Ex No. 4	Measuring the Performance of Machine Learning Model
Date:	

Aim

To measure the performance of machine learning models in python.

Definition

Accuracy

Accuracy is what its literal meaning says, a measure of how accurate your model is.

Accuracy = Correct Predictions / Total Predictions

By using confusion matrix, Accuracy = (TP + TN)/(TP+TN+FP+FN)Precision & Recall

Precision: It is the ratio of True Positives (TP) and the total positive predictions. Basically, it tells us how many times your positive prediction was actually positive.

$$ext{Precision} = rac{tp}{tp+fp}$$

Recall: It is nothing but TPR (True Positive Rate explained above). It tells us about out of all the positive points how many were predicted positive.

$$ext{Recall} = rac{tp}{tp+fn}$$

F-Measure: Harmonic mean of precision and recall.

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Confusion Matrix

A **confusion matrix** is a correlation between the predictions of a model and the actual class labels of the data points.

Procedure

Open PyCharm Community Edition.

Go to File menu \rightarrow New Project \rightarrow Specify the project name \rightarrow Press "Create" button.

Right Click on Project name \rightarrow New \rightarrow Python File \rightarrow Specify the file name \rightarrow Press Enter.

Type the following codes. Right click on file name or coding window → Select "Run" to view the result.

1. R – Squared Rsquared.py

from sklearn.metrics import r2_score

```
### Assume y is the actual value and f is the predicted values y = [10, 20, 30] f = [10, 20, 30] r2 = r2\_score(y, f) print('r2 score for perfect model is', r2)

### Assume y is the actual value and f is the predicted values y = [10, 20, 30] f = [20, 20, 20] r2 = r2\_score(y, f) print('r2 score for a model which predicts mean value always is', r2)

### Assume y is the actual value and f is the predicted values y = [10, 20, 30] f = [30, 10, 20] f = [30, 10, 20]
```

Output

```
r2 score for perfect model is 1.0
r2 score for a model which predicts mean value always is 0.0
r2 score for a worse model is -2.0
```

2. Adjusted R-Squared adjRsquared.py

from sklearn.linear_model import LinearRegression

import pandas as pd

```
#define URL where dataset is located
url = "https://raw.githubusercontent.com/Statology/Python-Guides/main/mtcars.csv"
#read in data
data = pd.read\_csv(url)
#fit regression model
model = LinearRegression()
X, y = data[["mpg", "wt", "drat", "qsec"]], data.hp
model.fit(X, y)
#display adjusted R-squared
print(1 - (1-model.score(X, y))*(len(y)-1)/(len(y)-X.shape[1]-1))
       Output
       0.7787005290062519
   3. Mean Absolute Error
       MeanAbsError.py
# Python program for calculating Mean Absolute
# Error using sklearn
# import the module
from sklearn.metrics import mean_absolute_error as mae
# list of integers of actual and calculated
actual = [2, 3, 5, 5, 9]
calculated = [3, 3, 8, 7, 6]
# calculate MAE
error = mae(actual, calculated)
```

display

print("Mean absolute error : " + str(error))

Output

Mean absolute error: 1.8

4. Mean Squared Error MeanSqaError.py

 $from \ sklearn.metrics \ import \ mean_squared_error$

Given values

$$Y_{true} = [1,1,2,2,4] # Y_{true} = Y (original values)$$

calculated values

$$Y_pred = [0.6, 1.29, 1.99, 2.69, 3.4] # Y_pred = Y'$$

Calculation of Mean Squared Error (MSE)

$$MSE = mean_squared_error(Y_true, Y_pred)$$

print(MSE)

Output

0.21606

5. Confusion Matrix and Related Metrics confusionmatrix.py

import matplotlib.pyplot as plt

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

```
confusion_matrix = metrics.confusion_matrix(actual, predicted)
```

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix,
display_labels = [False, True])

cm_display.plot()

plt.show()

Output

relatedmetrics.py

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

Accuracy = metrics.accuracy_score(actual, predicted)

Precision = metrics.precision_score(actual, predicted)

Sensitivity_recall = metrics.recall_score(actual, predicted)

Specificity = metrics.recall_score(actual, predicted, pos_label=0)

F1_score = metrics.f1_score(actual, predicted)

#metrics:

print({"Accuracy":Accuracy,"Precision":Precision,"Sensitivity_recall":Sensitivity_recall,"Specificity":Specificity,"F1_score":F1_score})

Output

{'Accuracy': 0.836, 'Precision': 0.9074889867841409, 'Sensitivity_recall': 0.911504424778761, 'Specificity': 0.125, 'F1_score': 0.9094922737306844}

6. F1-Score F1score.py

import numpy as np

from sklearn.metrics import fl_score

#define array of actual classes

actual = np.repeat([1, 0], repeats=[160, 240])

#define array of predicted classes

pred = np.repeat([1, 0, 1, 0], repeats=[120, 40, 70, 170])

#calculate F1 score

print(f1_score(actual, pred))

Output

0.6857142857142857

7. AUC-ROC Curve AUCROC.py

from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn.pipeline import make_pipeline

Load the breast cancer data set

```
bc = datasets.load_breast_cancer()
X, y = bc.data, bc.target
# Create training and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=1,
stratify=y)
# Create the estimator - pipeline
pipeline = make_pipeline(StandardScaler(), LogisticRegression(random_state=1))
# Create training test splits using two features
pipeline.fit(X_train[:, [2, 13]], y_train)
probs = pipeline.predict_proba(X_test[:, [2, 13]])
fpr1, tpr1, thresholds = roc curve(y test, probs[:, 1], pos label=1)
roc_auc1 = auc(fpr1, tpr1)
# Create training test splits using two different features
pipeline.fit(X train[:, [4, 14]], y train)
probs2 = pipeline.predict_proba(X_test[:, [4, 14]])
fpr2, tpr2, thresholds = roc_curve(y_test, probs2[:, 1], pos_label=1)
roc auc2 = auc(fpr2, tpr2)
# Create training test splits using all features
pipeline.fit(X_train, y_train)
probs3 = pipeline.predict proba(X test)
fpr3, tpr3, thresholds = roc_curve(y_test, probs3[:, 1], pos_label=1)
roc auc3 = auc(fpr3, tpr3)
fig, ax = plt.subplots(figsize=(7.5, 7.5))
plt.plot(fpr1, tpr1, label='ROC Curve 1 (AUC = %0.2f)' % (roc_auc1))
plt.plot(fpr2, tpr2, label='ROC Curve 2 (AUC = %0.2f)' % (roc_auc2))
plt.plot(fpr3, tpr3, label='ROC Curve 3 (AUC = %0.2f)' % (roc_auc3))
plt.plot([0, 1], [0, 1], linestyle='--', color='red', label='Random Classifier')
plt.plot([0, 0, 1], [0, 1, 1], linestyle=':', color='green', label='Perfect Classifier')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.legend(loc="lower right")
plt.show()
```

Output Figure 1

