Nov 14, 2024 Spectral Clustering

$S_{ij} = sim(x_i, x_j)$

Similarity motrix 5 distance threshold < 0.5

adjacency matrix W

W(A, A2)= W45

Clustering = finding k costs in the graph min & w (Ah, Ak), w(A,B) = Z wij

graph cut. Image segmentation

adjacency metrix W

	1	2	3	4	5	6	7
1	0	1	1	1	•	0	3
2	1	0	1	0	3	0	ð
3	1	1	0	1	0	0	ð
¥		0	ı	•	l	9	
5	0	0	J	0	0	1	1
6	0	0	0	0	1	0	1
7		ø	0	0	-		Э

degree motrix D

L:

3-1-1-1000

1-12-1000

3-1-1-1000

1-13-1000

4-10-13-100

5000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12-10

10000-12

Laplacian matrix L = D-W

properties of Laplacian motrix:

(2) L.1 = 0.1

eigen vector 1 =
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 with eigen value o

$$L \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \text{ youl} \\ \frac{5}{2} \text{ you} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix} = 0.1$$

L has k eigenvotors $1_{A_1} \cdots 1_{A_k}$ with eigenvalue of $1_{A_2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

5 mail eigenvolues