CLAIMS:

1. (Currently amended) A process for preparing a compound of formula I

where the variables are each defined as follows:

 R^1 is hydrogen, cyano, amino, C_1 - C_6 -alkyl, C_1 - C_3 -cyanoalkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl or phenyl- C_1 - C_4 -alkyl;

 R^2 and R^3 are each independently hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl;

X¹, X² and X³ are each independently oxygen or sulfur;

Ar is phenyl, which may be mono- or polysubstituted by the following groups: hydrogen, halogen, cyano, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl; and

A is -NR 5 R 6 where the variables R 5 and R 6 are each defined as follows: R 5 and R 6 are each independently

hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkynyl, each of which may be unsubstituted or substituted by one of the following radicals:

 C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, CN, NO₂, formyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_3 -

C₁₀-cycloalkyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR⁷ group where R⁷ is hydrogen, C₁-C₆-alkyl, C₃-C₆-alkenyl or C₃-C₆-alkynyl[[,]];

<u>or</u>

phenyl which may itself have 1, 2, 3 or 4 substituents selected from halogen, C_4 - C_4 -alkyl, C_4 - C_4 -alkoxy, C_4 - C_4 -fluoroalkyl, C_4 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, C_4 - C_3 -alkylamino, formyl, nitro or cyano;

 C_1 - C_{10} -haloalkyl, C_2 - C_{10} -haloalkenyl[[,]] <u>or</u> C_2 - C_{10} -haloalkynyl, C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR 7 -group where R^7 is hydrogen, C_4 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl,

phenyl or naphthyl, where C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3-to 8-membered heterocyclyl, phenyl or naphthyl, each may themselves have 1, 2, 3 or 4 substituents selected from halogen, C_4 - C_4 -alkyl, C_4 - C_4 -alkoxy, C_4 - C_4 -fluoroalkyl,

C₁-C₄-alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C₁-C₃-alkylamino, C₁-C₃-dialkylamino, phenoxy, nitro or cyano; or

R⁵ and R⁶ together form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which may have, as ring members, one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from O, S, N and an NR⁷ group

where R⁷ is hydrogen, C₄-C₆-alkyl, C₃-C₆-alkenyl or C₃-C₆-alkynyl, and which may be substituted by C₄-C₄-alkyl, C₄-C₄-alkyl;

comprising reacting a phenyl iso(thio)cyanate of the formula II

$$X^1 = C = N Ar M_{H}^{X^3} SO_2 A$$
 II,

where the variables X^1 , X^3 , Ar and A are each as defined above, with an enamine of the general formula III

where

R^{1a} is as defined above for R¹ with the exception of amino;

 R^2 , R^3 and X^2 are each as defined above; and

 R^4 is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -cyanoalkyl or benzyl which is itself unsubstituted or substituted on the phenyl ring by methyl, methoxy, methylthio, halogen, nitro or cyano;

in the presence of from 1.8 to 2.6 base equivalents per mole of the phenyl iso(thio)cyanate of the formula II;

and, if appropriate, in a further step, reacting the resulting 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R¹=R^{1a}, where R¹ is hydrogen, with an aminating agent of the formula IV

$$H_2N-L^1$$
 IV.

where L1 is a nucleophilic leaving group

to give a 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R¹ = amino.

- 2. (Original) The process according to claim 1, wherein the reaction is effected in the presence of a base which is selected from alkali metal and alkaline earth metal carbonates, alkali metal and alkaline earth metal alkoxides, alkali metal and alkaline earth metal hydrides and tertiary amines.
- 3. (Previously presented) The process according to claim 1, wherein the reaction is effected in a solvent comprising at least one aprotic polar solvent, and the aprotic polar solvent has a water content of from 0 to 0.5% by weight, based on the total amount of compound II, compound III and solvent.
- 4. (Original) The process according to claim 3, wherein the solvent comprises at least 50% by volume of an aprotic polar solvent selected from carboxamides, carboxylic esters, carbonates, nitriles and sulfoxides.
- 5. (Original) The process according to claim 4, wherein the solvent comprises at least 80% by weight of an aprotic polar solvent.
- 6. (Previously presented) The process according to claim 1, wherein from 0.9 to 1.3 mol of the enamine of the formula III are used per mole of the compound II.

- 7. (Previously presented) The process according to claim 1, wherein a 3-phenyl(thio)uracil or a 3-phenyldithiouracil, where R¹ is hydrogen, is prepared and this compound I is subsequently
 - (A) reacted with an aminating agent of the formula IV

where L¹ is a nucleophilically displaceable leaving group to obtain a compound of the formula I where

R¹ is amino; and

the variables R², R³, X¹, X², X³, Ar and A are each as defined above; or

(B) reacted with an alkylating agent of the formula V

$$R^{1b}$$
- L^2 V

where

 R^{1b} is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl; and

L² is a nucleophilically displaceable leaving group; to obtain a compound of the general formula I where

R¹ is as defined for R^{1b}; and

the variables R², R³, X¹, X², X³, Ar and A are each as defined above.

8. (Previously presented) The process according to claim 1, wherein the phenyl iso(thio)cyanate of the formula II is described by the formula IIA

$$X^1 = C = N$$

$$R^b$$

$$R^a$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^a$$

$$R^a$$

$$R^b$$

$$R^a$$

$$R^$$

where

X¹, X³ and A are each as defined above and R^a, R^b, R^c and R^d are each independently hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl.

- 9. (Original) The process according to claim 8, wherein, in formula IIA, R^a is halogen, cyano or trifluoromethyl; R^c is hydrogen or halogen; and R^b and R^d are each hydrogen.
- 10. (Canceled)
- 11. (Currently amended) The process according to claim 1, wherein R⁵ and R⁶ are each defined as follows: R⁵ and R⁶ are each independently
 - hydrogen, C₁-C₆-alkyl which may if appropriate carry optionally carries a substituent selected from the group consisting of halogen, cyano, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkylthio, C₃-C₈-cycloalkyl, furyl, thienyl[[,]] and 1,3-dioxolanyl and phenyl which may itself optionally be substituted by carries a substituent selected from the group consisting of halogen [[or]] and C₁-C₄-alkoxy;

<u>or</u>

- C_2 - C_6 -alkenyl[[,]] or C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl or phenyl which may if appropriate carry optionally carries 1 or 2 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl[[,]] and nitro-and C_4 - C_3 -dialkylamino; naphthyl or pyridyl; or
- R⁵ and R⁶ together form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may contain, as a ring member, one further heteroatom selected from N, O and an NR⁷ group where R⁷ is hydrogen, C₄-C₆-alkyl, C₃-C₆-alkenyl or C₃-C₆-alkynyl,

and/or may be substituted by one, two or three substituents selected from C₁-C₄-alkyl and C₁-C₄-haloalkyl.

- 12. (Previously presented) The process according to claim 1, wherein X^1 , X^2 and X^3 are each oxygen.
- 13. (Previously presented) The process according to claim 1, wherein R^1 is hydrogen, amino or C_1 - C_4 -alkyl.
- 14. (Previously presented) The process according to claim 1, wherein R^2 is hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl.
- 15. (Previously presented) The process according to claim 1, wherein R³ is hydrogen.
- 16. (Canceled)
- 17. (Previously presented) A process of claim 1, wherein R¹ is hydrogen, further comprising reacting said compound of Formula I wherein R1 is hydrogen with an alkylating agent of Formula V

$$R^{1b} - L^2$$
 V,

wherein L^2 is a nucleophilically displaceable leaving group and wherein R^{1b} is C_1 - C_6 -alkyl, C_i - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl.