Network: Internet Application

Jae Hyeon Kim

Reference

William Stalling, Data and Computer Communications 10/E, Prentice Hall

Email, DNS, and HTTP

- Electronic mail
 - a facility that allows users at workstations and terminals to compose and exchange messages
- Internet mail architecture (RFC 5598) consists of
 - a user world, in the form of Message User Agents (MUA)
 - the transfer world, in the form of the Message Handling Service (MHS), which is composed of Message Transfer Agents (MTA)
- Domain Name Server (DNS): RFC 1034,1035
 - a directory lookup service that provides a mapping between the name of a host on the Internet and its numerical address

Internet Mail Architecture

Internet Mail Standards

- Post Office Protocol (POP3): RFC 1939
 - allows an e-mail client to download an e-mail from a server
- Internet Mail Access Protocol (IMAP): RFC 3501
 - provides stronger authentication than POP3 and provides other functions not supported by POP3, so synchronized replication
- Simple Mail Transfer Protocol (SMTP): RFC 821
 - protocol used for transfer of mail from a user agent to an MTA and from one MTA to another
- Multipurpose Internet Mail Extensions (MIME)
 - supplements SMTP and allows the encapsulation of multimedia messages inside of a standard SMTP message

- SMTP

- Aims to transfer mail between hosts in the TCP/IP suite
- Not concerned with the format or content of messages themselves, but with exceptions as
 - it standardizes the message character set as 7-bit ASCII
 - it adds log information to the start of the delivered message that indicates the path the message took
- SMTP adapts RFC 822, which defines a format for text messages that are sent using electronic mail
 - an envelope : contains whatever information is needed to accomplish transmission and delivery
 - contents : comprise the object to be delivered to the recipient

SMTP Mail Flow

Limitations of SMTP/822

• SMTP/822

- cannot transmit executable files or binary objects
- cannot transmit text data that includes national language characters
- may reject mail messages over a certain size
- some implementations do not adhere completely to the SMTP standards defined in RFC 821
- SMTP gateways that translate between ASCII and EBCDIC do not use a consistent set of mappings, resulting in translation problems

MIME (1)

- Extension to the RFC 822 framework that
 - is intended to address some of the problems and limitations of the use of SMTP and RFC 822 for electronic mail
- Includes the following elements:
 - five new message header fields are defined, which may be included in an RFC 822 header
 - a number of content formats are defined, thus standardizing representations that support multimedia electronic mail
 - transfer encodings are defined that enable the conversion of any content format into a form that is protected from the mail system

MIME (2)

- MIME header fields
 - MIME-version
 - content-type
 - content-transfer-encoding
 - content-ID
 - content-description

Content-transfer-encoding

7bit₽	The data are all represented by short lines of ASCII characters.
8bit₽	The lines are short, but there may be non-ASCII characters (octets with the high-order bit set).
binary₽	Not only may non-ASCII characters be present but the lines are not necessarily short enough for SMTP transport.
quoted-printable <i>∘</i>	Encodes the data in such a way that if the data being encoded are mostly ASCII text, the encoded form of the data remains largely recognizable by humans.
base64	Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of which are printable ASCII characters.
x-token₽	A named nonstandard encoding.₽

Internet Directory Service (DNS)

- A directory lookup service that provides a mapping between the name of a host and its numerical address
 - essential to the functioning of the Internet
 - defined in RFCs 1034 and 1035
- Four elements comprise the DNS:
 - domain name space
 - DNS database
 - name servers
 - resolvers

Domain

- Refers to a group of hosts that are under the administrative control of a single entity
 - organized hierarchically, so that a given domain may consist of a number of subordinate domains
 - names are assigned and reflect the hierarchical organization

DNS Name Resolution

– HTTP

- Transaction-oriented client/server protocol
 - most typical use is between a Web browser and a Web server
 - makes use of TCP to provide reliability

Proxy

- It is a kind of forwarding agent
 - · receiving a request for a URL object, modifying the request, and
 - forwarding the request toward the server identified in the URL
- Acts as a server in interacting with a client and as a client in interacting with a server
- Scenarios that call for the use of a proxy:
 - security intermediary (such as a firewall)
 - different versions of HTTP (the proxy can implement both versions and perform the required mapping)

Intermediate HTTP Systems

Internet Multimedia Support

- Requirements for real-time communication
 - low jitter
 - low latency
 - ability to easily integrate non-real-time and real-time services
 - adaptable to dynamically changing network and traffic conditions
 - high effective capacity utilization
 - good performance for large networks & large numbers of connections
 - modest buffer requirements within the network
 - low overhead in header bits per packet
 - low processing overhead per packet within the network and at the end system

Real-time Traffic

Hard vs Soft Real-time Applications

- Hard RT (Real Time)
 - have zero loss tolerance
 - a deterministic upper bound on jitter and high reliability takes precedence over network utilization considerations
- Soft RT
 - can tolerate the loss of some portion of the communicated data
 - impose fewer requirements on the network. So permissible to focus on maximizing network utilization, even at the cost of some lost or misordered packets

Voice over IP (VoIP)

- The transmission of speech across IP-based network
- Has two main advantages over traditional telephony
 - cheaper to operate than an equivalent PSTN system
 - readily integrates with other services, such as WWW access with telephone features through a single PC

VoIP signaling

- before voice can be transferred using VoIP a call must be placed
- the calling user supplies the phone # of a URI which then triggers a set of protocol interactions resulting in the placement of the call
- the heart of these is the Session Initiation Protocol (SIP)

VolP Processing

Real-time Transport Protocol (RTP)

- Best suited to soft real-time communication
 - lacks the necessary mechanisms to support hard real-time traffic
- RTP (RFC 3550) supports the transfer of real-time data among a number of participants in a session
 - a session is a logical association among two or more RTP entities that is maintained for the duration of the data transfer
 - it is defined by:
 - RTP port number
 - RTCP port number
 - Participant IP addresses

RTP Architecture

- Two protocols that make up RTP are:
 - RTP : data transfer protocol
 - RTCP : control protocol
- Protocol architecture

