This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	357	706/14	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:32
L2	324	1 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:36
L3	476	706/12	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:36
L4	427	3 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:41
L5	630	706/46	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:41
L6	553	5 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:41
S1	7	"5727130"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/02 15:46
S2	3	"6167391"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:02
S3	1748	object and dimension and reduction and space and distance and (cluster or classify)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:13
S4	3	S2 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:05

S5	1054	S3 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:04
S6	3570	object and dimension and reduction and space and distance and (cluster or classify)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2004/09/08 08:05
S7	2277	S6 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:40
S8	1473	S7 and distribution	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:06
S9	341	S8 and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:10
S10	6	S9 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:38
S11	1068	object and cluster and space and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:52
S12	647	S11 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:53
S13	8	S12 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:53
S14	852	object and classify and space and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:52

S15	528	S14 and @ad<"20010823"	US-PGPUB; USPAT;	OR	OFF	2004/09/08 09:23
		·	EPO; JPO; DERWENT; IBM_TDB			
S16	5	S15 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S17	2412	map and object and distance and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S18	1599	S17 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S19	24	S18 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:39
520	32	US-0462524-\$.DID. OR US-4811199-\$. DID. OR US-4945421-\$.DID. OR US-4972363-\$.DID. OR US-5093900-\$. DID. OR US-5237678-\$. DID. OR US-5268834-\$.DID. OR US-5371834-\$.DID. OR US-5386558-\$. DID. OR US-5446681-\$.DID. OR US-5822741-\$. DID. OR US-5918232-\$.DID. OR US-6026797-\$. DID.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:40
S21	34	US-4625242-\$.DID. OR US-4811199-\$. DID. OR US-4945421-\$.DID. OR US-4972363-\$.DID. OR US-5093900-\$. DID. OR US-5175817-\$.DID. OR US-5208900-\$.DID. OR US-5237678-\$. DID. OR US-5268834-\$.DID. OR US-5371834-\$.DID. OR US-5386558-\$. DID. OR US-5438646-\$.DID. OR US-5446681-\$.DID. OR US-5822741-\$. DID. OR US-5918232-\$.DID. OR US-6026797-\$. DID.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:43

S22 34 US-4625242-\$.DID. OR US-4811199-\$. DID. OR US-4945421-\$.DID. OR US-4972363-\$.DID. OR US-5093900-\$. DID. OR US-5175817-\$.DID. OR US-5208900-\$.DID. OR US-5237678-\$. DID. OR US-5268834-\$.DID. OR US-5371834-\$.DID. OR US-5386558-\$. DID. OR US-5438646-\$.DID. OR US-5446681-\$.DID. OR US-5822741-\$. DID. OR US-5680475-\$.DID. OR US-5918232-\$.DID. OR US-6026397-\$. DID.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 16:32
--	---	----	-----	------------------

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	32	US-0462524-\$.DID. OR US-4811199-\$. DID. OR US-4945421-\$.DID. OR US-4972363-\$.DID. OR US-5093900-\$. DID. OR US-5208900-\$.DID. OR US-5237678-\$. DID. OR US-5268834-\$.DID. OR US-5371834-\$.DID. OR US-5386558-\$. DID. OR US-5446681-\$.DID. OR US-5822741-\$. DID. OR US-5680475-\$.DID. OR US-5918232-\$.DID. OR US-6026797-\$. DID.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:40
L2	34	US-4625242-\$.DID. OR US-4811199-\$. DID. OR US-4945421-\$.DID. OR US-4972363-\$.DID. OR US-5093900-\$. DID. OR US-5175817-\$.DID. OR US-5208900-\$.DID. OR US-5237678-\$. DID. OR US-5268834-\$.DID. OR US-5371834-\$.DID. OR US-5386558-\$. DID. OR US-5446681-\$.DID. OR US-5822741-\$. DID. OR US-5680475-\$.DID. OR US-5918232-\$.DID. OR US-6026797-\$. DID.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:43
L3	34	US-4625242-\$.DID. OR US-4811199-\$. DID. OR US-4945421-\$.DID. OR US-4972363-\$.DID. OR US-5093900-\$. DID. OR US-5175817-\$.DID. OR US-5208900-\$.DID. OR US-5237678-\$. DID. OR US-5268834-\$.DID. OR US-5371834-\$.DID. OR US-5386558-\$. DID. OR US-5438646-\$.DID. OR US-5446681-\$.DID. OR US-5822741-\$. DID. OR US-5680475-\$.DID. OR US-5918232-\$.DID. OR US-6026397-\$. DID.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:43
S1	7	"5727130"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/02 15:46
S2	3	"6167391"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:02
S3	1748	object and dimension and reduction and space and distance and (cluster or classify)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:13

			<u> </u>			
S4	3	S2 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:05
S5	1054	S3 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:04
S6	3570	object and dimension and reduction and space and distance and (cluster or classify)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2004/09/08 08:05
S7	2277	S6 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:40
S8	1473	S7 and distribution	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:06
S9	341	S8 and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:10
S10	6	S9 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:38
S11	1068	object and cluster and space and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:52
S12	647	S11 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:53
S13	8	S12 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:53

S14	852	object and classify and space and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 08:52
S15	528	S14 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S16	5	S15 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S17	2412	map and object and distance and mean and standard and deviation	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S18	1599	S17 and @ad<"20010823"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 09:23
S19	24	S18 and "random walk"	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2004/09/08 10:39

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

+map +object +distance +space +mean +standard +deviation

Nothing Found

Your search for +map +object +distance +space +mean +standard +deviation computer memory processor did not return any results.

You may want to try an Advanced Search for additional options.

Please review the Quick Tips below or for more information see the Search Tips.

Quick Tips

• Enter your search terms in lower case with a space between the terms.

sales offices

You can also enter a full question or concept in plain language.

Where are the sales offices?

 Capitalize <u>proper nouns</u> to search for specific people, places, or products.

John Colter, Netscape Navigator

• Enclose a phrase in double quotes to search for that exact phrase.

"museum of natural history" "museum of modern art"

 Narrow your searches by using a + if a search term <u>must appear</u> on a page.

museum +art

• Exclude pages by using a - if a search term must not appear on a page.

museum -Paris

Combine these techniques to create a specific search query. The better your description of the information you want, the more relevant your results will be.

museum +"natural history" dinosaur -Chicago

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc.

Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat Q QuickTime Windows Media Player Real Player

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Membership	Publications/Services	Standards	Conferences	Careers/Jobs
	E Xplore	u	Inited States Pa	Welcome tent and Traden

tgg II

	Welcome United States Patent and Trademark Office
Help FAQ Terms IEEE	
Welcome to IEEE Xplore®	
O- Home O- What Can I Access?	Your search matched 0 of 1069805 documents. A maximum of 500 results are displayed, 50 to a page, sorted by Relevance Descending order.
O- Log-out	Refine This Search:
Tables of Contents	You may refine your search by editing the current search expression or enternew one in the text box.
O- Journals & Magazines	map and object and distance and space and mean Search
O- Conference Proceedings	Check to search within this result set
O- Standards	Results Key: JNL = Journal or Magazine CNF = Conference STD = Standard
Search	JAL = Journal of Plagazine CAF = Conference STD = Standard
O- By Author O- Basic O- Advanced	Results: No documents matched your query.
Member Services	
O- Join IEEE O- Establish IEEE Web Account	
O- Access the IEEE Member Digital Library	
O- Access the IEEE Enterprise File Cabinet	
☐ Print Format	

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • C The Guide

+map +object +distance +mean +standard +deviation

SEAR(SI)

9/8/04

HIEVOMBIERAL HERVEN EN EN EN EN

Feedback Report a problem Satisfaction survey

Terms used map object distance mean standard deviation

Found **574** of **141,680**

Sort results

by Display

results

relevance

expanded form

Save results to a Binder

Search Tips

Open results in a new

Try an <u>Advanced Search</u> Try this search in <u>The ACM Guide</u>

Results 1 - 20 of 200

window
Result page:

Result page: **1** 2 3 4 5 6 7 8 9 10

Relevance scale

next

Best 200 shown

1 Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren November 1997 **Proceedings of the**

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research

Full text available: pdf(4.21 MB)

Additional Information: full citation, abstract, references, index terms

Understanding distributed applications is a tedious and difficult task. Visualizations based on process-time diagrams are often used to obtain a better understanding of the execution of the application. The visualization tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diagrams are often very complex and do not provide the user with the desired overview of the application. In our experience, such tools display repeated occurrences of non-trivial commun ...

2 Three-dimensional object recognition

Paul J. Besl, Ramesh C. Jain

March 1985 ACM Computing Surveys (CSUR), Volume 17 Issue 1

Full text available: pdf(7.76 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>, <u>review</u>

A general-purpose computer vision system must be capable of recognizing three-dimensional (3-D) objects. This paper proposes a precise definition of the 3-D object recognition problem, discusses basic concepts associated with this problem, and reviews the relevant literature. Because range images (or depth maps) are often used as sensor input instead of intensity images, techniques for obtaining, processing, and characterizing range data are also surveyed.

3 Status report of the graphic standards planning committee of ACM/SIGGRAPH: Stateof-the-art of graphic software packages

Compuater Graphics staff

September 1977 ACM SIGGRAPH Computer Graphics, Volume 11 Issue 3

Full text available: pdf(9.03 MB)

Additional Information: full citation, references

Model-based object recognition in dense-range images—a review Farshid Arman, J. K. Aggarwal

March 1993 ACM Computing Surveys (CSUR), Volume 25 Issue 1

Full text available: pdf(3.42 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms, review

The goal in computer vision systems is to analyze data collected from the environment and derive an interpretation to complete a specified task. Vision system tasks may be divided

into data acquisition, low-level processing, representation, model construction, and matching subtasks. This paper presents a comprehensive survey of model-based vision systems using dense-range images. A comprehensive survey of the recent publications in each subtask pertaining to dense-range image object recogni ...

Keywords: 3D object recognition, 3D representations, CAD-based vision, dense-range images, image understanding

5 A unified framework for model-based clustering

Shi Zhong, Joydeep Ghosh

December 2003 The Journal of Machine Learning Research, Volume 4

Full text available: pdf(851.48 KB) Additional Information: full citation, abstract, index terms

Model-based clustering techniques have been widely used and have shown promising results in many applications involving complex data. This paper presents a unified framework for probabilistic model-based clustering based on a bipartite graph view of data and models that highlights the commonalities and differences among existing model-based clustering algorithms. In this view, clusters are represented as probabilistic models in a model space that is conceptually separate from the data space. For ...

6 Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time

Daniel A. Spielman, Shang-Hua Teng

May 2004 Journal of the ACM (JACM), Volume 51 Issue 3

Full text available: pdf(1.05 MB)

Additional Information: full citation, abstract, references, index terms

We introduce the smoothed analysis of algorithms, which continuously interpolates between the worst-case and average-case analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We measure this performance in terms of both the input size and the magnitude of the perturbations. We show that the simplex algorithm has smoothed complexity polynomial in the input size and ...

Keywords: Simplex method, complexity, perturbation, smoothed analysis

7 Terrain database interoperability issues in training with distributed interactive simulation

Guy A. Schiavone, S. Sureshchandran, Kenneth C. Hardis July 1997 ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 7 Issue 3

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(443.34 KB) terms, review

In Distributed Interactive Simulation (DIS), each participating node is responsible for maintaining its own model of the synthetic environment. Problems may arise if significant inconsistencies are allowed to exist between these separate world views, resulting in unrealistic simulation results or negative training, and a corresponding degradation of interoperability in a DIS simulation exercise. In the DIS community, this is known as the simulator terrain database (TDB) correlation problem. ...

Keywords: distributed interactive simulation, terrain databases

Distance-based outliers: algorithms and applications Edwin M. Knorr, Raymond T. Ng, Vladimir Tucakov

February 2000 The VLDB Journal — The International Journal on Very Large Data

Bases, Volume 8 Issue 3-4

Full text available: pdf(613.90 KB) Additional Information: full citation, abstract, index terms

This paper deals with finding outliers (exceptions) in large, multidimensional datasets. The identification of outliers can lead to the discovery of truly unexpected knowledge in areas such as electronic commerce, credit card fraud, and even the analysis of performance statistics of professional athletes. Existing methods that we have seen for finding outliers can only deal efficiently with two dimensions/attributes of a dataset. In this paper, we study the notion of *DB* (distance-based ...

Keywords: Algorithms, Data mining, Data mining applications, Outliers/exceptions

9 A survey of image registration techniques

Lisa Gottesfeld Brown

December 1992 ACM Computing Surveys (CSUR), Volume 24 Issue 4

Full text available: pdf(5.20 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms, review

Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors, or from different viewpoints. Virtually all large systems which evaluate images require the registration of images, or a closely related operation, as an intermediate step. Specific examples of systems where image registration is a significant component include matching a target with a real-time image of a scene for target recognition, mon ...

Keywords: image registration, image warping, rectification, template matching

10 VLSI cell placement techniques

K. Shahookar, P. Mazumder

June 1991 ACM Computing Surveys (CSUR), Volume 23 Issue 2

Full text available: pdf(5.28 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>, <u>review</u>

VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasis on standard cell and macro placement. Five major algorithms for placement are discussed: simulated annealing, force-directed placement, min-cut placement, placement by numerical optimization, a ...

Keywords: VLSI, floor planning, force-directed placement, gate array, genetic algorithm, integrated circuits, layout, min-cut, physical design, placement, simulated annealing, standard cell

11 A survey of methods for recovering quadrics in triangle meshes

Sylvain Petitjean

June 2002 ACM Computing Surveys (CSUR), Volume 34 Issue 2

Full text available: pdf(3.91 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>

In a variety of practical situations such as reverse engineering of boundary representation from depth maps of scanned objects, range data analysis, model-based recognition and algebraic surface design, there is a need to recover the shape of visible surfaces of a dense 3D point set. In particular, it is desirable to identify and fit simple surfaces of known type wherever these are in reasonable agreement with the data. We are interested in the class of quadric surfaces, that is, algebraic surfa ...

Keywords: Data fitting, geometry enhancement, local geometry estimation, mesh fairing, shape recovery

12 A comparative study of language support for generic programming
Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock
October 2003 ACM SIGPLAN Notices, Proceedings of the 18th ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and
applications, Volume 38 Issue 11

Full text available: pdf(237.38 KB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>, <u>review</u>

Many modern programming languages support basic generic programming, sufficient to implement type-safe polymorphic containers. Some languages have moved beyond this basic support to a broader, more powerful interpretation of generic programming, and their extensions have proven valuable in practice. This paper reports on a comprehensive comparison of generics in six programming languages: C++, Standard ML, Haskell, Eiffel, Java (with its proposed generics extension), and Generic C. By implementi ...

Keywords: C#, C++, Eiffel, Haskell, Java, generic programming, generics, polymorphism, standard ML

13 A software engineering perspective on algorithmics

Karsten Weihe

March 2001 ACM Computing Surveys (CSUR), Volume 33 Issue 1

Full text available: pdf(1.62 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>index terms</u>, review

An algorithm component is an implementation of an algorithm which is not intended to be a stand-alone module, but to perform a specific task within a large software package or even within several distinct software packages. Therefore, the design of algorithm components must also incorporate software-engineering aspects. A key design goal is adaptability. This goal is important for maintenance throughout a project, prototypical development, and reuse in new, unforseen contex ...

Keywords: algorithm engineering

14 The Quadtree and Related Hierarchical Data Structures

Hanan Samet

June 1984 ACM Computing Surveys (CSUR), Volume 16 Issue 2

Full text available: pdf(4.87 MB)

Additional Information: full citation, references, citings, index terms

15 Computational strategies for object recognition

Paul Suetens, Pascal Fua, Andrew J. Hanson

March 1992 ACM Computing Surveys (CSUR), Volume 24 Issue 1

Full text available: pdf(6.37 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>, <u>review</u>

This article reviews the available methods for automated identification of objects in digital images. The techniques are classified into groups according to the nature of the computational strategy used. Four classes are proposed: (1) the simplest strategies, which work on data appropriate for feature vector classification, (2) methods that match models to symbolic data structures for situations involving reliable data and complex models, (3) approaches that fit models to the photometry and ...

Keywords: image understanding, model-based vision, object recognition

16 The FINITE STRING Newsletter: Abstracts of current literature Computational Linguistics Staff

9/8/04

January 1987 Computational Linguistics, Volume 13 Issue 1-2

Full text available: pdf(6.15 MB) Additional Information: full citation Publisher Site

17 Geographic Data Processing George Nagy, Sharad Wagle

June 1979 ACM Computing Surveys (CSUR), Volume 11 Issue 2

Full text available: pdf(4.20 MB)

Additional Information: full citation, references, citings, index terms

18 Anisotropic diffusion for Monte Carlo noise reduction

Michael D. McCool

April 1999 ACM Transactions on Graphics (TOG), Volume 18 Issue 2

Full text available: pdf(2.01 MB)

Additional Information: full citation, abstract, references, citings, index terms, review

Monte Carlo sampling can be used to estimate solutions to global light transport and other rendering problems. However, a large number of observations may be needed to reduce the variance to acceptable levels. Rather than computing more observations within each pixel, if spatial coherence exists in image space it can be used to reduce visual error by averaging estimators in adjacent pixels. Anisotropic diffusion is a space-variant noise reduction technique that can selectively preserve text ...

Keywords: Monte Carlo methods, anisotropic diffusion, global illumination, image processing, image synthesis, light transport, noise reduction, space-variant filtering

19 Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise distances Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, Yiu Sang Moon July 2000 The VLDB Journal — The International Journal on Very Large Data Bases, Volume 9 Issue 2

Full text available: pdf(232.09 KB) Additional Information: full citation, abstract, index terms

For some multimedia applications, it has been found that domain objects cannot be represented as feature vectors in a multidimensional space. Instead, pair-wise distances between data objects are the only input. To support content-based retrieval, one approach maps each object to a k-dimensional (k-d) point and tries to preserve the distances among the points. Then, existing spatial access index methods such as the R-trees and KD-trees can support fast searching on the resulting

Keywords: Content-based retrieval, Indexing, Nearest neighbor search, Pair-wise distances, Updating

20 Visual search and mouse-pointing in labeled versus unlabeled two-dimensional visual hierarchies

Anthony J. Hornof

September 2001 ACM Transactions on Computer-Human Interaction (TOCHI), Volume 8

Full text available: pdf(1.10 MB)

Additional Information: full citation, abstract, references, citings, index

An experiment investigates (1) how the physical structure of a computer screen layout affects visual search and (2) how people select a found target object with a mouse. Two structures are examined---labeled visual hierarchies (groups of objects with one label per group) and unlabeled visual hierarchies (groups without labels). Search and selection times were separated by imposing a point-completion deadline that discouraged participants from moving the mouse until they found the target. The obs ...

Results (page 1): +map +object +distance +mean +standard +deviation

Page 6 of 6

Keywords: Fitts' law, mouse pointing, screen layout design, visual search

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player

Real Player

US Patent & Trademark Office

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library
The Guide

computer processor memory

SEXCER

9/8/04

Market to the properties of the state of the

Feedback Report a problem Satisfaction

Terms used computer processor memory

Found 324 of 574 searched out of 574.

Sort results

by

relevance

Save results to a Binder ? Search Tips

Try an Advanced Search Try this search in The ACM Guide

Display results

expanded form

Open results in a new window

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10

Relevance scale

Best 200 shown

The Wisconsin Wind Tunnel: virtual prototyping of parallel computers Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, David A. Wood

June 1993 ACM SIGMETRICS Performance Evaluation Review, Proceedings of the 1993 ACM SIGMETRICS conference on Measurement and modeling of computer systems, Volume 21 Issue 1

Full text available: pdf(1.40 MB)

Additional Information: full citation, references, citings, index terms

Data page layouts for relational databases on deep memory hierarchies

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill

November 2002 The VLDB Journal — The International Journal on Very Large Data Bases, Volume 11 Issue 3

Full text available: pdf(593.86 KB)

Additional Information: full citation, abstract, index terms

Relational database systems have traditionally optimized for I/O performance and organized records sequentially on disk pages using the N-ary Storage Model (NSM) (a.k.a., slotted pages). Recent research, however, indicates that cache utilization and performance is becoming increasingly important on modern platforms. In this paper, we first demonstrate that in-page data placement is the key to high cache performance and that NSM exhibits low cache utilization on modern platforms. Next, we ...

Keywords: Cache-conscious database systems, Disk page layout, Relational data placement

Experience Using Multiprocessor Systems—A Status Report

Anita K. Jones, Peter Schwarz

June 1980 ACM Computing Surveys (CSUR), Volume 12 Issue 2

Full text available: pdf(4.48 MB)

Additional Information: full citation, references, citings, index terms

IPStash: a Power-Efficient Memory Architecture for IP-lookup

Stefanos Kaxiras, Georgios Keramidas

December 2003 Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture

Full text available: pdf(293.97 KB) Publisher Site

Additional Information: full citation, abstract, index terms

High-speed routers often use commodity, fully-associative,TCAMs (Ternary Content

AddressableMemories) to perform packet classification and routing(IP-lookup). We propose a memory architecture called IPStash to actasa TCAMreplacement offering atthesame time. better functionality, higher performance, and significant power savings. The premise of our workis that full associativity is not necessary for IP-lookup.Rather, we show that the required associativity is simply a function of the routing table s ...

5 The design and performance of a conflict-avoiding cache

Nigel Topham, Antonio González, José González

December 1997 Proceedings of the 30th annual ACM/IEEE international symposium on **Microarchitecture**

Publisher Site

Full text available: pdf(1.21 MB) Additional Information: full citation, abstract, references, citings, index

High performance architectures depend heavily on efficient multi-level memory hierarchies to minimize the cost of accessing data. This dependence will increase with the expected increases in relative distance to main memory. There have been a number of published proposals for cache conflict-avoidance schemes. We investigate the design and performance of conflict-avoiding cache architectures based on polynomial modulus functions, which earlier research has shown to be highly effective at reducing ...

Keywords: cache architecture design, cache storage, conflict miss ratios, conflict-avoiding cache performance, data access cost minimization, high performance architectures, main memory, multi-level memory hierarchies, polynomial modulus functions

Scalable parallel algorithms for interactive visualization of curved surfaces

Subodh Kumar, Chun-Fa Chang, Dinesh Manocha

November 1996 Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM)

Full text available: pdf(972.57 KB) Additional Information: full citation, abstract, references, citings

We present efficient parallel algorithms for interactive display of higher order surfaces on current graphics systems. At each frame, these algorithms approximate the surface by polygons and rasterize them over the graphics pipeline. The time for polygon generation for each surface primitive varies between successive frames and we address issues in distributing the load across processors for different environments. This includes algorithms to statically distribute the primitives to reduce d ...

7 Hardware monitoring of real-time aerospace computer systems

D. R. Partridge, R. E. Card

March 1976 Proceedings of the 1976 ACM SIGMETRICS conference on Computer performance modeling measurement and evaluation

Full text available: pdf(1.00 MB)

Additional Information: full citation, abstract, index terms

Hardware monitoring has proven to be a useful means for measuring the performance of computer systems generally, and is particularly attractive for use on real-time systems due to its attribute of non-interference with system operation. This technique is uniquely able to quantify precisely the interactions between hardware and software, which must be completely understood in these systems. In this paper, we report the application of a commercially-developed hardware monitor to two real-time ...

The Sloop ISA and the SMOK toolkit

B. Dugan, J. Zahorjan

March 2002 Journal on Educational Resources in Computing (JERIC), Volume 2 Issue 1

Full text available: pdf(573.30 KB) Additional Information: full citation, abstract, references, index terms

Sloop-SMOK is a toolkit designed to improve the student design experience in a machine organization course taken by undergraduates in their first year as computer science majors. Students in this course have had some programming experience, and may have taken a one-quarter digital design course. Before Sloop-SMOK, assignments in this course were

typically assembly language program implementations of functions related to architecture. The major goals in building Sloop-SMOK were to improve the rel ...

Keywords: Computer architecture, education, simulator

9 Query evaluation techniques for large databases Goetz Graefe

June 1993 ACM Computing Surveys (CSUR), Volume 25 Issue 2

Full text available: pdf(9.37 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms, review

Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem. On the contrary, modern data models exacerbate the problem: In order to manipulate large sets of complex objects as efficiently as today's database systems manipulate simple records, query-processi ...

Keywords: complex query evaluation plans, dynamic query evaluation plans, extensible database systems, iterators, object-oriented database systems, operator model of parallelization, parallel algorithms, relational database systems, set-matching algorithms, sort-hash duality

10 Process migration

September 2000 ACM Computing Surveys (CSUR), Volume 32 Issue 3

Full text available: pdf(1.24 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>, <u>review</u>

Process migration is the act of transferring a process between two machines. It enables dynamic load distribution, fault resilience, eased system administration, and data access locality. Despite these goals and ongoing research efforts, migration has not achieved widespread use. With the increasing deployment of distributed systems in general, and distributed operating systems in particular, process migration is again receiving more attention in both research and product development. As hi ...

Keywords: distributed operating systems, distributed systems, load distribution, process migration

11 Living in a dynamic world

R. L. Andersson

November 1999 Proceedings of 1986 ACM Fall joint computer conference

Full text available: pdf(1.18 MB)

Additional Information: full citation, references, index terms

12 <u>Curriculum 68: Recommendations for academic programs in computer science: a report of the ACM curriculum committee on computer science</u>

William F. Atchison, Samuel D. Conte, John W. Hamblen, Thomas E. Hull, Thomas A. Keenan, William B. Kehl, Edward J. McCluskey, Silvio O. Navarro, Werner C. Rheinboldt, Earl J. Schweppe, William Viavant, David M. Young

March 1968 Communications of the ACM, Volume 11 Issue 3

Full text available: pdf(6.63 MB)

Additional Information: full citation, references, citings

Keywords: computer science academic programs, computer science bibliographies, computer science courses, computer science curriculum, computer science education,

computer science graduate programs, computer science undergraduate programs

13 A virtual machine emulator for performance evaluation

M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell, M. F. Mitoma, J. Rodriquez-Rosell February 1980 **Communications of the ACM**, Volume 23 Issue 2

Full text available: pdf(865.59 KB) Additional Information: full citation, references, citings

Keywords: computer system simulation, performance evaluation, virtual machines

14 A history of the Promis technology: an effective human interface
Jan Schultz

January 1986 Proceedings of the ACM Conference on The history of personal workstations

Full text available: pdf(2.61 MB)

Additional Information: full citation, abstract, references, index terms

Scientific computing systems for individuals were pioneered early at Hewlett-Packard, beginning with the 9100A Desktop Calculator in 1968. Extensions of this first machine were soon seen in Personal Peripherals, such as Printers, Tape Cartridges, and Plotters, and followed by Graphic CRT Displays. By early 1972, the Desktop unit had been augmented by a very powerful Pocket Calculator, the ground-breaking HP 35A. This paper traces the evolution of these machines to the present day, ...

15 Memory access patterns of occlusion-compatible 3D image warping William R. Mark, Gary Bishop

August 1997 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Full text available: pdf(1.22 MB) Additional Information: full citation, references, citings, index terms

Keywords: 3D image warp, image-based rendering, occlusion-compatible warp order

16 Static scheduling algorithms for allocating directed task graphs to multiprocessors Yu-Kwong Kwok, Ishfaq Ahmad

December 1999 ACM Computing Surveys (CSUR), Volume 31 Issue 4

Full text available: pdf(723.58 KB)

Additional Information: full citation, abstract, references, citings, index terms

Static scheduling of a program represented by a directed task graph on a multiprocessor system to minimize the program completion time is a well-known problem in parallel processing. Since finding an optimal schedule is an NP-complete problem in general, researchers have resorted to devising efficient heuristics. A plethora of heuristics have been proposed based on a wide spectrum of techniques, including branch-and-bound, integer-programming, searching, graph-theory, randomization, genetic ...

Keywords: DAG, automatic parallelization, multiprocessors, parallel processing, software tools, static scheduling, task graphs

17 Computer Communication Networks: Approaches, Objectives, and Performance Considerations

Stephen R. Kimbleton, G. Michael Schneider

September 1975 ACM Computing Surveys (CSUR), Volume 7 Issue 3

Full text available: pdf(3.99 MB) Additional Information: full citation, references, citings, index terms

18 Parallel progressive rendering of animation sequences at interactive rates on distributed-memory machines

Amit Reisman, Craig Gotsman, Assaf Schuster

October 1997 Proceedings of the IEEE symposium on Parallel rendering

Full text available: pdf(1.42 MB)

Additional Information: full citation, references, citings, index terms

Keywords: animation, distributed memory, load-balance, message passing, parallel processing, ray tracing

19 General applications: Complex and interconnected systems: optimistic parallel simulation of a large-scale view storage system Garrett Yaun, Christopher D. Carothers, Sibel Adali, David Spooner December 2001 Proceedings of the 33nd conference on Winter simulation

Full text available: pdf(139.73 KB) Additional Information: full citation, abstract, references, index terms

In this paper we present the design and implementation of a complex view storage system model that is suitable for execution on a optimistic parallel simulation engine. What is unique over other optimistic systems is that reverse computation as opposed to statesaving is used to support the rollback mechanism. In this model, a hierarchy of view storage servers are connected to an array of client-side local disks. The term view refers to the output or result of a query made on the part of ...

20 Accurate color reproduction for computer graphics applications Bruce J. Lindbloom

July 1989 ACM SIGGRAPH Computer Graphics, Proceedings of the 16th annual conference on Computer graphics and interactive techniques, Volume 23 Issue 3

Full text available: pdf(5.84 MB)

Additional Information: full citation, abstract, references, citings, index

A method is presented for accurate color reproduction among a wide variety of display devices. The method is very general, in that it may be applied to virtually any color display device. Its generality has been demonstrated by application to color monitors, film recorders, electronic pre-press systems and color hardcopy devices. The algorithm has been used to accurately translate between device dependent and device independent color specifications and to translate from one device dependent colo ...

Results 1 - 20 of 200

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat Q QuickTime Windows Media Player Real Player

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Publications/Services Standards Conferences Careers/Jobs

Welcome

United States Patent and Trademark Office FAQ Terms IEEE Peer Review **Quick Links** Welcome to IEEE Xplore® Your search matched 0 of 1069805 documents. O- Home A maximum of 500 results are displayed, 50 to a page, sorted by Relevance O- What Can **Descending** order. I Access? O-Log-out Refine This Search: You may refine your search by editing the current search expression or enteri **Tables of Contents** new one in the text box. Journals & Magazines map and object and distance and space and mean and Search Check to search within this result set O- Conference **Proceedings Results Key:** O- Standards JNL = Journal or Magazine CNF = Conference STD = Standard Search O- By Author O- Basic **Results:** O- Advanced No documents matched your query. Member Services O- Join IEEE - Establish IEEE **Web Account** O- Access the **IEEE** Member **Digital Library** IEEE Enterprise O- Access the

Print Format

IEEE Enterprise File Cabinet

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright @ 2004 IEEE - All rights reserved

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Publications/Services Standards Conferences Careers/Jobs EEE Xnlore

Welcome

	United States Patent and Trademark Office
Help FAQ Terms IE	EE Peer Review Quick Links >> Se
Welcome to IEEE Xplores - Home - What Can	Your search matched 1 documents.
I Access? — Log-out	A maximum of 500 results are displayed, 15 to a page, sorted by Relevance Descending order.
Tables of Contents - Journals & Magazines	Results Key: JNL = Journal or Magazine CNF = Conference STD = Standard
Conference Proceedings Conference	Physical Limits, And Information As A Form Of Matter Lawrence, P.N.; Physics and Computation, 1992. PhysComp '92., Workshop on , October 2-4, Pages:83 - 85
Search	
O- By Author O- Basic O- Advanced	[Abstract] [PDF Full-Text (236KB)] IEEE CNF
Member Services	
O- Join IEEE O- Establish IEEE Web Account	
O- Access the IEEE Member Digital Library	
(IEEE Enterprise - Access the IEEE Enterprise File Cabinet	

Print Format

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

US Patent & Trademark Office

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • O The Guide

+correlithm +corob

SEARCH

Nothing Found

Your search for **+correlithm +corob** did not return any results.

You may want to try an Advanced Search for additional options.

Please review the Quick Tips below or for more information see the Search Tips.

Quick Tips

Enter your search terms in <u>lower case</u> with a space between the terms.

sales offices

You can also enter a full question or concept in plain language.

Where are the sales offices?

 Capitalize proper nouns to search for specific people, places, or products.

John Colter, Netscape Navigator

Enclose a <u>phrase</u> in double quotes to search for that exact phrase.

"museum of natural history" "museum of modern art"

Narrow your searches by using a + if a search term must appear on a page.

museum +art

Exclude pages by using a - if a search term must not appear on a page.

museum -Paris

Combine these techniques to create a specific search query. The better your description of the information you want, the more relevant your results will be.

museum +"natural history" dinosaur -Chicago

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat Q QuickTime Windows Media Player

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Membership Publications/Services Standards Conferences Careers/Jobs EEE Xplore®

Welcome

	RELEASE 1.8 United States Patent and Trademark Office
Help FAQ Terms IEE	E Peer Review Quick Links Se.
Welcome to IEEE Xplore® - Home - What Can I Access? - Log-out	Your search matched 0 of 1069805 documents. A maximum of 500 results are displayed, 50 to a page, sorted by Relevance Descending order.
	Refine This Search:
Tables of Contents	You may refine your search by editing the current search expression or enterinew one in the text box.
O- Journals & Magazines	correlithm or corobs Search
O- Conference Proceedings	Check to search within this result set
O- Standards	Results Key: JNL = Journal or Magazine CNF = Conference STD = Standard
Search	- Standard - Standard - Standard
O- By Author O- Basic O- Advanced	Results: No documents matched your query.
Member Services	
O- Join IEEE O- Establish IEEE Web Account	
Access the IEEE Member Digital Library	
IEEE Enterprise	
O- Access the IEEE Enterprise	

Print Format

File Cabinet

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE - All rights reserved

Web Images Groups News Froogle more »

related:www.lt.com/neurophysiology.html Search Advanced Search Preferences

Web

Results 1 - 2 of about 6 similar to www.lt.com/neurophysiology.html. (0.20 seconds)

Correlithm Objects and Neurophysiology: A White Paper
Correlithm Objects and Neurophysiology: A White Paper. 26 May 1998. Copyright ©
1998 Lawrence Technologies, LLC. This document may ...
www.lt.com/neurophysiology.html - 50k - Cached - Similar pages

The Corrrelithm Object Model: A Computational Paradigm
The Correlithm Object Model: A New Computational Paradigm. 10 June 1998. Copyright © 1998 Lawrence Technologies, LLC. Contact information: ...
www.lt.com/corobjects.html - 76k - Cached - Similar pages

In order to show you the most relevant results, we have omitted some entries very similar to the 2 already displayed.

If you like, you can repeat the search with the omitted results included.

Free! Get the Google Toolbar. Download Now - About Toolbar

	de concessão faces por consider por con-
	3
News 15	AutoFill 🔌
	9 4 4 4 4 4

related:www.lt.com/neurophysiology Search

Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2004 Google

WOLFRAM RESEARCH

٠

mathworld.wolfram.com

OTHER WOLFRAM SITES .

mathw@rld

INDEX

Foundations of Mathematics Discrete Mathematics Calculus and Analysis Applied Mathematics Algebra

History and Terminology Number Theory

Probability and Statistics

Recreational Mathematics

Alphabetical Index

ABOUT THIS SITE

Terms of Use About the Author About MathWorld

DESTINATIONS

What's New

MathWorld Headline News

Random Entry

Live 3D Graphics

CONTACT

Contribute! **Email Comments**

Sign the Guestbook

MATHWORLD - IN PRINT

Order book from Amazon

13

Random Walk

Probability and Statistics ▶ Random Walks ▼

A random process consisting of a sequence of discrete steps of fixed length. The random thermal perturbations in a liquid are responsible for a random walk phenomenon known as Brownian motion, \$\frac{80}{20}\$ and the collisions of molecules that vary greatly depending on the dimension in which the walk occurs and whether it is confined to a lattice. in a gas are a random walk responsible for diffusion. 👼 Random walks have interesting mathematical properties

Dimensional, Random Walk--3-Dimensional, Self-Avoiding Walk, Self-Avoiding Walk Connective Constant SEE ALSO: Markov Chain, Martingale, Percolation Theory, Random Walk--1-Dimensional, Random Walk--2-

PAGES LINKING HERE: search

REFERENCES

Barber, M. N. and Ninham, B. W. Random and Restricted Walks: Theory and Applications. New York: Gordon and Breach, 1970.

Chandrasekhar, S. In Selected Papers on Noise and Stochastic Processes (Ed. N. Wax). New York: Dover, 1954

Doyle, P. G. and Snell, J. L. Random Walks and Electric Networks. Washington, DC: Math. Assoc. Amer, 1984

Dykin, E. B. and Uspenskii, V. A. Random Walks. New York: Heath, 1963

Erdos, P. and Révész, P. "Three Problems on the Random Walk in \mathbb{Z}^d ." Studia Sci. Math. Hung. **26**, 309-320, 1991.

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, 1968

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd ed. New York: Wiley, 1971

Gardner, M. "Random Walks and Gambling" and "Random Walks on the Plane and in Space." Chs. 6-7 in *Mathematical Circus: More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments*. Washington, DC: Math. Assoc. Amer., pp. 66-86, 1992.

Hughes, B. D. Random Walks and Random Environments, Vol. 1: Random Walks. New York: Oxford University Press, 1995

Hughes, B. D. Random Walks and Random Environments, Vol. 2: Random Environments. New York: Oxford University Press, 1996

Lawler, G. F. Intersections of Random Walks. Boston, MA: Birkhäuser, 1996.

Révész, P. Random Walks in Random and Non-Random Environments. Singapore: World Scientific, 1990.

Spitzer, F. Principles of Random Walk, 2nd ed. New York: Springer-Verlag, 1976.

Weiss, G. Aspects and Applications of the Random Walk. Amsterdam, Netherlands: North-Holland, 1994.

Weisstein, E. W. "Books about Random Walks." http://www.ericweisstein.com/encyclopedias/books/RandomWalks.html.

CITE THIS AS:

Eric W. Weisstein. "Random Walk." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RandomWalk.html

☆ Mathematica ◇ CalculationCenter ※ MATHSTATICA Related Wolfram Research Products Include:

© 1999 CRC Press LLC, © 1999-2004 Wolfram Research, Inc.