Activity Selection Example

An Activity Selection Problem (Conference Scheduling Problem)

- Input: A set of activities $S = \{a_1, ..., a_n\}$
- Each activity has start time and a finish time
 a_i=(s_i, f_i)
- Two activities are compatible if and only if their interval does not overlap
- Output: a maximum-size subset of mutually compatible activities

The Activity Selection Problem

• Here are a set of start and finish times

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can {a₁, a₄, a₈, a₁₁} which is a larger set
 - But it is not unique, consider $\{a_2, a_4, a_9, a_{11}\}$

Interval Representation

Early Finish Greedy

- Select the activity with the earliest finish
- Eliminate the activities that could not be scheduled
- Repeat!

Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n \leftarrow length[s]

2 A \leftarrow \{a_1\}

3 i \leftarrow 1

4 for m \leftarrow 2 to n

5 do if s_m \geq f_i

6 then A \leftarrow A \cup \{a_m\}

7 i \leftarrow m

8 return A
```

Why it is Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled
- The greedy choice is the one that maximizes the amount of unscheduled time remaining

Why this Algorithm is Optimal?

- We will show that this algorithm uses the following properties
 - The problem has the optimal substructure property
 - The algorithm satisfies the greedy-choice property
- Thus, it is Optimal

Greedy-Choice Property

- Show there is an optimal solution that begins with a greedy choice (with activity 1, which as the earliest finish time)
- Suppose $A \subseteq S$ in an optimal solution
 - Order the activities in A by finish time. The first activity in A is k
 - \circ If k = 1, the schedule A begins with a greedy choice
 - \circ If $k \neq 1$, show that there is an optimal solution B to S that begins with the greedy choice, activity 1
 - Let $B = A \{k\} \cup \{1\}$
 - ∘ $f_1 \le f_k$ → activities in B are disjoint (compatible)
 - o B has the same number of activities as A
 - o Thus, B is optimal

Optimal Substructures

- Once the greedy choice of activity 1 is made, the problem reduces to finding an optimal solution for the activity-selection problem over those activities in S that are compatible with activity 1
 - o Optimal Substructure
 - If A is optimal to S, then $A' = A \{1\}$ is optimal to $S' = \{i \in S: s_i \ge f_i\}$
 - Whv?
 - If we could find a solution B' to S' with more activities than A', adding activity 1 to B' would yield a solution B to S with more activities than A
 → contradicting the optimality of A
- After each greedy choice is made, we are left with an optimization problem of the same form as the original problem
 - By induction on the number of choices made, making the greedy choice at every step produces an optimal solution

Elements of Greedy Strategy

- An greedy algorithm makes a sequence of choices, each of the choices that seems best at the moment is chosen
 - NOT always produce an optimal solution
- Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy
 - Greedy-choice property
 - Optimal substructure

Greedy-Choice Property

- A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
 - Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made
 - The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems
- Of course, we must prove that a greedy choice at each step yields a globally optimal solution

Optimal Substructures

- A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to sub-problems
 - If an optimal solution A to S begins with activity 1, then $A' = A \{1\}$ is optimal to $S' = \{i \in S: s_i \ge f_1\}$

Optimal substructures

• Define the following subset of activities which are activities that can start after a_i finishes and finish before a_i starts

$$S_{ij} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$$

• Sort the activities according to finish time

$$f_0 \le f_1 \le f_2 \le \cdots \le f_n < f_{n+1}$$

• We now define the the maximal set of activities from i to j as

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

• Let c[i,j] be the maximal number of activities

$$c[i, j] = c[i, k] + c[k, j] + 1$$

• Our recurrence relation for finding c[i, j] becomes

$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{i < k < j} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

• We can solve this using dynamic programming, but a simpler approach exists

The End