# AI 6102: Machine Learning Methodologies & Applications

L11: Clustering Ensemble & Dimensionality Reduction

Sinno Jialin Pan

Nanyang Technological University, Singapore

Homepage: <a href="http://www.ntu.edu.sg/home/sinnopan">http://www.ntu.edu.sg/home/sinnopan</a>



#### **Outline**

- Ensemble learning for clustering
- Dimensionality reduction
  - Feature selection
  - Feature extraction
    - Principal component analysis (PCA)

## **Ensemble Learning for Clustering**

#### • Clustering ensembles:

- Given an unlabeled data set  $D = \{x_1, x_2, ..., x_N\}$
- A set of clustering solutions  $\{f_1, f_2, ..., f_T\}$ , each of which assigns data to a set of clusters
- An ensemble learner: a unified clustering solution  $f_M$  which combines base clustering solutions by their consensus

#### **Cluster Ensembles**



## Challenges

- Unsupervised
  - No ground-truth
- The correspondence between the clusters in different clustering solutions is unknown
- Combinatorial optimization problem is NP-complete

The problem is at least as hard as any problem in **NP** (nondeterministic polynomial time), which is not solvable in polynomial time

## Challenges (cont.)

Identical clustering results:  $\{\{x_1, x_2\}, \{x_3, x_4, x_5\}, \{x_6, x_7\}\}$ 

| $f_1$ $f_2$ $f_3$ $f_4$    |                                                   |
|----------------------------|---------------------------------------------------|
| 11   12   13   14          |                                                   |
| $\boldsymbol{x_1}$ 1 2 3 1 |                                                   |
| $\boldsymbol{x}_2$ 1 3 3   |                                                   |
| $\boldsymbol{x}_3$ 2 3 1 3 | Numbers of clusters in different base clusterings |
| $x_4$ 2 2 1 4              | can be different                                  |
| $\boldsymbol{x}_{5}$ 2 2 4 |                                                   |
| $\boldsymbol{x}_6$ 3 1 2 2 |                                                   |
| $x_7$ 3 1 2 2              |                                                   |

They may not represent the same cluster!

## A Similarity-based Method

- Input: data set  $D = \{x_1, x_2, ..., x_N\}$ a set of clustering solutions:  $\{f_1, f_2, ..., f_T\}$ a base clustering algorithm f for generating ensemble result
- Process:
  - 1. For i = 1, ..., T
  - 2. Form a base clustering from D with  $f_i$
  - 3. Derive an  $N \times N$  similarity matrix  $\mathbf{M}_i$
  - 4. End
  - 5. Form the consensus similarity matrix  $\mathbf{M} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{M}_{i}$
  - 6. Perform *f* on **M** to generate *K* clusters
- Output: ensemble clustering results obtained by *f*

## **Similarity Matrix Construction**

If  $x_i$  and  $x_j$  belong to the same cluster, then 1, otherwise 0.

|                    |       | •           | $M_1$              |       |                    |                    |       |       |                    |                    |  |  |  |
|--------------------|-------|-------------|--------------------|-------|--------------------|--------------------|-------|-------|--------------------|--------------------|--|--|--|
|                    | $f_1$ |             |                    | $x_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $x_5$ | $\boldsymbol{x}_6$ | $\boldsymbol{x}_7$ |  |  |  |
| $x_1$              | 1     |             |                    | 1     |                    |                    | 0     | 0     |                    | 0                  |  |  |  |
| $\boldsymbol{x}_2$ | 1     |             | $\boldsymbol{x}_2$ |       | 1                  | 0                  | 0     | 0     | 0                  | 0                  |  |  |  |
| $\boldsymbol{x}_3$ | 2     |             | $\boldsymbol{x}_3$ | 0     | 0                  | 1                  | 1     | 1     | 0                  | 0                  |  |  |  |
| $oldsymbol{x_4}$   | 2     | <b>&gt;</b> | J                  | 0     | 0                  | 1                  |       | 1     | 0                  | 0                  |  |  |  |
| $x_5$              | 2     |             | •                  | 0     | 0                  | 1                  | 1     | 1     |                    | 0                  |  |  |  |
| $x_6$              | 3     |             | $x_6$              | 0     | 0                  | 0                  | 0     | 0     | 1                  | 1                  |  |  |  |
| $\boldsymbol{x}_7$ | 3     |             | Ü                  | _     |                    |                    |       |       |                    | 1                  |  |  |  |
| /                  |       |             | $\boldsymbol{x}_7$ | 0     | 0                  | 0                  | 0     | 0     | 1                  | 1                  |  |  |  |

Clustering

## **Consensus Similarity Matrix**

|                    |       | $M_1$    |                    |                    |                    |                    |       |                    |                    |                    |  |  |
|--------------------|-------|----------|--------------------|--------------------|--------------------|--------------------|-------|--------------------|--------------------|--------------------|--|--|
|                    | $f_1$ |          |                    | $\boldsymbol{x}_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $\boldsymbol{x}_5$ | $\boldsymbol{x}_6$ | $\boldsymbol{x}_7$ |  |  |
| $x_1$              | 1     |          | $x_1$              | 1                  | 1                  | 0                  | 0     | 0                  | 0                  | 0                  |  |  |
| $\boldsymbol{x}_2$ | 1     |          | $\boldsymbol{x}_2$ | 1                  | 1                  | 0                  | 0     | 0                  | 0                  | 0                  |  |  |
| $\boldsymbol{x}_3$ | 2     |          | $\boldsymbol{x}_3$ | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |  |  |
| $x_4$              | 2     | $\Sigma$ | $x_4$              | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |  |  |
| $x_5$              | 2     |          | $x_5$              | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |  |  |
| $\boldsymbol{x}_6$ | 3     |          | $\boldsymbol{x}_6$ | 0                  | 0                  | 0                  | 0     | 0                  | 1                  | 1                  |  |  |
| $\boldsymbol{x}_7$ | 3     |          | $\boldsymbol{x}_7$ | 0                  | 0                  | 0                  | 0     | 0                  | 1                  | 1                  |  |  |

|                    | $f_2$ |          |                    | $x_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ |
|--------------------|-------|----------|--------------------|-------|--------------------|--------------------|-------|-------|-------|-------|
| $\boldsymbol{x}_1$ | 2     |          | $\boldsymbol{x}_1$ | 1     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_2$ | 3     |          | $\boldsymbol{x}_2$ | 0     | 1                  | 1                  | 0     | 0     | 0     | 0     |
| $\boldsymbol{x}_3$ | 3     |          | $\boldsymbol{x}_3$ | 0     | 1                  | 1                  | 0     | 0     | 0     | 0     |
| $x_4$              | 2     | $\Sigma$ | $x_4$              | 1     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_5$ | 2     |          | $x_5$              | 1     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_6$ | 1     |          | $\boldsymbol{x}_6$ | 0     | 0                  | 0                  | 0     | 0     | 1     | 1     |
| $\boldsymbol{x}_7$ | 1     |          | $\boldsymbol{x}_7$ | 0     | 0                  | 0                  | 0     | 0     | 1     | 1     |

 $M_2$ 

 $M_4$ 

|                    |       |          | $M_3$              |                    |                    |                    |       |                    |                    |                    |  |  |  |
|--------------------|-------|----------|--------------------|--------------------|--------------------|--------------------|-------|--------------------|--------------------|--------------------|--|--|--|
|                    | $f_3$ |          |                    | $\boldsymbol{x}_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $\boldsymbol{x}_5$ | $\boldsymbol{x}_6$ | $\boldsymbol{x}_7$ |  |  |  |
| $x_1$              | 3     |          | $x_1$              | 1                  | 1                  | 0                  | 0     | 0                  | 0                  | 0                  |  |  |  |
| $\boldsymbol{x}_2$ | 3     |          | $\boldsymbol{x}_2$ | 1                  | 1                  | 0                  | 0     | 0                  | 0                  | 0                  |  |  |  |
| $\boldsymbol{x}_3$ | 1     |          | $\boldsymbol{x}_3$ | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |  |  |  |
| $x_4$              | 1     | $\Sigma$ | $x_4$              | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |  |  |  |
| $\boldsymbol{x}_5$ | 1     |          | $\boldsymbol{x}_5$ | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |  |  |  |
| $\boldsymbol{x}_6$ | 2     |          | $\boldsymbol{x}_6$ | 0                  | 0                  | 0                  | 0     | 0                  | 1                  | 1                  |  |  |  |
| $\boldsymbol{x}_7$ | 2     |          | $\boldsymbol{x}_7$ | 0                  | 0                  | 0                  | 0     | 0                  | 1                  | 1                  |  |  |  |

|                    | $f_4$ |          |                       | $x_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ |
|--------------------|-------|----------|-----------------------|-------|--------------------|--------------------|-------|-------|-------|-------|
| $\boldsymbol{x}_1$ | 1     |          | $\boldsymbol{x}_1$    | 1     | 0                  | 0                  | 0     | 0     | 0     | 0     |
| $\boldsymbol{x}_2$ | 3     |          | $\boldsymbol{x}_2$    | 0     | 1                  | 1                  | 0     | 0     | 0     | 0     |
| $\boldsymbol{x}_3$ | 3     |          | $\boldsymbol{x}_3$    | 0     | 1                  | 1                  | 0     | 0     | 0     | 0     |
| $x_4$              | 4     | $\Sigma$ | $x_4$                 | 0     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $x_5$              | 4     |          | $\boldsymbol{x}_5$    | 0     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_6$ | 2     |          | $\boldsymbol{x}_6$    | 0     | 0                  | 0                  | 0     | 0     | 1     | 1     |
| $\boldsymbol{x}_7$ | 2     |          | <i>x</i> <sub>7</sub> | 0     | 0                  | 0                  | 0     | 0     | 1     | 1     |

## **Consensus Similarity Matrix**

| $M_1$ |
|-------|
|-------|

|                    | $\boldsymbol{x}_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $\boldsymbol{x}_5$ | $\boldsymbol{x}_6$ | $\boldsymbol{x}_7$ |
|--------------------|--------------------|--------------------|--------------------|-------|--------------------|--------------------|--------------------|
| $\boldsymbol{x}_1$ | 1                  | 1                  | 0                  | 0     | 0                  | 0                  | 0                  |
| $\boldsymbol{x}_2$ | 1                  | 1                  | 0                  | 0     | 0                  | 0                  | 0                  |
| $\boldsymbol{x}_3$ | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |
| $x_4$              | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |
| $\boldsymbol{x}_5$ | 0                  | 0                  | 1                  | 1     | 1                  | 0                  | 0                  |
| $\boldsymbol{x}_6$ | 0                  | 0                  | 0                  | 0     | 0                  | 1                  | 1                  |
| $\boldsymbol{x}_7$ | 0                  | 0                  | 0                  | 0     | 0                  | 1                  | 1                  |

#### $M_2$

|                      | $x_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ |
|----------------------|-------|--------------------|--------------------|-------|-------|-------|-------|
| $x_1$                | 1     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_2$   | 0     | 1                  | 1                  | 0     | 0     | 0     | 0     |
| $\boldsymbol{x}_3$   | 0     | 1                  | 1                  | 0     | 0     | 0     | 0     |
| $x_4$                | 1     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_{5}$ | 1     | 0                  | 0                  | 1     | 1     | 0     | 0     |
| $\boldsymbol{x}_6$   | 0     | 0                  | 0                  | 0     | 0     | 1     | 1     |
| $\boldsymbol{x}_7$   | 0     | 0                  | 0                  | 0     | 0     | 1     | 1     |



## $\mathbf{M} = \frac{1}{4} \big( (\mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_4) \big)$

|                       | $x_1$         | $\boldsymbol{x}_2$ | $x_3$         | $x_4$         | $x_5$         | $x_6$ | $x_7$ |
|-----------------------|---------------|--------------------|---------------|---------------|---------------|-------|-------|
| $x_1$                 | 1             | $\frac{1}{2}$      | 0             | $\frac{1}{4}$ | $\frac{1}{4}$ | 0     | 0     |
| $\boldsymbol{x}_2$    | $\frac{1}{2}$ | 1                  | $\frac{1}{2}$ | 0             | 0             | 0     | 0     |
| $\boldsymbol{x}_3$    | 0             | $\frac{1}{2}$      | 1             | $\frac{1}{2}$ | $\frac{1}{2}$ | 0     | 0     |
| $x_4$                 | $\frac{1}{4}$ | 0                  | $\frac{1}{2}$ | 1             | 1             | 0     | 0     |
| <b>x</b> <sub>5</sub> | $\frac{1}{4}$ | 0                  | $\frac{1}{2}$ | 1             | 1             | 0     | 0     |
| $x_6$                 | 0             | 0                  | 0             | 0             | 0             | 1     | 1     |
| $\boldsymbol{x}_7$    | 0             | 0                  | 0             | 0             | 0             | 1     | 1     |

#### $M_3$

|                    | $x_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $x_5$ | $\boldsymbol{x}_6$ | $\boldsymbol{x}_7$ |
|--------------------|-------|--------------------|--------------------|-------|-------|--------------------|--------------------|
| $\boldsymbol{x_1}$ | 1     | 1                  | 0                  | 0     | 0     | 0                  | 0                  |
| $\boldsymbol{x}_2$ | 1     | 1                  | 0                  | 0     | 0     | 0                  | 0                  |
| $\boldsymbol{x}_3$ | 0     | 0                  | 1                  | 1     | 1     | 0                  | 0                  |
| $x_4$              | 0     | 0                  | 1                  | 1     | 1     | 0                  | 0                  |
| $x_5$              | 0     | 0                  | 1                  | 1     | 1     | 0                  | 0                  |
| $\boldsymbol{x}_6$ | 0     | 0                  | 0                  | 0     | 0     | 1                  | 1                  |
| $\boldsymbol{x}_7$ | 0     | 0                  | 0                  | 0     | 0     | 1                  | 1                  |

#### $M_4$

|                      | $x_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{x}_3$ | $x_4$ | $x_5$ | $\boldsymbol{x}_6$ | $\boldsymbol{x}_7$ |
|----------------------|-------|--------------------|--------------------|-------|-------|--------------------|--------------------|
| $x_1$                | 1     | 0                  | 0                  | 0     | 0     | 0                  | 0                  |
| $\boldsymbol{x}_2$   | 0     | 1                  | 1                  | 0     | 0     | 0                  | 0                  |
| $\boldsymbol{x}_3$   | 0     | 1                  | 1                  | 0     | 0     | 0                  | 0                  |
| $x_4$                | 0     | 0                  | 0                  | 1     | 1     | 0                  | 0                  |
| $\boldsymbol{x}_{5}$ | 0     | 0                  | 0                  | 1     | 1     | 0                  | 0                  |
| $\boldsymbol{x}_6$   | 0     | 0                  | 0                  | 0     | 0     | 1                  | 1                  |
| $\boldsymbol{x}_7$   | 0     | 0                  | 0                  | 0     | 0     | 1                  | 1                  |

## Soft Clustering



Each cluster  $C_l$ 

#### **Outline**

- Ensemble learning for clustering
- Dimensionality reduction
  - Feature selection
  - Feature extraction

## High-level Idea

• To summarize observed high-dimensional data instances with low-dimensional vectors



## Why Dimensionality Reduction

- Avoid curse of dimensionality
  - Distance-based methods, e.g., KNN classifiers
- Reduce amount of time and memory for downstream machine learning tasks
- Make visualization possible
  - 2D or 3D
- Help to reduce noise, and thus improve the performance of downstream machine learning tasks

## **Dim Reduction Approaches**

- Feature Selection
  - To select a subset of k features from the original m features to represent each data instance
- Feature Extraction
  - To extract or learn k <u>new</u> features from the original m features to represent each data instance

#### **Feature Selection**

- To select a subset of k features from the original m features to represent each data instance
  - Brute-force approach
    - Try all possible feature subsets and select the best subset based on some criterion
  - Greedy search
    - Start from an empty set and iteratively add the "best" features to the set based on some criterion
    - Start from the whole set of features and iteratively remove the "worst" features from the set based on some criterion

#### **Feature Extraction**

- To extract or learn *k* new features from the original *m* features to represent each data instance
  - Linear combination of original features
    - Principal component analysis
  - Nonlinear combination of original features

## **Principal Component Analysis**

- One of the most widely-used (unsupervised) dimensionality reduction methods
- Takes a data matrix of *N* data points by *m* features, and summarizes it by principal components that are linear combinations of the original *m* features
- The first *k* components display as much as possible of the variation among data instances

#### **Geometric Rationale**

- Goal: to find a projection or rotation of the original *m*-dimensional coordinate system to capture the largest amount of variation in data
  - Ordered s.t. the  $1^{st}$  principal component has the highest variance, the  $2^{nd}$  component has the next highest variance, ..., the m-th component has the lowest variance
  - Principal components are orthogonal to each other



## **PCA Algorithm**

Input:  $\mathcal{D} = \{x_1, x_2, ..., x_N\}$  a set of observed data

1. Centering the data instances s.t. the mean is 0

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i \longrightarrow x_i = x_i - \widehat{\mu}$$

2. Compute sample covariance matrix

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} x_i x_i^T$$
 Each  $u_i$  is of  $m$  dimensions

- 3. Compute eigenvectors of  $\widetilde{\Sigma}$ :  $\{u_1, u_2, ..., u_m\}$ , which are sorted based on their eigenvalues in non-increasing order, i.e.,  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$
- 4. Select the first *k* eigenvectors to construct principal components

#### Illustration



#### **Derivation of PCA**

- The variance preservation view
  - The first k components display as much as possible of the variation among data instances
- The minimum reconstruction view
  - The first k components convey maximum useful information of original data instances

## **Eigenvalues & Eigenvectors**

• Given a m-by-m square matrix  $\mathbf{A}$ , if there exist a non-zero m-dimensional column vector  $\mathbf{u}$ , s.t.

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

then  $\boldsymbol{u}$  is the eigenvector, and  $\lambda$  is called the corresponding eigenvalue

- Notes:
  - There are *m* eigenvectors and eigenvalues
  - An eigenvalue can be positive, negative or zero
  - An eigenvector cannot be a zero vector
  - Eigenvectors are orthogonal to each other

## **Orthogonal Vectors**

• Two vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  are said to be orthogonal if they are perpendicular to each other, i.e., the inner or dot product of two vectors is 0

$$- \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = 0$$

• A set of vectors  $\{v_1, ..., v_k\}$  are mutually orthogonal if every pair of vectors is orthogonal

- 
$$\boldsymbol{v}_i \cdot \boldsymbol{v}_j = 0$$
, for any  $i \neq j$ 

$$\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \boldsymbol{v}_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} \quad \boldsymbol{v}_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$$

$$\boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = \boldsymbol{v}_1 \cdot \boldsymbol{v}_3 = \boldsymbol{v}_2 \cdot \boldsymbol{v}_3 = 0$$

#### **Orthonormal Vectors**

- A set of vectors  $\{v_1, ..., v_k\}$  are mutually orthonormal if every pair of vectors is orthogonal, and the  $L_2$  norm of each vector is 1
  - $\boldsymbol{v}_i \cdot \boldsymbol{v}_j = 0$ , for any  $i \neq j$
  - $-\|\boldsymbol{v}_i\|_2 = \sqrt{\boldsymbol{v}_i \cdot \boldsymbol{v}_i} = 1$
- A set of orthogonal vectors  $\{v_1, ..., v_k\}$  can be normalized to orthonormal via  $\{\frac{v_1}{\|v_1\|_2}, ..., \frac{v_d}{\|v_k\|_2}\}$

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
  $v_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$   $v_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$   $||v_1||_2 = \sqrt{2}$   $||v_2||_2 = 2$   $||v_3||_2 = 2$ 

$$v'_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad v'_2 = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} \quad v'_3 = \frac{1}{2} \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \longrightarrow \begin{array}{c} \|v'_1\|_2 = 1 \\ \|v'_2\|_2 = 1 \\ \|v'_3\|_2 = 1 \end{array}$$

### Orthonormal Vectors (cont.)

- Given a matrix  $\mathbf{V} = (\mathbf{v}_1, ..., \mathbf{v}_k)$ , where  $\mathbf{v}_i$  is a m-dimensional column vector, and  $m \ge k$
- If the columns of **V** is orthonormal, then we have

$$\mathbf{V}^T\mathbf{V} = \mathbf{I}_d$$

$$\mathbf{I}_d = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} - d$$

#### **Orthonormal Basis**

- Given a set of m-dimensional vectors  $\{v_1, ..., v_m\}$ , if  $\{v_1, ..., v_m\}$  are orthonormal, then  $\{v_1, ..., v_m\}$  are referred to as an orthonormal basis for a m-dimensional (Euclidean) space
- For any m-dimensional vector  $\mathbf{x}$ , we have

$$x_i = \sum_{j=1}^m \langle x, v_j \rangle v_j$$

#### **Variance Preservation**

• Given a vector, represented by u, going through the origin, the length of the projection of a data instance x onto u is

$$\frac{\boldsymbol{u}^T\boldsymbol{x}}{\|\boldsymbol{u}\|_2}$$

This is because

$$\mathbf{u} \cdot \mathbf{x} = \mathbf{u}^T \mathbf{x} = \|\mathbf{u}\|_2 \times \|\mathbf{x}\|_2 \times \cos(\theta)$$

the length of the projection of  $\boldsymbol{x}$  onto  $\boldsymbol{u}$ 

$$\frac{\mathbf{u}^T \mathbf{x}}{\|\mathbf{u}\|_2} = a$$

• If  $\boldsymbol{u}$  is of unit length, i.e.,  $\|\boldsymbol{u}\|_2 = 1$ , then  $\boldsymbol{u}^T \boldsymbol{x} = d$ 

## Variance Preservation (cont.)

- Given  $\mathcal{D} = \{x_1, x_2, ..., x_N\}$  with mean being 0:  $x_i = x_i \widehat{\mu}$
- For each data instance  $x_i$ , the length of its projection onto u is

$$\mathbf{u}^T \mathbf{x}_i = d_i$$

• On the other hand, the variance of the data instances projected onto *u* is

$$\frac{1}{N-1} \sum_{i=1}^{N} \underbrace{\{u_i - 0\}^2}$$
 The mean is 0 
$$0$$
 The coordinate of  $x_i$  onto  $u$ 

$$\frac{1}{N-1} \sum_{i=1}^{N} d_i^2 = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{u}^T \boldsymbol{x}_i)^2 = \boldsymbol{u}^T \widetilde{\boldsymbol{\Sigma}} \boldsymbol{u}$$

$$\widetilde{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} \boldsymbol{x}_i \boldsymbol{x}_i^T$$

## Variance Preservation (cont.)

- The goal of PCA (for simplicity, projected on 1D space) is to find the *u* that maximizes the variance, expecting it maximally preserves the distinction among data points
- The resultant optimization problem is

$$\max_{\mathbf{u}} \ \mathbf{u}^T \widetilde{\mathbf{\Sigma}} \mathbf{u}$$
s.t.  $\|\mathbf{u}\|_2 = 1$ 

It can be solved by forming the Lagrangian

$$u^T \widetilde{\Sigma} u + \lambda (1 - u^T u)$$

• By setting the gradient w.r.t. **u** to zero, we have

$$2\widetilde{\Sigma}u - 2\lambda u = 0 \longrightarrow \widetilde{\Sigma}u = \lambda u$$
 The desired direction  $u$  is an eigenvector of  $\widetilde{\Sigma}$ 

 $\tilde{\Sigma}$  has m eigenvectors, which one?

## Variance Preservation (cont.)

- Recall that the variance of the projected dataset  $\mathcal{D} = \{x_1, x_2, ..., x_N\}$  is  $\mathbf{u}^T \widetilde{\Sigma} \mathbf{u}$
- By substituting  $\widetilde{\Sigma} u = \lambda u$  into the above formula, the projected variance becomes  $||u||_2^2 \quad (||u||_2 = 1)$   $||u||_2^2 \quad (||u||_2 = 1)$
- To find a direction that maximizes the projected variance is to find the eigenvector u of  $\widetilde{\Sigma}$  with the largest eigenvalue
- Generalized to multivariate case: let  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$  be the eigenvalues of  $\widetilde{\Sigma}$ , and  $u_1, u_2, \ldots, u_m$  be the corresponding eigenvectors, and choose the top k eigenvectors as the principal components

### **Derivation of PCA (cont.)**

- The variance preservation view
  - The first k components display as much as possible of the variation among data instances
- The minimum reconstruction view
  - The first k components convey maximum useful information of original data instances

#### Minimum Reconstruction Error

• Given any <u>orthonormal</u> basis  $u_1, u_2, ..., u_m$ , a data point  $x_i$  (has been centered) can be written as

$$\mathbf{x}_i = \sum_{j=1}^m \alpha_{ij} \mathbf{u}_j \quad \alpha_{ij} = \langle \mathbf{x}_i, \mathbf{u}_j \rangle = \mathbf{u}_j^T \mathbf{x}_i$$

• Consider the k-term approximation of  $x_i$ :

$$\widehat{\boldsymbol{x}}_i \approx \sum_{j=1}^{\kappa} \alpha_{ij} \boldsymbol{u}_j$$

• The error of the approximate over all data points is

$$E = \frac{1}{N} \sum_{i=1}^{N} \|\widehat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \left\| \sum_{j=k+1}^{m} \alpha_{ij} \mathbf{u}_j \right\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=k+1}^{m} \alpha_{ij}^2$$

## Minimum Reconstruction Error (cont.)

• The error of the approximate over all data points

$$E = \frac{1}{N} \sum_{i=1}^{N} \|\widehat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=k+1}^{m} \alpha_{ij}^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j=k+1}^{m} \mathbf{u}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{u}_j \approx \sum_{j=k+1}^{m} \mathbf{u}_j^T \widetilde{\mathbf{\Sigma}} \mathbf{u}_j$$

• Suppose k = m - 1, i.e., we aim to remove a single dimension, then resultant optimization problem is

$$\min_{\mathbf{u}} \quad \mathbf{u}^T \widetilde{\mathbf{\Sigma}} \mathbf{u}$$
  
s.t.  $\|\mathbf{u}\|_2 = 1$ 

## Minimum Reconstruction Error (cont.)

• By setting the gradient of the Lagrangian w.r.t.  $\boldsymbol{v}$  to zero, we have

$$2\widetilde{\Sigma}u - 2\lambda u = \mathbf{0} \qquad \longrightarrow \widetilde{\Sigma}u = \lambda u$$

The desired direction u is an eigenvector of  $\Sigma$  with a corresponding eigenvalue  $\lambda$ 

 $\widetilde{\Sigma}$  has m eigenvectors, which one?

• Our goal is to minimize the reconstruction error  $\boldsymbol{u}^T \widetilde{\boldsymbol{\Sigma}} \boldsymbol{u}$ 

$$\mathbf{u}^T \widetilde{\mathbf{\Sigma}} \mathbf{u} = \mathbf{u}^T \lambda \mathbf{u} = \lambda \mathbf{u}^T \mathbf{u} = \lambda$$

- Therefore,  $\boldsymbol{u}$  should be the eigenvector of  $\widetilde{\boldsymbol{\Sigma}}$  with the smallest eigenvalue
- Similarly, the other dimensions to remove are subsequently the eigenvectors corresponding to the least eigenvalues

#### Determine the Value of k

- Wrapper approaches
  - Dimensionality reduction is usually an intermedia step for some final tasks, such as classification, regression, clustering
  - Use cross-validation based on the performance of the final task to tune the value of k
- Based on the percentage of variance preserved

$$p_{\text{var}} = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{m} \lambda_i} \times 100$$

 Predefine a value for the percentage of variance to determine the value of k

## How to Obtain Eigenvectors

• If m-by-m square matrix A can be written as

$$\mathbf{A} = \mathbf{B}^T \mathbf{B}$$
, where **B** is *N*-by-*m*

then all the eigenvalues of A are non-negative

• The eigenvectors of  $\mathbf{A} = \mathbf{B}^T \mathbf{B}$  can be computed by performing Singular Value Decomposition (SVD) on  $\mathbf{B}$ 

## Singular Value Decomposition (SVD)

• The SVD of any N-by-m (N > m) matrix **B** has the form

$$\mathbf{B} = \mathbf{V}\mathbf{D}\mathbf{U}^T$$



## Eigen Vectors via SVD

*m*-by-*m* diagonal matrix with elements  $\lambda_1^2 \ge \lambda_2^2 \ge \cdots \ge \lambda_m^2 \ge 0$ 

- Suppose  $A = B^T B$  and B is a N-by-m matrix

• Perform SVD on **B** via **B** = **VDU**<sup>T</sup>
• Then **A** can be rewritten as
$$\mathbf{V}^{T}\mathbf{V} = \mathbf{I}_{N}$$

$$\mathbf{A} = \mathbf{B}^T \mathbf{B} = (\mathbf{V} \mathbf{D} \mathbf{U}^T)^T \mathbf{V} \mathbf{D} \mathbf{U}^T = \mathbf{U} \mathbf{D}^T \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T = \mathbf{U} \mathbf{D}^T \mathbf{U}^T \mathbf$$

• As  $\mathbf{U}^T\mathbf{U} = \mathbf{I}_m$ , we have

$$AU = U\widetilde{D}$$

$$[\mathbf{A}u_1, \mathbf{A}u_2, \dots, \mathbf{A}u_m] = [\lambda_1^2 u_1, \lambda_2^2 u_2, \dots, \lambda_m^2 u_m]$$

$$\mathbf{A}\mathbf{u}_i = \lambda_i^2 \mathbf{u}_i$$
 Each column  $\mathbf{u}_i$  of  $\mathbf{U}$  is an eigenvector of  $\mathbf{A}$  with an eigenvalue of  $\lambda_i^2$ 

Therefore, eigenvectors of A can be obtained by performing SVD on B

## Eigen Vectors via SVD (cont.)

• Given a data matrix  $\mathbf{X}$  ( $N \times m$ ), which has been centered, then the covariance matrix can be computed

$$\widetilde{\mathbf{\Sigma}} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}$$

- Perform SVD on  $\mathbf{X}$  via  $\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T$
- Then  $\widetilde{\Sigma}$  can be rewritten as

$$\widetilde{\Sigma} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X} = \frac{1}{N-1} (\mathbf{V} \mathbf{D} \mathbf{U}^T)^T \mathbf{V} \mathbf{D} \mathbf{U}^T$$

$$= \frac{1}{N-1} \mathbf{U} \mathbf{D} \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T = \mathbf{U} \widetilde{\mathbf{D}} \mathbf{U}^T$$
Denote  $\widetilde{\mathbf{D}} = \frac{1}{N-1} \mathbf{D}^T \mathbf{D}$ 

 $\widetilde{\Sigma}\mathbf{U} = \widetilde{\mathbf{D}}\mathbf{U}$  Each column  $u_i$  of  $\mathbf{U}$  is an eigenvector of  $\widetilde{\Sigma}$ , whose eigenvalue is the i-th diagonal element in  $\widetilde{\mathbf{D}}$ 

## **Further Readings**

- For feature subset selection:
  - An Introduction to Variable and Feature Selection, Isabelle Guyon, Andre Elisseeff, in JMLR 2003
- For dimensionality reduction:
  - Dimensionality Reduction: A Comparative Review,
     L.J.P. van der Maaten and E. O. Postma and H. J. van den Herik, Technical Report, 2008

## Implementation using scikit-learn

• API: sklearn.decomposition.PCA

 $\underline{https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html \# sklearn.decomposition.PCA.html \# sklearn.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomposition.decomp$ 



## **Example**

```
>>> from sklearn.decomposition import PCA
 >>> from sklearn.preprocessing import StandardScaler
 >>> import pandas as pd
                                        >>> X_t = pd.read_csv("yyyy")
 >>> X = pd.read_csv("xxxx")
>>> sc = StandardScaler()
'\ >>> X = sc.fit_transform(X)
                                        >>> X_t = sc.transform(X_t)
>>> pca = PCA(n_components=2)
 >>> pca.fit(X)
 >>> X_pca = pca.transform(X)
                                        >>> X_t_pca = pca.transform(X_t)
```

# Thank you!