

Sound processing

Fondamenti Elaborazione dei Segnali e Immagini (FESI)

Francesca Odone francesca.odone@unige.it

Introduzione: il suono

- Il suono che percepiamo corrisponde ad un complesso fenomeno fisico di variazione della pressione dell'aria vicino all'apparato uditivo
 - Variazioni ampie sono suoni forti
 - Variazioni rapide rappresentano suoni toni alti

Introduzione: il suono

 La sorgente emette un suono, che si propaga nel mezzo di trasmissione (di solito, l'aria)

Se siamo fermi in un punto, osserviamo l'aria spostarsi nel tempo in questo modo:

è una funzione matematica del tempo (segnale unidimensionale del tempo)

Pressione e decibel

Il suono può anche essere descritto in termini della deviazione dalla pressione dell'aria media

(a) A sound shown in terms of air pressure

(b) A sound shown in terms of the difference from the ambient air pressure

Come nasce un segnale audio

- Il **trasduttore** elettroacustico (per es. Il microfono) è in grado di tradurre le vibrazioni del suono in un segnale elettrico
- Il convertitore Analogico-Digitale (ADC) lo trasforma in un segnale digitale applicando campionameno e quantizzazione
- Per l'ascolto è necessario seguire il procedimento opposto
- Alcuni segnali nascono direttamente da un dispositivo elettronico (es. Sintetizzatore) e quindi non necessitano il trasduttore iniziale

Frequenza del suono

Frequenza:

- numero di vibrazioni al secondo (raddoppiando il numero di vibrazioni salgo di un'ottava)
- Unità di misura: Hertz, numero di vibrazioni al secondo
- L'altezza del suono dipende in gran parte dalle frequenze: frequenze alte (suono acuto) frequenze basse (suono grave)

Frequenza del suono

- Per essere percepite come suono, le vibrazioni devono cadere all'interno di un intevallo predefinito:
 - per un essere umano con un buon udito, il numero di variazioni al secondo deve essere nel range [20Hz-20KHz]
 - Sopra ai 20KHz ultrasuoni [udibili da delfini e pipistrelli]
 - Sotto i 20 Hz Infrasuoni [udibili da elefanti e pesci]

Frequenza del suono

- Per essere percepite come suono, le vibrazioni devono cadere all'interno di un intevallo predefinito:
 - per un essere umano con un buon udito, il numero di variazioni al secondo deve essere nel range [20Hz-20KHz]
 - La gamma di suoni coperta dalla musica è molto più limitata (do grave 65 Hz, do acuto ~8KHz)
 - L'orecchio umano è particolarmente sensibile nell'intervallo [2KHz-5KHz]

Una piccola parentesi sul campionamento

 Teorema del campionamento: per ricostruire il segnale analogico occorre una frequenza di campionamento almeno doppia rispetto alla frequenza massima

$$\frac{1}{\tau} > 2\omega_{MAX}$$

- Per ottenere una ricostruzione "ragionevole" del segnale audio occorre una frequenza di campionamento almeno doppia rispetto alla frequenza massima udibile (20KHz)
- Per es nei CD audio 44.1 KHz

Intensità del suono

- L'intensità del suono è legata all'ampiezza della vibrazione
- Più è ampia la vibrazione più il suono è forte
- L'intensità si misura in decibel
- L'intensità ha un range di "accettabilità" compreso tra
 - Soglia di udibilità
 - Soglia del dolore (130 DB)

Intensità del suono

Source	Intensity	Intensity level	× TOH
Threshold of hearing (TOH)	10 ⁻¹²	0 dB	1
Whisper	10 ⁻¹⁰	20 dB	10 ²
Pianissimo	10 ⁻⁸	40 dB	10 ⁴
Normal conversation	10-6	60 dB	10 ⁶
Fortissimo	10-2	100 dB	10 ¹⁰
Threshold of pain	10	130 dB	10 ¹³
Jet take-off	10 ²	140 dB	10 ¹⁴
Instant perforation of eardrum	10 ⁴	160 dB	10 ¹⁶

Suoni semplici e suoni complessi

Flauto semplice – poche armoniche Strumenti ad arco – moltissime armoniche

Un limite della Trasformata di Fourier

La FT descrive il contenuto "globale" del segnale in termini di frequenza, ma non ci permette di localizzare un fenomeno all'interno del segnale

Un limite della Trasformata di Fourier

La FT descrive il contenuto "globale" del segnale in termini di frequenza, ma non ci permette di localizzare un fenomeno all'interno del segnale

Short Time Fourier Transform (STFT)

- Invece di considerare l'intero segnale, consideriamo porzioni del segnale (controllate da segnali "finestre")
- I risultati ottenuti dipendono dalla dimensione della finestra
- Dipendono anche dalla forma (tagli bruschi introducono artefatti)
- La STFT può essere invertita, ma non ce ne occuperemo!

Spettrogramma

- E' una rappresentazione bidimensionale del modulo della STFT
- Può essere visualizzato come un'immagine
 - L'asse orizzontale è il tempo
 - L'asse verticale le frequenze
 - Il colore l'intensità / ampiezza (modulo)

Esempi di spettrogramma

https://en.wikipedia.org/wiki/Spectrogram

UniGe