Policy Rule Regressions with Survey Data

Leifei Lyu¹, Fei Tan ² and Zheliang Zhu ³

Washington University in St. Louis¹
Saint Louis University²
Southwestern University of Finance and Economics ³

November 2, 2024

Motivation

1. Policy rule regressions are crucial (understanding current policies; forecast of future policies)

Example: Taylor rule (1993)

$$i_t = i^* + \psi_1(\pi_t - \pi^*) + \psi_2 y_t + \varepsilon_t \tag{1}$$

- 2. Reduced form OLS estimations could be problematic when feedback variables are endogenous to policy shocks.
- 3. This paper: survey data as an IV under various information settings.

Model

A linear regression model with endogeneity (policy rule regression)

$$R_t = \alpha_0 + \beta_0 \pi_t + \gamma_0 y_t + \varepsilon_t \tag{2}$$

where

- π_t and y_t can be correlated with ε_t
- Goal: identify and estimate $\theta_0 = (\alpha_0, \beta_0, \gamma_0)$

Idea: use survey data as an instrument for y_t and π_t

Model

We replace variables with two separate terms: forecast and forecast error terms.

$$R_{t} = \alpha_{0} + \beta_{0}\pi_{t} + \gamma_{0}y_{t} + \varepsilon_{t}$$

$$= \alpha_{0} + \beta_{0}\mathbb{E}_{t-1}\pi_{t} + \gamma_{0}\mathbb{E}_{t-1}y_{t} + \underbrace{\beta_{0}[\pi_{t} - \mathbb{E}_{t-1}\pi_{t}] + \gamma_{0}[y_{t} - \mathbb{E}_{t-1}y_{t}] + \varepsilon_{t}}_{\varepsilon_{t}^{new}}$$
(3)

Full-information rational expectations

$$v_{t,t-1} = x_t - \mathbb{E}_{t-1} x_t \tag{4}$$

where $v_{t,t-1}$ is the full-information rational expectation error and is thus uncorrelated with information dated t-1 or earlier.

 θ_0 is identified iff π_t and y_t are not (perfectly) multicollinear.

Model: Potential problem

Example: Sticky information (analogous to sticky price)

Definition: Rational Inattention

Economic decision-makers cannot absorb all available information but can choose which pieces of information to process [Sims, 2003]

Definition: Sticky information

In each period, a fraction of inattentive agents obtain new information about the state of the economy and computes a new path of optimal prices. Other agents continue to set prices based on old plans and outdated information [Mankiw and Reis, 2002].

Model: Potential problem

Full-information rational expectations

$$\mathbb{E}_{t-1} x_t = x_t - v_{t,t-1} \tag{5}$$

where $v_{t,t-1}$ is the full-information rational expectation error and is thus uncorrelated with information dated t-1 or earlier.

However, with sticky-information, the average forecast at time t-1 can be written as

$$\mathbb{F}_{t-1}x_t = (1-\lambda)\mathbb{E}_{t-1}x_t + \lambda\mathbb{F}_{t-2}x_t \tag{6}$$

Combining (5) and (6) yields the predicted relationship between the ex post mean forecast error across agents and the ex ante mean forecast revision

$$\underbrace{x_t - \mathbb{F}_{t-1} x_t}_{\text{ex post mean forecast error}} = \frac{\lambda}{1 - \lambda} \underbrace{\left(\mathbb{F}_{t-1} x_t - \mathbb{F}_{t-2} x_t\right)}_{\text{ex ante mean forecast revision}} + v_{t,t-1} \tag{7}$$

Model: Potential problem

Our example:

$$\pi_t \equiv \mathbb{F}_{t-1}\pi_t + \underbrace{\pi_t - \mathbb{F}_{t-1}\pi_t}_{\text{the ex post mean forecast error}} \tag{8}$$

Intuitively, we want to split the ex post mean forecast error into two parts:

- 1. part that is correlated with the error term.
- 2. part that is uncorrelated with the error term.

Estimate the following empirical specification [Coibion and Gorodnichenko, 2015]

$$x_{t+1} - \mathbb{F}_t x_{t+1} = \gamma_0 + \gamma_1 (\mathbb{F}_t x_{t+1} - \mathbb{F}_{t-1} x_{t+1}) + \epsilon_t \equiv \Delta x_{t+1,t}$$

$$\tag{9}$$

We get estimator $\Delta \hat{x}_{t,t-1}$ from Eq. (9).

Model: Two-step estimation

We can estimate the reduced-form policy rule in two steps in the model with sticky information

1. **First stage:** Regress $\Delta x_{t+1,t} \equiv x_{t+1} - \mathbb{F}_t x_{t+1}$ on $\mathbb{F}_t x_{t+1} - \mathbb{F}_{t-1} x_{t+1}$ & obtain predicted values of $\Delta \widehat{x}_{t+1,t}$ which contains variation in $\Delta x_{t+1,t}$ that is uncorrelated with ε_t

$$\Delta \widehat{x}_{t+1,t} = \widehat{\gamma}_0 + \widehat{\gamma}_1 (\mathbb{F}_t x_{t+1} - \mathbb{F}_{t-1} x_{t+1})$$

$$\tag{10}$$

2. **Second stage:** Regress R_t on $\mathbb{F}_{t-1}x_t + \Delta \widehat{x}_{t,t-1}$

$$\hat{R}_{t} = \hat{\alpha}_{0} + \hat{\beta}_{0} \underbrace{\left[\mathbb{F}_{t-1}\pi_{t} + \Delta \widehat{\pi}_{t,t-1}\right]}_{\text{new estimator}} + \hat{\gamma}_{0} \left[\mathbb{F}_{t-1}y_{t} + \Delta \widehat{y}_{t,t-1}\right] \tag{11}$$

Simulation (FIRE)

We consider a textbook version of the new Keynesian model presented in Woodford (2003) and Gali(2008) but augmented with a fiscal policy rule

Dynamic IS equation:
$$\hat{y}_t = \mathbb{E}_t \hat{y}_{t+1} - \tau^{-1} (\hat{R}_t - \mathbb{E}_t \hat{\pi}_{t+1} - \mathbb{E}_t \hat{z}_{t+1})$$
 (12)

New Keynesian Phillips curve:
$$\hat{\pi}_t = \beta \mathbb{E}_t \hat{\pi}_{t+1} + \kappa \hat{y}_t + \kappa \tau^{-1} \hat{u}_t$$

Monetary policy:
$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R)(\psi_\pi \hat{\pi}_t + \psi_y \hat{y}_t) + \epsilon_{R,t}$$

Fiscal policy:
$$\hat{s}_t = \rho_s \hat{s}_{t-1} + (1 - \rho_s) \psi_s \hat{b}_{t-1} + \epsilon_{s,t}$$

Government budget constraint: $\hat{b}_t = \beta^{-1} (\hat{b}_{t-1} + \hat{R}_{t-1} - \hat{\pi}_t - \hat{z}_t) - (\beta^{-1} - 1) \hat{s}_t$

hnology shock:
$$\hat{z}_t = \rho_z \hat{z}_{t-1} + \epsilon_{z,t}$$

Markup shock: $\hat{u}_t = \rho_u \hat{u}_{t-1} + \epsilon_{u,t}$

$$(6)^{-1} - 1)\hat{s}_t$$
 (16)

$$(17)$$
 (18)

(13)

(14)

(15)

We rely on Sim's (2001) method to solve for the solution of the structural model.

Simulation (FIRE)

Table: Parameters

Parameter	ameter Description	
$\overline{ au}$	elasticity of intertemporal substitution	2.00
κ	the slope of the new Keynesian Philips curve	0.20
β	discount factor	0.99
ψ_π	coefficients of Taylor rule on inflation	1.5
ψ_{y}	coefficients of Taylor rule on output gap	1
ψ_{s}	coefficients of fiscal policy on output gap	0.5
$ ho_{R}$	monetary policy smoothing	0.5
$ ho_{ extsf{s}}$	fiscal policy smoothing	0.9
$ ho_{z}$	AR(1) coefficient on technology shock	0.6
$ ho_{\it u}$	AR(1) coefficient on Markup shock	0.7

Notes:

Simulation

Figure: Distribution of 500 simulations

Estimation: Data

- Forecast of Inflation: Survey of Professional Forecasters (SPF), Federal Reserve Bank of Philadelphia
- Output gap: Tealbook (formerly Greenbook) Data Set, Federal Reserve Bank of Philadelphia
- Sample: 1987.Q3 to 2006.Q4 prior to the Great Recession

Estimation: model specification

Empirical specifications

$$\mathcal{M}_{1}: \qquad R_{t} = \psi_{1}\pi_{t} + \psi_{2}y_{t} + \varepsilon_{t}$$

$$\mathcal{M}_{2}: \qquad R_{t} = \psi_{1}\mathbb{E}_{t-1}\pi_{t} + \psi_{2}\mathbb{E}_{t-1}y_{t} + \varepsilon_{t}$$

$$(19)$$

$$\mathcal{M}_{3}: \qquad R_{t} = \psi_{1}(\mathbb{E}_{t-1}\pi_{t} + \widehat{\Delta}\pi_{t,t-1}) + \psi_{2}(\mathbb{E}_{t-1}y_{t} + \widehat{\Delta}y_{t,t-1}) + \varepsilon_{t}$$

$$(21)$$

Estimation: model specification

Empirical specifications: one-period lag

$$\mathcal{M}_4: \qquad R_t = \rho_1 R_{t-1} + \psi_1 \pi_t + \psi_2 y_t + \varepsilon_t \tag{22}$$

$$\mathcal{M}_5: \qquad R_t = \rho_1 R_{t-1} + \psi_1 \mathbb{E}_{t-1} \pi_t + \psi_2 \mathbb{E}_{t-1} y_t + \varepsilon_t \tag{23}$$

$$\mathcal{M}_{6}: \qquad R_{t} = \rho_{1}R_{t-1} + \psi_{1}(\mathbb{E}_{t-1}\pi_{t} + \widehat{\Delta\pi}_{t,t-1}) + \psi_{2}(\mathbb{E}_{t-1}y_{t} + \widehat{\Delta y}_{t,t-1}) + \varepsilon_{t}$$
 (24)

where $\psi_1 \equiv (1 - \rho_1)\psi_1^*$ and $\psi_2 \equiv (1 - \rho_1)\psi_2^*$.

Estimation: model specification

Empirical specifications: two-period lag

$$\mathcal{M}_7$$
: $R_t = \rho_1 R_{t-1} + \rho_2 R_{t-2} + \psi_1 \pi_t + \psi_2 y_t + \varepsilon_t$ (25)

$$\mathcal{M}_{8}: \quad R_{t} = \rho_{1}R_{t-1} + \rho_{2}R_{t-2} + \psi_{1}\mathbb{E}_{t-1}\pi_{t} + \psi_{2}\mathbb{E}_{t-1}y_{t} + \varepsilon_{t}$$
(26)

$$\mathcal{M}_{9}: R_{t} = \rho_{1}R_{t-1} + \rho_{2}R_{t-2} + \psi_{1}(\mathbb{E}_{t-1}\pi_{t} + \widehat{\Delta\pi}_{t,t-1}) + \psi_{2}(\mathbb{E}_{t-1}y_{t} + \widehat{\Delta y}_{t,t-1}) + \varepsilon_{t}$$
 (27)

where
$$\psi_1 \equiv (1 - \rho_1 - \rho_2)\psi_1^*$$
 and $\phi_2 \equiv (1 - \rho_1 - \rho_2)\psi_2^*$.

MCMC

- Our model-specific priors are denoted by θ . For example, in \mathcal{M}_7 , $\theta = \{\rho_1, \rho_2, \psi_1, \psi_2\}$.
- We use an initial 15% of the total sample over the time period 1987:IV to 2006:IV to form the training sample prior. We sample posterior distribution by 10,000 MCMC draws and discard the burn-in draws, saying the first 1,000.
- The following tables report posterior mean, sd, the .025, and the .975 quantiles of θ . The posterior distribution of asterisk parameters is calculated based on parameters in θ . For example, $\psi_1^* = \psi_1/(1-\rho_1-\rho_2)$ in \mathcal{M}_6 , we calculate ψ_1^* for each draw of ψ_1 , ρ_1 , ρ_2 , and get 10,000 samples.
- The log marginal likelihood is calculated by the method in [Chib, 1995]

Table: Tests of inflation expectations and output gap process

Inflation					ΟU	ıtput gap	
Name	postmean	postsd	[2.5% 97.5%]	Name	postmean	postsd	[2.5% 97.5%]
γ_0^π	-0.048	0.082	[-0.209 0.112]	γ_0^y	0.026	0.066	$[-0.104 \ 0.154]$
γ_{1}^{π}	0.249	0.207	[-0.157 0.664]	$\gamma_1^{\check{y}}$	-0.099	0.097	$[-0.290 \ 0.095]$
σ^{2}	0.580	0.100	[0.416 0.805]	σ^{2}	0.406	0.071	[0.290 0.564]

$$\Delta \widehat{x}_{t+1,t} = \widehat{\gamma}_0 + \widehat{\gamma}_1 (\mathbb{F}_t x_{t+1} - \mathbb{F}_{t-1} x_{t+1})$$
(28)

Table: Estimates of monetary policy without lag

\mathcal{M}_1	postmean	postsd	[2.5% 97.5%
$\psi_{\mathtt{1}}:\pi_{t}$	1.893	0.103	[1.692 2.092
$\psi_{2}:y_{t}$	0.661	0.130	[0.406 0.922
σ^2	6.809	1.059	5.042 9.141
og marginal likelihood: -143.9046			
\mathcal{M}_2	postmean	postsd	[2.5% 97.5%
$\psi_{1}: \mathbb{E}_{t-1}\pi_{t}$	1.998	0.048	[1.903 2.092
$\psi_2: \mathbb{E}_{t-1} y_t$	0.702	0.060	[0.584 0.821
σ^2	1.261	0.215	[0.908 1.740
log marginal likelihood: -94.90397			

18 / 27

Table: Estimates of monetary policy without lag

\mathcal{M}_3	postmean	postsd	[2.5%	97.5%]
$\psi_1: \mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	2.026	0.059	[1.910	2.140]
$\psi_1 : \mathbb{E}_{t-1}\pi_t + \widehat{\Delta \pi}_{t,t-1} \psi_2 : \mathbb{E}_{t-1}y_t + \widehat{\Delta y}_{t,t-1}$	0.691	0.072	[0.550	0.836]
σ^2	1.832	0.308	[1.325	2.518]

log marginal likelihood: -105.7976

- a \mathcal{M}_1 : OLS estimates with contemporaneous data
- b \mathcal{M}_2 : our proposed one-step method estimates with survey data
- c \mathcal{M}_3 : our proposed two-step method estimates with survey data

Table: Estimates of monetary policy without one-period lag

\mathcal{M}_4	postmean	postsd	[2.5%	97.5%]
$ ho_1$: R_{t-1}	0.870	0.024	[0.823	0.917]
$\psi_{f 1}:\pi_{f t}$	0.258	0.049	[0.162	0.353]
$\psi_2: y_t$	0.167	0.027	[0.113	0.221]
$\psi_{\mathtt{1}}^*: (\mathtt{1}- ho_{\mathtt{1}})\pi_{t}$	1.983	0.156	[1.685	2.303]
$\psi_2^*:(1- ho_1)y_t$	1.310	0.245	[0.908	1.873]
σ^2	0.174	0.030	[0.124	0.241]

log marginal likelihood: -33.52841

Table: Estimates of monetary policy without one-period lag

\mathcal{M}_5	postmean	postsd	[2.5%	97.5%]
$ ho_1: R_{t-1}$	0.724	0.033	0.659	0.789
$\psi_{1}: \mathbb{E}_{t-1}\pi_{t}$	0.554	0.068	0.421	0.687
$\psi_2: \mathbb{E}_{t-1} y_t$	0.252	0.029	0.195	0.309
$\psi_1^*: (1- ho_1)\mathbb{E}_{t-1} extit{y}_t$	2.005	0.060	1.886	2.125
$\psi_2^*: (1- ho_1)\mathbb{E}_{t-1} y_t$	0.916	0.083	0.765	1.091
σ^2	0.126	0.022	0.090	0.175

log marginal likelihood: -23.53923

Table: Estimates of monetary policy without one-period lag

\mathcal{M}_6	postmean	postsd	[2.5%	97.5%]
$ ho_1:R_{t-1}$	0.758	0.031	[0.698	0.819]
$\psi_1: \mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	0.494	0.064	[0.366	0.620]
$\psi_2: \mathbb{E}_{t-1} y_t + \widehat{\Delta y}_{t,t-1}$	0.228	0.028	[0.172	0.283]
$\psi_1^*: (1- ho_1)\mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	2.041	0.073	[1.898	2.187]
$\psi_2^*: (1- ho_1)\mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	0.946	0.099	[0.768	1.158]
σ^2	0.135	0.024	[0.097	0.188]

log marginal likelihood: -25.64392

- a \mathcal{M}_4 : OLS estimates with contemporaneous data
- b \mathcal{M}_5 : our proposed one-step method estimates with survey data
- c \mathcal{M}_6 : our proposed two-step method estimates with survey data

Table: Estimates of monetary policy without two-period lag

\mathcal{M}_7	postmean	postsd	[2.5%	97.5%]
$ ho_1: R_{t-1}$	1.465	0.095	[1.273	1.651]
$ \rho_2:R_{t-2}$	-0.550	0.086	[-0.716]	-0.380
$\psi_{f 1}:\pi_{f t}$	0.161	0.041	[0.081	0.242]
$\psi_{2}:y_{t}$	0.086	0.025	[0.038	0.135]
$\psi_1^*: (1- ho_1- ho_2)\pi_t$	1.908	0.203	[1.515	2.316]
$\psi_2^*: (1- ho_1- ho_2) y_t$	1.032	0.282	[0.560	1.638]
σ^2	0.107	0.019	[0.076	0.150]

log marginal likelihood: -18.4747

a \mathcal{M}_7 : OLS estimates with real-time data

Table: Estimates of monetary policy without two-period lag

\mathcal{M}_8	postmean	postsd	[2.5%	97.5%]
$ ho_1:R_{t-1}$	1.249	0.114	[1.021	1.467]
$\rho_2 : R_{t-2}$	-0.437	0.091	[-0.614]	-0.255]
$\psi_1: \mathbb{E}_{t-1}\pi_t$	0.370	0.071	[0.235	0.509]
$\psi_{2}: \mathbb{E}_{t-1} y_{t}$	0.150	0.033	[0.086	0.215]
$\psi_1^*: (1- ho_1- ho_2)\mathbb{E}_{t-1}\pi_t$	1.970	0.082	[1.800	2.131]
$\psi_2^*: (1- ho_1- ho_2)\mathbb{E}_{t-1} y_t$	0.799	0.107	[0.597	1.013]
σ^2	0.095	0.017	[0.067	0.133]

log marginal likelihood: -14.64363

b $\,\mathcal{M}_8$: our proposed one-step method estimates with survey data

Table: Estimates of monetary policy without two-period lag

\mathcal{M}_9	postmean	postsd	[2.5%	97.5%]	
$ ho_1: R_{t-1}$	1.297	0.118	[1.061	1.522]	
$ ho_2:R_{t-2}$	-0.453	0.096	[-0.639	-0.260]	
$\psi_1: \mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	0.312	0.068	[0.181]	0.447]	
$\psi_2: \mathbb{E}_{t-1} y_t + \widehat{\Delta y}_{t,t-1}$	0.126	0.033	[0.063	0.191]	\mathcal{M}_9 : our
$\psi_1^*: (1- ho_1- ho_2)\mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	1.993	0.107	[1.772	2.200]	
$\psi_2^*: (1- ho_1- ho_2)\mathbb{E}_{t-1}\pi_t + \widehat{\Delta\pi}_{t,t-1}$	0.804	0.137	0.542	1.076]	
σ^2	0.102	0.018	[0.072	0.143]	

log marginal likelihood: -16.95793

proposed two-step method estimates with survey data

Conclusion

- 1. Policy rule regressions with Survey Data reduce endogenous bias under different information settings.
- 2. No evidence shows that there are information rigidities in forecasts of inflation and output gap over the time period 1987 IV -2006 IV
- 3. One-step method has the best performance under different model settings
- 4. Empirical results prefer the two-period lag in monetary policy rule and one-period lag in government spending rule.

Reference

Chib. S. (1995).

Marginal likelihood from the gibbs output.

Journal of the american statistical association, 90(432):1313–1321.

Coibion, O. and Gorodnichenko, Y. (2015).

Information rigidity and the expectations formation process: A simple framework and new facts.

American Economic Review, 105(8):2644-2678.

Mankiw, N. G. and Reis, R. (2002). Sticky information versus sticky prices: a proposal to replace the new keynesian phillips curve.

The Quarterly Journal of Economics, 117(4):1295–1328.

Sims, C. A. (2003).

Implications of rational inattention.

Journal of monetary Economics, 50(3):665–690.