

第五章 数理统计的基本概念

言浬 特聘研究员

2025年4月

从宿舍到教室需要花多少时间? 相信大家心里对此都有一个大概的"数".

问题 你是怎么得到这个"数"的? 这就是一个典型的统计思维过程

| 归纳 | <u></u> 结果

数理统计就是一个归纳推断过程

数理统计是以概率论为基础,关于实验数据的收集、整理、分析与推断的一门科学与艺术

- 问题 什么是实验数据?科学试验,或对某事物、现象进行观察获得的数据称为试验数据
- 特点数据受随机因素的影响
 - --可以通过某种概率分布来描述

从样本中得到数据 → 对数据进行分析 → 根据概率推断样本特性

One likely (kinds of pe

when certain rtunity

outreach to all parts of the electorate. We know that some groups – including the less

统计学案例Ⅱ

- 对三组各100个零件进行有损抽样检查,结果如下:
 - A. 抽样10个零件, 合格率0.5;
 - B. 抽样50个零件, 合格率0.5;
 - C. 抽样90个零件, 合格率0.5。
- 哪组未抽样零件的合格率在 [0.4,0.6] 区间的概率最高?

● 问题 实验数据的处理过程?

数据收集,整理,分析,推断

《 数理统计 》围绕这四个过程来进行研究

本讲主要介绍数据"收集"和"整理" 环节中的一些相关概念

- 总体 研究对象的全体称为总体
- 个体 总体中的每一个具体对象称为个体
 - 例 分析某班级学生的英语考试成绩
 - 总体 -- 该班级所有学生的英语考试成绩
 - 个体 -- 每一个学生的英语考试成绩

例 分析某工厂生产的灯泡的使用寿命

总体 -- 该厂生产的所有灯泡的 使用寿命

个体 -- 每一个灯泡的使用寿命

总体 研究对象的数量指标 X

$$X \sim F(x)$$

 $^{\uparrow}$ 体 总体 X 的可能取值

例分析某工厂生产的灯泡的使用寿命

$$X \sim N(\mu, \sigma^2)$$

个体 -- 每一个灯泡的使用寿命,即 *X* 的一个可能取值

→ 问题 如果对总体完全了解的情况下,能否 对个体进行预测?

问题 如果知道部分个体的值,能否预测总体?

灯泡寿命 $X \sim N(\mu, \sigma^2)$ $\mu = ? \sigma^2 = ?$

例 设某台机床加工的零件的长度 $X \sim N(\mu, 0.1)$ 实测了其中 8 个零件, 得到它们的测量值为

8.3, 7.7, 8.6, 8.0, 8.6, 7.7, 8.6, 8.0

- 定义1 从总体 X 中抽取的部分个体,得到的数量指标 $X_1, X_2, ..., X_n$, 若满足下条件:
 - (1) X₁, X₂, ..., X_n 与 X 同分布;
 - (2) X₁, X₂, ... , X_n 相互独立.

则称 X_1 , X_2 , ..., X_n 是来自总体 X 的一个简

单随机样本, 简称样本.

对样本 X_1 , X_2 , ..., X_n 进行观测后, 得到

的观测值: x_1, x_2, \ldots, x_n 称为样本观测值.

注:

观测前: X_1 , X_2 , ..., X_n 是随机变量;

观测后: $x_1, x_2, ..., x_n$ 是具体的数据.

样本的联合分布

设总体 $X \sim F(x)$, 则样本 X_1 , X_2 , ..., X_n 的联合分布函数为:

$$F(x_1,\dots,x_n) = P\{X_1 \le x_1, \dots, X_n \le x_n\} = \prod_{i=1}^n F(x_i)$$

若总体 X 的密度函数为 f(x),则样本 X_1 , X_2 ,

 $..., X_n$ 的联合密度函数为:

$$f(x_1,\dots,x_n)=\prod_{i=1}^n f(x_i)$$

样本的联合分布

若总体 X 的分布律为:

$$P{X = a_k} = p_k, \quad k = 1, 2, ...$$

则样本 X_1 , X_2 , ..., X_n 的联合分布律为:

$$P\{X_1 = x_1, X_2 = x_2, , X_n = x_n\}$$

$$= P\{X_1 = x_1\}P\{X_2 = x_2\}\cdots P\{X_n = x_n\}$$

$$= \prod_{i=1}^n P\{X = x_i\}$$

例设 $X_1, X_2, ..., X_n$ 是来自总体 $N(\mu, \sigma^2)$

的样本,则样本的联合密度函数为:

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

例 设 X_1 , X_2 , ..., X_n 是来自总体 B(1, p)(0 的样本,则样本的联合分布律为:

$$P\{X_1 = x_1, \dots, X_n = x_n\} = \prod_{i=1}^n P\{X = x_i\}$$

$$= \prod_{i=1}^n p^{x_i} p^{(1-x_i)}$$

$$= p^{\sum_{i=1}^n x_i} p^{\sum_{i=1}^n (1-x_i)}$$

总体、样本、样本值的关系

对样本的一些认识

- 设 $X_1, X_2, ..., X_n$ 是来自总体 $X \sim F(x)$ 的样本
- $1. X_1, X_2, ..., X_n$ 是一堆"杂乱无章"的数据;
- $2. X_1, X_2, ..., X_n$ 包含总体的相关"信息";
- $3. X_1, X_2, ..., X_n$ 是对总体进行推断的依据;
- 4. 观测前, X_1 , X_2 , ..., X_n 是 *i.i.d*. 随机变量, 观测后, x_1 , x_2 , ..., x_n 是具体的数据.

统计推断的基础: 收集数据

从总体 $X \sim F(x)$ 中抽取样本:

 X_1, X_2, \ldots, X_n

"杂乱无章"的数据

包含了有用的"信息"

● 问题

如何提炼出有用的"信息"?

- 例 设某班级英语考试后,全班同学的成绩分别为: $X_1, X_2, ..., X_n$
- 问题 你除了希望知道自己的成绩外,还关心哪个成绩?
- 问题 如何评价该班级的英语整体学习情况?

$$\max\{X_1, X_2, \dots, X_n\}$$
 $\frac{1}{n} \sum_{i=1}^n X_i$

--对样本进行"整理"后得到的数据

● 数据的整理:统计量

定义2 设 X_1 , X_2 , ..., X_n 是来自总体 $X \sim F(x)$ 的样本, $g(x_1, x_2, ..., x_n)$ 是n元实值连续函数,若函数 $g(x_1, x_2, ..., x_n)$ 不含未知参数,则称随机变量 $g(X_1, X_2, ..., X_n)$ 为统计量

例 设 X_1 , X_2 , ..., X_n 是来自总体 $N(\mu, \sigma^2)$ 的样本, 其中 μ , σ^2 均未知。则下列中哪些是统计量?

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}, \quad \frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}, \quad \min\{X_{1},X_{2}, ,X_{n}\}$$

常用统计量

设 $X_1, X_2, ..., X_n$ 是来自总体X 的样本,则称

(1)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

为样本均值

(2)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

为样本方差

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

为样本标准差

(3)
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

为样本的 k 阶原点矩

(4)
$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$

为样本的 k 阶中心矩

(5) 将样本 X_1 , X_2 , ..., X_n 按由小到大的顺序排成

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$

则称统计量 $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$

称 $X_{(1)} = \min\{X_1, X_2, \cdots, X_n\}$

称 $X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$

称 $R_n = X_{(n)} - X_{(1)}$

为顺序统计量

为样本极小值

为样本极大值

为样本极差

样本均值与样本方差的数字特征

命题1 设 X_1 , X_2 , ..., X_n 是来总体 X 的样本,且总体的均值与方差存在,记为

$$E(X) = \mu$$
, $D(X) = \sigma^2$

则有

(1)
$$E(\overline{X}) = \mu$$
, $D(\overline{X}) = \frac{1}{n}\sigma^2$

(2)
$$E(S^2) = \sigma^2$$

样本均值与样本方差的含义

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 — 是观测数据 $X_1, X_2, ..., X_n$ 的平均值 是观测数据 $X_1, X_2, ..., X_n$ 的 "中心"

样本均值与样本方差的含义

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

—— 反映了观测数据 X_1 , X_2 , …, X_n 与观测数据中心点的偏离程度

反映了观测数据 $X_1, X_2, ..., X_n$ 的离散程度

● 问题

下结果说明了什么?

$$E(\overline{X}) = \mu$$
, $D(\overline{X}) = \frac{\sigma^2}{n}$, $E(S^2) = \sigma^2$

5.3 常见的抽样分布

5.3 常见的抽样分布

数据收集 □□□ 样本、样本观测值 —包含了总体的有用信息

数据整理 🥌 统计量

—提炼数据中包含的信息

统计量 $g(X_1, X_2, ..., X_n)$ 是随机变量

● 确定统计量的分布是概率统计的基本问题之一

定义1 统计量 $g(X_1, X_2, ..., X_n)$ 的分布称为抽样分布 本讲主要介绍与标准正态总体相关的抽样分布:

 χ^2 一分布 t - 分布 F - 分布

-、 χ^2 - 分布

定义1 设 $X_1, X_2, ..., X_n$ 相互独立,且都服从标准正态分

布 N(0,1),则称随机变量

$$X_1^2 + X_2^2 + \cdots + X_n^2$$

服从自由度为 n 的 χ^2 分布, 记为

$$\sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

χ²-分布的密度函数

$$p(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} e^{-\frac{x}{2}} x^{\frac{n}{2}-1}, & x > 0\\ 2^{\frac{n}{2}} \Gamma(\frac{n}{2}) & x \le 0. \end{cases}$$

其中

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt, \ x > 0$$

称为 Γ函数,具有性质

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(1) = 1, \quad \Gamma(n+1) = n!$$

χ²-分布密度函数的图像

χ^2 分布的性质

1. 可加性

若 $Y_1 \sim \chi^2(n)$, $Y_2 \sim \chi^2(m)$, 且 Y_1 , Y_2 相互独立,则有

$$Y_1 + Y_2 \sim \chi^2(n+m)$$

推广: 若 $Y_1, Y_2, ..., Y_k$ 相互独立,且

$$Y_i \sim \chi^2(n_i)$$
 $(i = 1, 2, \dots, k)$ 则有

$$\sum_{i=1}^{k} Y_i^2 \sim \chi^2(\sum_{i=1}^{k} n_i)$$

2. 数字特征

若
$$Y \sim \chi^2(n)$$
, 则有 $E(Y) = n$, $D(Y) = 2n$,

证明 存在独立同分布的 $X_1, X_2, ..., X_n$,都服从标准正

态分布 N(0, 1), 使得

$$Y = X_1^2 + X_2^2 + \dots + X_n^2$$

$$E(Y) = E(X_1^2 + X_2^2 + \dots + X_n^2)$$

= $E(X_1^2) + E(X_2^2) + \dots + E(X_n^2) = nE(X_1^2) = n$

$$D(X) = E(X^{2}) - (E(X))^{2}$$

$$D(Y) = D(X_1^2 + X_2^2 + \dots + X_n^2)$$

$$= D(X_1^2) + D(X_2^2) + \dots + D(X_n^2) = nD(X_1^2)$$

$$D(X_1^2) = E(X_1^4) - [E(X_1^2)]^2 = E(X_1^4) - 1$$

$$E(X_1^4) = \int_{-\infty}^{+\infty} x^4 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 3 \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$= 3E(X_1^2) = 3$$

$$D(Y) = nD(X_1^2) = n(3-1) = 2n$$

二、t分布

定义3 设 $X \sim N(0, 1)$, $Y \sim \chi^2(n)$, 且 X = Y相互独立,

则称随机变量

$$T = \frac{X}{\sqrt{Y/n}}$$

服从自由度为 n 的 t 分布, 记为

$$T \sim t(n)$$

t 分布的密度函数及其图形

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < x < +\infty$$

三、F 分布

定义4 设 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, 且 X与 Y相互独立,

则称随机变量

$$F = \frac{X/m}{Y/n}$$

服从自由度为 (m,n) 的 F 分布, 记为

$$F \sim F(m,n)$$

F 分布的密度函数及其图形

$$f(x) = \begin{cases} \frac{F(m,n)[(m+n)/2]}{F(m,n)(m/2)F(m,n)(n/2)} m^{\frac{n_1}{2}} n^{\frac{n_2}{2}} \frac{x^{\frac{n_1}{2}-1}}{(mx+n)^{\frac{n_1+n_2}{2}}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

F分布的一个重要性质

若
$$F \sim F(m,n)$$
,则 $\frac{1}{F} \sim F(m,n)$

事实上,因 $F \sim F(m,n)$,所以由 F 分布定义知,存在 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$,且 X 与 Y 相互独立,使得

$$F = \frac{X/m}{Y/n}$$

所以有
$$\frac{1}{F} = \frac{Y/n}{X/m} \sim F(n,m)$$

四、分位点

定义4 设连续型随机变量 $X \sim f(x)$, 对给定的 $0 < \alpha < 1$,

存在一个实数 x_{α} ,使得

$$P\{X \le x_{\alpha}\} = \int_{-\infty}^{x_{\alpha}} f(x) dx = \alpha$$

则称 x_{α} 为密度函数 f(x) 的 α 分位点

x_{α} 为密度函数 f(x) 的 α 分位点

1. 标准正态分布 N(0,1) 的 α 分位点记为 u_{α}

$$\Phi(u_{\alpha}) = \int_{-\infty}^{x_{\alpha}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \alpha$$

$$u_{\alpha} = -u_{1-\alpha}$$

查标准正态分布表

$$u_{0.975} = 1.96$$

$$u_{0.95} = 1.645$$

$$u_{0.05} = -1.645$$

$2.\chi^{2}(n)$ 分布的 α 分位点记为 $\chi^{2}_{\alpha}(n)$.

查 χ²分布表

$$\chi_{0.05}^{2}(10) = 3.940$$

$$\chi_{0.95}^{2}(10) = 18.307$$

3.t(n) 分布 α 分位点记为 $t_{\alpha}(n)$

$$t_{\alpha}(n) = -t_{1-\alpha}(n)$$

查 t 分布表

$$t_{0.975}(10) = 2.2281$$

$$t_{0.95}(18) = 1.7341$$

$$t_{0.05}(20) = -t_{0.95}(20) = -1.7247$$

当 n > 45 时, $t_{\alpha}(n) \approx u_{\alpha}$

4. F(m, n)分布的 Ω 分位点记为 $F_{\alpha}(m, n)$.

查 F(m, n) 分布表

$$F_{0.95}(10,20) = 2.35$$

$$F_{0.05}(15,10) = \frac{1}{F_{0.95}(10,15)}$$

$$= \frac{1}{2.54}$$

若 $F \sim F(m,n)$,则

$$\frac{1}{F} \sim F(n,m) \qquad \qquad F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$$

$$F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$$

谢谢大家!

