SmartFL: Semantics Based Probabilistic Fault Localization

Yiqian Wu, Zeng Muhan, Yujie Liu, Yi Yin, Xin Zhang, **Yingfei Xiong**, and Lu Zhang

Status Update 1

- Our group have been working on solving competitive programming problems for the last four years
 - Without using neural networks
 - Talked about this in Meetings 67 and 69
- Our plan: to win a silver medal in the national competition in 2025
- Sep, 2024: o1-IOI won a silver medal in IOI
- Dec, 2024: o3 won a gold medal in IOI, Top 200 in Codeforce
- We surrendered.
- Switched to use LLMs to solve SE problems.
 - Program repair / generation / analysis / verification

Status Update 2

- The grammar-based code representation for neural models
 - which I introduced in
 - IFIP meeting 68
 - Dagstuhl on program synthesis and repair
 - was evaluated in 1.3B and 1.5B models in Kuaishou
 - 4.2-17.7 percentage points higher than token-based representation in accuracy
- The preprint will be released soon

Fault Localization

Input

- A faulty program
- A set of tests with at least one failing test

Output

• The suspiciousness score of each program element

```
function d($arg) {
   var_dump(debug_
   trigger_error(
   trigger_error(
   trigger_error()
}
a('alpha');
```

Coverage-based Fault Localization

Idea

• An element covered more by failing tests rather than passing tests is more likely to be faulty

Spectrum-based fault localization

- Count the number of passing/failing tests covering the element
- Calculate the suspiciousness score of each program element

How a Buggy Element Causes the Failure

How to model the latter three conditions?

Existing Research

Mutation-based fault localization

- Generates many mutations on each element
- Watches whether the test result changes
- If a change is more likely to change the results in failing tests, and less likely in passing tests, the corresponding statement is likely to be faulty

Angelic debugging (by Satish et al.)

- Uses symbolic analysis
- Modify the result of an expression
- If an expression can be modified to reverse the results of failing tests while maintaining the results of passing tests, the expression is considered more likely to be faulty

Full Program Semantics

Heavy

Our Approach: SmartFL

How a fault leads to the current test results

- The probability of each statement introducing an error
- The probability of each statement propagating an error

Abstracts the full program semantics

- Introduce random variables to represent the correctness of each statement and runtime variable value
- Transform program semantics into probabilistic constraints between random variables

Efficient Probabilistic Modeling of Program Semantics

Running Example

```
public class CondTest {
         public static int foo(int a) {
 3
             if (a \le 2) { // buggy, should be a
                 a = a + 1;
             return a;
         @Test
         void pass() {
10
11
             assertEquals(2, foo(1));
12
13
14
         @Test
         void fail() {
15
             assertEquals(2, foo(2));
16
```

$$P(S_3=1) = 0.5$$
 $P(S_4=1) = 0.5$ $P(V_{p,2}=1) = 1$

$$P(V_{p,3} = 1 \mid S_3 = 1 \land V_{p,2} = 1) = 1$$

 $P(V_{p,3} = 1 \mid S_3 = 0 \lor V_{p,2} = 0) = 0.5$

$$P(V_{p,4} = 1 \mid S_4 = 1 \land V_{p,2} = 1 \land V_{p,3} = 1) = 1$$

 $P(V_{p,4} = 1 \mid S_4 = 0 \lor V_{p,2} = 0 \lor V_{p,3} = 0) = 0.01$

$$P(S_3 = 0 \mid V_{p,4} = 1 \land V_{4,f} = 0) \approx ?0.707$$

 $P(S_4 = 0 \mid V_{p,4} = 1 \land V_{4,f} = 0) \approx ?0.270$

Bernoulli random variables:

 S_i : representing the correctness of line I

 $V_{t,i}$: representing whether the value defined at line i is correct for test $t \in \{p, f\}$

Bayesian Network

```
public class CondTest {
         public static int foo(int a) {
              if (a \leftarrow 2) { // buggy, should be a < 2
                  a = a + 1;
              return a;
         @Test
         void pass() {
10
11
              assertEquals(2, foo(1));
12
13
14
         @Test
15
         void fail() {
              assertEquals(2, foo(2));
17
18
```


SmartFL Workflow [ICSE22]

Steps

Results [ICSE22]

- Results on 4
 projects from
 Defects4j 1.0
 - Outperforming both SBFL and MBFL
 - Time consumption between SBFL and MBFL

Project	Technique	Top-1	Top-3	Top-5	Top-10
	Ochiai	11(5%)	64(29%)	86(39%)	118(53%)
	DStar	12(5%)	65(29%)	86(39%)	117(53%)
Total	Metallaxis	21(9%)	69(31%)	89(40%)	111(50%)
	MUSE	17(8%)	35(15%)	45(20%)	50(23%)
	SmartFL	47(21%)	80(36%)	97(44%)	118(53%)

Technique	Average	Lang	Math	Chart	Time
Ochiai	64	26	86	44	85
DStar	64	26	86	44	85
Metallaxis	3500	270	3000	5400	12000
MUSE	3500	270	3000	5400	12000
SmartFL	210	51	140	280	830

Bottleneck on Performance [In Submission]

- Traces are too long
- Probabilistic models would be too large for existing probabilistic
 - Drop part of the traces
 - Optimize the probabilistic inference algorithm

SmartFL Workflow [In Submission]

Drop part of traces

Methods not covered by the failing test

Drop large passing tests

Drop large methods in failing tests

m1 = 1k m2 = 9k m3 = 0.5k

Reducing Redundant Methods

Atomic statement

S: a = untraced(b);

Side effects

S1: List I = new ArrayList();

S2: l.add(1); // untraced lib method

S3: x = I.size(); // untraced lib method

V_b S_3 V_a

Assuming access to and only to the object referenced

Virtual call edge

Reducing Redundant Loops

Same graph structure

Loop

S1: while(i<n){

S2: s = s+i;

S3: i = i + 1;

Sequence

 $(S1 S2 S3)^n S1$

(S1 S2 S3) S1

$$(S1 S2)^{100} S1S3 (S1 S2)^{100} \Rightarrow (S1 S2) S1S3 (S1 S2)$$

SmartFL Workflow

Inference Optimization

Tabular encoding

$$p(x_v = true \mid x_1, x_2, \dots, x_n) = \begin{cases} 1, & x_1 \land x_2 \dots \land x_n = true \\ p_0, & x_1 \land x_2 \dots \land x_n = false \end{cases}$$

$$complexity = O(2^n)$$

Local structure

$$X = x_1 \wedge x_2 \cdots \wedge x_n$$
 $p(x_v = true \mid X) = \begin{cases} 1, & X = true \\ p_0, & X = false \end{cases}$ complexity $= O(n)$

Effectiveness of SmartFL

Benchmark

Table I: Projects from Defects4J dataset, version 2.0.0.

Project	Faults	LoC	ATests	CTests
Chart	26	203.0k	1818	38
Cli	39	5.7k	262	42
Closure	174	138.8 k	7027	18
Codec	18	10.9k	440	32
Collections	4	67.0k	15582	34
Compress	47	31.0k	432	40
Csv	16	3.1k	180	39
Gson	18	14.0k	988	33
JacksonCore	26	34.4k	356	41
JacksonDatabind	112	95.8k	1610	13
JacksonXml	6	7.6k	152	40
Jsoup	93	15.0k	454	18
JxPath	22	29.2k	305	12
Lang	64	52.3k	1815	30
Math	106	116.2k	3343	29
Mockito	38	18.8k	1156	5
Time	26	67.7k	3802	21
Total	835	76.3k	2604	24

^{&#}x27;Faults' denotes the number of defective versions of the project, 'LoC' denotes the average lines of code of each project, 'ATests' denotes the average test numbers of each project, and 'CTests' denotes the average number of chosen tests after reducing redundant tests .

Results

Table II: Statement-level Performance

Technique	Top-1	Top-3	Top-5	Top-10
Ochiai	50(6%)	142(17%)	182(22%)	254(30%)
DStar	42(5%)	114(14%)	146(17%)	214(26%)
Metallaxis	51(6%)	132(16%)	166(20%)	219(26%)
MUSE	36(4%)	75(9%)	95(11%)	121(14%)
SmartFL	115(14%)	200(24%)	238(29%)	279(33%)

Table VII: Comparing SmartFL with CAN and UNITE

Technique	Top-1	Top-3	Top-5
CAN	$\leq 15(7\%)$	$ \le 64(28\%) $	$ \leq 93(41\%) $ $ \leq 100(45\%) $ 103(46%)
UNITE	$\leq 26(12\%)$	$\le 75(33\%) $	
SmartFL	47(21%)	88(39%)	

Efficiency of SmartFL

Table VIII: Average Time Consumption of each Technique (in seconds)

SBFL	_{MBFL}	SmartFL			
		(a) (b) (c) total			
413	46749	41 126 37 205			

- a) Profiling (coarse-grained instrumentation to get method-level coverage)
- b) Tracing (getting fine-grained traces of selected tests)
- c) Modeling (building the probabilistic graph and probabilistic inference

On combining with LLMs

- Neural networks utilize informal information sources,
 e.g., method names
- SmartFL better captures formal semantic connections
- Potential to be combined
- Attempts
 - Use LLM scores as prior probabilities in SmartFL
 - LLM scores are not really probabilities and tend to dominate
 - Use SmartFL scores in LLMs
 - LLMs do not know how to use them

Table IV: Method-level Performance

Technique	Top-1	Top-3	Top-5	Top-10
Ochiai	167(20%)	305(37%)	351(42%)	398(48%)
DStar	157(19%)	274(33%)	316(38%)	371(44%)
Metallaxis	143(17%)	261(31%)	301(36%)	351(42%)
MUSE	90(11%)	158(19%)	188(23%)	220(26%)
GRACE	280(34%)	382(46%)	438(52%)	\
SmartFL	213(26%)	326(39%)	372(45%)	424(51%)

Table V: Comparing SmartFL with LEAM

Technique	Top-1	Top-3	Top-5
LEAM-Metallaxis LEAM-MUSE	118(53%) 126(56%)	182(81%) 181(81%)	188(84%) 189(84%)
SmartFL	91(41%)	131(58%)	149(67%)

Conclusion

Main Contributions

- 1. A fault localization approach by efficient approximation of program semantics.
- 2. Novel techniques to reduce the size of the model and to efficiently infer posterior probabilities for addressing the scalability challenge.
- 3. An evaluation on the Defects4J dataset to show the effectiveness and the efficiency of our approach.

Tool and Data

https://github.com/toledosakasa/SMARTFL