

Ch. 15 - IoT Future Trends

COMPSCI 147 Internet-of-Things; Software and Systems

What is happening next

Scalable deployment strategies

• AloT: Al + loT

Scalable deployment strategies

Scalable deployment strategies

Continuous Integration and Continuous Deployment (CI/CD)

Drastically reduce development times

Continuous Integration

Continuous deployment

Continuous deployment

Continuous deployment

CI/CD benefits

- Faster time to market
- Reduce risk (quick updates)
- Better code quality
- Lot's of automation

AloT: Moving beyond traditional applications at the device layer

Extremely resource intenstive

TinyML:

- TinyML is the overlap between Machine Learning and embedded (IoT) devices.
- It gives more "intelligence" to power advanced applications using ML.
- The idea is simple for complex use-cases where rule-based logic is insufficient; apply ML algorithms. And run them on low-power device at the edge. Sounds simple; execution gets tougher.

Typical flow for deploying models on ESP32

- Build models using raw data
- Exporting the model for microcontroller (e.g., C++)

Use ML Libraries:

https://registry.platformio.org/libraries/tanakamasayuki/TensorFlowLite ESP32

https://registry.platformio.org/libraries/adafruit/Adafruit%20TensorFlow%20Lite

Example

Can you use ML for Lab 4?

- Record the raw readings of the accelerometer and gyroscope whenever you take a step
- Use Jupyter Notebook and train ML models for step recognition
- Deploy the models on ESP32 and test :D

Using camera: ESP Eye

What about even more demanding sensors?

https://github.com/espressif/esp-who

Hardware accelerators: Google Coral

Google's answer to on-device AI accelerators

100+ FPS

Coral's hardware product current offering

Dev Board

A single-board computer with a removable system-on-module (SOM) featuring the Edge TPU.

Price

\$149.99

USB

Accelerator

A USB accessory featuring the Edge TPU that brings ML inferencing to existing systems.

Price

\$74.99

Camera

An auto focus 25x25 mm 5-megapixel compatible camera module.

Price

\$24.99

Environmental Sensor Board

An accessory board that provides temperature, light, and humidity sensors for IoT applications.

Price

\$24.99

SOM

A fully integrated System on Module in a 40mm x 48mm pluggable module with Edge TPU on board.

Price

\$114.99

Volume discount pricing available

PCI-E

Accelerator

A PCI-E board for easy integration of Edge TPU into existing systems.

Available: Q3' 2019

\$64.99

Example project with Coral

Frigate: NVR With Realtime Object Detection with Google Coral

Thank you

