US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12387868

August 12, 2025

Osada; Kosei et al.

Semiconductor device and semiconductor module

Abstract

The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.

Inventors: Osada; Kosei (Kyoto, JP), Nishimura; Isamu (Kyoto, JP), Kagawa; Tetsuya

(Kyoto, JP), Yanagishima; Daiki (Kyoto, JP), Ishikawa; Toshiyuki (Kyoto, JP), Mifuji; Michihiko (Kyoto, JP), Kageyama; Satoshi (Kyoto, JP), Kasahara;

Nobuyuki (Kyoto, JP)

Applicant: ROHM CO., LTD. (Kyoto, JP)

Family ID: 53172460

Assignee: ROHM CO., LTD. (Kyoto, JP)

Appl. No.: 18/300193

Filed: April 13, 2023

Prior Publication Data

Document IdentifierUS 20230298805 A1

Publication Date
Sep. 21, 2023

Foreign Application Priority Data

2013-235190	Nov. 13, 2013
2013-235191	Nov. 13, 2013
2014-145041	Jul. 15, 2014
2014-219492	Oct. 28, 2014
	2013-235191 2014-145041

Related U.S. Application Data

continuation parent-doc US 17230356 20210414 US 11657953 child-doc US 18300193 continuation parent-doc US 16803522 20200227 US 11011297 20210518 child-doc US 17230356 continuation parent-doc US 15624205 20170615 ABANDONED child-doc US 16803522 continuation parent-doc US 14537234 20141110 US 9697948 20170704 child-doc US 15624205

Publication Classification

Int. Cl.: H01F27/28 (20060101); H01L23/495 (20060101); H01L23/522 (20060101); H01L23/58 (20060101); H01L23/64 (20060101); H01L23/31 (20060101)

U.S. Cl.:

CPC H01F27/288 (20130101); H01F27/2804 (20130101); H01L23/49575 (20130101); H01L23/5225 (20130101); H01L23/5227 (20130101); H01L23/585 (20130101); H01L23/645 (20130101); H01F2027/2819 (20130101); H01L23/3107 (20130101); H01L2224/04042 (20130101); H01L2224/05554 (20130101); H01L2224/05567 (20130101); H01L2224/06135 (20130101); H01L2224/48137 (20130101); H01L2224/48195 (20130101); H01L2224/48247 (20130101); H01L2224/49113 (20130101); H01L2224/49175 (20130101); H01L2924/10253 (20130101); H01L2924/10272 (20130101); H01L2924/13091 (20130101); H01L2924/19041 (20130101); H01L2924/19042 (20130101); H01L2924/19104 (20130101)

Field of Classification Search

CPC: H01F (27/288); H01F (27/2804); H01F (2027/2819); H01L (23/49575); H01L (23/5225); H01L (23/5227); H01L (23/585); H01L (23/645); H01L (23/3107); H01L (2224/04042); H01L (2224/05554); H01L (2224/05567); H01L (2224/06135); H01L (2224/48137); H01L (2224/48195); H01L (2224/48247); H01L (2224/49113); H01L (2224/49175); H01L (2924/10253); H01L (2924/10272); H01L (2924/13091); H01L (2924/14); H01L (2924/19041); H01L (2924/19042); H01L (2924/19104)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
5245216	12/1992	Sako	N/A	N/A
6870503	12/2004	Mohamadi	N/A	N/A
6882034	12/2004	Corisis et al.	N/A	N/A
6963307	12/2004	Mohamadi	N/A	N/A
7064442	12/2005	Lane et al.	N/A	N/A
8378776	12/2012	Gabrys	257/532	H01L 28/10
8921988	12/2013	Hsu et al.	N/A	N/A
9697948	12/2016	Osada et al.	N/A	N/A
9831161	12/2016	Matsubara et al.	N/A	N/A
10056318	12/2017	Matsubara et al.	N/A	N/A

11011297	12/2020	Osada et al.	N/A	N/A
11094443	12/2020	Tanaka	N/A	H01F 27/324
11657953	12/2022	Osada	257/531	H01F
				27/2804
2003/0042571	12/2002	Chen et al.	N/A	N/A
2004/0056749	12/2003	Kahlmann et al.	N/A	N/A
2004/0164825	12/2003	Volant et al.	N/A	N/A
2005/0156305	12/2004	Moriguchi et al.	N/A	N/A
2005/0230837	12/2004	Taghizadeh- Kaschani	257/760	H01L 23/585
2006/0263727	12/2005	Lee	430/394	H01L 23/3114
2007/0205855	12/2006	Hashimoto	336/200	H01F 38/14
2008/0061631	12/2007	Fouquet	307/109	H01F 27/2804
2008/0079636	12/2007	Mohamadi	343/700MS	H01L 23/66
2008/0079652	12/2007	Mohamadi	N/A	N/A
2008/0197963	12/2007	Muto	336/200	H01F
2000/01/00011	17/7000	Park	N/A	17/0013
2009/0160011	12/2008	Park	IN/A	N/A H03F
2009/0243782	12/2008	Fouquet	336/200	3/45192
				H01F
2009/0243783	12/2008	Fouquet	336/200	27/2804
2009/0244866	12/2008	Kawano	336/200	H01F 27/40
2009/0289347	12/2008	Ochi	N/A	N/A
2009/0302420	12/2008	Nakashiba	257/E29.325	H01L 23/5227
2010/0157565	12/2009	Yoshida et al.	N/A	N/A
2010/0230782	12/2009	Uchida et al.	N/A	N/A
2010/0230783	12/2009	Nakashiba	N/A	N/A
2010/0259909	12/2009	Ho et al.	N/A	N/A
2010/0264515	12/2009	Nakashiba	257/734	H01L 23/48
2010/0265024	12/2009	Nakashiba	336/200	H01L
2010/0205021	12,2000	Tunusinsu	550/ = 00	25/0655
2011/0095620	12/2010	Fouquet	336/200	H03F
		•		3/45475
2011/0133561	12/2010	Kanazawa	307/75	H01F 27/2804
2011/0148549	12/2010	Kanschat	333/24R	H03H 7/00
2011/0175193	12/2010	Nakagawa	N/A	N/A
2011/0241160	12/2010	Kerber et al.	N/A	N/A
				H04L
2012/0020419	12/2011	Kaeriyama	375/259	25/4902
2012/0062040	17/7011	Vaariyama	207/104	H01L
2012/0062040	12/2011	Kaeriyama	307/104	23/5227
2012/0162947	12/2011	O'Donnell et al.	N/A	N/A
2012/0168901	12/2011	Santangelo et al.	N/A	N/A
2012/0249279	12/2011	Itou et al.	N/A	N/A

2012/0256290	12/2011	Renna	438/118	H01L 25/0657
2013/0043970	12/2012	Poddar	336/84C	H01F 27/36
2013/0055052	12/2012	Kaeriyama	714/799	H04B 5/22
2013/0075861	12/2012	Kerber	257/532	H01L 29/402
2013/0135076	12/2012	Nasase	N/A	N/A
2013/0154071	12/2012	Haigh et al.	N/A	N/A
2013/0249302	12/2012	An et al.	N/A	N/A
2013/0278372	12/2012	Stecher et al.	N/A	N/A
2013/0280879	12/2012	Stecher	257/E21.022	H01L
2013/02000/3	12/2012	Stechel	23//E21 . 022	21/3115
2013/0321094	12/2012	Sumida et al.	N/A	N/A
2014/0061643	12/2013	Kaeriyama	257/48	H01L 23/528
2014/0175602	12/2013	Funaya et al.	N/A	N/A
2014/0210047	12/2013	Tajima	257/531	H01L 23/48
2014/0252533	12/2013	O'Sullivan	257/506	H01L 23/50
2014/0253225	12/2013	Lee et al.	N/A	N/A
2014/0264722	12/2013	Nakashiba	257/506	H01L
				23/5227
2015/0001948	12/2014	Brauchler et al.	N/A	N/A
2015/0069572	12/2014	Khanolkar et al.	N/A	N/A
2015/0130022	12/2014	Watanabe	257/531	H01L 23/62
2015/0132890	12/2014	Kerber et al.	N/A	N/A
2015/0280785	12/2014	Brauchler	438/3	H04B 5/75
2015/0318245	12/2014	Uchida	257/531	H01L
2018/0810218	12/2011	Centau	2 577551	23/49575
2016/0035672	12/2015	Funaya	438/381	H01L
		J		21/02164
2016/0072167	12/2015	Kawai et al.	N/A	N/A
2017/0005046	12/2016	Sin	N/A	H01L 27/0694
2017/0287624	12/2016	Osada et al.	N/A	N/A
2018/0130587	12/2017	Tanaka et al.	N/A	N/A
				H01F
2022/0367603	12/2021	Tanaka	N/A	27/2804

FOREIGN PATENT DOCUMENTS

		•	
Patent No.	Application Date	Country	CPC
2004311655	12/2003	JP	N/A
2005077484	12/2004	JP	N/A
2005236033	12/2004	JP	N/A
2008270720	12/2007	JP	N/A
2009076483	12/2008	JP	N/A
2009232637	12/2008	JP	N/A
2009302268	12/2008	JP	N/A
2010080773	12/2009	JP	N/A
2010080774	12/2009	JP	N/A
2010114283	12/2009	JP	N/A
2010123898	12/2009	JP	N/A

2010212669	12/2009	JP	N/A
2012182740	12/2011	JP	N/A
2012257421	12/2011	JP	N/A
2013115131	12/2012	JP	N/A
2013149940	12/2012	JP	N/A
2013229815	12/2012	JP	N/A
2014053365	12/2013	JP	N/A
2016028407	12/2015	JP	N/A
2019016799	12/2018	JP	N/A
2010113383	12/2009	WO	N/A
2010137090	12/2009	WO	N/A
2012008171	12/2011	WO	N/A
2014097425	12/2013	WO	N/A

OTHER PUBLICATIONS

Japanese Patent Office: Office Action of 2018-158636 (related application); May 9, 2019; 8 pages. cited by applicant

Notice of Reasons for Refusal of JP Patent Application No. JP 2019-169505 (related application); Iwamoto, Tsutomu; Aug. 13, 2020; 6 pages. cited by applicant

Notice of Reasons for Refusal of JP Patent Application No. JP 2020-218502 (related application); Ichikawa, Takenori; Dec. 23, 2021; 6 pages. cited by applicant

Office Action issued Aug. 24, 2023 in Japanese Patent Application No. 2022-148939, 9 pages. cited by applicant

Primary Examiner: Dinke; Bitew A

Attorney, Agent or Firm: XSENSUS LLP

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. application Ser. No. 17/230,356, filed Apr. 14, 2021, entitled SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MODULE, which is a continuation of U.S. application Ser. No. 16/803,522, filed Feb. 27, 2020, entitled SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MODULE, issued as U.S. Pat. No. 11,011,297 on May 18, 2021, which is a continuation of U.S. application Ser. No. 15/624,205, filed Jun. 15, 2017, and entitled SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MODULE, which is a continuation of U.S. application Ser. No. 14/537,234, filed on Nov. 10, 2014, issued as U.S. Pat. No. 9,697,948 on Jul. 4, 2017, which claims the benefit of priority of the Japanese Patent Application No. 2013-235190 filed in the Japan Patent Office on Nov. 13, 2013, Japanese Patent Application No. 2014-145041 filed in the Japan Patent Office on Jul. 15, 2014, and Japanese Patent Application No. 2014-219492 filed in the Japan Patent Office on Oct. 28, 2014, the entire disclosures of which are hereby incorporated by reference.

FIELD OF THE INVENTION

(1) The present invention relates to a semiconductor device provided with a transformer, and a semiconductor module provided with the semiconductor device.

BACKGROUND ART

- (2) In the power electronics field, for example, a transformer having a pair of coils which are disposed so as to face each other is under development.
- (3) Disclosed in Patent Document 1 (Japanese Patent Application Publication No. 2013-11531) is a transformer having a pair of inductors. One inductor and the other inductor are disposed to face each other at positions 180 degrees apart around the central axis as the axis of rotation. SUMMARY OF THE INVENTION
- (4) A part of a transformer where a countermeasure to enhance voltage resistance is required is typically an insulating film between a pair of coils. The reason is that high voltage between the coils of the transformer is applied to the insulating film and a thin insulating film cannot resist such high voltage.
- (5) Meanwhile, a low voltage region (e.g., a region where wiring for a low voltage coil is formed) is sometimes provided in a region apart from a transformer in an in-plane direction (horizontal direction) of the insulating film. The distance between the low voltage region and the transformer is usually set several tens of times or more as large as the distance between the coils of the transformer. Therefore, occurrence of dielectric breakdown in a region between the low voltage region and the transformer has hardly been studied.
- (6) However, as a result of diligent study by the present inventors, it has been found in surge breakdown tests between the coils of the transformer that the insulating film sometimes breaks down along a horizontal direction even when breakdown does not occur between the coils.
- (7) One embodiment of the present invention provides a semiconductor device which can enhance voltage resistance between a high voltage coil and a low potential portion in a low voltage region around the high voltage coil.
- (8) Moreover, one embodiment of the present invention provides a semiconductor module which can enhance voltage resistance between a high voltage coil and a low potential portion in a low voltage region around the high voltage coil.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** is a schematic plan view of a semiconductor module for illustrating one embodiment of the present invention.
- (2) FIG. **2** is a view illustrating the connection configuration of the semiconductor module and potential of respective portions.
- (3) FIG. **3** is a schematic view for explaining the planar structure of a transformer chip.
- (4) FIG. **4** is a schematic view for explaining the planar structure of a lower coil of the transformer chip.
- (5) FIG. **5** is a schematic view for explaining the planar structure of an upper coil of the transformer chip.
- (6) FIG. **6** is a sectional view of the transformer chip (sectional view taken along line VI-VI in FIG. **3**).
- (7) FIG. **7** is an enlarged view of a main portion of the transformer chip in FIG. **6**.
- (8) FIG. **8** is a view illustrating the relationship between thickness of an interlayer film and breakdown voltage regarding a semiconductor chip provided with a transformer.
- (9) FIG. **9** illustrates a variation regarding the pattern of a capacitor in the transformer chip.
- (10) FIG. **10** illustrates a variation regarding the pattern of the capacitor in the transformer chip.
- (11) FIG. **11** illustrates a variation regarding the pattern of the capacitor in the transformer chip.
- (12) FIG. **12** illustrates a variation regarding the pattern of the capacitor in the transformer chip.
- (13) FIG. **13** illustrates a variation regarding the pattern of the capacitor in the transformer chip.
- (14) FIG. **14** is a view for explaining the structure of an electrode plate as an example of an electric

- field shield portion which replaces the capacitor.
- (15) FIG. **15** illustrates a variation regarding the pattern of the electrode plate.
- (16) FIG. **16** illustrates a variation regarding the pattern of the electrode plate.
- (17) FIG. **17** illustrates a variation regarding the connection state of a substrate of the transformer chip.
- (18) FIG. **18** illustrates a variation regarding the connection state of the substrate of the transformer chip.
- (19) FIG. **19** illustrates a variation regarding the connection state of the substrate of the transformer chip.
- (20) FIG. **20** is a schematic plan view of a transformer chip according to Reference Example 1.
- (21) FIG. **21** is a schematic plan view of a layer where a lower coil according to Reference Example 1 is disposed.
- (22) FIG. **22** is a schematic plan view of a layer where an upper coil according to Reference Example 1 is disposed.
- (23) FIG. **23** is a sectional view obtained by cutting the transformer chip by cutting-plane line XXIII-XXIII in FIG. **20**.
- (24) FIG. **24** is an enlarged view of an upper coil and a surrounding area in FIG. **23**.
- (25) FIG. **25** is a schematic plan view of a transformer chip according to Reference Example 2.
- (26) FIG. **26** is a schematic plan view of a layer where a lower coil according to Reference Example 2 is disposed.
- (27) FIG. **27** is a schematic plan view of a layer where an upper coil according to Reference Example 2 is disposed.
- (28) FIG. **28** is a sectional view obtained by cutting the transformer chip by cutting-plane line XXVIII-XXVIII in FIG. **25**.
- (29) FIG. **29** is an enlarged view of an upper coil and a surrounding area in FIG. **28**.
- (30) FIGS. **30**A to **30**H are sectional views for explaining processes involved in formation of a homogeneous interface structure.
- (31) FIGS. **31** to **34** are views illustrating variations of a homogeneous interface structure. DETAILED DESCRIPTION OF THE EMBODIMENT
- (32) One embodiment of the present invention provides a semiconductor device including: an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
- (33) Since the electric field shield portion is provided between the high voltage coil and the low voltage region, it is possible to relax electric field concentration on the low potential portion. Thus, it is possible to enhance voltage resistance between the high voltage coil and the low voltage region.
- (34) In one embodiment of the present invention, the electric field shield portion includes a capacitor composed of a plurality of electrode plates which face each other at intervals in a horizontal direction. In such a case, three or more electrode plates may be provided at equal intervals or at unequal intervals.
- (35) In one embodiment of the present invention, the low potential portion includes low voltage wiring which is connected with the low voltage coil.
- (36) In one embodiment of the present invention, the low potential portion includes a low voltage pad which is exposed to the surface of the insulating layer and is connected with the low voltage wiring, and the electric field shield portion is disposed between the high voltage coil and the low voltage pad.

- (37) When the low voltage pad has a corner portion, electric field tends to concentrate on the corner portion, causing surge breakdown. By disposing the electric field shield portion between the high voltage coil and the low voltage pad, it is possible to effectively prevent such surge breakdown.
- (38) In one embodiment of the present invention, the insulating layer includes an insulating film laminated structure including a plurality of insulating films which are laminated successively, the high voltage coil and the low voltage coil are respectively embedded in separate insulating films, one or more insulating films are interposed between the high voltage coil and the low voltage coil, and the electric field shield portion is composed of electrode plates which are embedded in at least one insulating film.
- (39) In such a case, a plurality of electrode plates may face the same insulating film at intervals and constitute a capacitor. In addition, three or more electrode plates may be provided at equal intervals or at unequal intervals.
- (40) Moreover, the electrode plates may be provided in the same insulating film independently so as not to overlap each other in a horizontal direction.
- (41) In one embodiment of the present invention, the electrode plates are embedded in an insulating film for the high voltage coil, an insulating film for the low voltage coil, and an insulating film disposed therebetween. In such a case, the insulating film between the insulating film for the high voltage coil and the insulating film for the low voltage coil may be a plurality of films or a single film. In a case of a plurality of films, the electrode plates may be embedded in all of the films or in some of the films selectively.
- (42) In one embodiment of the present invention, the electrode plates embedded in the respective insulating films are arranged continuously in the vertical direction.
- (43) In one embodiment of the present invention, the electrode plates are embedded selectively in an insulating film for the high voltage coil and an insulating film for the low voltage coil. That is, the electrode plates may be embedded only in the insulating films for the high voltage coil and for the low voltage coil and not in insulating films disposed therebetween.
- (44) In one embodiment of the present invention, the low potential portion includes a shield layer which is embedded in a plurality of insulating films so as to surround the high voltage region, and the electrode plates are embedded in the same insulating film as the shield layer. In such a structure, it is possible to form the shield layer and the electric field shield portion (electrode plates) in the same process.
- (45) In one embodiment of the present invention, the high voltage coil is an upper coil which is disposed at a side relatively near to the surface of the insulating film laminated structure, the low voltage coil is a lower coil which is disposed below the upper coil, and the low potential portion includes low voltage wiring which is connected with the lower coil and penetrates the insulating film laminated structure in the lamination direction.
- (46) In one embodiment of the present invention, the low potential portion includes a low voltage pad which is exposed to the surface of the insulating layer laminated structure and is connected with the low voltage wiring.
- (47) When the low voltage pad has a corner portion, electric field tends to concentrate on the corner portion, causing surge breakdown. By disposing the electric field shield portion between the high voltage coil and the low voltage pad, it is possible to effectively prevent such surge breakdown.
- (48) In one embodiment of the present invention, a distance L1 between the high voltage coil and the electric field shield portion in a horizontal direction is larger than a distance L2 between the high voltage coil and the low voltage coil in the vertical direction.
- (49) In one embodiment of the present invention, the electric field shield portion surrounds the high voltage coil. Thus, an electric field emitted from the high voltage coil is relaxed regardless of the direction thereof.
- (50) One embodiment of the present invention includes a substrate arranged to support the insulating layers, and the low voltage coil is connected with the substrate.

- (51) One embodiment of the present invention provides a semiconductor module including a semiconductor device according to one embodiment of the present invention, a low voltage element which is electrically connected with the low voltage coil of the semiconductor device, a high voltage element which is electrically connected with the high voltage coil of the semiconductor device, and a resin package arranged to collectively seal the semiconductor device, the low voltage element and the high voltage element.
- (52) The following description will explain one embodiment of the present invention in detail with reference to accompanying drawings.
- (53) FIG. **1** is a schematic plan view of a semiconductor module **1** for illustrating one embodiment of the present invention. In FIG. **1**, a central portion of the module **1** is drawn perspectively for the purpose of clarification of the inner structure of the semiconductor module **1**.
- (54) The semiconductor module **1** is a module obtained by arranging a plurality of chips in one package, and includes a resin package **2**, a plurality of leads **3**, and a plurality of chips **4**.
- (55) The resin package **2** is formed in a quadrilateral (square) plate shape using epoxy resin, for example.
- (56) The plurality of leads **3** are provided astride inside and outside of the resin package **2** via a pair of end faces, which face each other, of the resin package **2**. Thus, the package type of the semiconductor module **1** is SOP (Small Outline Package). It is to be noted that the semiconductor module **1** is not limited to SOP, and various types of packages such as QFP (Quad Flat Package) or SOJ (Small Outline J-lead Package) can be employed, for example.
- (57) The plurality of chips **4** include a controller chip **5** (controller IC) as an example of a low voltage element of the present invention, a transformer chip **6** as an example of a semiconductor device of the present invention, and a driver chip **7** (driver IC) as an example of a high voltage element of the present invention.
- (58) The transformer chip **6** is disposed at a substantially central portion of the resin package **2**, and the controller chip **5** and the driver chip **7** are respectively disposed at one lead **3** side and at the other lead **3** side of the transformer chip **6**. That is, the controller chip **5** and the driver chip **7** are disposed so as to sandwich the transformer chip **6** therebetween and are respectively adjacent to a plurality of leads **3**.
- (59) The respective chips **5** to **7** are formed in a quadrilateral (rectangular) shape and, in this embodiment, the transformer chip **6** is formed smaller than the controller chip **5** and the driver chip **7** which have substantially equal sizes. Moreover, the controller chip **5** and the transformer chip **6** are disposed on a common first die pad **8**, and the driver chip **7** is disposed on a second die pad **9** which is provided at an interval from the first die pad **8**.
- (60) A plurality of pads **10** and pads **11** are formed on the surface of the controller chip **5**. The plurality of pads **10** are arranged along a long side of the controller chip **5** at a side near to the leads **3** and are connected with the leads **3** by bonding wires **12**. The plurality of pads **11** are arranged along a long side of the controller chip **5** at a side far from the lead **3** (side near to the transformer chip **6**).
- (61) A plurality of low voltage pads **13** and high voltage pads **14** are formed on the surface of the transformer chip **6**. The plurality of low voltage pads **13** are arranged along a long side of the transformer chip **6** at a side near to the controller chip **5** and are connected with the pads **11** of the controller chip **5** by bonding wires **15**. That is, in this embodiment, the pads **11** of the controller chip **5** are connected with the primary side of the transformer chip **6**. The plurality of high voltage pads **14** are arranged at a central portion of the transformer chip **6** in the width direction along a long side of the transformer chip **6**.
- (62) A plurality of pads **16** and pads **17** are formed on the surface of the driver chip **7**. The plurality of pads **16** are arranged along a long side of the driver chip **7** at a side near to the transformer chip **6** and are connected with the high voltage pads **14** of the transformer chip **6** by bonding wires **18**. That is, in this embodiment, the pads **16** of the driver chip **7** are connected with the secondary side

- of the transformer chip **6**. The plurality of pads **17** are arranged along a long side of the driver chip **7** at a side far from the transformer chip **6** (side near to the leads **3**) and are connected with the leads **3** by bonding wires **19**.
- (63) It is to be noted that the arrangement configuration of the pads of the respective chips **5** to **7** illustrated in FIG. **1** is only an example, and may be changed suitably depending on the package type or the arrangement configuration of the chips **4**.
- (64) FIG. **2** is a view illustrating the connection configuration of the semiconductor module **1** in FIG. **1** and potential of respective portions.
- (65) As illustrated in FIG. **2**, in the transformer chip **6** of the semiconductor module **1**, a lower coil **20** at the primary side (low voltage side) as an example of a low voltage coil of the present invention and an upper coil **21** at the secondary side (high voltage side) as an example of a high voltage coil of the present invention face each other at an interval in the vertical direction. The lower coil **20** and the upper coil **21** are respectively formed in a spiral shape.
- (66) An inner coil end **22** (inner end of the spiral) and an outer coil end **92** (outer end of the spiral) of the lower coil **20** are connected respectively with low voltage wiring **24** and low voltage wiring **93**. Ends of the low voltage wiring **24** and **93** are exposed as the low voltage pads **13**.
- (67) An inner coil end **23** and an outer coil end **94** of the upper coil **21** are connected respectively with high voltage wiring **25** (inner coil end wiring) and high voltage wiring **95** (outer coil end wiring). Ends of the high voltage wiring **25** and **95** are exposed as the high voltage pads **14**. (68) The controller chip **5** is provided with a transistor Tr**1** disposed in the middle of wiring **90** arranged to connect one pad **10** with one pad **11**. The controller chip **5** is also provided with a
- transistor Tr2 disposed in the middle of wiring **91** arranged to connect another pad **10** with another pad **11**. The transistors Tr1 and Tr2 are respectively switching elements arranged to conduct/shut off the wiring **90** and **91**. Pads **10** and **11** at the wiring **90** side are connected respectively with input voltage and a low voltage pad **13** at the outer coil end **92** side through the bonding wires **12** and **15**. Pads **10** and **11** at the wiring **91** side are connected respectively with ground voltage and a low voltage pad **13** at the inner coil end **22** side through the bonding wires **12** and **15**.
- (69) By controlling the controller chip **5** so that a first application state (Tr**1**: ON, Tr**2**: OFF) and a second application state (Tr**1**: OFF, Tr**2**: ON) are alternated, periodic pulse voltage is generated at the lower coil **20** of the transformer chip **6**. For example, in FIG. **2**, pulse voltage of 5V on the basis of reference voltage=0V (ground voltage) is generated at the lower coil **20**.
- (70) In the transformer chip **6**, a DC signal is interrupted between the lower coil **20** and the upper coil **21** while only an AC signal based on pulse voltage generated at the lower coil **20** is selectively transmitted to the high voltage side (upper coil **21**) by electromagnetic induction. An AC signal to be transmitted is boosted corresponding to the transformation ratio between the lower coil **20** and the upper coil **21**, and is taken out to the driver chip **7** through the bonding wires **18**. For example, in FIG. **2**, pulse voltage of 5V is taken out to the driver chip **7** as pulse voltage of 15V on the basis of reference voltage=1200V. By applying inputted pulse voltage of 15V to a gate electrode (unillustrated) of an SiC power MOSFET (e.g., voltage between source and drain=1200V), the driver chip **7** performs switching operation of the MOSFET.
- (71) It is to be noted that a specific voltage value illustrated in FIG. **2** is only an example to be used for explaining the operation of the semiconductor module **1**. The reference voltage of the driver chip **7** (HV region) may be a value exceeding 1200V (e.g., 3750V).
- (72) FIG. **3** is a schematic view for explaining the planar structure of the transformer chip **6** in FIG. **1**. FIG. **4** is a schematic view for explaining the planar structure of a layer where the lower coil **20** of the transformer chip **6** is disposed. FIG. **5** is a schematic view for explaining the planar structure of a layer where the upper coil **21** of the transformer chip **6** is disposed. FIG. **6** is a sectional view of the transformer chip **6** (sectional view taken along line VI-VI in FIG. **3**). FIG. **7** is an enlarged view of the upper coil **21** in FIG. **6** and a surrounding area. In FIG. **6**, only a metal part is marked by hatching for the purpose of clarification.

- (73) Next, the inner structure of the transformer chip **6** will be explained in more detail.
- (74) As illustrated in FIG. **6**, the transformer chip **6** includes a semiconductor substrate **26** and an insulating layer laminated structure **27** which is formed on the semiconductor substrate **26**. As the semiconductor substrate **26**, an Si (silicon) substrate, an SiC (silicon carbide) substrate etc., can be utilized.
- (75) The insulating layer laminated structure **27** is composed of a plurality of (twelve in FIG. **6**) insulating layers which are laminated successively from the surface of the semiconductor substrate **26**. Each of the insulating layers **28** is constituted of a laminated structure of an etching stopper film **29** at a lower layer and an interlayer insulating film **30** at an upper layer, except an insulating layer **28** at the bottom layer in contact with the surface of the semiconductor substrate **26**. The insulating layer **28** at the bottom layer is constituted of only an interlayer insulating film **30**. As the etching stopper film **29**, an SiN film, an SiC film, an SiCN film etc., can be used, for example. As the interlayer insulating film **30**, an SiO.sub.2 film can be used, for example.
- (76) The lower coil **20** and the upper coil **21** are formed in different insulating layers **28** in the insulating layer laminated structure **27** and face each other with one or more insulating layers **28** sandwiched therebetween. In this embodiment, the lower coil **20** is formed in an insulating layer **28**, which is the fourth layer from the semiconductor substrate **26**, and the upper coil **21** is formed in an insulating layer **28**, which is the eleventh layer, with six insulating layers **28** sandwiched between the upper coil **21** and the lower coil **20**.
- (77) As illustrated in FIGS. **3** to **5**, the lower coil **20** and the upper coil **21** are respectively formed in an ellipse annular region surrounding inner regions **31** and **32** so that elliptical inner regions **31** and **32** in planar view are marked out in the center.
- (78) The structure of the lower coil **20** and the upper coil **21** in regions surrounding the inner regions **31** and **32** can be explained with reference to the upper coil **21** illustrated in FIG. **7**. That is, as illustrated in FIG. **7**, a coil groove **33** in an ellipse spiral shape is formed in the insulating layer **28** at a region surrounding the inner region **32**. The coil groove **33** is formed so as to penetrate the interlayer insulating film **30** and the etching stopper film **29** below the interlayer insulating film **30**. Thus, the upper end and the lower end of the coil groove **33** respectively form planes which are open to the etching stopper film **29** of an upper insulating layer **28** and the interlayer insulating films **30** of a lower insulating layer **28**.
- (79) Barrier metal **34** is formed on an inner face (side face and bottom face) of the coil groove **33**. The barrier metal **34** is formed in a film shape in accordance with the side face and the bottom face of the coil groove **33** so that space opened upward is formed at the coil groove **33**. In this embodiment, the barrier metal **34** is formed by laminating a Ta (tantalum) film, a TaN (tantalum nitride) film and a Ta film in this order from a side near to the inner face of the coil groove **33**. In addition, by embedding Cu (copper) wiring material **35** inside the barrier metal **33** at the coil groove **33**, the upper coil **21** is formed as an example of an embedded coil which is composed of the barrier metal **34** and the Cu wiring material **35**.
- (80) The upper coil **21** is formed so that the top face thereof becomes flush with the top face of the insulating layer **28**. Thus, the upper coil **21** is in contact with different insulating layers **28** respectively at the side face, the top face and the bottom face. Specifically, an etching stopper film **29** and an interlayer insulating film **30** of an insulating layer **28** where the upper coil **21** is embedded are in contact with the side face of the upper coil **21**, and only an etching stopper film **29** at the lower layer of an insulating layer **28** which is formed at the upper side of the insulating film **28** is in contact with the top face of the upper coil **21**. Moreover, only an interlayer insulating film **30** at the upper layer of an insulating layer **28** at the lower side is in contact with the bottom face of the upper coil **21**.
- (81) It is to be noted that the lower coil **20** is also formed by embedding barrier metal and Cu wiring material in a coil groove in a manner similar to the upper coil **21**, though the explanation is omitted here.

- (82) As illustrated in FIGS. **3**, **6** and **7**, the high voltage pads **14** are formed on the surface of the insulating layer laminated structure 27 (on an interlayer insulating film 30 of an insulating layer 28 at the uppermost layer). The high voltage pads **14** are disposed in a central high voltage region (HV region) **36** where the upper coil **21** is disposed, in planar view in which the transformer chip **6** is seen from above along the lamination direction of the insulating layer laminated structure 27. (83) Here, the high voltage region **36** includes a region where the upper coil **21** and wiring having the same potential as the upper coil **21** are formed, and a surrounding portion of the formation region in the insulating layer **28** where the upper coil **21** is embedded. In this embodiment, as illustrated in FIG. 5, four upper coils 21 are formed with two pairs disposed at an interval in the longitudinal direction of the transformer chip 6. Inner coil end wiring 37 and outer coil end wiring **96** are respectively formed in the inner regions **32** of the upper coils **21** of each pair and between adjacent upper coils **21**. Thus, one upper coil **21** and the other upper coil **21** of each pair are electrically connected to each other by common outer coil end wiring **96** disposed therebetween, and both of the upper coils **21**, the outer coil end wiring **96** disposed therebetween and the inner coil end wiring **37** in each upper coil **21** all have the same potential. Accordingly, an inner region 32 of each upper coil 21 and a region between upper coils 21 of each pair in the insulating layer 28 are also included in the high voltage region 36 as a range to be affected by an electric field from the upper coil **21**, the inner coil end wiring **37** or the outer coil end wiring **96**. It is to be noted that a region where the lower coil **21** (low voltage coil) is disposed is not included in the high voltage region **36** in this embodiment though the region corresponds to the high voltage region **36** in planar view, since the region is separated from the high voltage coil **21** by a plurality of insulating layers **28** and is hardly affected by an electric field from the upper coil **21**.
- (84) Specifically, as illustrated in FIG. 3, six high voltage pads **14** are disposed respectively above the inner regions **32** of the respective upper coils **21** and above regions between upper coils **21** of the respective pairs.
- (85) For example, as illustrated in FIGS. **6** and **7**, one high voltage pad **14** is connected with inner coil end wiring **37**, which is embedded in the same insulating layer **28** as the upper coil **21**, through a via **38**. Another high voltage pad **14** is connected with outer coil end wiring **96**, which is embedded in the same insulating layer **28** as the upper coil **21**, through a via in a similar structure, though this is not illustrated in the figures. Thus, an AC signal transmitted to the upper coil **21** can be outputted from the high voltage pad **14** via the inner coil end wiring **37** and the via **38**, and the outer coil end wiring **96** and a via (unillustrated). That is, a combination of the inner coil end wiring **96** and a via connected therewith, and a combination of the outer coil end wiring **96** and a via connected therewith respectively constitute the high voltage wiring **25** and the high voltage wiring **95** in FIG. **2**.
- (86) It is to be noted that the inner coil end wiring **37** and the via **38** are respectively formed by embedding barrier metal **41** and **42** and Cu wiring material **43** and **44** in wiring grooves **39** and **40** in a manner similar to the upper coil **21** as illustrated in FIG. **7** (the same goes for the outer coil end wiring **96** and a via connected therewith). The same material as the above barrier metal **34** can be utilized as the barrier metal **41** and **42**.
- (87) Meanwhile, a low voltage region **46** (FIGS. **4** and **6**), an outer low voltage region **47** (FIGS. **3** to **7**) and an intermediate region **48** (FIGS. **3** to **7**) are set in the insulating layer laminated structure **27** as a low potential region (LV region) which is electrically separated from the high voltage region **36**.
- (88) The low voltage region **46** includes a region where the lower coil **20** and wiring having the same potential as the lower coil **20** are formed, and a surrounding portion of the formation region in the insulating layer **28** where the lower coil **20** is embedded. Similar to the relationship between the lower coil **20** and the upper coil **21**, the low voltage region **46** faces the high voltage region **36** with one or more insulating layers **28** sandwiched therebetween. In this embodiment, as illustrated in FIG. **4**, four lower coils **20** are formed with two pairs disposed at positions to face the upper coils

- **21**, that is, at an interval in the longitudinal direction of the transformer chip **6**. Inner coil end wiring **49** and outer coil end wiring **97** are respectively formed in the inner regions **31** of the lower coils **20** of each pair and between adjacent lower coils **20**. Thus, one lower coil **20** and the other lower coil **20** of each pair are electrically connected to each other by common outer coil end wiring **97** disposed therebetween, and both of the lower coils **20**, the outer coil end wiring **97** disposed therebetween and the inner coil end wiring **49** in each lower coil **20** all have the same potential. Accordingly, an inner region **31** of each lower coil **20** and a region between lower coils **20** of each pair in the insulating layer **28** are also included in the low voltage region **46** as a range to be affected by an electric field from the lower coil **20**, the inner coil end wiring **49** or the outer coil end wiring **97**. It is to be noted that the inner coil end wiring **49** is disposed at a position shifted from the inner coil end wiring **37** at the high voltage side in planar view as illustrated in FIG. **5**. (89) As illustrated in FIGS. **3** to **5**, the outer low voltage region **47** is set so as to surround the high voltage region **36** and the low voltage region **46**, and the intermediate region **48** is set between the outer low voltage region 47 and the high voltage region 36 and low voltage region 46. (90) As illustrated in FIGS. 3, 6 and 7, the low voltage pads 13 are formed on the surface of the insulating layer laminated structure 27 at the outer low voltage region 47 (on the interlayer insulating film **30** of the uppermost insulating layer **28**). In this embodiment, six low voltage pads **13** are disposed respectively at lateral sides of six high voltage pads **14** disposed at intervals in the longitudinal direction of the transformer chip **6**. Each low voltage pad **13** is connected with a lower coil **20** by low voltage wiring **24** and **93** led in the insulating layer laminated structure **27**.
- (91) The low voltage wiring **24** includes through wiring **51** and lead-out wiring **52**.
- (92) The through wiring **51** is formed in a columnar shape to penetrate at least an insulating layer **28** where the lower coil **20** is formed from each low voltage pad **13** in the outer low voltage region **47** and reach an insulating layer **28** at a lower position than that of the lower coil **20**. Specifically, the through wiring **51** respectively includes insular (quadrangular) low voltage layer wiring **53** and **54** which are embedded in the same insulating layer **28** as the upper coil **21** and the lower coil **20**, a plurality of vias **55** arranged to connect the low voltage layer wiring **53** and **54** to each other, a via **56** arranged to connect the low voltage layer wiring **53** at the upper side with the low voltage pad **13**, and a via **57** arranged to connect the low voltage layer wiring **54** at the lower side with the lead-out wiring **52**.
- (93) The lead-out wiring **52** is formed in a linear shape which is led out from the low voltage region **46** via an insulating layer **28** at a lower position than that of the lower coil **20** to the outer low voltage region **47**. Specifically, the lead-out wiring **52** includes the above inner coil end wiring **49**, linear lead-out layer wiring **58** which is embedded in an insulating layer **28** at a lower position than that of the lower coil **20** and crosses the lower coil **20** at a lower position, and a via **59** arranged to connect the lead-out layer wiring **58** with the inner coil end wiring **49**. The lead-out layer wiring **58** is connected with the semiconductor substrate **26** through a via **86**. Thus, the lower voltage wiring **24** is fixed to substrate voltage (e.g., ground voltage).
- (94) It is to be noted that the wiring **49**, **53**, **54** and **58** and the vias **55** to **57** and **59** are respectively formed by embedding barrier metal and Cu wiring material in wiring grooves in a manner similar to the upper coil **21**. As an example, as illustrated in FIG. **7**, the low voltage layer wiring **53** and the vias **55** and **56** are respectively formed by embedding barrier metal **63** to **65** and Cu wiring material **66** to **68** in wiring grooves **60** to **62**. The same material as the above barrier metal **34** can be utilized as the barrier metal **63** to **65**.
- (95) It is to be noted that the low voltage wiring **93** is also constituted of wiring which includes through wiring (unillustrated) and lead-out wiring **98** (FIGS. **3** to **5**), though detailed explanation thereof will be omitted.
- (96) With the above structure, one low voltage pad **13** is connected with inner coil end wiring **49** of a lower coil **20** via the through wiring **51** and the lead-out wiring **52** as illustrated in FIGS. **3** to **6**. Moreover, another low voltage pad **13** is connected with outer coil end wiring **96** of a lower coil **20**

- via through wiring and the lead-out wiring **98** as illustrated in FIGS. **3** to **6**. Thus, a signal inputted to the low voltage pad **13** can be transmitted via the through wiring **51** and the lead-out wiring **52** to the lower coil **21**.
- (97) In the insulating layer laminated structure **27**, a shield layer **69** is formed at a side further outside than the low voltage wiring **24**. The shield layer **69** prevents infiltration of moisture from the outside into the device or expansion of a crack at an end face to the inside.
- (98) As illustrated in FIGS. **3** to **6**, the shield layer **69** is formed to form a wall along the end face of the transformer chip **6** and is connected with the semiconductor substrate **26** at the bottom portion. Thus, the shield layer **69** is fixed to substrate voltage (e.g., ground voltage). Specifically, the shield layer **69** includes shield layer wiring **70** to **72** which is respectively embedded in the same insulating layers **28** as the upper coil **21**, the lower coil **20** and the lead-out layer wiring **58**, a plurality of vias **73** arranged to connect the shield layer wiring **70** to **72** to each other, and a via **74** arranged to connect the shield layer wiring **72** at the undermost layer with the semiconductor substrate **26** as illustrated in FIG. **6**. The shield layer wiring **70** to **72** and the vias **73** and **74** are respectively formed by embedding barrier metal and Cu wiring material in wiring grooves in a manner similar to the upper coil **21**.
- (99) Furthermore, a protective film **75** and a passivation film **76** are laminated successively all over the insulating layer laminated structure **27**. An ellipse annular coil protective film **77** for selectively covering a region right above the upper coil **21** is formed on the passivation film **76**. These films **75** to **77** are provided with pad openings **78** and **79** formed to respectively expose the low voltage pad **13** and the high voltage pad **14**.
- (100) The protective film **75** is made of SiO.sub.2, for example, and has a thickness of approximately 150 nm. The passivation film **76** is made of SiN, for example, and has a thickness of approximately 1000 nm. The coil protective film **77** is made of polyimide, for example, and has a thickness of approximately 4000 nm.
- (101) Next, the following description will give a further explanation on details of the respective portions of the transformer chip **6**.
- (102) As described with reference to FIG. **2**, a large potential difference (e.g., approximately 1200V) is generated between the lower coil **20** and the upper coil **21** of the transformer chip **6**. Therefore, the insulating layers **28** disposed between the lower coil **20** and the upper coil **21** are required to have a thickness which can realize sufficient voltage resistance without causing dielectric breakdown due to the potential difference. Thereupon, in this embodiment, DC insulation in the vertical direction between the lower coil **20** and the upper coil **21** is realized by interposing a plurality of (e.g., six) insulating layers **28**, which are constituted of laminated structures of etching stopper films **29** of approximately 300 nm and interlayer insulating films **30** of approximately 2100 nm, between the coils and setting a total thickness L2 of the insulating layers **28** at 12.0 μ m to 16.8 μ m as illustrated in FIG. **6**.
- (103) However, the present inventors have made experiments on the relationship between thickness of interlayer films and surge breakdown voltage regarding a semiconductor chip provided with a transformer and obtained a result illustrated in FIG. 8. In FIG. 8, an interlayer film means a film which has a structure similar to the insulating layer 28 in this embodiment. As is understood from FIG. 8, as a larger number of interlayer films are interposed between coils and the thickness of the films becomes larger, breakdown in a horizontal direction between the upper coil 21 and the low voltage pad 13 (between coil and pad) or between the upper coil 21 and the shield layer 26 (between coil and shield), for example, becomes dominant, though DC insulation in the vertical direction can be realized.
- (104) A distance L0 between the upper coil **21** and the outer low voltage region **47** (width of the intermediate region **48** in this embodiment) is usually larger than the total thickness L2 of the insulating layers **28** between the lower coil **20** and the upper coil **21**. For example, a typical distance L0 is 100 μ m to 450 μ m, and has a ratio to the above thickness L2 (distance L0/thickness

- L2) of 6/1 to 40/1. Accordingly, even though a potential difference equivalent to the potential difference between the lower coil **20** and the upper coil **21** (between high voltage region **36** and low voltage region **46**) is generated between the high voltage region **36** and the outer low voltage region **47**, dielectric breakdown does not theoretically occur in consideration of only the distance between these regions since distance L0>thickness L2 is satisfied. However, as is proved by FIG. **8**, breakdown in a horizontal direction becomes more dominant as the thickness of interlayer films between coils becomes larger. It is to be noted that distance L0>>thickness L2 is actually satisfied, though the thickness L2 is drawn larger than the distance L0 in FIG. **6**.
- (105) In this respect, the present inventors have found that it is possible to relax electric field concentration on a specific part of the outer low voltage region **47** and prevent breakdown in horizontal directions by providing a shield constituted of an electrically floated metal member between the high voltage region **36** and the outer low voltage region **47**.
- (106) Thereupon, in this embodiment, a capacitor **80** surrounding the high voltage region **36** in planar view is provided in the intermediate region **48** as illustrated in FIGS. **3** and **5**. The respective high voltage regions **36** may be surrounded by separate capacitors, though the plurality of high voltage regions **36** in FIGS. **3** and **5** are surrounded by a common capacitor **80**.
- (107) The cross section structure of the capacitor **80** is illustrated in FIGS. **6** and **7**. That is, the capacitor **80** is embedded in each of an insulating layer **28** where the upper coil **21** is embedded, an insulating layer **28** where the lower coil **20** is embedded and insulating layers **28** disposed therebetween, and is formed as a whole to form a wall surrounding the coil formation region of the insulating layers **28**.
- (108) Each capacitor **80** is composed of a plurality of electrode plates **87** which are embedded in the respective insulating layers **28**. As the plurality of electrodes plates **87**, three or more (five in FIGS. **6** and **7**) electrode plates **87** are provided at equal intervals and are respectively floated electrically. Moreover, electrode plates **87** embedded in the respective insulating layers **28** are arranged continuously in the vertical direction. That is, when the insulating layer laminated structure **27** is seen at a cross section, an electrode plate **87** which constitutes one capacitor **80** overlaps with electrode plates **87** disposed above and below said electrode plates **87**. Thus, a plurality of electrode plates **87** which are embedded in different insulating layers **28** constitute a shield plate with no gap along the lamination direction of the insulating layer laminated structure **27**.
- (109) Each electrode plate **87** is formed by embedding barrier metal **82** and Cu wiring material **83** in a wiring groove **81** as illustrated in FIG. **7** in a manner similar to the upper coil **21**. The same material as the above barrier metal **34** can be utilized as the barrier metal **82**.
- (110) Moreover, a distance L1 between the upper coil **21** and the capacitor **80** in a horizontal direction is larger than a total thickness L2 of insulating layers **28** between the upper coil **21** and the lower coil **20**. For example, the distance L1 is 25 μ m to 400 μ m. It is to be noted that distance L1>>thickness L2 is actually satisfied, though the thickness L2 is drawn larger than the distance L1 in FIG. **6**.
- (111) The capacitor **80** makes it possible to relax concentration of an electric field on a conductive portion (e.g., the low voltage pad **13**, the low voltage layer wiring **53**, the via **55**, the low voltage layer wiring **54** and the shield layer **69**) having low potential, which is disposed in the outer low voltage region **47**, when high voltage is applied between the upper coil **21** and the lower coil **20**. In particular, regarding a rectangular low voltage pad **13** or the low voltage layer wiring **53** disposed in the same layer as the upper coil **21** (high voltage coil) or a layer in the vicinity, an electric field tends to concentrate on a corner portion, causing surge breakdown. However, by disposing the capacitor **80**, it is possible to effectively prevent such surge breakdown. Furthermore, in this embodiment, an electric field emitted from the upper coil **21** is relaxed regardless of the direction thereof, since the capacitor **80** surrounds the high voltage region **36**. As a result, voltage resistance between the high voltage region **36** and the outer low voltage region **47** can be enhanced.

(112) Moreover, the capacitor **80** and the shield layer **69** can be formed in the same process, since the electrode plates **87** which constitute the capacitor **80** are embedded in the same insulating layer **28** as elements which constitute the shield layer **69**.

Variations

- (113) (1) Variation Regarding Pattern of Capacitor **80**
- (114) FIGS. **9** to **13** illustrate a variation regarding the pattern of the capacitor **80**.
- (115) In the structure of FIG. **9**, three or more electrode plates **87** which constitute each capacitor **80** are provided at unequal intervals. For example, the plurality of electrode plates **87** are arranged so that the interval becomes larger with increase in the distance from the high voltage region **36**. (116) In the structure of FIG. **10**, the electrode plates **87** embedded in the respective insulating layers **28** are arranged intermittently along the lamination direction of the insulating layer laminated structure **27**. That is, when the insulating layer laminated structure **27** is seen at a cross section, electrode plates **87** which constitute one capacitor **80** do not overlap with electrode plates **87** disposed thereabove and therebelow. For example, as illustrated in FIG. **10**, electrode plates **87** which constitute one capacitor **80** may be disposed in a region of a gap of a plurality of electrode plates **87** which constitute capacitors **80** thereabove and therebelow.
- (117) In the structure of FIG. **11**, the capacitor **80** is embedded selectively in an insulating layer **28** for the upper coil **21** and an insulating layer **28** for the lower coil **20**. That is, the capacitor **80** may be embedded only in insulating layers **28** for the upper coil **21** and the lower coil **20** and not in insulating layers **28** disposed therebetween.
- (118) In the structure of FIG. **12**, the capacitor **80** is formed selectively between the high voltage region **36** and a region (pad region) where the low voltage pad **13** is disposed in the intermediate region **48** and not in a region at the opposite side of the pad region. Meanwhile, the structure of FIG. **13** is the reverse and the capacitor **80** is formed selectively in a region at the opposite side of the pad region and not in the pad region side.
- (119) (2) Variation Having Structure which Replaces Capacitor 80
- (120) FIGS. **14** to **16** illustrate a variation having a structure which replaces the capacitor **80**. Specifically, illustrated is a case where electrode plates **87** are provided independently so as not to overlap in a horizontal direction in the same insulating layer **28** and no capacitor structure is provided in each insulating layer **28**.
- (121) In the structure of FIG. **14**, electrode plates **87** embedded in the respective insulating layers **28** are arranged continuously in the vertical direction. Meanwhile, in the structure of FIG. **15**, the electrode plates **87** embedded in the respective insulating layers **28** are arranged intermittently along the lamination direction of the insulating layer laminated structure **27**.
- (122) It is to be noted that the variation described in this section is to illustrate only the fact that no capacitor structure is formed. Accordingly, a plurality of electrode plates **87** may be provided in the same insulating layer **28** as long as the electrode plates **87** do not overlap in horizontal directions. For example, as illustrated in FIG. **16**, a plurality of electrode plates **87** which form a broken line ellipse **84** surrounding a high voltage region **36** may be arranged, and electrode plates **87** may be arranged in an inner region of the broken line ellipse **84** so as to face a region of a gap of the plurality of electrode plates **87** which constitute the broken line ellipse **84**.
- (123) (3) Variation Regarding Connection State of Semiconductor Substrate 26
- (124) FIGS. **17** to **19** illustrate a variation regarding the connection state of a semiconductor substrate **26**.
- (125) In the structure of FIG. **17**, the via **86** in FIG. **6** is omitted, and low voltage wiring **24** is not fixed to substrate voltage.
- (126) In the structure of FIG. **18**, the via **74** in FIG. **6** is omitted, and a shield layer **69** is not fixed to substrate voltage.
- (127) In the structure of FIG. **19**, both of the via **86** and the via **74** in FIG. **6** are omitted, and low voltage wiring **24** and a shield layer **69** are not fixed to substrate voltage.

- (128) Various design changes can be made to the present invention within the scope of matters referred to in the claims, though embodiments of the present invention have been described above. (129) For example, a lower coil **20** may function as a high voltage coil and an upper coil **21** may function as a low voltage coil, though the above embodiment illustrates a case where the upper coil **21** functions as a high voltage coil and the lower coil **20** functions as a low voltage coil. (130) Moreover, an electric conductor (low potential portion) which is electrically connected with potential lower than a high voltage coil (upper coil **21**) may be provided in an insulating layer **28** different from an insulating layer **28** where the upper coil **21** is embedded, though the above embodiment illustrates only a case where the electric conductor is necessarily formed in the same insulating layer **28** as the insulating layer **28** where the upper coil **21** is embedded like the low voltage wiring **24** or the shield layer **69**. For example, the present invention can also provide sufficient effect of decreasing surge breakdown in horizontal directions for an electric conductor which is formed in several layers above or below the insulating layer **28** where the upper coil **21** is embedded.
- (131) Other various design changes can be made within the scope of matters referred in the claims. Reference Example of Above Embodiment
- (132) A problem (see FIG. **8**) that breakdown occurs in a horizontal direction when a large potential difference (e.g., several thousands of volts) is generated between the high voltage region **36** and the outer low voltage region **47** can be solved by structures illustrated in the following Reference Example 1 and Reference Example 2.
- (1) Reference Example 1
- (133) As illustrated in FIGS. **20** to **24**, Reference Example 1 is different from the above embodiment in that a capacitor **80** is not provided in an intermediate region **48**.
- (134) In addition, regarding the problem described with reference to FIG. **8**, the present inventors have found that the cause of leakage current which causes breakdown in a horizontal direction is related to the constituent material of an insulating film in contact with an upper coil **21**.
- (135) Thereupon, in Reference Example 1, a compressive stress film having compressive stress as internal stress is employed as an etching stopper film 29 selectively in an insulating layer 28 where the upper coil 21 is embedded and an insulating layer 28 right above the insulating layer 28, though most insulating layers 28 are formed by overlapping an etching stopper film 29, which is constituted of a tensile stress SiN film (Tensile-SiN), with an interlayer insulating film 30, which is constituted of an SiO.sub.2 film having compressive stress as internal stress. Such a compressive stress film preferably has compressive stress of 400 MPa to 800 MPa as internal stress, for example. Specifically, an SiO.sub.x (0<x<2) film having an Si ratio higher than SiO.sub.2 is preferable, or an SiN film (Compressive-SiN) having compressive stress may be employed. An SiO.sub.x film can be prepared in the same manufacturing method as an SiO.sub.2 film except that an Si composition ratio is changed by adjusting the flow rate of source gas. Meanwhile, a compressive stress SiN film can be prepared by adjusting conditions such as the SiH.sub.4 flow rate or N.sub.2 flow rate in a manufacturing process of a tensile stress SiN film.
- (136) Thus, it is possible to suppress flow of leakage current from the upper coil **21** to low voltage wiring **24** or a shield layer **69** along the surface direction (horizontal direction) of the insulating layer **28**. As a result, it is possible to prevent dielectric breakdown due to a potential difference, even when a large potential difference is generated between the upper coil **21** and the low voltage wiring **24** and shield layer **69**.
- (137) Also, regarding a plurality insulating layers **28** excluding the insulating layer **28** where a compressive stress film is employed as an etching stopper film **29**, an interlayer insulating film **30** which is constituted of SiO.sub.2 having compressive stress and an etching stopper film **29** which is constituted of a tensile stress SiN film can be arranged alternately, and therefore it is possible to laminate insulating layers **28** while cancelling stress at lamination interfaces of the insulating layer laminated structure **27**. As a result, it is possible to prevent generation of large curvature

- deformation at a semiconductor wafer, which functions as the parent body of a semiconductor substrate **26** arranged to support the insulating layer laminated structure **27**, in a manufacturing process of a transformer chip **6**.
- (138) It is to be noted that an SiC film, an SiCN film etc., may be used as etching stopper films **29** of insulating layers **28** excluding an insulating layer **28** where the upper coil **21** is embedded.
- (139) Various design changes can be made in Reference Example 1 described above.
- (140) It is to be noted that the following features can be extracted from the content of Reference Example 1 in addition to the invention referred to in the claims.

Aspect 1

- (141) A semiconductor device including: an insulating layer laminated structure composed of a plurality of insulating layers which are laminated successively, a high voltage coil and a low voltage coil which are formed in different insulating layers in the insulating layer laminated structure and face each other with one or more insulating layers sandwiched therebetween, and an electric conductor which is formed in an outer region at a lateral side of a high voltage region where the high voltage coil is disposed and is electrically connected with potential lower than the high voltage coil, wherein an insulating layer in contact with the high voltage coil includes a compressive stress film having compressive stress as internal stress in a part in contact with the high voltage coil.
- (142) With such a structure, a part of an insulating layer, which is in contact with the high voltage coil, is formed of a compressive stress film, and therefore it is possible to suppress flow of leakage current from the high voltage coil to the electric conductor along the surface direction (horizontal direction) of the insulating layer. Thus, it is possible to prevent dielectric breakdown due to a potential difference even when a large potential difference is generated between the high voltage coil and the electric conductor.

Aspect 2

(143) The semiconductor device according to Aspect 1, wherein the high voltage coil includes an embedded coil which is embedded in a coil groove that penetrates one insulating layer from the top face to the bottom face thereof, and an insulating layer in contact with the high voltage coil includes an insulating layer where the high voltage coil is embedded and insulating layers which are arranged thereabove and therebelow and are respectively in contact with the top face and the bottom face of the high voltage coil.

Aspect 3

- (144) The semiconductor device according to Aspect 1 or 2, wherein the compressive stress film includes an SiO.sub.x (0 < x < 2) film which has an Si ratio higher than SiO.sub.2.
- (145) With such a structure, the compressive stress film is an SiO.sub.x (0<x<2) film, and therefore a satisfactory effect of decreasing leakage current can be realized.

Aspect 4

(146) The semiconductor device according to Aspect 1 or 2, wherein the compressive stress film includes a compressive stress SiN film.

Aspect 5

(147) The semiconductor device according to any one of Aspects 1 to 4, wherein the compressive stress film has compressive stress of 400 MPa to 800 MPa as internal stress.

Aspect 6

- (148) The semiconductor device according to any one of Aspects 1 to 5, wherein each insulating layer includes a laminated structure of a thin film and an interlayer insulating film, which is made of SiO.sub.2 and is formed on the thin film, the thin film of the insulating layer in contact with the high voltage coil is selectively formed of the compressive stress film, and the thin films of the insulating layers excluding the insulating layer in contact with the high voltage coil are formed of a tensile stress film having tensile stress as internal stress.
- (149) With such a structure, it is required only to selectively change a thin film of an insulating

layer in contact with the high voltage coil into a compressive stress film. Thus, regarding a plurality of insulating layers excluding said insulating layer, an interlayer insulating film made of SiO.sub.2 having compressive stress and a thin film constituted of a tensile stress film can be arranged alternately, and therefore it is possible to laminate insulating layers while cancelling stress at lamination interfaces. As a result, it is possible to prevent generation of large curvature deformation at a semiconductor substrate in a case where an insulating layer laminated structure is formed on a semiconductor substrate (wafer).

Aspect 7

(150) The semiconductor device according to any one of Aspects 1 to 6, wherein the electric conductor includes a conductor layer which is formed in the same insulating layer as the high voltage coil.

Aspect 8

(151) The semiconductor device according to any one of Aspects 1 to 7, further including, a high voltage pad which is formed on the surface of the insulating layer laminated structure in the high voltage region, and a low voltage pad which is formed on the surface of the insulating layer laminated structure in the outer region, wherein the high voltage coil is an upper coil which is disposed at a side relatively near to the surface of the insulating layer laminated structure and the low voltage coil is a lower coil which is disposed below the upper coil, and the electric conductor includes low voltage wiring which penetrates the plurality of insulating layers downward in the thickness direction from the low voltage pad and is electrically connected with the lower coil. (152) With such a structure, since the above voltage resistant structure (dielectric breakdown preventing structure) is formed, it is possible to form the low voltage wiring for contact with the lower coil so that the low voltage wiring penetrates the insulating layer laminated structure. Thus, it is possible to form both of the high voltage pad and the low voltage pad on the surface of the insulating layer laminated structure and easily achieve wire bonding to the pads.

Aspect 9

(153) The semiconductor device according to Aspect 8, wherein the low voltage wiring further includes lead-out wiring which is led out from an inner coil end of the lower coil via the insulating layer, which is disposed at a lower position than that of the lower coil, to the outer region.

Aspect 10

(154) The semiconductor device according to Aspect 8 or 9, wherein the high voltage pad is disposed above a central portion of the upper coil, and high voltage wiring which penetrates the insulating layer upward in the thickness direction from an inner coil end of the upper coil and is connected with the high voltage pad is further provided.

Aspect 11

(155) The semiconductor device according to any one of Aspects 8 to 10, wherein the electric conductor includes a shield layer, which is formed at a side further outside than the low voltage wiring so as to surround the high voltage region and penetrate the plurality of insulating layers downward in the thickness direction.

Aspect 12

(156) The semiconductor device according to any one of Aspects 1 to 11, wherein a distance L0 between the high voltage coil and the electric conductor is larger than a thickness L2 of the insulating layers between the high voltage coil and the low voltage coil.

Aspect 13

(157) The semiconductor device according to Aspect 12, wherein the ratio of the distance L0 to the thickness L2 (distance L0/thickness L2) is 6/1 to 40/1.

Aspect 14

(158) The semiconductor device according to Aspect 12 or 13, wherein the thickness L2 is 12.0 μm to 16.8 μm , and the distance L0 is 100 μm to 450 μm .

Aspect 15

- (159) A semiconductor module including a semiconductor device according to any one of Aspects 1 to 14, a low voltage element which is electrically connected with the low voltage coil of the semiconductor device, a high voltage element which is electrically connected with the high voltage coil of the semiconductor device, and a resin package arranged to collectively seal the semiconductor device, the low voltage element and the high voltage element.
- (160) With such a structure provided with a semiconductor device according to any one of Aspects 1 to 14, it is possible to realize a highly reliable transformer module in which dielectric breakdown hardly occurs.
- (2) Reference Example 2
- (161) Regarding the problem described with reference to FIG. **8**, the present inventors have found that the cause of leakage current which causes breakdown in a horizontal direction is related to (1) formation of a heterogeneous interface due to contact of different insulating materials at a lateral side of the upper coil **21**, and (2) existence of a processed interface damaged by film production such as CVD in a manufacturing process of the insulating layer laminated structure **27**. (162) Thereupon, in Reference Example 2, a removal region **110** from which an etching stopper film **29** is selectively removed is formed in an intermediate region **48** of an insulating layer **28** where the upper coil **21** is embedded and an insulating layer **28** right above said insulating layer **28** as illustrated in FIGS. **25**, **27**, **28** and **29**. The removal region **110** is formed in one band shape (e.g., width of 50 μ m to 100 μ m) surrounding each high voltage region **36** as illustrated in FIGS. **25** and **27**. In particular, as illustrated in FIGS. **25** and **27**, an electric field hardly concentrates in a case of a rounded shape as a whole having no corner portion (substantially ellipse annular shape in Reference Example 2).
- (163) By formation of the removal region **110**, an interlayer insulating film **30** (SiO.sub.2) disposed at an upper side of the lamination interface **111** comes into contact with an interlayer insulating film **30** (SiO.sub.2) at a low side in the intermediate region **48**, and a homogeneous interface structure **112** is formed at a lamination interface **111**, which is in contact with the upper coil **21**, among lamination interfaces of the insulating layer laminated structure **27**.
- (164) Thus, even when leakage current flows along the surface direction (horizontal direction) of the insulating layer **28** from the upper coil **21** to low voltage wiring **24** or a shield layer **69**, it is possible to decrease leakage current by the homogeneous interface structure **112**. That is, it is possible to decrease leakage current by eliminating a heterogeneous interface due to contact of different insulating materials (contact between SiO.sub.2 and SiN in Reference Example 2) in at least the intermediate region **48**. As a result, it is possible to prevent dielectric breakdown due to a potential difference even when a large potential difference is generated between the upper coil **21** and the low voltage wiring **24** and shield layer **69**.
- (165) Also, in Reference Example 2, a trench **113** having the same pattern as a removal region **110** is further formed in an interlayer insulating film **30** disposed at a lower side of the lamination interface **111** to the middle of the interlayer insulating film **30** in the thickness direction, and the interlayer insulating film **30** at an upper side is embedded in said trench **113** via the removal region **110**. Thus, it is possible to extend the distance of the lamination interface **111** from the upper coil **21** to the outer low voltage region **47** by the depth d of the trench **113**. As a result, it is possible to lengthen the path of leakage current, and therefore it is possible to decrease leakage current satisfactorily even when a processed interface exists in the lamination interface **111**.
- (166) FIGS. **30**A to **30**H are sectional views for explaining processes involved in formation of a homogeneous interface structure **112**.
- (167) For forming a homogeneous interface structure **112** of an embedded type as illustrated in FIG. **29**, a via **55** is formed in an insulating layer **28** disposed below an insulating layer **28** where the upper coil **21** is embedded as illustrated in FIG. **30**A, for example.
- (168) Next, as illustrated in FIG. **30**B, an etching stopper film **29** made of SiN and a USG film **114** are formed successively by a plasma activated CVD method, for example.

- (169) Next, as illustrated in FIG. **30**C, a photoresist (unillustrated) is formed on the USG film **114**, and the USG film **114**, the etching stopper film **29** and the interlayer insulating layer **30** are etched successively. Thus, the removal region **110** and the trench **113** are formed simultaneously.
- (170) Next, as illustrated in FIG. **30**D, the trench **113** is backfilled with SiO.sub.2 by high density plasma activated CVD (HDP), and then SiO.sub.2 is further deposited by plasma activated CVD. Then, the surface of SiO.sub.2 is planarized by CMP. Thus, an insulating layer **28** having a homogeneous interface structure **112** is formed at the trench **113**.
- (171) Next, as illustrated in FIG. **30**E, an upper coil **21**, low voltage layer wiring **53** and inner coil end wiring **37** are formed on an insulating layer **28** which has the homogeneous interface structure **112** between said insulating layer **28** and a lower insulating layer **28**.
- (172) Next, as illustrated in FIG. **30**F, an etching stopper film **29** and a USG film **115** are formed successively by a plasma activated CVD method, for example.
- (173) Next, as illustrated in FIG. **30**G, a photoresist (unillustrated) is formed on the USG film **115**, and the USG film **115**, the etching stopper film **29** and the interlayer insulating film **30** are etched successively. Thus, the removal region **110** and the trench **113** are formed simultaneously.
- (174) Next, as illustrated in FIG. **30**H, the trench **113** is backfield with SiO.sub.2 by high density plasma activated CVD (HDP), and then SiO.sub.2 is further deposited by plasma activated CVD. Then, the surface of SiO.sub.2 is planarized by CMP. Thus, an insulating layer **28** having a homogeneous interface structure **112** is formed at the trench **113**.
- (175) Various design changes can be made in Reference Example 2 described above.
- (176) For example, the homogeneous interface structure **112** may be selectively formed only at a lamination interface **111** at the lower side in contact with the bottom face of the upper coil **21** as illustrated in FIG. **31**, or may be selectively formed only at a lamination interface **111** at the upper side in contact with the top face of the upper coil **21** as illustrated in FIG. **32**.
- (177) Moreover, as illustrated in FIG. 33, the removal region 110 may be formed in a stripe shape at intervals from each other. The trench 113 is preferably formed also in a stripe structure to match such a removal region 110 in a stripe shape. In such a case, the line-and-space (L/S) of the removal region 110 having a stripe shape is preferably 1 μ m/1 μ m to 10 μ m/10 μ m. The removal region 110 in a stripe shape can be formed by using a photoresist pattern for etching in a stripe shape in the above process illustrated in FIGS. 30C and 30G.
- (178) Moreover, as illustrated in FIG. **34**, an etching stopper **29** can be omitted and an insulating layer **28** can be formed only from an interlayer insulating film **30** made of SiO.sub.2 in a case where the upper coil **21** is not an embedded coil of Cu wiring material **35** but is formed by patterning of an Al (aluminum) film. In such a structure, a homogeneous interface structure **112** is formed at all lamination interfaces of the insulating layer laminated structure **27**, and therefore the effect of decreasing leakage current can be obtained more effectively by forming the above trench **113** and lengthening the path of leakage current.
- (179) It is to be noted that the following features can be extracted from the content of Reference Example 2 in addition to the invention referred to in the claims.

 Aspect 1
- (180) A semiconductor device including an insulating layer laminated structure composed of a plurality of insulating layers which are laminated successively, a high voltage coil and a low voltage coil which are formed in different insulating layers in the insulating layer laminated structure and face each other with one or more insulating layers sandwiched therebetween, and an electric conductor which is formed in an outer region at a lateral side of a high voltage region where the high voltage coil is disposed and is electrically connected with potential lower than the high voltage coil, wherein a lamination interface in contact with the high voltage coil among a plurality of lamination interfaces of the insulating layer laminated structure is provided with a homogeneous interface structure which is formed at an intermediate region between the high voltage region and the outer region by contact of the same insulating material of the insulating

layers via said lamination interface.

(181) With such a structure, a homogeneous interface structure is formed at least at an intermediate region, and therefore said homogeneous interface structure can decrease leakage current even when leakage current flows from the high voltage coil toward the electric conductor. That is, it is possible to decrease leakage current by eliminating a heterogeneous interface by contact of different insulating materials at least at the intermediate region. Thus, it is possible to prevent dielectric breakdown due to a potential difference even when a large potential difference is generated between the high voltage coil and the electric conductor.

Aspect 2

(182) The semiconductor device according to Aspect 1, wherein the high voltage coil includes an embedded coil which is embedded in a coil groove that penetrates one insulating layer from the top face to the bottom face thereof, and a lamination interface in contact with the high voltage coil includes an interface which is formed of an insulating layer where the high voltage coil is embedded and insulating layers, which are disposed thereabove and therebelow and are respectively in contact with the top face and the bottom face of the high voltage coil.

Aspect 3

(183) The semiconductor device according to Aspect 1 or 2, wherein a trench is formed in a relatively lower insulating layer in the homogeneous interface structure, and an upper insulating layer in contact with the top face of the lower insulating layer is embedded in the trench. (184) With such a structure, it is possible to extend the interface distance from the high voltage coil to the outer region by the depth of the trench. Thus, it is possible to lengthen the path of leakage current, and therefore it is possible to further decrease leakage current.

Aspect 4

(185) The semiconductor device according to Aspect 1 or 2, wherein each insulating layer of the insulating layer laminated structure includes a laminated structure of a thin film made of first insulating material and an interlayer insulating film, which is formed on the thin film and is made of second insulating material, an insulating layer at an upper side of a lamination interface in contact with the high voltage coil has a removal region where the thin film has been selectively removed in the intermediate region, and an interlayer insulating film of the upper insulating layer is in contact with an interlayer insulating film of an insulating layer at a lower side of the lamination interface via the removal region and forms the homogeneous interface structure.

Aspect 5

(186) The semiconductor device according to Aspect 4, wherein a trench having the same pattern as the removal region is formed in an interlayer insulating film in the lower insulating layer in the homogeneous interface structure, and the interlayer insulating film of the upper insulating layer is formed to be embedded in the trench via the removal region.

(187) With such a structure, it is possible to extend the interface distance from the high voltage coil to the outer region by the depth of the trench. Thus, it is possible to lengthen the path of leakage current, and therefore it is possible to further decrease leakage current.

Aspect 6

(188) The semiconductor device according to Aspect 4 or 5, wherein the removal region is formed in one strip shape.

Aspect 7

(189) The semiconductor device according to Aspect 6, wherein the width of the strip-shaped removal region is 50 μ m to 100 μ m.

Aspect 8

(190) The semiconductor device according to Aspect 4 or 5, wherein the removal region is formed in a stripe shape at intervals from each other.

(191) In particular, in Aspect 8, it is preferable that a stripe trench having the same pattern as the stripe-shaped removal region is formed in the interlayer insulating film of the lower insulating layer

in the homogeneous interface structure and the interlayer insulating film of the upper insulating layer is formed to be embedded in the stripe trench via the removal region. Thus, it is possible to further extend the interface distance from the high voltage coil to the outer region, and therefore it is possible to further decrease leakage current.

Aspect 9

(192) The semiconductor device according to Aspect 8, wherein the line-and-space (L/S) of the stripe-shaped removal region is 1 μ m/1 μ m to 10 μ m/10 μ m.

Aspect 10

(193) The semiconductor device according to any one of Aspects 4 to 9, wherein the thin film includes an SiN film and the interlayer insulating film includes an SiO.sub.2 film.

Aspect 11

(194) The semiconductor device according to any one of Aspects 1 to 10, wherein the electric conductor includes a conductor layer which is formed in the same insulating layer as the high voltage coil.

Aspect 12

(195) The semiconductor device according to any one of Aspects 1 to 11, further including a high voltage pad which is formed on the surface of the insulating layer laminated structure in the high voltage region, and a low voltage pad which is formed on the surface of the insulating layer laminated structure in the outer region, wherein the high voltage coil is an upper coil which is disposed at a side relatively near to the surface of the insulating layer laminated structure and the low voltage coil is a lower coil which is disposed below the upper coil, and the electric conductor includes low voltage wiring which penetrates the plurality of insulating layers downward in the thickness direction from the low voltage pad and is electrically connected with the lower coil. (196) With such a structure, since the above voltage resistant structure (dielectric breakdown preventing structure) is formed, it is possible to form the low voltage wiring for contact with the lower coil so that the low voltage wiring penetrates the insulating layer laminated structure. Thus, it is possible to form both of the high voltage pad and the low voltage pad on the surface of the insulating layer laminated structure and easily achieve wire bonding to the pads.

Aspect 13

(197) The semiconductor device according to Aspect 12, wherein the low voltage wiring further includes lead-out wiring which is led out from an inner coil end of the lower coil via the insulating layer, which is disposed at a lower position than the lower coil, to the outer region.

Aspect 14

(198) The semiconductor device according to Aspect 12 or 13, wherein the high voltage pad is disposed above a central portion of the upper coil, and high voltage wiring which penetrates the insulating layer upward in the thickness direction from an inner coil end of the upper coil and is connected with the high voltage pad is further provided.

Aspect 15

(199) The semiconductor device according to any one of Aspects 12 to 14, wherein the electric conductor includes a shield layer, which is formed at a side further outside than the low voltage wiring so as to surround the high voltage region and penetrate the plurality of insulating layers downward in the thickness direction.

Aspect 16

(200) The semiconductor device according to any one of Aspects 1 to 15, wherein a distance L0 between the high voltage coil and the electric conductor is larger than a thickness L2 of the insulating layers between the high voltage coil and the low voltage coil.

Aspect 17

(201) The semiconductor device according to Aspect 16, wherein the ratio of the distance L0 to the thickness L2 (distance L0/thickness L2) is 6/1 to 40/1.

Aspect 18

(202) The semiconductor device according to Aspect 16 or 17, wherein the thickness L2 is 12.0 μ m to 16.8 μ m, and the distance L0 is 100 μ m to 450 μ m. Aspect 19

- (203) A semiconductor module including a semiconductor device according to any one of Aspects 1 to 18, a low voltage element which is electrically connected with the low voltage coil of the semiconductor device, a high voltage element which is electrically connected with the high voltage coil of the semiconductor device, and a resin package arranged to collectively seal the semiconductor device, the low voltage element and the high voltage element.
- (204) With such a structure provided with a semiconductor device according to any one of Aspects 1 to 18, it is possible to realize a highly reliable transformer module in which dielectric breakdown hardly occurs.
- (205) As described above, the above embodiments of the present invention, Reference Example 1 and Reference Example 2 have a common subject to prevent dielectric breakdown between a high voltage region and a low voltage region which are disposed at an interval in a direction (horizontal direction) along the surface of the insulating layer. The forms achieve the subject respectively by providing structures A to C arranged to prevent breakdown between a high voltage region and a low voltage region.
- (206) One embodiment of the present invention discloses a capacitor **80** as an example of structure A: an electric field shield portion (the electric field shield is preferably a capacitor composed of a plurality of electrode plates which face each other at intervals in a horizontal direction) constituted of an electrically floated metal member. Reference Example 1 discloses an insulating layer **28** constituted of an SiO.sub.x (0<x<2) film having an Si ratio higher than SiO.sub.2 or an SiN film having compressive stress as an example of structure B: a compressive stress film which is provided in contact with a high voltage region and has compressive stress as internal stress. Reference Example 2 discloses a homogeneous interface structure **112** constituted of SiO.sub.2/SiO.sub.2 as an example of structure C: a homogeneous interface structure which is formed by contact of insulating layers made of the same insulating material. (207) The structures A to C may be respectively employed alone or may be combined with each other in order to achieve further high voltage resistance. For example, all of the structures A to C
- other in order to achieve further high voltage resistance. For example, all of the structures A to C may be provided between the high voltage region and the low voltage region, or a combination of the structure A and B, a combination of the structures A and C, or a combination of the structures A and C may be provided. As an example of a combination of the structures A and B, an etching stopper film 29 (compressive stress film) having compressive stress can be employed selectively for an insulating layer 28 where the upper coil 21 is embedded and an insulating layer 28 right above said insulating layer 28 in FIG. 6. Moreover, as an example of a combination of the structures A and C, a homogeneous interface structure 112 can be provided between the capacitor 80 and the high voltage region 36 or between the outer low voltage region 47 and the capacitor 80 in FIG. 6.
- (208) Moreover, components to be understood from disclosure in each of the above figures can be combined with components of another figure.

Claims

1. A semiconductor device comprising: a first lead frame; a first semiconductor chip bonded to the first lead frame; and an inductor chip electrically connected to the first semiconductor chip, wherein the inductor chip comprises: a substrate; a first insulating material disposed over the substrate in a sectional view; a lower side inductor wiring disposed within the first insulating material; an upper side inductor wiring disposed over the lower side inductor wiring in a sectional view; a conductor pattern disposed outside of the lower side inductor wiring and the upper side inductor wiring in a plan view, the conductor pattern being not in direct contact with the substrate

and being electrically isolated from the substrate by the first insulating material; and a first electrode pad disposed outside of the conductor pattern in a plan view and electrically connected to the lower side inductor wiring, a contact portion disposed such that the lower side inductor wiring is disposed between the contact portion and the first electrode pad in a plan view and electrically connected to the lower side inductor wiring.

- 2. The semiconductor device according to claim 1, wherein the conductor pattern is disposed closer to the first electrode pad than the lower side inductor wiring in a plan view.
- 3. The semiconductor device according to claim 1, wherein the conductor pattern is disposed closer to the first electrode pad than the upper side inductor wiring in a plan view.
- 4. The semiconductor device according to claim 1, wherein the conductor pattern has an annular shape surrounding the lower side inductor wiring and the upper side inductor wiring in a plan view.
- 5. The semiconductor device according to claim 1, further comprising a second insulating material disposed over the first insulating material in a sectional view, wherein the upper side inductor wiring and the conductor pattern are disposed within the second insulating material.
- 6. The semiconductor device according to claim 1, wherein the lower side inductor wiring is disposed between the contact portion and the conductor pattern in a plan view.
- 7. The semiconductor device according to claim 1, wherein the lower side inductor wiring includes first metal wirings disposed relative to each other with even pitches, and the upper side inductor wiring includes second metal wirings disposed relative to each other with even pitches.
- 8. The semiconductor device according to claim 7, wherein a distance between adjacent first metal wirings is less than a distance between the conductor pattern and an outermost wiring of the first metal wirings, and a distance between adjacent second metal wirings is less than a distance between the conductor pattern and an outermost wiring of the second metal wirings.
- 9. The semiconductor device according to claim 1, wherein the conductor pattern is an electrically floated metal member, and the conductor pattern is disposed at an intermediate region between a low voltage region including the lower side inductor wiring, the first electrode pad and the contact portion, and a high voltage region including the upper side inductor wiring.
- 10. The semiconductor device according to claim 1, wherein the first electrode pad is capable of applying an electric potential to the lower side inductor wiring through the contact portion.
- 11. The semiconductor device according to claim 1, further comprising: a second lead frame; and a second semiconductor chip bonded to the second lead frame and electrically connected to the inductor chip.