CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 6651: Algorithm Design Techniques

Fall 2015

Quiz # 1

First Name

Last Name

ID#

Question 1

Solve the following recurrence equation

$$t_n = 2t_{n-2} - t_{n-4} \qquad n \ge 4$$

$$t_n = n \qquad 0 \le n \le 3$$

Express your solution with the simplest expression using the Θ notation.

Characteristic equation: $x^4 - 2x^2 + 1 = 0$ (2 points) $\rightsquigarrow (x^2 - 1)^2$ because of the identity:

$$(a-b)^2 = a^2 + b^2 - 2ab.$$

Then $x^2 - 1$ is a difference of two squared terms, we use the identity

$$a^{2} - b^{2} = (a - b)(a + b).$$

It leads to: $x^2 - 1 = (x - 1)(x + 1)$.

Characteristic equation is then equivalent to:

$$(x-1)^2(x+1)^2 = 0.$$
 (2 points)

Both two roots 1 and -1 are of multiplicity two. (2 points)

$$G(n) = (C_1 + C_2 n)(1)^n + (C_3 + C_4 n)(-1)^n = C_1 + C_2 n + (C_3 + C_4 n)(-1)^n$$
 (2 points)

$$n = 2k$$
: $G(2k) = C_1 + C_3 + n(C_2 + C_4) = A_1 + B_1 n$

$$n = 2k + 1$$
: $G(2k + 1) = C_1 - C_3 + n(C_2 - C_4) = A_2 + B_2 n$

It follows:

$$C_1 = \frac{A_1 + A_2}{2}, \quad C_2 = \frac{B_1 + B_2}{2}, \quad C_3 = \frac{A_1 - A_2}{2}, \quad C_4 = \frac{B_1 - B_2}{2}.$$

Clearly, the coefficient of n is not zero, as otherwise $t_n = \text{constant}$ and then the recurrence solution is not satisfied unless $t_n = 0$, consequently

$$t_n = \Theta(n)$$
. (2 points)

Question 2

Give the mathematical definition of $\Omega(n)$ notation. Using this definition, show that: $n^2 + 100 = \Omega(\log n)$.

Mathematical definition of Ω -notation: $f(n) = \Omega(g(n))$ if there exists positive constants c, n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$. (5 points)

See Figure 1 for the graph of the log function.

For $n \ge n_0 = 1$, we have:

$$n^2 + 100 \ge n^2 \ge n \ge \log n.$$

Therefore, definition applies with c = 1 and $n_0 = 1$. (5 points)

Figure 1: Graph of log function