PH & ITS MEASUREMENT

Origin of pH

Determination of pH

Indicators

- Litmus paper
- pH paper

Colorimeter

pH meters

pH meters - History

Arnold Orville Beckman (1900-2004)

pH meters - Types

Handheld pH meter

Bench top pH meter

Continuous in line pH meter

pH meters – pH Electrode

Glass electrode

Reference electrode

Combination electrode

3 in 1 electrode

pH meter -- Glass Electrode

Fig Measuring (Glass) electrode

pH Reference Electrode

Reference electrolyte

- Inert
- High ion concentration → Low electrical resistance
- Contact with measuring solution

Popular Reference Systems

- Mercury/calomel
- Silver/Silver chloride

pH meter – Combination Electrode

Fig Combination electrode

pH meter- Working principle

The potential of glass electrode is measured against that of reference electrode

Fig Closed circuit of pH meter

pH Electrode – Working principle

pH meter – working principle

Calibration of pH meter

The measuring electrode and reference electrode, when put in a zero solution (7.0 pH buffer) provides a zero mV output.

Factors causing differences or changes in potential

- Contamination of the reference electrolyte solution.
- Electrolyte evaporation/depletion
- Chemical attack of the silver/silver chloride wire.
- Junction potential.
- Aging of the measuring electrode.

Calibration of pH meter

Calibration of pH meter

2 point calibration

Multi point calibration

Fig pH meter with calibrators

Errors in determination of pH

Alkaline error

Acidic error

Due to reactivity of reference electrolyte

Error due to temperature variation

Temperature Compensation

Type of Solution	pH value at		
	20°C	30°C	
0.001 Mol/L HCl	3.00	3.00	
0.001 Mol/L NaOH	11.17	10.83	
Phosphate Buffer	7.43	7.40	
Tris Buffer	7.84	7.56	

Table – Changes in pH with change in temperature

The linear function for temperature versus pH change → 0.003 pH error/pH unit/°C

Automated temperature compensation (ATC)

Maintenance & Storage of pH electrode

Dehydration

Dehydration of glass electrode

Dehydration of reference electrode

Factors detrimental to electrode life

Chemical attack

Stripping of gel layer Transport

Avoidance of freezing, extreme heat, mechanical shock and vibration

Storage

At ambient temperatures (10-30 °C)

Capped

Ideal storage solution → 3 -3.5 M KCl solution

Definition of pH – a misnomer

- Concentration versus activity
- · Activity depends on ionic strength of a solution
- $pH = -\{\log[H^+] \times [f]\}$ where f is activity co efficient
- · Activity co-efficient depends on total molality of a solution

Molality	0.001	0.005	0.01	0.05	0.1
Activity co-efficient	0.964	0.935	0.915	0.857	0.829

pH of 0.01 M HCl = -log (0.01 x 0.915) =2.04 pH of 0.01 M HCl with 0.09 M KCl = -log (0.01 x 0.829) =2.08

pH is negative logarithm of hydrogen ion activity in a solution