Билеты по алгебре II семестр

Тамарин Вячеслав

21 мая $2020\ \mbox{г}.$

Оглавление

Вопрос 1	Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$.
	Понятие циклической группы.
i	Подгруппа, порожденная множеством
ii	Примеры образующих в D_n и $\mathrm{GL}_n(K)$

Вопрос 1 Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$. Понятие циклической группы.

Подгруппа, порожденная множеством

Определение 1: Подгруппа, прожденная множеством

G — группа, $X \subset G$. Наименьшая группа $H \leqslant G$, содержащая X называется подгруппой, порожденной X.

Обозначение. $\langle X \rangle$.

Замечание. Эта группа всегда существует и совпадает с $\bigcap_{X\subset L\leq G}L=\langle X\rangle$

Утверждение (Явное описание порожденной подгруппы).

$$\langle X \rangle = \{ x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n} \mid x_i \in X, \ \varepsilon_i = \pm 1 \}.$$

Для n=1 считаем, что такое произведение равно нейтральному элементу.

Доказательство.

- Любой элемент $x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n}$ должен принадлежать подгруппе, порожденной X, из чего следует это включение.
- 3аметим, что заданное множество подгруппа G: произведение двух элементов и обратный элемент имеют такой же вид, нейтральный — случай с n=0. Поэтому это множество — подгруппа G, содержащая X. Так как $\langle X \rangle$ — минимальная группа с этим свойством, получаем нужное включение.

Определение 2: Группа, порожденная множеством

Группа G называется порожденной множеством X, если $\langle X \rangle = G$. Если X конечно, имеет место обозначение $G = \langle x_1, \ldots, x_n \rangle$. Все x_i называются образующими G. Если для группы G существует такой конечный набор, она называется конечно порожденной.

Определение 3: Циклическая подгруппа

G — группа, $g \in G$. Подгруппа вида $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ называется циклической подгруппой, порожденной g.

Определение 4: Циклическая группа

Группа G называется циклической, если она порождена одним элементом, то есть $\exists g \in G \colon G = \langle g \rangle$.

Примеры образующих в D_n и $\mathrm{GL}_n(K)$

Образующие D_n Заметим, что одним элементом эта группа порождена быть не может, так как она не абелева. **Утверждение.** Поворот f_{φ} на угол $\varphi=\frac{2\pi}{n}$ и симметрия f_l относительно одной из разрешенных прямых. Тогда $\langle f_{\varphi}, f_{l} \rangle = D_{n}$

 \mathcal{A} оказательство. Любой поворот на $\frac{2\pi k}{n}$ можно получить повтором f_{φ}^k . Докажем, что

$$\left|\left\{f_l^{\varepsilon}f_{\varphi}^k \mid \varepsilon \in \{0,1\}, \ k \in \{0,\dots,n-1\}\right\}\right| = 2n.$$

Пусть $f_l^{\varepsilon_1} f_{\varphi}^{k_1} = f_l^{\varepsilon_2} f_{\varphi}^{k_2}$. Тогда $f_l^{\varepsilon_1-\varepsilon_2} f_{\varphi}^{k_1-k_2} = \mathrm{id}$. Если $\varepsilon_1 = \varepsilon_2$, $f_{\varphi}^{k_1-k_2} = \mathrm{id} \Longrightarrow k_1 = k_2$. Иначе $f_l^{\varepsilon} = f_{\varphi}^k$, но поворот не может быть равен симметрии, так как при симметрии на месте остается только прямая, а при повороте либо одна точка, либо все пространство.

Образующие $GL_n(K)$ Здесь образующими будут матрицы элементарных преобразований: транспозиций (которые можно выразить через оставшиеся), псевдоотражения (домножение на число) и трансвекции (прибавление одной строки к другой, умноженной на число).