UE M5 - Séries et calcul intégral

TD Construction et propriétés Intégrale de Riemann - Sommes de Riemann

Le but du TD n'est pas de recopier passivement la correction mais de participer activement à la résolution des exercices proposés!

EXERCICE 1

Notons E la fonction partie entière. Calculer $\int_{-2}^{2} E(x)dx$ en utilisant :

- 1) la subdivision $P_1 = (-2, -1, 0, 1, 2)$ de l'intervalle [-2, 2],
- **2)** puis la subdivision $P_2 = (-2, -\frac{3}{2}, -1, -\frac{1}{4}, 0, 1, \frac{7}{4}, 2)$ de [-2, 2].

EXERCICE 2

Soit $(m,n) \in \mathbb{Z}^2$ tels que $m \leq n$ et notons E la fonction partie entière. Calculer $\int_m^n E(x) dx$.

EXERCICE 3

Soit $f: [0,1] \to \mathbb{R}$ définie pour tout $x \in [0,1]$ par f(x) = x.

1. Soit $\epsilon > 0$. Construire deux fonctions u et v en escalier sur [0,1] telles que :

$$\forall x \in [0,1] \quad u(x) \le f(x) \le v(x) \quad \text{et} \quad \int_0^1 (v-u)(x)dx < \epsilon$$

En déduire que f est intégrable sur [0,1] et calculer $\int_0^1 f(x)dx$.

2. De même, démontrer que la fonction $g: [0,1] \to \mathbb{R}$ définie pour tout $x \in [0,1]$ par $g(x) = x^2$ est intégrable sur [0,1] et calculer $\int_0^1 g(x) dx$.

EXERCICE 4

Soit $(a, b) \in \mathbb{R}^2$ tels que a < b et soit $\mathbb{1}_{\mathbb{Q}}$ la fonction indicatrice de l'ensemble des rationnels \mathbb{Q} .

- 1. Montrer que $\mathbb{1}_{\mathbb{Q}}$ n'est continue en aucun point de \mathbb{R} .
- 2. Montrer que $\mathbb{1}_{\mathbb{Q}}$ n'est pas intégrable (au sens de Riemann) sur [a, b].

EXERCICE 5

- 1. Notons I =]0, 1] et f la fonction définie sur I par $f(x) = \frac{1}{x}$. Montrer que f n'est pas uniformément continue sur I.
- 2. Montrer que la fonction racine est uniformément continue sur \mathbb{R}^+ .
- 3. Soit $(a,b) \in \mathbb{R}^2$ avec a < b. Montrer que la fonction $h: x \mapsto x^2$ est uniformément continue sur [a, b]. La fonction h est-elle uniformément continue sur \mathbb{R} ? Justifier.
- 4. Rappeler l'énoncé du théorème de Heine.
- 5. La fonction sin est-elle uniformément continue sur \mathbb{R} ? Justifier.

EXERCICE 6

1. Soit $(a, b) \in \mathbb{R}^2$ tels que a < b. Démontrer que : Si f est intégrable sur [a, b] alors |f| est intégrable sur [a, b] et on a :

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

2. Considérons la fonction $h:[a,b]\to\mathbb{R}$ définie par :

$$h(x) = \begin{cases} 1 & \text{si} \quad x \in \mathbb{Q} \\ -1 & \text{si} \quad x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Montrer que |h| est intégrable sur [a,b] et que h n'est pas intégrable sur [a, b] (pour cela, exprimer h en fonction de $\mathbb{1}_{\mathbb{O}}$).

EXERCICE 7

"Plus difficile"

Soit la fonction f définie sur [-1,1] par : $\begin{cases} f(0) = 0 \\ f(x) = \sin(\frac{1}{x}) \end{cases}$.

Montrer que f est intégrable sur [-1,1]

Calculer $\int_0^1 x^2 dx$ en utilisant des sommes de Riemann.

EXERCICE 9

Calculer la limite quand $n \to +\infty$ de la suite $(S_n)_{n \in \mathbb{N}^*} = \left(\sum_{k=n+1}^{2n} \frac{1}{k}\right)_{n \in \mathbb{N}^*}$.

EXERCICE 10

Calculer la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^* \quad u_n = \prod_{k=1}^n \left(1 + \frac{k}{n}\right)^{\frac{1}{n}}$$

EXERCICE 11

Soit $f:[a,b]\to\mathbb{R}$ une application continue sur [a,b] telle que :

$$\left| \int_{a}^{b} f(x) dx \right| = \int_{a}^{b} |f(x)| dx.$$

Montrer que f garde un signe constant sur [a, b].

Ce résultat est-il encore valable pour f supposée seulement intégrable sur l'intervalle [a, b]?

Soit $\phi \in \mathcal{E}([a,b])$ une fonction en escalier sur [a,b]. Pour tout entier $n \in \mathbb{N}$, on note:

$$u_n = \int_a^b \phi(x) \sin(nx) dx$$

- 1. Montrer que $\lim_{n\to+\infty} u_n = 0$.
- 2. Montrer que ce résultat est encore valable si la fonction ϕ est une application continue par morceaux sur [a, b].

EXERCICE 13

Notons E l'ensemble des applications continues sur [a, b] à valeurs dans $]0,+\infty[$. Pour toute application $f\in E$, on définit :

$$J(f) = \int_{a}^{b} f(x)dx \int_{a}^{b} \frac{1}{f(x)}dx$$

2. Montrer que:

$${J(f) / f \in E} = [(b - a)^2, +\infty[$$

Indication : On pensera à considérer les fonctions $f_{\lambda}: x \mapsto e^{\lambda\,x}$ avec $\lambda>0.$

EXERCICE 14

1. Soit $(u_n)_{n\in N^*}$ la suite définie par :

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$$

En utilisant la notion de somme de Riemann, déterminer la limite de la suite $(u_n)_{n\in N^*}$.

2. En utilisant la notion de somme de Riemann, déterminer un équivalent de $\sum_{k=1}^n \sqrt{k}$ en $+\infty.$

EXERCICE 15

"Plus difficile"

Calculer $\int_{-1}^{1} \sqrt{1-x^2} dx$ à l'aide d'une somme de Riemann.

Indication: On pensera à considérer les points $x_k = \cos(\frac{k\pi}{n})$ pour $k \in \{0, 1, 2, ..., n\}$

EXERCICE 16

En utilisant la notion de somme de Riemann, déterminer :

$$\lim_{n \to +\infty} \left(\frac{(2n)!}{n!n^n} \right)^{\frac{1}{n}}$$