Modello topologico di un sistema

Modello topologico di un sistema

Osservazione del sistema

Sottoinsieme interno (IS1)

Conflitto strutturale (C2)

Conflitto strutturale con mascheramento (C3)

Specifica (operazionale) di diagnosi minimale con mascheramento

- a) Sottrarre (∪IS) a tutti i Ci e CMj, ottenendo <u>Ci</u> e <u>CMj</u>
- b) ∀ <u>CMj</u>, calcolare almeno un <u>CMj\Ci</u> non vuoto (e il <u>CMj</u> ∩ <u>Ci</u> non vuoto relativo)
- c) Calcolare gli hitting set minimali (MHS) della collezione costituita da tutti gli insiemi di cui al punto precedente e da tutti gli eventuali Ch che non hanno concorso a creare gli insiemi del punto precedente (ciascun MHS è una diagnosi minimale con mascheramento)

DIAGNOSI (MINIMALI) COMPRENSIVE DEGLI INGRESSI

Diagnosi (minimali) con mascheramento

MHS: ciascuno di essi è una diagnosi minimale con mascheramento.
L'insieme di queste diagnosi candidate è l'unico possibile per il problema diagnostico (sistema+osservazione) dato

{A3,i3} {M3,M4} {i3,M4} {M3,i4} {i3,i4}

Stesso sistema, osservazione diversa

 $C_1 \cap CM_3 = \emptyset \rightarrow \emptyset$ diagnosi minimali con mascheramento

Stesso sistema, altra osservazione

MHS: ciascuno di essi è una diagnosi minimale con mascheramento (l'insieme di queste diagnosi candidate non è l'unico possibile per il problema diagnostico (sistema+osservazione) dato {M2,M3} {M2,i3} {i2,M3} {i2,i3} {M2,A2,M4} {i2,A2,M4}{M2,A2,A3} {i2,A2,A3} {M2,A2,i4} {i2,A2,i4}

Stesso problema, altre diagnosi

MHS: ciascuno di essi è una diagnosi minimale con mascheramento. L'insieme di queste candidate si aggiunge a quello della pagina precedente (alcune diagnosi sono condivise) per il problema diagnostico (sistema+osservazione) dato

{M2,M3} {i2,M3} {i2,M3} {i2,i3} {M3,A2,M1} {M3,A2,A1} {M3,A2,i1} {i3,A2,M1} {i3,A2,A1} {i3,A2,i1}

Altri esempi

MHS (ciascuno di essi è una diagnosi minimale con mascheramento)

{M2,M3}{M2,A2} {M2,i5}{M2,i6} {i3,M3}{i3,A2} {i3,i5}{i3,i6} {i4,M3}{i4,A2}{i4,i5}{i4,i6}

MHS (ciascuno di essi è una diagnosi minimale con mascheramento)

{M2,M3} {M2,i5}{M2,i6} {i3,M3}{i3,i5}{i3,i6} {i4,M3}{i4,i5}{i4,i6} {M2,A2,M4}{i3,A2,M4}{i4,A2,M4} {M2,A2,A3}{i3,A2,A3}{i4,A2,A3} {M2,A2,i7}{i3,A2,i7}{i4,A2,i7} {M2,A2,i8}{i3,A2,i8}{i4,A2,i8}

Stesso problema, altro calcolo,

{M2,M3} {i3,M3} {i4,M3} {M2,i5} {i3,i5} {i4,i5}{M2,i6} {i3,i6} {i4,i6} {M2,A2,M4} {i3,A2,M4} {i4,A2,M4} {M2,A2,A3} {i3,A2,A3} {i4,A2,A3} {M2,A2,i7} {i3,A2,i7} {i4,A2,i7} {M2,A2,i8} {i3,A2,i8} {i4,A2,i8}

Stesso problema, altre diagnosi

Queste candidate si aggiungono a quelle della pagina precedente

{M2,M3} {i3,M3} {i4,M3} {M2,i5} {i3,i5} {i4,i5} {M2,i6} {i3,i6} {i4,i6} {M1,A1,A2,M3} {M1,A1,A2,i5} {M1,A1,A2,i6} {i1,A1,A2,i6} {i1,A1,A2,i6} {i2,A1,A2,M3} {i2,A1,A2,i5} {i2,A1,A2,i6} {A4,A1,A2,i5} {A4,A1,A2,i6} {i1,A1,A2,i6} {i1,A1,A2,i6} {i1,A1,A2,i6} {i2,A1,A2,i6} {i2,A1,A2,i6} {i2,A1,A2,i6} {i2,A1,A2,i6} {i2,A1,A2,i6}

Stesso problema, altro calcolo, nessuna

MHS: tutte le diagnosi sono condivise dagli insiemi di candidate già calcolati

{M2,M3} {M2,i5}{M2,i6} {i3,M3} {i3,i5}{i3,i6} {i4,M3} {i4,i5}{i4,i6}

Grafo disconnesso

- La specifica operazionale di diagnosi (minimale) con mascheramento vale anche per grafi disconnessi
- L'insieme delle diagnosi (minimali) con mascheramento relative all'intero sistema è dato dal "prodotto cartesiano" degli insiemi delle diagnosi (minimali) con mascheramento relative ai grafi connessi componenti sse nessuno di essi è vuoto

MHS {M2,M3,M4,M5} {M2,A2,M4,M5}{M2,M3,M4,A4} (ciascuno di essi è una {M2,A2,M4,A4}{i1,M3,M4,M5} {i1,A2,M4,M5} diagnosi minimale {i1,M3,M4,A4} {i1,A2,M4,A4} {M2,A3,i2,M5} con mascheramento) {M2,A2,i2,M5}{M2,M3,i2,A4} {M2,A2,i2,A4} {i1,A3,i2,M5} {i1,M3,i2,M5} {i1,A2,i2,M5}{i1,M3,i2,A4} {i1,A2,i2,A4}

Le candidate della pagina precedente sono il "prodotto cartesiano" dei due insiemi di candidate di questa pagina

{M4,M5} {M4,A4} {i2,M5} {i2,A4}

Grafo disconnesso, altra osservazione

Calcolo degli hitting set minimali (MHS)

Esempio.

Supponiamo di dovere calcolare i MHS della seguente collezione di insiemi (che costituisce il parametro di ingresso dell'algoritmo):

- {B3,B4}
- {A1,A2,B4}
- {A2,A5,B3,B4}

(La soluzione è: {B4} {A1,B3} {A2,B3})

Strutture dati

Sia A la collezione degli insiemi considerata, N il numero degli insiemi che appartengono alla collezione ed M il numero di elementi (distinti) che compaiono nell'unione di tali insiemi.

Esempio (cont.)

- A: {{B3,B4}, {A1,A2,B4}, {A2,A5,B3,B4}}
- N = 3, $M = 5 = |\{A1,A2,B3,B4,A5\}|$

Strutture dati (cont.)

Ogni elemento degli N insiemi è univocamente identificata da un intero appartenente all'intervallo [1 .. M].

Esempio (cont.)

- {A1,A2,B3,B4,A5}
- 1 2 3 4 5

Strutture dati (cont.)

La collezione A di N insiemi può essere rappresentata come una matrice $A_{N,M}$, dove il valore del componente $a_{i,j}$ della matrice è 1 se l'elemento j appartiene all'insieme i, 0 altrimenti.

Strutture dati (cont.)

Esempio (cont.)

• {A1,A2,B4}

{A1,	A2,	B3,	B4,	A5 }
1	2	3	4	5

• {B3,B4}	
-----------	--

7	

•	{A2,B3,B4,A5}	3
•	$\{AZ,UJ,U4,AJ\}$	J

0	0	1	1	0
1	1	0	1	0
0	1	1	1	1

Algoritmo (brute force): passi

- $i \leftarrow 1$
- CICLO: Generare il sottoinsieme s_i (non vuoto e distinto rispetto a quelli già generati) degli M interi considerati
- Controllare se s_i è un HS (lo è se il vettore somma delle colonne corrispondenti a tutti gli elementi che appartengono a s_i non contiene alcuno 0); se non lo è, goto INC
- (Se lo è,) controllare, nell'elenco degli HS già trovati (inizialmente vuoto), se ∃ un HS h tale che h ⊂ s_i; se è così (cioè, se s_i sicuramente non è un MHS), goto INC

Algoritmo (brute force): passi (cont.)

- (Se $\not\exists$ h \subset s_i,) controllare, nell'elenco degli HS già trovati, se \exists degli HS h tali che s_i \subset h; se è così, sostituire cumulativamente nell'elenco degli HS tutti questi h con s_i; goto INC
- (Se non è così,) aggiungere s_i all'elenco degli HS
- INC: $i \leftarrow i + 1$
- Se i $\leq 2^M 1$, goto CICLO
- FINE

1 2 3 4 5

0	0	1	1	0
1	1	0	1	0
0	1	1	1	1

Elenco HS

- {4}
- {1,3}
- {2,3}

Sottoinsiemi generati

- {1}
- **{2**}
- {3}
- {4}
- {5}
- {1,2}
- {1,3}
- $\{1,4\}$ $(\{4\} \subseteq \{1,4\})$
- {1,5}
- {2,3}

1 2 3 4 5

0	0	1	1	0
1	1	0	1	0
0	1	1	1	1

Elenco HS

- {4}
- {1,3}
- {2,3}

Sottoinsiemi generati

- $\{2,4\}$ $(\{4\} \subseteq \{2,4\})$
- {2,5}
- $\{3,4\}$ $(\{4\} \subseteq \{3,4\})$
- {3,5}
- $\{4,5\}$ $(\{4\} \subseteq \{4,5\})$
- $\{1,2,3\}$ $(\{1,3\} \subseteq \{1,2,3\})$
- $\{1,2,4\}$ $(\{4\} \subseteq \{1,2,4\})$
- {1,2,5}
- $\{1,3,4\}$ $(\{4\} \subseteq \{1,2,4\})$
- $\{1,3,5\}$ $(\{1,3\}\subseteq\{1,3,5\})$
- $\{1,4,5\}$ $(\{4\} \subset \{1,4,5\})$

1 2 3 4 5

0	0	1	1	0
1	1	0	1	0
0	1	1	1	1

Elenco HS

- {4} cioè {B4}
- {1,3} cioè {A1,B3}
- {2,3} cioè {A2,B3}

Alla fine dell'esecuzione, questi sono i MHS

- Sottoinsiemi generati
- $\{2,3,4\}$ $(\{4\} \subseteq \{2,4\})$
- $\{2,3,5\}$ $(\{2,3\}\subseteq\{2,3,5\})$
- $\{2,4,5\}$ $(\{4\} \subseteq \{2,4,5\})$
- $\{3,4,5\}$ $(\{4\} \subseteq \{3,4,5\})$
- $\{1,2,3,4\}$ $(\{4\} \subseteq \{1,2,3,4\})$
- $\{1,2,3,5\}$ $(\{1,3\} \subseteq \{1,2,3,5\})$
- $\{1,2,4,5\}$ $(\{4\} \subseteq \{1,2,4,5\})$
- $\{1,3,4,5\}$ $(\{4\} \subseteq \{1,3,4,5\})$
- $\{2,3,4,5\}$ $(\{4\} \subseteq \{1,3,4,5\})$
- $\{1,2,3,4,5\}$ $(\{4\} \subseteq \{1,2,3,4,5\})$

 Se i sottoinsiemi vengono generati in ordine di cardinalità non decrescente, la condizione s_i ⊂ h è sempre falsa → effettuare il controllo relativo è inutile

(Dimostrazione

- \forall h contenuto nell'elenco degli HS, $|s_i| \ge |h|$
- Se |s_i|= |h|→ s_i ⊄ h
 in particolare h ≠ s_i perché, per costruzione, s_i è
 distinto da tutti i sottoinsiemi già generati, fra cui h
- Se $|s_i| > |h| \rightarrow s_i \not\subset h$

Se i sottoinsiemi vengono generati in ordine di cardinalità non decrescente, gli HS che vengono inseriti nell'elenco (nello stesso ordine di generazione) sono MHS

Se un singoletto è un HS, esso è un MHS e nessun suo superinsieme è un MHS → generare i suoi superinsiemi è inutile

Esempio (cont.)

1	2	2	4	5
	_	O	4	J

0	0	1	1	0
1	1	0	1	0
0	1	1	1	1

h = $\{4\}$ è un MHS, tutti i suoi superinsiemi s_i sono HS ma nessuno di essi è stato posto nell'elenco degli HS perché h \subset s_i

Algoritmo (brute force) migliorato: passi

- Generare tutti i sottoinsiemi singoletti degli M interi considerati; salvare ogni singoletto che è un HS, cioè la cui colonna non contiene alcuno 0, in un elenco a parte (distinto da quello degli HS), sottrarre il singoletto dall'insieme degli M interi considerati e rimuovere tale colonna dalla matrice A
- $i \leftarrow 1$
- CICLO: Generare, secondo un ordine di cardinalità non decrescente, il sottoinsieme s_i (non vuoto e distinto rispetto a quelli già generati) degli M' interi rimasti, a partire dalla cardinalità 2

Algoritmo (*brute force*) migliorato: passi (cont.)

- Controllare se s_i è un HS; se non lo è, goto INC
- (Se lo è,) controllare, nell'elenco degli HS già trovati, se ∃ un HS h tale che h ⊂ s_i; se è così, goto INC
- (Se non è così,) aggiungere s_i all'elenco degli HS
- INC: $i \leftarrow i + 1$
- Se i $\leq 2^{M'} M' 1$, goto CICLO
- (altrimenti) aggiungere all'elenco degli HS l'elenco dei singoletti HS
- FINE

Elenco singoletti HS

• {4}

Elenco HS

- {1,3}
- {2,3}

Sottoinsiemi generati

- {1,2}
- {1,3}
- {1,5}
- {2,3}
- {2,5}
- {3,5}
- $\{1,2,3\}$ $(\{1,3\}\subseteq\{1,2,3\})$
- {1,2,5}
- $\{1,3,5\}$ $(\{1,3\}\subseteq\{1,3,5\})$
- $\{2,3,5\}$ $(\{2,3\}\subseteq\{2,3,5\})$
- $\{1,2,3,5\}$ $(\{1,3\} \subseteq \{1,2,3,5\})$

La cardinalità massima di un MHS di una collezione di N insiemi è N → generare sottoinsiemi (degli M' elementi rimasti) di cardinalità maggiore di N è inutile