MATH 7320, Functional Analysis I

HOMEWORK 4 – Due Friday October 25

- 1. Determine the extreme points of the closed unit ball of the following complex Banach spaces:
 - i) ℓ^p for $1 \le p \le \infty$
 - ii) $L^p([0,1],\mu)$ for $1 \leq p \leq \infty$, where μ is the Lebesgue measure.
 - iii) C([0,1]).
 - iv) $C_0(\mathbb{C}) := \{ f : \mathbb{C} \to \mathbb{C} \mid f \text{ is continuous and } \lim_{|x| \to \infty} f(x) = 0 \}.$
 - v) $\mathcal{B}(\ell^2)$.
- 2. Denote $C_b(\mathbb{R}) := \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous and bounded} \}$ and $C_0(\mathbb{R}) := \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous and } \lim_{x \to \pm \infty} f(x) = 0\}$, and equip both with the supnorm. For each $f \in C_0(\mathbb{R})$ define the semi-norm p_f on $C_b(\mathbb{R})$ by $p_f(g) = ||fg||$ and let τ be the topology on $C_b(\mathbb{R})$ defined by the family of semi-norms $\{p_f : f \in C_0(\mathbb{R})\}$.
 - i) Prove that both normed spaces are complete, and $C_b(\mathbb{R})$ is also complete with respect to τ .
 - ii) Prove that the identity map $(C_b(\mathbb{R}), ||\cdot||) \to (C_b(\mathbb{R}), \tau)$ is continuous but not open.