Analízis I. gyakorlatok Programtervező informatikus BSc 2018 A, B és C szakirány

Egyenlőtlenségek

■ Szükséges ismeretek

- Teljes indukció.
- Egyenletek és egyenlőtlenségek megoldása.

■ Feladatok

1. Háromszög-egyenlőtlenségek:

Minden a és b valós számra

- (a) $|a+b| \le |a| + |b|$,
- (b) $|a| |b| \le |a b|$.
- 2. A Bernoulli-egyenlőtlenség: Minden $h \geq -1$ valós számra és minden $n \in \mathbb{N}^+$ természetes számra

$$(1+h)^n \ge 1 + nh.$$

3. A számtani és a mértani közép közötti egyenlőtlenség: Legyen $n \ge 2$ tetszőleges természetes szám és a_1, a_2, \ldots, a_n tetszés szerinti nemnegatív valós számok. Ekkor

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}.$$

Egyenlőség akkor és csak akkor áll fenn, ha $a_1 = a_2 = \cdots = a_n$.

Megjegyzés. Az $S_n := \frac{a_1 + a_2 + \dots + a_n}{n}$, illetve az $M_n := \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$ számot az a_1, \dots, a_n számok számtani közepének, illetve mértani közepének nevezzük.

4. Bizonyítsuk be, hogy minden $a \ge -1/2$ valós számra fennáll az

$$(1-a)^5(1+a)(1+2a)^2 \le 1$$

egyenlőtlenség.

5. Bizonyítsuk be, hogy

$$2\sqrt{n+1} - 2 < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$
 $(n = 1, 2, ...).$

■ Házi feladatok

1. Bizonyítsa be, hogy

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < 2\sqrt{n} - 1 \qquad (n = 2, 3, \dots).$$

2. Oldja meg \mathbb{R} -en a

$$\frac{3x^2 + 7x - 4}{x^2 + 2x - 3} < 2$$

egyenlőtlenséget.

■ Gyakorló feladatok

1. Igazolja, hogy ha az a_1, a_2, \ldots, a_n pozitív valós számok szorzata 1, akkor

$$(1+a_1)(1+a_2)\dots(1+a_n) \ge 2^n$$
.

Mikor van itt egyenlőség?

2. Mutassa meg, hogy tetszőleges pozitív a,b,c valós számokra fennállnak az alábbi egyenlőtlenségek:

$$8 abc \le (a+b) \cdot (b+c) \cdot (a+c) \le \frac{8}{27} (a+b+c)^3.$$

3. Lássa be, hogy minden a, b, c pozitív valós szám esetén:

(a)
$$a^2 + b^2 + c^2 \ge ab + ac + bc$$
,

(b)
$$\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} \ge a + b + c$$
,

(c)
$$(a + b + c) (ab + bc + ca) \ge 9 abc$$
.

4. Bizonyítsa be, hogy ha $n \in \mathbb{N}^+$ és a_1, a_2, \dots, a_n tetszőleges pozitív valós számok, akkor

(a)
$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} \ge n;$$

(b)
$$a_1 a_2 \cdots a_n \le \frac{a_1^n + a_2^n + \cdots + a_n^n}{n}$$
.

Mikor van egyenlőség a fenti egyenlőtlenségekben?

5. Bizonyítsa be, hogy

$$2^n > 1 + n\sqrt{2^{n-1}}$$
 $(n = 2, 3, 4, \ldots).$

■ További feladatok

1. Az a_1, a_2, \ldots, a_n pozitív valós számok harmonikus közepét így értelmezzük:

$$H_n := \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \quad (n \in \mathbb{N}^+).$$

A harmonikus-, a mértani- és a számtani közepek között a

$$H_n \le M_n \le S_n \quad (n \in \mathbb{N}^+)$$

egyenlőtlenség teljesül. Egyenlőség akkor és csak akkor áll fenn, ha a számok egyenlők egymással.

2. A Cauchy-Bunyakovszkij-egyenlőtlenség: Legyen $n \ge 1$ egy természetes szám. Ekkor minden a_1, a_2, \ldots, a_n és b_1, b_2, \ldots, b_n valós számra

$$\left| \sum_{k=1}^n a_k b_k \right| \le \sqrt{\sum_{k=1}^n a_k^2} \cdot \sqrt{\sum_{k=1}^n b_k^2}.$$

Egyenlőség akkor és csak akkor áll fenn, ha létezik olyan $\lambda \in \mathbb{R}$, hogy $a_1 = \lambda b_1$, $a_2 = \lambda b_2$, ..., $a_n = \lambda b_n$ vagy $b_1 = \lambda a_1$, $b_2 = \lambda a_2$, ..., $b_n = \lambda a_n$.

Megjegyzés. Az állítás geometriai tartalma n=2 esetén a következő: tekintsük az $\underline{a}=(a_1,a_2)$ és $\underline{b}=(b_1,b_2)$ síkbeli vektorokat. Ezek hossza $|\underline{a}|=\sqrt{a_1^2+a_2^2},\ |\underline{b}|=\sqrt{b_1^2+b_2^2},$ skaláris szorzata pedig $\underline{a}\cdot\underline{b}=|\underline{a}|\cdot|\underline{b}|\cos\gamma\ (\gamma \text{ az }\underline{a}\text{ és }\underline{b}\text{ vektorok által bezárt szög}),$ amit koordinátákkal így fejezhetünk ki: $\underline{a}\cdot\underline{b}=a_1b_1+a_2b_2$. Mivel $|\cos\gamma|\leq 1$, ezért ebből $|\underline{a}\cdot\underline{b}|\leq |\underline{a}|\cdot|\underline{b}|,$ azaz

$$|a_1b_1 + a_2b_2| \le \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}$$

következik. A Cauchy-Bunyakovszkij-egyenlőtlenség tehát ennek általánosítása.

Számhalmaz szuprémuma és infimuma

■ Szükséges ismeretek

- Számhalmaz maximuma és minimuma.
- Korlátos számhalmazok.
- A szuprémum elv.
- Számhalmaz szuprémuma és infimuma.

■ Feladatok

1. Fogalmazzuk meg pozitív állítás formájában azt, hogy a nemüres $A \subset \mathbb{R}$ halmaz felülről **nem** korlátos. Mutassuk meg, hogy az

$$A := \left\{ \frac{x^2 + 2x + 3}{x + 1} \mid x \in [1, +\infty) \right\}$$

halmaz felülről nem korlátos.

2. Bizonyítsuk be, hogy az

$$A := \left\{ 2 - \frac{1}{n} \mid n = 1, 2, \dots \right\}$$

halmaznak **nincs** maximuma.

3. Korlátos-e alulról, illetve felülről a A halmaz, ha

(a)
$$A := \left\{ \frac{1}{x} \mid x \in (0,1] \right\},$$

(b)
$$A := \left\{ \frac{x+1}{2x+3} \mid x \in [0, +\infty) \right\},$$

(c)
$$A := \left\{ \frac{2|x|+3}{3|x|+1} \mid x \in [-2, +\infty) \right\},$$

(d)
$$A := \left\{ \sqrt{x+1} - \sqrt{x} \mid 0 \le x \in \mathbb{R} \right\}$$
?

Határozzuk meg sup A-t és inf A-t. Van-e az A halmaznak legnagyobb, illetve legkisebb eleme?

5

■ Házi feladatok

1. Korlátos-e alulról, illetve felülről az A halmaz, ha

(a)
$$A := \left\{ \frac{1}{x^2} \mid 0 < x \le 1 \right\},$$

(b)
$$A := \left\{ \frac{2n+1}{3n+2} \mid n \in \mathbb{N} \right\},$$

(c)
$$A := \left\{ \frac{5x+7}{2x+1} \mid x \in [0, +\infty) \right\}$$
?

Határozza meg sup A-t és inf A-t. Van-e az A halmaznak legnagyobb, illetve legkisebb eleme?

■ Gyakorló feladatok

1. Korlátos-e alulról, illetve felülről az A halmaz, ha

(a)
$$A := \left\{ \frac{|x| - 2}{|x| + 2} \mid x \in \mathbb{R} \right\},$$

(b) $A := \left\{ \frac{2x^2 + 1}{5x^2 + 2} \mid x \in \mathbb{R} \right\},$
(c) $A := \left\{ \frac{n^2 + n + 2}{3n + 1} \mid n \in \mathbb{N} \right\},$
(d) $A := \left\{ \frac{2m - 1}{3n + 2} \mid m, n \in \mathbb{N}, m \le n \right\},$
(e) $A := \left\{ \frac{2^{n+2} + 9}{3 \cdot 2^n + 2} \mid n \in \mathbb{N} \right\}$?

Határozza meg sup A-t és inf A-t. Van-e az A halmaznak legnagyobb, illetve legkisebb eleme?

2. Korlátos-e alulról, illetve felülről az

$$A := \left\{ \frac{x}{y} \in \mathbb{R} \mid 0 < x < 1, \quad 0 < y < x \right\}$$

halmaz? Ha igen, akkor számítsa ki sup A-t és inf A-t. Van-e az A halmaznak legnagyobb, illetve legkisebb eleme?

■ További feladatok

1. Bizonyítsa be, hogy a valós számok tetszőleges A és B nemüres és korlátos részhalmazaira

(a)
$$\sup \{a+b : a \in A \text{ \'es } b \in B\} = \sup A + \sup B$$
,

$$\inf \{a+b : a \in A \text{ és } b \in B\} = \inf A + \inf B;$$

(b) ha
$$A$$
 és B minden eleme pozitív, akkor

$$\sup \{a \cdot b : a \in A \text{ \'es } b \in B\} = \sup A \cdot \sup B,$$

$$\inf\{a \cdot b : a \in A \text{ \'es } b \in B\} = \inf A \cdot \inf B.$$

2. Igazolja, hogy bármely $A, B \subset \mathbb{R}$ nemüres, korlátos halmazok esetében

(a)
$$\inf (A \cup B) = \min \{\inf A, \inf B\},\$$

$$\sup (A \cup B) = \max \{\sup A, \sup B\};$$

(b) ha
$$A \cap B \neq \emptyset$$
, akkor

$$\inf (A \cap B) \ge \max \{\inf A, \inf B\},\$$

$$\sup (A \cap B) \le \min \{\sup A, \sup B\};$$

(c) ha
$$A \subset B$$
, akkor inf $A \ge \inf B$ és $\sup A \le \sup B$.

Adjon példát olyan A, B halmazokra, hogy (b)-ben \leq (\geq) helyett < (>) legyen írható.

Függvények

■ Szükséges ismeretek

- A függvény definíciója, értelmezési tartománya, értékkészlete.
- Halmaznak függvény által létesített képe, ősképe.
- Függvény invertálhatóságának a fogalma.
- Az inverz függvény definíciója.
- Az összetett függvény fogalma.

■ Feladatok

1. Határozzuk meg a C := [-2, 2] halmaz

$$f(x) := 3 + 2x - x^2 \quad (x \in \mathbb{R})$$

függvény által létesített képét!

2. Számítsuk ki a D := [1, 2] halmaz

$$f(x) := |x - 1| - 1 \quad (x \in \mathbb{R})$$

függvény által létesített ősképét!

3. Bizonyítsuk be, hogy az

$$f(x) := \frac{1}{1 + |x - 1|} \quad (x \in \mathbb{R})$$

függvény nem invertálható!

4. Mutassuk meg, hogy az

$$f(x) := \left(\frac{x-1}{x+1}\right)^2 - 1 \quad (x \in (-1,1))$$

függvény invertálható, és számítsuk ki az inverzét!

5. Határozzuk meg az $f \circ g$ kompozíciót, ha

(a)
$$f(x) := \sqrt{x+1} \ (x \in [-1, +\infty)), \ g(x) := x^2 - 3x + 1 \ (x \in \mathbb{R});$$

(b)
$$f(x) := \frac{1}{2x+1} \left(x \in \mathbb{R} \setminus \{-\frac{1}{2}\}\right), \quad g(x) := x^2 + 3x + \frac{3}{2} \quad (x \in \mathbb{R})!$$

6. Legyen

$$f(x) := \sqrt{2x+1} \quad (x \in \left[\frac{1}{2}, +\infty\right]) \quad \text{és} \quad g(x) := \frac{1}{x^2 - 2} \quad (x \in (2, +\infty)).$$

7

Határozzuk meg az $f \circ g$ és a $g \circ f$ függvényeket!

■ Házi feladatok

1. Határozza meg az E := (-1,3) halmaz

$$f(x) := \frac{2x+4}{x+1} \quad \left(x \in \mathbb{R} \setminus \{-1\}\right)$$

függvény által létesített képét és ősképét!

2. Mutassa meg, hogy az

$$f(x) := \frac{1 - \sqrt{x}}{1 + \sqrt{x}} \quad \left(x \in [0, +\infty) \right)$$

függvény invertálható, és számítsa ki az inverzét.

3. Írja fel az $f \circ g$ és a $g \circ f$ kompozíciót, ha

$$f(x) := \operatorname{sign}(x) \quad (x \in \mathbb{R}), \qquad g(u) := \frac{1}{u} \quad (u \in \mathbb{R} \setminus \{0\}).$$

■ Gyakorló feladatok

1. Határozza meg a C := [-1, 6] halmaz

$$f(x) := x^2 - 6x + 5 \quad (x \in \mathbb{R})$$

függvény által létesített képét.

2. Legyen

$$f(x) := \sqrt{|5x - 2|}$$
 $(x \in \mathbb{R})$ és $D := (-1, 2]$.

Határozza meg az $f^{-1}[D]$ halmazt.

3. Mutassa meg, hogy az

$$f(x) := \begin{cases} 3x + 1 & (0 \le x \le 1) \\ \sqrt{18 - x} & \text{ha } (1 < x < 2) \end{cases}$$

függvény invertálható, és határozza meg az inverzét.

4. Határozza meg az $f \circ g$ kompozíciót, ha

$$f(x) := \begin{cases} 0 & (-\infty < x \le 0) \\ x & (0 < x < +\infty), \end{cases}$$
 és $g(x) := \begin{cases} 0 & (-\infty < x \le 0) \\ -x^2 & (0 < x < +\infty). \end{cases}$

5. Legyen $f(x) := x^2 \quad (x > 0)$ és $g(x) := x + 1 \quad (x > 0)$. Mutassa meg, hogy az $f \circ g$ függvény invertálható, és határozza meg az inverzét.

■ További feladatok

1. Az $\alpha \in \mathbb{R}$ paraméter mely értékénél lesz az

$$f(x) := \begin{cases} \alpha x + 1, & \text{ha } 0 \le x \le 1\\ \alpha - x, & \text{ha } 1 < x \le 2, \end{cases}$$

függvény invertálható? Mi lesz akkor $\mathcal{D}_{f^{-1}}$, $\mathcal{R}_{f^{-1}}$, illetve f^{-1} ?

2. Bizonyítsa be, hogy ha az f és a g függvény invertálható, továbbá $\mathcal{R}_g \subset \mathcal{D}_f$, akkor $f \circ g$ is invertálható függvény, és

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

3. Legyen $f:A\to B$ tetszőleges függvény. Bizonyítsa be, hogy bármely $D_1,D_2\subset B$ esetén

(a)
$$f^{-1}[\emptyset] = \emptyset$$
, $f^{-1}[\mathcal{R}_f] = \mathcal{D}_f$;

(b)
$$f^{-1}[D_1 \cup D_2] = f^{-1}[D_1] \cup f^{-1}[D_2];$$

(c)
$$f^{-1}[D_1 \cap D_2] = f^{-1}[D_1] \cap f^{-1}[D_2];$$

(d)
$$f^{-1}[D_1 \setminus D_2] = f^{-1}[D_1] \setminus f^{-1}[D_2].$$

4. Igazolja, hogy az $f: A \to B$ függvényre az

$$f[C_1 \cap C_2] = f[C_1] \cap f[C_2]$$

egyenlőség akkor és csak akkor teljesül minden $C_1, C_2 \subset A$ halmazra, ha f invertálható.

5. Igazolja, hogy az $f: A \to B$ függvényre az

$$f[C_1 \setminus C_2] = f[C_1] \setminus f[C_2]$$

egyenlőség akkor és csak akkor teljesül minden $C_1, C_2 \subset A$ halmazra, ha f invertálható.

6. Legyen $f:A\to B$ tetszőleges függvény. Bizonyítsa be, hogy minden $D\subset B$ halmazra $f[f^{-1}[D]]\subset D$. Igazolja azt is, hogy az $f[f^{-1}[D]]=D$ egyenlőség akkor és csak akkor teljesül minden $D\subset B$ halmazra, ha $\mathcal{R}_f=B$.

Valós sorozatok 1.

■ Szükséges ismeretek

- Sorozat konvergenciájának és határértékének a definíciója.
- \bullet ($\pm \infty$)-hez tartó sorozatok.
- A tágabb értelemben vett határérték fogalma.

■ Feladatok

1. Tekintsük az (a_n) sorozat konvergenciájának a definícióját:

$$\exists A \in \mathbb{R}, \ \forall \varepsilon > 0 \text{-hoz} \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : |a_n - A| < \varepsilon.$$

Módosítsuk ezt a következőképpen:

$$\exists A \in \mathbb{R} \text{ és } \exists n_0 \in \mathbb{N}, \ \forall \varepsilon > 0 \text{ és } \forall n > n_0 : |a_n - A| < \varepsilon.$$

Az (a_n) sorozat milyen tulajdonságát fejezi ki az utóbbi állítás?

2. A konvergencia definíciója alapján mutassuk meg, hogy

(a)
$$\lim_{n \to +\infty} \frac{n}{2n-3} = \frac{1}{2},$$

(b)
$$\lim_{n \to +\infty} \frac{n^2 + 1}{2n^2 + n + 2} = \frac{1}{2}$$
,

(c)
$$\lim_{n \to +\infty} (\sqrt{n+3} - \sqrt{n+1}) = 0.$$

Tetszőleges $\varepsilon > 0$ hibakorláthoz tehát határozzunk meg egy n_0 küszöbindexet!

3. A definíció szerint az (a_n) sorozat $(+\infty)$ -hez tart, ha

$$\forall P > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \forall n > n_0 : a_n > P$.

Módosítsuk ezt a következőképpen:

$$\exists P > 0 \text{ és } \exists n_0 \in \mathbb{N}, \forall n > n_0 : a_n > P.$$

Az (a_n) sorozat milyen tulajdonságát fejezi ki az utóbbi állítás?

4. A határérték definíciója alapján mutassuk meg, hogy

(a)
$$\lim_{n \to +\infty} \frac{n^2 + 3n + 1}{n+3} = +\infty$$
,

(b)
$$\lim_{n \to +\infty} \frac{2 - 3n^2}{n + 1} = -\infty$$
.

Tetszőleges P hibakorláthoz tehát határozzunk meg egy n_0 küszöbindexet!

■ Házi feladatok

- **1.** Tegyük fel, hogy az $A \in \mathbb{R}$ szám minden környezete az (a_n) sorozatnak végtelen sok tagját tartalmazza. Következik-e ebből az, hogy az (a_n) sorozat konvergens?
- 2. A határérték definíciója alapján mutassa meg, hogy

(a)
$$\lim_{n \to +\infty} \sqrt{\frac{n^3 + n^2 - 2n}{n^3 + 1}} = 1$$
,

(b)
$$\lim_{n \to +\infty} \frac{n^4 + 2n^2 + 1}{n^2 + 1} = +\infty,$$

(c)
$$\lim_{n \to +\infty} (\sqrt{n^2 + 3n - 1} - 2n) = -\infty!$$

■ Gyakorló feladatok

1. A határérték definíciója alapján mutassa meg, hogy

(a)
$$\lim_{n \to +\infty} \frac{2n^3 + 10}{n^3 + n^2 + n + 1} = 2$$
,

(b)
$$\lim_{n \to +\infty} \frac{2n^2 + (-1)^n n}{n^2 + 2} = 2,$$

(c)
$$\lim_{n \to +\infty} \frac{n - \sqrt{n} - 1}{n + \sqrt{n} + 1} = 1$$
,

(d)
$$\lim_{n \to +\infty} \sqrt{\frac{2n^3 - n^2 + 3n + 1}{n^2 + \sqrt{n} + 2}} = +\infty,$$

(e)
$$\lim_{n \to +\infty} \left(\sqrt{2n + (-1)^n} - \sqrt{2n} \right) = 0,$$

(f)
$$\lim_{n \to +\infty} \left(\sqrt{n+3} - \sqrt{2n+1} \right) = -\infty!$$

- **2.** Legyen (a_n) olyan nullasorozat, amelyre $a_n \neq 0$ is teljesül minden $n \in \mathbb{N}$ esetén. Mit lehet mondani az $\left(\frac{1}{a_n}\right)$ sorozat határértékéről?
- 3. Igazolja, hogy az

$$a_n := n^{(-1)^n} \quad (n \in \mathbb{N}^+)$$

sorozat divergens!

■ További feladatok

1. Tegyük fel, hogy az (a_n) sorozat konvergens. Mutassa meg, hogy az

$$s_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \in \mathbb{N}^+)$$

számtani közepek sorozata is konvergens, és $\lim (a_n) = \lim (s_n)$. Adjon példát olyan (a_n) sorozatra, amely divergens, de a fenti (s_n) sorozat konvergens. Mutassa meg azt is, hogy ha $\lim (a_n) = +\infty$, akkor $\lim (s_n) + \infty$!

2. Legyen $2 \le k \in \mathbb{N}$. Azt mondjuk, hogy az (a_n) sorozat felbontható $(a_n^{(1)}), (a_n^{(2)}), \ldots, (a_n^{(k)})$ páronként diszjunkt részsorozatokra, ha a részsorozatokhoz tartozó $\nu^{(i)}$ $(i = 1, 2, \ldots, k)$ indexsorozatok értékkészletei egy osztályozása a természetes számok halmazának.

Igazoljuk, hogy ha egy sorozatnak van egy páronként diszjunkt, véges számú részsorozatból álló felbontása, amely felbontásban szereplő sorozatok határértéke azonos, akkor az eredeti sorozat ugyanehhez a számhoz tart!

Igaz-e az előző állítás végtelen számú részsorozatból álló felbontás esetén?

Valós sorozatok 2.

■ Szükséges ismeretek

- Nevezetes sorozatok határértékei.
- A műveletek és a határérték kapcsolatára vonatkozó tételek.
- A rendezés és a határérték kapcsolatára vonatkozó tételek, a közrefogási elv.
- Monoton sorozatok határértékére vonatkozó tételek.

■ Feladatok

1. Legyen

$$P(x) := a_r x^r + a_{r-1} x^{r-1} + \dots + a_1 x + a_0 \quad (x \in \mathbb{R})$$
$$(a_i \in \mathbb{R}, \ i = 0, 1, 2, \dots, r)$$

egy pontosan r-edfokú polinom (azaz $a_r \neq 0$). Mutassuk meg, hogy

$$\lim_{n \to +\infty} P(n) = \begin{cases} +\infty, & \text{ha } a_r > 0 \\ -\infty, & \text{ha } a_r < 0 \end{cases}$$

2. Számítsuk ki az alábbi sorozatok határértékeit:

(a)
$$a_n := \frac{(2-n)^7 + (2+n)^7}{(n^2+n+1)\cdot (2n+1)^5}$$
 $(n \in \mathbb{N}),$

(b)
$$a_n := \frac{n^4 + n^2 + n + 1}{2n^5 + n - 4} \quad (n \in \mathbb{N}),$$

(c)
$$a_n := \frac{n^4 - 2n^3 + n + 1}{n^3 - 4n + 3}$$
 $(n \in \mathbb{N}),$

(d)
$$a_n := \frac{n^7 + n - 12}{1 - n^2 + 3n}$$
 $(n \in \mathbb{N})!$

3. Mi a határértéke az

$$a_n := n^2 \cdot \left(n - \sqrt{n^2 + 1}\right) \quad (n \in \mathbb{N})$$

sorozatnak?

4. Az $\alpha \in \mathbb{R}$ paramétertől függően határozzuk meg az

$$a_n := \sqrt{n^2 + n + 1} - \alpha n \quad (n \in \mathbb{N})$$

sorozat határértékét!

5. A nevezetes sorozatok határértékeiről tanultakat is felhasználva, számítsuk ki az alábbi sorozatok határértékeit:

(a)
$$a_n := \frac{5^{n+1} + 2^n}{3 \cdot 5^n - 5^{-n}} \quad (n \in \mathbb{N}),$$

(b)
$$a_n := \frac{n^2 \cdot 3^n + 2^{2n}}{4^{n+1} + 2^n} \quad (n \in \mathbb{N}),$$

(c)
$$a_n := \sqrt{\frac{(-5)^n + 7^n}{7^{n+1} + n^7}} \quad (n \in \mathbb{N}),$$

(d)
$$a_n := \frac{(-2)^n + n}{n! + 3^n} \quad (n \in \mathbb{N})!$$

6. Konvergensek-e a következő sorozatok, ha igen, mi a határértékük:

(a)
$$a_n := \sqrt[n]{3n^5 + 2n + 1}$$
 $(n \in \mathbb{N}),$

(b)
$$a_n := \sqrt[n]{\frac{n+1}{2n+3}} \quad (n \in \mathbb{N}),$$

(c)
$$a_n := \sqrt[n]{2^n + 3^n} \quad (n \in \mathbb{N}),$$

(d)
$$a_n := \sqrt[n]{\frac{3^n}{n!} + 2^n} \quad (n \in \mathbb{N})$$
?

■ Házi feladatok

1. Számítsa ki az alábbi sorozatok határértékét:

(a)
$$\left(\frac{n^3 - 2n - 1}{-3n^3 + n + 3}\right)$$
,

(b)
$$\left(\frac{(n+1)^3 + (n-1)^3}{n^3 + 1}\right)$$
.

2. Konvergensek-e a következő sorozatok? Ha igen, akkor mi a határértékük?

(a)
$$\left(\sqrt{n^2 + 3n + 1} - 2n\right)$$
;

(b)
$$(n(n-\sqrt{n^2+1}))$$
.

3. Számítsa ki az alábbi határértékeket:

(a)
$$\lim \left(\frac{2^n + 2^{-n}}{2^{-n} + 3^n}\right)$$
,

(b)
$$\lim \left(\frac{n \cdot 2^{n+1} + 3^{2n}}{9^{n-1} + 3^n}\right)$$
,

(c)
$$\lim \left(\sqrt{\frac{(-2)^n + 5^n}{5^{n+1} + n^5}}\right)$$
,

(d)
$$\lim \left(\frac{(-3)^n + n^3}{n! + 5^n}\right)$$
,

(e)
$$\lim \left(\sqrt[n]{2^n + n^2 + 1} \right)$$
,

(f)
$$\lim \left(\sqrt[n]{n3^n + n^3 + (-1)^n} \right)$$
.

■ Gyakorló feladatok

1. Számítsa ki az alábbi sorozatok határértékét:

(a)
$$\left(\frac{n^4 + n^2 + n + 1}{2n^5 + n - 4}\right)$$
,

(b)
$$\left(\frac{(n-1)^7(2n-1)^3}{1+(n+1)^{10}}\right)$$
,

(c)
$$\left(\frac{\sqrt{n^4+1}-n^2}{n^2+1}\right)$$

(d)
$$\left(\frac{n+1}{\sqrt[3]{n^2+3}}\right)$$
,

(e)
$$\left(\sqrt{\frac{3n^2+n+1}{n^2+2}}\right)$$
,

(f)
$$\left(\frac{n-\sqrt{n}-1}{n+\sqrt{n}+1}\right)$$
,

$$(g) \left(\frac{\sqrt[3]{n^2+3}}{n+1}\right),$$

$$\text{(h) } \left(\frac{n+\sqrt{n^4+3}}{2n^2+5}\right),$$

(i)
$$\left(\frac{\sqrt{n^4+1}-n^2}{n+1}\right)$$
,

(j)
$$(n(\sqrt{n^2+4}-n))$$
,

(k)
$$(\sqrt{n^2 + n} - n + 1)$$
,

(1)
$$(\sqrt[3]{n^3 + n^2} - \sqrt[3]{n^3 + 1}),$$

(m)
$$\left(\frac{5^n - 3^{n+2}}{3^n - 2^{2n+1}}\right)$$
,

(n)
$$\left(\frac{2^n + (-1)^n}{2^n - 1}\right)$$
,

(o)
$$(\sqrt[n]{\sqrt{n+2}})$$
,

(p)
$$\left(\sqrt[n]{\frac{3n+\sqrt{n}+1}{n+1}}\right)$$
.

(q)
$$(\sqrt[n]{n^4 + 4n + 1})$$

(r)
$$(\sqrt[n]{3^n + (-1)^n n})$$
.

2. Igaz-e, hogy ha

- (a) (a_n) konvergens, (b_n) divergens $\Rightarrow (a_n + b_n)$ divergens;
- (b) (a_n) divergens, (b_n) divergens $\Rightarrow (a_n + b_n)$ divergens.

3. Az α valós paraméter milyen értékei mellett konvergens az

$$a_n := \frac{(1-\alpha)n^2 + n + 1}{3n^2 + 2} \qquad (n \in \mathbb{N})$$

sorozat? Mi ekkor a határértéke?

4. Határozza meg az $a, b, c \in \mathbb{R}$ paramétereket úgy, hogy

$$\lim_{n \to +\infty} n \left(an - \sqrt{cn^2 + bn - 2} \right) = 1$$

legyen.

■ További feladatok

1. Igazolja, hogy ha $\alpha := \lim (x_n) \Longrightarrow |\alpha| = \lim (|x_n|)$. Igaz-e az állítás megfordítása?

2. Tegyük fel, hogy adottak az $r, s \in \mathbb{N}, a_0, \ldots, a_r \in \mathbb{R}, a_r \neq 0, b_0, \ldots, b_s \in \mathbb{R}, b_s \neq 0$ számok, és legyen

$$R_n := \frac{a_0 + a_1 n + a_2 n^2 + \dots + a_r n^r}{b_0 + b_1 n + b_2 n^2 + \dots + b_s n^s}$$

olyan $n \in \mathbb{N}$ indexekre, amelyekre a nevező nem nulla.

Bizonyítsa be, hogy

$$\lim_{n \to +\infty} R_n = \begin{cases} \frac{a_r}{b_s}, & \text{ha } r = s \\ 0, & \text{ha } r < s \\ +\infty, & \text{ha } r > s \text{ \'es } a_r/b_s > 0 \\ -\infty, & \text{ha } r > s \text{ \'es } a_r/b_s < 0. \end{cases}$$

3. Mutassa meg, hogy az $\left(\frac{n}{\sqrt[n]{n!}}\right)$ sorozat az e számhoz konvergál:

$$\lim_{n \to +\infty} \frac{n}{\sqrt[n]{n!}} = e.$$

- **4.** Tegyük fel, hogy az $(a_n): \mathbb{N} \to \mathbb{R}_0^+$ sorozatra
 - (a) $\lim(a_n) = +\infty$,
 - (b) $\lim(a_n) = 0$

teljesül. Vizsgálja meg határérték szempontjából az $(\sqrt[n]{a_n})$ sorozatot.

5. Legyen (a_n) egy olyan konvergens sorozat, amelynek egyik tagja sem 0. Konvergencia szempontjából mit tud mondani az $(\frac{a_{n+1}}{a_n})$ sorozatról?

Valós sorozatok 3.

■ Szükséges ismeretek

- ullet Az e szám értelmezése.
- Pozitív valós szám m-edik gyökének a létezésére és közelítő értékeinek a kiszámítására vonatkozó tétel. Rekurzív módon megadott sorozatok határértékének a vizsgálata.

■ Feladatok

1. Számítsuk ki a következő sorozatok határértékét:

(a)
$$a_n := \left(\frac{6n-7}{6n+4}\right)^{3n+2} \quad (n \in \mathbb{N}),$$

(b)
$$a_n := \left(\frac{4n+3}{5n}\right)^{5n} \quad (n \in \mathbb{N}^+),$$

(c)
$$a_n := \left(\frac{3n+1}{n+2}\right)^{2n+3} \quad (n \in \mathbb{N})!$$

2. Mutassuk meg, hogy az

$$a_0 := \sqrt{2}, \qquad a_{n+1} := \sqrt{2 + a_n} \quad (n = 0, 1, 2, \ldots)$$

sorozat konvergens és számítsuk ki a határértékét!

3. Az $\alpha > 0$ valós paraméter mely értékeire konvergens az

$$a_0 := \sqrt{\alpha}, \quad a_{n+1} := \sqrt{\alpha + a_n} \quad (n \in \mathbb{N})$$

sorozat, és ekkor mi a határértéke?

4. Legyen $\alpha \geq 0$ valós paraméter. Vizsgáljuk meg határérték szempontjából az

$$a_0 := 0, \qquad a_{n+1} := \alpha + a_n^2 \qquad (n \in \mathbb{N})$$

sorozatot!

5. Mutassuk meg, hogy az

$$a_0 := 0,$$
 $a_{n+1} := \frac{2}{1 + a_n}$ $(n = 0, 1, 2, ...)$

17

sorozat konvergens és számítsuk ki a határértékét!

■ Házi feladatok

1. Számítsa ki a következő sorozatok határértékét:

(a)
$$a_n := \left(\frac{3n+1}{3n+2}\right)^{6n+5} \quad (n \in \mathbb{N}),$$

(b)
$$a_n := \left(\frac{2n+3}{3n+1}\right)^{n-5} \quad (n \in \mathbb{N}),$$

(c)
$$a_n := \left(\frac{3n+3}{2n-1}\right)^{5n+1} \quad (n \in \mathbb{N})!$$

2. Legyen

$$a_0 := \sqrt{3}, \qquad a_{n+1} := \sqrt{3 + 2 a_n} \quad (n = 0, 1, 2, \ldots).$$

Mutassa meg, hogy a sorozat konvergens és számítsa ki a határértékét!

3. Bizonyítsa be, hogy ha $\alpha \in [0,1]$, akkor az

$$a_0 := \frac{\alpha}{2}, \quad a_{n+1} := \frac{a_n^2 + \alpha}{2} \quad (n \in \mathbb{N})$$

sorozat konvergens, és számítsa ki a határértékét!

■ Gyakorló feladatok

1. Számítsa ki a következő sorozatok határértékét:

(a)
$$\left(\left(1+\frac{1}{n}\right)^{n+1}\right)$$
,

(b)
$$\left(\left(1-\frac{1}{n}\right)^n\right)$$
,

(c)
$$\left(\left(1-\frac{1}{n^2}\right)^n\right)$$
,

(d)
$$\left(\left(\frac{2n+2}{2n+5}\right)^{3n+1}\right)$$
,

(e)
$$\left(\left(\frac{n+3}{2n+2}\right)^{2n-3}\right)$$
,

(f)
$$\left(\left(\frac{5n+2}{4n-1} \right)^{n+2} \right)!$$

2. Számítsa ki a következő sorozatok határértékét:

(a)
$$\left(\left(\frac{n^3 - 3}{n^3 + 2} \right)^{n^3} \right)$$
, (b) $\left(\left(\frac{4n + 3}{5n} \right)^{5n^2} \right)$, (c) $\left(\left(\frac{n^2 + 2}{3n^2 - 1} \right)^{n+1} \right)$!

3. Számítsa ki az

$$a_0 := 6, \quad a_{n+1} := 5 - \frac{6}{a_n} \quad (n \in \mathbb{N})$$

sorozat határértékét!

4. Számítsa ki az

$$a_0 := 12, \quad a_{n+1} := \frac{a_n}{4} + 3 \quad (n \in \mathbb{N})$$

sorozat határértékét!

5. Konvergens-e az

$$0 \le a_0 \le 1$$
, $a_{n+1} := 1 - \sqrt{1 - a_n} \ (n \in \mathbb{N})$

sorozat? Ha igen, akkor mi a határértéke?

■ További feladatok

1. A nemnegatív $\alpha < \beta$ valós számokból kiindulva a következőképpen képezzük az (a_n) és a (b_n) sorozatot:

$$a_0 := \alpha, \ b_0 := \beta \text{ és } a_{n+1} := \sqrt{a_n b_n}, \ b_{n+1} := \frac{a_n + b_n}{2} \ (n \in \mathbb{N}).$$

Igazolja, hogy a sorozatok konvergensek, és a határértékük egyenlő! Lényeges-e az $\alpha < \beta$ feltétel? (C. F. Gauss nyomán ezt a közös értéket az α és a β számok **számtani-mértani közepének** nevezzük.)

2. Vizsgálja meg határérték szempontjából az

$$a_0 := 0, \qquad a_{n+1} := \alpha + a_n^2 \qquad (n \in \mathbb{N})$$

sorozatot, ha $\alpha < 0$ valós paraméter!

Végtelen sorok 1.

■ Szükséges ismeretek

- A végtelen sor fogalma, konvergenciája és összege.
- Nevezetes sorok.
- Végtelen sorok lináris kombinációi.
- Sorok konvergenciájának egy szükséges feltétele.
- A sorokra vonatkozó Cauchy-féle konvergenciakritérium.
- Összehasonlító kritériumok.

■ Feladatok

1. Bizonyítsuk be, hogy az alábbi végtelen sorok konvergensek, és számítsuk ki az összegüket:

(a)
$$\sum_{n=2} \frac{(-5)^n}{3^{2n}}$$
,

(b)
$$\sum_{n=0}^{\infty} \frac{\left((-1)^n + 2^n\right)^2}{5^{n+2}},$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
,

(d)
$$\sum_{n=0}^{\infty} \frac{n^2 + 3n}{(n+2)!}!$$

2. Számítsuk ki a

$$\sum_{n=1}^{+\infty} n \, q^n$$

sorösszeget, ha $q \in (-1,1)!$

3. Konvergencia szempontjából vizsgáljuk meg az alábbi sorokat:

(a)
$$\sum_{n=1}^{\infty} \sqrt[n]{0,1}$$
,

(b)
$$\sum_{n=1}^{\infty} \frac{n}{2n-1}$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{2}}$$
,

(d)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n+2}!$$

4. Konvergencia szempontjából vizsgáljuk meg az alábbi sorokat:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$
,

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - n + 1}$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$
,

(d)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n^2+1)}}!$$

■ Házi feladatok

1. Igazolja, hogy az alábbi végtelen sorok konvergensek, és határozza meg az összegüket:

(a)
$$\sum_{n=3} \left(\frac{5}{2^n} + \frac{1}{3^{2n}} \right)$$
,

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}!$$

2. Konvergencia szempontjából vizsgálja meg az alábbi sorokat:

(a)
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^2 + 1}$$
,

(b)
$$\sum_{n=1} \left(\frac{n+3}{n+1} \right)^{n-1}$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{n^2 + n - 1}{\sqrt{n^4 + 1} - n^3 + n^5},$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}!$$

Gyakorló feladatok

1. Határozza meg a következő sorok összegét, ha konvergensek

(a)
$$\sum_{n=0}^{\infty} \frac{1+2^{2n+1}}{5^n}$$

(a)
$$\sum_{n=0}^{\infty} \frac{1+2^{2n+1}}{5^n}$$
, (b) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}+3^n}{4^{n-1}}$, (c) $\sum_{n=3}^{\infty} \frac{1}{n^2-1}$,

(c)
$$\sum_{n=3} \frac{1}{n^2 - 1}$$
,

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + 5n + 4}$$

(d)
$$\sum_{n=2} \frac{1}{n^2 + 5n + 4}$$
, (e) $\sum_{n=1} \frac{1}{n(n+1)(n+2)}$, (f) $\sum_{n=1} \frac{2n+1}{n^2(n+1)^2}$!

(f)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}!$$

2. Számítsa ki az alábbi sorok összegét:

(a)
$$\sum_{n=2} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
,

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n} + n\sqrt{n+1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{(\sqrt{n+1} + \sqrt{n})\sqrt{n(n+1)}}!$$

3. Legyen $q \in \mathbb{R}$, |q| < 1. Határozza meg a következő sor összegét:

$$\sum_{n=1}^{+\infty} n^2 q^n!$$

4. Konvergencia szempontjából vizsgálja meg az alábbi sorokat:

(a)
$$\sum_{n=2} \frac{1}{\sqrt[n]{2^n+1}}$$
,

(a)
$$\sum_{n=2} \frac{1}{\sqrt[n]{2^n + 1}}$$
, (b) $\sum_{n=1} \left(1 + \frac{3}{n+1}\right)^n$, (c) $\sum_{n=1} \frac{3n-2}{n^2 + 1}$,

(c)
$$\sum_{n=1}^{\infty} \frac{3n-2}{n^2+1}$$

(d)
$$\sum_{n=2} \frac{2n+1}{n^3-3n+1}$$
, (e) $\sum_{n=1} \frac{\sqrt{n}}{n^2+1}$,

(e)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$
,

(f)
$$\sum_{n=1} \left(\sqrt[3]{n+1} - \sqrt[3]{n} \right)!$$

5. Igazolja, hogy a páratlan számok reciprokaiból álló sor divergens!

További feladatok

1. Konvergens-e a $\sum a_n$ sor, ha a

$$\lim_{n \to +\infty} (a_{n+1} + a_{n+2} + \dots + a_{n+p}) = 0$$

21

egyenlőség minden $p = 1, 2, 3, \dots$ számra teljesül?

- 2. Tekintsük azokat a természetes számokat, amelyek tízes számrendszerbeli alakjában nem fordul elő a 7 számjegy. Igazolja, hogy ezen számok reciprokainak az összege véges! Mutassa meg, hogy az összeg kisebb 80-nál!
- 3. Cauchy-féle kondenzációs elv: Igazolja, hogy ha (a_n) egy nem negatív tagokból álló, monoton csökkenő sorozat, akkor $\sum a_n$ és $\sum 2^n a_{2^n}$ ekvikonvergens sorok (egyszerre lehetnek konvergensek vagy divergensek)!
- **4.** A Cauchy-féle kondenzációs elv segítségével igazolja a hiperharmonikus sor konvergenciájára vonatkozó tételt!
- 5. Vezessük be a következő jelöléseket. Adott a $\sum a_n$ sor legyen

$$a_n^+ := \begin{cases} a_n, & \text{ha } a_n > 0, \\ 0, & \text{ha } a_n \le 0, \end{cases}$$
 $a_n^- := \begin{cases} 0, & \text{ha } a_n > 0, \\ -a_n, & \text{ha } a_n \le 0. \end{cases}$

minden $n \in \mathbb{N}$ esetén. Majd képezzük a $\sum a_n^+$ és $\sum a_n^-$ pozitív tagú sorokat! Igazolja, hogy $\sum a_n$ akkor és csak akkor abszolút konvergens, ha a $\sum a_n^+$ és $\sum a_n^-$ sorok konvergensek! Mit tud mondani a $\sum a_n^+$ és $\sum a_n^-$ sorokról, ha $\sum a_n$ feltételesen konvergens sor?

Végtelen sorok 2.

Szükséges ismeretek

- A sorokra vonatkozó Cauchy-féle gyök- és d'Alembert-féle hányadoskritérium.
- Összehasonlító kritériumok.
- Nevezetes sorok.
- Leibniz-típusú sorok.
- A p-adikus törtek.
- Sorok Cauchy-szorzata.
- Sorok átrendezése és zárójelezése.

Feladatok

1. Az alábbi sorok közül melyek konvergensek

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot n!}{3n+2}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot n!}{3n+2}$$
, (b) $\sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{n}\right)^n$, (c) $\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$,

(c)
$$\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n + 3^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n + 3^n}$$
, (e) $\sum_{n=0}^{\infty} \left(\frac{n}{n+1}\right)^{n^2 + n + 1}$, (f) $\sum_{n=1}^{\infty} \frac{2n+1}{(-3)^n}$?

(f)
$$\sum_{n=1}^{\infty} \frac{2n+1}{(-3)^n}$$

2. Milyen $x \ge 0$ valós szám esetén konvergens a

$$\sum_{n=0} \left(\frac{\sqrt{x}}{2} - 1 \right)^n$$

sor, és akkor mi az összege?

3. Az x valós szám milyen értéke mellett konvergens a

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{1 + x^{4n}}$$

végtelen sor?

4. Az $x \in \mathbb{R} \setminus \{-1\}$ paraméter milyen értékei mellett konvergens a

$$\sum_{n=1} \frac{(-1)^{n+1}}{2n-1} \cdot \left(\frac{1-x}{1+x}\right)^n$$

végtelen sor?

5. Adjuk meg az

(a)
$$\frac{1}{7}$$
,

(b)
$$0, 1\dot{4}_{(6)}$$

számok diadikus tört alakját!

6. A $\sum_{n=0}^{\infty} q^n$ geometriai sor önmagával vett Cauchy-szorzatának a felhasználásával igazoljuk, hogy minden |q| < 1 valós számra

$$\sum_{n=0}^{+\infty} (n+1) q^n = \frac{1}{(1-q)^2}!$$

Házi feladatok

1. Az alábbi sorok közül melyek konvergensek

(a)
$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$
, (b) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$, (c) $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$,

(d)
$$\sum_{n=1}^{\infty} \frac{3^n \cdot (n+2)!}{(n+1)^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$

(d)
$$\sum_{n=1} \frac{3^n \cdot (n+2)!}{(n+1)^n}$$
, (e) $\sum_{n=1} \frac{(-1)^n n}{n^2 + 1}$, (f) $\sum_{n=1} \left(\frac{1-n}{n^2 + n}\right)^n$?

2. Adja meg a következő számok diadikus tört alakját

a)
$$\frac{3}{8}$$
,

b)
$$0, \dot{2}\dot{3}_{(5)}!$$

3. A $\sum_{n=0}q^n$ és $\sum_{n=0}nq^n$ sorok Cauchy-szorzatával igazolja, hogy ha|q|<1,akkor

$$\sum_{n=0}^{+\infty} n^2 q^n = \frac{q(q+1)}{(1-q)^3}!$$

Gyakorló feladatok

1. Az alábbi sorok közül melyek konvergensek

(a)
$$\sum_{n=2} \frac{(n+1)2^n}{n!}$$
, (b) $\sum_{n=1} \frac{n!}{3^n}$, (c) $\sum_{n=1} \frac{n!}{n^n}$,

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{3^n}$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
, (e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$, (f) $\sum_{n=1}^{\infty} \left(\frac{2n+1}{n+2}\right)^n$?

2. Adja meg a következő számok diadikus tört alakját

(a)
$$\frac{2}{11}$$
,

(b)
$$0,7\dot{1}_{(8)}!$$

- 3. Mutassa meg, hogy a
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$ sor önmagával vett Cauchy-szorzata konvergens,
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ sor önmagával vett Cauchy-szorzata divergens.

■ További feladatok

- 1. A gyök- és a hányadoskritérium alkalmazása. Bizonyítsa be, hogy a gyökkritérium "erősebb", mint a hányadoskritérium. Ez a következőket jelenti.
 - (a) Minden olyan esetben, amikor a hányadoskritérium alkalmazható, akkor a gyökkritérium is alkalmazható. Másként fogalmazva: legyen (a_n) egy pozitív tagú számsorozat. Ekkor

$$\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = A \in \overline{\mathbb{R}} \implies \exists \lim_{n \to +\infty} \sqrt[n]{a_n} \text{ és ez } = A.$$

(b) Van olyan végtelen sor, amelyik a gyökkritérium alapján konvergens, de a hányadoskritérium nem alkalmazható. Tekintse például a

$$\sum_{n=0}^{\infty} \frac{3 + (-1)^n}{2^{n+1}} = 2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^3} + \cdots$$

végtelen sort.

Útmutatás.

(a) Legyen $0 < A < +\infty$. Ekkor

(*)
$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ A - \varepsilon < \frac{a_{n+1}}{a_n} < A + \varepsilon.$

Válasszunk egy $\varepsilon > 0$, $A - \varepsilon > 0$ számot. Tekintsük a hozzá tartozó n_0 küszöbindexet, valamint egy $n > n_0$ számot. A (*) alapján $n_0 + 1, \ldots, n$ -re kapott egyenlőtlenségeket szorozzuk össze, majd alkalmazzuk a közrefogási elvet.

Az állítás bizonyítása az A = 0, $A = +\infty$ esetekben hasonló.

(b) Legyen
$$a_n := \frac{3 + (-1)^n}{2^{n+1}} \ (n \in \mathbb{N})$$
 és
$$b_n := \frac{a_{n+1}}{a_n} = \frac{1}{2} \cdot \frac{3 + (-1)^{n+1}}{3 + (-1)^n} \quad (n \in \mathbb{N}).$$

Ekkor $b_{2n} = \frac{1}{4}$ és $b_{2n+1} = 1$ $(n \in \mathbb{N})$, ezért a (b_n) sorozatnak nincs határértéke, így a hányadoskritérium nem alkalmazható. Ugyanakkor

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{3 + (-1)^n}{2^{n+1}}} = \frac{1}{2} \cdot \frac{1}{\sqrt[n]{2}} \cdot \sqrt[n]{3 + \frac{(-1)^n}{2^{n+1}}} \xrightarrow[n \to +\infty]{} \frac{1}{2},$$

ezért a gyökkritérium szerint a $\sum a_n$ sor konvergens.

- 2. Igazolja, hogy ha egy konvergens sort úgy rendezünk át, hogy minden páratlan indexű tag a nála nagyobb szomszédos taggal helyet cserél, akkor az átrendezett sor is konvergens, és összege az eredeti sorral megegyezik!
- 3. A $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ feltételesen konvergens sornak adjon meg egy olyan átrendezését, amelynek összege

(a) 12, (b)
$$+\infty!$$

4. Az 1. (a) feladat állítását felhasználva mutassa meg, hogy

$$\lim_{n \to +\infty} \sqrt[n]{n!} = +\infty.$$

Végtelen sorok 3.

■ Szükséges ismeretek

- A hatványsor fogalma. A hatványsor konvergenciahalmaza és konvergenciasugara.
- Cauchy-Hadamard-tétel. A konvergenciasugár hányadoson alapuló kiszámítása.
- A hatványsorok összegfüggvénye.
- Műveletek hatványsorokkal.
- Az exponenciális függvény fogalma és tulajdonságai.
- A szinusz- és koszinuszfüggvény fogalma és tulajdonságai.

■ Feladatok

1. Határozzuk meg a

(a)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$$
, (b) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{2n-1} (3x-1)^n$, (c) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} (x+2)^n$

hatványsorok konvergenciasugarát és konvergenciahalmazát a valós számok halmazán.

2. Az alábbi f függvényeket (vagy egy alkalmas leszűkítésüket) állítsuk elő nulla középpontú hatványsor összegeként:

(a)
$$f(x) = \frac{1-x}{1-x^2}$$
 $(x \in \mathbb{R} \setminus \{-1, 1\}),$

(b)
$$f(x) = \frac{1}{1+x^2}$$
 $(x \in \mathbb{R}),$

(c)
$$f(x) = \frac{x}{x^2 - 5x + 6}$$
 $(x \in \mathbb{R} \setminus \{2, 3\}).$

3. Állítsuk elő az

függvényeket nulla középpontú hatványsor összegeként.

■ Házi feladat

1. Határozza meg az alábbi hatványsorok konvergenciasugarát és konvergenciahalmazát a valós számok halmazán

(a)
$$\sum_{n=0}^{\infty} \frac{3^n + (-2)^n}{n+1} x^n$$
, (b) $\sum_{n=2}^{\infty} \frac{2^n + 1}{n^2 - 1} (x-2)^n$.

2. Az alábbi f függvényeket (vagy egy alkalmas leszűkítésüket) állítsa elő nulla középpontú hatványsor összegeként:

(a)
$$f(x) = \frac{x+3}{5x^2+9x-2}$$
 $(x \in \mathbb{R} \setminus \{-2, \frac{1}{5}\}),$

(b)
$$f(x) = \sin(2x) \cdot \cos(2x)$$
 $(x \in \mathbb{R}).$

■ Gyakorló feladatok

1. Határozza meg az alábbi hatványsorok konvergenciasugarát és konvergenciahalmazát a valós számok halmazán

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha}}$$
 $(\alpha \in \mathbb{R})$, (b) $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n^3}$, (c) $\sum_{n=0}^{\infty} (-1)^n n^2 (2x+3)^n$,

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} x^n$$
, (e) $\sum_{n=1}^{\infty} \frac{2^n + 1}{n!} x^n$, (f) $\sum_{n=0}^{\infty} \frac{x^n}{2^n + 3^n}$,

(g)
$$\sum_{n=2} \frac{(x+1)^n}{2^{n^2}}$$
, (h) $\sum_{n=0} \frac{n!}{n^n} x^n$, (i) $\sum_{n=0} \frac{n!}{\alpha^{n^2}} x^n$ ($\alpha > 1$).

2. Az alábbi f függvényeket (vagy egy alkalmas leszűkítésüket) állítsa elő nulla középpontú hatványsor összegeként:

(a)
$$f(x) = \frac{1+x}{3x-2}$$
 $\left(x \in \mathbb{R} \setminus \left\{\frac{2}{3}\right\}\right)$,

(b)
$$f(x) = \frac{x}{(1-x)^2}$$
 $(x \in \mathbb{R} \setminus \{1\}),$

(c)
$$f(x) = \frac{1}{(1-x)(1-x^2)}$$
 $(x \in \mathbb{R} \setminus \{-1, 1\}),$

(d)
$$f(x) = \frac{1}{(1+x^2)^2}$$
 $(x \in \mathbb{R}),$

(e)
$$f(x) = \frac{1}{e^{x^3}}$$
 $(x \in \mathbb{R}),$

(f)
$$f(x) = \sin(2x) \cdot \cos(x)$$
 $(x \in \mathbb{R}).$

■ További feladatok

1. Határozza meg az alábbi hatványsorok konvergenciasugarát és konvergenciahalmazát a valós számok halmazán:

(a)
$$\sum_{n=0}^{\infty} \frac{n}{2^n} x^{4n}$$
, (b) $\sum_{n=1}^{\infty} n^n x^{n^2}$, (c) $\sum_{n=1}^{\infty} n! x^{n^2}$.

2. Tegyük fel, hogy a $\sum_{n=0}^{\infty} c_n x^n$ hatványsor konvergenciasugara 2, a $\sum_{n=0}^{\infty} d_n x^n$ hatványsor konvergenciasugara pedig 3. Mennyi lesz a $\sum_{n=0}^{\infty} (c_n + d_n) x^n$ sor konvergenciasugara?

3. Az alábbi f függvényeket (vagy egy alkalmas leszűkítésüket) állítsa elő egy megadott a középpontú hatványsor összegeként:

(a)
$$f(x) = \frac{2x-5}{x^2-5x+6}$$
 $(a = 1, x \in \mathbb{R} \setminus \{2,3\}),$

(b)
$$f(x) = e^x$$
 $(a = 2, x \in \mathbb{R}).$

4. Tekintsük az

$$a_0 := 0, \ a_1 := 1 \text{ és } a_n := a_{n-1} + a_{n-2} \ (n \in \mathbb{N}, \ n \ge 2)$$

Fibonacci sorozatot. Mutassuk meg, hogy a $\sum_{n=0} a_n x^n$ hatványsor konvergenciasugara legalább 1/2. Határozzuk meg a sor összegfüggvényét a (-1/2,1/2) intervallumon. Ezt felhasználva adjunk explicit képletet az (a_n) sorozatra.

Függvények határértéke és folytonossága 1.

Szükséges ismeretek

- Számhalmaz torlódási pontja.
- A határérték egységes definíciója.
- A határérték egyértelmű.
- A határértékre vonatkozó átviteli elv.
- A közrefogási elv.
- A határérték és a műveletek kapcsolata.
- A határérték definícójának speciális esetei egyenlőtlenségekkel.
- Egyoldali határértékek.
- Nevezetes határértékek: az előjelfüggvény, hatványfüggvények, reciprokfüggvények, gyökfüggvények, polinomfüggvények, racionális törtfüggvények.

Feladatok

1. Legyen $f: \mathbb{R} \to \mathbb{R}$. Fogalmazzuk meg környezetekkel és egyenlőtlenségekkel is az alábbi állításokat:

(a)
$$\lim_{-2} f = 7$$
,

(b)
$$\lim_{x \to 0-0} f(x) = -\infty$$
.

2. A definíció alapján bizonyítsuk be, hogy

(a)
$$\lim_{x \to 0} \frac{1}{1+x} = 1$$
,

(b)
$$\lim_{x \to 1} \frac{x^4 + 2x^2 - 3}{x^2 - 3x + 2} = -8,$$

(c)
$$\lim_{x \to +\infty} \frac{x^2 - 1}{2x^2 + 1} = \frac{1}{2}$$
,

(d)
$$\lim_{x\to 2} \sqrt{2x+5} = 3$$
.

 A nevezetes határértékek és a műveleti tételek felhasználásával számítsuk ki a következő határértékeket:

(a)
$$\lim_{x \to 1} \frac{x^3 + x + 1}{x^3 + x + 2}$$
,

(b)
$$\lim_{x \to -1} \frac{x^2 + x - 3}{x^2 + 2x + 1}$$
,

(c)
$$\lim_{x \to 2+0} \frac{x^2 + 2x - 7}{x^2 - 5x + 6},$$

(d)
$$\lim_{x\to 2-0} \frac{x^2+2x-7}{x^2-5x+6}$$
.

4. Határozzuk meg az alábbi határértékeket:

(a)
$$\lim_{x \to +\infty} (-3x^2 + 2x + 7)$$
,

(b)
$$\lim_{x \to -\infty} (x^3 - x + 2)$$
.

5. A "kiemelés/leosztás technikájával" határozzuk meg az alábbi határértékeket:

(a)
$$\lim_{x \to +\infty} \frac{2x^3 + 3x^2 + 23}{-3x^3 - 5x^2 + 31x + 1}$$
, (b) $\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x^3 - 7x^2 + 5x - 1}$,

(b)
$$\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x^3 - 7x^2 + 5x - 1}$$

(c)
$$\lim_{x \to -\infty} \frac{x^3 + 2x^2 + 11x + 2}{x^2 + 3x + 2}$$
.

6. A "szorzatra bontás technikájával" vizsgáljuk meg a következő határértékeket:

(a)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$$
,

(b)
$$\lim_{x \to 5} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$$
.

■ Házi feladatok

1. A definíció alapján bizonyítsa be, hogy

(a)
$$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 3x^2 + x + 3} = -\frac{2}{5}$$
, (b) $\lim_{x \to +\infty} \frac{x^3 + x - 4}{x^2 + 1} = +\infty$.

(b)
$$\lim_{x \to +\infty} \frac{x^3 + x - 4}{x^2 + 1} = +\infty.$$

2. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 0} \frac{x^5 + 3x^2 - x}{2x^4 - x^3 + x}$$

(b)
$$\lim_{x \to -1} \frac{2x^2 + 7x + 5}{x^3 + 1}$$
,

(c)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{3}{x^3 - 1} \right)$$
,

(d)
$$\lim_{x \to 1} \frac{x^n - 1}{x^m - 1}$$
 $(m, n = 1, 2, ...).$

Gyakorló feladatok

1. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Fogalmazza meg környezetekkel és egyenlőtlenségekkel is az alábbi állításokat:

(a)
$$\lim_{1} f = +\infty$$
,

(b)
$$\lim_{t \to \infty} f = -\infty$$

(a)
$$\lim_{t \to 0} f = +\infty$$
, (b) $\lim_{t \to \infty} f = -\infty$, (c) $\lim_{x \to -1+0} f(x) = 3$.

2. A definíció alapján bizonyítsa be, hogy

(a)
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 2x - 3} = -\frac{3}{4}$$
, (b) $\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^3 - x^2 + x - 1} = 4$,

(b)
$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^3 - x^2 + x - 1} = 4,$$

(c)
$$\lim_{x \to -\infty} \frac{2x^2 + x}{1 - x^2} = -2$$

(c)
$$\lim_{x \to -\infty} \frac{2x^2 + x}{1 - x^2} = -2,$$
 (d) $\lim_{x \to +\infty} \frac{2x - 3}{x^2 + 3x - 4} = 0,$

(e)
$$\lim_{x \to -\infty} \frac{x}{1 + \sqrt{1 - x}} = -\infty$$
, (f) $\lim_{x \to 0} \sqrt[3]{2x - 1} = -1$.

(f)
$$\lim_{x \to 0} \sqrt[3]{2x - 1} = -1.$$

3. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x\to 0} \frac{3x^8 - 3x^4 + 2x^2}{4x^5 - 3x^4 - x^3 + 3x^2}$$
, (b) $\lim_{x\to 2} \frac{3x^2 - 7x + 2}{x^2 + x - 6}$,

$$\lim_{x \to 2} \frac{3x^2 - 7x + 2}{x^2 + x - 6}$$

(c)
$$\lim_{x \to -\infty} \frac{3x^2 + 2x - 1}{3 - 2x^3}$$

(c)
$$\lim_{x \to -\infty} \frac{3x^2 + 2x - 1}{3 - 2x^3}$$
, (d) $\lim_{x \to 1} \frac{x^6 + 3x^5 - 2x^2 - x - 1}{x^3 - 1}$,

(e)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^3 - 1} \right)$$

(e)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^3-1} \right)$$
, (f) $\lim_{x \to 1} \left(\frac{n}{1-x^n} - \frac{m}{1-x^m} \right)$ $(m, n = 1, 2, ...)$.

■ További feladatok

- 1. Mutassa meg, hogy ha $f\colon R\to\mathbb{R}$ nem állandó, periodikus függvény, akkor a $\lim_{-\infty}f$ és a $\lim_{+\infty}f$ határértékek nem léteznek.
- **2.** Legyen $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_1 x + a_0$ egy olyan polinom, amire $a_n > 0$ teljesül. Igazolja, hogy ekkor $\exists K > 0, \forall x > K : p(x) > 0$.
- **3.** Legyen $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_1 x + a_0$ egy olyan polinom, amire n > 0, $a_n > 0$ teljesül. Igazolja, hogy ekkor $\exists K > 0$, hogy p szigorúan monoton növekvő a $(K, +\infty)$ intervallumon.

Függvények határértéke és folytonossága 2.

Szükséges ismeretek

- Az exp, a sin és a cos függvény hatványsoros definíciója.
- Hatványsor összegfüggvényének a határértéke.
- $\lim_{x\to 0} \frac{\sin x}{x} = 1$. A pontbeli folytonosság fogalma.
- Szakadási helyek és osztályozásuk.
- Hatványsor összegfüggvényének folytonossága.
- Az algebrai műveletek és a folytonosság kapcsolata.
- A folytonosságra vonatkozó átviteli elv.
- Az összetett függvény folytonossága.
- Az összetett függvény határértéke.

Feladatok

1. A "gyöktelenítés technikájával" számítsuk ki az alábbi határértékeket:

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$
,

(b)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x^2}}{\sqrt{1+x}-1}$$
,

(c)
$$\lim_{x \to -\infty} (\sqrt{x^2 - x + 1} - \sqrt{x^2 - 1}).$$

2. Mutassuk meg, hogy létezik a

$$\lim_{x \to 0} \left(x \left[\frac{1}{x} \right] \right)$$

határérték, ahol $[\alpha]$ jelöli az $\alpha \in \mathbb{R}$ szám egész részét. Mivel egyenlő ez a limesz?

3. A $\lim_{x\to 0} \frac{\sin x}{x} = 1$ felhasználásával számítsuk ki az alábbi határértékeket:

(a)
$$\lim_{x\to 0} \frac{\sin ax}{\sin bx}$$
 $(a, b \in \mathbb{R} \setminus \{0\}),$ (b) $\lim_{x\to 0} \frac{1-\cos x}{x^2},$

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{r^2}$$
,

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{x},$$

(d)
$$\lim_{x\to 0} \frac{x^2}{\sqrt{1+x\cdot\sin x} - \sqrt{\cos x}}$$
.

4. A hatványsor összegfüggvényének a határértékére vonatkozó tétel alapján számítsuk ki a következő határértékeket:

(a)
$$\lim_{x \to 0} \frac{e^x - 1}{x},$$

(b)
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
.

5. Legyen $f: \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Tegyük fel, hogy

$$\exists \delta > 0$$
, hogy $\forall \varepsilon > 0$ és $\forall x \in \mathcal{D}_f$, $|x - a| < \delta$ esetén $|f(x) - f(a)| < \varepsilon$.

32

Az f függvény milyen tulajdonságát fejezi ki ez az állítás?

6. Határozzuk meg az alábbi függvények folytonossági és szakadási helyeit, valamint a szakadási helyek típusait:

(a)
$$f(x) := \begin{cases} \frac{\sin x}{x}, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ 0, & \text{ha } x = 0; \end{cases}$$

(b) sign
$$(x) := \begin{cases} 1, & \text{ha } x \in (0, +\infty) \\ 0, & \text{ha } x = 0 \\ -1, & \text{ha } x \in (-\infty, 0) \end{cases}$$

(az előjelfüggvény);

(c)
$$g(x) := \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(a Dirichlet-függvény);

(d)
$$h(x) := \begin{cases} x, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(Dirichlet-típusú függvény);

$$\text{(e) } r(x) := \begin{cases} \frac{1}{q}, & \text{ha } x = \frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N}^+, \ (p,q) = 1 \\ 1, & \text{ha } x = 0 \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(a Riemann-függvény vagy a Thomae-függvény).

■ Házi feladatok

1. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{3}{x^3 - 1} \right)$$
,

(b)
$$\lim_{x \to +\infty} \left(x - \sqrt{\frac{4x^3 + 3x^2}{4x - 3}} \right)$$
,

(c)
$$\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x},$$

(d)
$$\lim_{x \to 3} \frac{\sin(3-x)}{\sin(4x-12)}$$
,

(e)
$$\lim_{x \to 0} \frac{e^{3x} - e^{5x}}{2x}$$
,

(f)
$$\lim_{x\to 0} \frac{\cos\sqrt{x} - \frac{1}{1-x}}{x + \sin 2x}$$
.

2. Határozza meg az alábbi függvény folytonossági és szakadási helyeit, valamint a szakadási helyek típusait:

$$f(x) = \begin{cases} |x|, & \text{ha } x \in \mathbb{Q}, \\ 1 - |x|, & \text{ha } x \notin \mathbb{Q}. \end{cases}$$

Gyakorló feladatok

1. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{x}$$
,

(b)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x}-1}{x}$$
,

(c)
$$\lim_{x\to 2} \frac{3-\sqrt{x+7}}{x^2-4}$$
,

(d)
$$\lim_{x \to +\infty} \frac{x + \sqrt{x+3}}{2 - \sqrt{x^2 + 1}}$$
,

(e)
$$\lim_{x \to +\infty} x \cdot (\sqrt{x^2 + 1} - x),$$

(f)
$$\lim_{x \to -\infty} (\sqrt{x^2 + x} + x).$$

2. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 0} \frac{\sqrt{\cos x} - 1}{x^2},$$

(b)
$$\lim_{x \to 0} \frac{\sin^3 4x}{x^3}$$
,

(c)
$$\lim_{x \to 0} \frac{1 - \cos x \cos 2x}{1 - \cos x},$$

(d)
$$\lim_{x \to 0} \frac{1 - \cos^3 x + \sin^2 2x}{2x^2 - \sin^2 x},$$

(e)
$$\lim_{x \to 0} \frac{e^{7x} - e^{4x}}{x \cos 2x + \sin 3x},$$

(f)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right).$$

3. Legyen $\alpha \in \mathbb{R}$. Számítsa ki a

(a)
$$\lim_{x \to 0} \frac{x^2}{\sqrt{1 + \alpha x} - x - 1}$$
,

(b)
$$\lim_{x \to \alpha} \frac{\sqrt{x} + \sqrt{x - \alpha} - \sqrt{\alpha}}{\sqrt{x^2 - \alpha^2}}$$

határértékeket, amennyiben azok léteznek!

- **4.** Milyen $a, b \in \mathbb{R}$ mellett igaz az, hogy $\lim_{x \to +\infty} (\sqrt{x^2 x + 1} (ax + b)) = 0$?
- **5.** Legyen $a, b \in \mathbb{R}$. Számítsa ki a

$$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}$$

határértékeket!

6. Vizsgálja meg, hogy az alábbi függvényeknek az értelmezési tartományuk melyik torlódási pontjában van határértéke:

(a)
$$\mathbb{R} \ni x \mapsto \{x\}$$
, ahol $\{x\} := x - [x]$ az x valós szám tört része,

(b)
$$\mathbb{R} \ni x \mapsto x - \{x\}.$$

7. Indokolja meg miért nem léteznek a következő határértékek!

(a)
$$\lim_{x \to -1} \frac{|1 - x^2|}{1 + x}$$
,

(b)
$$\lim_{x \to 0} \frac{\sin x}{|x|}.$$

8. Határozzuk meg az alábbi függvények folytonossági és szakadási helyeit, valamint a szakadási helyek típusait:

(a)
$$f(x) = \operatorname{sign}^2 x \quad (x \in \mathbb{R}),$$

(b)
$$f(x) = |x| \operatorname{sign} x \quad (x \in \mathbb{R}),$$

(c)
$$f(x) = \operatorname{sign}(x^2 - x) + \operatorname{sign} x \quad (x \in \mathbb{R}),$$
 (d) $f(x) = x[x] \quad (x \in \mathbb{R}).$

(d)
$$f(x) = x[x]$$
 $(x \in \mathbb{R})$

■ További feladatok

- **1.** Legyen $A \subseteq \mathbb{R}$, $a \in A$, és $f, g: A \to \mathbb{R}$. Igazoljua, hogy ha f folytonos az a pontban, f(a) = 0 és g korlátos, akkor az fg függvény folytonos az a pontban.
- **2.** Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in D_f$. Igazolja, hogy ha f folytonos az a pontban akkor |f| is folytonos az a pontban. Igaz-e az állítás megfordítása?
- **3.** Legyen $A \subseteq \mathbb{R}$, $a \in A$, és $f, g \colon A \to \mathbb{R}$. Igazolja, hogy ha az f és g függvények folytonosak az a pontban, akkor az $F, G \colon A \to \mathbb{R}$,

$$F(x) := \max\{f(x), g(x)\}, \qquad G(x) := \min\{f(x), g(x)\}$$

függvények is folytonosak az a pontban.

- **4.** Igazolja, hogy ha az $f: \mathbb{R} \to \mathbb{R}$ függvénynek minden pontjában nulla a határértéke, akkor $\exists a \in \mathbb{R}: f(a) = 0.$
- **5.** Adjon meg olyan $f \colon [0,1] \to [0,1]$ függvényt, amely monoton és végtelen sok szakadási helye van.
- 6. Adjon meg olyan $f,g\colon \mathbb{R} \to \mathbb{R}$ függvényeket, amelyekre

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0, \quad \text{de} \quad \lim_{x \to 0} f(g(x)) = 1$$

teljesül.

Függvények határértéke és folytonossága 3.

Szükséges ismeretek

- A pontbeli folytonosság és határérték közötti kapcsolat.
- Hatványsor összegfüggvényének folytonossága.
- Az algebrai műveletek és a folytonosság kapcsolata.
- Az összetett függvény folytonossága.
- Szakadási helyek és osztályozásuk.
- $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Az összetett függvény határértéke.
- A Bolzano tétele.
- A Bolzano–Darboux-tétel
- A Weierstrass tétele.

Feladatok

1. Határozzuk meg az

$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 3x + 2}, & \text{ha } x < 1\\ \sqrt{x + 3}, & \text{ha } 1 \le x \le 6\\ \frac{\sin(2x - 12)}{x - 6}, & \text{ha } x > 6 \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait.

2. Az $\alpha \in \mathbb{R}$ paraméter mely értékei esetén lesznek mindenütt folytonosak a következő

(a)
$$f(x) := \begin{cases} \alpha x^2 + 4x - 1, & \text{ha } x \le 1, \\ -x + 3, & \text{ha } 1 < x, \end{cases}$$
 (b) $f(x) := \begin{cases} \frac{1}{e^{x + \frac{1}{x}}}, & \text{ha } x > 0, \\ -2x + \alpha, & \text{ha } x \le 0. \end{cases}$

3. Az $\alpha, \beta \in \mathbb{R}$ paraméterektől függően határozzuk meg az

$$f(x) := \begin{cases} \frac{\sin^2 \alpha x}{x^2}, & \text{ha } x < 0, \\ \alpha - \beta x^3, & \text{ha } 0 \le x \le 1, \\ \frac{\alpha x + \beta}{x^2 - 1}, & \text{ha } x > 1, \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

36

4. Igazoljuk, hogy az alábbi egyenleteknek van megoldása a jelzett I intervallumon!

(a)
$$x^5 - x^2 + 2x + 3 = 0$$
, $I := \mathbb{R}$, (b) $e^x = 2 - x$, $I := \mathbb{R}$,

(b)
$$e^x = 2 - x$$
, $I := \mathbb{R}$

(c)
$$x = \cos x$$
, $I := (0, 1)$.

(c)
$$x = \cos x$$
, $I := (0,1)$, (d) $\frac{1}{x} + \frac{1}{x-2} = e^{x^2}$, $I := (0,2)$.

- 5. Lássuk be, hogy minden páratlan fokszámú, valós együtthatós polinomnak van valós gyöke! Lényeges-e a polinom fokszámára tett feltétel?
- **6.** Igazoljuk, hogy az $x^3 + x 1$ polinomnak pontosan egy valós gyöke van, és számítsa ki ezt a gyököt 10^{-1} pontossággal.
- 7. Tegyük fel, hogy az $f:\mathbb{R} \to \mathbb{R}$ függvény folytonos

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{és} \quad \lim_{x \to +\infty} f(x) = +\infty.$$

Mutassuk meg, hogy ekkor f-nek létezik abszolút minimuma.

■ Házi feladatok

1. Az $\alpha, \beta \in \mathbb{R}$ paraméterektől függően határozza meg az

$$f(x) := \begin{cases} \frac{x^2 + 5x + 4}{x^2 + 3x + 2}, & \text{ha } x \in \mathbb{R} \setminus \{-1, -2\} \\ \alpha, & \text{ha } x = -1 \\ \beta, & \text{ha } x = -2 \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

2. Igazolja, hogy az alábbi egyenleteknek van megoldása a valós számok halmazán!

(a)
$$x^4 + x^2 - 2 = x$$
, (b) $e^x = x^2 + 3$.

■ Gyakorló feladatok

1. Az $\alpha \in \mathbb{R}$ paraméter mely értékei esetén lesz mindenütt folytonos a következő függvény?

(a)
$$f(x) := \begin{cases} x^2 - \alpha^2, & \text{ha } x < 4, \\ \alpha x + 20, & \text{ha } x \ge 4, \end{cases}$$
 (b) $f(x) := \begin{cases} x^3 + x, & \text{ha } x \le \alpha, \\ x^2, & \text{ha } x > \alpha. \end{cases}$

(c)
$$f(x) := \begin{cases} \alpha x + 1, & \text{ha } x \le 2, \\ \frac{x^2 - 4}{x - 2}, & \text{ha } x > 2, \end{cases}$$
 (d) $f(x) := \begin{cases} x^2 + \alpha x - 1, & \text{ha } x < 1, \\ \frac{\sqrt{3x + 1} - 2}{x - 1}, & \text{ha } x \ge 1. \end{cases}$

2. Az $\alpha \in \mathbb{R}$ paramétertől függően határozza meg az alábbi függvények folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusát!

(a)
$$f(x) := \begin{cases} \frac{x-7}{|x-7|}, & \text{ha } x \in \mathbb{R} \setminus \{7\} \\ \alpha, & \text{ha } x = 7; \end{cases}$$
 (b) $f(x) := \begin{cases} \frac{x^2+64}{x+4}, & \text{ha } x \in \mathbb{R} \setminus \{-4\} \\ \alpha, & \text{ha } x = -4; \end{cases}$

(c)
$$f(x) := \begin{cases} \frac{3-\sqrt{x}}{9-x}, & \text{ha } x \in \mathbb{R} \setminus \{9\} \\ \alpha, & \text{ha } x = 9; \end{cases}$$
 (d) $f(x) := \begin{cases} e^{-\frac{1}{x}}, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ \alpha, & \text{ha } x = 0. \end{cases}$

(e)
$$f(x) := \begin{cases} \frac{\sin x}{|x|}, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ \alpha, & \text{ha } x = 0; \end{cases}$$
 (f) $f(x) := \begin{cases} \frac{\sin(2x - 4)}{x - 2}, & \text{ha } x \in \mathbb{R} \setminus \{2\} \\ \alpha, & \text{ha } x = 2. \end{cases}$

3. Az $\alpha,\beta\in\mathbb{R}$ paraméterektől függően határozza meg az

$$f(x) := \begin{cases} \alpha e^{\frac{2}{x-1}} + \beta, & \text{ha } x < 1, \\ \beta \sqrt{\alpha^2 x^2 - 2\alpha x + 1}, & \text{ha } 1 \le x \le 3, \\ \frac{\alpha}{(x-3)^2}, & \text{ha } x > 3, \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

4. Igazolja, hogy az alábbi egyenleteknek van megoldása a jelzett I intervallumon:

(a)
$$\frac{1}{x+1} = x^3 + 2x - 4$$
, $I := (-1, +\infty)$;

(b)
$$e^x x^2 = 2$$
, $I := (0, +\infty)$;

(c)
$$\sin x = 1 - x$$
, $I := (0, 1)$;

(d)
$$\frac{x^2+1}{x-1} + \frac{x^6+1}{x-2} = 0$$
, $I := (1,2)$;

(e)
$$\frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} = 0$$
, $I := (1,2), I := (2,3)$.

- **5.** Igazolja, hogy az $x^3 + 2x^2 + 4x 3$ polinomnak pontosan egy pozitív valós gyöke van, és számítsa ki ezt a gyököt 10^{-2} pontossággal.
- 6. Készítsen folyamatábrát a függvények zérushelyének keresésére vonatkozó intervallumfelezési eljárásnak!
- 7. Legyen $a \in \mathbb{R}$, $f:[a,+\infty) \to \mathbb{R}$ folytonos függvény, és tegyük fel, hogy $\exists \lim_{x \to +\infty} f(x) \in \mathbb{R}$. Igazolja, hogy f korlátos függvény!

■ További feladatok

- **1.** Igazolja, hogy ha $f:[a,b] \to \mathbb{R}$ egy monoton függvény, amely minden f(a) és f(b) közé eső értéket felvesz, akkor f folytonos függvény!
- **2.** Igazolja, hogy ha $f:[a,b]\to\mathbb{R}$ egy folytonos függvény, akkor minden $x_k\in[a,b],\ k=1,2,\ldots n\ (n\in\mathbb{N})$ esetén létezik olyan $\xi\in[a,b]$, hogy

$$f(\xi) = \frac{1}{n} \sum_{k=1}^{n} f(x_k).$$

3. Igazolja, hogy ha $f:[a,b] \to [a,b]$ egy folytonos függvény, akkor létezik olyan $\xi \in [a,b]$, hogy $f(\xi) = \xi!$