The case when S(t) = T(t) ($t \ge 0$) is of special interest: it yields a characterization of generators of lattice semigroups.

Recall that if a semigroup $(T(t))_{t\geq 0}$ is positive, i.e., if

$$|T(t)f| \leq T(t)|f| \quad (f \in E) ,$$

then its generator A satisfies Kato's inequality. We now obtain from Theorem 5.5: the semigroup consists of lattice homomorphisms (i.e., the equality holds in (5.13)) if and only if A satisfies Kato's equality. The precise statement is the following.

<u>Corollary</u> 5.8. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach lattice E with order continuous norm. The following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is a lattice semigroup.
- (ii) $f \in D(A)$ implies $|f| \in D(A)$ and $Re((sign \overline{f})Af) = A|f|$.
- (iii) $f \in D(A)$ implies |f|, $\overline{f} \in D(A)$ and $Re((sign \overline{f})Af) = A|f|$ (Kato's equality).

<u>Proof.</u> The equivalence of (i) and (ii) follows directly from Thm.
5.5. If (i) holds, then A is local by Prop. 5.4.

Thus $(\text{sign }\overline{f})Af = (\text{si}\widehat{g}n \ \overline{f})Af$ for all $f \in D(A)$ and so (iii) holds since (ii) is valid.

Assume now that (iii) holds. Then Kato's equality implies that $Af \in \{f\}^{\mbox{dd}}$ whenever $f \in D(A)_+$. Since D(A) is a sublattice of E by hypothesis, this implies that A is local. Thus (ii) follows from (iii).

In the case when E is real this result can be reformulated.

<u>Corollary</u> 5.9. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a real Banach lattice E with order continuous norm. The following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is a lattice semigroup.
- (ii) D(A) is a sublattice and A is local.

<u>Proof.</u> Assume that (ii) holds. Let $f \in D(A)$, and set $P_+ := P_f^+$ and $P_- := P_f^-$.

Then $(P_{+})Af^{-} = (P_{-})Af^{+} = 0$ since A is local. Hence (sign f)Af = $(P_{+} - P_{-})Af = (P_{+} - P_{-})(Af^{+} - Af^{-}) = (P_{+})Af^{+} + (P_{-})Af^{-} = Af^{+} + Af^{-} = A|f|$.