Module: 21

-> Simplex Method:

Steps: -

i) The objective function should be to maximisation

ii, Express the lpp in the standard born

Q: Max z = 1x + 5x2

subject. 21, +222 56

42, + 322 512

x, x, >,0.

Solve the given LPP using Simplex method 9

Ans: subject to changed to coith s.

x, + 2x, +S, =6 -0

4x, +3x2+ S2 = 12 -2

8 x1 x2 S1 S2 >,0.

then add the s, & s, to the objective.

.. Man z = Tx, 15x2+0s, + Os2

iii, Obtain an initial basic feasible solution.

8, , S2 -> basic variable.

 $\therefore \chi_1 = \chi_2 = 0$ non basic variables.

then bind the value of 3, band so x, +2x +5=6

8=6/

4xx +3x2 + S2 = 12 ... S2 = 12

slep 4: Construction of Bimplex table.

column CB: Coefficient of basic variable in Objective function.

Column B: This consist of basic rasiables.

Column XB: Solution I value ob basic variable.

			7	Coust ourns	wille	-	Hinmum Ratio
LOBE	-/-	T.	XI	×2	91	S2	(XB/ Incoming Vedo
CB	B /7	B	1.	2	1	10	6
0	51	10	Landa	3	10	100	3
1327	52,	112	17	1	1	10	1 19 10 10
	zj	1	10	110	10	10	
	Ci	1	17	1 5	10	10	120mm 135
pil n	1	1	1	1.	-5	0	1
	12	is al	1	11	180	-	033
							11. 12

Zj = 2 CB * xj (0 x 1 + 0 x 4 =

Cj => coefficient of the complete variable. in objective. .: 7 5 00 . 5. - Faste rasmite.

Aj = Zj - Cj

· find the largest negative value in Aj-ie, -7. So the incoming vector is X,

then find the minimum Ratto.

6/1 12/4.

The minimum vector is 3. 80 Circle the (32) raihad 183 Con

If all Dj is the the present solution is the optimal solution.

If at least one wasab value of Aj es -ve the present solution is not optimal. In that case identify the most negative of, in this table the most negative Di value is -7. -7 lies in the column x_1 . So x_1 is the incoming vector, Key column.

adentify the minimum positive ratio. here 3' is mimmum postive ratio. So 'Sz' is the Leaving vector.

Here "4" is the key element.

simple	ex Ta	ble 2	photo		3 13	4 11.1	
51.37		×B	X1	X2	SI	82	Minimum Ratto
CB	B	/					C×B/ incoming vector.
	1		3	684	2.3	10 1	ne in
10	51	3	0	5/4	1	-1/4	
17	XI.	3	1	3/4	0	1/4.	
	Zi		7	21/4	0	7/4	
	çj		7	5	0	0	
	4j		0	1/4	D	1/4	

1) xB = value ob basic variable. now the basic variables are s, and x, .. the non-basic variables are S_2 and X_2 S2 = X2=0. then substitule it in equalation, to bind the value

4x, +0+0=12. 3, and x1 421=12

4x1=12/4=0//

① ⇒ \$3+0+S1=6 : S1=6-3= @

3 then brind the values in the SI 2000.

'for xi = value in the odd table + (- value in the key column * below element in the new table)

$$x_1 = 1 + (-1 \times 1)$$

$$= 0 \times 1 = 0 / 1$$

$$x_2 = 2 + (-1 \times 3/4)$$
 $2 - 3/4 = \frac{8-3}{4} = \frac{5/4}{4}$

1910 + 153

$$S_1 = 1 + (-1 \times 0) = 1$$

$$S_2 = 0 + (-1 \times 1/4) = -\frac{2/4}{-}$$

a dind the value ob zi, ci and Aj.

if it is the then

other &= 72=0.

(4)

= 21

8 solve the given LPP using simplex method.

Min Z = 21 - 32 + 223

36, $3\alpha_1 - \alpha_2 + 3\alpha_3 \le 1$ $-2\alpha_1 + 4\alpha_2 \le 12$ $-4\alpha_1 + 3\alpha_1 + 8\alpha_3 \le 10$

x, x2 x3 7,0.

Ans: Objective should be max : Max $z = -\alpha_1 + 3\alpha_2 - 2\alpha_3$.

add slack variable $3\chi_{1} - \chi_{2} + 3\chi_{2} + S_{1} = 7$ $-2\chi_{1} + 4\chi_{2} + S_{2} = 12$ $-4\chi_{1} + 3\chi_{2} + 8\chi_{3} + S_{3} = 10$ $\eta_{1}, \chi_{2}, \chi_{3}, S_{1}, S_{2}, S_{3} \neq 0$

then objective became.

Max $z = -x_1 + 3x_2 - 2x_3 + 6s_1 + 0s_2 + 0s_3$

* Initial basic variables are $S_1 S_2 S_3 \rightarrow basic variables$ non basic variables $\chi_1 \chi_2 \chi_3 = 0$.

$$S_1 = 7$$

 $S_2 = 12$
 $S_3 = 10$

step: construction ob simplex table.

CB	B	XB	$\left \begin{array}{c} x_1 \\ \end{array} \right $	X2	×3	81	\$2		Minimum 1 (XB/inco) Vector
0	Sı	7	3	1-1	3	Jane	0	0	-4
0	S2	12	-2	4	0:5	0	- 3 -	0	10
0	S3	10	1-4	3	8	0	0	1	10/3
	7	j	0	0	0		0,	0	A STATE OF THE STA
	C			3	1-2	No.	0	0	
	1	4jî	12	132	2	0	0	0	
				V					

Zj = 2 CB * xj

cj = coefficient of complete variable.

Aj = Zj-Gj

check Dj és tve; so find the most -ve oboumn.

. snooming vector is X2. then bind the minimum satio. so the leaving vector is S2 so key is 4 · simplex table 2. Minimum XB | X1 | X2 | X3 | S1 | S2 | S3 B Ratio (xB/ CB sneoming vector. (4)4 5/2 1/4 0 3 0 Si 0 1/4 -1/2 0 0 0 3 X2 3/4 80 - 5/2 0 -2/5 83 0 1 3/4 -3/2 0 0 0 zj 0 0 0 3/4 Aj 0

, snooming vector is xy bind the minimum satio. 10/ - 5/2 = 16 × = 4 x B/incoming vector 3: -1 = 3x-2 = -6/1 = -6 1 + -5 = 1 × = = -2/5 : Key value = 5/2 .: Simplex table: 3: Minimum Ratio X3 | S, | S2 | S3 (XB/incoming rector). X2 XI XB CB 1/10 3/5 6/5 0 1 -1 3/5 1/5 0 N2 1 S3 11 1 0 3/5 30 Zj 84 3.

13/5

0

1/5

0

8/10

cj

Dj

0

.. Aj is the.

.. find the value of bound variable $x_1 = 4$ $x_2 = 5$ $s_3 = 11$.. mon-basic variables are $x_3 = 9 = 52 = 9/1$.. mon-basic variables are $x_3 = 9 = 52 = 9/1$ $-4 + 3 \times 5 - 0 + 0 \times 11$ = -4 + 15 + 0 = 0.. Min $x_1 = -1$

8 golve the LPP cusing simplex method ? Max Z= 6x, +4x2 gabject +0, - 2x, +x2 ≤ 2 2, - 2, <2 32, + 222 5 9 d1, 2 70.

ADS! Objective should be max. .: subject should be exual.

·· -2×1 +×2 + S1 = 2. $2, -2 + S_2 = 2$ $3x_1 + 2x_2 + s_3 = 9$.

Z1, X2, S1, S2, S3 710.

·. Max 2 = 6x, +4x2 +0s, +0s2 + 0s3

Initial basic variables are (31, S2 S3) - basic variable.

: non-basic variables are x, x_2 x_3 = 0.

· · S1 = 2 S2 = 2

* Constauct the simplex table:

Stroplex table:2			
CR WB XB / A A A A A A A A A A	X1 X2 S1	S ₂ S ₃	Hioimum Ratio (XB/Snloming Vector
0 3, 2 -2 1 (1 0 0 -1	1-11	20	
0 S, 2 1 -1 (0 10 2 X, 2)	-10	10	-2
3 3 3 5 3 6	5 0	-3 1.	3/5
	6 -6 0		
2 0 0 0 0 0	5 4 0	6 0	
Cj 6 4 5 0 0 0		6 0	
A 1 -6 -4 0 0 0 0 1 20 10	1-10/0	16 0	
5 is key valu	e·		
most -ve Dj value is -6 So Beled that grouplex table 3.			
inteming fractor	X1 X2	S1 S2	S3 Ration
deast the value			RB/incoming vector.
3 5 60	100	1 7/5	1/5
0 31	1	0 2/3	5 1/5
6 X ₁ 13/5	1	0 -3	
$R_i \rightarrow R_i + 2R_2$	6 4		go 2
7j -2 +2 xi of cj	6 4	0 0	0
40	0 0	0 1	2
R3-> R3-3R2			
	1	1	

Big-M-Method:

, 24 38 Max.

The Lpp should be in the standard form, (Man, =)

-11 14 Ex Fo 2000 Co

PRO NA , NA 2 2 200

· Artifical variable are in corperated only box computational proces, they have no physical meaning.

Astifical vowable are introduced, when the constraints are ab the lype greater than or equal

< + S, => =

 $> -S_2 + A_1 =$ $= +A_2$ • coefficient of astifical variable is -M

a. How to identify highest value from expression containing

highest value. 7-4M, -6M-16, 2/3-9M

2) 5-6M, 6-6M, 10-5M

Same value so min {5,6}. 5-6M most -ve. value.

>> solve by big- H- method? Max z = 2x, + 22 +3x3 subject to, 2, +22 +223 55 29, +3×2 +4×3 =12. $\chi_1, \chi_2, \chi_3 > 0$. execuse they bave no physical mea Ans: for 5 + 81, = + A1 of the lope exceles down as square X1 + x2 + 2 x3 + S1 = 5 2x, +3x2 +4x3 + A, = 12 + 3 21, 22, 23, S1, A1 7,0 - (. objective: Manz = 2x, +x2+3x3 +03, - MAI) Minimum Rath x B X1 X2 X3 81 A1 (XB/incomin CB Vector). 84 2 A1 2 3. 4 0 2 -3M -4M 0 -M -2M. 082004 Cies 3 0 -3M-1 -4M-3 0 -2M-2 0

single table 2.											
	en ta	ible 2.	(3)			bas	- 1	Minimum Ratio			
CB	B	XB.	X.	X 2	73	81	A ₁	XB/Interming Vector.			
01,	a service	37, 18,	1/2	12				Ved di .			
3	8 × 3	4/2	/2	1/2	2	1/2	10	5			
(-M.	Ag	9 -> 2	0	1	10	-2	2	2)			
	zj	De Ch	3/2	3/2-19	3	3/2+219	-M				
	cj		2	2	3	0	-M				
	Aj		-Y2	1/2-M	0	3/2+21	10				
		William !	148	MI	1-4	iA	110	1 1943			
を 元					ost -ve		1				
李爷	15 A 24 3	분하 그	2 12	2-1	1-2	7-7	3-2	- 12-M			

The Key value is '9' from the A1 00 2000. In the next simplex table The A1 is changed to . N2. and also the (A2) clo column is also removed from the table. Minimum Ration Si X2 X3 XI (XB/incoming vector) 1 XB B · · cB 1/2 ×3 not defined. 5/2 3/2 1 0 2 5/2 -1/2 0 0 (R, -7 R, - 1/2 R2

5/2 - 3/2 5/2 - 3/2 5/2 - 3/2	- 2 × - 2 ×	1 + 1	3/4 1 × 3/4	712 2 9	3/2	2 × 3 + - 2 3 × 3 + - 2 3 × 3 + - 2 4 × 3 × 3 + - 2 7 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×	
7 B/	i Kou V	alue	1	2/	96	Hinimum Ratio (xB/intoming vector	·).
	7, 3	2	0	2	3	ST 1X - Bilding	
2	×2 2	0	ı	0	-2	EFF 18	
	Zi	2	1	4	4		-
	Gi	12	1	3	0	Minz - 89, 1-	
	43	10	10	1	14,	T A A	
3 2 4	on Aj val	ues ale 2 = :	tvo 2 varial	e. Sleva	ie ×	eco.	

Max Z = 2x1+x2+3x3+05, -MD1 -24, + 42 7/3 4, , 42 70. : 2x3+2+0+0+0 = 6+2 = 8// o. finel the dual of Min z = 2x, +3x2 subject to, x1 + 22 >10 If the value of "x" contain M' then the solution 24 +32 7/12 is infeasible X1, X2 7,0 9 ms. Max x' = 104, +1242 Dual of LPP $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \xrightarrow{\text{frampose}} A^{7} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ a find the dual of Hax = 4x1 +3x2 (-: Max x'= log1. + 1292 Subject to, -x1 -2x2 53 4, + 39, 53 - 21 + 22 X2 frest Man changed to Him 21,72 70. 3, , 42 7,0. is charged to objective & is, X' charged to another Min2' = 34, +242 O. find the dwal Hax Z = 221+x2, $A = \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}$ Subject to x, +2x2 \$10 then subject coefficient makes 7, +72 56 Matrix 14, -0, -272

[-1 -2] -x, + 42

-1 1 -> then x1 - x2 52 7 x1 - 272 51 A1 = [-1 -1] X1, X2 7,0 Aus: Hin z' = toy, + 6y2 + 2y3 + y4 $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ AT = $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 - 2 \\ 1 & -1 & 1 \end{bmatrix}$.. Min x' = 39, + 292 then x, -> g, - 9, - 92 74

