TUTORIAL QUESTIONS

1. We set up a correspondence between alphabetic characters and residues modulo 26 as follows:

4	4 <i>E</i>	$3 \mid C$	$\mid D$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	F	G	H	I	\boldsymbol{J}	K	$\mid L$	M	£ .
	0 1	$\frac{1}{2}$	3	4	5	6	7	8	9	10	11	. 12	2
λŢ		l n		D	C	1 70	1 F T	1 17	- 1 m	1 77	v l	v	1 0
IV		P	(J	\boldsymbol{n}	احد			V	1	V	Λ	1	\boldsymbol{z}
13	14	15	16	17	18	19	20	21	[2	22	23	24	25

Let the encryption algorithm be $c = (11m+7) \mod 26$ where m is the message and c is the ciphertext. Encrypt and decrypt the following plaintext. Show how your computation was done.

- i) HASH FUNCTION
- ii) INFORMATION SECURITY
- iii) ENCRYPTION AND DECRYPTION
- iv) CRYPTOGRAPHIC ALGORITHM
- v) COMPUTER SCIENCE
- 2. Using one-time pad, compute the cipher text for the following message stream and their keys
 - i) Message Stream: 1111111001 Key Stream: 1000000011

Tey Stream. 1000

Ciphertext stream:

ii) Message Stream: 0000011100

Key Stream: 1110000000

Ciphertext stream:

iii) Message Stream: 1110001111

Key Stream: 0101001111

Ciphertext stream:

iv) Message Stream: 0000011111

Key Stream: 1110000000

Ciphertext stream:

v) Message Stream: 1111111000

Key Stream: 1000000011

Ciphertext stream:

- 3. Differentiate between symmetric key cryptography and asymmetric key cryptography
- 4. List and explain three examples of cyber-attacks.
- 5. What is steganography and list five types of digital steganography

Vigenere Table

Aabcdefghijklmnopqrstuvwxyz Bbcdefghijklmnopqrstuvwxyza Ccdefghijklmnopqrstuvwxyzab Ddefghijklmnopqrstuvwxyzabc Eefghijklmnopqrstuvwxyzab Ffghijklmnopqrstuvwxyz jklmnopqrstuvwx Hhijklmnopqrstuvwxyzabc Iijklmnopqrstuvwxyzabcd lmnopqrstuvwxyzabcd lmnopqrstuvwxyzabc Llmnopqrstuvwxyzabcd Mmnopqrstuvwxyzabcdefg Nnopqrstuvwxyzabcdefghi Oopqrstuvwxyzabcde Pp q r s t u v w x y z a b c d e f g h i Qqrstuvwxyzabcdefghij Qqfstuvwxyzabcdefghijklm Rrstuvwxyzabcdefghijklmn Sstuvwxyzabcdefghijk Uuvwxyzabcdefghijklmnop Vvwxyzabcdefghijklmnopq Wwxyzabcdefghijklmnopqr Xxyzabcdefghijklmnopqrs Yyzabcdefghijklmnopqrstuv Zzabcdefghijklmnopqrs

- 6. Using the Vigenere Table above, encrypt the following plaintext with the key **COMPUTER**
 - i) SECURE COMMUNICATION MODEL
 - ii) THE STRENGTH OF THE CRYPTOSYSTEM
 - iii) ENCRYPTION SCHEME
 - iv) EXAMPLES OF SYMMETRIC ALGORITHMS
- 7. Prove the following equation
 - i) $S_{A,B} = S_{B,A}$

(Using Diffie Hellman)

- ii) $Dec_K(Enc_K(m)) = m$
- 8. Suppose Bob chooses p = 11 and $e_1 = 3$ and d = 7 and Alice chooses r = 5, compute the ciphertext C_1 and C_2 for the plaintext 7 and decrypt C_1 and C_2 to obtain the plaintext 7 using ElGamal Cryptosystem.
- 9. With the aid of a diagram, draw the conceptual scheme for
 - i) Data Encryption Standard (DES)
 - ii) Advanced Encryption Standard (AES)
- 10. Differentiate between the following:
 - i) Substitution cipher and Transposition cipher
 - ii) Block cipher and Stream cipher
- 11. Prove the ElGamal cryptosystem: $[C_2 \times (C_1^d)^{-1}] = P$

- 12. Using Diffie Hellman Key exchange algorithm, compute the key for the following:
 - i) p = 53, g = 3, x = 97, y = 157
 - ii) p = 71, g = 5, x = 31, y = 29
- 13. Outline the RSA key generation, encryption and decryption process.
- 14. With the aid of a diagram, describe the two scenarios of Symmetric Cipher Model
- 15. We set up a correspondence between alphabetic characters and residues modulo 26 as follows:

Let the encryption algorithm be $c = 9m + 5 \mod 26$ where m is the message and c is the ciphertext. Encrypt and decrypt the following plaintext. Show how your computation was done.

- v) COMMUNICATION MODEL
- vi) THE CRYPTOSYSTEM
- 16. Using one-time pad, prove the correctness of $Dec_K(Enc_K(m)) = m$
- 17. List and explain four cryptosystem services
- 18. Differentiate between active and passive attacks. Give two examples of each.
- 19. Using Diffie Hellman Key exchange algorithm, compute the key for the following:
 - i) p = 53, g = 3, x = 97, y = 157
 - iii) p = 71, g = 5, x = 31, y = 29
- 20. Using RSA, Encrypt and decrypt the message m = 3 where p = 3, q = 11, e = 7.
- 21. Suppose Bob chooses p = 11 and $e_1 = 3$ and d = 7 and Alice chooses r = 5, compute the ciphertext C_1 and C_2 for the plaintext 7 and decrypt C_1 and C_2 to obtain the plaintext 7 using ElGamal Cryptosystem.

22. Prove the following equation:

iii)
$$S_{A,B} = S_{B,A}$$

(Using Diffie Hellman)

iv)
$$Dec_K(Enc_K(m)) = m$$

- 23. If $S_1 = e_1^r \mod p$, $S_2 = (m dS_1)^{-r} \mod (p-1)$ and $V_1 = e_1^m \mod p$ and $V_2 = e_2^{S1} S_1^{S2}$. Verify that $V_1 = V_2$.
- 24. Describe the Diffie-Hellman Key Agreement in a diagram
- 25. Outline five (5) challenges of computer security