The sum of two measurable functions

Jan Pachl pachl@acm.org

December 22, 2005*

Summary

Following Weizsäcker [3], we use this notation: For a complete probability space $(\Omega, \Sigma, \mathbf{P})$ and a locally convex space E, denote by $L^0(\Omega, \Sigma, \mathbf{P}, E)$ the set of all Borel-measurable functions $f: \Omega \to E$ for which the image measure $f[\mathbf{P}]$ on E is Radon.

In 1976 E. Thomas asked, in a conversation with the author, whether $L^0(\Omega, \Sigma, \mathbf{P}, E)$ is always closed under addition. The question is motivated by the observation that some of the results in [2] can be proved for functions in $L^0(\Omega, \Sigma, \mathbf{P}, E)$.

This note presents an example where $L^0(\Omega, \Sigma, \mathbf{P}, E)$ is <u>not</u> closed under addition. However, Weizsäcker [3] showed that this obstacle is not as serious as would seem.

Terminology

All measures will be probability measures, i.e. positive and with total mass 1. Say that (X, \mathcal{A}, μ) is a compact Radon measure space if X is a compact Hausdorff space, \mathcal{A} is a sigma-algebra on X containing all Borel subsets of X and μ is a complete measure on \mathcal{A} such that

$$\mu B = \sup \{ \mu K \mid K \subseteq B \text{ and } K \text{ is compact } \}$$

for every $B \in \mathcal{A}$.

When (X, \mathcal{A}) and (B, \mathcal{B}) are two measurable spaces (sets with sigma-algebras), denote by $\mathcal{A} \otimes \mathcal{B}$ the product sigma-algebra on $X \times Y$; this is the smallest sigma-algebra on $X \times Y$ making both projections $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ measurable.

^{*}Transcribed from the author's manuscript dated April 1980.

Example

The example will be constructed in three steps.

Step 1 Construct a compact Radon measure space (X, \mathcal{A}, μ) such that $\mu B = 0$ whenever $B \in \mathcal{A}$ has cardinality less than or equal to 2^{\aleph_0} .

Construction Let I be a set of cardinality 2^{\aleph_0} , let X be the compact space $\{0,1\}^I$, and let μ be the standard product measure on X (defined on A, the μ -completion of the Borel sigma-algebra in X). That is, μ is the product of measures on $\{0,1\}$ each of which gives measure $\frac{1}{2}$ to $\{0\}$ and $\frac{1}{2}$ to $\{1\}$.

For every subset J of I, define an automorphism T_J of (X, \mathcal{A}, μ) by

$$T_J(\{x_i\}_{i\in I}) = \{y_i\}_{i\in I}$$

where $y_i = x_i$ for $i \in J$ and $y_i = 1 - x_i$ for $i \in I \setminus J$.

If $B \in \mathcal{A}$ has cardinality $\leq 2^{\aleph_0}$ then there is a set $J \subseteq I$ such that $B \cap T_J(B) = \emptyset$. Indeed, choose an injective map $\alpha : B \times B \to I$ and define

$$J = \{ j \in I \mid j = \alpha(\{x_i\}_{i \in I}, \{y_i\}_{i \in I}) \text{ for } \{x_i\}, \{y_i\} \in B \text{ and } x_j \neq y_j \}.$$

It follows that for each $B \in \mathcal{A}$ of cardinality $\leq 2^{\aleph_0}$ there is a sequence of μ -automorphisms S_1, S_2, S_3, \ldots such that

$$B_k \cap S_k(B_k) = \emptyset, k = 1, 2, 3, \dots,$$

where

$$B_1 = B$$
, $B_{k+1} = B_k \cup S_k(B_k)$.

Hence there are infinitely many disjoint sets of the same measure as B. Therefore $\mu B = 0$.

Step 2 Construct a compact Radon measure space (X, \mathcal{A}, μ) and a measure ν on the product sigma-algebra $\mathcal{A} \otimes \mathcal{A}$ such that for the "diagonal" $D = \{(x, x) | x \in X\}$ and the projections $\pi_1 : X \times X \to X$ and $\pi_2 : X \times X \to X$ we have

- (i) $\nu G = 1$ for every $G \in \mathcal{A} \otimes \mathcal{A}$ such that $G \cup D = X \times X$, and $\nu H = 1$ for every $H \in \mathcal{A} \otimes \mathcal{A}$ such that $H \supseteq D$;
- (ii) $\pi_1[\nu] = \mu = \pi_2[\nu]$.

Construction Take the (X, \mathcal{A}, μ) constructed in Step 1. Denote by $\beta : X \to X \times X$ the map defined by $\beta(x) = (x, x)$. We have $\beta^{-1}(G) \in \mathcal{A}$ for each $G \in \mathcal{A} \otimes \mathcal{A}$; let $\nu G = \mu(\beta^{-1}(G))$ for $G \in \mathcal{A} \otimes \mathcal{A}$ (that is, $\nu = \beta[\mu]$). Since both $\pi_1 \circ \beta$ and $\pi_2 \circ \beta$ are the identity map on X, (ii) follows.

If $H \in \mathcal{A} \otimes \mathcal{A}$ and $H \supseteq D$ then, by the definition of ν , we have $\nu H = 1$. Take $G \in \mathcal{A} \otimes \mathcal{A}$ such that $G \cup D = X \times X$. We have

$$\nu G = \inf \left\{ \sum_{n=1}^{\infty} \nu(B_n \times C_n) \mid B_n, C_n \in \mathcal{A} \text{ and } \bigcup_{n=1}^{\infty} (B_n \times C_n) \supseteq G \right\}$$

(see e.g. [1], 13.A); thus it suffices to show that

$$\sum_{n=1}^{\infty} \nu(B_n \times C_n) \ge 1 \text{ whenever } \bigcup_{n=1}^{\infty} (B_n \times C_n) \supseteq G , B_n, C_n \in \mathcal{A}.$$

Fix such B_n , C_n and let $V = \bigcup_{n=1}^{\infty} (B_n \times C_n)$. Then $(X \times X) \setminus V \subseteq D$. We show that the cardinality of $(X \times X) \setminus V$ is at most 2^{\aleph_0} : If $(x, x), (y, y) \in (X \times X) \setminus V$ and $x \neq y$ then there is n such that $(x, y) \in B_n \times C_n$ and $(x, x) \notin B_n \times C_n$; hence x and y are separated by C_n . It follows that $(X \times X) \setminus V$ has at most 2^{\aleph_0} points. Consequently, $\beta^{-1}((X \times X) \setminus V)$ has at most 2^{\aleph_0} points and

$$\nu((X \times X)\backslash V) = \mu(\beta^{-1}((X \times X)\backslash V) = 0$$

by the property of μ . Thus

$$\sum_{n=1}^{\infty} \nu(B_n \times C_n) \ge \nu V = \nu V + \nu((X \times X) \setminus V) = \nu(X \times X) = 1.$$

It follows that $\nu G = 1$.

Step 3 Construct a complete probability space $(\Omega, \Sigma, \mathbf{P})$, a locally convex space E and two functions $f, g: \Omega \to E$ such that

- (a) $f^{-1}(B), g^{-1}(B) \in \Sigma$ for every Borel set $B \subseteq E$;
- (b) the image measures $f[\mathbf{P}]$ and $g[\mathbf{P}]$ are Radon;
- (c) the function h = f + q has the property $h^{-1}(0) \notin \Sigma$.

Thus, in this example, $L^0(\Omega, \Sigma, \mathbf{P}, E)$ is not closed under addition.

Construction Take the (X, \mathcal{A}, μ) , ν , D, π_1 and π_2 as in Step 2.

Every compact Hausdorff space Y is a topological subspace of a locally convex space (e.g. let C(Y) be the Banach space of real-valued continuous functions on Y; then Y embeds canonically into the dual of C(Y) endowed with the w^* topology). Fix such an embedding $e: X \hookrightarrow E$ of X into a suitable locally convex space E. Let $(\Omega, \Sigma, \mathbf{P})$ be the completion of $(X \times X, \mathcal{A} \otimes \mathcal{A}, \nu)$, and let $f = e \circ \pi_1, g = -e \circ \pi_2$.

Now (a) is obvious, and (b) is true because the measures $f[\mathbf{P}]$ and $g[\mathbf{P}]$ are continuous images of the Radon measure μ (by (ii) in Step 2). Finally, $h^{-1}(0) = D$ and $D \notin \Sigma$ in view of (i) in Step 2; that proves (c).

References

- [1] P.R. Halmos. Measure Theory. Springer-Verlag 1974.
- [2] G.E.F. Thomas. Integration of functions with values in locally convex Suslin spaces. Trans. Amer. Math. Soc. 212 (1975) 61-81.
- [3] H. v. Weizsäcker. Strong measurability, liftings and the Choquet-Edgar theorem. Vector Space Measures and Applications II. Springer-Verlag Lecture Notes in Mathematics Vol. 645 (1977) 209-218.