R documentation

of 'LAPinfer-package.Rd' etc.

March 19, 2016

LaPinfer-package Laplace based Approximate Posterior Inference for Differential Equation Models

Description

The LAPinfer package provides R functions for the Laplace based approximate posterior inference for the differential equation models.

Details

Package: LAPinfer Type: Package Version: 1.0

Date: 2016-03-19

License:

Author(s)

Kyoungjae Lee <leekjstat@gmail.com>

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

See Also

Rcpp, RcppArmadillo, inline

2 GetX

inc.base

A character containing the basic functions for "LAP" package

Description

A character containing the basic functions for "LAP" package. All functions are written in C++ language.

Examples

```
data(inc.base)
## maybe str(inc.base); plot(inc.base) ...
```

GetX

Numerical integration of state variable X

Description

The function GetX returns a numerical integration of state variable X as a $p \times n$ matrix.

Usage

```
GetX(inc.fn, X, t, m, theta)
```

Arguments

inc.fn	A character containing the code for DEf (Differential equation function f), df_dx (Differentiation of f with respect to x) and $d2f_dx^2$ (Differentiation of df_dx with respect to x). The code for each function should be written in C++ grammar. See Details and Examples for DEf, df_dx and $d2f_dx^2$.
X	A $n \times p$ matrix of state variables. n is the number of observation, and p is the dimensionality of state variable. The first column of X should have the initial value $x_1 = x(t_1)$.
t	A n -dimensional vector containing the time points for observation.
m	A positive integer. Each interval $[t_{i-1},t_i]$ is divided into m segments to form a refined time points. The state variable is successively approximated by a numerical integration (fourth order Runge-Kutta) on this time points.
theta	A vector containing the parameters of the differential equation.

Details

This function returns a numerical integration of state variable X as a $p \times n$ matrix using fourth order Runge-Kutta method.

A character input argument inc. fn should be made by the user. It specifies the differential equation and its derivatives for the state variable. For example, we consider the FitzHugh-Nagumo model in Examples:

$$\dot{x}_1(t) = f_1(x, t; \theta) = \theta_3(x_1(t) - \frac{1}{3}x_1^3(t) + x_2(t))$$

GetX

$$\dot{x}_2(t) = f_2(x, t; \theta) = -\frac{1}{\theta_3}(x_1(t) - \theta_1 + \theta_2 x_2(t)).$$

3

df_dx for the above differential equation is

$$\frac{\partial f_1(x,t;\theta)}{\partial x_1} = \theta_3 (1 - x_1(t)^2),$$

$$\frac{\partial f_2(x,t;\theta)}{\partial x_1} = -\frac{1}{\theta_3},$$

$$\frac{\partial f_1(x,t;\theta)}{\partial x_2} = \theta_3,$$

$$\frac{\partial f_2(x,t;\theta)}{\partial x_2} = -\frac{\theta_2}{\theta_3},$$

and d2f_dx2 for the above differential equation is

$$\frac{\partial^2 f_1(x,t;\theta)}{\partial x_1^2} = -2\frac{\theta_3}{x_1(t)},$$

$$\frac{\partial^2 f_i(x,t;\theta)}{\partial x_i^2} = 0$$

for all i, j = 1, 2 except i = j = 1.

The corresponding character input argument is inc.FN in Examples. DEf represents the differential equation at time t. df_dx and d2f_dx2 represent the first and second derivatives of DEf $at\ all\ time\ points$. The DEf should be a p-dimensional vector. The df_dx should be a $p \times p \times (n-1)$ cube object whose (j_1, j_2, i) th element is

$$\frac{\partial f_{j_2}(x,t_i;\theta)}{\partial x_{j_1}}.$$

The d2f_dx2 should be a (n-1)-dimensional field object whose ith element is $p \times p \times p$ cube. The (j_1, j_2, j_3) th element of d2f_dx2(i) is

$$\frac{\partial^2 f_{j_3}(x, t_i; \theta)}{\partial x_{j_1} \partial x_{j_2}}.$$

Value

The function GetX returns a numerical integration of state variable X as a $n \times p$ matrix.

Author(s)

Kyoungjae Lee

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

4 GetX

```
library(inline)
library(RcppArmadillo)
# FitzHugn-Nagumo model
inc.FN <- '
using namespace Rcpp;
using namespace arma;
vec DEf(vec x, double t, vec theta){
int p = x.n_rows;
vec res(p);
res(0) = theta(2)*(x(0) - pow(x(0),3)/3. + x(1));
res(1) = -1./theta(2)*(x(0) - theta(0) + theta(1)*x(1));
return res;
}
cube df_dx(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube df_dxval(p,p,n-1);
df_dxval = df_dxval.zeros();
for(i=0; i<n-1; i++){
df_{dxval.slice(i)(0,0)} = theta(2)*(1 - pow(X(0,i),2));
df_dxval.slice(i)(0,1) = -1./theta(2);
df_dxval.slice(i)(1,0) = theta(2);
df_dxval.slice(i)(1,1) = -theta(1)/theta(2);
}
return df_dxval;
}
field<cube> d2f_dx2(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube zeroval(p,p,p);
field<cube> d2f_dx2val(n-1);
zeroval = zeroval.zeros();
for(i=0; i<n-1; i++){
d2f_dx2val(i) = zeroval;
d2f_dx2val(i).slice(0)(0,0) = -2*theta(2)*X(0,i);
return d2f_dx2val;
}
n = 100; p = 2; m = 100; h = 0.2; x1 = c(-1,1)
timept = seq(from = 0, by = h, length.out = n)
trueX = matrix(0, p,n); trueX[,1] = matrix(x1, 2, 1)
theta = c(0.2, 0.2, 3)
```

GetXhat 5

X = GetX(inc.FN, trueX, timept, m, theta)

Description

The function GetXhat returns a numerical integration of state variable $X(\hat{x}_1(\theta), \theta)$ as a $p \times n$ matrix. Here, $\hat{x}_1(\theta)$ is

$$argmin_{x_1}ng_n(x_1,\theta) + ||x_1 - \mu_{x_1}||^2/c$$

where $g_n(x_1,\theta) = \sum_{i=1}^n \|y_i - x_i(x_1,\theta)\|^2/n$ and $X(x_1,\theta) = (x_i(x_1,\theta))$ is a numerical integration of state variable with the initial state x_1 and the parameter θ . y_i denotes the i-th observation.

Usage

GetXhat(inc.fn, Y, t, m, theta, prior, eps = 0.1^5, maxiter = 50)

Arguments

inc.fn	A character containing the code for DEf (Differential equation function f), df_dx (Differentiation of f with respect to x) and $d2f_dx2$ (Differentiation of df_dx with respect to x). The code for each function should be written in C++ grammar. See Details and Examples for DEf, df_dx and $d2f_dx2$.
Υ	A $p \times n$ matrix of observation. n is the number of observation, and p is the dimensionality of observation.
t	A n -dimensional vector containing the time points for observation.
m	A positive integer. Each interval $[t_{i-1},t_i]$ is divided into m segments to form a refined time points. The state variable is successively approximated by a numerical integration (fourth order Runge-Kutta) on this time points.
theta	A vector containing the parameters of the differential equation.
prior	A list containing the following objects: c is a positive real number c . mu_x1 is a p -dimensional vector μ_{x_1} .
eps	A positive real number. It determines the stopping rule of the Newton-Raphson algorithm. The default value is 0.1^{5} .
maxiter	A positive integer. It is the maximum iteration number of the Newton-Raphson algorithm. The default value is 50.

Details

This function returns returns a numerical integration of state variable $X(\hat{x}_1(\theta), \theta)$ as a $p \times n$ matrix.

A character input argument inc. fn should be made by the user. It specifies the differential equation and its derivatives for the state variable. For example, we consider the FitzHugh-Nagumo model in Examples:

$$\dot{x}_1(t) = f_1(x, t; \theta) = \theta_3(x_1(t) - \frac{1}{3}x_1^3(t) + x_2(t))$$

$$\dot{x}_2(t) = f_2(x, t; \theta) = -\frac{1}{\theta_3}(x_1(t) - \theta_1 + \theta_2 x_2(t)).$$

6 GetXhat

df_dx for the above differential equation is

$$\begin{split} \frac{\partial f_1(x,t;\theta)}{\partial x_1} &= \theta_3 (1 - x_1(t)^2), \\ \frac{\partial f_2(x,t;\theta)}{\partial x_1} &= -\frac{1}{\theta_3}, \\ \frac{\partial f_1(x,t;\theta)}{\partial x_2} &= \theta_3, \\ \frac{\partial f_2(x,t;\theta)}{\partial x_2} &= -\frac{\theta_2}{\theta_3}, \end{split}$$

and d2f_dx2 for the above differential equation is

$$\begin{split} \frac{\partial^2 f_1(x,t;\theta)}{\partial x_1^2} &= -2\frac{\theta_3}{x_1(t)},\\ \frac{\partial^2 f_i(x,t;\theta)}{\partial x_i^2} &= 0 \end{split}$$

for all i, j = 1, 2 except i = j = 1.

The corresponding character input argument is inc.FN in Examples. DEf represents the differential equation at time t. df_dx and d2f_dx2 represent the first and second derivatives of DEf $at\ all\ time\ points$. The DEf should be a p-dimensional vector. The df_dx should be a $p \times p \times (n-1)$ cube object whose (j_1, j_2, i) th element is

$$\frac{\partial f_{j_2}(x,t_i;\theta)}{\partial x_{j_1}}.$$

The d2f_dx2 should be a (n-1)-dimensional field object whose ith element is $p \times p \times p$ cube. The (j_1, j_2, j_3) th element of d2f_dx2(i) is

$$\frac{\partial^2 f_{j_3}(x,t_i;\theta)}{\partial x_{j_1}\partial x_{j_2}}.$$

The stopping rule used in this function is

$$\frac{\|\hat{x}_1^{old} - \hat{x}_1^{new}\|_2}{\|\hat{x}_1^{old}\|_2} \leq \text{eps } or \ \frac{|g_n(\hat{x}_1^{old}, \theta) - g_n(\hat{x}_1^{new}, \theta)|}{g_n(\hat{x}_1^{old}, \theta)} \leq \text{eps}$$

where \hat{x}_1^{old} and \hat{x}_1^{old} are the estimated initial state from the last step and present step, respectively.

Value

The function GetXhat returns a list including the following objects:

Xhat a $p \times n$ matrix giving the numerical integration of state variable X with the

initial state $\hat{x}_1(\theta)$ and the parameter θ .

dfdx a $p \times p \times (n-1)$ array giving the values of df_dx.

dxdx a $p \times p \times n$ array giving the values of dx_dx, which represents the first derivatives of X with respect to x_1 . The derivatives are computed by using the sensitivity

equation for differential equation.

Author(s)

Kyoungjae Lee

GetXhat 7

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

```
library(inline)
library(RcppArmadillo)
# FitzHugn-Nagumo model
inc.FN <- '
using namespace Rcpp;
using namespace arma;
vec DEf(vec x, double t, vec theta){
int p = x.n_rows;
vec res(p);
res(0) = theta(2)*(x(0) - pow(x(0),3)/3. + x(1));
res(1) = -1./theta(2)*(x(0) - theta(0) + theta(1)*x(1));
return res;
}
cube df_dx(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube df_dxval(p,p,n-1);
df_dxval = df_dxval.zeros();
for(i=0; i<n-1; i++){
df_dxval.slice(i)(0,0) = theta(2)*(1 - pow(X(0,i),2));
df_dxval.slice(i)(0,1) = -1./theta(2);
df_dxval.slice(i)(1,0) = theta(2);
df_dxval.slice(i)(1,1) = -theta(1)/theta(2);
}
return df_dxval;
}
field < cube > d2f_dx2(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube zeroval(p,p,p);
field<cube> d2f_dx2val(n-1);
zeroval = zeroval.zeros();
for(i=0; i<n-1; i++){
d2f_dx2val(i) = zeroval;
d2f_dx2val(i).slice(0)(0,0) = -2*theta(2)*X(0,i);
return d2f_dx2val;
}
n = 100; p = 2; Ym = 100; h = 0.2; x1 = c(-1,1)
```

8 LAPsetup

```
timept = seq(from = 0, by = h, length.out = n)
trueX = matrix(0, p,n); trueX[,1] = matrix(x1, 2, 1)
theta = c(0.2, 0.2, 3)
trueX = GetX(inc.FN, trueX, timept, Ym, theta)

# Get data set
library(mvtnorm)
sigma = 0.5
set.seed(2)
Y = trueX + t(rmvnorm(n, mean=rep(0,p), sigma=diag(p)*sigma^2))
prior = list()
prior$c = 100; prior$mu_x1 = Y[,1]
m = 1

Xhat = GetXhat(inc.FN, Y, timept, m, theta, prior)
```

LAPsetup

Defining a main function for the Laplace based Approximate Posterior inference

Description

The function LAPsetup defines a main function for the Laplace based Approximate Posterior inference using cxxfunction in Rcpp package.

Usage

```
LAPsetup(inc.fn, method)
```

Arguments

inc.fn

A character containing the code for DEf (Differential equation function f), df_dx (Differentiation of f with respect to x) and d2f_dx2 (Differentiation of df_dx with respect to x). The code for each function should be written in C++ grammar. See Details and Examples for DEf, df_dx and d2f_dx2.

method

A character determining the method for posterior sampling for θ . method="grid" means the grid sampling, and except that, the other arguments mean the griddy Gibbs sampling.

Details

This function defines a main function for the Laplace based Approximate Posterior inference using cxxfunction in Rcpp package.

A character input argument inc. fn should be made by the user. It specifies the differential equation and its derivatives for the state variable. For example, we consider the FitzHugh-Nagumo model in Examples:

$$\dot{x}_1(t) = f_1(x, t; \theta) = \theta_3(x_1(t) - \frac{1}{3}x_1^3(t) + x_2(t))$$

$$\dot{x}_2(t) = f_2(x, t; \theta) = -\frac{1}{\theta_3}(x_1(t) - \theta_1 + \theta_2 x_2(t)).$$

LAPsetup 9

df_dx for the above differential equation is

$$\begin{split} \frac{\partial f_1(x,t;\theta)}{\partial x_1} &= \theta_3 (1-x_1(t)^2), \\ \frac{\partial f_2(x,t;\theta)}{\partial x_1} &= -\frac{1}{\theta_3}, \\ \frac{\partial f_1(x,t;\theta)}{\partial x_2} &= \theta_3, \\ \frac{\partial f_2(x,t;\theta)}{\partial x_2} &= -\frac{\theta_2}{\theta_3}, \end{split}$$

and d2f_dx2 for the above differential equation is

$$\frac{\partial^2 f_1(x,t;\theta)}{\partial x_1^2} = -2\frac{\theta_3}{x_1(t)},$$
$$\frac{\partial^2 f_i(x,t;\theta)}{\partial x_i^2} = 0$$

for all i, j = 1, 2 except i = j = 1.

The corresponding character input argument is inc.FN in Examples. DEf represents the differential equation at time t. df_dx and d2f_dx2 represent the first and second derivatives of DEf $at\ all\ time\ points$. The DEf should be a p-dimensional vector. The df_dx should be a $p \times p \times (n-1)$ cube object whose (j_1, j_2, i) th element is

$$\frac{\partial f_{j_2}(x,t_i;\theta)}{\partial x_{j_1}}.$$

The d2f_dx2 should be a (n-1)-dimensional field object whose ith element is $p \times p \times p$ cube. The (j_1, j_2, j_3) th element of d2f_dx2(i) is

$$\frac{\partial^2 f_{j_3}(x,t_i;\theta)}{\partial x_{j_1}\partial x_{j_2}}.$$

Value

The function LAPsetup returns a function which will be used as an argument for LAPinfer function.

Author(s)

Kyoungjae Lee

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

```
library(inline)
library(RcppArmadillo)
# FitzHugn-Nagumo model
inc.FN <- '
using namespace Rcpp;
using namespace arma;</pre>
```

10 LAPsetup

```
vec DEf(vec x, double t, vec theta){
int p = x.n_rows;
vec res(p);
res(0) = theta(2)*(x(0) - pow(x(0),3)/3. + x(1));
res(1) = -1./theta(2)*(x(0) - theta(0) + theta(1)*x(1));
return res;
}
cube df_dx(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube df_dxval(p,p,n-1);
df_dxval = df_dxval.zeros();
for(i=0; i<n-1; i++){
df_dxval.slice(i)(\emptyset,\emptyset) = theta(2)*(1 - pow(X(\emptyset,i),2));
df_dxval.slice(i)(0,1) = -1./theta(2);
df_dxval.slice(i)(1,0) = theta(2);
df_dxval.slice(i)(1,1) = -theta(1)/theta(2);
return df_dxval;
field<cube> d2f_dx2(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube zeroval(p,p,p);
field<cube> d2f_dx2val(n-1);
zeroval = zeroval.zeros();
for(i=0; i<n-1; i++){
d2f_dx2val(i) = zeroval;
d2f_dx2val(i).slice(0)(0,0) = -2*theta(2)*X(0,i);
}
return d2f_dx2val;
}
n = 100; p = 2; Ym = 100; h = 0.2; x1 = c(-1,1)
timept = seq(from = 0, by = h, length.out = n)
trueX = matrix(0, p,n); trueX[,1] = matrix(x1, 2, 1)
theta = c(0.2, 0.2, 3)
trueX = GetX(inc.FN, trueX, timept, Ym, theta)
# Get data set
library(mvtnorm)
sigma = 0.5
set.seed(2)
Y = trueX + t(rmvnorm(n, mean=rep(0,p), sigma=diag(p)*sigma^2))
# LAP setup: defining the function 'FN.grid' using cxxfunction
```

FN.grid = LAPsetup(inc.FN, method="grid")

LAPinfer

Laplace based Approximate Posterior inference

Description

The function LAPinfer runs the Laplace based Approximate Posterior inference for the differential equation models.

Usage

```
LAPinfer(ftn, method, Y, t, m, grid, prior, hessian, checknum = 1000, nsample = NULL, eps = 0.1^5, maxiter = 50)
```

Arguments

checknum

_	
ftn	A function used for the Laplace based Approximate Posterior inference. It should be a output of LAPsetup function. See Examples.
method	A character determining the method for posterior sampling for θ . method="grid" means the grid sampling, and except that, the other arguments mean the griddy Gibbs sampling.
Υ	A $p \times n$ matrix of observation. n is the number of observation, and p is the dimensionality of observation.
t	A n -dimensional vector containing the time points for observation.
m	A positive integer. Each interval $[t_{i-1}, t_i]$ is divided into m segments to form a refined time points. The state variable is successively approximated by a numerical integration (fourth order Runge-Kutta) on this time points.
grid	A list containing the following objects: ctheta is a q -dimensional vector indicating the center of the grid set. MM is a positive integer indicating the number of grid points for each axis. Each axis is divided into $2MM$ intervals of equal length. h0 is a q -dimensional vector indicating the step size for each axis. If one choose h0=rep(1,q), then the $standardized\ variables\ z$ are used. Otherwise, if one choose $h_{0j}=k$, then z_jk is used instead of z_j .
prior	A list containing the following objects: a is a positive real number a . b is a positive real number b . c is a positive real number c . mu_x1 is a p -dimensional vector μ_{x_1} .
hessian	A list containing the following objects: use is a character determining whether to use the reparametrization technique for θ . Choose "No" for not using the reparametrization technique. Choose the other arguments for using the reparametrization technique. maxiter is a positive integer, which is the maximum iteration number of the Newton-Raphson algorithm for computing the numerical Hessian. eps is a positive real number, which determines the stopping rule of the Newton-Raphson algorithm for computing the numerical Hessian. step is a

positive real number, which is the step size for the numerical Hessian.

tions have been carried out.

A positive integer. LAPinfer reports on the screen when every checknum itera-

nsample A positive integer giving the total number of posterior samples. It has no mean-

ing when "grid" method is chosen.

eps A positive real number. It determines the stopping rule of the Newton-Raphson

algorithm. The default value is 0.1^5 .

maxiter A positive integer. It is the maximum iteration number of the Newton-Raphson

algorithm. The default value is 50.

Details

This function runs the Laplace based Approximate Posterior inference for the differential equation models.

A character input argument inc. fn should be made by the user. It specifies the differential equation and its derivatives for the state variable. For example, we consider the FitzHugh-Nagumo model in Examples:

$$\dot{x}_1(t) = f_1(x, t; \theta) = \theta_3(x_1(t) - \frac{1}{3}x_1^3(t) + x_2(t))$$

$$\dot{x}_2(t) = f_2(x, t; \theta) = -\frac{1}{\theta_2}(x_1(t) - \theta_1 + \theta_2 x_2(t)).$$

df_dx for the above differential equation is

$$\frac{\partial f_1(x,t;\theta)}{\partial x_1} = \theta_3 (1 - x_1(t)^2),$$
$$\frac{\partial f_2(x,t;\theta)}{\partial x_1} = 0$$

$$\frac{\partial f_2(x,t;\theta)}{\partial x_1} = -\frac{1}{\theta_3},$$

$$\frac{\partial f_1(x,t;\theta)}{\partial x_2} = \theta_3,$$

$$\frac{\partial f_2(x,t;\theta)}{\partial x_2} = -\frac{\theta_2}{\theta_3},$$

and d2f_dx2 for the above differential equation is

$$\frac{\partial^2 f_1(x,t;\theta)}{\partial x_1^2} = -2\frac{\theta_3}{x_1(t)},$$

$$\frac{\partial^2 f_i(x,t;\theta)}{\partial x_j^2} = 0$$

for all i, j = 1, 2 except i = j = 1.

The corresponding character input argument is inc.FN in Examples. DEf represents the differential equation at time t. df_dx and d2f_dx2 represent the first and second derivatives of DEf $at\ all\ time\ points$. The DEf should be a p-dimensional vector. The df_dx should be a $p \times p \times (n-1)$ cube object whose (j_1, j_2, i) th element is

$$\frac{\partial f_{j_2}(x,t_i;\theta)}{\partial x_{j_1}}.$$

The d2f_dx2 should be a (n-1)-dimensional field object whose ith element is $p \times p \times p$ cube. The (j_1, j_2, j_3) th element of d2f_dx2(i) is

$$\frac{\partial^2 f_{j_3}(x,t_i;\theta)}{\partial x_{j_1}\partial x_{j_2}.}$$

LAPinfer 13

Value

The function LAPinfer returns a list. The objects in the list depends on the chosen method. If the grid sampling was chosen, then the list includes the following objects:

prob a $(2MM+1)^q$ -dimensional vector giving the posterior probabilities for θ on

grid matrix.

bstar a $(2MM+1)^q$ -dimensional vector whose j-th element is $u(\theta^j)/2 + b$ where

$$u(\theta) = ng_n(\hat{x}_1(\theta), \theta) + ||\hat{x}_1(\theta) - \mu_{x_1}||^2/c$$

and θ^j is the j-th grid for θ .

grid mat $a \ q \times (2MM+1)^q$ matrix whose j-th row is the j-th grid for θ .

If the griddy Gibbs sampling was chosen, then the list includes the following objects:

sample a $q \times nsample$ matrix giving the posterior sample for θ .

bstar a $q \times nsample$ matrix whose j-th element is $u(\theta^j)/2 + b$ where θ^j is the j-th

posterior sample for θ .

endval a q-dimensional vector giving the last value for the standardized variable z.

The common objects are

Tmat a $q \times q$ transformation matrix $UD^{1/2}$ where $H^{-1} = UDU^T$ and H is the

negative Hessian matrix of $\pi(\theta \mid y_n)$.

Y same as input value.

method same as input value.

t same as input value.

m same as input value.

grid same as input value.

prior same as input value.

hessian same as input value.

Author(s)

Kyoungjae Lee

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

```
library(inline)
library(RcppArmadillo)

# FitzHugn-Nagumo model
inc.FN <- '
using namespace Rcpp;
using namespace arma;

vec DEf(vec x, double t, vec theta){</pre>
```

14 LAPinfer

```
int p = x.n_rows;
vec res(p);
res(0) = theta(2)*(x(0) - pow(x(0),3)/3. + x(1));
res(1) = -1./theta(2)*(x(0) - theta(0) + theta(1)*x(1));
return res;
cube df_dx(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
cube df_dxval(p,p,n-1);
df_dxval = df_dxval.zeros();
for(i=0; i<n-1; i++){
df_dxval.slice(i)(0,0) = theta(2)*(1 - pow(X(0,i),2));
df_dxval.slice(i)(0,1) = -1./theta(2);
df_dxval.slice(i)(1,0) = theta(2);
df_dxval.slice(i)(1,1) = -theta(1)/theta(2);
return df_dxval;
field<cube> d2f_dx2(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube zeroval(p,p,p);
field<cube> d2f_dx2val(n-1);
zeroval = zeroval.zeros();
for(i=0; i<n-1; i++){
d2f_dx2val(i) = zeroval;
d2f_dx2val(i).slice(0)(0,0) = -2*theta(2)*X(0,i);
}
return d2f_dx2val;
}
n = 100; p = 2; Ym = 100; h = 0.2; x1 = c(-1,1)
timept = seq(from = 0, by = h, length.out = n)
trueX = matrix(0, p,n); trueX[,1] = matrix(x1, 2, 1)
theta = c(0.2, 0.2, 3)
trueX = GetX(inc.FN, trueX, timept, Ym, theta)
# Get data set
library(mvtnorm)
sigma = 0.5
set.seed(2)
Y = trueX + t(rmvnorm(n, mean=rep(0,p), sigma=diag(p)*sigma^2))
# LAP setup: defining the function <e2><80><98>FN.grid' using cxxfunction
FN.grid = LAPsetup(inc.FN, method="grid")
# setting the arguments
grid = list()
```

post.sampling 15

```
grid$ctheta = c(0.2, 0.2, 3); grid$MM = 15; grid$h0 = c(1, 1, 1)
prior = list()
prior$a = 0.1; prior$b = 0.01; prior$c = 100; prior$mu_x1 = Y[,1]
hessian = list()
hessian$use = "Yes"; hessian$maxiter = 500; hessian$eps = 0.1^3; hessian$step = 0.1^4
res = LAPinfer(FN.grid, method="grid", Y, timept, m, grid, prior, hessian, eps=0.1^5, maxiter=30)
```

post.sampling

Posterior sampling

Description

The function post.sampling performs the posterior sampling for θ and σ^2 . If the grid sampling was chosen for res, it conducts the grid sampling for θ on res\$gridmat with probabilities res\$prob and gets the posterior samples of σ^2 from $\pi(\sigma^2 \mid \theta, y_n)$. If the griddy Gibbs sampling was chosen for res, it selects a part of the posterior samples of θ using post\$nburn and post\$nthin, and gets the posterior samples of σ^2 .

Usage

```
post.sampling(res, post, prior)
```

Arguments

res A LAP object. It should be an output from LAP infer function.

post A list containing the following objects: nburn is the number of burn-in, and

nthin is the thinning interval.

prior A list containing the following objects: a is a positive real number a. b is a

positive real number b. c is a positive real number c. mu_x1 is a p-dimensional

vector μ_{x_1} .

Details

This function performs the posterior sampling for θ and σ^2 .

Value

The function post. sampling returns a list including the following objects:

thetasamples a $q \times npost$ matrix containing the posterior samples of θ . npost is the number

of posterior samples.

sigma2samples a npost-dimensional vector containing the posterior samples of σ^2 .

res same as input value.

Author(s)

Kyoungjae Lee

16 post.sampling

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

```
library(inline)
library(RcppArmadillo)
# FitzHugn-Nagumo model
inc.FN <- '
using namespace Rcpp;
using namespace arma;
vec DEf(vec x, double t, vec theta){
int p = x.n_rows;
vec res(p);
res(0) = theta(2)*(x(0) - pow(x(0),3)/3. + x(1));
res(1) = -1./theta(2)*(x(0) - theta(0) + theta(1)*x(1));
return res;
}
cube df_dx(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube df_dxval(p,p,n-1);
df_dxval = df_dxval.zeros();
for(i=0; i<n-1; i++){
df_dxval.slice(i)(0,0) = theta(2)*(1 - pow(X(0,i),2));
df_dxval.slice(i)(0,1) = -1./theta(2);
df_dxval.slice(i)(1,0) = theta(2);
df_dxval.slice(i)(1,1) = -theta(1)/theta(2);
}
return df_dxval;
}
field < cube > d2f_dx2(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube zeroval(p,p,p);
field<cube> d2f_dx2val(n-1);
zeroval = zeroval.zeros();
for(i=0; i<n-1; i++){
d2f_dx2val(i) = zeroval;
d2f_dx2val(i).slice(0)(0,0) = -2*theta(2)*X(0,i);
return d2f_dx2val;
}
n = 100; p = 2; Ym = 100; h = 0.2; x1 = c(-1,1)
```

LAPpred 17

```
timept = seq(from = 0, by = h, length.out = n)
trueX = matrix(0, p,n); trueX[,1] = matrix(x1, 2, 1)
theta = c(0.2, 0.2, 3)
trueX = GetX(inc.FN, trueX, timept, Ym, theta)
# Get data set
library(mvtnorm)
sigma = 0.5
set.seed(2)
Y = trueX + t(rmvnorm(n, mean=rep(0,p), sigma=diag(p)*sigma^2))
# LAP setup: defining the function 'FN.grid' using cxxfunction
FN.grid = LAPsetup(inc.FN, method="grid")
# setting the arguments
grid = list()
grid$ctheta = c(0.2, 0.2, 3); grid$MM = 15; grid$h0 = c(1, 1, 1)
prior = list()
prior$a = 0.1; prior$b = 0.01; prior$c = 100; prior$mu_x1 = Y[,1]
hessian = list()
hessian$use = "Yes"; hessian$maxiter = 500; hessian$eps = 0.1^3; hessian$step = 0.1^4
res = LAPinfer(FN.grid, method="grid", Y, timept, m, grid, prior, hessian, eps=0.1^5, maxiter=30)
post = list()
post$npost = 10000
# posterior sampling
samp = post.sampling(res, post, prior)
```

LAPpred

Prediction through the Laplace based Approximate Posterior inference

Description

The function LAPpred returns a list of the predicted values for observations on present time points and future pred. size time points.

Usage

```
LAPpred(inc.fn, res, samp, pred.size, upper = 0.95, lower = 0.05, eps = 0.1^5, maxiter = 50)
```

Arguments

inc.fn	A character containing the code for DEf (Differential equation function f), df_dx
	(Differentiation of f with respect to x) and d2f_dx2 (Differentiation of df_dx
	with respect to x). The code for each function should be written in C++ grammar.
	See Details and Examples for DEf, df_dx and d2f_dx2.
res	A LAP object. It should be an output from LAPinfer function.
samp	A list of posterior samples. It should be an output from post.sampling func-
	tion.

A positive integer giving the number of future prediction time points.

A positive real number between 0 and 1 for upper bound of predicted values. The default value is 0.95, which gives the 0.95 quantile of the predicted values.

A positive real number between 0 and 1 for lower bound of predicted values. The default value is 0.05, which gives the 0.05 quantile of the predicted values.

A positive real number. It determines the stopping rule of the Newton-Raphson algorithm. The default value is 0.1⁵.

A positive integer. It is the maximum iteration number of the Newton-Raphson algorithm. The default value is 50.

Details

This function returns a list of the predicted values for observations on present time points and future pred.size time points.

A character input argument inc. fn should be made by the user. It specifies the differential equation and its derivatives for the state variable. For example, we consider the FitzHugh-Nagumo model in Examples:

$$\dot{x}_1(t) = f_1(x, t; \theta) = \theta_3(x_1(t) - \frac{1}{3}x_1^3(t) + x_2(t))$$
$$\dot{x}_2(t) = f_2(x, t; \theta) = -\frac{1}{\theta_3}(x_1(t) - \theta_1 + \theta_2 x_2(t)).$$

df_dx for the above differential equation is

$$\begin{split} \frac{\partial f_1(x,t;\theta)}{\partial x_1} &= \theta_3 (1 - x_1(t)^2), \\ \frac{\partial f_2(x,t;\theta)}{\partial x_1} &= -\frac{1}{\theta_3}, \\ \frac{\partial f_1(x,t;\theta)}{\partial x_2} &= \theta_3, \\ \frac{\partial f_2(x,t;\theta)}{\partial x_2} &= -\frac{\theta_2}{\theta_3}, \end{split}$$

and d2f_dx2 for the above differential equation is

$$\frac{\partial^2 f_1(x,t;\theta)}{\partial x_1^2} = -2\frac{\theta_3}{x_1(t)},$$
$$\frac{\partial^2 f_i(x,t;\theta)}{\partial x_i^2} = 0$$

for all i, j = 1, 2 except i = j = 1.

The corresponding character input argument is inc.FN in Examples. DEf represents the differential equation at time t. df_dx and d2f_dx2 represent the first and second derivatives of DEf $at\ all\ time\ points$. The DEf should be a p-dimensional vector. The df_dx should be a $p\times p\times (n-1)$ cube object whose (j_1,j_2,i) th element is

$$\frac{\partial f_{j_2}(x,t_i;\theta)}{\partial x_{j_1}}.$$

The d2f_dx2 should be a (n-1)-dimensional field object whose ith element is $p \times p \times p$ cube. The (j_1, j_2, j_3) th element of d2f_dx2(i) is

$$\frac{\partial^2 f_{j_3}(x,t_i;\theta)}{\partial x_{j_1}\partial x_{j_2}.}$$

LAPpred 19

Value

The function LAPpred returns a list. For any $j=1,\ldots,p,j$ -th object in the list is a $4\times(n+pred.size)$ matrix whose first, second, third and fourth columns are 0.05, 0.5, 0.95 quantile of the predicted values and the observations for j-th state with NA for future time points.

Author(s)

Kyoungjae Lee

References

Sarat C. Dass, Jaeyong Lee, Kyoungjae Lee and Jonghun Park. (2016) "Laplace Based Approximate Posterior Inference for Differential Equation Models", *Statistics and Computing*.

```
library(inline)
library(RcppArmadillo)
# FitzHugn-Nagumo model
inc.FN <- '
using namespace Rcpp;
using namespace arma;
vec DEf(vec x, double t, vec theta){
int p = x.n_rows;
vec res(p);
res(0) = theta(2)*(x(0) - pow(x(0),3)/3. + x(1));
res(1) = -1./theta(2)*(x(0) - theta(0) + theta(1)*x(1));
return res;
}
cube df_dx(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube df_dxval(p,p,n-1);
df_dxval = df_dxval.zeros();
for(i=0; i<n-1; i++){
df_{dxval.slice(i)(0,0)} = theta(2)*(1 - pow(X(0,i),2));
df_dxval.slice(i)(0,1) = -1./theta(2);
df_dxval.slice(i)(1,0) = theta(2);
df_dxval.slice(i)(1,1) = -theta(1)/theta(2);
return df_dxval;
field < cube > d2f_dx2(mat X, vec theta){
int n = X.n_cols;
int p = X.n_rows;
int i;
cube zeroval(p,p,p);
field<cube> d2f_dx2val(n-1);
```

20 LAPpred

```
zeroval = zeroval.zeros();
for(i=0; i<n-1; i++){
d2f_dx2val(i) = zeroval;
d2f_dx2val(i).slice(0)(0,0) = -2*theta(2)*X(0,i);
return d2f_dx2val;
n = 100; p = 2; Ym = 100; h = 0.2; x1 = c(-1,1)
timept = seq(from = 0, by = h, length.out = n)
trueX = matrix(0, p,n); trueX[,1] = matrix(x1, 2, 1)
theta = c(0.2, 0.2, 3)
trueX = GetX(inc.FN, trueX, timept, Ym, theta)
# Get data set
library(mvtnorm)
sigma = 0.5
set_seed(2)
Y = trueX + t(rmvnorm(n, mean=rep(0,p), sigma=diag(p)*sigma^2))
# LAP setup: defining the function 'FN.grid' using cxxfunction
FN.grid = LAPsetup(inc.FN, method="grid")
# setting the arguments
grid = list()
grid$ctheta = c(0.2, 0.2, 3); grid$MM = 15; grid$h0 = c(1, 1, 1)
prior = list()
prior$a = 0.1; prior$b = 0.01; prior$c = 100; prior$mu_x1 = Y[,1]
hessian = list()
hessian$use = "Yes"; hessian$maxiter = 500; hessian$eps = 0.1^3; hessian$step = 0.1^4
res = LAPinfer(FN.grid, method="grid", Y, timept, m, grid, prior, hessian, eps=0.1^5, maxiter=30)
post = list()
post$npost = 10000
samp = post.sampling(res, post, prior)
# prediction
pred.size = 10
predmat = LAPpred(inc.FN, res, samp, pred.size)
pred.t = (1:(n+pred.size))*h
pred.trueX = matrix(0, p, n+pred.size)
pred.trueX[,1] = x1
pred.trueX = GetX(inc.FN, pred.trueX, pred.t, Ym, theta)
par(mfrow=c(1,2))
for(j in 1:p){
matplot(pred.t, cbind(predmat[[j]], pred.trueX[j,]), type=c("1","1","1","p","1"), pch="*",
xlab="Time\ (min)", ylab="Temperature", main="", lwd=1, lty=c(2,2,2,1,1), bty="l", col=c(4,3,4,1,2))
}
```

hist.LAP 21

hist.LAP

Histogram for LAP objects

Description

The hist method for LAP objects.

Usage

```
## S3 method for class LAP
hist.LAP(postsamples, size = NULL)
```

Arguments

```
postsamples a LAP object.
size a 2-dimensional vector giving the number of subplots on each axis.
```

Value

None.

Author(s)

Kyoungjae Lee

```
## The function is currently defined as
function (postsamples, size = NULL)
   q = nrow(postsamples$thetasamples)
    if (is.null(size))
        size = c(min(1 + floor(q/3), 3), 3)
   par(mfrow = size)
    for (i in 1:q) {
       ind = paste0("theta", i)
       minval = min(postsamples$thetasamples[i, ])
       maxval = max(postsamples$thetasamples[i, ])
       11 = length(postsamples$thetasamples[i, ])
       if (postsamples$res$method == "grid") {
            range = range(postsamples$res$gridmat[i, ])
       }
       else {
            range = c(minval, maxval)
       hist(postsamples$thetasamples[i, ], breaks = seq(minval,
           maxval, by = (\max - \min )/(11 - 1)), main = "",
           xlab = c(ind), xlim = range)
   hist(samp$sigma2samples, main = "", xlab = "sigma2")
```

22 plot.LAP

plot.LAP

Plot for LAP objects

Description

The plot method for LAP objects.

Usage

```
## S3 method for class LAP
plot.LAP(postsamples, coin = FALSE, size = NULL)
```

Arguments

postsamples a LAP object. A logical value. If TRUE, the $standardized\ variables,\ z,$ are plotted instead of θ . See the subsection 3.4 of Dass et al. (2016) for the details on the standardized variables z.

size

a 2-dimensional vector giving the number of subplots on each axis.

Author(s)

Kyoungjae Lee

```
## The function is currently defined as
function (postsamples, coin = FALSE, size = NULL)
    q = nrow(postsamples$thetasamples)
    if (is.null(size))
        size = c(min(1 + floor(q/3), 3), 3)
    if (coin) {
        inv_trans = diag(1/postsamples$res$grid$h0) %*% solve(postsamples$res$Tmat)
        coins = inv_trans %*% (postsamples$thetasamples - postsamples$res$grid$ctheta)
        truecoin = inv_trans %*% (theta - postsamples$res$grid$ctheta)
    par(mfrow = size)
    for (i in 1:q) {
        if (coin) {
            ind = paste0("coin for theta", i)
            range = c(-4, 4)
            ts.plot(coins[i, ], main = "", xlab = c(ind), ylim = range,
                ylab = "")
        }
        else {
            ind = paste0("theta", i)
            ts.plot(postsamples$thetasamples[i, ], main = "",
                xlab = c(ind), ylab = "")
        }
    }
    ts.plot(postsamples$sigma2samples, main = "", xlab = "sigma2",
        ylab = "")
  }
```

summary.LAP 23

summary.LAP

Summary for LAP objects

Description

The summary method for LAP objects.

Usage

```
## S3 method for class LAP
summary.LAP(postsamples)
```

Arguments

```
postsamples a LAP object.
```

Author(s)

Kyoungjae Lee

```
## The function is currently defined as
function (postsamples)
{
    q = nrow(postsamples$thetasamples)
    res = matrix(0, q + 1, 4)
    colnames(res) <- c("Mean", "Median", "5% quantile", "95% quantile")</pre>
    rownames(res) = rep(0, q + 1)
    for (i in 1:q) {
        res[i, 1] = mean(postsamples$thetasamples[i, ])
        res[i, 2] = median(postsamples$thetasamples[i, ])
        res[i, c(3:4)] = quantile(postsamples$thetasamples[i,
            ], c(0.05, 0.95))
        rownames(res)[i] = paste("theta", i, collapsed = "")
    }
    res[q + 1, 1] = mean(postsamples$sigma2samples)
    res[q + 1, 2] = median(postsamples$sigma2samples)
    res[q + 1, c(3:4)] = quantile(postsamples$sigma2samples,
        c(0.05, 0.95))
    rownames(res)[q + 1] = paste("sigma2")
    return(res)
```

Index

```
* \\ Topic \ \boldsymbol{datasets}
     inc.base, 2
*Topic package
     LAPinfer-package, 1
GetX, 2
GetXhat, 5
hist.LAP, 21
inc.base, 2
LAPinfer, 11
LAPinfer (LAPinfer-package), 1
LAPinfer-package, 1
LAPpred, 17
{\tt LAPsetup,\,8}
plot.LAP, 22
\verb"post.sampling", 15"
\texttt{summary.LAP}, \textcolor{red}{\textbf{23}}
```