

# Manual de resumen - Distribución muestral e Intervalo de confianza

# 1. DISTRIBUCIÓN MUESTRAL DE LA MEDIA



Como no conoces  $\sigma^2$  entonces reemplazas con  $S^2$ 

# Población que No es Normal

### Teorema de Limite Central

n > 30 
$$X \sim \text{Dist. Desconocida} \qquad \qquad \bar{X} \sim N \left( \mu, \frac{\sigma}{\sqrt{n}} \right) \qquad \qquad \rightarrow \qquad Z = \frac{\bar{X} - \mu}{\sqrt{n}} \sim N(0,1)$$
 Estandarización



# 2. DISTRIBUCIÓN MUESTRAL DE LA DIFERENCIA DE MEDIAS





### 3. INTERVALO DE CONFIANZA PARA LA MEDIA

| <u>Parámetro</u> | <u>Estadístico</u> | Población Normal                                                        | Limite de Confianza                                                                                                                                                                                                                                                                                                                                                         |
|------------------|--------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| μ                | X \                | Con Varianza Conocida  ( \sigma^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | $\begin{split} \text{IC:}  & \bar{X} - Z_{(1-\frac{\alpha}{2})} \cdot \frac{\sigma}{\sqrt{n}} \leq \underline{\mu} \leq \bar{X} + Z_{(1-\frac{\alpha}{2})} \cdot \frac{\sigma}{\sqrt{n}} \\ \\ \text{IC:}  & \bar{X} - Z_{(1-\frac{\alpha}{2})} \cdot \frac{S}{\sqrt{n}} \leq \underline{\mu} \leq \bar{X} + Z_{(1-\frac{\alpha}{2})} \cdot \frac{S}{\sqrt{n}} \end{split}$ |
|                  |                    | Observación<br>n<30                                                     |                                                                                                                                                                                                                                                                                                                                                                             |

Como no conoces  $\sigma^2$  entonces reemplazas con  $S^2$ 

# Población que No es Normal

# Teorema de Limite Central

$$X \sim \text{Dist. Desconocida}$$

n > 30



### 4. INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS

<u>Parámetro</u>

**Estadístico** 

Población Normal



Con Varianza Conocida ( $\sigma^2$  desconocida) Observación

n>30 n<30  $-\bar{X}2 \sim N\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$ 

 $(\overline{X}_1 - \overline{X}_2) - Z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}} \leq \mu_1 - \mu_2 \leq (\overline{X}_1 - \overline{X}_2) + Z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$ 

$$IC(\mu_1 - \mu_2) = \left[ \bar{X}_1 - \bar{X}_2 \pm Z_{\left(1 - \frac{\alpha}{2}\right)} \cdot \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}} \right]$$

Con Varianza Desconocida  $ar{x}$ 1 -  $ar{x}$ 2  $\,\sim\,$ 

t con (n1 + n2-2)grados de libertad

( σ1^2 y σ^2 desconocida pero iguales)

$$(\bar{X}_1 - \bar{X}_2) - T_{\left(1 - \frac{\alpha}{2}, gl\right)} \sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \le \mu_1 - \mu_2 \le (\bar{X}_1 - \bar{X}_2) + T_{\left(1 - \frac{\alpha}{2}, gl\right)} \sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Con Varianza Desconocida  $\bar{x}$ 1 -  $\bar{x}$ 2  $\sim$  t con v grados de libertad (  $\sigma$ 1^2 y  $\sigma$ ^2 desconocida pero diferentes)

$$(\bar{X}_1 - \bar{X}_2) - T_{\left(1 - \frac{\alpha}{2}V\right)} \sqrt{\frac{s_1^2}{n_1} + \frac{S_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\bar{X}_1 - \bar{X}_2) + T_{\left(1 - \frac{\alpha}{2}V\right)} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

Donde

$$S_p^2 = \frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{n_1 + n_2 - 2}$$

n1 y n2 son los tamaños de muestra que hemos obtenido

$$T = \frac{\overline{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t$$

Donde

$$y = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$$



# 5. INTERVALO DE CONFIANZA PARA LA PROPORCIÓN



# 6. INTERVALO DE CONFIANZA PARA LA VARIANZA

| <u>Parámetro</u> | <u>Estadístico</u> | <u>Fórmula</u>                                                                                                           |
|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| $\sigma^2$       | $S^2$              | $\frac{(n-1)S^2}{X^2_{(1-\frac{\alpha}{2},n-1)}} < \sigma^2 < \frac{(n-1)S^2}{X^2_{(\frac{\alpha}{2},n-1)}}$             |
| $\sigma$         | S                  |                                                                                                                          |
|                  |                    | $\sqrt{\frac{(n-1)S^2}{X^2_{(1-\frac{\alpha}{2},n-1)}}} < \sigma < \sqrt{\frac{(n-1)S^2}{X^2_{(\frac{\alpha}{2},n-1)}}}$ |