

Budapest University of Technology and Economics Department of Electron Devices

Overview of MOSFET types

Char. of enhancement mode n type MOSFETs

Now we calculate with this!

Simple model of MSOFETs

- The simplest (logic) model:
 - no conduction (off) / conduction (on)

Let's construct an inverter!

- Resistor at supply voltage (V_{DD})
- Other end connected to ground (GND) through a switch
- Switch controlled by a logic signal:
 - 1 (V_{DD} level) "short"
 - 0 (GND level) "open"
- The output is the common node of the switch and the resistor

Let's construct an inverter!

- ► IN = 1
 - switch "on"
 - output connected to GND

$$\bullet$$
 OUT = 0 \lor_{DD}

- \blacktriangleright IN = 0
 - switch "off"
 - output floating at V_{DD}

Two switches in series: NAND gate

- ▶ If A and B equal to 1, then OUT=0
- ▶ This is the NOT (A AND B) function, i.e. NAND

In practice with max. 3..4 inputs.

If there are *parallel* conductions paths then we get the NOR function

The scheme of the NOR gate:

Complex conduction paths == option for complex logic gates

Complex logic gates

Serial paths connected in parallel

Inverter realizations

nMOS technique – very simple

- Simple process, outdated, many disadvantages
 - static consumption if OUT=0
 - if OUT = 0, it will not be a pure GND level
 - asymmetrical transfer characteristic (see later)
- ▶ In both cases the *load* resistor is replaced by a MOSFET but this transistor was not provided with an active control
 - This is the passive load inverter

Complex gates (in nMOS)

Serial conduction paths in parallel, e.g.:

$$OUT = \overline{AB + C + (D + E)F}$$

The CMOS technique

- The name comes from: Complementary MOS
- Idea: the load also should be provided with active control
 - if the nMOS driver (switching) transistor conducts, then the load transistor must be an "open" circuit
 - if the nMOS driver (switching) transistor is an "open circuit", then the load must be conducting
- This needs such a normally OFF device which needs "opposite" control signals than the nMOS transistors
 - Such device is an enhancement mode pMOS transistor

The CMOS inverter

- An n and a p type enhancement mode device
- Active load inverter: the two transitors have the same common control

In steady state only one device is "on", the other is "off".

- Transfer characteristic:
 - output voltage vs. input voltage

$$U_{out} = f(U_{in})$$

The output signal is the inverted version of the logic value of the input signal

transfer characteristic of an ideal and a realistic inverter

Xfer char. of a CMOS inverter

- Noise immunity:
 - Same U_{out} corresponds to a wide U_{in} range
 - There are 3 regions in the charactersitic
 - On the L and H sides the characteristc is flat, i.e. any voltage change in the input has negligible effect on the output.

L and H regions

transfer characteristic of an ideal and a realistic inverter

- Signal regeneration
 - depends on the slope of the middle region

U₁ is a "bad" logic 0 signal. Output U₂ of the first inverter is already close to an acceptable logic 1 level. output voltage U₃ at the second inverter is already a "good" logic 0 level.

transfer characteristic of an ideal and a realistic inverter

Signal regeneration

$$U_{I} = 0V, U_{H} = 5V$$

(SPICE simulation)

In case of U_3 both the voltage level and the signal form are visibly regenerated!

Inverter logic threshold voltage

The level, under which the signals will be converted into logical 0 and above which the signals will be converted by the inverter chain into logical 1

Intersection of the U_{in}=U_{out} line and the x-fer characteristic

Logic level ranges

The voltage range of the logic 0 and 1 values within which the circuit works safely in the respective logic level

Example: 74HC00, V_{dd} =3V, U_{LM} =0.9V U_{Hm} =2.1V

Important voltage values

 U_{LM} , max. of logic 0 U_{Hm} , min. op logic 1

Propagation delay

tpd is difficult to define, and may be different for switching on and off (e.g. nMOS inverters)

Inverter pair delay

A long chain of uniform inverters is assumed. After a certain number of inverters the signal form will be determined by the inverter properties only.

After propagating through 2 inverters the signal will be the same, the delay will be t_{pdp} - the inverter <u>pair propagation delay</u>

Measuring the inverter pair delay

THE RING OSCILLATOR

Odd number of inverters connected in a chain, no stable state \Rightarrow oscillation

- Power-delay product (Pτ)
 - low power and small delay refer to good quality,
 - their product is a figure of merit for the quality of a circuit family.
 - the physical meaning: the minimal energy, needed to work on 1 bit of information.

