Математический анализ, Коллоквиум 4

Балюк Игорь @lodthe, GitHub

Материалы предоставил Егор Косов.

Дата изменения: 2020.05.27 в 06:05

Содержание

1	Метрические и нормированные пространства.	2
2	Компакты в метрических пространствах	4
3	Дифференцируемость отображений	5
4	Градиент и достаточное условие дифференцируемости	6
5	Частные производные высокого порядка	7
6	Правила дифференцирования	8
7	Дифференциалы высоких порядков.	8
8	Дифференцирование сложной функции.	9
9	Дифференциал обратного отображения	10

Исходный код предоставил Егор Косов. В данном файле я попытался исправить опечатки и облегчить некоторые моменты для понимания.

Оригинальный список вопросов

1 Метрические и нормированные пространства.

Оригинальный конспект.

Определение. Пусть X — множество. Функция $d: X \times X \to [0; +\infty)$ называется метрикой, если

- 1. $d(x,y) = 0 \iff x = y;$
- 2. $d(x,y) = d(y,x) \forall x, y \in X;$
- 3. $\|\lambda x\| = |\lambda| \|x\|, \forall x \in X;$
- 4. $||x + y|| \le ||x|| + ||y|| \forall x, y \in X$.

Пара $(X, \|\cdot\|)$ называется нормированным пространством.

Нормой является привычнам нам длина вектора. Аналогично матрике, мы будем часто работать с Евклидовой нормой: пусть $x \in \mathbb{R}^n$, тогда $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$.

Всякое нормированное пространство является метрическим с метрикой $d(x,y) = \|x-y\|$.

Определение. Пусть X — линейное пространство. Функция $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ называется скалярным произведением, если для всех $x, y, z \in X$ и всех $a, b \in \mathbb{R}$ выполнены следующие условия:

- 1. $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \iff x = 0$;
- 2. $\langle x, y \rangle = \langle y, x \rangle$;
- 3. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.

Линейное пространство X со скалярным произведением называется Евклидовым.

Мы будем часто работать со следующим скалярным произведением: пусть $x, y \in \mathbb{R}^n$, тогда $\langle x, y \rangle = x_1 \cdot y_1 \dots x_n \cdot y_n$.

Лемма. (Неравенство Коши-Буняковского) Пусть $\langle \cdot, \cdot \rangle$ скалярное произведение на линейном пространстве X, тогда $\forall x,y \in X$

$$|\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}.$$

Доказательство. Заметим, что для $\lambda \in \mathbb{R}$ выполнено

$$0 \leqslant \langle x + \lambda y, x + \lambda y \rangle = \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle + \lambda \langle x, x \rangle.$$

Не ограничивая общности, считаем, что $\langle y,y\rangle>0$ (иначе y — нулевой вектор, доказательство тривиально). Это означает, что ветви параболы смотрят вверх. Но парабола не касается оси Ox, поэтому дискриминант этого трехчлена неположителен, т.е. $4|\langle x,y\rangle|-4\langle y,y\rangle\langle x,x\rangle\leqslant 0$.

Следствие. На евклидовом пространстве функция $||x|| := \sqrt{\langle x, x \rangle}$ является нормой.

Доказательство. Первые два свойства следуют из определения скалярного произведения. Неравенство треугольника следует из неравенства Коши-Буняковского:

$$||x + y||^2 = \langle x + y, x + y \rangle \le ||x||^2 + 2 \cdot |\langle x, y \rangle| + ||y||^2 \le ||x||^2 + 2 ||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Пример. На линейном пространстве \mathbb{R}^k всех упорядоченных наборов (x_1,\dots,x_k) задано скалярное произведение $\langle x,y\rangle:=\sum_{j=1}^k x_jy_j$. Тем самым, на \mathbb{R}^k задана естественная евклидова метрика $\|x-y\|:=\sqrt{|x_1-y_1|^2+\dots+|x_k-y_k|^2}$.

Определение. Пусть (X, d) метрическое пространство.

1. Множество

$$B_r(x_0) := \{ x \in X \mid d(x, x_0) < r \}$$

называется **открытым шаром** радиуса r.

2. Множество

$$\overline{B_r}(x_0) := \{ x \in X \mid d(x, x_0) \leqslant r \}$$

называется **замкнутым шаром** радиуса r.

- 3. Последовательность точек $x_n \in X$ называется **сходящейся к точке** x, если для всякого $\varepsilon > 0$ найдется такой номер $N(\varepsilon)$, что $d(x,x_n) < \varepsilon$ для каждого $n \geqslant N(\varepsilon)$.
- 4. Последовательность точек $x_n \in X$ называется фундаментальной, если для всякого $\varepsilon > 0$ найдется такой номер $N(\varepsilon)$, что $d(x_k, x_n) < \varepsilon$ для всех $k, n \geqslant N(\varepsilon)$.
- 5. Точка x называется **предельной** для множества $M \subset X$, если для всякого $\varepsilon > 0$ выполнено $B_{\varepsilon}(x) \cap (M \setminus \{x\}) \neq \emptyset$.
- 6. Множество $U\subset X$ называется **открытым**, если для всякого $x\in U$ найдется такое $\varepsilon>0$, что $B_{\varepsilon}(x)\subset U$.
- 7. Множество $F \subset X$ называется **замкнутым**, если множество $X \setminus F$ открыто.

Лемма. Пусть (X, d) метрическое пространство. Тогда

- 1. если $x_n \to x, y_n \to y$, то $d(x_n, y_n) \to d(x, y)$;
- 2. предел сходящейся последовательности единственный;
- 3. любой открытый шар является открытым множеством;
- 4. множество F замкнуто тогда и только тогда, когда множество F содержит все свои предельные точки.

Доказательство.

1. Следует из оценки

$$|d(x_n, y_n) - d(x, y)| \le |d(x_n, y_n) - d(x_n, y)| + |d(x_n, y) - d(x, y)| \le d(y_n, y) + d(x_n, x).$$

- 2. Следует из пункта 1).
- 3. Если $x \in B_r(x_0)$, то по неравенству треугольника $B_{\varepsilon}(x) \subset B_r(x_0)$ при $\varepsilon + d(x,x_0) < r$.
- 4. Множество F замкнуто тогда и только тогда, когда $\forall x \notin F \ \exists \varepsilon > 0: \ B_{\varepsilon} \cap F = \varnothing \iff$ всякая точка $x \notin F$ не предельная для F.

Определение. Метрическое пространство называется полным, если каждая фундаментальная последовательность в нем сходится.

Замечание. На \mathbb{R}^k справедливы соотношения

$$\max_{1 \le j \le k} |x_j| \le ||x_j|| \le \sqrt{k} \cdot \max_{1 \le j \le k} |x_j|$$

для векторов $x = (x_1, \dots, x_k)$. Тем самым, последовательность $x_n \to x$ в \mathbb{R}^k тогда и только тогда, когда $(x_n)_j \to x_j$.

Пример. Пространство \mathbb{R}^k со стандартной евклидовой метрикой полное. Действительно. если последовательность векторов $x_n \in \mathbb{R}^k$ фундаментальна, то фундаментальны и последовательности координат $\{(x_n)_j\}_{j=1}^{\infty}$ для всякого $j \in \{1, \dots, k\}$.

Тем самым, у j-ой координаты есть предел x_j для каждого $j \in \{1, \ldots, k\}$. То есть $|(x_n)_j - x_j| \to 0$. Значит, $x_n \to x := (x_1, \ldots, x_k)$.

Пример. Пусть $X = [0; \pi/2)$. Пространство X не является полным с метрикой $d_1(x, y) = |x - y|$, но является полным с метрикой $d_2(x, y) = |\lg x - \lg y|$.

Определение. Пусть (X, d_X) и (Y, d_Y) — два метрических пространства. Отображение $f: X \to Y$ называется непрерывным в точке $x_0 \in X$, если для всякой последовательности $x_n \to x_0$ выполнено $f(x_n) \to f(x_0)$.

Лемма. Пусть (X, d_X) и (Y, d_Y) — два метрических пространства.

- 1. Отображение $f: X \to Y$ является непрерывным в точке $x \in X$ тогда и только тогда, когда для всякого $\varepsilon > 0$ найдется $\delta > 0$ такое, что $d_Y(f(x), f(x_0)) < \varepsilon$, если $d_X(x, x_0) < \delta$.
- 2. Отображение $f: X \to Y$ является непрерывным в каждой точке $x \in X$ тогда и только тогда, когда прообраз каждого открытого множества в Y будет открытым множеством в X (такие отображения будем называть просто непрерывными).

Доказательство.

- 1. Отображение f разрывно в точке $x_0 \iff$ найдется последовательность $x_n \to x_0$, для которой $f(x_n)$ не сходится к $f(x_0) \iff$ найдется число $\varepsilon > 0$ и последовательность $x'_n \to x_0$, для которой $d_Y(f(x'_n), f(x_0)) \geqslant \varepsilon \iff$ найдется такое число $\varepsilon > 0$, что для произвольного $\delta > 0$ существует $x_\delta \in B_\delta(x_0)$, для которого $d_Y(f(x_\delta), f(x_0)) \geqslant \varepsilon$.
- 2. Если прообраз любого открытого множества открыт, то для произвольного $\varepsilon > 0$ найдется такое $\delta > 0$, что $f^{-1}(B_{\varepsilon}(f(x_0))) \supset B_{\delta}(x_0)$, и значит отображение f непрерывно в точке x_0 . Наоборот: пусть U открыто в Y и $x_0 \in f^{-1}(U)$. Тогда в силу открытости найдется $\varepsilon > 0$, для которого $B_{\varepsilon}(f(x_0)) \subset U$. Из-за непрерывности в точке x_0 найдется такое $\delta > 0$, что $f^{-1}(B_{\varepsilon}(f(x_0))) \supset B_{\delta}(x_0)$, что дает открытость множества $f^{-1}(U)$.

Предложение. Пусть $f: X \to Y$ непрерывна в точке $a \in X, g: Y \to Z$ непрерывна в точке $f(a) \in Y$. Тогда композиция $g \circ f: X \to Z$ непрерывна в точке a.

Доказательство. Следует из определения непрерывности. ТООО()

Следствие. Пусть $f, g : \mathbb{R}^k \to \mathbb{R}^m$ — непрерывные в точке a функции. Тогда f + g и $f \cdot g$ — непрерывны в точке a.

Доказательство. Следует из того, что отображение $(x_1, x_2) \to x_1 + x_2$ и $(x_1, x_2) \to x_1 \cdot x_2$ непрерывны на \mathbb{R}^2 .

Определение. Пусть (X, d_X) и (Y, d_Y) — метрические пространства и пусть x_0 — предельная точка в X. Скажем, что предел функции $f: X \to Y$ в точке x_0 равен y_0 , если функция g, определенная соотношением g(x) = f(x) при $x \neq x_0$ и $g(x_0) = y_0$ иначе, непрерывна в точке x_0 .

2 Компакты в метрических пространствах

Определение. Множество K в метрическом пространстве называется компактным тогда и только тогда, когда из произвольной последовательности $\{x_n\}_{n=1}^{\infty} \subset K$ можно выделить сходящуюся подпоследовательность $x_{n_k} \to x \in K$.

Лемма. Пусть K — компакт. Тогда

- 1. K ограниченное множество;
- 2. K замкнутое множество;
- 3. образ K при непрерывном отображении компактен.

Доказательство.

- 1. Зафиксируем произвольную точку $x_0 \in K$. Если K неограниченное множество, то найдется последовательность $x_n \in K$, $d(x_n, x_0) \to \infty$. Переходя к подпоследовательности, имеем $x_{n_k} \to x$, $d(x_{n_k}, x_0) \to d(x, x_0)$. Противоречие.
- 2. Если $x_n \in K$, $x_n \to x_0$, то переходя к подпоследовательности $x_{n_k} \to x \in K$, в силу единственности предела $x_0 = x \in K$.

3. Рассмотрим последовательность $\{f(x_n)\}_{n=1}^{\infty}, x_n \in K$. Переходя к подпоследовательности имеем $x_{n_k} \to x \in K$. Так как f — непрерывное отображение, то $f(x_{n_k}) \to f(x) \in f(K)$.

Предложение. Множество K в \mathbb{R}^k со стандартной евклидовой метрикой компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство. Необходимость этого условия следует из предыдущей леммы. Проверим достаточность. Пусть множество K — замкнуто и ограничено, и пусть $x_n \in K$. В силу ограниченности K ограниченными будут и все координаты $(x_n)_j$ последовательности x_n . Тогда найдется сходящаяся подпоследовательность первых координат $(x_{n_m})_1$. Далее, из последовательности $(x_{n_m})_2$ можно также извлечь сходящуюся подпоследовательность. Повторяя процедуру, получим подпоследовательность x_n' , у которой каждая координата сходится, то есть $(x_n')_j \to x_j$ для некоторого x_j . Тем самым, $x_n' \to x = (x_1, \dots, x_k)$. В силу замкнутости K, вектор $x \in K$.

Следствие. Пусть K — компакт, $f: K \to \mathbb{R}$ — непрерывная функция. Тогда образ f(K) — ограниченное множество и найдутся точки $x_m, x_M \in K$, для которых $f(x_m) = \inf_{x \in K} f(x), f(x_M) = \sup_{x \in K} f(x)$.

3 Дифференцируемость отображений

Определение. Отображение $f: \mathbb{R}^k \to \mathbb{R}^m$ называется дифференцируемым в точке x, если для каждого $h \in \mathbb{R}^k$

$$f(x + h) = f(x) + Lh + \alpha(h) ||h||,$$

где $L: \mathbb{R}^k \to \mathbb{R}^m$ — линейное отображение, $\lim_{\|h\| \to 0} \|\alpha(h)\| = 0$. Линейное отображение L называют дифференциалом f в точке x и обозначают df.

Замечание. Напомним, что отображение $L: \mathbb{R}^k \to \mathbb{R}^m$ называется линейным, если

$$L(a_1h_1 + a_2h_2) = a_1Lh_1 + a_2Lh_2$$

для произвольных векторов $h_1, h_2, \in \mathbb{R}^k$ и произвольных чисел $a_1, a_2 \in \mathbb{R}$.

Если в \mathbb{R}^k фиксирован базис $e:=\{e_1,\ldots,e_k\}$, а в \mathbb{R}^m фиксирован $e':=\{e'_1,\ldots,e'_m\}$, то линейное отображение L представимо в виде $L(h)=L(e_1)h_1+\cdots+L(e_k)h_k$, где $h=(h_1,\ldots,h_k)$ в базисе e, а векторы $L(e_i)=(e_{1,i},\ldots,a_{m,i})$ в базисе e'.

В частности, каждое линейное отображение при фиксированных базисах e и e' в \mathbb{R}^k и \mathbb{R}^m соответственно записывается с помощью матрицы $A=(a_{ij})$. Кроме того,

$$||Lh|| \le (||L(e_1)|| + \dots + ||L(e_k)||) \cdot \max_{1 \le i \le k} |h_i| \le C ||h||$$

и каждое линейное отображение непрерывно на \mathbb{R}^k .

Следствие. Если отображение $f: \mathbb{R}^k \to \mathbb{R}^m$ дифференцируемо в точке x, то оно непрерывно в точке x.

Доказательство. Действительно, $||f(x+h)-f(x)|| = ||df(h)+\alpha(h)||h||| \leqslant C ||h||$ при h из некоторой окрестности нуля.

Замечание. Так как дифференцируемость f в точке x равносильна тому, что

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Lh\|}{\|h\|} = 0,$$

и так как сходимость по норме равносильна покоординатной сходимости, то при фиксирвоанном базисе $e':=\{e'_1,\ldots,e'_m\}$ в \mathbb{R}^m дифференцируемость отображения f равносильна дифференцируемости каждой координаты f_j в точке x. В этом случае $Lh=(L_1h,\ldots,L_mh)$ в базисе e', где $L_j=df_j$ — дифференциал j-ой координаты.

Лемма. Если отображение $f: \mathbb{R}^k \to \mathbb{R}^m$ дифференцируемо в точке x, то для каждого вектора $h \in \mathbb{R}^k$ функция $t \to f(x+th)$ дифференцируема в точке 0 и $\left. \frac{d}{dt} f(x+th) \right|_{t=0} = df(h)$.

Доказательство. По определению

$$f(x+th) - f(x) = t df(h) + t\alpha(th) ||h||.$$

Разделив на t и перейдя к пределу при $t \to 0$, получаем требуемое соотношение.

Определение. Производная $\frac{\partial f}{\partial h}(x) := \left. \frac{d}{dt} f(x+th) \right|_{t=0}$ называется производной вдоль вектора h и может существовать и в случае, когда сама функция f не дифференцируема в точке x.

Как мы уже поняли, для дифференцируемости отображения достаточно исследовать дифференцируемость его координат, то есть дифференцируемость функции $f: \mathbb{R}^k \to \mathbb{R}$. Зафиксировав базис $e:=\{e_1,\ldots,e_k\}$ в \mathbb{R}^n , условие дифференцируемости в точке $x=(x_1,\ldots,x_k)$ переписывается в виде

$$f(x_1 + h_1, \dots, x_k + h_k) f(x_1, \dots, x_k) + c_1 h_1 + \dots + c_k h_k + \bar{o}(\|h\|),$$

то есть $df(h) = c_1 h_1 + \dots + c_k h_k$. Из уже доказанного ясно, что $\frac{\partial f}{\partial e_j}(x) = df(e_j) = c_j$.

Определение. Частной производной $\frac{\partial f}{\partial x_j}$ функции $f: \mathbb{R}^k \to \mathbb{R}$ в точке $x = (x_1, \dots, x_k)$ называется производная вдоль вектора e_i , то есть

$$\left. \frac{\partial f}{\partial x_j}(x) = \left. \frac{d}{dt} f(x_1, \dots, x_{j-1}, t, x_{j+1}, \dots, x_k) \right|_{t=x_j}.$$

Замечание. При фиксированно базисе $e = \{e_1, \dots, e_k\}$ в \mathbb{R}^k линейные функционалы dx_1, \dots, dx_k оказываются сопряженным базисом к e. То есть $dx_i(e_j) = \delta_{i,j}$. Таким образом, $df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_k} dx_k$.

Замечание. В случае отображения $f: \mathbb{R}^k \to \mathbb{R}^m$ при фиксированных базисах e и e' в \mathbb{R}^k и в \mathbb{R}^m соответственно, компоненты матрицы дифференциала df имеют вид $a_{i,j} = \frac{\partial f_i}{\partial x_j}(x)$, то есть по строкам написаны градиенты $\nabla f_i(x)$.

Определение. При фиксированных базисах e в \mathbb{R}^k и e' в \mathbb{R}^m матрицу, соответствующую линейному отображению df, называют матрицей Якоби отображения f в точке x и обозначают $J_f(x)$.

4 Градиент и достаточное условие дифференцируемости

Определение. Градиентом функции f называется вектор $\nabla f := \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$.

Лемма. Если f дифференцируема в точке x и $df \neq 0$, то наибольшее значение производной вдоль единичного вектора v (т.е. ||v|| = 1) достигается на векторе $||\nabla f(x)||^{-1} \nabla f(x)$.

Доказательство. Так как $\frac{\partial f}{\partial v}(x) = df(v) = \langle \nabla f(x), v \rangle$, то по неравенства Коши–Буняковского $\left| \frac{\partial f}{\partial v}(x) \right| \le \|\nabla f(x)\| \|v\| = \|\nabla f(x)\|$. Если $v = \|\nabla f(x)\|^{-1} \nabla f(x)$, то в неравенстве достигается равенство.

Заметим, что наличия частных производных в точке недостаточно для дифференцируемости функции в этой точке.

Пример. Пусть

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Функция f разрывна в нуле, а значит не дифференцируема, но в точке (0,0) существуют обе частных производных. Действительно, если $x = r\cos\varphi, y = r\sin\varphi$, то функция $f(x,y) = \sin 2\varphi$. Таким образом, f(x,y) в любой окрестности точки (0,0) принимет значения ± 1 , но $\frac{\partial f}{\partial x}(0,0) = \frac{d}{dx}f(x,0) = 0$. Аналогично $\frac{\partial f}{\partial y}(0,0) = 0$.

В следующей теореме сформулировано достаточное условие дифференцируемости.

Теорема. Если все частные производные $\frac{\partial f}{\partial x_j}$ существуют в окрестности точки x_0 и непрерывны в этой точке, то f — дифференцируема в точке x_0 .

Доказательство. Для сокращения выкладок докажем теорему в случае k=2. Заметим, что

$$f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) = f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2 + h_2) + f(x_1, x_2 + h_2) - f(x_1, x_2)$$

$$= \frac{\partial f}{\partial x_1} (\xi_1, x_2 + h_2) h_1 + \frac{\partial f}{\partial x_2} (x_1, \xi_2) h_2,$$

где ξ_1 принадлежит интервалу с концами $x_1, x_1 + h_1,$ а ξ_2 — с концами $x_2, x_2 + h_2$. Запишем теперь последнюю сумму в виде

$$\frac{\partial f}{\partial x_1}(x_1, x_2)h_1 + \frac{\partial f}{\partial x_2}(x_1, x_2)h_2 + \alpha(h)||h||,$$

где

$$\alpha(h) = \left(\frac{\partial f}{\partial x_1}(\xi_1, x_2 + h_2) - \frac{\partial f}{\partial x_1}(x_1, x_2)\right) \frac{h_1}{\|h\|} + \left(\frac{\partial f}{\partial x_2}(x_1, \xi_2) - \frac{\partial f}{\partial x_2}(x_1, x_2)\right) \frac{h_2}{\|h\|}.$$

При малой $\|h\|$ выражения в скобках будут малы в силу непрерывности частных производных. Тем самым, $\lim_{h\to 0}\|\alpha(h)\|=0.$

5 Частные производные высокого порядка

Определение. Пусть $f \colon \mathbb{R}^k \to \mathbb{R}$ и предположим, что в некоторой окрестности $B_r(x_0)$ точки x_0 существует частная производная $\frac{\partial f}{\partial x_j}$. Если функция $x \mapsto \frac{\partial f}{\partial x_j}(x)$ в точке x_0 имеет частную производную по переменной x_i , то эта частная производная $\frac{\partial}{\partial x_i} \Big(\frac{\partial f}{\partial x_j}\Big)(x_0)$ называется частной производной второго порядка по переменным x_j и x_i и обозначается $\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)$.

Замечание. Заметим, что частные производные $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$ являются разными объектами и, вообще говоря, не совпадают (пример будет в рамках семинарских задач).

О совпадении смешанных частных производных позволяют судить следующие две теоремы, которые мы для простоты сформулируем в двумерном случае (общий случай, по сути, ничем не отличается).

Теорема 1 (Шварц). Пусть смешанные частные производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ существуют в окрестности точки (x_0, y_0) и непрерывны в этой точке. Тогда их значения в точке (x_0, y_0) совпадают.

Теорема 2 (Юнг). Пусть $f-\partial u \phi \phi$ еренцируема в окрестности точки (x_0,y_0) , а ее частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ дифференцируемы в точке (x_0,y_0) . Тогда смешанные частные производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ в точке (x_0,y_0) совпадают.

Приведем доказательство второй из этих теорем.

Доказательство. Не ограничивая общности, будм считать, что $(x_0, y_0) = (0, 0)$. Рассмотрим функцию

$$F(t,t) = f(t,t) - f(0,t) - f(t,0) + f(0,0).$$

Применяя теорему Лагранжа к функции g(u) = f(t, u) - f(0, u), получаем

$$F(t,t) = g(t) - g(0) = g'(\xi)t = \left(\frac{\partial f}{\partial y}(t,\xi) - \frac{\partial f}{\partial y}(0,\xi)\right)t.$$

Дифференцируемость $\frac{\partial f}{\partial y}$ в точке (0,0) означает, что

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial f}{\partial y}(0,0) + \frac{\partial^2 f}{\partial x \partial y}(0,0)x + \frac{\partial^2 f}{\partial y^2}(0,0)y + \bar{\delta}(\sqrt{x^2 + y^2}).$$

Таким образом,

$$\frac{\partial f}{\partial y}(t,\xi) = \frac{\partial f}{\partial y}(0,0) + \frac{\partial^2 f}{\partial x \partial y}(0,0)t + \frac{\partial^2 f}{\partial y^2}(0,0)\xi + \bar{o}(\sqrt{t^2 + \xi^2}).$$

И

$$\frac{\partial f}{\partial y}(0,\xi) = \frac{\partial f}{\partial y}(0,0) + \frac{\partial^2 f}{\partial y^2}(0,0)\xi + \bar{\bar{o}}(\xi).$$

Т.к. $\xi \leqslant t$, то $\bar{o}(\sqrt{t^2 + \xi^2}) = \bar{o}(t)$ и $\bar{o}(\xi) = \bar{o}(t)$. Таким образом,

$$F(t,t) = \frac{\partial^2 f}{\partial x \partial y}(0,0)t^2 + \bar{\bar{o}}(t^2).$$

Аналогично,

$$F(t,t) = \frac{\partial^2 f}{\partial y \partial x}(0,0)t^2 + \bar{o}(t^2).$$

Приравняв полученные выражения, поделив на t^2 и устремив t к нулю, получаем

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

6 Правила дифференцирования

Теорема. Пусть функции $f,g:\mathbb{R}^k\to\mathbb{R}$ дифференцируемы в некоторой точке x. Тогда, для произвольных чисел $a,b\in\mathbb{R}$, функции af+bg и fg дифференцируемы в точке x и $d(af+bg)=a\,df+b\,dg$ и $d(fg)=f\,dg+g\,df$.

Доказательство. Заметим, что

$$(af + bg)(x + h) - (af + bg)(x) = a(f(x + h) - f(x)) + b(g(x + h) - g(x))$$
$$= a(df(h) + \bar{o}(||h||)) + b(dg(h) + \bar{o}(||h||)) = a df(h) + b dg(h) + \bar{o}(||h||).$$

Таким образом, d(af + bg) = a df + b dg.

Для доказательства второго равенства заметим, что

$$(fg)(x+h) - (fg)(x) = (f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))$$

$$= (df(h) + \bar{o}(||h||))(g(x) + \bar{o}(1)) + f(x)(dg(h) + \bar{o}(||h||))$$

$$= g(x) df(h) + f(x) dg(h) + (df(h))\bar{o}(1) + g(x)\bar{o}(||h||) + f(x)\bar{o}(||h||) + \bar{o}(||h||).$$

Мы использовали непрерывность функции g, т.е. $g(x+h)-g(x)=\bar{o}(1)$ при $\|h\|\to 0$, в силу ее дифференцируемости в точке x.

Так как df — линейное отображение, то для некоторого числа C>0 выполнено $|df(h)|\leqslant C\|h\|$, а значит $(df(h))\bar{o}(1)=\bar{o}(\|h\|)$. Т.к. f(x) и g(x) просто числа, то $g(x)\bar{o}(\|h\|)+f(x)\bar{o}(\|h\|)=\bar{o}(\|h\|)$. Таким образом, теорема доказана.

7 Дифференциалы высоких порядков.

Предположим, что $f: \mathbb{R}^k \to \mathbb{R}$ — дифференцируема в окрестности точки a и предположим, что ее частные производные $\frac{\partial f}{\partial x_j}$ дифференцируемы в точке a. Тогда при каждом $h \in \mathbb{R}^k$ возникает функция $x \mapsto df\big|_x(h) = \frac{\partial f}{\partial x_1}(x)h_1 + \ldots + \frac{\partial f}{\partial x_k}(x)h_k$, дифференцируемая в точке a.

Ее дифференциал
$$d(df(h))\big|_a(q) = \left(\sum_{j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_1}(a)q_j\right) h_1 + \ldots + \left(\sum_{j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_k}(a)q_j\right) h_k.$$

То есть получена билинейная форма $d(df(h))\big|_a(q)=\sum_{i,j=1}^k\frac{\partial^2 f}{\partial x_j\partial x_i}(a)q_jh_i$. Эта билинейная форма оказывается симметричной по теореме Юнга, а т.к. симметричная билинейная форма однозначно задается своей квадратичной формой $d(df(h))\big|_a(h)=\sum_{i,j=1}^k\frac{\partial^2 f}{\partial x_j\partial x_i}(a)h_jh_i=\sum_{i,j=1}^k\frac{\partial^2 f}{\partial x_j\partial x_i}(a)dx_j(h)dx_i(h)$, то эту

квадратичную форму $d^2f:=\sum_{i,j=1}^k \frac{\partial^2 f}{\partial x_j\partial x_i}(a)dx_jdx_i$ и называют **вторым дифференциалом** функции f.

Аналогично определяется дифференциал *n*-го порядка:

Определение. Если f-n раз дифференцируема в точке a, то

$$d^n f|_a := \sum_{1 \le j_1, \dots, j_n \le k} \frac{\partial^n f}{\partial x_{j_1} \dots \partial x_{j_n}} (a) dx_{j_1} \dots dx_{j_n}.$$

Последняя запись означает лишь то, что при вычислении n-го дифференциала на векторе $h \in \mathbb{R}^k$ надо воспользоваться линейностью, а $[dx_{j_1} \dots dx_{j_n}](h) := dx_{j_1}(h) \dots dx_{j_n}(h) = h_{j_1} \dots h_{j_n}$.

8 Дифференцирование сложной функции.

Теорема. Пусть $f \colon \mathbb{R}^k \to \mathbb{R}^m$, $g \colon \mathbb{R}^m \to \mathbb{R}^n$, причем отображение f дифференцируемо в точке a, отображение g дифференцируемо в точке f(a). Тогда отображение $g \circ f$ дифференцируемо в точке a и $d(g \circ f)\big|_a = dg\big|_{f(a)} \circ df\big|_a$.

Замечание. Поясним запись $d(g\circ f)\big|_a=dg\big|_{f(a)}\circ df\big|_a$. Здесь $df\big|_a\colon\mathbb{R}^k\to\mathbb{R}^m$ есть линейное отображение и $dg\big|_{f(a)}\colon\mathbb{R}^m\to\mathbb{R}^n$ есть линейное отображение. Тогда их композиция $dg\big|_{f(a)}\circ df\big|_a\colon\mathbb{R}^k\to\mathbb{R}^n$ есть линейное отображение, действующее по правилу

$$dg\big|_{f(a)} \circ df\big|_a(h) = dg\big|_{f(a)} (df\big|_a(h)).$$

Доказательство. По условию $f(a+h)-f(a)=df(h)+\alpha(h)\|h\|$, где $\lim_{\|h\|\to 0}\|\alpha(h)\|=0$ и $g(f(a)+q)-g(f(a))=dg(q)+\beta(q)\|q\|$, где $\lim_{\|q\|\to 0}\|\beta(q)\|=0$. Мы также доопределим α и β в точке нуль нулем (т.е. считаем $\alpha(0)=0$ и $\beta(0)=0$). Тогда

$$g(f(a+h)) - g(f(a)) = g(f(a) + [f(a+h) - f(a)]) - g(f(a))$$

$$= dg[f(a+h) - f(a)] + \beta(f(a+h) - f(a)) ||f(a+h) - f(a)||$$

$$= dg[df(h) + \alpha(h)||h||] + \beta(f(a+h) - f(a)) ||df(h) + \alpha(h)||h|||.$$

Тем самым,

$$g(f(a+h)) - g(f(a)) = dg[df(h)] + \gamma(h)||h||,$$

где

$$\|\gamma(h)\| = \|dg[\alpha(h)] + \beta (f(a+h) - f(a))\| df(h/\|h\|) + \alpha(h)\| \|$$

$$\leq \|dg[\alpha(h)]\| + \|\beta (f(a+h) - f(a))\| (\|df(h/\|h\|)\| + \|\alpha(h)\|).$$

Напомним, что для линейных отображений dg и df существуют такие постоянные A и B, что $\|df(h)\| \le A\|h\|$ и $\|dg(q)\| \le B\|q\|$, поэтому $\|df(h/\|h\|)\| + \|\alpha(h)\| \le A + \|\alpha(h)\|$ и $\|dg[\alpha(h)]\| \le B\|\alpha(h)\|$. Так как $\|\beta\big(f(a+h)-f(a)\big)\| \to 0$ при $\|h\| \to 0$, получаем, что $\lim_{\|h\| \to 0} \|\gamma(h)\| = 0$.

Замечание. При фиксированных базисах $e = \{e_1, \dots, e_k\}, \ e' = \{e'_1, \dots, e'_m\}, \ e'' = \{e''_1, \dots, e''_n\}$ в \mathbb{R}^k , \mathbb{R}^m и \mathbb{R}^n соответственно, матрица композиции линейных отображений есть произведение матриц этих

линейных отображений. Таким образом, в нашем случае для композиции функций $g \circ f$, где $f \colon \mathbb{R}^k \to \mathbb{R}^m$ и $g \colon \mathbb{R}^m \to \mathbb{R}^n$, по

Таким образом, в нашем случае для композиции функций $g \circ f$, где $f \colon \mathbb{R}^n \to \mathbb{R}^m$ и $g \colon \mathbb{R}^m \to \mathbb{R}^n$, по предыдущей теореме выполнено

$$\begin{pmatrix} \frac{\partial (g \circ f)_1}{\partial y_1}(a) & \dots & \frac{\partial (g \circ f)_1}{\partial y_k}(a) \\ \dots & & & \\ \frac{\partial (g \circ f)_n}{\partial y_1}(a) & \dots & \frac{\partial (g \circ f)_n}{\partial y_k}(a) \end{pmatrix} = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(f(a)) & \dots & \frac{\partial g_1}{\partial x_m}(f(a)) \\ \dots & & & \\ \frac{\partial g_n}{\partial x_1}(f(a)) & \dots & \frac{\partial g_n}{\partial x_m}(f(a)) \end{pmatrix} \begin{pmatrix} \frac{\partial f_1}{\partial y_1}(a) & \dots & \frac{\partial f_1}{\partial y_k}(a) \\ \dots & & & \\ \frac{\partial f_m}{\partial y_1}(a) & \dots & \frac{\partial f_m}{\partial y_k}(a) \end{pmatrix}$$

В частности, в случае, когда n=1, для функции $g(x_1,\ldots,x_m)$ и отображения

$$f(y_1, \ldots, y_k) = (f_1(y_1, \ldots, y_k), \ldots, f_m(y_1, \ldots, y_k)),$$

выполнено:

Отсюда, во-первых получаем правило вычисления частной производной сложной функции: $\frac{\partial (g \circ f)}{\partial u}(a) =$ $\frac{\partial g}{\partial x_1}(f(a))\frac{\partial f_1}{\partial y_i}(a)+\ldots+\frac{\partial g}{\partial x_m}(f(a))\frac{\partial f_m}{\partial y_i}(a)$. Во-вторых, получаем следующее свойство инвариантности первого дифференциала: для дифференциала выполнено равенство $dg=\frac{\partial g}{\partial x_1}\,dx_1+\ldots+\frac{\partial g}{\partial x_m}\,dx_m$, где нам не важно, являются ли ddx_1,\ldots,dx_m — дифференциалами независимых переменных или же являются дифференциалами некоторых функций $x_j = f_j(y_1, \dots, y_k)$.

Пример. Пусть $f(x,y) = \varphi(u,v,w)$, где u = xy, v = x + y, w = x - y. Тогда

$$df = \frac{\partial \varphi}{\partial u} du + \frac{\partial \varphi}{\partial v} dv + \frac{\partial \varphi}{\partial w} dw = \frac{\partial \varphi}{\partial u} d(xy) + \frac{\partial \varphi}{\partial v} d(x+y) + \frac{\partial \varphi}{\partial w} d(x-y)$$
$$= \frac{\partial \varphi}{\partial u} (x dy + y dx) + \frac{\partial \varphi}{\partial v} (dx + dy) + \frac{\partial \varphi}{\partial w} (dx - dy).$$

В частности, $\frac{\partial f}{\partial x} = y \frac{\partial \varphi}{\partial y}(xy, x+y, x-y) + \frac{\partial \varphi}{\partial y}(xy, x+y, x-y) + \frac{\partial \varphi}{\partial y}(xy, x+y, x-y)$ и $\frac{\partial f}{\partial y} = x \frac{\partial \varphi}{\partial y}(xy, x+y, x-y)$ $(y, x - y) + \frac{\partial \varphi}{\partial w}(xy, x + y, x - y) - \frac{\partial \varphi}{\partial w}(xy, x + y, x - y).$

Дифференциал обратного отображения 9

Теорема. Пусть $f \colon \mathbb{R}^k \to \mathbb{R}^k$ — есть непрерывная биекция между окрестностями U(a) и V(f(a)), причем обратное отображение $f^{-1} \colon V(f(a)) \to U(a)$ также непрерывно (т.е. f — гомеоморфизм между U(a) и

 Π редположим, что f- дифференцируемо в точке a и $d\!f-$ обратимое линейное отображение. Тогда f^{-1} — дифференцируемо в точке f(a) и $df^{-1}|_{f(a)} = (df|_a)^{-1}$.

Доказательство. Нам нужно проверить, что

$$\lim_{\|a\| \to 0} \frac{\|f^{-1}(f(a) + q) - f^{-1}(f(a)) - (df)^{-1}(q)\|}{\|q\|} = 0.$$

Пусть $h = f^{-1}(f(a) + q) - f^{-1}(f(a)) = f^{-1}(f(a) + q) - a$, тогда q = f(a + h) - f(a) и $||q|| \to 0$ тогда и только тогда, когда $||h|| \to 0$.

Так как f — дифференцируемо в точке a, то

$$f(a+h) - f(a) = df(h) + \alpha(h) ||h||,$$

где $\lim_{\|h\| \to 0} \|\alpha(h)\| = 0.$

Таким образом,

$$\lim_{\|q\|\to 0} \frac{\|f^{-1}(f(a)+q)-f^{-1}(f(a))-(df)^{-1}(q)\|}{\|q\|} = \lim_{\|h\|\to 0} \frac{\left\|h-(df)^{-1}(df(h)+\alpha(h)\|h\|)\right\|}{\left\|df(h)+\alpha(h)\|h\|\right\|}.$$

Числитель в последнем выражении равен $\|h\|\|(df)^{-1}(\alpha(h))\|$. Для линейного отображения $(df)^{-1}$ найдется число C>0, для которого $\|(df)^{-1}(p)\| \leqslant C\|p\|, \forall p \in \mathbb{R}^k$. Отсюда, подставив p=df(h), получаем $C^{-1}\|h\| \leqslant \|df(h)\|$. Тем самым

$$||df(h) + \alpha(h)||h||| \ge ||df(h)|| - ||h||||\alpha(h)|| \ge ||h||(C^{-1} - ||\alpha(h)||).$$

Таким образом,

$$\frac{\left\|h - (df)^{-1}(df(h) + \alpha(h)\|h\|)\right\|}{\left\|df(h) + \alpha(h)\|h\|\right\|} \leqslant \frac{C\|h\|\|\alpha(h)\|}{\|h\|\left(C^{-1} - \|\alpha(h)\|\right)} = \frac{C\|\alpha(h)\|}{\left(C^{-1} - \|\alpha(h)\|\right)} \to 0$$

при $||h|| \to 0$.

Замечание. Отметим, что матрица обратного линейного отображения есть обратная матрица к матрице исходного линейного отображения. Тем самым, матрица Якоби обратного отображения $J_{f^{-1}}(y)$ является обратной к матрице Якоби исходного отображения, т.е. равна $\left(J_f(f^{-1}(y))\right)^{-1}$.

Теорема о неявной функции.

Пусть в \mathbb{R}^2 у нас имеется соотношение F(x,y)=0. Нам бы хотелось понять при каких условиях данное уравнение возможно разрешить относительно y в виде явной зависимости y=f(x).

Рассмотрим например $F(x,y) = x^2 + y^2 - 1$. Тогда уравнение F(x,y) = 0 задает обычную окружность и все решения данного уравнения относительно y имеют вид $y = \pm \sqrt{1-x^2}$. Ясно, что произвольный выбор знаков в разных точках x будет давать бесконечно много решений данного уравнения.

В тоже время в малой окрестности произвольной точки (x_0, y_0) на окружности (кроме $x_0 = \pm 1$) кривая F(x,y) = 0 единственным образом представима в виде графика непрерывной функции y = f(x). В окрестности же точек $(\pm 1,0)$ никакая дуга окружности не может быть представлена в виде графика функции y = f(x). Зато эти дуги в окрестности точек $(\pm 1,0)$ хорошо расположены относительно оси y и могут быть представлены в виде графика x = g(y).

Чем же обусловлена такая особенность точек $(\pm 1,0)$ в случае окружности? Заметим, что локально функция F(x,y) представима в виде $F(x,y) = \frac{\partial F}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial F}{\partial y}(x_0,y_0)(y-y_0) + \bar{\delta}(\sqrt{|x-x_0|^2 + |y-y_0|^2}).$

Таким образом, пренебрегая малыми более высокого порядка, наше уравнение F(x,y)=0 в окрестности точки (x_0,y_0) похоже на линейное уравнение $\frac{\partial F}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial F}{\partial y}(x_0,y_0)(y-y_0)=0$, которое в свою очередь разрешимо относительно y только в случае $\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$.

В частности, в случае окружности как раз $\frac{\partial F}{\partial y}(\pm 1,0)=0$. Из данного эвристического рассуждения возникает гипотеза, что уравнение F(x,y)=0 разрешимо относительно переменной y в некоторой окрестности данной точки (x_0,y_0) , если производная $\frac{\partial F}{\partial y}(x_0,y_0)$ отлична от нуля. Именно это мы и докажем в следующей теореме уже в строго сформулированном виде.

Для сокращения всех записей будем использовать обозначение $F_y'(x,y):=rac{\partial F}{\partial u}(x,y).$

Теорема. Пусть $F: \mathbb{R}^2 \to \mathbb{R}$ — определена и непрерывно дифференцируема (т.е. частные производные непрерывно зависят от точки) в некоторой окрестности U точки $(a,b) \in \mathbb{R}^2$. Пусть 1) F(a,b) = 0 и 2) $F_y'(a,b) \neq 0$.

Тогда найдутся промежутки $I_x=(a-\alpha,a+\alpha)$ и $I_y=(b-\beta,b+\beta)$ и непрерывно дифференцируемая функция $f\colon I_x\to I_y$, для которых $I_x\times I_y\subset U$ и для каждой точки $(x,y)\in I_x\times I_y$ выполнено $F(x,y)=0\Leftrightarrow y=f(x).$

Кроме того, $f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}$.

Доказательство. 1. Для определенности считаем, что $F_y'(a,b)>0$. Так как производные функции F непрерывны в U, то в малой окрестности $\{(x,y)\colon \sqrt{|x-a|^2+|y-b|^2}<2\beta\}$ точки (a,b) также выполнено $F_y'(x,y)>0$.

Так как $F_y'(a,y)>0$ на отрезке $[b-\beta,b+\beta]$, то функция $y\mapsto F(a,y)$ монотонно возрастает на этом отрезке, откуда

$$F(a, b - \beta) < F(a, b) = 0 < F(a, b + \beta).$$

Так как F непрерывна в U, то найдется такое число $\alpha < \beta$, что $F(x, b - \beta) < 0 < F(x, b + \beta)$ при $x \in (a - \alpha, a + \alpha)$.

При каждом $x \in (a - \alpha, a + \alpha)$ рассмотрим функцию $y \mapsto F(x, y)$, заданную на отрезке $[b - \beta, b + \beta]$. Рассматриваемая функция есть непрерывная строго возрастающая функция на отрезке, причем

на концах отрезка данная функция принимает значения разных знаков. Поэтому при каждом $x \in$ $(a-\alpha,a+\alpha)$ существует единственная точка y=f(x), для которой F(x,f(x))=0. Тем самым построена окрестность точки (a,b) вида $I_x \times I_y$ в которой построено единственное решение уравнения F(x,y)=0 относительно переменной y.

2. Проверим непрерывность построенного решения в точке a. Ясно, что f(a) = b в силу единственности нуля у функции $y\mapsto F(a,y)$ на I_y . Пусть теперь фиксировано некоторое $\varepsilon\in(0,\beta)$. Повторяя рассуждения первой части для интервала $(b-\varepsilon,b+\varepsilon)$ найдем интервал $(a-\delta,a+\delta)$ с $\delta<\alpha$ и функцию $ilde{f}$: $(a-\delta,a+\delta) o (b-arepsilon,b+arepsilon)$ для которых F(x,y)=0 при $(x,y)\in (a-\delta,a+\delta) imes (b-arepsilon,b+arepsilon)$ $\Leftrightarrow y = \tilde{f}(x), x \in (a - \delta, a + \delta).$

Так как $(a-\delta,a+\delta)\subset I_x$ и $(b-\varepsilon,b+\varepsilon)\subset I_y$, то в силу единственности решения f в $I_x\times I_y$ получаем, что $f(x) = \tilde{f}(x)$ при $x \in (a - \delta, a + \delta)$. Это означает, что $|f(x) - b| < \varepsilon$ при $|x - a| < \delta$.

Теперь проверим непрерывность f в произвольной точке $x \in I_x$. Для этого просто примем за начальную точку построения произвольную точку (x,y) с $x\in I_x,y\in I_y$ и повторим рассуждение

3. Докажем непрерывную дифференцируемость f на I_x и докажем формулу для вычисления производной. Пусть $x \in I_x$ и рассмотрим достаточно малое Δx , для которого $x + \Delta x \in I_x$. Пусть $y = f(x) \in I_y$ и $\Delta y = f(x + \Delta x) - f(x)$.

Применим теорему Лагранжа к функции $t \mapsto F(x + t\Delta x, y + t\Delta y)$:

$$0 = F(x + \Delta x, y + \Delta y) - F(x, y) = F'_x(x + \xi \Delta x, y + \xi \Delta y) \Delta x + F'_y(x + \xi \Delta x, y + \xi \Delta y) \Delta y,$$

где $\xi \in (0,1)$. Т.к. $F_y' \neq 0$ в $I_x \times I_y$, то

$$\frac{\Delta y}{\Delta x} = -\frac{F_x'(x + \xi \Delta x, y + \xi \Delta y)}{F_y'(x + \xi \Delta x, y + \xi \Delta y)}.$$

В силу непрерывности f при $\Delta x \to 0$ выполнено, что и $\Delta y \to 0$, поэтому, в силу непрерывности производных функции F в $I_x \times I_y$, получается, что $f'(x) = -\frac{F_x'(x,y)}{F_y'(x,y)}$, где y = f(x). Из формулы следует и непрерывность производной.

Аналогично доказывается следующий многомерный аналог предыдущей теоремы.

Теорема. Пусть $F \colon \mathbb{R}^{k+1} \to \mathbb{R}$ — определена и непрерывно дифференцируема (то есть частные производные непрерывно зависят от точки) в некоторой окрестности U точки $(a,b)=(a_1,\ldots,a_k,b)\in\mathbb{R}^{k+1}$.

Пусть 1) F(a,b)=0 и 2) $F_y'(a,b)\neq 0$. Найдутся $I_x=(a_1-\alpha_1,a_1+\alpha_1)\times\ldots\times((a_k-\alpha_k,(a_k+\alpha_k))$ и $I_y=(b-\beta,b+\beta)$ и непрерывно дифференцируемая функция $f\colon I_x\to I_y$, для которых $I_x\times I_y\subset U$ и для каждой точки $(x,y)\in I_x\times I_y$ выполнено $F(x,y)=0\Leftrightarrow y=f(x).$ Кроме того, $\frac{\partial f}{\partial x_j}(x)=-\frac{F'_{x_j}(x,f(x))}{F'_y(x,f(x))}.$

Кроме того,
$$\frac{\partial f}{\partial x_j}(x) = -\frac{F'_{x_j}(x, f(x))}{F'_{y}(x, f(x))}$$

 \mathcal{A} оказательство. Существование $I_x \times I_y$ и функции f, а также ее непрерывность, дословно повторяют рассуждение из предыдущей теоремы.

Если теперь фиксировать все переменные, кроме x_i и y, мы попадем в ситуацию предыдущей теоремы, откуда следует формула для вычисления частной производной. Из формулы следует непрерывность этой частной производной, а значит и непрерывная дифференцируемость f.

Замечание. Отметим, что формула для подсчет производной берется из дифференцирования тождества F(x,f(x))=0. Действительно, $\frac{\partial F}{\partial x_1}dx_1+\ldots+\frac{\partial F}{\partial x_k}+\frac{\partial F}{\partial y}df=0$, откуда выражая df и получаем нужную нам формулу.