Time Series Analysis and Modelling

Part 3: Time Series Models (AR and MA)

Jonathan Mwaura

Khoury College of Computer Sciences

August 1, 2024

Introduction

Acknowledgements

- These slides have been adapted from Achraf Cohen, University of West Florida - from the class class STA6856
- Lecture Notes from Dewei Wang, Department of Statistics, University of South Carolina (See notes in Canvas)
- C. Chatfield, The Analysis of Time Series: Theory and Practice, Chapman and Hall (1975).

Remarks

- A key role in time series analysis is given by processes whose properties do not vary with time.
- ② If we wish to make predictions then clearly we must assume that something does not vary with time
- In time series analysis, our goal is to predict a series that contains a random component, if this random component is stationary (weakly) then we can develop powerful techniques to forecast its future values.

Basic Properties

- **1** The autocovariance function (ACVF) $\gamma(h) = Cov(X_{t+h}, X_t), \quad h = 0, \pm 1, \pm 2, \dots$
- 2 The autocorrelation function (ACF) $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$
- **3** $\gamma(0) \geq 0$
- 4 $|\gamma(h)| \le \gamma(0)$, for all $h(\rho(h) \le 1)$ or (Cauchy-Schwarz inequality $E(XY)^2 \le E(X^2)E(Y^2)$)

Prediction

The ACF and ACVF provide a useful measure of the degree of dependence among the values of a time series at different times => Very important if we consider the prediction of future values of the series in terms of the past and present values.

Prediction

The ACF and ACVF provide a useful measure of **the degree of dependence** among the values of a time series at different times => Very important if we consider the prediction of future values of the series in terms of the past and present values.

Question

What is the role of the autocorrelation function in prediction?

The role of autocorrelation in prediction

- ullet Consider X_t a stationary Gaussian time series (all of its joint distributions are Multivariate Normal)
- We observed X_n and we would like to find the function of X_n that gives us the best predictor of X_{n+h} (the value of the series after h time units).
- The best predictor will be given by the function of X_n that minimizes the mean squared error (MSE).

Question

What is function of X_n that gives us the best predictor of X_{n+h} ?

Answer

The best predictor of X_{n+h} in terms of MSE is given by $E(X_{n+h}|X_n) = \mu + \rho(h)(X_n - \mu)$

The role of autocorrelation in prediction

For time series with non-normal joint distributions the calculation are in general more complicated => we look at **the best linear predictor** $(I(X_n) = aX_n + b)$, then our problem becomes finding a and b that minimize $E((X_{n+h} - aX_n - b)^2)$.

Answer

The best linear predictor of $I(X_n)$ in terms of MSE is given by

$$I(X_n) = \mu + \rho(h)(X_n - \mu)$$

The fact that the best linear predictor depends only on the mean and the ACF of the series X_t means that it can be calculated without more detailed knowledge of the series X_t

Stationary Processes: Examples

The MA(q) process

 X_t is a moving-average process of order q if

$$X_t = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q}$$

where $Z_t \sim WN(0, \sigma^2)$ and $\theta_1, \dots, \theta_q$ are constants.

Remarks

• If X_t is a stationary q-correlated time series with mean 0, then it can be represented as the MA(q) process

Stationary Processes: Examples

The ARMA(1,1) process

The time series X_t is an ARMA(1,1) process if it is stationary and satisfies (for every t)

$$X_t - \Phi X_{t-1} = Z_t + \theta Z_{t-1}$$

where $Z_t \sim WN(0, \sigma^2)$

The MA(q) process

The simplest ways to construct a time series that is strictly stationary is to "filter" an iid sequence of random variables. Consider $Z_t \sim IID$, we define:

$$X_t = g(Z_t, Z_{t-1}, \ldots, Z_{t-q})$$

for some real-valued function g(.,...,.). We can say that X_t is **q-dependent**.

Remarks

- IID is 0-dependent
- WN is 0-correlated
- A stationary time series is q-correlated if $\gamma(h)=0$ whenever lhl>q
- MA(1) is 1-correlated
- MA(q) is q-correlated

The MA(q) process

 X_t is a moving-average process of order q if

$$X_t = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

where $Z_t \sim WN(0, \sigma^2)$ and $\theta_1, \dots, \theta_q$ are constants.

If X_t is a stationary q-correlated time series with mean 0, then it can be represented as the MA(q) process given by the equation above.

The class of Linear time series models, which includes the class of Autoregressive Moving-Average (ARMA) models, provides a general framework for studying stationary processes.

Linear processes

The time series X_t is a **Linear process** if it has the representation:

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} \tag{2}$$

for all t, where $Z_t \sim WN(0, \sigma^2)$ and ψ_j is a sequence of constants with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$

- ① The condition $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$ ensures the infinite sum in (2) converges
- ② If $\psi_j = 0$ for all j < 0 then a linear process is called a moving average or $\mathsf{MA}(\infty)$

Stationary Processes: Linear Process

Proposition

Let Y_t be a stationary series with mean 0 and autocovariance function γ_y . If $\sum_{i=-\infty}^{\infty} |\psi_i| < \infty$, then the time series

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Y_{t-j} = \sum_{j=-\infty}^{\infty} \psi_j B^j Y_t = \psi(B) Y_t$$
 (3)

is stationary with mean zero and autocorrelation function $\gamma_x(h)$

The AR(1) process

The time series X_t is an AR(1) process was found to be stationary:

$$X_t - \Phi X_{t-1} = Z_t + \theta Z_{t-1} \tag{4}$$

if $Z_t \sim WN(0,\sigma^2)$ and $|\Phi| < 1$, and Z_t is uncorrelated with X_s for each $s \leq t$

- **1** X_t is called a causal or future-independent function of Z_t .
- 2 If $|\Phi| > 1$ (the series does not converge, we can rewrite then AR(1))
- 3 If $\Phi = \pm 1$, there is no stationary solution of (4)

The ARMA(1,1) process

The time series X_t is an ARMA(1,1) process if it is stationary and satisfies (for every t)

$$X_t - \Phi X_{t-1} = Z_t + \theta Z_{t-1}$$

where $Z_t \sim WN(0, \sigma^2)$ and $\theta + \Phi \neq 0$

- **1** A stationary the ARMA(1,1) exists if and only if $\phi \neq \pm 1$
- ② If $|\phi| < 1$, then the unique stationary solution is $X_t = Z_t + (\theta + \phi) \sum \phi^{j-1} Z_{t-j}$. This X_t is causal, since X_t can be expressed in terms of the current and past values of Z_s , $s \le t$
- 3 If $|\phi| > 1$, then the unique stationary solution is $X_t = -\theta \psi^{-1} Z_t + (\theta + \phi) \sum \phi^{-j-1} Z_{t+j}$. This X_t is noncausal, since X_t can be expressed in terms of the current and future values of Z_s , $s \ge t$. (unatural solution)

The ARMA(1,1) process

The time series X_t is an ARMA(1,1) process if it is stationary and satisfies (for every t)

$$X_t - \Phi X_{t-1} = Z_t + \theta Z_{t-1}$$

where $Z_t \sim WN(0, \sigma^2)$ and $\theta + \Phi \neq 0$

- ① if $\theta = \pm 1$, then ARMA(1,1) process is invertible in the more general sense that Z_t is a mean square limit of finite linear combinations of X_s , $s \le t$.
- ② If $|\theta| < 1$, then the ARMA(1,1) is invertible, since Z_t can be expressed in terms of the current and past values of X_s , $s \le t$
- 3 If $|\theta| > 1$, then the ARMA(1,1) is noninvertible, since Z_t can be expressed in terms of the current and future values of X_s , $s \ge t$.

The Sample Mean and Autocorrelation Function

A weakly stationary time series X_t is charachterized by its mean μ , its autocovariance $\gamma(.)$, and its autocorrelation $\rho(.)$. The estimation of these statistics play a crucial role in problems of inference => constructing an appropriate model for the data. We examine here some properties of the sample estimates \overline{X} and $\hat{\rho}(.)$.

2
$$Var(\overline{X}_n) = n^{-1} \sum_{h=-n}^n \left(1 - \frac{|h|}{n}\right) \gamma(h)$$

- **3** If the time series is Gaussian, then $(\overline{X}_n \mu)/\sqrt{n} \sim N(0, (1 \frac{|h|}{n})\gamma(h))$
- ① The confidence Intervals for μ are given $\overline{X}_n \pm Z_{1-\alpha/2} \frac{\sqrt{\hat{v}}}{\sqrt{n}}$, where $\hat{v} = \sum_{|h| < \sqrt{n}} \left(1 \frac{|h|}{\sqrt{n}}\right) \hat{\gamma}(h)$. For ARMA processes, this is a good approximation of v for large n.

The Sample Mean: Asymptotic distribution

If we know the asymptotic distribution of \overline{X}_n , we can use it to infer about μ (e.g. is μ =0?). Similarly for $\hat{\rho}(h)$

0

$$(\overline{X}_n - \mu)\sqrt{n} \sim AN(0, \sum_{|h| < n} \left(1 - \frac{|h|}{n}\right)\gamma(h))$$

② In this case, the confidence Intervals for μ are given $\overline{X}_n \pm Z_{1-\alpha/2} \frac{\sqrt{\hat{v}}}{\sqrt{n}}$, where $\hat{v} = \sum_{|h| < \sqrt{n}} \left(1 - \frac{|h|}{\sqrt{n}}\right) \hat{\gamma}(h)$. For ARMA processes, this is a good approximation of v for large n.

Example

What are the approximate 95% confidence intervals for the mean of AR(1)? "AN" means Asymptotically Normal

The Estimation of $\gamma(.)$ and $\rho(.)$

The sample autocovariance and autocorrelation functions are defined by:

$$\hat{\gamma}(h) = \frac{\sum_{t=1}^{n-|h|} (X_{t+|h|} - \overline{X}_n)(X_t - \overline{X}_n)}{n}$$

and

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

3 For h slightly smaller than n, the estimate of $\gamma(h)$ and $\rho(h)$ are unreliable. Since there few pairs (X_{t+h}, X_t) available (only one if h=n-1). A practical guide is to have at least n=50 and $h \leq n/4$

The Estimation of $\gamma(.)$ and $\rho(.)$: Asymptotic distribution

The sampling distribution of $\rho(.)$ can usually be approximated by a normal distribution for large sample sizes. For Linear Models (ARMA):

$$\hat{\boldsymbol{\rho}} = (\hat{\rho}(1), \dots, \hat{\rho}(k))' \sim AN(\boldsymbol{\rho}, \frac{W}{n})$$

where $\rho = (\rho(1), \dots, \rho(k))$, and W is the covariance matrix whose (i, j) element is given by **Bartlett's formula**:

$$w_{ij} = \sum_{k=1}^{\infty} \{ \rho(k+i) + \rho(k-i) - 2\rho(i)\rho(k) \} \times \{ \rho(k+j) + \rho(k-j) - 2\rho(j)\rho(k) \}$$

IID Noise?

The sample ACF Examination - Results

- If $|\hat{\rho}(h)| < \frac{1.96}{\sqrt{n}}$, for all $h \ge 1$, then assume MA(0), WN sequence.
- If $|\hat{\rho}(1)| > \frac{1.96}{\sqrt{n}}$, then we should look at the rest $\hat{\rho}(h)$ with $\pm \frac{1.96\sqrt{1+2\rho^2(1)}}{\sqrt{n}}$; we can replace $\rho(1)$ by its estimate (you can also remark that $2\hat{\rho}^2(1)/n \sim 0$, for large n).
- In general, if $|\hat{\rho}(h_0)| > \frac{1.96}{\sqrt{n}}$ and $|\hat{\rho}(h)| < \frac{1.96}{\sqrt{n}}$, for $h \ge h_0$, then assume MA(q) model with $q = h_0$.

Stationary Processes: Forecasting

Forecasting P_nX_{n+h}

Now we consider the problem of predicting the values X_{n+h} ; h > 0. Let's assume X_t is a stationary time series with μ and γ .

The goal is to find the linear combination of $1, X_n, \ldots, X_1$ that minimizes the mean squared error. We will denote

$$P_nX_{n+h}=a_0+a_1X_n+\cdots+a_nX_1$$

It remains to find the coefficients a_i that minimizes:

$$E((X_{n+h}-a_0-a_1X_n-\cdots-a_nX_1)^2)$$

Stationary Processes: Forecasting

Forecasting $P_n X_{n+h}$

We can show that P_nX_{n+h} is given by:

$$P_n X_{n+h} = \mu + \sum_{i=1}^n a_i (X_{n+1-i} - \mu)$$

and

$$E((X_{n+h}-P_nX_{n+h})^2)=\gamma(0)-\boldsymbol{a}'_n\gamma_n(h)$$

where a_n satisfies

$$\Gamma_n \boldsymbol{a}_n = \gamma_n(h)$$
 where $\boldsymbol{a}_n = (a_1, \dots, a_n)'$, $\Gamma_n = \begin{bmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \dots & \gamma(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \dots & \gamma(0) \end{bmatrix}$; $\gamma_n(h) = (\gamma(h), \gamma(h+1), \dots, \gamma(h+n-1))'$; and $a_0 = \mu(1 - \sum_{i=1}^n a_i)$

Stationary Processes: Forecasting

Prediction Algorithms

The following prediction algorithms use the idea of one-step predictor P_nX_{n+1} based on n previous observations would be used to calculate $P_{n+1}X_{n+2}$. This said to be recursive.

- 1 The Durbin-Levinson Algorithm (well suited to forecasting AR(p))
- $oldsymbol{2}$ The Innovations Algorithm (well suited to forecasting MA(q))

