Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 3

Bartłomiej Boczek, Aleksander Piotrowski, Łukasz Śmigielski

Spis treści

1.	Punkt 1						 									 								2
2.	Punkt 2						 									 								3
3.	Punkt 3						 									 								4
4.	Punkt 4						 									 								5

Wyjscie procesu zbiega do $Y_{\rm pp}$ przy sygnale sterującym rownym $U_{\rm pp}.$ Potwierdza to poprawnosc wartości punktu pracy.

Rys. 1.1. Wartosci sygnalu wyjsciowego przy stalym sygnale wejsciowym $U=U_{\rm pp}=1{,}1$

Rys. 1.2. Sygnal wejsciowy

Wyznaczylismy symulacyjnie odpowiedzi skokowe dla czterech zmian sygnalu sterujacego od $U_{\rm pp}$ do, kolejno, 0,9, 1,0, 1,2, 1,3.

Rys. 2.1. Odpowiedzi skokowe dla czterech zmian sygnalu sterujacego

//TODO Czy własciwosci statyczne i dynamiczne procesu sa w przyblizeniu liniowe? Jesli tak, okreslic wzmocnienie statyczne procesu

W praktyce bardzo często należy wyrównać liczby względem cyfr znaczących w poszczególnych kolumnach (czyli przecinek dziesiętny ma być we wszystkich

Wszystkie elementy dokumentu opracowanego w systemie IATEX
powinny wyglądać jednolicie. Do wykonywania rysunków korzystamy więc z mechanizmów