Bidang Fokus : Material Maju

Luaran: Publikasi Seminar Internasional terindeks Scopus

Kode/ Rumpun Ilmu : 433/ Teknik Kimia

PROPOSAL PENELITIAN STRATEGIS DANA HIBAH RKAT FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

PEMBUATAN BIODEGRADABLE PLASTIC UNTUK APLIKASI PERALATAN MAKAN DARI TEPUNG BERAS YANG DIPERKUAT BUBUK SEKAM DENGAN TEKNIK EKSTRUSI

TIM PENGUSUL

Dr. Ir. Ratnawati, MT (Ketua)
Prof. Ir. Nita Aryanti, ST, MT, Ph.D (Anggota)
NIDN: 0012046008
NIDN: 0017017502
NIM: 21030119410009

DEPARTEMEN TEKNIK KIMIA
FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO
TAHUN 2021

HALAMAN PENGESAHAN PROPOSAL PENELITIAN STRATEGIS

Judul Penelitian : Pembuatan *biodegradable plastic* untuk aplikasi peralatan

makan dari tepung beras yang diperkuat bubuk sekam

dengan teknik ekstrusi

Luaran Penelitian : Publikasi di Seminar Internasional Terindeks Scopus

Ketua Penelitian :

a. Nama Lengkap : Dr. Ir. Ratnawati, M.T.

b. NIP/NIDN : 196004121986032001/0012046008

c. Jabatan Fungsional : Lektor Kepalad. Departemen : Teknik Kimiae. Nomor HP : 081390043101

f. Alamat email : ratnawati@che.undip.ac.id

Anggota Penelitian (1) :

a. Nama Lengkap : Prof. Nita Aryanti, ST, MT, Ph.D
 b. NIP/NIDN : 197501172000032001/0017017502

c. Departemen : Teknik Kimia d. Nomor HP : 081228356698

Anggota Mahasiswa : 1. Ariana Aisa NIM. 21030119410009

Lama Penelitian : 7 (tujuh) bulan Biaya Penelitian : Rp 20.000.000,-

Sumber Dana : RKAT Fakultas Teknik Undip Tahun 2021

Semarang, 15 Februari 2021

Ketua Peneliti,

Driff. Ratnawati, M.T.

ABSTRAK

Penggunaan plastik yang luar biasa banyak menimbulkan masalah lingkungan dengan volume limbah yang masuk lautan hingga mencapai 8 juta ton per tahun. Plastik yang pada umumnya diproduksi dari minyak bumi tidak dapat terdegradasi bahkan untuk waktu yang cukup lama. Sampah plastik tersebut mengancam kualitas dan keselamatan pangan, kesehatan manusia, kehidupan biota laut berserta ekosistemnya. Indonesia merupakan penyumbang sampah plastik ke laut terbanyak kedua di dunia setelah Tiongkok.

Dengan menggunakan plastic yang biodegradable, masalah pencemaran bisa teratasi. Biodegradable plastic dapat dibuat dari bahan-bahan alami seperti pati, kolagen, dan protein. Salah satu sumber pati yang banyak tersedia adalah beras. Dalam memproduksi beras dihasilkan produk samping berupa menir dan sekam. Selama ini menir hanya dimanfaatkan untuk pakan ternak dengan harga jual sekitar Rp 4.000,- per kg, sementara sekam hanya dimanfaatkan untuk bahan bakar dan alas ternak ayam. Pemanfaatan menir untuk pembuatan biodegradable plastic akan memberikan nilai tambah terhadap menir.

Dalam proses pembuatan biodegradable plastic, menir terlebih dahulu diproses menjadi tepung dan sekam dibuat menjadi bubuk. Keduanya dicampur dengan gliserol dengan komposisi tertentu untuk selanjutnya dilakukan ekstrusi pada berbagai temperature. Plastik yang dihasilkan kemudian dianalisis sifat-sifat fisiknya dan biodegradability-nya.

DAFTAR ISI

HALAMAN SAMPUL	i
HALAMAN PENGESAHAN	
DAFTAR ISI	iii
RINGKASAN	iv
BAB I PENDAHULUAN	5
BAB II TINJAUAN PUSTAKA	9
BAB III METODOLOGI PENELITIAN	20
DAFTAR PUSTAKA	26
Lampiran A. Justifikasi Anggaran Penelitian	30
Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	31
Lampiran C. Biodata Tim	32
Lampiran D. Surat Pernyataan Ketua Peneliti	52

BAB I PENDAHULUAN

I.1 Latar Belakang

Permasalahan sampah plastik di dunia semakin mengkhawatirkan. Lebih dari 300 juta ton plastik telah diproduksi untuk berbagai keperluan. Plastik pada umumnya diproduksi dari petroleum yang tidak dapat terdegradasi bahkan untuk waktu yang cukup lama. Sedikitnya 8 juta ton bermuara pada lautan tiap tahun. Sampah plastik yang tidak mudah terurai ini akan menjadi ancaman untuk kualitas dan keselamatan pangan, kesehatan manusia, kehidupan biota laut berserta ekosistemnya dan turut menyumbang perubahan iklim dunia (Goals et al., 2015). Saat ini Indonesia merupakan penyumbang sampah plastik ke laut terbanyak kedua di dunia, setelah Tiongkok kemudian disusul Filipina.

Permasalahan sampah plastic tidak akan timbul apabila plastic yang diproduksi adalah plastic yang biodegradable. Plastik biodegradable dapat dibuat dati polimer yang bersifat biodegradable. Polimer biodegradable memiliki masa simpan yang terbatas akibat melibatkan proses biodegradasi. Degradasi kpolimer ebanyakan disebabkan oleh ikatan hidrolisis atau oleh aktivitas enzim pada polimer. Plastik biodegradable merupakan jenis plastik yang mudah terurai pada keadaan tertentu oleh mikroba selama jangka waktu tertentu (Ashter, 2016b).

Memanfaatkan campuran antara polisakarida, protein dan lemak yang diperoleh dari sumber pertanian merupakan suatu cara pembuatan biodegradable film. Biodegradable plastic yang berasal dari pati sudah banyak di produksi seperti maizena, kentang, singkong, pisang, yam, pea, beras dan sagu (Sanyang et al., 2016). Namun sifat hidrofilik dan nonthermoplastik yang dimiliki pati memberi efek yang kurang bagus terhadap sifat fisik dan mekanik pada plastik yang dihasilkan (Oluwasina et al., 2019). Untuk meningkatkan sifat mekanik plastik yang berbahan dasar pati, beberapa peneliti menambahkan bahan aditif yang cocok digunakan sebagai komponen yang memperkuat material dan tak beracun (Pagliaro et al., 2010). Beberapa studi terakhir menyatakan bahwa tepung beras dapat digunakan sebagai bahan baku pembuatan film. Pembuatan biodegradable film yang terbuat dari tepung beras merupakan alternatif baru, digunakan pula serat selulosa sebagai penguat yang dapat meningkatkan karakteristik plastik berbahan dasar tepung beras.

Penggunaan tepung beras untuk pembuatan biodegradable plastic ini tidak terlepas dari permasalahan yang ada di penggilingan padi. Pada penggilingan padi akan dihasilkan produk samping berupa menir, bekatul, dan sekam. Selama ini menir dan bekaltul dimanfaatkan sebagai pakan ternak dengan harga Rp 3.000,- sampai Rp 4.000,- per kg, sedangkan sekam hanya dibakar atau digunakan untuk alas peternakan ayam.

Sekam merupakan bahan yang dapat digunakan sebagai filler untuk memperkuat suatu bahan (Ginting et al., 2014) karena kandungan lignin dan silika (Bazargan et al., 2020). Dengan adanya silika akan meningkatkan hardness, stretch, durability (Hincapié Rojas et al., 2020). Selanjutnya dalam pembuatan plastik biodegradable perlu ditambahkan plasticizer untuk meningkatkan fleksibilitas dan daya regang (Udensi et al., 2009). Plasticizer yang seringkali digunakan untuk polimer hidrofilik seperti pati adalah gliserol, komponen polyhydroxy berberat molekul rendah, polieter dan urea (Stein et al., 1999). Dengan menambahkan aditif filler untuk memperkuat dan plasticizer agar lebih fleksibilitas diharapkan meningkarkan sifat mekanik dari plastik biodegradable.

Dalam pembuatan biodegradable plastic ada 2 metode yang paling sering digunakan yakni melt processing dan solvent casting. Metode solvent casting melibatkan solvent untuk melarutkan polimer lalu dicetak pada cetakan plat, kemudian akan diperoleh lapisan tipis akibat penguapan solvent. Metode ini tidak efisien karena memerlukan waktu yang lama dan energi yang besar untuk menguapkan solven. Metode melt processing atau yang sering disebut juga dengan ekstrusi adalah proses pelelehan dan pencampuran bijih polimer pada suhu tinggi kemudian dilanjutkan dengan pendinginan cepat (Takkalkar et al., 2019). Pada metode ekstrusi ini akan didapat bentuk yang diinginkan dengan mengatur ujung keluaran. Metode ekstrusi secara komersial banyak digunakan untuk memproduksi film plastik sintetis (polyethylene) (Jiménez-Rosado et al., 2019).

I.2 Rumusan Masalah

Pembuatan bioplastik yang berasal dari tepung beras dengan glycerol sebagai plasticizer sudah banyak dilakukan. Soo dan Sarbon (2018) menggabungkan gelatin dari kulit ayam dan tepung beras dan plasticizer glycerol menghasilkan plastic dengan nilai tensile Strength, Elongation at break, Youngs's Modulus secara berturut-turut sebesar 2,91 MPa, 79,31% dan 3,74 MPa. Nilai ini lebih besar ketimbang tidak diberi tambahan tepung beras. Lopattananon dkk (2012) melaporkan bahwa plastic yang dibuat dari campuran tepung beras dengan tepung singkong pada rasio 100:0 % w memberikan nilai tensile stress yang paling besar yaitu 4 MPa, namun nilai tensile strainnya paling rendah. Karakteristik tensile biodegradable plastic akan meningkat dengan meningkatnya kandungan amilosa (Ceseracciu et al., 2015). Tapi dengan kandungan pati yang banyak, biodegradable plastic tersebut menjadi rapuh, tingkat fleksibilitas yang rendah dan mudah patah (Lopattananon et al., 2012; Marichelvam et al., 2019). Penambahan glycerol dinilai menambah sifat plastis pada bioplastik serta memiliki stabilitas thermal yang tinggi selama temperatur pemrosesan (Bilck et al., 2015). Kemudian penambahan sekam padi dapat menjadi filler pada komposit. Dengan penambahan sekam padi pada ke dalam thermoplastic HDPE terbukti

meningkatkan sifat mekanik seperti tensile strength dan elongation at break pada komposisi 2% w dan 4% w sekam padi secara berurutan 27,62 MPa, 25,62 MPa dan 394,46 mm, 312,39 mm ketika nilai tensile strength dan elongation at break tanpa penambahan sekam padi hanya 23.54 MPa dan 221.25 mm (Ginting et al., 2014).

Untuk memperoleh biodegradable plastic dengan sifat-sifat fisik sesuai untuk aplikasi tableware, maka perlu diteliti mengenai pengaruh komposisi tepung beras, tepung sekam, dan gliserol terhadap sifat-sifat fisik dari biodegradable plastic. Temperatur ekstrusi berpengaruh terhadap sifat-sifat tepung. Oleh karena itu perlu pula dikaji tentang pengaruh temperatur ekstrusi.

I.3 Tujuan

- 1. Mengkaji pengaruh temperature, persentase gliserol, dan persentase bubuk sekam terhadap sifat mekanik dari *biodegradable plastic*.
- 2. Mendapatkan temperature dan komposisi bahan yang paling sesuai untuk pembuatan *biodegradable plastic* untuk aplikasi tableware.

I.4 Manfaat Khusus

- 1. Menaikkan nilai tambah dari menir dan sekam.
- 2. Dihasilkan *biodegradable* plastic dari tepung beras dan bubuk sekam sebagai bahan untuk peralatan makan.

I.5 Urgensi

Penggunaan plastic untuk peralatan makan, seperti untuk piring, semakin meningkat dengan semakin menjamurnya café-café belakangan ini. Disamping itu juga ada kecenderungan masyarakat untuk menggunakan piring sekali pakai berbahan plastic untuk pemakaian di tumah maupun dalam pertemuan-pertemuan, rapat-rapat, maupun pesta-pesta. Penggunaan piring plastic ini tentu membawa konsekuensi lingkungan, yaitu semakin banyaknya limbah plastic. Pada umumnya yang dipakai adalah plastic berbahan dasar minyak bumi yang tidak mudah terurai. Penelitian ini yang bertujuan untuk membuat biodegradable plastic untuk aplikasi peralatan makan, akan mulai menjawab masalah limbah plastic ini, yaitu dengan semakin berkurangnya penggunaan piring plastic berbahan minyak bumi, diganti dengan piring dari dari bidegradable plastic.

Penggunaan menir dan sekam sebagai bahan baku dalam pembuatan biodegradable plastic ini diharapkan dapat meningkatkan nilai tambah dari menir dan sekam. Kedua bahan tersebut merupakan hasil samping dari penggilingan padi. Selama ini menir hanya dimanfaatkan untuk pakan ternak dengan harga Rp 3.000,- sampai Rp 4.000,- sementara untuk sekam hanya dimanfaatkan untuk bahan bakar atau untuk alas di peternakan ayam.

BAB II TINJAUAN PUSTAKA

2.1 Piring Plastik

Piring plastik umum digunakan sebagai keperluan di meja makan karena memiliki keuntungan antara lain ringan, tidak mudah pecah, harganya relatif murah, dan tersedia dalam berbagai ukuran. Penggunaan plastik sebagai bahan peralatan makanan mengharuskan bahan plastic tersebut *food grade* agar tidak mencemari makanan (SNI, 1996). Serta sifat fisik dan mekanis suatu peralatan makanan yang sesuai standar menentukan kelayakan pemakaian. Berikut Tabel 2.1 spesifikasi sifat fisik persyaratan mutu piring plastik. Pada persyaratan mutu piring plastik SNI 12-4261-1996 hanya mencantumkan spesifikasi sifat fisik, kimia dan organoleptis. Sehingga untuk standar sifat mekanis terutama pengaplikasian produk rumah tangga seperti sendok plastik, piring plastik dan gelas plastik (Nurhadi et al., 2017) terdapat pada Tabel 2.2.

Tabel 2.1 Spesifikasi sifat fisik persyaratan mutu piring plastik (SNI, 1996)

Jenis uji	Satuan	Persyara	ıtan
Tebal			
 Tebal dinding 	mm	min. 1,0	min. 2,2
 Tebal dasar 	mm	min. 1,2 min. 2,	
Ketahanan terhadap air mendidih, waktu 10 menit	-	Tidak berubah bentuk dan warr	
Ketahanan terhadap perebusan suhu 100°, waktu 30 menit	-	Tidak berubah bentuk dan warn:	
Ketahanan terhadap panas suhu 100°, waktu 1 jam	-	Tidak berubah bentuk dan warna	
Kerekatan cat	-	Tidak terkelupas	
Ketahanan terhadap kejutan	-	Tidak retak pecah	

Tabel 2.2 Standar sifat mekanis aplikasi produk rumah tangga (Nurhadi et al., 2017)

Sifat Mekanis	Satuan	
Tegangan tarik	kg/cm2	320
Regangan Tarik	-	3
Modulus elastisitas	kg/cm2	75
Kekerasan	Shore D	70

2.2 Polimer biodegradable

Istilah *biodegradable* dalam polimer adalah kemampuan untuk terdegradasi oleh aktivitas mikroorganisme seperti *molds*, jamur, dan bakteri dalam kurun waktu dan lingkungan tertentu. Menurut standar ASTM D5488-94de1, polimer *biodegradable* mengarah pada polimer yang mampu terdekomposisi menjadi karbon dioksida, metana, air, senyawa anorganik, atau biomassa

yang mekanisme utamanya adalah proses enzimatik mikroorganisme yang dapat diukur dengan tes standar, selama periode waktu tertentu yang mencerminkan kondisi pembuangan (Niaounakis, 2015). Gambar 2.1 merupakan pembagian polimer *biodegradable* pada pengemas makanan.

Gambar 2.1 Pembagian polimer biodegradable pada pengemas makanan

Dalam rangka memenuhi peningkatan permintaan polimer biobased dan biodegradable banyak penelitian dilakukan untuk menemukan bahan polimer yang ramah lingkungan. Bioplastik yang umum digunakan di dunia antara lain *Polylactic acid* (PLA), *polyhydroxybutyrate* (PHB), plastik berbahan dasar kedelai, polyester sellulosa, plastik berbahan dasar pati, bioplastik turunan dari minyak sayur, poly(*trimethylene terepthalate*), *biopolyethylene*. Perlunya penambahan *filler* dalam bioplastik untuk meningkatkan karakteristik seperti *stiffness*, kekuatan, sifat gas barrier, kekuatan pelelehan, kestabilan thermal, dll (Rydz et al., 2018).

Secara umum proses pembuatan plastik dimulai dari pencampuran kemudian dilanjutkan pembentukan dan *finishing*. Berikut adalah teknik pembuatan bioplastik yang sering dilakukan dalam skala industri terbagi menjadi 3 (Pilla, 2011):

a) Molding: Proses menggunakan tekanan dan temperatur tinggi yang diaplikasikan terhadap bahan dalam ruang tertutup. Contohnya *injection-molding*, *compression-molding*, *blow-*

- *molding* dan *transfer molding*. Metode ini diterapkan pada otomotif, elektronik, konsumen, dll.
- b) Forming: yang termasuk dalam metode ini adalah ekstrusi, *calendaring, thermoforming, casting, slush-molding* dan *rotomolding*. Teknik ini banyak digunakan dalam produksi kemasan.
- c) Foaming: Pada metode ini digunakan foaming agent yang dimasukkan ke dalam lelehan polimer sehingga terbentuk polimer padat yang berpori. Pada metode ini densitas plastic menjadi lebih kecil karena adanya pori-pori. Keberadaan pori-pori juga memperkuat sifat isolator dari plastic.

2.3 Pati

Pati merupakan polimer alam yang repeating unit berupa glukosa yang tersusun secara linier maupun bercabang dengan jumlah 40-3000. Setiap unit glukosa terikat oleh ikatan glikosidik. Pati dari tumbuhan berbeda memiliki ukuran granular yang berbeda, sebagai contoh pati beras yang relatif kecil $\pm 2~\mu m$, sedangkan pati kentang memiliki ukuran granular pati yang lebih besar (mencapai 100 μm). Berikut Tabel 2.3 menunjukkan bentuk dan ukuran granular amilosa pada berbagai jenis pati.

Tabel 2.3 Ukuran, Bentuk, dan kandungan Amilosa pada berbagai jenis pati (Carvalho, 2012)

Sumber	Diameter	Kandungan	Ukuran
	(mm)	Amilosa (%b)	
Maizena	5-25	28	Polyhedric
Waxy maize	5-25	~0	Polyhedric
Maizena dengan	5-35	55-85	Varied smooth spherical to
amilosa tinggi			elongated
Singkong	5-35	16	Semi-spherical
Kentang	15-100	20	Ellipsoidal
Gandum	20-22	30	Lenticular, polyhedric
Beras (normal)	5/3-8	20-30	Polyhedric
Pisang	26-35	9-13	Elongated oval with ridges

Pati dalam keadaan murni berupa bubuk berwarna putih, tidak berbau, tidak berasa, dan tidak larut dalam alkohol maupun air dingin. Pati memiliki densitas yang lebih besar daripada air yakni 1500 kg/m³. Titik *ignition* pati adalah 410°C. Butiran pati terdiri dari dua polisakarida utama, yaitu amilosa dan amilopektin. Keduanya terdiri dari rantai residu -(1,4)-linked D-glukosa, yang saling berhubungan melalui ikatan -(1,6)-glucosidic, sehingga membentuk cabang dalam polimer. Dalam molekul amilosa, residu glukosa saling terikat secara linier merupakan polimer linier, sedangkan

dalam molekul amilopektin rangkaian residu glukosa membentuk rantai yang lebih pendek dan bercabang (Bertoff, 2017). Pada Gambar 2.2 ditunjukkan struktur amilosa dan amilopektin. Kandungan amilosa dalam pati adalah berkisar 20-25% dan 75-80% untuk amilopektin.

Gambar 2.2 Struktur (a) amilosa dan (b) amilopektin (Carvalho, 2012)

Butiran pati bersifat semi-kristalin, yang berarti bahwa butiran pati memiliki bagian yang besifat kristalin dan bagian yang bersifat amorfus. Kristalit terbentuk oleh segmen luar pendek dari amilopektin dengan derajat polimerisasi sekitar 10–20 unit glucosyl (Bertoff, 2017). Struktur granula pati terbentuk dari kristalin dan lamellae dari amilopektin amorf membentuk blok-blok bulat yang memiliki diameter berkisar 20 hingga 500 nm yang dibatasi dengan saluran pendek radial berbahan amorf, kemudian radial amorf dan cincin semikristalin akan membentuk struktur lamellar. Adanya amilopektin sekitar 75% dalam granular, menentukan kristalinitas granula. Kristal dan semikristalin lamellae tersusun dari blok-blok amilopektin yang terdiri dari *crystalline hard shell* yang terbentuk dari blok besar dan *crystalline soft shell* yang terbentuk dari blok kecil. Ukuran kristal lamellae lebih tebal sekitar 9-10 nm dari rata-rata kristal. Tersusun oleh amilopektin double heliks yang berinteraksi dengan lamellae yang lebih amorf dari daerah percabangan amilopektin. Ukuran dari blok *semicrystalline soft shell* berkisar antara 20 hingga 50 nm. Gambar 2.3 menjelaskan struktur granula.

Gambar 2.3 Struktur granula pati

Dalam air panas pati akan terlarut, kemudian terjadi proses gelatinisasi. Butiran granular akan membengkak kemudian pecah, struktur semi kristal menghilang dan molekul amilosa yang lebih kecil mulai keluar dari granula, membentuk jaringan yang menahan air dan meningkatkan viskositas campuran. Saat pemasakan, pati menjadi pasta dan terjadi peningkatan viskositas. Selama pendinginan atau penyimpanan pasta yang cukup lama, struktur semi-kristal sebagian pulih dan pasta pati mengental karena air di dalam granular keluar, proses ini disebut retrogradasi. Proses ini menyebabkan amilosa dan amilopektin membentuk gel yang kuat, sehingga menghasilkan bioplastik yang kaku. Selama proses retrogradasi pati komponen amilosa akan mengkristal sehingga strukturnya menjadi lebih kompak serta tahan terhadap hidrolisis (Interpares et al., 2015).

Kandungan amilosa yang tinggi akan mempengaruhi laju retrogradasi yang semakin cepat (Yu et al., 2009). Amilosa merupakan komponen yang tidak stabil, dengan adanya retrogradasi akan meningkatkan kekeruhan serta kemungkinan presipitasi. Retrogradasi terjadi akibat molekul amilosa yang mengerut disebabkan oleh penurunan energi kinetik dan gerak brown dari polimer dan molekul air. Hasil penyusutan merupakan bentuk baru dari intra dan intermolekular ikatan hidrogen antara atom oksigen *hemiacetal* dan OH-6 yang berdekatan dengan residu D-glucopyranosyl dan O-2 serta OH-2 dari residu D- glucopyranosyl pada molekul yang berbeda, seperti yang digambarkan pada Gambar 2.4. Ikatan hidrogen intra dan intermolekular yang cukup intens mengarah pada pembentukan presipitasi molekul amilosa dalam media air (Tako et al., 2014).

Gambar 2.4 Mekanisme retrogradasi amilosa (Tako et al., 2014)

2.4 Gliserol

Gliserol merupakan komponen utama pada trigliserida, yang ditemukan pada lemak hewan, lemak nabati atau minyak mentah. Gliserol merupakan produk samping dari biodiesel. Gliserol adalah alkohol sederhana yang dikenal juga sebagai propane-1,2,3-triol serta memiliki nama dagang gliserin, 1,2,3-propanotriol, trihydroxypropane, glyceritol atau alkohol glisidik. Berbentuk cairan *oily*, *viscous*, odorless, colorless dan memiliki rasa yang manis. Gliserol mengandung tiga gugus hidroksil yang hidrofilik sehingga berpengaruh pada kelarutannya dalam air serta sifatnya yang higroskopi (Quispe et al., 2013). Gliserol merupakan molekul yang mudah membentuk intra dan intermolekular ikatan hidrogen (Pagliaro et al., 2010).

Gliserol dapat menjadi pelarut yang baik untuk senyawa seperti alkohol (metil, etil, isopropyl, n-butil, isobutil, sekunder butil, dan tersier amil); etilen glikol, propilen glikol,

trimetilen glikol monometil eter dan fenol. Kelarutan gliserol dalam aseton adalah 5% dari beratnya dan 9% pada etil asetat. Namun sedikit larut pada *dioxane* dan etil, terutama pada alkohol, asam lemak dan hidrokarbonat lalu ada pula solven terklorinasi seperti heksana, benzene dan kloroform yang sukar larut dalam gliserol. Merupakan material yang sangat kental, pada temperatur ruang gliserol berupa cairan viscous tanpa mengkristal, untuk temperatur rendah larutan konsentrat gliserol cenderung menjadi sangat *viscous* (Quispe et al., 2013). Berikut ditunjukkan mengenai sifat fisik dan kimia dari gliserol pada Tabel 2.4.

Tabel 2.4 Sifat fisik dan kimia Gliserol (Quispe et al., 2013)

Satuan	Nilai
gr/mol	92,09
kg/m^3	1260
Pa.s	1,41
$^{\circ}\mathrm{C}$	18
$^{\circ}\mathrm{C}$	290
$^{\circ}\mathrm{C}$	177
kJ/kg	2435 (25°C)
kJ/kmol	82,12
W/(m K)	0,28
kJ/mol	667,8
mN/m	63,4
	7
°C	393
	gr/mol kg/m³ Pa.s °C °C °C kJ/kg kJ/kmol W/(m K) kJ/mol mN/m

Mekanisme plastisisasi adalah sebagai perantara antara molekul polimer 1 dengan yang lain sehingga menyebabkan *breakdown* pada interaksi polimer. Struktur tersier dari polimer menjadi lebih berpori, fleksibel dan kurang kohesif. Sifat *plasticizer* yang melembutkan polimer membantu mencegah terjadi deformasi. Polimer yang di plastisisasi akan deformasi pada gaya tarik yang lebih rendah dibanding tanpa *plasticizer*, sehingga meningkatkan interaksi polimer dengan *plasticizer* serta meningkatkan kemuluran film. Untuk meningkatkan interaksi yang lebih besar tergantung pada temperatur transisi kaca (Tg) polimer. Tg adalah ketika temperatur kaca polimer mengeras diubah menjadi material yang *rubbery*. Semua polimer memiliki Tg yang tinggi sehingga dengan penambahan plasticizer mampu menurunkan Tg.

Pada teori pelumasan mengatakan bahwa *plasticizer* bertindak sebagai pelumas internal dengan mengurangi gaya gesek kemudian mengisi diantara rantai polimer. Adapun teori gel yang menyatakan bahwa kekakuan polimer berasal dari struktur tiga dimensi melalui pusat gaya dan *plasticizer* mengambil alih dengan memecah interaksi antar polimer. Lalu Teori volume bebas

menyatakan cara peningkatan volume bebas dan menjelaskan penurunan Tg oleh *plasticizer* (Somwanshi, 2020).

Gliserol mampu menghambat proses retrogradasi molekul pati, sehingga mencegah ikatan hidrogen antara rantai polimer (Domene-López et al., 2019), sehingga meningkatkan jarak antarmolekul. Ketika *plasticizer* dikombinasikan ke dalam matriks pati, akan mengurangi afinitas intramolekular antara rantai pati dengan membentuk ikatan hidrogen antara *plasticizer* dan molekul pati, sehingga *tensile stress* rendah, matriks film menjadi kurang padat, memudahkan pergerakan rantai pati yang menghasilkan lebih fleksibel dan lentur (Basiak et al., 2018).

Gambar 2.5 Struktur gliserol

2.5 Sekam Padi

Sekam padi merupakan bagian terluar padi yang melindungi biji padi. Sekam tersebut menyediakan nutrisi dan akumulasi metabolit selama pertumbuhan biji dan melindunginya dari bahaya fisik serta serangan patogen, serangga dan hama. Tersusun dari lemma dan palea yang secara utuh membungkus caryopsis. Ditunjukaan pada Gambar 2.6 struktur biji beras. Lapisan pada sekam padi dibagi menjadi 4 bagian yaitu: (1) epidermis luar yang kasar dengan permukaan yang berrambut, di mana konsentrasi silika sangat tinggi; (2) sclerenchyma; (3) sel parenkim yang kenyal; dan (4) epidermis dalam, yang permukaannya relatif halus dan bebas dari rambut.

Gambar 2.6 Struktur Biji Beras

Dari hasil *back-scattered electrons* dan X-ray menunjukan silika terdistribusi terbanyak pada permukaan luar sekam, sedangkan pada *midregion* dan epidermis dalam mengandung sedikit silika. Kemudian dengan menggunakan SEM menunjukkan permukaan luar sekam relatif globular

serta memiliki struktur yang bergelombang. Sel epidermal lemma tersusun dari *ridges* yang beralur, ridges tersebut diselingin dengan tonjolan globular yang menonjol. Rangka dan biomassa Si-O relatif stabil yang berkumpul membentuk struktur sekam padi yang erat serta permukaan sekam padi relatif nonpori. Tersebarnya silika diseluruh bagian sekam, namun terbanyak terletak pada tonjolan dan rambut (trichoma) bagian luar maupun dalam epidermis. Sisi lain sekam padi yang ditunjukkan oleh SEM adanya interlayer yang terletak diantara permukaan dalam dan luar, interlayer tersusun dari piringan dan lembaran yang terhubung yang longgar dan berbentuk sarang lebah yang dimensi lubangnya 10µm (Zou & Yang, 2019).

Umumnya dimensi sekam padi sekitar 8-10mm untuk panjang, dengan lebar 2-3mm dan tebal 0,2mm. Densitas *bulk* berada 100 hingga 160 kg/m³ dengan densitas sesungguhnya 670 hingga 740 kg/m³, sekam dapat di tekan hingga 400 kg/m³. Kandungan komponen organik sekam padi mencapai 80% dan sisanya material anorganik 20%. Senyawa protein dan lemak sangatlah rendah, berada pada kisaran 2% sampai 2,8% dan 0,3% hingga 0,8 (Zou & Yang, 2019), namun serat mentah yang terkandung cukup besar seperti pada Tabel 2.5.

Tabel 2.5 Komposisi Sekam Padi (Majeed et al., 2017)

Komposisi	Persentase
Sellulosa	25-35
Hemisellulosa	18-21
Lignin	26-31
Silica	15-17
Soluble	2-5
Kandungan air	5-10

Sekam padi yang mengandung silika dalam jumlah besar membuat matriks polimer toughness sehingga tahan terhadap biodegradasi dan kelembapan (Bassyouni & Waheed Ul Hasan, 2015). Interaksi antarmuka antara filler dan bahan matriks diyakini mampu mentransferkan stress dari matriks ke filler dan kemampuannya dalam menguatkan komposit oleh filler tergantung pada interaksi antarmuka dengan bahan matriks. Peningkatan interaksi antarmuka menuntun pada transfer stress yang lebih baik yang menghasilkan sifat mekanik yang tinggi. Semakin tinggi tingkat transfer stress dari matriks ke filler, semakin tinggi pula kemampuan filler dalam memperkuat matriks, begitupula sebaliknya (Majeed et al., 2017).

2.6 Ekstrusi

Ekstrusi dalam industri baik pangan maupun non pangan sering digunakan karena menghasilkan polimer dengan tingkat pelelehan yang seragam dengan kecepatan tinggi. Ekstrusi

dibutuhkan karena polimer memiliki konduktivitas termal yang rendah dan viskositas yang tinggi sehingga akan mencegah mudahnya laju pelelehan yang tinggi dalam silinder. Ketika polimer ditempatkan pada suatu silinder dan dipanaskan, akan menghasilkan bagian yang luar panas namun bagian dalam tetap dingin. Sehingga menghasilkan gradient temperatur yang besar dan pencampuran yang lama (Mount, 2017). Dengan menggunakan ekstruder akan melelehkan material polimer secara merata. Ekstruder terdiri dari 4 komponen yang berbeda, yakni:

- a. *Hopper*, tempat meletakkan polimer serta memasok material secara kontinyu yang akan di ekstrusi di dalam silinder.
- b. *Convey*, silinder yang di dalamnya terdapat *screw* untuk mentransportasikan polimer serta mencampurkannya.
- c. Die, memberikan bentuk pada polimer ketika meninggalkan ekstruder.
- d. *Downstream auxiliary equipment*, digunakan untuk mendinginkan, memotong dan mengumpulkan produk akhir.

Berdasarkan jumlah *screw* terdapat 2 jenis, yakni *single* dan *twin screw*. *Single screw* seringnya digunakan untuk melelehkan dan mengangkut polimer untuk di ekstrusi ke bentuk kontinyu. Pada *single screw* dikelilingi oleh silinder yang tahan terhadap tekanan tinggi. Silinder memiliki hingga lebih dari 3 zona pemanas, yang dapat mengontrol suhu proses. Ketika temperatur proses berada diatas set point, maka silinder akan menggerakkan pendingin baik berupa udara maupun cairan yang akan mendinginkan silinder (Ashter, 2016a).

Gambar 2.7 (a) single single-screw extruder dan (b) twins crew extruder

Gesekan dalam silinder mengakibatkan panas sehingga polimer akan meleleh. Untuk mendapatkan viskositas pelelehan polimer yang rendah, dilakukan dengan pencampuran yang merata kemudian temperatur silinder dioptimalkan untuk mencegah terjadinya degradasi thermal polimer. Setelah polimer meleleh dan tercampur kemudian lelehan tersebut mengalir melalui plat pemutus lalu didinginkan menjadi bentuk yang padat.

Ekstrusi Pati

Pati dapat diproses dengan menggunakan *single* maupun *twin screw extruder*. Single screw extruder cocok untuk pati karena pati memiliki viskositas yang tinggi, serta tekanan proses yang tinggi saat pati melewati pemotongan bentuk. Pengaturan dalam kontrol suhu pada zona silinder, pengumpan berganda, konfigurasi *screw* memberikan tingkat pencampuran yang berbeda serta berdampak pada *twin screw extruder* yang fleksibel untuk pencampuran yang intensif menjadikan material pati yang plastis. Keuntungan *twin screw extruder* dibanding *single* adalah kemampuan mereka dalam menyeka sehingga meminimalkan masalah pengangkutan bubuk pati.

Ekstrusi pati menghasilkan disipasi panas akibat kentalnya lelehan pati yang dapat meningkatkan temperatur pati plastis sampai 50°C, sehingga air pendingin dibutuhkan. Biasanya desain silinder yakni longitudinal yang di *split* dengan tujuan pengambilan sampel dan pembersihan, ekstruder juga memiliki kemampuan untuk mencegah kehilangan kelembapan selama proses ekstrusi. Dengan berbagai macam bentuk *dies*, ekstruder dapat menghasilkan berbagai jenis produk yang berbeda seperti bentuk pellet, film.

BAB III METODE PENELITIAN

3.1 Rancangan Penelitian

Variabel Kontrol

• Berat tepung beras = 200 gr

Variabel Bebas

Tabel 3.1 Variabel bebas penelitian

T ekstrusi	Sekam padi	Gliserol (g/g		
(°C)	(g/g tepung	tepung beras +	Respon	Hasil
(C)	beras)	sekam)		
		0,25		
		0,3		
10000	0.15	0,35		Berat glisero
100°C	0,15	0,40		terbaik
		0,45		
		0,50		
	0		Tensile Strength	
	0,05		• Elongation	
10000	0,10	Berat gliserol	Stiffness	Berat sekan
100°C	0,15	terbaik	 Kelarutan 	padi terbaik
	0,20		 Biodegradability 	
90°C	0,25			
100°C	Berat sekam	Berat gliserol		Temperatur
110°C	padi terbaik	terbaik		terbaik
120°C				

3.2 Bahan dan Alat

3.3.1 Bahan yang digunakan

- 1. Tepung beras
- 2. Gliserol
- 3. Sekam padi

3.3.2 Alat yang digunakan

- 1. Ekstruder
- 4. Timbangan Digital
- 2. Alat size reduction
- 5. Desikator
- 3. Oven
- 6. Jangka Sorong

Gambar 3.1 Diagram rancangan penelitian

3.4 Prosedur Kerja

Mula-mula menentukan berat gliserol terbaik dengan memvariasikan gliserol (Tabel 3.1) yang ditambahkan dengan tepung beras seberat 200 gr dan sekam padi 0,15 (gr/gr tepung beras) yang dicampur di dalam blender hingga menjadi homogen. Setelah itu campuran tersebut dimasukkan ke dalam ekstruder yang telah di atur pada temperatur 100 °C. Produk yang keluar dari ekstruder akan di uji sifat mekanik, hingga diperoleh berat gliserol terbaik. Kemudian untuk

memperoleh berat sekam padi terbaik, sebanyak 200gr tepung beras kemudian ditambahkan gliserol dengan berat terbaik dan variasi sekam padi (Tabel 3.1) di campur terlebih dahulu di blender, lalu dimasukkan ke dalam alat ekstruder yang telah di atur temperaturnya sebesar 100°C. Setelah itu produk yang keluar akan di uji sifat mekanik hingga di peroleh berat sekam padi terbaik.

Temperatur ekstruder yang terbaik dapat diketahui dengan memvariasikan temperatur alat sebesar 90°C, 100°C, 110°C, 120°C dengan menambahkan 200gr tepung beras, berat gliserol, dan sekam padi yang terbaik serta alur proses yang sama dengan sebelumnya. Kemudian produk yang keluar di uji sifat mekanik, sehingga dapat diketahui temperatur terbaik.

3.5 Analisis Hasil

3.5.1 Sifat Mekanik

Sifat mekanik ditentukan sesuai dengan *ASTM D882-02 standart* menggunakan alat *Universal Testing Machine*.

3.5.2 Ketebalan

Jangka sorong digunakan untuk mengukur bioplastik (2 cm x 2 cm) pada 15 titik di tempat yang berbeda, dengan rata-rata ketebalan mengikuti persamaan:

$$Ketebalan = \frac{JunSah pengukuran 15 titik}{15}$$

3.5.3 Kandungan air

5 gr sampel (2cm x 2cm) ditimbang (W₁) sebelum dipanaskan pada suhu 105°C selama 3 jam hingga berat konstan kemudian di letakkan pada dessicator untuk di dinginkan dan bioplastik ditimbang lagi (W₂), hal ini di ulang hinga 3 kali pengulangan dan air yang hilang mengikuti persamaan:

$$MC(\%) = \frac{M1-M2}{M_1} \times 100$$

W₁ adalah berat awal bioplastik

W₂ adalah berat akhir bioplastik

3.5.4 Densitas

Berat dan dimensi film digunakan untuk menghitung densitas

Densitas =
$$\frac{M}{E \times d}$$

Densitas dalam g/cm³, M adalah massa (gr), A adalah area (cm²) dan d adalah ketebalan dari film. Densitas sampel di ulang hingga 3 kali pengulangan.

3.5.5 Kekeruhan

Menggunakan UV-VIS Spektrofotometer pada 600nm untuk menentukan kekeruhan film (4cm x 1cm) oleh cahaya yang di transmisikan, dilakukan dengan 3 kali pengulangan, menggunakan persamaan berikut:

Kekeruhan (%) =
$$\frac{\cancel{E}600nN}{X}$$

A_{600nm} absorbansi pada 600nm

X adalah ketebalan film (mm)

3.5.6 Kapasitas pembengkakan

Berat kering bioplastik (W_0) yang sudah ditentukan dengan pengeringan selama 3 jam pada suhu 105° C dalam oven dan didinginkan. Kemudian di rendam dalam air deionisasi selama 24 jam, untuk menentukan berat (W_t) yang sudah di rendam, sampel di bersihkan dari air dengan kain muslin sebelum ditimbang. Kapasitas pembengkakan dilakukan dengan 3 kali pengulangan dengan persamaan:

Air yang terserap (%)
$$\frac{-\text{Mt-M0}}{\text{Mo}} \times 100$$

 W_0 berat setelah direndam dalam air deionisasi W_t berat kering awal

3.5.7 Kelarutan film dalam air

Dalam botol yang tertutup di isi dengan air deionisasi dan bioplastik (2cm x 2cm) kering (W_0), kemudian dikocok selama 24 jam. Setelah 24 jam bioplastik diambil secara hati-hati dan berat akhir (W_1) ditimbang setelah dikeringkan pada suhu 105°C selama 3 jam. Dilakukan pengulangan hingga 3 kali pengulangan dengan persamaan:

Kelarutan film (%) =
$$\frac{M0-M1}{M_0} \times 100$$

W₀ berat awal sampel kering

W₁ berat kering sampel yang tidak terlarut

3.5.8 Absorpsi air

Bioplastik (2cm x 2cm) dengan berat kering awal yang sudah ditentukan, diletakkan pada beaker glass yang sudah terisi dengan 30ml air pH 7. Penambahan berat material diukur secara bertahap pada interval 5 detik setelah permukaan dibersihkan dengan kain muslin. Percobaan ini dihentikan setelah berat film didapat kesetimbangan. Dilakukan pengulangan hingga 3 kali pengulangan dengan persamaan:

Berat air (%) =
$$\frac{\text{berat fisn bacah-berat fisn kering}}{\text{berat fisn kering}} \times 100$$

3.5.9 Ketahanan terhadap air mendidih

Piring plastik di isi dengan air mendidih hingga titik tumpah. Diamkan selama 10 menit kemudian buang airnya. Diamati perubahan bentuk dan warna secara visual.

3.5.10 Ketahanan terhadap perebusan (100°, waktu 30 menit)

Piring plastik dimasukkan ke dalam bejana air dengan suhu yang dipertahankan 100° selama 30 menit. Posisi piring plastic diatur sehingga tidak saling bersentuhan, kemudian ambil dan diamkan pada suhu kamar selama 1 jam. Diamati perubahan bentuk dan warna secara visual.

3.5.11 Ketahanan terhadap panas (Heat Resistant)

Piring plastik dimasukkan ke dalam oven dengan sirkulasi udara yang bersuhu 110 ± 3 °C selama 1 jam. Ambil dan diamkan pada suhu kamar selama 1 jam. Diamati perubahan bentuk dan warna secara visual.

3.5.12 Biodegradabilitas

Untuk mengetahui sifat *biodegradable* sampel dilakukan dengam uji ketahanan plastik terhadap jamur. Sebagai konfirmasi juga dilakukan pengamatan secara morfologi dengan *Scanning Electron Microscope* (SEM). Ketahanan plastik terhadap jamur dilakukan berdasarkan ASTM G21. Spesimen dengan ukuran 2cm x 2cm diletakkan pada permukaan agar dalam cawan petri steril. Inokulasi permukaan, termasuk permukaan spesimen uji dengan suspense spora sehingga keseluruhan permukaan dibasahi oleh suspensi spora. Kemudian inkubasi pada 28 – 30°C dan RH tidak kurang dari 85% selama tujuh hari. Observasi pertumbuhan jamur pada spesimen dan beri nilai hasil observasi tersebut. Untuk morfologinya dilakukan evaluasi dengan SEM. Sampel dilapisi dengan platina, kemudian dilakukan pengukuran pada magnifikasi tertentu.

3.5.13 Analisa gugus fungsi

Analisa gugus fungsi dilakukan dengan alat *Fourier Transform Infrared* (FTIR) metode ATR (*Attenuated Total Reflectance*) pada panjang gelombang 4000-400 cm⁻¹.

3.5.14 Uji stabilitas panas dan temperatur dekomposisi

Uji stabilitas panas dan temperatur dekomposisi dilakukan dengan *Thermogravimetri analysis* (TGA) menggunakan *Thermogravimetric analyzer* dengan laju alir nitrogen 20mL/menit. Sampel sekitar 10 mg dipanaskan dari temperatur ruang ke 500 °C dengan kecepatan pemanasan 10°C/menit (Wulandari, 2019). Dari hasil TGA ini dapat diketahui degradasi termal material.

BAB IV BIAYA DAN JADWAL PENELITIAN

4.1 Anggaran Biaya

Justifikasi anggaran disusun secara rinci dan dilampirkan sesuai dengan format pada Lampiran II . Sedangkan ringkasan anggaran biaya disajikan seperti berikut.

Tabel 4.1 Ringkasan Anggaran Biaya Penelitian Strategis

No	Uraian	Jumlah (Rp)
a b		c
I	BELANJA PERSONIL/ HONORARIUM (maks 30%)	0,-
II	BELANJA OPERASIONAL (sewa, SPPD, dll)	11.340.000,-
III	BELANJA MODAL (peralatan, dll)	8.660.000,-
	Jumlah	20.000.000,-

4.2 Jadwal Penelitian

Jadwal pelaksanaan penelitian dibuat untuk 6 bulan (sesuai proposal) dalam bentuk bar chart sesuai dengan format pada Lampiran III

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan ke-		V VI			
110	Jems Regiutuii	I	II	III	IV	V	VI
1	Studi literatur						
2	Percobaan pendahuluan						
3	Pembuatan plastik						
4	Pengukuran sifat fisik						
5	Penulisan laporan kemajuan						
6	Penulisan artikel ilmiah						
7	Diseminasi hasil penelitian						
8	Penulisan laporan						

DAFTAR PUSTAKA

- Ashter, S. A. (2016a). Extrusion of Biopolymers. *Introduction to Bioplastics Engineering*, 211–225. https://doi.org/10.1016/b978-0-323-39396-6.00008-7
- Ashter, S. A. (2016b). Types of Biodegradable Polymers. In *Introduction to Bioplastics Engineering*. https://doi.org/10.1016/b978-0-323-39396-6.00005-1
- Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. *Polymers*, *10*(4). https://doi.org/10.3390/polym10040412
- Bassyouni, M., & Waheed Ul Hasan, S. (2015). The use of rice straw and husk fibers as reinforcements in composites. In *Biofiber Reinforcements in Composite Materials*. https://doi.org/10.1533/9781782421276.4.385
- Bazargan, A., Wang, Z., Barford, J. P., Saleem, J., & McKay, G. (2020). Optimization of the removal of lignin and silica from rice husks with alkaline peroxide. *Journal of Cleaner Production*, 260, 120848. https://doi.org/10.1016/j.jclepro.2020.120848
- Bilck, A. P., Olivera Müller, C. M., Olivato, J. B., Mali, S., Eiras Grossmann, M. V., & Yamashita, F. (2015). Using glycerol produced from biodiesel as a plasticiser in extruded biodegradable films. *Polimeros*, 25(4), 331–335. https://doi.org/10.1590/0104-1428.1803
- BPS. (2019). Statistik Harga Produsen Beras di Penggilingan. 48.
- Carvalho, A. J. F. (2012). Starch: Major Sources, Properties and Applications as Thermoplastic Materials. Major Sources, Properties and Applications as Thermoplastic Materials. In *Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications* (Issue 2008). Elsevier. https://doi.org/10.1016/B978-1-4557-2834-3.00007-0
- Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A., & Bayer, I. S. (2015). Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). *ACS Applied Materials and Interfaces*, 7(6), 3742–3753. https://doi.org/10.1021/am508515z
- Crevel, R. van. (2016). Bio-based food packaging in Sustainable Development: Challenges and opportunities to utilize biomass residues from agriculture and forestry as a feedstock for biobased food packaging. *FAO Report*, *February*, 70.
- Dammak, M., Fourati, Y., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., & Boufi, S. (2020). Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. *Industrial Crops and Products*, *144*(May 2019). https://doi.org/10.1016/j.indcrop.2019.112061
- Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2011). Mechanical and

- barrier properties of composite films based on rice flour and cellulose fibers. *LWT Food Science and Technology*, 44(2), 535–542. https://doi.org/10.1016/j.lwt.2010.07.006
- Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. *Polymers*, 11(7), 1–17. https://doi.org/10.3390/polym11071084
- European Bioplastics e.V. (2015). *Bioplastics packaging Combining performance with sustainability*. 1–4.
- Ginting, E. M., Wirjosentono, B., Bukit, N., & Agusnar, H. (2014). Preparation and Characterization of Natural Zeolite and Rice Husk Ash as Filler Material HDPE Thermoplastic. *Chemistry and Materials Research*, 6(7), 14–24.
- Goals, S. D., World, T., Forum, E., Goals, S. D., Panel, T. I., & Change, C. (2015). What is the issue? Why is this important? What can be done? November, 21–22.
- Hincapié Rojas, D. F., Pineda-Gómez, P., & Guapacha-Flores, J. F. (2020). Effect of silica nanoparticles on the mechanical and physical properties of fibercement boards. *Journal of Building Engineering*, *31*, 101332. https://doi.org/10.1016/j.jobe.2020.101332
- Interpares, P., Haryadi, & Cahyanto, M. N. (2015). The Effect of Retrogradation on the Physicochemical Properties of Maize Starch Noodle and Its Prebiotic Potential. *Agritech*, 35(2), 192–199.
- Jiménez-Rosado, M., Zarate-Ramírez, L. S., Romero, A., Bengoechea, C., Partal, P., & Guerrero, A. (2019). Bioplastics based on wheat gluten processed by extrusion. *Journal of Cleaner Production*, 239. https://doi.org/10.1016/j.jclepro.2019.117994
- Lopattananon, N., Thongpin, C., & Sombatsompop, N. (2012). Bioplastics from blends of cassava and rice flours: The effect of blend composition. *International Polymer Processing*, 27(3), 334–340. https://doi.org/10.3139/217.2532
- Majeed, K., Arjmandi, R., Al-Maadeed, M. A., Hassan, A., Ali, Z., Khan, A. U., Khurram, M. S., Inuwa, I. M., & Khanam, P. N. (2017). Structural properties of rice husk and its polymer matrix composites: An overview. In *Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications*. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100959-8.00022-6
- Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. *Fibers*, 7(4), 1–14. https://doi.org/10.3390/fib7040032
- Mount, E. M. (2017). Extrusion Processes. In *Applied Plastics Engineering Handbook: Processing, Materials, and Applications: Second Edition*. https://doi.org/10.1016/B978-0-323-39040-8.00012-2

- Niaounakis, M. (2015). Introduction. In *Biopolymers: Processing and Products*. https://doi.org/10.1016/b978-0-323-26698-7.00001-5
- Nurhadi, T., Budiyantoro, C., & Sosiati, H. (2017). *Identifikasi Mechanical Properties Dari Bahan Daur Ulang Polystyrene*. 1(1), 36–40.
- Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2019). Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. *International Journal of Biological Macromolecules*, *135*, 282–293. https://doi.org/10.1016/j.ijbiomac.2019.05.150
- Pagliaro, B. M., Rossi, M., & Pagliaro, M. (2010). Glycerol: Properties and production. *RSC Green Chemistry*, 1–187.
- Pilla, S. (2011). Handbook of Bioplastics and Biocomposites Engineering Applications. *Handbook* of Bioplastics and Biocomposites Engineering Applications. https://doi.org/10.1002/9781118203699
- Quispe, C. A. G., Coronado, C. J. R., & Carvalho, J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. *Renewable and Sustainable Energy Reviews*, 27(October), 475–493. https://doi.org/10.1016/j.rser.2013.06.017
- Rydz, J., Musioł, M., Zawidlak-w, B., & Sikorska, W. (2018). Polymers for Food Packaging Applications. In *Biopolymers for Food Design*. https://doi.org/10.1016/B978-0-12-811449-0/00014-1
- Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. *Journal of Food Science and Technology*, *53*(1), 326–336. https://doi.org/10.1007/s13197-015-2009-7
- SNI. (2015). Beras. 14. www.bsn.go.id
- SNI. (1996). Piring Plastik. www.bsn.go.id
- Somwanshi, S. (2020). PHARMACEUTICALLY USED PLASTICIZERS: A REVIEW of Biomedical AND Pharmaceutical sciences. January 2016.
- Stein, T. M., Gordon, S. H., & Greene, R. V. (1999). Amino acids as plasticizers II. Use of quantitative structure-property relationships to predict the behavior of monoammoniummonocarboxylate plasticizers in starch-glycerol blends. *Carbohydrate Polymers*, 39(1), 7–16. https://doi.org/10.1016/S0144-8617(98)00136-2
- Takkalkar, P., Tobin, M. J., Vongsvivut, J., Mukherjee, T., Nizamuddin, S., Griffin, G., & Kao, N. (2019). Structural, thermal, rheological and optical properties of poly(lactic acid) films prepared through solvent casting and melt processing techniques. *Journal of the Taiwan*

- Institute of Chemical Engineers, 104, 293–300. https://doi.org/10.1016/j.jtice.2019.08.018
- Tako, M., Tamaki, Y., Teruya, T., & Takeda, Y. (2014). The Principles of Starch Gelatinization and Retrogradation. *Food and Nutrition Sciences*, *05*(03), 280–291. https://doi.org/10.4236/fns.2014.53035
- Udensi, O., Ikpeme, E. V, Uyoh, E. A., & Brisibe, E. A. (2009). Evaluation of Starch Biodegradable Plastics Derived from Cassava and Their Rates of Degradation in Soil. *Nig J. Biotech*, 20, 2833.
- Wulandari, Retno. (2019). Pembuatan Plastik Biodegradable dari Pati/Polivinil Alkohol/ Lignin dengan Plasticizer Gliserol Menggunakan Teknik Melt Compounding untuk Aplikasi Pengemas. Program Pascasarjana Teknik Kimia. Universitas Diponegoro. Semarang.
- Yu, S., Ma, Y., & Sun, D. W. (2009). Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. *Journal of Cereal Science*, 50(2), 139–144. https://doi.org/10.1016/j.jcs.2009.04.003
- Zou, Y., & Yang, T. (2019). Rice husk, rice husk ash and their applications. In *Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization*. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812828-2.00009-3

Lampiran A. Justifikasi Anggaran Penelitian

RENCANA PENGGUNAAN DANA HIBAH PENELITIAN STRATEGIS FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

Ketua Peneliti : Dr. Ir. Ratnawati, M.T.

Golongan : ##/IV*
Departemen : Teknik Kimia
Fakultas : Teknik

Judul Penelitian/Pengabdian

Total Dana (100%) : Rp 20.000.000,-

PPh Pasal 21 5%/15% : Rp Sisa 95%/85% * : Rp

No	Uraian	Vol	Satuan	Biaya Satuan (Rp)	Jumlah (Rp)			
a	В	c	d	e	f			
I	BELANJA PERSONIL/ HONORARIUM (maks 30%)							
II	BELANJA OPERASIONAL							
	Gliserol	1	L	1.800.000	1.800.000			
	Menir	10	kg	4.000	40.000			
	Sewa kendaraan	2	hari	500.000	1.000.000			
	Analisis sifat fisik	40	sampel	150.000	6.000.000			
	Analisis FTIR	5	sampel	150.000	750.000			
	Analisis SEM	5	sampel	350.000	1.750.000			
III	BELANJA MODAL							
	Die bentuk slab	1	unit	4.000.000	4.000.000			
	Platik cling wrap	1	unit	40.000	40.000			
	Plastik sampel	6	bungkus	50.000	300.000			
	Serbet	2	unit	15.000	30.000			
	Gilingan pasta	1	unit	350.000	350.000			
	Screw ekstruder	1	unit	1.500.000	1.500.000			
	Blender	1	unit	750.000	750.000			
	Nampan aluminium 20 cm x 20 cm	4	unit	25.000	100.000			
	Silica gel	0,5	kg	500.000	250.000			
	Kertas tissue	5	bungkus	20.000	100.000			
	Tinta printer HP hitam	1	unit	190.000	190.000			
	Konsumsi rapat 4 orang	6	rapat	100.000	600.000			
	Kertas HVS A4	2	rim	42.500	85.000			
	Buku Tulis	1	unit	10.000	10.000			
	Map Plastik	5	unit	15.000	75.000			
	File Box	1	unit	30.000	30.000			
	Ballpoint Foster	1	pak	50.000	50.000			
	Flash disk	1	unit	200.000	200.000			
	Jumlah (Rp) 20.000.000							

(*) Pilih salah satu

Semarang, 22 Februari 2021

Ketua Peneliti

(Dr. Ir. Ratnawati, M.T.) NIP. 196004121986032001

Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama / NIP/ NIDN/ NIM	Departemen	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Dr. Ir. Ratnawati, MT 1960041219860432001	Teknik Kimia	Teknik Kimia	15	 Koordinator Peneliti Publikasi Ilmiah Koordinasi mingguan dengan anggota Studi Eksperimental
2	Prof. Nita Aryanti, ST, MT, Ph.D 197501172000032001	Teknik Kimia	Teknik Kimia	10	Publikasi Ilmiah\Studi Eksperimental
3	Ariana Aisa, ST 21030119410009	Teknik Kimia	Teknik Kimia	10	Studi EksperimentalAnalisis Bahan Baku dan Produk

Lampiran C. Biodata Tim Biodata Ketua Peneliti

Nama : Dr. Ir. Ratnawati, MT

NIP : 196004121986032001

Tempat/Tgl. Lahir : Wonosobo, 12 April 1960

Jenis Kelamin : Perempuan

Bidang Keahlian : Termodinamika, Teknik Separasi

Unit Kerja : Fakultas Teknik Universitas Diponegoro

Alamat Kantor : Jurusan Teknik Kimia FT UNDIP

Jl. Prof. Sudarto, SH – Tembalang, Semarang

Tlp. 024-7460058, Fax. 024-76480765 e-mail <u>ratnawati@che.undip.ac.id</u>

Alamat Rumah : Jl. Ketileng Indah I/3 RT 05/RW 11 Sendangmulyo Semarang

50272

Tlp. 081390043101

Pendidikan

No	Peguruan Tinggi	Kota & Negara	Bidang Studi	Th. Lulus
1	S1-UNDIP	Semarang, Indonesia	Teknik Kimia	1985
2	S2-ITB	Bandung, Indonesia	Teknik Kimia	1994
3	S3-ITB/UIC	Bandung, Indonesia/ Chicago, USA	Teknik Kimia	2004

Kursus/Pelatihan

No	Penyelenggara	Nama Kursus	Tahun
1	UIC Chicago, USA	Short Course on Nanotechnology	2006
2	Bangkok, Thailand	AUN-QA Training Course for Accomplishing Programme Assessment	2011
3	Manila, Philippines	AUN-QA Assessors Training Workshop	2013
4	Bangkok, Thailand	SHARE Training on Internal Quality Assurance	2019

Pengalaman Penelitian 10 tahun terakhir

No	Topik Penelitian	Tahun
1	Recovery Garam Lithium dari Air Asin (Brine) atau Air Tua (Bitter Water) dengan Metode Presipitasi	2011
2	Elektrokoagulasi limbah elektroplating	2011
3	Struktur dan Sifat Mekanik Biopacking yang terbuat dari Campuran Tepung Biji Nangka dan Biji Durian	2012
4	Adsorption Drying terhadap Gabah dengan Zeolit dalam Fluidized Bed Dryer	2012
5	Pembuatan Sabun Alami dengan Suplemen Susu Menggunakan Proses Dingin	2013
6	DEPOLIMERISASI EKSTRAK RUMPUT LAUT JENIS Kappaphycus alvarezii BERBANTU ULTRASONIK UNTUK APLIKASI BIO ANTIOKSIDAN	2013
7	Studi Kinetika Reaksi dan Perbaikan Kualitas Sifat Fungsional pada Modifikasi Tepung dan Pati Umbi Gadung dengan Teknik Oksidasi	2014
8	Analisis Proksimat dan Karakterisasi Sifat Fungsional Ubi Gembili sebagai Bahan Pangan	2014
9	Modifikasi Pati Sukun dengan Teknik Oksidasi Menggunakan Hidrogen Peroksida tanpa Katalis	2015
10	Pembuatan Oligo-Karagenan Dari Ekstrak Rumput Laut Melalui Kombinasi Metode Ozonasi Dan Ultrasonikasi Untuk Aplikasi Bahan Obat (Tahun 3)	2015- 2017
11	Elektrolisa Limbah Amonia Menjadi Gas Hidrogen	2016
12	Pembuatan Edible Film dari Pati Biji Alpukat dan Karagenan dengan Crosslinking Agen	2016
13	Perbaikan Kualitas Tepung Umbi Gadung Dengan Kombinasi Teknik Oksidasi Ramah Lingkungan Dan Fermentasi Dengan Lactobacillus Plantarum Sebagai Upaya Penganekaragaman Produk Makanan Lokal (Tahun II)	2016
14	Development Of Efficient Ethanolic Hydrolysis And Hot Extrusion Methods For Glucomannan Extraction From Crude Porang (Amorphophallus Oncophyllus) Flour	2016
15	Pembuatan kappa-Karagenan Berat Molekul Rendah (KBMR) Melalui Teknologi Ozonasi (Tahun 2)	2017
16	Pembuatan oligo karagenan dari ekstrak rumput laut melalui kombinasi metode ozonasi dan ultrasonikasi untuk aplikasi bahan obat	2017

17	Pembuatan Plastik <i>Biodegradable</i> dari Pati/Polivinil	2018			
	Alkohol/Lignin dengan <i>Plasticizer</i> Gliserol Menggunakan Teknik				
	Melt Compounding untuk Aplikasi Pengemas				
18	Pembuatan Oligo-Karagenan Dari Ekstrak Rumput Laut Melalui Kombinasi Metode Ozonasi Dan Ultrasonikasi Untuk Aplikasi Bahan Obat (Tahun 2)				
19	Kinetika dan Karakteristik Modifikasi Pati Umbi Gadung secara Termanl dengan Heat Moisture Treatment dan Ekstrusi				
20	Penerapan Teknologi Advanced Oxidation Processes (AOPs) untuk Produksi Oligosakarida-Sulfat berbasis Makroalga sebagai Sumber Obat Hayati				
21	Pembuatan Oligo-Karagenan Dari Ekstrak Rumput Laut Melalui Kombinasi Metode Ozonasi Dan Ultrasonikasi Untuk Aplikasi Bahan Obat (Tahun 3)	2019			
22	Kinetika dan Karakteristik Modifikasi Pati Umbi Gadung secara Termal dengan Heat Moisture Treatment dan Ekstrusi	2019			
23	Kinetika dan Karakteristik Modifikasi Pati Umbi Gadung secara Termal dengan Heat Moisture Treatment dan Ekstrusi	2020			

Publikasi 5 tahun terakhir:

- 1. **Ratnawati**, M. Djaeni, dan D. Hartono. (2013). Perubahan Kualitas Beras Selama Penyimpanan. Pangan, Vol. 22 No. 3, September 2013, hal. 199-208.
- 2. D. S. Retnowati, A. C. Kumoro, **Ratnawati**, dan C. S. Budiyati. (2013). Pembuatan dan Karakterisasi Sabun Susu dengan Proses Dingin. Jurnal Rekayasa Proses, Vol. 7 No. 2, hal. 46-51.
- 3. **Ratnawati**, A. Purbasari, dan Y. Linasari. (2013). Akumulasi Listrik Statis pada Gelas Plastik Produksi Mesin Injection Molding: Pengaruh Kelembaban Udara, Temperatur, dan Bahan Aditif. *Reaktor*, Vol. 14 No. 4, Oktober 2013, hal. 308-316.
- 4. Mohamad Djaeni, Dewi Ayuningtyas, Nurul Asiah, Hargono, **Ratnawati**, Jumali, and Wiratno. (2013). PADDY DRYING IN MIXED ADSORPTION DRYER WITH ZEOLITE: DRYING RATE AND TIME ESTIMATION. Reaktor, Vol. 14 No. 3, April 2013, Hal. 173-178.
- 5. Andri Cahyo Kumoroa, Rr. Dewi Artanti Putri, Catarina Sri Budiyati, Diah Susetyo Retnowati, and **Ratnawati**. (2014). Kinetics of Calcium Oxalate Reduction in Taro (Colocasia esculenta) Corm Chips during Treatments Using Baking Soda Solution. Procedia Chemistry 9, 102 112.
- 6. Andri C. Kumoro*, Rizka Amalia, Diah S. Retnowati, Catarina S. Budiyati, Ratnawati Ratnawati. (2014). PREPARATION AND PHYSICOCHEMICAL CHARACTERIZATION OF MODIFIED (ACETYLATED) GADUNG (DIOSCOREA HISPIDA DENNST) FLOURS. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 15 (2), pp. 135 148.

- 7. Mohamad Djaeni, Aji Prasetyaningurum, Nurul Asiah, **Ratnawati Hartono**. (2014). Drying Time Estimation of Carrageenan-Egg White Mixture At Tray Dryer. International Journal of Science and Engineering, Vol. 6(2), 2014: 122 125.
- 8. A. Prasetyaningrum, **Ratnawati**, and B. Jos. (2015). Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration. AIP Conference Proceedings 1699, 060010 (2015); doi: 10.1063/1.4938364.
- 9. Andri Cahyo Kumoro, Diah Susetyo Retnowati, **Ratnawati**, and Catarina Sri Budiyati. (2015). Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch. AIP Conference Proceedings 1699, 050004 (2015); doi: 10.1063/1.4938340.
- 10. **R. Ratnawati**, Aji Prasetyaningrum, Dyah Hesti Wardhani. (2016). Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), pp. 48-58.
- 11. Andri Cahyo Kumoro, Diah Susetyo Retnowati, **R. Ratnawati**, C. S. Budiyati. (2016). H₂O₂/UV Photo-oxidation of Gadung (Dioscorea Hispida Dennst.) Starch and Its Product Physicochemical Characterization. ORIENTAL JOURNAL OF CHEMISTRY, Vol. 32, No. (4): 1993-1998.
- 12. **R. Ratnawa**ti and N. Indriyani. (2017). Ultrasound-Assisted Ultra-Mild-Acid Hydrolisis of κ-Carrageenan. Reaktor, Vol. 17 No. 4, 191-196.
- 13. Andri Cahyo Kumoro, **R. Ratnawati**, Diah Susetyo Retnowati. (2017). Reaction and Mass Transfer Kinetics Model of Hydrogen Peroxide Oxidation of Starch under Influence of Ultraviolet Irradiation. Periodica Polytechnica Chemical Engineering, 61(3), pp. 236-245.
- 14. Aji Prasetyaningrum, Bakti Jos, **Ratnawati Ratnawati**. (2017). EFFECT OF OZONATION PROCESS ON PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES OF κ-CARRAGEENAN. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 18 (1), pp. 009 018.
- 15. A C Kumoro, T H A Yuganta, **R Ratnawati** and D S Retnowati. (2017). Effect of catalyst concentration and reaction time on the extraction of glucomannan from porang (Amorphophallus oncophyllus) flour via acid hydrolysis. IOP Conf. Series: Materials Science and Engineering 162 (2017) 012020 doi:10.1088/1757-899X/162/1/012020.
- 16. Aji Prasetyaningrum*, **R. Ratnawati**, Bakti Jos. (2017). Kinetics of Oxidative Depolymerization of κ-carrageenan by Ozone. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2), 2017, 235-242.
- 17. Andri Kumoro, Tunjung Yuganta, Diah Retnowati, **Ratnawati Ratnawati**. (2018). ACID HYDROLYSIS AND ETHANOL PRECIPITATION FOR GLUCOMANNAN EXTRACTION FROM CRUDE PORANG (AMORPHOPHALLUS ONCOPHYLLUS) TUBER FLOUR. Chem. Chem. Technol., 2018, Vol. 12, No. 1, pp. 101–108.
- 18. **Ratnawati Ratnawati**, Dyah Arum Kusumaningtyas, Purbo Suseno, and Aji Prasetyaningrum. Mass Transfer Coefficient of Ozone in a Bubble Column. MATEC Web of Conferences 156, 02015 (2018) https://doi.org/10.1051/matecconf/201815602015.
- 19. Aji Prasetyaningrum, Bakti Jos, Yudhy Dharmawan, Ratih V. Octaviani, **Ratnawati Ratnawati**. Chemical and Spectral Characterization of The Ozonation Products of κ-Carrageenan. MATEC Web of Conferences 156, 05006 (2018) https://doi.org/10.1051/matecconf/201815605006.

- 20. N. Nurfiningsih, **R. Ratnawati**, A. Prasetyaningrum. (2019). The Impact of Combination of Ozonation and Ultrasonication Process on Morphological and Chemical Properties of κCarrageenan. Reaktor 19(2), pp. 49-53.
- 21. Andri C. Kumoro, Dwi R. Lukiwati, Danar Praseptiangga, , Mohamad Djaeni, **Ratnawati Ratnawati**, Jefri P. Hidayat, Febiani D. Utari. (2019). EFFECT OF DRYING AND MILLING MODES ON THE QUALITY OF WHITE RICE OF AN INDONESIAN LONG GRAIN RICE CULTIVAR. Acta Sci. Pol. Technol. Aliment. 18(2), pp. 195–203.
- 22. Aji Prasetyaningrum, Bakti Jos, **Ratnawati Ratnawati**, Yudhy Dharmawan, Andri C. Kumoro. (2020). A COMBINED ULTRASOUND AND OZONE (US/O3) TREATMENT ENHANCING k-CARRAGEENAN DEPOLYMERIZATION. Journal of Chemical Technology and Metallurgy, 55, 5, pp. 1008-1018.
- 23. Andri Cahyo Kumoro, Diah Susetyo Retnowati, **Ratnawati Ratnawati**, and Marissa Widiyanti. (2020). Estimation of aqueous solubility of starch from various botanical sources using Flory Huggins theory approach. Chemical Engineering Communications. Article in press.
- 24. ANDRI CAHYO KUMORO, RATNAWATI RATNAWATI, DIAH SUSETYO RETNOWATI, and CATARINA SRI BUDIYATI. (2020). MICROBIAL DETOXIFICATION OF GADUNG (Dioscorea hispida Dennst) CHIPS: EFFECT OF MICROBES LOADING AND TIME. Malays. Appl. Biol. (2020) 49(2): 105–110.

Semarang, 15 Februari 2021

Dr. Ir. Ratnawati, MT

Biodata Anggota Peneliti

Identitas Diri

1.	Nama Lengkap (dengan gelar)	Prof. Nita Aryanti, ST, MT, Ph.D.
2.	Jenis Kelamin	Perempuan
3.	Jabatan Fungsional	Guru Besar
4.	NIP	197501172000032001
5.	NIDN	0017017501
6.	Tempat dan Tanggal Lahir	Semarang, 17 Januari 1975
7.	E-mail	nita.aryanti@che.undip.ac.id
8.	Nomor Telepon / HP	081228356698
9.	Alamat Kantor	Departemen Teknik Kimia, Fakultas Teknik
		Undip, Semarang
10.	Nomor Telepon / Faks.	
11.	Mata Kuliah yang diampu	Kimia Organik
		■ Teknologi Emulsi dan Surfaktan
		Bahasa Inggris
		 Proses Industri Kimia
		 Teknologi Komposit dan Material Maju
		 Inovasi dan Intensifikasi Proses
		■ Teknologi Pengemasan dan Keamanan Pangan

Riwayat Pendidikan Tinggi

	Sarjana	Magister	Doktor
Nama Perguruan	Universitas	Institut Teknologi	University of Leeds,
Tinggi	Diponegoro	Bandung	Inggris
Bidang Ilmu	Teknik Kimia	Teknik Kimia	Chemical
Didding Illiu	Teknik Kinna	Teknik Kinna	Engineering
Tahun Masuk	1993	1998	2004
Tahun Lulus	1998	2000	2009
Judul Skripsi/Thesis/ Disertasi	Pra Rancangan Pabrik Acrylonitrile dengan Proses UOP Kapasitas 25.000 / tahun	Membrane Contactor for Flue Gas Cleaning	Fundamentals of Membrane Emulsification and Rotating Membrane Emulsification
Nama Pembimbing/ Promotor	Ir. Dwi Rahadi Ir. R.P Djoko Murwono, SU	Prof. Ir. I Gede Wenten, M.Sc. Ph.D. Prof. Ir. Yazid Bindar, M.Sc., Ph.D.	Prof. Richard A. Williams

Pengalaman Penelitian dalam 10 Tahun Terakhir

No.	Tahun	Judul Penelitian	Sumber Dana
1.	2019-2020	Ekstraksi, Karakterisasi dan Uji Kinerja	Kemenristek
		Saponin dari Lerak sebagai Surfaktan dalam	
		Sistim Membran-Surfaktan Terintegrasi	
2.	2019	Model of Fouling Mechanism in Ultrafiltration	Internal Fakultas Teknik
		and Micellar-Enhanced Ultrafiltration	UNDIP
		Membrane for Separation of Remazol Dyes	
3.	2018 – 2019	Potential of plant-derived biosurfactant in	Internal Universitas
		micellar-enhanced ultrafiltration membrane	Diponegoro
		for reactive dyes removal	
4.	2018	Analisis mekanisme fouling misela minyak	Kemenristekdikti
		pada membran ultrafiltrasi untuk degumming	
		crude palm oil	
5.	2018	Functionalized PVDF Nanocomposite	Internal Fakultas
		Ultrafiltration Membrane with Nanoparticles	Diponegoro
		Additive (TiO2/SiO2-LiCl)	
6.	2018	Optimalisasi Proses Ultrafiltrasi Berbasis	Kemenristekdikti
		Membran Polyethersulfone untuk Purifikasi	
		Crude Gliserin dari Produk Samping Produksi	
		Biodiesel	
7.	2017	Fouling Reduction by Ozone-Enhanced	Internal Universitas
		Backwashing Process in Ultrafiltration of	
		Petroleum-Based Oil in Water Emulsion	
8.	2017	Produksi ekstrak padat antosianin dari bunga	Kemenristekdikti
		rosella sebagai bahan tambahan pangan alami	
		berfungsi ganda (pewarna dan penstabil	
		emulsi)	
9.	2017	Analisis mekanisme fouling misela minyak	Kemenristekdikti
		pada membran ultrafiltrasi untuk degumming	
		crude palm oil	

10.		Produksi Ekstrak Padat Antosianin dari Bunga		
	2016	Rosella Sebagai Bahan Tambahan Pangan	DRPM Unggulan PT	
	2016	Alami Berfungsi Ganda (Pewarna dan	(Tahun Pertama)	
		Penstabil Emulsi)		
11.		Pembuatan Bahan Pengemas Makanan dari	Hibah Penelitian	
	2016	Pati Singkong dengan Karakteristik Anti		
		Mikroba Aspergillus niger	Inovatif FT Undip 2016	
12.		Evaluation of Micellar-Enhanced		
	2016	Ultrafiltration Membrane (MEUF) for	PNBP Undip	
		Removing Reactive Dye		
13.	2016	Fouling Mechanism Modelling For	Internal Fakultas Teknik	
	2010	Ultrafiltration Of Konjac Glucomannan	UNDIP	
14.	2016	Mikroenkapsulasi Khlorofil Dari Daun Suji	Kemenristekdikti	
	2010	Sebagai Pewarna Pangan Alami	Kememistekuikti	
15.	2015	Mikroenkapsulasi Anatosianin dari Bunga	Internal Fakultas Teknik	
	2013	Rosella sebagai Pewarna Pangan Alami	UNDIP	
16.		Teknologi Nanofiltrasi untuk Pengolahan Air		
	2014 - 2015	Terproduksi pada Eksplorasi Minyak Bumi	Strategis Nasional	
	2011 2013	sebagai Usaha Peningkatan Produksi Minyak		
		Bumi		
17.		Micellar-Enhanced Ultrafiltration membrane		
	2014	(MEUF) untuk penghilangan zat warna pada	DIPA FT Undip	
		pengolahan limbah batik		
18.		Analisis Mekanisme Fouling pada Pemisahan	Internal Fakultas Teknik	
	2014	Air Terproduksi Menggunakan Membran	UNDIP	
		Ultrafiltrasi	CIVEI	
19.		Analisis Deposisi Tetes Minyak-Surfaktan		
	2013	pada Membran Ultrafiltrasi untuk Pengolahan	BOPTN Fundamental	
		Limbah Emulsi Minyak-Air sebagai usaha	Kemenristekdikti	
		Daur Ulang LImbah Industri		
20.		Teknologi Ultrafiltrasi untuk Reuse dan		
	2013	Recycle Limbah Emulsi MInyak-Air pada	DIPA Fakultas Teknik	
		Eksplorasi Minyak Bumi		

21.		Pengembangan Teknologi Ultrafiltrasi-Ozone	
	2012 2012	untuk Pengolahan Limbah Emulsi Minyak-Air	Stratagic Nacional
	2012 – 2013	pada Eksplorasi dan Pengilangan Minyak	Strategis Nasional
		Bumi	
22.		The high purity konjac glucomannan from	
	2012	porang (Amorphophallus onchophillus) tuber	PNBP Undip
		by means of ultrafiltration membrane	
23.	2011	Production of Novel Biodegradable Film	DIPA Fakultas Teknik
	2011	Incorporated with Natural Antimicrobial	Undip

Pengalaman Pengabdian kepada Masyarakat dalam 10 Tahun Terakhir

No.	Tahun	Judul Pengabdian Kepada Masyarakat	Sumber Dana
1.	2020	Pemanfaatan Limbah Organik Sebagai	Internal Fakultas Teknik
		Bahan Budidaya Manggot Untuk Pakan	UNDIP
		Ikan	
2.	2020	Pembuatan Sabun Organik Bebas	Internal Fakultas Teknik
		Surfaktan dan Diversifikasi produknya	UNDIP
3.	2019	Penyuluhan Teknologi Membran untuk	Internal Fakultas Teknik
		Penyediaan Air Bersih di Kecamatan	UNDIP
		Semarang Selatan	
4.	2019	Kegiatan Pelatihan/Klinik Manuskrip dan	Internal Universitas
		Submit Publikasi Internasional	
		Universitas Diponegoro Batch XXXI	
		Tahun 2019	
5.	2019	Pemanfaatan Kitosan Sebagai Pengawet	Internal Fakultas Teknik
		dan Karaginan Sebagai Pengenyal Alami	UNDIP
		pada Pembuatan Bakso dan Tahu Bakso di	
		Industri Kecil Kecamatan Banyumanik	
		Semarang	
6.	2019	Pendampingan dan Pelatihan Peningkatan	Internal Fakultas Teknik
		Kualitas Jajanan Mie Kriuk melalui	UNDIP
		Teknologi Tepat Guna Deep Fryer di Kota	
		Semarang	

7.	2018	Evaluation of Integrated modified	Internal Universitas	
		nanohybrid polyethersulfone-ZnO		
		membrane with single stage and double		
		stage system for produced water		
		treatment into clean water		
8.	2018	Peningkatan Produksi UKM Bandeng	Internal Fakultas Teknik	
		Presto 'DIPA" di Banyumanik	UNDIP	
9.	2018	Pengembangan Sistem Penilaian Capaian	Internal Fakultas Teknik	
		Pembelajaran Mahasiswa Berbasis	UNDIP	
		Outcome pada Departemen Teknik Kimia		
10.	2018	Aplikasi Pengaduk yang Terintegrasi pada	Kemenristekdikti	
		Alat Pemasak sebagai upaya Peningkatan		
		Efisiensi Produksi Sambal Seafood di		
		Kota Semarang		
11.	2018	Peningkatan efisiensi pada Produksi	Internal Universitas	
		sambal melalui Scale-up alat penggiling		
		bahan Baku		
12.	2017	Penyuluhan Pembuatan Minuman Susu	Internal Fakultas Teknik	
		Siap Saji yang Sehat di Kecamatan	UNDIP	
		Gajahmungkur, Kota Semarang		
13.	2017	Pelatihan pembuatan minuman siap saji	Internal Universitas	
		Dari susu sapi yang higienis		
14.	2017	Aplikasi Pengaduk Terntegrasi pada alat	Internal Universitas	
		pemasak sebagai Upaya Peningkatan		
		Efisiensi Produksi Sambal Seafood di		
		Kota Semarang		
15.	2017	Pelatihan Teknologi Distilasi dan Aplikasi	Internal Fakultas Teknik	
		bagi Guru dan Siswa di SMK Negeri I UNDIP		
		Terucuk Kab. Klaten 2017		
16.	2017	Perbaikan Proses Produksi pada Home	Internal Fakultas Teknik	
		Industri Makanan Kecil	UNDIP	
17.	2017	Implementasi Penggunaan Pewarna	Internal Fakultas Teknik	
		Alami pada Produk Jajanan Anak di UKM	UNDIP	

	Difa Snack, Kelurahan Banyumanik,		
	Kecamatan Banyumanik		
2017	Pendidikan Karakter (PENDIKAR)	Internal Fakultas Teknik	
	Departemen Teknik Kimia Undip 2017	UNDIP	
2016	Pelatihan Teknologi pengering ikan di	Internal Fakultas Teknik	
	Semarang	UNDIP	
2016	Pelatihan Proses Operasi alat pengering	Internal Fakultas Teknik	
	bagi UKM Karak Di Kecamatan	UNDIP	
	Pedurungan Kota Semarang		
2016	Pelatihan produksi garam hals dari garam	Internal Fakultas Teknik	
	krosok di kota Semarang	UNDIP	
	Penyediaan Air Bersih Melalui Penerapan		
2015	Teknologi Membran Bagi Masyarakat	DIDA Fokultos Taknik	
2013	Desa Karimunjawa Kecamatan	DIPA Fakultas Teknik	
	Karimunjawa		
	Pemanfaatan Limbah Kulit Pisang		
	Sebagai Bahan Baku Pembuatan Pupuk		
2015	Kompos di Desa Karang Luhur Desa	DIPA Fakultas Teknik	
	Krakal Tamanan, Kecamatan Kretek,		
	Kabupaten Wonosobo		
2014	Pelatihan Rancang Bangun Pengering	DIPA Fakultas Teknik	
2014	Tepung MOCAF di Kabupaten Wonogiri	DITA Pakuitas Tekiik	
	Pelatihan Teknologi Tepat Guna Agro		
2013	Industri Pengolahan Pangan Berbasis	DIPA Fakultas Teknik	
2013	Tepung di Kelurahan Podorejo, Ngaliyan,	DITAT akutas Tekiik	
	Semarang		
	Pengadaan Air Bersih Untuk Masyarakat		
	di Kecamatan Tegowanu dan		
2012	Tanggungharjo Kabupaten Grobogan	Fakultas Teknik	
	Upaya Meningkatkan Kepedulian		
	Masyarakat Terhadap Kesehatan		
	2016 2016 2015 2015 2013	Kecamatan Banyumanik 2017 Pendidikan Karakter (PENDIKAR) Departemen Teknik Kimia Undip 2017 2016 Pelatihan Teknologi pengering ikan di Semarang 2016 Pelatihan Proses Operasi alat pengering bagi UKM Karak Di Kecamatan Pedurungan Kota Semarang 2016 Pelatihan produksi garam hals dari garam krosok di kota Semarang 2016 Penyediaan Air Bersih Melalui Penerapan Teknologi Membran Bagi Masyarakat Desa Karimunjawa Kecamatan Karimunjawa Pemanfaatan Limbah Kulit Pisang Sebagai Bahan Baku Pembuatan Pupuk Kompos di Desa Karang Luhur Desa Krakal Tamanan, Kecamatan Kretek, Kabupaten Wonosobo 2014 Pelatihan Rancang Bangun Pengering Tepung MOCAF di Kabupaten Wonogiri Pelatihan Teknologi Tepat Guna Agro Industri Pengolahan Pangan Berbasis Tepung di Kelurahan Podorejo, Ngaliyan, Semarang Pengadaan Air Bersih Untuk Masyarakat di Kecamatan Tegowanu dan Tanggungharjo Kabupaten Grobogan Upaya Meningkatkan Kepedulian	

Publikasi Artikel Ilmiah Jurnal Nasional dalam 10 Tahun Terakhir

- 1. **N. Aryanti**, R. Williams, and Q. Yuan, 2020, Application of Square and Oblong Pore Shapes in Rotating Membrane Emulsification to Produce Novel Particulate Products, Reaktor, vol. 20, no. 1, pp. 47-56.
- 2. Dyah Hesti Wardhani, **Nita Aryanti**, Luqman Buchori, Heri Cahyono, 2017, Peningkatan Efisiensi pada Produksi Sambal Melalui Scale-Up Alat Penggiling Bahan Baku, Abdimas Unwahas, Vol. 2 No. 2.
- 3. **Nita Aryanti**, Yovita Asih Kusumastuti, Wida Rahmawati, 2017, Pati Talas (*Colocasia Esculenia* (*L*) *Schott*) sebagai Aternatif Sumber Pati Industri Momentum 13(1), hal. 46-52.
- 4. **Nita Aryanti**, Aininu Nafiunisa, Dyah Hesti Wardhani, Andri Cahyo Kumoro, 2017, Extraction Characteristic and Microencapsulation of Antocyanin as Natural Food Colouring from Roselle Calyces by Ultrasound-Assisted Extraction, Jurnal Bahan Alam Terbarukan, 6(2), 87-96.
- 5. **Nita Aryanti**, Aininu Nafiunisa, Fathia Mutiara Willis, 2016, Ekstraksi dan Karakterisasi Klorofil dari Daun Suji (Pleomele angustifolia) sebagai Pewarna Pangan Alami, Jurnal Aplikasi Teknologi Pangan, Vol. 5 No. 4, 129-135.
- 6. **Nita Aryanti**, Dessy Kurniawati, Amelia Maharani dan Dyah Hesti Wardhani, 2016, Karakteristik dan Analisis Sensorik Produk Tahu dengan Koagulan Alami, Jurnal Ilmiah Teknosains, 2(2), 73-81.
- 7. **Nita Aryanti** dan Kharis Yohan Abidin, 2015 Ekstraksi Glukomanan dari Porang Lokal (*Amorphophallus oncophyllus* dan *Amorphophallus muerelli blume*), Metana, 11(1), 21-30.
- 8. **Nita Aryanti**, Indah Prihatiningtyas, Diyono Ikhsan, dan Dyah Hesti Wardhani, 2013, Kinerja Membran Ultrafiltrasi Untuk Pengolahan Limbah Emulsi Minyak-Air Sintetis, Reaktor 14(4), 277-283.

Publikasi Artikel Ilmiah Jurnal Internasional dalam 10 Tahun Terakhir

- 1. **Aryanti, N.**, Nafiunisa, A., Kusworo, T.D., Wardhani, D.H., 2021, Separation of Reactive Dyes using Natural Surfactant and Micellar-Enhanced Ultrafiltration Membrane, Journal of Membrane Science and Research 7, 20-28.
- 2 Kusworo, T.D., **Aryanti, N**., Utomo, D.P., Nurmala, E., 2021, Performance Evaluation of PES-ZnO Nanohybrid using a Combination of UV Irradiation and Cross-linking for Wastewater Treatment of the Rubber Industry to Clean Water, Journal of Membrane Science and Research 7, 4-13.
- 3. Wardhani, D.H., **Aryanti, N**., Aziz, A., Firdhaus, R.A., Ulya, H.N., 2021, Ultrasonic degradation of alginate: A matrix for iron encapsulation using gelation, Food Bioscience, 100803.
- 4. **Aryanti, N.,** Nafiunisa, A., Kusworo, T.D., Wardhani, D.H., 2020, Micellar-Enhanced Ultrafiltration Using a Plant-Derived Surfactant for Dye Separation in Wastewater Treatment, Membranes, 10(9), pp. 1–16, 220.
- 5. Wardhani, D.H., Wardana, I.N., Ulya, H.N., Kumoro, A.C., **Aryanti, N**., 2020, The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix, Food and Bioproducts Processing, 123, pp. 72–79.

- 6. Kusworo, T.D., **Aryanti, N**., Utomo, D.P., 2020, Effect of nano-TiO₂ loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment, Journal of Water Process Engineering, 35, 101190.
- 7. Nafiunisa, A., **Aryanti, N**., Wardhani, D.H., 2019, Kinetic study of saponin extraction from sapindus rarak DC by ultrasound-assisted extraction methods, Bulletin of Chemical Reaction Engineering and Catalysis, 14(2), pp. 468–477.
- 8. **Aryanti, N**., Kusworo, T.D., Oktiawan, W., Wardhani, D.H., 2019, Performance of ultrafiltration-ozone combined system for produced water treatment, Periodica Polytechnica Chemical Engineering, 63(3), pp. 438–447.
- 9. Wardhani, D.H., Cahyono, H., **Aryanti, N**., 2019, Performance of glucomannan-alginate combination as a ph sensitive excipient of vitamin c encapsulation using gelation method, International Journal of Applied Pharmaceutics, 11(2), pp. 185–192.
- 10. Kusworo, T.D., **Aryanti, N**., Qudratun, Utomo, D.P., Widayat, 2019, Improvement in nanohybrid membrane PES-nanosilica performance using ultra violet irradiation and acetoneethanol immersion for produced water treatment, International Journal of Environmental Science and Technology, 16(2), pp. 973–986.
- 11. Ma'ruf, A., Pramudono, B., **Aryanti, N**., 2019, Kinetics models of lignin isolation from rice husk using alkaline hydrogen peroxide, Chemistry and Chemical Technology, 13(2), pp. 224–230.
- 12. **Aryanti, N.**, Nafiunisa, A., Wardhani, D.H., 2019, Conventional and ultrasound-assisted extraction of anthocyanin from red and purple roselle (*Hibiscus sabdariffa L.*) calyces and characterisation of its anthocyanin powder, International Food Research Journal, 26(2), pp. 529–53.
- 13. **Nita Aryanti**, Dyah Hesti Wardhani and Aininu Nafiunisaa, 2018, Ultrafiltration Membrane for Degumming of Crude Palm Oil-Isopropanol Mixture, Chemical and Biochemical Engineering Quarterly, 32(3), 325-334.
- 14. **Nita Aryanti**, Aininu Nafiunisa, Nayunda Bella, Rio Sanjaya, Dyah Hesti Wardhani, Andri Cahyo Kumoro, 2018, Kinetics of Ultrasound-Assisted Extraction of Anthocyanin from Purple Roselle Calyces under Different pH Conditions, Chemistry and Chemical Technology, 12(4), 523-528.
- 15. **Nita Aryanti** and R. A. Williams, 2018, Analysis of rotating membrane emulsification performance for oil droplet production based on the Taylor vortices approach, Particulate Science and Technology Particulate Science and Technology 36(8), pp. 913-919.
- 16. **Nita Aryanti** and R. A. Williams, 2018, Rotating Membrane Emulsification for Producing Single and Multiple Emulsions, MATEC Web of Conferences 156,08001.
- 17. **Aryanti, N**., Saraswati, A., Putra, R.P., Nafiunisa, A., Wardhani, D.H., 2018, Fouling mechanism of micelle enhanced ultrafiltration with SDS surfactant for indigozol dye removal, Jurnal Teknologi 80(3-2), pp. 29-36

- 18. Kusworo, T.D., **Aryanti, N**., Qudratun, Utomo, D.P., 2018, Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process, Chemical Engineering Journal 347, pp. 462-471.
- 19. Kusworo, T.D., **Aryanti, N**., Qudratun, Tambunan, V.D., Simanjuntak, N.R., 2018, Development of antifouling polyethersulfone (PES)-nano ZnO membrane for produced water treatment, Jurnal Teknologi 80(3-2), pp. 9-15
- 20. **Aryanti, N.**, Wardhani, D.H., Maulana, Z.S., Roberto, D., 2017, Evaluation of Ultrafiltration Performance for Phospholipid Separation, Journal of Physics: Conference Series 909(1),0120830
- 21. Nafiunisa, A., **Aryanti, N.**, Wardhani, D.H., Kumoro, A.C., 2017, Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying, Journal of Physics: Conference Series 909(1),012084.
- 22. **Nita Aryanti**, Fathikhatul K. Ika Sandria, Reza Harena Putriadi, and Dyah Hesti Wardhani, 2017, Evaluation of Micellar-Enhanced Ultrafiltration (MEUF) Membrane for Dye Removal of Synthetic Remazol Dye Wastewater, Engineering Journal 21(3), pp. 23-35.
- 23. **Nita Aryanti**, Fatikhatul K. Ika Sandria, and Dyah Hesti Wardhani, 2017, Blocking Mechanism of Ultrafiltration and Micellar-Enhanced Ultrafiltration Membrane for Dye Removal from Model Waste Water, Advanced Science Letters 23, pp. 2598-2600.
- 24. **Nita Aryanti**, Indah Prihatiningtyas and Tutuk Djoko Kusworo, 2017, Fouling Reduction by Ozone-Enhanced Backwashing Process in Ultrafiltration of Petroleum-Based Oil in Water Emulsion, AIP Conference Proceedings 1855, pp. 020016-1 020016-7.
- 25. Tutuk Djoko Kusworo, **N. Aryanti**, Qudrotun, and D. P. Utomo, 2017, Produced Water Treatment as Oil Well Water Injection Using Nano-Hybrid PES Membrane to Enhance Oil and Gas Production, Advanced Science Letters 23, pp. 2527-2529.
- 26. Anwar Ma'ruf, Bambang Pramudono, **Nita Aryanti**, 2017, Optimization of Lignin Extraction from Rice Husk by Alkaline Hydrogen Peroxide using Response Surface Methodology, Rasayan Journal of Chemistry, Vol. 10, No. 2, pp. 407 414.
- 27. Tutuk Djoko Kusworo, **Nita Aryanti**, R.A. Anggita, T.A.D. Setyorini and D.P. Utomo, 2017, Surface Modification and Performance Enhancement of Polyethersulfone (PES) Membrane Using Combination of Ultra Violet Irradiation and Thermal Annealing for Produced Water Treatment, Journal of Environmental Science and Technology, Vol. 10(1), pp. 35-43.
- 28. Anwar Ma'ruf, Bambang Pramudono, **Nita Aryanti**, 2017, Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted, AIP Conference Proceeding, 1823, pp. 020013-1 020013-5.
- 29. Dyah Hesti Wardhani, Dewi Puspitosari, Mochammad A. Ashidiq, **Nita Aryanti**, and Aji Prasetyaningrum, 2017, Effect of Deacetylation on Functional Properties of Glucomannan, AIP Conference Proceedings, 1855, pp. 030020-1 030020-6.
- 30. **Nita Aryanti**, Dyah Hesti Wardhani, Abdul Wasi, Ghafa Al Ramadhan, and Aprilina Purbasari, 2017, Extraction Characteristics of Anthocyanin from Roselle (Hibiscus sabdariffa

- L.) Calyces by Ultrasound-Assisted Extraction, Advanced Science Letters 23(6), pp. 5626-5628
- 31. Dyah Hesti Wardhani, **Nita Aryanti**, Dimas Akbar Ramdani, and Annisa Lutfiati, 2017, Swelling Capacity of Glucomannan From Amorphophallus oncophyllus Purified With Enzymatic Hydrolysis, Advanced Science Letters 23(6), pp. 5623-5625.
- 32. Tutuk Djoko Kusworo, **Nita Aryanti**, Widayat, Qudrotun, D. P. Utomo, 2017, Effect of Ultraviolet on The Morphology and Performance of PES-nano-silica Hybrid Membrane for Produced Water Treatment, Advanced Science Letters 23(6), pp. 5744-5747.
- 33. **Nita Aryanti**, Dyah H. Wardhani, Supandi Supandi, 2016, Flux Profiles and Mathematical Modeling of Fouling Mechanism for Ultrafiltration of Konjac Glucomannan, Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 17 (2), pp. 125 137.
- 34. Dyah H. Wardhani, Fatoni Nugroho, M. Muslihudin, **Nita Aryanti**, 2016, Application of Response Surface Method on Purification of Glucomannan from Amorphophallus oncophyllus by Using 2-Propanol, Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 17 (1), pp. 063-074
- 35. **Nita Aryanti**, Ragil Darmawan, S.A.C., Danny Soetrisnanto, 2016, Characteristics of waste water treatment plant sludge and coal co-combustion, AIP Conference Proceedings 1746, pp. 020020-1 020020-6.
- 36. **Nita Aryanti**, Bambang Pramudono, C.N.P Prawira, R. Renardi, F. K. I Sandria, 2015, Micellar-enhanced ultrafiltration membrane (MEUF) of Batik wastewater using Cetylpyridinium chloride surfactant, AIP Conference Proceedings, 1699, pp. 060002-1 060002-9. 17. Kusworo, T.D., Aryanti, N., Firdaus, M.M.H., Sukmawati, H., 2015, Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment, AIP Conference Proceedings, 1699, pp. 040014-1 040014-9.

Pemakalah Seminar Ilmiah (Oral Presentation) dalam 10 Tahun Terakhir

No.	Nama Pertemuan Ilmiah/	Judul Artikel Ilmiah	Tempat dan Waktu
	Seminar		
1.	International Conference on	Separation of Reactive Dyes	Johor, Malaysia 20-22
	Sustainable Environmental	using Natural Surfactant and	Agustus 2019
	Technology, ISET 2019	MicellarEnhanced	
		Ultrafiltration Membrane	
2.	International Conference on	Micellar-Enhanced	International
	Sustainable Environmental	Ultrafiltration Using a Plant-	Conference on
	Technology, ISET 2019	Derived Surfactant for Dye	Sustainable
			Environmental

		Separation in Wastewater	Technology, ISET 2019
		Treatment	
3.	Sriwijaya International	Treatment of Batik Wastewater	Hotel Aryaduta
	Conference on Engineering	Using Plant Derived	Palembang, 15-16
	Science and Technology,	Surfactantenhanced	Oktober 2018
	SICEST 2018	Ultrafiltration Membrane	
4.	Sriwijaya International	Ultrafiltration of Oil-in-water	Hotel Aryaduta
	Conference on Engineering	Emulsion Stabilized with	Palembang, 15-16
	Science and Technology,	Surfactant	Oktober 2018
	SICEST 2018		
5.	Aseanian Membrane Society	Performance of Ultrafiltration—	Brisbane, Australia, 3-6
	(AMS) Conference 2018	Ozone Combined System for	Juli 2018
		Produced Water Treatment	
6.	Aseanian Membrane Society	Ultrafiltration membrane for	Brisbane, Australia, 3-6
	(AMS) Conference 2018	degumming of crude palm	Juli 2018
		oilisopropanol mixture	
7.	International Conference on	Evaluation of Ultrafiltration	29 Juli 2017
	Science and Applied Science	Performance for Phospholipid	Lorin Solo Hotel,
	2017, ICSAS	Separation	Surakarta
8.	International Conference on	Microencapsulation of Natural	29 Juli 2017
	Science and Applied Science	Anthocyanin from Purple	Lorin Solo Hotel,
	2017, ICSAS	Rosella Calyces by Freeze	Surakarta
		Drying	
9.	Seminar Nasional Teknik	Implementasi Penggunaan	20 September 2017
	Kimia, UNNES 2017 Jurusan	Pewarna Hijau Alami dari	Hotel Gracia, Semarang
	Teknik Kimia, Fakultas	Ekstrak Sawi Hijau pada	
	Teknik Universitas Negeri	Produk Mie	
	Semarang		
10.	The 13th International	Fouling Mechanism of Micelle	16 November 2017
	Conference on Membrane and	Enhanced Ultrafiltration with	Patra Convention
	Science Technology (MST)	SDS Surfactant for Indigozol	Semarang,
	2017	Dye Removal	

	Departemen Teknik Kimia,		
	UNDIP		
11.	The 3 rd International	Fouling Reduction by Ozone-	7 Desember 2016
	Conference on Engineering,	Enhanced Backwashing	Alila Hotel, Solo
	Technology, and Industrial	Process in Ultrafiltration of	
	Application (ICETIA) 2016	Petroleum-Based Oil in Water	
		Emulsion	
12.	International Conference on	Blocking Mechanism of	11 Oktober 2016
	Energy, Environment and	Ultrafiltration and Micellar-	Sekolah Pasca Sarjana
	Information System (ICENIS	Enhanced Ultrafiltration	Undip
	2016) Universitas	Membrane for Dye Removal	
	Diponegoro Semarang	from Model Waste Water	
13.	International Conference on	Evaluation of Ultrafiltration	11 Oktober 2016
	Energy, Environment and	and Micellar-Enhanced	Sekolah Pasca Sarjana
	Information System (ICENIS	Ultrafiltration Membrane for	Undip
	2016) Universitas	Dye Removal from Synthetic	
	Diponegoro Semarang	Wastewater	
14.	International Conference on	Extraction Characteristics and	14-15 September 2016
	Chemical Process and Product	Simple Kinetic Study of	Hotel Norrmans,
	Engineering 2016	Anthocyanin from Roselle	Semarang
		(Hibiscus sabdariffa L.)	
		Calyces by Ultrasound-	
		Assisted Extraction	
15.	International Conference on	Analysis of Rotating Membrane	14-15 September 2016
	Chemical Process and Product	Emulsification Performance for	Hotel Norrmans,
	Engineering 2016	Oil Droplets Production Based	Semarang
		on	
		Taylor Vortices Approach	
16.	Conference on Fundamental	Co Combustion of Waste Water	25-26 Januari 2016
	and Applied Science for	Treatment Plant Sludge and	Hotel Mia Purosani,
	Advanced Technology	Coal: Characteristics of	Jogjakarta
	(CONFAST) 2016	Calorific Value, SO ₂	
		Emmisions and Slagging Index	

17.	Seminar Nasional	Mikroenkapsulasi Pewarna	5-7 November 2015
	Biodiversity 2015	Alami Antosianin Dari Bunga	Hotel Lorin, Solo
		Rosella (Hibiscus Sabdariffa	
		L.) Dengan Ekstraksi Berbantu	
		Ultrasonik Dan Freeze Drier	
18.	International Conference on	Micellar enhanced	29 – 30 September 2015
	Chemical and Material	ultrafiltration	Grand Candi Hotel
	Engineering (2nd) 2015	membrane for batik waste water	Semarang
	UNDIP Semarang	treatment	
19.	Seminar Nasional Rekayasa	Uji Kinerja Pemisahan Zat	20-21 Agustus 2014,
	Kimia dan Proses 2014	Warna Reaktif dengan Micellar	Teknik Kimia Undip
		Enhanced Ultrafiltration	Semarang
		(MEUF) Membrane	
20.	Seminar Nasional Rekayasa	The Effect of Dope Solution	20-21 Agustus 2014,
	Kimia dan Proses 2014	Composition on The Production	Teknik Kimia Undip
		of Membrane Cellulose Acetat	Semarang
		for Produced Water Treatment	
21.	Seminar Nasional Rekayasa	Potensi Membran Ultrafiltrasi	28-29 Agustus 2013,
	Kimia dan Proses 2013	untuk Pengolahan Air	Teknik Kimia Undip
	Teknik Kimia, Fakultas	Terproduksi	Semarang
	Teknik, UNDIP Semarang		
22.	Seminar Nasional Rekayasa	Efektivitas Ozone	28-29 Agustus 2013
	Kimia dan Proses 2013	Backwashing Untuk Reduksi	Teknik Kimia Undip
	Teknik Kimia, Fakultas	Fouling Pada Pemisahan	Semarang
	Teknik, UNDIP Semarang	Emulsi Minyak Air	

Karya Buku dalam 10 Tahun Terakhir

No.	Tahun	Judul Buku	ISSN	Pener	bit
1.	2017	Kimia Organik	978-602-0896-13-	Yoga	Pratama
			7	Semarang	

Perolehan HKI dalam 10 Tahun Terakhir

No.	Tahun	Judul/ Tema HKI	Jenis	Nomor P/ID

1.	2020	Proses Peningkatan Viskositas	Paten	SID201802349
		Glukomanan Umbi Porang	Sederhana	
		(Amorpophalljus onchophyllus)		
		melalui Deasetilasi		
2.	2019	Proses Pembuatan Pewarna Pangan	Paten	SID201903867
		Merah Alami Dari Kelopak Bunga	Sederhana	
		Rosela Merah		
3.	2019	Proses Pembuatan Pewarna Pangan	Paten	IDS000002577
		Alami dari Kelopak Bunga Rosela	Sederhana	
		Ungu		
4.	2017	Proses Pembuatan Bioplastik Pati	Paten	IDS000001707
		Singkong Yang Tahan Mikroba	Sederhana	
		Aspergillus niger.		

Penghargaan yang Pernah Diterima (Pemerintah, Asosiasi, Industri, Institusi Lainnya)

No.	Tahun	Jenis Penghargaan	Institusi Pemberi
1.	2019	Dosen berkinerja baik dalam Publikasi pada	Universitas Diponegoro
		Jurnal Internasional Bereputasi: Semester I	
		Tahun 2019	
2.	2018	Dosen berkinerja Baik dalam Publikasi pada	Universitas Diponegoro
		Jurnal Internasional Bereputasi Semester I	
		Tahun 2018	
3.	2018	Publikasi Jurnal Ilmiah Terbaik 5 Tahun	Universitas Diponegoro
		2017	
4.	2017	Dosen berkinerja Baik dalam Publikasi pada	Universitas Diponegoro
		Jurnal Internasional Bereputasi Semester I	
		Tahun 2017	
5.	2017	Dosen Berprestasi 2 Universitas Diponegoro	Universitas Diponegoro
		Tahun 2017	
6.	2015	Presentasi Poster Terbaik pada Seminar Hasil	Kemenristek Dikti
		Penelitian Kompetitif Nasional 2015,	
		Jogjakarta, Desember 2015	

7.	2013	Satya Lencana 10 Tahun dari PRESIDEN	Presiden Republik
		REPUBLIK INDONESIA	Indonesia
8.	2012	Juara 2 Lomba Penulisan Karya Ilmiah	Fakultas Teknik Undip
		Populer	
9.	2011	Presentasi poster terbaik pada Seminar Hasil	Fakultas Teknik Undip
		Penelitian Fakultas Teknik	

Semarang, 15 Februari 2021

Prof. Nita Aryanti, S.T., M.T., Ph.D NIP. 197501172000032001

Lampiran D. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN KETUA PENELITI

Yang bertanda tangan di bawah ini:

Nama : Dr. Ir. Ratnawati, MT

NIP/ NIDN : 196004121986032001 / 0012046008

Pangkat / Golongan : Pembina Tk. I / IV/b

Jabatan Fungsional : Lektor Kepala

Dengan ini menyatakan bahwa proposal penelitian saya dengan judul: <u>Pembuatan biodegradable plastic</u> untuk aplikasi peralatan makan dari tepung beras yang diperkuat bubuk sekam dengan teknik ekstrusi yang diusulkan dalam skema Penelitian Strategis untuk tahun anggaran 2021 **bersifat original dan belum pernah dibiayai oleh lembaga / sumber dana lain**.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Semarang, Februari 2021 Yang menyatakan,

Dr. Ir. Ratnawati, MT NIP 196004121986032001