Zahlendarstellung

Ziffern & Zahlensystem, \mathbb{N} , Euklid, Horner-Schema

Benjamin Tröster

Hochschule für Technik und Wirtschaft Berlin

21. November 2021

Fahrplan

Einleitung

Natürliche Zahlen

Umwandlung IN q-adische Zahlensysteme

Umwandlung ins Dezimalsystem

Heute

- Coronabedingt: Sprung von Schaltkreisen und Transistoren zur Zahlendarstellung
- Ziel: Wir bauen ein Rechenwerk (ALU) aus Schaltkreisen mithilfe von Gattern
- ▶ Zwischenziel: Wie können wir die Zahlen im Rechner darstellen?

Die natürlichen Zahlen (anschaulich)

- kennt jedes Kind
- beginnen mit 0 oder 1
- jede Zahl hat einen Nachfolger
- gut geeignet zum Abzählen
- keine Schulden, keine Tortenstücke

Die natürlichen Zahlen (axiomatisch)

Definition

 $\mathbb N$ ist eine Menge von Zahlen mit den folgenden Eigenschaften:

- ▶ Es gibt ein ausgezeichnetes Element $0 \in \mathbb{N}$
- ▶ Es gibt eine Abbildung $S : \mathbb{N} \to \mathbb{N}$ mit
 - (S1) S ist injektiv (d.h. $S(n) \neq S(m)$ falls $n \neq m$).
 - (S1) $0 \notin S(\mathbb{N}) = \{S(n) | n \in \mathbb{N}\}$
 - (S3) Ist $M \subset \mathbb{N}$ und $0 \in M$ sowie $S(M) \subset (M)$, dann gilt M = N

Anschaulich: Jede Zahl hat genau einen Nachfolger. Wenn wir bei 0 anfangen und immer weiter zum Nachfolger gehen, treffen wir jede Zahl genau einmal.

Einschub: Injektiv, Surjektiv, Bijektiv

- Injektiv (linkseindeutig): ist eine Eigenschaft einer mathematischen Funktion
- Jedes Element der Zielmenge h\u00f6chstens einmal als Funktionswert angenommen
- Keine zwei verschiedenen Elemente der Definitionsmenge auf ein und dasselbe Element der Zielmenge abgebildet

Eine injektive Funktion; X ist die Definitionsmenge und Y die Zielmenge.

Einschub: Injektiv, Surjektiv, Bijektiv

- Surjektivität (rechtstotal): Ist eine Eigenschaft einer mathematischen Funktion
- Jedes Element der Zielmenge mindestens einmal als Funktionswert angenommen
 - ▶ Jedes Bild hat mindestens ein Urbild
- Eine surjektive Funktion wird auch als Surjektion bezeichnet

Eine surjektive Funktion; X ist die Definitionsmenge und Y die Zielmenge.

Einschub: Injektiv, Surjektiv, Bijektiv

- Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion
- Verschiedene Elemente ihres
 Definitionsbereichs auf verschiedene
 Elemente der Zielmenge abbildet
 (injektiv) und
- Zusätzlich jedes Element der Zielmenge als Funktionswert auftritt (surjektiv)
- ► Eine bijektive Funktion hat daher immer eine Umkehrfunktion, ist also invertierbar

Eine bijektive Funktion; X ist die Definitionsmenge und Y die Zielmenge.

Rechnen mit natürlichen Zahlen

Definition (Addition)

(A1)
$$n + 0 = n$$

(A2)
$$n + S(m) = S(n+m)$$

Somit ist durch (S3) die Addition n+m für alle $n,m \in \mathbb{N}$ definiert

Nachweis der Rechenregeln

- Assoziativität: k + (n + m) = (k + n) + m
- ightharpoonup Kommutativität: n + m = m + n

Folgerung: Wir können mit natürlichen Zahlen rechnen

Aber: Bevor wir die Summen zweier konkreter natürlicher Zahlen ausrechnen können, muss jede natürliche Zahl genau einen Namen haben!

Ziffernketten

Problem: Unendlich viele natürliche Zahlen erfordern unendlich viele Namen. Lösung

- ▶ Verwende Ziffernketten: $z_1 z_2 z_3 \dots z_k$ $z_i \in \mathcal{Z}, i = 1, \dots, k$
- ► Endliche Ziffernmenge *Z*

Interpretation

- Systematische Konstruktion unterschiedlicher Symbole
- ▶ Bilden von Worten aus einem Alphabet

Ziffernsysteme

Theorem

Sei Z eine endliche Ziffernmenge und

$$\mathcal{D}\{z_1z_2\ldots z_k|k\in\mathbb{N},z_i\in\mathcal{Z},i=1,\ldots,k\}$$

die Menge aller endlichen Ziffernketten. Dann existiert eine bijektive Abbildung $\varphi: \mathbb{N} \to \mathcal{D}(\mathcal{Z})$

Definition

Die Ziffernmenge $\mathcal Z$ und die Zuordnung φ erzeugen eine Ziffernsystem zur Darstellung von $\mathbb N$

Definition

Eine Menge \mathcal{M} , für die eine bijektive Abbildung $\varphi\mathbb{N}\to\mathcal{M}$ existiert, heißt abzählbar.

Beispiele für Ziffernsysteme

- Römische Zahlen
 - $\triangleright \ \mathcal{Z} = \{I, V, X, L, C, D, M\}$
 - Kein Ziffernsystem!
- Unärsystem
 - ▶ Nur eine Ziffer: $\mathcal{Z} = \{|\}$
 - ▶ Ziffernketten: $\mathcal{D}(\mathcal{Z}) = \{|,||,|||,...\}$
 - ▶ Zuordnung: $\varphi(0) = \varphi(1) = |\varphi(S(n))| = \varphi(n)$
 - ▶ Beispiel: $\varphi(4) = ||||$

Praktische Anwendung

... vor 15000 - 20000 Jahren im Kongo:

... heute

Potenzzerlegung zur Basis q

Theorem

Sei $q \in \mathbb{N}$, q > 1 fest gewählt.

Dann lässt sich jede Zahl $n \in \mathbb{N}$ als Potenzzerlegung

$$n = \sum_{i=0}^{k} r_i q^i$$

darstellen. Die Koeffizienten $r_i \in \{0, \dots, q-1\} \subset \mathbb{N}$ sind eindeutig.

Positionssystem zur Basis q

Definition

- ightharpoonup Ziffernmenge: $\mathcal{Z} = \{z_0, \dots, z_{q-1}\}$
- ► Zuordnung:

$$n \mapsto \varphi(n) = z_n, \qquad n = 0, \dots, q-1$$

und für n > q - 1

$$n\mapsto arphi(n)=z_{r_k}z_{r_{k-1}}\ldots z_{r_0}\qquad ext{mit } n=\sum_{i=0}^k r_iq^i, \qquad 0\leq r_i\leq q-1$$

Diese Zifferndarstellung heißt q-adische Darstellung.

Beispiele

- Dezimalsystem
 - $ightharpoonup q = 10 \text{ und } \mathcal{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Hexadezimalsystem
 - $ightharpoonup q = 16 \text{ und } \mathcal{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$
- ▶ *q*-adische Systeme mit $q \le 36$
 - \triangleright Erweiterung mit $\{A, B, C, ..., Z\}$
- ► Konvention:
 - ► Keine Unterscheidung zwischen Darstellung und Zahl:

$$(z_k z_{k-1} \dots z_0)_q = \sum_{i=0}^k z_i q^i, \qquad z_i \in \mathcal{Z} = \{0, 1, \dots q-1\}$$

- \blacktriangleright Kein Index q, falls q=10
- ▶ Den Index i von zi nennt man Stelle
- \triangleright $(z_k z_{k-1} \dots z_0)$ nennt man eine k-stellige Zahl

Positionssystem zur Basis q = 2: Dualsystem

- ► Dualsystem (auch Binärsystem)
 - ightharpoonup Ziffernmenge: $\mathcal{Z} = \{0, 1\}$
- Ideal für technische Umsetzung
 - ▶ 1 Binärstelle \Leftrightarrow 1 Bit \Leftrightarrow 1 "Schalter"
 - ▶ Alle modernen Rechenmaschinen arbeiten mit dem Dualsystem
- Zahlenbereich
 - ▶ Im Dualsystem lassen sich mit *N* Stellen Zahlen $n \in \mathbb{N}$ mit:

$$0 \le n \le 2^N - 1$$

darstellen.

Technische Realisierung

- Kleinste Einheit (0 oder 1): Bit
- ▶ Bits werden in festen Längen zusammengefaßt
- ▶ 8 Bits = 1 Byte mit $2^8 = 256$ verschiedenen Zuständen
- Feste Anzahl Bytes für Zahlendarstellung
- ▶ Bezeichnungen: BYTE, WORD, DWORD, ... (Architekturabhängig)
 - ▶ Üblich: x_86/IA32 WORD = 2 Bytes, DWORD = 4 Bytes, QWORD = 8 Bytes
 - ► Machineword: Datentyp den die CPU Architektur verarbeiten kann
- ► Bereich von 64-Bit Zahlen

$$0 \le n \le 2^{64} - 1 > 18 \cdot 10^{18} = 18$$
 Trillionen

Kochrezept Umrechnung ganzer Zahlen

Beispiel Dualzahlen

▶ Umrechnung von 741_{10} in dual

Euklidische Algorithmus

Umwandlung vom Dezimalsystem in ein Zahlensystem zur Basis q

1. Methode: Euklidischer Algorithmus:

$$Z = z_n 10^n + z_{n-1} 10^{n-1} + \ldots + z_1 10^1 + z_0 10^0 + z_{-1} 10^{-1} + \ldots + z_{-m} 10^{-m}$$

= $y_s q^s + y_{s-1} q^{s-1} + \ldots + y_1 q^1 + y_0 q^0 + y_{-1} q^{-1} + \ldots + y_{-t} q^{-t}$

Die Ziffern werden sukzessive, beginnend mit der höchstwertigen Ziffer, berechnet:

- 1. Schritt: Berechne p gemäß der Ungleichung $qp \le Z < q^{p+1}$ setze i=p und $Z_i=Z$
- 2. Schritt: Ermittle y_i und den Rest R_i durch Division von Z_i durch q_i $y_i = Z_i \div q^i$ $R_i = Z_i \mod q^i$
- 3. Schritt: Wiederhole 2. Schritt für $i = p 1, \ldots$ und ersetze dabei nach jedem Schritt Z_i durch R_i , bis $R_i = 0$ oder bis q^i gering genug ist (und damit auch der Umrechnungsfehler).

Beispiel

Umwandlung von $15741, 233_{10}$ ins Hexadezimalsystem

1. Schritt $16^3 \le 15741, 233 < 16^4 \Rightarrow$ höchste Potenz 16^3

2.Schritt:	15741,233	:	16^{3}		3	Rest	3453, 233
3.Schritt:	3453,233	:	16^{2}	=	D	Rest	125, 233
4.Schritt	125,233	:	16^{1}	=	7	Rest	13,233
5.Schritt:	13,233	:	$16^0 = 1$	=	D	Rest	0,233
6.Schritt:	0,233	:	16^{-1}	=	3	Rest	0,0455
7.Schritt:	0,0455	:	16^{-2}	=	В	Rest	0,00253
8.Schritt:	0,00253	:	16^{-3}	=	Α	Rest	0,000088593
9. Schritt:	0,000088593	:	16^{-4}	=	5	Rest	0,000012299

$$\Rightarrow$$
15741, 233₁₀ \approx 3D7D, 3BA5₁₆

Horner Schema

Umwandlung vom Dezimalsystem in ein Zahlensystem zur Basis q

- 2. Methode: Abwandlung des Horner-Schemas
 - 2.1 Hierbei müssen der ganzzahlige und der gebrochene Anteil getrennt betrachtet werden.
 - 2.2 Umwandlung des ganzzahligen Anteils:

Eine ganze Zahl
$$X_q = \sum_{i=0}^n z_i q^i$$
 kann durch fortgesetztes

Ausklammern auch in folgender Form geschrieben werden:

$$X_q = ((\dots(((z_nq + z_{n-1})q + z_{n-2})q + z_{n-3})q \dots)q + z_1)q + z_0$$

Beispiel

Die gegebene Dezimalzahl wird sukzessive durch die Basis q dividiert. Die jeweiligen ganzzahligen Reste ergeben die Ziffern der Zahl X_q in der Reihenfolge von der niedrigstwertigen zur höchstwertigen Stelle. Wandle 15741_{10} ins Hexadezimalsystem

Beispiel

Die gegebene Dezimalzahl wird sukzessive durch die Basis q dividiert. Die jeweiligen ganzzahligen Reste ergeben die Ziffern der Zahl X_q in der Reihenfolge von der niedrigstwertigen zur höchstwertigen Stelle. Wandle 15741_{10} ins Hexadezimalsystem

$$1574110: 16 = 983$$
 Rest 13 D_{16} $98310: 16 = 61$ Rest 7 (7_{16}) $6110: 16 = 3$ Rest 13 (D_{16}) $310: 16 = 0$ Rest 3 (3_{16})

$$\Rightarrow 15741_{10} = 3D7D_{16}$$

Umwandlung des Nachkommateils

Auch der gebrochene Anteil einer Zahl

$$Y_q = \sum_{i=-m}^{-1} y_i q^i$$

lässt sich entsprechend schreiben:

$$Y_q = ((\dots((y_{-m}q^{-1} + y_{-m+1})q^{-1} + y_{-m+2})b^{-1} + \dots + y_{-2})q^{-1} + y_{-1})b^{-1}$$

Verfahren:

Eine sukzessive **Multiplikation** des Nachkommateils der Dezimalzahl mit der Basis q des Zielsystems ergibt nacheinander die y_{-i} in der Reihenfolge der höchstwertigen zur niedrigstwertigen Nachkommaziffer.

Beispiel

Umwandlung von $0,233_{10}$ ins Hexadezimalsystem:

$$z_{-1} = 3$$
 $z_{-1} = 3$
 $z_{-1} = 3$
 $z_{-2} = 3$
 $z_{-2} = 3$
 $z_{-2} = 3$
 $z_{-2} = 3$
 $z_{-3} = 3$
 $z_{-4} = 5$
 $z_{-4} = 5$

Abbruch bei genügend hoher Genauigkeit

Umwandlung: Basis $q \rightarrow$ Dezimalsystem

Die Werte der einzelnen Stellen der umzuwandelnden Zahl werden in dem Zahlensystem, in das umgewandelt werden soll, dargestellt und nach der Stellenwertgleichung aufsummiert.

Der Wert X_q der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen $z_i q^i$:

$$X_q = z_n q^n + z_{n-1} q^{n-1} + \ldots + z_1 q^1 + z_0 q^0 + z_{-1} q^{-1} + \ldots + z_{-m} q^{-m}$$

= $\sum_{i=-m}^n z_i q^i$

Beispiel

Konvertierung $101101, 1101_2$ ins Dezimalsystem

Umwandlung beliebiger Stellenwertsysteme

Man wandelt die Zahl ins Dezimalsystem um und führt danach mit Methode 1 oder 2 die Wandlung ins Zielsystem durch.
Spezialfall:

▶ Ist eine Basis eine Potenz der anderen Basis, können einfach mehrere Stellen zu einer Ziffer zusammengefasst werden oder eine Stelle kann durch eine Folge von Ziffern ersetzt werden.

Wandlung von $0110100, 110101_2$ ins Hexadezimalsystem als BYTE dargestellt $2^4=16\Rightarrow 4$ Dualstellen $\to 1$ Hexadezimalstellen

dual 0110100, 110101
$$\downarrow \\ \underbrace{0011}_{0100}, \underbrace{1101}_{0100} \underbrace{0100}_{0100}$$
 hex 3 4 , D 4

Ergänzen von Nullen zum Auffüllen auf Vierergruppen

Quellen I