What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Ian Lundberg

UCLA Sociology ianlundberg.org Rebecca Johnson

Dartmouth Quantitative Social Science rebeccajohnson.io Brandon M. Stewart

Princeton Sociology brandonstewart.org

23 September 2021.

Paper in *American Sociological Review*. Preprint on SocArxiv. Replication code on Dataverse. Research reported in this publication was supported by The Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number P2CHD047879

What is your estimand?

What is your estimand?

What is your estimand?

A common answer:

What is your estimand?

A common answer:

— We took [data source]

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

The purpose of the statistical analysis

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

 β_1 is an estimand that assumes a model

The purpose of the statistical analysis

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

 β_1 is an estimand that assumes a model

The purpose of the statistical analysis

What if the model is wrong?

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

$$\uparrow$$

 β_1 is an estimand that assumes a model

The purpose of the statistical analysis

What if the model is wrong?

The model is an approximation

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

 β_1 is an estimand that assumes a model

(

The purpose of the statistical analysis

What if the model is wrong?

So β_1 is an approximation to...

The model is an approximation

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

 β_1 is an estimand that assumes a model

The purpose of the statistical analysis

What if the model is wrong?

So β_1 is an approximation to...

The model is an approximation

Something. I just haven't said what.

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

 β_1 is an estimand that assumes a model

The purpose of the statistical analysis

What if the model is wrong?

So β_1 is an approximation to...

The model is an approximation

Something. I just haven't said what.

Is it a good approximation?

What is your estimand?

A common answer:

- We took [data source]
- We estimated β_1

$$Y = \beta_0 + X_1 \beta_1 + X_2 \beta_2 + \epsilon$$

 β_1 is an estimand that assumes a model

The purpose of the statistical analysis

What if the model is wrong?

So β_1 is an approximation to...

Is it a good approximation?

The model is an approximation

Something. I just haven't said what.

Epistemological crisis

What is your estimand?

What is your estimand?

What is your estimand?

A unit-specific quantity

What is your estimand?

 $Y_i(t)$

A unit-specific quantity

Our framework expands <u>theory</u>, links to transparent <u>evidence</u>, and unlocks computational <u>tools</u>

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong
Document that these issues are everywhere
Demonstrate how our framework can help
Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

→ Introduce a framework for quantitative social science

Illustrate through three examples where something went wrong

Document that these issues are everywhere

Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

Definition

A unit-specific quantity aggregated over a target population

Lieberson 1987, Abbott 1988, Freedman 1991, Xie 2013, Hernán 2018

Lieberson 1987, Abbott 1988, Freedman 1991, Xie 2013, Hernán 2018

Pearl 2009, Imbens and Rubin 2015, Morgan and Winship 2015, Elwert and Winship 2014

Young 2009, Watts 2014, Berk et al. 2019, Molina and Garip 2019

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

→ Introduce a framework for quantitative social science

Illustrate through three examples where something went wrong

Document that these issues are everywhere

Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science

→ Illustrate through three examples where something went wrong

Document that these issues are everywhere

Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

Example 1: An influential study with a narrow theoretical estimand

Theory or general goal by argument estimand by assumption estimand by data Estimation

First two births are the same sex

First two births are the same sex Third birth

First two births are the same sex
$$\longrightarrow$$
 Third birth \longrightarrow Employed

Vague estimand Effect of motherhood on employment

First two births are the same sex
$$\longrightarrow$$
 Third birth \longrightarrow Employed

Vague estimand Effect of motherhood on employment Precise estimand

First two births are the same sex
$$\longrightarrow$$
 Third birth \longrightarrow Employed

First two births are the same sex \longrightarrow Third birth \longrightarrow Employed

Theory or general goal by argument estimand Link by assumption estimand by data Estimation strategy

Precise estimand

Effect of having 3 vs. 2 children among those with at least two children who would have a third birth if and only if the first two were of the same sex

 \approx 4% of all mothers

Theory or general goal by argument estimand by assumption Empirical by data Estimation estimated by data

Precise estimand

Effect of having 3 vs. 2 children among those with at least two children who would have a third birth if and only if the first two were of the same sex

 \approx 4% of all mothers

You have to argue for one of two things:

- 1)
- 2)

Theory or general goal by argument estimand by assumption estimated by data Estimation strategy

Precise estimand

Effect of having 3 vs. 2 children among those with at least two children who would have a third birth if and only if the first two were of the same sex

 \approx 4% of all mothers

You have to argue for one of two things:

- 1) That estimand matters for theory, or
- 2)

Theory or general goal by argument estimand by assumption estimated by data Estimation strategy

Precise estimand

Effect of having 3 vs. 2 children among those with at least two children who would have a third birth if and only if the first two were of the same sex

 \approx 4% of all mothers

You have to argue for one of two things:

- 1) That estimand matters for theory, or
- 2) It speaks to some broader estimand

Example 2: An influential study with a misleading link to evidence

An Empirical Analysis of Racial Differences in Police Use of Force

Roland G. Fryer Jr.

Harvard University and National Bureau of Economic Research

This paper explores racial differences in police use of force. On nonlethal uses of force, blacks and Hispanics are more than 50 percent more likely to experience some form of force in interactions with police. Adding controls that account for important context and civilian behavior reduces, but cannot fully explain, these disparities. On the most extreme use of force—officer-involved shootings—we find no racial differences either in the raw data or when contextual factors are taken into account. We arrue that the patterns in the data are consistent with a model in which police officers are utility maximizers, a fraction of whom have a preference for discrimination, who incur relatively high expected costs of officer-involved shootings.

We can never be satisfied as long as the Negro is the victim of the unspeakable horrors of police brutality. (Martin Luther King Jr., August 28, 1963)

I. Introduction

From "Bloody Sunday" on the Edmund Pettus Bridge to the public beatings of Rodney King, Bryant Allen, and Freddie Helms, the relationship

This work has benefited greatly from discussions and debate with Chief William Exans Chief Charles McClelland, Chief Martha Montalvo, Sergrant Stephen Morrison, Jon Murad, Lynn Overmann, Chief Bud Riley, and Chief Scott Thomson. I am grateful to David Card, Kersein Charles, Christian Dustmann, Michael Greenstone, James Heckman, Richard Holden, Lasorence Katz, Steven Levitt, Jens Ludwig, Glenn Loury, Kevin Murphy, Derek Neal, John Overdeck, Jose Shapiro, Andrei Shleifer, Jory Spenkuch, Max Stone, John Van Roman, Christopher Winship, and seminar participants at Brown University, University of Chicago, London

Electronically published April 22, 2019 [Journal of Policial Economy, 2019, vol. 127, no. 5] © 2019 by The University of Chicago, All (solts reserved, 0022-0009-2019/12705-0006510.00

An Empirical Analysis of Racial Differences in Police Use of Force

Roland G. Fryer Jr.

Harvard University and National Bureau of Economic Research

This paper explores racial differences in police use of force. On nonlethal uses of force, blacks and Hispanics are more than 50 percent more likely to experience some form of force in interactions with police. Adding controls that account for important context and civilian behavior reduces, but cannot fully explain, these disparities. On the most extreme use of force-officer-involved shootings-we find no racial differences either in the raw data or when contextual factors are taken into account. We arrue that the patterns in the data are consistent with a model in which police officers are utility maximizers, a fraction of whom have a preference for discrimination, who incur relatively high expected costs of officer-involved shootings.

We can never be satisfied as long as the Negro is the victim of the unspeakable horrors of police brutality. (Martin Luther King Jr., August 28, 1963)

I. Introduction

From "Bloody Sunday" on the Edmund Pettus Bridge to the public beatings of Rodney King, Bryant Allen, and Freddie Helms, the relationship

This work has benefited greatly from discussions and debate with Chief William Exans Chief Charles McClelland, Chief Martha Montalso, Sergrant Stephen Morrison, Jon Murad, Lynn Overmann, Chief Bud Riley, and Chief Scott Thomson. I am grateful to David Card, Kersein Charles, Christian Dustmann, Michael Greenstone, James Heckman, Richard Holden Lasorence Katz, Steven Levitt, Jens Ludwig, Glenn Loury, Kevin Murphy, Derek Neal, John Overdeck, Jose Shapiro, Andrei Shleifer, Jory Spenkuch, Max Stone, John Van Roman, Christopher Winship, and seminar participants at Brown University, University of Chicago, London

servaroneme parameted Apini 22, 2019.
 [Jimenal of Political Economy, 2010, vol. 127, no. 5]
 2010 by The University of Chicago, All rights overveed. 0022:0909/2019/12705-0006\$10.00

1210

Lundberg, Johnson, and Stewart. What is Your Estimand?

It is the most surprising result of my career. Roland Fryer

It is the most surprising result of my career. Roland Fryer

An Empirical Analysis of Racial Differences in Police Use of Force

Roland G. Fryer Jr.

Harvard University and National Bureau of Economic Research

This paper explores racial differences in police use of force. On nonlethal uses of force, blacks and Hispanics are more than 50 percent more likely to experience some form of force in interactions with police. Adding controls that account for important context and civilian behavior reduces, but cannot fully explain, these disparities. On the most extreme use of force-officer-involved shootings-we find no racial differences either in the raw data or when contextual factors are taken into account. We arrue that the patterns in the data are consistent with a model in which police officers are utility maximizers, a fraction of whom have a preference for discrimination, who incur relatively high expected costs of officer-involved shootings.

We can never be satisfied as long as the Negro is the victim of the unspeakable horrors of police brutality. (Martin Luther King Jr., August 28, 1963)

I. Introduction

From "Bloody Sunday" on the Edmund Pettus Bridge to the public beatings of Rodney King, Bryant Allen, and Freddie Helms, the relationship

This work has benefited greatly from discussions and debate with Chief William Exans Chief Charles McClelland, Chief Martha Montalso, Sergrant Stephen Morrison, Jon Murad, Lynn Overmann, Chief Bud Riley, and Chief Scott Thomson. I am grateful to David Card, Kersein Charles, Christian Dustmann, Michael Greenstone, James Heckman, Richard Holden Lasorence Katz, Steven Levitt, Jens Ludwig, Glenn Loury, Kevin Murphy, Derek Neal, John Overdeck, Jose Shapiro, Andrei Shleifer, Jory Spenkuch, Max Stone, John Van Roman, Christopher Winship, and seminar participants at Brown University, University of Chicago, London

savaromano pannord April 22, 2019
 [Jimmal of Political Economy, 2010, vol. 127, no. 5]
 2010 by The University of Chicago, All rights onesved. 0022-0006/2019/12705-0006\$30.00

1210

: The Upshot

Surprising New Evidence Shows Bias in Police Use of Force but Not in Shootings

Theory or Set Learn $\mathsf{Theoretical}$ Empirical Estimation general goal estimand strategy by argument by assumption estimand by data

> It is the most surprising result of my career. Roland Fryer

An Empirical Analysis of Racial Differences in Police Use of Force

Roland G. Fryer Jr.

Harvard University and National Bureau of Economic Research

This paper explores racial differences in police use of force. On nonlethal uses of force, blacks and Hispanics are more than 50 percent more likely to experience some form of force in interactions with police. Adding controls that account for important context and civilian behavior reduces, but cannot fully explain, these disparities. On the most extreme use of force-officer-involved shootings-we find no racial differences either in the raw data or when contextual factors are taken into account. We arrue that the patterns in the data are consistent with a model in which police officers are utility maximizers, a fraction of whom have a preference for discrimination, who incur relatively high expected costs of officer-involved shootings.

We can never be satisfied as long as the Negro is the victim of the unspeakable horrors of police brutality. (Martin Luther King Jr., August 28, 1963)

I. Introduction

From "Bloody Sunday" on the Edmund Pettus Bridge to the public beatings of Rodney King, Bryant Allen, and Freddie Helms, the relationship

This work has benefited greatly from discussions and debate with Chief William Exans Chief Charles McClelland, Chief Martha Montalso, Sergrant Stephen Morrison, Jon Murad, Lynn Overmann, Chief Bud Riley, and Chief Scott Thomson. I am grateful to David Card, Kersein Charles, Christian Dustmann, Michael Greenstone, James Heckman, Richard Holden Lasorence Katz, Steven Levitt, Jens Ludwig, Glenn Loury, Kevin Murphy, Derek Neal, John Overdeck, Jose Shapiro, Andrei Shleifer, Jory Spenkuch, Max Stone, John Van Roman, Christopher Winship, and seminar participants at Brown University, University of Chicago, London

savaromano pannord April 22, 2019
 [Jimmal of Political Economy, 2010, vol. 127, no. 5]
 2010 by The University of Chicago, All rights onesved. 0022-0006/2019/12705-0006\$30.00

1210

: The Upshot

Surprising New Evidence Shows Bias in Police Use of Force but Not in Shootings

OPINION / COMMENTAR The Myth of Systemic Police Racism Hold officers accountable who use excessive force. But there's no evidence of widespread racial bias. By Heather Mac Donald June 2, 2020 144 gm FT

Set Theory or general goal by argument

 $\mathsf{Theoretical}$ estimand

by assumption

Empirical estimand

Learn by data Estimation strategy

An Empirical Analysis of Racial Differences in Police Use of Force

It is the most surprising result of my career. — Roland Fryer

Roland G. Fryer Jr.

Harvard University and National Bureau of Economic Research

This paper explores racial differences in police use of force. On nonlethal uses of force, blacks and Hispanics are more than 50 percent more likely to experience some form of force in interactions with police. Adding controls that account for important context and civilian behavior reduces, but cannot fully explain, these disparities. On the most extreme use of force-officer-involved shootings-we find no racial differences either in the raw data or when contextual factors are taken into account. We arrue that the patterns in the data are consistent with a model in which police officers are utility maximizers, a fraction of whom have a preference for discrimination, who incur relatively high expected costs of officer-involved shootings.

We can never be satisfied as long as the Negro is the victim of the unspeakable horrors of police brutality. (Martin Luther King Jr., August 28, 1963)

I. Introduction

From "Bloody Sunday" on the Edmund Pettus Bridge to the public beatings of Rodney King, Bryant Allen, and Freddie Helms, the relationship

This work has benefited greatly from discussions and debate with Chief William Exans Chief Charles McClelland, Chief Martha Montalso, Sergrant Stephen Morrison, Jon Murad, Lynn Overmann, Chief Bud Riley, and Chief Scott Thomson. I am grateful to David Card, Kersein Charles, Christian Dustmann, Michael Greenstone, James Heckman, Richard Holden Lasorence Katz, Steven Levitt, Jens Ludwig, Glenn Loury, Kevin Murphy, Derek Neal, John Overdeck, Jose Shapiro, Andrei Shleifer, Jory Spenkuch, Max Stone, John Van Roman, Chris-

topher Winship, and seminar participants at Brown University, University of Chicago, London

: The Upshot

Surprising New Evidence Shows Bias in Police Use of Force but Not in Shootings

OPINION / COMMENTAR The Myth of Systemic Police Racism Hold officers accountable who use excessive force. But there's no evidence of widespread racial bias. By Heather Mac Donald June 2, 2020 144 gm FT

Reality check: study finds no racial bias in police shootings

savaromano pannord April 22, 2019
 [Jimmal of Political Economy, 2010, vol. 127, no. 5]
 2010 by The University of Chicago, All rights onesved. 0022-0006/2019/12705-0006\$30.00

Evidence: Police use lethal force at the same rate against black and white civilians who are stopped.

Theory or general goal by argument estimand by assumption estimand by data Estimation

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Fryer 2019. Fuller critique by Knox et al. 2020 and Durlauf and Heckman 2020.

Theory or general goal by argument estimand by assumption estimand by data Estimation

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Theory or general goal by argument estimand by assumption estimand by data Estimation

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Fryer responds:

Theory or general goal by argument estimand by assumption estimand by data Estimation

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Fryer responds:

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Fryer responds:

"We use the term 'racial differences' 114 times in lieu of the more prescriptive wording—'racial discrimination.' We use the phrase 'conditional on an interaction' 20 times...I am not sure how many more ways we would have needed to caveat our results to satisfy [the critics]."

Example 3: An influential study where estimation led to confusion

Theory or general goal by argument Set of the stimand by assumption strategy

The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

	β	(SE)	
Birth Cohort 1966+ (vs. 1938–1965)	.318	(.285)	
Female	136	(.133)	
Later Cohorts × Female	107	(.272)	
Mother Some College	.737**	(.134)	
Later Cohorts × Mother Some College	.079	(.218)	
No Father Present	031	(.129)	
Father Some College	1.285**	(.113)	
Later Cohorts × No Father	107	(.226)	
Later Cohorts × Father Some College	390	(.211)	
Mother Some College × Female	.120	(.147)	
No Father Present × Female			
Father Some College × Female			
Mother Some College × No Father	.108	(.208)	
Mother Some College × Father Some College	.150	(.138)	
No Father or Father ≤HS × Male	.303*	(.143)	
No Father or Father ≤HS × Male × Later Cohorts	801**	(.293)	
Mother Some College × Female × Later Cohorts	.221	(.295)	
No Father × Female × Later Cohorts			
Father Some College \times Male \times Later Cohorts			
Age Main Effects	(omitted)		
2- and 3-way Interactions between			
Age and (Gender, Cohort)	(omitted)		
Constant	1.695**	(.140)	
N	7,024		
df	15		

		β	(SE)
Birth Cohort 1966+ (vs. 1938–1965)		.318	(.285)
Female		136	(.133)
Later Cohorts × Female		107	(.272)
Mother Some College		.737**	(.134)
Later Cohorts × Mother Some College		.079	(.218)
No Father Present		031	(.129)
Father Some College		1.285**	(.113)
Later Cohorts × No Father		107	(.226)
Later Cohorts × Father Some College		390	(.211)
Mother Some College × Female		.120	(.147)
No Father Present × Female			
Father Some College × Female			
Mother Some College × No Father		.108	(.208)
Mother Some College × Father Some College		.150	(.138)
No Father or Father ≤HS × Male		.303*	(.143
No Father or Father ≤HS × Male × Later Cohorts	\rightarrow	801**	(.293)
Mother Some College × Female × Later Cohorts	•	.221	(.295)
No Father × Female × Later Cohorts			
Father Some College \times Male \times Later Cohorts			
Age Main Effects		(omitted)	
2- and 3-way Interactions between			
Age and (Gender, Cohort)		(omitted)	
Constant		1.695**	(.140)
N	7,024		
df	15		

Theory or general goal by argument Theoretical estimand by assumption Empirical estimation strategy

Coefficient: Gender \times Cohort \times Father status The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

Theory or general goal by argument Theoretical estimand by assumption Empirical estimation strategy

Coefficient:
Gender × Cohort
× Father status

The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

— Buchmann and DiPrete 2006

Descriptive Proportion completing college estimand: within subgroups of the predictors

Lundberg, Johnson, and Stewart. What is Your Estimand?

The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

The emergence of a female advantage in education is attributable to a reversal in the gender-specific effects of father status.

— Buchmann and DiPrete 2006

Alternate theory: The Vietnam War

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science

→ Illustrate through three examples where something went wrong

Document that these issues are everywhere

Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong

→ Document that these issues are everywhere

Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

Review
All 32 articles
in ASR 2018
using
quantitative
data

Experiments

Observational data

Review
All 32 articles
in ASR 2018
using
quantitative
data

All 32 articles in ASR 2018 using quantitative data

Clarity about the target population

in ASR 2018
using
quantitative
data

3 typ
18 articles
56% of AS

Clarity about the target population

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong

→ Document that these issues are everywhere

Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong
Document that these issues are everywhere

→ Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

Theory or general goal by argument Theoretical Link by assumption estimand by data Estimation strategy

Pal and Waldfogel (2016) estimate the family gap in pay.

Pal and Waldfogel (2016) estimate the family gap in pay.

Is the theoretical estimand descriptive?

Pal and Waldfogel (2016) estimate the family gap in pay.

Is the theoretical estimand descriptive?

"the differential in hourly wages between women with children and women without children"

Pal and Waldfogel (2016) estimate the family gap in pay.

Is the theoretical estimand descriptive?

"the differential in hourly wages between women with children and women without children"

Averaged over a target population of mothers

Averaged over a target population of non-mothers

Pal and Waldfogel (2016) estimate the family gap in pay.

Is the theoretical estimand descriptive? Is it causal?

"causal estimation techniques"

"causal estimation techniques"

Averaged over a target population of mothers

Added complexity: Wages are undefined for the non-employed.

Averaged over a target population of mothers

Added complexity: Wages are undefined for the non-employed.

Averaged over a target population of mothers Theory or general goal by argument by argument by assumption Estimation strategy

Unit-specific quantity: $Y_i \begin{pmatrix} Mother, \\ Employed \end{pmatrix} - Y_i \begin{pmatrix} Non-mother, \\ Employed \end{pmatrix}$

Theory or general goal by argument by argument by argument estimand by assumption estimand by data Estimation strategy

Unit-specific quantity:
$$Y_i \begin{pmatrix} Mother, \\ Employed \end{pmatrix} - Y_i \begin{pmatrix} Non-mother, \\ Employed \end{pmatrix}$$

Theory or general goal by argument by argument by argument estimand by assumption estimand by data Estimation strategy

Unit-specific quantity:
$$Y_i \begin{pmatrix} Mother, \\ Employed \end{pmatrix} - Y_i \begin{pmatrix} Non-mother, \\ Employed \end{pmatrix}$$

Theory or general goal by argument by argument by assumption testimand by data Estimation strategy

Unit-specific quantity:
$$Y_i \begin{pmatrix} Mother, \\ Employed \end{pmatrix} - Y_i \begin{pmatrix} Non-mother, \\ Employed \end{pmatrix}$$

Unit-specific quantity:
$$Y_i \begin{pmatrix} Mother, \\ Employed \end{pmatrix} - Y_i \begin{pmatrix} Non-mother, \\ Employed \end{pmatrix}$$

Potential outcomes

Theory or general goal by argument estimand Link by assumption estimand by data Estimation strategy

$$\mathsf{E}\left(Y_i \middle| \begin{array}{lll} \mathsf{Motherhood} & = & \mathsf{Mother}, \\ \mathsf{Employment} & = & \mathsf{Employed}, \\ \mathsf{Covariates} \ \vec{X} & = & \mathsf{Observed} \ \vec{x_{ij}}, \end{array} \right)$$

Realized outcomes

 Y_i

Employed mothers with a high school degree, married, white, age 30

This can be estimated by machine learning! \rightarrow E $\left(Y_i \middle| \begin{array}{ccc} \text{Motherhood} & = & \text{Mother,} \\ \text{Employment} & = & \text{Employed,} \\ \text{Covariates } \vec{X} & = & \text{Observed } \vec{x_i} \end{array}\right)$

Realized outcomes

 Y_i

Employed mothers with a high school degree, married, white, age 30

Any prediction algorithm that minimizes squared errors

Employed mothers
with a high school degree,
married, white, age 30

married, white, age 30

Model

married, white, age 30

Model

Any prediction algorithm that minimizes squared errors

Ordinary Generalized Random Least Additive Forest Squares Model

Employed mothers
with a high school degree,
married, white, age 30

Theory or general goal by argument Set estimand by assumption by data Estimation strategy

1) Learn an algorithm to predict the outcome

Theory or general goal by argument estimand by assumption Empirical estimation strategy

- 1) Learn an algorithm to predict the outcome
- 2) Predict for every unit at each treatment value

$$\hat{\mathsf{E}}\left(Y_i \middle| \begin{array}{ll} \mathsf{Motherhood} &=& \mathsf{Mother}, \\ \mathsf{Employment} &=& \mathsf{Employed}, \\ \mathsf{Covariates} \ \vec{X} &=& \mathsf{Observed} \ \vec{x_i} \end{array}\right)$$

- 1) Learn an algorithm to predict the outcome
- 2) Predict for every unit at each treatment value

$$\hat{Y}_i \begin{pmatrix} \text{Mother}, \\ \text{Employed} \end{pmatrix} = \hat{E} \begin{pmatrix} Y_i & \text{Motherhood} & = & \text{Mother}, \\ \text{Employment} & = & \text{Employed}, \\ \text{Covariates } \vec{X} & = & \text{Observed } \vec{x_i} \end{pmatrix}$$

- 1) Learn an algorithm to predict the outcome
- 2) Predict for every unit at each treatment value

$$\hat{Y}_i egin{pmatrix} ext{Non-mother}, \ ext{Employed} \end{pmatrix} = \hat{\mathsf{E}} \left(Y_i \middle| egin{pmatrix} ext{Motherhood} &= & ext{Non-mother}, \ ext{Employment} &= & ext{Employed}, \ ext{Covariates } \vec{X} &= & ext{Observed } \vec{x_i} \end{pmatrix}$$

- 1) Learn an algorithm to predict the outcome
- 2) Predict for every unit at each treatment value

$$\hat{Y}_i \begin{pmatrix} \text{Non-mother}, \\ \text{Employed} \end{pmatrix} = \hat{E} \begin{pmatrix} Y_i & \text{Motherhood} & = & \text{Non-mother}, \\ \text{Employment} & = & \text{Employed}, \\ \text{Covariates } \vec{X} & = & \text{Observed } \vec{x_i} \end{pmatrix}$$

$$\hat{Y}_i \begin{pmatrix} \text{Mother}, \\ \text{Employed} \end{pmatrix} - \hat{Y}_i \begin{pmatrix} \text{Non-mother}, \\ \text{Employed} \end{pmatrix}$$

- 1) Learn an algorithm to predict the outcome
- 2) Predict for every unit at each treatment value

$$\hat{Y}_i egin{pmatrix} ext{Non-mother}, \\ ext{Employed} \end{pmatrix} = \hat{\mathsf{E}} egin{pmatrix} \mathsf{Y}_i & \mathsf{Motherhood} &=& \mathsf{Non-mother}, \\ ext{Employment} &=& \mathsf{Employed}, \\ ext{Covariates } \vec{X} &=& \mathsf{Observed } \vec{x_i} \end{pmatrix}$$

3) Average over the target population

$$\frac{1}{n} \sum_{i=1}^{n} \left(\hat{Y}_{i} \begin{pmatrix} \text{Mother,} \\ \text{Employed} \end{pmatrix} - \hat{Y}_{i} \begin{pmatrix} \text{Non-mother,} \\ \text{Employed} \end{pmatrix} \right)$$

- 1) Learn an algorithm to predict the outcome
- 2) Predict for every unit at each treatment value

$$\hat{Y}_i inom{ ext{Non-mother},}{ ext{Employed}} = \hat{\mathsf{E}} igg(Y_i igg| egin{array}{cccc} ext{Motherhood} &= & ext{Non-mother}, \\ ext{Employment} &= & ext{Employed}, \\ ext{Covariates } \vec{X} &= & ext{Observed } \vec{x_i} \end{array}$$

3) Average over the target population

$$\frac{1}{n}\sum_{i=1}^{n} \left(\hat{Y}_{i} \begin{pmatrix} \text{Mother,} \\ \text{Employed} \end{pmatrix} - \hat{Y}_{i} \begin{pmatrix} \text{Non-mother,} \\ \text{Employed} \end{pmatrix} \right)$$

This is called an imputation estimator

Hahn, 1998 Abadie & Imbens 2006

Also called the parametric g-formula in biostatistics, Hernán & Robins 2020

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

+ Interaction between age and motherhood

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

+ Interaction between age and motherhood

+ Allow a smooth curve for age rather than quadratic

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

+ Interaction between age and motherhood

+ Allow a smooth curve for age rather than quadratic

+ Include each age as a separate indicator variable

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

+ Interaction between age and motherhood

+ Allow a smooth curve for age rather than quadratic

+ Include each age as a separate indicator variable

Most flexible + Include all interactions among all predictors

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

+ Interaction between age and motherhood

+ Allow a smooth curve for age rather than quadratic

+ Include each age as a separate indicator variable

Most flexible + Include all interactions among all predictors

Choices about functional form

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

+ Interaction between age and motherhood

+ Allow a smooth curve for age rather than quadratic

+ Include each age as a separate indicator variable

Most flexible + Include all interactions among all predictors

Choices about functional form are best decided by the data

Outcome Log hourly wage

Predictors Motherhood, age, race, education, marital status

Candidate algorithms

Least flexible OLS with a quadratic for age

Best predictions + Interaction between age and motherhood

+ Allow a smooth curve for age rather than quadratic

+ Include each age as a separate indicator variable

Most flexible + Include all interactions among all predictors

Choices about functional form are best decided by the data

Our framework partitions research choices

Some choices must be theory-driven

— What question is important? theoretical estimand

— What variables should I adjust? empirical estimand

Some choices can be data-driven

— Do I include a squared term? estimation strategy

— Do I need an interaction?

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong
Document that these issues are everywhere

→ Demonstrate how our framework can help

Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

What is Your Estimand?

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science

Illustrate through three examples where something went wrong

Document that these issues are everywhere

Demonstrate how our framework can help

→ Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

The Gap-Closing Estimand:

A Causal Approach to Study Interventions

That Close Disparities Across Social Categories

Lundberg, lan Working paper

On SocArxiv

Standard practice: Report the coefficient on race, gender, or class.

The Gap-Closing Estimand:A Causal Approach to Study Interventions

That Close Disparities Across Social Categories

Lundberg, Ian Working paper On SocArxiv Standard practice: Report the coefficient on race, gender, or class.

But is "treatment" the right role for these complex constructs?

The Gap-Closing Estimand:
A Causal Approach to Study Interventions
That Close Disparities Across Social Categories

Standard practice: Report the coefficient on race, gender, or class.

But is "treatment" the right role for these complex constructs?

The Gap-Closing Estimand:
A Causal Approach to Study Interventions
That Close Disparities Across Social Categories

Standard practice: Report the coefficient on race, gender, or class.

But is "treatment" the right role for these complex constructs?

The Gap-Closing Estimand:
A Causal Approach to Study Interventions
That Close Disparities Across Social Categories

Gap-Defining	
Category	
X = x	

Gap-Defining Category X = x'

Race Class Origin Gender

Collections of units

The Gap-Closing Estimand:

A Causal Approach to Study Interventions
That Close Disparities Across Social Categories

Gap-Defining Category X = x'

Race Class Origin Gender

Collections of units

Incarceration College Occupation

Exposed to the gap-closing treatment T = t

The Gap-Closing Estimand:

A Causal Approach to Study Interventions That Close Disparities Across Social Categories

Collections of units

Exposed to the gap-closing treatment T = t

To yield a counterfactual disparity

The Gap-Closing Estimand:
A Causal Approach to Study Interventions
That Close Disparities Across Social Categories

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong

Document that these issues are everywhere

Demonstrate how our framework can help

→ Extend to answer new theoretical questions

Discuss Every quantitative study should define the estimand

Averaged over a target population

Defining the Target Quantity Connects Statistical Evidence to Theory

Introduce a framework for quantitative social science
Illustrate through three examples where something went wrong
Document that these issues are everywhere
Demonstrate how our framework can help
Extend to answer new theoretical questions

→ Discuss Every quantitative study should define the estimand

Averaged over a target population

Every quantitative study should answer this question

Averaged over a target population

 Every quantitative study should answer this question

Averaged over a target population

Every quantitative study should answer this question

When you **write** a quantitative paper, the estimand allows you to

— Motivate the question

Averaged over a target population

 Every quantitative study should answer this question

- Motivate the question
- Address selection

Averaged over a target population

Every quantitative study should answer this question

- Motivate the question
- Address selection
- Unlock computational tools

Averaged over a target population

Every quantitative study should answer this question

- Motivate the question
- Address selection
- Unlock computational tools
- Speak to a broad audience

Averaged over a target population

Every quantitative study should answer this question

- Understand the author's aim
- Pinpoint your concerns

Averaged over a target population

In the future, estimands will only become more important

Every quantitative study should answer this question

Averaged over a target population

In the future, estimands will only become more important

New data have missing values

- Non-probability samples
- Administrative records

Every quantitative study should answer this question

Averaged over a target population

Every quantitative study should answer this question

In the future, estimands will only become more important

New data have missing values

- Non-probability samples
- Administrative records

New methods flourish with a clear goal

— Machine learning

Averaged over a target population

Every quantitative study should answer this question

In the future, estimands will only become more important

New data have missing values

- Non-probability samples
- Administrative records

 $\begin{array}{c|c} Y_i(t) & Y_i(t) \\ \text{A unit-specific quantity} & Y_i(t) \\ Y_i(t) & Y_i(t) \end{array}$

Averaged over a target population

New methods flourish with a clear goal

— Machine learning

New questions can be found beyond coefficients

- Describe counterfactual disparities
- Predict the effects of targeted interventions

Defining the Target Quantity Connects Statistical Evidence to Theory

Ian Lundberg

ilundberg@princeton.edu ianlundberg.org

Rebecca Johnson rebecca.ann.johnson@ dartmouth.edu rebeccajohnson.io

Brandon Stewart bms4@princeton.edu brandonstewart.org Every quantitative study should answer this question

Averaged over a target population

Draft on SocArxiv Code on Dataverse Forthcoming, American Sociological Review