Séries numériques

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

Premiers résultats, deux séries de référence

QCOP SER. 1

Soit $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$.

- Donner la définition de « la série $\sum_{n} u_n$ est convergente ».
- Montrer que

$$\sum_{n} u_n$$
 converge $\implies u_n \longrightarrow 0$.

Étudier la nature des séries suivantes :

$$\sum_{n\geq 0} \arctan(12n!) \quad \text{et} \quad \sum_{n\geq 1} \ln\left(\frac{n+1}{n}\right).$$

QCOP SER.3

Soit $a \in \mathbb{C}$.

Compléter :

$$a^n \longrightarrow 0 \quad \iff \quad \cdots$$

- Soit $N \in \mathbb{N}$. Rappeler l'expression de $\sum_{k=0}^{N} a^k$ pour $a \neq 1$.
- Montrer que

$$\sum_{n} a^{n} \text{ converge } \iff |a| < 1.$$

2 On suppose que |a| < 1. Déterminer

$$\sum_{n=0}^{+\infty} a^n \quad \text{et} \quad \sum_{n=1}^{+\infty} a^n.$$

QCOP SER.2

Soit $(u_n)_n$ une suite de nombres réels positifs.

On pose, pour $N \in \mathbb{N}$, $U_N := \sum_{n=0}^N u_n$.

- **Q**uelle est la monotonie de $(U_N)_N$?
- Montrer que

 $\sum_{n} u_n$ converge \iff $(U_N)_N$ est majorée.

Ceci reste-il vrai si l'on ne suppose plus que $(u_n)_n$ est à valeurs positives?

QCOP SER.4

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$.

 \red (a) Soit $n \in \mathbb{N}$. Calculer

$$\sum_{k=0}^n (u_{k+1}-u_k).$$

- **(b)** En déduire que $\sum_{n} (u_{n+1} u_n)$ converge si, et seulement si, $(u_n)_n$ converge.
- On suppose que

$$u_{n+1}-u_n\longrightarrow 0.$$

Montrer que $\sum_{n} (u_{n+2} - 2u_{n+1} + u_n)$ est convergente.

Théorèmes de comparaison

QCOP SER.5

Soit $N_0 \in \mathbb{N}$. Soient $(a_n)_{n \geq N_0}$, $(b_n)_{n \geq N_0}$ deux suites de nombres réels positifs.

On pose, pour $N \geqslant N_0$,

$$A_N := \sum_{n=N_0}^N a_n \text{ et } B_N := \sum_{n=N_0}^N b_n.$$

■ Compléter :

$$\sum_{n\geqslant N_0} a_n \text{ converge } \iff (A_N)_{N\geqslant N_0} \dots$$

On suppose que

$$\begin{cases} \exists N_1 \geqslant N_0: \ \forall n \geqslant N_1, \ a_n \leqslant b_n \\ \sum_{n \geqslant N_0} b_n \text{ converge.} \end{cases}$$

- (a) Montrer que $(A_N)_{N \geqslant N_0}$ est majorée.
- **(b)** En déduire que $\sum_{n\geqslant N_0} a_n$ converge.
- (c) Montrer que

$$\sum_{n=N_1}^{+\infty} a_n \leqslant \sum_{n=N_1}^{+\infty} b_n.$$

QCOP SER.6

Soient $(a_n)_n$, $(b_n)_n$ deux suites de nombres réels positifs telles que

$$a_n \sim b_n$$
.

- Rappeler la règle de comparaison pour les séries à termes positifs.
- ${\mathscr P}$ Montrer qu'il existe ${\mathcal N}_1\in{\mathbb N}$ tel que

$$\exists N_1 \in \mathbb{N}: \ \forall n \geqslant N_1, \ \frac{1}{2}b_n \leqslant a_n \leqslant \frac{3}{2}b_n.$$

- Montrer que $\sum_{n} a_n$ et $\sum_{n} b_n$ sont de même nature.
- Ce résultat reste-il valable si l'on ne suppose plus $(a_n)_n$ et $(b_n)_n$ à valeurs positives ?

QCOP SER.7

- Énoncer la règle de comparaison pour les séries à termes positifs.
- Soient $(u_n)_n, (v_n)_n \in \mathbb{K}^{\mathbb{N}}$. Montrer que

$$\left\{ \begin{array}{l}
 u_n = \mathscr{O}(v_n) \\
 \sum_n |v_n| \text{ converge} \end{array} \right\} \quad \Longrightarrow \quad \sum_n |u_n| \text{ converge}.$$

Soit $\sum_{n} u_n$ une série numérique.

Montrer que

$$n^2 u_n \longrightarrow 0 \implies \sum_n u_n$$
 converge.

QCOP SER.8

- Énoncer la règle de comparaison pour les séries à termes positifs.
- ${m {\mathcal S}}$ Soient $(u_n)_n, (v_n)_n \in {\mathbb K}^{\mathbb N}.$ Montrer que

$$\begin{bmatrix}
u_n = \mathcal{O}(v_n) \\ \sum_n |v_n| \text{ converge}
\end{bmatrix}$$
 \implies $\sum_n |u_n| \text{ converge}$.

Soit $\sum_{n} u_n$ une série numérique telle que $(n^2 u_n)_n$ est bornée.

Montrer que
$$\sum_{n} u_n$$
 converge.

Comparaison série-intégrale

QCOP SER.9

S Soit $f:[1,+\infty[\longrightarrow \mathbb{R}]$ une fonction continue et décroissante.

Soient $m, n \in \mathbb{N}^*$ tels que $m \geqslant n$.

Montrer que

$$\int_{n}^{m} f(t) dt + f(m) \leqslant \sum_{k=n}^{m} f(k) \leqslant f(n) + \int_{n}^{m} f(t) dt.$$

 $\mbox{\em \%}$ On note, pour $n\in\mathbb{N}^*$, $\mbox{H}_n\coloneqq\sum_{k=1}^n \frac{1}{k}.$

(a) Montrer que $\sum_{n>1} \frac{1}{n}$ diverge.

(b) Montrer que $H_n \sim \ln(n)$.

QCOP SER. 10

Soit $\alpha \in \mathbb{R}$.

? On suppose que $\alpha \leq 0$. Montrer que $\sum_{n} \frac{1}{n^{\alpha}}$ diverge.

? On suppose que $\alpha > 0$.

(a) Soit $N \in \mathbb{N}^*$. Montrer que

$$I_N + \frac{1}{N^{\alpha}} \leqslant \sum_{n=1}^N \frac{1}{n^{\alpha}} \leqslant 1 + I_N,$$

 $\mathrm{où} \,\, \mathsf{I}_{N} \coloneqq \int_{1}^{N} \frac{1}{t^{\alpha}} \, \mathsf{d} t.$

On n'utilisera pas une « formule toute faite » de comparaison série-intégrale mais on l'établira dans ce cas particulier.

(b) En déduire la nature de $\sum_{n} \frac{1}{n^{\alpha}}$ en distinguant les cas

$$\alpha \in [0, 1[, \alpha = 1, \alpha > 1]]$$

Convergence absolue

QCOP SER.11

Soit $\sum_{n} u_n$ une série numérique.

- \blacksquare Définir « $\sum_{n} u_n$ est absolument convergente ».
- Montrer que, si $\sum_{n} u_n$ est absolument convergente, alors $\sum_{n} u_n$ est convergente. On fera d'abord la preuve dans le cas où $(u_n)_n$ est à valeurs réelles, puis on utilisera le résultat établi pour en déduire le cas où $(u_n)_n$ est à valeurs complexes.
- Montrer que la réciproque est fausse.
- Écrire la contraposée du résultat démontré.

Séries alternées

QCOP SER. 12

Soit $(a_n)_n$ une suite de nombres réels positifs, décroissante et de limite nulle.

On pose, pour
$$N \in \mathbb{N}$$
, $S_N := \sum_{n=0}^N (-1)^n a_n$.

- **2** (a) Montrer que $(S_{2N})_N$ et $(S_{2N+1})_N$ sont adjacentes.
 - (b) Compléter :

$$\begin{cases} \sum_{n} (-1)^{n} a_{n} \dots \\ \forall N \in \mathbb{N}, \quad \dots \leqslant \sum_{n=0}^{+\infty} (-1)^{n} a_{n} \leqslant \dots \end{cases}$$

- (c) En déduire que $\left|\sum_{n=0}^{+\infty} (-1)^n a_n\right| \leqslant a_0$.
- \sum_{n} On suppose que $\sum_{n} (-1)^{n} a_{n}$ est convergente. Montrer que

$$\forall n \in \mathbb{N}, \quad \left| \sum_{k=n+1}^{+\infty} (-1)^k a_k \right| \leqslant a_{n+1}.$$