

2021-2022 EĞİTİM-ÖĞRETİM YILI YAZ OKULU

ENERJI DAĞITIM SISTEMLERI (TS VII) 131517703

2. HAFTA_4

6.1.2. Cosφ<1 Hali (Endüktif Olma Hali)

• Üç fazlı simetrik hatlarda hattın omik direncinin yanında birde endüktif direnci dikkate alınır. Burada gerilim düşümü açısından V_1 ve V_2 arasındaki açının önemi yoktur. Çünkü sistemdeki gerilim düşümü, V_1 ve V_2 'nin mutlak değerleri arasındaki fark olarak tanımlanır.

Bu nedenle gerilim düşümü hesaplarında, fazör diyagramındaki ΔV yerine ΔV 'nin V_2 üzerindeki izdüşümü kullanılır.

$$\Delta V = R.I.Cos\varphi + X.I.Sin\varphi$$

$$\Delta V = R.I.Cos\varphi\left(1 + \frac{X}{R}\tan\varphi\right)$$

$$\Delta V = R.I.Cos\varphi.f(\varphi)$$

$$\Delta V = \frac{L.I_a}{\gamma.q}.f(\varphi)$$

$$\Delta V = R.I.Cos\varphi \left(1 + \frac{X.I.Sin\varphi}{R.I.Cos\varphi}\right)$$

$$f(\varphi) = 1 + \frac{X}{R} \cdot \tan \varphi$$

$$I.Cos \varphi = I_a = I_w$$
 $I.Sin \varphi = I_r$

Tek fazlı sistemde;

$$\Delta V = \frac{2.L.I_a}{\gamma.q}.f(\varphi)$$

$$\varepsilon = \frac{200.L.I_a}{\gamma.q.V}.f(\varphi)$$

$$P = V.I.Cos \varphi = V.I_a$$

$$\Delta V = \frac{2.L.P}{\gamma.q.V}.f(\varphi) \qquad \qquad \varepsilon = \frac{200.L.P}{\gamma.q.V^2}.f(\varphi)$$

Üç fazlı sistemde;

$$\Delta V = \frac{L.I_a}{\gamma \cdot q} \cdot f(\varphi)$$
 $\varepsilon = \frac{100.L.I_a}{\gamma \cdot q \cdot V} \cdot f(\varphi)$

$$\Delta U = \sqrt{3}.\Delta V$$
 $\Delta U = \frac{\sqrt{3}.L.I_a}{\gamma.q}.f(\varphi)$ $P = 3.V.I.Cos\varphi = 3.V.I_a$

$$P = \sqrt{3}.U.I.Cos\varphi = \sqrt{3}.U.I_a$$
 $\Delta V = \frac{L.P}{3.\gamma.q.V}.f(\varphi)$ $\varepsilon = \frac{100.L.P}{3.\gamma.q.V^2}.f(\varphi)$

$$\Delta U = \frac{L.P}{\sqrt{3}.\gamma.q.V} \cdot f(\varphi) \qquad \Delta U = \frac{L.P}{\gamma.q.U} \cdot f(\varphi) \qquad \varepsilon = \frac{100.L.P}{\gamma.q.U^2} \cdot f(\varphi)$$

6.1.3. Güç kayıpları

Dağıtım sistemlerinde bir faza ait hattın direnci R, endüktansı ise X olarak alındığında sistemdeki güç kayıpları;

Tek fazlı sistemde; Aktif Güç için
$$\Delta P = R.I^2$$
, Reaktif Güç için $\Delta Q = X.I^2$,

Üç Fazlı Sistemde: Aktif Güç için
$$\Delta P = 3.R.I^2$$
,

Reaktif Güç için
$$\Delta Q = 3.X.I^2$$

Güç kayıplarının yüzde değeri ise, aktif güç için
$$lpha=rac{\Delta P}{P}.100$$

reaktif güç için
$$oldsymbol{eta} = rac{\Delta oldsymbol{Q}}{oldsymbol{Q}}.100$$

Şebekede önemli olan aktif güç kaybıdır. Bu nedenle kesit hesapları aktif güç kaybına göre de hesaplanır. Bu güç

kaybına göre kesit $q = \frac{100. L. P}{\gamma. \alpha. U^2. Cos^2 \varphi}$ olarak hesaplanır.

Genel olarak şebekede %10'luk aktif güç kaybına müsaade edilir.

ÖRNEK-6.4:

Şekildeki 3 fazlı sistemde iletken olarak Swallow kullanılmıştır. İletkenin

endüktansı 0,42 Ω /km-faz olduğuna göre hattaki gerilim düşümünü, aktif ve reaktif güç kayıpları ile yüzde değerlerini hesaplayınız.

$$R = \frac{L}{\gamma \cdot q} = \frac{9500}{35x26,69} = 10\Omega$$

$$X = L.x = 9,5x0,42 = 4\Omega$$

$$I = \frac{S}{\sqrt{3}.U} = \frac{260.10^3}{\sqrt{3}.15.10^3} = 10 A$$

$$\Delta U = \sqrt{3}.(R.I.Cos\varphi + X.I.Sin\varphi) = \sqrt{3}.(10.10.0,8 + 4.10.0,6) = \sqrt{3}.104 = 180V$$

$$\varepsilon = \frac{\Delta U}{U}.100 = \frac{180}{15000}.100 = \%1,2$$

$$\Delta P = 3.R.I^2 = 3.10.10^2 = 3000W$$
 $\Delta Q = 3.X.I^2 = 3.4.10^2 = 1200VAr$

$$\Delta O = 3.X.I^2 = 3.4.10^2 = 1200 VAr$$

$$\alpha = \frac{\Delta P}{P}.100 = \frac{\Delta P}{S.Cos\varphi}.100 = \frac{3000}{260.10^3.0.8}.100 = \%1,5$$

$$\beta = \frac{\Delta Q}{Q}.100 = \frac{\Delta Q}{S.Sin\varphi}.100 = \frac{1200}{260.10^3.0.6}.100 = \%0.8$$

ÖRNEK-6.5:

Şekildeki üç fazlı sistemde r=1,1 Ω/km -faz, x=0,34 Ω/km -faz olduğuna göre hattaki gerilim düşümü ve yüzde değerini hesaplayınız.

$$\Delta U = \sqrt{3}.(R.I.\cos\varphi + X.I.\sin\varphi) = \sqrt{3}.(R.I_a + X.I_r)$$

$$I_{1a} = I_1.\cos\varphi_1 = 50.0,7 = 35 \ A$$

$$I_{1r} = I_1.\sin\varphi_1 = 50.0,7 = 35 \ A$$

$$I_{2a} = I_2.\cos\varphi_2 = 40.0,8 = 32 \ A$$

$$I_{2r} = I_2.\sin\varphi_2 = 40.0,6 = 24 \ A$$

$$I_{a} = I_{a1} + I_{a2} = 67 \ A$$

$$I_{r} = I_{r1} + I_{r2} = 59 \ A$$

$$\Delta U = \sqrt{3}.(1,1.50.10^{-3}.67 + 1,1.100.10^{-3}.32 + 0,34.50.10^{-3}.59 + 0,34.100.10^{-3}.24)$$

$$\Delta U = \sqrt{3}.9 = 15,58 \ V$$

$$\varepsilon = \frac{\Delta U}{U}.100 = \frac{15,58}{380}.100 = \%4,1$$

ÖRNEK-6.6:

Şekildeki üç fazlı yayılı yüklü sistemde %5'lik gerilim düşümüne müsaade

$$\begin{array}{c|c}
220/380^{V} & \longrightarrow & \\
\downarrow & & \downarrow \\
j = 0,22 \text{ A/m} \\
Cos \varphi < 1
\end{array}$$

$$\Delta V = \frac{5}{100}.220 = 11 V$$

$$q = \frac{j.L^2}{2.\gamma.\Delta V}.f(\varphi)_{Ort.}$$

Not : Formülde kullanılan iletken tipine göre $f(oldsymbol{arphi})_{Ort}$, değeri seçilir. Eğer, çıplak alüminyum iletken kullanılmışsa $f(\phi)_{Ort} = 1,444$, askı izoleli kablo kullanılmışsa $f(\varphi)_{Ort} = 1$ alınır.

$$q = \frac{j.L^2}{2.\gamma.\Delta V}.f(\phi)_{Ort.} = \frac{0,22.350^2}{2.35.11}.1,444 = 50,54 \text{ mm}^2$$

Tablo-1'den bir üst kesit $q=53,49~mm^2$ -POPPY- $f(\phi)=1,442$ şeklinde seçilir.

Gerçek gerilim düşümü:

$$\Delta V^G = \frac{j \cdot L^2}{2 \cdot \gamma \cdot q} \cdot f(\phi) = \frac{0,22 \cdot 350^2}{2 \cdot 35 \cdot 53,49} \cdot 1,442 = 10,2 V$$

10,2<11 V olduğundan seçilen kesit uygundur.

<u>TABLO-1</u>:Alçak Gerilimli Hava Hatlarında Kullanılan Alüminyum İletkenler ve Özellikleri

Kanada	Kesit	Çap	Kopma	Ağırli	DC	Endüktif	f(φ)	Yüklenme
Standar			Kuvvet	k	direnci	Reaktans	faktörü	Akımı
dı			i		20°C'de	ƒ=50 Hz.		
Anma	mm ²	mm				Ω/km.f		Α
Adı			kgk	kgk/	Ω /km.f		1	
				m				
ROSE	21,14	5,88	415	58	1,3510	0,345	1,191	110
LILY	26,66	6,61	515	73	1,0720	0,337	1,235	125
IRIS	33,65	7,42	640	92	0,8498	0,330	1,291	143
PANSY	42,37	8,33	775	116	0,6739	0,322	1,358	165
POPPY	53,49	9,36	940	146	0,5341	0,315	1,442	193
ASTER	67,45	10,51	1185	184	0,4236	0,307	1,543	225
PHLOX	84,99	11,80	1435	232	0,3360	0,300	1,669	262
OXLIP	107,30	13,25	1810	293	0,2664	0,293	1,824	306

TABLO-3 : Alçak Gerilimli Hava Hatlarında Kullanılan Kablolar ve Özellikleri

Kesit	Hesap	Rüzga	Ağırlık	Doğru Akım Direnci (Ohm/km)				End.D	Çeşitli Ortam Sıcaklıklarında			
	Çapı	ľ.		Faz IIe	etkeni	Nötr lletkeni		ir.	Yüklenebilme Akımları (A)			rı (A)
mm ²	mm	Kuvve	kg/km	(AI)		(Aldrey)		50 Hz				
		ti		20ºC	65°C	20°C	65°C	Ohm/k	20°C	25°C	30ºC	35°C
								m-f				
		kgk/m										
1.10+16	16,9	0,744	100	3,020	3,565	2,156	2,546	0,085	55	52	47	43
1.16+25	20,6	0,906	140	1,910	2,255	1,380	1,597	0,083	75	71	64	58
1.25+35	24,3	1,069	200	1,200	1,417	0,986	1,141	0,081	100	94	85	78
1.35+50	28,9	1,272	275	0,868	1,025	0,690	0,799	0,080	125	118	107	97
3.10+16	16,9	0,744	200	3,020	3,565	2,156	2,546	0,115	50	47	43	39
3.16+25	20,6	0,906	275	1,910	2,255	1,380	1,597	0,110	70	66	60	54
3.25+35	24,3	1,069	400	1,200	1,417	0,986	1,141	0,106	95	90	81	74
3.35+50	28,9	1,272	575	0,868	1,025	0,690	0,799	0,104	115	109	98	89
3.50+70	32,9	1,727	750	0,641	0,757	0,493	0,571	0,101	140	132	120	109
3.70+95	38,3	2,011	1050	0,443	0,523	0,363	0,420	0,098	175	165	150	136
1.16+1.16+25	20,6	0,906	225	1,910	2,255	1,380	1,597	0,110	70-60	66-56	60-51	54-47
3.16+1.16+25	20,6	0,906	350	1,910	2,255	1,380	1,597	0,110	60-60	57-56	51-51	47-47
3.25+1.16+35	24,3	1,069	475	1,200	1,417	0,986	1,141	0,106	80-60	76-56	68-51	62-47
3.35+1.16+50	28,9	1,272	625	0,868	1,025	0,690	0,799	0,104	95-60	89-56	81-51	74-47
3.50+1.16+70	32,9	1,727	800	0,641	0,757	0,493	0,571	0,101	120-60	113-56	102-51	93-47
3.70+1.16+95	38,3	2,011	1100	0,443	0,523	0,363	0,420	0,098	150-60	141-56	128-51	117-47

TABLO-2 : Yüksek Gerilimli Hava Hatlarında Kullanılan Çelik Özlü Alüminyum İletkenler ve Özellikleri

Kanada Standardı Anma Adı	Anma Kesiti mm²	AI Kesiti AWG-	Al Kesiti mm²	Çelik kesiti mm²	İletken Çapı mm	Kopma kuvveti kgk	Ağırlık kg/km	Dc direnci 20°C'de Ohm/km	Yüklenme akımı A
SWAN	21/4	MCM 4	21,18	3,53	6,36	831	85,6	1,3550	105
SWAIN	21/4	4	21,10	3,33	0,30	031	05,0	1,3330	103
SWALLOW	27/4	3	26,69	4,45	7,14	1023	107,8	1,0742	120
SPARROW	34/6	2	33,59	5,60	8,01	1264	135,7	0,8543	140
ROBINONE	45/7	88-22	44,70	7,45	9,24	1620	179,3	0,6410	175
RAVEN	54/9	1/0	53,52	8,92	10,11	1945	216,2	0,5362	195
PIGEON	85/14	3/0	85,12	14,18	12,75	3035	343,9	0,3366	275
PARTRIDGE	135/22	266-8	134,87	21,99	16,28	5096	543,8	0,2140	345
OSTRICH	152/25	300	152,19	24,71	17,28	5736	612,9	0,1897	410
HAWK	242/39	477	241,65	39,19	21,77	8798	972,8	0,1194	540
DRAKE	403/65	795	402,56	65,44	28,11	14165	1621,9	0,0715	760
CONDOR	402/52	795	402,33	52,15	27,72	12947	1519,7	0,0718	760
RAIL	483/34	954	483,40	33,60	29,61	12200	1600,2	0,0599	860

2021-2022 GÜZ DÖNEMİ SINAVLARI

Güz Dönemi Ara Sınavı 8 . Haftada (15-20/11/2021)

Klasik olarak yapılacak sınavda 4 yada 5 soru olacak.

Süre 70-75 dakika olacak.

Sınav saatleri: 19/11/2021 CUMA saat 18.00 da başlayacak.

BAŞARILAR

ARA SINAYDA SORUMLU OLDUĞUMUZ BÖLÜM

Konu sorumluluğu 1.-6. konu dahil

1. Giriş

Elektrik enerjisinin üretiminden tüketiciye ulaştırılmasına kadar gereken tesisler; üretim, iletim ve dağıtım tesisleri olarak üç kısımda incelenir.

- Elektrik santralleri üretim tesisleri olarak bilinir.
- Elektrik enerjisini elektrik santrallerinden alıp tüketim bölgelerine ulaştıran sistemlere iletim tesisleri denilmektedir.

1. KONUDAN BAŞLAR

ARA SINAYDA SORUMLU OLDUĞUMUZ BÖLÜM

ÖRNEK-6.6:

Şekildeki üç fazlı yayılı yüklü sistemde %5'lik gerilim düşümüne müsaade edildiğine göre alüminyum iletkenin kesiti ne olmalıdır. $\int_{0.922 \, A/m}^{0.922 \, A/m} \cos \varphi < 1 \qquad \Delta V = \frac{5}{100}.220 = 11 \, V$

$$j = 0.22 A/m$$

$$Cos \varphi < 1$$

$$\Delta V = \frac{5}{100}.220 = 11 V$$

$$q = \frac{j.L^2}{2.\gamma.\Delta V}.f(\varphi)_{Ort.}$$

Not : Formülde kullanılan iletken tipine göre $f(oldsymbol{arphi})_{Ort}$ değeri seçilir. Eğer, çıplak alüminyum iletken kullanılmışsa $f(oldsymbol{arphi})_{Ort.}=1,\!444$, askı izoleli kablo kullanılmışsa $f(\varphi)_{Ort} = 1$ alınır.

ÖRNEK 6.6 ÇÖZÜMÜ DAHİL

Konu sorumluluğu 1.-6. konu dahil

