ASSIGNMENT SHEET-01

Course: B.Tech. **Subject: Engineering Mathematics-I** Code: TMA-101

1. Find the rank of the following matrices:

(i)
$$A = \begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 9 \\ -1 & -3 & -4 & -3 \end{bmatrix}$$
 (ii) $X = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ (iii) $Z = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$

(ii)
$$X = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$$

(iii)
$$Z = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$

2. For which value of K the rank of matrix

$$X = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ K & 13 & 10 \end{bmatrix}$$
 is 2.

3. Find non-singular matrices P and Q such that PAQ is normal form where

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

- **4.** Show that the vectors $X = \begin{bmatrix} 1, 2, -3, 4 \end{bmatrix}$, $Y = \begin{bmatrix} 3, -1, 2, 1 \end{bmatrix}$, $Z = \begin{bmatrix} 1, -5, 8, -7 \end{bmatrix}$ are linearly dependent. Then find the relation between
- Verify Cayley-Hamilton Theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and find A^{-1} . 5.
- **6.** Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.
- 7. Find the latent roots of the two rowed orthogonal matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ and verify that they are of unit modulus.
- **8.** Test the consistency and solve the following system of equations: 2x y + 3z = 8, -x + 2y + z = 4, 3x + y 4z = 0.
- **9.** For what values of η the equations x + y + z = 1, $x + 2y + 4z = \eta$, $x + 4y + 10z = \eta^2$ have a solution and solve them completely for each value.
- 10. Examine the values of λ and μ so that the equations: x+y+z=6, x+2y+3z=10, $x+2y+\lambda z=\mu$ have
 - (i) No solution
- (ii) A unique solution
- (iii) An infinite number of solutions.