Prisme, TD du 14/11/2021

Exercice 2:

	i	r	r'	i'	D
a) Incidence normale	0	0	30	42,45°	12,45°
b) Déviation minimum	18,9°	15°	15°	18,9°	7,8°
c) Emergence rasante	- 29,4°	-23,13°	53,13°	90°	30,6°
d) Incidence rasante	90°	53,13°	-23,13°	- 29,4°	30,6°
e) Emergence normale	42,45°	30	0	0	12,45°

a)
$$r' = A - r = 30^{\circ} - 0 = 30^{\circ}$$
.
n $sin(30^{\circ}) = sin(i') = 1,25 / 2 = 0,675 => i' = D = i + i' - A$

c)
$$\sin(r') = \sin(i')/n = \sin(90^\circ)/n = 1/n = 0.8 => r' = 53.13^\circ$$

 $r = A - r' = 30 - 53.13^\circ = -23.13^\circ$.
 $Sin(i) = n \sin(r) = 1.25 \sin(-23.13^\circ) = -1.25 \sin(23.13) = -0.491$
 $=> I = -29.4^\circ$
 $D = i + i' - A = -29.4 + 90 - 30^\circ = 30.6^\circ$

d) c'est le retour inverse de (c).

Graphe de D en fonction de i.

Exercice 3:

Données:

- 1) $A = 30^{\circ}$.
- 2) Abordé perpendiculairement par un rayon <=> incidence normale <=> i = 0°.
- 3) $D = 30^{\circ}$.

Question: déterminer n.

On calcule r, $r = 0^{\circ}$.

On calcule $r' : r' = A - r = 30^\circ$.

On a : D = $i + i' - A = i' = D + A - i = 30 + 30 - 0 = 60^{\circ}$.

On applique la loi de réfraction sur la face 2 :

 $n \sin(r') = \sin(i') = n = \sin(i')/\sin(r') = \sin(60^\circ)/\sin(30^\circ) = Racine(3)/2 \times 2 = Racine(3) = 1,732$ n = 1,732.

2) Déterminer la déviation minimum d'un prisme d'angle A=60° et n=Racine(3).

$$r1 = r2 = rm = A/2 = 30^{\circ}$$
.

i1 = i2 = im. On calcule im par la loi de réfraction sur la face 1 ou 2 :

Sin(im) = Racine(3) sin(rm) = Racine(3) sin(30°) = Racine(3°)/2 => im = 60°.

La déviation minimum : Dm = $2 \text{ im} - A = 2x60 - 60^{\circ} = 60^{\circ}$.