Problemi risolti con le leggi di conservazione dell'energia

Problema 1: Energia potenziale gravitazionale su superficie terrestre

Forza peso: $ec{F}_{
m p} = - m g \, \hat{j}$

 y_i \vec{F}_p I

Calcoliamo lavoro e energia potenziale:

$$L = \int_{\vec{r}_i}^{\vec{r}_f} \vec{F}_p \cdot d\vec{s} = \int_{\vec{r}_i}^{\vec{r}_f} (F_p)_x dx + (F_p)_y dy = \int_{y_i}^{y_f} (F_p)_y dy = -mg(y_f - y_i)$$

$$\Delta U = U_f - U_i = -L_g = mg(y_f - y_i)$$

Nella caduta di un grave che parte da fermo, trovare la velocità finale:

$$\Delta K = K_f - K_i = \frac{1}{2}mv_f^2$$

$$0 = \Delta U + \Delta K = mg(y_f - y_i) + \frac{1}{2}mv_f^2$$

$$\Rightarrow v_f = \sqrt{2g(y_i - y_f)} = \sqrt{2gh}$$

Problema 2: Energia potenziale gravitazionale su superficie terrestre + vincoli

Forza peso: $\vec{F}_{
m p} = - m g \, \hat{j}$

Calcoliamo il lavoro e l'energia potenziale

In presenza di vincoli lisci si ha lo stesso risultato che per la caduta libera: l'altra forza in gioco, quella <u>normale</u>, <u>non fa **mai** lavoro</u>. [es. piano inclinato, guida o piano liscio] La differenza di energia dipende solo dalla differenza di quota e la velocità finale è sempre la stessa v_f di cui sopra.

$$L = \int_{\vec{r}_i}^{\vec{r}_f} (\vec{F}_p + \vec{N}) \cdot d\vec{s} = \int_{\vec{r}_i}^{\vec{r}_f} \vec{F}_p \cdot d\vec{s} + (\vec{N} \cdot d\vec{s}) = \int_{y_i}^{y_f} (F_p)_y \, dy = -mg(y_f - y_i)$$

$$\Delta U = U_f - U_i = -L_g = mg(y_f - y_i)$$

Nella caduta di un grave che parte da fermo: $\Delta K = K_f - K_i = \frac{1}{2} m v_f^2$

$$0 = \Delta U + \Delta K = mg(y_f - y_i) + \frac{1}{2}mv_f^2 \Rightarrow v_f = \sqrt{2g(y_i - y_f)} = \sqrt{2gh}$$

Negli esercizi di prima vale anche l'inverso: partendo da una quota più bassa con velocità iniziale non nulla, si può risalire la rampa fino ad una quota massima h, arrivando con velocità nulla.

Problema 3:

Uno sciatore di massa m=80 kg scivola senza attrito lungo un declivio composto da varie discese, fino ad arrivare in pianura dopo aver compiuto un dislivello h=60 m. Se è partito con velocità iniziale in modulo $v_0=0.5$ m/s, con che velocità finale v_f arriva?

F_{peso} è conservativa, i vincoli non fanno lavoro non c'è attrito → l'energia meccanica si conserva

$$0 = \Delta(U + K) \qquad K_f - K_i = U_i - U_f$$

$$\frac{1}{2}m(v_f^2 - v_i^2) = mg(y_i - y_f) = mgh \implies v_f = \sqrt{v_i^2 + 2gh} = 34 \, m/s$$

Se invece ci fosse attrito, e supponessimo che $v_{\rm f}$ = 2 m/s, quanto sarebbe il lavoro della forza di attrito? $L_{\rm attrito} = L_{\rm N.C.} = \Delta(U+K)$

$$L_{\text{attrito}} = (K_f - K_i) + (U_f - U_i) = \frac{1}{2}m(v_f^2 - v_i^2) - mgh = -46.7 \, kJ$$

NB: la forza di attrito dinamico durante la discesa varia in direzione e modulo. Perciò, anche sapendo la distanza percorsa, non sarebbe possibile calcolarne direttamente il lavoro.

Problema 4. Pendolo (o calotta semicircolare).

Un corpo di massa m, appeso ad un filo ideale, viene lasciato libero da una posizione in cui è spostato rispetto alla verticale di un angolo θ_0 . A che velocità passa per la verticale? (il problema è analogo al moto dentro una calotta semicircolare liscia).

$$h_A = l - l\cos\theta_0 = l(1 - \cos\theta_0)$$

$$mgh_A = mgl(1 - \cos\theta_0) = \frac{1}{2}mv_B^2 \implies v_B = \sqrt{2gl(1 - \cos\theta_0)}$$

Problema 4. Pendolo (o calotta semicircolare).

Un corpo di massa m, appeso ad un filo ideale, viene lasciato libero da una posizione in cui è spostato rispetto alla verticale di un angolo θ_0 . A che velocità passa per la verticale? (il problema è analogo al moto dentro una calotta semicircolare liscia).

In generale, in un punto P qualunque (corrispondente ad un angolo θ) si ha:

$$mgl(1-\cos\theta_0) = mgl(1-\cos\theta) + \frac{1}{2}mv^2 \implies v = \sqrt{2gl(\cos\theta - \cos\theta_0)}$$

Se si volesse conoscere la tensione T (o la forza normale nel caso della calotta sferica) al variare dell'angolo, basta applicare la seconda legge della dinamica.

$$\begin{cases} ma_R = -mv^2/l = -T + mg\cos\theta \\ ma_T = mg\sin\theta \end{cases} T = mg\cos\theta + 2mgl(\cos\theta - \cos\theta_0)/l$$

$$\theta = 0 \Rightarrow T = mg + 2mg(1 - \cos\theta_0)$$

Discesa lungo calotta semicircolare: Un corpo di massa *m* scivola senza attrito lungo il profilo circolare della calotta sferica, lasciato libero in condizioni di quiete partendo da un punto A che si trova spostato rispetto alla verticale di un angolo θ_0 . Con che velocità il corpo passa per il punto più basso della calotta?

Come cambia la forza normale N al variare dell'angolo rispetto alla verticale?

Le forze che fanno lavoro sono conservative (N è perpendicolare alla velocità e non fa lavoro) \rightarrow l'energia meccanica in A è uguale a quella nel punto che si trova nel punto più basso

La relazione fra quota e angolo è data da: $h_A = R - R\cos\theta_0 = R(1-\cos\theta_0)$

$$U_A + K_A = U_B + K_B$$

$$mgh_A = mgR(1 - \cos\theta_0) = \frac{1}{2}mv_B^2 \implies v_b = \sqrt{2gR(1 - \cos\theta_0)}$$

Discesa lungo calotta semicircolare: Un corpo di massa m scivola senza attrito lungo il profilo circolare della calotta sferica, lasciato libero in condizioni di quiete partendo da un punto A che si trova spostato rispetto alla verticale di un angolo θ_0 . Con che velocità il corpo passa per il punto più basso della calotta?

Come cambia la forza normale N al variare dell'angolo rispetto alla verticale?

In generale, in un punto P qualunque (corrispondente ad un angolo θ) si ha:

$$mgR(1-\cos\theta_0) = mgR(1-\cos\theta) + \frac{1}{2}mv^2 \implies v = \sqrt{2gR(\cos\theta - \cos\theta_0)}$$

Se si volesse conoscere la forza normale *N* al variare dell'angolo, basta applicare la seconda legge della dinamica.

$$\begin{cases} ma_R = -mv^2/R = -N + mg\cos\theta \\ ma_T = mg\sin\theta \end{cases} N = mg\cos\theta + 2mgR(\cos\theta - \cos\theta_0)/R$$

$$\theta = 0 \Rightarrow N = mg + 2mg(1 - \cos\theta_0)$$

Problema 5: Molla e piano inclinato

Una molla compressa di Δx_0 , lasciata libera all'istante t = 0, lancia una massa m lungo un piano inclinato liscio (angolo θ). Calcolare:

- 1) La velocità non appena lasciata la molla
- 2) La massima distanza rispetto alla posizione iniziale

 F_{peso} conservativa, $F_{elastica}$ conservativa (ci sono due energie potenziali) I vincoli non fanno lavoro, non c'è attrito \rightarrow l'energia meccanica si conserva. Prendiamo come riferimento U = 0 il punto in cui la molla è a riposo.

$$\Delta(U+K) = 0 \Rightarrow U_i + K_i = U_f + K_f$$

$$(U_{\text{peso}})_i = mg(-\Delta x_0 \sin \theta); \quad (U_{\text{molla}})_i = \frac{1}{2}k(\Delta x_0)^2; \quad K_i = 0$$

1) Quando passa per il punto di riposo della molla ($U_1 = 0$)

$$\frac{1}{2}k(\Delta x_0)^2 - mg\Delta x_0 \sin\theta = \frac{1}{2}mv_1^2 \implies v_1 = \sqrt{\frac{k}{m}}(\Delta x_0)^2 - 2g\Delta x_0 \sin\theta$$

2) La massima distanza

$$\frac{1}{2}k(\Delta x_0)^2 - mg\Delta x_0 \sin\theta = mgx_f \sin\theta \implies x_f = \frac{k(\Delta x_0)^2}{2mg\sin\theta} - \Delta x_0$$

Problema 6: Ottovolante e «giro della morte»

Un corpo di massa *m* parte da fermo dall'estremità di una rampa alla fine della quale c'è un anello circolare di raggio *R*. Da che altezza deve partire per poter percorrere tutto l'anello senza staccarsi?

Le forze o sono conservative o non fanno lavoro.

 \rightarrow quindi *E* si conserva.

$$\Delta E = \Delta (U + K) = 0 \implies U_i + K_i = U_f + K_f$$

$$mgh = \frac{1}{2}mv_B^2 = \frac{1}{2}mv_C^2 + mg(2R)$$

Perché non si stacchi mai deve valere la relazione del moto circolare uniforme:

$$ma_R = -m\frac{v_C^2}{R} = \left(\sum_i \vec{F}_i\right)_R = -N - mg \implies \frac{v_C^2}{R} = \frac{N}{m} + g$$

La $v_{\rm C}$ minima per non cadere è quando N = 0 Sostituendo nella conservazione dell'energia: $v_C^2 = Rg$

$$mgh_{\min} = 2mgR + \frac{1}{2}mv_C^2 = 2mgR + \frac{1}{2}mgR = \frac{5}{2}mgR \implies h_{\min} = \frac{5}{2}R$$

Un corpo di massa m scivola lungo una guida liscia partendo con velocità v_A e percorre il tratto ABC in figura.

In seguito sale su un piano inclinato di un angolo θ rispetto all'orizzontale, con coefficiente di attrito dinamico $\mu_{\rm d}$.

Trovare la velocità in B; la velocità in C;

l'altezza finale $h_{\rm D}$ rispetto al punto più basso della traiettoria.

In tutto il tratto da *A* a *C* l' energia meccanica si conserva. Da *C* a *D* lavorano anche forze non conservative (attrito).

$$\frac{1}{2}mv_A^2 + mgh_A = \frac{1}{2}mv_B^2 + mgh_B \implies v_B = \sqrt{v_A^2 + 2g(h_A - h_B)}$$

$$\frac{1}{2}mv_A^2 + mgh_A = \frac{1}{2}mv_C^2 + mgh_C \implies v_C = \sqrt{v_A^2 + 2gh_A}$$

$$E_D - E_C = L_{\text{FNC}} = -f_d d = -f_d \frac{h_D}{\sin \theta} = -\mu_d mg \cos \theta \frac{h_D}{\sin \theta} = -\mu_d mg \frac{h_D}{\tan \theta}$$

$$mgh_D - \frac{1}{2}mv_C^2 = -\mu_d mg \frac{h_D}{\tan \theta} \Rightarrow h_D = \frac{v_C^2}{2g(1 + \frac{\mu_d}{\tan \theta})}$$

Un corpo scivola lungo una calotta semisferica senza attrito, partendo da fermo. A che altezza si stacca?

Finché sta attaccato il moto è circolare (non uniforme)

L'energia meccanica si conserva (non c'è attrito).

$$(z = R\sin\theta)$$

$$mgR = mgz + \frac{1}{2}mv^2 = mgR\sin\theta + \frac{1}{2}mv^2 \implies v^2 = 2gR(1 - \sin\theta)$$

da (*) si ha:
$$\frac{v^2}{R} = g\sin\theta - \frac{N}{m} \ \Rightarrow \ \frac{2gR(1-\sin\theta)}{R} = g\sin\theta - \frac{N}{m}$$

$$\theta_c: N=0 \Rightarrow 2g(1-\sin\theta_c) = g\sin\theta_c \Rightarrow \sin\theta_c = \frac{2}{3} \Rightarrow \theta_c \approx 41.8^{\circ}$$

Un corpo su un piano inclinato scabro (con coefficiente di attrito dinamico μ_{d}) parte con velocità v_o diretta verso il basso.

Come cambia la velocità durante il moto?

Quali sono le relazioni per avere velocità che cresce, diminuisce o è costante?

Vale il teorema dell'energia generalizzato:

$$\Delta(U+K) = L_{\text{N.C.}} = -f_d d = -f_d \frac{y_0 - y}{\sin \theta}$$

$$f_d = \mu_d mg \cos \theta$$

$$\frac{1}{2}mv^2 + mgy - \frac{1}{2}mv_0^2 - mgy_0 = -mg\frac{\cos\theta}{\sin\theta}\mu_d(y_0 - y)$$

$$v^{2} + 2gy - v_{0}^{2} - 2gy_{0} = -2g\mu_{d} \frac{y_{0} - y}{\tan \theta}$$

$$v^2 - v$$

$$v^{2} - v_{0}^{2} = 2g(y_{0} - y) \left[1 - \frac{\mu_{d}}{\tan \theta} \right]$$

Un corpo su un piano inclinato scabro (con coefficiente di attrito dinamico μ_d) parte con velocità v_0 diretta verso il basso.

Come cambia la velocità durante il moto? Quali sono le relazioni per avere velocità che cresce, diminuisce o è costante?

$$v^{2} - v_{0}^{2} = 2g(y_{0} - y) \left[1 - \frac{\mu_{d}}{\tan \theta} \right]$$

- (A) Se l'attrito è grande, il termine di destra è negativo. Perciò al diminuire della quota, v diminuisce finché *il corpo si ferma*
- (B) Se l'attrito non è così grande, o l'inclinazione è sufficientemente grande, il termine a destra è positivo. Dunque *la velocità aumenta*
- (C) Se $\mu_d = \tan \theta$, allora il termine di destra è zero. La forza di attrito e la componente della forza peso si equilibrano \Rightarrow $\bf v$ è $\bf costante$

K = cost.; U diminuisce e si trasforma in energia termica, per effetto del lavoro fatto dalle forze dissipative