13: Clustering

Previous Next Index

Unsupervised learning - introduction

- Talk about clustering
 - Learning from unlabeled data
- · Unsupervised learning
 - o Useful to contras with supervised learning
- Compare and contrast
 - Supervised learning
 - Given a set of labels, fit a hypothesis to it
 - o Unsupervised learning
 - Try and determining structure in the data
 - Clustering algorithm groups data together based on data features
- What is clustering good for
 - Market segmentation group customers into different market segments
 - Social network analysis Facebook "smartlists"
 - Organizing computer clusters and data centers for network layout and location
 - Astronomical data analysis Understanding galaxy formation

K-means algorithm

- Want an algorithm to automatically group the data into coherent clusters
- K-means is by far the most widely used clustering algorithm

Overview

• Take unlabeled data and group into two clusters

- · Algorithm overview
 - o 1) Randomly allocate two points as the cluster centroids
 - Have as many cluster centroids as clusters you want to do (K cluster centroids, in fact)
 - In our example we just have two clusters
 - o 2) Cluster assignment step
 - Go through each example and depending on if it's closer to the red or blue centroid assign each point to one of the two clusters
 - To demonstrate this, we've gone through the data and "colour" each point red or blue

- o 3) Move centroid step
 - Take each centroid and move to the average of the correspondingly assigned data-points

- Repeat 2) and 3) until convergence
- More formal definition
 - Input:
 - K (number of clusters in the data)
 - Training set $\{x^1, x^2, x^3, ..., x^n\}$
 - Algorithm:
 - Randomly initialize K cluster centroids as {μ₁, μ₂, μ₃ ... μ_K}

Repeat {
$$for \ i = 1 \ to \ m$$

$$c^{(i)} := index \ (from \ 1 \ to \ K) \ of \ cluster \ centroid$$

$$closest \ to \ x^{(i)}$$

$$for \ k = 1 \ to \ K$$

$$\mu_k := average \ (mean) \ of \ points \ assigned \ to \ cluster \ k \ \}$$

- Loop 1
 - This inner loop repeatedly sets the c⁽ⁱ⁾ variable to be the index of the closes variable of cluster centroid closes to xⁱ
 - lacksquare i.e. take i^{th} example, measure squared distance to each cluster centroid, assign $c^{(i)}$ to the cluster closest

- Loop 2
 - Loops over each centroid calculate the average mean based on all the points associated with each centroid from c⁽ⁱ⁾
- What if there's a centroid with no data
 - Remove that centroid, so end up with K-1 classes
 - Or, randomly reinitialize it
 - Not sure when though...

K-means for non-separated clusters

- $\bullet\,$ So far looking at K-means where we have well defined clusters
- But often K-means is applied to datasets where there aren't well defined clusters
 e.g. T-shirt sizing

- Not obvious discrete groups
- Say you want to have three sizes (S,M,L) how big do you make these?
 - One way would be to run K-means on this data
 - o May do the following

- $\circ\,$ So creates three clusters, even though they aren't really there
- Look at first population of people
 - Try and design a small T-shirt which fits the 1st population
 - And so on for the other two
- This is an example of market segmentation
 - Build products which suit the needs of your subpopulations

K means optimization objective

- Supervised learning algorithms have an optimization objective (cost function)
 - o K-means does too
- K-means has an optimization objective like the supervised learning functions we've seen
 - Why is this good?
 - o Knowing this is useful because it helps for debugging
 - Helps find better clusters
- While K-means is running we keep track of two sets of variables
 - \circ cⁱ is the index of clusters {1,2, ..., K} to which xⁱ is currently assigned
 - i.e. there are $m c^i$ values, as each example has a c^i value, and that value is one the the clusters (i.e. can only be one of K different values)
 - $\circ \mu_k$, is the cluster associated with centroid k
 - Locations of cluster centroid k
 - So there are K
 - So these the centroids which exist in the training data space
 - $\circ \mu_c^i$, is the cluster centroid of the cluster to which example x^i has been assigned to
 - This is more for convenience than anything else
 - You could look up that example i is indexed to cluster j (using the c vector), where j is between 1 and K

- Then look up the value associated with cluster j in the μ vector (i.e. what are the features associated with μ_i)
- But instead, for easy description, we have this variable which gets exactly the same value
- Lets say xⁱ as been assigned to cluster 5
 - Means that
 - $\mathbf{c}^{i} = \mathbf{5}$
 - μ_c^i , = μ_5
- Using this notation we can write the optimization objective;

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^m ||x^{(i)} - \mu_{c^{(i)}}||^2$$

- i.e. squared distances between training example xi and the cluster centroid to which xi has been assigned to
 - This is just what we've been doing, as the visual description below shows;

- The red line here shows the distances between the example xⁱ and the cluster to which that example has been assigned
 - Means that when the example is very close to the cluster, this value is small
 - When the cluster is very far away from the example, the value is large
- This is sometimes called the **distortion** (or **distortion cost function**)
- So we are finding the values which minimizes this function;

$$\min_{\substack{c^{(1)},\ldots,c^{(m)},\ \mu_1,\ldots,\mu_K}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

- If we consider the k-means algorithm
 - The **cluster assigned step** is minimizing J(...) with respect to c¹, c² ... cⁱ
 - i.e. find the centroid closest to each example
 - Doesn't change the centroids themselves
 - The move centroid step
 - We can show this step is choosing the values of μ which minimizes J(...) with respect to μ
 - o So, we're partitioning the algorithm into two parts
 - First part minimizes the c variables
 - Second part minimizes the J variables
- We can use this knowledge to help debug our K-means algorithm

Random initialization

- How we initialize K-means
 - And how avoid local optimum
- Consider clustering algorithm
 - Never spoke about how we initialize the centroids
 - A few ways one method is most recommended
- Have number of centroids set to less than number of examples (K < m) (if K > m we have a problem)o
 - Randomly pick K training examples
 - Set μ_1 up to μ_K to these example's values
- K means can converge to different solutions depending on the initialization setup
 - Risk of local optimum

- o The local optimum are valid convergence, but local optimum not global ones
- If this is a concern
 - We can do multiple random initializations
 - See if we get the same result many same results are likely to indicate a global optimum
- Algorithmically we can do this as follows;

Randomly initialize K-means.

Run K-means. Get
$$c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K$$

Compute cost function (distortion)

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$
 }

- A typical number of times to initialize K-means is 50-1000
- Randomly initialize K-means
 - For each 100 random initialization run K-means
 - Then compute the distortion on the set of cluster assignments and centroids at convergent
 - End with 100 ways of cluster the data
 - Pick the clustering which gave the lowest distortion
- If you're running K means with 2-10 clusters can help find better global optimum
 - \circ If K is larger than 10, then multiple random initializations are less likely to be necessary
 - o First solution is probably good enough (better granularity of clustering)

How do we choose the number of clusters?

- Choosing K?
 - o Not a great way to do this automatically
 - o Normally use visualizations to do it manually
- What are the intuitions regarding the data?
- · Why is this hard
 - o Sometimes very ambiguous
 - e.g. two clusters or four clusters
 - Not necessarily a correct answer
 - This is why doing it automatic this is hard

Elbow method

- Vary K and compute cost function at a range of K values
- As K increases J(...) minimum value should decrease (i.e. you decrease the granularity so centroids can better optimize)
 Plot this (K vs J())
- Look for the "elbow" on the graph

- Chose the "elbow" number of clusters
- If you get a nice plot this is a reasonable way of choosing K
- Risks
 - o Normally you don't get a a nice line -> no clear elbow on curve
 - o Not really that helpful

Another method for choosing K

- Using K-means for market segmentation
- Running K-means for a later/downstream purpose
 - See how well different number of clusters serve you later needs
- e.g.
 - T-shirt size example
 - If you have three sizes (S,M,L)
 - Or five sizes (XS, S, M, L, XL)
 - Run K means where K = 3 and K = 5
 - o How does this look

- This gives a way to chose the number of clusters
 - Could consider the cost of making extra sizes vs. how well distributed the products are
 - How important are those sizes though? (e.g. more sizes might make the customers happier)
 - So applied problem may help guide the number of clusters