Proyecto Genómica Computacional

Comparación entre genomas de variantes de Coronavirus (SARS-CoV-2)

David Hernández Uriostegui Noé Abraham Suaste Morales

Introducción

En medio de la pandemia de COVID-19, el SARS-CoV-2 ha evolucionado y dado lugar a diferentes variantes en todo el mundo. Estas variantes difieren en cierta medida de la secuencia original del virus, lo que plantea interrogantes sobre el alcance y las implicaciones de estos cambios genéticos

Pregunta de Investigación

¿Qué tanto difieren las secuencias de las variantes de SARS-CoV-2 con respecto

a la secuencia original?

Objetivos

El objetivo de éste trabajo es determinar las diferencias y similitudes entre las principales variantes de importancia médica del SARS-CoV-2 frente a la secuencia original

- **Comparar los genomas de diferentes cepas:** Comparar los genomas de diferentes cepas para identificar similitudes y diferencias en las mutaciones que se han producido.

Métodos

Se consideraron las secuencias de nucleótidos de las principales variantes de importancia del SARS-CoV-2: alfa (B.1.1.7), beta (B.1.3.51), delta (B.1.617.2), gamma (P.1) y ómicron (B.1.1.529) así como la variante original. [1]

- Alineación de los genomas: Comparación de las secuencias de los nucleótidos con respecto a otro. (BLAST y BioPython)
- **Alineación y filogenética**: Análisis filogenético de las secuencias para comprender la relación evolutiva entre ambos virus.

Obtención de datos

NCBI GenBank

FASTA ▼ Send to: ▼

Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome

NCBI Reference Sequence: NC 045512.2

GenBank Graphics

>NC_045512.2 Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome

BLAST

Uso del algoritmo
 Smith-Waterman

7ZBCZVZZ114-Alignment-Descriptions

Description	Scientific Name	Common Name	Taxid	Max Score	Total Score	Query Cover	E value	Per. ident	Acc. Len	Accession
Alpha			0	54674	54674	99%	0.0	99.82	29884	Query_8401
Delta			0	38566	54010	98%	0.0	99.82	29890	Query_8403
Gamma			0	27497	52769	96%	0.0	99.87	29898	Query_8404
Omnicron			0	25874	52505	96%	0.0	99.35	29866	Query_8405
Beta			0	21339	53348	97%	0.0	99.79	29879	Query_8402

BioPython (pairwise)

- Uso del algoritmo Needleman-Wunsch (también implementado)
- Evaluar por regiones, de otra forma se acaban los recursos de nuestras computadoras

Resultados obtenidos de alinear la secuencia original contra sus variantes

- 1. Se evaluó en intervalos de 900 bases. [(0, 900), (1000, 1900)...]
- 2. Se promedió el resultado de cada variante

```
In [9]: for seq, name in variants:
    for start, end in query_ranges:
        score = perform_sequence_alignment(ref_seq, seq, gap_penalty, match_score, mismatch_penalty, start=start, end=
        variants_scores[name] += score

In [10]: for variant in variants_scores:
    variants_scores[variant] /= len(query_ranges)
```

☐ Alpha: 1760

☐ Beta: 1691

🖵 Delta: 1751

📮 Gamma: 1671

Omnicron: 1668

Conteo de GC

	Secuencia original	Alpha	Beta	Delta	Gamma	Omnicron
G	5863	5844	5701	5778	5647	5615
С	5492	5462	5324	5393	5282	5256

CLUSTEL OMEGA

	original	alfa	beta	delta	gamma	ómicron
original	100	99.47	97.05	98.24	95.94	95.89
alfa		100	97.36	98.54	96.29	96.21
beta			100	96.10	93.87	93.78
delta				100	96.50	95.09
gamma					100	92.70
ómicron						100

Referencias

[1] Farhud, D. D., & Mojahed, N. (2022). SARS-COV-2 Notable Mutations and Variants: A Review Article. *Iranian Journal of Public Health*. https://doi.org/10.18502/ijph.v51i7.10083

[2] Mittal, A. (2021, February 23). Sequence Alignment and the Needleman-Wunsch Algorithm. Analytics Vidhya.

https://medium.com/analytics-vidhya/sequence-alignment-and-the-needleman-wunsch-algorithm-710c7b1a 23a4

[3] *Bio.pairwise2 module* — *Biopython 1.75 documentation*. (n.d.). Biopython.org. https://biopython.org/docs/1.75/api/Bio.pairwise2.html