266 Utilisation de la notion d'indépendance en probabilités.

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

I - Indépendance en probabilités

1. Indépendance d'événements

Définition 1. On dit que deux événements A et B sont **indépendants** (sous \mathbb{P}) si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Définition 2. On dit que les événements d'une famille $(A_i)_{i \in I}$ sont **mutuellement indépendants** si

$$\forall J \subseteq I, J \text{ fini, } \mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}(A_j)$$

Proposition 3. Soient A, B deux événements. Alors,

[**DAN**] p. 425

$$A$$
 et B sont indépendants $\iff \mathbb{P}(A \setminus B) = \mathbb{P}(A) \iff \mathbb{P}(B \setminus A) = \mathbb{P}(B)$

Proposition 4. Soient A_1, \ldots, A_n des événements mutuellement indépendants. Alors, pour tout $k \in [1, n], A_1^c, \ldots, A_k^c, A_{k+1}, \ldots, A_n$ sont mutuellement indépendants.

Exemple 5. On considère deux gênes a et b tels que la redondance de l'un d'entre eux entraîne l'acquisition d'un caractère d'un caractère \mathscr{C} . Anselme et Colette possèdent chacun la combinaison ab et attendant un enfant : elles lui transmettront chacun et indépendamment soit le gêne a, soit le gêne b avec la même probabilité de $\frac{1}{2}$. On considère les événements :

- *A* : Colette transmet le gêne *a*.
- *B* : Anselme transmet le gêne *b*.
- C: l'enfant présent le caractère \mathscr{C} .

A, B et C sont indépendants deux à deux, mais non mutuellement indépendants.

Application 6 (Indicatrice d'Euler). On note φ l'indicatrice d'Euler. Alors,

$$\forall n \geq 2, \, \varphi(n) = n \prod_{\substack{p \text{ premier} \\ p \mid n}} \left(1 - \frac{1}{p}\right)$$

2. Indépendance de tribus

Définition 7. On dit que deux sous-tribus \mathcal{A}_1 et \mathcal{A}_2 de \mathcal{A} sont **indépendantes** (sous \mathbb{P}) si

$$\forall A \in \mathcal{A}_1, \forall B \in \mathcal{A}_2, \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Définition 8. On dit qu'une famille de sous-tribus $(\mathcal{A}_i)_{i\in I}$ de \mathcal{A} sont **indépendantes** (sous \mathbb{P}) si

$$\forall J \subseteq I, J \text{ fini, } \forall (A_j)_{j \in J} \in \prod_{j \in J} \mathscr{A}_j, \mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}(A_j)$$

Remarque 9. — Pour tout $A, B \in \mathcal{A}$, A est indépendante de B si et seulement si $\sigma(A)$ est indépendante de $\sigma(B)$.

— Si deux tribus \mathscr{A} et \mathscr{B} sont indépendantes, toute sous tribu de \mathscr{A} est indépendante de toute sous tribu de \mathscr{B} .

3. Indépendance de variables aléatoires

a. Variables aléatoires indépendantes

Définition 10. Soit X une variable aléatoire réelle définie sur $(\Omega, \mathcal{A}, \mathbb{P})$. On note

$$\sigma(X) = \{X^{-1}(A) \mid A \in \mathcal{B}(\mathbb{R})\}\$$

Cette famille est la **tribu engendrée** par X.

Définition 11. On dit que deux variables aléatoires X et Y sont **indépendantes** si les tribus qu'elles engendrent sont indépendantes.

Exemple 12. Si *X* et *Y* sont deux variables aléatoires indépendantes, on a

$$\forall A, B \in \mathcal{B}(\mathbb{R}), \mathbb{P}(\{X \in A\} \cap \{Y \in B\}) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Proposition 13. Si X et Y sont deux variables aléatoires indépendantes, alors f(X) et g(Y) sont indépendantes pour toutes fonctions mesurables f et g.

Proposition 14. Soient X et Y deux vecteurs aléatoires indépendants. On suppose que X admet une densité f et Y admet une densité g. Alors, (X,Y) admet comme densité $(x,y) \mapsto f(x)g(y)$.

p. 136

Proposition 15. Soient X et Y deux vecteurs aléatoires indépendants intégrables. Alors,

p. 175

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

b. Variables aléatoires non corrélées

Définition 16. On dit que deux variables aléatoires *X* et *Y* sont **non corrélées** si

p. 174

$$Covar(X,Y) = \mathbb{E}(X - \mathbb{E}(X))\mathbb{E}(Y - \mathbb{E}(Y)) = 0$$

Proposition 17. Soient X et Y deux variables aléatoires indépendantes intégrables. Alors X et Y ne sont pas corrélées.

Contre-exemple 18. La réciproque est fausse. Ainsi, soient X et Y deux variables aléatoires vérifiant

$$\mathbb{P}(\{X=1\} \cap \{Y=1\}) = \mathbb{P}(\{X=1\} \cap \{Y=-1\})$$
$$= \mathbb{P}(\{X=-1\} \cap \{Y=0\})$$
$$= \frac{1}{3}$$

alors, X et Y sont non corrélées mais pas indépendantes.

II - Étude de variables aléatoires indépendantes

1. Critères d'indépendance

Théorème 19. Soient X et Y deux variables aléatoires. Alors, X et Y sont indépendantes si et seulement si $\mathbb{P}_{(X,Y)} = \mathbb{P}_X \otimes \mathbb{P}_Y$.

p. 128

Corollaire 20. Soient *X* et *Y* deux variables aléatoires indépendantes. Alors, $\mathbb{P}_{X+Y} = \mathbb{P}_X * \mathbb{P}_Y$.

p. 136

Proposition 21. Soient X et Y deux variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$. On suppose que (X, Y) admet une densité $h: (x, y) \mapsto f(x)g(y)$ à variables séparées. Alors, X et Y sont indépendantes. De plus, X et Y admettent respectivement pour densité

$$x \mapsto \frac{f(x)}{\int_{\mathbb{R}} f(t) dt}$$
 et $y \mapsto \frac{g(y)}{\int_{\mathbb{R}} g(t) dt}$

par rapport à la mesure de Lebesgue.

2. Sommes de variables aléatoires indépendantes

Théorème 22. Soient X et Y deux variables aléatoires réelles indépendantes de densités respectives f et g. Alors, X + Y admet comme densité la fonction $f * g : x \mapsto \int_{\mathbb{R}} f(x-t)g(t) dt$.

p. 179

Application 23. Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \Gamma(a, \gamma)$ et $Y \sim \Gamma(b, \gamma)$. Alors $Z = X + Y \sim \Gamma(a + b, \gamma)$.

Application 24.

$$\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 \theta^{a-1} (1-\theta)^{b-1} d\theta$$

où Γ désigne la fonction Γ d'Euler.

p. 235

Définition 25. Soit X une variable aléatoire à valeurs dans \mathbb{N} . On appelle **fonction génératrice** de X la fonction

$$G_X : \begin{array}{ccc} [-1,1] & \to & \mathbb{R} \\ z & \mapsto & \sum_{k=0}^{+\infty} \mathbb{P}(X=k) z^k \end{array}$$

Proposition 26. Soient X et Y deux variables aléatoires à valeurs dans $\mathbb N$ indépendantes. Alors,

$$G_{X+Y} = G_X G_Y$$

Théorème 27. Sur [0,1], la fonction G_X est infiniment dérivable et ses dérivées sont toutes positives, avec

$$G_X^{(n)}(s) = \mathbb{E}(X(X-1)...(X-n+1)s^{X-n})$$

En particulier,

$$\mathbb{P}(X=n) = \frac{G_X^{(n)}(0)}{n!}$$

ce qui montre que la fonction génératrice caractérise la loi.

Exemple 28. Si $X_1 \sim \mathcal{P}(\lambda)$ et $X_2 \sim \mathcal{P}(\mu)$ sont indépendantes, alors $X_1 + X_2 \sim \mathcal{P}(\lambda + \mu)$.

Exemple 29. Si $X_1 \sim \mathcal{B}(n,p)$ et $X_2 \sim \mathcal{B}(m,p)$ sont indépendantes, alors $X_1 + X_2 \sim \mathcal{B}(n+m,p)$.

[**GOU21**] p. 346

Définition 30. On appelle **fonction caractéristique** de X la fonction ϕ_X définie sur \mathbb{R}^d par

[**G-K**] p. 239

$$\phi_X : t \mapsto \mathbb{E}\left(e^{i\langle t, X\rangle}\right)$$

Théorème 31. Si deux variables (ou vecteurs) aléatoires ont la même fonction caractéristique, alors elles ont même loi.

Proposition 32. Si deux variables aléatoires réelles sont indépendantes, alors $\phi_{X+Y} = \phi_X \phi_Y$.

III - Indépendance et théorèmes limites

1. Lemmes de Borel-Cantelli

Théorème 33 (1^{er} lemme de Borel-Cantelli). Soit (A_n) une suite d'événements. Si $\sum \mathbb{P}(A_n)$ converge, alors

 $\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=0$

p. 272

Remarque 34. Cela signifie que presque sûrement, seul un nombre fini d'événements A_n se réalisent.

Corollaire 35. Si $\sum \mathbb{P}(|X_n - X| > \epsilon)$ converge pour tout $\epsilon > 0$, alors $X_n \xrightarrow{(ps.)} X$.

Exemple 36. Si (X_n) est telle que $\forall n \geq 1$, $\mathbb{P}(X_n = n) = \mathbb{P}(X_n = \pm n) = \frac{1}{2n^2}$ et $\mathbb{P}(X_n = 0) = 1 - \frac{1}{2n^2}$, alors la suite (S_n) définie pour tout $n \geq 1$ par $S_n = \sum_{k=1}^n X_k$ est constante à partir d'un certain rang.

p. 285

Théorème 37 (2^e lemme de Borel-Cantelli). Soit (A_n) une suite d'événements indépendants.

p. 273

Si $\sum \mathbb{P}(A_n)$ diverge, alors

$$\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=1$$

Remarque 38. Cela signifie que presque sûrement, un nombre infini d'événements A_n se réalisent.

Exemple 39. On fait une infinité de lancers d'une pièce de monnaie équilibrée. Alors, la probabilité de l'événement "on obtient une infinité de fois deux "Face" consécutifs" est 1.

p. 286

Corollaire 40 (Loi du 0-1 de Borel). Soit (A_n) une suite d'événements indépendants, alors

$$\mathbb{P}\left(\limsup_{n\to+\infty} A_n\right) = 0 \text{ ou } 1$$

et elle vaut 1 si et seulement si $\sum \mathbb{P}(A_n)$ diverge.

2. Lois des grands nombres

Théorème 41 (Loi faible des grands nombres). Soit (X_n) une suite de variables aléatoires deux à deux indépendantes de même loi et \mathcal{L}_1 . On pose $M_n = \frac{X_1 + \dots + X_n}{n}$. Alors,

p. 270

$$M_n \xrightarrow{(p)} \mathbb{E}(X_1)$$

Théorème 42 (Loi forte des grands nombres). Soit (X_n) une suite de variables aléatoires mutuellement indépendantes de même loi. On pose $M_n = \frac{X_1 + \dots + X_n}{n}$. Alors,

[**Z-Q**] p. 532

$$X_1 \in \mathcal{L}_1 \iff M_n \stackrel{(ps.)}{\longrightarrow} \ell \in \mathbb{R}$$

Dans ce cas, on a $\ell = \mathbb{E}(X_1)$.

[**G-K**] p. 195

Application 43 (Théorème de Bernstein). Soit $f:[0,1] \to \mathbb{R}$ continue. On note

$$\forall n \in \mathbb{N}^*, B_n(f) : x \mapsto \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

le n-ième polynôme de Bernstein associé à f. Alors la suite de fonctions $(B_n(f))$ converge uniformément vers f.

[DEV]

Corollaire 44 (Théorème de Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

3. Théorème central limite

Théorème 45 (Lévy). Soient (X_n) une suite de variables aléatoires réelles et X une variable aléatoire réelle. Alors :

[**Z-Q**] p. 544

$$X_n \xrightarrow{(d)} X \iff \phi_{X_n}$$
 converge simplement vers ϕ_X

[**G-K**] p. 307

Théorème 46 (Central limite). On suppose que (X_n) est une suite de variables aléatoires réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

Application 47 (Théorème de Moivre-Laplace). On suppose que (X_n) est une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$. Alors,

$$\frac{\sum_{k=1}^{n} X_k - np}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, p(1-p))$$

p. 556

p. 390

Application 48 (Formule de Stirling).

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

[DEV]

Application 49 (Théorème des événements rares de Poisson). Soit $(N_n)_{n\geq 1}$ une suite d'entiers tendant vers l'infini. On suppose que pour tout $n,A_{n,N_1},\ldots,A_{n,N_n}$ sont des événements indépendants avec $\mathbb{P}(A_{n,N_k})=p_{n,k}$. On suppose également que :

- (i) $\lim_{n\to+\infty} s_n = \lambda > 0$ où $\forall n \in \mathbb{N}$, $s_n = \sum_{k=1}^{N_n} p_{n,k}$.
- (ii) $\lim_{n\to+\infty} \sup_{k\in[1,N_n]} p_{n,k} = 0$.

Alors, la suite de variables aléatoires (S_n) définie par

$$\forall n \in \mathbb{N}^*, S_n = \sum_{k=1}^n \mathbb{I}_{A_{n,k}}$$

converge en loi vers la loi de Poisson de paramètre λ .

[**G-K**] p. 137

p. 236

Annexes

Loi	Somme (indépendantes de même loi)
de Bernoulli	$\sum_{k=1}^{n} \mathcal{B}(p) \sim \mathcal{B}(n,p)$
Binomiale	$\sum_{k=1}^{n} \mathcal{B}(n_k, p) \sim \mathcal{B}\left(\sum_{k=1}^{n} n_k, p\right)$
de Poisson	$\sum_{k=1}^{n} \mathscr{P}(\lambda_k) \sim \mathscr{P}\left(\sum_{k=1}^{n} \lambda_k\right)$

FIGURE 1 – Sommes de variables aléatoires à lois discrètes.

		p. 142
Loi	Somme (indépendantes de même loi)	
		p. 247
Normale	$\sum_{k=1}^{n} \mathcal{N}(\mu_k, \sigma_k^2) \sim \mathcal{N}\left(\sum_{k=1}^{n} \mu_k, \sum_{k=1}^{n} \sigma_k^2\right)$	
		p. 178
Exponentielle	$\sum_{k=1}^{n} \mathscr{E}(\lambda) \sim \mathscr{E}(n\lambda)$	
Gamma	$\sum_{k=1}^{n} \Gamma(a_k, \gamma) \sim \Gamma\left(\sum_{k=1}^{n} a_k, \gamma\right)$	

FIGURE 2 – Sommes de variables aléatoires à densité.

Bibliographie

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-l-agregation-analyse-et-probabilites.

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.