41–46 Escreva o número na forma a + bi.

41.
$$e^{i\pi/2}$$

42.
$$e^{2\pi}$$

43.
$$e^{i\pi/3}$$

44.
$$e^{-i\pi}$$

45.
$$e^{2+i\pi}$$

46.
$$e^{\pi+i}$$

- **47.** Use o Teorema de De Moivre com n = 3 para expressar cos 3θ e sen 3θ em termos de $\cos \theta$ e sen θ .
- 48. Use a fórmula de Euler para demonstrar as seguintes fórmulas para cos x e sen x:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

49. Se u(x) = f(x) + ig(x) for uma função com valores complexos de uma variável real x e as partes real e imaginária f(x) e g(x)

- forem funções deriváveis de x, então a derivada de u está definida como u'(x) = f'(x) + ig'(x). Associe isso à Equação 7 para demonstrar que se $F(x) = e^{rx}$, então $F'(x) = re^{rx}$ quando r = a + bi for um número complexo.
- **50.** (a) Se u for uma função a valores complexos de uma variável real, sua integral indefinida $\int u(x) dx$ é uma primitiva de u. Calcule

$$\int e^{(1+i)x} dx$$

(b) Considerando a parte real e a imaginária da integral da parte (a), calcule as integrais reais

$$\int e^x \cos x \, dx$$
 e $\int e^x \sin x \, dx$

(c) Compare com o método usado no Exemplo 4 da Seção 7.1.

RESPOSTAS DOS EXERCÍCIOS DE NÚMEROS ÍMPARES

CAPÍTULO I

EXERCÍCIOS I.I = PÁGINA 12

- (c) -3, 11. (a) -2 (b) 2,8 (d) -2,5,0,3(e) [-3, 3], [-2, 3](f)[-1,3]
- [-85, 115]
- 5. Não
- 7. Sim, [-3, 2], $[-3, -2) \cup [-1, 3]$
- 9. Dieta, exercício, ou doença

П.

13.

15.

17.

- **21.** $12, 16, 3a^2 a + 2, 3a^2 + a + 2, 3a^2 + 5a + 4,$ $6a^2 - 2a + 4$, $12a^2 - 2a + 2$, $3a^4 - a^2 + 2$, $9a^4 - 6a^3 + 13a^2 - 4a + 4$, $3a^2 + 6ah + 3h^2 - a - h + 2$

- **27.** $\{x \mid x \neq \frac{1}{3}\} = (-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty)$
- **29.** [0, ∞)
- **31.** $(-\infty,0) \cup (5,\infty)$
- **33.** $(-\infty,\infty)$
- **35.** $(-\infty,\infty)$

37. [5, ∞)

A62 ||| CÁLCULO

- **41.** (-∞,∞)
- **43.** $(-\infty,\infty)$

- **45.** $f(x) = \frac{5}{2}x \frac{11}{2}, 1 \le x \le 5$
- **47.** $f(x) = 1 \sqrt{-x}$

- **51.** $A(L) = 10L L^2, 0 < L < 10$
- **53.** $A(x) = \sqrt{3}x^2/4, x > 0$
- **55.** $S(x) = x^2 + (8/x), x > 0$
- **57.** $V(x) = 4x^3 64x^2 + 240x, 0 < x < 6$

(b)\$400,\$1900

- **61.** fé ímpar, g é par
- **63.** (a) (-5,3)
- (b) (-5, -3)
- **65.** Ímpar
- **67.** Nenhum dos dois
- **69.** Par

EXERCÍCIOS 1.2 PÁGINA 25

I. (a) Raiz

(a) *h*

- (b) Algébrica
- (c) Polinominal (grau 9) (e) Trigonométrica (f) Logarítmica
- (d) Racional
- (c) g
- (a) y = 2x + b,onde b é a intersecção com o eixo y.

(b) y = mx + 1 - 2m, em que m é a inclinação. Veja o gráfico à direita.

7. Seus gráficos têm inclinação -1.

- **9.** f(x) = -3x(x+1)(x-2)
- II. (a) 8,34, variação em mg para cada ano de variação (b) 8,34 mg
- **13.** (a)
- (b) $\frac{9}{5}$, variação em °F para cada variação de 1 °C; 32, temperatura em Fahrenheit correspondente a 0 °C
- **15.** (a) $T = \frac{9}{68}N + \frac{88}{17}$
- (b) $\frac{9}{68}$, variação em °C para cada variação de cricrido por minuto
- (c) 25 °C
- **17.** (a) P = 0.10d + 1.05
- (b) 59,5 m
- 19. (a) Cosseno
- (b) Linear
- **21.** (a) ₁₅
- O modelo lienar é adequado

- (c) y = -0.00009979x + 13.951 [Veja o gráfico em (b).]
- (d) Cerca de 11,5 por 100 de população
- (e) Cerca de 6%

23. (a)

O modelo linear é adequado

(b) y = 0.02694x - 47.804

(c) 6,08 m

(d) Não

25. $y \approx 0.0012937x^3 - 7.06142x^2 + 12823x - 7743770$; 1 914 milhões

EXERCÍCIOS 1.3 PÁGINA 33

1. (a) y = f(x) + 3

(b)
$$y = f(x) - 3$$

$$(c) y = f(x - 3)$$

(d) y = f(x+3)

(e)
$$y = -f(x)$$

$$(f) y = f(-x)$$

(g) y = 3f(x)

$$(h) y = \frac{1}{3} f(x)$$

3. (a) 3

(d) 5

5. (a)

(b) 1

(b)

(c)

(d)

7. $y = -\sqrt{-x^2 - 5x - 4} - 1$

9.

11.

13.

15.

19.

21.

23.

25. $L(t) = 12 + 2 \operatorname{sen} \left[\frac{2\pi}{365} (t - 80) \right]$

27. (a) A parte do gráfico de y = f(x) à direita do eixo y é refletida em torno do eixo y.

(b)

(c)

29. $(f+g)(x) = x^3 + 5x^2 - 1, (-\infty, \infty)$ $(f-g)(x) = x^3 - x^2 + 1, (-\infty, \infty)$ $(fg)(x) = 3x^5 + 6x^4 - x^3 - 2x^2, (-\infty, \infty)$ $(f/g)(x) = (x^3 + 2x^2)/(3x^2 - 1), \{x \mid x \neq \pm 1/\sqrt{3}\}\$

31. (a) $(f \circ g)(x) = 4x^2 + 4x, (-\infty, \infty)$

(b)
$$(g \circ f)(x) = 2x^2 - 1, (-\infty, \infty)$$

(c)
$$(f \circ f)(x) = x^4 - 2x^2, (-\infty, \infty)$$

(d)
$$(g \circ g)(x) = 4x + 3, (-\infty, \infty)$$

33. (a) $(f \circ g)(x) = 1 - 3\cos x, (-\infty, \infty)$

(b)
$$(g \circ f)(x) = \cos(1 - 3x), (-\infty, \infty)$$

(c)
$$(f \circ f)(x) = 9x - 2, (-\infty, \infty)$$

(d) $(g \circ g)(x) = \cos(\cos x), (-\infty, \infty)$

35. (a) $(f \circ g)(x) = (2x^2 + 6x + 5)/[(x + 2)(x + 1)],$ ${x \mid x \neq -2, -1}$

(b)
$$(g \circ f)(x) = (x^2 + x + 1)/(x + 1)^2, \{x \mid x \neq -1, 0\}$$

(c)
$$(f \circ f)(x) = (x^4 + 3x^2 + 1)/[x(x^2 + 1)], \{x \mid x \neq 0\}$$

(d)
$$(g \circ g)(x) = (2x + 3)/(3x + 5), \{x \mid x \neq -2, -\frac{5}{3}\}$$

A64 |||| CÁLCULO

37.
$$(f \circ g \circ h)(x) = 2x - 1$$

39.
$$(f \circ g \circ h)(x) = \sqrt{x^6 + 4x^3 + 1}$$

41.
$$g(x) = x^2 + 1, f(x) = x^{10}$$

43.
$$g(x) = \sqrt[3]{x}$$
, $f(x) = x/(1+x)$

45.
$$g(t) = \cos t, f(t) = \sqrt{t}$$

47.
$$h(x) = x^2, g(x) = 3^x, f(x) = 1 - x$$

49.
$$h(x) = \sqrt{x}, g(x) = \sec x, f(x) = x^4$$

51. (a) 4 (b) 3 (c) 0 (d) Não existe; f(6) = 6 não está no domínio de g.

(e) 4 (f) -2

53. (a) r(t) = 60t (b) $(A \circ r)(t) = 3600\pi t^2$; a área do círculo como função do tempo.

55. (a) $s = \sqrt{d^2 + 36}$ (b) d = 30t

(c) $s = \sqrt{900t^2 + 36}$; a distância entre o farol e o navio como função do tempo decorrido desde o meio-dia.

57. (a)

(b)

V(t) = 120H(t)

$$V(t) = 240H(t-5)$$

59. Sim; $m_1 m_2$

61. (a)
$$f(x) = x^2 + 6$$

(b)
$$g(x) = x^2 + x - 1$$

63. (a) Par; par

(b) Ímpar; par

65. Sim

EXERCÍCIOS 1.4 PÁGINA 41

I. (c)

3.

5.

7.

9.

13.

15.

17. Não

19. 9,05

21. 0, 0,88

23. *g*

25. -0.85 < x < 0.85

27. (a)

(b)

(c)

(d) Os gráficos das raízes pares são parecidos com o de \sqrt{x} , os gráficos de raízes ímpares são parecidos com o de $\sqrt[3]{x}$. Conforme n aumenta, o gráfico de $y = \sqrt[n]{x}$ se torna mais íngreme perto de 0 e mais achatado para x > 1.

29.

Se c<-1.5, o gráfico tem três corcovas: dois pontos de mínimo e um ponto de máximo. Estas corcovas se tornam mais achatadas conforme c aumenta até que em c=-1.5 duas das corcovas desaparecem e há apenas um ponto de mínimo. Esta corcova única então se move para a direita e se aproxima da origem conforme c aumenta.

31. A corcova se torna maior e se move para a direita.

33. Se c < 0, o laço está à direita da origem; se c > 0, o laço está à esquerda. Quanto mais próximo c estiver de 0, maior é o laço.

EXERCÍCIOS 1.5 PÁGINA 48

1. (a) $f(x) = a^x$, a > 0 (b) \mathbb{R} (c) $(0, \infty)$ (d) Veja as Figuras 4(c), 4(b) e 4(a), respectivamente.

Todas se aproximam de 0 quando $x \rightarrow \infty$, todas passam por (0,1) e todas são crescentes. Quanto maior a base, mais rápida a taxa de aumento.

5.

As funções com base maior que 1 são crescentes e aquelas com base menor que 1 são decrescentes. As últimas são reflexões das primeiras em torno do eixo y.

7.

9.

П.

- **13.** (a) $y = e^x 2$
- (b) $y = e^{x-2}$
- (c) $y = -e^{x}$

- (d) $y = e^{-x}$
- (e) $y = -e^{-x}$
- **15.** (a) $(-\infty, \infty)$
- (b) $(-\infty,0) \cup (0,\infty)$
- 17. $f(x) = 3 \cdot 2^x$
- **23.** Em $x \approx 35,8$
- **25.** (a) 3 200
- (b) $100 \cdot 2^{t/3}$
- (c) 10 159

(d) 60,000

27. y = ab', em que $a \approx 3,154832569 \times 10^{-12}$ e $b \approx 1,017764706$; 5 498 milhões; 7 417 milhões

EXERCÍCIOS 1.6 PÁGINA 59

- I. (a) Veja a Definição 1.
 - (b) Ela deve satisfazer o Teste da Reta Horizontal.
- **3.** Nac
- **5.** Sim
- 7. Não 17. 0
- II. Não

- **13.** Não
- **15.** 2
- 19. $F = \frac{9}{5}C + 32$; a temperatura Fahrenheit como função da temperatura em graus Celsius; $[-273,15,\infty)$
- **21.** $f^{-1}(x) = -\frac{1}{3}x^2 + \frac{10}{3}, x \ge 0$
- **23.** $f^{-1}(x) = \sqrt[3]{\ln x}$
- **25.** $y = e^x 3$
- **27.** $f^{-1}(x) = \sqrt[4]{x-1}$

9. Sim

- **31.** (a) É definida como a inversa da função exponencial com base a, isto é, $\log_a x = y \Leftrightarrow a^y = x$.
 - (b) $(0, \infty)$
- (c) ℝ
- (d) Veja a Figura 11.

- **33.** (a) 3
- (b) -3
- **35.** (a) 3
- (b) -2 **37.** ln 1 215
- **39.** $\ln \frac{(1+x^2)\sqrt{x}}{\sin x}$.

 $y=\log_{1.5} x$ Todos os gráficos tendem $y=\ln x$ a $-\infty$ quando $x \to 0^+$, $y=\log_{10} x$ todos passam pelo (1,0) $y=\log_{50} x$ e todos são crescentes. Quanto maior a base, mais lenta a taxa de crescimento.

- **43.** Cerca de $1,27 \times 10^{25}$ km
- **45.** (a)

- **47.** (a) \sqrt{e}
- (b) -ln 5
- **49.** (a) $5 + \log_2 3$ ou $5 + (\ln 3)/\ln 2$ (b) $\frac{1}{2}(1 + \sqrt{1 + 4e})$
- **51.** (a) $x < \ln 10$
- (b) x > 1/e
- **53.** (a) $\left(-\infty, \frac{1}{2} \ln 3\right]$
- (b) $f^{-1}(x) = \frac{1}{2} \ln(3 x^2), [0, \sqrt{3})$
- 55.

O gráfico satisfaz o Teste da Reta Horizontal. $f^{-1}(x) = -(\sqrt[3]{4}/6)(\sqrt[3]{D - 27x^2 + 20} - \sqrt[3]{D + 27x^2 - 20} + \sqrt[3]{2}),$ em que $D = 3\sqrt{3}\sqrt{27x^4 - 40x^2 + 16}$; duas das expressões são complexas.

- **57.** (a) $f^{-1}(n) = (3/\ln 2) \ln(n/100)$; o tempo decorrido quando existirem *n* bactérias (b) Depois de cerca de 26,9 horas
- **59.** (a) $\pi/3$
- (b) π
- **61.** (a) $\pi/4$
- (b) $\pi/4$

- **63.** (a) 10
- (b) $\pi/3$
- **67.** $x/\sqrt{1+x^2}$
- 69.

O segundo gráfico é a reflexão do primeiro gráfico em torno da reta y = x.

- **71.** (a) $\left[-\frac{2}{3}, 0\right]$
- (b) $[-\pi/2, \pi/2]$
- **73.** (a) $g^{-1}(x) = f^{-1}(x) c$
- (b) $h^{-1}(x) = (1/c) f^{-1}(x)$

CAPÍTULO I REVISÃO ■ PÁGINA 62

Teste Verdadeiro-Falso

(e) [-4, 4]

7. $(-6, ∞), \mathbb{R}$

seja injetoras).

Falso

Exercícios

I. (a) 2,7

- 3. Falso
- 5. Verdadeiro
- 7. Falso

(d)[-4,4]

- Verdadeiro
- II. Falso

(b) 2,3,5,6

zontal.

9. (a) Translada o gráfico 8 unidades para cima.

(g) Ímpar; seu gráfico é simétrico em relação à origem.

3. 2a + h - 2 **5.** $\left(-\infty, \frac{1}{3}\right) \cup \left(\frac{1}{3}, \infty\right), (-\infty, 0) \cup (0, \infty)$

(b) Translada o gráfico 8 unidades para a esquerda. (c) Amplia o gráfico verticalmente por um fator 2, a seguir

(d) Translada o gráfico 2 unidades para a direita e duas

unidades para baixo. (e) Reflete o gráfico em torno do eixo x. (f) Reflete o gráfico em torno da reta y = x (supondo que f

13. Falso

(c)[-6,6]

(f) Não; ela não satisfaz o Teste da Reta Hori-

23. 1

27. (a) 1 000

 $a = 4\sqrt{h^2 - 16}/h$, em que a é o comprimento da altura e h é o comprimento da hipotenusa.

PRINCÍPIOS PARA A RESOLUÇÃO DE PROBLEMAS - PÁGINA 69

17. (a) Nenhum dos dois (b) Ímpar (c) Par (d) Nenhum dos dois

(b) 2

(b) $t = -\ln\left(\frac{1\ 000 - P}{9P}\right)$; o tempo necessário para a população

19. (a) $(f \circ g)(x) = \ln(x^2 - 9), (-\infty, -3) \cup (3, \infty)$

(d) $(g \circ g)(x) = (x^2 - 9)^2 - 9, (-\infty, \infty)$

25. (a) 9

(b) $(g \circ f)(x) = (\ln x)^2 - 9, (0, \infty)$ (c) $(f \circ f)(x) = \ln \ln x$, $(1, \infty)$

21. Modelo exponencial; 270 milhões.

- 3. $-\frac{7}{3}$, 9
- 5.

atingir um número P dado. (c) $\ln 81 \approx 4.4$ anos

(c) $1/\sqrt{3}$

 ≈ 4.4 anos

 $(d)^{\frac{3}{5}}$

9.

5 [-1, 1 -
$$\sqrt{3}$$
) \cup (1 + $\sqrt{3}$, 3]

- **15.** 80 km/h

11.

translada-o 1 unidade para cima.

15.

CAPÍTULO 2 EXERCÍCIOS 2.1 PÁGINA 77

1. (a)
$$-44.4$$
, -38.8 , -27.8 , -22.2 , $-16.\overline{6}$
(b) -33.3 (c) $-33.\frac{1}{3}$

- (a) (i) 0,333333 (ii) 0,263158 (iii) 0,251256 (iv) 0,250125 (v) 0,2 (vi) 0,238095 (vii) 0,248756 (viii) 0,249875 (b) $\frac{1}{4}$ (c) $y = \frac{1}{4}x + \frac{1}{4}$
- (a) (i) -7.15 m/s (ii) -5.19 m/s (iii) -4.945 m/s (iv) -4,749 m/s (b) -4,7 m/s
- **7.** (a) (i) 4,65 m/s (ii) 5,6 m/s (iii) 7,55 m/s (iv) 7 m/s (b) 6,3 m/s
- **9.** (a) 0, 1,7321, -1,0847, -2,7433, 4,3301, -2,8173, 0, -2,1651, -2,6061, -5, 3,4202; não (c) -31,4

EXERCÍCIOS 2.2 PÁGINA 86

- 3. (a) $\lim_{x\to -3} f(x) = \infty$ significa que os valores de f(x) podem se tornar arbitrariamente grandes (tão grande quanto quisermos) tomando x suficientemente próximo de -3 (mas não igual a -3). (b) $\lim_{x\to 4^+} f(x) = -\infty$ significa que os valores de f(x) podem se tornar um número negativo arbitrariamente grande (em módulo), tomando x suficientemente próximo de 4, por valores maiores que 4.
- **5.** (a) 2 (b) 3 (c) Não existe (d) 4 (e) Não existe
- (a) -1(b) -2(c) Não existe (d) 2 (e) 0 (f) Não existe (g) 1 (h) 3
- (a) $-\infty$ (b) ∞ $(c) \infty$ $(d) -\infty$ (e) ∞ (f) x = -7, x = -3, x = 0, x = 6
- **II.** (a) 1 (b) 0(c) Não existe
- 13. 15.
- 17. $\frac{2}{3}$ 21. $\frac{1}{4}$ 19. $\frac{1}{2}$ 23. $\frac{3}{5}$ 25. ∞
- **27.** ∞ 29. −∞ **31.** −∞ 33. −∞: ∞
- **35.** (a) 2,71828 (b)
- **37.** (a) 0,998000, 0,638259, 0,358484, 0,158680, 0,038851, 0,008928, 0,001465; 0 (b) 0,000572, -0,000614, -0,000907, -0,000978,-0,000993, -0,001000; -0,001
- 39. Não importa quantas vezes fizermos um zoom em direção à origem, o gráfico parece consistir em retas quase verticais. Isto indica oscilações cada vez mais frequentes à medida que $x \rightarrow 0$.
- **41.** $x \approx \pm 0.90, \pm 2.24; x = \pm \text{sen}^{-1}(\pi/4), \pm (\pi \text{sen}^{-1}(\pi/4))$

EXERCÍCIOS 2.3 PÁGINA 95

- I. (a) -6(c) 2 (d) -6(b) -8(f) 0 (e) Não existe
- 7. $\frac{1}{8}$ **3.** 75 **5.** 390 **9.** 0 11.5
- 15. $\frac{6}{5}$ **17.** 8 19. $\frac{1}{12}$ 13. Não existe 21.6
- 23. $\frac{1}{6}$ 25. $-\frac{1}{16}$ **27.** 108 **29.** $-\frac{1}{2}$ **31.** (a), (b) $\frac{2}{3}$
- **35.** 7 **39.** 6 **41.** -4 43. Não existe

- **45.** (a) (b) (i) 1 (ii) -1 (iii) Não existe 0 (iv) 1
- **47.** (a) (i) 2 (ii) -2 (b) Não (c)
- **49.** (a) (i) -2 (ii) Não existe (iii) -3(b) (i) n - 1(ii) n (c) a não é um inteiro. **55**. 8 **61.** 15:-1

EXERCÍCIOS 2.4 = PÁGINA 105

- $\frac{4}{7}$ (ou qualquer número positivo menor)
- 1,44 (ou qualquer número positivo menor)
- 0,0906 (ou qualquer número positivo menor)
- 0,11,0,012 (ou quaisquer números positivos menores)
- (b) 0,010 (a) 0,031
- II. (a) $\sqrt{1000/\pi}$ cm (b) A menos de aproximadamente 0,0445 cm (c) Raio; área; $\sqrt{1000/\pi}$; 1000; 5; ≈ 0.0445
- **13.** (a) 0,025 (b) 0,0025
- **35.** (a) 0,093 (b) $\delta = (B^{2/3} - 12)/(6B^{1/3}) - 1$, em que $B = 216 + 108\varepsilon + 12\sqrt{336 + 324\varepsilon + 81\varepsilon^2}$
- **41.** A menos de 0.1

EXERCÍCIOS 2.5 PÁGINA 115

- 1. $\lim_{x\to 4} f(x) = f(4)$
- (a) f(4) não está definido e $\lim_{x \to a} f(x)$ [para a = -2, 2 e 4] não
 - (b) -4, nenhum dos dois; -2, à esquerda; 2, à direita; 4, à direita

6

A68 ||| CÁLCULO

15. f(2) não está definido. **17.** $\lim_{x \to a} f(x)$ não existe.

- **19.** $\lim_{x \to 0} f(x) \neq f(0)$
- **21.** $\{x \mid x \neq -\frac{1}{2}, \frac{1}{3}\}$

- **23.** $\left[\frac{1}{2}, \infty\right)$
- **25.** $(-\infty,\infty)$
- **27.** $(-\infty, -1) \cup (1, \infty)$

29. x = 0

- 31. $\frac{7}{3}$
- **33.** 1
- **37.** 0, à esquerda
- **39.** 0, à direita; 1, à esquerda

- **51.** (b) (0,44, 0,45)
- **43.** (a) $g(x) = x^3 + x^2 + x + 1$ (b) $g(x) = x^2 + x$
- 59. Nenhum
- **53.** (b) 70,347

61. Sim

EXERCÍCIOS 2.6 PÁGINA 127

- 1. (a) Quando x se torna grande, f(x) tende a 5. (b) Quando x se torna um negativo grande (em módulo), f(x)tende a 3.
- (a) ∞ (b) ∞ $(c) -\infty$ (d)1 (e)2(f) x = -1, x = 2, y = 1, y = 2
- 5.

9.

- 11. 0
- **13.** $\frac{3}{2}$ **15.** 0 **17.** $-\frac{1}{2}$
- 19. $\frac{1}{2}$ 21. 2

- **23.** 3
- **25.** $\frac{1}{6}$ **27.** $\frac{1}{2}(a-b)$ **29.** ∞

- **33.** $-\frac{1}{2}$ **35.** 0 **37.** (a), (b) $-\frac{1}{2}$
- **39.** y = 1, x = -4
- **47.** $f(x) = \frac{2-x}{x^2(x-3)}$
- **41.** y = 2; x = -2, x = 1 **43.** x = 5
- **45.** y = 3

49. $-\infty$, $-\infty$

- **53.** (a) 0
- (b) Um número infinito de vezes

- **55.** (a) 0
- (b) ±∞
- **57.** 5
- **59.** (a) *v**

 $\approx 0.47 \text{ s}$

- **61.** $N \ge 15$
- **63.** $N \le -6, N \le -22$
- **65.** (a) x > 100

EXERCÍCIOS 2.7 PÁGINA 136

- (a) $\frac{f(x) f(3)}{(3)}$
- (b) $\lim_{x \to 3} \frac{f(x) f(3)}{f(x)}$
- **3.** (a) 2 (b) y = 2x + 1 (c)

- 5. y = -x + 5
- **7.** $y = \frac{1}{2}x + \frac{1}{2}$
- **9.** (a) $8a 6a^2$
- (b) y = 2x + 3, y = -8x + 19

II. (a) À direita: 0 < t < 1 e 4 < t < 6; à esquerda: 2 < t < 3; permanecendo parado: 1 < t < 2 e 3 < t < 4

13.
$$-9.6 \text{ m/s}$$

15.
$$-2/a^3$$
 m/s; -2 m/s; $-\frac{1}{4}$ m/s; $-\frac{2}{27}$ m/s

21. 7; y = 7x - 12

17.
$$g'(0), 0, g'(4), g'(2), g'(-2)$$

23. (a)
$$-\frac{3}{5}$$
; $y = -\frac{3}{5}x + \frac{16}{5}$

25.
$$-2 + 8a$$

25.
$$-2 + 8a$$
 27. $\frac{5}{(a+3)^2}$

29.
$$\frac{-1}{2(a+2)^{3/2}}$$

31.
$$f(x) = x^{10}, a = 1 \text{ ou } f(x) = (1+x)^{10}, a = 0$$

33.
$$f(x) = 2^x, a = 5$$

35.
$$f(x) = \cos x, a = \pi \text{ ou } f(x) = \cos(\pi + x), a = 0$$

37. 1 m/s; 1 m/s

Maior (em módulo)

- **41.** (a) (i) 11 por cento/ano (ii) 13 por cento/ano
 - (iii) 16 por cento/ano
 - (b) 14,5 por cento/ano
- (c) 15 por cento/ano
- **43.** (a) (i) \$20,25/unidade (ii) \$20,05/unidade (b) \$20/unidade
- 45. (a) A taxa na qual o custo está variando por quilograma de ouro produzido; dólares por quilograma
 - (b) Quando o 50° quilograma de ouro for produzido, o custo de produção será \$36/kg
 - (c) Decresce a curto prazo; aumenta a longo prazo
- 47. A taxa na qual a temperatura está variando às 6:00 da tarde; 3,05 °C/h
- 49. (a) A taxa na qual a solubilidade do oxigênio varia com relação à temperatura da água; (mg/L)°C
 - (b) $S'(16) \approx -0.25$; a medida que a temperatura aumenta para além de 16 °C, a solubilidade do oxigênio está decrescendo a uma taxa de 0,25 (mg/L)°C.
- 51. Não existe

EXERCÍCIOS 2.8 = PÁGINA 148

- **I.** (a) 1,5
 - (b) 1
 - (c) 0
 - (d) -4
 - (e) 0

 - (f) 1 (g) 1,5

- **17.** (a) 0, 1, 2, 4 (b) -1, -2, -4 (c) f'(x) = 2x
- **19.** $f'(x) = \frac{1}{2}, \mathbb{R}, \mathbb{R}$
- **21.** $f'(t) = 5 18t, \mathbb{R}, \mathbb{R}$
- **23.** $f'(x) = 3x^2 3$, \mathbb{R} , \mathbb{R}
- **25.** $g'(x) = 1/\sqrt{1+2x}, \left[-\frac{1}{2}, \infty\right), \left(-\frac{1}{2}, \infty\right)$
- **27.** $G'(t) = \frac{4}{(t+1)^2}, (-\infty, -1) \cup (-1, \infty), (-\infty, -1) \cup (-1, \infty)$
- **29.** $f'(x) = 4x^3, \mathbb{R}, \mathbb{R}$
- **31.** (a) $f'(x) = 4x^3 + 2$
- 33. (a) A taxa na qual a taxa de desemprego está variando em porcentagem de desempregados por ano.

centugem de desempregados por uno					
(b)	t	U'(t)	t	U'(t)	
	1995	-0,10	2000	0,10	
	1996	0,05	2001	0,15	
	1997	-0,05	2002	-0,35	
	1998	-0,75	2003	-0,45	
	1999	-0,85	2004	-0,60	

A70 |||| CÁLCULO

35. −4 (bico); 0 (descontinuidade)

37. -1 (tangente vertical); 4 (bico)

39.

Derivável em −1; não derivável em 0

41.
$$a = f, b = f', c = f''$$

43. a = aceleração, b = velocidade, <math>c = posição

45.

f'(x) = 4 - 2x,f''(x) = -2

 $f'(x) = 4x - 3x^2,$ f''(x) = 4 - 6x,f'''(x) = -6, $f^{(4)}(x)=0$

49. (a)
$$\frac{1}{3} a^{-2/3}$$

51.
$$f'(x) = \begin{cases} -1 & \text{se } x < 6 \\ 1 & \text{se } x > 6 \end{cases}$$

$$\operatorname{ou} f'(x) = \frac{x-6}{|x-6|}$$

53. (a)

(b) Para todo x

$$(c) f'(x) = 2|x|$$

57. 63°

CAPÍTULO 2 REVISÃO PÁGINA 152

Teste Verdadeiro-Falso

I. Falso 3. Verdadeiro

5. Falso

7. Verdadeiro

9. Verdadeiro 11. Falso

13. Verdadeiro 15. Verdadeiro

17. Falso 19. Falso

Exercícios

1. (a) (i) 3 (ii) 0 (iii) Não existe (iv) 2

 $(v) \infty$ $(vi) -\infty$ (vii) 4 (viii) -1

(b) y = 4, y = -1 (c) x = 0, x = 2

(d) -3, 0, 2, 4

3. 1 **5.**
$$\frac{3}{2}$$
 7. 3 **9.** ∞ **11.** $\frac{4}{7}$ **13.** $\frac{1}{2}$

19. $\pi/2$ **21.** x = 0, y = 0 **23.** 1 15. $-\infty$ 17. 2

29. (a) (i) 3 (ii) 0 (iii) Não existe (iv) 0 (v) 0 (vi) 0

(b) Em 0 e 3

31. ℝ **35.** (a) -8(b) y = -8x + 17

37. (a) (i) 3 m/s (ii) 2,75 m/s (iii) 2,625 m/s (iv) 2,525 m/s (b) 2,5 m/s

39. (a) 10

(b) y = 10x - 16

(c)

41. (a) A taxa na qual o custo varia com relação à taxa de juros; dólares/(por cento por ano)

(b) A medida que a taxa de juros aumenta para além de 10%, o custo está aumentando a uma taxa de \$1 200/(por cento por ano).

(c) Sempre positiva

43.

45. (a) $f'(x) = -\frac{5}{2}(3 - 5x)^{-1/2}$

(b) $\left(-\infty, \frac{3}{5}\right], \left(-\infty, \frac{3}{5}\right)$

47. -4 (descontinuidade), -1 (bico), 2 (descontinuidade), 5 (tangente vertical)

49. A taxa na qual o valor do euro está variando em meados de 2002 em termos dos dólares americanos por ano; \$0,151/ano

51. 0

PROBLEMAS QUENTES ■ PÁGINA 155

3. −4

5. 1

7. $a = \frac{1}{2} \pm \frac{1}{2} \sqrt{5}$

11. (b) Sim

(c) Sim; não

13. (a) 0

(b) 1

(c) $f'(x) = x^2 + 1$

CAPÍTULO 3

EXERCÍCIOS 3.1 PÁGINA 166

- (a) Veja a Definição do Número e (página 165).(b) 0,99, 1,03; 2,7 < e < 2,8
- 3. f'(x) = 0
- **5.** f'(x) = 5
- **7.** $f'(x) = 3x^2 4$

- **9.** $f'(t) = t^3$
- 11. $y' = -\frac{2}{5}x^{-7/5}$
- 13. $V'(r) = 4\pi r^2$
- **15.** $Y'(t) = -54t^{-10}$
- **17.** $G'(x) = 1/(2\sqrt{x}) 2e^x$
- 19. $F'(x) = \frac{5}{32}x^4$
- **21.** y' = 2ax + b
- **23.** $y' = \frac{3}{2}\sqrt{x} + (2/\sqrt{x}) 3/(2x\sqrt{x})$
- **25.** y' = 0
- **27.** $H'(x) = 3x^2 + 3 3x^{-2} 3x^{-4}$
- **29.** $u' = \frac{1}{5}t^{-4/5} + 10t^{3/2}$
- **31.** $z' = -10A/y^{11} + Be^y$
- **33.** $y = \frac{1}{4}x + \frac{3}{4}$
- **35.** Tangente: y = 2x + 2; normal: $y = -\frac{1}{2}x + 2$
- **37.** y = 3x 1
- **39.** $e^x 5$
- **41.** $45x^{14} 15x^2$

43. (a)

(c) $4x^3 - 9x^2 - 12x + 7$

- **45.** $f'(x) = 4x^3 9x^2 + 16, f''(x) = 12x^2 18x$
- **47.** $f'(x) = 2 \frac{15}{4}x^{-1/4}, f''(x) = \frac{15}{16}x^{-5/4}$
- **49.** (a) $v(t) = 3t^2 3$, a(t) = 6t
- (b) 12 m/s^2
- (c) $a(1) = 6 \text{ m/s}^2$
- **51.** (-2, 21), (1, -6)
- **55.** y = 12x 15, y = 12x + 17
- **57.** $y = \frac{1}{3}x \frac{1}{3}$
- **59.** $(\pm 2, 4)$
- **63.** $P(x) = x^2 x + 3$
- **65.** $y = \frac{3}{16}x^3 \frac{9}{4}x + 3$
- **67**. Não

- **69.** (a) Não é derivável em 3 ou -3
 - $f'(x) = \begin{cases} 2x \\ 2x \end{cases}$
- se |x| > 3
- -2x se |x| < 3

(b)

- **71.** $y = 2x^2 x$ **73.** $a = -\frac{1}{2}, b = 2$ **75.** m = 4, b = -4
- **77.** 1 000
- **79.** 3; 1

EXERCÍCIOS 3.2 PÁGINA 172

- 1. $y' = 5x^4 + 3x^2 + 2x$
- 3. $f'(x) = x(x+2)e^x$
- 5. $y' = (x-2)e^x/x^3$
- 7. $g'(x) = 5/(2x + 1)^2$

19. $y' = 2v - 1/\sqrt{v}$

- **9.** $V'(x) = 14x^6 4x^3 6$
- 11. $F'(y) = 5 + 14/y^2 + 9/y^4$
- 13. $y' = \frac{x^2(3-x^2)}{(1-x^2)^2}$
- **15.** $y' = 2t(1-t)/(3t^2-2t+1)^2$
- 17. $y' = (r^2 2)e^r$ 21. $f'(t) = \frac{4 + t^{1/2}}{(2 + \sqrt{t})^2}$
- **23.** $f'(x) = -ACe^x/(B + Ce^x)^2$
- **25.** $f'(x) = 2cx/(x^2 + c)^2$
- **27.** $(x^4 + 4x^3)e^x$; $(x^4 + 8x^3 + 12x^2)e^x$
- **29.** $\frac{2x^2 + 2x}{(1+2x)^2}$; $\frac{2}{(1+2x)^3}$
- **31.** $y = \frac{1}{2}x + \frac{1}{2}$
- **33.** y = 2x; $y = -\frac{1}{2}x$
- **35.** (a) $y = \frac{1}{2}x + 1$
- (b) 1,5 (-1,0,5) -4
- **37.** (a) $e^x(x-3)/x^4$
- **39.** xe^x , $(x+1)e^x$
- **41.** $\frac{1}{4}$
- **43.** (a) -16 (b) $-\frac{20}{9}$ (c) 20
- **45.** 7
- **47.** (a) 0 (b) $-\frac{2}{3}$
- **49.** (a) y' = xg'(x) + g(x)(c) $y' = [xg'(x) - g(x)]/x^2$
 - (b) $y' = [g(x) xg'(x)]/[g(x)]^2$
- **51.** Dois, $(-2 \pm \sqrt{3}, (1 \pm \sqrt{3})/2)$
- **53.** \$1,627 bilhão/ano
- **55.** (c) $3e^{3x}$
- **57.** $f'(x) = (x^2 + 2x)e^x$, $f''(x) = (x^2 + 4x + 2)e^x$, $f'''(x) = (x^2 + 6x + 6)e^x$, $f^{(4)}(x) = (x^2 + 8x + 12)e^x$, $f^{(5)}(x) = (x^2 + 10x + 20)e^x$; $f^{(n)}(x) = [x^2 + 2nx + n(n-1)]e^x$

EXERCÍCIOS 3.3 PÁGINA 180

- 1. $f'(x) = 1 3\cos x$
- **3.** $y' = \cos x + 10 \sec^2 x$
- **5.** $g'(t) = 3t^2 \cos t t^3 \sin t$
- 7. $h'(\theta) = -\csc\theta \cot\theta + e^{\theta}(\cot\theta \csc^2\theta)$
- 9. $y' = \frac{2 \lg x + x \sec^2 x}{(2 + \lg x)^2}$
- $\mathbf{II.}f'(\theta) = \frac{\sec \theta \operatorname{tg} \theta}{(1 + \sec \theta)^2}$
- 13. $y' = (x \cos x 2 \sin x)/x^3$

A72 ||| CÁLCULO

15.
$$f'(x) = e^x \operatorname{cossec} x (-x \operatorname{cotg} x + x + 1)$$

21.
$$y = 2\sqrt{3}x - \frac{2}{3}\sqrt{3}\pi + 2$$

23.
$$y = x + 1$$

25. (a)
$$y = 2x$$

27. (a)
$$\sec x \tan x - 1$$

29.
$$\theta \cos \theta + \sin \theta$$
; $2 \cos \theta - \theta \sin \theta$

31. (a)
$$f'(x) = (1 + \lg x)/\sec x$$
 (b) $f'(x) = \cos x + \sec x$

33.
$$(2n + 1)\pi \pm \frac{1}{3}\pi, n$$
 um inteiro

35. (a)
$$v(t) = 8 \cos t$$
, $a(t) = -8 \sin t$
(b) $4\sqrt{3}$, -4 , $-4\sqrt{3}$; à esquerda

45. $\frac{1}{2}$

47.
$$-\sqrt{2}$$

49. (a)
$$\sec^2 x = 1/\cos^2 x$$

(b)
$$\sec x \operatorname{tg} x = (\sin x)/\cos^2 x$$

(c)
$$\cos x - \sin x = (\cot x - 1)/\csc x$$

51. 1

EXERCÍCIOS 3.4 = PÁGINA 188

1.
$$4 \cos 4 x$$

3.
$$-20x(1-x^2)^9$$

$$= e^{\sqrt{x}}/(2\sqrt{x})$$

7.
$$F'(x) = 7(x^3 + 4x)^6 (3x^2 + 4) [ou 7x^6 (x^2 + 4)^6 (3x^2 + 4)]$$

9.
$$F'(x) = \frac{2 + 3x^2}{4(1 + 2x + x^3)^{3/4}}$$
 11. $g'(t) = -\frac{12t^3}{(t^4 + 1)^4}$

$$\mathbf{II.} \ g'(t) = -\frac{12t^3}{(t^4+1)^4}$$

13.
$$y' = -3x^2 \operatorname{sen}(a^3 + x^3)$$

15.
$$y' = e^{-kx}(-kx + 1)$$

17.
$$g'(x) = 4(1 + 4x)^4(3 + x - x^2)^7(17 + 9x - 21x^2)$$

19.
$$y' = 8(2x - 5)^3 (8x^2 - 5)^{-4} (-4x^2 + 30x - 5)$$

21.
$$y' = \frac{-12x(x^2+1)^2}{(x^2-1)^4}$$

$$23. y' = (\cos x - x \sin x)e^{x \cos x}$$

25.
$$F'(z) = 1/[(z-1)^{1/2}(z+1)^{3/2}]$$

27.
$$y' = (r^2 + 1)^{-3/2}$$

29.
$$y' = -\sin x \sec^2(\cos x)$$

31.
$$y' = 2^{\sin \pi x} (\pi \ln 2) \cos \pi x$$

33.
$$y' = 4 \sec^2 x \operatorname{tg} x$$

35.
$$y' = \frac{4e^{2x}}{(1+e^{2x})^2} \operatorname{sen} \frac{1-e^{2x}}{1+e^{2x}}$$

37.
$$y' = -2 \cos \theta \cot(\sin \theta) \csc^2(\sin \theta)$$

39.
$$f'(t) = \sec^2(e^t)e^t + e^{\operatorname{tg} t} \sec^2 t$$

41.
$$f'(t) = 4 \operatorname{sen}(e^{\operatorname{sen}^2 t}) \cos(e^{\operatorname{sen}^2 t}) e^{\operatorname{sen}^2 t} \operatorname{sen} t \cos t$$

43.
$$g'(x) = 2r^2 p(\ln a)(2ra^{rx} + n)^{p-1}a^{rx}$$

45.
$$y' = \frac{-\pi \cos(\operatorname{tg} \pi x) \sec^2(\pi x) \sin \sqrt{\sin(\operatorname{tg} \pi x)}}{2\sqrt{\sin(\operatorname{tg} \pi x)}}$$

47.
$$h'(x) = x/\sqrt{x^2 + 1}, h''(x) = 1/(x^2 + 1)^{3/2}$$

49.
$$e^{\alpha x}(\beta \cos \beta x + \alpha \sin \beta x)$$
; $e^{\alpha x}[(\alpha^2 - \beta^2) \sin \beta x + 2\alpha\beta \cos \beta x]$

51.
$$y = -\frac{3}{16}x + \frac{11}{4}$$

53.
$$y = -x + \pi$$

55. (a)
$$y = \frac{1}{2}x + 1$$

57. (a)
$$f'(x) = (2 - 2x^2)/\sqrt{2 - x^2}$$

59.
$$((\pi/2) + 2n\pi, 3), ((3\pi/2) + 2n\pi, -1), n$$
 um inteiro

65. (a)
$$\frac{3}{4}$$

67. (a) $F'(x) = e^x f'(e^x)$ (b) $G'(x) = e^{f(x)} f'(x)$

(c)
$$-2$$

75.
$$-2^{50}\cos 2x$$

77.
$$v(t) = \frac{5}{2}\pi \cos(10\pi t) \text{ cm/s}$$

79. (a)
$$\frac{dB}{dt} = \frac{7\pi}{54} \cos \frac{2\pi t}{5.4}$$

81.
$$v(t) = 2e^{-1.5t}(2\pi\cos 2\pi t - 1.5 \sin 2\pi t)$$

83. dv/dt é a taxa de variação da velocidade em relação ao tempo; dv/ds é a taxa de variação da velocidade com relação ao deslocamento

85. (a)
$$y = ab^t$$
 em que $a \approx 100,01244$ e $b \approx 0,000045146$

(b)
$$-670,63 \mu A$$

91. (b)
$$-n \cos^{n-1} x \operatorname{sen}[(n+1) x]$$

EXERCÍCIOS 3.5 PÁGINA 197

1. (a)
$$y' = -(y + 2 + 6x)/x$$

1. (a)
$$y' = -(y + 2 + 6x)/3$$

(b)
$$y = (4/x) - 2 - 3x$$
, $y' = -(4/x^2) - 3$

3. (a)
$$y' = -y^2/x^2$$

(b)
$$y = x/(x - 1)$$
, $y' = -1/(x - 1)^2$

5.
$$y' = -x^2/y^2$$

7.
$$y' = -x(3x + 2y)/(x^2 + 8y)$$
 9. $y' = \frac{3y^2 - 5x^4 - 4x^3y}{x^4 + 3y^2 - 6xy}$

11.
$$y' = \frac{-2xy^2 - \sin y}{2x^2y + x\cos y}$$

$$\mathbf{13.}\,y'=\operatorname{tg}x\operatorname{tg}y$$

15.
$$y' = \frac{y(y - e^{x/y})}{y^2 - xe^{x/y}}$$

19. $y' = -y/x$

17.
$$y' = \frac{4xy\sqrt{xy} - y}{x - 2x^2\sqrt{xy}}$$

21. $-\frac{16}{13}$

19.
$$y' = -y/x$$

21.
$$-\frac{10}{12}$$

23.
$$x' = \frac{-2x^4y + x^3 - 6xy^2}{4x^3y^2 - 3x^2y + 2y^3}$$

25.
$$y = -x + 2$$

27.
$$y = x + \frac{1}{2}$$

29.
$$y = -\frac{9}{13}x + \frac{40}{13}$$

31. (a)
$$y = \frac{9}{2}x - \frac{5}{2}$$

33.
$$-81/y^3$$

35.
$$-2x/y^5$$

Oito;
$$x \approx 0.42, 1.58$$

(b)
$$y = -x + 1, y = \frac{1}{3}x + 2$$

(c)
$$1 \pm \frac{1}{3} \sqrt{3}$$

39.
$$\left(\pm \frac{5}{4}\sqrt{3}, \pm \frac{5}{4}\right)$$

41.
$$(x \ x/a^2) - (y \ y/b^2) = 1$$

45.
$$y' = \frac{1}{2\sqrt{x}(1+x)}$$

41.
$$(x_0x/a^2) - (y_0y/b^2) = 1$$

47. $y' = \frac{1}{\sqrt{-x^2 - x}}$

49.
$$H'(x) = 1 + 2x \arctan x$$

51.
$$h'(t) = 0$$

53.
$$y' = -2e^{2x}/\sqrt{1-e^{4x}}$$

55. 1 -
$$\frac{x \arcsin x}{\sqrt{1-x^2}}$$

63.
$$(\pm\sqrt{3},0)$$
 65. $(-1,-1),(1,1)$

67. (b)
$$\frac{3}{2}$$

EXERCÍCIOS 3.6 PÁGINA 204

I. A fórmula de derivação é mais simples.

$$3. \quad f'(x) = \frac{\cos(\ln x)}{x}$$

$$5.f'(x) = \frac{3}{(3x-1)\ln 2}$$

7.
$$f'(x) = \frac{1}{5x\sqrt[5]{(\ln x)^4}}$$

9.
$$f'(x) = (2 + \ln x)/(2\sqrt{x})$$

II.
$$F'(t) = \frac{6}{2t+1} - \frac{12}{3t-1}$$
 I3. $g'(x) = \frac{2x^2 - 1}{x(x^2 - 1)}$

13.
$$g'(x) = \frac{2x^2 - 1}{x(x^2 - 1)}$$

15.
$$y' = (1 + x - x \ln x)/(x(1 + x)^2)$$
 17. $y' = \frac{10x + 1}{5x^2 + x - 2}$

19.
$$y' = \frac{-x}{1+x} \frac{1}{\ln 10} \log_{10} x$$
 21. $y' = \frac{1}{\ln 10} \log_{10} x$

23.
$$y' = x + 2x \ln(2x)$$
; $y'' = 3 + 2 \ln(2x)$

25.
$$y' = \frac{1}{\sqrt{1+x^2}}$$
; $y'' = \frac{-x}{(1+x^2)^{3/2}}$

27.
$$f'(x) = \frac{2x - 1 - (x - 1)\ln(x - 1)}{(x - 1)[1 - \ln(x - 1)]^2}$$
;

$$(1,1+e)\cup(1+e,\infty)$$

29.
$$f'(x) = \frac{2(x-1)}{x(x-2)}$$
; $(-\infty,0) \cup (2,\infty)$

33.
$$y = 3x - 2$$

35.
$$\cos x + 1/x$$

37.
$$y' = (2x+1)^5(x^4-3)^6\left(\frac{10}{2x+1} + \frac{24x^3}{x^4-3}\right)$$

39.
$$y' = \frac{\sin^2 x \operatorname{tg}^4 x}{(x^2 + 1)^2} \left(2 \cot x + \frac{4 \sec^2 x}{\operatorname{tg} x} - \frac{4x}{x^2 + 1} \right)$$

41.
$$y' = x^x (1 + \ln x)$$

$$43. \ y' = x^{\sin x} \left(\frac{\sin x}{x} + \cos x \ln x \right)$$

45.
$$y' = (\cos x)^x (-x \operatorname{tg} x + \ln \cos x)$$

47.
$$y' = (\operatorname{tg} x)^{1/x} \left(\frac{\operatorname{sec}^2 x}{x \operatorname{tg} x} - \frac{\ln \operatorname{tg} x}{x^2} \right)$$

49.
$$y' = \frac{2x}{2 + \frac{2}{x^2} + \frac{2}{x^2}}$$

49.
$$y' = \frac{2x}{x^2 + y^2 - 2y}$$
 51. $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(x-1)^n}$

(c) t = 2, 6

EXERCÍCIOS 3.7 PÁGINA 213

1. (a)
$$3t^2 - 24t + 36$$
 (b) -9 m/s

$$24t + 36$$
 (b) -9 m/s

(d)
$$0 \le t < 2, t > 6$$
 (e) 96 m

(i) Acelerando quando 2 < t < 4 ou t > 6;

freando quando

$$0 \le t < 2 \text{ ou } 4 < t < 6$$

3. (a)
$$-\frac{\pi}{4} \operatorname{sen} \left(\frac{\pi t}{4} \right)$$
 (b) $-\frac{1}{8} \pi \sqrt{2} \text{ m/s}$ (c) $t = 0, 4, 8$

A74 ||| CÁLCULO

(d) 4 < t < 8

(e) 4 m

(g) $-\frac{1}{16}\pi^2 \cos(\pi t/4); \frac{1}{32}\pi^2 \sqrt{2} \text{ m/s}^2$

(h)

- (i) Acelerando quando 0 < t < 2, 4 < t < 6, 8 < t < 10;freando quando 2 < t < 4, 6 < t < 8
- **5.** (a) Acelerando quando 0 < t < 1 ou 2 < t < 3; freando quando 1 < t < 2
 - (b) Acelerando quando 1 < t < 2 ou 3 < t < 4; freando quando 0 < t < 1 ou 2 < t < 3
- **7.** (a) t = 4 s
 - (b) t = 1.5 s; a velocidade tem um mínimo absoluto.
- (a) 5.02 m/s (b) $\sqrt{17}$ m/s
- II. (a) 30 mm²/mm; a taxa na qual a área está crescendo com relação ao comprimento do lado quando x atinge 15 mm
 - (b) $\Delta A \approx 2x \Delta x$

13. (a) (i) 5π (ii) 4.5π

- (iii) 4.1π
- (b) 4π
- (c) $\Delta A \approx 2\pi r \Delta r$
- **15.** (a) $8\pi \text{ pés}^2/\text{pé}$ (b) $16\pi \text{ pés}^2/\text{pé}$ (c) $24\pi \text{ pés}^2/\text{pé}$ A taxa aumenta à medida que o raio cresce.
- **17.** (a) 6 kg/m (b) 12 kg/m (c) 18 kg/m Na extremidade esquerda; na extremidade direita
- (b) 5 A; $t = \frac{2}{3}$ s **19.** (a) 4,75 A
- **21.** (a) $dV/dP = -C/P^2$
- (b) No início
- **23.** $400(3^t) \ln 3$; $\approx 6.850 \text{ bactérias/h}$
- 25. (a) 16 milhões/ano; 78,5 milhões/ano
 - (b) $P(t) = at^3 + bt^2 + ct + d$, onde $a \approx 0.00129371$, $b\approx -7,\!061422, c\approx 12\,822,\!979, d\approx -7\,743,\!770$
 - (c) $P'(t) = 3at^2 + 2bt + c$
 - (d) 14,48 milhões/ano; 75,29 milhões/ano (menor)
 - (e) 81,62 milhões/ano
- **27.** (a) 0,926 cm/s; 0,694 cm/s; 0
 - (b) 0; -92,6 (cm/s)/cm; -185,2 (cm/s)/cm
 - (c) No centro; na borda
- **29.** (a) $C'(x) = 12 0.2x + 0.0015x^2$
 - (b) \$32/metro; o custo de produzir o 201º metro
 - (c) \$32,20
- **31.** (a) $[xp'(x) p(x)]/x^2$; a produtividade média aumenta à medida que novos trabalhadores são adicionados.

- **33.** -0,2436 K/min
- **35.** (a) 0 e 0
- (b) C = 0
- (c) (0,0),(500,50); é possível que estas espécies coexistam.

EXERCÍCIOS 3.8 PÁGINA 222

- I. Cerca de 235
- (a) $100(4,2)^t$
- (b) ≈ 7409
- (c) $\approx 10 632 \text{ bactérias/h}$
- (d) $(\ln 100)/(\ln 4.2) \approx 3.2 \text{ h}$
- **5.** (a) 1 508 milhões, 1 871 milhões (b) 2 161 milhões
 - (c) 3 972 milhões; as guerras na primeira metade do século, o aumento da espectativa de vida na segunda metade
- 7. (a) $Ce^{-0.0005t}$
- (b) $-2\,000 \ln 0.9 \approx 211 \text{ s}$
- **9.** (a) $100 \times 2^{-t/30}$ mg (b) ≈ 9.92 mg
- $(c) \approx 199.3 \text{ anos}$

- II. ≈ 2500 anos **15.** (a) 13,3 °C
- (b) $\approx 67.74 \text{ min}$

13. (a) $\approx 58^{\circ}$ C (b) $\approx 98 \text{ min}$

- 17. (a) $\approx 64.5 \text{ kPa}$
- (b) $\approx 39.9 \text{ kPa}$
- **19.** (a) (i) \$3 828,84
- (ii) \$3 840,25
- (iii) \$3 850,08
- (iv) \$3 851,61
- (v) \$3 852,01
- (vi) \$3 852,08
- (b) dA/dt = 0.05A, A(0) = 3000

EXERCÍCIOS 3.9 PÁGINA 227

- $I. \quad dV/dt = 3x^2 dx/dt$
- 3. $48 \text{ cm}^2/\text{s}$
- **5.** $3/(25\pi)$ m/min

- **7.** 70
- **9.** $\pm \frac{46}{13}$
- II. (a) A altura do avião é 2 km e sua velocidade é 800 km/h.
 - (b) A taxa na qual a distância do avião à estação está crescendo quando o avião estiver a 3 km da estação
- (d) $y^2 = x^2 + 4$ (e) $\frac{800}{3}\sqrt{5}$ km/h
- 13. (a) A altura do poste (6m), a altura do homem (2 m) e a velocidade do homem (1,5 m/s)
 - (b) A taxa na qual a extremidade da sombra do homem está se movendo quando ele está a 10 m do poste

- **15.** 78 km/h
- 17. $8\ 064/\sqrt{8\ 334\ 400} \approx 2{,}79\ \text{m/s}$
- **19.** 1,6 cm/min
- **21.** $\frac{720}{13} \approx 55.4 \text{ km/h}$
- **23.** $(10\ 000 + 800\ 000\pi/9) \approx 2.89 \times 10^5\ \text{cm}^3/\text{min}$
- **25.** $\frac{10}{3}$ cm/min
- **27.** $4/(3\pi) \approx 0.42$ m/min
- **29.** $0.3 \text{ m}^2/\text{s}$

- **31.** 80 cm³/min **33.** $\frac{107}{810} \approx 0.132 \Omega/s$
- **35.** 0,396 m/min **39.** $\frac{10}{9} \pi \text{ km/min}$

- **37.** 120 m/s
- (b) $\approx 0.107 \text{ rad/s}$

43.
$$\frac{7}{4}\sqrt{15} \approx 6.78 \text{ m/s}$$

EXERCÍCIOS 3.10 PÁGINA 233

1.
$$L(x) = 3x - 2$$

3.
$$L(x) = -x + \pi/2$$

5.
$$\sqrt{1-x} \approx 1 - \frac{1}{2}x$$
;
 $\sqrt{0.9} \approx 0.95$,
 $\sqrt{0.99} \approx 0.995$

7.
$$-0.69 < x < 1.09$$

9.
$$-0.045 < x < 0.055$$

$$11. (a) dy = 2x(x \cos 2x + \sin 2x)dx$$

(b)
$$dy = \frac{t}{1 + t^2} dt$$

13. (a)
$$dy = \frac{-2}{(u-1)^2} du$$

(b)
$$dy = -\frac{6r^2}{(1-r^3)^3} dr$$

15. (a)
$$dy = \frac{1}{10} e^{x/10} dx$$

17. (a)
$$dy = \sec^2 x \, dx$$

(b)
$$-0.2$$

19.
$$\Delta y = 0.64, dy = 0.8$$

21.
$$\Delta y = 0.1, dy = -0.125$$

- **23.** 32,08
- **25.** 4,02
- **27.** $1 \pi/90 \approx 0.965$
- **33.** (a) 270 cm³, 0,01, 1%
- (b) 36 cm^2 , 0,006, 0,6%
- **35.** (a) $84/\pi \approx 27 \text{ cm}^2$; $\frac{1}{84} \approx 0.012$
 - (b) $1.764/\pi^2 \approx 179 \text{ cm}^3$; $\frac{1}{56} \approx 0.018$
- **37.** (a) $2\pi rh \Delta r$
- (b) $\pi(\Delta r)^2 h$
- **43.** (a) 4,8, 5,2
- (b) Muito grande

EXERCÍCIOS 3.11 PÁGINA 241

(b) 0

- **I.** (a) 0 (b) 1
- **3.** (a) $\frac{3}{4}$ (b) $\frac{1}{2} (e^2 e^{-2}) \approx 3,62686$
- **5.** (a) 1
- **21.** sech $x = \frac{3}{5}$, senh $x = \frac{4}{3}$, cossech $x = \frac{3}{4}$, tgh $x = \frac{4}{5}$, cotgh $x = \frac{5}{4}$
- **23.** (a) 1 (b) -1 (c) ∞ (h) $-\infty$ (i) 0 (g) ∞
- **31.** $f'(x) = 3 \operatorname{sech}^2 3x$
- **33.** $h'(x) = 4x^3 \operatorname{senh}(x^4)$

 $(d) -\infty$ (e) 0 (f) 1

- **35.** $y' = 3e^{\cosh 3x} \operatorname{senh} 3x$
- **37.** $f'(t) = 2e^{t} \operatorname{sech}^{2}(e^{t}) \operatorname{tgh}(e^{t})$
- **39.** $y' = \frac{\operatorname{sech}^2 x 2}{1 + \operatorname{tgh}^2 x}$
- **41.** $G'(x) = \frac{\sinh x}{(1 + \cosh x)^2}$
- **43.** $y' = \frac{1}{2\sqrt{x}(1-x)}$
- **45.** $y' = \operatorname{senh}^{-1}(x/3)$
- **47.** $y' = \frac{-1}{x\sqrt{x^2+1}}$
- **51.** (a) 0,3572
- (b) 70,34°
- **53.** (b) $y = 2 \operatorname{senh} 3x 4 \cosh 3x$
- **55.** $(\ln{(1+\sqrt{2})}, \sqrt{2})$

CAPÍTULO 3 REVISÃO PÁGINA 243

Teste Verdadeiro-Falso

- I. Verdadeiro 3. Verdadeiro
- 5. Falso 7. Falso
- II. Verdadeiro 9. Verdadeiro

- 1. $6x(x^4 3x^2 + 5)^2(2x^2 3)$ 3. $\frac{1}{2\sqrt{x}} \frac{4}{3\sqrt[3]{x^7}}$
- $5. \quad \frac{2(2x^2+1)}{\sqrt{x^2+1}}$
- **7.** $2\cos 2\theta e^{\sin 2\theta}$
- 9. $\frac{t^2+1}{(1-t^2)^2}$
- $11. \quad \frac{\cos\sqrt{x} \sqrt{x} \sin\sqrt{x}}{2\sqrt{x}}$
- 13. $\frac{e^{1/x}(1+2x)}{x^4}$
- 15. $\frac{1-y^4-2xy}{4xy^3+x^2-3}$
- 17. $\frac{2\sec 2\theta (\operatorname{tg} 2\theta 1)}{(1 + \operatorname{tg} 2\theta)^2}$
- **19.** $(1+c^2)e^{cx} \sin x$
- **21.** $3^{x \ln x} (\ln 3)(1 + \ln x)$
- **23.** $-(x-1)^{-2}$
- $25. \quad \frac{2x y\cos(xy)}{x\cos(xy) + 1}$
- **27.** $\frac{2}{(1+2x) \ln 5}$
- **29.** $\cot x \sin x \cos x$
- 31. $\frac{4x}{1+16x^2}$ + tg⁻¹(4x)
- **33.** 5 sec 5*x*
- **35.** $-6x \operatorname{cossec}^2(3x^2 + 5)$

- **37.** $\cos(\operatorname{tg}\sqrt{1+x^3})(\sec^2\sqrt{1+x^3}) \frac{3x^2}{2\sqrt{1+x^3}}$
- **39.** $2 \cos \theta \operatorname{tg}(\operatorname{sen} \theta) \operatorname{sec}^2(\operatorname{sen} \theta)$
- **41.** $\frac{(x-2)^4(3x^2-55x-52)}{2\sqrt{x+1}(x+3)^8}$
- **43.** $2x^2 \cosh(x^2) + \sinh(x^2)$
- **45.** 3 tgh 3*x*
- **49.** $\frac{(-3 \sec(e^{\sqrt{\lg 3x}})e^{\sqrt{\lg 3x}} \sec^2(3x)}{2 \sqrt{\lg 3x}} \qquad$ **51.** $-\frac{4}{27} \qquad$ **53.** $-5x^4/y^{11}$

A76 ||| CÁLCULO

57.
$$y = 2\sqrt{3}x + 1 - \pi\sqrt{3}/3$$

59.
$$y = 2x + 1$$

61.
$$y = -x + 2$$
; $y = x + 2$

63. (a)
$$\frac{10 - 3x}{2\sqrt{5 - x}}$$

(b)
$$y = \frac{7}{4}x + \frac{1}{4}$$
, $y = -x + 8$

65.
$$(\pi/4, \sqrt{2}), (5\pi/4, -\sqrt{2})$$

71.
$$2xg(x) + x^2g'(x)$$

73.
$$2g(x)g'(x)$$

75.
$$g'(e^x)e^x$$

77.
$$g'(x)/g(x)$$

79.
$$\frac{f'(x)[g(x)]^2 + g'(x)[f(x)]^2}{[f(x) + g(x)]^2}$$

81.
$$f'(g(\text{sen } 4x))g'(\text{sen } 4x)(\cos 4x)(4)$$

83.
$$(-3,0)$$

(e) t > 2; 0 < t < 2

85.
$$y = -\frac{2}{3}x^2 + \frac{14}{3}x$$

87.
$$v(t) = -Ae^{-ct}[c\cos(\omega t + \delta) + \omega\sin(\omega t + \delta)],$$
$$a(t) = Ae^{-ct}[(c^2 - \omega^2)\cos(\omega t + \delta) + 2c\omega\sin(\omega t + \delta)]$$

89. (a)
$$v(t) = 3t^2 - 12$$
; $a(t) = 6t$

(b)
$$t > 2$$
; $0 \le t < 2$

91. 4 kg/m

(b)
$$\approx 22\,040$$

(c)
$$\approx 25~910$$
 bactérias/h

(d) (ln 50)/(ln 3,24)
$$\approx$$
 3,33 h

95. (a)
$$C_0 e^{-kt}$$
 (b)

$$(b) \approx 100 \text{ h}$$

97.
$$\frac{4}{3}$$
 cm²/min

99.
$$117/\sqrt{666} \approx 4,53 \text{ m/s}$$

103. (a)
$$L(x) = 1 + x$$
; $\sqrt[3]{1 + 3x} \approx 1 + x$; $\sqrt[3]{1,03} \approx 1,01$
(b) $-0.23 < x < 0.40$

(b)
$$0,23 < x < 0,4$$

105.
$$12 + \frac{3}{2}\pi \approx 16.7 \text{ cm}^2$$

107.
$$\frac{1}{2}$$

107.
$$\frac{1}{32}$$
 109. $\frac{1}{4}$ **111.** $\frac{1}{8}x^2$

PROBLEMAS QUENTES - PÁGINA 248

1.
$$\left(\pm \frac{1}{2}\sqrt{3}, \frac{1}{4}\right)$$

9.
$$(0,\frac{5}{4})$$

11. (a)
$$4\pi\sqrt{3}/\sqrt{11}$$
 rad/s (b) $40(\cos\theta + \sqrt{8} + \cos^2\theta)$ cm/s

(b)
$$40(\cos \theta + \sqrt{8 + \cos^2 \theta})$$
 cm

15.
$$x_T \in (3, \infty), y_T \in (2, \infty), x_N \in (0, \frac{5}{3}), y_N \in (-\frac{5}{2}, 0)$$

19. R se aproxima do ponto médio do raio AO.

23.
$$2\sqrt{e}$$
 27. $(1, -2), (-1, 0)$

29.
$$\sqrt{29}/58$$

31.
$$2 + \frac{375}{128} \pi \approx 11\ 204\ \text{cm}^3/\text{min}$$

CAPÍTULO 4

EXERCÍCIOS 4.1 = PÁGINA 258

Abreviações: abs., absoluto; loc., local; máx., máximo; mín., mínimo

- I. Mínimo absoluto: menor valor da função no domínio todo da função; mínimo local em c: menor valor da função quando xestá próximo de c
- Máx. abs. em s, mín. abs. em r, máx. loc. em c, mín. loc. em b e r
- Máx. abs. f(4) = 5, máx. loc. f(4) = 5 e f(6) = 4, mín. loc. f(2) = 2 e f(5) = 3

II. (a)

(b)

(c)

13. (a)

(b)

- **15.** Máx. abs. f(1) = 5
- 17. Nenhum
- **19.** Mín. abs. f(0) = 0
- **21.** Máx. abs. f(-3) = 9, mín. abs. e loc. f(0) = 0
- 23. Nenhum
- **25.** Máx. abs. f(0) = 1
- **27.** Máx. abs. f(3) = 2
- **29.** $-\frac{2}{5}$ **31.** -4, 2 **33.** 0, $\frac{1}{2}(-1 \pm \sqrt{5})$
- **37.** $0, \frac{4}{9}$ **39.** $0, \frac{8}{7}, 4$ **41.** $n\pi(n \text{ um inteiro})$ **43.** $0, \frac{2}{3}$ **45.** 10
 - **47.** f(0) = 5, f(2) = -7

49. f(-1) = 8, f(2) = -19

51. $f(-3) = 47, f(\pm\sqrt{2}) = -2$ **53.** $f(1) = \frac{1}{2}, f(0) = 0$

55. $f(\sqrt{2}) = 2, f(-1) = -\sqrt{3}$

57. $f(\pi/6) = \frac{3}{2}\sqrt{3}, f(\pi/2) = 0$

59. $f(2) = 2/\sqrt{e}, f(-1) = -1/\sqrt[8]{e}$

61. $f(1) = \ln 3, f(-\frac{1}{2}) = \ln \frac{3}{4}$

63. $f\left(\frac{a}{a+b}\right) = \frac{a^a b^b}{(a+b)^{a+b}}$

(b) $\frac{6}{25}\sqrt{\frac{3}{5}} + 2$, $-\frac{6}{25}\sqrt{\frac{3}{5}} + 2$ **65.** (a) 2,19, 1,81

 $(b)^{\frac{3}{16}}\sqrt{3}, 0$ **67.** (a) 0,32, 0,00

71. Mais barato, $t \approx 0.855$ (junho de 1994); mais caro, $t \approx 4,618$ (março de 1998)

73. (a) $r = \frac{2}{3} r_0$ (b) $v = \frac{4}{27} k r_0^3$

(c)

EXERCÍCIOS 4.2 PÁGINA 267

3. $\frac{9}{4}$

5. f não é derivável em (-1, 1)

69. ≈ 3,9665 °C

7. 0,8, 3,2, 4,4, 6,1

9. (a), (b)

(c) $2\sqrt{2}$

13. $-\frac{1}{2} \ln \left[\frac{1}{6} \left(1 - e^{-6} \right) \right]$ **II.** 0

15. f não é contínua em 3

23. 16 **25.** Não **31.** Não

EXERCÍCIOS 4.3 PÁGINA 275

Abreviações: cres., crescente; decres., decrescente; CC, côncava para cima; CB, côncava para baixo; AH, assíntota horizontal; AV, assíntota vertical; AO, assíntota oblíqua; int x, intersecção com o eixo x; int y, intersecção com o eixo y; PI, ponto de inflexão.

I.(a) (1,3), (4,6)

(b) (0, 1), (3, 4)

(d)(2,4),(4,6)

(e)(2,3)

(a) Teste C/D (b) Teste da Concavidade

(c) Encontrando os pontos nos quais a concavidade muda.

5. (a) Cres. em (1, 5); decres. em (0, 1) e (5, 6)

(b) Máx. loc. em x = 5, mín. loc. em x = 1

7. x = 1, 7

9. (a) Cres. em $(-\infty, 2), (2, \infty)$; decres. em (-2, 2)

(b) Máx. loc. f(-2) = 17; mín. loc. f(2) = -15

(c) CC on $(0, \infty)$; CB on $(-\infty, 0)$; PI (0, 1)

11. (a) Cres. em (-1, 0), $(1, \infty)$; decres. em $(-\infty, -1)$, (0, 1)

(b) Máx. loc. f(0) = 3; mín. loc. $f(\pm 1) = 2$

(c) CC em $(-\infty, -\sqrt{3}/3), (\sqrt{3}/3, \infty)$;

CB em $(-\sqrt{3}/3, \sqrt{3}/3)$; PI $(\pm\sqrt{3}/3, \frac{22}{9})$

13. (a) Cres. em $(0, \pi/4), (5\pi/4, 2\pi)$; decres. em $(\pi/4, 5\pi/4)$ (b) Máx. loc. $f(\pi/4) = \sqrt{2}$; mín. loc. $f(5\pi/4) = -\sqrt{2}$

(c) CC em $(3\pi/4, 7\pi/4)$; CB em $(0, 3\pi/4), (7\pi/4, 2\pi)$;

PI $(3\pi/4, 0), (7\pi/4, 0)$

15. (a) Cres. em $(-\frac{1}{3}\ln 2, \infty)$; decres. em $(-\infty, -\frac{1}{3}\ln 2)$ (b) Mín. loc. $f(-\frac{1}{3}\ln 2) = 2^{-2/3} + 2^{1/3}$ (c) CC em $(-\infty, \infty)$

17. (a) Cres. em $(0, e^2)$; decres. em (e^2, ∞)

(b) Máx. loc. $f(e^2) = 2/e$

(c) CC em $(e^{8/3}, \infty)$; CB em $(0, e^{8/3})$; PI $(e^{8/3}, \frac{8}{3} e^{-4/3})$

19. Máx. loc. f(-1) = 7, mín. loc. f(1) = -1

21. Máx. loc. $f(\frac{3}{4}) = \frac{5}{4}$

23. (a) f tem um máximo local em 2.

(b) f tem uma tangente horizontal em 6.

25.

27.

29.

31. (a) Cres. em $(0, 2), (4, 6), (8, \infty)$;

decres. em (2, 4), (6, 8)

(b) Máx. loc. em x = 2, 6;

mín. loc. em x = 4, 8(c) CC em $(3, 6), (6, \infty)$;

CB em (0, 3)

(e) Ver o gráfico à direita. (d) 3

A78 ||| CÁLCULO

- **33.** (a) Cres. em $(-\infty, -1), (2, \infty)$; decres. em (-1, 2)(b) Máx. loc. f(-1) = 7;
 - $\min. \log. f(2) = -20$ (c) CC em $(\frac{1}{2}, \infty)$; CB em $(-\infty, \frac{1}{2})$; $PI\left(\frac{1}{2}, -\frac{13}{2}\right)$
 - (d) Ver o gráfico à direita.
- **35.** (a) Cres. em $(-\infty, -1)$, (0, 1); decres. em (-1,0), $(1,\infty)$ (b) Máx. loc. f(-1) = 3, f(1) = 3; mín. loc. <math>f(0) = 2(c) CC em $(-1/\sqrt{3}, 1/\sqrt{3})$; CB em $(-\infty, -1/\sqrt{3}), (1/\sqrt{3}, \infty);$
 - PI $(\pm 1/\sqrt{3}, \frac{23}{9})$ (d) Ver o gráfico à direita.
- **37.** (a) Cres. em $(-\infty, -1), (1, \infty)$; decres. em (-1, 1)(b) Máx. loc. h(-1) = 5; mín. loc. h(1) = 1
 - (c) CB em $(-\infty, -1/\sqrt{2}), (0, 1/\sqrt{2});$ CC em $(-1/\sqrt{2}, 0), (1/\sqrt{2}, \infty);$
 - PI $(0,3), (\pm 1/\sqrt{2}, 3 \pm \frac{7}{8}\sqrt{2})$
 - (d) Ver o gráfico à direita.
- **39.** (a) Cres. em $(-2, \infty)$; decres. em (-3, -2)

- decres. em $(-\infty, -1)$ (b) Mín. loc. C(-1) = -3(c) CC em $(-\infty, 0)$, $(2, \infty)$; CB em (0, 2); PI $(0,0), (2,6\sqrt[3]{2})$
 - (d) Ver o gráfico à direita.
- **43.** (a) Cres. em $(\pi, 2\pi)$; decres. em $(0, \pi)$ (b) Mín. loc. $f(\pi) = -1$ (c) CC em $(\pi/3, 5\pi/3)$; CB em $(0, \pi/3), (5\pi/3, 2\pi);$ PI $(\pi/3, \frac{5}{4}), (5\pi/3, \frac{5}{4})$
- (d) Ver o gráfico à direita. **45.** (a) AV $x = \pm 1$, AH y = -1(b) Cres. em $(0, 1), (1, \infty)$;
 - decres. em $(-\infty, -1), (-1, 0)$ (c) Mín. loc. f(0) = 1
 - (d) CC em (-1, 1);
 - CB em $(-\infty, -1), (1, \infty)$
 - (e) Ver o gráfico à direita.

- **47.** (a) AH y = 0
 - (b) Decres. em $(-\infty, \infty)$
 - (c) Nenhum
 - (d) CC em $(-\infty, \infty)$
 - (e) Ver o gráfico à direita.

- **49.** (a) AV x = 0, x = e
 - (b) Decres. em (0, e)
 - (c) Nenhum
 - (d) CC em (0, 1); CB em (1, e);
 - PI(1,0)
 - (e) Ver o gráfico à direita.

- **51.** (a) AH y = 1, AV x = -1
 - (b) Cres. em $(-\infty, -1), (-1, \infty)$
 - (c) Nenhum
 - (d) CC em $(-\infty, -1), (-1, -\frac{1}{2});$
 - CB em $\left(-\frac{1}{2}, \infty\right)$; PI $\left(-\frac{1}{2}, 1/e^2\right)$
 - (e) Ver o gráfico à direita.

- **53.** (3, ∞)
- **55.** (a) Máx. loc. e abs. $f(1) = \sqrt{2}$, nenhum mín. $(b)^{\frac{1}{4}}(3-\sqrt{17})$
- **57.** (b) CC em (0,94, 2,57), (3,71, 5,35); CB em $(0, 0.94), (2,57, 3,71), (5,35, 2\pi);$ PI(0.94, 0.44), (2,57, -0,63), (3,71, -0,63), (5,35, 0,44)
- **59.** CC em $(-\infty, -0.6)$, $(0.0, \infty)$; CB em (-0.6, 0.0)
- 61. (a) A taxa de crescimento inicialmente é muito pequena, aumenta para um máximo em $t \approx 8 \text{ h}$, depois decresce em direção ao zero.
 - (b) Quando t = 8 (c) CC em (0, 8); CB em (8, 18) (d) (8, 18)350)
- **63.** K(3) K(2); CB
- **65.** 28,57 min, quando a taxa de aumento do nível de droga na corrente sanguínea é maior; 85,71 min, quando a taxa de decrescimento é maior
- **67.** $f(x) = \frac{1}{9}(2x^3 + 3x^2 12x + 7)$

EXERCÍCIOS 4.4 PÁGINA 284

- I. (a) Indeterminado (b) 0(c) 0(d) ∞ , $-\infty$, ou não existe (e) Indeterminado
- (b) Indeterminado $(c) \infty$
- 7. $\frac{9}{5}$
- ||.∞
 - 13. p/q**23.** 1
- **17.** −∞
- 21. $\frac{1}{2}$
- **33.** $-1/\pi^2$
- **25.** $\ln \frac{5}{3}$ **27.** 1
- **29.** $\frac{1}{2}$
- **31.** 0
- **43.** 0

- 37. $\frac{1}{24}$
- 39. π 51.∞
- **41.** 3
- 47. $\frac{1}{2}$
- **49.** $\frac{1}{2}$
 - **59.** 1 **71.** 1
- **61**. e^4
- **77.** $\frac{16}{9}$ a
- **79.** 56

63. $1/\sqrt{e}$

53. 1

83. (a) 0

EXERCÍCIOS 4.5 = PÁGINA 293

- **I.** A. \mathbb{R} B. int. y, 0; int. x, 0 C. Em relação a (0,0) D. Nen-
 - E. Cres. em $(-\infty, \infty)$ F. Nenhuma
 - G. CC em $(0, \infty)$; CB em $(-\infty, 0)$;
 - PI(0,0)
 - H. Ver o gráfico à direita.
- **3.** A. \mathbb{R} B. int. y, 2; int. x, 2, $\frac{1}{2}(7 \pm 3\sqrt{5})$
 - C. Nenhuma D. Nenhuma
 - E. Cres. em (1, 5);
 - decres. em $(-\infty, 1), (5, \infty)$
 - F. Mín. loc. f(1) = -5;
 - máx. loc. f(5) = 27
 - G. CC em $(-\infty, 3)$;
 - CB em $(3, \infty)$; PI (3, 11)
 - H. Ver o gráfico à direita.
- B. int. y, 0; int. x, -4, 0 C. Nenhuma D. Nenhuma
 - E. Cres. em $(-3, \infty)$;
 - decres. em $(-\infty, -3)$
 - F. Mín. loc. f(-3) = -27
 - G. CC em $(-\infty, -2)$, $(0, \infty)$;
 - CB em (-2,0); PI (0,0), (-2,-16)
 - H. Ver o gráfico à direita.
- **7.** A. ℝ B. int. y, 1
 - C. Nenhuma D. Nenhuma
 - E. Cres. em $(-\infty, 0), (1, \infty)$;
 - decres. em (0, 1)
 - F. Máx. loc. f(0) = 1;
 - Mín. loc. f(1) = -2
 - G. CC em $(1/\sqrt[3]{4}, \infty)$;
 - CB em $(-\infty, 1/\sqrt[3]{4})$;
 - PI $(1/\sqrt[3]{4}, 1 9/(2\sqrt[3]{16}))$
 - H. Ver o gráfico à direita.
- **9** A. $\{x \mid x \neq 1\}$ B. int. y, 0; int. x, 0
 - C. Nenhuma D. AV x = 1, AH y = 1
 - E. Decres. em $(-\infty, 1), (1, \infty)$
 - F. Nenhuma
 - G. CC em $(1, \infty)$; CB em $(-\infty, 1)$
 - H. Ver o gráfico à direita.

- C. Em relação ao eixo y D. AV $x = \pm 3$, AH y = 0
- E. Cres. em $(-\infty, -3), (-3, 0)$;
- decres. em $(0,3),(3,\infty)$
- F. Máx. loc. $f(0) = -\frac{1}{9}$
- G. CC em $(-\infty, -3)$, $(3, \infty)$;
- CB em (-3, 3)
- H. Ver o gráfico à direita.

- **13.** A. ℝ B. int. y, 0; int. x, 0 C. Em relação a (0,0) D. AH y = 0

 - E. Cres. em (-3, 3);
 - decres. em $(-\infty, -3), (3, \infty)$
 - F. Mín. loc. $f(-3) = -\frac{1}{6}$;
 - $máx. loc. f(3) = \frac{1}{6};$
 - G. CC em $(-3\sqrt{3}, 0), (3\sqrt{3}, \infty)$;
 - CB em $(-\infty, -3\sqrt{3}), (0, 3\sqrt{3});$
 - PI $(0,0), (\pm 3\sqrt{3}, \pm \sqrt{3}/12)$
 - H. Ver o gráfico à direita.
- **15.** A. $(-\infty, 0) \cup (0, \infty)$
 - B. int. *x*, 1 C. Nenhuma D. AH y = 0; AV x = 0
 - E. Cres. em (0, 2);
 - decres. em $(-\infty, 0), (2, \infty)$
 - F. Máx. loc. $f(2) = \frac{1}{4}$
 - G. CC em $(3, \infty)$;
 - CB em $(-\infty, 0), (0, 3); \text{ PI } (3, \frac{2}{9})$
 - H. Ver o gráfico à direita.

- C. Em relação ao eixo y D. AH y = 1
- E. Cres. em $(0, \infty)$; decres. em $(-\infty, 0)$
- F. Mín. loc. f(0) = 0
- G. CC em (-1, 1); CB em $(-\infty, -1)$, $(1, \infty)$; PI $\left(\pm 1, \frac{1}{4}\right)$
- H. Ver o gráfico à direita.
- 19. A. $(-\infty, 5]$ B. int. y, 0; int. x, 0, 5
 - C. Nenhuma D. Nenhuma
 - E. Cres. em $\left(-\infty, \frac{10}{3}\right)$; decres. em $\left(\frac{10}{3}, 5\right)$
 - F. Máx. loc. $f(\frac{10}{3}) = \frac{10}{9}\sqrt{15}$
 - G. CB em $(-\infty, 5)$
 - H. Ver o gráfico à direita.
- **21.** A. $(-\infty, -2) \cup (1, \infty)$
 - B. int. x, -2, 1
 - C. Nenhuma D. Nenhuma
 - E. Cres. em $(1, \infty)$;
 - decres. em $(-\infty, -2)$ F. Nenhum
 - G. CB em $(-\infty, -2)$, $(1, \infty)$
 - H. Ver o gráfico à direita.
- **23.** A. ℝ B. int. y, 0; int. x, 0 C. Em relação à origem
 - D. AH $y = \pm 1$
 - E. Cres. em $(-\infty, \infty)$ F. Nenhum
 - G. CC em $(-\infty, 0)$;
 - CB em $(0, \infty)$; PI (0, 0)
 - H. Ver o gráfico à direita.

- B. int. $x, \pm 1$ C. Em relação a (0, 0)
- D. AV x = 0
- E. Dec. on (-1, 0), (0, 1)

- F. Nenhum
- G. CC em $(-1, -\sqrt{2/3}), (0, \sqrt{2/3});$
- CB em $(-\sqrt{2/3}, 0), (\sqrt{2/3}, 1);$
- PI $(\pm\sqrt{2/3}, \pm 1/\sqrt{2})$
- H. Ver o gráfico à direita.
- **27.** A. \mathbb{R} B. int. y, 0; int. x, 0, -27
 - C. Nenhuma D. Nenhuma
 - E. Cres. em $(-\infty, -8)$, $(0, \infty)$;
 - decres. em (-8,0)
 - F. Mín. loc. f(0) = 0,
 - $m\acute{a}x. loc. f(-8) = 4$
 - G. CB em $(-\infty, 0), (0, \infty)$
 - H. Ver o gráfico à direita.
- **29.** A. \mathbb{R} B. int. y, -1; int. x, ± 1
 - C. Em relação ao eixo y
 - D. Nenhuma
 - E. Cres. em $(0, \infty)$;
 - decres. em $(-\infty, 0)$
 - F. Mín. loc. f(0) = -1
 - G. CC em (-1, 1);
 - CB em $(-\infty, -1)$, $(1, \infty)$; PI $(\pm 1, 0)$
 - H. Ver o gráfico à direita.
- **31.** A. \mathbb{R} B. int. y, 0; int. x, $n\pi$ (n um inteiro)
 - C. Em relação à origem, período 2π
 - E. Cres. em $(2n\pi \pi/2, 2n\pi + \pi/2)$;
 - decres. em $(2n\pi + \pi/2, 2n\pi + 3\pi/2)$
 - F. Máx. loc. $f(2n\pi + \pi/2) = 2$;
 - Mín. loc. $f(2n\pi + 3\pi/2) = -2$ G. CC em $((2n - 1)\pi, 2n\pi)$;
 - CB em $(2n\pi, (2n+1)\pi)$; PI $(n\pi, 0)$
 - H. Ver o gráfico à direita.

D. Nenhuma

(1,0)

(0, -1)

- **33.** A. $(-\pi/2, \pi/2)$ B. int. y, 0; int. x, 0 C. Em relação ao eixo y
 - D. AV $x = \pm \pi/2$
 - E. Cres. em $(0, \pi/2)$
 - decres. em $(-\pi/2, 0)$;
 - F. Mín. loc. f(0) = 0
 - G. CC em $(-\pi/2, \pi/2)$
 - H. Ver o gráfico à direita.

- **35.** A. $(0, 3\pi)$ C. Nenhuma D. Nenhuma
 - E. Cres. em $(\pi/3, 5\pi/3), (7\pi/3, 3\pi);$
 - decres. em $(0, \pi/3), (5\pi/3, 7\pi/3)$
 - F. Mín. loc. $f(\pi/3) = (\pi/6) \frac{1}{2}\sqrt{3}, f(7\pi/3) = (7\pi/6) \frac{1}{2}\sqrt{3};$
 - máx. loc. $f(5\pi/3) = (5\pi/6) + \frac{1}{2}\sqrt{3}$
 - G. CC em $(0, \pi), (2\pi, 3\pi);$
 - CB em $(\pi, 2\pi)$;
 - PI $(\pi, \pi/2), (2\pi, \pi)$
 - H. Ver o gráfico à direita.

- **37.** A. Todos os reais, exceto $(2n + 1)\pi$ (*n* um inteiro)
 - B. int. y, 0; int. x, $2n\pi$
 - C. Em relação à origem, período 2π
 - D. AV $x = (2n + 1)\pi$
 - E. Cres. em $((2n-1)\pi, (2n+1)\pi)$ F. Nenhum
 - G. CC em $(2n\pi, (2n+1)\pi)$; CB em $((2n-1)\pi, 2n\pi)$; PI $(2n\pi, 0)$
 - PI $(2n\pi, 0)$

- **39.** A. \mathbb{R} B. int. y, 1 C. Período 2π D. Nenhuma
 - As respostas para E-G são para o intervalo $[0, 2\pi]$.
 - E. Cres. em $(0, \pi/2), (3\pi/2, 2\pi)$; decres. em $(\pi/2, 3\pi/2)$
 - F. Máx. loc. $f(\pi/2) = e$; Mín. loc. $f(3\pi/2) = e^{-1}$
 - G. CC em $(0, \alpha)$, $(\beta, 2\pi)$ onde $\alpha = \operatorname{sen}^{-1}(\frac{1}{2}(-1 + \sqrt{5}))$,
 - $\beta = \pi \alpha$; CB em (α, β) ; PI quando $x = \alpha, \beta$
 - H.

- **41.** A. \mathbb{R} B. int. $y, \frac{1}{2}$ C. Nenhuma
 - D. AH y = 0, y = 1
 - $E.\,Cres.\,em\,\mathbb{R}\qquad F.\,Nenhum$
 - G. CC em $(-\infty, 0)$; CB em $(0, \infty)$;
 - PI $(0, \frac{1}{2})$ H. Ver o gráfico à direita.
- **43.** A. $(0, \infty)$ B. Nenhuma C. Nenhuma D. AV x = 0
 - E. Cres. em $(1, \infty)$; decres. em (0, 1)
 - F. Mín. loc. f(1) = 1
 - G. CC em $(0, \infty)$
 - H. Ver o gráfico à direita.

- **45.** A. \mathbb{R} B. int. $y, \frac{1}{4}$ C. Nenhuma
 - D. AH y = 0, y = 1
 - E. Decres. em \mathbb{R} F. Nenhum
 - G. CC em $\left(\ln \frac{1}{2}, \infty\right)$;
 - CB em $\left(-\infty, \ln\frac{1}{2}\right)$; PI $\left(\ln\frac{1}{2}, \frac{4}{9}\right)$
 - H. Ver o gráfico à direita.

D. AV $x = n\pi$

- **47.** A. Todo x em $(2n\pi, (2n + 1)\pi)$ (n um inteiro)
 - B. int. x, $\pi/2 + 2n\pi$ C. Período 2π
 - E. Cres. em $(2n\pi, \pi/2 + 2n\pi)$;
 - decres. em $(\pi/2 + 2n\pi, (2n+1)\pi)$
 - F. Máx. loc. $f(\pi/2 + 2n\pi) = 0$
 - G. CB em $(2n\pi, (2n+1)\pi)$

- **49.** A. \mathbb{R} B. int. y, 0; int. x, 0 C. Em relação à origem (0,0) D. AH y=0
 - E. Cres. em $(-1/\sqrt{2}, 1/\sqrt{2})$; decres. em $(-\infty, -1/\sqrt{2}), (1/\sqrt{2}, \infty)$
 - F. Mín. loc. $f(-1/\sqrt{2}) = -1/\sqrt{2e}$; máx. loc. $f(1/\sqrt{2}) = 1/\sqrt{2e}$
 - G. CC em $(-\sqrt{3/2}, 0), (\sqrt{3/2}, \infty)$; CB em $(-\infty, -\sqrt{3/2}), (0, \sqrt{3/2})$ PI $(\pm \sqrt{3/2}, \pm \sqrt{3/2}e^{-3/2}, (0, 0)$

H.

- **51.** A. \mathbb{R} B. int. y, 2
 - C. Nenhuma D. Nenhuma
 - E. Cres. em $(\frac{1}{5} \ln \frac{2}{3}, \infty)$;
 - decres. em $\left(-\infty, \frac{1}{5} \ln \frac{2}{3}\right)$
 - F. Mín. loc. $f(\frac{1}{5} \ln \frac{2}{3}) = (\frac{2}{3})^{3/5} + (\frac{2}{3})^{-2/5}$
 - G. CC em $(-\infty, \infty)$
 - H. Ver o gráfico à direita.

53.

55.

57.
$$y = x - 1$$

59.
$$y = 2x - 2$$

- **61.** A. $\left(-\infty, \frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$
 - B. int. y, 1; int. $x, \frac{1}{4}(5 \pm \sqrt{17})$
 - C. Nenhuma
 - D. AV $x = \frac{1}{2}$; AO y = -x + 2
 - E. Decres. em $\left(-\infty, \frac{1}{2}\right), \left(\frac{1}{2}, \infty\right)$
 - F. Nenhum
 - G. CC em $(\frac{1}{2}, \infty)$; CB em $(-\infty, \frac{1}{2})$
 - H. Ver o gráfico à direita.

- C. Elli felação à (0,0)
- D. AV x = 0; AO y = x
- E. Cres. em $(-\infty, -2), (2, \infty)$;
- decres. em (-2, 0), (0, 2)
- F. Máx. loc. f(-2) = -4;
- $\min_{f} \log_{f} f(2) = 4$
- G. CC em $(0, \infty)$; CB em $(-\infty, 0)$
- H. Ver o gráfico à direita.

- **65.** A. \mathbb{R} B. int. y, 1; int. x, -1
 - C. Nenhuma
 - D. AO y = 2x + 1
 - E. Cres. em $(-\infty, \infty)$
 - F. Nenhum
 - G. CC em $(-\infty, -\sqrt{3})$, $(0, \sqrt{3})$; $(-\sqrt{3} \frac{3}{2}\sqrt{3})$
 - CB em $(-\sqrt{3},0),(\sqrt{3},\infty)$;
 - PI $(\pm\sqrt{3}, 1 \pm \frac{3}{2}\sqrt{3}), (0, 1)$
 - H. Ver o gráfico à direita.

71. AV x = 0, assíntota a $y = x^3$

EXERCÍCIOS 4.6 PÁGINA 300

1. Cres. em (-1,1,0,3), $(0,7,\infty)$; decres. em $(-\infty,-1,1)$, (0,3,0,7); máx. loc. $f(0,3)\approx 6,6$, mín. loc. $f(-1,1)\approx -1.1$, $f(0,7)\approx 6,3$; CC em $(-\infty,-0,5)$, $(0,5,\infty)$; CB em (-0,5,0,5); PI (-0,5,2,1), (0,5,6,5)

3. Cres. em(-15, 4,40), (18,93, ∞); decres. em(- ∞ ,-15), (4,40, 18,93); máx. loc. f(4,40) = 53 800; Mín. loc. f(-15) \approx -9 700 000, f(18,93) \approx -12 700 000; CC em(- ∞ , -11,34), (0, 2,92), (15,08, ∞); CB em(-11,34,0), (2,92,15,08); PI (0,0), \approx (-11,34, -6 250 000), (2,92, 31 800), (15,08, -8 150 000)

-10 -30 000 10

5. Cres. em $(-\infty, -1.7)$, (-1.7, 0.24), (0.24, 1); decres. em (1, 2.46), $(2.46, \infty)$; máx. loc. $f(1) = -\frac{1}{3}$; CC em $(-\infty, -1.7)$, (-0.506, 0.24), $(2.46, \infty)$; CB em (-1.7, -0.506), (0.24, 2.46); PI (-0.506, -0.192)

7. Cres. em (-1,49,-1,07), (2,89,4); decres. em (-4,-1,49), (-1,07,2,89); máx. loc. $f(-1,07) \approx 8,79$; mín. loc. $f(-1.49) \approx 8,75$, $f(2.89) \approx -9,99$; CC em (-4,-1,28), (1,28,4); CB em (-1,28,1,28); PI (-1,28,8,77), (1,28,-1,48)

9. Cres. em $(-8 - \sqrt{61}, -8 + \sqrt{61})$; decres. em $(-\infty, -8 - \sqrt{61})$, $(-8 + \sqrt{61}, 0)$, $(0, \infty)$; CC em $(-12 - \sqrt{138}, -12 + \sqrt{138})$, $(0, \infty)$; CB em $(-\infty, -12 - \sqrt{138})$, $(-12 + \sqrt{138}, 0)$

11. (a)

- (b) $\lim_{x \to 0^+} f(x) = 0$
- (c) Mín. loc. $f(1/\sqrt{e}) = -1/(2e)$;
- CB em $(0, e^{-3/2})$; CC em $(e^{-3/2}, \infty)$
- **13.** Máx. loc. $f(-5.6) \approx 0.018, f(0.82) \approx -281.5,$ $f(5.2) \approx 0.0145;$ mín. loc. f(3) = 0

15.
$$f'(x) = -\frac{x(x+1)^2(x^3+18x^2-44x-16)}{(x-2)^3(x-4)^5}$$

$$f''(x) = 2 \frac{(x+1)(x^6+36x^5+6x^4-628x^3+684x^2+672x+64)}{(x-2)^4(x-4)^6}$$

- CC em (-35,3,-5,0), (-1,-0,5), (-0,1,2), (2,4), $(4,\infty)$; CB em $(-\infty,-35,3)$, (-5,0,-1), (-0,5,-0,1); PI (-35,3,-0,015), (-5,0,-0,005), (-1,0), (-0,5,0,00001), (-0,1,0,0000066)
- **17.** Cres. em (0,0,43); decres. em $(0,43,\infty)$; máx. loc. $f(0,43)\approx 0,41$; CC em $(0,94,\infty)$; CB em (0,0,94); PI (0,94,0,34)

19. Cres. em (-4,91, -4,51), (0, 1,77), (4,91, 8,06), (10,79, 14,34), (17,08, 20);

decres. em (-4,51, -4,10), (1,77, 4,10), (8,06, 10,79), (14,34, 17,08);

máx. loc. $f(-4.51) \approx 0.62$, $f(1.77) \approx 2.58$, $f(8.06) \approx 3.60$, $f(14.34) \approx 4.39$;

Mín. loc. $f(10,79) \approx 2,43, f(17,08) \approx 3,49$;

CC em (9,60, 12,25), (15,81, 18,65);

CB em (-4,91, -4,10), (0, 4,10), (4,91, 9,60), (12,25, 15,81), (18,65, 20);

PIs em (9,60, 2,95), (12,25, 3,27), (15,81, 3,91), (18,65, 4,20)

21. Cres. em $(-\infty, 0)$, $(0, \infty)$; CC em $(-\infty, -0.4)$, (0, 0.4); CB em (-0.4, 0), $(0.4, \infty)$;

CB em $(-0.4, 0), (0.4, \infty)$;

 $PI(\pm 0,4,\pm 0,8)$

23. (a) 2

(b) $\lim_{x\to 0^+} x^{1/x} = 0$, $\lim_{x\to\infty} x^{1/x} = 1$

(c) máx. loc. $f(e) = e^{1/e}$ (d) PI em $x \approx 0.58, 4.37$

25. Máx. $f(0,59) \approx 1$, $f(0,68) \approx 1$, $f(1,96) \approx 1$; mín. $f(0,64) \approx 0.99996$, $f(1,46) \approx 0.49$, $f(2,73) \approx -0.51$; PI (0,61,0.99998), (0,66,0.99998), (1,17,0.72), (1,75,0.77), (2,28,0.34)

27. Para $c \ge 0$, tnão existe nenhum PI e existe apenas um ponto extremo, a origem. Para c < 0, existe um ponto de máximo na origem, dois pontos de mínimo e dois PIs, os quais se movem para baixo e para longe da origem quando $c \to -\infty$.

29. Não existe nenhum máximo nem mínimo, independentemente do valor de c. Para c < 0, existe uma assíntota vertical em x = 0, $\lim_{x \to 0} f(x) = \infty$, e $\lim_{x \to \pm \infty} f(x) = 1$. c = 0 é um valor de transição no qual f(x) = 1 para $x \neq 0$. Para c > 0, $\lim_{x \to 0} f(x) = 0$, $\lim_{x \to \pm \infty} f(x) = 1$, e existem dois PIs, que se afastam do eixo y quando $c \to \infty$.

31. Para c > 0, os valores máximo e mínimo são sempre $\pm \frac{1}{2}$, mas os pontos extremos e os PIs se aproximam do eixo y quando ccresce. c=0 é um valor de transição: quando c é substituído por -c, a curva é refletida em relação ao eixo x.

33. Para |c| < 1, o gráfico tem valores de máximos e mínimos locais; para $|c| \ge 1$, não tem. A função é crescente para $c \ge 1$ e decrescente para $c \le -1$. À medida que c varia, os PI se movem verticalmente, mas não horizontalmente.

35.

Para c > 0, $\lim_{x \to \infty} f(x) = 0$ e $\lim_{x \to -\infty} f(x) = -\infty$. Para c < 0, $\lim_{x \to \infty} f(x) = \infty$ e $\lim_{x \to -\infty} f(x) = 0$. À medida que | c | cresce, os pontos de máximo e de mínimo e os PIs se aproximam da origem.

37. (a) Positivo (b)

EXERCÍCIOS 4.7 PÁGINA 307

- (a) 11, 12 (b) 11,5, 11,5 **3.** 10, 10
- 25 m por 25 m

7. N = 1

(a) $2\ 000\ m^2$

(c)
$$A = xy$$
 (d) $5x + 2y = 300$ (e) $A(x) = 150x - \frac{5}{2}x^2$ (f) $2\ 250\ \text{m}^2$

A84 ||| CÁLCULO

41. $E^2/(4r)$

II. 100 m por 150 m **I3.** 4 000 cm³ **15.** \$191,28

17. $\left(-\frac{28}{17}, \frac{7}{17}\right)$ **19.** $(-\frac{1}{3}, \pm \frac{4}{3}\sqrt{2})$ **21.** Quadrado, lado $\sqrt{2}r$

23. $L/2, \sqrt{3} L/4$ **25.** Base $\sqrt{3}r$, altura 3r/2

27. $4\pi r^3/(3\sqrt{3})$ **29.** $\pi r^2 (1 + \sqrt{5})$ **31.** 24 cm, 36 cm

33. (a) Use todo o fio para o quadrado (b) $40\sqrt{3}/(9 + 4\sqrt{3})$ m para o quadrado

35. Altura = raio = $\sqrt[3]{V/\pi}$ cm **37.** $V = 2\pi R^3/(9\sqrt{3})$

43. (a) $\frac{3}{2}$ S^2 cossec θ (cossec $\theta - \sqrt{3}$ cotg θ) (b) $\cos^{-1}(1/\sqrt{3}) \approx 55^\circ$

45. Reme diretamente para B **47.** $\approx 4,85$ km a leste da refinaria

49. $4\sqrt[3]{3}(1+\sqrt[3]{3})$ m da fonte mais forte

51. $(a^{2/3} + b^{2/3})^{3/2}$

(c) $6s[h + s/(2\sqrt{2})]$

53. (b) (i) \$342 491; \$342/unit; \$390/unidade

(ii) 400 (iii) \$320/unidade

55. (a) $p(x) = 19 - \frac{1}{3000}x$ (b) \$9,50

57. (a) $p(x) = 550 - \frac{1}{10}x$ (b) \$175

61. 9,35 m **65.** x = 15 cm**67.** $\pi/6$

69. À distância de $5 - 2\sqrt{5}$ de A **71.** $\frac{1}{2}(L+W)^2$

73. (a) Cerca de 5,1 km de *B* (b) C está perto de B; C está perto de D; $W/L = \sqrt{25 + x^2}/x$, em que x = |BC|(d) $\sqrt{41/4} = 1.6$ (c) $\approx 1,07$; nenhum de tais valores

EXERCÍCIOS 4.8 PÁGINA 317

(b) Não $3.\frac{4}{5}$ **5.** 1,1797 1. (a) $x_2 \approx 2.3, x_3 \approx 3$

9. -1.25**7.** 1.1785 11.1,82056420 **13.** 2,224745

17. −0,724492, 1,220744 **15.** 0,876726

19. 1,412391, 3,057104 **21.** 0,520269

23. -1,93822883, 1,21997997, 1,13929375, 2,98984102

25. -1,97806681, 0,82646233

27. 0,21916368, 1,08422462 **29.** (b) 31,622777

35. (a) -1,293227, -0,441731, 0,507854 (b) -2,0212

37. (0,904557, 1,855277) **39.** (0,410245, 0,347810)

41. 0,76286%

EXERCÍCIOS 4.9 PÁGINA 323

1. $F(x) = \frac{1}{2}x^2 + 3x + C$ **3.** $F(x) = \frac{1}{2}x + \frac{1}{4}x^3 - \frac{1}{5}x^4 + C$

5. $F(x) = \frac{2}{3}x^3 + \frac{1}{2}x^2 - x + C$ **7.** $F(x) = 4x^{5/4} - 4x^{7/4} + C$

9. $F(x) = 4x^{3/2} - \frac{6}{7}x^{7/6} + C$

11. $F(x) = \begin{cases} -5/(4x^8) + C_1 & \text{se } x < 0 \\ -5/(4x^8) + C_2 & \text{se } x > 0 \end{cases}$

13. $F(u) = \frac{1}{3}u^3 - 6u^{-1/2} + C$

15. $G(\theta) = \sin \theta + 5 \cos \theta + C$

17. $F(x) = 5e^x - 3 \operatorname{senh} x + C$

19. $F(x) = \frac{1}{2}x^2 - \ln|x| - 1/x^2 + C$

21. $F(x) = x^5 - \frac{1}{3}x^6 + 4$ **23.** $x^3 + x^4 + Cx + D$

25. $\frac{3}{20}x^{8/3} + Cx + D$ **27.** $e^t + \frac{1}{2}Ct^2 + Dt + E$

29. $x - 3x^2 + 8$ **31.** $4x^{3/2} + 2x^{5/2} + 4$

33. $2 \operatorname{sen} t + \operatorname{tg} t + 4 - 2\sqrt{3}$

35. $\frac{3}{2}x^{2/3} - \frac{1}{2} \operatorname{se} x > 0; \frac{3}{2}x^{2/3} - \frac{5}{2} \operatorname{se} x < 0$

37. $2x^4 + \frac{1}{3}x^3 + 5x^2 - 22x + \frac{59}{3}$

39. $-\sin \theta - \cos \theta + 5\theta + 4$ **41.** $x^2 - 2x^3 + 9x + 9$

43. $x^2 - \cos x - \frac{1}{2}\pi x$ **45.** $-\ln x + (\ln 2)x - \ln 2$

47. 10 **49** h

51.

53.

59. $s(t) = \frac{1}{6}t^3 - t^2 + 3t + 1$ **57.** $s(t) = 1 - \cos t - \sin t$

61. $s(t) = -10 \operatorname{sen} t - 3 \operatorname{cos} t + (6/\pi)t + 3$

63. (a) $s(t) = 450 - 4.9t^2$ (b) $\sqrt{450/4.9} \approx 9.58 \text{ s}$ (c) $-9.8\sqrt{450/4.9} \approx -93.9$ m/s (d) Approximadamente 9.09 s

67. $\approx 81,6 \text{ m}$ **69.** \$742,08 **71.** $\frac{130}{11} \approx 11.8 \text{ s}$

73. $\frac{5}{3}$ m/s² **75.** 62 500 km/h² \approx 4,82 m/s²

77. (a) 36 926 km (b) 34 898 km (c) 30 min 21 s (d) 89 278 km

CAPÍTULO 4 REVISÃO PÁGINA 326

Teste Verdadeiro-Falso

5. Verdadeiro **7.** Falso I. Falso 3. Falso

9. Verdadeiro II. Verdadeiro 13. Falso 15. Verdadeiro

17. Verdadeiro 19. Verdadeiro

Exercícios

1. Máx. abs. f(4) = 5, mín. abs. e loc. f(3) = 1; Min. loc. f(3) = 1

 $\left(-\frac{4}{3}, -\frac{4\sqrt{6}}{9}\right)$

- **3.** Máx. abs. $f(2) = \frac{2}{5}$, mín. abs. e loc. $f(-\frac{1}{3}) = -\frac{9}{2}$
- **5.** Máx. abs. $f(\pi) = \pi$; mín. abs. f(0) = 0; máx. loc. $f(\pi/3) = (\pi/3) + \frac{1}{2}\sqrt{3}$; mín. loc. $f(2\pi/3) = (2\pi/3) - \frac{1}{2}\sqrt{3}$

13. $\frac{1}{2}$

- 7.
- **9.** 8
- 11.0
- 15.

17.

- **19.** A. ℝ B. int. y, 2
 - C. Nenhuma D. Nenhuma
 - E. Decres. em $(-\infty, \infty)$ F. Nenhum
 - G. CC em $(-\infty, 0)$;
 - CB em $(0, \infty)$; PI (0, 2)
 - H. Ver o gráfico à direita.
- **21.** A. ℝ B. int. y, 0; int. x, 0, 1
 - C. Nenhuma D. Nenhuma
 - E. Cres. em $(\frac{1}{4}, \infty)$,
 - decres. em $\left(-\infty, \frac{1}{4}\right)$
 - F. Mín. loc. $f(\frac{1}{4}) = -\frac{27}{256}$
 - G. CC em $\left(-\infty, \frac{1}{2}\right)$, $(1, \infty)$;
 - CB em $(\frac{1}{2}, 1)$; PI $(\frac{1}{2}, -\frac{1}{16})$, (1, 0)
 - H. Ver o gráfico à direita.
- **23.** A. $\{x \mid x \neq 0, 3\}$
 - B. Nenhuma C. Nenhuma
 - D. AH y = 0; AV x = 0, x = 3
 - E. Cres. em (1, 3);
 - decres. em $(-\infty, 0), (0, 1), (3, \infty)$
 - F. Mín. loc. $f(1) = \frac{1}{4}$
 - G. CC em $(0, 3), (3, \infty)$;
 - CB em $(-\infty, 0)$
 - H. Ver o gráfico à direita.

- B. int. y, 0; int. x, 0 C. Nenhuma
- D. AV x = -8; AO y = x 8
- E. Cres. em $(-\infty, -16)$, $(0, \infty)$;
- decres. em (-16, -8), (-8, 0)
- F. Máx. loc. f(-16) = -32;
- $\min_{} \log_{} f(0) = 0$
- G. CC em $(-8, \infty)$; CB em $(-\infty, -8)$
- H. Ver o gráfico à direita.

27. A. $[-2, \infty)$

- B. int. y, 0; int. x, -2, 0
- C. Nenhuma D. Nenhuma
- E. Cres. em $\left(-\frac{4}{3}, \infty\right)$,
- decres.em $\left(-2, -\frac{4}{3}\right)$ F. Mín. loc. $f(-\frac{4}{3}) = -\frac{4}{9}\sqrt{6}$
- G. CC em $(-2, \infty)$
- H. Ver o gráfico à direita.
- **29.** A. ℝ B. int. y, -2
 - C. Em relação ao eixo y, período 2π D. Nenhuma
 - E. Cres. em $(2n\pi, (2n + 1)\pi)$, n um inteiro;
 - decres. em $((2n-1)\pi, 2n\pi)$
 - F. Máx. loc. $f((2n + 1)\pi) = 2$; mín. loc. $f(2n\pi) = -2$
 - G. CC em $(2n\pi (\pi/3), 2n\pi + (\pi/3))$;
 - CB em $(2n\pi + (\pi/3), 2n\pi + (5\pi/3))$; PI $(2n\pi \pm (\pi/3), -\frac{1}{4})$

- **31.** A. $\{x \mid |x| \ge 1\}$ B. Nenhuma C. Em relação a (0,0)
 - D. AH y = 0E. Decres. em $(-\infty, -1)$, $(1, \infty)$
 - F. Nenhum G. CC em $(1, \infty)$; CB em $(-\infty, -1)$

- **33.** A. \mathbb{R} B. int. y, 0; int. x, 0 C. Nenhuma D. AH y = 0
 - E. Cres. em $\left(-\infty, \frac{1}{2}\right)$, decres. em $\left(\frac{1}{2}, \infty\right)$
 - F. Máx. loc. $f(\frac{1}{2}) = 1/(2e)$
 - G. CC em $(1, \infty)$; CB em $(-\infty, 1)$; PI $(1, e^{-2})$

- **35.** Cres. em $(-\sqrt{3}, 0), (0, \sqrt{3})$;
 - decres. em $(-\infty, -\sqrt{3}), (\sqrt{3}, \infty)$; máx. loc. $f(\sqrt{3}) = \frac{2}{9}\sqrt{3}$,
 - mín. loc. $f(-\sqrt{3}) = -\frac{2}{9}\sqrt{3}$;
 - CC em $(-\sqrt{6}, 0), (\sqrt{6}, \infty);$
 - CB em $(-\infty, -\sqrt{6}), (0, \sqrt{6});$

- **37.** Cres. em (-0.23, 0), $(1.62, \infty)$; decres. em $(-\infty, -0.23)$, (0, 1,62); máx. loc. f(0) = 2; mín. loc. $f(-0,23) \approx 1,96$,
 - $f(1,62) \approx -19,2$; CC em $(-\infty, -0,12), (1,24,\infty)$;
 - CB em (-0.12, 1.24); PI (-0.12, 1.98), (1.24, -12.1)

- **43.** Para C > -1, f é periódica com período 2π e tem máximos locais em $2n\pi + \pi/2$, n um inteiro. Para $C \le -1$, f não tem gráfico. Para $-1 < C \le 1$, f tem assíntotas verticais. Para C > 1, f é contínua em \mathbb{R} . À medida que C aumenta, f se move para cima e sua oscilação se torna menos pronunciada.
- (b) CC em \mathbb{R} **53.** $3\sqrt{3}r^2$ **49.** (a) 0
- **55.** $4/\sqrt{3}$ cm de *D*
- **57.** L = C
- **59.** \$11,50

- **61.** 1,297383
- **63.** 1,16718557
- **65.** $f(x) = \sin x \sin^{-1} x + C$
- **67.** $f(x) = \frac{2}{5}x^{5/2} + \frac{3}{5}x^{5/3} + C$
- **69.** $f(t) = t^2 + 3\cos t + 2$
- **71.** $f(x) = \frac{1}{2}x^2 x^3 + 4x^4 + 2x + 1$
- **73.** $s(t) = t^2 tg^{-1}t + 1$
- **75.** (b) $0.1e^x \cos x + 0.9$ (c)

- **77.** Não
- **79.** (b) Cerca de 25,44 cm por 5,96 cm (c) $2\sqrt{300}$ cm, $2\sqrt{600}$ cm

PROBLEMAS QUENTES - PÁGINA 330

- **5.** 24
- **7.** (-2, 4), (2, -4)
- 11. -3.5 < a < 2.5
- **13.** $(m/2, m^2/4)$ **15.** $a \le e^{1/e}$
- **19.** (a) $T_1 = D/c_1, T_2 = (2h \sec \theta)/c_1 + (D 2h \operatorname{tg} \theta)/c_2,$ $T_3 = \sqrt{4h^2 + D^2}/c_1$ (c) $c_1 \approx 3.85 \text{ km/s}, c_2 \approx 7.66 \text{ km/s}, h \approx 0.42 \text{ km}$
- **23.** $3/(\sqrt[3]{2} 1) \approx 11\frac{1}{2} h$

CAPÍTULO 5

EXERCÍCIOS 5.1 PÁGINA 343

- I. (a) 40, 52
- (b) 43,2, 49,2

- (a) 0,7908 subestimado
- (b) 1,1835, superestimado

- (a) 8, 6,875
- (b) 5, 5,5375

(c) 5,75, 5,9375

- (d) M_{c}
- **7.** 0,2533, 0,2170, 0,2101, 0,2050; 0.2
- **9.** (a) À esquerda: 0,8100, 0,7937, 0,7904; à direita: 0,7600, 0,7770,0,7804
- **II.** 10,55 m, 13,65 m
- **13.** 63,2 L, 70 L **15.** 39 m
- **17.** $\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt[4]{1 + 15i/n} \cdot (15/n)$ **19.** $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i\pi}{2n} \cos \frac{i\pi}{2n} \right) \frac{\pi}{2n}$
- **21.** A região sob o gráfico de $y = \operatorname{tg} x \operatorname{de} 0$ a $\pi/4$
- **23.** (a) $\lim_{n\to\infty} \frac{64}{n^6} \sum_{i=1}^n i^5$
- (b) $\frac{n^2(n+1)^2(2n^2+2n-1)}{12}$
- **25.** sen *b*, 1

EXERCÍCIOS 5.2 PÁGINA 354

A soma de Riemann representa a soma das áreas dos dois retângulos acima do eixo x menos a soma das áreas dos três retângulos abaixo do eixo x; isto é, a área resultante dos retângulos com relação ao eixo x.

3. -0.856759

A soma de Riemann representa a soma das áreas dos dois retângulos acima do eixo x menos a soma das áreas dos três retângulos abaixo do eixo x.

- **5.** (a)4
- (c)10 (b)6
- **7.** -475, -85
- 9. 124,1644

- **II.** 0,3084
- **13.** 0,30843908, 0,30981629, 0,31015563

15.	n	$R_{_{n}}$
	5	1,933766
	10	1,983524
	50	1,999342
	100	1,999836

Os valores de R_n parecem se aproximar de 2.

17.
$$\int_2^6 x \ln(1+x^2) dx$$
 19. $\int_1^8 \sqrt{2x+x^2} dx$

19.
$$\int_{1}^{8} \sqrt{2x + x^2} dx$$

23.
$$\frac{4}{3}$$
 25. 3,7

23.
$$\frac{4}{3}$$
 25. 3,75 **29.** $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{2+4i/n}{1+(2+4i/n)^5}\cdot\frac{4}{n}$

31.
$$\lim_{n\to\infty}\sum_{i=1}^n\left(\sin\frac{5\pi i}{n}\right)\frac{\pi}{n}=\frac{2}{5}$$

- **33.** (a) 4 (b) 10 (c) -3 (d) 2

41. 0

47.
$$\int_{-1}^{5} f(x) dx$$
 49. 122

37. $3 + \frac{9}{4}\pi$ **39.** 2,5

51. $2m \le \int_0^2 f(x) dx < 2M$ pela Propriedade 8 da Comparação

55.
$$3 \le \int_1^4 \sqrt{x} \, dx \le 1$$

55.
$$3 \le \int_{1}^{4} \sqrt{x} \, dx \le 6$$
 57. $\frac{\pi}{12} \le \int_{\pi/4}^{\pi/3} \text{tg } x \, dx \le \frac{\pi}{12} \sqrt{3}$

59.
$$0 \le \int_0^2 x e^{-x} dx \le 2/e$$
 69. $\int_0^1 x^4 dx$

$$69 \int_{0}^{1} r^{4} dr$$

71.
$$\frac{1}{2}$$

EXERCÍCIOS 5.3 PÁGINA 364

- 1. Um processo desfaz o que o outro faz. Veja o Teorema Fundamental do Cálculo, na página 363.
- **3.** (a) 0, 2, 5, 7, 3 (b)(0,3)
 - (c) x = 3

(a), (b) x^2

7. $g'(x) = 1/(x^3 + 1)$

9.
$$g'(y) = y^2 \operatorname{sen} y$$
 11. $F'(x) = -\sqrt{1 + \operatorname{sec} x}$

13.
$$h'(x) = -\frac{\arctan(1/x)}{x^2}$$

13.
$$h'(x) = -\frac{\arctan(1/x)}{x^2}$$
 15. $y' = \sqrt{\operatorname{tg} x + \sqrt{\operatorname{tg} x}} \sec^2 x$

17.
$$y' = \frac{3(1-3x)^3}{1+(1-3x)^2}$$

23.
$$\frac{16}{3}$$
 25. $\frac{7}{8}$ **27.** $\frac{156}{7}$

27.
$$\frac{156}{7}$$

29.
$$\frac{40}{3}$$

35.
$$\ln 3$$
 37. π **39.** $e^2 - 1$

- **43.** A função $f(x) = x^{-4}$ não é contínua no intervalo [-2, 1], de modo que o TFC2 não pode ser aplicado.
- **45.** A função $f(\theta) = \sec \theta \operatorname{tg} \theta$ não é contínua no intervalo $[\pi/3, \pi]$, de modo que o TFC2 não pode ser aplicado.

47.
$$\frac{243}{4}$$

51. 3,75

53.
$$g'(x) = \frac{-2(4x^2 - 1)}{4x^2 + 1} + \frac{3(9x^2 - 1)}{9x^2 + 1}$$

55.
$$y' = 3x^{7/2} \operatorname{sen}(x^3) - \frac{\operatorname{sen}\sqrt{x}}{2\sqrt[4]{x}}$$

E7
$$\sqrt{257}$$

- **61.** (a) $-2\sqrt{n}$, $\sqrt{4n-2}$, *n* um inteiro > 0(b) $(0, 1), (-\sqrt{4n-1}, -\sqrt{4n-3}), e(\sqrt{4n-1}, \sqrt{4n+1}),$ (c) 0,74 n um inteiro > 0
- **63.** (a) Máx. loc. em 1 e 5; mín. loc. em 3 e 7 (b) x = 9(c) $\left(\frac{1}{2}, 2\right)$, (4, 6), (8, 9) (d) Ver o gráfico à direita.

65. $\frac{1}{4}$

73.
$$f(x) = x^{3/2}, a = 9$$

75. (b) Gasto médio em [0, t]; minimiza o gasto médio

EXERCÍCIOS 5.4 PÁGINA 372

5.
$$\frac{1}{3}x^3 - (1/x) + C$$

7.
$$\frac{1}{4}x^4 + 3x^2 + x + C$$

A88 ||| CÁLCULO

9.
$$2t - t^2 + \frac{1}{3}t^3 - \frac{1}{4}t^4 + C$$
 II. $\frac{1}{3}x^3 - 4\sqrt{x} + C$

11.
$$\frac{1}{3}x^3 - 4\sqrt{x} + C$$

$$13. -\cos x + \cosh x + C$$

15.
$$\frac{1}{2}\theta^2 + \operatorname{cossec}\theta + C$$

17.
$$tg \alpha + C$$

19. sen
$$x + \frac{1}{4}x^2 + C$$

21. 18 **23.**
$$-2 + 1/e$$

27.
$$\frac{256}{15}$$
 29. $-\frac{63}{4}$

31.
$$\frac{55}{63}$$

33.
$$2\sqrt{5}$$

37.
$$1 + \pi/4$$

39.
$$\frac{256}{5}$$

41.
$$\pi/6$$

43.
$$-3.5$$

(b) $\frac{41}{6}$ m

47.
$$\frac{4}{3}$$

- 49. O aumento no peso da criança (em quilogramas) entre as idades de 5 e 10 anos
- 51. Número de litros de petróleo que vazou nas primeiras 2 horas
- 53. Aumento na receita quando a produção aumenta de 1 000 para 5 000 unidades

57. (a)
$$-\frac{3}{2}$$
 m

59. (a)
$$v(t) = \frac{1}{2}t^2 + 4t + 5$$
 m/s

(b)
$$416\frac{2}{3}$$
 m

61.
$$46\frac{2}{3}$$
kg

67. (b) No máximo 40%;
$$\frac{5}{36}$$

EXERCÍCIOS 5.5 PÁGINA 381

1.
$$\frac{1}{3}$$
 sen $3x + C$ 3. $\frac{2}{9}(x^3 + 1)^{3/2} + C$ 5. $-1/(1 + 2x)^2 + C$

7.
$$-\frac{1}{2}\cos(x^2) + C$$

9.
$$\frac{1}{63}(3x-2)^{21}+C$$

11.
$$\frac{1}{2}(2x+x^2)^{3/2}+C$$

13.
$$-\frac{1}{3}\ln|5-3x|+C$$

15.
$$-(1/\pi)\cos \pi t + C$$

17.
$$\frac{2}{3}\sqrt{3ax+bx^3}+C$$

19.
$$\frac{1}{3}(\ln x)^3 + C$$

21. 2 sen
$$\sqrt{t} + C$$

23.
$$\frac{1}{7} \sin^7 \theta + C$$

25.
$$\frac{2}{3}(1+e^x)^{3/2}+C$$

27.
$$\frac{1}{7} \sin \theta + C$$

29.
$$e^{\log x} + C$$

31.
$$-1/(\sin x) + C$$

31.
$$-1/(\sin x) + C$$

33.
$$-\frac{2}{3}(\cot x)^{3/2} + C$$

35.
$$-\ln(1 + \cos^2 x) + C$$

37.
$$\ln|\sin x| + C$$

39.
$$\frac{1}{3}\sec^3 x + C$$

41.
$$\ln|\sin^{-1} x| + C$$

43.
$$tg^{-1}x + \frac{1}{2}\ln(1+x^2) + C$$

45.
$$\frac{4}{7}(x+2)^{7/4} - \frac{8}{3}(x+2)^{3/4} + C$$

47.
$$\frac{1}{8}(x^2-1)^4+C$$

49.
$$\frac{1}{4}$$
 sen⁴ $x + C$

53.
$$\frac{182}{9}$$

57. 0 **59.**
$$e - \sqrt{e}$$

63.
$$\frac{1}{3}(2\sqrt{2}-1)a^3$$

65.
$$\frac{16}{15}$$
 67. 2

69.
$$\ln(e+1)$$
 71. $\sqrt{3} - \frac{1}{3}$

73.
$$6\pi$$
 75. Todas as três áreas são iguais.**77.** ≈ 4512 L

79.
$$\frac{5}{4\pi} \left(1 - \cos \frac{2\pi t}{5} \right) L$$

87.
$$\pi^2/4$$

CAPÍTULO 5 REVISÃO PÁGINA 384

Teste Verdadeiro-Falso

- I. Verdadeiro 3. Verdadeiro
- 5. Falso
- 7. Verdadeiro

- **9.** Verdadeiro
- II. Falso
- 13. Falso
- 15. Falso

Exercícios

I. (a) 8

3.
$$\frac{1}{2} + \pi/4$$

7.
$$f \in c, f' \in b, \int_0^x f(t) dt \in a$$

11.
$$\frac{9}{10}$$
 13. -7

15.
$$\frac{21}{4}$$
 17. Não existe

9. 37
19.
$$\frac{1}{3}$$
sen 1

23.
$$-(1/x) - 2 \ln |x| + x + C$$

27.
$$[1/(2\pi)] \sin^2 \pi t + C$$

25.
$$\sqrt{x^2 + 4x} + C$$

29. $2e^{\sqrt{x}} + C$

31.
$$\frac{1}{2} [\ln(\cos x)]^2 + C$$

33.
$$\frac{1}{4}\ln(1+x^4)+C$$
 35. $\ln|1+\sec\theta|+C$ **37.** $\frac{23}{3}$

39.
$$2\sqrt{1 + \sin x} + C$$

41.
$$\frac{64}{5}$$

43.
$$F'(x) = x^2/(1 + x^3)$$

45.
$$g'(x) = 4x^3 \cos(x^8)$$

47.
$$y' = (2e^x - e^{\sqrt{x}})/(2x)$$

49.
$$4 \le \int_{1}^{3} \sqrt{x^2 + 3} \, dx \le 4\sqrt{3}$$

59. 72 400 **61.** 3 **65.**
$$f(x) = e^{2x}(1 + 2x)/(1 - e^{-x})$$

63.
$$c \approx 1,62$$

1.
$$\pi/2$$
 3. $f(x) = \frac{1}{2}x$

5.
$$-1$$

5.
$$-1$$
 7. e^{-2} **9.** $[-1, 2]$

11.
$$(a)^{\frac{1}{2}}(n-1)n$$

11. (a)
$$\frac{1}{2}(n-1)n$$
 (b) $\frac{1}{2}[b](2b-[b]-1)-\frac{1}{2}[a](2a-[a]-1)$

17.
$$2(\sqrt{2}-1)$$

CAPÍTULO 6

EXERCÍCIOS 6.1 PÁGINA 395

1. $\frac{32}{3}$ **3.** $e - (1/e) + \frac{10}{3}$ **5.** 19,5 **7.** $\frac{1}{6}$ **9.** $\ln 2 - \frac{1}{2}$

13. 72 15. $2 - 2 \ln 2$ 17. $\frac{59}{12}$ 19. $\frac{32}{3}$

21. $\frac{8}{3}$ **23.** $\frac{1}{2}$ **25.** $\pi - \frac{2}{3}$ **27.** ln 2 **29.** 6,5

31. $\frac{3}{2}\sqrt{3} - 1$ **33.** 0,6407 **35.** 0, 0,90; 0,04 **37.** 8,38

39. $12\sqrt{6} - 9$ **41.** 36 m **43.** 4 232 cm²

45. (a) Carro A (b) A distância que A está à frente de B depois (c) Carro A (d) $t \approx 2.2 \text{ min}$ de 1 minuto

47. $\frac{24}{5}\sqrt{3}$ **49.** 4^{2/3} **51.** ±6

53. $0 < m < 1; m - \ln m - 1$

EXERCÍCIOS 6.2 PÁGINA 405

1. $19\pi/12$

3. $\pi/2$

5. 162π

7. $4\pi/21$

9. $64\pi/15$

II. $\pi/6$

13. $2\pi(\frac{4}{3}-\sqrt{3})$

15. $16\pi/15$

17. $29\pi/30$

19. π/7 **21.** $\pi/10$ **23.** $\pi/2$ **25.** $7\pi/15$

31. $\pi \int_0^{\pi/4} (1 - tg^3 x)^2 dx$ **27.** $5\pi/14$ **29.** $13\pi/30$

33. $\pi \int_0^{\pi} [1^2 - (1 - \sin x)^2] dx$

35. $\pi \int_{-2\sqrt{2}}^{2\sqrt{2}} \left[5^2 - \left(\sqrt{1 + y^2} + 2 \right)^2 \right] dy$

37. −1,288, 0,884; 23,780 **39.** $\frac{11}{9}\pi^2$

41. Sólido obtido pela rotação da região $0 \le y \le \cos x$, $0 \le x \le \pi/2$ em torno do eixo x

43. Sólido obtido pela rotação da região acima do eixo *x* limitada por $x = y^2$ e $x = y^4$ em torno do eixo y

45. 1 110 cm³ **47.** (a) 196 **49.** $\frac{1}{3}\pi r^2 h$ (b) 838

51. $\pi h^2 (r - \frac{1}{3}h)$ **53.** $\frac{2}{3}b^2h$ **55.** 10 cm³ **57.** 24

61. $\frac{8}{15}$

63. (a) $8\pi R \int_0^r \sqrt{r^2 - y^2} dy$ (b) $2\pi^2 r^2 R$ **65.** $\pi r^2 h$ **67.** $\frac{5}{12}\pi r^3$ **69.** $8 \int_0^r dt$

69. $8 \int_0^r \sqrt{R^2 - y^2} \sqrt{r^2 - y^2} dy$

EXERCÍCIOS 6.3 PÁGINA 410

I. Circunferência = $2\pi x$, altura = $x(x-1)^2$; $\pi/15$

3. 2π

5. $\pi(1-1/e)$

7. $\frac{64}{15}\pi$

9. $21\pi/2$

- 11. $768\pi/7$
- 13. $16\pi/3$
- 15. $17\pi/6$

27. 3,68

17. $8\pi/3$

- 19. $5\pi/14$
- **21.** $\int_{1}^{2} 2\pi x \ln x \, dx$
- **23.** $\int_0^1 2\pi(x+1)[\sin(\pi x/2) x^4] dx$
- **25.** $\int_0^{\pi} 2\pi (4-y) \sqrt{\sin y} \, dy$
- **29.** Sólido obtido pela rotação da região $0 \le y \le x^4, 0 \le x \le 3$ em torno do eixo y

- **31.** Sólido obtido pela rotação da região delimitada por (i) $x = 1 - y^2$, x = 0, and y = 0, ou (ii) $x = y^2$, x = 1, e y = 0 em torno da reta y = 3
- **35.** $\frac{1}{32}\pi^3$
- **39.** $2\pi(12-4 \ln 4)$

- **41.** $\frac{4}{3}\pi$
- **43.** $\frac{4}{3} \pi r^3$
- **45.** $\frac{1}{2}\pi r^2 h$

EXERCÍCIOS 6.4 PÁGINA 415

- I. 588 J
- **3.** 9 J
- **5.** 180 J
- **9.** (a) $\frac{25}{24} \approx 1,04 \text{ J}$ (b) 10,8 cm
- 11. $W_2 = 3W_1$

7. $\frac{15}{4}$ pés-lb

- **13.** (a) 625 pés-lb (b) $\frac{1875}{4}$ pés-lb
- **15.** 650 000 pés-lb

- **17.** 3 857 J
- **19.** 2 450 J
- **21.** $\approx 1.06 \times 10^6 \, \text{J}$
- **23.** $\approx 1,04 \times 10^5 \text{ pés-lb}$
- **25.** 2,0 m **29.** $Gm_1m_2\left(\frac{1}{a} \frac{1}{h}\right)$

EXERCÍCIOS 6.5 PÁGINA 419

- 3. $\frac{45}{28}$
- **5.** $\frac{1}{10}(1-e^{-25})$ **7.** $2/(5\pi)$
- **9.** (a)1 (b) 2,4
 - (c)

11. (a) $4/\pi$ (b) $\approx 1,24,2,81$

(c)

- 15. $38\frac{1}{3}$
- 17. $(20 + 12/\pi)^{\circ}$ C $\approx 24^{\circ}$ C
- 19. 6 kg/m
- **21.** $5/(4\pi) \approx 0.4 \text{ L}$

CAPÍTULO 6 REVISÃO PÁGINA 421

Exercícios

- 1. $\frac{8}{3}$ 3. $\frac{7}{12}$
- **5.** $\frac{4}{3} + 4/\pi$ **7.** $64\pi/15$
- **9.** $1.656\pi/5$

- **11.** $\frac{4}{3}\pi(2ah+h^2)^{3/2}$ **13.** $\int_{-\pi/3}^{\pi/3} 2\pi (\pi/2-x)(\cos^2 x-\frac{1}{4}) dx$
- **15.** (a) $2\pi/15$
- (b) $\pi/6$
 - (c) $8\pi/15$
- **17.** (a) 0,38
- (b) 0,87
- **19.** Sólido obtido pela rotação da região $0 \le y \le \cos x$, $0 \le x \le \pi/2$ em torno do eixo y
- **21.** Sólido obtido pela rotação da região $0 \le x \le \pi$, $0 \le y \le 2 - \text{sen } x \text{ em torno do eixo } x$
- **25.** $\frac{125}{3}\sqrt{3}$ m³
- **27.** 3,2 J
- **29.** (a) $8\ 000\pi/3 \approx 8\ 378\ \text{pés-lb}$
- (b) 2,1 pés **31.** f(x)

PROBLEMAS QUENTES PÁGINA 423

1. (a) $f(t) = 3t^2$

 $(b) f(x) = \sqrt{2x/\pi}$

3. $\frac{32}{27}$

5. (b) 0,2261

(c) 0,6736 m

(d) (i) $3/(119\pi) \approx 0,008$ cm/s (ii) $1.664\pi/9s \approx 9,7$ min

9. $y = \frac{32}{9} x^2$

11. (a) $V = \int_0^h \pi [f(y)]^2 dy$

(c) $f(y) = \sqrt{kA/(\pi C)} y^{1/4}$

Vantagem: as marcas no recipiente são igualmente espaçadas.

13. b = 2a

15. B = 16A

CAPÍTULO 7

EXERCÍCIOS 7.1 = PÁGINA 432

1. $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3 + C$

3. $\frac{1}{5}x \sin 5x + \frac{1}{25}\cos 5x + C$

5. $2(r-2)e^{r/2}+C$

7. $\frac{1}{3}x^2 \sin 3x + \frac{2}{9}x \cos 3x - \frac{2}{27} \sin 3x + C$

9. $\frac{1}{2}(2x+1)\ln(2x+1)-x+C$

11. $t \arctan 4t - \frac{1}{8} \ln(1 + 16t^2) + C$

13. $\frac{1}{2}t \operatorname{tg} 2t - \frac{1}{4} \ln |\sec 2t| + C$

15. $x (\ln x)^2 - 2x \ln x + 2x + C$

17. $\frac{1}{13}e^{2\theta}(2 \sin 3\theta - 3 \cos 3\theta) + C$

19. $\pi/3$

21. 1 - 1/e **23.** $\frac{1}{2} - \frac{1}{2} \ln 2$

25. $\frac{1}{4} - \frac{3}{4} e^{-2}$

27. $\frac{1}{6}(\pi + 6 - 3\sqrt{3})$

29. sen x (ln sen x - 1) + C

31. $\frac{32}{5} (\ln 2)^2 - \frac{64}{25} \ln 2 + \frac{62}{125}$

33. $2\sqrt{x} \sin \sqrt{x} + 2\cos \sqrt{x} + C$ **35.** $-\frac{1}{2} - \pi/4$

37. $\frac{1}{2}(x^2-1)\ln(1+x) - \frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{4} + C$

39. $(2x+1)e^x + C$

41. $\frac{1}{3}x^2(1+x^2)^{3/2} - \frac{2}{15}(1+x^2)^{5/2} + C$

43. (b) $-\frac{1}{4}\cos x \sin^3 x + \frac{3}{8}x - \frac{3}{16}\sin 2x + C$

45. (b) $\frac{2}{3}, \frac{8}{15}$

51. $x(\ln x)^3 - 3x(\ln x)^2 + 6x \ln x - 6x + C$

53. $\frac{25}{4} - \frac{75}{4} e^{-2}$

55. 1,0475, 2,8731; 2,1828

57. $4 - 8/\pi$

59. $2\pi e$

61. $\frac{9}{2} \ln 3 - \frac{13}{9}$ **63.** $2 - e^{-t}(t^2 + 2t + 2)$ m

65. 2

EXERCÍCIOS 7.2 PÁGINA 439

1. $\frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$

5. $\frac{1}{3\pi} \operatorname{sen}^3(\pi x) - \frac{2}{5\pi} \operatorname{sen}^5(\pi x) + \frac{1}{7\pi} \operatorname{sen}^7(\pi x) + C$

7. $\pi/4$

9. $\frac{3}{8}t + \frac{1}{4} \operatorname{sen} 2t + \frac{1}{32} \operatorname{sen} 4t + C$

11. $\frac{3}{2}\theta + 2 \operatorname{sen} \theta + \frac{1}{4} \operatorname{sen} 2\theta + C$

15. $\frac{2}{45}\sqrt{\sin \alpha}$ (45 - 18 sen² α + 15 sen⁴ α) + C

13. $\pi/16$

17. $\frac{1}{2}\cos^2 x - \ln|\cos x| + C$ **19.** $\ln|\sin x| + 2 \sin x + C$

21. $\frac{1}{2} \operatorname{tg}^2 x + C$

23. tg x - x + C

25. $\frac{1}{5} \operatorname{tg}^5 t + \frac{2}{3} \operatorname{tg}^3 t + \operatorname{tg} t + C$

27. $\frac{117}{9}$

29. $\frac{1}{3} \sec^3 x - \sec x + C$

31. $\frac{1}{4} \sec^4 x - \tan^2 x + \ln|\sec x| + C$

33. $\frac{1}{6} \operatorname{tg}^6 \theta + \frac{1}{4} \operatorname{tg}^4 \theta + C$

35. $x \sec x - \ln|\sec x| + C$ **37.** $\sqrt{3} - \frac{1}{3}\pi$

39. $\frac{1}{3}$ cossec³ $\alpha - \frac{1}{5}$ cossec⁵ $\alpha + C$ **41.** $\ln |\operatorname{cossec} x - \operatorname{cotg} x| + C$

43. $-\frac{1}{6}\cos 3x - \frac{1}{26}\cos 13x + C$ **45.** $\frac{1}{4}\sin 2\theta + \frac{1}{24}\sin 12\theta + C$

47. $\frac{1}{2}$ sen 2x + C

49. $\frac{1}{10}$ tg⁵(t^2) + C

51. $\frac{1}{4}x^2 - \frac{1}{4}\sin(x^2)\cos(x^2) + C$ **53.** $\frac{1}{6}\sin 3x - \frac{1}{18}\sin 9x + C$

55. 0 **57.** 1 **59.** 0

61. $\pi^2/4$

63. $\pi(2\sqrt{2}-\frac{5}{2})$

65. $s = (1 - \cos^3 \omega t)/(3\omega)$

EXERCÍCIOS 7.3 PÁGINA 445

1. $\sqrt{x^2-9}/(9x)+C$

3. $\frac{1}{3}(x^2-18)\sqrt{x^2+9}+C$

5. $\pi/24 + \sqrt{3}/8 - \frac{1}{4}$

7. $-\sqrt{25-x^2}/(25x)+C$

9. $\ln(\sqrt{x^2+16}+x)+C$ **II.** $\frac{1}{4}\sin^{-1}(2x)+\frac{1}{2}x\sqrt{1-4x^2}+C$

13. $\frac{1}{6} \sec^{-1}(x/3) - \sqrt{x^2 - 9}/(2x^2) + C$

15. $\frac{1}{16} \pi a^4$

17. $\sqrt{x^2-7}+C$

19. $\ln |(\sqrt{1+x^2}-1)/x| + \sqrt{1+x^2} + C$ 21. $\frac{9}{500}\pi$

23. $\frac{9}{2} \operatorname{sen}^{-1}((x-2)/3) - \frac{1}{2}(x-2)\sqrt{5+4x-x^2} + C$

25. $\sqrt{x^2+x+1} - \frac{1}{2}\ln(\sqrt{x^2+x+1} + x + \frac{1}{2}) + C$

27. $\frac{1}{2}(x+1)\sqrt{x^2+2x} - \frac{1}{2}\ln|x+1+\sqrt{x^2+2x}| + C$

29. $\frac{1}{4} \operatorname{sen}^{-1}(x^2) + \frac{1}{4} x^2 \sqrt{1 - x^4} + C$

33. $\frac{1}{6} \left(\sqrt{48} - \sec^{-1} 7 \right)$

37. 0,81, 2; 2,10

41. $r\sqrt{R^2-r^2} + \pi r^2/2 - R^2 \arcsin(r/R)$

43. $2\pi^2 R r^2$

EXERCÍCIOS 7.4 PÁGINA 454

1. (a)
$$\frac{A}{x+3} + \frac{B}{3x+1}$$

(b)
$$\frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

3. (a)
$$\frac{A}{x+4} + \frac{B}{x-1}$$

3. (a)
$$\frac{A}{x+4} + \frac{B}{x-1}$$
 (b) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$

5. (a)
$$1 + \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}$$

(b)
$$\frac{At+B}{t^2+1} + \frac{Ct+D}{t^2+4} + \frac{Et+F}{(t^2+4)^2}$$

7.
$$\frac{1}{2}x^2 - x + \ln|x + 1| + C$$

9.
$$2 \ln |x+5| - \ln |x-2| + C$$
 11. $\frac{1}{2} \ln \frac{3}{2}$

13.
$$a \ln |x - b| + C$$

15.
$$\frac{7}{6} + \ln \frac{2}{3}$$

17.
$$\frac{27}{5} \ln 2 - \frac{9}{5} \ln 3 \left(\text{or } \frac{9}{5} \ln \frac{8}{3} \right)$$

19.
$$-\frac{1}{36} \ln|x+5| + \frac{1}{6} \frac{1}{x+5} + \frac{1}{36} \ln|x-1| + C$$

21.
$$\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2 \operatorname{tg}^{-1}(x/2) + C$$

23.
$$2 \ln |x| + (1/x) + 3 \ln |x + 2| + C$$

25.
$$\ln |x-1| - \frac{1}{2} \ln(x^2+9) - \frac{1}{3} \operatorname{tg}^{-1}(x/3) + C$$

27.
$$\frac{1}{2}\ln(x^2+1)+(1/\sqrt{2})$$
 tg⁻¹(x/ $\sqrt{2}$) + C

29.
$$\frac{1}{2}\ln(x^2+2x+5)+\frac{3}{2}\operatorname{tg}^{-1}\left(\frac{x+1}{2}\right)+C$$

31.
$$\frac{1}{3} \ln |x-1| - \frac{1}{6} \ln(x^2 + x + 1) - \frac{1}{\sqrt{3}} \operatorname{tg}^{-1} \frac{2x+1}{\sqrt{3}} + C$$

33.
$$\frac{1}{3} \ln \frac{17}{2}$$
 35. $(1/x) + \frac{1}{2} \ln |(x-1)/(x+1)| + C$

33.
$$(1/\lambda) + \frac{1}{2} \ln |(\lambda - 1)/(\lambda + 1)|$$

37.
$$\frac{7}{8}\sqrt{2} \operatorname{tg}^{-1} \left(\frac{x-2}{\sqrt{2}} \right) + \frac{3x-8}{4(x^2-4x+6)} + C$$

39.
$$\ln \left| \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} \right| + C$$

$$| \sqrt{x+1} + 1 |$$

41.
$$2 + \ln \frac{25}{9}$$
 43. $\frac{3}{10}(x^2 + 1)^{5/3} - \frac{3}{4}(x^2 + 1)^{2/3} + C$

45.
$$2\sqrt{x} + 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6\ln|\sqrt[6]{x} - 1| + C$$

47.
$$\ln \left[\frac{(e^x + 2)^2}{e^x + 1} \right] + C$$

49.
$$\ln |\lg t + 1| - \ln |\lg t + 2| + C$$

51.
$$(x-\frac{1}{2})\ln(x^2-x+2)-2x+\sqrt{7} \operatorname{tg}^{-1}\left(\frac{2x-1}{\sqrt{7}}\right)+C$$

53.
$$-\frac{1}{2} \ln 3 \approx -0.55$$

55.
$$\frac{1}{2} \ln \left| \frac{x-2}{x} \right| + C$$

55.
$$\frac{1}{2} \ln \left| \frac{x-2}{x} \right| + C$$
 59. $\frac{1}{5} \ln \left| \frac{2 \operatorname{tg}(x/2) - 1}{\operatorname{tg}(x/2) + 2} \right| + C$

61.
$$4 \ln \frac{2}{3} + 2$$

63.
$$-1 + \frac{11}{3} \ln 2$$

65.
$$t = -\ln P - \frac{1}{9}\ln(0.9P + 900) + C$$
, where $C \approx 10.23$

67. (a)
$$\frac{24\ 110}{4\ 879}$$
 $\frac{1}{5x+2}$ $-\frac{668}{323}$ $\frac{1}{2x+1}$ $-\frac{9\ 438}{80\ 155}$ $\frac{1}{3x-7}$ +

$$\frac{1}{260\,015} \, \frac{22\,098x + 48\,935}{x^2 + x + 5}$$

(b)
$$\frac{4822}{4879}\ln|5x+2| - \frac{334}{323}\ln|2x+1| - \frac{3146}{80155}\ln|3x-7|$$

$$+\frac{11\,049}{260\,015}\ln(x^2+x+5)+\frac{75\,772}{260\,015\sqrt{19}}\mathrm{tg}^{-1}\frac{2x+1}{\sqrt{19}}+C$$

O SCA omite o sinal de valor absoluto e a constante de integração.

EXERCÍCIOS 7.5 PÁGINA 461

1.
$$\sin x + \frac{1}{3} \sin^3 x + C$$

3.
$$tg^{-1}(\sin x) + C$$

5.
$$4 - \ln 9$$
 7. $e^{\pi/4} - e^{-\pi/4}$

7.
$$e^{\pi/4} - e^{-\pi/4}$$

9.
$$\frac{243}{5} \ln 3 - \frac{242}{25}$$

9.
$$\frac{243}{5} \ln 3 - \frac{242}{25}$$
 11. $\frac{1}{2} \ln(x^2 - 4x + 5) + \text{tg}^{-1}(x - 2) + C$

13.
$$\frac{1}{8}\cos^8\theta - \frac{1}{6}\cos^6\theta + C$$
 (ou $\frac{1}{4}\sin^4\theta - \frac{1}{3}\sin^6\theta + \frac{1}{8}\sin^8\theta + C$)

15.
$$x/\sqrt{1-x^2} + C$$

17.
$$\frac{1}{4}x^2 - \frac{1}{2}x \sec x \cos x + \frac{1}{4} \sec^2 x + C$$

 $(ou \frac{1}{4}x^2 - \frac{1}{4}x \sec 2x - \frac{1}{8}\cos 2x + C)$

19.
$$e^{e^x} + C$$

21.
$$(x+1)$$
 arctg $\sqrt{x} - \sqrt{x} + C$

23.
$$\frac{409}{46}$$

25.
$$3x + \frac{23}{3} \ln|x - 4| - \frac{5}{3} \ln|x + 2| + C$$

27.
$$x - \ln(1 + e^x) + C$$
 29. $15 + 7 \ln \frac{2}{7}$

33.
$$2 \operatorname{sen}^{-1} \left(\frac{x+1}{2} \right) + \frac{x+1}{2} \sqrt{3-2x-x^2} + C$$

41.
$$\theta \operatorname{tg} \theta - \frac{1}{2} \theta^2 - \ln |\sec \theta| + C$$
 43. $\frac{2}{3} (1 + e^x)^{3/2} + C$

35. 0 **37.**
$$\pi/8 - \frac{1}{4}$$
 39. $\ln|\sec \theta - 1| - \ln|\sec \theta| + C$

45.
$$-\frac{1}{3}(x^3+1)e^{-x^3}+C$$

49.
$$\ln \left| \frac{\sqrt{4x+1}-1}{\sqrt{4x+1}+1} \right| + C$$

47.
$$\ln|x-1| - 3(x-1)^{-1} - \frac{3}{2}(x-1)^{-2} - \frac{1}{3}(x-1)^{-3} + C$$

49. $\ln\left|\frac{\sqrt{4x+1}-1}{\sqrt{4x+1}+1}\right| + C$
51. $-\ln\left|\frac{\sqrt{4x^2+1}+1}{2x}\right| + C$

53.
$$\frac{1}{m}x^2 \cosh(mx) - \frac{2}{m^2}x \sinh(mx) + \frac{2}{m^3} \cosh(mx) + C$$

55.
$$2 \ln \sqrt{x} - 2 \ln(1 + \sqrt{x}) + C$$

57.
$$\frac{3}{7}(x+c)^{7/3} - \frac{3}{4}c(x+c)^{4/3} + C$$

59.
$$\operatorname{sen}(\operatorname{sen} x) - \frac{1}{3} \operatorname{sen}^3(\operatorname{sen} x) + C$$
 61. $2(x - 2\sqrt{x} + 2)e^{\sqrt{x}} + C$

63.
$$-tg^{-1}(\cos^2 x) + C$$

63.
$$-\operatorname{tg}^{-1}(\cos^2 x) + C$$
 65. $\frac{2}{3}[(x+1)^{3/2} - x^{3/2}] + C$

67.
$$\sqrt{2} - 2/\sqrt{3} + \ln(2 + \sqrt{3}) - \ln(1 + \sqrt{2})$$

71.
$$-\sqrt{1-x^2} + \frac{1}{2}(\arcsin x)^2 + C$$

73.
$$\frac{1}{8} \ln |x - 2| - \frac{1}{16} \ln(x^2 + 4) - \frac{1}{8} \operatorname{tg}^{-1}(x/2) + C$$

75.
$$2(x-2)\sqrt{1+e^x}+2\ln\frac{\sqrt{1+e^x}+1}{\sqrt{1+e^x}-1}+C$$

77.
$$\frac{2}{3} \operatorname{tg}^{-1}(x^{3/2}) + C$$

79.
$$\frac{1}{3}x \sin^3 x + \frac{1}{3}\cos x - \frac{1}{9}\cos^3 x + C$$
 81. $xe^{x^2} + C$

EXERCÍCIOS 7.6 PÁGINA 466

1.
$$(-1/x)\sqrt{7-2x^2}-\sqrt{2} \sin^{-1}(\sqrt{2}x/\sqrt{7})+C$$

3.
$$\frac{1}{2\pi}\sec(\pi x) \operatorname{tg}(\pi x) + \frac{1}{2\pi} \ln|\sec(\pi x) + \operatorname{tg}(\pi x)| + C$$

5.
$$\pi/4$$

7.
$$\frac{1}{2\pi} \operatorname{tg}^2(\pi x) + \frac{1}{\pi} \ln |\cos(\pi x)| + C$$

9.
$$\frac{1}{2}[x^2 \operatorname{sen}^{-1}(x^2) + \sqrt{1-x^4}] + C$$
 11. $e - 2$

13.
$$-\frac{1}{2} \operatorname{tg}^2(1/z) - \ln |\cos(1/z)| + C$$

15.
$$\frac{1}{2}(e^{2x}+1) \operatorname{arctg}(e^x) + \frac{1}{2}e^x + C$$

17.
$$\frac{2y-1}{8}\sqrt{6+4y-4y^2} + \frac{7}{8} \operatorname{sen}^{-1} \left(\frac{2y-1}{\sqrt{7}}\right)$$
$$-\frac{1}{12}(6+4y-4y^2)^{3/2} + C$$

19.
$$\frac{1}{9} \sin^3 x \left[3 \ln(\sin x) - 1 \right] + C$$

21.
$$\frac{1}{2\sqrt{3}} \ln \left| \frac{e^x + \sqrt{3}}{e^x - \sqrt{3}} \right| + C$$

23.
$$\frac{1}{4} \operatorname{tg} x \sec^3 x + \frac{3}{8} \operatorname{tg} x \sec x + \frac{3}{8} \ln |\sec x + \tan x| + C$$

25.
$$\frac{1}{2} (\ln x) \sqrt{4 + (\ln x)^2} + 2 \ln [\ln x + \sqrt{4 + (\ln x)^2}] + C$$

27.
$$\sqrt{e^{2x}-1} - \cos^{-1}(e^{-x}) + C$$

29.
$$\frac{1}{5} \ln |x^5 + \sqrt{x^{10} - 2}| + C$$
 31. 2π

35.
$$\frac{1}{3}$$
tg $x \sec^2 x + \frac{2}{3}$ tg $x + C$

37.
$$-\frac{1}{5} \operatorname{sen}^2 x \cos^3 x - \frac{2}{15} \cos^3 x + C$$

39.
$$\frac{1}{10} (1 + 2x)^{5/2} - \frac{1}{6} (1 + 2x)^{3/2} + C$$

41.
$$-\ln|\cos x| - \frac{1}{2} tg^2 x + \frac{1}{2} tg^4 x + C$$

41.
$$-\ln|\cos x| - \frac{1}{2} t g^2 x + \frac{1}{4} t g^4 x + C$$

43. (a) $-\ln\left|\frac{1+\sqrt{1-x^2}}{x}\right| + C$;

ambas têm domínio $(-1,0) \cup (0,1)$

45.
$$F(x) = \frac{1}{2}\ln(x^2 - x + 1) - \frac{1}{2}\ln(x^2 + x + 1);$$

máx. em -1, mín. em 1; PI em -1,7,0, e 1,7

47. $F(x) = -\frac{1}{10} \operatorname{sen}^3 x \cos^7 x - \frac{3}{80} \operatorname{sen} x \cos^7 x + \frac{1}{160} \operatorname{sen} x \cos^5 x$ $+\frac{1}{128} \operatorname{sen} x \cos^3 x + \frac{3}{256} \operatorname{sen} x \cos x + \frac{3}{256} x;$ máx. em π , mín. em 0; PI em 0,7, π /2, e 2,5

EXERCÍCIOS 7.7 PÁGINA 477

$$\begin{aligned} \textbf{I.} &\quad \text{(a) } L_2 = 6, R_2 = 12, M_2 \approx 9,6 \\ &\quad \text{(b) } L_2 \text{ est\'a subestimada}, R_2 \text{ e } M_2 \text{ est\~ao superestimadas}. \\ &\quad \text{(c) } T_2 = 9 < I \qquad \qquad \text{(d) } L_n < T_n < I < M_n < R_n \end{aligned}$$

3. (a)
$$T_4 \approx 0.895759$$
 (subestimado)
(b) $M_4 \approx 0.908907$ (superestimado)
 $T_4 < I < M_4$

5. (a) 5,932957,
$$E_M \approx -0.063353$$

(b) 5,869247, $E_S \approx 0.000357$

19. (a)
$$T_8 \approx 0,902333, M_8 \approx 0,905620$$

(b) $|E_T| \leq 0,0078, |E_M| \leq 0,0039$
(c) $n = 71 \text{ para } T_n, n = 50 \text{ para } M_n$

21. (a)
$$T_{10} \approx 1,983524$$
, $E_{T} \approx 0,016476$; $M_{10} \approx 2,008248$, $E_{M} \approx -0,008248$; $S_{10} \approx 2,000110$, $E_{S} \approx -0,000110$ (b) $|E_{T}| \leq 0,025839$, $|E_{M}| \leq 0,012919$, $|E_{S}| \leq 0,000170$ (c) $n = 509$ para T_{n} , $n = 360$ para M_{n} , $n = 22$ para S_{n}

23. (a) 2,8 (b) 7,954926518 (c) 0,2894 (d) 7,954926521 (e) O erro real é muito menor. (f) 10,9 (g) 7,953789422 (h) 0,0593 (i) O erro real é menor. (j)
$$n \ge 50$$

25.	n	L_n	R_{n}	T_n	M_n
	5	0,742943	1,286599	1,014771	0,992621
	10	0,867782	1,139610	1,003696	0,998152
	20	0,932967	1,068881	1,000924	0,999538
	n	E_L	$E_{_{R}}$	$E_{_T}$	$E_{\scriptscriptstyle M}$
	5	0,257057	-0,286599	-0,014771	0,007379

10 | 0,132218 | -0,139610 | -0,003696 | 0,001848

As observações são as mesmas que as de depois do Exemplo 1.

 $-0.000924 \mid 0.000462$

27.	n	T_n	M_{n}	Sn
	6	6,695473	6,252572	6,403292
	12	6,474023	6,363008	6,400206
	n	E_{T}	$E_{\scriptscriptstyle M}$	$E_{\scriptscriptstyle S}$
	6	-0,295473	0,147428	-0,003292
	12	-0,074023	0,036992	-0,000206

As observações são as mesmas que as de depois do Exemplo 1.

- **29.** (a) 19,8
- (b) 20,6
- (c) $20,5\overline{3}$

- **31.** (a) 23,44
- (b) $0.341\overline{3}$
- **33.** 18,8 m/s
- **35.** $1,0337 \times 10^5$ megawatt-horas
- **37**. 828
- **39.** 6,0
- 41.59,4

EXERCÍCIOS 7.8 PÁGINA 487

Abreviações: C, convergente; D, divergente

- **I.** (a) Intervalo infinito
- (b) Descontinuidade infinita
- (c) Descontinuidade infinita
- (d) Intervalo infinito
- $\frac{1}{2}$ 1/(2 t^2); 0,495, 0,49995, 0,4999995; 0,5

- **15.** D
- **9.** $2e^{-2}$ **11.** D **7.** D
- **17.** D 19. $e^2/4$ 21. D
- **29.** $\frac{32}{2}$ **25.** $\frac{1}{2}$ **27.** D
- **23**. π/9 **31.** D
 - 33. $\frac{75}{4}$
- **35.** D **37.** -2/e **39.** $\frac{8}{3} \ln 2 \frac{8}{9}$

45. Área infinita

47. (a) $\int_{1}^{t} [(\sin^{2}x)/x^{2}] dx$ 2 0,447453 5 0,577101 10 0,621306 100 0,668479 1 000 0,672957 10 000 0.673407

Parece que a integral é convergente.

- **49.** C **51.** D
- **53.** D
- 55. π

57.
$$p < 1, 1/(1-p)$$

- **59.** $p > -1, -1/(p+1)^2$
- **65.** $\sqrt{2GM/R}$
- **67.** (a)

- (b) A taxa na qual a fração F(t) aumenta à medida que t au-
- (c) 1; todas as lâmpada queimam eventualmente
- **69.** 1 000
- **71.** (a) F(s) = 1/s, s > 0
- (b) F(s) = 1/(s-1), s > 1
- (c) $F(s) = 1/s^2$, s > 0
- **77.** C = 1; ln 2 **79.** Não

CAPÍTULO 7 REVISÃO PÁGINA 490

Teste Verdadeiro-Falso

- L. Falso
- 3. Falso
- 5. Falso
- 7. Falso

- **9.** (a) Verdadeiro
- (b) Falso
- II. Falso
- 13. Falso

Exercícios

- 1. $5 + 10 \ln \frac{2}{3}$
- **3.** ln 2
- 5. $\frac{2}{15}$
- 7. $-\cos(\ln t) + C$ 9. $\frac{64}{5} \ln 4 \frac{124}{25}$
- **11.** $\sqrt{3} \frac{1}{3}\pi$ **13.** $3e^{\sqrt[3]{x}}(\sqrt[3]{x^2} 2\sqrt[3]{x} + 2) + C$
- **15.** $-\frac{1}{2}\ln|x| + \frac{3}{2}\ln|x+2| + C$ 17. $x \sec x - \ln|\sec x + \tan x| + C$
- **19.** $\frac{1}{18} \ln(9x^2 + 6x + 5) + \frac{1}{9} \operatorname{tg}^{-1} \left[\frac{1}{2} (3x + 1) \right] + C$
- **21.** $\ln |x 2 + \sqrt{x^2 4x}| + C$
- **23.** $\ln \left| \frac{\sqrt{x^2 + 1} 1}{x} \right| + C$
- **25.** $\frac{3}{2}\ln(x^2+1) 3 \operatorname{tg}^{-1}x + \sqrt{2} \operatorname{tg}^{-1}(x/\sqrt{2}) + C$
- **27.** $\frac{2}{5}$ **29.** 0 **31.** $6 \frac{3}{2}\pi$ **33.** $\frac{x}{\sqrt{4-x^2}} \sin^{-1}\left(\frac{x}{2}\right) + C$
- **35.** $4\sqrt{1+\sqrt{x}}+C$ **37.** $\frac{1}{2}\sin 2x-\frac{1}{8}\cos 4x+C$
- **39.** $\frac{1}{8}e \frac{1}{4}$ **41.** $\frac{1}{36}$
- **43**. D
- **45.** $4 \ln 4 8$ **47.** $-\frac{4}{3}$
- **51.** $(x+1)\ln(x^2+2x+2)+2\arctan(x+1)-2x+C$

53. 0

55.
$$\frac{1}{4}(2x-1)\sqrt{4x^2-4x-3} - \ln|2x-1+\sqrt{4x^2-4x-3}| + C$$

57.
$$\frac{1}{2} \operatorname{sen} x \sqrt{4 + \operatorname{sen}^2 x} + 2 \ln(\operatorname{sen} x + \sqrt{4 + \operatorname{sen}^2 x}) + C$$

61. Não

63. (a) 1,925444 (b) 1,920915 (c) 1.922470

65. (a) 0,01348, $n \ge 368$ (b) 0,00674, $n \ge 260$

67. 13,7 km

69. (a) 3,8 (b) 1,7867, 0,000646

(c) $n \ge 30$

71. C

73. 2

75. $\frac{3}{16}$ π^2

PROBLEMAS QUENTES PÁGINA 494

I. Há aproximadamente 4,77 cm do centro

7. $f(\pi) = -\pi/2$

II. $(b^b a^{-a})^{1/(b-a)} e^{-1}$

13. $2 - \sin^{-1}(2/\sqrt{5})$

CAPÍTULO 8

EXERCÍCIOS 8.1 PÁGINA 502

1. $4\sqrt{5}$ 3. $\int_0^1 \sqrt{1+9x^4} \, dx$

5. $\int_{1}^{4} \sqrt{9y^4 + 6y^2 + 2} \ dy$

 $L_2 \approx 6,43,$ $L_{A} \approx 7,50$

(d) 7,7988

7. $\frac{2}{243}(82\sqrt{82}-1)$ **9.** $\frac{1261}{240}$

11. $\frac{32}{3}$

13. $\ln(\sqrt{2} + 1)$ **15.** $\ln 3 - \frac{1}{2}$

17. $\sqrt{1+e^2} - \sqrt{2} + \ln(\sqrt{1+e^2} - 1) - 1 - \ln(\sqrt{2} - 1)$

19. $\int_0^1 \sqrt{1+9x^4} dx$ 21. $\frac{46}{3}$

23. 5,115840

25. 1,569619

(c) $\int_0^4 \sqrt{1 + \left[4(3-x)/(3(4-x)^{2/3})\right]^2} dx$

29. $\sqrt{5} - \ln(\frac{1}{2}(1+\sqrt{5})) - \sqrt{2} + \ln(1+\sqrt{2})$

31. 6

33. $s(x) = \frac{2}{27} [(1 + 9x)^{3/2} - 10\sqrt{10}]$

35. $2\sqrt{2}(\sqrt{1+x}-1)$

37. 209,1 m

39. 62,55 cm

41. 12,4

EXERCÍCIOS 8.2 PÁGINA 508

1. (a) $\int_0^1 2\pi x^4 \sqrt{1 + 16x^6} dx$ (b) $\int_0^1 2\pi x \sqrt{1 + 16x^6} dx$

3. (a) $\int_0^1 2\pi \, \mathrm{tg}^{-1} x \sqrt{1 + \frac{1}{(1 + x^2)^2}} \, dx$

(b)
$$\int_0^1 2\pi x \sqrt{1 + \frac{1}{(1 + x^2)^2}} dx$$

5. $\frac{1}{27} \pi (145\sqrt{145} - 1)$

9. $\pi \left[1 + \frac{1}{4}(e^2 - e^{-2})\right]$

13. $\frac{1}{27} \pi (145\sqrt{145} - 10\sqrt{10})$

15. πa^2

17. 9,023754

19. 13,527296

21. $\frac{1}{4}\pi[4\ln(\sqrt{17}+4)-4\ln(\sqrt{2}+1)-\sqrt{17}+4\sqrt{2}]$

23. $\frac{1}{6} \pi [\ln(\sqrt{10} + 3) + 3\sqrt{10}]$

27. (a) $\frac{1}{3} \pi a^2$

29. (a)
$$2\pi \left[b^2 + \frac{a^2b \operatorname{sen}^{-1}(\sqrt{a^2 - b^2}/a)}{\sqrt{a^2 - b^2}} \right]$$

(b)
$$2\pi \left[a^2 + \frac{ab^2 \operatorname{sen}^{-1}(\sqrt{b^2 - a^2}/b)}{\sqrt{b^2 - a^2}} \right]$$

31. $\int_a^b 2\pi \left[c - f(x)\right] \sqrt{1 + \left[f'(x)\right]^2} dx$ **33.** $4\pi^2 r^2$

EXERCÍCIOS 8.3 PÁGINA 517

1. (a) $187,5 \text{ lb/pé}^2$

9. 1.2×10^4 lb²

(b) 1 875 lb

(c) 562,5 lb

3. 6 000 lb

5. $6.7 \times 10^4 \,\mathrm{N}$

7. $9.8 \times 10^3 \,\mathrm{N}$

13. $5,27 \times 10^5 \,\mathrm{N}$

15. (a) 314 N

(b) 353 N

11. $\frac{2}{3}\delta ah$

17. (a) 4.9×10^4 N

(b) $\approx 4.4 \times 10^5 \,\text{N}$

(c) $\approx 4.2 \times 10^5 \,\text{N}$ (d) $\approx 3.9 \times 10^6 \,\text{N}$

19. $2.5 \times 10^5 \,\mathrm{N}$

21. 230; $\frac{23}{7}$

23. 10; 1; $(\frac{1}{21}, \frac{10}{21})$

27. $\left(\frac{1}{e-1}, \frac{e+1}{4}\right)$ **29.** $\left(\frac{2}{5}, \frac{1}{2}\right)$

25. (0, 1,6)

31. $\left(\frac{\pi\sqrt{2}-4}{4(\sqrt{2}-1)}, \frac{1}{4(\sqrt{2}-1)}\right)$

33. (2, 0)

35. 60; 160; $(\frac{8}{3}, 1)$ **37.** (0,781, 1,330)

41. $(0,\frac{1}{12})$

45. $\frac{1}{3} \pi r^2 h$

EXERCÍCIOS 8.4 PÁGINA 523

I. \$38 000

3. \$43 866 933,33

5. \$407,25

7. \$12 000

9. 3 727; \$37 753

11. $\frac{2}{3}$ $(16\sqrt{2} - 8) \approx $9,75$ milhões

15. $1.19 \times 10^4 \text{ cm}^3/\text{s}$

A96 ||| CÁLCULO

17. 6,60 L/min **19.** 5,77 L/min

EXERCÍCIOS 8.5 PÁGINA 530

- (a) A probabilidade de que um pneu escolhido aleatoriamente tenha uma duração entre 30 000 e 40 000 km
 - (b) A probabilidade de que um pneu escolhido aleatoriamente tenha uma duração de pelo menos 25 000 km
- **3.** (a) $f(x) \ge 0$ para todo $x \in \int_{-\infty}^{\infty} f(x) dx = 1$ (b) $1 - \frac{3}{8}\sqrt{3} \approx 0.35$
- **5.** (a) $1/\pi$ (b) $\frac{1}{2}$
- **7.** (a) $f(x) \ge 0$ para todo $x \in \int_{-\infty}^{\infty} f(x) dx = 1$ (b) 5
- **II.** (a) $e^{-4/2.5} \approx 0.20$ (b) $1 e^{-2/2.5} \approx 0.55$
 - (c) Se você não for servido em 10 minutos, ganha um hambúrguer de graça.
- **13.** ≈ 36%
- **15.** (a) 0,0668
- (b) $\approx 5,21\%$
- 17. ≈ 0.9545
- **19.** (b) 0; a_0

(d)
$$1 - 41e^{-8} \approx 0.986$$
 (e) $\frac{3}{2}a_0$

CAPÍTULO 8 REVISÃO PÁGINA 532

Exercícios

- **1.** $\frac{15}{2}$ **3.** (a) $\frac{21}{16}$ (b) $\frac{41}{10}\pi$
- **5.** 3,292287
- **7.** 124
- **9.** 6 533 N II. $(\frac{8}{5}, 1)$
- **13.** $(2, \frac{2}{3})$
- 15. $2\pi^2$

- **17.** \$7 166,67
- **19.** (a) $f(x) \ge 0$ para todo $x \in \int_{-\infty}^{\infty} f(x) dx = 1$ (b) ≈ 0.3455 (c) 5, sim
- **21.** (a) $1 e^{-3/8} \approx 0.31$ (b) $e^{-5/4} \approx 0.29$ (c) $8 \ln 2 \approx 5.55 \text{ min}$

PROBLEMAS QUENTES PÁGINA 534

- 1. $\frac{2}{3}\pi \frac{1}{2}\sqrt{3}$
- 3. (a) $2\pi r(r \pm d)$ (b) $\approx 8.69 \times 10^6 \text{ km}^2$ (d) $\approx 2.03 \times 10^8 \text{ km}^2$
- **5.** (a) $P(z) = P_0 + g \int_0^z \rho(x) dx$ (b) $(P_0 - \rho_0 gH)(\pi r^2) + \rho_0 gHe^{L/H} \int_{-r}^r e^{x/H} \cdot 2\sqrt{r^2 - x^2} dx$
- 7. Altura $\sqrt{2}b$, volume $(\frac{28}{27}\sqrt{6} 2) \pi b^3$
- 9.0,14 m

11. $2/\pi, 1/\pi$