Direct Detection of Ultralight Dark Matter via Astronomical Ephemeris 1801.02807 PLB

Hajime Fukuda, S. Matsumoto, T. T. Yanagida May 15, 2019

T. D. Lee Institute

Introduction

- Dark matter is one of the most rigid new physics
- Which mass range?

Particle DM Mass Range

Particle DM Mass Range

Outline

- Introduction to Ultralight DM
- DM Collision Effects
- Cross Section Estimation
- Discussion and Summary

Introduction to Ultralight DM

Ultralight DM

- DM for $10^{-22} \, \text{eV} \lesssim m_{\text{DM}} \lesssim \text{eV}$
- Must be Bosonic
- $m \sim 10^{-22} \, \text{eV}$: "Fuzzy DM"
 - e.g. Hu, et al., 2000
- Moduli d.o.f.?
- Non-thermally produced
 - Coherent oscillation
 - Decay of defects

Measure DM properties

- Suppose DM has non-gravitational interaction.
 How could we detect them?
 - Production
 - Indirect Detection
 - Direct Detection

Direct Detection

- One recoil momentum: $\Delta p \propto m$
- Number density: $n_{\rm DM} \propto m^{-1}$
 - Total recoil: $\Delta p_{\text{tot}} \propto n_{\text{DM}} \Delta p \propto m^0$
- The drawback is to choose a good target
- We propose to use the celestial bodies in the solar system

Why Celestial Bodies?

- The measurements are good enough
 - "Ephemeris", $\Delta R/R \sim 10^{-10}$
- Large quantum mechanical enhancement

DM Collision Effects

Motion of Celestial Bodies

- The entire solar system moves w.r.t. the galaxy
 - $v_s \sim 10^{-3}$
- Each planets rotates
 - $v_p \sim 10^{-4}$

Motion of DM

- The DM velocity obeys Gaussian dist.
 - $v_0 \sim 10^{-3}$
- $v < v_{\rm esc}$, $v_{\rm esc} \simeq 600 \, \rm km/s$

DM Collision

 Consider the observer on the celestial body (e.g. us, on the Earth)

• The observer feels DM "wind" of $v\sim 10^{-3}$, which (de-)accelerate the object

Comparison with the Ephemeris

- Now, we know the position of each planets for decades by the ephemeris
- On the other hand,

$$M\vec{a} = \int d\Omega \frac{d\sigma}{d\Omega} n v \vec{q}(\Omega).$$

• We want to know the differential cross sect., ${\rm d}\sigma/{\rm d}\Omega$

Cross Section Estimation

Interaction

• Assume, between DM ϕ and nucleon N,

$$\Delta \mathcal{L} = \frac{c_N}{2} \phi^2 \bar{N} N,$$

where

$$c_N = \frac{f_N m_N}{\Lambda^2},$$

and Λ is the cutoff scale.

Naive Estimation - Starting Point

Naively,

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = N \frac{c_N^2}{(4\pi)^2},$$

where $N = M/m_N \sim 10^{50-58}$

- Given $\Lambda \gg v_{\text{EW}}$, the momentum transfer is smaller than usual WIMPs
- However, Quantum mechanical effects enhance the cross section

Enhancement Effects

- The cross section gets enhanced by
 - Stimulated emission
 - Coherent effect

Enhancement Effects

- The cross section gets enhanced by
 - Stimulated emission
 - Coherent effect

Stimulated Emission

• e.g. LASER

$$\langle n+1|a^{\dagger}|n\rangle \propto \sqrt{n+1}$$

This is because of the state normalization

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle$$

 Producing a Boson in the Boson bg. gets enhanced

DM Scattering in the DM Background

- $T(P) + \mathsf{DM}(p) \to T(P') + \mathsf{DM}(p')$
- If there are already a number of DM(p')s, the cross sect. becomes much larger

Most Naive Estimation

- The cross sect. gets N + 1 times larger
 - \mathcal{N} is the number of DM per $d^3pd^3x/(2\pi)^3$
- Assuming specially uniform dist.,

$$N \sim \frac{n}{p_0^3} \sim 10^{37} \left(\frac{10^{-10} \,\text{eV}}{m} \right)^4.$$

DM Distribution in the Galaxy

- DM obeys Gaussian dist., in the galactic scale
- Nobody knows how in the solar system scale
- Thus, we parameterized the effect by a factor B
 - $B \lesssim \mathcal{N} + 1$

Is this discussion correct?

- "Does really stim. emission effective?"
 - "It is just T-inversion of N particle scattering"
 - $\langle n+1|S|n\rangle = (\langle n|S|n+1\rangle)^*$
- However, the larger n is, the rarer it is that only
 1 particle scatters
 - The cross sect. is not *n* times larger

How do we evaluate the effect?

- At least, the cross section is smaller than the unitarity bound
- For $p = mv > R_{\text{targ}}$,
 - $\sigma < 4\pi/p^2$
- For $p < R_{\text{targ}}$,
 - Scattering occurs with $L < L_{\text{max}} = pR_{\text{targ}}$
 - $\bullet \ \ \sigma < \sum_L^{L_{\rm max}} 4\pi (2L+1)/p^2 \sim \pi L_{\rm max}^2/p^2 \sim \pi R_{\rm targ}^2$

Enhancement Effects

- The cross section gets enhanced by
 - Stimulated emission
 - Coherent effect

Coherent Effect

• e.g. Coulomb scattering

• For qR < 1, $\sigma \propto Z^2$!

Coherent Effect

- Naively, $\sigma \propto N_{\rm targ}^2$
 - (The interaction must be "spin-independent")
- The larger, the better
- For $N \sim 10^{50-58}$, $> 10^{100}$ times enhancement?

$\overline{N_{\mathsf{targ}}^2}$ Scaling is Wrong

What is coherence effect, in detail?

If each scattering is nearly independent,

$$\mathcal{A}_{\mathsf{tot}} = \sum e^{ik\Delta r_i} \mathcal{A}_i$$

- This goes $\mathcal{A}_{tot} \sim N\mathcal{A}$ for $k\Delta r_i \ll 1$
 - e.g. "spin-independent scattering" for Xenon, ...

N_{targ}^2 Scaling is Wrong

- For weak enough interaction, each scattering is usually independent
 - "Born approximation"
- With very large N, "scattering" may occur multiple times
 - In other words, Born approximation fails

Real Cross Section

- How the planets look like to DM?
 - Uniform sphere → Constant potential sphere
- Schrödinger eq. with $V(r) = V_0 \Theta(R r)$
 - V_0 must be $V_0(\rho_{\mathsf{targ}})$
 - Matching V_0 for small enough r with N^2 enhancement

Result of the Schrödinger Eq.

Short Summary

- The cross sect. gets enhanced by
- Stimulated emission
 - Parameterized by $B, B \lesssim 10^{37} (10^{-10} \, \text{eV}/m)^4$
- Coherent effect
 - The cross section becomes as large as the geometrical one

Discussion and Summary

Result

- 3 Params: DM mass m, the cutoff Λ and B
- Given m and Λ , if B is too large, it is excluded
- We have shown the upper bound of B in terms of m and Λ
- Among the Earth, Sun, Saturn and Moon, the best one is used for each point

Result

Conservative Result

Discussion

- Is there any other target?
- Pseudoscalar DM?
 - No coherence, but stimulated emission is still there
- Inelastic scattering?

Summary

- For ultralight DM $m \ll eV$, the celestial bodies in the solar system can be good targets for the direct detection
- Depending on the DM distribution, it can be excluded