

Introduction to GPUs in HPC CSCS Summer School 2017

Ben Cumming, CSCS July 19, 2017

Introduction

Course Overview

Over these two days we will cover a range of topics:

- Learn about the GPU memory model;
- Implement parallel CUDA kernels for simple linear algebra;
- Learn how to scale our parallel kernels to utilize all resources on the GPU:
- Learn about thread cooperation and synchronization;
- Learn about concurrent task-based parallelism;
- Learn how to use MPI in CUDA applications;
- Learn how to profile GPU applications.
- Port the miniapp to the GPU.

Course Overview

We focus on HPC and modern GPU architectures, specifically:

- HPC development for P100 GPUs on Piz Daint;
- Using CUDA toolkit version 8 and above;
- Some features only available on Pascal generation GPUs
 - e.g. double precision atomics.

Course Overview

There aren't many prerequisites for the course:

- No GPU or graphics experience required.
- I assume C++ knowledge...
 - I will be using C++11 (the bits that make C++ easier!)
- The generic GPU programming concepts from CUDA are useful for people interested in OpenACC, OpenCL and GPU-ready libraries.

Why GPUs?

There is a trend towards more parallelism "on node"

Multi-core CPUs get more cores and wider vector lanes:

- 18-core×2 thread Broadwell processors from Intel;
- 12-core×8 thread Power8 processors from IBM.

Many-core Accelerators with many highly-specialized cores and high-bandwidth memory:

- NVIDIA P100 GPUs with 3582 cores;
- Intel KNL with 64 cores × 4 threads.

A Piz Daint node

...that is a lot of parallelism!

MPI and the free lunch

HPC applications were ported to use the message passing library MPI in the late 90s and early 2000s at great cost and effort

- Individual nodes with one or two CPUs
- Break problem into chunks/sub-domains
- Explicit message passing between sub-domains

The "free lunch" was the regular speedup in codes as CPU clock frequencies increased and as the number of nodes in systems increased

- With little/no effort, each new generation of processor bought significant speedups.
- ... but there is no such thing as a free lunch

The number of transistors in processors has increased exponentially for 45 years.

The problem: power \propto frequency³

Floating point performance per core is not keeping up

How to speed up an application

There are 3 ways to increase performance:

- 1. Increase clock speed.
- 2. Increase the number of operations per clock cycle:
 - vectorization;
 - instruction level parallelelism;
 - more cores.
- 3. Don't stall:
 - e.g. cache to avoid waiting on memory requests;
 - e.g. branch prediction to avoid pipeline stalls.

Clock frequency won't increase

In fact, clock frequencies have been going down as the number of cores increases:

- A 4-core Haswell processor at 3.5 GHz (4*3.5=14 Gops/second) has the same power consumption as a 12-core Haswell at 2.6 GHz (12*2.6=31 Gops/second);
- A P100 GPU with 3582 CUDA cores runs at 1.1 GHz.

Caveat

It is not reasonable to compare a CUDA core and an X86 core.

Parallelism will increase

- The number of cores in both CPUs and accelerators will continue to increase
- The width of vector lanes in CPUs will increase
 - Currently 4 doubles for AVX
 - Increase to 8 double for AVX512 (KNL and Skylake)
- The number of threads per core will increase
 - Intel Haswell: 2 threads/core
 - Intel KNL: 4 threads/core
 - IBM Power-8: 8 threads/core

Low Latency or High Throughput?

CPU

- Optimized for low-latency access to cached data sets.
- Control logic for out-of-order and speculative execution.

Control	ALU	ALU
Control	ALU	ALU
Cache		

DRAM

GPU

- Optimized for data-parallel, throughput computation.
- Architecture tolerant of memory latency.
- More transistors dedicated to computation.

DRAM

©NVIDIA Corporation 2010

GPUs are throughput devices

- CPU cores are optimized to minimize latency between operations.
- GPUs aim to minimize latency between operations by scheduling multiple warps (thread bundles).

©NVIDIA Corporation 2010

Many applications aren't designed for many core

- Exposing sufficient fine-grained parallelism for multi and many core processors is hard.
- New programming models are required.
- New algorithms are required.
- Existing code has to be rewritten or refactored.

... and compute nodes are under-utilized

- Users are not getting the most out of allocations.
- The amount of parallelism on-node is only going to increase!

TLDR: Change because power

Writing good concurrent code for many-core is difficult

- But the days of easy speed up each generation of CPU are over
 - Performance gains must not increase power consumption
- This course will be about one type of many-core architecture NVIDIA GPUs
 - CUDA is GPU-specific
 - However many concepts are universally applicable to other vector and many-core architectures (e.g. Xeon Phi)

