Evaluating the Robustness of Retrieval Pipelines

Balkis Dirahoui, Miray Senyuz

Sorbonne Université

17 septembre 2022

Introduction

Les modèles de benchmark se sont révélés remarquablement efficaces pour les tâches de recherche d'information (RI).Néanmoins..

- ► Un utilisateur peut formuler **plusieurs** requêtes différentes...
- face à ce genre de requêtes, les modèles perdent notablement de leur performances

Problématique et apport de l'article : Objectif

- ► Objectif de [1]
 - étudier la robustesse
 - variations de requêtes

Problématique et apport de l'article : Variations

- ► *Misspelling* : fautes d'orthographe. e.g., day→dya
- Naturality: supprimer les stopwords. e.g., " what are the best restaurants near me " →"best restaurants near me"

Problématique et apport de l'article : Variations

- ► Ordering: changer l'ordre des mots. e.g., " what are the best restaurants near me " → "best are the what restaurants near me"
- Paraphrasing: reformuler. e.g., " what are the best restaurants near me" →"what are the best restaurants close to me"

Problématique et apport de l'article : Variations

Category	Method Name	M('what is durable medical equipment consist of')				
	NeighbCharSwap	what is durable mdeical equipment consist of				
Misspelling	RandomCharSub	what is durable medycal equipment consist of				
	QWERTYCharSub	what is durable medical equipment xonsist of				
Naturality	RemoveStopWords	what is durable medical equipment consist of				
	T5DescToTitle	what is durable medical equipment consist of				
Ordering	RandomOrderSwap	medical is durable what equipment consist of				
Paraphrasing	BackTranslation	what is sustainable medical equipment consist of				
	T5QQP	what is durable medical equipment consist of				
	WordEmbedSynSwap	what is durable medicinal equipment consist of				
	WordNetSynSwap	what is long lasting medical equipment consist of				

Protocole d'évaluation

Dataset:

- ► Antique ¹.
- ► TRFC 2019²

Modèles évalués :

- ► Modéles classiques : BM25.RM3.
- ► Modèles neuronaux : KNRM. CKNRM.
- ► Modèles transofrmer-based : BERT.T5.EPIC.

^{1.} https://ir-datasets.com/antique.html

^{2.} https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html ← ₹ → ← ₹ → Q ↑ 7/14

Protocole d'évaluation

Métrique d'évaluation : Nous utiliserons la métrique NDCG@10 :

$$NDCG@10 = \frac{DCG@10}{IDCG@10} \tag{1}$$

Test d'hypothèse : T-test de Student [2] avec une confiance de 95%.

Performances (nDCG@10) des différentes méthodes pour TREC face à différentes variations de requêtes, les flèches démontrent un réel changement statistique selon un t-test.

Catégorie	Variation	BM25	RM3	CKNRM	\mathbf{KNRM}	EPIC	\mathbf{BERT}	T5
_	requête originale	0.4795	0.5151	0.4795	0.4931	0.6231	0.4795	0.6995
Mispelling	NeighbCharSwap	0.2738	0.2771	0.3080	0.3034	0.3893	0.2738	0.4944
	RandomCharSub	0.2738	0.2338	0.2262	0.2398	0.2950	0.2314	0.3963
	QWERTYCharSub	0.2437	0.2509	0.2965	0.2573	0.3496	0.2437	0.4459
Naturality	RemoveStopWords	0.4778^{\downarrow}	0.5104	0.4756	0.4782	0.6214^{\downarrow}	0.4778^{\downarrow}	0.6862
	T5DescToTitle	0.4217	0.4349	0.3927	0.3818	0.5061	0.4217	0.5717
Ordering	RandomOrderSwap	0.4795	0.5152	0.4707	0.4868	0.6227	0.4796	0.6970^{\downarrow}
	BackTranslation	0.3965	0.4227	0.3605	0.3909	0.5301	0.3965	0.6058
	T5QQP	0.4723	0.5046	0.4609	0.4423	0.6040	0.4723	0.7045^{\downarrow}
Paraphrasing	WordEmbedSynSwap	0.3488	0.3636	0.3605	0.3710	0.4490	0.3488	0.5457
	WordNetSynSwap	0.3520	0.3554	0.3680	0.3819	0.4749	0.3520	0.5602

Performances (nDCG@10) des différentes méthodes pour ANTIQUE face à différentes variations de requêtes, les flèches démontrent un réel changement statistique selon un t-test.

Catégorie	Variation	BM25	RM3	KNRM	CKNRM	EPIC	\mathbf{BERT}	T5
-	requête originale	0.2325	0.2186	0.2175	0.2024	0.2663	0.3549	0.3350
Mispelling	NeighbCharSwap	0.1617	0.1491	0.1271	0.1442	0.1827	0.2406	0.2524
	RandomCharSub	0.1663	0.1581	0.1268	0.1475	0.1895	0.2355	0.2476
	QWERTYCharSub	0.1648	0.1528	0.1390	0.1562	0.1928	0.2465	0.2691
Naturality	RemoveStopWords	0.2312	0.2187^{\downarrow}	0.2123	0.2139	0.2688^{\downarrow}	0.3043	0.3210
	T5DescToTitle	0.1717	0.1668	0.1641	0.1680	0.1997	0.2164	0.2431
Ordering	RandomOrderSwap	0.2327	0.2186	0.1764	0.1959	0.2660^{\downarrow}	0.3284	0.3257
	BackTranslation	0.1630	0.1536	0.1259	0.1385	0.2025	0.2522	0.2614
	T5QQP	0.2258	0.2138	0.1676	0.1917	0.2602	0.3170	0.3226
Paraphrasing	WordEmbedSynSwap	0.1780	0.2138	0.1457	0.1675	0.2128	0.2591	0.2827
	WordNetSynSwap	0.1852	0.1772	0.1522	0.1729	0.2104	0.2715	0.2758

Dataset TREC: Distribution du $nDCG@10\Delta$ (remplacement de la requête originale par les méthodes de chaque catégorie)

Dataset Antique : Distribution du $nDCG@10\Delta$ (remplacement de la requête originale par les méthodes de chaque catégorie)

Analyse des résultats

- ▶ Bien que certaines requêtes ont un effets positif dans les 2 datasets, les modèles perdent considérablement leur performances.
- Les meilleurs scores sont obtenus par la variation ordering.
- Les pires scores sont obtenus par les variations misspelling et naturality.
- ▶ la catégorie de variation ordeing a le moins d'effet sur les résultats.

Conclusion

En conclusion, ce travail met en avant le besoin de dataset contenant des variations de requêtes, pour ensuite améliorer les résultats des modèles des modèles.

- G. Penha, A. Câmara, et C. Hauff, « Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators »
- P. Mishra, U. Singh, C. Pandey, P. Mishra, et G. Pandey, « Application of student's t-test, analysis of variance, and covariance », Ann Card Anaesth, vol. 22, n 4, p. 407, 2019, doi: 10.4103/aca.ACA_94_19