Hermitian and skew-Hermitian matrices Definition 1

A square matrix $A = [a_{ij}]$ is said to be Hermitian if the (i, j)th element of A is equal to the conjugate complex of the (j, i)th element of A.

i.e. $a_{ij} = \overline{a_{ij}}$ for all i and j.

espondian conjugate complex nileforms is callice

Defintion 2

A square matrix $A = [a_{ij}]$ is said to be skew-Hermitian if the (i, j)th element of A is equal to the negative of the conjugate complex of the (j, i)th element of A.

i.e. if $a_{ij} = -\overline{a_{ji}}$ for all i and j.

Example (i)

$$A = \begin{bmatrix} 3 & 4+5i \\ 4-5i & 6 \end{bmatrix}, B = \begin{bmatrix} 4 & 6+4i & 3-7i \\ 6-4i & 7 & 2+5i \\ 3+7i & 2-5i & 0 \end{bmatrix}$$

are Hermitian matrices.

Example (ii)

$$\begin{bmatrix} 0 & 3-4i \\ -3-4i & 0 \end{bmatrix}, \begin{bmatrix} -2i & 4-7i \\ -4-7i & 0 \end{bmatrix} \text{ are skew-hermitian matrices}$$

(A) + "A = "("A + A) (1)

A - A is skew Hermitian ...

Note 1:

If A is Hermitian, then $a_{ii} = \overline{a_{ii}}$

This is possible only if a_{ii} is real. Hence in a Hermitian matrix, all the diagonal elements are real. .asitimasH ai "AA ...

Note 2:

be shother represent the war AST (file) If A is a skew Hermitian matrix,

$$a_{ij} = -\overline{a_{ji}}$$

$$\therefore a_{ii} = -\overline{a_{ii}}$$

$$\therefore a_{ii} + \overline{a_{ii}} = 0$$

 a_{ii} is either purely imaginery or zero.

: the diagonal elements of a skew Hermitian matrix is purely imaginary or zero.

Theorem

If A and B are Hermitian, show that AB + BA is Hermitian and AB-BA is skew hermitian, and an antiferrall at BA "B and work is Hespitian basks thermitians and antimeral is Solution

Let A and B be Hermitian matrices of the same order. Then

$$A^* = A \text{ and } B^* = B \text{ as a sum of } A \text{ and } A$$

$$(AB + BA)^* = (AB)^* + (BA)^*$$

$$= B^* A^* + A^* B^*$$

$$= BA + AB$$

$$= AB + BA$$

$$AB + BA \text{ is Hermitian.}$$
Also $(AB - BA)^* = (AB)^* - (BA)^*$

$$= B^*A^* - A^*B^*$$

$$= BA - AB$$

$$= -(AB - BA)$$

: AB + BA is skew-hermitian.

Theorem

If A is a square matrix, show that A - A*, A*A are all Hermitian and A - A is skew-Hermitian.

if A is Hermitian, then

La A and B be Hermitian matrices of

Test are amornal biposed as

Solution

We know that a square matrix A is Hermitian if $A^* = A$

(i)
$$(A + A^*)^* = A^* + (A^*)^*$$

= $A^* + A = A + A^*$

: A + A is Hermitian.

(ii)
$$(AA^*)^* = (A^*)^*A^*$$

= AA^*

: AA* is Hermitian.

(iii)
$$(A^*A)^* = A^* \cdot (A^*)^*$$

= A^*A

:. A A is Hermitian.

(iv) A square matrix A is skew Hermitian if $A^* = -A$. $(A - A^*)^* = A^* - (A^*)^*$ the diagonal elements of a skew Harthirthanning is parely income $-(A-A^*)$

∴ A – A* is skew Hermitian.

Theorem at age Hermitian, show that AB - BA is its meroad

Show that B' AB is Hermitian or skew Hermitian according as A is Hermitian or skew Hermitian.

10 A. A. A.

Proof

Let A be a Hermitian matrix

Then
$$A^* = A$$

Now $(B^* AB)^* = B^* A^*B$
 $= B^* AB$

.. B* AB is Hermitian.

Suppose A is skew Hermitian matrix

Then
$$A^* = -A$$

 $(B^* AB)^* = B^* A B^*$
 $= B^* (-A) B$
 $= -(B^* AB)$

.. B' AB is skew Hermitian.

Show that every square matrix is uniquely expressible as the sum of a Hermitian matrix and a skew Hermitian matrix.

Solution

Let A be a square matrix.

Then $A + A^*$ is a Hermitian matrix and $A - A^*$ is a skew Hermitian matrix.

Therefore $\frac{1}{2}(A + A^*)$ is a Hermitian matrix and $\frac{1}{2}(A - A^*)$ is a skew Hermitian matrix.

But
$$A = \frac{1}{2}(A + A^*) + \frac{1}{2}(A - A^*) = P + Q$$

Here P is Hermitian and Q is skew-Hermitian. Therefore, every square matrix can be expressed as the sum of a Hermitian matrix and a skew-Hermitian matrix.

Suppose A = R + S be another representation of A where R is a Hermitian matrix and S is a skew Hermitian matrix.

Then
$$A^* = (R + S)^*$$

 $= R^* + S^*$
 $= R - S$
 $\therefore R = \frac{1}{2}(A + A^*) = P$ and
 $S = \frac{1}{2}(A - A^*) = Q$

: the representation of A is unique.

Theorem:

If A is Hermitian, show that \overline{A} is Hermitian and if A is skew. Hermitian show that \overline{A} is a skew Hermitian.

P is Hermitian.

Case 1

Let A be a Hermitian matrix.

Then $A^* = A$

We will prove that A is a Hermitian.

$$(\overline{A})^* = [(\overline{A})] = A$$
 since $(\overline{A}) = A$
 $= (A^*)$ since A is Hermitian $A = A^*$
 $= [(\overline{A})]$ since $A^* = (\overline{A})$
 $= \overline{A}$ | $(A) = A$

Suppose A is skew-Hermitian

Suppose A is skew-Hermital.

Then
$$A^* = -A$$

Now $(\overline{A})^* = [(\overline{A})] = (A) = (-A^*)$
 $= A^* = -[(\overline{A})] = -A$

: A is skew-Hermitian.

Theorem:

Show that every square matrix A can be uniquely expressed as P + iQ where P and Q are Hermitian matrices.

Then A" = (K + S)"

Solution

Let
$$P = \frac{1}{2} (A + A^*)$$
 and $Q = \frac{1}{2i} (A - A^*)$
Then $A = P + iQ$
Then $P^* = \frac{1}{2} (A + A^*)^*$
 $= \frac{1}{2} (A^* + A)$
 $= \frac{1}{2} (A + A^*) = P$

.. P is Hermitian.

Also
$$Q^* = \left[\frac{1}{2i}(A - A^*)\right]^*$$

$$= \frac{1}{2i}(A - A^*)^*$$

$$= -\frac{1}{2i}\left[(A^* - (A^*)^*)\right]^*$$

$$= -\frac{1}{2i}(A^* - A)$$

$$= \frac{1}{2i}(A - A^*) = Q$$
and the interval of the property of the prop

.. Q is Hermitian. marriaged of the A stands every three elections.