SECTION 2 MAPPING

Zodiac Caulfield

謝辞

前回の命題の証明に関して、
$$\bigcap_{i\in I}f(\bigcap_{i\in I}A_i)\subset\bigcap_{i\in I}f(A_i)$$

は、やっぱり自明でありました、お詫び申し上げます.

Prop 2.5.2 $f: X \rightarrow Y$ を写像とする.

1. $A \subset X \succeq B \subset Y$ CONT,

$$f(A) \subset B \iff A \subset f^{-1}(B)$$

- 2. f による image について、(1) (3) が成り立つ.
 - (1) $A \subset X$, $A \subset f^{-1}(f(A))$.
 - (2) $A, A' \subset X, A \subset A' \Rightarrow f(A') \subset f(A)$.
 - (3) $(A_i)_{i \in I} \in X$, $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$, $f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$.
- 3. f による inverse image について,(1) (3) が成り立つ.
 - (1) $B \subset Y$, $f(f^{-1}(B)) = f(X) \cap B$, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.
 - (2) $B, B' \subset Y, B \subset B' \Rightarrow f^{-1}(B) \subset f^{-1}(B')$.
 - (3) $(B_i)_{i \in I} \in Y, f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i), f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i).$

Proof. 1.

- **<u>Definition2.</u>** A point p is called a cluster point of a directed family provided every open set about p intersects each element F of the family.
 - (p を含む任意の開集合が、どの点族の要素 F とも共通部分を持つとき、p は有向点族の収積点という。)
- **<u>Definition3.</u>** A directed family \mathcal{F} converges to a point p if and only if every open set about p contains some element of the family.

(有向点族 ${\mathcal F}$ が点 p に収束することと, p を含む任意の開集合が点族のある要素を含むことは同値.)

Proof. (十分条件): 有向点族の定義より, 有向点族の二つの要素の共通部分は, 有向点族の要素として含む。 また, それが点 p に収束するので, 有向点族 $\mathcal F$ の要素 F を番号付けして表したときに, $\epsilon-N$ 論法的に考えて点 p に収束することを考えると、

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall n \in \mathbb{N} \ n > N \Rightarrow ||F_n - p|| < \epsilon$$

と表せる. また, p の ϵ 近傍を考えてやると, これも p を含む開集合である. 先程の有向点族に関する収束の主張より, F_n は p の ϵ 近傍に含まれる.

(必要条件): p を含む任意の開集合が点族のある要素を	き含むとすると	, p の <i>e</i> 近
傍と共通部分を持つ点族の要素が存在することになる.	このことから,	有向点族
が р に収束するといえる.		

よってこの主張は正しい.

<u>Definition4.</u> If \mathcal{E} and \mathcal{F} are directed families, then \mathcal{E} is a (directed) underfamily of \mathcal{F} provided each element of \mathcal{F} contains some element of \mathcal{E} .

 $(\mathcal{E} \ \ \, \mathcal{F} \ \,$ が有向点族で、 $\mathcal{F} \ \,$ のどの要素も $\mathcal{E} \ \,$ のある要素を含むとき、 $\mathcal{E} \ \,$ は $\mathcal{F} \ \,$ の (directed) underfamily であるという。)

Exercises III

1. A point p is a cluster point of a directed family \mathcal{F} provided some underfamily of \mathcal{F} converges to p.

 $(\mathcal{F}$ のある underfamily が点 p に収束するという条件のもとで, p は有向 点族 \mathcal{F} の収積点である.)

- Proof. F のある underfamily が点 p に収束すると仮定すると, underfamily も 有向点族であるので, p を含む任意の開集合が点族のある要素を含む. p を 含む任意の開集合が, どの要素 F とも共通部分を持つような, ある点族を考えたとき, p は有向点族 ℱ の集積点である.
 - 2. A topological space X is a Hausdorff space if and only if each directed family of sets in X converges to at most one point in X.

(位相空間 X がハウスドルフであることと、X の集合のどの有向点族も X の高々一つの点に収束することは同値である.)

Proof. (十分条件): ハウスドルフ空間 X の異なる二点は, 交わらない近傍を持つ. このとき, X の集合のどの有向点族も, X の二つ以上の点に収束すると仮定すると矛盾. (必要条件): 位相空間 X の集合のどの有向点族も X の高々一つの点に収束するとき, X の任意の異なる二点が互いに交わらない近傍を持つと言えるので, X はハウスドルフになる.

よってこの主張は正しい.

3. If \mathcal{F} converges to p and X is a Hausdorff space, then no other point of X is a cluster point of \mathcal{F} .

 $(\mathcal{F}$ が点 p に収束し、X がハウスドルフのとき、X で収積点は唯一つである.)

Proof. ハウスドルフ空間 X の異なる二点は, 交わらない近傍を持つから, いかなる有向点族も異なる二点を収積点として持ち得ない. ℱ が点 p に収束するとき, これは収積点になり, 唯一つに定まる.