Лабораторная работа №6. Градиентные методы в решении задач машинного обучения.

Часть 2. Логистическая регрессия.

Используемый набор данных: <u>banknote authentication</u> (<u>https://archive.ics.uci.edu/ml/datasets/banknote+authentication</u>)

In [1]:

```
from IPython.display import display
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, roc_curve, roc_auc_score
from sklearn.feature_selection import RFE
import os
import requests

//matplotlib inline
pd.options.display.max_columns = None
```

In [2]:

```
def downloadFile(url, filePath):
    if not os.path.exists(filePath):
        req = requests.get(url)
        f = open(filePath, "wb")
        f.write(req.content)
        f.close

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00267/data_banknote_au
thentication.txt"
fileName = "dataset/data_banknote_authentication.txt"
downloadFile(url, fileName)
```

In [3]:

```
headers = ["Variance", "Skewness", "Curtosis", "Entropy", "Class"]
data = pd.read_csv(fileName, names=headers)
data.sample(40)
```

Out[3]:

	Variance	Skewness	Curtosis	Entropy	Class
321	3.73520	9.59110	-3.903200	-3.348700	0
757	2.66060	3.16810	1.961900	0.186620	0
56	2.56350	6.77690	-0.619790	0.385760	0
737	4.15420	7.27560	-2.476600	-1.209900	0
1197	-0.82053	0.65181	-0.488690	-0.527160	1
1021	-1.27920	2.13760	-0.475840	-1.397400	1
8	3.20320	5.75880	-0.753450	-0.612510	0
1346	1.25720	4.87310	-5.286100	-5.874100	1
479	2.09620	2.47690	1.937900	-0.040962	0
289	3.24220	6.22650	0.122240	-1.446600	0
62	4.25860	11.29620	-4.094300	-4.345700	0
1018	-0.40804	0.54214	-0.527250	0.658600	1
387	4.63610	-2.66110	2.835800	1.199100	0
1276	-0.89809	-4.48620	2.200900	0.507310	1
824	-0.42940	-0.14693	0.044265	-0.156050	1
1196	-2.01490	3.68740	-1.938500	-3.891800	1
152	5.06910	0.21313	0.202780	1.209500	0
558	4.38460	-4.87940	3.366200	-0.029324	0
1178	-2.07540	1.27670	-0.642060	-1.264200	1
196	4.14540	7.25700	-1.915300	-0.860780	0
1294	-7.03640	9.29310	0.165940	-4.539600	1
1292	-0.76794	3.45980	-3.440500	-3.427600	1
1149	0.33325	3.31080	-4.508100	-4.012000	1
1304	-5.29430	-5.14630	10.333200	-1.118100	1
709	3.26920	3.41840	0.207060	-0.066824	0
794	-1.62440	-6.34440	4.657500	0.169810	1
214	4.19620	0.74493	0.832560	0.753000	0
891	-0.55008	2.86590	-1.648800	-2.431900	1
1167	-0.87874	-2.21210	-0.051701	0.099985	1
1031	-1.85540	-9.60350	7.776400	-0.977160	1
1039	1.01940	1.10290	-2.300000	0.593950	1
799	-3.22380	2.79350	0.322740	-0.860780	1
801	-0.91318	-2.01130	-0.195650	0.066365	1
1302	-2.57240	-0.95602	2.707300	-0.166390	1
34	-1.61620	0.80908	8.162800	0.608170	0
46	2.08430	6.62580	0.483820	-2.213400	0
382	0.86202	2.69630	4.290800	0.547390	0

_		Variance	Skewness	Curtosis	Entropy	Class
	213	0.68087	2.32590	4.908500	0.549980	0
	825	-2.23400	-7.03140	7.493600	0.613340	1
	373	1.91050	8.87100	-2.338600	-0.756040	0

In [4]:

```
display(data.isna().sum())
display(data.describe())
```

Variance 0 Skewness 0 Curtosis 0 Entropy 0 Class 0 dtype: int64

	Variance	Skewness	Curtosis	Entropy	Class
count	1372.000000	1372.000000	1372.000000	1372.000000	1372.000000
mean	0.433735	1.922353	1.397627	-1.191657	0.444606
std	2.842763	5.869047	4.310030	2.101013	0.497103
min	-7.042100	-13.773100	-5.286100	-8.548200	0.000000
25%	-1.773000	-1.708200	-1.574975	-2.413450	0.000000
50%	0.496180	2.319650	0.616630	-0.586650	0.000000
75%	2.821475	6.814625	3.179250	0.394810	1.000000
max	6.824800	12.951600	17.927400	2.449500	1.000000

Выделим из множества признаков существенные для моделирования.

In [5]:

```
X = data.drop(columns=["Class"]).copy()
y = data["Class"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.35, random_state=
25)
LR = LogisticRegression()
```

In [6]:

```
rfe = RFE(LR, n_features_to_select=len(X_train.columns))
rfe.fit(X_train, y_train)
rfe.support_
```

Out[6]:

```
array([ True, True, True])
```

Все признаки существенны для моделирования.

In [7]:

```
y_pred = LR.fit(X_train, y_train).predict(X_test)
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0	1.00	0.99	0.99	273
1	0.99	1.00	0.99	208
2661192614			0.99	401
accuracy				481
macro avg	0.99	0.99	0.99	481
weighted avg	0.99	0.99	0.99	481

In [8]:

```
fpr, tpr, _ = roc_curve(y_test, y_pred)
auc = roc_auc_score(y_test, y_pred)

plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = "AUC = %0.2f"%auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Величина AUC говорит о качестве классификации.