Approximate Policy Iteration and Policy-Based Learning Methods

Chen-Yu Wei

Approximate Policy Iteration (API)

For
$$k = 1, 2, ...$$

Evaluate $\hat{Q}_k \approx Q^{\pi_k}$
 $\pi_{k+1}(s) \leftarrow \operatorname*{argmax}_{a} \hat{Q}_k(s, a)$

$$Q^{Z}$$

Ualue - based: $Q, V^{z}, V^{*} \approx V_{0}$

Polly -based: $X_{0}(a|s)$

Limitation of Value Function Approximation

Idea 1: Exponential Weights

```
For k = 1, 2, ...
```

Evaluate $\hat{Q}_k \approx Q^{\pi_k}$

Perform incremental policy update such as

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp(\eta \hat{Q}_k(s,a))$$

Idea 2: Policy Gradient

Parameterize policy by $\pi = \pi_{\theta}$

For
$$k=1, 2, ...$$

$$\theta_{k+1} \leftarrow \theta_k + \eta \left. \nabla_\theta V^{\pi_\theta}(\rho) \right|_{\theta=\theta_k}$$

$$V^{2o}(\rho) \stackrel{\Delta}{=} \sum_{S} \rho(s) V^{2o}(s)$$

How are exponential weights and policy gradient related?

Policy Gradient in the Expert Setting

Policy Gradient for Softmax Policy in Expert Problem

Assume full-information and fixed reward
$$R = (R(1), ..., R(A))$$

$$Let \frac{\theta}{\theta} = (\theta(1), ..., \theta(A)) \text{ and } \pi_{\theta}(a) = \frac{\exp(\theta(a))}{\sum_{b=1}^{A} \exp(\theta(b))}$$

$$\Rightarrow \nabla_{\theta} V^{\pi_{\theta}} = ?$$

$$V^{\pi_{\theta}} = \sum_{a} \pi_{\theta}(a) R(a)$$

Comparison between EW and PG over softmax policies

$$\theta = (\theta(a), \dots, \theta(A)), \qquad \pi_{\theta}(a) = \frac{\exp(\theta(a))}{\sum_{b} \exp(\theta(b))}, \qquad V^{\pi_{\theta}} = \sum_{a} \pi_{\theta}(a) R(a)$$

Policy Gradient over softmax policies

For
$$k = 1,2,...$$

$$\theta_{k+1}(a) \leftarrow \theta_k(a) + \eta \pi_{\theta_k}(a) A_{\theta_k}(a)$$

Exponential weights

For
$$k = 1,2,...$$

$$\theta_{k+1}(a) \leftarrow \theta_k(a) + \eta A_{\theta_k}(a)$$

Experiments

Reward = [Ber(0.6), Ber(0.4)]

Initial policy $\pi = [0.0001, 0.9999]$

Plot total reward in 1000 rounds

EW: $\theta_{k+1}(a) \leftarrow \theta_k(a) + \eta A_{\theta_k}(a)$

PG: $\theta_{k+1}(a) \leftarrow \theta_k(a) + \eta \pi_{\theta_k}(a) A_{\theta_k}(a)$

Two Ideas of Policy Updates

Policy Gradient over softmax policies

$$\theta_{k+1}(a) \leftarrow \theta_k(a) + \eta \pi_{\theta_k}(a) A_{\theta_k}(a)$$

$$\theta_{k+1} = \operatorname*{argmax}_{\theta} \left\langle \theta - \theta_k, \nabla_{\theta} V^{\pi_{\theta_k}} \right\rangle - \frac{1}{2\eta} \|\theta - \theta_k\|^2$$

Exponential weights

$$\theta_{k+1}(a) \leftarrow \theta_k(a) + \eta A_{\theta_k}(a)$$

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \langle \pi_{\theta} - \pi_{\theta_k}, R \rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$$

Two Ideas for Function Approximation over Policies

$$\theta_{k+1} = \operatorname*{argmax}_{\theta} \left\langle \theta - \theta_k, \nabla_{\theta} V^{\pi_{\theta_k}} \right\rangle - \frac{1}{2\eta} \|\theta - \theta_k\|^2$$

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \langle \pi_{\theta} - \pi_{\theta_k}, R \rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$$

(Vanilla) Policy Gradient

Natural Policy Gradient

Approximating the NPG Update

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \langle \pi_{\theta} - \pi_{\theta_k}, R \rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$$

When $\theta_{k+1} \approx \theta_k$ (i.e., when η is small), the following hold:

$$\langle \pi_{\theta} - \pi_{\theta_k}, R \rangle = V^{\pi_{\theta}} - V^{\pi_{\theta_k}} \approx (\theta - \theta_k)^{\top} \nabla_{\theta} V^{\pi_{\theta}} \Big|_{\theta = \theta_k}$$
$$KL(\pi_{\theta}, \pi_{\theta_k}) \approx (\theta - \theta_k)^{\top} F_{\theta_k}(\theta - \theta_k)$$

where
$$F_{\theta_k} := \sum_a \pi_{\theta}(a) (\nabla_{\theta} \log \pi_{\theta}(a)) (\nabla_{\theta} \log \pi_{\theta}(a))^{\top} |_{\theta = \theta_k}$$

(Fisher information matrix)

NPG Updates

$$\theta_{k+1} = \theta_k + \eta F_{\theta_k}^{-1} \left(\nabla_{\theta} V^{\pi_{\theta}} \Big|_{\theta = \theta_k} \right)$$

cf. vanilla PG:
$$\theta_{k+1} = \theta_k + \eta \left(\nabla_{\theta} V^{\pi_{\theta}} \Big|_{\theta = \theta_k} \right)$$

Summary: Policy Learning in the Expert Setting

PG	NPG	
$\theta_{k+1} = \operatorname*{argmax}_{\theta} \left\langle \theta - \theta_k, \nabla_{\theta} V^{\pi_{\theta_k}} \right\rangle - \frac{1}{2\eta} \ \theta - \theta_k\ ^2$	$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \langle \pi_{\theta} - \pi_{\theta_k}, R \rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$	
$\theta_{k+1} = \theta_k + \eta \nabla_{\theta} V^{\pi_{\theta_k}}$	$\theta_{k+1} = \theta_k + \eta F_{\theta_k}^{-1} \nabla_{\theta} V^{\pi_{\theta_k}}$ where $F_{\theta} = \mathbb{E}_{a \sim \pi_{\theta}} [(\nabla_{\theta} \log \pi_{\theta}(a))(\nabla_{\theta} \log \pi_{\theta}(a))^{\top}]$	
$\theta_{k+1}(a) = \theta_k(a) + \eta \pi_{\theta_k}(a) A_{\theta_k}(a)$ (under direct softmax parameterization)	$\theta_{k+1}(a) = \theta_k(a) + \eta A_{\theta_k}(a)$ (under direct softmax parameterization)	

Policy Gradient with Bandit Feedback

Recall how we design the EXP3 algorithm

Full-information

$$\pi_{k+1}(a) = \frac{\pi_k(a) \exp(\eta r_k(a))}{\sum_b \pi_k(b) \exp(\eta r_k(b))}$$

Bandit

$$\pi_{k+1}(a) = \frac{\pi_k(a) \exp(\eta r_k(a))}{\sum_b \pi_k(b) \exp(\eta r_k(b))}$$

$$\pi_{k+1}(a) = \frac{\pi_k(a) \exp(\eta \hat{r}_k(a))}{\sum_b \pi_k(b) \exp(\eta \hat{r}_k(b))}$$

$$\pi_{k+1}(a) = \frac{\pi_k(a) \exp(\eta \hat{r}_k(a))}{\sum_b \pi_k(b) \exp(\eta \hat{r}_k(b))}$$

Inverse propensity weighting

$$\hat{r}_k(a) = \frac{r_k(a) \mathbb{I}\{a_k = a\}}{\pi_k(a)}$$

$$\hat{r}_k(a) = \frac{(r_k(a) - b - c(a)) \mathbb{I}\{a_k = a\}}{\pi_k(a)} + c(a)$$

NPG (regularization form) + Bandit Feedback

$$\theta_{k+1} = \operatorname*{argmax}_{\theta} \left\langle \pi_{\theta} - \pi_{\theta_k}, R \right\rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$$

Use π_{θ_k} to draw $a_{k1}, a_{k2}, \dots, a_{kn}$, and get rewards $r_{k1}, r_{k2}, \dots, r_{kn}$

Approximate
$$R(a) \approx \sum_{i=1}^{n} \frac{(r_{ki} - b) \mathbb{I}\{a_{ki} = a\}}{\pi_{\theta_k}(a_{ki})}$$
 $(n = 1 \text{ recovers EXP3})$

NPG (regularization form) + Bandit Feedback

For k = 1, 2, ...

Use π_{θ_k} to draw $a_{k1}, a_{k2}, \dots, a_{kn}$, and get rewards $r_{k1}, r_{k2}, \dots, r_{kn}$

Let
$$\hat{R}_k(a) = \frac{1}{n} \sum_{i=1}^n \frac{(r_{ki} - b) \mathbb{I}\{a_{ki} = a\}}{\pi_{\theta_k}(a_{ki})}$$

$$\theta_{k+1} = \operatorname*{argmax}_{\theta} \left\langle \pi_{\theta} - \pi_{\theta_k}, \hat{R}_k \right\rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$$

NPG (regularization form) + Bandit Feedback

For k = 1, 2, ...

Use π_{θ_k} to draw $a_{k1}, a_{k2}, \dots, a_{kn}$, and get rewards $r_{k1}, r_{k2}, \dots, r_{kn}$

Let
$$\hat{R}_k(a) = \frac{1}{n} \sum_{i=1}^n \frac{(r_{ki} - b) \mathbb{I}\{a_{ki} = a\}}{\pi_{\theta_k}(a_{ki})}$$

$$\theta \leftarrow \theta_k$$

Repeat *m* times:

$$\theta \leftarrow \theta + \nabla_{\theta} \left(\left\langle \pi_{\theta} - \pi_{\theta_{k}}, \hat{R}_{k} \right\rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_{k}}) \right)$$

$$\theta_{k+1} \leftarrow \theta$$

PG / NPG (Gradient-Update Form) + Bandit Feedback

$$\theta_{k+1} = \theta_k + \eta \left(\nabla_{\theta} V^{\pi_{\theta}} \Big|_{\theta = \theta_k} \right)$$

$$\theta_{k+1} = \theta_k + \eta \left(\nabla_{\theta} V^{\pi_{\theta}} \Big|_{\theta = \theta_k} \right) \qquad \theta_{k+1} = \theta_k + \eta F_{\theta_k}^{-1} \left(\nabla_{\theta} V^{\pi_{\theta}} \Big|_{\theta = \theta_k} \right)$$

PG **NPG**

PG + Bandit Feedback

For k = 1, 2, ...

Use π_{θ_k} to draw $a_{k1}, a_{k2}, \dots, a_{kn}$, and get rewards $r_{k1}, r_{k2}, \dots, r_{kn}$

Let
$$g_k = \frac{1}{n} \sum_{i=1}^n (r_{ki} - b) \nabla_{\theta} \log \pi_{\theta}(a_{ki})$$

$$\theta_{k+1} = \theta_k + \eta g_k$$

NPG (Gradient-Update Form) + Bandit Feedback

For k = 1, 2, ...

Use π_{θ_k} to draw $a_{k1}, a_{k2}, \dots, a_{kn}$, and get rewards $r_{k1}, r_{k2}, \dots, r_{kn}$

Let
$$g_k = \frac{1}{n} \sum_{i=1}^n (r_{ki} - b) \nabla_{\theta} \log \pi_{\theta}(a_{ki})$$

$$\theta = \theta_k$$

$$\theta_{k+1} = \theta_k + \eta F_{\theta_k}^{-1} g_k$$

Summary: Policy Learning in Bandits

PG	NPG
$\theta_{k+1} = \operatorname*{argmax}_{\theta} \left\langle \theta - \theta_k, \nabla_{\theta} V^{\pi_{\theta_k}} \right\rangle - \frac{1}{2\eta} \ \theta - \theta_k\ ^2$	$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \left\langle \pi_{\theta} - \pi_{\theta_k}, R \right\rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_k})$
$\theta_{k+1} = \theta_k + \eta \nabla_{\theta} V^{\pi_{\theta_k}}$	$\theta_{k+1} = \theta_k + \eta F_{\theta_k}^{-1} \nabla_{\theta} V^{\pi_{\theta_k}}$ where $F_{\theta} = \mathbb{E}_{a \sim \pi_{\theta}} [(\nabla_{\theta} \log \pi_{\theta}(a))(\nabla_{\theta} \log \pi_{\theta}(a))^{\top}]$

$$\nabla_{\theta} V^{\pi_{\theta_k}} \approx \frac{1}{n} \sum_{i=1}^{n} (r_{ki} - b) \nabla_{\theta} \log \pi_{\theta}(a_{ki})$$

$$R(a) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{(r_{ki} - b) \mathbb{I}\{a_{ki} = a\}}{\pi_{\theta_k}(a_{ki})}$$