ENGG 5781: Matrix Analysis and Computations

2018-19 First Term

Assignment 1 Solution

Instructor: Wing-Kin Ma October 5, 2018

Answer Problems 1–3, and either Problem 4 or Problem 5.

Note:

- 1. By submitting this assignment, we are assumed to have read the homework guideline http://www.ee.cuhk.edu.hk/~wkma/engg5781/hw/hw_guidelines.pdf thereby understanding and respecting the guideline mentioned there.
- 2. You are allowed to use properties and theorems up to Lecture 2; unless specified, that includes all the results and proofs in the additional notes.

Problem 1 (30%) Are the following sets subspaces? Provide your answer with a proof.

- (a) $S = \{ \mathbf{X} \in \mathbb{R}^{m \times n} \mid \mathbf{X}^T \mathbf{Y} + \mathbf{Y}^T \mathbf{X} = \mathbf{0} \}$, where $\mathbf{Y} \in \mathbb{R}^{m \times n}$ is given.
- (b) $S = {\mathbf{X} \in \mathbb{R}^{m \times n} \mid \mathbf{X} = \mathbf{A}\mathbf{B}^T, \mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{n \times r}}, \text{ where } r < \min\{m, n\}.$
- (c) $S = \{ \mathcal{X} \in \mathbb{R}^{m \times n \times p} \mid x_{ijk} = \sum_{\ell=1}^{r} a_{i\ell} b_{j\ell} c_{k\ell}, \ \forall i, j, k, \ c_{k\ell} \in \mathbb{R} \ \forall k, \ell \}, \text{ where } a_{i\ell}, b_{j\ell} \in \mathbb{R} \text{ are given.}$
- (d) $S = \{ \mathbf{y} \in \mathbb{C}^m \mid |\sum_{i=1}^m y_i(\alpha_i)^i| = 0, \ j = 1, \dots, n \}, \text{ where } \alpha_1, \dots, \alpha_n \in \mathbb{C} \text{ are given.}$

Solution:

(a) Yes. Let $\mathbf{X}_1, \mathbf{X}_2 \in \mathcal{S}$. For any $\alpha, \beta \in \mathbb{R}$, we have

$$(\alpha \mathbf{X}_1 + \beta \mathbf{X}_2)^T \mathbf{Y} + \mathbf{Y}^T (\alpha \mathbf{X}_1 + \beta \mathbf{X}_2) = \alpha (\mathbf{X}_1^T \mathbf{Y} + \mathbf{Y}^T \mathbf{X}_1) + \beta (\mathbf{X}_2^T \mathbf{Y} + \mathbf{Y}^T \mathbf{X}_2) = 0.$$

This means that $\alpha \mathbf{X}_1 + \beta \mathbf{X}_2 \in \mathcal{S}$ for any α, β .

(b) No. As a counter example, consider m=n, with m being even, r=m/2. Let

$$\mathbf{A}_1 = [\mathbf{e}_1, \dots, \mathbf{e}_r], \ \mathbf{B}_1 = [\mathbf{e}_1, \dots, \mathbf{e}_r], \ \mathbf{A}_2 = [\mathbf{e}_{r+1}, \dots, \mathbf{e}_m], \ \mathbf{B}_2 = [\mathbf{e}_{r+1}, \dots, \mathbf{e}_m],$$

and let $\mathbf{X}_1 = \mathbf{A}_1 \mathbf{B}_1^T$, $\mathbf{X}_2 = \mathbf{A}_2 \mathbf{B}_2^T$. We have

$$\mathbf{X}_1 + \mathbf{X}_2 = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1^T \\ \mathbf{B}_2^T \end{bmatrix} = (\mathbf{I})(\mathbf{I})^T = \mathbf{I}.$$

Since rank $(\mathbf{X}_1 + \mathbf{X}_2) = m > r$, $\mathbf{X}_1 + \mathbf{X}_2$ does not lie in \mathcal{S} .

(c) Yes. Let $\mathcal{X}, \mathcal{Y} \in \mathcal{S}$, for which we have $x_{ijk} = \sum_{\ell=1}^r a_{i\ell} b_{j\ell} c_{k\ell}$ and $y_{ijk} = \sum_{\ell=1}^r a_{i\ell} b_{j\ell} \tilde{c}_{k\ell}$ for some $\{c_{k\ell}\}$ and $\{\tilde{c}_{k\ell}\}$. Since, for any $\alpha, \beta \in \mathbb{R}$,

$$\alpha x_{ijk} + \beta y_{ijk} = \sum_{\ell=1}^{r} a_{i\ell} b_{j\ell} (\alpha c_{k\ell} + \beta \tilde{c}_{k\ell}), \quad \forall i, j, k,$$

it is true that $\alpha \mathcal{X} + \beta \mathcal{Y} \in \mathcal{S}$ for any α, β .

(d) Yes. Having $|\sum_{i=1}^m y_i(\alpha_j)^i| = 0$ is equivalent to $\sum_{i=1}^m y_i(\alpha_j)^i = 0$. By letting $\bar{\mathbf{a}}_j = [\alpha_j, \alpha_j^2, \dots, \alpha_j^m]^T$ and

$$\mathbf{A} = egin{bmatrix} ar{\mathbf{a}}_1^T \ dots \ ar{\mathbf{a}}_n \end{bmatrix},$$

we can equivalently rewrite $S = \mathcal{N}(\mathbf{A})$. As a nullspace, S is a subspace.

Problem 2 (20%) A non-empty subset S of \mathbb{R}^m is said to be an affine set if

$$\alpha \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathcal{S} \implies \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{S}.$$

(a) Show that if S is affine, then any affine combination of $\mathbf{a}_1, \dots, \mathbf{a}_n \in S$, i.e.,

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i, \quad \alpha_1, \dots, \alpha_n \in \mathbb{R}, \quad \sum_{i=1}^{n} \alpha_i = 1,$$

lies in S.

(b) Show that an affine set S can always be represented by $S = V + \mathbf{b}$, where $\mathbf{b} \in S$ and V is a subspace¹.

Solution:

(a) The proof can be done by induction. Let $k \geq 2$ be an integer. Suppose that it is true that any affine combination of $\mathbf{a}_1, \ldots, \mathbf{a}_{k-1}$ lies in \mathcal{S} . For k=2 the above assumption is true (by definition). Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, with $\sum_{i=1}^k \alpha_i = 1$. Also, assume $\alpha_k \neq 1$; we will come back to the case of $\alpha_k = 1$ later. Then we can write

$$\sum_{i=1}^{k} \alpha_i \mathbf{a}_i = (1 - \alpha_k) \left(\sum_{i=1}^{k-1} \frac{\alpha_i}{1 - \alpha_k} \mathbf{a}_i \right) + \alpha_k \mathbf{a}_k$$
$$= (1 - \alpha_k) \sum_{i=1}^{k-1} \left(\frac{\alpha_i}{\sum_{k=1}^{k-1} \alpha_j} \mathbf{a}_i \right) + \alpha_k \mathbf{a}_k.$$

Since $\sum_{i=1}^{k-1} \left(\frac{\alpha_i}{\sum_{k=1}^{k-1} \alpha_i} \mathbf{a}_i \right) \in \mathcal{S}$, by the definition of affine sets it holds that $\sum_{i=1}^k \alpha_i \mathbf{a}_i \in \mathcal{S}$.

(Courtesy to an unnamed student who inspired us to get the following proof, which is more concise and beautiful) The case of $\alpha_k = 1$ is handled as follows. If $\alpha_1 = \cdots = \alpha_{k-1} = 0$, the result trivially follows. If not, we note from $\sum_{i=1}^{k-1} \alpha_i = 1 - \alpha_k = 0$ that some of the $\alpha_1, \ldots, \alpha_{k-1}$ must be positive, and some negative. Let $j \in \{1, \ldots, k-1\}$ be such that $\alpha_j > 0$. Let

$$\beta = \alpha_j + \alpha_k > 1,$$

and note that

$$\sum_{i=1, i \neq j}^{k-1} \alpha_i = 1 - \beta < 0.$$

¹The notation $\mathbf{b} + \mathcal{V}$ means that $\mathbf{b} + \mathcal{V} = {\mathbf{y} = \mathbf{b} + \mathbf{v} \mid \mathbf{v} \in \mathcal{V}}.$

This lead us to

$$\sum_{i=1}^{k} \alpha_i \mathbf{a}_i = (1 - \beta) \underbrace{\left(\sum_{i=1, i \neq j}^{k-1} \frac{\alpha_i}{1 - \beta} \mathbf{a}_i\right)}_{\in S} + \beta \underbrace{\left(\frac{\alpha_j}{\beta} \mathbf{a}_j + \frac{\alpha_k}{\beta} \mathbf{a}_k\right)}_{\in S} \in \mathcal{S},$$

which completes the proof.

(b) Let $\mathcal{V} = \mathcal{S} - \mathbf{b} = \{ \mathbf{v} = \mathbf{x} - \mathbf{b} \mid \mathbf{x} \in \mathcal{S} \}$. Let $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$, which satisfy $\mathbf{v}_1 = \mathbf{x}_1 - \mathbf{b}, \mathbf{v}_2 = \mathbf{x}_2 - \mathbf{b}$ for some $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S}$. For any $\alpha, \beta \in \mathbb{R}$ we have

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 = \alpha(\mathbf{x}_1 - \mathbf{b}) + \beta(\mathbf{x}_2 - \mathbf{b})$$
$$= \alpha \mathbf{x}_1 + \beta \mathbf{x}_2 + (1 - \alpha - \beta)\mathbf{b} - \mathbf{b}.$$

Since $\alpha \mathbf{x}_1 + \beta \mathbf{x}_2 + (1 - \alpha - \beta)\mathbf{b} \in \mathcal{S}$, which is implied by (a), it follows from the definition of \mathcal{V} that $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \in \mathcal{V}$. Thus, \mathcal{V} is a subspace.

Problem 3 (20%) Let $S = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2 \le 1 \}$. Suppose $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$.

- (a) Is $S \cap S^{\perp} = \{0\}$, or $S \cap S^{\perp} = \emptyset$?
- (b) Show that $S^{\perp} = \mathcal{N}([\mathbf{A} \mathbf{b}]^T)$.

Solution:

- (a) We have $S \cap S^{\perp} = \emptyset$ in this case. As written in the course note, we have either $S \cap S^{\perp} = \{0\}$ or $S \cap S^{\perp} = \emptyset$. The condition $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$ implies $\mathbf{A}\mathbf{x} \mathbf{b} \neq \mathbf{0}$ for any \mathbf{x} . This implies that $\mathbf{0} \notin S$, and thus we cannot have $S \cap S^{\perp} = \{\mathbf{0}\}$.
- (b) To solve this sub-problem, it suffices to show that

$$(\mathbf{A}\mathbf{x} - \mathbf{b})^T \mathbf{y} = 0 \ \forall \|\mathbf{x}\|_2 \le 1 \quad \Longleftrightarrow \quad \begin{bmatrix} \mathbf{A}^T \\ \mathbf{b}^T \end{bmatrix} \mathbf{y} = \mathbf{0}.$$
 (*)

First, it is immediate that if the right-hand side of (*) is true, the left-hand side of (*) is also true. Let us show the converse. Suppose that the left-hand side of (*) is true. Then, for $\mathbf{x} = \mathbf{0}$, we are led to $\mathbf{b}^T \mathbf{y} = 0$. The left-hand side of (*) is thus reduced to

$$\mathbf{x}^T \mathbf{A}^T \mathbf{y} = 0, \ \forall \|\mathbf{x}\|_2 \le 1.$$

Suppose that $\mathbf{A}^T \mathbf{y} \neq \mathbf{0}$. Then, by choosing $\mathbf{x} = \mathbf{A}^T \mathbf{y} / \|\mathbf{A}^T \mathbf{y}\|_2$ (which satisfies $\|\mathbf{x}\|_2 \leq 1$), we have $\mathbf{x}^T \mathbf{A}^T \mathbf{y} = \|\mathbf{A}^T \mathbf{y}\|_2 > 0$. This implies that $\mathbf{A}^T \mathbf{y} = \mathbf{0}$ must hold, and thus we have the right-hand side of (*) to be true.

Problem 4 (30%) Let $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subset\mathbb{R}^m$ be a given set of linearly independent vectors. Let $\mathbf{q}_1,\ldots,\mathbf{q}_n\in\mathbb{R}^m$ whose construction will be specified, and let $\mathcal{S}_i=\operatorname{span}\{\mathbf{q}_1,\ldots,\mathbf{q}_i\}$ for the sake of notational convenience. Consider the following procedure.

Algorithm 1:

(a) Show that, for any $i \in \{1, ..., n\}$,

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_i\}=\mathcal{S}_i.$$

DO NOT use the proof in Lecture 1, page 47–50. Consider the problem as if you did not know what is Gram-Schmidt, which you can easily find in textbooks or in the world-wide web. Use ONLY the basic notions of subspace, with projection onto subspaces included, to rediscover the result.

- (b) Use the basic notions of subspaces, as well as those of orthogonality and LS, to show that $\tilde{\mathbf{q}}_i = \mathbf{a}_i \mathbf{Q}_{i-1}\mathbf{Q}_{i-1}^T\mathbf{a}_i$, where $\mathbf{Q}_i = [\mathbf{q}_1, \dots, \mathbf{q}_i]$.
- (c) Suggest how we may modify the algorithm when $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ is linearly dependent. Note that the ultimate goal is to find an orthogonal basis for span $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Note: Since this problem requires some explanation, we consider it as a semi-essay problem. English fluency, clarity of presentation, originality of the presentation (relative to others), etc., will be heavily taken into account.

Solution:

(a) We use induction. Suppose that $S_{i-1} = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{i-1}\}$; it is true for i = 2. We want to show that $S_i = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_i\}$. Since $\mathbf{a}_1, \dots, \mathbf{a}_i$ are linearly independent, the vector \mathbf{a}_i cannot be written as $\mathbf{a}_i = \sum_{j=1}^{i-1} \alpha_j \mathbf{a}_j$ for any $\alpha_1, \dots, \alpha_{i-1}$. Or, we have $\mathbf{a}_i \notin \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{i-1}\} = S_{i-1}$. By the projection theorem we can always write

$$\mathbf{a}_i = \tilde{\mathbf{q}}_i + \mathbf{b}_i$$

where $\tilde{\mathbf{q}}_i = \Pi_{\mathcal{S}_{i-1}^{\perp}}(\mathbf{a}_i)$, $\mathbf{b}_i = \Pi_{\mathcal{S}_{i-1}}(\mathbf{a}_i)$. As $\mathbf{a}_i \notin \mathcal{S}_{i-1}$, we must have $\tilde{\mathbf{q}}_i \neq \mathbf{0}$. It follows that

$$\operatorname{span}\{\mathbf{a}_{1},\ldots,\mathbf{a}_{i}\} \equiv \{\mathbf{y} = \sum_{j=1}^{i-1} \alpha_{j} \mathbf{a}_{j} + \alpha_{i} \mathbf{q}_{i} \mid \boldsymbol{\alpha} \in \mathbb{R}^{i}\}$$

$$= \operatorname{span}\{\mathbf{a}_{1},\ldots,\mathbf{a}_{i-1}\} + \operatorname{span}\{\mathbf{q}_{i}\}$$

$$= \operatorname{span}\{\mathbf{q}_{1},\ldots,\mathbf{q}_{i-1}\} + \operatorname{span}\{\mathbf{q}_{i}\}$$

$$= \operatorname{span}\{\mathbf{q}_{1},\ldots,\mathbf{q}_{i}\},$$

where the first inequality is due to the fact that \mathbf{a}_i can be expressed as $\mathbf{a}_i = \|\tilde{\mathbf{q}}_i\|_2 \mathbf{q}_i + \sum_{j=1}^{i-1} \beta_j \mathbf{a}_j$ for some β_j 's (note $\mathbf{b}_i \in \mathcal{S}_{i-1}$). Our proof is done.

- (b) We know from Lectures 1–2 that for a full-column rank \mathbf{A} , we have $\Pi_{\mathcal{R}(\mathbf{A})}(\mathbf{y}) = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y}$ and $\Pi_{\mathcal{R}(\mathbf{A})^{\perp}}(\mathbf{y}) = \mathbf{y} \Pi_{\mathcal{R}(\mathbf{A})}(\mathbf{y})$. By plugging $\mathbf{A} = \mathbf{Q}_{i-1}$, and using $\mathbf{Q}_{i-1}^T\mathbf{Q}_{i-1} = \mathbf{I}$, we get $\Pi_{\mathcal{S}_{i-1}^{\perp}}(\mathbf{a}_i) = \mathbf{a}_i \mathbf{Q}_{i-1}\mathbf{Q}_{i-1}^T\mathbf{a}_i$.
- (c) I would modify the algorithm this way:

Algorithm 2:

```
1 j = 0;

2 \mathcal{A}_0 = \emptyset;

3 for i = 1, ..., n do

4 if \Pi_{\mathcal{S}_j^{\perp}}(\mathbf{a}_i) \neq \mathbf{0} (or \|\Pi_{\mathcal{S}_j^{\perp}}(\mathbf{a}_i)\|_2 \leq \epsilon for some small \epsilon > 0), where \mathcal{S}_j = \operatorname{span} \mathcal{A}_j, then

5 \tilde{\mathbf{q}}_{j+1} = \Pi_{\mathcal{S}_j^{\perp}}(\mathbf{a}_i);

6 \mathbf{q}_{j+1} = \tilde{\mathbf{q}}_{j+1}/\|\tilde{\mathbf{q}}_{j+1}\|_2;

7 \mathcal{A}_{j+1} = \mathcal{A}_j \cup \{\mathbf{q}_{j+1}\};

8 j = j + 1;

9 end

10 end
```

We again use induction to prove why $S_j = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ when the algorithm terminates. Suppose that at the *i*th iteration of the above algorithm, we have $\operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{i-1}\} = \mathcal{S}_j$. By the projection theorem, we have (again) $\mathbf{a}_i = \tilde{\mathbf{q}}_i + \mathbf{b}_i$ where $\tilde{\mathbf{q}}_i = \Pi_{\mathcal{S}_j^{\perp}}(\mathbf{a}_i)$, $\mathbf{b}_i = \Pi_{\mathcal{S}_j}(\mathbf{a}_i)$. If $\tilde{\mathbf{q}}_i \neq \mathbf{0}$, we have the same result as in (a), i.e., $\operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_i\} = \mathcal{S}_j + \operatorname{span}\{\mathbf{q}_{j+1}\} = \mathcal{S}_{j+1}$. If $\tilde{\mathbf{q}}_i = \mathbf{0}$, it implies that $\mathbf{a}_i \in \mathcal{S}_j$, and consequently, $\operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_i\} = \mathcal{S}_j$. It follows by induction that the result $S_j = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ holds.

Problem 5 (30%) This is a MATLAB problem. The problem we deal with is a face recognition problem. Your main reference is [1], Chapter 9. I also recommend [2] as an additional reference for you to get better understanding of the context. Download from the course website the following three files: X.mat, y_part_a.mat, and y_part_b.mat. Loading X.mat on MATLAB, you will see five matrices, namely, X_1, X_2, X_3, X_4, X_5. I will sometimes use X_1, X_2, X_3, X_4, X_5 , our standard matrix notations, to describe them. Each X_i is a collection of 63 images, with size 192×168 , taken from the same person. Specifically, each column of X_i is an image stored in the vectorized form. You can see them, say, for X_1 , by calling

```
>> for i=1:63, subplot(8,8,i); imshow(reshape(X_1(:,i),192,168)); end;
```

I should mention that the data come from "Yale Face Database B."

(a) Load y_part_a.mat. You will find a vector y, or y. You can see it by calling

```
>> imshow(reshape(y,192,168));
```

You will see that it is a noisy image. Form a multi-person data matrix $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_5]$, apply LS

$$\min_{\mathbf{w} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2,$$

and use the LS solution to construct an estimated, and hopefully noise-cleaned, image. Show us the image you recover. Then, from the LS solution, identify the person \mathbf{y} is associated with. Note: You can certainly watch the images and *subjectively* identify who that person is, but I would like to see a quantitative way.

(b) Load y_part_b.mat, which contains a vector y. Using imshow, you will see that a small part of the image is severely corrupted. Try LS and show the recovered image. Then, try Algorithm 11 in [1], AltMin for Robust Regression (AM-RR), with parameter k = 4775. You should also write a short description concerning what is the rationale of AM-RR, and how it works. Show the recovered image of AM-RR.

Note: You will need to submit your MATLAB code online via Blackboard. You also need to provide a description on your assignment. We do not do reverse engineering tasks such as guessing how a MATLAB code works in the absence of any description. If you are in doubt, talk to us to understand more.

Solution:

(a)

```
>> load X.mat; load y_part_a.mat;
>> X= [ X_1 X_2 X_3 X_4 X_5 ];
>> w= X\y;
>> hy= X*w;
>> imshow(reshape(hy,192,168));
```

The result, together with the original image, are shown below.

To identify which person y should be, partition w as

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \vdots \\ \mathbf{w}_5 \end{bmatrix}$$

where $\mathbf{w}_i \in \mathbb{R}^{63}$ for all i. By noting that

$$\mathbf{X}\mathbf{w} = \mathbf{X}_1\mathbf{w}_1 + \mathbf{X}_2\mathbf{w}_2 + \dots + \mathbf{X}_5\mathbf{w}_5,$$

we can believe that the \mathbf{w}_i with the largest $\|\mathbf{w}_i\|_2^2$ should be an indication of which \mathbf{X}_i , or person, \mathbf{y} belong to.

```
>> W= reshape(w,63,5);
>> sum(abs(W).^2)
ans =
0.8608  0.3211  0.1037  0.4181  0.1220
```

It appears that the answer is person 1.

(b) In short, it is an algorithm that intends to solve a outlier-robust formulation

$$\min_{\mathbf{w}, \mathbf{b}} \|\mathbf{y} - \mathbf{X}\mathbf{w} - \mathbf{b}\|_{2}^{2}$$
s.t. $\|\mathbf{b}\|_{0} < k$,

where $\|\cdot\|_0$ denotes the number of nonzero elements of its argument. The idea is to ignore a number of k measurements in evaluating the loss between \mathbf{y} and $\mathbf{X}\mathbf{w}$, thereby giving the algorithm some robustness against outliers. This problem is difficult to solve exactly, and AM-RR uses alternating minimization to deal with it; i.e., solve \mathbf{w} fixing \mathbf{b} at one time, solve \mathbf{b} fixing \mathbf{w} at another time, repeat the above until little progress is seen.

The results are shown below.

given image, y

recovered image by LS

recovered image by AM-RR

References

- [1] P. Jain and P. Kar. Non-convex optimization for machine learning. Foundations and Trends® in Machine Learning, 10(3–4):142–336, 2017.
- [2] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(2):210–227, 2009.