Inference of SIG -- Inside Outside Algorithm –

Song-Chun Zhu, Sinisa Todorovic, and Ales Leonardis

At CVPR, Providence, Rhode Island June 16, 2012

Inside-Outside Algorithm

Notation:

- Let $O = O_1, O_2, ..., O_T$ be the observation sequence generated by a SCFG G.
- let i, j, k be integer numbers corresponding to each of the non-terminal symbols.
- Let m be an integer corresponding to a terminal symbol.
- The grammar G has the Chomsky Normal Form $i \rightarrow jk$ $i \rightarrow m$

Inside-Outside Algorithm

Notation:

Probability matrix A and B

$$a[i, j, k] = P(i \rightarrow jk)$$
$$b[i, m] = P(i \rightarrow m)$$

- a[i, j, k] is the probability that the non-terminal symbol i generate the pair of non-terminal symbols j and k
- b[i,m] is the probability that the non-terminal symbol i generate a single terminal symbol m

Inner Probability

e(s,t,i) = Probability of the non-terminal symbol i generating the observation O(s),...,O(t)

calculation of inner probabilities

Computation of Inner Probability

• When s = t

$$e(s, s, i) = P(i \rightarrow O(s)) = b[i, O(s)]$$

• When $S \neq t$

$$e(s,t,i) = \sum_{j,k} \sum_{r=s}^{t-1} a[i,j,k] e(s,r,j) e(r+1,t,k)$$

 The quantity e can be computed recursively by determining e for all sequences of length 1, then all sequences of length 2, and so on.

Outer Probability

Outer Probability

Define outer probability f as

$$f(s,t,i) = P(S \Rightarrow O(1)...O(s-1),i,O(t+1)...O(T))$$

•
$$f$$
 can be computed by
$$f(s,t,i) = \sum_{j,k} \left[\sum_{r=1}^{s-1} f(r,t,j) a[j,k,i] e(r,s-1,k) \right]$$

$$+ \sum_{r=t+1}^{T} f(s,r,j)a[j,i,k]e(t+1,r,k)]$$

• And
$$f(1,T,i) = \begin{cases} f(1,T,i) = f(1,T) \\ 0 & \text{otherwise} \end{cases}$$

Computation of Outer Probability

Because a non-terminal node allows binary splits i → j k

Inside-Outside Algorithm: Example

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	$NP \rightarrow saw$	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
$V \rightarrow saw$	1.0	NP → telescopes	0.1

x = astronomers saw stars with ears

Inside-Outside Algorithm: Example

Inside-Outside Algorithm: Example

```
• e(1,1,S)=0
               e(1,1,PP)=0
                              e(1,1,VP)=0 e(1,1,NP)=0.1 e(1,1,V)=0
                                                                      e(1,1,P)=0
• e(2,2,S)=0
               e(2,2,PP)=0
                              e(2,2,VP)=0 e(2,2,NP)=0.04 e(2,2,V)=1
                                                                      e(2,2,P)=0
e(3,3,S)=0
               e(3,3,PP)=0
                              e(3,3,VP)=0 e(3,3,NP)=0.18 e(3,3,V)=0
                                                                      e(3,3,P)=0
  e(4,4,S)=0
               e(4,4,PP)=0
                              e(4,4,VP)=0 e(4,4,NP)=0 e(4,4,V)=0
                                                                      e(4,4,P)=1
  e(5,5,S)=0
               e(5,5,PP)=0
                              e(5,5,VP)=0 e(5,5,NP)=0.18 e(5,5,V)=0
                                                                      e(5,5,P)=0
  e(1,2,S)=0
               e(1,2,PP)=0
                              e(1,2,VP)=0 e(1,2,NP)=0
                                                        e(1,2,V)=0
                                                                      e(1,2,P)=0
  e(2,3,S)=0
               e(2,3,PP)=0
                                                        e(2,3,V)=0
                                                                      e(2,3,P)=0
                              e(2,3,VP)=0 e(2,3,NP)=0
  f(1,5,S)=1 f(2,5,VP)=f(1,5,S)*a[S,NP,VP]*e(1,1,NP)=0.1
  f(3,5,NP)=f(2,5,VP))*a[VP,V,NP]*e(2,2,V)=0.07
```

• P(O|G) = 0.015876