Análisis Matemático II

Tema 5

Teorema de la función implícita y de la función inversa

Autor: Víctor Gayoso Martínez

Curso: 2024-2025

Versión: 1.0

Centro Universitario U-tad

Doble Grado en Matemática Computacional e Ingeniería del Software

Índice

1	Funciones implícitas	1
2	Función inversa	2
3	Problemas	=

1 Funciones implícitas

Al trabajar con funciones de varias variables, hay ocasiones en las que es posible aislar una de las variables, dando lugar a expresiones como por ejemplo z=f(x,y), y casos en los que sin embargo no es posible (o sencillo) realizar esa tarea y debemos conformarnos con expresiones del tipo F(x,y,z)=0.

Ejercicio 1

Aísla una de las variables en las expresiones dadas por las funciones $F_1(x,y,z)=x\,yz-1\,y$ $F_2(x,y,z)=x\,\cos(y)\sqrt{z}+\mathrm{Ln}(x)\,y^2\,\sin(z)-\tan(x)\mathrm{Ln}(y)z.$

Incluso cuando no sea fácil o posible obtener una relación explícita entre una variable y el resto de variables, puede que sea necesario utilizar el valor de la derivada de la función implícita en un cierto punto. Por ejemplo, aunque dada la relación inicial F(x,y)=0 no podamos determinar la función y=f(x) que relaciona las dos variables, nos puede interesar obtener la derivada f'(x) en un cierto punto. Un ejemplo de aplicación sería conocer la pendiente de la recta tangente a una curva en un punto de su gráfica cuando la expresión de la curva es del tipo F(x,y)=0 (aunque para obtener la pendiente también se podrían utilizar otros métodos).

En el caso más general, el objetivo consistiría en obtener la derivada respecto de la variable x_i de una función $y=f(x_1,x_2,\ldots,x_n)$ donde la relación entre la variable y y el resto de variables vendría dada por la expresión $F(x_1,x_2,\ldots,x_n,y)=0$. El teorema de la **función implícita** proporciona las condiciones para poder obtener dicha derivada.

Teorema de la función implícita

Dada la relación $F(\overline{x},y)=F(x_1,x_2,\ldots,x_n,y)=0$, supongamos que se cumplen las siguientes condiciones:

- 1) $F(\bar{a}, b) = 0$.
- 2) $F(\overline{x}, y)$ es diferenciable (y por ello continua) en un entorno de $(\overline{a}, b) = (a_1, a_2, \dots, a_n, b)$.
- 3) $F_{\nu}(\overline{x}, y)$ existe y no se anula en (\overline{a}, b) .

En estas condiciones, $F(\overline{x},y)$ define implícitamente a y como función $y=f(\overline{x})$ en un entorno del punto (\overline{a},b) , de modo que las derivadas parciales de primer orden de $f(\overline{x})$ se pueden calcular de la siguiente forma:

$$\frac{\partial f\left(\overline{x}\right)}{\partial x_{i}} = -\frac{F_{x_{i}}\left(\overline{x}, y\right)}{F_{y}\left(\overline{x}, y\right)}$$

Ejercicio 2

Dada la expresión $x^2y^2+6x^2y+5y^3+3x^2-12=0$, determina si se cumplen las condiciones para aplicar el teorema de la función implícita en el punto (2,0) y, si es el caso, calcular f'(x), donde y=f(x).

Profesor: Víctor Gayoso Martínez

2 Función inversa

Dada una función $\overline{f}:A\subset\mathbb{R}^n\to\mathbb{R}^n$, donde $\mathrm{Im}(\overline{f})=B\subset\mathbb{R}^n$, se dice que \overline{f} es **globalmente invertible** si existe una función $\overline{g}:B\subset\mathbb{R}^n\to A\subset\mathbb{R}^n$ tal que $\overline{f}\circ\overline{g}=id_A$ y $\overline{g}\circ\overline{f}=id_B$, con lo que $\forall\overline{x}\in A\ (\overline{g}\circ\overline{f})(\overline{x})=\overline{x}$ y $\forall\overline{y}\in B\ (\overline{f}\circ\overline{g})(\overline{y})=\overline{y}$.

Ejercicio 3

Si a es un número real positivo distinto de 1 y A es el conjunto de los números reales positivos, determina la función inversa global de $f(x) = a^x$.

Toda función vectorial que sea un automorfismo tiene inversa, y si A es la matriz asociada al automorfismo \overline{f} , entonces A^{-1} es la matriz asociada al automorfismo inverso.

Ejercicio 4

Determina la función inversa global de la función vectorial de variable vectorial definida como $\overline{f}(x_1,x_2,x_3)=(2x_1+x_2+x_3,x_1+2x_2+x_3,x_1+x_2+2x_3).$

Por otra parte, la existencia de la función inversa también se puede estudiar desde un punto de vista local, no global. En este sentido, el teorema de la **función inversa** proporciona las condiciones suficientes para que una función $\overline{f}:\mathbb{R}^n\to\mathbb{R}^n$ tenga inversa \overline{f}^{-1} en un entorno de un punto de \mathbb{R}^n y la forma de calcular las derivadas parciales de \overline{f}^{-1} sin llegar a conocer su expresión explícita.

Teorema de la función inversa

Dadas dos funciones \overline{f} , \overline{g} : $\mathbb{R}^n \to \mathbb{R}^n$, se considera que $\overline{y} = \overline{f}(\overline{x}) = (f_1(\overline{x})), f_2(\overline{x}), \ldots, f_n(\overline{x})$ y $\overline{x} = \overline{g}(\overline{y}) = (g_1(\overline{y})), g_2(\overline{y}), \ldots, g_n(\overline{y})$, donde

$$\begin{array}{c} y_1 = f_1(x_1, x_2, \dots, x_n) \\ y_2 = f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_n = f_n(x_1, x_2, \dots, x_n) \end{array} \right\} \qquad \begin{array}{c} x_1 = g_1(y_1, y_2, \dots, y_n) \\ x_2 = g_2(y_1, y_2, \dots, y_n) \\ \vdots \\ x_n = g_n(y_1, y_2, \dots, y_n) \end{array} \right\}$$

Si $\overline{a},\overline{b}\in\mathbb{R}^n$, es necesario comprobar que se satisfacen las siguientes condiciones:

- 1) $\overline{f}(\overline{a}) = \overline{b}$.
- 2) $f(\overline{x})$ es diferenciable (y por ello continua) en un entorno del punto $\overline{x}=\overline{a}$.
- 3) El jacobiano no se anula en $\overline{x}=\overline{a}$, es decir, $\left|J_{\overline{f}}(\overline{a})\right|
 eq 0$.

En ese caso, existe un entorno $A \subset \mathbb{R}^n$ del punto \overline{a} , un entorno $B \subset \mathbb{R}^n$ del punto \overline{b} y una función \overline{g} que actúa como función inversa de \overline{f} , de forma que se cumple lo siguiente:

- 1) La función $\overline{g}(\overline{y}) = \left(\overline{f}\right)^{-1}(\overline{y})$ es diferenciable, con lo que sus derivadas parciales $\frac{\partial g_i}{\partial y_j}$ son continuas $\forall i,j \in \{1,\ldots,n\}$ en $\overline{y} = \overline{b}$.
- 2) $J_{\overline{g}}(\overline{y}) = \left(J_{\overline{f}}(\overline{x})\right)^{-1} \mathbf{y} \left|J_{\overline{g}}(\overline{y})\right| = \frac{1}{\left|J_{\overline{f}}(\overline{x})\right|}$ para todo $\overline{x} \in A$ e $\overline{y} \in B$.

3 Problemas

- 1) Analiza si la ecuación $x^2 + y^2 2 = 0$ define implícitamente a y como función de x en un entorno del punto (1,1) y obtén el valor de y'(1) e y''(1).
- 2) Determina la ecuación de la recta tangente a la curva $y^3 + x^3 = 6xy$ en el punto (3,3).
- 3) Dada la ecuación xy + x + Ln(y) = 0, determina si la ecuación define implícitamente a y en función de x en un entorno del punto (0,1). En caso afirmativo, calcula la ecuación de la recta tangente a la gráfica de la curva dada por la ecuación en el punto (0,1).
- 4) Determina la ecuación de la recta tangente a la curva $(x^2 + y^2)^2 = 4xy$ en el punto (1, 1).
- 5) Sea $h: \mathbb{R}^2 \to \mathbb{R}$ la función definida por $h(x,y) = x^2 + y^3 + xy + x^3 + ay$, siendo el parámetro a un número real. ¿Para qué valores de a la ecuación h(x,y) = 0 define y como función implícita de x en un entorno de (0,0)? ¿Define la anterior ecuación a x como función implícita diferenciable de y en un entorno de (0,0) para algún valor de a?
- 6) Dada la función y = f(x) definida implícitamente por $F(x,y) = 1 \operatorname{Ln}\left(1 + \frac{1}{e^{xy}}\right) = 0$, calcula las dos primeras derivadas de f(x) en un punto (a,b) cualquiera tal que $a \neq 0$ y F(a,b) = 0.
- 7) Dadas $C_1 = \{(x,y) \in \mathbb{R}^2 \mid (x-2)^2 + y^2 = 2\}$ y $C_2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y-2)^2 = 2\}$, representa gráficamente las dos circunferencias e indica en qué punto sus gráficas son tangentes. A continuación, demuestra que efectivamente son tangentes en ese punto utilizando en el proceso el teorema de la función implícita, justificando adecuadamente su utilización.
- 8) Dada la ecuación $F(x,y,z)=2x+3y-xe^{x+y-2z}-8=0$, determina si dicha expresión define implícitamente a z como función de x e y en un entorno del punto (-1,3,1) y, en caso afirmativo, calcula las derivadas parciales de esa función z=f(x,y) en el punto (-1,3).
- 9) Dada la ecuación $yze^{x+3}+3xe^{z-y}=0$, demuestra que la ecuación anterior define a z=z(x,y) como función implícita de x e y en un entorno del punto (1,-1,3) y calcula las derivadas parciales $z_x(x,y)$ y $z_y(x,y)$ asociadas a la función implícita z=z(x,y) en el punto (1,-1).
- 10) Demuestra que la ecuación $1+x+y+z=e^{-(x+y+z)}$ define implícitamente una función z=f(x,y) en un entorno de cualquier punto que satisfaga la ecuación y a continuación calcula $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ y dz.
- 11) Calcula $\frac{\partial z}{\partial x}$, donde $z = x^2 + y^2 \operatorname{con} x^2 + y^3 + y = 0$.
- 12) Demuestra que la ecuación $z^3 + xz + y = 0$ define implícitamente una función z = f(x, y) diferenciable en un entorno de (1, -2) y halla en ese punto el gradiente y la matriz hessiana.
- 13) Dada la ecuación $z^2 + z xy = 1$, demuestra que la ecuación anterior define a z = f(x,y) como función implícita de x e y en un entorno del punto (1,1,1) y calcula el polinomio de Taylor de orden 2 de z(x,y) desarrollado a partir del punto (1,1).

- 14) Obtén el polinomio de Taylor de segundo grado de la función z=z(x,y) definida implícitamente por la ecuación $\cos\left(z\frac{\pi}{2}\right)=xy-x-y+z^2$ en el punto (1,1,1).
- 15) Dada la función vectorial $\overline{f}(x,y)=(e^x+e^y,e^x-e^y)$, demuestra que \overline{f} es localmente invertible en cualquier punto, halla la matriz jacobiana de \overline{f}^{-1} y por último determina \overline{f}^{-1} de forma explícita.
- 16) ¿Existe inversa local en algún punto para $\overline{f}(x,y) = (u(x,y),v(x,y)) = \left(\frac{x}{y},\frac{x^3+y^3}{x^3-y^3}\right)$?
- 17) Sea la función vectorial $\overline{f} = (e^x \cos(y), e^x \sin(y))$.
 - a) Demuestra que para todo punto $(x,y)\in\mathbb{R}^2$ la función \overline{f} tiene inversa definida en un entorno del punto $\overline{f}(x,y)$.
 - b) Demuestra que \overline{f} no es inyectiva. ¿Contradice esto el teorema de la función inversa?
- 18) Determina los valores de α para que $\overline{f}(x,y) = (x + \alpha y, e^x + \alpha e^y)$ sea localmente invertible.
- 19) Sea $\overline{f}: \mathbb{R}^3 \to \mathbb{R}^3$ definida como $\overline{f}(x,y,z) = (e^x, \operatorname{sen}(x+y), e^z)$.
 - a) Demuestra que \overline{f} es localmente invertible en (0,0,0).
 - b) Prueba que existen puntos de \mathbb{R}^3 donde no se cumplen las hipótesis del teorema de la función inversa.
- 20) Dada la función vectorial de variable vectorial $\overline{f}(x,y)=(x^2-y^2,2xy)$, identifica en qué puntos puede aplicarse el teorema de la función inversa y determina la expresión del jacobiano de la función inversa $\overline{g}(u,v)=(x,y)$ para esos puntos. ¿Es la función inyectiva desde un punto de vista global?
- 21) Dada la función $\overline{f}(x,y)=(x\cos(y),\sin(x-y))$, demuestra que la función $\overline{f}(x,y)$ tiene inversa local $\overline{g}(u,v)$ en un entorno del punto $(x,y)=\left(\frac{\pi}{2},\frac{\pi}{2}\right)$ y calcula la matriz jacobiana de $\overline{g}(u,v)$ en el punto (u,v)=(0,0). ¿Qué valor tiene el jacobiano de $\overline{g}(u,v)$ en ese punto?
- 22) Dada la función $\overline{f}(x,y,z) = (x+xyz,2y+xy,z+2x+3z^2)$, demuestra que admite una inversa local \overline{g} en un entorno del punto $(0,1,0) \in \mathsf{Dom}(\overline{f})$ y calcula la matriz jacobiana asociada a la función \overline{g} en el punto $(0,2,0) \in \mathsf{Dom}(\overline{g})$.

Bibliografía

En la elaboración de estos apuntes se ha utilizado el siguiente material:

- Alfonsa García, Antonio López, Gerardo Rodríguez, Sixto Romero y Agustín de la Villa. *Cálculo II. Teoría y problemas de funciones de varias variables*. Ed. CLAGSA.
- Isaías Uña, Jesús San Martín y Venancio Tomeo. *Problemas resueltos de Cálculo en varias variables*. Ed. Paraninfo.
- Saturnino Salas, Einar Hille y Garret Edgen. Cálculo de varias variables. Volumen II. 4ª edición.
 Editorial Reverté.
- Carmen Anido y Martha Saboyá. *Bases matemáticas para el análisis económico*. Grupo Editorial Universitario.
- Fernando Bombal, Luis Rodríguez y Gabriel Vera. Problemas de análisis matemático. Tomo 2.
 Editorial AC.
- Fernando Revilla. Problemas de análisis real y complejo. http://fernandorevilla.es.
- LibreTexts. Calculus. https://math.libretexts.org.

Profesor: Víctor Gayoso Martínez U-tad 2024-2025