Modelowanie horyzontów zdarzeń czarnych dziur przy użyciu metryki Schwarzchilda

Rozwiązania analityczne i numeryczne

Aleksandra Niedziela Weronika Jakimowicz 22.01.2024 / Zespołowy Projekt Specjalnościowy

Wydział Matematyki i Informatyki Uniwersytet Wrocławski

Czym są czarne dziury?

Czarne Dziury Schwarzchilda

Czarna Dziura jako rozmaitość Riemannowska

Proste ścieżki na zakrzywionych powierzchniach

Linie geodezyjne

Koneksja Levi-Civity

Matematyczna podróż do czarnej dziury

Symbole Christofela

Czym są czarne dziury?

Czarne Dziury Schwarzchilda

Czarna Dziura jako rozmaitość Riemannowska

Proste ścieżki na zakrzywionych powierzchniach

Linie geodezyjne

Koneksja Levi-Civity

Matematyczna podróż do czarnej dziury

Symbole Christofela

Czarne Dziura Schwarzchilda

- Wyróżniamy cztery rodzaje czarnych dziur:
 - Schwarzchilda
 - Kerra
 - Reissner–Nordströma
 - · Kerra-Newmana
- Są to obiekty o nieskończonej gęstości, tak masywne, że zakrzywią czasoprzestrzeń wokół siebie.
- Powstają podczas śmierci gwiazdy w wybuchu supernowej.
- Czarne dziury są inspiracją dla wielu autorów science fiction -Interstellar.

Czarna Dziura jako rozmaitość Riemannowska

Rozmaitość to pojęcie matematyczne opisujące przestrzeń M, która wokół każdego punktu $p \in M$ posiada otwarte otoczenie U_p , które przypomina pewien podzbiór przestrzeni \mathbb{R}^n .

Schwarzchild opisywał czarną dziurę, modelując przestrzeń wokół niej jako rozmaitość różniczkowalną z tensorem metrycznym, czyli rozmaitość Riemannowską.

Metryka Schwarzchilda

Metryka Schwarzchilda jest zdefiniowana na podzbiorze $\mathbb{R} \times (0,+\infty) \times S^2$ o sygnaturze (-,+,+,+), który jest standardowo zapisywany jako

$$g = c^{2}d\tau^{2} = -\frac{r - r_{s}}{r} \cdot c^{2}dt^{2} + \left(\frac{r - r_{s}}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}(\theta)d\phi^{2})$$

lub w postaci macierzy:

$$g_{\mu,
u} = egin{bmatrix} -rac{1-r_{ ext{S}}}{r} \cdot c^2 & 0 & 0 & 0 \ 0 & \left(rac{1-r_{ ext{S}}}{r}
ight)^{-1} & 0 & 0 \ 0 & 0 & r^2 & 0 \ 0 & 0 & 0 & r^2 \sin^2(heta) \end{bmatrix},$$

6

Czym są czarne dziury?

Czarne Dziury Schwarzchilda

Czarna Dziura jako rozmaitość Riemannowska

Proste ścieżki na zakrzywionych powierzchniach

Linie geodezyjne

Koneksja Levi-Civity

Matematyczna podróż do czarnej dziury

Symbole Christofela

Proste ścieżki na zakrzywionych powierzchniach

Foton podróżując po przestrzeni wokół czarnej dziury nie przyspiesza, tzn. druga pochodna krzywej opisującej jego trasę jest stale równa zero.

$$\frac{d^2\gamma}{dt^2}=0.$$

Cząstka będzie szukać najszybszej (najkrótszej) drogi między dwoima punktami - takiej która pochłonid najmniej energii. Na rozmaitości nazywamy ją **linią geodezyją**

Rysunek 2: Cząsteczka poruszająca się po sferze S^2 .

Koneksja Levi-Civity

Wraz z fotonem przesuwamy przestrzeń styczną, jednak powoduje to pewne problemy.

By uzgodnić jak będziemy przesuwać przestrzeń styczną wzdłóż krzywej potrzebne jest użycie koneksji Levi-Civity, dla której definiujemy **symbole Christofela** jako liczby, spełniające równanie:

$$\nabla_j \partial_k = \Gamma^l_{jk} \partial_l.$$

9

Czym są czarne dziury?

Czarne Dziury Schwarzchilda

Czarna Dziura jako rozmaitość Riemannowska

Proste ścieżki na zakrzywionych powierzchniach

Linie geodezyjne

Koneksja Levi-Civity

Matematyczna podróż do czarnej dziury

Symbole Christofela

Wyliczenie Symboli Christofela

Zamiast liczyć symbole Christofela wprost z definicji możemy skorzystać z lagrangianu:

$$S = \int L d\lambda$$

Dla metryki Schwarzchilda mamy:

$$S=\int d au =\int rac{d au}{d au}d au =\int rac{\sqrt{d au^2}}{d au}d au =\int \sqrt{g_{\mu,
u}\dot{x^\mu}\dot{x^
u}}d au =\int L'd au.$$

Korzystamy również z równań Eulera-Lagrange'a

$$\frac{d}{d\tau}\left(\frac{\partial L}{\partial \dot{x^{\mu}}}\right) = \frac{\partial L}{\partial x^{\mu}} \; .$$

11

Wyliczenie Symboli Christofela

Otrzymujemy układ równań:

$$\ddot{t} = -\frac{1}{r(r-1)}\dot{r}\dot{t}$$

$$\ddot{r} = -\frac{r-1}{2r^3}\dot{t}^2 + \frac{1}{2r(r-1)}\dot{r}^2 + (r-1)\dot{\theta}^2 + (r-1)\sin^2\theta\dot{\phi}^2$$

$$\ddot{\theta} = \sin\theta\cos\theta\dot{\phi}^2 - \frac{2}{r}\dot{r}\dot{\theta}$$

$$\ddot{\phi} = -\frac{2}{r}\dot{r}\dot{\phi} - 2\frac{\cos\theta}{\sin\theta}\dot{\phi}\dot{\theta}$$

Wyliczenie Symboli Christofela c.d

Z których wyliczmamy symbole Christofela:

$$\Gamma_{t,r}^{t} = \frac{1}{2r(r-1)}$$

$$\Gamma_{t,t}^{r} = \frac{r-1}{2r^{3}}$$

$$\Gamma_{r,r}^{r} = -\frac{1}{2r(r-1)}$$

$$\Gamma_{\phi,\phi}^{r} = -(r-1)$$

$$\Gamma_{r,\phi}^{\phi} = \frac{1}{r}$$

Równanie orbity

Korzystamy jeszcze raz z równań Eulera-Langrange'a, dostajemy

$$\frac{d}{d\tau}(2r^2\dot{\phi}) = 0$$

$$\frac{d}{d\tau}\left(2\frac{r-1}{r}\dot{t}\right) = 0$$

Dzięki temu możemy wyliczyć równanie orbity:

$$\left(\frac{du}{d\phi}\right)^2 = \frac{1}{b^2} - u^2 + u^3 \tag{1}$$

$$u'' = u\left(\frac{3}{2}u - 1\right) \tag{2}$$

Ścieżki fotonów

Rozwiązując równanie orbity dzięki funkcji odeint z biblioteki scipy języka Python otrzymujemy:

Rysunek 3: Ścieżki fotonów w pobliżu czarnej dziury o masie $M=\frac{1}{2}$ i promieniu Schwarzschilda $r_{\rm S}=1$ (c=1=G) uzyskane przy pomocy języka Python.