Algebra II

Naruki Masuda, transcribed by Hui Sun April 23, 2025

Contents

		up Theory	Ġ
	1.1	Sylow Theorems	3
	1.2	Class Formula, Classification of <i>p</i> -groups	11
	1.3	Random Problems	13
2	Rep	presentation Theory	17
2	Rep 2.1	resentation Theory Characters	17 17
	2.1	Characters	17

Chapter 1

Group Theory

S2013-Q2, S2016-Q1, F2018-Q2, F2001-Q1, F2013-Q1, F2019-Q4 S2005-Q1, F2009-Q1

1.1 Sylow Theorems

We first talk bout semidirect products. Let G be any group, and N, H be subgroups of G.

Definition 1.1. For $\varphi: H \to \operatorname{Aut}(N)$, define $N \rtimes H$ by

- (1) $N \rtimes_{\varphi} H = N \times H$ as a set.
- (b) Equipped with the group structure

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \varphi(h_1) n_2, h_1 h_2)$$

The structure $(N\rtimes_{\varphi}H,\cdot)$ forms a group.

Example 1.1. If *N* is a normal subgroup of *G*, and $N \cap H = \{e\}$, and $\varphi : H \to \operatorname{Aut}(N)$ where

$$\varphi: h \mapsto (n \mapsto hnh^{-1})$$

(acting by conjugation), and G = NH. Then

$$N \rtimes_{\varphi} H \to G$$

where

$$(n,h) \mapsto nh$$

is a bijective homomorphism homomorphism. Hence

$$G \cong N \rtimes_{\varphi} H$$

Next we present some divisibility results.

Proposition 1.1 (Lagrange, Orbit-Stabilizer). We have the following divisibility results:

• Let H be a subgroup of G, let [G:H] denote the number of cosets of H in G, then

$$|G| = |H|[G:H]$$

• Let G be a finite group acting transitively on a finite set A, then for any $a \in A$, we have

$$|\operatorname{Stab}_G(a)| \cdot |O_G(a)| = |G|$$

The class formula is when G acts on itself by conjugation:

Proposition 1.2 (class formula). Let G act on a finite set S, and let Z denote fixed points of this action, then

$$|S| = |Z| + \sum_{a \in A} |O_G(a)|$$

where A includes exactly one element from each nontrivial orbit.

If *G* acts on itself by conjugation, then

$$|G| = |Z(G)| + \sum_{q} |[g]| = |Z(G)| + \sum_{q} \frac{|G|}{|C_G(g)|}$$

where [g] denote the conjugacy class of g, and the sum includes exactly one from each nontrivial conjugacy class in G.

Problem 1.1 (F2019-Q2). 2. Let p, q be two prime numbers such that $p \mid q - 1$. Prove that

- (a) there exists an integer $r \neq 1 \mod q$ such that $r^p \equiv 1 \mod q$;
- (b) there exists (up to an isomorphism) only one noncommutative group of order pq.

Proof. (a) We want to show that there exists an element $r \in (\mathbb{Z}/q\mathbb{Z})^{\times}$ such that

$$r^p \equiv 1 \mod q$$

We can do this because $(\mathbb{Z}/q\mathbb{Z})^{\times}$ has order (q-1) and p|(q-1). Therefore by Cauchy's theorem, there exists an element of order p in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

(b) Let n_p, n_q denote the number of p, q-Sylow subgroups. We see that $n_q|p$ and $n_q \equiv 1 \mod q$, since p < q, we must have $n_q = 1$. Now $n_p = 1$ or q by the same reasoning. Suppose $n_q = 1$, let P, Q denote the normal subgroups of order p, q, then

$$G \cong P \times Q$$

by a standard argument (included in the lemma below). Then G is commutative. Since G is noncommutative, we have $n_p = q$. Choose any p-Sylow subgroup P, we know that

$$G \cong Q \rtimes_{\theta} P$$

where Q is the normal subgroup of order q and $\theta: P \to \operatorname{Aut}(Q) = (\mathbb{Z}/q\mathbb{Z})^{\times}$. We know either $\theta: 1 \mapsto 1$, is the trivial map which produces a commutative group; or $\theta: 1 \mapsto r$, where $r \in (\mathbb{Z}/q\mathbb{Z})^{\times}$ is some element of order p.

1.1. SYLOW THEOREMS 5

Lemma 1.1. Let p, q be two primes such that $q \nmid (p-1)$, and N, H has order p, q respectively, suppose that N is normal in G, and $N \cap H = \{e\}$, then

$$G \cong N \times H$$

Proof. We consider the map

$$\psi: N \times H \to G$$

such that

$$(n,h) \mapsto nh$$

We want to show that ψ is a homomorphism and ψ is injective (hence bijective by size argument). It is clearly injective:

$$nh = e \Rightarrow n, h \in N \cap H = \{e\}$$

It suffices to show that ψ is a homomorphism. We see that this implies

$$n_1 n_2 h_1 h_2 = n_1 h_1 n_2 h_2$$

Therefore it suffices to for any $n \in N, h \in H$, one has

$$nh = hn$$

Consider the conjugation action

$$\varphi: H \to \operatorname{Aut}(N)$$

where

$$h \mapsto (n \mapsto hnh^{-1})$$

Then we claim that φ is trivial. This is because $\ker(\varphi)$ has size either 1 or q. If it has size q, then the map is trivial; if it has size 1, then H embeds in $\operatorname{Aut}(N)$, however, |H|=q, $\operatorname{Aut}(N)=p-1$, and $q\nmid (p-1)$, hence impossible. This shows that the map is trivial, i.e., for $n\in N, h\in H$,

$$hn = nh$$

as desired.

Problem 1.2 (F2015-Q1). Prove every group of order 15 is cyclic.

Proof. We will show that any group G of order 15 is isomorphic to

$$G\cong \frac{\mathbb{Z}}{3\mathbb{Z}}\times \frac{\mathbb{Z}}{5\mathbb{Z}}$$

For this, using the above lemma, it suffices to show that there is one normal subgroup of order 3 and one normal subgroup of order 5. We repeat the argument above, $n_5 \mid 3$ and $n_5 \equiv 1 \mod 5$, hence $n_5 = 1$. Moreover, $n_3 \mid 5$ and $n_3 \equiv 1 \mod 3$, hence $n_3 = 1$ as well. By the lemma above, we know that

$$G\cong \frac{\mathbb{Z}}{3\mathbb{Z}}\times \frac{\mathbb{Z}}{5\mathbb{Z}}$$

hence cyclic as desired.

Problem 1.3 (S2013-Q2). Let p and q be primes with p < q. Let G be a group of order pq. Prove the following statements:

- (a) If p does not divide q 1 (i.e., $p \nmid q 1$), then G is cyclic.
- (b) If p divides q 1 (i.e., $p \mid q 1$), then G is either cyclic or isomorphic to a non-abelian group on two generators. Give the presentation of this non-abelian group.

Proof. This question is exactly the same as F19-Q2, we will only outline here.

(a) We have $n_q = 1$, and $n_p \mid q$, hence $n_p = 1$ or q, moreover $n_p \equiv 1 \mod p$. If $n_p = q$, this implies that $p \mid (q-1)$, hence $n_p = 1$. Therefore by the above argument

$$G \cong \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{q\mathbb{Z}}$$

(b) If $p \mid (q-1)$, then $n_p = 1$ or q. Hence G is either of the form above or isomorphic to the non-abelian group

$$G = Q \rtimes_{\theta} P$$

We know from F2019-Q2, the trivial θ defines the abelian, hence cyclic group $G = \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{q\mathbb{Z}}$. And $\theta : 1 \mapsto r$, for some $r \in (\mathbb{Z}/q\mathbb{Z})^{\times}$ of order p defines a non-abelian group.

not finished, what are the two generators

Problem 1.4 (F2007-Q1). Prove that no group of order 148 is simple.

Proof. We note the prime factorization of 148 is

$$148 = 2^2 \cdot 37$$

We see that $n_{37} \mid 4$ and $n_{37} \equiv 1 \mod 37$, therefore $n_{37} = 1$. This shows that there exists a normal subgroup of order 37, i.e., the group is not simple.

Problem 1.5 (F2017-Q1). Show that there is no simple group of order 30.

Proof. This is slightly more complicated, and we will use a counting argument. Same reasoning as the above. The prime factorization of 30 is as below:

$$30 = 2 \cdot 3 \cdot 5$$

We see $n_5 \mid 6$, and $n_5 \equiv 1 \mod 5$. Unfortunately, n_5 could either be 1 or 6. Now $n_3 \mid 10$, and $n_3 \equiv 1 \mod 3$, unfortunately again n_3 could be 10. However, we argue that $n_3 = 10$ and $n_5 = 6$ cannot happen at the same time. Suppose this is the case, then there are 20 elements of order 2 and 24 elements of order 5, but this is too many! Hence either $n_3 = 1$ or $n_5 = 1$, as desired.

1.1. SYLOW THEOREMS

7

Problem 1.6 (F2011-O1).

- (a) Let G be a group of order 5046. Show that G cannot be a simple group. You may not appeal to the classification of finite simple groups.
- (b) Let p and q be prime numbers. Show that any group of order p^2q is solvable.

Proof. The proof is very similar like above.

(a) The prime factorization of 5049 is as follows:

$$5049 = 2 \cdot 3 \cdot 29^2$$

Hence we see $n_{29} = 1$, i.e., there is a normal subgroup of order 29, therefore not simple.

- (b) We will do discussion by cases.
 - (1) p > q. Then $n_p = 1$ or q and $n_p \equiv 1 \mod p$, therefore $n_p = 1$. Let P be the normal subgroup of G of order p^2 , we thus have

$$\{e\} \subset P \subset G$$

It is clear that |G/P| = q, thus abelian, and $|P| = p^2$ also abelian as well (by the lemma below). This shows that G is solvable.

(2) p < q. Then $n_p = 1$ or q, and $n_q = 1$ or p^2 . Suppose that $n_q = 1$, let Q denote the normal subgroup of order q, then

$$\{e\}\subset Q\subset G$$

It is clear that Q and G/Q are both abelian. Suppose that $n_q=p^2$ instead, then there are only $p^2q-p^2(q-1)=p^2$ elements of order $\neq q$. Since any p-Sylow subgroup has p^2 elements with order $\neq q$, we must have $n_p=1$. Hence we are in case (1) again. This shows that G is solvable in either case $n_q=1,p^2$.

Lemma 1.2 (p^2 abelian). Fix prime p, any group of order p^2 is abelian.

Proof. For any nontrivial p group, by the class formula, the center Z(G) is nontrivial, thus the center has order either p or p^2 . If it has order p^2 , then the group is abelian. If it has order p, then

$$|G/Z(G)| = p$$

is also cyclic, therefore G is abelian (strictly speaking is a contradiction that |Z(G)|=p). In either case, we see that G is abelian.

Problem 1.7. Any *p*-group is solvable, for any prime *p*.

Proof. Suppose $|G| = p^r$ for some $r \ge 0$, we will use induction on r. If r = 0, then the trivial group is trivally solvable.

• Base case: if r = 1, |G| = p, then G is cyclic, hence solvable.

• Induction step: suppose that G is solvable for all $|G| = p^k$, where $0 \le k \le r - 1$. Now we want to show that G of order p^r is solvable. We know G has a nontrivial center, suppose that $|Z(G)| = p^k$, where $1 \le k \le r$, then

$$|G/Z(G)| = p^{r-k}, 0 \le r - k \le r - 1$$

We know any group G is solvable if and only if there exists a sequence of subgroups G_0, \ldots, G_k

$$\{e\} = G_0 \subset \cdots \subset G_k = G$$

such that G_{i-1} is normal in G_i and G_i/G_{i-1} is solvable. Therefore we see when $|G| = p^r$,

$$\{e\} \subset Z(G) \subset G$$

has Z(G) solvable, and G/Z(G) also solvable by the induction hypothesis, so we close the induction.

Problem 1.8 (S2016-Q1). Classify all groups of order 66, up to isomorphism.

Proof. By $66 = 2 \cdot 3 \cdot 11$, we know $n_{11} = 1$. We claim that there is a normal subgroup isomorphic to $\mathbb{Z}/33\mathbb{Z}$.

1. First we show that there is a subgroup of order 33. Let P_{11} denote the normal subgroup of order 11 and let P_3 denote a 3-Sylow subgroup of G. Then we claim that the following

$$H = \{gh : g \in P_{11}, h \in P_3\}$$

forms a subgroup and is isomorphic to $\mathbb{Z}/33\mathbb{Z}$. By the Lemma 1.1, we see that

$$H \cong \frac{\mathbb{Z}}{11\mathbb{Z}} \times \frac{\mathbb{Z}}{3\mathbb{Z}} = \frac{\mathbb{Z}}{33\mathbb{Z}}$$

2. Now we show that it is normal. This follows from the following general lemma:

Lemma 1.3. Let p be the smallest prime factor of |G|, and let H be a subgroup with index p, then H is normal.

Proof. We will only prove in the case that H is a subgroup of index 2, i.e., $G = H \sqcup (G \setminus H)$. We see for all $g \in G$,

$$gH = Hg$$

since if $g \in H$, then the equality holds; if $g \notin H$, then $gH = G \setminus H$, so is Hg.

Now since there is a subgroup of order 2, we can write G as a semidirect product

$$G = \frac{\mathbb{Z}}{33\mathbb{Z}} \rtimes_{\theta} \frac{\mathbb{Z}}{2\mathbb{Z}}$$

The number of nonisomorphic groups will depend on the choice of θ . There are four different choices for $\theta: H \to \operatorname{Aut}\left(\frac{\mathbb{Z}}{11\mathbb{Z}} \times \frac{\mathbb{Z}}{3\mathbb{Z}}\right) = \frac{\mathbb{Z}}{10\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$

$$\begin{cases} \theta_1 : 1 \mapsto (0,0) \\ \theta_2 : 1 \mapsto (0,1) \\ \theta_3 : 1 \mapsto (5,0) \\ \theta_4 : 1 \mapsto (5,1) \end{cases}$$

what is happening

1.1. SYLOW THEOREMS 9

Problem 1.9 (S2007-Q2). Prove that no group of order 224 is simple.

Proof. The prime factorization is

$$224 = 2^5 \cdot 7$$

If $n_2=1$ or $n_7=1$, then we are done; assume that $n_2=7$ instead, then we recall G has a nontrivial transitive action on the set of 2-Sylow subgroups, i.e., there is a homomorphism $\varphi:G\to S_7$. We know $\ker(\varphi)$ is a normal subgroup of G. Since the action is nontrivial transitive, we know $\ker(\varphi)\neq G$. If $\ker(\varphi)=\{e\}$, then φ produces an embedding of G into S_7 . However, $|G|=224\nmid |S_7|$. This shows that $\ker(\varphi)$ is a nontrivial proper normal subgroup of G, concluding that G is not simple.

Problem 1.10 (F2008-Q1). Show that no group of order 36 is simple.

Proof.

$$36 = 2^2 \cdot 3^3$$

We know $n_2 \mid 9, n_2 \equiv 1 \mod 2$, and $n_3 \mid 4, n_3 \equiv 1 \mod 3$. We know $n_3 = 1$ or 4, suppose that $n_3 = 4$, then there is a nontrivial action of G on the set of 3-Sylow subgroups, i.e.,

$$\varphi:G\to S_4$$

Suppose that G is simple, we know $\ker(\varphi) \neq G$ since the action is nontrivial, by assumption $\ker(\varphi) = \{e\}$, which implies that φ is an embedding, but $|G| = 32 \nmid |S_4|$, which is a contradiction. This implies that G is not simple.

Problem 1.11 (S2014-Q2). All groups of order less than 60 are solvable, i.e., there exists a sequence of subgroups of G, G_0, \ldots, G_k such that G_i is normal in G_{i+1} and G_{i+1}/G_i is abelian, and

$$1 = G_0 \subset \cdots \subset G_k = G$$

Proof. Groups of order p, pq, p^2, p^2q are solvable.

$$\left\{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59\right\}$$

And any *p*-group is also solvable.

The remaining groups are

24: If $n_2 = 1$ or $n_3 = 1$, then we are done. We see $n_2 = 1$ or 3, consider the action $\varphi : G \to S_3$. We see $\ker(\varphi)$ is a proper normal subgroup of G, this implies that

$$\{e\} \subset \ker(\varphi) \subset G$$

where $|\ker(\varphi)|$ is a known solvable group, hence we are done.

- 36: Exactly same as above, we assume $n_3 \neq 1$, therefore $n_3 = 4$, the action $\varphi : G \to S_4$ is not injective, hence $\ker(\varphi)$ is again a proper normal subgroup of G that is solvable.
- 40: We see $n_5 = 1$, therefore

$$\{e\} \subset \mathbb{Z}/5\mathbb{Z} \subset G$$

- 42: We see $n_7 = 1$.
- 48: We see $n_2=1$ or 3, the the action $\varphi:G\to S_3$ is not injective, hence $\ker(\varphi)$ is a proper normal subgroup of G that is solvable.
- 54: We see $n_3 = 1$.
- 56: We know $n_7 = 1$ or 8 and $n_2 = 1$ or 7. The group action argument does not work. We assume $n_7 = 8$, then there can be at most 56 8(7 1) = 8 elements of order $\neq 7$. This shows that $n_2 = 1$. Hence

$$\{e\} \subset P_2 \subset G$$

Problem 1.12 (S2012-Q1). Let G be a group of order p^3q^2 , where p and q are prime integers. Show that for p sufficiently large and q fixed, G contains a normal subgroup other than $\{1\}$ and G.

Proof. We want to show that there exists a normal group of size p^3 , i.e., $n_p = 1$. We know $n_p \mid q^2, n_p \equiv 1 \mod p$. Let p be large enough such that $p > (q^2 - 1)$, then the forces $n_p = 1$, as desired.

Problem 1.13 (F2014-Q4).

- (a) Let G be a group of order p^2q^2 , where p and q are distinct odd primes, with p > q. Show that G has a normal subgroup of order p^2 .
- (b) Can a solvable group contain a non-solvable subgroup? Explain.

Proof. (a) We know $n_p = 1$ or q or q^2 , and $n_p \equiv 1 \mod p$. Since p > q, we know $n_p \neq q$. It suffices to show that $n_p \neq q^2$: suppose that $n_p = q^2$, then

$$p \mid (q^2 - 1) = (q + 1)(q - 1)$$

Since p is prime, $p \mid (q+1)$ or $p \mid (q-1)$. The latter impossible since q < p. $p \mid (q+1)$ is also impossible because this implies that q = p + 1, which implies that q is even, a contradiction.

(b) It is not possible. Suppose G is a solvable group, let H be a subgroup of G, then we know there exists sequence

$$\{e\} = G_0 \subset \cdots \subset G_k = G$$

such that G_i is normal in G_{i+1} and $\frac{G_{i+1}}{G_i}$ is abelian. We define $H_i = G_i \cap H$, then we see H is solvable with sequence $H_0 \subset \dots H_k$.

Problem 1.14 (F2018-Q2). Let G be a group of order 24. Assume that no Sylow subgroup of G is normal in G. Show that G is isomorphic to the symmetric group S_4 .

Proof.

Problem 1.15 (F2001-Q1). Let G be a finite group and let N be a normal subgroup of G such that N and G/N have relatively prime orders.

- 1. Assume that there exists a subgroup H of G having the same order as G/N. Show that G = HN. (Here HN denotes the set $\{xy \mid x \in H, y \in N\}$.)
- 2. Show that $\phi(N) = N$, for all automorphisms ϕ of G.

Problem 1.16 (S2001-Q1). Let G be a finite group and p the smallest prime number dividing the order |G| of G. Let H be a subgroup of G of index p in G. Show that H is necessarily a normal subgroup of G.

Proof. G has an action on G/H by left multiplication: $\varphi: G \to \operatorname{Aut}(G/H)$ such that

$$\varphi(g)(\bar{g}H) = g\bar{g}H$$

We will show that $H = \ker(\varphi)$. First we see that $\ker(\varphi) \subset H$:

$$\ker(\varphi) = \{g \in G : g\bar{g}H = \bar{g}H : \text{ for all } \bar{g} \in G\}$$

letting $\bar{g} \in H$ we see $g \in \ker(\varphi)$ implies $g \in H$, i.e., $\ker(\varphi) \subset H$.

Now we use a size argument to show $|H| \leq |ker \varphi|$. We note that $\operatorname{im}(\varphi)$ is a subgroup of $\operatorname{Aut}(G/H) = S_p$, thus

$$\frac{|G|}{|\ker(\varphi)|}$$
 divides $p!$

because $\frac{|G|}{|\ker(\varphi)|}$ also divides |G| and p is the smallest prime that divides p, we must have

$$\frac{|G|}{|\ker(\varphi)|}$$
 divides p

Note that $\frac{|G|}{|H|} = p$, this gives

$$|H| \leq |\ker(\varphi)|$$

which shows $H \subset \ker(\varphi)$, hence $H = \ker(\varphi)$.

(End of Page 5)

1.2 Class Formula, Classification of *p*-groups

Definition 1.2 (nilpotent group). Let G be a group. Define inductively an increasing sequence $\{e\} = Z_0 \subseteq Z_1 \subseteq Z_2 \subseteq \cdots$ of subgroups of G as follows: for $i \ge 1$, Z_i is the subgroup of G corresponding to the center of G/Z_{i-1} . One can show that Z_i is normal in G. A group is *nilpotent* if $Z_m = G$ for some m.

Example 1.2.

- *p*-groups are nilpotent.
- Nilpotent groups are solvable.

Proposition 1.3. We have the following classification of groups of order p, p^2, p^3 , for prime p.

- |G|=p implies $G\cong \mathbb{Z}/p\mathbb{Z}$. $|G|=p^2$ implies

$$G\congrac{\mathbb{Z}}{p^2\mathbb{Z}}\quad ext{ or }\quad G\congrac{\mathbb{Z}}{p\mathbb{Z}}\oplusrac{\mathbb{Z}}{p\mathbb{Z}}$$

• $|G| = p^3$ implies that

$$G\cong \frac{\mathbb{Z}}{p^3\mathbb{Z}} \quad \text{or} \quad G/Z(G)\cong \frac{\mathbb{Z}}{p\mathbb{Z}}\oplus \frac{\mathbb{Z}}{p\mathbb{Z}} \quad \text{or} \quad [G,G]=Z(G)$$

Problem 1.17 (S2010-Q1). Let G be a non-abelian group of order p^3 , where p is prime. Determine the number of distinct conjugacy classes in G.

Proof. We know G has a nontrivial center, and if $|Z(G)| = p^2$ or p^3 , then G is abelian, this shows that |Z(G)| = p, now let $g \in G \setminus Z(G)$, then

$$Z(G) \subsetneq Z_q(G) \subsetneq G$$

where $Z(G) \subsetneq Z_g(G)$ because $g \in Z_g(G)$, and $Z_g(G) \subsetneq G$ since $g \notin Z(G)$. This shows that $Z_g(G)$ is a subgroup of order p^2 , in other words, the size of the conjugacy class of any $g \in G \setminus Z(G)$ is

$$|[g]| = \left| \frac{G}{Z_q(G)} \right| = p$$

By the class formula,

$$|G| = |Z(G)| + \sum_{a \in A} |[a]|$$

where A contains one a from each nontrivial conjugacy class [a]. Thus we have

$$p^3 = p + Np \Rightarrow N = p^2 - 1$$

Every element in Z(G) is its own conjugacy class, thus the total number of conjugacy classes is

$$p^2 + p - 1$$

Problem 1.18 (F2013-Q1). Let p > 2 be a prime. Classify groups of order p^3 up to isomorphism. The two nonabelian groups of order p^3 (for $p \neq 2$), up to isomorphism, are:

$$\operatorname{Heis}(\mathbb{Z}/(p)) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{Z}/(p) \right\}$$

and

$$G_p = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a, b \in \mathbb{Z}/(p^2), a \equiv 1 \bmod p \right\}$$
$$= \left\{ \begin{pmatrix} 1 + pm & b \\ 0 & 1 \end{pmatrix} \middle| m, b \in \mathbb{Z}/(p^2) \right\}$$

Problem 1.19 (F2014-O5).

- (a) Prove that every group of order p^2 (with p prime) is abelian. Then classify such groups up to isomorphism.
- (b) Give an example of a non-abelian group of order p^3 for p=3. Suggestion: Represent the group as a group of matrices.

Proof. (a) See Lemma 1.2. There are two abeliean groups: $\frac{\mathbb{Z}}{p^2\mathbb{Z}}, \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{p\mathbb{Z}}$

(b) See Problem 1.18.

Problem 1.20 (F2019-Q4, S2015-Q3). Find all irreducible representations of a finite p-group over a field of characteristic p.

1.3 Random Problems

Problem 1.21 (F2010-Q1). Let G be a group. Let H be a subset of G that is closed under group multiplication. Assume that $g^2 \in H$ for all $g \in G$. Show that:

- *H* is a normal subgroup of *G*
- G/H is abelian

Proof. • We first show that H is subgroup. It remains to show that if $h \in H$, then $h^{-1} \in H$, we know $(h^{-1})^2 \in H$, thus

$$h(h^{-1})^2 = h^{-1} \in H$$

as desired. Now we show that H is normal: for any $h \in H$, $g \in G$, we want to show $ghg^{-1} \in H$.

$$\begin{split} ghg^{-1} &= (gh)^2 (gh)^{-1} hg^{-1} \\ &= (gh)^2 h^{-1} g^{-1} hg^{-1} \\ &= (gh)^2 h^{-1} (g^{-1}h)^2 (g^{-1}h)^{-1} g^{-1} \\ &= (gh)^2 h^{-1} (g^{-1}h)^2 h^{-1} \in H \end{split}$$

as desired.

• It suffices to show that for any $g_1, g_2 \in G$, we have

$$g_1g_2H \subset g_2g_1H$$

Take any $h \in H$, we want to show $(g_2g_1)^{-1}g_1g_2h \in H$,

$$(g_2g_1)^{-1}g_1g_2h = (g_2g_1)^{-2}g_2g_1^2g_2h$$

= $(g_2g_1)^{-2}(g_2g_1^2)^2(g_2g_1^2)^{-1}g_2h$
= $(g_2g_1)^{-2}(g_2g_1^2)^2g_1^{-2}h \in H$

as desired.

Problem 1.22 (S2014-Q1). Find the number of colorings of the faces of a cube using 3 colors, where two colorings are considered equal if they can be transformed into each other by a rotation of the cube. [*Hint*: Use Burnside's formula:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where a group G acts on a set X, X/G is the set of orbits, and for every $g \in G$, X^g is the fixed subset of g in X.]

Proof. Let X be the set of all possible colorings of the cube (equal cubes allowed), we have $|X| = 3^6$. We notice two things:

- 1. The group of rotations of a cube is S_4 .
- 2. For $\sigma_1, \sigma_2 \in S_4$ that are conjugates of each other, $|X^{\sigma_1}| = |X^{\sigma_2}|$. Therefore for the Burnside's formula becomes

$$|X/S_4| = \frac{1}{|S_4|} \sum_{[\sigma] \text{ conj classes}} |[\sigma]| \cdot |X^\sigma|$$

Now we analyze for each conjugacy class $[\sigma]$, what is $|X^{\sigma}|$.

- (1+1+1+1), |[e]| = 1 and $|X^e| = 3^6$.
- (1+1+2), $|[\sigma_1]| = 6$ and $|X^{\sigma_1}| = 3^3$.
- (1+3), $|[\sigma_2]| = 8$, and $|X^{\sigma_2}| = 3^2$.
- (2+2), $|[\sigma_3]| = 6$, and $|X^{\sigma_3}| = 3^4$.
- (4), $|[\sigma_4]| = 6$, and and $|X^{\sigma_4}| = 3^3$.

Thus combining we get

$$|X/S_4| = \frac{1}{24} \left(3^6 + 6 \cdot 3^3 + 8 \cdot 3^2 + 6 \cdot 3^4 + 6 \cdot 3^3 \right) = 57$$

Problem 1.23 (S2019-Q4). Let f be a polynomial with n variables and define

$$Sym(f) = \{ \sigma \in S_n \mid f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = f(x_1, x_2, \dots, x_n) \}.$$

- 1. Prove that Sym(f) is a subgroup of S_n .
- 2. Prove that the dihedral group D_4 (the group of symmetries of the square) is isomorphic to $\operatorname{Sym}(x_1x_2+x_3x_4)$.

Proof. 1. The group S_n acts on the polynomial ring $k[x_1, \ldots, x_n]$, by permuting the x_i to $x_{\sigma(i)}$, and we see that $\operatorname{Sym}(f)$ is the centralizer of a fixed element $f \in k[x_1, \ldots, x_n]$, hence is a subgroup.

2. We have a total of 8 elements in Sym $(x_1x_2 + x_3x_4)$:

$$\{e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)\}$$

and we can by drawing a square that his corresponds to the group D_4 .

Problem 1.24 (S2011-Q1, F2004-Q1).

- (a) Let H be a proper nontrivial subgroup of a finite group G (i.e., $H \neq \{1\}$ and $H \neq G$). Prove that G is not the union of all conjugates of H in G.
- (b) Give an example of an infinite group *G* for which the assertion in part (a) fails.
- *Proof.* (a) If H is normal, then all conjugations of H is equal to H, but $H \subsetneq G$, this G is not not the union of all conjugates of H in G. Now suppose H is not normal, assume the contrary that G is the union of all conjugates of H, then the number of distinct conjugates of H is $[G:N_G(H)]$, hence

$$|G| = [G: N_G(H)] \cdot |H| \iff [G:H] = [G:N_G(H)] \iff [N_G(H):H] = 1$$

this is a contradiction since H is not normal. Thus G not the union of all conjugates of H in G.

(b) Consider

$$B = \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\} \subset \operatorname{GL}_2(\mathbb{C})$$

It is clear that conjugation of matrices in *B* do not give matrices with nonzero left bottom entry.

Problem 1.25 (S2009-Q1). Let H and K be two solvable subgroups of a group G such that G = HK.

- 1. Show that if either H or K is normal in G, then G is solvable.
- 2. Give an example where G may not be solvable without the assumption in (a).
- *Proof.* 1. WLOG suppose that *H* is normal, then the composite map $\varphi = \pi \circ \iota$:

$$K \xrightarrow{\iota} G \xrightarrow{\pi} G/H$$

is surjective, therefore

$$\{e\} \subset H \subset G$$

 $G/H \cong K/\ker(\varphi)$ is solvable, hence G is solvable.

2. The smallest nonsolvable group is A_5 , we have

$$A_5 = HK$$

where $H = \langle (12345) \rangle$, $K = A_4 = \{ \sigma \in A_5 : \sigma(5) = 5 \}$. Now H, K are both solvable, but G is not.

Problem 1.26 (F2003-Q1). In a group G, let 1 denote the identity element and let $[x, y] = xyx^{-1}y^{-1}$ denote the commutator of elements $x, y \in G$.

- 1. Express [z, xy]x in terms of x, [z, x], and [z, y].
- 2. Prove that if the identity [[x, y], z] = 1 holds in G, then the following identities hold in G:

$$[x, yz] = [x, y][x, z]$$
 and $[xy, z] = [x, z][y, z]$.

Proof. 1. We have

$$\begin{split} [z, xy]x &= zxyz^{-1}y^{-1}x^{-1}x \\ &= zxz^{-1}x^{-1}xzyz^{-1}y^{-1} \\ &= [z, x]x[z, y] \end{split}$$

2. The identity [[x, y], z] = 1 implies

$$[x, y]z = z[x, y]$$

Therefore using the identity in 1, we have

$$[x, yz] = [x, y]y[x, z]y^{-1}$$
$$= [x, y]yy^{-1}[x, z]$$
$$= [x, y][x, z]$$

Similarly

$$\begin{aligned} [xy,z] &= xyzy^{-1}x^{-1}z^{-1} \\ &= xyzy^{-1}z^{-1}zx^{-1}z^{-1} \\ &= x[y,z]x^{-1}[x,z] \\ &= [y,z][x,z] \\ &= [x,z][y,z] \end{aligned}$$

Problem 1.27 (S2005-Q1). Let k be a field. Let $G = GL_n(k)$ be the general linear group, where n > 0. Let D be the subgroup of diagonal matrices, and let $N = N_G(D)$ be the normalizer of D in G. Determine the quotient group N/D.

Problem 1.28 (F2009-Q1). Let G be a finite group, and let $\operatorname{Aut}(G)$ be its automorphism group. Consider the group action $\phi \colon \operatorname{Aut}(G) \times G \to G$ defined by $\phi(\sigma,g) = \sigma(g)$. Assume G has exactly two orbits under this action.

- 1. Determine all such groups G up to isomorphism.
- 2. For each case from (a), determine when Aut(G) is solvable.

Problem 1.29 (F2016-Q1). Determine $Aut(S_3)$.

Proof. Every element $\sigma \in \operatorname{Aut}(S_3)$ must send order 2 elements $\{(12), (23), (13)\}$ to one another, and order 3 elements $\{(123), (132)\}$ to each other. However, σ is determined by how it permutes

$$\{(12), (23), (13)\}$$

Thus every σ is an inner automorphism of the form $\sigma_g(h) = ghg^{-1}$ for $g, h \in S_3$ and g is some transposition. Hence

$$\operatorname{Aut}(S_3) \cong S_3$$

Chapter 2

Representation Theory

Theorem 2.1 (Maschke's theorem).

Lemma 2.1 (Schur's Lemma).

Proposition 2.1 (properties of characters).

Proposition 2.2. The character tables for S_3 , S_4 , A_5 , S_5 are as follows:

2.1 Characters

Problem 2.1 (S2008-Q4). Let $V \cong \mathbb{C}^n$ be an n-dimensional complex vector space with standard basis e_1, \ldots, e_n . Consider the permutation action $S_n \times V \to V$ defined by:

$$\sigma \cdot e_i = e_{\sigma(i)}$$
 for $\sigma \in S_n$

Decompose V into irreducible $\mathbb{C}[S_n]$ -modules.

Problem 2.2 (S2014-Q5). Find the table of characters for S_4 .

Problem 2.3 (F2016-Q6). Find a table of characters for the alternating group A_5 .

Problem 2.4 (F2015-Q3). Let $G = S_4$ (the symmetric group on four letters).

- (a) Prove that G has two non-equivalent irreducible complex representations of dimension 3; call them ρ_1 and ρ_2 .
- (b) Decompose the tensor product representation $\rho_1 \otimes \rho_2$ into a direct sum of irreducible representations of G.

Problem 2.5 (F2011-Q4). Let $\rho: S_3 \to \mathrm{GL}(2,\mathbb{C})$ be a two-dimensional irreducible representation of the symmetric group S_3 .

- 1. Decompose the tensor square $\rho^{\otimes 2}$ into irreducible representations of S_3 .
- 2. Decompose the tensor cube $\rho^{\otimes 3}$ into irreducible representations of S_3 .

Problem 2.6 (F2014-Q3). Let $G = S_3$ be the symmetric group on three elements.

- (a) Prove that G has an irreducible complex representation of dimension 2 (call it ρ), but none of higher dimension.
- (b) Decompose the triple tensor product $\rho \otimes \rho \otimes \rho$ into a direct sum of irreducible representations of G.

Problem 2.7 (S2006-Q6). Let S_4 be the symmetric group on four elements.

- 1. Give an example of a non-trivial 8-dimensional complex representation of S_4 .
- 2. Show that every 8-dimensional complex representation of S_4 contains a 2-dimensional invariant subspace.

Problem 2.8 (F2007-Q5). Prove that every 5-dimensional complex representation of the alternating group A_4 (the alternating group of degree 4) contains a 1-dimensional invariant subspace.

Problem 2.9 (S2004-Q6). Consider complex representations of a finite group G. Let $\sigma_1, \ldots, \sigma_s$ be representatives of the conjugacy classes of G, and let χ_1, \ldots, χ_s be the irreducible characters of G.

- 1. Define an inner product on the \mathbb{C} -vector space of class functions on G such that $\{\chi_1, \dots, \chi_s\}$ forms an orthonormal basis.
- 2. Let $A = (a_{ij})$ be the character table matrix of G, where $a_{ij} = \chi_i(\sigma_j)$ for $1 \le i, j \le s$. Prove that A is invertible.

Problem 2.10 (S2018-Q4, S2007-Q5). Is S_4 isomorphic to a subgroup of $GL_2(\mathbb{C})$?

Problem 2.11 (S2010-Q6). Let G be a group of order 24. Using representation theory, prove that $G \neq [G, G]$, where [G, G] denotes the commutator subgroup of G.

Problem 2.12 (F2017-Q6). Let G be a finite group with center Z(G). Show that if G admits a faithful irreducible representation $\rho \colon G \to \mathrm{GL}_n(k)$ for some positive integer $n \in \mathbb{Z}^+$ and some field k, then the center Z(G) is cyclic.

Problem 2.13 (S2005-Q6). Let V be a finite-dimensional vector space over a field k, and let G be a finite group with an irreducible representation $\varphi \colon G \to \operatorname{GL}(V)$. Suppose H is a finite abelian subgroup of $\operatorname{GL}(V)$ contained in the centralizer of $\varphi(G)$. Prove that H must be cyclic.

Problem 2.14 (F2010-Q6). Let G be a non-abelian group of order p^3 , where p is prime.

- 1. Determine the number of isomorphism classes of irreducible complex representations of *G*, and find their dimensions.
- 2. Which of these irreducible complex representations are faithful? Justify your answer.

Problem 2.15 (S2011-Q5). Let K be a field, and let $\Phi: G \to GL_n(K)$ be an n-dimensional matrix representation of a group G. Define a G-action on the matrix ring $M_n(K)$ by:

$$(g, A) \mapsto \Phi(g) \cdot A$$
 (matrix multiplication)

for $g \in G$ and $A \in M_n(K)$. This action induces a group homomorphism $\Psi \colon G \to GL(M_n(K))$. Express the character χ_{Ψ} of Ψ in terms of χ_{Φ} (the character of Φ).

Problem 2.16 (S2015-Q5). Prove that a tensor product of irreducible representations over an algebraically closed field is irreducible.

Problem 2.17 (S2001-Q3). Calculate the complete character table for $\mathbb{Z}/3\mathbb{Z} \times S_3$, where S_3 is the symmetric group in 3 letters.

2.2 Induced representations

Problem 2.18 (S2009-Q6). Let $G = S_4$ and consider the subgroup $H = \langle (12), (34) \rangle$.

- (a) Determine the number of irreducible complex characters of H.
- (b) Choose a non-trivial irreducible character ψ of H over $\mathbb C$ satisfying $\psi((1\,2)(3\,4))=-1$. Compute the values of the induced character $\operatorname{ind}_H^G(\psi)$ on all conjugacy classes of G, and express it as a sum of irreducible characters of G.

2.3 Frobenius Reciprocity

Problem 2.19 (S2017-Q6). Let G be a finite group and H an abelian subgroup. Show that every irreducible representation of G over \mathbb{C} has dimension $\leq [G:H]$.

Problem 2.20 (S2008-Q6). Give an example of non-isomorphic finite groups with same character table. Construct the character table in detail.

Problem 2.21 (S2012-Q4). Let *Q* be the quaternion group with presentation:

$$Q = \langle t, s_i, s_j, s_k \mid t^2 = 1, \ s_i^2 = s_j^2 = s_k^2 = s_i s_j s_k = t \rangle.$$

- (a) Find four non-isomorphic 1-dimensional real representations of Q.
- (b) Prove that the natural embedding $\rho \colon Q \to \mathbb{H}$ given by:

$$\rho(t) = -1, \quad \rho(s_i) = i, \quad \rho(s_j) = j, \quad \rho(s_k) = k$$

defines an irreducible 4-dimensional real representation of Q, where \mathbb{H} is the algebra of real quaternions.

(c) Classify all irreducible complex representations of Q up to isomorphism.

Problem 2.22 (F2004-Q6). Let D_8 be the dihedral group of order 8, with presentation:

$$D_8 = \langle r, s \mid r^4 = 1 = s^2, \ rs = sr^{-1} \rangle.$$

- 1. Determine all conjugacy classes of D_8 .
- 2. Find the commutator subgroup D'_8 of D_8 and determine the number of distinct degree-1 (linear) characters of D_8 .
- 3. Construct the complete complex character table of D_8 .

Problem 2.23 (F2000-Q7). Let D_{10} be the dihedral group of order 10, with presentation:

$$D_{10} = \langle r, s \mid r^5 = 1 = s^2, \ rs = sr^{-1} \rangle.$$

- 1. Determine all conjugacy classes of D_{10} .
- 2. Compute the commutator subgroup D'_{10} of D_{10} .
- 3. Prove that $D_{10}/D'_{10} \cong \mathbb{Z}/2\mathbb{Z}$ and deduce that D_{10} has exactly two distinct degree-1 characters.
- 4. Construct the complete complex character table of D_{10} .