Announcement:

Midterm 2 tonight!

7:00 pm - 8:30 pm in 217 Noyes Lab. (ref. sheet allowed)
Be early!

Exam covers: Ch 1-3 (focus on Ch. 2,3), plus circuit application of matrix tree thm.

Most Focus: topics that appeared in lecture or homework Some focus: topics in relevant subsections of text book Low/no focus: topics in subsections we didn't cover at all

Types of graphs: (dis.)conn., bipartite, paths, cycles, trees, firests, complete (tipartite) graphs, digraphs, weighted graphs

Walks, trails, circuits

Things graphs have:

Eulerian circuits (Euler Thm.)

Perfect matching (Hall's Thm., Tutte's Thm.)

Trees: Equiv. defis Prüfer code L Cayley's formula Spanning subgraphs & spanning trees Matrix tree thm. Kirchoff's Laws and Kirchoff's Thm. Algorithms: Kruskal (min. wt. spanning tree) Dijkstra (distances) Gale-Sharley (stalle matching) Algorithmic thinking Matchings: general concept Perfect vs. maximum vs. maximal M-alt. paths & M-aug. paths Theorems: Berge, Hall, Tutte, Berge-Tutte, Petersen x2 Relationships Hun. matchings, ventex/edge covers, and indep. sets

k-factors

Examples:

1) Consider the weighted graph G:

Find the effective resistance from A to B Soln: Step 1: compute T(G)

Step 2:

(CUAB).AB:

²⁾ Let G be a simple graph s.t. $J(G) \ge k$ and $n(G) \ge 2k$. Prove that G has a matching of size $\ge k$.

3) Compute $\tau(k^{s'm})$