

Won Kim 2022

4

Roadmap: End-to-End Process

- 1. Objective Setting
- 2. Data Curation
- 3. Data Inspection
- 4. Data Preparation
- 5. Data Analysis
- 6. Evaluation
- 7. Deployment

Roadmap: Evaluation

- Motivation
- Evaluation Methods
- Ensemble Learning
- Evaluation Metrics

https://bcourses.berkeley.edu/courses/1377158/files/61598112/download?verifier=5lpPFMM751cYXH0vVWOfWI2KzLhiU6pDNXeprQd5&wrap=1

Motivation

- For supervised learning, many algorithms (predictive models) are available.
- Each model has a number of parameters that should be set.
- No model is ever perfect, that is, every model results in error.
- Need to choose the best model (and parameters), or tune the models for performance improvement.

Source of Error: Sample-Based Modeling

- Most datasets are samples from an infinite population.
- We are most interested in models of the population, but we have access only to a sample of it.
- For datasets consisting of (X,y)
 features X + label y
 a model is a prediction y = f(X)
- We train on a training sample D and we denote the model as $f_D(X)$

Bias and Variance

- Our data-generated model $f_D(X)$ is a statistical estimate of the true function f(X).
 - Because of this, it is subject to bias and variance.
- bias: If we train models $f_D(X)$ on many training sets D, bias is the expected difference between their predictions and the true y's.

$$Bias=E[f_D(X)-y]$$

where E[] is taken over points X and datasets D

• variance: If we train models $f_D(X)$ on many training sets D, variance is the difference among the estimates

Variance =
$$E[(f_D(X)-\overline{f}(X))^2]$$

where $\overline{f}(X) = \mathbb{E}[f_D(X)]$ is the average prediction on X.

Illustration of Bias and Variance

- Bias: distance from the bullseye
- Variance: distance between estimates

Model Overfitting and Underfitting

- The total expected error is bias² + variance
- Because of the bias-variance tradeoff, we need to balance these two contributions.
- If variance strongly dominates, it means there is too much variation between models. This is called overfitting.
- If bias strongly dominates, then the models are not fitting the data well enough. This is called underfitting.

Minimum Total Error and Optimal Complexity

Bias and Variance Tradeoff

- There is usually a bias-variance tradeoff caused by model complexity.
- Simple models (few parameters) have higher bias, but lower variance.

$$\hat{y} = a + bX$$

 Complex models (many parameters) usually have lower bias, but higher variance.

$$\hat{y} = a + b_1 x_1 + b_2 x_2$$

Example

- A linear model can only fit a straight line.
- A high-degree polynomial can fit a complex curve.
- But the polynomial can fit the individual sample, rather than the population.
- Its shape can vary from sample to sample, so it has high variance.

Issues in Performance Measurement (1/3)

- If the training and test data are skewed towards one classification, the model will predict everything as being that class.
 - (e.g.) In Titanic training dataset, 68% of the people died. If the model is trained to predict everyone died, it would be 68% accurate.
- The data may be fitted against a feature that is not relevant.
 - In image classification, if all images of one class have similar background, the model may match based on the background, not the main object in the image.

ı

Issues in Performance Measurement (2/3)

- Different costs are associated with different errors.
 - (e.g.) mammography
 - Say 99% of the population has no apparent disease.
 - So if we say "no disease," we'll be correct 99% of the time!
 - But the cost is great (death) if we are wrong!
 - So let's say disease is always present.
 - We'll be wrong 99% of the time!
 - We'll need to follow up with biopsy.
 - (e.g.) in predicting consumer credit-worthiness
 - Are costs of loaning money to someone who then defaults the same as costs of not lending money to someone who would have repaid the loan?

Issues in Performance Measurement (3/3)

Cutoff threshold

- For example, we have a k-nearest neighbor classifier with 1 output unit, and we code '1 = YES' and '0 = NO'
- Should we set the threshold at 0.5, and turn anything > 0.5 into a 1, anything =< 0.5 into a 0?</p>

Roadmap: Evaluation

- Motivation
- Evaluation Methods
- Ensemble Learning
- Evaluation Metrics

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

- https://project.dke.maastrichtuniversity.nl/datamini ng/2013-Slides/lecture-02.ppt
- https://www.cs.waikato.ac.nz/ml/weka/slides/Chapter5.pptx

4

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

- The accuracy/error estimates on the training data measure the degree of classifier's overfitting.
- Accuracy/error estimates on the training dataset are *not* good indicators of performance on future data.
 - Because future data will probably not be the same as the training data!

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

Estimation Using Independent Test Dataset

Estimation with independent test data is used when we have plenty of data and there is a natural way to form training and test data.

 For example: Classifiers are trained on data from 1985 and tested on data from 1986.

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

Holdout Method

This method splits the data into training data and test data (e.g., 2/3 for training, 1/3 for test).

Build a classifier using the training data and test it

using the test data.

 The method is usually used when there are thousands of instances, including several hundred instances from each class.

Making the Most of the Data

- Generally, the larger the training data the better the classifier (but returns diminish).
- The larger the test data, the more accurate the error estimate.
- Once evaluation is complete, all the data can be used to build the final classifier.

Stratification

- The holdout method reserves a certain amount for testing and uses the remainder for training.
- For "unbalanced" datasets, samples might not be representative.
 - few or no instances of some classes.
- Stratified sampling ensures that each class is represented with approximately equal proportions in both the training and testing datasets.

Repeated Holdout Method

- Holdout estimate can be made more reliable by repeating the process with different subsamples.
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification).
 - The error rates on the different iterations are averaged to yield an overall error rate.
- Still not optimum
 - The different test datasets overlap.

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

k-Fold Cross-Validation (1/2)

- Most widely used method
- k-fold cross-validation avoids overlapping test sets:

Data

- First, the dataset is split into k subsets of equal size.
- Second, each subset in turn is used for testing and the remainder for training.
- The subsets are stratified before the cross-validation.
- The estimates are averaged to yield an overall estimate.

Illustration: 5-fold cross-validation

k-Fold Cross-Validation (2/2)

- Standard method for evaluation: stratified 10-fold cross-validation.
 - Why 10?
 - Extensive experiments have shown that this is the best choice to get an accurate estimate.
- Stratification reduces the estimate's variance.
- Repeated stratified cross-validation is even better.
 - e.g. 10-fold cross-validation is repeated 10 times and results are averaged (reduces the variance).

10-Fold Cross-Validation

- 1. Randomly divide your data into 10 pieces, 1 through k.
- 2. Treat the 1st tenth of the data as the test dataset.
 Fit the model to the other nine-tenths of the data (which are now the training data).
- 3. Apply the model to the test data.
- 4. Repeat this procedure for all 10 tenths of the data.
- 5. Calculate statistics of model accuracy and fit from the test data only.

Cross Validation Using Pandas and Scikit-Learn

Acknowledgments

https://machinelearningmastery.com/k-foldvalidation/

1

Cross Validation: Example 1

Dataset with 6 observations

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

3 Folds

Fold1: [0.5, 0.2]

Fold2: [0.1, 0.3]

Fold3: [0.4, 0.6]

3 Classifiers

Classifier1: trained on Fold1+Fold2, tested on Fold3

Classifier2: trained on Fold2+Fold3, tested on Fold1

Classifier3: trained on Fold1+Fold3, tested on Fold2

Cross Validation API (1/2)

prepare cross validation
from sklearn.model_selection import KFold
kfold = KFold(3, True, 1)

- 3: number of folds (dataset splits)
- True: shuffle the dataset before split
- 1: the seed for the pseudo random number generator used prior to the shuffle

Cross Validation API (2/2)

```
# enumerate splits
for train, test in kfold.split(data):
    print('train: %s, test: %s' % (train, test))
```

- The split() function splits the dataset.
- Called repeatedly, it returns each group (array) of train dataset and test dataset.
- The arrays contain the indexes into the original dataset.

•

Full Code

```
# scikit-learn k-fold cross-validation
 from numpy import array
 from sklearn.model_selection import KFold
# data sample
 data = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6])
# prepare cross validation
 kfold = KFold(3, True, 1)
# enumerate splits
 for train, test in kfold.split(data):
       print('train: %s, test: %s' % (data[train], data[test]))
```

The Result

```
# generates the first test set with 2 numbers,
# and generates a train set with the
 remaining 4 numbers
train: [0.1 0.4 0.5 0.6], test: [0.2 0.3]
# generates the second test set with 2 numbers,
# and generates a train set with the
 remaining 4 numbers
train: [0.2 0.3 0.4 0.6], test: [0.1 0.5]
# generates the third test set with 2 numbers,
# and generates a train set with the
 remaining 4 numbers
train: [0.1 0.2 0.3 0.5], test: [0.4 0.6]
```


Cross Validation: Example 2 (example from an earlier class)

from sklearn.neighbors import KNeighborsClassifier

```
# Build a KNN model
# Create KNN classifier
knn = KNeighborsClassifier(n_neighbors = 3)
# Fit the classifier to the data
knn.fit(X_train,y_train)
```


Test (Predict Using) the Model

#show first 5 model predictions on the test data knn.predict(X_test)[0:5]

'no diabetes' for the first 4 patients

Check Model Accuracy

#check accuracy of our model on the test data knn.score(X_test, y_test)

0.66883116883116878

Try to Improve the Model Using 5-Fold Cross Validation

```
from sklearn.model_selection import cross_val_score
import numpy as np
# create a KNN model
knn_cv = KNeighborsClassifier(n_neighbors=3)
# train model with cv of 5
cv_scores = cross_val_score(knn_cv, X, y, cv=5)
# print each cv score (accuracy) and average them
print(cv_scores)
print('cv_scores mean:{}'.format(np.mean(cv_scores)))
```

Variations of K-Fold

StratifiedKFold

- Returns stratified folds. The folds preserve the percentage of samples for each class.
- (That is, this avoids building folds with imbalanced class distributions.)

GroupKFold

- Ensures that the same group is not represented in both testing/validation and training sets.
- (That is, the same group will not appear in two different folds.)
- (The number of distinct groups is at least equal to the number of folds).

RepeatedKFold

Repeats K-Fold n times.

Roadmap: Evaluation Methods

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

Leave-One-Out Cross-Validation

- Leave-One-Out is a special case of crossvalidation.
 - Set number of folds to number of training instances
 - (i.e., for n training instances, build classifier n times.)
- Makes the best use of a small dataset
- Involves no random subsampling
- But, computationally very expensive

K-Fold CV vs. LOO-CV

k-fold cross-validation

Leave-one-out (n-fold cross-validation)

Problems with Leave-One-Out CV

- Stratification is not possible
 - It guarantees a non-stratified sample because there is only one instance in the test set!
- extreme example: Random dataset splits equally into two classes.
 - Best inducer predicts majority class.
 - 50% accuracy on fresh data
 - Leave-One-Out-CV estimate is 100% error!

Roadmap: Evaluation Methods

- Training dataset
- Independent test dataset
- Hold-out method
- k-fold cross-validation method
- Leave-one-out cross-validation method
- Bootstrap method
- many more…

- Cross validation uses sampling without replacement.
 - The same instance, once selected, cannot be selected again for a particular training/test set.
- The bootstrap uses sampling with replacement to form the training set.
 - Sample a dataset of n instances n times with replacement to form a new dataset of n instances.
 - Use this data as the training set
 - Use the instances from the original dataset that are not in the new training set for testing.

- The bootstrap method is also called the 0.632 bootstrap:
 - A particular instance has a probability of 1-1/n of not being picked.
 - Thus its probability of ending up in the test set (i.e., not in the training set) is

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

 This means the training set will contain approximately 63.2% of the instances and the test set will contain approximately 36.8% of the original instances.

Estimating Error with the Bootstrap Method

- The error estimate on the test set will be very pessimistic, because the classifier is trained on just ~63% of the instances.
- Therefore, combine it with the training error:

$$err = 0.632 \cdot e_{\text{test instances}} + 0.368 \cdot e_{\text{training instances}}$$

- The training error gets less weight than the error on the test data.
- Repeat process several times with different replacement samples; average the results.

Evaluation Methods Summary

- Use independent test sets and the holdout method for "large" data;
- Use the cross-validation method for "middlesized" data;
- Use the leave-one-out and bootstrap methods for small data;
- Do not use test data for parameter tuning use separate validation data.

Hyperparameter Optimization

- https://towardsdatascience.com/hyperparametersoptimization-526348bb8e2d
- https://towardsdatascience.com/hyper-parametertuning-with-randomized-grid-search-54f865d27926

Hyperparameter Optimization

- First, establish a baseline model
 - Build a model
 - Train it
 - Test (predict with) it
 - Evaluate the model's performance
- Then, if necessary, tune the model by hyperparameter optimization
 - (e.g.) determine the best 'k' for a k-means clustering model or k-nearest neighbor classifier
 - Often there are many sets of parameter combinations

Three Methods (1/2)

- Manual search (obvious)
- Grid search
 - Create a grid (matrix or Python dictionary) of parameter-value combinations
 - Try all possible sets of parameter combinations in the grid, along with k-fold cross validation
 - ** Becomes very expensive with ensemble learning models (later)
 - Scikit-learn GridSearchCV()

Three Methods (2/2)

- Randomized search (usually the best)
 - Try random subsets of parameter combinations, along with k-fold cross validation
 - Scikit-learn RandomizedSearchCV()
 - Rule of thumb: "In 95% of the time, with 60 iterations (combinations), best 5% sets of parameters can be found, regardless of the grid size."

Testing Using Different Hyperparameters (k)

- For our kNN model, we will specify a range of values for 'n_neighbors' in order to see which value works best for our model.
- To do this, we will create a dictionary, setting 'n_neighbors' as the key and using Numpy to create an array of values from 1 to 24.

Hypertuning Using GridSearchCV

```
from sklearn.model_selection import GridSearchCV
# create new a knn model
knn2 = KNeighborsClassifier()
# create a dictionary of all values we want to test for
n_neighbors
param_grid = {'n_neighbors': np.arange(1, 25)}
# use GridSearch to test all values for n_neighbors
knn_gscv = GridSearchCV(knn2, param_grid, cv=5)
# fit model to data
knn_gscv.fit(X, y)
```


Checking the Result of Hypertuning

check top performing n_neighbors value knn_gscv.best_params

```
{'n_neighbors': 14}
```

14 is the optimal value of k

check the mean score for the top performing value of n_neighbors

knn_gscv.best_score_

0.7578125

End of SubModule