Задача 11-2. Поле пластин

В данной задаче вам предстоит рассмотреть электростатическое поле, создаваемое участками равномерно заряженных плоскостей.

Для рассмотрения подобных конфигураций часто пользуются понятием телесного угла Ω . Телесный угол Ω — это часть пространства, которая является объединением всех лучей, выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол). Границей телесного угла является некоторая коническая поверхность.

Телесный угол измеряется отношением площади S той части сферы с центром в вершине угла, которая вырезается этим телесным углом, к квадрату радиуса R сферы: $\Omega = \frac{S_{c\phi}}{R^2}$, по аналогии с тем, как радианную меру угла определяют как отношение длины дуги, вырезаемой данным центральным углом, к радиусу окружности (Рис.1). Телесные углы измеряются в безразмерных величинах, называемых стерадианами (ср). $\Omega = 1$ ср равен телесному углу, вырезающему из сферы радиуса R

поверхность с площадью R^2 . Полная сфера образует телесный угол, равный 4π стерадиан (полный телесный угол), для вершины, расположенной внутри сферы, в частности, для центра сферы.

Часть 1. «Кусок» равномерно заряженной плоскости.

1.1. Покажите, что телесный угол, под которым «видна» небольшая часть плоскости (Рис.2) из точки наблюдения даётся выражением

$$\Delta\Omega = \frac{\Delta S \cos \theta}{r^2}$$

где θ — угол между радиус-вектором, проведенным из центра данной площадки к точке наблюдения, и единичным вектором \vec{n} нормали к поверхости.

1.2. Докажите, что составляющая вектора напряженности электростатического поля, перпендикулярная поверхности равномерно заряженного участка плоскости (Рис. 3), определяется выражением:

$$E_{\perp} = \frac{\sigma\Omega}{4\pi\varepsilon_0},$$

где σ — поверхностная плотность заряда, Ω — телесный угол, стягиваемый этим участком плоскости.

1.3. Найдите напряженность электростатического поля E, создаваемого бесконечной плоскостью, по которой равномерно распределен заряд, поверхностная плотность которого равна σ .

1.4. Найдите зависимость напряженности электростатического поля E(z) равномерно заряженного диска радиуса R с поверхностной плотностью σ (Рис. 4) на его оси от расстояния z до его центра. Укажите, как изменяется данное выражение при $z\gg R$ и при $z\ll R$. Постройте схематический график полученной зависимости.

1.5. Пусть имеется бесконечная равномерно заряженная плоскость круглым отверстием радиуса R (Рис. 5). Puc.4 Найдите зависимость напряженности электростатического поля E(z) на оси симметрии системы от расстояния z до центра отверстия. Укажите, как изменяется данное выражение при $z \gg R$ и при $z \ll R$. Постройте схематический график полученной зависимости.

1.6. Найдите период малых колебаний точечного заряда Q массы m вблизи центра данного отверстия. Укажите, каким должен быть знак данного точечного заряда, чтобы подобное колебательное движение было возможным.

Часть 2. Плоский конденсатор

2.1. Найдите зависимость напряженности электростатического поля E(z) между двумя бесконечными равномерно заряженными пластинами от расстояния до серединной плоскости между ними. Постройте график полученной зависимости.

2.2. Пусть плоский конденсатор представлен в виде двух круглых равномерно заряженных пластин (рис.7). Найдите напряженность электростатического поля на оси данной системы E(z) в зависимости от расстояния до середины отрезка, соединяющего центры пластин конденсатора. Укажите, как изменяется полученное Вами выражение при $z \gg R$. Постройте график полученной зависимости при R=2h.

2.3. Найдите относительную погрешность при расчете напряженности при z=0 без учета конечных размеров пластин конденсатора по сравнению с результатами, полученными в пункте 2.2, при а)R=h; б)R=10h; в)R=100h.

Подсказки: 1) Телесный угол, соответствующий конусу с углом полураствора α , определяется по формуле: $\Omega = 2\pi(1-\cos\alpha)$ 2) При малых $|x| \ll 1$ справедливо приближение: $(1+x)^{\alpha} \approx 1+\alpha x$.

 \vec{E}