СИНТЕЗ, СТРУКТУРА И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ СО СТРУКТУРОЙ ЭШИНИТА Nd_{1-x}Ca_xTi_{1-x}Nb_{1+x}O₆

Желуницын И.А., Михайловская З.А., Вотяков С.Л. Институт геологии и геохимии УрО РАН 620016, г. Екатеринбург, ул. Академика Вонсовского, д. 15

Соединения с общей формулой $LnTiNbO_6$ (Ln - La...Eu) относятся к структурному типу эшинита, являются перспективными материалами в люминесценцирующих устройствах, лазерной технологии, в качестве матриц для иммобилизации высокорадиоактивных отходов и в микроволновых и электронных устройствах. Допирование таких соединений различными элементами может привести к улучшению функциональных свойств. Цель работы – синтез твердофазным методом соединений со структурой эшинита состава $Nd_{1-x}Ca_xTi_{1-x}Nb_{1+x}O_6$ (x =0...0.2), исследование их химического состава, структурных, оптических, колебательных и электрических характеристик. Синтез образцов проводили по стандартной керамической технологии с использованием оксидов и карбонатов соответствующих элементов Nd₂O₃, TiO₂, Nb₂O₅, CaCO₃. Анализ рентгеноструктурных данных (дифрактометр XRD-7000 Shimadzu) методом Ритвельда показал, что в составе NdTiNbO₆ не обнаружено вторичных фаз, с увеличением содержания Са (x = 0.15; 0.20) начинает появляться дополнительная фаза, связанная с моноклинной модификацией эшинита, ранее найденная для LaTiNbO₆. По данным СЭМ (JEOL-6390LV) фиксируются зерна размером от 1 до 10 мкм. По данным импедансной спектроскопии зернограничный вклад в проводимости эшинитов является доминирующим. Проведены оценки значения энергии активации E_a (см. рисунок); расчет диэлектрических параметров показал, что наибольшей диэлектрической константой обладает состав Nd_{0.9}Ca_{0.1}Ti_{0.9}Nb_{1.1}O₆ $(\varepsilon_r = 44)$, что делает его перспективным материалом в области микроэлектронных устройств.

Аррениусовские зависимости проводимости для эшинитов различного состава

Работа выполнена в ЦКП «Геоаналитик» ИГГ УрО РАН в рамках тем № 123011800012-9 и 124020300057-6 государственного задания ИГГ УрО РАН.