

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 (3.1) МАШИННОЕ ОБУЧЕНИЕ

Студент	ИУ8-92	Лагов С. П.	
•	(Группа)	(И.О.Фамилия)	
Преподаватель:		Коннова Н.С.	
		(И.О. Фамилия)	

Цель работы:

Познакомиться с основными приемами работы с моделями классификации в scikit-learn.

Ход работы:

1. Загрузите встроенный датасет о диагностике сахарного диабета.

2. Постройте модель классификации для предсказания наличия заболевания. Оцените качество построенной модели с помощью отчета о классификации и матрицы классификации. Доп. задание - Напишите функцию, которая автоматически обучает все перечисленные модели и для каждой выдает оценку точности.

```
def predict(model, x_train, y_train, x_test, y_test, method, show_coeffs=False):
    model.fit(x_train, y_train)
    if show_coeffs:
        print("Coefficients: \n", model.coef_)
        _ = [print(k, v) for k, v in zip(x_train.columns, model.coef_[0])]
        print("Intercept: \n", model.intercept_)

        y_pred = model.predict(x_test)

    score = metrics.accuracy_score(y_test, y_pred)
    print(f"Score: {score}")

    print(f'Confusion Matrix:\n{confusion_matrix(y_test, y_pred)}')
    print(f'Classification Report:\n{classification_report(y_test, y_pred)}')

    global accuracies
    accuracies[method] = score
```

```
table = PrettyTable()
table.field_names = ["Method", "Precision"] # метод / оценка точности
for method in accuracies.keys():
    table.add_row([method, round(accuracies[method],8)])
print(table)
```

```
y = data.Outcome
   X = data.drop(["Outcome"], axis=1)
   y.shape, X.shape
((768,), (768, 8))
   x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=104, test_size=0.25, shuffle=True)
   predict(LogisticRegression(), \cdot x\_train, \cdot y\_train, \cdot x\_test, \cdot y\_test, \cdot "Logistic \cdot Regression", \cdot show\_coeffs=False)
Score: 0.78645833333333334
Confusion Matrix:
Classification Report:
              precision recall f1-score support
           0
                  0.82
                            0.88
                                      0.85
                                                   128
                   0.71
                             0.61
                                       0.66
                                        0.79
   accuracy
                   0.76
                              0.74
                                        0.75
                                                    192
   macro avg
                             0.79
weighted avg
                   0.78
                                        0.78
                                                    192
```

4. Постройте альтернативную полиномиальную модель, сравните ее с предыдущей.

```
poly = PolynomialFeatures(2)
   x_poly_train = poly.fit_transform(x_train)
  x_poly_test = poly.fit_transform(x_test)
  predict(LogisticRegression(), x_poly_train, y_train, x_poly_test, y_test, "Polynomial Regression", show_coeffs=False)
Score: 0.69270833333333334
Confusion Matrix:
[[100 28]
[ 31 33]]
Classification Report:
                       recall f1-score support
            precision
                 0.76
                         0.78
                                    0.77
                 0.54 0.52
                                    0.53
                                               64
                                    0.69
                                               192
   accuracy
                 0.65
0.69
                           0.65
                                    0.65
                                               192
  macro avo
 ighted avg
                           0.69
                                    0.69
                                               192
```

Вывод: полиномиальная модель более точно предсказывает значения, чем линейная, это видно по значением параметра score.

5. Попробуйте применить к той же задаче другие модели регрессии. Для каждой из них выведите матрицу классификации и оценку точности.

Использовались следующие модели:

- 1. SVM (Метод опорных векторов) (RBF Radial Basis Function)
- 2. SVM (Метод опорных векторов) (linear)
- 3. SVM (Метод опорных векторов) (poly)
- 4. Метод ближайших соседей
- 5. Дерево решений
- 6. Случайный лес
- 7. Многослойный перцерптрон

```
Score: 0.80208333333333334
Classification Report:
                          recall f1-score support
             precision
                  0.83
                            0.88
                                      0.86
                            0.64
                                      0.68
                                                  64
                                      0.80
   accuracy
                  0.78
                            0.76
  macro avg
                                      0.77
weighted avg
                  0.80
                            0.80
                                      0.80
```

```
Score: 0.7760416666666666
Confusion Matrix:
[[117 11]
[ 32 32]]
Classification Report:
              precision
                                               support
                              0.91
                                        0.84
                                                    128
                    0.74
                              0.50
                                        0.60
                                        0.78
    accuracy
                              0.71
                    0.76
   macro avg
                                        0.72
weighted avg
                    0.77
                              0.78
                                        0.76
```

```
predict(KNeighborsClassifier(), \cdot x\_train, \cdot y\_train, \cdot x\_test, \cdot y\_test, \cdot "KNeighborsClassifier", \cdot show\_coeffs=False)
Score: 0.72395833333333334
Confusion Matrix:
[[103 25]
Classification Report:
               precision
                              recall f1-score
                                                   support
                     0.79
                                0.80
                                            0.80
                     0.59
                                0.56
                                           0.58
                                                         64
                                           0.72
                                                        192
    accuracy
   macro avg
                     0.69
                                0.68
                                           0.69
                    0.72
                                                        192
weighted avg
                                0.72
                                           0.72
```

```
predict(DecisionTreeClassifier(), x_train, y_train, x_test, y_test, "Decision Tree", show_coeffs=False)
Confusion Matrix:
[[95 33]
[31 33]]
Classification Report:
          precision recall f1-score support
             0.75 0.74 0.75
                                        128
              0.50
                     0.52
                              0.51
                               0.67
   accuracy
               0.63
                       0.63
                               0.63
  macro avg
            0.67
weighted avg
                       0.67
                               0.67
                                        192
```

```
predict(RandomForestClassifier(), \cdot x\_train, \cdot y\_train, \cdot x\_test, \cdot y\_test, \cdot "Random \cdot Forest", \cdot show\_coeffs=False)
Score: 0.7447916666666666
Confusion Matrix:
[[104 24]
[ 25 39]]
Classification Report:
             precision recall f1-score support
                           0.81
                0.81
                                      0.81
                                                   128
                            0.61
                 0.62
                                      0.61
                                        0.74
                                                   192
   accuracy
                   0.71
                             0.71
                                        0.71
  macro avg
weighted avg
                   0.74
                              0.74
                                        0.74
```

```
predict(MLPClassifier(), x_train, y_train, x_test, y_test, "MLP (Многослойный перцерптрон)", show_coeffs=False)
Score: 0.72395833333333334
Confusion Matrix:
[[109 19]
[ 34 30]]
Classification Report:
            precision recall f1-score support
                 0.76
                         0.85
                                    0.80
                 0.61
                           0.47
                                    0.53
                                                64
                                     0.72
   accuracy
                  0.69
                            0.66
                                     0.67
  macro avg
weighted avg
                 0.71
                           0.72
                                     0.71
                                                192
```

Таблица со значениями коэффициента детерминации:

	Method 	Precision
	Logistic Regression	0.78645833
	Polynomial Regression	0.69270833
SVM (Метод	ц опорных векторов) (RBF — Radial Basis Function)	0.77604167
	SVM (Метод опорных векторов) (linear)	0.80208333
	SVM (Метод опорных векторов) (poly)	0.77604167
	KNeighborsClassifier	0.72395833
	Decision Tree	0.66666667
	Random Forest	0.74479167
	MLP (Многослойный перцерптрон)	0.72395833

Из всех моделей лучше всего себя показала модель по методу опорных векторов (linear)

Ответы на контрольные вопросы

1. <u>Чем отличается применение разных моделей классификации в</u> бибилиотеке sklearn ?

Ответ: в библиотеке представлены различные модели классификации, такие как логистическая регрессия, деревья решений и ансамблевые методы, каждая из которых имеет свои особенности и подходит для разных типов задач и данных. Выбор модели зависит от характера данных, производительности, поэтому лучше тестировать несколько моделей для нахождения наилучшего решения

- 2. Что показывает метрика точности регрессии? Ответ: метрика точности регрессии показывает, насколько предсказанные значения модели близки к реальным значениям целевой переменной. Она оценивает способность модели объяснять вариацию данных и минимизировать ошибку предсказания. В зависимости от используемой метрики (МSE, MAE, R^2) точность может выражаться в виде среднего отклонения, суммы квадратов ошибок или доли объяснённой дисперсии
- 3. Какое значение имеют коэффициенты логистической регрессии? Ответ: коэффициенты логистической регрессии отражают влияние каждого признака на вероятность отнесения объекта к определённому классу. Они показывают, насколько изменение значения признака на одну единицу изменяет логарифм шансов принадлежности к классу, при условии, что остальные признаки остаются неизменными. Положительный коэффициент увеличивает шансы, отрицательный уменьшает
- 4. <u>Что показывает матрица классификации?</u>

 Ответ: матрица классификации показывает, как модель

предсказывает классы для каждого наблюдения по сравнению с их истинными значениями. Она содержит информацию о количествах верных и неверных предсказаний для каждого класса. Это позволяет оценить качество модели, выявить смещения и анализировать, какие классы модель путает между собой

- 5. Какие параметры имеет конструктор объекта логистической регрессии? penalty, Ответ: основные который определяет регуляризации (L1, L2, ElasticNet или None), и C, который настраивает регуляризации. Также присутствует параметр solver, определяющий метод оптимизации (например, 'liblinear', 'lbfgs', 'newton-cg'). Параметр max iter задаёт максимальное количество итераций для сходимости алгоритма, а random state обеспечивает воспроизводимость результатов. Дополнительно можно настроить параметры fit intercept, чтобы определять, учитывать ли константу в модели, и class weight, чтобы учесть дисбаланс классов
- 6. Какие атрибуты имеет объект логистической регрессии? Ответ: coef_ содержит коэффициенты модели для каждого признака после обучения. intercept_ представляет свободный член (смещение) модели. Атрибут classes_ содержит список классов, которые модель может предсказывать. n_iter_ показывает количество итераций, выполненных алгоритмом для достижения сходимости. Также может присутствовать score
- 7. <u>Какие параметры и атрибуты имеют объекты других моделей машинного обучения библиотеки sklearn ?</u>

Ответ: основные параметры включают гиперпараметры обучения, такие как регуляризация (C, penalty), метод оптимизации (solver), количество итераций (max_iter) и вес классов (class_weight). Атрибуты включают обученные коэффициенты (coef_), смещение (intercept_), список классов (classes_) и количество итераций (n_iter_)