Machine learning – Selbsthilfe-Gruppe

 α Kevin ft. features

Kevin Lamkiewicz

Friedrich Schiller University Jena

20.07.2017

Hands On

Hands On

No free lunch

NO FREE LUNCH

Einführung

Theorem 1:

$$\sum_{f} \mathcal{P}(h_m^y|f,m,a_1) = \sum_{f} \mathcal{P}(h_m^y|f,m,a_2)$$

No free Lunch

Theorem 1:

$$\sum_{f} \mathcal{P}(h_m^{\mathcal{Y}}|f,m,a_1) = \sum_{f} \mathcal{P}(h_m^{\mathcal{Y}}|f,m,a_2)$$

In Worten:

Angenommen das Auftreten aller Funktionen f ist gleichverteilt, dann ist die Wahrscheinlichkeit \mathcal{P} unabhängig vom gewählten Algorithmus.

FEATURES

▶ idealerweise quantifizierend

FEATURES

- ▶ idealerweise quantifizierend
- ▶ alles, was euch so einfällt...
 - \Rightarrow sinnvolle Trennung von Klassen

BEISPIEL: FEATURES

RNAs

Wir sollen pflanzliche mRNA von humaner mRNA unterscheiden. Welche features können wir dazu nehmen?

BEISPIEL: FEATURES

RNAs

Wir sollen pflanzliche mRNA von humaner mRNA unterscheiden. Welche features können wir dazu nehmen?

- mRNA Länge
- durchschnittliche Exon/Intron Länge
- Anzahl Exons/Introns
- ► GC-Gehalt (%)
- Codon Frequenz
- **>** . . .

Hands On

Feature Design in Python

IMPLEMENTIERUNG IN PYTHON

```
#!/usr/bin/env python3

X = [[0,1.5,2.13,0,0], [2,0.04,1.3,0.3,3]]

y = [["class1", "class2"]

...
```

```
#!/usr/bin/env python3

...

X = [[0,1.5,2.13,0,0], [2,0.04,1.3,0.3,3]]

y = [["class1", "class2"]

...
```

oder allgemein:

```
X ist eine Matrix der Größe [n_samples, n_features] y ist ein Vektor der Größe [n_samples]
```

Hands On

FEATURE SELECTION I

Woher weiß ich, welche features wichtig für meine Klassifikation ist?

FEATURE SELECTION I

Woher weiß ich, welche features wichtig für meine Klassifikation ist?

scikit-learn

Einige Classifier besitzen vorimplementierte Methoden, die wichtige features identifizieren:

```
from sklearn.ensemble import RandomForestClassifier

X = [[0, 1.5, 2.13, 0, 0], [2, 0.04, 1.3, 0.3, 3]]

y = [["class1", "class2"]

clf = RandomForestClassifer()

clf.fit(X,y)

print(clf.feature_importances_)
```

FEATURE SELECTION II

Woher weiß ich, welche features wichtig für meine Klassifikation ist?

F-Score

$$F(i) = \frac{(\overline{x}_i^{(+)} - \overline{x}_i^2) + (\overline{x}_i^{(-)} - \overline{x}_i^2)}{\frac{1}{n_+ - 1} \sum_{k=1}^{n_+} (x_{k,i}^{(+)} - \overline{x}_i^{(+)})^2 + \frac{1}{n_- - 1} \sum_{k=1}^{n_-} (x_{k,i}^{(-)} - \overline{x}_i^{(-)})^2}$$

In Worten:

Je höher der F-Score F(i) für feature i, desto höher ist die Diskrepanz dieses features in den unterschiedlichen Klassen.

FEATURE SELECTION III

Woher weiß ich, welche features wichtig für meine Klassifikation ist?

Loss of accuracy

Ähnlich wie der F-Score ein Maß zur Bestimmung der feature importance:

- 1. Berechnung von Accuracy mit allen features N(f)
- 2. Iterative Neuberechnung der Accuracy mit N(f) 1
- ⇒ auch bekannt als leave-one-out Methode

FEATURE SELECTION IV

Woher weiß ich, welche features wichtig für meine Klassifikation ist?

Mean decrease accuracy: MDA

Idee basiert auf der leave-one-out bootstrap Methode:

- 1. Berechnung von Accuracy mit allen features
- Iterative Permutation jedes features
 - wird wichtiges feature permutiert, sollte die Accuracy sinken
 - wird unwichtiges feature permutiert, sollte sich wenig ändern
- 3. Neuberechnung der Accuracy mit permutiertem feature

Feature Selection

Hands On

EINFACHE KLASSIFIKATION

scikit-learn bringt einige Standardbeispiele mit sich:

Iris Datensatz

DAS Paradebeispiel für Machine learning.

- Klassifikation verschiedener Schwertlilien
- {Kelchblatt, Kronblatt}{länge, breite}
- ▶ 150 Instanzen

```
from sklearn import datasets
iris = datasets.load_iris()

X_iris, y_iris = iris.data, iris.target
print(X_iris, y_iris)
print(X_iris[0], y_iris[0])
```

FEATURE DESIGN

Minimalbeispiel für DNA/RNA Sequenzen:

```
import random
    from collections import Counter
    # random sequence creation
    segs = [''.join([random.choice("ACGT") for l in range(50)]) \
               for x in range(10)]
6
    # important features design code
    dataframe = []
8
    for s in seqs:
     vector = [len(s), (Counter(s)["C"]+Counter(s)["G"]) / len(s) * 100]
10
     dataframe.append(vector)
11
    for data_sample in zip(seqs, dataframe):
12
     print(data sample)
13
```

F-Score auf Mehr Klassen

Die Berechnung des F-Scores ist auch möglich, wenn mehr als zwei Klassen vorhanden sind.

Obacht: Die Aussagekraft wird jedoch schwächer.

F-Score

$$F(i) = \sum_{c \in \text{class}} \frac{(\overline{x}_i^{(c)} - \overline{x}_i^2)}{\frac{1}{n_c - 1} \sum_{k=1}^{n_c} (x_{k,i}^{(c)} - \overline{x}_i^{(c)})^2}$$