

Aug 09, 2024

Obtermination of free and protein-bound DA and NE, 5HT and Ach and their metabolites and oxidation products by UPLC-MS/MS method

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.8epv5rmj6g1b/v1

Miquel Vila¹, Marta Gonzalez-Sepulveda¹

¹VHIR-CIBERNED-ASAP

Vilalab Public

Miquel Vila

VHIR-CIBERNED-ASAP

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.8epv5rmj6g1b/v1

Protocol Citation: Miquel Vila, Marta Gonzalez-Sepulveda 2024. Determination of free and protein-bound DA and NE, 5HT and Ach and their metabolites and oxidation products by UPLC-MS/MS method. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.8epv5rmj6g1b/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's

working

Created: August 08, 2024

Last Modified: August 09, 2024

Protocol Integer ID: 104953

Abstract

Protocol for the determination of free and protein-bound DA and NE, 5HT and Ach and their metabolites and oxidation products by UPLC-MS/MS method

Materials

External standards

DA, DOPA, NE, DOPAC, DOMA, DOPE, VMA --> up to 3000 nM in 25 mM FA in water **3MT, AC, VMA, 5-SCDA, 5-SCD** --> up to 1000 nM in 25 mM FA in water

Internal standard (IS)

DA-4d --> 500 nM in 25 mM FA in water

Preparation of the aminochrome (AC) external standard

1m

1 Mix Δ 500 μL of [M] 1 millimolar (mM) dopamine (DA) with Δ 500 μL of [M] 2 millimolar (mM) KIO4 disolved in [M] 100 micromolar (μM) aqueous ammonium acetate buffer h 5.8 at RT with vigorous shaking for 1 min.

Note

Following oxidation, aminochromes are placed on ice to prevent further decomposition. Significant degradation of all aminochromes occurs at both RT and $4 \, ^{\circ}$ C within 24 h and -20 °C at 24-48h (Ochs 2005; Lemos-Amado 2001).

Preparation of calibration curves

1h

- 2 Prepare a stock solution of the IS in [M] 25 millimolar (mM) FA in water and store it at -80 °C.
 - Prepare fresh solutions of each metabolite in the make four mixtures: MIX1 [dopamine (DA), noradrenaline (NA), 3-methoxytyramine (3MT), 3,4-dihydroxyphenylalanine (L-DOPA) and aminochrome (AC)], MIX2 [3,4-Dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxymandelic acid (DOMA) and vanillylmandelic acid (VMA)], MIX3 [5SCD and 5SCDA] and MIX4 [serotonin(5-HT), tryptophan (Trp) and 5-hydroxyindole-3-acetic acid (5-HIAA)].
- 3 Serially dilute mixtures with [M] 25 millimolar (mM) FA in water to obtain the concentration series used in calibration curves.

Note

Tipically, final calibration levels cover a range of 1.72–3000 nM for DA, NE, and MIX2 and 0.39–1000 nM for L-DOPA, 3MT, AC and MIX3.

3.1 Serially dilute acetylcholine (ACh) standard with [M] 0.1 % volume FA in acetonitrile (ACN) to obtain a calibration curve covering a range of 0.2-1000 nM

- 4 Homogenize control samples (i.e brain, intestines, heart, blood serum, cells...) in the appropriate volume of [M] 250 millimolar (mM) FA
- Distribute the sample into \square 90 μ L aliquots prior to the addition of \square 30 μ L of the appropriate working mixture (MIX1, MIX2, MIX3 or MIX4), \square 96 μ L of [M] 25 millimolar (mM) FA and \square 24 μ L of [M] 8 micromolar (μ M) IS (DA-4d + 5HT-4d) .

10m

- 7 Transfer supernatant to an Ostro protein precipitation and phospholipid removal plate (Waters, USA) to filter it.
 - Save the pellet for protein-bound determinations (see below)
- 8 Finally, inject $\Delta 7 \mu L$ into the UPLC-MS/MS system.

Sample preparation

2h

9 Add 300 µL of [M] 250 millimolar (mM) FA to each brain, intestine, heart or cell pellet sample prior homogenization. Dilute blood serum samples 1:10

Note

Due to the poor stability of aminochrome, usually a maximum of 50 samples can be analyzed at a time

Take a Δ 20 μL 20 μl sample for protein determination (diluted 1/5 in [M] 25 millimolar (mM) FA)

Take Δ 55 μL of sample for ACh determination: dilute 1:4 with

[M] 0.1 % volume FA in ACN containing a final concentration of 100 nM of ACh-4d as IS.

Take $\[\[\] \]$ for catecholaminergic and serotonergic determination and add $\[\] \]$ 24 $\[\] \]$ of [M] 8 micromolar ($\[\] \]$ (DA-4d + 5HT-4d) .

Note

Important!!: ensure the concentration of IS is exactly the same in both calibration curves and samples

13 **3** 20000 rcf, 4°C, 00:10:00

10m

Note

The supernatant is used to determine free neurotransmitters and metabolites (that is, those present in the deproteinated supernatant) while the pellet is used for protein-bound determinations (that is, those present in the acid-Insoluble pellet and released by HCl hydrolysis)

- 14 Transfer supernatant to an Ostro protein precipitation and phospholipid removal plate (Waters, USA) to be filtered.
- 15 Inject $\boxed{4}$ 7 μ L of filtered supernatant samples into the UPLC-MS/MS system

Reductive HCI hydrolysis of resulting pellets

18h

16

Safety information

Work in fume hood during all the procedure

After removal of the supernatant, wash the pellet (from both calibration curves and samples) with 4 1 mL of chloroform: methanol (1: 1, v/v) by vortex mixing

17 **3** 20000 rcf, 4°C, 00:10:00

10m

Transfer the resulting pellets to a sealed-capped tube with [M] 6 Molarity (M) HCl containing

[м] 5 % volume thioglycolic acid | and | [м] 1 Mass Percent phenol

Note

- Samples --> add \perp 288 μ L of the mixture and \perp 32 μ L of IS
- Purge tubes with a stream of nitrogen, seal them and heat them at 110 °C for

16h

16:00:00

20

- Let tubes cool at 4 °C for at least 00:30:00

10m

30m

Treat the supernatant with with acid-washed alumina to extract catecholic compounds

Alumina extraction of catecholic compounds

1h

- Transfer a \perp 100 μ L aliquot of each hydrolysate into a new Eppendorf tube containing
 - Δ 50 mg of acid-washed alumina and Δ 200 μ L of [M] 1 Mass Percent Na2S2O5 -

[M] 1 Mass Percent EDTA.2Na

24 Add 🚨 500 µL of [M] 2.7 Molarity (M) Tris. HCl - [M] 2 Mass Percent EDTA.2Na (pH 9 to the mixture 25 (5) 1100 rpm, 22°C, 00:05:00 on a microtube mixer 5m 26 20000 rcf, 00:10:00 10m 27 Remove the aqueous layer by aspiration and wash alumina with 🚨 1 mL of Milli-Q water 28 20000 rcf, 00:10:00 10m 29 Remove the aqueous layer by aspiration and wash alumina with 4 1 mL of Milli-Q water 30 20000 rcf, 00:10:00 10m 31 Remove the aqueous layer by aspiration and wash alumina with 🚨 1 mL of Milli-Q water 32 20000 rcf, 00:10:00 10m 33 Remove the aqueous layer by aspiration 34 Elute catechols from alumina with 🚨 100 µL of [M] 0.4 Molarity (M) HClO4 by shaking for 2m 2 min 35 Collect all liquid into the injection plate without taking alumina Note Alumina is discarded after extraction

36 Finally, inject $\boxed{4}$ 7 μ L into the UPLC-MS/MS system.

UPLC-MS/MS analysis for catecholaminergic, serotonergic and cholinergic determination

- A Waters Acquity™ UPLC system is coupled with a Xevo TQ-S triple quadrupole mass spectrometer with electrospray ionization interface (Waters). Instrument control, data acquisition, and analysis is performed using MassLynx V4.1 (Waters).
- 37.1 An Acquity HSS T3 (1.8 μ m, 2.1 mm × 100 mm) column coupled to an Acquity HSS T3 VanGuard (100 Å, 1.8 μ m, 2.1 mm × 5 mm) pre-column is used to detect MIX1-3 analytes. Column temperature is set at 45 °C and samples are maintained at 6 °C in the thermostatic autosampler.
- 37.2 An Acquity UPLC BEH C18 (1.7μm, 2.1x100mm) column coupled to a Acquity BEH C18 1.7μM VanGuard pre-column is used to detect MIX4. Column temperature is set at 55 °C and samples are maintained at 6°C in the thermostatic autosampler.
- 37.3 A Cortecs UPLC HILIC (1.6 µm; 2,1x75 mm) column coupled to a Cortecs UPLC HILIC VanGuard pre-column (Waters) is used for ACh determination. Column temperature is set at 50 °C and samples are maintained at 6 °C in the thermostatic autosampler.
- The mobile phase for MIX1-4 consisted of solvent A (methanol 100%) and solvent B (25 mM FA in MQ water) at a flow of 0.4 mL/min with the following gradient profiles (depending on the MIX):

MIX1 and MIX2:

0.5% B maintained for 0.5 min, 5% B at 0.9 min and maintained for 2.1min, 50% B at 2.8 min and maintained for 1.2 min, 0.5% B at 4.1 min followed by 0.2 min of equilibration. Total run time 4.3 min.

0.5

MIX3:

0.5% B maintained for 0.5 min, 8% B at 2.6 min, 50% B at 2.9 min and maintained for 0.6 min, 0.5% B at 3.7 min maintained 0.2 min for equilibration. Total run time 3.7 min

MIX4:

1%B maintained for 0.5 min, 25 % B at 3 min, 50 % B at 3.1 min and maintained for 0.5 min, 1 % B at 3.6 min maintained 0.4 min for equilibration.

- 38.1 The mobile phase for ACh determination consisted of solvent A (0.1% FA in ACN) and solvent B (10 mM ammonium acetate in MilliQ water) at a flow of 0.5 mL/min with isocratic 70% A- 30% B conditions during 2.2 min.
- 39 The mass spectrometer detector operates under the following parameters: source temperature 150 °C, desolvation temperature 450 °C, cone gas flow 50 L/hr, desolvation gas flow 1100 L/hr and collision gas flow 0.15 mL/min. Argon is used as the collision gas. The capillary voltage was set at: 0.5 kV (MIX1, MIX3 and MIX3-PB), 2 kV (MIX2) or 3kV (MIX4, ACh). The electrospray ionization (ESI) source was operated in both positive and negative modes, depending on the analyte.
- 40 Multiple Reaction Monitoring (MRM) acquisition settings for the targeted metabolites are summarised in the following Table

A	В	С	D	E	F	G			
Table 1. MRM acquisition settings a									
Analyte	MRM tran sition (m/ z)	MIX	RT (min)	CV (V)	CE (eV)	CpV (kV)			
ACh	145,98 > 86,80	ACh	1,5	10	15	3			
ACh-d4	150 > 91	ACh	1,5	28	12	3			
NE b	151,75 > 106,94	1	0,69	15	20	0,5			
DA-d4 (IS)	157,83 > 94,8	1,2,3	1,44	10	20	0,5			
DA	153,93 > 90,57	1	1,46	10	20	0,5			
L-DOPA	198,1 > 152,1	1	1,48	15	15	0,5			
ЗМТ Ь	150,7 > 90,96	1	3,09	35	20	0,5			
AC	149,61 > 121,91	1	3,36	25	25	0,5			
DOMA c	182,86 > 136,85	2	1,62	20	14	2			

A	В	С	D	E	F	G		
VMA c	197 > 136,9	2	3,61	20	20	2		
DOPAC c	166,99 > 122,82	2	3,72	18	22	2		
5SCDA	273,1 > 166,9	3	1,73	20	20	0,5		
5SCD	317 > 154,86	3	2,01	24	30	0,5		
5HT	177 > 160	4	0,97	10	5	3		
5HT-d4 (I S)	181 >164	4	0,97	10	5	3		
5HIAA	192 > 146	4	1,5	25	20	3		
Тгр	205 > 188	4	2,1	15	10	3		
a RT, retention time; D, dwell time; CV, cone voltage; CE, collision energy; CpV, capillary voltage.								

b Parent mass after loss of water.

c Detected in negative mode.

Data analysis and representation

- 41 Samples with a concentration between the limit of detection (LOD) and limit of quantification (LOQ) or bigger than LOQ are considered acceptable; samples with a concentration lower than LOD are considered as the LOD value.
- 42 Catechol oxidation is measured using the formula AC+5SCDA+5SCDA-PB/DA + 5SCD+5SCD-PB/L-DOPA
- 43 DA synthesis is measured using the formula DA+NE+DOMA+VMA+ 3MT+DOPAC /L- DOPA

- 44 DA degradation is measured using the formula DOPAC+3MT/DA
- Data is normalised by the protein concentration (determined by BCA) and presented as the 45 percentage of the wt concentration or ratio.