Problem (Problem 1): Let $(a_n)_n$ be a sequence for which $\sum_{n=0}^{\infty} |a_n|^2$ is finite. For each positive N, define $f_N(z) = \sum_{n=0}^{\infty} a_n z^n$, and define $f(z) = \sum_{n=0}^{\infty} a_n z^n$.

- (a) Show that f is holomorphic on \mathbb{D} .
- (b) For each $r\in(0,1),$ determine in terms of $\left(\alpha_{n}\right)_{n}$ the integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| f_{N}(re^{i\theta}) \right|^{2} d\theta.$$

(c) For each $r \in (0, 1)$, determine in terms of $(a_n)_n$ the integral

$$\frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^2 d\theta.$$

(d) Determine in terms of $(a_n)_n$ the limit

$$\lim_{r \nearrow 1} \frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^2 d\theta.$$

Solution:

(a) Let 0 < r < 1. Since each f_N is analytic, we can use the Cauchy Integral Formula to compute \mathfrak{a}_N explicitly, yielding

$$|a_{N}| = \left| \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f_{N}(\xi)}{\xi^{N+1}} d\xi \right|$$

$$\leq \frac{1}{r^{N}} \sup_{|z|=r} |f_{N}(z)|.$$

Therefore, if we are able to show that the value

$$\sup_{|z|=r} |f_{N}(z)|$$

is uniformly bounded by a constant for all N, we will be able to use the Cauchy–Hadamard theorem to show that $\limsup_{N\to\infty}|a_N|^{1/N}\leqslant 1$. Toward this end, we use the Cauchy–Schwarz inequality, which yields

$$\begin{aligned} \sup_{|z|=r} |f_{N}(z)| &= \sup_{|z|=r} \left| \sum_{n=0}^{N} a_{n} z^{n} \right| \\ &\leq \sup_{|z|=r} \left(\sum_{n=0}^{N} |a_{n}|^{2} \right)^{1/2} \left(\sup_{m=0}^{N} |z|^{2m} \right)^{1/2} \\ &\leq \sup_{|z|=r} \underbrace{\left(\sum_{n=0}^{\infty} |a_{n}|^{2} \right)^{1/2}}_{=:K} \left(\sum_{m=0}^{\infty} |z|^{2m} \right)^{1/2} \\ &= \frac{K}{(1-|r|^{2})^{1/2}}. \end{aligned}$$

Since we have established this uniform bound, we thus find that $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence at least 1, so f is analytic on \mathbb{D} , hence holomorphic on \mathbb{D} .

(b) We write out the integral to yield

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} & \left| f_N \left(r e^{i\theta} \right) \right|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=0}^N \alpha_n r^n e^{in\theta} \right) \overline{\left(\sum_{m=0}^N \alpha_m r^m e^{im\theta} \right)} d\theta \\ &= \frac{1}{2\pi} \sum_{n=0}^N \sum_{m=0}^N \alpha_n \overline{\alpha_m} r^{m+n} \int_0^{2\pi} e^{i(n-m)\theta} d\theta \\ &= \sum_{n=0}^N |\alpha_n|^2 r^{2n}. \end{split}$$

Problem (Problem 3): Let $f: \mathbb{C} \to \mathbb{C}$ be entire.

- (a) Suppose there exist C, R > 0 and $n \in \mathbb{N}$ such that $|f(z)| \le C|z|^n$ for all |z| > R. Show that f is a polynomial of degree at most n.
- (b) Suppose that $g: \mathbb{C} \to \mathbb{C}$ is also entire and $|f(z)| \le |g(z)|$ for all $z \in \mathbb{C}$. Show that there exists some $\alpha \in \mathbb{C}$ with $|\alpha| \le 1$ such that $f(z) = \alpha g(z)$ for all $z \in \mathbb{C}$.
- (c) Suppose that there exists some $\theta \in \mathbb{R}$ such that $f(\mathbb{C}) \cap \{re^{i\theta} \mid r > 0\} = \emptyset$. Show that f is constant.