无锡学院 试卷

2022 - 2023 学年 第 2 学期

		线性代数		课程试卷参考答案				
试卷类型	A	(注明 A、B 卷)	j	考试类型		闭卷	(注明开、	闭卷)

注意: 1、本课程为___必修_(注明必修或选修), 学时为__3__,学分为__3____

2、本试卷共 页; 考试时间 120 分钟; 出卷时间: 2023 年 6 月

3、姓名、学号等必须写在指定地方; 考试时间: 2023 年 6 月

4、本考卷适用专业年级: 2022 级理工文 任课教师: _____

题 号	 <u> </u>	三	四	五.	六	七	八	九	总 分
得 分									
阅卷人									

(以上内容为教师填写)

专业	年级	班级
学号	姓名	

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场,主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许,否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

一、填空题(每题3分,合计15分)

2. 若
$$\alpha = (1,0,1)^T$$
, 则 $\alpha^T \alpha = (1,0,1) \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \underline{\qquad}$. 2

3. 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$
,则 $A^{-1} = \underline{\qquad} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & -1 & 2 \end{pmatrix}$

4. 若 A 是一个 4×5 的矩阵,且 r(A) = 3,则齐次线性方程组 AX = 0 的基础解系中含有的 解向量的个数为 .2

C. 4

- 5. 已知三阶方阵 A 的特征值为-1, 1, 2则 A^T 的特征值为_____.-1, 1, 2
- 二、选择题(每题3分,合计15分)
- 1. 已知 3 阶行列式|A|=2, 3 阶行列式|B|=-2, 则|-AB|=(C).

$$A. 0 B. -1$$

2. 已知 A, B 为 n 阶方阵,下列运算正确的是(C).

A.
$$(AB)^{-1} = A^{-1}B^{-1}$$

B.
$$(A+B)^{-1} = A^{-1} + B^{-1}$$

 $D_{\cdot}-4$

C.
$$|AB| = |BA|$$

D.
$$|A + B| = |A| + |B|$$

3. 设矩阵
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + 2a_{21} & a_{32} + 2a_{22} & a_{33} + 2a_{23} \end{pmatrix}$, 另有初等矩

阵
$$P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$, 则必有(D).

A.
$$AP_1P_2 = B$$

A.
$$AP_1P_2 = B$$
 B. $AP_2P_1 = B$

C.
$$P_1 P_2 A = B$$
 D. $P_2 P_1 A = B$

D.
$$P_2 P_1 A = B$$

- 4. 设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 均为n维列向量,A是 $m\times n$ 矩阵,则下列命题正确的是(A)

 - B. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关

- C. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关
- D. 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \dots, A\alpha_s$ 线性无关
- 5. 已知 β_1 和 β_2 是非齐次线性方程组 AX = b 的两个不同的解, α_1, α_2 是对应导出组 AX = 0 的基础解系, k_1, k_2 为任意常数,则方程组 AX = b 的通解为(B).

A.
$$k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$

B.
$$k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$

C.
$$k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 - \beta_2}{2}$$

D.
$$k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$$

三、
$$(10 分)$$
 计算行列式 $D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$

$$\mathbf{MF:} \quad D \stackrel{c_1 \leftrightarrow c_2}{=} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 1 & -5 & 3 & -4 \\ 0 & 2 & 1 & -1 \\ -5 & 1 & 3 & -3 \end{bmatrix} \stackrel{r_2 - r_1}{=} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & -8 & 4 & -6 \\ 0 & 2 & 1 & -1 \\ 0 & 16 & -2 & 7 \end{bmatrix} \stackrel{r_2 \leftrightarrow r_3}{=} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 2 & 1 & -1 \\ 0 & -8 & 4 & -6 \\ 0 & 16 & -2 & 7 \end{bmatrix}$$

$$\begin{vmatrix}
r_{3}+4r_{2} \\
= \\
r_{4}-8r_{2}
\end{vmatrix}
\begin{vmatrix}
1 & 3 & -1 & 2 \\
0 & 2 & 1 & -1 \\
0 & 0 & 8 & -10 \\
0 & 0 & -10 & 15
\end{vmatrix}
=
\begin{vmatrix}
1 & 3 & -1 & 2 \\
0 & 2 & 1 & -1 \\
0 & 0 & 8 & -10 \\
0 & 0 & 0 & \frac{5}{2}
\end{vmatrix} = 40$$
10 \Rightarrow

四、(10 分) 设
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$
, 求 A^{-1} .

解: 方法一(初等变换法)

$$(A \quad E) = \begin{pmatrix} 0 & 2 & -1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & -1 \\ 0 & 2 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

所以
$$A^{-1} = \begin{pmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 1 \end{pmatrix}$$
. 10 分

方法二(伴随矩阵法)

因为|A|=-2,且代数余子式为:

$$A_{11} = 1$$
, $A_{12} = -1$, $A_{13} = 0$,
 $A_{21} = 3$, $A_{22} = -1$, $A_{23} = -2$,
 $A_{31} = 5$, $A_{32} = -1$, $A_{33} = -2$,

所以
$$A^* = \begin{pmatrix} 1 & 3 & 5 \\ -1 & -1 & -1 \\ 0 & -2 & -2 \end{pmatrix}$$
, 8分

故
$$A^{-1} = \begin{pmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 1 \end{pmatrix}$$
. 10 分

五、(10 分) 判断向量 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 能否由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示,若能,请写出具体的表达式,其

$$+ \boldsymbol{\alpha}_{1} = (1, 2, 3)^{T}, \boldsymbol{\alpha}_{2} = (1, -1, 2)^{T}, \boldsymbol{\alpha}_{3} = (3, 0, 7)^{T}, \boldsymbol{\beta}_{1} = (3, 2, 1)^{T}, \boldsymbol{\beta}_{2} = (1, 8, 5)^{T}$$

$$\mathbf{M}: \quad \mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2) = \begin{pmatrix} 1 & 1 & 3 & 3 & 1 \\ 2 & -1 & 0 & 2 & 8 \\ 3 & 2 & 7 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 3 & 1 \\ 0 & -3 & -6 & -4 & 6 \\ 0 & -1 & -2 & -8 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 3 & 3 & 1 \\ 0 & -1 & -2 & -8 & 2 \\ 0 & 0 & 0 & 20 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & -5 & 3 \\ 0 & 1 & 2 & 8 & -2 \\ 0 & 0 & 0 & 20 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 3 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \mathbf{B} \quad 8 \ \%$$

由于矩阵 A 与矩阵 B 的对应部分列向量间有相同的线性相关性,所以可以得到 $\boldsymbol{\beta}_1$ 不能由向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示,而 $\boldsymbol{\beta}_2$ 可以由向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示,表达式为: $\boldsymbol{\beta}_2 = 3\boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2$.

六、(10 分)已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,若 $\alpha_1+2\alpha_2,2\alpha_2+x\alpha_3,3\alpha_3+2\alpha_1$ 线性相关,求a 的值.

解:由于 $\alpha_1+2\alpha_2,2\alpha_2+a\alpha_3,3\alpha_3+2\alpha_1$ 线性相关,所以存在不全为零 x_1,x_2,x_3 的数使

$$x_1(\alpha_1 + 2\alpha_2) + x_2(2\alpha_2 + x\alpha_3) + x_3(3\alpha_3 + 2\alpha_1) = 0.$$

整理得:

$$(x_1 + 2x_3)\alpha_1 + 2(x_1 + x_2)\alpha_2 + (xx_2 + 3x_3)\alpha_3 = 0$$
 5 $\%$

因为 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,所以

$$\begin{cases} x_1 + 2x_3 = 0, \\ x_1 + x_2 = 0, \\ xx_2 + 3x_3 = 0. \end{cases}$$
 7

由于 x_1, x_2, x_3 不全为零,所以上述方程组有非零解,从而系数行列式

$$\begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 0 & x & 3 \end{vmatrix} = 2x + 3 = 0,$$

故
$$x = -\frac{3}{2}$$
. 10 分

七、(10 分) 求齐次线性方程组 $\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 = 0 \\ -2x_1 - 4x_2 - 5x_3 + 3x_4 + x_5 = 0. \text{ 的基础解系,并求其通解.} \\ x_1 + 2x_2 + 3x_3 - 3x_4 - 4x_5 = 0 \end{cases}$

 \mathbf{M} : 对系数矩阵 A 作初等行变换化为行最简形,有

$$A = \begin{pmatrix} 1 & 2 & 3 & -1 & 0 \\ -2 & -4 & -5 & 3 & 1 \\ 1 & 2 & 3 & -3 & -4 \end{pmatrix} \frac{r_2 + 2r_1}{r_3 - r_1} \begin{pmatrix} 1 & 2 & 3 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -2 & -4 \end{pmatrix} \frac{r_1 - 3r_2}{r_3 \div (-2)} \begin{pmatrix} 1 & 2 & 0 & -4 & -3 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\frac{r_1 + 4r_3}{0} \begin{pmatrix} 1 & 2 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix},$$
 5 $\frac{1}{2}$

由于r(A)=3<5, 所以该齐次线性方程组有非零解.

同解方程组为
$$\begin{cases} x_1 = -2x_2 - 5x_5 \\ x_3 = x_5 \\ x_4 = -2x_5 \end{cases}$$
 ,分别令
$$\begin{cases} x_2 = 1 \\ x_5 = 0 \end{cases}$$
 和
$$\begin{cases} x_2 = 0 \\ x_5 = 1 \end{cases}$$
 代入方程组,得齐次线

性方程组的基础解系 $\xi_1 = (-2,1,0,0,0)^T$, $\xi_2 = (-5,0,1,-2,1)^T$.

因此,该方程组的通解为 $\bar{x} = k_1 \xi_1 + k_2 \xi_2$,其中 $k_1 \times k_2$ 为任意常数. 10分

八、(10 分) 将二次型 $f(x_1, x_2, x_3) = -x_1^2 - x_2^2 - x_3^2 + 4x_1x_2 + 4x_1x_3 - 4x_2x_3$ 化为标准形,并写出相应的可逆线性变换。

解:
$$f(x_1, x_2, x_3) = -x_1^2 - x_2^2 - x_3^2 + 4x_1x_2 + 4x_1x_3 - 4x_2x_3$$

$$= -(x_1 - 2x_2 - 2x_3)^2 + 3(x_2 + \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2 \qquad 7 \text{ 分}$$
令
$$\begin{cases} y_1 = x_1 - 2x_2 - 2x_3 \\ y_2 = x_2 + \frac{2}{3}x_3 \\ y_3 = x_3 \end{cases}$$
, 即所作可逆线性变换为
$$\begin{cases} x_1 = y_1 + 2y_2 + \frac{2}{3}y_3 \\ x_2 = y_2 - \frac{2}{3}y_3 \\ x_3 = y_3 \end{cases}$$
, 9 分

即可将原二次型化为标准形 $f(y_1, y_2, y_3) = -y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$. 10 分

九、(10 分) 设 $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$ 相似于对角矩阵,求常数 a ,并求可逆矩阵 P ,使

得 $P^{-1}AP$ 为对角矩阵.

M:
$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 2 & 0 \\ 8 & 2 - \lambda & a \\ 0 & 0 & 6 - \lambda \end{vmatrix} = -(\lambda + 2)(\lambda - 6)^2 = 0$$
,

解得 A 的特征值为 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 6$.

因为A可以对角化,所以方程组(A-6E)x=O的基础解系含有两个线性无关

的解向量, 从而 R(A-6E)=1, 解得 a=0. 6分

当
$$\lambda_1 = -2$$
时, $A + 2E = \begin{pmatrix} 4 & 2 & 0 \\ 8 & 4 & 0 \\ 0 & 0 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,

解得属于 $\lambda_1 = -2$ 的线性无关的特征向量为 $\xi_1 = (-1, 2, 0)^T$.

$$\stackrel{\underline{}}{\rightrightarrows} \lambda_2 = \lambda_3 = 6 \, \stackrel{\underline{}}{\boxminus}, \quad A - 6E = \begin{pmatrix} -4 & 2 & 0 \\ 8 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

解得属于特征值 $\lambda_2 = \lambda_3 = 6$ 的线性无关的特征向量为 $\xi_2 = \left(1, 2, 0\right)^T$, $\xi_3 = \left(0, 0, 1\right)^T$.

取
$$P = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,则有 $P^{-1}AP = \begin{pmatrix} -2 & 0 \\ 0 & 6 \end{pmatrix}$. 10 分