COMPARATIVO DE PROTOCOLOS DE ROTEAMENTO EM REDES *AD HOC* MÓVEIS EM CENÁRIOS MILITARES.

- Acadêmico: Fabio Leandro Janiszevski
- Orientador: Dr. Daniel Kikuti
- Coorientador: Ms. Hermano Pereira

Sumário

Introdução

Motivação

- A dificuldade de encontrar um protocolo que atenda demandas específicas de um trabalho de comunicação em redes ad hoc
- A dificuldade de criar um protocolo de rede ad hoc

Protocolos de roteamento

DSDV

- Baseado em vetor de distâncias
- Protocolo de roteamento pró-ativo
- Garante ausência de loops de rotas
- Trabalha com número de sequência

DSDV

(Animação do roteamento)

AODV

- Baseado em vetor de distâncias
- Protocolo de roteamento reativo
- Minimiza o número de inundações em relação ao DSDV
- Trabalha com número de sequência

AODV

(Animação de roteamento)

OLSR

- Baseado em estado de conexão
- Protocolo de roteamento pró-ativo
- Seleção especial de vizinhos

OLSR

(Animação de roteamento)

Metodologia dos testes

- Utilizado o software NS-2
- Executado 2 cenários distintos
- Analisado métricas de desempenho conforme SALLES et al
- Leitura dos arquivos de log do NS-2 com scripts
- Utilizado o CBR como gerador de tráfego

Métricas de desempenho

- Taxa de entrega dos pacotes
- Atraso médio fim a fim dos pacotes de dados
- Número de pacotes de roteamento
- Número de bytes de roteamento

Experimento 1 – Parâmetros

Número total de nós	4
Número total de fontes de tráfego	1
Número de conexões	1
Tempo de simulação	300 segundos
Área total da simulação	500 x 500 metros
Tamanho dos pacotes	512 bytes
Velocidade dos nós	1.5 m/s constante
Velocidade de banda	11Mbps

Experimento 1

Experimento 1 – Resultados

METRICAS AVALIADAS	DSDV	AODV	OLSR
Taxa de entrega	92.98%	99.83%	98.43%
Atraso médio (ms)	10.7575	11.4837	11.3047
Número de pacotes	543	588	565
Número de bytes	288896	312816	300580

Experimento 2

- Baseado nos estudos de PEREIRA
- Movimentação dos soldados
- 15 rodadas de execuções

Movimentação

(Animação da movimentação)

Experimento 2 – Parâmetros

Número total de nós	17
Número de fontes de tráfego	7
Número de conexões	16
Tempo de simulação	600 segundos
Área total da simulação	1000 x 1000 metros
Tamanho dos pacotes	512 bytes
Velocidade dos nós	0 à 8 m/s
Velocidade de banda	11 Mbps

Experimento 2

Experimento 2 – Resultados

MÉTRICAS AVALIADAS	DSDV	AODV	OLSR
Taxa de entrega	96.88%	90.37%	95.29%
Atraso médio (ms)	8.15969	16.3527	6.88545
Número de pacotes	7407	7696	7483
Número de MegaBytes	3.76	3.90	3.80

Conclusões

- Os protocolos pró-ativos apresentaram um melhor desempenho quanto ao uso da rede e o tempo de resposta em ambos os experimentos
- Não foi possível comparar resultados do Experimento 2 com os experimentos de PEREIRA, pois houveram alterações no tamanho do experimento

Trabalhos futuros

- Utilizar mais cenários diferenciados
- Simulações com outros protocolos
- Propor um protocolo alternativo com os dados apresentados
- Levar em consideração implementações de segurança como comentado por SALLE et al

OBRIGADO PELA ATENÇÃO

Perguntas?

Contato fabiosammy@gmail.com

Referências

