

IIT Bombay Systems and Control Engineering Intelligent Feedback and Control *Assignment 5**

Date: 10.04.2024

Maximum Marks: 10

Instructions:

- Submit the answers to this assignment on or before the **deadline** at 12:30 p.m. on 10.04.2024.
- All the results and the associated observations/analysis must be compiled in a single pdf file. This pdf and the associated code must also be submitted in a single zip folder on moodle on the relevant submission link.

 Label this folder in the form: FirstName_RollNumber_AS05.
- Please preserve the code and the report till the end of this semester.
- Assumptions made, if any, must be clearly stated and must be justified.
- After the end of each question, the numbers to the right, in square brackets, indicate marks allotted to it.
- 1. Consider the state-space realization of the system as follows, (3+5+2)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad ; \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

• Design a **feedback decoupler** to decouple the outputs of the given system. The decoupled system should have the following input-output structure,

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = [D(s)]_{2 \times 2} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Here, D(s) must be a diagonal matrix (All the off-diagonal entries must be zero). The inputs to the decoupled system are $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$.

- Design appropriate feedback control inputs to stabilize the outputs at arbitrarily set reference points. Provide a **block diagram** of the decoupled system, and **provide detailed mathematical reasoning** of how the control designs were carried out to achieve the following. (1+1.5+2.5)
 - The settling time of output y_1 to its given reference should be 2 seconds.
 - The output y_2 must be stabilized at its reference without oscillations (there must not be any sign change in the error during the transient phase).
- Demonstrate the feedback controller's performance via MATLAB simulations to exhibit the prescribed specifications. (Outputs vs Time, Inputs vs Time).