Graph Mining SD212

4. Betweenness centrality

Thomas Bonald

2017 - 2018

Motivation

How to identify the most "central" nodes in a graph?

Useful for:

- viral marketing
- information spreading
- content recommendation
- security

We focus on **undirected**, **unweighted** graphs; extensions are discussed later.

Why is the degree not sufficient?

Outline

- 1. Notion of betweenness centrality
- 2. Naive algorithm
- 3. Brandes' algorithm
- 4. Extensions
- 5. Other centrality metrics

Betweenness centrality

The betweenness centrality of node u is the **fraction of shortest** paths going through u, summed over all source-destination pairs:

$$C(u) = \sum_{s,t \neq u; s < t} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

where

- $lacktriangledown \sigma_{st} = \text{number of shortest paths between } s \text{ and } t$
- $\sigma_{st}(u) =$ number of shortest paths between s and t through u

Normalization

Observe that:

$$0 \le C(u) \le \binom{n-1}{2}$$

The **normalized** betweenness centrality of node u is the **probability** that a random shortest path goes through u:

$$\bar{C}(u) = \frac{1}{\binom{n-1}{2}} \sum_{\substack{s,t \neq u, s \leq t \\ \sigma_{st}}} \frac{\sigma_{st}(u)}{\sigma_{st}} \implies 0 \leq \bar{C}(u) \leq 1$$

Example

Counting the number of shortest paths

Adaptation of BFS (Breadth First Search)

First algorithm

Observe that

$$\sigma_{st}(u) = \begin{cases} \sigma_{su}\sigma_{ut} & \text{if } d_{st} = d_{su} + d_{ut} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Algorithm

- Compute the distance and the number of shortest paths between each pair of nodes
- ▶ Return the betweenness centrality of each node u using (1)

Complexity: $O(n^3)$ in time, $O(n^2)$ in memory

Recursion

Let

$$\delta_{s}(u) = \sum_{t \neq u} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

Theorem (Brandes 2001)

$$\delta_{s}(u) = \sum_{v:d_{sv}=d_{su}+1} \frac{\sigma_{su}}{\sigma_{sv}} (1 + \delta_{s}(v))$$

Brandes' algorithm

$$\delta_{s}(u) = \sum_{v:d_{sv} = d_{sv} + 1} \frac{\sigma_{su}}{\sigma_{sv}} (1 + \delta_{s}(v))$$
 (2)

Algorithm

For each node s:

- apply BFS from node s
- ▶ init $\delta_s(u) = 0$ for all nodes u
- ▶ apply the recursion (2) starting from the most distant nodes

Return
$$\frac{1}{(n-1)(n-2)} \sum_{s \neq u} \delta_s(u)$$

Complexity: O(nm) in time, O(n) in memory

Approximation by node sampling

Algorithm

Choose some set $S \subset V$ of k nodes (e.g., at random) For each node $s \in S$:

- ▶ apply BFS from node s
- ▶ init $\delta_s(u) = 0$ for all nodes u
- ▶ apply the recursion (2) starting from the most distant nodes

Return $\frac{1}{|S\setminus\{u\}|(n-2)}\sum_{s\in S, s\neq u}\delta_s(u)$

Complexity: O(km) in time, O(n) in memory

Proof of the recursion

Lemma 1

For any $s, t \neq u$,

$$\sigma_{st}(u) = \sum_{v: d = d + 1} \sigma_{st}(u, v)$$

Lemma 2

For any $s,t \neq u$ and v such that $d_{sv} = d_{su} + 1$,

$$\sigma_{st}(u,v) = \frac{\sigma_{su}}{\sigma_{sv}}\sigma_{st}(v)$$

Outline

- 1. Notion of betweenness centrality
- 2. A first algorithm
- 3. Brandes' algorithm
- 4. Extensions
- 5. Other centrality metrics

Disconnected graphs

Betweenness centrality

$$C(u) = \sum_{s,t \neq u; s < t; \sigma_{st} > 0} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

Edge betweenness centrality

The betweenness centrality of edge $\{u, v\}$ is the **fraction of shortest paths** going through edge $\{u, v\}$, summed over all source-destination pairs:

$$C(u,v) = \sum_{s,t \neq u,v; s < t; \sigma_{st} > 0} \frac{\sigma_{st}(u,v)}{\sigma_{st}}$$

where

- $ightharpoonup \sigma_{st} = \text{number of shortest paths between } s \text{ and } t$
- $\sigma_{st}(u, v) = \text{number of shortest paths between } s \text{ and } t$ through $\{u, v\}$

Normalization:

$$\bar{C}(u,v) = \frac{1}{\binom{n-2}{2}} \sum_{s,t \neq u,v:s < t: \sigma_{s,t} > 0} \frac{\sigma_{st}(u,v)}{\sigma_{st}}$$

Example

Computation

For any $s \neq u, v$, let

$$\delta_{s}(u,v) = \sum_{t \neq u,v} \frac{\sigma_{st}(u,v)}{\sigma_{st}}$$

Then

$$\delta_s(u,v) = \left\{ egin{array}{ll} \delta_s(v) rac{\sigma_{su}}{\sigma_{sv}} & ext{if } d_{sv} = d_{su} + 1, \\ 0 & ext{otherwise} \end{array}
ight.$$

Complexity: O(nm) in time, O(m) in memory

Directed graphs

Betweenness centrality

$$C(u) = \sum_{s,t \neq u; \sigma_{st} > 0} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

Normalization

$$\bar{C}(u) = \frac{1}{(n-1)(n-2)}C(u)$$

Brandes' algorithm

$$C(u) = \sum_{s \neq u} \delta_s(u)$$

Weighted graphs

Assume additive weights

- ▶ BFS → Dijkstra
- Recursion

$$\delta_{s}(u) = \sum_{v:d_{sv} = d_{su} + \frac{\sigma_{su}}{\sigma_{sv}}} \frac{\sigma_{su}}{\sigma_{sv}} (1 + \delta_{s}(v))$$

► Complexity $O(nm) \rightarrow O(mn + n^2 \log n)$

Outline

- 1. Notion of betweenness centrality
- 2. Naive algorithm
- 3. Brandes' algorithm
- 4. Extensions
- 5. Other centrality metrics

Closeness centrality

The closeness centrality is related to the **average distance** to all other nodes,

$$CC(u) = \left(\frac{1}{n-1}\sum_{v\neq u}d_{uv}\right)^{-1}$$

Complexity: O(nm) in time, O(n) in memory

Random walk betweenness centrality

- Shortest paths → random paths
- ► The random walk betweenness centrality of node u is the expected number of visits to u for a random path starting from s and ending in t, summed over all pairs s, t
- Analogy with the electric current

Summary

Betweenness centrality:

- A useful metric to quantify the "centrality" of nodes in terms of shortest paths
- ▶ High complexity: O(nm) for exact calculation, O(km) for approximate value
- May be combined with other metrics (degree, closeness, random walk betweenness, PageRank, etc.)