파이썬으로 만드는 OpenCV ⑥

Segmentation Modeling

데이크루 2기 Team 포스

목차

- 1. 모형 설명
- 2. 실험 결과

Segmentation Modeling

분할 모델링입니다.

같은 실험 dataset에서 모델링을 달리하여 결과값을 비교해보겠습니다!

– 진행 방향

U-NET

ResU-NET

RPA_ResU-Net

- Data Augmentation 기법 적용 x
- 논문 Augmentation 기법 적용
- OpenCV 기법 적용

- Data Augmentation 기법 적용 x
- 논문 Augmentation 기법 적용
- OpenCV 기법 적용

- Data Augmentation 기법 적용 x
- 논문 Augmentation 기법 적용
- OpenCV 기법 적용

- U-NET

- 다음과 같이 U자로 생겼습니다.
- 앞 부분은 Contracting path, 뒷 부분을 Expanding path이라고 부릅니다.

- loU(Intersection of Union)
 - 본 게시물의 판단 척도는 loU입니다!

Data Augmentation x

논문 Augmentation 기법

OpenCV 기법 적용

Gaussian Blur 적용

평균이 아닌 가우시안 분포를 갖는 커널로 블러링 하는 것!

OpenCV 기법 적용

- 비교

Augmentation 방법	train iou	validation iou
Augmentation x	0.57	0.47
논문 기법 적용	0.54	0.59
OpenCV 기법 적용	0.45	0.37

- 논문 기법을 적용한 class가 가장 높은 결과를 도출하였습니다!
- OpenCV를 적용하였을 때, 결과값이 상당히 떨어지는 것을 확인할 수 있는데 이는 Gaussian Blur의 특성 상 노이즈를 제거하는 과정에서 학습을 조금 더 어렵게 시켜 그런 것 같습니다!

