Michael Bronstein & Team (Dec 27 to Dec 29)

Google Collab Notebook:

The following introductory notebook is designed to be self-contained. Please run the code on Google Colab as GPU is recommended.

https://drive.google.com/file/d/1pnTwmklhGvbyF00Aoplu65DqaeG7IC-x/view?usp=drive_link

1. Visual Group Theory

Chapters 1-3

Link: https://web.osu.cz/~Zusmanovich/teach/books/visual-group-theory.pdf

2. Video Intro on Group Theory:

Link:

https://www.youtube.com/playlist?list=PLDcSwjT2BF VuNbn8HiHZKKy59SgnIAeO

3. Geometric Deep Learning: Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges

Chapters 1-4

Link: https://arxiv.org/abs/2104.13478

Day	Oxford Lecture	Content	Who?	Time
27/12	GDL <u>1+2</u>	Introduction: Motivation, history of deep learning, examples of CNNs and GNNs. [Pre-read: Chapter 1 of GDL Book or The Gradient blog post]	МВ	10:30-1 1:15 45min
	GDL <u>3</u>	Basics of ML in high dimensions: basics of statistical learning, universal approximation, curse of dimensionality, function regularity classes [Pre-read: Chapter 2 of GDL Book]	МВ	11:15-1 2:00 45min

	GDL <u>4+5</u>	Geometric priors: symmetry & invariance, group representations, scale separation, GDL blueprint [Pre-read: Chapter 3 of GDL Book] [Optional: Problems & solutions]	OB?	12:00-1 3:00 1hr
		Lab session I: some basics of ML & geometric priors?	AE+OB	14:00-1 5:30
28/12	GDL <u>6</u>	Sets: permutation invariance, universal approximation, DeepSets	МВ	8:30-9:0 0 30min
	GDL <u>7</u>	Graphs I: basics	IC	9:00-10: 00 1hr
	GDL <u>8</u>	Graphs II: advanced methods: graph rewiring, subgraph methods, asynchronous, Co-GNNs,	IC	10:30-1 1:30 1hr
	G	Transformers I	VD	11:30-1 2:00
	G	Transformers II	VD	12:00-1 3:00
		Lab session II: GNNs?	AE+OB	14:00-1 5:30
29/12	GRL?	Knowledge Graphs & Link Prediction I:	IC	8:30-9:1 5 45min
	GRL?	Knowledge Graphs & Graph Foundation Models II:	IC	9:15-10: 00 45min
	GDL 9+part of 10	Grids: convolutions and circulant matrices, Fourier transform, FFT, CNNs, scattering [High-level pre-read: Medium blog post] [Optional: Problems & solutions]	МВ	10:30-1 1:15 45min

GDL <u>15</u>	Spectral methods: Laplacian operator, graph Fourier transforms, spectral filters	MB	11:15-1 2:00 45min
GDL <u>16</u>	Neural diffusion & physics-inspired methods: [High-level pre-read: Medium blog post]	МВ	12:00-1 3:00 1hr
	Lab session III: spectral GNNs / neural diffusion?	AE+OB	14:00-1 5:30

Dec 30

Danda Pani Paudel

https://www.youtube.com/watch?v=KJtZARuO3JY

Jan 4

Dilli Raj Paudel

1. https://github.com/BigDataWUR/MLforCropYieldForecasting

Related paper is here: https://doi.org/10.1016/j.agsy.2020.103016

I will use mlbaseline_pkg.ipynb notebook in Google Colab environment for hands-on exercise.

2. https://github.com/BigDataWUR/AgML-CY-Bench Relevant paper: https://openreview.net/forum?id=jkJDNG468g#discussion

I will use notebooks/run_cybench.ipynb notebook in Google Colab environment for the hands-on exercise.