M,ρ) – метрическое пространство и \mathcal{T} – семейство всех открытых множеств этого метрического пространства. По определению, борелевской σ -алгеброй называется $\mathcal{B}(\mathsf{M},\rho) := \sigma\{\mathcal{T}\}$, а её элементы называются борелевскими множествами.

Измеримые пространства

Определение 1.16.

Для семейства подмножеств $\mathcal{C}\subseteq 2^\Omega$ непустого множества Ω через $\sigma\{\mathcal{C}\}$ будем обозначать наименьшую σ -алгебру, заданную на Ω и содержащую \mathcal{C} . Будем также говорить, что $\sigma\{\mathcal{C}\}$ порождена \mathcal{C} .

Наименьшая σ -алгебра $\sigma\{\mathcal{C}\}$ всегда существует и единственна. Она представляет собой пересечение всех σ -алгебр, содержащих \mathcal{C} .

Определение 1.17.

Пусть (M,ρ) – метрическое пространство и \mathcal{T} – семейство всех открытых множеств этого метрического пространства. По определению, борелевской σ -алгеброй называется $\mathcal{B}(M,\rho) := \sigma\{\mathcal{T}\}$, а её элементы называются борелевскими множествами. Если из контекста понятно о какой метрике идет речь, то будет использоваться сокращенное обозначение $\mathcal{B}(M)$.

Измеримые пространства

Пример 1.8.

Система открытых подмножеств пространства \mathbb{R}^n ($n \in \mathbb{N}$) с евклидовой метрикой порождает борелевскую σ -алгебру $\mathcal{B}(\mathbb{R}^n)$. Для борелевской σ -алгебры на вещественной прямой $\mathcal{B}(\mathbb{R})$ иногда используются другие эквивалентные определения. Например, она может быть порождена системой интервалов вида (a,b) или системой неограниченных промежутков вида $(-\infty,b]$, где $a,b\in\mathbb{R}$.

Измеримые пространства

Пример 1.8.

Система открытых подмножеств пространства \mathbb{R}^n ($n\in\mathbb{N}$) с евклидовой метрикой порождает борелевскую σ -алгебру $\mathcal{B}(\mathbb{R}^n)$. Для борелевской σ -алгебры на вещественной прямой $\mathcal{B}(\mathbb{R})$ иногда используются другие эквивалентные определения. Например, она может быть порождена системой интервалов вида (a,b) или системой неограниченных промежутков вида $(-\infty,b]$, где $a,b\in\mathbb{R}$.

Пример 1.9.

На расширенной вещественной прямой $\overline{\mathbb{R}}$ борелевская σ -алгебра $\mathcal{B}(\overline{\mathbb{R}}, \rho_{\arctan})$ порождается системой неограниченных промежутков вида $(a,\infty]$ или $[-\infty,a)$, где $a\in\mathbb{R}$.

Ранее было отмечено, что на $\mathbb R$ метрики $ho_{
m arctan}$ и $ho_{
m abs}$ определяют общую систему открытых множеств. Поэтому имеет место включение $\mathcal B(\mathbb R)\subset \mathcal B(\overline{\mathbb R})$.

Измеримые пространства

Определение 1.18.

Пусть $(\Omega_1, \mathcal{S}_1)$ и $(\Omega_2, \mathcal{S}_2)$ — два произвольных измеримых пространства. Отображение $f:\Omega_1 \longrightarrow \Omega_2$ называется $\mathcal{S}_1 \,|\, \mathcal{S}_2$ -измеримым (в дальнейшем, будет также использоваться запись $f \in \mathcal{S}_1 \,|\, \mathcal{S}_2$), если

$$\sigma\{f\} := \left\{f^{-1}(B) \, : \, B \in \mathcal{S}_2\right\} \subseteq \mathcal{S}_1.$$

Измеримые пространства

Определение 1.18.

Пусть $(\Omega_1, \mathcal{S}_1)$ и $(\Omega_2, \mathcal{S}_2)$ — два произвольных измеримых пространства. Отображение $f:\Omega_1 \longrightarrow \Omega_2$ называется $\mathcal{S}_1 \,|\, \mathcal{S}_2$ -измеримым (в дальнейшем, будет также использоваться запись $f \in \mathcal{S}_1 \,|\, \mathcal{S}_2$), если

$$\sigma\{f\} := \left\{f^{-1}(B) : B \in \mathcal{S}_2\right\} \subseteq \mathcal{S}_1.$$

Система множеств $\sigma\{f\}$ представляет собой σ -алгебру с единицей Ω_1 , о которой говорят, что она порождена измеримым отображением f.

Измеримые пространства

Определение 1.18.

Пусть $(\Omega_1, \mathcal{S}_1)$ и $(\Omega_2, \mathcal{S}_2)$ — два произвольных измеримых пространства. Отображение $f:\Omega_1 \longrightarrow \Omega_2$ называется $\mathcal{S}_1 \mid \mathcal{S}_2$ -измеримым (в дальнейшем, будет также использоваться запись $f \in \mathcal{S}_1 \mid \mathcal{S}_2$), если

$$\sigma\{f\} := \left\{f^{-1}(B) : B \in \mathcal{S}_2\right\} \subseteq \mathcal{S}_1.$$

Система множеств $\sigma\{f\}$ представляет собой σ -алгебру с единицей Ω_1 , о которой говорят, что она порождена измеримым отображением f.

Будем также говорить, что измеримые отображения f_1, \ldots, f_n ($n \ge 2$), заданные на $(\Omega_1, \mathcal{S}_1)$, порождают σ -алгебру $\sigma\{f_1, \ldots, f_n\} := \sigma\{\sigma\{f_1\}, \ldots, \sigma\{f_n\}\}.$

Измеримые пространства

Определение 1.19.

Пусть $(\Omega_1, \mathcal{S}_1)$, $(\Omega_2, \mathcal{S}_2)$ и $(\Omega_3, \mathcal{S}_3)$ – произвольные измеримые пространства, $f \in \mathcal{S}_1 \mid \mathcal{S}_2$ и $g \in \mathcal{S}_1 \mid \mathcal{S}_3$. Отображение g называется f-измеримым, если $\sigma\{g\} \subseteq \sigma\{f\}$.

Измеримые пространства

Определение 1.19.

Пусть $(\Omega_1, \mathcal{S}_1)$, $(\Omega_2, \mathcal{S}_2)$ и $(\Omega_3, \mathcal{S}_3)$ – произвольные измеримые пространства, $f \in \mathcal{S}_1 \mid \mathcal{S}_2$ и $g \in \mathcal{S}_1 \mid \mathcal{S}_3$. Отображение g называется f-измеримым, если $\sigma\{g\} \subseteq \sigma\{f\}$.

Утверждение 1.1.

Пусть заданы измеримые пространства $(\Omega_1, \mathcal{S}_1)$, $(\Omega_2, \mathcal{S}_2)$ и $(\Omega_3, \mathcal{S}_3)$, а также измеримые отображения $f \in \mathcal{S}_1 \,|\, \mathcal{S}_2$ и $g \in \mathcal{S}_2 \,|\, \mathcal{S}_3$. Тогда измеримым будет отображение $g \circ f \in \mathcal{S}_1 \,|\, \mathcal{S}_3$.

Измеримые пространства

Определение 1.19.

Пусть $(\Omega_1, \mathcal{S}_1)$, $(\Omega_2, \mathcal{S}_2)$ и $(\Omega_3, \mathcal{S}_3)$ – произвольные измеримые пространства, $f \in \mathcal{S}_1 \mid \mathcal{S}_2$ и $g \in \mathcal{S}_1 \mid \mathcal{S}_3$. Отображение g называется f-измеримым, если $\sigma\{g\} \subseteq \sigma\{f\}$.

Утверждение 1.1.

Пусть заданы измеримые пространства (Ω_1,\mathcal{S}_1) , (Ω_2,\mathcal{S}_2) и (Ω_3,\mathcal{S}_3) , а также измеримые отображения $f\in\mathcal{S}_1\,|\,\mathcal{S}_2$ и $g\in\mathcal{S}_2\,|\,\mathcal{S}_3$. Тогда измеримым будет отображение $g\circ f\in\mathcal{S}_1\,|\,\mathcal{S}_3$.

Рассмотрим два важных типа измеримых отображений.

Измеримые пространства

Определение 1.20.

Предположим, что непустые множества Ω и Σ имеют структуру метрического пространства. В этом случае $\mathcal{B}(\Omega)\,|\,\mathcal{B}(\Sigma)$ -измеримое отображение будет называться борелевским.

Измеримые пространства

Определение 1.20.

Предположим, что непустые множества Ω и Σ имеют структуру метрического пространства. В этом случае $\mathcal{B}(\Omega) \,|\, \mathcal{B}(\Sigma)$ -измеримое отображение будет называться борелевским.

Утверждение 1.2.

Предположим, что непустые множества Ω и Σ имеют структуру метрического пространства. Тогда непрерывное отображение $f:\Omega\longrightarrow\Sigma$ является борелевским.

Измеримые пространства

Определение 1.20.

Предположим, что непустые множества Ω и Σ имеют структуру метрического пространства. В этом случае $\mathcal{B}(\Omega)\,|\,\mathcal{B}(\Sigma)$ -измеримое отображение будет называться борелевским.

Утверждение 1.2.

Предположим, что непустые множества Ω и Σ имеют структуру метрического пространства. Тогда непрерывное отображение $f:\Omega\longrightarrow\Sigma$ является борелевским.

Определение 1.21.

Пусть задано измеримое пространство (Ω, \mathcal{S}) . В этом случае $\mathcal{S} \mid \mathcal{B}(\overline{\mathbb{R}})$ -измеримое отображение называется \mathcal{S} -измеримой (измеримой) функцией. При этом, измеримая функция называется конечной, если она принимает свои значения только из множества \mathbb{R} .

Измеримые пространства

Замечание

В теории веротностей используется следующая терминология. В контексте вероятностного пространства (это понятие будет введено позже) измеримое отображение называется случайным элементом. Конечная измеримая функция называется случайной величиной. Если измеримая функция может принимать бесконечные значения, то о ней говорят как о расширенной случайной величине. Случайным вектором размерности n ($n \ge 2$) называется $\mathcal{S} \mid \mathcal{B}(\mathbb{R}^n)$ -измеримое отображение.

Измеримые пространства

Утверждение 1.3.

Пусть заданы конечные \mathcal{S} -измеримые функции f_1,\ldots,f_n ($n\in\mathbb{N}$), открытое множество $G\subseteq\mathbb{R}^n$ и непрерывная функция $h:G\longrightarrow\mathbb{R}$. Предположим, что $f_i(\Omega)\subseteq G$ ($i=1,\ldots,n$). Тогда функция $h(f_1(\omega),\ldots,f_n(\omega))$ является \mathcal{S} -измеримой.

Измеримые пространства

Утверждение 1.3.

Пусть заданы конечные \mathcal{S} -измеримые функции f_1,\ldots,f_n ($n\in\mathbb{N}$), открытое множество $G\subseteq\mathbb{R}^n$ и непрерывная функция $h:G\longrightarrow\mathbb{R}$. Предположим, что $f_i(\Omega)\subseteq G$ ($i=1,\ldots,n$). Тогда функция $h(f_1(\omega),\ldots,f_n(\omega))$ является \mathcal{S} -измеримой.

Утверждение 1.4.

Пусть заданы \mathcal{S} -измеримые функции f и g, измеримое множество $A \in \mathcal{S}$ и $a \in \mathbb{R}$. Тогда \mathcal{S} -измеримыми будут функции $\mathbf{1}_A$, af, f+g, fg и $\frac{1}{f}$ (если f нигде не обращается в нуль).

Измеримые пространства

Замечание

При работе с бесконечными значениями используются следующие правила:

$$\infty \pm a = \infty; \ -\infty \pm a = -\infty; \ a \times (\pm \infty) = \pm \infty$$
 при $a > 0; \ a \times (\pm \infty) = \mp \infty$ при $a < 0; \ \frac{a}{\pm \infty} = 0; \ \infty + \infty = \infty - (-\infty) = \infty;$ $-\infty - \infty = -\infty + (-\infty) = -\infty; \ \infty \times \infty = (-\infty) \times (-\infty) = \infty;$ $-\infty \times \infty = \infty \times (-\infty) = -\infty; \ 0 \times (\pm \infty) = 0; \ \infty - \infty = -\infty - (-\infty) = 0.$

Измеримые пространства

Замечание

При работе с бесконечными значениями используются следующие правила:

$$\infty \pm a = \infty; -\infty \pm a = -\infty; a \times (\pm \infty) = \pm \infty$$
 при $a > 0; a \times (\pm \infty) = \mp \infty$ при $a < 0; \frac{a}{\pm \infty} = 0; \infty + \infty = \infty - (-\infty) = \infty;$ $-\infty - \infty = -\infty + (-\infty) = -\infty; \infty \times \infty = (-\infty) \times (-\infty) = \infty;$ $-\infty \times \infty = \infty \times (-\infty) = -\infty; 0 \times (\pm \infty) = 0; \infty - \infty = -\infty - (-\infty) = 0.$

Утверждение 1.5.

Пусть задана бесконечная последовательность $\mathcal S$ -измеримых функций $\{f_n\}_{n\in\mathbb N}.$ Тогда $\mathcal S$ -измеримыми будут функции

$$\omega \longmapsto \inf_{n \in \mathbb{N}} f_n(\omega), \quad \omega \longmapsto \sup_{n \in \mathbb{N}} f_n(\omega), \quad \omega \longmapsto \varliminf_{n \to \infty} f_n(\omega), \quad \omega \longmapsto \varlimsup_{n \to \infty} f_n(\omega)$$

Измеримые пространства

Определение 1.22.

Предположим, что (M, ρ) – польское пространство. В этом случае измеримое пространство $(M, \mathcal{B}(M))$ называется стандартным (или борелевским).

Измеримые пространства

Определение 1.22.

Предположим, что (M, ρ) – польское пространство. В этом случае измеримое пространство $(M, \mathcal{B}(M))$ называется стандартным (или борелевским).

Лемма 1.1. (Дуб-Дынкин)

Пусть $(\Omega_1, \mathcal{S}_1)$, $(\Omega_2, \mathcal{S}_2)$ и $(\Omega_3, \mathcal{S}_3)$ – измеримые пространства, $f \in \mathcal{S}_1 \, | \, \mathcal{S}_2$ и $g \in \mathcal{S}_1 \, | \, \mathcal{S}_3$. Предположим, что

- $\circ g f$ -измеримая функция;
- $(\Omega_3, \mathcal{S}_3)$ стандартное измеримое пространство.

Тогда существует измеримое отображение $\varphi\in\mathcal{S}_2\,|\,\mathcal{S}_3$ такое, что $g=\varphi\circ f.$

Содержание

- Системы множеств
 - Метрические пространства
 - Измеримые пространства
 - Прямое произведение измеримых пространств
- Мера и интеграл Лебега
- ③ Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
- 5 Измеримость супремума

Прямое произведение измеримых пространств

Определение 1.23.

Пусть $(\Omega_1, \mathcal{S}_1), \dots (\Omega_n, \mathcal{S}_n)$ $(n \geqslant 2)$ – произвольные измеримые пространства. Определим

$$\mathcal{S}_1 \otimes \ldots \otimes \mathcal{S}_n \coloneqq \sigma \{ A_1 \times \ldots \times A_n : A_1 \in \mathcal{S}_1, \ldots A_n \in \mathcal{S}_n \}.$$

Измеримое пространство $(\Omega_1 \times \ldots \times \Omega_n, \mathcal{S}_1 \otimes \ldots \otimes \mathcal{S}_n)$ называется прямым произведением измеримых пространств $(\Omega_1, \mathcal{S}_1), \ldots (\Omega_n, \mathcal{S}_n)$.

Прямое произведение измеримых пространств

Определение 1.23.

Пусть $(\Omega_1, \mathcal{S}_1), \dots (\Omega_n, \mathcal{S}_n)$ $(n \geqslant 2)$ – произвольные измеримые пространства. Определим

$$S_1 \otimes \ldots \otimes S_n := \sigma \{A_1 \times \ldots \times A_n : A_1 \in S_1, \ldots A_n \in S_n\}.$$

Измеримое пространство $(\Omega_1 \times \ldots \times \Omega_n, \mathcal{S}_1 \otimes \ldots \otimes \mathcal{S}_n)$ называется прямым произведением измеримых пространств $(\Omega_1, \mathcal{S}_1), \ldots (\Omega_n, \mathcal{S}_n)$.

Для краткости, прямое произведение n копий измеримого пространства (Ω, \mathcal{S}) будем обозначать через $(\Omega^n, \otimes^n \mathcal{S})$.

Прямое произведение измеримых пространств

Ранее в примере 1.5 было продемонстрировано, как может быть задана метрика на декартовом произведении метрических пространств. Естественно возникает вопрос о том, как могут быть связаны друг с другом декартово произведение метрических пространств и прямое произведение их борелевских σ -алгебр. Ответ на этот вопрос даёт следующее утверждение

Прямое произведение измеримых пространств

Ранее в примере 1.5 было продемонстрировано, как может быть задана метрика на декартовом произведении метрических пространств. Естественно возникает вопрос о том, как могут быть связаны друг с другом декартово произведение метрических пространств и прямое произведение их борелевских σ -алгебр. Ответ на этот вопрос даёт следующее утверждение

Утверждение 1.6.

Пусть заданы два сепарабельных метрических пространства (M_1, ρ_1) и (M_2, ρ_2) . Тогда $\mathcal{B}(M_1 \times M_2) = \mathcal{B}(M_1) \otimes \mathcal{B}(M_2)$.

Прямое произведение измеримых пространств

Ранее в примере 1.5 было продемонстрировано, как может быть задана метрика на декартовом произведении метрических пространств. Естественно возникает вопрос о том, как могут быть связаны друг с другом декартово произведение метрических пространств и прямое произведение их борелевских σ -алгебр. Ответ на этот вопрос даёт следующее утверждение

Утверждение 1.6.

Пусть заданы два сепарабельных метрических пространства (M_1, ρ_1) и (M_2, ρ_2) . Тогда $\mathcal{B}(M_1 \times M_2) = \mathcal{B}(M_1) \otimes \mathcal{B}(M_2)$.

В качестве следствия заметим, что борелевская σ -алгебра в \mathbb{R}^n ($n\geqslant 2$) может быть представлена в виде $\mathcal{B}(\mathbb{R}^n)=\otimes^n\mathcal{B}(\mathbb{R}).$

Прямое произведение измеримых пространств

Утверждение 1.7.

Пусть (Ω, \mathcal{S}) , $(\Omega_1, \mathcal{S}_1), \dots (\Omega_n, \mathcal{S}_n)$ ($n \geqslant 2$) – измеримые пространства. Определим функции координатных проекций

$$\pi_i:\Omega_1\times\ldots\times\Omega_n\longrightarrow\Omega_i,\quad \pi_i:(\omega_1,\ldots,\omega_n)\longmapsto\omega_i\quad (i=1,\ldots,n).$$

Отображение f является $\mathcal{S} \mid \mathcal{S}_1 \otimes \ldots \otimes \mathcal{S}_n$ -измеримым тогда и только тогда, когда отображение $\pi_i \circ f$ является $\mathcal{S} \mid \mathcal{S}_i$ -измеримым для каждого $i=1,\ldots,n$.

Содержание

- 1 Системы множеств
- 2 Мера и интеграл Лебега
 - Понятие меры
 - Интеграл Лебега
- Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
- Измеримость супремума

Понятие меры

Далее, будем предполагать, что задано некоторое произвольное измеримое пространство (Ω, \mathcal{S}) .

Понятие меры

Далее, будем предполагать, что задано некоторое произвольное измеримое пространство (Ω, \mathcal{S}) .

Определение 1.24.

Мерой, заданной на (Ω, S) (на σ -алгебре S), называется функция вида $\mu: S \longrightarrow \overline{\mathbb{R}}_+$, которая одновременно удовлетворяет двум условиям:

- $\mu(\emptyset) = 0$;
- (счётная аддитивность) для любой последовательности $\{A_k \in \mathcal{S}\}_{k \in \mathbb{N}}$ попарно непересекающихся множеств выполняется равенство

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) = \sum_{k=1}^{\infty} \mu\Big(A_k\Big).$$

Понятие меры

Далее, будем предполагать, что задано некоторое произвольное измеримое пространство (Ω, \mathcal{S}) .

Определение 1.24.

Мерой, заданной на (Ω, S) (на σ -алгебре S), называется функция вида $\mu: S \longrightarrow \overline{\mathbb{R}}_+$, которая одновременно удовлетворяет двум условиям:

- $\mu(\varnothing) = 0$;
- (счётная аддитивность) для любой последовательности $\{A_k \in \mathcal{S}\}_{k \in \mathbb{N}}$ попарно непересекающихся множеств выполняется равенство

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) = \sum_{k=1}^{\infty} \mu\Big(A_k\Big).$$

Тройка $(\Omega, \mathcal{S}, \mu)$ называется измеримым пространством с мерой.

Понятие меры

Определение 1.24. (продолжение)

Если мера принимает только конечные значения (значения из \mathbb{R}), то она называется конечной. В частности, если $\mu(\Omega)=1$, то мера μ называется вероятностной.

Понятие меры

Определение 1.24. (продолжение)

Если мера принимает только конечные значения (значения из $\mathbb R$), то она называется конечной. В частности, если $\mu(\Omega)=1$, то мера μ называется вероятностной.

Мера μ называется σ -конечной, если существует последовательность измеримых множеств $\{\Omega_{\mathbf{k}}\in\mathcal{S}\}_{\mathbf{k}\in\mathbb{N}}$ такая, что

$$\Omega = igcup_{k=1}^\infty \Omega_k$$
 и $\mu(\Omega_k) < \infty$ $(k \in \mathbb{N}).$

Понятие меры

Определение 1.24. (продолжение)

Если мера принимает только конечные значения (значения из $\mathbb R$), то она называется конечной. В частности, если $\mu(\Omega)=1$, то мера μ называется вероятностной.

Мера μ называется σ -конечной, если существует последовательность измеримых множеств $\{\Omega_{\mathbf{k}}\in\mathcal{S}\}_{\mathbf{k}\in\mathbb{N}}$ такая, что

$$\Omega = igcup_{k=1}^\infty \Omega_k$$
 и $\mu(\Omega_k) < \infty$ $(k \in \mathbb{N}).$

Замечание

Относительно произвольного измеримого отображения, заданного на $(\Omega, \mathcal{S}, \mu)$, будем говорить, что оно μ -измеримо.

Понятие меры

Замечание

Введённое понятие меры может быть обобщено. Если в определении 1.24 заменить область значений функции μ на $\overline{\mathbb{R}}$ или \mathbb{R} , то соответственно получатся определения меры со знаком и конечной меры со знаком.

Понятие меры

Замечание

Введённое понятие меры может быть обобщено. Если в определении 1.24 заменить область значений функции μ на $\overline{\mathbb{R}}$ или \mathbb{R} , то соответственно получатся определения меры со знаком и конечной меры со знаком.

Замечание

В теории веротностей используется следующая терминология. Измеримое пространство с вероятностной мерой $(\Omega, \mathcal{S}, \mathsf{P})$ называется вероятностным пространством. Элементы множества Ω называются элементарными событиями, а элементы σ -алгебры \mathcal{S} называются просто событиями.

Понятие меры

Замечание

Введённое понятие меры может быть обобщено. Если в определении 1.24 заменить область значений функции μ на $\overline{\mathbb{R}}$ или \mathbb{R} , то соответственно получатся определения меры со знаком и конечной меры со знаком.

Замечание

В теории веротностей используется следующая терминология. Измеримое пространство с вероятностной мерой $(\Omega, \mathcal{S}, \mathsf{P})$ называется вероятностным пространством. Элементы множества Ω называются элементарными событиями, а элементы σ -алгебры \mathcal{S} называются просто событиями.

Множество всех вероятностных мер, заданных на (Ω, \mathcal{S}) , будем обозначать через $\mathcal{M}^1_+(\Omega, \mathcal{S})$. Если из контекста понятно, о какой σ -алгебре \mathcal{S} идёт речь, то будет использоваться сокращённая запись $\mathcal{M}^1_+(\Omega)$.

Понятие меры

Утверждение 1.8.

Пусть μ – σ -конечная мера на (Ω,\mathcal{S}) и $\{A_k\}_{k\in\mathbb{N}}\subseteq\mathcal{S}.$ Тогда

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) \leqslant \sum_{k=1}^{\infty} \mu\Big(A_k\Big).$$

Понятие меры

Утверждение 1.8.

Пусть μ – σ -конечная мера на (Ω, \mathcal{S}) и $\{A_k\}_{k\in\mathbb{N}}\subseteq \mathcal{S}.$ Тогда

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) \leqslant \sum_{k=1}^{\infty} \mu\Big(A_k\Big).$$

Утверждение 1.9.

Пусть P — вероятностная мера на (Ω, \mathcal{S}) , $A_1, \ldots, A_n \in \mathcal{S}$ и $\delta \in (0, 1)$. Предположим что

$$P(A_i) \geqslant 1 - \frac{\delta}{n}$$
 $(i = 1, ..., n),$

тогда

$$P(A_1 \cap ... \cap A_n) \geqslant 1 - \delta.$$

Понятие меры

Пример 1.10.

На произвольном измеримом пространстве (Ω, \mathcal{S}) каждый фиксированный элемент $a \in \Omega$ задаёт меру Дирака по правилу

$$\delta_{\pmb{\sigma}}(\pmb{\mathcal{A}}) \coloneqq \left\{ egin{array}{ll} \pmb{1}, & ext{если} & \pmb{\sigma} \in \pmb{\mathcal{A}}; \\ \pmb{0}, & ext{иначе}, \end{array}
ight.$$

для любого $A \in \mathcal{S}$.

Понятие меры

Пример 1.11.

Предположим, что функция $F: \mathbb{R} \longrightarrow \mathbb{R}$ неубывает, непрерывна справа и ограничена. Тогда на измеримом пространстве $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ существует и единственна конечная мера μ_F такая, что

$$\mu_F((a,b]) = F(b) - F(a) \quad (a < b; a,b \in \mathbb{R}).$$

Таким образом определённая мера μ_F называется мерой Лебега-Стилтьеса.

Понятие меры

Пример 1.12.

Важную роль на измеримом пространстве $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ играет *классическая мера Лебега* λ_1 , которая каждому интервалу (a,b) ставит в соответствие его длину b-a. Заметим, что классическая мера Лебега одноточечного множества равна нулю.

Понятие меры

Пример 1.12.

Важную роль на измеримом пространстве $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ играет классическая мера Лебега λ_1 , которая каждому интервалу (a,b) ставит в соответствие его длину b-a. Заметим, что классическая мера Лебега одноточечного множества равна нулю.

Возникает закономерный вопрос. Почему нельзя меру λ_1 определить на σ -алгебре $2^\mathbb{R}$?

Понятие меры

Пример 1.12.

Важную роль на измеримом пространстве $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ играет классическая мера Лебега λ_1 , которая каждому интервалу (a,b) ставит в соответствие его длину b-a. Заметим, что классическая мера Лебега одноточечного множества равна нулю.

Возникает закономерный вопрос. Почему нельзя меру λ_1 определить на σ -алгебре $2^\mathbb{R}$?

Ответ на этот вопрос даёт теорема Улама. Эта теорема утверждает, что конечная мера, заданная на множестве всех подмножеств множества мощности континуума, и принимающая нулевое значение на всех одноэлементных множествах, принимает только нулевое значение и на всех остальных подмножествах.

Понятие меры

Определение 1.25.

Пусть $(\Omega, \mathcal{S}, \mu)$ – измеримое пространство с мерой, $A \in \mathcal{S}$ и $\mu(A) = 0$. Если некоторое свойство выполняется для всех элементов множества $\Omega \setminus A$, то говорят, что это свойство выполняется μ -почти всюду. Используются также сокращения (μ -п.в.) или просто (п.в.).

Понятие меры

Определение 1.25.

Пусть $(\Omega, \mathcal{S}, \mu)$ — измеримое пространство с мерой, $A \in \mathcal{S}$ и $\mu(A) = 0$. Если некоторое свойство выполняется для всех элементов множества $\Omega \setminus A$, то говорят, что это свойство выполняется μ -почти всюду. Используются также сокращения (μ -п.в.) или просто (п.в.).

Замечание

Теория вероятностей использует другую терминологию. В контексте рассматриваемого вероятностного пространства $(\Omega, \mathcal{S}, \mathsf{P})$ говорят о свойствах, которые выполняются P -почти наверное. Используются также сокращения $(\mathsf{P}$ -п.н.) или просто $(\mathsf{п.н.})$.

Содержание

- Оператор об предоставления предо
- Мера и интеграл Лебега
 - Понятие меры
 - Интеграл Лебега
- Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
- Измеримость супремума

Интеграл Лебега

Будем предполагать, что задано измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$.

Интеграл Лебега

Будем предполагать, что задано измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$.

Определение 1.26.

Измеримая функция h называется простой, если она может быть представлена в виде

$$h(\omega) = \sum_{k=1}^{n} c_k \mathbf{1}_{A_k}(\omega) \quad (\omega \in \Omega),$$

где $c_k \in \mathbb{R}$, $A_k \in \mathcal{S}$, $\mu(A_k) < \infty$.

Интеграл Лебега

Будем предполагать, что задано измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$.

Определение 1.26.

Измеримая функция h называется простой, если она может быть представлена в виде

$$h(\omega) = \sum_{k=1}^{n} c_k \mathbf{1}_{A_k}(\omega) \quad (\omega \in \Omega),$$

где $c_k \in \mathbb{R}$, $A_k \in \mathcal{S}$, $\mu(A_k) < \infty$.

Интеграл Лебега от простой функции h по множеству Ω определяется формулой

$$\int_{\Omega} h \, d\mu := \sum_{k=1}^{n} c_k \mu(A_k).$$

Интеграл Лебега

Определение 1.27.

Для неотрицательной измеримой функции f через Q_f обозначим множество всех простых функций h, удовлетворяющих условию $0 \le h(\omega) \le f(\omega)$ ($\omega \in \Omega$).

Интеграл Лебега от неотрицательной измеримой функции f по множеству Ω определяется формулой

$$\int_{\Omega} f \, d\mu := \sup_{h \in Q_f} \int_{\Omega} h \, d\mu$$

Интеграл Лебега

Определение 1.27.

Для неотрицательной измеримой функции f через Q_f обозначим множество всех простых функций h, удовлетворяющих условию $0 \le h(\omega) \le f(\omega)$ ($\omega \in \Omega$).

Интеграл Лебега от неотрицательной измеримой функции f по множеству Ω определяется формулой

$$\int\limits_{\Omega} f \, d\mu \coloneqq \sup\limits_{h \in Q_f} \int\limits_{\Omega} h \, d\mu$$

Заметим, что в этом определении интеграл Лебега может принимать бесконечное значение.

Интеграл Лебега

Определение 1.28.

Для произвольной измеримой функции f определим две неотрицательные измеримые функции

$$f_+(\omega) \coloneqq \max\{f(\omega), 0\}, \quad f_-(\omega) \coloneqq \max\{-f(\omega), 0\} \quad (\omega \in \Omega).$$

Предположим, что функции f_+ и f_- имеют конечные интегралы Лебега. В этом случае интеграл Лебега от измеримой функции f по множеству Ω определяется формулой

$$\int\limits_{\Omega} f(\omega)\mu(\mathsf{d}\omega) = \int\limits_{\Omega} f\,\mathsf{d}\mu := \int\limits_{\Omega} f_{+}\,\mathsf{d}\mu - \int\limits_{\Omega} f_{-}\,\mathsf{d}\mu,$$

а сама функция f называется интегрируемой по Лебегу на Ω .

Интеграл Лебега

Определение 1.28. (продолжение)

Множество всех интегрируемых по Лебегу функций будем обозначать через $\mathcal{L}^1(\Omega,\mathcal{S},\mu)$ или сокращённо $\mathcal{L}^1(\Omega)$, если из контекста понятно о какой σ -алгебре и мере идёт речь.

Интеграл Лебега

Определение 1.28. (продолжение)

Множество всех интегрируемых по Лебегу функций будем обозначать через $\mathcal{L}^1(\Omega, \mathcal{S}, \mu)$ или сокращённо $\mathcal{L}^1(\Omega)$, если из контекста понятно о какой σ -алгебре и мере идёт речь.

Замечание

В теории вероятностей интеграл Лебега случайной величины ξ , заданной на вероятностном пространстве $(\Omega, \mathcal{S}, \mathsf{P})$, называется математическим ожиданием, для которого используются обозначения $\mathbf{E}\xi$ или $\mathbf{E}_{\omega\sim\mathsf{P}}[\xi(\omega)]$.

Интеграл Лебега

Определение 1.28. (продолжение)

Множество всех интегрируемых по Лебегу функций будем обозначать через $\mathcal{L}^1(\Omega, \mathcal{S}, \mu)$ или сокращённо $\mathcal{L}^1(\Omega)$, если из контекста понятно о какой σ -алгебре и мере идёт речь.

Замечание

В теории вероятностей интеграл Лебега случайной величины ξ , заданной на вероятностном пространстве $(\Omega, \mathcal{S}, \mathsf{P})$, называется математическим ожиданием, для которого используются обозначения $\mathbf{E}\xi$ или $\mathbf{E}_{\omega\sim\mathsf{P}}[\xi(\omega)]$.

Дисперсией случайной величины ξ называется число $\mathbf{D}\xi \coloneqq \mathbf{E}(\xi - \mathbf{E}\xi)^2 = \mathbf{E}\xi^2 - (\mathbf{E}\xi)^2$. Случайная величина ξ называется вырожденной, если $\mathbf{D}\xi = 0$.

Интеграл Лебега

Утверждение 1.10.

Пусть f – измеримая функция и $A \in \mathcal{S}$. Тогда условие $f \in \mathcal{L}^1(A)$ эквивалентно условию $f \mathbf{1}_A \in \mathcal{L}^1(\Omega)$, и если $f \in \mathcal{L}^1(A)$, то

$$\int\limits_{\mathcal{A}} f \, d\mu = \int\limits_{\Omega} f \, \mathbf{1}_{\mathcal{A}} \, d\mu$$

Интеграл Лебега

Утверждение 1.10.

Пусть f – измеримая функция и $A \in \mathcal{S}$. Тогда условие $f \in \mathcal{L}^1(A)$ эквивалентно условию $f\mathbf{1}_A \in \mathcal{L}^1(\Omega)$, и если $f \in \mathcal{L}^1(A)$, то

$$\int\limits_{\mathcal{A}} f \, d\mu = \int\limits_{\Omega} f \, \mathbf{1}_{\mathcal{A}} \, d\mu$$

Утверждение 1.11.

Пусть f и g – измеримые функции. Тогда

ullet если $f,g\in\mathcal{L}^1(\Omega)$ и $a,b\in\mathbb{R}$, то $af+bg\in\mathcal{L}^1(\Omega)$ и

$$\int\limits_{\Omega} ig(extit{af} + extit{bg} ig) \, extit{d} \mu = extit{a} \int\limits_{\Omega} extit{f} \, extit{d} \mu + extit{b} \int\limits_{\Omega} extit{g} \, extit{d} \mu;$$

ullet $f\in\mathcal{L}^1(\Omega)$ тогда и только тогда, когда $|f|\in\mathcal{L}^1(\Omega)$;

Интеграл Лебега

Утверждение 1.11. (продолжение)

ullet если $f \in \mathcal{L}^1(\Omega)$, то

$$\left|\int\limits_{\Omega} f \, d\mu\right| \leqslant \int\limits_{\Omega} |f| \, d\mu;$$

- ullet если $f\in \mathcal{L}^1(\Omega)$ и $|g|\leqslant |f|$ (μ -п.в.), то $g\in \mathcal{L}^1(\Omega)$;
- ullet если $f,g\in\mathcal{L}^1(\Omega)$ и $g\leqslant f$ (μ -п.в.), то

$$\int\limits_{\Omega} \mathbf{g}\,\mathbf{d}\mu \leqslant \int\limits_{\Omega} \mathbf{f}\,\mathbf{d}\mu;$$

ullet если $\mu(\Omega)<\infty$ и $|f|\leqslant C$ (μ -п.в.) для некоторого $C\geqslant 0$, то $f\in\mathcal{L}^1(\Omega)$ и

$$\left|\int\limits_{\Omega} f \, d\mu\right| \leqslant C\mu(\Omega).$$

Интеграл Лебега

Для формулировки следующего свойства нам потребуется ввести понятие выпуклой функции.

Интеграл Лебега

Для формулировки следующего свойства нам потребуется ввести понятие выпуклой функции.

Определение 1.29.

Пусть $(a,b)\subset\mathbb{R}$. Функция $\varphi:(a,b)\longrightarrow\mathbb{R}$ называется выпуклой, если для любых $x_1,x_2\in(a,b)$ и $\lambda\in[0,1]$ выполняется неравенство

$$\varphi(\lambda x_1 + (1-\lambda)x_2) \leqslant \lambda \varphi(x_1) + (1-\lambda)\varphi(x_2).$$

Интеграл Лебега

Для формулировки следующего свойства нам потребуется ввести понятие выпуклой функции.

Определение 1.29.

Пусть $(a,b)\subset\mathbb{R}$. Функция $\varphi:(a,b)\longrightarrow\mathbb{R}$ называется выпуклой, если для любых $x_1,x_2\in(a,b)$ и $\lambda\in[0,1]$ выполняется неравенство

$$\varphi(\lambda x_1 + (1-\lambda)x_2) \leqslant \lambda \varphi(x_1) + (1-\lambda)\varphi(x_2).$$

Утверждение 1.12.

Пусть $\mu(\Omega)=1$, f – измеримая функция, принимающая свои значения из интервала $(a,b)\subset\mathbb{R}$ и $\varphi:(a,b)\longrightarrow\mathbb{R}$ – выпуклая борелевская функция. Тогда

$$\int\limits_{\Omega}\varphi\circ f\,\mathrm{d}\mu\geqslant\varphi\bigg(\int\limits_{\Omega}f\,\mathrm{d}\mu\bigg).$$

Интеграл Лебега

Для каждого 1 \leqslant $p < \infty$ на множестве измеримых функций

$$\mathcal{L}^p(\Omega,\mathcal{S},\mu) \coloneqq \left\{ f \in \mathcal{S} \, | \, \mathcal{B}(\overline{\mathbb{R}}) \, : \, \int\limits_{\Omega} |f|^p \, d\mu < \infty
ight\}$$

определим полунорму

$$\|f\|_{\mathcal{L}^p(\Omega,\mathcal{S},\mu)} \coloneqq igg(\int\limits_{\Omega} |f|^p \, d\muigg)^{rac{1}{
ho}} \qquad ig(f \in \mathcal{L}^p(\Omega,\mathcal{S},\mu)ig).$$

Мера и интеграл Лебега

Интеграл Лебега

Для каждого 1 \leqslant $ho < \infty$ на множестве измеримых функций

$$\mathcal{L}^{
ho}(\Omega,\mathcal{S},\mu) \coloneqq \left\{ f \in \mathcal{S} \, | \, \mathcal{B}(\overline{\mathbb{R}}) \, : \, \int\limits_{\Omega} |f|^{
ho} \, d\mu < \infty
ight\}$$

определим полунорму

$$\|f\|_{\mathcal{L}^p(\Omega,\mathcal{S},\mu)} \coloneqq igg(\int\limits_{\Omega} |f|^p \, d\muigg)^{rac{1}{p}} \qquad ig(f \in \mathcal{L}^p(\Omega,\mathcal{S},\mu)ig).$$

Если из контекста понятно, о каком измеримом пространстве с мерой идёт речь, будут использоваться сокращения $\mathcal{L}^p(\Omega)$ и $\|\cdot\|_{\mathcal{L}^p(\Omega)}$.

Мера и интеграл Лебега

Интеграл Лебега

Следующее утверждение является простейшим вариантом теоремы вложения.

Мера и интеграл Лебега

Интеграл Лебега

Следующее утверждение является простейшим вариантом теоремы вложения.

Утверждение 1.13.

Пусть $\mu(\Omega)<\infty$ и 1 $\leqslant p_1< p_2<\infty.$ Тогда $\mathcal{L}^{p_2}\subset \mathcal{L}^{p_1}(\Omega)$ и существует константа C>0 такая, что

$$||f||_{\mathcal{L}^{p_1}(\Omega)} \leqslant C||f||_{\mathcal{L}^{p_2}(\Omega)}.$$

Содержание

- 1 Системы множеств
- 2 Мера и интеграл Лебега
- Основные теоремы интеграла Лебега
 - Замена переменных в интеграле Лебега
 - Меры на прямых произведениях измеримых пространств
 - Теорема Радона-Никодима
- 4 Условное математическое ожидание
- Измеримость супремума

Замена переменных в интеграле Лебега

Теорема 1.1. (о замене переменных в интеграле Лебега)

Пусть заданы измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$, измеримое пространство (Σ, \mathcal{E}) и $\mathcal{S} \mid \mathcal{E}$ -измеримое отображение h.

Замена переменных в интеграле Лебега

Теорема 1.1. (о замене переменных в интеграле Лебега)

Пусть заданы измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$, измеримое пространство (Σ, \mathcal{E}) и $\mathcal{S} \mid \mathcal{E}$ -измеримое отображение h. Тогда выполняются следующие условия:

lacktriangle функция множеств $\mu \circ h^{-1}: \mathcal{E} \longrightarrow \overline{\mathbb{R}}_+$ является мерой, при этом говорят, что она индуцирована отображением h;

Замена переменных в интеграле Лебега

Теорема 1.1. (о замене переменных в интеграле Лебега)

Пусть заданы измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$, измеримое пространство (Σ, \mathcal{E}) и $\mathcal{S} \mid \mathcal{E}$ -измеримое отображение h. Тогда выполняются следующие условия:

- ullet функция множеств $\mu \circ h^{-1}: \mathcal{E} \longrightarrow \overline{\mathbb{R}}_+$ является мерой, при этом говорят, что она индуцирована отображением h;
- ② для любой неотрицательной \mathcal{E} -измеримой функции f выполняется равенство

$$\int_{\Omega} (f \circ h)(\omega) \mu(d\omega) = \int_{\Sigma} f(x)(\mu \circ h^{-1})(dx); \tag{1}$$

Замена переменных в интеграле Лебега

Теорема 1.1. (о замене переменных в интеграле Лебега)

Пусть заданы измеримое пространство с σ -конечной мерой $(\Omega, \mathcal{S}, \mu)$, измеримое пространство (Σ, \mathcal{E}) и $\mathcal{S} \mid \mathcal{E}$ -измеримое отображение h. Тогда выполняются следующие условия:

- ullet функция множеств $\mu \circ h^{-1}: \mathcal{E} \longrightarrow \overline{\mathbb{R}}_+$ является мерой, при этом говорят, что она индуцирована отображением h;
- 2 для любой неотрицательной \mathcal{E} -измеримой функции f выполняется равенство

$$\int_{\Omega} (f \circ h)(\omega) \mu(d\omega) = \int_{\Sigma} f(x)(\mu \circ h^{-1})(dx); \tag{1}$$

③ для любой \mathcal{E} -измеримой функции f условие $f \circ h \in \mathcal{L}^1(\Omega, \mathcal{S}, \mu)$ эквивалентно условию $f \in \mathcal{L}^1(\Sigma, \mathcal{E}, \mu \circ h^{-1})$, при этом выполняется равенство (1).

Замена переменных в интеграле Лебега

Замечание

В теории вероятностей используется следующая терминология. Индуцируемая случайным элементом мера, называется его распределением (Вероятностей). Для распределения случайного элемента ζ , заданного на вероятностном пространстве (Ω, \mathcal{S}, P) , используется обозначение P_{ζ} . Заметим, что любую вероятностную меру можно рассматривать в качестве распределения некоторого случайного элемента.

Замена переменных в интеграле Лебега

Замечание

В теории вероятностей используется следующая терминология. Индуцируемая случайным элементом мера, называется его распределением (Вероятностей). Для распределения случайного элемента ζ , заданного на вероятностном пространстве (Ω, \mathcal{S}, P) , используется обозначение P_{ζ} . Заметим, что любую вероятностную меру можно рассматривать в качестве распределения некоторого случайного элемента.

Функция $F_{\xi}(x) \coloneqq \mathsf{P}\{\xi \leqslant x\}$ ($x \in \mathbb{R}$) называется функцией распределения случайной величины ξ . Функция F_{ξ} однозначно определяет распределение P_{ξ} (пример 1.11) этой случайной величины. Таким образом, P_{ξ} является вероятностной мерой Лебега-Стилтьеса.

Содержание

- Опетемы множеств
- 2 Мера и интеграл Лебега
- 3 Основные теоремы интеграла Лебега
 - Замена переменных в интеграле Лебега
 - Меры на прямых произведениях измеримых пространств
 - Теорема Радона-Никодима
- 4 Условное математическое ожидание
- 5 Измеримость супремума

Меры на прямых произведениях измеримых пространств

Вначале рассмотрим частный случай, связанный с понятием прямого произведения мер.

Меры на прямых произведениях измеримых пространств

Вначале рассмотрим частный случай, связанный с понятием прямого произведения мер.

Определение 1.30.

Пусть заданы измеримые пространства с σ -конечными мерами $(\Omega_1, \mathcal{S}_1, \mu_1), \ldots, (\Omega_n, \mathcal{S}_n, \mu_n)$ $(n \geqslant 2)$. Прямым произведением мер μ_1, \ldots, μ_n называется мера $\mu_1 \otimes \ldots \otimes \mu_n$, заданная на $\mathcal{S}_1 \otimes \ldots \otimes \mathcal{S}_n$ и удовлетворяющая условию

$$\mu_1 \otimes \ldots \otimes \mu_n(A_1 \times \ldots \times A_n) = \prod_{i=1}^n \mu_i(A_i) \quad (A_1 \in S_1, \ldots, A_n \in S_n).$$

Меры на прямых произведениях измеримых пространств

Вначале рассмотрим частный случай, связанный с понятием прямого произведения мер.

Определение 1.30.

Пусть заданы измеримые пространства с σ -конечными мерами $(\Omega_1, \mathcal{S}_1, \mu_1), \ldots, (\Omega_n, \mathcal{S}_n, \mu_n)$ ($n \geqslant 2$). Прямым произведением мер μ_1, \ldots, μ_n называется мера $\mu_1 \otimes \ldots \otimes \mu_n$, заданная на $\mathcal{S}_1 \otimes \ldots \otimes \mathcal{S}_n$ и удовлетворяющая условию

$$\mu_1 \otimes \ldots \otimes \mu_n(A_1 \times \ldots \times A_n) = \prod_{i=1}^n \mu_i(A_i) \quad (A_1 \in S_1, \ldots, A_n \in S_n).$$

В дальнейшем, прямое произведение n копий меры μ будем обозначать через μ^n .

Меры на прямых произведениях измеримых пространств

Теорема 1.2 (Тонелли)

Пусть $(\Omega_1, \mathcal{S}_1, \mu_1)$ и $(\Omega_2, \mathcal{S}_2, \mu_2)$ – измеримые пространства с σ -конечными мерами, $f: \Omega_1 \times \Omega_2 \longrightarrow \mathbb{R}_+$ – неотрицательная $\mathcal{S}_1 \otimes \mathcal{S}_2$ -измеримая функция.

Меры на прямых произведениях измеримых пространств

Теорема 1.2 (Тонелли)

Пусть $(\Omega_1, \mathcal{S}_1, \mu_1)$ и $(\Omega_2, \mathcal{S}_2, \mu_2)$ — измеримые пространства с σ -конечными мерами, $f: \Omega_1 \times \Omega_2 \longrightarrow \mathbb{R}_+$ — неотрицательная $\mathcal{S}_1 \otimes \mathcal{S}_2$ -измеримая функция.

Тогда функция

$$g_1:\Omega_1\longrightarrow \overline{\mathbb{R}}_+,\quad g_1:\omega_1\longmapsto \int\limits_{\Omega_2}f(\omega_1,\omega_2)\,\mu_2(d\omega_2).$$

является \mathcal{S}_1 -измеримой, функция

$$g_2:\Omega_2\longrightarrow\overline{\mathbb{R}}_+,\quad g_2:\omega_2\longmapsto\int\limits_{\Omega_1}f(\omega_1,\omega_2)\,\mu_1(d\omega_1).$$

является \mathcal{S}_2 -измеримой и

Меры на прямых произведениях измеримых пространств

Теорема 1.2 (Тонелли, продолжение)

$$\int\limits_{\Omega_1\times\Omega_2}f\,d\mu_1\otimes\mu_2=\int\limits_{\Omega_1}g_1\,d\mu_1=\int\limits_{\Omega_2}g_2\,d\mu_2.$$

Меры на прямых произведениях измеримых пространств

Теорема 1.3 (Фубини)

Пусть $(\Omega_1, \mathcal{S}_1, \mu_1)$ и $(\Omega_2, \mathcal{S}_2, \mu_2)$ – измеримые пространства с σ -конечными мерами, $f \in \mathcal{L}^1(\Omega_1 \times \Omega_2, \mathcal{S}_1 \otimes \mathcal{S}_2, \mu_1 \otimes \mu_2)$.

Меры на прямых произведениях измеримых пространств

Теорема 1.3 (Фубини)

Пусть $(\Omega_1, \mathcal{S}_1, \mu_1)$ и $(\Omega_2, \mathcal{S}_2, \mu_2)$ – измеримые пространства с σ -конечными мерами, $f \in \mathcal{L}^1(\Omega_1 \times \Omega_2, \mathcal{S}_1 \otimes \mathcal{S}_2, \mu_1 \otimes \mu_2)$. Тогда

• существует $B_1\in\mathcal{S}_1$ такое, что $\mu_1(\Omega_1\setminus B_1)=0$, $\omega_2\mapsto f(\omega_1,\omega_2)\in\mathcal{L}^1(\Omega_2,\mathcal{S}_2,\mu_2)$ при $\omega_1\in B_1$ и функция $g_1:\Omega_1\longrightarrow\overline{\mathbb{R}}_+$,

$$m{g_1}:\omega_1\longmapsto\left\{egin{array}{ll} \int\limits_{\Omega_2}f(\omega_1,\omega_2)\,\mu_2(m{d}\omega_2), & ext{если} & \omega_1\in m{B_1};\ \Omega_2 & & ext{иначе}. \end{array}
ight.$$

является S_1 -измеримой;

Меры на прямых произведениях измеримых пространств

Теорема 1.3 (Фубини, продолжение)

• существует $B_2\in\mathcal{S}_2$ такое, что $\mu_2(\Omega_2\setminus B_2)=0$, $\omega_1\mapsto f(\omega_1,\omega_2)\in\mathcal{L}^1(\Omega_1,\mathcal{S}_1,\mu_1)$ при $\omega_2\in B_2$ и функция $g_2:\Omega_2\longrightarrow\overline{\mathbb{R}}_+$,

$$m{g_2}: \omega_2 \longmapsto \left\{ egin{array}{ll} \int\limits_{\Omega_1} f(\omega_1, \omega_2) \, \mu_1(m{d}\omega_1), & ext{если} & \omega_2 \in m{B}_2; \ 0, & ext{иначе}. \end{array}
ight.$$

является \mathcal{S}_2 -измеримой;

$$\int\limits_{\Omega_1\times\Omega_2}f\,d\mu_1\otimes\mu_2=\int\limits_{\Omega_1}g_1\,d\mu_1=\int\limits_{\Omega_2}g_2\,d\mu_2.$$

•

Меры на прямых произведениях измеримых пространств

Используя идеи доказательства теоремы Фубини, может быть получено следующее утверждение, которое в дальнейшем будет использовано при доказательстве неравенства МакДиармида.

Меры на прямых произведениях измеримых пространств

Используя идеи доказательства теоремы Фубини, может быть получено следующее утверждение, которое в дальнейшем будет использовано при доказательстве неравенства МакДиармида.

Лемма 1.2.

Предположим, что $(\Omega, \mathcal{S}, \mu)$ — измеримое пространство с вероятностной мерой и $f - \otimes^n \mathcal{S}$ -измеримая $(n \geqslant 2)$ ограниченная снизу функция. Тогда существует $\otimes^{n-1} \mathcal{S}$ -измеримая функция \hat{f} такая, что

$$\inf_{\omega \in \Omega} f(\omega, \omega_2, \dots, \omega_n) \leqslant \hat{f}(\omega_2, \dots, \omega_n) \leqslant f(\omega_1, \omega_2, \dots, \omega_n) \quad (\mu^n - \text{n.s.}).$$

Меры на прямых произведениях измеримых пространств

Перейдём к рассмотрению общего случая, связанного с понятием ядра перехода.

Меры на прямых произведениях измеримых пространств

Перейдём к рассмотрению общего случая, связанного с понятием ядра перехода.

Определение 1.31.

Пусть заданы измеримые пространства (X, \mathcal{S}_X) и (Y, \mathcal{S}_Y) . Отображение $K: X \times \mathcal{S}_Y \longrightarrow \overline{\mathbb{R}}_+$ называется *ядром перехода* от (X, \mathcal{S}_X) к (Y, \mathcal{S}_Y) , если выполнены следующие условия:

- ullet функция $x \longmapsto \mathcal{K}(x,B)$ является \mathcal{S}_{X} -измеримой для каждого $B \in \mathcal{S}_{\mathsf{Y}};$
- ullet функция множеств $B \longmapsto \mathcal{K}(x,B)$ является мерой на $(\mathsf{Y},\mathcal{S}_\mathsf{Y})$ для каждого $x \in \mathsf{X}$.

Меры на прямых произведениях измеримых пространств

Перейдём к рассмотрению общего случая, связанного с понятием ядра перехода.

Определение 1.31.

Пусть заданы измеримые пространства (X, \mathcal{S}_X) и (Y, \mathcal{S}_Y) . Отображение $K: X \times \mathcal{S}_Y \longrightarrow \overline{\mathbb{R}}_+$ называется *ядром перехода* от (X, \mathcal{S}_X) к (Y, \mathcal{S}_Y) , если выполнены следующие условия:

- ullet функция $x \longmapsto \mathcal{K}(x,B)$ является \mathcal{S}_{X} -измеримой для каждого $B \in \mathcal{S}_{\mathsf{Y}};$
- ullet функция множеств $B \longmapsto \mathcal{K}(x,B)$ является мерой на $(\mathsf{Y},\mathcal{S}_\mathsf{Y})$ для каждого $x \in \mathsf{X}$.

Определение 1.32.

Ядро перехода K называется \mathcal{B} ероятностным, если $K(x,\mathsf{Y})=1$ для каждого $x\in\mathsf{X}.$

Меры на прямых произведениях измеримых пространств

Теорема 1.4.

Пусть (X, S_X) и (Y, S_Y) – измеримые пространства, μ – вероятностная мера на (X, S_X) , K – вероятностное ядро перехода от (X, S_X) к (Y, S_Y) .

Меры на прямых произведениях измеримых пространств

Теорема 1.4.

Пусть (X, \mathcal{S}_X) и (Y, \mathcal{S}_Y) – измеримые пространства, μ – вероятностная мера на (X, \mathcal{S}_X) , K – вероятностное ядро перехода от (X, \mathcal{S}_X) к (Y, \mathcal{S}_Y) .

Тогда существует единственная вероятностная мера ν на $(X \times Y, \mathcal{S}_X \otimes \mathcal{S}_Y)$ такая, что

ullet для любых $A\in\mathcal{S}_{\mathsf{X}}$ и $B\in\mathcal{S}_{\mathsf{Y}}$ верно равенство

$$\nu(A \times B) = \int_{A} K(x, B) \mu(dx); \qquad (2)$$

Меры на прямых произведениях измеримых пространств

Теорема 1.4. (продолжение)

ullet для любой неотрицательной $\mathcal{S}_{\mathsf{X}} \otimes \mathcal{S}_{\mathsf{Y}}$ -измеримой функции f функция

$$x \longmapsto \int\limits_{\mathsf{Y}} f(x,y) \mathsf{K}(x,dy)$$

является \mathcal{S}_{X} -измеримой и верно равенство

$$\int_{\mathsf{X}\times\mathsf{Y}} f \, d\nu = \int_{\mathsf{X}} \mu(dx) \int_{\mathsf{Y}} f(x,y) K(x,dy). \tag{3}$$

Меры на прямых произведениях измеримых пространств

Теорема 1.4. (продолжение)

ullet для любой неотрицательной $\mathcal{S}_{\mathsf{X}} \otimes \mathcal{S}_{\mathsf{Y}}$ -измеримой функции f функция

$$x \longmapsto \int\limits_{\mathsf{Y}} f(x,y) \mathsf{K}(x,dy)$$

является \mathcal{S}_{X} -измеримой и верно равенство

$$\int_{\mathsf{X}\times\mathsf{Y}} f \, d\nu = \int_{\mathsf{X}} \mu(dx) \int_{\mathsf{Y}} f(x,y) K(x,dy). \tag{3}$$

Для краткости, условия (2) и (3), связывающие ν , μ и K, будем обозначать

$$\nu(\mathbf{d}\mathbf{x},\mathbf{d}\mathbf{y})=\mu(\mathbf{d}\mathbf{x})\mathbf{K}(\mathbf{x},\mathbf{d}\mathbf{y}).$$

Меры на прямых произведениях измеримых пространств

Теорема 1.5 (о дезинтеграции)

Пусть (X, \mathcal{S}_X) – измеримое пространство, (Y, \mathcal{S}_Y) – стандартное измеримое пространство, ν – вероятностная мера на $(X \times Y, \mathcal{S}_X \otimes \mathcal{S}_Y)$. Тогда существует вероятностная мера μ на (X, \mathcal{S}_X) и вероятностное ядро перехода K от (X, \mathcal{S}_X) к (Y, \mathcal{S}_Y) такие, что $\nu(dx, dy) = \mu(dx)K(x, dy)$.

Содержание

- 1 Системы множеств
- 2 Мера и интеграл Лебега
- Основные теоремы интеграла Лебега
 - Замена переменных в интеграле Лебега
 - Меры на прямых произведениях измеримых пространств
 - Теорема Радона-Никодима
- 4 Условное математическое ожидание
- Измеримость супремума

Теорема Радона-Никодима

Определение 1.33.

Пусть μ и ν – меры, заданые на измеримом пространстве (Ω, \mathcal{S}) . Будем говорить, что мера ν обладает свойством абсолютной непрерывности относительно меры μ (и записывать $\nu \ll \mu$), если для любого $A \in \mathcal{S}$ из условия $\mu(A) = 0$ следует $\nu(A) = 0$.

Теорема Радона-Никодима

Определение 1.33.

Пусть μ и ν – меры, заданые на измеримом пространстве (Ω, \mathcal{S}) . Будем говорить, что мера ν обладает свойством абсолютной непрерывности относительно меры μ (и записывать $\nu \ll \mu$), если для любого $A \in \mathcal{S}$ из условия $\mu(A) = 0$ следует $\nu(A) = 0$.

Теорема 1.6 (Радон-Никодим)

Пусть μ – σ -конечная мера, ν – конечная мера со знаком, заданные на измеримом пространстве (Ω, \mathcal{S}) , и $\nu \ll \mu$.

Тогда существует и единственна (μ -п.в.) функция $f \in \mathcal{L}^1(\Omega, \mathcal{S}, \mu)$ такая, что для любого $A \in \mathcal{S}$ выполняется равенство

$$\nu(A) = \int_A f(\omega)\mu(d\omega).$$

Теорема Радона-Никодима

Теорема 1.6 (Радон-Никодим, продолжение)

При этом, функция f называется $npousBodhoŭ Padoha-Никодима и обозначается через <math>\frac{d\nu}{du}$.

Теорема Радона-Никодима

Теорема 1.7.

Пусть $\nu, \mu, \mu_1, \mu_2, \mu_3$ – конечные меры, заданные на измеримом пространстве (Ω, S) .

Теорема Радона-Никодима

Теорема 1.7.

Пусть $\nu, \mu, \mu_1, \mu_2, \mu_3$ – конечные меры, заданные на измеримом пространстве (Ω, \mathcal{S}) .

Тогда

 $lackbox{0}$ если $\mu_1 \ll \mu_2, \mu_2 \ll \mu_3$, то $\mu_1 \ll \mu_3$ и

$$rac{d\mu_1}{d\mu_3}=rac{d\mu_1}{d\mu_2}rac{d\mu_2}{d\mu_3}$$
 (μ_3 -п.в.);

Основные теоремы интеграла Лебега

Теорема Радона-Никодима

Теорема 1.7.

Пусть $\nu, \mu, \mu_1, \mu_2, \mu_3$ – конечные меры, заданные на измеримом пространстве (Ω, \mathcal{S}) .

Тогда

lacktriangle если $\mu_1 \ll \mu_2, \mu_2 \ll \mu_3$, то $\mu_1 \ll \mu_3$ и

$$rac{d\mu_1}{d\mu_3} = rac{d\mu_1}{d\mu_2}rac{d\mu_2}{d\mu_3}$$
 $(\mu_3$ -п.в.);

 $m{2}$ если $u\ll\mu$ и $rac{d
u}{d\mu}>m{0}$ (μ -п.в.), то $\mu\ll
u$ и

$$rac{ extstyle d\mu}{ extstyle d
u} = \left(rac{ extstyle d
u}{ extstyle d\mu}
ight)^{-1} \qquad (
u ext{-n.s.}).$$

Действительный анализ и теория вероятностей используют общий математический аппарат, который был кратко изложен в предыдущих разделах настоящей главы. Однако предмет исследования у этих дисциплин разный.

Действительный анализ и теория вероятностей используют общий математический аппарат, который был кратко изложен в предыдущих разделах настоящей главы. Однако предмет исследования у этих дисциплин разный.

В частности, в теории вероятностей ключевую роль играет понятие независимости. Прежде, чем перейти к рассмотрению свойств условного математического ожидания, формализуем понятие независимости системы событий и случайных элементов.

Действительный анализ и теория вероятностей используют общий математический аппарат, который был кратко изложен в предыдущих разделах настоящей главы. Однако предмет исследования у этих дисциплин разный.

В частности, в теории вероятностей ключевую роль играет понятие независимости. Прежде, чем перейти к рассмотрению свойств условного математического ожидания, формализуем понятие независимости системы событий и случайных элементов.

Далее, будем предполагать заданным некоторое произвольное вероятностное пространство $(\Omega, \mathcal{S}, \mathsf{P})$.

Содержание

- 1 Системы множеств
- 2 Мера и интеграл Лебега
- 3 Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
 - Понятие независимости
 - Условное математическое ожидание
 - Условное распределение случайного элемента
- 5 Измеримость супремума

Понятие независимости

Определение 1.34.

Системы событий $S_1, S_2, \dots, S_n \subseteq S$ ($n \ge 2$), содержащих Ω , называются независимыми (в совокупности), если

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2) \ldots P(A_n),$$

для любых $A_1 \in \mathcal{S}_1, A_2 \in \mathcal{S}_2, \dots, A_n \in \mathcal{S}_n$.

Понятие независимости

Определение 1.34.

Системы событий $S_1, S_2, \ldots, S_n \subseteq S$ ($n \geqslant 2$), содержащих Ω , называются независимыми (в совокупности), если

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2) \ldots P(A_n),$$

для любых $A_1 \in \mathcal{S}_1, A_2 \in \mathcal{S}_2, \dots, A_n \in \mathcal{S}_n$.

Определение 1.35.

События $A_1, A_2, \ldots, A_n \in \mathcal{S}$ ($n \geqslant 2$) называются независимыми (в совокупности), если независимы системы событий $\{A_1, \Omega\}, \{A_2, \Omega\}, \ldots, \{A_n, \Omega\}$.

Понятие независимости

Определение 1.36.

Случайные элементы $\zeta_1, \zeta_2, \dots, \zeta_n$ ($n \ge 2$) называются независимыми (в совокупности), если независимы порождённые ими σ -алгебры $\sigma\{\zeta_1\}, \sigma\{\zeta_2\}, \dots, \sigma\{\zeta_n\}$.

Понятие независимости

Определение 1.36.

Случайные элементы $\zeta_1, \zeta_2, \dots, \zeta_n$ ($n \ge 2$) называются независимыми (в совокупности), если независимы порождённые ими σ -алгебры $\sigma\{\zeta_1\}, \sigma\{\zeta_2\}, \dots, \sigma\{\zeta_n\}$.

Множество событий называется π -системой, если она замкнута относительно взятия конечных пересечений.

Понятие независимости

Определение 1.36.

Случайные элементы $\zeta_1, \zeta_2, \dots, \zeta_n$ ($n \ge 2$) называются независимыми (в совокупности), если независимы порождённые ими σ -алгебры $\sigma\{\zeta_1\}, \sigma\{\zeta_2\}, \dots, \sigma\{\zeta_n\}$.

Множество событий называется π -системой, если она замкнута относительно взятия конечных пересечений.

Утверждение 1.14.

Предположим, что $S_1, S_2, \ldots, S_n \subseteq S$ ($n \geqslant 2$) — независимые π -системы, содержащие Ω . Тогда независимыми будут порождённые ими σ -алгебры $\sigma\{S_1\}, \sigma\{S_2\}, \ldots, \sigma\{S_n\}$.

Понятие независимости

Утверждение 1.15.

Пусть заданы измеримые пространства $(\Sigma_i, \mathcal{E}_i)$, $(\Upsilon_i, \mathcal{I}_i)$, случайные элементы $\zeta_i \in \mathcal{S} \mid \mathcal{E}_i$ и измеримые отображения $g_i \in \mathcal{E}_i \mid \mathcal{I}_i$ ($i = 1, \ldots, n$; $n \geqslant 2$).

Тогда из независимости случайных элементов $\zeta_1, \zeta_2, \ldots, \zeta_n$ следует независимость случайных элементов $g_1(\zeta_1), g_2(\zeta_2), \ldots, g_n(\zeta_n)$.

Понятие независимости

Утверждение 1.15.

Пусть заданы измеримые пространства $(\Sigma_i, \mathcal{E}_i)$, $(\Upsilon_i, \mathcal{I}_i)$, случайные элементы $\zeta_i \in \mathcal{S} \mid \mathcal{E}_i$ и измеримые отображения $g_i \in \mathcal{E}_i \mid \mathcal{I}_i$ ($i = 1, \ldots, n$; $n \geqslant 2$).

Тогда из независимости случайных элементов $\zeta_1, \zeta_2, \ldots, \zeta_n$ следует независимость случайных элементов $g_1(\zeta_1), g_2(\zeta_2), \ldots, g_n(\zeta_n)$.

Из определения прямого произведения измеримых пространств и утверждений 1.14 и 1.15 вытекает полезное следствие.

Понятие независимости

Утверждение 1.15.

Пусть заданы измеримые пространства $(\Sigma_i, \mathcal{E}_i)$, $(\Upsilon_i, \mathcal{I}_i)$, случайные элементы $\zeta_i \in \mathcal{S} \mid \mathcal{E}_i$ и измеримые отображения $g_i \in \mathcal{E}_i \mid \mathcal{I}_i$ ($i = 1, \ldots, n$; $n \geqslant 2$).

Тогда из независимости случайных элементов $\zeta_1, \zeta_2, \ldots, \zeta_n$ следует независимость случайных элементов $g_1(\zeta_1), g_2(\zeta_2), \ldots, g_n(\zeta_n)$.

Из определения прямого произведения измеримых пространств и утверждений 1.14 и 1.15 вытекает полезное следствие.

Следствие 1.1.

Если случайные элементы $\zeta_1,\ldots\zeta_k,\zeta_{k+1},\ldots,\zeta_n$ (1 < k < n) независимы, то независимыми будут и случайные элементы вида $g(\zeta_1,\ldots\zeta_k),\zeta_{k+1},\ldots,\zeta_n$, где g – измеримое отображение.

Понятие независимости

Утверждение 1.16.

Пусть случайные величины ξ и η независимы и $\mathbf{E}|\xi|,\mathbf{E}|\eta|<\infty.$ Тогда $\mathbf{E}|\xi\eta|<\infty$ и $\mathbf{E}\xi\eta=\mathbf{E}\xi\cdot\mathbf{E}\eta.$

Содержание

- Оператор об предоставлять предоставлять
- 2 Мера и интеграл Лебега
- 3 Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
 - Понятие независимости
 - Условное математическое ожидание
 - Условное распределение случайного элемента
- Измеримость супремума

Условное математическое ожидание

Пусть задана некоторая произвольная σ -алгебра $\mathcal{S}'\subseteq\mathcal{S}$.

Условное математическое ожидание

Пусть задана некоторая произвольная σ -алгебра $\mathcal{S}'\subseteq\mathcal{S}.$

Определение 1.37.

Условным математическим ожиданием случайной величины ξ относительно σ -алгебры \mathcal{S}' назвается \mathcal{S}' -измеримая случайная величина ξ' такая, что для любого события $A \in \mathcal{S}'$ выполняется равенство $\mathbf{E}[\xi \ \mathbf{1}_A] = \mathbf{E}[\xi' \ \mathbf{1}_A]$.

Условное математическое ожидание

Пусть задана некоторая произвольная σ -алгебра $\mathcal{S}'\subseteq\mathcal{S}.$

Определение 1.37.

Условным математическим ожиданием случайной величины ξ относительно σ -алгебры \mathcal{S}' назвается \mathcal{S}' -измеримая случайная величина ξ' такая, что для любого события $\mathbf{A} \in \mathcal{S}'$ выполняется равенство $\mathbf{E}[\xi \ \mathbf{1}_{A}] = \mathbf{E}[\xi' \ \mathbf{1}_{A}]$.

В дальнейшем, для условного математического ожидания будет использоваться обозначение $\mathbf{E}[\xi \mid \mathcal{S}']$.

Условное математическое ожидание

Теорема 1.8.

Для любой случайной величины $\xi \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$ условное математическое ожидание $\mathbf{E}[\xi \mid \mathcal{S}']$ существует и единственно (п.н.).

Условное математическое ожидание

Теорема 1.8.

Для любой случайной величины $\xi \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$ условное математическое ожидание $\mathbf{E}[\xi \mid \mathcal{S}']$ существует и единственно (п.н.).

Приведённое достаточное условие существования условного математического ожидания вытекает из теоремы Радона-Никодима. Действительно, из свойств интеграла Лебега следует, что функция $A \mapsto \mathbf{E}[\xi \ \mathbf{1}_A]$ является конечной мерой на измеримом пространстве (Ω, \mathcal{S}') абсолютно непрерывной относительно сужения вероятностной меры P на это измеримое пространство.

Условное математическое ожидание

Утверждение 1.17.

Пусть $\xi, \zeta \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$. Справедливы следующие утверждения:

Условное математическое ожидание

Утверждение 1.17.

Пусть $\xi, \zeta \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$. Справедливы следующие утверждения:

1. если случайная величина ξ является \mathcal{S}' -измеримой и $\xi\zeta\in\mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$, то

$$\mathbf{E}[\xi\zeta\,|\,\mathcal{S}'] = \xi\,\mathbf{E}[\zeta\,|\,\mathcal{S}']$$
 (п.н.),

в том числе

$$\mathbf{E}[\xi \mid \mathcal{S}'] = \xi$$
 (п.н.).

Условное математическое ожидание

Утверждение 1.17.

Пусть $\xi, \zeta \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$. Справедливы следующие утверждения:

1. если случайная величина ξ является \mathcal{S}' -измеримой и $\xi\zeta\in\mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$, то

$$\mathbf{E}[\xi\zeta\,|\,\mathcal{S}'] = \xi\,\mathbf{E}[\zeta\,|\,\mathcal{S}'] \quad (\text{п.н.}),$$

в том числе

$$\mathbf{E}[\xi \mid \mathcal{S}'] = \xi \quad (\mathsf{n.h.}).$$

2. для любых $a,b\in\mathbb{R}$ выполняется равенство

$$\mathbf{E}[a\xi + b\zeta \mid \mathcal{S}'] = a\,\mathbf{E}[\xi \mid \mathcal{S}'] + b\,\mathbf{E}[\zeta \mid \mathcal{S}'] \quad (\text{п.н.});$$

Условное математическое ожидание

Утверждение 1.17.

Пусть $\xi, \zeta \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$. Справедливы следующие утверждения:

1. если случайная величина ξ является \mathcal{S}' -измеримой и $\xi\zeta\in\mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$, то

$$\mathbf{E}[\xi\zeta\,|\,\mathcal{S}'] = \xi\,\mathbf{E}[\zeta\,|\,\mathcal{S}'] \quad (\text{п.н.}),$$

в том числе

$$\mathbf{E}[\xi \mid \mathcal{S}'] = \xi \quad (\mathsf{n.h.}).$$

2. для любых $a,b\in\mathbb{R}$ выполняется равенство

$$\mathbf{E}[a\xi + b\zeta \mid \mathcal{S}'] = a\,\mathbf{E}[\xi \mid \mathcal{S}'] + b\,\mathbf{E}[\zeta \mid \mathcal{S}'] \quad (\text{п.н.});$$

3. если $\xi \leqslant \zeta$ (п.н.), то $\mathbf{E}[\xi \,|\, \mathcal{S}'] \leqslant \mathbf{E}[\zeta \,|\, \mathcal{S}']$ (п.н.);

Условное математическое ожидание

Утверждение 1.17.

4. если ξ не зависит от \mathcal{S}' (σ -алгебры $\sigma\{\xi\}$ и \mathcal{S}' независимы), то $\mathbf{E}[\xi\,|\,\mathcal{S}'] = \mathbf{E}\xi$ (п.н.);

Условное математическое ожидание

Утверждение 1.17.

- 4. если ξ не зависит от \mathcal{S}' (σ -алгебры $\sigma\{\xi\}$ и \mathcal{S}' независимы), то $\mathbf{E}[\xi\,|\,\mathcal{S}'] = \mathbf{E}\xi$ (п.н.);
- 5. (телескопическое свойство) для любых σ -алгебр $\mathcal{S}_1,\mathcal{S}_2\subseteq\mathcal{S}$ таких, что $\mathcal{S}_1\subseteq\mathcal{S}_2$ выполняются равенства

$$\mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}_1] \,|\, \mathcal{S}_2] = \mathbf{E}[\xi \,|\, \mathcal{S}_1] \quad (\text{п.н.}), \\ \mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}_2] \,|\, \mathcal{S}_1] = \mathbf{E}[\xi \,|\, \mathcal{S}_1] \quad (\text{п.н.});$$

Условное математическое ожидание

Утверждение 1.17.

- 4. если ξ не зависит от \mathcal{S}' (σ -алгебры $\sigma\{\xi\}$ и \mathcal{S}' независимы), то $\mathbf{E}[\xi\,|\,\mathcal{S}'] = \mathbf{E}\xi$ (п.н.);
- 5. (телескопическое свойство) для любых σ -алгебр $\mathcal{S}_1,\mathcal{S}_2\subseteq\mathcal{S}$ таких, что $\mathcal{S}_1\subseteq\mathcal{S}_2$ выполняются равенства

$$\mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}_1] \,|\, \mathcal{S}_2] = \mathbf{E}[\xi \,|\, \mathcal{S}_1] \quad (\text{п.н.}), \\ \mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}_2] \,|\, \mathcal{S}_1] = \mathbf{E}[\xi \,|\, \mathcal{S}_1] \quad (\text{п.н.});$$

6. (формула полной вероятности) $\mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}']] = \mathbf{E}\xi;$

Условное математическое ожидание

Утверждение 1.17.

- 4. если ξ не зависит от \mathcal{S}' (σ -алгебры $\sigma\{\xi\}$ и \mathcal{S}' независимы), то $\mathbf{E}[\xi\,|\,\mathcal{S}'] = \mathbf{E}\xi$ (п.н.);
- 5. (телескопическое свойство) для любых σ -алгебр $\mathcal{S}_1,\mathcal{S}_2\subseteq\mathcal{S}$ таких, что $\mathcal{S}_1\subseteq\mathcal{S}_2$ выполняются равенства

$$\mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}_1] \,|\, \mathcal{S}_2] = \mathbf{E}[\xi \,|\, \mathcal{S}_1] \quad (\text{п.н.}), \\ \mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}_2] \,|\, \mathcal{S}_1] = \mathbf{E}[\xi \,|\, \mathcal{S}_1] \quad (\text{п.н.});$$

- 6. (формула полной вероятности) $\mathbf{E}[\mathbf{E}[\xi \,|\, \mathcal{S}']] = \mathbf{E}\xi;$
- 7. (неравенство Йенсена) если φ выпуклая борелевская функция и $\mathbf{E}|\varphi(\xi)|<\infty$, то

$$\mathbf{E}[\varphi(\xi) \mid \mathcal{S}] \geqslant \varphi(\mathbf{E}[\xi \mid \mathcal{S}])$$
 (п.н.).

Условное математическое ожидание

Определение 1.38.

Условным математическим ожиданием случайной величины ξ относительно случайного элемента ζ называется случайная величина $\mathbf{E}[\xi \mid \zeta] := \mathbf{E}[\xi \mid \sigma\{\zeta\}].$

Условное математическое ожидание

Определение 1.38.

Условным математическим ожиданием случайной величины ξ относительно случайного элемента ζ называется случайная величина $\mathbf{E}[\xi\,|\,\zeta] \coloneqq \mathbf{E}[\xi\,|\,\sigma\{\zeta\}].$

Определение 1.39.

Условным математическим ожиданием случайной величины ξ относительно события $\{\zeta=x\}$ называется такая измеримая функция $\varphi(x)$, что $\mathbf{E}[\xi\,|\,\zeta]=\varphi\circ\zeta$.

В дальнейшем, для таким образом определённой функции $\varphi(x)$ будет использоваться обозначение $\mathbf{E}[\xi \mid \zeta = x].$

Условное математическое ожидание

Определение 1.38.

Условным математическим ожиданием случайной величины ξ относительно случайного элемента ζ называется случайная величина $\mathbf{E}[\xi \mid \zeta] := \mathbf{E}[\xi \mid \sigma\{\zeta\}].$

Определение 1.39.

Условным математическим ожиданием случайной величины ξ относительно события $\{\zeta=x\}$ называется такая измеримая функция $\varphi(x)$, что $\mathbf{E}[\xi\,|\,\zeta]=\varphi\circ\zeta$.

В дальнейшем, для таким образом определённой функции $\varphi(x)$ будет использоваться обозначение $\mathbf{E}[\xi \mid \zeta = x].$

Из леммы Дуба-Дынкина следует корректность определения $\mathbf{E}[\xi \,|\, \zeta=x].$

Условное математическое ожидание

Утверждение 1.8.

Пусть $(\Sigma_1, \mathcal{E}_1)$ и $(\Sigma_2, \mathcal{E}_2)$ – измеримые пространства, $\xi \in \mathcal{S} \mid \mathcal{E}_1$ и $\zeta \in \mathcal{S} \mid \mathcal{E}_2$ – независимые случайные элементы, $g - \mathcal{E}_1 \otimes \mathcal{E}_2$ -измеримая функция. Предположим, что $\mathbf{E}|g(\xi, \zeta)| < \infty$. Тогда

$$\mathbf{E}[g(\xi,\zeta)\,|\,\zeta=x]=\mathbf{E}[g(\xi,x)]\quad (x\in\Sigma_2).$$

Условное математическое ожидание

Введём важный частный случай условного математического ожидания.

Условное математическое ожидание

Введём важный частный случай условного математического ожидания.

Определение 1.40.

Условное математическое ожидание вида $P[A \mid \mathcal{S}'] := \mathbf{E}[\mathbf{1}_A \mid \mathcal{S}']$ называется условной вероятностью события $A \in \mathcal{S}$ относительно σ -алгебры \mathcal{S}' .

Условное математическое ожидание вида $P[A \mid \zeta] := \mathbf{E}[\mathbf{1}_A \mid \zeta]$ называется условной вероятностью события $A \in \mathcal{S}$ относительно случайного элемента ζ .

Условной вероятностью события $A \in \mathcal{S}$ относительно события $\{\zeta = x\}$ называется $\mathsf{P}[A \,|\, \zeta = x] \coloneqq \mathsf{E}[\mathbf{1}_A \,|\, \zeta = x].$

Условное математическое ожидание

Пример 1.13.

Пусть заданы случайная величина $\xi \in \mathcal{L}^1(\Omega, \mathcal{S}, \mathsf{P})$ и система попарно непересекающихся множеств $\mathcal{D} = \{D_k, k \in \mathbb{N}\}$. Предположим, что $\mathcal{S}' = \sigma\{\mathcal{D}\}$ и вероятность каждого события $\mathsf{P}(D_k) > 0$ ($k \in \mathbb{N}$).

Условное математическое ожидание

Пример 1.13.

Пусть заданы случайная величина $\xi\in\mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$ и система попарно непересекающихся множеств $\mathcal{D}=\{D_k,\,k\in\mathbb{N}\}$. Предположим, что $\mathcal{S}'=\sigma\{\mathcal{D}\}$ и вероятность каждого события $\mathsf{P}(D_k)>0$ ($k\in\mathbb{N}$). Тогда

$$\mathbf{E}[\xi \mid \mathcal{S}'] = \sum_{k \in \mathbb{N}} \frac{\mathbf{E}[\xi \, \mathbf{1}_{D_k}]}{\mathsf{P}(D_k)} \, \mathbf{1}_{D_k}.$$

Условное математическое ожидание

Пример 1.13.

Пусть заданы случайная величина $\xi\in\mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$ и система попарно непересекающихся множеств $\mathcal{D}=\{D_k,\,k\in\mathbb{N}\}$. Предположим, что $\mathcal{S}'=\sigma\{\mathcal{D}\}$ и вероятность каждого события $\mathsf{P}(D_k)>0$ ($k\in\mathbb{N}$). Тогда

$$\mathbf{E}[\xi \mid \mathcal{S}'] = \sum_{k \in \mathbb{N}} \frac{\mathbf{E}[\xi \, \mathbf{1}_{D_k}]}{\mathsf{P}(D_k)} \, \mathbf{1}_{D_k}.$$

В частности, если $A \in \mathcal{S}$, то

$$\mathsf{P}[A \,|\, \mathcal{S}'] = \sum_{k \in \mathbb{N}} \frac{\mathsf{P}(A \cap D_k)}{\mathsf{P}(D_k)} \, \mathbf{1}_{D_k}.$$

Условное математическое ожидание

Пример 1.14.

Пусть заданы случайная величина $\xi \in \mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$ и случайный элемент η , принимающий не более чем счетное число значений $\{x_1,x_2,\ldots\}$. Предположим, что $\mathsf{P}\{\eta=x_k\}>0$ ($k\geqslant 1$) и $\sum\limits_{k\geq 1}\mathsf{P}\{\eta=x_k\}=1$.

Условное математическое ожидание

Пример 1.14.

Пусть заданы случайная величина $\xi\in\mathcal{L}^1(\Omega,\mathcal{S},\mathsf{P})$ и случайный элемент η , принимающий не более чем счетное число значений $\{x_1,x_2,\ldots\}$. Предположим, что $\mathsf{P}\{\eta=x_k\}>0$ ($k\geqslant 1$) и $\sum\limits_{k\geqslant 1}\mathsf{P}\{\eta=x_k\}=1$.

Тогда

$$\mathbf{E}[\xi \mid \eta = x_k] = \frac{\mathbf{E}[\xi \mathbf{1}\{\eta = x_k\}]}{\mathsf{P}\{\eta = x_k\}}, \quad (k \geqslant 1).$$

Для $x \notin \{x_1, x_2, \ldots\}$ значение $\mathbf{E}[\xi \mid \eta = x]$ выбирается произвольным образом.

Содержание

- Опетемы множеств
- 2 Мера и интеграл Лебега
- 3 Основные теоремы интеграла Лебега
- 4 Условное математическое ожидание
 - Понятие независимости
 - Условное математическое ожидание
 - Условное распределение случайного элемента
- 5 Измеримость супремума

Условное распределение случайного элемента

Предположим, что на вероятностном пространстве $(\Omega, \mathcal{S}, \mathsf{P})$ задан случайный элемент X со значениями в измеримом пространстве $(\mathsf{X}, \mathcal{S}_\mathsf{X})$ и случайный элемент Y со значениями в стандартном измеримом пространстве $(\mathsf{Y}, \mathcal{S}_\mathsf{Y})$. Из утверждения 1.7 следует, что пара (X, Y) представляет собой случайный элемент со значениями в $(\mathsf{X} \times \mathsf{Y}, \mathcal{S}_\mathsf{X} \otimes \mathcal{S}_\mathsf{Y})$.

Условное распределение случайного элемента

Предположим, что на вероятностном пространстве $(\Omega, \mathcal{S}, \mathsf{P})$ задан случайный элемент X со значениями в измеримом пространстве $(\mathsf{X}, \mathcal{S}_\mathsf{X})$ и случайный элемент Y со значениями в стандартном измеримом пространстве $(\mathsf{Y}, \mathcal{S}_\mathsf{Y})$. Из утверждения 1.7 следует, что пара (X, Y) представляет собой случайный элемент со значениями в $(\mathsf{X} \times \mathsf{Y}, \mathcal{S}_\mathsf{X} \otimes \mathcal{S}_\mathsf{Y})$.

Через $P_{X,Y}$ обозначим распределение случайного элемента (X,Y), которое будем называть совместным распределением X и Y, а через P_X обозначим распределение случайного элемента X, которое будем называть маргинальным распределением. По теореме 1.5 существует вероятностное ядро перехода $P_{Y|X}$ такое, что $P_{X,Y}(dx,dy) = P_X(dx)\,P_{Y|X}(x,dy)$.

Условное распределение случайного элемента

Определение 1.41.

Вероятностное ядро перехода $P_{Y|X}$ называется условным распределением случайного элемента Y относительно случайного элемента X.

Условное распределение случайного элемента

Определение 1.41.

Вероятностное ядро перехода $P_{Y|X}$ называется условным распределением случайного элемента Y относительно случайного элемента X.

Для каждого фиксированного $B \in \mathcal{S}_Y$ случайная величина $\mathsf{P}_{Y|X}(X(\omega),B)$ является вариантом условной вероятности $\mathsf{P}[Y^{-1}(B)\,|\,X]$. При этом выполняется так называемое свойство регулярности относительно заданных с помощью $\mathsf{P}_{Y|X}$ вариантов условных вероятностей. Для каждого фиксированного $\omega \in \Omega$ функция множеств $C \longmapsto \mathsf{P}[C\,|\,X](\omega)$ является мерой на $\sigma\{Y\}$.

Условное распределение случайного элемента

Пример 1.15.

Будем считать X и Y случайными величинами, совместное распределение которых имеет плотность $\rho_{X,Y}$. Это означает, что

$$\mathsf{P}\big\{(X,Y)\in B\big\}=\int\limits_{B}\rho_{X,Y}(x,y)dxdy,\quad B\in\mathcal{B}(\mathbb{R}^{2}).$$

В этом случае распределение случайной величины X то же будет иметь плотность

$$ho_X(x)=\int\limits_{-\infty}^{\infty}
ho_{X,Y}(x,y)dy,\quad x\in\mathbb{R}.$$

Условное распределение случайного элемента

Пример 1.15. (продолжение)

Определим условную плотность случайной величины Y относительно случайной величины X по правилу

$$ho_{Y|X}(x,y) := \left\{egin{array}{ll} rac{
ho_{X,Y}(x,y)}{
ho_{X}(x)}, & ext{если} &
ho_{\eta}(x)
eq 0; \ 0, & ext{иначе}, \end{array}
ight. x,y \in \mathbb{R}.$$

Тогда

$$\mathsf{P}_{Y|X}(x,B) = \int\limits_{\mathcal{B}}
ho_{Y|X}(x,y) dy, \quad x \in \mathbb{R}, B \in \mathcal{B}(\mathbb{R}^2).$$

Условное распределение случайного элемента

Пример 1.15. (продолжение)

В частности, для произвольной борелевской функции $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ верно равенство

$$\mathbf{E}\left[f(X,Y)\right] = \int\limits_{\mathbb{R}} \rho_X(x) dx \int\limits_{\mathbb{R}} f(x,y) \rho_{Y|X}(x,y) dy$$

(если определена левая часть равенства, то определена и его правая часть, и наоборот).

В дальнейшем нам потребуется работать с функциями вида

$$\omega \longmapsto \sup_{f \in \mathcal{F}} f(\omega)$$
 in $\omega \longmapsto \inf_{f \in \mathcal{F}} f(\omega)$ $(\omega \in \Omega)$, (4)

где \mathcal{F} – семейство измеримых функций, заданных на некотором измеримом пространстве (Ω, \mathcal{S}) . Возникает закономерный вопрос об измеримости таких функций.

В дальнейшем нам потребуется работать с функциями вида

$$\omega \longmapsto \sup_{f \in \mathcal{F}} f(\omega)$$
 и $\omega \longmapsto \inf_{f \in \mathcal{F}} f(\omega)$ $(\omega \in \Omega)$, (4)

где \mathcal{F} – семейство измеримых функций, заданных на некотором измеримом пространстве (Ω, \mathcal{S}) . Возникает закономерный вопрос об измеримости таких функций.

Из утв. 1.5 следует, что если семейство \mathcal{F} не более чем счётное, то функции (4) будут измеримыми. Однако в общем случае это не всегда так.

Из примера 1.12 следует существование множества $B \notin \mathcal{B}(\mathbb{R})$. Заметим также, что любое одноэлементное множество на прямой является борелевским. Имеет место представление

$$\mathbf{1}_B = \sup_{b \in B} \mathbf{1}_{\{b\}} = \inf_{b \in B} \mathbf{1}_{\{b\}}.$$

Из примера 1.12 следует существование множества $B \notin \mathcal{B}(\mathbb{R})$. Заметим также, что любое одноэлементное множество на прямой является борелевским. Имеет место представление

$$\mathbf{1}_B = \sup_{b \in B} \mathbf{1}_{\{b\}} = \inf_{b \in B} \mathbf{1}_{\{b\}}.$$

Таким образом, построено представление для неизмеримой функции $\mathbf{1}_B$ в виде супремума и инфимума семейства измеримых функций.

Из примера 1.12 следует существование множества $B \notin \mathcal{B}(\mathbb{R})$. Заметим также, что любое одноэлементное множество на прямой является борелевским. Имеет место представление

$$\mathbf{1}_{B} = \sup_{b \in B} \mathbf{1}_{\{b\}} = \inf_{b \in B} \mathbf{1}_{\{b\}}.$$

Таким образом, построено представление для неизмеримой функции $\mathbf{1}_B$ в виде супремума и инфимума семейства измеримых функций.

Заметим, что проблемы измеримости супремума и инфимума сводятся к друг другу. Для этого достаточно перейти к рассмотрению семейства функций $\{-f\}_{f\in\mathcal{F}}$.

Достаточным условием измеримости супремума является существование не более чем счётного подмножества $\mathcal{F}'\subseteq\mathcal{F}$ такого, что

$$\sup_{f \in \mathcal{F}} f(\omega) = \sup_{f' \in \mathcal{F}'} f'(\omega) \qquad (\omega \in \Omega). \tag{5}$$

Достаточным условием измеримости супремума является существование не более чем счётного подмножества $\mathcal{F}'\subseteq\mathcal{F}$ такого, что

$$\sup_{f \in \mathcal{F}} f(\omega) = \sup_{f' \in \mathcal{F}'} f'(\omega) \qquad (\omega \in \Omega). \tag{5}$$

Условие (5) в свою очередь будет выполняться, если для любой функции $f \in \mathcal{F}$ существует последовательность $\{f'_n \in \mathcal{F}'\}_{n \in \mathbb{N}}$ такая, что

$$f_n'(\omega) \longrightarrow f(\omega)$$
 при $n \longrightarrow \infty$ $(\omega \in \Omega)$. (6)

Достаточным условием измеримости супремума является существование не более чем счётного подмножества $\mathcal{F}'\subseteq\mathcal{F}$ такого, что

$$\sup_{f \in \mathcal{F}} f(\omega) = \sup_{f' \in \mathcal{F}'} f'(\omega) \qquad (\omega \in \Omega). \tag{5}$$

Условие (5) в свою очередь будет выполняться, если для любой функции $f \in \mathcal{F}$ существует последовательность $\{f'_n \in \mathcal{F}'\}_{n \in \mathbb{N}}$ такая, что

$$f_n'(\omega) \longrightarrow f(\omega)$$
 при $n \longrightarrow \infty$ $(\omega \in \Omega)$. (6)

В дальнейшем при рассмотрении функций вида (4) будет неявно предполагаться выполнение условия (5) или (6).