Name:	
School:	

Calculus AB Individual 2018

Catholic High Tournament

1. Find
$$\lim_{x \to \pi/2} \left(\frac{\cos^2(x)}{1 - \sin x} \right)$$

2. Find
$$\lim_{x \to 2} \left(\frac{e^x - e^2}{x - 2} \right)$$

- 3. Find the equation of the line tangent to $y = \ln x$ when x = e (answer in slope intercept form)
- 4. Find the coordinates of all points on $y = x^3 x$ that have tangent lines parallel to y = 2x
- 5. If $j(x) = \frac{f(x)}{x}$ and f(x) has values given in the table below, find j'(3)

x	f(x)	f'(x)
3	2	-2

- 6. Find the value of the derivative for $x = \tan y$ at $(1, \frac{\pi}{4})$
- 7. Find the slope of the normal to $x^3 + 2xy = 5$ at (1,2)
- 8. If $y = \ln(5x)$, find y'''(3)
- 9. The tangent line to f(x) at (2,7) also passes through (4,-9). Find f(2) + f'(2)
- 10. If $f(x) = x 2\sin x$ on $[0, 2\pi]$, give the x coordinate of the relative maximum point.

- 11. On what open interval(s) is $f(x) = x^3 6x^2 + 15$ decreasing?
- 12. Find the maximum value of $f(\theta) = \theta + \cos \theta$ on $[0, \pi]$
- 13. If the position of a particle moving along a horizontal number line is given by $x = 2t^3 + 3t^2 36t + 40$ (x in cm, t in seconds), find the acceleration (in cm/sec²) when the velocity is 0.
- 14. The area of a rectangle is increasing at $14~\rm cm^2/sec$ and the length of the rectangle is decreasing at $2~\rm cm/sec$. How fast is the width changing when the length is $12~\rm cm$ and the area is $60~\rm cm^2$? (include units)
- 15. Find c for which $y = x^2 + c$ is tangent to the line y = x.

Answers

- 1. 2
- 2. e^2
- $3. \ y = \frac{1}{e}x$
- 4. (1,0), (-1,0)
- 5. $-\frac{8}{9}$
- 6. $\frac{1}{2}$
- 7. $\frac{2}{7}$
- 8. $\frac{2}{27}$
- 9. -1
- 10. $\frac{5\pi}{3}$
- 11. (0,4)
- 12. $\pi 1$
- 13. 30 cm/sec^2
- $14.\ 2\ \mathrm{cm/sec}$
- 15. $c = \frac{1}{4}$