Práctica 0: Propiedades algebraicas

Comisión: Rodrigo Cossio-Pérez y Leonardo Lattenero

1. Hallar todos los valores de x que responden a la ecuación

(a)
$$2x - 7x - 5 = 0$$

(b)
$$(3x-1)^2 - 1 = 9x^2 + 12$$

(c)
$$\frac{2-x}{x-1} = 3$$

(d)
$$\frac{-2x+1}{x+1} = \frac{4x-7}{-2(x+6)}$$

(e)
$$6(x+9) = 2\left(3x + \frac{37}{2}\right) + 17$$

2. Decidir si las siguientes expresiones son equivalentes

(a)
$$(2k+5)(k+3)$$
 y $2k^2+11k+15$

** Son equivalentes

(b)
$$5.2^{x+1}$$
 y $\frac{5.2^x}{2}$

** No son equivalentes

(c)
$$2x^2 + 4x - 6$$
 y $(x-1)(x+3)$

** No son equivalentes

(d)
$$2n^3 + 3n^2 + n$$
 y $n(n+1)(2n+1)$

** Son equivalentes

(e)
$$4.(3^x)^2 - 3^{2x+1} y 3^x$$

** No son equivalentes

3. Hallar todos los valores de x que responden a la inecuación

(a)
$$2x + 1 > 0$$

(b)
$$\frac{3x-5}{x-1} < 0$$

(c)
$$\frac{-4x-2}{x+1} > 1$$

(d)
$$(x-2)(x+1) > 0$$

(e)
$$-8(x-2)(2x+7) < 0$$

4. Analizar si las siguientes propiedades son correctas. Justificar

(a)
$$x < \sqrt{2}x + 1$$
 para $x < 0$

(c) Si se tienen
$$a>b>c,$$
 esto implica que $a+1>c+1$

** Correcto. Como
$$x>0$$
y $\sqrt{2}>1$: $x<\sqrt{2}<\sqrt{2}x+1$

** Correcto. a > b > c implica a > c por transitividad. Si sumamos 1, se tiene a + 1 > c + 1

(b)
$$\frac{x-1}{2} < x \text{ para } x > 0$$

(d)
$$a^2 > a$$

** Correcto. Como
$$x > 0$$
: $x > \frac{x}{2} > \frac{x}{2} - \frac{1}{2}$

** Incorrecto. Si a = 0.1 se tiene que $a^2 = 0.01$.

Nota: La propiedad vale para a>1y también para a<0.

- (e) $3^x < 3^{x+1}$ para $x \in \mathbb{N}$
- ** Correcto. Como 1 < 3, multiplicamos por 3^x (que es positivo) y obtenemos $3^x < 3.3^x$. Finalmente,

por propiedades de la potenciación, $3^x < 3^{x+1}$.

- (f) Si a > b, entonces $a^x > b^x$
- ** Incorrecto. Si x=0 se tiene que $a^0=b^0=1$.

 Nota, a propiedad es válidad para x>0.

5. Analizar si las siguientes afirmaciones son correctas. Justificar

- (a) 13 es un número impar
- ** Correcto ya que 13 puede escribirse como 2k+1 con $k=6\in\mathbb{Z}$
- (b) 68 es un número impar
- ** Incorrecto. 68 es un número par ya que puede escribirse como 2k con $k=34\in\mathbb{Z}$
- (c) -12 es un número par
- ** Correcto ya que -12 puede escribirse como 2k con $k=-6\in\mathbb{Z}$
- (d) 0 es un número par
- ** Correcto ya que 0 puede escribirse como 2k con $k=0\in\mathbb{Z}$
- (e) 30 es múltiplo de 5

- ** Correcto ya que 30 puede escribirse como 5k con $k=6\in\mathbb{Z}$
- (f) 17 es múltiplo de 3
- ** Incorrecto. 17 no es múltiplo de 3 ya que no puede escribirse como 3k con $k \in \mathbb{Z}$
- (g) -12 es múltiplo de 4
- ** Correcto ya que -12 puede escribirse como 4k con $k=-3\in\mathbb{Z}$
- (h) 2 divide a -12
- ** Correcto ya que -12 puede escribirse como 2k con $k=-6\in\mathbb{Z}$
- (i) -3 divide a 11
- ** Incorrecto. 11 no es múltiplo de -3 ya que no puede escribirse como -3k con $k \in \mathbb{Z}$

6. Hallar el conjunto de valores del parámetro $k \in \mathbb{R}$ que cumplen la condición

- (a) La parábola $x^2 + kx + 4$ tiene una única raíz.
- (b) La parábola $kx^2 + 4x + 2$ tiene dos raíces reales.
- (c) La parábola $\frac{1}{2}x^2 3x + 2k$ no tiene raíces reales.

7. Indicar a qué conjunto numérico $(\mathbb{N}, \mathbb{Z}, \mathbb{Q} \text{ o } \mathbb{R})$ pertenecen los siguientes números y dar ejemplos que justifiquen

- (a) $3x + 5 \operatorname{con} x \in \mathbb{N}$
- ** Pertenece a \mathbb{N} , por ser la suma de dos números naturales.
- (b) $4x^2 \operatorname{con} x \in \mathbb{N}$
- ** Pertenece a N, por ser el producto de números naturales.
- (c) $\frac{x^2}{3} + 1 \operatorname{con} x \in \mathbb{N}$
- ** Pertenece a \mathbb{Q} , por ser el cociente de dos números naturales.
- (d) $-6x + 1 \operatorname{con} x \in \mathbb{N}$

- ** Pertenece a \mathbb{Z} , por ser la suma de un número entero negativo y un número natural.
- (e) $x^2 + x + 1$ con $x \in \mathbb{Z}$
- ** Pertenece a \mathbb{Z} , por ser la suma de tres números enteros.
- (f) $x + \frac{1}{2} \operatorname{con} x \in \mathbb{Z}$
- ** Pertenece a \mathbb{Q} , por ser la suma de un número entero y un número racional.
- (g) $\frac{1}{x-1}$ con $x \in \mathbb{Z}$ y $x \neq 1$
- ** Pertenece a Q, por ser el cociente de un número

entero y un número entero distinto de cero.

(h)
$$3\sqrt{x} \operatorname{con} x \in \mathbb{N}$$

** Pertenece a \mathbb{R} , por ser la raíz cuadrada de un número natural.

(i)
$$\frac{x^2}{x-4}$$
 con $x \in \mathbb{Z}$ y $x \neq 4$

** Pertenece a \mathbb{Q} , por ser el cociente de un número entero y un número entero distinto de cero.

$$(j) \frac{\sqrt{3}x - 3}{2} \operatorname{con} x \in \mathbb{Z}$$

** Pertenece a \mathbb{R} , por ser el cociente de un número irracional y un número entero.

(k)
$$x + 3 \operatorname{con} x \in \mathbb{Q}$$

** Pertenece a \mathbb{Q} , por ser la suma de dos números racionales.

(l)
$$\frac{1}{x}$$
 con $x \in \mathbb{Q}$ y $x \neq 0$

** Pertenece a \mathbb{Q} , por ser el cociente de dos números racionales.

(m)
$$\sqrt{x} \operatorname{con} x \in \mathbb{Q}$$

** Pertenece a \mathbb{R} , por ser la raíz cuadrada de un número racional.

8. Graficar las siguientes funciones, indicando sus elementos notables (ordenada/abscisas al origen, vértice, etc.)

(a)
$$y = -4x + 2$$

(b)
$$y = \frac{2}{3}x - 1$$

(c)
$$y = x^2 + 4x + 4$$

(d)
$$y = -(x-1)^2 + 3$$

9. Analizar las siguientes situaciones geométricas

(a) Averiguar si la recta
$$y = 2x + 1$$
 y la recta $y = 2x - 5$ son paralelas

(b) Averiguar si la recta
$$y = 2x + 1$$
 y la recta $y = 3x + 1$ son perpendiculares

(c) Hallar una recta perpendicular a la recta
$$y = 2x + 1$$
 que pase por el punto $(1, 2)$

(d) Hallar una recta paralela a la recta
$$y = \frac{1}{3}x + 1$$
 que pase por el punto $(1,1)$

(e) Calcular la intersección de las rectas
$$y = 2x + 1$$
 y $y = 3x - 1$

(f) Calcular la intersección de la recta
$$y = 2x + 1$$
 y la parábola $y = x^2 + 1$

(g) Averiguar si a recta
$$y = -x + 3$$
 se intersecta con la parábola $y = x^2 + 2x + 5$

(h) Dar una recta perpendicular a la recta
$$x = 2$$
 que pase por el punto $(1,5)$