Lecture: The choice of metric in subgradient methods

http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html

Acknowledgement: this slides is based on Stephen Boyd & John Duchi's lecture notes

Introduction

- Mirror descent methods
- Convergence analysis
- Mirror descent example
- Variable metric subgradient methods
- AdaGrad
- Example

Mirror descent methods

subgradient method without using Euclidean steps

 let h be a differentiable convex function, then associated Bregman divergence is

$$D_h(y,x) = h(y) - h(x) - \nabla h(x)^T (y - x)$$

- mirror (or non-linear) subgradient method
 - **1** get subgradient $g^{(k)} \in \partial f(x^{(k)})$
 - update

$$x^{(k+1)} = \underset{x \in C}{\operatorname{argmin}} \left\{ g^{(k)T} x + \frac{1}{\alpha_k} D_h(x, x^{(k)}) \right\}$$

generalizes projected subgradient decent (take $h(x) = \frac{1}{2}||x||_2^2$)

Convergence analysis

properties of h required: $strong\ convexity$ with respect to norm $||\cdot||$

$$h(y) \ge h(x) + \nabla h(x)^T (y - x) + \frac{1}{2} ||x - y||^2$$

For any $x^* \in C$,

$$f(x^{(k)}) - f(x^*) \le (g^{(k)})^T (x^{(k)} - x^*)$$

= $(g^{(k)})^T (x^{(k+1)} - x^*) + (g^{(k)})^T (x^{(k)} - x^{(k+1)})$

Use optimality conditions for $x^{(k+1)}$:

$$(\alpha_k g^{(k)} + \nabla h(x^{(k+1)}) - \nabla h(x^{(k)}))^T (y - x^{(k+1)}) \ge 0, \forall y \in C$$

so (take $y = x^*$)

$$g^{(k)T}(x^{(k+1)} - x^*) \le \frac{1}{\alpha_k} (\nabla h(x^{(k+1)}) - \nabla h(x^{(k)}))^T (x^* - x^{(k+1)})$$

Convergence analysis continued

identity for divergences

$$(\nabla h(x^{(k+1)}) - \nabla h(x^{(k)}))^T (x^* - x^{(k+1)})$$

$$= D_h(x^*, x^{(k)}) - D_h(x^*, x^{(k+1)}) - D_h(x^{(k)}, x^{(k+1)})$$

for any $x^* \in C$,

$$f(x^{(k)}) - f(x^*) \le g^{(k)T}(x^{(k+1)} - x^*) + g^{(k)T}(x^{(k)} - x^{(k+1)})$$

$$\le \frac{1}{\alpha_k} \left[D_h(x^*, x^{(k)}) - D_h(x^*, x^{(k+1)}) \right] - \frac{1}{\alpha_k} D_h(x^{(k)}, x^{(k+1)})$$

$$+ g^{(k)T}(x^{(k)} - x^{(k+1)})$$

apply Fenchel-Young inequality $(x^Ty \le \frac{1}{2\alpha}||x||^2 + \frac{\alpha}{2}||y||_*^2)$

$$\leq \frac{1}{\alpha_{k}} \left[D_{h}(x^{*}, x^{(k)}) - D_{h}(x^{*}, x^{(k+1)}) \right] - \frac{1}{\alpha_{k}} D_{h}(x^{(k)}, x^{(k+1)})$$

$$+ \frac{\alpha_{k}}{2} ||g^{(k)}||_{*}^{2} + \frac{1}{2\alpha_{k}} ||x^{(k)} - x^{(k+1)}||^{2}$$

$$\leq \frac{1}{\alpha_{k}} \left[D_{h}(x^{*}, x^{(k)}) - D_{h}(x^{*}, x^{(k+1)}) \right] + \frac{\alpha_{k}}{2} ||g^{(k)}_{*}||_{*}^{2}$$

Convergence guarantees

with fixed stepsize $\alpha_k = \alpha$,

$$\frac{1}{k} \sum_{i=1}^{k} f(x^{(i)}) - f(x^*) \le \frac{1}{\alpha k} D_h(x^*, x^{(1)}) + \frac{\alpha}{2k} \max_{i} ||g^{(i)}||_*^2$$

in general, converges if

- $D_h(x^*, x^{(1)}) < \infty$
- $\sum_k \alpha_k = \infty$ and $\alpha_k \to 0$
- for all $g \in \partial f(x)$ and $x \in C, ||g||_* \le G$ for some $G < \infty$

Mirror descent examples

- Usual (projected) subgradient descent: $h(x) = \frac{1}{2}||x||_2^2$
- With constrains of simplex, $C = \{x \in R^n_+ | \mathbf{1}^T x = 1\}$, use negative entropy

$$h(x) = \sum_{i=1}^{n} x_i \log x_i$$

- Strongly convex with respect to l₁-norm
- ② With $x^{(1)} = 1/n$, have $D_h(x^*, x^{(1)}) \le \log n$ for $x^* \in C$
- **③** If $G_{\infty} \ge ||g||_{\infty}$ for $g \in \partial f(x)$ for $x \in C$,

$$f_{best}^{(k)} - f^* \le \frac{\log n}{\alpha k} + \frac{\alpha}{2k} G_{\infty}$$

Can be much better than regular subgradient decent...

Example

Robust regression problem (an LP):

minimize
$$f(x) = ||Ax - b||_1 = \sum_{i=1}^{m} |a_i^T x - b_i|$$

subject to $x \in C = \{x \in R_+^n | 1^T x = 1\}$

subgradient of objective is $g = \sum_{i=1}^{m} sign(a_i^T x - b_i)a_i$

- Projected subgradient update $(h(x) = (1/2)||x||_2^2)$:
- Mirror descent update $(h(x) = \sum_{i=1}^{n} x_i \log x_i)$:

$$x_i^{(k+1)} = \frac{x_i(k) \exp(-\alpha g_i^{(k)})}{\sum_{j=1}^n x_j^{(k)} \exp(-\alpha g_j^{(k)})}$$

Example

Robust regression problem with $a_i \sim N(0, I_{n \times n})$ and $b_i = (a_{i,1} + a_{i,2})/2 + \varepsilon_i$ where $\varepsilon_i \sim N(0, 10^{-2}), m = 20, n = 3000$

stepsizes chosen according to best bounds (but still sensitive to stepsize choice)

Variable metric subgradient methods

subgradient method with variable metric $H_k > 0$:

- **1** get subgradient $g^{(k)} \in \partial f(x^{(k)})$
- 2 update (diagonal) metric H_k
- **3** update $x^{(k+1)} = x^{(k)} H_k^{-1} g^{(k)}$
 - matrix H_k generalizes step-length α_k

there are many such methods (Ellipsoid method, AdaGrad,...)

Variable metric projected subgradient method

same, with projection carried out in the H_k metric:

- **1** get subgradient $g^{(k)} \in \partial f(x^{(k)})$
- **1** update $x^{(k+1)} = P_{\chi}^{H_k}(x^{(k)} H_k^{-1}g^{(k)})$

where

$$\Pi_{\chi}^{H}(y) = \underset{x \in \chi}{\operatorname{argmin}} ||x - y||_{H}^{2}$$

and
$$||x||_H = \sqrt{x^T H x}$$
.

Convergence analysis

since $\Pi^{H_k}_\chi$ is non-expansive in the $||\cdot||_{H_k}$ norm, we get

$$\begin{split} ||x^{(k+1)} - x^*||_{H^{(k)}}^2 &= ||P_\chi^{H_k}(x^{(k)} - H_k^{-1}g^{(k)}) - P_\chi^{H_k}(x^*)||_{H_k}^2 \\ &\leq ||x^{(k)} - H_k^{-1}g^{(k)} - x^*||_{H_k}^2 \\ &= ||x^{(k)} - x^*||_{H_k}^2 - 2(g^{(k)})^T(x^{(k)} - x^*) + ||g^{(k)}||_{H_k^{-1}}^2 \\ &\leq ||x^{(k)} - x^*||_{H_k}^2 - 2(f(x^{(k)}) - f^*) + ||g^{(k)}||_{H_k^{-1}}^2. \end{split}$$

using
$$f^* = f(x^*) \ge f(x^{(k)}) + g^{(k)T}(x^* - x^{(k)})$$

apply recursively, use

$$\sum_{i=1}^{k} (f(x^{(i)}) - f^*) \ge k(f_{best}^{(k)} - f^*)$$

and rearrange to get

$$f_{best}^{(k)} - f^* \le \frac{||x^{(1)} - x^*||_{H_1}^2 + \sum_{i=1}^k ||g^{(i)}||_{H_i^{-1}}^2}{2k} + \frac{\sum_{i=2}^k \left(||x^{(i)} - x^*||_{H_i}^2 - ||x^{(i)} - x^*||_{H_{i-1}}^2\right)}{2k}$$

numeration of additional term can be bounded to get estimates

• for general $H_k = \operatorname{diag}(h_k)$

$$f_{best}^{(k)} - f^* \le \frac{R_{\infty}^2 ||H_1||_1 + \sum_{i=1}^k ||g^{(i)}||_{H_i^{-1}}^2}{2k} + \frac{R_{\infty}^2 \sum_{i=2}^k ||H_i - H_{i-1}||_1}{2k}$$

• $H_k = \operatorname{diag}(h_k)$ with $h_i \ge h_{i-1}$ for all i

$$f_{best}^{(k)} - f^* \le \frac{\sum_{i=1}^k ||g^{(i)}||_{H_i^{-1}}^2}{2k} + \frac{R_{\infty}^2 ||h_k||_1}{2k}$$

where $\max_{1 \leq i \leq k} ||x^{(i)} - x^*||_{\infty} \leq R_{\infty}$

converges if

- $R_{\infty} < \infty$ (e.g. if χ is compact)
- $\sum_{i=1}^{k} ||g^{(i)}||_{H_i^{-1}}^2$ grows slower than k
- $\sum_{i=2}^{k} ||H_i H_{i-1}||_1$ grows slower than k **or** $h_i \ge h_{i-1}$ for all i and $||h_k||_1$ grows slower than k

AdaGrad

AdaGrad-adaptive subgradient method

- **1** get subgradient $g^{(k)} \in \partial f(x^{(k)})$
- 2 choose metric H_k :

• set
$$S_k = \sum_{i=1}^k \operatorname{diag}(g^{(i)})^2$$

• set
$$H_k = rac{1}{lpha} S_k^{rac{1}{2}}$$

3 update
$$x^{(k+1)} = P_{\chi}^{H_k}(x^{(k)} - H_k^{-1}g^{(k)})$$

where $\alpha > 0$ is step-size

AdaGrad-motivation

• for fixed $H_k = H$ we have estimate:

$$f_{best}^{(k)} - f^* \le \frac{1}{2k} (x^{(1)} - x^*)^T H(x^{(1)} - x^*) + \frac{1}{2k} \sum_{i=1}^k ||g^{(i)}||_{H^{-1}}^2$$

• idea: Choose diagonal H_k > 0 that minimizes this estimate in hindsight:

$$H_k = \underset{h}{\operatorname{argmin}} \max_{x, y \in C} (x - y)^T \operatorname{diag}(h)(x - y) + \sum_{i=1}^k ||g^{(i)}||^2_{\operatorname{diag}(h)^{-1}}$$

- ullet optimal $H_k=rac{1}{R_\infty}\mathrm{diag}\left(\sqrt{\sum_{i=1}^k{(g_1^{(i)})^2}},...,\sqrt{\sum_{i=1}^k{(g_n^{(i)})^2}}
 ight)$
- intuition: adapt step-length based on historical step lengths

AdaGrad- convergence

by construction, $H_i = \frac{1}{\alpha} \mathrm{diag}(h_i)$ and $h_i \geq h_{i-1}$, so

$$f_{best}^{(k)} - f^* \le \frac{1}{2k} \sum_{i=1}^k ||g^{(i)}||_{H_i^{-1}}^2 + \frac{1}{2k\alpha} R_{\infty}^2 ||h_k||_1$$
$$\le \frac{\alpha}{k} ||h_k||_1 + \frac{1}{2k\alpha} R_{\infty}^2 ||h_k||_1$$

(second line is a theorem) also have (with $\alpha=R_\infty^2$) and for compact sets C

$$f_{best}^{(k)} - f^* \le \frac{2}{k} \inf_{h \ge 0} \left\{ \sup_{x, y \in C} (x - y)^T \operatorname{diag}(h)(x - y) + \sum_{i=1}^k ||g^{(i)}||_{\operatorname{diag}(h)^{-1}}^2 \right\}$$

Example

Classification problem:

- **Data**: $\{a_i, b_i\}, i = 1, ..., 50000$
 - $a_i \in \mathbf{R}^{1000}$
 - $b \in \{-1, 1\}$
 - Data created with 5% mis-classifications w.r.t $\omega=1, \nu=0$
- **Objective**: find classifiers $\omega \in \mathbf{R}^{1000}$ and $\nu \in \mathbf{R}$ such that
 - $a_i^T \omega + \nu > 1$ if b = 1
 - $a_i^T \omega + \nu < 1$ if b = -1
- Optimization method:
 - Minimize hinge-loss: $\sum_{i} \max(0, 1 b_i(a_i^T \omega + \nu))$
 - Choose example uniformly at random, take sub-gradient step w.r.t that example

Best subgradient method vs best AdaGrad

Often best AdaGrad performs better than best subgradient method

AdaGrad with different step-sizes α :

Sensitive to step-size selection (like standard subgradient method)