THEORETICAL PART:

Definition (Linear Function):

A **linear function** in the variable x is any function that can be written in the form

$$f(x) = mx + b,$$

where m and b are real numbers. If $m \neq 0$, f(x) = mx + b is also called a **first-degree polynomial** function.

Linear Regression:

Goal: for a given number of points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, we would like to find the equation y = mx + b whose graph comes closest to "fitting" the points.

We will use a **Least-Squares Method**:

- Calculate the averages of x- and y-values : $\bar{x} = \frac{x_1 + \dots + x_n}{n}$ and $\bar{y} = \frac{y_1 + \dots + y_n}{n}$.
- Calculate $\Delta x = x \bar{x}$ and $\Delta y = y \bar{y}$.
- Calculate

$$\sum \Delta x \Delta y$$
 and $\sum (\Delta x)^2$

• Calculate the slope m and y-intercept b for the linear regression line of best fit:

$$m = \frac{\sum \Delta x \Delta y}{\sum (\Delta x)^2}$$
 and $b = \bar{y} - m\bar{x}$

Important question to ask: given a collection of points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, we want to know if this collection shows a linear dependence of y on x.

The **Pearson correlation coefficient r** is a number that allows us to answer this question objectively.

We compute

$$r = \frac{\sum \Delta x \Delta y}{\sqrt{\sum (\Delta x)^2} \sqrt{\sum (\Delta y)^2}}$$

We have that always $-1 \le r \le 1$.

If r = 0, then there is no linear dependence of y on x. If $|r| \approx 1$, then there is a strong linear dependence.

PRACTICAL PART:

1. Graph the following linear functions:

(a)
$$f(x) = 3x + 2$$

(b)
$$g(x) = 3$$

2. Find a formula for the linear function whose graph is given below.

3. Given the collection of points

$$\{(-1,6),(1,5),(2,4),(3,2),(5,1)\}$$

- (a) Use linear regression to find and graph the line of best fit.
- (b) Find the Pearson correlation coefficient r.