Appendix A Historical Background: Additional Details

Figure A1: Source of Power Generation

Notes: This figure shows the source of power generation in early 20th-century Japan as a five-year moving average. **Source:** Ministry of Communications (1938)

Figure A2: Power Source Transition from Steam Engine to Electric Motor

Notes: This figure displays the trends in the share of horsepower generated by each power source in Japan from 1900 to 1940 as a five-year moving average. The data comes from Minami (1979), which compiled and calculated the amount of horsepower from various statistical records published by the central government.

Source: Minami (1979)

Figure A3: Inronworks Factory Powered by Steam Engine (*Group Drive System*)

Notes: The picture shows an ironworks factory powered by steam engines in 1907, where power generated by steam engines is transmitted via shafts and belts affixed to the roof (*Group Drive System*). This production system required sizable and sturdy workshops.

Source: Ikegai Ironworks (1941)

Figure A4: Technology Adoption by Establishment Size (by Industry)

Notes: These figures display the adoption rate of steam engines and electric motors by establishment size in 1902 (left), 1909 (center), and 1919 (right), where we define the number of workers as a measure of establishment size. Each point represents the average adoption rate among establishments in each decile bin. Note that the minimum number of workers is ten.

(b) Machinery Industry

Source: Ministry of Agriculture and Commerce (1904, 1911, 1921)

Appendix B Data: Additional Details

Figure A5: Administrative Changes in Japan

Notes: This figure shows the trend in the number of administrative units in Japan from 1900 to 2020. In all analyses throughout this paper, I use the harmonized municipality unit, which represents the most aggregated unit from 1900 to 1940. For a validity check, I also harmonized the municipality transitions from 1940 to 2020, although this was not used in the main analysis.

Source: Higashide (2024)

Figure A6: Original Sample Page of the Handbook of Electric Utility Industry

Notes: This picture shows a sample page from Ministry of Communications (1930), providing information on the electricity supply areas for each utility company. I digitized this table across several editions to construct a panel dataset of electricity access status for the years 1909, 1914, 1919, 1924, and 1929.

Source: Ministry of Communications (1930)

Appendix C Descriptive Statistics

Appendix C.1 Summary Statistics

Table A1: Descriptive Statistics

Variable	Observation	Mean	SD	Min	Max
Geography					
Area Size (km^2)	10429	27.199	40	0.105	699
Distance to Coast (km)	10429	25.111	24.8	0.01	113
Distance to the Metropolis (km)	10429	192.256	156.7	0	655
Hydropower Potential	10429	0.003	1	-0.471	11
Ruggedness (degree)	10429	10.082	7.9	0.007	35
Streamflow	10429	0.004	1	-0.844	8
Pre-Access Economic Developmen	t				
Population in 1908	10429	4631.128	15718.5	42	625193
Railway Access in 1909 (km)	10429	13.337	15.2	0.014	106
Electricity Access					
Electricity Access in 1909	10429	0.041	0.2	0	1
Electricity Access in 1914	10429	0.26	0.4	0	1
Electricity Access in 1919	10429	0.714	0.5	0	1
Electricity Access in 1924	10429	0.935	0.2	0	1
Electricity Access in 1929	10429	0.987	0.1	0	1
Manufacturing Activities in 190	9				
Number of Establishments	10429	1.327	9.5	0	432
- w/ Water Wheel	10429	0.125	0.8	0	35
- w/ Steam Engine	10429	0.321	2.1	0	91
- w/ Electric Motor	10429	0.085	1.4	0	65
Number of Workers	10429	60.623	557.5	0	30121
Today's Economic Activity					
Number of Firms	10429	113.257	618.8	0	31084
Employment (\times 10 ³)	10429	0.982	7.9	0	301
Sales (\times 10 ⁶ yen)	10429	1.533	28.6	0	2151

Notes: This table shows the summary statistics of the municipality characteristics. The Metropolis refers to Tokyo, Yokohama, Nagoya, Kyoto, Osaka, and Kobe, stipulated as the six largest cities by the law in 1922. "Streamflow" indicates the estimated mean annual streamflow weighted by the area size and "Ruggedness" is the average slope of the municipality. Note that "Hydropower Potential" and "Streamflow" are standardized so that the mean is zero and the standard deviation is one. Railway Access means the minimum distance to the nearest railway station.

Figure A7: Expansion of Electricity Grids in Japan

Appendix D Additional Results

Appendix D.1 IV: Hydropower potential

Table A2: Hydropower Potential and Manufacturing Activities

	Number of Establishments							
	Total w/ Water Whee							
	(1)	(2)	(3)	(4)	(5)	(6)		
Hydropower Potential × 1902	-0.024	-0.020	-0.004	-0.017	-0.016	-0.010		
	(0.022)	(0.023)	(0.023)	(0.020)	(0.020)	(0.021)		
Hydropower Potential \times 1916	0.015	0.023	0.018	-0.001	-0.002	-0.003		
	(0.016)	(0.016)	(0.017)	(0.010)	(0.010)	(0.011)		
Hydropower Potential \times 1919	0.091^{**}	0.090^{**}	0.080^{**}	0.000	0.001	0.000		
	(0.036)	(0.037)	(0.038)	(0.021)	(0.021)	(0.021)		
Municipality FE	✓	✓	✓	√	√	√		
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Geography × Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Pop. density 1908 × Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Streamflow × Year FE		\checkmark	\checkmark		\checkmark	\checkmark		
Ruggedness \times Year FE			\checkmark			\checkmark		
Observations	40,020	40,020	40,020	40,020	40,020	40,020		
Adjusted R ²	0.68	0.68	0.68	0.58	0.58	0.58		
Mean of dep.var	0.72	0.72	0.72	0.09	0.09	0.09		

Notes: This table presents the effects of hydropower potential on manufacturing activities and water wheel adoption. Observations are municipalities where the electricity supply began after 1909. Robust standard errors clustered at the municipality level are reported in parentheses. The dependent variable "w/ Water Wheel" and "w/ Steam Engine" represent the number of establishments using water wheels and the number of establishments using steam engines, respectively. The independent variable, "Hydropower Potential", is a standardized measure of municipality-level potential for hydropower generation, with standard deviation of one, thus the estimates reflect differences in economic activities with one standard deviation higher hydropower potential. The vector of control variables, "Geography", includes the municipality area size (in log), the distance to the coast (in log), and the distance to the metropolis (in log). *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Table A3: First Stage: Relationship between Hydropower Potential and Electricity Access

	Electric	ity Access	in 1914	Early Electricity Access			
	(1)	(2)	(3)	(4)	(5)	(6)	
Hydropower Potential	0.041*** (0.007)	0.042*** (0.007)	0.041*** (0.007)	0.216*** (0.074)	0.219*** (0.076)	0.250*** (0.076)	
Prefecture FE	√	√	√	√	√	√	
Geography	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Pop. density 1908	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Streamflow		\checkmark	\checkmark		\checkmark	\checkmark	
Ruggedness			\checkmark			\checkmark	
Observations	10,005	10,005	10,005	10,005	10,005	10,005	
Adjusted R ²	0.23	0.23	0.23	0.31	0.31	0.31	
F-test (1st stage)	72.7	70.1	65.9	18.0	17.9	22.7	
Mean of dep.var	0.23	0.23	0.23	15.7	15.7	15.7	

Notes: First stage estimates are reported. Observations are municipalities where the electricity supply began after 1909. Robust standard errors clustered by municipalities within 30km radius, following Conley (1999), are reported in parentheses. The instrumental variable, "Hydropower Potential", is a standardized measure of municipality-level potential for hydropower generation, with standard deviation of one, thus the estimates reflect differences in electricity access with one standard deviation higher hydropower potential. The vector of control variables, "Geography", includes the municipality area size (in log), the distance to the coast (in log), and the distance to the metropolis (in log). *, ***, and *** indicate significance at the 10%, 5%, and 1% levels.

Appendix D.2 Short-run effect: Robustness

Table A4: Robustness: Effect of Electricity Access on Industrialization

	Δ Number of Establishments (1909-1919)				Demographics		
	Total (1)	w/ Electric Motor (2)	Total (3)	w/ Electric Motor (4)	Δ Mnf. Workers (1909-1919) (5)	Δ Pop. (1908-1918) (6)	
Electricity Access in 1914	0.298***	0.551***	2.02*	1.29***	122.5***	156.0	
	(0.088)	(0.062)	(1.04)	(0.409)	(44.7)	(376.8)	
Δ Railway Access	-0.038	-0.034	0.036	-0.002	2.19	-28.4	
	(0.044)	(0.026)	(0.070)	(0.032)	(3.13)	(28.1)	
Model	OLS	OLS	IV	IV	IV	IV	
Prefecture FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Geography	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Pop. density 1908	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Streamflow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ruggedness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Observations	10,005	10,005	10,005	10,005	10,005	9,991	
First stage F-stat			64.6	64.6	64.6	65.5	
Mean of dep.var	0.30	0.36	0.30	0.36	24.7	228.1	

Notes: This table presents the effects of electricity access in 1914 on manufacturing activities, electric motor adoption, and demographics, estimated using OLS and IV methods. For IV regressions, the second-stage estimates are reported. Observations are municipalities where the electricity supply began after 1909. Estimates are from instrumental variables specifications in which the endogenous variable is "Electricity Access in 1914" and the instrument is the "Hydropower Potential". Robust standard errors clustered by municipalities within 30km radius, following Conley (1999), are reported in parentheses. The vector of control variables, "Geography", includes the municipality area size (in log), the distance to the coast (in log), and the distance to the metropolis (in log). The variable " Δ Railway Access" represents the change in the distance to the nearest railway station between 1909 and 1919. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Table A5: Robustness: Drop Municipalities with Large Hydropower Stations

	Δ Num	ber of Establis	Demographics			
	Total (1)	w/ Electric Motor (2)	Total (3)	w/ Electric Motor (4)	Δ Mnf. Workers (1909-1919) (5)	Δ Pop. (1908-1918) (6)
Electricity Access in 1914	0.328*** (0.090)	0.560*** (0.064)	1.34* (0.771)	1.32*** (0.395)	90.0** (40.8)	121.1 (357.6)
Model	OLS	OLS	IV	IV	IV	IV
Prefecture FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Geography	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Pop. density 1908	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Streamflow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ruggedness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations First stage F-stat	9,864	9,864	9,864 67.4	9,864 67.4	9,864 67.4	9,850 68.3
Mean of dep.var	0.30	0.37	0.30	0.37	24.5	224.3

Notes: This table presents the effects of electricity access in 1914 on manufacturing activities, electric motor adoption, and demographics, estimated using OLS and IV methods. For IV regressions, the second-stage estimates are reported. Observations are municipalities where the electricity supply began after 1909. Estimates are from instrumental variables specifications in which the endogenous variable is "Electricity Access in 1914" and the instrument is the "Hydropower Potential". Robust standard errors clustered by municipalities within 30km radius, following Conley (1999), are reported in parentheses. The vector of control variables, "Geography", includes the municipality area size (in log), the distance to the coast (in log), and the distance to the metropolis (in log). *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Table A6: Falsification: Effect of Electricity Access on Entrant Activities (1902-1909)

	Number of Establishments							Demographics	
	Total		w/ Steam Engine		w/ Electric Motor		Mnf. Workers		
	(1) Δ All	(2) Entrant	(3) Δ All	(4) Entrant	(5) Δ All	(6) Entrant	(7) Δ All	(8) Entrant	
Electricity Access in 1914	0.176 (0.693)	0.762* (0.406)	0.383** (0.170)	0.181 (0.127)	0.012 (0.016)	0.011 (0.009)	24.4 (28.0)	32.8** (14.5)	
Model	IV	IV	IV	IV	IV	IV	IV	IV	
Prefecture FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Geography	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Pop. density 1908	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Streamflow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ruggedness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Observations	10,005	10,005	10,005	10,005	10,005	10,005	10,005	10,005	
First stage F-stat	65.9	65.9	65.9	65.9	65.9	65.9	65.9	65.9	
Mean of dep.var	0.33	0.33	0.07	0.10	0.004	0.002	10.5	11.7	

Notes: This table presents the effects of electricity access in 1914 on manufacturing activities, technology adoption, and demographics, estimated using IV methods. For IV regressions, the second-stage estimates are reported. Observations are municipalities where the electricity supply began after 1909. Estimates are from instrumental variables specifications in which the endogenous variable is "Electricity Access in 1914" and the instrument is the "Hydropower Potential". Robust standard errors clustered by municipalities within 30km radius, following Conley (1999), are reported in parentheses. The vector of control variables, "Geography", includes the municipality area size (in log), the distance to the coast (in log), and the distance to the metropolis (in log). *, **, and *** indicate significance at the 10%, 5%, and 1% levels.