

Betti tables forcing failure of the Weak Lefschetz Property

Sean Grate, Hal Schenck

Auburn University

The Weak Lefschetz Property

Definition. Let $R = \mathbb{K}[x_1, \dots, x_n]$ and let A = R/I be a standard graded Artinian algebra, where $I \subseteq R$ is a homogeneous ideal. Then A has the Weak Lefschetz Property (WLP) if multiplication by a general linear form

$$A_i \xrightarrow{\cdot l} A_{i+1}$$

has full rank for all $i \geq 0$, so it is either injective or surjective.

Motivating Questions

- Is there ever a set of points $Y \subset X$ (and perhaps conditions on |Y| relative to |X|) that guarantee failure or success of WLP?
- Given a configuration of points X, if WLP fails, can we predict the degree in which WLP fails in terms of the geometry of X?
- If a set of points has multiple "subconfigurations" of points-for example, two susbets of points lying on different hypersurfaces V(f) and V(g)-then how does this structure influence WLP? What if there are conditions on f and g?

Points on a hypersurface

Theorem. Assume X_f is a finite set of points lying on a unique hypersurface V(f) with $\deg(f) = d$, and q is a point not on V(f). Set $X := X_f \cup \{q\}$. Then the Artinian reduction A of X does not have the WLP. In particular, if l is a general linear form, the map $A_d \stackrel{\cdot l}{\to} A_{d+1}$ does not have full rank.

How many points?

To get a unique hyperfurface V(f) with $\deg(f) = d$, we need $|X_f| = \binom{n+d}{d} - 1$ (if chosen generically). This ensures that

$$\dim_{\mathbb{K}}(I_{X_f})_d = 1$$
 and $\dim_{\mathbb{K}}(I_{X_f})_{< d} = 0.$

Solving the equation

$$\dim(R_{d+1}) - (|\tilde{X}| + m) = n$$

$$\downarrow$$

$$\binom{n+d+1}{d+1} - \binom{n+d}{d} + m = n$$

We can then choose $m \coloneqq \binom{n+d}{d+1} - n$ distinct generic points on $V(f) \setminus X_f$ to ensure that we have enough points on V(f).

Hypersurface example

Consider the points $X \subset \mathbb{P}^3$ given as the columns of the matrix

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

with X_f given as the first seven columns, and q the last column. The Hilbert functions of the Artinian reductions are

$$h(A_{X_f}) = \{1, 2, 3, 1\}$$
 and $h(A_X) = \{1, 3, 3, 1\}.$

All of the points X_f lie on the plane $x_3 = 0$ and q lies off of it. In this way,

$$(I_{X_f})_1 = (x_3)$$
 and $I_{\{q\}} = (x_0, x_1, x_2),$

and so,

$$(I_X)_2 = (I_{X_f})_1 \cap (I_{\{q\}})_1 = (x_3) \cap (x_0, x_1, x_2) = (x_0 x_3, x_1 x_3, x_2 x_3).$$

By the previous theorem, an Artinian reduction of X will not have WLP.

Koszul tails

Definition. A Betti table B has an (n,d)-Koszul tail if it has an upper-left principal block of the form

	0	1	2	3		n-2	n - 1	n
0	1	•	•	•		•	•	•
1	•	•	•	•		•	•	•
:	:	ŧ	ŧ	ŧ	ŧ	:	:	:
d-1	•	•	•	•		•	•	•
d	•	n	$\binom{n}{2}$	$\binom{n}{3}$		$\binom{n}{n-2}$	n	1

If B has an (n,d)-Koszul tail and is the Betti table for an Artinian ring $\mathbb{K}[x_1,\ldots,x_n]/I$, then we say B has a maximal (n,d)-Koszul tail.

Koszul tail example

The Betti table for the Artinian reduction A_X of the pointset X above is

$$0 \quad 1 \quad 2 \quad 3$$
 $0 \quad 1 \quad . \quad .$

Betti(A_X) = $1 \quad . \quad 3 \quad 3 \quad 1 \quad .$
 $2 \quad . \quad 3 \quad 4 \quad 1$
 $3 \quad . \quad . \quad 1 \quad 1$

So $Betti(A_X)$ has a (3,1)-Koszul tail; moreover, this is a maximal (3,1)-Koszul tail.

Maximal Koszul tails force failure of the WLP

Theorem. An Artinian algebra $A = \mathbb{K}[x_1, \dots, x_n]/I$ whose Betti table has a maximal (n, d)-Koszul tail does not have the WLP; the map from $A_d \stackrel{\cdot l}{\to} A_{d+1}$ is not injective.

Corollary. If $T = \mathbb{K}[x_1, \dots, x_n]/I$ is Cohen-Macaulay of dimension m, and Betti(T) has a maximal (n-m,d)-Koszul tail, then the Artinian reduction of T does not have the WLP.

Corollary. If $A = \mathbb{K}[x_1, \dots, x_{n+m}]/I$ is Artinian with an (n, d)-Koszul tail, and there exists a sequence of linearly independent linear forms $\{l_1, \dots, l_m\}$ such that A/I_L has the same top row Betti table as A, then A/I_L does not have the WLP.

Another Koszul tail example

Consider the pointset $X_f \subset \mathbb{P}^4$ lying on a unique hypersurface V(f) with $\deg(f) = 3$. Take 5 points X_Q lying off of V(f), but on a codimension 3 linear space. Let $X := X_f \cup X_Q$.

		0	1	2	3	4
	0	1	•	•	•	•
	1	•		•	•	•
Betti(A) =	2	•	•	•	•	
	3	•	3	3	1	•
	4	•	44	111	90	20
	5	•	•	•		3

So the Betti table of A has a (3,3)-Koszul tail, and in this case, A has WLP. However, if we form A^* from A by quotienting by yet another generic linear form, i.e. $A^* = A/(L')$ with $L' \in A_1$, then

$$Betti(A^*) = \begin{bmatrix} 0 & 1 & 2 & 3 \\ \hline 0 & 1 & . & . & . \\ \hline 1 & . & . & . & . \\ \hline 2 & . & . & . & . \\ \hline 3 & . & 3 & 3 & 1 \\ \hline 4 & . & 15 & 27 & 12 \end{bmatrix}$$

The Betti table of A^* has a maximal (3,3)-Koszul tail, and A^* fails WLP from degree 3 to degree 4.

Important note

We are assuming $n \ge 3$, i.e. we assume we are working with pointsets in \mathbb{P}^n with $n \ge 3$. Our technique does not apply to (2,d)-Koszul tails.