Statistical Inference Test for equality of variances

F-test for equality of variances

- The F test is used to test the equality of two population variances.
- Testing equality of variances is a prerequisite for many statistical tests (eg the Independent sample t-test).
- Under H0 $\sigma_1^2 = \sigma_2^2$ Where σ_1^2 and σ_2^2 are the first and second population variances, respectively.

Assumptions for F-test

- The assumptions for the F-test are listed below:
 - Random sampling from a defined population (employees are selected at random from the company)
 - Population of the testing variable is normally distributed (The time taken to complete the MIS report should be normally distributed).

 Note: Generally the F test is used to the validate assumption of equal variance while performing the t test for equality of means. The parent population is assumed to follow a normal distribution.

Case Study - 1

Background

The company is analysing the time to complete an MIS report between two groups of employees.

Group I: Experience (0-1 years) Group II: Experience(1-2 years)

Objective

To test the equality of the variances in time taken to complete MIS in two groups of employees.

Sample Size

Sample size: 14

Variables: time_g1, time_g2

Data Snapshot

Variables

F test for 2 variances

Columns	Description	Type	Measurement	Possible values
time_g1	Time to complete MIS report by group1	Numeric	Hours	Positive Values
time_g2	Time to complete MIS report by group2	Numeric	Hours	Positive Values

F-test

Testing equality of variances in two samples.

Objective

To test the **equality** of the variances in time taken to complete an MIS report in two groups of employees.

Null Hypothesis (H $_0$): Variances of time are equal in two groups. i.e. $\sigma_1^{\ 2} = \sigma_2^{\ 2}$.
Alternate Hypothesis (H $_1$): Alternative Hypothesis H1: $\sigma_1^{\ 2} \neq \sigma_2^{\ 2}$

Test Statistic	Where s_1^2 is the sample variance of first sample and, s_2^2 is the sample variance of second sample. n_1 and n_2 are sample sizes of the first and second sample respectively.
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Computation

	Group I	Group II
Sample Size	n ₁ =12	n ₂ =14
Mean	$\bar{x}_1^{=93.5833}$	
Sample Variance	s ₁ ² =41.9015	s ₂ ² = 27.1484
F Value	$F = \frac{s_1^2}{s_2^2}$	1.5434

F-test in R

```
# Import data
 data<-read.csv("F test for 2 variances.csv",header=TRUE)</pre>
# Variance test
 var.test(data$time_g1,data$time_g2,alternative = "two.sided")
     time_g1,time_g2 are the variables under study.
    alternative="two.sided", since under H1, variances are not equal.
 # Output:
                                                                Interpretation:
                                                                   Since the p-value is >0.05,
        F test to compare two variances
                                                                   do not reject H0. There is no
 data: data$time_g1 and data$time_g2
                                                                   significant difference in
 F = 1.5434, num df = 11, denom df = 13, p-value = 0.4524
 alternative hypothesis: true ratio of variances is not equal to 1
                                                                   variances of the two groups.
 95 percent confidence interval:
                                                                   Also, 95 percent confidence
  0.4826988 5.2348866
                                                                   interval of ratio of variance
 sample estimates:
```

ratio of variances

1.543428

variances are same.

contains 1, which means