

On the number of points in a lattice polytope

Arseniy Akopyan* Makoto Tagami†

Abstract

In this article we will show that for every natural d and $n > 1$ there exists a natural number t such that every d -dimensional simplicial complex \mathcal{T} with vertices in \mathbb{Z}^d scaled in t times contains exactly $\chi(\mathcal{T})$ modulo n lattice points, where $\chi(\mathcal{T})$ is the Euler characteristic of \mathcal{T} .

This problem given to one of the authors by Rom Pinchasi. He noticed that if you scale a segment with vertices in a lattice in two times then the number of lattice points in the scaled segment will be odd. For polygons with vertices in a two-dimensional lattice, the same fact follows from Pick's formula and this polygon must be scaled in four times. We will show that the following theorem holds:

Theorem 1. *For any natural numbers d and $n > 1$ there exists a natural number t such that if \mathcal{T} is any simplicial complex in \mathbb{R}^d with vertices in the integer lattice \mathbb{Z}^d then the number of lattice points in the polytope $t\mathcal{T}$ is equivalent to $\chi(\mathcal{T})$ modulo n .*

Here $\chi(\mathcal{T})$ is the Euler characteristic of the complex \mathcal{T} and $t\mathcal{T}$ denote the image of \mathcal{T} under similarity with the center at the origin and ratio equal to t .

First we prove the following lemma.

Lemma 2. *Let \mathcal{P} be a convex polytope in \mathbb{R}^d with vertices in the integer lattice \mathbb{Z}^d , p be any prime number and $l = \lceil \log_p d \rceil$. Then for any natural $k > l$ the convex polytope $p^k\mathcal{P}$ contains exactly one modulo p^{k-l} point from the lattice \mathbb{Z}^d .*

Proof. From Stanley's nonnegativity theorem (more precisely Lemma 3.14 in [1]) it follows that in this case the number of lattice points in the convex polytope $t\mathcal{P}$ equals exactly:

$$\binom{t+d}{d} + h_1 \binom{t+d-1}{d} + \cdots + h_{d-1} \binom{t+1}{d} + h_d \binom{t}{d},$$

where h_1, h_2, \dots, h_d are nonnegative integer numbers.

*University of Texas at Brownsville (USA), Institute of Systems Analysis (Russia). Research supported by RFBR grants 08-01-00565-a and 10-01-00096-a

†Mathematical Institute, Tohoku University

Suppose $t = p^k$ and $m \leq d \leq p^{l+1} - 1$. If α is the maximal power of p which divides m then $(m + p^k)/p^\alpha \equiv m/p^\alpha \pmod{p^{k-l}}$. Using this fact it is easy to show that $\binom{t+d}{d} \equiv 1 \pmod{p^{k-l}}$. Also from Kummer's theorem it follows that for any $i = 1, 2, \dots, d$ we have $\binom{t+d-i}{d} \equiv 0 \pmod{p^{k-l}}$. So as we can see, the number of lattice points equals exactly one modulo p^{k-l} . \square

Now it is easy to prove the general case.

Proof of Theorem 1. Consider the prime factorization of n :

$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_s^{\alpha_s}.$$

Suppose $\beta_i = \alpha_i + [\log_{p_i} d]$. Define $t = p_1^{\beta_1} p_2^{\beta_2} p_3^{\beta_3} \dots p_s^{\beta_s}$.

Suppose Δ is a simplex. By Lemma 2 we have that the number of lattice points in $t\Delta$ equals 1 modulo $p_i^{\alpha_i}$ for any $i = 1, 2, \dots, s$. From the Chinese remainder theorem, it follows that this number is equivalent to 1 modulo n .

We know that the Euler characteristic of every simplex (with its interior) equals 1 and the Euler characteristic is an additive function on simplicial complexes. Since the number of lattice points modulo n is also an additive function, we obtain that the number of lattice points is equivalent to exactly $\chi(\mathcal{T}) \pmod{n}$. \square

Acknowledgment. We wish to thank Rom Pinchasi and Oleg Musin for helpful discussions and remarks.

References

- [1] M. Beck and S. Robins. *Computing the continuous discretely: Integer-point enumeration in polyhedra*. Springer Verlag, 2006.
- [2] E. Ehrhart. Sur les polyedres rationnels homothétiquesan dimensions. *CR Acad. Sci. Paris*, 254:616–618, 1962.
- [3] R.P. Stanely. Decompositions of rational convex polytopes. *Annals of Discrete Mathematics*, 6:333–342, 1980.