COL215P: ASSIGNMENT 9

Gunjan Kumar - 2019CS10353 T Abishek - 2019CS10407

Objective:

 Implementing memory using BRAM and then designing a FIFO with push button switches for WRITE and READ. WRITE pushes an input from the switches to the FIFO buffer whereas READ pops the head of the FIFO buffer onto a register that is displayed on the 7- segment displays.

Implementation Overview:

- The four-digit seven-segment display from assignment 4 is used here to display the popped value.
- We create a three-state FSM idle, pop and push. The BRAM is set to push
 the four-digit number received from the switch into the queue memory if the
 push button is pressed when the current state is idle. It is ensured that in the
 push state, the device does not return to idle and does not press the same
 four-digit number again until the push button is disengaged (set to 0).

Simulation:

Resource utilisation:

Hie	erarchy					
Q	Name1	Slice LUTs (20800)	Slice Registers (41600)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
	્રે∥ main	86	76	2	25	1
\$	♦ BRAM (BRAM_wrapper)	7	2	2	0	0
%	create_mux_clock (ti	25	17	0	0	0

Resource	Utilisation No.	Utilisation %	
Slice LUTS	86	1	
Slice Registers	76	< 1	
BRAM	2	4	
BUFGCTRL	1	3	
Bonded IOBs	25	24	
DSP	0	0	

-Slice Logic Slice LUTs (1%) -LUT as Memory (0%) LUT as Logic (1%) -F8 Muxes (0%) -F7 Muxes (0%) Slice Registers (<1%) § 1. Since Registers (<1%) § 2. Since Registers (<1%) § 3. Since Registers (<1%) § 3. Since Registers (<1%) § 4. Since Registers (<1%) § 5. Since Registers (<1%) § 6. Since Registers (<1%) § 6. Since Registers (<1%) § 7. Since Registers (<1%) § 8. Since Registers (<1%) § 9. Since Registers (<1%) Since Registers (<1 Register as Latch (0%) Register as Flip Flop (<1%) -Memory ♦—Block RAM Tile (4%) -RAMB18 (0%) **♦**-RAMB36/FIFO (4%) □RAMB36E1 only -DSP □DSPs (0%) -IO and GT Specific -Bonded IPADs (0%) -OUT_FIFO (0%) -IBUFDS (0%) -PHY_CONTROL (0%) -IDELAYE2/IDELAYE2_FINEDELAY (0%) -PHASER_IN/PHASER_IN_PHY (0%) IN_FIFO (0%) PHASER OUT/PHASER OUT PHY (0%) -IDELAYCTRL (0%) -Bonded IOB (24%) —IOB Slave Pads └IOB Master Pads Bonded OPADs (0%) -IBUFDS_GTE2 (0%) -GTPE2_CHANNEL (0%) -OLOGIC (0%) -ILOGIC (0%) -PHASER_REF (0%)

FPGA Observation:

Fig 1: popped value from the queue after inserting it