MAA202 - Homework 1

Alice Aubert, Matthieu Chapuy, Matthieu Melennec

Exercise 1: We let $(E, \|\cdot\|)$ a normed real vector space. We have that $X \subset E$ is cool if the following conditions hold:

- X is convex: $\forall x, y \in X, \forall t \in [0, 1], tx + (1 t)y \in X$
- X is bounded: $\exists M > 0, \forall x \in X, ||x|| \leq M$
- X is symmetric with respect to 0: -X = X
- $0 \in \mathring{X}$
- 1. We want to prove that $B = \overline{B}(0,1)$ is a cool set.

We then first wish to show B is convex.

Let $x, y \in B$ and let $t \in [0, 1]$.

We thus have:

$$||tx + (1-t)y|| \le ||tx|| + ||(1-t)y|| = t||x|| + (1-t)||y|| \le tr + (1-t)r = r$$

Thus we have that tx + (1 - t)y so B is convex.

We now show B is bounded. Let $x \in B \Rightarrow ||x|| \le 1$.

Thus B is bounded.

We show -B = B. We show let $x \in B \Leftrightarrow ||x|| \le 1 \Leftrightarrow ||-x|| \le 1 \Leftrightarrow x \in -B$. Thus -B = B.

Finally we show $0 \in \mathring{X}$. We have that $0 \in X$ and $B(0, 1/2) \subset B \Leftrightarrow 0 \in \mathring{X}$.

Thus we have that B is cool.

2. We let X a cool set and $\alpha, \beta \geq 0$. We show $\alpha X + \beta X = (\alpha + \beta)X$.

"C" We let
$$x \in \alpha X + \beta X$$
. Then $\exists a, b \in X$

$$x = \alpha a + \beta b$$
$$= (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} a + \frac{\beta}{\alpha + \beta} b \right)$$

We let $t = \frac{\alpha}{\alpha + \beta}$. Then let c = ta + (1 - t)b. We have that $t \in [0, 1]$ and since X is convex $c \in X$. Thus we have that $x \in (\alpha + \beta)X$.

"\rightarrow" We let $x \in (\alpha + \beta)X \Rightarrow \exists y \in X, x = (\alpha + \beta)y \Rightarrow x = \alpha y + \beta y \Rightarrow x \in \alpha X + \beta X$.

Thus we indeed have that $\alpha X + \beta X = (\alpha + \beta)X$.

- 3. We now define a function on E, $N_X(x) = \inf\{|\alpha| \mid x \in \alpha X\}$. We show that N_X is well defined and that it defines a norm on E.
 - (a) We show that the set $N = \{\alpha \mid x \in \alpha X\}$ for each $x \in E$ is non empty. Let $x \in E$. We have that since $0 \in \mathring{X}, \exists r > 0, B(0, r) \subset X$. Then we consider $\alpha = \|2x\|/r$. We have that $x \in B(0, \alpha * r) \subset \alpha X$. Thus N is not empty.
 - (b) We show that N_X is homogenous. Let $x \in E$ and $\lambda \in \mathbb{R}$.

$$N_X(\lambda x) = \inf\{|\alpha| \mid \lambda x \in \alpha X\}$$
$$= \inf\{|\lambda \alpha| \mid x \in \lambda \alpha X\}$$
$$= |\lambda|\inf\{|\alpha| \mid x \in \lambda \alpha X\}$$
$$= |\lambda|N_X(x)$$

(c) We show that N_X is definite. Let $x \in E, N_X(x) = 0$

$$N_X(x) = 0 \Leftrightarrow \inf\{|\alpha| \mid x \in \alpha X\} = 0$$

$$\Rightarrow x \in 0 * X$$

$$\Rightarrow \exists M, ||x|| \le 0 * M$$

$$\Leftrightarrow ||x|| \le 0$$

$$\Rightarrow x = 0$$

Thus since X is bounded, we have that N_X is definite.

(d) We show that the triangular inequality holds for N_X . Let $x, y \in E$.

$$N_X(x+y) = \inf\{|\alpha| \mid (x+y) \in \alpha X\}$$

$$= \inf\{|\alpha| \mid (x+y) \in \frac{\alpha}{2}X + \frac{\alpha}{2}X\}$$

$$= \inf\{|\alpha| \mid x \in \frac{\alpha}{2}X\} + \inf\{|\alpha| \mid y \in \frac{\alpha}{2}X\}$$

$$\leq \inf\{|\alpha| \mid x \in \alpha X\} + \inf\{|\alpha| \mid y \in \alpha X\}$$

$$= N_X(x) + N_X(y)$$

Thus using question 2.2 we have that N_X obeys the triangular inequality and that it indeed defines a norm.

4. We now show that N_X and $\|\cdot\|$ are equivalent norms.

- (a) We first show that $||x|| \leq MN_X(x)$ for all $x \in E$. Since X is bounded we have that $\exists M > 0, ||x|| \leq M$. Thus $X \subset \overline{B}(0, M)$. We let $x \in E, x \in N_X(x)\overline{X} \subset \overline{B}(0, N_X(x) * M)$. Thus we have that $||x|| \leq M * N_X(x) \ \forall x \in E$
- (b) Next we show that N_X is weaker than $\|\cdot\|$.
- 5. We finally consider the closure of X in both norms and prove that $\overline{X}_{N_X} = \overline{X}_{\|\cdot\|}$.

$$x \in \overline{X}_{N_X} \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, (x_n) \text{ converges for } N_X \text{ to } x$$

 $\Leftrightarrow (x_n) \text{ converges for } \| \cdot \| \text{ to } x$
 $\Leftrightarrow x \in \overline{X}_{\| \cdot \|}$

And so we have proven that $\overline{X}_{N_X} = \overline{X}_{\|\cdot\|}$.

Exercise 2: In this exercise we will show that the closed unit ball $\overline{B}(0,1) \subset E$ a normed vector space is compact if and only if E is finite dimensional.

1. We consider $S(0,1) = \{x \in E \mid N(x) = 1\}$ the unit sphere. We show that $\overline{B}(0,1)$ is compact if and only if S(0,1) is compact.

" \Rightarrow " Assume $\overline{B}(0,1)$ is compact. We have that $S \subset \overline{B}$ thus it is bounded. We show it is closed. We show that $S^c = \{x \in E \mid N(x) \neq 1\}$ is open.

Let $x \in S^c$. We let r = |N(x) - 1|/2 > 0. We show that $B(x, r) \subset S^c$. Let $y \in B(x, r)$.

$$N(y) = N(y-x+x) \le N(y-x) + N(x) \le r + N(x)$$

We have that $N(x) \neq 1$ and that r < N(x) - 1. Thus $N(y) \neq 1$ and S^c is open. Thus S is compact.

"\(= \)" Assume S(0,1) is compact. Let $f: S(0,1) \times [0,1] \to E, f(x,t) = tx$. We show that f is Lipschhitz continuous. Let $x, y \in E, t_x, t_y \in [0,1]$

$$N(t_x x - t_y y) \le N(1 * x - 1 * y) = N(x - y)$$

Thus we have that since f is 1-Lipschitz continuous f(S(0,1),[0,1]) is compact. We show that $f(S(0,1),[0,1]) = \overline{B}(0,1)$.

Let $x \in S, t \in [0,1]$. We have that $N(tx) = tN(x) \le 1$, thus $tx \in \overline{B}(0,1)$

Let $x \in \overline{B}(0,1)$. If x = 0 then t = 0 and x' any element of S. We now assume x is non-zero.

Let t = 1/N(x). Then N(tx) = 1. Thus $x' = tx \in S$. We let $t' = N(x) \in [0,1]$.

Then we have that there exists $x' \in S$ and $t' \in [0,1], x = x't'$

Thus we have that $\overline{B}(0,1)$ is compact.

2. Let $A \subset E$ and $x \in E$. We define $d(x,A) = \inf\{N(x-u) \mid u \in A\}$ and show that $x \mapsto d(x,A)$ is 1-Lipschitz continuous. Let $x,y \in E$.

$$|d(x, A) - d(y, A)| = |\inf\{N(x - u) \mid u \in A\} - \inf\{N(y - u) \mid u \in A\}|$$

3. We now let F a finite dimensional vector subspace. We have that d(x,F) is 1-Lipschitz continuous so we have that $\forall x,y\in E, |d(x,F)-d(y,F)|\leq N(x-y)$. We consider d(0,F). Since F is a vector subspace we have that $0\in F$ thus $\inf\{N(u)\mid u\in F\}=0$. We let y=0 and find:

$$|d(x,F) - d(y,F)| = |d(x,F) - 0| = d(x,F) \le N(x-0) = N(x)$$

We also have that:

$$d(x, F) = \inf\{N(x - u) \mid u \in F\} \le N(x - 0) = N(x)$$

Let $u \in F$ such that d(x, F) = N(x - u). By contradiction assume that N(u) > 2N(x).

- 4. We show that the d(x, F) is attained at some $u_x \in F$
- Exercise 3:
- Exercise 4:
- Exercise 5: