R-Matrix Theory for Nuclear Astrophysics

Introduction

Cross Section

$$\sigma = \frac{N_r}{N_p N_t}$$

Cross Section

$$\sigma = \frac{N_r}{N_p N_t}$$

 N_r = number of reactions

 N_p = number of incoming particles

 N_t = number of target particles

Cross Section

$$\sigma = \frac{N_r}{N_p N_t}$$

 N_r = number of reactions

 N_p = number of incoming particles

 N_t = number of target particles

How to link this to theoretical values?

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r) = E\psi(r)$$

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r) = E\psi(r)$$

For $r \to \infty$ we can obtain a solution for generic V(r):

$$\psi(r) = N \left[e^{ikr} + f(\theta) \frac{e^{ikr}}{r} \right]$$

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r) = E\psi(r)$$

For $r \to \infty$ we can obtain a solution for generic V(r):

Scattering Amplitude

$$\rightarrow j_i = v_i N^2$$

Incoming current density:
$$j_i = v_i |\psi_i(r)|^2$$
 \longrightarrow $j_i = v_i N^2$
Outgoing current density: $j_o = v_o |\psi_o(r)|^2$ \longrightarrow $j_o = v_o N^2 |f(\theta)|^2 \frac{1}{r^2}$

Scattering Amplitude

$$j_i = v_i N^2$$

Incoming current density:
$$j_i = v_i |\psi_i(r)|^2$$
 \longrightarrow $j_i = v_i N^2$
Outgoing current density: $j_o = v_o |\psi_o(r)|^2$ \longrightarrow $j_o = v_o N^2 |f(\theta)|^2 \frac{1}{r^2}$

 $v_i = v_o$ for elastic scattering

$$\frac{d\sigma}{d\Omega} = \frac{j_o r^2}{j_i} = |f(\theta)|^2$$

Differential Cross Section Scattering Amplitude

$$\frac{d^2u}{dr^2} + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{l(l+1)\hbar^2}{2mr^2} \right] u = 0$$

What is the effect of the potential on the waveform?

$$\frac{d^2u}{dr^2} + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{l(l+1)\hbar^2}{2mr^2} \right] u = 0$$

$$V(r) = 0, r \to \infty$$
: $u_l^{f.p.} = \sin(kr - l\frac{\pi}{2})$ spherical Bessel function

$$\frac{d^2u}{dr^2} + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{l(l+1)\hbar^2}{2mr^2} \right] u = 0$$

$$V(r) = 0, r \to \infty$$
: $u_l^{f.p.} = \sin(kr - l\frac{\pi}{2})$ spherical Bessel function

$$V(r) \neq 0, r \rightarrow \infty$$
: $u_l = \sin(kr - l\frac{\pi}{2} + \delta_l) \longrightarrow \text{differs by a phase shift } \delta_l$

$$\frac{d^2u}{dr^2} + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{l(l+1)\hbar^2}{2mr^2} \right] u = 0$$

$$V(r) = 0, r \to \infty$$
: $u_l^{f.p.} = \sin(kr - l\frac{\pi}{2})$ spherical Bessel function

$$V(r) \neq 0, r \rightarrow \infty$$
: $u_l = \sin(kr - l\frac{\pi}{2} + \delta_l)$ \longrightarrow differs by a phase shift δ_l

$$\left(\frac{d\sigma}{d\Omega}\right)_{el} = \frac{1}{k^2} \sin^2 \delta$$

Square-Well Potential (1)

Continuity Condition

$$\begin{cases} u_{int}(r_0) = u_{ext}(r_0) \\ \frac{du_{int}}{dr}(r_0) = \frac{du_{ext}}{dr}(r_0) \end{cases}$$

It is possible to solve it for $|\frac{A}{C}|$ and δ_0

Square-Well Potential (2)

Varying CoM Energy

Varying Potential Depth

 $E_0 = 50 \text{ MeV}, r_0 = 3 \text{ fm}$

Varying Potential Radius

Square-Well Barrier (1)

Continuity Condition

$$u_{I}(r_{0}) = u_{II}(r_{0})$$

$$\frac{du_{I}}{dr}(r_{0}) = \frac{du_{II}}{dr}(r_{0})$$

$$u_{II}(r_{1}) = u_{III}(r_{1})$$

$$\frac{du_{II}}{dr}(r_{1}) = \frac{du_{III}}{dr}(r_{1})$$

$$\downarrow$$

It is possible to solve it for $|\frac{A}{F}|$ and δ_0

Square-Well Barrier (2)

Varying CoM Energy

Varying Potential Radius

Varying Barrier Radius

Square-Well Barrier (3)

Varying Potential Depth

Varying Barrier Height

Calculating Cross Section

$$\frac{d\sigma}{d\Omega} = \frac{j_o r^2}{j_i} = |f(\theta)|^2$$
 We can try to calculate the cross section...

See Jupyter Notebooks

Measuring Cross Section

Many more resonances than previous calculations

Single-Particle Limit

Conclusion: single-particle models are not able to describe the real cross sections

Problem: it is computationally unfeasible to introduce individual nucleons

Solution

R-Matrix Theory

R-Matrix Theory

References

Main References

- Lane and Thomas (1958), doi.org/10.1103/RevModPhys.30.257
- Descouvement and Baye (2010), arxiv.org/abs/1001.0678v1
- Brune (2004), <u>arxiv.org/abs/nucl-th/0502087v1</u>

AZURE2

- Azuma et al. (2010), <u>doi.org/10.1103/PhysRevC.81.045805</u>
- Odell et al. (2022), doi.org/10.3389/fphy.2022.888476

Introduction

- No reference to specific potential (no absolute cross section)
- Two regions: interior ($r < R_0$) and exterior ($r > R_0$)
- Exterior observables: penetration and phase shift
- Interior *parameters*: reduced widths

Assumptions

- 1. Well-defined **spherical** surface at $r = R_0$
- 2. No nuclear interaction outside the radius

Logarithmic Derivative (1)

Continuity:
$$u_l^{in}(R_0) = u_l^{out}(R_0) + \left(\frac{du_l^{in}(r)}{dr}\right)_{r=R_0} = \left(\frac{du_l^{out}(r)}{dr}\right)_{r=R_0}$$

Definition:

$$f_l = R_0 \left(\frac{1}{u_l(r)} \frac{du_l(r)}{dr}\right)_{r=R_0} = R_0 \left(\frac{d \ln u_l(r)}{dr}\right)_{r=R_0}$$

$$f_l(u_l^{in}) = f_l(u_l^{out})$$

Logarithmic Derivative (2)

Let's take the wave function in the exterior region r > R₀:

$$\psi_{out} = Ae^{ikr} + Be^{-ikr} = \dots = \frac{1}{kr}e^{i\delta_0}\sin(kr + \delta_0) = \frac{u_{out}(r)}{r}$$

Now we can calculate f_0 and solve it for $e^{i2\delta_0}$:

$$e^{i2\delta_0} = \frac{f_0 + ikR_0}{f_0 - ikR_0} e^{-2ikR_0}$$

It is possible to calculate the cross section!

$$\sigma_0 = \frac{\pi}{k^2} \frac{-4kR_0 \text{Im} f_0}{(\text{Re} f_0)^2 + (\text{Im} f_0 + -kR)^2}$$

Logarithmic Derivative (3)

Missing Ingredient: logarithmic derivative at the boundary f_0

1. Approximate interior wave function in the closest vicinity of the boundary

$$u_I(r) = Ae^{iKr} + Be^{-iKr}$$

2. Introduce phase shift ζ and absorption coefficient $q \geq 0$

$$A = Be^{2i\zeta}e^{-2q}$$

- 3. Calculate the logarithmic derivative
- 4. Expand the derivative around the resonance, E_{λ} , assuming $q \sim 0$

Logarithmic Derivative (4)

$$\sigma_0 = \frac{\pi}{k^2} \frac{\frac{(2kR)(2qKR)}{(\partial f_0/\partial E)_{E_{\lambda}, q=0}}}{(E - E_{\lambda})^2 + \frac{(qKR + kR)^2}{(\partial f_0/\partial E)_{E_{\lambda}, q=0}}}$$

$$\Gamma_{\lambda e} = -\frac{2kR}{(\partial f_0/\partial E)_{E_{\lambda}, \ q=0}} \quad \text{Particle Width}$$

$$\Gamma_{\lambda r} = -\frac{2qKR}{(\partial f_0/\partial E)_{E_{\lambda}, \ q=0}}$$
 Reaction Width

$$\Gamma_{\lambda} = \Gamma_{\lambda e} + \Gamma_{\lambda r}$$

$$\gamma_{\lambda e}^2 = -\left(\frac{\partial f_0}{\partial E}\right)_{E_{\lambda, q=0}}^{-1}$$

Reduced Width

Breit-Wigner Formula

$$\sigma_0 = \frac{\pi}{k^2} \frac{\Gamma_{\lambda e} \Gamma_{\lambda r}}{(E - E_{\lambda})^2 + \Gamma_{\lambda}^2 / 4}$$

R-matrix

If we assume only an **elastic process** (q = 0): $f_0 = (E - E_{\lambda}) \left(\frac{\partial f_0}{\partial E} \right)_{E_1, q = 0}$

Then we define the **R-function** as: $\frac{1}{f_0} = \frac{(\partial f_0/\partial E)_{E_\lambda,q=0}^{-1}}{E - E_\lambda} = \frac{\gamma_{\lambda e}^2}{E - E_\lambda} = \mathscr{R}$

 \longrightarrow the value at each E is obtained by summing over all resonances λ

R-matrix

If we assume only an **elastic process** (q = 0): $f_0 = (E - E_{\lambda}) \left(\frac{\partial f_0}{\partial E}\right)_{E_{\lambda}, q = 0}$

Then we define the **R-function** as: $\frac{1}{f_0} = \frac{(\partial f_0/\partial E)_{E_\lambda,q=0}^{-1}}{E - E_\lambda} = \frac{\gamma_{\lambda e}^2}{E - E_\lambda} = \mathscr{R}$

 \longrightarrow the value at each E is obtained by summing over all resonances λ

Usually other reaction channels are present as well, so we define the R-matrix:

$$\mathcal{R}_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E - E_{\lambda}}$$

R-matrix Problems

- Channel radius, R_0 , is arbitrary and have no precise physical meaning
 - → different radii means different widths (but consistent cross sections)

R-matrix Problems

- Channel radius, R_0 , is arbitrary and have no precise physical meaning
 - → different radii means different widths (but consistent cross sections)
 - → good practice is to put it **slightly bigger** than possible nuclear interaction
- The widths, γ_{λ} , depends on boundary conditions
 - their values can be unphysical (i.e. formal) and imaginary
 - ---- only the Brune boundary condition gives physical meaning

R-matrix Problems

- Channel radius, R_0 , is arbitrary and have no precise physical meaning
 - → different radii means different widths (but consistent cross sections)
 - → good practice is to put it **slightly bigger** than possible nuclear interaction
- The widths, γ_{λ} , depends on boundary conditions
 - their values can be unphysical (i.e. formal) and imaginary
 - ---- only the Brune boundary condition gives physical meaning
- Not all the resonances can be included due to computational limits
 - background levels (i.e. poles) at high energies are usually inserted

Why and How

Why do we need phenomenology?

- Usually we can not measure the cross section at astrophysical energies, e.g. 1 - 100 keV range
- 2. The only way of getting the cross section is by **extrapolating** the measured data
- 3. R-matrix permits us to use **meaningful physical information** to try to parametrise the cross section
- 4. It permits to not only use **direct data**, i.e. measured cross sections, but also **indirect data** as spectroscopic factors, decay lifetimes etc.

What do we use it for?

 Astrophysics: extrapolate a charged particle cross section from some higher energy region that is experimental accessible down in energy to a region that can't be measured but is important for stellar environments

What do we use it for?

- Astrophysics: extrapolate a charged particle cross section from some higher energy region that is experimental accessible down in energy to a region that can't be measured but is important for stellar environments
- Nuclear Engineering: simultaneously evaluate a broad set of data from different measurements and maybe even through different reaction channels, very important for nuclear safeguards

What do we use it for?

- Astrophysics: extrapolate a charged particle cross section from some higher energy region that is experimental accessible down in energy to a region that can't be measured but is important for stellar environments
- Nuclear Engineering: simultaneously evaluate a broad set of data from different measurements and maybe even through different reaction channels, very important for nuclear safeguards
- Material Studies: precise evaluation of elastic cross section data at different angles can be used for the study of materials in samples

 E_{x} =11.525 MeV

What determines the cross section?

Components

- Tails of higher resonances
- Sub-threshold resonances
- Non-resonant (direct) capture

Type of measurement

Direct, Indirect

Lifetime, Coulex, Indirect

Direct, Transfer

What determines the cross section?

Components

• Tails of higher resonances

Sub-threshold resonances

• Non-resonant (direct) capture

Type of measurement

Direct, Indirect

Lifetime, Coulex, Indirect

Direct, Transfer

Direct: measure directly the cross section, angular distribution etc.

Indirect: measure the same excited state with different reaction channels

Lifetime: measure the lifetime of the state and convert to total width

Transfer: measure the spectroscopic factors for each state

Coulex: measure the transition strength and convert to the total width

$^{12}C(\alpha,\gamma)^{16}O$ - Example

$^{12}C(\alpha,\gamma)^{16}O$ - Example

Angular distributions can be used as well

$12C(\alpha,\gamma)^{16}O$ - Example

All of these populate the same compound nucleus

We can retrieve precious physical information from each reaction channel

$12C(\alpha,\gamma)^{16}O$ - Example

12C(p,γ)¹³N - Example

Reaction Channels

Compound Nucleus

$$Q \sim 1.9 \text{ MeV}$$

$$^{12}C + p$$
 \longrightarrow ^{13}N

$$Q = 0 \text{ MeV}$$

$$13N + y$$

13**N**

Possible reactions?

$^{12}C(p,y)^{13}N$ - Example

Reaction Channels

Compound **Nucleus**

$$Q \sim 1.9 \text{ MeV}$$

$$12C + p$$
 \longrightarrow $13N$

$$Q = 0 \text{ MeV}$$

$$^{13}N + v$$

13**N**

Possible reactions?

- $12C(p,\gamma)^{13}N$ Proton capture
- 12C(p,p)12C
 13N(γ,p)12C Elastic scattering
- Photo dissociation

12C(p,γ)¹³N - Example

Reaction Channels

Compound Nucleus

$$Q \sim 1.9 \text{ MeV}$$

$$Q = 0 \text{ MeV}$$

$$^{13}N + y$$

13**N**

13**N**

Possible reactions?

- 12C(p,v)13N Proton capture
- ¹²C(p,p)¹²C Elastic scattering
- $^{13}N(y,p)^{12}C$ Photo dissociation

12C(p,p)12C

14N(p,γ)¹⁵O - Example

Sub-threshold state at 6.79 MeV dominates the cross section at astrophysical energies

14N(p,γ)¹⁵O - Example

Sub-threshold state at 6.79 MeV dominates the cross section at astrophysical energies

Idea: measure the 6.79 MeV lifetime

AZURE2 Code

- Originally developed by R.E. Azuma and published in 2010
- AZURE2 publicly available from 2012 at azure.nd.edu
- State-of-the-art code for performing R-matrix evaluations in nuclear astrophysics community
- Designed for charged particle reactions with focus on extrapolations to low energies
- Simultaneous multiple exit and entrance channel fits