

Контроллер многофункциональный SNR-ERD-4

Руководство по эксплуатации (НАГД.424339.001 РЭ)

SNR-ERD-4C SNR-ERD-4S SNR-ERD-4S-RF SNR-ERD-4S-GSM

Уважаемый покупатель

Благодарим Вас за то, что отдали предпочтение оборудованию марки SNR.

SNR-ERD безопасны, надежны и не требуют дополнительного обслуживания.

Ознакомьтесь внимательно с данным руководством. Оно содержит ПО безопасной установке И эксплуатации. руководство включает в себя описание принципов внутренней работы устройства И работы соответствующих встроенных функций. Руководство также содержит информацию об эксплуатации Пожалуйста, следуйте оборудования. всем инструкциям И предупреждениям, указанным в данном руководстве.

В связи с проведением постоянного усовершенствования наше оборудование может отличаться по каким-либо параметрам от содержания данного руководства.

Для получения консультаций технических специалистов обращайтесь в техподдержку — erd@nag.ru

СОДЕРЖАНИЕ

1 0	писание и работа	6
1.1	Назначение	6
1.2	Устройство и работа	7
1.3	Характеристики	10
1.4	Комплектность	20
1.5	Маркировка	21
1.6	Упаковка	21
2 И	спользование по назначению	22
2.1	Подготовка к работе	22
2.2	WEB интерфейс	24
2.3	Обновление программного обеспечения	49
2.4	Управление нагрузками	51
2.5	Сервисы	54
2.6	Подключение датчиков	57
2.7	Управление по SNMP протоколу	60
2.8	Оповещения о событиях	65
2.9	SMS-сообщения	68
2.10	Счетчики	71
2.11	Преобразование интерфейсов	72
3 M	еры безопасности	75
4 Га	арантии изготовителя	75
5 T	ранспортирование и хранение	76
6 У	гилизация	76
При	ложение А	77
Пис.	т регистрации изменений	78

Принятые обозначения и сокращения

GSM – (Global System for Mobile Communications) глобальный цифровой стандарт мобильной сотовой связи;

GPRS – (General Packet Radio Service) надстройка над GSM, осуществляющая пакетную передачу данных;

ERD – (Ethernet Remote Device) семейство устройств удаленного управления и мониторинга по стандарту Ethernet;

PING – утилита для проверки доступности сетевого оборудования;

ТСР/ІР – набор сетевых протоколов;

ПО – программное обеспечение;

ЭМС – электромагнитная совместимость.

ПП – первичные преобразователи;

МИП – микропроцессорные импульсные преобразователи;

ЭИИМ – эффективная изотропная излучаемая мощность;

AI – (analog input) аналоговый вход;

AO – (analog output) аналоговый выход;

DI – (digital input) дискретный вход;

DO – (digital output) дискретный выход;

DIO – (digital input/output) комбинированный дискретный вход/выход;

WDI – (wet digital input) DI с внешним источником питания;

XX — холостой ход;

КЗ – короткое замыкание;

СПО – системное программное обозначение;

ПЭВМ – персональная электронно-вычислительная машина

Данное руководство эксплуатации ПО предназначено ДЛЯ ознакомления технического, обслуживающего эксплуатирующего персонала С устройством, принципом работы, техническими характеристиками, конструктивными особенностями, порядком работы и комплектностью поставки контроллера многофункционального SNR-ERD-4.

Перечень документов, на которые ссылается настоящее руководство по эксплуатации, приведен в Приложении А.

Варианты исполнения SNR-ERD-4, на которые распространяется данное руководство по эксплуатации, приведены в таблице 1:

Таблица 1 – Варианты исполнения ERD и их обозначения

Tacinique : Bapilant Bi Melles melles in Mix decenta termin				
Обозначение	Децимальный номер	Характеристика		
SNR-ERD-4C	НАГД.424339.001-001	Диэлектрический кожух. Нет модулей		
SNR-ERD-45		Металлический корпус. Нет модулей		
SNR-ERD-4S-GSM	НАГД.424339.001-003	Металлический корпус. Модуль GSM/GPRS		
SNR-ERD-4S-RF	НАГД.424339.001-004	Металлический корпус. Модуль RF-868 МГц		

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

Контроллер многофункциональный SNR-ERD-4 (далее – ERD) предназначен ДЛЯ организации автоматизированной системы управления производственными процессами, TOM числе ДЛЯ измерения, сбора и хранения данных с первичных преобразователей (далее – ПП) и микропроцессорных измерительных преобразователей обеспечения МИΠ), функции шлюзования различных интерфейсов и сетей связи, регистрации дискретных сигналов состояния оборудования, выдача команд телеуправления, обработки полученной информации И передачи ее на вышестоящие уровни управления.

Область применения: системы сбора и передачи информации; автоматизированные системы коммерческого и технического учета различных ресурсов, автоматизированные системы диспетчерского управления на объектах предприятий электросвязи, электроэнергетики, нефтегазодобывающей промышленность, а также на предприятиях других отраслей промышленности.

ERD разработан для эксплуатации в условиях макроклиматического района с умеренным климатом, категория размещения – эксплуатация в нерегулярно отапливаемых помещениях по ГОСТ 15150:

- температура окружающей среды от минус 40 °C до плюс 50 °C;
- относительная влажность не более 85 % при температуре 25 °C.

1.2 Устройство и работа

ERD представляет собой аппаратно-программный комплекс на основе микроконтроллера STM32F407. В энергонезависимой памяти микроконтроллера хранится программное обеспечение (firmware), которое определяет логику работы устройства. Пользователю доступна функция обновления программного обеспечения. Настройка и конфигурирование ERD осуществляется посредством встроенного WEB-конфигуратора, SNMP интерфейса и API MQTT.

На рисунке 1 представлен внешний вид SNR-ERD-4S.

Рисунок 1 – Внешний вид SNR-ERD-4S

На рисунке 2 представлено расположение разъемов ERD. Нумерация контактов слева направо при виде на разъем спереди.

Рисунок 2 – Контакты и рабочие узлы устройства

Цифрами (Рисунок 2) обозначены:

1	3-контактный разъем;
2	8-контактный разъем;
3	Индикатор питания устройства «PWR»;
4	Разъём RJ-45 для подключения к сети Ethernet 10/100 Мбит/с;
5	Альтернативное место установки зажима DIN-рейки;
6	2-контактный разъем для подачи напряжения питания;
7	Отверстие под разъем SMA при использовании радиомодулей;
8	10-контактный разъем;
9	Кнопка сброса на заводские настройки.

Ниже приводится описание разъемов и назначение контактов.

3-контактный разъём:

Порт силовой коммутации с нормально-замкнутыми и нормально-разомкнутыми контактами на базе реле. Для активной нагрузки максимальное коммутируемое напряжение – 250B, ток – 10A.

1	Нормально-замкнутый контакт реле (REL NO);	
2	Общий контакт реле (REL COM);	
3	Нормально-разомкнутый контакт реле (REL NC).	

8-контактный разъём:

На разъеме расположены порты DIO (Digital Input/Output), порт питания внешних нагрузок и порт AO (Analog Output).

1	Аналоговый выход (АО) с функцией питания внешних датчиков;
2	Выход +5В для питания внешних нагрузок (150мА);
3	Общий контакт GND для подключения нагрузок и датчиков;
4	Порт DIO1;
5	Порт DIO2;
6	Порт DIO3;
7	Порт DIO4;
8	Порт DIO5.

10-контактный разъём:

На разъеме сосредоточены интерфейсы связи RS-232/485, 1-wire/Single-wire, а также порт AI (Analog Input) и порт WDI (Wet Digital Input).

1	Общий (GND) контакт для подключения датчиков;
2	Аналоговый вход (AI) для измерения напряжения от 0 до 75B или
	тока от 0 до 20мА(для ревизий 4.5 и выше);
3	Контакт TxD интерфейса RS-232;
4	Контакт RxD интерфейса RS-232;
5	Контакт А интерфейса RS-485;
6	Контакт В интерфейса RS-485;
7	Первый контакт датчика наличия напряжения (WDI);
8	Второй контакт датчика наличия напряжения (WDI);
9	Порт для подключения датчиков по интерфейсу 1-Wire/Single-
	Wire;
10	Общий (GND) контакт для подключения датчиков.

2-контактный разъём:

Разъем предназначен для подачи питания. Имеет встроенную защиту от смены полярности.

1	Общий (GND) контакт источника питания;
2	Положительный контакт источника питания.

1.3 Характеристики

Обеспечиваемые функции

- 1) Передача данных между интерфейсами Ethernet/RS-232/485 без внесения изменений в передаваемые данные (функция конвертера);
- 2) Регистрация дискретных сигналов состояния средств измерения и объектов управления с автоматической отправкой уведомлений, при изменении этих состояний. Уведомления могут отправляются на заданный IP-адрес по протоколу SNMP, на заданный абонентский номер в виде SMS-сообщений (при наличии GSM-модуля), по SNMP через GPRS-сервис, на указаный Email-адрес по протоколу SMTP, в виде PUSH уведомлений приложения IoT Manager или публиковаться в специальный топик в рамках API для протокола MQTT. Источниками дискретных сигналов могут быть датчики открытия двери, датчики вибрации и прочее оборудование с релейным выходом;
- 3) Управление внешними устройствами с релейными входами посредством выходных дискретных сигналов. В качестве управляемых устройств могут использоваться блоки розеток SNR-SMART, управляемые розетки SNR-SMART-DIN-A и SNR-SMART-DIN-B;
- 4) Контроль наличия напряжения в сети питания (до ИБП) с помощью промежуточного блока питания SNR-PS-AC/DC-5/1 подключаемого в отслеживаемую сеть (датчик фазы) или через реле SNR-PHD-DIN 1.0:
 - 5) Опрос и управление внешними устройствами по шине 1-Wire/Single Wire или RS-485.

На текущий момент поддержаны следующие виды оборудования:

- цифровые температурные датчики SNR-DTS-2 (DS18B20);
- цифровые датчики SNR-RS-Sensor-H/T/P (температура, влажность, давление);
- устройства считывания цифровых импульсов RS-Counter (8 цифровых входов для подсчета импульсов);
 - устройства измерения тока и напряжения SNR-SHUNT;
- устройства измерения напряжения SNR-ADC-EXPANDER (пять изолированных входов с диапазоном измерения от 0 до 75В);
 - цифровые датчики температуры и влажности DHT11/DHT22;
- 6) Управление внешними регуляторами и задвижками посредством аналогового выхода 0-10В, а так же питание внешних датчиков постоянным напряжением 12В с током нагрузки до 100мА;

- 7) Измерение постоянного напряжения в диапазоне от 0 до 72В или тока в диапазоне от 0 до 20мА;
 - 8) Выполнение отложенных заданий с помощью планировщика;
- 9) Watchdog. Функция контроля работоспособности оборудования посредством ICMP запросов и перезагрузкой при обнаружении сбоя;
- 10) Синхронная работа. Функция позволяет реализовывать распределенную сеть контроля и управления не прибегая к использованию сервера верхнего уровня;
- 11) Резервное питание. позволяет выполнять контроль систем резервного питания при критических значениях напряжения;
- 12) Формирование управляющего сигнала с помощью ПИД-регулятора;
- 13) Термостат. Функция поддержания постоянной температуры за счет переключения состояния выхода, при выходе температуры из определенного пользователем диапазона;
- 14) Гигростат. Функция поддержания постоянной влажности за счет переключения состояния выхода, при выходе влажности из определенного пользователем диапазона;
- 15) Функция Гидролок система защиты, которая назначена для отключения подачи подв, при возникновении протечек.
- 16) Мониторинг UPS. мониторинг ups позволяет мониторить информацию с НАГовских и АРСовских бесперебойников;
- 17) Отправка тревожных уведомлений (SNMP-Trap, email, SMS, PUSH, MQTT) при наступлении определяемых пользователем событий, также их логгирвоание;
 - 18) Хранение настроек пользователя в энергонезависимой памяти;
- 19) Резервирование канала передачи данных и удаленный доступ. Функция доступна при наличии GSM/GPRS модуля;
- 20) Сбор данных с беспроводных устройств SNR-RF-Counter-2I и их передача на верхний уровень системы сбора. Функция дступна при наличии RF-модуля;

Конструкция

В бескорпусном исполнении ERD выполняют в виде печатной платы с разъемами, помещенной в защитный диэлектрический кожух.

В корпусном исполнении ERD выполняют в виде печатной платы с разъемами, помещенной в окрашенный металический корпус.

В корпусном исполнении ERD, степень защиты обеспечиваемая оболочкой удовлетворяет требованям уровня IP30 в соответствии с ГОСТ 14254.

В любом из вариантов исполнения внешние габариты ERD без разъемов не превышают 22x68x96 мм. Масса нетто не более 0,5 кг.

Крепление ERD осуществляется на DIN-рейку (рельс TH35). Пользователь может по своему усмотрению закрепить ERD в удобном для эксплуатации положении при помощи перестановки зажима.

Электропитание

Электропитание ERD должно осуществляться внешнего OT источника постоянным напряжением в диапазоне от 9 до 48В. При использовать возможности рекомендуется источник питания напряжением 12В. Нижнее номинальным И верхнее предельные напряжения, при которых ERD продолжает исправно функционировать не менее 7,5В и 57В, соответственно.

Подача электропитания возможна как через выделенный разъем питания, так и по стандартам технологии PoE IEEE 802.3af-2003 и IEEE 802.3at-2009. Работа Passive PoE гарантируется при подаче напряжения питания в диапазоне от 22 до 48В через пары 4-5 и 7-8. Полярность подключения значения не имеет.

При одновременной подаче напряжения через разъем питания и по стандарту РоЕ обеспечивается функция резервирования питания. Переключение с РоЕ на питание через выделенный разъем происходит работы ERD. В обратном без прерывания случае возможно работы ERD кратковременное прерывание последующим восстановлением рабочего состояния. При автоматическим использовании функции резервирования на выделенный разъем питания можно подавать напряжение в диапазоне от 9 до 48В.

В таблице 2 приведены типовые значения потребляемого тока без нагрузки и тока при максимальной нагрузке.

Таблица 2 – Типовые значения потребляемого тока

Напряжение, В	Ток без нагрузки, А	Максимальный ток, А
9	0,1	2,3
12	0,07	1,7
48	0,025	0,42

Индикация

ERD оснащен тремя светодиодными индикаторами.

На печатной плате, между 8-контактным разъемом и разъемом Ethernet, располагается индикатор «PWR», сигнализирующий о режиме работы ERD:

Индикатор	Состояние индикатора	Функции индикатора	
PWR	не горит	Отсутствует напряжение	
		питания.	
	горит зеленым	Напряжение в норме, ERD	
		Готов к работе.	
	мигает зеленым	Напряжение в норме, ERD	
		находится в сервисном режиме	
		и готов к загрузке ПО.	

Индикаторы «LINK» и «Activity» расположены на разъеме Ethernet (Рисунок 3):

Рисунок 3 – Индикаторы разъема Ethernet

Индикатор	Состояние индикатора	Функции индикатора	
LINK LED	не горит	Кабель не подключен.	
	горит зеленым	Кабель подключен.	
	мигает зеленым	Кабель подключен, идет	
		передача данных.	
Activity LED	не горит	Скорость передачи данных 10	
		Мбит/с;	
	горит оранжевым	Скорость передачи данных	
		100 Мбит/с	

Метрологические характеристики

Пределы абсолютной погрешности измерения напряжение на AI не более ±0,3B.

Пределы абсолютной погрешности установки напряжения на AO в режиме DAC не более ±0,05В.

Пределы абсолютной погрешности счетчика импульсов не более ±1 импульса от значения в младшем разряде счетчика.

Пределы абсолютной погрешности измерения температуры, влажности и прочих величин зависят от используемых первичных преобразователей и указываются в эксплуатационной документации на соответствующие изделия.

Интерфейсы связи

- 1) Один порт Ethernet 10/100 Мбит/с, разъем RJ-45.
- 2) Один порт последовательного интерфейса RS-232 с максимальной скоростью передачи данных 225 Кбит/с, используемые сигналы Rx/Tx.
- 3) Один порт последовательного интерфейса RS-485 со встроенным терминатором 120 Ом. Максимальной скоростью передачи данных 225 Кбит/с. Максимальная нагрузочная способность интерфейса 256 устройств с 1/8 единичной нагрузки.
- 4) Один порт последовательного интерфейса 1-Wire/Single Wire с поддержкой «паразитного» питания датчиков. Максимальная длина линии связи зависит от типа используемого кабеля и от электромагнитной обстановки в месте эксплуатации. Для кабеля UTP-5 максимальная длинна 100м.

Порты допольнительного питания

Для удобства подключения внешних активных датчиков и нагрузок, ERD имеет два порта дополнительного питания.

Порт +5V, предназначен для осуществления низковольтного питания внешних нагрузок и гашения импульса самоиндукции при их коммутации. Максимальное напряжение внутреннего источника питания – 5.75B, максимальный рабочий ток – 2A. Максимальное напряжение внешнего источника питания – 48B. Встроенная защита от перенапряжений и от КЗ.

Порт АО имеет два режима работы:

- режим питания внешних датчиков напряжением 12B;
- режим управления внешними задвижками и регуляторами унифицированным аналоговым сигналом 0-10В (Режим DAC).

Порт АО имеет защиту от перенапряжений и от превышения рабочего тока. Максимальный рабочий ток — 100мА. Ток КЗ — 200мА в течение 1 секунды. Режим работы порта выбирается на вкладке «Настройки» в web-конфигураторе.

Порты DIO

ERD имеет пять портов DIO, каждый из которых может работать либо в режиме входа (DI), либо в режиме выхода (DO). По умолчанию все порты работают в режиме DI. Выбор режима портов осуществляется через web-интерфейс на странице «Порты I/O -> Настройки». Порты оснащены встроенной защитой от перенапряжений, от превышения рабочего тока и от импульса самоиндукции. Также ERD поддерживает режим расширения портов. Для этого нужно подключить SNR-RS-Counter-8i к интерфейсу RS-485 и переключить режим интерфейса в режим опроса. После чего в SNMP и WEB появится возможность конфигурировать и считывать состояние с восьми дополнительных DI.

Режим DI. В этом режиме порты поддерживают подключение различных датчиков с релейным выходом (датчик открытия двери, датчик вибрации, датчик протечки воды и пр.).

Максимальное напряжение смещения на контакте порта DIO в разомкнутом состоянии (XX) — 3B, максимальный ток при коротком замыкании (К3) — 2,6мА.

Для корректной работы функции отправки уведомлений (SNMP-Trap, Email, SMS, PUSH, MQTT) при работе с нормально разомкнутыми датчиками необходимо использовать внешний подтягивающий резистор номинальным сопротивлением 330 Ом, подключенный между соответствующим портом DIO и портом GND. А сам датчик нужно подключать одним проводок к контакту +5B, а другим к порту DIO.

Датчик с нормально замкнутыми контактами подключается между контактом порта DIO и контактом GND.

Схема подключения датчиков приведена на рисунке 4, где:

- S1 датчик с нормально разомкнутыми контактами,
- S2 датчик с нормально замкнутыми контактами.
- R1 резистор номиналом 330 Ом и мощность 0,25Вт.

Рисунок 4 – Схема подключения датчиков к портам DIO

Режим DO. В этом режиме порты позволяют управлять внешними нагрузками, такими как розетки SNR-SMART, реле и контакторы.

Максимальное коммутируемое напряжение при XX – 48B, максимальный коммутируемый постоянный/импульсный ток – 0.5/1A, ток срабатывания защиты от K3 – 0,6A в течении 2 секунд.

При управлении нагрузками, питаемыми от внешних источников питания, для гашения импульса самоиндукции необходимо плюсовой провод внешнего источника питания подключить ко второму контакт 8-и контактного разъема (+5В). Схема подключения внешнего источника питания приведена на рисунке 5. Цифрами обозначены номера контактов на 8-и контактном разъеме. Диод VD1 служит для развязки внутреннего источника питания от внешнего. VT1 осуществляет включение и отключение реле. При отключении реле К1, VD2 замыкает на себя возникающий импульс самоиндукции. Предохранитель F1 защищает VT1 от токов К3.

Рисунок 5 – Схема подключения реле с внешним питанием

Порт WDI (датчик фазы)

ERD оснащен "смачиваемым" дискретным входом. Данный порт предназначен для контроля наличия напряжения в диапазоне от 2,5 до 18В. Входной импеданс не менее 300 Ом. Вход порта оснащен гальванической развязкой от прочих низковольтных цепей ERD и не требует контроля полярности при подключении. С помощью данного порта и дополнительного преобразователя напряжения (блока питания) можно контролировать наличие напряжения в сетях 220В.

Радио-интерфейсы

В исполнении SNR-ERD-4S-GSM, эффективная изотропная излучаемая мощность (ЭИИМ) для стандарта GSM 900 не более 2 Вт и не более 1 Вт для стандарта GSM 1800.

В исполнении SNR-ERD-4S-RF, ЭИИМ не более 25 мВт. Диапазон рабочих частот ISM 868,7-869,2 МГц.

Электромагнитная совместимости

ВНИМАНИЕ: Заявленные характеристики электромагнитной совместимости обеспечиваются при наличии надежного заземления корпуса ERD.

ERD удовлетворяет требованиям:

- помехоустойчивости, согласно ГОСТ CISPR 24;
- электромагнитной эмиссии, согласно ГОСТ 30805.22.

ERD устойчив к воздействию на корпус электростатических разрядов с напряжением 6кВ при контактном разряде и 8кВ при воздушном разряде, согласно ГОСТ 30804.4.2 с критерием функционирования В.

ERD устойчив к воздействию внешнего радиочастотного электромагнитного поля с напряженностью 3В/м в диапазоне частот от 80 МГц до 1 ГГц с амплитудной модуляцией синусоидальным сигналом частотой 1 кГц при глубине модуляции 80%, согласно ГОСТ 30804.4.3 с критерием функционирования А.

ERD устойчив к воздействию электромагнитного поля промышленной частоты с напряженностью 1А/м, согласно ГОСТ IEC 61000-4-8 с критерием функционирования А.

ERD устойчив к воздействию в цепи электропитания наносекундных импульсных помех с амплитудой 2кВ, согласно ГОСТ 30804.4.4 с критерием функционирования В.

ERD устойчив к воздействию в цепи электропитания микросекундных импульсов большой энергии с амплитудой 1кВ, согласно ГОСТ Р 51317.4.5 с критерием функционирования В.

ERD устойчив к воздействию в цепи электропитания и цепях вводавывода кондуктивных помех, наведенных радиочастотными электромагнитными полями в полосе частот от 150 кГц до 80 МГц с амплитудой 3B, согласно ГОСТ Р 51317.4.6 с критерием функционирования A.

ERD устойчив к воздействию в цепях ввода-вывода наносекундных импульсных помех с амплитудой импульсов 1кВ, согласно ГОСТ 30804.4.4 с критерием функционирования В.

ERD устойчив к воздействию в цепях ввода-вывода микросекундных импульсов большой энергии с амплитудой 1кВ (линиялиния) и 2кВ (линия-земля), согласно ГОСТ Р 51317.4.5 с критерием функционирования В.

ERD удовлетворяет требованиям электромагнитной эмиссии для оборудования информационных технологий класс Б, согласно ГОСТ 30805.22.

ERD в исполнениях SNR-ERD-4S-GSM, SNR-ERD-4S-RF удовлетворяет требованиям к побочным радиоизлучениям для передатчиков малой мощности, согласно ГОСТ Р 50842.

Надежность

Среднее время наработки на отказ не менее – 75000 час;

Средний срок службы – 10 лет;

Среднее время восстановления (с использованием ЗИП) – 30 минут.

1.4 Комплектность

В таблицах с 3 по 6 представлены комплектности поставок различных вариантов исполнения ERD.

Таблица 3 – Комплектность поставки SNR-ERD-4C

Наименование	Обозначение	Кол-во, шт.
Контроллер многофункциональный SNR-ERD-4C	НАГД.424339.001-001	1
Паспорт	НАГД.424339.001 ПС	1
Руководство по эксплуатации в электронном виде	НАГД.424339.001 РЭ	1

Таблица 4 – Комплектность поставки SNR-ERD-4S

Наименование	Обозначение	Кол-во, шт.
Контроллер многофункциональный SNR-ERD-4S	НАГД.424339.001-002	1
Паспорт	НАГД.424339.001 ПС	1
Руководство по эксплуатации в электронном виде	НАГД.424339.001 РЭ	1

Таблица 5 – Комплектность поставки SNR-ERD-4S-GSM

Наименование	Обозначение	Кол-во, шт.
Контроллер многофункциональный SNR-ERD-4S-GSM	НАГД.424339.001-003	1
Паспорт	НАГД.424339.001 ПС	1
Руководство по эксплуатации в электронном виде	НАГД.424339.001 РЭ	1
Антенна GSM	GSM 900/1800 МГц	1

Таблица 6 – Комплектность поставки SNR-ERD-4S-RF

Наименование	Обозначение	Кол-во, шт.
Контроллер многофункциональный SNR-ERD-4S-RF	НАГД.424339.001-004	1
Паспорт	НАГД.424339.001 ПС	1
Руководство по эксплуатации в электронном виде	НАГД.424339.001 РЭ	1
Антенна RF	ISM 868,7-869,2 МГц	1

1.5 Маркировка

На лицевую панель ERD нанесена надпись: «Ethernet Remote Device».

На задней панели корпуса ERD расположен шильдик с единым знаком обращения продукции на рынке государств-членов Таможенного союза, а также содержащий информацию о предприятии-изготовителе и серийный номер в формате MM/ГГ/nnnn, где MM/ГГ – месяц и год изготовления, nnnn – заводской порядковый номер.

1.6 Упаковка

Каждое изделие должно быть упаковано в свою потребительскую упаковку в комплектности, указанной в пункте 1.4.

Материал упаковки – гофрокартон. Категория упаковки КУ-1 по ГОСТ 23216. Габариты 230х153х58 мм.

На упаковочной коробке должна быть указана информация о предприятии-изготовителе, единый знак обращения продукции на рынке государств-членов Таможенного союза и номер ТУ 26.30.50-001-72367769-2016.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Подготовка к работе

- 1) Подать напряжение питания на ERD.
- 2) Дождаться прекращения мигания индикатора «PWR».

Внимание:

На устройстве по умолчанию включен DHCP-клиент. При первом включении (или при сбросе на заводские установки) устройство выполняет поиск DHCP-сервера в течении 10 секунд. Если DHCP-сервер отсутствует, после неудачных попыток, устройство принимает заводской IP-адрес. (либо последний записанный в память). При этом в WEB-интерфейсе отобразится сообщение «Нет соединения» рядом с переключателем DHCP

Рисунок 6 Web-страница «Настройка LAN»

- 3) Подключить ERD к PC Ethernet-кабелем и установить необходимые сетевые настройки для того, чтобы ERD и PC находились в одной подсети.
- 4) Запустить на PC программу для просмотра WEB-страниц (браузер) и в адресной строке ввести IP-адрес ERD. В появившемся окне аутентификации ввести пароль.

Заводские сетевые настройки ERD представлены в таблице 7.

Таблица 7 – Заводские сетевые настройки

ІР-адрес	192.168.15.20	
Шлюз	192.168.15.1	
Маска	255.255.255.0	
Пароль (community)	public	
TCP-порт для подключения к RS-232	35	
TCP-порт для подключения к RS-485	50	
TCP-порт для SNMP	161	
TCP-порт для Trap	162	

Восстановление заводских сетевых настроек и полный сброс конфигурации осуществляется удержанием кнопки сброса в течение 5 секунд при подключенном питании. Устройство запустит режим восстановления заводской конфигурации, после чего индикатор «PWR» начнет мигать как при первичной подаче питания.

2.2 WEB интерфейс

Главная web-страница

На главной странице представлена общая информация и показания основных датчиков и подключенных устройств (Рисунок 7).

Название устройства (задается
пользователем)
Местоположение устройства (задается
пользователем)
Версия прошивки устройства
МАС адрес устройства
Время работы с последнего перезапуска
Счетчик перезагрузок устройства
Напряжение на Аналоговом входе
устройства (ADC IN)
Счетчик возникающих ошибок на шине 1-
Wire/Single Wire.
Список подключенных устройств и краткая
информация о них(ID, показания)

Рисунок 7 – Главная страница Web-конфигуратора

Главная страница автоматически обновляет необходимые данные каждую секунду.

Группа вкладок «Конвертер интерфейсов»

Web-страница RS-485

Рисунок 8 – WEB-страница «RS-485»

На странице «RS-485» (Рисунок 8 – WEB-страница «RS-485») указываются скорость и формат фрейма для порта RS-485. Режим работы МОЖНО выбрать: «Прозрачный» или «Опрос конвертера устройств». «Опрос устройств» выбирается при подключении проводного датчика температуры, влажности, давления - SNR-RS-Sensor-H/T/Р или счетчика импульсов SNR-RS-Counter-8i.

Web-страница RS-232

Рисунок 9 - WEB-страница «RS-232»

На странице «RS-232» (Рисунок 9 — WEB-страница «RS-232») указываются скорость и формат фрейма для порта RS-232. Режим работы конвертера можно выбрать: «Прозрачный» или «Контроль параметров UPS». «Контроль параметров UPS» выбирается при подключении USP, работающим по протоколу <u>«Megatec»</u> или <u>«APC</u> Smart protocol».

Группа вкладок «Порты I/O»

Web-страница «Порты DI»

На странице «Входы» (Рисунок 10) отображаются состояния дискретных входов и «Датчика фазы», а также счетчики срабатываний. На этой странице можно изменить названия входов на название подключённых датчиков, настроить оповещения о срабатывании и сбросить счетчики.

Для того чтобы включить оповещение о срабатывании необходимо кликнуть на красную кнопку напротив нужного входа, а затем кликнуть кнопку «Принять».

Для сброса счетчика необходимо кликнуть в кружок около нужного счетчика, а затем кликнуть кнопку «Принять».

Рисунок 10- Web-страница «Порты DI»

Web-страница «Порты DO»

На странице «Выходы» (Рисунок 11) можно изменить названия выходов на название подключённых устройств, включить/отключить выход или реле, настроить тип выхода(Нормально-замкнутый, Нормально-разомкнутый), указать время перезагрузки выхода и перезагрузить выход.

Для перезагрузки выхода необходимо кликнуть в кружок около нужного выхода, а затем кликнуть кнопку «Принять».

Рисунок 11 – Web-страница «Порты DO»

Web-страница «Порт ADC IN»

На странице «Порт ADC IN» (Рисунок 12) можно настроить масштабирования показаний за счет указания умножения и смещения, указать единицы измерения и указать минимальное и максимальное критическое значение для отправки оповещения при его достижении. В поле "Гистерезис" задается отклонение показаний от максимального критического значения, при которых показания будут считаться нормальными.

Подробнее об уведомлениях: Если показания больше, чем максимальное критическое значение, то отправляется уведомления о критическом значении. После этого, если показания стали меньше, чем максимальное критическое значение минус гистерезис, то отправляется уведомление о нормальных показаниях. То же правило актуально и для минимального критического значения.

Аналоговый вход ADC IN		
Напряжение	0.00 B	
Показания	0.00 B	
Умножение при масштабировании	1.00	
Смещение при масштабировании	0.00	
Единицы измерения	В	
Минимальное критическое значение	0.00	
Максимальное критическое значение	10.00	
Гистерезис	0.01	
Принять		

Рисунок 12 – Web-страница «Порт ADC IN»

Web-страница «Порт DAC/12V»

На странице «Порт DAC/12V» (Рисунок 13) можно настроить напряжение на аналоговом выходе . Переключение выхода в режим для питания внешних датчиков напряжением 12В нужно перейти на страницу Настройки, описание данной страницы приведено ниже.

Рисунок 13 – Web-страница «Порт DAC/12V»

Web-страница «Настройки»

На странице «Настройки» (Рисунок 14) можно выбрать режим работы выхода DAC/12V(Аналоговый выход или выход 12V). Выбрать режим работы ADC IN(измерение тока или напряжения). Изменить режим работы DIO(вход или выход). И выбрать режим работы 1-Wire(1-Wire или Single Wire).

Рисунок 14 - Web-страница «Настройки»

Группа вкладок «Сервисы»

На страницах группы вкладок «Сервисы» задаются настройки служебных функций устройства:

- 1) Страница «Планировщик» (Рисунок 15 Страница «Планировщик»): расписание автоматического выполнения отложенных заданий.
- 2) Страница «Сетевая диагностика» (Рисунок 16 Страница «Сетевая диагностика»): настройка функции отслеживания работоспособности оборудования.
- 3) Страница «Синхронная работа» (Рисунок 17 Страница «Синхронная работа»): настройка синхронной работы с аналогичным устройством.

- 4) Страница «Резервное питание» (Рисунок 18 Страница «Резервное питание»).
- 5) Страница «ПИД-регулятор» (Рисунок 19 Страница «ПИД-регулятор»): настройка функции ПИД-регулятора.
- 6) Страница «Термостат» (Рисунок 20 Страница «Термостат»): настройка функции Термостата.
- 7) Страница «Гигростат» (Рисунок 21 Страница «Гигростат»): настройка функции Гигростата.
- 8) Страница «Гидролок» (Рисунок 22 Страница «Гидролок»): настройка функции Гидролока.

Рисунок 8 - Страница «Планировщик»

Рисунок 9 – Страница «Сетевая диагностика»

Рисунок 10 – Страница «Синхронная работа»

Рисунок 11 - Страница «Управление резервным питанием»

Рисунок 12 – Страница «ПИД-регулятор»

Подробную инструкцию по реализации функции «ПИД-регулятор» можно посмотреть тут.

Рисунок 20 - Страница «Термостат»

Рисунок 21 - Страница «Гигростат»

Рисунок 22 - Страница «Гидролок»

Web-страница «Мониторинг UPS»

Мониторинг UPS		
Статус UPS	Нет данных	
Заряд аккумуляторов	0%	
Температура	0.0°C	
Напряжение на входе	0.0B	
Напряжение на выходе	0.0B	
Загрузка UPS	0%	

Рисунок 23 – «Параметры УПС»

На странице «Параметры UPS» содержатся данные о подключенном УПС к интерфейсу RS-232, работающим по протоколу «Megatec» или «APC Smart protocol». С периодичностью в одну секунду ERD-4 запрашивает параметры UPS. Данные доступны по SNMP в соответствующих OID. При изменении статуса UPS. Устройство отсылает SNMP-trap/email/SMS/PUSH/MQTT сообщение.

Подробную инструкцию по подключению UPS с интерфейсом RS232 к ERD-4s можно посмотреть тут.

Web-страница «Настройка LAN»

Рисунок 13 - Меню «Сетевые настройки»

В разделе «Сетевые настройки» есть возможность настроить доступ к DNS-серверам. Поле DNS-сервер 1 — предпочитаемый DNS-сервер, DNS-сервер 2 — альтернативный DNS-сервер. При получении IP-адреса от DHCP сервера устройство также запрашивает и адрес DNS сервера и автоматически вносит изменение в настройки DNS.

Сетевой интерфейс «по умолчанию»:

При использовании функции GPRS необходимо указать интерфейс «по умолчанию». Данное поле необходимо для отправки Trap-сообщений, на выбранный интерфейс.

Web-страница «Настройка GSM»

На странице «Настройка GSM» (Рисунок 25 – Web-страница «Настройка GSM») отображается состояние и настройки GSM модуля:

- 1) «Состояние» показывает текущее состояние, информирует о наличии GSM-модуля и о наличии SIM-карты в слоте;
- 2) «Соединение с базовой станцией», информирует о наличии регистрации в сети и уровне принимаетмомго сигнала;
- 3) «Попыток соединения», показывает количество попыток подключения;
- 4) «Номер администратора-1», поле для ввода абонентского номера, на который будут приходить уведомления и с которого можно осуществлять управленческие запросы. Номер должен иметь формат:"+71234567890";
- 5) «Номер администратора-2», поле для ввода абонентского номера, на который будут приходить уведомления и с которого можно осуществлять управленческие запросы. Номер должен иметь формат:"+71234567890";
- 6) «Отправка оповещений». Кнопка разрешает или запрещает отправку SMS-сообщений при обнаружении заданных событий;
- 7) «Отправка ответов». Кнопка разрешает или запрещает отправку ответов на SMS-запросы;
- 8) «Запросы с номера администратора». Кнопка включает или отключает фильтр принятия запросов только с номера администратора. При включенной кнопке все SMS с прочих номеров игнорируются.

В ERD имеется возможность подключения антенны и SIM-карты «на горячую». Если модуль инициализируется неудачно (без SIM-карты или антенны), то ERD запускает процесс его инициализации сразу, вторая поптыка происходит через 30 секунд, минуту и тд.

Работа GPRS: После успешной инициализации GSM-модуля, устройство подключается к GPRS. Если оператор требует ввода APN, то

она вводится в поле «Точка доступа GPRS (APN)». При успешном соединении устройство получает IP-адрес. Если оператор предоставляет «беый» IP-адрес, то функции устройства могут быть доступны через GPRS-соединение.

Рисунок 25 – Web-страница «Настройка GSM»

Группа вкладок «Администрирование»

Web-страница «Общие настройки»

На странице «Общие настройки» (Рисунок 26 — Страница «Общие настройки») вводиться системное имя устройства, расположение, новый пароль от устройства, включаются уведомления о таких событиях, как включение устройства, попытки авторизации в WEB и отправляется тестовое уведомление.

Рисунок 14 - Страница «Общие настройки»

Web-страница «Email»

Рисунок 15 – Web-страница «Email»

При наступлении критических событий устройство способно отправлять тревожные сообщения с помощью встроенного email-клиента. Настройка email-клиента осуществляется через WEB-интерфейс на странице «Администрирование -> Email».

Для работы email-клиента необходимо:

- 1. Вписать почтовый адрес (включая домен) в строке «Электронный адрес» с которого устройство будет отправлть сообщения;
- 2. Вписать имя пользователя и пароль в соответствующи строках для авторизации на почтовом сервере;
- 3. Вписать адрес SMTP сервера, который испольщуется для отправки почтовым сервисом для отправки сообщений;
- 4. Вписать TCP-порт для подключения к SMTP серверу.
- 5. Вписать почтовый адрес в строке «
- 6. Адрес получателя», на который будут отправляться сообщения.

Web-страница «MQTT»

Рисунок 16 - Web-страница «MQTT»

Устройство поддерживает протокол MQTT для управления устройством и получения информации от устройства. Для начала работы с данным протоколом необходим брокер(сервер) и клиент. Инструкция по началу работы с данным протоколом можно посмотреть тут.

Web-страница «Время/Дата»

Настройки Времени/Даты		
Время	09:05:40	
Дата	10.01.2000	
Часовой пояс (UTC±)	5	
Адрес NTP сервера	pool.ntp.org	
	Принять	

Рисунок 29 - Web-страница «Время/Дата»

В устройстве реализована поддержка синхронизация даты и времени с NTP-сервера. Настроить синхронизацию можно на странице «Администрирование -> Время/Дата», прописав адрес NTP сервера в строке «Адрес NTP сервера».

Web-страница «Обновление ПО»

Рисунок 30 – Web-страница «Обновление ПО»

На странице «Обновление ПО» (Рисунок 30 — Web-страница «Обновление ПО») отображаются версия прошивки устройства (firmware), версия загрузчика (Bootloader), также ревизия платы устройства. Так же на этой странице можно обновить прошивку устройства.

Web-страница «Журнал»

Журнал		
Thu Dec 20 2018		
12:02:24 Authentication ok		
12:02:15 Internet connected		
12:02:09 Smtp connected		
12:01:59 Ethernet connected		
12:01:59 USENSE NO		
12:01:59 ALARM-4 HIGH		
12:01:59 ALARM-3 HIGH		
12:01:59 ALARM-2 HIGH		
12:01:59 ALARM-1 HIGH		
12:01:59 Device start		

Рисунок 31 – Web-страница «Журнал»

На странице «Журнал» (Рисунок 31 — Web-страница «Обновление ПО») отображаются последние события произошедшие на устройстве.

Web-страница подключенного датчика SNR-Sensor.

При нажатии на подключенное устройство на главной странице, открывается страница данного устройства (Рисунок 32 — Web-страница подключенного датчика SNR-Sensor). На данной странице можно посмотреть ID устройства, задать имя устройства, посмотреть измеряемые данные, включить уведомления о критической температуре и задать пороги температуры, при выходе за которые температура будет

считаться критической. Более подробную инструкции о подключении и конфигурации датчика SNR-Sensor можно посмотреть <u>здесь</u>.

RS-sensor-H/T/P		
Параметры		
ID F8:F0:82:02:00:0		
Имя	SNR-Sensor	
Температура	26.1°C	
Влажность	15.0%	
Давление	753.3мм.	
Уведомлять о выходе температуры за предел		
Верхний предел температуры	80 °C	
Нижний предел температуры	-55 °C	
Принять		
Датчики 1-Wire		

Рисунок 32 – Web-страница подключенного датчика SNR-Sensor

Web-страница подключенного датчика SNR-RS-Counter-8i.

При нажатии на подключенное устройство на главной странице, открывается страница данного устройства (Web-страница подключенного SNR-RS-Counter-8i). На данной странице можно посмотреть ID устройства, задать имя устройства и перейти на страницу конфигурации выходов. Более подробную инструкции о подключении и конфигурации датчика SNR-RS-Counter-8i можно посмотреть здесь.

Рисунок 33 – Web-страница подключенного SNR-RS-Counter-8i

При нажатии «Конифгурация портов DI» открывается страница конфигурации портов данного устройства. На эту страницу можно также попасть с помошью бокового меню. Страница конфигурации портов и вид бокового меню представлен на рисунке 34.

Рисунок 34 – Web-страница конифгурации портов DI устройства RS-Counter-8i

На данной странице можно изменить названия портов, включить оповещения о смене состояния порта, посмореть количество считаных импульсов на каждом порте, сбросить данный счетчик и увидеть текущее состояние порта. Все настройки хранятся на самом RS-Counter, поэтому его можно подключить к другому устрйоству и все настройки и счетчики будут сохранены.

2.3 Обновление программного обеспечения

Последняя версия прошивки устройства доступна по <u>адресу</u>. Описание изменений в прошивке доступно по <u>адресу</u>.

Обновление прошивки через WEB интерфейс.

Для обновления прошивки необходимо открыть WEB интерфейс устройства, перейти на страницу «Прошивка», указать путь к файлу прошивки (firmware_ERD-4.bin) и нажать кнопку «Загрузить». После того, как файл будет загружен, устройство перезагрузится в течение 3-5 секунд.

Обновление прошивки по TFTP протоколу.

ERD так же позволяет обновить прошивку по TFTP протоколу с помощью программы – TFTP-клиента. Для обновления прошивки по протоколу TFTP необходимо:

- 1) В программе ТЕТР-клиенте указать файл прошивки на диске.
- 2) Ввести IP адрес устройства в качестве Host'a (сервера).
- 3) Указать порт для подключения «69».
- 4) Нажать соответствующую кнопку загрузки файла на сервер.

В качестве примера представлена свободно распространяемая программа «Tftpd», в которой:

- В поле «Host» указан IP адрес устройства
- В поле «Port» указан 69 порт для подключения
- В поле «Local file» указан пусть к файлу прошивки устройства
- Кнопкой «Put» осуществляется загрузка файла прошивки в память устройства

Рисунок 33 – Окно программы «Tftpd»

Программа «Tftpd» бесплатна, и доступна на <u>сайте разработчика</u> и на <u>файловом архиве компании «НАГ»</u>.

В случаях непредвиденных ситуаций, при которых прошивка устройства может быть повреждена, устройство позволяет самостоятельно восстановить ПО вышеописанным способом (по TFTP протоколу) из Bootloader'a (загрузчика). Для этого необходимо:

- 1) Выбрать файл прошивки устройства
- 2) Указать ІР адрес и порт для подключения к устройству
- 3) Подключить питание устройства
- 4) При появлении ответов на ICMP запросы (ping) в течение 1-3 секунд (пока устройство работает в режиме загрузчика, мигает зелёный индикатор «PWR») нажать соответствующую кнопку в программе TFTP клиенте для загрузки файла.

2.4 Управление нагрузками

ERD позволяет удалённо управлять нагрузками:

- в ручном режиме (включение/отключение и перезагрузка с кратковременном отключении и последующим включением).
- в автоматическом режиме (термостат, в режиме планировщика отложенных заданий, с помощью функции отслеживания работоспособности оборудования и в синхронном режиме).

Под нагрузками, в данном контексте, подразумевается любое внешнее устройство с дискретным входом, посредством которого может происходить переключение режима работы внешнего устройства. Для реализации данной функции необходимо дискретный вход управляемого устройства подключить к порту DIO ERD и сконфигурировать его в режим DO.

В качестве нагрузок могут использоваться управляемые розетки «SNR-SMART-DIN» или Блоки розеток «SNR-SMART».

Отображение текущего состояния нагрузок, выбор режима управления, а также ручное управление осуществляется через WEB-конфигуратор (страница «Управление»), через SNMP-интерфейс или через SMS.

Перезагрузка

В режиме перезагрузки устройство подает сигнал отключения нагрузки, через 3 секунды этот сигнал снимается, и нагрузка включается. Время подачи сигнала можно так же настроить через WEB или SNMP интерфейс.

Термостат

В этом режиме устройство автоматически включает и выключает нагрузку, ориентируясь по показаниям температурных датчиков. Достаточно выбрать нужный датчик температуры в соответствующем поле настройки DIO. Для возможности управления выходом с помощью термостата он должен быть настроен на выход, изменить режим работы выхода можно на вкладке «Порты I/O -> Настройки».

В режиме «Охлаждение» «Предельная температура» должна быть выше «Нормальной температуры», в режиме «Нагрев» «Предельная температура» должна быть ниже «Нормальной температуры».

<u>Гигростат</u>

В этом режиме устройство автоматически включает и выключает нагрузку, ориентируясь по показаниям датчиков влажности. Достаточно выбрать нужный датчик влажности в соответствующем поле настройки DIO. Для возможности управления выходом с помощью гигростата он должен быть настроен на выход, изменить режим работы выхода можно на вкладке «Порты I/O -> Настройки».

В режиме «Осушение» «Предельная влажность» должна быть выше «Нормальной влажности», в режиме «Увлажнение» «Предельная влажность» должна быть ниже «Нормальной влажности».

Гидролок

В этом режиме устройство автоматически включает и выключает нагрузку, ориентируясь по показаниям датчиков пробоя. Достаточно выбрать нужный вход, к которому подключен датчик в соответствующем поле настройки DIO. Для возможности управления выходом с помощью гигростата он должен быть настроен на выход, изменить режим работы выхода можно на вкладке «Порты I/O -> Настройки». Подробнее о работе данной функции можно прочитать тут.

Режим заданий

В этом режиме устройство автоматически включает, выключает или перезагружает нагрузку согласно плану, составленному в планировщике заданий. Так же этот режим позволяет переключать и перезагружать нагрузку в ручном режиме.

Синхронный режим

В этом режиме устройство автоматически включает, выключает или перезагружает нагрузку при получении сигнала от сопряженного аналогичного устройства, территориально удаленного от нагрузки. Так же этот режим позволяет переключать и перезагружать нагрузку в ручном режиме.

Управление резервным питанием

В этом режиме устройство автоматически включает и отключает резервное питание в зависимости от наличия основного питания, контролируя при этом напряжение резервного питания (для защиты аккумуляторной батареи от глубокого разряда).

2.5 Сервисы

Планировщик

С помощью этой функции можно задать расписание автоматического выполнения отложенных заданий. После выполнения задания устройство отправляет уведомление. Планировщик позволяет: включать/выключать и перезагружать нагрузки.

Для выполнения отложенного задания необходимо:

- 1. Настроить текущее время в устройстве через WEB интерфейс.
- 2. Разрешить выполнение задания.
- 3. Выбрать действие, выполняемое заданием.
- 4. Вписать время выполнения задания.
- Для включения, выключения и перезагрузки нагрузок с помощью планировщика заданий у нагрузок должен быть выбран соответствующий режим управления «Режим заданий».
- Если время <u>включения или выключени</u>я нагрузок пропущено (например, если устройство в назначенное время выключено) задание будет выполнено сразу после запуска устройства.
- <u>Перезагрузка</u> нагрузок осуществляется <u>только в назначенное время</u>, то есть, если время выполнения задания пропущено (например, если устройство в назначенное время выключено) задание будет выполнено не раньше, чем во время следующего совпадения назначенного времени.

Функция отслеживания работоспособности оборудования

Для случаев, когда необходимо проверять работоспособность сегментов Ethernet сетей, в устройство заложена функция проверки доступности оборудования посредством ICMP запросов (ping). Сетевая диагностика позволяет отследить пропадание связи до указанного хоста, уведомить о пропадании связи администратора и выполнить некоторые действия: включить/выключить и перезагрузить нагрузки

Эта функция может использоваться в качестве watchdog'a (сторожевого таймера) для сетевого оборудования: можно, например, включить резервный канал связи при пропадании основного канала, или перезагрузить зависшее оборудование.

Синхронная работа с аналогичным устройством.

Для особых случаев в устройство заложена функция работы с аналогичным устройством: при различных событиях устройство отправляет сигналы другому устройству, на котором выполняются действия, заданные пользователем.

Устройство передает сигналы при следующих событиях:

- Срабатывание одного из датчиков сигнализации
- Восстановление одного из датчиков сигнализации в исходное состояние
- Срабатывание датчика фазы
- Восстановление датчика фазы в исходное состояние

Устройство способно выполнять следующие действия при получении сигнала: включение/выключение и перезагрузка нагрузки.

Для синхронной работы двух устройств необходимо:

- 1. На первом устройстве вписать IP адрес второго аналогичного устройства.
- 2. На первом устройстве разрешить отправление сигнала при определенном событии.
 - 3. На втором устройстве разрешить получение этого сигнала.
- 4. На втором устройстве выбрать действие при получении этого сигнала.
- 5. Если на втором устройстве выбранное действие связано с управление нагрузки, у этой нагрузки должен быть выбран синхронный режим управления.

Управление резервным питанием

Эта функция позволяет при пропадании основного питания («220В») подключить резервное питание с аккумуляторов, при работе которого устройство контролирует уровень заряда аккумуляторов: при снижении до определенного порогового значения устройство отключается работу резервного питания для сохранения целостности аккумуляторов.

Для работы функции необходимо:

- 1. Подключить датчик фазы в цепь основного питания («220В»).
- 2. Подключить напряжение с аккумуляторов резервного питания на вход устройства, для замера напряжения.
 - 3. Подключить в качестве управляемой нагрузки реле.
- 4. Разрешить отправку оповещений (SNMP Trap) при работе датчика фазы.
- 5. Вписать пороговое значение напряжения, при котором устройство отключит резервное питание.
- 6. Выбрать номер управляемой нагрузки, к которой подключено управляющее реле.
- 7. В настройках управляемой нагрузки выбрать режим «Управление резервным питанием».

Функция работает следующим образом:

- 1. При наличии основного питания («220В») управляющее реле включено.
- 2. При пропадании основного питания («220В») устройство отправляет оповещение (SNMP Trap) и включает управляющее реле включается резервное питание с аккумуляторов.
- 3. При снижении заряда аккумуляторов до порогового значения устройство отправляет оповещение (SNMP Trap) и отключает управляющее реле.
- 4. При восстановлении основного питания («220В») работа функции возобновляется.

Для правильной работы функции включение и выключение управляющего реле (для подключения и отключения резервного питания) осуществляется с задержкой в 3 секунды.

2.6 Подключение датчиков

Датчики температуры

Датчики температуры SNR-DTS-2 могут подключаться двумя способами: по схеме паразитного питания и трехпроводной схеме.

Схема паразитного питания представляет собой двухпроводное подключение, в котором необходимый для работы датчика ток, передается по сигнальному проводу в моменты отсутствия передачи данных.

Для подключения датчика SNR-DTS-2 по схеме паразитного питания **черный** и **красный** провода (GND и VDD – «1» и «3») подключают к контакту **10** или **1** 10-контактного разъёма. А жёлтый провод (DQ – «2») подключают к контакту **9** 10-контактного разъёма. (Рисунок 34 – Контакты датчика SNR-DTS-2).

Рисунок 34 – Контакты датчика SNR-DTS-2

Для подключения датчика SNR-DTS-2 по трехпроводной схема питания **черный** провод (GND – «1») подключают к контакту **10** или **1** 10-контактного разъёма. **Красный** провод (VDD – «3») подключают к контакту **2** 8-контактного разъема. А жёлтый провод (DQ – «2») подключают к контакту **9** 10-контактного разъёма.

ERD поддерживает подключение до 10 датчиков 1-wire в <u>шинную</u> топологию с максимальной длинной шины до 100 метров. Во время работы ERD опрашивает все имеющиеся датчики на шине 1-wire и отображает на главной WEB странице серийный номер и показания с каждого из них. Так же данные с датчиков доступны по SNMP протоколу по соответствующим OID'ам.

Датчики могут быть подключены и отключены без отключения питания устройства.

Датчики температуры/влажности DHT11/DHT22

ERD поддерживает подключение только одного датчика DHT11/DHT22, работающего по протоколу Single Wire.

Датчик температуры/влажности DHT11/DHT22 подключается по трехпроводной схеме без отключения питания устройства.

Рисунок 35 – Контакты датчика DHT11/DHT22.

Подключение датчика

Vcc	Красный провод подключается к контакту 2 8-контактного
	разъема (Питание 3-5 В)
DQ	Жёлтый провод (DQ – «2») подключают к контакту 9 10-
	контактного разъёма.
GND	Черный провод (GND – «1») подключают к контакту 10 или 1
	10-контактного разъёма.

Во время работы ERD опрашивает датчик DHT11/DHT22, подключенный к интерфейсу Single wire. Данные датчика доступны на главной WEB-странице устройства, так же данные с датчика доступны по SNMP протоколу по соответствующим OID'ам. При наличии GSM/GPRS-сервиса данные доступны через SMS.

Активировать работу датчика DHT11/DHT22 можно в webинтерфейсе устройства. Для этого необходимо перейти во вкладку «Настройки», раздел «Настройки входов/выходов», в поле 1-wire выбрать режим «Single wire», нажать «Принять». (Рисунок 36 — Активация работы протокола Single Wire.).

Рисунок 36 – Активация работы протокола Single Wire.

Подключение SNR-RS-Sensor и SNR-RS-Counter-8i

Инструкция по подключению RS-Sensor доступна по <u>ссылке</u>. Инструкция по подключению RS-Counter-8і доступна по ссылке. Всего к ERD можно подключить до 5 устройств по интерфейсу RS-485. SNR-Sensor и RS-Counter-8і могут работать вместе на одной линии связи.

2.7 Управление по SNMP протоколу

Помимо WEB-интерфейса, устройство позволяет получать показания с датчиков и управлять нагрузками по протоколу SNMP v2.

Доступа к OID'ам можно получить как через командную строку, так и через SNMP-менеджер. Для работы через командную строку подойдет программа <u>net-snmp</u>., для просмотра таблиц потребуется <u>MIB-файл</u> также вместо команды snmptable, можно воспользоваться snmpwalk, тогда MIB-файл не потребуется .В качестве SNMP-менеджера можно использовать <u>MIB Browser</u> (потребуется <u>MIB-файл</u>). В качестве системы мониторинга подойдет <u>PRTG</u>, Dude или Zabbix.

Ниже приводится описание доступных OID-ов.

 SysDescr
 .1.3.6.1.2.1.1.1.0

 Uptime
 .1.3.6.1.2.1.1.3.0

 SysName
 .1.3.6.1.2.1.1.5.0

 SysLocation
 .1.3.6.1.2.1.1.6.0

Данные с датчиков доступны в виде SNMP-таблиц.

Данные с датчиков температуры, подключенных к шине 1-wire, доступны в таблице:

snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.1.1 Таблица содержит следующие строки:

dtsld Уникальный адрес датчика температуры

dtsName Название датчика температуры

dtsTemp Измеренное значение температуры tempCritNotif Флаг оповещений о крит. температурах

tempCritMin Нижний предел крит.температуры tempCritMax Верхний предел крит.температуры

Полите в может СМВ Сыль — в типинературы

Данные с устройств SNR-Shunt, подключенных к шине 1-wire, доступны в таблице:

snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.1.2 С описанием OID для устройства SNR-Shunt можно ознакомиться по ссылке тут.

Данные с датчика DHT11/DHT22, подключенного к шине Single Wire доступны по следующим OID'ам

snmpget -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.8 snmpget -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.9

Данные измерения ADC IN доступны в следующем OID:

snmpget -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.2.0

adcSensor .1.3.6.1.4.1.40418.2.6.1.2.0

Данные с беспроводных датчиков температуры, влажности, давления, доступны в таблице:

snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.10

rfshtpld Идентификатор беспроводного датчика

rfshtpName Название беспроводного датчика

rfshtpTemp Значение температуры rfshtpHum Значение влажности rfshtpPres Значение давления

Данные с проводных датчиков температуры, влажности, давления – SNR-RS-Sensor-H/T/P доступны в таблице:

snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.30.1

rsshtpldent Идентификатор проводного датчика

rsshtpName Название проводного датчика

rsshtpTemp Значение температуры rsshtpHum Значение влажности rsshtpPssr Значение давления

tempCritNotif Флаг оповещений о крит. температурах

tempCritMin Нижний предел крит.температуры tempCritMax Верхний предел крит.температуры

Данные со счетчиков импульсов – SNR-RS-Counter-8і доступны в таблице:

snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.30.5

rscounterIdent Идентификатор проводного счетчика

rscounterName Название проводного счетчика

Данные с температурных датчиков 1-Wire, подключенных к датчику температуры, влажности, давления – SNR-RS-Sensor-H/T/P доступны в таблице:

snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.1.30.100

Rsshtp1Wldent Уникальный адрес проводного датчика

Rsshtp1WName Название датчика температуры

Rsshtp1WTemp Измеренное значение температуры №1

Rsshtp1WMaster Имя или ID SNR-Sensor к которому

подключен Dallas

tempCritNotif Флаг оповещений о крит. температурах

tempCritMin Нижний предел крит.температуры tempCritMax Верхний предел крит.температуры

Данные о статусе «Входов DI» доступны в таблице: snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.1

diName Идентификатор DIO, в режиме «Вход»

diAlarmNameНазвание DIOdiStateСтатус DIO

diCnt Счетчик срабатываний DIO

Данные о статусе «Выходов DO» и Реле доступны в таблице: snmptable -v 2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.2

doName Идентификатор DIO, в режиме «Вход»

doDeviceNameНазвание DIOdoStateСтатус DIO

doResetDelay Время перезагрузки DIO

Данные о статусе датчика наличия напряжения доступны в OID:

uSenseState .1.3.6.1.4.1.40418.2.6.2.3

snmpget -v2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.3.0

Данные о cmamyce GSM модуля доступны в OID:

GsmModuleStatus .1.3.6.1.4.1.40418.2.6.5.1.1

snmpget -v2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.5.1.1.0

Данные об уровне сигнала GSM модуля доступны в OID:

GsmStrength .1.3.6.1.4.1.40418.2.6.5.1.2

snmpget -v2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.5.1.2.0

Данные о количестве попыток подключения GSM модуля доступны в OID:

ReconnCount .1.3.6.1.4.1.40418.2.6.5.1.10 snmpget -v2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.5.1.10.0

Данные о cmamyce RF модуля доступны в OID: **RfModuleStatus** .1.3.6.1.4.1.40418.2.6.5.2.1

snmpget -v2c -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.2.5.2.1.0

Данные о статусе формата данных доступны в OID:

dataType .1.3.6.1.4.1.40418.2.6.10.1.0

В данном OID'е содержится состояние опции «Тип данных» - формат данных, в которых устройство отдает значения измеренных величин (напряжение, ток и тд). Устройство поддерживает 3 типа (формата) данных:

- 1. Integer (целые);
- 2. Float (данные с плавающей запятой);
- 3. uFloat (целые, но с отображением знаков после запятой). В этом формате значение умножается на 100, т.е., например, 1234 = 12.34. Этот формат служит для передачи действительного значения SNMP-менеджерам, которые не поддерживают работу с данными с плавающей запятой.

snmpget -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.10.1.0 snmpset -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.10.1.0 i п где «n» - состояние:

0: integer

1: float

2: ufloat

crit .1.3.6.1.4.1.40418.2.6.10.10

Эта ветка содержит OID'ы с критическими состояниями температуры для DHT датчика, влажности для всех датчиков влажности и минимальное и максимальное значение измеряемого значения для ADC. Пример чтения всех доступных параметров ветки:

snmpwalk -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.10.10

В вывода данных используется команда:

snmpget -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.10.10.10.0

Для ввода данных используется команда:

snmpset -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.10.10.10.0

С описанием OID для функции «Подключение SNR-ERD-4 к UPS» можно ознакомиться по ссылке тут

pid .1.3.6.1.4.1.40418.2.6.11.10

Эта ветка содержит OID'ы с характеристиками ПИД-регулятора. Пример чтения всех доступных параметров ветки:

snmpwalk -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.11.10

inputPID.1.3.6.1.4.1.40418.2.6.11.10.1.0outputPercentPID.1.3.6.1.4.1.40418.2.6.11.10.2.0outputrealPID.1.3.6.1.4.1.40418.2.6.11.10.3.0ypPID.1.3.6.1.4.1.40418.2.6.11.10.4.0yiPID.1.3.6.1.4.1.40418.2.6.11.10.5.0ydPID.1.3.6.1.4.1.40418.2.6.11.10.6.0errorPID.1.3.6.1.4.1.40418.2.6.11.10.7.0

В данных OID'ax содержатся характеристики ПИД-регулятора. snmpget -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.11.10.1.0 Для ввода данных для расчета ПИД-регулятора по SNMP: snmpset -v1 -c public 192.168.15.20 .1.3.6.1.4.1.40418.2.6.11.10.1.0

2.8 Оповещения о событиях

Оповещения о регистрации событий можно получать по SNMP, на почту, на телефон в виде SMS или PUSH-уведомлений, или на клиента MQTT.

Для получения оповещений(trap) по SNMP о регистрации событий необходимо настроить IP-адрес получателя trap'ов. Сделать это можно через web-интерфейс на странице "Настройки" в разделе "Сетевые настройки" в строке "IP для трапов". Тrap содержит соответствующий OID, определяющий тип события, и OID переменной, связанной с событием (OID сработавшего датчика).

Как настроить получение оповещений на почту частично описано в разделе: "Web-страница «Email»".

О получении оповещений по SMS описано в разделе "<u>Оповещение</u> <u>о событиях по SMS</u>".

Как настроить получение оповещений в виде PUSH-уведомлений или как настроить работу с API MQTT для получения уведомления на клиента MQTT описано в документе: <u>Начало работы с MQTT в ERD-4</u>.

ERD может отправлять уведомления при наступлении следующих событий:

- Срабатывание датчиков сигнализации подключенных к портам DIO.
- Срабатывание датчика наличия напряжения на порту WDI;
- Включение/выключение нагрузок в автоматическом режиме;
- Выход за пределы заданного порога температуры/влажности;
- Выход измеренного напряжения за пределы заданного значения;
- Выполнение отложенных заданий с помощью планировщика;
- При разрыве/восстановлении соединения с отслеживаемым оборудованием (Срабатывание функции watchdog);
- При снижении заряда аккумуляторов до порогового значения при работе функции «Управление резервным питанием».
- Отключение/подключение к интернету.
- Отключение/подключение к SMTP серверу(Mail)
- Отключение/подключение Ethernet-кабеля
- Удачные/не удачные попытки авторизации в WEB

• Включение устрйоства Описание уведомлений с примерами приведены в таблице 8

Таблица 8 – Описание уведомлений с примерами

Номер событ ия	Причина	Сообщение	Пример
0	Выбран чекбокс "Отправить тестовое уведомление" в web	[Sysname]: test notification	SNR-ERD-4: test notification
1-2, 11-12	Изменение уровня напряжения на DI/Датчике фазы	[Sysname[Device name]]: [DI name] {HIGH LOW} [Sysname]: USENSE {NO YES}	SNR-ERD-4[SNR- Counter]: ALARM-1 LOW SNR-ERD-4: USENSE YES
13-24	Включение/Выключение реле/DO по событию на термостате или гидростате	[Sysname]:{Thermostat Gigrostat} } DIO[DO Homep]_{ON OFF} [Sysname]:{Thermostat Gigrostat} } RELEOUT_{ON OFF}	SNR-ERD-4: Gigrostat RELEOUT_ON SNR-ERD-4: Gigrostat DIO1_OFF
29-30, 33-34	Достигнут критический/нормальный уровень температуры/влажности	[Sysname]: {Critical Normal} Temperature [Наименование или индекс датчика] [Sysname]: {Critical Normal} Humidity [Наименование или индекс датчика]	SNR-ERD-4: Critical Temperature SNR-DTS1 SNR-ERD-4: Normal Humidity DHT
31-32	Достигнуто минимальное/максимальное критическое значение датчика ADC IN	[Sysname]: {Critical Normal} ADC value [Значение]	SNR-ERD-4: Critical ADC value 8.00 SNR-ERD-4: Normal ADC value 5.00
36-45	Выполнено действие заданное Планировщиком	[Sysname]: Task Done - {RELEOUT DIO[DO Hомер]} {ON OFF RESETED}	SNR-ERD-4: Task Done - RELEOUT ON SNR-ERD-4: Task Done - DIO1 RESETED
50-51	Превышено время ожидание ответа от хоста/После таймаута получен ответ.	[Sysname]: Ping lost [IP-адрес хоста] [Sysname]: Ping restored [IP- адрес хоста]	SNR-ERD-4: Ping lost 192.168.15.10 SNR-ERD-4: Ping restored 192.168.15.10
53	Напряжение резервного питания опустилось ниже указанного	[Sysname]: Low battery charge	SNR-ERD-4: Low battery charge
55-56	Изменение статуса UPS	[Sysname]: UPS utility {FAIL OK}	SNR-ERD-4: UPS utility FAIL SNR-ERD-4: UPS utility OK
57-58	Изменение статуса подключения к интернету	[Sysname]: Internet connected [Sysname]: Internet disconnected	SNR-ERD-4: Internet connected SNR-ERD-4: Internet

			disconnected
59-60	Изменение статуса	[Sysname]: Smtp connected	SNR-ERD-4: Smtp
	подключения к SMTP	[Sysname]: Smtp disconnected	connected
			SNR-ERD-4: Smtp
			disconnected
61-62	Изменение статуса	[Sysname]: Ethernet connected	SNR-ERD-4: Ethernet
	подключения к Ethernet	[Sysname]: Ethernet	connected
		disconnected	SNR-ERD-4: Ethernet
			disconnected
63-64	Попытка авторизации в web	[Sysname]: Authentication fail	SNR-ERD-4:
		[Sysname]: Authentication ok	Authentication fail
			SNR-ERD-4:
			Authentication ok
65	Включение устройства	[Sysname]: Device start	[Sysname]: Device start

2.9 SMS-сообщения

ERD в исполнении ERD-4S-GSM позволяет посредством SMS-сообщений управлять нагрузками, считывать состояния портов DIO, считывать показания датчиков и получать оповещения о событиях.

Для использования данной функции установить в держатель SIMкарту с отключенной PIN-защитой. К антенному разъему SMA подключить GSM-антенну.

Управление нагрузками через SMS-сообщения

Для управления нагрузками необходимо отправить на абонентский номер SIM-карты SMS-сообщение с соответствующей командой и паролем, при этом ERD отправит ответное SMS-сообщение на абонентский номер отправителя при условии, что включена опция «Отправка ответов».

Поддерживаются следующие команды управления нагрузками:

- «Releout reset» перезагрузка релейного выхода
- «Releout switch» переключение релейного выхода
- «DIO1 reset» перезагрузка выхода DIO1
- «DIO1 switch» переключение выхода DIO1
- «DIO2 reset» перезагрузка выхода DIO2
- «DIO2 switch» переключение выхода DIO2
- «DIO3 reset» перезагрузка выхода DIO3
- «DIO3 switch» переключение выхода DIO3
- «DIO4 reset» перезагрузка выхода DIO4
- «DIO4 switch» переключение выхода DIO4
- «DIO5 reset» перезагрузка выхода DIO5
- «DIO5 switch» переключение выхода DIO5

Пример SMS-команды на перезагрузку нагрузки подключенной к порту DIO1: «DIO1 reset public», где public – пароль.

Запрос показаний датчиков и состояний нагрузок

Для осуществления запроса показаний датчиков или состояния нагрузок необходимо послать SMS-сообщение с командной (без пароля) на абонентский номер SIM-карты, при этом ERD отправит ответное SMS-сообщение на абонентский номер отправителя при условии, что включена опция «Отправка ответов».

Команды считывания показаний датчиков и состояний нагрузок:

- «Get temp» запрос температуры со всех датчиков;
- «Get volt» запрос напряжения;
- «Get hum» запрос влажности с датчика температуры/влажности DHT11/DHT22;
- «Get senses» запрос состояния датчиков сигнализации, подключенных к портам DIO;
- «Get DIO» запрос состояния нагрузок, подключенных к портам DIO и состояние реле.;

Привязка номера администратора

С целью защиты управляемой системы от воздействий со стороны третьих лиц в ERD реализована функция SMS-фильтрации. Функция активируется при включении опции «Запросы с номера администратора», после чего ERD будет обрабатывать SMS-сообщения только с номера администратора.

Оповещение о событиях по SMS

Посредством SMS-сообщений устройство способно оповещать пользователя о наступлении различных тревожных событий.

Устройство поддерживает два номера администратора.

Для активации функции необходимо записать в поле «Номер администратора-1» или в поле «Номер администратора-2» абонентский номер, на который будут приходить тревожные сообщения, и включить опцию «Отправка оповещений» на страницах «Датчики» и «Настройки».

ERD может отправлять тревожные сообщения при наступлении следующих событий:

- Изменение состояния датчиков, подключенных к портам DIO;
- Изменение состояния датчика наличия напряжения, подключенного к порту WDI;
 - Включение/выключение нагрузок в автоматическом режиме;
 - Превышение заданного порога температуры;
 - Снижение измеряемго напряжения ниже заданного значения;
 - Выполнение отложенных заданий с помощью планировщика;
- Срабатывание функции отслеживания работоспособности оборудования (watchdog)

• При снижении заряда аккумуляторов до порогового значения при работе функции «Управление резервным питанием»;

Все тревожные сообщения можно посмотреть в разделе -Traps, в mib-файле для устройства.

2.10 Счетчики

Устройство сохраняет различные счетчики в специальную область памяти, имеющую неограниченное количество циклов перезаписи. Данные в этой в области памяти сохраняются при отключенном питании устройства. Хранение данных осуществляется за счет встроенного источника питания, и гарантируется в течение 5 дней.

Сохраняемые счетчики:

- Счетчик перезагрузок устройства (65535 максимум 16 бит)
- Счетчики срабатываний датчиков сигнализации (4294967295 максимум 32 бита)

Счетчики сбрасываются при сбросе настроек устройства.

2.11 Преобразование интерфейсов

Благодаря наличию последовательных интерфейсов RS-232 и RS-485, устройство способно работать в режиме конвертера интерфейсов. Интерфейсы RS-232 и RS-485 работают независимо другот друга.

Настройка формата фреймов осуществляется через WEB-интерфейс на странице «Настройки». Оба интерфейса поддерживают следующие форматы фреймов:

Скорость (бит/с): 1200, 2400, 4800, 9600,19200, 38400, 57600,115200.

Бит данных: 7 или 8

Четность: Чет(Even), Heчет(Odd), Heт(None)

Стоповые биты: 1 или 2.

Для того, чтобы передать данные в последовательный порт <u>RS-232</u> через интерфейс Ethernet, необходимо открыть TCP/IP соединение на **35** порт.

Для того, чтобы передать данные в последовательный порт <u>RS-485</u> через интерфейс Ethernet, необходимо открыть TCP/IP соединение на **50** порт.

Организация виртуального СОМ-порта

Для некоторых ситуаций, когда управляющая программа на ПК не имеет возможности работать по прямому TCP соединению, а работает только через COM порт, устройство позволяет создать в системе виртуальный COM порт с помощью программ <u>«USR-VCOM»</u> или <u>«Tibbo VSP Manager».</u>

Рисунок 17 - Окно программы «USR-VCOM»

Для добавления нового COM-порта нажать на кнопку «Add COM», откроется окно настройки нового виртуального COM-порта, в строке Remote IP/addr ввести IP-адрес ERD, в строке Remote Port TCP-порт соединения.

Рисунок 18 – Окно настройки СОМ-порта программы «USR-VCOM»

Tibbo VSP Manager.

Для случаев, когда необходимо создать несколько СОМ портов, хорошо подходит программа «Tibbo VSP Manager», которая входит в состав «Tibbo Device Server Toolkit».

Для создания виртуального СОМ порта необходимо выбрать номер порта, IP адрес устройства и порт TCP соединения (Рисунок 39 — Окно программы «Tibbo VSP Manager»):

Рисунок 19 - Окно программы «Tibbo VSP Manager»

3 МЕРЫ БЕЗОПАСНОСТИ

ERD не имеет взрывобезопасного исполнения. Во взрывоопасной зоне, монтаж ERD должен осуществляться во взрывозащищенные стойки или шкафы. Предварительный монтаж и наладка должны осуществляться вне взрывоопасной зоны.

Заземление корпуса ERD должно осуществляться через болтовое соединение с контуром заземления или через закрепление корпуса на предварительно заземленную DIN-рейку. Запрещается эксплуатировать ERD без подключения к контуру защитного заземления.

По способу защиты от поражения электрическим током, конструктивное исполнение ERD соответствует классу III в соответствии с ГОСТ IEC 60950-1-2014.

Перед началом эксплуатации должна быть проверена правильность и надежность подключения кабелей питания, исправность и надежность подключения заземления.

Наладка и ввод в эксплуатацию ERD должна производиться квалифицированным персоналом.

4 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие ERD требованиям настоящего ТУ при соблюдении условий эксплуатации, хранения и транспортирования.

Гарантийный и послегарантийный ремонт производятся региональным сервисным центром или предприятием-изготовителем.

Потребитель теряет право на гарантийный ремонт при нарушении условий хранения и эксплуатации.

Гарантийный срок эксплуатации – 12 месяцев со дня ввода ERD в эксплуатацию.

Гарантийный срок хранения – 6 месяцев со дня изготовления ERD.

5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

ERD должен транспортироваться в транспортной таре любым видом транспорта, в том числе авиационным в отапливаемых герметизированных отсеках.

Условия хранения и транспортирования ERD в части воздействия климатических факторов внешней среды должны соответствовать условиям 5 по ГОСТ 15150.

ERD в транспортной таре должен быть прочен к воздействию следующих внешних факторов:

- температура окружающего воздуха от минус 50 до плюс 50 °С;
- относительная влажность окружающего воздуха до 95% при температуре 35 °C;
 - вибрация по группе N2 согласно ГОСТ Р 52931.

6 УТИЛИЗАЦИЯ

ERD не содержит веществ, опасных для окружающей среды и здоровья человека, не выделяет загрязняющие и отравляющие вещества в окружающую среду.

Утилизация ERD по окончании срока службы должна производиться в соответствии с правилами об утилизации отходов электрического и электронного оборудования страны эксплуатации.

ПРИЛОЖЕНИЕ А

(справочное)

Ссылочные нормативные документы

Таблица А.1

Обозначение	Наименование
ГОСТ 15150-69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ΓΟCT 14254-96	Степени защиты, обеспечиваемые оболочками (код IP)
ΓΟCT CISPR 24-2013	Совместимость технических средств электромагнитная. Оборудование информационных технологий. Устойчивость к электромагнитным помехам. Требования и методы испытаний
ГОСТ 30805.22-2013	Совместимость технических средств электромагнитная. Оборудование информационных технологий. Радиопомехи индустриальные. Нормы и методы измерений
ГОСТ 30804.4.2-2013	Совместимость технических средств электромагнитная. Устойчивость к электростатическим разрядам. Требования и методы испытаний.
ΓΟCT 30804.4.3-2013	Совместимость технических средств электромагнитная. Устойчивость к радиочастотному электромагнитному полю. Требования и методы испытаний
ΓΟCT IEC 61000-4-8-2013	Электромагнитная совместимость. Часть 4-8. Методы испытаний и измерений. Испытания на устойчивость к магнитному полю промышленной частоты
ГОСТ 30804.4.4-2013	Совместимость технических средств электромагнитная. Устойчивость к наносекундным импульсным помехам. Требования и методы испытаний
ГОСТ Р 51317.4.5-99	Совместимость технических средств электромагнитная. Устойчивость к микросекундным импульсным помехам большой энергии. Требования и методы испытаний
ГОСТ Р 51317.4.6-99	Совместимость технических средств электромагнитная. Устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями требования и методы испытаний
ГОСТ Р 50842-95	Совместимость радиоэлектронных средств электромагнитная. Устройства радиопередающие народнохозяйственного применения. Требования к побочным радиоизлучениям. Методы измерения и контроля
ΓΟCT 23216-78	Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний (с Изменениями N 1, 2, 3)
ΓΟCT IEC 60950-1-2014	Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования
ΓΟCT P 52931-2008	Приборы контроля и регулирования технологических процессов. Общие технические условия

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Дата	Ревизия	Внесенные изменения
27.09.16	1.1	Заменен логотип на титульном листе, добавлено описание WDI, исправлены опечатки.
05.12.16	1.2	Внесены уточнения в разделы 2.6 и 2.10, исправлены опечатки.
10.01.17	1.3	Добавлен раздел описания SMS-команд
29.12.18	1.4	Добавлена информация о новых возможностях: - конфигурации через API MQTT; - измерения тока на входе AI от 0 до 20 мA; - отправки PUSH-уведомлений или публикации уведомлений в топик API MQTT; - опроса RS-Counter-8i по интерфейсу RS-485; - поддержке режимов термостат, гидролок, гигростат; - логгирования трапов в журнале; - Добавлена информация о режиме расширения портов при подключении RS-Counter-8i; - Добавлены разделы с описанием Гигростата, гидролока, MQTT, Журнала, SNR-sensor, RS-Counter-8i; - В раздел "Управление нагрузками" добавлено описание гигростата и гидролока Добавлен раздел с описание всех типов возможных уведомлений; Исправлены неточности: - Убрано описание мигания Activity LED(в прошивке не реализовано); - Исправлено описание snmp oid. Некоторые были не верны. Добавлено сообщение о необходимости МІВфала при четнии данных в виде таблиц. - Полностью обновлен раздел "WEB интерфейс" (обновлены описание и изображения); - Все изображения с инструкциями и описанием функций заменены на актуальные; - Добавлены ссылки на описание работы с протоколом МQTT и описание подключения RS-Sensor и RS-Counter;

Для получения консультаций технических специалистов обращайтесь в техподдержку — erd@nag.ru