Sheet 2

Q1:

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{A}\left(\frac{\text{mol}}{\text{m}^{3}\cdot\text{s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05

- a) use one of the integration formulas given in Appendix A.4 to determine the PER reactor volume necessary to achieve 80% conversion
- b) If the initial volumetric flowrate and concentration are 2 dm3/s (0.002 m3/s), and 0.2 mol/dm3, respectively. calculate the space time and space velocity

(Fogler book, example 2-3, page 50)

Q2: The space time required to achieve 80% conversion in a CSTR is 5 h. The entering volumetric flow rate and concentration of reactant A are 1 dm3/min and 2.5 molar, respectively. IF possible determine:

- (1) the rate of reaction (-rA)
- (2) the reactor volume (V)
- (3) the exit concentration of A (CA)

ANS(solution manual, p2-4(e), page 38)

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{A}\!\!\left(\frac{mol}{m^3\cdots}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$(1/-r_{\rm A})\left(\frac{{ m m}^3\cdot{ m s}}{{ m mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$[F_{A0}/-r_A](m^3)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

For CSTR:

$$V = \frac{F_{A0}X}{(-r_A)_{\text{exit}}}$$

$$V = \left[\frac{F_{A0}}{-r_{A}}\right]_{X=0.8} (0.8)$$

V = Levenspiel rectangle area = height × width

$$V = [8 \text{ m}^3][0.8] = 6.4 \text{ m}^3$$

$$V = 0.4 \frac{\text{mol}}{\text{s}} \left(\frac{20 \text{ m}^3 \cdot \text{s}}{\text{mol}} \right) (0.8) = 6.4 \text{ m}^3$$

$$V = 6.4 \text{ m}^3 = 6400 \text{ dm}^3 = 64001$$

PFR

$$V = F_{A0} \int_{0}^{0.8} \frac{dX}{-r_{A}} = \int_{0}^{0.8} \frac{F_{A0}}{-r_{A}} dX$$

We shall use the *five point quadrature* formula (A-23) given in Appendix A.4 to numerically evaluate Equation (2-16). For the five-point formula with a final conversion of 0.8, gives for four equal segments between X = 0 and X = 0.8 with a segment length of $\Delta X = \frac{0.8}{4} = 0.2$. The function inside the integral is evaluated at X = 0, X = 0.2, X = 0.4, X = 0.6, and X = 0.8.

$$V = \frac{\Delta X}{3} \left[\frac{F_{\rm A0}}{-r_{\rm A}(X=0)} + \frac{4F_{\rm A0}}{-r_{\rm A}(X=0.2)} + \frac{2F_{\rm A0}}{-r_{\rm A}(X=0.4)} + \frac{4F_{\rm A0}}{-r_{\rm A}(X=0.6)} + \frac{F_{\rm A0}}{-r_{\rm A}(X=0.8)} \right]$$

Using values of $F_{A0}/(-r_A)$ in Table 2-3 yields

$$V = \left(\frac{0.2}{3}\right) [0.89 + 4(1.33) + 2(2.05) + 4(3.54) + 8.0] dm^3 = \left(\frac{0.2}{3}\right) (32.47 \text{ m}^3)$$

$$V = 2.165 \text{ m}^3 = 2165 \text{ dm}^3$$

product. For X = 0.2, we calculate the corresponding reactor volume using Simp son's rule (given in Appendix A.4 as Equation [A-21]) with $\Delta X = 0.1$ and the dat in rows 1 and 4 in Table 2-3,

$$V = F_{A0} \int_{0}^{0.2} \frac{dX}{-r_A} = \frac{\Delta X}{3} \left[\frac{F_{A0}}{-r_A(X=0)} + \frac{4F_{A0}}{-r_A(X=0.1)} + \frac{F_{A0}}{-r_A(X=0.2)} \right]$$
$$= \left[\frac{0.1}{3} \left[0.89 + 4(1.08) + 1.33 \right] \text{m}^3 = \frac{0.1}{3} (6.54 \text{ m}^3) = 0.218 \text{ m}^3 = 218 \text{ dm}^3$$
$$= 218 \text{ dm}^3$$

For X = 0.4, we can again use Simpson's rule with $\Delta X = 0.2$ to find the reactor volume necessary for a conversion of 40%.

$$V = \frac{\Delta X}{3} \left[\frac{F_{A0}}{-r_A(X=0)} + \frac{4F_{A0}}{-r_A(X=0.2)} + \frac{F_{A0}}{-r_A(X=0.4)} \right]$$

$$V = \frac{\Delta X}{3} \left[\frac{F_{A0}}{-r_A(X=0)} + \frac{4F_{A0}}{-r_A(X=0.2)} + \frac{F_{A0}}{-r_A(X=0.4)} \right]$$
$$= \left[\frac{0.2}{3} \left[0.89 + 4(1.33) + 2.05 \right] \right] \text{m}^3 = 0.551 \text{ m}^3$$
$$= 551 \text{ dm}^3$$

X	0	0.2	0.4	0.6	0.8
$-r_{A}\left(\frac{\text{mol}}{\text{m}^{3}\cdot\text{s}}\right)$	0.45	0.30	0.195	0.113	0.05
V (dm ³)	0	218	551	1093	2165

Figure E2-3.2(a) Conversion profile.

Figure E2-3.2(b) Reaction rate profile.

Q2

$$\tau = 5hrs$$

$$v_0 = 1 dm^3 / min = 60 dm^3 / hr C_A = 2.5 mol / dm^3 X = 0.8$$

For CSTR,
$$\tau = \frac{V}{v_0}$$

 $V = 300 \text{dm}^3$

$$-r_A = \frac{C_{A0}X}{\tau} = \frac{2.5 \times 0.8}{5} mol / dm^3 hr$$

$$= 0.4 mol / dm^3 hr$$

(2)
$$V = 300 dm^3$$

(3)
$$C_A = C_{A0}(1-X)$$

= 0.5 mol/dm³