TIGHT BOUNDS ON THE COMPLEXITY OF RECOGNIZING ODD-RANKED ELEMENTS

SHRIPAD THITE

ABSTRACT. Let $S = \langle s_1, s_2, s_3, ..., s_n \rangle$ be a given vector of n real numbers. The rank of $z \in \mathbb{R}$ with respect to S is defined as the number of elements $s_i \in S$ such that $s_i \leq z$. We consider the following decision problem: determine whether the odd-numbered elements s_1, s_3, s_5, \ldots are precisely the elements of S whose rank with respect to S is odd. We prove a bound of $\Theta(n \log n)$ on the number of operations required to solve this problem in the algebraic computation tree model.

Let $S = \langle s_1, s_2, s_3, \ldots, s_n \rangle \in \mathbb{R}^n$ be a given vector. For an arbitrary real z, define the rank of z with respect to S, denoted by $rank_S(z)$, as the number of elements of S less than or equal to z. Thus, for instance, the largest element of S has rank n. Let odd(S) denote the set of elements of S whose rank with respect to S is odd.

We consider the following problem: determine whether the odd-numbered elements s_1, s_3, s_5, \ldots are precisely the elements of S whose rank with respect to S is odd. Without loss of generality, we can assume that n is even because, otherwise, we can append an extra element $+\infty$ without changing the answer.

Note that odd(S) has size n/2 if and only if all n values $s_i \in S$ are distinct; hence, the answer is 'yes' only if S is a vector of n distinct numbers.

We prove matching upper and lower bounds on the number of operations required to solve the problem in the algebraic computation tree (ACT) model (see Ben-Or [1]).

The following algorithm solves the problem using $O(n \log n)$ comparisons. Sort $S' = \langle s_1, s_3, s_5, \ldots, s_{n-1} \rangle$ in non-decreasing order with an optimal sorting algorithm. Similarly, sort S in non-decreasing order. Then, scan the vector S' and the odd-numbered elements of S to decide whether the two are equal.

Next, we prove the matching lower bound.

For a vector $S = \langle s_1, s_2, s_3, \dots, s_n \rangle$, let $\sigma(S)$ denote the permuted vector $\langle s_{\sigma(1)}, s_{\sigma(2)}, s_{\sigma(3)}, \dots, s_{\sigma(n)} \rangle$. We call a permutation σ , where $\sigma(i)$ is odd if and only if i is odd, a permissible permutation.

Lemma 1. There are $\left(\left(\frac{n}{2}\right)!\right)^2$ permissible permutations of a vector of n elements.

Proof. There are $\frac{n}{2}$! permutations of n elements that permute the n/2 odd-numbered elements only, and $\frac{n}{2}$! that permute the n/2 even-numbered elements only. A permissible permutation of n elements is any composition of two permutations, one that permutes the odd-numbered elements only and one that permutes the even-numbered elements only.

Observation 2. A permutation σ is permissible if and only if its inverse σ^{-1} is permissible.

Date: May 23, 2006.

Let $W \subset \mathbb{R}^n$ be the set of inputs for which the answer to the question posed in the problem is 'yes'. Recall that every point in W corresponds to a set of n distinct real numbers.

Lemma 3. For an arbitrary point $X \in W$, there is a unique permutation σ that sorts X, i.e., such that $x_{\sigma(1)} < x_{\sigma(2)} < x_{\sigma(3)} < \ldots < x_{\sigma(n)}$. Moreover, such a permutation σ is permissible.

Proof. The uniqueness of the sorting permutation σ follows because every point in W corresponds to a set of distinct reals. When X is sorted, the odd-ranked elements must occupy the odd-numbered positions of the sorted vector. Since $X \in W$, the odd-ranked elements are already in odd-numbered positions of the original vector X. Therefore, the permutation σ is permissible.

Let σ_X denote the sorting permutation for X.

Observation 4. If σ_X is a permissible permutation, then $X \in W$.

Lemma 5. For every permissible permutation σ , there is a point $X \in W$ such that $\sigma = \sigma_X$.

Proof. Set
$$X = \langle \sigma^{-1}(1), \sigma^{-1}(2), \sigma^{-1}(3), \dots, \sigma^{-1}(n) \rangle$$
. We have,
$$\sigma(X) = \langle \sigma(\sigma^{-1}(1)), \sigma(\sigma^{-1}(2)), \sigma(\sigma^{-1}(3)), \dots, \sigma(\sigma^{-1}(n)) \rangle$$
$$= \langle 1, 2, 3, \dots, n \rangle$$

Therefore, $\sigma(X)$ is sorted, and by Lemma 3, it is the unique permutation that sorts X; hence, $\sigma = \sigma_X$.

It remains to show that the point X that we chose belongs to W. The set of real numbers represented by X is $\{1,2,3,\ldots,n\}$. Since σ is permissible, so is σ^{-1} by Observation 2; hence, $\sigma^{-1}(i)$ is odd if and only if i is odd. Therefore, the ith component of the vector X is odd if and only if i is odd, which means that $X \in W$.

Lemma 6. For every two points $X, Y \in W$ such that $\sigma_X \neq \sigma_Y$, the two points X and Y lie in different connected components of W.

Proof. Since $X, Y \in W$, both σ_X and σ_Y are permissible permutations, by Lemma 3. For every point $A = \langle a_1, a_2, a_3, \dots, a_n \rangle \in W$ such that

$$a_{\sigma_X(1)} < a_{\sigma_X(2)} < a_{\sigma_X(3)} < \dots < a_{\sigma_X(n)}$$

we have $\sigma_A = \sigma_X$. Since σ_X is permissible, so is σ_A ; by Observation 4, this implies that $A \in W$. Additionally, A is in the same connected component of W as X because every convex combination B of A and X satisfies $\sigma_B = \sigma_X$.

On the other hand, since $\sigma_Y \neq \sigma_X$, there exists an i in the range $1 \leq i \leq n-1$ such that $y_{\sigma_X(i)} \geq y_{\sigma_X(i+1)}$. Then, X and Y cannot be in the same connected component of W because they are separated by the hyperplane $y_{\sigma_X(i)} = y_{\sigma_X(i+1)}$; every point P on this hyperplane lies outside W because it corresponds to an input where $\operatorname{odd}(P)$ has fewer than n/2 elements.

We have thus shown that the region R_X where

$$R_X = \{ \langle a_1, a_2, a_3, \dots, a_n \rangle \in W : a_{\sigma_X(1)} < a_{\sigma_X(2)} < a_{\sigma_X(3)} < \dots < a_{\sigma_X(n)} \}$$

is a maximal connected component of W containing X (R_X also happens to be convex); since $\sigma_Y \neq \sigma_X$, the region R_X does not contain Y.

Theorem 7. The set W has $\left(\left(\frac{n}{2}\right)!\right)^2$ connected components.

Proof. The set W can be partitioned such that each part corresponds to a permissible permutation σ ; by Lemma 5, $\sigma = \sigma_X$ for some $X \in W$. By Lemma 1, W is partitioned into $\left(\left(\frac{n}{2}\right)!\right)^2$ parts. By Lemma 6, every two distinct permissible permutations σ and σ' correspond to two different connected components of W, one consisting of all points $X \in W$ for which $\sigma_X = \sigma$ and the other consisting of all points $Y \in W$ for which $\sigma_Y = \sigma'$.

Corollary 8. Every algebraic computation tree that decides the membership problem in W must have depth $\Omega(n \log n)$.

Proof. Ben-Or [1] has proved that the minimum height of an algebraic computation tree deciding membership in W is $\Omega(\log^\# W)$ where $^\# W$ is the number of connected components of W. By Theorem 7, such a tree must have depth $\Omega(n \log n)$.

Acknowledgments. Thanks to Mark de Berg, Jeff Erickson, Sariel Har-Peled, and Jan Vahrenhold for fruitful discussions.

REFERENCES

[1] "Lower Bounds for Algebraic Computation Trees". Michael Ben-Or. In *Proc. ACM Symposium* on *Theory of Computing*, pp. 80–86, 1983.

Current address: Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands; Email: sthite@win.tue.nl