#8. 2X2 Towerttble matricest vector space?

Visebal 의업기 위版 2X2 Towertble matrices인

UEL VIL 및 ULVII 2X2 Towertble matrices인
ULL VIL 및 ULVII 2X2 Towertble matrices인
ULL 供加 发射 大坡 2X2 Towertble matrices인
以 割計時 計中、是 H 大坡 2X2 Towertble matrices

$$u = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
, $v = \begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix}$ OF WES, $v \in S^{0}$ | 4.

(2471) = GOI OFUZEL. OFIZEM 2X2 Triverettible moetices

E Vector spacent ofuzel.

#12. U= ao+aox, V=bo+boxのはかは.
U,VESのは、(St ao+aox 형田의 polynomでは)

 $U+D = (a_0 + a_1 x) + (b_0 + b_1 x) = (a_0 + b_0) + (a_1 + b_1) x$ $k u = k(a_0 + a_1 x) = (ka_0) + (ka_1) x + (a_1 + b_1) x$

(2411), ku ES の旧子 Qo+QiX 宮田山 にもいる

#2 (a)
$$\mathcal{I} = \begin{bmatrix} \mathcal{I}_{11} & 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & \mathcal{I}_{22} & 0 & \cdots & 0 \\ 0 & 0 & \mathcal{I}_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \mathcal{I}_{6m} & \cdots & \mathcal{I}_{6m} \end{bmatrix}$$

OB THEV.

->0101M

N#2.

$$k \cdot u = \begin{bmatrix} k\alpha_{11} & 0 & \dots & 0 \\ 0 & k\alpha_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & k\alpha_{m} \end{bmatrix}$$

truevold areth rave Mine Subspace oft.

(b). VE dec(A)=081 mxn mountaeset stat.

$$U = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

U, VEVOICH.

WHAT VE VIST OUT.

- (C) スロナス2+111+スm=0日 が見 又, リロナリ22+111+ソnn=0日 が見 ソコト発でH. スリチャロロ のtr(なり)=(スロナリロ)+(ス2+リ2)+111+(スロナリア) = (スロナス22+111+スnn)+(タロナリコナリnn)=0の四、 スナリ モリのは.
 - @ \tr(ka)= (kan+ka22+111+kam)
 =k(an+a22+111+am)=00B2
 kacevolch. \talkl v\times v.50|ch.

(d). V: Symmetric man montressy 谜.

- 又, y ∈ V, 又近=又下, O区, Y, y= Y元, OEZ.

 ① 外y 인 部見用所 二部 了电光经 又过十岁 以 = 又元十岁 x 一个,
- 四大双则 胡萝纳州 不耐 耳 龍花 大双丁二大双心巴亚
 - 亲 VE Visolchi

KOCVOICH.

(e) V: all nxn mottres A such that AT=A 強. Xiy & V 이더 IJ=-IJI, YJ=-YJA

○ 24岁일대 9번의 2월 1월 1월 1월 (24Y)か= 9分4yi =-スプーソプト = - (スプトソプト)=- (タャソ)プトのけん メャリ EV・

② kalah kael 知 j是程 (ka) j = kaj = -kaj ~ =-(ka) j h old.

KXEV.

따라서 V는 V.5이다.

the set.

(f) V: Vall num motrices A for which Ax=0 has any the titutal solution., 2,4EV.

AX=001 निश्नीह नामिक विषय. किर्(य) में किर(प) ह

$$x = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}, y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

SHE VE BOY OHUGH THEM VE VIST OHUGH.

- (9) V. The set of all nxn matrices A such that AB=BA for some fixed nxn matrix B.

 XIVEV GUH. XB=BXI YB=BYOICT.
- O Xty, $(\alpha ty)B = \alpha B tyB = B\alpha t By = B(\alpha ty) O D 2$ $xty \in V$
- P $k\alpha$ $(k\alpha)B = k(\alpha B) = k(B\alpha) = B(k\alpha) \circ P3$ $k\alpha \in V$.

OFTH VE V. SOICH

9. (a)

$$\begin{bmatrix} 6 & -8 \\ -1 & -8 \end{bmatrix} = k_1 \begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix} + k_2 \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} + k_3 \begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 & 0 \\ 0 & -1 & 2 \\ -2 & 2 & 1 \\ -2 & 3 & 4 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ -1 \\ -8 \end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 & 6 \\
0 & 1 & 2 & -8 \\
-2 & 2 & 1 & -1 \\
-2 & 3 & 4 & -8
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 & 6 \\
0 & 0 & 5 & -15 \\
-2 & 0 & 5 & -17 \\
0 & 1 & 3 & -17
\end{bmatrix}$$

K1=1. K2=2. K3=-3.

OUTH (O)E AH2B-3CZ YEME + SUT.

#10. (a)

-9-112-152°= Lifi+ Kafa+ Kafa

K1=-2. Ko=1. K3=-2.

-9-172-150°=-2P1+P2-2P3至 4E4性于 224.

#13. P4= P1-P2= P3=2P1+P2=

Spanfp1,p2,p3,p47=Spanfp1,p29olet.

dTm(P2)=3인ell Spain SP1, Pat と2lthearly independent yort. 田北州 P1, P2, P3, P4는 Pate Spain計入院は.

#14. (a). $\cos 2\alpha = \cos^2 \alpha - 5 \text{ m}^2 \alpha$ = 1 - 9 ort.

따래 Per %은 이렇게 Spanol 가능하다.

- (b) tergol 敦聪 新 34次是 OSONU 中 Str. OFTH Spanol 影台中.
- (C) 1=cosoc+smoc = f+g
 따라서 Span 가능하다
- (d) fet gel 弥婉是 默 STORE 안들어번 수 있으므로, Spanol 勃勃起.
- (e) 0=0.7+0.3014. CHAN SPANOL THEFT

$$9(1+\frac{1}{2})3=0$$
, $9(1=-\frac{1}{2})3=-\frac{1}{2}t$
 $29(9+3)(3=0)$, $9(9=-\frac{3}{2})3=-\frac{3}{2}t$
 $9(3=t)$

引曾 题堂午处时.

#18 nonhomogeneous spteme Ax=b(b=0)인 朝見 野村 (b=0)은 見ずた XOI 強은 SCH をTH. XIES, X2ES OIE

AXI=b, AX2=bolct A(XI+N2)= AXI+AN2=b+b=2b0103 9011 型5121 25ch 时4M Staubspacent oruch, 4.3 料(a) U2=-5U1.014. 明初 饱答이다.

(b) 482111=17212-19213이다. 다고서 선범왕이다

(() 的=2P101ch, THAM 想 強同日.

(q) A=-BOICH. OFTH 想答이다

4 या धारा एवंस्ट्रीय मेरीना भीता 大VI+12/2+111+ない=0号といたたったっいっかの

(a) k1(2-x+4x2)+/5(3+6x+2x2)+/3(2+10x-4x2)=0

$$\begin{bmatrix} 2 & 3 & 2 & 0 \\ 1 & 6 & 10 & 0 \\ 4 & 2 & -4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 2 & 0 \\ 1 & 6 & 10 & 0 \\ 2 & 1 & -2 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 2 & 3 & 2 & 0 \\ 0 & 7.5 & 11 & 0 \\ 0 & -2 & +4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & +4 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & -1 & -2 & 0 \end{bmatrix}$$

(b) 49 1149 1149 1149 40 40 1149 40 11 IT-17)001 至101 free variable of 教情时. 音 熔裝的 批計 船納 磐笠 linearly dependent olek.

6.
$$a[] \circ j + b[] + c[] \circ j + c[] \circ j = [] \circ j$$

$$\begin{array}{c} a+b+2c=0 \\ a+b+c=0 \\ a+b+3c=0 \end{array} \Rightarrow \begin{bmatrix} 1 & 4 & 2 \\ 1 & k & 1 \\ k & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

det(A) = 1 | k | | +1 | 1 | +2 | 1 | k |

= (3/4)+(3/+)+2(1+6)

= 3k-1+3-k+2-2k2=-2k2+2k+4 =-2(k2-k-2)=-2(k-2)(k41).

del(A) \$0000 a=b=c=003 thr ?? b+c.

小村2,大村01时的野的时.

#1. 세 씨리가 한 명명 위에 있다는 것은

机脚叶 鹅鹤叶子对叶

au+bU2+CU3=0

$$det(A) = \begin{vmatrix} 13 & 1 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 1 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 4 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix} = -\begin{vmatrix} 1 & 4 \\ -2 & 1 \end{vmatrix} = -(1+8) = -9+0$$

TITUTAL DEC(A) \$00103 A=b=C=003 部計到13 档 智·四里 赴岛村 到X.

#11. aV1+bV2+CV3=0

$$\Rightarrow k_1 = k_2 = k_3 = 00|Ct. \text{ CFCHAI | Theathy Theopendent old.}$$

$$\Rightarrow k_1 = k_2 = k_3 = 00|Ct. \text{ CFCHAI | Theathy Theopendent old.}$$

$$\Rightarrow k_1 = k_2 = k_3 = 00|Ct. \text{ CFCHAI | Theathy Theopendent old.}$$

$$= A \begin{vmatrix} A - \frac{1}{2} \\ \frac{1}{2} A \end{vmatrix} + \frac{1}{2} \begin{vmatrix} -\frac{1}{2} - \frac{1}{2} \\ -\frac{1}{2} A \end{vmatrix} - \frac{1}{2} \begin{vmatrix} -\frac{1}{2} A \\ -\frac{1}{2} - \frac{1}{2} \end{vmatrix}$$

= \(\a2 \frac{1}{4}\) + \frac{1}{2}(-\frac{1}{2}\lambda - \frac{1}{4}\) - \frac{1}{2}(\frac{1}{4} + \frac{1}{2}\lambda)

$$= \lambda^3 - \frac{1}{4}\lambda = \lambda^3 - \frac{2}{4}\lambda - \frac{1}{8}$$
$$-\frac{1}{4}\lambda - \frac{1}{8}$$

All eyeth lineary dependent orated det = 001010+ · 李月·李月-4=0.

423A-1= (2-1) (422+42H) = (A1)(29+1)2012.

明知知知,知初思想

#22 ((네-૫)+b(૫-૫)+C(૫)=0을 만화는

((네-૫)+b(૫-૫)+C(૫)=0을 만화는

(나)-(의하나 (아=b=c=0으로 유병자를 되면 생활됩이다

(아=c=0으로 유일 X

#24 {V.1.15.15이 생활이다는 것은.