Chapter 20 Groupes

Remarque. Attention, la numérotation des exercices diffère un peu du poly distribué en cours

Exercice 1 (20.1) Étude de lois de composition

Indiquer, parmi les applications suivantes, lesquelles sont des lois de composition interne. Lorsque c'est le cas, préciser l'éventuelle associativité ou commutativité.

Exercice 2 (20.1) Propriétés de lois de composition

Étudier les lois de composition interne suivantes : commutativité, élément neutre éventuel, éléments inversibles.

Exercice 3 (20.2)

Sur $G = \mathbb{R}^+ \times \mathbb{R}$, on définit la loi \square par $(x, y)\square(x', y') = (xx', xy' + y)$.

- **1.** Montrer que (G, \square) est un groupe.
- **2.** Montrer que $H =]0, +\infty[\times \mathbb{R}$ est un sous-groupe de (G, \square) .

Exercice 4 (20.2)

Soit (G, .) un groupe dont on note e l'élément neutre.

Soit $a, b, c \in G$. On suppose que $b^6 = e$ et $ab = b^4 a$. Montrer les égalités $b^3 = e$ et ab = ba.

Exercice 5 (20.2)

Soit (G, \cdot) un groupe tel que $x^2 = e$ pour tout $x \in G$. Montrer que G est commutatif.

Exercice 6 (20.2) Étude des groupes à faibles cardinaux

- **1.** (a) Soit (G, \cdot) un groupe à deux éléments. Construire la table de multiplication de G.
 - (b) Soit (G, \cdot) et (G', \cdot) deux groupes à deux éléments. Construire un isomorphisme de groupes de G dans G'.

Ainsi, tous les groupes à deux éléments sont isomorphes. On dit qu'il n'y a qu'un groupe à deux éléments à isomorphisme près.

- **2.** Soit (G, \cdot) un groupe à trois éléments. Construire la table de multiplication de G. En déduire qu'il n'y a qu'un groupe à trois éléments à isomorphisme près.
- **3.** Montrer que \mathbb{U}_4 et $\mathbb{U}_2 \times \mathbb{U}_2$ (muni de la loi de groupe produit) ne sont pas isomorphes (il y a donc plusieurs «types» de groupes à quatre éléments).

Exercice 7 (20.2)

Soit l'ensemble

$$\mathcal{J} = \left\{ \left. \begin{pmatrix} x & x \\ x & x \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \; \middle| \; x \in \mathbb{R}^{\star} \; \right\}.$$

Montrer que, muni de la multiplication usuelle des matrices, \mathcal{J} est un groupe abélien.

Exercice 8 (20.2) Un exemple de sous-groupe

On pose
$$\mathbb{Z}[\sqrt{7}] = \left\{ a + b\sqrt{7} \mid (a, b) \in \mathbb{Z}^2 \right\}.$$

Montrer que $\mathbb{Z}[\sqrt{7}]$ est un sous-groupe de $(\mathbb{R}, +)$.

Exercice 9 (20.2)

Montrer que

$$\left\{ \left. \frac{1}{\sqrt{1-x^2}} \begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix} \, \middle| \, x \in]-1,1[\, \right\}$$

est un groupe pour la multiplication matricielle.

Exercice 10 (20.2)

Pour la multiplication usuelle des matrices carrées, les ensembles suivants sont-ils des groupes.

- 1. $GL_2(\mathbb{R}) \cap \mathcal{M}_2(\mathbb{Z})$.
- 2. $\{ M \in \mathcal{M}_2(\mathbb{Z}) \mid \det M = 1 \}$.

Exercice 11 (20.2)

Soit (G, \star) un groupe. On appelle centre de G l'ensemble

$$Z(G) = \{ x \in G \mid \forall g \in G, x \star g = g \star x \}.$$

Montrer que Z(G) est un sous-groupe de G.

Exercice 12 (20.2)

Soient G un groupe commutatif d'élément neutre e et $n \in \mathbb{N}$. On pose

$$B = \{ a \in G \mid a^n = e \}.$$

Montrer que B est un sous-groupe de G.

Exercice 13 (20.2)

Soit G un groupe commutatif d'élément neutre e. On pose

$$B = \left\{ a \in G \mid \exists n \in \mathbb{N}^*, a^n = e \right\}.$$

Montrer que *B* est un sous-groupe de *G*.

Exercice 14 (20.2)

Soit G un groupe abélien fini (loi notée multiplicativement), de cardinal $n \ge 2$, de neutre e, et a, un élémnet de G.

- **1.** En considérant l'ensemble des a^k , $k=0,\ldots,n$, montrer qu'il existe $d\in[1,n]$ tel que $a^d=e$.
- 2. Justifier l'existence de ω , le plus petit entier supérieur ou égal à 1 vérifiant $a^{\omega} = e$. ω s'appelle l'**ordre** de l'élément a.
- 3. Vérifier que

$$< a> = \left\{\;e,a,a^2,\ldots,a^{\omega-1}\;\right\}$$

est un sous-groupe de G à ω éléments.

Exercice 15 (20.2)

Soit (G, +) un groupe commutatif; soient A et B deux parties de G. On définit la somme de A et B, notée A + B, par

$$A + B = \{ x \in G \mid \exists (a, b) \in A \times B, x = a + b \}.$$

- 1. Montrer que si A et B sont deux sous-groupes de G, A + B est un sous-groupe de G.
- 2. On suppose maintenant que A et A + B sont deux sous-groupes de G; B est-il un sous-groupe de G?

Exercice 16 (20.2)

Soit (G, \cdot) un groupe (non commutatif); soient A et B deux sous-groupes de G. On définit le produit de A et B, noté $A \cdot B$, par

$$A \cdot B = \{ x \in G \mid \exists (a, b) \in A \times B, x = a.b \}.$$

Montrer les équivalences

$$(A \cdot B \text{ est un sous-groupe de } G) \iff (A \cdot B = B \cdot A) \iff (B \cdot A \subset A \cdot B).$$

Donner un exemple (en précisant G, A, B) où $A \cdot B$ n'est pas un groupe.

Exercice 17 (20.2)

Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R}^* \to \mathbb{R}^*$. Montrer que f est un endomorphisme du groupe $(\mathbb{R}^*, .)$. Déterminer $x \mapsto x^n$

son image et son noyau.

Exercice 18 (20.2)

Soit $f: \mathbb{R} \to \mathbb{C}^*$ l'application qui à tout $x \in \mathbb{R}$ associe $e^{ix} \in \mathbb{C}^*$.

- 1. Montrer que f est un homomorphisme de groupes.
- **2.** Calculer son noyau et son image.
- **3.** *f* est-elle injective ?

Exercice 19 (20.2)

Traduire en termes d'homomorphisme de groupes les propriétés traditionnelles suivantes

1. $\ln(xy) = \ln x + \ln y$;

4. $e^{z+w} = e^z e^w$

2. |zw| = |z||w|;

5. $\overline{z+w} = \bar{z} + \bar{w}$:

3. $(xy)^{\frac{1}{2}} = x^{\frac{1}{2}}y^{\frac{1}{2}}$;

6. $\overline{zw} = \overline{z}\overline{w}$

Exercice 20 (20.2)

Soit (G, .) un groupe. Pour $a \in G$ fixé, on considère l'application

$$\begin{array}{cccc} f_a: & G & \to & G \\ & x & \mapsto & a.x.a^{-1} \end{array}.$$

- **1.** Montrer que f_a est un automorphisme de (G, .).
- **2.** On note $I = \{ f_a \mid a \in G \}$. Montrer que (I, \circ) est un groupe où \circ est la loi de composition des applications de G dans G.

3. Soit

$$\phi: G \to I .$$

$$a \mapsto f_a$$

Montrer que ϕ est un morphisme de (G, .) dans (I, \circ) .

Exercice 21 (20.2)

Pour tout couple (a, b) de \mathbb{R}^2 , on pose la matrice

$$M_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Soit

$$\mathcal{G} = \left\{ \left. M_{a,b} \; \middle| \; (a,b) \in \mathbb{R}^2 \setminus \left\{ \left. (0,0) \right. \right\} \right. \right\} \qquad \text{et} \qquad \qquad f \; \colon \quad \mathcal{G} \; \to \; \mathbb{R}^\star \\ M_{a,b} \; \mapsto \; a^2 + b^2 \; .$$

- 1. Montrer que G est un groupe pour la loi usuelle de multiplication des matrices carrées.
- **2.** Montrer que f est un morphisme du groupe (\mathcal{G}, \times) dans le groupe (\mathbb{R}^*, \times) .

Exercice 22 (20.2)

Soit (G, .) un groupe (quelconque). On note C(G) l'ensemble des caractères de G, c'est-à-dire l'ensemble des morphismes de G vers le groupe multiplicatif \mathbb{C}^* .

- 1. Montrer que C(G) est un groupe commutatif pour la loi naturelle. On l'appelle groupe des caractères de G.
- **2.** Montrer que $C(\mathbb{Z})$ est isomorphe à \mathbb{C}^* .
- 3. Soient $n \in \mathbb{N}$ et $\omega = \mathrm{e}^{2i\pi/n}$. Montrer que $F: C(\mathbb{U}_n) \to \mathbb{U}_n$ est un isomorphisme de groupes. $f \mapsto f(\omega)$
- **4.** Soit $G = G_1 \times G_2$ un groupe produit. En introduisant, pour $f_1 \in C(G_1)$ et $f_2 \in C(G_2)$, l'application

$$\begin{array}{cccc} f: & G & \rightarrow & \mathbb{C}^{\star} \\ & (x_1,x_2) & \mapsto & f_1(x_1)f_2(x_2) \end{array},$$

montrer que C(G) est isomorphe à $C(G_1) \times C(G_2)$.

Exercice 23 (20.2)

Montrer que si f est une bijection de X sur Y, alors F: $\mathfrak{S}(X) \to \mathfrak{S}(Y)$ est un isomorphisme. $\sigma \mapsto f \sigma f^{-1}$

Exercice 24 (20.2)

Le but de cet exercice est de montrer que les groupes (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ne sont pas isomorphes. Supposons qu'il existe un isomorphisme ϕ de (\mathbb{R}^*, \times) sur (\mathbb{C}^*, \times) .

- **1.** Montrer que $\phi(-1) = -1$.
- **2.** Montrer que si $\alpha = \phi^{-1}(i)$, alors $\alpha^2 = -1$.
- 3. Conclure.

Exercice 25 (20.2)

Soient p, q deux entiers naturels premiers entre eux et n = pq. Soit (G, \cdot) un groupe fini commutatif vérifiant $x^n = 1$ pour tout $x \in G$. On forme

$$M = \{ x \in G \mid x^p = 1 \}$$
 et $N = \{ x \in G \mid x^q = 1 \}$.

- **1.** Montrer que M et N sont des sous-groupes de (G, \cdot) .
- 2. Vérifier $M \cap N = \{1\}$.
- 3. Établir que l'application

$$\begin{array}{cccc} f: & M \times N & \to & G \\ & (x,y) & \mapsto & xy \end{array}$$

est un isomorphisme de groupes.

Anneaux, corps

Exercice 26 (20.3) Études d'inversibilités dans un anneau Soit (A, +, .) un anneau.

- 1. Soit $a \in A$ tel que $a^2 = 0$. Démontrer que 1 a et 1 + a sont inversibles et expliciter leurs inverses.
- **2.** Généraliser pour $a \in A$ tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $a^n = 0$.

Exercice 27 (20.3) Éléments nilpotents

Soit (A, +, .) un anneau. Un élément x de A est dit **nilpotent** s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0$.

- 1. Démontrer que si xy est nilpotent, alors yx l'est aussi.
- 2. Démontrer que si x et y sont nilpotents et commutent, alors, xy et x + y sont nilpotents.

Exercice 28 (20.3) Étude d'un ensemble de fonctions

Soit A l'ensemble des fonctions définies sur \mathbb{R} telles que f(0) = f(1). Démontrer que A est un anneau.

Exercice 29 (20.3)

Soit a un élément d'un ensemble X. Montrer que l'application

$$\begin{array}{cccc} E_a: & \mathcal{F}(X,\mathbb{R}) & \to & \mathbb{R} \\ & f & \mapsto & f(a) \end{array}$$

est un morphisme d'anneaux.

Exercice 30 (20.4)

Montrer que $\mathbb{Q}[i\sqrt{3}] = \left\{ a + bi\sqrt{3} \mid (a,b) \in \mathbb{Q}^2 \right\}$ est un corps.

Exercice 31 (20.6) Nilradical d'un anneau

On appelle nilradical d'un anneau commutatif $(A, +, \times)$ l'ensemble N formé des éléments nilpotents de A, c'est-à-dire des $x \in A$ tels qu'il existe $n \in \mathbb{N}^*$ vérifiant $x^n = 0_A$.

Montrer que N est un idéal de A.