Uncovering structure-property relationships by applying subgroup discovery to materials-science data

Bryan R. Goldsmith, Mario Boley, Jilles Vreeken, Luca M. Ghiringhelli and Matthias Scheffler

Fritz Haber Institute of the Max Planck Society

Discovery Laboratory
- A European Center of Excellence

Novel Materials

Designing materials requires an understanding of the mechanisms underlying a materials function

Batteries

Thermoelectrics

- [1] J. Saavedra et al. Science 345, 1599 (2014)
- [2] K. Kang et al. Science 311, 977 (2006)

Data analytics can help identify patterns and descriptors in big-data of materials

Descriptor → Property

Descriptor = function(atomic or material features)

Feature selection via LASSO+ l_0 [1]

[1] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, M. Scheffler, PRL 114, 105503 (2015)

Typically one focuses on the inference of a global prediction model for some property of interest (e.g., LASSO, KRR, l_0)

Underlying mechanisms can change across materials

Relations between subsets of data may be important

Subgroup discovery: find physically interpretable local models of a target property in materials-science data

Transition metals are a subgroup Halogens are a subgroup etc...

- M. Atzmueller, WIREs Data Min. Knowl. Discov. 5 (2015)
- W. Duivesteijn, A. J. Feelders, A. Knobbe, Data Min. Knowl. Discov. 30, 47 (2016)

Subgroup discovery: how it works

material property 1 (y_1)

Descriptive features, $a_1, ..., a_m \in A$

e.g., energy, bonding topology, number of atoms

Target features $y_1, ..., y_n \in Y$

e.g., HOMO-LUMO energy gap

Basic selectors, $c_1, ..., c_k \in C \rightarrow \{\text{false, true}\}\$

e.g., Is there an even number of atoms?

Find selector $\sigma = c_1(\cdot) \land \cdots \land c_l(\cdot)$

that maximizes quality $q = \left(\frac{|\operatorname{ext}(\sigma)|}{|P|}\right)^{\alpha} u(Y_{\sigma})^{1-\alpha}$

 $\frac{|\operatorname{ext}(\sigma)|}{|P|}$ is the coverage of points where σ is true

 $u(Y_{\sigma})$ is the utility function (optimization criteria)

Two applications of subgroup discovery are presented here

1. Gas Phase Gold Clusters (of sizes 5-14 atoms)

Display interesting optical, chemical, and electronic properties

24 400 gold cluster configurations in total

2. Classification of 82 Octet Binary Semiconductors

Rediscover simple insight about HOMO-LUMO gap

24 400 gold cluster configurations (of sizes 5-14) in the gas phase

Choose target property HOMO-LUMO energy gap

Choose variation reduction utility function u(Y') = (std(Y) - std(Y'))/std(Y)

Rediscover simple insight about HOMO-LUMO gap

24 400 gold cluster configurations (of sizes 5-14) in the gas phase

Choose target property
HOMO-LUMO energy gap

Choose variation reduction utility function u(Y') = (std(Y) - std(Y'))/std(Y)

Can subgroup discovery find local models for the 82 octet binaries that describe zincblende and rocksalt?

$$Target = sign (E_{rocksalt} - E_{zincblende})$$

Subgroup discovery classifies 79 of 82 octet binary compounds using a two-dimensional descriptor

Big-data analytics tools for materials-science applications are being developed by the NOMAD team

Subgroup discovery can help identify physically meaningful models in materials-science data

Other analytics tools being developed to find descriptors e.g., LASSO+ l_0 and sure independent screening (Runhai Ouyang, Luca M. Ghiringhelli)

Materials uploaded on NOMAD repository http://nomad-repository.eu/cms/

Big-data analytics toolkit and tutorials (including subgroup discovery) https://www.nomad-coe.eu/

Bigger data and harder problems

Acknowledgements

Special thanks:

Matthias Scheffler Luca Ghiringhelli Mario Boley Jilles Vreeken

Runhai Ouyang Christopher Sutton Matthias Rupp Claudia Draxl

Fritz Haber Institute of the Max Planck Society

