MATHEMATICAL MODELLING AND SIMULATION OF CONTINUOUS FLOTATION CELL / BANK

By
PADMANABH N. MANDLEKAR

ME TH ME/1991/M 1991 M3RM

11

MAN

MAT

DEPARTMENT OF METALLURGICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
MARCH, 1991

MATHEMATICAL MODELLING AND SIMULATION OF CONTINUOUS FLOTATION CELL / BANK

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

*By*PADMANABH N. MANDLEKAR

to the

DEPARTMENT OF METALLURGICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
MARCH, 1991

112197

622.752 Molin

ME-1991-M-MAN-MAT

CERTIFICATE

This is to certify that the work entitled "MATHEMATICAL MODELLING AND SIMULATION OF CONTINUOUS FLOTATION CELL/BANK", by Padmanabh N. Mandlekar, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

P. C. Kabur

Professor

March, 1991 Department of Metallurgical Engineering Indian Institute of Technology Kanpur

ACKNOWLEDGEMENT

I am greatly indebted to Prof. P. C. Kapur for his able guidance and whole-hearted co-operation that I received during my thesis work.

Padmanabh N. Mandlekar

TABLE OF CONTENTS

Chapte	and the second s		Page
	LIST LEGI	COF TABLES COF FIGURES COF SYMBOLS RACT	v vi viii x
1.	INTR	OL UCTION	erit unique
2.	Linh	MADURE SURVEY	Mean
	2.1	Semi-Betch Flotation Kinetics 2.1.1 Single Phase - Single Species Models 2.1.2 Single Phase - Discretely Distributed	4
		Species Model 2.1.3 Single Phase - Continuously Distri- puted Species Models	6 7
		2.1.4 Aultiphase - Single Species Model 2.1.5 Aultiphase - Discretely Distributed	8
		Species Models 2.1.6 Multiphase - Continuously Distributed	10
		Species models	10
	2.2	Simulation of Flotation Circuits	11
	2.3	2.2.1 reed Specifications Abdel of a Continuous Cell	11 13
3.	CECE	CTIVES OF PRESENT STUDY	15
· .	But I	ATION MODEL IN MOMENTS DOMAIN	16
	4.2	Dimulation of a Flotation Cell La-Juerre's Approach Pearson's Closure Approach 4.3.1 Pearsonian Distribution 4.3.2 Moment Equations	16 18 18 19
	1.1	4.3.3 Solution of Equations Model Equations for a Bank of Cells	20 22
2000 2000 40	245U.	LTE	26
	5.1	Single Flotation Cell 5.1.1 Feed Distribution Moments, Θ_n 5.1.2 Analytical Computation of Holdup	26 27 33
	5.2	Bank of Flotation Cells 5.2.1 Computation of Exact Holdup	36 36
6.	CONC	LUSIONS	49
	LIST	OF REFERENCES	50
	APPE:	ADIX A	52

LIST OF TABLES

Number			Titl				Page
5 - 1	Beta	distribution	witn	different	mean	天	32

LIST OF FIGURES

Number	Title	Page
2.1	P-S Matrix Classification of Flotation Kinetic Models	5
2.2	Schematic or Flotation Cell	12
5.1	Single Flotation Cell-feed in Rectangular Distribution	38
5.2	Single Flotation Cell-feed in Gamma Distri- bution	39
5.3	Single Flotation Cell-teed in Beta Distri- bution	1 0
5.4	Single Flotation Cell-feed-two Seta Dist- ributions Mixed in Different Proportions	41
5.0	Single Flotation Cell-feed-beta and Rectan- gular Distributions Wixed in Different Proportions	1 2
5.6	Single Flotation Cell-feed-beta and Rectan- gular Distributions mixed in Different Proportions	4 3
5.7	Single Bank-rectangular Distribution No. or Cells/Bank = 5, $T = 0.1$	44
5.3	Single Bank-rectangular Distribution No. of Cells/Bank = 5 , T = 0.5	45
5.9	Single Bank-rectangular Distribution No. of Cells/Bank = 5 , $T = 1$	46
5.10	Single Bank-beta Distribution (Gamma = 1) No. of Cells/Bank = 5, $T = 0.1$	47
5.11	Single Bank-mixed Beta Distribution No. of Cells/Bank = 5, $T = 0.1$ Beta ₁ : $\gamma = 2$, $\eta = 3$; Beta ₂ : $\gamma = 3$, $\eta = 2$	
	Beta ₁ : Beta ₂ = m ₁ : m ₂	48
5.12	Uniform Distribution	26
5.13a	Gamma Distribution	28

humber	<u> Title</u>	Page
5.13b	Seta Distribution	23
5.130	mixed Feeds Distribution	31
7-1-4	Jank or Flotation Cells	35

LIST OF SYMBOLS

k _p (k,t)dk	Mass of particles in the pulp with flotation rate constant between $k/k+dk$ at time t
$M_{\pm}(k,t)dk$	wass of particles in the froth with flotation rate constant between k/k+dk at time t
$H_{c}(k,t)dk$	Mass of particles in the concentrate with flotation rate constant between k/k+dk at time t
$m_{T}(k,t)dk$	Mass of particles in the tails with flotation rate constant between $k/k+dk$ at time t
f(k)dk	Mass flow rate particles in the feed with flotation rate constant between k/k+dk
h	First order flotation rate constant for mass transfer from froth to pulp
t	First order flotation rate constant for mass transfer from froth to concentrate
T	Reciprocal of residence time of particles in the cell
i.i.	Absolute moment of distribution in pulp
ν	Absolute moment of distribution in froth
η	Absolute moment of distribution in concentrate
Z	Absolute moment of distribution in feed for bank or cells
ਚ	Absolute moment of distribution in feed of a single cell
a,b ₀ ,b ₁ ,b ₂	Pearson's distribution parameters
C	

Superscripts

j,m Index of a cell in a bank

Subscripts

p Pulp

c Concentrate

f Froth
Tails

l Lower limit

u Upper limit

n Index of a moment.

ABSTRACT

A multiphase continuously distributed species model of flotation cell has been put forth and steady state kinetics of the flotation process are discussed. For a realistic description of the process, the instantaneous distributions of particles are converted into absolute general moments. A continuous flotation cell and bank of cells is simulated effectively with the help of Pearson's closure technique. The Pearson's suite of moment equations is used to solve the incomplete set of moment equations of the flotation model. For demonstration of method, feed of the particles to the flotation cell/bank in first order flotation rate constant (K) has been characterised in four probabilistic distributions:

(1) Uniform, (2) Beta, (3) Gamma and (4) mixed feeds.

when feed was gamma distribution. The Pearson's value of holdups are in good agreement with the actual holdups. It is concluded that this could be a powerful and versatile method for modelling flotation circuits.

CHAPTER 1

INTRODUCTION

Froth flotation is the commercially most important and technologically most interesting mineral dressing process. With decreasing grade of ores and increased dissemination of target minerals within the ore, the cost and energy consumption in froth flotation has become increasingly important. The incentive for increasing the recovery by as little as say 0.5% is considerable when flotation plants handle large tonnages of ore. To increase production and decrease cost and energy consumption, design and control strategies have been applied to flotation circuits in an empirical manner because no complete realistic analysis of flotation circuits exists. Hence research efforts in flotation must be aimed at improving overall performance or plants. Optimum circuits must be designed and synthesized by developing mathematical strategies and simulating them with computer.

the basic unit of a continuous flotation circuit is the flotation cell. A flotation cell is assumed to be a perfect mixer. A continuous flotation cell splits the incoming stream of particulate solids into a concentrate stream, which is richer in mineral, and a tailing stream which is richer in gangue. Number of flotation cells connected in series constitute a flotation bank. A flotation bank may be referred as rougher cleaner or scavenger depending upon the function it

performs and the grade of the feed to it. A number of banks connected together constitute a flotation circuit.

The primary attributes of particulate ore material are those which are internal or inherent to the feed e.g. particle size, composition, morphology, surface active sites etc. These attributes interact with variables of the flotation process to generate derived attributes. The main process variables are chemical conditioning, pulp density, aeration rate, size and residence time distribution of bubbles, intensity of pulp agitation etc. The derived attributes are hydrophobicity, residence time distribution and of course flotation rate constant, In reality flotation cell comprises of many phases which participate in mineral transport and exchange. The physicalchemical phenomenon and the interaction between material and bubble is only partially understood. The flotation process comprises of many micro-events such as particle bubble collision, thin film rupture, particle attachment to bubble and its detachment, levitation of bubble particle aggregate and incorporation in the froth phase. For modelling purpose it is not necessary, nor it is possible to include all elementary rate processes explicitly in the model. Various rate parameters are represented by an apparent first order flotation rate constant, under free flotation conditions.

In the present work a mathematical model has been developed which deals with the steady state kinetics of the flotation process. The model is based on a novel technique for

solving the set of moment equations, that arise in model formulation, by means of Pearson's suite of moment equations.

Before proceeding with present work, a detail survey of existing
literature is presented. It will enable the reader to get a
good insight into the work.

CHAPTER 2

LITERATURE SURVEY

We first consider the kinetics of flotation, beginning with simple models of semi-batch flotation in a single cell.

Note: All references in this chapter are taken from ref. 2

2.1. SEMI-BATCH FLOTATION KINETICS:

A large number of mathematical models have been proposed for the semi-batch system. Lynch et al. (1981) have categorised these models into empirical, probabilistic and kinetic models. The kinetic models are pest classified in a P-S format (Figure 2.1). Each class of model lies at the intersection of phase P and feed species S, where P represents a single or multiphase system, and S can be either a single class of species or discretely distributed or continuously distributed ensemble of particles. Six types of models evident from the figure are explained pelow.

2.1.1. SINGLE PHASE - SINGLE SPECIES MODELS :

Garcia-Zungia (1935) first recognized flotation as a rate process and a first order rate of flotation of single species from pulp phase.

$$\frac{d M_p(t)}{dt} = -K M_p(t) \qquad (2.1)$$

where \mathbf{E}_{p} (t) is mass of particle remaining in pulp at flotation time t. As this model is not adequate, chemical reaction

Fig 2.1 P-S MATRIX CLASSIFICATION OF FLOTATION KINETIC MODELS

kinetics analogy has been used for suggesting second order (Arbiter, 1951) and higher order (Debruyn and Modi, 1956; Volin and Swami, 1965) flotation models. The nth order model is

$$\frac{d M_p(t)}{dt} = - K M_p^n(t) \qquad (2.2)$$

Direct entrainment of solids from pulp to froth is a secondary path of material transport. In the case of hydrophilic (and especially fine) particles significant material transport (Thorne et al., 1976) occurs by the secondary path. Consequently possible modification of the first order model could be

$$\frac{d M_{p}(t)}{dt} = -K M_{p}(t) - J \qquad (2.3)$$

where J is the entrainment rate.

2.1.2. SINGLE PHASE - DISCRETELY DISTRIBUTED SPECIES MODEL :

In a logical extension to the first order kinetics model, the feed is divided into X classes of homogeneous species, wherein all members of a class possess identical rate constant value (Imaizumi and Inoue, 1965). Presence of two classes is implicit in the kinetic model of Morris (1952) who introduced an additional parameter to account for the empirical fact that the flotation may or may not proceed to completion.

$$\frac{d N_{p}(t)}{dt} = -K[N_{p}(t) - N_{p}(\infty)] \qquad (2.4)$$

where $M_{p}(\infty)$ is the non floating material.

2.1.3. SINGLE PHASE - CONTINUOUSLY DISTRIBUTED SPECIES MODELS :

In the case or heterogeneous ground ores with incomplete liberation the number of discrete classes become large and the feed is best modelled as continuously distributed in rate constants.

$$M_{p}(t) = \int_{0}^{\infty} M_{p}(K,0) \exp(-Kt) dK$$
 (2.5)

where M (K,0)dK is mass or mass fraction of original feed with flotation rate constant of K to K + dK. Hence M(K,0) is a relative or absolute density function, and

$$\int_{0}^{\infty} m_{p}(K,0)dK = 1 \text{ or}$$

= $m_{p}(0)$ (2.5a)

where M_p(0) is the total feed to the cell. Analytical expressions exist only for a few distributions. The best known example is gamma distribution in parameters u and n (Woodburn and Loveday, 1965; Loveday, 1966; Inoue and Imaizumi, 1968; Harris and Chakravarti, 1970)

$$M_p(K, U) = \frac{u^n}{\sqrt{(n)}} \kappa^{n-1} \exp(-uk)$$
 (2.6)

Equation (2.6) on substitution in (2.5) yields

$$M_{p}(t) = \left[\frac{u}{u+t}\right]^{n} \tag{2.7}$$

A bimodal distribution generated by mixing two gamma distributions in the ratio \emptyset and $(1 - \emptyset)$ can yield a more versatile model (Harris and Chakravarti, 1970)

$$M_{p}(t) = (1 - \emptyset) \left[\frac{u_{1}}{u_{1} + t} \right]^{n_{1}} + \emptyset \left[\frac{u_{2}}{u_{2} + t} \right]^{n_{2}}$$
 (2.8)

In case of rectangular distribution in the range of $\rm K_1$ < K < K_u the model is (Huber-Panu et al., 1976)

$$M_{p}(t) = \frac{\exp(-k_{1}t) - \exp(-k_{u}t)}{(k_{u} - k_{1})t}$$
 (2.9)

A particular statistical distribution function e.g. beta, gamma or uniform is chosen as a matter of convienience for extracting close form mathematical expressions for $M_{\rm p}(t)$ or $M_{\rm c}(t)$. Harris and Chakravarti (1970) recognized that $M_{\rm p}(t)$ is the laplace transform of $M_{\rm p}(K,0)$. Kapur and Mehrotra (1974) devised a reliable and robust technique for computing the feed distribution from tlotation data. Their scheme is based on the fact that flotation kinetics can be always expressed in cumulative distribution function $R_{\rm p}(K,0)$ as follows.

$$\overline{M}_{p}(t) = \frac{1 - M_{p}(t)}{t} = \int_{0}^{\infty} R_{p}(K, 0) \exp(-Kt) dK$$
 (2.10)

2.1.4. MULTIPHAGE - SINGLE SPECIES MODEL :

In reality the flotation comprises of many phases which participate in material transport and exchange, therefore increasing only the complexity of single phase kinetic models may not be productive. None of the parameters in the multiphase flotation systems can be computed from first principles, but must be estimated from experimental data with great deal of uncertainty regarding the reliability and significance of

estimate. A simple model of multiphase species was suggested by Harris and Rimmer (1966)

Pulp
$$\xrightarrow{K}$$
 Froth $\xrightarrow{1}$ Concentrate

Ine governing equations of this model in pulp, froth and concentrate phases are respectively.

$$\frac{d M_{p}(t)}{dt} = -K M_{p}(t) + h M_{f}(t)$$
 (2.11)

$$\frac{d M_{f}(t)}{dt} = K M_{p}(t) - h M_{f}(t) - 1 M_{f}(t)$$
 (2.12)

$$\frac{d M_C(t)}{dt} = 1 M_f(t)$$
 (2.13)

with the initial conditions $M_f(0) = M_c(0) = 0$. Simultaneous solution of these equations yields recovery.

$$M_{C}(t) = M_{C}(\infty)(1 - (1/(A-B))[A \exp(Bt) - B \exp(At)])$$
(2.14)

where A and B are

$$A = -(k + h + 1)/2 - \sqrt{(h + k + 1)^2 - 4k 1/2}$$
 (2.15a)

$$B = -(k + h + 1)/2 + \sqrt{(h + k + 1)^2 - 4k 1/2}$$
 (2.15b)

Under highly mineralized conditions, if the rate of drainage becomes negligible this model simplifies to

$$M_{C}(t) = M_{C}(\infty)(1 - (1/(1 - k))[1 \exp(-kt) - k \exp(-1t)])$$
(2.16)

2.1.5. MULTIPHASE DISCRETELY DISTRIBUTED SPECIES MODELS :

Equation (2.14) can be applied to more than one class of species. It merely requires summing this expression over all classes.

2.1.6. MULTIPHASE - CONTINUOUSLY DISTRIBUTED SPECIES MODELS :

This category of models provide the most general and realistic discription of flotation kinetics. The main difficulty in implementing these models lies in Equation (2.14) which after combining with the feed distribution in k cannot be integrated in a close form. Ball et al. (1970) got around this problem to some extent by converting the instantaneous distributions of particles in pulp, froth, and concentrate phases into time dependent absolute general moments. The nth moments in pulp, froth and concentrate are defined as

$$\mu_{n}(t) = \int_{0}^{\infty} M_{\rho}(k, t) k^{n} dk$$
 (2.17)

$$\nu_{n}(t) = \int_{0}^{\infty} M_{\pm}(k, t) k^{n} dk$$
 (2.18)

$$\eta_{n}(t) = \int_{0}^{\infty} M_{c}(k, t) k^{n} dk \qquad (2.19)$$

Multiplying throughout with k^n and integrating over the range of k, Eqs. (2.11) to (2.13) are readily transformed into

$$\int_{0}^{\infty} d M_{p}(k,t) k^{n} dk$$

$$\int_{0}^{\infty} d M_{p}(k,t) k^{n} dk + h \int_{0}^{\infty} M_{f}(k,t) k^{n} dk$$
(2.20)

$$\frac{\int_{0}^{\infty} d m_{f}(k,t) k^{n} dk}{dt} = \int_{0}^{\infty} k m_{p}(k,t) k^{n} dk - h \int_{0}^{\infty} M_{f}(k,t) k^{n} dk$$

$$-1 \int_{0}^{\infty} M_{f}(k,t) k^{n} dk$$
 (2.21)

$$\frac{\int_{0}^{\infty} d N_{c}(k,t) k^{n} dk}{dt} = 1 \int_{0}^{\infty} N_{f}(k,t) k^{n} dk \qquad (2.22)$$

Inserting equations (2.17) to (2.19) yields:

$$\frac{d \, \mu_{n}(t)}{dt} = - \, \mu_{n+1}(t) + h \, \nu_{n}(t) \tag{2.23}$$

$$\frac{d \nu_n(t)}{dt} = \mu_{n+1}(t) - (n+1) \nu_n(t)$$
 (2.24)

$$\frac{d \eta_n(t)}{dt} = 1 v_n(t)$$
 (2.25)

This incomplete set of equations was closed with the help of La Guerre series approximation which provides an additional expression for simultaneous solution of the above set (B. Ball, P.C. Kapur and D.W. Fuerstenau, 1970). This closure unfortunately is quite crude and does not provide reasonable accurate solution.

2.2. SIMULATION OF FLOTATION CIRCUITS :

Any scheme for simulation of flotation circuits has three main components feed specifications, flotation model and split factor, and circuit configuration.

2.2.1. FEED SPECIFICATIONS :

Feed can be described as a density function of three

Fig 2.2 SCHEMATIC OF FLOTATION CELL

attributes, K first order flotation rate constant, $\rm K_1 < \rm K < \rm K_u$ and $\rm K_1 > 0$ and $\rm K_u < \infty$; L the particle size, and V the volume fraction of target mineral, $\rm 0 \le v \le 1$. But continuous trivariate distribution is neither easy to identify nor amenable to required manipulations in circuit modelling. Therefore we focus our attention on feed in single attribute, K first order flotation constant. Feeds are described by continuous distributions such as uniform, beta, gamma etc. Continuous distributions may be descretised into five or more intervals as error introduced is very little. Continuous distributions are susceptible to more elegant mathematical treatment than are discrete distributions. The essential property of a function of continuous random variable is that area under this curve is always equal to one.

2.3. MODEL OF A CONTINUOUS CELL:

A continuous flotation cell is one to which feed is continuously fed and concentrate and tailings are continuously drawn out (refer Figure 2.2). The cell is assumed to be a pertect mixer. Let h be first order rate constant for mass transfer from froth to pulp, 1 first order rate constant for mass transfer from froth to concentrate, T = 1/t, t the residence time of particles in the cell. Steady state mass balance equations for particles having flotation constant between k/k + dk are

$$\hat{F}(k) - k M_p(k) + h M_f(k) - T M_p(k) = 0$$
 (2.26)

Also

$$k M_{p}(k) - h M_{f}(k) - 1 M_{f}(k) = 0$$
 (2.27)

$$\dot{M}_{C}(k) = 1 M_{\dot{E}}(k)$$
 (2.28)

Rearranging the terms

$$M_{f}(k) = \frac{k}{(h+1)} M_{p}(k)$$
 (2.29)

Substituting Eq. (2.29) in Eq. (2.26)

$$\dot{F}(k) = (\frac{k l}{(h+1)} + T) M_p(k)$$
 (2.30)

i.e.

$$\dot{F}(k) = \frac{(hT + lT + kl)}{(h + l)} M_p(k)$$
 (2.31)

$$\dot{M}_{c}(k) = \frac{k \, 1}{(h + 1)} \, M_{p}(k)$$
 (2.32)

$$\dot{M}_{T}(k) = T H_{p}(k) \qquad (2.33)$$

Equations (2.31), (2.32) and (2.33) are the model equations of a continuous cell. The continuous cell is simulated by integrating $M_{c}(k)$ over all k

$$M_{C}(k) = \frac{kl}{(hT + lT + kl)} F(k)$$
 (2.34)

$$M_{C} = \int_{0}^{\infty} M_{C}(k) dk = \int_{0}^{\infty} \frac{kl}{(hT + lT + kl)} F(k) dk$$
 (2.35)

This format of the model is not convenient for multi-cell, multi-bank circuit. Our objective is to reformulate the model in differential equations in moments.

CHAPTER 3

OBJECTIVES OF PRESENT STUDY

The present study aims at developing models for continuous flotation kinetics of a single cell and bank of cells respectively. The model formulation consists of an incomplete set of moment equations presented in the last chapter. We demonstrate a new technique for solving the incomplete set of moment equations by means of Pearson's suite of moment equations. For verification of our method the computed results are compared with analytical results wherever available.

CHAPTER 4

FLOTATION MODEL IN MOMENTS DOMAIN

4.1. SIMULATION OF A FLOTATION CELL :

The model equations governing the transfer of the differential element of material, with rate constants between k/k+dk in a continuous single cell at steady state are

$$\dot{M}_{C}(k) = \frac{1 k}{(h+1)} M_{p}(k) \qquad (4.1)$$

$$\dot{F}(k) = (\frac{kl}{(h+1)} + T) F_p(k)$$
 (4.2)

$$\dot{h}_{T}(k) = T h_{p}(k) \tag{4.3}$$

Since we are interested in total mass in each phase the following moments are defined. The moments of continuous distribution give more realistic description of the process than the descretized distributions.

$$\Theta_{n} = \int_{0}^{\infty} F(k) k^{n} dk \qquad (4.4)$$

$$\mu_{n} = \int_{0}^{\infty} M_{p}(k) k^{n} dk \qquad (4.5)$$

$$\eta_{n} = \int_{0}^{\infty} M_{c}(k) k^{n} dk \qquad (4.6)$$

where

e is total mass of feed;

 $\mu_{\rm O}$ is total mass of pulp i.e. holdup and

 $\eta_{\rm O}$ is total mass of concentrate.

Converting equations (4.1), (4.2) and (4.3) into moment equations

$$\int_{0}^{\infty} \dot{h}_{c}(k) k^{n} dk = \int_{0}^{\infty} \frac{1 k}{(h+1)} h_{p}(k) k^{n} dk$$
 (4.7)

$$\int_{0}^{\infty} \dot{f}(k) k^{n} dk = \int_{0}^{\infty} \frac{1 k}{(h+1)} \prod_{p} (k) k^{n} dk + T \int_{0}^{\infty} M_{p}(k) k^{n} dk \qquad (4.8)$$

$$\int_{0}^{\infty} N_{T}(k) k^{n} dk = T \int_{0}^{\infty} N_{p}(k) k^{n} dk$$
 (4.9)

$$\dot{\tau}_{n} = 1/(h+1) \,\mu_{n+1} \tag{4.10}$$

$$\dot{\Theta}_{n} = 1/(h+1) u_{n+1} + T u_{n}$$
 (4.11)

$$\dot{z}_{n} = T \mu_{n} \tag{4.12}$$

Solving (4.10), (4.11) and (4.12) yields the desired information about teed, pulp, concentrate in moments form. In (4.11) h, 1, T and θ_n are known variables of the flotation process. To solve the equation, we put n = 0,1,2,... etc.

$$\dot{\theta}_{0} = 1/(h+1) \mu_{1} + T \mu_{0}$$
 (4.13a)

$$\dot{\theta}_1 = 1/(h+1) \mu_2 + T \mu_1$$
 (4.13b)

$$\dot{\Theta}_2 = 1/(n+1) \mu_3 + T \mu_2$$
 (4.13c)

Thus there is always one more unknown than the number of equations to be solved. One more equation is required for obtaining a unique solution. This problem of closure of incomplete set of equations can be tackled in 2 ways:

- (1) La-Guerre's approach and
- (2) Pearson's approach.

4.2. LA-GUERRE'S APPROACH :

La-Guerre's series approximation gives an approximate relationship between moments of a distribution function (B. Ball, P.C. Kapur and D.W. Fuerstenau, 1970)

$$\mu_3 = \frac{\mu_2}{\mu_0 \mu_1} (2\mu_0 \mu_2 - \mu_1^2) \tag{4.14}$$

Equations (4.13a), (4.13b), (4.13c) and (4.14) can be solved numerically on a computer. This closure was however found to be inaccurate.

4.3. PEARSON'S CLOSURE APPROACH :

Pearson's closure provides an exceptionally flexible relationship between various moments of a function. This relation is used to close a set or incomplete moment equations.

4.3.1. PLARSONIAN DISTRIBUTION :

Failure of normal distributions to fit many of distributions encountered in real life necessitated development of a generalised system of probability distributions. Karl Pearson put forth a distribution which can represent almost all statistical distributions used in practice (Reference 1).

$$\frac{df}{dx} = \frac{(x - a)f}{(b_0 + b_1 x + b_2 x^2)}$$
 (4.15)

where f(x) is the density function and a, b_0 , b_1 , b_2 are disposable parameters of the distributions. It is not necessary to take terms beyond b_2x^2 . Depending on Pearson's constants a,

 b_0 , b_1 and b_2 , the above differential equation can give curve of various shapes. Pearsonian distribution may be converted into moment form as follows. Multiplying both sides by x^n and integrating from 0 to $+\infty$ by parts

$$\int_{0}^{\infty} x^{n} (b_{0} + b_{1}x + b_{2}x^{2}) \frac{df}{dx} dx = \int_{0}^{\infty} (x - a)x^{n} f dx$$
 (4.16)

$$[(b_0 + b_1 x + b_2 x^2) x^n f]_0 - \int_0^\infty (nb_0 x^{n-1} + (n+1)b_1 x^n)$$

$$+ (n+2)b_2x^{n+1}$$
)f dx = $\int_0^\infty (x - a)x^n$ f dx (4.17)

Assuming higher order contact at extremities terms in square brackets tend to zero. On simplification we have

$$-a\mu_{n} + nb_{0}\mu_{n-1} + (n+1)b_{1}\mu_{n} + (n+2)b_{2}\mu_{n+1} + \mu_{n+1} = 0$$
 (4.18)

4.3.2. MOMENT EQUATIONS :

Pearson's suite of moment equations are obtained by putting n=0 to 4. Since there are only 4 Pearson's constants to be determined, we put n=0 to 3. The fifth equation obtained by putting n=4 verifies the Pearson's fit.

n = 0:

$$-a\mu_0 + 0 + b_1\mu_0 + b_2(2\mu_1) + \mu_1 = 0 (4.19)$$

n = 1:

$$-a\mu_1 + b_0\mu_0 + b_1(2\mu_1) + b_2(3\mu_2) + \mu_2 = 0 (4.20)$$

n = 2:

$$-a\mu_2 + b_0(2\mu_1) + b_1(3\mu_2) + b_2(4\mu_3) + \mu_3 = 0 (4.21)$$

n = 3:

$$-au_3 + b_0(3\mu_2) + b_1(4\mu_3) + b_2(5\mu_4) + \mu_4 = 0$$
 (4.22)

n = 4:

$$-a\mu_4 + b_0(4\mu_3) + b_1(5\mu_4) + b_2(6\mu_5) + \mu_5 = 0 (4.23)$$

Equations (4.19) to (4.22) form a set of non linear algebraic equations. (4.23) is a check equation. Correspondingly, we now put n=0 to 4 in the model equation (4.11).

n = 0:

$$\dot{\theta}_{0} = (1/(h+1))\mu_{1} - 1\mu_{0} = 0$$
 (4.24)

n = 1:

$$\dot{\theta}_1 - (1/(n+1))\mu_2 - T\mu_1 = 0$$
 (4.25)

n = 2:

$$\dot{\Theta}_2 - (1/h + 1))\mu_3 - T\mu_2 = 0 (4.26)$$

n = 3:

$$\dot{\theta}_3 - (1/(h+1))\mu_1 - T\mu_3 = 0$$
 (4.27)

n = 4:

$$\dot{\hat{e}}_{4} - (1/(n+1))u_{5} - Tu_{4} = 0 \tag{4.28}$$

Now, we have 10 equations (4.19) to (4.23) and (4.24) to (4.28) and 10 variables μ_0 to μ_5 and a, b₀, b₁, b₂. These equations can be readily solved on computer.

4.3.3. SOLUTION OF EQUATIONS :

The algorithm employed is basically a single variable search on $\mu_{\rm O}$ that satisfies the check equation. This procedure

is employed to exploit the characteristic structure of this problem.

- (1) Read h, l, T.
- (2) Read feed moments θ_0 to θ_5 .
- (3) Make initial guess of noldup (μ_0) .
- (4) Determine μ_1 to μ_5 using model equations (4.24) to (4.28).
- (5) If variance of the normalised holdup distribution is negative then go to 3.

Holdup variance =
$$\frac{\mu_2}{\mu_0} - (\frac{\mu_1}{\mu_0})^2$$
.

- (6) Solve (4.19) to (4.22) by Gauss's elimination.
- (7) Substitute values of all variables in (4.23).
- (8) If (4.23) satisfied then μ_0 is the answer else

begin

$$\mu_{o} = \mu_{o} \pm \delta$$
Repeat steps 4 to 8

end.

(9)
$$\dot{\eta}_0 = \frac{1}{(h+1)} \mu_1$$

$$(10) \quad \dot{z}_{0} = T \mu_{0}$$

(11) End.

The correct μ_{0} is found by bisection method after bracketing the root. The search on μ_{0} simplifies the task immensely. Once μ_{0} is known, μ_{1} to μ_{5} are found from the model equations (4.24) to (4.28). Equations (4.19) to (4.22) are solved by

Gauss's elimination as 4 equations in 4 unknowns a, b_0 , b_1 , b_2 . Equation (4.23) verifies the Pearson's fit. In this way, a flotation cell is simulated using Pearson's closure.

4.4. MODEL EQUATIONS FOR A BANK OF CELLS :

Consider a flotation bank with m cells in series. Let j = 2,3,...,m. For the first cell the model equations are

$$\dot{\mathbb{A}}_{C}^{1}(k) = \frac{1 \ k}{(h+1)} \ M_{p}^{1}(k) \tag{4.29}$$

$$\dot{F}^{1}(k) = \left(\frac{k \, 1}{(h + 1)} + T\right) \, \dot{M}_{p}^{1}(k) \tag{4.30}$$

$$\dot{r}_{T}^{1}(k) = T R_{p}^{1}(k)$$
 (4.31)

Model equations in moment form are obtained by multiplying both sides by k^n and then integrating both sides from 0 to $+\infty$

$$\dot{\eta}_{n}^{1} = 1/(h+1)\mu_{n+1}^{1} \tag{4.32}$$

$$\dot{\theta}_{n}^{1} = 1/(h+1)\mu_{n+1}^{1} + T\mu_{n}$$
 (4.33)

$$\dot{z}_n^1 = T \mu_n \tag{4.34}$$

For j = 2 cell the model equations are

$$\dot{M}_{T}^{1}(k) = (\frac{k \, 1}{(h + 1)} + T) \, M_{p}^{2}(k)$$
 (4.35)

$$\dot{M}_{C}^{2}(k) = \frac{k 1}{(h+1)} M_{D}^{2}(k)$$
 (4.36)

$$\dot{M}_{T}^{2}(k) = T M_{p}^{2}(k)$$
 (4.37)

Converting the model equations into moment form, we have

$$\dot{\eta}_{n}^{2} = 1/(n+1)\mu_{n+1}^{2} \tag{4.38}$$

$$\dot{z}_{n}^{1} = 1/(h+1)\mu_{n+1}^{2} + T\mu_{n}^{2}$$
 (4.39)

$$\dot{z}_n^2 = T \mu_n^2 \tag{4.40}$$

For any j, j = 2, 3, ..., m

$$\dot{\eta}_{n}^{j} = 1/(h+1)\mu_{n+1}^{j}$$
 (4.41)

$$\dot{z}_n^{j-1} = 1/(n+1)\mu_{n+1}^j + T \mu_n^j$$
 (4.42)

$$\dot{z}_n^j = T \mu_n^j \tag{4.43}$$

For the last cell the model equations are

$$\dot{N}_{T}^{m-1}(k) = (\frac{kl}{(h+1)} + T) \dot{N}_{p}^{m}(k)$$
 (4.44)

$$M_{C}^{m}(k) = \frac{k 1}{(h+1)} F_{p}^{m}(k)$$
 (4.45)

$$\dot{R}_{T}^{m}(k) = T M_{D}^{m}(k) \qquad (4.46)$$

Converting the model equations into moment form, we have

$$\dot{\eta}_{n}^{m} = 1/(h+1)\mu_{n}^{m}$$
(4.47)

$$z_n^{-m-1} = 1/(h+1)\mu_{n+1}^m + T \mu_n^m$$
 (4.48)

$$\dot{z}_{n}^{m} = T u_{n}^{m} \tag{4.49}$$

The model equations of bank or cells are solved using the same algorithm, used for a single cell. Total concentrate of the bank is

$$\dot{n}_{C} = \sum_{j=1}^{m} \dot{n}_{O}^{j} = \frac{1}{(h+1)} \sum_{j=1}^{m} \mu_{1}^{j}$$
 (4.50)

Total tailing flow rate out of the bank is

$$\dot{\mu}_{\rm T} = T \mu_{\rm O}^{\rm m} \tag{4.51}$$

CHAPTLR 5

RESULTS

The theory and procedure of solving the model equations have been discussed in Chapter 4. In this chapter verification of technique is demonstrated by using those distribution functions for which results can be derived analytically. Hence can be compared with Pearson's closure method.

Results consist of 2 parts; those pertaining to flota-

- (1) Single flotation cell
- (2) Bank of flotation cells.

5.1. SINGLE FLOTATION CELL

Feed to the single flotation cell is characterised by 4 statistical distributions:

- (1) Unitorm distribution
- (2) Gamma distribution
- (3) Beta distribution
- (4) Mixed distribution of above.

Parameters h, l, T, Θ_n (the moments of feed) are the known parameters for a flotation cell, and μ_n , η_n (the moments of holdup and concentrate) and tailings flows are the unknowns. First, we present analytical expressions for Θ_n and holdup.

Fig 5.12 UNIFORM DISTRIBUTION

K

$$f(K) = \frac{1}{K_{U} - K_{\ell}}$$

$$K_{U} = 0 \quad |K_{U} = 1|$$

 $K_{\ell} = 0.25$ $K_{U} = 0.75$

Ke=0.49 Ku=0.51 Impulse.

- 5.1.1. FEED DISTRIBUTION MOMENTS, Θ_n :
 - (1) Uniform or rectangular distribution

$$f(K) = \frac{100}{K_u - K_1}; K_1 \le K \le K_u$$
 (5.1)

 $\kappa_{\rm l}$ and $\kappa_{\rm u}$ are the variable parameters of this distribution which yield different distributions (Figure 5.12). The nth moment is:

$$\Theta_{n} = \int_{K_{1}}^{K_{u}} f(x) x^{n} dx$$

$$\Theta_{n} = \frac{100}{K_{u} - K_{1}} \int_{K_{1}}^{K_{u}} x^{n} dx \qquad (5.2)$$

$$\Theta_{n} = \frac{100}{K_{u} - K_{1}} \times \frac{1}{(n+1)} \times (K_{u}^{n+1} - K_{1}^{n+1}) \qquad (5.3)$$

We consider all uniform distributions with normalised mean \overline{k}

 $\Theta_1 = 50$

$$= \frac{\Theta_1}{\Theta_0} = \frac{50}{100} = 0.5$$
e.g. $K_1 = 0$ $K_u = 1$
 $K_1 = 0.1$ $K_u = 0.9$

e₀ = 100

Dispersion index is defined as

Dispersion Index =
$$\sqrt{\frac{\text{Variance}}{(\text{Mean})^2}}$$
 (5.4)

Dispersion Index =
$$\sqrt{\frac{\Theta_0 \Theta_2 - \Theta_1^2}{\Theta_1^2}}$$
 (5.5)

For $K_1 = 0$, $K_0 = 1$ substitution of Θ_0 , Θ_1 and Θ_2 from equation (5.3) gives $\Theta_0 = 100$ $\Theta_1 = \frac{100}{2}$ $\Theta_2 = \frac{100}{3}$

Dispersion Index =
$$\sqrt{\frac{100^2}{3!} - (50)^2}$$
 (5.6)

Dispersion Index = 0.333

It will be seen that dispersion tends to zero as $K_{\mathbf{u}} - K_{\underline{l}}$ tends to a point value (i.e. the impulse) or when all particles have identical flotation rate.

(2) Jamma distribution

$$f(K) = 100 \frac{w^{D}}{D} K^{D-1} e^{-WK}$$
 (5.7)

w and p are the variable parameters of this distribution (rigure 5.13a)

$$e_n = 100 \frac{w^p}{p} \int_0^\infty x^{n+p-1} e^{-wK} dK$$
 (5.8)

or

$$e_n = 100 \frac{\sqrt{p+n}}{\sqrt{p}} \times \frac{1}{w^n}$$
 (5.9)

Hence

$$\Theta_1 = 100 \frac{p!}{(p-1)!} \times \frac{1}{w} = 100 \frac{p}{w}$$
 (5.10)

And the normalised mean is

$$\frac{\Theta_1}{\Theta_2} = \frac{P}{W} \tag{5.11}$$

Again we consider only those gamma distributions which have mean $\overline{K}=0.5$, hence w=2p, and

$$\hat{e}_{n} = 100 \frac{\sqrt{p+n}}{\sqrt{p}} \times \frac{1}{(2p)^{n}}$$
 (5.12)

(3) Beta distribution

$$f(K) = \frac{100 \sqrt{\gamma + \tau}}{\sqrt{\eta}} \kappa^{\gamma - 1} (1 - K)^{\eta - 1}$$

$$0 < K < 1$$
(5.13)

 γ , η are the variable parameters of the distribution (Figure 5.13b)

$$\Theta_{n} = \frac{100 \sqrt{\gamma + \eta}}{\sqrt{\gamma} \sqrt{\eta}} p(\gamma + n, \eta)$$

$$\Theta_{n} = 100 \sqrt{\gamma + \eta} \sqrt{\gamma + n}$$

$$\Theta_{n} = 100$$

$$(5.14)$$

For n = 1

$$\Theta_1 = 100 \frac{\gamma}{\gamma + \eta} \tag{5.15}$$

Normalised mean
$$\overline{K} = \frac{\theta_1}{\theta_0} = \frac{\gamma}{\gamma + \eta}$$

We have considered nine types of beta distributions with diff-erent mean \overline{K} , as listed in Table 5.1.

Fig 5.13 C MIXED FEEDS DISTRIBUTION $f(K) = m_1 f_1(K) + m_2 f_2(K) \qquad [m_1 + m_2 = 1]$

 $f(K) = m_1 f_1(K) + m_2 f_2(K) [m_1 + m_2 = 1]$

$$\gamma = 2$$
, $\gamma = 3$

$$\gamma = 3, \eta = 2$$

					TO STATE OF THE ST
Table 5.1	. Beta	distributions	with	different	mean K

γ	η	mean K
1	1	0.50
1	2	0.33
2	1	0.66
1	3	0.25
3	1	0.75
1	1	0.20
4	1	0.80
2	3	0.40
3	2	0.60

(4) Mixed feeds distribution: It is a mixture of two distributions having different mean \overline{k} , in different proportions

$$f(K) = m_1 f_1(K) + m_2 f_2(K)$$
 (5.16)

$$m_1 + m_2 = 1$$
 (5.17)

(refer Figure 5.13c).

Two types of mixed reeds distributions are considered.

(1) Mixed teeds of uniform $f_u(K; K_1 = 0, K_u = 1)$ and beta distribution $f_{\rm d}(K; \gamma = 2, \eta = 3)$.

Moments of this mixed feeds distribution are:

$$\Theta_{n} = m_{1} \times \frac{100}{(K_{u} - K_{1})} \times \frac{1}{(n+1)} (K_{u}^{n+1} - K_{1}^{n+1}) + m_{2} \times \frac{100}{\sqrt{(\gamma + \eta)(\gamma + n)}}$$

$$(5.18)$$

(2) Mixed feeds of two beta distributions f_1 (K; $\gamma_1 = 2$, $\eta_1 = 3$) and f_2 (K; $\gamma_2 = 3$, $\eta_2 = 2$).

Its moments are:

5.1.2. ANALYTICAL COMPUTATION OF HOLDUP:

The model equations for continuous cell and bank of cells are solved by Pearson's closure technique. The validity of technique is confirmed by comparing the Pearson's holdup with analytically calculated holdup. Exact holdup for a single flotation cell is computed as follows.

(1) Feed: Uniform Distribution
The exact total holdup at steady state is

$$\mu_{0} = \int_{K_{1}}^{K_{u}} M_{p}(K) dK = (h+1) \int_{K_{1}}^{K_{u}} \frac{\dot{f}(K)}{(hT+1T+K1)} dK$$
(5.20)

or

$$\mu_{0} = \frac{100(h+1)}{1(k_{u}-k_{1})} \times \ln(\frac{hT+1T+k_{u}I}{hT+1T+k_{1}I})$$
 (5.21)

(2) Feed: Gamma Distribution

Exact holdup cannot be found out for gamma distribution.

Therefore numerical integration was employed to estimate the value of holdup using trapezoidal rule algorithm.

(3) Feed: Beta Distribution

The exact total holdup at steady state is

$$\mu_{0} = \int_{0}^{1} m_{p}(K) dK = (h+1) \int_{0}^{1} \frac{\dot{f}(K)}{(hT+1T+K1)} dK$$
(5.22)

$$\mu_{o} = 100 \frac{(h+1) \sqrt{\gamma + \eta}}{\sqrt{\eta}} \int_{0}^{1} \frac{\kappa^{\gamma-1} (1-\kappa)^{\eta-1}}{(nT+1T+\kappa 1)} d\kappa \qquad (5.23)$$

For $\sim = 2$, $\sim = 3$ the expression is

$$\mu_{0} = 1200(h + 1) \int_{0}^{1} \frac{K(1-K)^{2}}{(hT + 1T + KI)} dK$$
 (5.24)

For $\gamma = 3$, $\eta = 2$ the expression is

$$\mu_{0} = 1200(h + 1) \int_{0}^{1} \frac{K^{2}(1-K)}{(hT + 1T + K1)} dK$$
 (5.25)

(4) Feed: Mixed Feeds Distribution

Exact holdup for mixed feeds of uniform and beta distribution is

$$\mu_{0} = m_{1} \times \frac{100(h+1)}{1(K_{U} - K_{1})} \times \ln(\frac{hT + 1T + K_{U}1}{hT + 1T + K_{1}1})$$

$$+ m_{2} \times \frac{100(h+1)}{\sqrt{\eta}} \sqrt{\eta} \int_{0}^{1} \frac{K^{\gamma-1}(1-K)^{\eta-1}}{(hT + 1T + K_{1})} dK$$
(5.26)

Exact holdup for mixed feeds of two beta distributions with different means is

$$\mu_{0} = m_{1} \times \frac{100(h+1) \left[\frac{\gamma_{1} + \eta_{1}}{1 + \eta_{1}}\right] \int_{K}^{1} \frac{\chi_{1}^{-1} (1-K)}{(hT + 1T + K1)} dK}{\left[\frac{\gamma_{1}}{1 + \eta_{2}}\right] \left[\frac{\eta_{1}}{1 + \eta_{2}}\right] \int_{0}^{1} \frac{\chi_{2}^{-1} (1-K)}{(hT + 1T + K1)} dK}{\left[\frac{\gamma_{2}}{1 + \eta_{2}}\right] \left[\frac{\eta_{2}^{-1}}{1 + \eta_{2}}\right] \int_{0}^{1} \frac{\chi_{2}^{-1} (1-K)}{(hT + 1T + K1)} dK} (5.27)$$

Fig 5.14 BANK OF FLOTATION CELLS.

Figures 5.1 to 5.6 show that the exact values of holdups are in good agreement with Pearson's holdups for the cases discussed above.

5.2. BANK OF FLOTATION CELLS :

Particulate feed to a flotation bank of cells has been characterised into 3 statistical distributions.

- (1) Uniform distribution
- (2) Beta distribution
- (3) Mixed feeds of two beta distributions.

Rates h, l and T are assumed to be same in each cell of the bank. Is the feed to the first cell of the bank (Figure 5.14). Concentrate recovered from a bank is the sum of concentrates from each cell. Particulate feed flows from one cell to the next cell of the bank. An analytical expression is derived for computation of holdup in jth cell of the bank.

5.2.1. COMPUTATION OF EXACT HOLDUP:

In first cell of the bank, the model equations are (4.30) and (4.31).

$$M_{p}^{1}(K) = \frac{(h+1)}{(hT+1T+K1)} \dot{f}^{1}(K)$$

$$M_{T}^{1}(K) = T M_{p}^{1}(K)$$

$$\dot{M}_{T}^{1}(K) = \frac{(h+1)T}{(hT+1T+K1)} \dot{f}^{1}(K)$$
(5.28)

In second cell, the model equation is

$$M_p^2(K) = \frac{(h+1)}{(hT+1T+KI)} M_T^1(K)$$
 (5.29)

substitution of (5.28) yields

$$M_p^2(K) = \frac{(h+1)^2 T}{(hT+1T+KI)^2} \dot{F}^1(K)$$
 (5.30)

similarly for jth cell of the bank the expression is

$$_{p}^{j}(K) = \frac{(h+1)^{j} T^{j-1}}{(hT + lT + Kl)^{j}} \dot{F}^{1}(K)$$
 (5.31)

and total hold-up is

$$\mu_{\mathbf{p}}^{\mathbf{j}} = \int_{0}^{\infty} \mu_{\mathbf{p}}^{\mathbf{j}}(\mathbf{K}) d\mathbf{K}$$
 (5.32)

The Pearson's and actual holdups are compared cell-wise in Figures 5.7 to 5.11. Pearson's holdups are in good agreement with exact value of holdups for different types of feeds to the bank.

The analytical expressions for total holdup (over all K's) in each cell are listed in appendix.

Thus validity of Pearson's closure technique for solving an incomplete set of moment equations has been demonstrated for a single cell and bank of cells.

Fig.5.3 Single flotation cell-feed in beta distribution.

Fig.5.4 Single flotation cell-feed-two beta distributions mixed in different proportions.

Fig. 5.5 Single flotation cell-feed-beta and rectangular distributions mixed in different proportions.

Fig. 5.6 Single flotation cell-feed beta and rectangular distributions mixed in different proportions.

Fig.5.7 Single bank-rectangular distribution No of cells/bank = 5, T = 0.1

Fig.5.9 Single bank-rectangular distribution. No of cells/bank = 5, T = 1

Fig. 5.10 Single bank - beta distribution (Gamma=1)

Fraction of first distribution in mixture, m_1 in $m_1f_1 + (1-m_1)f_2$ Fig. 5.11 Single bank-mixed beta distribution

No of cells/bank = 5, T = 0.1BETA₁ Y = 2, $\eta = 3$ BETA₂ Y = 3, $\eta = 2$

CHAPTER 6

CONCLUSIONS

The Pearson's closure technique has been verified, using those functions for which analytical results are available in the previous chapter. Therefore we infer, the Pearson's closure technique for solving the incomplete set of moment equations, that arise in formulation of a flotation model, is quite accurate.

It is concluded that this could be a powerful and versatile method for modelling flotation circuits.

LIST OF REFERENCES

- William Plain Elderton Frequency curves and correlations, Fourth edition.
- 2. B. Ball, P.C. Kapur and D.W. Fuerstenau, 1970 Prediction of grade recovery curves from a flotation kinetic model, Transactions of SME, Sept. 1970, Vol. 247.
- 3. P.C. Kapur and S.P. Mehrotra

 Modelling of flotation kinetics and design of optimum
 flotation circuits, Chapter 18. CHALLENGES IN MINERAL
 PROCESSING. SOCIETY OF MINING ENGINEERS INC.
- 4. Ashok Dey, P.C. Kapur and S.P. Mehrotra, 1989
 A search strategy for optimization of flotation circuits,
 Int. J. Min. Proc., Vol. 26, pp. 73-93.
- 5. P.C. Kapur and S.P. Mehrotra, 1973
 Phenomenological model for flotation kinetics, Trans.
 Inst. Min. Met., Vol. 82, pp. C229-C234.
- o. C.C. Harris and A. Chakravarti, 1970 Semi patch flotation kinetics: species distribution analysis, Trans. SME, Vol. 247, pp. 162-172.
- 7. T. Inoue and T. Imaizumi, 1968
 Some aspects of flotation kinetics, 8th Int. Min. Proc.
 Cong., pp. 1-15.
- Analysis of froth flotation kinetics, Trans. Inst. Min. Met., Vol. 75, pp. C219-C226.
- 9. S.P. Mehrotra and P.C. Kapur, 1975 Effect of particle size and feed rate on flotation rate distribution in a continuous cell, Int. J. Min. Proc., Vol. 2, pp. 15-23.
- 10. T.P. Meloy, 1983
 Optimization for grade of profit in mineral processing circuits circuit analysis, International Journal of Mineral Processing, Vol. 11, pp. 89-99.

- 11. H.S. Tomlinson and M.G. Fleming, 1965 Flotation rate studies, 6th Int. Min. Proc. Cong., Roberts, A., ed., Pergamon Oxford, pp. 563-579.
- E.T. Woodburn, H.W. Kropholler, J.C.A. Green and L.A. 12. Cramer, 1976 The utility and limitations of mathematical modelling in the prediction of the properties of flotation network, Flotation: A.M. Gaudin Memorial, Vol. 2, Fuerstenau, M.C., ed., AIME, pp. 638-674.
- E.T. Woodburn and P.J. Wallin, 1984 13. Decoupled kinetic model for simulation of flotation networks, Trans. Inst. Min. Met., Vol. 93, pp. C153-C161.

DATE 31/10/1990

FOR CONTINUOUS TYPE OF FLOTATION CELL

h = 1, 1 = 3, T = 0.1

Analytical expression for holdup in a single cell is

$$M_{P}(k) = \frac{(h + 1)}{K_{A}(hT + 1T + K1)} \dot{F}(k)$$

 $M_P = \int_{K_L} M_P(k) dK$ For feed in rectangular distribution

 $M_P = \int M_P(k) dK$ For feed in beta distribution

FEED IN RECTANGULAR DISTRIBUTION MEAN K=0.5

NO	INTERVAL	Ku -K1	PEARSON HOLDUP	ERROR	EXACT HOLDUP
1	0.000-1.000	1.00	283.81	-0.0001	285.34
2	0,100-0.900	0.80	247.83	0.0001	248.01
3	0.175-0.825	0.65	232.58	0.0000	232.62
4	0.250-0.750	0.50	222.61	-0.0005	222.61
5	0.325-0.675	0.35	217.24	0.0001	216.14
6	0.400-0.600	0.20	212.42	0.0001	212.30
7	0.450-0.550	0.10	210.98	0.0001	210.97
8	0.475-0.525	0.05	210.64	0.0000	210.64
9	0.490-0.510	0.02	210.55	0.0001	210.54

FOR CONTINUOUS TYPE OF FLOTATION CELL

h = 1, 1 = 3, T = 0.1

FEED IN CAMMA DISTRIBUTION MEAN K=0.5

NO	N	PEARSON HOLDUP	ERROR	EXACT HOLDUP (NUMERIC	AL)
		ngay mang daga dagan pilaga lagan daga daga tangi binan utur yang mani dagan dalah lagan daga daga daga daga d		and the same was done that this the same was the same than the same that the total time the same than the	
1	1	339.57	0.0000	339.55	
2	2	279.93	0.0000	280.10	
3	3	256.84	0.0000	256.90	
4	4	245.03	0.0000	244.60	
5	5	237.96	0.0000	236.14	
6	6	233.26	0.0000	233.00	
7	8	227.45	0.0000	227.72	
8	10	223.99	0.0000	224.36	
9	15	219.43	0.0000	220.06	
10	20	217.18	0.0000	216.91 -	
11	25	215.83	0.0000	215.49	
12	30	214.94	0.0000	214.91	
13	35	214.31	0.0000	214.84	

FOR CONTINUOUS TYPE OF FLOTATION CELL

h = 1, 1 = 3, T = 0.1

FEED IN BETA DISTRIBUTION

NO	GAMMA	ETA	MEAN K	PEARSON HOLDUP	ERROR	EXACT HOLDUP
1	1	1	0.50	283.8111	0.0000	285.4384
2	1	2	0.33	378.7507	0.0000	380.3270
3	1	3	0.25	445.1530	0.0000	446.5559
4	1	4	0.20	495.6951	0.0000	497.0039
5	2	1	0.67	190.4413	0.0000	190.5498
6	3	1	0.75	161.8711	-0.0003	161.8901
7	4	1	0.80	148.9964	-0.0001	149.0112
8	2	3	0.40	295,1752	0.0000	295.2119
9	3	2	0.60	200.5183	-0.0001	200.5265

FOR CONTINUOUS TYPE OF FLOTATION CELL

h = 1, 1 = 3, T = 0.1

MIXED FEED OF TWO BETA DISTRIBUTIONS

BETA1 - CAMMA=2 , ETA=3 , MEAN K= 0.4

BETA2 - GAMMA=3 , ETA=2 , MEAN K=0.6

BETA1 : BETA2 = m1:m2

NO	m 1	m2	PEARSON HOLDUP	ERROR	EXACT HOLDUP
1 2 3 4 5	0.10 0.20 0.25 0.30 0.40	0.90 0.80 0.75 0.70	210.03 219.52 224.25 228.97 238.37	0.0000 0.0000 0.0000 0.0000 0.0001	210.00 219.46 224.20 228.93 238.40

FOR CONTINUOUS TYPE OF FLOTATION CELL

h = 1, 1 = 3, T = 0.1

MIXED FEED OF BETA AND RECTANGULAR DISTRIBUTION

BETA1 - GAMMA=2 , ETA=3 , MEAN K= 0.4

Kl = 0 , Ku = 1

RECTANGULAR : BETA1 = m1:m2

NO m1	m2	PEARSON HOLDUP	ERROR	EXACT HOLDUP
0.10	0.90	294.16	0.0000	294.19
0.20	0.80	292.83	0.0000	293.21
0.25	0.75	292.13	0.0000	292.72
0.25	0.70	291.45	0.0000	292.22
0.30	0.60	290.11	0.0000	291.24

FOR CONTINUOUS TYPE OF FLOTATION CELL

h = 1, 1 = 3, T = 0.1

MIXED FEED OF BETA AND RECTANGULAR DISTRIBUTION

BETA1 - GAMMA=2 , ETA=3 , MEAN K= 0.4

K1 = 0.25 , Ku = 0.75

BETA1 : RECTANGULAR = m1:m2

NO	m 1	m2	PEARSON HOLDUP	ERROR	EXACT HOLDUP
1	0.10	0.90	229.48	0.0000	229.86
2	0.20	0.80	236.64	0.0000	237.12
3	0.25	0.75	240.30	0.0000	240.74
4	0.30	0.70	243.99	0.0000	244.37
5	0.40	0.60	251.42	0.0000	251.63

Analytical expression for holdup in 1st cell of the bank is

$$M_{p}(k) = ---- \hat{f}(k)$$
 $(hT + 1T + K1)$

$$K_{\mu}$$
 $M_{\rho} = \prod_{k \in \mathcal{N}} M_{\rho}(k) dK$ For feed in rectangular distribution

$$M_P = \int_0^1 M_P(k) dK$$
 For feed in beta distribution

Analytical expression for holdup in 2nd cell of the bank is

$$(h + 1)^{2}T$$
.

 $M_{p}(k) = ----F(k)$
 $(hT + 1T + KI)^{2}$

$$M_P = \sqrt{M_P(k)} dK$$
 For feed in rectangular distribution

$$M_p = \int_0^1 M_p(k) dK$$
 For feed in beta distribution

Analytical expression for holdup in 3rd cell of the bank is

$$(h + 1)^{3}T^{2}$$
 $M_{P}(k) = -----F(k)$
 $(hT + 1T + KI)^{3}$

$$K_{\mu}$$
 $H_{p} = K_{h} M_{p}(k) dK$ For feed in rectangular distribution

$$M_{p} = \int_{0}^{1} M_{p}(k) dK$$
 For feed in beta distribution

Analytical expression for holdup in 4th cell of the bank is

Analytical expression for not
$$43$$
 (h + 1) T .

 $M_p(k) = ----F(k)$ (hT + 1T + K1)⁴

$$M_P = \bigcup_{k \in \mathbb{N}} M_P(k) dK$$
 For feed in rectangular distribution

$$M_p = \int_{0}^{1} M_p(k) dK$$
 For feed in beta distribution

Analytical expression for holdup in 5th cell of the bank is

$$M_P = \int_{k_c}^{K_q} M_P(k) dK$$
 For feed in rectangular distribution

$M_p = \int_0^1 M_p(k) dK$ For feed in beta distribution

DATE 1/11/90

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.0 Ku =1.0

h=1 ; 1=3 ; T=0.1

10	MOMENT	INDEX FEED(Z)	HOLDUP (MENO) CONCENTRATE(ET	A) ERROR	EXACT HOLDUP
	0	100.0000	283.8110	71.6189	0.00021	285.3420
	1	50.0000	95.4919	40.4508		
	2	33.3333	53.9344	27.9399		
	3	25.0000	37,2532	21.2747		
	4	20.0000	28.3662	17.1634		
	5	16.6667	22.8845	14.3782		
	0	28.3811	113.3230	17.0488	0.00045	117.6470
	1	9.5492	22.7317	7.2760		
	2	5.3934	9.7014	4.4233		
	3	3.7253	5.8977	3.1355		
	4	2.8366	4.1807	2.4186		
	5	2.2885	3.2247	1.9660		
	0	11.3323	60.7440	5.2579	0.05843	65.7440
	1	2.2732	7.0105	1.5721		
	2	0.9701	2.0962	0.7605		
	3	0.5898	1.0140	0.4884		
	4	0.4181	0.6512	0.3530		
	5	0.3225	0.4706	0.2754		
	0	6.0744	39.5200		0.0000	44.3720
	1	0.7011	2.8299	0.4181		
	2	0.2096	0.5574	0.1539		
	3	0.1014	0.2052	0.0809		
	4	0.0651	0.1078	0.0543		
	5	0.0471	0.0724	0.0398		
	0	3.9520	28.6740		0.0000	33.3270
	1	0.2830	1.4461	0.1384		
	ė	0.0557		0.0373		
	3	0 0205	0.0497	0.0155		
	4	0.0108	0.0207	0.0087		
	5	0.0072	0.0116	0.0061		

the tails in the bank are 2.8674 the total concentrate is 97.13260 the total holdup is 526.07200

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.1 Ku =0.9

h=1 ; 1=3 ; T=0.1

NO	MOMENT TO	NDEX FEED	(Z) HOLDUP (ATE(ETA) ERROR	EXACT HOLDUP
1		100.000	0 247.8330	0 75.2167	0.00067	248.0130

2	2 3 4 5 0 1 2 3 4 5	30.3333 20.5000 14.7620 11.0717 24.7833 10.0289 5.3295 3.3338 2.2888 1.6631	53.2948 33.3385 22.8882 16.6309 73.3560 23.2636 10.2700 5.7366 3.6802 2.5611	25.0039 17.1662 12.4732 9.4086 17.4477 7.7025 4.3025 2.7602 1.9208	0.00021	73.7330	
3	0 1 2 3 4 5	7.3356 2.3264 1.0270 0.5737 0.3680 0.2561	25.3600 6.3995 2.2486 1.0695 0.6223 0.4077	4.7996 1.6864 0.8021 0.4667 0.3058 0.2153	. 0.00036	25.8230	
4	0 1 2 3 4 5	2.5360 0.6399 0.2249 0.1070 0.0622 0.0408	12.0090 1.7801 0.6159 0.2177 0.1136 0.0678	1.3351 0.4619 0.1633 0.0852 0.0509 0.0340	0.00000	10.2470	
5	0 1 2 3 4 5	1.2009 0.1780 0.0616 0.0218 0.0114 0.0058	5.9520 0.8076 0.1297 0.0648 0.0204 0.0124	0.6057 0.0973 0.0486 0.0153 0.0093 0.0055	0.00389	4.4310	

the tails in the bank are 0.5952 the total concentrate is 99.40480 the total holdup is 364.51000

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.175 Ku =0.825

h=1 ; 1=3 ; T=0.1

NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO	CONCENTRATE (E	TA) ERROR	EXACT HOLDUF
 1	0	100.0000	232.5830	76.7417	0.00100	232.6180
	1	50.0000	102.3223	39.7678		
	2	28.5208	53.0237	23.2185		
	3	17.7813	30.9579	14.6855		
	4	11.7544	19.5806	9.7963		
	5	8.0839	13.0618	6.7777		
·	0	23.2583	60.1000	17.2483	0.00016	60.1650
	1	10.2322	22.9977	7.9325		
	2	5.3024	10,5766	4.2447		
	3	3.0958	5.6596	2.5298		
	4	1.9581	3.3731	1.6207		
	5	1.3062	2.1610	1.0901		
	0	6.0100	18.7660	4.1334	0.00000	17.1940
	1	2.2998	5.5112	1.7487		
	ż	1.0577	2.3315	0.8245		
	3	0.5660	1.0993	0.4560		
	4	0.3373	0.6080	0.2765		
	5	1915.0	0.3687	0.1792		

4	0	1.8766	6.2650	1.2501	0.00950	5.3450
	1	0.5511	1.6668	0.3844		
	2	0.2332	0.5126	0.1819		
	3	0 1099	0.2425	0.0857		
	4	0.0608	0.1142	0.0494		
	5	0.0369	0.0658	0.0303		
5	0	0.6265	2.2040	0.4061	0.00001	1.7740
	1	0.1667	0.5415	0.1125		
	2	0.0513	0.1500	0.0363		
	3	0.0243	0.0483	0.0194		
	4	0.0114	0.0259	0.0088		
	5	0.0066	0.0118	0.0054		

the tails in the bank are 0.2204 the total concentrate is 99.77960 the total holdup is 319.91800

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.25 Ku =0.75

h=1 ; 1=3 ; T=0.1

10	MOMENT	INDEX FEED(Z)	HOLDUP (MEW)) CONCENTRATE(E	TA) ERROR	EXACT HOLDUP
1	0	100.0000	222.6070	77.7393	0.00003	222.6130
	1	50.0000	103.6524	39.6348		
	2	27.0833	52.8463	21.7987		
	3	15.6250	29.0649	12.7185		
	4	9.4531	16.9580	7.7573		
	5	5.9245	10.3431	4.8902		
:	0	22.2607	53.8540	16.8753	0.00000	52.5020
	1	10.3652	22.5004	8.1152		
	s	5.2846	10.8203	4.2026		
	3	2.9065	5.6035	2.3461		
	4	1.6958	3.1282	1.3830		
	5	1.0343	1.8440	0.8499		
	0	5.3854	13.8530	4.0001	0.01643	13.0930
	1	2.2500	5.3335	1.7167		
	2	1.0820	2.2889	0.8531		
	3	0.5603	1.1375	0.4466		
	4	0.3128	0.5955	0.2533		
	5	0.1844	0.3377	0.1506		
	0	1.3853	3.6140	1.0239	0.00153	3.4350
	1	0.5333	1.3652	0.3968		
	2	0.2289	0.5291	0.1760		
	3	0.1138	0.2346	0.0903		
	4	0.0595	0.1204	0.0475		
	5	0.0338	0.0633	0.0274		
	0	0.3614	0.8940	0.2720	0.00000	0.9410
	1	0.1365	0.3627	0.1003		
	ž	0.0529	0.1337	0.0395		
	3	0.0235	0.0527	0.0182		
	4	0.0120	0.0243	0.0096		
	5	0.0063	0.0128	0.0051		

the tails in the bank are 0.0894 the total concentrate is 99.91060 the total holdup is 294.82200

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.325 Ku =0.675

h=1; l=3; T=0.1

NO NOMENT INDEX FEED(2) HOLDUP (MEMO) CONCENTRATE(ETA) ERROR EXACT HOLDUP							
1 50.0000 104.3683 39.5632 266.0208 52.7509 20.7457 3 14.0313 27.6610 11.2652 4 7.8000 15.0202 6.2980 5 4.4479 8.3973 3.6082 2 0 21.7238 49.4010 16.7837 0.00989 47.9850 1 1 0.4368 22.3763 8.1990 2 5.2751 10.9320 4.1819 3 2.7661 5.5759 2.2085 4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0.00514 10.9370 1 2.2378 4.9595 1.7419 2 1.0932 2 3.3225 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0.2056 2 0.3762 2 0.2323 0.5016 0.1821 3 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1296 5 0.0314 0.0626 0.0251 5 0.0314 0.0626 0.0251 5 0.0314 0.0626 0.0251 5 0.0314 0.0626 0.0251 5 0.00095 4 0.0002 0.6120 4 0.00095 4 0.0002 0.6120 1 0.1197 0.38899 0.0808 2 0.0502 0.1077 0.3899 0.0808 2 0.0502 0.1077 0.0394 4 0.0121 0.0254 0.0525 0.00190 4 0.00095	NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO) CONCENTRATE(E	TA) ERROR	EXACT HOLDUP
2 26.0208 52.7509 20.7457 3 14.0313 27.6610 11.2652 4 7.8000 15.0202 6.2980 5 4.4479 8.3973 3.6082 2 0 21.7238 49.4010 16.7837 0.00989 47.9850 1 10.4368 22.3783 8.1990 2 5.2751 10.9320 4.1819 3 2.7661 5.5759 2.2085 4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419 2 1.0932 2.3225 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251	1	0	100.0000	217.2380	78.2762	0.00001	216.1440
3		•	50.0000	104.3683	39.5632		
4 7.8000 15.0202 6.2980 5 4.4479 8.3973 3.6082 2 0 21.7238 49.4010 16.7837 0.00989 47.9850 1 10.4368 22.3783 8.1990 2 5.2751 10.9320 4.1819 3 2.7661 5.5759 2.2085 4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419 2.2328 0.8609 3 0.5576 1.1479 0.4428 0.2344 0.2354 4 0.2945 0.5904 0.2354 0.2324 0.00285 2.5560 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 4 0 1.975 0.3762 0.3762 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 0.0470 0.0470 0.0470 5 0.0314 0.0626 0.0251 -0.00002 0.6120 5 0 0.3224 0.3000 0.2924 -0.0				52.7509	20.7457		
5 4.4479 8.3973 3.6082 2 0 21.7238 49.4010 16.7837 0.00989 47.9850 1 10.4368 22.3783 8.1990 2 5.2751 10.9320 4.1819 3 2.7661 5.5759 2.2085 4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419 0.00514 10.9370 2 1.0932 2.3225 0.8609 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 0.0314 0.0590 0.1821 3 0.1148 0.2428 0.0905 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 0.0002 0.0120 0.6120 </td <td></td> <td></td> <td></td> <td>27.6610</td> <td>11.2652</td> <td></td> <td></td>				27.6610	11.2652		
2 0 21.7238				15.0202	6.2980		
1 10.4368 22.3783 8.1990 2 5.2751 10.9320 4.1819 3 2.7661 5.5759 2.2085 4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419 2 11.0932 2.3225 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		5	4.4479	8.3973	3.6082		
2 5.2751 10.9320 4.1819 3 2.7661 5.5759 2.2085 4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419 2 1.0932 2.3225 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095	2	0	21.7238	49.4010	16.7837	0.00989	47.9850
3		1	10.4368	22.3783	8.1990		
4 1.5020 2.9447 1.2076 5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419			5.2751	10.9320	4.1819		
5 0.8397 1.6101 0.6787 3 0 4.9401 12.2050 3.7196 0.00514 10.9370 1 2.2378 4.9595 1.7419			2.7661	5.5759	2.2085		
3		4	1.5020	2.9447	1.2076		
1 2.2378 4.9595 1.7419 2 1.0932 2.3225 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		5	0.8397	1.6101 .	0.6787		•
2 1.0932 2.3225 0.8609 3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095	3	0	4.9401	12.2050	3.7196	0.00514	10.9370
3 0.5576 1.1479 0.4428 4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		1	2.2378	4.9595	1.7419		
4 0.2945 0.5904 0.2354 5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095			1.0932	2.3225	0.8609		
5 0.1610 0.3139 0.1296 4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		3	0.5576	1.1479	0.4428		
4 0 1.2205 3.2240 0.8981 0.00285 2.5560 1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		4	0.2945	0.5904	0.2354		
1 0.4959 1.1975 0.3762 2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		5	0.1610	0.3139	0.1296		
2 0.2323 0.5016 0.1821 3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.05502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095	4	0	1,2205	3.2240	0.8981	0.00285	2.5560
3 0.1148 0.2428 0.0905 4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		1	0.4959	1.1975	0.3762		
4 0.0590 0.1207 0.0470 5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		2	0.2323	0.5016	0.1821		
5 0.0314 0.0626 0.0251 5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		3	0.1148	0.2428	0.0905		
5 0 0.3224 0.3000 0.2924 -0.00002 0.6120 1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		4	0.0590	0.1207	0.0470		
1 0.1197 0.3899 0.0808 2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		5	0.0314	0.0626	0.0251		
2 0.0502 0.1077 0.0394 3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095	;	0	0.3224	0.3000	0.2924	-0.00002	0.6120
3 0.0243 0.0525 0.0190 4 0.0121 0.0254 0.0095		1	0.1197	0.3899	0.0808		
4 0.0121 0.0254 0.0095		2	0.0502	0.1077	0.0394		
		3	0.0243	0.0525	0.0190		
5 0.0063 0.0127 0.0050		4	0.0121	0.0254	0.0095		
		5	0.0063	0.0127	0.0050		•

the tails in the bank are 0.0300 the total concentrate is 99.97000 the total holdup is 282.36800

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.4 Ku =0.6

h=1; l=3; T=0.1

NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO)	CONCENTRATE (ET	A) ERROR	EXACT HOLDUP
1	0 1 2 3 4 5	100.0000 50.0000 25.3333 13.0000 6.7520 3.5467	212.4110 105.0119 52.6651 26.7558 13.7659 7.1672	78.7589 39.4988 20.0668 10.3244 5.3754 2.8299	0.00000	212.3020
2	0	21.2411	45.5770	16.6834	 0.00027	45.4550

	1	10.5012	22 2445	0.0747			
	ģ		22.2445	8.2767			
	_	5.2665	11.0356	4.1629			
	.5	2.6756	5.5506	2.1205			
	4	1.3766	2.8274	1.0939			
	5	0.7167	1.4585	0.5709			
3	0	4.5577	9.9000	3.5677	0.00010	9.8140	
	1	2.2245	4.7569	1.7488			
	2	1.1036	2.3317	0.8704			
	3	0.5551	1.1605	0.4390			
	4	0.2827	0.5853	0.2242			
	5	0.1458	0.2989	0.1160			
4	0	0.9900	2.1860	0.7714	0.00004	2.1370	
	1	0.4757	1.0285	0.3728			
	2	SEES.0	0.4971	0.1835			
	3	0.1161	0.2446	0.0916			
	4	0.0585	0.1221	0.0463			
	5	0.0299	0.0618	0.0237			
5	0	0.2186	0.3000	0.1886	-0.00031	0.4690	
	1	0.1029	0.2515	0.0777			
	2	0.0497	0.1036	0.0394			•
	3	0.0245	0.0525	0.0192			
	4	0.0122	0.0256	0.0097			
	5						
	5	0.0062	0.0129	0.0049			

the tails in the bank are 0.0300 the total concentrate is 99.97000 the total holdup is 270.37400

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.45 Ku =0.55

h=1 ; 1=3 ; T=0.1

NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO) CONCENTRATE (E	(A) ERROR	EXACT HOLDUP
1	0	100.0000	210.9720		0.00000	210.9650
	1	, 50.0000	105.2037	39.4796		•
	2	25.0833	52.6395	19.8194		
	3		26.4258			
	4	6.3751	13.3099			
	5	3.2295	6.7255	2.5569		
s .	0	21.0972	44.6070	16.6365	0.00001	44.5990
	1	10.5204	22.1820	8.3022		
	2			4.1570		
	3	2.6426	5.5427	2.0883		
	4	1.3310	2.7844	1.0525		-
	5	0.6726	1.4034	0.5322		
 3	0	4.4607	9.4540	3.5153	0.00001	9.4480
•	1		4.6871	1.7495		
	è	1,1070	2.3327	0.8737		
	3	0.5543		0.4378		
	4	0.2784	0.5837	0.2201		
	5	0.1403	0.2934	0.1110		
	0	0.9454	2.1000	0.7354	-0.00054	2.0060
,	1	V . V		0.3707		
	ģ	0.7333		0.1838		
	7	0.1165	0.2451	0.0920		
	.3	0.0584	0.1226	0.0461		

	5	0.0293	0.0615	0.0232			
5	0	0.2100	0.3000	0.1800	0.00004	0.4270	
	1	0.0981	0.2400	0.0741			1
	2	0.0494	0.0987	0.0395			-
	3	0.0245	0.0527	0.0192			
	4	0.0123	0.0257	0.0097			
	5	0.0061	0.0129	0.0049		•	

the tails in the bank are 0.0300 the total concentrate is 99.97000 the total holdup is 267.43300

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.475 Ku =0.525

h=1 ; 1=3 ; T=0.1

NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO)	CONCENTRATE (ET	TA) ERROR	EXACT HOLDUP
 1	0	100.0000	210,6360	78.9364	0.00000 .	210.6360
•	1	50.0000	105.2485	39.4751		
	ż	25.0208	52.6335	19.7575		
	3	12.5313	26.3433	9.8969		
	4	6.2813	13.1959	4.9617		
	5	3.1511	6.6156	2.4895		
	0	21.0636	44.3910	16.6245	0.00000	44.3900
	1	10.5249	22.1660	8.3083		
	2	5.2634	11.0777	4.1556		
	3	2.6343	5.5408	2.0803		
	4	1.3196	2.7737	1.0422		
	5	0.6616	1.3896	0.5226		
	0	4.4391	9.3600	3.5031	-0.00001	9.3600
	i	2.2166	4.6708	1.7495		•
	ż	1.1078	2.3327	0.8745		
	3	0.5541	1.1660	0.4375	•	
	4	0.2774	0.5833	0.2190		
	5	0.1390	0.2920	0.1098		
	0	0.9360	2.0000	0.7360	-0.00013	1.9750
	1	0.4671	0.9813	0.3689		
	z	0.2333	0.4919	0.1841		
	3	0.1166	0.2454	0.0921		
	4	0.0583	0.1227	0.0461		
	5	0.0292	0.0614	0.0231		
	0	0.2000	0.3000	0.1700	-0.00001	0.4170
	1	0.0981	7855.0	0.0755		
	ż	0.0492		0.0391		
	3	0.0245	0.0522	0.0193		
	4	0.0123	0.0258	0.0097		
	5	0.0061	0.0129	0.0048		

the tails in the bank are 0.0300 the total concentrate is 99.97000 the total holdup is 266.68700

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1 =0.49 Ku =0.51

h=1; l=3; T=0.1

40	HOHENT	INDEX FEED(Z)	HOLDUP (MENO) CONCENTRATE (E	TA) ERROR	EXACT HOLDUP
	0	100.0000	210.5440	78.9456	0.00000	210.5440
	1	50.0000	105.2608	39.4739		
	2	25.0033	52.6319	19.7401		
	3	12.5050	26.3202	9.8730		
	4	6.2550	13,1640	4.9386		
	5	3.1292	6.5648	2.4707		
: :	0	21.0544	44.3320	16.6212	-0.00001	44.3320
	1	10.5261	22.1616	8.3099		
	2	5.8632	11.0799	4.1552		
	3	8.6380	5.5403	2.0780		
	4	1.3164	2.7707	1.0393		
	5	0.6585	1.3858	0.5199		
;	0	4.4332	9.3350	3.4997	0.00000	9.3350
	1	2.2162	4.6663	1,7495		
	2	1.1080	2.3327	0.8747		
	3	0.5540	1.1663	0.4374		
	4	0.2771	0.5832	0.2187		
	5	0.1386	0.2917	0.1094		
	0	0.9335	2.0000	0.7335	-0.00002	1.9660
	1	0.4666	0.9780	0.3688		
	2	0.2333	0.4918	0.1841		
	3	0.1166	0.2455	0.0921 -		
	4	0.0583	0.1228	0.0460		
	5	0.0292	0.0614	0.0830		
	0	0.2000	0.3000	0.1700	0.00003	0.4140
	1	0.0978	0.2267	0.0751		
	ė	0.0492	0.1002	0.0392		
	3	0.0245	0.0522	0.0193		
	4	0.0123	0.0258	0.0097		
	5	0.0061	0.0129	0.0048		

the tails in the bank are 0.0300 the total concentrate is 99.97000 the total holdup is 266.51100

DATE 1/11/90

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION - KI - 0 0 Ku= 1.0

h=1 ; I=3 ; T-6 5

40	MOMENT	INDEX FEED(Z)	HOLDUP (MEW	O) CONCENTRATE	E(ETA)	ERROR	EXACT HOLDUP
ı	0	100 0000	122 1667	38.9166	- 0	.00012	122,1721
	1	50.0000	51 8889	24.0556	•		
	2	33 3333	32.0741	17 2963			
	3	25 0000	23 0617	13.4691			
	4	20 0000	17.9589	11.0206			
	5	16.6667	14 6941	9.3196			
?	0	61 0834	79.9752	21.0958	0.00	027	80.0000
	1	25.9444	28 1277	11.8806			
	2	16 0370	15.8408	8.1167	•		
	3	11 5309	10.8222	6.1197			
	4	8.9794	8.1597	4.8996			
	5	7.3470	6 5328	4.0806			
	0	39.9876	55.8189	12.0781	-0.5	1076	56.0000
	1	14 0638	16.1042	6.0118			
	2	7 9204	8.0157	3 9125			•
	3	5.4111	5 2167	2.8027			
	4	4 0798	3.7370	2.2113			
	5.	3 2664	2.9485	1.7928			
	0	27.9095	41 0903	7.3643	0.00	0000	41.6000
	1	8.0521	9.8191	3.1425			•
	2	4.0078	4 1901	1 9128			•
	3	a 6004	2 5504	1.3332			
	4	1 8695	1.7775	0 9797			
	5	1.4748	1.3063	0.8211			
	0	20.5451	31 5016	4 7943	0.000	01	32.4800
	1	4 9095	6.3925	1.7133			
	2	. 2 0950	2.2844	0.9528 -			
	3	1 2752	1 2704	0.6400			
	4	0.8888	0 9533	0.4621			
	5	0 6532	0.6161	0.3451			

the tails in the bank are 15.7508 the total concentrate is 84 04920 the total holdup is 330 55269

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.1 Ku= 0.9

h=1.; 1=3 ; T=0 5

NO	MOMENT	INDEX	FEED(Z)	HOLDUP (MEWO)	CONCENTRATE (ETA)	ERROR	EXACT HOLDUP
1	0 1 2 3 4		100.0000 50.0000 30.3333 0.0000 14.76a0 11.0717	119.1077 53.9282 30.7145 19.9681 14.0213 10.3352	40.4462 23.0359 14.9761 10.5160 7.7514 5.9041	0.00044	119.1089

2	0	57.5538	74 0003	22.5537	0.00117	74.0056
	1	26 9641	30.0716	11.9283		
	2	15 3573	15 9044	7 4051		
	3	9 9440	9 2734	5 0473		
	4	7 0106	6 7298	3 6457		
	5	5. 1676	4 8610	2.7371		
3	0	37 0001	47 9085	13.0459	0.09772	47.9222
	1	15 0358	17 3945	6 3386		
	2	7 9822	8 4514	3.7265		
	3	4 9367	4 2687	2 4584		
	4	3 36.49	3 2698	1 7300		
	5	2 4305	å 3066	1 2772		
4	0	. 23 9543	38 1905	7.8590	-0.11782	32.2479
	1	8 6272	10.4787	3 4579		
	è	4 2257	4 6105	1.9204		
	3	2.4843	2.5606	1 2040		
	4	1 6349	1 6054	0 8322		
	5	1 1533	1 1097	0.5985		
5	0	16 0952	22 3173	4.9366	0.00005	22.4568
-	1	5.2394	6 5821	1.9483		•
	è	2 3053	2.5977	1 0064		
	3	1.2803	1.3419	0.6094 .		•
	4	0 8027	0.8125	0 3964		
	5	0.5548	0.5286	0.2905	-	

the tails in the bank are 11.1586 the total concentrate is 88.84136 the total holdup is 295 52482

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.175 Ku= 0.825

h=1 ; 1=3 ; T=0.5

10	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO	CONCENTRATE (ET	A) ERROR	EXACT HOLDUF
- 	0	100.0000	117.3874	41.3063	0.00081	117.3878
	1	50 0000	55.0750	22 4625		
	è	28 5208	29.9500	13.5458		
	3	17 7813	18.0611	8.7507		
	. 4	11 7544	11.6676	5.9206		
	5	8 0837	7 8941	4 . 1 369		
	0	58.6937	70.7990	23.2942	-0.00126	70.8004
-	1	27 5375	31.0589	12.0081		
	ė	14 9750		6.9696		
	7		9.2928	4.3842		
	4	5 8339	5 8455	2.9110		
	5	3 9471	3 8814	2.0064		
		35.3095	44.0985	13.3503	-0.00017	43.8611
	•	15.5895		6,6293		
	·5		8 8391	3 5858		
	7	4 6464	4 7811	2.2559		
	.5	2 9228	3.0078	1 4189		
	5	1 9407	1.8918	0.9948		
		2ê 049î	28 2916	7.9085	0.18683	27.8749
	U			3.6279		

3 ē 3006 2.6679 1.4088 1.0660 · 1.0566 1 5039 0.7995 0.4169 4.9129 -0.00008 18.1395 4 5 14 1408 0 18 4557 6.5506 2.6627 1.4496 1.9970 1 5 2723 5 2.4196 1.0872 1.3340 3 0.6092 0 7044 0 5330 0.8122 4 0 2983 5 0 3977 0.3341

the tails in the bank are 9 2279 the total concentrate in 90 77213 the total holdup is 279.02227

. SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION KI= 0.25 Ku= 0.75

h=1 ; 1=3 ; T=0[5

NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO) CONCENTRATE(ETA) ERRO	R EXACT HOLDUP
1 2	0 1 2 3 4 5	100,0000 50,0000 27,0833 15,6250 9,4531 5,9245 58,1454 27,0031 14,7313 8,2347	16.4694 9.8537 6.0350 	41.8546 22.0969 12.3521 7.3903 4.5263 2.9070 23.7505 12.0694 6.6850 3.7780	0.00018	
3	5 0 1 2 3 4 5	4.7269 3.0175 34.3948 15.8337 8.0463 4.4567 2.5187 1.6054	5.0374 3.2109 41.2803 18.3396 8.8852 4.8049 2.7390 1.5323	2 4082 1.4121 	-0.00005	40.9963
4	0 1 2 3 4 5	20.6401 9 1698 4.4426 2 4025 1 3695 0 7661	24.9980 10 8548 4 9899 2.5969 1.4720 0.8446	8.1411 3.7424 1.9477 1.1040 0.6335 0.3438	-0.00014	24.9298
5	0 1 · 2 3 4	12 4990 5.4274 2 4949 1 2984 0 7360 0 4223		4.9185 2.1484 1.0627 0.5900 0.3427 0.1939	0.00009	15.3814

the tails in the bank are 7 5805 the total concentrate is 92 41948 the total holdup is 266.51971

SINGLE BANK WITH 5 CELLS

JNIFORM DISTRIBUTION K1= 0.325 Ku= 0.675

h=1 ; 1=3 ; I-0 5

 0	MOMENT INDI	x (FFD(Z)	Helper (HENO.	CONCENTRATECE	IA) ERROR	EXACT HOLDUP
		100 0000	11^6 ($> \le 7$	42 3986	0.00016	115.1546
	0	50 0000	16138 2	21 7342		
	1	EL 0708	16 TE 16	11 5313		
	2	14 0313	16 125 *	6 3437		
	3	7 9000	1 13 14	3 5709		
	4 5	4 4479	4 76 t m	S 0673		
		57 6014	66 HJO.4	24.1562	-0.04717	66.8093
2	0	28 2458	4.013	12 1616	*******	
	1	14 4975	16 + 12 &	6 3817		
	5	7 6876	# \$ P . n 2	3 4331		
	3	4 2591	4.522 4	1 9404		
	4	2 3806	profession and	1 0870		,
	5		, (a.), (.)	13 8808		70 0FFF
3	0	33 445.	10 t 0 7 45	6 8502	0.00023	39.0555
د	1	16 1041	91174			
	ė	0 1078	4 7, 5 4	3 5409		
	3	4 25,45	11,1	1 8739	•	
	4	21.2087	1 164 .	1 0261		
	5	1.2936	1 10-1 8	0 6095		
		19 5643	. 1 + 1 :		-0 00026	23.0024
4	0	9 25.39	14 i, ± 5	1 8003		
	1	4 5668	1 15 45	1 9739		
	2	\$ 3006	. 111 2	1 0447		
	3	1 1646	1 10, 3	0 4661		•
	4 5	0 6941	() 4 ² mk m ²	0 3067		
		11,5175	11 645	4 7045	0.00016	13.6470
2	5 0	5 3646	6 12 14	\$ 22.65		
	1	2 5929	, 4(1.0	1 1074		
	5	1 3160	1.478, 5.	0 5777		
	3	0 6964	0 11 11 2	0 3113		
	4	0 1714	0.415.3	0 1699		

the tails in the bank are 6 8130 the total concentrate is 93 18700 the total holdup is 257 88263

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION FIT 0 4 FOR BE

h=1 ; 1=3 ; T=0 5

HOM!	NT INDEX	FEE	D(Z) HIME	IMMED I CO	NEENTRATECET	A) E	RROR	EXACT	HOLDUP
0 1 2 3 4 5	THE PERSON NAME OF PERSON NAME OF	100 000 20 00 25 33 13 00 6 75 3 54	160 th 1912 2 133 pa 1914, 100 ta 144 a 110 ta 144	21 10 5	7141 5639 9841 6773 9671 5686	-0.0	0005	114.5668	
0 1 2 3	اللا الله الله الله الله الله الله الله	57 29 43 29 43 14 34 7 38	761 325118 493 1678 8 227 82707	6 7 3	952 2193 2031 1873 6600	0.0037	8 .	65.7895	

	5	1 9781	2.2133	0.8714		,	
3	0 1 2 3 4 5	32 2007 16 2569 9 1462 4 1354 2 1249 1 1066	37 8904 18 6073 9 2708 4 6811 2 3931 1 2378	13 9555 6 9531 3 5108 1 7948 0 9283 0 4878	0.00008	37.8722	:
4	0 1 2 3 4 5	18 7452 2 3037 4 6354 2 3405 1 1966 0 6189	21 8774 10 6753 5 6880 2.6552 1.3506 0.6950	8.0065 3.9660 1.9914 1.0129 0.5213 0.2714	-0.00012	21.8548	
5	0 1 2 3 4 5	10 9387 5 3377 2 6440 1 3276 0 6753 0 3475	12.6670 6 1403 3.0234 . 1.5098 0 7636 0.3913	4.6052 2.2675 1.1323 0.5727 0.2935 0.1518	0.00053	12.6424	

the tails in the bank are 6 3335 the total concentrate is 93 66650 the total holdup is 252.80788

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0 45 Ku= 0 55

h=1 ; 1=3 ; T=0.5

0	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO)	CONCENTRATE (ETA)	ERROR	EXACT HOLDU
	0	100.0000	114.3557	42.8221	-0.	00015	114.3558
	1	50,0000	57.0962	21.4519 -			
	2	25.0833	28 6025	10.7821	•		
	3	12 6250	14.3761	5.4370			
	4	6.3751	7.2493	2.7505			
	5	3.2295	3.6673	1.3958			•
	0	57 1779	65 4261	24.4648	-0.00	003	65.4263
	1	29 5481	32.6197	12.2382			
	2	14 3013	32.6197 16 3177	6.1424			
	3	7.1830		3.0931			
	4	3 6246	4 1241	1.5626			•
	5	1 8337	2.0834	0.7919			
	0	32 7131	37.4552	13.9855	0 000	02	37.4552
	1		18 6473				
	2		9.3149	3.5014			
	3	4.0950	4.6685	. 1.7607			
	4			0.8882			
	5	1.0417	1.1843	0.4496			
	0	18 7276	21.4553	7.9999	-0.00	017	21.4555
	1	9.3237	10.6666	3.9904			
	2	4 6575	5.3205	1.9972			
	3	2.3342	2.6629	1.0028			
	4	1 1738	1.3370	0.5053			
	5	0.5922	0.6737	0.2553			
	0	10.7277	12.2970	4.5792	-0.00	018	12.2979
	1	5 3333		2.2805			

٤	£ 6603	3.0407	1 1399
3	1.3315	1.5199	0 5715
4	0.6685	0.7620	0 2875
5	0.3369	0.3833	0.1452

the tails in the bank are 6.1485 the total concentrate is 93.85150 the total holdup is 250.98934

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION KI = 0.475 Ku = 0.525

h=1 ; 1=3 ; T=0.5

NO	MOMENT	INDEX FEED(Z)	HOLDUP (HENO) CONCENTRATE(ETA) ERROF	EXACT HOLDUP
1	0	, 100.0000	114.3037	42 8481	0.00021	114.3032
	1	50.0000	57.1309	21 4346		
	2	25.0208	28.5794	10 7311		
	3	12.5313	14.3082	5 3772		
	4	6.2813	7.1696	2.6965		
	5	3.1511	3.5953	1.3534		
2	0	57,1519	65.3377	24.4830	0.00007	65.3361
,	1	28.5654	32.6440	12 2434		
	2	14.2897	16.3246	6.1274		
•	3	7.1541	8.1699	3.0691		
	4	3.5848	4.0922	1.5387	•	
	5	1.7977	2.0516	0.7719		
 3	0	32.6688	37.3550	13.9914	0.00005	37.3521
	1	16.3220	18.6551	6 9944		
	5	8.1623	9.3259	3 4993		
	3	4.0850	4.6658	1 7521		•
	4	2.0461 .	2.3361	0.8780		
	5	1.0258	1.1707	0.4404		
4	0	18.6775	21.3617	7.9967	0.00017	21.3571
	1 .	9.3276	10.6622	3.9965		
	2	4.6630	5.3286	1.9987		
	3	2.3329	2.6649 .	1.0004		
	4	1.1680	1.3339	0.5011		•
	5	0.5854	0.6681	0.2513		
 5	0	10,6808	12.2200	4.5708	0.00026	12.2134
	ì	5.3311	6.0944	2.2839		
	p	2.6643	3.0452	1.1417		
	3	1.3324	1.5223	0.5713		
	4	0.6670	0.7617	0 2861		
	5	0.3341	0.3815	0.1433		

the tails in the bank are 6.1100 the total concentrate is 93.89000 the total holdup is 250.57808

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.49 Ku= 0.51

h=1 ; 1=3 ; T=0.5

0	HOMENT INDE	X FEED(Z)	HOLDUP (HEWO)	CONCENTRATE (ETA	ERROR	EXACT HOLDUP
1	0	100 0000	114 2987	42 8556	0 00009	. 114.2885
•	i		57 1409			•
	é	25 0011	28 5728	10 7170		
	3	12.5050	14.2893	5.3604		
	4	6.2550	7.1472	2.6814		
	5	3 1292	3.5752	1 3416		
2	0	57,1444		24.4286	0 00004	65.3109
	1	29 5704		12 2447		•
	2	14 2364		6 1232		•
	3	7 1416		3 0625		
	4	3.5736	4.0833	1.5319		
	5	. 1.7876	2.0426	0 7663		
3	0	32.6558	37 3240	13.9938	-0.00016	37.3233
	1	16 3257	18.6584	6.9965		
	è	8 1631	9.3287	3.4988		
	3	4 0000	4 6650	1 7496		
	4	3 0416	8 3300	0 8750		
	5	1 0213	1.1670	0 4378		
4	0	18.6620	21.3299	7 9971	-0.00004	21.3297
	1	9 3292	10 6628	3.9978		
	2	4.6644	5 1304	1 9992		
	3	2.3325	2.6656	0.9997		•
	4	1 1664	1 3330	0 4999		
	5	0 5835	0 6666	9028		
5	0		12.1880		-0.00014	12.1899
_	1		6 0945			
	2		3.0455			•
	3			0.5712		
	4	0.6665		0.2857		
	5	0 3333	0 3809	0 1429		

the tails in the bank are 6 0940 the total concentrate is 93.90600 the total holdup is 250.44207

DATE 1/11/90

SINGLE BANY WITH 5 CELLS

UNIFORM DISTRIBUTION KI= 0.0 Ku= 1.0

h=1 ; 1=3 , 1:1

10	MOMENT	INDEX FEED(Z)	HOLDUP (MEN	O) CONCENTRA	TE(ETA) ERRO	R EXACT HOLDUP
	0	100 0000	74.6153	25.3847	0.00310	74.6154
	1	50 0000	33 8463	16.1537		
	2	33 3333	21.5382	11.7951		
	3	25.0000	15.7268	9.2732		
	4 .	20 0000	12.3643	7.6357		
	5		10.1810	6.4857		
	0	74.6153	57 4291	17.1862	0.00001	57.1429
	1		22.9149			
	2			6.9630		
	3			6.4428		
	4		8 5904	3.7739		
	5	10 1810	5.0319	5.1491		
	0	57 4291	45.5014	11 9277	-3.02524	44.8980
	1	22 9149	15.9036	7.0113	-,	
	2	14.5752	9 3484	5.2269		
	3	9 2840	6.9691	2 3149		
	4	8.5904	3.0866	5.5038		•
	5	5.0319	7.3384	-2.3065		
	0	45 5014	36.7881	8.7733	-0.00001	36.1516
	1	15.9036	11.6978	4.2058		
	2	9.3484	5.6077	3.7407		
	3	6 9691	4.9876	1.9814		
	4	3 0866	2.6419	0.4447		
	5	7.3384	0.5929	6.7455		
	0		29 6387	7.0894	-0 00001	29.7793
	1	11 6978	9 4526	2.2452		
	2	5 6077	2.9936	2.6141		
	3	4.9876		1.5022		
	4	2 6419	2.0030	0.6389		
	5	0 5929	0.8519	-0.2590		•

the tails in the bank are 29,6387 the total concentrate is 70,36133 the total holdup is 243,91254

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.1 Ku= 0.9

h=1 ; 1=3 ; T=1

NO	MOMENT	INDEX FEED(Z)	HOLDUP (MEWO)	CONCENTRATE(ETA) ERROR	EXACT HOLDUP
1	3 1 0	100 0000 50.0000 30 3333 20 5000	74.0563 34.5916 20.5445 13.0518	25.9437 0.00000 15.4084 · · · 9.7888 7.4482	73.9154

	4 5	14 7620 11 0717	9.9310 6.4414	4.8310 4.6303			
2	0 1 2 3 4 5	74 0563 34 5916 20 5445 13 0519 9 9310 6 4414	55 8323 24.2986 13.7240 9 0939 5 2771 6 2051	18.2240 10.2930 6.8205 3 9578 4 6538 0.2363	-1.67117	55.5363	
3	0 1 2 3 4 5	55 8323 24 2986 13 7240 9 0939 5 2771 6 2051	42 7213 17.4814 9.0896 6.1792 3 8863 1.8544	13.1110 6.8172 4.6344 2.9148 1.3908 4.3507	0.00002	42.4088	
4	0 1 2 3 4 5	42 7213 17 4914 9 0896 6 1792 3 8863 1 8544	32.9878 12.9780 6.0045 4.1136 2.7542 1.5096	. 9.7335 4.5033 3.0852 2.0656 1.1322 0.3448	0.00000	32.8982	
5	0 1 2 3 4 5	32.5878 12 9780 6 0045 4.1136 2.7542 1 5096	25.4949 9.9905 3.9834 2.6947 1.8918 1.1498	7.4929 2.9876 2.0210 1.4189 0.8623 0.3598	0 00000	25.9067	

the tails, in the bank are 25.4949 the total concentrate is 74.50510 the total holdup is 231.09255

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION KI= 0.175 Ku= 0.825

h=1 ; l=3 ; T=1

МО	MOMENT	INDEX FEEU(Z)	HOLDUP (MEWO) CONCENTRATE(E	TA) ERROR	EXACT HOLDUP
1	0	100.0000	73,5638	26 4362	0.00001	73.5038
	1	50 0000	35.2483	14.7517		
	2	28.5208	19.6590	8.8519		
	3	17.7813	11.8025	5.9788		
	4	11 7544	7.9717	3.7827		
	5	8 0839	5 0436	3.0403		
	0	73.5638	54.7363	18.8275	-0.71777	54.6087
	1	35 2483	25.1033	10.1450		
	2	19 6690	13.5266	6.1424		
	3	11 8025	8.1898	3.6127		
	4	7 9717	4.8169	3.1548		
	5	5 0436	4 2064	0.8372	•	
	0	54 7363	41 1461	13.5902	-0.00001	41.0040
	1	25 1033	18,1203	6.9830		
	ż	13 5266	9.3107	4.2159		
	3	8.1898	5.6212	2.5686		
	4	4 3169	3.4247	1.3921		
	5	4.2064	1.8562	2.3502		

4	· o	41 1461	31,1786	9.9676	0 00001	31.1111	
	1	18 1203	13 2901	4 8302	•	•	
	5	9 3107	6 4403	2.8704			
	3	5 6212	3 8272	1.7940			
	4	3 4247	2.3920	1.0327			
	5	1 0562	1.3770	0.4792			
5	0	31 1786	23 7398	7.4387	0.00000	23.8447	_
	1	13 2001	9 9193	3.3718			
	2	6 4403	4 4957	1.9446	•		
	3	3,9272	2.5928	1 2345			
	4	∂ 30∂0	1 6460	0.7461			
	5	1 3770	0 9947	0.3822 .		·	
							-

the tails in the bank are 23 7398 the total concentrate 15 76 26016 the total holdup is 224 36465

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.25 Ku= 0.75

h=1 ; 1=3 ; T=1

NO	MOMENT	INDEX FEED(Z) HOLDUP	(MEWO) CONCENTR	ATE(ETA) ERROR	EXACT HOLDUP
1	0 1 2 3 4 5	100.0000 50.0000 27.0833 15.6250 9.4531 5.9245	35.7283 19.0290 10.7392 6.5145	8 0544	0.00000	73.1832
2	0 1 2 3 4 5		25.6865	3.2193 2.230	-0.24796	53.8947
3	0 1 2 3 4 5	53 9390 25 6965 13.3691 7 5198 4 2924 2 9627	39 9896 18 5991 9 4498 5 2524 3 0232 1 6924	3.9393 2.2674 1.2693	0 00001	39 9388
4	0 1 2 3 4 5	39 9896 18 5991 9 4498 5.2524 3 0232 1 6924	29.8095 13.5735 6.7008 3.6653 2.1162 1.2093	2.7490 1.5872 0.9070	-0.00001	29.7802
5	0 1 2 3 4 5	20 8095 13 5735 6 7008 3 6653 2 1162 1 2093	22.3189 9.9874 4.7814 2.5592 1.4748 0.8553	7.4906 3.5861 1.9194 1.1061 0.6414	0.00086	22.3406 .

the tails in the bank are 22.3189 the total concentrate is 77.68111 the total holdup is 219 26072

SINGLE FANY WITH 5 CELLS

UNIFORM DISTRIBUTION KI= 0 325 Ku= 0.675

h=1 ; 1=3 ; T=1

NO	MOMENT	INDEX (EFD(Z)	HOLDUP	(MEUO) CONCENTRATE	ETA) ERRO	R EXACT HOLDUP
1	. 0	100.0000	72.9543		0.00003	72.9494
	1		36.0610	13.9390		
	2		18.5854	7 . 4355		
	3	14 0313	9.9139	4.1173		
	4	7 8000	5.4897	2 3103		
	5	4.4479	3.0804	1.3676		
2	0	72 9543	53 3943	19.5600	0.04255	53.3789
	1	36 0610	26.0800	9.9810		•
	5	18 5854	13.3079	5.2774		
	3	9 9139	7 0366	2.8774		
	4	5 4897	3.8365	1 6533		
	5	3 0804	2.2043	0.8760		
3	0	53 3943	39 2075	14 1867	0 02204	39.1780
	1	50 0800	18 9156	7.1644		
	2	13 3079	9.5525	3.7554		_
	3	7.0366	5.0072	2.0294		•
	4	3 8365	2.7058	1 1306		
	5	2 2043	1 5075	0.6968		
4	0		28.8899	10.3177	0.00000	28.8424
	1	. 18.9156	13 7569	5.1587		
	2	9.5525	6 8783	2.6743		
	3	5.0072	3.5657	1.4415		
	4	2.7058	1.9220	0.7838		
	5	1.5075	1.0451	0.4624		
 5	0	28 8999	21.3623	7.5275	-0.02774	21.2974
	1			3.7202		
	2	6 8783	4.9603	1 9180		
	3	3 5657	2.5573	1.0084		
	4	1 9220	1.3445	0.5775		
	5	1 0451	0.7700	0.2751		

the tails in the bank are 21.3623 the total concentrate is 78.63767 the total holdup is 215.80827

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.4 Ku= 0.6

h=1 ; l=3 ; T=1

NO	MOMENT	INDEX (FEED(Z)	HOLDUP (MEWO) CONCENTRATE(ET	A) ERROR	EXACT	HOLDUP
1	0		0000	72.8003 36.2663	27,1997 13,7337	0.00094	72.7995	
	2	â5	3333	18.3116 9.3623	7.0217 3.6377			
	.4	6.	.7520 5467	4.8502 2.5357	1.9018			

2	0 1 2 3 4 5	78 8003 36 2663 18 3116 9 3633 4 8502 8 5357	53 0528 26.3300 13.2484 6.7509 3 4819 1 8244	19.7475 9.9363 5.0631 • 2.6115 1.3683 0.7113	0.00128	53.0504
3	0 1 · 2 3 4 5	53.0579 60.3340 13.2484 6.7509 3.4819 1.8244	38.7019 19.1345 9.5940 4.8766 2.5043 1.3035	14.3509 7.1955 3.6545 1.8782 0.9776 0.5209	0.00177	38.6972
4	0 1 2 3 4 5	38 7019 19 1345 9 5940 4 8726 2 5043 1 3035	28.2630 13.9186 6.9545 3.5192 1.8045 0.9331	10.4389 5.2159 2.6394 1.3534 0.6998 0.3704	0 00052	28.2554
5	0 1 2 3 4 5	88 2630 13 9186 6 9545 3 5102 1 8045 0 9331	20 6627 10.1337 5 0465 2.5441 1 3002 0 6724	7 6003 3.7849 1 9080 0 9752 0 5043 0 2607	0.00073	20.6516

the tails in the bank are 20.6627 the total concentrate is 79 33728 the total holdup is 213 48073

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION KI= 0 45 Ku= 0.55

h=1 ; 1=3 ; T=1

0	MOMENT	INDEX	FEED(Z)	HOLDUP	(MEWO) CONCENTR	ATE(ETA) ERROR	EXACT HOLDUP
1	0	1	100 0000	72 7453	27.2547	0.00001	72.7453
	1		50.0000	36.3395	13.6605		•
	2		25 0833	18.2140	6.8694		
	3		12 6250	9.1592	3.4658.	·	
	4		6 3751	4 6211	1 7540		
	5		3 2295	2 3387	0.8908		
	0		72 7453	52 9319	19.8135	-0.00095	52.9319
	1	•	36 3395	26.4180	9 9215		
	2		18.2140	13.2287	4.9852		•
	3	•	9 -1592	6.6470	2.5122		
	4		4 6211	3.3496	1.2715		
	5		2 3387	1 6953	0 6434		
	0		52.9319	38.5241	14.4077	0.00000	38.5246
	1		26 4180	19.2103	7.2077		
	2		13 2297	9.6103	3.6185		·
	3		6 6470	4.8246	1.8223	•	
	4		3.3496	2.4298	0.9199		
	5		1 6953	1.2265	0.4688		
	0		5241	28.0445	10.4796	0.00000	28.0457
	ĭ	-	19 2103	13.9728			

	2 3 4 5	9 6103 4 8246 2 4298 1 2265	6.9833 3.5026 1.7627 0.8894	2.6269 1.3220 0.6671 0.3370		•	
5	0 1 2 3 4 5	28 0445 13 9728 6 9833 3 5026 1 7627 0.8894	20 4200 10 1660 5 0758 2.5434 1.2790 0.6450	7.6245 3.8068 1.9075 0.9592 0.4838 0.2444	0.00000	20.4222	

the tails in the bank are 20.4200 the total concentrate is 79.57996 the total holdup is 212.66590

SINGLE BANK WITH 5 CELLS

UNIFORM DISTRIBUTION K1= 0.475 Ku= 0.525

h=1 ; l=3 ; T=1

NO	MOMENT	INDEX FEED(Z)	HOLDIN (MEWO) CONCENTRATE	(FTA) EDDO	OR EXACT HOLDUP
1				TEWOT CONCENTRATE		
•	0 1	100 0000	72.7318	27.2682	0.00001	72.7318
	່ ຊໍ	50.0000	36.3576	13.6424		
	3	25.0208	18.1898	6.8310		
	4	12 5313	9 1080	3.4233		
	5	6.2813	4.5643	1.7169		
		3.1511	2.2892	0.8618		
2	0	72.7318	52.9024	19.8294	0.00001	52.9024
	1	36 3576	26 4392	9.9185		
	2	18.1898	13.2246	4.9652		
	3	9.1080	. 6.6203	2.4877		
	4	4.5643	3.3169	1.2474		
~~~	5	2.2892	1.6633	0.6260	•	•
3	0	52 9024	38.4816	14.4208	0.00000	38.4816
	1	26 4392	19.2277	7.2115		
	2	13.2246	9.6153	3.6093		•
	3 ·	6.6203	4.8124	1.8079		
	4	3.3169	2.4106	0.9063	•	
	5	1 6633	1.2085	0.4548	•	
4	0	38.4816	. 32.00 25	10.4880	0.00000	27 9976
	1 .	19.2277	13.9840	5.2436		21.7750
	2	9.6153	.6.9915	2.6238		
	3	4 8124	3.4984	1.3140		
	4	2.4106	1.7520	0.6586		
	5	1.2085	0.8781	0.3304		
 5	0	27 9936	20 7/57	7.6283	0.00004	20 7457
	1	13.9840	10.1711	3.8130	0.0004	CV. 3033
	ż	6 9915	5.0840	1.9075		
	3	3 4984	2.5434	0.9551		
	4	1.7520	1.2734	0.4786	· •	
	5	0.8781	0.6381	0.2400		
		~ · · · · · · · · · · · · · · · · · · ·	V.0301	V.LTVV		

the tails in the bank are 20.3653 the total concentrate is 79.63468 the total holdup is 212.47478.

SINGLE BANK WITH 5 CELLS

# UNIFORM DISTRIBUTION KI = 0 49 Km = 0 51

h=1 ; 1=3 ; T=1

 NO	MOMENT	INDEX (EED(Z)	HULDUP	(MENO) CONCENTRATE	(EIA) ERROR	EXACT HOLDUP
1	0	100 0000	72 7280	27 2720	0 00001	72 7200
•	1 .	50 0000	76 7627	13 6373 .	0.00001	
	ż	25 0033	18.1831	9 8505		
	3	12.5050	9.0936	3.4114		
	4	6.2550	4.5485	1 7065		
	5	3,1292	2,2754	0.8538		
2	0			19 8339	0.00000	52.8941
	1	36 3627	26.4451	9.9175		
	2	18.1831	13.2234	4.9597		
	3	9.0936	6.6130	2 4907		
	4	4 5485	3.3076	1 2409		
	5	2.2754	1.6546	0 6208		
3	0	52 R941	38 4696		0 00000	38.4696
	1	26 4451,	19 2327	7 2124		
	2	13 2234 >		3 6068		•
	3	6.6130	4.8091	1 8039		
	4	3 3076	2.4052	0 70.3		
	5	1 6546	1 2031	0 4514		
4	0		27.9790	10.4906	-0.00001	27.9790
	1	19 2327	13.9875	5.2452		
	2		6.9936 3 4973	2 6229 1 3118		
	3	4 8091	3 4973	1 3118		
	4		1 7491	0 6565		1
	5	1 2031	0.8749	0 3282		,
5	0				0 00000	20.3494
	1	13.9875				
	2			1 9075		
	3	3.4973	2 5433	0.9539		
	4	1.7491	1.2719	0 4771		
	5 .	0.8749	0.6362	0.2387		

the tails in the bank are 20.3494 the total concentrate is 79 65061 the total holdup is 212.42016

### DATE 30/10/90

### SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION CAMMA- 1 ETA- 1

h=1 ; 1=3 ; T=0.1

NO	HOHENT	INDEX FEED(Z)	. HOLDUP (MENO)	CONCENTRATE	ETA) ERROR	EXACT HOLDUP	HOLDUP BY ACTUAL INTEGRATI
ī	0 1 2 3 4	100 0000 30.0000 33.3333 25 0000 20 0000 16 6647	293.8109 95 4919 53 9344 37.2532 28 3662 22.8845	71 6189 40 4508 27 9399 21.2747 17.1634 14.3782	9 00009	285,4384	285.34
2	0 1 2 3 4 5	25.3811 9.5492 5.3934 3.7253 2.9366 2.2885	113 3222 22 7318 9 7013 5 9977 4 1807 3 2247	17.0489 7.2760 4.4233 3.1355 2.4186 1.9660	0 000(1	117 8417	117.64
3	0 1 2 3 4 5 5	11 3322 2 2732 0 9701 0 5338 0 4181 0.3225	61,0360 6 9715 2.1014 1.0133 0 6513 0.4766	\$ 2286 f.\$760 0.7600 0.4884 0.3527 0.2754	0 05921		65 74
4 ,	0 1 2 3 4 5	6.1036 0 6971 0 2101 0 1013 0 0651 0.0471	40.2065 2 7773 0.5592 0 2056 0.1077 0.0725	2.0930 0.4194 0.1542 0.0909 0.0544 0.0399	0.00000	44 7610	44.37
5	0 1 2 3 4 5	4.0207 0.2777 9.0559 0.0206 0.0108	29.7293 1.3971 0.1840 0.0500 0.0507 9.0116	0 478 0 1790 0 0375 0.0186 0 0097 0 0061	0.00000	33.9123	33.32

the tails in the bank are 2 9729 the total concentrate is 97.02717 the total holdup is \$28.10390

SINGLE BANK WITH 5 CELLS

## BETA DISTRIBUTION CAMMA- 1 ETA- 2

h=1 ; 1=3 ; T=0 1

10	HOHENT	INDEX	FEED(Z)	HOLDUP	(HEUS) CON	CENTRATE (ETA)	ERROR	EXACT HOLDU	P HOLDUP	BY ACTUAL	INTEGRATIO
)	0		100 0000	370.750	5 62.1	249	0.00001	380.3270	380.	11	
	1 .		33 3333	82.8333	25.0						
	. 2		16.6667	33.4000	13 3		•				
	3		10.0000	17.7689	8 . Ri						
	2		4.6667	1 10.9641	\$ \$1						
	. 5		4.7619	7.4270	4.01	192					
	0		7.8751	186.4680	19.228	3 0.	00001	190.9910	190.5	7	
	1		8 2833	25.6377	5.71	96					
	2		3 3400	7 6261	2 57	74					
	3		1.7769	3.4365	1.43	32					
	4		1.0764	1.9110	0.90	53					
	5		0.7427	1.2071	0.62	50					
	0	• 1	8.6468	113.2572	7.321	1 0.	02066	118,2572	117.6	5	
	1	•	2 5638	9 7614	1.58						
	2		0 7626	2.1168	0 55						
	3		0 3437	0.7346	6 27						
	4		0.1911	0.3603	0.15	51					
	5		0.1207	0.2068	0.10	00	•				
	0		1.3257	79.8181	3 '3439	0.0	0000	83.8486	83.04		
•	1	-	0.9761	4.4585	0.53	03					
	2		0 2117	0.7071	0.14	10					
	3		0.0735	0.1880	0 05	47		•			
	4		0 0360	0 0729	0 02	87					
	5		0 0207	0 0383	0 01	6.0					
	0		7.9816	62.0669	1.7751	0.0	0000	64 7049	63.71		
	1		0 4459	2.3668	0 20	92					
	5		0.0707	0 2789	0 04	29					
	3		0 0199	0 0571	0.01						
	4		0 0073	0 0175	0 00						
	5		0.0038	0.0074	0.00	31					

the tails in the bank are 6 2067 the total concentrate is 93 79331 the total holdup is \$20 36070

SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION CANHA- 1 ETA- 3

h=1 ; 1=3 ; T=0 1

NO	MOHENT	INDEX FEED(Z)	HOLDUP (MEWO)	CONCENTRATE	(ETA) ERROR	EXACT HOLDUP	HOLDUP BY ACTUAL INTEGRATION
1	0	100 0000	445,1529	55 4947	0 00000	446 5559	446.19
•	i	25 0000	73 9796	17 6020	• • • • • • • • • • • • • • • • • • • •		
	è	10.0000	23.4694	7 6531			
	3	5.0000	10.2041	3.9796			
	4	2 9571	5 3061	2 3255			
	5	1 7957	3.1020	1 4755			
2	6 .	44.5153	244 6798	20.0474	0.00000	248,6193	247.96
_	1	7.3980	26.7299	4.7250	******		
	2	2 3469	6.3000	1.7169			•
	3	1 0204	2.2893	0.7915			
	4	0 5306	1 0553	0.4251			
	5	0 3102	0.5668	0.2535			
3	0	24.4679	157.8390	8,6840	0.00915	162.8390	161.89
-	i	2 6730	11.5786	1.5151			
	ż	0.6300	2 0202	0.4280			
	3	0.2289	0.5706	0.1719			
	4	0.1055	0.2291	0.0826			
	5	0.0567	0.1102	0.0457			
4		15.7039	113.8913	4.3948	0.00006	118.8913	117.65
•	- 1	1.1579	5.8597	0.5719			
		0.2020	0.7625	0.1258	•		

	3 4 5	0 0571 0 1677 0 0229 0 0537 0 0110 0 0234	0 0403 0 0175 0.0087			·	
5	0 1 2 3 4 5	11 3891 98 1906 0 5860 2.0934 0 0763 0.5022 0 0168 0.0347 0 0054 0.0177 0 0023 0.0048	1.5701 0.3766 0.0260 0.0133 0.0036 0.0019	0.00000	93.2286	91.71	

the tails in the bank are 9 8191 the total concentrate is 90.18094 the total holdup is 1059.75260

SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION CAMMA- 1 ETA- 4

h=1 , 1=3 , T=0 1

NO	MOMENT IND	' F3ED(2)	HOLDUR (HEMO)	CONCENTRATE (ET	TA) ERROR	EXACT HOLDUP	HOLDUP BY ACTUAL INTEGRATION
1	0 1 2 3 4 5	100 Jv00 2) 0000 6 6647 2 8571 1 4286 0 7937	495 6949 67 2407 17 7012 6 5297 2 9390 1 5129	50 4305 13 2759 4 8965 2.2043 1 1347 0 6424	0 00000	497.0039	496 . 45
2	0 1 2 3 4 5	49 5675 6 7241 1 7701 0 6529 0 2939 0 1513	292.2516 27.0458 5 3593 1 6456 0 6511 0 3051	20 2943 4 0195 1 2342 0 4533 0 2238 0 1238	0 00000	296 3036	295.37
3	0 1 2 3 4 5	29 2952 2 7046 0 5359 0 1646 0 6651 6 0305	196 9689 12.7977 1 8997 0 4613 0 1579 0 0659	9 5783 1 4848 0 3460 9 1:54 0 0473 0 6239	0 00419	201 9688	200 55
4	0 1 2 3 4 5	19 626) ; 27:9 0 1900 0 0461 0 0152 0 9066	153 7038 5 4260 0 9746 0 1233 0 0451 0 0150	4 1169 0 7310 0 5525 0 9338 0 0113 0 0051	Ů ÜÖIDB	150 7088	151 19
5	0 1 2 3 4 5	15 5709 0 5438 0 0975 0 0123 0 0045 0 0015	124 7425 4 1286 0 1812 0 1058 0 0023 0 0057	3.0966 0 1359 0.0793 0.0018 0.0043 0.0009	0.00277	119.7425	117.65

the tails in the bank, are 12.4743 the total concentrate is 87.52575 the total holdup is 1265.86660

SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION CAMMA- 2 ETA- 1

h=1 ; 1=3 , T=0 1

NO.	HOMENT INDE	FEED(Z)	HOLDUP (MEU0)	CONCENTRAT	C(ETA) ERROR	EXACT HOLDUP	HOLDUP BY ACTUAL INTEGRATION	1
1	0 1 2 3 4 5	100 0000 66 6667 50 0000 40 0000 33 3333 29 5714	. 190 4408 107 9412 74 4967 56 7338 45 7688 38 3419	80 9559 55 8725 42 5503 34 3266 28.7565 24 7372	0 00008	190.5498	190.58	-
2	0 1 2 3 4 5	19 0441 10 7941 7 4497 5 6734 4 5769 3.8342	44.3579 19 4777 11 7951 8 3602 6 4498 5 2425	14.6083 8 8464 6 2702 4.8374 3.9319 3 3099	0 00072	44 6924	44.71	;
3	0 1 2 3 4 5	4 4353 1 9478 1 1795 0 6360 0 6450 0 5243	13 ±729 4 1447 2 0444 1 3001 0 7413 0 7345	3 1085 1.5333 0.9751 0 7060 0 5508 0 4509	0.00003	13.8149	13.84	
4	0 1 2 3 4 5	1 3273 0 4145 0 2044 0 1300 0 0041 0 0734	5 0078 1 1020 0 4057 0 2185 0 1442 0 1063	0.8265 0.3043 0.1639 0.10%2 0.0797 0.0629	0 00006	5.6733	5 70	
5	0 1 2 3 4 5	9 5003 0 1102 0 0406 0 0219 0.0144 0.0106	2 2190 9 3718 9 9974 0 9411 0 0237 0 0161	0 2739 0 0730 0 0305 0 0177 0 0121 0 0090	0 00003	2 9197	a.95	

the tails in the bank are 0 2219 the total concentrate is 99 77810 the total holdup is 255.29840

SINGLE BANK WITH S CELLS

BETA DISTRIBUTION GAMMA T ETA- 1

h=1 ; 1=3 , T=0 1

NO	HOMENT	INDE:	FEE	5(2)	HOLE	JUP	(HE40)	co	NCENTR	RATECETA	) ERRO	₹ 6	XACT	HOLDUP	HOLDUP	BY	ACTUAL	INTEG	RATIO	N
1	0 1 2 3 4 5		100 00 75 00 60 00 50 00 42 85 37 50	00 00 00 71	165. 111. 85.1 68.6 57.5 49.4	317 577 456 139	3	63 51. 43 37.	4879 3.8683 4842 1354 1058 5526		0.00000	16	1.89	01	161	88				
2	0 1 2 3		16.512 11.13 8.51 6 86 5.75	17 58 46		013	•	7. 5.	3116 2742 8947 9654	0	. 22835	29.	1715		29,1	7				

	\$	4 9474	6.6206	4.2854				
3	0 1 2 3 4 5	2.8611 1.8201 1 2415 0 9409 0 7840 0 6621	5.1515 3 1279 2 6096 1 3674 1 1002 0.9002	2.3459 1.5073 1.0406 0.8312 0.6751 0.5720	0.00010	6.1755	6.17	
,4	0 1 2 3 4 8	0.5152 0 3125 0 2010 0.1357 0 1108 6 0000	0.9740 0 5570 0 3428 0 6623 0 1554 0 1270	0 4178 0 2571 0 1667 0 1165 0 0953 0 0773	6.00002	1.6283	1.62	
5	0 1 2 3 4 5	6 0974 0 0557 0 0343 0 0222 0 0155 0 0127	0.6610 0.497 0.0676 0.6367 0.6247 0.6247	0 0373 0.0507 0.0275 0.0275 0.0186 0.0131	0 00319	0 5507	0.55	

the tails in the bank are 0 0601 the total concentrate is 99 93990 the total noldup is 200 45760

SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION CAMMA- 4 ETA- 1

het : 1-3 : 1-6 t

NO	HOHENT	INDEX FEED(Z)	HOLDUP (MENO	) CONCENTRATE(E	TA) ERPOR	EXACT HOLDUP	HOLDUP BY ACTUAL INTEGRATION
1	0	160 0006	150 2162	R4 5790	0 00(01	149 0112	148 99
	1	40 0000 66 6667	113 3553 91 ES33	68 6695 57 5107			
	ž	57 1429	76 6810	49 4748			
	4	50 0000	65.9663	43 4034			
	5	44.4444	57 9712	36 6573			
e	•	15.0210	E3 7424	12 6464	0 12227	23 5944	23 59
	1	11 3305	16 4624	9 6443			
	2 .	9.1559	12 9591	7 E700			
	3	7 6681	10 4934	6 6198			
	4	€ 5966	8 £250	5 7141			
	5	£ 7671	7 6168	5.0252			
3	0	2 3742	3.8310	1.9911	0 00000	4.0882	4.09
	1	1.6862	2.6549	1 4208			
	2	1 5653	1 9943	1 0965			
	3	1.0493	1 4620	6 9031			
	2	0.8525	1.2042 1.0161	0 7621 0.6603			
		0.7619	1.0161	0.8803			
4	0	0.3831	0.5790		0.00002	0.R084	0.81
	1	. 0 2655	0 4336	1555 0			•
	2	0.1694	0 2962	0 1598			•
	3	0 1462	0 2131	0.1249 0.1038		,	
	2	0.1264 0.1616	0 1665	0.0878			
		V 1010					
5	0	0 0579	0 5000	0 0079	0 00367	0 1916	0.19
	1	0.0434	0 0105	0.0423			
	ã`·	0.0296	0 0564	0.0240			
	ī	0.0213	0.0320	0.0181			
	ā	0.0167	0.0241	0.0142			
	Ė	0.0138	0.0190	0.0119	•		

the tails in the bank are 0.0579 the total concentrate is 99.94210 the total holdup is 178.36260

SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION CAMMA= 2 ETA= 3

h=1 ; 1=3 ; T=0 1

10	HOHENT INDE	X F	FEED(Z)	HO	LDUP (HEU0)	CONCENTRATE	ETA) EFRUR	EXACT HOLDUP	HOLDUP BY ACTUA	L INTEGRATION
	0 1 2 3 4	40 20 11 7	6266 4256	93 40 21	7754 9766 6031 2263 4079 2694	76 4825 36 6023 15 9197 9 3656 5 9021 3.9750	0.00001	295.2119	294.15	
	0 1 - 2 3 4 5	29 5 9. 4 E		2 F 4 2	7356 1521 2201 2675 7721	19 0017 € 6641 3 1651 1.7006 1 0140 € 6517	0 00061	105.5662	105 57	
	0 1 2 3 4 5	10.5 2 0 0	159 9736 9152 ~220 2207 1352	47 6	116 (317 3072 9127 4410 2435	C 2236 1 7304 0 6845 U 3307 0 1826 0 1109	0 00001	45 7495	45 90	
	0 1 2 3 4 5	0	921 6032 2307 (813 6441 0244	2e 3	153 . 1	1.6706 (.5804 0.1533 0.0708 (.0347 6.0197	0 00066	23.4388	23.59	
	0 1 2 3 4	0 ( 0 (	215 2227 0774 0204 0046	0	228 1 3562 1159 0077 0156	0187 0.0869 0.0658 0.0117 0.0079	0 00435	13 6868	13 64	

### SINGLE BANK WITH 5 CELLS

BETA DISTRIBUTION GAMMA= 3 ETA= 2

h=1 ; 1=3 ; T=0 1

1	0	100 0000	200 51AS	79.9431	0.00004	800.5865	200.50
•	ĭ	60 0000	106.5975	49.3402	0.00004	200,5205	200.50
	è	40 0000	65 7870	33.4213			
	3	28.5714	44.5617	24.1153			
	4	21.4286	32,1537	18.2132			
	5	16.6667	24.2843	14.2382			•
	0	20.0519	12 1166	15.1402	0 00000	45 9026	45.90
	1	10 6593	20 1869	8.6411			
	2	6.5787	11.5214	5.4266			
	. 3	4.4562	7.2354	3.7326			
	4	3.2154	4.9769	2.7177			
	5	2.4231	3.6236	2.0661			
	0	4.9117	18 1656	3.6951	0.05606	12.4376	12.44
	1	2.0187	4.9269	1.5860			
	2	1.1521	2.0347	0.9487			•
	3	0.7235	1.2649	0.5971			
	4	0 4977	0.7961 -	0.4181			
	5 .	0.3624	0.5574	0 3066			•
_	0	1.2166	3.0310	0.9135.	0.00030	4.0880	4.09
	1	0.4927	1.2179	0 3709			
	5	0 2035	0.4945	0 1540	•		
	3	0 1565	0.2054	0 1060			
	1	0.0776	0 1413	0 0655			
_	5	0.0557	0.0873	0 0470			
_	0	0.3031	0.7650	0.8866	0 00006	1.6282	1,63
	1	0.1218	0.3021	0.0216			
	2	0 0495	0.1221	0.0372			
	3	. 0 0205	0.0497	0 0156			
	4 '	0.0141	0.0208	0 0121			
	5	0.0087	. 0.0161	0.0071			

### DATE 30/10/70

SINGLE BANK WITH 5 CELLS

CAMMAI - 2, ETAI - 3, m1 - 0 10

CANHAZ- 3, ETA2- 2, m2- 0 90

h=1 : 1=3 : T=0.1

40	HOHENT IN	DEX FFCD(Z)	HOLDUP (HENO	CONCENTRATE	(ETA) ERROR	EXACT HOLD	IP HOLDUP BY ACTUAL IN	TEGRATION
1	0	100 0000	1250 015	78 9975	0 00004	209 9951	209 90	
	1	58 0000	105.3300	47.4670				
	5	33 0000	63.2493	31 6711				
	3	1725 98	42 2281	55 9341				
	1	20 1000 15 4762	30 1791 22 6429	16 9931 13,2119				
		15 4/62		13.6117				
2	٥	21 0025		15 8176	0 00071	51 8690	51 87	
	t ,	10 5330	21 0901	8 4240				
	2	6 3839	11 2320	5 2057				
	3	4 2228	6 2410	3 5297				
	4	3 0179	4.7049	2.5474				
	5	2.2643	3 3966 ,	1.9246				
	0	5.1849	15 6789	3 6170	0 00026	15 7683	15 78	
	ſ	2 1090	4 9227	1 6257				
	2	1 1535	2 1690	0 9063				
	3	0 6941	1.2084	0.5733				
	4 .	0.4705	0 7643	0 3941	•			
	£	0 3397	0 5254	0 2971				
		1.5679	4 3931	0 7296	0 00001	6 0231	<b>6</b> 0-1	
	ř	0 4923	0 2714	0 3951				
	2	0 2169	0 5135	0.1655				
	3	0 1208	0 2207	0 0353				
	4	. 0 0764	0 1317	0 0633				
	5 '	0 9525	0 0844	0.0441				
		0.9393	2 3900	0 5503	0 00484	2.8341	2.85	
	i	0 0971	7337	0 0229				
	ż	0 0514	0 0317	5040.0				
	3	0 0321	9 9645	0 0153				
	4	0 0135	Ú 0209	0.0111				
	5	0 0094	0.0148	0.0070				

the tails in the bank are 0 2890 the total concentrate is 99 71100 the total holdup is 283 83600

SINGLE BANK WITH S CELLS

CANHA! = 2, ETA! = 3, m! = 0 20

CAHHA2- 3, ETA2- 2, m2- 0.80

h=1 : 1=3 : T=0.1

HO	HOHENT	INDEX FEED(Z)	HOLDUP (HEUD)	CONCENTRATI	E(ETA) ERROR	EXACT HOLDS	IP HOLDUP BY ACTUAL INTEG	RATION
t	0	100 0000	819 5236	78.0476	0.00021	219.4636	217 23	
	1	56 0000	104.0635	45.5936				
	2	36 0000	60.7915	29 9209				
	3	25 1429	39 8945	21.1534				
	4	18 5714	58 5012	15 7510		•		
	5	14 2857	21.0013	12.1856				
t	0	21 9524	57.8353	16 1488	0 00035	57 8353	57.84	
	1	10 4064	21.5584	0 2505			•	
	2	6 0792	11.0007	4 9791				
	3	3 9894	6.6388	3 3556				
	4	2 8205	4.4341	2 3770 .				
	5	2,1001	3.1694	1.7832				
3	0	5.7835	18.9900	3 8845	0.00034	19,1000	19.13	
	1 .	2.1558	5.1794	1 6379				
	٤	1.1001	2.1839	0 8817				
	3 '	0 6639	1 1756	0 S463				
	4	0.4434	0 7294	0 3706		•		
	5	0.3169	0.4941	0 2675				
	- 0	1 8990	7.7202	1 1262	0 00004	7 9592	7.99	
	1	0.5179	1 5016	0 3679				
	5	0.2184	0.4904	0 1694				
	3	0 1176	0.2258	0 0350				
	4	0.0729	0,1266	0.0602				
	5	0 0494	0.0802	0.0414				
	0	0.7729	5 4399	0 2299	0.00000	4.0399	4 07	
	1	0 1502	0 3051	0 1196				
	2	0 0490	0 1575	0 0331				
	3	0 0324	. 0 0441	0 0192				
	4	0 0127	0.0242	0 0102		•		
	5	0 0030	0.0137	0.0067				

the tails in the bank are 0 5440, the total concentrate it 79,45601 the total holdup is 309 51700

SINGLE BANK WITH 5 CELLS

CAHHAI - 2, ETAI - 3, MI - 0 25

GAHHA2= 3, ETA2= 2, m2= ) 75

- h=1 ; 1=3 ; T=0.1 ' .

NO	HOMENT	INDEX FEED(2)	HOLDUP (MEUO)	CONCENTRATECET	(A) ERROR	EXACT HOLDUP	HOLDUP BY ACTUAL	INTEGRATION
1	0 1 2 -3 4 5	100 0000 55 0000 35 0000 24 2957 17 8571 13 6905	224 2479 103 4336 59 5422 38 7277 27 2173 20 1806	77 5753 44 6566 29 0459 20 4129 15 1354 11 6724	0 00043	224,1979	223 <b>1</b> 1	
2	0 1 2 3	22 . 4248 10 . 3434 5 . 9542 . 3 . 8728 2 . 7217	60.7785 21.7959 10.8850 6.4876 4.2987	16 3469 8 1638 4 8657 3 2240 2 2919	0.00042	60.8185	60.82	

	5	2 0181	3.0558	1 7125				
3	0 1 2 3 4 5	6 0779 2 1796 1.0885 0.6488 0 4299 0 3056	20 5855 5 3591 2.1916 1 1591 0 7105 0.4784	4.0193 1.6437 0.8693 0.5328 0.3588 0.2577	0.00002	20.7655	20 80	•
4	0 1 2 3 4 5	2 0586 0 5359 0 2152 0 1159 0 0710 0 0478	8 6057 1 5973 0 5016 0 2253 0 1245 0.0791	1.1980 0.3762 0.1690 0.0934 .0.0586 0.0400	0.00023	8.9257	8 97	•
5	0 1 2 3 4 5	0 8606 0 1597 0 0502 0 0535 0 0155 0 0079	6.0529 0 3404 0 1676 0 0445 0 0241 0.0134	0.2553 0 1257 0 0334 0.0191 0 0100 0 0065	0.00000	4,6429	4 68	_

the tails in the bank are 0 6053 the total concentrate is 99 39471 the total holdup is 320 27050

SINGLE BANK WITH 5 CELLS

MIXTURE OF THE BETA DISTRIBUTIONS IN PROPORTIONS mi-ma

CAMMA1 = 2, ETAI = 3, m1 = 0 30

GAHHA2= 3, ETA2= 2, m2= 0 70

h=1 ; 1=3 ; T=0 i

NO	HOHENT	INDEX FEED(Z)	HOLDUP (MEUO:	) CONCENTRATE(E	T-) ERROR	EXACT HOLDUF	HOLDUP BY ACTUAL	INTEGRATION
1	0	100 0000	228 9721	77 1049	0 00077	228 9321	228,60	
	1	54 0000	102,8037	43 7176				
	2	34 0000	58.6928	29 1707				
	3	83 4886	37 5610	19 6725				
	4	17 1429	26.2300	14.5199				
	> 	13 0358	19 3598	11 1593				
2	0	23 2972	63 7117	16 5260	0.00047	63 8017	63.84	
	1	10 2804	22 0347	8.0769				•
	2	5 8293	10.7692	4 7524				
	3	3 7561	6 3365	3.1224				
	4	2.6230	4.1633	2.2067				
	5	1 9360	2 9422	1 6418				
3	0	6 3712	22.1611	4.1551	0.00012	22.4311	22.48	
	1' '	2.2035	5 5401	1.6495				
	ź	1 0769	2 1993	0 8570				
	3	0 6336	1 1427	0 5194				
	4	0.4163	0.6925	0 3471				
	5	0 2942	0.4628	0.2479				
	0	2.2161	9 4533	1.2708	0.00005	9.8933	9.94	
-	1	0 5540	1 6944	0.3846			·	•
	2	0.2199	0.5128	0.1687		•		
	3	0 1143	0.2249	0.0918				
	4	0.0693	0.1224	0.0570				

	5	0 0463	0.0760	0 0397				
5	0	0 9453	6.5755	0 2878	0 00000	·\$.2458	5.29	
	2	0 1694 0 0513	0.3637 0.1749	0 1311 0 0339				
	3	0 0225	0.0451	0.0180				
	4	0 0122	0.0240 0.0131	0 009 <del>2</del> 0.0063				
	3	0 0016	0.0121	0.0063				

the tails in the bank are 0.6576 the total concentrate is 99.34242 the total holdup is 330 87400

SINGLE BANK WITH 5 CELLS

MIXTURE OF THE GETA DISTRIBUTIONS IN PROPORTIONS MI'ME

CAMMAI = 2, ETA1 = 3. m1 = 0 40

CAMMAZ= 3, ETAZ= 2 m2= 0 60

h=1 ; 1=3 , T=1 1

0	MOHENT	INDEX FEED(Z)	POLDUP (ME40;	CONCENTRATE	CETA, ERACR	EXACT HOLD	UP HOLDUP BY ACTUAL INTEGRATIO
	0 1 2 3 4 5	100 0000 E2 0000 E3 0000 E1 714E 17 7143	239 3707 101 5505 55 7923 35 2276 24 8554 17 7183	76 1629 41 8449 26.4207 19.1915 13 8187 10 1329	¢ 0006€	238 4007	237 96
	0 1 2 3 4 5	27 9371 10 1951 2 5753 2 5259 3 4855 1 7713	69.4980 22.5164 10.5279 3.7240 3.4925 2.7151	16 6573 7 9034 4 6355 2 9194 2 0363 1 5003	0.00037	69 7680	69.77
	0 1 2 3 4 5	3 9499 3 2516 1 0539 0 6024 1 2395 1 4715	25 2227 2 7034 2 1 51 1 1097 0 0 226 0 4315	4 4276 1 4317 9 1363 0 -924 0 1236 0 1294	0 0000-	25 7623	25 . 82
	0 1 2 3 4 5	5 7832 6 5903 0 2215 2 1110 0 0657 0 0421	11 0353 1 8572 0 5355 0 6239 0 1181 0 0713	0 1680 0 1680 0 0836 0 0539 5 0364	1 90065	11 8293	
	0 1 2 3 4	1 1068 0 1887 0.0535 0.024 0.0118 0.0072	. 7 4517 0 .262 0.1868 0.0465 0.0237 0.0126	) 3647 0 1401 0 0349 0 0177 0 0094 0.0059	0 00000	6.4517	6.51

the tails in the bank are 0.7422 the total concentrate is 99.25783 the total holdup is 351.58100

Th 622.752	Date Sli	A112197
	ook is to be	returned on the
		•••••
		*****
		••••
		*************
		••••••
		•••••••
		* * * * * * * * * * * * * * * * * * * *
		***********
		•••••••
••• • • • • • • • • • • • • • • • • • •		* **

ME-1991-M-MAN-MAT