Naïve Bayes

Classification

Klasifikasi

 Merupakan proses pembelajaran suatu fungsi tujuan yang memetakan tiap himpunan atribut x ke satu dari label kelas y yang didefinisikan sebelumnya.

Model Klasifikasi

- Pemodelan Deskriptif
 - Model Klasifikasi yang dpt berfungsi sbg alat **penjelasan** untuk membedakan **obyek-obyek** dalam **kelas-kelas** yang berbeda.
- Pemodelan Prediktif
 - Model klasifikasi yang dapat digunakan untuk memprediksi label kelas yang tidak diketahui pada suatu *object/record*.

Klasifikasi memerlukan Training Set

- Klasifikasi adalah proses pembelajaran secara terbimbing (supervised learning)
- Untuk melakukan klasifikasi, dibutuhkan training set sebagai data pembelajaran
- Setiap sampel dari training set memiliki atribut dan class label

Dua Tahapan Klasifikasi

Learning (training):

Pembelajaran menggunakan data training (untuk *Naïve Bayesian Classifier*, nilai probabilitas dihitung dalam proses pembelajaran)

Testing:

Menguji model menggunakan data testing

Akurasi

Akurasi = <u>Jml Prediksi Yang Benar</u> Jml Prediksi keseluruhan

Error = <u>Jml Prediksi Yang Salah</u> Jml Prediksi keseluruhan

Teori Bayesian: Sebagai Dasar

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

- P(H|X), yaitu peluang hipotesa H berdasar kondisi X
- X:data sampel dengan klas (label) yang tidak diketahui
- H:merupakan hipotesa bahwa X adalah data dengan klas (label) C.
- P(H): peluang dari hipotesa H
- P(X) adalah peluang dari X yang diamati
- P(X|H): peluang X, berdasarkan kondisi pada hipotesa H

Naïve Bayesian Classifier

- Adalah metode classifier yang berdasarkan probabilitas dan Teorema Bayesian dengan asumsi bahwa setiap variabel X bersifat bebas(independence)
- Dengan kata lain, Naïve Bayesian Classifier mengasumsikan bahwa keberadaan sebuah atribut (variabel) tidak ada kaitannya dengan beradaan atribut (variabel) yang lain

Naïve Bayesian Classifier

 Karena asumsi atribut tidak saling terkait(conditionally independent), maka:

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

 Bila P(X|Ci) dapat diketahui melalui perhitungan di atas, maka klas (label) dari data sampel X adalah klas (label) yang memiliki P(X|Ci)*P(Ci) maksimum

Naïve Bayes

Dataset

Umur	Pendapatan	Mhs	Rating Kredit	Beli Komputer
<=30	tinggi	bukan	fair	tdk
<=30	tinggi	bukan	excellent	tdk
3040	tinggi	bukan	fair	ya
>40	sedang	bukan	fair	ya
>40	rendah	ya	fair	ya
>40	rendah	ya	excellent	tdk
3140	rendah	ya	excellent	ya
<=30	sedang	bukan	fair	tdk
<=30	rendah	ya	fair	ya
>40	sedang	ya	fair	ya
<=30	sedang	ya	excellent	ya
3140	sedang	bukan	excellent	ya
3140	tinggi	ya	fair	ya
>40	sedang	bukan	excellent	tdk

class:

C1: Beli Komputer: ya

C2: Beli Komputer: tdk

bila data baru yg blm memiliki class sbb:

X = (umur<=30, pendapatan=sedang, mhs=ya,rating kredit= Fair)

X =(umur<=30, pendapatan=sedang, mhs=ya, rating kredit= Fair)

Umur	Pendapatan	Mhs	Rating Kredit	Beli Komputer
<=30	tinggi	bukan	fair	tdk
<=30	tinggi	bukan	excellent	tdk
<=30	sedang	bukan	fair	tdk
<=30	rendah	ya	fair	ya
<=30	sedang	ya	excellent	ya
>40	rendah	ya	excellent	tdk
>40	sedang	bukan	fair	ya
>40	rendah	ya	fair	ya
>40	sedang	ya	fair	ya
>40	sedang	bukan	excellent	tdk
3040	tinggi	bukan	fair	ya
3140	rendah	ya	excellent	ya
3140	sedang	bukan	excellent	ya
3140	tinggi	ya	fair	ya

```
P(umur<=30| beli_komputer=ya) => 2/9 = 0.220
P(umur<=30| beli_komputer=tdk) => 3/5 = 0.600
```

X =(umur<=30, pendapatan=sedang, mhs=ya,rating kredit= Fair)

ID	Llmaur	Dondonaton	Mbc	Dating Kradit	Dali Kamputar
ID	Umur	Pendapatan	Mhs	Rating Kredit	Beli Komputer
1	>40	rendah	ya	excellent	tdk
2	<=30	rendah	ya	fair	ya
3	>40	rendah	ya	fair	ya
4	3140	rendah	ya	excellent	ya
5	<=30	sedang	bukan	fair	tdk
6	>40	sedang	bukan	excellent	tdk
7	<=30	sedang	ya	excellent	ya
8	>40	sedang	bukan	fair	ya
9	>40	sedang	ya	fair	ya
10	3140	sedang	bukan	excellent	ya
11	<=30	tinggi	bukan	fair	tdk
12	<=30	tinggi	bukan	excellent	tdk
13	3040	tinggi	bukan	fair	ya
14	3140	tinggi	ya	fair	ya

```
P(pendapatan=sedang| beli_komputer=ya) => 4/9= 0.444
P(pendapatan=sedang| beli_komputer=tdk) => 2/5=0.400
```

X = (umur<=30, pendapatan=sedang, mhs=ya, rating kredit= Fair)

ID	Umur	Pendapatan	Mhs	Rating Kredit	Beli Komputer
1	<=30	sedang	bukan	fair	tdk
2	>40	sedang	bukan	excellent	tdk
3	<=30	tinggi	bukan	fair	tdk
4	<=30	tinggi	bukan	excellent	tdk
5	>40	sedang	bukan	fair	ya
6	3140	sedang	bukan	excellent	ya
7	3040	tinggi	bukan	fair	ya
8	>40	rendah	ya	excellent	tdk
9	<=30	rendah	ya	fair	ya
10	>40	rendah	ya	fair	ya
11	3140	rendah	ya	excellent	ya
12	<=30	sedang	ya	excellent	ya
13	>40	sedang	ya	fair	ya
14	3140	tinggi	ya	fair	ya

```
P(mhs=ya| beli_komputer=ya) => 6/9 = 0.670
P(mhs=ya| beli_komputer=tdk) => 1/5 = 0.200
```

X =(umur<=30, pendapatan=sedang, mhs=ya,rating kredit= Fair)</pre>

ID	Umur	Pendapatan	Mhs	Rating Kredit	Beli Komputer
1	<=30	tinggi	bukan	excellent	tdk
2	>40	sedang	bukan	excellent	tdk
3	>40	rendah	ya	excellent	tdk
4	3140	sedang	bukan	excellent	ya
5	3140	rendah	ya	excellent	ya
6	<=30	sedang	ya	excellent	ya
7	<=30	sedang	bukan	fair	tdk
8	<=30	tinggi	bukan	fair	tdk
9	>40	sedang	bukan	fair	ya
10	3040	tinggi	bukan	fair	ya
11	<=30	rendah	ya	fair	ya
12	>40	rendah	ya	fair	ya
13	>40	sedang	ya	fair	ya
14	3140	tinggi	ya	fair	ya

```
P(rating kredit=fair | beli_komputer=ya) => 6/9 = 0.670
P(rating kredit=fair | beli_komputer=tdk) => 2/5 = 0.400
```

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

Hitung P(Xk Ci) utk setiap class I				
P(umur<=30 beli_komputer=ya) = 2/9	0.222			
P(umur<=30 beli_komputer=tdk) = 3/5	0.600			
P(pendapatan=sedang beli_komputer=ya) = 4/9	0.444			
P(pendapatan=sedang beli_komputer=tdk) = 2/5	0.400			
P(mhs=ya beli_komputer=ya) = 6/9	0.667			
P(mhs=ya beli_komputer=tdk) = 1/5	0.200			
P(rating kredit=fair beli_komputer=ya) = 6/9	0.667			
P(rating kredit=ya beli_komputer=tdk) = 2/5	0.400			

- Hitung P(X | Ci) untuk setiap Class:
 - P(X|beli_computer="ya")
 0.222 X 0.444 X 0.667 X 0.667 = 0.044
 - $P(X|beli_computer="tdk")$ 0.600 x 0.400 x 0.200 x 0.400 = 0.019

P(X | Ci)*P(Ci):

- P(X|beli_computer="ya") * P(beli_computer="ya")
 0.044 * (9/14) = 0.028
- P(X|beli_computer="tdk") * P(beli_computer="tdk")
 0.019 * (5/14) = 0.007

X memiliki class "beli_computer=ya" karena

P(X|beli_computer="ya") memiliki nilai maksimum pada perhitungan di atas

Naïve Bayesian: Summary

Kekuatan:

- Mudah diimplementasi
- Memberikan hasil yang baik untuk banyak kasus

Kelemahan:

- Harus mengasumsi bahwa antar fitur tidak terkait (independent) Dalam realita, keterkaitan itu ada
- Keterkaitan tersebut tidak dapat dimodelkan oleh Naïve Bayesian Classifier

Latihan

ID	OUTLOOK	TEMPERATUR	HUMIDITY	WINDY	PLAY
1	Sunny	Hot	High	FALSE	NO
2	Sunny	Hot	High	TRUE	NO
3	Cloudy	Hot	High	FALSE	YES
4	Rainy	Mild	High	FALSE	YES
5	Rainy	Cool	Normal	FALSE	YES
6	Rainy	Cool	Normal	TRUE	YES
7	Cloudy	Cool	Normal	TRUE	YES
8	Sunny	Mild	High	FALSE	NO
9	Sunny	Cool	Normal	FALSE	YES
10	Rainy	Mild	Normal	FALSE	YES
11	Sunny	Mild	Normal	TRUE	YES
12	Cloudy	Mild	High	TRUE	YES
13	Cloudy	Hot	Normal	FALSE	YES
14	Rainy	Mild	High	TRUE	NO

Tentukan *class label* dari X:

X = (Outlook=Rainy, Temperature=Cool, Humidity=High, Windy=False)