Analysing The Data from the NLSS 2018-2019 For South-West Nigeria

Komolafe Elisha Ayobami

EEG/2015/061

November 26, 2021

- Introduction
- NLSS Data
- Data Preprocessing
- Methodology
- Results
- Conclusion

"Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity." [who, 1946]

The most significant Principles of the W.H.O. are:

- The enjoyment of the highest attainable standard of health is one of the fundamental rights of every human being without distinction of race, religion, political belief, economic or social condition.
- The health of all peoples is fundamental to the attainment of peace and security and is dependent on the fullest co-operation of individuals and States.
- Governments have a responsibility for the health of their peoples which can be fulfilled only by the provision of adequate health and social measures.

The NLSS is a nationwide intervention and collaborative effort of multiple agencies carried out between 2018 and 2019 to provide:

- Provide critical information for production of a wide range of socio-economic and demographic indications for benchmarking and monitoring of SDGs.
- Monitor progress in the populations welfare.
- Provide statistical evidence and measure the impact on households from current and future Government policies.

- Malaria is the most reported health illness reported by Nigerians.
- Most Nigerians visit a chemist for medical treatment.
- it takes longer to reach and receive treatment at a Hospital compared to a chemist.
- Most Nigerians suffering from Minor illnesses don't seek Medical treatment.
- Very few Nigerians visit an Hospital in a year.

Table: Data from the NLSS Report.

C	Hospital		Clinic		Chemist	
Strata	Male	Female	Male	Female	Male	Female
NIGERIA	130.7	127.7	76.7	94.9	50.6	49.2
Urban	107.8	110.3	60	101	44.6	40.7
Rural	145.1	139.8	81.5	93.2	53	52.3
Ekiti	126.3	103.7	160.6	71.1	22.8	27.1
Lagos	63	62.2	34.5	41.2	18.4	19.2

6

Table: Portion of the Displayed Input without Preprocessing

index	s03q01	s03q02	s03q03	 s03q25
1	1. YES	NaN	2. NO	 1. No, no
				difficulty
2	1. YES	NaN	2. NO	 1. No, no
				difficulty
3	1. YES	NaN	1. YES	 1. No, no
				difficulty
4	2. NO	2	2. NO	 1. No, no
				difficulty
5	2. NO	2	2. NO	 1. No, no
				difficulty

Figure: Data importing

20 | #%%

Figure: Data selection

```
40 | #%%
  #data for the south west for past 30 days
43 | southwest_total_data=health_data.loc[health_data['zone']==6,['
      state', 'sector', 's03q03', 's03q04_1', 's03q04_2',
44
          's03q05','s03q06_1','s03q06_2','s03q07a','s03q08','s03q09
             ', 's03q10_1',
45
          's03q10_2', 's03q11_1', 's03q11_2', 's03q11_3',
          's03q11_4', 's03q11_5', 's03q12', 's03q13',
46
47
          's03g14', 's03g15', 's03g16a', 's03g16b', 's03g17', '
             s03a18', 's03a18b'll
48 | #state_zone=health_data.loc[health_data['zone']<=6,['state','
      zone'11
49 | #state_zone=state_zone.loc[state_zone['state']==24,:]
50 #sea.pairplot(southwest_total_data)
```

51 southwest total data

Figure: mapping variables

168

174

```
#changing the values of 1 and 2 to yes and no respectively.
   val2str=southwest_total_data.loc[:,'s03q03']
   for i in southwest_total_data.index:
       if val2str[i] == 1.0:
            southwest_total_data['s03g03'][i]='YES'
175
       else:
176
            southwest_total_data['s03q03'][i]='N0'
178
179
180 southwest total data.head(30)
```

Figure: Final Data output

Table 2.3: Table showing the Data after Mapping using 2.15

state	sector	s03q03	s03q04_1
2109	13	2	NO
2110	13	2	NO
2111	13	2	NO
2112	13	2	NO
2113	13	2	YES
2114	13	2	YES
2115	13	2	YES
2116	13	2	NO
2117	13	2	NO
2118	13	2	YES

Figure: Visualization of Data chunks

```
54
   #data plotting
   sw_plot_1=southwest_total_data.loc[:,['state','sector','s03q03',
      's03q04_1','s03q04_2']]
   sea.pairplot(sw_plot_1)
58
59
ബ
   # % %
   sw_plot_2=southwest_total_data.loc[:,['s03q05','s03q06_1','
      s03q06_2','s03q07a','s03q08']]
   sea.pairplot(sw_plot_2)
65
66
   # % %
67
   #data plotting
   sw_plot_3=southwest_total_data.loc[:,['s03q09', 's03q10_1','
      s03q10_2', 's03q11_1', 's03q11_2']]
   sea.pairplot(sw_plot_3)
```

Figure: Plot of the first 5 variables

900

Figure: Code to Calculate VIF.

Figure: First VIF Result.

I		feature	VIF	
l	0	zone	126.379359	
l	1	state	1.283020	
l	2	sector	1.155342	
l	3	s03q04_1	2.411468	
l	4	s03q04_2	1.071587	
l	5	s03q05	15.748960	
l	6	s03q06_1	1.710809	
l	7	s03q06_2	1.260246	
l	8	s03q07a	3.671035	
l	9	s03q08	8.521257	
l	10	s03q09	3.909443	
l	11	s03q10_1	11.165224	
l	12	s03q10_2	1.208677	
l	13	s03q111	3.129934	
l	14	s03q112	1.283692	
l	15	s03q113	1.641351	
l	16	s03q114	1.169566	
l	17	s03q115	1.055591	
l	18	s03q12	13.549558	
l	19	s03q13	2.960139	
l	20	s03q14	1.327161	
l	21	s03q15	1.554728	
l	22	s03q16a	3.966910	
l	23	s03q16b	24.194978	
l	24	s03q17	9.254953	
l	25	s03q18	1.852098	
I	26	s03a18b	2.136655	

Figure: Final VIF Result.

for	tures vii	without	s03q12
0	state		6.096657
1	sector		6.326565
2	s03q04_:	L	2.730057
3	s03q04_2	2	1.072848
4	s03q06_:	L	2.041564
5	s03q06_2	2	1.365661
6	s03q07a	à.	4.516364
7	s03q08	3	10.664574
8	s03q09	9	4.298487
9	s03q10_:	l	4.224135
10	s03q10_2	2	1.245882
11	s03q111	l	2.679302
12	s03q112	2	1.272134
13	s03q113	3	1.463381
14	s03q114	l .	1.166484
15	s03q11	5	1.034655
16	s03q13	3	2.183749
17	s03q14	<u>l</u>	1.378289
18	s03q1	5	1.585710
19	s03q16a	à	2.384502
20	s03q17	7	9.520753
21	s03q18	3	1.949016
22	s03q181		2.535808

Conlusions

- Zone has high collinearity.
- By removing the Highest Co linear Variables, the data can be free of collinearity.

Figure: Dividing the Data into Training and Test sets.

Specifications

- Only Data from South-West Nigerian States^a.
- Testing Data is 20% of the available Data.
- The Models to be Trained are: Logistic Regression, LDA, QDA.
- k chosen for k-fold validation is 7.

^aEkiti,Lagos,Ogun,Ondo,Osun and Oyo

(ロ) (回) (三) (三) (三) (つ)

Figure: Training Logistic Regression Model.

```
's03q05','s03q06.1','s03q06.2','s03q07a','s03q08','s03q09'
','03q10.1',
's03q10.2', 's03q11.1', 's03q11.2', 's03q11.3',
's03q11.4', 's03q11.5', 's03q12', 's03q13',
's03q14', 's03q16', 's03q16a', 's03q16b', 's03q17', '
s03q18', 's03q18b']]
svtrainy= southwest_train.loc[[, ['s03q03']]
visit_doc_model.fit(swtrainx, swtrainy)
print(visit_doc_model.ocef_)
%visit_doc_model.n_features_in_
%visit_doc_model
```

Figure: Results from Testing.

p	recision	recall	f1-score	support	
NO	0.98	0.98	0.98	288	
YES	0.95	0.95	0.95	135	
accuracy			0.97	423	
macro avg	0.96	0.96	0.96	423	
weighted avg	0.97	0.97	0.97	423	
array([[281,	7],				
[7,	128]], d	ltype=int64)			

Figure: Training Logistic Regression Model.

#XX

#1da
visitdoc_ldamodel=LinearDiscriminantAnalysis()
visitdoc_ldamodel.fit(swtrainx, swtrainy)
visitdoc_ldamodel
visitdoc_ldamodel

Figure: Results from Testing.

1	precision	recall	f1-score	support
NO	1.00	1.00	1.00	288
YES	1.00	1.00	1.00	135
			4 00	400
accuracy			1.00	423
macro avg	1.00	1.00	1.00	423
weighted avg	1.00	1.00	1.00	423
array([[288,	0],			
Γ 0.	13511. d	tvpe=int64)		

Figure: Training Logistic Regression Model.

```
#XX

#qda
visitdoc_qdamodel=QuadraticDiscriminantAnalysis()
visitdoc_qdamodel.fit(swtrainx, swtrainy)
visitdoc_qdamodel
visitdoc_qdamodel
visitdoc_qdamodel.get_params()
```

Figure: Results from Testing.

	precision	recall	f1-score	support
NO	1.00	0.91	0.95	288
YES	0.83	1.00	0.91	135
accuracy			0.94	423
macro avg	0.92	0.95	0.93	423
weighted avg	0.95	0.94	0.94	423
-				
array([[261,	27],			
	135]], dtyp	e=int64)		

Figure: Code for Cross-Validation

```
#%%
#cross validation with 7 folds for log regression
k=7
folds=KFold(n_splits=k)
accuracy=[]
metrep=[]
for train_index.test_index in folds.split(kcvx):
    #x_train=[], x_test=[], y_train=[], y_test=[]
    x_train.x_test= kcvx.iloc[train_index.:].kcvx.iloc[
        test index .: 1
    y_train,y_test= kcvy.iloc[train_index,:],kcvy.iloc[
       test index.1
    #print(train_index,test_index)
    visit_doc_model.fit(x_train,y_train)
    v pred=visit doc model.predict(x test)
    metrep.append(metrics.classification_report(y_test,y_pred))
    accuracy.append(metrics.accuracy score(v test.v pred))
    #mae.append(metrics.mean_absolute_error(v_test.v_pred))
```

Figure: Plot of Cross-Validation on Log. Regression Model

Figure: Plot of Cross-Validation on LDA Model

Figure: Plot of Cross-Validation on QDA Model

Figure: Code snippet for 80% variance

#XX #pca method on single 80/20 data used originally using 85% variance retained pca.PcA(0.85) pca.fit(autrainx) #pca.n_components pcatrainxpca.transform(sutrainx) pcatreix=pca.transform(sutestx) pcatrainx #pcatreix #pcatreix #pcatreix pca.avalained variance ratio

Figure: Result of all the PCAtests.

```
85%-array([0.96016506])
90%-array([0.96016506])
95%-array([0.96016506])
97%-array([0.96016506])
97%-array([0.96016506], 0.02108479]
99%-array([0.96016506], 0.02108479], 0.01870875])
5_components-array([9.60165059-01, 2.10847903-02, 1.87087459e-01, 2.10847903-02, 1.87087459e-01, 2.55160744e-05])
10_components-array([9.60165059e-01, 2.10847903e-02, 1.87087459e-02, 2.55160744e-05, 5.81454611e-06])
5_components-array([9.60165059e-01, 2.10847903e-02, 1.87087459e-02, 2.55160744e-05, 5.81454611e-06, 3.73393949e-06, 2.35224596e-06, 2.14133718e-06, 6.24471077-07, 5.53498555e-07])
```

Conclusion from 7-fold Cross-Validation

- LDA shows the Highest accuracy across all the folds.
- Logistic Regression shows high accuracy but the range is larger than I DA.
- QDA shows the worst accuracy and has the highest accuracy range.

Conclusions from PCA

- 95% variance can only be represented with 1 variable.
- 97% variance is represented by 2 variables.
- 99% variance is represented by 3 variables.
- 3 variables are the minimum that can totally represent the system.

- A LDA Model fits the Data the best, with Logistic Regression second.
- the 3 most influential variables can represent the entire model, using dimension reduction.
- The Data has a Large amount of 'No' variables, which can sometimes lead to the models not fitting

Thank You for Listening.

4 - 1 > 4 - 2 >

(1946).

Constitution of the World Health Organization.

99Q