M.Sc. in AI - Thesis Presentation

Grad-CAM vs HiResCAM: A comparative study via quantitative evaluation metrics

June 7, 2023

Contents

- XAI algorithms & Motivation
- Quantitative evaluation metrics
- Oatasets
- Experimental results & Discussion

1. XAI algorithms & Motivation

For a CNN we denote by $\{A^f\}_{f=1,...,F}$ a convolutional layer, $A^f \in \mathbb{R}^{D_1*D_2}$

Definition

For class m = 1, 2, ..., M,

• the Grad-CAM (2019) attribution map w.r.t. $\{A^f\}_{f=1,...,F}$ is given by

$$\mathcal{A}_{m}^{\mathsf{Grad-CAM}} = \mathsf{ReLU}\left(\sum_{f=1}^{F} a_{m}^{f} A^{f}\right)$$

where
$$a_m^f = \frac{1}{D_1 D_2} \sum_{i=1}^{D1} \sum_{j=1}^{D_2} \frac{\partial s^m}{\partial A_{ij}^f}$$
 (Gradient Averaging step)

• the HiResCAM (2021) attribution map w.r.t. $\{A^f\}_{f=1,...,F}$ is given by

$$\mathcal{A}_{m}^{\mathsf{HiResCAM}} = \mathsf{ReLU}\left(\sum_{f=1}^{F} \frac{\partial s^{m}}{\partial A^{f}} \odot A^{f}\right)$$

where \odot stands for the Hadamard product

• Setting? (CNN structure? Gradients wrt which Conv layer?)

Definition (Faithfulness)

For the purposes of this study, an attribution map method is faithful to a CNN model if the sum of the attribution map values reflects the class score calculation.

Table: Grad-CAM vs HiResCAM - Theory summary

CNN structure	Gradients wrt last Conv layer	Grad-CAM vs HiResCAM
Conv - GAP - Class Scores	yes no	Equivalent & Faithful Not equivalent & Not faithful
Conv - Flatten - Class Scores	yes no	Not equivalent. Only HiResCAM is faithful Not equivalent & Not faithful
Conv - GAP/Flatten - Dense - Class Scores	yes no	Not equivalent & Not faithful

The *setting* of this study:

⇒ If gradients wrt last conv layer, one can show that HiResCAM is faithful to the model:

$$s^m = \sum_{i,j} \left(\mathcal{A}_m^{\mathsf{HiResCAM}} \right)_{i,j} + b^m$$

Figure: CNN ending in one fully connected layer

⇒ On the other hand, this is not true for Grad-CAM!

 Goal: In this unique setting, we want to quantify the quality of the Grad-CAM and HiResCAM attribution maps and examine if faithfulness aligns with quantitative evaluation metrics results.

2. Quantitative evaluation metrics

AOPC score

- For image x and its heatmap
- O: heatmap regions in descending order
- Iteratively:
 - apply perturbations to most relevant regions
 - calculate difference in predicted class probabilities
- Results in MoRF Perturbation Curve (for image x)
- Idea: large Area Over MoRF curve
 - ⇒ class probability decreases after *a few* steps
 - \Rightarrow the heatmap can accumulate class info in *a few* regions

Definition (AOPC, 2015)

$$AOPC = \frac{1}{L+1} Avg \left(\sum_{k=1}^{L} [f(x_{MoRF}^{(0)}) - f(x_{MoRF}^{(k)})] \right)_{test \ set}$$

M.Sc. in AI - Thesis Presentation

MoRF curve

Steps

20

Class probability

Max Sensitivity score

- Idea: Measures the degree to which the class explanation is affected by small perturbations in the test image.
- Naturally, we desire explanations with low sensitivity.

Definition (Max Sensitivity, 2019)

For explanation method Φ and radius r, we define the Max Sensitivity of explanation $\Phi(f,x)$ as:

$$SENS_{MAX}(\Phi, f, x, r) = \max_{y: \|x - y\|_{\infty} \le r} \|\Phi(f, x) - \Phi(f, y)\|_{Euclidean}$$

HAAS score

- Idea: If an attribution map gives an accurate explanation then tuning the image pixels according to the attribution map could reduce the number of misclassifications.
- How to tune? Positive attribution values to emphasize pixel values.
 Negative attribution values to de-emphasize pixel values.

Definition (HA image, HAAS, 2022)

 For image x and attributions a we compute the Heatmap Assisted (HA) image:

$$HA(x,a) = \max\{-1,\min\{1,x_{norm}(1+a_{norm})\}\}$$

- $HAAS = \frac{Accuracy \text{ over HA images}}{Accuracy \text{ over original images}}$
- Interpretation: if HAAS value above 1
 - ⇒ the HA images improve the model's accuracy
 - \Rightarrow the attribution maps explain well the pixels' importance

3. Datasets

CRC Dataset

- Colon tissues (100K train)(7.1K test)
- ADI(10.4%), BACK(10.6%), DEB(11.5%), LYM(11.5%), MUC(8.9%), MUS(13.5%), NORM(8.8%), STR(10.5%), TUM(14.3%)

Covid-19 Radiography Database

- X-Rays (21.1K)
- Covid(17%), Lung Opacity (28.4%), Normal (48.15%), Viral Pneumonia (6.35%)

HAM10000 Dataset

- Skin lesion images (10K)
- akiec(3.27%), bcc(5.13%), bkl(10.97%), df(1.15%), nv(66.95%), vasc(1.42%), mel(11.11%)

Vascular lesions (vasc

Basal Cell Carcinoma (bccBenign Keratosis-like Lesions (bkl)

BreakHis Dataset

- Breast tumor tissues (7.9K)
- Benign(31.4%), Malignant(68.6%)

Remark: These two datasets contain many examples of the same image at different scale. Train-Val-Test sets were constructed via an image independent approach.

4. Experimental results & Discussion

Models

Per dataset:

- we trained one ResNet and one VGG19 model
- each customized to the Conv Flatten Class scores architecture
 (s.t. HiResCAM is faithful to the model when gradients are computed
 wrt last convolutional layer)

Table: Testing Results

	CRO	CRC Covid-19		HAM10000		BreakHis		
	ResNet34	VGG19	ResNet34	VGG19	ResNet50	VGG19	ResNet50	VGG19
Bal. Accuracy	0.89	0.94	0.97	0.95	0.69	0.73	0.87	0.84
Mean AUC	0.993	0.997	0.995	0.992	0.934	0.938	0.942	0.932

AOPC results

 Per dataset, model and attribution method, we calculated AOPC score at heatmap sizes: 4 * 4, 8 * 8, 11 * 11 and 14 * 14, utilizing uniform random noise.

Table: AOPC Scores

		CRC Covid-19		-19	HAM10000		BreakHis			
			ResNet34	VGG19	ResNet34	VGG19	ResNet50	VGG19	ResNet50	VGG19
	4×4	Grad-CAM	0.57	0.5	0.71	0.64	0.57	0.35	0.32	0.35
	4^4	HiResCAM	0.57	0.52	0.73	0.65	0.58	0.37	0.34	0.42
	8×8	Grad-CAM	0.59	0.56	0.72	0.69	0.63	0.36	0.27	0.35
size	0.0	HiResCAM	0.59	0.59	0.73	0.69	0.64	0.37	0.28	0.45
_	11×11	Grad-CAM	0.6	0.59	0.73	0.71	0.65	0.37	0.28	0.35
Heatmap	11/11	HiResCAM	0.6	0.62	0.74	0.71	0.67	0.39	0.27	0.45
耂	14×14	Grad-CAM	0.58	0.6	0.73	0.7	0.66	0.36	0.27	0.35
	14×14	HiResCAM	0.6	0.62	0.74	0.69	0.68	0.36	0.27	0.48

- At heatmap size 4 * 4 HiResCAM prevails 7/8 cases. As size increases, the effect fades out.
- For each model and over all heatmap sizes, HiResCAM prevails 7/8 cases.

Figure: AOPC Graphs for Heatmaps 8*8 size

Max Sensitivity results

Table: Experiment configurations

Radius (r)	No. of samples (y)
0.05	20
0.1	20
0.2	30
0.3	30
0.4	40
0.5	40

(a) CRC - VGG19

(b) Covid-19 - VGG19

(c) HAM10000 - ResNet50

(d) BreakHis - ResNet50

Overall, HiResCAM prevails 8/8 cases.

Why AOPC and Max Sensitivity favor HiResCAM?

• Grad-CAM and HiResCAM treat gradients in a different way:

$$\left(\frac{1}{D_1D_2}\sum_{i=1}^{D1}\sum_{j=1}^{D_2}\frac{\partial s^m}{\partial A^f_{ij}}\right)A^f \qquad \text{vs} \qquad \frac{\partial s^m}{\partial A^f}\odot A^f$$

Grad-CAM	HiResCAM
Gradient values and signs are camouflaged	Preserves gradient effect on pixel level
into the average	and utilizes both value and sign
Larger, smoother, less-detailed attention	High-resolution maps with precise class
areas	localization

(a) CRC dataset - VGG19

シック モー・モ・・ロ・・ロ・

(d) BreakHis dataset - ResNet50

HAAS results and discussion

Table: HAAS Scores (Medical datasets)

	CR	С	Covid-19		HAM10000		BreakHis	
	ResNet34	VGG19	ResNet34	VGG19	ResNet50	VGG19	ResNet50	VGG19
Grad-CAM	0.47	0.76	0.86	0.89	0.831	0.714	0.927	0.985
HiResCAM	0.53	0.8	0.67	0.84	0.83	0.834	0.936	1.081

- HAAS doesn't acknowledge any quality in the medical attribution maps
- Why?
 - 1st approach: HA image pixels can have considerable value difference when compared to the original image pixels.

ex. For
$$a=\frac{1}{2}$$
 attribution, if pixel $x=\frac{1}{2}$ then $HA_x=\frac{3}{4}$ and if pixel $x=-\frac{1}{2}$ then $HA_x=-\frac{3}{4}$

Thus, HA image might be *far* from the distribution that the model was trained on.

4 D > 4 P > 4 E > 4 E > E 9 Q P

- 2nd approach: HAAS incompatible with medical images?

Non-Medical data tested so far	Medical data
Classes have strong shape dependency	Classes are more densely populated
Weak or No colour dependency	Could have colour dependency

As a result, for medical datasets, could changing the pixels' intensity affect the model's ability to recognize the learned pattern?

Visible color differences in the following:

Figure: Examples of HA images

How to test our hypothesis?

- Over Non-Medical data
- Build random models (of decent performance)
- Track min-max HAAS values

Table: HAAS Scores (Non Medical datasets)

		Cifar-10	STL-10	Imagenette
		VGG19*	VGG19*	VGG19*
Σ	Max HAAS Score	1.009	1.034	1.002
HiResCAM	Mean AUC	0.981	0.966	0.995
Res	Min HAAS Score	0.970	0.978	0.986
Ξ	Mean AUC	0.969	0.899	0.889

Note: * loop of 16 models for different batch size, learning rate, scheduler and weight decay

Thus, over non-medical datasets, we extracted *meaningful scores* with 16 random models.

Connecting accuracy with HiResCAM metrics values

Is good Bal. Accuracy value coupled with good metrics results?

Figure: Bal. Accuracy vs AOPC

- Top 4 models wrt Bal. Accuracy: almost increasing pattern wrt average value
- VGG19 models: increasing pattern wrt average value

Figure: Bal. Accuracy vs Max Sensitivity

• No pattern (overall models, at dataset level, at model level)

Thank you!