Disk-wind math

Kirk Long

June 10, 2021

Following from the \hat{n} given in Waters and the rate of strain tensor terms in spherical coordinates from Batchelor we verify and expand the result given in CM96:

$$\hat{n} \cdot \mathbf{\Lambda} \cdot \hat{n} = \sin^2 i \left[\frac{\partial v_r}{\partial r} \sin^2 \phi + \left(\frac{\partial v_\phi}{\partial r} - \frac{v_\phi}{r} \right) \sin \phi \cos \phi + \frac{v_r}{r} \cos^2 \phi \right]$$

$$-\sin i \cos i \left[\left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{1}{r} \frac{\partial v_\theta}{\partial r} - \frac{v_\theta}{r^2} \right) \sin \phi + \frac{1}{r} \frac{\partial v_\phi}{\partial \theta} \cos \phi \right]$$

$$+\cos^2 i \left(\frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r}{r} \right)$$

$$(1)$$

Where in arriving at the form above we have assumed all of the $\frac{\partial}{\partial \phi}$ operator terms are 0 (axisymmetric) and the disk is in the equatorial plane $(\theta = \frac{\pi}{2})$ which allows us to significantly simplify $\hat{n} = (\sin\theta\cos\phi\sin i + \cos\theta\cos i)\hat{r} + (\cos\theta\cos\phi\sin i - \sin\theta\cos i)\hat{\theta} - (\sin\phi\sin i)\hat{\phi}$. Waters uses a ϕ convention that differs from CM96 by $-\frac{\pi}{2}$, and applying this to equation one gives us:

$$\hat{n} \cdot \mathbf{\Lambda} \cdot \hat{n} = \sin^2 i \left[\frac{\partial v_r}{\partial r} \cos^2 \phi - \left(\frac{\partial v_\phi}{\partial r} - \frac{v_\phi}{r} \right) \sin \phi \cos \phi + \frac{v_r}{r} \sin^2 \phi \right]$$

$$- \sin i \cos i \left[\left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{1}{r} \frac{\partial v_\theta}{\partial r} - \frac{v_\theta}{r^2} \right) \cos \phi - \frac{1}{r} \frac{\partial v_\phi}{\partial \theta} \sin \phi \right]$$

$$+ \cos^2 i \left(\frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r}{r} \right)$$

$$(2)$$

In CM96 they assume that $v_r \approx 0$ but that there is an acceleration related to the escape velocity, ie $\frac{\partial v_r}{\partial r} \approx 3\sqrt{2}\frac{v_\phi}{r}$, where $v_\phi = \sqrt{\frac{GM}{r}}$ is the Keplerian v_ϕ , which gives us $\frac{\partial v_\phi}{\partial r} = \frac{-v_\phi}{2r}$. But what are the θ terms? Following in the footsteps of CM96 it makes sense

But what are the θ terms? Following in the footsteps of CM96 it makes sense to assume that on average $v_{\theta} \approx 0$ for the same reason $v_r \approx 0$, but similarly we will assume a particle may be lifted by the wind and accelerated to the local escape velocity (but now in the $\hat{\theta}$ direction) such that $\frac{\partial v_{\theta}}{\partial \theta} \approx \frac{v_{esc}}{(H/R)}$ and $\frac{\partial v_{\theta}}{\partial r} \approx \frac{\partial v_r}{\partial r}$. Since $v_{\phi}(r) \to \frac{\partial v_{\phi}}{\partial v_{\theta}} = 0$, and we also set $\frac{\partial v_r}{\partial \theta} = 0$. But should it

be? Should a tiny change in theta (lifting off the disk) then allow the thing to be radially accelerated away? Maybe this one should be also be like $\frac{v_{esc}}{(H/R)}$...

Plugging in these approximations reduces equation two to:

$$\hat{n} \cdot \mathbf{\Lambda} \cdot \hat{n} = 3 \frac{v_{\phi}}{r} \sin^2 i \cos \phi \left[\sqrt{2} \cos \phi + \frac{\sin \phi}{2} \right]$$

$$-\sin i \cos i \left[\frac{1}{r} 3 \sqrt{2} \frac{v_{\phi}}{r} \cos \phi \right]$$

$$+\cos^2 i \left(\frac{1}{r} \frac{v_{esc}}{(H/R)} \right)$$
(3)

Rescaling v_{ϕ} into units of r_s gives us $v_{\phi} = \sqrt{\frac{1}{2r'}}$ (where $r' = r/r_s$ and the extra factor of c is just absorbed into an overall normalizing constant since we normalize by the flux anyways). Similarly the H/R dependence can be absorbed into an overall constant, and we can convert all our 1/r terms to be in terms of r_s and absorb the extra scaling terms into our normalization, so that we get an equation that just shows us the r dependence of the line of sight velocity gradient:

$$\hat{n} \cdot \mathbf{\Lambda} \cdot \hat{n} \approx \frac{\mathrm{d}v_l}{\mathrm{d}l} \approx \frac{3\sqrt{\frac{1}{2r}}}{r} \cos \phi \left[\sin^2 i \left(\sqrt{2} \cos \phi + \frac{\sin \phi}{2} \right) - \frac{\sin i \cos i}{r} \right] + \cos^2 i \frac{1}{\sqrt{r^3}}$$
(4)

This is the form used currently in the fitting routine in the code. Since the $\sin i \cos i$ term is divided again by the radius and we are usually at $r_s > 1000$ this term is usually very small and does not contribute, but the inclination dependence makes the $\cos^2 i$ term very important at low inclinations and changes the overall shape of the line profile significantly.