Human Activity Recognition from Accelerometer Data

Data Science Initiative, Brown University

Sagar Raichandani

GitHub

Project Goal

Objective

To create a subject independent classifier from time-series accelerometer data that identifies physical activity.

Data Description

Feature	Description
Time	Time of signal measurement from tri-axial accelerometers.
X	Acceleration in g's along x-axis [-8g to +8g range]
у	Acceleration in g's along y-axis [-8g to +8g range]
z	Acceleration in g's along z-axis [-8g to +8g range]
Class	Activity class sedentary, walking, stairs, running

Windowing

Feature Engineering

Class Balance

Acceleration increases with increase in activity intensity

Dominant frequency varies with activity class

Log-Energy vs. Number of Steps

Splitting using Group Shuffle and Stratified K Fold

Impact of Preprocessing

Data State

	Raw Data	After Windowing & Feature Engineering
Size	4.8M rows x 4 features	9.4K rows x 45 features
Missing Values	-	-
Feature types	0 categorical 3 continuous	0 categorical 45 continuous

Apply Standard Scaler on X_train

	After Preprocessing
>	9.4K rows x 45 features
	-
	0 categorical 45 continuous

Next Steps

- Add features from Discrete Cosine Transform
- EDA for interaction of DCT features with time and frequency domain features
- Identify the appropriate evaluation metrics
- Compare models applicable for multi-class classification
 - Decision Trees
 - Support Vector Machines
 - K-nearest neighbors
- Hyperparameter tuning, ideal window length, window overlap, etc.

Thank You!

Questions/Comments?