Claims

[c1]	A method for amplifying a signal comprising:
	generating an input signal; and
	amplifying the input signal utilizing a chopper-stabilized, silicon carbide NMOS
	depletion mode operational amplifier to produce an amplified output signal.

- [c2] A method in accordance with Claim 1 wherein amplifying the input signal comprises chopping the input signal utilizing a first NMOS depletion mode chopping switch responsive to a first chopping signal to produce a first chopped input signal.
- [c3] A method in accordance with Claim 1 wherein amplifying the input signal comprises amplifying the first chopped input signal utilizing an NMOS depletion mode amplifier stage to produce an amplified chopped output signal.
- [c4] A method in accordance with Claim 1 wherein amplifying the input signal comprises chopping the amplified chopped output signal utilizing an NMOS depletion mode amplifier responsive to a level shifted first chopping signal to produce a chopper-stabilized output signal.
- [c5] A method in accordance with Claim 2 further comprising generating at least one opposite node of a resistor of an NMOS depletion mode buffered field effect transistor logic (BFL) level shifting/inverter circuit, the first chopping signal, and the level shifted first chopping signal in response to a clock signal.
- A buffered field effect transistor logic (BFL) level-shifting/inverter circuit comprising:

an input;

- an NMOS depletion mode inverter responsive to said inverter stage input to produce an inverted output;
- a buffered field effect transistor logic (BFL) stage comprising a first NMOS depletion mode field effect transistor (FET) having a first gate and an associated first channel, a second NMOS depletion mode FET having a second gate and an associated second channel, and a voltage drop circuit electrically connected *in series* between said first channel and said second channel;

[c6]

a first output at an electrical node between said voltage drop circuit and said first channel; and

a second output at an electrical node between said voltage drop circuit and said second channel.

[c7] A circuit in accordance with Claim 6 wherein said voltage drop circuit is a resistor.

[c8] A buffered field effect transistor logic (BFL) level-shifting/inverter circuit comprising:

an input;

an NMOS depletion mode inverter responsive to said inverter stage input to produce an inverted output;

a buffered field effect transistor logic (BFL) stage responsive to said inverted output, said BFL stage comprising a first NMOS depletion mode field effect transistor (FET) having a first gate and an associated first channel, a second NMOS depletion mode FET having a second gate and an associated second channel; and a resistor electrically connected in series between said first channel and said second channel;

a first output at an electrical node between said resistor and said first channel; and a second output at an electrical node between said resistor and said second channel, wherein said circuit is fabricated on a silicon carbide substrate.

[c9] A circuit in accordance with Claim 8 configured to operate with a negative direct current (DC) bias on each said gate with respect to each said associated channel.

[c10] An operational amplifier circuit comprising:

a first NMOS depletion mode amplification stage;

a first NMOS depletion mode chopping switch responsive to a first chopping signal to chop an input signal to said first amplification stage;

a second NMOS depletion mode chopping switch responsive to a level-shifted first chopping signal to chop an output signal from said first amplification stage; and an NMOS depletion mode buffered field effect transistor logic (BFL) level shifting/inverter circuit responsive to a clock signal to generate said first chopping signal and said level shifted first chopping signal across a voltage dropping element.

- [c11] A circuit in accordance with Claim 10 wherein said first voltage dropping element comprises at least one diode-connected field effect transistor (FET).
- [c12] A circuit in accordance with Claim 10 wherein said voltage dropping element is a resistor, said NMOS depletion mode BFL level shifting/inverter circuit comprises a plurality of field effect transistors (FETs) each having a gate and an associated channel.
- [c13] A circuit in accordance with Claim 12 wherein said BFL level shifting/inverter circuit is configured to operate with negative direct current (DC) bias on each said gate with respect to each said associated channel.
- [c14] An operational amplifier circuit comprising:
 - a first NMOS depletion mode amplification stage;
 - a first NMOS depletion mode chopping switch responsive to a first chopping signal to chop an input signal to said first amplification stage;
 - a second NMOS depletion mode chopping switch responsive to a level-shifted first chopping signal to chop an output signal from said first amplification stage; and and an NMOS depletion mode buffered field effect transistor logic (BFL) level shifting/inverter circuit responsive to a clock signal to generate said first chopping signal and said level shifted first chopping signal across a resistor; and further wherein said operational amplifier circuit is fabricated on a silicon carbide substrate.
- [c15] A circuit in accordance with Claim 14 wherein said first chopping switch and said second chopping switch each comprise NMOS field effect transistor (FET) switches having a channel and a gate, and said NMOS field effect transistors have threshold voltages negative with respect to their respective channels.
- [c16] A circuit in accordance with Claim 14 further comprising a clock generator configured to produce said clock signal.
- [c17]
 An operational amplifier circuit comprising:
 a first NMOS depletion mode amplification stage having differential inputs and outputs;
 - a first NMOS depletion mode chopping switch responsive to a first chopping signal