IN THE CLAIMS:

Please amend the claims as follows:

Claim 1 (currently amended): A compound of formula (I):

$$\begin{array}{c|c}
R^{5} & O & O \\
R^{5} & & & \\
R^{5} & & & \\
R^{5} & & & \\
R^{7} & & & \\
R^{7$$

wherein:

 $\mathbf{R}^{\mathbf{v}}$ is selected from hydrogen or \mathbf{C}_{1-6} alkyl;

One of \mathbb{R}^1 and \mathbb{R}^2 are selected from hydrogen or $C_{1\text{-}6}$ alkyl and the other is selected from $C_{1\text{-}6}$ alkyl;

 $\mathbf{R}^{\mathbf{x}}$ and $\mathbf{R}^{\mathbf{y}}$ are independently selected from hydrogen, hydroxy, amino, mercapto, C_{1-6} alkyl, C_{1-6} alkoxy, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)2amino, C_{1-6} alkylS(O)a wherein a is 0 to 2;

R^z is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; v is 0-5;

one of \mathbb{R}^4 and \mathbb{R}^5 is a group of formula (IA):

ATTORNEY DOCKET NO.: 056291-5186 Application No.: 10/511,984

Page 4

$$\begin{array}{c|c}
A & O \\
R^{19} & N & N \\
R^{9} & R^{8} & R^{7}
\end{array}$$

(IA)

R³ and R6 and the other of R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₁-6alkoxy, C₁-6alkanoyl, C₁-6alkanoyloxy, N-(C₁-6alkyl)amino, N,N-(C₁-6alkyl)₂amino, C₁-6alkanoylamino, N-(C₁-6alkyl)carbamoyl, N,N-(C₁-6alkyl)₂carbamoyl, C₁-6alkylS(O)a wherein a is 0 to 2, C₁-6alkoxycarbonyl, N-(C₁-6alkyl)sulphamoyl and N,N-(C₁-6alkyl)₂sulphamoyl; wherein R³ and R6 and the other of R⁴ and R⁵ may be optionally substituted on carbon by one or more R¹7;

X is -O-, -N(R^a)-, -S(O)_b- or -CH(R^a)-; wherein R^a is hydrogen or C_{1-6} alkyl and b is 0-2; **Ring A** is aryl or heteroaryl; wherein Ring A is optionally substituted on carbon by one or more substituents selected from R¹⁸;

 ${f R}^7$ is hydrogen, $C_{1\text{-}6}$ alkyl, carbocyclyl or heterocyclyl; wherein ${f R}^7$ is optionally substituted on carbon by one or more substituents selected from ${f R}^{19}$; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from ${f R}^{20}$;

 \mathbb{R}^8 is hydrogen or \mathbb{C}_{1-6} alkyl;

 \mathbf{R}^9 is hydrogen or \mathbf{C}_{1-6} alkyl;

R¹⁰ is hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkyl)sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclyl,

Application No.: 10/511,984

Page 5

heterocyclyl C_{1-10} alkyl, carbocyclyl- $(C_{1-10}$ alkylene) $_p$ - R^{21} - $(C_{1-10}$ alkylene) $_q$ - or heterocyclyl- $(C_{1-10}$ alkylene) $_r$ - R^{22} - $(C_{1-10}$ alkylene) $_s$ -; wherein R^{10} is optionally substituted on carbon by one or more substituents selected from R^{23} ; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R^{24} ; or R^{10} is a group of formula (IB):

$$\begin{array}{c}
R^{13} \\
R^{14} \\
N \\
N \\
R^{11}
\end{array}$$
(IB)

wherein:

 \mathbf{R}^{11} is hydrogen or C_{1-6} alkyl;

R¹² and R¹³ are independently selected from hydrogen, halo, carbamoyl, sulphamoyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkanoyl, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl or heterocyclyl; wherein R¹² and R¹³ may be independently optionally substituted on carbon by one or more substituents selected from R²⁵; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R²⁶;

R¹⁴ is selected from hydrogen, halo, carbamoyl, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkanoyl, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclyl, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_p-R²⁷-(C₁₋₁₀alkylene)_q- or heterocyclyl-(C₁₋₁₀alkylene)_r-R²⁸-(C₁₋₁₀alkylene)_s-; wherein R¹⁴ may be optionally substituted on carbon by one or more substituents selected from

ATTORNEY DOCKET NO.: 056291-5186 Application No.: 10/511,984

Page 6

R²⁹; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R³⁰; or R¹⁴ is a group of formula (IC):

$$\begin{array}{c}
R \downarrow_{0}^{16} \\
N \downarrow_{15} \\
R \downarrow_{15}
\end{array}$$

 $\mathbf{R^{15}}$ is hydrogen or $C_{1\text{-}6}$ alkyl; and $\mathbf{R^{16}}$ is hydrogen or $C_{1\text{-}6}$ alkyl; wherein $\mathbf{R^{16}}$ may be optionally substituted on carbon by one or more groups selected from $\mathbf{R^{31}}$;

or R¹⁵ and R¹⁶ together with the nitrogen to which they are attached form a heterocyclyl; wherein said heterocyclyl may be optionally substituted on carbon by one or more R³⁷; and wherein if said heterocyclyl contains an - NH- group, that nitrogen may be optionally substituted by a group selected from R³⁸;

n is 1-3; wherein the values of R⁷ may be the same or different;

R¹⁷, R¹⁸, R¹⁹, R²³, R²⁵, R²⁹, R³¹ and R³⁷ are independently selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, *N*-(C₁₋₁₀alkyl)amino, *N*, *N*-(C₁₋₁₀alkyl)₂amino, *N*, *N*, *N*-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkanoylamino, *N*-(C₁₋₁₀alkyl)carbamoyl, *N*, *N*-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, *N*-(C₁₋₁₀alkyl)sulphamoyl, *N*, *N*-(C₁₋₁₀alkyl)₂sulphamoyl, *N*-(C₁₋₁₀alkyl)sulphamoylamino, *N*, *N*-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkoxycarbonylamino, carbocyclyl, carbocyclyl-(C₁₋₁₀alkyl, heterocyclyl, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_p-R³²-(C₁₋₁₀alkylene)_q- or heterocyclyl-(C₁₋₁₀alkylene)_r-R³³-(C₁₋₁₀alkylene)_s-; wherein R¹⁷, R¹⁸, R¹⁹, R²³, R²⁵, R²⁹, R³¹ and R³⁷ may be independently optionally substituted on carbon by one or more R³⁴; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R³⁵:

Application No.: 10/511,984

Page 7

 \mathbf{R}^{21} , \mathbf{R}^{22} , \mathbf{R}^{27} , \mathbf{R}^{28} , \mathbf{R}^{32} or \mathbf{R}^{33} are independently selected from -O-, -NR³⁶-, -S(O)_x-, -NR³⁶C(O)NR³⁶-, -NR³⁶C(O)NR³⁶-, -OC(O)N=C-, -NR³⁶C(O)- or -C(O)NR³⁶-; wherein R³⁶ is selected from hydrogen or C₁₋₆alkyl, and x is 0-2;

p, q, r and s are independently selected from 0-2;

- R³⁴ is selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, *N*-methylcarbamoyl, *N*,*N*-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, *N*-methylsulphamoyl, *N*,*N*-dimethylsulphamoyl, *N*-methylsulphamoylamino;
- $\mathbf{R^{20}}$, $\mathbf{R^{24}}$, $\mathbf{R^{26}}$, $\mathbf{R^{30}}$, $\mathbf{R^{35}}$ and $\mathbf{R^{38}}$ are independently selected from $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}6}$ alkylsulphonyl, $C_{1\text{-}6}$ alkoxycarbonyl, carbamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)carbamoyl, N- $(C_{1\text{-}6}$ alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl; and
- wherein a "heteroaryl" is a totally unsaturated, mono or bicyclic ring containing 3-12 atoms of which at least one atom is chosen from nitrogen, sulphur and oxygen, which heteroaryl may, unless otherwise specified, be carbon or nitrogen linked;
- wherein a "heterocyclyl" is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 3-12 atoms of which at least one atom is chosen from nitrogen, sulphur and oxygen, which heterocyclyl may, unless otherwise specified, be carbon or nitrogen linked, wherein a -CH2- group can optionally be replaced by a -C(O)- group, and a ring sulphur atom may be optionally oxidised to form an S-oxide; and
- wherein a "carbocyclyl" is a saturated, partially saturated or unsaturated, mono or bicyclic carbon ring that contains 3-12 atoms; wherein a -CH2- group can optionally be replaced by a -C(O) group;
- or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 2 (currently amended): A compound of formula (I) as claimed in claim 1 wherein R^v is hydrogen or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or

Application No.: 10/511,984

Page 8

amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 3 (currently amended): A compound of formula (I) as claimed in <u>claim 1</u> either of claims 1 or 2 wherein R¹ and R² are both butyl or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 4 (**currently amended**): A compound of formula (**I**) as claimed in <u>claim 1-any</u> one of claims 1-3 wherein R^x and R^y are both hydrogen or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 5 (**currently amended**): A compound of formula (**I**) as claimed in <u>claim 1-any</u> one of claims 1-4 wherein v is 0 or a pharmaceutically acceptable salt <u>or in vivo</u> hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 6 (currently amended): A compound of formula (I) as claimed in <u>claim 1-any</u> one of claims 1-7 wherein R³ and R⁶ are both hydrogen or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 7 (currently amended): A compound of formula (I) as claimed in <u>claim 1-any</u> one of claims 1-6 wherein R⁴ is methylthio or a pharmaceutically acceptable salt <u>or in vivo</u> <u>hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.</u>

Claim 8 (currently amended): A compound of formula (I) as claimed in claim 1-any one of claims 1-7 wherein R⁵ is a group of formula (IA) (as depicted in claim 1) wherein:

```
X is -O-;
```

Ring A is aryl; wherein Ring A is optionally substituted on carbon by one or more substituents selected from R¹⁸;

R⁷ is hydrogen;

R⁸ is hydrogen;

R⁹ is hydrogen;

R¹⁰ is a group of formula (IB) (as depicted in claim 1-above):

R¹¹ is hydrogen:

 R^{12} and R^{13} are independently selected from hydrogen or C_{1-10} alkyl;

 R^{14} is selected from C_{1-10} alkyl, carbocyclyl C_{1-10} alkyl and heterocyclyl; wherein R^{14} may be optionally substituted on carbon by one or more substituents selected from R^{29} ; or R^{14} is a group of formula (IC) (as depicted in claim 1-above);

 R^{15} and R^{16} together with the nitrogen to which they are attached form a heterocyclyl; wherein said heterocyclyl may be optionally substituted on carbon by one or more R^{37} ;

n is 1;

 R^{18} , R^{29} and R^{37} are independently selected from hydroxy and N-(C₁₋₁₀alkyl)carbamoyl; wherein R^{18} , R^{29} and R^{37} may be independently optionally substituted on carbon by one or more R^{34} ; and

R³⁴ is carbamoyl.

Claim 9 (currently amended): A compound of formula (I) as claimed in claim 1 (as depicted in claim 1) wherein:

9

R^v is selected from hydrogen;

 R^1 and R^2 are both butyl;

R^x and R^y are both hydrogen;

v is 0;

R³ and R⁶ are both hydrogen;

R⁴ is methylthio; and

R⁵ is selected from:

Application No.: 10/511,984

Page 10

N-{(R)- α -[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl} carbamoylmethoxy;

- N-{(R)- α -[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy;
- $N-((R/S)-\alpha-\{N-[1-(R)-2-(S)-1-hydroxy-1-(3,4-dihydroxyphenyl)prop-2-yl]carbamoyl\}-4-hydroxybenzyl)carbamoylmethoxy;$
- N-[(R)- α -(N-{2-(S)-[N-(carbamoylmethyl) carbamoyl]pyrrolidin-1-ylcarbonylmethyl}carbamoyl)benzyl]carbamoylmethoxy;
- N-((R)- α -{N-[2-(3,4,5-trihydroxyphenyl)ethyl]carbamoyl}benzyl)carbamoylmethoxy; and
- N-{(R)- α -[N-(2-(R)-3-(S)-4-(S)-5-(R)-3,4,5,6-tetrahydroxytetrahydropyran-2-ylmethyl)carbamoyl]benzyl}carbamoylmethoxy;

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 10 (currently amended): A compound of formula (I) selected from:

- 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- $(N-\{(R)-\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)$ carbamoyl]benzyl $\}$ carbamoylmethoxy $\}$ -2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
- 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
- 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-[N-((R/S)- α -{N-[1-(R)-2-(S)-1-hydroxy-1-(3,4-dihydroxyphenyl)prop-2-yl]carbamoyl}-4-hydroxybenzyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
- 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- $\{N-[(R)-\alpha-(N-\{2-(S)-[N-(carbamoylmethyl) carbamoyl]pyrrolidin-1-ylcarbonylmethyl\}$ carbamoyl)benzyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;

Application No.: 10/511,984

Page 11

1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-[N-((R)- α -{N-[2-(3,4,5-trihydroxyphenyl)ethyl]carbamoyl}benzyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine; and

1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)- α -[N-(2-(R)-3-(S)-4-(S)-5-(R)-3,4,5,6-tetrahydroxytetrahydropyran-2-ylmethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or a prodrug thereof.

Claim 11 (currently amended): A process for preparing a compound of formula (I) as claimed in <u>claim 1</u> elaims 1-10 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof which process comprises of:

Process 1): for compounds of formula (I) wherein X is -O-,-NR^a or -S-; reacting a compound of formula (IIa) or (IIb):

with a compound of formula (III):

$$\begin{array}{c}
A & O \\
R^{10} & N & N \\
R^{9} & R^{8} & R^{7}
\end{array}$$
(III)

wherein L is a displaceable group;

Application No.: 10/511,984

Page 12

Process 2): reacting an acid of formula (IVa) or (IVb):

HO
$$R^{7}$$
 R^{4} R^{2} R^{3} R^{2} R^{2} R^{3} R^{2} R^{2} R^{3} R^{2} R

or an activated derivative thereof; with an amine of formula (V):

$$\begin{array}{c}
A \\
R^{10} \\
R^{9} \\
R^{8}
\end{array}$$
(V);

Process 3): for compounds of formula (I) wherein R¹⁰ is a group of formula (IB); reacting a compound of formula (VIa):

HO
$$R^9$$
 R^8
 R^7
 R^5
 R^6
 R^6
 R^7
 R^5
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7

(VIa)

or **(VIb)**:

Application No.: 10/511,984

Page 13

HO
$$R^9$$
 R^8 R^7 R^4 R^3 R^3 R^2 R^2 R^2 R^2

(VIb)

with an amine of formula (VII):

Process 4) for compounds of formula (I) wherein one of R^4 and R^5 are independently selected from C_{1-6} alkylthio optionally substituted on carbon by one or more R^{17} ; reacting a compound of formula (VIIIa) or (VIIIb):

wherein L is a displaceable group; with a thiol of formula (IX):

 R^m -H

(IX)

Application No.: 10/511,984

Page 14

wherein R^m is C₁₋₆alkylthio optionally substituted on carbon by one or more R¹⁷; or *Process 5*): for compounds of formula (I) wherein R¹⁴ is a group of formula (IC); reacting a compound of formula (Xa):

or **(Xb)**:

HO
$$R^{13}$$
 R^{12} R^{9} R^{8} R^{7} R^{4} R^{3} R^{2} R^{2} R^{2} R^{2} R^{2}

(**Xb**)

with an amine of formula (XI):

(XI)

Application No.: 10/511,984

Page 15

and thereafter optionally if necessary or desirable:

i) converting a compound of the formula (I) into another compound of the formula (I);

and/or

ii) removing any protecting groups; and/or

iii) forming a pharmaceutically acceptable salt or in vivo hydrolysable ester or amide

formed on an available carboxy or hydroxy group of said compound, solvate,

solvate of such a salt or a prodrug.

Claims 12-16 (cancelled).

Claim 17 (currently amended): A pharmaceutical composition which comprises a

compound of formula (I), or a pharmaceutically acceptable salt or in vivo hydrolysable ester

or amide formed on an available carboxy or hydroxy group, solvate, solvate of such a salt or

a prodrug thereof, as claimed in any one of claims 1 to 10, in association with a

pharmaceutically-acceptable diluent or carrier.

Claims 18-24 (cancelled).