ABSTRACT

15

20.

The invention relates to a process for the preparation of a peracid, perester or diacylperoxide and is characterized in that a mixed anhydride of formula $R^{1}[C(O)OC(O)OR^{2}]_{0}$ or $[R^{3}C(O)OC(O)O]_{0}R^{4}$ is contacted with a hydroperoxide of formula R⁵[OOH]_m in the presence of a base, wherein R¹ represents a mono-, di-, tri- or tetravalent C₁-C₁₉ hydrocarbon group, optionally containing one or more hetero atoms, n is 1-4, R² represents a C₁-C₂₀ hydrocarbon group, optionally containing one or more hetero atoms, R3 represents a C1-C19 hydrocarbon group, optionally containing one or more hetero atoms, R4 represents a di-, tri- or tetravalent C₁-C₂₀ hydrocarbon group, optionally containing one or more hetero atoms, p is 2-4, R⁵ represents hydrogen or a mono- or divalent C₃-C₁₈ tertiary alkyl or C₂-C₂₀ acyl group, in which the tertiary alkyl or acyl group may optionally contain one or more hetero atoms, m is 1 or 2, and if R⁵ represents hydrogen, m is 1, provided that if the hydroperoxide is an α,α' -dihydroperoxyperoxide, the reaction is not carried out in an inert twophase solvent system comprising a polar solvent and an apolar solvent. The relates to a hydroxyperacid, hydroxyperester. hydroxydiacylperoxide obtainable by said process and the use of said hydroxyperoxides.