Source: All Russian 2014 Grade 9 Day 2 P2

mathuz

May 3, 2014, 8:53 pm

1229 posts

Let ABCD be a trapezoid with $AB \parallel CD$ and Ω is a circle passing through A,B,C,D. Let ω be the circle passing through C,D and intersecting with CA,CB at A_1 , B_1 respectively. A_2 and B_2 are the points symmetric to A_1 and B_1 respectively, with respect to the midpoints of CA and CB. Prove that the points A, B, A_2, B_2 are concyclic.

I. Bogdanov

May 9, 2014, 4:32 am • 1 i

◎ ②PM #2

High School Olympiads

Remove

New Topic

Similar to P:11.2

trapezoid geometry

symmetry geometry proposed

 $\mathbf{Z} \times$

espectively. $2\mathbf{1}_2$ and \mathbf{D}_2 are the points symmetric to $2\mathbf{1}_1$ and \mathbf{D}_1 respectively respect to the midpoints of CA and CB. Prove that the points A, B, A_2, B_2 are concyclic.

Typo corrected in red color. This is proved in the solution of the problem All Russian-2014, Grade 11, day 2, P2.

mathuz

May 17, 2014, 2:08 am

◎ ②PM #3

1229 posts

you are right! Thank you Luis.

nima1376

May 18, 2014, 12:29 pm

111 posts

D is a center of spiral similar which goes BB_1 to $AA_1 \Rightarrow \frac{AA_1}{BB_1} = \frac{AD}{BD} = \frac{AA_1}{BB_1}$

 $AA_1.AC = BB_1.BC \Rightarrow CA_2.AC = CB_2.BC$ so A_2B_2BA is cycle.

done

saturzo

May 19, 2014, 5:02 pm • 1 **★**

◎ ②PM #5

54 posts

ABCD is cyclic in Ω . So, $\angle BAC = \angle DCA \Rightarrow BC = AD$ Similarly BD = AC.

Now let $\{D, D'\} = AD \cap \omega$. And by symmetry, $AD' = BB_1$

Now A_1CDD' is cyclic(in ω) and $A_1C \cap DD' = A$. So(using power of point), $AA_1.AC = AD'.AD.$

 $\therefore CA_2/CB_2 = AA_1/BB_1 = AA_1/AD' = AD/AC = CB/CA \Rightarrow CA_2.CA = CB_2.CB$ $\therefore A_2, B_2, A, B$ are concyclic.

[QED]

thecmd999

Sep 23, 2014, 12:50 am

◎ ②PM #6

2874 posts

Solution

v Enhance

Dec 1, 2014, 7:36 am

◎ ②PM #7

4253 posts

What a nice illustration of spiral similarity. Though I would have just said "isosceles trapezoid" in the problem statement.

We have $\triangle DAA_1 \sim \triangle DBB_1$ but DA = CB and DB = AC. So $AA_1 \cdot AC = BB_1 \cdot BC$, implying that $CA_2 \cdot CA = CB_2 \cdot CB$.

geometry proposed

High School Olympiads

trapezoid

Remove ☑ New Topic

Similar to P:11.2

geometry

X X

Reply

◎ ②PM #9

◎ ②PM #10

□Bookmark

 $BB_1 \cdot BC = BA' \cdot BD$ $\implies BB_1 \cdot CB = AA_1 \cdot CA$ $\implies CB_2 \cdot CB = CA_2 \cdot CA$ QED

aditya21

697 posts

Mar 22, 2015, 1:55 pm

easy!! but still posting!

let ω intersect AD in K

than quite easily $\angle AKB_1 = \angle ACD = 180 - \angle ABB_1$

and hence ABB_1K is isosceles trapezium.

symmetry

now by POP

we have $AD.AK = AA_1.AC = CA_2.AC$

on other note $AD.AK = BC.AK = BC.BB_1 = BC.BB_2$

and hence $BC.BB_2 = CA_2.CA$

and hence by POP we have ABB_2A_2 is cyclic quad.

thus we are done @

anantmu... 839 posts

Oct 23, 2015, 6:46 pm

 $(ABCD); (DCA_1B_1).$

Another solution:

Let the circle AA_2B intersect AB again at B'.

Now, AB is the radical axis of (ABCD); (AA_2B) and CD is the radical axis of

Now, $AB \parallel CD$ and so $AB \parallel CD \parallel l$ where l is the radical axis of

 $(AA_2B);(DCA_1B_1)$

Let M and N be the mid points of CA,CB respectively. It is evident that $MN \parallel l$ and also,

 $MA_1.MC = MA_2.MA$

so M lies on l. Therefore, N lies on l too and so by power of a point $B_2 \equiv B'$ thus, the result holds.

bobaboby1 8 posts

Jul 10, 2016, 9:35 pm

66 v Enhance wrote:

What a nice illustration of eniral cimilarity. Though I would have just said

We have $\triangle DAA_1 \sim \triangle DBB_1$, but DA=CB and DB=AC. So $AA_1 \cdot AC=BB_1 \cdot BC$, implying that $CA_2 \cdot CA=CB_2 \cdot CB$.

Can we just use symmetry to prove BB1×CB=AA1×CA

Quick Reply

© 2016 Art of Problem Solving Terms Privacy Contact Us About Us

Copyright © 2016 Art of Problem Solving