Question	Scheme	Marks
8(a)	$a + ar = 360$ oe e.g. $\frac{a(1-r^2)}{1-r} = 360$ $ar + ar^2 = 288$ oe	M1M1 (B1B1on ePen
	$r = \left\{ \frac{a(1+r)}{ar(1+r)} = \right\} \frac{288}{360} = \frac{4}{5}$	dM1A1
	$a = \frac{360}{1 + \frac{4}{5}} = 200$	M1A1
	$U_n = 200 \left(\frac{4}{5}\right)^{n-1} *$	A1cso(B1 on ePen) [7]
8(a) ALT	$a + ar = 360$ oe e.g. $\frac{a(1-r^2)}{1-r} = 360$ $ar + ar^2 = 288$ oe	M1M1 (B1B1 on ePen)
	$a\left(\frac{360}{a} - 1\right) + a\left(\frac{360}{a} - 1\right)^2 = 288$	dM1A1
	$\Rightarrow a = 200$ $r = \frac{360}{"200"} - 1 = \frac{4}{5}$ $U_n = 200 \left(\frac{4}{5}\right)^{n-1} *$	M1A1 A1cso(B1
	$\{S \text{ is convergent because}\} \left \frac{4}{5} \right < 1$	on ePen) [7] B1
(b)		[1]
(c)	$S_{\infty} = \frac{r200r}{1 - r(\frac{4}{5})r} = 1000$	M1A1cao [2]
(d)	$\frac{200\left(1-\left(\frac{4}{5}\right)^n\right)}{1-\left(\frac{4}{5}\right)} > 978$	M1
	$\left(\frac{4}{5}\right)^n < \frac{11}{500}$	dM1
	$n \log \left(\frac{4}{5}\right) < \log \left(\frac{11}{500}\right)$ $\Rightarrow n > 17.104 \dots$	ddM1
	n = 18	A1 [4]
	To	otal 14 marks

Part	Mark	Notes
(a)	M1	For either correct equation. Allow use of U_1 as the first term instead of a
	M1	For both correct equations. Allow use of U_1 as the first term instead of a
	dM1	For eliminating a from their equations, reaches $r =$ (Depends on previous mark)
	A1	For the correct value of <i>r</i>
	M1	Uses their value of r to find a value for a
	A1	For $a = 200$
	A1 cso	For the correct required expression of $U_n = 200 \left(\frac{4}{5}\right)^{n-1}$ (must have U_n)
(a)ALT	M1	For either correct equation.
	M1	For both correct equations
	dM1	For eliminating r from their equations, reaches $a =$ (Depends on previous mark)
	A1	For the correct value of a
	M1	Uses their value of a to find a value for <i>r</i>
	A1	For the correct value of r
	A1 cso	For the correct required expression of $U_n = 200 \left(\frac{4}{5}\right)^{n-1}$ (must have U_n)
(b)	B 1	For stating the correct reason, $ r < 1$ or $-1 < r < 1$ or "0.8" < 1 or $\left \frac{4}{5} \right < 1$
		Do not accept just $r < 1$ without a correct reason
(c)	M1	For using their value of A/a /first term of their geometric sequence and their r
		(provided their $ r < 1$) in a correct formula for the sum to infinity. $S_{\infty} = \frac{rtheir Ar}{1 - r(their r)r}$
	A1cao	For the correct value of 1000
(d)	M1	To the correct value of 1000
(u)	1411	Uses their a and r (their r can be $ r < 1$ or $ r > 1$) to set the correct formula for the sum of a geometric series > 978 or $= 978$ or ≥ 978
		(>978 or =978 or \geq 978 may be implied by later work.)
	dM1	Attempts to rearrange and achieves $(their\ r)^n$ " < " $k\ (k\ is\ non\ zero\ positive\ constant)$
		Allow strict or non-strict inequalities or equation:
		$<,>, \ge, \le \text{ or } =$
	ddM1	For correctly takes logs (any base)/ln, and achieves a positive value for n , it
		maybe implied by 17.1but not 18
		ALT : trial and error to find a value of n (at least tries $n=17$ and $n=18$)
	A1	For $n = 18$
		Must come from correct working, achieves <i>n</i> =18 with no incorrect inequalities in their working.
	1	1

If a candidate does not score the dM1 mark but arrives at an answer of 17.1... this scores a maximum of M1 as clear use of calculator is not condoned.