ГУАП

КАФЕДРА № 33

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ			
ПРЕПОДАВАТЕЛЬ			
доц., канд. техн. наук			А.Д. Жуков
должность, уч. степень, звание		подпись, дата	инициалы, фамилия
ОТЧЕ	ЕТ О ПРАК	ТИЧЕСКОЙ РАІ	БОТЕ №2
по курсу	у: ОСНОВЬ	І ПРОГРАММИ	РОВАНИЯ
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. № 3:	235		Гаврютин Д.Н.
		подпись, дата	инициалы, фамилия

1. Задание

В соответствии с индивидуальным вариантом задания (табл. 1–5) разработать и отладить программное приложение, обеспечивающее:

- 1. Решение системы дифференциальных уравнений на интервале [0; T] для T = 10 с с любым шагом, задаваемым пользователем в пределах (0; T). Для демонстрации результатов обеспечить вывод графиков $x_i(t)$, i=1, 2, ..., n; значения указанной в задании переменной состояния в конце интервала интегрирования $x_i(T)$ и значения относительной погрешности его определения δ .
- 2. Анализ зависимости точности и трудоемкости решения задачи от шага интегрирования. Вывод графиков зависимостей относительной погрешности δ и оценки трудоемкости от величины шага h.
- Автоматический выбор величины шага интегрирования для достижения относительной погрешности не более 1% с выводом итоговых результатов, перечисленных в п. 1, для найденного шага.

Модель 3 - система уравнений 5-го порядка

$$\begin{split} \dot{x}_1 &= k\alpha^*; \\ \alpha^* &= \begin{cases} \alpha & \text{при} |\alpha| \leq \alpha_{\text{max}}, \\ \alpha_{\text{max}} & \text{sign} \alpha & \text{при} |\alpha| > \alpha_{\text{max}}; \end{cases} \\ \alpha &= x_2 - x_1; \\ \dot{x}_2 &= x_3; \\ \dot{x}_3 &= lx_1 - lx_2 - mx_3 + nx_4; \\ \dot{x}_4 &= -k_t x_4 - i_1 x_2 - i_2 x_3 + s(\theta - x_1); \\ \theta &= \frac{10000 - x_5}{b - Vt}; \\ \dot{x}_5 &= V \sin x_1. \end{split}$$

Варианты исходных данных для модели 3

Таблица 3

№	€ Значения постоянных параметров модели							Начальные значения переменных состояния								
	k	l	m	n	k_t	b	i_I	$-i_2$	S	V	T	$x_1(0)$	$x_2(0)$	$x_3(0)$	$x_4(0)$	x ₅ (0)
1	1	12	1	8	100	30000	10	1	100	800	11	1	1	0	0	0
2	1	5	1	8	100	20000	10	1	200	500	12	0,2	0,2	0	0	0
3	1	5	1	10	100	22000	10	1	100	800	13	1,2	1,2	0	0	0
4	1	5	1	10	100	22000	10	1	200	500	14	1	1	0	0	0
5	1	6	1	10	100	25000	11	2	150	400	13	1	1	0	0	0
6	1	8	1	9	120	20000	11	2	150	600	12	0,5	0,5	0	0	0
7	1	7	1	7	110	27000	9	1	120	700	11	1,5	1,5	0	0	100
8	2	2	2	2	90	30000	5	2	190	600	10	1	1	-1	-2	500
9	1	12	2	8	80	22000	10	1	200	700	11	0,7	0,6	0	0	200
10	2	8	2	10	100	26000	9	2	200	800	10	0,3	0,3	0	0	500

Примечания. Для всех вариантов принять α_{max} =0,5. Погрешность оценивать по переменной состояния x_5 .

1.Решение:

2.Графики:

X3

Рисунок 3

X4

Рисунок 4

Рисунок 5

3. Зависимость погрешности от величины шага

Rung	e-Kutta	A	Auto	Euler		
шаг	погрешность	шаг	погрешность	шаг	погрешность	
0,03	63%	0,03	82%	0,03	83%	
0,0298	57%	0,029	80%	0,028	82%	

0,0296	50%	0,0285	78%	0,027	81%
0,0295	46%	0,028	75%	0,026	80%
0,0293	37%	0,0275	69%	0,025	78%
0,0292	31%	0,027	59%	0,024	74%
0,0291	26%	0,02685	54%	0,023	65%
0,029	18%	0,0267	48%	0,0225	57%
0,0289	11%	0,0265	39%	0,022	44%
0,0285	9%	0,0264	33%	0,0218	37%
0,02825	3%	0,0263	27%	0,0217	33%
0,028	0%	0,0262	19%	0,0215	24%
0,025	0%	0,0261	12%	0,02135	16%
		0,02605	7%	0,02125	10%
		0,026	3%	0,021	5%
		0,025	0%	0,02	1%
				0,01	1%
				0,001	0%

Из графиков на (рисунке 1) мы видим, чем больше шаг интегрирования, тем больше погрешность результата.

Допустимый шаг для каждого метода интегрирования разный. Например, для метода Рунге-Кутта шаг интегрирования 0,02825 дает погрешность 3%, для Auto погрешность 3% получается только на шаге 0,026, а для метода Эйлера для погрешности 3% требуется шаг 0,02023. Из этого мы можем сделать вывод, что при фиксированном шаге метод Рунге-Кутта точнее и эффективнее, чем методы Auto и Эйлера.