Variable Selection and Task Grouping for Multi-Task Learning

Jun-Yong Jeong and Chi-Hyuck Jun Industrial and Management Engineering, POSTECH

Introduction

Multi-task learning

- Multiple related output variables (=Task)
- Different observations for each output variable

Input variables		Output variables (=Tasks)			
<i>X</i> ₁		X_D	<i>Y</i> ₁	•••	Y_T
2		40	10		?
3		23	20		11
4		100	?		15
1.5		10	?		9
2		53	17		?

Introduction

Multi-task learning

Relationship to other problems
 (figure from Zhou et al., 2012)

o Transfer Learning

- Define source & target domains
- Learn on the source domain
- Generalize on the target domain

Multi-task Learning

- Model the task relatedness
- Learn all tasks simultaneously
- Tasks may have different data/features

Multi-label Learning

- Model the label relatedness
- Learn all labels simultaneously
- Labels share the same data/features

o Multi-class Learning

- Learn the classes independently
- All classes are exclusive

Introduction

Multi-task learning

• Simlutaneous learning to share common information among prediction models (figure from Zhou et al., 2012)

Problem and Purpose

- Multi-task regression/classification
- *T* tasks (=output) and *D* input variables

Main idea

- Linear model
- Low-rank factorization & Sparsity

$$\mathbf{W} = \mathbf{U}\mathbf{V} \in \mathbb{R}^{D \times T}$$

$$\mathbf{U} \in \mathbb{R}^{D \times M}$$
 and $\mathbf{V} \in \mathbb{R}^{M \times T}$

Coefficient matrix W

Latent

Variable-latent matrix U

Latent-task matrix V

Task

Variable selection

- Coefficient of *i*th variable for *j*th task $w_{ij} = \mathbf{u}^i \mathbf{v}_j \in \mathbb{R} (\mathbf{u}^i \in \mathbb{R}^{1 \times M} \& \mathbf{v}_j \in \mathbb{R}^M)$
- \Rightarrow Impose sparsities between and within the rows of Variable-latent matrix \mathbf{U} (Chen and Huang, 2012)

Task grouping

- Coefficient vector for jth task $\mathbf{w}_j = \mathbf{U}\mathbf{v}_j = \sum_{m=1}^M v_{mj}\mathbf{u}_m \in \mathbb{R}^D$
- \Rightarrow Task grouping by dependency on the basis vectors \mathbf{u}_m
- \Rightarrow Impose sparsity within the columns of Latent-task matrix **V** (Kumar and Daume, 2012)

Task grouping

- Coefficient vector for jth task $\mathbf{w}_j = \mathbf{U}\mathbf{v}_j = \sum_{m=1}^M v_{mj}\mathbf{u}_m \in \mathbb{R}^D$
- \Rightarrow Task grouping by dependency on the basis vectors \mathbf{u}_m
- \Rightarrow Impose sparsity within the columns of Latent-task matrix **V** (Kumar and Daume, 2012)

Task grouping

Representation learning

$$\hat{y}_j(\mathbf{x}) = (\mathbf{w}_j)^T \mathbf{x} = \mathbf{v}_j^T \mathbf{U}^T \mathbf{x} = \mathbf{v}_j^T (\mathbf{U}^T \mathbf{x})$$

 \mathbf{U}^T : a linear transform from \mathbb{R}^D to \mathbb{R}^M

 $\mathbf{v}_j \in \mathbb{R}^M$: a coefficient vector in a new correlated representation

Optimization problem

$$\min_{\mathbf{U},\mathbf{V}} \sum_{j=1}^{T} \frac{1}{N_{j}} L(y_{j}, \mathbf{X}_{j} \mathbf{U} \mathbf{v}_{j})$$

$$s. t$$

$$\mathbf{C1}: \| \mathbf{U} \|_{1} = \sum_{i=1}^{D} \| \mathbf{u}^{i} \|_{1} \leq \alpha_{1},$$

$$\mathbf{C2}: \| \mathbf{U} \|_{1,\infty} = \sum_{i=1}^{D} \| \mathbf{u}^{i} \|_{\infty} \leq \alpha_{2},$$

C3:
$$\sum_{j=1}^{T} (\|\mathbf{v}_j\|_k^{sp})^2 \leq \beta$$

$$\min_{\mathbf{U},\mathbf{V}} \sum_{j=1}^{T} \frac{1}{N_{j}} L(y_{j}, \mathbf{X}_{j} \mathbf{U} \mathbf{v}_{j})$$

$$+ \gamma_{1} \parallel \mathbf{U} \parallel_{1} + \gamma_{2} \parallel \mathbf{U} \parallel_{1,\infty}$$

$$+ \mu \sum_{j=1}^{T} (\parallel \mathbf{v}_{j} \parallel_{k}^{sp})^{2}$$

C1 & C2: L1,1 & L1,inf norm

- \Rightarrow impose sparsities between and within the row vector \mathbf{u}^i
- ⇒ perform variable selection

C3: Squared k-support norm (Argyriou et al., 2012)

- \Rightarrow impose sparsity within the column vector \mathbf{v}_i while considering correlation
- ⇒ perform task grouping

Optimization procedure

Initialization based on single-task learning

1. Learn a ridge regression for each task to compute initial coefficient vector

$$\mathbf{w}_{j}^{init} := \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N_{j}} L(\mathbf{y}_{j}, \mathbf{X}_{j} \mathbf{w}) + \sqrt{\gamma_{1}^{2} + \gamma_{2}^{2} + \mu^{2}} \parallel \mathbf{w} \parallel_{2}^{2}$$
$$\mathbf{W}^{init} := \left[\mathbf{w}_{1}^{init}, \dots, \mathbf{w}_{T}^{init}\right] \in \mathbb{R}^{D \times T}$$

2. Compute the top-M left singular vectors, the top-M right singular vectors and the top-M singular value matrix and estimate initial values

$$\mathbf{W}^{init} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T, \mathbf{P} \in \mathbb{R}^{D \times M}, \mathbf{\Sigma} \in \mathbb{R}^{M \times M}, \mathbf{Q} \in \mathbb{R}^{T \times M}$$
$$\mathbf{U} = \mathbf{P} \mathbf{\Sigma}^{1/2} \ \& \ \mathbf{V} = \mathbf{\Sigma}^{1/2} \mathbf{Q}^T$$

Alternating optimization

- 3. Repeat until convergence
- Update U with an ADMM and an early stopping

$$\min_{\mathbf{U}, \mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3} \sum_{j=1}^{T} \frac{1}{N_j} L(y_j, \mathbf{X}_j \mathbf{Z}_1 \mathbf{v}_j) + \gamma_1 \parallel \mathbf{Z}_2 \parallel_1 + \gamma_2 \parallel \mathbf{Z}_3 \parallel_{1,\infty}$$

$$s. t \mathbf{A}\mathbf{U} + \mathbf{B}\mathbf{Z} = \mathbf{0},$$

where
$$\mathbf{A} = \begin{bmatrix} \mathbf{I}_D \\ \mathbf{I}_D \\ \mathbf{I}_D \end{bmatrix}$$
, $\mathbf{B} = diag(-\mathbf{I}_D, -\mathbf{I}_D, -\mathbf{I}_D)$, and $\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \\ \mathbf{Z}_3 \end{bmatrix}$

5. For j = 1, ..., T, update \mathbf{v}_j by solving a k-support norm regularized regression or logistic regression with an accelerated proximal gradient descent

$$\min_{\mathbf{v}} \frac{1}{N_j} L(\mathbf{y}_j, (\mathbf{X}_j \mathbf{U}) \mathbf{v}) + \mu (\| \mathbf{v} \|_k^{sp})^2$$

6. End Repeat

Theoretical analysis

• Upper bound on the excess error from Maurer et al., 2016 If $\alpha_1^2 \leq M$, with probability at least $1-\delta$ the excess error is bounded by

$$\frac{1}{T} \sum_{j=1}^{T} \mathbb{E} \left[L'(\mathbf{y}_j, \mathbf{X}_j \widehat{\mathbf{U}} \widehat{\mathbf{v}}_j) \right] - \min_{\mathbf{U} \in \mathcal{H}, \mathbf{v}_j \in \mathcal{F}} \frac{1}{T} \sum_{j=1}^{T} \mathbb{E} \left[L'(\mathbf{y}_j, \mathbf{X}_j \mathbf{U} \mathbf{v}_j) \right]$$

$$\leq c_1 \beta M \sqrt{\frac{\|\hat{c}(\overline{\mathbf{X}})\|_1}{NT}} + c_2 \beta \sqrt{\frac{\|\hat{c}(\overline{\mathbf{X}})\|_{\infty}}{N}} + \sqrt{\frac{8 \ln(\frac{2}{\delta})}{NT}}$$

Where L' is the scaled loss function, $\widehat{\mathbf{U}}$, $\widehat{\mathbf{v}}_1$, ... $\widehat{\mathbf{v}}_T$ are the optimal solution, $\|\widehat{\mathcal{C}}(\overline{\mathbf{X}})\|_1 = \frac{1}{T}\sum_{j=1}^T tr\left(\widehat{\Sigma}(\mathbf{X}_j)\right)$, $\|\widehat{\mathcal{C}}(\overline{\mathbf{X}})\|_{\infty} = \frac{1}{T}\sum_{j=1}^T \lambda_{max}\left(\widehat{\Sigma}(\mathbf{X}_j)\right)$, and $\widehat{\Sigma}(\mathbf{X}_j)$ is the empirical covariance of \mathbf{X}_i

Simulation study

- True model: $\mathbf{W}^* = \mathbf{U}^* \mathbf{V}^* \in \mathbb{R}^{25 \times 20} \ \& \ y_j = \mathbf{x}^T \mathbf{w}_j^* + N(0,1)$
- Case 1. No correlation & disjoint group

Estimated coefficient matrix $\hat{\mathbf{W}}$

Simulation study

- True model: $\mathbf{W}^* = \mathbf{U}^* \mathbf{V}^* \in \mathbb{R}^{25 \times 20} \ \& \ y_j = \mathbf{x}^T \mathbf{w}_j^* + N(0,1)$
- Case 2. No correlation & overlapping group

True coefficient matrix W*

Estimated coefficient matrix $\hat{\mathbf{W}}$

Benchmark datasets

Data	asets	# of input variables (D)	# of tasks (T)	# of total observations	Train/Test
Regression	School exam (Goldstein, 1991)	26	139	15,362	75%/25%
	Parkinson (Tsanas et al., 2010)	19	42	5875	75%/25%
	Computer survey (Lenk et al., 1996)	13	190	20	75%/25%
Classification	MNIST (Lecun et al., 1998)	28×28 ⇒ 64 by PCA	10	70,000	1000/500
	USPS (Hull, 1994)	16×16 ⇒ 87 by PCA	10	9,298	1000/500

Benchmark datasets – Regression

• Root mean squared error

N	lethod	School exam	Parkinson	Computer survey
Single-task linear	LASSO	12.0483 (0.1738)	2.9177 (0.0960)	2.3199 (0.3997)
	L1+TRACE (Richard et al., 2012)	10.5041 (0.1432)	1.0481 (0.0243) 1.1079	4.9493 (2.1592)
Multi-task	MMTFL (Wang et al., 2016)	10.1303 (0.1291)	1.1079 (0.0182)	1.7525 (0.1237)
	CTML (Zhou et al., 2011)	10.0170 (0.1979)	1.0408 (0.0229)	2.7562 (0.6336)
linear	GO-MTL (Kumar and Daume, 2012)	10.1924 (0.01331)	1.0231 (0.0285)	1.9067 (0.1864)
	Proposed (Jeong and Jun, 2018)	9.8931 (0.1103)	1.0077 (0.0191)	1.6993 (0.1053)

Benchmark datasets – Classification

Accuracy

Method		MNIST	USPS
Single-task Iinear	LASSO	13.0200 (0.7084)	12.8800 (1.5061)
Multi-task linear	L1+TRACE (Richard et al., 2012)	17.9800 (1.7574)	16.0200 (1.2874)
	MMTFL (Wang et al., 2016)	12.6000 (0.8641)	11.3600 (1.1462)
	CTML (Zhou et al., 2011)	12.3400 (0.0199)	12.4400 (0.0099)
	GO-MTL (Kumar and Daume, 2012)	12.8400 (1.2989)	12.9000 (1.0842)
	Proposed (Jeong and Jun, 2018)	11.7000 (1.4461)	11.4800 (1.0379)

Conclusion

Summary

- Linear model for multi-task regression and classification
- Variable selection and Task grouping
- Lower bound on the excess error

Future work

- Slow convergence rate of ADMM $O(1/\epsilon)$
- ⇒ Apply a proximal alternating linearized minimization (Bolte et al., 2014)
- & Compute a proximal operator of ℓ_1 + ℓ_∞ norm

Benchmark datasets – Regression

Root mean squared error

Benchmark datasets – Classification

Reference

- Andreas Argyriou, Rina Foygel, and Nathan Srebro. 2012. Sparse Prediction with the k-Support Norm. In Advances in Neural Information Processing Systems 25 (NIPS'12), F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1457–1465.
- Jerome Bolte, Shoham Sabach, and Marc Teboulle. 2014. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming 146, 1 (01 Aug 2014), 459–494.
- Lisha Chen and Jianhua Z.Huang. 2012. Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection. J. Amer. Statist. Assoc. 107, 500 (2012), 1533–1545.
- Harvey Goldstein. 1991. Multilevel Modelling of Survey Data. Journal of the Royal Statistical Society. Series D (The Statistician) 40, 2 (1991), 235–244.
- A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 5 (May 1994), 550–554.
- Abhishek Kumar and Hal Daume III. 2012. Learning Task Grouping and Overlap in Multi-Task Learning. In Proceedings of the 29th International Conference on Machine Learning (ICML'12), John Langford and Joelle Pineau (Eds.). Omnipress, NY, USA, 1383–1390.
- Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient based learning applied to document recognition. Proc. IEEE 86, 11 (Nov 1998), 2278–2324.

Reference

- Peter J. Lenk, Wayne S. DeSarbo, Paul E. Green, and Martin R. Young. 1996. Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Marketing Science 15, 2 (1996), 173–191.
- Emile Richard, Pierre-Andre Savalle, and Nicolas Vayatis. 2012. Estimation of Simultaneously Sparse and Low Rank Matrices. In Proceedings of the 29th International Conference on Machine Learning (ICML'12). Omnipress, USA, 51–58
- Xin Wang, Jinbo Bi, Shipeng Yu, Jiangwen Sun, and Minghu Song. 2016. Multiplicative Multitask
 Feature Learning. Journal of Machine Learning Research 17, 80 (2016), 1–33.
- Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. 2016. The Benefit of Multitask Representation Learning. Journal of Machine Learning Research 17, 81 (2016), 1–32
- Athanasios Tsanas, Max A. Little, Patrick E. McSharry, and Lorraine O. Ramig. 2010. Accurate Telemonitoring of Parkinson's Disease Progression by Noninvasive Speech Tests. IEEE Transactions on Biomedical Engineering 57, 4 (April 2010), 884–893.
- Jiayu Zhou, Jianhui Chen, and Jieping Ye. 2011. Clustered Multi-Task Learning via Alternating Structure Optimization. In Advances in Neural Information Processing Systems 24 (NIPS'11). Curran Associates, Inc., 702–710.
- Zhou, J., Chen, J., & Ye, J. (2012). Multi-Task Learning Theory: Theory, Algorithms, and Applications.
 In ICDM 2012 tutorial.

