Package 'ffcAPIClient'

January 29, 2020

Type Package

Title Functional Flows Calculator API Client
Version 0.9.5.5
Description A client for the Python-based functional flows calculator API hosted at eflows.ucdavis.edu. Also handles data processing and analaysis related to the California Environmental Flows Framework (CEFF). Requires a token from the eflows.ucdavis.edu website to operate.
License MIT
Encoding UTF-8
LazyData true
Imports dplyr, jsonlite, httr, uuid, ggplot2, dataRetrieval, lubridate, R6, nhdplusTools, units, tidyr, data.table (>= 1.12.8)
Suggests testthat (>= 2.1.0)
RoxygenNote 7.0.2
R topics documented: assess_alteration 2 determine_status 3 early_or_late 4 evaluate_alteration 4 evaluate_gage_alteration 5 ffcAPIClient 6 FFCProcessor 7 flow_metrics 8 gage_comids 8 get_comid_for_lon_lat 9

2 assess_alteration

	get_drh	
	get_ffc_parameters_for_comid	9
	get_ffc_results_for_df	10
	get_ffc_results_for_usgs_gage	11
	get_predicted_flow_metrics	11
	get_results_as_df	11
	get_results_for_name	12
	get_token	12
	get_usgs_gage_data	12
	merge_list	13
	plot_drh	
	process_data	13
	set_token	
	single_metric_alteration	
	stream_class_data	
	USGSGage	
Index		17
	ss_alteration	_

Description

Returns a data frame with an alteration status assessment for every flow metric.

Usage

assess_alteration(percentiles, predictions, ffc_values, comid, annual)

Arguments

percentiles	dataframe of calculated FFC results percentiles, including the metric column and columns for p10,p25,p50,p75, and p90
predictions	$data frame\ of\ predicted\ flow\ metrics,\ as\ returned\ from\ {\tt get_predicted_flow_metrics}.$
ffc_values	dataframe of the raw results from the online FFC, as returned by evaluate_gage_alteration or $get_results_as_df$
comid	integer comid of the stream segment the previous parameters are for
annual	boolean indicating whether to run a year over year analysis. If TRUE, then the parameter percentiles changes and should be a data frame with only two columns - the first is still metric, but the second is just value representing the current year's value for the metric. predictions should then still have fields for the metric, p25, and p75, where p25 and p75 represent the lower and upper bounds for comparison, regardless of if they're calculated percentiles, or another set of bounds. When run in an annual mode, it assesses alteration similarly to the description above, and with the same result structure, but provides likely_unaltered results when value is within the p25 and p75 values, and provides likely_altered otherwise without additional checks described in the CEFF guidance document, appendix F.

determine_status 3

Details

Generates an alteration status assessment for every flow metric based on the rules developed under CEFF for flow alteration. This function pairs well with the boxplots for visualizing alteration, but only this function assesses the data under the rules. Returns a data frame with columns "metric", "status_code", "status", "alteration_type", and "comid".

The comid will be the same for all rows, and will match what you provide as an input, but allows for merging of these results into larger tables.

status_code will be -1 (likely altered), 0 (indeterminate), 1 (likely unaltered), or NA (insufficient data to determine). status will be a text description of the status code (-1=likely_altered, 0=indeterminate, 1=likely_unaltered, NA=Not_enough_data). alteration_type will tell you the direction of potential alteration for likely altered and indeterminate metrics. It will provide "low" or "high" values for most metrics and "early" or "late" values for timing metrics. For likely_unaltered metrics, it will provide "none_found" and for metrics with insufficient data, it will provide "undeterminable.".

determine_status

Calculate the alteration status of a flow metric

Description

This method returns an alteration status record for a specific flow metric, but requires the calculated FFC percentiles, a lower and upper bound, and a set of observations that have already been assessed for whether they're within that lower or upper bound so that they are -1 for low/early, 0 for within range, and 1 for high/late. They need to already be assessed because some metrics (*ahem* timing) need their own ways to assess low/high, or early/late

Usage

```
determine_status(
  median,
  predictions,
  assessed_observations,
  metric,
  days_in_water_year,
  annual
)
```

Arguments

median The calculated median value from the observed data

predictions The predicted metric values for this specific metric - should have p10, p25, p50,

p75, p90 values

assessed_observations

vector of raw observed metric values (FFC output) that has already been assessed for whether it is in range so that records that are low/early are -1, records

that are in range are 0, and records that are high/late are 1

metric character name of the metric - case sensitive. Currently only used for timing

metrics, which must have "_Tim" in the name

days_in_water_year

numeric of how many days in the water year (typically 365, but could be 366).

4 evaluate_alteration

early_or_late

Determine if timing metrics are early, late, or in range

Description

Properly rolls over the calendar at 365 days, but can tell you if a metric is early, late, or "within range" based on the modeled early_value, modeled late_value, and the actual value.

Usage

```
early_or_late(value, early_value, late_value, days_in_water_year)
```

Details

It returns within range (0) if the value is between early_value and late_value. If not, it splits the distance between late_value and early_value in two, rolling over at the end of the calendar year, and assesses if the value is closer to the late_value (then returns late (1)), or the early value (then returns early (-1)).

This function is currently not used in the package - instead, a simpler evaluation that does not roll over the calendar year is used.

evaluate_alteration

Generate FFC Results and Plots for Timeseries Data

Description

Generate FFC Results and Plots for Timeseries Data

Usage

```
evaluate_alteration(
   timeseries_df,
   token,
   comid,
   longitude,
   latitude,
   plot_output_folder,
   date_format_string
```

evaluate_gage_alteration 5

```
evaluate_gage_alteration
```

Generate FFC Results and Plots for Gage Data

Description

This is a shortcut function that does most of the heavy lifting for you. Runs data through the FFC and transforms all results.

Usage

```
evaluate_gage_alteration(
  gage_id,
  token,
  comid,
  plot_output_folder,
  plot_results,
  force_comid_lookup
)
```

Arguments

gage_id The USGS gage ID to pull timeseries data from

token The token used to access the online FFC - see the Github repository's README

under Setup for how to get this.

comid The stream segment COMID where the gage is located. In the past, the package

looked this information up automatically but we discovered that our method for looking gage COMIDs up was error prone, and there is no authoritative dataset that relates gages to COMIDs. It will be most accurate if you provide the comid yourself by looking it up (don't use nhdPlusTools with the latitude and longitude - that's what we did that was error prone). You can re-enable the lookup behavior

setting the force_comid_lookup parameter to TRUE.

plot_output_folder

Optional - when not provided, plots are displayed interactively only. When provided, they are displayed interactively and saved as files named by the functional

flow componenent into the provided folder

plot_results boolean, default TRUE - when TRUE, results are plotted to the screen and any folder provided. When FALSE, does no plotting.

force_comid_lookup

default FALSE. When TRUE, the COMID for the segment will be automatically looked up based on the latitude and longitude. This method is error prone and it is advised you leave it off. Where an error is known, the package corrects the COMID based on an internal list of gage/comid pairs (eg: Jones Bar on the Yuba River). It is recommended you leave this as FALSE and look up the comid yourself to ensure that you choose the correct mainstem or tributary near stream junctions, but if you need to bulk process data, this parameter is available to retrieve COMIDs.

6 ffcAPIClient

Details

If you provide it a USGS gage ID and your token to access the online functional flows calculator, this function then:

- 1. Download the timeseries data for the USGS gage
- 2. Look up the predicted unimpaired metric values for the gage's stream segment
- 3. Send the timeseries data through the functional flows calculator
- 4. Transform the results into a data frame with rows for years and metric values as columns
- 5. Produce percentiles for those metric values using R's recommended quantile method type 8 (which may return differing results from other methods, Excel, etc)
- 6. Transform the dimensionless reference hydrograph data into a data frame
- 7. Determines the alteration by flow metric for the observed versus predicted values
- 8. Output plots comparing the observed timeseries data with the predicted unimpaired metric values.

Items 4, 5, 6, and 7 are returned back to the caller as a list with keys "ffc_results", "ffc_percentiles", "drh_data", and "alteration" for any further processing. The list also includes "predicted_percentiles", with the predicted flow metrics for the segment.

ffcAPIClient

ffcAPIClient: Processes time-series flow data using the online functional flows calculator

Description

For now, see the documentation for evaluate_alteration and evaluate_gage_alteration

Examples

End(Not run)

```
## Not run:
# If you have a gage and a token, you can get all results simply by running
ffcAPIClient::evaluate_gage_alteration(gage_id = 11427000, token = "your_token", plot_output_folder = "C:/Use
# output_folder is optional. When provided, it will save plots there. It will show plots regardless.

# If you have a data frame with flow and date fields that isn't a gage, you can run
ffcAPIClient::evaluate_alteration(timeseries_df = your_df, token = "your_token", plot_output_folder = "C:/Use
# it also *REQUIRES* you provide either a comid argument with the stream segment COMID, or both
# longitude and latitude arguments.
# Make sure that dates are in the same format as the FFC requires on its website. We may add reformatting in the formatting in the format
```

FFCProcessor 7

FFCProcessor

FFCProcessor Class

Description

The new workhorse of the client - this class is meant to bring together the scattershot functions in other parts of the package so that data can be integrated into a single class with a single set of tasks. Other functions are likely to be supported for a while (and this may even rely on them), but long run, much of the code in this file might move into this class, with the shortcut functions creating this class behind the scenes and returning an instance of this object.

Details

More details to come, and more examples. For now, still use the general functions evaluate_alteration and evaluate_gage_alteration

Methods

Public methods:

```
• FFCProcessor$get_ffc_results()
```

- FFCProcessor\$evaluate_alteration()
- FFCProcessor\$clone()

```
Method get_ffc_results():
    Usage:
    FFCProcessor$get_ffc_results()

Method evaluate_alteration():
    Usage:
    FFCProcessor$evaluate_alteration()

Method clone(): The objects of this class are cloneable with this method.
    Usage:
    FFCProcessor$clone(deep = FALSE)
    Arguments:
    deep Whether to make a deep clone.
```

8 gage_comids

flow_metrics

Modeled flow metric predictions for all stream segments

Description

Contains the 10th, 25th, 50th, 75th, and 90th percentile values for each flow metric and stream segment combination. It is a data frame where the metrics are rows with names in the Metric field, stream segment ID is in the COMID field and percentiles are available as fields such as pct_10, pct_25, etc for each percentile.

Usage

flow_metrics

Format

A data frame:

name text ...

https://github.com/ceff-tech/

gage_comids

Where we know the lat/long will produce the wrong COMID for a gage (such as giving us a nearby tributary and not the mainstem, or vice versa), we can hardcode their COMIDs here to make sure we get the correct location. We haven't looked through all gages to make sure every one is correct, but as we find them, this will help improve results and reduce error

Description

Where we know the lat/long will produce the wrong COMID for a gage (such as giving us a nearby tributary and not the mainstem, or vice versa), we can hardcode their COMIDs here to make sure we get the correct location. We haven't looked through all gages to make sure every one is correct, but as we find them, this will help improve results and reduce error

Usage

gage_comids

Format

An object of class list of length 1.

get_comid_for_lon_lat

get_comid_for_lon_lat Retrieves COMID for a given USGS gage which collects daily data.

Description

This function returns the COMID associated with a specific USGS gage. It can be used to associate gage data with flow metric predictions a stream segment identified with the com_id input variable.

Usage

```
get_comid_for_lon_lat(longitude, latitude)
```

Arguments

 $\begin{array}{ll} \mbox{longitude} & \mbox{numeric. Longitude or } X. \\ \mbox{latitude} & \mbox{numeric. Longitude or } Y. \end{array}$

get_drh

Returns the dimensionless reference hydrograph results as a data

frame

Description

Returns the dimensionless reference hydrograph results as a data frame

Usage

```
get_drh(results)
```

```
get_ffc_parameters_for_comid
```

Get the parameters sent to the FFC for a stream segment

Description

Given a COMID, looks up the hydrogeomorphic stream classification, then uses that to find the default parameters that should be sent to the FFC online for that stream class. Returns a nested list of parameters to send to the FFC.

Usage

```
get_ffc_parameters_for_comid(comid)
```

Arguments

comid An NHD stream segment COMID

```
get_ffc_results_for_df
```

Run Data Frame Through Functional Flows Calculator

Description

This is primarily an internal function used to run data through the functional flows calculator online, but is also available for those that wish to run the data themselves and then do any other handling and transformation for postprocessing on their own.

Usage

```
get_ffc_results_for_df(flows_df, comid, flow_field, date_field, start_date)
```

Arguments

flows_df	DataFrame. A time series data frame with flow and date columns
comid	character. The COMID of the stream segment
flow_field	character, default "flow". The name of the field in df that contains flow values.
date_field	character, default "date". The name of the field in df that contains date values for each flow. The date field must be in MM/DD/YYYY format as either factor or character values - true dates likely will not work based on the API we're using. If you need to convert date values, add a field to your existing data frame with the values in MM/DD/YYYYY format before providing it to this function.
start_date	character, default "10/1". What month and day should the water year start on? Neither month nor day needs to be zero-padded here, so March first could just be 3/1, while December 12th can be 12/12.

Details

Most people will want to use evaluate_alteration (for timeseries dataframes) or evaluate_gage_alteration (for USGS gages) instead.

Internally, this is the primary function to use from the API client itself to obtain raw FFC results. It will generate a unique ID, run the data frame through the FFC, and then delete the results for that ID from the website so as not to clutter up the user's account, or store too much data on the server side.

Value

list of results from the functional flows calculator. More information will be forthcoming as we inspect the structure of what is returned.

```
get_ffc_results_for_usgs_gage
```

Run Gage Data Through the Functional Flows Calculator

Description

Provided with an integer Gage ID, this function pulls the timeseries data for the gage and processes it in a single step. Returns the functional flow calculator's results list.

Usage

```
get_ffc_results_for_usgs_gage(gage_id)
```

Arguments

gage_id

integer. The USGS Gage ID value for the gage you want to return timeseries data for

Value

list. Functional Flow Calculator results

```
get_predicted_flow_metrics
```

Retrieves flow predicted flow metric values for a stream segment

Description

This function returns the 10th, 25th, 50th, 75th, and 90th percentile values for each flow metric as predicted for the stream segment you identify with the comid input variable. It returns a data frame where the metrics are rows with names in the metric field, and percentiles are available as fields such as pct_10, pct_25, etc for each percentile.

Usage

```
get_predicted_flow_metrics(comid)
```

Arguments

com_id

character. A string of a NHD COMID to retrieve metrics for.

get_results_as_df

Convert FFC results list to data frame with metric names

Description

More documentation forthcoming

Usage

```
get_results_as_df(results, drop_fields)
```

12 get_usgs_gage_data

get_results_for_name Retrieve processed results from FFC.

Description

Gets the results for the given named run of the FFC. Returns the nested list - all other processing must be handled by the caller.

Usage

```
get_results_for_name(name, autodelete)
```

Arguments

name the name of the run to retrieve from the online FFC

autodelete when TRUE, deletes the run in the online FFC, if found. When FALSE, leaves

run in FFC online for later retrieval.

get_token Retrieve Previously Set Token

Description

Retrieves the authorization token previously set by set_token in the same R session.

Usage

```
get_token()
```

get_usgs_gage_data
Retrieves USGS timeseries gage data

Description

This is just a helper function that calls the gage constructor, gets the flows and returns them in one step. Useful in situations where we don't need the flexibility of the USGSGage class

Usage

```
get_usgs_gage_data(gage_id)
```

Arguments

gage_id integer. The USGS Gage ID value for the gage you want to return timeseries

data for

Value

dataframe. Will include a flow field (CFS) and a date field (MM/DD/YYYY)

merge_list 13

merge_list

Merges Data Frames by Year Column

Description

Just a simple function that can be used with Reduce to merge multiple data frames together by year

Usage

```
merge_list(df1, df2)
```

plot_drh

Plots the Dimensionless Reference Hydrograph

Description

Given a set of results data from get_ffc_results_for_df or get_ffc_results_for_usgs_gage, processes the DRH data and returns a plot object.

Usage

```
plot_drh(results, output_path)
```

Arguments

results

list.

output_path,

default NULL. Optional. When set, saves the DRH plot to the output file path provided.

Details

Credit to Ryan Peek for the code in this function.

process_data

Send flow data for processing

Description

In most cases, you won't need to use this function! If you're wondering what to do, use get_ffc_results_for_df instead.

Usage

```
process_data(flows_df, params, flow_field, date_field, start_date, name)
```

Details

Sends flow timeseries data off to the functional flows calculator. Does not retrieve results!

set_token

Set Eflows Website Access Token

Description

Provide the token string used for accessing the Eflows site. A token is a method of authorization for identifying your user account within scripts. By providing the token, this package uses your user account when interacting with the eflows web service/API.

Usage

```
set_token(token_string)
```

Arguments

```
token_string character
```

```
single_metric_alteration
```

Assess the alteration of a single flow metric

Description

Given a metric's calculated percentiles, raw FFC output values, and predictions, returns a row of information indicating whether or not that metric is likely altered, indeterminate, or likely unaltered. Includes fields with a text status, an integer code (1=likely unaltered, 2=indeterminate, 3=likely altered), as well as for which direction alteration is (or may be) in if it's indeterminate or likely altered (values are low/high or early/late for timing metrics)

Usage

```
single_metric_alteration(
  percentiles,
  predictions,
  ffc_values,
  days_in_water_year,
  annual
)
```

Arguments

percentiles data frame row - should have a named value "p50" that can be accessed, at the

very least and a column metric with the flow metric in it. These are calculated

percentile values from the FFC.

predictions data frame (or other named field item) the predicted flow metric values for the

segment and metric

ffc_values vector of raw observed metric values (FFC output) for this metric

days_in_water_year

numeric of how many days in the water year (defaults to 365, but could be 366).

stream_class_data 15

stream_class_data

Geomorphic Stream Classification

Description

Contains the geomorphic classification by stream COMID for ~70,000 stream segments in California (low-order streams excluded). Streams were classified as described in Lane, Belize A., Samuel Sandoval-Solis, Eric D. Stein, Sarah M. Yarnell, Gregory B. Pasternack, and Helen E. Dahlke. 2018. "Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management." Environmental Management 62 (4): 678–93. https://doi.org/10.1007/s00267-018-1077-7.

Usage

stream_class_data

Format

A data frame:

CLASS The stream classification ID

COMID The NHD COMID of the stream segment

CLASS_CODE The character stream classification ID - follows the form: SM = Snowmelt, HSR = High Volume Snowmelt and Rain, LSR = Low Volume Snowmelt and Rain, WS = Winter Storms, GW = Groundwater, PGR = Perennial Groundwater and Rain, FER = Flashy Ephemeral Rain, RGW = Rain and Seasonal Groundwater, HLP = High elevation, low precipitation

https://doi.org/10.1007/s00267-018-1077-7

USGSGage

USGS Gage Retrieval Tools

Description

This class retrieves data for a USGS gage.

Details

#library(ffcAPIClient) #gageid <- 11427000 #gage <- USGSGage\$new() #gage\$id <- gageid #gage\$get_data() #gage\$get_comid() #gage\$comid[1] 14996611 #ffcAPIClient::get_predicted_flow_metrics(gage\$comid) metric COMID p10 p25 p50 p75 p90 source 70804 DS_Dur_WS 14996611 1.051875e+02 1.273438e+02 154.0625 1.785563e+02 1.953908e+02 model 211050 DS_Mag_50 14996611 4.998793e+01 6.732828e+01 104.4028 1.464183e+02 1.882733e+02 model 351296 DS_Mag_90 14996611 9.314097e+01 1.291930e+02 173.6844 2.382053e+02 3.393799e+02 model 491542 DS_Tim 14996611 2.720000e+02 2.823875e+02 296.8875 3.070000e+02 3.210167e+02 model 586665 FA_Dur 14996611 2.000000e+00 3.000000e+00 4.0000 6.000000e+00 8.000000e+00 obs 702508 FA_Mag 14996611 1.294269e+02 1.886283e+02 289.6838 4.540329e+02 8.514823e+02 model 842754 FA_Tim 14996611 7.816667e+00 1.400000e+01 24.6250 2.900000e+01 4.217000e+01 model 983000 Peak_10 14996611 1.243107e+04 1.947545e+04 22830.3355 3.124928e+04 3.767889e+04 model 1123246 Peak_20 14996611 8.078893e+03 1.227363e+04

16 USGSGage

20218.4829 2.087196e+04 2.087196e+04 model 1263492 Peak 50 14996611 3.532988e+03 7.350986e+03 8542.1191 8.969386e+03 8.969386e+03 model 1358615 Peak Dur 10 14996611 1.000000e+00 1.000000e+00 1.0000 2.000000e+00 4.000000e+00 obs 1429335 Peak_Dur_20 14996611 1.000000e+00 1.000000e+00 2.0000 3.000000e+00 6.000000e+00 obs 1500055 Peak_Dur_50 14996611 1.000000e+00 1.000000e+00 4.0000 1.000000e+01 2.900000e+01 obs 1570775 Peak_Fre_10 14996611 1.000000e+00 1.000000e+00 1.0000 1.000000e+00 2.000000e+00 obs 1641495 Peak Fre 20 14996611 1.000000e+00 1.000000e+00 1.0000 2.000000e+00 3.000000e+00 obs 1712215 Peak_Fre_50 14996611 1.000000e+00 1.000000e+00 2.0000 3.000000e+00 5.000000e+00 obs 1828058 SP_Dur 14996611 4.700000e+01 5.900000e+0172.00009.527500e+011.215417e+02 model 1968304 SP_Mag 14996611 1.067727e+03 1.662598e+03 2489.0563 3.771512e+03 5.809320e+03 model 2063427 SP_ROC 14996611 3.845705e-02 4.863343e-02 0.0625 8.132020e-02 1.141117e-01 obs 2179270 SP_Tim 14996611 1.607717e+02 1.905000e+02 218.7500 2.354750e+02 2.447583e+02 model 2319516 Wet BFL Dur 14996611 7.633333e+01 1.073000e+02 141.1958 1.633750e+02 1.875000e+02 model 2459762 Wet BFL Mag 10 14996611 1.519943e+02 1.960031e+02 278.2581 4.384614e+02 5.489183e+02 model 2600008 Wet BFL Mag 50 14996611 4.148992e+02 5.902507e+02 924.1728 1.175461e+03 1.426576e+03 model 2740254 Wet_Tim 14996611 4.937500e+01 5.905000e+01 73.0000 8.835625e+01 1.035083e+02 model

Methods

Public methods:

```
• USGSGage$validate()
```

- USGSGage\$get_data()
- USGSGage\$get_comid()
- USGSGage\$get_predicted_metrics()
- USGSGage\$clone()

```
Method validate():
    Usage:
    USGSGage$validate(latlong)

Method get_data():
    Usage:
    USGSGage$get_data()
```

Method get_comid():

Usage:

USGSGage\$get_comid()

Method get_predicted_metrics():

Usage:

USGSGage\$get_predicted_metrics(force_comid_lookup)

Method clone(): The objects of this class are cloneable with this method.

Usage:

USGSGage\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Index

```
*Topic datasets
    flow_metrics, 8
    gage_comids, 8
    stream_class_data, 15
assess_alteration, 2
determine_status, 3
early_or_late, 4
evaluate_alteration, 4, 6, 7, 10
evaluate_gage_alteration, 5, 6, 7, 10
ffcAPIClient, 6
FFCProcessor, 7
flow_metrics, 8
gage_comids, 8
{\tt get\_comid\_for\_lon\_lat, 9}
{\sf get\_drh}, {\color{red} 9}
get_ffc_parameters_for_comid, 9
get_ffc_results_for_df, 10
get_ffc_results_for_usgs_gage, 11
{\tt get\_predicted\_flow\_metrics}, 11
get_results_as_df, 11
get_results_for_name, 12
{\tt get\_token}, \\ 12
get_usgs_gage_data, 12
merge\_list, 13
plot_drh, 13
process\_data,\, 13
set_token, 14
\verb|single_metric_alteration|, 14|
stream_class_data, 15
USGSGage, 15
```