517 311 การวิเคราะห์และการออกแบบขั้นตอนวิธี

Greedy Algorithms

26 September 2023

วัตถุประสงค์

- ▶ อธิบายหลักการของอัลกอริทึมเชิงละโมบ (Greedy Algorithm)
- แสดงขั้นตอนการแก้ปัญหาด้วยการใช้อัลกอริทึมเชิงละโมบ

อัลกอริทึมเชิงละโมบ

อัลกอริทึมเชิงละโมบ (Greedy Algorithm) เป็นวิธีการในการแก้ปัญหา การหาค่าเหมาะสมที่สุด (Optimization Problem)

- มีลักษณะการทำงานเป็นขั้นตอนซ้ำ ๆ ในการเลือกส่วนของคำตอบ สำหรับแต่ละส่วนย่อย ๆ ของปัญหา
- ▶ ปัญหาย่อยจะใช้กฎเชิงละโมบ (Greedy Rule)
- เมื่อเลือกคำตอบของส่วนย่อยทั้งหมดแล้วจะได้คำตอบของปัญหาใหญ่
 ซึ่งในหลายกรณี
- การเลือกคำตอบที่ดีที่สุดสำหรับปัญหาย่อยนั้น โดยไม่ได้คำนึงถึง ปัญหาที่ใหญ่ขึ้นมา
- การพิสูจน์ว่าวิธีการใช้กฎเชิงละโมบให้คำตอบที่ถูกต้อง ในกรณีทั่วไป

ปัญหาการแลกเหรียญ (Coin Changing Problem) กำหนดให้เหรียญมี n แบบ โดยแต่ละเหรียญมีมูลค่าเป็นดังนี้ d_1,d_2,\ldots,d_n ซึ่งมูลค่าเหรียญเป็น จำนวนเต็ม โดยที่ $d_1>d_2>\ldots>d_n$ และ $d_n=1$ ในแต่ละมูลค่าของ เหรียญมีจำนวนเหรียญไม่จำกัด กำหนดค่าที่ต้องการแลกเท่ากับ A เป็น จำนวนเต็มบวก ผลลัพธ์ที่ต้องการคือ หาวิธีการรวมมูลค่าของเหรียญให้เท่า กับ A โดยใช้จำนวนเหรียญที่น้อยที่สุด กำหนดให้ c_i คือ จำนวนเหรียญของเหรียญที่มีมูลค่าเท่ากับ d_i เมื่อ $1\leq i\leq n$ จำนวนเหรียญสามารถ แสดงเป็นสมการดังนี้

$$\sum_{i=1}^{n} c_i \tag{1}$$

เมื่อ $\sum\limits_{i=1}^n c_i d_i = A$ โดยค่าของสมการที่ 1 มีค่าน้อยที่สุด

แนวคิด

- ขั้นแรกก็เลือกพิจารณาเหรียญที่มูลค่าสูงสุดก่อน
- พิจารณาว่ามูลค่าของเหรียญที่เลือกมาเกินกว่าจำนวนที่ต้องการแลก หรือไม่
- พิจารณามูลค่าส่วนที่เกิน มาพิจารณาเหรียญที่จะแลกในลำดับต่อไป
 จนได้จำนวนครบตามที่ต้องการแลก

กำหนด มูลค่าของเหรียญอยู่ 3 ชนิด คือ $10,\,5$ และ 1 มูลค่าที่ต้องการ แลก A=27

- เลือกเหรียญที่มีมูลค่า 10 จำนวนสองเหรียญ
- เลือกเหรียญที่มีมูลค่า 5 จำนวนหนึ่งเหรียญ
- เลือกเหรียญที่มีมูลค่า 1 จำนวนสองเหรียญ
- จำนวนเหรียญรวมคือ 5 เหรียญ

คุณสมบัติ

ปัญหาที่จะแก้ด้วยอัลกอริทึมเชิงละโมบจะต้องมีคุณสมบัติ

- คุณสมบัติในการเลือกแบบละโมบ (Greedy Choice Property)
 หมายถึง วิธีการเลือกคำตอบที่ดีที่สุดในส่วนของปัญหาย่อยหรือ
 สถานการณ์ปัจจุบัน จะต้องเป็นส่วนหนึ่งของคำตอบของปัญหา
 ทั้งหมดด้วย
- หลักของความเหมาะสมที่สุดหรือโครงสร้างย่อยเหมาะสมที่สุด เหมือนในกำหนดการพลวัต

ปัญหาจัดตารางแบบช่วง

- กำหนดให้มีกิจกรรมจำนวน n กิจกรรมที่ใช้ทรัพยากรร่วมกัน
- lacktriangle กิจกรรมแทนด้วยเซต $A=\{a_1,a_2,\ldots,a_n\}$ แต่ละกิจกรรม a_i เมื่อ $1\leq i\leq n$
- > ต้องการใช้ทรัพยากรในระหว่างเวลา $[s_i,f_i)$ หมายถึง เวลาเริ่มต้น (Start Time) ที่เวลา s_i โดยรวม s_i ด้วย แต่เวลาสิ้นสุด (Finish Time) f_i แต่ไม่ รวมที่จุด f_i ซึ่งมีเงื่อนไขว่า $s_i < f_i$ หมายความว่า ช่วงเวลาต้องไม่เป็นศูนย์
- สำหรับกิจกรรม 2 กิจกรรม แทนด้วย a; และ a; มีความสอดคล้องกัน ถ้า 2 กิจกรรมนี้ไม่มีการใช้ทรัพยากรในเวลาที่ซ้อนกัน
 - $lacktriangleright f_i \leq s_j$ หมายถึง กิจกรรม a_i สิ้นสุดก่อนหรือพร้อมกับกิจกรรม a_j จะ เริ่ม
 - ▶ $f_j \leq s_i$ หมายถึง กิจกรรม a_j สิ้นสุดก่อนหรือพร้อมกับกิจกรรม a_i จะ เริ่ม
- เลือกเซตของกิจกรรมที่มีจำนวนมากที่สุดซึ่งทุกกิจกรรมมีความสอดคล้อง กันหรือไม่ซ้อนกัน

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	5	9	13	3	7.5	11	2	11	0	11
fi	4	8	12	16	7	9.5	17	7	15	6	14

การเลือกกิจกรรมมาใส่เป็นคำตอบ

- แนวคิดในการเลือกกิจกรรม a_{i1} แล้วจะนำกิจกรรมอื่นที่ขัดแย้งกับ กิจกรรม a_{i1} ออกไป
- จากนั้นจะเลือกกิจกรรม a_{i2} ที่ไม่ชัดแย้งกับกิจกรรม a_{i1} แล้วลบ กิจกรรมอื่นที่ชัดแย้งกับ a_{i2} ออก
- ทำซ้ำกระบวนการ เลือกกิจกรรมใหม่ a_j ขึ้นมา แล้วลบกิจกรรมที่
 ขัดแย้งกับกิจกรรมใหม่ a_j นี้ จนไม่มีกิจกรรมเหลืออยู่

ส่วนที่ต้องตัดสินใจต่อไปคือ วิธีเลือกกิจกรรม $a_{i_1},\ a_{i_2},\ \dots$

อัลกอริทึม

- 1: $Q \leftarrow \{a_1\}$
- 2: $j \leftarrow 1$
- 3: $n \leftarrow |A|$
- 4: **for** i = 2 **to** n **do**
- 5: **if** $s_i \geq f_j$ **then**
- 6: $Q \leftarrow Q \cup \{a_i\}$
- 7: $j \leftarrow i$
- 8: end if
- 9: end for

จงแสดงการหาคำตอบของปัญหาจัดตารางแบบช่วง เมื่อกำหนดกิจกรรม โดยมีเวลาเริ่มต้นและเวลาสิ้นสุดดังต่อไปนี้

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	6	3	6	7	9	9	2	13
fi	4	5	7	8	9	10	11	12	13	14	15

เริ่มต้น $\mathit{Q} = \{\mathit{a}_1\},\, \mathit{j} = 1,\, \mathit{n} = 11$

- $lackbox{ iny } j=1$ และ i=2 ดังนั้น $s_2=3$ และ $f_1=4$ ซึ่ง $s_2< f_1$ ไม่เลือก กิจกรรมนี้
- ightarrow j=1 และ i=3 ดังนั้น $s_3=0$ และ $f_1=4$ ซึ่ง $s_3< f_1$ ไม่เลือก กิจกรรมนี้
- $lackbox{ ilde{J}}=1$ และ i=4 ดังนั้น $s_4=6$ และ $f_1=4$ ซึ่ง $s_4\geq f_1$ เลือก กิจกรรมนี้
- lacktriangle ดังนั้น $Q=\{a_1,a_4\}$ และ j=4

- ightharpoonup j = 4 และ i = 5 ดังนั้น $s_5 = 3$ และ $f_4 = 8$ ซึ่ง $s_5 < f_4$ ไม่เลือกกิจกรรมนี้
- ightarrow j=4 และ i=6 ดังนั้น $s_6=6$ และ $f_4=8$ ซึ่ง $s_6 < f_4$ ไม่เลือกกิจกรรมนี้
- ightarrow j=4 และ i=7 ดังนั้น $s_7=7$ และ $f_4=8$ ซึ่ง $s_7< f_4$ ไม่เลือกกิจกรรมนี้
- ightarrow j=4 และ i=8 ดังนั้น $s_8=9$ และ $f_4=8$ ซึ่ง $s_8\geq f_4$ เลือกกิจกรรมนี้
- ightharpoonup ดังนั้น $Q = \{a_1, a_4, a_8\}$ และ j = 8
- ightarrow j=8 และ i=9 ดังนั้น $s_9=9$ และ $f_8=12$ ซึ่ง $s_9< f_8$ ไม่เลือกกิจกรรมนี้
- ightarrow j=8 และ i=10 ดังนั้น $s_{10}=2$ และ $f_8=12$ ซึ่ง $s_{10} < f_8$ ไม่เลือกกิจกรรมนี้
- ightharpoonup j = 8 และ i = 11 ดังนั้น $s_{11} = 13$ และ $f_8 = 12$ ซึ่ง $s_{11} \geq f_8$ เลือกกิจกรรมนี้
- lacktriangle ดังนั้นคำตอบคือ $Q = \{a_1, a_4, a_8, a_{11}\}$

จงแสดงการหาคำตอบของปัญหาจัดตารางแบบช่วง เมื่อกำหนดกิจกรรมโดยมีเวลาเริ่มต้น และเวลาสิ้นสดดังต่อไปนี้

i	1	2	3	4	5	6	7
Si	1	3	5	6	3	8	7
fi	12	9	7	10	5	11	8

เนื่องจากตารางของโจทย์ยังไม่ได้เรียงลำดับตามเวลาสิ้นสุดให้ เป็น $B=\{b_1,b_2,\ldots,b_7\}$

i	1	2	3	4	5	6	7
Si	3	5	7	3	6	8	1
fi	5	7	8	9	10	11	12
В	b_5	<i>b</i> ₃	<i>b</i> ₇	b ₂	<i>b</i> ₄	b_6	b_1

จงพิสูจน์ว่า คำตอบต้องมีจำนวนกิจกรรม 4 กิจกรรม ต้องยกตัวอย่างกิจกรรมในเซตของ คำตอบด้วย

ปัญหาถุงเป็ (Knapsack Problem)

- ▶ มีสิ่งของจำนวน n ชิ้น แทนด้วย a_1, a_2, \ldots, a_n
- โดยสิ่งของชิ้นที่ i จะมีมูลค่า v₁ และน้ำหนัก w₁
- ถุงเป้ที่มีความสามารถบรรจุน้ำหนักได้ C
- lห้เลือกของใส่เข้ามาในถุงให้มีมูลค่ามากที่สุดและน้ำหนักรวมไม่เกิน C โดย $w_i \leq C$ เมื่อ $1 \leq i \leq n$
- กำหนดให้ x_i เป็นอัตราส่วนการเลือกของสิ่งนั้น โดยที่ $0 \le x_i \le 1$ ซึ่งต้องการหาวิธีการเลือกสิ่งของที่ทำให้ค่าของ P มีค่ามากที่สุด โดย
 P มีนิยามดังนี้

$$P = \sum_{i=1}^{n} x_i v_i \tag{2}$$

โดยที่
$$\sum_{i=1}^n x_i w_i \leq C$$

รูปแบบปัญหา

- ightharpoonup ถ้า $x_i \in \{0,1\}$ เรียกว่าปัญหาถุงเป้แบบ 0/1 (0/1 Knapsack Problem)
- langle หาก x_i มีค่าในลักษณะเป็นจำนวนเต็มตั้งแต่ 0 ถึง 1 นั้นคือ $0 \le x_i \le 1$ เรียกว่า ปัญหาถุงเป้แบบต่อเนื่อง (Continuous Knapsack Problem)
- อัลกอริทึมเชิงละโมบสามารถแก้ปัญหาถุงเป็นบบต่อเนื่อง

อัลกอริทึม

```
1: for i = 1 to n do
2: x[i] \leftarrow 0
3: end for
4: weight \leftarrow 0
5: value \leftarrow 0
6: i \leftarrow 1
7: while (weight < C) AND (i \le n) do
        if weight + w[i] \le C then
 8:
9:
             x[i] \leftarrow 1
10:
             weight \leftarrow weight + w[i]
11:
             value \leftarrow value + v[i]
12:
       else
13:
             x[i] \leftarrow (C - weight)/w[i]
             value \leftarrow x[i] * v[i]
14:
15:
            weight \leftarrow C
      end if
16:
17:
     i \leftarrow i + 1
18: end while
```

- กำหนดว่าสิ่งของ a₁, a₂,..., a_n เรียงจากค่าอัตราส่วนของมูลค่าต่อ น้ำหนักจากมากไปน้อยแล้ว
- ▶ ให้สิ่งของอยู่ในเซตที่เรียกว่า A
- ▶ ทำให้มูลค่าของสิ่งของเป็น $v_1, v_2, ..., v_n$ แทนด้วยอาเรย์ v[1], v[2], ..., v[n] และ
- ▶ น้ำหนักของสิ่งของแสดงด้วย $w_1, w_2, ..., w_n$ แทนด้วยอาเรย์ w[1], w[2], ..., w[n]
- สำหรับค่าอัตราส่วนที่เลือกสิ่งของชิ้นที่ i แทนด้วย x_i ในรูปของอา เรย์คือ x[i] ซึ่งเป็นค่าที่สอดคล้องกับการเรียงลำดับสิ่งของไปด้วย
- ▶ ตัวแปร weight เก็บน้ำหนักของสิ่งของที่เก็บไปไว้
- ▶ ตัวแปร value เก็บมูลค่าของสิ่งของที่ใส่ถุงไว้

จงแสดงการแก้ปัญหาถุงเป้ที่ถุงเป็บรรจุได้เท่ากับ 100 โดยกำหนดสิ่งของ พร้อมกับน้ำหนักและมูลค่าเป็นตารางต่อไปนี้

i	Vi	wi
1	20	10
2	30	20
3	66	30
4	40	40
5	60	50

i	Vi	Wi	v_i/w_i	ลำดับในเซต A
1	20	10	2	a ₂
2	30	20	1.5	a ₃
3	66	30	2.2	a_1
4	40	40	1	a ₅
5	60	50	1.2	a ₄

- ightharpoonup i=1 เลือก a_1 แล้ว x[1]=1, weight=30 และ value=66
- ightharpoonup i=2 เลือก a_2 แล้ว x[2]=1, weight=30+10=40 และ value=66+20=86
- ightharpoonup i = 3 เลือก a_3 แล้ว x[3] = 1, weight = 40 + 20 = 60 และ value = 86 + 30 = 116
- i=4 เลือก a_4 แล้ว x[4]=(100-60)/50=0.8, weight=100 และ value=116+0.8*60=164 เนื่องจาก weight มีค่าเท่ากับ C ดังนั้น ออกจาก คำสั่ง while

กำหนดสิ่งของพร้อมกับมูลค่าเป็นตารางต่อไปนี้

i	Vi	Wi	v_i/w_i
1	60	10	6
2	100	20	5
3	120	30	4

โดยถุงเป็บรรจุได้เท่ากับ 50

ปัญหาถุงเป้แบบต่อเนื่องใช้อัลกอริทึมเชิงละโมบได้

- ightharpoonup i=1 เลือก a_1 แล้ว x[1]=1, weight =10 และ value=60
- i=2 เลือก a_2 แล้ว x[2]=1, weight =20+10=30 และ value=100+60=160
- i=3 เลือก a_3 แล้ว x[3]=(50-30)/30=2/3, weight=50 และ value=160+((2/3)*120)=160+80=240 เนื่องจาก weight มีค่าเท่ากับ C ดังนั้น ออกจากคำสั่ง while

มูลค่ารวมเท่ากับ 60+100+80=240 โดยมีอัตราส่วนในการเลือกเป็น (1,1,2/3)

ข้อสังเกตุ

- ปัญหาถุงเป็นบบ 0/1 หากใช้แนวคิดอัลกอริทึมเชิงละโมบเหมือนกับ ปัญหาถุงเป็นบบต่อเนื่องแล้ว จะทำการตัดส่วนที่เป็นเศษส่วนออก จะ ได้การเลือกเลือกชิ้นที่ 1 และ 2 ทั้งชิ้นมูลค่ารวมเท่ากับ 160 โดยตัด ชิ้นที่ 3 ออกเนื่องจากเลือกได้ไม่เต็มชิ้น
- แต่หากเลือกชิ้นที่ 2 และ 3 มีมูลค่ารวมเท่ากับ 100 + 120 = 220 ซึ่ง ได้มูลค่ามากกว่า
- ดังนั้น อาจจะกล่าวว่าการใช้อัลกอริทึมเชิงละโมบไม่สามารถแก้ปัญหา ถุงเป็แบบ 0/1 ได้

ปัญหาการแลกเหรียญ

- 1: $i \leftarrow 1$
- 2: while A > 0 do
- 3: $c[i] \leftarrow A \operatorname{div} d[i]$
- 4: $A \leftarrow A c[i] * d[i]$
- 5: $i \leftarrow i + 1$
- 6: end while

A = 24

- เมื่อกำหนดให้มูลค่าของเหรียญที่ใช้แลกเป็น 10,5,1
- เมื่อกำหนดให้มูลค่าของเหรียญที่ใช้แลกเป็น 10,6,1
- สรุปเกี่ยวกับการใช้อัลกอริทึมเชิงละโมบในการแก้ปัญหาการแลก เหรียญอย่างไร