Homework 7

D. Zack Garza

November 5, 2019

Contents

1	Prol	blem 1																	1											
	1.1	Part 1																 						 						1
	1.2	Part 2																												2

1 Problem 1

1.1 Part 1

In order for IS to be a submodule of A, we need to show the following implication:

$$x \in IS, \ a \in A \implies xa, ax \in IS.$$

Suppose $x \in IS$. Then by definition, $x = \sum_{i=1}^{n} r_i a_i$ for some $r_i \in R, a_i \in A$.

But then

$$xa = \left(\sum_{i=1}^{n} r_i a_i\right) a$$
$$= \sum_{i=1}^{n} r_i a_i a$$
$$= \sum_{i=1}^{n} r_i a'_i,$$

where $a'_i := a_i a$ for each i, which is still an element of A since A itself is a module and thus closed under multiplication.

But this expresses xa as an element of IS. Similarly, we have

$$ax = a\left(\sum_{i=1}^{n} r_i a_i\right)$$

$$= \sum_{i=1}^{n} a r_i a_i a$$

$$\coloneqq \sum_{i=1}^{n} r_i a a_i, \qquad \qquad \coloneqq \sum_{i=1}^{n} r_i a'_i,$$

and so $ax \in IS$ as well.

1.2 Part 2