

Graphing .	Connor Chan										
Graph y=	. Vibes: bad										
Range: Egly 203 -> Eylo = y = 2, y = R3											
Domain: 4-x2 20											
-(x-2)(x+2) >0											
x = 12											
-2 42											
-1	1//	-	17/								
X-2	1/1	_	3//								
K+5	7/4	+	+								
4 4 2											
3:	{2×1-2≤×≤2,×€1₹3										
$y-int: \sqrt{4-o^2} = 2$											
X-in	$x-int$: $x=\pm 2$ -2 0 2										
max,	min;	y'= =	$y' = \frac{1}{2}(4-x^2)^{1/2}(-2x)$ -x + -					1/1			
		Ξ	-X 14-x2	√4-×2	1/1;	+	+	1/2	max of x=0		
			he allective alla		1/2	+77	17	4	y=2		
Concavity: y" = (4-x*)1/2(-1)-(+2/(4-x*)-1/2(-2x)(-x)											
$=\frac{(A-x_n)_{A,k}\left[\left(A-x_n\right)(-1)-\left(\frac{x^n}{n^n}\right)(-5\times)(-\kappa)\right]}{(A-x_n)_{A,k}\left[\left(A-x_n\right)(-1)-\left(\frac{x^n}{n^n}\right)(-5\times)(-\kappa)\right]}$											
$= \frac{\left(-4\ell \times x^2 - x^{-\ell}\right)}{\sqrt{(\ell_1 \times x^2)^2}}$											
- 4 Colveys regative >> always 12											
			,				-				
1											
									A1:0a		
								9	Hilroy		