Ejercicio 10:

Un MULTIPLEXOR (MUX) es un circuito combinacional que que selecciona información binaria de muchas entradas y la dirige <u>a una única salida (\mathbf{Y})</u>, conforme al estado de las señales de selección. Si un MUX posee ' $2^{N'}$ entradas de información (\mathbf{D}) requiere 'N' señales de selección (\mathbf{S}).

- a. Expresar la tabla de verdad de un MUX de 2 entradas (y una salida) y su implementación mediante el uso de compuertas lógicas (AND, OR, NOT, NOR, NAND, etc.)
- b. Mostrar cómo se puede usar un MUX para obtener una compuerta NOT.
- c. ¿Cómo obtener un MUX de 4 entradas (y una salida) en base a multiplexores de 2 entradas?
- d. ¿Cómo obtener un multiplexor de 'N' entradas con multiplexores de 2 entradas?

a)	<u>s</u>	Dı	Do	Y		5	D ₄	Do	Y
	0	0	0	0	⇒	0	κ	0	0
	0	0	1	1		0	K	1	1
	0	1	0	0		1		ĸ	0
	0	1	1	1		1	1	ĸ	1
	1	0	0	0					
	1	0	1	0					
	1	1	0	1					
	1	1	1	1					

	āā	Ō.D.	D.D.	D.D.	
Š	0	1	1	0	Y = 300 +50.
s	0	0	Л	1	
	<u>5</u> <u>D.</u>) Y

b) Negando la enerada de selección obtengo una compuerto Not a Partir de un MUX:

- Sigo el siguiente algoritmo:
- 1- Implementar una primer columna de multiplexores de 2 entradas hasta obtener la cantidad de entradas requeridas
- 2- Luego implemento otra columna de multiplexores de 2 entradas, éstas serán las salidas de la columna anterior. (Notar que ésta segunda columna tendrá la mitad de multiplexores que la primer columna)
- 3- Repetir la secuencia anterior hasta obtener una última columna con un sólo multiplexor de 2 entradas. Todas las lineas de selección de los multiplexores de una misma columna deben conectarse juntas, tomando el mensignificativo para la primer columna e incrementando en las siguientes columnas.