Indian Institute of Technology Roorkee End-term Examination, Autumn Semester, 2022-2023

Mathematics I (MAN - 001)

Time: 3 Hours Marks: 100

All questions are compulsory. Marks are indicated against each question.

Q.1) (a) Let **A** and **B** be two $n \times n$ real orthogonal matrices such that $\det(\mathbf{A}) + \det(\mathbf{B}) = 0$. Then, compute $\det(\mathbf{A} + \mathbf{B})$.

(b) Find the values of the constants α and β such that the system of equations

$$2x + y + 3z = 4$$
, $x + (\alpha + 1)y + 2z = 1$, $(\alpha - 1)x + 2y + 3z = \beta + 1$

has (i) a unique solution, (ii) infinite number of solutions and (iii) no solution. [6]

Q.2) (a) Show that a real matrix $A_{4\times4}$ is diagonalizable if and only if it has 4 linearly independent eigenvectors.

(b) Verify the Cayley-Hamilton theorem for $\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 3 & 4 \\ 5 & -2 & 2 \end{pmatrix}$ and hence find \mathbf{A}^{-1} . [6]

Q3) (a) If $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$ then discuss the continuity of $\frac{\partial^2 f}{\partial x \partial y}$ and the differentiability of $\frac{\partial f}{\partial x}$ at (0,0). [7]

Let f(x,y) be a function having continuous second order partial derivatives. If $x = \alpha \cosh u \cos v$ and $y = \alpha \sinh u \sin v$, where $\cosh u = \frac{e^u + e^{-u}}{2}$, $\sinh u = \frac{e^u - e^{-u}}{2}$ and α is a real constant, then show that

$$\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} = \frac{\alpha^2}{2} (\cosh(2u) - \cos(2v)) \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2} \right).$$
 [7]

Q.4) (a) Let $f: \mathbb{R} \to \mathbb{R}$ be an invertible function and $g: D \subset \mathbb{R}^2 \to \mathbb{R}$ be a homogeneous function of degree m. If $u(x,y) = f^{-1}(g(x,y))$, then show that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \left(m - 1 - m \frac{f''(u)f(u)}{f'(u)^{2}}\right) m \frac{f(u)}{f'(u)},$$

assuming all derivatives in the above expression exist. Hence, for $u(x,y) = \tan^{-1}\left(\frac{x^3 - y^3}{x^6 + y^6}\right)$,

find the value of
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$
. [7]

Find the quadratic approximation of $f(x,y) = e^{xy}$ by using Taylor's theorem about the point (0,0) in the region $|x| \le 0.1$ and $|y| \le 0.1$. Also calculate, upto 5 decimal places, the maximum absolute error in the approximation. [7]

- Q.5) (a) Let D be the region cut out of the solid $S = \{(x, y, z) \in \mathbb{R}^3 : 2x^2 + y^2 + z^2 \le 4\}$ by the elliptic cylinder $E = \{(x, y, z) \in \mathbb{R}^3 : 2x^2 + y^2 = 1\}$. Find the volume of the solid region D.
 - (b) Let R be a region in the first quadrant of the xy-plane bounded by the hyperbolas xy = 1, xy = 4 and the lines y = x, y = 9x. Find the value of

$$\iint_{R} \left(\sqrt{\frac{y}{x}} + \sqrt{xy} \right) dx dy.$$
 [6]

Q.6) (a) If m, n, α are positive integers, then find the value of $\int_0^1 \int_0^1 (y \log x)^n (x - xy^\alpha)^m dy dx$ in terms of the Beta and Gamma functions. [6]

(b) Find the mass of a plate in the shape of the curve $\left(\frac{x}{2}\right)^{2/3} + \left(\frac{y}{5}\right)^{2/3} = 1$, the density being given by $\rho = \mu xy$.

Q.7) (a) Show that the line integral $\int_C (2x+y+z)dx + (2y+x+z^2)dy + (2z+2yz+x)dz$ is independent of the path C. Find the value of the integral along any C joining the points (1,1,0) and (3,2,5).

(b) Let $\frac{\partial u}{\partial \vec{v}}$ denote the directional derivative of u(x,y) in the direction of the vector \vec{v} . Assume that f(x,y) and g(x,y) have continuous second order partial derivatives in a region R bounded by a piecewise smooth simple closed curve C (positively oriented) in the xy-plane. Using the Green's theorem, show that

$$\oint_C \left(f \frac{\partial g}{\partial \vec{n}} - g \frac{\partial f}{\partial \vec{n}} \right) ds = \iint_B (f \nabla^2 g - g \nabla^2 f) dx dy,$$

where \vec{n} is the unit outward normal to the curve C and $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. [6]

Q.8) (a) Let S be the surface of the cylinder $x^2 + y^2 = 4$ between the planes z = 0 and y + z = 5. Find the surface integrals of the vector field $\vec{F} = xz\vec{i} + yz\vec{j} + xy\vec{k}$ over the surface S.

Let S_1 be the surface of the cone $z=2-\sqrt{x^2+y^2}$ lying above the xy-plane and S_2 be the plane region $x^2+y^2\leq 4$. For a vector field \vec{F} having continuous second order derivatives, show that

$$\iint_{S_1} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \, dS + \iint_{S_2} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \, dS = 0.$$

If $\vec{F} = (2x - y)\vec{i} - 2yz^2\vec{j} - y^2z\vec{k}$, then find the value of $\iint_{S_1} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \, dS$. [6]

Student's name: End of exam