Corrigé du CC1

Exercice 1. a) Exprimer f(x) = |x| + |x+3| sous la forme ax + b en distinguant trois cas, selon la position du nombre réel x par rapport à -3 et 0.

• Premier cas: $x \le -3$. Alors $x+3 \le 0$, donc |x+3| = -(x+3). On a de plus |x| = -x, car $x \le 0$. Dans ce cas,

$$f(x) = (-x) + (-(x+3)) = -2x - 3$$
.

• Deuxième cas : -3 < x < 0. On a encore |x| = -x; x + 3 > 0 donc |x + 3| = x + 3. Dans ce cas,

$$f(x) = (-x) + (x+3) = 3.$$

• Troisième cas : $x \ge 0$. Alors |x| = x et |x + 3| = x + 3. Dans ce cas,

$$f(x) = x + (x+3) = 2x + 3$$
.

b) Résoudre l'équation |x| + |x + 3| = 4.

Pour $x \in]-\infty, -3]$, on a les équivalences

$$f(x) = 4 \iff -2x - 3 = 4 \iff -2x = 7 \iff x = -7/2$$
.

L'équation a donc dans l'intervalle $]-\infty,-3]$ une solution, qui est -7/2.

Pour $x \in]-3,0[$, f(x)=3 donc l'équation n'a pas de solution dans l'intervalle]-3,0[.

Pour $x \in [0, +\infty[$, on a les équivalences

$$f(x) = 4 \iff 2x + 3 = 4 \iff 2x = 1 \iff x = 1/2$$
.

L'équation a donc dans l'intervalle $[0, +\infty[$ une solution, qui est 1/2.

Conclusion : l'équation a deux solutions dans \mathbb{R} : -7/2 et 1/2.

Exercice 2. a) Résoudre dans \mathbb{R} l'inéquation $\sqrt{x-2} < 1$.

Pour que $\sqrt{x-2}$ soit défini, on doit avoir $x \geq 2$. La fonction carré étant strictement croissante sur \mathbb{R}_+ , on a pour $x \geq 2$,

$$\sqrt{x-2} < 1 \iff (\sqrt{x-2})^2 < 1^2 \iff x-2 < 1 \iff x < 3$$

L'ensemble des solutions de l'inéquation est donc l'intervalle [2, 3[.

b) Résoudre dans \mathbb{R} l'équation $\sqrt[3]{x^2} = 2x$.

On a les équivalences

$$\sqrt[3]{x^2} = 2x \iff x^2 = (2x)^3 \iff x^2 = 8x^3 \iff x^2(8x - 1) = 0 \iff x = 0 \text{ ou } 8x - 1 = 0$$

L'équation a donc deux solutions : 0 et 1/8.

Exercice 3. On considère les fonctions $u: x \mapsto \sqrt{x}$ et $v: x \mapsto x^2 - 4x + 3$.

a) Quels sont les ensembles de définition de u et de v?

Ensemble de définition de $u: D_u = \mathbb{R}_+ = [0, +\infty[$; ensemble de définition de $v: D_v = \mathbb{R}$.

b) Déterminer l'ensemble de définition de $v \circ u$ et calculer $v \circ u(x)$.

$$D_{v \circ u} = \{x \in D_u \mid u(x) \in D_v\} = D_u = \mathbb{R}_+, \text{ car } D_v = \mathbb{R}. \text{ Pour } x \in \mathbb{R}_+,$$

$$v \circ u(x) = v(u(x)) = v(\sqrt{x}) = (\sqrt{x})^2 - 4\sqrt{x} + 3 = x - 4\sqrt{x} + 3$$
.

c) Déterminer l'ensemble de définition de $u \circ v$ et calculer $u \circ v(x)$.

 $D_{u\circ v}=\{x\in D_v\,|\,v(x)\in D_u\}=\{x\in\mathbb{R}\,|\,x^2-4x+3\geq 0\}$. L'équation du second degré $x^2-4x+3=0$ a pour discriminant $\Delta=16-12=4$; les solutions de cette équation sont

$$x_1 = \frac{4 - \sqrt{4}}{2} = \frac{4 - 2}{2} = 1$$
 et $x_2 = \frac{4 + \sqrt{4}}{2} = \frac{4 + 2}{2} = 3$

On a donc $x^2 - 4x + 3 = (x - 1)(x - 3)$, et $x^2 - 4x + 3 \ge 0$ si et seulement si $x \le 1$ ou $x \ge 3$. Donc

$$D_{u \circ v} =]-\infty, 1] \cup [3, +\infty[$$

Pour $x \in D_{u \circ v}$, $u \circ v(x) = u(v(x)) = \sqrt{x^2 - 4x + 3}$.

Exercice 4. On considère la fonction rationnelle $g: x \mapsto \frac{x^4 - x^3}{(x^2 - 1)(x^2 + 2)}$.

a) Déterminer l'ensemble de définition de g.

 $D_g = \{x \in \mathbb{R} \mid (x^2 - 1)(x^2 + 2) \neq 0\}.$ Pour tout $x \in \mathbb{R}, x^2 + 2 > 0$, donc

$$(x^2 - 1)(x^2 + 2) = 0 \iff x^2 - 1 = 0 \iff (x - 1)(x + 1) = 0 \iff x = 1 \text{ ou } x = -1.$$

Ainsi $D_g = \mathbb{R} \setminus \{-1, 1\}.$

b) Déterminer la limite en $-\infty$ de g.

$$g(x) = \frac{x^4(1-\frac{1}{x})}{x^2(1-\frac{1}{x^2})x^2(1+\frac{2}{x^2})} = \frac{x^4(1-\frac{1}{x})}{x^4(1-\frac{1}{x^2})(1+\frac{2}{x^2})} = \frac{1-\frac{1}{x}}{(1-\frac{1}{x^2})(1+\frac{2}{x^2})}$$

Lorsque x tend vers $-\infty$, $1 - \frac{1}{x}$, $1 - \frac{1}{x^2}$ et $1 + \frac{2}{x^2}$ tendent vers 1, donc $\lim_{x \to -\infty} g(x) = 1$.

c) Trouver une expression simplifiée de g(x), puis déterminer $\lim_{x \to a} g(x)$.

Pour tout $x \in D_g$,

$$g(x) = \frac{x^3(x-1)}{(x-1)(x+1)(x^2+2)} = \frac{x^3}{(x+1)(x^2+2)}.$$

Lorsque x tend vers 1, x^3 tend vers 1, (x+1) tend vers 2 et (x^2+2) tend vers 3, donc $\lim_{x\to 1} g(x) = \frac{1}{6}$.

Exercice 5. On considère la fonction $h: x \mapsto \cos(\arcsin(x))$.

a) Donner l'ensemble de définition D_h de h, et montrer que la fonction h est paire.

L'ensemble de définition de cos étant \mathbb{R} , D_h est égal à l'ensemble de définition de arcsin, donc $D_h = [-1, 1]$. Pour tout $x \in [-1, 1]$, $-x \in [-1, 1]$ et

$$h(-x) = \cos(\arcsin(-x))$$

= $\cos(-\arcsin(x))$ car la fonction arcsin est impaire
= $\cos(\arcsin(x)) = h(x)$ car la fonction cos est paire

Donc h est paire.

b) Soit $x \in D_h$. On pose $a = \arcsin(x)$. Montrer que

$$(\cos a)^2 = 1 - x^2$$
 et $\cos a \ge 0$.

En déduire une expression simplifiée de h(x).

Par définition de $a = \arcsin(x)$, $\sin a = x$ et $a \in [-\pi/2, \pi/2]$. Or $(\cos a)^2 + (\sin a)^2 = 1$, donc

$$(\cos a)^2 = 1 - (\sin a)^2 = 1 - x^2.$$

De plus $\cos a \ge 0$, car $a \in [-\pi/2, \pi/2]$. Donc $h(x) = \cos a = \sqrt{1 - x^2}$.