Hand_on_15

- ⇒ Implement and test on examples from the book. Then upload your source code to GitHub. Do this for the following algorithms:
- 1. Dijkstra's algorithm:
- \Rightarrow Run Dijkstra's algorithm on the directed graph of Figure 24.2, first using vertex S as the source and then using vertex z as the source. In the style of Figure 24.6, show the d and π values and the vertices in set S after each iteration of the while loop.

Figure 24.6 The execution of Dijkstra's algorithm. The source s is the leftmost vertex. The

(fig 24.6)

⇒ Solution:

Here,

Here's the step-by-step output of Dijkstra's algorithm executed on the graph from Figure 24.2, modeled in the style of Figure 24.6. The output includes each iteration of the algorithm showing:

- The set S of vertices for which the shortest path is known (visited).
- The d values (shortest known distances from the source).
- The π values (predecessor of each vertex on the shortest path).

⇒ Source s:

Step	S (visited)	d-values	π-values
1	{s}	$s=0, t=\infty, y=\infty, z=\infty, x=\infty$	s=None
2	{s, z}	s=0, t=3, y=5, z=2, x=∞	t=s, y=s, z=s
3	$\{s, z, t\}$	s=0, t=3, y=5, z=2, x=9	x=z
4	$\{s, z, t, y\}$	s=0, t=3, y=4, z=2, x=9	y=t
5	All visited	s=0, t=3, y=4, z=2, x=8	x=y

⇒ Source: z

Step	S (visited)	d-values	π-values
1	{z}	$z=0, x=\infty, others=\infty$	z=None
2	{z, x}	$z=0, x=7, others=\infty$	x=z

⇒ Output

- 2. Bellman-Ford algorithm:
- \Rightarrow Run the Bellman-Ford algorithm on the directed graph of Figure 24.4, using vertex z as the source. In each pass, relax edges in the same order as in the figure, and show the d and π values after each pass. Now, change the weight of edge (z, x) to 4 and run the algorithm again, using s as the source.

⇒ Solution:

Here,

implementation of the Bellman-Ford algorithm is solved below; it includes two runs:

- Using vertex z as the source (with original weights).
- Changing weight of edge (z, x) to 4, and using vertex s as the source.

3. Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2. Show the matrix D^k that results for each iteration of the outer loop.

FIG: 25.2

⇒ Solution:

Here.

Let's implement the Floyd-Warshall algorithm in Python and generate the intermediate distance matrices D^K for each iteration of the outer loop:

Edges with weights (directed):

```
(1 \rightarrow 2, weight = 1)

(1 \rightarrow 4, weight = -4)

(2 \rightarrow 3, weight = 2)

(2 \rightarrow 5, weight = 7)

(3 \rightarrow 6, weight = 10)

(4 \rightarrow 2, weight = 2)

(4 \rightarrow 5, weight = -1)

(5 \rightarrow 3, weight = 5)

(6 \rightarrow 3, weight = -8)

(6 \rightarrow 5, weight = 3)
```

Output (some parts):