$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

The unbiased variance (s²) **200** participants is **55**.

a) What is the value of the estimated standard error of the mean $(s_{\bar{X}})$?

S \(\overline{X} \) = _____

b) If the variance were the same but the sample were increased to **1800** participants, what would be the new value of $s_{\bar{X}}$?

 $S\bar{\chi} = \underline{\hspace{1cm}}$

6 A 2. Sample Mean: z-score and p-value

A survey of **144 college students** reveals a mean beer consumption **rate of 8.4** beers per week, with a **standard deviation of 5.6**.

a) If the **national average is seven** beers per week, what is **the z score** for the college students? What **p value** does this correspond to?

POPULATION PARAMETERS

 H_0 : μ =

n =

SAMPLE STATISTICS

$$\bar{X}$$
 = _____

$$SD: S_X = \longrightarrow SE: S_{\bar{X}} = \longrightarrow$$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.2A

$$z = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$

z = _____

2-tail: p = _____

b) If the **national average were four** beers per week, what would the **z score** be? What can you say about the **p value** in this case?

2-tail: p = _____

- 6 A 4. One Sample Mean: df and Critical Values of t
 - a.) In a one-group t test based on a sample of 20 participants, what is the value for df?

df = _____

b.) What are the **two-tailed critical t** values for alpha = .05? For alpha = .01?

 α =.05: t_{cv} = _____ α =.01: t_{cv} = _____

c.) What is the **one-tailed critical t** for alpha = .05? For alpha = .01?

 α =.05: t_{cv} = _____ α =.01: t_{cv} = _____

6 A *5. One Sample Mean: t-score and Critical Values of t (change n)

Twenty-two stroke patients performed a maze task. The **mean** number of trials (\bar{X}) for success was **14.7** with s = 6.2. If the **population mean** (μ) for this task is **6.5...**

n = ___

a.) What is the calculated value for t? What is the critical t for a .05, two-tailed test?

POPULATION PARAMETERS

SAMPLE STATISTICS

X = _____

 $SD: S_X = \longrightarrow SE: S_{\bar{X}} = \longrightarrow$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$
$$df = n - 1$$

b.) If only **11 patients** had been run but the data were the same as in part a, what would be the calculated value for t?

How does this value compare with the t value calculated in part a?

6 A 6. One Sample Mean: t-score and Critical Values of t (change n)

a.) Referring to part a of Exercise 5, what would the calculated t value be if s = 3.1 (all else remaining the same)?

b.) Comparing the t values you calculated for Exercises 5a and 6a, what can you say about the relation between t and the sample standard deviation?

6 B *1. One Sample Mean: t-test

A high school is proud of its advanced chemistry class, in which its **16 students** scored an **average of 89.3** on the statewide exam, with s = 9.

a.) Test the null hypothesis that the advanced class is just a random selection from the state population ($\mu = 84.7$), using alpha = .05 (two-tailed).

n =

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\bar{X}$$
 = _____

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{X - \mu}{S_{\bar{X}}}$$
$$df = n - 1$$

- **Provides evidence** the advanced chemistry class at this school is not a random selection from the state.
- No evidence that the advanced chemistry class at this school is not a random selection from the state.
 - b.) Test the same hypothesis at the .01 level (two-tailed).
- □ **Provides evidence** the advanced chemistry class at this school is not a random selection from the state.
- □ No evidence that the advanced chemistry class at this school is not a random selection from the state

Considering your decision with respect to the null hypothesis, what type of error (Type I or Type II) **could you be making**?

- **□** Type I
- Type II

6 B 2. One Sample: t-test for Mean

Are serial killers more introverted than the general population?

A sample of **14 serial killers** serving life sentences was tested and found to have a **mean** introversion score (\bar{X}) of **42** with s = 6.8. If the **population mean (\mu) is 36**, are the serial killers significantly more introverted at the .05 level? (Perform the appropriate <u>one-tailed test</u>, although normally it would not be justified.)

POPULATION PARAMETERS

n =___

SAMPLE STATISTICS

 \bar{X} = _____

$$SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$
$$df = n - 1$$

EXPLAIN CONCLUSION: Are serial killers more introverted than the general population?

■ Yes

■ NO

6 B *4. One Sample: Confidence Interval for the Mean

A psychologist studying the dynamics of marriage wanted to know how many hours per week the average American couple spends discussing marital problems. The sample **mean** (\bar{X}) of **155 randomly selected** couples turned out to be **2.6 hours**, with **s = 1.8.**

n =

a.) Find the **95% confidence interval for the mean** (μ) of the population.

POPULATION PARAMETERS

 $\mu \leftarrow 95\%$ CI for

SAMPLE STATISTICS

 \bar{X} = _____

 $SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3 df = n - 1

10	ш	iuia	0.0
\bar{X}	+	t_{CV}	· S v

t_{CV} =

95% CI: (______ , _____)

b.) A European study had already estimated the population mean to be **3 hours per week** for European couples. Are the American couples **significantly different** from the European couples at the **.05** level?

■ Yes

■ NO

Show how your answer to part a makes it easy to answer part b.

6 B 5. Sample Size ← wideth of CI

If the psychologist in exercise 4 wanted the **width of the confidence interval to be only half an hour**, how many couples would have to be sampled?

Formula 6.5

$$n = \left(\frac{4s}{W}\right)^2$$

n = _____

6 B 8. One Sample: Confidence Interval for the Mean

A psychologist would like to know how many casual friends are in the average person's social network. She interviews a random sample of people and determines for each the **number of friends** or social acquaintances they see or talk to at least once a year. The data are as follows:

5, 11, 15, 9, 7, 13, 23, 8, 12, 7, 10, 11, 21, 20, 13

a.) Find the 90% confidence interval for the mean number of friends for the entire population.

t_{CV} = ______)

b.) Find the **95%** CI.

t_{cv} = ______ 95% CI: (______ , _____)

c.) If a previous researcher had predicted a **population mean of 10** casual friends per person, could that prediction be **rejected as an hypothesis at the .05 level, twotailed**?

☐ Yes☐ NO

EXPLAIN.

6	С	1.	One	Sample:	Confidence	Interval	for	the	Mean

Perform **one-sample t tests** to determine whether the baseline, pre-, or postquiz **anxiety scores** of Ihno's students differ significantly ($\alpha = .05$, two-tailed) from the mean ($\mu = 18$) found by a very large study of college students across the country. Find the **95% CI for the population mean** for each of the three anxiety measures.

Type R code into Skeleton and Knit to get pdf including output

	Sample Mean	95% CI (71.63, 72.91)	Test value = 18 t(99) = 24.744, p=.013	Ihno's different?		
Baseline				☐ Different☐ Same		
Pre-quiz				☐ Different☐ Same		
Post-Quiz				☐ Different☐ Same		
6 C 2. One Sample: Confidence Interval for the Mean						

Perform a one-sample t test to determine whether the average baseline heart rate of Ihno's

<u>male</u> students differs significantly from the mean HR ($\mu = 70$) for college-aged men at the .01 level, two-tailed. Find the 99% CI for the population mean represented by Ihno's male students.

	Sample Mean	99% CI (71.63, 72.91)	Test value = 70 t(99) = 24.744, p=.013	Ihno's different?
MALE Baseline				☐ Different☐ Same
6 C 3.	One Samp	le: Confidence	Interval for the Mean	

Perform a one-sample t test to determine whether the average **postquiz heart rate** of Ihno's

female students differs significantly ($\alpha = .05$, two-tailed) from the mean resting HR ($\mu = 72$) for collegeaged women. Find the 95% CI for the population mean represented by Ihno's female students.

	Sample Mean	95% CI (71.63, 72.91)	Test value = 72 t(99) = 24.744, p=.013	Ihno's different?
FEMALE Post-Quiz				☐ Different☐ Same