

Balance in Signed Bipartite Networks

Cheolhee Jung DMLAB

Tyler Derr, Cassidy Johnson, Yi Chang, Jiliang Tang "Balance in Signed Bipartite Networks"

Contents

- Background
- Problem definition
- · Main ideas
- Proposed method
- Experiment
- Conclusion
 - 2 strong points
 - 2 weak points
 - Improve or resolve those weak point

Background

- ▷ 데이터가 네트워크 형태로 표현
- ▷ 소셜 미디어와 전자 상거래의 확산으로 긍정적 및 부정적 관계를 포함한 부호화 네트워크의 중요성 부각
- ▷ 기존 네트워크 분석 방법은 이러한 복잡성을 다루기에 부족하여, 새로운 이론과 알고리즘이 필요

Problem definition

Q. 기존 분석 방식으로는 한계가 있는 부호화 이분 네트워크를 어떻게 분석할까?

Main ideas

▷ 균형 이론과 부호화 나비 네트워크를 통한 새로운 분석 방법

▷ 균형 이론을 부호화 이분 네트워크 분석에 적용하여, 네트워크 내에서 긍정적 및 부정적 연결의 패턴을 이해하고 예측하는 새로운 방법론을 개발

Main ideas balance theory

Main ideas butterflies

부호화 이분 네트워크에서의 가장 작은 사이클 균형이론을 적용

- ▷ 부호화 애벌레 기반 분류기
- ▷ 저순위 행렬 분해
- ▷ 랜덤 워크 기반 부호 예측

위 3가지 방법은 부호화 이분 네트워크에서 누락된 링크의 부호를 예측하기 위해 부호화 나비를 통해 균형 이론을 활용

부호화 애벌레 기반 분류기

하나의 링크가 누락된 네트워크

부정적 연결 짝 수 : 균형 잡힌 경로 부정적 연결 홀 수 : 불균형한 경로

Proposed method 부호화 애벌레 기반 분류기

▷ 특성 추출

- 1. 노드 차수 기반 특성 \mathbf{x}_{ij}^d
 - 구매자와 판매자 개인의 긍정적 및 부정적 차수 정보 포함
- 2. 부호화 애벌레 기반 특성 \mathbf{x}_{ij}^{sc}
 - 구매자와 판매자를 연결하는 8가지 가능한 부호화 애벌레 유형의 수를 특성으로 사용

▷ 분류기 학습 및 예측

- 추출된 특성을 기반으로, 로지스틱 회귀와 같은 분류 알고리즘을 사용하여 모델을 학습
- 학습된 모델을 이용하여 알려지지 않은 링크의 부호를 예측

저차원 행렬 분해

▷ 기본 개념 및 최적화 문제

목적: 부호화 이분 네트워크에서의 링크 부호 예측

모델: 이분 인접 행렬 B를 사용하여 구매자와 판매자 간의 잠재 표현을 찾는

저차원 행렬 분해

최적화 문제:
$$\min_{\mathbf{U},\mathbf{V}} \sum_{(b_i,s_j) \in \mathcal{E}} \max \left(0,1 - \mathbf{B}_{ij}(\mathbf{u}_i^\top \mathbf{v}_j)\right)^2 + \lambda \left(|\mathbf{U}|_F^2 + |\mathbf{V}|_F^2\right)$$

$$\mathcal{E} = \{(b_i, s_j) | \mathbf{B} \neq 0\}$$
 : 실제 연결 쌍

$$\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{n_B}] \in \mathbb{R}^{d \times n_B}$$
 and $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n_S}] \in \mathbb{R}^{d \times n_S}$: 구매자와 판매자 잠재 행렬

$$\mathbf{B}_{ij}$$
 : 실제 부호 $(\mathbf{u}_i^\mathsf{T}\mathbf{v}_j)$: 구매자I, 판매자j 사이의 관계의 강도와 부호를 예측

저차원 행렬 분해

▷ 균형 이론 기반 확장 모델(행렬 분해만으로는 균형 이론을 따르는 예측 보장 못함)

확장된 목적 함수 :
$$\min_{(b_i, s_j) \in \mathcal{E}} \max \left(0, 1 - \mathbf{B}_{ij} (\mathbf{u}_i^\top \mathbf{v}_j) \right)^2 + \lambda \left(|\mathbf{U}|_F^2 + |\mathbf{V}|_F^2 \right)$$
$$+ \alpha \sum_{(b_i, s_j) \in \hat{\mathcal{E}}_i^+} \max \left(0, 1 - \hat{\mathbf{S}}_{ij} (\mathbf{u}_i^\top \mathbf{v}_j) \right)^2$$
$$+ \beta \sum_{(b_i, s_j) \in \hat{\mathcal{E}}_i^-} \max \left(0, 1 - \hat{\mathbf{S}}_{ij} (\mathbf{u}_i^\top \mathbf{v}_j) \right)^2$$

 $\hat{\mathcal{E}}_{i}^{+}$ $\hat{\mathcal{E}}_{i}^{-}$: 균형 이론에 의해 제안된 양성, 음성 링크 집합

 α β : 양성 및 음성 링크의 중요도 조절

 $\hat{\mathbf{S}}_{ii}$: 균형 이론에 기반하여 제안된 링크 부호

랜덤 워크 기반 부호 예측

Lazy random walk : 랜덤 워커가 다음 스텝에서 현재 노드에 머물 확률을 포함

부호화 이분 네트워크 정상 분포 미도달 문제 해결

▷ 기본 개념

목적: 서명된 이분 네트워크에서 미지의 링크 부호를 예측

핵심 요소:

한 모드 투영 네트워크: 구매자 또는 판매자 기반으로 생성된 네트워크, 공통된 연결을 기반으로 노드 간의 숨겨진 관계를 찾음

균형 이론 적용: 네트워크 내 긍정적 및 부정적 연결의 균형을 고려하여

안정성과 사회적 선

랜덤 워크: 특정 노드에서 시작하여

- 특징 : 재시작 확률로 인해 시긴

정상 분포: 랜덤 워크에서 장기적으로 시스템이 수렴하는 확률 분포

▷ 한 모드 투영 네트워크 구성

목적 : 같은 유형의 노드 간 암시적 연결 생성

투영 네트워크: 구매자 간(PB), 판매자 간(PS) 인접 행렬을 통해 표현

구성 방식 : 공통 판매자/구매자를 기반으로 구매자/판매자 간 연결

$$\mathbf{P}_{Bij} = \mathbf{P}_{Bji} = ns_{ij}^A - ns_{ij}^D$$

$$\mathbf{P}_{Bij} = \begin{cases} 0 & \delta_n < ns_{ij}^A - ns_{ij}^D < \delta_p \\ ns_{ij}^A - ns_{ij}^D & \text{otherwise} \end{cases}$$

 ns_{ij}^{A} : 동의하는 공통 판매자의 수

 ns_{ij}^{D} : 불일치하는 판매자의 수

▷ 랜덤 워크 수행 및 부호 예측

통합된 인접 행렬 A 구성 :
$$\mathbf{A} = \begin{bmatrix} \hat{\mathbf{P}}_B & \omega \hat{\mathbf{B}} \\ \omega \hat{\mathbf{B}}^T & \hat{\mathbf{P}}_S \end{bmatrix}$$

 $\hat{\mathbf{P}}_{B}$ $\hat{\mathbf{P}}_{S}$: 행 정규화된 투영 인접 행렬

: 행 정규화된 이분 인접 행렬

ω : 실제 연결(B), 간접적 연결(투영 인접) 사이 중요도

행 정규화 : 네트워크 연결구조를 표준화하고 정규화 하는 단계

각 노드의 연결 강도를 비교 가능한 기준으로 조정 가능

랜덤 워크 기반 부호 예측

▷ 부호 예측

부호 예측 행렬 Y를 업데이트
$$\mathbf{Y}_{ij} = \sum_k \hat{\mathbf{A}}_{ik} \mathbf{Y}_{kj}$$

 \mathbf{Y}_{ij} : 노드 i와 j 사이의 부호 예측값

 $\hat{\mathbf{A}}_{ik}$: 노드 간의 이동 확률

균형 이론을 기반으로 부호 예측

 $\hat{\mathbf{A}}_{ik}\mathbf{Y}_{kj}>0$ Yij를 증가 시켜 긍정 관계

 $\hat{\mathbf{A}}_{ik}\mathbf{Y}_{kj}<0$ Yij를 감소 시켜 부정 관계

▷ 재시작 확률을 포함한 폐쇄 형태의 해

$$\mathbf{Y} = (1 - c)(\mathbf{I} - c\hat{\mathbf{A}})^{-1}$$

수치 해석

폐쇄 형태의 해 $(\mathbf{I} - c\hat{\mathbf{A}})^{-1}$:

랜덤 워크가 각 단계에서 재시작할 가능성을 고려하여, 네트워크의 모든 노드 간의 연결 가능성을 계산

계수 (1-c):

재시작하지 않고 계속해서 랜덤 워크를 수행할 확률 C가 0에 가까울수록 이 값은 1에 가까워지며, 랜덤 워크가 네트워크 내에서 더 넓은 범위를 탐색

Experiment

Table 4: Link Sign Prediction Results in terms of (AUC,F1).

Sign Prediction Method	Bonanza	U.S. Senate	U.S. House
SCd	(0.553, 0.959)	(0.638, 0.654)	(0.625, 0.635)
SCsc	(0.664, 0.674)	(0.812, 0.823)	(0.827, 0.837)
MF	(0.593, 0.903)	(0.792, 0.812)	(0.831, 0.846)
MFwBT	(0.608, 0.905)	(0.814, 0.827)	(0.834, 0.848)
LazyRW	(0.547, 0.979)	(0.808, 0.821)	(0.815, 0.827)
SBRW	(0.582, 0.949)	(0.836, 0.849)	(0.846, 0.858)

실험 개요

- · 부호화 이분 네트워크에서의 부호 예측 성능을 AUC 및 F1 점수로 평가
- ·비교된 방법: SCd, SCsc, MF, MFwBT, LazyRW, SBRW
- ·데이터셋: Bonanza, U.S. Senate, U.S. House

주요 발견점

- ·모든 데이터셋에서 동일한 방법이 가장 우수한 성능을 보이지 않음
- · 균형 이론에 기반한 방법들(SCsc, MFwBT, SBRW)이 기존 방법들(SCd, MF, LazyRW)보다 AUC에서는 일관되게 우수하지만, F1 점수는 경우에 따라 다름

Experiment

Figure 4: Parameter Sensitivity on α and β in MFwBT on the U.S. Senate dataset.

Figure 5: Parameter Sensitivity on δ_p and δ_n in SBRW on the U.S. House dataset.

MFwBT 방법 개요

- · MFwBT는 부호 예측을 위해 균형 이론과 저차원 행렬 분해 기법을 결합한 방법
- · α와 β는 부호화 나비를 기반으로 추출한 긍정적 및 부정적 링크의 훈련 기여도를 조절

파라미터 민감도

· 균형 이론을 고려하지 않는 경우(α = β = 0)보다 부호 예측 성능이 향상되지만, 너무 높은 값을 사용하는 것은 지양

SBRW 방법 개요

· SBRW는 부호화 이분 네트워크에서 랜덤 워크를 수행하여 링크 부호를 예측하는 방법

파라미터 민감도

· 낮은 지지도를 가진 암시적 긍정적 링크는 포함하는 것이 유용하지만, 부정적 링크는 균형 이론 지지가 낮은 경우 제외하는 것이 성능 향상에 도움

Conclusion

2 strong point

- 1.복잡한 네트워크를 분석하는 새로운 관점을 제공
- 2. 부호화 나비를 효과적으로 활용하여 링크 부호을 예측하는데 있어 우수한 성능을 보임

Conclusion

2 weak point

- 1. 네트워크의 시간적 변화를 고려하지 않음
- 2. 노드 및 링크의 유형이 한정 돼 있음

Conclusion

Improve or resolve those weak point

동적 네트워크 분석 적용

·시간 정보를 포함한 동적 네트워크 분석 방법을 개발

다양한 네트워크 유형에 대한 연구 확장

· 다양한 노드 유형과 링크 패턴을 포함하는 네트워크를 연구하여, 기존 방법론의 적용 범위를 확장

Thank you!