Санкт-Петербургский политехнический университет Петра Великого
Институт компьютерных наук и кибербезопасности
Высшая школа компьютерных технологий и информационных систем
Отчёт по лабораторной работе Lab_MS_SV_3
Дисциплина: Автоматизация проектирования дискретных устройств (на
английском языке)

Выполнил студент гр. 5130901/10101 ₋		М.Т. Непомнящий
	(подпись)	
Руководитель		А.А. Федотов
•	(подпись)

Оглавление

1.	Задание	4
2.	Ход работы	4
2.1.	. Создание проекта	4
Π	Тодготовка проекта	4
	Начало работы в PD	
2.2.	. Подключение тактового сигнала	7
2.3.	. Подключение Avalon-MM интерфейсов	8
2.4.		
Н	Настройка my_masterA	9
	Тастройка st_splitter	
	Tacтройка st_delay	
2.5.	. Подключение Avalon-ST интерфейсов	11
2.6.		
Π	Троверка блока	12
	- Этладка модулей с проблемными подключениями	
	Анализ с помощью Schematic	
2.7.	. Генерация системы	15
2.8.		
3.	Вывол	17

Список иллюстраций

Рис. 1 – Структура проекта	4
Рис. 2 – Детали проекта	4
Рис. 3 – Задания пути к библиотеке ІР	5
Рис. 4 – Исходное окно PD	5
Рис. 5 – Добавление компонентов	6
Рис. 6 – Изменение имён компонентов	6
Рис. 7 – Подключение тактового сигнала (1)	7
Рис. 8 – Подключение тактового сигнала (2)	7
Рис. 9 – Подключение Avalon-MM интерфейсов	8
Рис. 10 – Редактирование адресов	8
Рис. 11 – Фиксация адресов	9
Рис. 12 – Проверка корректности адресов	9
Рис. 13 – Настройка компонента my_masterA	9
Рис. 14 – Настройка компонента my_masterB	10
Рис. 15 – Настройка компонента st_splitter	10
Рис. 16 – Настройка компонента st_delay	11
Рис. 17 – Установка подключений компонентов	11
Рис. 18 – Экспорт выводов	11
Рис. 19 – Проверка поля Messages на отсутствие ошибок	12
Рис. 20 – Символ системы	12
Рис. 21 – Show System with QSYS Interconnect	12
Рис. 22 – Анализ проблемных подключений	13
Рис. 23 – Исправленный модуль clk	13
Рис. 24 – Повторное выполнение Show System with QSYS Interconnect	14
Рис. 25 – Проверка отсутствия ошибок в системе	14
Рис. 26 – Schematic (фильтр по in)	14
Рис. 27 – Schematic (фильтр по clk)	
Рис. 28 – Предустановки окна Genreration	15
Рис. 29 – Проверка успешности генерации HDL	16
Рис. 30 – Сообщение с указанием пакетов, которые можно подключить	16
Рис. 31 – Анализ рабочей папки проекта	16

1. Задание

Средствами Platform Designer создать структуру проекта, представленную на рисунке ниже:

Рис. 1 – Структура проекта

2. Ход работы

2.1. Создание проекта

Подготовка проекта

Создадим проект, установив следующие значения:

Рис. 2 – Детали проекта

Перейдём по пути Tools \rightarrow Options \rightarrow IP Settings \rightarrow IP Catalog Search Locations и зададим путь к библиотеке IP:

Рис. 3 – Задания пути к библиотеке ІР

Начало работы в PD

Откроем PD и сохраним систему:

Рис. 4 – Исходное окно PD

Добавим компоненты: my_masterA_component, MM_stream_source_component, my_masterB_component, Avalon-ST Splitter, Avalon-ST Delay и ST_ALU_component (2 компонента). Таким образом, получим следующую картинку (в окне Hierarchy слева отображаются все добавленные компоненты):

Рис. 5 – Добавление компонентов

Наличие ошибок связано с тем, что настройка модулей не производилась, т. к. она будет рассмотрена дальше.

Переименуем некоторые из компонентов и сохраним систему:

Рис. 6 – Изменение имён компонентов

2.2. Подключение тактового сигнала

Выделим интерфейс clk компонента clk, и, открыв его соединения, выберем подключение ко всем тактовым входам:

Рис. 7 – Подключение тактового сигнала (1)

Подключим тактовый сигнал, выполнив Filter \rightarrow Clock and Reset Interfaces, убедимся, что соединения выполнены. Также, подключим сигнал Reset, выполнив System \rightarrow Create Global Reset Network, и убедимся, что соединения для reset также выполнены:

Рис. 8 – Подключение тактового сигнала (2)

2.3. Подключение Avalon-MM интерфейсов

Выполним Filter → Avalon-MM Interfaces и выберем соединения так, как показано на картинке ниже

Рис. 9 – Подключение Avalon-MM интерфейсов

Заметим, что адреса не совпадают (сверху так, как должно быть, снизу то, что получилось):

Рис. 10 – Редактирование адресов

Поменяем адреса, проверим, что они верны, и зафиксируем их (нажать символ замка у каждого из адресов):

Рис. 11 – Фиксация адресов

Откроем окно закладок View \rightarrow Address Map. В окне появятся Ведущие (master) и ведомые (slave) шины, т. е. столбцы и строки Avalon MM соответственно. Проверим, что они выведены корректно:

System: lab_PD1_sys Path: my_masterA.m0					
	my_masterA.m0	my_masterB.m0			
MM_Stream_source.s0	0x0000 0000 - 0x0000 0003				
ST_ALU_0.s0 ST_ALU_1.s0		0x0000 0004 - 0x0000 0007			
ST_ALU_1.s0		0x0000 0000 - 0x0000 0003			

Рис. 12 – Проверка корректности адресов

Запомним базовые адреса:

- MM Stream source = 0,
- ST ALU 0 = 4,
- ST ALU 1 = 0.

2.4. Настройка компонентов

Настройка my masterA

Зададим адрес, по которому Ведущий **my_masterA** будет записывать данные (он = $\mathbf{0}$, т. к. это базовый адрес Ведомого MM_Stream_source). Остальное зададим так, как показано на рисунке ниже:

Рис. 13 – Настройка компонента my_masterA

Запись данных будет происходить следующим образом: 100 — счёт на сложение, 200 — счёт на вычитание.

Настройка my masterB

Адреса, по которому Ведущий my masterВ будет записывать данные:

- 0 (это базовый адрес Ведомого ST ALU 1)
- 4 (это базовый адрес Ведомого ST_ALU_0)

Записываемые данные:

- 111-сложение (тип операции ST_ALU_1)
- 222-умножение (тип операции ST_ALU_0)

Рис. 14 – Настройка компонента my masterВ

Настройка st splitter

Установим значения:

- NUMBER_OF_OUTPUTS = 5
- DATA_WIDTH = 32

Рис. 15 – Настройка компонента st_splitter

Hастройка st_delay

Установим значение DATA WIDTH = 32

Рис. 16 – Настройка компонента st_delay

2.5. Подключение Avalon-ST интерфейсов

Установим подключения в столбце Connections так, как показано на рисунке ниже:

Рис. 17 – Установка подключений компонентов

Проведём экспорт выводов путём задания имён для выделенных модулей в столбце Export:

Рис. 18 – Экспорт выводов

Убедимся в том, что система не содержит ошибок и в поле Messages есть только 1 информационное сообщение:

Рис. 19 – Проверка поля Messages на отсутствие ошибок

2.6. Анализ системы

Проверка блока

Выполним View \rightarrow Block Symbol и убедимся в том, что символ системы построен правильно:

Рис. 20 – Символ системы

Выполним команду System → Show System with PD Interconnect (Show System with QSYS Interconnect). Заметим, что добавились новые модули mm_interconnect_0, mm_interconnect_1, avalon_st_adapter и rst_controller (см. рисунок ниже). Обратим внимание на наличие модуля rst_controller, который является адаптером сигнала Reset.

Рис. 21 – Show System with QSYS Interconnect

Выполним View → Clock domains Beta, выберем режим отображения Reset. Проблемные подключения будут отображаться в виде красных точек, при наведении курсора на них, можно увидеть сообщение с информацией о них:

Рис. 22 – Анализ проблемных подключений

Отладка модулей с проблемными подключениями

Внесём исправления в модуль clk:

Рис. 23 – Исправленный модуль clk

Заместим, что красные точки исчезли. Теперь выполним повторно System → Show System with PD Interconnect. Теперь адаптер Reset, из-за которого возникали проблемы, должен отсутствовать в системе. Убедимся в этом:

Рис. 24 – Повторное выполнение Show System with QSYS Interconnect

Назначение добавленных модулей

- mm interconnect Осистема межсоединений для Ведущего my master A
- mm interconnect 1 система межсоединений для Ведущего my master
- avalon st adapter-адаптер между модулем st splitter 0и st delay 0
 - ⊙ Этот адаптер потребовался в системе т. к. у модуля нет выхода Ready, а у модуляѕт_splitter_0есть –на закладке сообщений есть сообщение с информацией

Убедимся, что в системе нету ошибок:

Рис. 25 – Проверка отсутствия ошибок в системе

Анализ с помощью Schematic

Выполним View → Schematic, в качестве фильтра введём in и убедимся в том, что система синхронизации и каналы ST системы подключены верно:

Рис. 26 – Schematic (фильтр по in)

Теперь введём в качестве фильтра clk, чтобы проверить, что шины Avalon MM подключены верно:

Рис. 27 – Schematic (фильтр по clk)

2.7. Генерация системы

Выполним PD → Generate HDL и укажем следующие предустановки для генерации:

Рис. 28 – Предустановки окна Genreration

Удостоверимся в том, что генерация прошла успешно:

Рис. 29 – Проверка успешности генерации HDL

2.8. Конец работы

Закончим работу в PD, нажав кнопку Finish справа снизу, после чего выведется сообщение, где говорится о том, что при необходимости можно подключить файлы к проекту пакета QP:

Рис. 30 — Сообщение с указанием пакетов, которые можно подключить Проверим, что в системных файлах есть все необходимые файлы:

Рис. 31 – Анализ рабочей папки проекта

3. Вывод

В ходе выполнения лабораторной работы была создана структура проекта с использованием Platform Designer. Этот инструмент предоставляет графический интерфейс для интеграции и настройки IP-блоков, что упрощает и ускоряет процесс разработки в сравнении с ручным написанием кода.

Преимущества Platform Designer включают в себя:

- 1. Ускорение разработки: Платформа предлагает готовые IP-блоки, которые могут быть легко интегрированы в проект, сокращая время разработки.
- 2. Упрощение процесса: Использование графического интерфейса позволяет избежать сложностей в написании и отладке кода, особенно для начинающих разработчиков.
- 3. Модульность и повторное использование: IP-блоки могут быть использованы в разных проектах, что способствует повторному использованию кода и упрощает поддержку проектов.
- 4. Визуализация системы: Платформа предоставляет графическое представление структуры проекта, что облегчает понимание и анализ системы.

Таким образом, использование Platform Designer обеспечивает эффективное управление проектом, ускоряет его разработку и повышает его надежность за счет готовых компонентов и удобного интерфейса.