UCLouvain

Probabilistic mapping of the sub-cellular proteome

Laurent Gatto February 9, 2020

Abstract: In biology, localisation is function - understanding the sub-cellular localisation of proteins is paramount to comprehend the context and full extend of their functions. Shotgun mass spectrometry-based spatial proteomics method are orthogonal to widely used targeted microscopy-based assay. In conjunction with contemporary machine learning, the former enable to build proteome-wide protein localisation maps, informing us on the location of thousands of proteins. When studying these proteome-wide spatial maps, one can learn that while some proteins can be found in a single location within a cell, up to half of the proteins may reside in multiple locations, can dynamically re-localise, or reside within an unknown functional compartment, leading to considerable uncertainty in associating proteins to their sub-cellular location. Recent Bayesian modelling approaches enable us to mine these data, and in particular the dynamic fraction of the spatial proteome, in much greater depth. We are now in a position to (1) probabilistically model protein localisation as well as quantify the uncertainty in the location assignments, and (2) compute a probability for, and quantify uncertainty in, whether a protein is differentially localised upon cellular perturbation. These computational approaches lead to better and more trustworthy biological interpretation of these rich spatial proteomics data.

Acknowledgements

- Mr Oliver Crook
- Dr Lisa Breckels

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Spatial proteomics

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Visualisation

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Computational challenges

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Novelty detection

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Quantifying uncertainty

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Spatial proteomics

Visualisation

Computational challenges

Novelty detection

Quantifying uncertainty

Behind the scences

Thank you for your attention

Contact:

laurent.gatto@uclouvain.be - lgatto.github.io/about