$\int \sin(x)dx = -\cos(x)$	$\int \cos(x)dx = \sin(x)$
$\int \sin^2(ax)dx = \frac{x}{2} - \frac{1}{4a}\sin(2ax) = \frac{x}{2} - \frac{1}{2a}\sin(ax)\cos(ax)$	$\int \cos^2(ax)dx = \frac{x}{2} + \frac{1}{4a}\sin(2ax) = \frac{x}{2} + \frac{1}{2a}\sin(ax)\cos(ax)$
$\int \sin(ax)\cos(ax)dx = \frac{1}{2a}\sin^2(ax)$	$\sin(-x) = -\sin(x)$ $\cos(-x) = \cos(x)$
$\sin^2(x) + \cos^2(x) = 1$ $\sin(x) = \sqrt{1 - \cos^2(x)}$ $\cos(x) = \sqrt{1 - \sin^2(x)}$	$\sin(2x) = 2\sin(x)\cos(x)$ $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$ $\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$
$\sin(\frac{\pi}{2} \pm x) = \cos(x)$ $\sin(\pi \pm x) = \mp \sin(x)$ $\sin(\frac{3\pi}{2} \pm x) = -\cos(x)$	$\cos(\frac{\pi}{2} \pm x) = \mp \sin(x)$ $\cos(\pi \pm x) = -\cos(x)$ $\cos(\frac{3\pi}{2} \pm x) = \pm \sin(x)$
$\sin(2\pi - x) = -\sin(x)$	$\cos(2\pi - x) = \cos(x)$

Zložky ekvivalentných prenosov	(Ekvivalentný prenos je $G_N(A) = \frac{a_1 + jb_1}{A}$)
Relé (ideálne) $a_1 = \frac{4M}{\pi}$	Saturácia $a_1 = \frac{2kA}{\pi} \left[\arcsin\left(\frac{d}{A}\right) + \frac{d}{A}\sqrt{1 - \left(\frac{d}{A}\right)^2} \right] \qquad k = \frac{M}{d}$
Relé s necitlivosťou bez hysterézy	Saturácia s necitlivosťou $\frac{d_2 > d_1 > 0}{d_2 - d_1}$
$a_1 = \frac{4M}{\pi} \frac{\sqrt{A^2 - d^2}}{A}$	$a_1 = \frac{2kA}{\pi} \left(\arcsin\left(\frac{d_2}{A}\right) - \arcsin\left(\frac{d_1}{A}\right) + \frac{d_2}{A}\sqrt{1 - \frac{d_2^2}{A^2}} - \frac{d_1}{A}\sqrt{1 - \frac{d_1^2}{A^2}} \right)$
Relé s hysterézou bez necitlivosti	Necitlivost' $k = tg(\varphi)$
$a_1 = \frac{4M}{\pi} \frac{\sqrt{A^2 - d^2}}{A}$ $b_1 = -\frac{4M}{\pi} \frac{d}{A}$	$a_1 = \frac{2kA}{\pi} \left(\frac{\pi}{2} - \arcsin\left(\frac{d}{A}\right) - \frac{d}{A}\sqrt{1 - \frac{d^2}{A^2}} \right)$
Relé s necitlivosťou a hysterézou $a_1 = \frac{2M}{a_2} \left(\frac{\sqrt{A^2 - d_1^2} + \sqrt{A^2 - d_2^2}}{\sqrt{A^2 - d_2^2}} \right)$	Relé s hysterézou bez necitlivosti – špeciálny prípad pre $A = d$ $a_1 = 0$
$a_{1} = \frac{2M}{\pi} \frac{\left(\sqrt{A^{2} - d_{1}^{2}} + \sqrt{A^{2} - d_{2}^{2}}\right)}{A}$ $b_{1} = \frac{2M}{\pi} \frac{\left(d_{2} - d_{1}\right)}{A}$ $d_{1} > d_{2} > 0$	$b_1 = -\frac{4M}{\pi}$ $G_N(A) = -j\frac{4M}{\pi A}$
Hysteréza $k = tg(\varphi)$	
$a_{1} = \frac{kA}{\pi} \left\{ \arcsin\left(\frac{b + \frac{M}{k}}{A}\right) - \arcsin\left(\frac{b - \frac{M}{k}}{A}\right) + \frac{b + \frac{M}{k}}{A} \sqrt{1 - \left(\frac{b + \frac{M}{k}}{A}\right)^{2}} - \frac{b - \frac{M}{k}}{A} \sqrt{1 - \left(\frac{b - \frac{M}{k}}{A}\right)^{2}} \right\}$	

Hysteréza – špeciálny prípad pre $A = b + \frac{M}{k}$

$$a_1 = \frac{kA}{\pi} \left[\frac{\pi}{2} - \arcsin\left(\frac{2b}{A} - 1\right) - \left(\frac{2b}{A} - 1\right) \sqrt{1 - \left(\frac{2b}{A} - 1\right)^2} \right]$$