	1.0	2a	2b	3a	6a	2c	3b	6 <i>b</i>	3c	6 <i>c</i>	6d	3d	6e	6 <i>f</i>	3e	6.0	3f	6h	6i	20	6 i	6k	3h	61
	14	<u> 2u</u>	1	<u> </u>	1	1	30	1	<u> </u>	1	<u> </u>	<u> </u>	1	1	1	$\frac{6g}{1}$	<u> </u>	1	1	$\frac{3g}{1}$	6j	1	1	
χ_1	I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1	-1	1	-l	1	1	-1 E(a) 2	-1	1	-1 E(2)2	1	-l	I F(0)	1	-1 F(2)	-1 F(2)	1	-1 F(0)
χ_3	1	-1	1	1	-1	-1	1	-1	$E(3)^2$	$-E(3)^2$	$E(3)^2$	$E(3)^2$	$-E(3)^{2}$	$-E(3)^2$	$E(3)^2$	$-E(3)^2$	E(3)	-E(3)	E(3)	E(3)	-E(3)	-E(3)	E(3)	-E(3)
χ_4	1	-1	1	1	-1	-1	1	-1	E(3)	-E(3)	E(3)	E(3)	-E(3)	-E(3)	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^{2}$
χ_5	1	-1	1	$E(3)^{2}$	$-E(3)^{2}$	-1	E(3)	-E(3)	1	-1	1	$E(3)^{2}$	$-E(3)^{2}$	-1	E(3)	-E(3)	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)
χ_6	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^{2}$
χ_7	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	1	-1	E(3)	-E(3)	E(3)	1	-1	-E(3)	$E(3)^{2}$	$-E(3)^2$
χ_8	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	1	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	1	-1	$-E(3)^2$	E(3)	-E(3)
χ_9	1	-1	1	$E(3)^{2}$	$-E(3)^{2}$	-1	E(3)	-E(3)	E(3)	-E(3)	E(3)	1	-1	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	1	-1
χ_{10}	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	1	-1	$-E(3)^2$	E(3)	-E(3)	E(3)	-E(3)	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	1	-1
χ_{11}	1	1	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)
χ_{12}	1	1	1	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_{13}	1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)
χ_{14}	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$
χ_{15}	1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	1	1	E(3)	E(3)	E(3)	1	1	E(3)	$E(3)^{2}$	$E(3)^{2}$
χ_{16}	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	1	$E(3)^{2}$	E(3)	E(3)
χ_{17}	1	1	1	$E(3)^2$	$E(3)^2$	1	E(3)	E(3)	E(3)	E(3)	E(3)	1	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$	$E(3)^2$	$E(3)^2$	E(3)	E(3)	$E(3)^{2}$	1	ì
χ_{18}	1	1	1	E(3)	E(3)	1	$E(3)^2$	$E(3)^2$	$E(3)^2$	$E(3)^2$	$E(3)^2$	1	1	$E(3)^2$	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^2$	$E(3)^2$	E(3)	1	1
χ_{19}	3	1	-1	ò	o ´	-3	0	0	3	1	-1	0	0	-3	o ´	0	$\hat{3}$	ì	-1	0	0	-3	0	0
χ_{20}	3	-1	-1	0	0	3	0	0	3	-1	-1	0	0	3	0	0	3	-1	-1	0	0	3	0	0
χ_{21}	3	1	-1	0	0	-3	0	0	$3*E(3)^2$	$E(3)^{2}$	$-E(3)^2$	0	0	$-3*E(3)^2$	0	0	3 * E(3)	E(3)	-E(3)	0	0	-3 * E(3)	0	0
χ_{22}	3	1	-1	0	0	-3	0	0	3 * E(3)	E(3)	-E(3)	0	0	-3 * E(3)	0	0	$3*E(3)^{2}$	$E(3)^2$	$-E(3)^{2}$	0	0	$-3*E(3)^{2}$	0	0
χ_{23}	3	-1	-1	0	0	3	0	0	$3*E(3)^{2}$	$-E(3)^{2}$	$-E(3)^{2}$	0	0	$3*E(3)^{2}$	0	0	3 * E(3)	-E(3)	-E(3)	0	0	3 * E(3)	0	0
χ_{24}	3	-1	-1	0	0	3	0	0	3 * E(3)	-E(3)	-E(3)	0	0	3*E(3)	0	0	$3*E(3)^2$	$-E(3)^{2}$	$-E(3)^{2}$	0	0	$3*E(3)^2$	0	0
7,24				~					- (3)	-(-)	- (=)			3 - (3)			- (0)	- (=)	- (=)			- (*)		

	\(\lambda 24 \text{0} \text{1} \text{1} \text{0} \text{0}	0 0 0.2	(0) 2(0) 2(0	,, , ,	0 : E(0)	0 0.2	(0) E(0)	2(0)	0 0.2(0)	0 0													
Trivial source character table of $G \cong C6 \times A4$ at $p = 2$:																							
Normalisers N_i]	N_1			N_2			N_2	N_A				NE				N _G		N_7			N_{\circ}	
p-subgroups of G up to conjugacy in G		P ₁			P_2			P_2	P ₄				P ₌				P_c		P_7			P_{\circ}	
Representatives $n_i \in N_i$	3a $3b$ $3c$ $3d$	3e 3f	3a $3h$ 1	a = 3c = 3d	3f $3a$	3h $3a$	3b 3e	1a 3a	3b $1a$ $3a$	3b $1a$	3c	3d 3	$\frac{1}{f}$ $3a$	3h $3c$	$\frac{a}{a}$ 3h	3e	$\frac{1a}{3b}$ $\frac{3b}{3c}$	$a \frac{1}{1a} \frac{3}{3}$	$\frac{1}{b}$ $3a$	1a 3c 3	$\frac{1}{2}$ 3f 3	$\frac{3a}{3h}$	3a $3b$ $3e$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2 * E(3) 2 * E(3)^2 8 2 * E(3)^2$	3) $2*E(3)^2$ 8 2:	$*E(3) 2*E(3)^2$	0 0 0	0 0	0 0	0 0	0 0	0 0 0	0 0	0	0 () 0	0 0) 0	0	0 0 0	1 0 6	0 0	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\frac{3}{1}$ 0 ($\frac{gg}{0}$	$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}{\partial t}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 1 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 1 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 1 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 1 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 1 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{11} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 1 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{11} + 0 & \chi_{11} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 1 & \chi_{14} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 1 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{11} + 0 & \chi_{12} + 1 & \chi_{13} + 0 & \chi_{14} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_1 +$			$E(3)^2 = 2 * E(3)$	0 0 0	0 0	0 0	0 0			0 0	0	0 () 0	0 0) 0	0	0 0 0		0		0 (0 0	
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 1 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 1 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 1 \cdot \chi_1 + 0 \cdot \chi_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 8	$\begin{pmatrix} E(0) & 2 * E(0) \\ 2 & 2 \end{pmatrix}$	0 0 0	0 0	0 0	0 0			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 1 & \chi_1 + 1 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 1 & \chi_{18} + 1 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ \end{vmatrix} $	$2 * E(3) 2 * E(3)^2 8 * E(3)^2 2$	2*E(3) $8*E(3)$ $2*$	$E(3)^2$ 2	0 0 0	0 0	0 0	0 0			0 0	0	0 () 0	0 0) 0	0	0 0 0		0		0 (0 0	
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 1 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 1 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 1 & \chi_{21} + 0 & \chi_{22} + 1 & \chi_{23} + 0 & \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_$		$2*E(3)^2 8*E(3)^2 2*$	E(3) 2	0 0 0	0 0	0 0	0 0			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 1 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 1 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 0 & \chi_{21} + 1 & \chi_{22} + 0 & \chi_{23} + 1 & \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_1$		(-)	$2 \times E(3)$	0 0 0	0 0	0 0	0 0			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 1 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{14} + 0 & \chi_{15} + 1 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 1 & \chi_{22} + 0 & \chi_{23} + 1 & \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ \end{vmatrix} $		3) $2 \times E(3)$	$2 * E(3)^2$	0 0 0	0 0	0 0	0 0			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 1 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 1 & \chi_{21} + 0 & \chi_{22} + 1 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 1 & \chi_{22} + 1 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{21} + 1 & \chi_{22} + 1 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{21} + 1 & \chi_{22} + 1 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{14} + 1 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{21} + 1 & \chi_{22} + 1 & \chi_{23} + 0 & \chi_{24} \\ 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{14} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 0 & \chi_{21} + 1 & \chi_{22} + 0 & \chi_{23} + 1 & \chi_{24} + 0 & \chi_{$		3) $2*E(3)$ $8*E(3)^2$ $2*$	$E(3)^2 = 2 * E(3)^2$	0 0 0	0 0	0 0	0 0			0 0	0	0 () 0	0 0) 0	0	0 0 0		0		0 (0 0	
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 1 & \chi_{22} + 0 & \chi_{23} + 1 & \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_3 + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_{19} + 0$	2 2 $8*E(3)^2$ $2*E(3)^2$, ()	*E(3) 2 * $E(3)$	0 0 0	0 0	0 0	0 0			0 0	0	0 () 0	0 0) 0	0	0 0 0		0		0 (0 0	
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{19} +$	$\frac{E(3)^2}{E(3)^2}$ $\frac{E(3)}{E(3)}$ $\frac{E(3)^2}{E(3)^2}$	$\frac{F(3)}{F(3)}$ $\frac{F(3)}{F(3)}$	$E(3)^2$ $E(3)$	$\frac{0}{4}$ $\frac{0}{4}$ $\frac{0}{E(3)}$	Λ^2 Λ $E(3)^2$	$\frac{1^2}{E(3)} \frac{E(3)^2}{E(3)^2}$	E(3) $E(3)$	0 0	0 0 0	0 0	0	0 () 0	0 0) 0	0	$\frac{0}{0}$ 0 0	1 0 6) 0		0 0	0 0	$\frac{0}{0}$ $\frac{0}{0}$ $\frac{0}{0}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 1 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{1$	$E(3)$ $E(3)^2$ 4 $E(3)$	$E(3)^2$ 4	$E(3)$ $E(3)^2$	$A \qquad A \qquad E(3)$	A = E(3)	$E(3)^2 E(3)$	$E(3)^2$ $E(3)^2$			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 1 & \chi_{14} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \\ 1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{L(0)}{1}$	1 1	$A \qquad A \qquad 1$	A = L(0)	1 1	1 1			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 1 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 0 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} + 0 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 1 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 0 & \chi_{24} + 0 $	1 1 $4*E(3)$ $E(3)$	$E(3) 4 * E(3)^2 B$	$E(3)^2$ $E(3)^2$	$4 + 4 \times E(3) = E(3)$	$4 * E(3)^2 = E(3)^2$	$(2 E(3)^2 1$	1 $E(3)$			0 0	0	0 (0	0 0) 0	0	0 0 0) 0		0 (0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 0 & \chi_1 + 0 & \chi_2 + 0 & \chi_3 + 0 & \chi_4 + 0 & \chi_5 + 0 & \chi_6 + 0 & \chi_7 + 0 & \chi_8 + 0 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 1 & \chi_{23} + 1 & \chi_{24} + 1 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 1 & \chi_{23} + 1 & \chi_{24} + 1 & \chi_{15} + 0 & \chi_{16} + 0 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{19} + 0 & \chi_{20} + 0 & \chi_{21} + 0 & \chi_{22} + 1 & \chi_{23} + 1 & \chi_{24} + 1 $	1 1 $4*E(3)^2$ $E(3)^2$	$E(3)^2 4 * E(3)$	E(3) $E(3)$	$4 + 4 * E(3)^2 = E(3)^2$	$(3)^2 4*E(3) E(3)$	E(3) 1	1 $E(3)^2$		0 0 0	0 0	0	0 () 0	0 0) 0	0	0 0 0	$\int_{0}^{\infty} \int_{0}^{\infty}$) 0		0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ \mid
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$	$E(3)^2$ $E(3)$ $4*E(3)^2$ $E(3)$	1 4 * E(3)	$E(3)^2$	$4 + E(3)^2 = E(3)^2$	4*E(3) 1	$E(3)^2 E(3)^2$	E(3) 1		0 0 0	0 0	0	0 (0	0 0	0	0	0 0 0		0		0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \end{vmatrix} = 0$	$E(3)$ $E(3)^2$ $4*E(3)$ $E(3)^2$	$4*E(3)^2$	E(3)	4 + E(3) = E(3)	$(3)^2 4 * E(3)^2 1$	E(3) $E(3)$	$E(3)^2$ 1		0 0 0	0 0	0	0 (0	0 0	0	0	0 0 0		0		0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$	$E(3)$ $E(3)^2$ $4*E(3)^2$ 1	E(3) 4 * E(3) 1	$\Xi(3)^2$ 1	$4 + E(3)^2 = 1$	$4*E(3) E(3)^2$	E(3) $E(3)$	$E(3)^2$ $E(3)$		0 0 0	0 0	0	0 (0	0 0	0	0	0 0 0		0		0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} \end{vmatrix} = 0$	$E(3)^2$ $E(3)$ $4*E(3)$ 1	$E(3)^2 4*E(3)^2$	E(3) 1	4 + 4 * E(3) = 1	$4*E(3)^2$ $E(3)$	1 $E(3)^2$	$E(3)$ $E(3)^2$		0 0 0	0 0	0	0 (0	0 0	0	0	0 0 0		0	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$
$\frac{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}}{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}}{1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}}{1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_$	$\frac{2(0)}{0}$ $\frac{2(0)}{0}$ $\frac{12}{0}$ 0	0 12	0 0	$\frac{1}{0}$ 0 0	0 0	0 0	0 0	4 4	4 0 0	0 0	0	0 (0	0 0	0	0	$\frac{0}{0}$ 0 0	$\frac{1}{0}$	0	0 0 0	0 (0 0	$\frac{0}{0}$ 0 0
$\begin{vmatrix} 1 & \chi_1 + 1 & \chi_2 + 0 & \chi_3 + 1 & \chi_4 + 1 & \chi_5 + 1 & \chi_6 + 0 & \chi_7 + 1 & \chi_8 + 1 & \chi_9 + 0 & \chi_{10} + 0 & \chi_{11} + 1 & \chi_{12} + 0 & \chi_{13} + 0 & \chi_{14} + 0 & \chi_{15} + 1 & \chi_{16} + 1 & \chi_{17} + 0 & \chi_{18} + 0 & \chi_{21} + 0 & \chi_{22} + 0 & \chi_{23} + 1 & \chi_{24} & 12 \end{vmatrix}$	0 0 12 * E(3) 0	$0 12 * E(3)^2$	0 0	0 0 0	0 0	0 0	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(3)^2 = 0$	0 0	0	0 (0	0 0	0	0	0 0 0		0		0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 12$	0 0 $12 * E(3)^2$ 0	0 12 * E(3)	0 0	0 0 0	0 0	0 0	0 0	$4 4 * E(3)^2 4 *$	E(3) = 0	0 0	0	0 (0	0 0	0	0	0 0 0		0		0 (0 0	$\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$ $\stackrel{\circ}{0}$
$\frac{3 \cdot \chi_{1} + 3 \cdot \chi_{2} + 2 \cdot \chi_{3} + 3 \cdot \chi_{4} + 3 \cdot \chi_{5} + 3 \cdot \chi_{6} + 2 \cdot \chi_{1} + 3 \cdot \chi_{8} + 3 \cdot \chi_{9} + 2 \cdot \chi_{10} + 2 \cdot \chi_{11} + 3 \cdot \chi_{12} + 3 \cdot \chi_{13} + 3 \cdot \chi_{14} + 2 \cdot \chi_{15} + 3 \cdot \chi_{16} + 3 \cdot \chi_{17} + 3 \cdot \chi_{18} + 3 \cdot \chi_{19} + 3 \cdot \chi_{21} + 3 \cdot \chi_{22} + 2 \cdot \chi_{23} + 3 \cdot \chi_{24} + 2 \cdot \chi_{19} + 3 \cdot \chi_{19}$	0 0 12 0	0 12	0 0	$\frac{0}{0}$ 0 0	0 0	0 0	0 0	0 0	0 4 4	4 0	0	0 (0	0 0	0	0	$\frac{0}{0}$ 0 0	$\frac{1}{0}$	0	0 0	0 (0 0	$\frac{0}{0}$ 0 0
$\begin{vmatrix} 1 & \chi_1 + \sigma & \chi_2 + \sigma & \chi_3 + \sigma & \chi_4 + \sigma & \chi_5 + \sigma & \chi_6 + \sigma & \chi_7 + \sigma & \chi_8 + \sigma & \chi_9 + \sigma & \chi_{10} + \sigma & \chi_{11} + \sigma & \chi_{12} + \sigma & \chi_{13} + \sigma & \chi_{11} + \sigma & \chi_{11} + \sigma & \chi_{12} + \sigma & \chi_{22} + \sigma & \chi_{23} + \sigma & \chi_{24} + \sigma $	0 0 12 * E(3) 0	$0 12 * E(3)^2$	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	0 0	0 0		0 4 4 * E(3)	$4 * E(3)^2 = 0$	0	0 (0	0 0	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0	0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 2 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$	0 0 $12 * E(3)^2$ 0	0 12 * E(3)	0 0	0 0 0	0 0	0 0	0 0	0 0	0 $4 \cdot 4 \cdot E(3)^2$	\ /	0	0 (0	0 0	0	0	0 0 0		0	100	0 (0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}}{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}} = \frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	2 2	2 2	$\frac{0}{0}$ 0 0	0 0	0 0	0 0	2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2	2	2 2	2 2	$\frac{1}{2}$ 2	$\frac{1}{2}$	2	$\frac{0}{0}$ 0 0) 0 C	0	$\begin{bmatrix} 0 & 0 & \ell \end{bmatrix}$	0 (0 0	$\frac{0}{0}$ 0 0
	$*E(3)^2$ $2*E(3)$ $2*E(3)$	$(3)^2 2*E(3) \qquad \qquad 2*$	$E(3)^2 = 2 * E(3)$	0 0 0	0 0	0 0	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \qquad \boxed{2}$	2	$2 * E(3)^2$	$2 * E(3)^2$	2 * E(3) 2 * E	$E(3)^2 = 2 * E(3)$	2*E(3)	0 0 0	, 0 (0	100	0 (0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$,	$*E(3) 2*E(3)^2$	0 0 0	0 0	0 0	0 0	2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2	2	2 * E(3) 2	2 * E(3) 2	$2 * E(3)^2 2 * E(3)^2$	E(3) = 2 * E(3)	$(2)^2 2 * E(3)^2$	0 0 0	, 0	0	100	0 (0 0	0 0 0
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$		2*E(3) $2*E(3)$ $2*$	$E(3)^2$ 2	0 0 0	0 0	0 0	0 0	$2 2 * E(3)^2 2 *$	E(3) = 0	0 2	$2 * E(3)^2$	2 $2*I$	$E(3) 2 * E(3)^2$	2 $2*E$	E(3) = 2 * E(3)	2 * E(3)	0 0 0	, 0	0	100	0 (0 0	$0 \qquad 0 \qquad 0$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$		$2*E(3)^2$ $2*E(3)^2$ $2*$	* E(3) 2	0 0 0	0 0	0 0	0 0	2 2 * E(3) 2 *	$E(3)^{2} \mid 0 \qquad 0$	0 2	2 * E(3)	2 2 * E	$2*E(3)^2$ 2* $E(3)$	2 2 * E	$E(3)^2 = 2 * E(3)^2$	$2*E(3)^2$	0 0 0) 0 r	0	0 0	0 (0 0	$0 \qquad 0 \qquad 0$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 2$	2 $2*E(3)^2$ $2*E(3)$	$(3)^2 2 * E(3)^2 2 * E(3) 2 = (3)^2$	*E(3) $2*E(3)$	0 0 0	0 0	0 0	0 0	$2 2 * E(3)^{2} 2 *$	$\stackrel{\smile}{E(3)} 0 0$	0 2	$2*E(3)^{2}$	$2 * E(3)^2 2 * I$	$E(3) \qquad 2*E(3)$	2 * E(3) 2	2 2	$2*E(3)^2$	0 0 0) 0 r	0	0 0	0 (0 0	$0 \qquad 0 \qquad 0$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 2$	2 $2 * E(3) 2 * E(3)$	3) $2*E(3)$ $2*E(3)^2$ $2*$	$E(3)^2 2 * E(3)^2$	0 0 0	0 0	0 0	0 0	2 2 * E(3) 2 *	$E(3)^{2} \mid 0 \qquad 0$	0 2	2 * E(3)	2 * E(3) 2 * E	$E(3)^2 = 2 * E(3)^2 = 2$	$2 * E(3)^{2}$ 2	2 2	2*E(3)	0 0 0) 0 r	0	0 0	0 (0 0	$0 \qquad 0 \qquad 0$
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$	$2*E(3)$ $2*E(3)^2$ $2*E(3)$ $2*E(3)$		$2 \times E(3)$	0 0 0	0 0	0 0	0 0	2 2 * E(3) 2 *	$E(3)^{2} = 0$ 0	0 2	2*E(3)	$2*E(3)^{2}$ $2*E$	$2(3)^2$ 2	2 * E(3) $2 * E(3)$	E(3) = 2 * E(3)	2^{2}	0 0 0	, 0 r	0	0 0	0 (0 0	0 0 0
$\begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} = 0$			$2 2 * E(3)^{2}$	0 0 0	0 0	0 0	0 0	$2 2 * E(3)^2 2 *$	$\not \in E(3) \mid 0 = 0$		\ /_	2 * E(3) $2 * I$	\ <i>\</i>	$2 * E(3)^2 2 * E$	$E(3)^2 = 2 * E(3)^2$	3) 2	0 0 0	, 0 (0	0 0	0 (0 0	0 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} = 6$	0 0 6 0	0 6	0 0	6 6 0	6 0	0 0	0 0	2 2	2 2 2	2 0	0	0 (0	0 0	0	0	2 2 2	, 0 (0	$\begin{bmatrix} 0 & 0 & f \end{bmatrix}$	0 (0 0	0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \end{vmatrix} $	0 $0 * E(3) 0$	$0 6*E(3)^2$	0 0	$6 6 * E(3) \qquad 0$	$6*E(3)^2$ 0	0 0	0 0	2 2 * E(3) 2 *	$E(3)^2 \mid 2 = 2 * E(3)$	$2*E(3)^2$ 0	0	0 (0	0 0	0	0	$2 \cdot 2 * E(3)^2 \cdot 2 * E(3)^2$	$\mathcal{L}(3) \mid 0 $	0	0 0	0 (0 0	0 0 0
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 $0 6*E(3)^2$ 0	0 6*E(3)	0 0	$6 6 * E(3)^2 \qquad 0$	6*E(3) 0	0 0	0 0	$2 2 * E(3)^2 2 *$	$*E(3)$ 2 $2*E(3)^2$	2 * E(3) = 0	0	0 (0	0 0	0	0	2 * E(3) 2 * E	$(3)^2 \mid 0$	0	0 0	0 (0 0	0 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} = 6$	0 0 6 0	0 6	0 0	0 0 0	0 0	0 0	0 0	2 2	2 4 4	4 0	0	0 (0	0 0	0	0	0 0 0	$\int \frac{1}{2} \int $	2	0 0	0 (0 0	0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	0 0 6*E(3) 0	$0 6*E(3)^2$	0 0	0 0 0	0 0	0 0	0 0	2 2 * E(3) 2 *	$E(3)^2 \mid 4 4*E(3)$	$4*E(3)^2$ 0	0	0 (0	0 0	0	0	0 0 0	2 2*F	$E(3)^2 2 * E(3)$	0 0	0 (0 0	0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	0 $0 6*E(3)^2 0$	0 6*E(3)	0 0	0 0 0	0 0	0 0	0 0	$2 ext{ } 2 * E(3)^2 ext{ } 2 *$	$*E(3) 4 4*E(3)^2$	4*E(3) = 0	0	0 (0	0 0	0	0	0 0 0	2 2*I	$E(3) 2 * E(3)^2$	0 0	0 (0 0	0 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	1 1 1 1	1 1	1 1	1 1 1	1 1	1 1	1 1	1 1	1 1 1	1 1	1	1 1	. 1	1 1	1	1	1 1 1	. 1 1	. 1	1 1 1	1 1	1 1	1 1 1
	$E(3)^2$ $E(3)$ 1 $E(3)^2$	E(3) 1 $E(3)$	$E(3)^2$ $E(3)$	1 $1 E(3)$	$(1)^2$ 1 $E(3)^2$	$E(3) E(3)^2$	E(3) $E(3)$	1 1	1 1 1	1 1	1	$E(3)^2$ 1	$E(3)^2$	E(3) $E(3)$	$E(3)^2$	E(3)	1 1 1	. 1 1	. 1	1	$E(8)^2 = 1 = E(8)^2$	$(3)^2 E(3) E$	$(3)^2 E(3) E(3)$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	$E(3)$ $E(3)^2$ 1 $E(3)$	$E(3)^{2}$ 1	$E(3)$ $E(3)^2$	1 1 $E(3)$	E(3)	$E(3)^2$ $E(3)$	$E(3)^2$ $E(3)^2$	1 1	1 1 1	1 1	1	E(3) 1	E(3)	$E(3)^2$ $E($	(3) $E(3)^2$	$E(3)^2$	1 1 1	. 1 1	. 1	$1 1 \overrightarrow{E}$	$\stackrel{\circ}{3}$) 1 $\stackrel{\circ}{E}$	$E(3) E(3)^2 E(3)^2$	$E(3)$ $E(3)^2$ $E(3)^2$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(3)$ $E(3)^2$ $E(3)^2$ 1	E(3) $E(3)$	$\Xi(3)^2$ 1	$1 E(3)^2 1$	E(3) $E(3)$	E(3)	$E(3)^2$ $E(3)$	$1 E(3)^2 E$	$E(3) 1 E(3)^2$	E(3) 1	$E(3)^{2}$	$\dot{1}$ $E($	(3) $E(3)^2$	1 $E($	$E(3)$ $E(3)^2$	E(3)	1 $E(3)$ $E(3)$	$(s)^2 \mid 1 \qquad E(s)$	$E(3)^2$	$1 E(3)^2$	E(3) $E($	$(3)^2$ 1 E	(3) $E(3)^2$ $E(3)$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(3)^2$ $E(3)$ $E(3)$ 1	$E(3)^2$ $E(3)^2$	E(3) 1	$1 \qquad E(3) \qquad 1$	$E(3)^2$ $E(3)$) $1 E(3)^2$	$E(3)$ $E(3)^2$	1 E(3) E	$E(3)^2 1 E(3)$	$E(3)^2 1$	E(3)	1 E(3)	E(3)	1 $E(\hat{s})$	$E(3)^2$	$E(3)^2$	1 $E(3)^2$ $E(3)^2$	$(3) \mid 1 E(\hat{r})$	E(3)	1 E(3)	$E(3)^2$ $E($	E(3) 1 E	$(3)^2$ $E(3)$ $E(3)^2$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 $E(3)^2$ $E(3)^2$	$E(3)^2$ $E(3)$	E(3) $E(3)$	1 $E(3)^2$ $E(3)$	E(3) $E(3)$	E(3)	1 $E(3)^2$	$1 E(3)^2 E$	$E(3) 1 E(3)^2$	E(3) 1	$E(3)^{2}$	$E(3)^2$ $E($	E(3)	E(3) 1	l Ì	$E(3)^2$	1 $E(3)$ $E(3)$	$(s)^2 \mid 1 \qquad E(s)$	3) $E(3)^2$	$1 E(3)^2 E($	$E(3)^2 = E(3) = E(3)$	E(3) $E(3)$	$E(3)^2$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 $E(3)$ $E(3)$	$E(3)$ $E(3)^2$ $E(3)^2$	$E(3)^2$ $E(3)^2$	1 E(3) E(3)	$E(3)^2 E(3)^2$	$E(3)^2$ 1	1 $E(3)$	1 E(3) E	$E(3)^2 \mid 1 \qquad E(3)$	$E(3)^2$ 1	E(3)	E(3) $E(3)$	$E(3)^2$	$E(3)^2$ 1	1	E(3)	1 $E(3)^2$ $E($	$(3) \mid 1 E(3)$	E(3)	1 E(3) E(3)	$E(3)^2 E(3)^2$	$(3)^2 E(3)^2$	1 $E(3)$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(3)$ $E(3)^2$ $E(3)$ $E(3)^2$	$E(3)^2$	1 $E(3)$	1 E(3) E(3)	$E(3)^2$ 1	E(3) $E(3)$	$E(3)^2$ 1	1 E(3) E	$E(3)^2 \mid 1 \qquad E(3)$	$E(3)^2$ 1	E(3)	$E(3)^2$ $E(3)^2$	$(3)^2$ 1	E(3) $E($	(3) $E(3)^2$	1	1 $E(3)^2$ $E(3)^2$	$(3) \mid 1 E(f)$	E(3)	1 E(3) E(3)		E(3)	
	$E(3)^2$ $E(3)$ $E(3)^2$ $E(3)$	1 $E(3)$	1 $E(3)^2$	1 $E(3)^2$ $E(3)^2$	E(3) 1	$E(3)^2$ $E(3)^2$	E(3) 1	$1 E(3)^2 E$	$E(3)$ 1 $E(3)^2$	E(3) 1	$E(3)^2$	E(3) $E($	3) 1	$E(3)^2$ $E(3)^2$	$E(3)^2$	1	1 $E(3)$ $E(3)$	$(3)^2 1 E(3)$	$E(3)^2$	$1 E(3)^2 E(3)$	E(3) 3)	1 $E(3)^2$ E	$(3)^2 E(3) \qquad 1$
		. ,	• /	. ,	. ,	. , . , , ,		` ` ` `		` ′ _	` ,	. ,			` /	l.	. , , , ,		. ,			. ,	. ,

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(4,6)(5,8)(7,9)]) \cong C2$ $P_3 = Group([(4,6)(7,9)]) \cong C2$

 $P_4 = Group([(5,8)]) \cong C2$

 $P_5 = Group([(4,6)(7,9),(5,8)(7,9)]) \cong C2 \times C2$

 $P_6 = Group([(4,6)(5,8)(7,9),(5,8)(7,9)]) \cong C2 \times C2$

 $P_7 = Group([(5,8),(5,8)(7,9)]) \cong C2 \times C2$ $P_8 = Group([(4,6)(5,8)(7,9),(4,6)(7,9),(5,8)(7,9)]) \cong C2 \times C2 \times C2$

 $N_1 = Group([(4,6)(5,8)(7,9),(1,2,3)(4,5,7)(6,8,9),(1,2,3),(4,6)(5,8),(5,8)(7,9)]) \cong C6 \times A4$ $N_2 = Group([(4,6)(5,8)(7,9),(1,2,3)(4,5,7)(6,8,9),(1,2,3),(4,6)(5,8),(5,8)(7,9)]) \cong C6 \times A4$

 $N_3 = Group([(4,6)(7,9), (7,9), (5,8)(7,9), (4,6)(5,8)(7,9), (1,2,3)]) \cong C6 \times C2 \times C2$ $N_4 = Group([(5,8),(7,9),(5,8)(7,9),(4,6)(5,8)(7,9),(1,2,3)]) \cong C6 \times C2 \times C2$

 $N_5 = Group([(4,6)(5,8)(7,9),(1,2,3)(4,5,7)(6,8,9),(1,2,3),(4,6)(5,8),(5,8)(7,9)]) \cong C6 \times A4$ $N_6 = Group([(5,8)(7,9),(4,6)(5,8)(7,9),(5,8),(1,2,3)(7,9)]) \cong C6 \times C2 \times C2$

 $N_7 = Group([(7,9),(5,8),(4,6)(7,9),(1,2,3)(4,6)(7,9)]) \cong C6 \times C2 \times C2$ $N_8 = Group([(4,6)(5,8)(7,9),(1,2,3)(4,5,7)(6,8,9),(1,2,3),(4,6)(5,8),(5,8)(7,9)]) \cong C6 \times A4$