第三章(求解线性方程组的迭代方法部分)习题

1、设矩阵

$$A = \begin{pmatrix} 10 & a & 0 \\ c & 10 & c \\ 0 & a & 5 \end{pmatrix}, \quad \det A \neq 0,$$

用 a, c 表示出解方程组 Ax = b 的 Jacobi 迭代法和 Gauss-Seidel 迭代法收敛的充要条件.

2、设 A 是一个对称正定矩阵,将 A 分解为 $A=D-L-U=D(I-\widetilde{L}-\widetilde{U})$. 定义一种两步(正反G-S)迭代法:

$$(D-L)x^{(k+\frac{1}{2})} = Ux^{(k)} + b,$$

 $(D-U)x^{(k+1)} = Lx^{(k+\frac{1}{2})} + b.$

(1) 证明将上述迭代公式可合并写成 $x^{(k+1)} = Bx^{(k)} + g$ 的形式,其中

$$B = \left(I - \widetilde{U}\right)^{-1} \left(I - \widetilde{L}\right)^{-1} \widetilde{L}\widetilde{U},$$

$$g = \left(I - \widetilde{U}\right)^{-1} \left(I - \widetilde{L}\right)^{-1} D^{-1}b.$$

- (2) 证明迭代矩阵 B 的特征值为非负实数。
- (3) 证明 $\rho(B)$ < 1, 即该迭代法收敛。
- 3、假设 A 是一个严格对角占优的矩阵,且 $0 < \omega \le 1$. 证明 SOR 方法求解 Ax = b 一定收敛.

4、设 A 为对称正定矩阵,证明在用共轭梯度法求解 Ax = b 中,一定有 $\mathcal{F}(x^{(k+1)}) \leq \mathcal{F}(x^{(k)})$,且 残差 $r^{(k)} \neq 0$ 时,上述不等式为严格不等号,这里

$$\mathcal{F}(x) = \frac{1}{2}(Ax, x) - (b, x).$$

- 5、设 $A \in \mathbb{R}^{n \times n}$ 对称正定, 欲解 $A\mathbf{x} = \mathbf{b}$. 取 $K = L = \text{span}\{\mathbf{r}, A\mathbf{r}\}$, 其中 \mathbf{r} 为上一步的残差, 用 Galerkin 原理来求解.
 - (1) 用 \mathbf{r} 和满足 $(\mathbf{r}, A\mathbf{p}) = 0$ 的向量 \mathbf{p} 构成 K 中一组基, 给出 \mathbf{p} 的计算公式.
 - (2) 写出从 \mathbf{x}_0 到 \mathbf{x}_1 的计算公式.
 - (3) 该算法收敛吗?
- 6、(可选做)设 $A \in \mathbb{R}^{n \times n}$ 对称正定,可用

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{r}_k + \beta (\mathbf{x}_k - \mathbf{x}_{k-1})$$

求解 $A\mathbf{x} = \mathbf{b}$, 其中 $\mathbf{x}_0, \mathbf{x}_1$ 为任取的两个初始向量, $\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k$. 试分析这个迭代法当 α, β 取什么值时收敛, 最佳的 α, β 如何取?

1