

Overview

- Describe three main notation systems for describing social networks
- Introduce basic concepts in graph theory
 - Important building blocks for subsequent concepts and methods

Nodes and edges

STARTING DEFINITIONS

Actor/Node/Vertex

- Social entity that my be linked to other social entities
- Not limited to persons, may be organizations, political entities, animals, etc.
- 'Vertex' comes from graph theory; 'Node' used more often in social network analysis

Relation/Link/Edge/Arc

- Any type of social tie that links two actors
- Two types of relations
 - Directional indicates transmission or flow from one node to another
 - Non-directional indicates the existence of connection or relationship between two nodes

Multiple ways to describe networks

NOTATION

Multiple ways to describe networks

- Interrelated--All approaches describe the same network
 - Graph theoretic
 - Sociometric
 - Algebra/Set theory
 - Edge list
- Some approaches are more conducive to certain types of operations on the networks than others
 - Calculations
 - Storage
 - Transformations

Graph theoretic

- Basic way to present actors and relations
- A graph consists of nodes joined by lines
- Example (W&F, Fig. 3.1)

Graph theoretic - details

- Two types of lines:
 - Arcs lines connecting an ordered pair of actors. An arc is a directional line
 - Edges lines connecting an unordered pair of actors. An edge is a non-directional line
- If a graph contains arcs, then it is called a directed graph, or a digraph
- If lines have values (other than 1), then the graph is called a valued graph
- Useful for centrality, prestige, subgroups

Graph theoretic - caution

 Important - be careful when visually interpreting a graph. There are many equivalent ways of displaying exactly the same graph:

Sociometric

- A data set that contains the relations among a set of actors is called sociometric.
- Sociometric data can be stored (and displayed) in a sociomatrix
- A one-mode network can use a square sociomatrix where the rows and columns represent the actors
- Useful for computer algorithms, structural equivalence

Sociometric - continued

- The rows represent the sending actors, the columns represent the receiving actors (... from the row, to the column...)
- The cells of the matrix store the relational values
- X_{ij} = the value of the tie from n_i to n_j

Sociometric - example

	Allison	Drew	Eliot	Keith	Ross	Sarah
Allison	-	1	0	0	1	0
Drew	0	-	1	0	0	1
Eliot	0	1	-	0	0	0
Keith	0	0	0	-	1	0
Ross	0	0	0	0	-	1
Sarah	0	1	0	0	0	-

Algebraic/Set theoretic

- Uses set theory notation
 - $N = \{n_1, n_2, ..., n_g\} = \{Allison, Drew, ..., Sarah\}$
 - $L = \{ l_1, l_2, ..., l_L \} = \{ (Allison, Drew), (Allison, Ross), ..., (Sarah, Drew) \}$
 - $G = \{N, L\}$
- Useful for multiple relations, developing more formal mathematical foundations of network methods (e.g., generalized blockmodels)

Edge list

- Can specify a complete network with a list of network edges
- Example:
 - Allison-Drew
 - Allison-Ross
 - Drew-Eliot
 - Drew-Sarah
 - Keith-Ross
 - Ross-Sarah
- Useful for efficient storage of very large networks

Network-data equivalency

	А	В	С	D
А		1	1	0
В	0		1	0
С	0	1		1
D	0	0	0	

Sociomatrix

Graph

Graph types and sociomatrices

Building blocks for understanding network depiction and characteristics

GRAPH THEORY

Non-directed graphs

Edge	line connecting two nodes (non-directed)
Loop	 line connecting a node to itself (often not allowed)
Simple graph	• no loops, and no more than one line between any pair of nodes
Adjacent	 adjacent nodes have a line connecting them
Incident	• a line connected to a node is incident to it
Complete	all possible lines are present
Dyad	• two nodes, possibly connected
Triad	 three nodes, and their possible lines
Subgraph	 a subset of a graph, obtained by taking either a subset of the nodes or the lines of the graph

Non-directed graph connections

Degree	number of lines incident to a node
Walk	 sequence of nodes and lines in which each node is incident with the lines preceding it and following it in the walk
Length	• length of a walk is the number of lines in it
Path	 a walk in which all lines and nodes are distinct
Reachable	• if a path exists between two nodes A and B, then A and B are reachable
Closed walk	 walk that begins and ends at the same node
Cycle	• closed walk where all lines and nodes (except the first) are distinct
Connected graph	• a connected graph has a path between every pair of nodes
Component	a maximally connected subgraph

Non-directed graph connections

Component	a maximally connected subgraph		
Cutpoint	• a node that, if removed, would create additional components		
Bridge	• a line that, if removed, would create additional components		
Density	• in a graph (or subgraph), the proportion of observed ties to maximum possible number of ties		

Non-directed graph distances

Geodesic • shortest path between two nodes • length of the geodesic Distance • the diameter of a connected graph is the largest Diameter geodesic distance between any pair of nodes (i.e., the longest, shortest path!)

Directed graphs

Arc	directed line connecting two nodes
Indegree	 number of arcs terminating at a particular node
Outdegree	 number of arcs originating at a particular node
Directed walk	• sequence of nodes and arcs, following the direction of the arcs
Directed path	a directed walk with no repeating segments
Semipath, semiwalk	 removes the restriction of following the arcs in their normal directions
Reachable	• if there is a directed path from A to B, then B is reachable from A
Others	 digraphs lead to more complicated definitions of connectivity, geodesics, distance, diameter, etc. See W&F, pp. 132-134

Familiar network

Simpsons - size & density

