幾何数理工学演習第1回(距離空間)

2020/11/19 (木) 数理 7 研 特任助教 坂上 晋作 sakaue@mist.i.u-tokyo.ac.jp

定義と要項

- **■距離空間** X を集合, 関数 d を d : $X \times X \to \mathbb{R}$ とする. $x, y, z \in X$ として次の 3 つが成り立つとき (X, d) を**距離空間 (metric space)** という:
 - 1. $d(x,y) \ge 0$. 等号成立は x = y のとき, またそのときのみ,
 - 2. d(x,y) = d(y,x),
 - 3. $d(x,y) + d(y,z) \ge d(x,z)$ [**三角不等式 (triangle inequality)**]

■近傍と連続性

• 距離空間 (X,d) における $x \in X$ の ε -近傍 $N(X,d,x,\varepsilon)$:

$$N(X,d,x,\varepsilon) := \{ y \in X \mid d(x,y) < \varepsilon \}.$$

考えている距離空間が自明の場合には $N(x,\varepsilon)$ とも書く.

- 距離空間 (X,d) において, $U \subset X$ とする. $\forall x \in U, \exists \varepsilon > 0$ s.t. $N(x,\varepsilon) \subset U$ であるとき, U を**開集合** (open set) という.
- 開集合の補集合を**閉集合 (closed set)** という.
- (X, d_X) , (Y, d_Y) を距離空間とし, f を X から Y への写像とする. $x \in X$ について, 次の(同値な) 3 つの条件のどれかが成り立つとき f は x で連続 (continuous) であるという:
 - 1. (X,d_X) の任意の点列 $\{x_n\}$ について $\lceil x_n \to x$ ならば $f(x_n) \to f(x)$ 」.
 - 2. 任意の $\varepsilon > 0$ に対して、ある $\delta > 0$ が存在して

$$f(N(X, d_X, x, \delta)) \subset N(Y, d_Y, f(x), \varepsilon).$$

3. 任意の $\varepsilon > 0$ に対して、ある $\delta > 0$ が存在して

$$d_x(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon.$$

演習問題

- ■問題 1 次の (X,d) が距離空間であるかどうかを調べよ.
 - 1. X:任意の空でない集合, $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$
 - 2. $X = \mathbb{R}^n, d(x,y) = (\sum_{i=1}^n (x_i y_i)^2)^{\frac{1}{2}}$ (ただし、 $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$) (hint: Cauchy-Schwarz の不等式 $|x \cdot y| \leq ||x|| ||y||$.)
 - 3. $X = \{\{x_i\}_{i=0}^{\infty} \mid x_0, x_1, \dots$ は有界な実数列 $\}, d(x, y) = \sup_i |x_i y_i|$.
 - 4. $X = \{\{x_i\}_{i=0}^{\infty} \mid x_0, x_1, \dots$ は有界な実数列 $\}, d(x,y) = \lim_{n \to \infty} (\sum_{i=0}^{n} (x_i y_i)^2)^{\frac{1}{2}} / n.$
- **■問題 2** X を集合とし、関数 d を d : $X \times X \to \mathbb{R}$ とする.このとき,次の 2 条件が成立することは明らかに (X,d) が距離空間であることの必要条件であるが,これは,実は,十分条件でもあることを示せ.
- 1'. d(x,y) = 0 となるのは x = y のとき、またそのときのみ、
- 2'. $d(x,y) + d(x,z) \ge d(y,z)$.
- **■問題** 3 (*X*, *d*) を距離空間とする. また,

$$N(x,\varepsilon) = \{y \mid y \in X, d(x,y) < \varepsilon\}, S(x,\varepsilon) = \{y \mid y \in X, d(x,y) = \varepsilon\}$$

とするとき, (X,d) において $N(x,\varepsilon)$ は開集合, $S(x,\varepsilon)$ は閉集合であることを示せ.

■問題 4 $X=\mathbb{R}^n$ 上の二つの距離関数 d_1,d_2 を以下で定義する:

$$d_1(x,y) = \max_i |x_i - y_i|, \qquad d_2(x,y) = \sum_{i=1}^n |x_i - y_i|.$$

(これらが距離関数なのは認めてよい.)このとき,2つの距離空間 (X,d_1) と (X,d_2) の開集合族が一致すること,すなわち,ある集合 $U \subset X$ が (X,d_1) で開集合であることと (X,d_2) で開集合であることが同値であることを示せ.また,一般に,距離関数のみが異なる二つの距離空間 (X,d) と (X,d') の開集合族が一致するためには,距離関数 d,d' にどのような関係があればよいか考えてみよ.

■問題 5 X を関数の集合 $X = \{f(t) \mid f(t)$ は区間 [0,1] 上で定義された連続関数 $\}$ とし,二つの距離関数 d_1,d_2 を以下で定義する:

$$d_1(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)|, \qquad d_2(f,g) = \int_0^1 |f(t) - g(t)| dx$$

(これらが距離関数なのは認めてよい).このとき任意の $g \in X$ に対して $U = \{f \mid d_1(f,g) < c\}$ が (X,d_2) における開集合かどうか理由とともに述べよ.

■問題 6 $X = \mathbb{R}, Y = (-\infty, -1) \cup \{0\} \cup (1, \infty)$ とし、X, Y は \mathbb{R} に対するユークリッド距離から定まる 距離空間とする.このとき,以下で定義される写像 $f: X \to Y$ とその逆写像 $f^{-1}: Y \to X$ はそれぞれ連続か?

$$f(x) = \begin{cases} x - 1 & (x < 0) \\ x & (x = 0) \\ x + 1 & (x > 0). \end{cases}$$