Question	Answer	Mark
Number		
2	D is the correct answer	(1)
		()
	A is not the correct answer as work done is a scalar quantity	
	B is not the correct answer as time is a scalar quantity	
	C is not the correct answer as temperature is a scalar quantity	(1)
	C is the correct answer as 1 kWh = $1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$	(1)
	A is not the correct answer as $0.28 \text{ J} = \frac{1000 \text{ W}}{3600 \text{ J}}$	
	B is not the correct answer as $0.28 \text{ W} = \frac{1000 \text{ W}}{3600 \text{ J}}$ and the unit should be J and not W	
	D is not the correct answer as the unit should be J and not W.	
3	D is the correct answer	(1)
	A is not the correct answer as Stokes' Law does not apply to large spheres moving	
	quickly through a fluid	
	B is not the correct answer as Stokes' Law does not apply to large spheres	
	C is not the correct answer as Stokes' Law does not apply to spheres moving	
	quickly through a fluid	
4	C is the correct answer as efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} = \frac{200 \text{ N} \times 4 \text{ m}}{90 \text{ N} \times 10 \text{ m}}$	(1)
	total energy input 90 N × 10 m	
	A is not the correct answer as this is the total energy input divided by the useful	
	energy output	
	B is not the correct answer as this is the useful energy output divided by the total of	
	the energy output and the energy input	
	D is not the correct answer as this is the total energy input divided by the total of the	
	energy output and the energy input	
5	B is the correct answer as the forces act in opposite directions and not the same	(1)
	direction	()
	A is not the correct answer as a N3 pair of forces do act at the same time	
	C is not the correct answer as a N3 pair of forces do act at the same time	
	D is not the correct answer as a N3 pair of forces do have the same magnitude	
6	C is the correct answer as there is always an acceleration of 9.81 m s ⁻²	(1)
7	A is not the correct answer as there is always an acceleration of 9.81 m s ⁻²	
	B is not the correct answer as there is always an acceleration of 9.81 m s ⁻²	
	D is not the correct answer as there is always an acceleration of 9.81 m s ⁻² extension 0.2	(1)
/	A is the correct answer as strain = $\frac{\text{extension}}{\text{original length}} = \frac{0.2}{50}$	(1)
	B is not the correct answer as the extension in mm was not converted to cm before	
	being used in the equation for strain	
	C is not the correct answer as the extension in mm was not converted to cm and the	
	incorrect formula of original length/extension was used	
	D is not the correct answer as the incorrect formula of original length/extension was	
	used.	

8	A is the correct answer as $E_{ m grav}$ decreases at an increasing rate as the ball	(1)
	accelerates towards the ground and increases at a decreasing rate as the ball decelerates away from the ground after the bounce	
	B is not the correct answer as $E_{\rm grav}$ increases as the height of the ball above the ground decreases and decreases as height of the ball above the ground increases. C is not the correct answer as the graph does not show the change in as $E_{\rm grav}$ at an increasing and decreasing rate as in response A, as the height of the ball above the	
	ground changes D is not the correct answer as $E_{\rm grav}$ increases as the height of the ball above the ground decreases and decreases as the height of the ball above the ground increases.	
9	D is the correct answer	(1)
	A is not the correct answer as the stiffness constant only applies to objects B is not the correct answer as the Young modulus only applies to materials C is not the correct answer as the stiffness constant only applies to objects and the Young modulus only applies to materials	
10	D is the correct answer as $\rho_L = \frac{50}{(1.5x)^3}$ and $\rho_S = \frac{50}{(x)^3}$ so $\frac{\rho_L}{\rho_S} = \frac{(x)^3}{(1.5x)^3} = 0.30$	(1)
	A is not the correct answer as this is $\frac{(1.5x)^3}{(x)^3}$	
	A is not the correct answer as this is $\frac{(1.5x)^3}{(x)^3}$ B is not the correct answer as this is $\frac{1.5x}{x}$ C is not the correct answer as this is $\frac{x}{1.5x}$	
	C is not the correct answer as this is $\frac{1.5x}{1.5x}$	