1	
2 ,2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
. 12	
13	
14	
±15	
16	
17	
18	
13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	

1. A method of providing multiple program identifier (PID) information for a multiple carriage content delivery system, comprising:

constructing a program association table (PAT) that associates programs with primary PIDs;

constructing a plurality of program map tables (PMT), one for each program in the PAT;

constructing a lookup table that maps at least one primary PID to at least one shadow PID; and

broadcasting the PAT, the PMTs and the lookup table over the content delivery medium.

- 2. The method according to claim 1, wherein the lookup table is broadcast as one or more MPEG user private data packets.
- 3. The method according to claim 1, carried out at a cable television system headend.

	1
	2
× ×	3
	4
	5
	6
	7
	8
	9
1	0
1	1
1	
	3
	4
<u>.</u> 1	5
1	6
1	7
	8
4	9

4. A method of demultiplexing a data stream having multiple program identifiers for a program, comprising:

receiving a program association table (PAT) that associates programs with primary PIDs;

receiving a program map table (PMT);

receiving a lookup table relating primary PIDs to shadow PIDs;

determining, from the PMT and the lookup table that a program is associated with both a primary PID and a shadow PID; and

setting a PID filter to permit passage of packets having both primary and shadow PIDs.

- 5. The method according to claim 4, further comprising establishing a demultiplexer output path for both the primary PID and the shadow PID.
- 6. The method according to claim 4, wherein the lookup table contains a shadow PID for a shadow entitlement control message (ECM), and further comprising initializing a decrypter using the shadow ECM.
- 7. The method according to claim 4, carried out in a television set-top box.

- 1		8. <i>A</i>	A method of constructing a stream of data packets having primary and
2		shadow	packet identifiers (PIDs), the packets having headers and payloads,
3		compris	sing:
4		r	eceiving an incoming data stream having packets with the primary and
5		shadow	PIDs;
6		þ	providing a stream of packets having the primary PID to a first buffer;
7		c	detecting a packet having the shadow PID and a shadow payload in the
8		incomir	ng data stream;
9		8	switching the stream of packets having the primary PID to a second buffer
10		in respo	onse to the detecting; and
11		\$	searching a last packet stored in the first buffer for a packet corresponding
_{[4} 12		to the p	eacket having the shadow PID.
13 14			
114		9.	The method according to claim 8, further comprising generating an interrupt
15		as a re	sult of detecting the packet having the shadow PID.
16			
. 17		10.	The method according to claim 9, wherein the switching is carried out in
18		respon	se to the interrupt.
19			
20		11.	The method according to claim 8, further comprising generating a packet
21		having	the primary PID and the shadow payload.
22			
23			The method according to claim 11, wherein the generating comprises
24		substitu	uting the primary PID for the shadow PID into the packet having the shadow
25		PID.	
26			
27		13.	The method according to claim 11, wherein the generating comprises
28		substit	uting the shadow payload into the matching packet.
29			

8 9

- 1 14. The method according to claim 8, wherein the corresponding packets have the matching sequence number.
 3 15. The method according to claim 8, wherein the corresponding packets are encrypted under two different encryption techniques.
 6 16. A storage medium storing instructions which, when executed on a
 - 16. A storage medium storing instructions which, when executed on a programmed processor, carry out a process according to claim 8.

Docket No.: SNY-R4976 -17- PATENT

1		17. A method of constructing a stream of data packets having primary and
2		shadow packet identifiers (PIDs), the packets having headers and payloads,
3		comprising:
4		receiving an incoming data stream having packets with the primary and
5		shadow PIDs;
6		providing a stream of packets having the primary PID to a first buffer;
7 		detecting a packet having the shadow PID and a shadow payload in the
8		incoming data stream;
9		switching the stream of packets having the primary PID to a second buffer
10		in response to the detecting; and
11		searching a first packet stored in the second buffer for a packet
12		corresponding to the packet having the shadow PID.
13		
14		18. The method according to claim 17, further comprising generating an interrupt
14 15		as a result of detecting the packet having the shadow PID.
16		
		19. The method according to claim 18, wherein the switching is carried out in
17		response to the interrupt.
19		
20		20. The method according to claim 17, further comprising generating a packet
[] 21		having the primary PID and the shadow payload.
22		
23		21. The method according to claim 20, wherein the generating comprises
24		substituting the primary PID for the shadow PID into the packet having the shadow
25		PID.
26		
27		22. The method according to claim 20, wherein the generating comprises
28		substituting the shadow payload into the matching packet.
29		

- 23. The method according to claim 17, wherein the corresponding packets have the matching sequence number.
- 24. The method according to claim 17, wherein the corresponding packets are encrypted under two different encryption techniques.
- 25. An electronic storage medium storing instructions which, when executed on a programmed processor, carry out a process according to claim 17.

PATENT

1	26. A method of constructing a stream of data packets having primary and
2	shadow packet identifiers (PIDs), the packets having headers and payloads,
3	comprising:
4	receiving an incoming data stream having packets with the primary and
5	shadow PIDs;
6	providing a stream of packets having the primary PID to a first buffer;
7	detecting a packet having the shadow PID and a shadow payload in the
8	incoming data stream;
9	switching the stream of packets having the primary PID to a second buffer
10	in response to the detecting; and
11	searching a first packet stored in the second buffer and a last packet stored
<u></u> 12	in the first buffer for a packet corresponding to the packet having the shadow PID.
13 14	27. The method according to claim 26, further comprising generating an interrupt
	as a result of detecting the packet having the shadow PID.
16	
17	28. The method according to claim 27, wherein the switching is carried out in
18	response to the interrupt.
19	
	29. The method according to claim 26, further comprising generating a packet
21	having the primary PID and the shadow payload.
22	
23	30. The method according to claim 29, wherein the generating comprises
24	substituting the primary PID for the shadow PID into the packet having the shadow
25	PID.
26	
27	31. The method according to claim 29, wherein the generating comprises
28	substituting the shadow payload into the matching packet.
29	

The task from them that

1

2

3

4

- 32. The method according to claim 26, wherein the corresponding packets have the matching sequence number.
- 33. The method according to claim 26, wherein the corresponding packets are encrypted under two different encryption techniques.
- 34. An electronic storage medium storing instructions which, when executed on a programmed processor, carry out a process according to claim 26.

	1
	2
	3
	4
	5
	6
	.7
	8
	9
	10
	11
MA.	12
Service Services	13
Link Will	14
717 AND 117	15
Service of the servic	16
	17
	18
The state of	19
	20
	21
	22
4	23
2	24
:	25

26

27

28

29

35. A method of constructing a stream of data packets having primary and shadow packet identifiers (PIDs), the packets having headers and payloads, comprising:

receiving an incoming data stream having packets with the primary and shadow PIDs;

providing a stream of packets having the primary PID to a first buffer;

detecting a packet having the shadow PID and a shadow payload in the incoming data stream;

switching the stream of packets having the primary PID to a second buffer in response to the detecting;

determining a memory address for a storage location in the first buffer at a time of the detecting; and

searching for a packet stored at approximately the memory address in the first buffer for a packet corresponding to the packet having the shadow PID.

- 36. The method according to claim 35, further comprising generating an interrupt as a result of detecting the packet having the shadow PID.
- 37. The method according to claim 36, wherein the determining is carried out in response to the interrupt and wherein the determining comprises storing contents of a DMA register to note temporal location for packets.
- 38. The method according to claim 35, further comprising generating a packet having the primary PID and the shadow payload.
- 39. The method according to claim 38, wherein the generating comprises substituting the primary PID for the shadow PID into the packet having the shadow PID.

- 40. The method according to claim 38, wherein the generating comprises substituting the shadow payload into the matching packet.
- 41. The method according to claim 35, wherein the corresponding packets have the matching sequence number.
- 42. The method according to claim 35, wherein the corresponding packets are encrypted under two different encryption techniques.
- 43. An electronic storage medium storing instructions which, when executed on a programmed processor, carry out a process according to claim 35.

1		44.	A digital television receiver apparatus that reconstitutes/reconstructs a
2		strear	n of data packets having primary and shadow packet identifiers (PIDs), the
3		packe	ets having headers and payloads, the receiver comprising:
4			a micro computer;
5			a first primary packet buffer;
6			a second primary packet buffer;
7			a demultiplexer receiving an incoming data stream having packets with the
8		prima	ry and shadow PIDs and providing a stream of packets having the primary
9		PID to	o one of the toggled primary packet buffers;
10			means for detecting a packet having the shadow PID and a shadow payload
11		in the	incoming data stream;
12			an interrupt handler that generates an interrupt as a result of detecting the
1 3		packe	et having the shadow PID;
-13 -14			means for toggling the stream of packets having the primary PID to the other
*E15		of the	first and second primary packet buffers in response to the interrupt; and
1 16			program means running on the microcomputer for identifying a location of
17		a pac	ket adjacent the detected packet at least one of the first and second primary
18		packe	et buffers.
19			
20		45.	The apparatus according to claim 44, further comprising program means
21		runnir	ng on the micro computer for generating a packet having the primary PID and
22		the sh	nadow payload.
23			
24		46.	The apparatus according to claim 45, wherein the generating comprises
25		subst	ituting the primary PID for the shadow PID into the packet having the shadow
26		PID.	
27			
28		47.	The apparatus according to claim 45, wherein the generating comprises
29		substi	ituting the shadow payload into the matching packet.
30			

	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	0	
1	1	
<u>.</u> 1	2	
ment hand By H H that the My Mind	3	
South B.		
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
H.,34		
in in		
Heiner C		
Sum Such		
Such draw Gum Que Luch		
200		

48.	The apparatus according to claim 44 wherein the corresponding packets
have t	the matching sequence number.

- 49. The apparatus according to claim 44, wherein the corresponding packets are encrypted under two different encryption techniques.
- 50. The apparatus according to claim 44, wherein the program means comprises means for reading a DMA register.
- 51. The apparatus according to claim 44, wherein the digital television receiver device comprises a television set-top box.

Docket No.: SNY-R4976 -25- PATENT