

Cursul #5

Optimizarea rutării

Controlul distribuției rutelor

31/10/2019 2

Exemplu 1 - PoC

Exemplu 2

Pasivizarea interfețelor

• Din modul de configurare al protocolului de rutare:

passive-interface [default] {interface-type interface-number}

Protocol	Efect
RIP	Actualizările sunt primite - nu sunt trimise
EIGRP	Nu mai sunt trimise pachete Hello
OSPF	Nu mai sunt trimise pachete Hello
IS-IS	Nu mai sunt trimise pachete de Hello, dar sunt trimise actualizări automate despre rețeaua interfeței

31/10/2019 5

Exemplu - PoC

Distanțe administrative

• Din modul de configurare al protocolului de rutare

```
distance <value>
distance ospf {[intra-area <value>] [inter-area <value>] [external <value>]}
```

Tipul rutei	Distanţa administrativă
Connected	0
Static	0 (interfaţă) / 1 (adresă IP)
EIGRP summary	5
EIGRP (internal)	90
OSPF	110
IS-IS	115
RIP	120
EIGRP (external)	170
iBGP	200

Exemplu - PoC

31/10/2019

8

Liste distribuite

 Filtrează numai update-urile de rutare, nu şi pachetele trimise

```
distribute-list {access-list-number | name} {in | out} [interface-type interface-number]
distribute-list prefix_list_name {in | out} [interface-type interface-number]
distribute-list route-map route_name {in | out}
```

Protocol	Efect
RIP	Filtrează actualizările trimise/primite
EIGRP	Filtrează actualizările trimise/primite din tabela de topologie
OSPF	Filtrează rutele ce vor intra în tabela de rutare
IS-IS	Nu este suportat.

Exemplu - PoC

10

Dezavantaje "distribute-list"

- În primul rând...
 - ... filtrarea de rute se poate aplica în orice situație; nu doar în problema rutării suboptimale
- Dezavantaje "aparente"?
 - Nescalabilă: depinde de ACL-uri
- Optimizarea distribute-list
 - Folosind tehnici de route tagging (nu se mai folosesc ACL-uri decât la identificarea inițială a traficului)

Mecanisme de optimizare a rutării

Mecanisme generice de optimizare

- Pasivizarea interfețelor
- 2. Alterarea distanțelor administrative
- 3. Liste de distribuție
- 4. Route-maps

Interfețe pasive - configurare


```
X(config) #router rip
X(config-router) #network 10.0.0.0
X(config-router) #passive-interface fa0/1
```


Pasivizarea interfețelor

• Din modul de configurare al protocolului de rutare:

passive-interface [default] {interface-type interface-number}

Protocol	Efect			
RIP	Actualizările sunt primite - nu sunt trimise			
EIGRP	Nu mai sunt trimise pachete Hello			
OSPF	Nu mai sunt trimise pachete Hello			
ISIS	Nu mai sunt trimise pachete de Hello, dar sunt trimise actualizări automate despre rețeaua interfeței			

Distanțe administrative

• Din modul de configurare al protocolului de rutare

distance <value>
distance ospf {[intra-area <value>] [inter-area <value>] [external <value>]}

Tipul rutei	Distanța administrativă
Connected	0
Static	0 (interfață) / 1 (adresă IP)
EIGRP summary	5
EIGRP (internal)	90
OSPF	110
IS-IS	115
RIP	120
EIGRP (external)	170
iBGP	200

Configurarea distanței administrative


```
Router (config-router) # distance weight [source-ip-address source-mask (access-list-number | name)]
```

```
RTZ(config) #router rip
RTZ(config-router) #distance 105 10.4.0.2 255.255.255.0
```

- Rutele invatate prin RIP vor avea o distanta administrativa diferita de cea default (105, in acest caz)
- Schimbarea are doar semnificatie locală, toate celelalte rutere pastrand distanta administrativa de 120
- In exemplu, toate rutele invata prin RIP de la 10.4.0.2 vor primi local d.a. 105

Modificarea distanței administrative


```
RTZ (config) #router rip

RTZ (config-router) #distance 97 10.3.0.1 255.255.255.0 2

RTZ (config-router) #exit

Sursa de la care se primesc updateuri RIP

RTZ (config) #access-list 2 permit 192.168.3.0 0.0.0.255
```

Rutele care vor primi d.a. 97

- Se specifica rutele care vor primi o anumita d.a
- In exemplu, doar rutele spre 193.168.3.0/24, invatate de la 10.3.0.1

Dezavantaje "distance"

- Greu de urmărit în configurații complexe
- Nu e o soluție scalabilă: se bazează pe intrări în ACL-uri
- Modificarea este locală
 - Distanța administrativă nouă nu este comunicată altor rutere

Liste de distribuție

 Filtrează numai update-urile de rutare, nu şi pachetele trimise

```
distribute-list {access-list-number | name} {in | out} [interface-type interface-number]
distribute-list prefix prefix_list_name {in | out} [interface-type interface-number]
distribute-list route-map route_name {in | out}
```

Protocol	Efect		
RIP	Filtrează actualizările trimise/primite		
EIGRP	Filtrează actualizările trimise/primite din tabela de topologie		
OSPF	Filtrează rutele ce vor intra în tabela de rutare		
IS-IS	Nu este suportat.		

Dezavantaje "distribute-list"

- În primul rând...
 - ... filtrarea de rute se poate aplica în orice situație; nu doar în problema rutării suboptimale
- Dezavantaje "aparente"?
 - Nescalabilă: depinde de ACL-uri
- Optimizarea distribute-list
 - Folosind tehnici de route tagging (nu se mai folosesc ACL-uri decât la identificarea inițială a traficului)

Route-maps

Route-maps

- Cel mai puternic mecanism de manipulare de rute
- Structură
 - Asemănător IF/THEN/ELSE în programare
 - Acțiune globală la nivelul fiecărei reguli (permit/deny)
 - · Clauze match identifică traficul
 - Conform unui ACL
 - Conform protocolului de rutare
 - Conform dimensiunii pachetului, etc.
 - · Clauze **set** specifică acțiuni asupra pachetului identificat
 - Forțarea pachetului pe o anumită interfață (PBR)
 - Manipularea atributelor BGP
 - Metrica în protocolul de rutare

Parcurgerea unui route-map

Lipsa unei clauze match == match any

Comanda match

Comanda	Descriere		
match interface	Interfața de ieșire a rutelor		
match ip address	Folosește ACL și prefix-list		
match ip next-hop	Adresa IP a următorului hop		
match ip route-source	ACL pentru sursa ruterului care a trimis actualizarea		
match metric	Metrica rutei		
match route-type	Tipul rutei		
match tag	Tag-ul pe care îl are ruta		

Selecția informațiilor de actualizare

Route-map în redistribuție


```
R2(config) # router ospf 1
R2(config-router) # redistribute eigrp 1 subnets route-map eigrp_to_ospf
R2(config) #route-map eigrp_to_ospf permit 10
R2(config-route-map) #match ip address eigrp_to_ospf
R2(config-route-map) #exit
R2(config-route-map) # do sh access-1 eigrp_to_ospf
Standard IP access list filter_isis
    10 permit 10.0.12.0, wildcard bits 0.0.0.255
    20 permit 10.0.0.0, wildcard bits 0.0.0.255
    30 deny any
```

 Doar rețelele permise în ACL vor face match pe regula 10 și vor fi redistribuite conform politicii globale ale regulii (permit).

Parcurgerea unui route-map


```
route-map my_map permit 10

{match_statement1 statement2 ...}

{match_statement3 statement4 ...}

{ set action1 }

route-map my_map deny 20

{match_statement 1}

route-map my_map permit 30

{set_action_default}
```

Lipsa unei clauze match == match any

Folosirea set

- Modificarea atributelor BGP: ASP PATH, local_pref, weight
- Stabilirea metricii de redistribuție (ex în OSPF sau EIGRP)
- Stabilirea următorului hop în policy-based routing.

Comanda set

• Stabileşte următorul hop către care să fie trimis pachetul:

```
Router(config-route-map) #set ip next-hop ip-address [... ip-address]
```

• Stabileşte interfața de ieșire pe care să fie trimis pachetul:

```
Router(config-route-map) #set interface interface-type interface-number [... type number]
```

• Stabileşte următorul hop, în cazul în care nu există o rută explicită către destinație:

```
Router(config-route-map) #set ip default next-hop ip-address [...ip-address]
```

• Stabilește interfața de ieșire, în cazul în care nu există o rută explicită către destinație:

```
Router(config-route-map) #set default interface interface-type interface-number [... type ...number]
```


Policy-based routing

Policy-based routing

- Suprascrierea deciziilor de rutare implicite
- De ce?
 - Rutarea traditională este realizată doar pe baza adresei IP destinaţie
 - Singura modalitate de a stabili înainte calea unui pachet -> rutare statică (ip route)
 - Permite rutarea pe baza mai multor factori, nu numai a adresei destinaţie
 - Permite stabilirea de politici de rutare (în funcţie de organizaţie sau aspecte de securitate)
- Implementare: route-maps

PBR facts

- Politicile de rutare se aplică la nivel de interfață
- Se poate aplica o singură politică pe o interfață
- Pentru a aplica o politică:

```
(config-if) # ip policy route-map <name>
```

• Pentru a afecta traficul generat de ruter:

```
(config) # ip local-policy route-map <name>
```

 Dacă un pachet nu face match pe nici o regulă de routemap, acesta este trimis în procesul de rutare normal

PBR – Exemplu 1

R1 (config) #interface e0/0


```
R1 (config-if) #ipv6 policy route-map ISP1
R1 (config) #interface e0/1
R1 (config-if) #ipv6 policy route-map ISP2
R1 (config) #route-map ISP1 permit 10
R1 (config-route-map) #match ipv6 address 1
R1 (config-route-map) #set interface s0/0
R1 (config) #route-map ISP2 permit 10
R1 (config-route-map) #match ipv6 address 2
R1 (config-route-map) #match ipv6 address 2
R1 (config-route-map) #set interface s0/1
R1 (config) #access-list 1 permit LAN1
R1 (config) #access-list 2 permit LAN2
```


PBR – Exemplu 2

- Se cere ca:
 - traficul din 172.17.6.0/24 sa treaca doar prin ruterul "total"
 - traficul din 172.17.7.0/24 sa treaca doar prin ruterul "best"
 - traficul din 172.17.8.0/24 sa foloseasca ambele legaturi

PBR - PoC

Tunelare

Tunelare

- Ce este un tunel?
 - O legătură virtuală peste o rețea fizică
 - Încapsularea unui protocol în alt protocol
 - Ascunderea unei infrastructuri de rețea în spatele unei singure conexiuni

Tipuri de tunele

Application HTTP SSL VPN Transport IPIP, 6to4, SIT, Network IPSec, **GRE** Data link PPPoE, Q-in-Q

Tunelare GRE

- Generic Routing Encapsulation
- Protocol de tunelare dezvoltat de Cisco
- Poate încapsula o varietate de protocoale de rețea
- Stateless nu sunt menţinute informaţii despre starea tunelului
- Un tunel GRE se ridică imediat după configurarea corectă a ambelor capete și rămâne ridicat tot timpul

Componentele unui tunel GRE

- Crearea interfeței tunel
 - Tip tunel (GRE)
 - Capăt sursă
 - Interfață sau IP local
 - Capăt destinație
 - IP la distanță
- Configurarea interfeței tunel
 - Interfața nou creată se tratează ca o legătură normală (punct la punct)
 - Adresare IP
 - Spațiu de adresă pentru domeniul tunelului

Configurare GRE


```
R2(config)# ip route 11.0.0.0 255.255.255.0 Fa0/0
R2(config)#interface Tunnel0
R2(config-if)# ip address 12.0.0.2 255.255.255.0
R2(config-if)# tunnel source FastEthernet0/0
R2(config-if)# tunnel destination 11.0.0.1
```

```
R1(config)# ip route 22.0.0.0 255.255.255.0 Fa0/0 R1(config)#interface Tunnel0 R1(config-if)# ip address 12.0.0.1 255.255.255.0 R1(config-if)# tunnel source FastEthernet0/0 R1(config-if)# tunnel destination 22.0.0.2
```


GRE Keepalive

- Tunelele GRE sunt stateless fiecare capăt de tunel nu păstrează informații de stare despre capătul său remote
 - celălalt capăt al tunelului dispare ruterul nu poate determina acest lucru
- Mecanisme keepalive
 - Trimise de un device pe o interfață fizică sau virtuală
 - Informează un alt device din rețea că legătura dintre ele încă funcționează
 - keepalive interval
 - keepalive retries

GRE Keepalive – Funcționare

PT = Packet Type

Mesaj keepalive de la R1 către R2 :

Outer GRE IP				Inne	er GRE IP		
IP	IP sursă	IP dest	GRE	IP	IP sursă	IP dest	GRE
	10.0.1.1	10.0.2.1	PT=IP		10.0.2.1	10.0.1.1	PT=0

- Observație: Răspunsul R2 pt. R1 este deja încapsulat în interiorul header-ului IP intern
- Configurare:

 R1(config) # interface Tunnel0
 R1(config-if) # keepalive 5 4

GRE Tunnel Identification Key

- Mecanism elementar de autentificare a celor 2 capete ale PR unui tunel GRE
- Cheie configurată pe cele 2 capete de tunel
 - Trebuie configurată manual pe ambele rutere cu aceeași valoare
 - Atenție: NU trebuie folosită ca mecanism de securitate (se trimite pe tunel în clear-text)
 - Utilitate : prevenirea configurărilor incorecte sau a injectării de pachete dintr-o altă sursă
- Configurare

```
R1/R2(config) # interface Tunnel0
R1/R2(config-if) # tunnel key key-number
```


Sumar

Manipularea rutelor

> Redstribuția protocoalelor de rutare

