RECURSOS PARA MATEMÁTICA

Grupo do Facebook

Prova Modelo de Exame Nacional Matemática A Prova 635 | Ensino Secundário | Junho 2022

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado por uma moldura que os rodeia, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

INSTRUÇÕES DE REALIZAÇÃO

- · Para cada resposta, identifique o item.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.
- É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.
- Apresente apenas uma resposta para cada item.
- As cotações dos itens encontram-se no final do enunciado da prova.
- A prova inclui um formulário.
- Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.
- Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}$$
 (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área lateral de um cone: πrg (r- raio da base; g - geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r- raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \acute{A}rea \ da \ base \times Altura$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r- raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a$$

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} \left(k \in \{0, \dots, n-1\} \text{ e } n \in \mathbb{N}\right)$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$\left| \left(\operatorname{tg} u \right)' = \frac{u'}{\cos^2 u} \right|$$

$$(e^u)' = u'e^u$$

$$(e^{u})' = u'e^{u}$$

$$(a^{u})' = u'a^{u} \ln a \quad (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Considere uma progressão geométrica monótona (a_n) .

Sabe-se que $a_2 = 36$ e que $a_4 = 81$.

Qual das seguintes é uma expressão do termo geral de (a_n) ?

(A)
$$16 \times \left(-\frac{3}{2}\right)^n$$
 (B) $\frac{45}{2}n - 9$ **(C)** $16 \times \left(\frac{3}{2}\right)^n$ **(D)** $81 \times \left(\frac{2}{3}\right)^n$

(B)
$$\frac{45}{2}n-9$$

(C)
$$16 \times \left(\frac{3}{2}\right)^n$$

(D)
$$81 \times \left(\frac{2}{3}\right)^n$$

- **2.** Relativamente a duas sucessões (a_n) e (b_n) sabe-se que:
 - (a_n) é progressão aritmética;
 - $a_3 = 18$ e $a_{10} = 39$;
 - $b_n = \frac{12k-n}{n+k}, k \in \mathbb{R}$

Determine k de modo que $a_5 + \ldots + a_{13}$ seja o trigésimo sexto termo de (b_n) .

- 3. Na figura 1 está representada uma grelha retangular de 3 por 6. Pretende-se distribuir dez cartões numerados de 1 a 10 pelas "casas" da grelha de modo a que:
 - cada cartão colocado ocupe apenas uma "casa" da grelha;
 - uma das linhas fique completamente livre;
 - uma das linhas fique ocupada com, exatamente, 6 cartões;
 - os cartões em cada linha fiquem todos juntos e encostados a uma das laterais da grelha.

Figura 1

O número de maneiras diferentes de o fazer é?

- (A) 29030400
- **(B)** 43545600
- (C) 21772800
- **(D)** 311040

Manuel Gonçalves

Manuel Gonçalves

4. Seja k o valor do décimo quinto elemento de uma determinada linha do triângulo de Pascal de modo a que o valor do trigésimo sétimo elemento é também igual a k.

Selecionando, ao acaso, 5 elementos da linha seguinte determine a probabilidade de, pelo menos dois deles, serem inferiores a k.

Apresente o resultado em percentagem com arredondamento às centésimas.

Num certo momento, para uma das cidades da região, A-do-Alentejo, verificou-se que:

- $\frac{3}{5}$ da distribuição da eletricidade passa pela subestação;
- a percentagem de eletricidade que a cidade A-do-Alentejo recebe e não passa na subestação é 12%.

Designe por A o acontecimento «eletricidade recebida pela cidade A-do-Alentejo» e por S o acontecimento «eletricidade que passa pela subestação».

Determine o valor de P(A|S), de modo a satisfazer as seguintes condições,

$$P(\overline{S}|A) = P(S|\overline{A})$$
 e $P(A|S) > 0.5$

e
$$P(A|S) > 0,$$

Apresente o resultado arredondado às décimas.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, quatro casas decimais.

6. Na figura 2 podemos visualizar um cubo [ABCDHEFG] e uma pirâmide [EIJHQ] parcialmente inserida no cubo.

Sabe-se que:

- $A(2,-2,0), B(2,2,0) \in C(-2,2,0);$
- I e J são pontos médios de [BF] e [CG], respetivamente;
- ullet o centro da base da pirâmide é a projeção ortogonal do ponto Qno plano *EHI*;
- o ponto *Q* pertence ao plano *BCG*;
- o ponto P é a interseção de QI com FG.
- 6.1. Qual das seguintes condições define uma superfície esférica com o centro no interior do cubo e que contém os pontos A, C e I?

(A)
$$x^2 + y^2 + z^2 - 2x - 2y + 2z = 8$$

(B)
$$x^2 + y^2 + z^2 - 2x - 2y - 2z = 8$$

(C)
$$x^2 + y^2 + z^2 + 2x + 2y - 6z = 8$$

(D)
$$x^2 + y^2 + z^2 + 4x + 4y - 10z = 8$$

Figura 2

- **6.2.** Calcule as coordenadas da projeção ortogonal de *P* sobre o plano que contém a base da pirâmide.
- 7. Na figura 3 estão representados em referencial o.n. xOy, uma circunferência de raio 2 centrada na origem O do referencial, o ângulo α , os pontos A, B e C e o triângulo do qual são vértices e ainda o ponto D. Sabe-se que:
 - α é a amplitude do ângulo DOA e $\alpha \in \left[0, \frac{\pi}{4}\right]$;
 - os pontos A, B, C e D situam-se na circunferência;
 - o ponto B é simétrico do ponto A relativamente à bissetriz dos quadrantes pares;
 - o ponto C pertence ao eixo das ordenadas.
 - o ponto D pertence ao semieixo positivo das abcissas.

Mostre que a área $A(\alpha)$ do triângulo [ABC] se pode escrever, em função de α como:

$$A(\alpha) = 2\sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right) + 2\cos\left(2\alpha\right)$$

Figura 3

Antero Neves

- **8.1.** Mostre que não existe nenhum k, para o qual a função f seja contínua em x = 3.
- **8.2.** Mostre que $\lim_{x \to 1} \frac{2x \left(f(x) f(1) \right)}{x^2 1} = \frac{1}{2}$.

Item extra: Mostre que a taxa média de variação no intervalo [1,2] é igual a $\sqrt{2}-1$.

Sugestão: Comece por mostrar que para $x \in \left]0,3\right[:f(x) = \frac{3-x}{\sqrt{3}-\sqrt{x}}\right]$

- **9.** Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = x^2 \ln x$.
 - **9.1.** Qual das equações seguintes define a reta tangente ao gráfico de f, no ponto de ordenada nula?

(A)
$$y = 2x - 1$$

(B)
$$y = x - 1$$

(C)
$$y = x - 2$$

(B)
$$y = x - 1$$
 (C) $y = x - 2$ **(D)** $y = 2x - 2$

- **9.2.** Considere o triângulo [OAP], sendo:
 - *O* a origem do referencial;
 - A o ponto do gráfico de f com ordenada mínima;
 - P um ponto do gráfico de f com abcissa maior que 1.

Sabe-se que o triângulo [OAP] é retângulo em A, utilize as potencialidades da sua calculadora para determinar, com aproximação às centésimas, as coordenadas do ponto P.

Na sua resposta, deve:

- determinar, por processos analíticos, as coordenadas do ponto *A*;
- apresentar uma equação cuja solução corresponda ao resultado pretendido;
- apresentar o(s) gráfico(s) visualizado(s) na calculadora, apresentado o(s) ponto(s) relevante(s) para o problema;
- indicar uma aproximação para as coordenadas do ponto *P*.
- **10.** Em \mathbb{C} , o conjunto dos números complexos, considera z_1 e z_2 em que $z_1 = 2e^{i\frac{\pi}{3}}$.

Sabe-se que, no plano complexo, as imagens geométricas de z_1 e de z_2 são vértices consecutivos de um polígono regular com n lados.

Seja w o número complexo tal que $w = \frac{z_2}{z_1}$.

Sabendo que w é um imaginário puro, qual o valor de n?

Carlos Frias

Marisa Cardoso

11. Resolva este item sem recorrer à calculadora, a não ser para eventuais cálculos numéricos.

Em \mathbb{C} , conjunto dos números complexos, a condição $|z-2+i|=3\sqrt{5}$ define, no plano complexo, uma circunferência

Considere todos os números complexos cujos afixos pertencem a esta circunferência.

Determine qual deles tem maior módulo e qual tem menor módulo.

Apresente esses números complexos na forma a+bi, com $a,b \in \mathbb{R}$.

12. Considere a função f definida em $\mathbb{R} \setminus \{0\}$ por:

Paulo Conde

$$f(x) = \begin{cases} x - xe^{\frac{2}{x}} & \text{se } x < 0 \\ \frac{1 - \cos x}{x^2} & \text{se } x > 0 \end{cases}$$

Estude a função f quanto à existência de assíntotas ao seu gráfico paralelas aos eixos coordenados.

13. Seja f uma função, de domínio $\left]0,\frac{\pi}{2}\right]$, cuja **derivada**, também de domínio $\left]0,\frac{\pi}{2}\right]$, é definida por:

$$f'(x) = \frac{\cos x}{2 - \sin x}.$$

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f.

Pedro Teixeira

14. Determine, em R, o conjunto-solução da equação:

$$2\ln^2(2x+3) - \ln(2) = 3 + \ln\left(x + \frac{3}{2}\right)$$

José Carlos Pereira

15. Sejam f uma função duas vezes diferenciável em \mathbb{R} e $a \in \mathbb{R}^-$.

Sabe-se que:

- f(1) = 1 e f'(1) = 0;
- $f''(x) > 0, \forall x \in \mathbb{R}$.

Mostre que a equação f(x) = f(x+1) tem exatamente uma solução em a, f(a).

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obriga- toriamente para a classifica- ção final.	1.	3.	4.	6.1.	6.2.	8.1.	8.2.	9.1.	9.2.	10.	12.	15.	Subtotal
Cotação (em pontos)	12	12	14	12	14	14	14	12	14	12	14	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2.		5.		7.		11		13.		14.		Subtotal
Cotação (em pontos)	3 × 14 pontos												42
Total													200

Coordenação José Carlos Pereira

Paginação Antero Neves