This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2002 EPO. All rts. reserv.

4693416

Basic Patent (No, Kind, Date): JP 59115564 A2 840704 <No. of Patents: 002>

THIN FILM TRANSISTOR (English)

Patent Assignee: SEIKO DENSHI KOGYO KK

Author (Inventor): SUZUKI TERUYA

IPC: *H01L-029/78; H01L-021/318; H01L-027/12; H01L-029/62

CA Abstract No: *102(06)054727K; Derwent WPI Acc No: *C 84-203562; JAPIO Reference No: *080235E000046;

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 59115564 A2 840704 JP 82228188 A 821223 (BASIC)

JP 93046105 B4 930713 JP 82228188 A 821223

Priority Data (No,Kind,Date): JP 82228188 A 821223 DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

01403964 **Image available**

THIN FILM TRANSISTOR PUB. NO .:

59-115564 [JP 59115564 A]

PUBLISHED:

July 04, 1984 (19840704)

INVENTOR(s): SUZUKI TERUYA

APPLICANT(s): SEIKO INSTR & ELECTRONICS LTD [000232] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

57-228188 [JP 82228188]

FILED:

December 23, 1982 (19821223)

INTL CLASS:

[3] H01L-029/78; H01L-021/318; H01L-027/12; H01L-029/62

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R004 (PLASMA); R097 (ELECTRONIC MATERIALS -- Metal Oxide

Semiconductors, MOS)

JOURNAL:

Section: E, Section No. 275, Vol. 08, No. 235, Pg. 46,

October 27, 1984 (19841027)

ABSTRACT

PURPOSE: To obtain a gate oxidized film which has good quality of film by forming a nitrided or oxidized film by a plasma CVD and then heat treating it at the special temperature or higher.

CONSTITUTION: A gate oxidized film 2 is formed on a gate electrode 3 on a glass plate 1, an amorphous Si or polysilicon layer 6 is selectively accumulated, source and drain electrodes 4, 5 are attached, and a protective film 7 is covered, thereby completing a thin film transistor. In case of forming the film, the flow ratio of the Si(sub 4)/N(sub 2)O is selected to 1/7-1/150, an SiO(sub 2) film is formed at 0.01-1Torr, 10-50W of electric power, and 100-300c of substrate temperature, and calcined in N(sub 2) at 400c or higher. The film formed by this plasma CVD method has a boundary level reduced by approximately 1/10 order, its withstand voltage is improved by approximately 10 times, and pinholes are further reduced. Even if an Si(sub 3)N(sub 4) film is formed with SiH(sub 4)+NHO(sub 3)+N(sub similar effect can be obtained, hysteresis can be 2) gas, remarkably and it is extremely effective to improve the reduced. characteristics of either film.

19 日本国特許庁 (JP)

10 特許出願公開

⑩公開特許公報(A)

昭59—115564

⑤Int. Cl.³ H 01 L 29/78 // H 01 L 21/318 27/12 29/62 識別記号 庁内整理番号

7377—5 F 7739—5 F 8122—5 F

7638-5F

❸公開 昭和59年(1984)7月4日

発明の数 1 審査請求 未請求

(全 3 頁)

59薄膜トランジスタ

願 昭57-228188

22出 9面

20特

願 昭57(1982)12月23日

⑫発 明 者 鈴木光弥

東京都江東区亀戸6丁目31番1

号株式会社第二精工舎内

⑪出 願 人 セイコー電子工業株式会社

東京都江東区亀戸6丁目31番1

号

⑪代 理 人 弁理士 最上務

明 細 事

1. 発明の名称 薄膜トランジスタ

2. 特許請求の範囲

恋板、ゲート、ゲート絶縁膜、半導体膜、ソース、ドレーンなどからなる薄膜トランシスターにおいて、ゲート絶縁膜はプラズマCVDによつて作成した窒化膜または酸化膜であり、かつ、その膜は温度40℃で以上で熱処理した膜であることを特徴とする薄膜トランシスタ。

3. 発明の詳細な説明

本発明は、薄膜トランジスターに関し、 特に、 ゲート絶嫌態は、 プラズマ C V D (あるいは グロ 一 放電 C V D ともいわれる) で作成 し、 次に 無処 理 したゲート絶縁態に関するものである。

近年、アクティブマトリクスを使つた液晶ディスプレイ、特に液晶テレビ等の研究開発が行なわれている。アクティブマトリクスとして、ンリコ

ン単結晶を基板にしたMOBトランジスタを使う 他に、稗腹トランジスタによる液晶ディスプレイ がある。禅阪トランジスタの場合は、シリコン単 結晶ウエハーを 悲板に した M O S アレィ と比較し て、 花板として透明なガラス 慈根を使用でき、そ のために、ツイストネマテイツク液晶モードを使 りことができ、コストが安くなり、さらに、大型 ディスプレイを作ることができる。その反面、ガ ラス基板を使り場合は、シリコン単結晶の場合と 異なり、トランジスタ製造プロセスは、 温度 500 て以下の低温ブロセスとする必要がある。低温で ゲート絶級膜を作成する方法として、通常、低圧 力によるCVD法があるが、温度500℃で作成 した酸化膜は、界面準位が 1 × 1 0 11 以上あり、 酎圧が低く、ピンホールがあり、良い膜質のゲー ト絶線膜が得がたい。

本発明は、上述の欠点を除去するために、温度 100~300でで、フラズマCVDによつて、 鋭化膜、あるいは酸化膜を作成し、次に温度 400 で以上で熱処理を行なうことにより、所望のゲー

特開昭59-115564(2)

ある。このようにして作成した酸化膜を、さらに 温度 4 5 0 ℃、登化雰囲気中で焼成した。これら の絶縁膜と、他の方法で作成した絶縁膜を比較し たデータを下の姿に示す。

翇

製造法	界面準位 Qss/q	ピンホール (膜厚約1000Å)	耐圧Von	エッチレート BHF(Arec)
Low Pressuri	1×1012	*	1×10 ⁶	100
Plasma C V D	8×1011	小	3×10 ⁶	1 0 0
Plasma CVD +450℃熱処理	2×1011	ほとんどない	1×107	50.

表から明らかなように、ブラズマC V D によつて作成した酸化膜は、高温低圧 C V D で作成した酸化膜より、膜質は少し良くなり、さらに、温度4 5 0 ℃で焼成した膜は、焼成しない場合と比較して、エッチレートが約%,界面単位が約 1 ケタ低下し、耐圧が約 1 0 倍増加し、さらにピンホー

上、また鹭化膜に関しては、ヒステリンスの波少が顕岩にみられ、海膜トランジスタの特性向上に 徳めて有効である。

4. 図面の簡単な説明

第1図は、本発明の薄膜トランジスタの縦断面図、第2図は、本発明で用いるプラズマCVDで作成した壁化膜の質気特性図である。

1 … 进明基板

2 … ゲート 絶縁膜

5 … ゲート

4…ドレーン

5 … ソース

6....半導休膜

7 … 保護膜

11… ブラズマOVDによる窒化膜の特性

1 2 … 1 1 を水素雰囲気中で熱処理した特性

- 以 上

出版人 株式会社 第二君工会 代理人 弁理士 最上

ト絶縁膜を得ることを目的とする。

次に本発明を詳細に説明する。

次に、本発明によるゲート絶縁膜の製造方法と、 その膜質についての実験結果を述べる。

まず、プラズマCVDを使つた810N膜は、 次の方法によつて作成した。使用ガスは、81H4、 N 2 O であり、81H4/N20流量比 1/2 ~ 1/150と し、デポジッション圧力 0.1 ~ 1 torr, 放電Power 10~50 watta, 基板温度 100~300℃で

ルが低下した。プラズマCVDによる盥化膜について、次に述べる。使用ガスは、81H4,HNO3,Nzガスを使用した。81H4/NH3 流量比%~2、Nz 10~1008CCM, 圧力 0.1~0.5 torr,放置Power 10~100 watt8, 結板温度 200~300 でとした。次に、温度 400 で以上で水紫雰囲気中で焼成した。その結果、酸化膜の場合と同様の傾向を得ることができ、エッチレートで約5、界面単位で1ケタ低下した。

第2図は、本発明で用いるプラズマCVDで作成した盥化膜のMIS標造の容量対低圧特性を示し、水素芽囲気中で焼成した場合の特性10は、水素焼成しない場合の特性11と比較し、ヒステリンスの幅が約2となつた。

以上述べてきたように、本発明によるブラズマ O V D によつて作成し、次に熱処理した絶縁原は、 界面単位の向上、エッチレートの低下、耐圧の向

特開昭59-115564(3)

