Project 1

Author: Zeyao Wang

```
In [1]:
        import pandas as pd
         import numpy as np
         from time import strptime
         import matplotlib.pyplot as plt
         pd.set option("display.max columns", None)
In [2]: # Read data
         calendar = pd.read_csv('data/Seattle/calendar.csv')
         listings = pd.read_csv('data/Seattle/listings.csv')
         reviews = pd.read_csv('data/Seattle/reviews.csv')
         reviews = reviews.rename(columns = {'id':'review_id'})
         reviews.head(1)
Out[2]:
            listing_id review_id
                                 date reviewer_id reviewer_name
                                                                                  comments
```

28943674

Bianca

Cute and cozy place. Perfect location

to every...

Data Cleaning

7202016 38917982

check missing data (quantitative and categorical variables)

2015-07-

19

```
In [3]: # Check Missing data
         missing = (listings.isnull().sum() / listings.shape[0]).sort_values(ascending=Fal
         missing = missing[missing > 0]
        missing
Out[3]: license
                                        1.000000
        square_feet
                                        0.974594
        monthly_price
                                        0.602672
        security deposit
                                        0.511262
                                        0.473808
        weekly_price
                                        0.420639
        notes
        neighborhood overview
                                        0.270299
        cleaning_fee
                                        0.269775
        transit
                                        0.244631
        host about
                                        0.224987
        host acceptance rate
                                        0.202462
        review_scores_accuracy
                                        0.172342
        review scores checkin
                                        0.172342
        review_scores_value
                                        0.171818
        review_scores_location
                                        0.171556
        review scores cleanliness
                                        0.171032
        review scores communication
                                        0.170508
        review_scores_rating
                                        0.169460
        reviews_per_month
                                        0.164222
```

• Drop missing data columns with more than 60% missing values:

```
In [4]: # drop missing data columns with more than 60% NA
listings2 = listings.drop(['license', 'square_feet'], axis=1)

In [5]: # Check Quantitative and Quantitative Columns
quant = []
quali = []

for i in listings2.columns:
    if listings2.dtypes[i] != 'object':
        quant.append(i)
    else:
        quali.append(i)
```

```
In [6]: # Check missing qualitative columns
         missing_quali = listings2[quali].isnull().sum().sort_values(ascending=False)
         missing_quali = missing_quali[missing_quali > 0]
         missing quali
Out[6]: notes
                                   1606
        neighborhood_overview
                                   1032
                                    934
        transit
        host about
                                    859
        last review
                                    627
        first_review
                                    627
        space
                                    569
        host_response_time
                                    523
        neighbourhood
                                    416
        xl picture url
                                    320
        thumbnail url
                                    320
        medium_url
                                    320
        host neighbourhood
                                    300
        summary
                                    177
        host_location
                                      8
                                      7
        zipcode
                                      2
        host is superhost
                                      2
        host_thumbnail_url
                                      2
        host_has_profile_pic
                                      2
        host since
                                      2
        host_identity_verified
                                      2
        host_name
                                      2
        host picture url
        property_type
                                      1
        dtype: int64
In [7]: # Fill NA in qualitative columns
         for i in missing_quali.index:
             listings2[i] = listings2[i].fillna('None')
In [8]:
        # Check again
         missing quali = listings2[quali].isnull().sum().sort values(ascending=False)
         missing_quali = missing_quali[missing_quali > 0]
         missing_quali.head()
Out[8]: Series([], dtype: int64)
```

```
In [9]: | # Check missing quantitative columns
         missing_quant = (listings2[quant].isnull().sum() / listings2.shape[0]).sort_value
         missing_quant = missing_quant[missing_quant > 0]
         missing quant
Out[9]: monthly price
                                         0.602672
         security_deposit
                                         0.511262
         weekly_price
                                         0.473808
         cleaning_fee
                                         0.269775
         host acceptance rate
                                         0.202462
         review_scores_checkin
                                         0.172342
         review scores accuracy
                                         0.172342
         review_scores_value
                                         0.171818
         review_scores_location
                                         0.171556
         review scores cleanliness
                                         0.171032
         review scores communication
                                         0.170508
         review_scores_rating
                                         0.169460
         reviews per month
                                         0.164222
                                         0.136983
         host_response_rate
         bathrooms
                                         0.004191
         bedrooms
                                         0.001572
         host listings count
                                         0.000524
         host_total_listings_count
                                         0.000524
         beds
                                         0.000262
         dtype: float64
         Need to check details to figure out how to deal with missing value for quantitative columns
In [10]: # Fill quant missing value with its median
         for i in missing_quant.index:
             listings2[i] = listings2[i].fillna(listings2[i].median())
In [11]: # Check again
         missing quant = (listings2[quant].isnull().sum() / listings2.shape[0] * 100).sort
         missing_quant = missing_quant[missing_quant > 0]
         missing_quant
Out[11]: Series([], dtype: float64)
In [12]: | df = listings2
In [13]: listings2.groupby(['id'])['last_scraped'].size().sort_values(ascending = False).h
Out[13]: id
         10340165
                      1
         4104442
                      1
         4126284
                      1
         4125779
                      1
         4122325
                      1
         Name: last_scraped, dtype: int64
```

Data Prepare

· Check price value

```
In [14]: import seaborn as sns
In [15]: sns.distplot((df.price))
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x201d4b79c18>


```
In [16]: #skewness and kurtosis
print("Skewness: %f" % df.price.skew())
print("Kurtosis: %f" % df.price.kurt())
```

Skewness: 3.113123 Kurtosis: 16.617132

```
In [17]: sns.distplot(np.log10(df.price))
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x201d622ae10>

After checking orginal price and log(price) distribution, log(price) shows in more normal distribution. Then use log(price) in the further analysis.

```
In [18]: #skewness and kurtosis
print("Skewness: %f" % np.log10(df.price).skew())
print("Kurtosis: %f" % np.log10(df.price).kurt())
```

Skewness: 0.372414 Kurtosis: 0.371624

Skew and Kurtosis is between -0.5 and 0.5, the log(price) distribution is fairly symmetrical.

Out[19]:

	id	name	price	host_response_rate	host_acceptance_rate	host_is_superhost	host_ha
(241032	Stylish Queen Anne Apartment	85	0.96	1.0	f	

```
In [20]: df2['price_log'] = np.log10(df2.price)
```

C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

• Check the correlation between price with other features

```
In [21]: fig, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(df2.corr(), annot = True)
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x201d0d3bc88>

Price shows the positive correlation with accommondates indicators, bathroom numbers, bedroom numbers, beds numbers. Meanwhile, accommodats have strong positive correlation with bathrooms, bedrooms.

Model

In [22]: import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn import linear_model

> C:\Anaconda3\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.

from pandas.core import datetools

```
In [23]: # Change to dummy variables
         df2['superhost'] = np.where(df2['host is superhost'] == "t", 1, 0)
         df2['profile pic'] = np.where(df2['host has profile pic'] == "t", 1, 0)
         C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stab
         le/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-doc
         s/stable/indexing.html#indexing-view-versus-copy)
         C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
```

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stab le/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-doc s/stable/indexing.html#indexing-view-versus-copy)

This is separate from the ipykernel package so we can avoid doing imports unt il

```
In [24]: df2.columns
Out[24]: Index(['id', 'name', 'price', 'host_response_rate', 'host_acceptance_rate',
                'host_is_superhost', 'host_has_profile_pic', 'latitude', 'longitude',
                'property_type', 'accommodates', 'bathrooms', 'bedrooms', 'beds',
                'review scores rating', 'price log', 'superhost', 'profile pic'],
               dtype='object')
In [25]: x = df2[['host_response_rate', 'host_acceptance_rate',
                 'superhost', 'accommodates', 'bathrooms', 'bedrooms', 'beds',
                'review_scores_rating', 'profile_pic']]
         y = df2['price log']
```

```
In [26]: lm1 = sm.OLS(y, x).fit()
lm1.summary()
Out[26]: OI S Regression Results
```

OLS Regression Results									
Dep. Variable:	le: price_log				R-	squa	0.992		
Model:			A	Adj. R-squared:			0.992		
Method:	Least Squares				F-statistic:			5.304e+04	
Date:	Tue, 23 Aug 2022			Prob (F-statistic):			0.00		
Time:	08:58:41			Log-Likelihood:			1084.8		
No. Observations:			3818		AIC:			-2152.	
Df Residuals:			3809		BIC:			-2095.	
Df Model:			9						
Covariance Type:	ype: nonrobust								
		coe	ef std	err		t	P> t	[0.025	0.975]
host_response_	rate	0.009	9 0.0)27	0.37	2 (.710	-0.042	0.062
host_acceptance_	rate	1.380	0.0	74	18.76	7 (0.000	1.236	1.524
superi	nost	0.013	6 0.0	800	1.80	4 (.071	-0.001	0.028
accommod	ates	0.073	1 0.0	003	23.09	0 0	0.000	0.067	0.079
bathro	oms	0.025	1 0.0	006	3.91	6 0	0.000	0.013	0.038
bedro	oms	0.040	1 0.0	006	6.90	5 (0.000	0.029	0.052
k	eds	-0.016	1 0.0	05	-3.02	8 0	.002	-0.027	-0.006
review_scores_ra	ting	0.003	1 0.0	000	6.41	5 (0.000	0.002	0.004
profile	_pic	0.041	9 0.0)58	0.72	4 (.469	-0.072	0.155
Omnibus:	161.8	39	Durbin-	Wats	on:		1.608		
Prob(Omnibus):	0.0	00 Ja	rque-B	era (.	JB):	439	9.267		
Skew:	82	Р	rob(、	JB):	4.12	2e-96			
Kurtosis:	4.6	21	C	ond.	No.	2.83	e+03		

The model result is not surpriced, in which most of factors have positive relationship with price, but the bed has the negative relationship with price.

Features of Importance

```
In [27]: regr = linear_model.LinearRegression()
    regr.fit(x, y)

importance = pd.DataFrame(data={
        'Attribute':x.columns,
        'Importance': regr.coef_
})
    importance2 = importance.sort_values('Importance', ascending = False)

plt.bar(importance2['Attribute'], importance2['Importance'])
    plt.xticks(rotation = 'vertical')
    plt.show()
```



```
In [28]: importance2.sort_values('Importance', ascending = False)
```

Out[28]:

	Attribute	Importance
3	accommodates	0.072470
5	bedrooms	0.040739
4	bathrooms	0.024576
2	superhost	0.018123
7	review_scores_rating	0.002089
0	host_response_rate	-0.015323
6	beds	-0.015590
1	host_acceptance_rate	-0.044528
8	profile_pic	-0.119139

The most important features are bathroom number, bedroom number, accommodates.

• Re-run regression with important features

```
lm1 = sm.OLS(y, x2).fit()
lm1.summary()
OLS Regression Results
     Dep. Variable:
                           price_log
                                           R-squared:
                                                         0.879
           Model:
                               OLS
                                       Adj. R-squared:
                                                         0.879
          Method:
                      Least Squares
                                           F-statistic:
                                                         6943.
             Date: Tue, 23 Aug 2022 Prob (F-statistic):
                                                          0.00
            Time:
                           08:58:41
                                       Log-Likelihood: -4116.7
No. Observations:
                               3818
                                                 AIC:
                                                         8241.
     Df Residuals:
                               3814
                                                 BIC:
                                                         8266.
         Df Model:
 Covariance Type:
                          nonrobust
                         std err
                                                 [0.025
                                                       0.975]
                    coef
                                           P>|t|
accommodates
                  0.2087
                           0.009 23.430 0.000
                                                  0.191
                                                         0.226
                 0.8801
                           0.020 43.198 0.000
     bathrooms
                                                 0.840
                                                         0.920
     bedrooms
                 -0.0941
                           0.022
                                  -4.297 0.000
                                                 -0.137
                                                         -0.051
     superhost
                 0.3661
                           0.028
                                 13.056 0.000
                                                  0.311
                                                         0.421
      Omnibus:
                 2065.654
                              Durbin-Watson:
                                                   1.649
Prob(Omnibus):
                     0.000
                            Jarque-Bera (JB): 21038.151
          Skew:
                    -2.385
                                   Prob(JB):
                                                    0.00
       Kurtosis:
                    13.464
                                   Cond. No.
                                                    10.9
```

Words vs. Price

In [30]:

Out[30]:

```
In [31]: sns.boxplot('price_log', data=df2)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x201dbae86a0>

In [32]: # calendar.head(1)
listings2
reviews.head(1)

Out[32]:

	listing_id	review_id	date	reviewer_id	reviewer_name	comments
0	7202016	38917982	2015-07- 19	28943674	Bianca	Cute and cozy place. Perfect location to every

```
In [33]:
         import nltk
         nltk.download('vader_lexicon')
         nltk.download('punkt')
         from nltk import word tokenize
         from nltk.sentiment import SentimentIntensityAnalyzer
         import operator
         sia = SentimentIntensityAnalyzer()
         from nltk.tokenize import TweetTokenizer
         tweet = TweetTokenizer()
         from nltk.corpus import stopwords
         nltk.download('stopwords')
         S = set(stopwords.words('english'))
         from nltk.stem import WordNetLemmatizer
         nltk.download('wordnet')
         lemma = WordNetLemmatizer()
         from nltk.stem import PorterStemmer
         nltk.download('PorterStemmer')
         ps = PorterStemmer()
         [nltk_data] Downloading package vader_lexicon to
         [nltk_data]
                         C:\Users\uswangze\AppData\Roaming\nltk data...
                       Package vader_lexicon is already up-to-date!
         [nltk_data]
         [nltk data] Downloading package punkt to
                         C:\Users\uswangze\AppData\Roaming\nltk_data...
         [nltk_data]
         [nltk_data]
                       Package punkt is already up-to-date!
         [nltk_data] Downloading package stopwords to
         [nltk_data]
                         C:\Users\uswangze\AppData\Roaming\nltk_data...
         [nltk data]
                       Package stopwords is already up-to-date!
         [nltk data] Downloading package wordnet to
                         C:\Users\uswangze\AppData\Roaming\nltk_data...
         [nltk data]
         [nltk_data]
                       Package wordnet is already up-to-date!
         [nltk data] Error loading PorterStemmer: Package 'PorterStemmer' not
                         found in index
         [nltk_data]
         C:\Anaconda3\lib\site-packages\nltk\twitter\__init__.py:20: UserWarning: The tw
         ython library has not been installed. Some functionality from the twitter packa
         ge will not be available.
           warnings.warn("The twython library has not been installed. "
In [34]: reviews 2 = reviews
         reviews_2['comments'] = np.where(reviews_2['comments'].isna(), " ", reviews_2['comments']
In [35]: reviews 2.comments.isna().sum()
Out[35]: 0
```

```
In [36]: # sample = reviews 2[:100]
         # sample.head(1)
         PreprocessedTest = []
         for line in reviews_2['comments'].values:
             line = line.strip().lower()
             tokens = word tokenize(line)
             tokens out = []
             for token in tokens:
                  if not token in S:
                      token = lemma.lemmatize(token)
                      token = ps.stem(token)
                     tokens_out.append(token)
             line_out = ' '.join(tokens_out)
             PreprocessedTest.append(line_out)
         reviews_2['PreprocessedTest'] = PreprocessedTest
         reviews 2.head()
```

Out[36]:

	listing_id	review_id	date	reviewer_id	reviewer_name	comments	PreprocessedTest
0	7202016	38917982	2015- 07-19	28943674	Bianca	Cute and cozy place. Perfect location to every	cute cozi place . perfect locat everyth !
1	7202016	39087409	2015- 07-20	32440555	Frank	Kelly has a great room in a very central locat	kelli great room central locat . beauti build
2	7202016	39820030	2015- 07-26	37722850	lan	Very spacious apartment, and in a great neighb	spaciou apart , great neighborhood . kind apar
3	7202016	40813543	2015- 08-02	33671805	George	Close to Seattle Center and all it has to offe	close seattl center offer - ballet , theater ,
4	7202016	41986501	2015- 08-10	34959538	Ming	Kelly was a great host and very accommodating	kelli great host accommod great neighborhood

```
In [39]: reviews_3['listing_id'] = reviews_3['listing_id'].astype(int)
df2['id'] = df2['id'].astype(int)
```

C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)


```
In [40]: reviews_4 = pd.DataFrame(reviews_3.groupby(['listing_id'])['words_count'].sum()).
    reviews_4['listing_id'] = reviews_4['listing_id'].astype(int)
```

```
In [41]: df_combine = pd.merge(df2, reviews_4, left_on = 'id', right_on = 'listing_id', ho
```

```
In [42]: plt.scatter(df_combine['words_count'], df_combine['price'])
# plt.plot(df_combine['words_count'], df_combine['price'])
```

Out[42]: <matplotlib.collections.PathCollection at 0x201e4c48e80>


```
In [43]: sns.regplot(df_combine['words_count'], df_combine['price_log'], ci=None)
```

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x201e4c90320>

In [45]: lm2 = sm.OLS(y, x3).fit()
lm2.summary()

Out[45]:

OLS Regression Results

Dep. Variable: price_log R-squared: 0.990 Model: OLS Adj. R-squared: 0.990 Method: Least Squares **F-statistic:** 5.145e+04 Date: Tue, 23 Aug 2022 Prob (F-statistic): 0.00 09:04:37 Log-Likelihood: Time: 531.85 No. Observations: 3111 AIC: -1052. **Df Residuals:** 3105 BIC: -1015. Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
accommodates	0.0836	0.004	21.569	0.000	0.076	0.091
bathrooms	0.0315	0.008	4.032	0.000	0.016	0.047
bedrooms	0.0311	0.007	4.280	0.000	0.017	0.045
beds	-0.0221	0.006	-3.418	0.001	-0.035	-0.009
review_scores_rating	0.0181	0.000	173.091	0.000	0.018	0.018
words count	-1.402e-05	4.41e-06	-3.176	0.002	-2.27e-05	-5.36e-06

Omnibus: 333.856 Durbin-Watson: 1.697

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1122.091

Skew: 0.527 **Prob(JB):** 2.19e-244

Kurtosis: 5.747 **Cond. No.** 2.68e+03