27	上海市延安中学高一年级数学
一、填空题	(毎題3分,共42分)
1、设集合	$A = \{-2, -1, 0, 1\}$, $B = \{x x > 0\}$, $M \land B = $
2、不等式 x	(x-2)<0的解集为
3、己知集合	$A = \{x (x-1)^2 \le 0\}, B = (1,2], M \mid A \cup B = \underline{\hspace{1cm}}.$
4、设集合 A	$A = \{\sqrt{x}, 2\}, B = \{3, -5, y\}, \text{\vec{x} } A \subseteq B, \text{y } xy = \underline{\hspace{1cm}}.$
5、用描述法	表示被3除余2的所有自然数组成的集合
6、满足{a,l	$\{b\} \subset M \subseteq \{a,b,c,d,e\}$ 的集合 M 的个数是
7、己知 🚈 🤈	$x^2-3x+2\leq 0$, eta : $x,若 lpha 是 eta 的充分条件,则满足条件的最小的整数 a 为$
8、己知集合	$P = \{x 2x^2 + x - 3 = 0\}$, $Q = \{x nx = 1\}$, 若 $Q \subset P$, 则实数 m 的取值集合为
9、若关于 x	的不等式 $ax^2 + bx + 2 > 0$ 的解集是 $\left(-\frac{1}{2}, \frac{1}{3}\right)$, 则 $bx^2 + ax < 0$ 的解集为
10、己知关	于 x 的方程 $x^2 + ax + 3a = 0$ 的两个实根为 x_1 、 x_2 , $x_1^2x_2 + x_1x_2^2 = -9$, 则实数 $a =$.
11、有四个命	$? \boxtimes : $
其中正确的	命題是(填序号)
12、若关于	x 的不等式组 $\begin{cases} x-1>a^2 \\ x-4\leq 2a \end{cases}$ 的解集非空,则实数 a 的取值范围是
13、若关于	x 的不等式 $(a-1)x^2+(a-1)x+2>0$ 对一切实数 x 都成立、则实数 a 的取值范围是
14、设 <i>a∈ R</i>	2. 若 $x > 0$ 时、均有 $(\alpha x - 1)(x^2 - 3\alpha x - 1) \ge 0$,则 $a =$

- 二、选择题 (毎題3分,共12分)
- 15、若 α : $(x-1)(x+3) \ge 0$, β : $x-1 \ge 0$,则 α 是 β 的()

A.必要不充分条件 B.充分不必要条件 C.充要条件 D. 既不充分也不必要条件

16、已知集合 $A = \{(x,y) | |x+1| + (y-2)^2 = 0, x \in R, y \in R\}$, $B = \{(x,y) | xy \le 0, x \in R, y \in R\}$, 则 ()

 $A. A \in B$

 $B. A \subseteq B$

 $C. A \supseteq B$

 $D. A \cap B = \emptyset$

17、"对任意 $x \in R$,都有 $x^2 \ge 0$ "的否定形式为()

A. 对任意 $x \in R$,都有 $x^2 < 0$; B. 不存在 $x \in R$,都有 $x^2 < 0$ C. 存在 $x_0 \in R$,使得 $x_0^2 \ge 0$; D. 存在 $x_0 \in R$,使得 $x_0^2 < 0$

18、设U 为全集, S_1 、 S_2 、 S_3 是U 的三个非空子集,且 $S_1 \cup S_2 \cup S_3 = U$,则下列论断正确的是()

A.
$$S_1 \cap (S_2 \cup S_3) = \emptyset$$

$$A. \ \overline{S}_1 \cap \left(S_2 \cup S_3\right) = \varnothing \qquad B. \ S_1 \subseteq \overline{S_2} \cap \overline{S_3} \quad C. \ \overline{S}_1 \cap \overline{S}_2 \cap \overline{S}_3 = \varnothing \qquad D. \ S_1 \subseteq \overline{S_2} \cup \overline{S_3}$$

- 三、解答题(本大题共46分,解答下列各题必须在答题纸的相应位置写出必要步骤.)
- 19、 (本題共 6 分) 设集合 $A = \{x^2, 2x-1, -4\}, B = \{x-5, 1-x, 9\}, 若 A \cap B = \{9\}, 求实数 <math>x$ 的值.

20、(本题共8分,第一小题4分,第二小题4分)

设全集U = R, $P = \{x \mid x^2 - x - 6 < 0\}$, $Q = \{x \mid -3 \le x - a \le 3\}$.

- (1) 若集合 $P \cup Q = Q$, 求实数a的取值范围;
- (2) 若 $\overline{P \cap Q} = U$, 求实数a的取值范围.

21、(本题共8分,第一小题3分,第二小题5分)

已知卡车从踩刹车到停车所滑行的距离 s (米) 与速度v (千米/小时) 的平方和卡车总质量m (吨) 的乘积成正比,设某辆卡车不装货物以 60 千米/小时的速度行驶时,从刹车到停车滑行了 20 米.

- (1) 当这辆卡车不装货物以36千米/小时的速度行驶,从刹车到停车所滑行的距离为多少米?
- (2) 如果这辆卡车装着等同于车重的货物行驶时,发现前面 20 米处有障碍物,卡车司机发现障碍物到踩刹车需经过1秒,这时为了能在离障碍物5 米以外处停车,最大限制时速应是多少千米/小时?(结果精确到 0.1)

22、(本题共12分,第一小题3分,第二小题4分,第三小题5分)

设集合 $S = \{a | a = m^2 - n^2, m, n \in Z\}$.

- (1) 判断元素 3 是否属于集合 S, 并说明理由;
- (2) 设集合 $P = \{b|b = 2t+1, t \in Z\}$, 证明: $P \subset S$:
- (3) 设 $c = 4k 2(k \in \mathbb{Z})$, 证明: $c \notin S$.

23、(本题共12分,第一小题3分,第二小题4分,第三小题5分)

符号[x]表示不大于x的最大整数(x \in R),例如[1.3]=1, [2]=2, [-1.2]=-2.

- (1) 解方程[x]=2;
- (2) 设 $A = \{x | [x^2] \le 8\}$, $B = \{x | x^2 7kx + 10k^2 \ge 0\}$, $A \cup B = R$, 求实数 k 的取值范围;
- (3) 求方程 $4x^2 40[x] + 51 = 0$ 的实数解.

上海市延安中学高一年级数学

3 (1) 2 (1) 3 (2) 4 (1) 4 (1) 1 (

【答案】: {1}

2、不等式x(x-2)<0的解集为_____

【答案】: (0,2)

3、己知集合 $A = \{x | (x-1)^2 \le 0\}$, B = (1,2] , 则 $A \cup B =$ ______.

【答案】: [1,2]

4、设集合 $A = \{\sqrt{x}, 2\}, B = \{3, -5, y\}$, 若 $A \subseteq B$, 则 xy =______

【答案】: 18

5、用描述法表示被3除余2的所有自然数组成的集合______

【答案】: $\{x | x = 3k + 2, k \in N\}$

6、满足 $\{a,b\}\subset M\subseteq \{a,b,c,d,e\}$ 的集合M的个数是_______个.

【答案】: 7

7、已知 α : $x^2 - 3x + 2 \le 0$, β : $x < \alpha$, 若 α 是 β 的充分条件,则满足条件的最小的整数 α 为_______.

【答案】: 3

8、已知集合 $P = \{x | 2x^2 + x - 3 = 0\}$, $Q = \{x | mx = 1\}$,若 $Q \subset P$,则实数m的取值集合为_______

【答案】:
$$\left\{0,1,-\frac{2}{3}\right\}$$

9、若关于x的不等式 $ax^2 + bx + 2 > 0$ 的解集是 $\left(-\frac{1}{2}, \frac{1}{3}\right)$,则 $bx^2 + ax < 0$ 的解集为______

【答案】: (-∞,-6)∪(0,+∞)

10、已知关于x的方程 $x^2 + ax + 3a = 0$ 的两个实根为 x_1 、 x_2 , $x_1^2 x_2 + x_1 x_2^2 = -9$, 则实数 $a = _____$

【答案】: -√3

11、有四个命题: ① $a > b \Rightarrow c - a < c - b$; ② a > b, $c > 0 \Rightarrow \frac{c}{a} < \frac{c}{b}$; ③ $ac^2 > bc^2 \Rightarrow a > b$; ④ $a^3 > b^3 \Rightarrow a > |b|$;

其中正确的命题是_____(填序号)

【答案】: ①③

12、若关于x的不等式组 $\begin{cases} x-1>a^2 \\ x-4\leq 2a \end{cases}$ 的解集非空,则实数a的取值范围是______.

【答案】: (-1,3)

13、若关于x的不等式 $(a-1)x^2+(a-1)x+2>0$ 对一切实数x都成立,则实数a的取值范围是_

【答案】: [1,9)

14、设a∈R, 若x>0时,均有(ax-1)(x²-3ax-1)≥0,则a=______.

【答案】: 1

二、选择题 (每题3分,共12分)

15、若 α : $(x-1)(x+3) \ge 0$, β : $x-1 \ge 0$,则 α 是 β 的()

A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件

【答案】: A

16、己知集合 $A = \{(x,y) | |x+1| + (y-2)^2 = 0, x \in R, y \in R \}$, $B = \{(x,y) | xy \le 0, x \in R, y \in R \}$, 则 ()

 $A. A \in B$

 $B. A \subseteq B$ $C. A \supseteq B$ $D. A \cap B = \emptyset$

【答案】: B

17、"对任意 $x \in R$,都有 $x^2 \ge 0$ "的否定形式为()

A. 对任意 $x \in \mathbb{R}$, 都有 $x^2 < 0$; B. 不存在 $x \in \mathbb{R}$, 都有 $x^2 < 0$

C. 存在 $x_0 \in R$, 使得 $x_0^2 \ge 0$; D. 存在 $x_0 \in R$, 使得 $x_0^2 < 0$

【答案】: D

18、设U为全集, S_1 、 S_2 、 S_3 是U的三个非空子集,且 $S_1 \cup S_2 \cup S_3 = U$,则下列论断正确的是()

A.
$$\overline{S_1} \cap (S_2 \cup S_3) = \emptyset$$
 B. $S_1 \subseteq \overline{S_2} \cap \overline{S_3}$ C. $\overline{S_1} \cap \overline{S_2} \cap \overline{S_3} = \emptyset$ D. $S_1 \subseteq \overline{S_2} \cup \overline{S_3}$

$$B. S_1 \subset \overline{S_2} \cap \overline{S_2}$$

$$C. \overline{S_1} \cap \overline{S_2} \cap \overline{S_3} = \emptyset$$

$$D. S_1 \subseteq \overline{S_2} \cup \overline{S_3}$$

【答案】: C

三、解答题(本大题共46分,解答下列各题必须在答题纸的相应位置写出必要步骤.)

19、(本題共 6 分) 设集合 $A = \{x^2, 2x-1, -4\}, B = \{x-5, 1-x, 9\}, \\ 若A \cap B = \{9\},$ 求实数 x 的值.

【答案】: 见解析

【解析】: 由题意知, 需满足: $x^2 = 9$ 或 2x - 1 = 9, 即 $x = \pm 3$ 或 5. 2 分

检验: 当x=3时, $A=\{9,5,-4\}$, $B=\{-2,-2,9\}$, 集合B 无意义, 含去: (1分)

当x=-3时, $A=\{9,-7,-4\}$, $B=\{-8,4,9\}$,此时 $A\cap B=\{9\}$,满足题意; (1分)

当x=5时, $A=\{25, 9, -4\}$, $B=\{0, -4, 9\}$,此时 $A\cap B=\{-4, 9\}$,不符合題意,舍去. (1分)

综上, x=-3. (1分)

20、(本题共8分,第一小题4分,第二小题4分)

设全集U = R, $P = \{x \mid x^2 - x - 6 < 0\}$, $Q = \{x \mid -3 \le x - a \le 3\}$.

- 若集合P∪O=O,求实数a的取值范围;
- (2) 若 $\overline{P \cap O} = U$, 求实数a的取值范围.

【答案】: 见解析

【解析】: (1)
$$P = (-2,3), Q = [a-3, a+3]$$
 (2分)

由題意知:
$$P \subseteq Q$$
, 故 $\begin{cases} a-3 \le -2 \\ a+3 \ge 3 \end{cases}$, $\therefore -1 \le a \le 0$. (2分)

(2) 由題意知: $P \cap O = \emptyset$, 故 $a+3 \le -2$ 或 $a-3 \ge 3$, $\therefore a \le -5$ 或 $a \ge 6$. (4分)

21、(本题共8分,第一小题3分,第二小题5分)

已知卡车从踩刹车到停车所滑行的距离s(米)与速度v(千米/小时)的平方和卡车总质量m(吨)的乘积成正比,设某辆卡车不装货物以60千米/小时的速度行驶时,从刹车到停车滑行了20米.

- (1) 当这辆卡车不装货物以36千米/小时的速度行驶,从刹车到停车所滑行的距离为多少米?
- (2) 如果这辆卡车装着等同于车重的货物行驶时,发现前面 20 米处有障碍物,卡车司机发现障碍物到踩刹车需经过1秒,这时为了能在离障碍物5 米以外处停车,最大限制时速应是多少千米/小时?(结果精确到 0.1)

【答案】: 见解析

【解析】: (1) 由题意知:
$$s=kv^2m$$
, 设卡车的不装货物的重量为 m_0 , 则 $20=3600km_0$, 得: $k=\frac{1}{180m_0}$,

当
$$v = 36$$
 千米/小时, $s = \frac{1}{180m} \cdot 36^2 \cdot m_0 = 7.2$ (米).

所以当这辆卡车不装货物以36千米/小时的速度行驶,从刹车到停车所滑行的距离为7.2米. (3分)

(2) 卡车司机发现障碍物到踩刹车需经过 1 秒,行驶的路程为
$$v \cdot \frac{1}{3600} \cdot 1000 = \frac{5}{18}v$$
 (米),

刹车后滑行的距离为
$$\frac{1}{180m_0} \cdot v^2 \cdot 2m_0 = \frac{1}{90}v^2$$
 (米),

故需満足:
$$\frac{5}{18}v + \frac{1}{90}v^2 < 15$$
, (2分)

整理得:
$$v^2 + 25v - 1350 < 0$$
, 又 $v > 0$,

解得:
$$0 < v < \frac{-25 + 5\sqrt{241}}{2} \approx 26.31$$
. (2分)

所以最大限制时速应是 26.3 千米/小时. (1分)

22、(本题共12分,第一小题3分,第二小题4分,第三小题5分)

设集合
$$S = \{a | a = m^2 - n^2, m, n \in \mathbb{Z} \}$$
.

- (1) 判断元素 3 是否属于集合 S, 并说明理由:
- (2) 设集合 $P = \{b|b = 2t+1, t \in Z\}$, 证明: $P \subset S$;
- (3) 设 $c = 4k 2(k \in \mathbb{Z})$, 证明: $c \notin S$.

【答案】: 见解析

【解析】: (1) $:: 3 = 2^2 - 1^2, 2 \in \mathbb{Z}, 1 \in \mathbb{Z}, ... 3 \in \mathbb{S}$. (3 分)

(2) 证明: 对于任意的 $b \in P$, 存在 $t \in Z$, 使得 $b = 2t + 1 = (t+1)^2 - t^2$,

 $\forall t \in \mathbb{Z}, \ \exists t+1 \in \mathbb{Z}, \ \exists b \in S, \ \exists P \subseteq Q, \ (3 分)$

又: $0 = 0^2 - 0^2$, $\therefore 0 \in S, 0 \notin P$, (1分)

 $\therefore P \subset S$.

(3) 反证法: 若 $c \in S$, 则存在 $m, n \in Z$, 使得 $c = m^2 - n^2 = (m+n)(m-n)$, (1分)

 1° 若 m, n 其中一个为奇数,一个为偶数,则 m+n, m-n 都为奇数,则 c 为奇数,与己知 $c=4k-2(k\in Z)$ 是偶数矛盾. (2 分)

 2^c 若 m,n两个数都是奇数或两个数都是偶数,则 m+n,m-n 都为偶数,则 c 为 4 的倍数,与已知 $c=4k-2(k\in Z)$ 矛盾. (2 分)

故假设不成立,即 $c \notin S$

23、(本题共12分,第一小题3分,第二小题4分,第三小题5分)

符号[x]表示不大于x的最大整数(x \in R), 例如[1.3]=1, [2]=2, [-1.2]=-2.

- (1) 解方程[x]=2;
- (2) 设 $A = \{x | [x^2] \le 8\}$, $B = \{x | x^2 7kx + 10k^2 \ge 0\}$, $A \cup B = R$, 求实数k的取值范围;
- (3) 求方程 $4x^2 40[x] + 51 = 0$ 的实数解.

【答案】: 见解析

【解析】: (1) x∈[2,3); (3分)

(2)
$$: [x^2] \le 8$$
, $: x^2 < 9$, $: -3 < x < 3$, $: A = (-3,3)$ (1 $\%$)

$$B = \left\{ x \middle| \left(x - 2k \right) \left(x - 5k \right) \ge 0 \right\}$$

- ①当k=0时, B=R, 满足题意; (1分)
- ②当k > 0时, $B = (-\infty, 2k] \cup [5k, +\infty)$,雷满足 $5k \le 3$,得 $0 < k \le \frac{3}{5}$; (1分)
- ②当k < 0时, $B = (-\infty, 5k] \cup [2k, +\infty)$,需满足 $-3 \le 5k$,得 $-\frac{3}{5} \le k < 0$. (1分)

综上,
$$k \in \left[-\frac{3}{5}, \frac{3}{5} \right]$$

(3) 当 $x \le 0$, $[x] \le 0$, 显然不满足方程; (1分)

当x > 0时, $[x] \ge 0$,由 $[x] \le x < [x] + 1$,可得: $[x]^2 \le x^2 < ([x] + 1)^2$,(1分)

$$\therefore [x]^2 \le \frac{40[x]-51}{4} < ([x]+1)^2, \Leftrightarrow t = [x],$$

整理可得:
$$\begin{cases} 4t^2-32t+55>0\\ 4t^2-40t+51\leq 0 \end{cases}, \quad 求解得: \begin{cases} t<\frac{5}{2} \vec{\mathrm{w}} t>\frac{11}{2}\\ \frac{3}{2}\leq t\leq \frac{17}{2} \end{cases}, \ \mathbb{P}\,t\in\left[\frac{3}{2},\frac{5}{2}\right]\cup\left(\frac{11}{2},\frac{17}{2}\right], \ \mathbb{Z}\,t\in N\;,$$

 $\therefore t = 2,6,7,8$ (2分)

当[x]=2时,
$$4x^2-29=0$$
, 解得 $x=\frac{\sqrt{29}}{2}$; 当[x]=6时, $4x^2-189=0$, 解得 $x=\frac{3\sqrt{21}}{2}$;

当[x]=7时,
$$4x^2-229=0$$
,解得 $x=\frac{\sqrt{229}}{2}$;当[x]=8时, $4x^2-269=0$,解得 $x=\frac{\sqrt{269}}{2}$.

经检验,以上四个解都是方程的解. (1分)