MANUAL FOR TIDAL CURRENTS ANALYSIS AND PREDICTION

by

M.G.G. Foreman

For additional copies or further information please write to:

Department of Fisheries and Oceans
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.C. V8L 4B2
Canada

MANUAL FOR TIDAL CURRENTS ANALYSIS AND PREDICTION

by

M.G.G. Foreman

Institute of Ocean Sciences
Patricia Bay
Sidney, British Columbia

1978

Revised September 1979
1st reprint September 1982
2nd reprint May 1984
Revised November 1993
Revised July 1996

CONTENTS

	knowledgements							
1	USE OF THE TIDAL CURRENTS ANALYSIS							
	COMPUTER PROGRAM							
	1.1 General Description							
	1.2 Routines Required							
	1.3 Data Input							
	1.5 Program Conversion, Modifications, Storage and Dimension Guidelines							
2	TIDAL CURRENTS ANALYSIS PROGRAM DETAILS						•	10
	2.1 Representation of Tidal Currents							10
	2.2 The Analysis Solution							14
	2.3 Scaling Compensations for Pre-Filtering							16
	2.4 Inference	•	•	•	•	•	•	18
3	USE OF THE TIDAL CURRENTS PREDICTION							
	COMPUTER PROGRAM							22
	3.1 General Description							22
	3.2 Routines Required	•			•	•	•	22
	3.3 Data Input	•			٠	•		22
	3.4 Output							24
	3.5 Program Conversion, Storage and Dimension Guidelines	•	•	•	•	•	•	25
4	TIDAL CURRENTS PREDICTION PROGRAM DETAILS							27
	4.1 Problem Formulation and the Equally Spaced Predictions Method .							27
	4.2 The Maximum and Minimum Current Prediction Method	•			•		•	28
	CONSISTENCY OF THE ANALYSIS AND PREDICTION							
	PROGRAMS AND ACCURACY OF THEIR RESULTS IN RELATION TOTHE METHODS EMPLOYED	•					•	30
հ	REFERENCES							31

7 APPENDICES

7.1 Standard Constituent Input Data for the Tidal Currents Analysis	
Computer Program	32
7.2 Sample Tidal Station Input Data for the Analysis Program	39
7.3 Final Analysis Results Arising from the Input Data of	
Appendices 7.1 and 7.2	44
7.4 Sample Input for the Tidal Currents Prediction Program	45
7.5 Tidal Currents Prediction Results Arising from the Input Data of	
Appendix 7.4	50

ACKNOWLEDGEMENTS

The writer wishes to thank G. Godin for his guidance during the computer program revisions, J. Taylor, A. Douglas, R.F. Henry for their helpful suggestions, and R. Rutka for transferring the manuscript to TEX.

ABSTRACT

This report is intended to serve as a user's manual to G. Godin's tidal currents analysis and prediction computer programs. These programs have been revised along the lines suggested by Godin and are consistent in their methodology and constituent information with the similarly revised tidal heights package. In addition to describing input and output of these programs, the report gives an outline of the methods used, a full presentation of which can be found in Godin (1972) and Foreman (1977).

Users who wish to receive updates of these programs and manual should send their names, addresses, and type of computer used, to the author.

1 USE OF THE TIDAL CURRENTS ANALYSIS COMPUTER PROGRAM

1.1 General Description

This program analyses the hourly current meter data for a given period of time. Current ellipse parameters and Greenwich phase lags are calculated via a least squares fit method coupled with nodal modulation for only those constituents that can be resolved over the length of record. Unless specified otherwise, a standard data package of 69 constituents will be considered for inclusion in the analysis. However, up to 77 additional shallow water constituents can be requested. If the record length is such that certain important constituents are not included directly in the analysis, provision is made for inference of the current ellipse parameters of these constituents from others. A suitable compensation for the smoothing effect that moving average filters may have had on the data prior to input to this program can be made, and a synthesis of hourly tidal current values based on the analysis results and in the same units and format as the input, can be obtained during the same run. Gaps within the tidal record are permitted.

2.1 Routines Required

(8) **GDAY**

(1)	MAIN	 reads in some of data, controls most of the output and calls other routines.
(2)	INPUT	 reads in the hourly current data for the desired time period and checks for errors.
(3)	UCON	 chooses the constituents to be included in the analysis via the Rayleigh criterion.
(4)	SCFIT2	 finds the least squares fit to an equally spaced time series using sines and cosines of specified frequencies as fitting functions.
(5)	VUF	 reads required information and calculates the nodal corrections for all constituents.
(6)	INFER	 reads required information and calculates the current ellipse and phase parameters of inferred constituents, as well as

(7) CHLSKY solves the symmetric positive definite matrix equation resulting

from a linear least squares fit.

any given date and vice versa.

adjusting those of the constituent used for the inference.

..... returns the consecutive day number from a specific origin for

- (9) **SCLUP** scales up the least squares fit results to compensate for pre-filtering.
- (10) **OUTPUT** writes the hourly current data that has been constructed from analysis results, onto storage files.
- (11) **ASTR** calculates ephermides for the sun and moon.

1.3 Data Input

For a computer run of the tidal currents analysis program, four files or devices are used for data input. File reference number 8 contains the tidal constituent information, file reference number 4 contains tidal station and analysis type details, and file reference numbers 10 and 11 respectively, contain the hourly north/south and east/west current components. A listing of the standard constituent information for file reference number 8 and a sample set of input for numbers 4, 10 and 11 are given in Appendices 7.1 and 7.2 respectively.

File reference number 8 expects four types of data:

(i) One card each for all possible constituents, NAME, to be included in the analysis along with their frequencies, FREQ, in cycles/h and the constituent, KMPR, with which they should be compared under the Rayleigh criterion. The format used is (4X,A5,3X,F13.10,4X,A5). Unless NAME is specifically designated on logical unit 4 for inclusion, a blank data field for KMPR results in the constituent not being included in the analysis.

A blank card terminates this data type.

- (ii) Two cards specifying values for the astronomical arguments SO, HO, PO, ENPO, PPO, DS, DH, DP, DNP, DPP in the format (5F13.10).
 - SO = mean longitude of the moon (cycles) at the reference time origin;
 - HO = mean longitude of the sun (cycles) at the reference time origin;
 - PO = mean longitude of the lunar perigee (cycles) at the reference time origin;
 - ENPO = negative of the mean longitude of the ascending node (cycles) at the reference time origin;
 - PPO = mean longitude of the solar perigee (perihelion) at the reference time origin.

DS,DH,DP,DNP,DPP are their respective rates of change over a 365-day period at the reference time origin.

Although these argument values are not used by the program that was revised in October 1992, in order to maintain consistency with earlier programs, they are still required as input. Polynomial approximations are now employed to more accurately evaluate the astronomical arguments and their rates of change.

(iii) At least one card for all the main tidal constituents specifying their Doodson numbers and phase shift along with as many cards as are necessary for the satellite constituents. The first card for each such constituent is in the format (6X,A5,1X,6I3,F5.2,I4) and contains the following information:

KON = constituent name;

II, JJ, KK, LL, MM, NN = the six Doodson numbers for KON;

SEMI = phase correction for KON;

NJ = number of satellite constituents.

A blank card terminates this data type.

If NJ>O, information on the satellite constituents follows, three satellites per card, in the format (11X,3(3I3,F4.2,F7.4,1X,I1,1X)). For each satellite the values read are:

LDEL, MDEL, NDEL = the last three Doodson numbers of the main constituent subtracted from the last three Doodson numbers of the satellite constituent;

PH = phase correction of the satellite constituent relative to the main constituents;

EE = amplitude ratio of the satellite tidal potential to that of the main constituent;

IR = 1 if the amplitude ratio has to be multiplied by the latitude correction factor for diurnal constituents,

= 2 if the amplitude ratio has to be multiplied by the latitude correction factor for semidiurnal constituents,

= otherwise if no correction is required to the amplitude ratio.

(iv) One card specifying each of the shallow water constituents and the main constituents from which they are derived. The format is (6X,A5,I1,2X,4(F5.2,A5,5X)) and the respective values read are:

KON = name of the shallow water constituent:

NJ = number of main constituents from which it is derived;

COEF, KONCO = combination number and name of these main constituents.

The end of these shallow water constituents is denoted by a blank card.

File reference number 4 contains six types of data:

(i) One card for the variables, RAYOPT, OBSFAC, ICHK, INDPR, NSTRP, in the format (F5.2, F10.7, 315.

RAYOPT = Rayleigh criterion constant value if different from 1.0;

OBSFAC = the scaling factor which will multiply the current observations in order to produce the desired units for the ellipse major and minor semi-axes (e.g. if the hourly observations are in mm/s and the final units are to be in ft/sec, then this variable would be set to 0.0032808);

ICHK = 0 if the hourly input data is to be checked for format errors,

= otherwise if this checking to be waived;

INDPR = 1 if hourly current component predictions based on the analysis results are to be calculated and written onto file reference numbers 12 and 13. If there is inference, this parameter value will also give the rms residual errors after the inference adjustments,

= 0 if no such predictions are desired;

NSTRP = number of successive moving average filters that have been applied to the original current data.

If NSTRP>0, then TIMINT and (LSTRP(I), I=1, NSTRP) will be read on a following card, in the format (F10.5,10I5), and suitable amplitude corrections will be applied to compensate for the smoothing effect of these filters.

TIMINT = sampling interval, in minutes, of the original unfiltered record; LSTRP(J), J=1, NSTRP = number of consecutive observations used in computing each of the NSTRP moving average filters.

(ii) One card for each possible inference pair. The format is (2(4X,A5,F13.10),4F10.3) and the respective values read are as follows:

KONAN & SIGAN = name and frequency of the analysed constituent to be used for the inference;

KONIN & SIGIN = name and frequency of the inferred constituent;

RPL & RMIN = respective ratios of KONIN to KONAN, for the positive and negative current amplitude components. The positive amplitude component is 0.5* (major semi-axis length plus minor semi-axis length) and the negative amplitude component is 0.5* (major semi-axis length minus minor semi-axis length).

ZETAP & ZETAM = respective positive and negative Greenwich phases for KONAN minus those for KONIN.

This inference information is terminated by a blank card.

- (iii) One card for each shallow water constituent, other than those in the standard 69 constituent data package, to be considered for inclusion in the analysis. The Rayleigh comparison constituent is also required and the additional shallow water constituent must be found in data type (i) of file reference number 8, but have a blank data field where the Rayleigh comparison constituent is expected. The format is (6X,A5,4X,A5) and a blank card is required to terminate data of this type.
- (iv) One card in the format (2X,10I2) specifying the following information on the period of the analysis:

IHHA, IDDA, IMMA, IYYA, ICCA = hour, day, month, year and century of the beginning of the analysis (measured in time ITZONE of input data (v)); IHHB, IDDB, IMMB, IYYB, ICCB = hour, day, month, year and century of the end of the

analysis period.

Zero values for ICCA or ICCB are reset to 19.

(v) One card in the format (5X,I4,1X,3A6,A4,A3,1X,2I2,I3,I2,) containing the following information on the tidal station:

KSTN = tidal station number;

(NA(J), J=1,4) = tidal station name (22 characters maximum length);

ITZONE = time zone of the hourly observations;

LAD, LAM = station latitude in degrees and minutes;

LOD, LOM = station longitude in degrees and minutes.

If no station latitude is specified, 50°N is assumed for the nodal modulation calculations.

File reference numbers 10 and 11 respectively, contain the north/south and east/west hourly current components. Their input formats are identical and they are read individually via subroutine **INPUT**. For convenience, this format has been made similar to that employed by the tidal heights analysis program. However, if an alternative method is preferable, subroutine **INPUT** and its reference calls may simply be replaced.

The hourly height data cards for each of the current components contain the following information in the format (I1,1X,I5,7X,3I2,12A5).

KOLI = 1 or 2 indicates whether this specific card is the first or second one for that day.

otherwise indicates a non-data card which is ignored;

JSTN = tidal station number;

ID, IM, IY = day, month and year of the heights on this card;

(KARD(J), J=1,12) = hourly observations in integer form. The final constituent major

and minor semi-axis lengths are in units OBSFAC times those of the hourly observations. Missing values should be specified as a blank

field or 99999.

When KOLI=1, the first hourly observation on the data card is assumed to be at 0100 h and when KOLI=2, it is assumed to be at 1300 h. Since all Greenwich phase angles are relative to the time zone in which the hourly observations are specified, in order to avoid possible confusion when comparing phases for tidal stations in different zones, it is recommended that observations be recorded in Greenwich mean time.

The hourly observation data cards need not begin and end so as to include exactly the analysis period. Subroutine **INPUT** ignores data outside this range.

1.4 Output

Four file reference numbers are used for the output of results from the tidal currents analysis program. File 6 is the line printer; 2 is a file that can be used for computer storage of the results, and 12 and 13 respectively, contain the north/south and east/west hourly current values constructed from the analysis results. Files 6 and 2 are required by all program runs, whereas the use of 12 and 13 is controlled by the input variable INDRP.

If no inference has been performed, the program will produce two pages of results on the line printer. The first of these gives the tidal station name, number and geographic coordinates; the total number of possible hourly observations in the analysis period and the total number of hourly observations, excluding gaps, in the analysis period; the starting, middle and end points of the analysis period; the sampling interval of the original data and the filters applied, or an acknowledgement that the original data is assumed to be unfiltered; and the Rayleigh criterion parameter. It also lists the constituents included in the least squares fit; their frequencies in cycles/h (although eight decimal places are given, depending on computer accuracy, less than this number may be significant); the cosine and sine coefficient values for the X (east/west) and Y (north/south) current components, along with their respective standard deviation estimates, all measured in units OBSFAC times those for the hourly observations; and for each of the X and

Y components, the average and standard deviation of the hourly observations, the rms residual error and the matrix condition number.

The second page repeats the tidal station and analysis period information and specifies the time zone of the Greenwich phases, and if an inference, and/or scaling compensation for pre-filtering, have/has been done. It then follows with the list of constituents included in the analysis, their frequencies and their ellipse parameters: the major and minor semi-axis lengths (measured in the same units as the cosine and sine coefficients), the angle of inclination (measured in degrees counterclockwise from east) and the Greenwich phase angles (degrees) for the current vector and its positively and negatively rotating components.

If inference has been performed in the analysis, then a third page of output is produced which, except for the addition of the inferred constituents and adjustments to those constituents used for the inference(s), is essentially the same as the second page. If the hourly current values based on the analysis results are requested, this page also gives the rms residual errors after the inference adjustments have been made.

Apart from the omission of some titles, the same information as the second (and third) page(s) of the line printer is repeated on file number 2. The list of constituent names, major and minor semi-axis lengths, angle of inclination and the three Greenwich phase lags begins on line 9 of this file, and is in the correct format for input to the tidal current prediction program, namely (4X,A5,13X,2F8.3,2F7.1).

The north/south and east/west hourly currents constructed from the analysis results, are written in the same format expected by subroutine **INPUT**. Values are specified only for the analysis period, including those intervals where there were gaps in the original record, and are in the same measurement units and scaling as the original data.

Appendix 7.3 lists the final page of line printer output resulting from the input variables of Appendix 7.2.

1.5 Program Conversion, Modifications, Storage and Dimension Guidelines

The tidal currents analysis source program and constituent data package described in this manual have been tested on various mainframe, PC and workstation computers at the Institute of Ocean Sciences, Patricia Bay. Although as much of the program as possible was written in basic FORTRAN, some changes may be required before the program and data package can be used on other installations. For example,

(i) check that the intrinsic function INT, used in subroutine **OUTPUT**, has the following definition for your installation:

INT(X) = SIGN(X)*N where N is the largest integer less than or equal to ABS(X).

Please write or call the author if any problems are encountered.

The program in its present form requires approximately 72,000 bytes for the storage of its instructions and arrays. A large part of this is due to X,Y,XP and YP, the arrays of size 9000 each that store the hourly current observations and predictions and AS, the array of size 15,000 resulting from the least squares fit for constituent component amplitudes and phases. If memory requirements are restrictive on a particular installation, array storage can be cut by reducing the dimension of X and Y in the main program to whatever is required for the proposed analysis period, by either similarly reducing XP and YP or, if there are no predictions,

setting their dimension to 2 and by reducing the size of AS in accordance with the number of constituents to be included in the least squares fit.

If additions are made to the standard constituent data package, the dimensions of several arrays may have to be altered. In the event of these or other changes, restrictions on the minimum dimension of all arrays are now given.

Let

- MTOT be the total number of possible constituents contained in the data package (presently 146),
 - M be the number of constituents considered for inclusion in the analysis (presently 69 plus the number of shallow water constituents specifically designated for inclusion,
- MCON be the number of main constituents in the standard data package (at present 45),
- MSAT be the sum of the total number of satellites for these main constituents and the number of main constituents with no satellites (presently 162 plus 8 for the version of the constituent data package, containing no third-order satellites for both N_2 and L_2);
- MSHAL be the sum for all shallow water constituents, of the number of main constituents from which each is derived (at present 251).

Then in the main program, arrays NAME, FREQ and KMPR should have minimum dimension M+1; arrays NAMEU, FU, CX, SX, CY, SY, ERCX, ERSX, ERCY, ERSY, AP, AM, EPSP and EPSM should have minimum dimension MU; arrays X, Y, XP and YP should be large enough to contain the hourly current observations (including gaps) and predictions in the proposed analysis period (they are at present set for a maximum of 375 days); array LSTRP should be at least as large as the number of successive moving average filters that were applied to the original current record (at present this is set to 10) and double precision array NA should be large enough to hold the number of characters in the tidal station name (at present 22 characters are expected and the array dimension is 4).

In subroutines **SCLUP** and **UCON**, all arrays are passed through the argument list from the main program and thus need only be dimensioned 2.

In subroutine GDAY, arrays NDP and NDM should have minimum dimension 12.

In subroutine SCFIT2, arrays X,XP,F,C,S,ERC and ERS are passed in the argument list from the main program and so need only be dimensioned 2; array A should have minimum dimension ($(2MU)^2 + 2MU/2$); arrays CW,SW,RHSC and RHSS should have minimum dimension MU and array RHS should have minimum dimension 2MU. AC and AS should each have minimum dimension ($(2MU)^2 + 2MU/2$) and care should be taken that through their equivalence relationships, neither AC and AS, nor RHSC and RHSS overlap.

In subroutine CHLSKY, because arrays A and F are passed in the argument list from SCFIT2, they need only have dimension 2.

In subroutine VUF, arrays KON and NJ should have minimum dimension M+1; arrays VU and F should have minimum dimension M; arrays II, JJ, KK, LL, MM, NN and SEMI should have minimum dimension MCON+1; arrays EE, LDEL, MDEL, NDEL, IR and PH should have minimum dimension MSAT and arrays KONCO and CDEF should have minimum dimension MSHAL+4.

In subroutine INFER, array KON is passed in the argument list from the main program and so need only be dimensioned 2 and arrays KONAN, SIGAN, KONIN, SIGIN, RPL, RMIN, ZETAP and

ZETAM can at present accommodate a maximum of nine inferred constituents.

In subroutine INPUT, array Z is passed in the argument list from the main program and so need only be dimensioned 2 and arrays KARD and IHT should have a minimum dimension of 12.

In subroutine **OUTPUT**, arrays XP and YP are passed in the argument list from the main program and so need only be dimensioned 2; array MONTH should have minimum dimension 12 and arrays ICEW and ICNS should have minimum dimension 24.

2 TIDAL CURRENTS ANALYSIS PROGRAM DETAILS

2.1 Representation of Tidal Currents

The following presentation is an amalgamation of those found in Godin (1972, 1976), the unpublished notes of J. Taylor on Godin's method and the associated computer program, and Henry and Foreman (1977).

It is customary in tidal observations to measure the vertical displacement or "elevation" of the water surface and the horizontal velocity or "current" at a specified depth. The oscillatory portions of these quantities which can be ascribed to astronomical origins will be referred to as tidal heights and tidal currents¹ respectively.

The decomposition of current observations into north/south and east/west components (where the northern and eastern directions are positive), as is required by this program, is a traditional convenience lending itself to complex variable analysis. The choice of another set of rectangular coordinates would be equally justifiable as long as the positive imaginary axis, Y, is 90° counterclockwise from the positive real axis, X. This condition is satisfied in our case by setting the north/south components as the imaginary parts and the east/west components as the real parts, of a complex signal, Z(t).

Assuming that each of the current components is comprised of an aperiodic constituent and tidal constituents occurring at the frequencies, σ_j , (cycles/h) for j = 1, ..., M, then the complex signal Z(t) can be expressed as

$$Z(t) = X_0(t) + \sum_{j=1}^{M} X_j \cos 2\pi (\sigma_j t - \phi_j) + \left[Y_0(t) + \sum_{j=1}^{M} Y_j \cos 2\pi (\sigma_j t - \theta_j) \right].$$

Setting $CX_j=X_j\cos 2\pi\phi_j$, $SX_j=X_j\sin 2\pi\phi_j$, $CY_j=Y_j\cos 2\pi\theta_j$ and $SY_j=Y_j\sin 2\pi\theta_j$, this signal can be re-expressed initially as

$$\begin{split} Z(t) &= X_0 + \sum_{j=1}^M \left(C X_j \cos 2\pi \sigma_j t + S X_j \sin 2\pi \sigma_j t \right) \\ &+ i \left[Y_0(t) + \sum_{j=1}^M \left(C Y_j \cos 2\pi \sigma_j t + S Y_j \sin 2\pi \sigma_j t \right) \right] \end{split}$$

and after some algebra as

$$Z(t) = X_0(t) + iY_0(t) + \frac{1}{2} \sum_{j=1}^{M} \{ [(CX_j + SY_j) + i(CY_j - SX_j)] \exp(2\pi i \sigma_j t) + i[(CX_j - SY_j) + i(CY_j + SX_j)] \exp(-2\pi i \sigma_j t) \}.$$

Godin (1972, p. 145) used "tidal stream" to indicate what is here termed "tidal current".

Dropping the constituent numbering suffix, j, and setting

$$a^{+} = \left[\left(\frac{CX + SY}{2} \right)^{2} + \left(\frac{CY - SX}{2} \right)^{2} \right]^{1/2},$$

$$a^{-} = \left[\left(\frac{CX - SY}{2} \right)^{2} + \left(\frac{CY + SX}{2} \right)^{2} \right]^{1/2},$$

$$\varepsilon^{+} = \arctan\left(\frac{CY - SX}{CX + SY} \right)$$

and

$$\varepsilon^- = \arctan\left(\frac{CY + SX}{CX - SY}\right),$$

the tidal currents contribution for any constituent is then seen to be

$$Z(t) = Z^{+}(t) + Z^{-}(t) = a^{+} \exp(i\varepsilon^{+} + 2\pi i\sigma t) + a^{-} \exp(i\varepsilon^{-} - 2\pi i\sigma t)$$

$$= \exp\left[i\left(\frac{\varepsilon^{+} + \varepsilon^{-}}{2}\right)\right] \left\{(a^{+} + a^{-})\cos\left[\left(\frac{\varepsilon^{+} - \varepsilon^{-}}{2}\right) + 2\pi\sigma t\right]\right\}$$

$$+i(a^{+} - a^{-})\sin\left[\left(\frac{\varepsilon^{+} - \varepsilon^{-}}{2}\right) + 2\pi\sigma t\right] \right\}.$$

Examination of the first of these expressions reveals that this contribution consists of two vectors, $Z^+(t)$ and $Z^-(t)$, each rotating at the angular speed of σ cycles/h. The former vector has length, a^+ , rotates counterclockwise and is at ε^+ radians counterclockwise from the positive X (east/west) axis at time, t=0, while the latter has length, a^- , rotates clockwise and is at ε^- radians counterclockwise from the positive X axis at t=0 (see Figures 1a and 1b). The net rotational effect is that the composite vector, Z(t), moves counterclockwise if $a^+ > a^-$, clockwise if $a^+ < a^-$, and linearly if $a^+ = a^-$. From the second expression, it is seen that over a time period of $1/\sigma$ h, the path of the composite vector traces out an ellipse (or a line segment, in the degenerate case when $a^+ = a^-$) whose respective major and minor semi-axis lengths are $a^+ + a^-$ and $a^+ - a^-$ respectively and whose angle of inclination from the positive X axis is $(\varepsilon^+ + \varepsilon^-)/2$ radians.

As an aid to understanding the development and meaning of Greenwich phases for tidal currents, it is convenient to extend the concept of fictitious stars sometimes used in tidal elevation theory. Instead of regarding each tidal constituent as the result of a particular component in the tidal potential, we suppose that each pair of rotating vectors, Z^+ and Z^- , is attributable to two fictitious stars which move counterclockwise and clockwise respectively, at the same speed as the constituent in question, around the periphery of a "celestial disk" tangential to the earth at the measurement site. We suppose also that at time, t_0 , the angular position of the counterclockwise rotating star, S^+ , the star responsible for Z^+ , is $V(t_0)$ radians counterclockwise from the positive X (east) axis, where $V(t_0)$ is the same astronomical argument, relative to Greenwich as occurs for this constituent in the tidal potential (Foreman, 1977, Section 2.3.1). Similarly, at the same time, the angular position of the clockwise rotating star, S^- , is assumed to be $V(t_0)$ radians clockwise from the positive X axis (see Figure 1c). As a consequence, the constant phase angles, g^+ and g^- , by which S^+ and S^- lead (or lag) the respective vectors, Z^+ and Z^- , can be termed Greenwich phases and are defined by

$$g^{+} = V(t_0) - \varepsilon^{+},$$

$$g^{-} = V(t_0) + \varepsilon^{-}.$$

Figure 1 Delineation of current ellipse notation. (a) Dimensions of a constituent ellipse. (b) Configuration at t = 0. (c) Fictitious stars related to the east/west axis. (d) Fictitious stars related to the major semi-axis. (Redrawn from C. Wallace)

As was previously mentioned, provided that the complex variable condition is satisfied, the choice of a rectangular coordinate system for the original current measurements is arbitrary. Since all angles thus far have been specified with respect to the east/west axis, there is a corresponding arbitrariness in the phases of Z^+ and Z^- . One aim of Godin's analysis is to obtain invariant phases for these vectors by referring angular measurements to a major semi-axis of the constituent ellipse. In order to do this, he employs the construction shown in Figure 1d in which the major semi-axis OA of the constituent ellipse is used as the reference axis.

In particular, two different fictitious stars, Σ^+ and Σ^- , are now visualized, similar to S^+ and S^- respectively, except that their angular positions at t=0 are $V(t_0)$ radians from OA in the appropriate directions. This approach has the advantage that the phase of both rotating vectors relative to their respective stars can now be expressed as a single Greenwich phase angle, g, where

$$g = V(t_0) - \left(\frac{\varepsilon^+ - \varepsilon^-}{2}\right).$$

Since, from the definitions of the fictitious stars, S^+ , S^- , Σ^+ and Σ^- , the astronomical argument, $V(t_0)$, is identical in all the Greenwich phase expressions, g can be calculated terms of g^+ and g^- as

$$g = \frac{g^+ + g^-}{2}$$
.

Interpreted physically, g can be viewed as the interval by which the instant of maximum current (when Z^+ and Z^- coincide along OA) lags the simultaneous transit of the fictitious stars, Σ^+ and Σ^- , at OA.

Unfortunately, the factor 2 in the denominators of the expressions for g and θ can introduce an ambiguity of 180° (= π radians) since any of the angles ε^{+} , ε^{-} , g^{+} or g^{-} can be altered by 360° without changing the representation of the original current. In the present revised computer program version, this ambiguity is avoided by imposing the condition that the northern major semi-axis of the constituent always be used as the reference axis. This condition is expressed through the formula²

$$\theta = \frac{\varepsilon^+ + \varepsilon^-}{2} \operatorname{mod}(180^\circ),$$

and is illustrated in Figure 2 with the two basically different configurations that can occur. It is equivalent (see Henry and Foreman, 1977, Appendix 8) to the condition imposed in earlier programs, namely

$$0 \le g^- - g^+ < 360^\circ,$$

from which θ was calculated as $(g^- - g^+)/2$ and g as $(g^- + g^+)/2$.

Figures 3 and 4 show separately, the angular relationships for the two rotating vectors, Z^+ and Z^- , in cases (a) and (b) respectively, of Figure 2. The following formulae for g^+ and g^- , and the first one specified for g, are used in the present computer program.

$$\begin{split} g^{+} &= V(t_{0}) - \varepsilon^{+} \operatorname{mod}(360^{\circ}), \\ g^{-} &= V(t_{0}) + \varepsilon^{-} \operatorname{mod}(360^{\circ}), \\ g &= g^{+} + \theta \operatorname{mod}(360^{\circ}) = V(t_{0}) - \varepsilon^{+} + \theta \operatorname{mod}(360^{\circ}), \\ &= g^{-} - \theta \operatorname{mod}(360^{\circ}) = V(t_{0}) + \varepsilon^{-} - \theta \operatorname{mod}(360^{\circ}). \end{split}$$

The appearance of θ in the final expressions for g indicates that if the southern major semi-axis, OB, should be chosen as reference axis, the consequent change of 180° in θ produces a similar change in g. This, for example, may occur when comparing the phases, obtained via two analyses at the same tidal station but over different time periods. This might occur, for example, with a constituent such as K_1 in Appendix 7.3 whose angle of inclination is near 0° in one case and near 180° in the other. As Godin notes (1976, p. 5) though, such a change of

The notation $\phi \mod(N^{\circ})$ indicates that a suitable integer multiple of N is added to or subtracted from ϕ to bring it into the range $0 \le \phi < N^{\circ}$.

Figure 2 Definition of semi-axis used as reference axis. (Redrawn from C. Wallace)

the major semi-axis is only in the representation of the constituent ellipse. The ellipse itself is not affected.

From Figures 3 and 4, it can be seen that the maximum current (in the sense that Z^+ and Z^- coincide on OA), occurs at times

$$t = \frac{g - V(t_0) + n \cdot 360^{\circ}}{\sigma}, \qquad n = \dots, -1, 0, 1, \dots$$

relative to $t = t_0$.

2.2 The Analysis Solution

Many of the techniques used in the analysis of tidal currents are the same as those for tidal heights. Rather than repeating here a discussion on topics such as the standard constituent data package (listed in Appendix 7.1), the formation and solution of the least squares matrices, and the calculations of astronomical and nodal modulation variables, we refer you to the *Manual for Tidal Heights Analysis and Prediction* (Foreman, 1977) for details. Instead, a brief description will be given of the steps followed by this analysis program and references to where method or calculation details can be found. In order of operation, these steps are as follows:

- 1. Reading all the input parameters, the tidal constituent data package, and the north/south and east/west current components for the proposed analysis period.
- 2. Calculation of the middle hour, t_m , of the analysis period.
- 3. Calculation at time, t_m , of the nodal modulation correction factors, f and u, and the astronomical arguments, V, for all the constituents in the standard data package. Both the data package and the subroutine that calculates these values are identical to those used in the tidal heights analysis program.

Figure 3 Angular relationships when $\varepsilon^+ + \varepsilon^- < 360^\circ$. (Redrawn from C. Wallace)

Figure 4 Angular relationships when $\varepsilon^+ + \varepsilon^- \ge 360^\circ$. (Redrawn from C. Wallace)

- 4. Determination via the Rayleigh criterion, of the constituents to be used in the least squares fits. This criterion and the list of prospective candidates and their comparison constituents are again identical to those of the tidal heights method. Tables showing the order of constituent selection, as a function of analysis period length, and in accordance with the Rayleigh criterion, are given in Foreman (1977, pp. 10-13).
- 5. Construction and solution relative to time, t_m , of the least squares matrices for each of the X (east/west) and Y (north/south) current components. Except for the additional feature of being able to calculate hourly predictions based on the results of the foregoing analysis and to recalculate the rms residual error, the subroutine employed here is identical to the one for tidal heights. Hence those output variables which give details of the fit, such as error estimates, average, standard deviation, matrix condition number and rms residual error, will have been calculated in the same manner. The primary outputs however, are the arrays CX,SX,CY and SY, which are described in Section 2.1 and, if there is to be no inference, the predicted hourly component currents upon request.
- 6. Writing the preceding preliminary results on the line printer.
- 7. If so requested, scaling the CX,SX,CY and SY values to compensate for the application of moving average filters to the current observations prior to submission for analysis. Section 2.3 has details of this calculation.
- 8. Conversion of the preliminary results into polar coordinates, i.e. calculation of the parameters a^+ , a^- , ε^+ and ε^- as described in Section 2.1.
- 9. Inference of the a^+ , a^- , ε^+ and ε^- values for those designated constituents not included in the least squares fit and the adjustment of these values for those constituents used for the inference(s). Section 2.4 has details of this operation.
- 10. Calculation, in accordance with the formulae of Section 2.1 and including nodal modulation correction factors and astronomical arguments, of the following ellipse and Greenwich phase parameters: major and minor semi-axis lengths, angle of inclination, g^+ , g^- and g. Note that when the nodal modulation amplitude and phase corrections are included in these formulae, a^+ , a^- and $V(t_0)$ become $a^+/f(t_0)$, $a^-/f(t_0)$ and $V(t_0) + u(t_0)$ respectively.
- 11. If there has been inference, calculation, upon request, of the hourly predicted component currents based on least squares and inference results. Any scaling that may have been done to compensate for pre-filtering must initially be reversed though, so that the predicted values will have the same scaling as the original input data.
- 12. Writing all final results without (and with) inference on the line printer and permanent storage file and the hourly component predictions, if so requested, on their files.

2.3 Scaling Compensations for Pre-Filtering

If the sampling interval obtained from a current meter record is other than one hour, Godin (1972, p. 149) recommends that the data be filtered and the hourly values extracted before submission to the tidal currents analysis program. Such an operation will eliminate short-period fluctuations that are related to turbulence and of no relevance to tidal analysis. In particular, he suggests that if the original data were sampled at n-minute intervals, and 60/n is integer-valued, say n_0 , then the sequence $(A_{n_0})^2 A_{n_{0+1}}$ moving average be applied if n_0 is an even number, and the sequence $A_{n_0}(A_{n_{0+1}})^2$, if n_0 is odd.

The definition of the moving average filter, A_n , is as follows. Suppose that the original time series of observations is $\{z_k\}$, $k=1,\ldots,m$, where all the observations are equally spaced in time and $m \geq n$. Then the applications of A_n results in replacing the former sequence with $\{z_k'\}$ for $k=1,\ldots,m-n+1$ where

$$z'_{k} = \frac{1}{n} \sum_{i=k}^{k+n-1} z_{i}.$$

Assuming that the kth element of the original sequence was recorded at time $(k-1)\Delta t$, then in the new sequence it will be at time $[k-1+(n-1)/2]\Delta t$. Hence not only has there been a loss of n-1 members from the sequence, but a shift of $(n-1)\Delta t/2$ for the times of corresponding elements. This latter point implies that if n is an even number and the original record included observations on the hour, the filtered record would not have hourly values. Thus, a second A_n filter applied to the results of the first is needed to bring the observation times back into correspondence with those of the original record and so enable the extraction of hourly values. For example, if the original record has $\Delta t = 15$ minutes and the first observation is at 1:00 a.m., then after one pass with an A_4 filter, the first observation would be at 1:22:30 a.m., and after a second pass at 1:45 a.m., Δt still being 15 minutes.

When there is a sequence of three filters, the second one is applied to the results of the first, and the third to the results of the second. In particular, the application of $(A_n)^2 A_{n+1}$ requires at least 3n-1 consecutive observations in the original time series, and results in a loss of 3n-2 observations and a shift in time of $(3n-2)\Delta t/2$.

Unfortunately though, the application of moving average filters will affect the entire spectrum of the observations, not solely the high frequency components that we may wish to remove. The nature of this influence is calculated by Godin (1972, p. 54) and summarized as follows.

Given the sequence of numbers $\{f_k\}$, $k=0,\pm 1,\pm 2,\ldots^3$ and the set of observations $\{z(j\Delta t)\}$, $j=0,\pm 1,\pm 2,\ldots$, then their convolution is defined to be the sequence

$$\{z_f(j\Delta t)\} = \left\{\sum_{k=-\infty}^{\infty} f_k z[(j-k)\Delta t]\right\}.$$

If $F(\sigma) = \sum_{k=-\infty}^{\infty} f_k \exp(-2\pi i k \Delta t \sigma)$ is the spectrum of the sequence $\{f_k\}$, then $Z'(\sigma)$, the spectrum of the convoluted values, is related to $Z(\sigma)$, the spectrum of the original observations, via the equation $Z'(\sigma) = F(\sigma)Z(\sigma)$. Hence, a convolution in time is equivalent to a multiplication in frequency.

Now the moving average filter A_n can be defined in terms of a convolution by assigning the following values to the sequence $\{f_k\}$:

$$f_k = \frac{1}{n}$$
 if $-\frac{n-1}{2} \le k \le \frac{n-1}{2}$,
= 0 otherwise,

where $k = 0, \pm 1, \pm 2, \ldots$ if n is an odd number, and $k = \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$ if n is even and, making use of the identity

$$\sum_{k=n_0}^{n_1} \exp(ikx) = \frac{\sin[(n_1 - n_0 + 1)x/2] \exp[i(n_1 + n_0)x/2]}{\sin(x/2)},$$

 $k = \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \dots$ if the sequence is finite and contains an even number of elements.

its spectrum, $F_n(\sigma)$, is calculated as

$$F_n(\sigma) = \sum_{k=-(n-1)/2}^{(n-1)/2} \frac{1}{n} \exp(-2\pi i k \Delta t \sigma)$$
$$= \frac{\sin(n\pi \Delta t \sigma)}{n \sin(\pi \Delta t \sigma)}.$$

Hence one pass of the moving average filter A_n will have the effect of multiplying the response at frequency, σ , in the original record by $F_n(\sigma)$. Since it follows that the application of three successive moving average filters, $A_n \cdot A_n \cdot A_{n+1}$, results in a net factor of $F_n(\sigma) \cdot F_n(\sigma) \cdot F_{n+1}(\sigma)$, the scaling compensation required to obtain the amplitude response of the original data at frequency σ is $1/[F_n(\sigma) \cdot F_n(\sigma) \cdot F_{n+1}(\sigma)]$.

2.4 Inference

If the length of a specific tidal record is such that certain important constituents will not be included directly in the analysis, provision is made via the input on file reference number 4 to include these constituents indirectly by inferring their major and minor semi-axis lengths and Greenwich phase lags from neighbouring constituents that are included. If suitable amplitude ratios and phase differences can be specified, inference has the effect of significantly reducing any periodic behaviour in the ellipse parameters and phases of the constituent used for the inference. This is due to the removal of interaction from the neighbouring inferred constituent. If it so happens that a constituent specified for inference is included directly in the analysis, the program will ignore the inference calculations.

The amplitude ratios and phase differences required for inference calculations should be obtained empirically from the results of longer analyses of data at the same or surrounding stations. Tidal current values are preferable but tidal heights results may be used as input by setting each of the two amplitude ratios and the two phase differences equal to the respective values obtained from the tidal heights analysis. However, Godin (1972, p. 212) warns that the latter technique may fail in the vicinity of an amphidromic point.

If the results of a previous tidal currents analysis are used for calculating the inference variables, and it is decided that the two phase differences should be set equal, namely to the difference in the g values, care should be taken to ensure that the angles of inclination of the two constituent ellipses are reasonably close. If their difference is about 180° , then one value and its corresponding Greenwich phase, g, should be altered by 180° before calculating the inference phase difference. If this is not done, the subsequent inference adjustments will not have the proper relationship between the constituents, and it may well happen that the rms residual error after inference is higher than before, i.e. inference has not improved the fit.

The actual adjustments are as follows. Assume that the constituent with frequency, σ_2 , is to be inferred from the constituent with frequency, σ_1 , and that the latter's contribution, after conversion of the least squares fit results into polar coordinates (and before nodal modulation), was found to be

$$a_0^+ \exp(\varepsilon_0^+ + 2\pi\sigma_1 t) + a_0^- \exp\left[i(\varepsilon_0^- - 2\pi\sigma_1)\right].$$

Defining the following variables for the constituents with frequencies, σ_1 and σ_2 , respectively:

 $\begin{array}{lll} VU_1, VU_2 &=& \text{the astronomical argument plus nodal modulation phase correction;}\\ g_1^+, g_1^-, g_2^+, g_2^- &=& \text{Greenwich phase lags for the counterclockwise and clockwise rotating component vectors;}\\ a_1^+, a_1^-, a_2^+, a_2^- &=& \text{amplitudes of the counterclockwise and clockwise rotating component vectors after inference, but before nodal modulation;}\\ f_1, f_2 &=& \text{nodal modulation amplitude correction factors;}\\ A_1^+, A_1^-, A_2^+, A_2^- &=& \text{amplitudes of the counterclockwise and clockwise rotating component vectors after both inference and nodal modulation;}\\ \varepsilon_1^+, \varepsilon_1^-, \varepsilon_2^+, \varepsilon_2^- &=& \text{initial phases of the counterclockwise and clockwise rotating component vectors.} \end{array}$

Then upon setting r^+ , r^- , ζ^+ and ζ^- to be the respective variables RPL,RMIN,ZETAP and ZETAM that are read from file reference number 4, the following relationships can be seen:

$$r^{+} = \frac{A_{2}^{+}}{A_{1}^{+}} = \frac{a_{2}^{+} f_{1}}{a_{1}^{+} f_{2}},$$

$$r^{-} = \frac{A_{2}^{-}}{A_{1}^{-}} = \frac{a_{2}^{-} f_{1}}{a_{1}^{-} f_{2}},$$

$$\zeta^{+} = g_{1}^{+} - g_{2}^{+} = VU_{1} - \varepsilon_{1}^{+} - VU_{2} + \varepsilon_{2}^{+},$$

$$\zeta^{-} = g_{1}^{-} - g_{2}^{-} = VU_{1} + \varepsilon_{1}^{-} - VU_{2} + \varepsilon_{2}^{-}.$$

Letting $\Delta = \sigma_2 - \sigma_1$, the objective of inference can be stated as decomposing the signal found at frequency, σ_1 , into

$$\begin{split} a_1^+ \exp(i\varepsilon_1^+ + 2\pi i\sigma_1 t) + a_1^- \exp(i\varepsilon_1^- - 2\pi i\sigma_1 t) + a_2^+ \exp(i\varepsilon_2^+ + 2\pi i\sigma_2 t) + a_2^- \exp(i\varepsilon_2^- - 2\pi i\sigma_2 t) \\ &= \exp(2\pi i\sigma_1 t) \left[a_1^+ \exp(i\varepsilon_1^+) + a_2^+ \exp(i\varepsilon_2^+ + 2\pi i\Delta t) \right] \\ &+ \exp(-2\pi i\sigma_1 t) [a_1^- \exp(i\varepsilon_1^-) + a_2^- \exp(i\varepsilon_2^- - 2\pi i\Delta t)] \\ &= a_1^+ \exp(i\varepsilon_1^+ + 2\pi i\sigma_1 t) \left\{ 1 + r^+ \left(\frac{f_2}{f_1} \right) \exp\left[i(VU_2 - VU_1 + \zeta^+ + 2\pi \Delta t)\right] \right\} \\ &+ a_1^- \exp(i\varepsilon_1^- - 2\pi i\sigma_1 t) \left\{ 1 + r^- \left(\frac{f_2}{f_1} \right) \exp\left[i(VU_1 - VU_2 - \zeta^- - 2\pi \Delta t)\right] \right\}. \end{split}$$

Since the constituent with frequency, σ_2 , was not chosen for inclusion in the least squares analysis, $N \cdot |\Delta| < RAY$, where N is the analysis period length in hours, and RAY is the Rayleigh criteria constant (usually 1.0). Assuming in general that $N \cdot |\Delta|$ is small, good approximations to $\exp\left[i(VU_2 - VU_1 + \zeta^+ + 2\pi\Delta t)\right]$ and $\exp\left[i(VU_1 - VU_2 - \zeta^- - 2\pi\Delta t)\right]$ are their average values over the analysis interval, [-N/2, N/2], namely

$$\frac{\exp\left[i(VU_2 - VU_1 + \zeta^+)\right]\sin(\pi\Delta N)}{\pi\Delta N} \quad \text{and} \quad \frac{\exp\left[i(VU_1 - VU_2 - \zeta^-)\right]\sin(\pi\Delta N)}{\pi\Delta N}$$

respectively.

Setting

$$T^{+} = 1 + \frac{r^{+}(f_{2}/f_{1}) \exp\left[i(VU_{2} - VU_{1} + \zeta^{+})\right] \sin(\pi \Delta N)}{\pi \Delta N}$$

and

$$T^{-} = 1 + \frac{r^{-}(f_2/f_1) \exp[i(VU_1 - VU_2 - \zeta^{-})] \sin(\pi \Delta N)}{\pi \Delta N},$$

the equation relating the tidal signals before and after inference is then

$$a_0^+ \exp(i\varepsilon_0^+ + 2\pi i\sigma_1 t) + a_0^- \exp(i\varepsilon_0^- - 2\pi i\sigma_1 t)$$

= $a_1^+ \exp(i\varepsilon_1^+ + 2\pi i\sigma_1 t)T^+ + a_1^- \exp(i\varepsilon_1^- - 2\pi i\sigma_1 t)T^-.$

Regrouping similar terms in $\sigma_1 t$, this becomes

$$\exp(2\pi i\sigma_1 t) \left[a_0^+ \exp(i\varepsilon_0^+) - a_1^+ \exp(i\varepsilon_1^+) T^+ \right] + \exp(-2\pi i\sigma_1 t) \left[a_0^- \exp(i\varepsilon_0^-) - a_1^- \exp(i\varepsilon_1^-) T^- \right] = 0.$$

Now in order to draw some conclusions from this last equation, let us re-express it in the simpler form

$$\exp(it)(w+ix) + \exp(-it)(y+iz) = 0.$$

Expanding and collecting real and imaginary parts here yields

$$(w+y)\cos(t) + (z-x)\sin(t) = 0$$

and

$$(x + z)\cos(t) + (w - y)\sin(t) = 0.$$

Since these equations must hold for all t, it follows that

$$w + y = z - x = x + z = w - y = 0.$$

Hence

$$w = x = y = z = 0.$$

Therefore, setting

$$a_0^+ \exp(i\varepsilon_0^+) = w_0 + ix_0,$$

$$a_1^+ \exp(i\varepsilon_1^+) = w_1 + ix_1,$$

$$a_0^- \exp(i\varepsilon_0^-) = y_0 + iz_0,$$

$$a_1^- \exp(i\varepsilon_1^-) = y_1 + iz_1,$$

$$T^+ = c + id,$$

$$T^- = q + ih$$

and applying the result of the simplified equation to the last inference equation, gives

$$w_0 - w_1c + x_1d = 0,$$

$$w_0 - w_1d - x_1c = 0,$$

$$y_0 - y_1g + z_1h = 0,$$

$$z_0 - y_1h - z_1g = 0.$$

Solving these simultaneous equations for w_1 , x_1 , y_1 and z_1 yields

$$w_1 = (w_0c + x_0d)/(c^2 + d^2),$$

$$x_1 = (x_0c - w_0d)/(c^2 + d^2),$$

$$y_1 = (y_0g + z_0h)/(g^2 + h^2),$$

$$z_1 = (z_0g - y_0h)/(g^2 + h^2).$$

Reconstructing these results into polar coordinate form then gives the following adjusted values for the constituent used for inference:

$$a_1^+ = \sqrt{w_1^2 + x_1^2},$$

 $\varepsilon_1^+ = \arctan(x_1/w_1),$
 $a_1^- = \sqrt{y_1^2 + z_1^2}$

and

$$\varepsilon_1^- = \arctan(z_1/y_1).$$

And finally, making use of the inference assumptions yields the following values for the inferred constituent:

$$a_2^+ = r^+ a_1^+ (f_2/f_1),$$

 $a_2^- = r^- a_1^- (f_2/f_1),$
 $\varepsilon_2^+ = \zeta^+ + \varepsilon_1^+ + V U_2 - V U_1$

and

$$\varepsilon_2^- = -\zeta^- + \varepsilon_1^- - VU_2 + VU_1.$$

3 USE OF THE TIDAL CURRENTS PREDICTION COMPUTER PROGRAM

3.1 General Description

This program produces tidal current values at a given location for a specified period of time. For each of the tidal constituents to be used in the prediction, the Greenwich phase lag, and the current ellipse major and minor semi-axis lengths and angle of inclination, are required as input. Output can either be the times, magnitudes and directions of all maximum and minimum currents respectively, or equally spaced values expressed in the form of north/south and east/west components, or vector magnitudes and directions.

3.2 Routines Required

- (1) **MAIN** reads in tidal station and time period information, ellipse parameters and Greenwich phases of constituents to be used in the prediction and calculates the desired tidal currents.
- (2) **SLOPE** calculates for a specific time, the current vector north/south and east/west components, and the derivative of the magnitude squared.
- (3) **ASTRO**..... reads the standard constituent data package and calculates the frequencies, astronomical arguments, and nodal corrections for all constituents.
- (4) **PUT** controls the output for maximum-minimum predictions.
- (5) **CPUT** controls the output for equally spaced predictions.
- (6) **GDAY** returns the consecutive day number from a specific origin for any given date and vice versa.
- (11) **ASTR** calculates ephermides for the sun and moon.

3.3 Data Input

All input data required by the tidal currents prediction program are read from file reference number 8. A sample set is given in Appendix 7.4. Although data types (i), (ii) and (iii) are identical to types (ii), (iii) and (iv) expected on file reference number 8 by the analysis program, for completeness they are repeated here.

- (i) Two cards specifying values for the astronomical arguments SO, HO, PO, ENPO, PPO, DS, DH, DP, DNP, DPP in the format (5F13.10).
 - SO = mean longitude of the moon (cycles) at the reference time origin;
 - HO = mean longitude of the sun (cycles) at the reference time origin;

P0 = mean longitude of the lunar perigee (cycles) at the reference time origin;

ENPO = negative of the mean longitude of the ascending node (cycles) at the reference time origin;

PPO = mean longitude of the solar perigee (perihelion) at the reference time origin.

DS,DH,DP,DNP,DPP are their respective rates of change over a 365-day period at the reference time origin.

Although these argument values are not used by the program that was revised in October 1992, in order to maintain consistency with earlier programs, they are still required as input. Polynomial approximations are now employed to more accurately evaluate the astronomical arguments and their rates of change.

(ii) At least one card for all the main tidal constituents specifying their Doodson numbers and phase shift along with as many cards as are necessary for the satellite constituents. The first card for each such constituent is in the format (6X,A5,1X,6I3,F5.2,I4) and contains the following information:

```
KON = constituent name;
II,JJ,KK,LL,MM,NN = the six Doodson numbers for KON;
SEMI = phase correction for KON;
NJ = number of satellite constituents.
```

A blank card terminates this data.

If NJ>0, information on the satellite constituents follows, three satellites per card, in the format (11X,3(3I3,F4.2,F7.4,1X,I1,1X)). For each satellite the values read are:

LDEL, MDEL, NDEL = the last three Doodson numbers of the main constituent subtracted from the last three Doodson numbers of the satellite constituents;

PH = phase correction of the satellite constituent relative to the phase of the main constituent;

EE = amplitude ratio of the satellite tidal potential to that of the main constituent:

IR = 1 if the amplitude ratio has to be multiplied by the latitude correction factor for diurnal constituents,

= 2 if the amplitude ratio has to be multiplied by the latitude correction factor for semidiurnal constituents,

= otherwise if no correction is required to the amplitude ratio.

(iii) One card specifying each of the shallow water constituents and the main constituents from which they are derived. The format is (6X,A5,I1,2X,4(F5.2,A5,5X)) and the respective values read are:

KON = name of the shallow water constituent;

NJ = number of main constituents from which it is derived;

COEF, KONCO = combination number and name of these main constituents.

The end of these shallow water constituents is denoted by a blank card.

(iv) One card with the tidal station information ISTN, (NA(J), J=1,4), ITZONE, LAD, LAM, LOD, LOM in the format (5X, I4, 1X, 3A6, A4, A3, 1X, I2, 1X, I2, 2X, I3, 1X, I2).

```
ISTN = station number;
(NA(J),J=1,4) = station name;
ITZONE = time zone reference for the "Greenwich" phases;
LAD,LAM = station latitude in degrees and minutes;
LOD,LOM = station longitude in degrees and minutes.
```

- (v) One card for each constituent to be included in the prediction, with the constituent name (KON), major and minor semi-axis lengths (EMAJ and EMIN), ellipse angle of inclination (EINC), and Greenwich phase lag (G) in the format (4X,A5,13X,2F8.3,2F7.1). (This format is compatible with the analysis program results produced on output device 2.) The units of the predicted currents will be the same as those of the major and minor semi-axis lengths; the angle of inclination should be measured in degrees counterclockwise from east, and the phase lag should be measured in degrees relative to the time zone (ITZONE) for which the prediction is desired.
- (vi) One card containing the following information on the period and type of prediction desired. The format is (3I3,1X,3I3,1X,A4,2X,A4,F9.5,2X,2I3).

Equally spaced predictions begin at DT hours on the first day and extend to 2400 h (assuming 24 is a multiple of DT) of the last day. When ITYPE='EXTR', Godin and Taylor (1973) recommend using the following values for DT: 1.5 h for a semidiurnal tide, 3.0 h for a diurnal tide and 0.25 h for a mixed tide.

Type (vi) data may be repeated any number of times. One blank card following a type (vi) record will return the program to type (iv) input while two blank cards will end the program execution.

3.4 Output

Up to four file reference numbers are required for the output of results in the tidal currents prediction program. Device number 6 is the line printer, 10 and 11 are data files for the storage of equally spaced predictions and 12 is a data file for the storage of maximum and minimum predictions. All information on files 10, 11 and 12 is written on the line printer in the same

format. However, the line printer also records the station name and location, along with the ellipse parameters and phase lags of the constituents used in the prediction. Appendix 7.5 lists the output on files 10, 11 and 12 resulting from the input of Appendix 7.4.

When maximum and minimum current values are desired, the station number, date and a series of up to four current magnitudes along with their directions and occurrence times, are listed on each record. Two and sometimes three records are required per day and the format of these variables on file reference number 12 is (1X,14,13,212,4(15,F6.2,F6.1)).

When equally spaced currents are requested in component form, file 10 receives the north/south values and 11 the east/west. If the currents are requested in vector form, the magnitudes are on 10 and the directions on 11. In all cases, eight values are listed per record preceded by the station number, the time, day, month and year of the first value and followed by the time increment between values. On both devices, the format for these variables is (1X,I4,F6.2,I3,2I2,8F7.2,F6.2). On the line printer, the component (or vector) values are not listed separately, i.e. one record of north/south components (or current magnitudes) is followed directly by the corresponding east/west values (or current directions).

3.5 Program Conversion, Storage and Dimension Guidelines

The source program and constituent data package described in this manual have been tested on various mainframe, PC and workstation computers at the Institute of Ocean Sciences, Patricia Bay. Although as much of the program as possible was written in basic FORTRAN, some changes may be required before the program and data package can be used on other installations. Please write or call the author if any problems are encountered.

The program in its present form requires approximately 37,000 bytes for the storage of its instructions and arrays. As with the analysis program, changing the number or type of constituents in the standard data package may require alteration to the dimensions of some arrays. Restrictions on the minimum dimension of all arrays are now given.

Let

- MTAB be the total number of constituents contained in the data package (at present 146); M be the number of constituents to be included in the prediction;
- MCON be the number of main constituents in the standard data package (at present 45);
- MSAT be the sum of the total number of satellites for these main constituents and, the number of main constituents with no satellites (at present 162 plus 8 for the constituent data package containing no third-order satellites for both N₂ and L₂);
- MSHAL be the sum for all shallow water constituents of the number of main constituents from which each is derived (at present 251);
- NITER be the number of iterations required to reduce the time interval within which it is known that a high or low tide exists, to a desired length (with the largest initial interval size of 3 h and a 6-min final interval, NITER is 5).

Then in the main program, array KONTAB should have minimum dimension MTAB+1; arrays SIGTAB, V, U and F should have minimum dimension MTAB; arrays KON, EMAJ, EMIN, EINC and G should have minimum dimension M+1; arrays SIG, INDX, ANGO, CMAJ, CMIN, SMAJ, SMIN, CHA, CHB, CHM, SHA, SHB, SHM, C, S, COSE and SINE should have minimum dimension M and the two-dimensional array BTWOC should have a minimum dimension M by NITER. Array COSINE which stores

pre-calculated cosine function values over the range of 0° to 450° and is used as a look-up table, at present has 2501 elements.

In subroutine **SLOPE**, arrays **F**, **CMAJ**, **CMIN**, **SMAJ**, **SMIN**, **SIG** and **INDX** are in **COMMON** and should have the same dimensions as in the main program; and arrays **COSE** and **SINE** are passed in the argument list from the main program and so need only be dimensioned 2.

In subroutine ASTRO, arrays KON and NJ should have minimum dimension MTAB+1; arrays FREQ,U,V and F should have minimum dimension MTAB; arrays II,JJ,KK,LL,MM,NN and SEMI should have minimum dimension MCON+1; arrays EE,LDEL,MDEL,NDEL,IR and PH should have minimum dimension MSAT and arrays KONCO and COEF should have minimum dimension MSHAL+4.

In subroutine **PUT**, the dimensions of arrays RK, DIRK and ITIME should be at least as large as the maximum number of extreme current values per day (i.e. at present assumed to be 18).

In subroutine CPUT, the dimension of arrays X and Y should be at least equal to the number of equally spaced tidal current values per output record (at present, this is 8).

In subroutine GDAY, both arrays NDM and NDP should have dimension 12.

4 TIDAL CURRENTS PREDICTION PROGRAM DETAILS

4.1 Problem Formulation and the Equally Spaced Prediction Method

In Section 2.1 we saw that the tidal current contribution for a constituent with frequency, σ , can be represented as

$$Z(t) = a^{+} \exp(i\varepsilon^{+} + 2\pi i\sigma t) + a^{-} \exp(i\varepsilon^{-} - 2\pi i\sigma t)$$

where a^+ , a^- , ε^+ and ε^- are calculated from the least squares analysis. After calculation of the astronomical argument and nodal modulation correction factors at an origin, t_0 , from which t is measured and substitution of the phase variables, θ and g, this complex-valued tidal contribution can be re-expressed as

$$Z(t) = f(t_0)a^+ \exp\left[i(V(t_0) + u(t_0) - g + \theta + 2\pi\sigma t)\right]$$

$$+ f(t_0)a^- \exp\left[i(g - V(t_0) - u(t_0) + \theta - 2\pi\sigma t)\right]$$

$$= f(t_0) \exp(i\theta) \left[(a^+ + a^-)\cos(V(t_0) + u(t_0) + 2\pi\sigma t - g)\right]$$

$$+ i(a^+ - a^-)\sin(V(t_0) + u(t_0) + 2\pi\sigma t - g)\right].$$

Letting $\phi(t,t_0) = V(t_0) + u(t_0) - g + 2\pi\sigma t$, a further re-arrangement into real (east/west) and imaginary (north/south) parts yields

$$Z(t) = f(t_0) \left[(a^+ + a^-) \cos \theta \cos \phi(t, t_0) - (a^+ - a^-) \sin \theta \sin \phi(t, t_0) \right] + i f(t_0) \left[(a^+ + a^-) \sin \theta \cos \phi(t, t_0) + (a^+ - a^-) \cos \theta \sin \phi(t, t_0) \right].$$
(1)

The actual procedure then used to produce equally spaced tidal current predictions is almost identical to that employed in tidal heights prediction (Foreman, 1977, p. 33). Since the data package read from file reference number 8 does not contain constituent frequencies, they must be calculated via the astronomical variable derivatives and the constituent Doodson numbers. Values, f, u and V are then calculated for 0000 h of the sixteenth day of the first month of the desired prediction period and updated as required for subsequent months. Tidal current components are then found by summing the contributions from each constituent.

In order to avoid calling a trigonometric library function for each new value of t, when a sequence of equally spaced predictions is required, the following formulae are used for each constituent contribution:

$$\cos(\psi + 2\pi\sigma(n+1)\Delta t) = \cos(\psi + 2\pi\sigma n\Delta t)\cos(2\pi\sigma\Delta t) - \sin(\psi + 2\pi\sigma n\Delta t)\sin(2\pi\sigma\Delta t), \quad (2)$$

$$\sin(\psi + 2\pi\sigma(n+1)\Delta t) = \sin(\psi + 2\pi\sigma n\Delta t)\cos(2\pi\sigma\Delta t) + \cos(\psi + 2\pi\sigma n\Delta t)\sin(2\pi\sigma\Delta t)$$
 (3)

where
$$\psi = V(t_0) + u(t_0) - g$$
.

4.2 The Maximum and Minimum Current Prediction Method

Letting X and Y be the east/west and north/south current components respectively, it is easily seen that the times for which the current magnitude, namely $\sqrt{X^2 + Y^2}$, will attain a maximum or minimum value, will be the same as those for the magnitude squared, namely $X^2 + Y^2$. Therefore, we can find all maximum and minimum currents by solving the equation that results from setting the derivative of the magnitude squared with respect to time, equal to zero.

Expanding equation (1) of Section 4.1 to include the contributions from m constituents, this result may be written as

$$\left(\sum X_j\right)\frac{\partial}{\partial t}\left(\sum X_j\right) + \left(\sum Y_j\right)\frac{\partial}{\partial t}\left(\sum Y_j\right) = 0,$$

where for each constituent

$$X(t,t_0) = f(t_0) \left[(a^+ + a^-) \cos \theta \cos \phi(t,t_0) - (a^+ - a^-) \sin \theta \sin \phi(t,t_0) \right],$$

$$\frac{d}{dt} X(t,t_0) = -2\pi \sigma f(t_0) \left[(a^+ + a^-) \cos \theta \sin \phi(t,t_0) + (a^+ - a^-) \sin \theta \cos \phi(t,t_0) \right],$$

$$Y(t,t_0) = f(t_0) \left[(a^+ + a^-) \sin \theta \cos \phi(t,t_0) + (a^+ - a^-) \cos \theta \sin \phi(t,t_0) \right]$$

and

$$\frac{d}{dt}Y(t,t_0) = 2\pi\sigma f(t_0) \left[-(a^+ + a^-)\sin\theta\sin\phi(t,t_0) + (a^+ - a^-)\cos\theta\cos\phi(t,t_0) \right].$$

The method employed to solve this equation is similar to the one used in the prediction of high and low tidal heights (Foreman, 1977, p. 34). We first bracket all extrema by moving forward in time with steps of size Δt and comparing signs of the interval endpoints. Once an interval whose endpoints differ in sign has been found, the zero value is located via the method of bisection coupled with linear interpolation.

Because each tidal constituent has two maximum and two minimum values per cycle, as opposed to one of each in the case of tidal heights, the recommended step size values, Δt , are on half those listed in the tidal heights manual (Foreman, 1977, p. 35), namely:

- (i) $\Delta t = 1.5$ h for semidiurnal tide,
- (ii) $\Delta t = 0.25$ h for mixed tide,
- (iii) $\Delta t = 3$ h for diurnal tide.

Determination of the tidal nature at a particular station may be obtained by calculating the diurnal to semidiurnal ratio of tidal height amplitudes for the major constituents M_2 , S_2 , K_1 and O_1 . This value is called the form number (Dietrich, 1963) and is defined precisely as

$$F = \frac{\mathrm{K}_1 + \mathrm{O}_1}{\mathrm{M}_2 + \mathrm{S}_2}.$$

The tide is then said to be

- (i) semidiurnal if $0 \le F \le 0.25$,
- (ii) mixed if $0.25 < F \le 3.00$,
- (iii) diurnal if F > 3.00.

If tidal heights analysis results are not available, F may be approximated using either the X or Y component amplitudes (e.g. using the notation of Section 2.1, the X component amplitude is $\sqrt{(CX)^2 + (SX)^2}$). For Race Rocks, the example used in Appendix 7.4, the east/west and north/south components both yield F values of 0.7.

In more detail, the search algorithm for an extremum is then as follows:

- (i) Move forward in time from the origin, or the last extrema, in steps of Δt until either a change in sign exists between the derivative values at the endpoints of the interval, (t_a, t_b) , or t_b extends beyond the desired prediction period. Each constituent contribution in the summation, D(t) is evaluated by equations (2) and (3) of Section 4.1. When an interval containing an extremum is located, set k = 1 and proceed to (ii).
- (ii) Calculate $t_k = t_a + \Delta t/2^k$ and for each constituent in the sum, evaluate $D(t_k)$ by using the formulae:

$$\sin(t_k) = \frac{\sin(t_a) + \sin(t_b)}{2\cos \Delta t/2^k},$$
$$\cos(t_k) = \frac{\cos(t_a) + \cos(t_b)}{2\cos \Delta t/2^k}.$$

If
$$|D(t_k)| \le 10^{-16}$$
, set $D(t_k) = 10^{-16}$.

- (iii) Re-assign whichever of t_a or t_b has the same derivative sign as $D(t_k)$, by t_k . If the new interval length, $t_b t_a$, is less than 0.1 h, proceed to (iv). Otherwise set k = k + 1 and return to (ii).
- (iv) Use the following linear interpolation formula to find the extremum t_E ,

$$t_E = t_a + \frac{D(t_a)(t_b - t_a)}{D(t_a) - D(t_b)},$$

and evaluate the X (real) and Y (imaginary) components of the current at this time via summing the respective constituent contributions given in equation (1) of Section 4.1. For each one, obtain the required sine and cosine values by using a pre-calculated stored table of 2501 cosine values with arguments in the range of 0° to 450°. The current magnitude is then $\sqrt{X^2 + Y^2}$ and its direction measured counterclockwise from east is $\arctan(Y/X)$. Return to (i).

5 CONSISTENCY OF THE ANALYSIS AND PREDICTION PROGRAMS AND ACCURACY OF THEIR RESULTS IN RELATION TO THE METHODS EMPLOYED

As in the case of the tidal heights analysis and prediction programs, there is one noteworthy inconsistency between the tidal currents analysis and prediction programs. In particular, if a pseudo-tidal record were synthesized by the prediction program and analysed using the same constituents, the ellipse parameter and phase results given by the analysis program would not be identical to those used as input for the prediction program.

In a small part, this discrepancy is due to round-off accumulated during the calculations and truncation of the synthesized values to conform to input and output formats. However, a test performed on the UNIVAC 1106 at Patricia Bay with a six-month period of synthesized hourly currents indicates that such errors occur no sooner than the fourth digit. The remainder of the difference (which is, at worst, in the third digit) can be attributed to different approximating assumptions for the calculation of f and u, the nodal and modulation amplitude and phase correction factors. Whereas the prediction program calculates these values at the sixteenth day of each month in the desired time period and keeps them constant throughout the entire month, the analysis program assumes them to be constant over the entire analysis period and equal to their true values at the central hour of that period. However, if so desired, synthesized values in which the calculation of the nodal modulation factors is consistent with that of the analysis method can be obtained from the analysis program by setting input variable INDPR to 1.

As would be expected, the inaccuracy in the nodal modulation calculation for periods longer than two months is worse in the case of the analysis method and becomes more significant as the analysis period increases. In fact, there exists an optimal period length, which Godin estimates to be approximately one year, beyond which the expected accuracy improvement through better resolution of the constituents is overshadowed by this and other nodal modulation assumptions. In particular, once the record length is close to nine years, nodal modulation in its present form breaks down because some constituents, normally considered as satellite, should be resolved directly.

It is also important to note that significantly different results can be expected in a synthesis/analysis test if there is at least one more constituent used in the synthesis than the analysis. This is because the least squares fit technique will adjust the ellipse parameters and phases of constituents included in the analysis to partially account for contributions due to constituents included in the synthesis but not the analysis. In fact, even after the extra constituents have been inferred (e.g. P_1 is included in the synthesis and in the analysis via inference from K_1) there will still be some discrepancies in the results not only for the inferred and inferee constituents due to small inaccuracies in the approximating inference assumptions, but also for neighbouring constituents whose least squares fit results were affected by the presence of the inferred constituent and whose final results were not adjusted, as were those of the inferee, during inference (e.g. the presence of P_1 affects not only K_1 but to a lesser extent, neighbouring constituents such as NO_1 and J_1). However, except for round-off and truncation errors, and the slightly different f and u values, having more constituents in the analysis than the synthesis will not affect the results.

6 REFERENCES

- Dietrich, G. 1963. General Oceanography. Interscience Publishers, New York. 588 pp.
- Doodson, A.T. and H.D. Warburg. 1941. Admiralty Manual of Tides. His Majesty's Stationery Office, London. Reprinted 1946. 270 pp.
- Foreman, M.G.G. 1977. Manual for Tidal Heights Analysis and Prediction. Pacific Marine Science Report 77-10, Institute of Ocean Sciences, Patricia Bay, Victoria, B.C. 97 pp. Unpublished manuscript.
- Godin, G.G. 1972. The Analysis of Tides. University of Toronto Press. 264 pp.
- Godin, G.G. 1976. The reduction of current observations with the help of the admittance function. Technical Note No. 14, Environment Canada, Ottawa. Marine Environmental Data Service. 13 pp.
- Henry, R.F. and M.G.G. Foreman. 1977. Numerical Model Studies of Semi-diurnal Tides in the Southern Beaufort Sea. Pacific Marine Science Report 77-11, Institute of Ocean Sciences, Patricia Bay, Victoria, B.C. 71 pp. Unpublished manuscript.
- Taylor, J. 1972. The Current Ellipse. 7 pp. Unpublished notes.

Appendix 7.1 Standard Constituent Input Data for the Tidal Currents Computer Program.

This Data is Read by File Reference Number 8.

Z0 SA SSA MSM	0.0 0.0001140741 0.0002281591 0.0013097808	M2 SSA Z0 MM
MM MSF	0.0015121518 0.0028219327	MSF Z0
MF	0.0028219327	MSF
ALP1	0.0343965699	2Q1
2Q1 SIG1	0.0357063507 0.0359087218	Q1 2Q1
Q1	0.0372185026	01
RHO1	0.0374208736	Q1
O1 TAU1	0.0387306544 0.0389588136	K1 O1
BET1	0.0400404353	NO1
NO1	0.0402685944	K1
CHI1 PI1	0.0404709654 0.0414385130	NO1 P1
P1	0.0415525871	K1
S1	0.0416666721	K1
K1 PSI1	0.0417807462 0.0418948203	Z0 K1
PHI1	0.0420089053	K1
THE1 J1	0.0430905270 0.0432928981	J1 K1
2PO1	0.0432926961	KI
S01	0.0446026789	001
001 UPS1	0.0448308380 0.0463429898	J1 001
ST36	0.0463429898	001
2NS2	0.0746651643	
ST37 ST1	0.0748675353 0.0748933234	
OQ2	0.0759749451	EPS2
EPS2	0.0761773161	2N2
ST2 ST3	0.0764054753 0.0772331498	
02	0.0774613089	
2N2	0.0774870970	MU2
MU2 SNK2	0.0776894680 0.0787710897	N2
N2	0.0789992488	M2
NU2	0.0792016198	N2
ST4 OP2	0.0794555670 0.0802832416	
GAM2	0.0803090296	H1
H1	0.0803973266	M2
M2 H2	0.0805114007 0.0806254748	Z0 M2
MKS2	0.0807395598	M2
ST5	0.0809677189	
ST6 LDA2	0.0815930224 0.0818211815	L2

L2	0.0820235525	S2
2SK2	0.0831051742	
T2	0.0832192592	S2
S2	0.0833333333	M2
R2	0.0834474074	S2
K2	0.0835614924	S2
MSN2	0.0848454852	ETA2
ETA2	0.0850736443	K2
ST7	0.0853018034	
2SM2	0.0861552660	
ST38	0.0863576370	
SKM2	0.0863834251	
2SN2	0.0876674179	
NO3	0.1177299033	
MO3	0.1192420551	МЗ
M3	0.1207671010	M2
NK3	0.1207799950	
SO3	0.1220639878	MK3
MK3	0.1222921469	M3
SP3	0.1248859204	113
SK3	0.1251140796	MK3
ST8	0.1566887168	11105
N4	0.1579984976	
3MS4	0.1582008687	
ST39	0.1592824904	
MN4	0.1595106495	M4
ST9	0.1597388086	1.1.1
ST40	0.1607946422	
M4	0.1610228013	М3
ST10	0.1612509604	115
SN4	0.1623325821	M4
KN4	0.1625607413	1.1.1
MS4	0.1638447340	M4
MK4	0.1640728931	MS4
SL4	0.1653568858	110 1
S4	0.1666666667	MS4
SK4	0.1668948258	S4
MNO5	0.1982413039	01
2MO5	0.1997534558	
3MP5	0.1999816149	
MNK5	0.2012913957	
2MP5	0.2025753884	
2MK5	0.2028035475	M4
MSK5	0.2056254802	
3 KM5	0.2058536393	
2SK5	0.2084474129	2MK5
ST11	0.2372259056	21110
2NM6	0.2372233030	
ST12	0.2387380574	
2MN6	0.2400220501	M6
ST13	0.240220301	110
ST41	0.2413060429	
M6	0.2415342020	2MK5
MSN6	0.2428439828	ر.۱۱۲۰
MKN6	0.2430721419	
ST42	0.2441279756	
2MS6	0.2443561347	M6
2MK6	0.2445842938	2MS6
21.11.0	0.244304730	217100

NSK6

0.2458940746

```
2SM6
             0.2471780673
                              2MS6
   MSK6
             0.2474062264
                              2SM6
   S6
             0.2500000000
   ST14
             0.2787527046
   ST15
             0.2802906445
   Μ7
             0.2817899023
   ST16
             0.2830867891
   3MK7
             0.2833149482
                              М6
   ST17
             0.2861368809
   ST18
             0.3190212990
   3MN8
             0.3205334508
   ST19
             0.3207616099
   M8
             0.3220456027
                              3MK7
   ST20
             0.3233553835
   ST21
             0.3235835426
   3MS8
             0.3248675353
             0.3250956944
   3MK8
   ST22
             0.3264054753
   ST23
             0.3276894680
   ST24
             0.3279176271
   ST25
             0.3608020452
   ST26
             0.3623141970
   4MK9
             0.3638263489
   ST27
             0.3666482815
   ST28
             0.4010448515
   M10
             0.4025570033
   ST29
             0.4038667841
   ST30
             0.4053789360
   ST31
             0.4069168759
   ST32
             0.4082008687
   ST33
             0.4471596822
   M12
             0.4830684040
   ST34
             0.4858903367
   ST35
             0.4874282766
  .7428797055
               .7771900329
                              .5187051308
                                            .3631582592
                                                          .7847990160
                                                                       000GMT 1/1/76
               .9993368945
                                            .0536893056
                                                                       INCR./365DAYS
13.3594019864
                              .1129517942
                                                         .0000477414
      Z0
              0
                 0
                     0
                        0
                           0
                             0 0.0
                                        0
      SA
               0
                  0
                     1
                        0
                           0 -1 0.0
                                        0
      SSA
               0
                  0
                     2
                        0
                               0.0
                                        0
                           0
      MSM
               0
                  1
                    -2
                        1
                            0
                               0
                                 .00
                                        0
      MM
               0
                  1
                     0
                       -1
                           0
                               0 0.0
                                        0
      MSF
               0
                  2
                    -2
                        0
                           0
                               0 0.0
                                        0
              0
                                        0
      MF
                  2
                     0
                        0
                           0
                               0 0.0
      ALP1
              1 -4
                     2
                        1
                           0
                               0 -.25
                                        2
      ALP1
            -1
                 0
                    0 .75 0.0360R1
                                      0 -1
                                            0 .00 0.1906
      201
              1 -3
                    0
                        2
                           0
                               0 - 0.25
                                        5
                                     -1 -1
      2Q1
            -2 -2
                    0 .50 0.0063
                                            0 .75 0.0241R1
                                                              -1 0 0 .75 0.0607R1
                                      0 -1
      2Q1
             0 -2
                    0 .50 0.0063
                                            0 .0 0.1885
      SIG1
              1 -3
                    2 0
                          0 0-0.25
      SIG1
                    0 .75 0.0095R1
                                      0 -2
                                            0 .50 0.0061
                                                               0 -1 0 .0 0.1884
            -1
      SIG1
             2
                 0
                    0 .50 0.0087
      Q1
              1 -2
                    0 1 0 0-0.25
                                       10
                    0 .50 0.0007
                                             0 .50 0.0039
      Q1
            -2 -3
                                     -2 -2
                                                              -1 -2
                                                                     0 .75 0.0010R1
      Q1
            -1 -1
                    0 .75 0.0115R1
                                     -1 0
                                             0 .75 0.0292R1
                                                               0 -2
                                                                     0 .50 0.0057
      01
            -1
                 0
                    1 .0
                          0.0008
                                      0 -1
                                            0 .0 0.1884
                                                               1
                                                                 0
                                                                     0 .75 0.0018R1
      Q1
             2
                 0
                    0 .50 0.0028
```

```
RHO1
     1 -2 2 -1 0 0-0.25
                        5
                      0 -1 0 .0 0.1882 1 0 0 .75 0.0131R1
RHO1
     0 -2 0 .50 0.0058
RHO1
     2 0
          0 .50 0.0576
                        2 1 0 .0 0.0175
01
      1 -1 0 0 0 0-0.25
                        8
01
     -1 0 0 .25 0.0003R1
                       0 -2 0 .50 0.0058
                                           0 -1 0 .0 0.1885
                        1 0 0 .75 0.0029R1
                                           1 1 0 .25 0.0004R1
01
     1 -1 0 .25 0.0004R1
                        2 1 0 .50 0.0010
01
     2 0 0 .50 0.0064
     1 -1 2 0 0 0-0.75 5
                     -1 0 0 .25 0.0426R1
                                           0 -1 0 .50 0.0284
TAU1
     -2 0 0 .0 0.0446
     TAU1
     1 0 -2 1 0 0 -.75 1
BET1
     0 -1 0 .00 0.2266
BET1
NO1
     1 0 0 1 0 0-0.75
NO1
     -2 -2 0 .50 0.0057 -2 -1
                            0 .0 0.0665
                                          -2 0
                                               0 .0 0.3596
     -1 -1 0 .75 0.0331R1 -1 0 0 .25 0.2227R1 -1 1 0 .75 0.0290R1
NO1
     0 2 0 .50 0.0054
NO1
      1 0 2 -1 0 0-0.75
                        2
CHI1
     1 1 -3 0 0 1-0.25
                         1
PT1
     0 -1 0 .50 0.0078
PI1
      1 1 -2 0 0 0-0.25
P1
                         6
                                        0 0 2 .50 0.0004
     0 -2 0 .0 0.0008
                     0 -1 0 .50 0.0112
P1
P1
     1 0 0 .75 0.0004R1
                        2 0 0 .50 0.0015
                                          2 1 0 .50 0.0003
      1 1 -1 0 0 1-0.75
                        2
S1
S1
     0 0 -2 .0 0.3534
                        0 1 0 .50 0.0264
K1
      1 1 0 0 0 0-0.75 10
     -2 -1 0 .0 0.0002
                       -1 -1 0 .75 0.0001R1 -1 0 0 .25 0.0007R1
Κ1
K1
     -1 1 0 .75 0.0001R1 0 -2 0 .0 0.0001
                                         0 -1 0 .50 0.0198
                       0 2 0 .50 0.0029
     0 1 0 .0 0.1356
                                          1 0 0 .25 0.0002R1
K1
          0 .25 0.0001R1
K1
     1
        1
     1 1 1 0 0 -1-0.75
PSI1
PSI1
     0 1 0 .0 0.0190
PHI1
     1 1 2 0 0 0-0.75
                        5
    PHI1
                                          0 0 -2 .0 0.0132
PHI1
THE1
      1 2 -2 1 0 0 -.75
                         4
    -2 -1 0 .00 .0300 -1 0 0 .25 0.0141R1
THE1
                                           0 -1 0 .50 .0317
     0 1 0 .00 .1993
THE1
     1 2 0 -1 0 0-0.75 10
J1
J1
     0 -1 0 .50 0.0294
                     0 1
                            0 .0 0.1980
                                           0
                                             2
                                               0 .50 0.0047
                       1 0
J1
     1 -1 0 .75 0.0027R1
                             0 .25 0.0816R1
                                           1
                                             1
                                                0 .25 0.0331R1
     1 2 0 .25 0.0027R1 2 0 0 .50 0.0152
                                           2
J1
                                             1
                                                0 .50 0.0098
J1
     2 2 0 .50 0.0057
     1 3 0 0 0 0-0.75
001
     -2 -1 0 .50 0.0037
                      -2 0 0 .0 0.1496
                                          -2 1 0 .0 0.0296
001
001
    -1 0
          0 .25 0.0240R1 -1 1 0 .25 0.0099R1 0 1
                                                0 .0 0.6398
                       0 3 0.0 0.0086
     0 2 0 .0 0.1342
001
     1 4 0 -1 0 0 -.75
UPS1
                        5
UPS1
     -2 0 0 .00 0.0611
                        0 1
                            0 .00 0.6399
                                           0 2 0 .00 0.1318
UPS1
     1 0 0 .25 0.0289R1
                        1 1 0 .25 0.0257R1
      2 -3 0 3 0 0 0.0
002
                          2
     -1 0 0 .25 0.1042R2
002
                        0 -1 0 .50 0.0386
EPS2
      2 -3 2 1 0 0 0.0
                        3
    -1 -1 0 .25 0.0075R2 -1 0 0 .25 0.0402R2
EPS2
                                          0 -1 0 .50 0.0373
      2 -2 0 2 0 0 0.0
2N2
                         4
     -2 -2 0 .50 0.0061 -1 -1 0 .25 0.0117R2 -1 0 0 .25 0.0678R2
2N2
    0 -1 0 .50 0.0374
2N2
```

```
2 -2 2 0 0 0 0.0
                            3
MU2
     -1 -1 0 .25 0.0018R2 -1 0 0 .25 0.0104R2
MU2
                                                 0 -1 0 .50 0.0375
       2 -1 0 1 0 0 0.0 4
N2
     -2 -2 0 .50 0.0039 -1 0 1 .00 0.0008
                                                 0 -2 0 .00 0.0005
N2
N2
      0 -1 0 .50 0.0373
NU2
      2 -1 2 -1 0 0 0.0
                            4
      0 -1 0 .50 0.0373
                         1 0 0 .75 0.0042R2
                                                 2 0 0 .0 0.0042
NU2
      2 1 0 .50 0.0036
      2 0 -2 2 0 0 -.50 3
GAM2
     -2 -2 0 .00 0.1429 -1 0 0 .25 0.0293R2
                                                 0 -1 0 .50 0.0330
GAM2
H1
      2 0 -1 0 0 1-0.50 2
H1
      0 -1 0 .50 0.0224 1 0 -1 .50 0.0447
M2
      2 0 0 0 0 0 0.0
                           9
M2
     -1 -1 0 .75 0.0001R2 -1 0 0 .75 0.0004R2
                                                 0 -2 0 .0 0.0005
М2
      0 -1 0 .50 0.0373
                          1 -1 0 .25 0.0001R2
                                                 1 0 0 .75 0.0009R2
M2
      1 1 0 .75 0.0002R2 2 0 0 .0 0.0006
                                                 2 1 0 .0 0.0002
H2
       2 0 1 0 0 -1 0.0
                             1
      0 -1 0 .50 0.0217
H2
      2 1 -2 1 0 0-0.50
LDA2
      0 -1 0 .50 0.0448
LDA2
       2 1 0 -1 0 0-0.50
L2
                            5
L2
      0 - 1 \quad 0 \quad .50 \quad 0.0366 \qquad \qquad 2 - 1 \quad 0 \quad .00 \quad 0.0047 \qquad \qquad 2 \quad 0 \quad 0 \quad .50 \quad 0.2505
                            2 2 0 .50 0.0156
L2
      2 1 0 .50 0.1102
                           0
T2
      2 2 -3 0 0 1 0.0
S2
       2 2 -2 0 0 0 0.0
                            3
S2
      0 -1 0 .0 0.0022
                            1 0 0 .75 0.0001R2
                                                 2 0 0 .0 0.0001
      2 2 -1 0 0 -1-0.50
R2
                             2
      0 0 2 .50 0.2535 0 1 2 .0 0.0141
R2
K2
      2 2 0 0 0 0 0.0
      -1 0 0 .75 0.0024R2 -1 1 0 .75 0.0004R2
K2
                                                 0 -1 0 .50 0.0128
K2
      0 1 0 .0 0.2980
                            0 2 0 .0 0.0324
ETA2
      2 3 0 -1 0 0 0.0
                             7
                           0 1 0 .0 0.4355
ETA2
      0 -1 0 .50 0.0187
                                                 0 2 0 .0 0.0467
ETA2
      1 0 0 .75 0.0747R2 1 1 0 .75 0.0482R2 1 2 0 .75 0.0093R2
ETA2
      2 0 0 .50 0.0078
       3 0 0 0 0 0 -.50 1
М3
      0 -1 0 .50 .0564
М3
2PO1 2
        2.0 P1
                     -1.0 01
S01
    2
        1.0 S2
                     -1.0 01
                     1.0 N2
                                   -2.0 S2
ST36 3
        2.0 M2
2NS2 2
        2.0 N2
                     -1.0 S2
ST37 2
        3.0 M2
                     -2.0 S2
ST1 3
        2.0 N2
                     1.0 K2
                                   -2.0 S2
ST2 4
        1.0 M2
                     1.0 N2
                                   1.0 K2
                                                 -2.0 S2
ST3 3
        2.0 M2
                      1.0 S2
                                   -2.0 K2
02
    1
        2.0 01
   3
                      1.0 N2
ST4
        2.0 K2
                                   -2.0 S2
SNK2 3
        1.0 S2
                      1.0 N2
                                   -1.0 K2
OP2 2
        1.0 01
                      1.0 P1
MKS2 3
        1.0 M2
                      1.0 K2
                                   -1.0 S2
ST5 3
        1.0 M2
                     2.0 K2
                                   -2.0 S2
ST6 4
        2.0 S2
                     1.0 N2
                                   -1.0 M2
                                                 -1.0 K2
2SK2 2
        2.0 S2
                     -1.0 K2
                      1.0 S2
                                   -1.0 N2
MSN2 3
        1.0 M2
ST7 4
                     1.0 M2
        2.0 K2
                                   -1.0 S2
                                                 -1.0 N2
2SM2 2
        2.0 S2
                    -1.0 M2
```

ST38 3	2.0 M2	1.0 S2	-2.0 N2	
SKM2 3	1.0 S2	1.0 K2	-1.0 M2	
2SN2 2	2.0 S2	-1.0 N2		
NO3 2	1.0 N2	1.0 01		
MO3 2	1.0 M2	1.0 01		
NK3 2	1.0 N2	1.0 K1		
SO3 2	1.0 S2	1.0 01		
MK3 2	1.0 M2	1.0 K1		
SP3 2	1.0 S2	1.0 P1		
SK3 2	1.0 S2	1.0 K1		
ST8 3	2.0 M2	1.0 N2	-1.0 S2	
N4 1	2.0 N2	1.0 112	1.0 02	
3MS4 2	3.0 M2	-1.0 S2		
			1 0 NO	1 0 1/2
ST39 4	1.0 M2	1.0 S2	1.0 N2	-1.0 K2
MN4 2	1.0 M2	1.0 N2	1 0 7/0	
ST40 3	2.0 M2	1.0 S2	-1.0 K2	1 0 00
ST9 4	1.0 M2	1.0 N2	1.0 K2	-1.0 S2
M4 1	2.0 M2			
ST10 3	2.0 M2	1.0 K2	-1.0 S2	
SN4 2	1.0 S2	1.0 N2		
KN4 2	1.0 K2	1.0 N2		
MS4 2	1.0 M2	1.0 S2		
MK4 2	1.0 M2	1.0 K2		
SL4 2	1.0 S2	1.0 L2		
S4 1	2.0 S2			
SK4 2	1.0 S2	1.0 K2		
MNO5 3	1.0 M2	1.0 N2	1.0 01	
2MO5 2	2.0 M2	1.0 01	1.0 01	
3MP5 2	3.0 M2	-1.0 P1		
MNK5 3	1.0 M2		1 0 V1	
		1.0 N2	1.0 K1	
2MP5 2	2.0 M2	1.0 P1		
2MK5 2	2.0 M2	1.0 K1	1 0 771	
MSK5 3	1.0 M2	1.0 S2	1.0 K1	
3KM5 3	1.0 K2	1.0 K1	1.0 M2	
2SK5 2	2.0 S2	1.0 K1		
ST11 3	3.0 N2	1.0 K2	-1.0 S2	
2NM6 2	2.0 N2	1.0 M2		
ST12 4	2.0 N2	1.0 M2	1.0 K2	-1.0 S2
ST41 3	3.0 M2	1.0 S2	-1.0 K2	
2MN6 2	2.0 M2	1.0 N2		
ST13 4	2.0 M2	1.0 N2	1.0 K2	-1.0 S2
M6 1	3.0 M2			
MSN6 3	1.0 M2	1.0 S2	1.0 N2	
MKN6 3	1.0 M2	1.0 K2	1.0 N2	
2MS6 2	2.0 M2	1.0 S2	2.0 1.2	
2MK6 2	2.0 M2	1.0 K2		
NSK6 3		1.0 K2 1.0 S2	1.0 K2	
2SM6 2	2.0 S2		1.0 1.2	
		1.0 M2	1 0 7/0	
MSK6 3	1.0 M2	1.0 S2	1.0 K2	
ST42 3	2.0 M2	2.0 S2	-1.0 K2	
S6 1	3.0 S2	1 0	1 0 01	
ST14 3	2.0 M2	1.0 N2	1.0 01	
ST15 3	2.0 N2	1.0 M2	1.0 K1	
M7 1	3.5 M2			
	2.0 M2	1.0 S2	1.0 01	
3MK7 2	3.0 M2	1.0 K1		
ST17 4	1.0 M2	1.0 S2	1.0 K2	1.0 01
ST18 2	2.0 M2	2.0 N2		

3MN8	2	3.0	M2	1.0 N	N2				
ST19	4	3.0	M2	1.0 N	N2	1.0	K2	-1.0	S2
M8	1	4.0	M2						
ST20	3	2.0	M2	1.0 5	S2	1.0	N2		
ST21	3	2.0	M2	1.0 N	N2	1.0	K2		
3MS8	2	3.0	M2	1.0 5	S2				
3MK8	2	3.0	M2	1.0 H	K2				
ST22	4	1.0	M2	1.0 5	S2	1.0	N2	1.0	K2
ST23	2	2.0	M2	2.0 5	S2				
ST24	3	2.0	M2	1.0 5	S2	1.0	K2		
ST25	3	2.0	M2	2.0 N	N2	1.0	K1		
ST26	3	3.0	M2	1.0 N	N2	1.0	K1		
4MK9	2	4.0	M2	1.0 H	K1				
ST27	3	3.0	M2	1.0 5	S2	1.0	K1		
ST28	2	4.0	M2	1.0 N	N2				
M10	1	5.0	M2						
ST29	3	3.0	M2	1.0 N	N2	1.0	S2		
ST30	2	4.0	M2	1.0 5	S2				
ST31	4	2.0	M2	1.0 N	N2	1.0	S2	1.0	K2
ST32	2	3.0	M2	2.0 5	S2				
ST33	3	4.0	M2	1.0 5	S2	1.0	K1		
M12	1	6.0	M2						
ST34	2	5.0	M2	1.0 5	S2				
ST35	4	3.0	M2	1.0 N	N2	1.0	K2	1.0	S2

Appendix 7.2 Sample Tidal Station Input Data for the Analysis Program.

The following sample input for file reference numbers 4, 10 and 11 will produce an analysis of Race Rocks, British Columbia current data for the period 1400 PST February 8, 1972 to 2400 PST March 3, 1972 inclusive. Constituents P_1 and K_2 will be inferred, shallow water constituent M_{10} is specifically designated for analysis inclusion, a scaling compensation will be made for the application of moving average filters to the original 10-min data and hourly component values based on the analysis results will be produced on file reference numbers 12 and 13. Note that missing hourly observations are denoted by 99999. Final results as given by the line printer are shown in Appendix 7.3.

(i) File reference number 4 input data:

```
1.00 0.010
                         1
                               3
                    0
10.00
              6
                    6
                          7
K1
       0.0417807462
                       P1
                              0.0415525871
                                                         0.197553
                                                                                  -0.2
                                              0.311807
                                                                       -4.5
       0.0833333333
                       K2
                                                                                  27.2
 S2
                              0.0835614924
                                              0.191983
                                                         0.212745
                                                                      -14.8
     M10
               M8
```

14080272 24150372 7077 RACE ROCKS SMOOTH&PAD PST 481413912 (ii) File reference number 10 input data (hourly north/south current components):

```
7077
                 7077
                   27299999
                               166
                                     262
                                           141
                                                 -20 -176
                                                             -26
                                                                    28
                                                                        128
2
                                                                              288
                                                                                    133
   7077
                 9
                   272 -108
                               -14
                                            38
                                                 -95
                                                       -84
                                                              41
                                                                    83
                                                                          91
                                                                               84
1
                                      60
                                                                                     30
                                                                                           14
   7077
                 9 272
                                            95
                                                  25
                                                     -107 -143
                           23
                               110
                                     165
                                                                    14
                                                                         -39
                                                                               -1
                                                                                    -21
                                                                                         -141
                                                       -82 -196
   7077
                10 272
                        -188
                              -148
                                      50
                                           124
                                                  69
                                                                 -187
                                                                         -85
                                                                              -24
                                                                                     19
2
   7077
                10 272
                         -84
                               -95
                                            72
                                                  48
                                                       -56 -115
                                                                   -74
                                                                         -45
                                                                             -159
                                        0
                                                                                    -73
                                                                                         -116
                                                                                         -110
   7077
                11 272 -134
                               -27 -125
                                          -114
                                                 -12
                                                       -18
                                                           -127
                                                                 -131
                                                                       -169
                                                                             -154
                                                                                    -49
1
2
   7077
                11 272 -230
                             -345
                                    -223
                                            26
                                                 166
                                                       133
                                                              83
                                                                    24
                                                                          92
                                                                                70
                                                                                    -49
                                                                                          -58
   7077
                              -214 -341
1
                12 272 -151
                                                 -12
                                                        67 -116
                                                                 -258
                                                                       -367
                                                                             -368
                                                                                   -226
                                                                                          -68
                                          -246
2
   7077
                12 272
                         -49 -100 -125
                                         -273 -140
                                                        82
                                                              66
                                                                    59
                                                                         -99
                                                                              -48
                                                                                     88
                                                                                           66
                                                                                   -309 -138
                13 272 -124 -294 -303 -358 -206
                                                         1 -168 -316 -360
1
   7077
                                                                             -417
2
                13 272
                                           -41 -277 -101
                                                             178
                                                                  272
                                                                        177
                                                                               -18
                                                                                          118
   7077
                           57
                                 69
                                     149
                                                                                     62
                14 272
                           63
                              -109 -424
                                         -514 -373 -174
                                                             -72 -380
                                                                               76
                                                                                    -78 -230
1
   7077
                                                                       -206
2
                14 272
                               135
                                                 122 -285
                                                              11
                                                                   146
                                                                         104
   7077
                        -187
                                     270
                                           328
                                                                              116
                                                                                    -30
                                                                                           48
                                      30
1
   7077
                15 272
                         139
                               145
                                          -226
                                                -405
                                                     -237
                                                              47
                                                                    48
                                                                          -1
                                                                               52
                                                                                    -42
                                                                                           17
2
   7077
                15 272
                         -25
                               -84
                                     136
                                           265
                                                 339
                                                       254
                                                              -8
                                                                    -3
                                                                         15
                                                                              124
                                                                                     76
                                                                                           67
                16 272
   7077
                         258
                               135
                                    -102
                                          -242
                                                -138
                                                       181
                                                             305
                                                                          84
                                                                              103
                                                                                    195
1
                                                                   188
                                                                                          193
                16 272
2
   7077
                         100
                                38
                                     202
                                           288
                                                  97
                                                       164
                                                             228
                                                                   106
                                                                         250
                                                                              310
                                                                                    231
                                                                                          266
1
   7077
                17
                   272
                         144
                                98
                                     133
                                            38
                                                 -45
                                                        24
                                                             300
                                                                   132
                                                                         3
                                                                               59
                                                                                    168
                                                                                          154
   7077
                   272
                                     164
                                                      -116
                                                                         -20
2
                17
                           85
                               114
                                           131
                                                 -18
                                                              -5
                                                                    95
                                                                               -88
                                                                                    -36
                                                                                           41
                                                           -285
   7077
                18 272
                               117
                                      69
                                                -156
                                                     -350
                                                                   -50
                                                                         100
                                                                               -32
                                                                                     54
1
                         126
                                            37
                                                                                          116
2
   7077
                18 272
                                                        55
                                                                     3
                                                                          -7
                                                                               -52
                                                                                   -282
                         112
                                87
                                     131
                                           153
                                                  15
                                                              19
                                                                                         -345
                                     159
1
   7077
                19 272
                        -171
                               162
                                                -138
                                                      -212
                                                            -104
                                                                          87
                                            13
                                                                    -4
                                                                                 9
                                                                                     64
                                                                                          114
2
   7077
                19 272
                         211
                                92
                                        0
                                           107
                                                 102
                                                        60
                                                             -15
                                                                 -265
                                                                       -179
                                                                               -68
                                                                                    -45
                                                                                          -47
                                                                               16
1
   7077
                20 272
                         -22
                                63
                                     124
                                            81
                                                 -69 -136
                                                           -128
                                                                  -84
                                                                          39
                                                                                     70
                                                                                           68
   7077
                20 272
2
                           35
                               184
                                     119
                                            65
                                                 156
                                                       207
                                                              21
                                                                 -363
                                                                       -317
                                                                               -44
                                                                                     43
                                                                                          -58
   7077
                21 272
                                            70
                                                      -151
1
                         -91
                               -48
                                      -4
                                                 -41
                                                           -133
                                                                   -22
                                                                           2
                                                                               16
                                                                                    -26
                                                                                           18
2
   7077
                21 272
                         -15
                                  6
                                     125
                                            86
                                                  72
                                                        55
                                                              61
                                                                   -16
                                                                       -265
                                                                             -258
                                                                                       1
                                                                                           36
1
   7077
                22 272
                           47
                                94
                                      89
                                            24
                                                  98
                                                       126
                                                              60
                                                                    -7
                                                                          30
                                                                                91
                                                                                    100
                                                                                           38
2
   7077
                22 272
                         -36
                                57
                                     121
                                           119
                                                  31
                                                        24
                                                              33
                                                                    92
                                                                          93
                                                                             -183
                                                                                    -94
                                                                                          228
1
   7077
                23 272
                         327
                               253
                                     231
                                           150
                                                 129
                                                       185
                                                             180
                                                                    70
                                                                         -33
                                                                              -30
                                                                                     14
                                                                                           80
2
   7077
                23 272
                           20
                               -38
                                     -20
                                           -11
                                                 -35
                                                        10
                                                              52
                                                                    60
                                                                        108
                                                                              112
                                                                                   -131
                                                                                         -320
1
   7077
                24 272
                        -151
                                32
                                      69
                                           156
                                                  24
                                                      -122
                                                            -149
                                                                 -187
                                                                         -70
                                                                               41
                                                                                     45
                                                                                          -31
2
   7077
                24
                   272
                         -74
                              -150
                                    -120
                                           -54
                                                   6
                                                       -55
                                                             -77
                                                                   109
                                                                          73
                                                                               13
                                                                                    194
                                                                                           32
   7077
                   272
                              -253
                                    -168
                                            17
                                                       -25
                                                           -124
                                                                 -377
1
                25
                        -195
                                                 120
                                                                       -459
                                                                             -246
                                                                                   -115
                                                                                          -58
2
   7077
                   272
                              -144 -216
                                                        18
                                                             -30
                                                                  -78
                25
                         -81
                                          -153
                                                 -90
                                                                          18
                                                                                 4
                                                                                     32
                                                                                          182
                   272
                                                           -198
1
   7077
                26
                           -2
                              -322
                                    -272
                                           135
                                                 255
                                                       110
                                                                 -353
                                                                       -295
                                                                             -370
                                                                                   -607
                                                                                         -532
                                          -207 -135
2
   7077
                26 272
                        -422
                              -399 -282
                                                      -101
                                                                       -179
                                                                             -107
                                                             -32
                                                                     7
                                                                                     40
                                                                                           18
   7077
                27 272
                         -32 -171 -371 -509 -343
                                                       -68 -139
                                                                 -450 -332 -107
                                                                                    -96
                                                                                         -129
1
2
   7077
                27 272
                        -369 -474 -470
                                         -332 -244
                                                      -136
                                                             -57
                                                                    99
                                                                                54
                                                                                    102
                                                                                          147
                                                                        184
                28 272
1
   7077
                           22
                             -130 -254
                                          -367
                                                -260
                                                       -79
                                                              11
                                                                 -189
                                                                       -289
                                                                             -112
                                                                                    -32
                                                                                           35
2
   7077
                28
                   272
                           93
                               180
                                     233
                                           157
                                                  17
                                                       -63
                                                            -207
                                                                 -105
                                                                          66
                                                                              163
                                                                                     91
                                                                                           76
                                                                 -183
                29 272
                                          -275
                                                -186
1
   7077
                           15
                              -161
                                    -226
                                                        47
                                                             -39
                                                                       -212
                                                                             -131
                                                                                    -22
                                                                                          -34
2
   7077
                29 272
                                            66
                                                              75
                                                                    42
                                                                              146
                                                                                           74
                           18
                                68
                                      48
                                                  -4
                                                       140
                                                                          94
                                                                                    173
   7077
                   372
                                          -292
                                                       236
                                                             126
                                                                              223
1
                 1
                         -11
                                22 -125
                                                 -25
                                                                    46
                                                                        104
                                                                                    255
                                                                                          202
2
   7077
                   372
                         145
                               146
                                    -103
                                         -269
                                               -245
                                                        81
                                                             178
                                                                   -27
                                                                       -233
                                                                              -36
                                                                                    167
                                                                                           78
   7077
                   372
                                               -215
                                                     -168
                                                                    39
                                                                                           29
1
                 2
                         -11
                                45
                                      46
                                         -142
                                                              30
                                                                         -63
                                                                               -12
                                                                                     24
2
   7077
                 2
                   372
                           76
                               187
                                     114
                                            32
                                                  20
                                                       -51
                                                              68
                                                                   104
                                                                          37
                                                                              -51
                                                                                    -95
                                                                                           26
1
   7077
                 3
                   372
                         167
                               191
                                     190
                                            67
                                                 -39
                                                       -29
                                                              68
                                                                    96
                                                                         -69
                                                                                    157
                                                                               14
                                                                                          113
2
                   372
                                            52
                                                  92
                                                        27
                                                                    -5
                                                                          29
   7077
                           46
                               174
                                      46
                                                              -6
                                                                               40
                                                                                    -34
                                                                                          -40
1
   7077
                 4 372
                           36
                                90
                                     145
                                            -4
                                                -154
                                                      -137
                                                             -19
                                                                    27
                                                                         -50
                                                                               -96
                                                                                     37
                                                                                          199
2
   7077
                 4 372
                         203
                               219
                                     209
                                            71
                                                  74
                                                        20 -149 -194 -113
                                                                               62
                                                                                     88
                                                                                          -11
```

1	7077	5	5	372	-24	-16	-91	-187	-182	-128	-42	44	96	59	37	143
2	7077	5	5	372	150	33	3	129	15	25	-69	-187	-198	-2	142	-17
1	7077	6	5	372	-253	-204	-149	-154	-154	-115	-40	92	147	28	-132	-62
2	7077	6	5	3729	99999	99999	99999	99999	99999	10	92	10	-58	-1	62	64
1	7077	7	7	372	-1	-133	-213	-151	-86	-47	-1	-22	- 7	-3	- 8	32
2	7077	7	7	372	128	103	14	-4	25	-89	14	90	-18	-53	-14	125
1	7077	8	3	372	206	50	7	-57	-73	-25	-1	38	73	65	-27	-74
2	7077	8	3	372	-38	65	-37	-143	-126	-100	-115	-47	-36	12	38	8
1	7077	9)	372	-30	46	0	-110	-63	-44	-2	43	17	39	32	-18
2	7077	9)	372	-87	-118	108	134	-40	-45	-16	-56	26	34	13	10
1	7077	10)	372	-89	-102	-37	61	-80	-265	-213	-127	-86	-36	-10	-121
2	7077	10)	372	-182	-171	-67	71	27	-160	-138	-47	-46	28	23	-129
1	7077	11	L	372	-334	-330	-163	-107	-232	-357	-306	-329	-449	-515	-513	-443
2	7077	11	L	372	-307	-239	-282	-155	59	-42	-245	-242	-146	-125	34	47
1	7077	12	2	372	-53	-240	-246	-118	-60	-139	-227	-326	-428	-509	-627	-516
2	7077	12	2	372	-310	-178	-325	-519	-259	-21	-29	-29	-89	-57	-28	128
1	7077	13	3	372	148	-131	-320	-235	-121	-160	-287	-358	-479	-283	-197	-172
2	7077	13	3	372	31	159	142	167	-57	-248	-51	100	23	-111	-46	82
1	7077	14	ŀ	372	180	39	-105	-76	13	- 5	-208	-407	-255	-237	-76	104
2	7077	14	Ŀ	372	176	192	96	45	7	-54	-196	-170	-25	-55	-48	52
1	7077	15	5	372	76	139	159	62	-77	-68	-211	-519	-308	-75	-7	145
2	7077	15	5	372	77	140	253	240	-1	34	67	74	105	174	221	240

(iii) File reference number 10 input data (hourly north/south current components):

```
7077
                7077
                8 27299999 -755 -802 -687 -688 -551 -221
                                                              41
                                                                  301
                                                                       557
                                                                             684
                                                  -90
                                                                  -25
                                                                        -20 -119 -326
   7077
               9 272
                                       163
                                              46
                                                       -66
                                                            -30
1
                       534
                            363
                                  203
2
   7077
                9 272 -553 -716 -771 -739 -503 -343 -354 -124
                                                                  135
                                                                       375
                                                                             672
                                                       -81 -178
   7077
              10 272
                       713
                            586
                                  379
                                       187
                                            109
                                                    4
                                                                 -234
                                                                      -278
                                                                           -350
   7077
              10 272
                     -693 -767 -738
                                      -863 -961 -882 -705 -422
                                                                  -39
                                                                       290
                                                                             620
1
   7077
              11 272
                       882
                            839
                                  518
                                       199
                                              12 -109 -281 -590 -572
                                                                      -485
                                                                           -449
                                                                                 -437
   7077
                                      -885-1140-1202-1059 -800 -355
2
              11 272 -626 -802 -851
                                                                             471
                                                                                  856
                                                                        88
                                        40 -208 -228 -345 -578 -609 -523 -343
   7077
1
              12 272 1044
                            887
                                 471
                                                                                 -176
2
   7077
              12 272 -220 -553 -814 -955-1162-1447-1545-1210 -640 -162
                                                                             354 1092
                                      413 -114 -316 -462 -725 -803 -608 -443
              13 272 1454 1338 1020
1
   7077
2
              13 272 -378 -401 -535 -721 -866-1214-1455-1363-1080 -514
                                                                                  579
   7077
                                                                              97
                                            232 -216 -458 -773 -699 -328
1
              14 272 1122 1542 1248
                                       795
   7077
                                                                             -61
                                                                                  -82
2
                                   71 -112 -525 -893-1315-1494-1378 -845
   7077
              14 272
                       -45
                              41
                                                                           -263
                                                                                  282
1
   7077
              15 272
                       820 1282 1525 1294
                                            658
                                                  -89 -530 -574 -550 -411 -143
                                                                                  131
                                           -347 -879-1108-1322-1434-1115 -487
2
   7077
              15 272
                       452
                            215
                                   41
                                       -73
                                                                                  180
              16 272
                                                       -48 -401 -583 -600 -465 -101
1
   7077
                       706 1093 1372 1222
                                            865
                                                  376
                                                    9 -320 -732-1120-1230 -919 -228
2
   7077
              16 272
                            639
                                  617
                                       554
                                            400
                       511
                                                  861
1
   7077
              17 272
                       652 1076 1321 1581 1329
                                                       317 -156 -517 -636 -638 -397
2
   7077
              17 272
                                       658
                                             679
                                                  369
                                                       -27 -407 -719 -915 -902 -752
                        -7
                             484
                                  565
1
   7077
              18 272 -318
                            319
                                  851 1159 1072
                                                  743
                                                       370 -158 -653-1108-1294-1121
2
   7077
              18 272 -861 -460
                                   29
                                       413
                                             710
                                                  706
                                                       447
                                                              97 -202 -518 -766 -737
1
   7077
              19 272 -539 -124
                                       826
                                             859
                                                  686
                                                       312 -129 -621-1043-1300-1328
                                  401
2
   7077
              19 272-1178 -771
                                -264
                                       196
                                             508
                                                  728
                                                       721
                                                             578
                                                                  206 -161 -393 -478
1
   7077
              20 272 -429 -203
                                  184
                                       616
                                            804
                                                  725
                                                       434
                                                              59 - 307 - 714 - 1203 - 1625
   7077
                                                  486
                                                       845
                                                             897
2
              20 272-1623-1211 -687
                                      -132
                                             220
                                                                  589
                                                                       522
                                                                             428
                                                                                  270
   7077
1
              21 272
                       152
                             132
                                  208
                                       403
                                             592
                                                  619
                                                       489
                                                             320
                                                                  126 -319 -847-1225
   7077
               21 272-1425-1361-1082
                                      -616
                                              32
                                                  471
                                                       537
                                                             825
                                                                  950
                                                                       693
                                                                             631
1
   7077
              22 272
                       323
                              53
                                 -45
                                       -12
                                            111
                                                  236
                                                       360
                                                             336
                                                                  163
                                                                        -36 -299 -829
2
   7077
              22 272-1223-1371-1299
                                      -885 -385
                                                  268
                                                       465
                                                             466
                                                                  838
                                                                       990
                                                                             735
                                                                                  671
1
   7077
              23 272
                       564
                            364
                                   80
                                        -2
                                             -44
                                                  -23
                                                       110
                                                             249
                                                                  283
                                                                       161
                                                                             -88 -404
2
   7077
              23 272 -636
                           -812-1102-1227-1073 -528
                                                       155
                                                             274
                                                                  589
                                                                       992 1142 1067
1
   7077
              24 272
                       837
                            605
                                 367
                                        85
                                             -79 -219
                                                      -310
                                                            -195
                                                                   38
                                                                       101
                                                                             -29 -156
2
   7077
              24 272
                      -347 -730-1031-1213-1328-1166 -744
                                                             -24
                                                                  223
                                                                       440
                                                                             880 1249
   7077
              25 272 1232
                            895
                                            -68 -194 -371 -448
                                                                 -279
1
                                 409
                                      115
                                                                       199
                                                                             430
                                                                                  314
2
                         9 -333 -792-1095-1264-1341-1162 -638
                                                                       271
   7077
               25
                  272
                                                                  -82
                                                                             568
                                                                                  965
1
                 272 1334 1129
                                       453 104 -267 -591 -564
   7077
               26
                                 699
                                                                 -484
                                                                      -248
                                                                             -13
                                                                                  306
                       357
2
   7077
              26 272
                              66 -310 -741-1098-1260-1301-1120 -725 -183
                                                                             271
                                                                                  627
1
   7077
              27 272 1130 1355
                                  960
                                       273 -214 -468 -625 -830 -619 -236
                                                                             -11
                                                                                   66
2
   7077
              27 272
                       254
                            249
                                      -307 -745-1066-1346-1446-1188 -770
                                                                           -148
                                   50
                                                                                  311
1
   7077
              28 272
                       796 1182 1135
                                       731
                                            173 -243 -542 -792 -823 -578
                                                                           -344
                                                                                  -60
2
   7077
              28 272
                            135
                                  166
                                       -24 -198 -561-1004-1235-1143 -672
                         0
                                                                             -23
                                                                                  463
              29 272
                            986 1150 1065
1
   7077
                       699
                                            567
                                                  247
                                                      -79 -385 -547 -515
                                                                            -233
                                                                                  172
2
   7077
              29 272
                                             31
                                                  -39 -300 -853 -950 -623
                       296
                            404
                                  370
                                       235
                                                                             -43
                                                                                  641
   7077
               1 372
                       965 1128 1293 1219
                                            905
                                                  533
                                                       173 -243 -504 -388 -136
1
                                                                                  309
                                                  -62 -309 -601 -881 -891 -502
2
   7077
               1 372
                       628
                             744
                                  912
                                       794
                                             362
   7077
                 372
                       394
                                  904
                                       890
                                            536
                                                  141 -281 -550 -922-1170-1063 -831
1
               2
                            542
2
   7077
               2
                 372 -302
                            217
                                  341
                                       564
                                            535
                                                  293
                                                       -72 -336 -582 -782 -728 -444
1
   7077
               3 372
                       -64
                            257
                                       698
                                                  217 -138 -495 -873-1131-1241-1048
                                  541
                                            550
2
   7077
               3 372 -537
                                                  597
                                                            140
                             140
                                  363
                                       525
                                             699
                                                       381
                                                                  -59 -313 -586 -572
1
   7077
               4 372 -271
                             13
                                  373
                                       719
                                             658
                                                  432
                                                       140 -201 -583-1008-1195-1060
2
               4 372 -705 -194
   7077
                                  233
                                       331
                                             610
                                                  738
                                                       637
                                                            357
                                                                   80 -113 -188 -203
```

1	7077	5	37	2 -52	191	454	605	505	317	49	-302	-653	-896	-1140-	-1286
2	7077	5	37	2-1049	-660	-228	103	206	458	554	497	261	8	-56	-4
1	7077	6	37	2 -25	-70	11	197	267	144	-107	-424	-717	-1068	-1226-	-1311
2	7077	6	37	299999	999999	999999	99999	99999	178	426	474	308	200	237	134
1	7077	7	37	2 76	70	138	160	273	385	314	89	-170	-419	-679	-891
2	7077	7	37	2-1022	-965	-700	-335	-3	180	373	628	758	674	369	151
1	7077	8	37	2 77	37	23	61	33	-24	-86	-156	-336	-615	-736	-755
2	7077	8	37	2 -830	-955	-905	-662	-424	-134	108	316	473	506	494	405
1	7077	9	37	2 226	- 5	-95	-185	-253	-298	-342	-357	-348	-403	-479	-621
2	7077	9	37	2 -748	-757	-794	-875	-740	-484	-157	8	187	400	524	537
1	7077	10	37	2 418	156	-129	-270	-385	-528	-485	-430	-374	-298	-346	-487
2	7077	10	37	2 -608	-703	-725	-810	-937	-828	-539	-181	87	405	740	824
1	7077	11	37	2 657	426	173	-79	-263	-512	-622	-495	-456	-467	-442	-368
2	7077	11	37	2 -401	-493	-621	-775	-1021	-1184	-941	-477	-126	164	511	754
1	7077	12	37	2 896	713	203	-107	-301	-474	-577	-664	-577	-394	-405	-405
2	7077	12	37	2 -282	-184	-376	-708	-981	-1276	-1235	-927	-443	-68	242	578
1	7077	13	37	2 949	1116	789	140	-233	-463	-769	-899	-939	-706	-403	-214
2	7077	13	37	2 -98	-47	-59	-325	-885	-1185	-1437	-1371	-866	-396	-50	327
1	7077	14	37	2 767	1107	932	469	30	-357	-775	-979	-974	-629	-310	69
2	7077	14	37	2 276	416	455	308	-69	-702	-1305	-1310	-1170	-748	-94	223
1	7077	15	37	2 510	738	890	871	399	-109	-635	-1101	-1205	-1163	-715	-172
2	7077	15	37	2 132	300	375	347	179	-212	-588	-881	-1119	-972	-551	5

Appendix 7.3 Final Analysis Results Arising from the Input Data of Appendix 7.2 and the Standard Constituent Data Package of Appendix 7.1.

FINAL ANALYSIS RESULTS IN CURRENT ELLIPSE FORM

GREENWICH PHASES ARE FOR TIME ZONE PST

FOR STATION 7077, RACE ROCKS SMOOTH&PAD ,AT THE LOCATION 48 14, 139 12 OVER THE PERIOD OF 14HR $\,$ 8/ $\,$ 2/72 $\,$ TO $\,$ 24HR $\,$ 15/ $\,$ 3/72

NODAL MODULATION AND INFERENCE CORRECTIONS HAVE BEEN MADE AMPLITUDES HAVE BEEN SCALED TO COMPENSATE FOR THE PRIOR APPLICATION OF MOVING AVERAGE FILTERS

	NAME	SPEED	MAJOR	MINOR	INC	G	G+	G-			
1	Z0	0.0000000	0.945	0.000	13.5	180.0	166.5	193.5			
2	MM	0.00151215	0.787	-0.072	2.0	85.7	83.7	87.7			
3	MSF	0.00282193	1.087	-0.008	47.2	106.8	59.6	154.0			
4	ALP1	0.03439657	0.113	-0.037	162.3	332.0	169.8	134.3			
5	2Q1	0.03570635	0.442	-0.052	5.1	121.5	116.5	126.6			
6	Q1	0.03721850	0.461	-0.065	175.1	236.9	61.8	51.9			
7		0.03873065	2.410	-0.253	177.5	250.2	72.8	67.7			
8	NO1	0.04026859	0.494	-0.112	6.8	92.2	85.5	99.0			
9	P1	0.04155259	1.272	0.232	178.7	270.5	91.8	89.3	INF	FR	K1
10	K1	0.04178075	5.043	-0.221	0.9	88.2	87.3	89.1			
11	J1	0.04329290	0.142	0.103	22.9	123.9	101.0	146.8			
12	001	0.04483084	0.455	0.125	125.7	334.4	208.8	100.1			
13	UPS1	0.04634299	0.180	0.070	159.3	27.1	227.8	186.4			
14	EPS2	0.07617731	0.198	-0.028	41.4	136.8	95.3	178.2			
15	MU2	0.07768947	0.409	0.048	8.1	293.2	285.1	301.2			
16	N2	0.07899925	1.369	-0.035	173.8	225.2	51.4	39.0			
17	M2	0.08051140	6.980	-0.295	178.3	249.2	70.9	67.6			
18	L2	0.08202355	0.390	-0.240	174.1	107.1	293.0	281.2			
19	S2	0.08333334	2.278	-0.148	5.9	90.6	84.7	96.4			
20	K2	0.08356149	0.462	-0.054	164.9	264.4	99.5	69.2	INF	FR	S2
21	ETA2	0.08507364	0.157	-0.024	76.9	62.8	345.9	139.7			
22	MO3	0.11924206	0.343	-0.135	21.4	344.9	323.4	6.3			
23	M3	0.12076710	0.265	0.139	155.2	99.3	304.2	254.5			
24	MK3	0.12229215	0.346	-0.096	115.0	18.4	263.4	133.4			
25	SK3	0.12511408	0.219	-0.179	169.1	321.1	152.0	130.2			
26	MN4	0.15951066	0.289	-0.078	49.4	258.5	209.1	307.9			
27	M4	0.16102280	0.383	0.182	141.6	114.6	333.1	256.2			
28	SN4	0.16233259	0.084	-0.024	34.1	197.6	163.5	231.7			
29	MS4	0.16384473	0.366	-0.083	74.0	40.2	326.2	114.2			
30	S4	0.16666667	0.089	0.015	91.1	18.1	287.0	109.2			
31	2MK5	0.20280355	0.423	-0.072	143.2	129.6	346.4	272.9			
32	2SK5	0.20844743	0.154	0.006	61.8	159.3	97.4	221.1			
33	2MN6	0.24002205	0.169	0.027	117.2	85.6	328.4	202.8			
34	M6	0.24153420	0.350	-0.048	174.1	111.3	297.2	285.4			
35	2MS6	0.24435614	0.238	-0.194	95.2	202.8	107.6	298.0			
36	2SM6	0.24717808	0.156	-0.120	97.2	184.9	87.6	282.1			
37	3MK7	0.28331494	0.145	0.041	25.5	265.7	240.2	291.3			
38	M8	0.32204559	0.184	-0.074	18.9	321.7	302.9	340.6			
39	M10	0.40255699	0.214	0.087	45.7	322.7	277.0	8.4			

AFTER INFERENCE, X RMS(RESID ER) = 1.57687, AND Y RMS(RESID ER) = 1.29416

Appendix 7.4 Sample Input for the Tidal Currents Prediction Program.

The following sample input for file reference number 8 will synthesize three sets of currents at Race Rocks, British Columbia:

- (i) the times, magnitudes and directions of all maximum and minimum values for the period 0100 PST July 1, 1976 to 2400 PST July 31, 1976,
- (ii) the magnitudes and directions of hourly currents for the period 0100 PST July 1, 1976 to 2400 PST July 5, 1976,
- (iii) the north/south and east/west hourly current components for the period 0100 PST July 1, 1976 to 2400 PST July 31, 1976.

Note that the ellipse parameter and phase input values of the constituents to be used in the prediction were selected from the results listed in Appendix 7.3. The number of the constituent, its frequency and its g^+ and g^- values are not required.

The output results for file reference numbers 10, 11 and 12 are listed in Appendix 7.5.

```
.7428797055
                 .7771900329
                                .5187051308
                                                .3631582592
                                                               .7847990160
                                                                              000GMT 1/1/76
13.3594019864
                 .9993368945
                                .1129517942
                                               .0536893056
                                                              .0000477414
                                                                             INCR./365DAYS
       Z0
                0
                   0
                       0
                          0
                              0
                                 0 0.0
       SA
                0
                   0
                       1
                          0
                              0
                                -1 0.0
                                            0
       SSA
                0
                   0
                       2
                          0
                              0
                                 0
                                   0.0
                                            0
       MSM
                \cap
                   1
                      -2
                          1
                              0
                                 0
                                     .00
                                            0
                       0
       MM
                0
                   1
                         -1
                              0
                                 0
                                    0.0
                                            0
                   2
                      -2
                          0
                                    0.0
                                            0
      MSF
                0
                              0
      MF
                0
                   2
                       0
                          0
                              0
                                 0
                                    0.0
                                            0
                1 -4
                       2
      ALP1
                          1
                              0
                                      25
                                            2
                                 0
                      0 .75
       ALP1
              -1
                  0
                            0.0360R1
                                          0 -1
                                                 0 .00 0.1906
                1 -3
                       0
       2Q1
                          2
                              0
                                 0 - 0.25
                                            5
              -2 -2
                      0 .50 0.0063
                                        -1 -1
                                                 0 .75 0.0241R1
                                                                   -1
                                                                           0 .75 0.0607R1
       2Q1
                                                                        0
               0 -2
                      0.50
                            0.0063
                                          0 -1
                                                0.0
                                                       0.1885
       2Q1
                       2
                1 -3
                              0
                                 0 - 0.25
       SIG1
                          0
                      0 .75
                  0
                            0.0095R1
                                                 0 .50 0.0061
                                                                    0 -1
                                                                           0.0
       SIG1
              -1
                                          0 - 2
                                                                                  0.1884
       SIG1
                  0
                      0 .50 0.0087
       Q1
                1 -2
                       0
                          1
                              0
                                 0 - 0.25
                                          10
                      0 .50 0.0007
                                        -2 -2
                                                 0 .50 0.0039
                                                                           0 .75 0.0010R1
       Q1
              -2 -3
                                                                   -1 -2
                                             0
                                                 0 .75 0.0292R1
                                                                    0 -2
              -1 -1
                      0 .75 0.0115R1
                                        -1
                                                                             .50 0.0057
       Q1
              -1
       Q1
                  0
                      1 .0
                             0.0008
                                         0 -1
                                                 0.0
                                                       0.1884
                                                                    1
                                                                        0
                                                                           0 .75 0.0018R1
               2
                  0
                      0 .50 0.0028
       01
                       2 -1
                                            5
      RH01
                1 -2
                              0
                                 0 - 0.25
               0 -2
                      0 .50 0.0058
                                         0 -1
                                                                           0 .75 0.0131R1
      RH01
                                                 0.0
                                                        0.1882
                                                                    1
                                                                        0
                  0
                      0 .50 0.0576
      RH01
               2
                                          2
                                             1
                                                 0
                                                  . 0
                                                        0.0175
       01
                1 -1
                       0
                          0
                              0
                                 0 - 0.25
                                                0 .50 0.0058
                      0 .25 0.0003R1
                                           -2
       01
                  0
                                         0
                                                                    0 -1
                                                                              .0
                                                                                  0.1885
              -1
       01
                      0 .25 0.0004R1
                                             0
                                                                             .25 0.0004R1
               1 -1
                                         1
                                                 0 .75 0.0029R1
                                                                    1
                                                                        1
               2
                  0
                      0 .50 0.0064
                                          2
                                             1
                                                 0 .50 0.0010
       01
       TAU1
                1 -1
                      2
                          0
                              0
                                 0 - 0.75
                                            5
                  0
                      0.0
                                             0
                                                 0 .25 0.0426R1
                                                                           0 .50 0.0284
       TAU1
              -2
                             0.0446
                                        -1
                                                                    0 -1
       TAU1
               0
                  1
                      0 .50 0.2170
                                         0
                                             2
                                                 0 .50 0.0142
```

```
1 0 -2 1 0 0 -.75
      0 -1 0 .00 0.2266
BET1
      1 0 0 1 0 0-0.75
NO1
                             9
     -2 -2 0 .50 0.0057 -2 -1 0 .0 0.0665
                                               -2 0 0 .0 0.3596
NO1
NO1
     -1 -1 0 .75 0.0331R1 -1 0 0 .25 0.2227R1
                                              -1
                                                    0 .75 0.0290R1
                                                  1
NO1
      0 -1 0 .50 0.0290
                        0 1 0 .0 0.2004
                                               0 2 0 .50 0.0054
CHI1
      1 0 2 -1 0 0-0.75
                            2
      0 -1 0 .50 0.0282
                         0 1 0 .0 0.2187
CHI1
PI1
      1 1 -3 0 0 1-0.25
      0 -1 0 .50 0.0078
PI1
P1
       1 1 -2 0 0 0-0.25
                            6
                         0 -1 0 .50 0.0112
Ρ1
      0 -2 0 .0 0.0008
                                               0 0 2 .50 0.0004
Ρ1
      1 0 0 .75 0.0004R1
                           2 0 0 .50 0.0015
                                               2 1 0 .50 0.0003
S1
       1 1 -1 0 0 1-0.75
                            2
S1
      0 0 -2 .0 0.3534
                          0 1 0 .50 0.0264
K1
       1 1 0 0 0 0-0.75 10
K1
     -2 -1 0 .0 0.0002
                         -1 -1 0 .75 0.0001R1 -1 0
                                                    0 .25 0.0007R1
                                              0 -1
K1
     -1 1
           0 .75 0.0001R1 0 -2 0 .0 0.0001
                                                    0 .50 0.0198
K1
      0
        1
           0 .0 0.1356
                          0 2 0 .50 0.0029
                                               1 0 0 .25 0.0002R1
           0 .25 0.0001R1
K1
      1
        1
      1 1 1 0 0 -1-0.75
PSI1
PSI1
      0 1 0 .0 0.0190
PHI1
      1 1 2 0 0 0-0.75
                            5
PHI1
     -2 0 0 .0 0.0344 -2 1 0 .0 0.0106
                                               0 0 -2 .0 0.0132
                         0 2 0 .50 0.0185
PHI1
      0 1 0 .50 0.0384
      1 2 -2 1 0 0 -.75
THE1
                           4
THE1
     -2 -1 0 .00
                 .0300
                         -1 0 0 .25 0.0141R1
                                                0 -1 0 .50 .0317
      0 1 0 .00
THE1
                 .1993
       1 2 0 -1 0 0-0.75 10
J1
      0 -1 0 .50 0.0294
                          0 1 0 .0 0.1980
                                                     0 .50 0.0047
J1
                                                0
                                                  2
           0 .75 0.0027R1
                                0 .25 0.0816R1
                           1 0
J1
      1 -1
                                                1
                                                  1
                                                     0 .25 0.0331R1
J1
      1 2
           0 .25 0.0027R1
                           2 0 0 .50 0.0152
                                                2
                                                     0 .50 0.0098
J1
      2 2
           0 .50 0.0057
       1 3 0 0 0 0-0.75
001
                            8
001
     -2 -1 0 .50 0.0037
                         -2 0
                               0 .0 0.1496
                                               -2
                                                    0 .0 0.0296
                                                 1
001
     -1 0
           0 .25 0.0240R1 -1 1
                                0 .25 0.0099R1
                                               0
                                                  1
                                                     0.0
001
      0 2
           0 .0 0.1342
                          0 3
                                0.0 0.0086
UPS1
      1 4 0 -1 0 0 -.75
                             5
UPS1
     -2 0 0 .00 0.0611
                          0 1 0 .00 0.6399
                                                0 2 0 .00 0.1318
UPS1
                           1 1 0 .25 0.0257R1
      1
        0
           0 .25 0.0289R1
002
       2 -3 0 3 0 0 0.0
                             2
002
     -1 0 0 .25 0.1042R2
                          0 -1 0 .50 0.0386
EPS2
       2 -3 2 1 0 0 0.0
                           3
EPS2
     -1 -1 0 .25 0.0075R2 -1 0 0 .25 0.0402R2
                                                0 -1 0 .50 0.0373
2N2
       2 -2 0 2 0 0 0.0
                           4
2N2
     -2 -2 0 .50 0.0061
                         -1 -1 0 .25 0.0117R2
                                              -1 0 0 .25 0.0678R2
2N2
      0 -1 0 .50 0.0374
MU2
       2 -2 2 0 0 0 0.0
                            3
     -1 -1 0 .25 0.0018R2 -1 0 0 .25 0.0104R2
MU2
                                                0 -1
                                                    0 .50 0.0375
N2
       2 -1 0 1 0 0 0.0
                            4
N2
     -2 -2 0 .50 0.0039
                         -1 0 1 .00 0.0008
                                                0 -2 0 .00 0.0005
      0 -1 0 .50 0.0373
N2
NU2
       2 -1 2 -1 0 0 0.0
NU2
      0 -1 0 .50 0.0373
                          1 0
                                0 .75 0.0042R2
                                                2 0
                                                     0.0
                                                          0.0042
NU2
      2 1 0 .50 0.0036
      2 0 -2 2 0 0 -.50
GAM2
                           3
GAM2 -2 -2 0 .00 0.1429 -1 0 0 .25 0.0293R2
                                               0 -1 0 .50 0.0330
```

```
2 0 -1 0 0 1-0.50
H1
H1
     0 -1 0 .50 0.0224 1 0 -1 .50 0.0447
M2
     2 0 0 0 0 0 0.0
                        9
M2
     -1 -1 0 .75 0.0001R2 -1 0 0 .75 0.0004R2 0 -2 0 .0 0.0005
     M2
     1 1 0 .75 0.0002R2
                         2 0 0 .0 0.0006
M2
                                           2 1 0 .0 0.0002
H2
      2 0 1 0 0 -1 0.0
                          1
     0 -1 0 .50 0.0217
H2.
      2 1 -2 1 0 0-0.50
LDA2
      0 -1 0 .50 0.0448
LDA2
L2
      2 1 0 -1 0 0-0.50
                          5
     L2
      2 1 0 .50 0.1102
                         2 2 0 .50 0.0156
L2
T2
      2 2 -3 0 0 1 0.0 0
S2
      2 2 -2 0 0 0 0.0 3
     0 -1 0 .0 0.0022
                      1 0 0 .75 0.0001R2
S2
                                            2 0 0 .0 0.0001
      2 2 -1 0 0 -1-0.50 2
R2
     0 0 2 .50 0.2535 0 1 2 .0 0.0141
R2
K2
     2 2 0 0 0 0 0.0
     -1 0 0 .75 0.0024R2 -1 1 0 .75 0.0004R2
K2
                                            0 -1 0 .50 0.0128
K2
     0 1 0 .0 0.2980
                         0 2 0 .0 0.0324
     2 3 0 -1 0 0 0.0
                        7
ETA2
ETA2
     0 -1 0 .50 0.0187
                         0 1
                             0 .0 0.4355
                                            0 2 0 .0 0.0467
ETA2
     1 0 0 .75 0.0747R2 1 1 0 .75 0.0482R2 1 2 0 .75 0.0093R2
ETA2
     2 0 0 .50 0.0078
М3
     3 0 0 0 0 0 -.50 1
М3
     0 -1 0 .50 .0564
2PO1 2
      2.0 P1
                   -1.0 01
SO1 2
       1.0 S2
                   -1.0 01
                   1.0 N2
ST36 3
      2.0 M2
                               -2.0 S2
2NS2 2
      2.0 N2
                   -1.0 S2
ST37 2
      3.0 M2
                   -2.0 S2
                               -2.0 S2
ST1 3
      2.0 N2
                   1.0 K2
ST2 4
      1.0 M2
                   1.0 N2
                                1.0 K2
                                            -2.0 S2
ST3 3
       2.0 M2
                   1.0 S2
                               -2.0 K2
02
       2.0 01
    1
ST4 3
       2.0 K2
                   1.0 N2
                               -2.0 S2
SNK2 3
       1.0 S2
                    1.0 N2
                               -1.0 K2
OP2 2
       1.0 01
                   1.0 P1
MKS2 3
       1.0 M2
                   1.0 K2
                               -1.0 S2
ST5 3
       1.0 M2
                   2.0 K2
                               -2.0 S2
ST6 4
       2.0 S2
                   1.0 N2
                               -1.0 M2
                                            -1.0 K2
2SK2 2
       2.0 S2
                  -1.0 K2
MSN2 3
       1.0 M2
                   1.0 S2
                               -1.0 N2
                   1.0 M2
                                            -1.0 N2
ST7 4
       2.0 K2
                               -1.0 S2
2SM2 2
                   -1.0 M2
       2.0 S2
ST38 3
       2.0 M2
                   1.0 S2
                               -2.0 N2
                   1.0 K2
SKM2 3
       1.0 S2
                               -1.0 M2
2SN2 2
       2.0 S2
                   -1.0 N2
       1.0 N2
NO3 2
                   1.0 01
       1.0 M2
MO3 2
                   1.0 01
NK3 2
       1.0 N2
                   1.0 K1
SO3 2
       1.0 S2
                   1.0 01
MK3
       1.0 M2
                   1.0 K1
    2
SP3 2
                   1.0 P1
       1.0 S2
SK3 2
       1.0 S2
                    1.0 K1
```

ST8	3	2.0 M2	1.0 N2	-1.0 S2	
N4	1	2.0 N2			
3MS4	2	3.0 M2	-1.0 S2		
ST39	4	1.0 M2	1.0 S2	1.0 N2	-1.0 K2
MN4	2	1.0 M2	1.0 N2		
ST40	3	2.0 M2	1.0 S2	-1.0 K2	
ST9	4	1.0 M2	1.0 N2	1.0 K2	-1.0 S2
M4	1	2.0 M2			
ST10	3	2.0 M2	1.0 K2	-1.0 S2	
SN4	2	1.0 S2	1.0 N2		
KN4	2	1.0 K2	1.0 N2		
MS4	2	1.0 M2	1.0 S2		
MK4	2	1.0 M2	1.0 K2		
SL4	2	1.0 S2	1.0 L2		
S4	1	2.0 S2			
SK4	2	1.0 S2	1.0 K2		
MNO5	3	1.0 M2	1.0 N2	1.0 01	
2MO5	2	2.0 M2	1.0 01	1.0 01	
3MP5	2	3.0 M2	-1.0 P1		
MNK5	3	1.0 M2	1.0 N2	1.0 K1	
		2.0 M2		1.0 KI	
	2		1.0 P1		
2MK5	2	2.0 M2	1.0 K1	1 0 1/21	
MSK5	3	1.0 M2	1.0 S2	1.0 K1	
3 KM5	3	1.0 K2	1.0 K1	1.0 M2	
	2	2.0 S2	1.0 K1	1 0 00	
ST11	3	3.0 N2	1.0 K2	-1.0 S2	
2NM6		2.0 N2	1.0 M2		
ST12		2.0 N2	1.0 M2	1.0 K2	-1.0 S2
ST41	3	3.0 M2	1.0 S2	-1.0 K2	
2MN6	2	2.0 M2	1.0 N2		
ST13	4	2.0 M2	1.0 N2	1.0 K2	-1.0 S2
M6	1	3.0 M2			
MSN6	3	1.0 M2	1.0 S2	1.0 N2	
MKN6	3	1.0 M2	1.0 K2	1.0 N2	
2MS6	2	2.0 M2	1.0 S2		
2MK6	2	2.0 M2	1.0 K2		
NSK6	3	1.0 N2	1.0 S2	1.0 K2	
2SM6	2	2.0 S2	1.0 M2		
MSK6	3	1.0 M2	1.0 S2	1.0 K2	
ST42	3	2.0 M2	2.0 S2	-1.0 K2	
S6		3.0 S2			
ST14	3	2.0 M2	1.0 N2	1.0 01	
ST15		2.0 N2	1.0 M2	1.0 K1	
M7		3.5 M2			
ST16		2.0 M2	1.0 S2	1.0 01	
3MK7		3.0 M2	1.0 K1		
ST17		1.0 M2	1.0 S2	1.0 K2	1.0 01
ST18		2.0 M2	2.0 N2	1.0 112	1.0 01
3MN8		3.0 M2	1.0 N2		
ST19		3.0 M2	1.0 N2	1.0 K2	-1.0 S2
M8		4.0 M2	1.0 NZ	1.0 KZ	-1.0 52
			1 0 00	1 0 110	
ST20		2.0 M2	1.0 S2	1.0 N2	
ST21		2.0 M2	1.0 N2	1.0 K2	
3MS8		3.0 M2	1.0 S2		
3MK8		3.0 M2	1.0 K2	1 0 370	1 0 770
ST22		1.0 M2	1.0 S2	1.0 N2	1.0 K2
ST23	2	2.0 M2	2.0 S2		

```
ST24 3
              2.0 M2
                           1.0 S2
                                         1.0 K2
     ST25 3
              2.0 M2
                           2.0 N2
                                         1.0 K1
     ST26 3
             3.0 M2
                           1.0 N2
                                         1.0 K1
     4MK9 2
             4.0 M2
                           1.0 K1
     ST27 3
             3.0 M2
                           1.0 S2
                                          1.0 K1
     ST28 2
             4.0 M2
                           1.0 N2
     M10 1
              5.0 M2
     ST29 3
              3.0 M2
                           1.0 N2
                                          1.0 S2
     ST30 2
             4.0 M2
                           1.0 S2
     ST31 4
                           1.0 N2
                                                  1.0 K2
              2.0 M2
                                          1.0 S2
     ST32 2
             3.0 M2
                           2.0 S2
     ST33 3
             4.0 M2
                           1.0 S2
                                         1.0 K1
     M12 1
              6.0 M2
     ST34 2
              5.0 M2
                           1.0 S2
     ST35 4
              3.0 M2
                           1.0 N2
                                         1.0 K2
                                                       1.0 S2
 7120 RACE ROCKS BC
1 Z0 .00000000 .945
    7120 RACE ROCKS BC
                             PST 48 14 139 12
                             .000 13.5 180.0
                                                  166.5 193.5
                             -.052 5.1 121.5
-.065 175.1 236.8
         .03570635
                       .442
 5 201
                                                  116.5 126.6
 6 Q1
                                                  61.8
         .03721850
                        .461
                                                         51.9
 7 01
         .03873065
                                                  72.8
                       2.410 -.253 177.5 250.2
                                                        67.7
 8 NO1
         .04026859
                       .494 -.112
                                           92.2 85.5
                                                        99.0
                                     6.8
                     1.272
                             .232 178.7 270.5 91.8
 9 P1
         .04155259
                                                        89.3 INF FR K1
10 K1
         .04178075
                      5.043
                             -.221
                                     .9
                                           88.2
                                                  87.3
                                                        89.1
                       .142
                             .103 22.9 123.9 101.0 146.8
.125 125.7 334.4 208.8 100.1
11 J1
          .04329290
12 001
                       .455
          .04483084
                              .125 125.7
13 UPS1
                                           27.1 227.8
                                                         186.4
         .04634299
                        .180
         .07899925
                       1.369
16 N2
                              -.035
                                     173.8 225.2
                                                  51.4
                                                         39.0
17 M2
         .08051140
                      6.980
                                     178.3 249.2
                                                   70.9
                             -.295
                                                          67.6
         .08333333
                                                        96.4
19 S2
                       2.278
                             -.148
                                     5.9
                                           90.6 84.7
20 K2
                      .462 -.054 164.9 264.4 99.5 69.2 INF FR S2
         .08356149
21 ETA2
        .08507364
                       .157 -.024 76.9 62.8 345.9 139.7
001007076 031007076 EXTR
                             0.25
                             1.0
```

001007076 005007076 EQUI 001007076 031007076 EQUI COMP 1.0

Appendix 7.5 Tidal Currents Prediction Results Arising from the Input Data of Appendix 7.4.

(i) File reference number 10 output: the hourly current magnitudes for the period 0100 PST July 1, 1976 to 2400 PST July 5, 1976, followed by the north/south hourly current components for the period 0100 PST July 1, 1976 to 2400 PST July 31, 1976.

STN 1ST HR	DATE	1	2	3	4	5	6	7	8 D	T HRS
7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 1.00 7120 17.00 7120 1.00 7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00	1 776 1 776 1 776 2 776 2 776 2 776 3 776 3 776 4 776 4 776 4 776 5 776 5 776	4.79 10.55 12.74 6.86 6.46 10.22 8.61 1.91 6.89 9.57 2.43 3.53 9.28 4.58 0.82	1.99 12.39 12.44 4.52 9.28 11.51 7.33 4.73 9.34 9.84 0.89 6.41 11.27 4.42 3.32	0.70 12.08 9.83 1.57 10.62 10.51 4.74 7.05 9.88 8.32 2.22 8.11 11.39 3.07 5.52	2.21 9.46 5.61 1.04 9.95 7.48 1.65 8.06 8.36 5.52 4.14 8.10 9.70 1.19 6.72	2.09 4.94 1.05 2.45 7.23 3.19 1.03 7.33 5.10 2.21 5.09 6.27 6.63 1.15 6.41	0.77 1.02 3.79 2.23 2.94 1.77 2.56 4.87 1.01 0.79 4.63 2.91 2.92 2.29 4.45	3.41 6.27 6.73 0.78 2.21 5.61 2.56 1.15 3.81 2.75 2.74 1.54 0.64 2.39 1.10	7.22 10.55 7.76 3.04 6.87 8.06 1.18 3.12 7.44 3.29 0.21 5.79 3.28 1.27 3.25	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
STN 1ST HR	DATE	1	2	3	4	5	6	7	8 D	T HRS
7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 1.00 7120 17.00 7120 1.00	1 776 1 776 1 776 2 776 2 776 2 776 3 776 3 776 4 776 4 776 5 776 5 776 6 776 6 776 7 776 7 776 7 776	-0.15 -0.35 -0.20 0.03 -0.56 -0.20 0.24 -0.75 -0.21 0.39 -0.88 -0.19 0.42 -0.91 -0.13 0.32 -0.85 -0.04 0.12 -0.71 0.02	-0.17 0.00 -0.55 0.07 -0.28 -0.56 0.39 -0.58 -0.65 -0.85 -0.49 0.76 -1.03 -0.34 0.68 -1.07 -0.15 0.44 -0.97 0.01	-0.30 0.34 -0.80 -0.02 0.06 -0.84 0.37 -0.31 -0.85 0.73 -0.68 -0.76 0.93 -0.97 -0.57 0.91 -1.11 -0.32 0.67 -1.07 -0.08	-0.48 0.61 -0.89 -0.21 0.36 -0.96 0.20 -0.01 -1.00 0.61 -0.41 -0.94 0.89 -0.76 -0.76 0.95 -0.98 -0.50 0.76 -1.01 -0.22	-0.66 0.75 -0.83 -0.44 0.55 -0.91 -0.08 0.23 -0.97 0.33 -0.14 -0.95 0.65 -0.49 -0.83 0.77 -0.74 -0.61 0.67 -0.82 -0.35	-0.77 0.71 -0.64 -0.65 0.59 -0.70 -0.35 -0.75 -0.05 0.06 -0.78 0.25 -0.23 -0.23 -0.43 -0.45 -0.60 0.42 -0.56 -0.42	-0.76 0.50 -0.38 -0.76 0.45 -0.38 -0.64 0.31 -0.40 -0.43 0.12 -0.44 -0.20 -0.06 -0.48 -0.02 -0.21 -0.46 0.05 -0.29 -0.39	-0.62 0.17 -0.14 -0.74 0.17 -0.04 -0.78 0.10 0.01 -0.73 0.03 -0.01 -0.61 -0.03 -0.10 -0.48 -0.06 -0.20 -0.35 -0.09 -0.28	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7120 17.00 7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 9.00 7120 17.00	7 776 8 776 8 776 8 776 9 776 9 776 9 776	0.02 -0.09 -0.52 0.01 -0.27 -0.31 -0.07	0.01 0.11 -0.72 0.06 -0.20 -0.39 -0.02	-0.08 0.29 -0.83 0.04 -0.13 -0.43	-0.22 0.39 -0.82 -0.04 -0.07 -0.43 -0.03	-0.35 0.37 -0.70 -0.14 -0.04 -0.39 -0.07	-0.42 0.24 -0.52 -0.24 -0.06 -0.32 -0.14	-0.39 0.01 -0.31 -0.30 -0.13 -0.23 -0.21	-0.28 -0.26 -0.12 -0.31 -0.22 -0.14 -0.29	1.00 1.00 1.00 1.00 1.00

7120	1.00	1.0	776	-0.37	-0.43	-0.48	-0.49	-0.47	-0.42	-0.34	-0.24	1.00
7120			776		-0.04	0.03			0.01		-0.13	
				-0.13			0.07	0.06		-0.06		1.00
7120	17.00	10	776	-0.19	-0.22	-0.21	-0.19	-0.16	-0.14	-0.17	-0.24	1.00
7120	1.00	11	776	-0.37	-0.52	-0.68	-0.80	-0.84	-0.77	-0.61	-0.35	1.00
7120	9.00			-0.06	0.23	0.45	0.56	0.55	0.41	0.20	-0.06	1.00
	17.00			-0.29	-0.44	-0.50	-0.46	-0.36	-0.24	-0.16	-0.16	1.00
7120	1.00	12	776	-0.27	-0.46	-0.70	-0.92	-1.06	-1.05	-0.88	-0.55	1.00
7120	9.00	12	776	-0.13	0.32	0.69	0.92	0.95	0.79	0.47	0.07	1.00
7120			776	-0.33	-0.63	-0.78	-0.76	-0.61	-0.39	-0.18	-0.06	1.00
7120	1.00			-0.09	-0.26	-0.53	-0.84	-1.09	-1.20	-1.10	-0.79	1.00
7120	9.00	13	776	-0.33	0.20	0.70	1.04	1.16	1.03	0.68	0.20	1.00
7120	17.00	13	776	-0.31	-0.73	-0.97	-0.99	-0.82	-0.52	-0.19	0.06	1.00
7120	1.00	14	776	0.15	0.05	-0.22	-0.59	-0.94	-1.18	-1.22	-1.02	1.00
7120	9.00			-0.61	-0.07	0.47				0.75		
							0.90	1.11	1.06		0.27	1.00
			776	-0.27	-0.75	-1.05	-1.12	-0.95	-0.61	-0.19	0.17	1.00
7120	1.00	15	776	0.39	0.38	0.17	-0.21	-0.64	-1.00	-1.18	-1.14	1.00
7120	9.00	15	776	-0.86	-0.41	0.10	0.56	0.84	0.88	0.66	0.25	1.00
	17.00			-0.26	-0.73	-1.05	-1.15	-1.00	-0.64	-0.18	0.26	1.00
7120	1.00			0.57	0.67	0.53	0.20	-0.25	-0.69	-1.00	-1.11	1.00
7120	9.00	16	776	-1.00	-0.69	-0.27	0.14	0.44	0.55	0.43	0.13	1.00
7120	17.00	16	776	-0.29	-0.70	-1.00	-1.10	-0.97	-0.64	-0.18	0.28	1.00
7120			776	0.65	0.83	0.79	0.52	0.12	-0.33	-0.71	-0.95	1.00
7120			776	-0.98	-0.83	-0.55	-0.22	0.05	0.18	0.14	-0.06	1.00
7120	17.00	17	776	-0.37	-0.69	-0.92	-1.01	-0.90	-0.61	-0.19	0.25	1.00
7120	1.00	18	776	0.63	0.85	0.88	0.70	0.38	-0.03	-0.41	-0.70	1.00
7120	9.00	18	776	-0.84	-0.81	-0.67	-0.46	-0.26	-0.15	-0.15	-0.26	1.00
								-0.78				
	17.00			-0.46	-0.68	-0.84	-0.89		-0.54	-0.19	0.20	1.00
7120	1.00	19	././6	0.53	0.76	0.82	0.72	0.48	0.16	-0.18	-0.46	1.00
7120	9.00	19	776	-0.64	-0.70	-0.66	-0.56	-0.45	-0.38	-0.37	-0.43	1.00
7120	17.00	19	776	-0.55	-0.67	-0.75	-0.75	-0.64	-0.43	-0.15	0.15	1.00
7120	1.00			0.42	0.60	0.67	0.61	0.44	0.20	-0.05	-0.29	1.00
7120	9.00			-0.46	-0.55	-0.58	-0.56	-0.53	-0.51	-0.52	-0.56	1.00
7120	17.00	20	776	-0.61	-0.66	-0.67	-0.61	-0.49	-0.31	-0.08	0.15	1.00
7120	1.00	21	776	0.34	0.46	0.50	0.45	0.33	0.16	-0.02	-0.20	1.00
7120	9.00	21	776	-0.33	-0.43	-0.48	-0.52	-0.54	-0.57	-0.60	-0.64	1.00
	17.00			-0.67	-0.66	-0.62	-0.52	-0.37	-0.20	-0.01	0.16	1.00
7120	1.00		776	0.29	0.36	0.36	0.31	0.21	0.09	-0.04	-0.15	1.00
7120	9.00	22	776	-0.24	-0.32	-0.38	-0.44	-0.51	-0.58	-0.64	-0.69	1.00
7120	17.00	22	776	-0.71	-0.69	-0.61	-0.49	-0.33	-0.15	0.02	0.15	1.00
7120	1.00	23	776	0.24	0.28	0.26	0.21	0.13	0.05	-0.03	-0.09	1.00
	9.00											
7120				-0.14	-0.19	-0.25	-0.33	-0.42	-0.53	-0.63	-0.71	1.00
	17.00			-0.75	-0.73	-0.66	-0.53	-0.37	-0.20	-0.05	0.08	1.00
7120	1.00	24	776	0.15	0.17	0.16	0.12	0.07	0.04	0.02	0.01	1.00
7120	9.00	24	776	0.00	-0.02	-0.07	-0.15	-0.27	-0.42	-0.56	-0.69	1.00
	17.00			-0.77	-0.79	-0.74	-0.64	-0.49	-0.34	-0.19	-0.08	1.00
7120	1.00			-0.01	0.02	0.02	0.01	0.01	0.03	0.08	0.13	1.00
7120	9.00	25	776	0.18	0.20	0.18	0.09	-0.05	-0.24	-0.44	-0.62	1.00
7120	17.00	25	776	-0.76	-0.83	-0.83	-0.76	-0.64	-0.50	-0.37	-0.27	1.00
7120	1.00			-0.20	-0.17	-0.15	-0.13	-0.09	-0.01	0.10	0.23	1.00
7120	9.00			0.34	0.42	0.43	0.35	0.20	-0.03	-0.28	-0.53	1.00
7120	17.00			-0.74	-0.87	-0.91	-0.87	-0.76	-0.63	-0.50	-0.40	1.00
7120	1.00	27	776	-0.34	-0.31	-0.30	-0.28	-0.22	-0.11	0.04	0.23	1.00
7120	9.00			0.41	0.55	0.61	0.57	0.41	0.17	-0.14	-0.45	1.00
	17.00			-0.71	-0.89	-0.97	-0.94	-0.83	-0.67	-0.51	-0.39	1.00
7120	1.00			-0.32	-0.31	-0.33	-0.35	-0.33	-0.25	-0.10	0.10	1.00
7120	9.00	28	776	0.33	0.53	0.65	0.66	0.53	0.29	-0.04	-0.40	1.00
7120	17.00	28	776	-0.72	-0.94	-1.03	-0.99	-0.84	-0.63	-0.40	-0.23	1.00

7120	1.00	29	776	-0.13	-0.12	-0.19	-0.28	-0.36	-0.37	-0.30	-0.13	1.00
7120	9.00	29	776	0.10	0.34	0.52	0.59	0.52	0.31	-0.02	-0.39	1.00
7120	17.00	29	776	-0.74	-1.00	-1.11	-1.05	-0.85	-0.55	-0.22	0.05	1.00
7120	1.00	30	776	0.21	0.23	0.13	-0.06	-0.26	-0.42	-0.48	-0.41	1.00
7120	9.00	30	776	-0.23	0.00	0.23	0.38	0.40	0.25	-0.03	-0.40	1.00
7120	17.00	30	776	-0.76	-1.05	-1.17	-1.11	-0.86	-0.49	-0.06	0.32	1.00
7120	1.00	31	776	0.57	0.65	0.53	0.28	-0.06	-0.38	-0.60	-0.68	1.00
7120	9.00	31	776	-0.60	-0.39	-0.14	0.09	0.20	0.16	-0.04	-0.36	1.00
7120	17.00	31	776	-0.72	-1.03	-1.19	-1.15	-0.90	-0.49	0.01	0.49	1.00

(ii) File reference number 11 output: the hourly current directions for the period 0100 PST July 1, 1976 to 2400 PST July 5, 1976 followed by the east/west hourly current components for the period 0100 PST July 1, 1976 to 2400 PST July 31, 1976.

STN 1ST HR	DATE	1	2	3	4	5	6	7	8	DT HRS
7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 17.00 7120 17.00 7120 1.00 7120 1.00 7120 1.00	1 776 1 776 2 776 2 776 2 776 3 776 3 776 4 776 4 776 4 776 5 776 5 776	181.89 359.08 179.76 185.00 358.87 178.40 203.23 358.24 177.65 338.86 356.85 177.39 348.56	184.94 180.02 357.45 179.08 181.71 357.19 176.98 187.09 356.57 176.20 287.63 355.65 176.11 346.55 354.19	178.38 355.36 180.56 179.69 355.42 175.52 182.52 355.09 174.98 197.81 354.60 175.30 341.67	176.29 350.86 348.58 177.93 352.60 173.10 180.07 353.14 173.66 185.75 353.34 174.73 320.00	171.31 308.22 349.62 175.60 343.41 355.62 178.17 349.06 171.47 181.60 351.25 174.41 205.39	43.97 189.68 343.05 168.44 203.20 351.34 175.86 311.61 356.39 179.32 344.47 175.02 185.82	4.58 183.27 283.40 11.75 183.87 345.49 164.58 186.04 350.99 177.50 196.80 341.82 181.48	0.94 181.02 193.98 1.38 180.27 318.93 1.87 179.90 347.23 7.89 180.12 349.21 181.19	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
STN 1ST HR	DATE	1	2	3	4	5	6	7	8	DT HRS
7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 9.00 7120 17.00 7120 1.00 7120 17.00 7120 17.00 7120 17.00 7120 17.00 7120 17.00 7120 17.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00 7120 1.00	1 776 1 776 2 776 2 776 2 776 3 776 3 776 4 776 4 776 4 776 5 776 5 776 6 776 6 776	-4.78 -10.55 12.73 -6.86 -6.43 10.21 -8.61 -1.76 6.89 -9.56 2.26 3.52 -9.27 4.49 0.81 -7.53 4.28	11.50 -7.32 -4.69 9.32 -9.81 0.27 6.40 -11.25 4.30 3.31 -11.01 6.33	9.80 -1.57 -10.62 10.47 -4.73 -7.04 9.84 -8.29 -2.11 8.07 -11.35 2.92 5.49 -12.96 6.77	5.76	3.80	0.02 0.73 -3.74 2.13 -2.88 -1.62 2.53 -4.86 0.67 0.78 -4.63 2.81 -2.91 -2.28 4.39 -7.66 1.57	-3.32 6.25 -6.72 0.18 2.17 -5.60 2.48 -1.11 -3.79 2.71 -2.74 -1.47 0.61 -2.39 1.00 -3.39 -0.23	-7.19 10.54 -7.76 -2.95 6.87 -8.06 0.89 3.12 -7.44 3.21 0.21 -5.79 3.23 -1.27 -3.25 0.85	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7120 9.00 7120 17.00 7120 1.00	10 776 11 776 11 776	-0.77 -4.58 1.75 -0.98 -1.11 -2.41 0.19 1.92 -7.11 2.58 3.70 -11.33 5.75 3.84 -14.27 9.04	5.92 -1.29 -5.48	8.55 -0.36 -9.98 7.97 -2.55	9.30 1.37 -13.65 10.81 -1.65 -10.78 10.11 -4.04	8.28 3.18 -15.60 11.45 0.24 -14.49 12.75 -2.83 -11.50 12.04 -5.24	-16.28 12.86 -0.51 -15.09 14.07	3.15 4.11 -12.65 7.04 3.75 -15.58 10.66 1.98 -16.51 13.36 -0.70 -15.46 14.60	6.89 3.65 -15.24 10.29 2.10	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

```
2.50
                                                       -8.48 -12.87 -15.48
7120
     1.00 12 776
                           4.02
                                  3.50
                                        0.83
                                                -3.49
7120
     9.00 12 776 -15.49 -12.67
                                 -7.46
                                        -0.86
                                                5.79
                                                       11.14
                                                             14.13
                                                                     14.25
                                                                            1.00
7120 17.00 12 776
                  11.67
                           7.17
                                  1.90
                                        -2.84
                                                -5.99
                                                       -6.96
                                                             -5.77
                                                                     -3.03
                                                                            1.00
                                         2.91
7120
     1.00 13 776
                   0.24
                           2.89
                                  3.95
                                                -0.17
                                                       -4.61
                                                              -9.34 -13.12
                                                                            1.00
     9.00 13 776 -14.88 -13.99 -10.46
                                        -4.90
7120
                                                 1.58
                                                        7.64
                                                              12.02
                                                                     13.90
                                                                            1.00
                                                              -7.00
7120 17.00 13 776
                  12.99
                           9.67
                                  4.86
                                        -0.24
                                               -4.42
                                                       -6.80
                                                                     -5.25
                                                                            1.00
7120
     1.00 14 776
                   -2.29
                           0.84
                                  3.06
                                        3.56
                                                2.04
                                                      -1.25
                                                             -5.53
                                                                     -9.69
                                                                            1.00
7120
     9.00 14 776 -12.62 -13.43 -11.74
                                        -7.75
                                                -2.22
                                                        3.71
                                                              8.79
                                                                     11.98
                                                                            1.00
7120 17.00 14 776
                  12.68
                         10.86
                                 7.07
                                         2.30
                                                -2.30
                                                      -5.71
                                                              -7.23
                                                                     -6.72
                                                                            1.00
7120
     1.00 15 776
                   -4.57
                          -1.59
                                  1.22
                                         2.94
                                                2.97
                                                       1.18
                                                              -2.02
                                                                     -5.81
                                                                            1.00
     9.00 15 776
                   -9.18 -11.16 -11.12
                                        -8.88
7120
                                                -4.82
                                                        0.23
                                                              5.21
                                                                      9.05
                                                                            1.00
7120 17.00 15 776
                   10.95
                          10.56
                                                -0.30
                                                       -4.20
                                                                     -7.43
                                  8.07
                                        4.13
                                                              -6.72
                                                                            1.00
     1.00 16 776
                   -6.36
                          -3.99
                                 -1.13
                                                 2.64
                                                                     -2.15
7120
                                         1.32
                                                        2.40
                                                               0.64
                                                                            1.00
     9.00 16 776
                   -5.23
                          -7.70
                                 -8.82
                                        -8.17
                                                -5.77
7120
                                                       -2.08
                                                               2.11
                                                                      5.89
                                                                            1.00
7120 17.00 16 776
                   8.39
                          9.09
                                  7.85
                                         4.98
                                                 1.17
                                                       -2.71
                                                              -5.81
                                                                     -7.51
                                                                            1.00
7120
     1.00 17 776
                   -7.55
                          -6.10
                                 -3.67
                                        -0.99
                                                 1.19
                                                        2.30
                                                               2.08
                                                                      0.65
                                                                            1.00
7120 9.00 17 776
                   -1.53
                          -3.80
                                 -5.46
                                        -5.96
                                                -5.07
                                                       -2.91
                                                              0.08
                                                                     3.20
                                                                            1.00
7120 17.00 17 776
                   5.72
                          7.02
                                  6.77
                                         4.99
                                                2.04
                                                             -4.70
                                                                     -7.07
                                                       -1.44
                                                                            1.00
7120
     1.00 18 776
                   -8.12
                          -7.70
                                 -6.05
                                        -3.63
                                                -1.09
                                                        0.97
                                                              2.12
                                                                     2.16
                                                                            1.00
                   1.24
7120
     9.00 18 776
                          -0.26
                                 -1.83
                                        -2.91
                                                -3.14
                                                       -2.36 -0.72
                                                                      1.41
                                                                            1.00
                                                             -3.43
7120 17.00 18 776
                    3.47
                          4.92
                                  5.32
                                         4.47
                                                 2.46
                                                       -0.36
                                                                     -6.15
                                                                            1.00
                   -7.99
                                        -6.21
7120
     1.00 19 776
                          -8.61
                                 -7.95
                                                -3.81
                                                       -1.28
                                                              0.87
                                                                      2.25
                                                                            1.00
7120
     9.00 19 776
                    2.71
                           2.33
                                  1.38
                                         0.27
                                               -0.59
                                                       -0.88
                                                             -0.48
                                                                      0.52
                                                                            1.00
                                                             -2.02
7120 17.00 19 776
                    1.84
                           3.07
                                  3.79
                                         3.68
                                                2.58
                                                       0.58
                                                                     -4.76
                                                                            1.00
                  -7.14
                          -8.68
7120
     1.00 20 776
                                 -9.10
                                        -8.31
                                               -6.49
                                                      -4.00 -1.30
                                                                     1.12
                                                                            1.00
     9.00 20 776
                   2.87
7120
                          3.74
                                 3.74
                                        3.07
                                                 2.06
                                                       1.08
                                                              0.45
                                                                     0.35
                                                                            1.00
7120 17.00 20 776
                   0.76
                           1.51
                                  2.26
                                         2.66
                                                 2.38
                                                       1.28 -0.61
                                                                     -3.05
                                                                            1.00
7120
     1.00 21 776
                  -5.63
                          -7.87
                                 -9.31
                                        -9.63
                                               -8.71
                                                      -6.68
                                                             -3.90
                                                                     -0.83
                                                                            1.00
                                                       3.22
     9.00 21 776
                   1.98
                          4.09
                                                4.52
7120
                                 5.22
                                        5.30
                                                              1.81
                                                                      0.69
                                                                            1.00
7120 17.00 21 776
                   0.12
                           0.15
                                                 1.73
                                                                     -1.28
                                  0.66
                                         1.31
                                                       1.55
                                                              0.55
                                                                            1.00
     1.00 22 776
                   -3.72
                          -6.34
                                 -8.61 -10.02 -10.19
                                                                     -3.21
7120
                                                      -8.98
                                                             -6.51
                                                                            1.00
     9.00 22 776
                   0.37
                                 5.91
                                        6.99
                                                6.78
7120
                           3.59
                                                       5.49
                                                               3.56
                                                                      1.54
                                                                            1.00
                   -0.08
                                                        1.15
7120 17.00 22 776
                          -0.96
                                 -1.01
                                        -0.40
                                                 0.48
                                                               1.14
                                                                      0.19
                                                                            1.00
                                                             -8.91
7120
     1.00 23 776
                   -1.74
                          -4.37
                                 -7.18
                                        -9.54 -10.85 -10.68
                                                                     -5.75
                                                                            1.00
                                                8.79
7120
    9.00 23 776
                   -1.75
                           2.38
                                  5.88
                                        8.13
                                                       7.88
                                                               5.76
                                                                     3.02
                                                                            1.00
7120 17.00 23 776
                   0.35
                          -1.62
                                 -2.53
                                        -2.34
                                               -1.32
                                                      -0.01
                                                               0.96
                                                                     1.06
                                                                            1.00
7120
     1.00 24 776
                   -0.03
                          -2.25
                                 -5.23
                                        -8.29 -10.68 -11.70 -10.93
                                                                     -8.35
                                                                            1.00
     9.00 24 776
                   -4.32
                                        8.54
                                                      10.25
7120
                           0.44
                                  5.01
                                               10.38
                                                               8.34
                                                                     5.21
                                                                            1.00
7120 17.00 24 776
                   1.66
                          -1.47
                                 -3.51
                                        -4.12
                                               -3.38
                                                      -1.77
                                                               0.01
                                                                      1.19
                                                                            1.00
                          -0.25
                                 -2.97
                                        -6.39
7120
     1.00 25 776
                    1.19
                                                -9.68 -11.93 -12.43 -10.83
                                                                            1.00
                                                      12.16 10.98
     9.00 25 776
                   -7.26
                          -2.31
7120
                                  3.09
                                        7.86
                                                11.08
                                                                     7.94
                                                                            1.00
                                                             -1.54
7120 17.00 25 776
                   3.85
                          -0.30
                                 -3.57
                                        -5.30
                                                -5.28
                                                      -3.81
                                                                      0.61
                                                                            1.00
                                               -7.77 -11.15 -13.07 -12.84
7120
     1.00 26 776
                    1.80
                          1.45
                                 -0.58
                                        -3.91
                                                                            1.00
7120
     9.00 26 776 -10.27
                          -5.70
                                 0.03
                                        5.80
                                                10.42
                                                      12.99 13.05 10.71
                                                                            1.00
7120 17.00 26 776
                    6.63
                          1.83
                                 -2.55
                                        -5.54
                                                -6.61
                                                       -5.74 -3.45
                                                                            1.00
                                                                     -0.63
7120
     1.00 27 776
                    1.69
                           2.63
                                 1.71
                                        -1.02
                                                -4.96
                                                       -9.14 -12.42 -13.82
                                                                            1.00
     9.00 27 776 -12.75
                          -9.22
                                                8.17
                                                       12.27
                                                             13.90
7120
                                 -3.81
                                         2.41
                                                                    12.82
                                                                            1.00
7120 17.00 27 776
                    9.39
                           4.52
                                 -0.61
                                        -4.79
                                                -7.14
                                                       -7.30
                                                             -5.48
                                                                     -2.44
                                                                            1.00
7120
     1.00 28 776
                    0.75
                                         1.90
                                                -1.51
                                                       -5.92 -10.19 -13.15
                           3.00
                                  3.49
                                                                            1.00
     9.00 28 776 -13.87 -11.96
                                                4.58
7120
                                 -7.63
                                        -1.71
                                                        9.90
                                                              13.15
                                                                     13.67
                                                                            1.00
                                                              -7.44
7120 17.00 28 776
                  11.47
                           7.16
                                        -3.20
                                                -6.83
                                                                     -4.75
                                  1.84
                                                       -8.29
                                                                            1.00
7120
     1.00 29 776
                  -1.15
                           2.19
                                  4.19
                                        4.16
                                                 1.97
                                                       -1.90
                                                              -6.48 -10.55
                                                                            1.00
7120 9.00 29 776 -12.98 -12.98 -10.35
                                        -5.55
                                                 0.45
                                                        6.35
                                                              10.86
                                                                    13.00
                                                                            1.00
7120 17.00 29 776 12.37 9.20
                                4.31
                                        -1.10
                                                -5.75
                                                              -9.10
                                                       -8.59
                                                                    -7.34
                                                                            1.00
```

7120	1.00	30	776	-3.96	-0.03	3.28	4.98	4.55	2.02	-1.95	-6.34	1.00
7120	9.00	30	776	-9.93	-11.70	-11.06	-8.01	-3.14	2.47	7.56	10.97	1.00
7120	17.00	30	776	11.92	10.23	6.34	1.18	-4.02	-8.08	-10.11	-9.76	1.00
7120	1.00	31	776	-7.30	-3.49	0.59	3.81	5.33	4.75	2.27	-1.42	1.00
7120	9.00	31	776	-5.28	-8.22	-9.38	-8.34	-5.24	-0.76	4.06	8.06	1.00
7120	17.00	31	776	10.26	10.11	7.60	3.30	-1.84	-6.64	-10.06	-11.38	1.00

(iii) File reference number 12 output: the times, magnitudes and directions of all maximum or minimum current values for the period 0100 PST July 1, 1976 to 2400 PST July 31, 1976.

STN	DF	ATE	TIME	MAG	DIR	TIME	MAG	DIR	TIME	MAG	DIR	TIME	MAG	DIR
7120 7120		776 776	243 1353	0.25 0.72	268.7 85.6	426 1723		346.3 358.4	600 2109		269.0 265.0	1022	12.56	179.4
7120	2	776	1	7.75	181.0	334	0.12	278.7	522	2.57	348.2	704	0.76	269.0
7120	2	776	1111	10.65	179.4	1435	0.53	83.0	1804	11.52	357.1	2139	0.79	264.6
7120	3	776	47	8.66	178.7	435	0.05	59.9	630	2.75	349.0	822	0.79	267.9
7120	3	776	1206		179.9	1516	0.27	79.9	1846		355.4	2209		263.0
7120	4	776	138		176.7	543	0.07	64.8	752		347.8			266.0
7120	4	776	1312		181.1	1556	0.05	46.1	1930		354.0			262.3
7120		776		11.58		649		275.2	923		348.0		0.64	259.9
7120	5	776	1435		182.7	1639		278.1			353.2			260.5
7120	6	776	331	13.26		747	0.39	268.5	1046		350.7			258.4
7120	6	776	1613		182.3	1738		276.0		5.43	353.4	2355		258.1
7120	7	776	428	14.72		838		269.2			353.7			248.6
7120	7	776	1743		179.0	1914		270.5			354.6			
7120	8	776	43	0.15	255.8	522	15.77	178.8	924	0.62	272.8	1247	11.53	356.3
7120	8	776	1704	0.03	151.3	1853	2.55	179.0	2053	0.13	273.0	2330	3.96	355.5
7120	9	776	136	0.23	262.2	614	16.35	180.3	1008	0.40	277.2	1332	13.13	358.4
7120	9	776	1739	0.05	227.0	1946	4.09	180.3	2212	0.15	270.3			
7120	10	776	32	3.93	355.1	232	0.46	267.9	702	16.51	181.2	1049	0.06	21.7
7120	10	776	1414	14.15	360.0	1813	0.22	261.8	2032	5.45	181.8	2314	0.18	274.9
7120	11	776	128	4.07	353.8	324	0.74	269.1	748	16.35	181.4	1129	0.52	84.8
7120	11	776	1454	14.61	0.9	1847	0.50	266.1	2115	6.44	182.9			
7120	12	776	7	0.17	276.6	217	4.13	352.7	412	0.96	271.1	830	15.84	181.2
7120	12	776	1207	0.94	87.5	1532	14.55	1.0	1922	0.79	266.6	2155	6.98	183.3
7120	13	776	55	0.08	286.0	303	3.99	352.1	457	1.08	271.7	911	14.91	180.9
7120	13	776	1245	1.15	88.0	1610	13.94	0.4	1957		267.3	2235	7.20	182.6
7120			143	0.10	80.6	347	3.65	352.0	539	1.12	272.4	950	13.47	180.7
			1322	1.12	87.7	1646		359.3	2029	1.07	266.1	2314	7.29	180.7
7120			233	0.29	80.6	433		352.0	623				11.42	
			1357	0.88		1720		357.8	2057		264.2			178.4
7120			327	0.41	80.1	524		351.0	714		272.3	1109	8.85	181.3
			1430	0.52		1752		355.9			263.6			
7120			32		176.3	426	0.37	76.0	624		348.2	818		271.6
			1152		182.5		0.14	78.0			353.7			263.8
7120		776	113		175.1	530	0.19	70.2	736		345.1	952		266.2
	18		1243		185.6			269.4			351.2			261.0
7120			159		175.0	634		300.2	902		346.7			262.8
7120				0.50	203.6		0.20	268.2			348.9			259.8
									1030	3.89	351.5	1533	0.63	301.2
					347.3				1125	F 40	254 6	1707	0 67	275.4
7120									1135	5.42	354.6	1/2/	0.67	2/5.4
					349.2				1000	7 07	256.2	1656	0 71	260 2
					211.0							1020	0.71	269.2
7120			1830		88.4							1054	0 01	257 2
														1.6
7120					92.2			179.8						358.2
			1730		267.7							1320	10.57	330.2
7120					358.3							1026	0 21	74.6
														276.7
					354.2									
					359.3							1100	0.40	02.5
, 120	20	, , 0	1171	10.01	222.3	1020	0.00	207.0	2 1 0 1	0.00	100.0			

7120 27 776 14 0.38 273.5 201 2.65 353.3 341 0.29 265.2 805 13.83 179.0 7120 27 776 1137 0.60 85.5 1506 13.92 359.3 1852 0.97 268.9 2133 7.54 185.6 7120 28 776 45 0.34 272.8 245 3.58 354.8 436 0.35 263.6 847 13.93 178.8 7120 28 776 1216 0.64 85.1 1541 13.82 358.8 1921 1.03 267.6 2207 8.32 184.1 7120 29 776 119 0.12 289.0 329 4.45 357.0 533 0.38 267.5 930 13.32 179.0 0.54 83.5 1617 13.12 357.8 1948 7120 29 776 1256 1.08 265.9 2242 9.20 182.0 0.23 81.9 418 5.09 358.6 632 0.47 267.5 1015 11.78 179.7 7120 30 776 201 79.5 1652 11.97 356.6 2014 1.07 265.0 2321 10.25 179.5 7120 30 776 1334 0.34 7120 31 776 251 0.56 84.0 514 5.38 358.5 738 0.67 267.5 1102 9.39 180.8 $7120\ 31\ 776\ 1409\quad 0.14\quad 71.2\ 1727\ 10.54\ 355.3\ 2039\quad 1.01\ 265.5$