复旦大学计算机科学技术学院

《代数结构与数理逻辑》期末考试试卷

月

					A 卷	共	8页			20	14年6
课程代码: COMP130005 考试形式: 闭卷 (本试卷答卷时间为 120 分钟,答案必须写在试卷上,做在草稿纸上无效)											
专业_			_学号_			_姓名		成	绩		
题号	1		111	四	五.	六	七	八	九	+	总分
得分											

- 一、判断下列结论是否正确。若正确,请予以证明;若错误,请举出反例。(每题 5 分,其 中判断正误1分,证明或反例4分,共25分)。
- 1. R 是格,若非空集合 $S \subseteq R$,S 关于 R 中的偏序关系构成格,则 S 是 R 的子格。

2. 任意分配格 L 满足: (a∧b) V (b∧c) V (c∧a) = (a V b) ∧ (b V c) ∧ (c V a), a、b、c ∈ L \circ

3. 用 P 表示"老师在",用 Q 表示"我们在学习",用 R 表示"我们是好学生",那么命题"只有若老师不在我们也在学习,我们才是好学生"的符号化形式为 $(\neg P \to Q) \to R$ 。

4. 设A \subseteq P(X), q \in P(X), 若 A 语义蕴含 q,那么存在赋值 v,使得 $\{v(p)|p\in A\}\cap\{0\}\neq\emptyset$ 并且 v(q)=1。

5. P(Y)是谓词代数,项 $t=f_2^1(y,z)$,那么由 $\forall x(R_2^1(x,y) \rightarrow \forall z R_2^2(z,x))$ 可以导出 $R_2^1(t,y) \rightarrow \forall z R_2^2(z,t)$ 。

_,	L 是 12 的正整	೬数因子,	偏序关系是整除 ,	[L;]构成格。	画出[L;]的哈斯图,	并说明是
	否是有界格、	有补格、	分配格。(5分)				

三、设存在从格 P 到格 Q 的双射 f, 当 f 是同构映射时,证明 f 的逆映射保序。(10 分)

四、已知合成公式 $(\neg x_1 \leftrightarrow x_2 \land x_3) \rightarrow (x_2 \rightarrow \neg x_1 \lor x_3)$,列出真值表,并求出标准析取范式和标准合取范式。(5 分)

- 五、P(X)是命题代数, P(Y)是谓词代数, 证明:
 - (1) $p, q \in P(X), \{\neg p\} \vdash p \rightarrow q$
 - (2) p、q \in P(Y), A \subseteq P(Y), (A \cup p(x)) \rightarrow q \vdash (\exists xp(x) \cup A) \rightarrow q, 其中 x 不在 A 和 q 中出现。(8 分)

六、 已知谓词公式(¬x∃ $R_2^1(x,y)$ \lor $\forall z R_1^1(z)) \to (R_1^2(y) \lor \exists x R_2^2(x,z))$ (8分)

- (1) 指出自由变量和约束变量,并指明量词的辖域。
- (2) 说明项 $f_2^1(x,z)$ 对哪个(些)自由变量是自由的,对哪个(些)自由变量是不自由的。
- (3) 求量词深度和层次。
- (4) 变换成前束范式。

七、证明: (1) $\models \exists x (P(x) \rightarrow \forall x P(x))$ (2) $\{\forall x (\alpha \rightarrow \beta), \forall x \alpha\} \models \forall x \beta$ 。(8分)

八、	证明:	∀xp是普遍有效的,	当且仅当公式 p	是普遍有效的。	利用该结论证明谓词逻辑
	的可靠	性定理。(10分)			

九、 设 v_1 是公式 $G(v_1)$ 中唯一的自由变元,并且 d 是论域 $\mathfrak P$ 中的元素。用符号 $\mathfrak P \vDash G[d]$ 表示对所有赋值函数 $\mathfrak s$, $(\mathfrak P, s_d^{v_1}) \vDash G(v_1)$ 。证明: $\mathfrak P \vDash \forall v_2 \mathfrak R v_1 v_2 [c^{\mathfrak P}] \ \text{当且仅当} \ \mathfrak P \vDash \forall v_2 \mathcal R c v_2$

其中 R是一个二元谓词符号并且 c 是常数。(12 分)

十、设 X 为可列集,给定类型 T = $\{\rightarrow,\neg\}$,构造 X 上的自由 T-代数 P(X),构造关于 P(X)的满足可靠性和完备性的命题演算逻辑,并对其可靠性和完备性进行证明。(14 分)