1

ASSIGNMENT 1: GATE 2009 CY: CHEMISTRY

EE25BTECH11039 - Manupati Manideep

1) The ^{31}P NMR spectrum	Im of P_4S_3 consists of			
a) a singletb) a doublet and a trip	olet	c) a doublet and a quad) two doublets	artet	
				(GATE CY-2009)
2) The geometry around	the central atom in ClF_4^+	is		
a) square planar	b) square pyramidal	c) octahedral	d) tri	gonal bipyramidal
		2		(GATE CY-2009)
	about the Cu-N bond dis	stances in $\left[Cu\left(NH_3\right)_6\right]^{2+}$	is	
a) all the bond distantb) the axial bonds are	ces are equal longer than the equatoria	l ones		
	s are longer than the axia	d ones		(GATE CY-2009)
d) all the bond distance4) The reaction of phose	gene with an excess of <i>NI</i>	H_3 produces		(GATE C1-2009)
a) $HN = C = O$				
b) $H_2N - C(Cl) = O$ c) $(H_2N)_2 C = O$				
d) $(H_2N)_2 CCl_2$. 11 1 1 5 5 6 11 1	T (GO)] :		(GATE CY-2009)
5) The number of metal-	-metal bonds in $[(C_5H_5)H_5]$	$Fe(CO)]_2$ is		
a) zero	b) one	c) two	d) th	ree
	2.			(GATE CY-2009)
6) The coordination num fluoride ion is	other of the Ba^{2+} ions in b	parium fluoride is 8. The	coordir	nation number of the
a) 8	b) 4	c) 1	d) 2	
				(GATE CY-2009)
a) Fe^{2+} in the low spi b) Fe^{2+} in the low spi	of oxyhaemoglobin to de in state changes to Fe^{2+} in the state changes to Fe^{3+} in state changes to Fe^{2+}	n the high spin state n the low spin state		
d) Fe^{2+} in the high sp 8) For the compound	oin state changes to Fe^{3+}	in the high spin state		(GATE CY-2009)

the stereochemical notations are

- a) 2Z, 4R
- b) 2Z, 4S
- c) 2E, 4R
- d) 2E, 4S

(GATE CY-2009)

9) The compound

is

- a) aromatic and has high dipole moment
- b) aromatic and has no dipole moment
- c) non-aromatic and has high dipole moment
- d) anti-aromatic and has no dipole moment

(GATE CY-2009)

10) In the reaction

the major product X is

(GATE CY-2009)

11) In the reaction

the major products X and Y are

a) and oh

c) OH and OH

(GATE CY-2009)

12) In the reaction

the major product X is

(GATE CY-2009)

13) The most suitable reagent combination to bring out the following transformation

is

- a) PhCOCl and pyridine
- b) DCC and PhCOOH

- c) PhBr, CO and $Pd(PPh_3)_4$
- d) EtOOC-N=N-COOEt, PPh3 and PhCOOH

(GATE CY-2009)

14) In the two steps reaction sequence

the major product Y is

(GATE CY-2009)

- 15) Among the following, the system that would require the least amount of thermal energy to bring its temperature to 80°C is
 - a) 200 g of water at $40^{\circ}C$

c) 150 g of water at $50^{\circ}C$

b) 100 g of water at $20^{\circ}C$

d) 300 g of water at $30^{\circ}C$

(GATE CY-2009)

- 16) Among the following, the reaction that is accompanied by a decrease in the entropy is
 - a) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - b) $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$
 - c) $PCl_5(s) \rightarrow PCl_3(l) + Cl_2(g)$
 - d) $2H_2O(l) \to 2H_2(g) + O_2(g)$

(GATE CY-2009)

- 17) The number of degrees of freedom of a system consisting of solid sucrose in equilibrium with an aqueous solution of sucrose is
 - a) 0

b) 1

c) 2

d) 3

(GATE CY-2009)

- 18) The lowest allowed energy is equal to zero for
 - a) the hydrogen atom

c) a harmonic oscillator

b) a rigid rotor

d) a particle in a 3-dimensional box

(GATE CY-2009)

- 19) According to the Debye-Hýckel limiting law, if the concentration of a dilute aqueous solution of KCl is increased 4-fold, the value of $\ln \gamma_{\pm}$ (γ_{\pm} is the molal mean ionic activity coefficient) will
 - a) decrease by a factor of 2

c) decrease by a factor of 4

b) increase by a factor of 2

d) increase by a factor of 4

(GATE CY-2009)

20) For the parallel first order reaction shown below

$$X \xrightarrow{k_1} Y$$

$$X \xrightarrow{k_2} Z$$

the value of k_1 is $1 \times 10^{-4} s^{-1}$. If the reaction starts from X, the ratio of the concentrations of Y and Z at any given time during the course of the reaction is found to be $\frac{[Y]}{[Z]} = \frac{1}{4}$. The value of k_2 is

a)
$$1 \times 10^{-4} s^{-1}$$

c)
$$4 \times 10^{-4} s^{-1}$$

b)
$$2.5 \times 10^{-5} s^{-1}$$

d)
$$4 \times 10^4 s^{-1}$$

Q.21 - Q. 60 carry two marks each.

21) The correct order of ν_{CO} for the compounds $[Mo(CO)_3(NMe_3)_3]$, $[Mo(CO)_3(POPh_3)_3]$, $[Mo(CO)_3(PMe_3)_3]$, $[Mo(CO)_3(PCPh_3)_3]$ in the IR spectrum is a) $[Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(POPh_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(PCPh_3)_3]$ b) $[Mo(CO)_3(PCPh_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(POPh_3)_3] > [Mo(CO)_3(NMe_3)_3]$ c) $[Mo(CO)_3 (PMe_3)_3] > [Mo(CO)_3 (NMe_3)_3] > [Mo(CO)_3 (PCPh_3)_3] > [Mo(CO)_3 (POPh_3)_3]$ d) $[Mo(CO)_3(POPh_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(PCPh_3)_3]$ (GATE CY-2009) 22) 2.5 g of an iron compound upon suitable treatment yielded 0.391 g of iron(III) oxide. The percentage of iron in the compound is (atomicweightofFe: 55.847, 0: 15.994) a) 10.94 b) 12.15 c) 11.31 d) 9.11 (GATE CY-2009) 23) In the reaction $Ph_3P \xrightarrow{MeI} [X] \xrightarrow{n-BuLi} [Y]$ the compounds X and Y, respectively, are a) $[Ph_3P(Me)I]$; $Ph_3P = CH - CH_2 - CH_2 - CH_3$ b) $[Ph_3P(Me)][I]; Ph_3P = CH_2$ c) $[Ph_3P(Me)_2]; Ph_3P = CH_2$ d) $[Ph_3P(Me)][I]; Ph_3P$ (GATE CY-2009) 24) The ¹H NMR spectrum of HD consists of a a) singlet c) 1:1:1 triplet b) 1:1 doublet d) 1:2:1 triplet (GATE CY-2009) 25) The X-ray powder pattern of NaCl shows an intense cone at $\theta = 15.87^{\circ}$ using X-rays of wavelength 1.54×10^{-8} cm. The spacing between the planes (inÅ) of NaCl crystal is a) 1.41 b) 2.82 c) 4.23 d) 5.63 (GATE CY-2009) 26) Among the following, the isoelectronic and isostructural pair is c) NO_2^+ and TeO_2 d) SiO_4^{4-} and PO_4^{3-} a) CO_2 and SO_2

b) SO_3 and SeO_3

(GATE CY-2009)

27) Two samples have been given to you: $[NiCl_2(PPh_3)_2]$ and $[PdCl_2(PPh_3)_2]$. A physical method that can be used to identify these compounds unambiguously is

- a) HPLC
- b) magnetic susceptibility

- c) ^{13}C NMR spectroscopy
- d) Mössbauer spectroscopy

28) In the reaction $HSO_4^-(aq) + OH^-(aq) \Leftrightarrow SO_4^{2-}(aq) + H_2O(l)$, the conjugate acid-base pairs are

- a) HSO_4^- and SO_4^{2-} ; H_2O and OH^- b) HSO_4^- and H_3O+ ; SO_4^{2-} and OH^- c) HSO_4^- and OH^- ; SO_4^{2-} and H_2O d) HSO_4^- and OH^- ; SO_4^{2-} and H_3O^+

(GATE CY-2009)

29) Designate the following complexes X, Y and Z as inert or labile: $X = [Al(C_2O_4)_3]^{3-}$, $Y = [V(H_2O_6)^{2+}$, $Z = [Cr(C_2O_4)_3]^{3-}$

$$X = \left[Al(C_2O_4)_3\right]^{3-}, Y = \left[V(H_2O_6)^{2+}, Z = \left[Cr(C_2O_4)_3\right]^{3-}\right]$$

- a) X and Y are inert; Z is labile
- b) X and Z are labile; Y is inert
- c) X is inert; Y and Z are labile
- d) X is labile; Y and Z are inert

(GATE CY-2009)

30) In the reaction sequence

X and Y, respectively, are

(GATE CY-2009)

31) The major product X (based on the preferred conformation) in the reaction

is

32) In the reactions

the major products X and Y, respectively, are

(GATE CY-2009)

33) In the reaction

the major product X is

(GATE CY-2009)

34) Reaction of m-methylanisole with lithium in liquid ammonia and t-butyl alcohol at −33°C generates compound X as the major product. Treatment of the compound X with dilute sulphuric acid produces compound Y as the major product. The compounds X and Y, respectively, are

(GATE CY-2009)

35) The number of signals that appear in the broad-band decoupled ¹³C NMR spectrum of ortho-, metaand para-dichlorobenzenes, respectively, are

- a) 3, 4 and 2
- b) 3, 3 and 2
- c) 4, 4 and 2
- d) 3, 4 and 4

(GATE CY-2009)

36) In the reaction sequence

$$\begin{array}{c|c}
 & \text{Me} \\
\hline
 & \text{NH}_2\text{OH} \\
\hline
 & \text{90}\%
\end{array}$$
[Y]
$$\begin{array}{c}
 & \text{H}_2\text{SO}_4 \\
\hline
 & 70\%
\end{array}$$

the structure of the major product Z and the overall yield for its formation from the ketone X, are

(GATE CY-2009)

37) In the reaction sequence

HOO 1) LDA, -50 °C PhSeCI [X]
$$H_2O_2$$
, 50 °C [Y]

LDA, -50 °C [Y]

the major products X and Y, respectively, are

(GATE CY-2009)

38) In the reaction sequence

$$\frac{PdCl_2, CuCl}{O_2, H_2O} \quad [X] \quad \frac{H_2SO_4}{DMF}$$

the major products X and Y, respectively, are

(GATE CY-2009)

39) In the reaction sequence

the major products X and Y, respectively, are

(GATE CY-2009)

40) In the photochemical reaction

formation of the compound X can be inferred by the disappearance of the ^{1}H NMR signal at $(^{1}H$ NMR spectrum of the starting material: $\delta 9.7 (1H, s)$, 7.8 (1H, d, J8.0Hz), 7.1 - 6.8 (2H, m), 3.9 (3H, s), 2.5 - 6.8 (2H, m)

a) δ 9.7 ppm

c) δ 3.9 ppm

b) δ 7.8 ppm

d) δ 2.5 ppm

(GATE CY-2009)

41) The half-life $(t_{1/2})$ for the hydrolysis of an ester varies with the initial concentration of the reactant $([E]_0)$ as follows:

$[E]_0/10^{-2} \text{ mol } L^{-1}$	5.0	4.0	3.0
$t_{1/2}/s$	240	300	400

The order of the reaction is

a) 0

b) 1

c) 2

d) 3

(GATE CY-2009)

42) The fluorescence lifetime of a molecule in solution is 10 ns. If the fluorescence quantum yield is 0.1, the rate constant of fluorescence decay is

a) $1 \times 10^8 \text{ s}^{-1}$ b) $1 \times 10^7 \text{ s}^{-1}$		c) $1 \times 10^6 \text{ s}^{-1}$ d) $9 \times 10^7 \text{ s}^{-1}$		
tively. The relative po		ted vibrational states of	(GATE CY-2009 cm ⁻¹ and 214.5 cm ⁻¹ , respectively these two molecules compare	;_
a) 6.75×10^{-10} and 3 b) 6.75×10^{-10} and 3		c) 3.57×10^{-1} and d) 3.57×10^{-1} and e		
44) The degeneracy of a energy is	quantum particle in a c	cubic box having energy	(GATE CY-2009) four times that of the lowes	_
a) 3	b) 6	c) 1	d) 4	
	n spectrum of $^{19}F_2$ shows cm $^{-1}$. The rotational cor		(GATE CY-2009 at 19230.769 cm ⁻¹ , 19227.21 s	-
a) 26.484	b) 52.968	c) 105.936	d) 3.541	
46) The de Broglie wavel is	ength for a He atom trave	elling at 1000 ms ⁻¹ (typic	(GATE CY-2009 cal speed at room temperature	_
a) 99.7×10^{-12} m b) 199.4×10^{-12} m		c) 199.4×10^{-10} m d) 99.7×10^{-10} m		
			(GATE CY-2009) $NO_2(g)$ are, respectively, 90. $IO(g) + O_2(g) \rightarrow 2NO_2(g)$ is	3
a) 16.6 kJ	b) -57.1 kJ	c) -114.2 kJ	d) 57.1 kJ	
48) Among the following a) $2SO_3(g) \rightleftharpoons 2SO_2(g)$ b) $H_2(g) + I_2(s) \rightleftharpoons 2F$	$G(g) + O_2(g)$ HI(g)	is NOT affected by an	(GATE CY-2009 increase in pressure is)
 c) C(s) + H₂O(g) ⇒ 0 d) 3Fe(s) + 4H₂O(g) 49) The free energy charton 2 atm is 	$\rightleftharpoons \operatorname{Fe}_3\operatorname{O}_4(s) + 4\operatorname{H}_2(g)$	n ideal gas that is comp	(GATE CY-2009 ressed isothermally from 1 atm	
a) RTln2	b) -2RT	c) -RTln2	d) 2RT	
	form an ideal solution. In on of the mole fraction, 2	_	(GATE CY-2009 pour pressure P of this solution	

Given a state of this vapour-liquid mixture whose overall composition corresponds to point E in the figure, the mole fraction of B in the vapour phase is approximately

a) 0.25

c) 0.65

b) 0.53

d) 0.80

(GATE CY-2009)

Common Data Questions

Common Data for Questions 51 and 52:

Treatment of $W(CO)_6$ with 1 equivalent of Na(C_5H_5) in THF solution gives the ionic compound M. Reaction of M with glacial acetic acid results in product N. The ¹H NMR spectrum of N displays two singlets of relative intensity 5:1. When N is heated, hydrogen gas is evolved and O is produced. O may also be prepared by refluxing $W(CO)_6$ with cyclopentadiene and H_2 is also produced. Treatment of O with an equivalent of Br_2 produces P. (Use the 18 electron rule as your guide).

- 51) The compounds M and N, respectively, are
 - a) $[(C_5H_5)W(CO)_3]Na$ and $[(C_5H_5)W(CO)_3H]c)$ $[(C_5H_5)W(CO)_3]Na$ and $[(C_5H_5)W(CO)_4H]$
 - b) $[(C_5H_5)W(CO)_4]Na$ and $[(C_5H_5)W(CO)_3H]$ d) $[(C_5H_5)W(CO)_4]Na$ and $[(C_5H_5)W(CO)_4H]$

(GATE CY-2009)

- 52) The compounds O and P, respectively, are
 - a) $[(C_5H_5)W(CO)_3]_2$ and $[(C_5H_5)W(CO)_3Br]$
 - b) $[(C_5H_5) W (CO)_4]_2$ and $[(C_5H_5) W (CO)_3 Br (THF)]$
 - c) $[(C_5H_5)W(CO)_3(THF)]_2$ and $[(C_5H_5)W(CO)_3Br]_3$
 - d) $[(C_5H_5) W(CO)_3]_2$ and $[(C_5H_5) W(CO)_3 Br(THF)]$

(GATE CY-2009)

Common Data for Questions 53 and 54:

An organic compound X ($C_9H_{10}O$) exhibited the following spectral data.

IR: 1680 cm⁻¹

¹H NMR: δ 7.8 (2 H, d, J 7.5 Hz), 7.2 (2 H, d, J 7.5 Hz), 2.7 (3 H, s) and 2.4 (3 H, s)

Compound X on treatment with m-chloroperbenzoic acid produced two isomeric compounds Y (major) and Z (minor).

53) Compounds Y and Z, respectively, are

- 54) Compounds Y and Z can be differentiated by carrying out basic hydrolysis, because
 - a) Y produces 4-methylphenol and Z is unaffected
 - b) Y produces 4-methylphenol and Z produces 4-methylbenzoic acid
 - c) Y is unaffected and Z produces 4-methylbenzoic acid
 - d) Y is unaffected and Z produces 4-methylphenol

(GATE CY-2009)

Common Data for Questions 55 and 56:

Character table for the point group $C_{2\nu}$ is given below.

C _{2v}	Е	C ₂	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	ху
B_1	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

- 55) The reducible representation corresponding to the three translational degrees of freedom, Γ_{tr} , is
 - a) 3, 1, 1, 1
- b) 3, -1, 1, 1 c) 3, -1, -1, -1 d) 3, 1, -1, -1

(GATE CY-2009)

56) The asymmetric stretching mode of the H₂O is shown below. The molecular plane is yz and the symmetry axis of H₂O is z.

This vibration transforms as the irreducible representation

a) A₁

b) B₁

c) A₂

d) B_2

(GATE CY-2009)

Linked Answer Questions

Statement for Linked Questions 57 and 58:

Triphosphazene is prepared by reacting X and Y in equimolar ratio at 120-150 °C using appropriate solvents.

57) The reactants X and Y, respectively, are

- a) PCl_5 , NH_3
- b) PCl_3 , NH_3

- c) PCl_5 , NH_4Cl
- d) PCl_3 , NH_4Cl

58) The structure of triphosphazene is

(GATE CY-2009)

(GATE CY-2009)

Statement for Linked Questions 59 and 60:

In the reaction mechanism given below,

'k's represent rate constants, 'E_A's represent activation energies, and $k_2 \gg k_3$.

- 59) The overall rate constant (k_{overall}) for the formation of P can be expressed as
 - a) $k_1 k_3 / k_2$
 - b) *k*₁
 - c) $k_1/(k_2+k_3)$
 - d) $k_1/(k_2-k_3)$

60) The overall activation energy $(E_{A,\text{overall}})$ for the formation of P can be expressed as

- a) $\frac{E_{A,1} \cdot E_{A,3}}{E_{A,2}}$

b) $E_{A,1}$ c) $E_{A,1} + E_{A,3} - E_{A,2}$ d) $\frac{E_{A,1}}{E_{A,2} + E_{A,3}}$ (GATE CY-2009)

END OF THE QUESTION PAPER