DEFINING OBJECTS - 3D REPRESENTATIONS

3D surface representation - continued Height maps Parametric surfaces

Heightmaps from bitmaps

- Bitmap image data
 - Rectangular grid X * Y of values
 - Value in the bitmap corresponds to height (Z) in the heightmap
 - Image rendered using normally the Painter algorithm (see later lectures)

230	230	230	229	225
212	223	222	219	226
215	218	220	222	220
203	201	210	225	215
124	146	169	187	196
72	83	100	108	114
58	68	69	63	70
43	50	56	63	63
40	39	42	50	44
49	45	49	47	46
40	46	40	37	41

Heightmaps using random number generation

- Bitmap contents created using random number generation
 - Rectangular grid X ^x Y of values
 - Value in the bitmap corresponds to height (Z) in the heightmap
 - Image rendered using normally the Painter algorithm (see later lectures)

Delaunay triangulation • For the data points defined by vertices x and y, Delaunay triangulation returns a set of triangles such that no data points are contained in any triangle's circumscribed circle.

intersect.

· This generates triangular faces.

At each point generate random

height

Curved surfaces (and lines)

The generation of 3D curved lines and surfaces
An input set of mathematical functions
A set of user-specified data points (splines, discussed later)

Curve and surface equations
Nonparametric
Parametric

Quadric Surfaces
Sphere
Ellipsoid
Torus

Parametric equations

$$P(u) = \begin{cases} x(u) \\ y(u) \\ z(u) \end{cases}$$

- · u is the parameter
- x(u), y(u) and z(u) are functions of the parameter u
 which generate x, y and z coordinates of the curve or
 surface P.

Generating a circle in Matlab

Nphi=30; Dphi=pi/Nphi; R=2; phi=(-pi : Dphi : pi); for i=1:length(phi) $X(i)=R^*cos(phi(i));$ Y(i)=R*sin(phi(i));

plot(X, Y);

Sphere

Examples of parametric equations: curves

Circle
$$x = r \cos \theta \\ y = r \sin \theta$$

$$-\pi \le \theta \le \pi$$

Ellipse
$$x = r_x \cos \theta$$

$$y = r_y \sin \theta -\pi \le \theta \le \pi$$

Quadric Surfaces: canonical form $\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 + \left(\frac{z}{r}\right)^2 = 1$ $\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 = 1$ Ellipsoid

Superquadrics

- · A generalization of the quadric representations
 - Incorporate additional parameters into the quadric equations
 - The number of additional parameters used is equal to the dimension of the object.

$$x = r_x \cos \theta$$

$$y = r_y \sin \theta - \pi \le \theta \le \pi$$

$$x = r_x \cos^s \theta$$

$$y = r_y \sin^s \theta \qquad -\pi \le \theta \le \pi$$

Superquadrics

Superellipsoid

$$x = r_x \cos^{s1} \phi \cos^{s2} \theta$$
$$y = r_y \cos^{s1} \phi \sin^{s2} \theta$$
$$z = r_z \sin^{s1} \phi$$

$$-\pi/2 \le \phi \le \pi/2$$
$$-\pi \le \theta \le \pi$$

Homework

- Explore the range of superellipses by further modifying parameter \boldsymbol{s}
- Explore the range of superellipsoids by modifying parameters s1 and s2

Next lecture

Surface rendering - overview