DCID: Deep Canonical Information Decomposition - Supplementary Material

First Author $^{1[0000-1111-2222-3333]},$ Second Author $^{2,3[1111-2222-3333-4444]},$ and Third Author $^{3[2222-3333-4444-5555]}$

- ¹ ABC Institute, Rupert-Karls-University Heidelberg, Heidelberg, Germany {abc,lncs}@uni-heidelberg.de
- ² ABC Institute, Rupert-Karls-University Heidelberg, Heidelberg, Germany {abc,lncs}@uni-heidelberg.de
- ³ ABC Institute, Rupert-Karls-University Heidelberg, Heidelberg, Germany {abc,lncs}@uni-heidelberg.de

1 Synthetic Experiments - Additional Plots

Fig. 1. Performance of the DCID model plotted wrt. different values of the threshold hyperparamter T.

2 Brain MRI Experiments - Results for $Y_1 = weight$, body mass index (BMI)

Table 1. Pearson correlation coefficients between volumes of Regions of Interest (ROIs) in brain MRI scans (columns) and two variables - Y_1 , being the measurements of weight (first row), and a surrogate variable $\psi_1(Z)$, isolating the signal of the shared variables Z contributing to Y_1 . Standard deviation of the coefficients over 3 model training runs over different subsets of data is reported in the parentheses.

Variable	Brain Stem	CSF	Gray Matter	Hippocampus	Ventricles
Y_1	$-0.17 (\pm 0.00)$	$0.14 (\pm 0.01)$	$-0.15 (\pm 0.01)$	$-0.14 (\pm 0.00)$	$0.14 (\pm 0.01)$
$\psi_1(Z)$	$-0.27 \ (\pm 0.00)$	$0.30 \ (\pm 0.03)$	$-0.24 \ (\pm 0.04)$	$-0.26 \ (\pm 0.07)$	$0.27 (\pm 0.09)$

Table 2. Pearson correlation coefficients between volumes of Regions of Interest (ROIs) in brain MRI scans (columns) and two variables - Y_1 , being the measurements of body mass index (BMI) (first row), and a surrogate variable $\psi_1(Z)$, isolating the signal of the shared variables Z contributing to Y_1 . Standard deviation of the coefficients over 3 model training runs over different subsets of data is reported in the parentheses.

Variable	Brain Stem	CSF	Gray Matter	Hippocampus	Ventricles
Y_1	$-0.10 \ (\pm 0.00)$	$0.09 (\pm 0.00)$	$-0.05 (\pm 0.00)$	$-0.05 \ (\pm 0.00)$	$0.06 \ (\pm 0.00)$
$\psi_1(Z)$	$-0.22 \ (\pm 0.05)$	$0.21 \ (\pm 0.02)$	$-0.19 \ (\pm 0.07)$	$-0.18 \ (\pm 0.02)$	$ 0.23\ (\pm0.05) $

Fig. 2. Ratio of total variance explained by the surrogate variable $\psi_1(\mathbf{Z})$ in different brain Regions of Interest (ROIs) (blue bars) and in body weight (yellow bars).

Fig. 3. Ratio of total variance explained by the surrogate variable $\psi_1(\mathbf{Z})$ in different brain Regions of Interest (ROIs) (blue bars) and in BMI (yellow bars).