J. Heiland / S. Werner

vom Max Planck Institut Magdeburg

Funktionentheorie für das Lehramt (WS 17/18) Übungsblatt 4

1. Sei

$$\gamma_0 \colon [0,1] \to \mathbb{C} \colon t \mapsto \cos(t\pi) + i\sin(t\pi)$$

eine Parametrisierung des halben Einheitskreises. Man berechne die Integrale der Funktionen

$$f: z \mapsto \exp(iz)$$
 und $f: z \mapsto |\text{Re}z|$

längs von γ_0 .

2. Die Kurve γ sei die Gerade vom Punkt $z_1=1$ zum Punkt $z_2=i.$ Man berechne das Kurvenintegral

$$\int_{\gamma} \frac{1}{z} \, dz \, .$$

3. Gegeben seien zu einer Menge $G\subset \mathbb{C}$ eine stetige Funktion $f:G\to \mathbb{C}$ sowie zwei Parametrisierungen

$$\gamma: [a, b] \to G$$
 und $\widetilde{\gamma}: [\widetilde{a}, \widetilde{b}] \to G$

derselben Kurve derart, dass eine streng monoton wachsende und stetig differenzierbare Abbildung $\varphi: [a,b] \to [\widetilde{a},\widetilde{b}]$ existiert mit

$$\gamma(t) = \widetilde{\gamma}(\varphi(t)) \qquad \forall \ t \in [a,b] \, .$$

Man beweise die Parametrisierungsinvarianz des Kurvenintegrals über f längs der gegebenen Kurve, d.h.

$$\int_{\gamma} f(z) dz = \int_{\widetilde{\gamma}} f(z) dz.$$

4. Sei $f:G\to\mathbb{C}$ eine stetige Funktion über einem Gebiet G. Zu einer gegebenen glatten Kurve γ in G sei γ^- die in umgekehrter Richtung durchlaufene Kurve γ . Man beweise die Beziehung

$$\int_{\gamma^-} f(z) dz = - \int_{\gamma} f(z) dz.$$