Zaawansowana Matematyka Dyskretna - Projekt 1

Paweł Borowiecki

1 Redukcja

W celu zmniejszenia złożoności obliczeniowej rozważane są jedynie zredukowane kwadraty łacińskie. Jest to uzasadnione tym, że transpozycja kolumn/wierszy nie zmienia liczby transwersal (również parami rozłącznych).

2 Kompilacja

```
Testowane na kompilatorze g++ 11.2.0:
g++ -03 -fopenmp -march=native --std=c++11 -o orthog orthog.cpp;
g++ -03 -fopenmp -march=native --std=c++11 -o trans trans.cpp
```

3 Użycie

• ./orthog n

Dla każdego zredukowanego kwadratu łacińskiego rzędu n próbuje wyznaczyć kwadrat do niego ortogonalny. W przypadku powodzenia program wyświetla ortogonalną parę i kończy działanie.

• ./trans n

Dla każdego zredukowanego kwadratu łacińskiego rzędu n wylicza liczbę transwersal (niekoniecznie rozłącznych). Po sprawdzeniu wszystkich kwadratów (lub przerwaniu działania przez użytkownika) program wyświetla najmniejszą i największą wyliczoną liczbę transwersal wraz z przykładami.

• ./orthog 6 && for n in $\{2...6\}$; do ./trans \$n; done Powyższe polecenie wykona wszystkie wymagane obliczenia. Można również rozszerzyć zakres o n=7 - policzenie transwersal dla wszystkich 16,942,080 zredukowanych kwadratów łacińskich rzędu 7 zajmuje poniżej dwóch minut (na procesorze Apple M1).

4 Wyniki

Zadanie 1

Dla n=6nie istnieje para wzajemnie ortogonalnych kwadratów łacińskich.

Zadanie 2

n	t(n)	Przykład z $t(n)$ transwersal	T(n)	Przykład z $T(n)$ transwersal
2	0	1 2 2 1	0	
3	3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	
4	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	3	1 2 3 4 5 2 3 1 5 4 3 4 5 1 2 4 5 2 3 1 5 1 4 2 3	15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1 2 3 4 5 6 2 5 1 3 6 4 3 1 2 6 4 5 4 3 6 5 1 2 5 6 4 1 2 3 6 4 5 2 3 1
7	3	1 2 3 4 5 6 7 2 3 1 5 4 7 6 3 1 2 6 7 4 5 4 5 6 7 1 2 3 5 4 7 1 6 3 2 6 7 4 2 3 5 1 7 6 5 3 2 1 4	133	1 2 3 4 5 6 7 2 6 1 3 4 7 5 3 1 4 5 7 2 6 4 3 5 7 6 1 2 5 4 7 6 2 3 1 6 7 2 1 3 5 4 7 5 6 2 1 4 3

Uwaga. Uruchomienie ./trans n może generować przykłady inne niż powyższe jeśli skompilowano z opcją -fopenmp (z powodu wielowątkowości).