Connectionism: Distributed networks

Phil/Psych 256 Cameron Shelley

Overview

- > Brain-like qualities of localized networks:
 - They consist of a **network of nodes**.
 - 2. They operate in parallel.
 - 3. They perform cognitive tasks **holistically**.
- Limitations include:
 - Transparency
 - Learning
- Distributed connectionist networks address these limitations
 - a.k.a. Artificial neural networks (ANNs)

Distributed representation

- > Lashley (ca. 1935): cognitive deficits are proportional to brain damage
- > Neurons work in groups, e.g., excited by upwards moving objects
 - Mutually excitatory
 - Inhibit excitation of other groups (e.g., downwards moving objects)
- > Firing rates within groups are often normally distributed
- Average group behaviour constitutes representation

nwards		
1 /		

Perceptrons

- > Rosenblatt (1928–1969) studied perceptrons
 - All nodes in either input or output layers
 - Compute some propositional functions
 - · Learn from examples

Perceptrons (cont.)

- > Learn to compute AND, OR, NOT
- > Learning via Perceptron learning principle
- > The XOR problem: cannot *learn* XOR function
 - Minsky and Papert (1969): PLP can only teach linearly separable solutions

Multilayered networks

- > Minsky and Papert speculated that no network could effectively learn non-linear solutions
- Backpropagation procedure (Bryson and Ho 1969) (and later) largely ignored
- Rumelhart, McLelland, Smolensky, et al. Began to experiment with backpropagation (early 1980s)
- Focused on multilayered networks (with hidden nodes)
- A 3-layer network can (approximately) compute any function

 ·

Backpropagation

- Consider the rock/mine problem (Gorman and Sejnowski 1988)
- Learning procedure:
 - Set weights randomly.
 - 2 Present an example to the network and allow it to settle.
 - 3. Determine the error of each node in the output layer.
 - For each "previous" layer in the network, update the connection weights to minimize the error.
 - a) If a receiving node was too active, reduce connection weights
 - b) If a receiving node was not active enough, increase connection weights to it.
 - 5. Repeat (2) until error is no longer reduced or time is up.

Backpropagation (cont.)

- Feedforward network: activation arrives at the input layer and flows towards the output layer.
- Backpropagation: adjustments to connection weights due to errors begin at the output layer and flow backward towards the input layer.

- Training: the network is presented with each training set several times (epochs)
- After training, the network is tested against new examples
 - At the rock/mine problem, 3-node network worked at 98% accuracy
 - Trained humans work at 88-97% accuracy

Gradient descent

- > Weight space: synaptic weights vs. error rate
- > Gradient descent:
 - Initial state is random, typically high error rate
 - Weight adjustments tend to lower the error rate
- > Optimization: weight adjustments to minimize error

_	
-	-
_	_
-	_
-	-
-	_
_	_
_	 _
•	 _
-	_
-	_
-	-
-	-
_	_
-	_
-	_
	-
-	
-	
-	
-	
-	_
-	-
-	_
-	_
-	<u>-</u>
-	-
-	-
-	-
-	- -
-	- -
-	-
-	_ _ _
-	- -
-	_ _ _

NETTalk

- Sejnowski and Rosenberg (1987): turn text into phonemes (speech)
 - "cancer → /kænsr/; "lead" → /led/ or /li:d/
- > DecTalk (expert system):
 - 20 years development
 - 78% accuracy
- > NETTalk:
 - 50-training epochs
 - 78% accuracy

ALVINN

- Pomerleau (1993): Autonomous land vehicle in a neural network
 - Turns video images into driving directions
- > Important features of the problem include:
 - No symbolic theory of driving
 - An inherently noisy problem

- > Limitations include:
 - · Does not make driving decisions

Representational power

- > What sort of knowledge do ANNs acquire?
 - Concepts, i.e., classifications
- > How is that knowledge represented?
- > Representations are distributed
 - Each hidden node participates in the activation of many outputs
- Connection weights capture the knowledge of the network

1
- 1
_ /

Systematicity

- In an ANN, concepts are organized associatively (by similarity)
- > Pros:
 - The network can handle novel inputs
 - It generalizes from experience
- Fodor and Pylyshyn (1988): ANNs do not display systematicity
- > The following sentences are similar:
 - Bill likes Mary
 - Mark likes Bill
- However, the difference in word order is highly significant

Systematicity (cont.)

- > It is difficult to train a feedforward network to make the distinction
- > Easily distinguished on a rule-based account
 - Knowledge of words
 - Rules for their combination
- > Human thinking displays systematicity
 - Neural networks do not, so they are not good cognitive models

Connectionist replies

- Other representation schemes can capture deep relations
 - E.g., HRRs (Plate), RAAMs (Pollack)
- Change network structure
- E.g., recurrent networks (Elman 1991)
- Consider: "The cat the man brought home ate the food"
 - "The cat ... ate the food"
 - 2 "The man brought [the cat] home"
- > In a rule-based system
 - both sentences call for the same approach
 - Grammatical knowledge is all explicit
- In Elman's approach
 - (2) requires a different approach
 - Some grammatical knowledge is implicit or procedural

-	

Neurological plausibility

- ➤ Pros:
 - Representation is distributed
 - ANNs display graceful degradation
 - Generalize from examples
- > Cons
 - ANNs are rarely effective if more than 1000 nodes are used (scaling problem)
 Much neurological information, e.g., firing patterns, neurotransmitters, are simplified out

 - Backpropagation has no obvious neurological correlate