Data Structure - LLDs - (1 Week) <u>List of data structures</u>

	Lists	
		<u>Design Linked List</u>
		<u>Design Skiplist</u>
	Stacks	
		Implement Stack using Queues
		<u>Design a Stack With Increment Operation</u>
		<u>LRU Cache</u>
		<u>Min Stack</u>
		Max Stack
		<u>Dinner Plate Stacks</u>
		Implement Queue using Stacks
	Queue	
		<u>Design Circular Queue</u>
	Hashta	able
		<u>Design HashMap</u>
		<u>Design HashSet</u>
	BST	
		Binary Search Tree Iterator
		Serialize and Deserialize BST
	Red Bl	ack Tree
		<u>Find Median from Data Stream</u>
		Count of Range Sum
	Heaps	
		<u>Design Twitter</u>
		Kth Largest Element in a Stream
		icci Heaps
		<u>Fibonacci Heaps</u>
	,	
		Review of two popular approaches, Disjoint Sets and DFS
Ц	,	PrefixTree, suffixTree)
		Implement Trie (Prefix Tree)
		Add and Search Word - Data structure design
Ш		al Trees/Segment Tree
	_	Lazy Dynamic Segment Tree - A general template
		A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
Ш		Tree Data Structures(Graphs)
		Serialize and Deserialize N-ary Tree
		Encode N-ary Tree to Binary Tree
		Algorithms - Analysis Time and Space - (3 Weeks)
Ц	Sorting	
		Selection Sort - <u>Merge Sorted Array</u>
		Bubble Sort - <u>Sort Colors</u>
		Insertion Sort - Insertion Sort List
	L	Merge Sort - <u>Sort an Array</u>
	_	Quiek Cort
		Quick Sort
		□ Kth Largest Element in an Array
		☐ K Closest Points to Origin

		Tree so Bucket Radix	ing Sort - <u>Relative Sort Array</u> ort - <u>Convert Sorted List to Binary Search Tree</u> t Sort - <u>Top K Frequent Elements</u> Sort - <u>Maximum Gap</u> ogical sort - Covered in Graphs	
<u> </u>	Divide	-and-Co		- 2 Days
		Strasse	en's algorithm for matrix multiplication - <u>Divide and Conquesen's Matrix Multiplication</u>	uer Set 5
			ubstitution method for solving recurrences	
		The re	ecursion-tree method for solving recurrences	
		The m	aster method for solving recurrences	
	Dynam	ic Prog	ramming	- 2 Days
		Rod cu	utting - Integer Break	
		<u>Dynam</u>	nic Programming for the confused : Rod cutting problem	
			-chain multiplication - <u>Burst Balloons</u>	
		Eleme	nts of dynamic programming	
		_	st common subsequence - <u>Longest Common Subsequence</u>	
		-	al binary search trees	
			<u>Unique Binary Search Trees</u>	
			<u>Unique Binary Search Trees II</u>	
П	Greedy	, Δlgori	thms	- 2 Days
_		_	civity-selection problem - Minimum Number of Arrows to Bu	_
			nts of the greedy strategy	
			an codes - Construct Huffman Tree, Google Onsite Soft	ware Engineer
			man Coding Algorithm, Minimum Cost Tree From Leaf Value	
		Matroi	ds and greedy methods - Matroid intersection in simple wo	<u>ords</u>
		A task	-scheduling problem as a matroid - <u>Task Scheduler</u>	
	Graph	Algorit	hms	6 Dayes
_		_	tern 1 DFS + BFS == 25% of the problems	- 6 Days
			Tree Preorder Traversal	
			Tree Postorder Traversal	
	_		Tree Level Order Traversal	
		BFS		
			Binary Tree Level Order Traversal	
			Binary Tree Level Order Traversal II	
			Web Crawler Multithreaded	
			Web Crawler	
			<u>Cut Off Trees for Golf Event</u>	
	_		<u>Course Schedule</u>	
		DFS	B: T B : I T I	
			Binary Tree Postorder Traversal	
		_	Binary Tree Preorder Traversal	
			Binary Tree Inorder Traversal Is Graph Bipartite?	
			Remove Invalid Parentheses	
			Construct Binary Tree from Preorder and Inorder Traversa	ı
		_	ogical Sort - Topological Sort	<u></u>

	numbe	<u>er of people to spread a message, Airbnb Cover all vertices wi</u>	th the
		number of vertices, Critical Connections in a Network	
	Minim	ium spanning Tree - Prim's Algorithm	
		Cheapest Flights Within K Stops	
		Minimum Height Trees	
		Number of Operations to Make Network Connected	
	Shorte	est Path Algos -	
			oblems/
		get-watched-videos-by-your-friends/	
		Dijkstra's algorithm	
	_	Reachable Nodes In Subdivided Graph	
		Shortest Path Visiting All Nodes	
		Floyd-Warshall	
	_	Find the City With the Smallest Number of Neighbors a	t a
			<u>t a</u>
		Threshold Distance	
	_	□ Evaluate Division	
		Johnson's algorithm	
		All-pairs shortest paths - Johnson's algorithm for sparse	<u>grapns -</u>
		<u>GeeksforGeeks</u>	
		☐ <u>Johnson's algorithm</u>	
		☐ Google Onsite Network flow for the matrix with given	<u>ren row</u>
		and column sums	
		Ford-Fulkerson Algorithm for Maximum Flow Problem	
			Days
	The Cl	hinese remainder theorem - <u>Check If It Is a Good Array</u>	
	Greate	est common divisor	
		Greatest Common Divisor of Strings	
		X of a Kind in a Deck of Cards	
		Google OA Summer Intern 2020 Greatest Common Divisor	
	Power	rs of an element	
		Pow(x, n)	
		Sort Integers by The Power Value	
	The RS	SA public-key cryptosystem	
		Keys and Rooms	
		Shortest Path to Get All Keys	
	Intege	er factorization	
	_	Largest Component Size by Common Factor	
		2 Keys Keyboard	
String	Matchii	ng - 2	Day
_		abin-Karp algorithm	•
_			
	_	Binary String With Substrings Representing 1 To N	
		Shortest Palindrome	
		Find All Anagrams in a String	
		matching with finite automata	
	_	nuth-Morris-Pratt algorithm	
_			
	_	<u>51.5. COSC I ACTIVATORITO</u>	

☐ Strongly Connected Components - SCC - <u>Course Schedule</u>, <u>Facebook | Minimum</u>

		□ Rotate String	
		KMP Algorithm for Pattern Searching	
	Approx	kimation Algorithms	- 3 Days
		The vertex-cover problem	
		☐ Binary Tree Cameras	
		□ <u>Vertex Cover Problem-2</u>	
		□ <u>Vertex Cover Problem</u>	
		The traveling-salesman problem Find the Shortest Superstring	
		The set-covering problem	
		□ <u>Video Stitching</u>	
		☐ Set Intersection Size At Least Two	
		□ Non-overlapping Intervals	
		Randomization and linear programming	
		The subset-sum problem	
		☐ Partition Equal Subset Sum	
		Partition to K Equal Sum Subsets	
	Rando	mized Algorithms	- 1 Day
		Quick Sort	,
		Min Cut Palindrome Partitioning II	
		Concepts Problems and Maths - (1 Week)	
		(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Matrix	Operations	
		Programming	
		mials - DFT, FFT	
	-	itational Geometry	
_	•	Line-segment properties	
		Determining whether any pair of segments intersects	
		Finding the convex hull - Erect the Fence, The Skyline Problem	
	_	Finding the closest pair of points - K Closest Points to Origin	
		nd LCM	
_		X of a Kind in a Deck of Cards	
		Greatest Common Divisor of Strings	
		Nth Magical Number	
		Ugly Number III	
П		Factorization and Divisors	
_	_	Largest Component Size by Common Factor	
		2 Keys Keyboard	
П	_	acci Numbers	
		Length of Longest Fibonacci Subsequence	
		Split Array into Fibonacci Sequence	
		Find the Minimum Number of Fibonacci Numbers Whose Sum Is K	
П	_	n Numbers - <u>Unique Binary Search Trees</u>	
	Modular Arithmetic		
	Euler Totient Function		
	nCr Computations		
	Set Th	•	
	Factor		
_		Last Substring in Lexicographical Order	
		Snakes and Ladders	
		Factor Combinations	
		Path With Maximum Minimum Value	

	□ Number of Closed Islands	
	Prime numbers and Primality Tests	
	Prime Arrangements	
	☐ K-th Smallest Prime Fraction	
	Sieve Algorithms	
	☐ Count Primes	
	Divisibility and Large Numbers	
	Series	
	Number Digit	
	Triangles	
	☐ <u>Triangle</u>	
	□ <u>Valid Triangle Number</u>	
	Networks - (1 Week)	
	Leetcode	
_	Network Topology, OSI Architecture	
	TCP/IP models	
	TCP and UDP	
	Firewall, DNS, Domains, workgroups	
	Protocols i.e ICMP	
	OS - (1 week)	
	Operating System Tutorial	
	Shared Memory Systems	
	shared memory systems	
	Cache	
	Multithreading	
	□ Producers-consumers problem	
	Dining philosophers problem	
	Cigarette smokers problem	
	☐ Readers-writers problem	
	□ Web Crawler Multithreaded	
	Scheduling algorithms	
	Deadlock	
_	Virtual Memory	
_	Mutex and semaphore	
	Kernels	
	Paging	
	Software Design Principles - (2 weeks)	
	System Design Primer	
Start l	earning about Theory of Distributed Systems?	
Challenges with distributed systems		
Microservices Design Guide 2 - Platform Engineer		
<u>Cloud design patterns - Azure Architecture Center</u>		
<u>Design patterns for microservices Azure Blog and Updates</u>		
TO RE	AD:	
Domai	n Driven Design (DDD) Bounded Context (BC) Polyglot Persistence (PP)	
_		

Command and Query Responsibility Segregation (CQRS) | Command Query Separation

	Event-Sourcing (ES) CAP Theorem Eventual Consistency Twelve-Factor App Principles
Just s	ome things to focus on.
	Load balancer
	API gateway
	Microservices - Scale Cube Concept, MVC - READ
	Database Sharding
	SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem
	Leadership Principles - LPs - (1 Week)
	TO BE UPDATED
	Resume and Miscellaneous
	#ADD WHATEVER YOU HAVE PUT IN RESUME
	Algos you have mentioned
	Project work and related references to read
	Achievements and information about it
REFERE Introdu Leetco	iction to Algorithms - Cormen