第一章 距离空间

习题 1

- 1. 设 (X,d) 是距离空间, 令 $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$. 求证 (X,ρ) 也是距离空间.
- 2. 设 $d_1, d_2, \cdots, d_m, \cdots$ 是集 X 上的距离. 证明
 - $(1) d = \sup_{1 \le i \le m} d_i;$
 - (2) $d = \sqrt{d_1^2 + d_2^2 + \dots + d_m^2};$
 - (3) $d = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{d_k}{1+d_k}$

中的每一个 d 也是 X 中的距离.

- 3. 在 \mathbb{R}^1 上定义 $d(x,y) = \arctan |x-y|$, 问 (\mathbb{R}^1,d) 是不是距离空间?
- 4. 在 n 维欧几里得空间 \mathbb{R}^n 中, 对于

$$x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n)$$

定义 $d(x,y) = \sum_{i=1}^{n} \lambda_i |x_i - y_i|$. 其中 $\lambda_1, \dots, \lambda_n$ 是 n 个正数, 证明 d 是 \mathbb{R}^n 中的距离, 并且按距离收敛等价于按坐标收敛.

- 5. 设 S 为三维空间中的球面, 对于 $x, y \in S$, 规定 $\rho(x,y)$ 为过两点 x,y 的大圆上的劣弧长, 证明 $\rho(x,y)$ 是一个距离.
- 6. 在 \mathbb{R}^2 上定义距离 $d_p(x,y) = \{|x_1-y_1|^p + |x_2-y_2|^p\}^{1/p}, \ 1 \le p < \infty$, 证明对于任意的 $x,y \in \mathbb{R}^2$, 有
 - (1) $d_{\infty}(x,y) \le d_p(x,y) \le d_1(x,y);$
 - (2) $d_p(x,y) \leq \sqrt[p]{2} d_{\infty}(x,y);$
 - (3) $d_1(x,y) \leq 2d_p(x,y)$.

其中 $d_{\infty}(x,y) = \max\{|x_1-y_1|, |x_2-y_2|\}.$

- 7. 设 X 为距离空间, $A \subset X$. 证明 A 的一切内点组成的集必为开集.
- 8. 证明: (1)距离空间中的闭集必为可数个开集的交;
 - (2)距离空间中的开集必为可数个闭集的并.
- 9. 设 X 为距离空间, F_1, F_2 为 X 中不相交的闭集. 证明存在开集 G_1, G_2 , 使得

$$G_1 \cap G_2 = \emptyset, G_1 \supset F_1, G_2 \supset F_2.$$

- 10. 证明如果距离空间是可分的,则它的任意子空间也是可分的;反之,如果距离空间不可分, 它的子空间是否也不可分?
- 11. 令

$$X = \{x(t) \mid \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt < \infty, -\infty < t < \infty\},$$

在 X 上定义距离

$$d(x,y) = \{ \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t) - y(t)|^2 dt \}^{1/2},$$

证明 (X,d) 是不可分的距离空间(提示: 计算 $d(e^{iat},e^{ibt})$, 其中 a,b 为实数).

- 12. 设 X 为距离空间, F_1, F_2 为 X 中不相交的闭集. 证明存在 X 上的连续函数 f(x), 使得 当 $x \in F_1$ 时 f(x) = 0; 当 $x \in F_2$ 时 f(x) = 1.
- 13. 设 f 是定义在距离空间 X 上的实函数, 证明 f 连续的充分必要条件是下列条件之一成立:
 - (a) 对任何实数 α , $\{x:f(x)>\alpha\}$ 及 $\{x:f(x)<\alpha\}$ 均为开集;
 - (b) 对任何实数 α , $\{x: f(x) \geq \alpha\}$ 及 $\{x: f(x) \leq \alpha\}$ 均为闭集.
- 14. 设 X 按照距离 d 为距离空间, $A \subset X$ 非空. 令

$$f(x) = \inf_{y \in A} d(x, y) \qquad (x \in X).$$

证明 f(x) 是 X 上的连续函数.

- 15. 给定距离空间 (X, d), 设 $A \subset X$ 是自列紧集. 求证 A 上连续函数必有界, 亦达到它的上、下确界.
- 16. 设 X 是距离空间, $M \subset X$ 是自列紧集, $f: M \to \mathbb{R}^1$ 是连续函数, 则 f(x) 在 M 上一致连续.
- 17. 设 X 是距离空间, $S \subset X$, S 是自列紧集, $x \in X$, 令

$$d(x,S) = \inf_{y \in S} d(x,y).$$

证明存在一个点 $x_0 \in S$, 使 $d(x,S) = d(x,x_0)$.

18. 设 M 是 C[a,b] 中的有界集. 证明集合

$$S = \{F(x) = \int_{a}^{x} f(t)dt | f \in M\}$$

是列紧集.

- 19. 证明集合 $M = \{\sin nx | n = 1, 2, \dots\}$ 在空间 $C[0, \pi]$ 中是有界集, 但不是列紧集.
- 20. 设 (M,d) 是一个列紧距离空间, $E \subset C(M)$, 其中 C(M) 表示 M 上一切实值或复值连续函数全体. E 中函数一致有界并满足下列不等式:

$$|x(t_1) - x(t_2)| \le cd(t_1, t_2)^{\alpha} \ \forall x \in E, t_1, t_2 \in M.$$

其中 $0 < \alpha \le 1, c > 0$, 求证 E 在 C(M) 中是列紧集.

21. 证明 s 空间中的子集 A 列紧的充要条件是对每个 n $(n = 1, 2, 3, \cdots)$, 存在 $C_n > 0$, 使得对一切 $x = \{\xi_1, \xi_2, \cdots, \xi_n, \cdots\} \in A$, 有

$$|\xi_n| \le C_n \quad (n = 1, 2, 3, \cdots).$$

- 22. 设 X 是可分的距离空间, $\{G_{\alpha}\}(\alpha \in I)$ 为 X 的一个覆盖, 则从 $\{G_{\alpha}\}(\alpha \in I)$ 中可取可数个集组成 X 的一个覆盖.
- 23. 设 $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ 是距离空间 (X,d) 中的 Cauchy 序列, 试证明 $\{d(x_n,y_n)\}_{n=1}^{\infty}$ 是 Cauchy 数列.
- 24. 在一个距离空间 (X, d) 中, 求证 Cauchy 列是收敛列当且仅当其中存在一个收敛子列.
- 25. 若 d_1, d_2 是在同一集合 X 上的两个度量且存在正数 a, b 使得对一切 $x, y \in X$

$$ad_1(x,y) \le d_2(x,y) \le bd_1(x,y).$$

证明 (X, d_1) 和 (X, d_2) 中的 Cauchy 序列是相同的.

- 26. 证明完备距离空间的闭子集是一个完备的子空间, 而任一距离空间中的完备子空间必是闭子集.
- 27. 设X是完备的距离空间, $\{F_n\}(n=1,2,3,\cdots)$ 为 X 中的一列闭集:

$$F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$$
.

并且 $F_n \neq \emptyset$, $\lim_{n\to\infty} d(F_n) = 0$ ($d(F_n)$ 表示 F_n 的直径, 即 { F_n } 中任意两点的距离的上确界), 则 $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$. 举例说明条件 $\lim_{n\to\infty} d(F_n) = 0$ 不能去掉.

- 28. 设 X 是全体有理数组成的集合且 d(x,y) = |x-y|, 问什么是 (X,d) 的完备化空间?
- 29. 设 X 是全体正整数所成的集合, 定义

$$d(m,n) = |m^{-1} - n^{-1}|,$$

证明 (X,d) 不完备.

30. 设 D 是 [0,1] 区间上具有连续导数(在端点 t=1,t=0 分别具有左、右导数) 的实函数 全体, 在 D 上定义

$$d(x,y) = \sup_{0 \le t \le 1} |x(t) - y(t)| + \sup_{0 \le t \le 1} |x'(t) - y'(t)|.$$

- (1) 证明 D 是距离空间:
- (2) 指出 D 中点列按距离收敛的意义;
- (3) 证明 *D* 是完备的.
- 31. 求证 [0,1] 上的全体多项式, 定义距离

$$d(p,q) = \int_0^1 |p(x) - q(x)| \mathrm{d}x \quad (p,q \ 是多项式)$$

形成的距离空间是不完备的,并指出它的完备化空间.

32. 设 (X,d) 是距离空间. 映射 $T:X\to X$ 满足

$$d(Tx, Ty) < d(x, y) \ \forall \ x, y \in X, x \neq y.$$

并已知 T 有不动点,证明此不动点唯一.

・4・ 第一章 距离空间

33. 设 T 是距离空间 (X,d) 上的压缩映射. 证明 T^n $(n \in N)$ 也是压缩映射, 并说明逆命题不一定成立.

- 34. 设 X 是完备的距离空间. T 是 X 上到自身的映射. 在闭球 $\overline{B} = \{x \in X | d(x_0, x) \leq r\}$ 上, $d(Tx, Ty) \leq \theta d(x, y)$ 且 $d(x_0, Tx_0) < (1 \theta)r$, 其中 $0 \leq \theta < 1$. 证明 T 在 \overline{B} 上有唯一不动点.
- 35. 证明存在闭区间 [0,1] 上的连续函数 x(t), 使得

$$x(t) = \frac{1}{2}\sin x(t) - a(t).$$

其中 a(t) 是给定的 [0,1] 上的连续函数.

36. 设T为完备距离空间X到X的映射.如果

$$\alpha_0 = \inf_n \sup_{x \neq y} \frac{d(T^n x, T^n y)}{d(x, y)} < 1,$$

则 T 存在唯一的不动点.

37. 设 $a_{ik}(j, k = 1, 2, \dots, n)$ 为一组实数,

$$\sum_{j,k=1}^{n} (a_{jk} - \delta_{jk})^2 < 1,$$

其中

$$\delta_{jk} = \begin{cases} 1, & j = k, \\ 0, & j \neq k. \end{cases}$$

则代数方程组

$$Ax = b$$

对任何固定的 $b = (b_1, b_2, \dots, b_n)^T$ 有唯一解, 其中 $A = (a_{ij}), x = (x_1, x_2, \dots, x_n)^T$.

38. 考虑积分方程:

$$x(t) - \lambda \int_0^1 e^{t-s} x(s) ds = y(t),$$

其中 $y(t) \in C[0,1], \ \lambda$ 为常数, $|\lambda| < 1$. 证明存在唯一解 $x(t) \in C[0,1]$.

第一章习题简答

1. 证明 由 ρ 的定义易知距离定义的 (1),(2),(3) 显然成立.下面只需证明 (4) 成立. 即对 $\forall x,y,z \in X$ 有

$$\rho(x,y) \le \rho(x,z) + \rho(z,y).$$

因为

$$d(x,y) \le d(x,z) + d(z,y),$$

令
$$f(t) = \frac{t}{1+t} = 1 - \frac{1}{1+t}$$
, 当 $t \ge 0$ 时, $f(t)$ 单调上升. 所以

$$\begin{split} \rho(x,y) &= \frac{d(x,y)}{1+d(x,y)} \leq \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} \\ &\leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} = \rho(x,z) + \rho(z,y). \end{split}$$

故 (X, ρ) 也是距离空间.

- 2. 证明 距离定义的 (1), (2), (3) 容易证明, 下面我们只验证 (4) 成立.
 - (1) 对于每个 $i \in \{1, 2, \dots, m\}$,

$$d_i(x,y) \le d_i(x,z) + d_i(z,y) \le \sup_{1 \le i \le m} d_i(x,z) + \sup_{1 \le i \le m} d_i(z,y),$$

从而

$$\sup_{1 \le i \le m} d_i(x, y) \le \sup_{1 \le i \le m} d_i(x, z) + \sup_{1 \le i \le m} d_i(z, y).$$

 $\mathbb{P} d(x,y) \le d(x,z) + d(z,y).$

(2) 由 Cauchy 不等式 $(\sum_{k=1}^m a_k b_k)^2 \le (\sum_{k=1}^m a_k^2)(\sum_{k=1}^m b_k^2)$, 可得

$$\left(\sum_{k=1}^{m} (a_k + b_k)^2\right)^{\frac{1}{2}} \le \left(\sum_{k=1}^{m} a_k^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{m} b_k^2\right)^{\frac{1}{2}}$$

设 $a_k = d_k(x, z), b_k = d_k(z, y), k = 1, 2, \dots, m,$ 则

$$d(x,y) = \left(\sum_{k=1}^{m} d_k^2(x,y)\right)^{\frac{1}{2}} \le \left(\sum_{k=1}^{m} (d_k(x,z) + d_k(z,y))^2\right)^{\frac{1}{2}}$$

$$\le \left(\sum_{k=1}^{m} d_k^2(x,z)\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{m} d_k^2(z,y)\right)^{\frac{1}{2}} = d(x,z) + d(z,y)$$

(3) 对于每个 $k\in\mathbb{N}^+$, 由于 $\frac{t}{t+1}$ 在 $[0,\infty)$ 上单调递增, 且 $d_k(x,y)\leq d_k(x,z)+d_k(z,y)$, 设

$$\frac{d_k(x,y)}{1+d_k(x,y)} \le \frac{d_k(x,z)+d_k(z,y)}{1+d_k(x,z)+d_k(z,y)} = \frac{d_k(x,z)}{1+d_k(x,z)} + \frac{d_k(z,y)}{1+d_k(z,y)}$$

两边同乘以 1/26, 并求和

$$\sum_{k=1}^{m} \frac{1}{2^k} \frac{d_k(x,y)}{1 + d_k(x,y)} \le \sum_{k=1}^{m} \frac{1}{2^k} \left(\frac{d_k(x,z)}{1 + d_k(x,z)} + \frac{d_k(z,y)}{1 + d_k(z,y)} \right)$$

$$= \sum_{k=1}^{m} \frac{1}{2^k} \frac{d_k(x,z)}{1 + d_k(x,z)} + \sum_{k=1}^{m} \frac{1}{2^k} \frac{d_k(z,y)}{1 + d_k(z,y)}$$

由右边收敛, 令 $m \to \infty$ 可得 $d(x,y) \le d(x,z) + d(z,y)$.

3. 答: $d(x,y) = \arctan |x-y|$, 是距离函数. 依定义验证. 距离定义的 (1), (2), (3) 显然成立. 下面验证 (4) 成立. 即对 $\forall x, y, z$ 有

$$\arctan |x - y| \le \arctan |x - z| + \arctan |z - y|.$$
 (1.0.1)

易知:

$$\arctan |x - y| \in [0, \frac{\pi}{2}),$$

 $\arctan |x - z| + \arctan |z - y| \in [0, \pi).$

当 $\arctan |x-z| + \arctan |z-y| \ge \frac{\pi}{2}$ 时, 上式(1.0.1)显然成立;

当 $\arctan |x-z| + \arctan |z-y| < \frac{\pi}{2}$ 时, (1.0.1) 等价于

$$|x-y| \le \frac{|x-z| + |z-y|}{1 - |x-z|.|z-y|}, \stackrel{\text{def}}{=} 1 - |x-z|.|z-y| > 0.$$
 (1.0.2)

易知, 当 $1 - |x - z| \cdot |z - y| > 0$ 时, (1.0.2) 显然成立.

4. 证明 首先证明 $d \in \mathbb{R}^n$ 中的距离. 距离定义的 (1),(2),(3) 显然成立. 只需验证 (4) 成立 便可. 对 $\forall x,y,z \in \mathbb{R}^n$,

$$d(x,y) = \sum_{i=1}^{n} \lambda_{i} |x_{i} - y_{i}| = \sum_{i=1}^{n} \lambda_{i} |x_{i} - z_{i} + z_{i} - y_{i}|$$

$$\leq \sum_{i=1}^{n} \lambda_{i} (|x_{i} - z_{i}| + |z_{i} - y_{i}|) = \sum_{i=1}^{n} \lambda_{i} |x_{i} - z_{i}| + \sum_{i=1}^{n} \lambda_{i} |z_{i} - y_{i}|$$

$$= d(x, z) + d(z, y).$$

故 d 是 \mathbb{R}^n 上的距离.

下面证明按距离收敛等价于按坐标收敛. 设 $\{x_k\}$ 在 \mathbb{R}^n 中按距离收敛于 x, 即 对 $\forall \varepsilon > 0$, $\exists K(\varepsilon) \in \mathbb{Z}^+$, 使得当 $k > K(\varepsilon)$ 时有

$$d(x_k, x) = \sum_{i=1}^n \lambda_i |x_i^{(k)} - x_i| < \lambda \varepsilon.$$

其中 $\lambda = \min\{\lambda_1, \lambda_2, \dots, \lambda_n\} > 0$. 从而对每一个 i, 有

$$\lambda_i |x_i^{(k)} - x_i| \le \sum_{i=1}^n \lambda_i |x_i^{(k)} - x_i| < \lambda \varepsilon,$$

即

$$|x_i^{(k)} - x_i| < \varepsilon, \ i = 1, 2, \dots, n.$$

这表明 $\{x_k\}$ 在 \mathbb{R}^n 中按坐标收敛于 x.

反之,设 $\{x_k\}$ 在 \mathbb{R}^n 中按坐标收敛于 x,则对于每一个 i,对 $\forall \varepsilon > 0$, $\exists K_i \in \mathbb{Z}^+$,使得当 $k > K_i$ 时

$$|x_i^{(k)} - x_i| < \frac{\varepsilon}{n\lambda},$$

其中 $\lambda = \max\{\lambda_1, \lambda_2, \dots, \lambda_n\} > 0$. 令 $K = \max\{K_1, K_2, \dots, K_n\}$, 当 k > K 时, 对每个 i 有

$$|x_i^{(k)} - x_i| < \frac{\varepsilon}{n\lambda}.$$

于是

$$\sum_{i=1}^{n} \lambda_{i} |x_{i}^{(k)} - x_{i}| < \frac{\lambda_{1} + \lambda_{2} + \dots + \lambda_{n}}{n\lambda} \varepsilon < \varepsilon.$$

故 $d(x_k, x) \to 0$ $(k \to \infty)$, 即 $\{x_k\}$ 在 \mathbb{R}^n 中按距离收敛于 x.

5. 证明 由 ρ 的定义知

$$\rho(x,y) = 2R \arcsin \frac{d(x,y)}{2R},$$

其中 R 为球面的半径. 由 $0 \le \frac{d(x,y)}{2R} \le 1$ 及 arcsin 函数的性质可知 ρ 满足非负性, 正定性, 对称性. 再由立体几何的知识知三角不等式成立, 即对 $\forall x,y,z$ 有

$$2R \arcsin \frac{d(x,y)}{2R} \leq 2R \arcsin \frac{d(x,z)}{2R} + 2R \arcsin \frac{d(z,y)}{2R}.$$

故 $\rho(x,y)$ 是一个距离.

6. 证明 (1) 由于

$$|x_1 - y_1| \le \{|x_1 - y_1|^p + |x_2 - y_2|^p\}^{\frac{1}{p}}$$

 $|x_2 - y_2| \le \{|x_1 - y_1|^p + |x_2 - y_2|^p\}^{\frac{1}{p}}$

故 $d_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\} \le d_p(x,y),$

考虑到函数 $f(t) = \frac{t^p+1}{(t+1)^p} \le \frac{1}{2^{p-1}} \le 1$, 当 $|x_2 - y_2| \ne 0$ 时, 取 $t = \frac{|x_1 - y_1|}{|x_2 - y_2|}$ 可得

$$|x_1 - y_1|^p + |x_2 - y_2|^p \le (|x_1 - y_1| + |x_2 - y_2|)^p$$

当 $|x_2 - y_2| = 0$ 时, 上式自然成立. 因此

$$d_p(x,y) = \{|x_1 - y_1|^p + |x_2 - y_2|^p\}^{\frac{1}{p}}$$

$$\leq \{(|x_1 - y_1| + |x_2 - y_2|)^p\}^{\frac{1}{p}}$$

$$= |x_1 - y_1| + |x_2 - y_2| = d_1(x,y).$$

(2)

$$d_p(x,y) = \{|x_1 - y_1|^p + |x_2 - y_2|^p\}^{\frac{1}{p}}$$

$$\leq \{(\max\{|x_1 - y_1|, |x_2 - y_2|\})^p + (\max\{|x_1 - y_1|, |x_2 - y_2|\})^p\}^{\frac{1}{p}}$$

$$= \sqrt[p]{2}d_{\infty}(x,y)$$

(3)

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2| \le 2d_{\infty}(x,y),$$

而由 (1) 可知, $d_{\infty}(x,y) \leq d_{p}(x,y)$, 故 $d_{1}(x,y) \leq 2d_{p}(x,y)$.

7. 证明 设 $M = \{x \in A : x \ \,)$ A 的内点 $\}$. 任取 $x \in M$, 因为 $x \in A$ 的内点, 故必存在 $\delta > 0$, 使开集 $B(x,\delta) \subset A$, 下面证明 $B(x,\delta) \subset M$. 事实上对于 $B(x,\delta)$ 中任一点 y, 令

$$\delta_1 = \delta - d(x, y) > 0,$$

则

$$B(y, \delta_1) \subset B(x, \delta) \subset A$$
,

故 y 是 A 的内点, 即 $B(x,\delta) \subset M$, 从而 M 为开集.

8. 证明 (1) 设 F 为距离空间 (X,d) 中的任一的闭集,令

$$G_n = \{x \in X | d(x, F) < \frac{1}{n}\},\$$

则易证每个 G_n 为开集, 且

$$F = \bigcap_{n=1}^{\infty} G_n.$$

(2) 设 G 为 X 中的任一开集, 令 $F=X\backslash G$, 则由 (1) 可知存在开集 G_n , 使 $F=\bigcap_{n=1}^\infty G_n$, 从而

$$G = X \setminus F = \bigcup_{n=1}^{\infty} X \setminus G_n,$$

其中 $X \setminus G_n$ 为 X 的闭集.

9. 证明 记 $d(x,A) = \inf\{d(x,y) \mid y \in A\} \ \forall x \in X$. 则 d(x,A) 是 X上 的连续函数 (参考第14题). 设

$$f(x) = \frac{d(x, F_1)}{d(x, F_1) + d(x, F_2)} \ \forall x \in X.$$

则是 X 上的连续函数. 记

$$G_1 = \{x \in X \mid f(x) < \frac{1}{2}\} = f^{-1}((-\infty, \frac{1}{2})),$$

$$G_2 = \{x \in X \mid f(x) > \frac{1}{2}\} = f^{-1}((\frac{1}{2}, +\infty)).$$

则 G_1, G_2 是 X 中的开集且 $G_1 \cap G_2 = \emptyset, G_1 \supset F_1, G_2 \supset F_2$.

- 10. 证明 设 (X_0,d) 是可分距离空间 (X,d) 的任一子空间. 因为存在 X 的子集 B 使得 $\overline{B}=X$, 且 B 可数, 故 $\overline{B}\supset X_0$, 这表明 (X_0,d) 也是可分的子空间. 反之, 如果距离空间不可分, 它的子空间有可能是可分的. 例如, 空间 l^∞ 不可分的, 但它的子空间 c 可分的.
- 11. 证明 假设 (X,d) 是可分的, 故存在可数的稠密子集 $M \subset X$, $\overline{M} = X$. 因此

$$X \subset \bigcup_{y \in M} B(y, \frac{1}{3}).$$

令 $A=\{e^{iat}|a\in\mathbb{R}\}$, 显然, A 是 X 的不可数子集且对 $\forall x=e^{iat}, y=e^{ibt}, a\neq b$ 有

$$\begin{split} d(x,y) &= \{ \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |e^{iat} - e^{ibt}|^2 \mathrm{d}t \}^{1/2} \\ &= \{ \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [(\cos at - \cos bt)^2 + (\sin at - \sin bt)^2] \mathrm{d}t \}^{1/2} = 1 \end{split}$$

由于 A 不可数且 $X \subset \bigcup_{y \in M} B(y, \frac{1}{3})$, 故存在 $B(y_0, \frac{1}{3}), x_1, x_2 \in A$, 使得

$$x_1, x_2 \in B(y_0, \frac{1}{3}),$$

从而

$$d(x_1, x_2) \le d(x_1, y_0) + d(y_0, x_2) < \frac{1}{3} + \frac{1}{3} = \frac{2}{3},$$

与 $d(x_1, x_2) = 1$ 矛盾, 则 X 不可分.

12. 证明 令

$$f(x) = \frac{d(x, F_1)}{d(x, F_2) + d(x, F_2)}.$$

因为 $F_1 \cap F_2 = \emptyset$, 则 $x \in F_1$ 时, f(x) = 0, $x \in F_2$ 时, f(x) = 1. 下面证明 $g(x) = d(x, F_1)$ 连续的. 任取 $x, x_0 \in X$, 则由

$$d(x,y) \le d(x,x_0) + d(x_0,y), \quad \forall y \in F_1,$$

可得

$$\inf_{y \in F_1} d(x, y) \le d(x, x_0) + \inf_{y \in F_1} d(x_0, y),$$

同理可得

$$\inf_{y \in F_1} d(x_0, y) \le d(x, x_0) + \inf_{y \in F_1} d(x, y).$$

则

$$|q(x) - q(x_0)| < d(x, x_0),$$

故 q(x) 为连续函数, 同理可证 $d(x, F_2)$ 也是连续的. 从而 f(x) 连续的.

13. 证明 必要性. 显然.

充分性. (a) 方法一: 设 G 为 $\mathbb R$ 中的任意开集, 则 G 可以表示为可数个开区间的并, 即 $G=\bigcup_{n=1}^\infty (\alpha_n,\beta_n)$. 对于任意取定的 n, 有

$$f^{-1}(\alpha_n, \beta_n) = \{x : f(x) > \alpha_n\} \bigcap \{x : f(x) < \beta_n\}.$$

由条件可知 $\{x: f(x) > \alpha_n\}$ 和 $\{x: f(x) < \beta_n\}$ 均为开集. 故 $f^{-1}(\alpha_n, \beta_n)$ 是开集. 因为

$$f^{-1}(G) = f^{-1}(\bigcup_{n=1}^{\infty} (\alpha_n, \beta_n)) = \bigcup_{n=1}^{\infty} f^{-1}(\alpha_n, \beta_n),$$

所以 $f^{-1}(G)$ 可以表示为可数开区间的逆像集的并, 也就是开集的并, 从而 $f^{-1}(G)$ 也是开集. f 连续.

方法二: 任取 $x_0 \in X$, 求证 f(x) 在 x_0 点连续, $\forall \varepsilon > 0$, 由条件 (a) 可知

$$V = \{x : f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon\}$$

= $\{x : f(x) > f(x_0) - \varepsilon\} \cap \{x : f(x) < f(x_0) + \varepsilon\}$

是开集. 由于 $x_0 \in V$, 故 $\exists \delta > 0$ 使 $\beta(x_0, \delta) \subset V$ 即当 $d(x_0, x) < \delta$ 时, 有 $x \in V$ 从而 $|f(x) - f(x_0)| < \varepsilon$ 因此 f(x) 在 x_0 点连续, 而 x_0 是 X 中任何点, 故 f(x) 在 X上 连续. (b) 若 $\{x: f(x) \geq \alpha\}$ 为闭集, 则

$${x: f(x) < \alpha} = \mathbb{R} \setminus {x: f(x) \ge \alpha}$$

为开集,同样由 $\{x: f(x) \leq \alpha\}$ 知 $\{x: f(x) > \alpha\}$ 为开集. 由 (a) 得 f 连续.

14. 证明 任取 $x, x_0 \in X$, 则由

$$d(x,y) \le d(x,x_0) + d(x_0,y)$$

可得

$$\inf_{y \in A} d(x, y) \le d(x, x_0) + \inf_{y \in A} d(x_0, y). \tag{1}$$

同理可得

$$\inf_{y \in A} d(x_0, y) \le d(x, x_0) + \inf_{y \in A} d(x, y). \tag{2}$$

由(1),(2)立即得

$$|f(x) - f(x_0)| < d(x, x_0),$$

故 f(x) 为连续函数.

15. 证明 设 f(x) 为定义在 A 上的连续函数. 任取 $\{y_n\} = \{f(x_n)\} \subset f(A)$. 因为 A 自列紧的, 故存在 $\{x_{n_k}\} \subset \{x_n\}, x_0 \in A$ 使得 $x_{n_k} \to x_0$ $(k \to \infty)$. 利用 f(x) 的连续性可得

$$y_{n_k} \to f(x_0) \in f(A) \ (k \to \infty),$$

故 f(A) 为自列紧的, 从而 f(A) 是 \mathbb{R}^n 中有界集. 现设

$$M = \sup_{x \in A} f(x), \ m = \inf_{x \in A} f(x),$$

则存在 $\{x_n\}, \{y_n\} \subset A$, 使得

$$\lim_{n \to \infty} f(x_n) = M, \ \lim_{n \to \infty} f(y_n) = m.$$

利用 A 的自列紧性, 存在 $x_0, y_0 \in A$ 使得

$$x_{n_k} \to x_0, \ y_{n_k} \to y_0,$$

易知 $M = f(x_0), m = f(y_0).$

16. 证明 反证法. 假设 f(x) 在 M 上不一致收敛, 故存在 $\varepsilon_0 > 0$ 使得对于 $\forall \frac{1}{n} \ (n=1,2\cdots)$ 存在 $x_n^1, x_n^2 \in M$ 使得

$$|x_n^1 - x_n^2| < \frac{1}{n},$$

但

$$|f(x_n^1) - f(x_n^2)| \ge \varepsilon_0. \tag{1.0.3}$$

结合 M 是自列紧的, 存在子列 $\{x_{n_k}^1\} \subset \{x_n^1\}, \{x_{n_k}^2\} \subset \{x_n^2\}, \, \mathbb{Z} \times \{x_n^2\}$

$$x_{n_k}^1 \to x_0, \ x_{n_k}^2 \to x_0.$$

由 f 的连续性可知

$$f(x_{n_k}^1) \to f(x_0), \ f(x_{n_k}^2) \to f(x_0),$$

即 $|f(x_{n_k}^1) - f(x_{n_k}^2)| \to 0 (k \to \infty)$, 与 (1.0.3) 矛盾, 则 f 在 M 上一致连续

17. 证明 由下确界的定义知, 存在 $\{x_n\} \subset S$ 使得 $\lim_{n\to\infty} d(x,x_n) = d(x,S)$. 由于 S 是自列紧的, 故存在子列 $\{x_{n_k}\} \subset \{x_n\} \subset S, x_0 \in S$ 使得 $x_{n_k} \to x_0$. 再由 d 的连续性知

$$d(x,S) = \lim_{n \to \infty} d(x,x_n) = \lim_{k \to \infty} d(x,x_{n_k}) = d(x,\lim_{k \to \infty} x_{n_k}) = d(x,x_0).$$

18. 证明 因为 M 是 C[a,b] 中的有界集, 故存在 $C_0 > 0$ 使得

$$\forall f \in M, |f(t)| \le C_0, \forall t \in [a, b].$$

从而有

$$|F(x)| = |\int_{a}^{x} f(t)dt| \le \int_{a}^{b} |f(t)|dt \le C_{0}(b-a), \ (\forall F \in S),$$

即 E 一致有界. 又对 $\forall \varepsilon > 0$, 存在 $\delta = \frac{\varepsilon}{C_0}$, 当 $|x_2 - x_1| < \delta$ 时

$$|F(x_2) - F(x_1)| = |\int_{x_1}^{x_2} f(t)dt| \le C_0|x_2 - x_1| \le \varepsilon, \ (\forall F \in S),$$

即 S 等度连续, 由 Arzelà 定理结论得证.

19. 证明 只要证 $M = \{\sin nx | n = 1, 2, \dots\}$ 非等度连续.

对
$$\varepsilon_0 = 1$$
, 对 $\forall \delta > 0$ 取 $n_0 = \left[\frac{2}{\delta}\right] + 1$, $t_2 = \frac{\pi}{2n_0} \in [0, \pi]$, $t_1 = 0$, 那么

$$|t_2 - t_1| = \frac{\pi}{2n_0} \le \frac{\pi\delta}{4} < \delta,$$

而

$$|\sin n_0 \cdot t_{n_0} - \sin n_0 \cdot 0| = \sin \frac{\pi}{2} = 1 = \varepsilon_0.$$

由此可见, $M = \{\sin nx | n = 1, 2, \dots\}$ 非等度连续.

20. 证明 对 $\forall \varepsilon > 0$, 取 $\delta = (\frac{\varepsilon}{c})^{\frac{1}{\alpha}}$, 当 $d(t_1, t_2) < \delta$ 时

$$|x(t_1) - x(t_2)| \le cd(t_1, t_2)^{\alpha} < \varepsilon,$$

所以 E 是等度连续的, 因此由 Arzelà 定理知 E 是列紧集.

21. 证明 必要性.定义映射 $\varphi_n: s \to \mathbb{R}: \varphi_n(x) = \xi_n, \ x = \{\xi_n\} \in s$. 显然 φ_n 是连续的, 故 $\varphi_n(A)$ 列紧的. 从而 $\varphi_n(A)$ 必为 \mathbb{R} 中的有界集, 即存在 $C_n > 0$, 使得 $|\xi_n| \leq C_n$.

充分性. 设条件成立, 任取 $\{x_k\} \subset A$, 其中 $x_k = \{\xi_n^k\}$. 则

$$|\xi_n^k| \le C_n, \ (\forall k).$$

按对角线法, 必可取出子列 $\{k_i\}$, 使得

$$\xi_n^{k_j} \to \xi_n \ (j \to \infty) \ (n = 1, 2, \cdots).$$

则 $x_{k_i} \to x = \{\xi_n\} \in S$, 列紧得证.

22. 证明 因为 X 是可分的距离空间, 存在可数稠密子集 $\{x_n\}$, 使得 $\overline{\{x_n\}} = X$. 因为

$$\bigcup_{\alpha \in I} G_{\alpha} \supset X,$$

对 $\forall x \in X$, 必存在某个 G_{α} 使得 $x \in G_{\alpha}$. 由于 G_{α} 为开集, 则存在 $\varepsilon > 0$ 使 $B(x, \varepsilon) \subset G_{\alpha}$. 又由于 $\overline{\{x_n\}} = X$, 故存在 x_k 使

$$d(x,x_k)<\frac{\varepsilon}{4}.$$

取有理数 r, 满足 $\frac{\varepsilon}{4} < r < \frac{2}{\varepsilon}$, 易知

$$x \in B(x_k, r) \subset B(x, \varepsilon) \subset G_{\alpha}$$
.

因为 $\{B(x_k,r)|k=1,2,3,\cdots,r$ 为有理数} 为至多可数且 $x\in X$ 是任取的, 故可取出至多可数多个开球 $\{B(x_k,r)\}$ 覆盖 X, 其中 $B(x_k,r)\subset \mathbb{R}$ G_{α_k} 从而 $\bigcup_{k=1}^{\infty}G_{\alpha_k}\supset X$.

23. 证明由

$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n) - d(x_m, y_m)$$

$$= d(x_n, x_m) + d(y_m, y_n),$$

$$d(x_n, y_n) - d(x_m, y_m) \ge d(x_n, y_n) - d(x_m, x_n) - d(x_n, y_n) - d(y_n, y_m)$$

$$= -(d(x_m, x_n) + d(y_n, y_m)),$$

知

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_m, y_m),$$

再由 $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$ 是(X,d) 中的 Cauchy 列可得 $\{d(xn,y_n)\}_{n=1}^{\infty}$ 是 Cauchy 数列.

24. 证明 必要性. 显然成立.

充分性. 设 $\{x_n\}$ 为 Cauchy 列, $\{x_{n_k}\}$ 为 $\{x_n\}$ 的一个收敛子列, $x_{n_k} \to x(k \to \infty)$. 下面证明 $x_n \to x(n \to \infty)$. 因为 $\{x_n\}$ 为 Cauchy 列, 所以对于 $\forall \varepsilon > 0$, 存在 N, 使得

$$d(x_n, x_m) < \frac{\varepsilon}{2} \ (\forall n, m > N).$$

因为 $n_k \to \infty$, 所以 $\exists K$, 使得 $n_k > N$ ($\forall k > K$), 故有

$$d(x_n, x_{n_k}) < \frac{\varepsilon}{2} \ (\forall n > N, \ \forall k > K),$$

对上式令 $k \to \infty$, 取极限, 即得

$$d(x_n, x) \le \frac{\varepsilon}{2} < \varepsilon \ (\forall n > N),$$

即证得 $x_n \to x$.

25. 证明 设 $\{x_n\}$ 是 (X,d_1) 中的 Cauchy 序列, 即对 $\forall \varepsilon > 0$, $\exists N$, 当 n,m > N 时

$$d_1(x_n, x_m) < \frac{\varepsilon}{h}.$$

由于 $d_2(x,y) \leq bd_1(x,y)$, 故

$$d_2(x_n, x_m) \le bd(x_n, x_m) < b \cdot \frac{\varepsilon}{b} = \varepsilon.$$

这表明了 $\{x_n\}$ 是 (X, d_2) 中的 Cauchy 序列. 同理可证 (X, d_2) 中的 Cauchy 序列也是 (X, d_1) 中的 Cauchy 序列.

- 26. 证明 (1) 设 (X,d) 是完备的距离空间, M 是 X 的闭子集, 要证 M 是完备的. 设 $\{x_n\}$ 是 (M,d) 中的 Cauchy 列, 由于 $M \subset X$, 故 $\{x_n\}$ 是 (X,d) 中的 Cauchy 列, 而 (X,d) 是完备的, 故存在 $x \in X$, 使 $x_n \to x$ $(n \to \infty)$. 又由于 M 是闭集, 故 $x \in M$, 因此 (M,d) 是完备的.
 - (2) 设 (X,d) 是距离空间, M 是 X 的完备子空间, 即 (M,d) 是完备的. 要证 M 是 (X,d) 的闭子集, 设 $\{x_n\} \in M$ 且 $x_n \to x \in X$ $(n \to \infty)$, 则 $\{x_n\}$ 是 (M,d) 中的 Cauchy 列, 由 (M,d) 完备可知 $x_n \to y \in M$,由极限的唯一性可得 $x = y \in M$,从而 M 是闭的.
- 27. 证明 因为

$$F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$$
.

且 $F_n \neq \emptyset$, 故存在 $\{x_n\} \subset X$, 使得 $x_n \in F_n - F_{n+1}$ ($\forall n$). 由 $\lim_{n \to \infty} d(F_n) = 0$ 知, $\{x_n\}$ 为 X 中的基本列. 又因为 X 是完备的, 故存在 $x \in X$ 使 $x_n \to x$. 由于对 $\forall n$, 当 m > n 时, $x_m \in F_n$. 注意到 F_n 是闭集, 从而 $x \in F_n$ ($\forall n$). 则 $x \in \bigcap_{n=1}^\infty F_n$, 即 $\bigcap_{n=1}^\infty F_n \neq \emptyset$.

若条件 $\lim_{n\to\infty} d(F_n)=0$ 去掉, 结论不一定成立. 例如, 在 \mathbb{R} 中, 令 $F_n=[n,\infty)$. 显然 $\{F_n\}(n=1,2,3,\cdots)$ 为 \mathbb{R} 中的一列闭集, 且

$$F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$$
.

而 $d(F_n) \ge 1$ $(n = 1, 2, 3, \cdots)$. 易知, $\bigcap_{n=1}^{\infty} F_n = \emptyset$.

- 28. 解 \mathbb{R} 是 (X,d) 的完备化空间. 因为有理数集合 X 在 \mathbb{R} 中稠密, $\overline{X}=\mathbb{R}$, 且 \mathbb{R} 在 d 意义下是完备的.
- 29. 证明 显然 d 满足距离定义的非负性、严格性、对称性、三角不等式,即 (X,d) 为距离空间. 下面证明 (X,d) 不完备. 取 $\{n\} \subset X$, 它是 X 中的 Cauchy 序列. 事实上,对于 $\forall \varepsilon > 0, \ \exists N = \left[\frac{2}{\varepsilon}\right] + 1$, 使得当 n,m > N 时

$$d(n,m) = \left| \frac{1}{n} - \frac{1}{m} \right| < \varepsilon.$$

假设 $\{n\}$ 收敛于 $a \in \mathbb{N}^+$, 则

$$d(n,a) = \left|\frac{1}{n} - \frac{1}{a}\right| \to 0 \ (n \to \infty).$$

从而 $\frac{1}{n} \to \frac{1}{a}$, 而 $\frac{1}{n} \to 0$. 故 $\frac{1}{a} = 0$, 矛盾. 故 (X, d) 不完备.

30. 证明 (1) 距离定义的 (1),(2),(3) 条显然成立, 只要验证 (4) 三角形不等式成立. 设 $x,y,z\in D$. 则 $\forall t\in [0,1]$, 有

$$|x(t) - y(t)| \le |x(t) - z(t)| + |z(t) - y(t)|,$$

$$|x'(t) - y'(t)| \le |x'(t) - z'(t)| + |z'(t) - y'(t)|,$$

二式对 $t \in [0,1]$ 取最大值并相加得:

$$d(x,y) \le d(x,z) + d(z,y).$$

即 D 是一个距离空间.

(2) D 中的点列 $\{x_n\}$ 收敛于 x 的充要条件是 $\{x_n(t)\}$ 在 [0,1] 上一致收敛于 x(t) 且 $\{x'_n(t)\}$ 在 [0,1] 上一致收敛于 x'(t). 事实上, 设 $x_n(t)$ $(n=1,2,\cdots), x(t)\in D$, 且 $d(x_n,x)\to 0$, 于是对 $\forall \varepsilon>0$, $\exists N$, 当 n>N 时, $d(x_n,x)<\varepsilon$, 即:

$$\max_{0 \le t \le 1} |x_n(t) - x(t)| + \max_{0 \le t \le 1} |x'_n(t) - x'(t)| < \varepsilon, \ (n > N).$$

于是对 $\forall t \in [0,1]$, 有

$$|x_n(t) - x(t)| \le \max_{0 \le t \le 1} |x_n(t) - x(t)| < \varepsilon,$$

 $|x'_n(t) - x'(t)| \le \max_{0 \le t \le 1} |x'_n(t) - x'(t)| < \varepsilon,$

即 $\{x_n(t)\}$, $\{x'_n(t)\}$ 在[0,1] 上分别一致收敛到x(t), x'(t).

反之, $\{x_n(t)\}$, $\{x_n'(t)\}$ 一致收敛到 x(t) 和 x'(t), 对 $\forall \varepsilon > 0, \exists N, \exists n > N$ 时, 对 $\forall t \in [0, 1],$ 有

$$|x_n(t) - x(t)| < \frac{\varepsilon}{2} \mathbb{H} |x'_n(t) - x'(t)| < \frac{\varepsilon}{2},$$

上两式两边分别对 $t \in [0,1]$ 取最大值, 并相加得

$$\max_{0 \le t \le 1} |x_n(t) - x(t)| + \max_{0 \le t \le 1} |x'_n(t) - x'(t)| \le \varepsilon.$$

说明 $x_n \to x \ (n \to \infty)$. 即D 中的收敛是函数列和函数的导数列在 [0,1] 上的一致收敛. (3) 设 $\{x_n\}$ 是 D 中任意 Cauchy 列, 则 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^+, \ \forall n > N, \ p \in \mathbb{N}^+, \ t \in [0,1]$, 都有

$$|x_{n+p}(t) - x_n(t)| < \varepsilon$$
, $\mathbb{E} |x'_{n+p}(t) - x'_n(t)| < \varepsilon$. (1.0.4)

故 $\{x_n(t)\}$ 与 $\{x'_n(t)\}$ 是 C[a,b] 的 Cauchy 列, 由 C[a,b] 的完备性知存在 $x_0(t), y_0(t) \in C[a,b]$ 使得

$$\max_{0 \le t \le 1} |x_n(t) - x_0(t)| \to 0 \ (n \to \infty), \ \max_{0 \le t \le 1} |x_n'(t) - y_0(t)| \to 0 \ (n \to \infty),$$

且 $y_0(t) = x_0'(t)$. 于是有 $x_0 \in D$. 在 (1.0.4) 中, 令 $p \to \infty$ 得

$$|x_0(t) - x_n(t)| \le \varepsilon$$
, $\mathbb{E} |x_0'(t) - x_n'(t)| \le \varepsilon$.

因此, $d(x_n, x_0) \leq 2\varepsilon$. 这表明 $x_n \to x_0 \ (n \to \infty)$, D 是完备的.

31. 证明 令

$$p_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!}, \ n = 1, 2, \dots,$$

因为

$$d(p_n, p_{n+j}) = \int_0^1 \sum_{k=n+1}^{n+j} \frac{x^k}{k!} dx \le \frac{1}{n+1} \to 0 \ (n \to \infty, \forall j \in \mathbb{N}).$$

所以 $\{p_n(x)\}$ 为基本列. 又由 $d(p_n(x), e^x) \to 0 \ (n \to \infty)$ 知 $p_n(x) \to e^x$. 但是 e^x 不是多项式. 它的完备化空间是 C[0,1].

32. 证明 若 $x, y \in X$ 的两个不动点, 且 $x \neq y$, 则

$$d(x,y) = d(Tx, Ty) < d(x,y),$$

矛盾, 故不动点是唯一的.

33. 证明 (1) 因为 T 是 (X,d) 上的压缩映射, 所以 $\exists \alpha \in (0,1)$, 使得 $d(Tx,Ty) \leq \alpha d(x,y)$, 从而

$$d(T^{2}x, T^{2}y) \le \alpha d(Tx, Ty) \le \alpha^{2} d(x, y).$$

假定 $d(T^n x, T^n y) \le \alpha^n d(x, y)$ 成立, 则有

$$d(T^{n+1}x, T^{n+1}y) \le \alpha d(T^nx, T^ny) \le \alpha \cdot \alpha^n d(x, y) = \alpha^{n+1} d(x, y).$$

于是根据数学归纳法原理, $d(T^n x, T^n y) \le \alpha^n d(x, y)$ 对 $\forall n \in N$ 成立.

又由 $0 < \alpha < 1$ 推出 $0 < \alpha^n \le \alpha < 1$, 故有

$$d(T^n x, T^n y) \le \alpha \ d(x, y).$$

即 T^n 是压缩映射.

(2) 逆命题不一定成立. 例如. 设

$$f(x) = \begin{cases} 0, & x \in [0, 1], \\ 1, & x \in (1, 2], \end{cases}$$

f(x) 在 [0,2] 上是不连续函数, 作为 $f:[0,2] \to [0,2]$ 的映射, 当然不是压缩映射. 但是

$$f(f(x)) \equiv 0, x \in [0, 2],$$

故 $f^2: [0,2] \to [0,2]$ 是压缩映射.

・16・ 第一章 距离空间

34. 证明 对 $\forall x \in \overline{B}$ 有

$$d(Tx, x_0) \le d(Tx, Tx_0) + d(Tx_0, x_0) \le \theta d(x, x_0) + (1 - \theta)r \le \theta r + (1 - \theta)r = r,$$

于是 T 是 X 的完备子集 \overline{B} 上的压缩映射. 因此, 由压缩映射原理可知 T 在 \overline{B} 上有唯一的不动点.

35. 证明 在空间 C[0,1] 上考虑如下映射:

$$Tx(t) = \frac{1}{2}\sin x(t) - a(t),$$

则 T 是从 C[0,1] 到 C[0,1] 自身的映射. 对于 $\forall x,y \in C[0,1], \forall t \in [0,1],$ 有

$$|Tx(t) - Ty(t)| = \left| \left(\frac{1}{2} \sin x(t) - a(t) \right) - \left(\frac{1}{2} \sin y(t) - a(t) \right) \right| = \left| \frac{1}{2} \sin x(t) - \frac{1}{2} \sin y(t) \right|$$

$$= \frac{1}{2} \left| 2 \cos \frac{x(t) + y(t)}{2} \sin \frac{x(t) - y(t)}{2} \right| \le \left| \sin \frac{x(t) - y(t)}{2} \right|$$

$$\le \frac{1}{2} |x(t) - y(t)|.$$

故 $d(Tx,Ty)=\max_{t\in[0,1]}|Tx(t)-Ty(t)|\leq \frac{1}{2}\max_{t\in[0,1]}|x(t)-y(t)|=\frac{1}{2}d(x,y)$. 则由压缩映射原理知存在唯一的 $x_0\in C[0,1]$ 使得 $Tx_0=x_0$. 即

$$x_0(t) = \frac{1}{2}\sin x_0(t) - a(t).$$

36. 证明 令 $\alpha_n = \sup_{x \neq y} \frac{d(T^n x, T^n y)}{d(x, y)}$,则

$$\alpha_0 = \inf_n \alpha_n < 1.$$

故存在 n_0 , 使 $0 \le \alpha_{n_0} < 1$, 令 $\theta = \alpha_{n_0}$, 就有

$$d(T^{n_0}x, T^{n_0}y) \le \theta d(x, y) \qquad (\forall \ x, y \in X).$$

故由定理 1.5.4 知 T 必存在唯一的不动点.

37. 证明 在 \mathbb{R}^n 中规定欧氏距离, 定义

$$T: \mathbb{R}^n \to \mathbb{R}^n$$
, $Tx = (I - A)x + b$.

则

$$d(Tx, Ty) = \left\{ \sum_{j=1}^{n} \left[\sum_{k=1}^{n} (\delta_{jk} - \alpha_{jk})^{2} (x_{k} - y_{k})^{2} \right]^{2} \right\}^{\frac{1}{2}}$$

$$\leq \left\{ \sum_{j=1}^{n} \left[\sum_{k=1}^{n} (\delta_{jk} - \alpha_{jk})^{2} \sum_{k=1}^{n} (x_{k} - y_{k})^{2} \right]^{2} \right\}^{\frac{1}{2}}$$

$$\leq \left[\sum_{j=1}^{n} (\delta_{jk} - \alpha_{jk})^{2} \right]^{\frac{1}{2}} \left[\sum_{k=1}^{n} (x_{k} - y_{k})^{2} \right]^{\frac{1}{2}} = \theta d(x, y)$$

其中 $\theta = \left[\sum_{j,k=1}^{n} (\delta_{jk} - \alpha_{jk})^2\right]^{\frac{1}{2}}$, $0 \le \theta < 1$. 当 $\theta = 0$, 时 A = E, Ax = b 有唯一的解 $x_0 = b$. 当 $0 < \theta < 1$ 时, T 为 \mathbb{R}^n 中的压缩映射,故存在唯一不动点 $x_0 \in \mathbb{R}^n$ 使得 $Tx_0 = x_0$, 即 Ax = b 有唯一的解.

38. 证明 令 $z(t) := e^{-t}x(t)$, $\zeta = e^{-t}y(t)$, 则原方程等价于

$$z(t) = \zeta(t) + \lambda \int_0^1 z(s)ds.$$

定义

$$T: z(t) \mapsto \zeta(t) + \lambda \int_0^1 z(s)ds,$$

则

$$d(Tz_1, Tz_2) = \left| \lambda \int_0^1 z_1(s) ds - \lambda \int_0^1 z_2(s) ds \right| \le |\lambda| \int_0^1 |z_1(s) - z_2(s)| ds$$

$$\le |\lambda| |\max_{t \in [0, 1]} |z_1(t) - z_2(t)| = |\lambda| d(z_1, z_2),$$

故 T 是压缩映射且 $|\lambda| < 1$,因而 T 有唯一的不动点,即积分方程

$$z(t) = \zeta(t) + \lambda \int_0^1 z(s)ds.$$

在 C[0,1] 上有唯一解, 从而原方程在 C[0,1] 上有唯一解.