Banco de Dados

Modelagem

- A modelagem de dados é um método de representar os dados.
- Criar um modelo que exiba as características de comportamento e funcionamento que deveram ser seguidas para desenvolver o BD.
- A modelagem de dados permite:
 - Representar o ambiente;
 - Documentar e normalizar;
 - Observar os processos dentro de um BD.

Modelos

CONCEITUAL:

■ É a representação de um BD independente da tecnologia e o SGBD.

LÓGICO:

 É o modelo que exibe a representação de dados implementados em uma determinada tecnologia e/ou SGBD.

• FÍSICO:

 Levanta as características e recursos necessários para o armazenamento e endereçamento físico dos dados.

- Representação do banco de dados de forma independente da implementação em um SGBD.
- Exibe quais dados podem aparecer no BD, mas não mostra como estes dados estarão armazenados.
- Representado através de um diagrama de blocos, que demonstra todas as relações entre as entidades (registros), seus atributos (dados) e suas relações.
- Possuí uma técnica de modelagem chamada de Modelagem Conceitual de Entidade e Relacionamento (Modelo ER).
- Usualmente representado através de um diagrama, chamado Diagrama Entidade Relacionamento (DER).

Exemplo de Modelo Conceitual ER

Componentes do Modelo ER

ENTIDADE:

Trata-se de um objeto do mundo real, no qual se deseja manter as informações no banco de dados.

ATRIBUTOS:

São os dados que se deseja armazenar sobre o objeto.

RELACIONAMENTO:

Associação entre as entidades.

CARDINALIDADE:

 Número de ocorrências possíveis de cada entidade envolvida em um relacionamento.

Representações Gráficas do Modelo ER

ENTIDADE:

ATRIBUTOS:

RELACIONAMENTO:

CARDINALIDADE:

Entidade

- Uma entidade representa um objeto do mundo real, no qual se deseja manter as informações no banco de dados.
- Exemplos de entidades:

Atributo

- Atributo é o DADO que é associado a cada ocorrência de uma entidade.
- Tipos de atributos:
 - ATRIBUTO SIMPLES: Assume um único valor para cada entidade.
 - ATRIBUTO COMPOSTO: Formado por um ou mais sub-atributos.
 - ATRIBUTO MULTIVALORADO: Pode possuir diversos valores para uma única entidade.
 - ATRIBUTO DERIVADO: Atributo cujo valor pode ser derivado a partir de outro atributo.
 - ATRIBUTO IDENTIFICADOR: Identifica cada entidade em um conjunto entidades.
- Exemplos de atributos:

Relacionamento

- Estabelece as associações e conexões entre as entidades de um Banco de Dados.
- No modelo ER é representado por um losango ligado por linhas aos retângulos (entidades).
- Exemplos de relacionamento:

Entidade

- Define o número de vezes que uma entidade pode estar relacionada á outra, restringindo a quantidade mínima e a quantidade máxima de relacionamentos entre elas através da CARDINALIDADE MÍNIMA e a CARDINALIDADE MÁXIMA.
- Exemplos de cardinalidades:

- Um modelo lógico é uma representação do banco de dados conforme é visto pelos usuários do SGBD (programadores e aplicações/softwares).
- Exibe os dados de maneira abstrata/simplificada (abstração de dados), sem os detalhes das implementações e locais físicos onde se encontram os dados.
- É dependente do tipo de SGBD escolhido para desenvolver o Banco de Dados.

Exemplo de Modelo Lógico

Componentes do Modelo Lógico

TABELA

 É uma representação bidimensional de dados, composta por linhas (registros) e colunas (campos).

CAMPO

É o local onde o dado fica armazenado individualmente.

REGISTRO

 É um conjunto de dados (tupla) associados a um único elemento/objeto.

CHAVE

Trata-se de um atributo identificador existem 2 (dois) tipos de chaves, a CHAVE PRIMÁRIA e a CHAVE ESTRANGEIRA.

Campo x Registro

Cada coluna de uma tabela é chamada de **CAMPO**.

Tabela CLIENTES

ID	NOME	CPF	UF
1	João da Silva	777.777.777-77	SC
2	Maria de Souza	333.333.333-33	SC

Cada linha de uma tabela é chamada de **REGISTRO**.

Chave Primária

PK

	Tabela CLIENTES			
ID	NOME	CPF	UF	
1	João da Silva	111.111.111-11	SC	
2	Maria de Souza	222.222.222-22	SC	
3	José Costa	333.333.333-33	RS	

CHAVE PRIMÁRIA - PRIMARY KEY (PK)

Permite a classificação e identificação única de cada registro de uma tabela.

Chave Estrangeira

CHAVE ESTRANGEIRA - FOREIGN KEY (FK)

É uma chave primária de outra tabela, inserida no campo para realizar o relacionamentos entre as duas tabelas.

PK

CPF	UF
111.111.111-1	II SC
za 222.222.222-2	SC SC
333.333.333-3	33 RS
	111.111.111-1 za 222.222.222-2

PK

Tabela VENDAS

ŀ

Nomenclatura Campos e Tabelas

- SEMPRE iniciar com letra.
- Usar SOMENTE letras, números e underline ("_").
- NÃO pode haver espaços em branco (" ") e nenhum outro caractere especial.
- Nome de Campo no singular, Tabela no plural.

CORRETO

Campos: valor1, valor2, nome_cliente, Salario, salario, SALARIO

Tabelas: clientes, alunos, produtos

INCORRETO

Campos: 1valor, 2valor, _salario, nota.do.aluno, @nome, idade#

Tabelas: @alunos, produtos do estoque, produtos.do.estoque

Tipos de Dados

- Para que exista a possibilidade de gerenciar e administrar melhor o espaço ocupado por um DADO na memoria, os dados foram divididos em vários tipos.
- Para cada tipo de DADO é alocado (reservado) um tamanho específico de bytes na memória.
- É importante ficar atento ao tamanho de cada tipo de DADO, para que os espaços na memoria não sejam desperdiçados e o BD fique mais "leve", ocupando o menor espaço possível.

Tipos de Dados

- ID_ALUNO INTEGER
- NOME_ALUNO VARCHAR(255)
- SEXO_ALUNO CHAR(1)
- NASC ALUNO DATE
- MEDIA_ALUNO FLOAT