GLA UNIVERSITY

DIGITAL IMAGE PROCESSING

By:

Dr. Ankush Agarwal

Outline

- Morphological Image Processing
 - Introduction, Logical Operations involving Binary Images,
 - Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation,
 - Morphological Algorithms Boundary Extraction, Region Filling, Extraction of Connected Components, Convex Hull, Thinning, Thickening
- Image Segmentation
 - Point, Line & Edge detection, Thresholding, Region-based Segmentation,
 - Region Extraction Pixel Based Approach & Region Based Approach,
 - Edge and Line Detection Basic Edge Detection, Canny Edge Detection,
 - Edge Linking Hough Transform.
- Representation & Description
 - Representation Boundary Following, Chain Codes,
 - Boundary Descriptors Shape Numbers

Morphology

- Mathematical tool for processing shapes in image, including boundaries, skeletons, convex hulls, etc
- Morphological operations are typically applied to remove imperfections introduced during segmentation, and so typically operate on binary images

Morphology

- Mathematical tool for processing shapes in image, including boundaries, skeletons, convex hulls, etc
- Morphological operations are typically applied to remove imperfections introduced during segmentation, and so typically operate on binary images

Set Theory

- Set (Ω) : A collection of objects (elements)
- Membership (\in) : If ω is an element of a set Ω , we can write $\omega \in \Omega$
- Subset (\subset): Let A, and B are two sets., If for every $a \in A$, we also have $a \in B$, then the set A is a subset of B, that is, $A \subset B$
 - If $A \subset B$ and $B \subset A$, then A = B
- Empty set (\emptyset)
- Complement: If $A \subset \Omega$, then its complement set $A^c = \{\omega | \omega \in \Omega$, and $\omega \notin A\}$

Set Theory

- Union (\cup): A \cup B = { ω | $\omega \in$ A or B}
- Intersection (\cap): $A \cap B = \{\omega | \omega \in A \text{ and } B\}$
- Set difference (-): $B \setminus A = B \cap A^c$
 - Note that $B-A \neq A-B$
- Disjoint sets: A and B are disjoint (mutually exclusive) if $A \cap B = \emptyset$

Example sets operations

Reflection and Translation

Reflection

- The reflection of a set B, denoted by \hat{B} , is defined as

$$\hat{B} = \{w | w = -b, for b \in B\}$$

• Translation

- The translation of a set B by point $z = (z_1, z_2)$, denoted by $(B)_z$ is defined as $(B)_z = \{c | c = b + z, for b \in B\}$

Reflection and Translation

Binary Image

- Binary image
 - bi-valued function of x and y
- Morphological theory views
 - binary image as a set of its foreground (1-valued) pixels

Basic components in Morphology

- Every operation has two elements
 - Input Image
 - Structuring element
- The results of the operation mainly depends upon the structuring element chosen

Structuring Elements

- Small sets or sub-images used to analyze an image for properties of interest
- Structuring elements can be any size and any shape

Structuring Elements

Fundamental Operations

- Fundamentally, morphological image processing is like spatial filtering
- The structuring element is moved across every pixel in the original image to give a new value of a pixel in processed image
- The value of this pixel depends on the operation performed
- There are two basic morphological operations
 - Dilation
 - Erosion

DILATION AND EROSION

- Dilation is an operation that grows or thickens objects in a binary image
- The specific manner of this thickening is controlled by a shape referred to as a structuring element
- The structuring element is translated throughout the domain of the image to see where it overlaps with 1-valued pixels
- The output image is 1 at each location of the origin such that the structuring element overlaps at least one 1-valued pixel in the input image

• The dilation of I and S is denoted by I⊕S

$$I \oplus S = \{ z \, | \, (\hat{S})_z \cap I \neq \emptyset \}$$

- Theoretical way of generation:
 - Obtain the reflection of S about its origin
 - Shift this reflection by z
 - Dilation of I by S is the set of all structuring element origin locations where the reflected and translated S overlaps at least some portion of I

What is Dilation for...?

• Dilation can repair breaks

Properties of Dilation

• Dilation is commutative

$$A \oplus B = B \oplus A$$

Dilation is associative

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$

Dilation is invariant to translation

$$A_h \oplus B = (A \oplus B)_h$$

Erosion

• The erosion of I by S, denoted $I \ominus S$

$$I \quad \Theta \quad S = \{z \mid (S)_z \subseteq I\}$$

- The set of all points z such that, S translated by z, is contained by I

$$I \ \ominus S = \{z | (S)_Z \cap I^c = \emptyset\}$$

- In other words, erosion of I by S is the set of all structuring element origin locations where the translated S has no overlap with the background of I
- Erosion "shrinks" or "thins" objects in a binary image

Erosion

Erosion

What is Erosion for...?

• Erosion can split apart joined objects

• Erosion shrinks objects and removes random outer edges

• Binary image

	0	1	2	3	4	5	6	7
0	X							
1								
2								
3								
4						ź.		
2 3 4 5 6							1	1
6								
7							-	

← Image (I)
Structure Element (S) →

	-1	0	1
-1			
0		X	
1			

$$I = \{(2,2), (3,2), (3,3), (4,3), (4,4), (5,4)\}$$

$$U = \{(0,0), ..., (7,7)\}$$

$$S = \{(-1,-1), (0,-1)\}$$

• Reflection and Translation operations

$$I = \{(1,1), (1,2)\}$$

$$\hat{I} = \{(-1,-1), (-1,-2)\}$$

$$I_{(-1,-1)} = \{(0,0),(0,1)\}$$

Dilation (by coordinate system)

$$S = \{(-1,-1), (0,-1)\}$$

$$I \oplus S = \{p \mid p = i + s, i \in I, s \in S\}$$

$$I = \{(2,2), (3,2), (3,3), (4,3), (4,4), (5,4)\}$$

$$I \oplus S = \begin{cases} (1,1), (2,1), (2,2), (3,2), (3,3), (4,3) \\ (2,1), (3,1), (3,2), (4,2), (4,3), (5,3) \end{cases}$$
$$= \{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,2), (4,3), (5,3) \}$$

Dilation (another definition)

• Eg

$$S = \{(-1,-1), (0,-1)\}$$

$$S = \{(1,1), (0,1)\}$$

$$I \oplus S = \{ p \mid [(\hat{S})_p \cap I] \neq \emptyset \}$$
$$= \{ p \mid [(\hat{S})_p \cap I] \subseteq I \}$$

Dilation (as Union of object translation)

• Eg

Dilation (as Union of object translation)

$$I \oplus S = \bigcup_{s \in S} I_s$$

Erosion (by coordinate system)

• Eg:

$$S = \{(-1,-1), (0,-1)\}$$

$$I\Theta S = \{ p \mid p+s \in I, s \in S \}$$

$$I = \{(2,2), (3,2), (3,3), (4,3), (4,4), (5,4)\}$$

$$(3,3) + \{(-1,-1),(0,-1)\} = \{(2,2),(3,2)\} \in I$$

 $(4,4) + \{(-1,-1),(0,-1)\} = \{(3,3),(4,3)\} \in I$
 $(5,5) + \{(-1,-1),(0,-1)\} = \{(4,4),(5,4)\} \in I$

Erosion (another definition)

$$S = \{(-1,-1), (0,-1)\}$$

$$I\Theta S = \{ p \mid (S)_p \cap I^c = \phi \}$$
$$= \{ p \mid [(S)_p] \subseteq I \}$$

Erosion (as Intersection of object translation)

Erosion (as Intersection of object translation)

$$I\Theta S = \bigcap_{s \in S} I_{-s}$$

• Find $I \oplus S$

• Find $I\Theta S$

• Find $I \oplus S$

• Find $I \oplus S$

• Find $I\Theta S$

• Find $I\Theta S$

Duality

• Erosion and dilation are duals of each other with respect to set complementation and reflection

$$(A \ominus B)^{c} = \{z \mid (B)_{z} \subseteq A\}^{c}$$

$$= \{z \mid (B)_{z} \cap A^{c} = \emptyset\}^{c}$$

$$= \{z \mid (B)_{z} \cap A^{c} \neq \emptyset\}$$

$$= A^{c} \oplus B$$

Combining Dilation and Erosion

- Dilation and Erosion are not inverse transformations
- If an image is eroded & then dilated (or vice-versa), the original image can not be obtained
- In practical applications, dilation and erosion are used most often in various combinations
- Three of the most common combinations of dilation and erosion are
 - Opening
 - Closing
 - Hit or miss transformation

OPENING AND CLOSING

Opening and Closing

- Opening is erosion followed by dilation
- The opening is given as

$$A \circ B = (A\Theta B) \oplus B$$

- Closing is dilation followed by erosion
- The closing is given as

$$A \cdot B = (A \oplus B)\Theta B$$

Opening and Closing

Opening

- smooth the contours of an object
- breaks narrow strips
- eliminates thin edges
- it is less destructive than the Erosion

Closing

- smooth sections of the contours
- fuses narrow breaks & long thin gulfs
- eliminates small holes & fills gaps in the contour

Closing

Closing

Closing

5

$$I \bullet S = (I \oplus S) \Theta S$$

Opening

Opening

Opening

$$I \circ S = (I \Theta S) \oplus S$$

HIT OR MISS TRANSFORM

- A basic tool for shape detection
- It is a morphological operator for finding local patterns of pixels
- The hit-or-miss transform is a general binary morphological operation that can be used to look for particular patterns of foreground and background pixels in an image
- Concept:
 - Hit object
 - Miss background

• It is given as

$$I \otimes S = (I \Theta S) \cap (I^c \Theta (W - S))$$

• It can be written as

$$I \circledast S = (I \Theta S_1) \cap (I^c \Theta S_2)$$

- where,
 - S_1 is the set formed from elements of S associated with an object (S in this case)
 - S_2 is the set of elements of S associated with the corresponding background (W S)
- The set contains all the points at which, S_1 found a match (hit) in I and S_2 found a match in I^c

• Using the definition of set difference & the dual relationship between erosion & dilation, the equation can be rewritten as

$$I \circledast S = (I \Theta S_1) - (I \oplus \hat{S}_2)$$

 $I\Theta S$

$$I \circledast S = (I \Theta S) \cap (I^c \Theta (W - S))$$

• Find I *S

0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	0	0	0
0	1	1	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0	0	0
0	1	1	1	1	1	1	0	0	0
0	1	1	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

2

 $I\Theta S$

1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	1	1	1
1	0	0	0	0	0	1	1	1	1
1	0	0	0	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

1

 I^{c}

1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	1	1	1
1	0	0	0	0	0	1	1	1	1
1	0	0	0	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

X	1	X				
0	<u>1</u>	1				
0	0	X				
C						

X	0	X
1	<u>0</u>	0
1	1	X

W-S

 I^{c}

Eg:

0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	1	1	1
0	1	0	0	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0

X	1	X
0	<u>1</u>	1
0	0	X
Andrigaty galax	S	

X	0	X
1	0	0
1	1	X

W-S

$$I^c\Theta(W-S)$$

Eg:

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0

• Find I *S

0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	1	1	1	0
0	1	1	1	0	0	0	0	1	1	1	0
0	1	1	1	0	0	0	0	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0

1	0	0	0	0	0
	0	1	1	1	0
	0	1	1	1	0
This part	0	1	1	1	0
	0	0	0	0	0

Eg

• Find I *S

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

 $I\Theta S$

			and in									
di di	0	0	0	0	0	0	0	0	0	0	0	0
No. of London	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0

$$I^c\Theta(W-S)$$

BOUNDARY EXTRACTION

- The boundary of a region R is the set of pixels in the region that have one or more neighbours that are not in R
- The boundary of a set I can be obtained by first eroding I by S and then performing the set difference between S and its erosion
- It is given by

$$\beta(I) = I - (I\Theta S)$$

• Eg:

- find $\beta(I)$

1	1	1	0	1	1	1	1	1	0
1	1	1	0	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

1	1	1
1	1	1
1	1	1

1	1	1	0	1	1	1	1	1	0
1	1	1	0	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	1	1	0	0
0	1	0	0	0	1	1	1	0	0
0	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0

 $I\Theta S$

1	1	1	0	1	1	1	1	1	0
1	0	1	0	1	0	0	0	1	0
1	0	1	1	1	0	0	0	1	1
1	0	0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1	1	1

$$I - (I\Theta S)$$

0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	1	1	0	0
0	1	0	0	0	1	1	1	0	0
0	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0

 $I\Theta S$

• Eg:

- find $\beta(I)$

REGION FILLING

- Region filling is used to fill the selected region of the object
- Steps includes
 - Choose a seed point X₀
 - Iterate $X_k = (X_{k-1} \oplus S) \cap I^c$ until convergence

• Eg:

• Eg:

EXTRACTION OF CONNECTED COMPONENTS

- Connected component labeling is used in computer vision to detect connected regions in the images
- It groups the pixels into components based on the pixel connectivity
- Steps includes
 - Choose a seed point X₀
 - Iterate $X_k = (X_{k-1} \oplus S) \cap I$ until convergence

X								\leftarrow I S \rightarrow \times
							4	
						Z		
				H				
					Y			

• Eg:

• A set I is said to be convex if the straight line segment joining any two points in I lies entirely within I

- Convex Hull (H) = Minimum convex set containing set I
- Hull Deficiency (D) = H I
- Steps include
 - Choose a seed point X₀
 - do i = 0 to 3
 - Iterate $X_k = (X_{k-1} \circledast S_i) \bigcup I$ until convergence
 - Minimize convex set using bounding box of I

1	1	1
х	0	Х
х	X	Х

 S_3

1	Х	X
1	0	X
1	X	X

 S_0

X										
					0	1				/
					0	1	2			
						1	2			1
					0				7	-
					3	Ą	0		41	gr.
			3	4	6	1		1		
		4	5						l.	
		6								
							B			

1	1	1
X	0	Х
х	Х	Х

 \mathbf{S}_1

X										
						0	1			
						0	1	2		
							1	2		
	7					0			4	V
	8					3	A	0	ď	1
		7		3	4	9	7		1	
			4	5					Ļ	
			6							
								II.		

 S_3

X										
					9					
						0	1			
						0	1	2		
							1	2		
	7					0		1		Z
	8					3	A			-
		7		3	4	6	P		1	
			4	5					1	
			6							
								2		

	X							
e								
1	1		C	entra de la companya				
		J.		ggisan ggi				
ing.			Estimation of					
Dig.	Nijerija a							
					-			
		7	7					
			//					

X											
					9						
						0	1				The second
						0	1	2			
							1	2			
	7					0		1		V	
	8					3	Arr		ď	1	d to
		7		3	4	-	4		1		
			4	5				1			
			6								
								100			

X							
		and the same	i anii				
	Ĭ		estimate de la constante de la				
	ノ	hadaggggla	ggisana Ma				
Marie and Marie							
	1	2		É			
	- 1	9					

X									
					0	1			
					0	1			
						1			
					0				Z
					3	Arr			-
	7		3	4	-			1	
		4	5				1	Ļ	E constant
							POL		

х							
		and the same	e constituent				
	1						
	\mathcal{I}	ing and the second	i i				
	I						
Di Igoro							
	1			VIII.			
	- 1	7)					

Convex Hull

Convex Hull

Convex Hull

MORPHOLOGICAL THINNING AND THICKENING

- It is an operation that is used to remove selected foreground pixels from binary images
- It is the process of reducing an object in a digital image to the minimum size
- It is given by

$$\begin{split} I \otimes S &= I - (I \circledast S_i) \\ I \otimes S &= I \cap (I \circledast S_i) \\ I \otimes \{S\} &= ((((I \circledast S_0) \circledast S_1) \circledast S_2) \dots \circledast S_7) \end{split}$$

- Thinning is basically a search & delete process
- It removes only those boundary pixels from the image whose deletion
 - Does not connectivity of their neighbours locally
 - Does not reduce the length of the already thinned curve
- Critical pixel
 - Its deletion changes the connectivity of its neighbourhood locally
- End pixel
 - Its deletion reduces the length of an already thinned curve

0	0	0	0	0	0	0		
								K
							×	
							9	

0	0	0
X	1	X
1	1	1

 S_0

0	0	0	0	0	0	0				U
									4	
							0	1		
							0	g)		
						1	1			•

1	X	0
1	1	0
1	X	0

 \mathbf{S}_2

S

 S_{z}

X	1	1
0	1	1
0	0	X

 S_5

_	Min. de.		
0	X	1	
0	1	1	
0	X	1	

0	0	X
0	1	1
X	1	1

 S_7

	0	0	0	0	0			L
						7	1	
							9	
					444			

0	0	0
X	1	X
1	1	1

 S_0

								ě	16
	0	0	0	0	0		1	K	
							Z		
									37
									-//

1	X	0		
1	1	0		
1	X	0		

 \mathbf{S}_2

X	1	1		
0	1	1		
0	0	X		

 S_5

0	X	1
0	1	1
0	X	1

0	0	X
0	1	1
X	1	1

 S_7

• Eg:

Thickening

- Thickening is the morphological dual of thinning
- It is defined as

$$I \odot S = I \cup (I \circledast S_i)$$

$$I \odot \{S\} = ((((I \circledast S_0) \circledast S_1) \circledast S_2) \dots \circledast S_7)$$

- Approach
 - Take I^c
 - res = Apply thinning on I^c
 - Take res^c

$$I \odot \{S\} = |(I^c \otimes S) \text{ followed by isolated pixel removal }|^c$$

RECAP

$$I \oplus S = \{ z \mid (\hat{S})_z \cap I \neq \emptyset \}$$

$$I\Theta S = \{z \mid (S)_z \cap I^c = \phi\}$$

$$I \circ S = (I \Theta S) \oplus S$$

$$I \bullet S = (I \oplus S) \Theta S$$

$$I \circledast S = (I \Theta S) \cap (I^c \Theta (W - S))$$

$$\beta(I) = I - (I\Theta S)$$

$$\beta(I) = (I \oplus S) - I$$

RECAP

• Region Filling

$$X_k = (X_{k-1} \oplus S) \cap I^c$$

• Connected Components

$$X_k = (X_{k-1} \oplus S) \cap I$$

Convex Hull

$$X_k = (X_{k-1} \circledast S_i) \bigcup I$$

• Thinning

$$I \otimes \{S\} = ((((I \otimes S_0) \otimes S_1) \otimes S_2) \dots \otimes S_7)$$

Thickening

$$I \odot \{S\} = |(I^c \otimes S) \text{ isolated pixel removal }|^c$$

SEGMENTATION

- Image segmentation is a technique to extract the attributes of the image
- Segmentation attempts to partition the pixels of an image into groups that strongly correlate with the objects in an image
- Mostly used in any automated computer vision application

Segmentation

• Separate image into coherent objects

Segmentation

- The purpose of image segmentation is to partition an image into meaningful regions with respect to a particular application
- The segmentation is based on measurements taken from the image which includes intensity, color, texture, depth, etc

Segmentation (Approach)

- Segmentation algorithms generally are based on one of 2 basis properties of intensity values
- Discontinuity (abrupt changes)
 - to partition an image based on abrupt changes in intensity (such as edges)
- Similarity (homogeneity)
 - to partition an image into regions that are similar according to a set of predefined criteria
 - Two types: pixel based and region based

Segmentation (Fundamental)

- Let v be the spatial domain on which the image is defined
- Image segmentation divides v into n regions R_i (i = 1 to n), such that

$$\bigcup_{i=1}^n R_i = v$$

$$R_i \cap R_j = \phi$$

Segmentation (Basic Idea)

- All the image segmentation methods assume that
 - the intensity values are different in different regions
 - within each region of the corresponding object, the intensity values are similar
- For this, we need to apply threshold

Thresholding

- Gray level thresholding is the simplest segmentation process
- Correct thresholding leads to better segmentation
- Thresholding is computationally inexpensive and fast which can easily be applied in real time
- Thresholding as a transformation function

$$T = T[x, y, p(x, y), f(x, y)]$$

- where
- f(x, y) is the gray level of the point (x, y)
- p(x, y) denotes some local property of the point (e.g. average gray level of a pixels centred at (x, y))

Thresholding (Types)

- Global Thresholding
 - If T is only a function of f(x, y), then the threshold is called global threshold
 - Apply the same threshold to the whole image
- Local Thresholding
 - If T is a function of both f(x, y) & p(x, y), then the threshold is called local
 - The threshold depends on local property
- Dynamic (Adaptive) Thresholding
 - The threshold depends on spatial coordinates (x, y)

Thresholding (Types)

• Thresholding is the transformation of an input image f to an output (segmented) binary image g

$$g(x, y) = \begin{cases} 1 & if \ f(x, y) > T \\ 0 & otherwise \end{cases}$$

- where, T is threshold
- From a grayscale image, thresholding can be used to create binary images

Thresholding

Thresholding (Eg)

- Disk = 255 and background = 127
- Segment the image into two regions disk and background
- What will be the threshold values?

Global Thresholding

- Based on the histogram of an image
- Partition the image histogram using a single global threshold
- The success of this technique strongly depends on how well the histogram can be partitioned

Global Thresholding (Algorithm)

- Select an initial estimate for T (typically the average grey level in the image)
- Segment the image using T to produce two groups of pixels:
 - G1 consisting of pixels with grey levels >T
 - G2 consisting pixels with grey levels \leq T
- Compute the average grey levels of pixels in G1 to give μ1 and G2 to give μ2
- Compute a new threshold value $T = (\mu 1 + \mu 2)/2$
- Repeat steps 2 4 until the difference in T in successive iterations is less than a predefined limit

- Single value thresholding only works for bimodal histograms (two peaks)
- Images with other kinds of histograms need more than a one threshold

Adaptive Thresholding

• The threshold for each pixel depends on its location within an image, this technique is said to adaptive

Region

- A group of connected pixels with similar properties
- For correct interpretation, image must be partitioned into regions that correspond to objects or parts of an object

Region based approach

- Let R represent the entire image region
- Segmentation R into n sub regions, R_1 , R_2 , ..., R_n , such that

$$\bigcup_{i=1}^n R_i = R$$

 R_i is a connected region, i = 1, 2, ..., n

$$R_i \cap R_j = \phi$$
, for all i and $j, i \neq j$

Region based approach

- The fundamental drawback of histogram based region detection is that histograms provide no spatial information
- Region growing approaches exploit the important fact that pixels which are close together have similar gray values

Region growing

- Choose the seed pixels (1 for every segment)
- Check the neighboring pixels and add them to the region if they are similar to the seed
- Repeat previous step for each of the newly added pixels, stop if no more pixels can be added

1	1	9	9	9
T	1	9	9	9
5	1	9	9	9
5	5	5	3	9
3	3	3	3	3

Region growing

- Choose the seed pixels (1 for every segment)
- Check the neighboring pixels and add them to the region if they are similar to the seed
- Repeat previous step for each of the newly added pixels, stop if no more pixels can be added

1	1	9	9	9
1	1	9	9	9
5	1	9	9	9
5	5	5	3	9
3	3	3	3	3

Region growing

- Choose the seed pixels (1 for every segment)
- Check the neighboring pixels and add them to the region if they are similar to the seed
- Repeat previous step for each of the newly added pixels, stop if no more pixels can be added

1	1	9	9	9
1	1	9	9	9
5	1	9	9	9
5	5	5	3	9
3	3	3	3	3

Region splitting

- Split starts from the assumption that the entire image is homogeneous
- If this is not true (by the homogeneity criterion), then split image into four sub images
- This splitting procedure is repeated recursively until we split the image into homogeneous regions

I

I ₁	I_2
I_3	I_4

I_1	I_2	
T	I ₄₁	I ₄₂
I_3	I ₄₃	I ₄₄

Region splitting

- If an image of dimensions N x N, that is in the powers of 2 ($N = 2^n$):
 - All regions produced by the splitting algorithm are squares having dimensions M x M, where M is a power of 2 as well $(M = 2m, M \le n)$

- Since the procedure is recursive, it produces an image that can be described by a tree, in which each nodes have four child (except leaf node)

- Such a tree is called a Quadtree

I_1	I_2	
I_3	I_{41}	I_{42}
	I ₄₃	I_{44}

Region splitting

- Advantage
 - Created regions are adjacent and homogenous
- Disadvantage
 - Over splitting, since no merge is performed

- Improvement
 - Split and Merge

Region splitting and Merging

- After splitting
- Merging phase
 - If 2 adjacent regions are homogenous, they are merged
- Repeat merging step, until no further merging is possible

Segmentation (Discontinuity)

- There are basic three types of grey level discontinuities:
 - Points
 - Lines
 - Edges
- We typically find discontinuities using masks and correlation
- Discrete form of derivative is used

Segmentation (Discontinuity)

- The filter is expected to be isotropic
 - response of the filter is independent of the direction of discontinuities in an image
- The digital implementation of the 2-Dimensional Laplacian is obtained by summing 2 components

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Segmentation (Discontinuity)

← 90° isotropic

1	1	1
1	-8	1
1	1	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Segmentation (Discontinuity→Point)

• A point has been detected at the location on which the mask center if

$$|R| >= T$$

- where
- T is a nonnegative threshold
- R is the sum of products of the coefficients with the gray levels contained in the region encompassed by the mark

Segmentation (Discontinuity → Point)

7	7	7	7	7	7	7
7	10	7	7	7	7	7
7	7	7	7	7	7	7
7	7	7	7	7	7	7
7	7	7	7	4	7	7
7	7	7	7	7	7	7
7	7	7	7	7	7	7

-1	-1	-1
-1	8	-1
-1	-1	-1

P

	24	-3	0	0	0	
	-3	-3	0	0	0	
9	0	0	3	3	3	
	0	0	3	-24	3	
	0	0	3	3	3	
100	W					

I ° P

Segmentation (Discontinuity → Point)

7	7	7	7	7	7	7
7	10	7	7	7	7	7
7	7	7	7	7	7	7
7	7	7	7	7	7	7
7	7	7	7	4	7	7
7	7	7	7	7	7	7
7	7	7	7	7	7	7

-1	-1	-1
-1	8	-1
-1	-1	-1

P

	24	3	0	0	0	
	3	3	0	0	0	
9	0	0	3	3	3	
	0	0	3	24	3	
	0	0	3	3	3	
	WW.					

$$R_p = |I \circ P|$$

Segmentation (Discontinuity → Line)

- The next level of complexity is to try to detect lines
- The masks below will extract lines that are one pixel thick and running in a particular direction

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2	-1	2	-1
-1	2	-1	-1	2	-1
2	-1	-1	-1	2	-1

Segmentation (Discontinuity → Line)

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	3
1	1	1	1	1	1	3	1
1	1	1	1	1	3	1	1
3	3	3	3	3	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

-1	-1	-1			
2	2	2			
-1	-1	-1			
Н					

		0	0	0	0	2	2	
	Millionia Laurian	0	0	0	2	2	0	
gill pr	-	6	6	6	0	0	2	
	4	12	12	12	6	2	2	
The second second		6	6	6	4	2	0	
		0	0	0	0	0	0	
			1814					

I

 $|I \circ H|$

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	3
1	1	1	1	1	1	3	1
1	1	1	1	1	3	1	1
3	3	3	3	3	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

2 -1 -1
-1 2 -1
-1 -1 2

 $D_{45^{\circ}}$

	0	0	0	0	2	4	
(desta	0	0	0	2	4	12	
	0	0	0	0	12	4	
	0	0	0	6	4	2	
	0	0	0	4	2	0	
	0	0	0	0	0	0	
		1864					

I

$$|I \ ^{o} \ D_{45^{o}}|$$

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	3
1	1	1	1	1	1	3	1
1	1	1	1	1	3	1	1
3	3	3	3	3	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

-1	2	-1
-1	2	-1
-1	2	-1
-{	V	Aller

	0	0	0	0	2	2	
Diggana Managan	0	0	0	2	2	0	
	0	0	0	0	0	2	
	0	0	0	0	2	2	
	0	0	0	2	2	0	
	0	0	0	0	0	0	
		37.					

I

 $|I \circ V|$

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	3
1	1	1	1	1	1	3	1
1	1	1	1	1	3	1	1
3	3	3	3	3	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

2	-1	-1
-1	2	-1
-1	-1	2

 $D_{-45^{\circ}}$

		0	0	0	0	4	4	
	io o	0	0	0	4	4	0	
Sil Section 1		0	0	0	6	0	4	
ń	7	0	0	0	0	4	4	
A		0	0	0	2	4	0	
	1	0	0	0	0	0	0	
			778					

I

0	0	0	0	4	4	
0	0	0	4	4	12	
6	6	6	6	12	4	
12	12	12	6	4	4	
6	6	6	4	4	0	
0	0	0	0	0	0	

$L=\max\{ I^{\circ}H , I^{\circ}V , I^{\circ}I \}$) _{45°} , I°D_45° }
--	-------------------------------

	0	0	0	0	2	2	
4	0	0	0	2	2	0	
1	6	6	6	0	0	2	
	12	12	12	6	2	2	
	6	6	6	4	2	0	
Nation of the last	0	0	0	0	0	0	
Marie .							
	and Con-		7	(A			
,			1				
	0	0	0	0	2	2	

				V 4			
	0	0	0	0	2	2	
	0	0	0	2	2	0	0.11
	0	0	0	0	0	2	en Francisco
	0	0	0	0	2	2	Tips.
	0	0	0	2	2	0	
	0	0	0	0	0	0	

0	0	0	0	2	4	
0	0	0	2	4	12	
0	0	0	0	12	4	
0	0	0	6	4	2	
0	0	0	4	2	0	
0	0	0	0	0	0	

0	0	0	0	4	4	
0	0	0	4	4	0	
0	0	0	6	0	4	
0	0	0	0	4	4	
0	0	0	2	4	0	
0	0	0	0	0	0	

- Edges characterize boundaries
- Edges in images are areas with strong intensity contrasts a jump in intensity from one pixel to the next
- Edge detecting in an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in

an image

- Difference between an edge and a line
 - An edge, for instance be the border between a block of blue color and a block of yellow

- In contrast, a line can be a small number of pixels of different color
- For a line, there may usually be one edge on each side of the line

- Edges are the most common approach for detecting meaningful discontinuities in gray level
- The process of edge detection can be broadly classified into two categories
 - Derivative approach
 - Edge pixels (or edgels) are detected by taking derivative followed by thresholding
 - Incorporate noise cleaning scheme
 - Pattern fitting approach
 - A series of edge approximating functions in the form of edge templates over neighbourhood are analysed
 - Parameters along with their properties corresponding to the best fitting function are determined
 - Based on this information, it is decided whether an edge is present or not
 - These are edge filters

Edge linking

 process takes an unordered set of edge pixels produced by an edge detector as i/p to form an ordered list of edgels

Edge following

- process takes the entire edge strength or gradient image as i/p & produces geometric primitives such as lines or curves

Segmentation (Discontinuity \rightarrow Edge \rightarrow Derivative)

- First Order Derivative/Gradient Methods
 - Robert operator
 - Sobel operator
 - Prewitt operator
- Second Order Derivative
 - Laplacian
 - Laplacian of Gaussian
 - Difference of Gaussian
- Optimal Edge Detection
 - Canny Edge Detection

Segmentation (Discontinuity \rightarrow Edge \rightarrow Derivative)

1	1	1	1	2	2	2
1	1	1	1	2	2	2
1	1	1	1	2	2	2
2	2	2	2	1	1	1
2	2	2	2	1	1	1
2	2	2	2	1	1	1
2	2	2	2	1	1	1

R=
$$|I^{\circ}G_{45^{\circ}}|+|I^{\circ}G_{-45^{\circ}}|$$
Robert
$$\begin{array}{c|c}
 & 1 & 0 \\
\hline
 & 0 & -1 \\
\hline
 & G_{45^{\circ}} \\
\hline
 & 0 & 1
\end{array}$$

 $G_{-45^{\circ}}$

 $G_{45^{\circ}}$

Robert

-1	-2	-1
0	0	0
1	2	1

 S_{H}

	THE PARTY	
	/-1	0
	-2	0
7	-1	0

${ m S}_{ m V}$
Sobel
$S= I^{\circ}S_{H} + I^{\circ}S_{V} $

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

 P_{H}

Prewitt $P=|I^{\circ}P_{H}|+|I^{\circ}P_{V}|$

Segmentation (Discontinuity → Edge → Derivative)

- Motivation
 - Detect sudden changes in image intensity
 - Gradient: sensitive to intensity changes
- Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \right]^{f}$$

Segmentation (Discontinuity \rightarrow Edge \rightarrow Derivative)

The gradient of the image I at location (x, y) is the vector

$$\nabla I = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial I(x, y)}{\partial x} \\ \frac{\partial I(x, y)}{\partial y} \end{bmatrix}$$

- Magnitude
- Gradient

$$|\nabla I| = \sqrt{G_x^2 + G_y^2}$$

$$|\nabla I| = \sqrt{G_x^2 + G_y^2}$$

$$\theta(x, y) = \tan^{-1} \left(\frac{G_y}{G_x}\right)$$

Segmentation (Discontinuity → Edge → Derivative)

- Eg:
 - Find the strength & the direction of the edge at the highlighted pixel
 - Pixels in gray are 0 and white are 1

Solution

- Derivative is computed by using a 3x3 neighbourhood
 - subtract the pixels in the top row from bottom row (x direction)
 - similarly obtain the derivative in the y direction

-1	-1	1
0	0	0
1	1	1

_		10° 100 miles
-1	0	1
-1	0	1
-1	0	1

Segmentation (Discontinuity → Edge → Derivative)

- Eg:
 - Find the strength & the direction of the edge at the highlighted pixel
 - Pixels in gray are 0 and white are 1

$$\nabla I = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial I(x, y)}{\partial x} \\ \frac{\partial I(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$
$$|\nabla I| = \sqrt{G_x^2 + G_y^2} = 2\sqrt{2}$$
$$\theta(x, y) = \tan^{-1} \left(\frac{G_y}{G_x}\right) = -1 = -45^{\circ}$$

Simple edge detection using gradient

- Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters
- Compute gradient magnitude at each pixel
- If magnitude at a pixel exceeds a threshold, report a possible edge point

IMAGE REPRESENTATION AND DESCRIPTION

Image Representation and Description

• To represent and describe information embedded in an image in other forms that are more suitable to visualize and understand

- Benefits
 - Easier to understand
 - Require fewer memory, faster to be processed
- What kind of information we can use?
 - Boundary, shape
 - Region
 - Texture
 - Relation between regions

Image Representation and Description

- Segmentation techniques yield raw data in the form of pixels along a boundary or pixels contained in a region
- After segmentation, the image needs to be described and interpreted
 - Representation
 - An object may be represented by its external characteristics such as boundary
 - Its internal characteristics such as texture
 - Description
 - The object boundary may be described by its length, orientation, etc
 - The features that represent the image are used as descriptors
 - Descriptors should not be sensitive to variations like size change, translation, rotation, etc

Border

- An ordered list of points representing the boundary of an object
- Boundary as a sequence of connected points

Border (Algo)

- Step 1: Start scanning row-wise from top left corner of the image matrix
- Step 2: Mark the first object pixel obtained as the start pixel
- Step 3: Based on the previous pixel (p) and the current pixel (c), find the next pixel (n)
 - n is found by searching in the neighbourhood of c, clockwise starting from previous pixel p
- Step 4: Mark the current pixel as previous pixel & the next pixel as the current pixel
- Step 5: Go to step 3

		1	1	Т		
	1			1		
,		1		1		
7	1			1	7	- July
	1	1	1	1		10

	ι		· ·			
		1	1	1		
	1			1		
,		1.		1		
4	1			1	7	THE STREET
	1	1	1	1		14

		1 _		•		
		1	1	1		
	1			1		
7		1.		1	1	
4	1			1	7	THE PERSON NAMED IN
	1	1	1	1		1

		1	1	1		
	1	(1)		1		
7		1		1	<i>Y</i> '	,
4	1			1		1
	1	1	1	1		4

		1	1	1		
	1			1	6500 6500 6000	
,		1		1		
7	1			1		Nut.
	1	1	1	1		16

- The boundary is a good representation of an object shape and it requires less memory
- It represents an object boundary by a connected sequence of straight line of specified length and direction

• The direction of each segment is coded by using a numbering scheme as shown below

- Eg:
 - Find the 4 directional Chain Code

Solution

1101101030332330322212

• Eg:

- Find the 8 directional Chain Code

Solution

• 22120207656764443

Chain Code (Problem)

- The resulting chain codes are quite long
- Any small change along the boundary due to noise causes changes in the code
- Dependent on the starting point
- Dependent on the orientation

- To use boundary representation in object recognition, we need to achieve invariance to starting point and orientation
- For this, we use
 - Normalized codes
 - To overcome the problem of starting point
 - Differential codes
 - To make rotational invariant

Chain Code → Normalization

First row gives the normalized chain code: 00112233

Sort

33001122	00112233
30011223	01122330
00112233	11223300
01122330	12233001
11223300	22330011
12233001	23300112
22330011	33001122
23300112	30011223

Chain Code → Differential

- The first difference of a chain code
 - counting the number of direction change (in counter-clockwise) between 2 adjacent elements of the code
- Eg
 - a chain code: 10103322
 - The first difference: 3133030
 - Treating a chain code as a circular sequence, we get the first difference: 31330303

Chain Code → Differential

- The shape number of a boundary obtained from a chain code is defined as the smallest magnitude of the circular first difference
- The order of the shape number is defined as the number of digits in its representation

Chain Code → Differential

- Eg:
 - Find the shape number & order of the given boundary

Solution

- 4-direction chain code: 0 3 0 3 2 2 1 1
- First difference: 3 1 3 3 0 3 0
- Circular first difference: 3 1 3 3 0 3 0 3
- Shape number: 0 3 0 3 3 1 3 3
- Order: 8

