$G = \text{connective reductive group }/F = \# \text{ fol }, \ Z_{a0} = \{u \in \Sigma : v \mid \infty\}$

Recall: $L^{2}(G(F) \setminus G(A_{F})) = admissible (q_{1}k) \times G(A_{F}^{0}) - module$

(Harish-Chandra)

Def. An automorphic representation of $G(A_F)$ is an admissible $(g_1k) \times G(A_F^{op})$ - module isomorphic to a subquotient of $L^2_{\psi}(G(F) \setminus G(A_F))$.

Goals. (1) Admissible G(Apo) - modules & alternative definition.

- (2) Flath's factorization theorem IT = The X & TV.
- 13) Multiplicity.

(1) Heche algebra definition of aut veps.

Assume $G = \text{affine gp scheme of f.t.}/6F s.t. GF is a reductive gp. E.g. <math>GL_{n_1 \ge ---} \longrightarrow GL_{n_1 \ge ---} GL_{n_2 \ge ---}$

(1.1) Non-archimedean Heche olgebras.

 $A_F^{\infty} = \text{finite addles}: A_F^{S} = \prod_{v \in S} F_v$, $F_S = \prod_{v \in S} F_v$, $S \subseteq \text{non-arch. places}$

Def. $C_c^{\infty}(G(A_F^2)) = \{loc. constant dem. on <math>G(A_F^2)\}$ $C_c^{\infty}(G(F_S)) = \{loc. constant dem. on <math>G(F_S)\} = : H_S$ $H^{\infty} := C_c^{\infty}(G(A_F^{\infty}))$ w/consolution $f * h(g) = \int f(x)h(x^{-1}g) dx$ Heche algebra away from ∞ $G(A_F)$

Note: $C_c^{\infty}(G(A_F^{\infty})) = \lim_{S \subseteq \{N \neq P | places\}} C_c^{\infty}(G(F_S)) \otimes \otimes 1_{G(G_V)}$

"restricted tensor product"

Def. $(\pi, V) = \text{vep. of } H^{\infty} \text{ is } \underline{\text{adenissible}} \text{ if non-degenerate and}$ $\forall \, \mathsf{K}^{\infty} \leqslant \mathsf{G}(A_{\mathsf{F}}^{\infty}) \text{ cpet apon }, \, \, \mathsf{V}^{\mathsf{K}^{\infty}} := \pi(1_{\mathsf{K}^{\infty}}) \, \mathsf{V} \text{ is finite-dim'l}$

] smooth"

M = A - module non-degenerate if $\forall m \in M$ $m = a_1 m_1 + \dots + a_k m_k$ (e.g. if $1 \in A$, then $m = 1 \cdot m$, but $1 \notin H^{\infty}$).

New Lemma. G = locally cpct disconnected $gp (G = G(F_V), V + \infty)$ $\begin{cases} smooth reps \\ of f \end{cases} \longleftrightarrow \begin{cases} non-degenerate \\ C_e^{\infty}(G)-modules \end{cases}$ $(\pi, V) \longleftrightarrow \pi(f)(V) := \mu(K) \cdot \sum_{i=1}^{n} c_i \pi(g_i) \cdot V$ $\exists K s.t. V \notin V^k \& f = \sum c_i \mathbf{1}_{fik}$

Def. $(\pi, V) = \text{rep. of } G(A_F^{00})$ is <u>admissible</u> if the associated H^{00} -rep. is admissible.

(1.2) Archinedeau Hecke algebra.

 $G := (R_{F/R}G_F)_R$ real red. alg. g_P/R $\longrightarrow K_{\infty} \leq G(R)$ max |L| cpct

Def. Healer algebra at ∞ : Has := H(B(R), Ko) convolution alg. of distributions on B(R) supported on Kos.

- $\sigma: K_{00} \longrightarrow Act(V)$ rep. of dim $d(\sigma) < \infty$, $K_{00} = char.$, dK_{00} Hear weas are \longrightarrow fundamental idempotent $1_{00} = \frac{1}{d(\sigma)} dK_{00}(K_{00}) \times_{00} dK_{00} \in H_{00}$
- A cts nep. π of G(R) on Hilbert space V is <u>admissible</u> if \forall invep. τ of K_0 , $\pi(1_{\sigma})$ V is finite-dimensional.

(Equivalent to James)s definition.)

(1.3) Global Heche algebra. $H := H_{00} \otimes H^{\infty}$ A rep. $(\pi_1 V)$ of H decomp. as $(\pi_{00}, V_{00}) \boxtimes (\pi^{\infty} \otimes V^{\infty})$ H_{00} -rep. H^{∞} -rep. $(\pi_1 V)$ admissible if both $(\pi_{00}, V_{00}) \& (\pi^{\infty}, V^{\infty})$ admissible

The space $L^2(G(F) \backslash G(A_F))$ has a natural H-action: $(f * \Phi)(g) = \int \Phi(gh) f(h) dh$ for $f \in H$, $\Phi \in L^2$.

(assume 26 is anisotropic).

Def. An automorphic rep. of G(AF) is an adm. rep. of H which is isom. to subquotient of L2(G(F)/G(AF)).

(Equivalent definition.)

(2) Flath's Factorization Theorem.

Goal. $\pi = \text{aut} \cdot \text{vep. of } G(A_F) \Longrightarrow$ $\pi = \pi_{00} \otimes \pi^{00} \text{ and } \pi^{00} \cong \bigotimes^{1} \pi_{V}, \quad \pi_{V} = \text{ineq. of } G(F_{V}).$

Definitions:

· Restricted direct product of vector spaces:

I = contable index set 2 Io finite subset

~> {Wv: vEI} (- vector spaces & YvEIIIo, Pv EWv \ loz fixed vector.

Note: $Hom(W,W) = \{ (f_v : W \rightarrow W_v)_{v \in I} : f_v(\phi_v) = \phi_v \text{ for } \alpha.\alpha.v \in I \}$

· Restricted direct product of algebras:

Examples. (1) I = N, $A_i := \mathbb{C}[X_i] \ni \alpha_0 := 1$ $\Longrightarrow \bigotimes_{i=1}^{k} \mathbb{C}[X_i] = \mathbb{C}[X_1, X_2, ...]$

(2) $T = Z \setminus \Sigma_{\infty} \longrightarrow C_{c}^{\infty}(G(A_{F}^{\infty})) \cong \otimes^{1}C_{c}^{\infty}(G(F_{V})) \text{ w.r.t. } e_{K_{V}} = \frac{1}{\text{vol}(K_{V})} 1_{K_{V}}$ i.e. $H^{\infty} \cong \bigotimes^{1} H_{V} \qquad K_{V} \subseteq G(F_{V}) \text{ hyperspecial subgroup}$

Further, for $I = \Sigma \longrightarrow H \cong \otimes^1 H_V$.

• Actions. If $W_V = A_V - module \ \forall V \in I \ \& \ e_V \phi_V = \phi_V \ \text{for } a. \alpha. V \in I$ $\Rightarrow W := \bigotimes_{V}^{I} W_V \text{ is an } A := \bigotimes_{V}^{I} A_V - module.$

Note: As an A-module, the isan. class on W does not change under $\Phi_V \mapsto \lambda_V \Phi_V$.

Def. Let $A = \otimes_{V}^{1} A_{V}$. An A-module W is <u>factorizable</u> if $W \cong \otimes_{V}^{1} W_{V}$.

We consider $I:=\mathbb{Z}\setminus\mathbb{Z}_{\infty}$ $A:=\mathcal{H}^{\infty}\cong \bigotimes_{v}^{1}\mathcal{H}_{v}.$

Suppose for a.a. v, dim $W_v^{kv} = 1$ & choose $\phi_v \in W_v^{kv}$ "spherical vector" & note that $e_{k_v} \phi_v = \phi_v$.

Note: & Wy as an H- module well-defined up to issur. b/c dim W/=1.

Thus (Flach). W= adm. ined. Hoo-rop. => W is factorizable

Step1. "Weale version"

Thun 1. G, G2, G:= G, xG2

- (1) $V_i = adm irrep. of G_i \Rightarrow V_1 \boxtimes V_2 = adm. irrep. of G$
- (2) V = adm. inep of $G \implies \exists V_i \text{ adm. inep. of } G_i \text{ s.t. } V \cong V_1 \boxtimes V_2$ & isom. class of V_i is det. by V.

Af. (1) We use:

Ineducibility criterion: $V = \text{smooth } G - \text{nep. ined.} \iff V^k = \text{ired. } C_C^{\infty}(G/K) - \text{module}$ $\forall K \leq G \text{ open } \text{cpct}$

$$\forall \ \mathsf{K}_1 \times \mathsf{K}_2 \leqslant \mathsf{G}_1 \times \mathsf{G}_2 \text{ open upot},$$

$$\bigvee_{1}^{\mathsf{M}_1} \, \mathsf{gV}_2^{\mathsf{M}_2} = \mathsf{inved}. \ C_{\mathsf{C}}^{\mathsf{oo}}(\mathsf{G}_1 /\!/\!\!\!/ \mathsf{K}_1) \times C_{\mathsf{C}}^{\mathsf{oo}}(\mathsf{G}_2 /\!\!/ \mathsf{K}_2) - \mathsf{module}$$

$$\cong (\mathsf{V}_1 \, \mathsf{gV}_2)^{\mathsf{K}_1 \times \mathsf{K}_2} \qquad \cong C_{\mathsf{c}}^{\mathsf{oo}}(\mathsf{G}_1 \times \mathsf{G}_2 /\!\!/ \mathsf{K}_1 \times \mathsf{K}_2)$$

=> V, XVz admissible & irreducible.

~> din Wk < 0 => 3 W; (ki) = Cc (6://ki) - wedules s.t.

 $W^k \stackrel{\cong}{\longrightarrow} W_1(k_1) \boxtimes W_2(k_2)$ as $C_c^{\infty}(G//k)$ -mod.

Set:
$$W_1 := \lim_{k_1} W_1(k_1)$$
, $W_2 := \lim_{k_2} W_2(k_2)$.

Step 2. Theory of Gelland pairs implies ...

If $W^S = i \text{ ined. adm. } G(A_F^S) - \text{rep.}$, then dim $W^{kS} = 1$.

Def. $H \subseteq G$ closed subgrapes (G,H) Gelfand pair if $\forall V$ adm. intep. of G dim_H(V_iC). dim_H(V_iC) $\leqslant 1$.

Examples. • $(G \times G, G)$ Gelland pair \iff Solur's lamma for G• (G, K), K open cpct, Gelland pair \iff $C_c^{\infty}(G/\!\!/K)$ commutative.

True for $k_V \leq G(F_V)$ hyperspecial.

Assure this & prove Flady's decomposition theorem.

W= ived. adm. rep. V of Co (G(Af)) is lactorizable, i.e.

 $C_c^{\infty}(G(A_F^{\infty})) \cong \bigotimes_{v}^{1} C_c^{\infty}(G(F_{v})) \iff W \cong \bigotimes_{v}^{1} W_{v} \quad \text{w.r.t.} \, d_{v} \in V_{v}^{(k_{v})}, \, dim W^{(k_{v})} = 1.$

Let $A_S := C_c^{\infty}(G(F_S^{\infty})) \otimes e_{K^S} \leq G_c^{\infty}(G(A_F^{\infty}))$ Subalgebra

$$\Rightarrow$$
 $W^{kS} = A_S - nep.$ and

- Thun | ⇒ WKS ≅ Ø WV Ø WS
- · Then 2 => dim WS = 1

By admissibility: $W = \underset{S}{\text{lin}} W^{K^S} \cong \underset{S}{\text{lin}} \otimes W_V \otimes W^S$

$$C_c^{\infty}(G(A_F^{\infty})) \cong \lim_{s \to \infty} A_S$$

=> abore ison. is equivariount.

(3) Awtemosphic multiplicity. Take $\pi_{V} = G(F_{V}) - vep \forall V \longrightarrow \pi := \otimes^{1}\pi_{V}$. When is this Def. $\forall \in L^2(G(F)\backslash G(A))$ <u>cuspidal</u> if $\forall P = MN$ parabolic $\int \varphi(nq) dn = 0.$ \sim L²cusp(G(F)\6(A)) uspidal subspace.

rep. ant.? Hour mary into 12-space!

<u>Def.</u> Suppose $\pi = admissible imp. of <math>G(As)$.

- The unltiplicity of π is $w(\pi) := \dim \operatorname{Hom}(\pi, L^2_{\text{cusp}}(G(F) \backslash G(A)).$
- π equivalent to π' (π~π') if π'≅ π as G(A)-neps => [π]_n := {π' n : π' automorphic q equivalence class $\& \ \mathsf{w}(\mathsf{T}) = \# [\mathsf{T}]_{\sim}.$
- IT rearly equivalent to π' (π×π') if π' ≥ π, for a.a. ∨ $\Rightarrow [\pi']_{\mathcal{S}} := \{\pi' \otimes \pi : \pi' \text{ outcomorphic } \} \text{ near-equiv. class}.$

Thun. (Piatetsli-Shapiro). G=Gln, T=aut. rep. of Gln(AP)

- Multiplicity one: $n(\pi) = | i.e. [\pi]_{N} = \{\pi\}$
- · Strong unt. one: [+] = { IT }.

Note: modular form dot d by ap for a.a.p.

Failure of strong well. one for $G = 6Sp_4$ (Howe-Riatelshi-Shapira).

Goal of global Laughends program. Classify out reps of G(A) in terms of parameters $\Psi: G_{\mathbb{Q}} \to {}^{L}G$.

Arthur multiplicity founds:

conjectural description of near-equivalence dosses (of anitory reps) of automorphic reps & their untiplicities in out spectrum, including non-tempered representations.