Data Visualizations

Why do we need visualizations?

Before

```
array([ 22.2545198 ,
                      9.46306667.
                                  12.06767132,
                                                18.59783811,
       11.86490354, 14.68040278,
                                  20.30153772,
                                                25.24777714,
       34.3022338 .
                     34.12490434,
                                  44.33391473.
                                                44.38379237.
       40.00574845.
                     42.57340636.
                                  36.10801652.
                                                36.80541831.
       40.04538794.
                     43.69025546, 53.46028177,
                                                52.50945039.
                                                58.65185448,
       59.19988263,
                     65.21990689,
                                  59.65118444,
                     60.44817943.
       55.92723599,
                                  58.09343653.
                                                52.79842096.
       60.93714419.
                                  69.26647731, 72.62978286,
                     67.40567495.
       76.95759959.
                     80.0000368 .
                                  79.51964481.
                                                81.56353416.
       87.97679347,
                     88.05404069,
                                  83.47695913,
                                                80.17622344,
       81.63942456.
                     83.11399608, 74.75389511, 75.35131548,
       85.5736879 , 93.56250189 ,104.63174345 ,104.31686973 ,
      108.96186346, 114.64848866])
```

After

Person	Height (meters)
Stevie	1.87
Sandrine	1.78
Nick	1.76
Lunner	1.79
Joe	1.75
Jack	1.77
Dr. Evil	1.87
Daisuke	1.85
Bob	1.77
Alex	1.76

Person	Height (meters)
Stevie	1.87
Sandrine	1.78
Nick	1.76
Lunner	1.79
Joe	1.75
Jack	1.77
Dr. Evil	1.87
Daisuke	1.85
Bob	1.77
Alex	1.76

Height by Person

Person	Height (meters)
Stevie	1.87
Sandrine	1.78
Nick	1.76
Lunner	1.79
Joe	1.75
Jack	1.77
Dr. Evil	1.87
Daisuke	1.85
Bob	1.77
Alex	1.76

Height by Person

Global warming of 1.5°C

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

1 / 630

Global warming of 1.5°C

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

Directory of visualizations

Distributions

Amounts

Proportions

x-y relationships

Uncertainty

Geospatial

Fundamental

Fundamental

Fundamental

Interactive

Fundamental

Interactive

Geospatial

Fundamental

Interactive

Geospatial

Other visualization apps

Other visualization apps

How to visualize data distribution

New Notebook

Titanic dataset

Gender submission and test file merged

Data Card Code (394) Discussion (2) Suggestions (1)

About Dataset

Usability ①

10.00

License

CC0: Public Domain

Expected update frequency

Never

Tags

Beginner

Data Visualization

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	Third	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	Third	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	Second	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	Third	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	1	Third	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
5	897	0	Third	Svensson, Mr. Johan Cervin	male	14.0	0	0	7538	9.2250	NaN	S
6	898	1	Third	Connolly, Miss. Kate	female	30.0	0	0	330972	7.6292	NaN	Q
7	899	0	Second	Caldwell, Mr. Albert Francis	male	26.0	1	1	248738	29.0000	NaN	S
8	900	1	Third	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	female	18.0	0	0	2657	7.2292	NaN	С
9	901	0	Third	Davies, Mr. John Samuel	male	21.0	2	0	A/4 48871	24.1500	NaN	S

Histogram

KDE

KDE - Kernel Density Estimator

$$K(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$

$$K(x-x_i)$$

$$K(x - x_i)$$

$$K\left(\frac{x - x_i}{h}\right)$$

h - kernel bandwidth

$$K(x - x_i)$$

$$K\left(\frac{x - x_i}{h}\right)$$

h - kernel bandwidth

$$K(x - x_i)$$

$$K\left(\frac{x - x_i}{h}\right)$$

$$\frac{1}{h}K\left(\frac{x - x_i}{h}\right)$$

$$X = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$X = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$\frac{1}{h}K\left(\frac{x-x_1}{h}\right)$$

$$X = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$\frac{1}{h}K\left(\frac{x-x_1}{h}\right) + \frac{1}{h}K\left(\frac{x-x_2}{h}\right)$$

$$f(x) = \frac{1}{2} \left[\frac{1}{h} K \left(\frac{x - x_1}{h} \right) + \frac{1}{h} K \left(\frac{x - x_2}{h} \right) \right]$$

$$f(x) = \frac{1}{2} \left[\frac{1}{h} K \left(\frac{x - x_1}{h} \right) + \frac{1}{h} K \left(\frac{x - x_2}{h} \right) \right] =$$

$$= \frac{1}{2h} \left[K \left(\frac{x - x_1}{h} \right) + K \left(\frac{x - x_2}{h} \right) \right]$$

$$f(x) = \frac{1}{2} \left[\frac{1}{h} K \left(\frac{x - x_1}{h} \right) + \frac{1}{h} K \left(\frac{x - x_2}{h} \right) \right] =$$

$$= \frac{1}{2h} \left[K \left(\frac{x - x_1}{h} \right) + K \left(\frac{x - x_2}{h} \right) \right] =$$

$$= \frac{1}{2h} \sum_{i=1}^{2} K\left(\frac{x - x_i}{h}\right)$$

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

Kernel Bandwidth

Comparing multiple distributions

Stacked histogram

Stacked density plot

Overlapping density plot

Overlapping density plot

Box plots

Violin plot

Strip plot

Logarithmic scale

Logarithmic scale

Real vs theoretical distribution

Real vs theoretical distribution

Real vs theoretical distribution

Frequently made mistakes

Incorrect color scale

Informing about missing data

Informing about missing data

Informing about missing data

Too many informations

Too many informations

References

Information sources:

- [1] Wes McKinney, Python for Data Analysis, 3E (2022), Wes's Blog
- [2] Claus O. Wilke, Fundamentals of Data Visualization (2019), Claus Website
- [3] Jarosław Drapala, Kernel Density Estimator explained step by step (2023), Medium Towards Data Science
- [4] 3Blue1Brown (Grant Sanderson), Why π is in the normal distribution (beyond integral tricks) (2023), Youtube
- [5] Reveal BI, The Importance of Data Visualizations (2020), Youtube

Data sources:

- [5] Brenda N, <u>Titanic dataset</u> (2021), Kaggle
- [6] Główny Urząd Statystyczny, <u>Obwieszczenie w sprawie wysokości przeciętnego miesięcznego wynagrodzenia brutto w gospodarce</u> narodowej w województwach w 2022 roku (2023), GUS
- [7] Aleksandr Glotov, Car Prices Poland (2021), Kaggle

Other:

[8] My private notes about data visualization an examples

Presentation author: Maksymilian Norkiewicz