Permit Number 20041, N196M1, and PSDTX1590

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
(1)		rume (o)	lb/hour	TPY (4)
TC1	Test Cell 1	NO _x	106.9	-
	Gas fuel firing	СО	84.8	-
		voc	46.6	-
		РМ	5.3	-
		PM ₁₀	5.3	-
		PM _{2.5}	5.3	-
		SO ₂	2.0	-
TC1	Test Cell 1	NO _x	181.5	-
	Liquid fuel firing	со	88.8	-
		voc	20.4	-
		PM	15.7	-
		PM ₁₀	15.7	-
		PM _{2.5}	15.7	-
		SO ₂	7.5	-
TC1	Test Cell 1 - Annual Emission Rate	NO _x	-	100.2
	Gas and Liquid Fuel Firing	СО	-	27.7
		VOC	-	9.4
		РМ	-	10.7
		PM ₁₀	-	10.7
		PM _{2.5}	-	10.7
		SO ₂	-	2.9

TC2	Test Cell 2 Gas Fuel Firing	NO _x	8.7	-
	Gas Fuel Firing	СО	18.4	-
		VOC	4.7	-
		РМ	0.7	-
		PM ₁₀	0.7	-
		PM _{2.5}	0.7	-
		SO ₂	0.4	-
TC2	Test Cell 2	NO _x	13.0	-
	Liquid Fuel Firing	со	37.0	-
		VOC	4.7	-
		PM	3.5	-
		PM ₁₀	3.5	-
		PM _{2.5}	3.5	-
		SO ₂	1.5	-
TC2	Test Cell 2 – Annual Emission Rates	NO _x	-	8.7
	Gas and Liquid Fuel Firing	со	-	9.2
		VOC	-	0.9
		РМ	-	1.9
		PM ₁₀	-	1.9
		PM _{2.5}	-	1.9
		SO ₂	-	0.8
TC3	Test Cell 3	NO _x	80.0	-
	Gas Fuel Firing	СО	84.8	-
		VOC	13.5	-
		РМ	2.5	-
		PM ₁₀	2.5	-
		PM _{2.5}	2.5	-

Ī				
	RAFT	SO ₂	1.1	-
TC3	Test Cell 3	NO _x	120.0	-
	Liquid Fuel Firing	со	45.6	-
		VOC	7.2	-
		PM	15.7	-
		PM ₁₀	15.7	-
		PM _{2.5}	15.7	-
		SO ₂	4.8	-
TC3	Test Cell 3 – Annual Emission Rates	NO _x	-	35.9
	Gas and Liquid Fuel Firing	СО	-	19.4
		VOC	-	1.8
		PM	-	10.7
		PM ₁₀	-	10.7
		PM _{2.5}	-	10.7
		SO ₂	-	2.7
TC4	Test Cell 4	NO _x	106.9	-
	Gas Fuel Firing	СО	84.8	-
		VOC	46.6	-
		PM	5.3	-
		PM ₁₀	5.3	-
		PM _{2.5}	5.3	-
		SO ₂	2.0	-
TC4	Test Cell 4	NO _x	181.5	-
	Liquid Fuel Firing	СО	41.3	-
		voc	14.3	-
		РМ	15.7	-
		PM ₁₀	15.7	-
				1

PM ₂₅ 15.7 -	
TC4 Test Cell 4 Gas and Liquid Fuel Firing CO - 27.7 VOC - 9.4 PM - 10.7 PM ₁₀ - 10.7 PM ₂₅ - 10.7 SO ₂ - 2.9 TC5 Gas Fuel Firing CO 30.0 - VOC 8.8 - PM 8.5 - PM ₁₀ 8.5 - PM ₁₀ 8.5 - PM ₁₀ 8.5 - PM ₂₅ 8.5 -	
Gas and Liquid Fuel Firing CO - 27.7 VOC - 9.4 PM - 10.7 PM _{2.5} - 10.7 SO ₂ - 2.9 TC5 Test Cell 5 Gas Fuel Firing CO 30.0 - VOC 8.8 - PM 8.5 - PM 8.5 - PM ₁₀ 8.5 - PM _{2.5} - PM _{2.5} - RO ₂ - RO ₂ - RO ₂ - RO ₃ - RO ₄ - RO ₅ - RO ₆ - RO ₇ - RO ₇ - RO ₈ - PM 8.5 - PM ₁₀ 8.5 - PM ₁₀ 8.5 - PM _{2.5} - RO ₈ - PM _{2.5} - PM _{2.5} - RO ₈ - PM _{2.5} - RO ₈ - PM _{2.5} - PM _{3.5} -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
PM ₁₀ - 10.7 PM _{2.5} - 10.7 SO ₂ - 2.9 TC5 Gas Fuel Firing CO 30.0 - VOC 8.8 - PM ₁₀ 8.5 - PM ₁₀ 8.5 - PM _{2.5} 8.5 -	
PM _{2.5} - 10.7 SO ₂ - 2.9 TC5 Test Cell 5 Gas Fuel Firing CO 30.0 - VOC 8.8 - PM 8.5 - PM 9M _{2.5} PM 9M	
TC5	
TC5 Gas Fuel Firing VOC 8.8 PM 8.5 - PM 90.8 - PM 9	
Gas Fuel Firing CO 30.0 - VOC 8.8 - PM 8.5 - PM ₁₀ 8.5 - PM _{2.5} 8.5 -	
CO 30.0 - VOC 8.8 - PM 8.5 - PM ₁₀ 8.5 - PM _{2.5} 8.5 -	
PM 8.5 - PM ₁₀ 8.5 - PM _{2.5} 8.5 -	
PM ₁₀ 8.5 - PM _{2.5} 8.5 -	
PM _{2.5} 8.5 -	
SO ₂ 3.8 -	
TC5 Test Cell 5 NO _x 338.8 -	
Liquid Fuel Firing CO 30.0 -	
VOC 8.8 -	
PM 12.1 -	
PM ₁₀ 12.1 -	
PM _{2.5} 12.1 -	
SO ₂ 14.1 -	
TC5 Test Cell 5 – Annual Emission Rates NO _x - 74.53	
Gas and Liquid Fuel Firing CO - 25.48	
VOC - 5.81	

	SPAF	РМ	-	7.49
		PM ₁₀	-	7.49
		PM _{2.5}	-	7.49
		SO ₂	-	4.15
TC6	Test Cell 6	NO _x	298.43	-
	Gas Fuel Firing	СО	26.00	-
		VOC	1.49	-
		РМ	4.21	-
		PM ₁₀	4.21	-
		PM _{2.5}	4.21	-
		SO ₂	3.04	-
TC6	Test Cell 6	NO _x	409.53	-
	Liquid Fuel Firing	СО	26.29	-
		VOC	7.50	-
		РМ	13.60	-
		PM ₁₀	13.60	-
		PM _{2.5}	13.60	-
		SO ₂	0.35	-
TC6	Test Cell 6 – Annual Emission Rates	NO _x	-	39.78
	Gas and Liquid Fuel Firing	СО	-	49.46
		VOC	-	4.03
		РМ	-	9.88
		PM ₁₀	-	9.88
		PM _{2.5}	-	9.88
		SO ₂	-	5.24

TC7	Test Cell 7	NO _x	659.34	_
	Gas Fuel Firing	СО	469.11	
		VOC	10.69	
		PM	3.66	-
		PM ₁₀	3.66	-
		PM _{2.5}	3.66	-
TC7	Took Call 7	SO ₂	4.92	-
TC7	Test Cell 7 Liquid Fuel Firing	NO _x	989.01	-
	Liquid i deri imig	СО	470.11	-
		voc	10.72	-
		РМ	8.22	-
		PM ₁₀	8.22	-
		PM _{2.5}	8.22	-
		SO ₂	0.60	-
TC7	Test Cell 7 – Annual Emission Rates Gas and Liquid Fuel Firing - 2023 (5)	NO _x	-	9.89
		СО	-	6.04
		voc	-	0.46
		PM	-	1.44
		PM ₁₀	-	1.44
		PM _{2.5}	-	1.44
		SO ₂	-	1.97
TC7	Test Cell 7 – Annual Emission Rates	NO _x	-	10.78
	Gas and Liquid Fuel Firing – 2024 (6)	СО	-	6.24
		VOC	-	0.46
		PM	-	1.53
		PM ₁₀	-	1.53

l				1
	ORAFT	PM _{2.5}	-	1.53
		SO ₂	-	1.88
TC7	Test Cell 7 – Annual Emission Rates	NO _x	-	11.67
	Gas and Liquid Fuel Firing – 2025 (7)	СО	-	6.44
		voc	-	0.46
		РМ	-	1.62
		PM ₁₀	-	1.62
		PM _{2.5}	-	1.62
		SO ₂	-	1.80
TC7	Test Cell 7 – Annual Emission Rates	NO _x	-	24.31
	Gas and Liquid Fuel Firing – 2026 (8)	со	-	6.04
		voc	-	0.46
		РМ	-	1.53
		PM ₁₀	-	1.53
		PM _{2.5}	-	1.53
		SO ₂	-	1.88
TC7	Test Cell 7 – Annual Emission Rates	NO _x	-	49.46
	Gas and Liquid Fuel Firing – 2027 (9)	со	-	5.84
		voc	-	0.46
		РМ	-	1.72
		PM ₁₀	-	1.72
		PM _{2.5}	-	1.72
		SO ₂	-	1.71
TC7	Test Cell 7 – Annual Emission Rates	NO _x	-	58.15
	Gas and Liquid Fuel Firing – 2028 (10)	со	-	5.74
		voc	-	0.47
	nher: 220786			

ı				T
	RAFT	PM	-	1.72
		PM ₁₀	-	1.72
		PM _{2.5}	-	1.72
		SO ₂	-	1.67
TC7	Test Cell 7 – Annual Emission Rates	NO _x	-	72.69
	Gas and Liquid Fuel Firing – 2029 and thereafter (11)	со	-	7.17
		voc	-	0.59
		PM	-	2.15
		PM ₁₀	-	2.15
		PM _{2.5}	-	2.15
		SO ₂	-	2.09
F1	TC1, TC3-5 Process Fugitives (12)	voc	0.6	0.3
F2	TC2 Process Fugitives (12)	voc	0.3	0.1
F3	TC6 Process Fugitives (12)	voc	0.01	0.01
S1	Oil/Water Separator	voc	0.1	0.3
S2	TC6 Oil/Water Separator	voc	0.01	0.05
S3	TC7 Oil/Water Separator	voc	0.01	0.05
CT1	Cooling Tower	voc	0.08	0.37
		PM	0.60	2.63
		PM ₁₀	0.15	0.66
		PM _{2.5}	0.01	0.03
		Cl ₂	<0.01	<0.01
СТ3	Cooling Tower	voc	0.1	0.4
		PM	0.60	2.63
		PM ₁₀	0.15	0.66
		PM _{2.5}	0.01	0.03
		I.	1	-L

Permit Numbers: 20041, N196M1, and PSDTX1590

Page 9

Emission Sources - Maximum Allowable Emission Rates

	QAF	Cl ₂	<0.01	<0.01
CT4	TC6 Cooling Tower	VOC	0.08	0.37
		PM	0.06	0.26
		PM ₁₀	0.02	0.09
		PM _{2.5}	<0.01	<0.01
		Cl ₂	<0.01	<0.01
СТ5	TC7 Cooling Tower No. 5	voc	0.08	0.37
		PM	0.06	0.26
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01
		Cl ₂	<0.01	<0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) NO_x - total oxides of nitrogen - carbon monoxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}
 PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

 SO_2 - sulfur dioxide Cl_2 - chlorine

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rates for EPN TC7 are effective for calendar year 2023 and/or for the subsequent calendar year following approval from TCEQ EBT for the NO_x emission credits.
- (6) Emission rates for EPN TC7 are effective for calendar year 2024, and/or for the subsequent calendar year following approval from TCEQ EBT for the NO_x emission credits.
- (7) Emission rates for EPN TC7 are effective for calendar year 2025, and/or for the subsequent calendar year following approval from TCEQ EBT for the NO_x emission credits.
- (8) Emission rates for EPN TC7 are effective for calendar year 2026, and/or for the subsequent calendar year following approval from TCEQ EBT for the NO_x emission credits.
- (9) Emission rates for EPN TC7 are effective for calendar year 2027, and/or for the subsequent calendar year following approval from TCEQ EBT for the NO_x emission credits.
- (10)Emission rates for EPN TC7 are effective for calendar year 2028, and/or for the subsequent calendar year following approval from TCEQ EBT for the NO_x emission credits.
- (11)Emission rates for EPN TC7 are effective for calendar year 2029 and thereafter, following approval from TCEQ EBT for the NO_x emission credits.
- (12)Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Date: TBD	
-----------	--