МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра АМ

ОТЧЕТ

по домашней работе №1

по дисциплине «Элементы функционального анализа»

Тема: Многоугольники и нормы

Студентка гр. 8382	 Кулачкова М.К.
Преподаватель	Коточигов А.М

Санкт-Петербург

Постановка задачи

Вариант 12

• Вычислить норму, заданную выпуклым, центрально симметричным многогранником \mathbb{R}^3 . Вершины в первом октанте:

$$A(5,6,0)$$
, $B(3,0,3)$, $H(0,7,6)$, $AA(5,0,0)$, $BB(0,4,0)$, $HH(0,0,6)$.

- Проверить неравенство треугольника для векторов (-4, 8, -7) и (7, -8, -5).
- Найти наибольшее и наименьшее значение евклидовой нормы на векторах, имеющих норму 1 в норме, порожденной многогранником.

Выполнение работы

1. Построение многогранника

Трижды отразим заданные точки относительно координатных плоскостей:

$$W_1 \to W_2(x, y, z) \to (x, -y, z)$$

$$W_2 \to W_3(x, y, z) \to (-x, y, z)$$

$$W_3 \to W(x, y, z) \to (x, y, -z)$$

Получили замкнутую, симметричную относительно координатных плоскостей поверхность W. Многогранник W должен быть выпуклым, но точка BB, а также точки, полученные при ее отражении, оказываются «вдавленными» в многогранник. Чтобы многогранник был выпуклым, необходимо, чтобы ордината этой точки была не меньше наибольшей из ординат других точек, поэтому заменим точку BB на точку BB'(0,7,0). Полученный многогранник представлен на рисунке 1.

2. Вычисление нормы

Для вычисления нормы вектора OP необходимо рассмотреть все трехгранные углы в $\{(x,y,z):z>0\}$ и найти угол, в базисе которого коэффициенты разложения вектора будут положительны.

Рассмотрим угол OABH. Для базиса OA, OB, OH построим биортогональный:

$$OA' = \frac{1}{(OA_1, OA)}OA_1, OA_1 = OB \times OH,$$

$$OB' = \frac{1}{(OB_1, OB)}OB_1, OB_1 = OA \times OH,$$

$$OH' = \frac{1}{(OH_1, OH)}OH_1, OH_1 = OA \times OB.$$

Тогда вектор *OP* можно разложить по базису *OA*, *OB*, *OH* как *OP* = k_1OA + k_2OB + k_3OH , где k_1 = (OP,OA'), k_2 = (OP,OB'), k_3 = (OP,OC'). Если $k_1 \ge 0$, $k_2 \ge 0$ и $k_3 \ge 0$, то $\|OP\|_W = k_1 + k_2 + k_3$.

Описанным образом найдем нормы векторов $v_1=(-4,8,-7)$ и $v_2=(7,-8,-5)$. Получим коэффициенты разложения для $v_1-k_1=0.38028, k_2=0.38028$

 $0.69953, k_3=0.8169$ и норму $\|v_1\|_W=1.89671,$ для $v_2-k_1=0.87324, k_2=0.87793, k_3=0.39437$ и норму $\|v_2\|_W=2.14554.$

Для проверки неравенства треугольника найдем вектор $v_{12}=v_1+v_2=(3,0,-12)$, его коэффициенты разложения $k_1=0.0,k_2=1.0,k_3=1.5$ и норму $\|v_{12}\|_W=2.5$. Тогда сравним величины $\|v_1+v_2\|_W=\|v_{12}\|_W$ и $\|v_1\|_W+\|v_2\|_W$.

$$\begin{split} \|v_{12}\|_W &= 2.5 \\ \|v_1\|_W + \|v_2\|_W &= 1.89671 + 2.14554 = 4.04225 \\ \|v_{12}\|_W < \|v_1\|_W + \|v_2\|_W, \end{split}$$

т. е. неравенство треугольника выполняется.

На рис. 2 и 3 оранжевым обозначены векторы v_1 и v_2 , а красным — вектор v_{12} .

3. Вычисление максимума и минимума евклидовой нормы на векторах, имеющих норму 1 в норме, порожденной многогранником

Концы векторов, имеющих норму 1 в норме, порожденной многогранником, лежат на его поверхности, поэтому очевидно, что вектор с наибольшей евклидовой нормой будет проведен из начала координат в одну из вершин многогранника, а вектор с наибольшей евклидовой нормой будет

расстоянием от начала координат до одной из плоскостей, образующих грани многогранника.

Евклидова норма вектора OP(x, y, z) рассчитывается по формуле $||OP|| = \sqrt{x^2 + y^2 + z^2}$. Найдем максимум евклидовой нормы среди векторов, соединяющих вершины многогранника в первом октанте с началом координат. Наибольшая евклидова норма является нормой вектора OH(0,7,6): ||OH|| = 9.21954. На рис. 4 изображена сфера с радиусом OH и центром в начале координат. Видно, что поверхность многогранника касается сферы, что свидетельствует о правильности найденного решения.

Для нахождения минимума евклидовой нормы нужно построить нормали к плоскостям, образующим грани многогранника. Рассмотрим грань ABH. Уравнение соответствующей ей плоскости можно записать в виде $N_x(x-x_a)+N_y(y-y_a)+N_z(z-z_a)=0$, где (x_a,y_a,z_a) – координаты точки $A,(N_x,N_y,N_z)$ – координаты вектора нормали $n=AB\times AH$. Расстоянием от начала координат до плоскости ABH будет длина вектора, соединяющего начало координат с точкой пересечения плоскости ABH и нормали n. Координаты (x_0,y_0,z_0) точки пересечения будут решением системы уравнений

$$\begin{cases} \frac{x}{N_x} = \frac{y}{N_y} \\ \frac{y}{N_y} = \frac{z}{N_z} \\ N_x x + N_y y + N_z z = D, \end{cases}$$

где $D=N_xx_a+N_yy_a+N_zz_a$. Проведем такие вычисления для каждой из граней, лежащих в первом октанте, и найдем минимум $\sqrt{{x_0}^2+{y_0}^2+{z_0}^2}$. Получим ON(3.46154,0,2.30769) и $\|ON\|=4.16025$. Сфера с радиусом ON и центром в начале координат изображена на рис. 5.

6