Cvičení 3: Krystalová mříž, pásová struktura, polovodiče

C3.1 Krystalová mříž

Stanovení Millerových indexů krystalografických směrů a rovin (Příklady CP3.1a2/applet) Určení objemové a plošné koncentrace atomů (Příklad CP3.3)

C3.2 Pásová struktura pevných látek

Přímý a nepřímý polovodič (Příklady CP3.4a5)

C3.3 Intrinzický a dotovaný polovodič

Pojem elektron a díra v polovodiči, valenční a vodivostní pás, hustota stavů, Fermiho rozdělovací funkce, koncentrace elektronů a děr (applet)

Určení koncentrace elektronů/děr a polohy Fermiho hladiny v intrinzickém a dotovaném polovodiči (Příklady CP3.6a7)

Monokrystalické látky – Krystalografické soustavy

Soustava

Mřížové parametry

krychlová (kubická)	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
čtverečná (tetragonální)	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
kosočtverečná (ortorombická)	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
trigonální/klencová (romboedrická)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$
šesterečná (hexagonální)	$a = b \neq c$	$\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$
jednoklonná (monoklinická)	$a \neq b \neq c$	$\alpha = \gamma \neq \beta$
trojklonná (triklinická)	a≠b≠c	$\alpha \neq \beta \neq \gamma$

Kovy/Polovodiče - Kubická mřížka

SC prostá

BC prostorově centrovaná

FCC plošně centrovaná

a^3
_
1
a^3
$\pi/6=0.524$

SC

$$a^{3}$$
2
 $a^{3}/2$
 $\pi/8=0.680$

BCC

$$a^3$$
4
 $a^3/4$
 $2\pi/6=0.740$

FCC

Krystalová struktura Si, Ge, GaAs

Diamantová mřížka

Si, Ge, diamant

- kovalentní vazba
- 2 FCC mřížky posunuté o ¼ tělesové úhlopříčky
- 8 atomů na jednotkovou buňku
- každý atom má 4 nejbližší sousedy (ve vrcholech pravidelného 4 stěnu)

Sfaleritová mřížka

GaAs

- obdoba diamantové, každou FCC však tvoří jiné atomy
- jednotková buňka obsahuje 4 atomy Ga a 4 atomy As
- ke kovalentní vazbě se uplatňuje i vazba iontová (jiná elektronegativita Ga a As)

pohled shora ve směru <100>

Millerovy indexy slouží pro orientaci uvnitř krystalu a používají se např. k popisu anizotropních vlastností materiálů v různých směrech (pohyblivost nositelů náboje, tvrdost, absorpce, apod).

Millerovy indexy krystalových směrů

složky vektoru patřičného směru se převedou na nejmenší celá čísla v daném poměru [hkl] – krystalografický směr <hkl> - evivalentní sada směrů

Millerovy indexy krystalových rovin

- 1. nejprve se určí hodnoty průsečíků dané roviny s osami čísla x, y, z
- 2. vypočtou se převrácené hodnoty x, y, z
- 3. výsledek se převede na celá čísla se stejným poměrem

```
výsledek: (hkl) ekvivalentní roviny (stejná symetrie) : {hkl}
```

Ukázky Millerových indexů základních rovin kubické soustavy

Demonstrační programy společnosti Wolfram

- Nutná instalace Wolfram Player <u>https://www.wolfram.com/player/</u>
- Demonstrační projekty naleznete na

https://demonstrations.wolfram.com/

Pro krystalografii jsou vhodné projekty:

SimpleCrystalStructuresAndMillerIndices.cdf CubicCrystalLattices.cdf TheStructureOfDiamond.cdf

MotionOfAtomsInCrystal.cdf MovementOfAnEdgeDislocation.cdf Quasicrystals.cdf

Příklad CP3.1:

Určete Millerovy indexy uvedené roviny kubické soustavy.

Postup:

- a) hodnoty průsečíků s osami : 2,4,2
- b) převrácené hodnoty průsečíků jsou 1/2, 1/4, 1/2
- c) nejmenší celá čísla (násobeno 4): 2,1,2
- d) Millerův index : (212).

Který krystalografický směr je na uvedenou rovinu kolmý (nakreslete)?

V kubické soustavě platí, že krystalografický směr kolmý na danou rovinu má shodný Millerův index, tj. kolmý směr je **[212]**.

Příklad CP3.2:

Nakreslete v kubické krystalové mříži rovinu s Millerovým indexem (210) a krystalografický směr [001]. Určete další ekvivalentní směry ke směru [001].

Pomůcka: daná rovina vytíná na jednotlivých osách úseky dané reciprokým hodnotám Millerových indexů, tj. ½, 1, ∞

Příklad CP3.3:

Vypočtěte objemovou koncentraci n_{si} atomů Si v krystalu křemíku.

krystalová soustava křemíku je diamantová = 2 x FCC mřížková konstanta křemíku: a_0 = 5,43 Å = 0,543 nm

Koncentrace n = počet atomů v elementární buňce / objem buňky ($V = a_0^3$)

Počet atomů v buňce:

FCC buňka má 8 vrcholových bodů, jejichž atomy sdílí 8 sousedních buněk,

Počet atomů na 1 buňku : (8 x 1/8 + 6 x ½) * 2 = 8

Diamantová mříž je složena ze 2 FCC mříží, tzn. počet atomů v buňce je dvojnásobný.

dále má 6 atomů uprostřed ploch, které sdílí 2 sousední buňky.

$$n_{Si} = \frac{8}{(5,43 \cdot 10^{-10})^3} = 5 \cdot 10^{28} \, m^{-3} = 5 \cdot 10^{22} \, cm^{-3}$$

C3.2 Pásová struktura pevných látek

Pásový diagram Si a GaAs

Elektrony se v pevné látce nacházejí v pásech dovolených energií, které jsou odděleny tzv. zakázaným pásem. Jeho šířka $E_g = E_c - E_v$ závisí na vlnovém vektoru k (hybnosti a krystalové orientaci). Volné nosiče náboje vznikají přechodem elektronu z valenčního do vodivostního pásu.

Při přechodu elektronu mezi pásy :

Nepřímý polovodič je nutná změna hybnosti, tj. **k** Přímý polovodič

ke změně hybnosti nedochází

C3.2 Pásová struktura pevných látek

Příklad CP3.4:

Vypočtěte maximální vlnovou délku světla, které ještě bude absorbováno v GaAs v důsledku excitace elektronů z valenčního do vodivostního pásu. Určete hybnost fotonu s touto vlnovou délkou. Rychlost světla $c = 3.10^8 \, \text{m/s}$, $h = 6,6.10^{-34} \text{Js}$, $E_g = 1,42 \, \text{eV}$.

Při absorpci musí být energie fotonu větší než šířka zakázaného pásu polovodiče E_g

$$E_{fot} = h \cdot v \ge E_g$$

Vztah mezi vlnovou délkou a energií fotonu $\lambda = \frac{1}{v} \cdot c = \frac{h}{E_{fot}}$. cPro vlnovou délku světla musí platit

E_{fot}=
$$hv \ge E_g$$

VALENCE
BAND

[111] 0 [100]

GaAs

BAND

$$\lambda \le \frac{h}{E_a} \cdot c = \frac{h \cdot c}{e \cdot E_a[eV]} = \frac{6.6 \cdot 10^{-34} \cdot 3 \cdot 10^8}{1,602 \cdot 10^{-19} \cdot 1,42} \cong 870 \ nm$$

Hybnost fotonu je dána podílem jeho energie a rychlosti světla, tzn.:

$$p = \frac{E}{c} = \frac{e \cdot E_g[eV]}{c} = \frac{1,602 \cdot 10^{-19} \cdot 1,42}{3 \cdot 10^8} \cong 7,6 \cdot 10^{-28} \ kg \cdot m \cdot s^{-1}$$

C3.2 Pásová struktura pevných látek

Příklad CP3.5:

Může absorpce záření z příkladu CP3.4 (λ =870 nm, p=7,6·10⁻²⁸ kg·m·s⁻¹) vést k podobné excitaci v křemíku (E_g =1,12eV)?

Křemík je nepřímý polovodič, jehož minimum vodivostního pásu leží u hrany Brillouinovy zóny, tj. $k=2\pi/a$ (a je mřížková konstanta 5.47 Å).

Při přechodu musí platit zákon zachování energie ($E_{fot} \ge E_g$) a zákon zachování hybnosti p = $\hbar \cdot \Delta k$.

Energie fotonu:

$$E_{fot} = \frac{h \cdot c}{\lambda} = \frac{6.6 \cdot 10^{-34} \cdot 3 \cdot 10^8}{870 \cdot 10^{-9}} \approx 1.42 \text{ eV}$$

Požadovaná hybnost fotonu:

$$p = h \cdot \Delta k = \frac{h}{a} = \frac{6.6 \cdot 10^{-34}}{5.47 \cdot 10^{-10}} \approx 1.2 \cdot 10^{-24} kg.m.s^{-1}$$

Odpověd je NE, optický foton nemá dostatečnou hybnost.

Ve skutečnosti je excitace zajištěna přídavným mechanismem - interakcí elektronu s kmity mřížky (fonony), které mají dostatečnou hybnost.

Koncentrace volných nositelů náboje

Je dána integrálem součinu hustoty stavů a pravděpodobností jejich obsazení přes celý energetický rozsah daného pásu.

Výsledné vztahy pro rovnovážné koncentrace elektronů a děr:

$$n_0 = n_i \ exp(\frac{E_F - E_i}{kT}) \qquad p_0 = n_i \ exp(\frac{E_i - E_F}{kT}) \qquad n_0 \cdot p_0 = n_i^2$$

$$n_i \dots intrinzická koncentrace$$

Intrinzický (vlastní) polovodič je čistý polovodič bez příměsí.

Vodivost vzniká přechodem (excitací) elektronu z valenčního do vodivostního pásu.

Fermiho hladina vlastního polovodiče leží téměř uprostřed zakázaného pásu

$$\mathbf{E_F} = \mathbf{E_i}$$
 $\mathbf{E_i}$ intrinzická hladina $\mathbf{E_i} = \mathbf{E_v} + \Delta \mathbf{E_g}/2$

Intrinzický (vlastní) polovodič určení koncentrace elektronů a děr.

$$p_0 = n_0 = n_i$$

Ve vlastním polovodiči jsou se koncentrace elektronů a děr rovnají tzv. intrinzické koncentraci n_i.

$$n_i = (N_c N_v)^{1/2} \exp(-\frac{E_g}{2 kT})$$

Intrinzická koncentrace je exponenciálně závislá na šířce zakázaného pásu $E_{\rm g}$ a teplotě T.

$$T = 300 K$$

$$n_i = 2 \times 10^6 \text{ cm}^{-3}$$
 GaAs ($E_g = 1.42 \text{eV}$)
 $1.5 \times 10^{10} \text{ cm}^{-3}$ Si ($E_g = 1.12 \text{eV}$)
 $2 \times 10^{13} \text{ cm}^{-3}$ Ge ($E_g = 0.74 \text{eV}$)

Odečtěte z grafu hodnoty n_i pro T = 420 K (150°C). Kolikrát se koncentrace zvýší?

Nevlastní (dotovaný) polovodič typu N.

Vodivost je zvýšena koncentrací atomů donorů N_D , které snadněji uvolňují elektrony do vodivostního pásu. Uvolněním elektronu vzniká kladně nabitý, nepohyblivý atom donoru (koncentrace N_D ⁺). Fermiho hladina pak leží v horní polovině zakázaného pásu.

Majoritními (většinovými) nositeli náboje jsou elektrony, minoritními díry.

Musí platit nábojová neutralita $n_0 = N_D^+ + p_0$

Je-li koncentrace donorů výrazná ($N_D >> n_i$), pak $N_0 = N_D^+$ a $p_0 = n_i^2/N_D$

Nevlastní (dotovaný) polovodič typu P.

Vodivost je zvýšena koncentrací atomů akceptorů N_A , které snadněji zachycují elektrony uvolněné z valenčního pásu. Zachycením elektronu na hladině akceptoru vzniká záporně nabitý, nepohyblivý atom akceptoru (koncentrace N_A^-). Fermiho hladina leží v polovodiči typu P ve spodní polovině zakázaného pásu.

Majoritními (většinovými) nositeli náboje jsou díry, minoritními elektrony.

Musí platit nábojová neutralita $p_0 = N_A^- + n_0$

Je-li koncentrace akceptorů výrazná ($N_A >> n_i$), pak $p_0 = N_A^-$ a $n_0 = n_i^2/N_A$

Příklad CP3.6:

Určete koncentraci elektronů n₀ a děr p₀ v křemíku dotovaném fosforem o koncentraci 10¹⁷ cm⁻³. Teplota T=300 K, intrinzická koncentrace n_i= 1.5x10¹⁰ cm⁻³.

Fosfor (P) \rightarrow prvek 5. skupiny \rightarrow oproti Si jeden valenční elektron navíc \rightarrow donor \rightarrow typ N.

 $s^2p1 s^2p^2 s^2p^3$

Rovnice nábojové neutrality

pro polovodič typu N:

$$n_0 = N_D^+ + p_0 (1)$$

Vztah mezi koncentrací elektronů a

Fermiho hladinou

 $n_0 = n_i \exp(\frac{E_F - E_i}{kT})$ (2)

Vzájemná rovnováha koncentrací elektronů a děr

$$n_0 \cdot p_0 = n_i^2$$
 (3)

Pro $N_D = 10^{17}$ cm⁻³ je $N_D >> n_i$ a rovnice (1) se zjednoduší $n_0 = N_D$.

$$n_0 \approx 10^{17} \text{ cm}^{-3}$$

$$p_0 = \frac{n_i^2}{n_0} = \frac{2,25 \cdot 10^{20}}{10^{17}} = 2,25 \cdot 10^3 \text{ cm}^{-3}$$

Příklad CP3.7:

Určete polohu Fermiho hladiny vzhledem ke středu zakázaného pásu (E_i) pro polovodič z příkladu CP3.7. T=300 K, n_i = 1.5x10¹⁰ cm⁻³, k = 1.38x10⁻²³ J.K⁻¹, e = 1.602x10⁻¹⁹ C.

$$E_F - E_i = \frac{kT}{e} \ln \frac{n_0}{n_i} = \frac{1.38 \times 10^{-23} \cdot 300}{1.602 \times 10^{-19}} \ln \frac{10^{17}}{1.5 \cdot 10^{10}} = 0.407 \ [eV]$$

Demonstrační programy společnosti Wolfram

- Nutná instalace Wolfram Player <u>https://www.wolfram.com/player/</u>
- 2. Demonstrační projekty naleznete na

https://demonstrations.wolfram.com/

Pro polovodiče vhodné projekty:

DopedSiliconSemiconductors.cdf ElectricalConductivityOfSiliconSemiconductors.cdf

