CSC373 Algorithm Design, Analysis and Complexity

⊚ Tingfeng Xia

Fall 2019, modified on November 5, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Contents

1	6.04	inear Programming: LP, Reductions, Simplex		
	1.1	Example: Politics, example of optimization		
	1.2	Standard From for LP		
	1.3	Certificate of Optimality		
	1.4	LP Duality		
	1.5	Converting to Standard Form		
		1.5.1 Case 1: Minimize Goal		
		1.5.2 Case 2: Missing Non-negative Constraint		
		1.5.3 Case 3: Equlity Constraint		
		1.5.4 Case 4: GEQ Constraint		
	1.6	Max-Flow using LP		
	1.7	Shortest Path using LP		
	1.8	Simplex Algorithm		
		1.8.1 Work Flow		
		1.8.2 Time Complexity		
		1.8.3 Procedure Example		

1 6.046J Linear Programming: LP, Reductions, Simplex

1.1 Example: Politics, example of optimization

- Goal: You want to buy elections and you want to minimize the total amount of money spent.
- How to campaign to win an election? Manager estimates votes obtained per dollar spent.

	Policy	Urban	Suburban	Rural
x_1	Build Roads	-2	5	3
x_2	Gun Control	8	2	-5
x_3	Farm Subsidies	0	0	10
x_4	Gasoline Tax	10	0	2

• Want a mojority for each demographic.

Polulation	100,000	200,000	50,000
Majority	50,000	100,000	25,000

- Want to win by spending the minimum amount of money.
- Algebraic Setup: Let x_1, x_2, x_3, x_4 denote the dollar spent per issue.

$$\begin{cases} \text{minimize} & x_1 + x_2 + x_3 + x_4 \\ \text{subject to} & (1) & -2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50000 \\ & (2) & 5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100000 \\ & (3) & 3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25000 \\ & (4) & x_1, x_2, x_3, x_4 \in \mathbb{R}^{\ge 0} \end{cases}$$

Notice that constraint (4) above denotes there is no negative advertisation.

• The optimal solution is

$$\begin{cases} x_1 = 2050000/111 \\ x_2 = 425000/111 \\ x_3 = 0 \\ x_4 = 625000/111 \end{cases}$$

and the objective optimized has value $\frac{3100000}{111}$

1.2 Standard From for LP

- Minimize or Maximize¹ linear objective function, subject to linear ineqalities or equations
- Variables $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$, and the objective function is $\mathbf{c} \cdot \mathbf{x} = c_1 x_1 + \dots + c_n x_n$ and the inegalities $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}^2$ and $\mathbf{x} \geq \mathbf{0}^3$

1.3 Certificate of Optimality

Is there a short certificate? ⁴ Consider

$$25/222(1) + 46/222(2) + 14/222(3)$$

, where we can plug in the equations and simplify to

$$x_1 + x_2 + 140/222x_3 + x_4 \ge 3100000/111$$

But notice that

$$3100000/111 \le x_1 + x_2 + 140/222x_3 + x_4 \le x_1 + x_2 + x_3 + x_4$$

so the solution must be optimal!

1.4 LP Duality

What is this? This is essentially saying that what we did above was no coincidence, and we can always to this for a linear program.

Theorem For all standard form of LP (called a primal form) there exists a dual form that is equivalent to the primal. Specifically

$$\left. \begin{array}{ll} \text{maximize} & \mathbf{c} \cdot \mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array} \right\} \quad \equiv \quad \left\{ \begin{array}{ll} \text{minimize} & \mathbf{b} \cdot \mathbf{y} \\ \text{subject to} & A^T \mathbf{y} \geq \mathbf{c} \\ & \mathbf{y} \geq \mathbf{0} \end{array} \right.$$

1.5 Converting to Standard Form

1.5.1 Case 1: Minimize Goal

Suppose that I want to minimize $-2x_1+3x_2$, then I can just convert the problem into maximizing the negative of the equation. This case should be easy.

¹In the standard form, we consider the maximization problem

 $^{^2 {\}rm In}$ general, this could have been $\leq,\geq,=$ but for the standard form, we consider \leq

 $^{^3\}mathrm{Meaning}$ that each of the slots in the vector should be greater than zero.

⁴For the problem of Politics described above, notice that this is not a general certificate, it only works in this specific case.

1.5.2 Case 2: Missing Non-negative Constraint

Suppose x_j doesn't have a non-negative constraint. In this case, we will replace x_j with $x'_j - x''_j$ such that $x'_j \ge 0 \land x''_j \ge 0$.

1.5.3 Case 3: Equlity Constraint

Suppose the constriant was $x_1 + x_2 = 7$, then we can break it into $x_1 + x_2 \le y \land -x_1 - x_2 \le -7.5$

1.5.4 Case 4: GEQ Constraint

We have done this above, translate this into a less than or equal tot problem by multiplying (-1) on both sides (which will flip the inequality sign).

1.6 Max-Flow using LP

Consider some network N:=G=(V,E), and denote the flow in the network to be f. the function $c(\cdot)$ returns the capacity for an edge. The problems then breaks into

$$\begin{cases} \text{maximize} & \sum_{v \in V} f(s, v) = |f| \\ \text{subject to} & f(u, v) = -f(v, u) \ \, \forall u, v \in V \\ & \sum_{v \in V} f(u, v) = 0 \ \, \forall u \in V \setminus \{s, t\} \\ & f(u, v) \leq c(u, v) \ \, \forall u, v \in V \end{cases}$$

where we notice that the above problem is entirely linear and thus could be solved using a linear programming algorithm.

Time Complexity This generalization uisng LP is much slower than the network flow algorithms (Ford-Fulkerson, Edmonds-Karp, et cetra) in **single commodity network flow**.

Multi-Commodity Flow Consider the case where there are two commodities flowing in the network (f_1, c_1, f_2, c_2) . In the case where c_1 is independent from c_2 , it is not very interesting, we can just run the network flow algorithm twice to find two maximizers seperately. In the case where there is a single capacity constraint c^6 , the problem ceases to be a simple network flow problem. However, it is still easy to come up with a LP formulation that describes the maximization.

⁵Notice that we did this in this specific way becasue we want to have this in out standard form where the constraint was a \leq . The second constraint here, if we multiply it by -1 on both sides, is equivalent to saying $x_1 + x_2 \geq 7$

 $^{^6}$ A toy example to give would be given a certain road where some cars are running on the road and the road have a total capacity for all types of cars combined

1.7 Shortest Path using LP

- d[v] represents the shortest path from the source to v^7
- w(u, v) means the single edge (u, v)'s weight
- The shortest path to some vertex v which is a descendent of u is at least shorter than or equal to the existing path that goes from source to u plus the edge (u, v)
- The shortest path from source to source is zero
- Recall the △-inequality here

This yields the formulation

```
\begin{cases} \text{maximize} & d[v] \\ \text{subject to} & d[v] - d[u] \le w(u, v) \quad \forall (u, v) \in E \\ & d[s] = 0 \\ & d[v] - d[u_1] \le w(u_1, v) \\ & d[v] - d[u_2] \le w(u_2, v) \\ & d[v] = \min(\dots, \dots) \end{cases}
```

Notice that although we are trying to minimize the distance from source to the node v, we have to put this as a maximization problem because otherwise the trivial solution of 0 will work! Our formulation didn't capture the insight "We DO want a path".

Key Insight of MAX The above formulation already captured the minimization problem with the min in the last constraint and hence we want to push up as hard as we can in finding a solution. (We are ANDing together all the constraints and have chosen the one that is the smallest)

1.8 Simplex Algorithm

1.8.1 Work Flow

- 1. Represent LP in slack form
- 2. Convert one slack form into an equivalent whose objective value has not decreased and has likely increased (no gurantee of increase)
- 3. Keep going until the optimal solution becomes obvious

⁷It might be helpful to recall that in the Dijkstra's Algorithm $d[v] \leftarrow \infty$ initially and then it was decremented through out the algorithm until the minimum was reached.

1.8.2 Time Complexity

This is, unfortunately, an exponential iterative algorithm. Denote the number of constraints using m and n as the number of variables then the algorithm has worst case time complexity

$$T(m,n) \in \mathcal{O}\left(\binom{m+n}{n}\right)$$

1.8.3 Procedure Example

Consider the problem

$$\begin{cases} \text{maximize} & 3x_1 + x_2 + x_3 \\ \text{subject to} & x_1 + x_2 + x_3 \le 30 \\ & 2x_1 + 2x_2 + 5x_3 \le 24 \\ & 4x_1 + x_2 + 2x_3 \le 36 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

The Slack From ⁸ The original variables $(x_1, x_2, x_3 \text{ here})$ will be called non-basic variables and we will here introduce three *basic* variables x_4, x_5 and x_6 . The original problem will then be

$$\begin{cases} z = 3x_1 + x_2 + x_3 \\ x_4 = 30 - x_1 - x_2 - x_3 \\ x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 = 36 - 4x_1 - x_2 - 2x_3 \end{cases} (I)$$

It is worth mentioning that now the non-negativity constriant becomes $\mathbb{R}^6 \ni \mathbf{x} \geq \mathbf{0}$, we have "added" three more new variables that are also non-negative.

Basic Solution Set all the non-basic variables to zero, and then compute the values of the basic variables. The objective function will be z = 3(0) + 1(0) + 1(0) = 0. This is a trivial starting point and we can think of this solution as $\mathbb{R}^6 \ni \mathbf{x} = (0, 0, 0, 30, 24, 30)$

Pivoting

- ullet Select a non-basic variable x_e whose coefficient in the objective function is positive
- Increment the value of x_e as much as possible without violating any of the constraints.

⁸Here the word 'slack' means how much room is still left

 $^{^9{}m This}$ amount will be equal to the number of constraints that the original problem have

 $^{^{10}}$ This was quoted because we didn't actually introduce any new constraints! In fact, they are pair-wise equivalent to the original ones.

• Varaible x_e becomes basic, some other variable becomes non-basic. (Value of the other basic variable and the objective function may change.)

Running the Procedure

- Suppose we selected the non-basic variable $x_e = x_1$ and we want to increase the value of x_1 .
- The third constraint is the tighest one in (I). Rearrange the terms we have

$$x_1 = 9 - x_2/4 - x_3/2 - x_6/4 \tag{1}$$

• Then we will rewrite the other equations with x_6 on the RHS. i.e. replace all occurrences of x_1 with (1) above. **Important:** What has happened is that x_1 and x_6 has exchanged their roles. x_1 was non-basic and will now become basic and is the reverse for x_6 . The following is the re-written result:

$$\begin{cases} z = 27 + x_2/4 + x_3/2 - 3x_6/4 \\ x_1 = 9 - x_2/4 - x_3/2 - x_6/4 \\ x_4 = 21 - 3x_2/4 - 5x_3/2 + x_6/4 \\ x_5 = 6 - 3x_2/2 - 4x_3 + x_1/2 \end{cases} (II)$$

Point of the above operation: Recall the original basic solution was (0, 0, 0, 30, 24, 36), which certainly satisfies (II) above and have objective value

$$27 + \frac{1}{4}(0) + \frac{1}{2}(0) - \frac{3}{4}(36) = 0$$

For the basic solution for (II), we set the non-basic values to zero which will yield the solution $(9,0,0,21,6,0)^{11}$. The objective value is now $3x_1 +$ $x_2 + x_3 = 9 \times 3 = 27.12$

• Repeat the above procesure. In this case, 2 more iterations is required. We will know it is the time to stop when the objective function is some constant followed by negative copies of non-basic variables (which are non-negative) in which case the objective function cannot be increased anymore. We call this the convergence of the Simplex Algorithm.

¹¹The solution was computed by setting variables on the RHS of the equations (which are the non-basic vars now) to zero in (II) $^{12}{\rm The}$ original objective function was used here

2 6.006 Complexity: P, NP, NP-Completeness, Reductions