```
In [1]:
        import pandas as pd
        import numpy as np
        import os
        import matplotlib.pyplot as plt
        import scipy.stats as sts
        import matplotlib as mpl
        import seaborn as sns
        from sklearn.decomposition import PCA # Principal Component Analysis module
        %matplotlib inline
```

In [2]: #For QQ Plot import scipy.stats as sts #Correlation p-values from scipy.stats.stats import pearsonr #Regression output from sklearn.linear_model import LinearRegression import statsmodels.formula.api as smf

```
In [3]: path = "C:/Users/Administrator/Documents/Master/MSIS-5223-70250 - Programming
         for Data Sci - 8282017 - 159 PM/Data for Tutorials and ICE/Data"
        os.chdir(path)
        df = pd.read_table('reduction_data_new.txt', sep= '\t')
```

In [4]: df

Out[4]:

	time	peruse01	peruse02	peruse03	peruse04	peruse05	peruse06	pereou01	pere
0	14	7	7	7	7	7	7	7	7
1	14	6	5	5	6	6	6	6	6
2	10	5	5	5	6	5	6	3	5
3	13	5	5	5	5	5	6	6	5
4	4	7	6	6	6	7	6	6	6
5	5	6	6	7	6	7	6	6	6
6	6	6	6	6	7	6	7	7	7
7	7	6	6	6	5	5	5	7	7
8	5	5	4	5	5	5	4	5	4
9	12	6	6	6	5	5	6	5	5
10	9	6	5	6	6	6	4	5	6
11	10	6	6	6	6	6	6	7	7
12	17	5	6	6	5	5	6	6	6
13	14	5	6	6	6	6	6	6	6
14	15	5	5	5	5	6	6	6	6
15	18	6	5	5	6	6	6	6	6
16	10	2	2	2	2	2	2	7	6
17	17	1	3	2	3	3	4	2	2
18	10	5	5	5	5	4	2	6	6
19	10	6	3	5	6	6	6	6	6
20	16	6	6	6	6	7	6	7	7
21	13	6	6	5	6	5	6	5	6
22	17	5	5	5	3	4	5	5	5
23	9	6	6	6	6	6	6	5	6
24	25	6	6	6	7	6	6	6	5
25	9	5	6	5	5	6	6	6	6
26	13	7	7	7	7	7	7	7	7
27	6	7	7	6	6	7	7	7	7
28	5	6	6	7	6	7	7	6	5
29	7	6	6	6	6	6	6	6	6
•••									
138	19	7	7	7	6	6	7	6	6

			ı					1	
	time	peruse01	peruse02	peruse03	peruse04	peruse05	peruse06	pereou01	pere
139	8	5	5	4	4	4	5	7	5
140	7	5	5	5	5	5	5	6	6
141	16	6	6	6	6	6	6	6	6
142	15	6	6	6	6	6	6	6	6
143	10	7	7	7	7	7	7	7	7
144	9	6	6	6	6	6	6	7	7
145	16	4	4	4	4	4	5	6	6
146	6	6	6	6	6	6	6	6	6
147	14	4	5	5	5	5	5	7	7
148	10	4	5	5	5	6	6	7	7
149	10	6	4	4	5	5	5	7	6
150	10	6	6	6	6	6	7	6	6
151	10	6	6	6	5	4	5	7	7
152	11	7	6	6	7	7	7	7	7
153	27	6	6	6	6	6	6	5	5
154	13	6	6	6	6	6	4	6	5
155	49	5	4	4	4	5	4	5	4
156	12	6	5	5	6	5	5	6	6
157	17	7	6	6	7	7	6	6	6
158	21	6	6	7	6	5	6	5	6
159	56	7	6	6	5	6	5	3	6
160	13	6	6	5	6	6	6	7	6
161	12	7	6	7	6	7	7	7	6
162	16	5	5	5	5	5	5	6	5
163	6	5	5	5	5	4	4	5	5
164	4	5	5	5	5	4	5	5	5
165	14	6	7	6	7	7	7	7	7
166	23	5	5	6	6	6	6	5	5
167	24	6	4	5	4	5	5	7	6
									_

168 rows × 38 columns

```
In [6]: #Drop Null data
        df.dropna(axis = 1, how = 'any')
```

Out[6]:

	time	peruse01	peruse02	peruse03	peruse04	peruse05	peruse06	pereou01	pere
0	14	7	7	7	7	7	7	7	7
1	14	6	5	5	6	6	6	6	6
2	10	5	5	5	6	5	6	3	5
3	13	5	5	5	5	5	6	6	5
4	4	7	6	6	6	7	6	6	6
5	5	6	6	7	6	7	6	6	6
6	6	6	6	6	7	6	7	7	7
7	7	6	6	6	5	5	5	7	7
8	5	5	4	5	5	5	4	5	4
9	12	6	6	6	5	5	6	5	5
10	9	6	5	6	6	6	4	5	6
11	10	6	6	6	6	6	6	7	7
12	17	5	6	6	5	5	6	6	6
13	14	5	6	6	6	6	6	6	6
14	15	5	5	5	5	6	6	6	6
15	18	6	5	5	6	6	6	6	6
16	10	2	2	2	2	2	2	7	6
17	17	1	3	2	3	3	4	2	2
18	10	5	5	5	5	4	2	6	6
19	10	6	3	5	6	6	6	6	6
20	16	6	6	6	6	7	6	7	7
21	13	6	6	5	6	5	6	5	6
22	17	5	5	5	3	4	5	5	5
23	9	6	6	6	6	6	6	5	6
24	25	6	6	6	7	6	6	6	5
25	9	5	6	5	5	6	6	6	6
26	13	7	7	7	7	7	7	7	7
27	6	7	7	6	6	7	7	7	7
28	5	6	6	7	6	7	7	6	5
29	7	6	6	6	6	6	6	6	6
138	19	7	7	7	6	6	7	6	6

	time	peruse01	peruse02	peruse03	peruse04	peruse05	peruse06	pereou01	pere
139	8	5	5	4	4	4	5	7	5
140	7	5	5	5	5	5	5	6	6
141	16	6	6	6	6	6	6	6	6
142	15	6	6	6	6	6	6	6	6
143	10	7	7	7	7	7	7	7	7
144	9	6	6	6	6	6	6	7	7
145	16	4	4	4	4	4	5	6	6
146	6	6	6	6	6	6	6	6	6
147	14	4	5	5	5	5	5	7	7
148	10	4	5	5	5	6	6	7	7
149	10	6	4	4	5	5	5	7	6
150	10	6	6	6	6	6	7	6	6
151	10	6	6	6	5	4	5	7	7
152	11	7	6	6	7	7	7	7	7
153	27	6	6	6	6	6	6	5	5
154	13	6	6	6	6	6	4	6	5
155	49	5	4	4	4	5	4	5	4
156	12	6	5	5	6	5	5	6	6
157	17	7	6	6	7	7	6	6	6
158	21	6	6	7	6	5	6	5	6
159	56	7	6	6	5	6	5	3	6
160	13	6	6	5	6	6	6	7	6
161	12	7	6	7	6	7	7	7	6
162	16	5	5	5	5	5	5	6	5
163	6	5	5	5	5	4	4	5	5
164	4	5	5	5	5	4	5	5	5
165	14	6	7	6	7	7	7	7	7
166	23	5	5	6	6	6	6	5	5
167	24	6	4	5	4	5	5	7	6

168 rows × 24 columns

```
In [10]: # Explore data
         df.dtypes
         df.describe()
```

Out[10]:

	time	peruse01	peruse02	peruse03	peruse04	peruse05	peruse
count	168.000000	168.000000	168.000000	168.000000	168.000000	168.000000	168.0000
mean	12.678571	5.720238	5.511905	5.619048	5.464286	5.505952	5.684524
std	7.666180	1.020306	0.966431	0.971507	1.037575	1.152955	1.050463
min	2.000000	1.000000	2.000000	2.000000	2.000000	2.000000	2.000000
25%	8.000000	5.000000	5.000000	5.000000	5.000000	5.000000	5.000000
50%	11.000000	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000
75%	14.000000	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000
max	56.000000	7.000000	7.000000	7.000000	7.000000	7.000000	7.000000

8 rows × 38 columns

```
In [13]: df.columns
Out[13]: Index(['time', 'peruse01', 'peruse02', 'peruse03', 'peruse04', 'peruse05',
                 'peruse06', 'pereou01', 'pereou02', 'pereou03', 'pereou04', 'pereou0
         5',
                 'pereou06', 'intent01', 'intent02', 'intent03', 'operatingsys',
                 'gender', 'educ_level', 'race_white', 'race_black', 'race_hisp',
                 'race_asian', 'race_native', 'race_pacif', 'race_other', 'age',
                 'citizenship', 'state', 'military', 'militbranch', 'familystruct',
                 'children', 'income', 'employ', 'color', 'eatout', 'religion'],
               dtype='object')
```

Scatter target variable to each independence variables

In [14]: df.plot.scatter(x='peruse05', y='intent01')

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x1cf233ee6a0>

In [15]: df.plot.scatter(x='age', y='intent01')

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1cf25760d30>

In [16]: df.plot.scatter(x='peruse02', y='intent01')

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1cf25806978>

In [17]: df.plot.scatter(x='pereou04', y='intent01')

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x1cf25733a90>

In [18]: df.plot.scatter(x='operatingsys', y='intent01')

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x1cf2572a748>

dfnew = df[['intent01','peruse05','peruse02','pereou04','operatingsys','age']] In [31]:

#Collinearity In [32]: dfnew.corr()

Out[32]:

	intent01	peruse05	peruse02	pereou04	operatingsys	age
intent01	1.000000	0.340873	0.323890	0.308517	-0.597892	0.231243
peruse05	0.340873	1.000000	0.642133	0.365810	-0.256058	0.011199
peruse02	0.323890	0.642133	1.000000	0.386221	-0.267895	-0.023765
pereou04	0.308517	0.365810	0.386221	1.000000	-0.171806	0.169316
operatingsys	-0.597892	-0.256058	-0.267895	-0.171806	1.000000	-0.101698
age	0.231243	0.011199	-0.023765	0.169316	-0.101698	1.000000

In [21]: dfnew1 = df[['peruse05','peruse02','pereou04','operatingsys','age','intent01']]

```
In [33]: #Homoscedasticity
         linreg2 = smf.ols('intent01 ~ peruse05 + peruse02 + pereou04 + operatingsys +
          age', df).fit()
         #Assess homoscedasticity
         plt.scatter(linreg2.fittedvalues, linreg2.resid)
         plt.xlabel('Predicted/Fitted Values')
         plt.ylabel('Residual Values')
         plt.title('Assessing Homoscedasticity')
         plt.plot([-40, 120],[0, 0], 'red', lw=2)
                                                   #Add horizontal line
         plt.show()
```


the figure is evenly distributed across the x-asis, and there is one residual values is outlier

In [23]: linreg2.summary()

Out[23]:

OLS Regression Results

Dep. Variable:	intent01	R-squared:	0.442
Model:	OLS	Adj. R-squared:	0.425
Method:	Least Squares	F-statistic:	25.24
Date:	Wed, 27 Sep 2017	Prob (F-statistic):	1.11e-18
Time:	22:10:28	Log-Likelihood:	-272.95
No. Observations:	165	AIC:	557.9
Df Residuals:	159	BIC:	576.5
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.5299	0.935	2.706	0.008	0.683	4.376
peruse05	0.1801	0.116	1.551	0.123	-0.049	0.409
peruse02	0.1255	0.140	0.894	0.373	-0.152	0.403
pereou04	0.2193	0.119	1.846	0.067	-0.015	0.454
operatingsys	-0.5315	0.066	-8.067	0.000	-0.662	-0.401
age	0.0583	0.022	2.629	0.009	0.014	0.102

Omnibus:	19.577	Durbin-Watson:	2.042
Prob(Omnibus):	0.000	Jarque-Bera (JB):	25.259
Skew:	-0.732	Prob(JB):	3.27e-06
Kurtosis:	4.238	Cond. No.	235.

With the data points in the model, the assumption of normally distributted residuals fails for the intent01 data

In [27]: sts.probplot(linreg2.resid, dist="norm", plot=plt)

```
Out[27]: ((array([-2.63619469, -2.31985126, -2.13890476, -2.00899334, -1.90613804,
                  -1.82021181, -1.74594095, -1.68021408, -1.62103502, -1.56704323,
                  -1.51726796, -1.47099118, -1.4276662, -1.38686669, -1.34825346,
                  -1.31155201, -1.2765369 , -1.24302058, -1.21084528, -1.17987694,
                  -1.15000061, -1.12111696, -1.09313954, -1.06599258, -1.0396093 ,
                  -1.01393051, -0.98890348, -0.96448101, -0.94062067, -0.91728419,
                  -0.89443686, -0.87204715, -0.85008629, -0.82852795, -0.80734798,
                  -0.78652413, -0.76603589, -0.74586428, -0.7259917, -0.70640177,
                  -0.68707927, -0.66800996, -0.64918054, -0.63057852, -0.61219219,
                  -0.59401054, -0.57602317, -0.55822027, -0.54059257, -0.52313129,
                  -0.50582807, -0.48867499, -0.47166452, -0.45478944, -0.4380429
                  -0.42141832, -0.40490941, -0.38851013, -0.37221468, -0.35601748,
                  -0.33991315, -0.32389651, -0.30796253, -0.29210636, -0.2763233 ,
                  -0.26060878, -0.24495836, -0.22936771, -0.21383261, -0.19834896,
                  -0.18291271, -0.16751993, -0.15216674, -0.13684934, -0.12156398,
                  -0.10630698, -0.09107468, -0.07586348, -0.06066982, -0.04549015,
                  -0.03032096, -0.01515874,
                                                          0.01515874,
                                                                       0.03032096,
                                                                        0.10630698,
                   0.04549015,
                                0.06066982,
                                              0.07586348,
                                                           0.09107468,
                   0.12156398,
                                0.13684934,
                                              0.15216674,
                                                          0.16751993,
                                                                        0.18291271,
                   0.19834896,
                                0.21383261,
                                              0.22936771,
                                                           0.24495836,
                                                                        0.26060878,
                   0.2763233 ,
                                0.29210636,
                                              0.30796253,
                                                           0.32389651,
                                                                        0.33991315,
                   0.35601748,
                                0.37221468,
                                              0.38851013,
                                                           0.40490941,
                                                                        0.42141832,
                   0.4380429 ,
                                0.45478944,
                                              0.47166452,
                                                           0.48867499,
                                                                        0.50582807,
                   0.52313129,
                                0.54059257,
                                             0.55822027,
                                                           0.57602317,
                                                                        0.59401054,
                                0.63057852,
                                              0.64918054,
                   0.61219219,
                                                           0.66800996,
                                                                        0.68707927,
                                0.7259917 ,
                   0.70640177,
                                              0.74586428,
                                                           0.76603589,
                                                                        0.78652413,
                   0.80734798,
                                0.82852795,
                                              0.85008629,
                                                           0.87204715,
                                                                        0.89443686,
                   0.91728419,
                                0.94062067,
                                              0.96448101,
                                                           0.98890348,
                                                                        1.01393051,
                   1.0396093 ,
                                1.06599258,
                                              1.09313954,
                                                           1.12111696,
                                                                        1.15000061,
                   1.17987694,
                                1.21084528,
                                              1.24302058,
                                                           1.2765369 ,
                                                                        1.31155201,
                                1.38686669,
                                              1.4276662 ,
                                                          1.47099118,
                                                                        1.51726796,
                   1.34825346,
                   1.56704323,
                                1.62103502,
                                              1.68021408,
                                                          1.74594095,
                                                                        1.82021181,
                                2.00899334,
                                              2.13890476,
                                                          2.31985126,
                                                                        2.63619469]),
                   1.90613804,
           array([-4.81103025, -3.43211475, -3.12885528, -3.06144544, -3.02083724,
                  -2.90348179, -2.77511709, -2.54711174, -2.53154524, -2.51777735,
                  -2.36040563, -2.30663839, -2.13135595, -2.00706935, -2.0010347,
                  -1.89824923, -1.83997254, -1.81808375, -1.77089529, -1.68891696,
                  -1.5931769 , -1.43688067, -1.40788173, -1.23710874, -1.22357649,
                  -0.96175847, -0.94496425, -0.88488152, -0.81987555, -0.78169586,
                  -0.73006268, -0.72115393, -0.69323049, -0.65098694, -0.61835422,
                  -0.60124559, -0.59530416, -0.59083268, -0.55343403, -0.55155645,
                  -0.5374009 , -0.53679205, -0.532556 , -0.47803448, -0.47351823,
                  -0.4405711 , -0.42977053, -0.42977053, -0.41264765, -0.40707964,
                  -0.39941729, -0.37149385, -0.37149385, -0.37149385, -0.36485034,
                  -0.33221762, -0.3211294, -0.24970792, -0.15215501, -0.12947837,
                  -0.08723483, -0.08723483, -0.07675546, -0.07307927, -0.07081402,
                  -0.06595488, -0.05931138, -0.03747923, -0.03560165, -0.02003515,
                   0.0160092 ,
                                0.03158378,
                                             0.0345511 , 0.03683059,
                                                                        0.04535168,
                   0.04535168,
                                0.05239709,
                                              0.08196247,
                                                          0.08618428,
                                                                        0.10175077,
                   0.10698334,
                                0.10886092,
                                              0.11293901,
                                                          0.11778391,
                                                                        0.12670691,
                   0.14627381,
                                0.15338395,
                                              0.15956082, 0.16002746,
                                                                        0.17082803,
                   0.17275783,
                                0.1760606 ,
                                              0.20641383,
                                                           0.23433728,
                                                                        0.26469051,
                   0.32108961,
                                0.34009006,
                                              0.34378049,
                                                           0.40393476,
                                                                        0.4125223 ,
                   0.43952055,
                                0.44999992,
                                              0.45181277,
                                                           0.45367611,
                                                                        0.47675466,
                   0.50672023,
                                0.52855238,
                                              0.53872177,
                                                           0.55122902,
                                                                        0.57022947,
                   0.57022947,
                                0.57061714,
                                              0.57915247,
                                                           0.58500812,
                                                                        0.59104278,
                   0.61770558,
                                              0.65885939, 0.73498206,
                                0.63373872,
                                                                        0.74136909,
```

```
0.74505952, 0.74505952,
                                 0.7758713 ,
                                              0.81286804, 0.8181006,
        0.8189027 , 0.82884453, 0.83125965, 0.83704441, 0.86684544,
        0.87207801, 0.87576844, 0.88006772, 0.92168817,
                                                          0.93465397,
        0.96439835, 0.96439835, 1.03824153, 1.04690805,
                                                          1.08987471,
        1.10175077, 1.11410773, 1.13210401, 1.14625956,
                                                          1.16230695,
        1.17238441, 1.22307006,
                                 1.23245969, 1.28134674,
                                                           1.31686122,
        1.42730904, 1.44272524,
                                 1.49880799, 1.69631468,
                                                          1.69631468,
                                 1.81286804,
        1.71531513, 1.75459136,
                                              2.20460714,
                                                           2.34666883,
        2.48778623, 2.51780845,
                                 2.67176045,
                                              2.78422019,
                                                           2.87637729])),
(1.2513292455994429, 1.1907088206622858e-14, 0.9759639312289522))
```



```
In [34]: pearsonr(df.intent01,df.operatingsys)
```

Out[34]: (-0.5978921715528297, 1.1613124760576334e-17)

Equation: intent01 = 2.5299 + 0.1801 peruse05 + 0.1255 peruse02 + 0.2193 pereou04 - 0.5315 operatingsys + 0.0583* age

intent01 strong dependance on beta 0 and operationsys