

Natural capital accounting in the Netherlands

- ongoing work -

- 3 year project, financed by Ministry of Economic Affairs and Ministry of Infrastructure and the Environment
- National pilot for the Netherlands
- Testing the SEEA EEA
 - Extent account
 - Condition account
 - Physical ecosystemservices supply and use accounts
 - Monetary ecosystem services supply and use accounts
 - Preliminary testing of asset and capacity accounts

Ecosystem services (NLs)

Provisioning services

- Crop production
- Fodder production
- Timber production
- Other biomass
- Water supply

Regulating services

- Carbon sequestration
- Erosion control
- Air filtration
- Water infiltration
- Pollination
- Pest control

Cultural services

- Nature recreation (hiking)
- Nature tourism

Multiple datasets and models per service

From accounts to policy support

Carbon emission by peat t C ha⁻¹ yr⁻¹

10 - 12.5

Air filtration in the NLs - material

- Data
 - Ambient PM₁₀ concentration
 - Ecosystem type map

- Model parameters:
 - LUT deposition velocity (ET)
 - LUT surface area (ET)
 - Length growth season (ET)
 - Rainy days

PM₁₀ capture

- Input: ambient PM₁₀ concentration
- Largest contribution by coniferous trees
- Mean capture: 27 kg PM₁₀ yr⁻¹ ha⁻¹
- Total capture: 72,500 tonne PM₁₀ yr⁻¹

Valuation of air filtration

- Building upon work by Remme et al. avoided damage cost approach
 - requires modelling reduction in exposure due to air filtration – question: which distance applies?

Health impact categories	Physical impact per person per μg PM ₁₀ (1/(μg/m³))	Treatment costs per case for 2010 (€)
Work loss days	1.39 * 10-2	362
New case chronic bronchitis	1,86 * 10-5	22748 ^a
Respiratory hospital admission	7.03 * 10 ⁻⁶	2453
Cardiac hospital admission	4.34 * 10 ⁻⁶	2453
Medication/bronchilator use child	4.03 * 10-4	1.23
Medication/bronchilator use adult	$3.27 * 10^{-3}$	1.23
Lower respiratory symptoms adult	3,24 * 10-2	47
Lower respiratory symptoms child	2.08 * 10 ⁻²	47
Total avoided costs per person per av	oided PM ₁₀ concentration increase	

Adapted from RIVM (2012).

Valuing air filtration

- Large difference in valuing air filtration with exchange value approach and welfare-based approach
- Limburg province: exchange values: €2 million/year, i.e. approximately €900/ton PM10 avoided.
- When compared to air quality regulation studies reviewed in Gómez-Baggethun and Barton (2013), our results (in €/ton PM10 avoided) are between a factor2 to 20 lower.
- If all welfare-related health damage categories are included, the air quality regulation value would be about €4900/ton PM10 avoided and the provincial value of this service would be nearly €11 million.

Valuation approaches

- Strict interpretation of exchange value
- Simulated exchange value
- Welfare based

Akin to SEV

• WTP for increased life expectancy as it can be related to air filtration based on Hein et al., 2016

Discussion questions

- Any further insights in the spatial relation between PM deposition and reduced exposure?
 - Note: NO2 seen as being more rapidly diluted
- Does the valuation approach appear sound?
 - Based on avoided damage costs related to medical costs, loss of working days
 - Note that this approach would not change GDP
- And/or is the SEV approach applicable?
 - Note that this approach would change GDP if the value of ES would be added to other goods and services

