ECN 7060, Cours 4

William McCausland

2019-09-25

Intégration riemannienne

$$L \int_{a}^{b} X = \sup \left\{ \sum_{i=1}^{n} (t_{i} - t_{i-1}) \inf_{t \in [t_{i-1}, t_{i}]} X(t) \colon a = t_{0} < t_{1} < \ldots < t_{n} = b \right\}$$

$$U \int_{a}^{b} X = \inf \left\{ \sum_{i=1}^{n} (t_{i} - t_{i-1}) \sup_{t \in [t_{i-1}, t_{i}]} X(t) \colon a = t_{0} < t_{1} < \ldots < t_{n} = b \right\}$$

Notes :

- L'existence et la valeur de l'intégral.
- ► Extensions : (au 2ième cas, il y a une singularité à a ou à b)

$$\int_0^\infty X(t) dt = \lim_{b \to \infty} \int_0^b X(t) dt, \quad \int_a^b X(t) dt = \lim_{c \downarrow a} \lim_{d \uparrow b} \int_c^d X(t) dt.$$

Problèmes pour l'intégration riemannienne

- $ightharpoonup L \int_0^1 1_{\mathbb{Q}}(t) = 0$ et $U \int_0^1 1_{\mathbb{Q}}(t) = 1$
- Soit \mathbb{Q}_n l'ensemble des n premiers rationnels dans [0,1]. (L'ordre n'est pas importante.)
- Pour tout n, $U \int_0^1 1_{\mathbb{Q}_n}(t) = 0$.
- Notez que
 - ▶ $1_{\mathbb{O}_n}(t) \leq 1_{\mathbb{O}_{n+1}}(t)$ pour tous t,
 - ▶ $\lim_{n\to\infty} 1_{\mathbb{Q}_n}(t) = 1_{\mathbb{Q}}(t)$ pour tous t,
 - $\qquad \qquad \mathbf{0} = \lim_{n \to \infty} U \int_0^1 \mathbf{1}_{\mathbb{Q}_n}(t) \neq U \int_0^1 \mathbf{1}_{\mathbb{Q}}(t) = 1.$
- lacktriangle de Dirac comme pansement lorsqu'il y a des points avec probabilité positive : défini comme

$$\int_{-\infty}^{\infty} \delta(t)g(t) dt = g(0),$$

et pour tout $t \neq 0$,

$$\delta(t) = 0$$

Une variable aléatoire simple sur $\Omega = [0, 1]$

- Trois façons d'écrire la même variable aléatoire :
 - 1. $X(\omega) = 2 \cdot 1_{[0,1/4)\cup(1/2,1]}(\omega) + 3 \cdot 1_{[1/4,1/2]}(\omega)$
 - 2. $X(\omega) = 2 \cdot 1_{[0,1/4)}(\omega) + 2 \cdot 1_{(1/2,1]}(\omega) + 3 \cdot 1_{[1/4,1/2]}(\omega)$
 - 3. $X(\omega) = 2 \cdot 1_{\Omega}(\omega) + 1 \cdot 1_{[1/4,1/2]}(\omega)$
- ▶ L'image de X est $\{x_1, x_2\} = \{2, 3\}$, un ensemble fini.
- ▶ Dans 1, X est de la forme canonique

$$X(\omega) = \sum_{x \in X(\Omega)} x \cdot 1_{\{X^{-1}(\{x\})\}}(\omega).$$

- ▶ Dans 2, X n'est pas de cette forme, mais [0, 1/4), [1/4, 1/2] et (1/2, 1] forment une partition de [0, 1].
- ▶ Dans 3, $\{[0,1],[1/4,1/2]\}$ n'est pas une partition de [0,1].

Une variable aléatoire simple sur $\Omega = [0, 1]^2$

Figure 1: Une variable aléatoire simple

lci,

$$X(\omega) = egin{cases} x_1 & \omega \in A_1 \ x_2 & \omega \in A_2 \ x_3 & \omega \in A_3 \ x_4 & \omega \in A_4. \end{cases}$$

En général (mais pas avec la mesure de Lebesgue), $P(A_3) > 0$ est possible.

L'espérance d'une variable aléatoire

▶ Pour une variable aléatoire simple ($X(\Omega)$ est fini):

$$E[X] = \sum_{x \in X(\Omega)} x \cdot P(X^{-1}(\lbrace x \rbrace)).$$

Pour une variable aléatoire non-négative :

$$E[X] = \sup\{E[Y]: Y \leq X, Y \text{ simple}\}.$$

Pour une variable aléatoire générale :

$$E[X] = E[X^+] - E[X^-].$$

- Notes :
 - Quand l'expression de X simple n'est pas de forme canonique.
 - ► Cohérence des trois définitions.
 - ▶ Valeurs possibles; quand la troisième n'est pas bien définie.

Exemples pertinents de l'espérance d'une v.a. simple

- ▶ Soit (Ω, \mathcal{F}, P) l'espace de probabilité $([0, 1], \mathcal{B}, \mu)$ où μ est la mesure de Lebesgue.
- ▶ Pour tout *n*,

$$E[1_{\mathbb{Q}_n}] = 1 \cdot \mu(\mathbb{Q}_n) + 0 \cdot \mu(\Omega \setminus \mathbb{Q}_n) = 0.$$

▶ $1_{\mathbb{Q}}$ est une v.a. simple! Par additivité dénombrable,

$$E[1_{\mathbb{Q}}] = 1 \cdot \mu(\mathbb{Q} \cap [0,1]) + 0 \cdot \mu(\mathbb{Q}^c \cap [0,1]) = 0.$$

▶ Rappel : pour l'intégration riemannienne, $U \neq L$, échec de convergence monotone.

Linéarité de l'espérance, variables aléatoires simples I

Même $X(\omega)$ sur $\Omega = [0,1]$ qu'on a vu avant :

$$X(\omega) = \begin{cases} 2 & \omega \in A_1 \equiv [0, 1/4), \\ 3 & \omega \in A_2 \equiv [1/4, 1/2] \\ 2 & \omega \in A_3 \equiv (1/2, 1]. \end{cases}$$

Une autre variable aléatoire $Y(\omega)$ sur Ω :

$$Y(\omega) = egin{cases} 5 & \omega \in B_1 \equiv [0, 3/4], \ 4 & \omega \in B_2 = (3/4, 1]. \end{cases}$$

Toutes les intersections $A_i \cap B_j$:

$A_1 = [0, 1/4)$	$A_2 = [1/4, 1/2]$	$A_3 = (1/2, 1]$	
$\overline{A_1}$	A_2	(1/2, 1]	$B_1 = [0, 3/4]$
Ø	Ø	B_2	$B_2 = (3/4, 1]$

Linéarité de l'espérance, variables aléatoires simples II

$$E[aX + bY] = E\left[\sum_{i,j} (ax_i + by_j) 1_{A_i \cap B_j}\right]$$

$$= \sum_{i,j} (ax_i + by_j) P(A_i \cap B_j)$$

$$= a \sum_i x_i \sum_j P(A_i \cap B_j) + b \sum_j y_j \sum_i P(A_i \cap B_j)$$

$$= a \sum_i x_i P(A_i) + b \sum_j y_j P(B_j)$$

$$= aE[X] + bE[Y].$$

Notes:

- ▶ L'additivité donne l'égalité des espérances de X (formes 1 et 2)
- ▶ La linéarité donne l'égalité des espérances de *X* (formes 2 et 3).

Monotonicité, variables aléatoires simples

Preuve de monotonicité, $X \leq Y \Rightarrow E[X] \leq E[Y]$, pour des variables aléatoires simples X et Y:

$$X \le Y \Rightarrow Y - X \ge 0$$
$$\Rightarrow E[Y - X] \ge 0$$
$$\Rightarrow E[Y] - E[X] \ge 0$$

Conclusion immédiate : la définition suivante est cohérente avec la définition de E[X] pour $X \ge 0$ simple.

Pour toute variable aléatoire $X \ge 0$,

$$E[X] \equiv \sup_{Y \leq X, Y \text{ simple}} E[Y].$$

Monotonicité, v.a. non-négatives

- ▶ Soit X, Y des variables aléatoires non-négatives, $X \leq Y$.
- $E[X] = \sup_{Z < X, Z \text{ simple }} E[Z]$
- $E[Y] = \sup_{Z \le Y, Z \text{ simple }} E[Z]$
- ▶ E[X] est le sup d'un ensemble plus petit, alors $E[X] \le E[Y]$.

Espérances des variables aléatoires arbitraires

- Soit X une variable aléatoire arbitraire.
- Soit $X^+(\omega) = \max(X(\omega), 0), X^-(\omega) = \max(-X(\omega), 0).$
- Les deux sont des variables aléatoires non-négatives.
- ► $X^+ X^- = X$.
- ▶ Soit $v^+ \equiv E[X^+]$, $v^- \equiv E[X^-]$.
- ► E[X] défini par :

$E[X^+]$	$E[X^-]$	E[X]
$v^+ < \infty$	$v^- < \infty$	$v^{+} - v^{-}$
$v^+ = \infty$	$v^- < \infty$	∞
$v^+ < \infty$	$v^- = \infty$	$-\infty$
$v^+ = \infty$	$v^- = \infty$	pas défini

▶ Attention : la valeur d'une v.a. n'est jamais ∞ ou $-\infty$. La valeur d'un sup, inf ou lim peut l'être.

Les espérances et les intégrales impropres

Quelques choses à noter dans la définition, pour $X \ge 0$,

$$E[X] = \sup\{E[Y]: Y \leq X, Y \text{ simple}\}.$$

- ▶ Un seul sup/inf.
- L'importance de $X \ge 0$ et l'unidirectionnalité (cf. L et U pour l'intégration riemannienne)
- Aucune définition spéciale pour les singularités ou pour $\Omega = \mathbb{R}$.
- ▶ Pas besoin d'un pansement comme le δ de Dirac.

Exemples:

- 1. $X(\omega) = 1/\sqrt{\omega}$, mesure de Lebesgue sur [0,1].
- 2. $X(\omega) = 1/\omega$, mesure de Lebesgue sur [0,1].
- 3. $X(\omega) = \omega$, loi gaussienne sur \mathbb{R} .
- 4. $X(\omega) = \omega$, loi Cauchy sur \mathbb{R} .
- 5. *X* de la Figure 4.2.1.

Convergence monotone de X_n simple à X non-négative

▶ Les fonctions $\Psi_n \colon \mathbb{R} \to \mathbb{R}$:

$$\Psi_n(x) = \min(n, 2^{-n} \lfloor 2^n x \rfloor).$$

- Propriétés de $\Psi_n(x)$:
 - ▶ $0 \le \Psi_n(x) \le x, x \ge 0.$
 - ▶ Pour tout $x \in \mathbb{R}$, $\Psi_n(x) \nearrow x$.
 - ▶ Pour tout n, $\Psi_n(\mathbb{R})$ est fini.
- ▶ Construction $X_n(\omega) = \Psi_n(X(\omega))$.
- ▶ Propriétés de X_n :
 - $ightharpoonup X_n$ est simple
 - $X_n \leq X_{n+1} \leq X$
 - ▶ $\lim_{n\to\infty} X_n(\omega) = X(\omega), \ \omega \in \Omega.$
 - ▶ $E[X_n] \le E[X]$ (définition de E[X])
 - ▶ $\lim_{n\to\infty} E[X_n(\omega)] \leq E[X]$
- ▶ Pourquoi pas $\Psi_n(x) = \min(n, n^{-1} \lfloor nx \rfloor)$? $\Psi_n(x) = 2^{-n} \lfloor 2^n x \rfloor$?
- ▶ Remarquez la discrétisation de X(Ω), pas Ω.

Théorème de convergence monotone

- ▶ Supposez que X_1, X_2, \ldots sont des variables aléatoires non-négatives avec $X_n(\omega) \nearrow X(\omega)$ pour tout $\omega \in \Omega$. Alors X est une variable aléatoire et $E[X] = \lim_{n\to\infty} E[X_n]$.
- ▶ Remarque : les X_n ne sont pas forcément simples.
- ▶ Par monotonicité, $E[X_1] \le E[X_2] \le ... \le E[X]$.
- ▶ Attention : $E[X_n] = \infty$, $E[X] = \infty$ possible.
- ▶ Immédiatement, $\lim_{n\to\infty} E[X_n] \le E[X]$.
- ▶ Il reste à prouver que $\lim_{n\to\infty} E[X_n] \ge E[X]$.

Preuve de $\lim_{n\to\infty} E[X_n] \geq E[X]$

- ▶ Soit Y simple, $Y \le X$ (alors $E[Y] \le E[X]$). Soit $\epsilon > 0$.
- ▶ $Y = \sum_i v_i 1_{A_i}$ où $\{A_i\}$ est une partition de Ω en événements et $v_i \leq X(\omega)$ pour tout $\omega \in A_i$.
- ▶ Pour tout *i* et *n*, soit $A_{in} \equiv \{\omega \in A_i : X_n(\omega) \ge v_i \epsilon\}.$
- ▶ Alors pour tout i, $\{A_{in}\} \nearrow A_i$. (monotonicité, convergence)
- ▶ Alors $E[X_n] \ge \sum_i (v_i \epsilon) P(A_{in})$. (à droite : $E[Y_n]$, Y_n simple)
- Par convergence de probabilité :

$$\lim_{n\to\infty}\sum_{i}(v_i-\epsilon)P(A_{in})=\left(\sum_{i}v_iP(A_i)\right)-P(\cup_iA_i)\epsilon,$$

- ▶ Alors $\lim_{n\to\infty} E[X_n] \ge E[Y] \epsilon$.
- $\epsilon > 0$ est arbitraire alors $\lim_{n \to \infty} E[X_n] \ge E[Y]$.
- ▶ Y est arbitraire, alors $\lim_{n\to\infty} E[X_n] \ge E[X]$.

Remarques

▶ On peut affaiblir la condition $X_n(\omega) \nearrow X(\omega)$ en

$$P({X_n(\omega) \nearrow X(\omega)}) = 1.$$

- ▶ Autrement dit, $X_n \nearrow X$ presque surement.
- Importance de monotonicité, positivité
- Échec de convergence monotone pour l'intégration riemannienne
- Linéarité de $E[\cdot]$ pour variables aléatoires positives : soit $X_n = \Psi_n(X), \ Y_n = \Psi_n(Y), \ a,b \ge 0$. Alors

$$E[aX + bY] = \lim_{n} E[aX_n + bY_n]$$
$$= \lim_{n} aE[X_n] + bE[Y_n] = aE[X] + bE[Y].$$

Aperçu des chapitres 5 et 6

- Chapitre 5
 - Inégalités de Markov, Chebychev, Cauchy-Schwarz, Jensen
 - Convergence presque sur, convergence en probabilité
 - Lois de grand nombres
- Chapitre 6
 - Distributions, fonctions de distribution, de densité