

Блок

FEATURE ENGINEERING

EFOP CAYKO

Lead Data Scientist Сбербанк

МАТЕРИАЛЫ ПО БЛОКУ

МАТЕРИАЛЫ ПО БЛОКУ

"Learning scikit-learn:
Machine Learning in Python"
Raul Garreta,
Guillermo Moncecchi,
2013,
Packt

"Hands-On Machine
Learning with Scikit-Learn
and Tensorflow:
Concepts, Tools and
Techniques to Build
Intelligent Systems"
Geron, A., 2017, O'Reilly Media

https://www.analyticsvidhya.co m/blog - много интересных статей и туториалов

4

blog.kaggle.com/ -No Free Hunch

Занятие 3

ПРОБЛЕМЫ КАЧЕСТВА И РАЗМЕРНОСТИ ДАННЫХ

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ СМОЖЕТЕ

Уменьшать размерность

помощью Lasso регрессии

пространство с

2

Сжимать пространство признаков с помощью **Ridge регрессии** 3

Использовать метод главных компонент 4

Использовать sklearn для изменения размерности пространства признаков

ЧТО БУДЕМ ОБСУЖДАТЬ

ПЛАН ЗАНЯТИЯ

Линейная регрессия

Метод главных компонент

Ridge регрессия

Обсуждение домашнего задания

Lasso регрессия

Часть 1-3 Линейная регрессия

Ridge Lasso

Regression Data Representation

Regression Data Representation

$$\hat{y}_i = \sum_{j=0}^M w_j * x_{ij}$$

Cost (W) = RSS(W) =
$$\sum_{i=1}^{N} \{y_i - \hat{y}_i\}^2 = \sum_{i=1}^{N} \left\{ y_i - \sum_{j=0}^{M} w_j x_{ij} \right\}^2$$

$$w_j^{t+1} = w_j^t + 2\eta \sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k x_{ik} \right\}$$

$$\frac{\partial}{\partial w_j} Cost (W) = -2 \sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k x_{ik} \right\}$$

Ridge регрессия

 $Cost(W) = RSS(W) + \lambda * (sum of squares of weights)$

$$= \sum_{i=1}^{N} \left\{ y_i - \sum_{j=0}^{M} w_j x_{ij} \right\}^2 + \lambda \sum_{j=0}^{M} w_j^2$$

Ridge регрессия

$$w_j^{t+1} = w_j^t - \eta \left[-2\sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k * x_{ik} \right\} + 2\lambda w_j \right]$$

$$w_j^{t+1} = (1 - 2\lambda\eta)w_j^t + 2\eta \sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k * x_{ik} \right\}$$

$$\frac{\partial}{\partial w_j} Cost (W) = -2 \sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k x_{ik} \right\} + 2\lambda w_j$$

Lasso регрессия

 $Cost(W) = RSS(W) + \lambda * (sum of absolute value of weights)$

$$= \sum_{i=1}^{N} \left\{ y_i - \sum_{j=0}^{M} w_j x_{ij} \right\}^2 + \lambda \sum_{j=0}^{M} |w_j|$$

Lasso регрессия

Lasso регрессия

$$w_{j} = \begin{cases} g(w_{-j}) + \frac{\lambda}{2}, & \text{if } g(w_{-j}) < -\frac{\lambda}{2} \\ 0, & \text{if } -\frac{\lambda}{2} \le g(w_{-j}) \le \frac{\lambda}{2} \end{cases}$$
$$g(w_{-j}) - \frac{\lambda}{2}, & \text{if } g(w_{-j}) > \frac{\lambda}{2} \end{cases}$$

Сравнение коэффициентов при разных видах регрессии

Практика Как изменяются коэффициенты?

Часть 3-4

Уменьшение размерности пространства Метод главных компонент

- Трансформирует р фич в М линейных комбинаций этих фич
- Новые фичи используются для построения модели
- Новые фичи должны:
 - Уменьшить размерность пространства
 - Сохранить как можно больший процент variance исходных данных

00

Большое количество фич

- Замедляет работу алгоритмов ML
- Усложняет процесс поиска решений (curse of dimensionality)
 - Среднее расстояние между двумя случайно выбранными точками в квадрате с длиной стороны 1 равно 0.52
 - В 1,000,000-ом гиперкубе ≈ 408.52

Сокращение размерности пространства признаков

- Уменьшить размерность данных
- Ускорить процесс обучения
- Уменьшить шумы
- Визуализировать данные

Основные способы

- Projection
 - PCA
 - Kernel PCA
- Manifold learning
 - Isometric Mapping (Isomap)
 - Locally Linear Embedding (LLE)
 - t-distributed Stochastic Neighbour Embedding (t-SNE)

Projection

Projection

Principal component analysis (PCA)

- Самый популярный projection способ
- Проецирует исходные данные на компоненты
- Каждая следующая компонента:
 - ортогональна всем предыдущим
 - описывает максимальное количество остаточного variance

ELBOW METHOD

- Обязательный параметр РСА количество компонент
- Для определения оптимального кол-ва компонент используется метод "локтя" (elbow method)

```
for n in range(1, n_features + 1):
    x.append(n)
    y.append(variance ОПИСАННЫЙ n КОМПОНЕНТАМИ)
plot(x, y)
```

Локоть

Выбираем количество компонент по проценту coxpaнeнного variance

PCA B sklearn

- Основан на методе матричной декомпозиции SVD (Singular Value Decomposition, см. далее)
- Центрирует данные (РСА предполагает, что данные центрированы)
- Направление компонент не стабильно
- Можно указывать ожидаемый variance вместо количества компонент

PCA B sklearn

- Если данные очень большие и не помещаются в память
 - IncrementalPCA
 - Numpy memmap
- Нужна быстрая оценка первых d компонент?
 - RandomizedPCA (стохастический алгоритм)
 - d << n, n количество фич

Kernel PCA

- Kernel trick можно использовать в PCA (kPCA)
- Позволяет осуществить сложную нелинейную проекцию

ISOMAP

- Создает граф, соединяя экземпляры с их ближайшими соседями
- Уменьшает размерность,
 пытаясь сохранить
 геодезическое расстояние

MDS

Уменьшает размерность, пытаясь сохранить расстояние между объектами

T-SNE

- Уменьшает размерность, сохраняя близость экземпляров в пространстве
 - близкие в исходном = близкие в новом
 - далекие в исходном = далекие в новом
- Используется для визуализации кластеров

Практика **АНАЛИЗ РЕКЛАМНЫХ БЮДЖЕТОВ**

Часть 5 Обсуждение домашнего задания

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

итоги

Как устроена **линейная регрессия**

Отличия Lasso и Ridge регрессий

Математика под капотом РСА

4

Как использовать метод главных компонент в sklearn

СПАСИБО ЗА ВНИМАНИЕ