Теоремы по матану, семестр 4

9 июня 2018 г.

Содержание

1	Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия	6
2	Измеримость монотонной функции	7
3	Теорема Лебега о сходимости почти везде и сходимости по мере	8
4	Теорема Рисса о сходимости по мере и сходимости почти везде	9
5	Простейшие свойства интеграла Лебега 5.1 Для определения (5)	10 10 11
6	Счетная аддитивность интеграла (по множеству)	13
7	Теорема Леви	15
8	Линейность интеграла Лебега	16
9	Теорема об интегрировании плоложительных рядов	17
10	Теорема о произведении мер	18

11	Абсолютная непрерывность интеграла	19
	11.1 Следствие	20
12	Теорема Лебега о мажорированной сходимости для случая сходимости по мере.	20
13	Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.	22
14	Теорема Фату. Следствия.	23
	14.1 Следствие 1	
	14.2 Следствие 2	24
15	Теорема о вычислении интеграла по взвешенному образу	
	меры	24
	15.1 Лемма	24
	15.2 Следствие	
	15.3 Теорема	25
16	Критерий плотности	25
17	Лемма о единственности плотности	26
18	Лемма о множестве положительности	27
19	Теорема Радона—Никодима	28
20	Лемма об оценке мер образов кубов из окрестности точ- ки дифференцируемости	29
21	Лемма «Вариации на тему регулярности меры Лебега»	30
22	Теорема о преобразовании меры при диффеоморфизме	32
23	Теорема о гладкой замене переменной в интеграле Лебега	32

24	Теорема (принцип Кавальери)	33
25	Теорема Тонелли	35
26	Формула для Бета-функции	36
27	Объем шара в \mathbb{R}^m	37
28	Теорема о вложении пространств L^p	37
29	Теорема о сходимости в L_p и по мере	38
30	Полнота L^p	39
31	Лемма Урысона	40
32	Плотность в L^p непрерывных финитных функций	40
33	Теорема о непрерывности сдвига	40
34	Теорема об интеграле с функцией распределения	41
35	Теорема о свойствах сходимости в гильбертовом про- странстве	42
36	Теорема о коэффициентах разложения по ортогональной системе	43
37	Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя	43
38	Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля	44
39	Теорема о характеристике базиса $39.1 \ 1 \Rightarrow 2 \dots \dots$	45 45 46 46

	$39.4 \ 4 \Rightarrow 1 \dots \dots$	46
	$39.5 \ 4 \Rightarrow 5 \dots \dots$	
	$39.6 \ 5 \Rightarrow 4 \dots \dots$	46
40	Лемма о вычислении коэффициентов тригонометриче-	
	ского ряда	46
41	Теорема Римана-Лебега	47
42	Принцип локализации Римана. TODO	48
43	Признак Дини. Следствия. TODO.	48
44	Корректность свертки	48
45	Свойства свертки функции из L^p с фукнцией из L^q	49
46	Формула Грина	50
47	Формула Стокса	51
48	Формула Гаусса-Остроградского	52
49	Соленоидальность бездивергентного векторного поля. ТС	DO.
50	Предельный переход под знаком интеграла при наличии	
	равномерной сходимости или L_{loc}	53
	50.1 При равномерной сходимости	53
	50.2 При L_{loc}	54
51	Правило Лейбница дифференцирования интеграла по па-	_
	раметру	55
52	Теорема о свойствах аппроксимативной единицы. TODO	56
53	Теорема Фейера. TODO	56

54	Свойства преобразования Фурье: непрерывность, ограниченность, сдвиг. TODO	56
55	Преобразование Фурье свертки. TODO	56
56	Преобразование Фурье и дифференцирование. TODO	56
57	Лемма об оценке интеграла ядра Дирихле	56
58	Теорема об интегрировании ряда Фурье	57
59	Лемма о сходимости сумм Фурье в смысле обобщенных функций. TODO	59
60	Следствие о преоборазовании Фурье финитных функций. TODO	59
61	Лемма "о ядре Дирихле". Следствие. TODO	59
62	Теорема о равносходимости ряда Фурье и интеграла Фурье. TODO	59
63	Признак Дирихле-Жордана. TODO	59
64	Лемма к теореме о формуле обращения. TODO	59
65	Формула обращения преобразования Фурье. TODO	59
66	Свойства свертки. Deprecated	59
67	О локальной суммируемости. Deprecated	60

1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия

 (X, \mathbb{A}, μ) — пространство с мерой. f — измеримая функция на $X, \ \forall x \ f(x) \geq 0$. Тогда \exists ступенчатые функции f_n , такие что:

- 1. $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$.
- 2. $f_n(x)$ поточечно сходится к f(x).

Следствие 1:

 $f:X \to \overline{\mathbb{R}}$ измеримая. Тогда \exists ступенчатая $f_n: \forall x: lim f_n(x) = f(x)$ и $|f_n(x)| \leq |f(x)|$.

Доказательство:

- 1. Рассмотрим $f = f^+ f^-.f^+ = max(f,0), f^- = max(-f,0)$. Срезки измеримы: $E(f^+ < a) = E(f < a) \cap E(0 < a)$, при этом f и $g \equiv 0$ измеримы $(f^-$ измерима аналогично).
- 2. Срезки измеримы и неотрицательны, тогда по теореме существуют ступенчатые функции $f_n^+ \to f^+, f_n^- \to f^-$. Тогда и $f_n^+ f_n^-$ это ступенчатая функция, при этом по свойству пределов: $f_n^+ f_n^- \to f^+ f^- = f$. Неравенство с модулем верно при правильных эпсилоннеравенствах. Схрена ли

Следствие 2:

f,g — измеримые функции. Тогда fg — измеримая функция. При этом считаем, что $0\cdot\infty=0$.

Доказательство:

1. Рассмотрим $f_n \to f: |f_n| \le |f|, g_n \to g: |g_n| \le |g|$ из первого следствия. Тогда $f_n g_n \to f g$ и f g измерима по теореме об измеримости пределов и супремумов (произведение ступенчатых функций – ступенчатая функция, значит, измеримая)

Следствие 3:

f,g — измеримые функции. Тогда f+g — измеримая функция. При этом считаем, что $\forall x$ не может быть, что $f(x)=\pm\infty, g(x)=\mp\infty$ Доказательство:

Доказывается как следствие 2.

2 Измеримость монотонной функции

Пусть $E \subset R^m$ — измеримое по Лебегу, $E' \subset E$, $\lambda_m(E \setminus E') = 0$, $f: E \to \mathbb{R}$. Пусть сужение $f: E' \to R$ непрерывно. Тогда f измерима на E. Доказательство:

- 1. $E(f < a) = E'(f < a) \cup e(f < a), e := E \setminus E', \lambda_m(e) = 0.$
- 2. E'(f < a) открыто в E', так как f непрерывна. Поэтому $E' = G \cap F'$ где G открытое в \mathbb{R}^m множество (по теореме об открытости в пространстве и подпространстве). Значит, E'(f < a) измеримо по Лебегу, так как оно является борелевским. Вроде, у нас не было борелевского множества, была борелевская сигма-алгебра. Да и вообще не оч понятно, что тут написано
- 3. e(f < a) подмножество e, а $\lambda_m(e) = 0$, поэтому $\lambda_m(e(f < a)) = 0 \Rightarrow e(f < a)$ измеримо
- 4. Следовательно E(f < a) измеримо как объединение измеримых множеств, следовательно, f измерима на E.

Следствие:

 $f:< a,b> \to \mathbb{R}$ монотонна. Тогда f измерима.

Доказательство:

Множество разрывов монотонной функции НБЧС множество, поэтому можно воспользоваться доказанной теоремой.

3 Теорема Лебега о сходимости почти везде и сходимости по мере

 (X,a,μ) - пространство с мерой, $\mu \cdot X < +\infty$ $f_n,f:X \to \overline{R}$ - п.в. конечны, измеримы $f_n \to f$ (поточечно, п.в.) Тогда $f_n \stackrel{\mu}{\Rightarrow} f$ Доказательство:

1. подменим значения f_n и f на некотором множестве меры 0 так, чтобы сходимость $f_n \to f$ была всюду. (Так можно сделать. Действительно, $f_n \to f$ на $X \setminus e$, $\mu e = 0$ f_n - конечно на $X \setminus e_n$, f - конечно на $X \setminus e_0$.

Тогда на $(X \setminus \bigcup_{n=0}^{+\infty} e_n)$ функции конечны и есть сходимость $f_n \to f$. По

свойствам меры $\mu \bigcup_{n=0}^{+\infty} e_n = 0$. Тогда определим на $\bigcup_{n=0}^{+\infty} e_n \ f_n = f = 0$. Это очевидно даст нам необходимую конечность и поточечную сходимость.

2. (частный случай) $f_n \to f \equiv 0$. Тогда пусть $\forall x f_n(x)$ - монотонно (по n). $|f_n(x)|$ - убывает с ростом n и $X(|f_n| \ge \epsilon) \supset X(|f_{n+1}| \ge \epsilon)$. А также $\bigcap_{n=0}^{+\infty} X(|f_n| \ge \epsilon) = \emptyset$.

$$\begin{cases} \mu X < +\infty \\ \dots \supset E_n \supset E_{n+1} \supset \dots \end{cases}$$

 $\Rightarrow \mu E_n \to \mu \cap E_n$ - Th о непрерывности меры сверху. $\Rightarrow \mu X(|f_n \ge \epsilon|) \to \mu \emptyset = 0$

3. (общий случай) $f_n \to f$. Рассмотрим $\phi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$. Заметим свойства ϕ :

$$\begin{cases} \phi_n(x) \to 0\\ \phi_n \downarrow_n \end{cases}$$

 $X(|f_n - f| \ge \epsilon) \subset X(|\phi_n \ge \epsilon|) \Rightarrow$ по монотонности меры имеем $\mu X(|f_n - f| \ge \epsilon) \le \mu X(\phi_n \ge \epsilon) \stackrel{part.case}{\longrightarrow} 0$, ч.т.д.

Теорема Рисса о сходимости по мере 4 сходимости почти везде

 (X,a,μ) - пространство с мерой

 $f_n, f: X \to R$ - п.в. конечны, измеримы

 $f_n \stackrel{\mu}{\Rightarrow} f$.

Тогда $\exists n_k \uparrow : f_{n_k} \to f$ п.в.

Доказательство: $\forall k \ \mu X(|f_n - f| \ge \frac{1}{k}) \stackrel{n \to +\infty}{\longrightarrow} 0$

Тогда $\exists n_k : \forall n \geq n_k : \mu X(|f_n - f| \geq \frac{1}{k}) < \frac{1}{2k}$ (можно считать $n_1 < n_2 < \frac{1}{k}$

Проверим $f_{n_k} \to f$ п.в. :

$$E_k := \bigcup_{j=k}^{+\infty} X(|f_{n_j} - f| \ge \frac{1}{j})$$

 $E_1 \supset E_2 \supset E_3 \supset \dots$

$$E_0 := \bigcap_{k \in N} E_k.$$

 $E_0:=\bigcap_{k\in N}E_k.$ $\mu E_k\leq \sum_{j=k}^{+\infty}\mu X(|f_{n_j}-f|\geq \frac{1}{j})\leq \sum_{j=k}^{+\infty}\frac{1}{2^j}=\frac{2}{2^k}=2^{1-k}$ - конечно, убывает $\Rightarrow \mu E_k \rightarrow \mu E_0 \Rightarrow \mu E_0 = 0 \text{ (T.K. } \mu E_k \rightarrow 0).$

Рассмотрим $X \not\in E_0$, т.е. если $X \not\in E_0$, то $\exists k : X \not\in E_k$, тогда $\forall j \geq$ $|k|f_n(x)-f(x)|<rac{1}{i}$ при $n\geq n_j$, т.е. $f_{n_k}\to f$, ч.т.д. Следствие: $f_n\Rightarrow f$ $|f_n| \leq g$ п.в. Док-во: Рассмотрим последовательность f_{n_k} где $f_{n_k} o f$ п.в. и вдоль нее применим Th о двух городовых.

$$\begin{cases} f_{n_k}(x) \to f(x) \forall x \in X \setminus e_1 \\ |f_n(x)| \le g(x) \forall x \in X \setminus e_2 \end{cases}$$

$$\Rightarrow |f| \leq g$$
 на $(X \setminus e_1) \setminus e_2$

5 Простейшие свойства интеграла Лебега

5.1 Для определения (5)

1. $\int_{\mathbb{X}} f$ не зависит от представления f как ступенчатой функции, то есть если f реализуется как $f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$ и как $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$, интегралы по этим функциям равны

Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}) = \sum_{l} (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu_{F_{i,j}}) = \sum_{i} (\lambda_i \cdot \sum_{j} (\mu_{F_{i,j}})) = \sum_{i} (\lambda_i \cdot \mu_{E_i}) = \int f$$
 для

i,j первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\alpha_j \cdot \mu F_{i,j}) = \sum_j (\alpha_j \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_j) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции, $f\leqslant g$, тогда $\int\limits_{\mathbb{X}}f\leqslant\int\limits_{\mathbb{X}}g$

Доказательство:

Пусть
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) \leqslant \sum_j (\alpha_j \cdot \mu F_{i,j}) = \int g$$
, что и требовалось доказать

5.2 Для окончательного определения

1. Монотонность $f \leqslant g \Rightarrow \int\limits_{\mathbb{X}} f \leqslant \int\limits_{\mathbb{X}} g$

Доказательство:

(а) $f,g\geqslant 0$, тогда доказательство тривиально (по свойствам супремума)

(b)
$$\int_{\mathbb{X}} f = \int_{\mathbb{X}} f^+ - \int_{\mathbb{X}} f^-$$

$$\int_{\mathbb{X}} g = \int_{\mathbb{X}} g^+ - \int_{\mathbb{X}} g^-$$
Из того, что $\int_{\mathbb{X}} f^+ \leqslant \int_{\mathbb{X}} g^+$, а $\int_{\mathbb{X}} f^- \geqslant \int_{\mathbb{X}} g^-$ следует, что $\int_{\mathbb{X}} f \leqslant \int_{\mathbb{X}} g$

$$2. \int_{\mathbb{E}} 1 \cdot d\mu = \mu E$$

$$\int_{\mathbb{E}} 0 \cdot d\mu = 0$$

Очевидно из определения интеграла ступенчатой функции

3. $\mu E=0, f$ -измерима, тогда $\int\limits_{\mathbb{E}}f=0$, даже если $f=\infty$ на \mathbb{E}

Доказательство:

(a) f-ступенчатая \Rightarrow ограниченная

$$f=\sum_{k=1}^n (\lambda_k\cdot\chi_{E_k})$$
, тогда $\int\limits_{\mathbb E} f=\sum\lambda_k\cdot\mu(E\cap E_k)$
Но $\mu(E\cap E_k)=0$ (так как $\mu E=0$), тогда $\int\limits_{\mathbb E} f=0$

11

(b)
$$f$$
 - измеримая, $f\geqslant 0$.
$$\int\limits_{\mathbb{E}} f=\sup(\int\limits_{\mathbb{E}} g), \ \text{где}\ 0\leqslant g\leqslant f,\ g$$
 - ступенчатая Тогда $\int\limits_{\mathbb{E}} f=\sup(0)=0$

(c) f - произвольная измеримая

Тогда
$$\int_{\mathbb{E}} f = \int_{\mathbb{E}} f^+ - \int_{\mathbb{E}} f^- = 0 - 0 = 0$$

4.(a)
$$\int_{\mathbb{E}} -f = -\int_{\mathbb{E}} f$$

(b)
$$\forall c \in \mathbb{R} : \int_{\mathbb{E}} (c \cdot f) = c \cdot \int_{\mathbb{E}} f$$

Доказательство:

(a)
$$(-f)^+=f^ (-f)^-=f^+$$
 Тогда $\int_{\mathbb{E}} -f = \int_{\mathbb{E}} (-f)^+ - \int_{\mathbb{E}} (-f)^- = \int_{\mathbb{E}} f^- - \int_{\mathbb{E}} f^+ = -\int_{\mathbb{E}} f$

- (b) Пусть c>0. Если c<0, то по предыдущему случаю можем рассматривать для -c<0. Если c=0, то по предыдущей теореме $\int\limits_{\mathbb{E}} (0\cdot f) = \int\limits_{\mathbb{E}} 0 = 0 = 0 \cdot \int\limits_{\mathbb{E}} f$
 - і. Пусть $f \geqslant 0$

$$\begin{split} &\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}g), \text{ где }0\leqslant g\leqslant c\cdot f, \text{ }g\text{ - ступенчатая}\\ &\Pi\text{усть }g=c\cdot \widetilde{g}, \text{ тогда }\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g})), \text{ где }0\leqslant c\cdot \widetilde{g}\leqslant c\cdot f,\\ &\widetilde{g}\text{ - ступенчатая}\\ &\text{Тогда }\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g}))=\sup(c\cdot \int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \sup(\int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \int\limits_{\mathbb{E}}f \end{split}$$

іі. Если f - произвольная:

$$\int\limits_{\mathbb{E}} (c \cdot f) = \int\limits_{\mathbb{E}} (c \cdot f)^+ - \int\limits_{\mathbb{E}} (c \cdot f)^- = \int\limits_{\mathbb{E}} c \cdot f^+ - \int\limits_{\mathbb{E}} c \cdot f^- = c \cdot \int\limits_{\mathbb{E}} f^+ - \int\limits_{\mathbb{E}} c \cdot \int\limits_{\mathbb{E}} f^- = c \cdot (\int\limits_{\mathbb{E}} f^+ - \int\limits_{\mathbb{E}} f^-) = c \cdot \int\limits_{\mathbb{E}} f$$

5. Если существует $\int\limits_{\mathbb{E}} f d\mu$, то $|\int\limits_{\mathbb{E}} f| \leqslant \int\limits_{\mathbb{E}} |f|$

Доказательство:

$$-|f| \leqslant f \leqslant |f|$$
 $\int_{\mathbb{E}} -|f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$ $-\int_{\mathbb{E}} |f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$ Тогда $|\int_{\mathbb{E}} f| \leqslant \int_{\mathbb{E}} |f|$

6. f - измеримая на $\mathbb{E},\ \mu\mathbb{E}<\infty$ $a\leqslant f\leqslant b,\$ тогда $a\cdot\mu E\leqslant \int\limits_{\mathbb{E}}f\leqslant b\cdot\mu E$

Доказательство:

$$a \leqslant f \leqslant b \Rightarrow \int_{\mathbb{E}} a \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} b$$
$$a \cdot \int_{\mathbb{E}} 1 \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \int_{\mathbb{E}} 1$$
$$a \cdot \mu \mathbb{E} \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \mu \mathbb{E}$$

Следствие:

Если f - Измеримая и ограниченная на $\mathbb{E}, \mu \mathbb{E} < \infty$, тогда f - суммируемая на \mathbb{E}

7. f - суммируемая на $\mathbb{E} \Rightarrow f$ почти везде конечная на \mathbb{E} (то есть $f \in \alpha^0(\mathbb{E})$)

Доказательство:

(а) Пусть $f\geqslant 0$ Пусть $f=+\infty$ на A и пусть $\mu A>0$ Тогда $\forall n\in\mathbb{N}: f\geqslant n\cdot\chi_A$ Тогда $\forall n\in\mathbb{N}: \int\limits_{\mathbb{E}} f\geqslant n\cdot\int\limits_{\mathbb{E}} \chi_A=n\cdot\mu A\Rightarrow \int\limits_{\mathbb{E}} f=+\infty$

(b) f любого знака Распишем $f = f^+ - f^-$, по предыдущему пункту f^+, f^- конечны почти везде $\Rightarrow f$ тоже конечно почти везде

6 Счетная аддитивность интеграла (по множеству)

 (X,\mathbb{A},μ) — пространство с мерой, $A=\coprod_{i=1}^\infty A_i$ — измеримы. $f:X\to\overline{\mathbb{R}}$ — изм., $f\geqslant 0$

$$ext{ ext{ iny Toгдa:}} \int\limits_A f = \sum_{i=1}^\infty \int\limits_{A_i} f$$

Доказательство:

1. Для начала докажем это для ступенчатых функций. Пусть $f = \sum\limits_k (\lambda_k \cdot \chi_{E_k})$

$$\int_{A} f d\mu = \sum_{k} (\lambda_{k} \cdot \mu(E_{k} \cap A)) = \sum_{k} (\lambda_{k} \cdot (\sum_{i} \mu(E_{k} \cap A_{i}))) = \sum_{i} (\sum_{k} (\lambda_{k} \cdot \mu(E_{k} \cap A_{i})) = \sum$$

- 2. Докажем, что $\int\limits_A f \leqslant \sum\limits_i \int\limits_{A_i} f$
 - (a) Рассмотрим $0 \leqslant g \leqslant f$ ступенчатая. $\int\limits_A g = \sum\limits_i \int\limits_{A_i} g \leqslant \sum\limits_i \int\limits_{A_i} f$
 - (b) Переходя к *sup* получаем желаемое
- 3. Теперь докажем, что $\int_A f \geqslant \sum_i \int_{A_i} f$
 - (a) $A = A_1 \sqcup A_2$
 - і. Рассмотрим g_1, g_2 ступенчатые такие, что $0 \leqslant g_i \leqslant f \cdot \chi_{A_i}$
 - іі. Рассмотрим их общее разбиение E_k : $g_i = \sum_k (\lambda_k^i \cdot \chi_{E_k})$
 - ііі. g_1+g_2 ступенчатая и $0\leqslant g_1+g_2\leqslant f\cdot\chi_A$

iv.
$$\int_{A_1} g_1 + \int_{A_2} g_2 \stackrel{lemma}{=} \int_A (g_1 + g_2) \stackrel{iii}{\leqslant} \int_A f$$

- v. Поочерёдно переходя к sup по g_1 и g_2 получаем: $\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_A f$
- (b) $\forall n \in \mathbb{N},$ что $A = \bigsqcup_{i=1}^n A_i$ будем последовательно отщеплять последнее множество по (a)

(c)
$$A = \bigsqcup_{i=1}^{\infty} A_i$$

i. Фиксрируем $n \in \mathbb{N}$

іі.
$$A=(\coprod_{i=1}^n A_i)\sqcup B$$
, где $B=\coprod_{i=n+1}^\infty A_i$

iii.
$$\int_A f \geqslant \sum_{i=1}^n \int_{A_i} f + \int_B f \geqslant \sum_{i=1}^n \int_{A_i} f$$

iv. Переходим к lim по n

<u>Следсвие 1:</u> $0\leqslant f\leqslant g$ - измеримы и $A\subset B$ - измеримы $\Rightarrow\int\limits_A f\leqslant\int\limits_B g$ $\int\limits_B g\geqslant\int\limits_B f=\int\limits_A f+\int\limits_{B\backslash A} f\geqslant\int\limits_A f$

Следствие 2: f - суммируема на $A \Rightarrow \int\limits_A f = \sum\limits_i \int\limits_{A_i} f$

Достаточно рассмотреть срезки f^+ и f^-

<u>Следствие 3:</u> $f\geqslant 0$ - изм. $\delta:\mathbb{A}\to\overline{\mathbb{R}}(A\longmapsto\int\limits_A fd\mu)\Rightarrow \delta$ - мера

7 Теорема Леви

 $(X, \mathbb{A}, \mu), \ f_n \geqslant 0$ - изм. $f_1(x) \leqslant ... \leqslant f_n(x) \leqslant f_{n+1}(x) \leqslant ...$ при почти всех x $f(x) = \lim_{n \to \infty} f_n(x)$ при почти всех x (считаем, что при остальных $x: f \equiv 0$)

Тогда:
$$\lim_{n\to\infty} \int\limits_X f_n(x) d\mu = \int\limits_X f(x) d\mu$$

Доказательство:

$$\overline{N.B.} \int_{X} f_n \leqslant \int_{X} f_{n+1} \Rightarrow \exists \lim$$

f - измерима как предел последовательности измеримых функций

1. ≤

Очевидно $f_n\leqslant f$ при п.в $x\Rightarrow\int\limits_X f_n\leqslant\int\limits_X f$. Делаем предельный переход по n

 $2. \geqslant$

- (a) Логичная редукция: $\lim_{n\to\infty}\int\limits_X f_n(x)\geqslant \int\limits_x g$, где $0\leqslant g\leqslant f$ ступенчатая
- (b) Наглая редукция: $\forall c \in (0,1) : \lim_X f_n(x) \geqslant c \cdot \int_X g$

і.
$$E_n = \{x \mid f_n(x) \geqslant c \cdot g\}$$
. Очевидно $E_1 \subset ... \subset E_n \subset E_{n+1} \subset ...$

ii.
$$\bigcup_{n=1}^{\infty} E_n = X$$
 t.k. $c < 1$

- ііі. $\int\limits_X f_n\geqslant\int\limits_{E_n} f_n\geqslant\int\limits_{E_n} g$ Это неправда, E_n определялаьсь не так $\Rightarrow \lim\int\limits_X f_n\geqslant c\cdot\lim\int\limits_{E_n} g=c\cdot\int\limits_X g$
- iv. Последний знак равно обусловлен тем, что интеграл неотрицательной и измеримой функции по множеству мера (см. следствие 3 предыдущей теоремы), и мы используем неперрывность меры снизу

8 Линейность интеграла Лебега

$$f,g\geqslant 0$$
, измеримые Тогда $\int\limits_{\mathbb{E}}(f+g)=\int\limits_{\mathbb{E}}f+\int\limits_{\mathbb{E}}g$ Доказательство:

1. Пусть f,g - ступенчатые, тогда у них имеется общее разбиение

$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$$
$$g = \sum_{k} (\alpha_k \cdot \chi_{E_k})$$

$$\int\limits_{\mathbb{E}} (f+g) = \sum\limits_k (\lambda_k + \alpha_k) \cdot \mu E_k = \sum\limits_k \lambda_k \cdot \mu E_k + \sum\limits_k \alpha_k \cdot \mu E_k = \int\limits_{\mathbb{E}} f + \int\limits_{\mathbb{E}} g,$$
что и требовалось доказать

2. $f, g \ge 0$, измеримые

Тогда
$$\exists h_n : 0 \leqslant h_n \leqslant h_{n+1} \leqslant f, h_n$$
 ступенчатые

$$\exists \widetilde{h_n}: 0 \leqslant \widetilde{h_n} \leqslant \widetilde{h_{n+1}} \leqslant g, \ \widetilde{h_n}$$
 ступенчатые

$$\lim_{n \to +\infty} h_n = f$$

$$\lim_{n \to +\infty} \widetilde{h_n} = g$$

$$\int_{\mathbb{F}} (h_n + \widetilde{h_n}) = \int_{\mathbb{F}} h_n + \int_{\mathbb{F}} \widetilde{h_n}$$

$$\int_{\mathbb{R}} (h_n + \widetilde{h_n}) \to \int_{\mathbb{R}} (f + g)$$

$$\int_{\mathbb{E}} h_n \to \int_{\mathbb{E}} f$$

$$\int_{\mathbb{E}} \widetilde{h_n} \to \int_{\mathbb{E}} g$$

Тогда
$$\int_{\mathbb{E}} (f+g) = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g$$
, что и требовалось доказать

3. Если f,g - любые измеримые, распишем обе через срезки и докажем для них

9 Теорема об интегрировании плоложительных рядов

$$u_n(x) \ge 0$$
 почти всюду на \mathbb{E} , тогда $\int_{\mathbb{E}} (\sum_{n=1}^{+\infty} u_n(x)) d\mu(x) = \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu(x)$

Доказательство:

$$S_N(x) = \sum_{n=1}^N u_n(x); S(x) = \sum_{n=1}^{+\infty} u_n(x)$$

1.
$$S_N$$
 - возрастает к S при почти всех х $\xrightarrow{\mathrm{T. \ Леви}} \int_{\mathbb{E}} S_N \xrightarrow[N \to +\infty]{} \int_{\mathbb{E}} S = \int_{\mathbb{E}} \sum_{n=1}^{+\infty} u_n(x)$

2. С другой стороны
$$\int_{\mathbb{E}} S_N = \int_{\mathbb{E}} \sum_{n=1}^N u_n = \sum_{n=1}^N \int_{\mathbb{E}} u_n(x) d\mu \xrightarrow[N \to +\infty]{+\infty} \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu$$

3. Найденные пределы совпадают в силу единственности предела последовательности, что и требовалось доказать.

10 Теорема о произведении мер

$$< \mathbb{X}, \alpha, \mu>, < \mathbb{Y}, \beta, \nu>$$
 - пространства с мерой $\alpha \times \beta = \{A \times B \subset \mathbb{X} \times \mathbb{Y} : A \in \alpha, B \in \beta\}$ $m_0(A \times B) = \mu A \cdot \nu B$

Тогда:

- 1. m_0 мера на полукольце $\alpha \times \beta$
- 2. μ , ν σ -конечны $\Rightarrow m_0$ σ -конечна

Доказательство:

1. Неотрицательность m_0 очевидна. Необходимо доказать счетную аддитивность

Дитивность
Пусть
$$P = \coprod_{i=1}^{\infty} P_k$$
, где $P \in \alpha \times \beta$
 $P = A \times B$; $P_k = A_k \times B_k$
Заметим, что:

- $\chi_P(x,y) = \sum \chi_{P_k}(x,y)$, в силу дизъюнктности P_k ((x, y) входит максимум в одно множество из всех P_k)
- $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y),$ так как $(x,y)\in A\times B\Leftrightarrow x\in A$ И $y\in B$

Воспользовавшись вышесказанным получим:

$$\chi_P(x,y) = \chi_{A\times B}(x,y) = \chi_A(x) \cdot \chi_B(y)$$

$$\chi_P(x,y) = \sum \chi_{P_k}(x,y) = \sum \chi_{A_k\times B_k}(x,y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Имеем следующее равенство:

$$\chi_A(x) \cdot \chi_B(y) = \sum \chi_{A_k}(x) \cdot \chi B_k(y)$$

Проинтегрируем его по мере μ по x, затем по мере ν по y, получим: $\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k$, то есть $m_0(P) = \sum m_0(P_k)$, что и требовалось доказать.

2.
$$\mu$$
, ν - σ -конечны $\Rightarrow X = \bigcup_{k=1}^{\infty} A_k$, где $\mu A_k < +\infty$; $Y = \bigcup_{k=1}^{\infty} B_k$, где $\nu B_k < +\infty$ $X \times Y = \bigcup_{i,j} (A_i \times B_j)$ $m_0(A_i \times B_j) = \mu A_i \cdot \nu B_j < +\infty$, так как $\mu A_i < +\infty$ и $\nu B_j < +\infty$ все $(A_i \times B_j) \in \alpha \times \beta$ по определению

Что и требовалось доказать.

11Абсолютная непрерывность интеграла

$$<\mathbb{X}, \alpha, \mu>$$
 - пространство с мерой $f:X o \overline{\mathbb{R}}$ - суммируема

Тогда
$$\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall E$$
 — измеримое $\mu E < \delta \; |\int\limits_E f d\mu| < \epsilon$

Доказательство:
$$X_n := X(|f| \ge n)$$
 $X_n \supset X_{n+1} \supset ...$ $\mu(\cap X_n) = 0$, т.к. f – суммируема

- 1. Мера : $(A \mapsto \int_{A} |f|)$ непрерывна сверху, т.е. $\forall \ \epsilon \ \exists \ n_{\epsilon} \ \int_{X_{r}} |f| < \epsilon/2$
- 2. Зафиксируем ϵ в доказываемом утверждении, возьмем $\delta := \frac{\epsilon/2}{n_{\epsilon}}$

3.
$$\left| \int_{E} f d\mu \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\epsilon}}} |f| + \int_{E \cap X_{n_{\epsilon}}^{c}} |f| \leq \int_{X_{n_{\epsilon}}} |f| + n_{\epsilon} \cdot \mu(E \cap X_{n_{\epsilon}}^{c}) \stackrel{**}{<} \epsilon/2 + n_{\epsilon} \cdot \mu E < \epsilon/2 + n_{\epsilon} \cdot \frac{\epsilon/2}{n_{\epsilon}} < \epsilon$$

 * - В первом слагаемом увеличили множество, во втором посмотрели на определние X_n , взяли дополнение, воспользовались 6-м простейшим свойством интеграла

** - Воспользовались непрерывностью сверху

11.1 Следствие

f - суммируема e_n - измеримые множества

$$\mu e_n \to 0 \Rightarrow \int_{e_n} f \to 0$$

12 Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

 $< X, A, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \stackrel{\mu}{\Rightarrow} f$ (сходится по мере), $\exists g : X \to \overline{\mathbb{R}}$ такая, что:

- \bullet $\forall n,$ для «почти всех» $x |f_n(x)| \leq g(x) (g$ называется мажорантой)
- q суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int\limits_{\mathbb{X}} |f_n f| d\mu \to 0$
- ullet $\int_{\mathbb{X}} f_n o \int_{\mathbb{X}} f \ (\text{«уж тем более»})$

Доказательство:

- 1. f_n суммируема, так как существует мажоранта g Почему?
- 2. f суммируема по теореме Рисса ($f_{nk} \to f$ почти везде, $|f_{nk}| \le g$, тогда $|f| \le g$ почти везде)
- 3. «уж тем более»:

$$|\int\limits_{\mathbb{X}} f_n - \int\limits_{\mathbb{X}} f| \le \int\limits_{\mathbb{X}} |f_n - f|$$

Допустим, что $\int_{\mathbb{X}} |f_n - f| d\mu \to 0$ уже доказано.

Тогда «уж тем более» очевидно.

4. Докажем основное утверждение:

Разберем два случая:

- (а) $\mu \mathbb{X} < \infty$ Фиксируем $\epsilon \ge 0$ $X_n := X(|f_n f| \ge \epsilon)$ $\mu X_n \to 0$ (так как $f_n \Rightarrow f$) $\int_{\mathbb{X}} |f_n f| = \int_{X_n} |f_n f| + \int_{X_n^c} |f_n f| \le \int_{X_n} 2g + \int_{X_n^c} \epsilon < \epsilon + \epsilon \mu \mathbb{X}$ (прим. $\int_{X_n} 2g \to 0$ по след. к т. об абс. сходимости)
- (b) $\mu X = \infty$

Докажем «Антиабсолютную непрерывность» для g:

$$orall \epsilon \; \exists A \subset \mathbb{X} \; | \; \mu A$$
 - конеч. $\int\limits_{X \backslash A} g < \epsilon$

доказательство:

$$\int_{\mathbb{X}} = \sup(\int_{\mathbb{X}} g_k \mid 0 \le g_k \le g) \ (g_k - \text{ступен.})$$

$$\exists g_n \int_{\mathbb{X}} g - \int_{\mathbb{X}} g_n < \epsilon$$

$$A := \sup g_n \ (\sup p \ f := \text{замыкание} \ \{x \mid f(x) \ne 0 \ \})$$

$$A = \bigcup_{k \mid \alpha_k \ne 0} E_k$$

$$g = \sum_{kon} \alpha_k \mathscr{X}_{E_k} \ (X = \bigsqcup E_k)$$

$$\int_{\mathbb{X}} g_n = \sum \alpha_k \mu E_k < +\infty \ (\mu A - \text{конеч.})$$

$$\int_{\mathbb{X}\backslash\mathbb{A}} g = \int_{\mathbb{X}\backslash\mathbb{A}} g - g_n \le \int_{\mathbb{X}} g - g_n < \epsilon$$

Теперь докажем основное утверждение:

$$\int_{\mathbb{X}} |f_n - f| = \int_{\mathbb{A}} |f_n - f| + \int_{\mathbb{X} \setminus \mathbb{A}} |f_n - f| \le \int_{\mathbb{A}} |f_n - f| + 2\epsilon < 3\epsilon$$

$$\left(\int_{\mathbb{A}} |f_n - f| \to 0 \text{ по п. (a)}\right)$$

13 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.

 $< X, A, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \to f$ почти везде, $\exists g \mid X \to \overline{\mathbb{R}}$ такая, что:

- $\forall n$, для «почти всех» $x |f_n(x)| \leq g(x) (g$ называется мажорантой)
- *g* суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int_{\mathbb{X}} |f_n f| d\mu \to 0$
- $\int_{\mathbb{X}} f_n \to \int_{\mathbb{X}} f$ («уж тем более»)

Доказательство:

- 1. «уж тем более» см. пред. теорему.
- 2. Докажем основное утверждение:

$$h_n(x) := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

Заметим, что при фикс. x выпол. $0 \le h_n \le 2g$ почти везде

$$\lim_{n\to +\infty}h_n=\overline{\lim_{n\to +\infty}}\,|f_n-f|=0\ \text{почти везде}$$
 $2g-h_n\uparrow,\ 2g-h_n\to 2g\ \text{почти везде}$
$$\int\limits_{\mathbb{X}}(2g-h_n)d\mu\to\int\limits_{\mathbb{X}}2g\ (\text{по т. Леви})$$

$$\int\limits_{\mathbb{X}}2g-\int\limits_{\mathbb{X}}h\Rightarrow\int\limits_{\mathbb{X}}h_n\to 0$$
 Что тут вообще написано?
$$\int\limits_{\mathbb{X}}|f_n-f|\leq\int\limits_{\mathbb{X}}h_n\to 0$$

14 Теорема Фату. Следствия.

$$<\mathbb{X},\mathbb{A},\mu>$$
 – пространство с мерой f_n,f – измеримы, $f_n\geq 0$ $f_n\stackrel{\mu}{\Rightarrow} f$ «почти везде», $\exists C>0 \ \forall n \ \int\limits_{\mathbb{X}} f_n d\mu \leq C$

Тогда:

$$\bullet \int_{\mathbb{X}} f \le C$$

Доказательство:

$$g_n:=\inf(f_n,f_{n+1},\dots)$$
 $(g_n\leq g_{n+1}\leq\dots)$ $\lim g_n=\varliminf(f_n)=noumu$ вез $\partial e=\lim f_n=f$ $(g_n\to f$ почти везде) $\int\limits_{\mathbb{X}}g_n\leq\int\limits_{\mathbb{X}}f_n\leq C$ $\int\limits_{\mathbb{X}}f=no$ $m.$ ${\it Лев}u=\lim\int\limits_{\mathbb{X}}g_n\leq C$

14.1 Следствие 1

$$f_n, f \geq 0$$
 – измер. $f_n \stackrel{\mu}{\Rightarrow} f$ $\exists C \ \forall n \int_{\mathbb{X}} f_n \leq C$ Тогда:

$$\bullet \int\limits_{\mathbb{X}} f \leq C$$

Доказательство:

 $\exists f_{n_k} \to f$ почти везде

14.2 Следствие 2

 $f_n \ge 0$ – измер.

Тогда:

$$\bullet \int_{\mathbb{X}} \underline{lim}(f_n) \ge \underline{lim}(\int_{\mathbb{X}} f_n)$$

Доказательство:

$$\exists n_k \mid \int_{\mathbb{X}} f_{n_k} \underline{k} \to + \infty \underset{n \to +\infty}{\coprod} \int_{\mathbb{X}} f_n$$
 Рассмотрим g_{n_k} такое, что $g_{n_k} \uparrow$ и $g_{n_k} -$

Рассмотрим g_{n_k} такое, что $g_{n_k} \uparrow$ и $g_{n_k} \to \underline{\lim} f$ Применяем теорему Леви к нер-ву $\int_{\mathbb{X}} g_{n_k} \leq \int_{\mathbb{X}} f_{n_k}$

$$\int_{\mathbb{X}} \underline{\lim} \, f \le \underline{\lim} \int_{\mathbb{X}} f_n$$

15 Теорема о вычислении интеграла по взвешенному образу меры

15.1 Лемма

Пусть у нас есть $< X, \mathbb{A}, \mu > \mathsf{u} < Y, \mathbb{B}, _ > \mathsf{u} \Phi : X \to Y$

Пусть $\Phi^{-1}(B) \subset \mathbb{A}(Koxacь\ cкaзaл,\ что\ это\ легко,\ u\ вроде\ это\ cледует из\ предыдущих\ теорем)$

Для
$$\forall E \subset B$$
 и $\nu(E) := \mu(\Phi^{-1}(E))$

Тогда:

$$\overline{
u}$$
 - мера на $B,\,
u(E)=\int\limits_{\Phi^{-1}(E)}d
u$

Доказательство:

Докажем по определению меры:

$$\nu(\bigsqcup E_i) = \mu(\Phi^{-1}(\bigsqcup E_i)) = \mu(\bigsqcup \Phi^{-1}(E_i)) = \sum \mu \Phi^{-1}(E_i) = \sum \nu E_i$$

15.2 Следствие

Из этого следует что f - измерима относительно $B\Rightarrow f\odot\Phi$ — измерима относительно Γ

15.3 Теорема

Есть пространства $< X, \mathbb{A}, \mu > \mu$ (Y, \mathbb{B}, ν).

 $\Phi: X \to Y; w \ge 0$ — измеримо

u - взвешенный образ μ

Тогда:

 $\overline{\Box}$ ля $\forall f \geq 0$ - измеримо на Y, $f \odot \Phi$ - измерима(относительно μ) $\int_Y f d\nu = \int_X f(\Phi(x)) * \omega(x) d\mu(x)$

Замечание: Тоже верно для f - сумм.

Доказательство:

- ullet $f\odot\Phi$ измерима(из леммы)
- Возьмем в качестве $f=\chi_E, E\in B$ $(f\odot\Phi)(x)=\chi_{\Phi^{-1}(E)}$ определение взвешенного образа меры $\nu(E)=\int\limits_{\Phi^{-1}(E)}\omega d\mu$ доказали первый пункт
- - f ступенчатая $\Rightarrow f = \sum \alpha_k * \chi_{E_k}$ - $\int_Y \sum \alpha_k * \chi_{E_k} d\mu = \sum \alpha_k \chi_{E_k} d\nu = /*firstcase*/ = \sum \alpha_k \int_X \chi_{E_k} (\Phi(x)) * \omega(x) dx = \int_X \sum \alpha_k \chi_{E_k} (\Phi(x)) * \omega(x) d\mu(x) = \int f \odot \Phi * \omega d\mu$

16 Критерий плотности

Есть пространство $< X, \mathbb{A}, \mu > \nu$ - еще одна мера $\omega \geq 0$ - измерима на X Тогда:

 ω - плотность ν относительно $\mu \Longleftrightarrow Для любого <math display="inline">A \in \mathbb{A}$: $\mu A*inf(\omega) \le \nu(A) \le \mu A*sup_A(\omega)$

Доказательство:

ullet \Rightarrow - очевидно из стандартного свойства интеграла

• =

- Достаточно доказать, что $\omega>0$ (когда $\omega=0$, отсюда следуется что интеграл =0 из оценок, что $\nu(E)=0$)
- Давайте брать такие $A\subset X(\omega>0)$, тогда $\nu A=\int\limits_A\omega(x)d\mu$
- Тогда для любого $A \in \mathbb{A}$ $A = A_1 \sqcup A_2$, где $A_1 \subset A(\omega > 0) \& A_2 \subset A(\omega = 0)$
- Получаем, что $\nu A=\nu A_1+\nu A_2=\int\limits_{A_1}\omega+0=\int\limits_{A_1}\omega+\int\limits_{A_2}\omega=\int\limits_A\omega$
- Пусть $q \in (0,1)$ и $A_j := A(q^j \le \omega(x) < q^{j-1}), j \in Z$. Получается, что $A = \bigsqcup_{j \in Z} A_j$
- Рассмотрим $q^j \mu A_j <= \nu A_j <= q^{j-1} * \mu A_j$ и $\nu A_j = \int\limits_{A_j} \omega d\mu$
- $-q * \int_{A} \omega d\mu = q * \sum_{A_{j}} \int_{A_{j}} \leq \sum_{A_{j}} q^{j} * \mu A_{j} \leq \sum_{A_{j}} j * A_{j} = \nu(A) \leq 1/q * \sum_{A_{j}} q^{j} * \mu A_{j} \leq 1/q * \sum_{A_{j}} \int_{A_{j}} \omega = 1/q * \int_{A} \omega$
- $-q * \int\limits_A \omega d\mu \le \nu(A) \le 1/q * \int\limits_A \omega d\mu$
- Устремим q к 1 и мы победили

17 Лемма о единственности плотности

$$f,g\in L(x).$$
 Пусть $\forall A$ - измерима и $\int\limits_A f=\int\limits_A g.$ —

Тогда:

 $\overline{f=g}$ почти везде

Следствие:

Плостность ν относительно μ определена однозначно с точностью до μ почти везде.

Доказательство:

- ullet Вместо двух функций давайте рассмотрим одну h=f-g и $\forall \int\limits_A h=0.$ Пусть $A_+=X(h\geq 0)$ и $A_-=X(h<0)$
- $\oint_{A_{+}} |h| = \iint_{A_{+}} h = 0$ $\iint_{A_{-}} |h| = -\iint_{A_{-}} h = 0$
- ullet Пусть $X=A_+\sqcup A_-$. Тогда $\int\limits_X |h|=\int\limits_{A_+} |h|+\int\limits_{A_-} |h|=0 \Rightarrow h=0$ почти везде.

18 Лемма о множестве положительности

Пусть пространство $< X, \mathbb{A} >$ и ϕ - заряд Тогда:

 $\forall A \in \mathbb{A} \exists B \subset A : \phi(B) \leq \phi(A)$, где B - множество положительности Доказательство:

- Пусть $(\phi(A) \ge 0) \&\& (B = \emptyset) \to \phi(A) \ge 0$
- Е множество ϵ положительности(MeП), если $\forall C \subset E$ измеримого $\phi(C) \geq -\epsilon$
- Утверждение: Пусть Е МеП. Тогда для любого измеримого $C \subset E$ выполнено $\phi(C) \geq \phi(A)$
 - 1. Если A Ме $\Pi \Rightarrow C = A$
 - 2. Пусть A не МеП. Тогда существеут $c_1\subset A:\phi(C_1)<-\epsilon$ и $\phi(A)=\phi(A_1)+\phi(C)$

Тогда
$$A_1 = A - C_1$$
 и $\phi(A_1) > \phi(A)$

- 3. A_1 Ме $\Pi \Rightarrow$ хорошо
- 4. Иначе повторяем тоже самое с C_2 и так далее пока не будет хорошо
- 5. Процесс конечен так как все C_i дизьюнктны и $\phi(\bigsqcup C_i) \neq -\infty$.
- ullet Построим В: C_1 множество 1 положительности. $C_2-1/2$. Тогда $B=\cap C_i$ МеП
- $\phi(B) = \lim_{i \to \infty} \phi(C_i) \ge \phi(A)$

19 Теорема Радона—Никодима

Пусть есть пространство (X, \mathbb{A}, μ)

u - мера из $\mathbb A$

Обе меры конечные и $\nu \prec \mu$.

Тогда:

 $\overline{\exists!f:X}->R^\infty$ (с точн до почти везде), которая является плотностью ν относительно μ и при этом $(f-\mu)$ суммируема Доказательство:

- единственность из леммы
- ullet строим кандидата на роль f. $P = \{p(x) \geq 0, | \forall E : \int\limits_E p * d\mu \leq \nu(E) \}$
 - $1. P \neq \emptyset$ и $0 \in P$
 - 2. $p1, p2 \in P \Rightarrow h = \max(p_1, p_2) \in P$ $\forall E \int_E h d\mu = \int_{E(p_1 \geq p_2)} h d\mu + \int_{E(p_1 < p_2)} h d\mu = \int_{E(p_1 \geq p_2)} p1 + \int_{E(p_1 < p_2)} p_2 \leq \nu(E(p_1 \geq p_w)) + \nu(E(p_1 < p_2)) = \nu E$ По индукции $\max(p_1...p_n) \in P$
 - 3. $I = \sup\{\int_X p d\mu | p \in P\}$

 \exists последовательсность $f_1 \leq f_2 \leq \ldots \in P: \int\limits_X f_n \to I$

- 4. Рассмотрим $p_1, p_2...: \int\limits_X p_n \to I$, а также $f_n = max(p_1...p_n) \in P$
- 5. Из предыдущих двух получаем, что $f=\lim f_n$ и $\int\limits_E=/*th Levi*/=\lim\int\limits_E f_n\leq \nu E$, а следовательно $\int\limits_X f=\lim\int\limits_X f_n=I\leq \nu(X)$
- 6. Отлично, проверим, что f плотность ν относительно μ .
 - Докажем, что это не так: $\exists E_0: \nu E_0 > \int\limits_{E_0} f d\mu$
 - $-\mu E_0 > 0$ (иначе интеграл равено нулю и мера равна нулю из абстрактной непрерывности)
 - Тогда μE_0 конечна. Возьмем a>0 : $\nu E_0 \int\limits_{E_0} f d\mu > a * \mu E_0$
 - Тут недостаточно термина мер, поэтому рассмотрим заряд $\phi(E)=\nu E-\int\limits_E f d\mu-a*\mu E$
 - Пусть $\phi(E_0) > 0$. Возьмем МП $B \subset E_0 : \phi(B) \ge \phi(E_0) > 0$. Тогда $\nu(B) = \phi(B) + \int_B f * d\mu + a * \mu B \ge \phi(B) > 0$
 - Проверим, что $f + a * \chi_B \in P$. Тогда по определению $\int_E (f + a * \chi_B) d\mu = \int_{E \setminus B} F * d\mu + \int_{E \cap B} f * d\mu + a * \mu(B \cap E) = / * E \leftrightarrow E \cap B * / = \int_{E \setminus B} f + \nu(E \cap b) \phi(E \cap B) \le / * def_class_P_and_f \in P * / \le \nu(E \setminus B) + \nu(E \cap B) \phi(E \cap B) = \nu E \phi(E \cap B) \le / * \phi \ge 0 * / \le \nu E$
 - Проверим, что $\int_X f + a * \chi_B = I + a * \mu B > I$, что противоречит определению I

20 Лемма об оценке мер образов кубов из окрестности точки дифференцируемости

$$\Phi:O\subset\mathbb{R}^{m}\to\mathbb{R}^{m}$$
 $a\in O,\Phi\in C^{1}(O)$ Возьмём $c>|\Phi^{'}(a)|\neq 0$

тогда $\exists \delta>0$: \forall кубической ячейки $Q,Q\subset B(a,\delta), a\in Q$ выполняется $\lambda\Phi(Q)< c\cdot\lambda Q$

Доказательство

 $\Phi(Q)$ измеримо, так как образ измеримого множества при гладком отображении измерим

 $L := \Phi'(a), L$ обратимо, так как $|L| \neq 0$.

$$\Phi(x) = \Phi(a) + L(x - a) + o(x - a)$$

$$a + L^{-1}(\Phi(x) - \Phi(a) = x + o(x - a)$$

Можем писать о малое, так как растяжение произошло не более чем в $|L^{-1}|$ раз, а $|L| \neq 0$

Пусть $\Psi(x) := a + L^{-1}(\Phi(x) - \Phi(a))$

$$\forall \epsilon > 0 \exists B(a,\delta), \text{ такой, что при } x \in B(a,\delta) |\Psi(x)-x| < \frac{\epsilon}{\sqrt{m}} |x-a| \text{ (так$$

как $\Psi(x)$ это почти x, только плюс o(a-x))

 $a\in Q\subset B(a,\delta)$, где Q - ку со стороной h

 $x \in Q$, тогда $|a-x| < \sqrt{m} \cdot h$ (так как диагональ m-мерного куба со стороной h равна $\sqrt{m} \cdot h$)

Тогда $|\Psi(x) - x| < \epsilon h$

При $x, y \in Q, i \in \{1...m\}$

$$|\Psi(x)_i - \Psi(y)_i| \leq |\Psi(x)_i - x_i| + |\Psi(y)_i - y_i| + |x_i - y_i| \leq |\Psi(x) - x| + |\Psi(y) - y| + h < (1 + 2\epsilon)h$$

 $\Psi(Q) \subset$ кубу со стороной $(1+2\epsilon)h$

$$\lambda(\Psi(Q)) < (1+2\epsilon)^m \lambda Q$$

Ф выражается через Ψ через сдвиги и линейные преобразования. Тогда $\lambda(\Phi(Q))=|det L|\cdot \lambda \Psi(Q)\leqslant |det L|\cdot (1+2\epsilon)^m\cdot \lambda Q$

Возьмём ϵ так, чтобы $|det L| \cdot (1+2\epsilon)^m$ было меньше c. Тогда при таком ϵ

$$\lambda(\Phi(Q)) < c \cdot \lambda Q$$

21 Лемма «Вариации на тему регулярности меры Лебега»

$$f: O \subset \mathbb{R}^m \to \mathbb{R}^m$$

 $A \subset O, A$ - открыто.

 $A\subset Q$ (кубическая ячейка) $\subset \overline{Q}\subset O$, то есть граница A не лежит на границе O.

Тогда

$$\inf_{A\subset G\subset O, G-open\ set}(\lambda G\cdot \sup_G(f))=\lambda A\cdot \sup_A f$$

Доказательство

Докажем, что левая часть \geqslant и \leqslant правой

 \geqslant очевидно, так как правая часть - нижняя граница для всего, встречающегося под inf

Докажем ≤

1. $\lambda A = 0$. Тогда правая часть = 0.

$$A\subset \overline{Q}\Rightarrow \sup f<+\infty$$

$$\overline{Q}$$
 - компакт, $\alpha := dist(\overline{Q}, \partial O) > 0$

Для множества $G:A\subset G\subset \frac{\alpha}{2}$ —окрестности ячейки Q

Назовём Q_1 кубическую ячейку, которая больше Q и у которой каждая сторона отстоит на $\frac{\alpha}{2\sqrt{m}}$ от соответствующей стороны Q.

$$h = \frac{\alpha}{2\sqrt{m}}$$

$$A \subset G \subset Int(Q_1)$$

$$\sup_G f \leqslant \sup_{\overline{O_1}} f < +\infty$$

При этом λG может быть выбрана сколь угодно близко к $\lambda A=0$ по регулярности меры Лебега.

2. $\lambda A > 0$, $\sup_A f < c$

Возьмём c_1 :

$$\sup_A f < c_1 < c$$

Выберем ϵ так чтобы

$$\epsilon \cdot c_1 < \lambda A \cdot (c - c_1)$$
 (*)

 G_{ϵ} - такое множество, что $A \subset G_{\epsilon}, G_{\epsilon}$ -открытое, $\lambda(G_{\epsilon} \setminus A) < \epsilon$

$$G_1:=f^{-1}((-\infty;c_1))\cap G_\epsilon$$
 - открытое

$$\lambda(G_1 \setminus A) < \epsilon$$

$$\lambda G_1 \cdot \sup_{G_1} f \leqslant (\lambda A + \epsilon) \cdot c_1 < \lambda A \cdot c$$
 (из (*))

(так как $G \subset f^{-1}(-\infty; c_1)$, то есть f на G_1 не больше c_1)

$$\inf(\lambda G \cdot_G f) < \lambda A \cdot c$$

Переходя к inf по c, получаем что требовалось

22 Теорема о преобразовании меры при диффеоморфизме

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$ - Диффеоморфизм, $\forall A \in \mathbb{M}^m, A \subset O$

 $\lambda(\Phi(A)) = \int_A |\det \Phi'(x)| d\lambda(x)$

ТООО: Илья

23 Теорема о гладкой замене переменной в интеграле Лебега

 $\Phi:O\subset\mathbb{R}^m o\mathbb{R}^m$ - диффеоморфизм

 $O' = \Phi(O)$ - открытое f задана на $O', f \geqslant 0$, Измерима по Лебегу, тогда $\int_{O'} f(y) \cdot d\lambda(y) = \int_O f(\Phi(x)) \cdot |\det \Phi'(x)| \cdot d\lambda(x)$ Доказательство:

Изи

 $u(A) = \lambda \Phi(A), \nu$ имеет плотность $J\Phi$ по отношению к λ Применить теорему об интеграле по взвешенному образу меры

24 Теорема (принцип Кавальери)

 (X,α,μ) и (Y,β,ν) - пространства с мерами, причем $\mu,\nu-\sigma$ -конечные и полные

 $m=\mu imes
u,\, C \in lpha imes eta,$ тогда:

- 1. При п.в. $x C_x$ измеримо (ν -измеримо), т.е. $C_x \in \beta$
- 2. Функция $x \to \nu C_x$ измеримая (в широком смысле) на X

NB: ϕ — измерима в широком смысле, если она задана при п.в. x, и $\exists f: X \to R'$ - измеримая и $\phi = f$ п.в. При этом $\int_X \phi = \int_X f$ (по опр.)

3.
$$mC = \int_X \nu(C_x) \cdot d\mu(x)$$

<u>Доказательство:</u> Рассмотрим D — совокупность все множеств, для которых утв. теоремы верно.

 $ho = lpha \otimes eta - \pi/$ к изм. пр-ков.

1.
$$\rho \subset D$$
 $C = A \times B$. то есть $\forall x C_x = \emptyset i f x \not\in A, B i f x \in A$
 $(\mu A < +\infty, \nu B < +\infty)$
 $x \to \nu(C_x)$, функция $\nu(B) \cdot \Xi_A(x)$ — изм.
$$\int_X \nu(C_x) d\mu = \nu B \int_X \Xi_A(x) d\mu(x) = \nu B \cdot \mu A = mC$$

- 2. $E_i \in D, E_i dis \Rightarrow E := \sqcup E_i \in D$ при п.в. $x \ (E_i)_x$ измеримы при п.в. x все $(E_i)_x$ измеримы, $E_x = \sqcup (E_i)_x$ изм. $\nu E_x = \sum \nu(E_i)_x \ (\nu(E_i)_x \text{изм. Как функция от } x) \Rightarrow функция <math>x \to \nu E_x$ измерима $\int_X \nu E_x d\mu(x) = \sum_i \int \nu(E_i)_x d\mu(x) = \sum_i m E_i = m E$
- 3. $E_i \in D, E_1 \sup E_2 \sup \ldots; mE_i < +\infty$. Тогда $E := \cap E_i \in D$ $\int_X \nu(E_i)_x d\mu = mE_i < +\infty(*)$ функция $x \to \nu(E_i)_x$ суммируема \Rightarrow п.в. конечна. при всех x $(E_i)_x \downarrow E_x$, т.е. $(E_1)_x \sup(E_2)_x \sup \ldots$ и $\cap (E_i)_x = E_x$ при п.в. x $\nu(E_i)_X$ конечны (для таких x). Тогда E_x измерима и $\lim \nu(E_i)_x = \nu E_x$ по непр-ти меры ν сверху. (Th. Лебега) $|\nu(E_i)_x| \le \nu(E_1)_x$ сумм. \Rightarrow функция $x \to \nu E_x$ изм. $\int_X \nu E_x d\mu = \lim \int_X \nu(E_i)_x d\mu = \lim mE_i = mE$ (нерп. сверху меры m). Этот предельный переход корректен как раз по теореме Лебега $(f_n \to f$ п.в. $g : |f_n| \le g$ сумм. Тогда $\int f_n \to \int f$). NB: мы доказали про пересечения и про объединения (пусть пересечения убывающие, а объединения дизъюнктные, но это лечится). Поэтому $\cap_i(\cup_i A_{i,i}) \in D$, если $A_{i,j} \in \rho$ $(\rho \subset D)$.
- 4. $mE=0\Rightarrow E\in D$ $\exists H\in D, H$ имеет вид $\cap(\cup A_{i,j})$, где все $A_{i,j}\in \rho$ $E\subset H, mH=0$ из п.5 т. о продолжении (ЧТО?! поясните плез) $0=mH=\int_X \nu H_x d\mu(x)\Rightarrow \nu H_x\ 0\ (=0$ при п.в. x). $E_x\subset H_x\Rightarrow E_x-\nu$ -изм. (из полноты ν) и $\nu E_x=0$ п.в. x $\int_X \nu E_x d\mu=0=mE$
- 5. C неизм, $mC < +\infty$. Тогда $C \in D$. $C = H \setminus e$, где me = 0, H вида $\cap (\cup A_{i,j})$. $C_x = H_x \setminus e_x$ изм. при п.в. x $\nu e_x = 0$ п.в.x (проверено в п.4) $\nu C_x = \nu H_x = \nu e_x$ изм. п.в.x $\int_X \nu C_x = \int_X \nu H_x \int_X \nu e_x = \int \nu H_x = mH = mC$.
- 6. C-m-изм. произвольное

$$X = \sqcup X_k, Y = \sqcup Y_n \ (\mu X_k - \text{кон}, \ \nu Y_n - \text{кон}.).$$
 $C = \sqcup_{k,n} (\subset \cap (X_k \times Y_n)) \in D \ (\text{по п.2}) \ (\text{т.к.} \subset \cap (X_k \times Y_n) \in D \ \text{по п.5})$

25 Теорема Тонелли

< $X, \alpha, \mu>, <$ $Y, \beta, \nu>$ - пространства с мерой μ, ν - σ -конечны, полные $m=\mu\times \nu$ $f: X\times Y\to \overline{R}, \ f\geq 0, \ f$ - измерима относительно т Тогда:

- 1. при *почти всех* $x \in X$ f_x измерима на \mathbb{Y} , где $f_x : \mathbb{Y} \to \overline{R}, f_x(y) = f(x,y)$ (симметричное утверждение верно для у)
- 2. Функция $x \mapsto \phi(x) = \int_{\mathbb{Y}} f_x d\nu = \int_{\mathbb{Y}} f(x,y) d\nu(y)$ измерима* на \mathbb{X} (симметричное утверждение верно для у)

$$3. \int\limits_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm = \int\limits_{\mathbb{X}} \phi(x) d\mu = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{Y}} f(x,y) d\nu(y)) d\mu(x) = \int\limits_{\mathbb{Y}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x)) d\nu(y) d\mu(x) = \int\limits_{\mathbb{Y}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x)) d\mu(x) = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x) d\mu(x)$$

Доказательство:

Докажем в 3 пункта, постепенно ослабляя ограничения на функцию f

- 1. Пусть $C \subset \mathbb{X} \times \mathbb{Y}$ измеримо относительно m, $f = \chi_C$
 - (a) $f_x(y) = \chi_{C_x}(y)$, где C_x сечение по х C_x измеримо при noumu всех x, так как это одномерное сечение, таким образом f_x измеримо, при noumu всех x.
 - (b) $\phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu = \nu C_x$ по принципу Кавальери это измеримая функция.

(c)
$$\int_{\mathbb{X}} \phi(x) d\mu = \int_{\mathbb{X}} \nu C_x d\mu \stackrel{\text{Кавальери}}{=} mc \stackrel{\text{опр.инт}}{=} \int_{\mathbb{X} \times \mathbb{Y}} \chi_C dm = \int_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm$$

2. Пусть f - ступенчатая, $f \ge 0, f = \sum_{k \in \mathbb{N}} a_k \chi_{C_k}$

(a)
$$f_x = \sum a_k \chi_{(C_k)_x}$$
 - измерима при почти всех х

(b)
$$\phi(x) = \sum a_k \nu(C_k)_x$$
 - измерима* как конечная сумма измеримых

(c)
$$\int_{\mathbb{X}} \phi(x) = \int_{\mathbb{X}} \sum_{\text{KOH}} a_k \nu(C_k)_x d\mu = \sum_{\text{KOH}} \int_{\mathbb{X}} a_k \nu(C_k)_x d\mu = \sum_{\mathbb{X} \times \mathbb{Y}} f dm$$

3. Пусть f - измеримая, $f \ge 0$

 $f = \lim_{n \to +\infty} g_n$, где $g_n \ge 0$ - ступенчатая, g_n - монотонно возрастает к f (из Теоремы об апроксимации измеримой функции ступенчатыми)

- (a) $f_x = \lim_{n \to +\infty} (g_n)_x \Rightarrow f_x$ измерима при *noumu всех* х.
- (b) $\phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu \stackrel{\text{т.Леви}}{=} \lim \int\limits_{\mathbb{Y}} (g_n)_x d\nu$ $\phi_n(x) := \int\limits_{\mathbb{Y}} (g_n)_x d\nu$ измерима по пункту 1 $0 \le (g_n)_x$ возрастает, тогда $\phi(x)$ измерима, $\phi_n(x) \le \phi_{n+1}(x) \le \dots$ и $\phi_n(x) \to \phi(x)$

(c)
$$\int_{\mathbb{X}} \phi(x) d\mu \stackrel{\text{т.Леви}}{=} \lim_{n \to +\infty} \int \phi_n(x) d\mu \stackrel{\text{п.2}}{=} \lim_{n \to +\infty} \int_{\mathbb{X} \times \mathbb{Y}} g_n dm \stackrel{\text{т.Леви}}{=} \int f dm$$

26 Формула для Бета-функции

$$B(s,t)=\int\limits_0^1 x^{s-1}(1-x)^{t-1}$$
, где s и t > 0 - Бета-функция $\Gamma(s)=\int\limits_0^{+\infty} x^{s-1}e^{-x}dx$, где s > 0, тогда $B(s,t)=rac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$

Доказательство:

$$\frac{1}{\Gamma(s)\Gamma(t)} = \int_{0}^{+\infty} x^{s-1} e^{-x} \left(\int_{0}^{+\infty} y^{t-1} e^{-y} dy \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-u} du \right) dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} du dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty} x^{s-1} e^{-u} dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int_{0}^{+\infty}$$

 $=\int \dots =$ меняем порядок интегрирования x>0

$$u \ge x$$

$$=\int\limits_0^{+\infty}du\int\limits_0^udx(x^{s-1}(u-x)^{t-1}e^{-u})=\begin{bmatrix}x\to v=\\x=uv\end{bmatrix}=\int\limits_0^{+\infty}e^{-u}(\int\limits_0^1u^{s-1}v^{s-t}u^{t-1}(1-v)^{t-1}udv)du=\\=\int\limits_0^{+\infty}u^{s+t-1}e^{-u}(\int\limits_0^1v^{s-1}(1-v)^{t-1}dv)du=B(s,t)\Gamma(s+t), \text{ чтд.}$$

27 Объем шара в \mathbb{R}^m

$$B(0,R) \subset R^{m}$$

$$\lambda_{m}(B(0,R)) = \int_{B(0,R)} 1 d\lambda_{m} = \int \mathcal{J} = \int_{0}^{R} dr \int_{0}^{\pi} d\phi_{1} ... \int_{0}^{\pi} d\phi_{m-2} \int_{0}^{2\pi} d\phi_{m-1} r^{m-1} (sin\phi_{1})^{m}$$

$$\int_{0}^{\pi} (sin\phi_{k})^{m-2-(k+1)} = B(\frac{m-k}{2}; \frac{1}{2}) = \frac{\Gamma(\frac{m-k}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-k}{2}+\frac{1}{2})}$$

$$\rightarrow = \frac{R^{m}}{m} \frac{\Gamma(\frac{m-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m}{2})} \frac{\Gamma(\frac{m-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-1}{2})} ... \frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})} 2\pi =$$

$$= \frac{\pi R^{m}}{\frac{m}{2}} \frac{\Gamma(\frac{1}{2})^{m-2}}{\Gamma(\frac{m}{2})} = \frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)} R^{m}$$

28 Теорема о вложении пространств L^p

$$\mu E < +\infty \ 1 \le s < r \le +\infty$$
 Тогда:

- 1. $L_r(E,\mu) \subset L_s(E,\mu)$
- 2. $\forall f$ измеримы $||f||_s \leq \mu E^{1/s-1/r} ||f||_r$

Доказательство:

- 2 = > 1 (Это очевидно: достаточно рассмотреть неравенство из пункта 2. Из него следует, что $||f||_s < ||f||_r$. см. опред. L_p)
- Рассмотрим два случая:

1.
$$r = +\infty$$
 (очев.)
$$||f||_s \le (\int |f|^s * 1)^{1/s} \le ((esssup|f|)^s \int 1d\mu)^{1/s} = ||f||_\infty * \mu E^{1/s}$$

(последнее по опред. esssup)

 $2. r < +\infty$

$$(||f||_s)^s = \int |f|^s * 1d\mu \le (\int |f|^r)^{\frac{s}{r}} * (\int 1^{\frac{r}{r-s}})^{\frac{(r-s)}{r}} = (||f||_r)^s * \mu E^{1-\frac{s}{r}}$$

(существенный шаг: применить неравество Гельдера)

29 Теорема о сходимости в L_p и по мере

 $1 \leq p < +\infty$ $f_n \in L_p(\mathbb{X}, \mu)$ Тогда:

- 1. \bullet $f \in L_p$
 - $ullet f_n o f$ b L_p

Тогда: $f_n \stackrel{\mu}{\Rightarrow} f$ (по мере)

- 2. $f_n \stackrel{\mu}{\Rightarrow} f$ (либо если $f_n \to f$ почти везде)
 - $|f_n| \le g$ почти при всех $n, g \in L_p$

Тогда: $f_n \to f$ в L_p

Доказательство:

1.

$$X_n(\epsilon) := X(|f_n \to f| \ge \epsilon)$$

$$\mu X_n(\epsilon) = \int\limits_{X_n} (\frac{f_n - f}{\epsilon})^p = \frac{1}{\epsilon^p} \int\limits_{X_n} |f_n - f|^p \le \frac{1}{\epsilon^p} \int\limits_{X} |f_n - f|^p = \frac{1}{\epsilon^p} (||f_n - f||_p)^p \overset{n \to \infty}{\to}$$

2. $f_n \stackrel{\mu}{\Rightarrow} f$ Тогда $\exists n_k \mid f_{n_k} \to f$ почти везде. Тогда $|f| \leq g$ п. в. $|f_n-f|^p \leq (2g)^p$ – сумм. функции т. к. $g \in L_p$ $||f_n - f||_p = \int_{\mathbf{v}} |f_n - f|^p d\mu \stackrel{n \to \infty}{\to} 0$ (по теореме Лебега)

Полнота L^p 30

 $L_p(E,\mu)$ $1 \le p < \infty$ – полное

То есть любая фундаментальная последовательность сходиться по норме $||f||_p$.

$$\forall \epsilon > 0 \; \exists N \; \forall n, k \; ||f_n - f_k|| < \epsilon \Rightarrow \exists f \; | \; ||f_n - f|| \to 0$$

Доказательство:

1. Построим f.

Рассмотрим фундаментальную последовательность f_n .

$$\exists N_1$$
 при $n=n_1 \; k>N_1 \; ||f_{n_1}-f_k||<rac{1}{2}$

$$\exists N_2$$
 при $n=n_2$ $k>N_2,N_1$ $||f_{n_2}-f_k||<rac{1}{4}$

Тогда:
$$\sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}|| < 1$$

$$f = \lim_{k \to \infty} f_{n_k}$$

Докажем, это функция f корректно задана:

•
$$S_N(x) := \sum_{k=1}^N |f_{n_{k+1}} - f_{n_k}|$$

 $||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}|| < 1$

$$||S_N||_p \le \sum_{k=1}^n ||f_{n_{k+1}} - f_{n_k}|| < 1$$

Тогда по Теореме Фату: $||S||_p \le 1$

Тогда $|S|^p$ – суммируема

Тогда S(x) конечна при п. в. x и ряд $\sum f_{n_{k+1}} - f_{n_k}$ абс. сход., а значит и просто сходиться при п. в. x

$$f:=f_{n_1}+\sum f_{n_{k+1}}-f_{n_k}$$
 т. е. $f=\pi$. В. $\lim_{k o\infty}f_{n_k}$

2. Проверим, что $f_n \to f$ в L_p

Т. к.
$$f_n$$
 – фунд., то $\forall \epsilon > 0$ $\exists N \ \forall n, n_k > N \ ||f_n - f_{n_k}|| < \epsilon \Rightarrow ||f_n - f_{n_k}||^p = \int_E |f_n - f_{n_k}|^p d\mu < \epsilon^p$

Тогда по теореме Фату: $\int\limits_E |f-f_n|^p \leq \epsilon^p$

Тогда $\forall \epsilon > 0 \; \exists N \; \forall n > N \; ||f - f_n||_p < \epsilon$

Замечание: L_{∞} – полное (упражнение)

31 Лемма Урысона

32 Плотность в L^p непрерывных финитных функций

 $(\mathbb{R}^m, \mathbb{A}, \lambda_m)$

 $E \subset \mathbb{R}^m$ — изм. Тогда множество финитных непрерывных функций плотно в $L_p(E,\lambda_m), p \in [1;+\infty]$

Доказательство:

- 1. Раскроем определение плотности: $\forall f \in L_p(E,\mu) \ \forall \epsilon > 0 \ \exists \varphi \in C_0(\mathbb{R}^m)$: $||f-\varphi|_E||_p < \epsilon$. Таким образом достаточно научиться приближать f и φ ступенчатыми функциями f_n : $||f-f_n||_p < \epsilon/2$ и $||\varphi-f_n||_p < \epsilon/2$
- 2. TODO!

33 Теорема о непрерывности сдвига

Обозначения:

$$f_h := f(x+h)$$

 $[0,T]\subset\mathbb{R}$. Будем считать, что $L_p[0,T]-$ состоит из T-периодических функций $\mathbb{R}\to\overline{\mathbb{R}}$. Отсюда $\int_0^T f=\int_a^{a+T} f$.

 $\widetilde{C}[0,T]=f\in C[0,T]:f(0)=f(T).||f||=max_{x\in[0,T]}|f(x)|$ NB: $f\in\widetilde{C}[0,T]\Rightarrow f$ — рвнм. непрерывна (по т. Кантора) Формулировка:

- 1. f— рвим. непр. на \mathbb{R}^m . Тогда $||f-f_h||_{\infty} \to 0$ при $h \to 0$.
- 2. $1 \le p < +\infty \ f \in L_p(\mathbb{R}^m, \lambda_m)$. Тогда $||f f_h||_p \to 0$.
- 3. $f \in \widetilde{C}[0,T]$. Тогда $||f f_h||_{+} \infty \to 0$.
- 4. $1 \le p < +\infty$ $f \in L_p[0;T]$. Тогда $||f f_h||_p \to 0$.

Доказательство:

- 1. 1 и 3 свойства следуют из определения рвим. непр-ти: $\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in \mathbb{R}^m \; \forall h : |h| < \delta \; \text{верио, что} \; |f(x) f(x+h)| < \epsilon, \; \text{то есть} \; ||f f_h||_{+} \infty < \epsilon \; ($ это для св-ва 1, во втором случае x из [0,T]).
- 2. TODO!

34 Теорема об интеграле с функцией распределения

 (\mathbb{R}, B, X)

 $f:\mathbb{R} \to \mathbb{R}, f \geq 0$, изм. по Борелю, п.в. конечн.

 $h:X o\overline{\mathbb{R}}$ с функцией распределения H(t)

 μ_H — мера Бореля-Стилтьеса (мера Лебега-Стилтьеса на B)

$${
m \underline{Torдa}} \int\limits_X f(h(x)) d\mu(x) = \int\limits_{\mathbb{R}} f(t) d\mu_H(t)$$

Доказательство: Следует из теоремы о вычислении интеграла по взвешенному образу меры.

35 Теорема о свойствах сходимости в гильбертовом пространстве

1.
$$x_n \to x, y_n \to y \Rightarrow \langle x_n, y_n \rangle \to \langle x, y \rangle$$

- 2. $\sum x_k$ сходится, тогда $\forall y : \sum \langle x_k, y \rangle = \langle \sum x_k, y \rangle$
- 3. $\sum x_k$ ортогональный ряд, тогда $\sum x_k$ $\operatorname{cx} \Leftrightarrow \sum |x_k|^2$ сходится, при этом $|\sum x_k|^2 = \sum |x_k|^2$

Доказательство

1. $|\langle x_k, y_k \rangle - \langle x, y \rangle| = |\langle x_k, y_k \rangle - \langle x_k, y \rangle + \langle x_k, y \rangle - \langle x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| + |\langle x_k - x,$

2.
$$S_n = \sum_{k=1}^n x_k$$

 $< \sum_{k=1}^n x_k, y > = \sum_{k=1}^n < x_k, y >$

Устремляя $n \times \infty$ получаем требуемое равенство

3. Обозначим $C_n := \sum_{k=1}^n |x_k|^2$

$$|S_n|^2 = <\sum_{k=1}^n x_k, \sum_{j=1}^n x_j> =\sum_{k,j}^n < x_k, x_j> =\sum_{k=1}^n < x_k, x_k>$$
 (так как $k \neq j \Rightarrow < x_k, x_j> = 0$) $=\sum_{k=1}^n |x_k|^2 = C_n$

Аналогично, $||S_n|^2 - |S_m|^2| = |C_n - C_m|$

Тогда C_n , $|S_n|^2$ фунадментальны одновременно \Rightarrow сходятся одновременно при устремлении n к ∞

36 Теорема о коэффициентах разложения по ортогональной системе

 $\{e_k\}$ — ортогональная система в $\mathbb{H},\ x\in\mathbb{H}, x=\sum_{k=1}^{+\infty}c_k\cdot e_k$ Тогда:

1. $\{e_k\}$ — Л.Н.З.

2.
$$c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$$

3. $c_k \cdot e_k$ — проекция x на прямую $\{te_k, t \in \mathbb{R}(\mathbb{C})\}$ Иными словами $x = c_k \cdot e_k + z$, где $z \perp e_k$

Доказательство:

1. Пусть $\sum_{k=1}^{N} \alpha_k e_k = 0$. Умножим скалярно на e_m $(1 \leqslant m \leqslant N)$ Получим: $\alpha_m ||e_m||^2 = 0 \Rightarrow \alpha_m = 0 \Rightarrow$ комб. тривиальная $\Rightarrow \Lambda$.Н.З.

- $2. < x, e_m > = \sum_{k=1}^{+\infty} < c_k e_k, e_m > = c_m \cdot ||e_m||^2$ (верно в силу сходимости ряда)
- 3. $x = c_k \cdot e_k + z$? $z \perp e_k$ Докажем это: $< z, e_k > = < x c_k e_k, e_k > = c_k \cdot ||e_k||^2 c_k \cdot ||e_k||^2 = 0$

37 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

 $\{e_k\}$ — ортогональная система в $\mathbb{H}, x \in \mathbb{H}, n \in \mathbb{N}$ $S_n = \sum_{k=1}^n c_k(x) e_k, \ \mathcal{L} = Lin(e_1, e_2, ...) \subset \mathbb{H}$ Тогда:

1. S_n — орт. проекция x на пр-во \mathcal{L} . Иными словами $x=S_n+z,\ z\bot\mathcal{L}$

2.
$$S_n$$
 — наилучшее приближение x в $\mathcal{L}(||x - S_n|| = \min_{y \in \mathcal{L}} ||x - y||)$

 $||S_n|| \leq ||x||$

Доказательство:

1.(a) $z = x - S_n$

(b)
$$z \perp \mathcal{L} \Leftrightarrow \forall k = 1, 2...n : z \perp e_k$$

(c)
$$\langle z, e_k \rangle = \langle x, e_k \rangle - \langle S_n, e_k \rangle = c_k ||e_k||^2 - c_k ||e_k||^2 = 0$$

2.
$$||x - y||^2 = ||S_n + z - y||^2 = ||(S_n - y) + z||^2 = ||S_n - y||^2 + ||z||^2 \ge ||z||^2 = ||x - S_n||^2$$

3.
$$||x||^2 = ||S_n + z||^2 \ge ||S_n||^2 + ||z||^2 \ge ||S_n||^2$$

Следствие: Неравенство Бесселя

$$\forall \{e_k\} - \text{O.C.} : \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 \le ||x||^2$$

38 Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля

 $\{e_k\}$ – орт. сист. в $\mathbb{H}, x \in \mathbb{H}$

Тогда:

1. Ряд Фурье
$$\sum_{k=1}^{+\infty} c_k(x) e_k$$
 сх-ся в $\mathbb H$

$$2. x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \perp e_k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k e_k \Leftrightarrow \sum_{k=1}^{+\infty} |c_k|^2 ||e_k||^2 = ||x||^2$$

Доказательство:

1. Ряд Фурье – ортогональный ряд его сходимость \Leftrightarrow сходимости $\sum_{k=1}^{+\infty}|c_k|^2\|e_k\|^2$ $\sum_{k=1}^{+\infty}|c_k|^2\|e_k\|^2\leq \|x\|^2$ по неравенству Бесселя

2.
$$\langle z, e_k \rangle = \langle x - \sum_i c_i e_i, e_k \rangle = \langle x, e_k \rangle - \sum_{i=1}^{+\infty} \langle c_i(x) e_i, e_k \rangle = 0$$

3. \Rightarrow - утв. 3 теоремы о св-вах сх-ти в гильбертовом пр-ве \Leftarrow Из п. 2 ряд ортог. $\|x\|^2 = \|\sum c_k e_k\|^2 + \|z\|^2 = \sum |c_k|^2 \|e_k\|^2 + \|z\|^2 = \|x\|^2 + \|z\|^2 \Rightarrow z = 0$

39 Теорема о характеристике базиса

 $\{e_k\}$ – орт. сист. в $\mathbb H$

Тогда эквивалентны следующие утверждения:

- 1. e_1 базис
- 2. $\forall x,y \in \mathbb{H} \ \langle x,y \rangle = \sum c_k(x)\overline{c_k(y)}\|e_k\|^2$ (обобщенное уравнение замкнутости)
- $3. \{e_k\}$ замкн.
- $4.\;\{e_k\}$ полн.
- 5. $Lin(e_1,e_2,\ldots)$ плотна в $\mathbb H$

Доказательство:

$39.1 \quad 1 \Rightarrow 2$

 $x=\sum c_k(x)e_k$ — единственно (из геом. соображений: c_ke_k — проекция) $\langle e_k,y\rangle=\overline{\langle y,e_k\rangle}=\overline{c_k(y)}\|e_k\|^2$ $\langle x,y\rangle=\sum c_k(x)\langle e_k,y\rangle=\sum c_k(x)\overline{c_k(y)}\|e_k\|^2$

$39.2 \quad 2 \Rightarrow 3$

y := x $||x||^2 = \sum |c_k(x)|^2 ||e_k||^2$ (см. п. 3 из опр.)

$39.3 \quad 3 \Rightarrow 4$

Пусть $\forall k \quad x_0 \perp e_k$ $c_k(x_0) = \frac{\langle x_0, e_k \rangle}{\|e_k\|^2} = 0$ $\|x_0\|^2 = \sum |c_k(x_0)|^2 \|e_k\|^2 = 0$ (см. п. 2 из опр.)

$39.4 \quad 4 \Rightarrow 1$

 $x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow$ (т. Рисса-Фишера (2)) $\forall k \ z \bot e_k \Rightarrow$ (из полноты) z = 0 (см. п. 1 из опр.)

$39.5 \quad 4 \Rightarrow 5$

Пусть $ClLin(e_1,e_2,\ldots) \neq \mathbb{H}, \ x \in \mathbb{H} \setminus ClLin(e_1,e_2,\ldots)$ из т. Рисса-Фишера (2): $x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \bot e_k \Rightarrow x = \sum_{k=1}^{+\infty} c_k e_k \Rightarrow x \in ClLin(e_1,e_2,\ldots)$ Противоречие.

$39.6 \quad 5 \Rightarrow 4$

 $\forall k \ x_0 \perp e_k \Rightarrow x_0 \perp Lin(e_1, e_2, \ldots) \Rightarrow x_0 \perp ClLin(e_1, e_2, \ldots) (= \mathbb{H}) \Rightarrow x_0 \perp x_0 \Rightarrow \|x_0\|^2 = 0 \Rightarrow x_0 = 0$

40 Лемма о вычислении коэффициентов тригонометрического ряда

Пусть $S_n \to f$ в $L_1(-\pi, \pi]$

Тогда:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) coskx \ dx \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx \quad k = 0, 1, 2, \dots$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx \quad k = 0, 1, 2, \dots$$

Доказательство:

$$S_n = \frac{a_0}{2} + \sum_{j=1}^n a_j \cos jx + b_j \sin jx \ (-\text{ 9TO } T_n)$$

При $n \ge k$:

1.
$$\int_{-\pi}^{\pi} S_n(x) \cos kx dx = \int_{-\pi}^{\pi} a_k \cos^2 kx dx = \pi a_k$$

2.
$$\left| \int_{-\pi}^{\pi} S_n(x) \cos kx dx - \int_{-\pi}^{\pi} f(x) \cos kx dx \right| \le \int_{-\pi}^{\pi} \pi |S_n(x) - f(X)| \cdot |\cos kx| \le \int_{-\pi}^{\pi} |S_n(x) - f(x)| \to 0$$

Из 1 и 2 следует равенство для a_k . Аналогично доказывается и для других.

41 Теорема Римана-Лебега

 $E \subset \mathbb{R}^1$ – измеримо $f \in L_1(E,\lambda), \lambda$ - мера Лебега

Тогда:

$$\int_{E} f(x)e^{ikx}dx \xrightarrow[k \to +\infty]{} 0$$

И

$$\int_{E} f(x)cos(kx)dx \xrightarrow[k \to +\infty]{} 0$$

Доказательство:

Пусть
$$f \equiv 0$$
 вне E , тогда можно считать, что $f \in L^1(\mathbb{R}^1)$
$$\int_{\mathbb{R}} f(t)e^{ikt} \stackrel{t=\tau+\frac{\pi}{k}}{=} \int_{\mathbb{R}} f(\tau+\frac{\pi}{k})e^{ik\tau+i\pi} = -\int_{\mathbb{R}} f(\tau+\frac{\pi}{k})e^{ik\tau}$$

$$\int_{\mathbb{R}} f(t)e^{ikt} = \frac{1}{2}\int_{\mathbb{R}} f(t)e^{ikt} - \frac{1}{2}\int_{\mathbb{R}} f(\tau+\frac{\pi}{k})e^{ik\tau} = \frac{1}{2}\int_{\mathbb{R}} (f(t)-f(t+\frac{\pi}{k}))$$

$$|\int_{\mathbb{R}} f(t)e^{ikt}| \leq \frac{1}{2}\int_{\mathbb{R}} |f(t)-f(t+\frac{\pi}{k})| dt \xrightarrow[k\to+\infty]{} 0,$$
 по непрерывности сдвига, то есть:
$$||f-f_{\tau}||_{1} \xrightarrow[\tau\to0]{} 0$$

Сходимость второго интеграла очевидна из $cos(kx) = \frac{e^{ikx} - e^{-ikx}}{2}$

- 42 Принцип локализации Римана. TODO
- 43 Признак Дини. Следствия. TODO.
- 44 Корректность свертки

$$f, K \in L_1[-\pi, \pi]$$

Тогда: $(f * K)$ – корректно заданная фукнция из $L_1[-\pi, \pi]$
Доказательство:

- ullet Докажем, что g(x,t)=f(x-t)K(t) измерима
 - -K(t) измерима, как функция из L_1
 - $-\phi(x,t)=f(x-t)$. Это функция принимает одинаковые значения на t=x-C.

Поэтому:
$$R^2(\phi < a) = V^{-1}(E_{a'} \times R)$$
, где $V(x,t) = (x-t,t)$

 $E_{a'} = V(R(f < a))$ – измеримо, так как f – измеримо.

Поэтому $R^2(\phi < a)$ – измеримо.

- Поэтому g измерима, как произведение измеримых
- Проверим, что $g \in L_1([-\pi, \pi] \times [-\pi, \pi])$

$$\iint_{[-\pi,\pi]} |g| d\lambda^2 = \int_{-\pi}^{\pi} (|K(t) \int_{-\pi}^{\pi} |f(x-t)| dx|) dt = ||f||_1 ||K||_1 < +\infty$$

- По теореме Фубини $\int\limits_{-\pi}^{\pi}g(x,t)dt$ суммируемая при в п. в. х
- ullet Тогда свертка лежит в $L_1[-\pi,\pi]$

45 Свойства свертки функции из L^p с фукнцией из L^q

$$f\in L^p;\ K\in L^q$$
 $1\leqslant p\leqslant +\infty;\ rac{1}{p}+rac{1}{q}=1$ Тогда:

- f*K непр. на $[-\pi,\pi]$
- $\bullet ||f * K||_{\infty} \leq ||K||_q ||f||_p$

Доказательство: Это нер-во Гельдера

п. 2
$$|(f*K)(x)| = |\int_{-\pi}^{\pi} f(x-t)K(t)dt| \leq \sup_{\text{нер-во Гельдера}} ||K||_q ||f||_p$$
 $\sup_{x \in \mathbb{Z}} |f*K| \leq ||f||_p ||K||_q \Rightarrow \text{пунк 2}$ (Причем нер-во Гельдера выполнено и для $p = \infty$)

$$\begin{split} & \Pi. \ 1 - p < + \infty \\ & |(f*K)(x+h) - (f*K)(x)| = |\int\limits_{-\pi}^{\pi} (f(x+h-t) - f(x-t))K(t)dt| \underset{\text{нер-во } \overline{\Gamma} \in \text{льдера}}{\leq} \\ & |(\int\limits_{-\pi}^{\pi} |f(x+h-t) - f(x-t)|^p dt)^{1/p} (\int\limits_{-\pi}^{\pi} |K(t)|^q dt)^{1/q} = ||K||_q (\int\limits_{-\pi}^{\pi} |f(x+h-t) - f(x-t)|^p dt)^{1/p} \\ & |h-t| - f(x-t)|^p dt)^{1/p} = ||K||_q (\int\limits_{-\pi}^{\pi} |f(y+h) - f(y)|^p dy)^{1/p} = \\ & = ||K||_q ||f(y+h) - f(y)||_p \underset{\text{по непр. сдвига}}{\to} 0 \end{split}$$

46 Формула Грина

 $D \subset \mathbb{R}^2$ – компакт, связное, одновясвязное, ориентировано $\delta D - C^2$ -гладкая кривая, тоже ориентировано D и δD ориентированы согласовано P,Q – функции, гладкие в открытой области $O \supset D$ Тогда:

$$\iint\limits_{D}(\frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y})dxdy=\int\limits_{\delta D}(P(x,y)dx+Q(x,y))dy$$

Доказательство:

Докажем для областей вида "криволинейный четырехугольник" , т.е. $x \in [a;b]$

 $y \in [\phi_1(x); \phi_2(x)]$, где $\phi_2(x) > \phi_1(x)$

Представляется в аналогичном виде, относительно у

Ориентируем обход нашего четырехугольника против часовой стрелки.

Назовем пути по сторонам $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ начиная с нижней против часовой стрелки соответсвенно.

Из линейности интеграла по векторному полю следует, что для доказательства достаточно проверить:

$$-\iint\limits_{D}\frac{\delta P}{\delta y}dxdy = \int\limits_{\delta D}Pdx$$

1. Преобразуем левую часть:

$$-\iint_{D} \frac{\delta P}{\delta y} dx dy = -\int_{a}^{b} dx \int_{\phi_{1}(x)}^{\phi_{2}(x)} P'_{y} dy = -\int_{a}^{b} P(x, y) \Big|_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} dx = \int_{a}^{b} P(x, \phi_{1}(x)) dx - \int_{a}^{b} P(x, \phi_{2}(x))$$

2. Преобразуем правую часть:

$$\int_{\delta D} (Pdx + 0dy) = \int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_3} + \int_{\gamma_4} + \int_{\gamma_4} + \int_{\gamma_5} + \int$$

Левая и правая части равны.

Если область более сложная - порежем на простые. Зафиксируем направление обхода, посчитаем на каждой.

При фиксированном направлении обхода пути на границах разрезов учитываются дважды с противоположными знаками, то есть в итоге имеем обход границы всей фигуры.

Из компактности и гладкости области следует, что допускается счетное количество разрезов.

47 Формула Стокса

 Ω — эллиптическая, гладкая, двусторонняя поверхность, C^2 —гладкое; n_0 — сторона

 $\delta\Omega$ - ориентирована согласовано с n_0

(P,Q,R) – векторное поле на Ω , заданное в O - откр. : $\Omega\subset O\subset\mathbb{R}^3$ Тогда:

$$\int\limits_{\delta\Omega} (Pdx + Qdy + Rdz) = \iint\limits_{\Omega} ((R_{y}^{'} - Q_{z}^{'})dydz + (P_{z}^{'} - R_{x}^{'})dzdx + (Q_{x}^{'} - P_{y}^{'})dxdy)$$

Доказательство:

Из соображений линейности интеграла по векторному полю достаточно проверить:

$$\int\limits_{\delta\Omega}Pdx=\int\limits_{\Omega}(P_{z}^{'}dzdx-P_{y}^{'}dxdy)$$

Параметризуем область: $\Omega \leftrightarrow \left\langle \begin{matrix} x(u,v) \\ y(u,v) \end{matrix} \right\rangle$

Пусть G — наша область в координатах (u,v), L — граница Ω в новых координатах, тогда:

$$\int\limits_{\delta\Omega} P dx = \int\limits_{L} P(x(u,v),y(u,v),z(u,v)) (x_u^{'} du + x_v^{'} dv) = \int\limits_{L} P x_u^{'} du + P x_v^{'} dv \stackrel{\Gamma_{\mathrm{PHH}}}{=}$$

$$\int\limits_{G} \int\limits_{G} ((P(x,y,z)x_v^{'})_u^{'} - (P(x,y,z)x_u^{'})_v^{'}) du dv =$$

$$\int\limits_{G} \int\limits_{G} (P_z^{'} (z_u^{'} x_v^{'} - z_v^{'} x_u^{'}) - P_y^{'} (y_v^{'} x_u^{'} - y_u^{'} x_v^{'})) du dv =$$

$$\int\limits_{G} \int\limits_{G} P_z^{'} \begin{vmatrix} z_u^{'} & z_v^{'} \\ x_u^{'} & x_v^{'} \end{vmatrix} du dv - P_y^{'} \begin{vmatrix} x_u^{'} & x_v^{'} \\ y_u^{'} & y_v^{'} \end{vmatrix} du dv =$$

$$\int\limits_{G} \int\limits_{G} (P_z^{'} dz dx - P_y^{'} dx dy)$$

что и требовалось доказать

48 Формула Гаусса-Остроградского

 $V=\{(x,y,z)\in\mathbb{R}^3: (x,y)\in G, f(x,y)\leq z\leq F(x,y)\}, G\subset\mathbb{R}^2, \partial G$ гладкая кривая в $\mathbb{R}^2, F\in "C'(G)"$ (кавычки означают "включая границу, то есть с более широкой гладкой областью"), ∂V — внешняя сторона, $R:O(V)\to\mathbb{R}$. Тогда

$$\iiint\limits_V \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint\limits_{\partial V} R \, dx \, dy$$

Доказательство:

 $\overline{\partial V = \Omega_F \cup \Omega_{cil} \cup \Omega_f}$ (границы графика F, f и цилиндра между ними)

$$\iint\limits_V \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint\limits_G \, dx \, dy \, \int\limits_{f(x,y)}^{F(x,y)} \frac{\partial R}{\partial z} \, dz =$$

$$= \iint\limits_G \left(R(x,y,F(x,y)) - R(x,y,f(x,y)) \right) \, dx \, dy = \text{(см. пример после опр. }$$
инт. 2 рода)
$$= \iint\limits_{\Omega_F} R \, dx \, dy - \left(-\iint\limits_{\Omega_f} R \, dx \, dy \right) + 0 = \text{(так как проекция } \Omega_{cil} \text{ лежит в } \partial G \text{)}$$

$$= \iint\limits_{\Omega_F} R \, dx \, dy + \iint\limits_{\Omega_f} R \, dx \, dy + \iint\limits_{\Omega_{cil}} R \, dx \, dy =$$

$$= \iint\limits_{\partial V} R \, dx \, dy$$

- 49 Соленоидальность бездивергентного векторного поля. TODO.
- 50 Предельный переход под знаком интеграла при наличии равномерной сходимости или L_{loc}

50.1 При равномерной сходимости

$$f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$$
 $(\mathbb{X}, \mathbb{A}, \mu)$ — простр. с мерой \mathbb{Y} — метр. простр. (или метризуемое) $\forall y \ f^y(x) = f(x,y)$ — сумм. на \mathbb{X} $\mu X < +\infty; \ f(x,y) \underset{y \to a}{\Longrightarrow} \phi(x)$ $\underline{\text{Тогда:}}$

- ϕ cymm.
- $\bullet \smallint_X f(x,y) d\mu(x) \xrightarrow[y \to a]{} \smallint_X \phi(x) d\mu(x)$

Доказательство: По Гейне: $y_n \to a$

При больших
$$n \ \forall x \ |f(x,y_n) - \phi(x)| < 1$$
 $\Rightarrow |\phi(x)| \leq |f(x,y_n)| + 1 \Rightarrow \int\limits_X |\phi(x)| \leq \int\limits_X |f| + \mu X$ Из этого следует, что ϕ – суммир.

$$\left| \int_{X} f(x, y_n) d\mu(x) - \int_{X} \phi \right| \le \int_{X} |f(x, y_n) - \phi(x)| d\mu \le \sup_{x \in X} |f(x, y_n) - \phi(x)| \mu X$$

$$\sup_{x \in X} |f(x, y_n) - \phi(x)| \mu X \xrightarrow[n \to +\infty]{} 0$$

50.2 При L_{loc}

Определение L_{loc}

 $f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$ $(\mathbb{X}, \mathbb{A}, \mu)$ – простр. с мерой \mathbb{Y} – метр. простр. (или метризуемое); $a \in \mathbb{Y}$ $\forall y \ f^y(x) = f(x,y)$ – сумм. на \mathbb{X} f удовлетворяет $L_{loc} \ (f \in (L_{loc}))$ если:

- $\exists g : \mathbb{X} \to \overline{\mathbb{R}}$ сумм.
- $\exists U(a) \ \forall y \in \dot{U}(a)$ при п. в. $x \in \mathbb{X} \ |f(x,y)| \leq g(x)$

Формулировка в контексте опредления:

 $\phi:=\lim_{y o a}f(x,y)$ – задана при п. в. x f(x,y) удовлетворяет условию L_{loc} в точке a и мажорантой g Тогда:

- ϕ cymm.
- $\bullet \int\limits_X f(x,y) d\mu(x) \xrightarrow[y \to a]{} \int\limits_X \phi(x) d\mu(x)$

Доказательство: На самом деле это переформулировка Теоремы Лебега о мажорированной сходимости для случая сходимости почти везде. (см теор. № 13)

51 Правило Лейбница дифференцирования интеграла по параметру

$$f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$$
 $(\mathbb{X}, \mathbb{A}, \mu)$ – простр. с мерой \mathbb{Y} – метр. простр. (или метризуемое) $\forall y \ f^y(x) = f(x,y)$ – сумм. на \mathbb{X}

 $\mathbb{Y} \subset \mathbb{R}$ — промежуток при п. в. $x \ \forall y \ \exists f_y'(x,y)$ f_y' удовлетворяет усл. L_{loc} в точке $a \in \mathbb{Y}$ Тогда:

- ullet $I(y) = \int\limits_X f(x,y) d\mu(x)$ дифф. в точке a
- $\bullet \ I'(y) = \smallint_X f'_y(x,a) d\mu(x)$

Доказательство:

$$\frac{F(x,h) = \frac{f(x,a+h) - f(x,a)}{h} \to f'_y(x,a)}{\frac{I(a+h) - I(a)}{h} = \int_X F(x,h) d\mu(x) \xrightarrow{?} \int_X f'_y(x,a) d\mu$$

чтобы использовать предельный переход нужно проверить $F(x,h) \in L_{loc}$ в точке h=0, т. е. найти локальную мажоранту. (см. теор. о пред. переход. под интегралом)

$$|F(x,h)| = |f_y'(x,a+\theta h)| \le f_y' \in L_{loc} \text{ in } a$$

- 52 Теорема о свойствах аппроксимативной единицы. TODO
- 53 Теорема Фейера. TODO
- 54 Свойства преобразования Фурье: непрерывность, ограниченность, сдвиг. ТООО
- 55 Преобразование Фурье свертки. TODO
- 56 Преобразование Фурье и дифференцирование. TODO
- 57 Лемма об оценке интеграла ядра Дирихле
- 1. $D_n(t) = \frac{\sin nt}{\pi t} + \frac{1}{2\pi}(\cos nt + h(t)\sin nt)$, где h(t) не зависит от n и $|h(t)| \le 1$ на $[-\pi;\pi]$.
- 2. $\forall x, |x| < 2\pi |\int_0^x D_n(t)dt| < 2$

Доказательство:

- 1.(a) $D_n(t) = \frac{1}{2\pi} \frac{\sin(n + \frac{1}{2})t}{\sin\frac{t}{2}} = \frac{1}{2\pi} \frac{\sin nt \cos\frac{t}{2} + \cos nt \sin\frac{t}{2}}{\sin\frac{t}{2}} = \frac{1}{2\pi} (\frac{\sin nt}{\tan\frac{t}{2}} + \cos nt)$
 - (b) Добавим и вычтем $\frac{\sin nt}{\pi t}$: $\frac{\sin nt}{\pi t} + \frac{1}{2\pi} (\cos nt + (\underbrace{\frac{1}{\operatorname{tg} \frac{t}{2}} \frac{1}{\frac{t}{2}}}) \sin nt)$
 - (c) Докажем, что $|h(t)| \leq 1$. Найдём знак производной на $[0;\pi]$: $h'(t) = -\frac{1}{2\sin^2\frac{t}{2}} + \frac{2}{t^2} = \frac{4\sin^2\frac{t}{2} t^2}{2t^2\sin^2\frac{t}{2}}$. Знаменатель неотрицателен.

 $4\sin^2\frac{t}{2}-t^2=(2\sin\frac{t}{2}-t)(2\sin\frac{t}{2}+t)$. Вторая скобка ≥ 0 . Первая скобка ≤ 0 , так как $\sin x\leq x$ при $x\geq 0$.

- (d) Знак производной h(x) на $[0;\pi]$ постоянен, значит, h монотонна. h(0)=0 (в пределе), $h(\pi)=\frac{2}{\pi}<1$. Значит, |h(x)|<1. Аналогично для $[-\pi;0]$.
- $2.(a) D_n$ чётная. Считаем, что x > 0.
 - (b) Пусть $x \in [0; \pi]$.
 - (c) $\left| \int_0^x D_n(t)dt \int_0^x \frac{\sin nt}{\pi t}dt \right| = \left| \int_0^x \frac{1}{2\pi} (\cos nt + h(t)\sin nt) \right|$ (пункт 1) $\leq \frac{1}{2\pi} \int_0^x 2 = \frac{x}{\pi} \leq 1$
 - (d) $\int_0^x \frac{\sin nt}{\pi t} = \int_0^{nx} \frac{\sin v}{\pi v} dv$ (v = nt). $0 \le \int_0^{nx} \frac{\sin v}{\pi v} dv \le \int_0^\pi \frac{\sin v}{\pi v} dv$. Доказательство методом пристального взгляда на график подынтегральной функции. $\int_0^\pi \frac{\sin v}{\pi v} dv \le \pi \frac{1}{\pi} = 1$
 - (e) $|\int_0^x D_n(t)dt I| \le 1$, $0 \le I \le 1$, значит, $\int_0^x D_n(t)dt \in [-1; 2]$.
 - (f) Пусть $x \in [\pi; 2\pi]$. $\int_0^{2\pi} D_n(t)dt = 1$. $\int_0^x = \int_0^{2\pi} \int_x^{2\pi} = 1 \int_{x-2\pi}^0 = 1 \int_0^{2\pi-x} \in [-2; 1]$

58 Теорема об интегрировании ряда Фурье

 $f \in L_1[-\pi;\pi]$. Тогда $\forall a,b \in \mathbb{R}$:

$$\int_{a}^{b} f(x)dx = \sum_{k \in \mathbb{Z}} c_{k}(f) \int_{a}^{b} e^{ikx} dx$$

Сумма по $k \in \mathbb{Z}$ понимается в смысле главного значения $(\lim_{n\to\infty}\sum_{k=-n}^n)$. Замечание: Ряд Фурье f может всюду расходиться, но ряд интеграла всегда сходится.

Доказательство:

1. Пусть $-\pi \le a < b \le \pi$. Если это не так всегда можно разбить интеграл на такие отрезки в силу периодичности функции.

- 2. Пусть $\chi(x) = \chi[a;b]$ (характеристическая функция отрезка [a;b]).
- 3. Рассмотрим частичную сумму ряда интегралов:

$$\sum_{k=-N}^{N} c_k(f) \underbrace{\int_a^b e^{ikx} dx}_{2\pi c_{-k}(\chi)} = \sum_{k=-N}^{N} \frac{1}{2\pi} (\int_{-\pi}^{\pi} f(t) e^{-ikt} dt) 2\pi c_{-k}(\chi).$$

Сумма конечная, поэтому это равно $\int_{-\pi}^{\pi} f(t) S_N(\chi, t) dt$.

- 4. $S_N(\chi) \to \chi$ везде, кроме a и b (не шарю почему, помогите)
- 5. $|S_N(\chi,t)| = |\int_{-\pi}^{\pi} \chi(x) D_N(t-x) dx| = |\int_a^b D_N(t-x) dx| = |\int_0^{t-a} D_N \int_0^{t-b} D_N| \le 4$ (по лемме об оценке интеграла D_N).
- 6. $\int_{-\pi}^{\pi} f(t) S_N(\chi, t) dt \to \int_{-\pi}^{\pi} f(t) \chi(t) dt$ по теореме Лебега о мажорированной сходимости.

- 59 Лемма о сходимости сумм Фурье в смысле обобщенных функций. ТООО
- 60 Следствие о преоборазовании Фурье финитных функций. ТООО
- 61 Лемма "о ядре Дирихле". Следствие. TODO
- 62 Теорема о равносходимости ряда Фурье и интеграла Фурье. TODO
- 63 Признак Дирихле-Жордана. TODO
- 64 Лемма к теореме о формуле обращения. TODO
- 65 Формула обращения преобразования Фурье. TODO
- 66 Свойства свертки. Deprecated
 - 1. Коммутативность: f * K = K * f
 - 2. $c_k(f*K) = 2\pi c_k(f)c_k(K) \ (c_k$ коэф. ряда фурье)
 - 3. $f \in L^p$; $K \in L_1([-\pi, \pi])$

$$1 \leqslant p \leqslant +\infty$$

Тогда:

- $\bullet \ f * K \in L([-\pi,\pi])$
- $||f * K||_p \le ||K||_1 ||f||_p$

Доказательство: TODO

67 О локальной суммируемости. Deprecated

$$\int_{a}^{\to b} f - \text{afc. cx} \iff f - \text{cymm.}$$

Доказательство: ТООО