

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE Final		3. REPORT TYPE AND DATES COVERED May 95 1 Oct 90-31 Mar 95	
4. TITLE AND SUBTITLE Fast Opto-Electronic Quantum Well Amplitude Modulator			5. FUNDING NUMBERS DAAL03-90-C-0019			
6. AUTHOR(S) Larry C. West, Charlie W. Roberts, Emil C. Pisocani			 SELECTED JUL 10 1995			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AT&T Technology Systems 600 Mountain Avenue P.O. Box 636 Murray Hill, NJ 07974-0636			8. PERFORMING ORGANIZATION REPORT NUMBER S E L E C T E D			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709-2211			10. SPONSORING/MONITORING AGENCY REPORT NUMBER ARO 28271.3-PH			
11. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.						
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.			12b. DISTRIBUTION CODE			
13. ABSTRACT (Maximum 200 words) The objectives of this work were to develop devices for optical interconnects in the mid-IR, develop devices for mid-IR ranging, IR decoy projection, free space communication, pollution monitoring, and digital optical logic. In addition, it was desired to three dimensional opto-electronic systems with very large scale integrated optics with ultra high confinement waveguides. Advances included the use of quantum wells in the electrode to reduce free electron absorption; use of electrode resonances in the far-IR to reduce penetration of mid-IR light; and use of step wells and dope in barrier to lower linewidth and increase separation of states.						
DTIC QUALITY INSPECTED 3						
14. SUBJECT TERMS mid-IR modulators, ultra high confinement integrated optics, fast opto-electronic quantum well amplitude modulator				15. NUMBER OF PAGES		
				16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED		18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED		19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED		20. LIMITATION OF ABSTRACT UL

Fast Opto-Electronic Quantum Well Amplitude Modulator

ARPA Contract DAAL03-90-C-0019

Final Report
May 10, 1995

Version 0.0

Accession For	
NTIS	CRA&I
DTIC	TAB
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and / or Special
A-1	

Submitted by

**AT&T Bell Laboratories
Government Research Programs
600 Mountain Avenue
Murray Hill, NJ 07974-0636
Point of Contact : K.R.S. Murthy**

Prepared by

**Larry C West
Charlie W. Roberts
Emil C. Piscani
Integrated Photonic Systems Inc.**

19950703 319

Objectives

Devices:

- Optical Interconnects in mid-IR
 - Less Watts per Quanta Flux
> Lower IR Powers
- Mid-IR Ranging
- IR Decoy Projection
- Free Space Communications
- Pollution Monitoring
- Digital Optical Logic

Opto-Electronic Systems:

Modulator Physics

- 1->3 Transition has been isolated from free carrier, and lower level transition absorption.
 - Lower level transitions are narrowed by doping in barriers.
 - Lower level transitions are positioned for minimum loss.
- Free carrier loss has been minimized, while maintaining good electrical properties, using QWs as electrodes
 - Eliminated field exclusion at modulation wavelength by placing the QW electrode resonance at a higher energy than the modulator resonance so it's index is positive.

Lessons Learned From Bulk Modulator

• Problem - Solution

- Free electron absorption is strong in highly doped electrode regions. - *Use QWs in electrode to reduce free electron absorption.*
- Electrode resonance in far-IR reduces penetration of mid-IR light (lowers refractive index) - *Resonance must be higher energy than modulator resonance.*
- Lower level transitions can cause residual absorption - *Use step wells and dope in barrier to lower linewidth and increase separation of these states.*

Intersubband Modulation

- **Modulator Mechanism**
 - Break symmetry with electric fields to allow 1-3 transition.

- A built-in field is created with delta doping on edge of well.
 - Allows observation in spectrometer without application of field.

- Doping outside well allows narrower, stronger lines with less interference from other lines.
 - Use step in Al concentration to create built-in field.

Bulk Modulator

Bulk Modulator Response

$R = 35 \text{ Ohm}$
 $C = 11 \text{ pF}$

$RC = 400 \text{ psec}$

Demonstrated Risetime $\ll 10 \text{ nsecs}$
(limited by Function Generator and Detector)
A 20 volt, 100 nsec wide electrical pulse was applied.

Ge Epitaxy Absorption Loss
versus
Substrate Temperature During Evaporation

Low Temperature Ge Growth

The absorption peak at 830 cm⁻¹ decreases in proportion to the thickness of the sample when etched, indicating a bulk effect. This is now believed to be from incorporation of Ge Oxide.

The absorption peak at 830 cm⁻¹ for the films grown at RT and 50 °C decreases in proportion to a 68% decrease in Ge film thickness via a chemical etch, indicating the features are from a bulk effect. The broad peak at 3200 cm⁻¹ has a similar behavior. This spectrum was also found to be polarization independent.

Figure 3. The absorption spectra for the UHV Ge film deposited at 500 C before, (a), and after, (b), removal of 54% of the Ge film from 1.15 mm to 0.53 mm. using a chemical etch. The much-less-than-linear thickness dependence in the magnitude of the Absorbance indicates this absorption is from an interface. The oscillations in wavelength are expected for a polarization dependent thin film absorber because of interference of the total internally reflected beams. Fig. 3(a) shows the measured and analytic multilayer interference model for a thin birefringent layer at the Ge/GaAs interface. The absorption is taken to be birefringent with a Drude model laterally and an intersubband in the confinement direction. The analytic model required a Ge thickness of 0.97 mm to position the spectral peaks and valleys at the wavenumbers as shown whereas the actual thickness was measured to be 1.15 mm. The analytic curve in Fig. 3(b) uses the same model parameters as for 3(a), but with a Ge thickness of 0.47 mm, close to the measured 0.53 mm thickness of Ge film obtained after chemical etching. Note the observed change in spectral behavior is also qualitatively similar to that expected for a thin birefringent absorber at the Ge/GaAs interface.

Ohio State MBE vs. AT&T

OSU25 Asymmetric Modulator, /8A+/4A, ZigZag

Slab Waveguide Modulator

Slab Modulator with Gaussian Coupler

Coupling per Tooth

Note tooth reflection has a minimum around 1.2 microns.

Slab Waveguide Performance

Ge Waveguide Loss per Length

Ultra High Confinement Integrated Optics

- Dramatically improved opto-electronic device performance.
- Very Large Scale Integrated Optics (VLSIO)

Ultra High Confinement Waveguides

Cross Sectional Area < $0.1 \lambda^2$

Vertical component of electric fields.
(from Finite Element Modeling)

Rectangular Waveguide

Pedestal Waveguide

Microwave Scale Waveguide Experiments

An UHC Modulator:

Off-Axis
Elliptical
Fresnel
Lens
Array
350 μ m

Gaussian Profile Grating Coupler to Slightly Expanded Waveguide

Through-Wafer Alignment

CO₂ laser beam at normal incidence is used to create burn spots on reverse side of wafer for back-side alignment.

Fresnel Lenses
Focusing
Near-IR
White Light

Bends and Resonators

Tapered Width

Si on SiO₂ Resonator

Electric field amplitude for out of plane component

TE Mode Reflection

Low loss reflection indicates a cavity with a $Q > 100$ is possible

UHC Waveguide Modulator

Through-Wafer Alignment Lens

Active UHC Waveguide

Detector Physics and System Test

- High speed QWIP devices allow all electronic speed verification.
- Calibrate with 100 fsec laser pulses.

$\lambda = 9.3 \mu\text{m}$
100 fsec

High Speed Modulator Evaluation:

