Boosting Contrastive Self-Supervised Learning with False Negative Cancellation

School of Industrial and Management Engineering, Korea University

Jinsoo Bae

Contents

- Research Purpose
- Boosting Contrastive Learning Using False Negative Cancellation
- Experiments
- Conclusion

- Boosting Contrastive Self-Supervised Learning with False Negative Cancellation (WACV, 2022)
 - Google에서 연구하였으며 2022년 6월 6일 기준으로 20회 인용
 - Contrastive Learning의 Negative 데이터 선정 방법을 개선시킨 것이 핵심

Boosting Contrastive Self-Supervised Learning with False Negative Cancellation

Figure 2. Overview of the proposed framework. **Left:** Original definition of the anchor, positive, and negative samples in contrastive learning. **Middle:** Identification of false negatives (blue). **Right:** false negative cancellation strategies, *i.e.* elimination and attraction.

- Contrastive Self-Supervised Learning in Computer Vision
 - 대조학습은 다량의 Unlabeled 데이터로부터 유의미한 데이터 특징 학습을 수행 (stage 1)
 - 대조학습 수행 후 소량의 Labeled 데이터로 Downstream task 해결 학습 진행 (stage 2)
 - ▶ 대조학습을 통해 Labeled 데이터가 충분치 않을 때에도 효과적인 Downstream task 해결 가능

Stage 1

Stage 2

- Contrastive Self-Supervised Learning in Computer Vision
 - 1. 한 이미지에 두 종류 이상의 데이터 증강 기법을 적용해 <mark>Anchor, Positive</mark> 데이터를 생성함
 - 2. 한 이미지를 제외한 나머지 모든 데이터들을 Negative 데이터로 정의함

- Contrastive Self-Supervised Learning in Computer Vision
 - 3. 비슷한 데이터들의(Anchor, Positive) 특징이 유사해지도록 (Feature Space상에서 Feature가 가까워지도록)
 - 4. 그 외의 데이터(Negative) 특징이 다르도록 학습 (Feature Space상에서 Feature가 멀어지도록)

Anchor와 Positive는 가까워지도록 학습
Anchor와 Negative는 멀어지도록 학습

- False Negative Examples in Contrastive Learning
 - Anchor, Positive 데이터 생성 시 사용된 데이터를 제외하고, 나머지 모든 데이터들을 Negative로 간주하는 기존 방법론들의 Negative 선정 방법이 과연 옳은 걸까, 본 연구에서 의문을 던짐
 - ▶ 기존 Negative 데이터들 내에도 Anchor 데이터와 비슷한 데이터들이 포함되어 있을 수 있다!

대조학습에 악영향을 끼치는 False Negative 데이터

- * False Negative Examples in Contrastive Learning
 - 기존 Negative 데이터들 가운데, False Negative 데이터를 제거해 올바른 Negative samples를 만들자
 - False Negative 데이터를 Positive 데이터로 변경하여 Positive samples를 늘리자
 - ▶ <u>결론은 Positive, Negative 데이터 선정을 이전보다 더 올바르게 하여 대조학습의 효과를 올리자!</u>
 - ▶ <u>본 연구는 효과적인 False Negative 데이터 탐지 및 활용 방법에 대해 연구함</u>

- False Negative 탐지를 위한 가정사항(Ideation) 두 가지
 - False Negative 데이터는 Original data와 반드시 공통된 특징을 하나 갖고 있음 (ex: Dog)
 - False Negative 데이터는 Original data에 여러 증강 기법을 적용한 데이터들 중 하나와 공통된 특 징을 갖고 있음 (ex: Dog's Head, Orientation)

Original data i

False Negative data m

증강 기법 1 적용 (Main views)

증강 기법 2 적용 (Support views)

증강 기법 1 적용 (Main views)

- ❖ False Negative 탐지를 위한 가정사항(Ideation) 두 가지
 - 1. False Negative 데이터는 Original data와 반드시 공통된 특징을 하나 갖고 있음 (ex: Dog)
 - 2. False Negative 데이터는 Original data에 여러 증강 기법을 적용한 데이터들 중 하나와 공통된 특징을 갖고 있음 (ex: Dog's Head, Orientation)

Original data i

개라는 공통된 특징을 갖고 있으나, 얼굴 각도 관점에서는 특징 불일치

False Negative data m

증강 기법 1 적용 (Main views)

증강 기법 2 적용 (Support views)

- ❖ False Negative 탐지를 위한 가정사항(Ideation) 두 가지
 - 1. False Negative 데이터는 Original data와 반드시 공통된 특징을 하나 갖고 있음 (ex: Dog)
 - 2. False Negative 데이터는 Original data에 여러 증강 기법을 적용한 데이터들 중 하나와 공통된 특징을 갖고 있음 (ex: Dog's Head, Orientation)

Original data i

데이터 m은 데이터i의 False Negative

개라는 공통된 특징을 갖고 있고, 얼굴 각도 관점에서도 공통된 특징 False Negative data m

증강기법1적용 (Main views)

증강 기법 2 적용 (Support views)

❖ 데이터 i의 False Negative 데이터 탐지 방법

- 1. For each anchor i, generate a support set $\mathbb{S}_i = \{z_i^s\}$ that contains other support views from the same image besides the two main views.
- 2. Compute similarity scores, $score_{m,i}^s = sim(z_m, z_i^s)$, between a negative sample z_m and each sample z_i^s in the support set.
- 3. Aggregate the computed scores for each negative sample, $score_{m,i} = aggregate_{s \in \mathbb{S}}(score_{m,i}^s)$.
- 4. Define a set of potential false negatives \mathbb{F}_i as the negative samples that are most similar to the support set based on the aggregated scores, $\mathbb{F}_i = \text{best}(\text{score}_i)$, where $\text{score}_i = \{\text{score}_{m,i} | m\}$ is the set of scores for each negative sample with respect to anchor i.

데이터 i에 증강 기법을 적용한 데이터 z_i^s 들의 집합 S_i 생성 ϵ {Negative Samples}

데이터 m과 집합 & 사이의 모든 원소들과 코사인 유사도를 산출 → 코사인 유사도 집합 산출

코사인 유사도 집합 원소들 중 대표값을 (평균 혹은 최대) 선정하여 데이터 i와 m 사이의 유사도 스코어 score_{mi} 정의

 {Negative Samples}

 은
 은

 큰 score_{m,i} 값을 가진 <mark>데이터 포인트 m</mark>을 i의

 False Negative 데이터로 최종 의사결정

 이메타기지방식중하나를

 선택혹은 병합하여선택

- score_{mi} 기준 TopK를 FalseNegative 선정
- $score_{mi}$ 기준특정임계값au이상데이터를FalseNegative 선정

- ❖ False Negative 데이터 탐지 후 → False Negative Elimination or Attraction
 - False Negative 데이터들을 Negative samples 사이에서 제거만 하는 경우 False Negative Elimination
 - 제거된 False Negative 데이터들을 Positive samples에 추가하는 경우 False Negative Attraction
 - ▶ 본 연구는 여러가지 실험 조건에 대해 Elimination과 Attraction의 효과들을 검증하였음

Figure 2. Overview of the proposed framework. Left: Original definition of the anchor, positive, and negative samples in contrastive learning. Middle: Identification of false negatives (blue). Right: false negative cancellation strategies, i.e. elimination and attraction.

- Contrastive Self-Supervised Learning Loss Using False Negative Detection
 - 1) 기존 Contrastive Learning Loss
 - → <mark>자기 자신을 제외한 나머지 모든</mark> 데이터들을 Negative Samples로 간주함
 - 2) False Negative 데이터들을 Negative samples 사이에서 제거만 하는 경우 False Negative Elimination
 - 3) 제거된 False Negative 데이터들을 Positive samples에 추가하는 경우 False Negative Attraction

$$l_i = -\log \frac{\exp(\operatorname{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{M} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(z_i, z_k)/\tau)}, \quad (1)$$

$$l_i^{\text{elim}} = -\log \frac{\exp(\sin(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i, k \notin \mathbb{F}_i]} \exp(\sin(z_i, z_k)/\tau)}, \quad (2)$$

$$l_{i}^{\text{att}} = -\frac{1}{1 + |\mathbb{F}_{i}|} \left(\log \frac{\exp(\sin(z_{i}, z_{j})/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(z_{i}, z_{k})/\tau)} + \sum_{f \in \mathbb{F}_{i}} \log \frac{\exp(\sin(z_{i}, z_{f})/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(z_{i}, z_{k})/\tau)} \right)$$
(3)

- Contrastive Self-Supervised Learning Loss Using False Negative Detection
 - 1) 기존 Contrastive Learning Loss
 - 2) False Negative 데이터들을 Negative samples 사이에서 제거만 하는 경우 False Negative Elimination

 → 자기 자신 및 False Negative Samples F_i를 제외한 나머지 데이터들을 Negative Samples로 간주
 - 3) 제거된 False Negative 데이터들을 Positive samples에 추가하는 경우 False Negative Attraction

$$l_{i} = -\log \frac{\exp(\operatorname{sim}(z_{i}, z_{j})/\tau)}{\sum_{k=1}^{M} \mathbb{I}_{[k \neq i]} \exp(\operatorname{sim}(z_{i}, z_{k})/\tau)}, \qquad (1)$$

$$l_{i}^{\operatorname{att}} = -\frac{1}{1 + |\mathbb{F}_{i}|} \left(\log \frac{\exp(\operatorname{sim}(z_{i}, z_{j})/\tau)}{\sum_{k=1}^{2N} \mathbb{I}_{[k \neq i]} \exp(\operatorname{sim}(z_{i}, z_{k})/\tau)} + \sum_{f \in \mathbb{F}_{i}} \log \frac{\exp(\operatorname{sim}(z_{i}, z_{f})/\tau)}{\sum_{k=1}^{2N} \mathbb{I}_{[k \neq i]} \exp(\operatorname{sim}(z_{i}, z_{k})/\tau)} \right) \qquad (3)$$

$$l_{i}^{\operatorname{elim}} = -\log \frac{\exp(\operatorname{sim}(z_{i}, z_{j})/\tau)}{\sum_{k=1}^{2N} \mathbb{I}_{[k \neq i, k \notin \mathbb{F}_{i}]} \exp(\operatorname{sim}(z_{i}, z_{k})/\tau)}, \qquad (2)$$

- Contrastive Self-Supervised Learning Loss Using False Negative Detection
 - 1) 기존 Contrastive Learning Loss
 - 2) False Negative 데이터들을 Negative samples 사이에서 제거만 하는 경우 False Negative Elimination
 - 3) 제거된 False Negative 데이터들을 Positive samples에 추가하는 경우 False Negative Attraction
 - \rightarrow 자기자신을 augmentation한 데이터와 False Negative Samples F_i 들을 Positive Samples로 간주
 - → 자기 자신을 제외한 나머지 모든 데이터들을 Negative Samples로 간주함

$$l_i = -\log \frac{\exp(\operatorname{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{M} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(z_i, z_k)/\tau)}, \quad (1)$$

$$l_i^{\text{elim}} = -\log \frac{\exp(\sin(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i, k \notin \mathbb{F}_i]} \exp(\sin(z_i, z_k)/\tau)}, \quad (2)$$

$$l_i^{\text{att}} = -\frac{1}{1 + |\mathbb{F}_i|} \left(\log \frac{\exp(\operatorname{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(z_i, z_k)/\tau)} + \sum_{f \in \mathbb{F}_i} \log \frac{\exp(\operatorname{sim}(z_i, z_f)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(z_i, z_k)/\tau)} \right)$$
(3)

Experiments (Encoder Freeze & Linear Evaluation)

False Negative Cancellation Strategies

- ❖ False Negative 제거는 데이터 Crop size 크기에 상관없이 일관된 성능 향상을 보여주었고, Crop size 크기가 클수록 더 높은 성능 향상을 보였음
 - 데이터 Crop의 경우 기존 Contrastive Learning에서 자주 사용하는 데이터 증강 기법 중 하나
 - 한데이터 포인트 당 2개의 False Negative 데이터를 선별하여 제거한 경우임 (왼쪽, Top K=2)

Figure 4. A comparison of top-1 accuracy (left) between false negative elimination and SimCLR (*lower bound of random crop ratio* represents the lowest cropping ratio in random image augmentation); and (right) top-1 accuracy across filtering thresholds in false negative cancellation.

Experiments (Encoder Freeze & Linear Evaluation)

False Negative Cancellation Strategies

- ❖ Support set 활용(= False Negative Samples 판별 시, 두 종류 이상의 데이터 증강 기법을 적용한 것을 의미)을 통해, SimCLR 대비 더 높은 성능 향상을 이뤄냄
 - 저자들이 제안하였던 두 번째 가정사항이 False Negative 데이터 탐지에 효과적임을 알 수 있음

Figure 5. False negative cancellation with and without support set across top-k choices for different mitigation strategies. The dashed line denotes the performance of the SimCLR baseline. The results use mean aggregation in scoring potential false negatives.

Experiments (Encoder Freeze & Linear Evaluation)

♦ GOOLG SI has begane GOOLG SI at SI BY S

False Negative Cancellation Strategies

- ❖ Support set의 코사인 유사도 <u>대표값 선정 방식</u>에는 평균과 최댓값이 있으며, 이 방법에 따라서도 유의미한 성능 차이가 존재하였음
 - False Negative Attraction의 경우 최댓값 방식이 유의미하게 더 좋은 성능 향상을 보여주었음

Figure 6. False negative cancellation with mean and max aggregation across support sizes and top-k for the false negative (left) elimination and (right) attraction strategies.

Experiments

False Negative Cancellation Strategies

Feature Extraction 결과, 비교 방법론(SimCLR v2) 대비 클래스 간 더 유의미한 구분이 형성되는 것을 확인 → 더 유의미한 특징 학습을 수행한 것을 확인할 수 있음

Figure 11. t-SNE visualizations of SimCLR and FNC for 10 random classes (left) and 10 dog classes (right) from ImageNet.

Experiments

False Negative Cancellation Strategies (FNC)

- ❖ Table 5: Encoder freeze, a linear classifier training → 비교 방법론 대비 가장 우수한 성능
- ❖ Table 6: Both Encoder and a linear classifier training → 비교 방법론 대비 가장 우수한 성능

Method	top-1	top-5
Supervised	76.5	
Representation Learning		
Contrastive learning		
MoCo v1 [24]	60.6	_
PIRL [35]	63.6	_
PCL [33]	65.9	_
SimCLR v1 [9]	69.3	89.0
MoCo v2 [11]	71.1	_
SimCLR v2 [10]	71.7	90.4
InfoMin [44]	73.0	91.1
FNC (ours)	74.4	91.8
Others		
BYOL [23]	74.3	91.6
SwAV [7]	75.3	_

Table 5	. ImageNet	linear eva	luation.
---------	------------	------------	----------

	1	1%		10%	
Method	top-1	top-5	top-1	top-5	
Supervised	25.4	56.4	48.4	80.4	
Semi-supervised					
UDA [51]	_	68.8	_	88.5	
FixMatch [42]	_	71.5	_	89.1	
Representation Learning					
Contrastive learning					
PIRL [35]	30.7	60.4	57.2	83.8	
PCL [33]	_	_	75.6	86.2	
SimCLR v1 [9]	48.3	75.5	65.6	87.8	
SimCLR v2 [10]	57.9	82.5	68.4	89.2	
FNC (ours)	63.7	85.3	71.1	90.2	
Others					
BYOL [23]	53.2	78.4	68.8	89.0	
SwAV [7]	53.9	78.5	70.2	89.9	

Table 6. ImageNet semi-supervised evaluation.

Conclusion

Conclusion

- 기존 Contrastive Learning 방법론들의 Negative Samples 선정 방법을 심층적으로 개선시킨 첫 논문
- 잘못된 False Negative 데이터 제거만으로도 유의미한 성능 향상을 일으킬 수 있었음
- 특히, 한 데이터 당 2개 정도의 False Negative 데이터 제거로도 약 1%의 유의미한 성능 향상
- 향후 여러 가지의 Contrastive Learning 방법들에 범용적으로 적용 가능함

Thank you