

ARMY RESEARCH LABORATORY



# Optical Measurement of Toxic Gases Produced During Firefighting Using Halons

by Kevin L. McNesby, Robert G. Daniel,  
Andrzej W. Mizolek, and Steven H. Modiano

ARL-TR-1349

April 1997

19970527 060

Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer need. Do not return it to the originator.

# **Army Research Laboratory**

Aberdeen Proving Ground, MD 21005-5066

---

**ARL-TR-1349**

**April 1997**

---

## **Optical Measurement of Toxic Gases Produced During Firefighting Using Halons**

**Kevin L. McNesby, Robert G. Daniel, Andrzej W. Mizolek,  
Steven H. Modiano  
Weapons and Materials Research Directorate, ARL**

---

---

## Abstract

---

Several optical techniques Fourier transform infrared (FT-IR) emission and absorption spectroscopy, mid- and near-infrared tunable diode laser (MIR-TDL, NIR-TDL) absorption spectroscopy have been used to measure toxic gases produced during inhibition of flames by halogenated hydrocarbons (Halons). Fire types studied include low-pressure premixed flames, atmospheric-pressure counterflow diffusion flames, open-air JP-8 (turbine fuel) fires, and confined JP-8 fires. Spectra are presented and analyzed for these fires inhibited by  $\text{CF}_3\text{Br}$  (Halon 1301) and  $\text{C}_3\text{F}_7\text{H}$  (FM-200). For low-pressure premixed flames, spectra are presented that show production of the  $\text{CF}_3\cdot$  radical in  $\text{CH}_4/\text{O}/\text{Ar}$  flames inhibited by  $\text{CF}_3\text{Br}$ . For real-scale fire testing, it is shown that type and amount of toxic gases produced during fire inhibition are highly dependent on fire conditions and temperatures, and that some species not considered important ( $\text{CF}_2\text{O}$ ) are often produced in significant amounts. Finally, it is shown that HF production, during inhibition of vehicle fires using FM-200, is highly dependent on time to suppression.

## ACKNOWLEDGMENTS

We would like to acknowledge support from Mr. Steve McCormick at U.S. Army Tank-automotive and Armaments Command (TACOM) and from the Strategic Environmental Research and Development Program (SERDP)\* of the Department of Defense (DOD). We also wish to acknowledge the support of Craig Herud, Bill Bolt, and Stan Polyanski of the Aberdeen Test Center (ATC) for overseeing the running of the tests and the testing facility, and without whom these tests would have been impossible.

---

\* The project was originally funded under the auspices of the SERDP of the DOD.

**INTENTIONALLY LEFT BLANK.**

## TABLE OF CONTENTS

|                                                                   | <u>Page</u> |
|-------------------------------------------------------------------|-------------|
| ACKNOWLEDGMENTS .....                                             | iii         |
| LIST OF FIGURES .....                                             | vii         |
| 1. INTRODUCTION .....                                             | 1           |
| 2. EXPERIMENTAL .....                                             | 2           |
| 2.1     Laboratory-Scale Fires .....                              | 2           |
| 2.1.1     Low-Pressure Premixed Flames .....                      | 2           |
| 2.1.2     Atmospheric-Pressure Counterflow Diffusion Flames ..... | 3           |
| 2.2     Real-Scale Fires .....                                    | 4           |
| 3. RESULTS .....                                                  | 6           |
| 3.1     Laboratory-Scale Fires .....                              | 6           |
| 3.1.1     FT-IR Spectroscopy .....                                | 6           |
| 3.1.2     Tunable Diode Laser Spectroscopy .....                  | 8           |
| 3.2     Real-Scale Fires .....                                    | 11          |
| 3.2.1     FT-IR Spectroscopy .....                                | 11          |
| 3.2.2     Tunable Diode Laser Spectroscopy .....                  | 11          |
| 4. CONCLUSION .....                                               | 15          |
| 5. REFERENCES .....                                               | 17          |
| DISTRIBUTION LIST .....                                           | 19          |
| REPORT DOCUMENTATION PAGE .....                                   | 33          |

**INTENTIONALLY LEFT BLANK.**

## LIST OF FIGURES

| <u>Figure</u> |                                                                                                                                                                                                                                            | <u>Page</u> |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.            | The FT-IR emission spectrum of gases present 10 mm above the burner surface of a 17-torr, stoichiometric, premixed gas, $\text{CH}_4/\text{O}_2$ flame to which 3% Halon 1301 has been added .....                                         | 6           |
| 2.            | The FT-IR absorbance spectrum measured through an atmospheric-pressure counterflow diffusion $\text{CH}_4/\text{air}$ flame inhibited by 1.3% Halon 1301 .....                                                                             | 7           |
| 3.            | Second derivative MIR-TDL laser absorption spectra measured through rich and lean 21-torr premixed $\text{CH}_4/\text{O}_2$ flames inhibited by 5% Halon 1301 .....                                                                        | 9           |
| 4.            | Second derivative MIR-TDL absorption spectra measured through a rich premixed $\text{CH}_4/\text{O}_2/\text{Ar}$ flame to which 5% Halon 1301 has been added, measured as a function of laser-beam height above burner (HAB) surface ..... | 10          |
| 5.            | The FT-IR absorbance spectrum of gas removed from the vicinity of a JP-8 fuel pool fire during inhibition by Halon 1301 .....                                                                                                              | 12          |
| 6.            | A schematic of the test facility for measuring gases produced during suppression of JP-8 fuel pool fires occurring within crew compartments of Army vehicles .....                                                                         | 13          |
| 7.            | A graph of HF production (parts per million meter [ppmm]) vs. time after release of FM-200 for a JP-8 fuel pool fire occurring within the crew compartment of an Army combat vehicle .....                                                 | 14          |
| 8.            | A graph of HF gas production (parts per thousand meter [pptm]) vs. time immediately after release of FM-200 into a JP-8 fuel pool fire burning within the closed crew compartment of an Army combat vehicle .....                          | 14          |

**INTENTIONALLY LEFT BLANK.**

## 1. INTRODUCTION

The investigations at the U.S. Army Research Laboratory (ARL) into halogenated hydrocarbon (Halon) inhibition of flames began several years ago as a project\* to elucidate mechanisms of suppression using low-pressure premixed flames. This investigation was expanded to include atmospheric-pressure counterflow diffusion flames by an ongoing collaboration with the Aberdeen Test Center (ATC) to evaluate new test methods and equipment for suppression of real-scale fires occurring within the crew compartment of combat vehicles. Results of these studies have recently appeared in the literature [1, 2]. Since beginning these investigations, we have also been measuring production of toxic gases during Halon inhibition of flames.

The purpose of this report is to describe how the fire-inhibitant testing methodology in our lab has changed as our focus expanded from controlled laboratory-scale fires to real-scale fires. We also present some recent results (using laser-based diagnostics) of measurements of toxic gas production and measurements of precursors to toxic gases during Halon inhibition of laboratory-scale fires and real-scale fires in ordinary and demanding environments. To our knowledge, this is the first report of optical measurement of the  $\text{CF}_3\cdot$  radical in inhibited, low-pressure premixed flames, and is the first report of quantitative, *in situ*, real-time measurements of HF gas production during large-scale firefighting by Halons.

The fire types investigated for production of toxic gases during inhibition by Halons range from controlled laboratory-scale flames to open-air JP-8 (turbine fuel) pan fires. Controlled laboratory-scale flames include low-pressure premixed  $\text{CH}_4/\text{O}_2/\text{Ar}$  and  $\text{CH}_4/\text{air}$  flames and atmospheric-pressure  $\text{CH}_4/\text{O}_2$  and  $\text{CH}_4/\text{air}$  counterflow diffusion flames [1, 2]. Real-scale fires include open-air JP-8 pan fires [3] and confined JP-8 pan fires. Gas production was measured using optical diagnostics including midinfrared tunable diode lasers (MIR-TDL), near-infrared tunable diode lasers (NIR-TDL), and Fourier transform infrared (FT-IR) emission and absorption spectroscopy. Inhibitants investigated include  $\text{CF}_3\text{Br}$  (Halon 1301 [DuPont]),  $\text{C}_3\text{F}_7\text{H}$  (FM-200

---

\* The project was originally funded under the auspices of the Strategic Environmental Research and Development Program (SERDP) of the U.S. Department of Defense (DOD).

[Great Lakes Chemical]),  $C_3F_6H_2$  (FE-36),  $C_2F_5H$  (FE-25),  $CF_3H$  (FE-13), and  $CF_4$ . For this report, only inhibition by  $CF_3Br$  (Halon 1301) and  $C_3F_7H$  (FM-200) will be discussed.

## 2. EXPERIMENTAL

Details of the experimental apparatus and equipment used in some of these measurements have been previously published [1, 2, 3], but will be summarized in the following sections.

### 2.1 Laboratory-Scale Fires.

2.1.1 Low-Pressure Premixed Flames. The experimental apparatus consisted of a low-pressure flat-flame burner (McKenna Industries, Inc.) mounted on translational stages inside an evacuable chamber. The evacuable chamber is equipped with apertured LiF windows (1.5-mm diameter) to allow passage of infrared laser radiation. Since the infrared laser beam or modulated FT-IR beam used to probe the burner flame remains fixed in position relative to the low-pressure burner chamber, different parts of the flame are examined by moving the burner within the chamber. Typical gas flow rates were 0.95 L/min  $CH_4$ , 1.9 L/min  $O_2$ , and 3.0 L/min Ar. Ar was used as a diluent in order to lower the peak flame temperature to the working range of Pt-Pt/Rh thermocouples (~2,000 K). Inhibitor flow was typically less than 2% of the total (fuel plus oxidizer) flow, although the low-pressure flames could withstand inhibitor Halon 1301 levels up to 15% of total flow without being extinguished. Fuel, oxidizer, and inhibitor were mixed together prior to entering the final mixing section immediately below the burner frit. Typically, an Ar shroud (3 L/min) was flowed around the flame to minimize absorption by cold gas in the line-of-sight. Gas flow was controlled by a MKS Instruments Inc., type 147B, gas flow controller. Total pressure within the burner chamber was maintained near 20 torr, although stable flames could be maintained from near atmospheric to less than 2 torr.

Midinfrared laser radiation used to probe the low-pressure premixed flames was provided by a liquid-nitrogen-cooled tunable diode laser (cryogenically cooled Pb-salt laser source and monochromator system from Laser Photonics, Analytics Division, Inc.) and detected using a

liquid-nitrogen-cooled HgCdTe narrow-band infrared detector. Laser output was frequency modulated (1 kHz), collimated, and mode selected prior to entering the low-pressure chamber. After passing through the flame region, the midinfrared laser beam was focused onto the liquid-nitrogen-cooled HgCdTe detector. Lock-in detection at the modulation frequency effectively discriminated against emission from the flame. Entrance and exit apertures mounted on the evacuable-burner chamber restricted the maximum beam diameter through the flame to 1.5 mm.

FT-IR absorption measurements through low-pressure premixed flames were made using a Mattson Sirius FT-IR spectrometer. The collimated beam from the infrared spectrometer was taken external to the instrument, apertured to 1-mm diameter, brought to a focus above the center of the burner, and then refocused onto a liquid-nitrogen-cooled HgCdTe wide-band infrared detector. FT-IR emission measurements used a Midac model G-5001-FH spectrometer system modified in-house to measure radiation emitted from the flame. Because of the modular nature of the Midac spectrometer, modification of the instrument to measure emission spectra was straightforward and consisted of repositioning the interferometer “brick” and liquid-nitrogen-cooled InSb detector to accommodate the burner flame as the source of radiation.

**2.1.2 Atmospheric-Pressure Counterflow Diffusion Flames.** The atmospheric-pressure counterflow diffusion burner assembly was fabricated at NIST [2], and consists of two opposing, wire-screen-covered gas ports (2.5-cm diameter). Gas port separation was adjustable, but was typically several centimeters. Fuel ( $\text{CH}_4$ ) was flowed into the flame region through the lower port. Oxidizer ( $\text{O}_2$  or air) and inhibitor were flowed into the flame region through the upper port. The flame appeared as a thin, flat luminous disc (with slight edge curvature pointing up toward the exhaust shroud) located between the fuel and oxidizer ports. All gases were exhausted from the flame region through an exhaust port that formed a shroud around the oxidizer port. Typical flow rates were 600 mL/min  $\text{O}_2$  and 500 mL/min  $\text{CH}_4$ . When air was used as the oxidizer, the air flow rate was 2.2 L/min and the  $\text{CH}_4$  flow rate was 1.1 L/min. Inhibitor was always added on the oxidizer side only, and inhibitor flow varied up to a maximum of 1.3% of the total flow for each system investigated. These flow parameters were selected because they gave the most stable flame for that particular fuel/oxidizer combination.

Fuel and oxidizer flow were controlled by a MKS Instruments Inc., type 147B gas flow controller. Although the burner exhaust shroud was connected to a high-volume vacuum pump, it was necessary to contain the atmospheric-pressure counterflow diffusion burner within a large box equipped with optical ports and a chimney attached to a fume hood. This was to prevent toxic gases (HF and CF<sub>2</sub>O) from entering the main laboratory.

**2.2 Real-Scale Fires.** Two types of JP-8 fuel pool fires were investigated. The first fire investigated was a JP-8 fuel pool fire burning in air. Infrared spectra of gases removed from the flame environment were measured using a Midac Corporation model G-5001-FH Fourier transform spectrometer system operating at 0.5 cm<sup>-1</sup> resolution. Detection of infrared radiation was by a liquid-nitrogen-cooled HgCdTe detector. The interior of the spectrometer was purged with dry nitrogen, and the spectrometer system was ruggedized by the manufacturer for outdoor use. This ruggedization consisted of kinematic mounting of all optical components and manufacture of all transmissive optics (including the beamsplitter) from ZnSe.

Samples of gases were removed from the flame environment and flowed through a 10-m path-length multipass optical cell (internal volume approximately 2,300 cm<sup>3</sup>) at a flow rate of 6L/min. The gas manifold and the 10-m path-length multipass optical cell contained within the instrument were maintained at 400 K to prevent condensation. The tubing leading from the stainless steel probe (0.25 in o.d. 304 stainless steel tubing) to the instrument gas manifold was of unheated teflon. No condensation was observed within the teflon tubing leading from the probe to the spectrometer, but a small amount of black soot formed on the interior surface of the teflon tubing during testing. It is assumed that measured concentrations of gases normally highly soluble in water (e.g., HF and CF<sub>2</sub>O) were always less than actual, because of reactions of these gases with water condensed on the walls of the probe. Fires were fueled by 3 gal of JP-8 fuel placed in a 20-cm deep square pan approximately 1 m on a side. The stainless steel probe, approximately 3 m in length, was located at the edge of the pan, approximately 1 m above the surface of the liquid fuel.

Prior to ignition of the fuel (accomplished using an O<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> torch), gas flow to the multipass cell was begun, a background scan set measured, and a series of sample scan sets was begun. Each scan set consisted of 10 coadded scans measured at 0.5 cm<sup>-1</sup> resolution. Collection of these scan sets continued throughout the course of the experiment. Chemical inhibitor (either Halon 1301 or FM-200) was sprayed into the fire using a hand-held extinguisher 3 min after ignition of the fuel to allow the fire to stabilize. The inhibitor (Halon 1301 or FM-200) was applied to the fire from the side opposite to the location of the probe with the inhibitor stream directed toward the lower portion of the fire.

The second type of fire investigated was a JP-8 fuel pool fire burning in the crew compartment of the ballistic hull of a Bradley Fighting Vehicle. For these tests, a 0.3 m<sup>2</sup> pan was filled to a depth of approximately 1 cm with JP-8 fuel. All doors and hatches were closed, and the fire was ignited through a small access port using an O<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> torch. After approximately 15 s, the onboard fire suppression system (consisting of a bottle filled with approximately 3 kg inhibitor and pressurized with N<sub>2</sub> to 800 psi) was deployed. Full inhibitor release and fire extinguishment (when successful) occurred in less than 1 s.

Placed within the crew compartment of the vehicle was a GRIN-lens tipped fiber optic, emitting laser radiation at 7,665 cm<sup>-1</sup>. The source of the near-infrared laser radiation was a tunable diode laser spectrometer system employing a thermoelectrically cooled InGaAsP distributed feedback laser source (Southwest Sciences, Inc). The laser radiation was detected by a room temperature InSb photodiode detector (distance from fiber optic source = 10 cm). This frequency corresponds to the frequency of the P(2) line of the first overtone of the fundamental HF vibration. The laser was scanned at 50 Hz over the spectral region of interest (approximately 0.05 cm<sup>-1</sup> on either side of 7,665 cm<sup>-1</sup>) and frequency modulated at 50 kHz during each scan through the spectral region of interest. Detector output was demodulated at 100 kHz (SRS Inc. Model 850 lock-in amplifier), and digitized using an oscilloscope (Lecroy 9360). Data collection was initiated prior to ignition of the fire. Each data point corresponds to one scan over the spectral region near 7,665 cm<sup>-1</sup> and to a time resolution of 20 ms. A new data point was measured every 2 s, for the duration of the experiment.

### 3. RESULTS

#### 3.1 Laboratory-Scale Fires.

3.1.1 FT-IR Spectroscopy. Initial measurements in our laboratory [1], using FT-IR spectroscopy to investigate low-pressure (20-torr) premixed  $\text{CH}_4/\text{O}_2$  flames inhibited by up to 15% Halon 1301, showed no evidence of  $\text{CF}_2\text{O}$  formation, even though calculations indicated [4] that  $\text{CF}_2\text{O}$  should be formed in small amounts. For example, Figure 1 is an FT-IR emission spectrum of gases present 10 mm above the burner surface (spatial resolution approximately 1 mm) of a 17-torr low-pressure premixed  $\text{CH}_4/\text{O}_2$  flame to which 3% Halon 1301 has been added. This spectrum is similar in appearance to an absorbance spectrum measured through the flame at a similar height above the burner surface [2]. Emission spectroscopy was used because experiments using absorption spectroscopy to measure combustion products in flames are often complicated by absorption of radiation by cold gas species outside of the flame zone. Although significant amounts of HF are detected near  $4,000 \text{ cm}^{-1}$ , there is no evidence of  $\text{CF}_2\text{O}$  gas (strongest feature near  $1,900 \text{ cm}^{-1}$ ) at any height within the flame.



Figure 1. The FT-IR emission spectrum of gases present 10 mm above the burner surface of a 17-torr, stoichiometric, premixed gas,  $\text{CH}_4/\text{O}_2$  flame to which 3% Halon 1301 has been added.

Figure 2 shows the FT-IR absorption spectrum measured through an atmospheric-pressure counterflow diffusion CH<sub>4</sub>/air flame [2] inhibited by 1.3% Halon 1301. In this spectrum, formation of CF<sub>2</sub>O gas is measured near 1,900 cm<sup>-1</sup>, as well as CO (2,100 cm<sup>-1</sup>), HBr (2,700 cm<sup>-1</sup>), and HF (4,000 cm<sup>-1</sup>). More species are observed in the atmospheric-pressure counterflow diffusion flame than in the low-pressure premixed flame because the peak temperature in the counterflow diffusion CH<sub>4</sub>/air flame is several hundred Kelvins lower [2] than in the low-pressure CH<sub>4</sub>/O<sub>2</sub> flame. Species generated in the lower temperature flame have a longer residence time than in the low-pressure CH<sub>4</sub>/O<sub>2</sub> flame, allowing measurement of CF<sub>2</sub>O and HBr in the counterflow diffusion CH<sub>4</sub>/air flame.



Figure 2. The FT-IR absorbance spectrum measured through an atmospheric-pressure counterflow diffusion CH<sub>4</sub>/air flame inhibited by 1.3% Halon 1301.

These initial studies using FT-IR spectroscopy provide spectroscopic evidence that gas production during Halon inhibition of fires is highly dependent on the fire type and conditions. In our investigations aimed at validating flame modeling calculations [5], we used low-pressure

flames because at low pressure, flame zones are expanded and more information is available from optical measurements using our finite-spatial resolution (typically 1 mm). However, for measurements of some species present at low concentrations within the low-pressure flame, we were limited by the optical resolution of most commercial FT-IR spectrometers (usually on the order of  $0.5 \text{ cm}^{-1}$ ).

**3.1.2 Tunable Diode Laser Spectroscopy.** To measure species at concentrations below the detection limit of our Fourier transform spectrometer, we employed tunable diode laser absorption spectroscopy using phase-sensitive detection. The instrumental methods employed in using such derivative-based spectroscopies have been well characterized in the literature [6]. The principle advantages of the technique are high resolution (typically better than  $0.0005 \text{ cm}^{-1}$ ), increased sensitivity (because of the use of phase-sensitive detection), and (at high laser modulation frequencies) low source noise.

Figure 3 shows second-derivative MIR-TDL absorption spectra measured through rich and lean 21-torr  $\text{CH}_4/\text{O}_2/\text{Ar}$  flames doped with 5% Halon 1301. These spectra were measured using a probe-beam waist of 1.5 mm, with the beam center axis 3 mm above the burner surface. The spectral region of interest was determined by the reported frequencies of  $\text{CF}_3\cdot$  and  $\text{CF}_2\text{O}$  absorptions [7], by the spectral structure of the reference gas ( $\text{N}_2\text{O}$ ), and by the output range of our diode laser system. The spectral region selected was from  $1,264.3 \text{ cm}^{-1}$  to  $1,264.7 \text{ cm}^{-1}$ . In addition to encompassing several absorption lines of  $\text{CF}_3\cdot$  and  $\text{CF}_2\text{O}$ , this spectral region was selected because it was free from absorptions from the reference gas ( $\text{N}_2\text{O}$ ),  $\text{CH}_4$ , Halon 1301,  $\text{CO}_2$ , and  $\text{H}_2\text{O}$ , and because the  $\text{CF}_2\text{O}$  absorption features present in this region, although dense, were recognizable and had a weak temperature dependence as calculated using the HITRAN [8] database. Because of the low anticipated concentrations of the  $\text{CF}_3\cdot$  radical, we did not consider interferences from  $\text{C}_2\text{F}_6$ , although for higher concentrations of the  $\text{CF}_3\cdot$  radical it has been shown that absorption from  $\text{C}_2\text{F}_6$  may be important [7]. The  $\text{CF}_2\cdot$  radical has no reported absorbance in this region [9]. The main experimental difficulty in detecting  $\text{CF}_3\cdot$  in flames inhibited by Halons is that the spectral features from the radical are usually obliterated by the dense spectral structure of  $\text{CF}_2\text{O}$ .



Figure 3. Second derivative MIR-TDL laser absorption spectra measured through rich and lean 21-torr premixed  $\text{CH}_4/\text{O}_2$  flames inhibited by 5% Halon 1301. Spectra for each flame were measured 3 mm above the burner surface. The position of an absorption feature due to  $\text{CF}_2\text{O}$  is indicated by an asterisk. Double-headed arrows indicated positions of  $\text{CF}_3\cdot$  absorption. Note that  $\text{CF}_2\text{O}$  absorption is greater in the lean flame, while  $\text{CF}_3\cdot$  absorption is greater in the rich flame (see text).

Several features may be noted from the spectra shown in Figure 3. Most importantly, features due to absorption of radiation by  $\text{CF}_2\text{O}$  (marked with an asterisk) are seen to be more intense for the lean flame (1.9 l/m  $\text{O}_2$ , 0.76 l/m  $\text{CH}_4$ , 1.0 l/m Ar) than for the rich flame (1.7 l/m  $\text{O}_2$ , 1.0 l/m  $\text{CH}_4$ , 1.0 l/m Ar). This is because excess  $\text{O}_2$  in the lean flame may compete with H atom for reactions with  $\text{CF}_3\cdot$  radical and  $\text{CF}_2\cdot$  radical, increasing  $\text{CF}_2\text{O}$  formation relative to that occurring in a rich (oxygen poor) flame [10]. We have found that comparing rich- and lean-flame infrared spectra of flames with similar levels of fluorocarbon inhibitor is a useful way of aiding the identification of lines arising from absorption of infrared radiation by  $\text{CF}_2\text{O}$ . This observation reflects the different way the inhibitor participates in rich- and lean-combustion environments, and may provide insight into controlling amounts of HF and  $\text{CF}_2\text{O}$  in combustion gases.

Figure 4 shows measurements of second-derivative spectra, over the same spectral region shown in Figure 3 through the rich, 21-torr premixed  $\text{CH}_4/\text{O}_2/\text{Ar}$  flame doped with 5% Halon 1301 (and shown in Figure 3), as a function of height above the burner surface. As in Figure 3, absorption by  $\text{CF}_2\text{O}$  is indicated by asterisks. Arrows indicate the position of absorption of infrared radiation by  $\text{CF}_3^\cdot$ . For Figure 4, two features (at  $1,264.557 \text{ cm}^{-1}$  and  $1,264.604 \text{ cm}^{-1}$ ), corresponding to absorption by  $\text{CF}_3^\cdot$ , are not obscured by absorption by  $\text{CF}_2\text{O}$ . The absorption at  $1,264.557 \text{ cm}^{-1}$  is more intense than the absorption at  $1,264.604 \text{ cm}^{-1}$  and first appears 1 mm above the burner surface. The absorption at  $1,264.557 \text{ cm}^{-1}$  disappears as height above the burner surface is increased. The smaller absorption near  $1,264.604 \text{ cm}^{-1}$  appears approximately 3 mm above the burner surface, and vanishes at approximately 4 mm above the burner surface.



Figure 4. Second derivative MIR-TDL absorption spectra measured through a rich premixed  $\text{CH}_4/\text{O}_2/\text{Ar}$  flame to which 5% Halon 1301 has been added, measured as a function of laser-beam height above burner (HAB) surface. The position of an absorption feature due to  $\text{CF}_2\text{O}$  is modeled indicated by an asterisk. Arrows indicate positions of  $\text{CF}_3^\cdot$  absorption. Note how  $\text{CF}_3^\cdot$  absorption first increases, then decreases, with increasing height above burner surface, in agreement with flame kinetics.

We believe the absorption features seen in the spectra of Halon 1301 inhibited flames at  $1,264.557\text{ cm}^{-1}$  and  $1,264.607\text{ cm}^{-1}$  are the first optical measurement of the  $\text{CF}_3\cdot$  radical in Halon-inhibited low-pressure flames. The successive spectra show an increase, followed by a decline, with height above the burner surface, for the two features at frequencies previously assigned to the  $\text{CF}_3\cdot$  radical. This spatial dependence is consistent with predictions from flame model calculations of inhibited flames [10]. The intensity of these two features, in proportion to  $\text{CF}_2\text{O}$  absorption, changes in qualitative agreement with flame modeling calculations. However, it may be seen from Figure 4 that there remain many unassigned features in each spectrum, so an unambiguous assignment of these weak features to  $\text{CF}_3\cdot$  may not be made until more than two transitions have been identified.

### **3.2 Real-Scale Fires.**

**3.2.1 FT-IR Spectroscopy.** Measurement of gases produced during real-scale fire testing was performed at the ATC. All fires investigated used JP-8 as fuel. JP-8 is a turbine engine fuel composed of long chain ( $\text{C}_n$ ,  $n > 5$ ) hydrocarbons. Figure 5 shows the FT-IR absorbance spectrum of gases removed from the vicinity of the fire during inhibition of the fire by Halon 1301. Evident from this spectrum are features due to HF, HCl, HBr, CO, and  $\text{CF}_2\text{O}$ , as well as other species participating in the combustion. Most noticeable is the difference between species present in this fire vs. those observed in the laboratory-scale fires. Most significant are the prominent features due to HBr and  $\text{CF}_2\text{O}$ . We believe the HCl present in the flame arises from Cl impurities in Halon 1301, although no effort was made on our part to verify impurities present in any of the inhibitants used in these experiments. The optically determined concentrations of gases present during inhibition of open-air JP-8 pan fires by Halon 1301 and FM-200 have recently been reported by us elsewhere [3].

**3.2.2 Tunable Diode Laser Spectroscopy.** Results from measurements using FT-IR (Figure 5) showed significant concentrations of HF and  $\text{CF}_2\text{O}$  gas produced during inhibition of open air JP-8 fuel pan fires by Halon 1301. For testing of fire inhibition by Halons in occupied areas, it is important to measure, *in situ*, the time evolution of any toxic gases produced



Figure 5. The FT-IR absorbance spectrum of gas removed from the vicinity of a JP-8 fuel pool fire during inhibition by Halon 1301.

during the inhibition event. This is important for measurement of HF, since we have observed that HF reacts rapidly with most surfaces, especially in the presence of moisture. For this reason, tunable diode laser spectroscopy was chosen to be one of the diagnostics employed during testing. HF was selected as the most important gas to monitor, since HF typically has the highest partial pressure of any of the Halon-inhibited-flame toxic gas products.

Figure 6 shows a schematic of the facility for measuring gases produced during suppression of JP-8 fires occurring within the crew compartment of a ballistic hull and turret of an Army combat vehicle. The HF diagnostic uses a NIR-TDL operating at  $7,665\text{ cm}^{-1}$ . This frequency corresponds to the frequency of the P(2) line of the first overtone of the fundamental HF vibration. There are several reasons to use diode lasers operating in the near-infrared. For HF diagnostics, however, the most important is that MIR-TDL operating at the fundamental frequency (near  $4,000\text{ cm}^{-1}$ ) are not yet available. Other reasons for using a NIR-TDL-based



**Figure 6.** A schematic of the test facility for measuring gases produced during suppression of JP-8 fuel pool fires occurring within crew compartments of Army vehicles. The detector assembly consists of an extractive FT-IR probe and an in situ NIR-TDL emitter-detector assembly.

diagnostic include ease of transmission of the laser radiation through optical fibers, operation at temperatures attainable with thermoelectric coolers ( $\sim 270$  K), low cost of detectors, and ability to significantly reduce laser output noise through the use of kHz modulation techniques [11].

Figure 7 is a graph of HF gas production (in parts per million meter [ppmm]), measured using the NIR-TDL vs. time immediately after release of 3.4 kg of FM-200 into a JP-8 fuel pan fire (area  $\sim 0.3$  m $^2$ ) burning within the closed crew compartment of the ballistic hull and turret of a Bradley Fighting Vehicle. The Halon was dispersed into the fire in approximately 1 s. Fire extinguishment occurred during dispersal of the inhibitant. Figure 8 is a graph of HF gas production (in parts per thousand meter [pptm]), measured using the NIR-TDL vs. time for an identical test, except that the fire was not extinguished by the Halon. The only difference between

## HF Production - Crew Compartment



Figure 7. A graph of HF production (parts per million meter [ppmm]) vs. time after release of FM-200 for a JP-8 fuel pool fire occurring within the crew compartment of an Army combat vehicle. For this test, the inhabitant extinguished the fire.

## HF Production - Crew Compartment



Figure 8. A graph of HF gas production (parts per thousand meter [pptm]) vs. time immediately after release of FM-200 into JP-8 fuel pool fire burning within the closed crew compartment of an Army combat vehicle. Unlike the data shown in Figure 7, for this test, the fire was not extinguished by the inhabitant. The dip in HF concentration near 40 s is due to activation of the backup CO<sub>2</sub> extinguisher system.

tests is a slight change in position of the nozzle of the canister from which the Halon is dispersed. From Figures 7 and 8, it may be seen that peak HF production in the fire not extinguished by the Halon is approximately 50 times higher than in the fire in which extinguishment by the Halon occurred immediately. The dip in HF concentration in Figure 8 near 40 s marks the time at which the backup CO<sub>2</sub> extinguishment system was used to put out the fire. These results indicate that time to suppression, when using Halon-based fire inhibitants, is a critical factor in determining amount of toxic gas (HF) produced during fire fighting. We believe these results are the first quantitative, in situ, real-time measurements of HF production during inhibition of real-scale fires using Halons.

#### 4. CONCLUSION

Optically-based measurements can provide valuable diagnostic information necessary for determination and analysis of mechanisms and efficiencies of Halon fire inhibitants. We have shown that production of toxic gases associated with fire inhibition by Halons, particularly HF and CF<sub>2</sub>O, is dependent on the type and conditions of the fire being investigated. We have measured differences in concentrations of CF<sub>3</sub><sup>·</sup> produced in rich and lean flames inhibited by Halon 1301. Finally, we have shown that the time evolution of HF gas produced during inhibition is dependent on whether or not fire suppression is accomplished immediately after application of Halon inhibitant. We are currently exploring the application of the diagnostic techniques mentioned in this report to more types of fires and extending the methods described here to even more extreme environmental conditions.

**INTENTIONALLY LEFT BLANK.**

## 5. REFERENCES

1. McNesby, K. L., R. G. Daniel, and A. W. Mizolek. "Tomographic Analysis of CO Absorption in a Low-Pressure Flame." Applied Optics, vol. 34, p. 3318, 1995.
2. McNesby, K. L., R. G. Daniel, J. M. Widder, and A. W. Mizolek. "Spectroscopic Investigation of Atmospheric Pressure Counterflow Diffusion Flames Inhibited by Halons." Applied Spectroscopy, vol. 50, p. 126, 1996.
3. Modiano, S. H., K. L. McNesby, P. E. Marsh, W. Bolt, and C. Herud. "Quantitative Measurement by Fourier Transform Infrared (FT-IR) Spectroscopy of Toxic Gas Production During Inhibition of JP-8 Fires by CF<sub>3</sub>Br and C<sub>3</sub>F<sub>7</sub>H." Applied Optics, vol. 35, p. 4004, 1996.
4. Mizolek, A. W., A. E. Finnerty, R. G. Daniel, K. L. McNesby, W. Tsang, V. I. Babushok, M. R. Zachariah, P. R. Westmoreland, and D. R. F. Burgess, Jr. "Fundamental Studies of Fire Extinguishment for Predicting Halon Alternative Compound Behavior." Proceedings of the 1994 Army Science Conference, Orlando, Florida, to be published.
5. Daniel, R. G., K. L. McNesby, and A. W. Mizolek. "Tunable Diode Laser Diagnostics for Combustion Species." Applied Optics, vol. 35, p. 4018, 1996.
6. Varghese, P. L., and R. K. Hanson. "Tunable Infrared Diode Laser Measurements of Line Strengths and Collision Widths of <sup>12</sup>C<sup>16</sup>O at Room Temperature." J. Quant. Spectr. and Rad. Transfer, vol. 24, p. 279, 1980.
7. Yamada, C., and E. Hirota. "Infrared Diode Laser Spectroscopy of the CF<sub>3</sub> v<sub>3</sub> Band." J. Phys. Chem., vol 78, 1983.
8. Rothman, L. S., R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Brenner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth. J. Quant. Spectrosc. Radiat. Transfer, vol. 48, p. 469, 1992 (1992 HITRAN database).
9. Davies, P. B., W. Lewis-Bevan, and D. K. Russell. "Infrared Diode Laser Spectrum of the v<sub>1</sub> Band of CF<sub>2</sub>." J. Chem. Phys., vol. 75, p. 5602, 1981.
10. Babushok, V., D. F. R. Burgess, Jr., G. Linteris, W. Tsang, and A. W. Mizolek. "Modeling of Hydrogen Fluoride Formation From Flame Suppressants During Combustion." Proceedings of the 1995 Halon Options Technical Working Conference, pp. 239–250, New Mexico Engineering Research Institute, Albuquerque, NM, 1995.

11. Bomse, D. S., D. C. Houde, D. B. Oh, J. A. Silver, and A. C. Stanton. "Diode Laser Spectroscopy for On-Line Chemical Analysis." SPIE, vol. 1681, "Optically Based Methods For Process Analysis," p. 138, 1992.

| <u>NO. OF COPIES</u>               | <u>ORGANIZATION</u>                                                                                                                                  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                  | DEFENSE TECHNICAL INFO CTR<br>ATTN DTIC DDA<br>8725 JOHN J KINGMAN RD<br>STE 0944<br>FORT BELVOIR VA 22060-6218                                      |
| 1                                  | HQDA<br>DAMO FDQ<br>ATTN DENNIS SCHMIDT<br>400 ARMY PENTAGON<br>WASHINGTON DC 20310-0460                                                             |
| 1                                  | US MILITARY ACADEMY<br>MATH SCI CTR OF EXCELLENCE<br>DEPT OF MATHEMATICAL SCI<br>ATTN MDN A MAJ DON ENGEN<br>THAYER HALL<br>WEST POINT NY 10996-1786 |
| 2                                  | DIRECTOR<br>US ARMY RESEARCH LAB<br>ATTN AMSRL CS AL TA<br>AMSRL CS AL TP<br>2800 POWDER MILL RD<br>ADELPHI MD 20783-1197                            |
| 3                                  | DIRECTOR<br>US ARMY RESEARCH LAB<br>ATTN AMSRL CI LL<br>2800 POWDER MILL RD<br>ADELPHI MD 20783-1197                                                 |
| <br><u>ABERDEEN PROVING GROUND</u> |                                                                                                                                                      |
| 2                                  | DIR USARL<br>ATTN AMSRL CI LP (305)                                                                                                                  |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                                                            | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                            |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1                    | OSD SDIO IST<br>ATTN L CAVENY<br>PENTAGON<br>WASH DC 20301-7100                                                                                                | 4                    | CDR TACOM<br>ATTN AMSTA TR R 263 G FULLER<br>D JORGENSEN<br>AMSTA TR S M J CLAUSON<br>S MCCORMICK<br>WARREN MI 48397-5000      |
| 2                    | HQDA<br>ATTN SARD TT F MILTON<br>J APPEL<br>WASH DC 20310-0103                                                                                                 | 1                    | CMDT USAFAS<br>ATTN ATSF TSM CN<br>FORT SILL OK 73503-5600                                                                     |
| 1                    | USAAPPSO<br>ATTN SARD ZCS E T A BUSH<br>5001 EISENHOWER AVE<br>ALEXANDRIA VA 22333-0001                                                                        | 1                    | CDR USACHPPM<br>ATTN S HOKE<br>BLDG 568 FORT DETRICK<br>FREDERICK MD 21702                                                     |
| 1                    | HQDA OASA RDA<br>ATTN C H CHURCH<br>PENTAGON 3E486<br>WASH DC 20310-0103                                                                                       | 1                    | OFC OF CHF OF NAVAL OPS<br>ATTN C CYR<br>2211 S CLARK PL RM 678<br>ARLINGTON VA 22204                                          |
| 2                    | CDR ARDEC<br>ATTN SMCAR AEE B D S DOWNS<br>PCTNY ARSNL NJ 07806-5000                                                                                           | 1                    | OFC OF NAVAL RSRCH<br>ATTN R S MILLER CODE 432<br>800 N QUINCY ST<br>ARLINGTON VA 22217                                        |
| 1                    | CDR ARDEC<br>ATTN SMCAR AEE BR L HARRIS<br>PCTNY ARSNL NJ 07806-5000                                                                                           | 1                    | CDR NASC<br>ATTN J RAMNARACE<br>AIR 54111C<br>WASH DC 20360                                                                    |
| 2                    | CDR ARDEC<br>ATTN SMCAR AEE J A LANNON<br>PCTNY ARSNL NJ 07806-5000                                                                                            | 1                    | HQ NASC<br>ATTN J HOMAN<br>1421 JEFF DAVIS HWY<br>ARLINGTON VA 22243                                                           |
| 1                    | DIR USA BENET LABS<br>ATTN AMSTA AR CCB T S SOPOK<br>WATERVLIET NY 12189                                                                                       | 3                    | CDR NAWCWPNS<br>ATTN J M HOOVER CODE 474310D<br>C E JOHNSON CODE 474220D<br>J H TYSON CODE 418300D<br>CHINA LAKE CA 93555-6001 |
| 6                    | CDR ARO<br>ATTN R GHIRARDELLI<br>D MANN<br>R SINGLETON<br>R SHAW<br>AMXRO MCS K CLARK<br>AMXRO RT IP LIB SVCS<br>PO BOX 12211<br>RSRCH TRNGLE PK NC 27709-2211 | 1                    | CDR NAWC<br>ATTN P DE SIPIO<br>PO BOX 5152<br>WARMINSTER PA 18974-0591                                                         |
| 2                    | CDR MERDEC<br>ATTN AMSME RD PR E A R MAYKUT<br>AMSME RD PR P R BETTS<br>REDSTONE ARSENAL AL 35809                                                              | 1                    | CDR NAWC<br>ATTN M TEDESCHI<br>CODE 4352 OAB562 3<br>LAKEHURST NJ 08733-5100                                                   |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                               | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                    | CDR NRL<br>ATTN M C LIN<br>J McDONALD<br>E ORAN<br>J SHNUR<br>R J DOYLE CODE 6110<br>R S SHEINSON CODE 6185<br>WASH DC 20375-5342 | 1                    | NMRI TD<br>ATTN R L CARPENTER<br>2612 5TH ST<br>WRIGHT PATTERSON AFB OH<br>45433-6503                                                                                           |
| 1                    | CDR NSSG O3G<br>ATTN R DARWIN<br>WASH DC 20310                                                                                    | 1                    | USAF PL SE<br>ATTN CPT H S BROTHERS<br>3550 ABERDEEN AVE SE<br>KIRTLAND AFB NM 87117-5776                                                                                       |
| 2                    | CDR NSWC<br>ATTN R BERNECKER R 13<br>G B WILMOT R 16<br>SILVER SPRING MD 20903-5000                                               | 2                    | USAF SALC<br>ATTN J A PETRU LDEE<br>P WILLS<br>485 QUENTIN ROOSEVELT STE 7<br>KELLY AFB TX 78241                                                                                |
| 2                    | CDR NWC<br>ATTN T BOGGS CODE 388<br>T PARR CODE 3895<br>CHINA LAKE CA 93555-6001                                                  | 1                    | USAF SALC TIEM<br>ATTN J E SCOTT<br>408 S CRICKETT<br>KELLY AFB TX 78241                                                                                                        |
| 1                    | SUPERINTENDENT<br>NAVAL POSTGRAD SCHL<br>DEPT OF AERONAUTICS<br>ATTN D W NETZER<br>MONTEREY CA 93940                              | 2                    | USAF WL FIVCF<br>ATTN C J KIBERT<br>R A TETLA<br>139 BARNES DR STE 2<br>TYNDALL AFB FL 32403-5323                                                                               |
| 1                    | USN RDTE DIV<br>ATTN K CHURCH<br>49590 LASSING RD RM B384<br>SAN DIEGO CA 92152-6147                                              | 6                    | USAF WL FIVS<br>ATTN J M BENNETT BLDG 63<br>M A GILLESPIE<br>D J JACKSON II<br>B POPPENBERG<br>J B STEELE<br>J TUCKER<br>1901 TENTH ST<br>WRIGHT PATTERSON AFB OH<br>45433-7605 |
| 3                    | AL LSCF<br>ATTN R CORLEY<br>R GEISLER<br>J LEVINE<br>EDWARDS AFB CA 93523-5000                                                    | 1                    | USAF WL MLBT<br>ATTN H L PAIGE<br>BLDG 654 2941P ST STE 1<br>WRIGHT PATTERSON AFB OH<br>45433-7605                                                                              |
| 2                    | AFOSR<br>ATTN J M TISHKOFF<br>F HEDBERG NL<br>110 DUNCAN AVE<br>BOLLING AFB, DC 20332-8080                                        | 1                    | USAF<br>ATTN G JEPSON<br>2856 G ST BLDG 79 AREA B<br>WRIGHT PATTERSON AFB OH<br>45433                                                                                           |
| 1                    | USAF 95 MSS DPES<br>ATTN T VOGEL<br>125 METHUSA RD<br>EDWARDS AFB CA 93524-1550                                                   |                      |                                                                                                                                                                                 |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                        | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                                                       |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | NASA<br>LANGLEY RSRCH CTR<br>ATTN G B NORTHAM<br>MS 168 LANGLEY STN<br>HAMPTON VA 23365                                    | 1                    | USEPA<br>ATTN NRMRL APPCD MD 63<br>T G BMA<br>RSRCH TRNGL PKNC 27711                                                                                      |
| 4                    | NATNL BUREAU OF STDS<br>US DEPT OF COMMERCE<br>ATTN J HASTIE<br>M JACOX<br>T KASHIWAGI<br>H SEMERJIAN<br>WASH DC 20234     | 2                    | USEPA<br>ATTN M SANDERS MC 6205J<br>R RUBENSTEIN MC 6295J<br>401 M ST SW<br>WASH DC 20460                                                                 |
| 2                    | DIR LANL<br>ATTN B KASHIWA MS B216<br>B NICHOLS T7 MS B284<br>PO BOX 1663<br>LOS ALAMOS NM 87545                           | 1                    | ASC YFFU<br>F 22 SYS PROGRAM OFC<br>ATTN T R EAKIN<br>2310 5TH ST<br>DAYTON OH 45433-7003                                                                 |
| 2                    | DIR LLNL<br>ATTN C WESTBROOK<br>W TAO MS L 282<br>PO BOX 808<br>LIVERMORE CA 94550                                         | 1                    | DUPONT HASKELL LAB<br>ATTN W J BROCK<br>PO BOX 50<br>NEWARK DE 19714                                                                                      |
| 1                    | DIR LLNL<br>ATTN P S CONNELL<br>7000 E AVE L 240<br>LIVERMORE CA 94550                                                     | 2                    | PRINCETON COMB RSRCH LABS INC<br>ATTN N A MESSINA<br>M SUMMERFIELD<br>PRINCETON CORP PLAZA<br>BLDG IV STE 119<br>11 DEERPARK DR<br>MONMOUTH JUNC NJ 08852 |
| 3                    | DIR SNL<br>DIV 8354<br>ATTN S JOHNSTON<br>P MATTERN<br>D STEPHENSON<br>LIVERMORE CA 94550                                  | 1                    | BRIGHAM YOUNG UNIV<br>DEPT OF CHEM ENGN<br>ATTN M W BECKSTEAD<br>PROVO UT 84058                                                                           |
| 1                    | US BUREAU OF MINES<br>HEALTH & SAFETY<br>PITTSBURGH RESCH CTR<br>ATTN I A ZLOCHOWER<br>PO BOX 18070<br>PITTSBURGH PA 15236 | 1                    | CA INST OF TECHLG<br>JET PROPULSION LAB<br>ATTN L STRAND<br>MS 125 224<br>4800 OAK GROVE DR<br>PASADENA CA 91109                                          |
| 1                    | USCG R&D CTR<br>ATTN R HANSEN<br>1082 SHENNECOSSETT RD<br>GROTON CT 06340-6096                                             | 1                    | CA INST OF TECHLG<br>ATTN F E C CULICK<br>MC 301 46<br>204 KARMAN LAB<br>PASADENA CA 91125                                                                |
|                      |                                                                                                                            | 1                    | CORNELL UNIV<br>BAKER LAB<br>DEPT OF CHEM<br>ATTN T A COOL<br>ITHACA NY 14853                                                                             |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                                                                                                                              | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|
| 3                    | GA INST OF TECHLGY<br>SCHL OF AEROSPC ENGNG<br>ATTN E PRICE<br>W C STRAHLER<br>B T ZINN<br>ATLANTA GA 30332                                                                                                                      | 1                    | POLYTECHNIC INST OF NY<br>GRADUATE CTR<br>ATTN S LEDERMAN<br>ROUTE 110<br>FARMINGDALE NY 11735                             |
| 1                    | IIT RSRCH INST<br>ATTN R F REMALY<br>10 WEST 35TH ST<br>CHICAGO IL 60616                                                                                                                                                         | 2                    | PRINCETON UNIV<br>FORRESTAL CAMPUS LIB<br>ATTN K BREZINSKY<br>I GLASSMAN<br>PO BOX 710<br>PRINCETON NJ 08540               |
| 1                    | JHU CPIA<br>ATTN T W CHRISTIAN<br>10630 LITTLE PATUXENT PKWY<br>STE 202<br>COLUMBIA MD 21044-3200                                                                                                                                | 1                    | PURDUE UNIV<br>SCHL OF AERO & ASTRO<br>ATTN J R OSBORN<br>GRISOM HALL<br>WEST LAFAYETTE IN 47906                           |
| 1                    | NATNL SCI FOUNDATION<br>ATTN A B HARVEY<br>WASH DC 20550                                                                                                                                                                         | 1                    | PURDUE UNIV<br>DEPT OF CHEMISTRY<br>ATTN E GRANT<br>WEST LAFAYETTE IN 47906                                                |
| 3                    | NIST BFRL<br>ATTN R G GANN BFRL<br>B224 RM B250<br>D REINELT RM 356<br>R E HUIE CHEM A261<br>GAIITHERSBURG MD 20899                                                                                                              | 2                    | PURDUE UNIV<br>SCHL OF MECH ENGNRNG<br>ATTN N M LAURENDEAU<br>S N B MURTHY<br>TSPC CHAFFEE HALL<br>WEST LAFAYETTE IN 47906 |
| 10                   | NM ENGRNG RSRCH INST<br>ATTN D J CHAVEZ<br>E W HEINONEN<br>J KAIZERMAN<br>J A LIFKE<br>T A MOORE<br>R A PATTERSON<br>T J STEPETIC<br>R E TAPSCOTT<br>C WEITZ<br>F E WHITTINGTON<br>901 UNIV BLVD SE<br>ALBUQUERQUE NM 87106-4339 | 1                    | RENSSELAER POLYTECHNIC INST<br>DEPT OF CHEMICAL ENGN<br>ATTN A FONTIJN<br>TROY NY 12181                                    |
| 4                    | PA ST UNIV<br>DEPT OF MECH ENGN<br>ATTN K KUO<br>M MICCI<br>S THYNELL<br>V YANG<br>UNIV PARK PA 16802                                                                                                                            | 1                    | STANFORD UNIV<br>DEPT OF MECH ENGN<br>ATTN R HANSON<br>STANFORD CA 94305                                                   |
|                      |                                                                                                                                                                                                                                  | 1                    | STEVENS INST OF TECHLGY<br>DAVIDSON LAB<br>ATTN R MCALFY III<br>HOBOKEN NJ 07030                                           |
|                      |                                                                                                                                                                                                                                  | 1                    | UNIV OF CA<br>LOS ALAMOS SCIENTIFIC LAB<br>PO BOX 1663 MS B216<br>LOS ALAMOS NM 87545                                      |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                   | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                               |
|----------------------|-------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|
| 1                    | UNIV OF CA BERKELEY<br>CHEMISTRY DEPT<br>ATTN C B MOORE<br>211 LEWIS HALL<br>BERKELEY CA 94720        | 2                    | UNIV OF MA AT LOWELL<br>DEPT OF CHEMISTRY<br>ATTN W W BANNISTER<br>A C WATTERSON<br>1 UNIV AVE<br>LOWELL MA 01854 |
| 1                    | UNIV OF CA SAN DIEGO<br>ATTN F A WILLIAMS<br>AMES B010<br>LA JOLLA CA 92093                           | 1                    | UNIV OF MI<br>GAS DYNAMICS LAB<br>ATTN G M FAETH<br>AEROSPC ENGNG BLDG<br>ANN ARBOR MI 48109-2140                 |
| 2                    | UNIV OF CA SANTA BARBARA<br>QUANTUM INST<br>ATTN K SCHOFIELD<br>M STEINBERG<br>SANTA BARBARA CA 93106 | 1                    | UNIV OF MN<br>DEPT OF MECH ENGNG<br>ATTN E FLETCHER<br>MINNEAPOLIS MN 55455                                       |
| 1                    | UNIV OF CO AT BOULDER<br>ENGNG CTR<br>ATTN J DAILY<br>CAMPUS BOX 427<br>BOULDER CO 80309-0427         | 2                    | UNIV OF NM<br>DEPT OF CHEMISTRY<br>ATTN G D BRABSON<br>CLARK HALL 103<br>E A WALTERS<br>ALBUQUERQUE NM 87131      |
| 1                    | UNIV OF DAYTON<br>ATTN G SHAUGHNESSY<br>5834 DAFFODIL CIRCLE<br>DAYTON OH 45449                       | 2                    | UNIV OF OK<br>CHEMISTRY DEPT<br>ATTN S D CHRISTIAN<br>A P HAGEN<br>620 PARRINGTON OVAL RM 208<br>NORMAN OK 73019  |
| 1                    | UNIV OF DAYTON RSRCH INST<br>AL PAP<br>ATTN D CAMPBELL<br>EDWARDS AFB CA 93523                        | 3                    | UNIV OF SO CA<br>DEPT OF CHEMISTRY<br>ATTN R BEAUDET<br>S BENSON<br>C WITTIG<br>LOS ANGELES CA 90007              |
| 1                    | UNIV OF DE<br>CHEMISTRY DEPT<br>ATTN T BRILL<br>NEWARK DE 19711                                       | 1                    | UNIV OF TX<br>DEPT OF CHEMISTRY<br>ATTN W GARDINER<br>AUSTIN TX 78712                                             |
| 1                    | UNIV OF FL<br>DEPT OF CHEMISTRY<br>ATTN J WINEFORDNER<br>GAINESVILLE FL 32611                         | 1                    | VA POLYTECHNIC INST & ST UNIV<br>ATTN J A SCHETZ<br>BLACKSBURG VA 24061                                           |
| 1                    | UNIV OF IL<br>DEPT OF MECH ENGNG<br>ATTN H KRIER<br>144MEB 1206 W GREEN ST<br>URBANA IL 61801         |                      |                                                                                                                   |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                                                                                           | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|
| 3                    | WORCESTER POLYTECHNIC INST<br>CTR FOR FIRESAFETY STUDIES<br>ATTN S HEYWORTH<br>W WANG<br>R G ZALOSH<br>100 INSTITUTE RD<br>WORCESTER MA 01609-2280                                            | 2                    | APPLIED MECH REVIEWS<br>ASME<br>ATTN R E WHITE<br>A B WENZEL<br>345 E 47TH ST<br>NEW YORK NY 10017         |
| 2                    | 3M CTR<br>ATTN J E CHORBA B223 6S 04<br>P E RIVERS B236 1B 07<br>ST PAUL MN 55144-1000                                                                                                        | 1                    | APPLIED RSRCH<br>ATTN S WHITEHOUSE<br>4300 SAN MATEO BLVD NE<br>STE A 220<br>ALBUQUERQUE NM 87110          |
| 1                    | ADA TECHLGY INC<br>ATTN J BUTZ<br>304 INVERNESS WAY SO STE 365<br>ENGLEWOOD CO 80112                                                                                                          | 1                    | ARCO<br>ATTN R B MCDONALD<br>2300 W PLANO PKWY<br>RM E 1840<br>PLANO TX 75075                              |
| 1                    | AEROSPACE CORP<br>ATTN A MCLLROY<br>PO BOX 92957<br>LOS ANGELES CA 9009                                                                                                                       | 1                    | ARCO ALASKA INC<br>ATTN S TEETER<br>700 G ST OFC ATO 1832<br>ANCHORAGE AK 99510                            |
| 8                    | ALLIANT TECHSYS INC<br>ATTN R BECKER<br>J BODE<br>D E BRODEN MS MN50 2000<br>R BURETTA<br>C CANDLAND<br>L OSGOOD<br>M SWENSON<br>R E TOMPKINS MN 11 2720<br>600 2ND ST NE<br>HOPKINS MN 55343 | 1                    | ATLANTIC RSRCH CORP<br>ATTN R H W WAESCHE<br>7511 WELLINGTON RD<br>GAINESVILLE VA 22065                    |
| 1                    | ANSUL INC<br>ATTN S HANSEN<br>ONE STATION ST<br>MARINETTE WI 54143                                                                                                                            | 1                    | ATLANTIC RSRCH CORP<br>ATTM R D LYNCH<br>5945 WELLINGTON RD<br>GAINESVILLE VA 22065                        |
| 1                    | ANSUL INC<br>ATTN D PELTON<br>1240 IROQUOIS DR STE 102<br>NAPERVILLE IL 60563                                                                                                                 | 1                    | BATTELLE TWSTIAC<br>505 KING AVE<br>COLUMBUS OH 43201-2693                                                 |
| 1                    | APPLIED COMB TECHLGY INC<br>ATTN A M VARNEY<br>PO BOX 607885<br>ORLANDO FL 32860                                                                                                              | 3                    | BOEING MIL AIRPLANES<br>ATTN M F ROBAIDEK<br>PO BOX 3707 MS 4E 80<br>SEATTLE WA 98124-2207                 |
|                      |                                                                                                                                                                                               |                      | BP EXPLRN INC AK<br>ATTN D CATCHPOLE<br>J McDONAGH<br>S TAYLOR<br>PO BOX 196612<br>ANCHORAGE AK 99519-6612 |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                         | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                     |
|----------------------|-------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1                    | CHEMETRON FIRE SYS<br>ATTN D FLETCHER<br>4800 EASTON DR STE 101<br>BAKERSFIELD CA 93309                     | 1                    | FIRE COMBAT INC<br>ATTN M BAUMAN<br>2739 RIVERSIDE AVE<br>MARINETTE WI 54143                                            |
| 1                    | COHEN PROFESSIONAL SVCS<br>ATTN N S COHEN<br>141 CHANNING ST<br>REDLANDS CA 92373                           | 1                    | FIRE SUPPRESSION SYS ASSOC<br>ATTN C F WILLMS<br>5000 SPRINGWOOD DR<br>RALEIGH NC 27613-1035                            |
| 1                    | DFW INTRNTNL AP<br>ATTN R BRUTON<br>PO DRAWER 619428<br>DFW AP TX 75261-9428                                | 1                    | FREEDMAN ASSOC<br>ATTN E FREEDMAN<br>2411 DIANA RD<br>BALTIMORE MD 21209-1525                                           |
| 1                    | DUPONT CO<br>ATTN H HAMMEL<br>PO BOX 80711<br>WILMINGTON DE 19701                                           | 1                    | FRIENDS OF THE EARTH<br>ATTN C GILFILLAN<br>1025 VERMONT AVE NW<br>STE 300<br>WASH DC 20005                             |
| 1                    | DUPONT CO<br>EXPERIMENTAL STN B 302<br>ATTN H K SHIN<br>WILMINGTON DE 19880-0302                            | 1                    | GAMBOA INTRNTL CORP<br>ATTN F GAMBOA<br>3920 OAK ST<br>FAIRFAX VA 22030                                                 |
| 1                    | DUPONT FLUOROPRODUCTS<br>ATTN D W MOORE<br>PO BOX 80013<br>BMP 13 114<br>WILMINGTON DE 19880-0013           | 1                    | GE ORD SYS<br>ATTN J MANDZY<br>100 PLASTICS AVE<br>PITTSFIELD MA 01203                                                  |
| 1                    | EXXON ENGNG<br>ATTN G UNGERLEIDER<br>180 PARK AVE<br>FLORHAM PK NJ 07932                                    | 1                    | GEN APPLIED SCI LABS INC<br>77 RAYNOR AVE<br>RONKONKAMA NY 11779-6649                                                   |
| 1                    | EXXON RSRCH & ENG CO<br>ATTN A DEAN<br>ROUTE 22E<br>ANNANDALE NJ 08801                                      | 1                    | GEN MOTORS RSRCH LABS<br>PHYSICAL CHEMISTRY DEPT<br>ATTN T SLOANE<br>WARREN MI 48090-9055                               |
| 1                    | FEDEX<br>ATTN J MCOLGAN<br>3101 TCHULANOMA<br>MEMPHIS TN 38194-5413                                         | 1                    | GEO CENTERS INC<br>NRL COMBSTM DYNMC<br>ATTN B H BLACK<br>NRL CODE 6185<br>WASH DC 20375-5342                           |
| 2                    | FIRE PROTECTION SYS<br>ATTN E NEARGARTH<br>B SHAW<br>704 S 10TH ST<br>PO BOX 61013<br>BLUE SPRINGS MO 64013 | 2                    | GEO CENTERS INC<br>ATTN E KIMMEL<br>E SMITH<br>NMRI TD BLDG 433<br>2612 5TH ST<br>WRIGHT PATTERSON AFB OH<br>45433-7903 |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                              | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                                  |
|----------------------|------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | GEO CENTERS INC<br>ATTN A MARANGHIDES<br>10903 INDIAN HEAD HWY<br>FORT WASH MD 20744                             | 4                    | HUGHES ASSOC INC<br>ATTN C HANAUSKA<br>J R MAWHINNEY<br>M PEATROSS<br>D P VERDONIK<br>3610 COMMERCE DR STE 817<br>BALTIMORE MD 21227 |
| 2                    | GREAT LAKES CHEMICAL CORP<br>ATTN L CHYALL<br>M L ROBIN<br>1801 HWY 52 NW<br>PO BOX 2200<br>W LAFAYETTE IN 47906 | 1                    | IBM CORP<br>RSRCH DIV<br>ATTN A C TAM<br>5600 COTTLE RD<br>SAN JOSE CA 95193                                                         |
| 1                    | GREAT LAKES CHEMICAL CORP<br>ATTN D REGISTER<br>1 GREAT LAKES BLVD<br>W LAFAYETTE IN 47906                       | 1                    | IND RISK INSURERS<br>ATTN S A CHINES<br>85 WOODLAND ST<br>HARTFORD CT 06102-5010                                                     |
| 1                    | GUARDIAN SVCS INC<br>ATTN T J WYSOCKI<br>111 LUTHER LA<br>FRANKFORT IL 60423                                     | 1                    | KEMPER NATL INS<br>ATTN S ROGERS<br>680 PARK AVE WEST<br>PO BOX 234<br>MANSFIELD OH 44906                                            |
| 1                    | HALON ALTRNTV RSRCH CORP<br>2111 WILSON BLVD 850<br>ARLINGTON VA 22201                                           | 1                    | KIDDE FENWAL INC<br>ATTN J S MELTZER<br>400 MAIN ST<br>ASHLAND MA 01721                                                              |
| 1                    | HALOTRON INC<br>ATTN F LAW<br>3770 HOWARD HUGHES PKWY<br>STE 300<br>LAS VEGAS NV 89109                           | 1                    | LAROCHE INDUSTRIES INC<br>ATTN B F LEWIS III<br>1200 AIRLINE HWY<br>PO BOX 1031<br>BATON ROUGE LA 70821                              |
| 2                    | HERCULES INC<br>ATTN W B WALKUP<br>E A YOUNT<br>PO BOX 210<br>ROCKET CTR WV 26726                                | 1                    | LOCKHEED MSL & SPC CO<br>DEPT 52 35 B204 2<br>ATTN GEORGE LO<br>3251 HANOVER ST<br>PALO ALTO CA 94304                                |
| 1                    | HERCULES INC<br>ATTN R V CARTWRIGHT<br>100 HOWARD BLVD<br>KENVIL NJ 07847                                        | 1                    | MANTECH ENVIRON<br>TECHLGY INC<br>ATTN A VINEGAR<br>PO BOX 31009<br>DAYTON OH 45437                                                  |
| 1                    | HUGHES AIRCRAFT CO<br>ATTN T E WARD<br>8433 FALLBROOK AVE<br>CANOGA PARK CA 91303                                |                      |                                                                                                                                      |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                 | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| 2                    | MCDONNELL DOUGLAS ARSPC<br>ATTN G DUBRUCQ MC 1064905<br>G HARPER MC 1067075<br>PO BOX 516<br>ST LOUIS MO 63166-0516 | 1                    | PACIFIC SCIENTIFIC<br>ATTN S R SKAGGS<br>3916 JUAN TABO NE<br>ALBUQUERQUE NM 87111                              |
| 2                    | MODULAR PROTECT CORP<br>ATTN H BAYLESS<br>R L NIEMANN<br>5916 DEARBORN<br>MISSION KS 66202                          | 1                    | PACIFIC SCIENTIFIC HTL<br>KIN TECH DIV<br>ATTN W MESERVE<br>1800 HIGHLAND AVE<br>DUARTE CA 91010                |
| 1                    | MORTON INTRNTL R&A<br>ATTN B RICHARDSON<br>3350 AIRPORT RD<br>OGDEN UT 84405                                        | 1                    | PAUL GOUGH ASSOC INC<br>ATTN P S GOUGH<br>1048 SOUTH ST<br>PORTSMOUTH NH 03801-5423                             |
| 1                    | NEWPORT NEWS SHIPBLDG<br>BLDG 600 1 DEPT E41<br>ATTN K PAREKH<br>4101 WASH AVE<br>NEWPORT NEWS VA 23607             | 1                    | PEM ALL FIRE<br>EXTINGUISHER CORP<br>ATTN D APPLEGATE<br>39A MYRTLE ST<br>CRANFORD NJ 07016                     |
| 2                    | NORTHROP GRUMMAN<br>ATTN C T BREEDEN<br>R BULLARD MASD<br>1 HORNET WAY<br>EL SEGUNDO CA 90245-2804                  | 1                    | POWSUS INC<br>ATTN D B MACELWEE<br>14 WOODSTREAM DR<br>WAYNE PA 19087                                           |
| 1                    | NORTHROP GRUMMAN<br>ATTN G ROBERTS<br>1 NORTHROP AVE 3995 W3<br>HAWTHORNE CA 90250                                  | 1                    | POWSUS INC<br>ATTN H E STEWART<br>1178 WISTERIA DR<br>MALVERN PA 19355                                          |
| 2                    | OLIN AEROSPACE CO<br>ATTN G F HOLLAND<br>J WHITE<br>PO BOX 97009<br>REDMOND WA 98073-9709                           | 1                    | ROCKWELL INTERNATNL CORP<br>ROCKETDYNE DIV<br>ATTN J E FLANAGAN HB02<br>6633 CANOGA AVE<br>CANOGA PARK CA 91304 |
| 1                    | OLIN ORD<br>ATTN V MCDONALD LIB<br>PO BOX 222<br>ST MARKS FL 32355-0222                                             | 1                    | ROCKWELL NO AMERICAN<br>AIRCRAFT DIV<br>ATTN R LEWIS<br>2825 EAST AVE P<br>PALMDALE CA 93550                    |
| 1                    | OPERATIONAL TECHLGY<br>BROOKS AFB<br>ATTN N K NANJUNDAPPA<br>8213 14TH ST BLDG 915<br>SAN ANTONIO TX 78235-5246     | 1                    | SANTA BARBARA DUAL SPECT<br>ATTN W W ELLIOT<br>163 AERO CAMINO DR<br>GOLETA CA 93117                            |
|                      |                                                                                                                     | 1                    | SCIENCE APPLICATIONS INC<br>ATTN R B EDELMAN<br>23146 CUMORAH CREST<br>WOODLAND HILLS CA 91364                  |

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                   | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|
| 1                    | SENCOM CORP<br>ATTN R P CARRANO<br>1520 RIALTO LA<br>DAVIS CA 95616-6400                                              | 2                    | UNITED DFNS LP<br>ATTN M H ADAIR<br>M KESSLER<br>217 DEVON DR<br>PO BOX 367<br>SAN JOSE CA 95103         |
| 1                    | SPECTREX INC<br>ATTN E JACOBSON<br>218 LITTLE FALLS RD<br>CEDAR GROVE NJ 07009                                        | 1                    | UNITED TECHLGY CORP<br>CHEMICAL SYSTEMS DIV<br>ATTN R R MILLER<br>PO BOX 49028<br>SAN JOSE CA 95161-9028 |
| 3                    | SRI INTERNATNL<br>ATTN G SMITH<br>D CROSLEY<br>D GOLDEN<br>333 RAVENSWOOD AVE<br>MENLO PARK CA 94025                  | 1                    | UNITED TECHLGY RSRCH CTR<br>ATTN A C ECKBRETH<br>EAST HARTFORD CT 06108                                  |
| 2                    | SVERDRUP TECHNOL INC<br>LERC GROUP<br>ATTN R J LOCKE MS SVR 2<br>J DEUR<br>2001 AEROSPACE PKWY<br>BROOK PARK OH 44142 | 1                    | UNIVERSAL PROPULSION CO<br>ATTN H J MCSPADDEN<br>25401 NO CENTRAL AVE<br>PHOENIX AZ 85027-7837           |
| 1                    | TEXTRON DFNS SYS<br>ATTN A PATRICK<br>2385 REVERE BEACH PKWY<br>EVERETT MA 02149-5900                                 | 1                    | UTRS INC<br>ATTN D BEIN<br>901 NO KINGS HWY STE 208<br>CHERRY HILL NJ 08034                              |
| 3                    | THIOKOL CORP<br>ELKTON DIV<br>ATTN R BIDDLE<br>R WILLER<br>TECHL LIB<br>PO BOX 241<br>ELKTON MD 21921                 | 1                    | VERITAY TECHLGY INC<br>ATTN E B FISHER<br>4845 MILLERSPORT HWY<br>EAST AMHERST NY 14051-0305             |
| 3                    | THIOKOL CORP<br>WASATCH DIV<br>ATTN S J BENNETT<br>PO BOX 524<br>BRIGHAM CITY UT 84302                                | 1                    | WALTER KIDDE AEROSPC<br>ATTN T SIMPSON<br>4200 AIRPORT DR NW<br>WILSON NC 27893-9604                     |
| 1                    | UNDERWRITERS LABS INC<br>ATTN K ZASTROW<br>333 PFINGSTEN RD<br>NORTHBROOK IL 60062                                    | 1                    | R WICKHAM<br>9 WINDING BROOK<br>STRATHAM NH 03885                                                        |

NO. OF  
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

35 DIR USARL  
ATTN AMSRL-WM-P, A HORST  
AMSRL-WM-PC,  
B E FORCH  
G F ADAMS  
W R ANDERSON  
R A BEYER  
S W BUNTE  
C F CHABALOWSKI  
K P MCNEILL-BOONSTOPPEL  
A COHEN  
R CUMPTON  
R DANIEL  
D DEVYNCK  
N F FELL  
J M HEIMERL  
A J KOTLAR  
M R MANAA  
W F MCBRATNEY  
K L MCNESBY  
S V MEDLIN  
M S MILLER  
A W MIZOLEK  
S H MODIANO  
J B MORRIS  
J E NEWBERRY  
S A NEWTON  
R A PESCE-RODRIGUEZ  
B M RICE  
R C SAUSA  
M A SCHROEDER  
J A VANDERHOFF  
M WENSING  
A WHREN  
J M WIDDER  
C WILLIAMSON  
AMSRL-CI-CA, R PATEL

3 CDR ATC  
ATTN STECS TS PC,  
W BOLT B363  
C HERUD  
T TREGNOR

1 CHPPM  
ATTN MCHB DC T J A MACKO JR

| <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                      | <u>NO. OF COPIES</u> | <u>ORGANIZATION</u>                                                                                                     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1                    | AD FS<br>ATTN M REED ACO<br>RM 18 D MOD FS BLDG 44<br>NO 1 SITE RAF<br>HIGH WYCOMBE<br>BUCKS HP14 4UE<br>UNITED KINGDOM  | 1                    | NO AMERICAN FIRE GRDN<br>TECH INC<br>ATTN E GUGLIELMI<br>304 700 PENDER ST<br>VANCOUVER BC V6C1G8<br>CANADA             |
| 1                    | ANPI PARC SCIENTIFIQUE<br>ATTN G BAES<br>B 1348<br>LOUVAIN LA NEUVE<br>BELGIUM                                           | 1                    | RAAF AUSTRALIAN EMBASSY<br>ATTN S MORTON<br>1601 MASSACHUSETTS AVE<br>WASH DC 20036-2273                                |
| 1                    | BCTEL<br>ATTN G RIDEOUT<br>15 3777 KINGSWAY<br>BURNABY BC V5H3Z7<br>CANADA                                               | 1                    | SES ENSER ENGNG SPA<br>ATTN F STUMPO<br>42 VIA E DE AMICIS<br>20092 CINISELLO MILANO<br>ITALY                           |
| 1                    | FIRE RSRCH STATION<br>BLDG RSRCH ESTAB<br>ATTN J V MURRELL<br>GARSTON WATFORD WD 2 7JR<br>UNITED KINGDOM                 | 1                    | ST FIRE SVC HQ NOHR<br>ATTN B KUCNEROWICZ POLAK<br>UL DOMANIEWSKA 36/38<br>PO BOX 20<br>WARSAW 00 950<br>POLAND         |
| 1                    | KIDDE GRAVINER LTD<br>ATTN D N BALL<br>MATHISEN WAY<br>POYLE RD COLNBROOK<br>SLOUGH BERKSHIRE SL 3 OHB<br>UNITED KINGDOM | 1                    | STATE OF ISRAEL<br>ATTN M PRAGUER<br>168 ARLOSOROFF<br>TEL AVIV 62098<br>ISRAEL                                         |
| 1                    | KIDDE INTERNL<br>ATTN J GRIGG<br>MILL HOUSE POYLE RD<br>COLNBROOK SLOUGH<br>BERKSHIRE SL3 OHB<br>UNITED KINGDOM          | 1                    | SWEDISH DFNC MTRL ADMN<br>ATTN B EGMAN<br>BANERGATAN 62<br>SWEDEN                                                       |
| 1                    | KOATSU CO LTD<br>ATTN N YAMADA<br>310 KITAHONMACHI 1 CHOME<br>ITAMI HYOGO 664<br>JAPAN                                   | 1                    | SWEDISH FIRE PROTECT ASSN<br>ATTN S ANDERSSON<br>LILLA BOMMEN 1<br>S 411 04 GOTHENBURG<br>SWEDEN                        |
| 2                    | NATL RSRCH COUNCIL OF CA<br>ATTN A K KIM<br>J Z SU<br>BLDG M 59 MONTREAL RD<br>OTTAWA ONTARIO K1A OR6<br>CANADA          | 1                    | SWEDISH RESCUE SVCS AGNCY<br>ATTN I HANSSON<br>KAROLINEN S 65180 KARLSTAD<br>SWEDEN                                     |
|                      |                                                                                                                          | 1                    | THE HALON USERS NATNL<br>CONSORTIUM LTD<br>ATTN K SIMPSON<br>46 BRIDGE ST<br>GODALMING SURREY GU7 1HL<br>UNITED KINGDOM |

NO. OF  
COPIES ORGANIZATION

1 UK CIVIL AVN AUTHORITY  
ATTN N J POVEY  
3W AVIATION HOUSE  
GATWICK AP GATWICK AREA SO  
WEST SUSSEX RH6 0YR  
UNITED KINGDOM

2 UK MINISTRY OF DFNC  
ATTN C C BUCKLEY RM 34  
D RUSH RM 32  
DG SHIPS ME 225 BLCK K  
FOXHILL BATH AVON BA1 5AB  
UNITED KINGDOM

1 UK MINISTRY OF DFNC  
ATTN D LIDDY  
ENV POL MP  
RM 2 80 METROPOLE BLDG  
NORTHUMBERLAND AVE  
LONDON WC2N 5BL  
UNITED KINGDOM

1 VINCA INST OF NUCLEAR SCI  
ATTN K F ZMBOV  
PO BOX 522  
BELGRADE  
YUGOSLAVIA

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                | Form Approved<br>OMB No. 0704-0188 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------|
| <p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project(0704-0188), Washington, DC 20503.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                |                                    |
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. REPORT DATE                           | 3. REPORT TYPE AND DATES COVERED               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | April 1997                               | Final, Jan 95-Jan 96                           |                                    |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 5. FUNDING NUMBERS                             |                                    |
| Optical Measurement of Toxic Gases Produced During Firefighting Using Halons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | PR: 1L161102AH43                               |                                    |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                |                                    |
| Kevin L. McNesby, Robert G. Daniel, Andrzej W. Mizolek, and Steven H. Modiano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                |                                    |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 8. PERFORMING ORGANIZATION REPORT NUMBER       |                                    |
| U.S. Army Research Laboratory<br>ATTN: AMSRL-WM-PC<br>Aberdeen Proving Ground, MD 21005-5066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | ARL-TR-1349                                    |                                    |
| 9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                |                                    |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                |                                    |
| 12a. DISTRIBUTION/AVAILABILITY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 12b. DISTRIBUTION CODE                         |                                    |
| Approved for public release; distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                |                                    |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                |                                    |
| <p>Several optical techniques Fourier transform infrared (FT-IR) emission and absorption spectroscopy, mid-and near-infrared tunable diode laser (MIR-TDL, NIR-TDL) absorption spectroscopy have been used to measure toxic gases produced during inhibition of flames by halogenated hydrocarbons (Halons). Fire types studied include low-pressure premixed flames, atmospheric-pressure counterflow diffusion flames, open-air JP-8 (turbine fuel) fires, and confined JP-8 fires. Spectra are presented and analyzed for these fires inhibited by CF<sub>3</sub>Br (Halon 1301) and C<sub>3</sub>F<sub>7</sub>H (FM-200). For low-pressure premixed flames, spectra are presented that show production of the CF<sub>3</sub><sup>·</sup> radical in CH<sub>4</sub>/O/Ar flames inhibited by CF<sub>3</sub>Br. For real-scale fire testing, it is shown that type and amount of toxic gases produced during fire inhibition are highly dependent on fire conditions and temperatures, and that some species not considered important (CF<sub>2</sub>O) are often produced in significant amounts. Finally, it is shown that HF production, during inhibition of vehicle fires using FM-200, is highly dependent on time to suppression.</p> |                                          |                                                |                                    |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 15. NUMBER OF PAGES                            |                                    |
| Halons, toxic gas generation, hydrogen fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 37                                             |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 16. PRICE CODE                                 |                                    |
| 17. SECURITY CLASSIFICATION OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT        | 20. LIMITATION OF ABSTRACT         |
| UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNCLASSIFIED                             | UNCLASSIFIED                                   | UL                                 |

**INTENTIONALLY LEFT BLANK.**

## USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-1349 (McNesby) Date of Report April 1997

2. Date Report Received \_\_\_\_\_

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)  
\_\_\_\_\_  
\_\_\_\_\_

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)  
\_\_\_\_\_  
\_\_\_\_\_

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.  
\_\_\_\_\_  
\_\_\_\_\_

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)  
\_\_\_\_\_  
\_\_\_\_\_

|                    |                        |             |
|--------------------|------------------------|-------------|
| CURRENT<br>ADDRESS | Organization           |             |
|                    | Name                   | E-mail Name |
|                    | Street or P.O. Box No. |             |
|                    | City, State, Zip Code  |             |

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

|                |                        |  |
|----------------|------------------------|--|
| OLD<br>ADDRESS | Organization           |  |
|                | Name                   |  |
|                | Street or P.O. Box No. |  |
|                | City, State, Zip Code  |  |

(Remove this sheet, fold as indicated, tape closed, and mail.)  
**(DO NOT STAPLE)**

---

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

**BUSINESS REPLY MAIL**  
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR  
US ARMY RESEARCH LABORATORY  
ATTN AMSRL WM PC  
ABERDEEN PROVING GROUND MD 21005-5066

---



NO POSTAGE  
NECESSARY  
IF MAILED  
IN THE  
UNITED STATES

A set of seven horizontal black bars of varying lengths, used for postal processing.