Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Compute the determinant of the matrix

$$\begin{bmatrix} 1 & 3 & 2 & 4 \\ -2 & 3 & -1 & 1 \\ 5 & 0 & -4 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

Solution: -15.

Standard G3.

Mark:

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

Standard G4.

Mark:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard G1.	

Compute the determinant of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

Solution: -1.

Standard G3.

Mark:

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

Standard G4.

Mark:

Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Г		
ı		
_	_	

Additional Notes/Marks

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Compute the determinant of the matrix

$$\begin{bmatrix} 0 & -4 & 1 & 1 \\ -2 & 3 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 5 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: -55.

Standard G3.

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

Standard G4.

Mark:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Compute the determinant of the matrix

$$\begin{bmatrix} 0 & -4 & 1 & 1 \\ -2 & 3 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 5 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: -55.

Standard G3.

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

Standard G4.

Mark:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Compute the determinant of the matrix

$$\begin{bmatrix} 0 & -4 & 1 & 1 \\ -2 & 3 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 5 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: -55.

Standard G3.

Mark:

Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}.$

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}\right)$$

Standard G4.

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Compute the determinant of the matrix

$$\begin{bmatrix} 0 & -4 & 1 & 1 \\ -2 & 3 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 5 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: -55.

Standard G3.

Mark:

Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}.$

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$\text{RREF}(B-2I) = \text{RREF}\left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}\right)$$

Standard G4.

Compute the geometric multiplicity of the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the geometric multiplicity is 2.