Nome:

**Duração 2 horas. Prova com consulta de formulário e uso de computador**. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use  $g = 9.8 \text{ m/s}^2$ .

1. (4 valores) A barra na figura, com massa m=1.9 kg e comprimento L=0.85 m, pode rodar à volta dum eixo horizontal fixo que passa pelo seu centro de massa C, no ponto meio da barra. Dois blocos de 3 kg e 1 kg foram pendurados nos dois extremos da barra, por meio de fios de massa desprezável em comparação com as massas dos blocos. Sabendo que o momento de inércia da barra, em relação ao eixo no centro de massa C, é dado pela expressão  $\frac{1}{12} \, m \, L^2$ , e desprezando a resistência do ar e o atrito no eixo, determine as acelerações dos dois blocos, no instante em que a barra está na posição horizontal.



2. (4 valores) Determine os pontos de equilíbrio do sistema dinâmico com equações de evolução:

$$\dot{x} = x \left( 1 - y^2 \right) \qquad \dot{y} = x + y$$

Encontre a matriz da aproximação linear na vizinhança de cada um desses pontos, e os seus valores próprios e vetores próprios (caso existam no plano real xy). Com base nos valores próprios, indique que tipo de ponto é cada um dos pontos de equilíbrio. Mostre os pontos de equilíbrio no plano real xy e com base nos vetores próprios obtidos, trace algumas curvas de evolução na vizinhança de cada um desses pontos.

## **PERGUNTAS**. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um avião está a voar com velocidade de valor 900 km/h, em relação ao ar. Nesse instante, o valor da velocidade do vento é de 50 km/h. Qual dos valores na lista poderá ser o valor da velocidade do avião em relação à terra?
  - (A) 825.0 km/h
- (C) 925 km/h
- (E) 1000 km/h

- (B) 975.0 km/h
- (D) 800 km/h

Resposta:

- **4.** As equações dum sistema dinâmico com variáveis de estado (x, y) foram transformadas para coordenadas polares  $(r, \theta)$ , obtendo-se as equações:  $\dot{\theta} = -2$   $\dot{r} = r^2 3r$  Como tal, conclui-se que o sistema tem um ciclo limite:
  - (A) at rativo com r=2
- **(D)** repulsivo com r = 3

**(E)** 1

- **(B)** at rativo com r = 0
- **(E)** at rativo com r = 3
- (C) repulsivo com r = 2

Resposta:

- **5.** A força tangencial resultante sobre um objeto  $é s^2 + s + 6$ , onde s  $\acute{e}$  a posição na trajetória. Sabendo que o retrato de fase do sistema tem uma órbita homoclínica que se aproxima assimptoticamente do ponto (a, 0), determine o valor de a.
  - (**A**) 3
- **(C)** 2

- **(B)** -1
- **(D)** -2

Resposta:

6. Para subir uma caixa com massa de 65 kg, desde o chão até um camião com altura 120 cm, um homem empurra a caixa sobre cilindros (para reduzir o atrito) ao longo duma rampa inclinada 30° em relação à horizontal. Determine o trabalho mínimo (quando o atrito e a resistência do ar são desprezáveis) que deverá realizar o homem para subir a caixa ao camião.

- (A) 331 J
- (C) 382 J
- (E) 191 J

- **(B)** 764 J
- (**D**) 662 J
- Resposta:
- 7. As equações de evolução de dois sistemas dinâmicos são:

$$\begin{cases} \dot{x} = 2xy - y \\ \dot{y} = 3x - y^2 \end{cases} \qquad \begin{cases} \dot{x} = 2x - y \\ \dot{y} = 3x - 2y \end{cases}$$

Qual das seguintes afirmações é verdadeira?

- (A) O 1º é conservativo e o 2º não é conservativo.
- (B) Nenhum dos dois é linear.
- (C) Ambos são conservativos.
- (**D**) O 1º não é conservativo e o 2º é conservativo.
- (E) Nenhum dos dois é conservativo.

Resposta:

- 8. Determine o módulo da aceleração da Terra à volta do Sol, sabendo que a distância média entre o Sol e a Terra é  $1.50 \times 10^{11}$  m e que a Terra demora 365.25 dias a completar uma volta em torno do Sol (admita uma órbita circular).
  - (A)  $3.43 \text{ m/s}^2$
- **(D)**  $4.44 \times 10^7 \text{ m/s}^2$
- **(B)**  $2.99 \times 10^4 \text{ m/s}^2$
- (E)  $2.64 \times 10^{-25} \text{ m/s}^2$
- (C)  $5.95 \times 10^{-3} \text{ m/s}^2$

Resposta:

9. A equação diferencial:

$$\ddot{x} - x^2 + x + 6 = 0$$

é equivalente a um sistema dinâmico com espaço de fase  $(x, \dot{x})$ . Qual dos pontos na lista é ponto de equilíbrio desse sistema?

- **(A)** (0, 0)
- **(C)** (3, 0)
- **(E)** (-3, 0)

- **(B)** (1, 0)
- **(D)** (-1, 0)

Resposta:

| 10. | Um ciclista demora 22 s a percorrer 200 m, numa pista reta e   |
|-----|----------------------------------------------------------------|
|     | horizontal, com velocidade uniforme. Sabendo que o raio das    |
|     | rodas da bicicleta é 27.8 cm e admitindo que as rodas não des- |
|     | lizam sobre a pista, determine o valor da velocidade angular   |
|     | das rodas.                                                     |

- (A) 49.1 rad/s
- (C) 65.4 rad/s
- (E) 40.9 rad/s

- (B) 32.7 rad/s
- (D) 57.2 rad/s

Resposta:

11. O vetor velocidade do objeto 1, em função do tempo, é:  $\vec{v}_1 = (1-2t)\hat{i} + 8t\hat{j}$  (unidades SI) e o vetor velocidade do objeto 2, no mesmo referencial, é:  $\vec{v}_2 = 5 t \hat{i} + (1 - 9 t) \hat{j}$ . Determine o vetor aceleração do objeto 1 em relação ao objeto 2.

- (A)  $7 \hat{i} + 1 \hat{j}$
- **(D)**  $-3\hat{i}-1\hat{j}$
- **(B)**  $-7 \hat{i} + 17 \hat{j}$
- **(E)**  $7 \hat{i} 1 \hat{j}$
- (C)  $3\hat{i} + 17\hat{j}$

Resposta:

- 12. Qual das seguintes afirmações, acerca da origem no espaço de fase num sistema dinâmico de duas espécies, é correta?
  - (A) É sempre ponto de equilíbrio instável.
  - (B) É sempre ponto de equilíbrio estável.
  - (C) É sempre ponto de equilíbrio, de qualquer tipo.
  - (**D**) Pode não ser ponto de equilíbrio.
  - (E) É sempre ponto de equilíbrio, do tipo sela.

Resposta:

13. Um camião transporta uma caixa retangular homogénea, com 60 cm de largura na base e 90 cm de altura. Quando o camião acelera, numa estrada horizontal, existe suficiente atrito entre a superfície do camião e a caixa evitando que a caixa derrape sobre a superfície, mas a aceleração não pode ser maior do que um valor máximo, para evitar que a caixa rode. Determine esse valor máximo da aceleração do camião.



- (A)  $4.20 \text{ m/s}^2$
- (C)  $3.92 \text{ m/s}^2$
- **(E)**  $6.53 \text{ m/s}^2$

- **(B)**  $7.35 \text{ m/s}^2$
- **(D)**  $5.88 \text{ m/s}^2$

Resposta:

4. Um projetil lançado verticalmente para cima atinge uma altura h máxima, que depende da velocidade inicial com que foi lançado, antes de voltar a cair. Se a velocidade for muito elevada, a altura pode atingir valores elevados, onde a aceleração da gravidade já não é a constante g mas é dada pela expressão:

$$\frac{gR^2}{(R+h)^2}$$

onde  $R = 6.4 \times 10^6$  m é o raio da Terra. Desprezando a resistência do ar, determine o valor mínimo que deverá ter a velocidade inicial, para o objeto atingir uma altura máxima infinita; ou seja, fugir ao campo gravítico da Terra.

- (A)  $2.2 \times 10^3$  m/s
- (C)  $3.7 \times 10^3 \text{ m/s}$
- **(E)**  $100.8 \times 10^3 \,\mathrm{m/s}$

- **(B)**  $11.2 \times 10^3 \text{ m/s}$  **(D)**  $56.0 \times 10^3 \text{ m/s}$

Resposta:

15. Um bloco de massa 1 kg desce deslizando sobre a superfície dum plano inclinado com base x = 5 m e altura y = 3 m. Calcule o módulo da reação normal do plano sobre o bloco.

- (A) 9.8 N
- (C) 10.08 N
- (E) 4.2 N

- (B) 8.4 N
- **(D)** 8.17 N

Resposta:

16. A trajetória de uma partícula na qual atua uma força central é sempre plana e pode ser descrita em coordenadas polares r e  $\theta$ . As expressões da energia cinética e da energia potencial central em questão são:  $E_{\rm c}=\frac{m}{2}(r^2\dot{\theta}^2+\dot{r}^2) \qquad U=k\,r^4$  onde m é a massa do corpo e k uma constante. Encontre a

$$E_{\rm c} = \frac{m^2}{2} (r^2 \dot{\theta}^2 + \dot{r}^2)$$
  $U = k r^4$ 

equação de movimento para  $\ddot{r}$ 

- (**D**)  $r^2 \dot{\theta}^2 \frac{4 k r^3}{m}$ (**E**)  $r^2 \dot{\theta}^2 + \frac{4 k r^3}{m}$
- (A)  $r\dot{\theta}^2 \frac{4kr^3}{m}$ (B)  $r\dot{\theta} + \frac{4kr^3}{m}$
- $(\mathbf{C}) \ r\ddot{\theta} + \frac{4\,k\,r^3}{m}$

Resposta:

17. Qual das seguintes equações poderá ser uma das equações de evolução num sistema predador presa?

- **(A)**  $\dot{y} = 2 y^2 3 y$
- **(D)**  $\dot{y} = 6 y y^2$
- **(B)**  $\dot{y} = 2 y 5 y^2$
- **(E)**  $\dot{y} = x + x y^2$
- (C)  $\dot{y} = -5 x y + 2 y$

Resposta:

A equação dos valores próprios é:

$$\begin{vmatrix} -\lambda & 2 \\ 1 & 1 - \lambda \end{vmatrix} = 0 \implies \lambda^2 - \lambda - 2 = 0 \implies (\lambda - 2)(\lambda + 1) = 0$$

Há dois valores próprios,  $\lambda_1 = 2$  e  $\lambda_2 = -1$ . Como tal, os pontos  $P_2$  e  $P_3$  são pontos de sela. Os vetores próprios correspondentes a  $\lambda_1 = 2$  são as soluções do sistema:

$$\begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies y = x$$

os vetores próprios estão na reta com declive +1, que passa pelo ponto de equilíbrio ( $P_2$  ou  $P_3$ ). Os vetores próprios correspondentes a  $\lambda_2 = -1$  são as soluções do sistema:

$$\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies y = -\frac{x}{2}$$

os vetores próprios estão na reta com declive -0.5, que passa pelo ponto de equilíbrio (P2 ou P3).

A partir dos valores e vetores próprios obtidos, conclui-se que na vizinhança de  $P_1$  há duas curvas de evolução retas que se saem do ponto, na direção do eixo dos y; as restantes curvas de evolução que saem do ponto são todas curvas. Nos pontos  $P_2$  e  $P_3$ , há duas curvas de evolução que saem do ponto de equilíbrio, com declive igual a 1, e outras duas curvas de evolução retas, que terminam no ponto de equilíbrio, com declive -0.5. A figura seguinte mostra esses resultados:



## **Perguntas**

**3.** C

**6.** B

**9.** C

**12.** C

**15.** B

**4.** D

**7.** C

**10.** B

**13.** E

**16.** A

**5.** D

**8.** C

**11.** B

**14.** B

**17.** C

## Cotações

## Problema 1

(a) Mecânica vetorial.

| Diagrama de corpo livre /equação de movimento do bloco 1              | 0.8 |
|-----------------------------------------------------------------------|-----|
| • Diagrama de corpo livre /equação de movimento do bloco 2            | 0.8 |
| Diagrama de corpo livre /equação de movimento da barra                | 0.8 |
| Indicar que as acelerações dos blocos têm o mesmo valor absoluto      | 0.6 |
| Relação entre a aceleração dos blocos e a aceleração angular da barra | 0.6 |
| Resolução das 3 equações de movimento                                 | 0.4 |
| (b) Mecânica lagrangiana.                                             |     |
| Indicar que as velocidades dos blocos têm o mesmo valor absoluto      | 0.4 |
| Relação entre a velocidade dos blocos e a velocidade angular da barra | 0.4 |
| Energia cinética do sistema, em função das variáveis de estado        | 1.2 |
| Energia potencial do sistema, em função das variáveis de estado       | 1.2 |
| Aplicação da equação de Lagrange                                      | 0.4 |
| Resolução para obter o valor da aceleração                            | 0.4 |
| Problema 2                                                            |     |
| Obtenção dos 3 pontos de equilíbrio                                   | 0.4 |
| Matriz jacobiana                                                      | 0.4 |
| Matrizes das aproximações lineares                                    | 0.4 |
| Valores / vetores próprios do ponto na origem                         | 0.6 |
| Valores / vetores próprios dos outros dois pontos                     | 0.6 |
| Classificação correta dos 3 pontos                                    | 0.8 |
| Gráfico                                                               | 0.8 |