

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

- 1					
- 1		3	m	0	
- 1	•			_	

Bella Esposito

UB Person Number:

5	0	2	2	4	3	9	8
	(a) (b) (c) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	0 1 3 4 5 6 7 8 9	0 1 (3) (4) (5) (6) (7) (8) (9)		0 1 2 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8	© 1 2 3 4 5 6 7 9 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

. 1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

$$2 V_{2} = \begin{bmatrix} -2 \\ -6 \end{bmatrix} \xrightarrow{b=0} W = \begin{bmatrix} -2 \\ -6 \end{bmatrix}$$

$$V_{3} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xrightarrow{W_{1}} = \begin{bmatrix} -6 \\ -6 \end{bmatrix}$$

$$+ \text{there one no other volues of b}$$

$$-2 V_{1} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$+ \text{there one no other volues of b}$$

$$-2 V_{1} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$+ \text{there one no other volues of b}$$

$$-2 V_{1} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$-2 V_{2} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$-2 V_{1} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$-2 V_{2} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$-2 V_{3} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$-2 V_{4} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

$$-2 V_{5} = \begin{bmatrix} -3$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$B = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{array} \right]$$

me matrix as in Problem 2, and let
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -2 & 1 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ 1 & -1 & -1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$\begin{bmatrix}
1 & 1 & 0 \\
-1 & 0 & 2 \\
2 & 1 & -1
\end{bmatrix}$$
 $C = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 4 \\
3 & 2 & 1
\end{bmatrix}$

$$(A^{\mp})^{-1} = (A^{-1})^{\top}$$

Check
$$A^{T}(-B)$$

$$\begin{bmatrix}
1 & 0 & 2 \\
-1 & 0 & 2 \\
2 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
8 & 50 \\
-7 & -3 & +3 \\
6 & +5 & 7
\end{bmatrix}
=
\begin{bmatrix}
8 & -7 + 0 \\
-7 + 0 + 12 \\
-16 & = 7 - 6
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 & 3 \\
-1 & 5 & 4 \\
3 & 2 & 1
\end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors \mathbf{u} satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$. $A \setminus T(e_1) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

A)
$$T(e_1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $T(e_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix} \checkmark$$

$$A = \begin{bmatrix} 1 & -3 \end{bmatrix} V$$

$$A = \begin{bmatrix} 1 & -3 \end{bmatrix} V$$

$$\begin{bmatrix} 1 & -2 & | & 1 \\ 1 & -3 & | & -2 \end{bmatrix} \begin{bmatrix} 1 & -2 & | & 1 \\ 0 & 4 & | & -2 \\ 1 & -3 & | & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & | & 7 \\ 0 & 4 & | & 12 \\ 0 & -1 & | & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 & | & 7 \\ 0 & 4 & | & 12 \end{bmatrix} \begin{bmatrix} 0 & 1 & | & 7 \\ 0 & 4 & | & 12 \end{bmatrix} \begin{bmatrix} 0 & 1 & | & 7 \\ 0 & 4 & | & 12 \end{bmatrix} \begin{bmatrix} 0 & 1 & | & 7 \\ 0 & 4 & | & 12 \end{bmatrix} \begin{bmatrix} 0 & 1 & | & 7 \\ 0 & 4 & | & 12 \end{bmatrix}$$

$$T\left(\begin{bmatrix} 77 \\ 37 \end{bmatrix}\right) = \begin{bmatrix} 7-6 \\ 7+3 \\ 7-9 \end{bmatrix} = \begin{bmatrix} 10 \\ -1 \end{bmatrix}$$

$$\left[U = \begin{bmatrix} 7 \\ 3 \end{bmatrix} V \right]$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 4 & 2 \end{bmatrix}$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

$$W \begin{bmatrix} 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix}$$

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Too, since multipying by the same metric que linear dependence

b) If $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation and $u,v,w\in\mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

The V since every matrix transformation is a linear transformation