Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт перспективной инженерии Департамент цифровых, робототехнических систем и электроники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 дисциплины «Искусственный интеллект и машинное обучение»

Выполнил: Неутолимов Дмитрий Сергеевич 2 курс, группа ИВТ-б-о-23-2, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Проверил: Доцент департамента цифровых, робототехнических систем и электроники института перспективной инженерии Воронкин Роман Александрович (подпись) Отчет защищен с оценкой Дата защиты **Тема:** Работа с Jupyter Notebook, JupyterLab и Google Colab.

Цель: исследовать базовые возможности интерактивных оболочек Jupyter Notebook, JupyterLab и Google Colab для языка программирования Python.

Ссылка на репозиторий: https://github.com/SiXTeeN100/AIaML

Порядок выполнения работы:

Задание 1. Работа с ячейками Markdown

Создал новую Markdown-ячейку, в которой написал заголовок, добавил жирный и курсивный текст, создал нумерованный и маркированный списки, вставил формулу согласно индивидуального задания №9 и вставил изображение.

Рисунок 1 – Ячейка Markdown

Создал ячейку Python-кода, где запросил у пользователя его имя и вывел приветствие.

```
name = input("Введите имя: ")
print(f"Привет, {name}! Добро пожаловать в JupyterLab!")

Введите имя: Дмитрий
Привет, Дмитрий! Добро пожаловать в JupyterLab!
```

Рисунок 2 – Ячейка Python-кода

Задание 2. Работа с файлами

Создал и сохранил текстовый файл с помощью open(), записал в него несколько строк текста, закрыл файл и затем открыл его снова, считав содержимое и выведя на экран. Проверил, существует ли файл, используя os.path.exists(). Удалил файл с помощью модуля os.

```
import os
with open("example.txt", "w") as f:
   f.write("Первая строка\n")
   f.write("2-ая строка\n")
   f.write("Third line\n")
with open("example.txt", "r") as f:
   content = f.read()
   print("Содержимое файла:\n")
   print(content)
print("Файл существует:", os.path.exists("example.txt"))
os.remove("example.txt")
print("Файл удален.")
Содержимое файла:
Первая строка
2-ая строка
Third line
Файл существует: True
Файл удален.
```

Рисунок 3 – Работа с текстовым файлом

Задание 3. Магические команды Jupyter

Вывел список всех доступных магических команд с помощью %lsmagic. Использовал %time и %%timeit для измерения времени выполнения кода. Создал Python-скрипт в Jupyter с помощью %%writefile script.py и выполню его через !python script.py. Вывел список файлов в текущей директории с помощью %ls. Использовал %history для просмотра истории команд.

```
[2]: print("Список магических команд:")
        %lsmagic
        Список магических команд:
 [2]: v root
                                                                                                                                                               Find.
                                                                                                                                                                                    Q
         line
 [4]: print("Измерение времени выполнения кода:")
        print("Время выполнения одной строки кода:")
        %time sum(range(1000))
        Измерение времени выполнения кода:
        мэмерение времени выполнения кода.
Время выполнения одной строки кода:
CPU times: total: 0 ns
Wall time: 0 ns
 [4]: 499500
 [5]: %%timeit
        total = 0
for i in range(1000):
total += i
        21.7 \mu s \pm 308 ns per loop (mean \pm std. dev. of 7 runs, 10,000 loops each)
•[11]: %%writefile test_script.py
        for i in range(3):
            print(f"Итерация {i}")
       !python test_script.py
        Overwriting test_script.py
[12]: print("Список файлов в текущей директории:")
```

Рисунок 4 — Магические команды Jupyter

```
Список файлов в текущей директории
 °°¬ ў гбва®©б⢥ С Ё¬ҐҐв ¬Ґв6
°ГаЁ©л© ®¬Ґа ⮬ : 52C7-6EF6
  °®¤ľa¦Ë¬®ľ Ï ÏЄË C:\Users\"¬ЁваЁ©
.anaconda
.conda
146 .condarc
.continuum
.dotne+
                                                                      .anaconda
27.02.2025 21:48
07.09.2023 22:48
27.02.2025 23:00
27.02.2025 22:13
27.02.2025 21:57
21.11.2024 13:46
                                         <DIR>
                                                                       .ipynb_checkpoints
                                         <DTR>
                                                                  .ipynb_check
.ipython
.jupyter
.matplotlib
                                        <DIR>
                                         <DIR>
                                                           192 .packettracer
.templateengine
.VirtualBox
22.12.2023 22:04
07.09.2023 22:56
01.12.2024 00:57
04.09.2024 20:57
                                         <DIR>
                                         <DIR>
                                                                    .vscode
Cisco Packet Tracer 8.2.1
04.09.2024 20:5/

22.12.2023 22:07

26.02.2025 15:25

27.02.2025 22:21

26.02.2025 15:25

27.02.2025 21:00
                                          <DIR>
                                                                      Contacts
Desktop
Documents
Downloads
                                         <DIR>
                                          <DIR>
                                          <DIR>
27.02.2025 21:00
26.02.2025 15:25
26.02.2025 15:25
27.02.2025 15:25
27.02.2025 21:33
26.02.2025 15:25
27.02.2025 25:25
27.02.2025 25:25
27.02.2025 25:26
                                         <DIR>
<DIR>
<DIR>
<DIR>
                                                                      Favorites
Links
                                                                      Music
                                          <DIR>
                                                                      OneDrive
                                          <DIR>
                                                                      Pictures
                                                             Saved Games
60 script.py
                                          <DIR>
 26.02.2025 15:25
                                                                      Searches
08.09.2023 12:44
12.09.2023 14:10
27.02.2025 22:31
                                          <DIR>
                                                       0 Sti_Trace.log
11я671 Task1.ipynb
8я357 Task2.ipynb
 27.02.2025 23:12
27.02.2025 23:12
                                                              105 test script.py
```

Рисунок 5 – Магические команды Jupyter

```
27.02.2025 22:53 18692 Untitled.ipynb
26.02.2025 15:50 <DIR> Videos
23.09.2024 20:48 ODIR> VirtualBox VMs
8 A 96%9 22A2223 9 0e
28 Ï Ĭ®¢ 45a411a401a728 9 0e 69®9m®
[13]: print("История команд:")
         %history
         История команд:
print("Список магических команд:")
%lsmagic
         print("Измерение времени выполнения кода:")
         print("Время выполнения одной строки кода:")
         %time sum(range(1000))
         print("Время выполнения блока кода:")
         %%timeit
total = 0
for i in range(1000):
total += i
         print("Создание и выполнение скрипта:")
        %%writefile script.py
print("Привет из script.py!")
         !python script.py
         print("Список файлов в текущей директории:")
%ls
         %history
print("Список магических команд:")
          %lsmagic
         print("Измерение времени выполнения кода:")
```

Рисунок 6 – Магические команды Jupyter

```
Tor 1 in range(1000):

total + = i

print("Создание и выполнение скрипта:")

%Marritefile script.py
print("Привет из script.py!")

lpython script.py

%Marritefile stat.script.py

%Marritefile test.script.py
for in range(3):
print("Mrepauma (i)")

lpython test.script.py

%Marritefile test.script.py
for in range(3):
print("Wrepauma (i)")

lpython test.script.py

%Marritefile test.script.py
for in range(3):
print("Wrepauma (i)")

lpython test.script.py

%Marritefile test.script.py
for i in range(3):
print("Wrepauma (i)")

lpython test.script.py

%Marritefile test.script.py
for i in range(3):
print("Wrepauma (i)")

lpython test.script.py
for i in range(3):
print("Wrepauma (i)")

lpython test.script.py
print("Wrepauma (i)")

lpython test.script.py
print("Wrepauma комамд:")

%history
```

Рисунок 7 – Магические команды Jupyter

Задание 4. Взаимодействие с оболочкой системы

Вывел список файлов в текущей директории с помощью !ls. Проверил, какой Python используется, с помощью !which python. Создал папку test_folder с помощью !mkdir test_folder и убедился, что она появилась. Переместил файл в новую папку и удалил его. Очистил вывод в ячейке с помощью !clear.

```
print("Список файлов в текущей директории:")
Список файлов в текущей директории:
 '®¬ ў гбва®©б⢥ С Ё¬ҐҐв ¬ҐвЄг Windows
 'ҐаЁ©л© ®¬Ґа ⮬ : 52C7-6EF6
 '®¤Ґа¦Ё¬®Ґ Ї ЇЄЁ С:\Users\"¬ЁваЁ©
05.03.2025 18:14
                     <DIR>
26.02.2025 15:19 <DIR>
                                   .anaconda
27.02.2025 21:49 <DIR>
27.02.2025 21:58 <DIR>
                                    .conda
27.02.2025 21:49
                               146 .condarc
27.02.2025 21:48 <DIR>
                                  .continuum
07.09.2023 22:48 <DIR>
                                     .dotnet
                                   .ipynb_checkpoints
27.02.2025 23:47 <DIR>
                                   .ipython
.jupyter
27.02.2025 22:13 <DIR>
27.02.2025 21:57 <DIR>
                                    .matplotlib
21.11.2024 13:46 <DIR>
22.12.2023 22:04
07.09.2023 22:56 <DIR>
01.12.2024 00:57 <DIR>
                               192 .packettracer
                               .templateengine
                                     .VirtualBox
04.09.2024 20:57 <DIR>
                                    .vscode
04.03.2025 22:00 <DIR>
22.12.2023 22:07 <DIR>
26.02.2025 15:25 <DIR>
                                   BrawlhallaReplays
                                    Cisco Packet Tracer 8.2.1
                                    Contacts
04.03.2025 23:56 <DIR>
                                   Desktop
26.02.2025 15:25 <DIR>
02.03.2025 17:52 <DIR>
                                   Documents
                                    Downloads
26.02.2025 15:25 <DIR>
                                    Favorites
26.02.2025 15:25 <DIR>
                                     Links
26.02.2025 15:25 <DIR>
05.03.2025 14:59 <DIR>
                                     Music
                                     OneDrive
26.02.2025 15:25 <DIR>
                                     Pictures
```

Рисунок 8 – Вывод списка файлов с помощью %ls

```
import sys
print(sys.executable)
if not os.path.exists("test_folder"):
   os.makedirs("test folder")
   print(f"Папка '{folder_name}' создана.")
   print(f"Папка '{folder_name}' уже существует.")
Папка 'test_folder' уже существует.
import shutil
import os
file = "test_file.txt"
folder = "test_folder"
if os.path.exists(file):
   shutil.move(file, folder)
   print(f"Файл {file} перемещён в {folder}")
   print(f"Файл {file} не найден!")
# Удаление файла после перемещения
moved_file_path = os.path.join(folder, "test_file.txt")
if os.path.exists(moved_file_path):
   os.remove(moved_file_path)
   print(f"Файл {moved_file_path} удалён.")
   print(f"Файл {moved_file_path} не найден для удаления.")
Файл test_file.txt перемещён в test_folder
Файл test_folder\test_file.txt удалён.
```

Рисунок 9 – Проверка версии Python, создание папки, перемещение и удаление файла

Задание 5. Работа с Google Drive в Google Colab

Подключил Google Drive к Colab, создал и сохранил текстовый файл в Google Drive, прочитал файл из Google Drive, создал и сохранил CSV-файл вручную, используя Microsoft Excel.

```
from google.colab import drive
drive.mount('/content/drive')
file_path = "/content/drive/MyDrive/my_text_file.txt"
with open(file_path, "w") as f:
f.write("Это тестовый файл, сохраненный в Google Drive.\n")
  f.write("Вторая строка текста.")
print("Файл успешно сохранен в Google Drive.")
with open(file_path, "r") as f:
 content = f.read()
print("Содержимое файла:\n", content)
  ["Иванов И.И.", 20, "ИВТ-101"],
["Петров П.П.", 22, "ИВТ-102"],
["Сидорова А.А.", 21, "ИВТ-103"]
csv_path = "/content/drive/MyDrive/students.csv"
with open(csv_path, "w") as f:
  for student in students:
    f.write(",".join(map(str, student)) + "\n")
print("Файл students.csv успешно сохранен в Google Drive.")
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
Файл успешно сохранен в Google Drive.
Содержимое файла:
 Это тестовый файл, сохраненный в Google Drive.
Вторая строка текста.
Файл students.csv успешно сохранен в Google Drive.
```

Рисунок 10 – Работа с Google Drive в Google Colab

Рисунок 11 – Созданный CSV-файл

Ответы на контрольные вопросы:

1. Какие основные отличия JupyterLab от Jupyter Notebook?

JupyterLab и Jupyter Notebook — это инструменты для работы с интерактивными тетрадями, но JupyterLab является их более продвинутой версией. Вот ключевые различия:

1. Интерфейс и организация работы:

- Jupyter Notebook: представляет собой отдельные веб-страницы с линейной последовательностью ячеек. Окружение ограничено одной тетрадью.
- JupyterLab: это полноценная интегрированная среда (IDE) с вкладками, панелями, файловым менеджером, терминалом и редактором кода. Можно открывать и редактировать несколько файлов одновременно.

2. Работа с файлами:

。 В Jupyter Notebook можно работать только с .ipynb-файлами.

о B JupyterLab можно работать с разными типами файлов: .ipynb, .py, .csv, .md и даже .json, .yaml и .txt.

3. Многозадачность:

- В Jupyter Notebook приходится открывать несколько вкладок браузера для работы с разными тетрадями.
- В JupyterLab можно работать с несколькими тетрадями в одном окне благодаря системе вкладок и разделению экрана.

4. Поддержка расширений:

- о Jupyter Notebook поддерживает расширения, но их сложнее настраивать.
- JupyterLab имеет встроенный менеджер расширений, что делает добавление новых функций (например, поддержки дополнительных языков программирования, тем и плагинов) более удобным.

5. Гибкость интерфейса:

- 。 В Jupyter Notebook фиксированный интерфейс.
- В JupyterLab можно изменять расположение панелей, настраивать вид и работать в нескольких окнах.

6. Поддержка терминала:

- 。 В Jupyter Notebook запуск терминала требует отдельных шагов.
- В JupyterLab есть встроенный терминал, позволяющий выполнять команды прямо в интерфейсе.

7. Производительность:

- JupyterLab может потреблять больше ресурсов, особенно если открыто много вкладок.
- Jupyter Notebook проще и легче, но менее функционален.

2. Как создать новую рабочую среду (ноутбук) в JupyterLab?

- 1. В меню выбрать File \rightarrow New \rightarrow Notebook
- 2. Выбрать доступно ядро (обычно Python)
- 3. Откроется новая тетрадь, состоящая из ячеек (Cells)

3. Какие типы ячеек поддерживаются в JupyterLab и как их переключать?

Код (Code) – для написания и выполнения программного кода.

Текст (Markdown) – используется для оформления пояснений, форматированного текста и математических формул на основе LaTeX.

Вывод (Raw) – предназначен для хранения необработанного текста, например, для экспорта в другие форматы.

4. Как выполнить код в ячейке и какие горячие клавиши для этого используются?

Ctrl+Enter или Shift+Enter. В первом случае введенный вами код будет выполнен интерпретатором Python, во втором – будет выполнен код и создана новая ячейка, которая расположится уровнем ниже.

5. Как запустить терминал или текстовый редактор внутри JupyterLab?

Терминал доступен через File \rightarrow New \rightarrow Terminal, используется для выполнения команд оболочки.

6. Какие инструменты JupyterLab позволяют работать с файлами и структурами каталогов?

Используется файловый браузер для навигации по каталогам и управления файлами. Также доступны команды терминала для работы с файловой системой.

7. Как можно управлять ядрами (kernels) в JupyterLab?

В меню "Kernel" можно перезапустить, остановить или сменить ядро. Также можно управлять ядрами через терминал.

8. Каковы основные возможности системы вкладок и окон в интерфейсе JupyterLab?

JupyterLab позволяет открывать несколько вкладок и окон для одновременной работы с разными файлами и инструментами. Вкладки можно перетаскивать и организовывать по своему усмотрению.

9. Какие магические команды можно использовать в JupyterLab для измерения времени выполнения кода? Приведите примеры

Можно использовать %% time и % timeit.

%%time позволяет получить информацию о времени работы кода в рамках одной ячейки.

%timeit запускает переданный ей код 100000 раз (по умолчанию) и выводит информацию о среднем значении трех наиболее быстрых прогонах.

10. Какие магические команды позволяют запускать код на других языках программирования в JupyterLab?

Можно использовать %% с указанием языка, например, %% javascript.

11. Какие основные отличия Google Colab от JupyterLab?

Google Colab работает в облаке и предоставляет доступ к GPU и TPU бесплатно.

Colab интегрирован с Google Drive и другими сервисами Google.

JupyterLab требует локальной установки или сервера.

12. Как создать новый ноутбук в Google Colab?

Перейти в Файл → Новый ноутбук. Откроется рабочая область с первой ячейкой.

13. Какие типы ячеек доступны в Google Colab, и как их переключать?

Код (Code) – для написания и выполнения Python-кода.

Текст (Markdown) – используется для оформления документации, пояснений и формул (LaTeX).

14. Как выполнить код в ячейке Google Colab и какие горячие клавиши для этого используются?

Запустить ячейку	Shift + Enter
Добавить новую ячейку ниже	Ctrl + M B
Удалить текущую ячейку	Ctrl + M D
Изменить тип ячейки на Markdown	Ctrl + M N

15. Какие способы загрузки и сохранения файлов поддерживает Google Colab?

Файлы можно загружать вручную через боковую панель (Файлы → Загрузить файлы) или с помощью Python. Команда files.upload() для загрузки файлов с локального компьютера. Для сохранения файлов можно использовать команду files.download().

16. Как можно подключить Google Drive к Google Colab и работать с файлами?

Google Colab позволяет работать с файлами на Google Диске и загружать файлы в локальное окружение.

from google.colab import drive

drive.mount('/content/drive')

После выполнения появится ссылка, по которой нужно авторизоваться.

17. Какие команды используются для загрузки файлов в Google Colab из локального компьютера?

Файлы можно загружать вручную через боковую панель

from google.colab import files

uploaded = files.upload()

18. Как посмотреть список файлов, хранящихся в среде Google Colab?

Можно использовать команду !ls в ячейке кода для просмотра файлов в текущем каталоге.

19. Какие магические команды можно использовать в Google Colab для измерения выполнения кода? Приведите примеры

Можно использовать %timeit для измерения времени выполнения кода и % %time для измерения времени выполнения всей ячейки.

%timeit sum(range(1000))

total = sum(range(10**6))

20. Как можно изменить аппаратные ресурсы в Google Colab (например, переключиться на GPU)?

Перейти в Среда выполнения → Изменить среду выполнения.

В поле Аппаратный ускоритель выбрать:

GPU (для графического ускорения)

TPU (для ускорения в TensorFlow)

Нажать Сохранить.

Вывод: в ходе лабораторной работы были исследованы базовые возможности интерактивных оболочек Jupyter Notebook, JupyterLab и Google Colab для языка программирования Python. Была произведена работа с ячейками Markdown, файлами, с Google Drive в Google Colab. Были изучены магические команды Jupyter, а также рассмотрено взаимодействие с оболочкой системы.