Let A be a set. A *permutation* of A is a function $f: A \rightarrow A$ which is both 1-1 and onto.

Note. For every permutation f we have the inverse function f^{-1} such that $f \circ f^{-1}(x) = x$ and $f^{-1} \circ f(x) = x$ for all $x \in A$.

Definition 7.2

Let A be a set. The *permutation group* of A is a group S(A) defined as follows:

- Elements of S(A): permutations $f: A \to A$.
- **Group operation:** composition of functions $g \circ f$.
- The identity element: the function $\varepsilon \colon A \to A$, $\varepsilon(x) = x$ for all $x \in A$.
- The inverse of f: the inverse permutation f^{-1} .

For $n \ge 1$ the group S_n is the group of permutations of the set $A = \{1, 2, ..., n\}$. This group is called the *symmetric group on n letters*.

Matrix notation of permutations:

$$\alpha = \left[\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{array} \right]$$

Composition:

$$\beta \circ \alpha = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{bmatrix}$$

Theorem 7.4

For any $n \ge 1$ we have $|S_n| = n!$

Dihedral groups and permutation groups

Let P_n be a regular polygon with n vertices. Label the vertices with numbers $1, 2, \ldots, n$. Since every symmetry of P_n send vertices to vertices, it defines a certain permutation of vertices:

$$D = \left[\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right]$$

Since composition of symmetries corresponds to composition of permutations of vertices, we can identify the dihedral group D_n with a subgroup of the group of permutations S_n . Note that not every permutation in S_n comes from a symmetry of P_n . E.g.:

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{bmatrix}$$

$$2 \qquad 1 \qquad 2 \qquad 1$$

$$3 \qquad 4 \qquad 3$$

Note. The groups S_n are non-abelian for n > 2, e.g.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$

Let $\alpha \in S_n$ and let $i \in \{1, ..., n\}$. We will say that α moves i if $\alpha(i) \neq i$. If $\alpha(i) = i$ we will say that α fixes i.

Example. The permutation

$$\left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{array}\right]$$

moves 1, 2 and 4, and fixes 3.

Definition 7.6

We will say that permutations $\alpha, \beta \in S_n$ are *disjoint* if there is no $i \in \{1, ..., n\}$. which is moved by both α and β .

Example.

 1
 2
 3
 4
 5

 1
 4
 3
 5
 2

Theorem 7.7

If $\alpha, \beta \in S_n$ are disjoint permutations then

$$\alpha \circ \beta = \beta \circ \alpha$$

Moreover,

$$\alpha \circ \beta(i) = \begin{cases} \alpha(i) & \text{if } i \text{ is moved by } \alpha \\ \beta(i) & \text{if } i \text{ is moved by } \beta \\ i & \text{otherwise} \end{cases}$$

Proof. Assume that $i \in \{1, ..., n\}$ is an element moved by α . Then α also moves $\alpha(i)$. It follows that both i and $\alpha(i)$ are fixed by β , so we have

$$\beta \circ \alpha(i) = \alpha(i) = \alpha \circ \beta(i)$$

By the same argument, if i is moved by β then

$$\alpha \circ \beta(i) = \beta(i) = \beta \circ \alpha(i)$$

Finally, it both α and β fix i then

$$\alpha \circ \beta(i) = i = \beta \circ \alpha(i)$$

Definition 7.8

A permutation $\alpha \in S_n$ is a *cycle of length r* (or *r-cycle*) if there are distinct elements $i_1, i_2, \ldots i_r \in \{1, 2, \ldots, n\}$ such that

$$\alpha(i_1) = i_2, \quad \alpha(i_2) = i_3, \quad \dots \quad \alpha(i_{r-1}) = i_r, \quad \alpha(i_r) = i_1$$

and α fixes all other elements of $\{1, \ldots, n\}$.

Example.

$$\alpha = \left[\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 6 & 4 & 1 & 5 \end{array} \right]$$

Cycle notation. A permutation α such that

$$\alpha(i_1) = i_2, \quad \alpha(i_2) = i_3, \quad \dots \quad \alpha(i_{r-1}) = i_r, \quad \alpha(i_r) = i_1$$

and which fixes all other elements is denoted by (i_1, i_2, \ldots, i_r) .

Example.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 6 & 4 & 1 & 5 \end{bmatrix} = (1, 3, 5, 6) = (3, 5, 6, 1) = (5, 6, 1, 3) = (6, 1, 3, 5)$$

Theorem 7.9

Every permutation in S_n is either a cycle or a product of disjoint cycles.

Example.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 2 & 1 & 5 & 7 & 4 \end{bmatrix} = (1, 3, 6, 5) \circ (2, 8, 4) \circ (7) = (1, 3, 6, 5) \circ (2, 8, 4)$$

Lemma 7.10

Let $\alpha \in S_n$, and let $i_0 \in \{1, ..., n\}$ be an element moved by α . Then:

- 1) There exists r > 1 such that $\alpha^r(i_0) = i_0$
- 2) If r > 1 is the smallest integer satisfying $\alpha^r(i_0) = i_0$ then all elements

$$i_0, \alpha(i_0), \alpha^2(i_0), \ldots, \alpha^{r-1}(i_0)$$

are distinct.

Proof. Consider the sequence

$$i_0 = \alpha^0(i_0), \ \alpha^1(i_0), \ \alpha^2(i_0), \ \dots$$

Since all elements of this sequence come from the finite set $\{1, \ldots, n\}$, there must an integer $r \geq 1$ such that the elements $i_0, \alpha(i_0), \alpha^2(i_0), \ldots, \alpha^{r-1}(i_0)$ are distinct and $\alpha^r(i_0)$ is equal to one of the previous elements. We will show that $\alpha^r(i_0) = i_0$. Indeed, otherwise $\alpha^r(i_0) = \alpha^k(i_0)$ for some $1 \leq k < r$. This gives

$$\alpha(\alpha^{r-1}(i_0)) = \alpha(\alpha^{k-1}(i_0))$$

and since α is a 1–1 function, we obtain

$$\alpha^{r-1}(i_0) = \alpha^{k-1}(i_0)$$

This contradicts the assumption that the elements i_0 , $\alpha(i_0)$, ..., $\alpha^{r-1}(i_0)$ are distinct.

Proof of Theorem 7.9. Let $\alpha \in S_n$. We will argue that α can be written as a product of cycles by induction with respect to the number k of elements of $\{1, \ldots, n\}$ moved by k. If k=0 then α fixes all elements, so it is the identity permutation, which is a 1-cycle.

Assume then that all permutations moving k or fewer elements can be written as a product of disjoint cycles and that α moves k+1 elements. Let $i_0 \in \{1, ..., n\}$ be an element moved by α . By Lemma 7.10 there is r > 1 such that the elements

$$i_0, \ \alpha(i_0), \ \alpha^2(i_0), \ldots, \alpha^{r-1}(i_0)$$

are all distinct and $\alpha^r(i_0) = i_0$. Denote for $k = 1, \ldots, r-1$ denote $i_k = \alpha^k(i_0)$. Notice that $\alpha(i_k) = i_{k+1}$ for k < r-1 and $\alpha(i_{r-1}) = i_0$. Let $\beta \in S_n$ be a permutation defined as follows:

$$\beta(i) = \begin{cases} i & \text{if } i \in \{i_0, \dots, i_{r-1}\} \\ \alpha(i) & \text{otherwise} \end{cases}$$

Notice that the cycle $(i_0, i_1, \ldots, i_{r-1})$ and β are disjoint permutations. Thus, we can use Theorem 7.7 to show that $\alpha = (i_0, i_1, \ldots, i_{r-1}) \circ \beta$. Then, since β moves fewer elements than α , by the inductive assumption we can write β as a product of disjoint cycles:

$$\beta = \gamma_1 \circ \cdots \circ \gamma_m$$

Therefore we obtain a decomposition of α into a product of disjoint cycles:

$$\alpha = (i_0, i_1, \ldots, i_{r-1}) \circ \gamma_1 \circ \cdots \circ \gamma_m$$

Recall:

- The *least common multiple* of integers $n_1, n_2, \ldots, n_k \ge 1$ is the smallest positive integer, denoted by $lcm(n_1, \ldots, n_k)$, which is divisible by each of these numbers.
- If m > 0 is an integer divisible by n_1, \ldots, n_k then m is divisible by $lcm(n_1, \ldots, n_k)$.

7-7

Theorem 7.11

Assume that a permutation $\alpha \in S_n$ has a decomposition into disjoint cycles

$$\alpha = \gamma_1 \circ \cdots \circ \gamma_m$$

where γ_i is a cycle of length $r_i > 1$. Then the order of α is given by

$$|\alpha| = \operatorname{lcm}(r_1, r_2, \dots, r_m)$$

Proof. First, notice that if y is an r-cycle then |y| = r. Let

$$\alpha = \gamma_1 \circ \cdots \circ \gamma_m$$

where γ_i is an r_i -cycle, and let $p = \text{lcm}(r_1, \dots, r_m)$. By Theorem 7.7 disjoint cycles commute, so

$$\alpha^p = (\gamma_1 \circ \cdots \circ \gamma_m)^p = \gamma_1^p \circ \cdots \circ \gamma_m^p = \varepsilon$$

where ε is the identity permutation. By Theorem 4.3 we obtain that $|\alpha|$ divides p.

Next, we claim that $\gamma_i^{|\alpha|} = \varepsilon$ for each i. Indeed, since the cycles are disjoint, elements moved by $\gamma_i^{|\alpha|}$ are fixed by $\gamma_j^{|\alpha|}$ for all $j \neq i$, so if $\gamma_i^{|\alpha|}$ moves some element, then the same element is moved by $\gamma_1^{|\alpha|} \circ \cdots \circ \gamma_m^{|\alpha|}$. This however cannot happen because

$$\gamma_1^{|\alpha|} \circ \cdots \circ \gamma_m^{|\alpha|} = (\gamma_1 \circ \cdots \circ \gamma_m)^{|\alpha|} = \alpha^{|\alpha|} = \varepsilon$$

In this way we obtained that r_i divides $|\alpha|$ for $i=1,\ldots,m$, and so p divides $|\alpha|$. Therefore $|\alpha|=p$.

Exercise. Compute the order of the following permutation in S_8 :

Exercise. Find all possible orders of elements of S_5 .

Exercise. Compute the number of permutations of order 10 in S_8

Exercise. Consider the following permutation in S_8 :

Compute α^{-1} .

A transposition in S_n is a cycle (i_1, i_2) of length 2.

Theorem 7.13

Every premutation in S_n can be written as a product of transpositions.

Proof. By Theorem 7.9 every permutation is product of cycles, so it is enough to show that every cycle can be written as a product of transpositions. This is true, since if (i_1, i_2, \ldots, i_r) is a cycle in S_n then

$$(i_1, i_2, \ldots, i_r) = (i_1, i_r) \circ (i_1, i_{r-1}) \circ \cdots \circ (i_1, i_2)$$

Note. A permutation can be written as a product of cycles in many different ways:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{bmatrix} =$$

$$= (1,3) \circ (1,2)$$

$$= (2,3) \circ (1,3)$$

$$= (1,3) \circ (4,2) \circ (1,2) \circ (1,4)$$

$$= (2,4) \circ (1,2) \circ (2,3) \circ (1,4)$$

Theorem 7.14

Let $\alpha \in S_n$ and let

$$\alpha = \beta_1 \circ \beta_2 \circ \cdots \circ \beta_r$$

be a decomposition of α into a product of transpositions.

- If the number r is even, then every other decomposition of α into transpositions consists of an even number of transpositions.
- \bullet If r is odd, then every other decomposition of α into transpositions consists of an even number of transpositions.

Lemma 7.15

Let β_1, \ldots, β_r be transpositions in S_n such that

$$\beta_1 \circ \beta_2 \circ \cdots \circ \beta_r = \varepsilon$$

where ε is the identity permutation. Then r is an even number.

Proof. We will prove by induction with respect to k the following statement:

For any $k \geq 2$, if $\beta_1 \circ \beta_2 \circ \cdots \circ \beta_r = \varepsilon$ and $r \leq k$ then r is an even number.

If k=2 this holds, since the only way to write ε as a product of 1 or 2 transpositions is $\beta \circ \beta^{-1}$, which uses 2 transpositions.

For the inductive step, assume then that the statement holds for some k. We need to show that it also holds for k+1. Let then β_1, \ldots, β_r be transpositions such that $r \leq k+1$ and

$$\beta_1 \circ \beta_2 \circ \cdots \circ \beta_r = \varepsilon \tag{*}$$

Assume that one of the transpositions β_i is of the form (a, b) for some $a, b \in \{1, ..., n\}$. One can check that the following identities hold:

- $\bullet (a,b) \circ (c,d) = (c,d) \circ (a,b)$
- $\bullet \ (a,b) \circ (b,c) = (b,c) \circ (a,c)$

Here a, b, c, d are distinct elements of the set $\{1, \ldots, n\}$. These identities say that when multiplying transpositions, we can move the transposition involving a toward the right side without changing the number of transpositions. Using this observation, we can rewrite the equation (*) as follows:

$$\gamma_1 \circ \cdots \circ \gamma_{r-k} \circ (a, b_1) \circ (a, b_2) \circ \ldots \circ (a, b_k) = \varepsilon$$
 (**)

where y_1, \ldots, y_{r-k} are transpositions that do not involve a. If $b_1 \neq b_i$ for $i = 2, \ldots k$, then the permutation given by the left hand side of the equation (**) would send b_1 to a, which is impossible. This means that there is i > 1 such that $b_1 \neq b_2, \ldots, b_{i-1}$ and $b_1 = b_i$. We will need one more identity:

• $(a, b) \circ (a, c) = (b, c) \circ (a, b)$ for distinct elements a, b, c.

Using this identity, we can bring the equation (**) to the following form:

$$\gamma_1 \circ \ldots \circ \gamma_{r-k} \circ (b_1, b_2) \circ \ldots \circ (b_1, b_{i-1}) \circ (a, b_1) \circ (a, b_i) \circ (a, b_{i+1}) \circ \ldots \circ (a, b_n) = \varepsilon$$

Since $b_1 = b_i$ we have $(a, b_1) \circ (a, b_i) = \varepsilon$, and the above equation becomes

$$\gamma_1 \circ \ldots \circ \gamma_{r-k} \circ (b_1, b_2) \circ \ldots \circ (b_1, b_{i-1}) \circ (a, b_{i+1}) \circ \ldots \circ (a, b_n) = \varepsilon$$

This expresses ε as a product of r-2 transpositions. Since $r \le k+1$, thus $r-2 \le k$, and so, by the inductive assumption, r-2 must be an even number. Therefore r is an even number as well.

Proof of Theorem 7.14. Assume that a permutation α can be written as a product of transpositions in two different ways:

$$\alpha = \beta_1 \circ \beta_2 \circ \cdots \circ \beta_r$$

$$\alpha = \gamma_1 \circ \gamma_2 \circ \cdots \circ \gamma_s$$

Then we have

$$\varepsilon = \alpha \circ \alpha^{-1}$$

$$= (\beta_1 \circ \beta_2 \circ \dots \circ \beta_r) \circ (\gamma_1 \circ \gamma_2 \circ \dots \circ \gamma_s)^{-1}$$

$$= (\beta_1 \circ \beta_2 \circ \dots \circ \beta_r) \circ (\gamma_s^{-1} \circ \gamma_{s-1}^{-1} \circ \dots \circ \gamma_1^{-1})$$

$$= (\beta_1 \circ \beta_2 \circ \dots \circ \beta_r) \circ (\gamma_s \circ \gamma_{s-1} \circ \dots \circ \gamma_1)$$

This means that ε is a product of r+s transpositions. Since by Lemma 7.15, r+s is an even number, thus either both r and s are even numbers or they are both odd. \square

Definition 7.16

A permutation $\alpha \in S_n$ is *even* if it can be written as a product of even number of transpositions and it is *odd* if it can be written as a product of an odd number of transpositions.

Theorem 7.17

The subset of S_n consisting of all even permutations is a subgroup of S_n .

Definition 7.18

The subgroup of S_n consisting of even permutations is called an *alternating group* on n letters and it is denoted by A_n

The sign of a permutation $\alpha \in S_n$ is defined as follows:

$$sign(\alpha) = \begin{cases} +1 & \text{if } \alpha \text{ is even} \\ -1 & \text{if } \alpha \text{ is odd} \end{cases}$$

Note. Recall that for a square matrix A we can compute its determinant $\det A$. The determinant can be defined using permutations and their signs as follows. For a matrix

$$A = \left[\begin{array}{ccc} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{array} \right]$$

we set

$$\det A = \sum_{\alpha \in S_n} \operatorname{sign}(\alpha) \cdot a_{1,\alpha(1)} \cdot a_{2,\alpha(2)} \cdot \ldots \cdot a_{n,\alpha(n)}$$