Einführung und Definitionen

Caspar Nagy

27. Mai 2019

Gliederung

- Motivation
- Beispiele für parametrisierte Probleme und ihre Komplexität
 - ► BAR FIGHT PREVENTION
 - Brute Force
 - Kernelization
 - Bounded Search Trees
 - Vertex Coloring
 - ► CLIQUE
 - ▶ mit k
 - mit Δ
- Definitionen
- Komplexitätsbeweise für parametrisierte Probleme
 - ▶ Theoretische Grundlagen
 - ▶ CLIQUE für reguläre Graphen $\in W[1]$

Motivation – Wo wir bei TGI stehen geblieben sind

Viele Interessante Probleme $\in NP$

- ▶ Lösungen für BAR FIGHT PREVENTION (aka VERTEX COVER) schon für n = 1000 sehr unhandlich
- ► Laufzeit kann drastisch reduziert werden, wenn wir den Lösungsraum einschränken

Frage:

- Welche Parameter vereinfachen unser Problem tatsächlich?
- Welche Laufzeit kann man mit Parametrisierung erreichen?

Beispiel BAR FIGHT PREVENTION

Beispiel BAR FIGHT PREVENTION

Beispiel – BAR FIGHT PREVENTION – Brute Force

```
min_size = INFINITY
for candidate in potenzmenge(g.V):
   if solution(candidate) and len(candidate) < min_size:
     best, min_size = candidate, len(candidate)
return best</pre>
```

- solution(candidate) wird 2ⁿ mal aufgerufen
- sei n = 1000: $2^{1000} \approx 10^{301}$
 - terminiert nach Ende des Universums

Ansatz: Parameter *k* einführen, der Größe der Lösung beschränkt

Beispiel – BAR FIGHT PREVENTION – Brute Force

```
for candidate in k_teilmengen(g.V, k):
    if solution(candidate):
        return candidate
return None
```

- 'solution(candidate) wird $\binom{n}{k}$ mal aufgerufen
- ▶ sei $n = 1000, k = 10 : \binom{1000}{10} \approx 2,63 * 10^{23}$
 - ► terminiert nach einigen Jahren auf einem state-of-the-art Supercomputer

Noch immer unbefriedigend. Können wir den Suchraum weiter einschränken?

Beispiel – BAR FIGHT PREVENTION

Beispiel - BAR FIGHT PREVENTION

Beispiel - BAR FIGHT PREVENTION

$\label{eq:Beispiel-Bar} \mbox{ Beispiel-Bar Fight Prevention-Kernelization}$

Definitionen

Definitionen 1/2

Parametrisiertes Problem

▶ $(X, k) \in \Sigma^* \times \mathbb{N}$, wobei X die Instanz des Problems und k die unäre Kodierung des Parameters ist. *

FPT (Fixed Parameter Tractable)

▶ Menge der parametrisierten Probleme, für die ein Algorithmus \mathcal{A} existiert, der Instanzen in Zeit $f(k) \cdot |(x,k)|^c$ entscheidet.

XP (slice-wise polynomial)

▶ Menge der parametrisierten Probleme, für die ein Algorithmus \mathcal{A} existiert, der Instanzen in Zeit $f(k) \cdot |(x,k)|^{g(k)}$ entscheidet.

Definitionen 2/2

Aus TGI kennen wir die Mengen P und NP. Für parametrisierte Probleme gibt es analog FPT/XP und W[1]

- W[1] ist die Menge aller parametrisierten Probleme, die mindestens so komplex sind wie das Finden einer CLIQUE der Größe k.
- Analog zu NP wird die W[1]-Vollständigkeit über polynomielle Transformationen gezeigt.
- ▶ Das alles ist natürlich sinnlos, sollte P = NP oder CLIQUE ∈ FPT sein.

Fragen?