

MATH 151 – PYTHON LAB 6

Directions: Use Python to solve each problem. (Template link)

- 1. Find the values of r for which $y = e^{rx}$ is a solution to the following differential equations:
 - (a) 2y'' + y' y = 0
 - (b) y'' + 6y' + 10y = 0
 - (c) Note the solutions in (b) are complex. Compute y'' + 6y' + 10y when $y = e^{-3x}(\cos(x) + \sin(x))$. What can you conclude based on your answers to b) and c)?
- 2. Given the vector $\langle e^{2\sin(t)}, e^{\cos(t)} \rangle$:
 - (a) Find a vector equation for the tangent line at the point where $t = \frac{\pi}{6}$ (Give your answer in both exact and decimal approximation)
 - (b) Find the points on the graph where the tangent line is:
 - i. horizontal
 - ii. vertical
 - (c) Sketch the graph of the vector function on $t \in [0, 2\pi]$ and all tangent lines found in parts (a) and (b).
- 3. $\left(-\left(\frac{x^2+y^2}{4}\right)+2x-2\right)^2=5\left(x^2+y^2\right)$ is a variation of a curve called the **Limaçon**.
 - (a) Plot the graph of the equation using **plot_implicit** with $x \in (-5, 20)$ and $y \in (-15, 15)$.
 - (b) Find $\frac{dy}{dx}$.
 - (c) Find the x and y-coordinates where the graph of the equation has vertical tangent lines.
 - (d) Use the extend command to re-plot the equation with the vertical tangents found in part (c) (which should be done parametrically).
- 4. Given $y = \frac{x^{1/5}\sqrt{x^3 + 1}}{(2 7x)^4}$:
 - (a) Use logarithmic differentiation to find $\frac{dy}{dx}$. (NOTE: The logarithm step can be done using expand_log).
 - (b) Find $\frac{dy}{dx}$ by differentiating directly.
 - (c) Simplify or factor your answers to parts (a) and (b) to show they are equivalent.