

Parmi les opérateurs suivants, lequel ne permet pas de regrouper différents ensembles ?

L'union

L'intersection

L'addition

Le produit cartésien

Qu'est-ce que le produit cartésien de deux ensembles A et B ?

C'est l'ensemble des couples dont le premier élément est un élément de $\it A$ et le deuxième élément un élément de $\it B$.

C'est l'ensemble constitué des éléments qui appartiennent aux deux ensembles $\,A\,$ et $\,B\,$.

C'est l'ensemble constitué des éléments qui appartiennent à au moins l'un des ensembles $\,A\,$ et $\,B\,$.

Cette notion n'existe pas.

Qu'est-ce que le cardinal d'un ensemble fini?

Le nombre des $\,k$ -uplets d'éléments de l'ensemble.

Le nombre d'éléments de cet ensemble.

Le nombre d'unions d'événements possibles dans un ensemble.

Le nombre d'intersections d'événements possibles dans un ensemble.

Que sait-on sur le cardinal du produit cartésien de deux ensembles $\it A$ et $\it B$?

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A) + \operatorname{Card}(B)$

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B)$

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A \cup B)$

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A) imes \operatorname{Card}(B)$

Kartable.fr 1/6

Soit E un ensemble de cardinal $\,n\,.\,$

Combien y a-t-il de k -uplets (ou k -listes) d'éléments de E (obtenus avec répétition) ?

 n^k $n \times k$ k^n

Soit $\it E$ un ensemble de cardinal $\it n$.

Combien y a-t-il de k -uplets (ou k -listes) d'éléments de E (obtenus sans répétition) ?

 n^k

 $\binom{n}{k}$

 $rac{n!}{(n-k)!}$

 $rac{n!}{k!}$

Soit E un ensemble de cardinal n .

Quel est le nombre de parties de $\,E\,$?

n!

lacksquare

 2^n

Kartable.fr 2/6

On ne dispose pas de suffisamment d'informations.

Parmi les propositions suivantes, laquelle n'est pas une propriété des coefficients binomiaux ?

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n!}{k!(n-k)!}$$

$$egin{pmatrix} n \ k \end{pmatrix} = egin{pmatrix} n \ n-k \end{pmatrix}$$

$$egin{pmatrix} n \ k \end{pmatrix} + egin{pmatrix} n \ k+1 \end{pmatrix} = egin{pmatrix} n+1 \ k+1 \end{pmatrix}$$

$$egin{pmatrix} n \ k \end{pmatrix} + egin{pmatrix} n \ k-1 \end{pmatrix} = egin{pmatrix} n+1 \ k+1 \end{pmatrix}$$

Parmi les opérateurs suivants, lequel ne permet pas de regrouper différents ensembles ?
L'union
L'intersection
L'addition
Le produit cartésien
L'addition ne permet pas de regrouper différents ensembles.
Qu'est-ce que le produit cartésien de deux ensembles $\it A$ et $\it B$?
C'est l'ensemble des couples dont le premier élément est un élément de A et le deuxième élément un élément de B .
C'est l'ensemble constitué des éléments qui appartiennent aux deux ensembles A et B .
C'est l'ensemble constitué des éléments qui appartiennent à au moins l'un des ensembles A et B .
Cette notion n'existe pas.
Le produit cartésien de deux ensembles A et B est l'ensemble des couples dont le premier élément est un élément de A et le deuxième élément est un élément de B .
Qu'est-ce que le cardinal d'un ensemble fini ?
Le nombre des k -uplets d'éléments de l'ensemble.
Le nombre d'éléments de cet ensemble.
Le nombre d'unions d'événements possibles dans un ensemble.
Le nombre d'intersections d'événements possibles dans un ensemble.
On appelle cardinal d'un ensemble ayant un nombre fini d'éléments, le nombre d'éléments de cet ensemble.

Kartable.fr 4/6

Que sait-on sur le cardinal du produit cartésien de deux ensembles $\it A$ et $\it B$?

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A) + \operatorname{Card}(B)$

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B)$

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A \cup B)$

 $\operatorname{Card}(A imes B) = \operatorname{Card}(A) imes \operatorname{Card}(B)$

On a bien $\operatorname{Card}(A \times B) = \operatorname{Card}(A) \times \operatorname{Card}(B)$.

Soit E un ensemble de cardinal n .

Combien y a-t-il de k-uplets (ou k-listes) d'éléments de E (obtenus avec répétition) ?

 n^k

n imes k

 $-k^n$

 $\binom{n}{k}$

L'ensemble E contient $n^k\,$ k-uplets (ou k-listes) d'éléments.

Soit E un ensemble de cardinal n .

Combien y a-t-il de k-uplets (ou k-listes) d'éléments de E (obtenus sans répétition) ?

 n^k

 $\binom{n}{k}$

 $\frac{n!}{(n-1)!}$

 $\frac{n!}{k!}$

L'ensemble E contient $\frac{n!}{(n-k)!}$ k-uplets (ou k-listes) d'éléments (sans répétition).

Soit E un ensemble de cardinal n .

Quel est le nombre de parties de $\,E\,$?

n!

 2^n

On ne dispose pas de suffisamment d'informations.

Le nombre de parties de E , c'est-à-dire le nombre de sous-ensembles de E , de l'ensemble vide à E tout entier, est 2^n .

6/6

Parmi les propositions suivantes, laquelle n'est pas une propriété des coefficients binomiaux ?

 $\binom{n}{k} = rac{n!}{k!(n-k)!}$

 $egin{pmatrix} n \ k \end{pmatrix} = egin{pmatrix} n \ n-k \end{pmatrix}$

 $egin{pmatrix} n \ k \end{pmatrix} + egin{pmatrix} n \ k+1 \end{pmatrix} = egin{pmatrix} n+1 \ k+1 \end{pmatrix}$

 $egin{pmatrix} n \ k \end{pmatrix} + egin{pmatrix} n \ k-1 \end{pmatrix} = egin{pmatrix} n+1 \ k+1 \end{pmatrix}$

On a bien $egin{pmatrix} n \\ k \end{pmatrix} + egin{pmatrix} n \\ k+1 \end{pmatrix} = egin{pmatrix} n+1 \\ k+1 \end{pmatrix}.$