1

	tξ	tgo L	c -DSIMPL- c	MPL-c	$PSwarm^c$						DIRECT-L1	L1°	
-sobol	۲	>	,	ပု	Minimum		Average		Maximum		p.p. = 10	$p.p. = 10^2$	$p.p.=10^{6}$
f.e. f.e. f.e.		<u>ن</u>		f.e.	f.e.	p.f.e	f.e.	p.f.e.	f.e.	p.f.e	f.e	f.e.	f.e.
24 34 7	34 7	7		249	167	182	$1329^{b(3)}$	$1343^{b(3)}$	$4100^{b(3)}$	$4101^{b(3)}$	287a	3689	>100000
11 11 5	11 5	5		171	160	176	424	492	292	867	265^{a}	10829	>100000
7 6 5	6 5	5		249	42	43	44	45	46	47	5^{a}	591	617
25 24 8	24 8	∞		260	96	179	114	194	129	211	58293^{a}	>100000	>100000
15 15 8	15 8	∞		259	106	150	134	192	214	302	7a	>100000	>100000
59 77 10	77 10	10		284	96	172	110	192	133	227	11^a	739^a	>100000
15 13 10	13 10	10		220	188	201	380	403	616	957	7a	71 a	>100000
23 23 189	23 189	189		133	110	110	189	192	392	405	6	76	4
15 36 3	36 3	3		141	101	153	118	172	138	195	19^a	57^a	>100000
41 35 630	35 630	630		721	266	311	316	369	327	373	>100000	>100000	>100000
20 103 8	03 8	8		314	179	179		401	561	574	25^a	49^a	>100000
63 258 186		186		9129		131			201	574	7a	7a	>100000
029 389 3379	_	379		>100000		54445		59821	2299	09929	7401	5885	6511
35 51 20	51 20	20		440	$148^{b(9)}$	$218^{b(9)}$	18		$201^{b(9)}$	$299^{b(9)}$	90283	>100000	>100000
37 44 548	44 548	548		4794	132	198			275	341	19135	>100000	>100000
165 165 49		49		463	105	107	121	122	157	158	7a	431	457
99 383 2137		137		655	542	1011	2366	3020	4116	4800	1261	1209	43341
15 22 3	22 3	3		141	105	144	119	171	162	236	19^a	57a	>100000
20 103 8	03 8	∞		314	296	296	367	375	495	498	25^a	49^a	>100000
258		186		9127	83	84	129	137	175	180	7a	7a	>100000
47 39 630	39 630	630		721	132	142	214	228	411	438	1529	1495	1463
36 35 16	35 16	16		200	150	153	252	259	410	426	>100000	>100000	>100000
88 100 366		366		>5877	2590	2672	3011	3130	3637	3812	>17213	>28421	>75113
			l										

Table 1 Function evaluation comparisons for test problems with linear constraints. The results for the Lc-DSIMPL, PSwarm and DIRECT-L1 algorithms were taken from [1]

a result is outside the feasible region $b(t)\,t$ out of 10 times the global solution was not reached c results produced by Paulavičius and Žilinskas (2016)