First steps in *BEAST*2 and setting priors

Chi Zhang

Installation

https://www.beast2.org

FigTree is a program for viewing trees, publication quality figures.

https://beast.community/figtree

Tracer is a graphical tool for visualization and diagnostics

https://beast.community/tracer

Azul Zulu Builds of OpenJDK

https://www.azul.com/downloads/?package=jdk-fx

https://www.r-project.org

https://posit.co/download/rstudio-desktop

Installation

Managing packages

https://www.beast2.org/managing-packages/index.html

Adding package repositories

- Installing packages by hand
 - Windows: Users\<YourName>\BEAST\2.7\<PKG>
 - Mac: /Users/<YourName>/Library/Application Support/BEAST/2.7/<PKG>
 - Linux: /home/<YourName>/.beast/2.7/<PKG>

https://taming-the-beast.org/tutorials/Introduction-to-BEAST2

- primate-mtDNA.nex
 - non-coding region
 - 1st codon positions
 - 2nd codon positions
 - 3rd codon positions

- Setting up the analysis
- Generating a XML file

Running the analysis

Processing the results

Visualizing the results

Bayesian inference

- Example: coin tossing (Yang 2014. p34)
- Data: x = 9 heads and r = 3 tails in n = 12 independent tosses
- Parameter: probability of head θ
- Likelihood: binomial distribution

$$Pr(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

- Prior: $\theta \sim U(0, 1)$
- Posterior: $\theta | x \sim \text{Beta}(10, 4)$

Bayesian inference

Point estimates:

- Mean: 10/14 = 0.714
- Median: $\approx (10 1/3) / (14 2/3) = 0.725$

Credibility interval:

- 95% equal-tail credibility interval (0.462, 0.909)
- 95% highest posterior density interval (0.486, 0.926)

Prior

- Represent one's subjective belief about the parameter before seeing or analyzing the data (subjective Bayesian)
- Noninformative priors do not exist (uniform priors are not noninformative)
- Vague or diffuse priors
- Informative priors
- In practice: assess the influence of the prior

Markov chain Monte Carlo (MCMC)

- Metropolis algorithm (Metropolis et al. 1953)
 - 1. Set initial state of θ
 - 2. Propose a new state $\theta' \sim U(\theta w/2, \theta + w/2)$
 - 3. If $\pi(\theta') > \pi(\theta)$, accept θ' ; otherwise, accept θ' with probability $\alpha = \pi(\theta')/\pi(\theta)$
 - 4. If the proposal is accepted, set $\theta = \theta'$; otherwise, set $\theta = \theta$. Print out θ
 - 5. Go to step 2
- Acceptance ratio

$$\alpha = \min\left(1, \frac{\pi(\theta')}{\pi(\theta)}\right) = \min\left(1, \frac{f(\theta')f(X|\theta')}{f(\theta)f(X|\theta)}\right)$$

- Metropolis-Hastings algorithm (Hastings 1970)
- Acceptance ratio $\alpha = \min \left(1, \frac{f(\theta')f(X|\theta')q(\theta|\theta')}{f(\theta)f(X|\theta)q(\theta'|\theta)} \right)$

prior ratio

likelihood ratio

proposal ratio

- Multiplier proposal
 - Propose a new state $\theta' = \theta c = \theta e^{\varepsilon(u 1/2)}$
 - Proposal ratio is $c = \theta'/\theta$

- Example: JC69 distance (Yang 2014. p216)
- Data: human and orangutan 12s rRNA genes (n = 948, x = 90)
- Likelihood: $f(x|d) = (p_1/4)^x (p_0/4)^{n-x}$

$$= \left(\frac{1}{16} - \frac{1}{16} e^{-4d/3}\right)^{\chi} \left(\frac{1}{16} + \frac{3}{16} e^{-4d/3}\right)^{n-\chi}$$

• Prior: $f(d) = \lambda e^{-\lambda d}$, with $\lambda = 5$ (exponential distribution)

- Effective sample size (ESS)
- A dependent sample of size N is as informative as an independent sample of size $N/[1+2(\rho_1+\rho_2+\rho_3+\cdots)]$.

• ESS > 200

- AWTY (R We There Yet) in R (Warren et al. 2017)
 - trace plots of parameters
 - (approx.) ESS of tree topologies
 - visualizing treespace
 - split frequencies

- Run multiple independent chains
- Compare samples among runs
- Check convergence and mixing
- Combine the samples (logcombiner)

Summarizing trees

- Maximum a posterior (MAP) tree
 - tree topology with the maximum posterior probability
- Maximum clade credibility (MCC) tree
 - tree with the maximum product of clade probabilities
- Conditional clade distribution (CCD) MAP tree
 - clade frequencies (CCD0)
 - clade split frequencies (CCD1)
 - pairs of clade split frequencies (CCD2)
- CCDO-MAP tree should be the preferred point estimator (Berling et al. 2025) [does not work for trees with sampled ancestors]

- Discrete random variable
 - probability mass function
 - $\Pr(X=x_i)=p_i$ (i=1,2,...,k, and k can be ∞), with $\sum_i p_i=1$
- Continuous random variable
 - probability density function (PDF)
 - $Pr(a < X < b) = \int_a^b f(x) dx$
 - area under the entire PDF curve = 1

- Binomial distribution
 - the number of successes in a sequence of n independent experiments, each asking a yes—no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 p)

•
$$\Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

 $(k = 0, 1, ..., n)$

- Mean: *np*
- Variance: npq

Poisson distribution

• probability of a given number (k) of events occurring in a fixed interval of

time or space

• $\Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

• Mean: λ

• Variance: λ

Uniform distribution

•
$$f(x) = \frac{1}{b-a}$$
, $a \le x \le b$

- Mean: (a + b)/2
- Variance: $(b a)^2/12$

Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Mean: μ
- Variance: σ^2

- Lognormal distribution
 - if Y has a normal distribution, then $X = e^{Y}$ has a lognormal distribution

•
$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, x > 0$$

- Mean: $e^{\mu + \frac{\sigma^2}{2}}$
- Median: e^{μ}
- Variance: $(e^{\sigma^2} 1)e^{2\mu + \sigma^2}$

- Exponential distribution
- $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$

- Mean: $1/\lambda$
- Variance: $1/\lambda^2$

Gamma distribution

•
$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \ x > 0$$

- Mean: α/β
- Variance: α/β^2

- $\text{Exp}(\beta)$ when $\alpha = 1$
- χ_n^2 when $\alpha = n/2$ and $\beta = 1/2$

Beta distribution

•
$$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1},$$
$$0 < x < 1$$

- Mean: $\alpha/(\alpha + \beta)$
- Variance: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- U(0, 1) when $\alpha = \beta = 1$

Dirichlet distribution

•
$$f(x_1, ..., x_K) = \frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1},$$

$$\sum_{i=1}^K x_i = 1, x_i \in [0, 1]; i \in \{1, ..., K\}$$

- Mean: $\frac{\alpha_i}{\prod_{i=1}^K \alpha_i}$
- It is a multivariate generalization of the beta distribution

