				_			
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} +^{\alpha\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} +^{\alpha}$

Lagrangian density	$-\frac{1}{3}t_1\;\omega_{,}^{\alpha\prime}\;\;\omega_{\kappa\alpha}^{ \ \ \kappa-t_1\;\;\omega_{,}^{\ \ \kappa\lambda}\;\;\omega_{\kappa\lambda}^{ \ \prime}+r_1\partial_{,}\omega^{\kappa\lambda}_{ \ \kappa}\partial_{,}\omega_{\lambda}^{ \alpha}_{ \ \alpha}-\frac{2}{3}\;r_1\;\partial^{\beta}\omega^{\theta\alpha}_{ \ \kappa}\partial_{\theta}\omega_{\alpha\beta}^{ \ \kappa}-\frac{1}{3}$	$\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} + r_{1}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} -$	$r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_1 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - 2 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$	$\frac{1}{2}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f^{\lambda}_{\kappa}\partial^\kappa f_{\alpha\lambda} +$	$\frac{1}{3}t_{1}\ \omega_{\kappa\alpha}^{\ \alpha}\ \partial^{\kappa}f'_{\ \prime} + \frac{1}{3}t_{1}\ \omega_{\kappa\lambda}^{\ \lambda}\ \partial^{\kappa}f'_{\ \prime} + \frac{2}{3}t_{1}\ \partial^{\alpha}f_{\ \kappa\alpha}$	$2t_{1} \omega_{,\kappa\theta} \partial^{\kappa} f^{'\theta} - \tfrac{1}{3} t_{1} \omega_{,\alpha}^{\ \alpha} \partial^{\kappa} f^{'}_{\ \kappa} - \tfrac{1}{3} t_{1} \omega_{,\lambda}^{\ \lambda} \partial^{\kappa} f^{'}_{\ \kappa} + \tfrac{1}{2} t_{1} \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\lambda\alpha} +$	$\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} +$	$\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} -$	$rac{8}{3} r_1 \partial^{eta} \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Added source term: $f^{\alpha\beta} t_{z,a} + \omega^{\alpha\beta\chi} \sigma_{z,a,b}$

$f_{1}^{\#2}$	0	0	0	<i>آ لا د ۱</i>	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}{}_{\!$	$-\frac{ikt_{1}}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}_+ \alpha \beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha\beta$	$\omega_1^{\#2} +^{\alpha\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\text{-}}}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

3 1 1 1

Source constraints SO(3) irreps

 $\sigma_{0}^{\#1} == 0$

 $\tau_{0}^{\#1} == 0$

 $\tau_{0+}^{\#2} == 0$

m

 $\tau_{1}^{\#_{1}\alpha} == 0$

0

 $t_1^{\#2}{}^\alpha + 2ik \, \sigma_1^{\#1}{}^\alpha$

m

 $\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$

m

 $\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$

	$\sigma_{0^+}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1} +$	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
7 ₀ -1 †	0	0	0	$-\frac{1}{t_1}$

$\omega_{2}^{\#1}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_2}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$	<u>£1</u> 2	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_2^{#1} + \alpha^{\beta}$	$f_2^{#1} + ^{\alpha\beta}$	$\frac{1}{2^{-1}} + \alpha \beta \chi$

 $\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta = 0$ 5 Total #: 20

	Massive par
? $J^{P} = 2^{-}/$? Pole residue
	Polarisations
\overrightarrow{k}^{μ}	Square mas
	? Spin:
	Parity:

lassive particle				
ole residue:	$-\frac{1}{r_1} > 0$			
olarisations:	5			
quare mass:	$-\frac{t_1}{2r_1} > 0$			
pin:	2			

Odd

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)