

(3)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ :		(11) International Publication Number:	WO 00/47568
C07D 281/02, A61K 31/55, A61P 3/06, C07D 417/12	A2	(43) International Publication Date:	17 August 2000 (17.08.00)

(21) International Application Number:	PCT/US00/02503	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	10 February 2000 (10.02.00)	
(30) Priority Data:	60/119,933 12 February 1999 (12.02.99) US	
(71) Applicant (<i>for all designated States except US</i>):	G.D. SEARLE & CO. [US/US]; Corporate Patent Department, 5200 Old Orchard Road, Skokie, IL 60077 (US).	
(72) Inventors; and		Published
(75) Inventors/Applicants (<i>for US only</i>):	TOLLEFSON, Michael, B. [US/US]; 357 Big Horn Drive, Hainesville, IL 60030 (US). KOLODZIEJ, Steve, A. [US/US]; 2448 Clarjon Road, Ballwin, MO 63021 (US). REITZ, David, B. [US/US]; 14814 Pleasant Ridge Court, Chesterfield, MO 63017 (US).	<i>Without international search report and to be republished upon receipt of that report.</i>
(74) Agents:	WARNER, James, M. et al.; G.D. Searle & Co., Corporate Patent Department, 5200 Old Orchard Road, Skokie, IL 60077 (US).	

(54) Title: NOVEL 1,2-BENZOTIAZEPINES HAVING ACTIVITY AS INHIBITORS OF ILEAL BILE ACID TRANSPORT AND TAUROCHOLATE UPTAKE

(57) Abstract

Novel 1,2-benzothiazepines, derivatives and analogs thereof, pharmaceutical compositions containing them, and their use in medicine, particularly in the prophylaxis and/or treatment of hyperlipidemic diseases, conditions and/or disorders, such as those associated with atherosclerosis and/or hypercholesterolemia.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

**NOVEL 1,2-BENZOTHIAZEPINES HAVING ACTIVITY AS
INHIBITORS OF ILEAL BILE ACID TRANSPORT AND
TAUROCHOLATE UPTAKE**

Field of the Invention

5 The present invention relates to novel 1,2-benzothiazepines, derivatives and analogs thereof, pharmaceutical compositions containing them, and their use in medicine, particularly in the prophylaxis and/or treatment of hyperlipidemic diseases, conditions and/or disorders, such as those associated with atherosclerosis and/or hypercholesterolemia, in
10 mammals.

Description of Related Art

It is well-settled that hyperlipidemic conditions associated with elevated concentrations of total cholesterol and low-density lipoprotein (“LDL”) cholesterol are major risk factors for coronary heart disease and particularly atherosclerosis. Interfering with the circulation of bile acids within the lumen of the intestinal tract is found to reduce the levels of serum cholesterol in a causal relationship. Epidemiological data has accumulated which indicates such reduction leads to an improvement in the disease state of atherosclerosis. Stedronsky, "Interaction Of Bile Acids And Cholesterol With Nonsystemic Agents Having Hypocholesterolemic Properties," Biochimica et Biophysica Acta, 1210 (1994) 255-287, discusses the biochemistry, physiology and known active agents relating to bile acids and cholesterol.

Pathophysiologic alterations are shown to be consistent with
25 interruption of the enterohepatic circulation of bile acids in humans in Heubi, J.E., et al., "Primary Bile Acid Malabsorption: Defective *In Vitro* Ileal Active Bile Acid Transport", Gastroenterology, 1982;83:804-11.

In fact, cholestyramine binds the bile acids in the intestinal tract, thereby interfering with their normal enterohepatic circulation. Rehnér, E. et al, in "Regulation of Hepatic Cholesterol Metabolism In Humans: Stimulatory Effects Of Cholestyramine On HMG-CoA Reductase Activity And Low Density Lipoprotein Receptor Expression In Gallstone Patients", Journal of Lipid Research, Volume 31, 1990, 2219-2226. This results in an increase in liver bile acid synthesis by the liver using cholesterol as well as an upregulation of the liver LDL receptors which enhances clearance of cholesterol and decreases serum LDL cholesterol levels. Suckling et al, "Cholesterol Lowering And Bile Acid Excretion In The Hamster With Cholestyramine Treatment", Atherosclerosis, 89(1991) 183-190, also discloses the results of cholestyramine treatment to lower serum cholesterol levels.

In another approach to the reduction of recirculation of bile acids, the ileal bile acid transport system is a putative pharmaceutical target for the treatment of hypercholesterolemia based on an interruption of the enterohepatic circulation with specific transport inhibitors. Kramer, et al, "Intestinal Bile Acid Absorption", The Journal of Biological Chemistry, Vol. 268, No. 24, Issue of August 25, pp. 18035-18046, 1993.

In a series of patent applications, Hoechst Aktiengesellschaft discloses polymers of various naturally occurring constituents of the enterohepatic circulation system and their derivatives, including bile acid, which inhibit the physiological bile acid transport with the goal of reducing the LDL cholesterol level sufficiently to be effective as pharmaceuticals and, in particular for use as hypocholesterolemic agents. See, e.g., Canadian Patent Application Nos. 2,025,294; 2,078,588; 2,085,782; and 2,085,830; and EP Application Nos. 0 379 161; 0 549 967; 0 559 064; and 0 563 731.

In vitro bile acid transport inhibition is disclosed to show hypolipidemic activity in The Wellcome Foundation Limited disclosure of the

world patent application number WO 93/16055 for "Hypolipidemic Benzothiepine Compounds".

Selected benzothiepines are disclosed in world patent application number WO93/321146 for numerous uses including fatty acid metabolism and 5 coronary vascular diseases.

Additional benzothiepines for use as hypolipidemic agents are disclosed in WO97/33882 and U.S. Patent 5,994,391.

Other selected benzothiepines are known for use as hypolipaemic and 10 hypocholesterolaemic agents, especially for the treatment or prevention of atherosclerosis as disclosed by application Nos. EP 508425, FR 2661676, and WO 92/18462, each of which is limited by an amide bonded to the carbon adjacent the phenyl ring of the fused bicyclo benzothiepine ring.

WO96/16051 published May 30, 1996 describes certain 1,5-benzothiazepines as useful in the treatment of hyperlipidemic conditions.

15 WO96/05188 published February 22, 1996 describes certain 1,4-benzothiazepines as useful in the treatment of hyperlipidemic conditions.

Additional benzothiazepines are discussed in the references set forth below. These references either do not disclose a specific utility or disclose a different utility than the present invention.

20 Orahovats et al., "A Ring Enlargement From Seven- To Ten-Membered-Ring Sulfonamide Derivatives", Helv. Chim. Acta, vol. 79, pp. 1121-1128 (1996) describes 4,5-dihydro-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxide.

Katritzky et al., "Preparation Of 6-, 7- and 8-Membered Sultams By 25 Friedel-Crafts Cyclization Of ω -Phenylalkanesulfamoyl Chlorides", Org. Prep. Proced. Int., vol. 24(4), pp. 463-467 (1992) describes 2,3,4,5-tetrahydro-1,2-benzothiazepine-1,1-dioxide and 2,3,4,5-tetrahydro-2-butyl-1,2-benzothiazepine-1,1-dioxide for possible use as an anticonvulsant, diuretic or sedative.

- Beckwith et al., "Iododediazonation Of Arenediazonium Salts Accompanied By Aryl Radical Ring Closure", J. Org. Chem., vol. 52, pp. 1922-1930 (1987) describes 2,3,4,5-tetrahydro-2-allyl-1,2-benzothiazepine-1,1-dioxide.
- 5 Stassinopoulou et al., "¹³C NMR Spectra Of Benzothiazepine, Benzothiazone and Benzosulphonamide N-substituted Derivatives", Org. Magn. Reson., vol. 21(3), pp. 187-189 (1983), describes certain N-substituted 4,5-dihydro-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxides.
- Tamura et al., "Novel Conversions Of Benzo[b]thiophen-3(2H)-ones Into 1,2-Benzisothiazole And Tetrahydro-1,2-benzothiazepin-5-One Systems Via Sulphimide Intermediates", J. Chem. Soc., Perkin Trans. I, vol. 12, pp. 2830-2834 (1980) describes 2,3,4,5-tetrahydro-2-tosyl-4-methyl-1,2-benzothiazepine-5-one-1,1-dioxide.
- 10 Catsoulacos et al., "Synthesis Of Some N-Substituted 4,5-Dihydro-7,8-dimethoxybenzothiazepin-3-one 1,1-Dioxides", J. Hetero. Chem., vol. 13(6), pp. 1309-1314 (1976) describes 4,5-dihydro-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxide and certain 4,5-dihydro-2-(phenyl, substituted phenyl or pyridyl)-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxides having anti-inflammatory and central nervous system activity.
- 15 Pangiotopoulos et al., "N(p-Bromophenyl)-4,5-Dihydro-7,8-Dimethoxy Benzothiazepine-3-One 1,1-Dioxide C₁₇H₁₆BrNO₅S", Cryst. Struct. Comm., vol. 9, pp. 313-320 (1980) describes 4,5-dihydro-2-(4-bromo-phenyl)-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxide.
- 20 Catsoulacos et al., "Thiazo Compounds. Derivatives Of 4,5-Dihydro-7,8-Dimethoxybenzothiazepin-3-one 11-Dioxides", J. Chem. Eng. Data, vol. 22(3), pp. 353-354 (1977) describes 4,5-dihydro-2-(ethyl, n-propyl or isopropyl)-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxide.
- 25 Camoutsis et al., "N-Substituted 4,5-Dihydro-1,2-benzothiaepin-3-one 1,1-Dioxide", J. Hetero. Chem., vol. 17(5), pp. 1135-1136 (1980) describes

certain 4,5-dihydro-2-(3- or 5-pyridyl)-7,8-dimethoxy-1,2-benzothiazepine-3-one-1,1-dioxides.

U.S. Patent No. 5,350,761 describes hydroxylamine derivatives that generically encompass certain benzothiazepine compounds. These derivatives
5 are described as lipoxygenase inhibitors useful in the treatment of inflammatory and allergic conditions.

WO98/02432 published January 22, 1998 describes certain 5-(aryl-(N-containing-heterocyclyl)alkyl)benzothiazepines and aralkyl-(N-containing-heterocyclyl)alkyl)-benzothiazepines as useful for controlling micturition.

10 WO97/03953 published February 6, 1997 describes certain sulfonylamino-substituted benzothiazepines as inhibitors of the enzyme cyclooxygenase II.

15 WO95/21843 published August 17, 1995 describes certain benzothiazepines substituted with azacyclic condensed piperazines. These compounds are identified as kappa receptor agonists useful as analgesics and diuretics and for the treatment of cerebral ischaemia.

EP338331 published October 25, 1989 describes certain 2-benzothiazepine-5-ones useful as muscle relaxants.

Summary of the Invention

20 A first aspect of the invention comprises novel 1,2- benzothiazepines that are effective agents for the prophylaxis and/or treatment of hyperlipidemic diseases, conditions and/or disorders.

25 A second aspect of the invention comprises pharmaceutical compositions comprising the novel 1,2- benzothiazepines that are suitable for the prophylaxis and/or treatment of hyperlipidemic diseases, conditions and/or disorders.

A third aspect of the invention comprises methods for the prophylaxis and/or treatment of hyperlipidemic diseases, conditions and/or disorders

comprising administering to a subject a prophylactically or therapeutically effective amount of one of the novel 1,2-benzothiazepines.

A fourth aspect of the invention comprises methods of making the novel 1,2-benzothiazepines of the present invention.

5 Additional aspects of the invention are discussed throughout the specification of this application.

Detailed Description of the Invention

The following detailed description is provided to aid those skilled in the art in practicing the present invention. This detailed description, 10 however, should not be construed to unduly limit the present invention as modifications and variations in the embodiments discussed herein can be made by those of ordinary skill in the art without departing from the spirit or scope of the present inventive discovery. The contents of each of the references cited herein, including the contents of the references cited within 15 these primary references, are herein incorporated by reference in their entirety.

Accordingly, the present invention provides compounds corresponding to the structure of Formula (I):

(I)

q is an integer from 1 to 4;

R¹ and R² are independently selected from the group consisting of hydrogen and hydrocarbyl, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, 5 and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus;

R³ and R⁴ are independently selected from the group consisting of hydrogen; hydrocarbyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and - 10 SO₃R⁹; or

R³ and R⁴ together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or =CR¹¹R¹²;

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen; hydrocarbyl; amino; and hydrocarbylamino; wherein 15 said hydrocarbyl moieties may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl moieties optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; and

20 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; hydrocarbyl; -OR⁹; -NR⁹R¹⁰; - SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more 25 carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; or R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

R⁵ and R⁶ are independently selected from the group consisting of

hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocycl; quaternary heterocycl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

wherein the R⁵ and R⁶ radicals optionally may be substituted with one or more radicals independently selected from the group consisting of halogen; -NO₂; -CN; oxo; hydrocarbyl; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from hydrogen and hydrocarbyl, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocycl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein A⁻ is a pharmaceutically acceptable anion, and M is a

- pharmaceutically acceptable cation; and
wherein R⁹ is as defined above; or
R⁴ and R⁶ together represent a bond; and
R^N is selected from the group consisting of hydrogen and
- 5 hydrocarbyl, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus;
- 10 one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; hydrocarbyl; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -S(O)_nNR¹³R¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; and
- 20 wherein n is 0, 1 or 2; and
wherein R¹³, R¹⁴, R¹⁵, A⁻, and M are as defined above; or
a pharmaceutically acceptable salt, solvate, or prodrug thereof; and
- 25 provided that at least one of R¹, R², R³, R⁴, R⁵, and R⁶ is a radical other than hydrogen or alkyl; and
provided that when R⁵ or R⁶ is aryl, the other of R⁵ and R⁶ is a radical other than heterocyclylalkyl.

A preferred class of compounds comprises those compounds of Formula I wherein:

q is an integer from 1 to 4;

R¹ and R² are independently selected from the group consisting of

5 hydrogen; alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyloxyalkyl; heterocycloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl; or

10 R¹ and R² taken together with the carbon to which they are attached form C₃-C₁₀ cycloalkyl or C₃-C₁₀ cycloalkenyl;

wherein the R¹ and R² alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl;

15 aryloxyalkynyl; heterocyclyloxyalkyl; heterocycloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R^wA⁻; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; and

wherein the R¹ and R² alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyloxyalkyl; heterocycloxyalkenyl;

25 heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P(O)R⁹-; -P⁺R⁹R¹⁰A⁻-; or phenylene; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; or

5 wherein A⁻ is a pharmaceutically acceptable anion; and R³ and R⁴ are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; or

10 R³ and R⁴ together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or =CR¹¹R¹²;

 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; or

 R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

 wherein R⁹ and R¹⁰ are as defined above; and

20 R⁵ and R⁶ are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

 wherein the R⁵ and R⁶ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radicals optionally may be substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -

- CO_2R^{13} ; -OM; - SO_2OM ; - $\text{SO}_2\text{NR}^{13}\text{R}^{14}$; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -
5 P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and
wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
heterocyclalkyl, and polyether substituents of the R⁵ and R⁶ radicals
optionally may be further substituted with one or more radicals selected
10 from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl;
alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; quaternary
heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -
CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -
P(O)(OR⁷)OR⁸; and
15 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
heterocyclalkyl, and polyether substituents of the R⁵ and R⁶ radicals
optionally may have one or more carbons replaced by -O-; -NR⁷-; -
N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or
20 phenylene; and
wherein R⁷ and R⁸ are independently selected from the group
consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and
wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the
group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl;
25 alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl;
alkylheterocyclalkyl; alkylammoniumalkyl; aminoalkyl;
aminocarbonylalkyl; alkylaminocarbonylalkyl;
carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

5 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

- wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylkyl; 10 alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; 15 alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidiny; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and
- 20 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; 25 carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and wherein R¹⁶ and R¹⁷ are independently selected from the group

consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and

R^N is selected from the group consisting of hydrogen; alkyl; alkenyl;

5 alkynyl; aralkyl; and heterocyclalkyl; and

one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; polyether; acyloxy; -OR¹³; -

10 NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -

NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -

NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -

S(O)_nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -

-P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue;

15 polypeptide residue; and carbohydrate residue;

wherein the R^x alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -

20 NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -

CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -

P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R^x quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of

25 halogen; -CN; -NO₂; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl;

hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl;

heterocyclalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -

SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; OM; -

SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -

$P(O)R^{13}R^{14}$; $-P^{13}R^{14}$; $-P^+R^{13}R^{14}R^{15}A^-$; $-P(OR^{13})OR^{14}$; $-S^+R^{13}R^{14}A^-$;
 $; -N^+R^{13}R^{14}R^{15}A^-$; and carbohydrate residue; and

wherein the R^X radicals comprising carbon optionally may have one or more carbons replaced by $-O-$; $-NR^{13}-$; $-N^+R^{13}R^{14}A^-$; $-S-$; $-SO-$; $-SO_2-$;
 $5 -S^+R^{13}A^-$; $-PR^{13}-$; $-P(O)R^{13}-$; $-PR^{13}R^{14}$; $-P^+R^{13}R^{14}A^-$; phenylene;
amino acid residue; peptide residue; polypeptide residue; carbohydrate
residue; polyether; or polyalkyl; wherein said phenylene; amino acid
residue; peptide residue; polypeptide residue; carbohydrate residue; and
polyalkyl optionally may have one or more carbons replaced by $-O-$; $-NR^9-$;
 $10 -N^+R^9R^{10}A^-$; $-S-$; $-SO-$; $-SO_2-$; $-S^+R^9A^-$; $-PR^9-$; $-P^+R^9R^{10}A^-$; or $-$
 $P(O)R^9-$; and

wherein R^{18} is selected from the group consisting of alkyl; alkenyl;
alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
heterocyclylalkyl; acyl; alkoxy carbonyl; arylalkoxy carbonyl; and
 15 heterocyclylalkoxy carbonyl; and

wherein the R^{18} alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxy carbonyl;
arylalkoxy carbonyl; and heterocyclylalkoxy carbonyl radicals optionally
may be substituted with one or more radicals selected from the group
 20 consisting of halogen; $-CN$; NO_2 ; oxo; $-OR^9$; $-NR^9R^{10}$; $-N^+R^9R^{11}R^{12}A^-$;
 $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; $-CONR^9R^{10}$; $-SO_2OM$; $-$
 $S_2NR^9R^{10}$; $-PR^9R^{10}$; $-P(OR^{13})OR^{14}$; $-PO(OR^{16})OR^{17}$; and $-C(O)OM$;
and

wherein R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^w , A^- , and M are as
 25 defined above; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof.

In the various embodiments of the invention, R^5 and R^6 preferably
are independently selected from the group consisting of H; aryl;

heterocyclyl; and quaternary heterocyclyl;
 wherein the R⁵ and R⁶ aryl; heterocyclyl; and quaternary
 heterocyclyl; radicals optionally may be substituted with one or more
 radicals independently selected from the group consisting of halogen; -CN;
 5 -NO₂; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl;
 alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
 heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -
 SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -
 SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -
 10 NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -
 OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -
 NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻
 ; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and
 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
 15 alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
 heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals
 optionally may be further substituted with one or more radicals selected
 from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl;
 alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary
 20 heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -
 CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -
 P(O)(OR⁷)OR⁸; and
 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
 alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
 25 heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals
 optionally may have one or more carbons replaced by -O-; -NR⁷-; -
 N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or
 phenylene; and
 wherein R⁷ and R⁸ are independently selected from the group

consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and
wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the
group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl;
alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
5 heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl;
alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl;
alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether;
or
wherein R¹³ and R¹⁴ together with the nitrogen atom to which they
10 are attached form a mono- or polycyclic heterocyclyl that is optionally
substituted with one or more radicals selected from the group consisting of
oxo, carboxy, and quaternary salts; or
wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they
are attached form a cyclic ring; and
15 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl;
polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl;
arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl;
alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl;
alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether
20 radicals optionally may be substituted with one or more radicals selected
from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl;
hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl;
guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹;
25 -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -
PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and
wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl;
polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl;
arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl;

- alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-;
- 5 phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and
- wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and
- wherein M is a pharmaceutically acceptable cation; and
- 10 wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as previously set forth above for the compounds of Formula I.

More preferably, R⁵ or R⁶ has the formula -Ar-(R_y)_t
 wherein:
 t is an integer from 0 to 5;
 15 Ar is selected from the group consisting of phenyl; thiophenyl; pyridyl; piperazinyl; piperonyl; pyrrolyl; naphthyl; furanyl; anthracenyl; quinolinyl; isoquinolinyl; quinoxalinyl; imidazolyl; pyrazolyl; oxazolyl; isoxazolyl; pyrimidinyl; thiazolyl; triazolyl; isothiazolyl; indolyl; benzimidazolyl; benzoxazolyl; benzothiazolyl; and benzoisothiazolyl; and
 20 one or more R^y are independently selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -

$P(OR^{13})OR^{14}$; $-S^+R^{13}R^{14}A^-$; and $-N^+R^{13}R^{14}R^{15}A^-$; and

- wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^Y radicals optionally 5 may be further substituted with one or more radicals selected from the group consisting of $-CN$; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$; $-CONR^7R^8$; $-N^+R^7R^8R^9A^-$; $-P(O)R^7R^8$; $-PR^7R^8$; $-P^+R^7R^8R^9A^-$; and $-P(O)(OR^7)OR^8$; and
- wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^Y radicals optionally 10 may have one or more carbons replaced by $-O-$; $-NR^7-$; $-N^+R^7R^8A^-$; $-S-$; $-SO-$; $-SO_2-$; $-S^+R^7A^-$; $-PR^7-$; $-P(O)R^7-$; $-P^+R^7R^8A^-$; or phenylene; and
- wherein R^7 and R^8 are independently selected from the group 15 consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or
- wherein R^{13} and R^{14} together with the nitrogen atom to which they 20 are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or
- wherein R^{14} and R^{15} together with the nitrogen atom to which they 25

are attached from a cyclic ring; and

- wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl;
- 5 alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary 10 heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and
- 15 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; 20 phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and
- 25 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and
- wherein M is a pharmaceutically acceptable cation; and
- wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as previously set forth above for the compounds of Formula I.

Still more preferably, at least one of R⁵ or R⁶ has the formula (II)

(II)

wherein R^y and t are defined as above.

5 In the various embodiments of the invention, the compounds of Formula I preferably satisfy at least one or more of the following additional conditions:

- (1) R^1 and R^2 are independently selected from the group consisting of hydrogen, alkyl and (C_{3-10}) cycloalkyl. Preferably, R^1 and R^2 are independently selected from the group consisting of hydrogen and (C_{1-10}) alkyl. More preferably, R^1 and R^2 are independently selected from the group consisting of (C_{1-10}) alkyl. Still more preferably, R^1 and R^2 are independently selected from the group consisting of (C_{1-7}) alkyl. Still more preferably, R^1 and R^2 are independently selected from the group consisting of (C_{2-4}) alkyl. Still more preferably, R^1 and R^2 are the same (C_{2-4}) alkyl. Still more preferably, R^1 and R^2 are each n-butyl; and/or
- (2) R^3 and R^4 are independently selected from the group consisting of hydrogen and $-\text{OR}^9$ wherein R^9 is defined as previously set forth above for the compounds of Formula I. Preferably, R^3 is hydrogen and R^4 is $-\text{OR}^9$. Still more preferably, R^3 is hydrogen and R^4 is hydroxy. Still more preferably, the hydroxy group is in a syn relationship to the structure of Formula II; and/or
- (3) R^5 is phenyl substituted with a radical selected from the group

consisting of -OR¹³, -NR¹³R¹⁴, -NR¹³C(O)R¹⁴, -NR¹³C(O)NR¹⁴R¹⁵, -NR¹³CO₂R¹⁴, -OC(O)R¹³, -OC(O)NR¹³R¹⁴, -NR¹³SOR¹⁴, -NR¹³SO₂R¹⁴, -NR¹³SONR¹⁴R¹⁵, and -NR¹³SO₂NR¹⁴R¹⁵ wherein R¹³, R¹⁴ and R¹⁵ are as previously set forth above for the compounds of Formula I. Still more

5 preferably, R⁵ is phenyl substituted with -OR¹³ or -NR¹³C(O)R¹⁴. Still more preferably, R⁵ is phenyl substituted at the para or meta position with -OR¹³ wherein R¹³ comprises a quaternary heterocyclyl, quaternary heterocyclalkyl or alkylammoniumalkyl, or R⁵ is phenyl substituted at the para or meta position with -NR¹³C(O)R¹⁴ wherein R¹³ is hydrogen and R¹⁴ 10 comprises a quaternary heterocyclyl, quaternary heterocyclalkyl or alkylammoniumalkyl; and/or

(4) R⁶ is hydrogen; and/or

(5) R^N is selected from the group consisting of hydrogen, alkyl and aralkyl. Preferably, R^N is selected from the group consisting of hydrogen, 15 (C₁₋₁₀)alkyl and aryl(C₁₋₁₀)alkyl. More preferably, R^N is selected from the group consisting of hydrogen, methyl, ethyl and benzyl. Still more preferably, R^N is hydrogen; and/or

(6) R^x is independently selected from the group consisting of -OR¹³, -NR¹³R¹⁴, -N⁺R¹³R¹⁴R¹⁵A⁻, and polyether. More preferably, R^x is selected 20 from the group consisting of -OR¹³ and -NR¹³R¹⁴. Still more preferably, R^x is selected from the group consisting of alkoxy, amino, alkylamino and dialkylamino. Still more preferably, R^x is selected from the group consisting of methoxy and dimethylamino; and/or

(7) One or more R^x are present at the 7-, 8- or 9-position of the benzo ring of the structure of Formula I. Preferably, said R^x are present at the 7- and 9-positions of the benzo ring of the structure of Formula I. More preferably, R^x is present at the 7-position of the benzo ring of the structure of Formula I; and/or

(8) q is 1, 2 or 3. Preferably, q is 1 or 2, and more preferably q is 1;

and/or

(9) t is 1 or 2.

In still another embodiment of the invention, the compounds of Formula I satisfy at least one or more of the above-described conditions and
5 R⁵ comprises a carbohydrate residue.

A more preferred class of compounds comprises those compounds of Formula I wherein:

- q is an integer from 1 to 4;
- R¹ and R² are independently selected from the group consisting of
10 hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; arylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; alkylaryl; and (polyalkyl)aryl; or
R¹ and R² taken together with the carbon to which they are attached form C₃-C₁₀ cycloalkyl or C₃-C₁₀ cycloalkenyl; and
wherein the R¹ and R² alkyl; cycloalkyl; alkenyl; alkynyl; arylalkyl;
15 alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R^WA⁻; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; and
20 wherein the R¹ and R² alkyl; cycloalkyl; alkenyl; alkynyl; arylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P(O)R⁹-; -P⁺R⁹R¹⁰A⁻; or phenylene; and
25 wherein R⁹, R¹⁰, and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl;

carboxyalkyl; carboalkoxyalkyl; carboxyheterocyclyl; carboxyalkylamino; and acyl; and

wherein A⁻ is a pharmaceutically acceptable anion; and

R³ and R⁴ are independently selected from the group consisting of
5 hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; or

R³ and R⁴ together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or
=CR¹¹R¹²;

wherein R¹¹ and R¹² are independently selected from the group
10 consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; carboxyalkyl; carboalkoxyalkyl; cycloalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are
15 attached form a cyclic ring; and

wherein R⁹ and R¹⁰ are as defined above; and

R⁵ and R⁶ are independently selected from the group consisting of
hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
20 heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

wherein the R⁵ and R⁶ alkyl; cycloalkyl; alkenyl; alkynyl; aryl;
heterocyclyl; and quaternary heterocyclyl radicals optionally may be
substituted with one or more radicals independently selected from the group
consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl;
cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl;
25 arylalkyl; heterocyclalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -

$\text{NR}^{13}\text{SO}_2\text{NR}^{14}\text{R}^{15}$; $-\text{PR}^{13}\text{R}^{14}$; $-\text{P(O)R}^{13}\text{R}^{14}$; $-\text{P}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; $-\text{P(OR}^{13})\text{OR}^{14}$; $-\text{S}^+\text{R}^{13}\text{R}^{14}\text{A}^-$; and $-\text{N}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^5 and R^6 radicals 5 optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclyl; $-\text{OR}^7$; $-\text{NR}^7\text{R}^8$; $-\text{SR}^7$; $-\text{S(O)R}^7$; $-\text{SO}_2\text{R}^7$; $-\text{SO}_3\text{R}^7$; $-\text{CO}_2\text{R}^7$; $-\text{CONR}^7\text{R}^8$; $-\text{N}^+\text{R}^7\text{R}^8\text{R}^9\text{A}^-$; $-\text{P(O)R}^7\text{R}^8$; $-\text{PR}^7\text{R}^8$; $-\text{P}^+\text{R}^7\text{R}^8\text{R}^9\text{A}^-$; and $-\text{P(O)(OR}^7)\text{OR}^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^5 and R^6 radicals 15 optionally may have one or more carbons replaced by $-\text{O}-$; $-\text{NR}^7-$; $-\text{N}^+\text{R}^7\text{R}^8\text{A}^-$; $-\text{S}-$; $-\text{SO}_2-$; $-\text{S}^+\text{R}^7\text{A}^-$; $-\text{PR}^7-$; $-\text{P(O)R}^7-$; $-\text{P}^+\text{R}^7\text{R}^8\text{A}^-$; or phenylene; and

wherein R^7 and R^8 are independently selected from the group 20 consisting of hydrogen and alkyl; and wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylkyl; alkylheterocyclalkyl; alkylammoniumalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; 5 arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; sulfoalkyl; 10 heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

15 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether 20 radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

25 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and

R^N is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; and aralkyl; and

one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl; haloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)_nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide acid residue; polypeptide acid residue; and

carbohydrate acid residue;

wherein the R^X alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate acid residue; and

wherein the R^X quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and carbohydrate acid residue; and

wherein the R^X radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR¹³-; -P(O)R¹³-; -PR¹³-; -P⁺R¹³R¹⁴A⁻-; phenylene; amino

- acid; peptide; polypeptide; carbohydrate; polyether; or polyalkyl; wherein said phenylene; amino acid; peptide; polypeptide; carbohydrate; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; or -P(O)R⁹-; and
- 5 wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxy carbonyl; arylalkoxy carbonyl; and heterocyclylalkoxy carbonyl; and
- 10 wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxy carbonyl; arylalkoxy carbonyl; and heterocyclylalkoxy carbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -15 SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and
- wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as defined above; or
- 20 a pharmaceutically acceptable salt, solvate, or prodrug thereof.

A class of compounds of interest comprises those compounds of Formula I wherein:

- q is an integer from 1 to 4;
- R¹ and R² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkenyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkynyl; (C₁-C₁₀)alkylaryl; and (polyalkyl)aryl; or

R^1 and R^2 taken together with the carbon to which they are attached form $(C_3-C_{10})cycloalkyl$; and

wherein the R^1 and R^2 (C_1-C_{10})alkyl; $(C_3-C_{10})cycloalkyl$; $(C_2-C_{10})alkenyl$; $(C_2-C_{10})alkynyl$; aryl(C_1-C_{10})alkyl; $(C_1-C_{10})alkoxy(C_1-C_{10})alkyl$; $(C_1-C_{10})alkoxy(C_2-C_{10})alkenyl$; $(C_1-C_{10})alkoxy(C_2-C_{10})alkynyl$; $(C_1-C_{10})alkylaryl$; and (polyalkyl)aryl radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; $-OR^9$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^9$; $-S^+R^9R^{10}A^-$; $-PR^9R^{10}$; $-P^+R^9R^{10}R^WA^-$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; and $-CONR^9R^{10}$;

and

wherein the R^1 and R^2 (C_1-C_{10})alkyl; $(C_3-C_{10})cycloalkyl$; $(C_2-C_{10})alkenyl$; $(C_2-C_{10})alkynyl$; aryl(C_1-C_{10})alkyl; $(C_1-C_{10})alkoxy(C_1-C_{10})alkyl$; $(C_1-C_{10})alkoxy(C_2-C_{10})alkenyl$; $(C_1-C_{10})alkoxy(C_2-C_{10})alkynyl$; $(C_1-C_{10})alkylaryl$; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by -O-; $-NR^9-$; $-N^+R^9R^{10}A^-$; $-S-$; $-SO-$; $-SO_2-$; $-S^+R^9A^-$; $-PR^9$; $-P(O)R^9-$; $-P^+R^9R^{10}A^-$; or phenylene; and

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; $(C_1-C_{10})alkyl$; $(C_3-C_{10})cycloalkyl$; $(C_2-C_{10})alkenyl$; $(C_2-C_{10})alkynyl$; aryl; heterocyclyl; ammonium(C_1-C_{10})alkyl; $(C_1-C_{10})alkylammonium(C_1-C_{10})alkyl$; aryl(C_1-C_{10})alkyl; heterocyclyl(C_1-C_{10})alkyl; carboxy(C_1-C_{10})alkyl; carbo(C_1-C_{10})alkoxy(C_1-C_{10})alkyl; carboxyheterocyclyl; carboxy(C_1-C_{10})alkylamino; and acyl; and

wherein A^- is a pharmaceutically acceptable anion; and
 R^3 and R^4 are independently selected from the group consisting of hydrogen; $(C_1-C_{10})alkyl$; $(C_2-C_{10})alkenyl$; $(C_2-C_{10})alkynyl$; aryl; heterocyclyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; and $-SO_3R^9$; or
 R^3 and R^4 together form $=O$; $=NOR^9$; $=S$; $=NNR^9R^{10}$; $=NR^9$; or
 $=CR^{11}R^{12}$;

wherein R^{11} and R^{12} are independently selected from the group

consisting of hydrogen; -CN; halogen; oxo; (C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; cyano(C₁-C₁₀)alkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -

5 CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R⁹ and R¹⁰ are as defined above; and

R⁵ and R⁶ are independently selected from the group consisting of

10 hydrogen; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

15 wherein the R⁵ and R⁶ (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radicals optionally may be substituted with one or more radicals

independently selected from the group consisting of halogen; -CN; -NO₂; oxo; (C₁-C₁₀)alkyl; polyalkyl; halo(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -

20 P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

25 wherein the (C₁-C₁₀)alkyl, polyalkyl, halo(C₁-C₁₀)alkyl, hydroxy(C₁-C₁₀)alkyl, (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, aryl(C₁-C₁₀)alkyl, heterocyclyl(C₁-C₁₀)alkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally

- may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; (C_1 - C_{10})alkyl; (C_3 - C_{10})cycloalkyl; (C_2 - C_{10})alkenyl; (C_2 - C_{10})alkynyl; aryl; heterocyclyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and
- wherein the (C_1 - C_{10})alkyl, polyalkyl, halo(C_1 - C_{10})alkyl, hydroxy(C_1 - C_{10})alkyl, (C_3 - C_{10})cycloalkyl, (C_2 - C_{10})alkenyl, (C_2 - C_{10})alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, aryl(C_1 - C_{10})alkyl, heterocyclyl(C_1 - C_{10})alkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen and (C_1 - C_{10})alkyl; and
- wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; halo(C_1 - C_{10})alkyl; (C_3 - C_{10})cycloalkyl; polyalkyl; (C_2 - C_{10})alkenyl; (C_2 - C_{10})alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylaryl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylheterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; carboxy(C_1 - C_{10})alkylaminocarbonyl(C_1 - C_{10})alkyl; and polyether; or
- wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or
- wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and
- wherein the R¹³, R¹⁴, and R¹⁵ (C_1 - C_{10})alkyl; halo(C_1 - C_{10})alkyl; (C_3 - C_{10})cycloalkyl; polyalkyl; (C_2 - C_{10})alkenyl; (C_2 - C_{10})alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylaryl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylheterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; carboxy(C_1 - C_{10})alkylaminocarbonyl(C_1 - C_{10})alkyl; and polyether; or

$C_{10})$ cycloalkyl; polyalkyl; (C_2-C_{10}) alkenyl; (C_2-C_{10}) alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C_1-C_{10})alkyl; heterocyclyl(C_1-C_{10})alkyl; quaternary heterocyclyl(C_1-C_{10})alkyl; (C_1-C_{10}) alkylaryl (C_1-C_{10})alkyl; (C_1-C_{10}) alkylheterocyclyl(C_1-C_{10})alkyl; (C_1-C_{10}) alkylammonium(C_1-C_{10})alkyl; aminocarbonyl(C_1-C_{10})alkyl; (C_1-C_{10}) alkylaminocarbonyl(C_1-C_{10})alkyl; carboxy(C_1-C_{10})alkylaminocarbonyl (C_1-C_{10})alkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; (C_1-C_{10}) alkyl; sulfo(C_1-C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C_1-C_{10})alkyl; carboxy; carboxy(C_1-C_{10})alkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and wherein the R¹³, R¹⁴, and R¹⁵ (C_1-C_{10})alkyl; halo(C_1-C_{10})alkyl; (C_3-C_{10})cycloalkyl; polyalkyl; (C_2-C_{10}) alkenyl; (C_2-C_{10}) alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C_1-C_{10})alkyl; heterocyclyl(C_1-C_{10})alkyl; quaternary heterocyclyl(C_1-C_{10})alkyl; (C_1-C_{10}) alkylaryl (C_1-C_{10})alkyl; (C_1-C_{10}) alkylheterocyclyl(C_1-C_{10})alkyl; (C_1-C_{10}) alkylammonium(C_1-C_{10})alkyl; aminocarbonyl(C_1-C_{10})alkyl; (C_1-C_{10}) alkylaminocarbonyl(C_1-C_{10})alkyl; carboxy(C_1-C_{10})alkylaminocarbonyl(C_1-C_{10})alkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and wherein M is a pharmaceutically acceptable cation; and wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and R^N is selected from the group consisting of hydrogen; (C_1-C_{10})alkyl;

(C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; and aryl(C₁-C₁₀)alkyl; and

one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; halo(C₁-C₁₀)alkyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)_nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide acid residue; polypeptide acid residue; and carbohydrate acid residue;

wherein the R^X (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; halo(C₁-C₁₀)alkyl; hydroxy(C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl;

heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; acyloxy radicals optionally may be further substituted with halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; or -S⁺R⁹R¹⁰A⁻; and

wherein the R^X quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO₂; oxo; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; halo(C₁-C₁₀)alkyl; hydroxy(C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the R^X radicals comprising carbon optionally may have one or more carbons replaced by -O-; $-NR^{13}-$; $-N^+R^{13}R^{14}A^-$; -S-; -SO-; -SO₂-; $-S^+R^{13}A^-$; $-PR^{13}-$; $-P(O)R^{13}-$; $-PR^{13}-$; $-P^+R^{13}R^{14}A^-$; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue;

5 polyether; or polyalkyl; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; $-NR^9-$; $-N^+R^9R^{10}A^-$; -S-; -SO-; -SO₂-; $-S^+R^9A^-$; $-PR^9-$; $-P^+R^9R^{10}A^-$; or $-P(O)R^9-$; and

10 wherein R^{18} is selected from the group consisting of (C_1-C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C_1-C_{10})alkyl; acyl; and aryl(C_1-C_{10})alkoxycarbonyl; and

15 wherein the R^{18} (C_1-C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C_1-C_{10})alkyl; acyl; and aryl(C_1-C_{10})alkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; $-OR^9$; $-NR^9R^{10}$; $-N^+R^9R^{11}R^{12}A^-$; $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; $-CONR^9R^{10}$; $-SO_2OM$; $-SO_2NR^9R^{10}$; $-PR^9R^{10}$; $-P(O)R^{13}OR^{14}$; $-PO(O)R^{16}OR^{17}$; and $-C(O)OM$; and

20 wherein R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^w , A^- , and M are as defined above; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; and provided that aryl is selected from the group consisting of optionally substituted phenyl, biphenyl and naphthyl; and

25 provided that heterocyclyl is selected from the group consisting of optionally substituted heterocyclyl comprising a 5 to 10 membered ring and comprising one or more ring atoms that are heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus.

A class of compounds of particular interest comprises those

compounds of Formula I wherein:

q is an integer from 1 to 4;

R¹ and R² are independently selected from the group consisting of hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, 5 tert-butyl, pentyl, hexyl, phenoxyethylene, phenoxyethylene, phenoxypropylene, pyridinyloxymethylene, pyridinyloxyethylene; methylpyridinyloxymethylene, methylpyridinyloxyethylene, pyrimidinyloxymethylene, and pyrimidinyloxyethylene; or

10 R¹ and R² taken together with the carbon to which they are attached form cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, hydroxy, methyl, ethyl, phenyl, pyridinyl, amino, methylamino, dimethylamino, ethylamino and diethylamino; and

15 R⁵ and R⁶ are independently selected from the group consisting of hydrogen, phenyl, chlorophenyl, fluorophenyl, bromophenyl, iodophenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, methoxy(chlorophenyl), methoxy(fluorophenyl), methoxy(bromophenyl), methoxy(iodophenyl), ethoxy(chlorophenyl), ethoxy(fluorophenyl), ethoxy(bromophenyl), ethoxy(iodophenyl), nitrophenyl, aminophenyl, methylaminophenyl,

20 dimethylaminophenyl, ethylaminophenyl, diethylaminophenyl, trimethylammoniumphenyl, triethylammoniumphenyl,

trimethylammoniummethylcarbonylaminophenyl, triethylammoniummethylcarbonylaminophenyl, trimethylammoniummethylcarbonylaminophenyl,

25 triethylammoniummethylcarbonylaminophenyl,

trimethylammoniumpropylcarbonylaminophenyl,

triethylammoniumpropylcarbonylaminophenyl,

trimethylammoniumbutylcarbonylaminophenyl,

triethylammoniumbutylcarbonylaminophenyl, methylcarbonylaminophenyl,

- chloromethylcarbonylaminophenyl, fluoromethylcarbonylaminophenyl,
bromomethylcarbonylaminophenyl, iodomethylcarbonylaminophenyl,
ethylcarbonylaminophenyl, chloroethylcarbonylaminophenyl,
fluoroethylcarbonylaminophenyl, bromoethylcarbonylaminophenyl,
5 iodoethylcarbonylaminophenyl, propylcarbonylaminophenyl,
chloropropylcarbonylaminophenyl, fluoropropylcarbonylaminophenyl,
bromopropylcarbonylaminophenyl, iodopropylcarbonylaminophenyl,
butylcarbonylaminophenyl, chlorobutylcarbonylaminophenyl,
fluorobutylcarbonylaminophenyl, bromobutylcarbonylaminophenyl,
10 iodobutylcarbonylaminophenyl, 3,4-dioxymethylenephenyl, pyridinyl,
methylpyridinyl, pyridinium, methylpyridinium, thienyl, chlorothienyl,
fluorothienyl, bromothienyl, iodothienyl; methoxycarbonylphenyl,
ethoxycarbonylphenyl, trimethylammoniummethoxyethoxyethoxyphenyl,
triethylammoniummethoxyethoxyethoxyphenyl,
15 chloroethoxyethoxyethoxyphenyl, fluoroethoxyethoxyethoxyphenyl,
bromoethoxyethoxyethoxyphenyl, iodoethoxyethoxyethoxyphenyl,
pyridiniummethoxyethoxyethoxyphenyl,
piperazinyloxymethoxyethoxyethoxyphenyl,
methylpiperazinyloxymethoxyethoxyethoxyphenyl,
20 dimethylpiperazinyloxymethoxyethoxyethoxyphenyl,
piperidinyloxymethoxyethoxyethoxyphenyl,
methylpiperidinyloxymethoxyethoxyethoxyphenyl, and
dimethylpiperidinyloxymethoxyethoxyethoxyphenyl; and
 R^N is selected from the group consisting of hydrogen, methyl, ethyl,
25 n-propyl, n-butyl, n-pentyl, n-hexyl and benzyl; and
one or more R^X radicals are independently selected from the group
consisting of hydroxy, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl,
tert-butyl, sec-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, methylthio,
methylsulfinyl, methylsulfonyl, ethylthio, ethylsulfinyl, ethylsulfonyl,

amino, hydroxyamino, methylamino, dimethylamino, ethylamino,
diethylamino, trimethylammonium, triethylammonium, N-methyl-N-
carboxymethyl-amino, N,N-dimethyl-N-carboxymethyl-ammonium,
methylcarbonylamino, chloromethylcarbonylamino,
5 fluoromethylcarbonylamino, bromomethylcarbonylamino,
iodomethylcarbonylamino, ethylcarbonylamino, n-propylcarbonylamino, n-
butylcarbonylamino, n-pentylcarbonylamino, n-hexylcarbonylamino,
benzyloxycarbonylamino, aminoimidocarbonylamino, morpholinyl, N-
methyl-morpholinium, azetidinyl, N-methyl-azetidinium, pyrrolidine, N-
10 methyl-pyrrolidinium, piperazinyl, N-methylpiperazinyl, N,N'-dimethyl-
piperazinium, piperidinyl, methylpiperidinyl, N-methyl-piperidinium, and
thienyl; or
a pharmaceutically acceptable salt, solvate, or prodrug thereof.

A class of compounds of specific interest comprises those
15 compounds of Formula I wherein:

q is an integer from 1 to 4;

R¹ and R² are independently selected from the group consisting of
hydrogen and (C₁-C₁₀)alkyl; or

R¹ and R² taken together with the carbon to which they are attached
20 form (C₃-C₁₀)cycloalkyl; and

R³ and R⁴ are independently selected from the group consisting of
hydrogen and hydroxy; and

R⁵ is phenyl, wherein said phenyl is optionally substituted with one
or more radicals independently selected from the group consisting of
25 halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl;
heterocycl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴;
and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the

group consisting of hydrogen; (C_1 - C_{10})alkyl; halo(C_1 - C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylheterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; and polyether; or

5 wherein the R^{13} , R^{14} , and R^{15} (C_1 - C_{10})alkyl; halo(C_1 - C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylheterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; and polyether radicals optionally may be substituted with one or more

10 radicals selected from the group consisting of halogen; (C_1 - C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; carboxy; carboxy(C_1 - C_{10})alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; and -CONR⁹R¹⁰; and

15 wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; heterocyclyl; ammonium(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; carboxy(C_1 - C_{10})alkyl; carbo(C_1 - C_{10})alkoxy(C_1 - C_{10})alkyl; carboxyheterocyclyl; carboxy(C_1 - C_{10})alkylamino; and acyl; or

20 wherein A⁻ is a pharmaceutically acceptable anion; and

25 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; heterocyclyl; aryl(C_1 - C_{10})alkyl; carboxy(C_1 - C_{10})alkyl; and carbo(C_1 - C_{10})alkoxy(C_1 - C_{10})alkyl; or R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

25 wherein R^w and R¹⁶ are as previously set forth above for the compounds of Formula I; and

R⁶ is hydrogen; and

R^N is selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; and aryl(C_1 - C_{10})alkyl; and

one or more R^X radicals are independently selected from the group consisting of hydrogen; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; -OR¹³; -NR¹³R¹⁴;

wherein R¹³ and R¹⁴ are as defined above; or

5 a pharmaceutically acceptable salt, solvate, or prodrug thereof; and provided that aryl is selected from the group consisting of optionally substituted phenyl, biphenyl and naphthyl; and

provided that heterocyclyl is selected from the group consisting of optionally substituted heterocyclyl comprising a 5 to 10 membered ring and comprising one or more ring atoms that are heteroatoms selected from the 10 group consisting of oxygen, nitrogen, sulfur and phosphorus.

A class of compounds of high interest comprises those compounds of Formula I wherein:

q is an integer from 1 to 4;

15 R¹ and R² are independently selected from the group consisting of ethyl and n-butyl; or

R¹ and R² taken together with the carbon to which they are attached form cyclopentyl; and

one of R³ and R⁴ is hydrogen and the other of R³ and R⁴ is 20 hydroxy; and

R⁵ is selected from the group consisting of phenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, nitrophenyl, aminophenyl, methylaminophenyl, dimethylaminophenyl, ethylaminophenyl, diethylaminophenyl, trimethylammoniumphenyl, triethylammoniumphenyl, 25 trimethylammoniummethylcarbonylaminophenyl, triethylammoniummethylcarbonylaminophenyl, trimethylammoniummethylcarbonylaminophenyl, triethylammoniummethylcarbonylaminophenyl,

trimethylammoniumpropylcarbonylaminophenyl,
triethylammoniumpropylcarbonylaminophenyl,
trimethylammoniumbutylcarbonylaminophenyl,
triethylammoniumbutylcarbonylaminophenyl, methylcarbonylaminophenyl,
5 chloromethylcarbonylaminophenyl, fluoromethylcarbonylaminophenyl,
bromomethylcarbonylaminophenyl, iodomethylcarbonylaminophenyl,
ethylcarbonylaminophenyl, chloroethylcarbonylaminophenyl,
fluoroethylcarbonylaminophenyl, bromoethylcarbonylaminophenyl,
iodoethylcarbonylaminophenyl, propylcarbonylaminophenyl,
10 chloropropylcarbonylaminophenyl, fluoropropylcarbonylaminophenyl,
bromopropylcarbonylaminophenyl, iodopropylcarbonylaminophenyl,
butylcarbonylaminophenyl, chlorobutylcarbonylaminophenyl,
fluorobutylcarbonylaminophenyl, bromobutylcarbonylaminophenyl,
iodobutylcarbonylaminophenyl,
15 trimethylammoniummethoxyethoxyethoxyphenyl,
triethylammoniummethoxyethoxyethoxyphenyl,
chloroethoxyethoxyethoxyphenyl, fluoroethoxyethoxyethoxyphenyl,
bromoethoxyethoxyethoxyphenyl, iodoethoxyethoxyethoxyphenyl, and
pyridiniummethoxyethoxyethoxyphenyl; and
20 R⁶ is hydrogen;
R^N is selected from the group consisting of hydrogen, methyl, ethyl,
and benzyl; and
one or more R^X radicals are independently selected from the group
consisting of hydroxy, methyl, ethyl, methoxy, ethoxy, amino,
25 hydroxyamino, methylamino, dimethylamino, ethylamino, diethylamino,
trimethylammonium, triethylammonium, N-methyl-N-carboxymethyl-
amino, N,N-dimethyl-N-carboxymethyl-ammonium, methylcarbonylamino,
chloromethylcarbonylamino, fluoromethylcarbonylamino,
bromomethylcarbonylamino, iodomethylcarbonylamino,

ethylcarbonylamino, benzyloxycarbonylamino, and
aminoimidocarbonylamino; or
a pharmaceutically acceptable salt, solvate, or prodrug thereof.

A subclass of compounds of high interest comprises those
5 compounds of Formula I wherein:

wherein:

q is 1 or 2;

R^1 and R^2 are each independently alkyl;

R^3 is hydroxy;

10 R^4 and R^6 are hydrogen;

R^5 has the formula (II):

wherein t is an integer from 0 to 5;

one or more R^y are independently selected from the group consisting
of hydrogen; halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl;
15 hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -
SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -
CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -
COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -
20 OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -
NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -
P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^y radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸A⁻; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^y radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and wherein M is a pharmaceutically acceptable cation; and wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as previously set forth above for the compounds of Formula I; and R^N is selected from the group consisting of hydrogen; alkyl; and aralkyl; and one or more R^X radicals are independently selected from the group

consisting of alkoxy, alkylamino and dialkylamino; or
a pharmaceutically acceptable salt, solvate, or prodrug thereof.

A family of specific compounds of particular interest within Formula I consists of the following compounds:

- 5 (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;
- (*4R,5R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;
- 10 5-chloro-*N*-[3-[(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide;
- 5-[[3-[(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-5-oxo-pantanaminium trifluoroacetate;
- 15 2-chloro-*N*-[3-[(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]acetamide;
- 2-[[3-[(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-2-oxoethanaminium chloride;
- 20 (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(((2-iodoethoxy)ethoxy)ethoxy)phenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

1-[2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]ethyl]pyridinium;

10 2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethyllethanaminium iodide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

15 (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide and (4*S*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

20 (4*R*,5*R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-1,2-benzothiazepin-4-ol 1,1-dioxide;

5-bromo-*N*-[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide;

5-[[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-5-oxo-1-pentanaminium trifluoroacetate;

5 (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-phenyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

10 2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethylethanaminium iodide;

15 (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-5-[3-(ethylamino)phenyl]-2,3,4,5-tetrahydro-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide; and

20 (4*R*,5*R*)-7-dimethylamino)-2-ethyl-4,5-dihydro-5-(4-methoxyphenyl)-spiro[1,2-benzothiazepine-3(2H),1'-cyclopantan]-4-ol 1,1-dioxide; and

the pharmaceutically-acceptably salts thereof.

The invention further comprises a compound selected from among:

and

5 wherein R¹⁹ is selected from the group consisting of alkane diyl, alkene diyl, alkyne diyl, polyalkane diyl, alkoxy diyl, polyether diyl, polyalkoxy diyl, carbohydrate residue, amino acid residue, peptide residue, and polypeptide residue; and

10 wherein alkane diyl, alkene diyl, alkyne diyl, polyalkane diyl, alkoxy diyl, polyether diyl, polyalkoxy diyl, carbohydrate residue, amino acid residue, peptide residue, and polypeptide residue optionally may have one or more carbon atoms replaced by -O-, -NR⁷-, -N⁺R⁷R⁸A⁻-, -S-, -SO-, -SO₂-, -S⁺R⁷A⁻-, -PR⁷-, -PR⁷R⁸A⁻-, phenylene, heterocyclyl, quaternary heterocyclyl, or aryl;

15 wherein alkane diyl, alkene diyl, alkyne diyl, polyalkane diyl, alkoxy diyl, polyether diyl, polyalkoxy diyl, carbohydrate residue, amino acid residue, peptide residue, and polypeptide residue optimally can be substituted with one

or more radicals independently selected from the group consisting of alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, heterocyclyl, arylalkyl, halogen, oxo, -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -NO₂; -CO₂R¹³; -CN; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻;

wherein R¹³, R¹⁴, R¹⁵, M and A⁻ are as previously set forth above for the compounds of Formula I; and

10 wherein R¹⁹ can further comprise functional linkages by which R¹⁹ is bonded to R²⁰ and/or R²¹ in the compounds of Formula DI; to R²⁰, R²¹ and/or R²² in the compounds of Formula DII; and to R²⁰, R²¹, R²² and/or R²³ in the compounds of Formula DIII; and

15 wherein each of R²⁰, R²¹, or R²² and R²³ comprises a benzothiazepine moiety as described above that is therapeutically effective in inhibiting ileal bile acid transport.

Exemplary R¹⁹ substituents include, but are not limited to, the following:

5

wherein:

R²⁵ is selected from the group consisting of carbon and nitrogen; and

R²⁶, **R²⁷**, **R²⁸**, **R²⁹**, **R³⁰**, **R³¹**, **R³²**, **R³³**, **R³⁴**, **R³⁵**, **R³⁶**, and **R³⁷** are independently selected from the group consisting of:

wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹ are independently selected from the group consisting of alkyl, alkenyl, alkylaryl, aryl, arylalkyl, cycloalkyl, heterocyclyl, and heterocyclylalkyl;

5 A⁻ is a pharmaceutically acceptable anion; and

h, i, j and k are independently selected from the group consisting of integers from 1 to 10 inclusive.

The invention is also directed to a compound selected from among Formula DI, Formula DII and Formula DIII in which each of R²⁰, R²¹, R²² and R²³ comprises a benzothiazepine moiety corresponding to the Formula DIV or Formula DIVA:

or :

wherein R¹, R², R³, R⁴, R⁵, R⁶, R^N, R^x, q, and n are as previously defined above for the compounds of Formula I, and R⁵⁵ is either a covalent bond or arylene.

In compounds of Formula DIV, it is particularly preferred that each of R²⁰, R²¹, R²², and R²³ in Formulae DI, DII and DIII be bonded at its 7- or 8-position to R¹⁹. In compounds of Formula DIVA, it is particularly preferred that R⁵⁵ comprise a phenylene moiety bonded at a *m*- or *p*-carbon thereof to R¹⁹.

5

Examples of Formula DI include:

and

and

wherein R^{1A} , R^{2A} , R^{3A} , R^{4A} , R^{NA} , R^{yA} , R^{xA} , r and u have the same definitions as stated above for R^1 , R^2 , R^3 , R^4 , R^{NA} , R^y , R^x , q and t , respectively.

5 In any of the compounds of the present invention, R^1 and R^2 can be, among other combinations, ethyl/butyl or butyl/butyl.

Illustrative dimeric compounds include the following:

In another embodiment, a core moiety backbone, R¹⁹, as discussed herein in Formulae DI, DII and DIII can be multiply substituted with more than four pendant active benzothiazepine units, i.e., R²⁰, R²¹, R²², and R²³ as discussed above, through multiple functional groups within the core moiety backbone. The core moiety backbone unit, R¹⁹, can comprise a single core moiety unit, multimers thereof, and multimeric mixtures of the different core moiety units discussed herein, i.e., alone or in combination. The number of individual core moiety backbone units can range from about one to about 100, preferably about one to about 80, more preferably about one to about 50, and even more preferably about one to about 25. The number of points of attachment of similar or different pendant active benzothiazepine units within a single core moiety backbone unit can be in the range from about one to about 100, preferably about one to about 80, more preferably about one to about 50, and even more preferably about one to about 25. Such points of attachment can include bonds to C, S, O, N, or P within any of the groups encompassed by the definition of R¹⁹.

The more preferred benzothiazepine moieties comprising R²⁰, R²¹, R²² and/or R²³ conform to the preferred structures as outlined above for Formula I. The 3-position carbon on each benzothiazepine moiety can be achiral, and the substituents R¹, R², R³, R⁴, R⁵ and R^x can be selected from the preferred groups and combinations of substituents as discussed above. The core structures can comprise, for example, poly(oxyalkylene) or oligo(oxyalkylene), especially poly- or oligo(oxyethylene) or poly- or oligo(oxypropylene).

Methods of Treatment

In another aspect, the present invention provides a pharmaceutical composition for the prophylaxis and/or treatment of a disease, condition and/or disorder for which a bile acid transport inhibitor is indicated, such as a hyperlipidemic condition, for example, atherosclerosis. Such compositions

comprise any of the compounds disclosed above, alone or in combination, in an amount effective to reduce bile acid levels in the blood, or to reduce transport thereof across digestive system membranes, alone or in a composition comprising, for example, one or more pharmaceutically acceptable carriers, 5 excipients, and/or diluents. In any of the dimeric or multimeric structures discussed immediately above, for example, the benzothiazepine compounds of the present invention can be used alone or in various combinations.

In a further aspect, the present invention also provides a method of treating a disease, condition and/or disorder in mammals, including humans, 10 for which a bile acid transport inhibitor is indicated, comprising administering to a patient in need thereof a compound of the present invention in an effective amount in unit dosage form or in divided doses.

In yet a further aspect, the present invention comprises the use of the compounds of Formula I and/or the dimeric or multimeric compounds of 15 Formulae DI, DII and/or DIII in the preparation of a medicament useful for the prophylaxis and/or treatment of a disease, condition and/or disorder for which a bile acid transport inhibitor is indicated.

The compounds of Formula I are also useful for the prophylaxis and/or treatment of gallstones.

20 In yet a further aspect, the present invention also provides processes for the preparation of compounds of the present invention.

Further scope of the applicability of the present invention will become apparent from the detailed description provided below. However, it should be understood that the following detailed description and examples, while 25 indicating preferred embodiments of the invention, are given by way of illustration only since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

In order to aid the reader in understanding the following detailed description, the following definitions are provided:

The term "hydrocarbyl" refers to radicals consisting exclusively of the elements carbon and hydrogen. These radicals include, for example, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, and aryl moieties. These radicals also include alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, and aryl moieties substituted with other aliphatic or cyclic hydrocarbon groups, such as alkaryl, alkenaryl and alkynaryl. Preferably, these moieties comprise 1 to 20 carbon atoms.

The term "substituted hydrocarbyl" refers to a hydrocarbyl radical that is substituted with a group comprising at least one atom other than carbon, such as but not limited to, halogen, oxygen, nitrogen, sulfur and phosphorus. Examples of such substituted hydrocarbyl include hydrocarbyl radicals substituted with groups such as, but not limited to, lower alkoxy such as methoxy, ethoxy, and butoxy; halogen such as chloro and fluoro; ethers; acetals; ketals; esters; heterocyclyl such as furyl and thienyl; alkanoxy; hydroxy; protected hydroxy; acyl; acyloxy; nitro; cyano; amino; and amido. Substituted hydrocarbyl also includes hydrocarbyl radicals in which a carbon chain atom is replaced with a heteroatom such as nitrogen, oxygen, sulfur, or a halogen.

Where the term "alkyl" is used, either alone or within other terms such as "haloalkyl", and "hydroxyalkyl", it embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about six carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isoamyl, hexyl and the like. Even more preferred are lower alkyl radicals having one to three carbon atoms.

Where the term "alkenyl" is used, either alone or within other terms such as "arylalkenyl", it embraces linear or branched radicals having at least

one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl" radicals having two to about six carbon atoms. Examples of alkenyl radicals include ethenyl, propenyl, allyl, propenyl, butenyl and 4-methylbutenyl.

The terms "alkenyl" and "lower alkenyl", embrace radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations.

The term "alkynyl" denotes linear or branched radicals having two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl" radicals having two to about ten carbon atoms. Most preferred are lower alkynyl radicals having two to about six carbon atoms. Examples of such radicals include propargyl, butynyl, and the like.

The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to about ten carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "cycloalkyl" additionally encompasses spiro systems wherein the cycloalkyl ring has a carbon ring atom in common with the seven-membered heterocyclic ring of the benzothiazepine.

The term "cycloalkenyl" embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. Cycloalkenyl radicals that are partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called "cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about ten carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl.

The term "halo" and "halogen" means halogens such as fluorine, chlorine, bromine or iodine atoms. The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as

defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either an iodo, bromo, chloro or fluoro atom within the radical. Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals. "Lower haloalkyl" embraces radicals having one to six carbon atoms. Examples of haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. "Perfluoroalkyl" means alkyl radicals having all hydrogen atoms replaced with fluoro atoms. Examples include trifluoromethyl and pentafluoroethyl.

The term "hydroxyalkyl" embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or more hydroxyl radicals. More preferred hydroxyalkyl radicals are "lower hydroxyalkyl" radicals having one to six carbon atoms and one or more hydroxyl radicals. Examples of such radicals include hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl and hydroxyhexyl. Even more preferred are lower hydroxyalkyl radicals having one to three carbon atoms.

The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one or more rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane, biphenyl, and anthracenyl. More preferred aryl is phenyl. Said "aryl" group may have one to three substituents such as lower alkyl, hydroxy, halo, haloalkyl, nitro, cyano, alkoxy and lower alkylamino.

The term "heterocyclyl" embraces saturated, partially saturated and unsaturated heteroatom-containing ring-shaped radicals, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Preferred heterocyclyl are 3-10 membered ring heterocyclyl, particularly 5-8 membered ring heterocyclyl.

Examples of saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocyclic groups containing 1 to 4 nitrogen atoms [e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl]; saturated 3 to 6-membered heteromonocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinyl]; saturated 3 to 6-membered heteromonocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl].

5 Examples of partially saturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. Examples of unsaturated heterocyclic radicals, also termed "heteroaryl" radicals, include unsaturated 5 to 6 membered heteromonocyclyl groups containing 1 to 4 nitrogen atoms, for example, pyrrolinyl, imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl]; unsaturated condensed heterocyclic groups containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl,

10 15 benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo [1,5-b]pyridazinyl]; unsaturated 3 to 6-membered heteromonocyclic groups containing an oxygen atom, for example, pyranyl, 2-furyl, 3-furyl, etc.; unsaturated 5 to 6-membered heteromonocyclic groups containing a sulfur atom, for example, 2-thienyl, 3-thienyl, etc.;

20 25 unsaturated 5- to 6-membered heteromonocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, isoxazolyl, oxadiazolyl [e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl]; unsaturated condensed heterocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, benzoxadiazolyl]; unsaturated 5 to 6-membered heteromonocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl]; unsaturated condensed heterocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl] and the like. The term also embraces

30 radicals where heterocyclic radicals are fused with aryl radicals. Examples of

such fused bicyclic radicals include benzofuran, benzothiophene, and the like.

Said "heterocyclyl" group may have 1 to 3 substituents such as lower alkyl, hydroxy, oxo, amino and lower alkylamino.

Heterocyclic radicals can include fused or unfused radicals, particularly
5 3-10 membered fused or unfused radicals. Preferred examples of heteroaryl
radicals include benzofuryl, 2,3-dihydrobenzofuryl, benzothienyl, indolyl,
dihydroindolyl, chromanyl, benzopyran, thiochromanyl, benzothiopyran,
benzodioxolyl, benzodioxanyl, pyridyl, thienyl, thiazolyl, furyl, and pyrazinyl.
More preferred heteroaryl radicals are 5- or 6-membered heteroaryl, containing
10 one or two heteroatoms selected from sulfur nitrogen and oxygen, selected
from thienyl, furanyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl,
pyridyl, piperidinyl and pyrazinyl.

The term "heteroaryl" means a fully unsaturated heterocyclyl.

In either "heterocyclyl" or "heteroaryl," the point of attachment to the
15 molecule of interest can be at the heteroatom or elsewhere within the ring.

The term "triazolyl" includes all positional isomers. In all other
heterocyclyl and heteroaryl which contain more than one ring heteroatom and
for which isomers are possible, such isomers are included in the definition of
said heterocyclyl and heteroaryl.

20 The term "quaternary heterocyclyl" means a heterocyclyl in which one
or more of the heteroatoms, for example, nitrogen, sulfur, phosphorus or
oxygen, has such a number of bonds that it is positively charged (and therefore
the term is intended to encompass both ternary and quaternary positively
charged structures). The point of attachment of the quaternary heterocyclyl to
25 the molecule of interest can be at a heteroatom or elsewhere.

30 The term "quaternary heteroaryl" means a heteroaryl in which one or
more of the heteroatoms, for example, nitrogen, sulfur, phosphorus or oxygen,
has such a number of bonds that it is positively charged (and therefore the term
is intended to encompass both ternary and quaternary positively charged
structures). The point of attachment of the quaternary heteroaryl to the

molecule of interest can be at a heteroatom or elsewhere.

The term "diyl" means a diradical moiety wherein said moiety has two points of attachment to molecules of interest.

The term "oxo" means a doubly bonded oxygen.

5 The term "polyalkyl" means a branched or straight hydrocarbon chain having a molecular weight up to about 20,000, more preferably up to about 10,000, and most preferably up to about 5,000.

10 The term "polyether" means a polyalkyl wherein one or more carbons are replaced by oxygen, wherein the polyether has a molecular weight up to about 20,000, more preferably up to about 10,000, and most preferably up to about 5,000.

The term "polyalkoxy" means a polymer of alkylene oxides, wherein the polyalkoxy has a molecular weight up to about 20,000, more preferably up to about 10,000, and most preferably up to about 5,000.

15 The term "carbohydrate residue" encompasses residues derived from carbohydrates such as, but is not limited to, mono-, di-, tri-, tetra- and polysaccharides wherein the polysaccharides can have a molecular weight of up to about 20,000, for example, hydroxypropyl-methylcellulose or chitosan residue; compounds derived from aldoses and ketoses with 3 to 7 carbon atoms 20 and which belong to the D- or L-series; aminosugars; sugar alcohols; and saccharic acids. Nonlimiting specific examples of such carbohydrates include glucose, mannose, fructose, galactose, ribose, erythrose, glycerinaldehyde, sedoheptulose, glucosamine, galactosamine, glucoronic acid, galacturonic acid, gluconic acid, galactonic acid, mannoic acid, glucamine, 3-amino-1,2-propanediol, glucaric acid and galactaric acid.

25 The term "peptide residue" means polyamino acid residue containing up to about 100 amino acid units.

The term "polypeptide residue" means a polyamino acid residue containing from about 100 amino acid units to about 1000 amino acid units, 30 more preferably from about 100 amino acid units to about 750 amino acid

untis, and most preferably from about 100 amino acid units to about 500 amino acid units.

The term "alkylammoniumalkyl" means an an -NH₂ group or a mono-, di- or tri-substituted amino group, any of which is bonded to an alkyl wherein said alkyl is bonded to the molecule of interest.

5 The term "sulfo" means a sulfo group, -SO₃H, and its salts.

The term "sulfoalkyl" means an alkyl group to which a sulfonate group is bonded, wherein said alkyl is bonded to the molecule of interest.

The term "aralkyl" embraces aryl-substituted alkyl radicals. Preferable aralkyl radicals are "lower aralkyl" radicals having aryl radicals attached to alkyl radicals having one to six carbon atoms. Even more preferred are lower aralkyl radicals having phenyl attached to alkyl portions having one to three carbon atoms. Examples of such radicals include benzyl, diphenylmethyl and phenylethyl. The aryl in said aralkyl may be additionally substituted with halo, 10 alkyl, alkoxy, haloalkyl and haloalkoxy. The term "arylalkenyl" embraces aryl-substituted alkenyl radicals. Preferable arylalkenyl radicals are "lower arylalkenyl" radicals having aryl radicals attached to alkenyl radicals having 15

The term "heterocyclalkyl" means an alkyl radical that is substituted with one or more heterocycl groups. Preferable heterocyclalkyl radicals are 20 "lower heterocyclalkyl" radicals having one or more heterocycl groups attached to an alkyl radical having one to ten carbon atoms.

The term "heteroarylalkyl" means an alkyl radical that is substituted with one or more heteroaryl groups. Preferable heteroarylalkyl radicals are 25 "lower heteroarylalkyl" radicals having one or more heteroaryl groups attached to an alkyl radical having one to ten carbon atoms.

The term "quaternary heterocyclalkyl" means an alkyl radical that is substituted with one or more quaternary heterocycl groups. Preferable quaternary heterocyclalkyl radicals are "lower quaternary heterocyclalkyl" radicals having one or more quaternary heterocycl groups attached to an alkyl 30 radical having one to ten carbon atoms.

The term "quaternary heteroarylalkyl" means an alkyl radical that is substituted with one or more quaternary heteroaryl groups. Preferable quaternary heteroarylalkyl radicals are "lower quaternary heteroarylalkyl" radicals having one or more quaternary heteroaryl groups attached to an alkyl radical having one to ten carbon atoms.

The term "alkylheteroarylalkyl" means a heteroarylalkyl radical that is substituted with one or more alkyl groups. Preferable alkylheteroarylalkyl radicals are "lower alkylheteroarylalkyl" radicals with alkyl portions having one to ten carbon atoms.

The term "alkoxy" means an alkyl radical which is attached to the molecule of interest by oxygen, such as a methoxy radical. More preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, iso-propoxy, butoxy and *tert*-butoxy.

The term "carboxy" means the carboxy group, -CO₂H, or its salts.

The term "carboxyalkyl" means an alkyl radical that is substituted with one or more carboxy groups. Preferable carboxyalkyl radicals are "lower carboxyalkyl" radicals having one or more carboxy groups attached to an alkyl radical having one to six carbon atoms.

The term "carboxyheterocyclyl" means a heterocyclyl radical that is substituted with one or more carboxy groups.

The term "carboxyheteroaryl" means a heteroaryl radical that is substituted with one or more carboxy groups.

The term "carboalkoxyalkyl" means an alkyl radical that is substituted with one or more alkoxy carbonyl groups. Preferable carboalkoxyalkyl radicals are "lower carboalkoxyalkyl" radicals having one or more alkoxy carbonyl groups attached to an alkyl radical having one to six carbon atoms.

The term "carboxyalkylamino" means an amino radical that is mono- or di-substituted When used in combination, for example "alkylaryl" or "arylalkyl," the individual terms listed above have the meaning indicated

above.

The term "acyl" means an organic acid group in which the hydroxy of the carboxy group has been removed. Examples of acyl groups include, but are not limited to, acetyl and benzoyl.

5 The term "active compound" means a compound of the present invention that inhibits transport of bile acids.

The term "a bile acid transport inhibitor" means a compound capable of inhibiting absorption of bile acids from the intestine into the circulatory system of a mammal, such as a human. This includes increasing the fecal excretion of 10 bile acids, as well as reducing the blood plasma or serum concentrations of cholesterol and cholesterol ester, and more specifically, reducing LDL and VLDL cholesterol. Conditions and/or diseases that benefit from the prophylaxis and/or treatment by bile acid transport inhibition include, for example, a hyperlipidemic condition such as atherosclerosis.

15 The abbreviations used in this application have the following meanings:

The term "THF" means tetrahydrofuran;

The term "PTC" means phase transfer catalyst;

The term "Aliquat 336" means methyltricaprylylammonium chloride;

The term "MCPBA" means m-chloroperbenzoic acid;

20 The term "Celite" refers to a brand of diatomaceous earth filtering aid;

The term "DMF" means dimethylformamide;

The term "DME" means ethylene glycol dimethyl ether;

The term "BOC" means t-butoxycarbonyl;

The term "Me" means methyl;

25 The term "Et" means ethyl;

The term "Bu" means butyl;

The term "EtOAc" means ethyl acetate;

The term "Et₂O" means diethyl ether;

The term "LAH" means lithium aluminum hydride;

- The term "DMSO" means dimethylsulfoxide;
- The term "KOSiMe₃" means potassium trimethylsilanolate;
- The term "PEG" means polyethylene glycol;
- The term "MS" means mass spectrometry;
- 5 The term "HRMS" means high resolution mass spectrometry;
- The term "ES" means electrospray;
- The term "NMR" means nuclear magnetic resonance spectroscopy;
- The term "GC" means gas chromatography;
- The term "MPLC" means medium pressure liquid chromatography;
- 10 The term "HPLC" means high pressure liquid chromatography;
- The term "RPHPLC" means reverse phase high pressure liquid chromatography
- The term "RT" means room temperature;
- The terms "h" or "hr" means hour(s); and
- 15 The term "min" means minute(s);

Alternate Forms of Compounds

- The compounds of the present invention can have at least two asymmetrical carbon atoms, and therefore include racemates and stereoisomers, such as diastereomers and enantiomers, in both pure form and in admixture.
- 20 Such stereoisomers can be prepared and separated using conventional techniques, either by reacting enantiomeric starting materials, or by separating isomers of compounds of the present invention. Isomers may include geometric isomers, for example cis isomers or trans isomers across a double bond. All such isomers are contemplated among the compounds of the present invention.

The compounds of the present invention also include tautomers, salts, solvates and prodrugs of such compounds.

Compound Syntheses

The starting materials for use in the preparation of the compounds of the invention are commercially available or can be prepared by conventional methods known to a skilled person or in an analogous manner to processes described in the art.

Generally, the compounds of the present invention can be prepared by the procedures described below.

Scheme 1

Scheme 1 illustrates the preparation of racemic benzothiazepines **9a** and **9b**. Reaction of benzenesulfonyl chloride **1** with aminoalcohol **2** in the presence of a base, such as triethylamine, in a solvent, such as tetrahydrofuran, yields benzenesulfonamide **3** which can be converted to protected 5 benzenesulfonamide **4**. Protected benzenesulfonamide **4** optionally can be treated with an alkyl halide, such as methyl iodide, in the presence of a base such as sodium hydride, in a solvent, such as dimethylformamide, to yield N-substituted benzenesulfonamide **5**. Protected benzenesulfonamide **4** or N-substituted benzenesulfonamide **5** is then successively reacted with (i) a strong 10 base (such as n-butyllithium in hexanes) in a solvent (such as tetrahydrofuran), (ii) an electrophile (such as trimethyl borate), and (iii) a base (such as sodium carbonate), a benzyl halide (such as p-methoxybenzyl chloride), and a catalyst (such as tetrakis(triphenylphosphine)palladium(0)) to yield sulfonamide **6**. Treatment of sulfonamide **6** with a fluoride source, such as 15 tetrabutylammonium fluoride, in a solvent, such as tetrahydrofuran, provides the deprotected sulfonamide alcohol **7**. Sulfonamide alcohol **7** is successively oxidized using a method such as Swern Oxidation to yield sulfonamide aldehyde **8**. Upon treatment with a base such as potassium tert-butoxide, aldehyde **8** is converted to racemic benzothiazepines **9a** and **9b**. R¹, R², R⁵, R^N, 20 R* and q are as previously defined above for compounds of Formula I.

SCHEME 2

Scheme 2 illustrates an alternative synthetic scheme for the preparation of sulfonamide alcohol 3 used in Scheme 1. Reaction of benzenesulfonyl chloride 10 with aminoalcohol 11 in the presence of a base, such as triethylamine, in a solvent, such as tetrahydrofuran, yields sulfonamide 12. Substituent L of benzenesulfonyl chloride 10 is a suitable leaving group such as fluoro, chloro, bromo, nitro, tosyloxy or trifluoromethylsulfonyloxy. Reaction of sulfonamide 12 with a suitable nucleophile in the presence of a base, such as triethylamine, in a solvent, such as tetrahydrofuran, yields benzenesulfonamide 3 which can be further reacted in accordance with Scheme 1. R¹, R², R^x and q are as previously defined above for compounds of Formula I. Substituent M is a metal, preferably an alkali metal, or a hydrogen.

SCHEME 3

Scheme 3 illustrates the preparation of benzothiazepines having 4-position substituents other than hydroxy.

In the preparation of 4-thioxo-, thio-, sulfinyl- or sulfonyl-benzothiazepines, benzothiazepine **9a** or **9b** is first oxidized to 5 benzothiazepine-4-one **13**. Conventional oxidizing agents, such as PCC, or Swern conditions can be used. Benzothiazepine-4-one **13** is then reacted with Lawesson's Reagent to produce 4-thioxo-benzothiazepine **14**. 4-Thioxo-benzothiazepine **14** can be reacted with a suitable reducing agent, such as lithium aluminum hydride, in a suitable solvent, such as tetrahydrofuran, to 10 yield 4-mercaptop-benzothiazepine **15**. 4-Mercaptop-benzothiazepine **15** can be reacted with a suitable alkylating agent, such as an alkyl halide, in the presence of a base, such as sodium hydride, in a suitable solvent, such as dimethylformamide, to yield 4-alkylthio-benzothiazepine **16**. 4-Alkylthio-benzothiazepine **16** can be reacted with a suitable oxidizing agent, such as *t*- 15 butyl hydroperoxide or *m*-chloroperbenzoic acid, to yield, successively, 4-alkylsulfinyl-benzothiopine **17** and 4-alkylsulfonyl-benzothiazepine **18**.

Alternatively, 4-amino- or imino-benzothiazepines can be prepared by reacting benzothiazepine-4-one **13** with ammonia or a primary amine in a suitable solvent, such as tetrahydrofuran, to produce 4-imino-benzothiazepine 20 **19**. 4-Imino-benzothiazepine **19** can be reacted with a suitable reducing agent, such as lithium aluminum hydride, in a suitable solvent, such as tetrahydrofuran, to yield 4-amino-benzothiazepine **20**. Benzothiazepine-4-one **13** also can undergo reductive alkylation by reaction with ammonia, a primary amine or a secondary amine in the presence of a reducing agent, such as 25 sodium triacetoxyborohydride, in a suitable solvent, such as tetrahydrofuran, to produce 4-amino-benzothiazepine **21**.

Scheme 3 also illustrates the preparation of 4-alkyl-benzothiazepine **23** and 4-alkoxycarbonyl-benzothiazepine **25**. The 4-position hydroxy of benzothiazepine **9a** or **9b** is first converted to a suitable leaving group such as 30 mesyloxy to form protected benzothiazepine **22**. Protected benzothiazepine **22**

is then reacted with a suitable nucleophile, such as butyl lithium, in a suitable solvent, such as tetrahydrofuran, to yield 4-alkyl-benzothiazepine 23.

Alternatively, protected benzothiazepine 22 can be reacted with a suitable cyanidating agent, such as an potassium cyanide, in a suitable solvent, such as

5 dimethylformamide, to yield 4-cyano-benzothiazepine 24. 4-Cyano-benzothiazepine 24 is converted to 4-alkoxycarbonyl-benzothiazepine 25 by reaction with a suitable alcohol in the presence of a base, such as potassium hydroxide.

SCHEME 4

Scheme 4 illustrates the preparation of benzothiazepine-4-ene 36 and benzothiazepine-4-one 33. Reaction of phenol 26 with a thiocarbamyl chloride, such as dimethylthiocarbamyl chloride, in a solvent, such as methanol:tetrahydrofuran yields *O*-thiocarbamate 27. Heating of *O*-thiocarbamate 27 in a solvent, such as tetradecane, yields *S*-thiocarbamate 28. Hydrolysis of *S*-thiocarbamate 28 in the presence of a base, such as sodium hydroxide, in a solvent, such as methanol:tetrahydrofuran, yields thiophenol 29. Thiophenol 29 can be treated with a sulfonylating agent, such as sulfonyl chloride, in the presence of a oxidant such as potassium nitrate, in a solvent, such as tetrahydrofuran, to yield sulfonyl chloride 30. Sulfonyl chloride 30 is then reacted with an aminoalcohol in a solvent, such as tetrahydrofuran, to yield benzenesulfonamide 31. Benzenesulfonamide 31 optionally can be hydroxyl protected with a silylating group agent, such as *tert*-butyldimethylsilyl chloride, in the presence of a base, such as imidazole, in a solvent, such as tetrahydrofuran, to yield protected benzenesulfonamide 32. Protected benzenesulfonamide 32 can be treated with an alkyl halide, such as methyl iodide, in the presence of a base such as sodium hydride, in a solvent, such as dimethylformamide, to yield N-substituted benzenesulfonamide 33. Deprotection of the protected N-substituted benzene sulfonamide 33 with a fluoride source, such as tetrabutylammonium fluoride, in a solvent, such as tetrahydrofuran, yields N-substituted benzenesulfonamide 34. Benzenesulfonamide 31 or N-substituted benzenesulfonamide 34 is then oxidized with a suitable oxidizing agent or under Swern conditions to form aldehyde 35. Upon treatment with zinc and titanium trichloride aldehyde 35 is converted to a mixture of benzothiazepine-4-ene 36 and benzothiazepine-4-one 37.

The recovery, isolation and purification of the intermediates and the reaction products of this invention, and in particular the intermediates and the reaction products illustrated in Schemes 1, 2, 3 and 4, can be accomplished by conventional methods well known to those skilled in the art, such as

precipitation, filtration, extraction, or chromatography. Except where otherwise indicated, conditions, solvents, and reagents are either conventional, not narrowly critical, or both.

Additional Embodiments and Examples

5 Another class of compounds of specific interest comprises those compounds of Formula I wherein R¹ and R² are selected from among substituted and unsubstituted C₁₋₁₀ alkyl wherein substituted C₁₋₁₀ alkyl comprises one or more radicals independently selected from among, for example, alkylcarbonyl, alkoxy, hydroxy, and nitrogen-containing heterocyclyl joined to the C₁₋₁₀ alkyl through an ether linkage. These R¹ and R² substituents include ethyl, n-propyl, n-butyl, n-pentyl, isobutyl, isopropyl, -CH₂C(=O)C₂H₅, -CH₂OC₂H₅, and -CH₂O-(4-picoline). Ethyl, n-propyl, n-butyl, and isobutyl are preferred. In certain particularly preferred compounds of the present invention, substituents R¹ and R² are identical, for example n-butyl/n-butyl, so that the compound is achiral at the 3-position carbon. Eliminating optical isomerism at the 3-position carbon simplifies the selection, synthesis, separation, and quality control of the compound used as an ileal bile acid transport inhibitor.

In the compounds of the present invention having a chiral 3-position carbon as well as those having an achiral 3-position carbon, substituents R^x on the benzo ring can include, for example, hydrogen, aryl, alkyl, hydroxy, halo, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, haloalkyl, haloalkoxy, (N)-hydroxy-carbonylalkylamino, haloalkylthio, haloalkylsulfinyl, haloalkylsufonyl, amino, N-alkylamino, N,N-dialkylamino, (N)-alkoxycarbamoyl, (N)-aryloxycarbamoyl, (N)-aralkyloxycarbamoyl, trialkylammonium (especially with a halide counterion), (N)-amido, (N)-alkylamido, N,N-dialkylamido, (N)-haloalkylamido, (N)-sulfonamido, (N)-alkylsulfonamido, (N)-haloalkylsulfonamido, carboxyalkylamino, trialkylammonium salt, (N)-carbamic acid, alkyl or benzyl ester, N-acylamino,

hydroxylamino, haloacylamino, carbohydrate residue, thiophene, a trialkyl ammonium salt having a carboxylic acid or hydroxy substituent on one or more of the alkyl substituents, an alkylene bridge having a quaternary ammonium salt substituted thereon, $-[\text{O}(\text{CH}_2)_d]_e\text{-X}$ where e is 2 to 12, d is 2 or 3 and X is a halo or a quaternary ammonium salt, and (N)-nitrogen containing heterocyclyl wherein the nitrogen of said heterocyclyl is optionally quaternized.

Among the preferred species which may constitute R^* are methyl, ethyl, isopropyl, t-butyl, hydroxy, methoxy, ethoxy, isopropoxy, methylthio, iodo, bromo, fluoro, methylsulfinyl, methylsulfonyl, ethylthio, amino, hydroxylamino, N-methylamino, N,N-dimethylamino, N,N-diethylamino, (N)-benzyloxycarbamoyl, trimethylammonium A^- , $-\text{NHC}(=\text{O})\text{CH}_3$, $-\text{NHC}(=\text{O})\text{C}_5\text{H}_{11}$, $-\text{NHC}(=\text{O})\text{C}_6\text{H}_{13}$, carboxyethylamino, (N)-morpholinyl, (N)-azetidinyl, (N)-N-methylazetidinium A-, (N)-pyrrolidinyl, pyrrolyl, (N)-N-methylpyridinium A-, (N)-N-methylmorpholinium A-, and N-N'-methylpiperazinyl, (N)-bromomethylamido, (N)-N-hexylamino, thiophene, $-\text{N}+(\text{CH}_3)_2\text{CO}_2\text{H}$ I, $-\text{NCH}_3\text{CH}_2\text{CO}_2\text{H}$, $-(\text{N})\text{-N}'\text{-dimethylpiperazinium I}^-$, (N)-t-butyloxycarbamoyl, (N)-methylsulfonamido, (N)N'-methylpyrrolidinium, and $-(\text{OCH}_2\text{CH}_2)_3\text{l}$, where A^- is a pharmaceutically acceptable anion.

The benzo ring can be mono-substituted at the 6, 7 or 8 position, or disubstituted at the 7- and -8 positions. Also included are the 6,7,8-trialkoxy compounds, for example the 6,7,8-trimethoxy compounds. A variety of other substituents can be advantageously present on the 6, 7, 8, and/or 9- positions of the benzo ring including, for example, guanidinyl, cycloalkyl, carbohydrate residue (e.g., a 5 or 6 carbon monosaccharide residue), peptide residue, and quaternary ammonium salts linked to the ring via poly(oxyalkylene) linkages, e.g., $-(\text{OCH}_2\text{CH}_2)_x\text{-N}+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$, where x is 2 to 10.

In further compounds of the present invention, R^5 and R^6 are independently selected from among hydrogen and ring-carbon substituted or unsubstituted aryl, thiopene, pyridine, pyrrole, thiazole, imidazole, pyrazole,

pyrimidine, morpholine, N-alkylpyridinium, N-alkylpiperazinium, N-alkylmorpholinium, or furan in which the substituent(s) are selected from among, for example, halo, hydroxyl, trihaloalkyl, alkoxy, amino, N-alkylamino, N,N-dialkylamino, quaternary ammonium salts, a C₁ to C₄ alkylene bridge having a quaternary ammonium salt substituted thereon, 5 alkoxy carbonyl, aryloxycarbonyl, alkylcarbonyloxy and arylcarbonyloxy, (O,O)-dioxyalkylene, -[O(CH₂)_d]_eX where e is 2 to 12, d is 2 or 3 and x comprises halo or a quaternary ammonium salt, thiophene, pyridine, pyrrole, thiazole, imidazole, pyrazole, or furan. The aryl group of R⁵ or R⁶ is preferably 10 phenyl, phenylene, or benzene triyl, i.e., may be unsubstituted, mono-substituted, or di-substituted.

Among the species that may constitute the substituents on the aryl ring of R⁵ or R⁶ are fluoro, chloro, bromo, methoxy, ethoxy, isopropoxy, trimethylammonium (preferably with an iodide or chloride counterion), 15 methoxycarbonyl, ethoxycarbonyl, formyl, acetyl, propanoyl, (N)-hexyldimethylammonium, hexylenetrimethylammonium, tri(oxyethylene)iodide, and tetra(oxyethylene)trimethyl-ammonium iodide, each substituted at the p-position, the m-position, or both of the aryl ring. Other substituents that can be present on a phenylene, benzene triyl or other 20 aromatic ring includes 3, 4-dioxymethylene (5-membered ring) and 3, 4-dioxyethylene (6-membered ring). One group of compounds of interest are those in which R⁵ or R⁶ is selected from phenyl, p-fluorophenyl, m-fluorophenyl, p-hydroxyphenyl, m-hydroxyphenyl, p-methoxyphenyl, m-methoxyphenyl, p-N,N-dimethylaminophenyl, m-N, N-dimethylaminophenyl, 25 I⁻p-(CH₃)₃-N⁺-phenyl, I⁻m-(CH₃)₃-N⁺-phenyl, I⁻m-(CH₃)₃-N⁺-CH₂CH₂-(OCH₂CH₂)₂-O-phenyl, I⁻m-(N,N-dimethylpiperazinium)-(N')-CH₂-(OCH₂CH₂)₂-O-phenyl, 3-methoxy-4-fluorophenyl, thienyl-2-yl, 5-cholorothienyl-2-yl, 3, 4-difluorophenyl, I⁻p-(N,N-dimethylpiperazinium)-(N')-CH₂-OCH₂CH₂)₂-O-phenyl, 3-fluoro-4-30 methoxyphenyl, 4-pyridinyl, 2-pyridinyl, 3-pyridinyl, N-methyl-4-pyridinium,

I: N-methyl-3-pyridinium, 3, 4-dioxymethylenephенyl, 3, 4-dioxyethylenephенyl, and p-methoxycarbonylphenyl.

Preferred compounds include 3-ethyl-3-butyl and 3-butyl-3-butyl compounds having each of the above preferred R⁵ substituents in combination 5 with the R^x substituents shown in Tables 1, 2 and 3 below. It is particularly preferred that one, but not both, of R⁵ and R⁶ is hydrogen.

It is especially preferred that R⁴ and R⁶ be hydrogen, that R³ and R⁵ not be hydrogen, and that R³ and R⁵ be oriented in the same direction relative to the plane of the molecule, i.e., both in α - or both in β -configuration. It is further 10 preferred that, where R² is butyl and R¹ is ethyl, then R¹ has the same orientation relative to the plane of the molecule as R³ and R⁵.

A class of compounds of particular interest comprises those 1,2-benzothiazepines wherein the R¹, R², R³, R⁴ and R⁵ radicals are as set forth in Table 1 below; the R⁶ radical is hydrogen; the R^N radical is selected from the 15 group consisting of hydrogen, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and benzyl; and the R^x radical or radicals are independently selected from the group of R^x radicals disclosed in Table 1 below. The first part of Table 1 identifies the R¹, R², R³, R⁴ and R⁵ radicals for each compound and the second part of Table 1 identifies the R^x radical or radicals for those compounds.

80

TABLE 1

Compound Number	R ¹	R ²	R ³	R ⁴	R ⁵
101	ethyl	n-butyl	OH	H	phenyl
102	ethyl	n-butyl	OH	H	phenyl
103	n-butyl	ethyl	OH	H	phenyl
104	ethyl	n-butyl	OH	H	phenyl
105	ethyl	n-butyl	OH	H	phenyl
106	ethyl	n-butyl	OH	H	phenyl
107	n-butyl	ethyl	OH	H	4-(decyloxy)phenyl
108	ethyl	n-butyl	OH	H	phenyl
109	ethyl	n-butyl	OH	H	4-(decyloxy)phenyl

110	ethyl	n-butyl	OH	H		
111	n-butyl	ethyl	OH	H		
112	ethyl	n-butyl	OH	H		
						4-hydroxyphenyl
113	ethyl	n-butyl	OH	H		4-hydroxyphenyl
114	ethyl	n-butyl	OH	H		4-methoxyphenyl
115	n-butyl	ethyl	OH	H		4-methoxyphenyl
116	ethyl	n-butyl	OH	H		4-methoxyphenyl
117	n-butyl	ethyl	OH	H		phenyl
118	ethyl	n-butyl	OH	H		phenyl
119	ethyl	n-butyl	OH	H		phenyl
120	n-butyl	ethyl	OH	H		phenyl
121	ethyl	n-butyl	OH	H		phenyl
122	n-butyl	ethyl	OH	H		phenyl
123	ethyl	n-butyl	OH	H		phenyl

124	n-butyl	ethyl	OH	H	phenyl	
125	ethyl	n-butyl	OH	H	phenyl	
126	n-butyl	ethyl	OH	H	4-fluorophenyl	
127	n-butyl	ethyl	OH	H	4-fluorophenyl	
128	ethyl	n-butyl	OH	H	4-fluorophenyl	
129	ethyl	n-butyl	OH	H	4-fluorophenyl	
131	ethyl	n-butyl	OH	H	4-fluorophenyl	
132	ethyl	n-butyl	OH	H	phenyl	
133	ethyl	n-butyl	OH	H	phenyl	
134	ethyl	n-butyl	OH	H	phenyl	
135	ethyl	n-butyl	OH	H	phenyl	
136	ethyl	n-butyl	OH	H	phenyl	
137	n-butyl	ethyl	OH	H	phenyl	
138	n-butyl	ethyl	OH	H	phenyl	
139	n-butyl	ethyl	OH	H	Phenyl	
142	ethyl	n-butyl	H	OH	H	
143	ethyl	n-butyl	OH	H	3-methoxyphenyl	
144	ethyl	n-butyl	OH	H	4-fluorophenyl	
262	ethyl	n-butyl	OH	H	3-methoxyphenyl	
263	ethyl	n-butyl	H	OH	H	
264	ethyl	n-butyl	OH	H	3-trifluoromethylphenyl	
265	ethyl	n-butyl	H	OH	H	
266	ethyl	n-butyl	OH	H	3-hydroxyphenyl	
267	ethyl	n-butyl	OH	H	3-hydroxyphenyl	
268	ethyl	n-butyl	OH	H	4-fluorophenyl	
269	ethyl	n-butyl	H	OH	H	
270	ethyl	n-butyl	OH	H	4-fluorophenyl	
271	ethyl	n-butyl	OH	H	3-methoxyphenyl	
272	ethyl	n-butyl	H	OH	H	
273	ethyl	n-butyl	H	OH	H	
274	ethyl	n-butyl	OH	H	4-fluorophenyl	
275	ethyl	n-butyl	H	OH	H	
276	ethyl	n-butyl	OH	H	3-methoxyphenyl	

277	ethyl	n-butyl	OH	H					3-fluorophenyl
278	ethyl	n-butyl	H	OH					2-fluorophenyl
279	ethyl	n-butyl	H	OH					3-fluorophenyl
280	ethyl	n-butyl	OH	H					2-fluorophenyl
281	ethyl	n-butyl	OH	H					4-fluorophenyl
282	ethyl	n-butyl	OH	H					4-fluorophenyl
283	ethyl	n-butyl	H	OH					H
284	ethyl	n-butyl	OH	H					4-fluorophenyl
286	ethyl	ethyl	OH	H					phenyl
287	ethyl	ethyl	OH	H					phenyl
288	methyl	methyl	OH	H					phenyl
289	n-butyl	n-butyl	OH	H					phenyl
290	n-butyl	n-butyl	OH	H					phenyl
291	n-butyl	n-butyl	OH	H					phenyl
292	n-butyl	n-butyl	OH	H					4-fluorophenyl
293	n-butyl	n-butyl	OH	H					phenyl
294	n-butyl	n-butyl	OH	H					phenyl
295	ethyl	n-butyl	OH	H					
296	ethyl	n-butyl	OH	H					

83

84

	ethyl	n-butyl	OH	H			
1000							
1001	ethyl	n-butyl	OH	H			
1002	ethyl	n-butyl	OH	H			
1003	ethyl	n-butyl	OH	H			

			85
1004	ethyl	n-butyl	
			$\text{CF}_3\text{COO-} + (\text{CH}_3\text{CH}_2)_3\text{N}$
1005	n-butyl	n-butyl	
			$\text{CF}_3\text{COO-} + (\text{CH}_3\text{CH}_2)_3\text{N}$
1006	n-butyl	n-butyl	

86

1007	n-butyl	n-butyl	OH	H				
1008	n-butyl	n-butyl	OH	H				
1009	n-butyl	n-butyl	OH	H				
1010	n-butyl	n-butyl	OH	H				3-fluoro-4-methoxyphenyl]
1011	n-butyl	n-butyl	OH	H				3-fluoro-4-(5-triethylammoniumpentyloxy)phenyl, trifluoroacetate salt
1012	n-butyl	n-butyl	OH	H				4-hydroxyphenyl]

1013	n-butyl	n-butyl	OH	H			
1014	n-butyl	n-butyl	OH	H			
1015	n-butyl	n-butyl	OH	H			
1016	n-butyl	n-butyl	OH	H			

87

89

1019	n-butyl	n-butyl	OH	H		
1020	n-butyl	n-butyl	OH	H		
1021	n-butyl	n-butyl	OH	H		

90

1022	n-butyl	n-butyl	OH	H	
1023	n-butyl	n-butyl	OH	H	

Chemical structures:

Structure 1 (Left): A quaternary ammonium cation with a central nitrogen atom bonded to three n-butyl groups and one hydroxymethyl group (-CH₂OH). The counterion I⁻ is shown to its left. Below the cation is a biphenyl ring system with a tert-butyl group at the para position.

Structure 2 (Right): A quaternary ammonium cation with a central nitrogen atom bonded to three n-butyl groups and one diisopropylaminoethyl group (-CH₂CH₂N(C₂H₅)₂). The counterion I⁻ is shown to its left. Below the cation is a biphenyl ring system with a tert-butyl group at the para position.

				9 /
1024	n-butyl	n-butyl	OH	H
1025	n-butyl	n-butyl	OH	H

92

1026	n-butyl	n-butyl	OH	H			
1027	n-butyl	n-butyl	OH	H			
1028	n-butyl	n-butyl	OH	H			

93

1029	n-butyl	n-butyl	OH	H		
1030	n-butyl	n-butyl	OH	H		
1031	n-butyl	n-butyl	OH	H		

94

	n-butyl	n-butyl	OH	H		$\text{N}(\text{CH}_2\text{CH}_3)_3^+$	Br^-
1032							
1033	n-butyl	n-butyl	OH	H		$\text{N}(\text{CH}_2\text{CH}_3)_2\text{CH}_3^+$	Br^-

96

1035	n-butyl	n-butyl	OH	H				
1036	n-butyl	n-butyl	OH	H				
1037	n-butyl	n-butyl	OH	H				

97

1038	n-butyl	n-butyl		H			
1039	n-butyl	n-butyl	OH	H			
1040	n-butyl	n-butyl	OH	H			
1041	n-butyl	n-butyl	OH	H			

Chemical structures:

- Row 1: A phenyl ring substituted with a 4-tert-butylphenyl group, bonded to an iodide ion (I-) and a quaternary ammonium cation $\text{N}(\text{CH}_3)_3^+$.
- Row 2: A phenyl ring substituted with a 4-tert-butylphenyl group, bonded to an OH group and a phenyl cation C_6H_5^+ .
- Row 3: A phenyl ring substituted with a 4-tert-butylphenyl group, bonded to an OH group and a quaternary ammonium cation CF_3CO_2^+ .
- Row 4: A phenyl ring substituted with a 4-tert-butylphenyl group, bonded to an iodide ion (I-) and a quaternary ammonium cation $\text{N}(\text{CH}_2\text{CH}_3)_3^+$.

98

1042	n-butyl	n-butyl	OH	H					
1043	n-butyl	n-butyl	OH	H					
1044	n-butyl	n-butyl	OH	H		$\text{CF}_3\text{CO}_2^- + \text{N}(\text{CH}_2\text{CH}_3)_3$			
1045	n-butyl	n-butyl	OH	H		$\text{CF}_3\text{CO}_2^- + (\text{CH}_2)_8\text{O} + \text{N}(\text{CH}_2\text{CH}_3)_3$			
1046	n-butyl	n-butyl	OH	H				3-aminophenyl	

1047	n-butyl	n-butyl	OH	H		
1048	n-butyl	n-butyl	OH	H		
1049	n-butyl	n-butyl	OH	H		

q9

The image contains three chemical structures, each enclosed in a vertical rectangle. The first structure (1047) shows a quaternary ammonium cation with a phenyl ring substituted at the 2-position with a methyl group, and at the 4-position with a propyl chain ending in a quaternary nitrogen atom bonded to two methyl groups and one ethyl group. It is paired with an iodide anion (I-). The second structure (1048) shows a similar cation with a phenyl ring substituted at the 2-position with a methyl group, and at the 4-position with a propyl chain ending in a quaternary nitrogen atom bonded to three methyl groups. It is paired with an iodide anion (I-). The third structure (1049) shows a cation with a phenyl ring substituted at the 2-position with a methyl group, and at the 4-position with a propyl chain ending in a quaternary nitrogen atom bonded to two methyl groups. It is paired with a bromide anion (Br-).

<i>100</i>					
1050	n-buty[n-buty[OH	H	
1051	n-buty[n-buty[OH	H	
1052	n-buty[n-buty[OH	H	

				101
1053	n-butyl	n-butyl	OH	H
1054	n-butyl	n-butyl	OH	H

			102
1055	n-butyl	n-butyl	
1056	n-butyl	n-butyl	H
1057	n-butyl	n-butyl	H

<i>10.3</i>					
1058	n-butyl	n-butyl	OH	H	
1059	n-butyl	n-butyl	OH	H	
1060	ethyl	n-butyl	OH	H	
1061	n-butyl	n-butyl	OH	H	

				104
1062	n-butyl	n-butyl	OH	H
1063	n-butyl		OH	H

Chemical structures:

Structure 1062: A quaternary ammonium salt cation ($\text{N}^+ \text{---} (\text{CH}_2\text{---})_3\text{---} \text{C}_6\text{H}_4\text{---} \text{S}(\text{O})\text{---} \text{C}_6\text{H}_5$) paired with an iodide anion (I^-). The cation has a central nitrogen atom bonded to three methyl groups and a phenylsulfonate group (-SO₃-C₆H₅).

Structure 1063: A quaternary ammonium salt cation ($\text{N}^+ \text{---} (\text{CH}_2\text{---})_3\text{---} \text{C}_6\text{H}_4\text{---} \text{O}(\text{---CH}_2\text{---CH=CH}_2)$) paired with an iodide anion (I^-). The cation has a central nitrogen atom bonded to three methyl groups and a phenyl ether group (-O-C₆H₄-CH=CH₂).

105-

1064	n-butyl	n-butyl	OH	H			
1065	n-butyl	n-butyl	OH	H			

Chemical structure I-: A quaternary ammonium salt cation with a cyclohexylmethyl group, a 4-tert-butylphenyl group, and a 4-(dimethylaminomethyl)phenyl group, paired with an iodide anion.

Chemical structure II-: A quaternary ammonium salt cation with a cyclohexylmethyl group, a 4-tert-butylphenyl group, and a 4-(dimethylaminomethyl)phenyl group, paired with an iodide anion.

106

1066	n-butyl	n-butyl	OH	H				
1067	n-butyl	n-butyl	OH	H				
1068	n-butyl	n-butyl	OH	H				
1069	n-butyl	n-butyl	OH	H				
1070	n-butyl	n-butyl	OH	H				

thiophen-3-yl

phenyl

107

1071	n-butyl	n-butyl	OH	H	
1072	n-butyl	n-butyl	OH	H	

1071

1072

1073	n-butyl	n-butyl	OH	H			
						Br^-	
1074	ethyl	n-butyl	OH	H			
1075	n-butyl	n-butyl	OH	H			
1076	n-butyl	n-butyl	OH	H		I-	$\text{N}(\text{CH}_3)_3$
1077	n-butyl	n-butyl	OH	H			
1078	ethyl	n-butyl	OH	H			

108

109

1084	n-butyl	n-butyl	OH	H				
1085	n-butyl	n-butyl	OH	H				
1086	n-butyl	n-butyl	OH	H				
1087	n-butyl	n-butyl	OH	H				
1088	ethyl	n-butyl	OH	H				
1089	ethyl	n-butyl	OH	H				

///

1084

1085

1086

1087

1088

1089

I-

I-

I-

I-

I-

I-

112

1090	n-butyl	n-butyl	OH	H	
1091	n-butyl	n-butyl	OH	H	

I-

I-

113

1092	n-butyl	n-butyl	OH
			H
1093	n-butyl	n-butyl	OH
			H
1094	n-butyl	n-butyl	OH
			H

114					
1095	n-butyl	n-butyl	OH	H	
1096	n-butyl	n-butyl	OH	H	
1097	n-butyl	n-butyl	OH	H	

115

1098	n-butyl	n-butyl	OH	H		
1099	ethyl	n-butyl	OH	H	4-methoxyphenyl	
1100	n-butyl	n-butyl	OH	H	4-methoxyphenyl	
1101	n-butyl	n-butyl	OH	H		
1102	n-butyl	n-butyl	OH	H	3-carboxymethylphenyl	
1103	n-butyl	n-butyl	OH	H		

116

1104	n-butyl	n-butyl	OH	H
1105	n-butyl	n-butyl	OH	H
1106	n-butyl	n-butyl	OH	H
1107	n-butyl	n-butyl	OH	H
1108	n-butyl	n-butyl	OH	H
1109	n-butyl	n-butyl	OH	H

117

1110	n-butyl	n-butyl	OH	H					
1111	n-butyl	n-butyl	OH	H					
1112	n-butyl	n-butyl	OH	H					
1113	n-butyl	n-butyl	OH	H					
1114	n-butyl	n-butyl	OH	H				3-methoxyphenyl	
1115	n-butyl	n-butyl	OH	H				4-fluorophenyl	
1116	ethyl	n-butyl	OH	H				3-tolyl	

118

1117	ethyl	n-butyl	OH	H
1118	ethyl	n-butyl	OH	H
1119	n-butyl	n-butyl	OH	H
1120	n-butyl	n-butyl	OH	H

3-fluoro-4-hydroxyphenyl

120

	n-butyl	n-butyl	OH	H	
1127					
1128	n-butyl	n-butyl	OH	H	3-fluoro-4-hydroxyphenyl 4-fluorophenyl
1129	n-butyl	n-butyl	OH	H	3-chloro-4-fluorophenyl 4-methoxyphenyl
1130	n-butyl	n-butyl	OH	H	
1131	ethyl	n-butyl	OH	H	
1132	n-butyl	n-butyl	OH	H	
1133	n-butyl	n-butyl	OH	H	4-cyanomethylphenyl

121

1134	ethyl	n-butyl	OH	H				
1135	n-butyl	n-butyl	OH	H	3,4-dimethoxyphenyl			
1136	n-butyl	n-butyl	OH	H				
1137	n-butyl	n-butyl	OH	H			4-fluorophenyl	
1138	n-butyl	n-butyl	OH	H				
1139	n-butyl	n-butyl	OH	H			3,4-difluorophenyl	
1140	n-butyl	n-butyl	OH	H			3-methoxyphenyl	

123

1161	n-butyl	n-butyl	n-butyl	OH	H			
1162	n-butyl	n-butyl	n-butyl	OH	H			
1163	n-butyl	n-butyl	n-butyl	OH	H			
1164	n-butyl	n-butyl	n-butyl	OH	H			
1165	n-butyl	n-butyl	n-butyl	OH	H			
1166	n-butyl	n-butyl	n-butyl	OH	H			
1167	n-butyl	n-butyl	n-butyl	OH	H			
1168	n-butyl	n-butyl	n-butyl	OH	H			
1169	n-butyl	n-butyl	n-butyl	OH	H			
1170	n-butyl	n-butyl	n-butyl	OH	H			
1171	n-butyl	n-butyl	n-butyl	OH	H			
1172	n-butyl	n-butyl	n-butyl	OH	H			
1173	n-butyl	n-butyl	n-butyl	OH	H			
1174	ethyl	n-butyl	n-butyl	OH	H			
1175	ethyl	n-butyl	n-butyl	OH	H			
1176	n-butyl	n-butyl	n-butyl	OH	H			
1177	n-butyl	n-butyl	n-butyl	OH	H			
1178	n-butyl	n-butyl	n-butyl	OH	H			
1179	n-butyl	n-butyl	n-butyl	OH	H			
1180	n-butyl	n-butyl	n-butyl	OH	H			
1181	n-butyl	n-butyl	n-butyl	OH	H			
1182	n-butyl	n-butyl	n-butyl	OH	H			
1183	n-butyl	n-butyl	n-butyl	OH	H			
1184	n-butyl	n-butyl	n-butyl	OH	H			
1185	n-butyl	n-butyl	n-butyl	OH	H			
1186	n-butyl	n-butyl	n-butyl	OH	H			
1187	n-butyl	n-butyl	n-butyl	OH	H			
1188	n-butyl	n-butyl	n-butyl	OH	H			

3,5-dichloro-4-methoxyphenyl

phenyl

3-(dimethylamino)phenyl

4-pyridinyl

3-fluoro-4-methoxyphenyl

3-hydroxyphenyl

4-hydroxyphenyl

phenyl

3-methoxyphenyl

4-(trifluoromethylsulfonyloxy)phenyl

4-pyridinyl

4-fluorophenyl

3-methoxyphenyl

4-fluorophenyl

3-methoxyphenyl

4-fluorophenyl

4-methoxyphenyl

124

1189	n-butyl	n-butyl	n-butyl	OH	H		3,4-difluorophenyl
1190	n-butyl	n-butyl	n-butyl	OH	H		2-bromophenyl
1191	n-butyl	n-butyl	n-butyl	OH	H		4-(dimethylamino)phenyl
1192	n-butyl	n-butyl	n-butyl	OH	H		3-(dimethylamino)phenyl
1193	n-butyl	n-butyl	n-butyl	OH	H		4-(2-(2-methylpropyl))phenyl
1194	n-butyl	n-butyl	n-butyl	OH	H		

125

1196	n-butyl	n-butyl	OH	H			
1197	n-butyl	ethyl	R3 + R4 = oxo	R3 + R4 = oxo			
1198	n-butyl	n-butyl	OH	H			

126

The chemical structure is a complex organic molecule. It features a central carbon atom bonded to a phenyl ring, a hydroxyl group (OH), a dimethylaminophenyl group (-N(CH₃)₂-C₆H₄-), and a thiomethyl group (-S-CH₃). A long, branched alkyl chain is attached to one of the phenyl rings. There are also two ether linkages (-O-C₆H₄-) connecting the central carbon to other parts of the molecule.

1199	n-butyl	n-butyl	OH	H
1200	n-butyl	n-butyl	H	OH
1201	n-butyl	n-butyl	OH	H

127

1202	n-butyl	n-butyl	OH	H				
						$N(CH_3)_3^+$		
1203	n-butyl	n-butyl	OH	H				
1204	n-butyl	n-butyl	OH	H				
1205	n-butyl	n-butyl	OH	H				
1206	n-butyl	n-butyl	OH	H				
						$N(CH_2CH_3)^+$		
1207	n-butyl	n-butyl	OH	H				
1208	n-butyl	n-butyl	OH	H				
1209	n-butyl	n-butyl	acetoxy	H				
1210	n-butyl	n-butyl	OH	H				

130

1231	n-butyl	n-butyl	OH	H	
1232	n-butyl	n-butyl	H	OH	3-thiophenyl
1233	n-butyl	n-butyl	OH	H	
1234	n-butyl	n-butyl	OH	H	

131

1235	n-butyl	n-butyl	OH	H			
1236	n-butyl	n-butyl	OH	H			
1237	n-butyl	n-butyl	OH	H			
1238	n-butyl	n-butyl	OH	H			

 +

132

1239	n-butyl	n-butyl					
1240	n-butyl	n-butyl	OH	H			
1241	n-butyl	n-butyl	OH	H			
1242	n-butyl	n-butyl	OH	H			
1243	n-butyl	n-butyl	OH	H			
1244	n-butyl	n-butyl	OH	H			
1245	n-butyl	n-butyl	OH	H			

Chemical structures:

- Row 1: A benzene ring substituted with two n-butyl groups at the 1 and 4 positions, and a 4-(2-bromoethyl)oxy group at the 2 position.
- Row 2: A benzene ring substituted with two n-butyl groups at the 1 and 4 positions, and a 4-methoxy-3-methylphenyl group at the 2 position.
- Row 3: A benzene ring substituted with two n-butyl groups at the 1 and 4 positions, and a 3-(dimethylaminomethyl)phenyl group at the 2 position.
- Row 4: A benzene ring substituted with two n-butyl groups at the 1 and 4 positions, and a 4-(2-chloroethyl)oxy group at the 2 position.
- Row 5: A benzene ring substituted with two n-butyl groups at the 1 and 4 positions, and a 4-hydroxy-3-methylphenyl cation at the 2 position.
- Row 6: A benzene ring substituted with two n-butyl groups at the 1 and 4 positions, and a 3-methoxyphenyl cation at the 2 position.

133

	n-buty[n-buty[n-buty[OH	H			
1246								
1247	n-buty[n-buty[n-buty[OH	H			
1248	n-buty[n-buty[n-buty[OH	H			
1249	n-buty[n-buty[n-buty[OH	H			
1250	n-buty[n-buty[n-buty[OH	H			
1251	n-buty[n-buty[n-buty[OH	H			
1252	n-buty[n-buty[n-buty[OH	H			

134

1253	n-butyl	n-butyl	OH	H	
1254	n-butyl	n-butyl	OH	H	
1255	n-butyl	n-butyl	OH	H	
1256	n-butyl	n-butyl	OH	H	
1257	n-butyl	n-butyl	OH	H	
1258	n-butyl	n-butyl	OH	H	
1259	ethyl	n-butyl	H	OH	
1260	ethyl	n-butyl	OH	H	

136

1268	n-butyl	n-butyl	OH	H	
1269	n-butyl	n-butyl	OH	H	
1270	n-butyl	n-butyl	OH	H	
1271	n-butyl	n-butyl	OH	H	

The table contains four rows of chemical structures, each labeled with a number (1268, 1269, 1270, 1271) and a corresponding row of chemical symbols (n-butyl, n-butyl, OH, H). Above the table, the number 136 is written in the center.

Structure 1268: A biphenyl group (two phenyl rings fused together) attached to a quaternary ammonium cation. The cation has a central nitrogen atom bonded to two methyl groups and one ethyl group, with a methyl iodide counterion (I^-) shown above it.

Structure 1269: A biphenyl group attached to a quaternary ammonium cation. The cation has a central nitrogen atom bonded to three methyl groups and one ethyl group, with an iodide counterion (I^-) shown above it.

Structure 1270: A biphenyl group attached to a quaternary ammonium cation. The cation has a central nitrogen atom bonded to three methyl groups and one ethyl group, with a bromide counterion (Br^-) shown above it.

Structure 1271: A biphenyl group attached to a quaternary ammonium cation. The cation has a central nitrogen atom bonded to three methyl groups and one ethyl group, with an iodide counterion (I^-) shown above it. The nitrogen atom is also bonded to a phenyl ring and a sulfonate group ($-SO_3^-$).

137

1272	n-butyl	n-butyl	OH	H			
1273	n-butyl	n-butyl	OH	H			
1274	n-butyl	n-butyl	OH	H			

138

1275	n-butyl	n-butyl					
1276	n-butyl	n-butyl	OH	H			
1277	n-butyl	n-butyl	OH	H			

139

1278	n-butyl	n-butyl		<chem>[I-]C(Cc1ccc(cc1)C(C)(C)C)OC(C)N((CH2)4CH3)N((CH2)4CH3)C(C)C</chem>
1279	n-butyl	n-butyl	OH	<chem>[I-]C(Cc1ccc(cc1)C(C)(C)C)OC(C)N((CH2)5CH3)N((CH2)5CH3)C(C)C</chem>
1280	n-butyl	n-butyl	OH	<chem>[I-]C(c1cc(F)c(cc1)C(=O)N(C)N(CC)CC)C(C)C</chem>

141

1289	n-butyl	n-butyl	OH	H		
1290	n-butyl	n-butyl	OH	H		
1291	n-butyl	n-butyl	OH	H		

142

1292	n-butyl	n-butyl	OH	H			
1293	n-butyl	n-butyl	OH	H			
1294	n-butyl	n-butyl	OH	H			

				143
1295	n-butyl	n-butyl	OH	H
1296	n-butyl	n-butyl	OH	H
1297	n-butyl	n-butyl	OH	H

¹⁴⁴											
	n-butyl	n-butyl	n-butyl	OH	H						
1298											
1299	n-butyl	n-butyl	n-butyl	OH	H			$\text{F}^- \text{ SF}_3$	$\left[\text{---} \right]_2$	I-	
1300	n-butyl	n-butyl	ethyl	H	OH						
1301	n-butyl	n-butyl	n-butyl	OH	H						
1302	n-butyl	n-butyl	n-butyl	OH	H						
1303	n-butyl	n-butyl	n-butyl	OH	H			I-			
1304	n-butyl	n-butyl	n-butyl	OH	H						
1305	n-butyl	n-butyl	n-butyl	OH	H						

145

146

1318	ethyl	n-butyl	OH	H			
1319	ethyl	n-butyl	OH	H	3-methoxyphenyl		
1320	ethyl	n-butyl	OH	H	phenyl		
1321	n-butyl	ethyl	OH	H	phenyl		
1322	n-butyl	n-butyl	OH	H			
1323	n-butyl	n-butyl	OH	H			
1324	n-butyl	n-butyl	OH	H			
1325	n-butyl	n-butyl	OH	H	4-(diethylamino)methylphenyl		

147

1326	n-butyl	n-butyl	OH	H		
1327	n-butyl	n-butyl	OH	H	3-fluoro-4-hydroxy-5-iodophenyl	
1328	n-butyl	n-butyl	OH	H		
1329	n-butyl	n-butyl	OH	H	CF_3CO_2^-	

148

1330	n-butyl	n-butyl	OH	H			
1331	n-butyl	n-butyl	OH	H			

Chemical structure of a quaternary ammonium salt with a phenyl group, a 4-phenylbutyl group, and a 4-tert-butylphenyl group, with an iodide counterion.

Chemical structure of a cationic surfactant with a 4-fluorophenyl group, a propylene oxide chain, and a trimethylammonium group, paired with a trifluoroacetate anion.

149

1332	n-butyl	n-butyl	OH	H	
1333	n-butyl	n-butyl	OH	H	
1334	n-butyl	n-butyl	OH	H	

1335	n-butyl	n-butyl	OH	H			
1336	n-butyl	n-butyl	OH	H			
1337	n-butyl	n-butyl	OH	H			

150

1338	n-butyl	n-butyl	n-butyl	OH	H	4-methoxyphenyl
1339	n-butyl	n-butyl	n-butyl	OH	H	
1340	n-butyl	ethyl	ethyl	OH	H	5-piperonyl
1341	n-butyl	n-butyl	n-butyl	acetoxy	H	3-methoxyphenyl
1342	n-butyl	n-butyl	n-butyl	OH	H	5-piperonyl
1343	ethyl	n-butyl	n-butyl	OH	H	phenyl
1344	n-butyl	n-butyl	n-butyl	OH	H	3-fluoro-4-methoxyphenyl
1345	ethyl	n-butyl	n-butyl	OH	H	phenyl
1346	ethyl	n-butyl	n-butyl	OH	H	phenyl
1347	n-butyl	n-butyl	n-butyl	OH	H	3-fluoro-4-methoxyphenyl
1348	isobutyl	isobutyl	isobutyl	OH	H	phenyl
1349	ethyl	n-butyl	n-butyl	OH	H	phenyl
1350	n-butyl	n-butyl	n-butyl	OH	H	3-fluoro-4-methoxyphenyl
1351	n-butyl	n-butyl	n-butyl	OH	H	

152

1352	n-butyl	n-butyl	OH	H				
1353	n-butyl	n-butyl	OH	H				
1354	n-butyl	n-butyl	OH	H				

153

1355	n-butyl	n-butyl	OH	H			
1356	n-butyl	n-butyl	OH	H			
1357	n-butyl	n-butyl	OH	H			

154

1358	n-butyl	n-butyl	OH	H			
1359	n-butyl	n-butyl	OH	H			

155

1360	n-butyl	n-butyl	OH	H		
1361	n-butyl	n-butyl	OH	H		

				156	
1362	n-butyl	n-butyl	OH	H	
1363	n-butyl	n-butyl	OH	H	
1364	n-butyl	n-butyl	OH	H	

1362

1363

1364

157

1365	n-butyl	n-butyl	OH	H			
1366	n-butyl	n-butyl	OH	H			
1367	n-butyl	n-butyl	OH	H			

158

159

1370	n-butyl	n-butyl	OH	H				
1371	n-butyl	n-butyl	OH	H				
1372	n-butyl	n-butyl	OH	H				

160

1373	n-butyl	n-butyl	OH	H	
1374	n-butyl	n-butyl	OH	H	
1375	n-butyl	n-butyl	OH	H	

1376	n-butyl	n-butyl	OH	H			
1377	n-butyl	n-butyl	OH	H			
1378	n-butyl	n-butyl	OH	H			
1379	n-butyl	n-butyl	OH	H			

162

1380	n-buty[n-buty[
1381	n-buty[n-buty[
1382	n-buty[n-buty[

163

1383	n-butyl	n-butyl	H
	OH	H	H
1384	n-butyl	n-butyl	OH
			H
1385	n-butyl	n-butyl	OH
			H

164

1386	n-butyl	n-butyl		I ⁻	
	H	H			
1387	n-butyl	n-butyl		I ⁻	
	H	H			
1388	n-butyl	n-butyl		I ⁻	
	H	H			

165

1389	n-butyl	n-butyl	OH
1390	n-butyl	n-butyl	OH
1391	n-butyl	n-butyl	OH

166

 I-	 I-	 I-
1392	n-butyl	n-butyl
	OH	OH
	H	H
1393	n-butyl	n-butyl
	OH	NH
	H	
1394	n-butyl	n-butyl
	OH	OH
	H	H

167

1395	n-butyl	n-butyl	OH	H			
1396	n-butyl	n-butyl	OH	H			
1397	n-butyl	n-butyl	OH	H			

168

1398	n-butyl	n-butyl	OH	H			
1399	n-butyl	n-butyl	OH	H			
1400	n-butyl	n-butyl	OH	H			

				169
1401	n-butyl	n-butyl	OH	H
1402	n-butyl	n-butyl	OH	H
1403	n-butyl	n-butyl	OH	H

170

1404	n-butyl	n-butyl	OH	H	
1405	n-butyl	n-butyl	OH	H	
1406	n-butyl	n-butyl	OH	H	

The chemical structures are arranged horizontally above the table rows:

- Compound 1404:** A biphenyl cation (two phenyl rings connected by a central carbon atom) with an iodide counterion (I^-). It is linked via an oxygen atom to the nitrogen of a pyridinium cation ($\text{C}_6\text{H}_5\text{CH}_2\text{N}^+ = \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{O}$).
- Compound 1405:** A biphenyl cation (two phenyl rings connected by a central carbon atom) with an iodide counterion (I^-). It is linked via an oxygen atom to the nitrogen of a pyridinium cation ($\text{C}_6\text{H}_5\text{CH}_2\text{N}^+ = \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{CO}_2\text{H}$).
- Compound 1406:** A biphenyl cation (two phenyl rings connected by a central carbon atom) with an iodide counterion (I^-). It is linked via an oxygen atom to the nitrogen of a pyridinium cation ($\text{C}_6\text{H}_5\text{CH}_2\text{N}^+ = \text{C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{CH}_2\text{I}$).

121

1407	n-butyl	n-butyl	OH	H				
1408	n-butyl	n-butyl	OH	H				
1409	n-butyl	n-butyl	OH	H				

172

1410	n-butyl	n-butyl	CO ₂ H	
1411	n-butyl	n-butyl	OH	
1412	n-butyl	n-butyl	OH	

173

1413	n-butyl	n-butyl	OH	H	
1414	n-butyl	n-butyl	OH	H	

174

1415	n-butyl	n-butyl	OH	H	
1416	n-butyl	n-butyl	OH	H	
1417	n-butyl	n-butyl	OH	H	

Chemical structures:

- Structure 1415: A pyridinium cation derivative. It features a pyridine ring with a nitrogen atom at position 2. Attached to the nitrogen is a methyl group and a propyl chain. At position 4, there is a substituent consisting of a carbon atom bonded to two methyl groups and an iodide ion (I-).
- Structure 1416: A quaternary ammonium salt derivative. It has a pyridine ring with a nitrogen atom at position 2. Attached to the nitrogen is a propyl chain. At position 4, there is a substituent consisting of a carbon atom bonded to three methyl groups and a propyl chain, with a positive charge (+) indicated above the nitrogen.
- Structure 1417: A pyridinium cation derivative. It features a pyridine ring with a nitrogen atom at position 2. Attached to the nitrogen is a propyl chain. At position 4, there is a substituent consisting of a carbon atom bonded to three methyl groups and an iodide ion (I-).

172

178

1425	n-butyl	n-butyl		<chem>OCCN(CCC[N+]((C)C)C)C([I-])c1ccccc1</chem>	
1426	n-butyl	n-butyl	OH	<chem>OCCN(CCC[N+]((C)C)C)C([I-])c1ccccc1</chem>	<chem>[I-]C([N+]((C)C)C)CCCO</chem>
1427	n-butyl	n-butyl	OH	<chem>OCCN(CCC[N+]((C)C)C)C([I-])c1ccccc1</chem>	<chem>[I-]C([N+]((C)C)C)CCCOc2ccccc2</chem>

129

1428	n-butyl	n-butyl	OH	H	
1429	n-butyl	n-butyl	OH	H	

Chemical structure of 4-(n-butylamino)-4-methylbutanesulfonic acid: A benzene ring with a methyl group at position 1 and an n-butylamino group (-NH-CH₂-CH₂-CH₂-CH₃) at position 4. This is linked via an amide group (-NH-C(=O)-) to a 4-methylbutanesulfonic acid chain: -CH₂-C(=O)-S(=O)(=O)OH.

Chemical structure of 4-bromo-N-phenylbenzyl cation: A benzene ring with a phenyl group (-C₆H₅) at position 1 and a 4-bromobenzyl group (-CH₂-C₆H₄-Br) at position 4. The cation is indicated by a plus sign (+) next to the nitrogen atom.

	<i>180</i>					
	n-butyl	n-butyl	OH	H	H	
1430						
1431	n-butyl	n-butyl	OH	H	H	
1432	n-butyl	n-butyl	OH	H	H	

181

1433	n-butyl	n-butyl	OH	H		
1434	n-butyl	n-butyl	OH	H		

182

1435	n-butyl	n-butyl	OH	H			
1436	n-butyl	n-butyl	OH	H			
1437	n-butyl	n-butyl	OH	H			

I
[N+](C)(C)C(C)COP(=O)([O-])c1ccc(O)cc1

II
[N+]([O-])C(C)COP(=O)([O-])c1ccc(O)cc1

III
[N+]([O-])C(C)COP(=O)([O-])c1ccc(O)cc1
+ P(C6H5)3

<i>183</i>					
	n-butyl	n-butyl	OH	H	
1438					
1439	n-butyl	n-butyl	OH	H	
1440	n-butyl	n-butyl	OH	H	
1441	n-butyl	n-butyl	OH	H	

								184
1442	n-butyl	n-butyl	OH	H	H			
1443	n-butyl	n-butyl	OH	H	H			
1444	n-butyl	n-butyl	OH	H	H			

185

1445	n-butyl	n-butyl	OH	H
1446	n-butyl	n-butyl	OH	H
1447	n-butyl	n-butyl	OH	H
1448	n-butyl	n-butyl	OH	H

		186			
		phenyl			
I-		3			
1449	n-butyl	H	H		
		OH			
1450	n-butyl	H	H		
1451	n-butyl	n-butyl	n-butyl		

187

Compound Number	R^6	$(R^X)_q$	
101	H		
102	H		at the 7-position
103	H		7-trimethylammonium iodide
104	H		7-trimethylammonium iodide
105	H		7-dimethylamino
106	H		7-methanesulfonamido
107	H		7-(2-bromoacetamido)
108	H		7-amino
109	H		7-(hexylamido)
110	H		7-acetamido
111	H		7-amino
112	H		7-amino
113	H		7-amino
114	H		7-amino

188

115	H	7-(O-benzylcarbamato)
116	H	7-(O-benzylcarbamato)
117	H	7-(O-benzylcarbamato)
118	H	7-(O-benzylcarbamato)
119	H	7-(O-tert-butylcarbamato)
120	H	7-(O-benzylcarbamato)
121	H	7-amino
122	H	7-amino
123	H	7-hexylamino
124	H	7-(hexylamino)
125	H	I
		at the 8-position
126	H	7-(O-benzylcarbamato)
127	H	7-amino
128	H	7-(O-benzylcarbamato)
129	H	7-amino

189

190

191

192

142	3-methoxy-phenyl	7-methylmercapto
143	H	7-methylmercapto
144	H	7-(N-acetylidyne)
262	H	7-methoxy
263	3-methoxy-phenyl	7-methoxy
264	H	7-methoxy
265	3-trifluoro-methyl-phenyl	7-methoxy
266	H	7-hydroxy
267	H	7-methoxy
268	H	7-methoxy
269	4-fluoro-phenyl	7-methoxy
270	H	7-hydroxy
271	H	7-bromo
272	3-methoxy-phenyl	7-bromo
273	4-fluoro-phenyl	7-fluoro
274	H	7-fluoro
275	3-methoxy-phenyl	7-fluoro
276	H	7-fluoro
277	H	7-methoxy
278	H	7-methoxy
279	H	7-methoxy
280	H	7-methoxy
281	H	7-methylmercapto
282	H	7-methyl
283	4-fluoro-phenyl	7-methyl
284	H	7-(4'-morpholino)
286	H	7-(O-benzylcarbamato)
287	H	7-amino
288	H	7-amino
289	H	7-amino

193

290	H		7-amino
291	H	7-(O-benzylcarbamato)	7-amino
292	H	7-amino	7-benzylamino
293	H	7-benzylamino	7-dimethylamino
294	H	7-dimethylamino	7-amino
295	H	7-amino	7-amino
296	H	7-amino	7-dimethylamino
1000	H	7-dimethylamino	7-dimethylamino
1001	H	7-dimethylamino	7-dimethylamino
1002	H	7-dimethylamino	7-dimethylamino
1003	H	7-dimethylamino	7-dimethylamino
1004	H	7-dimethylamino	7-dimethylamino
1005	H	7-dimethylamino	7-dimethylamino
1006	H	7-dimethylamino	7-dimethylamino
1007	H	7-dimethylamino	7-dimethylamino
1008	H	7-dimethylamino	7-dimethylamino
1009	H	7-dimethylamino	7-dimethylamino
1010	H	7-dimethylamino	7-dimethylamino
1011	H	7-dimethylamino	7-dimethylamino; 9-methoxy
1012	H	7-dimethylamino; 9-methoxy	7-dimethylamino
1013	H	7-dimethylamino	7-dimethylamino; 9-methoxy
1014	H	7-dimethylamino; 9-methoxy	7-dimethylamino
1015	H	7-dimethylamino	7-dimethylamino
1016	H	7-dimethylamino	7-dimethylamino
1017	H	7-dimethylamino	7-dimethylamino
1018	H	7-dimethylamino	7-dimethylamino
1019	H	7-dimethylamino	7-dimethylamino
1020	H	7-dimethylamino	7-dimethylamino
1021	H	7-dimethylamino	7-dimethylamino
1022	H	7-dimethylamino	7-dimethylamino
1023	H	7-dimethylamino	7-dimethylamino
1024	H	7-dimethylamino	7-dimethylamino
1025	H	7-dimethylamino	7-dimethylamino

194

1026	H	7-dimethylamino
1027	H	7-dimethylamino
1028	H	7-dimethylamino
1029	H	7-dimethylamino
1030	H	7-dimethylamino
1031	H	7-dimethylamino
1032	H	7-dimethylamino
1033	H	7-dimethylamino
1034	H	7-dimethylamino
1035	H	7-dimethylamino
1036	H	7-dimethylamino
1037	H	7-dimethylamino
1038	H	7-dimethylamino
1039	H	7-dimethylamino
1040	H	7-dimethylamino
1041	H	7-dimethylamino
1042	H	7-dimethylamino
1043	H	7-dimethylamino
1044	H	7-dimethylamino
1045	H	7-dimethylamino
1046	H	7-dimethylamino
1047	H	7-dimethylamino
1048	H	7-dimethylamino
1049	H	7-dimethylamino
1050	H	7-dimethylamino
1051	H	7-dimethylamino
1052	H	7-dimethylamino
1053	H	7-dimethylamino
1054	H	7-dimethylamino
1055	H	7-dimethylamino
1056	H	7-dimethylamino
1057	H	7-dimethylamino
1058	H	7-dimethylamino

195

			7-dimethylamino
1059	H	H	
1060	H	H	7-methylamino
1061	H	H	7-methylamino
1062	H	H	7-methylamino
1063	H	H	7-methylamino
1064	H	H	7-methylamino
1065	H	H	7-dimethylamino
1066	H	H	7-dimethylamino
1067	H	H	9-dimethylamino
1068	H	H	7-dimethylamino
1069	H	H	7-dimethylamino;
1070	H	H	9-dimethylamino
1071	H	H	7-dimethylamino
1072	H	H	7-dimethylamino
1073	H	H	7-dimethylamino
1074	H	H	7-dimethylamino
1075	H	H	7-dimethylamino; 9-dimethylamino
1076	H	H	7-dimethylamino
1077	H	H	7-dimethylamino
1078	H	H	7-dimethylamino
1079	H	H	7-dimethylamino
1080	H	H	7-dimethylamino
1081	H	H	7-dimethylamino
1082	H	H	7-dimethylamino
1083	H	H	7-dimethylamino
1084	H	H	7-dimethylamino
1085	H	H	7-dimethylamino
1086	H	H	7-dimethylamino
1087	H	H	7-dimethylamino
1088	H	H	7-dimethylamino
1089	H	H	7-dimethylamino
1090	H	H	7-dimethylamino

196

1091	H	7-dimethylamino
1092	H	7-dimethylamino
1093	H	7-dimethylamino
1094	H	7-dimethylamino
1095	H	7-dimethylamino
1096	H	7-dimethylamino
1097	H	7-dimethylamino
1098	H	7-dimethylamino
1099	H	7-dimethylamino
1100	H	7-dimethylamino
1101	H	7-dimethylamino
1102	H	7-dimethylamino
1103	H	7-dimethylamino
1104	H	7-dimethylamino
1105	H	7-dimethylamino
1106	H	7-dimethylamino
1107	H	7-dimethylamino
1108	H	7-dimethylamino
1109	H	7-dimethylamino
1110	H	7-dimethylamino
1111	H	7-dimethylamino
1112	H	7-dimethylamino
1113	H	7-dimethylamino
1114	H	7-methylamino
1115	H	7-dimethylamino
1116	H	7-dimethylamino
1117	H	7-dimethylamino
1118	H	7-dimethylamino
1119	H	7-dimethylamino
1120	H	7-dimethylamino
1121	H	7-dimethylamino
1122	H	7-dimethylamino
1123	H	7-dimethylamino

197

1124	H	7-dimethylamino
1125	H	7-dimethylamino
1126	H	7-dimethylamino
1127	H	7-dimethylamino
1128	H	7-dimethylamino
1129	H	9-dimethylamino
1130	H	7-dimethylamino
1131	H	7-dimethylamino
1132	H	7-dimethylamino
1133	H	7-dimethylamino
1134	H	7-dimethylamino
1135	H	7-dimethylamino
1136	H	7-dimethylamino
1137	H	9-(2',2'-dimethylhydrazino)
1138	H	7-dimethylamino
1139	H	7-dimethylamino
1140	H	7-(2',2'-dimethylhydrazino)
1141	H	7-ethylmethylamino
1142	H	7-dimethylamino
1143	3-fluoro-4-methoxy-phenyl]	7-dimethylamino
1144	H	7-dimethylamino
1145	H	9-dimethylamino
1146	H	7-dimethylamino
1147	H	7-diethylamino
1148	H	7-dimethylsulfonium, fluoride salt
1149	H	7-ethylamino
1150	H	7-diethylmethylamino
1151	H	7-dimethylamino
1152	H	7-(ethoxymethyl) methylamino
1153	H	7-methylamino
1154	H	9-methoxy
1155	H	7-methyl

198

			7-methylmercapto
1156	H		
1157	H		7-fluoro; 9-dimethylamino
1158	H		7-methoxy
1159	H		7-dimethylamino
1160	H		7-diethylamino
1161	H		7-dimethylamino
1162	H		7-dimethylamino
1163	H		7-methoxy
1164	H		7-methoxy
1165	H		7-trimethylammonium iodide
1166	H		7-trimethylammonium iodide
1167	H		7-dimethylamino
1168	H		7-trimethylammonium iodide
1169	H		8-dimethylamino
1170	H		7-ethylpropylamino
1171	H		7-dimethylamino
1172	H		7-methoxy
1173	H		7-ethylpropylamino
1174	H		7-phenyl
1175	H		7-methylsulfonyl
1176	H		9-fluoro
1177	H		7-butylmethylamino
1178	H		7-dimethylamino
1179	H		8-methoxy
1180	H		7-trimethylammonium iodide
1181	H		7-butylmethylamino
1182	H		7-methoxy
1183	H		7-fluoro
1184	H		7-fluoro; 9-fluoro
1185	H		7-fluoro
1186	H		7-fluoro; 9-fluoro
1187	H		7-methyl

199

1188	H	7-trimethylammonium iodide
1189	H	7-trimethylammonium iodide
1190	H	7-bromo
1191	H	7-hydroxy
1192	H	7-hydroxy
1193	H	7-dimethylamino
1194	H	7-dimethylamino
1195	H	7-(4'-methyl)piperazin-1-yl)
1196	H	7-methoxy
1197	H	7-(N-methylformamido)
1198	H	7-methoxy
1199	H	7-dimethylamino
1200	phenyl	7-dimethylamino
1201	H	7-methyl
1202	H	7-methoxy
1203	H	7-(4'-tert-butylphenyl)
1204	H	7-methoxy
1205	H	7-dimethylamino
1206	H	7-dimethylamino
1207	H	7-dimethylamino
1208	H	7-dimethylamino
1209	H	7-dimethylphenyl
1210	H	7-dimethylamino
1211	H	7-dimethylamino
1212	H	9-(4'-morpholino)
1213	3-fluoro-4-methoxy-phenyl	7-dimethylamino
1214	H	7-(N-methylformamido)
1215	H	9-methylmercapto
1216	H	7-bromo
1217	H	7-dimethylamino
1218	H	9-methylsulfonyl
1219	H	7-dimethylamino

200

1220	H	7-isopropylamino
1221	H	7-dimethylamino
1222	H	7-ethylamino
1223	H	8-bromo; 7-methylamino
1224	H	7-fluoro
1225	H	7-dimethylamino
1226	H	7-bromo
1227	H	7-(tert-butylamino)
1228	H	8-bromo;
1229	H	7-dimethylamino
1230	H	7-dimethylamino; 9-dimethylamino; 7-fluoro
1231	H	7-dimethylamino
1232	H	9-dimethylamino
1233	H	7-dimethylamino
1234	H	7-dimethylamino
1235	H	7-dimethylamino
1236	H	7-dimethylamino
1237	H	7-dimethylamino
1238	H	7-dimethylamino
1239	H	7-dimethylamino
1240	H	7-dimethylamino
1241	H	7-dimethylamino
1242	H	7-dimethylamino
1243	H	7-dimethylamino
1244	H	7-(1'-methylhydrazido)
1245	H	7-dimethylamino
1246	H	7-dimethylamino
1247	H	7-dimethylamino
1248	H	7-dimethylamino
1249	H	7-dimethylamino

201

1250	H	7-dimethylamino
1251	H	7-dimethylamino
1252	H	7-dimethylamino
1253	H	7-dimethylamino
1254	H	7-dimethylamino
1255	H	7-dimethylamino
1256	H	7-dimethylamino
1257	H	8-bromo; 7-dimethylamino
1258	H	9-(tert-butylamino)
1259	phenyl	7-dimethylamino
1260	H	7-dimethylamino
1261	H	7-dimethylamino
1262	H	7-dimethylamino
1263	H	7-bromo
1264	H	7-isopropylamino
1265	H	9-isopropylamino
1266	H	7-dimethylamino
1267	H	7-carboxy, methyl ester
1268	H	7-dimethylamino
1269	H	7-dimethylamino
1270	H	7-dimethylamino
1271	H	7-dimethylamino
1272	H	7-dimethylamino
1273	H	7-dimethylamino
1274	H	7-dimethylamino
1275	H	7-dimethylamino
1276	H	7-dimethylamino
1277	H	7-dimethylamino
1278	H	7-dimethylamino
1279	H	7-dimethylamino
1280	H	7-dimethylamino
1281	H	7-dimethylammonium iodide
1282	H	7-trimethylammonium iodide

202

1283	H	7-dimethylamino
1284	H	9-ethylamino
1285	H	7-dimethylamino
1286	H	7-dimethylamino
1287	H	7-dimethylamino
1288	H	7-dimethylamino
1289	H	7-dimethylamino
1290	H	7-dimethylamino
1291	H	7-dimethylamino
1292	H	7-dimethylamino
1293	H	7-dimethylamino
1294	H	7-dimethylamino
1295	H	7-dimethylamino
1296	H	7-dimethylamino
1297	H	7-dimethylamino
1298	H	7-dimethylamino
1299	H	7-dimethylamino
1300	phenyl	7-dimethylamino
1301	H	7-trimethylammonium iodide
1302	H	9-hydroxy
1303	H	7-dimethylamino
1304	H	7-tert-butylamino
1305	H	9-methylamino
1306	H	7-dimethylamino
1307	4-methoxy-phenyl	9-(4-morpholino)
1308	H	7-dimethylamino
1309	H	9-fluoro
1310	H	7-amino
1311	H	7-(hydroxylamino)
1312	H	8-hexyloxy
1313	H	8-ethoxy
1314	H	7-(hydroxylamino)
1315	H	7-(hexyloxy)

203

		8-hydroxy	I	
1316	H			
1317	H			
			+ at the 8-position	
1318	H		7-dimethylamino	
1319	H		7-fluoro	
1320	H		7-amino	
1321	H			
			+ at the 8-position	
1322	H		7-dimethylamino	
1323	H		7-dimethylamino	
1324	H		7-dimethylamino	
1325	H		7-dimethylamino	
1326	H		7-dimethylamino	
1327	H		7-dimethylamino	
1328	H		7-dimethylamino	
1329	H		7-dimethylamino	
1330	H		7-dimethylamino	
1331	H		7-dimethylamino	
1332	H		7-dimethylamino	

204

1333	H	7-dimethylamino
1334	H	7-dimethylamino
1335	H	7-dimethylamino
1336	H	7-dimethylamino
1337	H	7-dimethylamino
1338	H	7-dimethylamino
1339	H	7-(4'-methyl(piperazinyl) 7-dimethylamino
1340	H	7-methyl
1341	H	7-dimethylamino
1342	H	7-(4'-fluorophenyl)
1343	H	7-amino
1344	H	7-dimethylamino
1345	H	7-trimethylammonium iodide
1346	H	
		at the 8-position
1347	H	7-dimethylamino
1348	H	7-dimethylamino
1349	H	7-dimethylamino
1350	H	7-trimethylammonium iodide
1351	H	7-dimethylamino
1352	H	7-dimethylamino
1353	H	7-dimethylamino
1354	H	7-dimethylamino
1355	H	7-dimethylamino
1356	H	7-dimethylamino
1357	H	7-dimethylamino
1358	H	7-dimethylamino
1359	H	7-dimethylamino
1360	H	7-dimethylamino
1361	H	7-dimethylamino
1362	H	7-dimethylamino

205

1363	H	7-dimethylamino
1364	H	7-dimethylamino
1365	H	7-dimethylamino
1366	H	7-dimethylamino
1367	H	7-dimethylamino
1368	H	7-dimethylamino
1369	H	7-dimethylamino
1370	H	7-dimethylamino
1371	H	7-dimethylamino
1372	H	7-dimethylamino
1373	H	7-dimethylamino
1374	H	7-dimethylamino
1375	H	7-dimethylamino
1376	H	7-dimethylamino
1377	H	7-dimethylamino
1378	H	7-dimethylamino
1379	H	7-dimethylamino
1380	H	7-dimethylamino
1381	H	7-dimethylamino
1382	H	7-dimethylamino
1383	H	7-dimethylamino
1384	H	7-dimethylamino
1385	H	7-dimethylamino
1386	H	7-dimethylamino
1387	H	7-dimethylamino
1388	H	7-dimethylamino
1389	H	7-dimethylamino
1390	H	7-dimethylamino
1391	H	7-dimethylamino
1392	H	7-dimethylamino
1393	H	7-dimethylamino
1394	H	7-dimethylamino
1395	H	7-dimethylamino

206

1396	H	7-dimethylamino
1397	H	7-dimethylamino
1398	H	7-dimethylamino
1399	H	7-dimethylamino
1400	H	7-dimethylamino
1401	H	7-dimethylamino
1402	H	7-dimethylamino
1403	H	7-dimethylamino
1404	H	7-dimethylamino
1405	H	7-dimethylamino
1406	H	7-dimethylamino
1407	H	7-dimethylamino
1408	H	7-dimethylamino
1409	H	7-dimethylamino
1410	H	7-dimethylamino
1411	H	7-dimethylamino
1412	H	7-dimethylamino
1413	H	7-dimethylamino
1414	H	7-dimethylamino
1415	H	7-dimethylamino
1416	H	7-dimethylamino
1417	H	7-dimethylamino
1418	H	7-dimethylamino
1419	H	7-dimethylamino
1420	H	7-dimethylamino
1421	H	7-dimethylamino
1422	H	7-dimethylamino
1423	H	7-dimethylamino
1424	H	7-dimethylamino
1425	H	7-dimethylamino
1426	H	7-dimethylamino
1427	H	7-dimethylamino
1428	H	7-dimethylamino

207

1429	H	7-dimethylamino
1430	H	7-dimethylamino
1431	H	7-dimethylamino
1432	H	7-dimethylamino
1433	H	7-dimethylamino
1434	H	7-dimethylamino
1435	H	7-dimethylamino
1436	H	7-dimethylamino
1437	H	7-dimethylamino
1438	H	7-dimethylamino
1439	H	7-dimethylamino
1440	H	7-dimethylamino
1441	H	7-dimethylamino
1442	H	7-dimethylamino
1443	H	7-dimethylamino
1444	H	7-dimethylamino
1445	H	7-dimethylamino
1446	H	7-methoxy; 8-methoxy
1447	H	7-dimethylamino
1448	H	7-dimethylamino
1449	H	7-dimethylamino
1450	H	7-dimethylamino
1451	H	7-dimethylamino

Another class of compounds of particular interest comprises those 1,2-benzothiazepines wherein the R¹, R², R³, R⁴, R⁵, R⁶, R^N and R^x radicals are selected from among the radicals disclosed in Table 2 below. Preferably, R⁶ is hydrogen and R⁵ is other than hydrogen; and/or R³ is hydroxy and R⁴ is hydrogen; and/or R¹ and R² are alkyl. More preferably, R¹ and R² are the same.

Table 2

R^1/R^2	R^3/R_4	R^5/R^6	$(R^x)q$	R^N
ethyl	HO-	H	7-methyl	H-
n-propyl	H-	Ph-	7-ethyl	methyl
n-butyl		p-F-Ph-	7-iso-propyl	ethyl
n-pentyl		m-F-Ph-	7-tert-butyl	n-propyl
n-hexyl		p-CH ₃ O-Ph-	7-OH	n-butyl
iso-propyl		p-HO-Ph-	7-OCH ₃	n-pentyl
iso-butyl		m-CH ₃ O-Ph-	7-O(iso-propyl)	n-hexyl
iso-pentyl		m-HO-Ph-	7-SCH ₃	benzyl
CH ₂ OC ₂ H ₅		p-(CH ₃) ₂ N-Ph-	7-SOCH ₃	
CH ₂ O-(4-picoline)		m-(CH ₃) ₂ N-Ph-	7-SO ₂ CH ₃	
CH ₂ CH ₂ CH ₂		p-H ₂ N-Ph-	7-SCH ₂ CH ₃	
CF ₃		m-H ₂ N-Ph-	7-NH ₂	
		I ⁻ , p-(CH ₃) ₃ -N ⁺ -Ph-	7-NHOH	
		I ⁻ , m-(CH ₃) ₃ -N ⁺ -Ph-	7-NHCH ₃	
		I ⁻ , p-(CH ₃) ₃ -N ⁺ -	7-N(CH ₃) ₂	
		CH ₂ CH ₂ - (OCH ₂ CH ₂) ₂ -O-	7-N ⁺ (CH ₃) ₃ , I ⁻	
		Ph-	7-NHC(O)CH ₃	
		I ⁻ , m-(CH ₃) ₃ -N ⁺ -	7-N(CH ₂ CH ₃) ₂	
		CH ₂ CH ₂ - (OCH ₂ CH ₂) ₂ -O-	7-NMeCH ₂ CO ₂ H	
		Ph-	7-N ⁺ (Me) ₂ CH ₂ CO ₂ H,	
		I ⁻ , p-(N,N-dimethyl-piperazine)-(N')-	I ⁻	
		CH ₂ - (OCH ₂ CH ₂) ₂ -O-	7-(N)-morpholine	
		Ph-	7-(N)-azetidine	
		I ⁻ , m-(N,N-dimethyl-piperazine)-(N')-	7-(N)-N-	
		CH ₂ - (OCH ₂ CH ₂) ₂ -O-	methylazetidinium, I ⁻	
		Ph-	7-(N)-pyrrolidine	
		I ⁻ , m-(N,N-dimethyl-piperazine)-(N')-	7-(N)-N-methyl-pyrrolidinium, I ⁻	
		CH ₂ - (OCH ₂ CH ₂) ₂ -O-	7-(N)-N-methyl-morpholinium, I ⁻	
		Ph-	7-(N)-N'-methylpiperazine	
		m-F, p-CH ₃ O-Ph-	7-(N)-N'-dimethylpiperazinium, I ⁻	
		3,4-dioxymethylene-Ph	7-NH-CBZ	
		m-CH ₃ O-, p-F-Ph-	7-NHC(O)C ₅ H ₁₁	
		4-pyridine	7-NHC(O)CH ₂ Br	
		N-methyl-4-pyridinium, I ⁻	7-NH-C(NH)NH ₂	
		3-pyridine	7-(2)-thiophene	
		N-methyl-3-pyridinium, I ⁻	8-methyl	
		2-pyridine	8-ethyl	
		p-CH ₃ O ₂ C-Ph-	8-iso-propyl	
		thienyl-2-yl	8-tert-butyl	
		5-Cl-thienyl-2-yl	8-OH	
			8-OCH ₃	

R ¹ /R ²	R ³ /R ₄	R ⁵ /R ⁶	(R ^x)q	R ^N
			8-O(iso-propyl) 8-SCH ₃ 8-SOCH ₃ 8-SO ₂ CH ₃ 8-SCH ₂ CH ₃ 8-NH ₂ 8-NHOH 8-NHCH ₃ 8-N(CH ₃) ₂ 8-N ⁺ (CH ₃) ₃ , I ⁻ 8-NHC(O)CH ₃ 8-N(CH ₂ CH ₃) ₂ 8-NMeCH ₂ CO ₂ H 8-N ⁺ (Me) ₂ CH ₂ CO ₂ H, I ⁻ 8-(N)-morpholine 8-(N)-azetidine 8-(N)-N- methylazetidinium, I ⁻ 8-(N)-pyrrolidine 8-(N)-N-methyl- pyrrolidinium, I ⁻ 8-(N)- N-methyl- morpholinium, I ⁻ 8-(N)-N'- methylpiperazine 8-(N)-N'- dimethylpiperazinium, I ⁻ 8-NH-CBZ 8-NHC(O)C ₅ H ₁₁ 8-NHC(O)CH ₂ Br 8-NH-C(NH)NH ₂ 8-(2)-thiophene 9-methyl 9-ethyl 9-iso-propyl 9-tert-butyl 9-OH 9-OCH ₃ 9-O(iso-propyl) 9-SCH ₃ 9-SOCH ₃ 9-SO ₂ CH ₃ 9-N ⁺ (Me) ₂ CH ₂ CO ₂ H, I ⁻	

R^1/R^2	R^3/R^4	R^5/R^6	$(R^x)q$	R^N
			9-SCH ₂ CH ₃ 9-NH ₂ 9-NHOH 9-NHCH ₃ 9-N(CH ₃) ₂ 9-N ⁺ (CH ₃) ₃ , I ⁻ 9-NHC(O)CH ₃ 9-N(CH ₂ CH ₃) ₂ 9-NMeCH ₂ CO ₂ H 9-(N)-morpholine 9-(N)-azetidine 9-(N)-N-methylazetidinium, I ⁻ 9-(N)-pyrrolidine 9-(N)-N-methyl-pyrrolidinium, I ⁻ 9-(N)-N-methyl-morpholinium, I ⁻ 9-(N)-N'-methylpiperazine 9-(N)-N'-dimethyl-piperazinium, I ⁻ 9-NH-CBZ 9-NHC(O)C ₅ H ₁₁ 9-NHC(O)CH ₂ Br 9-NH-C(NH)NH ₂ 9-(2)-thiophene 7-OCH ₃ , 8-OCH ₃ 7-SCH ₃ , 8-OCH ₃ 7-SCH ₃ , 8-SCH ₃ 6-OCH ₃ , 7-OCH ₃ , 8-OCH ₃	

Another class of compounds of particular interest comprises those 1,2-benzothiazepines wherein the R^1 , R^2 , R^3 , R^4 and R^5 radicals are as set forth in Table 3 below; R^6 is hydrogen; the R^N radical is selected from the group consisting of hydrogen, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and benzyl; and the R^x radical or radicals are independently selected from the group of R^x radicals disclosed in Table 2 above. In one embodiment of the compounds of Table 3, for example, q is 1 and R^x is 7-dimethylamino.

212

Table 3

213

Compound Number	R ¹	R ²	R ³	R ⁴	R ⁵
1452	ethyl	n-butyl	OH	H	
1453	n-butyl	ethyl	OH	H	
1454	n-butyl	n-butyl	OH	H	

214

1455	ethyl	n-butyl			
1456	n-butyl	ethyl	OH	H	
1457	n-butyl	n-butyl	OH	H	

215

1458	ethyl	n-butyl						
			OH	H				
1459	n-butyl	ethyl						
			OH	H				
1460	n-butyl	n-butyl						
			OH	H				

Chemical structures:

- Row 1: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.
- Row 2: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.
- Row 3: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.
- Row 4: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.
- Row 5: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.
- Row 6: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.
- Row 7: A benzene ring substituted with a tert-butyl group at the para position and an ethoxybutyryl group at the other positions.

216

1461	ethyl	n-butyl	OH	H	
1462	n-butyl	ethyl	OH	H	
1463	n-butyl	n-butyl	OH	H	

217						
	ethyl	n-butyl	OH	H		
1464						
1465		n-butyl	ethyl	OH	H	
1466						

218

1467	ethyl n-butyl	OH H
1468	n-butyl	OH H
1469	n-butyl	OH H

219

1470	ethyl	n-butyl OH H
1471	n-butyl	ethyl OH H
1472	n-butyl	n-butyl OH H

220

1473	ethyl	n-butyl	
1474	n-butyl	ethyl	
1475	n-butyl	n-butyl	

Chemical structures for compounds 1473, 1474, and 1475:

- 1473: A quaternary ammonium salt derivative. It features a central nitrogen atom bonded to four methyl groups. This is connected via a single bond to a carbon atom, which is part of a chain extending to the right. The chain consists of a methylene group (-CH₂-) attached to a phenyl ring substituted with a 4-(4-phenylphenoxy)biphenyl-4-sulfonato group. The sulfonato group is shown with its negative charge on the oxygen atom.
- 1474: A similar quaternary ammonium salt derivative to 1473, but with the phenyl ring substituted with a 4-(4-phenylphenoxy)biphenyl-4-sulfonato group instead of a 4-(4-phenylphenoxy)biphenyl-4-sulfonato group.
- 1475: A similar quaternary ammonium salt derivative to 1473, but with the phenyl ring substituted with a 4-(4-phenylphenoxy)biphenyl-4-sulfonato group instead of a 4-(4-phenylphenoxy)biphenyl-4-sulfonato group.

221

1476	ethyl	n-butyl	OH	H	
1477	n-butyl	ethyl	OH	H	
1478	n-butyl	n-butyl	OH	H	

222

223

1481	n-butyl		OH	H
1482	ethyl		OH	H

224

1483	n-butyl ethyl	OH H	
1484	n-butyl	OH H	
1485	ethyl	n-butyl OH H	

225

1486		1487	
n-butyl	ethyl	n-butyl	n-butyl
OH	H	OH	H

226

1488	ethyl n-butyl	OH H	
1489	n-butyl	ethyl OH H	
1490		n-butyl OH H	

227

1491	ethyl	n-butyl	OH	H	
1492	n-butyl	ethyl	OH	H	
1493	n-butyl	n-butyl	OH	H	

228

1494	ethyl	n-butyl	OH	H	
1495	n-butyl	ethyl	OH	H	
1496	n-butyl	n-butyl	OH	H	
1497	ethyl	n-butyl	OH	H	

229

1498	n-butyl	ethyl	
1499	n-butyl	n-butyl	
1500	ethyl	n-butyl	

230

1501	n-butyl	ethyl		
		OH	H	
1502	n-butyl	n-butyl		
		OH	H	
1503	ethyl	n-butyl		
		OH	H	

231

1504	n-buty[ethyl H	OH H
1505	n-buty[n-buty[H	OH H
1506	ethyl H	OH H

232

1507	n-butyl	ethyl	
1508	n-butyl	n-butyl	
1509	ethyl	n-butyl	

233

1510	n-butyl	ethyl	
1511	n-butyl	n-butyl	
1512	ethyl	n-butyl	

234

1513	n-butyl	ethyl		OH	H
1514	n-butyl	n-butyl		OH	H
1515	ethyl	n-butyl		OH	H
1516	n-butyl	ethyl		OH	H

235

1517	n-buty[n-buty[
1518	ethyl	n-buty[
1519		n-buty[ethyl				
1520		n-buty[

236

1521	ethyl	n-buty[OH	H	
1522		n-buty[OH	H	
1523		n-buty[OH	H	
1524	ethyl	n-buty[OH	H	

237

1525	n-butyl	ethyl		Cl ⁻
1526	n-butyl	n-butyl		Cl ⁻
1527	ethyl	n-butyl		CO ₂ H
1528	n-butyl	ethyl		CO ₂ H

238

1529	n-butyl	n-butyl	OH	H	
1530	ethyl	n-butyl	OH	H	
1531	n-butyl	ethyl	OH	H	
1532	n-butyl	n-butyl	OH	H	

239

1533	ethyl	n-butyl	OH	H	
1534	n-butyl	ethyl	OH	H	
1535	n-butyl	n-butyl	OH	H	
1536	ethyl	n-butyl	OH	H	

				240
1537	n-butyl	ethyl	OH	H
1538	n-butyl	n-butyl	OH	H
1539	ethyl	n-butyl	OH	H
1540	n-butyl	ethyl	OH	H

241

1541	n-butyl	n-butyl				
			H	OH	H	
1542	ethyl	n-butyl				
			H	OH	H	
1543	n-butyl	ethyl				
			H	OH	H	
1544	n-butyl	n-butyl				
			H	OH	H	

242

1545	ethyl	n-butyl	OH	H	
1546	n-butyl	ethyl	OH	H	
1547	n-butyl	n-butyl	OH	H	
1548	ethyl	n-butyl	OH	H	

243

1549	n-butyl	ethyl	OH	H	
1550	n-butyl	n-butyl	OH	H	
1551	ethyl	n-butyl	OH	H	
1552	n-butyl	ethyl	OH	H	
1553	n-butyl	n-butyl	OH	H	

244

1554	ethyl	n-butyl	OH	H	
1555	n-butyl	ethyl	OH	H	
1556	n-butyl	n-butyl	OH	H	
1557	ethyl	n-butyl	OH	H	
1558	n-butyl	ethyl	OH	H	

245

245

1559	n-butyl	n-butyl					
	OH	H					
1560	ethyl	n-butyl					
	OH	H					
1561	n-butyl	n-butyl					
	OH	H					
1562	n-butyl	n-butyl					
	OH	H					

246

1563	ethyl	n-butyl	
1564	n-butyl	n-butyl	
1565	n-butyl	n-butyl	
1566	ethyl	n-butyl	

247

1567	n-butyl	ethyl	OH	H		Cl ⁻	
1568	n-butyl	n-butyl	OH	H		Cl ⁻	
1569	ethyl	n-butyl	OH	H			
1570	n-butyl	ethyl	OH	H			

248

1571	n-butyl	n-butyl		H	OH	H
1572	ethyl	n-butyl		H	OH	H
1573	n-butyl	ethyl		H	OH	H
1574	n-butyl	n-butyl		H	OH	H
1575	ethyl	n-butyl		H	OH	H

249

1576	n-butyl	ethyl	
1577	n-butyl	n-butyl	
1578	ethyl	n-butyl	
1579	n-butyl	ethyl	

250

1580	n-butyl	n-butyl	
	OH	H	
1581	ethyl	n-butyl	
	OH	H	
1582	n-butyl	ethyl	
	OH	H	
1583	n-butyl	n-butyl	

257

1584	ethyl	n-butyl	OH H	
1585	n-butyl	ethyl	OH H	
1586	n-butyl	n-butyl	OH H	
1587	ethyl	n-butyl	OH H	

<i>252</i>								
	n-butyl	ethyl	OH	H				
1588								
1589	n-butyl	n-butyl	OH	H				
1590	ethyl	n-butyl	OH	H				
1591	n-butyl	ethyl	OH	H				

253

1592	n-butyl	n-butyl		H	OH	n-butyl	n-butyl
1593	ethyl	n-butyl		H	OH	n-butyl	n-butyl
1594	n-butyl	n-butyl		H	OH	n-butyl	n-butyl
1595	n-butyl	n-butyl		H	OH	n-butyl	n-butyl

254

1596	ethyl	n-butyl	
1597	n-butyl	ethyl	
1598	n-butyl	n-butyl	
1599	ethyl	n-butyl	

255

1600	n-butyl	ethyl	OH	H				
1601	n-butyl	n-butyl	OH	H				
1602	ethyl	n-butyl	OH	H				
1603	n-butyl	ethyl	OH	H				

256

1604	n-butyl	n-butyl		
1605	ethyl	n-butyl		
1606	n-butyl	ethyl		
1607	n-butyl	n-butyl		

257

1608	ethyl	n-butyl	OH	H		
1609	n-butyl	ethyl	OH	H		
1610	n-butyl	n-butyl	OH	H		
1611	ethyl	n-butyl	OH	H		

258

1612	n-butyl	ethyl	OH	H					
1613	n-butyl	n-butyl	OH	H					
1614	ethyl	n-butyl	OH	H					
1615	n-butyl	ethyl	OH	H					

259

		$n = 0$ or a positive integer			
		OH	H	OH	OMe
1616	n-butyl				
1617	ethyl	n-butyl	OH		
1618	n-butyl	ethyl	OH		

<i>260</i>					
1619	n-butyl	n-butyl			
1620	ethyl	n-butyl			
1621	n-butyl	ethyl			

261

1622	n-butyl	n-butyl	
1623	ethyl	n-butyl	
1624	n-butyl	ethyl	

262

1625	n-butyl			
1626	ethyl			
1627	n-butyl			

263

1628	n-butyl	n-butyl	
1629	ethyl	n-butyl	
1630	n-butyl	ethyl	

264

1631	n-butyl	n-butyl			
1632	ethyl	n-butyl			
1633	n-butyl	ethyl			

265

1634	n-butyl	n-butyl		OH	H
1635	ethyl	n-butyl		OH	H
1636	n-butyl	ethyl		OH	H

266

	n-butyl	n-butyl		
1637		H		
1638	ethyl	n-butyl		
1639	n-butyl	ethyl		

267

1640	n-butyl	OH H
1641	ethyl	OH H
1642	n-butyl	ethyl OH H

Chemical structure of compound 1640:

```

      O
      |
      C(=O)C[C@H]1[C@@H](O)[C@H](O)[C@H](O)C1
      |
      C=C(C)C=C1C=CC=C1
      |
      NHC(=O)C2=CC=CC=C2
  
```

Chemical structure of compound 1641:

```

      O
      |
      C(=O)C[C@H]1[C@@H](O)[C@H](O)[C@H](O)C1
      |
      C=C(C)C=C1C=CC=C1
      |
      NHC(=O)C2=CC=CC=C2
  
```

Chemical structure of compound 1642:

```

      O
      |
      C(=O)C[C@H]1[C@@H](O)[C@H](O)[C@H](O)C1
      |
      C=C(C)C=C1C=CC=C1
      |
      NHC(=O)C2=CC=CC=C2
  
```

268

1643	n-butyl			
	H	OH	H	
1644	ethyl			
	H	OH	H	
1645	n-butyl	ethyl	OH	
			H	

269

1646	n-butyl	n-butyl	OH	H			
1647	ethyl	n-butyl	OH	H			
1648	n-butyl	ethyl	OH	H			

270

1649	n-butyl	OH H
1650	ethyl	OH H
1651	n-butyl	ethyl OH H

271

Another group of compounds of interest consists of those compounds of Formula I wherein R¹ and R² are alkyl, preferably n-butyl; R³ is hydroxy; R⁴ and R⁶ are hydrogen; R^N is hydrogen; R^x radicals are selected from the group consisting of amino, dimethylamino and methoxy; and R⁵ is phenyl
 5 substituted at the para or meta position with one of the following groups:

10

273

5

274

5

275

5

wherein M is selected from the group consisting of Co^{II}, Co^{III}, Mn^{II}, Mn^{III}, Fe^{II}, Fe^{III}, Ni^{II}, Ni^{III}, Cr^{III}, Cu^{II}, Zn^{II}, Cd^{II}, Ga^{III}, In^{III}, V^{IV}, Ru^{II}, Pt^{IV}, Rh^{III} and Ir^{III}.

5

Dosages, Formulations, and Routes of Administration

The ileal bile acid transport inhibitor compounds of the present invention can be administered for the prophylaxis and/or treatment of hyperlipidemic diseases, conditions and/or disorders by any means, preferably oral, that contacts these compounds with their site of action in the body, for example in the ileum of a mammal such as a human.

10

For the prophylaxis and/or treatment of the diseases, conditions and/or disorders referred to above, the compounds of the present invention can be used as the compound *per se*. Pharmaceutically acceptable salts are particularly suitable for medical applications because of their greater aqueous solubility relative to the parent compound. Such salts comprise a pharmaceutically acceptable anion or cation. Suitable pharmaceutically

15

acceptable acid addition salts of the compounds of the present invention where appropriate include those salts derived from inorganic acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric, sulfonic, and sulfuric acids, and organic acids such as acetic, benzenesulfonic, benzoic, 5 citric, ethanesulfonic, fumaric, gluconic, glycolic, isothionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic, toluenesulfonic, tartaric, and trifluoroacetic acids. The chloride salt is particularly preferred for medical purposes. Suitable pharmaceutically acceptable base salts where appropriate include ammonium salts, alkali metal salts such as sodium and 10 potassium salts, and alkaline earth salts such as magnesium and calcium salts.

The anions of the definition of A⁻ in the present invention are pharmaceutically acceptable anions such as those anions selected, for example, from the above list.

The compounds of the present invention also can be administered in 15 the form of a pharmaceutical composition comprising additional ingredients such as acceptable carriers, diluents, excipients, adjuvants and the like (collectively referred to herein as "carrier materials"). Acceptable carrier materials are compatible with the other ingredients of the composition and are not deleterious to the recipient. A carrier material can be a solid or a liquid, 20 or both, and is preferably formulated with the compound as a unit-dose composition, for example, a tablet or capsule, which can contain from 0.05% to 95% by weight of the active compound. Other pharmacologically active substances can also be present, including other compounds of the present invention. The pharmaceutical compositions of the invention can be prepared 25 by any of the well known techniques of pharmacy, consisting essentially of admixing the components.

These compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as an individual therapeutic compound in a monotherapeutic regimen or as a combination of

therapeutic compounds in a combination therapy regimen.

The amount of compound that is required to achieve the desired biological effect will depend on a number of factors such as the specific compound chosen, the use for which it is intended, the mode of
5 administration, and the clinical condition of the recipient.

In general, a daily dose can be in the range of from about 0.3 to about 100 mg/kg bodyweight/day, preferably from about 1 mg to about 50 mg/kg bodyweight/day, and more preferably from about 3 to about 10 mg/kg bodyweight/day. This total daily dose can be administered to the patient in a
10 single dose, or in proportionate multiple subdoses. Subdoses can be administered 2 to 6 times per day. Doses can be in sustained release form effective to obtain desired results.

Orally administrable unit dose formulations, such as tablets or capsules, can contain, for example, from about 0.1 to about 100 mg of
15 benzothiazepine compound, preferably about 1 to about 75 mg of compound, more preferably from about 10 to about 50 mg of compound. In the case of pharmaceutically acceptable salts, the weights indicated above refer to the weight of the benzothiazepine ion derived from the salt.

Oral delivery of an ileal bile acid transport inhibitor of the present
20 invention can include formulations, as are well known in the art, to provide prolonged or sustained delivery of the drug to the gastrointestinal tract by any number of mechanisms. These include, but are not limited to, pH sensitive release from the dosage form based on the changing pH of the small intestine, slow erosion of a tablet or capsule, retention in the stomach based on the
25 physical properties of the formulation, bioadhesion of the dosage form to the mucosal lining of the intestinal tract, or enzymatic release of the active drug from the dosage form. The intended effect is to extend the time period over which the active drug molecule is delivered to the site of action (the ileum) by manipulation of the dosage form. Thus, enteric-coated and enteric-coated

controlled release formulations are within the scope of the present invention. Suitable enteric coatings include cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropylmethylcellulose phthalate and anionic polymers of methacrylic acid and methacrylic acid methyl ester.

5 When administered intravenously, the dose can, for example, be in the range of from about 0.1 mg/kg body weight to about 1.0 mg/kg body weight, preferably from about 0.25 mg/kg body weight to about 0.75 mg/kg body weight, and more preferably from about 0.4 mg/kg body weight to about 0.6 mg/kg body weight. This dose can be conveniently administered as an
10 infusion of from about 10 ng/kg body weight to about 100 ng/kg body weight per minute. Infusion fluids suitable for this purpose can contain, for example, from about 0.1 ng to about 10 mg, and preferably from about 1 ng to about 10 mg per milliliter. Unit doses can contain, for example, from about 1 mg to about 10 g of the compound of the present invention. Thus, ampoules for
15 injection can contain, for example, from about 1 mg to about 100 mg.

Pharmaceutical compositions according to the present invention include those suitable for oral, rectal, topical, buccal (e.g., sublingual), and parenteral (e.g., subcutaneous, intramuscular, intradermal, or intravenous) administration, although the most suitable route in any given case will depend
20 on the nature and severity of the condition being treated and on the nature of the particular compound which is being used. In most cases, the preferred route of administration is oral.

25 Pharmaceutical compositions suitable for oral administration can be presented in discrete units, such as capsules, cachets, lozenges, or tablets, each containing a predetermined amount of at least one compound of the present invention; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion. As indicated, such compositions can be prepared by any suitable method of pharmacy which includes the step of bringing into association the active

compound(s) and the carrier material (which can constitute one or more accessory ingredients). In general, the compositions are prepared by uniformly and intimately admixing the active compound with a liquid or finely divided solid carrier material, or both, and then, if necessary, shaping the product. For example, a tablet can be prepared by compressing or molding a powder or granules of the compound, optionally with one or more accessory ingredients. Compressed tablets can be prepared by compressing, in a suitable machine, the compound in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent and/or surface active/dispersing agent(s). Molded tablets can be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid diluent.

10 Pharmaceutical compositions suitable for buccal (sub-lingual) administration include lozenges comprising a compound of the present invention in a flavored base, usually sucrose, and acacia or tragacanth, and pastilles comprising the compound in an inert base such as gelatin and glycerin or sucrose and acacia.

15 Pharmaceutical compositions suitable for parenteral administration conveniently comprise sterile aqueous preparations of a compound of the present invention. These preparations are preferably administered intravenously, although administration can also be effected by means of subcutaneous, intramuscular, or intradermal injection. Such preparations can conveniently be prepared by admixing the compound with water and rendering the resulting solution sterile and isotonic with the blood. Injectable compositions according to the invention will generally contain from 0.1 to 5% w/w of a compound disclosed herein.

20 Pharmaceutical compositions suitable for rectal administration are preferably presented as unit-dose suppositories. These can be prepared by admixing a compound of the present invention with one or more conventional

solid carrier materials, for example, cocoa butter, and then shaping the resulting mixture.

Pharmaceutical compositions suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, 5 aerosol, or oil. Carrier materials that can be used include vaseline, lanoline, polyethylene glycols, alcohols, and combinations of two or more thereof. The active compound is generally present at a concentration of from 0.1 to 15% w/w of the composition, for example, from 0.5 to 2%.

Transdermal administration is also possible. Pharmaceutical 10 compositions suitable for transdermal administration can be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Such patches suitably contain a compound of the present invention in an optionally buffered, aqueous solution, dissolved and/or dispersed in an adhesive, or dispersed in a polymer. 15 A suitable concentration of the active compound is about 1% to 35%, preferably about 3% to 15%. As one particular possibility, the compound can be delivered from the patch by electrotransport or iontophoresis, for example, as described in Pharmaceutical Research, 3(6), 318 (1986).

In any case, the amount of active ingredient that can be combined with 20 the carrier materials to produce a single dosage form to be administered will vary depending upon the host treated and the particular mode of administration.

The solid dosage forms for oral administration including capsules, tablets, pills, powders, and granules noted above comprise one or more 25 compounds of the present invention admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and

pills can additionally be prepared with enteric coatings.

Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such 5 compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.

Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using 10 suitable dispersing or setting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride 15 solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

Pharmaceutically acceptable carrier materials encompass all the 20 foregoing and the like.

Treatment Regimen

The dosage regimen to prevent, give relief from, or ameliorate a disease, condition and/or disorder relating to hyperlipemia, e.g., atherosclerosis, or to protect against or treat further high cholesterol plasma or 25 blood levels with the compounds and/or compositions of the present invention is selected in accordance with a variety of factors. These include the type, age, weight, sex, diet, and medical condition of the patient, the severity of the disease, the route of administration, pharmacological considerations such as

the activity, efficacy, pharmacokinetics and toxicology profiles of the particular compound employed, whether a drug delivery system is utilized, and whether the compound is administered as part of a drug combination. Thus, the dosage regimen actually employed may vary widely and therefore deviate from the preferred dosage regimen set forth above.

Initial treatment of a patient suffering from a hyperlipidemic condition can begin with the dosages indicated above. Treatment should generally be continued as necessary over a period of several weeks to several months or years until the hyperlipidemic disease condition has been controlled or eliminated. Patients undergoing treatment with the compounds or compositions disclosed herein can be routinely monitored by, for example, measuring serum cholesterol levels by any of the methods well known in the art, to determine the effectiveness of therapy. Continuous analysis of such data permits modification of the treatment regimen during therapy so that optimal effective amounts of compounds of the present invention are administered at any point in time, and so that the duration of treatment can be determined as well. In this way, the treatment regimen/dosing schedule can be rationally modified over the course of therapy so that the lowest amount of ileal bile acid transport inhibitor of the present invention which exhibits satisfactory effectiveness is administered, and so that administration is continued only so long as is necessary to successfully treat the hyperlipidemic condition.

The following non-limiting examples serve to illustrate various aspects of the present invention.

Examples of Synthetic Procedures

The starting materials used in the preparation of the compounds of the following examples, as well as other compounds of the present invention, are commercially available or can be prepared by conventional methods known to one of ordinary skill in the art or in an analogous manner to conventional

methods described in the art. The starting materials of the following examples were obtained from commercial sources unless otherwise noted. The ethyl 2-amino-2-butylhexanoate hydrochloride used below was prepared in an analogous manner to the literature method of Stork (*J. Org. Chem.* 41, 3491 (1976)).

Example 1

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

Step 1. 2-Amino-2-butylhexanol

10

To a solution of 29.75 g (0.12 mol) of ethyl 2-amino-2-butylhexanoate hydrochloride in 100 mL of tetrahydrofuran cooled to -20 °C was added 148.8 mL of a 1.0 M solution of lithium aluminum hydride in tetrahydrofuran while

maintaining a temperature below -15 °C. The reaction mixture was stirred for one hour at -20 °C, warmed to room temperature and stirred for 16 hours. The reaction mixture was then cooled to -20 °C and 6 mL of water was added, followed by 5.6 mL of 3.75 M aqueous sodium hydroxide and 16 mL of water.

- 5 The reaction mixture was stirred for one hour and warmed to room temperature. The resulting slurry was filtered and washed with 100 mL ethyl acetate. The ethyl acetate solution was washed with water (2x200 mL) and then brine (300 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated. The resulting yellow oil was dissolved in 300 mL of tetrahydrofuran and concentrated to give 20.61 g of 2-amino-2-butylhexanol as an oil.
- 10

Step 2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-fluorobenzenesulfonamide

- To a solution of 16.95 g (0.09 mol) of 4-fluorobenzene sulfonyl chloride in 150 mL of tetrahydrofuran was added 36.4 mL of triethylamine.
- 15 The reaction mixture was cooled to 0 °C and a solution of 19.61 g of 2-amino-2-butylhexanol (prepared in step 1 above) in 70 mL of tetrahydrofuran was added. The reaction mixture was stirred 30 minutes at 0 °C and then 16 hours at room temperature. The reaction mixture was concentrated and then the residue was dissolved in 250 mL of ethyl acetate. This ethyl acetate solution was washed with water (2 x 200 mL) and brine (300 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to give 29.47 g of *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-fluorobenzenesulfonamide as an oil.
- 20

Step 3. *N*-(1-Butyl-1-(hydroxymethyl)pentyl)-4-(dimethylamino)benzenesulfonamide

A solution containing 28.89 g (0.09 mol) of the oil prepared in Step 2 above, 872 mL of 2.0 M dimethylamine in tetrahydrofuran and 100 mL of neat dimethylamine was prepared and placed in a bomb. The reaction mixture was heated to 110 °C for 16 hours, cooled, and then concentrated to give 25.46 g of 5 *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)benzenesulfonamide as an solid.

Step 4. *N*-[1-Butyl-1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-10 4-(dimethylamino)benzenesulfonamide

To a solution of 15.51 g (0.10 mol) of *t*-butyldimethylsilyl chloride in 158 mL of dimethylformamide was added 24.46 g (0.07 mol) of the solid prepared in Step 3 and then 14.01 g of imidazole. The reaction mixture was stirred 3 days and then diluted with 1 L of ethyl acetate and 500 mL of water. 15 The ethyl acetate solution was washed with 5% hydrochloric acid solution (2 x

200 mL), water (200 mL) and then brine (200 mL). The ethyl acetate layer was dried with magnesium sulfate and concentrated to an oil. The oil was stirred with hexane and the resulting solid was filtered to give 25.31 g of *N*-[1-butyl-1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)benzenesulfonamide as a white solid.

Step 5. *N*-[1-Butyl-1-[[[(1,1dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-*N*-methylbenzenesulfonamide

To a solution of 0.476 g (11.90 mmol) of 60% sodium hydride dispersion in mineral oil in 43 mL of tetrahydrofuran was added 4.0 g (8.50 mmol) of the solid prepared in Step 4 above and then 1.6 mL of dimethyl sulfate dropwise. The reaction mixture was heated at reflux for one hour, cooled to 0 °C, and then water was added. The reaction mixture was concentrated and 250 mL ethyl acetate and 250 mL water added. The layers were separated and the ethyl acetate solution was washed with 1 M hydrochloric acid (2 x 200 mL), saturated sodium bicarbonate (2 x 200 mL), water (200 mL) and then brine (200 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to give 4.63 g of a residue. The residue was purified by flash chromatography with 15% ethyl acetate/hexane as eluent to give 3.35 g of *N*-[1-butyl-1-[[[(1,1dimethylethyl) dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-*N*-methylbenzenesulfonamide as an oil.

Step 6.

To a solution of 3.35 g (6.90 mmol) of the oil prepared in Step 5 above in 35 mL of tetrahydrofuran cooled to 0 °C was added dropwise 9.66 mL of 1.6 M *n*-butyllithium in hexanes. The reaction mixture was stirred 30 minutes 5 at 0 °C, warmed to room temperature, and stirred one hour. To the reaction mixture was added 6.5 mL of 5% hydrochloric acid and then the Tetrahydrofuran was evaporated. To the residue was added 200 mL dichloromethane and 200 mL water and the layers separated. The dichloromethane layer was washed with brine (200 mL), dried over 10 magnesium sulfate and concentrated to give 3.12 g of a yellow solid.

Step 7. *N*-[1-Butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide

To a solution of 130 mg (0.11 mmol) of tetrakis(triphenylphosphine) palladium(0) in 10 mL of toluene was added 825 mg of 3-nitrobenzyl

bromide. After the toluene solution was stirred 10 minutes, a degassed solution of 2.02 g (3.82 mmol) of the solid prepared in Step 6 above in 8 mL ethanol was added followed by 10 mL of 1 M sodium carbonate. The reaction mixture was heated at reflux 45 minutes and then cooled and concentrated. To 5 the residue was added 250 mL of ethyl acetate. The ethyl acetate mixture was washed with brine (2 x 200 mL), dried over magnesium sulfate and concentrated to give 2.76 g of a residue. To the residue was added 200 mL of 30% ethyl acetate in hexane, and the mixture was stirred 1.5 hours and then filtered through silica. The ethyl acetate solution was concentrated to give 10 2.30 g of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide as a yellow solid.

Step 8. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide

15 To a solution of 2.16 g (3.48 mmol) of the solid prepared in Step 7 above in 10 mL of tetrahydrofuran cooled to 0 °C was added 4.4 mL of 1 M tetrabutylammonium fluoride in tetrahydrofuran. The reaction mixture was stirred 15 minutes at 0 °C and then 12 hours at room temperature. To the reaction mixture was added 250 mL of ethyl acetate. The ethyl acetate 20 solution was washed with water (200 mL) and brine (200 mL). The ethyl

acetate layer was dried over magnesium sulfate and concentrated to give 1.88 g of a brown oil residue. The residue was purified by flash chromatography with 30% ethyl acetate in hexane as eluent to give 1.49 g of *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide as a yellow oil.

Step 9. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

To a solution of 1.49 g (2.95 mmol) of the oil prepared in Step 8 above in 10 mL of dimethylsulfoxide was added 1.23 mL of triethylamine and then 10 1.41 g of sulfur trioxide pyridine complex. The reaction mixture was stirred one hour and then diluted with 200 mL water. The aqueous mixture was washed with ethyl acetate (3 x 100 mL). The combined organic layers were washed with 5% hydrochloric acid (100 mL) and brine (100 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated. The residue 15 was purified by flash chromatography with 25% ethyl acetate in hexane as eluent to give 1.31 g of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide as a yellow oil.

Step 10. (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

To a solution of 504 mg (2.60 mmol) of the oil prepared in Step 9 above in 50 mL of tetrahydrofuran cooled to 0 °C was added 2.80 mL of 1 M potassium *t*-butoxide in tetrahydrofuran. The reaction mixture was stirred for 15 minutes, water was added, and then the mixture was concentrated to yield a residue. The residue was dissolved in 100 mL ethyl acetate. The ethyl acetate solution was washed with water (100 mL) and brine (100 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to give 1.25 g of a semi-solid. The residue was purified by crystallization with ethyl acetate and hexane to give 737.5 mg of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide as a yellow crystalline solid. ¹H NMR (CDCl₃) δ 0.90-1.00 (m, 6H), 1.05-1.80 (m, 12H), 2.50-2.60 (m, 1H), 2.79 (s, 6H), 2.85 (s, 3H), 4.09 (d, *J* = 9.0 Hz, 1H), 5.76 (d, *J* = 2.0 Hz, 1H), 5.88 (s, 1H), 6.53 (dd, *J* = 2.4, 8.9 Hz, 1H), 7.59 (t, *J* = 7.9 Hz, 1H), 7.84-7.88 (m, 2H), 8.22 (dd, *J* = 1.0, 8.1 Hz, 1H), 8.47 (s, 1H). MS (M+H⁺) 504.

Example 2

(4*R*,5*R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide

A solution of 737 mg (1.46 mmol) of the solid prepared in Step 10 of Example 1 was dissolved in 110 mL of ethanol in a 3 oz. Fisher/Porter vessel, and about 150 mg of 10% Pd/C catalyst was added. This mixture was hydrogenated at 40 psi H₂ for 20 hours and then filtered. The filtrate was 5 concentrated to give 0.82 g of a semi-solid material. The semi-solid material was crystallized from ethyl acetate and hexane to give 0.51 g of (4R,5R)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide as colorless crystals. ¹H NMR (CDCl₃) δ 0.89 (t, J = 6.6 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H), 1.10-1.45 (m, 8H), 1.60-1.75 (m, 10 3H), 1.98-2.10 (m, 1H), 2.48-2.58 (m, 1H), 2.79 (s, 6H), 2.81 (s, 3H), 3.69 (s, 2H), 4.12 (d, J = 7.8 Hz, 1H), 5.62 (s, 1H), 6.07 (d, J = 2.1 Hz, 1H), 6.46 (dd, J = 2.4, 8.7 Hz, 1H), 6.61 (br d, J = 7.8 Hz, 1H), 6.80 (br s, 1H), 6.89 (br d, J = 2.1 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H). MS (M+H⁺) 474.

15 Example 3

5-bromo-N-[3-[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide

To a solution of 0.25 g (0.53 mmol) of the solid prepared in Example 2

above in 3 mL of tetrahydrofuran was added 153 μ L of triethylamine followed by 86 μ L of 5-bromo-*valeryl* chloride. The reaction mixture was stirred one hour and then concentrated to form a residue. Water (50 mL) was added to the residue. The aqueous solution was extracted with ethyl acetate (2 x 50 mL).

- 5 The combined ethyl acetate layers were washed with 5% hydrochloric acid (2 x 25 mL), saturated sodium bicarbonate solution (2 x 25 mL) and brine (25 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to give 0.29 g of a solid. The solid was purified by crystallization with ethyl acetate and hexane to give 202.3 mg of 5-bromo-*N*-
10 [3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide as a tan solid. 1 H NMR (CDCl_3) δ 0.88 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.9 Hz, 3H), 1.20-1.42 (m, 8H), 1.57-2.10 (m, 8H), 2.37 (t, J = 6.9 Hz, 2H), 2.46-2.57 (m, 1H), 2.78 (s, 6H), 2.81 (m, 3H), 3.41 (t, J = 6.3 Hz, 2H), 4.10 (d, J = 8.5 Hz, 1H), 5.69 (s, 1H), 5.97 (s, 1H), 6.47 (dd, J = 2.4, 8.9 Hz, 1H), 7.24-7.40 (m, 4H), 7.76 (br s, 1H), 7.80 (d, J = 8.7 Hz, 1H). MS ($M+\text{H}^+$) 636, 638.
- 15

Example 4

- 5-[[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-5-
20 oxo-pantanaminium trifluoroacetate

To a solution of 100 mg (0.16 mmol) of the solid prepared in Example 3 above in 1 mL of acetonitrile was added 87 μ L of triethylamine. The reaction mixture was heated at 55 °C for 28 hours and then at 75 °C for 16 hours. The 5 reaction mixture was concentrated to form a residue. The residue was purified by reverse phase high pressure liquid chromatography to give 16.2 mg of 5-[[3-[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-N,N,N-triethyl-5-oxo-pentanaminium trifluoroacetate as a white solid. ¹H NMR was consistent 10 with the product. MS (M⁺) 657:

Example 5

2-chloro-N-[3-[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]acetamide

To a solution of 100 mg (0.21 mmol) of the solid prepared in Example 4 above in 2 mL of tetrahydrofuran was added 29 mg of bromoacetic acid, 29 μ L of triethylamine, and then 40 mg of ethyldimethylaminopropylcarbodiimide hydrochloride. The reaction mixture was stirred 16 hours and then 50 mL ethyl acetate was added. The ethyl acetate solution was washed with water, 5% hydrochloric acid (2 x 25 mL), saturated sodium bicarbonate solution (2 x 25 mL), and then brine (25 mL). The ethyl acetate layer was dried over magnesium sulfate and then concentrated to give 88 mg of an oil. The oil was purified by flash chromatography with 50% ethyl acetate in hexane as eluent to give 72.0 mg of *cis*-3,3-dibutyl-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-7-dimethylamino-5-(3-(2-chloroaceamido)phenyl)-1,2-benzothiazepine with a trace of 2-chloro-*N*-[3-[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]acetamide present. ¹H NMR was consistent with the product. MS (M+H⁺) 550.

Example 6

2-[[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-2-oxoethanaminium chloride

5 To a mixture of 63 mg (0.12 mmol) of the material prepared in Example 5 above in 1 mL of tetrahydrofuran was added 64 µL of triethylamine. The reaction mixture was heated to reflux for three days and then concentrated. The residue was triturated with ether to give 66.5 mg of 2-[[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-2-oxoethanaminium chloride as a tan solid. ¹H NMR was consistent with the product. MS (M⁺) 615.

10

Example 7

15 (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide

5 Step 1. *N*-[1-Butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide

To a solution of 1.00 g (2.06 mmol) of the material from Step 5 of Example 1 above in 10 mL of tetrahydrofuran cooled to 0 °C was added 2 mL of 1.6 M *n*-butyllithium in hexanes. The reaction mixture was stirred one hour at 0 °C. To the reaction mixture was added 480 µL of trimethyl borate and the mixture stirred 15 minutes at 0 °C and then one hour at room temperature. The reaction mixture was concentrated to form a residue. The residue was dissolved in 20 mL of toluene and 2.1 mL of 2 M aqueous sodium carbonate.

To the mixture was added 300 μ L of *p*-methoxybenzyl chloride and then 71 mg of tetrakis(triphenylphosphine)palladium(0). The reaction mixture was heated at 100 °C for 16 hours, cooled, and then 50 mL of toluene added. The reaction mixture was washed with water (50 mL) and brine (50 mL), filtered through silica, and concentrated to form a residue. The residue was purified by flash chromatography to give 0.82 g of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide as an oil.

Step 2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide

The procedure of Step 8 of Example 1 above was followed except that *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 3. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide

The procedure of Step 9 of Example 1 above was followed except that
N-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide was used in place of *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 4. (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedure of Step 10 of Example 1 above was followed except that *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide was used in place of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

¹H NMR (CDCl₃) δ 0.83-0.96 (m, 6H), 1.15-1.38 (m, 6H), 1.69-1.83 (m, 4H), 2.00-2.08 (m, 1H), 2.55-2.59 (m, 1H), 2.81 (s, 6H), 2.83 (s, 3H), 3.84 (s, 3H), 4.10-41.6 (m, 1H), 5.70 (s, 1H), 5.99 (s, 1H), 6.52 (s, 1H), 6.93 (d, *J* = 8.6 Hz,

300

2H), 7.43 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.6 Hz).

Example 8

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide

5

To a solution of 0.52 g (1.06 mmol) of the solid prepared in Step 4 of Example 7 above in 10 mL of dichloromethane cooled to -78 °C was added 300 µL of boron tribromide. The reaction mixture was stirred for one hour at -78 °C and then 100 mL of water and 100 mL of dichloromethane were added. The dichloromethane solution was washed with 10% aqueous sodium carbonate (100 mL), 10% hydrochloric acid (100 mL) and brine (100 mL). The dichloromethane layer was dried over magnesium sulfate and concentrated to give 0.46 g of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide as a solid. ^1H NMR (CDCl_3) δ 0.82-0.97 (m, 6H), 1.15-1.40 (m, 6H), 1.67-1.76 (m, 4H), 2.00-2.10 (m, 1H), 2.51-2.59 (m, 1H), 2.83 (s, 6H), 2.84 (s, 9H), 4.12 (d, J = 8.0 Hz, 1H), 4.88 (br s, 1H), 5.69 (s, 1H), 6.07 (d, J = 2.2 Hz, 1H), 6.60 (dd, J = 2.2, 8.6 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.85 (d, J = 8.6 Hz). HRMS (ES) Calc'd for $\text{C}_{26}\text{H}_{39}\text{N}_2\text{O}_4\text{S}$: 475.2631.

Found: 475.2649.

Example 9

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-((2-
iodoethoxy)ethoxy)ethoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-
5 dioxide

To a solution of 0.38 g (0.80 mmol) of the solid prepared in Example 8
in 8 mL dimethylformamide was added 44 mg of 95% sodium hydride and
then 730 μ L of 1,2-bis(2-iodoethoxy)ethane. The reaction mixture was stirred
one hour. To the reaction mixture was added 100 mL of water and 100 mL of
10 ethyl acetate and the reaction mixture extracted with ethyl acetate. The ethyl
acetate layer was washed with brine (100 mL), dried over magnesium sulfate
and concentrated to form a residue. The residue was purified by flash
chromatography with 10-25% ethyl acetate in hexane as eluent to give 0.37 g
of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-((2-
15 iodoethoxy)ethoxy)ethoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-
dioxide as a solid. HRMS (ES) Calc'd for $C_{32}H_{50}N_2O_6SI$: 717.2434. Found:
717.2419. 1H NMR is consistent with the structure of the product.

Example 10

1-[2-[2-[4-[(4*R*,*S*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethyl]pyridinium

5 A solution of 75 mg of the solid prepared in Example 9 above in 5 mL
of pyridine was heated at 70 °C for 16 hours. The reaction mixture was
concentrated to form a residue. The residue was triturated with ether to give
56.8 mg of 1-[2-[2-[4-[(4*R*,*S*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-
tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-
yl]phenoxy]ethoxy]ethyl]pyridinium as a solid. ¹H NMR (CDCl₃) δ
10 0.89-0.97 (m, 6H), 1.19-1.40 (m, 6H), 1.70-1.74 (m, 4H), 2.00-2.10 (m, 1H),
2.60-2.69 (m, 1H), 2.80 (s, 6H), 2.83 (s, 3H), 3.69-3.72 (m, 4H), 3.83-3.87 (m,
2H), 4.09-4.15 (m, 5H), 5.23-5.27 (m, 2H), 5.70 (s, 1H), 5.97 (d, *J* = 2.4 Hz,
1H), 6.50 (dd, *J* = 2.4, 8.8 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.7
Hz, 2H), 7.83 (d, *J* = 8.7 Hz, 1H), 7.96-8.01 (m, 2H), 8.63-8.67 (m, 2H), 9.52
15 (d, *J* = 6.0 Hz, 1H). HRMS (ES) Calc'd for C₃₇H₅₄N₃O₆S: 668.3733. Found:
668.3762.

Example 11

2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethylethanaminium iodide

5 The procedure of Example 10 was followed except that triethylamine was used in place of pyridine and heating was at 90 °C for 6 hours. ^1H NMR is consistent with the desired product. ^1H NMR (CDCl_3) δ 0.90-0.97 (m, 6H), 1.12-1.45 (m, 15H), 1.60-1.73 (m, 4H), 2.09-2.11 (m, 1H), 2.52-2.55 (m, 1H), 2.82 (s, 6H), 2.83 (s, 3H), 3.06-3.15 (m, 2H), 3.53 (q, $J = 7.2$ Hz, 6H), 3.74-10 3.75 (m, 4H), 3.86-3.89 (m, 2H), 4.04-4.16 (m, 5H), 5.70 (s, 1H), 5.98 (m, 1H), 6.50 (d, $J = 3.0$ Hz, 1H), 6.93 (d, $J = 8.7$ Hz, 2H), 7.45 (d, $J = 8.7$ Hz, 2H), 7.83 (d, $J = 8.7$ Hz, 1H). HRMS (ES) Calc'd for $\text{C}_{38}\text{H}_{64}\text{N}_3\text{O}_6\text{S}$: 690.4516. Found: 690.4548.

Example 12

15 (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedures set forth in Example 1 above were followed except that 3-methoxybenzyl chloride was substituted for 3-nitrobenzyl chloride. ^1H NMR was consistent with the product. ^1H NMR (CDCl_3) δ 0.90-0.97 (m, 6H), 1.17-1.38 (m, 8H), 1.69-1.73 (m, 2H), 2.04-2.08 (m, 1H), 2.55-2.62 (m, 1H), 2.81 (s, 6H), 2.84 (s, 3H), 3.82 (s, 3H), 4.15 (d, $J = 7.8$ Hz, 1H), 5.72 (s, 1H), 6.01 (d, $J = 2.4$ Hz, 1H), 6.50 (dd, $J = 2.4, 8.4$ Hz, 1H), 6.86-6.89 (m, 1H), 7.05 (br s, 1H), 7.13-7.16 (m, 1H), 7.32 (t, $J = 8.1$ Hz, 1H), 7.83 (d, $J = 8.7$ Hz, 1H).

5 MS ($\text{M}+\text{H}^+$) 489.

Example 13

(4*R*,*S*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide and (4*S*,*S*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol
5 1,1-dioxide

Step 1. *N*-[1-Butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide

To a solution of 2.0 g (4.25 mmol) of the material prepared in Step 4 of Example 1 above in 10 mL of tetrahydrofuran cooled to 0 °C was added 8.0 mL of 1.6 M *n*-butyllithium in hexane. The reaction mixture was stirred at 0 °C for 30 minutes. To the reaction mixture was added 1.9 mL of trimethyl
10

borate and the mixture stirred 10 minutes at 0 °C and then one hour at room temperature. To the reaction mixture was added 100 mL of water and 5% hydrochloric acid to bring the solution to a pH of 6-7 and then the volatiles were evaporated. To the aqueous solution was added 100 mL of ethyl acetate and the solution extracted. The ethyl acetate layer was washed with water (100 mL) and brine (100 mL), dried over magnesium sulfate and concentrated to form a residue. The residue was dissolved in 7 mL of ethanol and degassed with nitrogen. In a separate flask was placed 150 mg of tetrakis(triphenylphosphine)palladium(0), 10 mL of toluene and 918 mg of 3-nitrobenzaldehyde. The ethanol solution was added to the toluene solution followed by 10 mL of 1 M aqueous sodium carbonate. The reaction mixture was heated to reflux for one hour, cooled to room temperature, and then stirred for 16 hours. The reaction mixture was concentrated and dissolved in 100 mL of ethyl acetate. The ethyl acetate solution was washed with water (100 mL) and brine (100 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to form a residue. The residue was purified by flash chromatography to give 1.72 g of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide.

20 Step 2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide

The procedure of Step 8 of Example 1 was followed except that *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 3. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide

To a solution of 79 μ L of oxalyl chloride in 2 mL of dichloromethane cooled to -78 °C was added 107 μ L of dimethylsulfoxide and the mixture stirred 20 minutes. To the cooled reaction mixture was added a solution of 370 mg (0.75 mmol) of the alcohol from Step 2 above in 2 mL of dichloromethane and the mixture was stirred one hour at -78 °C. To the cooled reaction mixture was added 660 μ L of diisopropylethylamine. The reaction mixture was warmed to room temperature and stirred for 30 minutes.

To the reaction mixture was added 100 mL of water and mixture was extracted with dichloromethane (2 x 50 mL). The combined dichloromethane layers were washed with brine (50 mL), dried over magnesium sulfate and concentrated to give 0.47 g of a yellow oil. The residue was dissolved in 25 mL of 25% ethyl acetate in hexane and filtered through silica and concentrated. The residue was crystallized with ethyl acetate and hexane to

give 301.6 mg of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide as a yellow solid.

Step 4. (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide and (*4S,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

To a solution of 150 mg (0.31 mmol) of the material prepared in Step 3 above in 6 mL of tetrahydrofuran cooled to -15 °C was added 0.90 mL 1 M of potassium *t*-butoxide in tetrahydrofuran. The reaction mixture was stirred for 10 15 minutes at -15 °C and then water was added. The organics were evaporated and 100 mL of ethyl acetate was added and then extracted. The ethyl acetate layer was washed with brine (100 mL), dried over magnesium sulfate and concentrated to form a residue. The residue was purified by flash chromatography with 30% ethyl acetate in hexane as eluent to give 61.8 mg of 15 (*4S,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide, and 65.7 mg of (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide. ¹H NMR and mass spectra were consistent with the product.

Example 14

20 (*4R,5R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedure of Example 2 above was followed except that (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide was used in place of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide. ^1H NMR was consistent with the product.
MS (M^+) 460.

Example 15

5-bromo-N-[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide

10

The procedure of Example 3 above was followed except that (*4R,5R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-1,2-benzothiazepin-4-ol 1,1-dioxide was used in place of (*4R,5R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide. ¹H NMR was consistent with the product.
 5 MS (M+H⁺) 623.

Example 16

5-[[3-[(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-5-oxo-1-pentanaminium trifluoroacetate
 10

To a solution of 54.1 mg (0.09 mmol) of the bromide prepared in Example 15 above in 1 mL of tetrahydrofuran was added 48 µL of triethylamine. The reaction mixture was heated at reflux for three days. The solvent was evaporated and the residue triturated with ether. The solid was purified by reverse phase high pressure liquid chromatography to give 17.9 mg of 5-[[3-[(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-

5-oxo-1-pentanaminium trifluoroacetate as a white solid. ^1H NMR was consistent with the product. MS (M^+) 643.

Example 17

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-phenyl-1,2-5 benzothiazepin-4-ol 1,1-dioxide

Step 1-2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-(phenylmethyl)benzenesulfonamide

The procedure of Steps 1-2 of Example 7 was followed except that *N*-[1-butyl-1-[[[(1,1dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)benzenesulfonamide and benzyl chloride were used in place of *N*-[1-butyl-1-[[[(1,1dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-*N*-methylbenzenesulfonamide and *p*-methoxybenzyl

chloride.

Step 3. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-(phenylmethyl)benzenesulfonamide

The procedure of Step 3 of Example 13 was followed except that *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide.

Step 4. (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-phenyl-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedure Step 4 of Example 7 was followed except that *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide. ^1H NMR (CDCl_3) δ 0.9 (m, 6H), 1-1.7 (m, 13H), 2.3 (m, 1H), 2.8 (s, 6H), 4.0 (s, 2H), 5.5 (s, 1H), 5.9 (s, 1H), 6.5 (m, 1H), 7.4 (m, 3H), 7.5 (m, 2H), 7.8 (m, 1H). MS ($M+\text{H}^+$) 445.0.

Example 18

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

Step 1. *N*-[1-Butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-

5 (dimethylamino)-2-[(4-methoxyphenyl)methyl]benzenesulfonamide

The procedure of Step 1 of Example 7 was followed except that *N*-[1-butyl-1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-*N*-10 methylbenzenesulfonamide.

Step 2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[*(4-methoxyphenyl)methyl*]benzenesulfonamide

The procedure of Step 8 of Example 1 was followed except that *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[*(4-methoxyphenyl)methyl*]benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[*(3-nitrophenyl)methyl*]-*N*-methylbenzenesulfonamide.

Step 3. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-[*(4-methoxyphenyl)methyl*]benzenesulfonamide

The procedure of Step 3 of Example 13 was followed except that *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]benzenesulfonamide was used in place of *N*-[1-butyl-1-[[(1-dimethylethyl)dimethylsilyloxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 4. (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedure of Step 10 of Example 1 was followed except that *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]benzenesulfonamide was used in place of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide. ¹H NMR (CDCl₃) δ 0.89-1.00 (m, 6H), 1.06-1.73 (m, 11H), 2.36 (t, *J* = 9.5 Hz, 1H), 2.80 (s, 6H), 2.98 (s, 1H), 3.85 (s, 3H), 3.97 (s, 1H), 4.03 (d, *J* = 9.0 Hz, 1H), 5.47 (s, 1H), 6.00 (d, *J* = 2.4 Hz, 1H), 6.50 (dd, *J* = 2.6, 8.9 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.81 (d, *J* = 8.7 Hz, 1H).

Example 19

(*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedure set forth in Example 8 above was followed except that (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide was used in place of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide and a reaction temperature of 0 °C was employed. ¹H NMR (CDCl₃) δ 0.86-0.97 (m, 6H), 1.15-1.75 (m, 11H), 2.35 (t, J = 9.9 Hz, 1H), 2.80 (s, 6H), 3.98 (s, 1H), 4.02 (d, J = 8.6 Hz, 1H), 5.12 (s, 1H), 5.45 (s, 1H), 5.98 (d, J = 2.4 Hz, 1H), 6.48 (dd, J = 2.6, 8.6 Hz, 1H), 6.88 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.7 Hz, 1H).

10 Example 20

2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethylethanaminium iodide

Step 1

- The procedure set forth in Example 9 above was followed except that (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide was used in place of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-((2-iodoethoxy)ethoxy)ethoxy)phenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide and 3.3 equivalents of 95% sodium hydride was used instead of 2.2 equivalents. ^1H NMR was consistent with the product.
- Step 2. 2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethylmethanaminium iodide

The procedure set forth in Example 10 above was followed except that the benzothiazepine prepared in Step 1 above was used. ^1H NMR (CDCl_3) δ 0.88-0.05 (m, 6H), 1.14-1.60 (m, 20H), 2.31-2.39 (m, 1H), 2.82 (s, 6H), 3.06-

3.15 (m, 2H), 3.54 (q, $J = 7.3$ Hz, 6H), 3.75-3.81 (m, 4H), 3.88-4.17 (m, 7H), 5.47 (s, 1H), 5.98-6.02 (m, 1H), 6.47-6.54 (m, 1H), 6.93-6.98 (m, 2H), 7.42-7.47 (m, 2H), 7.81-7.84 (m, 1H).

Example 21

- 5 (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

Step 1. *N*-[1-Butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide

To a solution of 4.24 g (7.0 mmol) of the sulfonamide prepared in Step 1 of Example 13 in 30 mL of acetone was added 2.90 g of potassium carbonate, 0.517 g of tetra-*n*-butylammonium iodide then 2.394 g of benzyl bromide. The reaction mixture was heated at reflux for five days. To the 5 reaction mixture was added 2.394 g of benzyl bromide, 0.517 g of tetra-*n*-butylammonium iodide, and then 2.90 g of powdered potassium carbonate. The reaction mixture was heated at reflux for one day. To the reaction mixture 250 mL of ethyl acetate was added. The ethyl acetate solution was washed with water (3 x 100 mL) and brine (200 mL). The ethyl acetate layer was 10 dried over magnesium sulfate and concentrated to a residue. The residue was purified by flash chromatography to give 1.82 g of *N*-[1-butyl-1-[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide.

Step 2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide

The procedure of Step 8 of Example 1 was followed except that *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-

dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 3. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide

5 The procedure of Step 3 of Example 13 was followed except that *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]benzenesulfonamide.

10 Step 4. (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

The procedure of Step 10 of Example 1 was followed except that *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide. ^1H NMR was consistent with the product. MS (M+H $^+$) 580.

Example 22

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-5-[3-(ethylamino)phenyl]-2,3,4,5-tetrahydro-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

To a solution of 50 mg (0.09 mmol) of the compound prepared in Step 5 of Example 21 in 50 mL ethanol was added about 10 mg of Pearlman's Catalyst. This mixture was hydrogenated at 60 psi H₂ for 20 hours. To the reaction mixture was added about 10 mg of Pearlman's Catalyst and the mixture was hydrogenated at 60 psi at 60 °C for 20 hours. The reaction mixture was filtered and washed with 50 mL of ethyl acetate. The filtrate was washed with water (2 x 50 mL) and brine (50 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to give 39.8 mg of a residue. The residue was purified by flash chromatography to give 12.6 mg of (4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-5-[3-(ethylamino)phenyl]-2,3,4,5-tetrahydro-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide. ¹H NMR (CDCl₃) δ 0.72 (t, *J* = 6.6, 3H), 0.90 (t, *J* = 7.4 Hz), 1.00-1.98 (m, 15H), 2.81 (s, 6H), 3.17 (q, *J* = 7.2 Hz, 2H), 4.15 (d, *J* = 7.8 Hz, 1H), 4.39 (s, 2H), 5.69 (s, 1H), 6.12 (s, 1H), 6.47 (dd, *J* = 2.7, 9.0 Hz, 1H), 6.61-6.65 (m, 1H), 6.78-6.83 (m, 1H), 6.95-7.00 (m, 1H), 7.16-7.31 (m, 5H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H). MS (M+H⁺) 578.

Example 23

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

Step 1. *N*-[1-Butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-
5 (dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-
(phenylmethyl)benzenesulfonamide

To a solution of 2.15 g (4.05 mmol) of the sulfonamide prepared in Step 1 of Example 7 above in 30 mL of dimethylformamide was added 123 mg of 95% sodium hydride and then 964 μ L of benzyl bromide. The reaction mixture was stirred 18 hours. To the reaction mixture was added 250 mL of ethyl acetate and the mixture was washed with saturated sodium bicarbonate solution (100 mL) and brine (150 mL). The ethyl acetate layer was dried over magnesium sulfate and concentrated to give 2.88 g of *N*-[1-butyl-1-[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide.

10

Step 2. *N*-[1-Butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide

The procedure of Step 8 of Example 1 was followed except that *N*-[1-butyl-1-[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 3. *N*-[1-Butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-

*nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide*

The procedure of Step 3 of Example 13 was followed except that *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide.

Step 4. (*4R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide

10 The procedure of Step 10 of Example 1 was followed except that *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-(phenylmethyl)benzenesulfonamide was used in place of *N*-[1-butyl-1-formylpentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide. ^1H NMR (CDCl_3) δ 0.7 (m, 3H), 0.9 (m, 3H), 1-1.7 (m, 10H), 1.9 (m, 1H), 2.1 (m, 1H), 2.8 (s, 6H), 3.8 (s, 3H), 4.1 (s, 1H), 4.4 (s, 2H), 5.8 (s, 1H), 6.0 (s, 1H), 6.5 (m, 1H), 7.0 (d, $J = 8$ Hz, 1H), 7.1-7.5 (m, 7H), 7.8 (m, 1H).

Example 24

(4*R*,5*R*)-7-dimethylamino)-2-ethyl-4,5-dihydro-5-(4-methoxyphenyl)-spiro[1,2-benzothiazepine-3(2H),1'-cyclopentan]-4-ol 1,1-dioxide

Step 1. *N*-[1-(hydroxymethyl)cyclopentyl]-4-fluorobenzenesulfonamide

5

The procedure of Step 2 of Example 1 was followed except that cycloleucinol was substituted for 2-amino-2-butylhexanol.

Step 2-3. *N*-[1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]cyclopentyl]-4-(dimethylamino)benzenesulfonamide

The procedure of Steps 3 and 4 of Example 1 was followed except that

N-[1-(hydroxymethyl)cyclopentyl]-4-fluorobenzenesulfonamide was used in place of *N*-[1-butyl-1-(hydroxymethyl)pentyl]-4-fluorobenzenesulfonamide.

Step 4. *N*-[1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]cyclopentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-methylbenzenesulfonamide

5

The procedure of Step 1 of Example 7 was followed except that *N*-[1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]cyclopentyl]-4-(dimethylamino)benzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-*N*-methylbenzenesulfonamide.

Step 5. *N*-[1-(hydroxymethyl)cyclopentyl]-4-(dimethylamino)-2-[(4-methoxyphenyl)methyl]-*N*-ethylbenzenesulfonamide

To a solution of 0.25 g (0.49 mmol) of the sulfonamide prepared in Step 4 above in 5 mL of tetrahydrofuran was added 25 mg of 95% sodium hydride. After 15 minutes, 125 μ L of ethyl iodide was added to the reaction mixture. The reaction mixture was stirred 16 hours. To the reaction mixture 5 was added 5 mL of dimethylformamide and the mixture stirred four hours. To the reaction mixture 100 mL of water was added and the mixture extracted with 100 mL of ethyl acetate. The ethyl acetate layer was washed with brine (100 mL), dried over magnesium sulfate and concentrated to give 0.27g of an oil.

- 10 Step 6-8. (4*R*,5*R*)-7-dimethylamino)-2-ethyl-4,5-dihydro-5-(4-methoxyphenyl)-spiro[1,2-benzothiazepine-3(2H),1'-cyclopentan]-4-ol 1,1-dioxide

The procedure of Steps 8-10 of Example 1 was followed except that *N*-[1-(hydroxymethyl)cyclopentyl]-4-(dimethylamino)-2-[¹⁴(4-methoxyphenyl)methyl]-*N*-ethylbenzenesulfonamide was used in place of *N*-[1-butyl-1-[[[(1-dimethylethyl)dimethylsilyl]oxy]methyl]pentyl]-4-(dimethylamino)-2-[(3-nitrophenyl)methyl]-*N*-methylbenzenesulfonamide. ¹H NMR was consistent with product. MS (M+H⁺) 445.

Biological Assays

20 The utility of the compounds of the present invention is shown by the following assays. These assays are performed *in vitro* and in animal models essentially using a procedure recognized to show the utility of the present invention.

In Vitro Assay Of Compounds That Inhibit IBAT-Mediated Uptake Of [¹⁴C]-Taurocholate (TC) in H14 Cells

Baby hamster kidney cells (BHK) transfected with the cDNA of

human IBAT (H14 cells) are seeded at 60,000 cells/well in 96 well Top-Count tissue culture plates for assays run within 24 hours of seeding; 30,000 cells/well for assays run within 48 hours; and 10,000 cells/well for assays run within 72 hours.

5 On the day of assay, the cell monolayer is gently washed once with 100 mL assay buffer (Dulbecco's Modified Eagle's medium with 4.5 g/L glucose + 0.2% (w/v) fatty acid free bovine serum albumin ((FAF)BSA). To each well 50 mL of a two-fold concentrate of test compound in assay buffer is added along with 50 mL of 6 mM [¹⁴C]-taurocholate in assay buffer (final concentration of 3 mM [¹⁴C]-taurocholate). The cell culture plates are
10 incubated two hours at 37° C prior to gently washing each well twice with 100 mL of 4° C Dulbecco's phosphate-buffered saline (PBS) containing 0.2% (w/v) (FAF)BSA. The wells are then gently washed once with 100 mL of 4° C PBS without (FAF)BSA. To each 200 mL of liquid scintillation counting fluid is
15 added, the plates are heat sealed and shaken for 30 minutes at room temperature prior to measuring the amount of radioactivity in each well on a Packard Top-Count instrument.

In Vitro Assay Of Compounds That Inhibit Uptake Of [¹⁴C]-Alanine

The alanine uptake assay is performed in an identical fashion to the
20 taurocholate assay, with the exception that labeled alanine is substituted for the labeled taurocholate.

Data from each of the noted compounds in this assay is as set forth in Table 4 below:

Table 4

COMPOUND (EXAMPLE NUMBER)	HUMAN TC IC ₅₀ (μM)	ALANINE UPTAKE IC ₅₀
5	1	1.2
	2	0.32
	3	0.69
	4	0.083 >100
10	5	0.97
	6	0.32
	7	0.57
	8	0.58
15	10	0.31
	11	0.20
	12	1.2
	13 (cis)	0.044
20	13 (trans)	0.21
	14	0.006
	15	0.022
	16	0.0016
25	17	0.035
	18	0.026
	19	0.003 >100
	20	0.008
25	21	>1.0
	22	2.5
	24	13.9

In Vivo Assay Of Compounds That Inhibit Rat Ileal Uptake Of [¹⁴C]-Taurocholate into Bile

(See "Metabolism of 3 α ,7 β dihydroxy-7 β -methyl-5 β -cholanoic acid and 3 α ,7 β -dihydroxy-7 α -methyl-5 β -cholanoic acid in hamsters" in Biochimica et

5 Biophysica Acta 833 (1985) 196-202 by Une et al.)

Male wistar rats (200-300 g) are anesthetized with inactin @100 mg/kg. Bile ducts are cannulated with a 10 " length of PE10 tubing. The small intestine is exposed and laid out on a gauze pad. A canulae (1/8" luer lock, tapered female adapter) is inserted at 12 cm from the junction of the small intestine 10 and the cecum. A slit is cut at 4 cm from this same junction (utilizing a 8 cm length of ileum). 20 mL of warm Dulbecco's phosphate buffered saline, pH 6.5 (PBS) is used to flush out the intestine segment. The distal opening is cannulated with a 20 cm length of silicone tubing (0.02" I.D. x 0.037" O.D.). The proximal cannulae is hooked up to a peristaltic pump and the intestine is 15 washed for 20 minutes with warm PBS at 0.25 mL/minute. Temperature of the gut segment is monitored continuously. At the start of the experiment, 2.0 mL of control sample ([¹⁴C]-taurocholate @ 0.05 mi/mL with 5 mM cold taurocholate) is loaded into the gut segment with a 3 mL syringe and bile sample collection is begun. Control sample is infused at a rate of 0.25 20 mL/minute for 21 minutes. Bile samples fractions are collected every three minutes for the first 27 minutes of the procedure. After the 21 minutes of sample infusion, the ileal loop is washed out with 20 mL of warm PBS (using a 30 mL syringe), and then the loop is washed out for 21 minutes with warm PBS at 0.25 mL/minute. A second perfusion is initiated as described above 25 but with the test compound being administered as well (21 minutes administration followed by 21 minutes of wash out) and bile sampled every three minutes for the first 27 minutes. If necessary, a third perfusion is performed as above that typically contains the control sample.

Measurement Of Hepatic Cholesterol Concentration (HEPATIC CHOL)

Liver tissue is weighed and homogenized in chloroform:methanol (2:1). After homogenization and centrifugation the supernatant is separated and dried under nitrogen. The residue is dissolved in isopropanol and the cholesterol content is measured enzymatically, using a combination of cholesterol oxidase and peroxidase, as described by Allain, C. A., *et al.* (1974) *Clin. Chem.* 20, 470.

Measurement Of Hepatic HMG CoA-Reductase Activity (HMG COA)

Hepatic microsomes are prepared by homogenizing liver samples in a phosphate/sucrose buffer, followed by centrifugal separation. The final pelleted material is resuspended in buffer and an aliquot is assayed for HMG CoA reductase activity by incubating for 60 minutes at 37° C in the presence of ¹⁴C-HMG-CoA (Dupont-NEN). The reaction is stopped by adding 6N HCl followed by centrifugation. An aliquot of the supernatant is separated, by thin-layer chromatography, and the spot corresponding to the enzyme product is scraped off the plate, extracted and radioactivity is determined by scintillation counting. (Reference: Akerlund, J. and Bjorkhem, I. (1990) *J. Lipid Res.* 31, 2159).

Determination Of Serum Cholesterol (SER.CHOL, HDL-CHOL, TGI and VLDL + LDL)

Total serum cholesterol (SER.CHOL) is measured enzymatically using a commercial kit from Wako Fine Chemicals (Richmond, VA); Cholesterol C11, Catalog No. 276-64909. HDL cholesterol (HDL-CHOL) is assayed using this same kit after precipitation of VLDL and LDL with Sigma Chemical Co. HDL Cholesterol reagent, Catalog No. 352-3 (dextran sulfate method). Total serum triglycerides (blanked) (TGI) are assayed enzymatically with Sigma Chemical Co. GPO-Trinder, Catalog No. 337-B. VLDL and LDL

(VLDL + LDL) cholesterol concentrations are calculated as the difference between total and HDL cholesterol.

Measurement Of Hepatic Cholesterol 7- α Hydroxylase Activity (7 α -OHase)

Hepatic microsomes are prepared by homogenizing liver samples in a phosphate/sucrose buffer, followed by centrifugal separation. The final pelleted material is resuspended in buffer and an aliquot is assayed for cholesterol 7-a-hydroxylase activity by incubating for 5 minutes at 37° C in the presence of NADPH. Following extraction into petroleum ether, the organic solvent is evaporated and the residue is dissolved in acetonitrile/methanol. The enzymatic product is separated by injecting an aliquot of the extract onto a C₁₈ reversed phase HPLC column and quantitating the eluted material using UV detection at 240nm. (Reference: Horton, J. D., *et al.* (1994) *J. Clin. Invest.* 93, 2084).

Rat Gavage Assay

Male Wister rats (275-300g) are administered IBAT inhibitors using an oral gavage procedure. Drug or vehicle (0.2% Tween 80 in water) is administered once a day (9:00-10:00 a.m.) for four days at varying dosages in a final volume of 2 mL per kilogram of body weight. Total fecal samples are collected during the final 48 hours of the treatment period and analyzed for bile acid content using an enzymatic assay as described below. Compound efficacy is determined by comparison of the increase in fecal bile acid (FBA) concentration in treated rats to the mean FBA concentration of rats in the vehicle group. Table 5 describes the results of this assay when the compound of Example 4 was tested.

Table 5

COMPOUND (EXAMPLE NUMBER)	DOSE (mg/kg/day)	% INCREASE IN FECAL BILE ACID CONCENTRATION
4	5	217.2
4	0.4	157.8
4	0.04	244.0

Measurement Of Fecal Bile Acid Concentration (FBA)

10 Total fecal output from individually housed hamsters is collected for 24 or 48 hours, dried under a stream of nitrogen, pulverized and weighed. Approximately 0.1 gram is weighed out and extracted into an organic solvent (butanol/water). Following separation and drying, the residue is dissolved in methanol and the amount of bile acid present is measured enzymatically using 15 the 3α -hydroxysteroid steroid dehydrogenase reaction with bile acids to reduce NAD. (Reference: Mashige, F., *et al.* (1981) *Clin. Chem.* 27, 1352).

[³H]taurocholate Uptake in Rabbit Brush Border Membrane Vesicles (BBMV)

Rabbit Ileal brush border membranes are prepared from frozen ileal mucosa by the calcium precipitation method described by Malathi *et al.* 20 (Reference: (1979) *Biochimica Biophysica Acta*, 554, 259). The method for measuring taurocholate is essentially as described by Kramer *et al.* (Reference: (1992) *Biochimica Biophysica Acta*, 1111, 93) except the assay volume is 200 μ L instead of 100 μ L. Briefly, at room temperature a 190 μ L solution containing 2 μ M [³H]-taurocholate(0.75 μ Ci), 20 mM tris, 100 mM NaCl, 100 25 mM mannitol pH 7.4 is incubated for 5 seconds with 10 μ L of brush border membrane vesicles (60-120 μ g protein). The incubation is initiated by the addition of the BBMV while vortexing and the reaction is stopped by the

addition of 5 mL of ice cold buffer (20 mM Hepes-tris, 150 mM KCl) followed immediately by filtration through a nylon filter (0.2 µm pore) and an additional 5 mL wash with stop buffer.

Acyl-CoA; cholesterol Acyl Transferase (ACAT)

5 Hamster liver and rat intestinal microsomes are prepared from tissue as described previously (Reference: (1980) *J. Biol. Chem.* 255, 9098) and used as a source of ACAT enzyme. The assay consists of a 2.0 mL incubation containing 24 µM Oleoyl-CoA (0.05 µCi) in a 50 mM sodium phosphate, 2 mM DTT ph 7.4 buffer containing 0.25 % BSA and 200 µg of microsomal protein. The assay is initiated by the addition of oleoyl-CoA. The reaction proceeds for five minutes at 37° C and is terminated by the addition of 8.0 mL of chloroform/methanol (2:1). To the extraction is added 125 µg of cholesterol oleate in chloroform methanol to act as a carrier and the organic and aqueous phases of the extraction are separated by centrifugation after 10 thorough vortexing. The chloroform phase is taken to dryness and then spotted on a silica gel 60 TLC plate and developed in hexane/ethyl ether (9:1). The amount of cholesterol ester formed is determined by measuring the amount of radioactivity incorporated into the cholesterol oleate spot on the TLC plate with a Packard instaimager. The examples herein can be repeated 15 with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

The invention being thus described, it is apparent that the same can be varied in many ways. Such variations are not to be regarded as a departure 20 from the spirit and scope of the present invention, and all such modifications and equivalents as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

What is claimed is:

1. A compound of formula (I):

5

10

wherein:

q is an integer from 1 to 4;

15 R¹ and R² are independently selected from the group consisting of hydrogen and hydrocarbyl, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus;

20 R³ and R⁴ are independently selected from the group consisting of hydrogen; hydrocarbyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; or

25 R³ and R⁴ together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or =CR¹¹R¹²;

 wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen; hydrocarbyl; amino; and hydrocarbylamino; wherein said hydrocarbyl moieties may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl moieties optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; hydrocarbyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; wherein said hydrocarbyl moieties may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl moieties optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus;

40 or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

R⁵ and R⁶ are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

wherein the R⁵ and R⁶ radicals optionally may be substituted with one or more radicals independently selected from the group consisting of halogen; -NO₂; -CN; oxo; hydrocarbyl; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus;

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen or hydrocarbyl, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; or

65 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally

substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

70 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

 wherein A⁻ is a pharmaceutically acceptable anion, and M is a pharmaceutically acceptable cation; and

 wherein R⁹ is as defined above; or

 R⁴ and R⁶ together represent a bond; and

75 R^N is selected from the group consisting of hydrogen and hydrocarbyl, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus;

 one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; hydrocarbyl; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -S(O)_nNR¹³R¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue, wherein said hydrocarbyl may be optionally substituted with one or more groups comprising one or more heteroatoms, and wherein said hydrocarbyl optionally may have one or more carbon atoms replaced by one or more heteroatoms independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus; and

 wherein n is 0, 1 or 2; and

 wherein R¹³, R¹⁴, R¹⁵, A⁻, and M are as defined above; or

95 a pharmaceutically acceptable salt, solvate, or prodrug thereof; and provided that at least one of R¹, R², R³, R⁴, R⁵, and R⁶ is a radical other than hydrogen or alkyl; and

 provided that when R⁵ or R⁶ is aryl, the other of R⁵ and R⁶ is a radical other than heterocyclylalkyl.

2. A compound of claim 1 wherein:

q is an integer from 1 to 4;

R^1 and R^2 are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; 5 arylalkyl; heterocyclalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyloxyalkyl; heterocycloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl; or

R^1 and R^2 taken together with the carbon to which they are attached 10 form C_3-C_{10} cycloalkyl or C_3-C_{10} cycloalkenyl; wherein the R^1 and R^2 alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyloxyalkyl; heterocyclyloxyalkenyl; heterocyclyloxyalkynyl; 15 alkylaryl; and (polyalkyl)aryl radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R^WA⁻; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; and 20 wherein the R^1 and R^2 alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; heterocyclyloxyalkyl; heterocyclyloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more 25 carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P(O)R⁹-; -P⁺R⁹R¹⁰A⁻; or phenylene; and 30 wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein A^- is a pharmaceutically acceptable anion; and

R^3 and R^4 are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; or

35 R³ and R⁴ together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or
=CR¹¹R¹²;

 wherein R¹¹ and R¹² are independently selected from the group
consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl;
heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl;

40 carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl;
cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹;
and -CONR⁹R¹⁰; or

 R¹¹ and R¹² together with the carbon atom to which they are attached
form a cyclic ring; and

45 wherein R⁹ and R¹⁰ are as defined above; and

 R⁵ and R⁶ are independently selected from the group consisting of
hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

 wherein the R⁵ and R⁶ alkyl; cycloalkyl; alkenyl; alkynyl; aryl;

50 heterocyclyl; and quaternary heterocyclyl radicals optionally may be
substituted with one or more radicals independently selected from the group
consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl;
hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -

55 SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -
CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -
COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -
OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -

60 NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -
P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals
optionally may be further substituted with one or more radicals selected from

65 the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl;
alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary
heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -
CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -
P(O)(OR⁷)OR⁸; and

70 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and

75 wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

80 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

85 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

90 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary

95 heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and

R^N is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aralkyl; and heterocyclylalkyl; and

one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)_nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^x alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R^x quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl;

- hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl;
 140 heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³;
 $-SO_3R^{13}$; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; OM; -SO₂OM; -
 $SO_2NR^{13}R^{14}$; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -
 $P^{13}R^{14}$; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -
 $N^+R^{13}R^{14}R^{15}A^-$; and carbohydrate residue; and
 145 wherein the R^X radicals comprising carbon optionally may have one or
 more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻; -S-; -SO-; -SO₂-; -
 $S^+R^{13}A^-$; -PR¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻; phenylene; amino
 acid residue; peptide residue; polypeptide residue; carbohydrate residue;
 polyether; or polyalkyl; wherein said phenylene; amino acid residue; peptide
 150 residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally
 may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -
 SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; or -P(O)R⁹-; and
 wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl;
 alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
 155 heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and
 heterocyclylalkoxycarbonyl; and
 wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
 heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl;
 arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may
 160 be substituted with one or more radicals selected from the group consisting of
 halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -
 $S(O)R^9$; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰;
 $-PR^9R^{10}$; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and
 wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as
 165 defined above; or
 a pharmaceutically acceptable salt, solvate, or prodrug thereof.

3. A compound of claim 1 wherein:

- q is an integer from 1 to 4;
 R¹ and R² are independently selected from the group consisting of
 hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; arylalkyl; alkoxyalkyl;
 5 alkoxyalkenyl; alkoxyalkynyl; alkylaryl; and (polyalkyl)aryl; or

R^1 and R^2 taken together with the carbon to which they are attached form $C_3\text{-}C_{10}$ cycloalkyl or $C_3\text{-}C_{10}$ cycloalkenyl;

wherein the R^1 and R^2 alkyl; cycloalkyl; alkenyl; alkynyl; arylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; alkylaryl; and (polyalkyl)aryl

10 radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R^WA⁻; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; and

15 wherein the R^1 and R^2 alkyl; cycloalkyl; alkenyl; alkynyl; arylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P(O)R⁹-; -P⁺R⁹R¹⁰A⁻, or phenylene; and

20 wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboalkoxyalkyl; carboxyheterocyclyl; carboxyalkylamino; and acyl; and wherein A⁻ is a pharmaceutically acceptable anion; and

25 R^3 and R^4 are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; or

R^3 and R^4 together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or =CR¹¹R¹²;

30 wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; carboxyalkyl; carboalkoxyalkyl; cycloalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; or

35 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R^9 and R^{10} are as defined above; and

R^5 and R^6 are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

40 wherein the R⁵ and R⁶ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radicals optionally may be substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; 45 arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -50 P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals 55 optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -60 P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals 65 optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -; -S-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen and alkyl; and

70 wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

- 75 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocycll that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or
- wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and
- wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocycll; quaternary heterocycll; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl;
- 80 alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; sulfoalkyl; heterocycll; quaternary heterocycll; quaternary heterocyclalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and
- wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocycll; quaternary heterocycll; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-;
- 95 phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and
- wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and
- wherein M is a pharmaceutically acceptable cation; and
- 100 wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and R^N is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; and aralkyl; and
- one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl;

110 haloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)_nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide acid residue; polypeptide acid residue; and carbohydrate acid residue;

115 wherein the R^x alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; and acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

120 125 wherein the R^x quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and carbohydrate residue; and

130 135 wherein the R^X radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻; -PR¹³-; -P(O)R¹³-; -PR¹³-; -P⁺R¹³R¹⁴A⁻; phenylene; amino acid; peptide; polypeptide; carbohydrate; polyether; or polyalkyl; wherein said phenylene; amino acid; peptide; polypeptide; carbohydrate; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; or -P(O)R⁹-; and

140 wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;

- heterocyclalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and
 145 heterocyclalkoxycarbonyl; and
 wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of
 150 halogen; -CN; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and
 wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as defined above; or
 155 a pharmaceutically acceptable salt, solvate, or prodrug thereof.

4. A compound of claim 1 wherein:

- q is an integer from 1 to 4;
 R¹ and R² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; 5 aryl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkenyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkynyl; (C₁-C₁₀)alkylaryl; and (polyalkyl)aryl; or
 R¹ and R² taken together with the carbon to which they are attached form (C₃-C₁₀)cycloalkyl;
 wherein the R¹ and R² (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-10 C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkenyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkynyl; (C₁-C₁₀)alkylaryl; and (polyalkyl)aryl radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R^wA⁻; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; and
 15 wherein the R¹ and R² (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkenyl; (C₁-C₁₀)alkoxy(C₂-C₁₀)alkynyl; (C₁-C₁₀)alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹; -P(O)R⁹-; -P⁺R⁹R¹⁰A⁻; or phenylene; and
 20

wherein R⁹, R¹⁰, and R^W are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocyclyl; carboxy(C₁-C₁₀)alkylamino; and acyl; and

wherein A⁻ is a pharmaceutically acceptable anion; and

R³ and R⁴ are independently selected from the group consisting of

hydrogen; (C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹; or

R³ and R⁴ together form =O; =NOR⁹; =S; =NNR⁹R¹⁰; =NR⁹; or =CR¹¹R¹²;

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; (C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; cyano(C₁-C₁₀)alkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R⁹ and R¹⁰ are as defined above; and

R⁵ and R⁶ are independently selected from the group consisting of

hydrogen; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO₂R⁹; and -SO₃R⁹;

wherein the R⁵ and R⁶ (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radicals optionally may be substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO₂; oxo; (C₁-C₁₀)alkyl; polyalkyl; halo(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴;

-NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

60 wherein the (C₁-C₁₀)alkyl, polyalkyl, halo(C₁-C₁₀)alkyl, hydroxy(C₁-C₁₀)alkyl, (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, aryl(C₁-C₁₀)alkyl, heterocyclyl(C₁-C₁₀)alkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally may be further substituted with one or more radicals selected from the group

65 consisting of -CN; halogen; hydroxy; oxo; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and

70 wherein the (C₁-C₁₀)alkyl, polyalkyl, halo(C₁-C₁₀)alkyl, hydroxy(C₁-C₁₀)alkyl, (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, aryl(C₁-C₁₀)alkyl, heterocyclyl(C₁-C₁₀)alkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and

75 wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen and (C₁-C₁₀)alkyl; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkylaminocarbonyl(C₁-C₁₀)alkyl; and polyether; or

85 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

90 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylaryl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aminocarbonyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylaminocarbonyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkylaminocarbonyl(C₁-C₁₀)alkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; (C₁-C₁₀)alkyl; sulfo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylaryl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aminocarbonyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylaminocarbonyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkylaminocarbonyl(C₁-C₁₀)alkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and

R^N is selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; and aryl(C₁-C₁₀)alkyl; and

one or more R^X radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; halo(C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; polyether;

acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)_nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide acid residue; polypeptide acid residue; and carbohydrate acid residue;

wherein the R^x (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; halo(C₁-C₁₀)alkyl; hydroxy(C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; and acyloxy radicals optionally may be further substituted with halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; or -S⁺R⁹R¹⁰A⁻; and

wherein the R^x quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO₂; oxo; (C₁-C₁₀)alkyl; (C₃-C₁₀)cycloalkyl; polyalkyl; halo(C₁-C₁₀)alkyl; hydroxy(C₁-C₁₀)alkyl; (C₂-C₁₀)alkenyl; (C₂-C₁₀)alkynyl; aryl; heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the R^x radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³; -N⁺R¹³R¹⁴A⁻; -S-; -SO₂-; -S⁺R¹³A⁻; -PR¹³-; -P(O)R¹³-; -PR¹³-; -P⁺R¹³R¹⁴A⁻; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polyether; or polyalkyl; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; acyl; and aryl(C₁-C₁₀)alkoxycarbonyl; and

wherein the R¹⁸ (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; acyl; and aryl(C₁-C₁₀)alkoxycarbonyl radicals optionally

may be substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and

165 wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as defined above; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; and provided that aryl is selected from the group consisting of optionally substituted phenyl, biphenyl and naphthyl; and

170 provided that heterocyclyl is selected from the group consisting of optionally substituted heterocyclyl comprising a 5 to 10 membered ring and comprising one or more ring atoms that are heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus.

5. A compound of claim 1 wherein:

q is an integer from 1 to 4;

R¹ and R² are independently selected from the group consisting of hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, phenoxyethylene, phenoxyethylene, phenoxypropylene, pyridinyloxymethylene, pyridinyloxyethylene; methylpyridinyloxymethylene, methylpyridinyloxyethylene, pyrimidinyloxymethylene, and pyrimidinyloxyethylene; or

10 R¹ and R² taken together with the carbon to which they are attached form cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, hydroxy, methyl, ethyl, phenyl, pyridinyl, amino, methylamino, dimethylamino, ethylamino and diethylamino; and

15 R⁵ and R⁶ are independently selected from the group consisting of hydrogen, phenyl, chlorophenyl, fluorophenyl, bromophenyl, iodophenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, methoxy(chlorophenyl), methoxy(fluorophenyl), methoxy(bromophenyl), methoxy(iodophenyl), ethoxy(chlorophenyl), ethoxy(fluorophenyl), ethoxy(bromophenyl), ethoxy(iodophenyl), nitrophenyl, aminophenyl, methylaminophenyl, 20 dimethylaminophenyl, ethylaminophenyl, diethylaminophenyl, trimethylammoniumphenyl, triethylammoniumphenyl,

- trimethylammoniummethylcarbonylaminophenyl,
triethylammoniummethylcarbonylaminophenyl,
trimethylammoniummethylcarbonylaminophenyl,
25 triethylammoniummethylcarbonylaminophenyl,
trimethylammoniumpropylcarbonylaminophenyl,
triethylammoniumpropylcarbonylaminophenyl,
trimethylammoniumbutylcarbonylaminophenyl,
triethylammoniumbutylcarbonylaminophenyl, methylcarbonylaminophenyl,
30 chloromethylcarbonylaminophenyl, fluoromethylcarbonylaminophenyl,
bromomethylcarbonylaminophenyl, iodomethylcarbonylaminophenyl,
ethylcarbonylaminophenyl, chloroethylcarbonylaminophenyl,
fluoroethylcarbonylaminophenyl, bromoethylcarbonylaminophenyl,
iodoethylcarbonylaminophenyl, propylcarbonylaminophenyl,
35 chloropropylcarbonylaminophenyl, fluoropropylcarbonylaminophenyl,
bromopropylcarbonylaminophenyl, iodopropylcarbonylaminophenyl,
butylcarbonylaminophenyl, chlorobutylcarbonylaminophenyl,
fluorobutylcarbonylaminophenyl, bromobutylcarbonylaminophenyl,
iodobutylcarbonylaminophenyl, 3,4-dioxymethylenephene, pyridinyl,
40 methylpyridinyl, pyridinium, methylpyridinium, thienyl, chlorothienyl,
fluorothienyl, bromothienyl, iodothienyl; methoxycarbonylphenyl,
ethoxycarbonylphenyl, trimethylammoniummethoxyethoxyethoxyphenyl,
triethylammoniummethoxyethoxyethoxyphenyl,
chloroethoxyethoxyethoxyphenyl, fluoroethoxyethoxyethoxyphenyl,
45 bromoethoxyethoxyethoxyphenyl, iodoethoxyethoxyethoxyphenyl,
pyridiniummethoxyethoxyethoxyphenyl,
piperazinyloxymethoxyethoxyethoxyphenyl,
methylpiperazinyloxymethoxyethoxyethoxyphenyl,
dimethylpiperazinyloxymethoxyethoxyethoxyphenyl,
50 piperidinyloxymethoxyethoxyethoxyphenyl,
methylpiperidinyloxymethoxyethoxyethoxyphenyl, and
dimethylpiperidinyloxymethoxyethoxyethoxyphenyl; and
 R^N is selected from the group consisting of hydrogen, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and benzyl; and
55 one or more R^X radicals are independently selected from the group consisting of hydroxy, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl,

tert-butyl, sec-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, methylthio, methylsulfinyl, methylsulfonyl, ethylthio, ethylsulfinyl, ethylsulfonyl, amino, hydroxyamino, methylamino, dimethylamino, ethylamino, diethylamino,
 60 trimethylammonium, triethylammonium, N-methyl-N-carboxymethyl-amino, N,N-dimethyl-N-carboxymethyl-ammonium, methylcarbonylamino, chloromethylcarbonylamino, fluoromethylcarbonylamino, bromomethylcarbonylamino, iodomethylcarbonylamino, ethylcarbonylamino, n-propylcarbonylamino, n-butylcarbonylamino, n-pentylcarbonylamino, n-
 65 hexylcarbonylamino, benzyloxycarbonylamino, aminoimidocarbonylamino, morpholinyl, N-methyl-morpholinium, azetidinyl, N-methyl-azetidinium, pyrrolidine, N-methyl-pyrrolidinium, piperazinyl, N-methylpiperazinyl, N,N'-dimethyl-piperazinium, piperidinyl, methylpiperidinyl, N-methyl-piperidinium, and thienyl; or
 70 a pharmaceutically acceptable salt, solvate, or prodrug thereof.

6. A compound of claim 1 wherein:

q is an integer from 1 to 4;
 R¹ and R² are independently selected from the group consisting of hydrogen and (C₁-C₁₀)alkyl; or
 5 R¹ and R² taken together with the carbon to which they are attached form (C₃-C₁₀)cycloalkyl; and
 R³ and R⁴ are independently selected from the group consisting of hydrogen and hydroxy; and
 R⁵ is phenyl, wherein said phenyl is optionally substituted with one or
 10 more radicals independently selected from the group consisting of halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴; and
 15 wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; quaternary heterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or
 20 wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-

C_{10})alkyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylheterocyclyl(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; (C_1 - C_{10})alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C_1 - C_{10})alkyl; carboxy; carboxy(C_1 - C_{10})alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; and -CONR⁹R¹⁰; and
 25 wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; heterocyclyl; ammonium(C_1 - C_{10})alkyl; (C_1 - C_{10})alkylammonium(C_1 - C_{10})alkyl; aryl(C_1 - C_{10})alkyl; heterocyclyl(C_1 - C_{10})alkyl; carboxy(C_1 - C_{10})alkyl; carbo(C_1 - C_{10})alkoxy(C_1 - C_{10})alkyl; carboxyheterocyclyl; carboxy(C_1 - C_{10})alkylamino; and acyl; and
 30 wherein A⁻ is a pharmaceutically acceptable anion; and
 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; heterocyclyl; aryl(C_1 - C_{10})alkyl; carboxy(C_1 - C_{10})alkyl; and carbo(C_1 - C_{10})alkoxy(C_1 - C_{10})alkyl; or
 35 R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and
 wherein R^w and R¹⁶ are as defined in claim 2; and
 R⁶ is hydrogen; and
 40 R^N is selected from the group consisting of hydrogen; (C_1 - C_{10})alkyl; and aryl(C_1 - C_{10})alkyl; and
 one or more R^X radicals are independently selected from the group consisting of hydrogen; -NO₂; (C_1 - C_{10})alkyl; halo(C_1 - C_{10})alkyl; -OR¹³; -NR¹³R¹⁴;
 45 wherein R¹³ and R¹⁴ are as defined above; or
 a pharmaceutically acceptable salt, solvate, or prodrug thereof; and
 provided that aryl is selected from the group consisting of optionally substituted phenyl, biphenyl and naphthyl; and
 provided that heterocyclyl is selected from the group consisting of
 50 optionally substituted heterocyclyl comprising a 5 to 10 membered ring and comprising one or more ring atoms that are heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus.

7. A compound of claim 1 wherein:

55 q is an integer from 1 to 4;

R^1 and R^2 are independently selected from the group consisting of ethyl and n-butyl; or

R^1 and R^2 taken together with the carbon to which they are attached form cyclopentyl; and

60 one of R^3 and R^4 is hydrogen and the other of R^3 and R^4 is hydroxy; and

R^5 is selected from the group consisting of phenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, nitrophenyl, aminophenyl, methylaminophenyl, dimethylaminophenyl, ethylaminophenyl, diethylaminophenyl, trimethylammoniumphenyl, triethylammoniumphenyl, trimethylammoniummethylcarbonylaminophenyl, triethylammoniummethylcarbonylaminophenyl, trimethylammoniummethylcarbonylaminophenyl, triethylammoniummethylcarbonylaminophenyl, trimethylammoniumpropylcarbonylaminophenyl, triethylammoniumpropylcarbonylaminophenyl, trimethylammoniumbutylcarbonylaminophenyl, triethylammoniumbutylcarbonylaminophenyl, methylcarbonylaminophenyl, chloromethylcarbonylaminophenyl, fluoromethylcarbonylaminophenyl, bromomethylcarbonylaminophenyl, iodomethylcarbonylaminophenyl, ethylcarbonylaminophenyl, chloroethylcarbonylaminophenyl, fluoroethylcarbonylaminophenyl, bromoethylcarbonylaminophenyl, iodoethylcarbonylaminophenyl, propylcarbonylaminophenyl, chloropropylcarbonylaminophenyl, fluoropropylcarbonylaminophenyl, bromopropylcarbonylaminophenyl, iodopropylcarbonylaminophenyl, butylcarbonylaminophenyl, chlorobutylcarbonylaminophenyl, fluorobutylcarbonylaminophenyl, bromobutylcarbonylaminophenyl, iodobutylcarbonylaminophenyl, trimethylammoniummethoxyethoxyethoxyphenyl, triethylammoniummethoxyethoxyethoxyphenyl, chloroethoxyethoxyethoxyphenyl, fluoroethoxyethoxyethoxyphenyl, bromoethoxyethoxyethoxyphenyl, iodoethoxyethoxyethoxyphenyl, and pyridiniummethoxyethoxyethoxyphenyl; and

R^6 is hydrogen;

90 R^N is selected from the group consisting of hydrogen, methyl, ethyl, and benzyl; and

 one or more R^X radicals are independently selected from the group consisting of hydroxy, methyl, ethyl, methoxy, ethoxy, amino, hydroxyamino, methylamino, dimethylamino, ethylamino, diethylamino, trimethylammonium, triethylammonium, N-methyl-N-carboxymethyl-amino, N,N-dimethyl-N-carboxymethyl-ammonium, methylcarbonylamino, chloromethylcarbonylamino, fluoromethylcarbonylamino, bromomethylcarbonylamino, iodomethylcarbonylamino, ethylcarbonylamino, benzyloxycarbonylamino, and aminoimidocarbonylamino; or
95 a pharmaceutically acceptable salt, solvate, or prodrug thereof.

100 8. A compound of claim 1 selected from the compounds of the group consisting of:

5 $(4R,5R)$ -3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

10 $(4R,5R)$ -5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

15 5-chloro- N -[3-[($4R,5R$)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide;

20 5-[[3-[($4R,5R$)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]- N,N,N -triethyl-5-oxo-pentanaminium trifluoroacetate;

25 2-chloro- N -[3-[($4R,5R$)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]acetamide;

30 2-[[3-[($4R,5R$)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]- N,N,N -triethyl-2-oxoethanaminium chloride;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-((4-iodoethoxy)ethoxy)phenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

1-[2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]ethyl]pyridinium;

2-[2-[2-[4-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-2-methyl-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethyllethanaminium iodide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-methoxyphenyl)-2-methyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide and (4*S*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R*,5*R*)-5-(3-aminophenyl)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-1,2-benzothiazepin-4-ol 1,1-dioxide;

5-bromo-*N*-[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]pentanamide;

5-[[3-[(4*R*,5*R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenyl]amino]-*N,N,N*-triethyl-5-oxo-1-pentanaminium trifluoroacetate;

(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-phenyl-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-hydroxyphenyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

2-[2-[2-[4-[(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1,2-benzothiazepin-5-yl]phenoxy]ethoxy]ethoxy]-*N,N,N*-triethylethanaminium iodide;

(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(3-nitrophenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-5-[3-(ethylamino)phenyl]-2,3,4,5-tetrahydro-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide;

(4*R,5R*)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-5-(4-methoxyphenyl)-2-(phenylmethyl)-1,2-benzothiazepin-4-ol 1,1-dioxide; and

(4*R,5R*)-7-dimethylamino)-2-ethyl-4,5-dihydro-5-(4-methoxyphenyl)-spiro[1,2-benzothiazepine-3(2H),1'-cyclopentan]-4-ol 1,1-dioxide; and

their pharmaceutically acceptable salts.

9. A compound of claim 2 wherein R⁵ and R⁶ are independently selected from the group consisting of H; aryl; heterocyclyl; and quaternary heterocyclyl;

5 wherein the R⁵ and R⁶ aryl; heterocyclyl; and quaternary heterocyclyl radicals optionally may be substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -

10 OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

15 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and

20 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ and R⁶ radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and

25 wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

30 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

35 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -SO-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined in claim 2.

10. A compound of claim 2 wherein R⁵ or R⁶ has the formula

5

wherein:

t is an integer from 0 to 5;

Ar is selected from the group consisting of phenyl; thiophenyl; pyridyl; piperazinyl; piperonyl; pyrrolyl; naphthyl; furanyl; anthracenyl; quinolinyl; isoquinolinyl; quinoxalinyl; imidazolyl; pyrazolyl; oxazolyl; isoxazolyl;

- 10 pyrimidinyl; thiazolyl; triazolyl; isothiazolyl; indolyl; benzoimidazolyl; benzoxazolyl; benzothiazolyl; and benzoisothiazolyl; and
 one or more R^Y are independently selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and
 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^Y radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸;
- 25 and
 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^Y radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and
 wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; and heterocyclyl; and
 wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are
 45 attached form a mono- or polycyclic heterocycll that is optionally substituted
 with one or more radicals selected from the group consisting of oxo, carboxy,
 and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are
 attached form a cyclic ring; and

50 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl;
 alkenyl; alkynyl; aryl; heterocycll; quaternary heterocycll; arylalkyl;
 heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl;
 alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl;
 alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether
 55 radicals optionally may be substituted with one or more radicals selected from
 the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl;
 hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocycll; quaternary
 heterocycll; quaternary heterocyclalkyl; carboxy; carboxyalkyl; guanidinyl;
 -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -
 60 CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -
 P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl;
 alkenyl; alkynyl; aryl; heterocycll; quaternary heterocycll; arylalkyl;
 heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl;
 alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl;
 alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether
 65 radicals optionally may have one or more carbons replaced by -O-; -NR⁹-;
 -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-;
 phenylene; carbohydrate residue; amino acid residue; peptide residue; or
 70 polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group
 consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined in claim 2.

11. A compound of claim 2 wherein at least one of R⁵ and R⁶ has
 the formula

364

5

10

wherein R^y and t are defined as in claim 10.

12. A compound of claim 11 wherein R^N is selected from the group consisting of hydrogen, alkyl and aralkyl.

13. A compound of claim 11 wherein R^N is selected from the group consisting of hydrogen, (C_1-C_{10}) alkyl and aryl (C_1-C_{10}) alkyl.

14. A compound of claim 11 wherein R^N is selected from the group consisting of hydrogen, methyl, ethyl and benzyl.

15. A compound of claim 11 wherein R^1 and R^2 are independently selected from the group consisting of hydrogen, alkyl, and (C_3-C_{10}) cycloalkyl.

16. A compound of claim 11 wherein R^1 and R^2 are independently selected from the group consisting of hydrogen and (C_1-C_{10}) alkyl.

17. A compound of claim 11 wherein R^1 and R^2 are independently selected from the group consisting of (C_1-C_{10}) alkyl.

18. A compound of claim 11 wherein R^1 and R^2 are independently selected from the group consisting of (C_1-C_7) alkyl.

19. A compound of claim 11 wherein R^1 and R^2 are independently selected from the group consisting of (C_2-C_4) alkyl.

20. A compound of claim 11 wherein R¹ and R² are the same (C₁-C₁₀)alkyl.
21. A compound of claim 11 wherein R¹ and R² are independently selected from the group consisting ethyl; n-propyl; n-butyl; and isobutyl.
22. A compound of claim 11 wherein R¹ and R² are each n-butyl.
23. A compound of claim 11 wherein one of R¹ and R² is ethyl and the other of R¹ and R² is n-butyl.
24. A compound of claim 11 wherein q is 1, 2, or 3.
25. A compound of claim 11 wherein q is 1 or 2.
26. A compound of claim 11 wherein q is 1.
27. A compound of claim 11 wherein R³ and R⁴ are independently selected from the group consisting of hydrogen and -OR⁹.
28. A compound of claim 27 wherein R⁹ is hydrogen.
29. A compound of claim 28 wherein said hydroxy group is in a *syn* relationship to said structure of formula (II).
30. A compound of claim 11 wherein R^X radicals are present at the 7-, 8- and 9-positions of the benzo ring of the structure of formula (I).
31. A compound of claim 11 wherein an R^X radical is present at one or more of the 7-, 8-, or 9-positions of the benzo ring of the structure of formula (I).
32. A compound of claim 11 wherein R^X radicals are present at the 7- and 9-positions of the benzo ring of the structure of formula (I).

33. A compound of claim 11 wherein an R^X radical is present at the 7-position of the benzo ring of the structure of formula (I).

34. A compound of claim 32 wherein said one or more R^X are independently selected from the group consisting of alkyl; aryl; cycloalkyl; heterocycll; polyalkyl; acyloxy; polyether; halogen; - OR^{13} ; - $NR^{13}R^{14}$; - $NR^{13}NR^{14}R^{15}$; - $N^+R^9R^{11}R^{12}A^-$; - SR^{13} ; - $S^+R^{13}R^{14}A^-$; - CO_2R^{13} ; and - $NR^{14}C(O)R^{13}$;

wherein alkyl; aryl; cycloalkyl; heterocycll; polyalkyl; acyloxy; and polyether; can be further substituted with - OR^{16} ; - NR^9R^{10} ; - $N^+R^9R^{10}R^WA^-$; - SR^{16} ; - $S(O)R^9$; - SO_2R^9 ; - SO_3R^{16} ; oxo; - CO_2R^{16} ; -CN; halogen; - $CONR^9R^{10}$; - $SO_2NR^9R^{10}$; - $PO(OR^{16})OR^{17}$; - PR^9R^{10} ; - $P^+R^9R^{11}R^{12}A^-$; or - $S^+R^9R^{10}A^-$; and

wherein in R^X , one or more carbons are optionally replaced by -O-; - NR^{13} ; - $N^+R^{13}R^{14}A^-$; -S-; -SO-; - $S^+R^{13}A^-$; - PR^{13} ; - $P(O)R^{13}$; - $P^+R^{13}R^{14}A^-$; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polyether; or polyalkyl; and

wherein in said polyalkyl; phenylene; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue; one or more carbons are optionally replaced by -O-; - NR^9 ; - $N^+R^9R^{10}A^-$; -S-; -SO-; - SO_2 -; - $S^+R^9A^-$; - PR^9 ; - $P^+R^9R^{10}A^-$; or - $P(O)R^9$.

35. A compound of claim 33 wherein said one or more R^X are independently selected from the group consisting of alkyl; aryl; cycloalkyl; heterocycll; polyalkyl; acyloxy; polyether; halogen; - OR^{13} ; - $NR^{13}R^{14}$; - $NR^{13}NR^{14}R^{15}$; - $N^+R^9R^{11}R^{12}A^-$; - SR^{13} ; - $S^+R^{13}R^{14}A^-$; - CO_2R^{13} ; and - $NR^{14}C(O)R^{13}$;

wherein alkyl; aryl; cycloalkyl; heterocycll; polyalkyl; acyloxy; and polyether; can be further substituted with - OR^{16} ; - NR^9R^{10} ; - $N^+R^9R^{10}R^WA^-$; - SR^{16} ; - $S(O)R^9$; - SO_2R^9 ; - SO_3R^{16} ; oxo; - CO_2R^{16} ; -CN; halogen; - $CONR^9R^{10}$; - $SO_2NR^9R^{10}$; - $PO(OR^{16})OR^{17}$; - PR^9R^{10} ; - $P^+R^9R^{11}R^{12}A^-$; or - $S^+R^9R^{10}A^-$; and

wherein in R^X , one or more carbons are optionally replaced by -O-; - NR^{13} ; - $N^+R^{13}R^{14}A^-$; -S-; -SO-; - SO_2 -; - $S^+R^{13}A^-$; - PR^{13} ; - $P(O)R^{13}$; -

$P^+R^{13}R^{14}A^-$; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polyether; or polyalkyl; and

15 wherein in said polyalkyl; phenylene; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue; one or more carbons are optionally replaced by -O-; $-NR^9-$; $-N^+R^9R^{10}A^-$; -S-; $-SO_2-$; $-S^+R^9A^-$; $-PR^9-$; $-P^+R^9R^{10}A^-$; or $-P(O)R^9-$.

36. A compound of claim 34 wherein said one or more R^x are independently selected from the group consisting of polyether; $-OR^{13}$; $-NR^{13}R^{14}$; and $-N^+R^9R^{11}R^{12}A^-$.

37. A compound of the claim 35 wherein said R^x is selected from the group consisting of polyether; $-OR^{13}$; $-NR^{13}R^{14}$; and $-N^+R^9R^{11}R^{12}A^-$.

38. A compound of claim 36 wherein said one or more R^x are independently selected from the group consisting of $-OR^{13}$ and $-NR^{13}R^{14}$.

39. A compound of claim 37 wherein said R^x is independently selected from the group consisting of $-OR^{13}$ and $-NR^{13}R^{14}$.

40. A compound of claim 38 wherein R^{13} and R^{14} are each methyl.

41. A compound of the claim 39 wherein R^{13} and R^{14} are each methyl.

42. A compound of claim 11 wherein an R^y substituent is attached at the 3- or the 4-position of the phenyl ring of the structure of formula (II).

43. A compound of claim 11 wherein t is 1 or 2.

44. A compound of claim 42 wherein t is 1 or 2.

45. A compound of claim 11 wherein said one or more R^y are independently selected from the group consisting of hydrogen; halogen; hydroxy; $-NO_2$; $(C_1-C_{10})alkyl$; $halo(C_1-C_{10})alkyl$; $aryl(C_1-C_{10})alkyl$;

heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴;

5 and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl;

10 (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or

wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether radicals optionally may be 15 substituted with one or more radicals selected from the group consisting of halogen; (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; and -CONR⁹R¹⁰; and

wherein R⁹, R¹⁰, and R^W are independently selected from the group 20 consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocyclyl; carboxy(C₁-C₁₀)alkylamino; and acyl; and

wherein A⁻ is a pharmaceutically acceptable anion; and

25 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; and carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

30 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation.

46. A compound of claim 11 wherein said R^y is independently selected from the group consisting of hydrogen, chloro, fluoro, bromo, iodo, hydroxy, methoxy, ethoxy, nitro, amino, methylamino, dimethylamino, ethylamino, diethylamino, trimethylammonium, triethylammonium, 5 trimethylammoniummethylcarbonylamino,

- triethylammoniummethylcarbonylamino,
trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniumpropylcarbonylamino,
10 triethylammoniumpropylcarbonylamino,
trimethylammoniumbutylcarbonylamino,
triethylammoniumbutylcarbonylamino, methylcarbonylamino,
chloromethylcarbonylamino, fluoromethylcarbonylamino,
bromomethylcarbonylamino, iodomethylcarbonylamino, ethylcarbonylamino,
15 chloroethylcarbonylamino, fluoroethylcarbonylamino,
bromoethylcarbonylamino, iodoethylcarbonylamino, propylcarbonylamino,
chloropropylcarbonylamino, fluoropropylcarbonylamino,
bromopropylcarbonylamino, iodopropylcarbonylamino, butylcarbonylamino,
chlorobutylcarbonylamino, fluorobutylcarbonylamino,
20 bromobutylcarbonylamino, iodobutylcarbonylamino, methoxycarbonyl,
ethoxycarbonyl, trimethylammoniummethoxyethoxyethoxy,
triethylammoniummethoxyethoxyethoxy, chloroethoxyethoxyethoxy,
fluoroethoxyethoxyethoxy, bromoethoxyethoxyethoxy,
iodoethoxyethoxyethoxy, pyridiniummethoxyethoxyethoxy,
25 piperazinyloxyethoxyethoxy,
methylpiperazinyloxyethoxyethoxyethoxy,
dimethylpiperazinyloxyethoxyethoxyethoxy,
piperidinyloxyethoxyethoxyethoxy,
methylpiperidinyloxyethoxyethoxyethoxy, and
30 dimethylpiperidinyloxyethoxyethoxyphenyl.

47. A compound of claim 11 wherein said one or more R^y are independently selected from the group consisting of hydroxy, methoxy, ethoxy, nitro, amino, methylamino, dimethylamino, ethylamino, diethylamino, trimethylammonium, triethylammonium,
5 trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniumpropylcarbonylamino,

- 10 triethylammoniumpropylcarbonylamino,
trimethylammoniumbutylcarbonylamino,
triethylammoniumbutylcarbonylamino, methylcarbonylamino,
chloromethylcarbonylamino, fluoromethylcarbonylamino,
bromomethylcarbonylamino, iodomethylcarbonylamino, ethylcarbonylamino,
15 chloroethylcarbonylamino, fluoroethylcarbonylamino,
bromoethylcarbonylamino, iodoethylcarbonylamino, propylcarbonylamino,
chloropropylcarbonylamino, fluoropropylcarbonylamino,
bromopropylcarbonylamino, iodopropylcarbonylamino, butylcarbonylamino,
chlorobutylcarbonylamino, fluorobutylcarbonylamino,
20 bromobutylcarbonylamino, iodobutylcarbonylamino,
trimethylammoniummethoxyethoxyethoxy,
triethylammoniummethoxyethoxyethoxy, chloroethoxyethoxyethoxy,
fluoroethoxyethoxyethoxy, bromoethoxyethoxyethoxy,
iodoethoxyethoxyethoxy, and pyridiniummethoxyethoxyethoxy.

48. A compound of claim 11 wherein said one or more R^y are independently selected from the group consisting of trimethylammonium, triethylammonium, trimethylammoniummethylcarbonylamino, triethylammoniummethylcarbonylamino,
5 trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniumpropylcarbonylamino,
triethylammoniumpropylcarbonylamino,
trimethylammoniumbutylcarbonylamino,
10 triethylammoniumbutylcarbonylamino,
trimethylammoniummethoxyethoxyethoxy, and
triethylammoniummethoxyethoxyethoxy.

49. A compound of claim 11 wherein:
R^N is selected from the group consisting of hydrogen, alkyl and aralkyl;
and
5 R¹ and R² are independently selected from the group consisting of
hydrogen, alkyl, and (C₃-C₁₀)cycloalkyl.

50. A compound of claim 11 wherein:

R^N is selected from the group consisting of hydrogen, alkyl and aralkyl; and

5 R³ and R⁴ are independently selected from the group consisting of hydrogen and hydroxy.

51. A compound of claim 50 wherein said hydroxy group is in a *syn* relationship to said structure of formula (II).

52. A compound of claim 11 wherein:

R^N is selected from the group consisting of hydrogen, alkyl and aralkyl; and

5 R^X is selected from the group consisting of polyether; -OR¹³; -NR¹³R¹⁴; and -N⁺R⁹R¹¹R¹²A⁻; wherein R⁹, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 2.

53. A compound of claim 11 wherein:

R¹ and R² are independently selected from the group consisting of hydrogen, alkyl, and (C₃-C₁₀)cycloalkyl; and R³
and R⁴ are independently selected from the group consisting of hydrogen and 5 hydroxy.

54. A compound of claim 11 wherein:

R¹ and R² are independently selected from the group consisting of hydrogen, alkyl, and (C₃-C₁₀)cycloalkyl; and R^X
is selected from the group consisting of polyether; -OR¹³; -NR¹³R¹⁴; and -5 N⁺R⁹R¹¹R¹²A⁻; wherein R⁹, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 2.

55. A compound of claim 11 wherein:

R³ and R⁴ are independently selected from the group consisting of hydrogen and hydroxy; and

5 R^X is selected from the group consisting of polyether; -OR¹³; -NR¹³R¹⁴; and -N⁺R⁹R¹¹R¹²A⁻;

wherein R⁹, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 2.

56. A compound of claim 11 wherein:

R^N is selected from the group consisting of hydrogen, alkyl and aralkyl;
R¹ and R² are independently selected from the group consisting of
hydrogen, alkyl, and (C₃-C₁₀)cycloalkyl; and R³
5 and R⁴ are independently selected from the group consisting of hydrogen and
hydroxy.

57. A compound of claim 11 wherein:

R^N is selected from the group consisting of hydrogen, alkyl and aralkyl;
R¹ and R² are independently selected from the group consisting of
hydrogen, alkyl, and (C₃-C₁₀)cycloalkyl; and R^X
5 is selected from the group consisting of polyether; -OR¹³; -NR¹³R¹⁴; and -
N⁺R⁹R¹¹R¹²A⁻;
wherein R⁹, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 2.

58. A compound of claim 11 wherein:

R^N is selected from the group consisting of hydrogen, alkyl and aralkyl;
R³ and R⁴ are independently selected from the group consisting of
hydrogen and hydroxy; and R^X
5 is selected from the group consisting of polyether; -OR¹³; -
NR¹³R¹⁴; and -N⁺R⁹R¹¹R¹²A⁻;
wherein R⁹, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 2.

59. A compound of claim 11 wherein:

R¹ and R² are independently selected from the group consisting of
hydrogen, alkyl, and (C₃-C₁₀)cycloalkyl;
R³ and R⁴ are independently selected from the group consisting of
hydrogen and hydroxy; and R^X
5 is selected from the group consisting of polyether; -OR¹³; -
NR¹³R¹⁴; and -N⁺R⁹R¹¹R¹²A⁻;
wherein R⁹, R¹¹, R¹², R¹³ and R¹⁴ are as defined in claim 2.

60. A compound of claim 11 wherein:

- R^N is selected from the group consisting of hydrogen, alkyl and aralkyl;
 R^1 and R^2 are independently selected from the group consisting of
hydrogen, alkyl, and (C_3-C_{10})cycloalkyl; R^3 and R^4
5 are independently selected from the group consisting of hydrogen and hydroxy;
and
 R^X is selected from the group consisting of polyether; $-OR^{13}$; -
 $NR^{13}R^{14}$; and $-N^+R^9R^{11}R^{12}A^-$;
wherein R^9 , R^{11} , R^{12} , R^{13} and R^{14} are as defined in claim 2.

61. A compound of claim 60 wherein R^N is selected from the group
consisting of hydrogen, (C_1-C_{10})alkyl and aryl(C_1-C_{10})alkyl.

62. A compound of claim 60 wherein R^N is selected from the group
consisting of hydrogen, methyl, ethyl and benzyl.

63. A compound of claim 60 wherein R^1 and R^2 are independently
selected from the group consisting of hydrogen and (C_1-C_{10})alkyl.

64. A compound of claim 60 wherein R^1 and R^2 are independently
selected from the group consisting of (C_1-C_{10})alkyl.

65. A compound of claim 60 wherein R^1 and R^2 are independently
selected from the group consisting of (C_2-C_4)alkyl.

66. A compound of claim 60 wherein R^1 and R^2 are independently
selected from the group consisting ethyl; n-propyl; n-butyl; and isobutyl.

67. A compound of claim 60 wherein R^1 and R^2 are each n-butyl.

68. A compound of claim 60 wherein one of R^1 and R^2 is ethyl and
the other of R^1 and R^2 is n-butyl.

69. A compound of claim 60 wherein q is 1, 2, or 3.

70. A compound of claim 60 wherein q is 1 or 2.

71. A compound of claim 60 wherein q is 1.

72. A compound of claim 60 wherein R^X radicals are present at the 7-, 8- and 9-positions of the benzo ring of the structure of formula (I).

73. A compound of claim 60 wherein an R^X radical is present at one or more of the 7-, 8-, or 9-positions of the benzo ring of the structure of formula (I).

74. A compound of claim 60 wherein R^X radicals are present at the 7- and 9-positions of the benzo ring of the structure of formula (I).

75. A compound of claim 60 wherein an R^X radical is present at the 7-position of the benzo ring of the structure of formula (I).

76. A compound of claim 60 wherein said one or more R^x are independently selected from the group consisting of -OR¹³ and -NR¹³R¹⁴, wherein R¹³ and R¹⁴ are as defined in claim 2..

77. A compound of claim 76 wherein R¹³ and R¹⁴ are each methyl.

78. A compound of claim 60 wherein an R^y substituent is independently attached at the 3- or the 4-position of the phenyl ring of formula (II).

79. A compound of claim 60 wherein t is 1 or 2.

80. A compound of claim 60 wherein t is 1.

81. A compound of claim 60 wherein said one or more R^y are independently selected from the group consisting of hydrogen; halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴;

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl;

10 (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or
 wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether radicals

15 optionally may be substituted with one or more radicals selected from the group consisting of halogen; (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; and -CONR⁹R¹⁰; and
 wherein R⁹, R¹⁰, and R^W are independently selected from the group

20 consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocyclyl; carboxy(C₁-C₁₀)alkylamino; and acyl; and
 wherein A⁻ is a pharmaceutically acceptable anion; and

25 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; and carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; or
 R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

30 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and
 wherein M is a pharmaceutically acceptable cation.

82. A compound of claim 60 wherein said R^y is independently selected from the group consisting of hydrogen, chloro, fluoro, bromo, iodo, hydroxy, methoxy, ethoxy, nitro, amino, methylamino, dimethylamino, ethylamino, diethylamino, trimethylammonium, triethylammonium, trimethylammoniummethylcarbonylamino, triethylammoniummethylcarbonylamino, trimethylammoniummethylcarbonylamino,

- triethylammoniummethylcarbonylamino,
trimethylammoniumpropylcarbonylamino,
10 triethylammoniumpropylcarbonylamino,
trimethylammoniumbutylcarbonylamino,
triethylammoniumbutylcarbonylamino, methylcarbonylamino,
chloromethylcarbonylamino, fluoromethylcarbonylamino,
bromomethylcarbonylamino, iodomethylcarbonylamino, ethylcarbonylamino,
15 chloroethylcarbonylamino, fluoroethylcarbonylamino,
bromoethylcarbonylamino, iodoethylcarbonylamino, propylcarbonylamino,
chloropropylcarbonylamino, fluoropropylcarbonylamino,
bromopropylcarbonylamino, iodopropylcarbonylamino, butylcarbonylamino,
chlorobutylcarbonylamino, fluorobutylcarbonylamino,
20 bromobutylcarbonylamino, iodobutylcarbonylamino, methoxycarbonyl,
ethoxycarbonyl, trimethylammoniummethoxyethoxyethoxy,
triethylammoniummethoxyethoxyethoxy, chloroethoxyethoxyethoxy,
fluoroethoxyethoxyethoxy, bromoethoxyethoxyethoxy,
iodoethoxyethoxyethoxy, pyridiniummethoxyethoxyethoxy,
25 piperazinyloxymethoxyethoxyethoxy,
methylpiperazinyloxymethoxyethoxyethoxy,
dimethylpiperazinyloxymethoxyethoxyethoxy,
piperidinyloxymethoxyethoxyethoxy,
methylpiperidinyloxymethoxyethoxyethoxy, and
30 dimethylpiperidinyloxymethoxyethoxyethoxyphenyl.

83. A compound of claim 60 wherein said one or more R^Y are independently selected from the group consisting of hydroxy, methoxy, ethoxy, nitro, amino, methylamino, dimethylamino, ethylamino, diethylamino, trimethylammonium, triethylammonium,
5 trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniumpropylcarbonylamino,
10 triethylammoniumpropylcarbonylamino,
trimethylammoniumbutylcarbonylamino,

triethylammoniumbutylcarbonylamino, methylcarbonylamino,
chloromethylcarbonylamino, fluoromethylcarbonylamino,
bromomethylcarbonylamino, iodomethylcarbonylamino, ethylcarbonylamino,
15 chloroethylcarbonylamino, fluoroethylcarbonylamino,
bromoethylcarbonylamino, iodoethylcarbonylamino, propylcarbonylamino,
chloropropylcarbonylamino, fluoropropylcarbonylamino,
bromopropylcarbonylamino, iodopropylcarbonylamino, butylcarbonylamino,
chlorobutylcarbonylamino, fluorobutylcarbonylamino,
20 bromobutylcarbonylamino, iodobutylcarbonylamino,
trimethylammoniummethoxyethoxyethoxy,
triethylammoniummethoxyethoxyethoxy, chloroethoxyethoxyethoxy,
fluoroethoxyethoxyethoxy, bromoethoxyethoxyethoxy,
iodoethoxyethoxyethoxy, and pyridiniummethoxyethoxyethoxy.

84. A compound of claim 60 wherein said one or more R^Y are independently selected from the group consisting of trimethylammonium, triethylammonium, trimethylammoniummethylcarbonylamino, triethylammoniummethylcarbonylamino,
5 trimethylammoniummethylcarbonylamino,
triethylammoniummethylcarbonylamino,
trimethylammoniumpropylcarbonylamino,
triethylammoniumpropylcarbonylamino,
trimethylammoniumbutylcarbonylamino,
10 triethylammoniumbutylcarbonylamino,
trimethylammoniummethoxyethoxyethoxy, and
triethylammoniummethoxyethoxyethoxy.

85. A compound of claim 60 wherein said hydroxy group is in a *syn* relationship to said structure of formula (II).

86. A compound of formula (I):

10

15

wherein:

20

- q is 1 or 2;
- R^1 and R^2 are each independently alkyl;
- R^3 is hydroxy;
- R^4 and R^6 are hydrogen;
- R^5 has the formula (II):

25

30

- wherein t is an integer from 0 to 5;
- one or more R^Y are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

40 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^y radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; 45 aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸A⁻; and -P(O)(OR⁷)OR⁸; and

50 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^y radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and

55 wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylkyl; 60 alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, 65 and quaternary salts; or wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

70 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl;

75 hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and
80 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and
85 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and
90 wherein M is a pharmaceutically acceptable cation; and wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined in claim 2; and R^N is selected from the group consisting of hydrogen; alkyl; and aralkyl; and
95 one or more R^X radicals are independently selected from the group consisting of alkoxy, alkylamino and dialkylamino; or a pharmaceutically acceptable salt, solvate, or prodrug thereof.

87. A compound of claim 86 wherein R¹ and R² are each the same (C₁-C₁₀)alkyl.

88. A compound of claim 86 wherein R¹ and R² are each n-butyl.

89. A compound of claim 86 wherein one or more R^x are independently selected from the group consisting of methoxy and dimethylamino.

90. A compound of claim 86 wherein q is 1.

91. A compound of claim 86 wherein q is 1, and R^x is selected from the group consisting of methoxy and dimethylamino.

92. A compound of claim 86 wherein R^N is selected from the group consisting of hydrogen; methyl, ethyl and benzyl.

93. A compound of claim 86 wherein said hydroxy group is in a *syn* relationship to said structure of formula (II).

94. A compound of claim 86 wherein t is 1.

95. A compound of claim 86 wherein t is 1 and R^y is in the para position.

96. A compound of claim 86 wherein t is 1 and R^y is in the meta position.

97. A compound of claim 86 wherein one or more R^y are independently selected from selected from the group consisting of halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴; and

5 wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; quaternary heterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or

10 wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; quaternary heterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the

15 group consisting of halogen; (C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; quaternary heterocycl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; and -CONR⁹R¹⁰; and

wherein R⁹, R¹⁰, and R^W are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocyclyl; carboxy(C₁-C₁₀)alkylamino; and acyl; and
20 wherein A⁻ is a pharmaceutically acceptable anion; and
wherein R¹¹ and R¹² are independently selected from the group
consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; aryl(C₁-C₁₀)alkyl;
25 carboxy(C₁-C₁₀)alkyl; and carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; or
R¹¹ and R¹² together with the carbon atom to which they are attached
form a cyclic ring; and
wherein R¹⁶ and R¹⁷ are independently selected from the group
30 consisting of R⁹ and M; and
wherein M is a pharmaceutically acceptable cation.

98. A compound of claim 97 wherein:

R¹ and R² are each the same (C₁-C₁₀)alkyl;
one or more R^x are independently selected from the group consisting of
methoxy and dimethylamino;
5 said hydroxy group is in a *syn* relationship to said structure of formula
(II);
t is 1; and
R^y is in the meta or para position.

99. A compound of claim 97 wherein R¹ and R² are each n-butyl.

100. A compound of claim 97 wherein q is 1.

101. A compound of claim 97 wherein R^N is selected from the group
consisting of hydrogen; methyl, ethyl and benzyl.

102. A compound of claim 97 wherein R^y is in the para position.

103. A compound of claim 97 wherein R^y is in the meta position.

104. A compound of the formula (III):

5 wherein :

- q and r are independently integers from 0 to 4;
- t and u are independently integers from 0 to 4;
- R^1 , R^2 , R^{1A} , and R^{2A} are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyloxyalkyl; heterocycloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl; or
- R^1 and R^2 taken together with the carbon to which they are attached form C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl; or
- R^{1A} and R^{2A} taken together with the carbon to which they are attached form C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl;
wherein the R^1 , R^2 , R^{1A} , and R^{2A} alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; heterocyclyloxyalkyl; heterocyclyloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may be substituted with one or more radicals selected from the group consisting of -CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -

- 25 PR^9R^{10} ; $-\text{P}^+\text{R}^9\text{R}^{10}\text{R}^W\text{A}^-$; $-\text{S(O)R}^9$; $-\text{SO}_2\text{R}^9$; $-\text{SO}_3\text{R}^9$; $-\text{CO}_2\text{R}^9$; and $-\text{CONR}^9\text{R}^{10}$; and
 wherein the R^1 , R^2 , R^{1A} , and R^{2A} alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocycl; arylalkyl; heterocyclalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyloxyalkyl; heterocyclyloxyalkenyl; heterocyclyloxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by $-\text{O}-$; $-\text{NR}^9-$; $-\text{N}^+\text{R}^9\text{R}^{10}\text{A}^-$; $-\text{S}-$; $-\text{SO}-$; $-\text{SO}_2-$; $-\text{S}^+\text{R}^9\text{A}^-$; $-\text{PR}^9-$; $-\text{P(O)R}^9-$; $-\text{P}^+\text{R}^9\text{R}^{10}\text{A}^-$; or phenylene; and
 wherein R^9 , R^{10} , and R^W are independently selected from the group
 30 consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocycl; alkylammoniumalkyl; arylalkyl; heterocyclalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocycl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and
 wherein A^- is a pharmaceutically acceptable anion; and
 35 R^3 , R^4 , R^{3A} , and R^{4A} are independently selected from the group
 consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocycl; $-\text{OR}^9$; $-\text{NR}^9\text{R}^{10}$; $-\text{SR}^9$; $-\text{S(O)R}^9$; $-\text{SO}_2\text{R}^9$; and $-\text{SO}_3\text{R}^9$; or
 R^3 and R^4 together form $=\text{O}$; $=\text{NOR}^9$; $=\text{S}$; $=\text{NNR}^9\text{R}^{10}$; $=\text{NR}^9$; or
 $=\text{CR}^{11}\text{R}^{12}$; or
 40 R^{3A} and R^{4A} together form $=\text{O}$; $=\text{NOR}^9$; $=\text{S}$; $=\text{NNR}^9\text{R}^{10}$; $=\text{NR}^9$; or
 $=\text{CR}^{11}\text{R}^{12}$;
 wherein R^{11} and R^{12} are independently selected from the group
 consisting of hydrogen; $-\text{CN}$; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocycl; arylalkyl; heterocyclalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-\text{OR}^9$; $-\text{NR}^9\text{R}^{10}$; $-\text{SR}^9$; $-\text{S(O)R}^9$; $-\text{SO}_2\text{R}^9$; $-\text{SO}_3\text{R}^9$; $-\text{CO}_2\text{R}^9$; and
 50 $-\text{CONR}^9\text{R}^{10}$; or
 R^{11} and R^{12} together with the carbon atom to which they are attached
 form a cyclic ring; and
 55 wherein R^9 and R^{10} are as defined above; and
 one or more R^Y and R^{YA} are independently selected from the group
 consisting of halogen; $-\text{CN}$; $-\text{NO}_2$; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocycl; quaternary heterocycl; arylalkyl; heterocyclalkyl; polyether; $-\text{OR}^{13}$; $-\text{NR}^{13}\text{R}^{14}$; -

60 SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and
 65 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^y and R^{yA} radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and
 70 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^y and R^{yA} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene; and
 75 wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and
 80 wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylkalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or
 85 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or
 90 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

95 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

100 wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

105 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

110 wherein n is 0, 1 or 2; and

115 wherein M is a pharmaceutically acceptable cation; and

120 wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and R^N and R^{NA} are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aralkyl; and heterocyclylalkyl; and one or more R^X and R^{X_A} radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -SO_nNR¹³R¹⁸; -

- 130 $\text{NR}^{18}\text{OR}^{14}$, $-\text{N}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; $-\text{PR}^{13}\text{R}^{14}$, $-\text{P(O)R}^{13}\text{R}^{14}$, -
 $\text{P}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; amino acid residue; peptide residue; polypeptide residue;
and carbohydrate residue;
wherein the R^X and R^{XA} alkyl; cycloalkyl; polyalkyl; haloalkyl;
hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;
135 polyether; acyloxy radicals optionally may be further substituted with one or
more radicals selected from the group consisting of halogen; $-\text{CN}$; oxo; $-\text{OR}^{16}$;
 $-\text{NR}^9\text{R}^{10}$; $-\text{N}^+\text{R}^9\text{R}^{10}\text{R}^W\text{A}^-$; $-\text{SR}^{16}$; $-\text{S(O)R}^9$; $-\text{SO}_2\text{R}^9$; $-\text{SO}_3\text{R}^{16}$; $-\text{CO}_2\text{R}^{16}$; -
 $-\text{CONR}^9\text{R}^{10}$; $-\text{SO}_2\text{NR}^9\text{R}^{10}$; $-\text{PO}(\text{OR}^{16})\text{OR}^{17}$; $-\text{PR}^9\text{R}^{10}$; $-\text{P}^+\text{R}^9\text{R}^{11}\text{R}^{12}\text{A}^-$; -
 $-\text{S}^+\text{R}^9\text{R}^{10}\text{A}^-$; and carbohydrate residue; and
- 140 wherein the R^X and R^{XA} quaternary heterocyclyl radical optionally may
be substituted with one or more radicals selected from the group consisting of
halogen; $-\text{CN}$; $-\text{NO}_2$; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl;
hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;
polyether; $-\text{OR}^{13}$; $-\text{NR}^{13}\text{R}^{14}$; $-\text{SR}^{13}$; $-\text{S(O)R}^{13}$; $-\text{SO}_2\text{R}^{13}$; $-\text{SO}_3\text{R}^{13}$; -
145 $-\text{NR}^{13}\text{OR}^{14}$; $-\text{NR}^{13}\text{NR}^{14}\text{R}^{15}$; $-\text{CO}_2\text{R}^{13}$; OM; $-\text{SO}_2\text{OM}$; $-\text{SO}_2\text{NR}^{13}\text{R}^{14}$; -
 $-\text{C(O)NR}^{13}\text{R}^{14}$; $-\text{C(O)OM}$; $-\text{COR}^{13}$; $-\text{P(O)R}^{13}\text{R}^{14}$; $-\text{PR}^{13}\text{R}^{14}$; -
 $-\text{P}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; $-\text{P}(\text{OR}^{13})\text{OR}^{14}$; $-\text{S}^+\text{R}^{13}\text{R}^{14}\text{A}^-$; $-\text{N}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; and
carbohydrate residue; and
- 150 wherein the R^X and R^{XA} radicals comprising carbon optionally may
have one or more carbons replaced by $-\text{O}-$; $-\text{NR}^{13}-$; $-\text{N}^+\text{R}^{13}\text{R}^{14}\text{A}^-$; $-\text{S}-$; $-\text{SO}-$;
 $-\text{SO}_2-$; $-\text{S}^+\text{R}^{13}\text{A}^-$; $-\text{PR}^{13}-$; $-\text{P(O)R}^{13}-$; $-\text{P}^+\text{R}^{13}\text{R}^{14}\text{A}^-$; phenylene; amino acid
residue; peptide residue; polypeptide residue; carbohydrate residue; polyether;
or polyalkyl; wherein said phenylene; amino acid residue; peptide residue;
polypeptide residue; carbohydrate residue; and polyalkyl optionally may have
155 one or more carbons replaced by $-\text{O}-$; $-\text{NR}^9-$; $-\text{N}^+\text{R}^9\text{R}^{10}\text{A}^-$; $-\text{S}-$; $-\text{SO}-$; $-\text{SO}_2-$;
 $-\text{S}^+\text{R}^9\text{A}^-$; $-\text{PR}^9-$; $-\text{P}^+\text{R}^9\text{R}^{10}\text{A}^-$; or $-\text{P(O)R}^9-$; and
- 160 wherein R^{18} is selected from the group consisting of alkyl; alkenyl;
alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and
heterocyclylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and
wherein the R^{18} alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl;
arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may
be substituted with one or more radicals selected from the group consisting of

165 halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹⁶)OR¹⁷; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and

wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as defined above; and

170 R¹⁹ is selected from the group consisting of alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate; amino acid; and peptide; polypeptide; wherein alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue; peptide residue; and 175 polypeptide residue; can optionally have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P⁺R⁷R⁸A⁻; phenylene; heterocyclyl; quaternary heterocyclyl; or aryl;

wherein alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue;

180 peptide residue; and polypeptide residue can be substituted with one or more substituent groups independently selected from the group consisting of alkyl; alkenyl; alkynyl; polyalkyl; polyether; aryl; haloalkyl; cycloalkyl; heterocyclyl; arylalkyl; halogen; oxo; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -NO₂; -CO₂R¹³; -CN; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻;

wherein R⁷, R⁸, R¹¹, R¹², R¹³, R¹⁴ R¹⁵, and A⁻ are as defined above; or a pharmaceutically acceptable salt, solvate, or prodrug thereof.

105. A compound of claim 104 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of hydrogen and alkyl.

106. A compound of claim 104 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of hydrogen and C₁-C₁₀ alkyl.

107. A compound of claim 104 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of C₂-C₇ alkyl.

108. A compound of claim 104 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of C₂-C₄ alkyl.

109. A compound of claim 104 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of ethyl; n-propyl; n-butyl; and isobutyl.

110. A compound of claim 104 wherein R³, R^{3A}, R⁴, and R^{4A} are independently selected from the group consisting of hydrogen and -OR⁹, wherein R⁹ is as defined in claim 104.

111. A compound of claim 110 wherein R⁹ is hydrogen.

112. A compound of claim 104 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, alkyl and aralkyl.

113. A compound of claim 104 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, (C₁-C₁₀)alkyl and aryl(C₁-C₁₀)alkyl.

114. A compound of claim 104 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, methyl, ethyl and benzyl.

115. A compound of claim 104 wherein one or more R^x and R^{xA} are independently selected from the group consisting of methoxy and dimethylamino.

116. A compound of claim 104 wherein q and r are each 1.

117. A compound of claim 104 wherein one or more R^y are independently selected from the group consisting of halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl;

heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴;

5 and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl;

10 (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or

wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether radicals

15 optionally may be substituted with one or more radicals selected from the group consisting of halogen; (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; and -CONR⁹R¹⁰; and

wherein R⁹, R¹⁰, and R^W are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocyclyl; carboxy(C₁-C₁₀)alkylamino; and acyl; and

wherein A⁻ is a pharmaceutically acceptable anion; and

25 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; and carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring

30 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation.

118. A compound of claim 104 wherein R¹⁹ is selected from the group consisting of alkane diyl; polyalkane diyl; alkoxy diyl; and polyalkoxy diyl; wherein alkane diyl and polyalkane diyl can optionally have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -

5 PR^7- ; $-\text{P}(\text{O})\text{R}^7-$; $-\text{P}^+\text{R}^7\text{R}^8\text{A}^-$; or phenylene, wherein R^7 and R^8 are defined as in claim 104.

119. A compound of claim 104 wherein R^{19} is selected from the group consisting of alkoxy diyl and polyalkoxydiyl wherein one or more carbons are optionally replaced by $-\text{O}-$; $-\text{NR}^7-$; $-\text{N}^+\text{R}^7\text{R}^8\text{A}^-$; $-\text{S}-$; $-\text{SO}-$; $-\text{SO}_2-$; $-\text{S}^+\text{R}^7\text{A}^-$; $-\text{PR}^7-$; $-\text{P}(\text{O})\text{R}^7-$; $-\text{P}^+\text{R}^7\text{R}^8\text{A}^-$; phenylene; amino acid residue; 5 peptide residue; polypeptide residue; carbohydrate residue; or polyalkyl, wherein R^9 and R^{10} are defined as in claim 104.

120. A compound of claim 104 having the formula:

121. A compound of the formula (IV):

wherein :

- 15 q and r are independently integers from 0 to 3;
 t and u are independently integers from 0 to 5;
 R¹, R², R^{1A}, and R^{2A} are independently selected from the group
 consisting of hydrogen; alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl;
 heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl;
 20 alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl;
 heterocyclyoxyalkyl; heterocycloxyalkenyl; heterocyclyoxyalkynyl; alkylaryl;
 and (polyalkyl)aryl; or
 R¹ and R² taken together with the carbon to which they are attached
 form C₃-C₁₀ cycloalkyl or C₃-C₁₀ cycloalkenyl; or
 25 R^{1A} and R^{2A} taken together with the carbon to which they are attached
 form C₃-C₁₀ cycloalkyl or C₃-C₁₀ cycloalkenyl;
 wherein the R¹, R², R^{1A}, and R^{2A} alkyl; cycloalkyl; alkenyl;
 cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;
 alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl;
 30 aryloxyalkynyl; heterocyclyoxyalkyl; heterocycloxyalkenyl;
 heterocyclyoxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may
 be substituted with one or more radicals selected from the group consisting of -
 CN; halogen; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR⁹; -S⁺R⁹R¹⁰A⁻; -
 PR⁹R¹⁰; -P⁺R⁹R¹⁰R^wA⁻; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; and -
 35 CONR⁹R¹⁰; and

wherein the R^1 , R^2 , R^{1A} , and R^{2A} alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocycloxyalkyl; heterocycloxyalkenyl; heterocycloxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by $-O-$; $-NR^9-$; $-N^+R^9R^{10}A^-$; $-S-$; $-SO-$; $-SO_2-$; $-S^+R^9A^-$; $-PR^9-$; $-P(O)R^9-$; $-P^+R^9R^{10}A^-$; or phenylene; and

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein A^- is a pharmaceutically acceptable anion; and

R^3 , R^4 , R^{3A} , and R^{4A} are independently selected from the group

consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; and $-SO_3R^9$; or

R^3 and R^4 together form $=O$; $=NOR^9$; $=S$; $=NNR^9R^{10}$; $=NR^9$; or $=CR^{11}R^{12}$;

R^{3A} and R^{4A} together form $=O$; $=NOR^9$; $=S$; $=NNR^9R^{10}$; $=NR^9$; or

$=CR^{11}R^{12}$;

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; $-CN$; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; and $-CONR^9R^{10}$; or

R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R^9 and R^{10} are as defined above; and

one or more R^Y and R^{YA} are independently selected from the group

consisting of hydrogen; halogen; $-CN$; $-NO_2$; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-SO_2R^{13}$; $-SO_3R^{13}$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; $-OM$; $-SO_2OM$; $-SO_2NR^{13}R^{14}$; $-C(O)NR^{13}R^{14}$; $-C(O)OM$; -

COR^{13} ; $-\text{NR}^{13}\text{C(O)R}^{14}$; $-\text{NR}^{13}\text{C(O)NR}^{14}\text{R}^{15}$; $-\text{NR}^{13}\text{CO}_2\text{R}^{14}$; $-\text{OC(O)R}^{13}$; $-\text{OC(O)NR}^{13}\text{R}^{14}$; $-\text{NR}^{13}\text{SOR}^{14}$; $-\text{NR}^{13}\text{SO}_2\text{R}^{14}$; $-\text{NR}^{13}\text{SONR}^{14}\text{R}^{15}$; $-\text{NR}^{13}\text{SO}_2\text{NR}^{14}\text{R}^{15}$; $-\text{P(O)R}^{13}\text{R}^{14}$; $-\text{PR}^{13}\text{R}^{14}$; $-\text{P}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; $-\text{P(OR}^{13})\text{OR}^{14}$; $-\text{S}^+\text{R}^{13}\text{R}^{14}\text{A}^-$; and $-\text{N}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-$; and

75 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^y and R^{yA} radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclyl; $-\text{OR}^7$; $-\text{NR}^7\text{R}^8$; $-\text{SR}^7$; $-\text{S(O)R}^7$; $-\text{SO}_2\text{R}^7$; $-\text{SO}_3\text{R}^7$; $-\text{CO}_2\text{R}^7$; $-\text{CONR}^7\text{R}^8$; $-\text{N}^+\text{R}^7\text{R}^8\text{R}^9\text{A}^-$; $-\text{P(O)R}^7\text{R}^8$; $-\text{PR}^7\text{R}^8$; $-\text{P}^+\text{R}^7\text{R}^8\text{R}^9\text{A}^-$; and $-\text{P(O)(OR}^7)\text{OR}^8$; and

85 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclalkyl, and polyether substituents of the R^y and R^{yA} radicals optionally may have one or more carbons replaced by -O-; $-\text{NR}^7$; $-\text{N}^+\text{R}^7\text{R}^8\text{A}^-$; $-\text{S}-$; $-\text{SO}-$; $-\text{SO}_2-$; $-\text{S}^+\text{R}^7\text{A}^-$; $-\text{PR}^7$; $-\text{P(O)R}^7$; $-\text{P}^+\text{R}^7\text{R}^8\text{A}^-$; or phenylene; and

90 wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylkalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

95 wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;

heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl; alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO₂-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and wherein M is a pharmaceutically acceptable cation; and wherein n is 0, 1 or 2; and wherein R⁹, R¹⁰, R¹¹, R¹², R^w, and A⁻ are as defined above; and R^N and R^{NA} are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aralkyl; and heterocyclalkyl; and one or more R^X and R^{X^A} radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -SO_nNR¹³R¹⁴; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -

- 140 $P^+R^{13}R^{14}R^{15}A^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;
 wherein the R^X and R^{XA} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or
 145 more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and
 wherein the R^X and R^{XA} quaternary heterocyclyl radical optionally may
 150 be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO₂; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and carbohydrate residue; and
 wherein the R^X and R^{XA} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻; -PR¹³-; -P(O)R¹³-; -P⁺R¹³R¹⁴A⁻; phenylene; amino acid; peptide; polypeptide; carbohydrate; polyether; or polyalkyl; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; or -P(O)R⁹-; and
 165 wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and
 170 wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹;

175 -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹⁶)OR¹⁷; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and

wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as defined above; and

R¹⁹ is selected from the group consisting of alkane diyl; alkene diyl;

180 alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate; amino acid; and peptide; polypeptide; wherein alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue; peptide residue; and polypeptide residue; can optionally have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; phenylene; heterocyclyl; quaternary heterocyclyl; or aryl;

wherein alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue; peptide residue; and polypeptide residue can be substituted with one or more substituent groups independently selected from the group consisting of alkyl;

190 alkenyl; alkynyl; polyalkyl; polyether; aryl; haloalkyl; cycloalkyl; heterocyclyl; arylalkyl; halogen; oxo; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -NO₂; -CO₂R¹³; -CN; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R⁹R¹¹R¹²A⁻;

wherein R⁷, R⁸, R¹¹, R¹², R¹³, R¹⁴ R¹⁵, and A⁻ are as defined above; or a pharmaceutically acceptable salt, solvate, or prodrug thereof.

122. A compound of claim 121 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of hydrogen and alkyl.

123. A compound of claim 121 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of hydrogen and C₁-C₁₀ alkyl.

124. A compound of claim 121 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of C₂-C₇ alkyl.

125. A compound of claim 121 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of C₂-C₄ alkyl.

126. A compound of claim 121 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of ethyl; n-propyl; n-butyl; and isobutyl.

127. A compound of claim 121 wherein R³, R^{3A}, R⁴, and R^{4A} are independently selected from the group consisting of hydrogen and -OR⁹, wherein R⁹ is as defined in claim 121.

128. A compound of claim 126 wherein R⁹ is hydrogen.

129. A compound of claim 121 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, alkyl and aralkyl.

130. A compound of claim 121 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, (C₁-C₁₀)alkyl and aryl(C₁-C₁₀)alkyl.

131. A compound of claim 121 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, methyl, ethyl and benzyl.

132. A compound of claim 121 wherein one or more R^x and R^{xA} are independently selected from the group consisting of methoxy and dimethylamino.

133. A compound of claim 121 wherein q and r are each 1.

134. A compound of claim 121 wherein one or more R^y are independently selected from selected from the group consisting of halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl;

heterocycl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴;

5 and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; haloC₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; quaternary heterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocycl(C₁-C₁₀)alkyl;

10 (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or

wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; quaternary heterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocycl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether radicals

15 optionally may be substituted with one or more radicals selected from the group consisting of halogen; (C₁-C₁₀)alkyl; heterocycl; quaternary heterocycl; quaternary heterocycl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; and -CONR⁹R¹⁰; and

wherein R⁹, R¹⁰ and R^w are independently selected from the group

20 consisting of hydrogen; (C₁-C₁₀)alkyl; heterocycl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocycl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocycl; carboxy(C₁-C₁₀)alkylamino; and acyl; and

wherein A⁻ is a pharmaceutically acceptable anion; and

25 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocycl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; and carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring;

30 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation.

135. A compound of claim 121 wherein R¹⁹ is selected from the group consisting of alkane diyl; polyalkane diyl; alkoxy diyl; and polyalkoxy diyl; wherein alkane diyl and polyalkane diyl can optionally have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -

400

- 5 PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene, wherein R⁷ and R⁸ are defined as
in claim 121.

136. A compound of claim 121 wherein R¹⁹ is selected from the group consisting of alkoxy diyl and polyalkoxydiyl wherein one or more carbons are optionally replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; or polyalkyl, wherein R⁹ and R¹⁰ are defined as in claim 121.

137. A compound of claim 121 having the structural formula:

138. A compound of formula (V):

5

10

15

20

25

30

35

wherein :

q is an integer from 0 to 4;

r is an integer from 0 to 3;

t is an integer from 0 to 4;

u is an integer from 0 to 5;

R^1 , R^2 , R^{1A} , and R^{2A} are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl;

alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl;

heterocyclyoxyalkyl; heterocyclyoxyalkenyl; heterocyclyoxyalkynyl; alkylaryl; and (polyalkyl)aryl; or

R^1 and R^2 taken together with the carbon to which they are attached form C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl; or

R^{1A} and R^{2A} taken together with the carbon to which they are attached

form C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl;

wherein the R^1 , R^2 , R^{1A} , and R^{2A} alkyl; cycloalkyl; alkenyl;

cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl;

aryloxyalkynyl; heterocyclyoxyalkyl; heterocyclyoxyalkenyl;

heterocyclyoxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may

be substituted with one or more radicals selected from the group consisting of -

CN ; halogen; oxo; $-OR^9$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^9$; $-S^+R^9R^{10}A^-$; -

$P^+ R^9 R^{10} R^W A^-$; $-PR^9 R^{10}$; $-S(O)R^9$; $-SO_2 R^9$; $-SO_3 R^9$; $-CO_2 R^9$; and $-CONR^9 R^{10}$; and

40 wherein the R^1 , R^2 , R^{1A} , and R^{2A} alkyl; cycloalkyl; alkenyl; cycloalkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; alkoxyalkyl; alkoxyalkenyl; alkoxyalkynyl; aryloxyalkyl; aryloxyalkenyl; aryloxyalkynyl; heterocyclyoxyalkyl; heterocyclyoxyalkenyl; heterocyclyoxyalkynyl; alkylaryl; and (polyalkyl)aryl radicals optionally may have one or more carbons replaced by $-O-$; $-NR^9-$; $-N^+ R^9 R^{10} A^-$; $-S-$; $-SO-$; $-SO_2-$; $-S^+ R^9 A^-$; $-PR^9-$; $-P(O)R^9-$; $-P^+ R^9 R^{10} A^-$; or phenylene; and

45 wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

50 wherein A^- is a pharmaceutically acceptable anion; and

55 R^3 , R^4 , R^{3A} , and R^{4A} are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; $-OR^9$; $-NR^9 R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2 R^9$; and $-SO_3 R^9$; or

55 R^3 and R^4 together form $=O$; $=NOR^9$; $=S$; $=NNR^9 R^{10}$; $=NR^9$; or $=CR^{11} R^{12}$;

55 R^{3A} and R^{4A} together form $=O$; $=NOR^9$; $=S$; $=NNR^9 R^{10}$; $=NR^9$; or $=CR^{11} R^{12}$;

60 wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; $-CN$; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9 R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2 R^9$; $-SO_3 R^9$; $-CO_2 R^9$; and $-CONR^9 R^{10}$; or

65 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

70 wherein R^9 and R^{10} are as defined above; and

70 one or more R^Y and R^{YA} are independently selected from the group consisting of halogen; $-CN$; $-NO_2$; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13} R^{14}$; -

SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -
 CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -
 75 COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -
 OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -
 NR¹³SO₂NR¹⁴R¹⁵; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻; -
 P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and
 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
 80 alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
 heterocyclalkyl, and polyether substituents of the R^y and R^{yA} radicals
 optionally may be further substituted with one or more radicals selected from
 the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl;
 alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclalkyl; quaternary
 85 heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; -SO₃R⁷; -CO₂R⁷; -
 CONR⁷R⁸; -N⁺R⁷R⁸R⁹A⁻; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -
 P(O)(OR⁷)OR⁸; and
 wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,
 alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl,
 90 heterocyclalkyl, and polyether substituents of the R^y and R^{yA} radicals
 optionally may have one or more carbons replaced by -O-; -NR⁷; -N⁺R⁷R⁸A⁻
 -; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene;
 and
 wherein R⁷ and R⁸ are independently selected from the group
 95 consisting of hydrogen; alkyl, alkenyl; alkynyl; aryl; and heterocyclyl; and
 wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group
 consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl;
 alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
 heterocyclalkyl; quaternary heterocyclalkyl; alkylarylalkyl;
 100 alkylheterocyclalkyl; alkylammoniumalkyl; aminocarbonylalkyl;
 alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or
 wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are
 attached form a mono- or polycyclic heterocyclyl that is optionally substituted
 with one or more radicals selected from the group consisting of oxo, carboxy,
 105 and quaternary salts; or
 wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are
 attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein M is a pharmaceutically acceptable cation; and

wherein n is 0, 1 or 2; and

wherein R⁹, R¹⁰, R¹¹, R¹², R^W and A⁻ are as defined above; and

R^N and R^{NA} are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aralkyl; and heterocyclylalkyl; and

one or more R^X and R^{XA} radicals are independently selected from the group consisting of hydrogen; halogen; -CN; -NO₂; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)₂R¹³; -SO₃R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)_nNR¹³R¹⁴;

145 -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -
P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue;
and carbohydrate residue;

145 wherein the R^X and R^{X^A} alkyl; cycloalkyl; polyalkyl; haloalkyl;
hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;
polyether; acyloxy radicals optionally may be further substituted with one or
more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶;
150 -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -
CONR⁹R¹⁰; -SO₂NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -
S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

155 wherein the R^X and R^{X^A} quaternary heterocyclyl radical optionally may
be substituted with one or more radicals selected from the group consisting of
halogen; -CN; -NO₂; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl;
hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;
polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -
NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO₂R¹³; OM; -SO₂OM; -SO₂NR¹³R¹⁴; -
C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -
P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and
carbohydrate residue; and

165 wherein the R^X and R^{X^A} radicals comprising carbon optionally may
have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻; -S-; -SO-;
-SO₂-; -S⁺R¹³A⁻; -PR¹³-; -P(O)R¹³-; -P⁺R¹³R¹⁴A⁻; phenylene; amino acid
residue; peptide residue; polypeptide residue; carbohydrate residue; polyether;
or polyalkyl; wherein said phenylene; amino acid residue; peptide residue;
polypeptide residue; carbohydrate residue; and polyalkyl optionally may have
one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻; -S-; -SO-; -SO₂-;
-S⁺R⁹A⁻; -PR⁹-; -P⁺R⁹R¹⁰A⁻; or -P(O)R⁹-; and

170 wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl;
alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;
heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and
heterocyclylalkoxycarbonyl; and

175 wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary
heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl;
arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may
be substituted with one or more radicals selected from the group consisting of

halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; 180 -P(OR¹⁶)OR¹⁷; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; and

wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R^w, A⁻, and M are as defined above; and

185 R¹⁹ is selected from the group consisting of alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue; peptide residue; and polypeptide residue; wherein alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue; peptide residue; and polypeptide residue; can optionally have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; phenylene; heterocyclyl; quaternary 190 heterocyclyl; or aryl;

wherein alkane diyl; alkene diyl; alkyne diyl; polyalkane diyl; alkoxy diyl; polyether diyl; polyalkoxy diyl; carbohydrate residue; amino acid residue; peptide; and polypeptide residue can be substituted with one or more 195 substituent groups independently selected from the group consisting of alkyl; alkenyl; alkynyl; polyalkyl; polyether; aryl; haloalkyl; cycloalkyl; heterocyclyl; arylalkyl; halogen; oxo; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO₂R¹³; -SO₃R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -NO₂; -CO₂R¹³; -CN; -OM; -SO₂OM; -SO₂NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻;

200 wherein R⁷, R⁸, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, and A⁻ are as defined above; or a pharmaceutically acceptable salt, solvate, or prodrug thereof.

139. A compound of claim 138 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of hydrogen and alkyl.

140. A compound of claim 138 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of hydrogen and C₁-C₁₀ alkyl.

141. A compound of claim 138 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of C₂-C₇ alkyl.

142. A compound of claim 138 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of C₂-C₄ alkyl.

143. A compound of claim 138 wherein R¹, R^{1A}, R², and R^{2A} are independently selected from the group consisting of ethyl; n-propyl; n-butyl; and isobutyl.

144. A compound of claim 138 wherein R³, R^{3A}, R⁴, and R^{4A} are independently selected from the group consisting of hydrogen and -OR⁹, wherein R⁹ is as defined in claim 138.

145. A compound of claim 144 wherein R⁹ is hydrogen.

146. A compound of claim 138 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, alkyl and aralkyl.

147. A compound of claim 138 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, (C₁-C₁₀)alkyl and aryl(C₁-C₁₀)alkyl.

148. A compound of claim 138 wherein R^N and R^{NA} are independently selected from the group consisting of hydrogen, methyl, ethyl and benzyl.

149. A compound of claim 138 wherein one or more R^x and R^{xA} are independently selected from the group consisting of methoxy and dimethylamino.

150. A compound of claim 138 wherein q and r are each 1.

151. A compound of claim 138 wherein one or more R^y are independently selected from the group consisting of halogen; hydroxy; -NO₂; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl;

heterocyclyl(C₁-C₁₀)alkyl; polyether; -OR¹³; -NR¹³R¹⁴; and -NR¹³C(O)R¹⁴;

5 and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl;

10 (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether; or
wherein the R¹³, R¹⁴, and R¹⁵ (C₁-C₁₀)alkyl; halo(C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylheterocyclyl(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; and polyether radicals

15 optionally may be substituted with one or more radicals selected from the group consisting of halogen; (C₁-C₁₀)alkyl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl(C₁-C₁₀)alkyl; carboxy; carboxy(C₁-C₁₀)alkyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; and -CONR⁹R¹⁰; and
wherein R⁹ and R¹⁰ are independently selected from the group

20 consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; ammonium(C₁-C₁₀)alkyl; (C₁-C₁₀)alkylammonium(C₁-C₁₀)alkyl; aryl(C₁-C₁₀)alkyl; heterocyclyl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; carboxyheterocyclyl; carboxy(C₁-C₁₀)alkylamino; and acyl; and
wherein A⁻ is a pharmaceutically acceptable anion; and

25 wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; (C₁-C₁₀)alkyl; heterocyclyl; aryl(C₁-C₁₀)alkyl; carboxy(C₁-C₁₀)alkyl; and carbo(C₁-C₁₀)alkoxy(C₁-C₁₀)alkyl; or
R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring;

30 wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and
wherein M is a pharmaceutically acceptable cation.

152. A compound of claim 138 wherein R¹⁹ is selected from the group consisting of alkane diyl; polyalkane diyl; alkoxy diyl; and polyalkoxy diyl; wherein alkane diyl and polyalkane diyl can optionally have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -

5 PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; or phenylene, wherein R⁷ and R⁸ are defined as in claim 138.

153. A compound of claim 138 wherein R¹⁹ is selected from the group consisting of alkoxy diyl and polyalkoxydiyl wherein one or more carbons are optionally replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻; phenylene; amino acid; peptide; 5 polypeptide; carbohydrate; or polyalkyl, wherein R⁹ and R¹⁰ are defined as in claim 138.

154. A compound of claim 138 having the formula:

155. A pharmaceutical composition comprising an anti-hyperlipidemic effective amount of a compound of formula (I) of claim 1; and a pharmaceutically acceptable carrier.

156. A pharmaceutical composition comprising an anti-
atherosclerotic effective amount of a compound of formula (I) of claim 1; and
a pharmaceutically acceptable carrier.

157. A pharmaceutical composition comprising an anti-
hypercholesterolemia effective amount of a compound of formula (I) of claim
1; and
a pharmaceutically acceptable carrier.

158. A pharmaceutical composition comprising an anti-
hyperlipidemic effective amount of a compound of formula (I) of claim 2; and
a pharmaceutically acceptable carrier.

159. A pharmaceutical composition comprising an anti-
atherosclerotic effective amount of a compound of formula (I) of claim 2; and
a pharmaceutically acceptable carrier.

160. A pharmaceutical composition comprising an anti-
hypercholesterolemia effective amount of a compound of formula (I) of claim
2; and
a pharmaceutically acceptable carrier.

161. A method for the prophylaxis or treatment of a hyperlipidemic
condition comprising administering to a patient in need thereof a composition
of claim 155 in unit dosage form.

162 A method for the prophylaxis or treatment of an atherosclerotic
condition comprising administering to a patient in need thereof a composition
of claim 156 in unit dosage form.

163. A method for the prophylaxis or treatment of
hypercholesterolemia comprising administering to a patient in need thereof a
composition of claim 157 in unit dosage form.

164. A method for the prophylaxis or treatment of a hyperlipidemic condition comprising administering to a patient in need thereof a composition of claim 158 in unit dosage form.

165. A method for the prophylaxis or treatment of an atherosclerotic condition comprising administering to a patient in need thereof a composition of claim 159 in unit dosage form.

166. A method for the prophylaxis or treatment of hypercholesterolemia comprising administering to a patient in need thereof a composition of claim 160 in unit dosage form.