Formato del datagramma IP (IPv4) (complementare con slide su ICMP del "laboratorio")

Unità di trasferimento dati: datagram

Layout dell'Internet datagram (IP datagram)

Indirizzo sorgente
Indirizzo destinazione

Header del datagram

Tutto il traffico Internet consiste di pacchetti. Ciascun pacchetto è lungo <u>fino a</u> 64 Kbyte

Payload (dati)

Dati del datagram

Esempi di datagram

Sorg. Dest.

•	
209.101.56.122	
207.85.155.125	
•	

"Elenco Università Italiane"

```
207.85.155.125
209.101.56.122
```

"84 matches found...

Match 1: ...

Match 2: ...

Formato del datagram IP

16 19 24 31 **VERS** HLEN SERVICE TYPE **TOTAL LENGTH** FLAGS FRAGMENT OFFSET **IDENTIFICATION** TIME TO LIVE **PROTOCOL HEADER CHECKSUM SOURCE IP ADDRESS (32 bit) DESTINATION IP ADDRESS (32 bit) PADDING** IP OPTIONS DATI

Analisi header del datagram IP (1)

- **VERS**: versione del protocollo IP usata per creare il datagram (4 bit)
- **HLEN**: lunghezza dell'header del datagram (<u>in parole di 32 bit</u>); in generale uguale a 5 (20 byte)
- **TOTAL LENGTH**: lunghezza del datagram IP (<u>in byte</u>); max dimensione 2 = 65536 byte (64 Kbyte)
- TYPE OF SERVICE (TOS): campo il cui scopo è stato modificato negli anni
 - Impiego originale: includere informazioni per la gestione differenziata dei pacchetti in base a requisiti applicativi (e.g., bassa latenza, alto throughput)
 - Attuale: uso misto per funzionalità legate a concetti di classe di traffico e segnalazione esplicita di congestione
 - protocolli definiti nelle RFC 2474 e 3168 del 1998 e 2001, implementazioni reali successive e sperimentazioni in alcuni casi ancora in corso

Type of Service: impiego originale

- TYPE OF SERVICE (TOS): campo utilizzato per scopi differenti negli anni
 - Impiego originale: includere informazioni per la gestione differenziata dei pacchetti in base a requisiti applicativi (e.g., bassa latenza, alto throughput)

0	1	2	3	4	5	6	7
PRECEDENCE		D	Т	R	NON	USATI	

PRECEDENCE: specifica l'importanza del datagram

D (delay): basso ritardo

T (throughput): alto throughput

R (reliability): alta affidabilità

tipo di trasporto desiderato

Type of Service: impiego attuale

- TYPE OF SERVICE (TOS): campo utilizzato per scopi differenti negli anni
 - Attuale: uso misto per funzionalità legate a concetti di classe di traffico e segnalazione esplicita di congestione

0	1	2	3	4	5	6	7
DSCP					EC	N	

DSCP: Code Points for Differentiated Services

Codice che identifica classi di servizio

- Simile al TOS precedente, ma cambia l'interpretazione dei valori e non ci sono «bit» specifici legati a un particolare requisito
- Un router può ignorarlo: possibilmente utilizzato fra i router di una stessa organizzazione, solitamente ignorato da router di altre organizzazioni

ECN: Explicit Congestion Notification

 Meccanismo opzionale per permettere a un router di segnalare congestione prima di iniziare a «droppare» pacchetti (discussione su congestione in TCP)

Analisi header del datagram IP (3)

- I successivi tre campi dell'header del datagram (denotati in figura come identification, flags, fragment offset) servono per gestire, quando si rende necessaria, a livello H2N, la frammentazione e la ricostruzione del datagram
 - IDENTIFICATION: intero che identifica il datagram
 - FLAGS: controllo della frammentazione
 - FRAGMENT OFFSET: la posizione del frammento nel datagram originale
- Nei sistemi operativi moderni vengono anche supportati protocolli di Path MTU discovery per permettere agli host della rete di apprendere le dimensioni più opportune di frammentazione

Analisi header del datagram IP (4)

- TIME TO LIVE: non è un vero valore temporale! Indica per quanto tempo il datagram può circolare in Internet. E' decrementato da ciascun router che gestisce il datagram: quando diviene uguale a 0, è eliminato dal router corrispondente
- PROTOCOL: indica quale protocollo applicativo può utilizzare i dati contenuti nel datagram
- HEADER CHECKSUM: serve per controllare l'integrità dei dati trasportati nell'header
- SOURCE IP ADDRESS: indirizzo IP (32 bit) del mittente del datagram
- DESTINATION IP ADDRESS: indirizzo IP (32 bit) del destinatario del datagram
- IP OPTIONS: campo opzionale di lunghezza variabile; serve per il testing ed il debugging della rete
- PADDING: campo opzionale che serve per fare in modo che l'header abbia lunghezza multipla di 32 bit (byte stuffing); è presente soltanto se il campo IP OPTIONS denota una lunghezza variabile

Frammentazione IP

Frammentazione per trasporto di «pacchetti IP grandi»

- Dimensione massima pacchetto IP: 64KB
- Dimensione MTU del livello H2N sottostante?
 - Ricordare tipica MTU di 1500 Byte di Ethernet
- Il pacchetto IP è da considerarsi un pacchetto «virtuale»
 - Il mittente <u>frammenta</u> il pacchetto IP «virtuale» di grandi dimensioni in tanti pacchetti IP inviabili a livello H2N
 - Il destinatario si occupa di ricostruire il pacchetto originale

Esempio: MTU = 1500B; IP Header = 5 (20B); IP Tot Length = 5000B. Quanti frammenti verranno realizzati e di quali dimensioni?

Frammentazione per MTU piccolo Operato da router

- Nota: i pacchetti potrebbero essere anche essere già frammentati. Possiamo frammentare più volte?
- L'host destinatario si occupa della ricostruzione
 - Non il router successivo, cosa che avviene in caso di tecniche di frammentazione a livello H2N (se supportato, ad esempio Ethernet no!), se il livello H2N non supporta MTU minimo stabilito dalla rete IP (e.g., 576B per IPv4, 1280B per IPv6).

Frammentazione per invio in rete operata end-to-end (Path MTU discovery)

- Frammentazione da parte dei router ormai poco supportato su Internet
 - Completamente non supportato da IPv6
 - Perché? Ricordare il principio di rete con nodi intermedi semplici
- I router segnalano l'impossibilità a inoltrare il pacchetto a causa di MTU piccolo
 - Forzabile dal mittente settando il flag do not fragment (vedere esercitazioni ICMP): prende il nome di Path MTU discovery (Path MTU: "the minimum link MTU of all the links in a path between a source node and a destination node" – RFC2460)

