Modélisation des structures informatiques: TP1

mouhcine.mendil@inria.fr

January 24, 2019

Structure et Evaluation

- 10 séances:
 - Exercices de TP
 - 2 projets

Structure et Evaluation

- 10 séances:
 - Exercices de TP
 - 2 projets
- Evaluation
 - Soutenance de projets

Structure et Evaluation

- 10 séances:
 - Exercices de TP
 - 2 projets
- Evaluation
 - Soutenance de projets
- Objectif: Ecrire des programmes informatiques pour représenter les notions développées dans le cours

Relations: Rappel

Definition (Relation)

Une relation R entre deux ensembles A et B est un sous-ensemble de $A \times B$.

Relations: Rappel

Definition (Relation)

Une relation R entre deux ensembles A et B est un sous-ensemble de $A \times B$.

Example (1)

 $A = \{1, 2\}, B = \{0, 12, 20\}.$

La relation R entre A et B définie par " \geq " est l'ensemble $\{(1,0),(2,0)\}$

Relations: Autre définition

Definition (Relation)

Une relation R entre deux ensembles A et B est une fonction $A \times B \to \{0,1\}$ telle que:

$$f: A \times B \rightarrow \{0, 1\}$$

 $(a, b) \rightarrow 1 \text{ si } aRb$
 0 sinon

Relations: Autre définition

Definition (Relation)

Une relation R entre deux ensembles A et B est une fonction $A \times B \to \{0,1\}$ telle que:

$$f: A \times B \rightarrow \{0,1\}$$

 $(a,b) \rightarrow 1 \text{ si } aRb$
 0 sinon

Représentation matricielle de R:

- $\forall i = 1, ..., n \quad a_i \in A$
- $\forall j = 1, ..., m$ $b_i \in B$
- $R[a_i][b_j] = 1$ ssi a_iRb_j

Relations: Autre définition

Definition (Relation)

Une relation R entre deux ensembles A et B est une fonction $A \times B \to \{0,1\}$ telle que:

$$f: A \times B \rightarrow \{0,1\}$$

 $(a,b) \rightarrow 1 \text{ si } aRb$
 0 sinon

Représentation matricielle de R:

•
$$\forall i = 1, ..., n \quad a_i \in A$$

•
$$\forall j = 1, ..., m$$
 $b_i \in B$

•
$$R[a_i][b_j] = 1$$
 ssi a_iRb_j

Python: Rappels

```
#!/usr/bin/env python3
# Possibilité d'importer des entités (fonctions, classes...)
from package name import function1, function2
# Definition d'une fonction
def function(parametre1,parametre2,parametre3):
    # L'indentation est très importante en puthon
    # ...
# Code du main à executer
if name == " main ":
    # Initialisation d'une liste vide en python
   list1=∏
    # Autre initilisation
   list2=[1,2,"text",False]
    # Tableau 2D (ou matrice) = liste de listes
   R=[[1,2,3,20],[2,5,10,1]] # matrice à 2 lignes et 4 colonnes
    # Accès à la case ligne 1 colonne 4
   element=R[1][4]
    # Ajouter un élément à une liste
   list1.append(element)
```

- Partie 1:
 - Propriétés de l'anneau des booléens: élément neutre (1 ou vrai), élément absorbant (0 ou faux), la somme (∨) et le produit (∧)
 - Affichage matricielle d'une relation

- Partie 1:
 - Propriétés de l'anneau des booléens: élément neutre (1 ou vrai), élément absorbant (0 ou faux), la somme (∨) et le produit (∧)
 - Affichage matricielle d'une relation
- Partie 2: codage de relations simples (successeur, motié et diviseur non trivial)

- Partie 1:
 - Propriétés de l'anneau des booléens: élément neutre (1 ou vrai), élément absorbant (0 ou faux), la somme (∨) et le produit (∧)
 - Affichage matricielle d'une relation
- Partie 2: codage de relations simples (successeur, motié et diviseur non trivial)
- Partie 3: Opérations sur les relations (symétrie, composition, union, intersection et inclusion)

- Partie 1:
 - Propriétés de l'anneau des booléens: élément neutre (1 ou vrai), élément absorbant (0 ou faux), la somme (∨) et le produit (∧)
 - Affichage matricielle d'une relation
- Partie 2: codage de relations simples (successeur, motié et diviseur non trivial)
- Partie 3: Opérations sur les relations (symétrie, composition, union, intersection et inclusion)
- Enoncé du TP et code à trous sur http://sergipujades.free.fr/teaching/INF202/