FUNCIONES HOMOGÉNEAS Y HOMOTÉTICAS

APLICACIONES MATEMÁTICAS PARA ECONOMÍA Y NEGOCIOS (EAF2010)

FELIPE DEL CANTO

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

PRIMER SEMESTRE DE 2021

MOTIVACIÓN: EL ESTUDIANTE SOÑADOR

■ Un estudiante tiene que escribir un ensayo.

■ Cree que la cantidad de palabras escritas, P, se calcula

$$P(t,e) = 5\sqrt{te}$$

ightharpoonup Donde t son las horas trabajadas y e es el esfuerzo.

- El piensa "si trabajo el doble y pongo el doble de esfuerzo, produzco el doble".
 - ► Claro, $P(2t,2e) = 5\sqrt{4te} = 2(5\sqrt{te}) = 2P(t,e)$.

•

MOTIVACIÓN: EL ESTUDIANTE SOÑADOR

■ Nuestro estudiante es un poco soñador.

- Pero la propiedad de la función que utiliza es muy útil.
 - ► Se conoce como homogeneidad de grado 1.

■ En este capítulo describiremos los distintos tipos de homogeneidad.

Cono

Definición (Cono)

Un conjunto $D \subset \mathbb{R}^n$ se dice **cono** si para todo $x \in D$ y para todo t > 0, $tx \in D$

■ Esta definición es importante para esta parte.

■ Porque pensaremos que las funciones están definidas en dominios cónicos.

Definición (Función homogénea)

Una función $f(x_1, x_2)$ con dominio (cónico) D es homogénea de grado k si para todo $(x_1, x_2) \in D$ y para todo t > 0,

$$f(tx_1, tx_2) = t^k f(x_1, x_2)$$

- Estas funciones son útiles para estudiar ciertos modelos económicos.
- Se relaciona con el concepto de "economías de escala".

Ejemplo (Función homogénea)

Consideremos la función de producción Cobb-Douglas $F(L,K) = AL^aK^b$, con A,a,b>0. ¿Es esta función homogénea?

Ejemplo (Función homogénea)

Se pueden dar 3 casos:

- 1. Si a + b < 1, entonces multiplicar por t los insumos multiplica por menos que t el producto. Hay retornos **decrecientes** a escala.
- 2. Si a + b = 1, entonces multiplicar por t los insumos multiplica (exactamente) por t el producto. Hay retornos **constantes** a escala.
- 3. Si a + b > 1, entonces multipicar por t los insumos multiplica por más que t el producto. Hay retornos **crecientes** a escala.

Ejercicio: Determine si las siguientes funciones son homogéneas.

1.
$$f(x,y) = \sqrt{x} + \sqrt{y}$$
.

2.
$$f(x,y) = \frac{x^2 + xy}{y^2}$$
.

3.
$$f(x,y) = x^3 + xy$$
.

■ El ejemplo anterior nos muestra por qué este tipo de funciones son útiles.

- Se usan para modelar situaciones con un cierto tipo de retornos a escala.
 - Crecientes, decrecientes o constantes.

■ Vamos a definir estos conceptos para el caso general.

Definición (Retornos a escala)

Sea F una función de producción homogénea de grado k. Decimos que:

- 1. F tiene retornos decrecientes a escala si k < 1.
- **2.** F tiene retornos constantes a escala si k = 1.
- 3. F tiene retornos crecientes a escala si k > 1.

Ejercicio (Retornos a escala)

Suponga que F y G son dos funciones de producción que tienen retornos decrecientes a escala. ¿Qué tipo de retornos tiene la función $H_1 = F \cdot G$? ¿Y $H_2 = F + G$ (si F y G son homogéneas del mismo grado)? Interprete y de una intuición para cada resultado.

Interpretación geométrica

- \blacksquare Supongamos que f es una función homogénea de grado k.
- \blacksquare Digamos que ciertos puntos (x,y) pertenecen a la curva de nivel de f a altura c.
- Luego, los puntos (tx, ty), con t > 0 pertenecen a la curva de nivel a altura $t^k c$.
 - ► Efectivamente, $f(tx,ty) = t^k f(x,y) = t^k c$.
- Esto tiene consecuencias geométricas interesantes.

Interpretación Geométrica

- En un plano, los puntos (tx, ty), con t > 0 y x, y fijos forman una recta.
 - Esa recta pasa por el origen y se denomina rayo.

Interpretación geométrica

■ Así, si conocemos una de las curvas de nivel, en verdad conocemos todas.

INTERPRETACIÓN GEOMÉTRICA

- En resumen, la forma de una función homogénea está determinada por:
 - ightharpoonup Una de sus curvas de nivel (la altura c y los puntos en ella).
 - ► El grado de homogeneidad de la función (el valor de k).

lacktriangle La definición y la interpretación geométrica también valen en n variables.

Cerramos esta parte dando esa definición.

14 | 4C

Definición (Función homogénea)

Una función $f(\mathbf{x})$ de n variables con dominio (cónico) D es homogénea de grado k si para todo $\mathbf{x} \in D$ y para todo t > 0,

$$f(t\mathbf{x}) = t^k f(\mathbf{x})$$

donde $t\mathbf{x} = (tx_1, \dots, tx_n)$.

PROPIEDADES DE LAS FUNCIONES HOMOGÉNEAS

Y TEOREMA DE EULER

DERIVADAS PARCIALES

Teorema (Derivadas parciales de funciones homogéneas)

Sea $f(x_1,...,x_n)$ una función homogénea de grado k con dominio (cónico) abierto D. Supongamos que la derivada parcial con respecto a una variable x_i existe. Entonces, $\frac{\partial f}{\partial x_i}$ es homogénea de grado k-1.

Demostración (Derivadas parciales de funciones homogéneas)

Como f es homogénea de grado k, entonces

$$f(tx_1,...,tx_n) = t^k f(x_1,...,x_n)$$

Esto dice que la función del lado izquierdo es igual a la del lado derecho en todos los puntos $(x_1,...,x_n)$ y t > 0, luego sus derivadas parciales con respecto a x_i también son iguales:

$$\frac{\partial}{\partial x_i} f(tx_1, \dots, tx_n) = \frac{\partial}{\partial x_i} \left(t^k f(x_1, \dots, x_n) \right)$$

DERIVADAS PARCIALES

Demostración (Derivadas parciales de funciones homogéneas)

La derivada del lado izquierdo se obtiene usando regla de la cadena (porque $x_i(t,x_i) = tx_i$)

$$\frac{\partial}{\partial x_i} f(tx_1, \dots, tx_n) = \frac{\partial f}{\partial x_i} (tx_1, \dots, x_n) \cdot \frac{\partial tx_i}{\partial x_i} = \frac{\partial f}{\partial x_i} (tx_1, \dots, x_n) \cdot t$$

El lado derecho es solamente

$$t^k \frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)$$

Luego, dividiendo por t a ambos lados obtentemos

$$\frac{\partial f}{\partial x_i}(tx_1,\ldots,x_n) = t^{k-1} \frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)$$

Lo que por definición dice que $\frac{\partial f}{\partial x_i}$ es homogénea de grado k-1.

DERIVADAS PARCIALES

Ejercicio (Derivadas parciales de funciones homogéneas)

Demuestre, usando el teorema anterior, que la función $f(x,y) = x^3y + \frac{1}{2}xy^2$ no es homogénea de ningún grado. (Ayuda: Puede ayudarse en un ejercicio anterior.)

 \blacksquare Lo anterior dice que si f es homogénea, sus derivadas son homogéneas.

- Esto tiene una implicancia directa en la TMS.
 - ▶ ¿La razón? Porque la TMS es la división de dos derivadas de la función.

■ ¿Qué es lo que debería ocurrir?

Corolario (Homogeneidad de la TMS)

Supongamos que f es como en el teorema anterior y que las derivadas parciales con respecto a x_i y x_j existen. Entonces TMS_{x_i,x_j} es homogénea de grado o, es decir,

$$TMS_{x_i,x_j}(tx_1,\ldots,tx_n)=TMS_{x_i,x_j}(x_1,\ldots,x_n)$$

■ Esto tiene consecuencias geométricas interesantes.

■ Relacionadas con el dibujo que vimos anteriormente.

■ Según el teorema anterior, hay rectas tangentes con pendientes iguales.

Ejercicio: Demuestre el corolario anterior.

Teorema (Teorema de Euler)

Supongamos que $f(\mathbf{x})$ es una función de n variables con dominio (cónico) abierto D y derivadas parciales continuas. Entonces, f es homogénea de grado k si y solo si para cualquier punto $\mathbf{x} \in D$,

$$x_1 \cdot \frac{\partial f}{\partial x_1}(\mathbf{x}) + \dots + x_n \cdot \frac{\partial f}{\partial x_n}(\mathbf{x}) = kf(\mathbf{x}),$$

o, escrito en términos del gradiente,

$$\mathbf{x} \cdot \nabla f(\mathbf{x}) = kf(\mathbf{x}).$$

- Notar que el teorema dice "si y solo si", lo que significa dos cosas:
 - ▶ Una función homogénea de grado k verifica $\mathbf{x} \cdot \nabla f(\mathbf{x}) = kf(\mathbf{x})$ en todo punto \mathbf{x} .
 - ▶ Una función tal que $\mathbf{x} \cdot \nabla f(\mathbf{x}) = kf(\mathbf{x})$ en todo punto \mathbf{x} , es homogénea de grado k.

"Demostración" (Teorema de Euler)

Sabemos que como f es homogénea de grado k, entonces para todo t > 0.

$$f(t\mathbf{x}) = t^k f(\mathbf{x})$$

Si vemos ambos lados como funciones de t, entonces la igualdad anterior implica que las derivadas con respecto a t serán iguales

$$\frac{\partial f}{\partial x_1}(t\mathbf{x}) \cdot \frac{d(tx_1)}{dt} + \dots + \frac{\partial f}{\partial x_n}(t\mathbf{x}) \cdot \frac{d(tx_n)}{dt} = \frac{\partial}{\partial t}(t^k f(\mathbf{x}))$$
$$\frac{\partial f}{\partial x_1}(t\mathbf{x}) \cdot x_1 + \dots + \frac{\partial f}{\partial x_n}(t\mathbf{x}) \cdot x_n = kt^{k-1} f(\mathbf{x})$$

Usando que las derivadas parciales son homogéneas de grado k-1 se llega al resultado.

"Demostración" (Teorema de Euler)

Esta es la mitad de la demostración. Falta ver que si

$$x_1 \cdot \frac{\partial f}{\partial x_1}(\mathbf{x}) + \dots + x_n \cdot \frac{\partial f}{\partial x_n}(\mathbf{x}) = kf(\mathbf{x}),$$

entonces f es homogénea de grado k. Sin entrar en detalles, eso se hace "devolviéndose" en los pasos anteriores, integrando con respecto a t.

Ejercicio

Demuestre que si f es homogénea de grado 0, entonces

$$\sum_{i=1}^{n} \epsilon_{f,x_i} = 0$$

Interprete.

MOTIVACIÓN: EL PROBLEMA DEL CONSUMIDOR

- \blacksquare Pensemos un consumidor que obtiene utilidad de bienes x e y.
- Su función de utilidad es u(x,y) = xy.
 - La cual es homogénea de grado 2.
- Otro consumidor tiene función de utilidad $\tilde{u}(x,y) = xy + 100$.
 - La cual NO es homogénea de ningún grado.

■ ¿Son demasiado distintas?

/ 40

MOTIVACIÓN: EL PROBLEMA DEL CONSUMIDOR

- Si a ambos consumidores les ofrecemos el mismo dinero.
 - ► ¿Toman decisiones diferentes?

- Lo importante en estos problemas son las curvas de indiferencia.
 - Las curvas de nivel de u.
 - Recuerden el ejercicio geométrico que hicimos con curvas de nivel.

- En particular, importa la TMS.
 - Pasará que ambas tienen la misma TMS en cada punto y eso no es casualidad.

MOTIVACIÓN: EL PROBLEMA DEL CONSUMIDOR

 \blacksquare En el ejemplo, las curvas de nivel de u y \tilde{u} tienen las mismas propiedades.

■ La razón es que para transformar u a \tilde{u} la geometría de la función queda igual.

■ Generalizar esa relación es lo que motiva la siguiente definición.

Definición (Función homotética)

Una función f de n variables con dominio (cónico) D se dice **homotética** si es una transformación creciente de alguna función homogénea.

Es decir, f es homotética si existen una función univaridada H y una función homogénea g (de algún grado k) con dominio D tales que para todo $x \in D$

$$f(\mathbf{x}) = H(g(\mathbf{x}))$$

Cuidado! La definición es distinta a la del libro.

Ejemplo (Función homotética)

La función $f(x,y) = a \ln x + b \ln y$, ¿es homogénea? ¿es homotética?

Ejercicio (Función homotética)

La función $f(x,y) = (x^3y^3) + xy$, ¿es homogénea? ¿es homotética?

Teorema (Función homotética y composición de la curva de nivel)

Sea f con dominio (cónico) D. Entonces, f es homotética si y solo si para todo $x, y \in D$ y t > 0,

$$f(\mathbf{x}) = f(\mathbf{y}) \Longrightarrow f(t\mathbf{x}) = f(t\mathbf{y})$$

- En el contexto de funciones de utilidad, esto se lee así:
 - "Si dos puntos comparten una misma curva de indiferencia, entonces todos los múltiplos de esos puntos también comparten una misma curva de indiferencia"
- ¡Ojo! No digo que sea la misma curva de indiferencia.

Ejercicio: Demuestre el teorema anterior.

Interpretación geométrica

- Aquí la intuición geométrica es ligeramente distinta.
- Supongamos que los puntos x_0 y x_1 están en la curva de nivel de f a altura c.
 - ightharpoonup Entonces tx_0 y tx_1 están ambos en otra curva de nivel.
 - Pero esa curva no está a altura $t^k c$ como antes.
- \blacksquare Luego, solo tenemos una idea de la forma de las curvas de nivel de f.
 - Es decir, qué puntos pertenecen a ella y su pendiente.
 - ► Con una función homogénea sabíamos además la forma de la función completa.

Interpretación geométrica

Este dibujo da la intuición del siguiente teorema

FUNCIONES HOMOTÉTICAS Y TMS

Teorema (Función homotética y TMS)

Sea f una función con dominio (cónico) abierto D. Supongamos que las derivadas parciales de f existen y son continuas. Entonces f es homotética si y solo si TMS_{x_i,x_j} es homogénea de grado 0 para cualquier i y j, es decir, si para todo i, j, para todo t > 0 y para todo $x \in D$

$$\frac{\frac{\partial f}{\partial x_j}(t\mathbf{x})}{\frac{\partial f}{\partial x_i}(t\mathbf{x})} = \frac{\frac{\partial f}{\partial x_j}(\mathbf{x})}{\frac{\partial f}{\partial x_i}(\mathbf{x})}$$

■ Se puede leer también como:

"f es homotética si y solo si las pendientes de las curvas de nivel son constantes a lo largo de rayos que parten del origen"

FUNCIONES HOMOTÉTICAS Y TMS

Idea de la demostración (Función homotética y TMS)

La primera parte, que toda función homotética cumple que TMS_{x_i,x_i} es homogénea de grado 0 se obtiene de derivar y usar la regla de la cadena (pueden hacerlo como ejercicio para soltar la mano).

La segunda parte, que una función que cumple la homogeneidad de grado 0 para TMS_{x_i,x_i} tiene que ver con el teorema anterior (diapositiva 33). Dado que la TMS es constante a lo largo de un ravo, entonces al "dibujar" (o reconstruir) la curva de nivel en el punto tx_0 obtendremos los puntos tx que son múltiplos de los puntos de la curva de nivel de x_0 .

Teorema (Función homotética)

Sea f una función con dominio (cónico) abierto D. Entonces, las siguientes afirmaciones son equivalentes:

- 1. f es homotética.
- 2. f es una transformación creciente de una función homogénea.
- 3. $f(\mathbf{x}) = f(\mathbf{y}) \Rightarrow f(t\mathbf{x}) = f(t\mathbf{y})$, para cualquier t > 0.
- **4.** TMS_{x_i,x_i} es homogénea de grado 0 para todo i,j.

■ Esto dice que 2, 3 y 4 pueden ser definiciones para una función homotética.

Ejercicio: Diga si las siguientes afirmaciones son verdaderas o falsas

■ Toda función homogénea es homotética.

■ Toda función homotética es homogénea.

■ Si una función tiene TMS constante a lo largo de rayos que parten del origen, entonces es homogénea.

■ Si una función verifica el Teorema de Euler es homotética.