Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 190.0 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 657.58 657.56 657.54 Bølgelengde (nm) 657.52 657.50 657.48 657.46 657.44 657.42 10 40 0 20 30 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 6.04, tilsynelatende blå størrelseklass $m_B = 8.64$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 11.76, tilsynelatende blå størrelseklass $m_B = 14.36$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=11.76,$ tilsynelatende

blå størrelseklass m_B = 13.36

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 6.04, tilsynelatende blå størrelseklass $m_B = 7.64$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.89 og store halvakse a=45.91 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.89 og store halvakse a=23.38 AU.

Filen 1F.txt

Ved bølgelengden 419.16 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

8.40 - 88.20 - 88.20 - 7.80 - 7.40 -

Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 9.20 solmasser, temperatur på 29.10 Kelvin og tetthet 9.16e-21 kg per kubikkmeter

Gass-sky B har masse på 24.10 solmasser, temperatur på 10.80 Kelvin og tetthet 1.69e-20 kg per kubikkmeter

Gass-sky C har masse på 20.80 solmasser, temperatur på 54.30 Kelvin og

tetthet 3.74e-21 kg per kubikkmeter

Gass-sky D har masse på 16.80 solmasser, temperatur på 33.30 Kelvin og tetthet 8.56e-21 kg per kubikkmeter

Gass-sky E har masse på 11.60 solmasser, temperatur på 32.60 Kelvin og tetthet 6.96e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE C) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) stjernas energi kommer fra Planck-stråling alene

Filen 1L.txt

Stjerne A har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 6.68

Stjerne B har spektralklasse F8 og visuell tilsynelatende størrelseklasse m_V = 8.52

Stjerne C har spektralklasse F8 og visuell tilsynelatende størrelseklasse m_V = 9.72

Stjerne D har spektralklasse A6 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 5.33

Stjerne E har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 1.38

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.309999999999999777955 AU.

Tangensiell hastighet er 69344.872902396047720686 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.798 AU.

Kometens avstand fra jorda i punkt 2 er r2=8.310 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.985.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9512 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00038 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=660.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9908 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 575.70 nm.

Filen 4A.txt

Stjernas masse er 3.31 solmasser.

Stjernas radius er 0.61 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 -600 -400 200 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.67 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.20 solmasser.

r-koordinaten til det innerste romskipet er r $=9.84~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=17.32~\mathrm{km}.$