

Clustering and Graphs

Data Mining for Business and Governance 2017-10-10

Guest Lecture - Martin Atzmueller

Clustering and Graph Analysis

Clustering

Clustering & Graph Analysis

- Introduction
 - Goals of clustering
 - Distance functions
 - Applications, types of algorithms
- Partitioning Methods
 - k-means, k-medoid, expectation maximization
 - Initialization and parameter selection
 - Density-based clustering
- Hierarchical Methods
- Graph clustering
 - Communities
 - Clique percolation method
 - Divisive hierarchical clustering

Clustering - Goals

- Identify a finite set of categories, classes or groups (clusters) in the data
- Objects in the same cluster should be as similar as possible
- Objects in *different* clusters should be as dissimilar as possible

Clusters of different sizes, forms and density hierarchical clusters

Distance Functions

- Formalizing similarity
 - Sometimes: similarity function
 - Typically: distance function dist(o₁,o₂) for pairs of objects o₁ und o₂
 - Small distance ≈ similar objects
 - Large distance ≈ dissimilar objects
- Requirements for distance functions
 - (1) $dist(o_1, o_2) = d \in \mathbb{R}^{\geq 0}$
 - (2) $dist(o_1, o_2) = 0$ iff. $o_1 = o_2$
 - (3) $dist(o_1, o_2) = dist(o_2, o_1)$ (Symmetry)
 - (4) additionally, for metrics (triangular inequality) $dist(o_1, o_3) \leq dist(o_1, o_2) + dist(o_2, o_3)$.

Distance Functions/ Numeric/Categorical Attributes

- Objects $x = (x_1, ..., x_d)$ and $y = (y_1, ..., y_d)$
- General L_p -metric (Minkowski-distance) $dist(x, y) = \sqrt[p]{\sum_{i=1}^{d} |(x_i y_i)|^p}$
- Euclidean distance (p = 2) $dist(x,y) = \sqrt{\sum_{i=1}^{d} (x_i y_i)^2}$
- Manhattan distance (p = 1) $dist(x,y) = \sum_{i=1}^{d} |x_i y_i|$
- Maximum metric $(p = \infty)$ $dist(x, y) = \max\{|x_i y_i|| 1 \le i \le d\}$
- Categorical attributes (Hamming distance) $dist(x,y) = \sum_{i=1}^{d} \delta(x_i,y_i) \text{ with } (x_i,y_i) = \begin{cases} 0, & \text{if } x_i = y_i \\ 1, & \text{otherwise} \end{cases}$
- A popular *similarity* function: Correlation coefficient \in [-1,+1]

Example Application Web Session Clustering

Entries of a web log

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364 romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712 fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/porada.html HTTP/1.0" 200 1229 scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

- Generate sessions:
- Session::= <IP-adress, User-Id, [URL₁, . . ., URL_k]>
 - which entries compose a session?
- Distance function for sessions: Jaccard-Coefficient $d(x,y) = \frac{|x \cup y| |x \cap y|}{|x \cup y|}$

Types of Clustering Methods

- Partitioning methods
 - Parameter: k number of clusters, distance function
 - Searches for a "flat" clustering into k clusters with minimal costs
- Hierarchical methods
 - Parameter: Distance function for points and clusters
 - Determines hierarchy of clusters, combines respective most similar clusters
- Density-based methods
 - Parameter: minimal density within a cluster, distance function
 - Extends points with their numbers as long as density is large
- Other clustering methods
 - Fuzzy clustering
 - Graph-theoretical methods

– ...

Partitioning

- Goal: Partitioning into k clusters with minimal costs
- Locally optimizing algorithm
 - Choose k initial cluster representatives
 - Optimize these iteratively
 - Assign each object to ist most similar representative (cluster)
- Types of cluster representatives
 - Cluster mean (Constructing central points)
 - Cluster element (Selecting central points)
 - Probability distribution of the cluster (Expectation maximization)

Constructing Central Points

Constructing Central Points

- Objects are points $p=(x_1^p, ..., x_d^p)$ in euclidean vector space
- Distance function: euclidean distance
- Centroid μ_C : Mean of all points in cluster C
- Cost measure (compactness) of a cluster C

$$TD^{2}(C) = \sum_{p \in C} dist(p, \mu_{C})^{2}$$

Cost measure (compactness) of a clustering

$$TD^2 = \sum_{i=1}^k TD^2(C_i)$$

Constructing Central Points Basic Algorithm

 ClusteringThroughMinimizingVariance (Points D, Integer k) Generate an "initial" Partitioning of the set of points D into k classes; Calculate set $C' = \{C_1, \ldots, C_k\}$ denoting the centroids for these k classes; $C = \{ \};$ repeat until C = C' C = C'; Form k classes by assigning each point to the closest centroid in C; Calculcate the set $C' = \{C'_1, \ldots, C'_k\}$ of

centroids for the classes (determined in

return C;

the previous step);

Constructing Central Points

Calculate new centroids

Assign to new centroids

Calculate new centroids

Constructing Central Points - Variants of the Basic Algorithm

- *k-means* [Lloyd 57, MacQueen 67]
 - Basic idea: the centroids are directly updated whenever a point changes its cluster
 - K-means conforms to overall properties of the basic algorithm
 - However: K-means is order-dependent
- ISODATA [Ball & Hall, 65]
 - Based on k-means
 - Improvement of the results through
 - Elimination of very small clusters
 - Combination and split operations
 - However: User needs to supply many additional parameters
- K-Means & careful seeding → k-means++

Constructing Central Points

- "+"
 - Efficiency: Linear complexity for one iteration
 - Number of iterations is typically small.
 - Simple to implement
- K-means is the most popular partitioning clustering method
- "_"
 - Problem: Noise and outliers
 - All objects contribute to the calculation of the centroid
 - Only convex shaped clusters
 - Often difficult to determine number of clusters (k)
 - Strongly dependent on the initial partitioning (both result quality as well as runtime)

- Only requires distance function for pairs of objects
- Medoid: a central element of the cluster (representative point)
- Cost measure (compactness) of a cluster C

$$TD(C) = \sum_{p \in C} dist(p, mc)$$

Cost measure (compactness) of a clustering

$$TD = \sum_{i=1}^{k} TD(C_i)$$

Search space of the clustering algorithm: all partitions with k elements

 \rightarrow runtime complexity exponential in k

- K-medoid (PAM) [Kaufman & Rousseeuw 1990]
 - "Partitioning around the medoid"
 - Greedy algorithm: swap only one mediod with a non-medoid in each step
 - In each step: Swap the pair (medoid, non-medoid), with the largest reduction in costs
- CLARANS [Ng & Han 1994]
 - Two additional parameters: maxneighbor und numlocal
 - At most maxneighbor of randomly selected pairs are considered (Medoid, Non-medoid)
 - The first swap causing a reduction of the TD value is being selected
- The search for the k "mediods" is only repeated numlocal times

```
PAM (Object set D, Integer k, Float dist)
  Initialize the k medoids:
  TD Change := -\infty;
  while TD Change < 0 do</pre>
     Calculate the value of TD_{N\leftrightarrow M} for each pair
       (Medoid M, Non-medoid);
     Choose the pair (M, N), for which the value
      TD Change := TD_{N \leftrightarrow M} - TD is minimal;
     if TD Change < 0 then</pre>
          Replace the Medoid M by the Non-Medoid N;
          Store the current set of medoids as the
            currently best partitioning;
  return medoids;
```

Comparison: PAM vs. CLARANS

Expectation Maximization

[Dempster, Laird & Rubin 1977]

- Objects are points $p=(x_1^p, ..., x_d^p)$ in euclidean vector space
- A cluster is described by a probablity distribution (typically normal distribution)
- A points belongs to different clusters with different probabilities
- Representation of a cluster C
 - Mean μ_C of all points of the cluster
 - $d \times d$ covariance matrix Σ_{C} for the points in cluster C
- Probability density of a cluster C

$$P(x \mid C) = \frac{1}{\sqrt{(2\pi)^d \mid \sum_C \mid}} e^{-\frac{1}{2} \cdot (x - \mu_C)^T \cdot (\sum_C)^{-1} \cdot (x - \mu_C)}$$

- Problem: Converges to a (possibly local) optimum
- Number of iterations is typically relatively high

Selecting Initial Clusterings

- Basic idea: Clustering of a small sample typically yields good initial clustering
- However: Distribution in samples often different from general population
- Method [Fayyad, Reina & Bradley 1998]
 - Generate m independent/different samples
 - Cluster each of the samples
 - → m different estimators for cluster centers
 - $A = (A_1, A_2, \ldots, A_k), B = (B_1, \ldots, B_k), C = (C_1, \ldots, C_k), \ldots$
 - Now, cluster the set $A \cup B \cup C \cup ...$ with m different initializations ...
 - Select the clustering with the best value (cost measure)

Selecting Initial Clusterings

Dataset

k = 3 Gaussian clusters

All/Samples

m = 4 samples

x true cluster centres

Which k should we select?

- Method
 - Determine a clustering for k = 2, ..., n-1
 - Select the "best" clustering from the result set
- How to determine the "best" clustering?
 - Measure needs to be independent of k
 - K-means/K-medoid: TD^2 and TD decrease monotonically with increasing k
 - EM: Cost measure increases monotonically with increasing k
 - → Silhouette coefficient

Silhouette Coefficient [Kaufman & Rousseeuw 1990]

- A cost measure independent of k for k-means/k-medoid
- Let
 - a(o) denote the distance of an object o to the representative of its cluster, and
 - b(o) the distance to the representative of the "second closest" cluster
- Silhouette s(o) of o $s(o) = \frac{b(o) a(o)}{\max\{a(o), b(o)\}}$
 - -s(o) = -1/0/+1: bad/indifferent/good clustering
- Silhouette coefficient s_C of a clustering
 - Average silhouette of all objects
- Interpretation
 - $-s_c > 0.7$: "strong" structure,
 - $s_C > 0.5$: adequate structure, . . .

Basic Idea

- Cluster as areas in d-dimensional space, where the objects are located "densely close to each other"
- Separated by areas, in which the objects are not "densely close to each other"
- Requirements of density-based clusters
 - For every object of an cluster: Local (point) density exceeds a given threshold
 - The set of objects forming a cluster is "spatially connected"

- DBScan [Ester, Kriegel, Sander & Xu 1996]
- An object $o \in O$ is called *core object* w.r.t. ε and *MinPts,,* if:
- $|N_{\varepsilon}(o)| \geq MinPts$, with $N_{\varepsilon}(o) = \{o' \in O \mid dist(o, o') \leq \varepsilon\}$.

- An object $p \in O$ is *directly reachable* from $q \in O$ w.r.t. ε and *MinPts*, if: $p \in N_{\varepsilon}(q)$ and q is core object in O.
- An object p is reachable from q, if there exists a chain of directly reachable objects between q and p.

 Two objects p und q are density-connected, if they are both reachable from an object o.

- A cluster C w.r.t. ε and MinPts is a non-empty subset of O, for which the following conditions hold:
 - Maximality: $\forall p,q \in O$: if $p \in C$ and q is reachable from p, then also $q \in C$.
 - − Connectedness: $\forall p,q \in C$: p is density-connected to q.

- Definition: Clustering
 - A density-based clustering *CL* of *O* w.r.t. ε and *MinPts* is the set of all density-based clusters w.r.t. ε and *MinPts* in *O*.
 - The set Noise_{CL} is defined as the set of all objects in O, which
 do not belong to one of the density-based clusters C_i
- Basic properties
 - Let C denote a density-based cluster with $p \in C$ core object Then: $C = \{o \in O \mid o \text{ reachable from } p \text{ w.r.t. } \epsilon \text{ and } MinPts\}.$

```
DBSCAN (Objects D, Real ε, Integer MinPts)
// Initially all objects are not-classified,
// o.ClId = not-classified for all o ∈ D
ClusterId := nextId(NOISE);
for i from 1 to |D| do
   object := D.get(i);
   if object.ClId = not-classified then
      if ExpandCluster(D, object, ClusterId, ε, MinPts)
      then ClusterId:=nextId(ClusterId);
```

- Cluster: Density larger than the "threshold density" given by ε and MinPts
- How to detect the cluster with minimal density in the dataset?
- Heuristic: Consider distances to the *k*-nearest neighbors.

- Funktion *k-distance*: Distance of an object to its *k*-nearest neighbor
- *k-distance-diagram*: *k-*distances of all objects, in descending order

Example of a k-distance-diagram

- Heuristic Method
- User provides a value for k (Default: k = 2*d 1), MinPts := k+1.
- System calculates and visualizes the *k*-distance-diagram.
- User selects suitable object o in the k-distance-diagram, $\varepsilon := k$ -distance(o).

- Problems of parameter estimation
 - Hierarchical clusters
 - Significantly different density in partitionings of the input space
 - Clusters and noise are not well separated

Hierachical Methods

Goal

Construction of a hierarchy of clusters (dendrogram);
 Clusters with minimal distance are merged

Dendrogram

- Tree structure: Nodes denote clusters
 - Root: All objects
 - Leaves: Single objects
 - Inner node: Union of all objects represented in the subtree (starting at that node)

Hierachical Methods

Example of a dendrogram

- Types of hierarchical methods
 - Bottom-up construction of the dendrogram (agglomerative)
 - Top-down construction of the dendrogram (divisive)

Single-Link & Variants

Algorithm Single-Link [Jain & Dubes 1988]

- Agglomerative hierarchical clustering:
 - Generate initial clusters consisting of single objects und calculate the distances between all such pairs
 - 2. Generate a new cluster by combining the two clusters with minimal distance
 - Determine the distance between the new cluster and all other clusters
 - 4. If there is only one cluster left terminate. Otherwise, go to step 2.

Single-Link & Variants

- Distance functions for clusters
- Distance function *dist(x,y)* for pairs of objects
- Let *X*, *Y* denote clusters

• Single-Link
$$dist - sl(X,Y) = \min_{x \in X, y \in Y} dist(x,y)$$

• Complete-Link
$$dist-cl(X,Y) = \max_{x \in X, y \in Y} dist(x,y)$$

• Average-Link
$$dist-al(X,Y) = \frac{1}{|X|\cdot |Y|} \cdot \sum_{x \in X, y \in Y} dist(x,y)$$

Single-Link & Variants

- Discussion
- "+"
 - Does not require knowledge about the number of clsuters
 - Result is not only a flat clustering, but a hierarchy of clusters
 - A single clustering can be obtained using the dendrogram (however, this requires domain knowledge) by a "vertical cut" through the dendrogram
- "_"
 - Decisions during construction cannot be revised
 - Susceptible to noise (single link) "line" of objects can connect two clusters
 - Inefficiency: Runtime at least quadratic in the number of objects

Graphs/Networks

Network:

- A set of atomic entities → nodes or vertices ("points")
- A set of links/edges between these nodes
- Edges model pairwise relations
- Edge: directed or undirected
- Network: Nodes + Edges
- For us, a network is an abstract object (list of pairs), independent of its representation
 - Often represented as a graph
 - Powerful modeling options for complex (multi-relational) data
 - Analysis: Structural properties
 Here: Clusters/groups/communities

Complex Networks & Graphs

Social Networks

Communities

- A community is a set of nodes between which the interactions are (relatively) frequent
 - A.k.a., group, cluster, cohesive subgroups, modules

■ Applications:

- Recommendation based communities,
- Network Compression
- Visualization of a huge network

Subjectivity of Community Definition

Taxonomy of Community Criteria

- Criteria vary depending on the tasks
- Roughly, community detection methods can be divided into 4 categories (not exclusive):
- Node-Centric Community
 - Each node in a group satisfies certain properties
- Group-Centric Community
 - Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level
- Network-Centric Community
 - Partition the whole network into several disjoint sets
- Hierarchy-Centric Community
 - Construct a hierarchical structure of communities

Complete Mutuality: Cliques

Clique: a maximum complete subgraph in which all nodes are adjacent to each other

- Difficult to find the maximum clique in a network
- Straightforward implementation to find cliques is very expensive in time complexity

Clique Percolation Method (CPM)

- Clique is a very strict definition, unstable
- Normally use cliques as a core or a seed to find larger communities
- CPM is such a method to find overlapping communities
 - Input
 - A parameter k, and a network
 - Procedure
 - Find out all cliques of size k in a given network
 - Construct a clique graph. Two cliques are adjacent if they share k-1 nodes
 - Each connected component in the clique graph forms a community

CPM Example

Cut

- Most interactions are within group whereas interactions between groups are few
- Community detection → Minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut problem: Find a graph partition such that the number of edges between the two sets is minimized

Hierarchy-Centric Community Detection

 Goal: build a hierarchical structure of communities based on network topology

Allow the analysis of a network at different resolutions

- Representative approaches:
 - Divisive Hierarchical Clustering
 - Agglomerative Hierarchical clustering

Divisive Hierarchical Clustering

- Divisive clustering
 - Partition nodes into several sets
 - Each set is further divided into smaller ones
 - Network-centric partition can be applied for the partition
- One particular example: recursively remove the "weakest" tie
 - Find the edge with the least strength
 - Remove the edge and update the corresponding strength of each edge
- Recursively apply the above two steps until a network is discomposed into desired number of connected components.
- Each component forms a community

Partitioning: Edge Betweenness

- The strength of a tie can be measured by edge betweenness
- Edge betweenness: the number of shortest paths that pass along with the edge

edge-betweenness(e) =
$$\Sigma_{s < t} \frac{\sigma_{st}(e)}{\sigma_{s,t}}$$

The edge betweenness of e(1, 2) is 4, as all the shortest paths from 2 to $\{4, 5, 6, 7, 8, 9\}$ have to either pass e(1, 2) or e(2, 3), and e(1,2) is the shortest path between 1 and 2

 The edge with higher betweenness tends to be the bridge between two communities.

Divisive Clustering based on Edge Betweenness

After removing e(4,5), the betweenness of e(4, 6) becomes 20, which is the highest;

After remove e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

Clustering and Graphs

Data Mining for Business and Governance 10/10/2017

Guest Lecture - Martin Atzmueller