Problem 17

Problem

Given $\triangle ABC$, $\angle A=90^{\circ}.AB=AC.M$ is the midpoint of $AC.AE\perp BM$ with the feet at E. Extend AE to meet BC at D. Prove that $\angle AMB=\angle CMD$.

Solution

 $\begin{array}{c} \operatorname{Draw}\ CF//AB.\ \operatorname{Extend}\ AD\ \operatorname{to}\ \operatorname{meet}\ CF\ \operatorname{at}\ F.\\ \operatorname{Since}\ \angle ABM + \angle AMB = 90^{\circ}\ \operatorname{and}\ \angle MAE + \angle AMB = 90^{\circ},\\ \angle ABM = \angle CAF.\\ \operatorname{Since}\ AB = AC, \angle ABM = \angle CAF.\ \operatorname{Rt}\ \triangle ABM \cong \operatorname{Rt}\ \triangle CAF,\ \angle AMB = \angle F. \end{array}$

Since $\angle ABM + \angle AMB = 90^{\circ}$ and $\angle MAE + \angle AMB = 90^{\circ}$, $\angle ABM = \angle CAF$.

Since AB = AC, $\angle ABM = \angle CAF$. Rt $\triangle ABM \cong Rt\Delta CAF$, $\angle AMB = \angle F$.

Since $MC = AM = CF, \angle MCD = 45^\circ = \angle FCD, CF = CF, \triangle MCD \cong \triangle FCD.$

 $\angle CMD = \angle F$. Therefore, $\angle AMB = \angle CMD$.