# データ構造とアルゴリズム第9週

掛下 哲郎

kake@is.saga-u.ac.jp

## 前回のまとめ

- データの整列
  - データを順番に並べるアルゴリズム
- ・トピック
  - 1. バブルソート(Bubble Sort)
  - 2. 選択ソート(Selection Sort)
  - 3. 挿入ソート(Insertion Sort)
  - 4. シェルソート(Shell Sort)
  - 5. ヒープソート(Heap Sort)

# 講義スケジュール

| 週     | 講義計画          |  |  |  |  |
|-------|---------------|--|--|--|--|
| 1-2   | 導入            |  |  |  |  |
| 3     | 探索問題          |  |  |  |  |
| 4-5   | 基本的なデータ構造     |  |  |  |  |
| 6     | 動的探索問題とデータ構造  |  |  |  |  |
| 7     | アルゴリズム演習(第1回) |  |  |  |  |
| 8-9   | データの整列        |  |  |  |  |
| 10-11 | グラフアルゴリズム     |  |  |  |  |
| 12    | 文字列照合のアルゴリズム  |  |  |  |  |
| 13    | アルゴリズム演習(第2回) |  |  |  |  |
| 14    | アルゴリズムの設計手法   |  |  |  |  |
| 15    | 計算困難な問題への対応   |  |  |  |  |

データ構造

アルゴリズム

#### 今日の内容

- データの整列(sorting; ソーティング)の続き
- ・トピック
  - □高度なソート方法
    - ・マージソート(Merge Sort)
    - ・ クイックソート(Quick Sort)
  - □ 整列に必要な最小限の比較回数
  - □ 比較を用いないソート方法
    - ・ バケットソート(Bucket Sort)

# マージソート (merge sort)

- 「併合ソート」ともよぶ
- 基本手順
  - □ データ列をA, Bに分割
  - それぞれのデータ列をソート
  - 2つのソート済みデータ列A, Bを 1つのソート済みデータ列Xにま とめる(マージ)
- アイデア

□ マージ(併合)処理が高速にで きることを利用



### 併合(マージ)の計算量

• 併合は、データ数に比例した手間で済む

O(|A|+|B|)

問題:マージしたいデータと同じサイズの領域が必要



#### マージアルゴリズム

- 問題:2つのソート済み列AとBを,1つのソート済み 列Xにまとめる。
- アルゴリズム
- 1. A, B, Xの現在位置を, それぞれの先頭とする.
- 2. AかBの現在位置に要素がある限り、以下の処理を繰り返す.
  - 2.1 AとBの現在位置の要素のうち, 前者が小さいならば以下の処理を行う.
    - 2.1.1 Aの現在位置の要素をXの現在位置に移動する.
    - 2.1.2 Aの現在位置を1つ進める.
  - 2.2 そうでない場合,以下の処理を行う.
    - 2.2.1 Bの現在位置の要素をXの現在位置に移動する.
    - 2.2.2 Bの現在位置を1つ進める.
  - 2.3 Xの現在位置を1つ進める.

#### マージソートの計算手順

- ボトムアップ方式のマージソート
  - 長さ1のデータ列からスタートし、隣同士のデータ列の併合を繰り返す。



#### マージソートのアルゴリズム

- 1. データ列をAとBに分割する.
- 2. それぞれのデータ列を, マージソートアルゴリズム を用いて再帰的にソートする.
- 3. 2つのソート済みデータ列A, Bをマージして、1つの ソート済みデータ列Xにまとめる。

再帰呼び出し: ある関数から, その関数自身を呼び出す

#### マージソートの効率

- データ数nの場合のマージソートの効率をS(n)とする.
- ステップ1:O(n)
- ステップ2:2× S(n/2)
- ステップ3: O(n)

$$S(n) = 2 \times S(n/2) + n$$

$$n = 2^k$$
と置く.  $\Rightarrow S(2^k) = 2 \times S(2^{k-1}) + 2^k$  両辺を $2^k$ で割る.  $\Rightarrow S(2^k)/2^k = S(2^{k-1})/2^{k-1} + 1$   $S(2^k)/2^k$ を $T(k)$ と置く.  $\Rightarrow T(k) = T(k-1) + 1$   $T(k) = O(k) \Rightarrow S(2^k) = O(k \times 2^k)$   $n = 2^k$ より  $k = log_2 n \Rightarrow S(n) = O(n log n)$ 

# クイックソート(Quick Sort)

- とても有名. 実際にも広く使用されている.
- 分割統治 (divide and conquer) 法の一つ
- 1960年, Hoare (ホーア)
  - □ オックスフォード大名誉教授
  - □ チューリング賞受賞者
  - Hoare理論
  - □ CSP(並行処理の理論)
  - □その他多数の業績



# クイックソートの手順(イメージ)



#### クイックソートの手順(具体例)



#### クイックソートの手順

- (※ 並べたいデータ列をSとする)
- 1. |S| <= 1 → Sを返して終了
- 2. Sから要素を1つ選んでxとする. xを基準に,Sを3つのデータ列に*分割* 
  - S1 ···· x より小さいデータが入る
  - S2 ····x と等しいデータが入る
  - S3 ····x より大きいデータが入る
- 3. S1とS3を, クイックソートで再帰的にソート
- 4. S1, S2, S3 の順に連結して返す.

## 再帰呼び出しの停止性

- 分割後のS1とS3を, クイックソートを使ってそれぞれソート(再帰呼び出し)する.
  - □ 再帰呼び出し: ある関数から, その関数自身を呼び出す
- |S2| >= 1より、S1やS3は、Sよりはサイズが小さくなる
  - → 分割を続けていけば、最終的にはサイズが1以下 となり、それ以上再帰呼出が続かない。
  - → 停止

## 基準値による分割 → O(n)

- アイデア: (※2つに分割)
  - □ 両端から、真ん中へ向かって処理を進める



基準値以下

基準值以上

データ構造とアルゴリズム 第9回 17

## 分割の例



## 分割のアルゴリズム

[問題] 配列に格納されたn個の整数と分割値xを与える. 配列の先頭部分にはxより小さい整数だけを, その後にはxより大きい整数だけを格納せよ. ただし, xより小さい整数とxより大きい整数が少なくとも1つずつは存在すると仮定する.

- 1. 場所1を配列の先頭, 場所2を配列の末尾とする.
- 2. 場所1が場所2より前にある限り, 以下の処理を繰り返す.
  - 2.1 場所1の要素がxよりも小さい限り, 場所1を1つ進める.
  - 2.2 場所2の要素がxよりも大きい限り, 場所2を1つ戻す.
  - 2.3 場所1の要素と場所2の要素を交換する.
  - 2.4 場所1を1つ進め, 場所2を1つ戻す.
- 3. 場所1を境界として返す.

#### クイックソートのアルゴリズム

- 1. ソート範囲の要素数が2以下の場合には,必要に応じて要素を入れ替え,終了する.
- 2. そうでなければ以下の処理を実行する.
  - 2.1 分割値xを, ソート範囲の左端, 中央(小数点以下は切り 捨て), 右端の位置にある要素の中央値とする.
  - 2.2 xに基づいて下限と上限の間の要素に分割アルゴリズムを適用し、境界を求める.
  - 2.3 下限と境界の間にある要素を再帰的にソートする.
  - 2.4 境界+1と上限の間にある要素を再帰的にソートする.

#### クイックソートの計算量



分割に必要な手間の合計 O(n log n) ステップ

#### クイックソートの計算量

- 平均的にも, O(n log n) ステップ
- ただし、最悪時は O(n²) ステップ
  - □ 各分割で、基準値が偶然、最大値/最小値だった場合



- □ そうならないように、基準値の選び方を工夫
  - ・例:両端と中央の3要素の中央値を採用

3のメジアンに よる分割 n 段

### 整理

- マージソート(Merge Sort)
  - □ マージ(併合)を利用
  - □ 常に O(n log n) の手間



- □ マージのために、余分な記憶領域が必要
- クイックソート(Quick Sort)
  - □ 基準値で分割 → 分割した部分列を再帰的にソート
  - □ 平均 O(n log n), 最悪 O(n²)



#### 整列に必要な手間

- n個のデータを並べ替えるとき、何回の比較が必要か?
- 正しく並べ替えるには「必要な情報」を得なければならない。
- 必要な情報を得るのに、最悪どれだけの手間がかかるのか?

比較を用いたソーティングアルゴリズム のオーダーの最小値は?

#### n回で充分?

- n=4で考察
- A,B,C,Dの大小関係を比較によって特定
- 右の例なら A<B、B>C、C<D、A<D</li>
- 同じ結果を持つ別の データ系列が存在
- n回の比較では一意に 特定できないことがある→ n回の比較だけでは不十分







### n<sup>2</sup>回比較すれば充分

- ・nデータの、全てのペアを比較すれば完全
- nデータ中のペアの数 $n^{C_2} = n(n-1)/2$



#### 整列に必要な手間

- 整列に必要な情報
  - □ n回の比較では取得しきれない
  - □ n(n-1)/2 回の比較だと取得できる
- 比較に基づいた整列アルゴリズム
  - □ O(n)のアルゴリズムは理論的に不可能
  - □ O(n²)のアルゴリズムは可能。実在。
- 疑問
  - □ O(n²)のアルゴリズムは最適?
  - □ これ以上オーダーを改善できない?



A B C

A C B

BAC

BCA

C A B

C B A

A<B

AとBの大小関係 が分かると、大体 半分に絞り込める

B<A







- 最初は n! パターンの可能性がある
  - □ n個の相異なる数字を並べる並べ方
- 1回の比較で、可能性を大体半分に絞り込める
- 最終的に1パターンに絞り込むにはlog<sub>2</sub> (n!) 回比較しないとダメな場合がある
  - □ つまり、最悪時にはlog₂(n!)回の比較が必要
- log₂ (n!) ≒ n log₂ n (スターリングの公式)
  - $\log_2(n!) = \log_2 1 + \log_2 2 + \log_2 3 + \cdots + \log_2 n$

### バケットソート

比較を行わなければ、より 高効率にソートできる

- 適用条件
  - データ範囲が1~Nに限定されている
- 手順
  - 1. 1~Nの番号をつけた箱(バケット)を用意
  - 2. 各データを対応する箱に入れる
  - 3. 1番目の箱から順番にデータを取り出し、並べる
- 時間計算量: O(n+N) ⇒ 比較を行わないので効率が良い
- 空間計算量: O(N)⇒ 大容量のメモリが必要
   eg.「32ビットデータ」→ N=2<sup>32</sup>=4[G]

#### バケットソートのアルゴリズム

- 1. 最初のデータを読む.
- 2. データxがある限り, 以下の処理を繰り返す.
  - 2.1 データxをx番目のバケット(一次元リスト)の先頭に挿入する.
  - 2.2 次のデータを読む.
- 3. バケットの各要素について、当該バケットの要素を 表示する.

#### 本日のまとめ

- マージソート(Merge Sort)
  - □ マージ(併合)を利用
  - □ 常に O(n log n) の手間
  - □ マージのために、余分な記憶領域が必要
- クイックソート(Quick Sort)
  - 基準値で分割 → 分割した部分列を再帰的にソート
  - □ 平均 O(n log n), 最悪 O(n²)
- 比較回数の下界 → O(n log n)
- バケットソート(Bucket Sort)
  - □ データ範囲が1~Nに限定
  - □ 効率は良いが、大容量メモリが必要.

# ソートアルゴリズムの特徴(その1)

| ソートアルゴリズム | 特徴                                                                                                                            |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| バブルソート    | <ul><li>アルゴリズムが最も単純で実現が容易</li><li>比較回数, コピー回数がO(n²)必要.</li></ul>                                                              |
| 選択ソート     | <ul><li>アルゴリズムが比較的単純</li><li>コピー回数がO(n)で済むため、各要素のサイズが大きい場合に効率が良い。</li></ul>                                                   |
| 挿入ソート     | <ul> <li>データの交換(代入3回)が不要. 移動(代入1回)で済む.</li> <li>平均比較回数がバブルソート等の半分で済む.</li> <li>データがほぼソートされている場合には, ほぼO(n)時間で実行できる.</li> </ul> |
| シェルソート    | <ul> <li>高々O(n<sup>3/2</sup>)時間でソートできる.</li> <li>多くの場合, 挿入ソートより高速. ヒープソートより単純.</li> </ul>                                     |
| ヒープソート    | <ul><li>最悪の場合でもO(n log n)時間でソートできる.</li><li>ヒープを保存するために、O(n)の余分な作業領域が必要</li></ul>                                             |

# ソートアルゴリズムの特徴(その2)

| ソートアルゴリズム | 特徴                                                                                                                                         |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| マージソート    | <ul><li>最悪の場合でもO(n log n)時間でソートできる.</li><li>マージ処理を実行するために、O(n)の余分な作業領域が必要</li></ul>                                                        |  |  |  |  |
| クイックソート   | <ul> <li>平均O(n log n)時間だが、最悪O(n²)時間が必要.</li> <li>高速ソートアルゴリズムとして有名.</li> <li>実際にも良く使われている.</li> <li>余分な作業領域は、最悪の場合でもO(log n)で済む.</li> </ul> |  |  |  |  |
| バケットソート   | <ul> <li>データ範囲が1~Nに限定されている.</li> <li>バケットを保持するために、O(N)の余分な作業領域が必要.</li> <li>データの相互比較を行わないため、O(n+N)時間で実行できる.</li> </ul>                     |  |  |  |  |

#### 確認テスト(第9回)

以下のデータ列を、各種ソーティングアルゴリズム でソートした場合の変更過程を示せ。

| 7 | 3 | 6 | 1 | 2 | 5 | 4 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

- バケットソート
- □ ヒープソート
- マージソート
- □ クイックソート