Working with Real and Big Data BASH SCRIPT #2

INTRODUCTION:

This BASH script is to create a file, testdata.dat, which contains climate data for a specific site over a number of years. My script, called testgen.sh, runs as follows:

\$./testgen.sh 218 1948 1997

where 218 represents the site location, 1948 the start year, and 1997 the final year. **DESCRIPTION:**

For writing a Bash Script, we always start with #!/bin/bash.

Defining the text files to a particular variable:

temporary file definitions

BTstns="BTemperature_Stations.txt"

alldatafile="BIGDATA8zx2756.txt"

smalldatafile="distilled_datazx47432_\$1.dat"

locationsfile="locationszx646332.txt"

tempfile="tempfile.txt"

newfile1="testdata.dat"

First,in this script, we have to print the range of output that user is asking to print in the testdata.dat (example: 1948 to 1997).

For this reason I am using a For loop to display data that the user is asking.

```
for((a=$2;a<=$3;a++))</pre>
```

Here \$1(first input) is location, \$2(second input) is the starting year and \$3(3rd input) is the ending year

Then same as in BASH #1 ,similarly, I extracted station IDs from BTemperature_Stations.txt.The actual data starts from the line 5 and ends at line 343.

So using For Loop, I scanned lines 5 to 343 to get the data from that file. For loop is shown below:

```
echo "$nextfile" >> $locationsfile # write the data file name first
 y=$(cat $nextfile | tr "," "\n") # remove commas, replace with
newlines
 for z in $y # go through each token in the file $x
 echo $z >> $alldatafile
 done
done
Execution of For loop:
For x in 5,
next=$(head -n $x $BTstns | tail -n 1)
next= 5th line(data) from the BTemperature Stations.txt file.
i.e.
next=1 1100120 AGASSIZ BC 1893 1 2012 12 49.25 -121.77 15 N
Now,
line=($next) (line is an array that takes the value inside the next variable)
stationNUM=(${line[0]}) ( stationNUM=1)
stationID=(${line[1]} (stationID=1100120)
stationNAME=(${line[2]}) (stationNAME=AGASSIZ)
nextfile=mm$stationID.txt (nextfile=mm.1100120.txt)
newfile=$stationNAME ( newfile=AGASSIZ)
 echo "$newfile" >>$tempfile (Transfering station names to "tempfile.txt")
echo "$nextfile" >> $locationsfile (In first loop it will print
mm.1100120.txt to the locationszx646332.txt)
```

```
y=$(cat $nextfile | tr "," "\n")
for z in $y
do
echo $z >> $alldatafile
done
```

done

As you can see in the screenshot below, the mm1100120.txt file consists of the data separated by the commas. In order to remove that we use **tr command** to replace commas by newlines.And after scanning all the data, that data is moved to "BIGDATA8zx2756.txt".

	e, HGASSIZ	,80,	station not	t joined, An	onth'ly rean	of horageniz	ed daily re	san temperati	ire	and disease	, 3,	Upd	ated to Deca Jusqu á déca	mber 2812			
	0,HGASS12									quetidiemes	1 10 11	the a pair ;	Jusqu a deci	Utates	Contra		li done
Year,	Jan, ,	Feb, ,	Mar, ,		Ray, ,	Jun, ,	241, ,	Aug. ,	Sep, ,	Oct, ,	Nov. ,	Dec, ,	Annual, ,	Miller, ,	Spring, ,	Server, ,	Autum
Year,	lanv, ,	Fév	Ners, ,	RVT,	Mi, ,	Min, ,	MI, ,	HOUT, ,	Sept, ,	Oct, ,	Nev. ,		Annuel, ,		Printerp,		Automne
1893, 1894,	1.4,8,	8,8,	5.9,8,	7.5,8,	12.3,8,	14.1,8,	17.0,8,	18.1,4,	14.4,8,	9.1,0,	3.5,8,	3.2,0,		-9999.5,A,		15.4,0,	9.0,a 18.0,a
1895,	1.8,2,	2.1,0,	4.4,2,	1.1,0,	12.T,a,	15.3,4,	18.4,2,	29.3,4,	14.0,2,	9.4,0,	6.7,3,	2.7,2,	5.5,2,	2.4,a, 3.1,a,		17.7,a,	11.4,8
1896,	1.5, 2,	5.5,8,	5.2, a, 5.1, a,	9.1,a, 8.8,a,	12.4,8,		17.8,4,	17.1,0, 29.3,a,	12.5,8,	12.5,a, 12.2,a,	5.2,8,	4.5,2,	·9999.9,8,			IT.8,8, 18.1,a,	1.8,4
	-9999.9,8,	5.7,0,	3.4,4,			15.4,0,					4.1,8,		-9998.9,8,	-9999.5,A,		17.2,8,	
1898,	2.4,2,	4.9,6, 6.1,0,	6.1,8,	9.5,0,	15.2, a, 15.5, a,	17.8,0,	15.4, a, 19.0, a,	20.5,a, 21.9,a,	15.5,a, 15.2,a,	11.8,8,	5.0,2,	3.1,0,	11.2,4,	3.6,0,		19.3,0,	18.2,8
1889,	1.9,8,	2.3,0,	6.4,8,	5.1,0,	11.6, 8,	14.1,4,	18.6, 8,	16.7,0,	15.9,8,	11.8,0,	8.0,4,	3.7,4,	18.2,4,	2.4,8,		16.7,4,	12.2,4
1980,	6.2,8,	3.7,0,	11.7,8,	12.2,0,		-9999.9,7,	18.T, a,	36.2,0,	15.1,8,	11.4,8,	4.1,8,		·9999.9,8,	4.5,0,			18.2,8
1981,	2.8,2,	1.4,0,	8.4,2,	1.1,2,	15.3, a,	15.4,4,	15.7, 2,	38.5,0,	13.8,8,	17.5,0,	5.8,2,	3.6,4,	18.5,4,	3.5, a,		16.7, a,	11.2,4
1982,	2.5,8,		-9999.9,8,	-9999.3,7,	-9999.9,8,		17.0,8,	26.1,4,	14.T,a,	11.2,0,	4.1,4,		·9999.9,8,	-9999.5,A,		-9999.5,8,	18.0,4
1983,	3.8,2,	3.6,0,	4.4,2,	E.3,a,	12.1,1,	16.1,4,	16.5,2,	36.8,0,	13.5,2,	9.2,0,	4.4,2,	4,6,0,	3.5,2,	3.1,2,		16.7,2,	5.0,4
1984,	2.6,0,	2.1,4,	6.4,8,	12.3,4,	13.4,4,	14.5,8,	18.3,4,	17.7,4,	14.4,4,	12.3,8,	1.3,4,	4.1,4,	18.5,8,	3.1,8,		16.7,8,	11.7,8
1985,	3.3,2,	1.0,0,	10.5,2,	12.5,0,	14.3,1,	15.1,0,	29.9,2,	17.1,0,	12.1,8,	T.3,0,	5.6,2,	4.5,0,	18.5,8,	3.7,0,		17.7,0,	1.3,0
1986,	3.8, a,	1.1,4,	5.8,a,	11.5,0,	12.9,4,	15.1,4,	21.0,4,	17.8,4,	12.6,8,	10.5,0,	4.4,4,	3.5,4,	18.5,8,	5.1,4,		28.8,4,	5.2,4
1987,	-t.T, a,	2.4,0,	4.0,2,	9.3,0,	14.2,4,	15.2,0,	18.3,4,	25.5,0,	14.1,8,	21.9,0,	9.3,4,	3,3,0,	5.4,4,	.4,0,		16.3,0,	11.8,8
1988,	3.T, a,	3.7,0,	6.8,2,	18.6,0,	11.9, a,	17.3,4,	18.9, a,	17.2,4,	12.0,8,	9.3,0,	7.7,4,	3.3,a,	18.1,8,	3.6,4,		17.8,8,	5.7,4
1989,	-3.0,0,	2.4,0,	7-1,8,	1.1,0,	11.7,4,	15.1,0,	15.T, a,	26.5,8,	14.3,8,	9.1,0,	5.2,4,	.4,8,	1.8,8,	,5,0,		16.1,0,	3.8,8
1918,	3.0, 2,	1.4,0,	9.8,2,	18.4,0,	14.1, 8,	17.1,0,	19.3, a,	25.7,0,	15.1,8,	38.5,0,	7.4.4.	3,5,0,	18.6,2,	1.6,0,		17.4,0,	11.0,8
1931,	-2.1, 2,	1.5,8,	5.5, 2,	1.4,4,	12.1, a,	15.1,4,	19.1,8,	1T.8,a,	14.1,8,	20.1,4,	3.6,8,	4.1,8,	5.1,8,	1.1,0,		17.1,a,	5.5,8
1917,	1.6,2,	5,5,0,	6.0,2,	8.2,0,	14.6, 8,	16.1,4,	15.6, 8,	36,4,0,	14.0,4,	9,3,0,	5.9,4,	4.1,0,	5.9,8,	3, 8, 0,		26.4,0,	5.7,0
1913,	-1.6, 8,	1.3,0,	4.T, a,	11.1,4,	11.T, a,	15.8,4,	17.3,a,	28.2,4,	14.0, a,	9.2,4,	5.T,a,	4.4,4,	5.3,4,	1.2,a,		16.8,a,	18.6,8
1904,	3.3, 1,	4.2,0,	7.5,0,	11.2,0,	13.9, 8,	14.5,0,	17-1,8,	17.5,0,	12.9,0,	30.7,0,	5.1,4,	1.5,0,	18.0,4,	4.1,1,		35.4,0,	3.9,0
1915,	2.7, a,	4.9,0,	9.1, a,	18.3,0,	12.8, a,	15.6,0,	17.4,8,	29.3,0,	14.7, a,	9.4,0,	4.3,4,	3.3,a,	18.3,4,	3.1,4,	18.7,0,	17.4,a,	9.3,4
1936,	-5.5,0,	2.3,0,	5-1,8,	9.5,0,	11.9,8,	16.1,0,	15.4,8,	38.3,0,	15-1,8,	9.5,0,	4.1,4,	.1,0,	1.5,8,	.1,1,	1.9,4,	16.5,0,	3.5,0
1917,	.3, 2,	.3,8,	3.9,8,	7.2,0,	12.4, a,	14.8,0,	17.4,8,	38.5,0,	15.1,8,	9.6,0,	7.6,2,	2.3,0,	9.1,8,	.2,0,	7.8,2,	25.6,0,	18.8,8
1938,	2.9, 2,	2.4,0,	4.T,a,	18.8,0,	11.9, a,	16.1,0,	18.1, 8,	26.5,0,	19.2, 8,	21.3,0,	5.1,4,	3.7,0,	18.3,4,	2.5,0,	1.9,2,	17.3,a,	12.2,8
1919,	3.6,4,	2.8,0,	5.1,8,	18.3,6,	11.T, a,	14.7,6,	18.3,4,	38.1,0,	15.4,8,	8.1,0,	5.1,8,	1.5,0,	5.T,8,	3,4,0,	5,4,8,	17.8,0,	9,8,8
1928,	2.4,2,	4.4,0,	5.4,2,	1.3,2,	12.8, a,	26.8,0,	19.5,a,	29.5,0,	14.1,4,	8.7,2,	8.3,4,	4.1,a,	18.4,4,	2.1,0,	5.4,2,	18.3,a,	18.4,4
1921,	2.7,0,	4.4,0,	6.3,4,	10.0,0,	12.T, a,	15.5,4,	17.3,8,	ST.5,8,	12.2,0,	11.4,0,	4.7,4,	1.1,0,	3.5,4,	3.7,0,		35.8,0,	5.3,8
1922,	.8,2,	3,0,	4.2,2,	8.3,0,	12.9, a,	16.8,0,	18.3,2,	17.8,0,	15.2,4,	11.3,0,	5.6,4,	٠.5,۵,	5.2,2,	.3,2,		17.6,a,	11.0,4
1923,	2.4,1,	,3,0,	5.0,0,	11.5,0,	12.4, 8,	17.1,4,	19.1,4,	29.1,0,	15.4,4,	22.9,0,	7.8,4,	2.1,0,	18.T,a,	· I , ii ,		38.4,8,	12.4,8
1924,	2.1, ,	5.9, ,	6.1, ,	8.8, ,	15.2, ,	15.2, ,	17.5, ,	17.2, ,	14.9, ,	20.1, ,	5.2, ,	.1, ,	9.9, ,	3.5,0,		16.6, ,	
1925,	2.9, ,	6.2, ,	5.3, ,	18.8, ,	15.0, ,	16.4, ,	18.9, ,	17.6, ,	15.5, ,	9.3, ,	5.8, ,	6.7, ,	11.8, ,	3.1, ,		17.6, ,	18.2,
1926,	3.8, ,	5.7, ,	19.2, ,	13.1, ,	13.2, ,	17.4, ,	18.9, ,	38.2, ,	14.1, ,	32.2, ,	7.8, ,	2.2, ,		5.4, ,	12.2, ,	18.8, ,	11.4,
1927,	.6, ,	4.8, ,	5.4, ,	8.4, ,	11.8, ,	17.2, ,	19.1, ,	29.8, ,	14.7, ,	38.3, ,	4.4, ,	4, ,	9.5, ,	1.1, ,	1.5, ,	18.4, ,	5.8,
1928,	2.5, ,	5.3, ,	8.0, ,	9.5, ,	15.T, ,	15.6, ,	18.9, ,	38.8, ,	14.T, ,	30.2, ,	5.T, ,	3.2, ,	18.7, ,	2.5, ,	11.1, ,	17.5, ,	18.5,
1929,	-1.4, ,	.5, ,	6.5, ,	8.1, ,	13.5, ,	15.7, ,	17.9, ,	17.7, ,	15.8, ,	12.3, ,	5.9, ,	2.1, ,	3.6, ,	.I, ,		17.1, ,	11.7,
1930,	-3.6, ,	4.7, ,	T.4, ,	11.4, ,	12.4, ,	15.5, ,	18.2, ,	38.6, ,	15.5, ,	9.5, ,	5.9, ,	4.4, ,	18.0, ,	1.8, ,		IT.4, ,	
1931,	6.2, ,	5.4, ,	7.4, ,	11.4, ,	16.6, ,	15.8, ,	19.0, ,	ST.6, ,	14.4, ,	21.8, ,	4.1, ,	2.5, ,	18.8, ,	5.3, ,		17.5, ,	5.8,
1937,	-9, ,	2.5, ,	6.4, ,	18.7, ,	13.2, ,	16.5, ,	15.9, ,	17.9, ,	15.3, ,	11.3, ,	7.5, ,	1.2, ,	5.0, ,	2.1,	18.1, ,	16.8, ,	
1933,	2.1, ,	14.	5.0, ,	9.4, ,	11.6, ,	54.5, ,	17.0, ,	29.7, ,	13.3, ,	30.5, ,	7.6, ,	1.8, ,	3.4, ,	1.1,	9.0, ,	17.1, ,	18.5,
1934,	4.7, ,	7.5, ,	9.3, ,	13.6, ,	14.3, ,	56.8, ,	15.9, ,	38.6, ,	14.1, ,	17.1, ,	8.1, ,	3.4, ,	11.6, ,	4.7, ,	12.4, ,		11.4,
1905,	-1.2, ,	1.3, ,	4.4, ,	9.3, ,	13.0, ,	15.1, ,	17.6, ,	27.8, ,	15.8, ,	9.7, ,	4.T, ,	6.3, ,	18.0, ,	2.1, ,			
1936,	3.5, ,	-3.3, ,	4.0, ,	11.8, ,	14.4, ,	16.8, ,	17.1, ,	38.1, ,	14.5, ,	12.3, ,	6.T, ,	3.5, ,	9.9, ,	2.2, ,		17.3, ,	11.2,
1937,	-4.1, ,	.2, ,	8.3, ,	7.8, ,	13.1, ,	26.6, ,	17.8, ,	17.8, ,	15.9, ,	12.8, ,	6.5, ,	2.5, ,		.1, ,	9.7, ,		11.7,
1938,	3.0, ,	4.0, ,	7.1, ,	18.5, ,	13.7, , 13.5, ,	16.1, ,	19.3, , 17.T, ,	27.8, ,	17.2, ,	32.5, ,	5.7, ,	3.1, ,	18.8, ,	3.1, ,	18.5, ,		11.8,
	4.3, ,	1.3, ,	7.8, ,					29.3, ,	15.8, ,	20.8, ,	8.T, ,	6.7, ,	18.8, ,	2.5, ,	15.7		
1940, 1941,	4.5, ,	5.2, ,	8.6, ,		14.8, ,	16.6, , 16.8, ,	17.6, ,	38.5, ,	13.0, ,	12.4, ,	4.5, ,	5.2, ,		5.5, ,			11.6,
1941,	5.1, ,	7.8, ,	18.9, ,	11.7, ,	13.3,	15.6, ,	29.0,	38.3, ,	13.8, ,	21.8, ,	7.5, ,	4.4, ,	11.7, ,	4.7,	11.9, ,	18.4, ,	11.2,
1943.	4.3, ,	5.3, ,	5.2	11.1, ,	11.8.	15.4	18.0.	26.1, , 26.9, .	15.0, ,	11.7, ,	5.8, , 7.7.	3.1, ,	11.1, ,	2.2.	3.4.	16.5.	12.1.
1242,	2011		24		11.0, ,	22121	12.00	2017		3117, .	falls a	415	10.11.	2167	ATTACA TO	and the same	Land Colors

After replacing "," with "\n" ("BIGDATA8zx2756.txt" file)

Similarly For Loop will execute for other lines in "BTemperature_Stations.txt".

After execution of the FOR LOOP:

"tempfile.txt"

"locationszx646332.txt"

"BIGDATA8zx2756.txt"

After execution of the for loop now we have all the data, locations and names of the particular location in order.

Continuing further

cat \$alldatafile | grep -A 17 \$a >> \$smalldatafile

For the first loop(example: \$a=1948)

cat sends data from the "BIGDATA8zx2756.txt" to STDOUT grep -A 17 searches for 17 lines after \$a(i.e the input year from user (e.g 1948)

Piping is used to get the data from STDOUT and then search for 17 lines after a particular year entered by the user.

Then that data is sent to "distilled_datazx47432_\$1.dat"

.

.

[&]quot;distilled_datazx47432_\$1.dat"

THEN

```
head -n $1 $tempfile | tail -n 1 >>$newfile1
```

"\$1"(example user enters 200)

head -n \$1 \$tempfile will display 200 names to STDOUT from "tempfile.txt".---->piped to **tail -n 1**

So it will print the 200th name in the "testdata.dat"

--->

```
cat $smalldatafile | grep -A $NUMCONTEXTLINES -m $1 $a | tail -n
$NCLPLUSONE >> $newfile1
```

Here,

NUMCONTEXTLINES=1 NCLPLUSONE=NUMCONTEXTLINES+1

cat \$smalldatafile will send data from "distilled_datazx47432_\$1.dat" to the STDOUT

grep -A 1 -m \$1 \$a will search for 1 line at the 200th position of that particular year entered by the user

tail -n 2

This will display last 2 line to the STDOUT (i.e **year and temperature**) and then we are printing that to "testdata.dat"

```
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
```

This will add -9999 (3 times at the end of the testdata.dat)

```
rm $alldatafile; rm $smalldatafile; rm $locationsfile;rm $tempfile
```

rm will remove all temporary files created.

Suppose user entered (1948 1997)

So the for loop executes from 1948 till 1997.

OUTPUT:

CONCLUSION:

BASH SCRIPT#2 is helpful in printing out data of differrent years of a particular location It will be easy for users to use this script instead of searching manually each and every file.

APPENDIX:

#!/bin/bash
NUMCONTEXTLINES=1 # works up to 17
let NCLPLUSONE=NUMCONTEXTLINES+1

```
# temporary file definitionsBTstns="BTemperature Stations.txt"
alldatafile="BIGDATA8zx2756.txt"
smalldatafile="distilled datazx47432 $1.dat"
locationsfile="locationszx646332.txt"
tempfile="tempfile.txt"
newfile1="testdata.dat"
# extract station IDs from BTemperature Stations.txt
for((a=$2;a<=$3;a++))
do
# scan lines from line 5 to 343
for x in \{5...343\}
do
next=$(head -n $x $BTstns | tail -n 1) # read line x from
BTemperature Stations.txt
line=($next)
stationNUM=(${line[0]}) # station number
stationID=(${line[1]}) # station ID
stationNAME=(${line[2]}) # station name
nextfile=mm$stationID.txt
newfile=$stationNAME
echo "$newfile" >>$tempfile
echo "$nextfile" >> $locationsfile # write the data file name first
y=$(cat $nextfile | tr "," "\n") # remove commas, replace with
newlines
for z in $y # go through each token in the file $x
echo $z >> $alldatafile
done
done
# scan for a particular year; there should be as many of a given year
# as there are geographical locations
yearsearch=$2 # year provided as argument
cat $alldatafile | grep -A 17 $a >> $smalldatafile
head -n $1 $tempfile | tail -n 1 >>$newfile1
```

```
# extract year's info for location specified in $2
```

```
cat $smalldatafile | grep -A $NUMCONTEXTLINES -m $1 $a | tail -n
$NCLPLUSONE >> $newfile1 # send the target year's temp data to
STDOUT
```

rm \$alldatafile; rm \$smalldatafile; rm \$locationsfile;rm \$tempfile;

done

```
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
```

exit 0