Business Report

Show-Time

OTT Data Analysis Business Report

Contents

1. Context	1
2. Objective	2
3. Data Description	3
4. Data Overview	4-6
5. Exploratory Data Analysis	7-19
6. Key Questions	20-25
7. Data Processing	26-29
8. Model building - Linear Regression	30-33
9. Testing the assumptions of linear regression model	34-42
10. Model performance evaluation	43-44
11. Conclusions and Recommendations	45

List of Figures

Fig.1.1: Distribution of Visitors (Boxplot)	7
Fig.1.2: Distribution of Visitors (Histogram)	
Fig.1.2.1: Trailer Views Distribution (Boxplot)	
Fig.1.2.2: Trailer Views Distribution (Histogram)	
Fig.1.3.1: Distribution of Content Views (Boxplot)	
Fig.1.3.2: Distribution of Content Views (Boxplot)	11
Fig.1.4 : Genre Distribution	12
Fig.1.5 : Weekday Distribution	
Fig.1.6 : Season Distribution	
Fig.2.1 : Correlation	
Fig.2.2: Genre Vs Content Views	
Fig.2.3: Genre Vs Trailer Views	17
Fig.2.4: Season Vs Content Views	18
Fig.2.5: Major Sports Event Vs Content Views	
Fig.3: Univariate Analysis of the Distribution of Views	
Of Content (Boxplot)	20
Fig.4: Univariate Analysis of Distribution of Views	
Content (Histogram)	21
Fig.5: Distribution of Genres	22
Fig.6: Viewership with day of release	23
Fig.7: Viewership with season of release	24
Fig.8: Correlation between Trailer Views and	
Content Views	25
Fig.9: Outlier Treatment	27

Fig.10:	Linearity and Independence of Variables	39
Fig.11:	Normality of Residuals	40
Fig.12:	Plot Residuals	.41

Context

An over-the-top (OTT) media service is a media service offered directly to viewers via the internet. The term is most synonymous with subscription-based video-on-demand services that offer access to film and television content, including existing series acquired from other producers, as well as original content produced specifically for the service. They are typically accessed via websites on personal computers, apps on smartphones and tablets, or televisions with integrated Smart TV platforms.

Presently, OTT services are at a relatively nascent stage and are widely accepted as a trending technology across the globe. With the increasing change in customers' social behavior, which is shifting from traditional subscriptions to broadcasting services and OTT on-demand video and music subscriptions every year, OTT streaming is expected to grow at a very fast pace. The global OTT market size was valued at \$121.61 billion in 2019 and is projected to reach \$1,039.03 billion by 2027, growing at a CAGR of 29.4% from 2020 to 2027. The shift from television to OTT services for entertainment is driven by benefits such as on-demand services, ease of access, and access to better networks and digital connectivity.

With the outbreak of COVID-19, OTT services are striving to meet the growing entertainment appetite of viewers, with some platforms already experiencing a 46% increase in consumption and subscriber count as viewers seek fresh content. With innovations and advanced transformations, which will enable the customers to access everything they want in a single space, OTT platforms across the world are expected to increasingly attract subscribers on a concurrent basis.

Objective

ShowTime is an OTT service provider and offers a wide variety of content (movies, web shows, etc.) for its users. They want to determine the driver variables for first-day content viewership so that they can take necessary measures to improve the viewership of the content on their platform. Some of the reasons for the decline in viewership of content would be the decline in the number of people coming to the platform, decreased marketing spend, content timing clashes, weekends and holidays, etc. They have hired you as a Data Scientist, shared the data of the current content on their platform, and asked you to analyze the data and come up with a linear regression model to determine the driving factors for first-day viewership.

Data Description

The data contains the different factors to analyze for the content. The detailed data dictionary is given below.

Data Dictionary:

- visitors: Average number of visitors, in millions, to the platform in the past week.
- ad_impressions: Number of ad impressions, in millions, across all ad campaigns for the content (running and completed).
- major_sports_event: Any major sports event on the day.
- genre: Genre of the content.
- dayofweek: Day of the release of the content.
- season: Season of the release of the content.
- views_trailer: Number of views, in millions, of the content trailer.
- views_content: Number of first-day views, in millions, of the content.

Data Overview

Data Type

• 1st 5 rows of the Dataset

	visitors	ad_impressions	major_sports_event	genre	dayofweek	season	views_trailer	views_content
0	1.67	1113.81	0	Horror	Wednesday	Spring	56.70	0.51
1	1.46	1498.41	1	Thriller	Friday	Fall	52.69	0.32
2	1.47	1079.19	1	Thriller	Wednesday	Fall	48.74	0.39
3	1.85	1342.77	1	Sci-Fi	Friday	Fall	49.81	0.44
4	1.46	1498.41	0	Sci-Fi	Sunday	Winter	55.83	0.46

• Statistical Summary

	visitors	ad_impressions	major_sports_event	views_trailer	views_content
count	1000.000000	1000.000000	1000.000000	1000.00000	1000.000000
mean	1.704290	1434.712290	0.400000	66.91559	0.473400
std	0.231973	289.534834	0.490143	35.00108	0.105914
min	1.250000	1010.870000	0.000000	30.08000	0.220000
25%	1.550000	1210.330000	0.000000	50.94750	0.400000
50%	1.700000	1383.580000	0.000000	53.96000	0.450000
75%	1.830000	1623.670000	1.000000	57.75500	0.520000
max	2.340000	2424.200000	1.000000	199.92000	0.890000

Null values

Categorical Statistical Summary

Observations and Insights

- The data set contains information about first-day views of the content based on the day of week, genre, and season.
- The data set contains 1000 rows with 8 attributes.
- There are 5 numeric (4 float and 1 int) and 3 string (object) type data in the columns of the dataset.
- There are 8 genres, 4 seasons, and all days of the week mentioned in the data.
- The mean and standard deviation of the Views of the content are 0.47 and 0.105, respectively.

Exploratory Data Analysis

1. Univariate Data Analysis

1.1. Distribution of Visitors

Fig.1.1: Distribution of Visitors (Boxplot)

Fig.1.2: Distribution of Visitors (Histogram)

- The histogram is right-skewed, and it is a normal distribution.
- Very few outliers are observed.

1.2. Trailer Views Distribution

Fig.1.2.1: Trailer Views Distribution (Boxplot)

Fig.1.2.2: Trailer Views Distribution (Histogram)

- Outliers can be seen heavily.
- Data is heavily skewed towards the right.

1.3. Content Views Distribution

Fig.1.3.1: Distribution of Content Views (Boxplot)

Fig.1.3.2: Distribution of Content Views (Histogram)

- A Few Outliers can be observed in the views content field.
- The histogram is right-skewed; it seems almost like a normal distribution.

1.4. Genre Distribution

Fig.1.4 : Genre Distribution

 Others have the highest release, followed by Comedy and Thriller.

1.5. Weekday Distribution

Fig.1.5: Weekday Distribution

- Content released on Friday has the highest release, followed by Wednesday.
- Monday and Tuesday have very little content release.

1.6. Season Distribution

Fig.1.6 : Season Distribution

- Winter and Fall have the highest release.
- The Other two seasons also more or less have the same percentage of release.

2. Bivariate Data Analysis

2.1. Correlation between numerical values

Fig.2.1: Correlation

- Positive correlation between Trailer views and content views, implying that those who have watched the trailer have mostly watched the content.
- Mild correlation between visitors and the First-day view of the content.

2.2. Bivariate Genre and Content Views

Fig.2.2: Genre Vs Content Views

- Outliers are present in all genres.
- The average views range from 0.4 to 0.5 million.

2.3. Bivariate Genre and Trailer Views

Fig.2.3: Genre Vs Trailer Views

- Outliers are present in all genres.
- There is a mean of 53-55 million views in trailers for all genres.

2.4. Bivariate Season and Content Views

Fig.2.4: Season Vs Content Views

- Outliers are present in all seasons.
- There is a mean of 0.4-0.5 million views in trailers for all genres.
- In Winter and Summer content view mean is more than in Fall and Spring.

2.5. Bivariate Major Sports Events and Content Views

Fig.2.5: Major Sports Event Vs Content Views

 A significant decrease in average content viewership can be observed due to sports events, with 0.49 million views on non-sports event days compared to 0.44 million views on sports event days.

Key Questions

1. What does the distribution of content views look like?

Fig.3: Univariate Analysis of the Distribution of Views of Content (Boxplot)

Fig.4: Univariate Analysis of Distribution of Views Content (Histogram)

- A Few Outliers can be observed in the views content field.
- The histogram is right-skewed; it seems almost like a normal distribution.
- An average of less than 0.5 million watched the actual content.

2. What does the distribution of genres look like?

Fig.5: Distribution of Genres

• The count plot reveals that Thriller is the most popular genre, followed by Sci-Fi and Horror.

3. The day of the week on which content is released generally plays a key role in the viewership. How does the viewership vary with the day of release?

Fig.6: Viewership with day of release

• It is observed that the content views are more when released on Wednesday, and lower if released on Friday.

4. How does the viewership vary with the season of release?

Fig.7: Viewership with season of release

• It is observed that the content views are higher during the Summer season and lower during the Fall.

5. What is the correlation between trailer views and content views?

Fig.8: Correlation between Trailer Views and Content Views

 There is a positive relationship between Trailer views and First-day views, which means that when there is an increase in Trailer views, content views increase correspondingly.

Data Processing

1. Duplicate value check

np.int64(0)

• There are no duplicate values.

2. Missing Value Treatment

• There are no missing values found in the dataset.

3. Outlier Treatment

Fig.9: Outlier Treatment

We observe several outliers in Trailer views and Content views.
 These will be retained in the dataset, as they may represent rare but significant events, such as blockbuster releases that generate exceptionally high viewership compared to the average. Since these outliers provide valuable insights, they are not treated or removed from the data.

4. Feature engineering

 Applied one-hot encoding to the categorical columns to create dummy variables, enabling clearer representation and analysis of each category.

5. Data preparation for modeling

- Split the data into train and test to be able to evaluate the model that we'll build on the train data.
- Converted the input attributes into float type for modeling
- Split the data in a 70:30 ratio for train and test data.
- Number of rows in train data = 700
- Number of rows in test data = 300

Model building - Linear Regression

• Build the model and comment on the model statistics

			ion Results			=		
Dep. Variable:	views_content		R-squared:		0.79			
Model:		0LS	Adj. R-square	:d:	0.78			
Method:	Least So		F-statistic:		129.0			
Date:	Wed, 07 May		Prob (F-stati			1.32e-215		
Time:	19:	:04:35	Log-Likelihoo	d:	1124.6			
No. Observations:		700	AIC:		-2207.			
Df Residuals:		679	BIC:		-2112.			
Df Model:		20						
Covariance Type:	noni	robust 						
,	coef	std e	rr t	P> t	[0.025	0.975]		
const	0.0602	0.0	 19 3.235	0.001	0.024	0.097		
visitors	0.1295	0.0	98 16. 398	0.000	0.114	0.145		
ad_impressions	3.623e-06	6.58e-	0.551	0.582	-9.3e-06	1.65e-05		
major_sports_event	-0.0603	0.0		0.000	-0.068	-0.053		
views_trailer	0.0023	5.52e-	95 42.1 93	0.000	0.002	0.002		
genre Comedy	0.0094	0.0	98 1.1 72	0.241	-0.006	0.025		
genre Drama	0.0126	0.0	98 1. 554	0.121	-0.003	0.029		
genre_Horror	0.0099	0.0	98 1. 207	0.228	-0.006	0.026		
genre Others	0.0063	0.0	0.897	0.370	-0.008	0.020		
genre_Romance	0.0006	0.0	98 0. 065	0.948	-0.016	0.017		
genre_Sci-Fi	0.0131	0.0	98 1. 599	0.110	-0.003	0.029		
genre_Thriller	0.0087	0.0	98 1. 079	0.281	-0.007	0.025		
dayofweek_Monday	0.0337	0.0	12 2.848	0.005	0.010	0.057		
dayofweek Saturday	0.0579	0.0	8. 0 94	0.000	0.044	0.072		
dayofweek_Sunday	0.0363	0.0	98 4. 639	0.000	0.021	0.052		
dayofweek Thursday	0.0173	0.0	2.558	0.011	0.004	0.031		
dayofweek Tuesday	0.0228	0.0	1.665	0.096	-0.004	0.050		
dayofweek_Wednesday	0.0474	0.0	10.549	0.000	0.039	0.056		
season_Spring	0.0226	0.0	95 4.224	0.000	0.012	0.033		
season_Summer	0.0442	0.0	8.111	0.000	0.034	0.055		
season_Winter	0.0272	0.0	95 5 . 096	0.000	0.017	0.038		
Omnibus:		3.850	 Durbin-Watson):	 2.00	= 4		
Prob(Omnibus):		0.146	Jarque-Bera ([ЈВ):	3.72	2		
		0.143	Prob(JB):		0.15	6		
Skew:		3.215	Cond. No.		1.67e+0	4		

strong multicollinearity or other numerical problems.

Interpreting the Regression Results:

- **1. Adjusted. R-squared:** It reflects the fit of the model.
 - Adjusted R-squared values generally range from 0 to 1, where a higher value generally indicates a better fit, assuming certain conditions are met.
 - In our case, the value for adj. R-squared is 0.785, which is good.
- 2. *const* coefficient: It is the Y-intercept.
 - It means that if all the predictor variable coefficients are zero, then the expected output (i.e., Y) would be equal to the const coefficient.
 - In our case, the value for the const. coefficient is 0.0602.
- **3. Coefficient of a predictor variable:** It represents the change in the output Y due to a change in the predictor variable (everything else held constant).
 - In our case, the coefficient of visitors is 0.1295.

Model Performance:

Observations:

- The training R2 is 0.79, so the model is not underfitting.
- The train and test RMSE and MAE are comparable, so the model does not overfit either.
- MAE suggests that the model can predict anime ratings within a mean error of 0.40 on the test data.
- MAPE of 9.03 on the test data means that we can predict within 9.03% of the views of the content.

• Display model coefficients with column names

	coef
const	0.060157
visitors	0.129451
ad_impressions	0.000004
major_sports_event	-0.060326
views_trailer	0.002330
genre_Comedy	0.009352
genre_Drama	0.012625
genre_Horror	0.009862
genre_Others	0.006325
genre_Romance	0.000551
genre_Sci-Fi	0.013143
genre_Thriller	0.008708
dayofweek_Monday	0.033662
dayofweek_Saturday	0.057887
dayofweek_Sunday	0.036321
dayofweek_Thursday	0.017289
dayofweek_Tuesday	0.022837
dayofweek_Wednesday	0.047376
season_Spring	0.022602
season_Summer	0.044203
season_Winter	0.027161

Testing the assumptions of linear regression model

- Perform tests for the assumptions of the linear regression
 - 1. No Multicollinearity

	feature	VIF
0	const	99.679317
1	visitors	1.027837
2	ad_impressions	1.029390
3	major_sports_event	1.065689
4	views_trailer	1.023551
5	genre_Comedy	1.917635
6	genre_Drama	1.926699
7	genre_Horror	1.904460
8	genre_Others	2.573779
9	genre_Romance	1.753525
10	genre_Sci-Fi	1.863473
11	genre_Thriller	1.921001
12	dayofweek_Monday	1.063551
13	dayofweek_Saturday	1.155744
14	dayofweek_Sunday	1.150409
15	dayofweek_Thursday	1.169870
16	dayofweek_Tuesday	1.062793
17	dayofweek_Wednesday	1.315231
18	season_Spring	1.541591
19	season_Summer	1.568240
20	season_Winter	1.570338

- VIF is between 1 and 5, indicating low multicollinearity.
- We can see VIF for genre_Others is more than 2. Let's drop it.

VIF	after dropping genre	_Others
	feature	VIF
0	const	87.570676
1	visitors	1.022226
2	ad_impressions	1.028804
3	major_sports_event	1.065264
4	views_trailer	1.020524
5	genre_Comedy	1.204848
6	genre_Drama	1.223443
7	genre_Horror	1.204654
8	genre_Romance	1.171988
9	genre_Sci-Fi	1.205594
10	genre_Thriller	1.206560
11	dayofweek_Monday	1.063551
12	dayofweek_Saturday	1.154886
13	dayofweek_Sunday	1.150034
14	dayofweek_Thursday	1.169852
15	dayofweek_Tuesday	1.058831
16	dayofweek_Wednesday	1.314380
17	season_Spring	1.541573
18	season_Summer	1.545311
19	season_Winter	1.568494

- All the variables have VIF less than 2.
- We have dealt with Multicollinearity in the data.
- Let's rebuild the model.

Dep. Variable:	views_c	ontent	R-square	d:		0.791	
Model:	v1cm3_c	OLS	Adj. R-s			0.786	
Method:	Least S		F-statis			135.8	
Date:	Fri, 09 Ma		Prob (F-		ic):	1.66e-216	
Time:		:57:12	Log-Like		,-	1124.2	
No. Observations:		700	AIC:			-2208.	
Df Residuals:		680	BIC:			-2117.	
Df Model:		19					
Covariance Type:	non	robust					
	coef	std e	rr	t	P> t	[0.025	0.975]
const	0.0660	0.0	17 3	.786	0.000	0.032	0.100
visitors	0.1289	0.0	008 16	.378	0.000	0.113	0.144
ad_impressions	3.482e-06	6.58e-	06 0	.529	0.597	-9.43e-06	1.64e-05
major_sports_event	-0.0604	0.0	04 -15	.307	0.000	-0.068	-0.053
views_trailer	0.0023	5.51e-	05 42	.213	0.000	0.002	0.002
genre_Comedy	0.0050	0.0	106 0	.789	0.430	-0.007	0.017
genre_Drama	0.0082	0.0	06 1	.270	0.204	-0.004	0.021
genre_Horror	0.0054	0.0	106 0	.835	0.404	-0.007	0.018
genre_Romance	-0.0038	0.0	107 -0	.552	0.581	-0.017	0.010
genre_Sci-Fi	0.0088	0.0	107 1	.326	0.185	-0.004	0.022
genre_Thriller	0.0043	0.0	106 0	.672	0.502	-0.008	0.017
dayofweek_Monday	0.0337	0.0		.848	0.005	0.010	0.057
dayofweek_Saturday	0.0581	0.0		.122	0.000	0.044	0.072
dayofweek_Sunday	0.0362	0.0	1008 4	.624	0.000	0.021	0.052
dayofweek_Thursday	0.0173	0.0	107 2	.555	0.011	0.004	0.031
dayofweek_Tuesday	0.0236	0.0		.723	0.085	-0.003	0.050
dayofweek_Wednesday	0.0475	0.0		.577	0.000	0.039	0.056
season_Spring	0.0226	0.6		.228	0.000	0.012	0.033
season_Summer	0.0436	0.0		.063	0.000	0.033	0.054
season_Winter	0.0270 	0.0 	105 5 	.069	0.000 	0.017 	0.037
Omnibus:		4.537	Durbin-W			2.002	
Prob(Omnibus):		0.103	Jarque-B):	4.462	
Skew:		0.154	Prob(JB)			0.107	
Kurtosis:		3.240	Cond. No			1.46e+04	

- [2] The condition number is large, 1.46e+04. This might indicate that there are strong multicollinearity or other numerical problems.
 - After dropping 'genre_Others' Adj. R-squared increased by 0.001 and R-squared decreased by 0.001.
 - As there is no multicollinearity, we can look at the p-values of predictor variables to check their significance.

• Dealing with p-value

- Some of the dummy variables have a p-value > 0.05. So, they are not significant, and we will drop them.
- But sometimes p-values change after dropping a variable. So, we'll not drop all variables at once
- Instead, we will do the following:
 - Build a model, check the p-values of the variables, and drop the column with the highest p-value
 - Create a new model without the dropped feature, check the p-values of the variables, and drop the column with the highest p-value
 - Repeat the above two steps till there are no columns with p-value > 0.05

Dep. Variable:	views_c	ontent	R-squared:		0.789	
Model:		OLS	Adj. R-squared	:	0.786	
Method:	Least S	quares	F-statistic:		233.8	
Date:	Fri, 09 May	y 2025	Prob (F-statis	,	7.03e-224	
Time:	19	:30:24	Log-Likelihood	:	1120.2	
No. Observations:		700	AIC:		-2216.	
Df Residuals:		688	BIC:		-2162.	
Df Model:		11				
Covariance Type:	non	robust				
	coef	std er	r t	P> t	[0.025	0.975]
const	0.0747	0.01	 5.110	0.000	0.046	 0.103
visitors	0.1291	0.00		0.000	0.114	0.145
major sports event	-0.0606	0.00		0.000	-0.068	-0.053
views trailer	0.0023	5.5e-6		0.000	0.002	0.002
dayofweek Monday	0.0321	0.01	2.731	0.006	0.009	0.055
dayofweek Saturday	0.0570	0.00	7 8.042	0.000	0.043	0.071
dayofweek Sunday	0.0344	0.00	8 4.456	0.000	0.019	0.050
dayofweek Thursday	0.0154	0.00	7 2.307	0.021	0.002	0.029
dayofweek Wednesday	0.0465	0.00	4 10.532	0.000	0.038	0.055
season_Spring	0.0226	0.00	95 4.259	0.000	0.012	0.033
season_Summer	0.0434	0.00	95 8.112	0.000	0.033	0.054
season_Winter	0.0282	0.00	5.362	0.000	0.018	0.039
Omnibus:		3.254	Durbin-Watson:	=======	 1.996	
Prob(Omnibus):		0.196	Jarque-Bera (J	B):	3.077	
Skew:		0.139	Prob(JB):		0.215	
Kurtosis:		3.168	Cond. No.		662.	


```
Test Performance

RMSE MAE R-squared Adj. R-squared MAPE

0 0.051109 0.041299 0.761753 0.751792 9.177097
```

Observations:

- Now, no feature has a p-value greater than 0.05, so we'll consider the features in x_train1 as the final set of predictor variables and olsmod2 as the final model to move forward with.
- Now adjusted R-squared is 0.78, i.e., our model is able to explain ~78% of the variance.
- RMSE and MAE values are comparable for train and test sets, indicating that the model is not overfitting.

2. Linearity and Independence of Variables

	Actual Values	Fitted Values	Residuals
731	0.40	0.445434	-0.045434
716	0.70	0.677403	0.022597
640	0.42	0.433999	-0.013999
804	0.55	0.562030	-0.012030
737	0.59	0.547786	0.042214

Fig.10: Linearity and Independence of Variables

• We see no pattern in the above plot. Hence, the assumptions of linearity and independence are satisfied.

3. Normality of error terms

Fig.11: Normality of Residuals

• The residual terms are normally distributed.

Fig.12: Plot Residuals

Most of the points lie on the straight line in the Q-Q plot.

The Shapiro-Wilk Test can also be performed to check normality.

- o Null Hypothesis: Data is normally distributed
- o Alternate Hypothesis: Data is not normally distributed

p-value: 0.31085896470071894.

 Since p-value > 0.05, the residuals are normal according to the Shapiro test.

4. Test for Homoscedasticity

p-value: 0.12853551819087372.

• Since p-value > 0.05, the residuals are homoscedastic. So, this assumption is satisfied.

Model performance evaluation

• Final Model

	0LS	Regressi	on Results			
Dep. Variable:	views_c	ontent	R-squared:		0.789	
Model:			Adj. R-square	ed:	0.786	
Method:	Least S	quares	F-statistic:		233.8	
Date:	Sat, 10 Mag		Prob (F-stati		7.03e-224	
Time:	11		Log-Likelihoo	od:	1120.2	
No. Observations:			AIC:		-2216.	
Df Residuals:			BIC:		-2162.	
Df Model:		11				
Covariance Type:	non 	robust ======				
	coef	std er	r t	P> t	[0.025	0.975]
const	0.0747	0.01	5 5 .11 0	0.000	0.046	0.103
visitors	0.1291	0.00	8 16.440	0.000	0.114	0.145
major_sports_event	-0.0606	0.00	4 -15.611	0.000	-0.068	-0.053
views_trailer	0.0023	5.5e-0	5 42.414	0.000	0.002	0.002
dayofweek_Monday	0.0321	0.01	2 2.731	0.006	0.009	0.055
dayofweek_Saturday	0.0570	0.00	7 8.042	0.000	0.043	0.071
dayofweek_Sunday	0.0344	0.00	8 4.456	0.000	0.019	0.050
dayofweek_Thursday	0.0154	0.00	7 2.307	0.021	0.002	0.029
dayofweek_Wednesday	0.0465	0.00	4 10.532	0.000	0.038	0.055
season_Spring	0.0226	0.00		0.000	0.012	0.033
season_Summer	0.0434	0.00	5 8.112	0.000	0.033	0.054
season_Winter	0.0282	0.00	5 5.362	0.000	0.018	0.039
Omnibus:		3.254	Durbin-Watsor	::	1.996	
Prob(Omnibus):		0.196	Jarque-Bera ((JB):	3.077	
Skew:		0.139	Prob(JB):		0.215	
Kurtosis:		3.168	Cond. No.		662.	
Notes: [1] Standard Errors	assume that	the cova	riance matrix	of the erro	ors is correctl	y specified

- The model can explain ~79% of the variation in the data.
- The train and test RMSE and MAE are low and comparable. So, our model is not suffering from overfitting.
- The MAPE on the test set suggests we can predict within 9.17% of the First-day views of the content.
- Hence, we can conclude the model olsmodel_final is good for prediction as well as inference purposes.

Conclusions and Recommendations

- The model's R-squared value is approximately 0.786, and the adjusted R-squared is 0.784, indicating that the model can explain about 79% of the variance in the data. This is quite satisfactory.
- Releasing content on specific days of the week will increase viewership. Hence, releasing content on Saturdays and Wednesdays will boost viewership.
- The Genre "Other" category has the highest counts, followed by Comedy, Thriller, Drama, etc.
- Releasing content during the Summer season increases the viewership by 0.0442 unit.
- To improve content viewership, it is recommended to avoid releasing the content on days when major sports events happen.
- More trailer views lead to higher first-day views, showing that strong trailer engagement boosts early content performance.