Session 1: Propositional Logic and Basic Logical Connectives

- Propositions
- Basic Logical Connectives
 - Negation
 - Conjunction
 - Disjunction
 - Exclusive OR
- Truth tables

What is Logic?

- Language of mathematics
 - Makes human language precise
 - Propositional logic exhibits problems we have in natural language with interpreting expressions such as "or", "if ... then"
 - Basis for mathematical proofs
 - Basis for automated reasoning
 - Omnipresent in computing
- Logic is about statements that are either true or false
- Propositional logic is the most basic form of logic

Some History

 Greek philosophers developed first logic formalisms, to formalize reasoning

- Propositional logic, though basic, introduces many fundamental concepts for mathematics
 - formal language, variables and operators, axioms, inference, proof, truth value

Aristotle

Leibniz 1750 forgotten

Boole 1860 De Morgan 1870

Propositional Logic and Computing

- Propositional logic allows to
 - Formulate basic search queries (search engines)
 - Describe computer circuits
 - Specify properties of software systems
 - Formally describe games, like Sudoku
- Anything expressed in propositional logic can be automatically decided whether it is true or false
 - This is not the case for other logics!

Propositions

• A proposition is a declarative sentence that is either true or false

- Examples of propositions
 - The Moon is made of green cheese.
 - The earth is round.
 - 1 + 0 = 1
 - 0 + 0 = 2

Propositions

• A proposition is a declarative sentence that is either true or false

- Examples that are not propositions
 - Sit down!
 - What time is it?
 - x + 1 = 2
 - $\bullet \qquad \mathsf{X} + \mathsf{y} = \mathsf{Z}$

Language of Propositional Logic: Atomic Propositions

Atomic propositions: Propositions that cannot be expressed in terms of simpler propositions

Letters denote Propositional Variables: p, q, r, s, ...
Example: p denotes "The Earth is round"

- The proposition that is always true is denoted by T
- The proposition that is always false is denoted by F

Language of Propositional Logic: Compound Propositions

Compound Propositions are constructed from **logical connectives** and other propositions

- Negation
- Conjunction
- Disjunction
- Implication →
- Biconditional ↔

Negation

Let p be a proposition. The *negation of* p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement "It is not the case that p."

The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

Example

```
p := "The earth is round" (T)
```

q := "The moon is round" (T)

r := "The moon is made of green cheese" (F)

Conjunction

Let p and q be propositions. The *conjunction* of p and q, denoted by $p \land q$, is the proposition "p and q." The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

Example

```
p := "The earth is round" (T)
```

q := "The moon is round" (T)

r := "The moon is made of green cheese" (F)

Disjunction

Let p and q be propositions. The *disjunction* of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Example

```
p := "The earth is round" (T)
```

q := "The moon is round" (T)

r := "The moon is made of green cheese" (F)

Truth Tables

A **truth table** lists all possible truth values of the propositional variables occurring in a compound proposition, and the corresponding truth values of the compound proposition

Example: Truth table for disjunction

Or in Natural Language

In natural language "or" has two distinct meanings

- Inclusive or "Candidates for this position should have a degree in mathematics or computer science" We assume that candidates need to have one of the degrees, but may have also both.
- Exclusive or
 "Soup or salad comes with this entrée"
 We do not expect to be able to get both soup and salad.

Exclusive Or

Disjunction: "Inclusive Or".
For p ∨ q to be true, either one or both of p and q must be true.

"Exclusive Or" - called also Xor.
For p ⊕ q to be true, one of p and q must be true, but not both.

Summary

- Propositional Variable
- Atomic Proposition
- Compound Proposition
- Negation
- Conjunction
- Disjunction
- Exclusive OR
- Truth tables

Next: Implication and Biconditionals