Neural Network Tutorial & Application in Nuclear Physics

Weiguang Jiang (蒋炜光) UTK / ORNL

Machine Learning

- Logistic Regression
- Gaussian Processes
- Neural Network
- Support vector machine
- Random Forest
- Genetic Algorithm

•

Machine Learning ≈ Establish a function

- Image Reconition
- f(

- Playing Go
- f(

$$) = "3-4" (next move)$$

- Extrapolation
- f (

Machine Learning Framework

Image Recognition

) = "Panda"

- Model:
- Complex function with lots of parameters (black box)

$$f_1$$
 (Panda" f_1 (Dog" f_2 () = "Panda" f_2 () = "cat"

Machine Learning Supervised Learning

A set of function

Goodness of the function *f*

Training **Data**

Supervised Learning

Function input:

Function output:

"bird" "Timon"

"dog"

Machine Learning Supervised Learning

Three Steps for Machine Learning

Three Steps for Machine Learning

Neural Network & Machine Learning

128 X 128 X 3 color = 49152 neurons 0-255 chroma

0 1 0 0 0 "panda"

A sample of feed forward neural network (NN)

Feedforward Neural Network

Feedforward:

The value for every neuron only depend on the previous layer.

Activation function

give non-linearity to the NN

$$z \rightarrow (\sigma(z)) \rightarrow \alpha$$

Activation function

ReLU
$$a = z$$

$$a = 0$$

Neural Network Function

input layer (X): i neurons

one hidden layer: j neurons

output layer (Y): k neurons

$$Z_j = \sum_i X_i W_{ij} + b_j$$

$$X'_{j} = \sigma(Z_{j})$$

$$Y_k = \sum_j X'_j W'_{jk} + b'_k$$

Tensor operation

Training data: p sample

input layer (X): i neurons

one hidden layer: j neurons

output layer (Y): k neurons

$$Z_{(p,j)} = X_{(p,i)} \times W_{(i,j)} + b_{(p,j)}$$

$$\begin{pmatrix} z_{11} & \cdots & z_{1j} \\ \vdots & \ddots & \vdots \\ z_{p1} & \cdots & z_{pj} \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1i} \\ \vdots & \ddots & \vdots \\ x_{p1} & \cdots & x_{pi} \end{pmatrix} \times \begin{pmatrix} w_{11} & \cdots & w_{1j} \\ \vdots & \ddots & \vdots \\ w_{i1} & \cdots & w_{ij} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1j} \\ \vdots & \ddots & \vdots \\ b_{p1} & \cdots & b_{pj} \end{pmatrix}$$

$$Y_{(p,k)} = X'_{(p,j)} \times W'_{(j,k)} + b'_{(p,j)}$$

$$\begin{pmatrix} y_{11} & \cdots & y_{1j} \\ \vdots & \ddots & \vdots \\ y_{p1} & \cdots & y_{pj} \end{pmatrix} = \begin{pmatrix} \sigma(z)_{11} & \cdots & \sigma(z)_{1j} \\ \vdots & \ddots & \vdots \\ \sigma(z)_{p1} & \cdots & \sigma(z)_{pj} \end{pmatrix} \times \begin{pmatrix} w'_{11} & \cdots & w'_{1j} \\ \vdots & \ddots & \vdots \\ w'_{i1} & \cdots & w'_{ij} \end{pmatrix} + \begin{pmatrix} b'_{11} & \cdots & b'_{1j} \\ \vdots & \ddots & \vdots \\ b'_{p1} & \cdots & b'_{pj} \end{pmatrix}$$

Three Steps for Machine Learning

Evaluate a network

Image Recognition

Introduce a loss function to describe the performance of the network (mse, cross entropy)

Loss:

$$L = \sum_{r=1}^{p} l_p$$

Smaller the better

mse:
$$l_p = \sum_k (y_k - \hat{y}_k)^2 / k$$

Supervised:

 $\widehat{y_i} = \mathbf{0}$

Three Steps for Machine Learning

"Learning": find the best function

Ultimate goal:

Find the network parameters set that minimize the total loss L

Gradient Descent (even for AlphaGo)

- Compute ∂L/∂w with training data
- Update the parameters $w \leftarrow w \eta \partial L / \partial w$
- Repeat until $\partial L/\partial w$ is small enough

This procedure is so call the machine learning.

Backpropagation

An efficient way to compute $\partial L/\partial w$

$$Z_j = \sum_i X_i W_{ij} + b_j$$

$$X'_{j} = \sigma(Z_{j})$$

$$Y_k = \sum_j X'_j W'_{jk} + b'_k$$

mse:
$$l_p = \sum_k (y_k - \hat{y}_k)^2 / k$$

Backpropagation (BP)

Backpropagation

$$Z_{j} = \sum_{i} X_{i}W_{ij} + b_{j}$$

$$X'_{j} = \sigma(Z_{j})$$

$$Sigmoid: x' = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\downarrow$$

$$Y_{k} = \sum_{j} X'_{j}W'_{jk} + b'_{k}$$

mse: $l_p = \sum_{k} (y_k - \hat{y}_k)^2 / k$

$$\frac{\partial l}{\partial w} = \frac{\partial l}{\partial z} * x \qquad \frac{\partial l}{\partial b} = \frac{\partial l}{\partial z}$$

$$\uparrow$$

$$\frac{\partial l}{\partial z} = \frac{\partial l}{\partial x'} * \frac{1}{1 + e^{-z}} * (1 - \frac{1}{1 + e^{-z}})$$

$$\uparrow$$

$$\frac{\partial l}{\partial w'} = \frac{\partial l}{\partial y} * x' \qquad \frac{\partial l}{\partial b'} = \frac{\partial l}{\partial y}$$

$$\uparrow$$

$$\frac{\partial l}{\partial y} = 2/k * (y - \hat{y})$$

Optimizer

Gradient Descent : walking in the desert, blindfold

Cannot see the whole picture

SGD Momentum NAG Adagrad Adadelta **Rmsprop**

SGD Momentum AdaGrad Adam

"Deep" learning

Deep just means more hidden layers

" Deep" is better

But not too deep

"Deep" VS "Wide"

"Deep" learning

Gradient vanishing/exploding problem

n' hidden layers w_q is the weights for "q" th hidden layer

$$\frac{\partial l}{\partial x'} = \frac{\partial l}{\partial y} * \mathbf{w}$$

$$\frac{\partial l}{\partial w_q} = \frac{\partial l}{\partial y} * w_n * w_{n-1} * w_{n-2} * \dots * w_{q+1} * x$$

Overfitting

Training data and testing data can be different

Solution:
Get more training data
Create more training data
Dropout
L1/L2 regularization
Early Stopping

Friendly tool: Keras

- Python
- \$ apt-get install python3-pip
- \$ pip3 install keras
- \$ pip3 install tensorflow

Neural network simulation & extrapolation

- NN application in nuclear physics
- ⁴He ground-state energy

^{*} Negoita G A, Luecke G R, Vary J P, et al. Deep Learning: A Tool for Computational Nuclear Physics[J]. arXiv preprint arXiv:1803.03215, 2018.

Neural network simulation & extrapolation

• ⁴He radius

Neural network simulation & extrapolation

The minimum g.s energy of each Nmax drops exponentially

^{*} Forssén, C., Carlsson, B. D., Johansson, H. T., Sääf, D., Bansal, A., Hagen, G., & Papenbrock, T. (2018). Large-scale exact diagonalizations reveal low-momentum scales of nuclei. *Physical Review C*, *97*(3), 034328.

Neural network for Coupled-cluster

$$|\Psi_0\rangle = e^{\hat{T}}|\Phi_0\rangle$$

$$\hat{T} = \sum_{i} T_{i}$$

$$\hat{T}_{\text{CCSDT}} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$$

CCSDT equations:

$$\langle \Phi_i^a | e^{-T} H e^T | \Phi_0 \rangle = 0$$

$$\langle \Phi_{ij}^{ab} | e^{-T} H e^{T} | \Phi_{0} \rangle = 0$$

$$\langle \Phi_{ijk}^{abc} | e^{-T} H e^{T} | \Phi_0 \rangle = 0$$

We want to truncate the 3p3h configurations

Introduce NN to select the more important configurations

Neural network for Coupled-cluster

• The input layer include all the quantum numbers of the 3p3h amplitudes (n $\mid j \mid_{tot} t_z \dots$).

Neural network in nuclear matter

Train with different combination of cD,cE.

Neural network Uncertainty analysis

 Even with the same input data and network structure, the NN will give different results in mutual independence trainings.

Sources of uncertainty

- 1. random initialization of neural network parameters
- 2. different divisions between training data and validation data
- 3. data shuffle (limit batch size)

Solution

- 1. ???
- 2. k-fold cross validation ...
- 3. increase batch size ...

Ensembles of Neural Networks

- 4He radius
- The distribution of NN predict radius is Nmax 4-12 Gaussian.
- Define the full width at half maximum value as the uncertainty for certain NN structure.
- The NN uncertainty reduce with more training data.
- The almost identical value of NN prediction radius indicates that the NN has a good generalization performance.

Nmax 4-16

Nmax 4-20

More complex case:

⁴He g.s. energy, with two peak

⁴He g.s. energy, with two peak

We can separate the peaks with features (loss) provided by NN.

