

TEST REPORT

FCC ID: 2ADYY-B2

Product: Mobile Phone

Model No.: B2

Additional Model No.: N/A

Trade Mark: TECNO

Report No.: FCC18110006A-RF

Issued Date: Nov. 17, 2018

Issued for:

TECNO MOBILE LIMITED

ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE, HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG KONG

Issued By:

World Standardization Certification & Testing Group Co., Ltd.

Building A-B, Baoshi Science & Technology Park, Baoshi Road, Milicalion Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group Co.,Ltd. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

WSCT

TABLE OF CONTENTS

For Question, Please Contact with WSCT www.wsct-cert.com

1	GENERAL INFORMATION	WSH	3
2.			4
			4
<i>W5LT</i> 3.			7-2-1
	3.1. TEST FACILITY		
	3.2. ACCREDITATIONS		
	3.3. DESCRIPTION OF TEST CHANNELS AND TEST MODES	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/W517
	SUMMARY OF TEST REQUIREMENTS AN	D RESULTS	9
WSET 5.	W517	ZWSET	10
6.	EFFECTIVE (ISOTROPIC) RADIATED POV	VER	11
7.	SPURIOUS EMISSION (Conducted and Ra	idiated)	19
	7.1. MEASUREMENT RESULT (PRE-MEASUREMENT)	WSL	19 W 5 E T
8.	OCCUPIED BANDWIDTH& Emission Band	dwidth	40
9.	BAND EDGE	,X	58
w5/- 10.	D. FREQUENCY STABILITY	A11434-A	64
	10.1. MEASUREMENT RESULT (WORST)		65
	XXX	X	X
	WSET WSET	WSCT	WSET
X	X	X	X
WSCT	WSET	WSCT	WSCT
W3E1			
	\times \times \times	X	X
	WSET WSET WSET	WSET	WSET
			11213
X	X	X	X
WELL	WSCT WSCT	WSET	WSET
W5ET		ALP IS	
	\times \times \times	X	X
			Augen
Certi	tification & WSET WSET	WSET	WSET
Jiez J		X	X

esting Group Co.,Ltd. Page 2 of 68

Member of the WSCT INC.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Please Contact with WSCT www.wsct-cert.com

GENERAL INFORMATION

-	Product:	Mobile Phone
	Model No.:	B2
	Additional Model:	N/A
	Applicant:	TECNO MOBILE LIMITED
	Address:	ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE, HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG KONG
	Manufacturer:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
	Address:	1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C
	Data of receipt:	Nov. 02, 2018
4	Date of Test:	Nov. 02, 2018 to Nov. 14, 2018
	Applicable Standards:	FCC Rules Part 22H and 24E and 27.

The above equipment has been tested by World Standardization Certification & Testing Group Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Pu Shixi (Pu Shixi) Tested By:

Date: Nov. 19, 2018

Check By:

Date: Nov . 19

Approved By:

(Wang Fengbing)

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

2. GENERAL DESCRIPTION OF EUT

Equipment Type:	Mobile Phone	W5L
Hardware version:	V1.1	
Software version:	B2-F8017F-GO-180919V48	
Frequency Bands:	☑GSM 850 ☑PCS 1900 (U.S. Bands) UTRA Bands: ☑UTRA Band 2 ☑UTRA Band 5	\times
Antenna Type:	Internal Antenna	W5L
Antenna gain:	PCS 1900: -1.4dBi GSM850: -0.8dBi UTRA Band 2: -1.4dBi UTRA Band 5: -0.8dBi	
Battery information:	Li-Polymer Battery: BL-30VT Voltage: 3.85V Rated Capacity: 3000mAh/11.55Wh Typical Capacity: 3050mAh/11.74Wh Limited Charge Voltage: 4.4V	WSI
Adapter Information:	Adapter: A8-501000 Input: AC 100-240V 50/60Hz 200mA Output: DC 5V1.0A	
Card(S):	Card 1: SIM Card Slot Card 2: SIM Card Slot	
Max power:	See Table 2.1.2	X
Extreme Vol. Limits:	DC 3.5V to 4.35V (Normal: DC 3.8V)	Auge
Extreme Temp. Tolerance	-10°C to +55°C	aws/

WSET WSET WSET WSET WSET WSET

WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Certification d

Table 2.1

1 The Basic Technical Specification for Working BAND(S).					
OPERATION BAND(S)	Power Class	Mod.	Max Average (dBm)	Max Peak Power (dBm)	ww
GSM850 W5/	Class 4	GMSK 5	33.01	33.63	
DCS1900	Class 1	GMSK	29.95	30.76	V
UTRA BAND 2	Class 3	QPSK	22.22	23.96	
UTRA BAND 5	Class 3	QPSK	22.13	23.67	'5E

For Question, se Contact with WSCT ww.wsct-cert.com

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com esting Group Co.,Ltd.

Certification d

WSC1

3. FACILITIES AND ACCREDITATIONS

3.1. Test Facility

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Registration Number: 366353

3.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA
NVLAP (The certificate registration number is NVLAP LAB CODE:600142-0)
VCCI (The certificate registration number is C-4790, R-3684, G-837)

Canada INDUSTRY CANADA

(The certificated registration number is 7700A-1)

China CNAS (The certificated registration number is L3732)

Copies of granted accreditation certificates are available for downloading from our web site,

http://www.wsct-cert.com

Report No.: FCC18110006A-RF

W5C1

Page 6 of 68

For Question,
Please Contact with WSCT
www.wsct-cert.com

3.3. Description Of Test Channels And Test Modes

WSET WSET WSET WSET

Test channels:

GSM 850				
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	
Low Range	0.2	128	824.2	
Mid Range	0.2	190	836.6	
High Range	0.2	251	848.8	

WEFT.	TAPE.	F F	AVEC CONTRACTOR	VACCET
		PCS 1	900	
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)
	Low Range	0.2	512	1850.2
/	Mid Range	0.2	661	1880
	High Range	0.2	810	1909.8

/	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)
	Low Range	5	9262	1852.4
	Mid Range	5	9400	1880
	High Range	5	9538	1907.6
_	BATTLE TO BY		THE RESERVE TO SECOND S	A SA SECTION OF THE S

	URTA BAND 5					
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)		
7	Low Range	5	4132	826.4		
	Mid Range	5	4182	836.4		
	High Range	5	4233	846.6		

Note 1: The worst condition was recorded in the test report if no other modes test data.

	W5CT°	WSET	W5ET"	WSET [®]	W5E1
X	X		X	X	
WSE	WS	WS	ET WSE	T WSCI	

certification & WSET WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China esting Group Co.,Ltd.
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSCT

3.4. Equipment Modifications

3.4. Equipment Modifications	X	X	Please Contact with WSCT
Not available for this EUT intended for grant.			www.wsct-cert.com
WSET WSET	WSET	WSET	W5ET [°]
WSET WSET WSET			W5ET
X		X	WSET
WSET WSET WSET	WSET*	WSET	WSET
WSET WSET	WSCT	WSET	WSET
WSET WSET WSET			WSET
WSET WSET	WSET	WSET	WSET
WSET WSET WSET	WSET		WSET
WSET WSET	WSET	WSET	WSET
WSET WSET WSET			WSET
\times	WSET	WSET	WSET
Certification & WSLT Certifica			W

Report No.: FCC18110006A-RF

世标检测认证股份 esting Group Co.,Ltd.

Page 8 of 68

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

4. SUMMARY OF TEST REQUIREMENTS AND RESULTS

BAND 2(PCS 1900/ UTRA Band 2):

ľ	1D 2(FC3 1900/ 01	KA Dallu Zj.		V3 6 /	
	Test Item	FCC Rule No.	Requirements	Judgement	
	Effective (Isotropic) Radiated Power	§2.1046, §24.232(c)	EIRP ≤ 2W(33dBm)	Pass	
	Bandwidth	§2.1049 §24.238(a)	OBW: No limit. EBW: No limit.	Pass	7
	Band Edges	§2.1051, §24.238(a)	-13dBm	Pass	
	Spurious Emission at Antenna Terminals	§2.1051, §24.238(a)	-13dBm	Pass	
A	Field Strength of Spurious Radiation	§2.1053, §24.238(a)	-13dBm	Pass	/
		Z	the fundamental		
	AWSET	§2.1055, W5/	emission		
	Frequency Stability	§24.235	stays within	Pass	
	X	X	the authorized	X	
			frequency		
Ş			block.		
A	Peak to average ratio	§24.232(d)	<13dB	Pass	

BAND 5(GSM850/ UTRA Band 5):

		.,		
	Test Item	FCC Rule No.	Requirements	Judgement
	Effective (Isotropic) Radiated Power	§2.1046, §2.913(a)	EIRP ≤ 7W(38.5dBm)	Pass
	Occupied Bandwidth	§2.1049	OBW: No limit.	Pass
P A	Emission Bandwidth	22.917(b)	EBW: No limit.	V5 C Pass
	Band Edges Compliance	§2.1051, §22.917(a)(b)	KDB 971 168 D02 971168 D02 Misc OOBE License Digital Systems v01 &27.53(m) for detail the limit is upon different OBW	Pass
	Spurious Emission at Antenna Terminals	§2.1051, §22.917	-13dBm	Pass
4	Field Strength of Spurious Radiation	§2.1053, §22.917	-13dBm	Pass
	Frequency Stability	§2.1055, §22.355	the fundamental emissions stay within the authorized bands of operation. (2.5ppm)	Pass

世标检测认证股份 Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

5. MEASUREMENT INSTRUMENTS

	WSET	WSCT	W	SET	WSCT	W	7
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
×	EMI Test Receiver	R&S	ESCI	100005	08/19/2018	08/18/2019	
Z	LISN	AFJ	V 5 LS16	16010222119	08/19/2018	08/18/2019	
	LISN(EUT)	Mestec	AN3016	04/10040	08/19/2018	08/18/2019	
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2018	08/18/2019	/
	Coaxial cable	Megalon	LMR400	5/7 N/A	08/12/2018	08/11/2019	4
×	GPIB cable	Megalon	GPIB	N/A	08/12/2018	08/11/2019	
	Spectrum Analyzer	R&S	FSU	100114	08/19/2018	08/18/2019	
Z	Pre Amplifier	5 <i>ET</i> H.P.	HP8447E	2945A02715	10/13/2018	10/12/2019	
	Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2018	10/12/2019	1
	Loop Antenna	R&S	HFH2-Z2	100296	10/13/2018	10/12/2019	/
	Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2018	09/12/2019	7.
×	9*6*6 Anechoic		\ <u></u>	🗸	08/21/2018	08/20/2019	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	/	09/13/2018	09/12/2019	
74	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2018	08/22/2019	
	Power meter	Anritsu	ML2487A	6K00003613	08/23/2018	08/22/2019	
	Power meter	Anritsu	MA2491A	32263	08/23/2018	08/22/2019	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/24/2018	04/23/2019	7
X	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
74	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA3000	Χ -	08/21/2018	08/20/2019	
	Loop Antenna	EMCO	6502	00042960	08/22/2018	08/21/2019	
×	Wideband Radio Communication Tester	R&S	CMW 500	103974	08/19/2018	08/18/2019	1
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2018	08/18/2019	
5/	H & T Chamber	Guangzhou gongwen	GDJS-500-40	0329/5/1	08/19/2018	08/18/2019	

WSET GOLD

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

EFFECTIVE (ISOTROPIC) RADIATED POWER

RF Power Output No specific RF power output requirements in part 2.1046. **Methods of Measurement** During the process of the testing, the EUT was controlled via the Base Station Simulator (CMU200) to ensure max power transmission and proper modulation. **Test Setup** RF CABLE **Base Station Simulator EUT**

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

For Question,
Please Contact with WSCT
www.wsct-cert.com

GSM850 BAND.

GSM850 BAND:		ND:						www.wsct-cert.	com
	Mode		Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAP	Duty cycle Factor(dB)	Frame Power(dBm)	5
	/		824.2	33.08	32.98	0.10	-9	23.98	
	GSM850		836.6	33.63	33.01	0.62	-9	24.01	
			848.8	33.55	32.95	0.60	-9	23.95	
		1	824.2	33.51	32.73	0.78	-9.03	23.70	
5	1 Tx	Slots	836.6	32.88	32.68	0.20	-9.03	23.65	
			848.8	33.58	32.76	0.82	-9.03	23.73	
	X		824.2	31.86	31.62	0.24	-6.02	25.60	
	2 Tx	Slots	836.6	32.51	31.56	0.95	-6.02	25.54	
	WST		848.8	32.38	31.58	0.80	-6.02	25.56	E
	GPRS850		824.2	31.34	30.69	0.65	-4.26	26.43	
	3 Tx	Slots	836.6	30.71	30.59	0.12	-4.26	26.33	
7			848.8	30.68	30.66	0.02	-4.26	26.40	
			824.2	30.41	29.98	0.43	-3.01	26.97	
5	4 Tx	Slots	836.6	30.385	29.88	0.50	-3.01	26.87	
			848.8	30.60	29.9	0.70	-3.01	26.89	
			824.2	29.63	28.75	0.88	-9.03	19.72	
	1 Tx	Slots	836.6	28.92	28.74	0.18	-9.03	19.71	
	ALCO DE LA CONTRACTOR D		848.8	28.80	28.72	0.08	-9.03	19.69	
	W5.7		824.2	28.46	27.55	0.91	-6.02	21.53	1-7
	2 Tx	Slots	836.6	28.24	27.54	0.70	-6.02	21.52	
\rangle	EPRS850		848.8	28.11	27.57	0.54	-6.02	21.55	
	LI KS650		824.2	26.52	26.39	0.13	-4.26	22.13	
5	3 Tx	Slots	836.6	26.58	26.42	0.16	-4.26	22.16	
			848.8	27.41	26.45	0.96	-4.26	22.19	
			824.2	25.94	25.51	0.43	-3.01	22.50	1
	4 Tx	Slots	836.6	25.71	25.55	0.16	-3.01	22.54	
			848.8	26.17	25.58	0.59	-3.01	22.57	

Duty cycle Factor = 1 Tx Slots, 10*log(1/8)= -9.03dB, 2 Tx Slots, 10*log(2/8)= -6.02dB, 3Tx Slots, 10*log(3/8)= -4.26dB, 4 Tx Slots, 10*log(4/8)= -3.01dB

WSET WSET WSET WSET WSET WSET WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

esting Group Co.,Ltd.

Certification

WSC1

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

PCS1900 BAND:

	PCS1900 B	AND:						www.wsct	-ce
	Mod	e	Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAP	Duty cycle Factor(dB)	Frame Power(dBm)	1
7			1850.2	30.43	29.89	0.54	-9	20.89	
	GSM19	200	1880	30.44	29.90	0.54	-9	20.90	
	GOWITS	900	1909.8	30.76	29.95	0.81	-9	20.95	
			1850.2	30.42	29.66	0.76	-9.03	20.63	
		1 Tx Slots	1880	30.16	29.73	0.43	-9.03	20.70	F
			1909.8	29.74	29.68	0.06	-9.03	20.65	
	X		1850.2	28.65	28.56	0.09	-6.02	22.54	
		2 Tx Slots	1880	29.18	28.65	0.53	-6.02	22.63	
	GPRS1900		1909.8	28.78	28.61	0.17	-6.02	22.59	1
7	GPRS 1900		1850.2	28.40	27.44	0.96	-4.26	23.18	1
/		3 Tx Slots	1880	27.71	27.56	0.15	-4.26	23.30	
			1909.8	28.48	27.5	0.98	-4.26	23.24	
			1850.2	27.53	26.89	0.64	-3.01	23.88	
1		4 Tx Slots	1880	27.84	27.09	0.75	-3.01	24.08	L
			1909.8	27.49	26.98	0.51	-3.01	23.97	
	X		1850.2	28.12	27.15	0.97	-9.03	18.12	
		1 Tx Slots	1880	27.42	27.08	0.34	-9.03	18.05	
	VACCET		1909.8	28.02	27.12	0.90	-9.03	18.09	4
	WSET		1850.2	27.01	26.57	0.44	-6.02	20.55	Ш
/		2 Tx Slots	1880	26.77	26.62	0.15	-6.02	20.60	
	EGPRS1900	X	1909.8	26.97	26.65	0.32	-6.02	20.63	
	EGFK31900		1850.2	26.15	25.52	0.63	-4.26	21.26	
7		3 Tx Slots	1880	26.28	25.53	0.75	-4.26	21.27	
			1909.8	26.08	25.57	0.51	-4.26	21.31	
			1850.2	24.97	24.48	0.49	-3.01	21.47	
		4 Tx Slots	1880	24.94	24.51	0.43	-3.01	21.50	
			1909.8	24.78	24.56	0.22	-3.01	21.55	A
	Duty cyclo E	actor - 1	Ty Slote 10	$(1/9)_{-}$	0 034B 27	Ty Cloto 1	0*100(2/9)	6 024B	

Duty cycle Factor = 1 Tx Slots, 10*log(1/8) = -9.03dB, 2 Tx Slots, 10*log(2/8) = -6.02dB, 3Tx Slots, 10*log(3/8) = -4.26dB, 4 Tx Slots, 10*log(4/8) = -3.01dB

WSET WSET WSET WSET WSET WSET WSET WSET

VSET® WSET

<u> AWSET</u>

AWSE:

WSET |

Certification d

WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

UMTS BANDS: BAND 2:

D 2:	1707	F F F	Allert		C CT
Mod	de	Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAPR (dB)
		1852.4	23.36	22.1	1.26
Rel 99,12.2l	khne PMC	1880	23.96	22.22	1.74
1(6) 99, 12.21	KDP3 IXIVIC	1907.6	22.66	22.08	0.58
WS	77°	1852.4	23.01	22.02	0.99
	Subtest-1	1880	23.15	22.11	1.04
		1907.6	23.19	22	1.19
X		1852.4	22.74	21.95	0.79
	Subtest-2	1880	23.84	21.99	1.85
Pol E HCDDA	-	1907.6	23.36	21.88	1.48
Rel 5,HSDPA	444	1852.4	22.63	21.82	0.81
	Subtest-3	1880	22.36	21.9	0.46
		1907.6	22.69	21.8	0.89
	*	1852.4	22.97	21.76	1.21
	Subtest-4	1880	23.01	21.79	1.22
W		1907.6	22.77	21.75	1.02
	74	1852.4	22.69	22.01	0.68
	Subtest-1	1880	23.36	22.06	1.30
		1907.6	23.73	21.98	1.75
		1852.4	22.91	21.88	1.03
	Subtest-2	1880	22.53	21.9	0.63
5/7	W	1907.6	21.98	21.79	0.19
		1852.4	22.90	21.75	1.15
Rel 6,HSUPA	Subtest-3	1880	22.42	21.78	0.64
		1907.6	22.83	21.7	1.13
		1852.4	23.29	21.62	1.67
Kur	Subtest-4	1880	22.84	21.71	1.13
417		1907.6	22.20	21.64	0.56
		1852.4	22.14	21.58	0.56
	Subtest-5	1880	22.69	21.62	1.07
		1907.6	22.48	21.55	0.93

	W5CT	WSET*	W5CT°	WSET [®]	AW5ET
	<u> </u>				
<u> WSET</u>	W	ET [®] W5	CT° W	SET W	SET
	\times	\times	\times	\times	\times
	WSCT	WSET	WSET	WSET	AW5ET

WSCT WSCT WSCT WSCT

Certification of Research of WSCT WSCT WSCT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

世标检测认证股份 esting Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

BAND 5:

ANI	D 5:						WV
W	Mod	e	Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAPR (dB)	
			826.4	23.67	22.13	1.54	
	Rel 99,12.2k	bps RMC	836.4	22.74	22.10	0.64	
		\wedge	846.6	23.39	22.02	1.37	
	6		826.4	23.16	22.10	1.06	ŀ
_		Subtest-1	836.4	22.45	22.05	0.40	4
			846.6	22.48	22.00	0.48	
	X		826.4	23.36	21.90	1.46	
/		Subtest-2	836.4	23.10	21.86	1.24	
W	Rel 5,HSDPA		846.6	23.03	21.85	1.18	
LAA	Nei 3,1 ISBI A		826.4	22.87	21.76	1.11	
		Subtest-3	836.4	22.65	21.72	0.93	
	,	X	846.6	22.59	21.70	0.89	
			826.4	22.25	21.65	0.60	
	W	Subtest-4	836.4	/5/22.75	21.62	1.13//5	Z
/			846.6	21.98	21.61	0.37	
	\vee		826.4	23.16	22.07	1.09	
		Subtest-1	836.4	22.62	22.02	0.60	
A			846.6	22.29	22.01	0.28	
W	SET		826.4	22.71	21.88	0.83	
		Subtest-2	836.4	23.04	21.85	1.19	
		X	846.6	22.83	21.90	0.93	K
	/		826.4	23.54	21.81	1.73	
	Rel 6,HSUPA	Subtest-3	836.4	22.00	21.78	0.22	7
$\overline{}$			846.6	22.39	21.82	0.57	ľ
			826.4	21.97	21.67	0.30	
	\wedge	Subtest-4	836.4	23.12	21.69	1.43	
_			846.6	23.04	21.76	1.28	
W	567		826.4	22.94	21.60	1.34	
		Subtest-5	836.4	22.50	21.62	0.88	
		X	846.6	22.47	21.70	0.77	1
		A second	•				

WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET

世标检测认证股份 esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: FCC18110006A-RF

asting Grou

Certification &

Member of the WSCT INC.

For Question,
Please Contact with WSCT
www.wsct-cert.com

Radiation power test

Test limit:

According to §22.913, The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. According to §24.232, Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50 (d), Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications. According to §27.50 (h), Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power. See section 4.

Test procedure:

- 1. The setup of EUT is according with per TIA/EIA Standard 603 D:2010 or KDB971168 D01 v02r02.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3.The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6.Power(EIRP)=PMea+PAg Pcl + Ga
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

WSET	WSET	WSE	7 W5L	WSEI
WSET	WSET	WSET	WSET	WSET
WSET		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \ \rangle$	
WSET	WSET	WSET	WSET	WSET
\times			$\langle \ \rangle$	7° W5E1
Certification &	resulting the second			

Report No.: FCC18110006A-RF

Page 16 of 68

ADD:Bujlding A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Test Results:

Note: Record the condition when max power has been detector for radiated method. (Xwaxis)-cert.com

Radiated Power (ERP) for GSM 850

	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
	824.2	-2.80	31.21	3.34	8.34	-2.15	31.26	Η /
	836.6	-2.55	31.23	3.39	8.34	-2.15	31.48	HAW5
	848.8	-3.01	31.25	3.43	8.29	-2.15	30.95	H
-	824.2	-15.12	31.21	3.34	8.34	-2.15	18.94	V
	836.6	-14.55	31.23	3.39	8.34	-2.15	19.48	V
1	848.8	-14.31	31.25	3.43	8.29	-2.15	19.65	V

Radiated Power (ERP) for GPRS 850

				· (=:::)				_
Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization	
824.2	-6.36	31.21	3.34	8.34	-2.15	27.70	H /	
836.6	-6.63	31.23	3.39	8.34	-2.15	27.40	H	7
848.8	-6.68	31.25	3.43	8.29	-2.15	27.28	/H	П
824.2	-17.06	31.21	3.34	8.34	-2.15	17.00	V	
836.6	-17.78	31.23	3.39	8.34	-2.15	16.25	\ \	
848.8	-16.60	31.25	3.43	8.29	-2.15	17.36	V	
836.6 848.8 824.2 836.6	-6.63 -6.68 -17.06 -17.78	31.23 31.25 31.21 31.23	3.39 3.43 3.34 3.39	8.34 8.29 8.34 8.34	-2.15 -2.15 -2.15 -2.15	27.40 27.28 17.00 16.25	Н	W

Radiated Power (ERP) for EGPRS 850

Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
824.2	-9.88	31.21	3.34	8.34	-2.15	24.18	H
836.6	-10.07	31.23	3.39	8.34	-2.15	23.96	H
848.8	-10.03	31.25	3.43	8.29	-2.15	23.93	/ H
824.2	-20.13	31.21	3.34	8.34	-2.15	13.93	V
836.6	-19.32	31.23	3.39	8.34	-2.15	14.71	V
848.8	-20.03	31.25	3.43	8.29	-2.15	13.93	V

Radiated Power (E.I.R.P) for PCS 1900

Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	E.I.R.P. (Peak) (dBm)	Polarization
1850.2	-9.89	33.31	3.92	8.27	0	27.77	/H
1880.0	-10.43	33.35	3.96	8.25	0	27.21	H
1909.8	-10.12	33.38	4.01	8.21	0	27.46	X H
1850.2	-17.39	33.31	3.92	8.27	0	20.27	V
1880	-16.67	33.35	3.96	8.25	0	20.97	V
1909.8	-16.74	33.38	4.01	8.21	0	20.84	7L/V

Radiated Power (E.I.R.P) for GPRS 1900

					-			
	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	Pcl (dB)	Ga (dBi)	Correcti on (dB)	E.I.R.P. (Peak) (dBm)	Polarization
	1850.2	-12.83	33.31	3.92	8.27	0	24.83	H
2	1880.0	-13.39	33.35	3.96	8.25	0	24.25	Н
_	1909.8	-13.65	33.38	4.01	8.21	0	23.93	Н
į	1850.2	-18.86	33.31	3.92	8.27	0	18.80	5 / T ° V
-	1880.0	-18.70	33.35	3.96	8.25	0	18.94	V
	1909.8	-18.66	33.38	4.01	8.21	0	18.92	V

For Question,
Please Contact with WSCT
www.wsct-cert.com

Radiated Power (E.I.R.P) for EGPRS 1900

V	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	Pcl (dB)	Ga (dBi)	Correcti on (dB)	E.I.R.P. (Peak) (dBm)	Polarization
	1850.2	-16.32	33.31	3.92	8.27	0	21.34	Н
	1880.0	×-15.76	33.35	3.96	8.25	0	21.88	H
	1909.8	-16.22	33.38	4.01	8.21	0	21.36	Η /
	1850.2	-22.56	33.31	3.92	8.27	0	15.10	V
	1880.0	-21.75	33.35	3.96	8.25	0 7	15.89	VV
	1909.8	-22.48	33.38	4.01	8.21	0	15.10	V

Radiated Power (E.I.R.P) for UTRA Band 2

_				•••••	·	,	,, .		
V	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	Pcl (dB)	Ga (dBi)	Correcti on	E.I.R.P. (Peak)	Polarization	
	(IVITIZ)	(ubiii)	(ub)	(ub)	(ubi)	(dB)	(dBm)		
	1852.4	-16.78	33.31	3.92	8.27	0	20.88	Н	1
	1880	-17.63	33.35	3.96	8.25	0	20.01	H /	
	1907.6	-17.10	33.38	4.01	8.21	0	20.48	H	
	1852.4	-22.13	33.31	3.92	8.27	0,,,,	15.53	VIACE	7
	1880	-21.99	33.35	3.96	8.25	0	15.65	V	4
	1907.6	-22.35	33.38	4.01	8.21	0	15.23	V	

Radiated Power (ERP) for UTRA Band 5

7					O. (L.)	101 01117	· _ aa. o	
И	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
	826.4	-13.76	31.21	3.34	8.34	-2.15	20.30	Н
	836.4	-13.42	31.23	3.39	8.34	-2.15	20.61	Н /
	846.6	-14.14	31.25	3.43	8.29	-2.15	19.82	H /
	826.4	-23.29	31.21	3.34	8.34	-2.15	10.77	V W 5
ē	836.4	-23.19	31.23	3.39	8.34	-2.15	10.84	V
	846.6	-24.05	31.25	3.43	8.29	-2.15	9.91	V

Note: EIRP=PMea + PAg - Pcl + Ga.

Each channel is scanned 10 times, and the peak value of each channel is recorded.

WSET WSET WSET WSET

VSET WSET WSET

L标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/28996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Member of the WSCT INC

7. SPURIOUS EMISSION (Conducted and Radiated)

7.1. Measurement Result (Pre-measurement)

GSM850:

Test Channel	Channel BW(MHz) UL Channel		Frequency(MHz)	Judgment
Low Range	0.2	128	824.2	Pass
Middle Range	0.2	190	836.6	Pass
High Range	0.2	251	848.8	Pass

PCS 1900:

Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
Low Range	0.2	512	1850.2	Pass
Middle Range	0.2	661	1880.0	Pass
High Range	0.2	810	1909.8	Pass

UTRA BANDS

BAND 2:

Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
Low Range	5	9262	1852.4	Pass
Middle Range	5	9400	1880.0	Pass
High Range	5	9538	1907.6	Pass

BAND 5:

7					
71	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
All	Low Range	5	4132	826.4	Pass
	Middle Range	5	4182	836.4	Pass
	High Range	5	4233	846.6	Pass

<

WSET

WSET

WSET

WSE

世标检测认证股份 Testing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

Test Plot(s) Conducted method

Test limit:

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.

Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least $X + 10\log(P)$ dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation $X + 10\log(P)$ being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10\log(P) - \{X + 10\log(P)\}$], resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

Test procedure:

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Conducted Emission Test-Up:

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification &

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

世标检测认证股份 Testing Group Co.,Ltd.

Certification & 世标检测认证股份 Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 251 1GHz – 9GHz

800 MHz/

 \times

4W5LT

Date: 14.NOV.2018 13:42:18

1 GHz

CONDUCTED EMISSION IN PCS1900 BAND Conducted Emission Transmitting Mode CH 512 30MHz – 1GHz

WSET

W5E

W5/T°

Date: 14.NOV.2018 14:09:12

WSET"

5/T W5/

W5C

世标检测认证股份 Wedization Certification & Testing Group Co.,Ltd.

9

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Certification

WSET WSET

V5-47 W5-47 W

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

世标检测认证股份 Testing Group Co.,Ltd.

Certification d

世标检测认证股份 Testing Group Co.,Ltd.

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

WSET GROUP

WSET

WSET"

WSET[®]

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

世标检测认证股份 Testing Group Co.,Ltd.

Certification d 世标检测认证股份 Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 9538 1GHz – 20GHz

1.9 GHz/

AWSET"

Date: 14.NOV.2018 14:43:01

1 GHz

CONDUCTED EMISSION IN WCDMA Band V Conducted Emission Transmitting Mode CH 4132 30MHz – 1GHz

WSET

W5E

W5/T°

Date: 14.NOV.2018 16:13:13

WSET

5/7° W

WEL

WSET |

Certification

世标检测认证股份 ADD:Build

Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http:www.wsct-cert.com

Member of the WSCT INC

9

Certification &

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

世标检测认证股份 Testing Group Co.,Ltd.

Radiated method

Test limit:

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.

Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least X + 10log(P) dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation X + 10log(P) being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10log(P) - \{X + 10log(P)\}$], resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

Test procedure:

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Test setup:

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

WSL WSL

WSET WSET WSET

世标检测认证股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-RF

Certification

Page 34 of 68

WSC7 OF THE PROPERTY OF THE PR

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question, Please Contact with WSCT

List of final test modes:

GSM850:

Mo	ode	UL Channel	Frequency	Judgement
	1	128	824.2	Pass
2	2	190	836.6	Pass
;	3	251	848.8	Pass

www.wsct-cert.com

PCS1900

Mode	UL Channel	Frequency	Judgement
M	512	1850.2	Pass
2	661	1880	Pass
3	810	1909.8	Pass

UTRA BANDS BAND 2:

Mode	UL Channel	Frequency	Judgement
1	9262	1852.4	Pass
2	9400	1880	Pass
3	9538	1907.6	Pass

BAND 5:

Mode	UL Channel	Frequency	Judgement
1	4132	826.4	Pass
2	4182	836.4	Pass
3	4233	846.6	Pass

WSC1

Certification &

世标检测认证股份

esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question, Please Contact with WSCT www.wsct-cert.com

Test record: Note:

1. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below:

Power=P_{Mea+ARpl}

2. ARpl =Antenna gain-Cable loss

GSM850:

Mode 1						
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
	1648.4	-45.98	6.35	-52.33	-13	Horizontal
	1648.4	-44.70	7.15	-51.85	-13	Vertical
	2472.6	-45.73	6.35	-52.08	-13	Horizontal
	2472.6	-49.70	6.84	-56.54	-13	Vertical

Mode 2						
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
	1673.2	-45.98	6.37	-52.35	-13	Horizontal
_	1673.2	-44.79	7.16	-51.95	-13	Vertical
	2509.8	-45.58	6.37	-51.95	-13	Horizontal
	2509.8	-49.78	6.85	-56.63	-13	Vertical

	Mode 3						
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
	1697.6	-46.32	6.38	-52.70	-13	Horizontal	
	1697.6	-43.85	7.17	-51.02	-13	Vertical	
_	2546.4	-45.59	6.38	-51.97	-13 W 5	Horizontal	
	2546.4	-49.07	6.86	-55.93	-13	Vertical	

PCS1900:

Certification

Mode 1							
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity		
3700.4	-47.20	7.12	-54.32	-13	Horizontal		
3700.4	-44.95	6.93	-51.88	-13	Vertical		
5550.6	-45.93	6.85	-52.78	-13	Horizontal		
5550.6	-50.48	6.46	-56.94	-13	Vertical		

Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
3760 W5L	-44.97	7.14	-52.11	-13	Horizontal
3760	-42.94	6.95	-49.89	-13	Vertical
5640	-44.78	6.86	-51.64	-13	Horizontal
5640	-47.90	6.48	-54.38	-13	Vertical

世标检测认证股份 dization Certification & Testing Group Co., Ltd.

For Question,

						Places Centratus	ith WSCT
			Mode	e 3			t.com
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
_	3819.6	-46.45	7.15	-53.60	-13	Horizontal	VSE I
	3819.6	-44.36	6.96	-51.32	-13	Vertical	
	5729.4	-44.98	6.88	-51.86	-13	Horizontal	
	5729.4	-49.13	6.49	-55.62	-13	Vertical	
	211144						

UTRA BANDS BAND 2:

Mode 1					
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
3704.8	-60.72	7.23	-67.95	-13	Horizontal
3704.8	-58.10	7.36	-65.46	-13	Vertical
5557.2	-59.26	7.81	-67.07	-13	Horizontal
5557.2	-63.39	7.46	-70.85	54/-13	Vertical

	Mode 2						
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
1	V5 C 3760	-60.70	7.24	5 -67.94	-13 W 5	Horizontal	
	3760	-58.10	7.38	-65.48	-13	Vertical	
	5640	-59.12	7.83	-66.95	-13	Horizontal	
	5640	-62.94	7.47	-70.41	-13	Vertical	

Mode 3						
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
3815.2	-60.32	7.25	-67.57	-13	Horizontal	
3815.2	-57.94	7.40	-65.34	-13	Vertical	
5722.8	-59.13	7.85	-66.98	-13	Horizontal	
5722.8	-63.64	7.47	-71.11	-13	Vertical	

BAND 5:

A	ND 5:							
_	Mode 1							
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity		
	1652.8	-59.47	7.23	-66.70	-13	Horizontal		
	1652.8	-57.47	7.16	-64.63	-13	Vertical		
/	2479.2	-58.13	7.68	-65.81	-13 W 5	Horizontal		
	2479.2	-62.64	6.93	-69.57	-13	Vertical		

Mode 2							
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity		
1672.8	-59.64	7.24	-66.88	-13	Horizontal		
1672.8	-57.78	7.18	-64.96	-13	Vertical		
2509.2	-58.17	7.82	-65.99	-13	Horizontal		
2509.2	-62.44	6.96	-69.40	-13	Vertical		

W5CT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

1			Mode	э 3		
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
	1693.2	-58.87	7.24	-66.11	-13	Horizontal
	1693.2	-57.83	7.21	-65.04	-13	Vertical
	2539.8	-58.63	7.84	-66.47	577- 13	Horizontal
	2539.8	-62.62	7.05	-69.67	-13	Vertical

WSL	T W	SET	WSET [®]	WSET	WSET
WSET	WSET	WSET	WSET	WSET	
WSI		\times	\times	WSET	WSET
WSET	WSET	WSCT	WSET	WSET	
WSI		\times	W5CT°	WSCT	WSET
WSET	\times	X	X	X	
				WSET	
	W5CT*	WSET [®]	WSCT [®]	WSET*	X
W51	T W	TSET .	WSET*	WSET	WSET
	WSET°	VSET WSET	X	X	X

世标检测认证股份 n & Testing Group Co.,Ltd.

8. OCCUPIED BANDWIDTH& Emission Bandwidth

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lowe and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission, shall be measured when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user. [¡ì2.1049(h)]

Many of the individual rule parts specify a relative OBW in lieu of the 99% OBW. In such cases, the OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

The relative OBW must be measured and reported when it is specified in the applicable rule part; otherwise, the 99% OBW shall be measured and reported. The test report shall specify which OBW is reported.

A spectrum/signal analyzer or other instrument providing a spectral display is recommended for these measurements and the video bandwidth shall be set to a value at least three times greater than the IF/resolution bandwidth to avoid any amplitude smoothing. Video filtering shall not be used during occupied bandwidth tests.

The OBW shall be measured for all operating conditions that will affect the bandwidth results (e.g. variable modulations, coding, or channel bandwidth settings). See section 4.

Test procedure:

Occupied bandwidth – relative measurement procedure

The reference value is the highest level of the spectral envelope of the modulated signal.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- b) The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to prevent the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.
- e) The dynamic range of the spectrum analyzer at the selected RBW shall be at least 10 dB below the target "-X dB down" requirement (i.e., if the requirement calls for measuring the –26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference value).
- f) Set the detection mode to peak, and the trace mode to max hold.
- g) Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the "-X dB down amplitude" as equal to (Reference Value X). Alternatively, this calculation can be performed by the analyzer by using the marker-delta function.
- i) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

down amplitude" determined in step g). If a marker is below this "-X dB down amplitude," For Question, value it shall be placed as close as possible to this value. The OBW is the positive www.wsct-cert.com frequency difference between the two markers.

j) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Occupied bandwidth – power bandwidth (99%) measurement procedure The following procedure shall be used for measuring (99 %) power bandwidth

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.
- e) Set the detection mode to peak, and the trace mode to max hold...
- f) Use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99 % power bandwidth function, the trace data points are to be recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % power bandwidth is the difference between these two frequencies.
- h) The OBW shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test setup:

WSET GOOD

Certification

标检测认证股份 Group Co. Ltd.

Measurement Result

4	7	GSIVI850:	
	Frequency	OBW(99%)	26dB BW
_	824.2	246.8KHz	314.1KHz
>	836.6	246.8KHz	315.7KHz
	848.8	245.2KHz	309.3KHz

PCS1900:

	Frequency	OBW(99%)	26dB BW
	1850.2	245.2KHz	314.1KHz
	1880	246.8KHz	314.1KHz
5	1909.8 W5C	245.2KHz	312.5KHz

GPRS850:

Frequency	OBW(99%)	26dB BW
824.2	245.2KHz	319.6KHz
836.6 W5C	245.2KHz	315.7KHz
848.8	245.2KHz	322.1KHz

GPRS 1900:

	Frequency	OBW(99%)	26dB BW
	1850.2	243.6KHz	322.1KHz
7	1880	243.6KHz	318.9KHz
	1909.8	245.2KHz	318.9KHz

Week Auge

AWSET 1

△W5E

WSC7

Certification

世标检测认证股份 Testing Group Co.,Ltd.

NVLAP LAB CODE 600142 EGPRS850:

- 34			
5	Frequency	OBW(99%)	26dB BW
	824.2	248.4KHz	318.9KHz
	836.6	243.6KHz	317.3KHz
	848.8	243.6KHz	315.7KHz

For Question, Please Contact with WSCT www.wsct-cert.com

EGPRS 1900:

5.	Frequency	OBW(99%)	26dB BW
	1850.2	242.0KHz	310.9KHz
	V 1880	242.0KHz	W5 [7309.3KHz]
	1909.8	248.4KHz	318.9KHz

UTRA BANDS BAND 2:

	Frequency	OBW(99%)	26dB BW
	1852.4	4.151MHz	4.712MHz
	1880	4.167MHz	4.712MHz
5 L	1907.6 W5C	4.167MHz	4.712MHz

BAND 5:

	Frequency	OBW(99%)	26dB BW
>	826.4	4.183MHz	4.696MHz
5	836.4 W5C	4.151MHz	4.679MHz
	846.6	4.167MHz	4.663MHz

X

-

esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

世标检测认证股份 Testing Group Co., Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99% and -26dBc) PCS 1900 BAND CH 810

WSET"

Date: 14.NOV.2018 14:24:25

Occupied Bandwidth (99% and -26dBc) GPRS 850 BAND CH 128

WSET

W5E1

WSCT I

Date: 14.NOV.2018 15:35:01

WSET"

W5ET

W5E

世标检测认证股份 Wedization Certification & Testing Group Co., Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

Certification

WSET WSET

W5ET°

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

世标检测认证股份 Festing Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99% and -26dBc) GPRS 1900 BAND CH 810

AWSET"

Date: 14.NOV.2018 15:50:25

Occupied Bandwidth (99% and -26dBc) EGPRS 850 BAND CH 128

WSET I

Date: 14.NOV.2018 16:00:08

Testing Group Co., Ltd.

W5CT

SIT

SET[®]

ADD: Building A.B. Baos

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

AWSET"

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Testing Group Co., Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99% and -26dBc) EGPRS 1900 BAND CH 512

Date: 14.NOV.2018 16:06:19

Occupied Bandwidth (99% and -26dBc) EGPRS 1900 BAND CH 661

Date: 14.NOV.2018 16:07:38

CT WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

#标检测认证股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996144/26996145/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

9. BAND EDGE

Test Limit:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly load ed with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is op erated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified. See section 4.

Test procedure:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test setup:

10. FREQUENCY STABILITY

Test limit:

The frequency stability of the transmitter shall be measured while varying the ambient temperatures and supply voltages over the ranges specified in §2.1055. The specific frequency stability limits are provided in the relevant rules section(s). see

Test procedure:

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Test setup:

_					
	X	X	X	X	X

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

Certification

Member of the WSCT INC

10.1. Measurement Result (Worst)

Frequency Error against Voltage for GSM 850 band (836.6MHz)

	Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
	3.6	40	0.048
	3.85	36	W5L 0.043
-	4.4	40	0.047

Frequency Error against Temperature for GSM 850 band (836.6MHz)

3	Temperature(°C	WSET WSE	T" WSET"
		Frequency error(Hz)	Frequency error(ppm)
	-10	39	0.047
	0	34	0.040
	105/	V37_7	W5[70.044] W.
	20	34	0.041
	30	X 31 X	0.038
	40	28	0.034
3	55	W5L	0.037

Frequency Error against Voltage for PCS 1900 band (1880MHz)

Voltage(V) Frequency error(Hz)		Frequency error(ppm)	
3.6	32	0.017	
3.85	30	0.016	
4.4	29	0.015	

Frequency Error against Temperature for PCS 1900 band (1880MHz)

Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	37	0.020
0	33	0.017
10-	W5 34	2W55 0.018
20	39	0.021
30	34	0.018
40	36	0.019
55	32 W5L1	0.017

Frequency Error against Voltage for GPRS 850 band (836.6MHz)

Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
3.6	29	0.035
3.85	32	0.038
4.4	40	0.048

世标检测认证服

For Question,
Please Contact with WSCT
www.wsct-cert.com

Frequency Error against Temperature for GPRS 850 band (836.6MHz)

Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	32	0.038
0	30	0.036
10	40	0.047
20	35	0.042
30	36	0.042
40	33	0.040
55	33	0.040

Frequency Error against Voltage for GPRS 1900 band (1880MHz)

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.6	34	0.018
3.85	35	W5 F7 0.019
4.4	31	0.017

Frequency Error against Temperature for GPRS 1900 band (1880MHz)

/	Trequency Error against reinperature for GFRS 1900 band (1800WHZ)		
	Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
Æ	-10	32	0.017
	0	37	0.020
	10	40	0.021
	20	39	WS - 0.021
	30	34	0.018
	40	28	0.015
/	55	36	0.019

Frequency Error against Voltage for EGPRS 850 band (836.6MHz)

- 0		,	
	Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
	3.6	35	0.042
	3.85	36	MC 0.043
	4.4	33	0.040

Frequency Error against Temperature for EGPRS 850 band (836.6MHz)

	Troquery = more games remperature to = 0. 110 cost manua (cost manua)		
7	Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
	-10	31	0.038
	0	35	0.042
	10	40	0.048
	20	40	0.048
	30	41	0.049
	40	38	0.045
/	55	33	0.040

世标检测认证股份 on & Testing Group Co.,Ltd. DD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chir

For Question,
Please Contact with WSCT
www.wsct-cert.com

Frequency Error against Voltage for EGPRS 1900 band (1880MHz)

-	Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
7	3.6	W5[7° 38 W5]	0.020
	3.85	30	0.016
	4.4	36	0.019

Frequency Error	against Temperat	ture for EGPRS 1	1900 band (1	1880MHz)
-----------------	------------------	------------------	--------------	----------

	Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
	-10	40	0.021
/	0	40	0.021
7	10 W	77° 31 W5/7°	0.016
	20	36	0.019
	30	33	0.018
	40	30	0.016
	5577°	W5 34°	W5ET 0.018 WS

UTRA BANDS

Frequency Error against Voltage for WCDMA BAND 2 (1880MHz)

7	Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
	3.6	32	0.017
	3.85	34	0.018
	4.4	32	0.017

Frequency Error against Temperature for WCDMA BAND 2 (1880MHz)

	Trequency Error against reinperature for WobinA BAND 2 (1000in12)				
/	Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)		
	-10	75 31 WE	0.017		
	0	37	0.020		
	10	36	0.019		
	20	35	0.019		
	30	33	W57-0.017		
	40	40	0.021		
١	55	38	0.020		

Frequency Error against Voltage for WCDMA BAND 5 (836.4MHz)

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.6	36	0.043
3.85	36	0.043
4.475 <i>CT</i>	37 <i>5</i> °	W5C70.044

の の を 世标检測込

Certification

WSC1

World Standardization Certification & Testing Group Co.,Ltd.

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

Frequency Error against Temperature for WCDMA BAND 5 (836.4MHz)

/	Trequency Error against reinperature for WobinA BAND 3 (030.4min2)		
	Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
	-10	33	0.040
	0	36	0.043
	10	38	0.046
	20	38	0.046
_	30	39	0.047
	40	28	0.034
/	55	31	0.037

WSET WSET WSET WSET WSET

---END OF REPORT---

WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET

WSH