大学物理(1)速通教程

4 刚体转动

4.0 基本公式

	平动	转动
描述变化量	$\overrightarrow{ ext{dp}r}$ 、路程 s	角位移 $ heta$,弧长 $s=r heta$
描述变化快 慢	速度 $\overrightarrow{v}=rac{\overrightarrow{\mathrm{d}r}}{\mathrm{d}t}$	线速度 $\overrightarrow{v}=\dfrac{\mathrm{d}s}{\mathrm{d}t},v=r\omega$,角速度 $\overrightarrow{\omega}=\dfrac{\overrightarrow{\mathrm{d}\theta}}{\mathrm{d}t}$
描述变化快慢	加速度 $\overrightarrow{a}=\dfrac{\overrightarrow{\mathrm{d} v}}{\overline{\mathrm{d} t}}$ $\overrightarrow{a,v}$ 同向加速,反向减速	角加速度 $\overrightarrow{a}=\dfrac{\overrightarrow{d\omega}}{\overrightarrow{dt}}$,总加速度 $\overrightarrow{a}=a_t\overrightarrow{e_t}+a_n\overrightarrow{e_n}$ 切向加速度 $\overrightarrow{a_t}=\dfrac{\overrightarrow{dv}}{\overrightarrow{dt}}=r\alpha$ 法向加速度(向心加速度) $a_n=\dfrac{v^2}{r}=\omega^2 r$ $\overrightarrow{\alpha},\overrightarrow{\omega}$ 同向加速,反向减速
两类问题	求导: $\overrightarrow{r} \to \overrightarrow{v} \to \overrightarrow{a}$ 积分: $\overrightarrow{a} \to \overrightarrow{v} \to \overrightarrow{r}$	求导: $\theta \to \overrightarrow{\omega} \to \overrightarrow{\alpha}$ 积分: $\overrightarrow{\alpha} \to \overrightarrow{\omega} \to \theta$
匀速	$s=s_0+vt$	$ heta = heta_0 + \omega t$
匀变速	$egin{aligned} v &= v_0 + at \ s &= s_0 + v_0 t + rac{1}{2} a t^2 \ v^2 &= v_0^2 + 2 a (s - s_0) \end{aligned}$	$egin{aligned} \omega &= \omega_0 + lpha t \ heta &= heta_0 + \omega_0 t + rac{1}{2}lpha t^2 \ \omega^2 &= \omega_0^2 + 2lpha(heta - heta_0) \end{aligned}$
描述作用	カ \overrightarrow{F}	力矩 $\overrightarrow{M}=\overrightarrow{r} imes\overrightarrow{F}=F\cdot r\cdot\sin heta=Fd$ 力臂 $d=r\sin heta$
量度惯性	质量加	转动惯量 $J=\sum_i m_i r_i^2$
动力学	牛顿第二定律 $\overrightarrow{F}=\dfrac{\mathrm{d}\overrightarrow{p}}{\mathrm{d}t}$ 若质量 m 不变,则 $\overrightarrow{F}=m\overrightarrow{a}$	转动定律 $\overrightarrow{M}=\dfrac{\mathrm{d}\overrightarrow{L}}{\mathrm{d}t}$ $\overrightarrow{M}=J\overrightarrow{lpha}$
力对时间的积累	(质点)动量 $\overrightarrow{p}=m\overrightarrow{v}$ 冲量 $\overrightarrow{I}=\overrightarrow{F}\mathrm{d}t$ 动量定理 $ \begin{cases} \text{微分形式}:\overrightarrow{F}\mathrm{d}t=\mathrm{d}\overrightarrow{p} \\ \text{积分形式}:\int_{t_1}^{t_2}F\mathrm{d}t=\int_{\overrightarrow{p_1}}^{\overrightarrow{p_2}}\mathrm{d}\overrightarrow{p}=\overrightarrow{p_2}-\overrightarrow{p_1} \\ \text{动量守恒定律}:\overrightarrow{F}^\mathrm{ex}=\overrightarrow{0}\Rightarrow\overrightarrow{p}$ 为恒矢	角动量 $\overrightarrow{L}=\left\{ egin{aligned} & ext{ final }\overrightarrow{f} = \overrightarrow{T} imes (\overrightarrow{mv}) \\ & ext{ MM} imes : \overrightarrow{J\omega} \end{aligned} ight.$ 冲力矩 $\overrightarrow{H}=\overrightarrow{M} ext{d}t$ 角动量定理 $\left\{ \begin{array}{l} & ext{ 微分形式}: \overrightarrow{M} ext{d}t = ext{d}\overrightarrow{L} \\ & ext{ 积分形式}: \overrightarrow{M} ext{d}t = ext{d}\overrightarrow{L} \end{aligned} ight.$ 角动量守恒定律: $\overrightarrow{M} ext{ex} = \overrightarrow{0} \Rightarrow \overrightarrow{L}$ 为恒矢

	平动	转动
力对空间的积累	$ \begin{split} & \text{功}W = \int_{\overrightarrow{r_1}}^{\overrightarrow{r_2}} \overrightarrow{F} \cdot \overrightarrow{dr} \\ & \text{功} \times P = \frac{\mathrm{d}W}{\mathrm{d}t} = \overrightarrow{F} \cdot \overrightarrow{v} \\ & \text{(质点)} \text{动能} E_k = \frac{1}{2} m v^2 \\ & \text{(质点)} \text{动能定理} \\ & W = W^{\mathrm{ex}} + W^{\mathrm{in}} = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 \\ & \text{(系统)} \text{重力势能} E_p = mgh \\ & \text{(系统)} \text{机械能} E = E_p + E_k = mgh + \frac{1}{2} m v^2 \\ & \text{(系统)} \text{功能原理} W^{\mathrm{ex}} + W_{\mathrm{nc}}^{\mathrm{in}} = E - E_0 \\ & \text{(系统)} \text{机械能守恒定律} W^{\mathrm{ex}} = W_{\mathrm{nc}}^{\mathrm{in}} = 0 \Rightarrow E \mathcal{E} \\ & \text{常量} \end{split} $	$ \begin{split} & \text{功}W = \int_{\theta_1}^{\theta_2} \overrightarrow{M} \cdot \overrightarrow{\mathrm{d}\theta} \\ & \text{功} \times P = \frac{\mathrm{d}W}{\mathrm{d}t} = \overrightarrow{M} \cdot \overrightarrow{\omega} \\ & (\text{刚体}) \text{定轴转动动能} E_k = \frac{1}{2}J\omega^2 \\ & (\text{刚体}) \times \mathrm{Tangle} + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + \frac{1}{2}J\omega^2 + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + W^{\mathrm{in}} = \frac{1}{2}J\omega_2^2 - \frac{1}{2}J\omega_1^2 \\ & (\text{MM}) \times \mathrm{Tangle} + W^{\mathrm{in}} = \frac{1}{2}J\omega_2^2 - \frac{1}{2}J\omega_1^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}mv^2 + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} + E_k = mgh_C + \frac{1}{2}J\omega^2 \\ & (\text{MM}) \times \mathrm{Tangle} +$

圆周运动中,线速度沿切线方向,角速度、力矩方向用右手定则判断.

常用微元:①环切成弧;②盘切成环;③球切成盘.

4.1 刚体的定轴转动

刚体:在外力作用下形状和大小都不变的物体(任意两质点间距离保持不变的物体),是一种理想模型. 刚体的运动可分解为平动和转动.

(1)平动:刚体中所有点的运动轨迹都相同, $\Delta \overrightarrow{r}$ 、 \overrightarrow{v} 、 \overrightarrow{a} 都相同.

(2)转动:

①定轴转动:运动中各质元都做圆周运动,且各圆心在一条固定直线(转轴)上,各质元 $\Delta\theta$, $\overrightarrow{\omega}$, $\overrightarrow{\alpha}$ 都相同,但 \overrightarrow{v} , \overrightarrow{a} 不同. 因转轴固定,则 $\overrightarrow{\omega}$ 与 $\overrightarrow{\alpha}$ 要么同向,要么反向,可用标量 ω 和 α 表示.

因各质元都做圆周运动,故只需用角坐标 θ 即可描述运动.

②定点转动:运动中刚体上只有一点固定不动,整个刚体绕该定点的某一瞬时轴线转动.

平面平行运动:刚体上各点的运动都平行于某一固定平面,它可看作平动和定轴转动的合成,如行驶的汽车的车轮的运动.

[例4.1.1] 在高速旋转的微型电动机里,有一圆柱形转子可绕垂直其横截面并通过中心的转轴旋转.起动时角速度为零,起动后其转速随时间变化关系为 $\omega=\omega_m(1-{\rm e}^{-t/\tau})$,其中 $\omega_m=540~{
m r}\cdot{
m s}^{-1}, \tau=2~{
m s}$.求:(1) $t=6~{
m s}$ 时电动机的转速;(2)起动后,电动机在 $t=6~{
m s}$ 内转过的圈数;(3)角加速度随时间的变化规律.

[**解**] 注意此处 ω_m 的单位是转/s,要乘 2π 转化为常规单位s⁻¹.

- (1) 即 $\omega(t=6 \text{ s})$.
- (2) 求转过的圈数即求转过的角度,已知 $\omega=rac{\mathrm{d} heta}{\mathrm{d}t}$,则 $\mathrm{d} heta=\omega\mathrm{d}t$ 两边积分即可.
- (3) ω 对t求导即可.

[例题4.1.2] 一圆柱形转子可绕垂直其横截面并通过中心的转轴旋转.起动时角速度为零,经300 s后转速达到 $18000 \text{ r} \cdot \min^{-1}$,转子的角加速度与时间成正比.求这段时间内转子转过多少圈.

[**解**] 注意此处 ω 的单位是转 $/\min$,要乘 2π 再除以60转化为常规单位s $^{-1}$.

设
$$lpha=kt=rac{\mathrm{d}\omega}{\mathrm{d}t}$$
,则 $\mathrm{d}\omega=kt\mathrm{d}t$,两边积分得: $\omega-\omega_0=rac{1}{2}kt^2$,由此解出 k ,再 $lpha=kt$ 对 t 求导求得 ω .

 $d\theta = \omega dt$,两边积分求得 $\Delta\theta$,除以 2π 得到圈数

4.2 力矩

 \overrightarrow{D} 力矩 $\overrightarrow{M}=\overrightarrow{r}\times\overrightarrow{F}$,其中 \overrightarrow{r} 是作用点位矢,它与参考点O的选取有关,即与转轴有关.

 \overrightarrow{M} 垂直于 \overrightarrow{R} 形在平面.

 \rightarrow 若F不在转动平面内,则将其分解为在转动平面内的分量 $F_{//}$ 和垂直于转动平面的分量 F_{\perp} ,

则 $\overrightarrow{M}=\overrightarrow{r} imes\left(\overrightarrow{F_{//}}+\overrightarrow{F_{\perp}}\right)=\overrightarrow{r} imes\overrightarrow{F_{//}}+\overrightarrow{r} imes\overrightarrow{F_{\perp}}$,其中 $\overrightarrow{M_z}=\overrightarrow{r} imes\overrightarrow{F_{//}}$ 是对刚体转动有贡献的力矩, $\overrightarrow{r} imes\overrightarrow{F_{\perp}}$ 的方向垂直于z轴,对刚体转动无贡献,故只需讨论刚体定轴转动时只需考虑作用力在转轴上的分量.

合力矩等于各分力矩的矢量和.设
$$\overrightarrow{F} = \sum_i \overrightarrow{F_i}$$
,则 $\overrightarrow{M} = \sum_i \overrightarrow{M_i} = \sum_i \overrightarrow{r_i} imes \overrightarrow{F_i}$.

若各分力作用点相同,则 $\overrightarrow{M}=\overrightarrow{r} imes\overrightarrow{F}$,其中合力 $\overrightarrow{F}=\sum_{i}\overrightarrow{F_{i}}$.

则体内作用力和反作用力的力矩大小相等、反向相反,故它们的矢量和为0,故讨论刚体定轴转动时只需考虑外力矩.

4.3 转动惯量

转动惯量 $J=\sum_i m_i r_i^2$,量度刚体的转动惯性.

①质量离散分布: $J=\sum_i m_i r_i^2=\sum_i J_i$,用于求连接体的转动惯量.

②质量连续分布:
$$J=\int r^2\mathrm{d}m$$
.若 $r^2=x^2+y^2+z^2$,则 $J=\int x^2\mathrm{d}m+\int y^2\mathrm{d}m+\int z^2\mathrm{d}m$.

影响刚体转动惯量的因素:①刚体的线密度 λ 、面密度 σ 、体密度 ρ ;②刚体的几何形状及密度分布;③转轴位置.

[例4.3.1] ①质量主要集中在边缘的圆盘对中心轴的转动惯量最大,如汽车的轮胎的质量主要集中在边缘.

②"顶杆"杂技表演用较长的杆,则杆与在杆顶端的杂技演员构成的系统的质心靠上.当杆偏离平衡位置,如左右晃动时,在杆底端的杂技演员通过调整支撑点的位置,增大恢复力的力矩,易保持杆稳定,即保持重力作用线沿杆,这样重力对杆的转动力量为0.

常用转动惯量:

- ①质量为m、半径为R的均匀圆环对中心转轴的转动惯量: $J=mR^2$
- ②质量为m、半径为R的均匀薄圆盘或圆柱体对中心转轴的转动惯量: $J=rac{1}{2}mR^2$.
- ③质量为m、长度为l的均匀细杆对中心转轴的转动惯量: $J=rac{1}{12}ml^2$.
- ④质量为m、长度为l的均匀细杆对边缘转轴的转动惯量: $J=rac{1}{3}ml^2$.(③和④可只记一个,另一个用平行轴定理计算)

[**平行轴定理**] 若质量为m的刚体对其质心C的转动惯量为 J_C ,则它对任一与该轴平行、相距为d的转轴的转动惯量 $J_C = J_C + md^2$,用于求已知对一个转轴的转动惯量,求对另一个转轴的转动惯量.

[垂直轴定理,正交轴定理] 一薄片对一各坐标轴的转动惯量等于其对另外两个坐标轴的转动惯量的和,即 $J_z = J_x + J_y$,用于求薄片的转动惯量.

4.4 转动定律

转动定律 $\stackrel{
ightarrow}{M}=J\stackrel{
ightarrow}{lpha}$ 适用于刚体,描述了刚体转动的力矩与角加速度的瞬时对应关系.

[**例4.4.1**] 如下图,质量为 m_A 的物体A静止在光滑水平面上,与一轻绳相连,轻绳跨过一半径为R、质量为 m_C 的圆柱形滑轮C并系在一质量为 m_B 的物体B上,B竖直悬挂,滑轮与轻绳间无滑动,忽略滑轮与轴承间的摩擦力.求:(1)两物体的线加速度;(2)水平和竖直两段轻绳的张力;(3)物体B从静止落下距离y时的速率.

 $[{m m}]$ 对 m_C ,因其重力 P_C 和墙面对其的支持力 N_C 都过转轴,则它们无力矩.以水平向右、竖直向下分别为x、y轴正方向.

$$(1) \begin{cases} m_A: \overrightarrow{F_{T1}} + \overrightarrow{N_A} + \overrightarrow{P_A} = m_A \overrightarrow{a_A} \\ m_B: \overrightarrow{F_{T2}} + \overrightarrow{P_B} = m_B \overrightarrow{a_B} \\ \overrightarrow{m_C}: \overrightarrow{M_1} + \overrightarrow{M_2} = J \alpha \end{cases}, \mathbb{J} \begin{cases} m_A: F_{T1} = m_A a_A \\ m_B: m_B g - F_{T2} = m_B a_B, \mathbb{J} + F_{T1} = F_{T1}', F_{T2} = F_{T2}'. \\ m_C: F_{T2}'R - F_{T1}'R = J \alpha \end{cases}$$

因
$$A$$
和 B 连在同一细绳上,则 $a_A=a_B=a$.又 $a=Rlpha$,解得 $egin{cases} a=rac{m_Bg}{m_A+m_B+m_C/2} \ F_{T1}=rac{m_Am_Bg}{m_A+m_B+m_C/2}. \ F_{T2}=rac{(m_A+m_C/2)m_Bg}{m_A+m_B+m_C/2}. \end{cases}$

4.5 角动量

角动量 $\overrightarrow{L}=\overrightarrow{r}\times\overrightarrow{p}=\overrightarrow{r}\times(\overrightarrow{mv})=rmv\sin\theta$,它是一个状态量,具有瞬时性;与参考点有关,具有相对性. \overrightarrow{L} 垂直于 \overrightarrow{r} 和 \overrightarrow{p} 所在平面,

角动量等于各分角动量的矢量和,即 $\overrightarrow{L} = \sum_i \overrightarrow{L_i}$.

直角坐标系中,
$$\overrightarrow{L}=L_x\overrightarrow{i}+L_y\overrightarrow{j}+L_z\overrightarrow{k}$$
.设 $\overrightarrow{r}=(x,y,z)$, $\overrightarrow{p}=m(v_1,v_2,v_3)$,则 $\overrightarrow{L}=\overrightarrow{r}\times\overrightarrow{p}=m\begin{vmatrix}\overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\x&y&z\\v_x&v_y&v_z\end{vmatrix}$,如 $\overrightarrow{L}_x=m(yv_z-zv_y)\overrightarrow{i}$.

4.5.1 质点的角动量定理与角动量守恒定律

质量为m的质点做半径为r的圆周运动时的角动量 $L=mvr=m\omega^2r$.

$$\overrightarrow{F} = \frac{\overrightarrow{\mathrm{d} p}}{\overline{\mathrm{d} t}},$$
两边左叉乘 \overrightarrow{r} 得: $\overrightarrow{M} = \overrightarrow{r} \times \frac{\overrightarrow{\mathrm{d} p}}{\overline{\mathrm{d} t}}$.注意到 $\frac{\mathrm{d}}{\overline{\mathrm{d} t}} \left(\overrightarrow{r} \times \overrightarrow{p} \right) = \frac{\overrightarrow{\mathrm{d} r}}{\overline{\mathrm{d} t}} \times \overrightarrow{p} + \overrightarrow{r} \times \frac{\overrightarrow{\mathrm{d} p}}{\overline{\mathrm{d} t}} = \overrightarrow{v} \times \overrightarrow{p} + \overrightarrow{r} \times \frac{\overrightarrow{\mathrm{d} p}}{\overline{\mathrm{d} t}}$.其中
$$\overrightarrow{v} / / \overrightarrow{p}$$
,故 $\overrightarrow{M} = \frac{\mathrm{d}}{\overline{\mathrm{d} t}} \left(\overrightarrow{r} \times \overrightarrow{p} \right) = \frac{\overrightarrow{\mathrm{d} L}}{\overline{\mathrm{d} t}}.$

对同一参考点,质点所受的冲力矩 $H=M\,\mathrm{d} t$ 等于质点角动量的增量.

质点的角动量定理只适用于惯性系.

[**质点的角动量守恒定律**]对<u>同一参考点</u>,若质点所受的合外力矩为零,则它对该参考点的角动量是恒矢.守恒条件:

①质点与参考点重合,即 $\overrightarrow{r}=\overrightarrow{0}$ 时.

② $\overrightarrow{F}=\overrightarrow{0}$ 时, $\overrightarrow{M}=\overrightarrow{F}\times\overrightarrow{r}=\overrightarrow{0}$,此时 $\overrightarrow{p}=\overrightarrow{mv}$ 是恒矢,即 \overrightarrow{v} 是恒矢,亦即质点做匀速直线运动,此时 \overrightarrow{r} 和 θ 变化,但力臂 $d=r\sin\theta$ 不变,故 $L=rmv\sin\theta=mvd$ 不变;显然 \overrightarrow{L} 方向不变,故 \overrightarrow{L} 是恒矢.

 \overrightarrow{O} ③F为有心力(如万有引力、电场力等),即 \overrightarrow{r}/F 时, $\overrightarrow{M}=\overrightarrow{r}\times\overrightarrow{F}=0$.例:地球绕太阳公转时角动量不变.

[**例4.5.1**] [**Kepler第二定律**] 太阳系中太阳和运动中的行星的连线(矢径)在相等时间内扫过的面积相等.

[**证**]
$$\mathrm{d}S = \frac{1}{2}|\overrightarrow{r}||\overrightarrow{\mathrm{d}r}|\sin\theta$$
,则 $\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{2}|\overrightarrow{r}|\left|\frac{\overrightarrow{\mathrm{d}r}}{\mathrm{d}t}\right|\sin\theta = \frac{1}{2}rv\sin\theta = \frac{1}{2}\frac{L}{m}$,因 L 是常量,故证.

[**例4.5.2**] 一半径为R的光滑圆环置于竖直平面内,一质量为m的小球穿在圆环上并可在圆环上滑动。初始时小球静止于圆环上的A点(与环心O点在同一水平面上),后从A点开始下滑,忽略所有摩擦,求小球滑到B点时对环心O的角动量和角速度.

[解]
$$\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F} = \overrightarrow{r} \times \left(\overrightarrow{F_N} + m\overrightarrow{g}\right) = \overrightarrow{r} \times m\overrightarrow{g}$$
,则 $M = Rmg \sin\left(\frac{\pi}{2} - \theta\right) = mgR \cos\theta$.
$$dL = Mdt = mgR \cos\theta dt = mgR \cos\theta \frac{dt}{d\theta} d\theta = mgR \frac{\cos\theta}{\omega} d\theta = mgR \frac{\cos\theta}{L/(mR^2)} d\theta,$$
 则 $\int_0^L LdL = \int_0^\theta m^2gR^3 \cos\theta d\theta$,求得 L 后再用 $\omega = \frac{L}{mR^2}$ 求得 ω .

[**例4.5.3**] 在光滑桌面上开一个小孔,将系在轻绳一端的小球放在桌面上,绳另一端穿过小孔执于手中.设开始时小球以速率 v_0 做半径为 r_0 的圆周运动.现向下缓慢拉绳使小球转动半径减为r,求此时小球的速率v.

[**解**] 注意到水平方向 $\overrightarrow{F_T}$ 与 \overrightarrow{r} 平行,则 $\overrightarrow{M}=\overrightarrow{0}$,进而角动量守恒. $L_0=L$,即 $r_0mv_0\sin\frac{\pi}{2}=rmv\sin\frac{\pi}{2}$,解得 $v=\frac{v_0r_0}{r}$.

4.5.2 刚体的角动量定理与角动量守恒定律

角动量
$$\overrightarrow{L}=\overrightarrow{r} imes\left(\overrightarrow{mv}
ight)$$
,则 $L_{i}=r_{i}m_{i}v_{i}\sinrac{\pi}{2}=r_{i}^{2}m_{i}\omega$,进而 $L=\sum_{i}L_{i}=\left(\sum_{i}m_{i}r_{i}^{2}
ight)\omega=J\omega.$

[刚体的角动量定理] 刚体绕某定轴转动时作用于刚体的合外力矩等于该刚体绕此定轴的角动量随时间的变化率,即

$$\overrightarrow{M} = \frac{\overrightarrow{\mathrm{d}L}}{\operatorname{d}t} = \frac{\operatorname{d}}{\operatorname{d}t} \left(\overrightarrow{J}\overrightarrow{\omega} \right). \begin{cases} \text{微分形式} : \overrightarrow{M} \operatorname{d}t = \overrightarrow{\mathrm{d}L} \\ \text{积分形式} : \int_{t_1}^{t_2} \overrightarrow{M} \operatorname{d}t = \int_{\overrightarrow{L_1}}^{\overrightarrow{L_2}} \operatorname{d}\overrightarrow{L} = \overrightarrow{L_2} - \overrightarrow{L_1} \end{cases}.$$
 若刚体绕定轴转动,则
$$\overrightarrow{L_2} - \overrightarrow{L_1} = J \left(\overrightarrow{\omega_2} - \overrightarrow{\omega_1} \right) ;$$
 若刚体绕非定轴转动,则
$$\overrightarrow{L_2} - \overrightarrow{L_1} = J_2 \overrightarrow{\omega_2} - J_1 \overrightarrow{\omega_1}.$$

$$\overrightarrow{\mathbf{IIE}} \overrightarrow{M} = \overrightarrow{M_i}^{\mathrm{ex}} + \overrightarrow{M_i}^{\mathrm{in}} ,$$
 其中
$$\overrightarrow{M_i}^{\mathrm{in}} = \overrightarrow{0}.$$
 而
$$\overrightarrow{M_i} = \frac{\operatorname{d}\overrightarrow{L_i}}{\operatorname{d}t} = \frac{\operatorname{d}}{\operatorname{d}t} \left(m_i r_i^2 \overrightarrow{\omega} \right),$$

$$\overrightarrow{\mathbb{M}} = \sum_i \frac{\operatorname{d}}{\operatorname{d}t} \left(m_i r_i^2 \overrightarrow{\omega} \right) = \frac{\operatorname{d}}{\operatorname{d}t} \left[\left(\sum_i m_i r_i^2 \right) \overrightarrow{\omega} \right] = \frac{\operatorname{d}}{\operatorname{d}t} \left(\overrightarrow{J}\overrightarrow{\omega} \right) = \frac{\operatorname{d}\overrightarrow{L}}{\operatorname{d}t}.$$

[**刚体的角动量守恒定律**] $\vec{M}=\overset{\rightarrow}{0}$ 时, $\vec{L}=\overset{\rightarrow}{J\omega}$ 为恒矢.

守恒条件:

- ①J和 ω 都不变时,如刚体绕定轴匀速转动.
- ②刚体不受外力.
- ③刚体所受外力与位矢平行.
- ④某个方向上合外力矩为零时,该方向上角动量守恒.
- ⑤碰撞时,内力矩远大于外力矩,此时可忽略外力矩,认为角动量守恒.

[**例4.5.4**] 讨论如下两种情况中,子弹m与物体M碰撞瞬间角动量、水平方向的动量、系统总机械能是否守恒.

[解] 若碰撞是完全弹性碰撞,则机械能守恒,否则机械能不守恒.

(1)A为质点碰质点、碰撞时,绳子可发生形变,故O点不会受到水平方向的力,

进而不会给M水平方向的力,故水平方向内力远大于外力,动量守恒,即p是恒矢.

 $\overrightarrow{nL} = \overrightarrow{r} \times \overrightarrow{p}$,则 \overrightarrow{L} 是恒矢.故A的情况角动量守恒、水平方向的动量守恒.

(2)B为质点碰刚体,碰撞瞬间子弹撞击M的力瞬间传导到O点,

而杆是刚体,则O点会收到一个向左的作用力,故水平方向合外力不为零,水平方向动量不守恒.

考察加、M和杆组成的系统.因碰撞时作用力作用于转轴.故力矩为零.角动量守恒.

[$\mathbf{M4.5.5}$] 一杂技演员M由距水平跷跷板高为h处自由下落到A点,并将另一端的演员N弹起,求N能弹起多高,

[解] M落到A的速度 $v_0=\sqrt{2gh}$.若能求出N弹起的初速度v',则他能弹起的高度 $h'=rac{v'^2}{2q}$.下面求v'.

注意到M与跷跷板碰撞属于质点碰刚体,角动量守恒.

初角动量
$$L_0=rac{l}{2}mv_0\sinrac{\pi}{2}=rac{mv_0l}{2}$$
,末角动量 $L=J\omega$,

$$M$$
、 N 、跷跷板构成的系统的转动惯量 $J=J_M+J_N+J_{ar{w}}=migg(rac{l}{2}igg)^2+migg(rac{l}{2}igg)^2+rac{m_{ar{w}}l^2}{12}$,

由
$$\omega=rac{L}{J}=rac{mv_0l}{2J}$$
求得 ω ,再由 $v=\omegarac{l}{2}$ 求得 v .

4.6 刚体的机械能

元功d
$$W=\overrightarrow{F}\cdot\overrightarrow{\mathrm{d}r}=F_tr\mathrm{d}\theta=M\mathrm{d}\theta$$
,则 $W=\int_{ heta_1}^{ heta_2}M\mathrm{d}\theta=\int_{ heta_1}^{ heta_2}\overrightarrow{M}\cdot\overrightarrow{\mathrm{d} heta},$ 功率 $P=\dfrac{\mathrm{d}W}{\mathrm{d}t}=\dfrac{\overrightarrow{M}\cdot\overrightarrow{\mathrm{d} heta}}{\mathrm{d}t}=\overrightarrow{M}\cdot\overrightarrow{\omega}.$

质元的动能 $E_{ki}=rac{1}{2}\Delta m_i v_i^2$,其中 $v_i=\omega r_i$.

刚体转动动能
$$E_k=\sum_i E_{ki}=\sum_i rac{\Delta m_i v_i^2}{2}=rac{1}{2}\Biggl(\sum_i \Delta m_i r_i^2\Biggr)\omega^2=rac{1}{2}J\omega^2.$$

[刚体的转动动能定理]
$$W=\Delta E_k=rac{1}{2}J\omega_2^2-rac{1}{2}J\omega_1^2.$$

[证] 元功
$$\mathrm{d}W = M\mathrm{d}\theta = J \alpha \mathrm{d}\theta = J \frac{\mathrm{d}\omega}{\mathrm{d}t} \mathrm{d}\theta = J \omega \mathrm{d}\omega = \frac{1}{2}J\mathrm{d}\omega^2 = \mathrm{d}\left(\frac{1}{2}J\omega^2\right) = \mathrm{d}E_k$$
,

则
$$W=\int_{ heta_1}^{ heta_2}M\mathrm{d} heta=\Delta E_k=rac{1}{2}J\omega_2^2-rac{1}{2}J\omega_1^2.$$

有限体积刚体的重力势能等于各质元重力势能之和,即 $E_p=\sum_i E_{pi}=\left(\sum_i \Delta m_i h_i\right)g=mgh_C$,其中 h_C 是刚体质心与重力势能零势能面的高度差.

有限体积刚体的机械能 $E=E_p+E_k=mgh_C+rac{1}{2}J\omega^2.$

[**刚体的功能原理**] 作用于刚体的合外力矩的功与非保守内力矩的功之和等于刚体机械能的变化量,即 $W^{\mathrm{ex}}+W^{\mathrm{in}}_{\mathrm{nc}}=E-E_0$,其中动能未必只有转动动能,如刚体的平面平行运动中既有平动动能,又有转动动能,则总动能 $E_k=\frac{1}{2}mv^2+\frac{1}{2}J\omega^2$.若刚体做定轴转动,则动能只含转动动能,

[**刚体的机械能守恒定律**] $W^{
m ex}=W^{
m in}_{
m nc}=0$ 时, $E=E_p+E_k$ 为常量.

[例4.6.1] 如下图的圆锥摆做匀速圆周运动.讨论动量、角动量、机械能是否守恒.

[**解**] (1)转动过程中v方向改变,故动量不守恒.

$$(2)\stackrel{
ightarrow}{L}=\stackrel{
ightarrow}{r} imes\left(m\overrightarrow{v}
ight)$$
方向显然不变,大小 $L=lmv\sinrac{\pi}{2}$ 不变,故角动量守恒.

(3)转动中加与重力势能零势能面的高度差不变,又因做匀速圆周运动,则转动动能不变,故机械能守恒.

4.7 刚体的平面平行运动

刚体上各点的运动都平行于某一固定平面的运动称为刚体的平面平行运动,它可分解为质心C的平动和绕质心轴的转动。

$$\left\{ egin{align*} egin{alig$$

机械能
$$E = egin{cases}$$
 动能: $E_k = rac{1}{2} m v^2 + rac{1}{2} J \omega^2 \$ 势能: $E_p = m g h_C \end{cases}$

[**例4.7.1**] 一轻绳缠绕在半径为R、质量为m的均匀圆盘的圆周上,绳的一端悬挂在天花板上.求:(1)圆盘质心的加速度; (2)绳的张力.

[解]
$$\begin{cases} \mathbb{P} \vec{\exists} : \overrightarrow{F}^{\mathrm{ex}} = \overrightarrow{P} + \overrightarrow{F_T} = \overrightarrow{ma_C}, \text{ of } \\ \forall \vec{\exists} : \overrightarrow{M_C} = J_C \overrightarrow{\alpha} \end{cases}$$
 (1)
$$\begin{cases} mg - F_T = ma_C & \text{①} \\ F_T R = \frac{1}{2} mR^2 \alpha & \text{②} \end{cases} .$$

由②知:
$$F_T=rac{1}{2}mRlpha=rac{1}{2}ma_C$$
,结合①知: $mg-rac{1}{2}ma_c=ma_C$,解得 $a_C=rac{2}{3}g$,代入②求得 $F_T=rac{1}{3}mg$.

[$\pmb{M4.7.2}$] 质量为m、半径为R的均匀圆盘由静止从斜面顶端沿斜面做纯滚动.求圆盘到达斜面底部的速度.

[$m{i}$] 设小球在水平平面上做纯滚动,它沿水平方向的的速度大小为 v_C .考察小球与地面的接触点的速度 $v=\omega R$.因小球与地面无相对滑动,则 $v_C=v=\omega R$.

[解]
$$mgh=rac{1}{2}mv_C^2+rac{1}{2}J_C\omega^2$$
,其中 $J_C=rac{1}{2}mR^2$.代入 $v_C=\omega R$,解得 $v_C=\sqrt{rac{4gh}{3}}$.