LABORATORIO DE ELECTRÓNICA 2018

TRABAJO PRÁCTICO #2

Osciloscopios / Analizador de Impedancias / Circuitos RLC Entrega: 28 de septiembre, Evaluación Oral: 25 y/o 28 de septiembre

• Medición de componentes pasivos con el Medidor vector de impedancias:

Componentes: L y C: Según tabla 1 Rango de frecuencias: 10 Hz. – 10 MHz.

a) Hacer un barrido apropiado obteniendo

$L_{\rm s}$	L	Q	R	ф
f_1				
fn				

C//	С	D	G	ф
f_1				
•••				
f_n				

- b) Graficar c/u de las mediciones
- c) Aproximar la curva mediante un modelo analítico del componente calculando los valores del modelo. Comparar.
- d) Analizar resultados. Conclusiones.
- Utilizando el osciloscopio digital, y un generador, aprovechando sus funciones, excitar al siguiente circuito con una onda cuadrada de frecuencia $f_0/10$, con V_i tal que $V_{0MAX} = 1$ Vpp, observar V_0 y V_i .

L y C: Según tabla 1 R: POT tal que ξ cumpla con tabla 1

- a) Obtener la respuesta al escalón del sistema. Medir la frecuencia de oscilación del transitorio f_T , el tiempo de establecimiento del 5% y el sobrepico M_P . Verificar sus valores analíticamente. Calcular f_R (frecuencia de resonancia) y f_T (frecuencia observada en el transitorio), comparar con los valores medidos.
- b) Observar la forma de onda V_o haciendo un barrido desde f_i hasta que la forma de onda sea la misma a medida que se siga aumentando la frecuencia. Describir y analizar los resultados en el dominio del tiempo.
- c) Realizar las mediciones para obtener un diagrama de Bode desde f₀/10 hasta 20 f₀. Graficar y comparar con su correspondiente teórico. Analizar los resultados de 2-b) en función de la frecuencia.
- d) Repetir punto a) bajo las siguientes condiciones:
 - d_1) R tal que M_P (máx.) = 0.2 V_i . Justificar el resultado analíticamente
 - d_2) R = 100 R_{ANTERIOR} (del punto d-1)
 - d_3) f_T para $R = 0 \Omega$ (¿Coincide con lo esperado?)

- d₄) Elegir R tal que sea igual a R_C (resistencia crítica calculada). Hallar la resistencia crítica experimental variando un potenciómetro apropiado, buscando cuando deja de oscilar. Comparar con los resultados analíticos.
- e) Repetir el caso d₁) y d₃) sin usar buffer. Verificar formas de onda de entrada y salida. Justificar.
- Realizar un programa que mediante un osciloscopio y un generador permita realizar el bode de un circuito en forma automática. Con las siguientes caracteristicas:
 - a) Tensión de alimentación configurable
 - b) Tiempo de establecimiento configurable
 - c) Cantidad de puntos y tipo de barrido (lin/log) seleccionable por el usuario
 - d) Debe configurar automaticamente las escalas a fin de realizar la mejor medición posible en cada uno de los puntos
- Repetir el ejercicio 2-a) y 2- c) para los siguientes esquemas y sacar conclusiones:

En cada caso emplear la frecuencia f_i más apropiada para las mediciones.

• Con el circuito completo, usando los *componentes* del ej. 2-a), calcular el Q en forma analítica. Encontrar el método empírico más apropiado para obtenerlo, buscando EN CADA CONFIGURACIÓN VISTA, la medición que introduzca menos error. MEDIR.

Grupo	L (µH)	C (nF)	sita
1	1000	3.9	0.21
2	1000	4.7	0.21
3	1000	5.6	0.21
4	1000	6.8	0.20
5	1000	8.2	0.19
6	1000	10.0	0.19
7	1000	12.0	0.19

Tabla 1