Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Manipulação de Gramáticas

* Manipulação de Gramáticas

Sumário

* Técnicas para:

- Eliminar Variáveis inúteis
 - * Variáveis que não produzem sentenças
 - * Variáveis não alcançáveis
- Eliminar Regras
- Eliminar Regras λ
 - * Determinar Variáveis Anuláveis
- Eliminar Regras Unitárias
 - * Determinar Variáveis Encadeadas

Variáveis Inúteis

- * Detectar e Eliminar variáveis inúteis é importante em gramáticas grandes (como as de linguagens de programação)
 - * Caso se esqueça de definir regras relativas a determinadas variáveis
 - * Caso existam regras para uma variável, mas esta não foi utilizada na formação de novas regras
- * Sempre existe uma GLC G' equivalente a uma GLC G, mas sem variáveis inúteis
 - * Se $L(G) \neq \emptyset$

Variáveis Úteis

- * Seja uma GLC $G = (V, \Sigma, R, P)$.
- * Uma variável $X \in V$ é dita ser uma variável útil se, e somente se, existem $u, v \in (V, \Sigma)^*$ e $w \in \Sigma^*$ tais que:

$$P \stackrel{*}{\Rightarrow} uXv \stackrel{*}{\Rightarrow} w$$

* Ou seja, qualquer variável útil tem que fazer parte de alguma derivação de uma sentença a partir da variável de partida

* Seja a gramática $G = (\{P, A, B, C\}, \{a,b,c\}, R, P)$, em que R contém as seguintes regras:

*
$$P \rightarrow AB \mid a$$

*
$$B \rightarrow b$$

*
$$C \rightarrow c$$

* Quais as variáveis úteis?

- * C é inútil
 - * Não existem u e v tais que P extstyle u C v
- * A é inútil
 - * Não existe $w \in \Sigma^*$ tal que $A \Rightarrow w$
- * B é inútil
 - * $P \stackrel{*}{\Rightarrow} uBv$ para u = A e $v = \lambda$
 - * Não existe $w \in \Sigma^*$ tal que AB riangleq w

- * Pode-se eliminar também os terminais b e c.
- * A gramática fica então $G = (\{P\}, \{a\}, \{P \rightarrow a\}, P)$

Determinando Variáveis que Produzem Sentenças

```
função PRODUZ-SENTENÇA(G) retorna V' entradas: G, Uma GLC na forma (V, \Sigma, R, P) saídas: V', Conjunto \{X \in V \mid X \text{ produz uma sentença}\} V' \leftarrow \{\}; repita T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\}; V' \leftarrow V' \cup T até T = \{\} retorne V'
```

* Seja a gramática $G = (\{A, B, C, D, E, F\}, \{0,1\}, R, A)$, em que R contém as seguintes regras:

```
* A \rightarrow ABC \mid AEF \mid BD

* B \rightarrow B0 \mid 0

* C \rightarrow 0C \mid EB

* D \rightarrow 1D \mid 1

* E \rightarrow BE

* F \rightarrow 1F1 \mid 1
```

* Aplicar o algoritmo PRODUZ-SENTENÇA na gramática para determinar variáveis que produzem sentenças

```
* V' = \{\}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}

V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = \{\}
* T = \{B,D,F\}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}

V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}

* T = {B,D,F}

* V' = {B,D,F}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}

V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {B,D,F}
* V' = {B,D,F}
* T = {A}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}
V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {B,D,F}
* V' = {B,D,F}
* T = {A}
* V' = {A,B,D,F}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}

V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {B,D,F}
* V' = {B,D,F}
* T = {A}
* V' = {A,B,D,F}
* T = {}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}
V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {B,D,F}
* V' = {B,D,F}
* T = {A}
* V' = {A,B,D,F}
* T = {}
* V' = {A,B,D,F}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}

V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {B,D,F}
* V' = {B,D,F}
* T = {A}
* V' = {A,B,D,F}
* T = {}
* V' = {A,B,D,F}
```

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}
V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* T = {B,D,F}

* V' = {B,D,F}

* T = {A}

* V' = {A,B,D,F}

* T = {}

* V' = {A,B,D,F}
```

 $* V' = \{\}$

```
função PRODUZ-SENTENÇA(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ produz uma sentença}}

V' \leftarrow \{\};
repita
T \leftarrow \{X \notin V' \mid X \rightarrow z \in R \in z \in (V' \cup \Sigma)^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

- * A gramática G' equivalente à G é então:
- * $G' = (\{A, B, D, F\}, \{0,1\}, R, A)$, em que R contém as seguintes regras:
- * $A \rightarrow BD$
- * $B \rightarrow B0 \mid 0$
- * $D \rightarrow 1D \mid 1$
- * $F \rightarrow 1F1 \mid 1$
- * Permanecem as regras que não incluem variáveis que não produzem sentenças

Determinando Variáveis que são Alcançáveis a partir de P

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

- * Determine a gramática G'' equivalente à G' eliminando as variáveis não alcançáveis.
 - * $G' = (\{A, B, D, F\}, \{0,1\}, R, A)$, em que R contém as seguintes regras:
 - $*A \rightarrow BD$
 - * $B \rightarrow B0 \mid 0$
 - * *D* → 1*D* | 1
 - * $F \rightarrow 1F1 \mid 1$

```
* V' = \{\}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = \{\}
* T = \{A\}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = \{\}

* T = \{A\}

* V'' = \{A\}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita

V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow u \text{ Yv para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = {}

* T = {A}

* V" = {A}

* T = {B,D}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = {}
* T = {A}
* V" = {A}
* T = {B,D}
* V" = {A,B,D}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = {}
* T = {A}
* V" = {A}
* T = {B,D}
* V" = {A,B,D}
* T = {}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow u \text{ Yv para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = {}
* T = {A}
* V" = {A}
* T = {B,D}
* V" = {A,B,D}
* T = {}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \in u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

```
* V' = {}
* T = {A}
* V" = {A}
* T = {B,D}
* V" = {A,B,D}
* T = {}
```

```
função ALCANÇÁVEL(G) retorna V''
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V'', Conjunto {X \in V \mid X \text{ \'e alcanç\'avel a partir de } P}

V'' \leftarrow \{\};
T \leftarrow \{P\};
repita
V'' \leftarrow V'' \cup T
T \leftarrow \{Y \notin V'' \mid X \rightarrow uYv \text{ para algum } X \in T \text{ e } u, v \in (V \cup \Sigma)^*\};
até T = \{\}
retorne V''
```

- * A gramática G'' equivalente à G' é então:
- * $G'' = (\{A, B, D\}, \{0,1\}, R, A)$, em que R contém as seguintes regras:
- * $A \rightarrow BD$
- * $B \rightarrow B0 \mid 0$
- * *D* → *1D* | *1*
- * Permanecem as regras que $\underline{n}\underline{\tilde{a}}\underline{o}$ incluem variáveis $\underline{n}\underline{\tilde{a}}\underline{o}$ alcançáveis a partir de A

Atenção!

- * Para eliminar variáveis inúteis, deve-se seguir esta ordem:
 - * 1) Determina-se as variáveis que produzem sentenças
 - * Elimina-se da gramática as variáveis que não produzam sentença, bem como as regras que as utilizem
 - * 2) Determina-se as variáveis alcançáveis
 - * Elimina-se da gramática as variáveis que não são alcançáveis e as regras que as utilizem

Eliminação de Regras

- * Muitas vezes é necessário eliminar uma regra da gramática, sem modificar a linguagem gerada
 - * Pode-se eliminar regras da forma:
 - * $X \rightarrow w$
 - st Onde X não é a variável de partida
 - * Eliminando-se regras reduz-se o número de derivações necessárias
 - * Mas aumenta-se o número de regras da gramática

Eliminação de Regras

- * Para eliminar uma regra, simula-se a aplicação da mesma em todos os contextos:
- * Cada regra com n ocorrências de X do lado direito, dá origem a até 2^n regras
 - st Casos em que X é substituído por w
 - Casos em que não é substituído
 - * Para que outras regras de X sejam utilizadas

- * Seja a GLC $G = (\{P, A, B\}, \{a,b,c\}, R, P)$, em que R contém as seguintes regras:
 - * $P \rightarrow ABA$
 - * $A \rightarrow aA \mid a$
 - * $B \rightarrow bBc \mid \lambda$
- * Eliminando-se a regra $A \rightarrow a$ de G, obtém-se a gramática G', com as seguintes regras:
 - * $P \rightarrow ABA \mid ABa \mid aBA \mid aBa$
 - * $A \rightarrow aA \mid aa$
 - * $B \rightarrow bBc \mid \lambda$

Eliminação de Regras λ

- * Qualquer regra λ pode ser eliminada de uma gramática sem alterar a linguagem gerada
 - * Exceto $P \rightarrow \lambda$, onde P é a variável de partida
 - * Neste caso, $\lambda \in L(G)$
- * Para eliminar regras λ , o primeiro passo é determinar as variáveis anuláveis de G
 - * Uma variável X é anulável se existe uma sequência finita de derivações usando as regras de G que transforme X em λ

$$X \stackrel{*}{\Rightarrow}_G \lambda$$

Determinando Variáveis Anuláveis

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita
T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in V'^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

* Seja a GLC $G = (\{P, A, B, C\}, \{a,b,c\}, R, P)$, em que R contém as seguintes regras:

```
* P \rightarrow APB \mid C

* A \rightarrow AaaA \mid \lambda

* B \rightarrow BBb \mid b
```

*
$$C \rightarrow cC \mid \lambda$$

* Determine as variáveis anuláveis de G.

```
* V' = \{\}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita
T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \text{ e } z \in V'^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = \{\}
* T = \{A,C\}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita

T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in V'^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {A,C}
* V' = {A,C}
```

```
* V' = {}

* T = {A,C}

* V' = {A,C}

* T = {P}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita

T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in V'^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {A,C}
* V' = {A,C}
* T = {P}
* V' = {A,C,P}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita
T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in V'^{*}\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {A,C}
* V' = {A,C}
* T = {P}
* V' = {A,C,P}
* T = {}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita

T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in {V'}^{*}\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {A,C}
* V' = {A,C}
* T = {P}
* V' = {A,C,P}
* T = {}
* V' = {A,C,P}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita
T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in V'^*\};
V' \leftarrow V' \cup T
até T = \{\}
retorne V'
```

```
* V' = {}
* T = {A,C}
* V' = {A,C}
* T = {P}
* V' = {A,C,P}
* T = {}
* V' = {A,C,P}
```

```
função ANULÁVEIS(G) retorna V'
entradas: G, Uma GLC na forma (V, \Sigma, R, P)
saídas: V', Conjunto {X \in V \mid X \text{ \'e anul\'avel}}

V' \leftarrow \{\};
repita
T \leftarrow \{Y \notin V' \mid Y \rightarrow z \in R \in z \in V'^*\};
V' \leftarrow V' \cup T
\Rightarrow \text{at\'e } T = \{\}
retorne V'
```

```
* V' = {}
* T = {A,C}
* V' = {A,C}
* T = {P}
* V' = {A,C,P}
* T = {}
* V' = {A,C,P}
```

```
função ANULÁVEIS(G) retorna V'
  entradas: G, Uma GLC na forma (V,Σ,R,P)
  saídas: V', Conjunto {X ∈ V | X é anulável}

V' ← {};
  repita
    T ← {Y ∉ V' | Y → z ∈ R ∈ z ∈ V'*};
    V' ← V' ∪ T
  até T = {}

retorne V'
```

Eliminação de Regras λ

- * Seja a GLC $G = (\{V, \Sigma, R, P\})$. Uma gramática $G' = \{V, \Sigma, R', P\}$ equivalente à G, mas sem regras λ é obtida com os seguintes passos:
 - * Cada regra de R cujo lado direito não possua variáveis anuláveis é inserida em R'
 - * Cada regra de R cujo lado direito possua variáveis anuláveis deve ser inserida em R' para todas as combinações das variáveis anuláveis presentes ou não
 - * Se P for anulável, adicione a regra $P \rightarrow \lambda$ em R'

* Seja a GLC $G = (\{P, A, B, C\}, \{a,b,c\}, R, P)$, em que R contém as seguintes regras:

```
* P \rightarrow APB \mid C
```

*
$$A \rightarrow AaaA \mid \lambda$$

*
$$B \rightarrow BBb \mid b$$

*
$$C \rightarrow cC \mid \lambda$$

* Determine uma gramática G' equivalente que não contenha regras λ .

- * Pelo exemplo 5, as variáveis anuláveis de G são $\{P, A, C\}$.
- * Então, o resultado é a GLC $G' = (\{P, A, B, C\}, \{a,b,c\}, R', P)$, em que R' contém as seguintes regras:
 - * $P \rightarrow APB \mid PB \mid AB \mid B \mid C \mid \lambda$
 - * $A \rightarrow AaaA \mid aaA \mid Aaa \mid aa$
 - * $B \rightarrow BBb \mid b$
 - * $C \rightarrow cC \mid c$

Eliminação de Regras Unitárias

- * Para o trabalho com formas normais, que será visto em sequência, é preciso eliminar as regras unitárias da GLC
- * Para eliminar regras unitárias, o primeiro passo é determinar as variáveis encadeadas de ${\cal G}$
 - * Diz-se que uma variável Z de G é encadeada a uma variável X se Z=X ou existe uma sequência de regras $X\to Y_1,\ Y_1\to Y_2,\ ...,\ Y_n\to Z$
 - * Se n=0 então a regra é $X \rightarrow Z$
 - * Ao conjunto de variáveis encadeadas a X é dado o nome enc(X)

Determinando Variáveis Encadeadas

* Seja a GLC $G = (\{E, T, F\}, \{+, *, (,), t\}, R, P)$, em que R contém as seguintes regras:

```
* E \rightarrow E + T \mid T
```

*
$$T \rightarrow T * F \mid F$$

*
$$F \rightarrow (E) \mid t$$

* Determine os conjuntos:

- * *enc(E)*
- * enc(T)
- * *enc(F)*

```
* enc(E) = \{\}
```

```
* enc(E) = \{\}
* T = \{E\}
```

```
* enc(E) = {}

* T = {E}

* enc(E) = {E}
```

```
* enc(E) = {}
* T = {E}
* enc(E) = {E}
* T = {T}
```

```
* enc(E) = {}
* T = {E}
* enc(E) = {E}
* T = {T}
* enc(E) = {E,T}
```

```
* enc(E) = {}
* T = {E}
* enc(E) = {E}
* T = {T}
* enc(E) = {E,T}
* T = {F}
```

```
* enc(E) = {}
  * T = {E}

* enc(E) = {E}

* T = {T}

* enc(E) = {E,T}

* T = {F}

* enc(E) = {E,T,F}
```

```
* enc(E) = {}
  * T = {E}

* enc(E) = {E}

* T = {T}

* enc(E) = {E,T}

* T = {F}

* enc(E) = {E,T,F}

* T = {}
```

```
* enc(E) = {}
  * T = {E}

* enc(E) = {E}

* T = {T}

* enc(E) = {E,T}

* T = {F}

* T = {F}

* T = {}

* T = {
```

```
função ENCADEADAS (G, X) retorna enc(X)
entradas: G, Uma GLC na forma (V, \Sigma, R, P)

X, Uma variável de V
saídas: enc(X), o conjunto das variáveis encadeadas a X

enc(X) \leftarrow \{\};
T \leftarrow \{X\};
repita
enc(X) \leftarrow enc(X) \cup T
T \leftarrow \{Y \notin enc(X) \mid Z \rightarrow Y \in R \text{ para algum } Z \in enc(X)\};
até T = \{\}
retorne enc(X)
```

```
* enc(E) = {}
  * T = {E}

* enc(E) = {E}

* T = {T}

* enc(E) = {E,T}

* T = {F}

* T = {F}

* T = {}

* T = {
```

* Usando o mesmo procedimento para os demais conjuntos, obtém-se

```
* enc(E) = \{E, T, F\}
```

- * $enc(T) = \{T,F\}$
- * $enc(F) = \{F\}$

Eliminação de Regras Unitárias

* Seja uma GLC $G = (\{V, \Sigma, R, P\})$. Uma gramática $G' = \{V, \Sigma, R', P\}$ equivalente à G, mas sem regras unitárias é obtida inserindo a regra $X \rightarrow w$ quando:

```
* Y \in enc(X); e
```

- * $Y \rightarrow w \in R$; e
- * $w \notin V$;

* Seja a GLC $G = (\{E, T, F\}, \{+, *, (,), t\}, R, E)$, em que R contém as seguintes regras:

*
$$E \rightarrow E + T \mid T$$

*
$$T \rightarrow T * F \mid F$$

*
$$F \rightarrow (E) \mid t$$

* Obtenha uma gramática G' equivalente a G, mas sem regras unitárias

```
* E \rightarrow E + T \mid T
```

*
$$T \rightarrow T * F \mid F$$

*
$$F \rightarrow (E) \mid t$$

```
* E \rightarrow E + T \mid T * F \mid F
```

- * $T \rightarrow T * F \mid F$
- * $F \rightarrow (E) \mid t$

```
* E \rightarrow E + T \mid T * F \mid (E) \mid t

* T \rightarrow T * F \mid F

* F \rightarrow (E) \mid t
```

```
* E \rightarrow E + T \mid T * F \mid (E) \mid t

* T \rightarrow T * F \mid (E) \mid t

* F \rightarrow (E) \mid t
```

```
* E \rightarrow E + T \mid T * F \mid (E) \mid t

* T \rightarrow T * F \mid (E) \mid t

* F \rightarrow (E) \mid t
```

Manipulações em Sequência

- Aplicar as técnicas de eliminação em sequência pode fazer com que certos tipos de regra já eliminados reapareçam
 - * Eliminando regras λ, podem reaparecer regras unitárias
 - * $A \rightarrow BC$
 - * $B \rightarrow \lambda$
 - * Eliminando regras unitárias, podem reaparecer regras λ
 - * $P \rightarrow \lambda$
 - $*A \rightarrow P$
 - * Eliminando regras λ, podem reaparecer variáveis inúteis
 - * $B \rightarrow \lambda$, se esta for a única regra para B
 - * Eliminando regras unitárias, podem reaparecer variáveis inúteis
 - $*A \rightarrow B$ e B não aparece do lado direito de nenhuma outra regra

Ordem de Aplicação de Manipulações

- 1) Acrescenta-se uma regra da forma:
 - * $P' \to P$, onde P é a variável de partida da gramática e P' é uma variável nova, que passa a ser a nova variável de partida
- 2) Elimina-se as regras λ
- 3) Elimina-se as regras unitárias
- 4) Elimina-se os símbolos inúteis
 - * Variáveis e terminais

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

