Final examination

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Welcome!

- Total nineteen (15) problems
 - Five (5) minutes for each problem
 - 75 minutes long
- Policy
 - No cellphone!
 - No calculator!
 - No question!
- Recommendation
 - Prepare your answer sheets. (Write down your name.)

- Saturation current of an NMOSFET is shown below.
 - Using the MOSFET IV model studied in the course, specify the following parameters: V_{TH} and $\mu_n C_{ox} \frac{W}{L}$
 - Neglect the channel-length modulation.

V_{GS} [V]	I_D [mA]
0.5	0.05
1.0	1.8
1.5	6.05
2	12.8

- Use the IV curve shown in Problem1.
 - When we set the dc bias point as $V_{GS} = 1.0 \text{ V}$ and $V_{DS} = 1.0 \text{ V}$, draw the small-signal model with the numerical values. Neglect the channel-length modulation.

- The same MOSFET is used in the CS amplifier.
 - Assume the dc gate voltage is 0.8 V.
 - Calculate the voltage gain for a load resistance of $1 \text{ k}\Omega$.
 - Repeat it with a load resistance of 1 M Ω .

- Calculate the dc V_{out} of the following circuit.
 - For the calculation, use the following parameters:

$$V_{DD} = 2 \text{ V}$$

$$\mu_n C_{ox} = 100 \text{ } \mu\text{A/V}^2$$

$$V_{TH} = 0.5 \text{ V}$$

$$\frac{W}{L} = \frac{10}{0.5}$$

Neglect the channel-length modulation.

$$R_2 = 30 \text{ k}\Omega$$

- For the same circuit, an input signal with 1 kHz is applied.
 - Unfortunately, the following circuit does not work properly.
 - Fix the problem, and calculate the output amplitude.

- Consider a source-degenerated CS stage.
 - Derive the expression of the source voltage, V_S .
 - Neglect the channel-length modulation

- Consider a source-degenerated circuit.
 - In the lecture, we have studied the voltage gain of the source-degenerated CS amplifier, $A_v = -\frac{g_m R_D}{1 + g_m R_S}$.
 - In this problem, derive the voltage gain with the channel-length modulation.

- Draw the small-signal model of a source-degenerated CS stage.
 - Derive the output resistance.
 - Include the channel-length modulation.

- The common-gate stage shown below must provide a voltage gain of 4 and an input impedance of $50 k\Omega$.
 - Determine the values of g_m and R_D .

Neglect the channel-length modulation.

- Consider a circuit shown below.
 - Assume $\beta = 100$.
 - In the BJT, $I_S = 10^{-15}$ A. Also use the approximate relation, $\exp \frac{60 \text{ mV}}{V_T} \approx 10$.
 - When $I_C=1$ mA, determine V_B . $R_B=10~{\rm k}\Omega$

- Compare the channel-length modulation (MOSFET) and the Early effect (BJT).
 - Explain the physical mechanisms to give such effects.

- Consider a common-emitter amplifier.
 - Draw the small-signal model.
 - Show that the voltage gain becomes insensitive to I_C , when we have a very large R_C .

- Voltage transfer curves of NMOS inverters are shown.
 - Three different drain resistances are used.
 - Select the curve with the highest drain resistance.
 - Explain the reason.

 V_{GS} [V]

- Two CMOS inverters are operated under the periodic input clock signal. They differ only in the device size.
 - The clock frequency is very low, just 1 kHz.
 - Calculate the dynamic power dissipation of two inverters.

- Consider CMOS NOR and NAND gates.
 - For simplicity, each of them has only two input variables.
 - Assume that the size of each MOSFET is the same for both gates.
 Which gate is faster? Explain the reason.