Universidade Federal de Ouro Preto PCC104 - Projeto e Análise de Algoritmos Somatórios, PA e PG

Prof. Rodrigo Silva

August 14, 2023

Leitura Recomendada

- Somatórios e Produtórios http://arsilva.weebly.com/uploads/2/1/0/0/21008856/somatrio.pdf
- Important summation formulas (Appendix A) Introduction to the Design and Analysis of Algorithms (3rd Edition) Anany Levitin
- Sum manipulation rules (Appendix A) Introduction to the Design and Analysis of Algorithms (3rd Edition) Anany Levitin
- https://www.cs.yale.edu/homes/aspnes/pinewiki/attachments/SummationNotation/summation-notation.
- PA e PG: resumo, fórmulas e exercícios https://www.todamateria.com.br/pa-e-pg/

1 Atividades

1.1 Introdução aos somatórios e produtórios

 Fazer os exrcícios da apostila http://arsilva.weebly.com/uploads/2/1/0/0/21008856/somatrio. pdf

1.2 Important summation formulas

1.
$$S = \sum_{n=1}^{5} 3$$

2.
$$S = \sum_{k=0}^{15} (-2)$$

3.
$$S = \sum_{i=3}^{8} 7$$

4.
$$S = \sum_{n=1}^{x} 3$$

5.
$$S = \sum_{k=0}^{n+2} (-2)$$

6.
$$S = \sum_{i=3}^{k} 7$$

7.
$$S = \sum_{k=1}^{5} k$$

8.
$$S = \sum_{k=0}^{n} k$$

9.
$$S = \sum_{k=i}^{n} k$$

10.
$$S = \sum_{i=1}^{4} i^2$$

11.
$$S = \sum_{i=1}^{n} i^2$$

1.3 Sum manipulation rules

1.
$$S = \sum_{n=1}^{6} (3n)$$

2.
$$S = \sum_{k=1}^{4} (-2k)$$

3.
$$S = \sum_{i=3}^{8} (5i)$$

4.
$$S = \sum_{n=1}^{k} (3n)$$

5.
$$S = \sum_{k=1}^{n} (-2k)$$

6.
$$S = \sum_{i=1}^{x} (5i)$$

7.
$$S = \sum_{n=1}^{5} (2n+3)$$

8.
$$S = \sum_{k=1}^{7} (4k - 1)$$

9.
$$S = \sum_{n=1}^{k} (2n+3)$$

10.
$$S = \sum_{k=1}^{n} (4k - 1)$$

11.
$$S = \sum_{n=1}^{6} (3n - 2n)$$

12.
$$S = \sum_{k=1}^{8} (2k + k + 1)$$

13.
$$S = \sum_{i=1}^{k} (4i - 4i - 1)$$

14.
$$S = \sum_{n=1}^{7} (2n) + \sum_{n=1}^{7} (3n)$$

15.
$$S = \sum_{k=1}^{5} (k^2) + \sum_{k=1}^{5} (2k)$$

16.
$$S = \sum_{i=1}^{6} (4i) + \sum_{i=3}^{6} (i^2)$$
.

1.4 Progressões aritméticas

- 1. Seja S_n a soma dos primeiros n termos de uma progressão aritmética. Se o primeiro termo é 3 e a razão é 6, escreva S_n em termos de n.
- 2. Dada a progressão aritmética $8, 14, 20, \ldots$, determine o valor do 50° termo.
- 3. Seja a_1 o primeiro termo de uma progressão aritmética e a_n o n-ésimo termo. Se a soma dos primeiros 12 termos é 234 e $a_{12} = 31$, encontre a_1 .
- 4. A soma dos primeiros n termos de uma progressão aritmética é $S_n = 3n^2 + 2n$. Determine a expressão para o n-ésimo termo a_n em termos de n.
- 5. Em uma progressão aritmética, a soma dos primeiros 25 termos é igual a 500, e a soma dos primeiros 40 termos é igual a 880. Encontre o valor do primeiro termo e da razão da progressão.

1.5 Progressões geométricas

- 1. Seja S_n a soma dos primeiros n termos de uma progressão geométrica. Se o primeiro termo é 2 e a razão é 3/2, escreva S_n em termos de n.
- 2. Dada a progressão geométrica $5, 10, 20, \ldots$, determine o valor do 7° termo.
- 3. Seja a_1 o primeiro termo de uma progressão geométrica e a_n o n-ésimo termo. Se a soma dos primeiros 8 termos é 546 e $a_8 = 32$, encontre a_1 .
- 4. A soma dos primeiros n termos de uma progressão geométrica é $S_n = 80(2^n 1)$. Determine a expressão para o n-ésimo termo a_n em termos de n.
- 5. Em uma progressão geométrica, a soma dos primeiros 10 termos é igual a 511 e a soma dos primeiros 5 termos é igual a 455. Encontre o valor do primeiro termo e da razão da progressão.