TESTE N.º 1 - Proposta de resolução

1.

1.1.
$$\underline{R}$$
 \underline{D} $\underline{V_1}$ $\underline{V_2}$ $\underline{V_3}$ $\underline{V_4}$
 $\underline{4!}$ \times $\underline{4!}$ \times $\underline{6!}$ = 414 720

- 4! é o número de maneiras distintas de os quatro reis permutarem entre si;
- 4! é o número de maneiras distintas de as quatro damas permutarem entre si;
- 6! é o número de maneiras distintas de o bloco dos reis, o bloco das damas e os quatro valetes permutarem entre si.
- 1.2. Existem três casos mutuamente exclusivos: saírem 0 ases ou sair 1 ás ou saírem 2 ases.
 - ${}^{48}C_5$ é o número de maneiras distintas de se escolher cinco cartas que não são ases sem que a ordem interesse.
 - ⁴C₁ × ⁴⁸C₄ é o número de maneiras distintas de se escolher um ás e quatro cartas que não são ases sem que a ordem interesse.
 - ${}^4C_2 \times {}^{48}C_3$ é o número de maneiras distintas de se escolher dois ases e três cartas que não são ases, sem que a ordem interesse.

Assim, ${}^{48}C_5 + {}^{4}C_1 \times {}^{48}C_4 + {}^{4}C_2 \times {}^{48}C_3 = 2594400$ é o número pedido.

1.3. Opção (D)

Número de casos possíveis:

 $13^4 = 28\,561$ é o número de maneiras distintas de o André, o António, o Pedro e o Rodrigo escolherem, cada um, uma carta do naipe de paus.

Número de casos favoráveis: ${}^4C_2 \times 1 \times 1 \times 12 \times 12$

 4C_2 é o número de maneiras diferentes de escolher quem são os dois rapazes que vão escolher o rei de paus e, por cada uma destas maneiras, existem 12×12 modos distintos de os restantes dois rapazes escolherem, cada um, uma carta de paus diferente do rei.

Assim, a probabilidade pedida é igual a $\frac{{}^4C_2 \times 12^2}{13^4} = \frac{864}{28561}$.

2.
$$2$$
 _ _ _ _ ou 4 _ _ _ _ ou 5 _ _ _ _ _ _ _ _
 $4 \times 4 \times {}^{3}C_{2}$ + $5 \times {}^{4}C_{2} \times 2!$ + $5 \times {}^{4}C_{2} \times {}^{2}C_{2}$

Existem três casos mutuamente exclusivos:

 o número começa por 2: o algarismo 0 pode ocupar quatro posições distintas (unidades, dezenas, centenas ou unidades de milhar). Por cada uma destas posições, existem quatro posições diferentes para colocar o algarismo 2 que falta. Por cada uma destas maneiras, existem 3C_2 modos diferentes de escolher as posições dos dois algarismos 4. Finalmente, o algarismo 5 só tem uma posição possível.

 o número começa por 4: o 0 pode ocupar qualquer uma das cinco posições distintas (unidades, dezenas, centenas, unidades de milhar ou dezenas de milhar). Por cada uma destas posições, existem 4C_2 formas diferentes de escolher as posições para os dois algarismos 2.

Por cada uma destas formas, existem 2! modos distintos de escolher as posições do algarismo 4 e do algarismo 5.

• o número começa por 5: o 0 pode ocupar qualquer uma das cinco posições distintas (unidades, dezenas, centenas, unidades de milhar ou dezenas de milhar). Por cada uma destas posições, existem 4C_2 formas diferentes de escolher as posições para os dois algarismos 2.

Por cada uma destas formas, existe apenas uma maneira (2C_2) de colocar os dois algarismos 4 nas posições que sobram.

Assim, o número pedido é igual a $4 \times 4 \times \ ^3C_2 + 5 \times \ ^4C_2 \times 2! + 5 \times \ ^4C_2 \times \ ^2C_2 = 138.$

3. Opção (B)

Como a linha do triângulo de Pascal tem 13 elementos, então n = 12.

Assim, os elementos dessa linha são:

$$^{12}C_0$$
 $^{12}C_1$ $^{12}C_2$... $^{12}C_{10}$ $^{12}C_{11}$ $^{12}C_{12}$ 1

Para que a soma seja 13, teremos que escolher um 1 e um 12.

Assim, o número de casos favoráveis é igual a 2×2 e o número de casos possíveis é igual a $^{13}C_2$.

Logo, a probabilidade pedida é igual a $\frac{4}{^{13}C_2} = \frac{2}{39}$.

4. O termo geral deste desenvolvimento é:

$${}^{6}C_{k} \ a^{6-k} \times (2x)^{k} = {}^{6}C_{k} \ a^{6-k} \times 2^{k} \times x^{k}, \text{ com } k \in \{0, 1, 2, 3, 4, 5, 6\}$$

O termo em x^3 ocorre quando k = 3:

$$^{6}C_{3} \times a^{3} \times 2^{3} = -160 \Leftrightarrow 160a^{3} = -160$$

 $\Leftrightarrow a^{3} = -1$
 $\Leftrightarrow a = -1$

5. Sabemos que P(A) = 0.3 e que P(B) = 0.5. Além disso:

$$P(\overline{A} \cap \overline{B}) = 0.4 \Leftrightarrow P(\overline{A \cup B}) = 0.4$$
$$\Leftrightarrow 1 - P(A \cup B) = 0.4$$
$$\Leftrightarrow 1 - 0.4 = P(A \cup B)$$
$$\Leftrightarrow P(A \cup B) = 0.6$$

Sabemos que:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Então:

$$0.6 = 0.3 + 0.5 - P(A \cap B) \Leftrightarrow P(A \cap B) = 0.8 - 0.6$$
$$\Leftrightarrow P(A \cap B) = 0.2$$

$$P(\overline{B}|(A \cup B)) = \frac{P(\overline{B} \cap (A \cup B))}{P(A \cup B)} =$$

$$= \frac{P(\overline{B} \cap A) \cup \overline{B}}{P(A \cup B)} =$$

$$= \frac{P(A \cap \overline{B}) \cup \emptyset}{P(A \cup B)} =$$

$$= \frac{P(A \cap \overline{B}) \cup \emptyset}{P(A \cup B)} =$$

$$= \frac{P(A \cap \overline{B})}{P(A \cup B)} =$$

$$= \frac{P(A \cap B)}{P(A \cup B)} =$$

$$= \frac{P(A \cap B)}{P(A \cup B)} =$$

$$= \frac{P(A \cap B)}{P(A \cup B)} =$$

$$= \frac{0.3 - 0.2}{0.6} =$$

$$= \frac{0.1}{0.6} =$$

$$= \frac{1}{6}$$

6. Opção (B)

Número de casos possíveis: 9!

Número de casos favoráveis: ${}^4A_3 \times 6!$, onde 4A_3 é o número de maneiras de escolher ordenadamente três dos quatro algarismos primos (2, 3, 5 e 7) para ocupar os três primeiros lugares. Por cada uma destas maneiras, existem 6! formas de colocar os restantes seis algarismos (um primo e cinco não primos) nos restantes seis lugares.

A probabilidade pretendida é $\frac{{}^4A_3 \times 6!}{9!} = \frac{1}{21}$.

7. Opção (C)

Número de casos possíveis:

$$7 \times 7 \times 7 \times 7 \times \dots \times 7 = 7^n = {}^{7}A'_{n}$$
n amigos

Número de casos favoráveis:

$$\underbrace{1 \times 1 \times 1 \times \underbrace{6 \times \dots \times 6}_{n-3 \text{ amigos}} \times {}^{n}C_{3}}_{n \text{ amigos}} = {}^{n}C_{3} \times 6^{n-3}$$

Observe-se que nC_3 é o número de maneiras de formar o grupo de amigos que escolheu a quinta-feira, sendo que, por cada umas destas maneiras, há 6^{n-3} maneiras de os restantes n-3 amigos escolherem um dos seis dias da semana que não a quinta-feira.

8. Pretendemos determinar quantos números naturais pares de sete algarismos se podem escrever utilizando um algarismo 0, um algarismo 1, dois algarismos 8 e três algarismos 9.

Existem dois casos mutuamente exclusivos: ou terminam em 0 ou terminam em 8.

No caso de o número terminar em 0, existem 6C_2 maneiras distintas de escolher as posições dos dois algarismos 8 e, por cada uma destas maneiras, existem 4C_3 maneiras distintas de escolher as posições dos três algarismos 9. Para cada uma destas maneiras, só existe uma posição para colocar o algarismo 1. Assim, ${}^6C_2 \times {}^4C_3$ é o número de números pares nas condições pedidas e que terminam em 0.

No caso de o número terminar em 8, existem cinco maneiras distintas de escolher a posição do 0 (não pode ocupar a primeira posição) e, por cada uma destas maneiras, existem cinco maneiras distintas de escolher a posição do algarismo 8 que resta. Para cada uma destas maneiras, existem 4C_3 maneiras distintas de escolher as posições dos três algarismos 9. Feito isto, o algarismo 1 só tem uma maneira de ser colocado. Assim, $5^2 \times {}^4C_3$ é o número de números pares nas condições pedidas e que terminam em oito.

 $^6\mathcal{C}_2~\times~^4\mathcal{C}_3~+5^2\times~^4\mathcal{C}_3~$ é, então, uma resposta correta ao problema.

9. Opção (B)

$$\frac{(n-1)! - {}^{n}A_{n}}{(n-1)!} = \frac{(n+1)! - n!}{(n-1)!} = \frac{(n+1)n \times (n-1)! - n(n-1)!}{(n-1)!} = \frac{(n-1)![(n+1)n - n]}{(n-1)!} =$$

$$= n^{2} + n - n =$$

$$= n^{2}$$

- Na opção (A): ${}^nC_n = 1$
- Na opção (B): ${}^nC_1 \times {}^nC_{n-1} = n \times {}^nC_1 = n \times n = n^2$
- Na opção (C): ${}^{n}C_{1} = n$
- Na opção (D): ${}^{n}C_{1} + {}^{n}C_{n-1} = n + n = 2n$
- **10.** Sabe-se que $\frac{P(A|B)}{P(B)} = 1$.

Assim:

$$P(A|B) = P(B) \Leftrightarrow \frac{P(A \cap B)}{P(B)} = P(B) \Leftrightarrow P(A \cap B) = (P(B))^2$$

Como:

$$P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A \cap \overline{B}) =$$

$$= P(A) + 1 - P(B) - (P(A) - P(A \cap B)) =$$

$$= 1 - P(B) + P(A \cap B)$$

e $P(A \cap B) = (P(B))^2$, vem que:

$$P(A \cup \overline{B}) = 1 - P(B) + (P(B))^2 = (P(B))^2 - P(B) + 1$$
, como queríamos demonstrar.

11. Consideremos os acontecimentos:

M: "o cientista é da área da Matemática"

N: "o cientista é português"

Do enunciado, sabemos que:

- P(M) = 0.4
- $P(\overline{N}|M) = \frac{3}{5}$

Pretende-se saber $P(\overline{N} \cup \overline{M})$:

Como $P(\overline{N}|M) = \frac{3}{5}$ e P(M) = 0.4, tem-se que:

$$\frac{P(\overline{N} \cap M)}{P(M)} = \frac{3}{5} \Leftrightarrow P(\overline{N} \cap M) = \frac{3}{5} \times 0.4 \Leftrightarrow P(M) - P(M \cap N) = 0.24$$
$$\Leftrightarrow 0.4 - P(M \cap N) = 0.24$$
$$\Leftrightarrow P(M \cap N) = 0.16$$

Assim:

$$P(\overline{N} \cup \overline{M}) = P(\overline{N \cap M}) = 1 - P(N \cap M) =$$

= 1 - 0,16 =
= 0,84

A probabilidade de o cientista não ser português ou não ser da área da Matemática é 84%.

12. Existem três tipos de casos que se excluem mutuamente:

- 1.º caso: cada autocaravana leva cinco amigos;
- 2.º caso: duas autocaravanas levam quatro amigos e a outra leva sete;
- 3.º caso: uma autocaravana leva quatro amigos, outra leva cinco e a outra leva seis amigos.

Assim, para distribuir os amigos pelas três autocaravanas diferentes:

- no 1.º caso existem $^{15}C_5 \times ^{10}C_5 \times ^5C_5 \times 3! = 4540536$ maneiras;
- no 2. $^{\circ}$ caso existem $^{15}C_4$ \times $^{11}C_4$ \times 7C_7 \times 3! = 2 702 700 maneiras;
- no 3. $^{\circ}$ caso existem $^{15}C_4$ \times $^{11}C_5$ \times 6C_6 \times 3! = 3 783 780 maneiras.

No total, existem, então, 11 027 016 maneiras diferentes de os amigos se distribuírem pelas três autocaravanas.