1 Pracovní bod a jeho pohyb

Tranzistor je typická nelineární součástka v obvodu popsatelná šesti veličinami, třemi proudy a třemi napětími vyznačenými na obr. 1 a) $(I_C I_B I_E U_{CE} U_{BE} U_{BC})$. Tyto veličiny jsou propojeny nelineárními závislostmi které lze chápat jako šestirozměrný objekt, kterým když provede dvourozměrný řez dostaneme např. výstupní charakteristiku (závislost I_C na U_{CE} při konstantním proudu I_B).

Figure 1:

Pokud tranzistory zapojíme do zapojení na obr. 1 b) při $U_{in}=0$ ustálí se jeho veličiny na konkrétním bodě, tento bod označujeme Q a nazýváme ho stejnosměrný pracovní bod tranzistoru. Aby mohl tranzistor fungovat jako zesilovač správně je nutné aby nastavení pracovního bodu umožňovalo v oběma směry dostatečný rozkmit výstupního signálu v dostatečné míře bez přílišného zkreslení. Pracovní bod se proto obvykle nastavuje tak aby v ustáleném stavu platilo $U_{out}=\frac{1}{2}V_{cc}$

Abychom mohli na tento zesilovač přivést signál s jiným středním napětím neš jaké je na bázi tranzistoru, přípojíme vstup zesilovače na bázi skrz kapacitu C_1 . Tato kapacita musí být dostatečně velká aby se pro signál o požadované frekvenci dala považovat za zkrat. Na obr. 2 je zobrazen možný procházející signál.

Při nastavování pracovního bodu je mimo jiné nezbytné znát následující vztahy

$$I_C = I_B \cdot \beta \qquad I_E = I_B + I_C \tag{1}$$

Figure 2:

2 Počítačové cvičení

2.1 Bipolární tranzistor

Jednostupňový tranzistorový zesilovač, třída A, bez stabilizace prac. bodu

Zdroj V1 je harmonický 1kHz/20mV

Figure 3: Stejnosměrné nastavení pracovního bodu

Figure 4: Odezva na základní sinusoví signál

Figure 5: Sinusový průběh při změně R_b

Figure 6: Sinusový průběh při změně U_{in}

Figure 7: Šířka pásma při $C_v = 5[\mu F]$

Figure 8: Šířka pásma při změně $C_v = 0.1; 1; 10 [\mu F]$

Je vidět že zmenšení kapacitoru znamená omezení šířky pásma v dolní části, nikoliv v horní.

2.2 Unipolární tranzistor

Jednostupòový tranzistorový zesilovaè, tøída A, bez stabilizace prac. bodu MOSFET s indukovaným kanálem N

Zdroj V1 je harmonický 1kHz/200mV

Figure 9: Stejnosměrné nastavení pracovního bodu

Figure 10: Odezva na základní Figure 11: Sinusový průběh při $\frac{1}{U_{in}}$ Sinusový průběh při změně $\frac{1}{U_{in}}$

Figure 13: Odezva na základní sinusoví signál

Figure 14: Šířka pásma při $C_v = 5[\mu F]$

Figure 15: Šířka pásma při změně $C_v=0.1;1;10[\mu F]$ Je vidět že zmenšení kapacitoru znamená omezení šířky pásma v dolní části, nikoliv v horní. Na rozdíl od bipolárního tranzistoru, kde se zmenšuje šířka pásma ale maximální zesílení zůstává stejné, v tomto zapojení zvýšení kapacity znamená zároveň zvýšení maximálního zesílení.

3 Laboratorní cvičení

Měřili jsme s tranzistorem BC55 u kterého jsme na začátku naměřili $\beta=422$ Nejprve jsme sestavili obvod a pomocí potenciometru jsme nastavili pracovní bod dle tab. 1.

$U_{cc}[V]$	$U_C[V]$	$R_b[M\Omega]$	$R_c[K\Omega]$	$U_b[V]$	$I_C[mA]$	$I_b[\mu A]$
12	6.1	2.5	2.2	0.61	2.68	6.36

Table 1: Nastavení obvodu

• kanál 1 ... U_{in}

• kanál 2 ... U_{out}

Figure 17:

Figure 18:

Figure 16:

Dále jsme na vstup přivedly signál o napětí $U_{in} = 1[V]$ a frekvenci f = 1-[kHz]. Díky hodnotě vstupního napětí rovnou vidíme zesílení tohoto zapojení A = 7.72[-].

Dále jsme přenastavili pracovní bod dle tabulky:

$U_{cc}[V]$	$U_C[V]$	$R_b[M\Omega]$	$R_c[K\Omega]$	$U_b[V]$
12	7.6	3.44	2.2	0.61
$I_C[mA]$	$I_b[\mu A]$	-	-	-
2.00	4.74	-	-	-

Table 2: Přenastavení obvodu 1

Figure 19:

Dále jsme přenastavili pracovní bod dle tabulky:

$U_{cc}[V]$	$U_C[V]$	$R_b[M\Omega]$	$R_c[K\Omega]$	$U_b[V]$
12	4.5	1.90	2.2	0.61
$I_C[mA]$	$I_b[\mu A]$	-	-	-
3.41	8.08	-	-	-

Table 3: Přenastavení obvodu 1