

课程编号: 07000130

北京理工大学 2008-2009 学年第一学期

数学分析 B 期末试题(A 卷)

班级	学号	姓名
-) -) -) -) -) -) -) -) -) -)	1 7	/т· П

(本试卷共5页, 九个大题)

题号	 	11]	四	五.	六	七	八	九	总分
得分									
评阅人									

- 一. 填空题 (每小题 4 分, 共 28 分)
- $1. \frac{d(\arcsin x)}{d\sqrt{1-x^2}} = \underline{\hspace{1cm}}.$
- 2. 设 y = f(x)满足 $y'' = x + \sin x$, 且曲线 y = f(x)与直线 y = x 在原点处相切,则 f(x) =
- 3. 函数 $f(x) = \sin^3 x + \cos^3 x$ 在 $[0, \frac{\pi}{2}]$ 上的最大值 $M = ______,$ 最小值 $m = ______.$
- 5. 函数 $f(x) = x \ln(1+x) e^{x^2}$ 的 5 阶麦克劳林公式(带佩亚诺余项)为

 $f(x) = \underline{\hspace{1cm}}$

6. 已知
$$f(x) = \begin{cases} \frac{1-\cos ax}{x^2} & x > 0 \\ 2 & x = 0$$
 是连续函数,则 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}. \\ \frac{\sqrt{1-x}-1}{bx} & x < 0 \end{cases}$

7. 极限
$$\lim_{x\to 0} \frac{\int_{0}^{\sin x} (1+t)^{\frac{1}{t}} dt}{\int_{0}^{\tan x} \frac{\sin t}{t} dt} = _____.$$

二. (9分) 求微分方程 $y'' + y' - 2y = e^x$ 的通解.

三. (9 分) 求不定积分 $\int x^2 \arctan x dx$.

四. (9 分) 设 $\lim_{x\to 0} \frac{\ln(1+x)-(ax+bx^2)}{x^2} = 1$, 求 a 和 b 的值.

五. (9 分) 已知油罐车上的油罐是半径为R的圆柱体, 两边的封头是半径为R米的圆板

(如图), 若油的密度 $\mu = 800 \, \text{kg/m}^3$, 并假定油罐装满了油, 求油罐的每个封头所受的侧压力.

六. (9 分) 求反常积分 $\int_{1}^{+\infty} \frac{dx}{x\sqrt{x+1}}$.

七. (9分) 已知函数 f(x) 在[1,+∞)上单调增加,且对任意 t>1,曲线 y=f(x) 在[1,t]上的 弧长等于此曲线与直线 x=1, x=t 及 x 轴所围图形面积的 2 倍,又曲线过点 $(1,\frac{1}{2})$,求 f(x).

(2) 设 $F(x) = \int_{x}^{x+2\pi} e^{\sin t} \sin t dt$,证明F(x)恒为正的常数.

九. (9 分) 设 f(x) 在 [0,2] 上二阶可导,且 $|f''(x)| \le 1$,又 $\lim_{x \to 1} \frac{f(x)}{x-1} = 0$. (1) 证明 f(x) 在 (0,2) 内存在驻点; (2) 证明 $|f'(0)| + |f'(2)| \le 2$.