Евклидови и унитарни пространства. Ортогонализация по метода на Грам-Шмид.

Определение 1. Скаларно произведение

$$\langle , \rangle : V \times V \longrightarrow F,$$

в линейно пространство V над $F=\mathbb{R}$ или $F=\mathbb{C}$ е изображение със свойствата:

- (i) $\langle v, u \rangle = \overline{\langle u, v \rangle}$ sa $\forall u, v \in V$;
- (ii) $\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle$ sa $\forall u_1, u_2, v \in V$;
- (iii) $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ sa $\forall u, v \in V, \forall \lambda \in F$;
- (iv) $\langle v, v \rangle \in \mathbb{R}^{\geq 0}$ sa $\forall v \in V$ $c \langle v, v \rangle = 0 \in F$ movino когато $v = \mathcal{O}_V \in V$.

Определение 2. Линейно пространство V над полето \mathbb{R} на реалните числа е евклидово, ако в него е определено скаларно произведение $\langle \ , \ \rangle : V \times V \to \mathbb{R}$.

Линейно пространство V над полето $\mathbb C$ на комплексните числа е унитарно, ако в него е определено скаларно произведение $\langle \ , \ \rangle : V \times V \to \mathbb C$.

Следствия от аксиомите за евклидово (унитарно) пространство:

(a)
$$\langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle$$
 sa $\forall u, v_1, v_2 \in V$.

По-точно,

$$\langle u, v_1 + v_2 \rangle = \overline{\langle v_1 + v_2, u \rangle} = \overline{\langle v_1, u \rangle + \langle v_2, u \rangle} = \overline{\langle v_1, u \rangle} + \overline{\langle v_2, u \rangle} = \langle u, v_1 \rangle + \langle u, v_2 \rangle.$$

(б) $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$ за $\forall u, v \in V, \, \forall \lambda \in F.$

Това следва от

$$\langle u, \lambda v \rangle = \overline{\langle \lambda v, u \rangle} = \overline{\lambda \langle v, u \rangle} = \overline{\lambda} \ \overline{\langle v, u \rangle} = \overline{\lambda} \ \langle u, v \rangle.$$

(в) $\langle \overrightarrow{\mathcal{O}_V}, v \rangle = \langle v, \overrightarrow{\mathcal{O}_V} \rangle = 0$ за $\forall v \in V$ и нулевия вектор $\overrightarrow{\mathcal{O}}_V \in V$. За произволен вектор $u \in V$ е в сила $0u = \mathcal{O}_V$, така че

$$\langle \mathcal{O}_V, v \rangle = \langle 0u, v \rangle = 0 \langle u, v \rangle = 0$$
 и

$$\langle v, \mathcal{O}_V \rangle = \langle v, 0u \rangle = \overline{0} \ \langle v, u \rangle = 0 \ \langle v, u \rangle = 0.$$

(г) За произволни $u_i, v_j \in V$ и $\lambda_i, \mu_j \in F$ е в сила

$$\langle \sum_{i=1}^{m} \lambda_i u_i, \sum_{j=1}^{n} \mu_j v_j \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_i \overline{\mu_j} \langle u_i, v_j \rangle.$$

Последното свойство се получава от аксиоми (ii), (iii) за скаларно произведение и следствия (a), (б) от аксиомите за скаларно произведение.

Лема 3. Произволни ненулеви ортогонални вектори $v_1, ..., v_n$ от евклидово (унитарно) пространство V са линейно независими.

Определение 4. Ако V е евклидово или унитарно пространство и $v \in V$, то неотрицателният корен квадратен $||v|| := \sqrt{\langle v,v \rangle}^{\geq 0} \in \mathbb{R}^{\geq 0}$ от скаларния квадрат $\langle v,v \rangle \in \mathbb{R}^{\geq 0}$ на v се нарича дължина на v.

За произволен вектор $v \in V$ и произволен скалар $\lambda \in \mathbb{R}$ или $\lambda \in \mathbb{C}$ е в сила

$$\langle \lambda v, \lambda v \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 ||v||^2,$$

откъдето $||\lambda v|| = |\lambda|||v||$. В частност, ако $v \in V \setminus \{\overrightarrow{\mathcal{O}_V}\}$ е ненулев вектор от евклидово или унитарно пространство V, то $\frac{v}{||v||} \in V$ има дължина

$$\left| \left| \frac{v}{||v||} \right| \right| = 1.$$

Определение 5. Векторите b_1, \ldots, b_n от евклидово или унитарно пространство V са ортогонални, ако $\langle b_i, b_j \rangle = 0$ за всички $1 \le i \ne j \le n$.

Векторите e_1, \ldots, e_n от евклидово или унитарно пространство V са ортонормирани, ако са ортогонални и $||e_i|| = 1$ за всички $1 \le i \le n$.

Доказателство. Нека

$$\lambda_1 v_1 + \ldots + \lambda_i v_i + \ldots + \lambda_n v_n = \mathcal{O}_V$$

е линейна комбинация на v_1, \ldots, v_n , равна на нулевия вектор $\mathcal{O}_V \in V$. Скаларното произведение на тази линейна комбинация с v_i е равно на

$$0 = \langle \mathcal{O}_V, v_i \rangle = \langle \lambda_1 v_1 + \ldots + \lambda_i v_i + \ldots + \lambda_n v_n, v_i \rangle = \lambda_i \langle v_i, v_i \rangle,$$

съгласно $\langle v_j, v_i \rangle = 0$ за $1 \le i \ne j \le n$. Поради $v_i \ne \mathcal{O}_V$ имаме $\langle v_i, v_i \rangle = ||v_i||^2 > 0$, откъдето $\lambda_i = 0$ за всички $1 \le i \le n$ и векторите v_1, \ldots, v_n са линейно независими.

Лема 6. Вазис $e = (e_1, \dots, e_n)$ на евклидово или унитарно пространство V е ортонормиран тогава и само тогава, когато

$$\langle ex, ey \rangle = \sum_{i=1}^{n} x_i \overline{y_i} = x^t \overline{y}$$

за произволни вектори $ex, ey \in V$ с координати $x, y \in M_{n \times 1}(F)$, $F \in \{\mathbb{R}, \mathbb{C}\}$ спрямо базиса e.

Доказателство. Ако $e=(e_1,\ldots,e_n)$ е ортонормиран базис на V, то

$$\langle ex, ey \rangle = \langle \sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle e_i, e_j \rangle = \sum_{i=1}^{n} x_i \overline{y_i} = (x_1, \dots, x_n) \begin{pmatrix} \overline{y_1} \\ \dots \\ \overline{y_i} \\ \dots \\ \overline{y_n} \end{pmatrix},$$

съгласно

$$\langle e_i, e_j \rangle = \delta_{i,j} = \begin{cases} 0 & \text{ sa } 1 \le i \ne j \le n, \\ 1 & \text{ sa } 1 \le i = j \le n. \end{cases}$$

Обратно, ако $\langle ex, ey \rangle = x^t \overline{y}$ за произволни вектори $ex, ey \in V$, то

$$\langle e_i, e_i \rangle = (0, \dots, 0, 1, 0, \dots, 0) \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1 \quad \text{3a} \quad \forall 1 \le i \le n$$

И

$$\langle e_i,e_j\rangle=(0,\dots,0,1,0,\dots,0)\left(\begin{array}{c}0\\\vdots\\0\\0\\\vdots\\1\\0\\\vdots\\0\end{array}\right)=0\quad\text{3a}\quad\forall 1\leq i\neq j\leq n.$$

Твърдение 7. Съществува алгоритъм, наречен ортогонализация по метода на Грам-Шмид, който по зададени линейно независими вектори a_1, \ldots, a_n от евклидово (униторно) пространство V построява ненулеви ортогонални вектори b_1, \ldots, b_n с

$$l(a_1,\ldots,a_i)=l(b_1,\ldots,b_i)$$
 sa $\forall 1\leq i\leq n$.

Ако a_1,\ldots,a_l са ортогонални за някое $l\leq n,$ то $b_1=a_1,$ $b_2=a_2,\ldots,b_l=a_l.$

Доказателство. С индукция по i, за произволни линейно независими $a_1, \ldots, a_i \in V$ ще докажем, че съществуват ненулеви ортогонални вектори $b_1, \ldots, b_i \in V$ с линейна обвивка $l(b_1, \ldots, b_i) = l(a_1, \ldots, a_i)$. В частност, ако a_1, \ldots, a_i са ортогонални, то $b_1 = a_1$, $b_2 = a_2, \ldots, b_n = a_n$.

За n = 1 избираме $b_1 = a_1$.

Ако $a_1, \ldots, a_i \in V$ са линейно независими вектори, то a_1, \ldots, a_{i-1} са линейно независими и по индукционно предположение съществуват ненулеви ортогонални вектори $b_1, \ldots, b_{i-1} \in V$ с $l(a_1, \ldots, a_{i-1}) = l(b_1, \ldots, b_{i-1})$. Търсим

$$b_i = a_i + \sum_{j=1}^{i-1} \lambda_{i,j} b_j \tag{1}$$

с такива $\lambda_{i,j} \in F = \mathbb{R}$ или \mathbb{C} , че

$$0 = \langle b_i, b_j \rangle = \langle a_i, b_j \rangle + \langle \lambda_{i,j} b_j, b_j \rangle = \langle a_i, b_j \rangle + \lambda_{i,j} \langle b_j, b_j \rangle \quad \text{за всички} \quad 1 \leq j \leq i-1.$$

С други думи, избираме

$$\lambda_{i,j} = -rac{\langle a_i, b_j
angle}{\langle b_j, b_j
angle}$$
 за $1 \leq j \leq i-1.$

Тогава $b_1, \ldots, b_{i-1}, b_i$ образуват ортогонална система вектори. Ако допуснем, че $b_i = \mathcal{O}_V$, то

$$a_i = \sum_{j=1}^{i-1} (-\lambda_{i,j}) b_j \in l(b_1, \dots, b_{i-1}) = l(a_1, \dots, a_{i-1})$$

противоречи на линейната независимост на $a_1, \ldots, a_{i-1}, a_i$. Това доказва, че векторите $b_1, \ldots, b_{i-1}, b_i$ са ненулеви. За да проверим, че $l(a_1, \ldots, a_{i-1}, a_i) = l(b_1, \ldots, b_{i-1}, b_i)$ използваме, че $l(a_1, \ldots, a_{i-1}) = l(b_1, \ldots, b_{i-1})$, откъдето

$$l(a_1, \ldots, a_{i-1}, a_i) = l(a_1, \ldots, a_{i-1}) + l(a_i) = l(b_1, \ldots, b_{i-1}) + l(a_i) = l(b_1, \ldots, b_{i-1}, a_i).$$

За

$$l(b_1, \ldots, b_{i-1}, a_i) = l(b_1, \ldots, b_{i-1}, b_i)$$

е достатъчно да забележим, че от (??) следва

$$b_i \in l(b_1, \dots, b_{i-1}, a_i)$$
 и $a_i = b_i - \sum_{i=1}^{i-1} \lambda_{i,j} b_j \in l(b_1, \dots, b_{i-1}, b_i).$

Ако $a_1, \ldots, a_i \in V$ са ортогонални, то $a_1, \ldots, a_{i-1} \in V$ са ортогонални и $b_1 = a_1, \ldots, b_{i-1} = a_{i-1}$ по индукционно предположение. Тогава при търсене на b_i по правилото (??) получаваме

$$\lambda_{i,j} = -\frac{\langle a_i, b_j \rangle}{\langle b_j, b_j \rangle} = -\frac{\langle a_i, a_j \rangle}{\langle a_j, a_j \rangle} = 0$$

за всички $1 \le j \le i - 1$, откъдето $b_i = a_i$.

Следствие 8. Нека a_1, \ldots, a_n са линейно независими вектори от евклидово (унитарно) пространство V и $a_{n+1} \in l(a_1, \ldots, a_n)$. Тогава ортогонализацията по метода на Грам-Шмид дава $b_{n+1} = \overrightarrow{\mathcal{O}}_V$.

Доказателство. Чрез ортогонализация по метода на Грам-Шмид, от линейно независимите вектори $a_1, \ldots, a_n \in V$ получаваме ненулеви ортогонални $b_1, \ldots, b_n \in V$ с $l(a_1, \ldots, a_n) = l(b_1, \ldots, b_n)$. Търсим

$$b_{n+1} = a_{n+1} + \sum_{j=1}^{n} \lambda_{n+1,j} b_j.$$

Съгласно $a_{n+1} \in l(a_1,\ldots,a_n) = l(b_1,\ldots,b_n)$ съществуват $\mu_j \in F$ с $a_{n+1} = \sum_{j=1}^n \mu_j b_j$. В резултат,

$$b_{n+1} = \sum_{j=1}^{n} \mu_j b_j + \sum_{j=1}^{n} \lambda_{n+1,j} b_j = \sum_{j=1}^{n} (\mu_j + \lambda_{n+1,j}) b_j$$

и от условията

$$0 = \langle b_{n+1}, b_j \rangle = (\mu_j + \lambda_{n+1,j}) \langle b_j, b_j \rangle$$

следва $\mu_j + \lambda_{n+1,j} = 0$ за всички $1 \le j \le n$ и $b_{n+1} = \overrightarrow{\mathcal{O}}_V$.

Следствие 9. Нека V е n-мерно евклидово (унитарно) пространство, а $e_1, \ldots, e_k \in V$ е ортонормирана система вектори. Тогава $k \leq n$ и e_1, \ldots, e_k се продължава до ортонормиран базис $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на V.

В частност, съществува ортонормиран базис e_1,\ldots,e_n на V .

4

Доказателство. Ненулевите ортогонални вектори e_1,\ldots,e_k са линейно независими. Ако a_1,\ldots,a_n е базис на V, то $e_1,\ldots,e_k\in V=l(a_1,\ldots,a_n)$ изисква $k\leq n$ по Основната лема на линейната алгебра (Лемата за линейна зависимост). Продължаваме e_1,\ldots,e_k до базис $e_1,\ldots,e_k,v_{k+1},\ldots,v_n$ на V или избираме базис v_1,\ldots,v_n на V. Към линейно независимите вектори $e_1,\ldots,e_k,v_{k+1},\ldots,v_n$ или v_1,\ldots,v_n прилагаме ортогонализация по метода на Грам-Шмид и получаваме ненулеви ортогонални вектори $b_1,\ldots,b_n\in V$. При това, $b_1=e_1,\ldots,b_k=e_k$, ако $v_1=e_1,\ldots,v_k=e_k$. Векторите b_1,\ldots,b_n са линейно независими и образуват базис на V. Полагаме

$$e_i := rac{b_i}{||b_i||}, \;\; ||b_i|| := \sqrt{\langle b_i, b_i
angle}^{\geq 0} \;\;$$
 за всички $1 \leq i \leq n$

и получаваме ортонормиран базис e_1, \ldots, e_n на V, който съдържа ортонормираните вектори e_1, \ldots, e_k , ако $v_1 = e_1, \ldots, v_k = e_k$.

5