Aufgabe 2

Gilt $A^m \cong A^n$, so auch $A^m \otimes_A A/\mathfrak{m} \cong A^n \otimes_A A/\mathfrak{m}$. Nach Korollar 3.8 folgt $(A/\mathfrak{m})^m \cong (A/\mathfrak{m})^n$. Da \mathfrak{m} ein maximales Ideal ist, handelt es sich bei A/\mathfrak{m} um einen Körper. Wir zeigen, dass jeder A-Modulhomomorphismus $\phi \colon (A/\mathfrak{m})^m \to (A/\mathfrak{m})^n$ ein A/\mathfrak{m} -Vektorraumhomomorphismus ist. Offensichtlich bleibt ϕ ein Gruppenhomomorphismus $\phi \colon (A/\mathfrak{m})^m \to (A/\mathfrak{m})^n$, wenn man die Modulstruktur vergisst. Weiter folgt aus $f(ax) = af(x) \forall a \in A, x \in (A/\mathfrak{m})^m$ auch $f(ax) = af(x) \forall a \in A/\mathfrak{m}, x \in (A/\mathfrak{m})^m$. Ein Modulisomorphismus liegt genau dann vor, wenn es zwei zueinander inverse Modulhomomorphismus gibt. Diese sind dann beide auch Vektorraumhomomorphismen, sodass wir einen Vektorraumisomorphismus erhalten. Insbesondere ist also der Modulisomorphismus $(A/\mathfrak{m})^m \cong (A/\mathfrak{m})^n$ auch ein A/\mathfrak{m} -Vektorraumisomorphismus. Nach LA1 folgt daraus m=n.

Aufgabe 4

(a) Sei $M \subset \mathfrak{p}$ für ein Primideal \mathfrak{p} . Das von M erzeugte Ideal \mathfrak{a} ist das kleinste Ideal, das M enthält und daher gilt $\mathfrak{a} \subset \mathfrak{p}$. Insbesondere ist also $V(M) \subset V(\mathfrak{a})$. Die andere Richtung, also $V(\mathfrak{a}) \subset V(M)$, ist klar, da jedes Primideal, das \mathfrak{a} enthält, sofort auch M enthalten muss. Sei nun \mathfrak{p} ein Primideal mit $\mathfrak{a} \subset \mathfrak{p}$. Wir zeigen, dass dann auch $r(\mathfrak{a}) \subset \mathfrak{p}$ gilt.

Sei $x \in r(\mathfrak{a})$. Dann $\exists n \in \mathbb{N} \text{ mit } x^n \in \mathfrak{a} \subset \mathfrak{p}$. Nun gilt $x^n \in \mathfrak{p} \xrightarrow{\mathfrak{p} \text{ prim}} x \in \mathfrak{p}$. Insgesamt erhalten wir $r(\mathfrak{a}) \subset \mathfrak{p}$. Es folgt

$$\mathfrak{p} \in V(\mathfrak{a}) \implies \mathfrak{a} \subset \mathfrak{p} \implies r(\mathfrak{a}) \subset \mathfrak{p} \implies \mathfrak{p} \in V(r(\mathfrak{a})),$$

also $V(\mathfrak{a}) \subset V(r(\mathfrak{a}))$. Die andere Richtung, also $V(r(\mathfrak{a})) \subset V(\mathfrak{a})$, ist klar, da jedes Primideal, das $r(\mathfrak{a})$ enthält, sofort auch \mathfrak{a} enthalten muss.

- (b) Für ein beliebiges Primideal \mathfrak{p} gilt per Definition $0 \subset \mathfrak{p}$. Also ist $V(0) = \operatorname{Spec}(A)$. Wegen $\mathfrak{p} \neq A$ für ein Primideal \mathfrak{p} , aber $1 \in \mathfrak{p} \implies \mathfrak{p} = A$ folgt $V(1) = \emptyset$.
- (c) Es gilt

$$V\left(\bigcup_{i\in I}M_i\right) = \left\{\mathfrak{p}\colon \bigcup_{i\in I}M_i\subset\mathfrak{p}\right\} = \left\{\mathfrak{p}\colon \forall i\colon M_i\subset\mathfrak{p}\right\} = \bigcap_{i\in I}\{\mathfrak{p}\colon M_i\subset\mathfrak{p}\} = \bigcap_{i\in I}V(M_i)$$

(d) Wir zeigen zunächst $\mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p} \Leftrightarrow \mathfrak{ab} \subset \mathfrak{p}$. Nach VL gilt $\mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}$, also ist " \Rightarrow "bereits klar. Sei nun $x \in \mathfrak{a} \cap \mathfrak{b}$. Dann gilt $x^2 \in \mathfrak{ab} \subset \mathfrak{p} \implies x \in \mathfrak{p}$. Damit ist auch " \Leftarrow "bewiesen. Wir schließen sofort $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab})$. Die Aussage $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ folgt aus Aufgabe (c).