Painel / Meus cursos / SC26EL / 8-Representação de Sistemas em Espaço de Estados

/ Questionário sobre Representação de Sistemas em Espaço de Estados

Iniciado em sábado, 10 abr 2021, 12:29

Estado Finalizada

Concluída em sábado, 10 abr 2021, 12:34

Tempo 5 minutos 15 segundos

empregado

Notas 28,0/28,0

Avaliar 10,0 de um máximo de 10,0(**100**%)

Questão 1

Correto

Atingiu 10,0 de 10,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Obtenha uma representação em espaço de estados para o sistema onde $x_1(t)=i_L(t)=y(t)$ e $x_2(t)=v_C(t)$. Considere 3 algarismos significativos nas respostas.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos
$$a_{ij}$$
 da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = \begin{bmatrix} 0 & & \checkmark & , a_{12} = \end{bmatrix}$$
 1000 $\checkmark & , a_{21} = \begin{bmatrix} -10000 & & \checkmark & \\ & & & \checkmark & \end{bmatrix}$ e $a_{22} = \begin{bmatrix} -10000 & & \checkmark & \\ & & & \checkmark & \end{bmatrix}$

Os elementos b_{ij} da matriz $B = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$ são:

$$b_{11} = \boxed{0}$$
 • $b_{21} = \boxed{10000}$ • .

Os elementos \emph{c}_{ij} da matriz $\emph{C} = [\emph{c}_{11} \ \emph{c}_{12}]$ são:

$$c_{11} = \boxed{1}$$
 \checkmark e $c_{12} = \boxed{0}$ \checkmark .

Os polos do sistema, em ordem decrescente, são: $p_1 = \begin{vmatrix} -1127,016 \end{vmatrix}$ e $p_2 = \begin{vmatrix} -8872,983 \end{vmatrix}$

1 of 2 11/04/2021 19:08

Questão **2** Correto

Atingiu 18,0 de 18,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1\ mH, C=100\ \mu F e R=1\ \Omega. Considere 3 algarismos significativos nas respostas.

A função de transferência desses sistema é $G(s) = \frac{Num(s)}{Den(s)}$.

O polinômio do numerador de G(s) é Num(s)= 0 \checkmark s^2+ 0 \checkmark s+ 10000000

A partir da função de transferência, os polos do sistema, em ordem decrescente, são: p_1= −1127,016

✓ e p_2=

-8872,983

A partir da função de transferência G(s), considerando $x_1(t)=y(t)$ pode-se obter uma representação para o sistema em espaço de estados, isto \acute{e} ,

 $\det\{x\}=Ax+Bu$

y=Cx

Os elementos a_(ij) da matriz A=\left[\begin{matrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{matrix} \right] são:

Os elementos b_{ij} da matriz $B=\left[\left\lfloor begin\{matrix\} b_{11} \right\rfloor \right]$

Os elementos c_{ij} da matriz C=\left[\begin{matrix} c_{11} & c_{12} \end{matrix} \right] são:

$$c_{11} = 1$$
 \checkmark $e_{12} = 0$ \checkmark .

A partir da representação do sistema em espaço de estados, os polos do sistema, em ordem decrescente, são: p_1=

■ Script Python

Seguir para...

Aula 9 - Formas Canônicas e Transformações de Similaridade ►

2 of 2 11/04/2021 19:08