

Itthi Chatnuntawech

Signals and Noise

A simple model

5 averages

10 averages

15 averages

200 averages

Optional: Signal-to-Noise Ratio (SNR)

The ratio of the power of a signal to the power of background noise

$$SNR = rac{P_{signal}}{P_{noise}}$$
 signal power noise power

Note: There is also an alternative definition of SNR - the ratio of mean to standard deviation

$$SNR = \frac{\mu}{\sigma}$$
 signal mean noise standard deviation

Module: Signal Processing

measurement
$$i$$
 $x_i = s + z_i$ zero-mean
$$SNR_i = \frac{P_{signal}}{P_{noise}} = \frac{E[s^2]}{E[z_i^2]} = \frac{E[s^2]}{Var(z_i)} = \frac{E[s^2]}{\sigma^2}$$

Assumptions

- Deterministic signal s
 - $\cdot E[s^2]$ remains the same in replicate measurements
- Random noise z_i
 - Independent and identically distributed (iid)
 - Mean of zero: $E[z_i] = 0$
 - Constant variance: $Var(z_i) = \sigma^2$
- Signal and noise are uncorrelated

Measurement i

$$x_i = s + z_i \qquad SNR_i = \frac{E[s^2]}{\sigma^2}$$

Averaging Nmeasurements

$$\frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} \sum_{i=1}^{N} (s + z_i) = s + \frac{1}{N} \sum_{i=1}^{N} z_i$$

Averaged signal

 P_{signal} remains the same

Averaged noise
$$E\left[\frac{1}{N}\sum_{i=1}^{N}z_{i}\right] = \frac{1}{N}\sum_{i=1}^{N}E[z_{i}] = 0$$

$$Var\left(\frac{1}{N}\sum_{i=1}^{N}z_{i}\right) = \frac{Var\left(\sum_{i=1}^{N}z_{i}\right)}{N^{2}} \stackrel{\text{iid}}{=} \frac{N\sigma^{2}}{N^{2}} = \frac{\sigma^{2}}{N}$$

 P_{noise} gets reduced by a factor of N

Measurement i

results from previous slide

Averaging N measurements

$$SNR_{avg} = \frac{P_{signal}}{P_{noise}} \stackrel{\downarrow}{=} \frac{E[s^2]}{\sigma^2/N} = N \times \frac{E[s^2]}{\sigma^2} = N \times SNR_i$$

Speaker: Itthi Chatnuntawech

Module: Signal Processing

N times

higher SNR!

Measurement i

 $x_i = s + z_i$

results from previous slide

Averaging N measurements

$$SNR_{avg} = \frac{P_{signal}}{P_{noise}} \stackrel{\downarrow}{=} \frac{E[s^2]}{\sigma^2/N} = N \times \frac{E[s^2]}{\sigma^2} = N \times SNR_i$$

*For $SNR = \frac{\mu}{\sigma}$, averaging N measurements result in \sqrt{N} times higher SNR.

Speaker: Itthi Chatnuntawech

Module: Signal Processing

