a, b, c を複素数とするとき、次のことは正しいか、正しいものは証明し、正しくないものについては反例(成り立たない例)をあげよ、

- (1) ab, bc, ca mid m
- (2) a+b, b+c, c+a がすべて実数ならば, a, b, c はすべて実数である.
- (3) $a^2 + b^2 + c^2 = 0$ a > b, b < c a > c b < c
- (4) a+b+c=0, ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0 ab+bc+ca=0

- 1970 -

放物線 $y=x^2$ 上の異なる 3 点 (x_1,y_1) , (x_2,y_2) , (x_3,y_3) における法線が 1 点で交わるとき $x_1+x_2+x_3=0$ であることを証明せよ. (曲線上の 1 点で,接線に垂直な直線を,その点における曲線の法線という)

1971 -

 (x_1, y_1) における $y = x^2$ の法線の方程式は、

$$y = -\frac{1}{2x_1}(x - x_1) - x_1^2$$

同様にして, (x_2, y_2) における場合は,

$$y = -\frac{1}{2r_2}(x - x_2) + x_2^2$$

①, ② を連立して,

$$-\frac{1}{2x_1}x + x_1^2 + \frac{1}{2} = -\frac{1}{2x_2}x + x_2^2 + \frac{1}{2}$$

$$-\frac{1}{2}\left(\frac{1}{x_1} - \frac{1}{x_2}\right)x = x_2^2 - x_1^2$$

$$x = 2(x_1^2 - x_2^2) \cdot \left(\frac{x_1 x_2}{x_2 - x_1}\right)$$

$$= 2(x_1 - x_2)(x_1 + x_2) \cdot \frac{x_1 x_2}{x_2 - x_1}$$

$$= -2x_1 x_2(x_1 + x_2)$$

したがって、交点 (x, y)= $(-2x_1x_2(x_1+x_2), x_1^2+x_1x_2+x_2^2+\frac{1}{2})$ である. (x_3, y_3) における法線も同じ点で交わるから、

$$x_1^2 + x_1 x_2 + x_2^2 + \frac{1}{2} = -\frac{1}{2x_3} \{-2x_1 x_2 (x_1 + x_2)\} + x_2^2 + \frac{1}{2}$$

$$x_1^2 + x_1 x_2 + x_2^2 = \frac{x_1 x_2 (x_1 + x_2)}{x_3} + x_3^2$$

$$0 = x_3^3 - x_3 (x_1^2 + x_1 x_2 + x_2^2) + x_1 x_2 (x_1 + x_2)$$

$$0 = (x_3 + x_2 + x_1)(x_3 - x_1)(x_3 - x_2)$$

ここで, $x_3 = x_1$, $x_3 = x_1$ であるから, $x_3 + x_2 + x_1 = 0$ である.

(証明終了)

 $\frac{-\lfloor \mathbf{2}
floor}{\mathbf{a}}$

- (1) $y = \frac{\log x}{x^3}$ (x > 0) の増減を調べ、グラフの概形をかけ、
- (2) $\int_1^t \frac{\log x}{x^3} dx$ を求め、 $t \to +\infty$ のときの極限値を求めよ.

 $oxed{b}$ 数字 0 を記した札が n 枚,数字 1, 2, ……, 9 を記した札がそれぞれ m 枚ある.この中から任意に 1 枚を取り出し,その札の数字だけの賞金を受ける.ただし数字 0 の札を引いたときは,その札を戻した うえ,もう 1 回だけ引きなおして,賞金を受けるものとする.

- (1) 賞金の期待値を求めよ.
- (2) 期待値を 3 以下にするには、比 $\frac{n}{m}$ をどの程度に大きくすればよいか.

1971 -

 \mathbf{a}

- (1) $y = \frac{\log x}{x^3}$ より、x について微分して、 $y' = \frac{1-3\log x}{x^4}$ 、 $y'' = \frac{4(3\log x 2)}{x^5}$ である. 増減表は以下の通りになる.
- b

(1)

$$\sum_{k=1}^{9} k \frac{m}{9m+n}$$

$$= \frac{1}{2} \times 9 \times 10 \frac{m}{9m+n}$$

$$= \frac{45m}{9m+n}$$

期待値をE(X)とすると,

$$E(X) = \frac{45m}{9m+n} + \frac{n}{9m+n} \times \frac{45m}{9m+n}$$
$$= \frac{45m(9m+2n)}{(9m+n)^2}$$

(答)
$$E(X) = \frac{45m(9m+2n)}{(9m+n)^2}$$

$$(2) \quad m \neq 0 \ \text{であるから}, \ E(X) = \frac{45 \Big(9 + 2 \frac{n}{m}\Big)}{\Big(9 + \frac{n}{m}\Big)^2} \ \text{と表すことができる}.$$

$$\frac{n}{m} = t \ \text{とし}, \ f(t) = \frac{45 (9 + 2t)}{(9 + t)^2} \ \text{と定めると}, \ f(t) \leq 3 \ \text{から},$$

$$f(t) \le 3$$

$$\frac{45(9+2t)}{(9+t)^2} \le 3$$

$$15(9+2t) \le (t+9)^2$$

$$t^2 + 18t + 81 - 135 - 30t \ge 0$$
$$t^2 - 12t - 54 \ge 0$$

t>0 より、これを解いて、 $t\geq 6+3\sqrt{10}$ であるから、比 $\frac{n}{m}$ は $6+3\sqrt{10}$ 以上にすればよい.

(答) $6+3\sqrt{10}$

次の不等式を満たす点(x, y)が存在する範囲を図示せよ.

$$1 < ||x| - 2| + ||y| - 2| < 5$$

1974

1<||x|-2|+||y|-2|<5 について考える. |x|,|y| はともに偶関数のため,第 1 象限について考え,それを線対称に第 2、3、4 象限に対応させればよい.したがって,下図のようになる.

2

底辺a, 高さhの2等辺三角形がある.

- (1) この3角形の内接円の半径rをaとhを用いて表せ.
- (2) n が 0 でない整数で、 $ah^n = 1$ を満たしながら a、h が変化するとき、 $\lim_{a \to \infty} \frac{r}{a}$ を求めよ.

- 1974 —

解答

(1) この三角形の面積をSとすると,

$$S = \frac{1}{2}ah$$

$$\frac{1}{2}ah = r\left(a + 2\sqrt{h^2 + \frac{a^2}{4}}\right)$$

$$r = \frac{ah}{2\left(a + 2\sqrt{h^2 + \frac{a^2}{4}}\right)}$$

(2)
$$ah^n = 1$$
 より、 $h^n = \frac{1}{a}$ 、したがって、 $h = \left(\frac{1}{a}\right)^{\frac{1}{n}}$

 $p \ge 0$, $q \ge 0$, $p \ne q$ である p, q に対して

$$|\log(p+1) - \log(q+1)| < |p-q|$$

が成立することを証明せよ.

次に、 $k \approx 0 < k < 1$ である定数とすると $|\log(p+1) - \log(q+1)| < k|p-q|$ が成立しないような $p \ge 0$ 、 $q \ge 0$ 、 $p \ne q$ が存在することを示せ.ここで \log は自然対数を表すものとする.

1074 -

解答

条件式から p>q としても一般性を失わない.ここで, $\frac{\log(p+1)-\log(q+1)}{p-q}<1$ を示せばよい.

ここで、平均値の定理から、 $f(x) = \log(x+1)$ とすると、

$$\frac{\log(p+1) - \log(q+1)}{p-q} = \frac{1}{c+1} \qquad \qquad \cdots$$

となるcが、q < c < pの範囲に存在する。

 $\frac{1}{p+1} < \frac{1}{c+1} < \frac{1}{q+1} \cdots$ ② であるから, $\frac{1}{c+1} < \frac{1}{q+1} \le 1$ を満たし, $\frac{1}{c+1} < 1$ である. したがって, $|\log(p+1) - \log(q+1)| < |p-q|$ となる.

また、0 < k < 1 であることから、 $k = \frac{1}{1+r}$ (r > 0) とおける.このとき, $c = \frac{1}{1+r}$ となる c が存在することを示せば良い.

 $p=r+lpha,\,q=r-lpha$ とすると, $rac{1}{r+1+lpha}<rac{1}{c+1}<rac{1}{r+1-lpha}$ となる.

ここで、 $\lim_{\alpha\to 0}$ を考えると、はさみうちの原理から、 $\frac{1}{c+1}=\frac{1}{r+1}=k$ となるため、等号が成立するような $p\geq 0$ 、 $q\geq 0$ 、 $p\neq q$ となる p、q が存在することが示された.したがって、題意を満たす p、q が存在することが示された.

- 4

 $\overline{f(x)},\ g(x)$ を $x \ge 0$ で定義された正の値をとる連続関数で、g(x) は増加関数であるとする.このとき

$$S(x) = \int_0^x f(t)dt$$
, $T(x) = \int_0^x f(t)g(t)dt$

に対して次の(1),(2)を証明せよ.

- (1) すべてのx > 0に対して $T(x) \le g(x)S(x)$ である.
- (2) $\frac{T(x)}{S(x)}$ は x > 0 で増加関数である.ここで一般に関数 h(x) が増加関数であるとは, $x_1 < x_2$ ならば $h(x_1) \le h(x_2)$ が成立することをいう.

1974

解答

(1) f(x) = g(x)S(x) - T(x) ≥ 3 .

$$\begin{split} f(x) &= g(x)S(x) - T(x) \\ f(x) &= g(x) \int_0^x f(t) \, dt - \int_0^x g(t)f(t) \, dt \\ f'(x) &= g'(x) \int_0^x f(t) \, dt + g(x)f(x) - g(x)f(x) \\ &= g'(x) \int_0^x f(t) \, dt \end{split}$$

ここで、g(x) は増加関数より、g'(x) > 0 であり、f(x) は正の値を取るから、 $\int_0^x f(t) dt > 0$ である.

したがって、
$$f'(x) = g'(x) \int_0^x f(t) dt > 0$$

よって,x>0 において, $g(x)S(x)-T(x)\geq 0$ であるから, $g(x)S(x)\geq T(x)$ が示された.

(2)

$$\begin{split} \frac{T(x)}{S(x)} \, dx &= \frac{T'(x)S(x) - T(x)S'(x)}{S^2(x)} \\ &= \frac{f(x)g(x) \! \int_0^x \! f(t) \, dt - f(x) \! \int_0^x \! f(t)g(t) \, dt}{S^2(x)} \\ &= \frac{f(x)g(x) \! \int_0^x \! f(t) \, dt - \int_0^x \! f(t)g(t) \, dt}{S^2(x)} \\ &= \frac{f(x) \{g(x)S(x) - T(x)\}}{S^2(x)} \end{split}$$

f(x)>0 かつ (1) から, $g(x)S(x)-T(x)\geq 0$ より, $\frac{T(x)}{S(x)}dx\geq 0$ であるから, $\frac{T(x)}{S(x)}$ は増加関数となる.

次のおのおのを証明せよ.

- (1) log23とlog34の大小を比較せよ.
- (2) $\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi + \cos\frac{10}{9}\pi + \cos\frac{14}{9}\pi + \cos\frac{16}{9}\pi$ の値を求めよ.

1975 -

(1)
$$2^{\frac{2}{3}} = 2\sqrt{2} < 3$$
 より, $\log_2 3 > \frac{3}{2}$ …… ① となる.また, $3^{\frac{2}{3}} = 3\sqrt{3} > 4$ より, $\log_3 4 < \frac{3}{2}$ …… ② となる.

①, ② \sharp b, $\log_3 4 < \log_2 3$.

(証明終了)

(2) $\cos 5\theta = \cos 4\theta$ を満たす θ を考える. $-1 < \cos \theta < 1$ の範囲において, $0 < \theta < \pi$ である. $5\theta = \pm 4\theta \pm 2n\pi$ より, $\theta = \frac{2}{9}n\pi$, $2n\pi$ であり, $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$, $\cos 4\theta = 8\cos^4\theta - 8\cos^2\theta + 1$ から,

$$16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta = 8\cos^{4}\theta - 8\cos^{2}\theta + 1$$
$$16\cos^{5}\theta - 8\cos^{4}\theta - 20\cos^{3}\theta + 8\cos^{2}\theta + 5\cos\theta - 1 = 0$$
$$(\cos\theta - 1)(16\cos^{4}\theta + 8\cos^{3}\theta - 12\cos^{2}\theta - 4\cos\theta + 1) = 0$$

ここで、解と係数の関係より、

$$\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{6}{9}\pi + \cos\frac{8}{9}\pi = -\frac{1}{2}$$
$$\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi = 0$$

が成り立ち, また,

$$\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi + \cos\frac{10}{9}\pi + \cos\frac{14}{9}\pi + \cos\frac{16}{9}\pi$$

$$= 2\left(\cos\frac{2}{9}\pi + \cos\frac{4}{9}\pi + \cos\frac{8}{9}\pi\right)$$

$$= 0$$

(答)
$$\cos \frac{2}{9}\pi + \cos \frac{4}{9}\pi + \cos \frac{8}{9}\pi + \cos \frac{10}{9}\pi + \cos \frac{14}{9}\pi + \cos \frac{16}{9}\pi = 0$$

2

次の(1), (2)を解答せよ.

- (1) 1から 10 までの 10 個の整数から相異なる 5 個をとり、その積を a、残りの 5 個の積を b とする。 $a \Rightarrow b$ を証明せよ.
- (2) また、1 から 10 までの 10 個の整数のうちの相異なる 5 個の積として表される整数のうちで、 $\sqrt{10!}$ より小さいものの個数を p、 $\sqrt{10!}$ より大きいものの個数を q とする. p=q を証明せよ.

1975

- (1) $1\sim10$ までの 10 個の整数のうち、7 の倍数を含むものは7 のみだから、a またはb のどちらか一方は7 の倍数となるが、もう一方は7 の倍数とはならないため、 $a \neq b$ となる.
- (2) $1\sim 10$ までの 10 個の整数から 5 個を選び,その積を c,残りの 5 個の積を d とする.ここで,対称性から c < d としても一般性を失わない.このとき, $c \cdot d = 10!$ である.

ここで、c < d から、 $c^2 < 10! < d^2$ となる.よって、 $c < \sqrt{10!} < d$ と表すことができるため、c は $\sqrt{10!}$ よりも小さく、d は $\sqrt{10!}$ よりも大きいことがわかる.

ここで, c の個数と d の個数は一致するため, p=q となる.

(証明終了)

a 1つのさいころをn回つづけて投げ、投げた順に出た目の数の積をつくっていくものとする.このとき、次の(1), (2)を解答せよ.

- (1) 目の数の積が k 回目 $(1 \le k \le n)$ にはじめて 4 となる確率 p を求めよ.
- (2) 目の数の積がn回目までのどこかで4となる確率を求めよ.

f(x) を $0 \le x \le 1$ で連続な増加関数とする. 0 < a < 1 であるどんな a に対しても

$$\int_0^a f(x)dx \le a \int_0^1 f(x)dx$$

が成り立つことを証明せよ.ここで f(x) が増加関数であるとは, $x_1 < x_2$ ならばつねに $f(x_1) \le f(x_2)$ が成立することをいう.

1975

a

(1) 出た目の積がk回目までに4になるには、

[1] k-1回目までにすべて1を出し、k回目に4を出す

[2] k-1回目までに1回だけ2を出し、k回目に2を出すのいずれかであればよい.

[1]のとき、
$$\left(\frac{1}{6}\right)^k$$

[2] のとき,
$$(k-1)\left(\frac{1}{6}\right)^{k-1} \times \frac{1}{6} = (k-1)\left(\frac{1}{6}\right)^{k}$$

(2)

$$S_{n} = \frac{1}{6} + 2\left(\frac{1}{6}\right)^{2} + \dots + n\left(\frac{1}{6}\right)^{n}$$

$$\frac{1}{6}S_{n} = \left(\frac{1}{6}\right)^{2} + \dots + (n-1)\left(\frac{1}{6}\right)^{n} + n\left(\frac{1}{6}\right)^{n+1}$$

$$\frac{5}{6}S_{n} = \frac{1}{6} + \left(\frac{1}{6}\right)^{2} + \dots + \left(\frac{1}{6}\right)^{n} - n\left(\frac{1}{6}\right)^{n+1}$$

$$\frac{5}{6}S_{n} = \frac{1}{5}\left\{1 - \left(\frac{1}{6}\right)^{n}\right\} - n\left(\frac{1}{6}\right)^{n+1}$$

$$S_{n} = \frac{6}{25} - \frac{6}{25}\left(\frac{1}{6}\right)^{n} - \frac{n}{5}\left(\frac{1}{6}\right)^{n}$$

$$= \frac{6}{25} - \frac{1}{5}\left(\frac{1}{6}\right)^{n}\left\{\frac{6}{5} + n\right\}$$

(答)
$$\frac{6}{25} - \frac{1}{5} \left(\frac{1}{6}\right)^n \left\{\frac{6}{5} + n\right\}$$

b

f(x) が単調増加関数であるから, $\int_a^1 f(x) dx \ \ge \int_0^a f(x) dx$ の面積は, $\int_a^1 f(x) dx \ge (1-a) f(a)$ の関係にある. すなわち, $\int_0^a f(x) dx \le a f(a)$ より, $f(a) \le \frac{1}{1-a} \int_a^1 f(x) dx$ が成り立つ. $\frac{1}{a} \int_0^a f(x) dx \le f(a)$ より, $f(a) \le \frac{1}{1-a} \int_a^1 f(x) dx$ が成立.

8

$$\frac{1}{a} \int_0^a f(x) \, dx \le f(a) \, \, \sharp \, \, \mathfrak{h} \,,$$

$$\frac{1}{a} \int_0^a f(x) \, dx \le \frac{1}{1-a} \int_a^1 f(x) \, dx$$

$$(1-a) \int_0^a f(x) \, dx \le a \int_a^1 f(x) \, dx$$

$$\int_0^a f(x) \, dx \le a \int_a^1 f(x) \, dx + a \int_0^a f(x) \, dx$$

$$\int_0^a f(x) \, dx \le a \int_0^1 f(x) \, fx$$

 x^3 の係数が 1 であるような 3 次関数 f(x) のうちで,定積分 $I=\int_{-1}^1 \left\{f(x)\right\}^2 dx$ を最小にするものを決定し,そのときの I の値を求めよ.

1976

$$f(x)=x^3+ax^2+bx+c$$
 とする。このとき、 I を計算すると、
$$I=\int_{-1}^1 \{f(x)\}^2 dx$$

$$=\int_{-1}^1 \{x^6+2ax^5+(a^2+2b)x^4+(2ab+2c)x^3+(2ac+b^2)x^2+2bcx+c^2\} dx$$

$$=\int_{-1}^1 \{x^6+(a^2+2b)x^4+(2ac+b^2)x^2+c^2\} dx$$

$$=2\int_0^1 \{x^6+(a^2+2b)x^4+(2ac+b^2)x^2+c^2\} dx$$

$$=2\left[\frac{1}{7}x^7+\frac{1}{5}(a^2+2b)x^5+\frac{1}{3}(2bc+b^2)x^3+c^2x\right]_0^1$$

$$=2\left\{\frac{1}{7}+\frac{1}{5}(a^2+2b)+\frac{1}{3}(2bc+b^2)+c^2\right\}$$

である.

$$g(b)=rac{1}{3}b^2+rac{2}{5}b$$
 とする.このとき, $g'(b)=rac{2}{3}b+rac{2}{5}$ であり, $g(b)$ は $b=-rac{3}{5}$ のとき最小値をとる.
$$h(a,c)=rac{1}{5}a^2+rac{2}{3}ac+c^2$$

$$=\left(c+rac{1}{3}a\right)^2+rac{4}{45}a^2\geq 0$$

であるから、(a,c)=(0,0)のとき、最小値 0 をとる.

$$I$$
 を最小にする $f(x)=x^3-rac{2}{5}x$ であり,そのときの I は $I=2\Big(rac{1}{7}-rac{3}{25}\Big)=rac{8}{175}$

(答) $I = \frac{8}{175}$

5次以下のどんな整式 f(x) に対しても

$$\int_{-1}^{1} f(x)dx = af(0) + b\{f(c) + f(-c)\}\$$

が成り立つように f(x) に無関係な定数 a, b, c を定めよ.

1978

$$f(x) = dx^5 + ex^4 + fx^3 + gx^2 + hx + i$$
 > 78 .

$$\int_{-1}^{1} (dx^{5} + ex^{4} + fx^{3} + gx^{2} + hx + i) dx$$

$$= \int_{-1}^{1} (ex^{4} + gx^{3} + i) dx$$

$$= 2 \int_{0}^{1} (ex^{4} + gx^{3} + i) dx$$

$$= 2 \left[\frac{1}{5} ex^{5} + \frac{1}{3} gx^{3} + ix \right]_{0}^{1}$$

$$= \frac{2}{5} e + \frac{2}{3} g + 2i$$

また, af(0) = ai, $b\{f(c) + f(-c)\} = 2b(ec^4 + gc^2 + i)$ である.

2式の係数をそれぞれ比較して, $\begin{cases} 2bc^4 &= \frac{2}{5} \\ 2bc^2 &= \frac{2}{3} \\ (a+2b) &= 2 \end{cases}$

これをそれぞれ解いて、

(答)
$$(a, b, c) = \left(\frac{8}{9}, \frac{5}{9}, \pm \sqrt{\frac{3}{5}}\right)$$
 (符号任意)

2

A, B 2 人が次のような規則でさいころを投げるものとする. さいころを投げて 1 の目が出れば次回も同じ人が続けて投げ、1 以外の目が出れば次回は他方が投げることにする. 第 1 回目は A が投げる. n 回目に A が投げる確率を p_n とするとき,次の (1),(2) を解答せよ.

- (1) p_{n+1} を p_n の式で表せ.
- (2) $\lim p_n$ を求めよ.

1978 -

(1) n回目に A が投げる確率が p_n であるため、n回目 B が投げる確率は $(1-p_n)$ と表される.

 p_n 同じ人が続けて投げる確率を α とすると、 $\alpha=rac{1}{6}$ である。推移図より、 $-p_n$

 $p_{n+1} = \frac{1}{6} + \frac{5}{6}(1 - p_n) = -\frac{2}{3}p_n + \frac{5}{6}$ である. (答) $\underline{p_{n+1} = -\frac{2}{3}p_n + \frac{5}{6}}$ (2)

$$p_{n+1} - \frac{1}{2} = -\frac{2}{3} \left(p_n - \frac{1}{2} \right)$$
$$p_n - \frac{1}{2} = \frac{1}{2} \left(-\frac{2}{3} \right)^{n-1}$$
$$p_n = \frac{1}{2} \left(-\frac{2}{3} \right)^{n-1} + \frac{1}{2}$$

(**答**) $\lim_{n\to\infty}p_n=\frac{1}{2}$

p, q は区間 $a \le x \le b$ (0 < a < b) で $px + q \ge \log x$ を満たすものとする.このとき,定積分

$$I = \int_{a}^{b} (px + q - \log x) dx$$

が最小となるようなpおよびqを求めよ.また、そのときのIの値を求めよ.

1978

解答

I が最小値となるのは、y = px + q が $y = \log x$ と x = t (a < t < b) で接するときであるので、

$$px + q = \frac{1}{t}(x - t) + \log t$$

$$= \frac{1}{t}x + \log t - 1$$

$$\therefore \quad p = \frac{1}{t}, \ q = \log t - 1$$

このとき,

$$\begin{split} I &= \int_{a}^{b} \left(\frac{1}{t} x + \log t - 1 - \log x \right) dx \\ &= \left[\frac{1}{2t} x^{2} + (\log t - 1) x - x \log x + x \right]_{a}^{b} \\ &= \left\{ \frac{1}{2t} b^{2} + (\log t - 1) b - b \log b + b \right\} - \left\{ \frac{1}{2t} a^{2} + (\log t - 1) a - a \log a + a \right\} \\ &= \frac{1}{2t} (b^{2} - a^{2}) + \log t (b - a) - b \log b + a \log a \end{split}$$

ここで、Iが最小となるtは、

$$\begin{split} \frac{dI}{dt} &= -\frac{1}{2t^2}(b^2 - a^2) + \frac{1}{t}(b - a) \\ &= -\frac{1}{2t^2}\left\{(b^2 - a^2) - 2t(b - a)\right\} \\ &= -\frac{1}{2t^2}(b - a)(b + a - 2t) \end{split}$$

であるから,

$$t < \frac{a+b}{2}$$
のとき $\frac{dI}{dt} < 0$ $t > \frac{a+b}{2}$ のとき $\frac{dI}{dt} > 0$

より, $t=\frac{a+b}{2}$ のとき,I は最小となる. したがって, $p=\frac{2}{a+b}$, $q=\log\left(\frac{a+b}{2}\right)+1$ (答) $I=(a+b)(b^2-a^2)+(b-a)\log\left(\frac{a+b}{2}\right)-b\log b+a\log a$

- 1

数列 x_1, x_2, \dots, x_n が $x_{n+1} = 2x_n + \frac{1}{2^n} (n = 1, 2, \dots)$ を満たすとき,数 a を適当に定めれば,すべての $n = 1, 2, \dots$ に対して不等式 $|x_n - 2^n \cdot a| \le \frac{1}{3}$ が成り立つことを証明せよ.

1979 -

解答

$$x_{n+1} + \frac{1}{3 \cdot 2^n} = 2\left(x_n + \frac{1}{3 \cdot 2^{n-1}}\right)$$

$$x_n + \frac{1}{3 \cdot 2^{n-1}} = \left(x_1 + \frac{1}{3}\right) 2^{n-1}$$
ここで、 $x_1 = b$ とすると、 $x_n = \left(b + \frac{1}{3}\right) 2^{n-1} - \frac{1}{3 \cdot 2^{n-1}}$ である。
また、 $a = \frac{1}{2}\left(b + \frac{1}{3}\right)$ とすると、
$$|x_n - 2^n \cdot a| = \left|\left(b + \frac{1}{3}\right) 2^{n-1} - \frac{1}{3 \cdot 2^{n-1}} - \left(b + \frac{1}{3}\right) 2^{n-1}\right|$$

$$= \left|-\frac{1}{3 \cdot 2^{n-1}}\right| \le \frac{1}{3}$$

したがって、すべての $n=1,2,\cdots$ に対して、不等式

$$|x_n - 2^n \cdot a| \le \frac{1}{3}$$

が成立することが示された.