§ 24. Подпространства

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Определение подпространства

Поскольку, как отмечалось в § 22, векторные пространства являются универсальными алгебрами, к ним можно применять понятие подалгебры (см. § 4). Для облегчения восприятия дальнейшего материала, укажем явно, какой вид принимает это понятие в случае векторных пространств.

Определение

Непустое подмножество M векторного пространства V над полем F называется *подпространством* пространства V, если выполняются следующие условия:

- 1) если $x, y \in M$, то $x + y \in M$ (замкнутость подпространства относительно сложения векторов);
- 2) если $\mathbf{x} \in M$, а $t \in F$, то $t\mathbf{x} \in M$ (замкнутость подпространства относительно умножения вектора на скаляр).

Примеры подпространств (1)

Приведем ряд примеров подпространств.

Пример 1. Пусть V — произвольное векторное пространство. Очевидно, что все пространство V и множество $M=\{\mathbf{0}\}$ являются подпространствами в V.

Очевидно, что множество всех подпространств векторного пространства с отношением включения является чумом. Подпространство V является наибольшим элементом этого чума, а подпространство $\{\mathbf{0}\}$ — наименьшим. Первое из этих двух утверждений очевидно, а второе вытекает из следующего замечания.

Замечание о нулевом векторе и подпространствах

Нулевой вектор содержится в любом подпространстве M пространства V.

Доказательство. Если ${\bf x}$ — произвольный вектор из ${\bf M}$, то, по условию 2) из определения подпространства, ${\bf 0}={\bf 0}\cdot{\bf x}\in{\bf M}$.

Пример 2. Пусть V — обычное трехмерное пространство, а M — множество векторов из V, коллинеарных некоторой плоскости π . Ясно, что сумма двух векторов, коллинеарных π , и произведение вектора, коллинеарного π , на любое число коллинеарны π . Следовательно, M — подпространство в V. Аналогично доказывается, что подпространством в V является и множество векторов, коллинеарных некоторой прямой ℓ .

Примеры подпространств (2)

Пример 3. В силу теоремы о строении общего решения системы линейных уравнений (см. § 6) общее решение произвольной однородной системы линейных уравнений с n неизвестными над полем F есть подпространство пространства F_n .

Пример 4. Пусть V — произвольное векторное пространство и $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_k} \in V$. Обозначим через M множество всевозможных линейных комбинаций векторов $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_k}$. Пусть $\mathbf{x}, \mathbf{y} \in M$, т. е.

$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k$$
 u $\mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$

для некоторых скаляров s_1, s_2, \dots, s_k и t_1, t_2, \dots, t_k . Пусть, далее, t — произвольный скаляр. Тогда

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) + (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) = \\ &= (s_1 + t_1) \mathbf{a}_1 + (s_2 + t_2) \mathbf{a}_2 + \dots + (s_k + t_k) \mathbf{a}_k \quad \mathbf{w} \\ t\mathbf{x} &= t(s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) = (ts_1) \mathbf{a}_1 + (ts_2) \mathbf{a}_2 + \dots + (ts_k) \mathbf{a}_k. \end{aligned}$$

Мы видим, что $\mathbf{x}+\mathbf{y},$ $t\mathbf{x}\in M$, т.е. M — подпространство пространства V. Оно называется подпространством, порожденным векторами $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ или линейной оболочкой векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$, и обозначается через $\langle \mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k \rangle$.

Примеры подпространств (3)

Ясно, что если $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — система порождающих (в частности, базис) пространства V, то $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle = V$. Таким образом,

 любое подпространство конечномерного векторного пространства является подпространством, порожденным некоторым набором векторов (например, своим базисом).

Замечание о подпространстве, порожденном набором векторов

Пусть V — векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$. Тогда $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle$ — наименьшее подпространство пространства V, содержащее векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$.

Доказательство. Пусть M — подпространство пространства V, содержащее векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Из определения подпространства вытекает, что любая линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ лежит в M. Следовательно, $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle \subset M$.

Размерность подпространства (1)

Очевидно, что подпространство векторного пространства само является векторным пространством. Это позволяет говорить о размерности и базисе подпространства.

Предложение о размерности подпространства

Пусть M- подпространство векторного пространства V. Тогда $\dim M\leqslant \dim V$, причем $\dim M=\dim V$ тогда и только тогда, когда M=V.

Доказательство. Если M или V — нулевое пространство, то оба утверждения предложения выполняются тривиальным образом. Будем поэтому считать, что M и V — ненулевые пространства. Зафиксируем базис $(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k)$ подпространства M и базис $(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_\ell)$ пространства V. Если $k > \ell$, то в силу леммы о большом наборе векторов $(\mathsf{cm}, \S 23)$ система векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ линейно зависима. Но это противоречит определению базиса. Следовательно, $k \leqslant \ell$, т. е. $\dim M \leqslant \dim V$.

Размерность подпространства (2)

Пусть теперь $\dim M = \dim V$, т. е. $k = \ell$. Тогда система векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ является максимальной линейно независимой. В самом деле, в противном случае существует вектор \mathbf{a} такой, что система $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{a}$ линейно независима. Но она содержит k+1 вектор, что противоречит лемме о большом наборе векторов (см. § 23). Таким образом, система векторов $(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k)$ является базисом пространства V. Следовательно, любой вектор из V является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. Поскольку эти векторы лежат в M, а M — подпространство в V, это означает, что любой вектор из V лежит в M, т. е. $V \subseteq M$. Обратное включение выполнено по условию, и потому M = V. Итак, если $\dim M = \dim V$, то M = V. Обратное утверждение очевидно.

Алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов

Укажем способ нахождения базиса и размерности подпространства, порожденного данным набором векторов.

Алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов

Запишем координаты данных векторов в некотором фиксированном базисе пространства в матрицу по строкам и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом нашего подпространства, а число этих строк равно его размерности.

Обоснование этого алгоритма будет дано в § 27.

Сумма и пересечение подпространств (1)

Поскольку подпространства векторного пространства V являются его подмножествами, к ним можно применять все теоретико-множественные операции. Но важной для линейной алгебры является только одна из них — операция пересечения подпространств. Как и пересечение любых множеств, пересечение подпространств обозначается символом \cap . Введем еще одну важную операцию над подпространствами.

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Суммой подпространств M_1 и M_2 называется множество всех векторов из V, являющихся суммой некоторого вектора из M_1 и некоторого вектора из M_2 . Сумма подпространств M_1 и M_2 обозначается через M_1+M_2 .

Замечание о сумме и пересечении подпространств

Если M_1 и M_2 — подпространства пространства V, то M_1+M_2 и $M_1\cap M_2$ также являются подпространствами в V.

Доказательство. В силу замечания о нулевом векторе и подпространствах, каждое из подпространств M_1 и M_2 содержит нулевой вектор. Следовательно, $\mathbf{0} = \mathbf{0} + \mathbf{0} \in M_1 + M_2$ и $\mathbf{0} \in M_1 \cap M_2$. В частности, множества $M_1 + M_2$ и $M_1 \cap M_2$ — непустые. Далее, пусть $\mathbf{x}, \mathbf{y} \in M_1 + M_2$ и t — произвольный скаляр.

Сумма и пересечение подпространств (2)

Тогда $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ и $\mathbf{y}=\mathbf{y}_1+\mathbf{y}_2$, для некоторых $\mathbf{x}_1,\mathbf{y}_1\in M_1$ и $\mathbf{x}_2,\mathbf{y}_2\in M_2$. Учитывая, что M_1 и M_2 — подпространства, получаем, что

$$\begin{split} x+y &= (x_1+x_2) + (y_1+y_2) = (x_1+y_1) + (x_2+y_2) \in M_1 + M_2, \\ tx &= t(x_1+x_2) = tx_1 + tx_2 \in M_1 + M_2. \end{split}$$

Следовательно, M_1+M_2 — подпространство в V. Далее, пусть ${\bf x},{\bf y}\in M_1\cap M_2$ и t — произвольный скаляр. Тогда ${\bf x},{\bf y}\in M_1$ и ${\bf x},{\bf y}\in M_2$. Поскольку M_1 и M_2 — подпространства, имеем ${\bf x}+{\bf y}\in M_1$, ${\bf x}+{\bf y}\in M_2$ $t{\bf x}\in M_1$ и $t{\bf x}\in M_2$. Следовательно, ${\bf x}+{\bf y}\in M_1\cap M_2$ и $t{\bf x}\in M_1\cap M_2$, и потому $M_1\cap M_2$ — подпространство в V.

Замечание о сумме подпространств

Если M_1 и M_2 — подпространства пространства V, то подпространство M_1+M_2 содержит M_1 и M_2 и является наименьшим подпространством в V, обладающим указанным свойством.

Доказательство. Если $\mathbf{x} \in M_1$, то $\mathbf{x} \in M_1 + M_2$, поскольку $\mathbf{x} = \mathbf{x} + \mathbf{0}$ и $\mathbf{0} \in M_2$. Следовательно, $M_1 \subseteq M_1 + M_2$. Аналогично проверяется, что $M_2 \subseteq M_1 + M_2$. Пусть теперь M — подпространство в V, содержащее M_1 и M_2 . Предположим, что $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ для некоторых $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Следовательно, $\mathbf{x}_1 \in M$ и $\mathbf{x}_2 \in M$, откуда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 \in M$. Таким образом, $M_1 + M_2 \subseteq M$.

Сумма и пересечение набора подпространств

В § 1 отмечалось, что операцию пересечения множеств можно применять к любому (в том числе бесконечному) числу множеств. Сооответственно, можно говорить о пересечении любого (в том числе бесконечного) набора подпространств данного векторного пространства. Операцию суммы подпространств также можно применять не к двум подпространствам, а к их большему, но только конечному числу. Если M_1, M_2, \ldots, M_k — подпространства векторного пространства V и k>2, то, по индукции, положим

$$M_1 + M_2 + \cdots + M_k = (M_1 + M_2 + \cdots + M_{k-1}) + M_k.$$

При этом скобки в левой части равенства можно не ставить, поскольку операция суммы двух подпространств, очевидно, ассоциативна.

Размерность суммы подпространств (1)

Первым из двух основных результатов данного параграфа является

Теорема о размерности суммы и пересечения подпространств

Пусть V- векторное пространство, а M_1 и M_2- его подпространства. Тогда размерность суммы подпространств M_1 и M_2 равна сумме размерностей этих подпространств минус размерность их пересечения.

 \mathcal{A} оказательство. Из предложения о размерности подпространства вытекает, что $\dim(M_1\cap M_2)\leqslant \dim M_1$ и $\dim(M_1\cap M_2)\leqslant \dim M_2$. Положим

$$\dim(M_1\cap M_2)=k,\ \dim M_1=k+\ell\ \text{u}\ \dim M_2=k+m.$$

Если $M_1=\{\mathbf{0}\}$, то, очевидно, $M_1\cap M_2=\{\mathbf{0}\}$, $\dim M_1=\dim(M_1\cap M_2)=0$, $M_1+M_2=M_2$ и потому

$$\dim(M_1 + M_2) = \dim M_2 = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Аналогично разбирается случай, когда $M_2=\{{\bf 0}\}$. Итак, далее можно считать, что пространства M_1 и M_2 — ненулевые, и, в частности, каждое из них имеет базис. Будем также считать, что $M_1\cap M_2\neq \{{\bf 0}\}$ (в противном случае следует во всех дальнейших рассуждениях заменить базис пространства $M_1\cap M_2$ на пустой набор векторов; сами рассуждения при этом только упростятся). Пусть ${\bf a}_1,{\bf a}_2,\ldots,{\bf a}_k$ — базис пространства $M_1\cap M_2$.

Размерность суммы подпространств (2)

В силу теоремы о дополнении до базиса (см. § 23) этот набор векторов можно дополнить как до базиса M_1 , так и до базиса M_2 . Пусть \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ — базис M_1 , а \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m — базис M_2 . Докажем, что набор векторов

$$a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_\ell, c_1, c_2, \ldots, c_m$$
 (1)

является базисом пространства M_1+M_2 . Этого достаточно для доказательства теоремы, так как число векторов в этом наборе равно

$$k + \ell + m = (k + \ell) + (k + m) - k = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Пусть $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Ясно, что вектор \mathbf{x}_1 является линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ , а вектор \mathbf{x}_2 — линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m . Следовательно, вектор $\mathbf{x}_1 + \mathbf{x}_2$ является линейной комбинацией векторов (1). Таким образом, набор векторов (1) является системой образующих пространства $M_1 + M_2$. В силу леммы о базисах и системах образующих (см. § 23) остается доказать, что этот набор векторов линейно независим. В самом деле, предположим, что

$$t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k + s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell + r_1 \mathbf{c}_1 + r_2 \mathbf{c}_2 + \dots + r_m \mathbf{c}_m = \mathbf{0}$$
 (2)

для некоторых скаляров $t_1, t_2, \ldots, t_k, s_1, s_2, \ldots, s_\ell, r_1, r_2, \ldots, r_m$. Требуется доказать, что все эти скаляры равны 0.

Размерность суммы подпространств (3)

Положим $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$. Очевидно, что $\mathbf{y}\in M_1$. С другой стороны, из (2) вытекает, что

$$\mathbf{y} = -t_1\mathbf{a}_1 - t_2\mathbf{a}_2 - \cdots - t_k\mathbf{a}_k - r_1\mathbf{c}_1 - r_2\mathbf{c}_2 - \cdots - r_m\mathbf{c}_m \in M_2.$$

Следовательно, $\mathbf{y}\in M_1\cap M_2$. Но тогда вектор \mathbf{y} есть линейная комбинация векторов $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k$. Таким образом, существуют скаляры q_1,q_2,\dots,q_k такие, что $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\dots+s_\ell\mathbf{b}_\ell=q_1\mathbf{a}_1+q_2\mathbf{a}_2+\dots+q_k\mathbf{a}_k$. Следовательно,

$$q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + \dots + q_k \mathbf{a}_k - s_1 \mathbf{b}_1 - s_2 \mathbf{b}_2 - \dots - s_\ell \mathbf{b}_\ell = \mathbf{0}.$$
 (3)

Поскольку векторы $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_\ell$ образуют базис пространства M_1 , они линейно независимы. Поэтому линейная комбинация, стоящая в левой части равенства (3), тривиальна. В частности, $s_1=s_2=\cdots=s_\ell=0$. Следовательно, равенство (2) принимает вид

$$t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_k \mathbf{a}_k + r_1 \mathbf{c}_1 + r_2 \mathbf{c}_2 + \cdots + r_m \mathbf{c}_m = \mathbf{0}.$$

Учитывая, что векторы $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_m$ образуют базис пространства M_2 (и, в частности, линейно независимы), мы получаем, что $t_1 = t_2 = \cdots = t_k = r_1 = r_2 = \cdots = r_m = 0$. Итак, все коэффициенты в левой части равенства (2) равны 0, что и требовалось доказать.

Какими векторами порождается сумма подпространств?

Пусть подпространство M_1 имеет базис $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, а подпространство M_2 — базис $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_\ell$. Предположим, что $\mathbf{x} \in M_1 + M_2$. Тогда существуют векторы $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$ такие, что $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$. В силу выбора векторов \mathbf{x}_1 и \mathbf{x}_2 имеем

$$\mathbf{x}_1 = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$$
 u $\mathbf{x}_2 = s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell$

для некоторых скаляров t_1, t_2, \ldots, t_k и s_1, s_2, \ldots, s_ℓ . Следовательно,

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_k \mathbf{a}_k + s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \cdots + s_\ell \mathbf{b}_\ell.$$

Это означает, что пространство M_1+M_2 содержится в подпространстве, порожденном набором векторов $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$. С другой стороны, очевидно, что каждый из этих векторов, а значит и подпространство, ими порожденное, содержится в M_1+M_2 . Следовательно,

$$M_1 + M_2 = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_\ell \rangle.$$

Алгоритм нахождения базиса и размерности суммы подпространств

Учитывая алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов, получаем

Алгоритм нахождения базиса и размерности суммы подпространств

Пусть даны базисы подпространств M_1 и M_2 . Запишем в матрицу по строкам координаты векторов, входящих в эти базисы, в некотором фиксированном базисе пространства и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом суммы подпространств M_1 и M_2 , а число этих строк равно ее размерности.

Отметим, что, найдя размерность суммы подпространств M_1 и M_2 , мы сможем найти и размерность их пересечения, так как, в силу теоремы о размерности суммы и пересечения,

$$\dim(M_1 \cap M_2) = \dim M_1 + \dim M_2 - \dim(M_1 + M_2).$$
 (4)

Базис пересечения ищется несколько сложнее. Способ решения этой задачи будет указан в § 36.

Прямая сумма (1)

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Говорят, что сумма подпространств M_1 и M_2 является их *прямой суммой*, если $M_1 \cap M_2 = \{ \mathbf{0} \}$. Прямая сумма подпространств M_1 и M_2 обозначается через $M_1 \oplus M_2$ или $M_1 \dotplus M_2$.

Из доказательства теоремы о размерности суммы и пересечения подпространств вытекает

Замечание о базисе прямой суммы подпространств

Если
$$V=M_1\oplus M_2$$
, \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ — базис M_1 , а \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m — базис M_2 , то \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m — базис пространства V .

Прямая сумма (2)

Вторым основным результатом данного параграфа является

Теорема о прямой сумме подпространств

Пусть V- векторное пространство, а M_1 и M_2- его подпространства. Следующие условия эквивалентны:

- 1) $M_1 + M_2$ является прямой суммой подпространств M_1 и M_2 ;
- 2) $\dim(M_1 + M_2) = \dim M_1 + \dim M_2$;
- 3) любой вектор из M_1+M_2 единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 ;
- 4) нулевой вектор пространства V единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 .

Доказательство. Эквивалентность условий 1) и 2) непосредственно вытекает из теоремы о размерности суммы и пересечения и того факта, что размерность нулевого пространства равна 0. Импликация 3) \Longrightarrow 4) очевидна. Поэтому достаточно доказать импликации 1) \Longrightarrow 3) и 4) \Longrightarrow 1).

Прямая сумма (3)

- 1) \Longrightarrow 3). Пусть $\mathbf{x}\in M_1+M_2$. По определению суммы подпространств $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$, где $\mathbf{x}_1\in M_1$ и $\mathbf{x}_2\in M_2$. Остается доказать, что такое представление вектора \mathbf{x} единственно. Предположим, что $\mathbf{x}=\mathbf{y}_1+\mathbf{y}_2$, где $\mathbf{y}_1\in M_1$ и $\mathbf{y}_2\in M_2$. Учитывая, что $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2=\mathbf{y}_1+\mathbf{y}_2$, имеем $\mathbf{x}_1-\mathbf{y}_1=\mathbf{y}_2-\mathbf{x}_2$. Ясно, что $\mathbf{x}_1-\mathbf{y}_1\in M_1$, а $\mathbf{y}_2-\mathbf{x}_2\in M_2$. Следовательно, $\mathbf{x}_1-\mathbf{y}_1=\mathbf{y}_2-\mathbf{x}_2\in M_1\cap M_2$. Но $M_1\cap M_2=\{\mathbf{0}\}$. Поэтому $\mathbf{x}_1-\mathbf{y}_1=\mathbf{y}_2-\mathbf{x}_2=\mathbf{0}$, откуда $\mathbf{x}_1=\mathbf{y}_1$ и $\mathbf{x}_2=\mathbf{y}_2$.
- 4) \Longrightarrow 1). Предположим, что $M_1\cap M_2\neq \{\mathbf{0}\}$, т. е. существует ненулевой вектор $\mathbf{x}\in M_1\cap M_2$. Тогда вектор $\mathbf{0}$ может быть двумя различными способами представлен в виде суммы вектора из M_1 и вектора из M_2 : $\mathbf{0}=\mathbf{x}+(-\mathbf{x})$ и $\mathbf{0}=\mathbf{0}+\mathbf{0}$. Мы получили противоречие с условием 4).

При решении задач полезно иметь в виду следующее

Замечание о прямой сумме подпространств

 $V=\mathit{M}_1\oplus \mathit{M}_2$ тогда и только тогда, когда

$$\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V.$$

Прямая сумма (4)

Доказательство. Если $V=M_1\oplus M_2$, то, в частности, $M_1+M_2=V$, и потому $\dim(M_1+M_2)=\dim V$. А $\dim M_1+\dim M_2=\dim(M_1+M_2)$ в силу теоремы о прямой сумме подпространств. Обратно, если $\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V$, то $M_1+M_2=V$ в силу предложения о размерности подпространства и $\dim(M_1\cap M_2)=0$ в силу (4). Из последнего равенства вытекает, что $M_1\cap M_2=\{0\}$. Объединяя этот факт с равенством $M_1+M_2=V$, получаем, что $V=M_1\oplus M_2$.

Проекция вектора на подпространство

Определение

Предположим, что $V=M_1\oplus M_2$ и $\mathbf{x}\in V$. В силу теоремы о прямой сумме подпространств существуют однозначно определенные векторы $\mathbf{x}_1\in M_1$ и $\mathbf{x}_2\in M_2$ такие, что $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$. Вектор \mathbf{x}_1 называется проекцией \mathbf{x} на M_1 параллельно M_2 , а вектор \mathbf{x}_2 — проекцией \mathbf{x} на M_2 параллельно M_1 .

Алгоритм нахождения проекции вектора на подпространство

Пусть $V=M_1\oplus M_2$ и $\mathbf{x}\in V$. Предположим, что нам известны базис $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ подпространства M_1 и базис $\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_\ell$ подпространства M_2 . В силу замечания о базисе прямой суммы подпространств $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_\ell$ — базис пространства V. Найдем координаты вектора \mathbf{x} в этом базисе. Пусть они имеют вид $(t_1,t_2,\ldots,t_k,s_1,s_2,\ldots,s_\ell)$. Тогда $t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k$ — проекция \mathbf{x} на M_1 параллельно M_2 , а $s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$ — проекция \mathbf{x} на M_2 параллельно M_1 .

Обоснование этого алгоритма очевидно: если, в указанных обозначениях, $\mathbf{y}=t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k$ и $\mathbf{z}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$, то $\mathbf{y}\in M_1$, $\mathbf{z}\in M_2$ и $\mathbf{x}=\mathbf{y}+\mathbf{z}$.

«Дополняющее» подпространство (1)

В дальнейшем нам пригодится следующее утверждение

Предложение о дополняющем подпространстве

Для произвольного подпространства M векторного пространства V существует такое подпространство M' в V, что $V=M\oplus M'$.

Доказательство. Ясно, что если $M = \{0\}$, то в качестве M' можно взять V, а если M=V, то достаточно положить $M'=\{\mathbf{0}\}$. Пусть теперь $\{\mathbf{0}\}\subset M\subset V$. Положим dim V=n и dim M=k. В силу сказанного 0 < k < n. Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — базис M. В силу теоремы о дополнении до базиса (см. §23) существуют векторы a_{k+1}, \ldots, a_n такие, что векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ образуют базис V. Положим $M' = \langle \mathbf{a}_{k+1}, \dots, \mathbf{a}_n \rangle$. Проверим, что нулевой вектор единственным образом представим в виде суммы вектора из M и вектора из M'. Существование такого представления очевидно, поскольку ${f 0}={f 0}+{f 0}$ (см. замечание о нулевом векторе и подпространствах). Предположим теперь, что ${\bf 0}={\bf x}+{\bf y}$, где ${\bf x}\in M$, а $\mathbf{y} \in M'$. Тогда $\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$ и $\mathbf{y} = t_{k+1} \mathbf{a}_{k+1} + \dots + t_n \mathbf{a}_n$ для некоторых скаляров t_1, t_2, \ldots, t_n , откуда $\mathbf{0} = \mathbf{x} + \mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_n \mathbf{a}_n$. Поскольку $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ — базис пространства V, получаем, что $t_1 = t_2 = \cdots = t_n = 0$. Но тогда $\mathbf{x} = \mathbf{0}$ и $\mathbf{y} = \mathbf{0}$.

«Дополняющее» подпространство (2)

Итак, вектор ${\bf 0}$ единственным образом представим в виде суммы вектора из M и вектора из M'. В силу теоремы о прямой сумме подпространств $M+M'=M\oplus M'$.

Осталось доказать, что M+M'=V. Пусть ${\bf a}-$ произвольный вектор из V. Разложим его по базису ${\bf a_1},{\bf a_2},\dots,{\bf a_n}$: ${\bf a}=q_1{\bf a_1}+q_2{\bf a_2}+\dots+q_n{\bf a_n}$. Положим ${\bf b}=q_1{\bf a_1}+q_2{\bf a_2}+\dots+q_k{\bf a_k}$ и ${\bf c}=q_{k+1}{\bf a_{k+1}}+\dots+q_n{\bf a_n}$. Тогда ${\bf b}\in M$, ${\bf c}\in M'$ и ${\bf a}={\bf b}+{\bf c}$. Следовательно, $V\subseteq M+M'$. Обратное включение очевидно, и потому M+M'=V.

Линейные многообразия (1)

Определение

Пусть V — векторное пространство, $\mathbf{x}_0 \in V$, а M — подпространство в V. Множество всех векторов вида $\mathbf{x}_0 + \mathbf{y}$, где $\mathbf{y} \in M$, называется линейным многообразием в V и обозначается через $\mathbf{x}_0 + M$. Вектор \mathbf{x}_0 называется вектором сдвига многообразия $\mathbf{x}_0 + M$, а подпространство M — направляющим подпространством этого многообразия.

Приведем примеры линейных многообразий.

Пример 1. Если ${\sf x}_0={\sf 0}$, то ${\sf x}_0+M=M$. Таким образом, всякое подпространство пространства V является линейным многообразием в V.

Пример 2. Если $M=\{{\bf 0}\}$, то ${\bf x}_0+M=\{{\bf x}_0\}$. Таким образом, всякий вектор из V также является линейным многообразием в V.

Пример 3. Согласно теореме о строении общего решения системы линейных уравнений (см. § 6), общее решение произвольной совместной системы линейных уравнений с n неизвестными над полем F является линейным многообразием в F_n , вектором сдвига которого является произвольное частное решение системы, а направляющим подпространством — общее решение соответствующей однородной системы.

Линейные многообразия (2)

Пример 4. Рассмотрим произвольную плоскость π . Зафиксируем на ней прямоугольную декартову систему координат и рассмотрим прямую ℓ на π . Будем отождествлять прямую ℓ с множеством всех направленных отрезков, начинающихся в начале координат и заканчивающихся на ℓ . Про такие направленные отрезки мы будем говорить, что они ≪принадлежат прямой». Если ℓ проходит через начало координат, то она, очевидно, является подпространством, а значит, и линейным многообразием (см. пример 1 на предыдущем слайде). Пусть теперь ℓ не проходит через начало координат. Выберем произвольным образом и зафиксируем направленный отрезок $\vec{x_0}$, принадлежащий ℓ . Обозначим через ℓ_1 прямую, параллельную ℓ и проходящую через начало координат. Тогда всякий направленный отрезок \vec{x} , принадлежащий ℓ , может быть представлен как сумма направленного отрезка $\vec{x_0}$ и некоторого направленного отрезка \vec{y} , принадлежащего ℓ_1 (см. рис. 1). Обратно, всякий направленный отрезок вида $\vec{x_0} + \vec{y}$, где $\vec{y} \in \ell_1$, принадлежит ℓ . Поскольку ℓ_1 — подпространство, получаем, что ℓ — линейное многообразие с вектором сдвига $\vec{x_0}$ и направляющим подпространством ℓ_1 . Аналогично можно проверить, что любая плоскость (рассматриваемая как множество направленных отрезков, идущих из начала координат в точки плоскости) является линейным многообразием в трехмерном пространстве.

Линейные многообразия (3)

Рис. 1. Прямая как линейное многообразие

Критерий равенства линейных многообразий (1)

В примерах 3 и 4 в качестве вектора сдвига можно было взять произвольный вектор, принадлежащий данному линейному многообразию. Легко понять, что то же самое верно и в примерах 1 и 2. Оказывается, что это не случайно: этот факт справедлив для любого линейного многообразия. Мы получим это утверждение как следствие из следующего результата.

Критерий равенства линейных многообразий

Пусть $P=x_0+M$ и $Q=y_0+N-$ линейные многообразия в векторном пространстве V. Равенство P=Q имеет место тогда и только тогда, когда M=N и $x_0-y_0\in M$.

Доказательство. Необходимость. Предположим, что P=Q. Докажем сначала, что M=N. Пусть $\mathbf{a}\in M$. Поскольку $\mathbf{x}_0+\mathbf{a}\in P$ и P=Q, получаем, что $\mathbf{x}_0+\mathbf{a}\in \mathbf{y}_0+N$. Следовательно, существует вектор $\mathbf{b}\in N$ такой, что $\mathbf{x}_0+\mathbf{a}=\mathbf{y}_0+\mathbf{b}$. Далее,

$$\mathbf{x}_0 \in \mathbf{y}_0 + \mathbf{N},\tag{5}$$

так как $\mathbf{x}_0=\mathbf{x}_0+\mathbf{0}\in P$ и P=Q. Следовательно, существует вектор $\mathbf{c}\in N$ такой, что $\mathbf{x}_0=\mathbf{y}_0+\mathbf{c}$. Имеем

$$y_0 + b = x_0 + a = y_0 + c + a, \\$$

откуда $\mathbf{a} = \mathbf{b} - \mathbf{c} \in \mathcal{N}$. Итак, если $\mathbf{a} \in \mathcal{M}$, то $\mathbf{a} \in \mathcal{N}$. Следовательно, $\mathcal{M} \subseteq \mathcal{N}$.

Критерий равенства линейных многообразий (2)

Аналогично проверяется, что $N\subseteq M$ и потому M=N.

Остается проверить, что $\mathbf{x}_0-\mathbf{y}_0\in M$. В самом деле, из (5) и доказанного только что равенства M=N вытекает, что $\mathbf{x}_0\in \mathbf{y}_0+M$. Следовательно, $\mathbf{x}_0=\mathbf{y}_0+\mathbf{a}$ для некоторого вектора $\mathbf{a}\in M$ и потому $\mathbf{x}_0-\mathbf{y}_0=\mathbf{a}\in M$.

Достаточность. Пусть теперь M=N и $\mathbf{x}_0-\mathbf{y}_0\in M$. Требуется доказать, что P=Q. Пусть $\mathbf{a}\in P$. Тогда $\mathbf{a}=\mathbf{x}_0+\mathbf{b}$ для некоторого вектора $\mathbf{b}\in M$. По условию $\mathbf{x}_0-\mathbf{y}_0=\mathbf{c}$ для некоторого вектора $\mathbf{c}\in M$. Следовательно, $\mathbf{x}_0=\mathbf{y}_0+\mathbf{c}$ и $\mathbf{a}=\mathbf{x}_0+\mathbf{b}=\mathbf{y}_0+(\mathbf{c}+\mathbf{b})$. Поскольку $\mathbf{c}+\mathbf{b}\in M$ и M=N, имеем $\mathbf{a}\in Q$. Следовательно, $P\subseteq Q$. Рассуждая аналогичным образом, получаем, что $Q\subseteq P$ и потому P=Q.

В частности, из доказанного критерия видно, что

 направляющее подпространство данного линейного многообразия определено однозначно.

Это позволяет определить размерность линейного многообразия $\mathbf{x}_0 + M$ как размерность подпространства M.

Следствие о векторе сдвига

Докажем теперь обещанное выше следствие.

Следствие о векторе сдвига

Пусть $P=\mathbf{x}_0+M$ — линейное многообразие в векторном пространстве V и $\mathbf{x}_1\in P$. Тогда $P=\mathbf{x}_1+M$.

Доказательство. По условию $\mathbf{x}_1 \in P$, т. е. $\mathbf{x}_1 \in \mathbf{x}_0 + M$. Следовательно, существует вектор $\mathbf{y} \in M$ такой, что $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{y}$. Но тогда $\mathbf{x}_1 - \mathbf{x}_0 = \mathbf{y} \in M$. Из доказанной выше теоремы вытекает, что $P = \mathbf{x}_0 + M = \mathbf{x}_1 + M$.

Таким образом,

• в качестве вектора сдвига данного линейного многообразия можно взять произвольный принадлежащий ему вектор.