ДАТЧИКИ ВЕСОИЗМЕРИТЕЛЬНЫЕ ТЕНЗОРЕЗИСТОРНЫЕ

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Издание официальное

Предисловие

1 РАЗРАБОТАН ТОО «МАКС» и Межгосударственным техническим комитетом по стандартизации МТК 310 «Приборы весоизмерительные»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Республика Белоруссия	Госстандарт Белоруссии Госстандарт Республики Казахстан	
Республика Казахстан Киргизская Республика	Киргизстандарт	
Республика Молдова Российская Федерация	Молдовастандарт Госстандарт России	
Республика Таджикистан Туркменистан	Таджикгосстандарт Главная государственная инспекция Туркменистана	
Украина	Госстандарт Украины	

³ Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 26 июня 1997 г. № 231 межгосударственный стандарт ГОСТ 30129—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1998 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 1997

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

	Область применения
2	Нормативные ссылки
	Определения и обозначения
4	Классификация, основные параметры
5	Общие технические требования
6	Требования безопасности

к ГОСТ 30129—96 Датчики весоизмерительные тензорезисторные. Общие технические требования

В каком месте	Напечатано	Должно быть
Раздел 1. Третий	_	Основные положе-
абзац		ния стандарта соот- ветствуют рекоменда- ции Международной организации законо- дательной метрологии
		(MO3M) MP 60.
Пункт 4.3. Пер-	по входу при первичной по-	по входу в зависи-
вый абзац	верке или калибровке в зави-	мости от его класса
	симости от его класса	
второй абзац	Пределы допускаемой погрешности датчика по входу при его автономной поверке или калибровке в эксплуатации должны соответствовать удвоенным значениям согласно таблице 1.	_

(ИУС № 10 2002 г.)

ЛАТЧИКИ ВЕСОИЗМЕРИТЕЛЬНЫЕ ТЕНЗОРЕЗИСТОРНЫЕ

Общие технические требования

Scale load cells. General technical requirements

Дата введения 1998—07—01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на весоизмерительные датчики с проволочными или фольговыми тензорезисторами на клеевой и бесклеевой основе (далее — датчики), предназначенные для использования в весах, весовых дозаторах и других весовых устройствах.

Требования, установленные в настоящем стандарте, являются обязательными.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.2.007.0—75 ССБТ. Изделия электротехнические. Общие требования безопасности

ГОСТ 12997—84 Изделия ГСП. Общие технические условия

FOCT 15150-69 (CT C9B 458-77, CT C9B 460-77, CT C9B 991-78, CT C9B 6136-87) Maшины, приборы и другие технические изделия. Исполнения для различных климатических районов Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 18953—73 (СТ СЭВ 4341—83) Источники питания электрические. ГСП. Общие технические условия

3 ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ

3.1 Значение выходного сигнала датчика U, приведенное ко входу, — значение массы D, определяемое по формуле

$$D = D_{\min} + \frac{D_{75} - D_{\min}}{U_{75} - U_{\min}} \cdot (U - U_{\min}), \tag{1}$$

где D_{\min} — наименьший предел измерения, кг;

D₇₅ — значение массы, соответствующее 75 % разности наибольшего предела измерения

 D_{max} и D_{min} , кг;

 $\overline{U_{75}-U_{\min}}$ — среднее значение разности выходных сигналов при D_{75} и D_{\min} по результатам трех последовательных циклов нагружения датчика до D_{\max} и разгружения до D_{\min} , мВ (при измерении напряжения выходного сигнала) или мВ/В (при измерении коэффициента передачи электрической цепи датчика);

 U_{\min} — выходной сигнал датчика при D_{\min} при том же нагружении (или разгружении), при

котором получен U, мВ или мВ/В.

ГОСТ 30129-96

3.2 Изменение значения выходного сигнала датчика ΔU при воздействии какой-либо влияющей величины или после него, приведенное ко входу, — значение массы ΔD , определяемое по формуле

$$\Delta D = \Delta U \cdot \frac{D_{75} - D_{\min}}{U_{75} - U_{\min}}.$$
 (2)

- 3.3 Погрешность датчика по входу разность между значениями выходного сигнала датчика, приведенными ко входу, и действительным значением массы, нагружающей датчик.
- 3.4 Поверочный интервал v значение массы, используемое при классификации датчиков и нормировании требований к ним.
 - 3.5 Число поверочных интервалов значение D_{max}/v .

4 КЛАССИФИКАЦИЯ, ОСНОВНЫЕ ПАРАМЕТРЫ

- 4.1 В зависимости от нормируемых значений метрологических характеристик датчики могут быть четырех классов точности: A, B, C, D.
- 4.2 Число поверочных интервалов датчиков в зависимости от класса точности должно составлять, единии:
 - от 50000 и более для датчиков класса точности А;
 - от 5000 до 100000 включ. » » » В;
 - от 500 до 10000 включ. » » » С;
 - от 100 до 1000 включ. » » » D
- 4.3 Пределы допускаемой погрешности датчика по входу при первичной поверке или калибровке в зависимости от его класса точности и диапазона измерения должны соответствовать указанным в таблице 1.

Таблица 1

Диапазоны измерения для датчиков классов точности				Пределы допускаемой
A	В	С	D	погрешности
От <i>D</i> _{min} до 50000 у включ.	От <i>D</i> _{min} до 5000 у включ.	От <i>D</i> _{min} до 500 <i>v</i> включ.	От <i>D</i> _{min} до 50 у включ.	±0,35 v
Св. 50000 v до 200000 v включ.	Св. 5000 v до 20000 v включ.	Св. 500 v до 2000 v включ.	Св. 50 v до 200 v включ.	±0,7 v
Св. 200000 ν	Св. 20000 v	Св. 2000 и	Св. 200 и	±1,05 v

Пределы допускаемой погрешности датчика по входу при его автономной поверке или калибровке в эксплуатации должны соответствовать удвоенным значениям согласно таблице 1.

Примечание — В эксплуатации, как правило, поверке или калибровке подлежат не датчики, а весы, весовые дозаторы или другие весовые устройства, включающие в себя эти датчики.

- 4.4 Условное обозначение датчика должно включать в себя:
- класс точности А, В, С или D;
- число поверочных интервалов в тысячах единиц;
- направление измеряемой силы растяжение (обозначается \uparrow), сжатие (обозначается \uparrow), сдвиг (обозначается \uparrow), изгиб (обозначается \downarrow), универсальное (обозначается \uparrow);
- границы диапазона рабочих температур в градусах Цельсия (обозначаются в виде дроби, числитель и знаменатель которой соответствуют значениям нижней и верхней границ).

Если датчик в зависимости от направления измеряемой силы — универсальный или одновременно предназначенный для сдвига и изгиба — может быть разных классов точности и (или) имеет различное число поверочных интервалов, соответствующие данные приводят в виде столбца со знаком "{".

Примеры записи условных обозначений:

- датчика класса точности D, имеющего 500 поверочных интервалов, работающего на изгиб, с границами диапазона рабочих температур минус 10 и плюс 50 °C:

D $0.5 \downarrow -10/50$;

- датчика универсального, при сжатии относящегося к классу точности С, имеющего 1000 поверочных интервалов, с границами диапазона рабочих температур плюс 5 и плюс 40 °C, а при растяжении относящегося к классу точности С, имеющего 2000 поверочных интервалов, с границами диапазона рабочих температур плюс 5 и плюс 50 °C:

$$\begin{cases}
C1 \uparrow 5/40 \\
C2 \uparrow 5/50
\end{cases}$$

4.5 Значения наибольшего и наименьшего пределов измерения должны быть установлены в технических условиях на датчики конкретного типа.

5 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 5.1 Датчики изготовляют в соответствии с требованиями настоящего стандарта и технических условий на датчики конкретного типа по рабочим чертежам, утвержденным в установленном порядке.
- 5.2 Размах значений выходного сигнала (разность между наибольшим и наименьшим значениями выходного сигнала датчика, приведенными ко входу, соответствующими одной и той же нагрузке, дифференцированно для повторных нагружений или повторных разгружений) не должен превышать абсолютного значения пределов допускаемой погрешности по 4.3 при пяти повторных измерениях для датчиков классов точности A, B и при трех повторных измерениях для датчиков классов точности C и D.
- 5.3 Изменения значения выходного сигнала датчика, приведенные ко входу, при постоянной нагрузке, составляющей 90—100 % наибольшего предела измерения, не должны превышать:
 - 0,7 значения пределов допускаемой погрешности по 4.3 в течение 30 мин;
- 0,15 значения пределов допускаемой погрешности по 4.3 за время между 20-й и 30-й минутами нагружения.
- 5.4 Изменения значения выходного сигнала датчика, приведенные ко входу, при нагрузке, соответствующей наименьшему пределу измерения, не должны превышать:
- $\pm 0.5~\nu$ после нагружения датчика в течение 30 мин постоянной нагрузкой, составляющей $90{-}100~\%$ наибольшего предела измерения;
- $\pm 0.7~\nu$ при изменении температуры окружающего воздуха на каждые 2 °C для датчиков класса точности A и на каждые 5 °C для датчиков классов точности B, C, D;
 - $\pm 1,0$ ν при изменении атмосферного давления на каждый 1 кПа.
- 5.5 По устойчивости и прочности к воздействию температуры и влажности окружающего воздуха, атмосферного давления, к механическим воздействиям, а также в части требований к изделиям в транспортной таре датчики должны соответствовать требованиям ГОСТ 12997 по группам (видам), указанным в технических условиях на датчики конкретного типа.
- 5.6 Пределы допускаемых значений напряжения питания должны соответствовать требованиям ГОСТ 18953.
 - 5.7 Требования надежности
- 5.7.1 Значения вероятности безотказной работы должны быть выбраны из ряда 0,99; 0,98; 0,97; 0,96; 0,94; 0,92; 0,90; 0,85 за время 1000 или 2000 ч и указаны в технических условиях на датчики конкретного типа.
 - 5.7.2 Критерии отказа нарушение требований 4.3; 5.2; 5.3; 5.4; 5.5; 5.6; 6.1.
- 5.7.3 Значения полного среднего срока службы должны быть выбраны из ряда 8; 10; 12; 15 лет и указаны в технических условиях на датчики конкретного типа.
 - 5.8 Маркировка
 - 5.8.1 На датчике должны быть нанесены следующие обозначения:
 - наименование или товарный знак предприятия-изготовителя;
 - обозначение типа;
 - условное обозначение датчика в соответствии с 4.4;
 - серийный номер датчика по системе нумерации предприятия-изготовителя;
 - год выпуска.
 - пределы измерений (наименьший и наибольший);
 - номинальное значение напряжения питания и род тока.
 - 5.9 Упаковка датчиков по ГОСТ 12997.

ГОСТ 30129-96

5.10 Транспортирование датчиков допускается всеми видами транспорта. Условия транспортирования должны соответствовать группе 7 ГОСТ 15150.

5.11 Условия хранения датчиков должны соответствовать группе 1 ГОСТ 15150.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1 Показатели безопасности должны соответствовать требованиям ГОСТ 12.2.007.0 и должны быть установлены в технических условиях на датчики конкретного типа.

УДК 621.3.084.2:681.267.74:006.354

MKC 17.100

П16

ОКП 42 7400

Ключевые слова: датчики весоизмерительные тензорезисторные; значение выходного сигнала датчика, приведенное ко входу; погрешность датчика по входу; поверочный интервал; класс точности

Редактор Л.В. Афанасенко Технический редактор Н.С. Гришанова Корректор Т.И. Кононенко Компьютерная верстка В.И. Грищенко

Изд. лиц. №021007 от 10.08.95. Сдано в набор 13.10.97. Подписано в печать 17.12.97. Усл. печ. л. 0,93. Уч.-изд. л. 0,57. Тираж 288 экз. С1077. Зак. 790.

к ГОСТ 30129—96 Датчики весоизмерительные тензорезисторные. Общие технические требования

Termin reemie Tpecobamini					
В каком месте	Напечатано	Должно быть			
Раздел 1. Третий	_	Основные положе-			
абзац		ния стандарта соот-			
		ветствуют рекоменда-			
		ции Международной			
		организации законо-			
		дательной метрологии			
		(MO3M) MP 60.			
Пункт 4.3. Пер-	по входу при первичной по-	по входу в зависи-			
вый абзац	верке или калибровке в зави-	мости от его класса			
	симости от его класса				
второй абзац	Пределы допускаемой по-	_			
	грешности датчика по входу				
	при его автономной поверке				
	или калибровке в эксплуата-				
	ции должны соответствовать				
	удвоенным значениям соглас-				
	но таблице 1.				