

Data Booklet

000000000000

4	2	2	Ι 4	_	6	7	0	0
l •	_	3	4	၂ ၁	0	, ,	0	9

	_
1 1.01	
2.2 –253	
-259 	
hydrogen	
3 6.94	4 9.01
1.0 1342	1.6 2467
Li 181	Be 1287
lithium	beryllium
11 22.99	12 24.31
0.9 883	1.3 1090
Na **	Mg 650
sodium	magnesium
19 39.10	20 40.08
0.8 759 64	1.0 1484 842

Table of Common Polyatomic Ions						
acetate (ethanoate)	CH ₃ COO ⁻	chromate	CrO ₄ ²⁻	phosphate	PO ₄ ³⁻	
ammonium	NH ₄ ⁺	dichromate	Cr ₂ O ₇ ²⁻	hydrogen phosphate	HPO ₄ ²⁻	
benzoate	C ₆ H ₅ COO -	cyanide	CN ⁻	dihydrogen phosphate	H ₂ PO ₄	
borate	BO ₃ ³⁻	hydroxide	OH ⁻	silicate	SiO ₃ ²⁻	
carbide	C ₂ ²⁻	iodate	IO ₃	sulfate	SO ₄ ²⁻	
carbonate	CO ₃ ²⁻	nitrate	NO ₃	hydrogen sulfate	${\rm HSO_4}^-$	
hydrogen carbonate	HCO ₃	nitrite	NO ₂	sulfite	SO ₃ ²⁻	
(bicarbonate)		oxalate	OOCCOO ²⁻	hydrogen sulfite	${\rm HSO_3}^-$	
perchlorate	CIO ₄	hydrogen oxalate	HOOCCOO-	hydrogen sulfide	HS ⁻	
chlorate	CIO ₃	permanganate	MnO ₄	thiocyanate	SCN ⁻	
chlorite	CIO ₂	peroxide	O ₂ ²⁻	thiosulfate	$S_2O_3^{2-}$	
hypochlorite	CIO ⁻ or OCI ⁻	persulfide	S ₂ ²⁻			

	magnesium		_					
19 39.10 1+ 0.8 759	20 40.08 2+ 1.0 1484	21 44.96 3+	22 47.87 4+, 3+ 1.5 3287	23 50.94 5+, 4+	24 52.00 3+, 2+	25 54.94 2+, 4+ 1.6 2061	26 55.85 3+, 2+	27 58.93 2+, 3+
K potassium	Ca calcium	SC scandium	Ti titanium	V 1910 vanadium	Cr chromium	Mn manganese	Fe iron	CO cobalt
37 85.47 1+ 0.8 688 39	38 87.62 2+ 1.0 1382	39 88.91 3+ 1.2 3345	40 91.22 4+ 1.3 4409	41 92.91 5+, 3+	42 95.94 6+ 2.2 4639	43 (98) 7+ 2.1 4265	44 101.07 3+, 4+ 2.2 4150	45 102.91 3+ 2.3 3695
Rb rubidium	Sr strontium	Y yttrium	Zr zirconium	Nb niobium	MO molybdenum	TC technetium	Ru ruthenium	Rh rhodium
55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22
0.8 671	0.9 1897		1.3 4603	5+ 1.5 5458	6+ 1.7 5555	7+ 1.9 5596	4+ 2.2 5012	2.2 4428
0.8 671 CS cesium								
Cs 29	0.9 1897 Ba	89-103	1.3 4603 2233	1.5 5458 Ta tantalum	1.7 5555 W	1.9 5596 Re 3186	2.2 5012 3033 OS osmium	2.2 4428 2446

References

Lide, D.R. 2001. *CRC Handbook of Chemistry and Physics*. 82nd ed. Boca Raton: CRC Press.

Dean, John A. 1999. *Lange's Handbook of Chemistry*. 15th ed. New York: McGraw-Hill, Inc.

IUPAC commision on atomic weights and isotopic abundances. 2002. http://www.chem.gmw.ac.uk/iupac/AtWt/index.html.

57 138.91 3+ 1.1 3464 918 La lanthanum	58 140.12 3+ 1.1 3443 798 Cerium	59 140.91 3+ 1.1 3520 931 Pr praseodymium	60 144.24 3+ 1.1 3074 1021 Nd neodymium	61 (145) 3+ - 3000 1042 Pm promethium	62 150.36 3+, 2+ 1.2 1794 Sm samarium
89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)
3+	4+	5+, 4+	6+, 4+	5+	4+, 6+
1.1 3198	1.3 4788	1.5 —	1.7 4131	1.3 —	1.3 3228
1051	1750	1572	1135	644	640
AC	Th	Pa	U	Np	PU
actinium	thorium	protactinium	uranium	neptunium	plutonium

10	11	12	13	14	15	16	17	18
				Legend for El	ements			
				Solid	Liquid	Gas		2 4.00
				Natural	Synt	hetic		
			Note: The legen	d denotes the n	hysical state of t	he elements		ー -269 -272 [†]
	Key	Atomic molar mass (g/mol)*		/ 101.325 kPa ai		ne elements		He helium
Atomic number	26 55.85 3+, 2+	Common ion charges (most common first)	5 10.81	6 12.01	7 14.01	8 16.00	9 19.00	10 20.18
Electronegativity	1.8 2861 1538	Boiling point (°C)	2.0 4000	2.6	3-	3.4 -183	1- 4.0 -188	
Symbol →	Fe ""	Melting point (°C) †(measured at a non-standard	B 4000	4489	-210	-219	-220	–249
Name →	iron	pressure)	boron	carbon	Ⅱ ៕ nitrogen	oxygen	fluorine	N@ neon
* 5	12.0		13 26.98	14 28.09	15 30.97	16 32.07	17 35.45	18 39.95
() lr	ased on ¹² C ndicates mass of	the	3+	— 1.9 3265	3- 2.2 281	2- 2.6 445	3.2 -34	— — — — —186
п	nost stable isotop	ре	1.6 2519 660	Si 1414	P 44	S 115	-101	_189
			AI aluminum	silicon	phosphorus	sulfur	chlorine	<i>l</i> ∕_\li argon
28 58.69	29 63.55	30 65.39	31 69.72	32 72.64	33 74.92	34 78.96	35 79.90	36 83.80
2+, 3+ 1.9 2913	2+, 1+ 1.9 2562	2+ 1.7 907	3+ 1.8 2204	4+ 2.0 2833	3- 2.2 -	2- 2.6 685	3.0 59	
1455	1085	Zn 420	30	Ge	As 817	Se 221	Br -7	-157 [†]
nickel	copper	ZII zinc	Ga gallium	germanium	arsenic	selenium	bromine	krypton
46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
2+, 4+ 2.2 2963	1+ 1.9 2162	2+ 1.7 767	3+ 1.8 2072	4+, 2+ 2.0 2602	3+, 5+ 2.1 1587	2-2.1 988	2.7 184	2.6 –108
Pd 1555	Ag 962	Cd 321	In 157	Sn 232	Sb 631	Te 450	114	X⊜ ^{-112[†]}
palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
78 195.08	79 196.97			82 207.21	83 208.98	84 (209)	85 (210)	86 (222)
4+, 2+ 2.2 3825				2+, 4+ 1.8 1749	3+, 5+ 1.9 1564		2.2 — 302	62 -71
Pt 1768	Au 1064	Hg -39	TI 304	Pb 327	Bi 271	Po 254	At	Rn -
platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
110 (281)	111 (272)	112 (285)		114 (289)				
							1	
Uun	Uuu	Uub		Uuq			ĺ	
ununnilium	unununium	ununbium		ununquadium				
63 454 00	64 457.05	65 450.00	66 400 50	67 404 00	69 467.00	60 400 00	70 470.04	71 474.07
63 151.96 3+, 2+	64 157.25 3+	65 158.93 3+	66 162.50 3+	67 164.93	68 167.26 3+	69 168.93 3+	70 173.04	71 174.97
— 1529 822	1.2 3273 1313	— 3230 — 1356	1.2 2567 1412	1.2 2700 1474	1.2 2868 1529	1.3 1950 1545	— 1196 819	1.0 3402 1663
Eu	Gd gadolinium	Tb terbium	Dy dysprosium	Ho holmium	Er erbium	Tm thulium	Yb ytterbium	LU lutetium
95 (243)		97 (247)		99 (252)	100 (257)	101 (258)	102 (259)	
3+, 4+	3+	3+, 4+	3+	3+	3+	2+, 3+	2+, 3+	3+
— 2011 1176	— 3100 1345	1050		860	1527	827	827	1627
Am americium	curium	Bk berkelium	californium	ES einsteinium	Fm fermium	Md mendelevium	No nobelium	L I lawrencium
						2.2.27.3.11		

Chemistry Notation

Symbol	Term	Unit(s)
[]	molar concentration	mol/L
c	specific heat capacity	$J/(g \cdot {}^{\circ}C)$ or $J/(g \cdot K)$
C	heat capacity	J/°C or J/K
c	speed of light	m/s
E	electrical potential	V or J/C
$E_{ m k}$	kinetic energy	kJ
$E_{ m p}$	potential energy	kJ
$\Delta H, H$	molar enthalpy (heat)	kJ/mol
$\Delta H_{\mathrm{f}}^{\circ}$, H_{f}°	standard molar enthalpy of formation	kJ/mol
I	current	A or C/s
$K_{ m eq}$	equilibrium constant	_
K _a	acid ionization (dissociation) constant	_
K_{b}	base ionization (dissociation) constant	_
M	molar mass	g/mol
m	mass	g
n	amount	mol
P	pressure	kPa
Q	charge	C
T	temperature (absolute)	K
t	temperature (Celsius)	°C
t	time	S
V	volume	L

Symbol	Term
Δ	delta (change in)
0	standard

Miscellaneous

25°C equivalent to 298.15 K

Specific heat capacity...... $c_{\rm air}$ = 1.01 J/(g • °C)

(at 298.15 K and 100.000 kPa) $c_{\text{wood}} = 1.26 \text{ J/(g} \cdot ^{\circ}\text{C})$

 $c_{\text{glass}} = 0.84 \text{ J/(g} \cdot ^{\circ}\text{C})$

 $c_{\text{Styrofoam}} = 0.30 \text{ J/(g} \cdot {}^{\circ}\text{C)}$

Speed of light $c = 3.00 \times 10^8$ m/s

Mass of 1.00 mol of dry air........... $m_{\text{air}} = 29.18 \text{ g}$ (at 273.15 K and 100.000 kPa)

Water autoionization constant...... $K_{\rm w} = 1.00 \times 10^{-14}$ at 298.15 K (Dissociation constant) (for ion concentrations in mol/L)

Faraday constant..... $F = 9.65 \times 10^4$ C/mol

1 volt (V)..... = 1 joule/coulomb (1 J/C)

1 ampere (A) = 1 coulomb/second (1 C/s)

Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

or $R = 8.314 \text{ J/(K} \cdot \text{mol)}$

Ideal gas law..... PV = nRT

Commonly accepted standards..... STP = 273.15 K and 101.325 kPa (1 atm)

SATP = 298.15 K and 100.000 kPa

Nuclear Radiation

Radiation	Symbol
Alpha-particle	4_2 He or α
Beta-particle	$_{-1}^{0}$ e or β
Gamma-ray	γ

Selected SI Prefixes

Prefix	Symbol	Exponential Value
tera	T	1012
giga	G	10 ⁹
mega	M	106
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10 ⁻⁹
pico	p	10^{-12}

Thermodynamic Properties of Selected Elements

Name	Formula	$\Delta H_{ m fusion}^* \ m (kJ/mol)$	$\Delta H_{ m vaporization}^* ({ m kJ/mol})$	Specific Heat Capacity† (J/(g•°C))
aluminum	Al	10.79	294	0.897
argon	Ar	1.18	6.43	0.520
beryllium	Be	7.90	297	1.825
	B	50.2	480	
boron bromine				1.026
	Br_2	10.57	29.96	0.474
carbon (graphite)	C	117	20.41	0.709
chlorine	Cl ₂	6.40	20.41	0.479
chromium	Cr	21.0	339.5	0.449
cobalt	Co	16.06	377	0.421
copper	Cu	12.93	300.4	0.385
fluorine	F ₂	0.51	6.62	0.824
gallium	Ga	5.58	254	0.371
germanium	Ge	36.94	334	0.320
gold	Au	12.72	324	0.129
helium	Не	0.014	0.08	5.193
hydrogen	H_2	0.12	0.90	14.304
iodine	I_2	15.52	41.57	0.214
iron	Fe	13.81	340	0.449
krypton	Kr	1.64	9.08	0.248
lead	Pb	4.78	179.5	0.129
magnesium	Mg	8.48	128	1.023
manganese	Mn	12.91	221	0.479
mercury	Hg	2.29	59.1	0.140
neon	Ne	0.33	1.71	1.030
nickel	Ni	17.04	377.5	0.444
nitrogen	N_2	0.71	5.57	1.040
oxygen	$\overline{O_2}$	0.44	6.82	0.918
phosphorus	P ₄	0.66	12.4	0.769
platinum	Pt	22.17	469	0.133
radon	Rn	3.25	18.10	0.094
scandium	Sc	14.1	332.7	0.568
selenium	Se	6.69	95.48	0.321
silicon	Si	50.21	359	0.705
silver	Ag	11.28	258	0.235
sulfur	S_8	1.72	45	0.710
tin	Sn	7.17	296.1	0.228
titanium	Ti	14.15	425	0.523
tungsten	W	52.31	806.7	0.132
uranium	Ü	9.14	417.1	0.116
vanadium	V	21.5	459	0.489
xenon	Xe	2.27	12.57	0.158
zinc	Zn	7.07	123.6	0.388

^{*} at 101.325 kPa

 $[\]dagger$ for the standard state of the element at 298.15 K

Thermodynamic Properties of Selected Compounds

Name	Formula	ΔH _{fusion} * (kJ/mol)	ΔH _{vaporization} * (kJ/mol)	Specific Heat Capacity [†] (J/(g • °C))
ice	$H_2O_{(s)}$	6.01		2.00
water	$H_2O_{(l)}$	_	40.65	4.19
steam	$H_2O_{(g)}$	_		2.02
ammonia	$NH_{3(g)}$	5.66	23.33	2.06
methanol	$\mathrm{CH_3OH}_{(l)}$	3.22	35.21	2.53
ethanol	$C_2H_5OH_{(l)}$	4.93	38.56	2.44
dichlorodifluoromethane (Freon-12)	$CCl_2F_{2(g)}$	4.14	20.1	0.60

^{*} at 101.325 kPa

Calculated Molar Enthalpies of Combustion of Selected Organic Compounds at 298.15 $\ensuremath{\mbox{K}}^*$

Compound	Formula	$\Delta H_{\rm c}^{\circ}$ (kJ/mol)
methane	$CH_{4(g)}$	-890.5
ethane	$C_2H_{6(g)}$	-1 560.4
propane	$C_3H_{8(g)}$	-2 219.9
butane	$C_4H_{10(g)}$	-2 877.3
pentane	$C_5H_{12(l)}$	-3 508.8
hexane	$C_6H_{14(l)}$	-4 162.9
heptane	$C_7H_{16(l)}$	-4816.7
octane	$C_8H_{18(l)}$	-5 470.1
nonane	$C_9H_{20(l)}$	-6 124.8
decane	$C_{10}H_{22(l)}$	-6777.9
benzoic acid	$C_6H_5COOH_{(s)}$	-3 226.7
methanol	$CH_3OH_{(l)}$	-725.9
ethanol	$C_2H_5OH_{(l)}$	-1 366.8

^{*} products are $\mathrm{H}_2\mathrm{O}_{(l)}$ and $\mathrm{CO}_{2(g)}$

[†] at 101.325 kPa for the phase stated in the formula column

Standard Molar Enthalpies of Formation at 298.15 $\rm K$

Standard Moiar Endial	•	
Name	Formula	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ/mol)
aluminum oxide	$Al_2O_{3(s)}$	-1 675.7
ammonia	$NH_{3(g)}$	-45.9
ammonium chloride	$NH_4Cl_{(s)}$	-314.4
ammonium nitrate	$NH_4NO_{3(s)}$	-365.6
barium carbonate	$BaCO_{3(s)}$	-1 213.0
barium chloride	$BaCl_{2(s)}$	-855.0
barium hydroxide	$Ba(OH)_{2(s)}$	-944.7
barium oxide	$BaO_{(s)}$	-548.0
barium sulfate	$BaSO_{4(s)}$	-1 473.2
benzene	$C_6H_{6(l)}$	+49.1
butane	$C_4H_{10(g)}$	-125.7
calcium carbonate	$CaCO_{3(s)}$	-1 207.6
calcium chloride	$CaCl_{2(s)}$	-795.4
calcium hydroxide	$Ca(OH)_{2(s)}$	-985.2
calcium oxide	$CaO_{(s)}$	-634.9
calcium sulfate	$CaSO_{4(s)}$	-1 434.5
carbon dioxide	$CO_{2(g)}$	-393.5
carbon monoxide	$CO_{(g)}^{-(g)}$	-110.5
chromium(III) oxide	$Cr_2O_{3(s)}$	-1 139.7
copper(I) oxide	$Cu_2O_{(s)}$	-168.6
copper(II) oxide	$CuO_{(s)}$	-157.3
copper(II) sulfate	$CuSO_{4(s)}$	-771.4
copper(I) sulfide	$Cu_2S_{(s)}$	-79.5
copper(II) sulfide	$CuS_{(s)}$	-53.1
dinitrogen tetroxide	$N_2O_{4(g)}$	+11.1
ethane	$C_2H_{6(g)}$	-84.0
ethanoic acid (acetic acid)	$CH_3COOH_{(l)}$	-484.3
ethanol	$C_2H_5OH_{(l)}$	-277.6
ethene (ethylene)	$C_2H_{4(g)}$	+52.4
ethyne (acetylene)	$C_2H_{2(g)}$	+227.4
glucose	$C_6H_{12}O_{6(s)}$	-1 273.3
hydrogen bromide	$HBr_{(a)}$	-36.3
hydrogen chloride	$HCl_{(g)}^{(g)}$	-92.3
hydrogen fluoride	$HF_{(g)}$	-273.3
hydrogen iodide	$\mathrm{HI}_{(g)}$	+26.5
hydrogen perchlorate	$HCIO_{4(l)}$	-40.6
hydrogen peroxide	$H_2O_{2(l)}$	-187.8
hydrogen sulfide	$H_2S_{(g)}$	-20.6
iron(II) oxide	$FeO_{(s)}$	-272.0
iron(III) oxide	$\text{Fe}_2\text{O}_{3(s)}$	-824.2
iron(II,III) oxide (magnetite)	$Fe_3O_{4(s)}$	-1 118.4
lead(II) bromide	$PbBr_{2(s)}$	-278.7
lead(II) chloride	$PbCl_{2(s)}$	-359.4
lead(II) oxide (red)	$PbO_{(s)}$	-219.0
lead(IV) oxide	$PbO_{2(s)}$	-277.4
magnesium carbonate	$MgCO_{3(s)}$	-1 095.8
magnesium chloride	$MgCl_{2(s)}$	-641.3
	` '	

Standard Molar Enthalpies of Formation at 298.15 K, con't.

Name	Formula	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ/mol)
magnesium hydroxide	$Mg(OH)_{2(s)}$	-924.5
magnesium oxide	$MgO_{(s)}$	-601.6
magnesium sulfate	$MgSO_{4(s)}$	-1 284.9
manganese(II) oxide	$MnO_{(s)}$	-385.2
manganese(IV) oxide	$MnO_{2(s)}^{(3)}$	-520.0
mercury(II) oxide (red)	$HgO_{(s)}$	-90.8
mercury(II) sulfide (red)	$HgS_{(s)}$	-58.2
methanal (formaldehyde)	$CH_2O_{(g)}$	-108.6
methane	$CH_{4(g)}$	-74.6
methanoic acid (formic acid)	$HCOOH_{(l)}$	-425.0
methanol	$CH_3OH_{(I)}$	-239.2
nickel(II) oxide	$NiO_{(s)}$	-240.6
nitric acid	$HNO_{3(I)}$	-174.1
nitrogen dioxide	$NO_{2(q)}$	+33.2
nitrogen monoxide	$NO_{(g)}^{2(g)}$	+91.3
octane	$C_8H_{18(l)}$	-250.1
pentane	$C_5H_{12(I)}$	-173.5
phosphorus pentachloride	$PCl_{5(s)}$	-443.5
phosphorus trichloride (liquid)	$PCl_{3(l)}$	-319.7
phosphorus trichloride (vapour)	$PCl_{3(g)}^{S(t)}$	-287.0
potassium bromide	$KBr_{(s)}$	-393.8
potassium chlorate	$KClO_{3(s)}$	-397.7
potassium chloride	$KCl_{(s)}$	-436.5
potassium hydroxide	$KOH_{(s)}^{(s)}$	-424.6
propane	$C_3H_{8(g)}$	-103.8
silicon dioxide (α-quartz)	$SiO_{2(s)}$	-910.7
silver bromide	$AgBr_{(s)}$	-100.4
silver chloride	$AgCl_{(s)}$	-127.0
silver iodide	$AgI_{(s)}$	-61.8
sodium bromide	$NaBr_{(s)}$	-361.1
sodium chloride	NaCl _(s)	-411.2
sodium hydroxide	$NaOH_{(s)}^{(s)}$	-425.6
sodium iodide	$NaI_{(s)}$	-287.8
sucrose	$C_{12}H_{22}O_{11(s)}$	-2 226.1
sulfur dioxide	$SO_{2(g)}$	-296.8
sulfuric acid	$H_2SO_{4(l)}$	-814.0
sulfur trioxide (liquid)	$SO_{3(l)}$	-441.0
sulfur trioxide (vapour)	$SO_{3(g)}$	-395.7
tin(II) chloride	$\operatorname{SnCl}_{2(s)}^{3(g)}$	-325.1
tin(IV) chloride	$\operatorname{SnCl}_{4(l)}$	-511.3
tin(II) oxide	$\operatorname{SnO}_{(s)}$	-280.7
tin(IV) oxide	$\operatorname{SnO}_{2(s)}^{(s)}$	-577.6
water (liquid)	$H_2O_{(l)}$	-285.8
water (vapour)	$H_2O_{(g)}$	-241.8
zinc oxide	$ZnO_{(s)}$	-350.5
zinc sulfide (sphalerite)	$ZnS_{(s)}$	-206.0
contract (spinaterite)	(s)	

Solubility of Some Common Ionic Compounds in Water at $298.15~\mathrm{K}$

Ion	Group 1 NH ₄ ⁺ H ₃ O ⁺ (H ⁺)	ClO ₃ ⁻ NO ₃ ⁻ ClO ₄ ⁻	CH ₃ COO ⁻	Cl⁻ Br⁻ I⁻	SO ₄ ²⁻	S ²⁻	OH-	PO ₄ ³⁻ SO ₃ ²⁻ CO ₃ ²⁻
Solubility greater than or equal to 0.1 mol/L (very soluble)	all	all	most	most	most	Group 1 Group 2 NH ₄ ⁺	Group 1 NH ₄ ⁺ Sr ²⁺ Ba ²⁺ Tl ⁺	Group 1 NH ₄ ⁺
Solubility less than 0.1 mol/L (slightly soluble)	none	none	Ag ⁺ Hg ⁺	Ag ⁺ Pb ²⁺ Hg ⁺ Cu ⁺ Tl ⁺	Ca ²⁺ Sr ²⁺ Ba ²⁺ Ra ²⁺ Pb ²⁺ Ag ⁺	most	most	most

Flame Colours of Elements

Element	Symbol	Colour
lithium	Li	red
sodium	Na	yellow
potassium	K	violet
rubidium	Rb	violet
cesium	Cs	violet
calcium	Ca	red
strontium	Sr	red
barium	Ba	yellow-green
copper	Cu	blue-green
boron	В	green
lead	Pb	blue-white

${\bf Table\ of\ Selected\ Standard\ Electrode\ Potentials}^*$

Reduction I	Hal	If-Reaction Electrical Potentia	ıl (V) E°
		$2 F_{(aq)}^{-}$	+2.87
$PbO_{2(s)} + SO_4^{2-}_{(aq)} + 4H^+_{(aq)} + 2e^-$		· 1/	+ 1.69
		$Mn^{2+}_{(aq)} + 4H_2O_{(l)}$	+ 1.51
Au^{3+} (aq) + 3 e ⁻	=	$\operatorname{Au}_{(s)}$	+ 1.50
$ClO_{4^{-}(qq)} + 8H^{+}_{(qq)} + 8e^{-}$	=	$Cl^{-}_{(aq)} + 4H_2O_{(l)}$	+1.39
$\operatorname{Cl}_{2(a)} + 2e^{-}$	=	$2 \operatorname{Cl}^{(aq)}_{(aq)}$	+1.36
		$N_2O_{(g)}^{(aq)} + 3 H_2O_{(l)}$	+1.30
(1)		$2 \operatorname{Cr}^{3+}_{(aq)} + 7 \operatorname{H}_2 \operatorname{O}_{(l)} \dots$	+1.23
1, 1,		$2 H_2 O_{(l)}$	+1.23
-(8)		$Mn^{2+}_{(aq)} + 2H_2O_{(l)}$	+1.22
		$2 \operatorname{Br}_{(aq)}^{(aq)} \dots 2 \operatorname{Br}_{(aq)}^{(aq)} \dots$	+ 1.07
		$Hg_{(l)}$	+0.85
1,		$Cl_{(aq)}^{-} + 2OH_{(aq)}^{-}$	+0.84
. 17		$N_2O_{4(g)} + 2H_2O_{(l)}$	+0.80
		$Ag_{(s)}$	+0.80
		$Fe^{2+}_{(aq)}$	+0.77
. 17		$H_2O_{2(l)}^{(aq)}$	+0.70
		$2I_{(aq)}^{-}$	+0.54
$O_{2(q)} + 2 H_2 O_{(l)} + 4 e^{-}$	=	4 OH ⁻ _(aq)	+0.40
		$\operatorname{Cu}_{(s)}$	+0.34
		$H_2SO_{3(aq)} + H_2O_{(l)}$	+0.17
17		Sn ²⁺ _(aq)	+0.15
		$H_2S_{(aq)}$	+0.14
		$Ag_{(s)} + Br_{(aq)}^-$	+0.07
N T		$H_{2(g)}$	0.00
. 17		$Pb_{(s)}$	-0.13
(1)		$\operatorname{Sn}_{(s)}$	-0.14
1		$Ag_{(s)} + I_{(aq)}^{-}$	
		$Ni_{(s)}$	-0.26
(1)		Co _(s)	-0.28
		$Pb_{(s)}^{(s)} + SO_4^{2-}{}_{(aq)}$	
		$H_2Se_{(aq)}$	-0.40
		$\operatorname{Cd}_{(s)}$	-0.40
		$\operatorname{Cr}^{2+}_{(aq)}$	
$Fe^{2+}_{(aq)} + 2e^{-}$	=	$\operatorname{Fe}_{(s)}$	-0.45
		$NO_{(g)} + 2OH_{(aq)}$	
		$2 Ag_{(s)} + S^{2-}_{(aq)}$	
$Zn^{2+}_{(aa)} + 2e^{-}$	=	$Zn_{(s)}$	-0.76
$2 H_2 O_{(l)} + 2 e^-$	=	$H_{2(g)} + 2OH_{(aq)}^{-}$	-0.83
		$\operatorname{Cr}_{(s)}$	
$\operatorname{Se}_{(s)} + 2 e^{-}$	=	$\operatorname{Se}^{2-}_{(aq)}$	-0.92
		$SO_3^{2-}(aq) + 2OH^{-}(aq)$	
		$Al_{(s)}$	
$Mg^{2+}_{(aq)} + 2e^{-}$	=	$Mg_{(s)}$	-2.37
$Na^+_{(aq)} + e^-$	=	$Na_{(s)}$	-2.71
		$Ca_{(s)}$	
$Ba^{2+}_{(aq)} + 2e^{-}$	=	Ba _(s)	-2.91
(4)		$K_{(s)}$	
$\operatorname{Li}^{+}_{(aq)} + e^{-}$	=	Li _(s)	-3.04

Acid-Base Indicators at 298.15 K

Indicator	Suggested Abbreviation(s)	pH Range	Colour Change As pH Increases	K _a
methyl violet	$\mathrm{HMv}_{(aq)}$ / $\mathrm{Mv}_{(aq)}^-$	0.0-1.6	yellow to blue	~ 10 ⁻¹
cresol red	$H_2Cr_{(aq)} / HCr_{(aq)}^ HCr_{(aq)} / Cr_{(aq)}^{2-}$	0.0-1.0 7.0-8.8	red to yellow yellow to red	$\sim 10^{-1}$ 3.5×10^{-9}
thymol blue	$H_2Tb_{(aq)} / HTb_{(aq)}^ HTb_{(aq)}^- / Tb_{(aq)}^{2-}$	1.2-2.8 8.0-9.6	red to yellow yellow to blue	2.2×10^{-2} 6.3×10^{-10}
orange IV	$HOr_{(aq)}/Or_{(aq)}^{-}$	1.4-2.8	red to yellow	~ 10 ⁻²
methyl orange	$\mathrm{HMo}_{(aq)}/\mathrm{Mo}_{(aq)}^{-}$	3.2-4.4	red to yellow	3.5×10^{-4}
bromocresol green	$\mathrm{HBg}_{(aq)}$ / $\mathrm{Bg}^{-}_{(aq)}$	3.8-5.4	yellow to blue	1.3×10^{-5}
methyl red	$\mathrm{HMr}_{(aq)}$ / $\mathrm{Mr}^{-}_{(aq)}$	4.8-6.0	red to yellow	1.0×10^{-5}
chlorophenol red	$\mathrm{HCh}_{(aq)}$ / $\mathrm{Ch}_{(aq)}^-$	5.2-6.8	yellow to red	5.6×10^{-7}
bromothymol blue	$\mathrm{HBb}_{(aq)}$ / $\mathrm{Bb}^{-}_{(aq)}$	6.0-7.6	yellow to blue	5.0×10^{-8}
phenol red	$\mathrm{HPr}_{(aq)}/\mathrm{Pr}^{(aq)}$	6.6-8.0	yellow to red	1.0×10^{-8}
phenolphthalein	$\mathrm{HPh}_{(aq)}$ / $\mathrm{Ph}^{(aq)}$	8.2-10.0	colourless to pink	3.2×10^{-10}
thymolphthalein	$\operatorname{HTh}_{(aq)} / \operatorname{Th}^{-}_{(aq)}$	9.4–10.6	colourless to blue	1.0×10^{-10}
alizarin yellow R	$\mathrm{HAy}_{(aq)}$ / $\mathrm{Ay}^{-}_{(aq)}$	10.1–12.0	yellow to red	6.9×10^{-12}
indigo carmine	$\mathrm{HIc}_{(aq)}$ / $\mathrm{Ic}^{-}_{(aq)}$	11.4–13.0	blue to yellow	~ 10 ⁻¹²
1,3,5-trinitrobenzene	$\mathrm{HNb}_{(aq)}$ / $\mathrm{Nb}^{-}_{(aq)}$	12.0-14.0	colourless to orange	~ 10 ⁻¹³

Relative Strengths of Acids And Bases at 298.15 $\,\mathrm{K}$

Acid Name	Acid Formula	Conjugate Base Formula	$K_{\mathbf{a}}$
perchloric acid	HClO _{4(aq)}	ClO ₄ (aq)	very large
hydroiodic acid	$\mathrm{HI}_{(aq)}$	$I^{(aq)}$	very large
hydrobromic acid	$\mathrm{HBr}_{(aq)}$	$\mathrm{Br}^{(aq)}$	very large
hydrochloric acid	$HCl_{(aq)}$	$Cl_{(aq)}^{-}$	very large
sulfuric acid	$H_2SO_{4(aq)}$	HSO_4^- (aq)	very large
nitric acid	$HNO_{3(aq)}$	NO_3^- (aq)	very large
hydronium ion	$H_3O^+_{(aq)}$	$H_2O_{(l)}$	1
oxalic acid	$HOOCCOOH_{(aq)}$	$\mathrm{HOOCCOO}^{(aq)}$	5.6×10^{-2}
sulfurous acid ($SO_2 + H_2O$)	$H_2SO_{3(aq)}$	HSO_3^- (aq)	1.4×10^{-2}
hydrogen sulfate ion	HSO_4^- (aq)	SO_4^{2-}	1.0×10^{-2}
orange IV	$HOr_{(aq)}$	$Or_{(aq)}^{-}$	$\sim \times 10^{-2}$
phosphoric acid	$H_3PO_{4(aq)}$	$H_2PO_4^{(aq)}$	6.9×10^{-3}
nitrous acid	$HNO_{2(aq)}$	NO_2^- (aq)	5.6×10^{-3}
citric acid	$H_3C_6H_5O_{7(aq)}$	$H_2C_6H_5O_7^{-}_{(aq)}$	7.4×10^{-4}
hydrofluoric acid	$HF_{(aq)}$	$F^{-}_{(aq)}$	6.3×10^{-4}
methanoic acid	$HCOOH_{(aq)}$	$\text{HCOO}^{(aq)}$	1.8×10^{-4}
methyl orange	$HMo_{(aq)}$	$\mathrm{Mo}^{(aq)}$	$\sim \times 10^{-4}$
hydrogen oxalate ion	$\mathrm{HOOCCOO}^{(aq)}$	$OOCCOO^{2-}_{(aq)}$	1.5×10^{-4}
ascorbic acid	$C_6H_8O_{6(aq)}$	$C_6H_7O_6^{-}_{(aq)}$	9.1×10^{-5}
benzoic acid	$C_6H_5COOH_{(aq)}$	$C_6H_5COO^{(aq)}$	6.3×10^{-5}
ethanoic (acetic) acid	$CH_3COOH_{(aq)}$	$\mathrm{CH_3COO}^{(aq)}$	1.8×10^{-5}
dihydrogen citrate ion	$H_2C_6H_5O_7^{-}$ (aq)	$HC_6H_5O_7^{2-}$ (aq)	1.7×10^{-5}
carbonic acid ($CO_2 + H_2O$)	$H_2CO_{3(aq)}$	HCO_3^- (aq)	4.5×10^{-7}
hydrogen citrate ion	$HC_6H_5O_7^{2-}$ (aq)	$C_6H_5O_7^{3-}$ (aq)	4.0×10^{-7}
bromothymol blue	$HBb_{(aq)}$	$\mathrm{Bb}^{(aq)}$	$\sim \times 10^{-7}$
hydrosulfuric acid	$H_2S_{(aq)}$	$HS^{-}_{(aq)}$	8.9×10^{-8}
hydrogen sulfite ion	$HSO_3^{(aq)}$	SO_3^{2-} (aq)	6.3×10^{-8}
dihydrogen phosphate ion	$\mathrm{H_2PO_4}^{(aq)}$	HPO_4^{2-}	6.2×10^{-8}
hypochlorous acid	$HOCl_{(aq)}$	$\mathrm{OCl}^{(aq)}$	4.0×10^{-8}
phenolphthalein	$\mathrm{HPh}_{(aq)}$	$Ph^{-}_{(aq)}$	$\sim \times 10^{-10}$
hydrocyanic acid	$HCN_{(aq)}$	$\mathrm{CN}^{(aq)}$	6.2×10^{-10}
ammonium ion	$NH_4^+_{(aq)}$	$NH_{3(aq)}$	5.6×10^{-10}
hydrogen carbonate ion	$HCO_3^{-}_{(aq)}$	CO_3^{2-}	4.7×10^{-11}
hydrogen ascorbate ion	$C_6H_7O_6^-$	$C_6H_6O_6^{2-}$ (aq)	2.0×10^{-12}
indigo carmine	$\mathrm{HIc}_{(aq)}$	$Ic^{(aq)}$	$\sim \times 10^{-12}$
hydrogen phosphate ion	HPO_4^{2-} (aq)	PO_4^{3-}	4.8×10^{-13}
water (55.5 mol/L)	$H_2O_{(l)}$	$\mathrm{OH}^{(aq)}$	1.0×10^{-14}

Note: An approximation may be used when the concentration of the acid is 1000 times greater than the K_a .

Colours of Common Aqueous Ions

	Solution Concentration			
Ionic Species	1.0 mol/L	0.010 mol/L		
chromate	yellow	pale yellow		
chromium(III)	blue-green	green		
chromium(II)	dark blue	pale blue		
cobalt(II)	red	pink		
copper(I)	blue-green	pale blue-green		
copper(II)	blue	pale blue		
dichromate	orange	pale orange		
iron(II)	lime green	colourless		
iron(III)	orange-yellow	pale yellow		
manganese(II)	pale pink	colourless		
nickel(II)	blue-green	pale blue-green		
permanganate	deep purple	purple-pink		

Notes:	
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	· • • •
	• • • •

.....

