

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

ΤΗΛ302: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ

Εργαστήριο: Ψηφιακής Επεξεργασίας Σήματος & Εικόνας

Καθηγητής: Μιχάλης Ζερβάκης

4η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Windowing

Η απλούστερη μέθοδος σχεδίασης FIR φίλτρων είναι η σχεδίαση με χρήση παραθύρων.

Έστω ότι έχουμε ένα φίλτρο με κρουστική απόκριση $h_d\left(n\right)$. Τότε η απόκριση συχνότητας είναι:

$$H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d(n)e^{-j\omega n}$$

Ισχύει για την κρουστική απόκριση:

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

Ένα τέτοιο σύστημα είναι μη αιτιατό (no causal) και επεκτείνεται από το $+\infty$ ως το $-\infty$. Για να κατασκευάσουμε ένα **αιτιατό** σύστημα (causal) πρέπει να "κόψουμε" κάποιο κομμάτι του $h_d(n)$. Η πιο απλή μέθοδος είναι η εξής:

$$h(n) = \begin{cases} h_d(n), & 0 \le n \le M \\ 0, & \text{allow} \end{cases}$$

Για να κατασκευάσουμε το h(n) είναι σαν να χρησιμοποιήσαμε ένα "παράθυρο" w(n):

$$w(n) = \begin{cases} 1 & , & 0 \le n \le M \\ 0 & , & \text{allow} \end{cases}$$

και

$$h(n) = w(n) \cdot h_d(n)$$

Για τους αντίστοιχους μετασχηματισμούς στο πεδίο της συχνότητας ισχύει:

$$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\vartheta}) w(e^{j(\omega\vartheta)}) d\vartheta$$

Φαινόμενο Gibbs

Γενικά, η ύπαρξη πλευρικών λοβών στην απόκριση συχνότητας του παράθυρου δημιουργεί διακυμάνσεις (ripples) στην απόκριση συχνότητας του φίλτρου. Μόλις πριν και μόλις μετά τη ζώνη μετάβασης του φίλτρου εμφανίζεται η μέγιστη διακύμανση που το πλάτος της είναι ανεξάρτητο του μεγέθους του παραθύρου.

Αυτό είναι γνωστό σαν φαινόμενο Gibbs και είναι χαρακτηριστικό του rectangular παραθύρου.

Άλλα παράθυρα

Για να αποφύγουμε το φαινόμενο Gibbs χρησιμοποιούμε συχνά άλλα παράθυρα μερικά από τα πιο γνωστά είναι τα εξής:

Ορθογώνιο (Rectangular):
$$w(n) = \begin{cases} 1, & 0 \le n \le N \\ 0, & \alpha \lambda \lambda o \dot{v} \end{cases}$$

Hamming:
$$w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1$$

Hanning:
$$w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1$$

Blackman:
$$w(n) = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.8 \cos\left(\frac{4\pi n}{N-1}\right)$$
, $0 \le n \le N-1$

Μια μέθοδος για την κατασκευή των FIR φίλτρων είναι από ένα δοσμένο IIR φίλτρο να κατασκευάσουμε το επιθυμητό ψηφιακό FIR φίλτρο. Η μέθοδος αυτή συνίσταται στον περιορισμό της απόκρισης του IIR φίλτρου έτσι ώστε η

απόκριση για n>N να είναι μηδέν. Ο περιορισμός της απόκρισης θα γίνεται πάντα με την βοήθεια κάποιου παραθύρου.

Έστω το ιδεατό βαθυπερατό φίλτρο με συχνότητα αποκοπής Ως που φαίνεται στην παρακάτω γραφική παράσταση:

Για να κάνουμε το φίλτρο causal εισάγουμε ένα phase shift $e-j\Omega m$. Η απόκριση συχνότητας $H(\Omega)$ του φίλτρου που προκύπτει θα δίδεται από $H(\Omega)=Hi(\Omega)e-j\Omega m$. Η $H(\Omega)$ μπορεί να γραφεί στην μορφή:

$$H(\Omega) = \begin{cases} e^{-j\Omega m} \alpha v \mid \Omega \mid \leq \Omega_c \\ 0 \alpha v \mid \Omega \mid > \Omega_c \end{cases}$$

H impulse response h[n] αυτού του φίλτρου μπορεί να υπολογιστεί παίρνοντας τον αντίστροφο DTFT της σχέσης αυτής ο οποίος είναι :

$$h[n] = \frac{\sin(\Omega_c(n-m))}{\pi(n-m)} = \frac{\Omega_c}{\pi} \sin c \left[\frac{\Omega_c(n-m)}{\pi} \right]$$

Το FIR φίλτρο πραγματοποιείται περιορίζοντας την απόκριση h[n] για n<0 και για n>N-1=2m το οποίο δίνει:

$$h_d[n] = \begin{cases} \frac{\Omega_c}{\pi} \sin c \left[\frac{\Omega_c(n-m)}{\pi} \right] & \eta \alpha 0 \le n \le N-1 \\ 0 & \alpha \lambda \lambda o \delta \end{cases}$$

ΑΣΚΗΣΗ 1

Σχεδιάστε ένα χαμηλοπερατό φίλτρο με $\Omega c=0.4\pi$, Fs=0.1KHz και μήκος N=21 (τι είναι το μήκος του παράθυρου και με ποιο τρόπο επηρεάζει το φίλτρο?), με χρήση rectangular και hamming παραθύρων για τον περιορισμό του h[n]. Παρουσιάστε το πλάτος της απόκρισης συχνότητας των δύο επιμέρους φίλτρων στο (διο γράφημα). Χρησιμοποιήστε τη συνάρτηση του Matlab fir1.

Τι παρατηρείτε; Τι <u>διαφορές</u> έχουν τα δύο παράθυρα μεταξύ τους και <u>πως</u> αυτές εξηγούνται βάση της αντίστοιχης θεωρίας;

ΑΣΚΗΣΗ 2

- Σύμφωνα με την παραπάνω διαδικασία να σχεδιάσετε ένα FIR φίλτρο με
 Ωc=0.5π, Fs = 0.1KHz και με χαρακτηριστικά παραθύρου:
 - α) N=21 και παράθυρο Hamming (Γράφημα 1 αριστερό τμήμα)
 - β) N=41 και παράθυρο Hamming (Γράφημα 1 δεξί τμήμα)
 - γ) N=21 και παράθυρο Hanning (Γράφημα 2 αριστερό τμήμα)
 - δ) N=41 και παράθυρο Hanning (Γράφημα 2 δεξί τμήμα)
 - Να δείξετε το πλάτος της **απόκρισης συχνότητας** των παραπάνω φίλτρων.
 - Τι παρατηρείτε; Τι διαφορές έχουν τα δύο παράθυρα μεταξύ τους και πως αυτές εξηγούνται βάση της αντίστοιχης θεωρίας;
- Βρείτε την έξοδο ενός συστήματος όταν η είσοδος του συστήματος είναι το σήμα x = sin(15t) + 0.25sin(200t) με Fs=100Hz, εφαρμόζοντας τα 4 παραπάνω φίλτρα (ένα κάθε φορά). Δηλαδή, φιλτράρετε το σήμα x(t) με το κάθε ένα από τα παραπάνω φίλτρα.
 - Για την έξοδο του συστήματος δείξτε ΜΟΝΟ το **φάσμα του σήματος** πριν και μετά την εφαρμογή του κάθε φίλτρου. Εξηγείστε το σήμα εξόδου κάθε φίλτρου. Επηρεάζει το διαφορετικό παράθυρο την έξοδο του συστήματος και, αν ναι, <u>πως</u> και <u>γιατί</u>;
- Επαναλάβετε την παραπάνω διαδικασία φιλτραρίσματος με τα 4 φίλτρα του σήματος που δίνετε παραπάνω με τη διαφορά ότι η συχνότητα δειγματοληψίας φίλτρων και σήματος να είναι Fs=50Hz.
 - Τι αλλάζει στο αποτέλεσμα του κάθε φιλτραρίσματος και γιατί;

Κατά την παράδοση της παρούσας εργαστηριακής άσκησης παραδίδεται και αναφορά, η οποία να περιέχει:

- Σύντομη περιγραφή της υλοποίησης σε κάθε ερώτημα, αναλυτικά συμπεράσματα ή παρατηρήσεις όπου προκύπτουν.
- Οι γραφικές που προέκυψαν σε κάθε ερώτημα.
- Να ΜΗΝ περιέχει κώδικες.
- Η αναφορά μπορεί να παραδοθεί σε ηλεκτρονική μορφή.