MA0505 - Análisis I

Lección XVI: Egorov y Lusin

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Dos Grandes Teoremas
 - El Teorema de Egorov
 - El Teorema de Lusin

El Teorema

Sean $f_k: E \to \mathbb{R}$ medibles tales que $f_k \xrightarrow[k \to \infty]{} f$ c.p.d. en E. Sabemos que no se puede esperar en general que $f_k \to f$ uniformemente en compactos.

Teorema (Egorov)

Sea $E \subseteq \mathbb{R}^d$ con $m(E) < \infty$. Si $|f(x)| \neq \infty$ c.p.d. en E entonces dado $\varepsilon > 0$, existe $F_{\varepsilon} \subseteq E$ cerrado que satisface:

- (I) $m(E \setminus F_{\varepsilon}) < \varepsilon$.
- (II) $f_k \xrightarrow[k \to \infty]{} f$ uniformemente en F_{ε} .

Un Comentario

- Sea $E = \mathbb{R}^d$ y $f_k = \mathbf{1}_{B(0,k)}(x)$, entonces $f_k \xrightarrow[k \to \infty]{} 1$ puntualmente.
- Si f no es acotado, existe x tal que $|1 f_k(x)| = 1$.
- Si F es cerrado y $m(\mathbb{R}^d \setminus F) \neq \infty$ entonces F no es acotado.

Un Lema Previo

Antes de probar el teorema 1 de Egorov, vamos a probar el siguiente lema.

Lema

Dado $\varepsilon > 0$ y $\eta > 0$, entonces existen $F \subseteq E$ un cerrado y $k_0 = k_0(\varepsilon, \eta) \geqslant 0$ que satisfacen:

(I)
$$m(E \setminus F) < \eta$$
.

(II)
$$|f_k(x) - f(x)| < \varepsilon$$
 si $x \in F$ y $k \geqslant k_0$.

Prueba del Lema

Llamemos

$$\tilde{E} = \{ x \in E : \lim_{k \to \infty} f_k = f, |f| < \infty \}.$$

Sean $\varepsilon > 0$ y $\eta > 0$, definamos

$$E_m = \bigcap_{k=m}^{\infty} \{ |f - f_k| < \varepsilon \} = \{ x \in E : k > k_0 \Rightarrow |f(x) - f_k(x)| < \varepsilon \}.$$

Entonces E_m es medible y $E_m \subseteq E_{m+1}$.

Ejercicio

Muestre que $\bigcup_{m=1}^{\infty} E_m = \tilde{E}$.

Continuamos la Prueba

■ Luego $m(\tilde{E}) = \lim_{m \to \infty} m(E_m)$. Es decir

$$\lim_{m\to\infty} m(\tilde{E}\setminus E_m) = \lim_{m\to\infty} (m(\tilde{E}) - m(E_m)) = 0.$$

■ Sea k_0 tal que $k \geqslant k_0 \Rightarrow m(E \setminus E_k) < \frac{\eta}{2}$. Si $x \in E_{k_0}$ entonces tenemos que

$$k \geqslant k_0 \Rightarrow |f(x) - f_k(x)| < \varepsilon.$$

■ Finalmente tomemos F cerrado, $F \subseteq E_{k_0}$ que satisfaga $m(E_{k_0} \setminus F) < \frac{\eta}{2}$. Entonces

$$m(E \setminus F) \leqslant m(E \setminus E_{k_0}) + m(E_{k_0} \setminus F) < \eta.$$

Prueba del Teorema de Egorov

Dado $\varepsilon > 0$ existen $F_m \subseteq E$ cerrados y κ_m^{ε} tales que

- (I) $m(E \setminus F_m) < \frac{\varepsilon}{2^m}$.
- (II) $|f(x) f_k(x)| < \frac{1}{m}$ para $k \geqslant \kappa_m^{\varepsilon}$ y $x \in F_m$.

Sea $F = \bigcap_{m=1}^{\infty} F_m$. Entonces F es cerrado y

$$m(E \setminus F) = m\left(E \cap \bigcup_{m=1}^{\infty} F_m^c\right) \leqslant \sum_{m=1}^{\infty} m(E \setminus F_m) < \varepsilon.$$

Además si $x \in F$, dado $m \geqslant 1$ existe κ_m tal que

$$k \geqslant \kappa_m \Rightarrow |f(x) - f_k(x)| < \frac{1}{m}.$$

Lusin

Definición

Una función $f: E \to \mathbb{R}$ tiene la propiedad C en E si dado $\varepsilon > 0$, existe un $F \subseteq E$ tal que

- 1. $m(E \setminus F) < \varepsilon$
- 2. f es continua relativa a F. Es decir $f: F \to \mathbb{R}$ es continua.

En este caso si $\{x_n\}_{n=1}^{\infty} \subseteq F \text{ con } x_n \xrightarrow[n \to \infty]{} x \in F$, entonces $\lim_{n \to \infty} f(x_n) = f(x)$. Vamos a mostrar que esta condición es equivalente a la medibilidad de f.

Funciones Simples

Lema

Sea ϕ una función simple y medible. Entonces ϕ tiene la propiedad C.

- Sea $\phi(x) = \sum_{k=1}^{m} b_k \mathbf{1}_{B_k}(x) \operatorname{con} B_i \cap B_j = \emptyset$ y $b_i \neq b_j$ si $i \neq j$.
- Dado $\varepsilon >$ 0, tome $F_\ell \subseteq E_\ell$ cerrado tal que $m(E_\ell \setminus F_\ell) < \frac{\varepsilon}{m}$.
- Entonces $F = \bigcup_{\ell=1}^{m} F_{\ell}$ es cerrado y $m(E \setminus F) < \varepsilon$.

Continuamos la Prueba

- Sea $\{x_n\}_{n=1}^{\infty} \subseteq F$ tal que $x_n \xrightarrow[n \to \infty]{} yF_{\ell_0}$.
- Dado $\ell \neq \ell_0$, entonces $\{x_n\}_{n=1}^{\infty} \cap F_{\ell}$ es finito.
- En caso contrario, existe $\{x_{n_k}\}_{k=1}^{\infty} \subseteq F_{\ell} \text{ con } x_{n_k} \xrightarrow[n_k \to \infty]{} y$. Es decir $y \in F_{\ell}$, lo que nos lleva a una contradicción.
- Por lo tanto $\exists k_0$ tal que $x_n \in F_{\ell_0}$ para $n \geqslant k_0$. Entonces $\phi(x_n) = a_{\ell_0} = \phi(y)$.

El Teorema

Teorema (Lusin)

Sea $f: E \to \mathbb{R}$ con E medible. Entonces f es medible si y sólo si f tiene la propiedad C en E.

Sea $f: E \to \mathbb{R}$ medible, entonces existe $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones simples y medibles tales que $\lim_{n\to\infty} f_n(x) = f(x)$ c.p.d. en E.

Sabemos que existe $F_k \subseteq E$ cerrado que satisface:

- 1. $m(E \setminus F_k) < \frac{\varepsilon}{2^{k+1}}$.
- 2. f_k es continua relativa a F_k .

El Caso de Medida Finita

Si $m(E) < \infty$, entonces por el teorema de Egorov existe $F_0 \subseteq E$ tal que

$$m(E \setminus F_0) < \frac{\varepsilon}{2}, \ f_k \xrightarrow[k \to \infty]{} f \text{ (unif. en } F_0).$$

Resumen

- El teorema 1 de Egorov y el lema 1 para probarlo.
- La propiedad *C* 1 y el lema 2 que garantiza que las funciones simples cumplen dicha propiedad
- El teorema 2 de Lusin

Ejercicios

- Lista 16
 - El ejercicio 1 en medio de la prueba del lema previo a Egorov.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.