- **Q:** Is it sufficient for $S = V \setminus A$?
- **A:** No! Our set F of finishing/accepting states should be nonempty. So we add an element $\{f\}$ to $V \setminus A$, where our acceptor will end up when a word in our language. Thus, $S = (V \setminus A) \cup \{f\}$ and $F = \{f\}$. $F \subseteq S$ as needed.
- **Q:** How do we define t?
- **A:** Use the production rules in P! For every rule of type (i), which is of the form $\langle A \rangle \rightarrow b \langle B \rangle$ set $t(\langle A \rangle, b) = \langle B \rangle$. This works out well because our nonterminals $\langle A \rangle$ and $\langle B \rangle$ are states of the acceptor and the terminal $b \in A$ so t takes an element of $S \times A$ to an element of S as needed. Now look at production rules of type (ii), $\langle A \rangle \rightarrow b$ and of types (iii), $\langle A \rangle \rightarrow \varepsilon$. Those are applied when we finish constructing a word w in our language L, i.e. at the very last step, so our acceptor should end up in the
 - 45

finishing state f whenever a production rule of type (ii) or (iii) is applied. Write a production rule of type (ii) or (iii) as <A $> \rightarrow w$, then we can set t(<A>,w)=f. We have finished constructing t as well. Technically, $t:S\times (A\cup \{\varepsilon\})\to S$ instead of $t:S\times A\to S$, but we can easily fix the transition function t by combining the last two transitions for each accepted word.

Remark: The same general principles as we used above allow us to go from a finite state acceptor to a regular grammar. This gives us the following theorem:

Theorem: A language L is regular $\Leftrightarrow L$ is recognised by a finite state acceptor $\Leftrightarrow L$ is generated by a regular grammar.

8.5 Regular expressions

Task: Understand another equivalent way of characterizing regular languages due to Kleene in the 1950's.

Definition: Let A be an alphabet.

- 1. \emptyset , ϵ , and all elements of A are regular expressions;
- 2. If w and w' are regular expressions, then $w \circ w'$, $w \cup w'$, and w^* are regular expressions.

Remark: This definition is an inductive one.

NB It is important not to confuse the regular expressions \emptyset and ϵ . The expression ϵ represents the language consisting of a single string, namely ϵ , the empty string, whereas \emptyset represents the language that does not contain any strings. Recall that a language L is any subset of

$$A^* = \bigcup_{n=0}^{\infty} A^n = A^0 \cup A^1 \cup A^2 \cup \cdots,$$

where $A^0 = {\epsilon}$, the set of words of length 0, $A^1 =$ the set of words of length 1, and $A^2 =$ the set of words of length 2.

Precedence order of operations if parentheses are not present:

First *, then \circ (concatenation), then \cup (union).

Examples: (1) $A = \{0, 1\}$

$$1^* \circ 0 = \{ w \in A^* \mid w = 1^m 0 \text{ for } m \in \mathbb{N}, m \ge 0 \} = \{ 0, 10, 110, 1110, \dots \} = 1^* 0.$$

We can omit the concatenation symbol.

(2)
$$A = \{0, 1\}$$

(3) $A = \{0, 1\}$

 $(3') (A^* \circ A^*)^* = A.$

(5) $\epsilon^* = \{\epsilon\}.$

 $L^n = L \circ L^{n-1}$. Here $L = \{00, 01, 10, 11\}$.

(4) $A = \{0, 1\}$ $(0 \cup \epsilon) \circ (1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$

Recall that $L^* = \bigcup_{n=0}^{\infty} L^n$, where $L^0 = {\epsilon}$, $L^1 = L$, and inductively

(6) $\emptyset^* = {\epsilon}$. The star operation concatenates any number of words from the language. If the language is empty, then the star operation can only put together 0 words, which yields only the empty word.

 $(A \circ A)^* = \{ w \in A^* \mid w \text{ is a word of even length} \}.$

 $= \{u \circ 1 \circ v \mid u, v \in A^*\} = A^* 1 A^*$

 $A^* \circ 1 \circ A^* = \{ w \in A^* \mid w \text{ contains at least one } 1 \}$