

Quiz #8

Monday, December 4 2017

Duration: 20 min
NAME:
Please write clearly and properly. Justify your answers carefully.

Problem	Grade
1	
2	
Total	

Problem 1 (\sim 5 points).

Consider the ring $R = \mathbb{Z}/5\mathbb{Z}$.

(1) Complete the table of addition in R:

+	[0]	[1]	[2]	[3]	[4]
[0]					
[1]					
[2]					
[3]					
[4]					

(2) Complete the table of multiplication in R:

•	[0]	[1]	[2]	[3]	[4]
[0]					
[1]					
[2]					
[3]					
[4]					

(3	Show that every element of previous question. What ki		Hint: use the

Problem 2 (\sim 5 points).

Consider the set $C \subset \mathcal{M}_2(\mathbb{R})$ consisting of matrices M of the form:

$$M = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right]$$

where a and b are two real numbers.

(1) Carefully prove that $(C, +, \cdot)$ is a ring. <i>Note: Here</i> $+$ <i>and</i> \cdot <i>denote the usual addition and multiplication of matrices.</i>

(2)	Carefully	prove	that	the	function
(4)	Carciumy	prove	mai	uic	Tunction

$$\varphi \colon \mathbb{C} \to C$$

$$z = a + ib \mapsto \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

is an isomorphism of rings.

(3) Bonus question. Consider the matrix $M = \frac{1}{2} \sum_{i=1}^{n} $	$ \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} $	$-\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}$. Compute M^{100} . <i>Hint:</i>
use the previous question.	L 2	2 .	I