<u>Определение предела последовательности. Предел постоянной. Единственность предела.</u> Ограниченность сходящейся последовательности.

Определение 1:

Последовательностью вещественных чисел называется любая функция вида $f: \mathbb{N} \to \mathbb{R}$.

Если n∈ \mathbb{N} , то X_n =F(n).

Определение 2:

Число х $\in \mathbb{R}$ называется пределом последовательности $\{X_n\}$ $\in \mathbb{R}$, если

$$(\lim_{n\to\infty} \mathsf{X}_n \mathtt{=} \, \mathsf{X}) \stackrel{\scriptscriptstyle\mathrm{def}}{=} (\forall \; \mathsf{E}{>}0 \; \exists \; \mathsf{N}{=}\mathsf{N}(\mathsf{E}){\in}\mathbb{N}, \, \mathsf{yto} \; \forall \; \mathsf{n}{\in}\mathbb{N}, \, \mathsf{n}{\geqslant}\mathsf{N}{:} \, |\mathsf{X}_n - \mathsf{X}|{<}\, \mathsf{E}).$$

Последовательность, имеющая конечный предел, называется сходящейся, в противном случае – расходящейся.

Предел постоянной последовательности:

Если
$$\mathbf{X}_n$$
= $\mathbf{X} \in \mathbb{R}$ для больших n, то $\lim_{n \to \infty} \mathbf{X}_n$ = \mathbf{X}

Единственность предела:

$$(\lim_{n\to\infty} X_n = \mathsf{x}) \wedge (\lim_{n\to\infty} X_n = \mathsf{y}) => (\mathsf{x} = \mathsf{y})$$

Ограниченность сходящейся последовательности:

Последовательность $\{X_n\}$ называется ограниченной, если $\{X_n : n \in \mathbb{N}\}$ ограничена, т.е. $\exists c > 0$, такое что \forall $n \in \mathbb{N} : |X_n| \leqslant c$.

Утверждение: если $\exists \lim_{n \to \infty} X_n$ = x $\in \mathbb{R}$, то $\{X_n\}$ ограничена.

Следствие: если $\{X_n\}$ не ограничена, то она не имеет предела.