Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Tsinghua-Seagate Future Robotics Club Association of Science and Technology of Automation

November 5, 2015

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification 1a.

tructure of AN

Classification

alle for Civiv

Contents

Classification Task

Structure of ANN

CNN for Image Classification

Caffe for CNN

Using Caffe - An Example

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of Al

INN for Image

ffe for CNN

sing Caffe - An cample

Binary Classification

Figure 1: a cat?

Figure 2: a dog?

Binary Classification: Given input data x (e.g. a picture), the output of a binary classifier y = f(x) is one label retrieved from a set of two labels $y \in \{\pm 1\}$.

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of AN

Classification

Caffe for CNN

Jsing Catte - An Example

Linear Classifier

Data set
$$\mathcal{D} = \{(x_1^{(1)}, x_2^{(1)}), \cdots, (x_1^{(n)}, x_2^{(n)})\}$$

A linear binary classifier is a hyperplane $w^T x = b$
 x_1 $f(x) = sgn(w^T x - b)$

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of AN

Classification

alle for Civiv

Performance of Linear Classifier

True Positive:

$$y = +1, f(x) = +1$$

True Negative:

$$y=-1, f(x)=-1$$

False Positive:

$$y=-1, f(x)=+1$$

False Negative:

$$y=+1, f(x)=-1$$

Accuracy:

$$\frac{TP+TN}{n}$$

Error Rate:

$$\frac{FP+FN}{n}$$

A good classifier: **minizing** the error rate

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of ANN

Classification

afte for CNN

Basic Concepts

Training Set
Test Set
Training Error
Generalization Error
Overfitting
Loss Function

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ucture of AN

.....

atre for CIVIN

Overfitting

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Perceptron

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Structure of ANN

CNN for Image Classification

Caffe for CNN

Perceptron

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Structure of ANN

CNN for Image Classification

affe for CNN

Training Algorithm

Define a loss function:

$$E(w) = \frac{1}{2} \sum_{d \in \mathcal{D}} (t_d - o_d)^2$$

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Structure of ANN

CNN for Image Classification

Caffe for CNI

$$\nabla E(w) = (\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n})^T$$

where

$$\frac{\partial E}{\partial w_i} = \sum_{d \in \mathcal{D}} (t_d - o_d)(-x_i^{(d)})$$

for every iteration (η denotes learning rate)

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta \sum_{d \in \mathcal{D}} (t_d - o_d) x_i^{(d)}$$

$$\forall i \in [n]$$

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Structure of ANN

Classification

Latte for Civil

Example

Artificial Neural Network

Structure of ANN hidden layer input layer output layer $x_2^{(2)}$ $x_1^{(3)}$ $x_2^{(1)}$ x₃⁽²⁾ $x^{l+1} = h((W^l)^T x^l)$

h is a non-linear function.

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tas

Structure of ANN

CNN for Image Classification

Caffe for CNN

Sigmoid Function

$$h(x) = \frac{1}{1 + e^{-x}}$$

$$h(x)$$

- ▶ 1. continuous, differentiable
- ▶ 2. map $[-\infty, +\infty]$ to [0, 1]
- 3. nonlinearity
- ▶ 4. h'(x) is easy to calculate

$$h'(x) = h(x)(1 - h(x))$$

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tasl

Structure of ANN

CNN for Image Classification

Caffe for CNI

Back Propagation and Delta Rule

Please refer to this page Mathematical model of ANN

$$x^{l} = f(u^{l}), u^{l} = (W^{l-1})^{T} x^{l-1}$$

where I denotes the current layer with the output layer designated to be layer L and the input layer designated to ba layer 1. Function $f(\cdot)$ is a nonlinear function (i.e. sigmoid or hyperbolic tangent).

Define loss function as

$$E(x^L, t)$$

where x^L is the network output and t is the target output.

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Structure of ANN

CNN for Image Classification

affe for CNN

Jsing Catte - An Example

Expand the loss function

$$E(x^{L}, t) = E(f((W^{L-1})^{T}x^{L-1}), t)$$

Using chain rule, we can write the derivatives w.r.t. W^{L-1}

$$\frac{\partial E}{\partial W^{L-1}} = x^{L-1} (f'(u^L) \star \frac{\partial E}{\partial x^L})^T$$

where * denotes elementwise multiplication, and if we define

$$\delta^{L} = f'(u^{L}) \star \frac{\partial E}{\partial x^{L}}$$

we get

$$\frac{\partial E}{\partial W^{L-1}} = x^{L-1} (\delta^L)^T$$

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification 1a

Structure of ANN

CNN for Image
Classification

affe for CNN

Example

Back Propagation and Delta Rule

If we calculate the δ term recursively

$$\delta^{l} = f'(u^{l}) \star ((W^{l})^{T} \delta^{l+1}), l = L - 1, \dots, 2$$

it is easy to write

$$\frac{\partial E}{\partial W^l} = x^l (\delta^{l+1})^T, l = L - 2, \cdots, 1$$

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

Structure of ANN

CNN for Image Classification

affe for CNN

Network Structure

Figure 3: structure of convolutional neural network

- Convolution Layer
- Pooling Layer (Subsampling)
- ► Full-connected Layer (Inner-product)
- ► ReLU Layer
- Softmax Layer

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Ta

otructure of ANI

CNN for Image Classification

latte for CNN

xample

Convolution Layer

$$g_{ij} = \sum_{s=i}^{i+2} \sum_{t=j}^{j+2} h_{st} k_{st}$$

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of AN

CNN for Image Classification

Latte for CIVIN

Convolution Layer

$$g_{ij} = \sum_{s=i}^{i+2} \sum_{t=j}^{j+2} h_{st} k_{st}$$

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of AN

CNN for Image Classification

Caffe for CIVI

Using Catte - An Example

Pooling Layer

$$g_{ij} = \max\{h_{2i,2j}, h_{2i+1,2j}, h_{2i,2j+1}, h_{2i+1,2j+1}\}$$

No free parameter in pooling layer.

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

ructure of AN

CNN for Image Classification

Latte for CNN

Jsing Catte - An Example

Inner-product

Known as full-connected layer. Weights are designated from every input to every output, namely

$$y = W^T x$$

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

tructure of AN

CNN for Image Classification

Latte for CIVIN

Rectified Linear Unit

A rectifier

$$y = \max\{0, x\}$$

A rectified linear unit

$$y = ln(1 + e^x)$$

with its derivative w.r.t. x

$$\frac{dy}{dx} = \frac{1}{1 + e^{-x}}$$

ReLU improves efficiency of calculating.

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

tructure of AN

CNN for Image Classification

Catte for CNN

Softmax

Derived from softmax regression, extension of logistic regression for multi-label classfication.

$$y_i = \frac{e^{x_i}}{\sum_{k=1}^n e^{x_k}}, \forall i \in [n]$$

Outputs of softmax layer are probabilities of each label.

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

tructure of AN

CNN for Image Classification

Catte for CNI

Using Catte - An Example

MNIST Database

MNIST: Mixed National Institute of Standards and Technology

Figure 4: Handwritten Digits

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification

tructure of AN

CNN for Image Classification

Latte for CNN

sing Caffe - An xample

10 distinguishing classes

LeNet Review

Figure 5: LeNet for MNIST

- input: a picture (size 28×28)
- ▶ conv1: 4 kernels (size 5×5)
- ▶ pool1: max pooling (size 2×2)
- \triangleright conv2: 3 kernels (size 5 \times 5)
- ▶ pool2: max pooling (size 2×2)
- ▶ ip: full-connected $(192 \rightarrow 10)$
- ► softmax: 10 inputs, 10 prob outputs

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

CNN for Image

Classification

affe for CIVIN

xample

Caffe Tutorial

For more information please refer to this page. Key words:

- ► Nets, Layers and Blobs
- ► Forward / Backward
- Loss
- Solver
- Layer Catalogue
- Interfaces
- Data

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tasl

tructure of Al

CNN for Image Classification

Caffe for CNN

Nets, Layers and Blobs

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

tructure of AN

CNN for Image Classification

Caffe for CNN

Example - An

Forward / Backward

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Ta

tructure of AN

CNN for Image Classification

Caffe for CNN

$$y_i(x) = \frac{e^{x_i}}{\sum_{k=1}^n e^{x_k}}, \forall i \in [n]$$

Softmax loss function: let label j be groundtruth, therefore

$$L = -\ln(y_j(x)) = -\ln(\frac{e^{x_j}}{\sum_{k=1}^n e^{x_k}}) = \ln(\sum_{k=1}^n e^{x_k}) - x_j$$
$$\frac{\partial L}{\partial x_i} = y_i(x) - \delta_{ij}$$

where $\delta_{ij} = 1$ iff i = j, and $\delta_{ij} = 0$ otherwise.

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tas

Structure of AN

Classification

Caffe for CNN

Jsing Catte - An Example

Solver

SGD (Stochastic Gradient Descent)

$$\begin{array}{rcl} w_{t+1} & = & w_t + \Delta w_t \\ \Delta w_{t+1} & = & \mu \Delta w_t - \alpha \frac{\partial L}{\partial w_t} \end{array}$$

 α : learning rate

 μ : momentum

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

tructure of AN

CNN for Image Classification

Caffe for CNN

Solver parameters (i.e.):

- **b** basic learning rate: $\alpha = 0.01$
- learning rate policy: step (reduce learning rate according to step size)
- ▶ step size: 100000
- gamma: 0.1 (multipy learning rate with factor 0.1 after step size)
- ▶ momentum: $\mu = 0.9$
- max iteration: 350000 (stop at iteration 350000)

Layer Catalogue

Please refer to this page.

Vision layer:

- convolution
- pooling

Loss layer:

- softmax loss
- Euclidean loss
- cross-entropy

Activation layer:

- sigmoid
- ► ReLU
- hyperbolic tangent

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tasl

Structure of AN

CNN for Image Classification

Caffe for CNN

Layer Catalogue

Data layer:

- datebase
- ▶ in-memory
- ► HDF5 input
- ► HDF5 output

Common layer:

- ▶ inner product
- splitting
- flatening
- reshape
- concatenation

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Task

tructure of AN

CNN for Image Classification

Caffe for CNN

Installation

Prerequisites:

protobuf, CUDA, OpenBLAS, Boost, OpenCV, Imdb, leveldb, cuDNN(optional), Python(optional), numpy(optional), MATLAB(optional)

Install:

git clone git://github.com/BVLC/caffe/your/own/caffe/folder

Go to Caffe root folder

cp Makefile.config.example Makefile.config make all make test make runtest

Hardware:

K40, K20, Titan for ImageNet scale GTX series or GPU-equipped MacBook Pro for small datasets Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tas

Structure of AN

Classification

Latte for Civily

LeNet Example

LeNet Structure

- 1. Protobuf Protocol
- 2. Run!

Introduction to Deep Learning and Caffe

HE Shuncheng hsc12@outlook.com

Classification Tas

Structure of Al

Classification

Latte for CNN

How to be Professional?

- 1. Figure out theoretical keypoints (read papers)
- 2. Read Caffe source code
- 3. Be proficient at programming and debugging skills
- 4. Take advantage of search engine and community
- 5. Do it through this pipeline:
 - Experiment design
 - Data preparation (build database with tools)
 - Model selection (including network and solver)
 - Training
 - Analysis and comparison

Introduction to
Deep Learning and
Caffe

HE Shuncheng hsc12@outlook.com

Classification Tas

ructure of AN

CNN for Image Classification

Caffe for CNN

