DESIGN CALCULATIONS OF THE HURRICANE MOORINGS AT NAVAL STATION MAYPORT FL. (U) NAVAL FACILITIES ENGINEERING COMMAND MASHINGTON DC CHESAPEAKE. C A HUBLER DEC 84 CHES/NAVFRC-FPO-1-84(46) F/G 13/10 AD-A168 459 1/2 UNCLASSIFIED NL

MICROCOPY

CHART

FP0 8446

AD-A168 459

DESIGN CALCULATIONS OF THE HURRICANE MOORINGS AT NAVAL STATION, MAYPORT, FLORIDA FPO-1-84 (46)
December 1984

CHESAPEAKE DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON NAVY YARD
WASHINGTON, DC 20374

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

DESIGN CALCULATIONS OF THE HURRICANE MOORINGS AT NAVAL STATION, MAYPORT, FLORIDA FPO-1-84 (46)
December 1984

by

C. Allan Hubler

APPROVED BY:

SHUN C. LING P.

Director

Engineering Analyses Division

OCEAN ENGINEERING & CONSTRUCTION PROJECT OFFICE
CHESAPEAKE DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON, DC 20374

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

Summary

These design calculations are for specialized fleet moorings which will be installed for the Naval Station (NAVSTA) Mayport, It was requested that Chesapeake Division, Naval Facilities Engineering Command, Ocean Engineering and Construction Project Office, design and install the moorings for the NAVSTA. These fleet moorings are in a specialized category because they will be used to moor vessels during a hurricane. There will be three moorings that will accommodate 22 crafts ranging in size from LCM to YON that are assigned to the NAVSTA, (see pages B-2, B-3, and B-4).

The Location of the moorings is on the east bank of the St. John River, west of Blount Island. (see page B-6). Bathymetry of the anchorage area and soil conditions at the anchor location has to be confirmed by a site survey. The vessels at moor under certain environmental conditions will swing into the channel. Informal discussions with federal and state agencies implied that there would be no denial for installation, however this needs to be formalized by submitting applications for construction to the appropriate agencies.

Because the moorings are a survival type, the 100-year extreme event will be used for the design criteria. Therefore, highest, fastest mile design wind will be 80 miles per hour. The current will be 1.5 knots, (see pages A-3 and A-5). These environmental events generated a maximum static hawser load of 32 kips (see page C. 36) and a maximum dynamic hawser load of 55 kips, (see page D-4).

The final design is a free-swing riser type mooring. mooring will have four ground legs consisting of 2 inch chain so that each opposing leg can be proof loaded and verified to the design load. The anchors will be Navy stockless with stabilizers and with the flukes fixed open to 50 degrees. / There is a 10 kips sinker connected to the ground ring. The mooring systems will be cathodically protected with zinc anodes.

> NTIS CRA&I DTIC TAB U.:announced Justification Dist. ibution / Availability Codes Avail and/or Special Dist

Accesion For

i

Table of Contents

	Page
Summary	i
I. Environmental Design Criteria	A1 - A5
II. Mooring Layout and Location	B1 - B3
III. Static Environmental Loading	C1 - C37
IV. Dynamic Environmental Loading	D1 - D5
V. Mooring System Design	E1 - E9
VI. Bill of Material (Single Mooring)	Fl
VII. Appendices	
A - Static Solutions for Free-swing Moorings	Gl - G14
B - Numerical Model of Mooring Dynamics	G15 - G25
C - Dynamic Solutions	G26 - G34
D - Law Engineering Testing Co. Report	G35 - G47

《 公

See Division

March 1995 Took Took State 1995

installed for the Naval Station (NAVSTA) Mayport, Florida. It was requested that Chesapeake Division, Naval Facilities Engineering Command, Ocean Engi-

SAME AS RPT.

Jacqueline B. Riley

DD FORM 1473, 84MAR

22a. NAME OF RESPONSIBLE INDIVIDUAL

neering and Construction Project Office, design & install the moorings (Con't) 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE

202-433-3881

22c. OFFICE SYMBOL

SECURITY CLASSIFICATION OF THIS PAGE

BLOCK 19 (Con't)

for the NAVSTA. These fleet moorings are in a specialized category because they will be used to moor vessels during a hurricane. There will be three moorings that will accommodate 22 crafts ranging in size from LCM to YON that are assigned to the NAVSTA.

The location of the moorings is on the east bank of the St. John River, west of Blount Island. Bathymetry of the anchorage area and soil conditions at the anchor location has to be confirmed by a site survey. The vessels at moor under certain environmental conditions will swing into the channel. Informal discussions with federal and state agencies implied that there would be no denial for installation, however this needs to be formalized by submitting applications for construction to the appropriate agencies.

Because the moorings are a survival type, the 100-year extreme event will be used for the design criteria. Therefore, highest, fastest mile design wind will be 80 miles per hour. The current will be 1.5 knots. These environmental events generated a maximum static hawser load of 32 kips and a maximum dynamic hawser load of 55 kips.

The final design is a free-swing riser type mooring. Each mooring will have four ground legs consisting of 2 inch chain so that each opposing leg can be proof loaded and verified to the design load. The anchors will be Navy stockless with stabilizers and with the flukes fixed open to 50 degrees. There is a 10 kips sinker connected to the ground ring. The mooring systems will be cathodically protected with zinc anodes.

		 		
CHESAPEAKE D				·
Naval Facilities Engineering Command	NDW	Station:		
DISCIPLINE		E S R:	Contract:	
Calcs made by: A Hally da	te:	Calculations for		
Calcs ck'd by: MMSalig da	te: 30 Nov 84			
				
I Environmental	Design	, Cu, ter	احس	
)	•		
1. De=ign Wind				
J .				
The diagram		for this	hurrie	a
the same livere	1	150		1/1/2
the design mooring were of from the old w	la el co	1/2 1	+ which	han
The side of	1 1 4.	TI - and	4	us. the
The Boul Soyrs of	۴ مامان. ر		44	-01.114
5 111/03 -7	1 1 1 1	51/e	. 50 (4)	· S
wind data is k	alid to	usa 17	estable;	54 mg.
rebout 30 yrs of 5 miles of miles the design in	ind. B	ecanse	the m	onringe
are survival is	<i>ا</i> ھے جم ارا	ر ٥٥٠ سه ١	ir retur	n
event will be	used.	The Ma	tional	- 1, matie
Data Canter,	INCDC) did an	extra,	n e
event analysis storms in 8 c weiball distrib analysis. The	for t	ropical a	rud no.	1-tropical
storms in 8 e	د محروره	is divec	tous.	The
weiball distril	Sution	was use	d for	the
analysis. The	fastes	t inclu u	und pe	ed: 012
given below in	pl . T	Le highest	+ wind:	peeds
from any popu	alation	are use	1 -	71 <u>~</u>
design winds.		,		
Mixed Distribution	by-Tropic	al Det. Tro	AcalPist.	Design Vicas
N 70	62		80	80
NE 59	56		61	61
E 72	50		79	79
SE	51			51
	56			56
5 211	56			56
W	48			48
NW	48			48
11.44	r v s	,		page A-/_ of
				L-9 A!

Ž

Ď

GPO 885-653

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	Station:
Calcs made by: /// W. date: Calcs ck'd by: date:	Calculations for:
Page 4 a graft a	coing the monnings are
of light tonninge, the mon wind will be around t	nemy response to the
duration time. NCDC	the 20 see and wind
mile wind speed who	h has a varying
duration egnal to the	e time it takes for
all NCDC wind speed.	= had to be converted
to 30 second duration Below is an example	
for an 30 mply a	
Duration of 20 mply 7	fastest mile wind
•	
3600 == hr =	
Use figure 1.1 to s	set up proportions
second duration.	
(Fratest mile speed) x (30=	sec (frust Ratio) = 30 sec Wind Spon
90 mph x (1.32) = 83 .uph.
Now convert uph to by 1.167	ft./see by multiplying
83 mp4 x 1.4	67 = 122 ft/see
	page <u>A-2</u> of

7.

Ź

1

.

N.

Fig.

Naval Facilities Engineering Command NDW DISCIPLINE	PROJECT: Station: E S R: Contract:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:

TIME PERIOD, SECONDS

Figure 1.1 - RATIO OF PROBABLE MAXIMUM AVERAGE (GUST)
WIND VELOCITY FOR PERIOD TO ONE HOUR AVERAGE
From "Guidelines for Deep water Port Single Point
Mooring Design" NTTS AD/A -050 -182

The Pesign wind speed and direction are given below:

N - 122 + P=	3 -	86.9 FP=
NE - 89.5 /p=	JW -	86.7 Fp=
E - 120 fps	b) -	75.6 fps
CE - 79.6 fps	NW-	75.6 + PS

page A-3 of .

Naval Facilities Engineering Command NDW	PROJECT: Station: E.S.R: Contract:
Calcs made by: date: date:	Calculations for:

Design Current The design currents for the moorings are controlled by the "It dohn's river tidal current. The current direction will be routrolled by the river channel which is NNE by SIW. The correct = peed for the incorings was derived from the St. John's inlet Velocities. NAVFAC DM-26 states an inlet velocity of 3 knots and the 1984 NOAA Tidal table states, that a maximum ebb velocity is 3.1 knots for Mayport inlet. These inlet velocities need to be translated to the incorr gite. This was done by using the US Drny Engineer Waterways Experiment Station hydraulic modal investigation This study titled " Mayport. Mill core Model Study" (TR-HL-79-12) had a verification phase which included 2days of real Time relocities measurement taken close to the mooning site and at t'a inlat. Figure 1.2 shows stations land Z which were used to proportionate the inlet velocity to the mooring site. The analysis is shown below:

From WES Model Study

Station 1-Max. recorded velocity - 4.5 fps

Station 2-Max. recorded velocity - 2.2 fps

page A4 of

Naval Facilities Engineering Command NDW DISCIPLINE	Station: Contract:
Calcs made by: date: Calcs ck'd by: date:	- Calculations for:
MAYPORT NAVAL BASIN SCALES MODEL SCALES MODEL	VELOCITY SALINITY AND DYE STATIONS O TIDE GAGE O FRESH WATER INFLOW Station 7. Station 7.
	MODEL LIMITS AND PROTOTYPE STATION LOCATIONS
_	layport-Mill Cove Model Study
	current x Carrent @ Station 2

= 2.5 /t/sec NNE and 50W

Ė

}

7.7.

Ĺ

İ

GPO 885-653

page A.5 of

CHESAPEAKE DIVISION	PROJECT:			
Naval Facilities Engineering Command NDW				
Calcs made by: // // // date:	ESR:Contract:			
	Calculations for:			
Calcs ck'd by: date:				
I Mooring layout and los	ation			
There will be thre	IAVSTA Mayport. Below is			
ZZ vessels at the h	IAVSTA Mayport. Below is			
the list of vessols:	,			
17D-188 9. 10N-25	9 17, YTC-3			
Z, YC-1444 0. YON-ZG	18 475-4			
3. 40 - 204 11. 40N-27	/ <u></u>			
4 YON-88 12, YON-28	3 Zo. LCM-6-1 These vessels			
5. YC-360 13, YON-10	21. LCM-6-2) will be lifted			
6, YC-1482 14. YON-25	B ZZ. YTL -30 /out of water			
7. YC-1884 15. YTB-1	and placed on the			
8. YC-1553 16. YTB-2	crane barges.			
}	·			
The moorings will be	used by the vessels			
listed above and no ot	hers, and will be			
weed only during a	Aperating Procedure			
NAUSTA's "stand and	Operating Procesure			
for nurricane warning has a tayout of which				
vessels used which moorings. These layouts are				
shown as Moorings A, Band C.				
Figures Zil, 2.2 and 2.3 show the barges				
rafted together. This will be done with wire				
rafted together. This will be done with wire vope and there will be sea enshion type				
fenders user beti	ueen the vessule.			
The size required is 4 ftdia. * 7.4 ft long and is for each barge to barge face.				
I tor each barge to	barge face.			

page <u>B1</u> of

CHESA Naval Faci DISCIPLINE	ilities E		ng Comma	DIVISION AND THE PROPERTY OF T	ON NDW	PROJECT Station: E S R:		Contract:	
Calcs made Calcs ck'd				date: date:		Calculati			
Moo		B							
			Lengt	Bean	D.		Pu Fro.t	Ausda	Awet
l.	YON	259	165	40	8	1445	610	2520	9,880
	•					1445	610	2520	9,880
3	763	360	110	3/	4	350	230	1090	4 538
4.	YON	100	165	35	8	1270	5 34	2520	8 975
5,	40-	1484	110	32	8	694	330	1090	5792
6.	YTB	ح -	105	28	13	320	560	1790	
7.	TB	-3	105	85	13	320	560	1790	
Bury	~y 6a	Y0N-259	igure		B-3 -360		/TB-2 YC-1484		
		Y0N-281			YON-	100			' ,
				395					
T	otal	Displa	c 4 ··· e	ent -	58	44 10	7 to		
,	Area	From	+ -17	220 ft	t z +	15% 51 1:70 5	laltari Kaltari	~ / barg.	es) ::/
Į,	Uet		urfa.	- Area	~ (barg.	.) - 39	,065 ft	Ł
									0266 <u>\$ 3</u> of

Ø

Ľ

E

Proceeds December (Reseases) (Seesess) (Newsory (Read)

CHESAPEAKE DIVISION PROJECT: **Naval Facilities Engineering Command** Station: _____ NDW E S R: _____ Contract: DISCIPLINE Calcs made by: ______ date:___ Calculations for: Calcs ck'd by: ______ date: Mooring C Vessels Leigh Bea. .. Draft ▼ Autroit
04 144 64 6 1064 200 Awrida Awet 1. YDZ04 144 11,712 1800 2. YON-271 165 40 8 1445 610 25 20 2,880 8 755 3 10-1444 120 33 450 1640 6408 6544 4 40-1553 110 48 210 630 1400 5 YTB-5 105 Z8 13 560 1790 320 6 /TB-1 105 78 160 1790 13 320 Layout Figure 2.3 YTB-I YON-271 YC-1444 Buoy 7 8 YC-1553 YD-204 YTB-5 Total Displacement - 4114 long tons Area Front 1410 ft2 + 11, % sheltering (biges) Area Side + 160 ft2 + 15% sheltering (biges) Wet Surface Arealonged : 34,544 ft3

Ĩ

Ļ

page 84 of

CHECAREAVE	DIVICION	2201202		
CHESAPEAKE Naval Facilities Engineering Cor	DIVISION			
DISCIPLINE	nmand NDW	Station:	Contract: _	
Calcs made by: Al H. bl.	date: 1/20		: Load	
Calcs ck'd by:	date:	-100009	APLC	
Man				
Mooring A				
Vess.(s	Leight B	ea D V	AN Front Aus	Id- Anat
1. YD-188			800 160	
Z. YON-8	B 174	10 8 1460	800 1600	0 10,384
3 40N-5	52 165 6	10 8 1445	610 252	0 9,830
4. 40NZ	33 166	10 9 1506	610 252	0 10,348
5. YC148	2 110 3	2 8 694	330 1090	5,792
6. 4TB.4	105 Z	8 13 320	560 1790	•
Buoy, YD-188 YD-188 Total Displace	10H-258	YON-283	TB-4 YC-1482	
Area Front Area Sida	+ - 1600 ft - 5210 f	+ 15% +2 + 15%	shaltering shaltering	
			G:	HE BZ of

ğ

Ņ

ŕ

	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE	E S R: Contract:
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
900 000 Mell	The state of the s
	ST. ORIVE
HECKOONED STATE	No.
HECKSCHER	465 4. Cryp) LOCATION OF
	LOCATION OF
	E// /// LATDOWN
	STORAGE AREA
as all	
NEI MOODINGS	ANCHOR °
NEW MOORINGS	// LOCATIONS
LOCATION OF OLD MOORINGS	TOWER
	IOWER O))
/ NEW BERLIN // // //	
	°) ~~
	LOUNT % ISLAND
	of the state of th
	الم
DAMES	
P	S RIVER
DAMES PT. ST. JOHN	5
TURN	ا ا
QUARANTINE ISLAND	
LOCATION MAP GRAPHIC S	1000 0 1000 3000 CALE IN FEET
Figure 6.5	page B6 of

Ė

Naval Facilities Engineering Command	MDW	PROJECT: Station: E S R: Contract:
Calcs made by: 4 date date Calcs ck'd by: 4 date date	e:	Calculations for

The location of the morning are on
the West side of Plount Island as shown
in the vicinity map below and the
location map on the following page.
The old mooring, which are being removed
are bow/sterm type. This type of
mooring has large lateral forces for
which large anchors had to be used to
restrain this force. Unfortunately there
is not enough soil for the anchor to hold.
A free-swing type mooring will be designed
for the barges and the vessel's watch
errele and anchor location can be
seen in figure 2.5.

F

Figure 2.4

page B5 of

GPO 885-653

Naval Facilities Engineering Command NDW	PROJECT: Station: Contract:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:

Ill State Environmental Loading

The present incorrings had a bowleter, type contiguration. In talking with the NAV STA Public Works, Army Corps of Engineers, U.S. Coast Councid Jacksonville and the Vackson ville Port Luthority, they all indicated that a free-swing type incorring with the vessel swing radius into channel will not cause any problems be cause the mooring will not cause any

The procedure for designing a free-swin mooring for static loading 15 given in NAVFAC DM-26,5-95% submitted The procedure is simple but tedious and requires iterating the vessel's position will the moments acting on the vessels are zero. The flow diagrain for the Procedure is given on the itent page. All figures, graphs and tables from this page on to prage E-22 are taken from DM 25.1. -95% sub mittal.

page ___ of ___

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE	E S R: Contract:
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
PLOT 9 _{C2} , ZM ₂ PLOT 9 _{C2} , ZM ₂ PLOT 9 _{C2} , ZM ₂ PLOT 9 _{C3} , Z	GIVEN θ_{CW} $\theta_{C1} = \theta_{CW}$ CALC. EM; PLOT θ_{C1} , EM; $\theta_{C2} = 0^{\circ}$ CALC. EM; PLOT θ_{C2} , EM; OID EM, & EM; CHANGE SIGN? VES $\theta_{C3} = \frac{\theta_{C1} + \theta_{C2}}{2}$ CALC. EM; PLOT θ_{C3} , EM;
PLOT 8ch+1, PCN+1 = 9ch-2+9ch NO PLOT 9 ch+1, PCN+1 = 9ch-2+9ch NO CALC EMH+1	DID FM, & FM; CHANGE SIGN? VES PLOT ©CA , EM4 DID FM, A FM; CHANGE SIGN?
NOTE: CONTINUE PROCESS UNTIL DIFFERENCE BETWEEN O IS SMALL OR UNTIL EQUILIBRIUM ANGLE CAN BE DETI	

Ž

CHESAPEAKE DIVISION Naval Facilities Engineering Command ND	N PROJECT:
DISCIPLINE	E S R: Contract:
Calcs made by: /// date:	_ Calculations for:
Calcs ck'd by: date:	

D

The following are the colembrious for civiron mental loads on Mooring A which will have the highest loads due to the site and number of vessels using the mooring. The 5 burges in this mooring will be grouped as one vessel. The length is the total length of the longest barges plus 5 ft, added between the barges for fender on shows. The same method is used to calculate the beam. The ITB will be calculated separately and then those forces will be added to the barge group.

shows the coordinate system and the name and current Loads.

page ___ of ___

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE	E S R: Contract:
Calcs made by: date:	
Calcs ck'd by: 4/95 date:	Calculations for:
valts the by uate	
BOW STERN 180° MOTE: DEGREES REFER 1	
	page < 4 of

Ē

Ø

٠.

Ľ

F

THE RESERVED CHESAPEAKE DIVISION PROJECT: **Naval Facilities Engineering Command** Station: _ DISCIPLINE E S R: _____ Contract: Calcs made by: date: Calculations for: Calcs ck'd by: date: Lateral wind load. Lateral wind load is determined using (a) the following equation: $F_{vv} = \frac{1}{2} \rho_a V_v^2 A_v C_{vv} f_{vv}(\theta_v)$ WHERE: = lateral wind load, in pounds = mass density of air = 0.00237 slugs per cubic foot at 68°F = wind velocity, in feet per second = varies = lateral projected area of ship, in square feet=5210 ft = lateral wind-force drag coefficient $f_{vw}(\theta_w)$ = shape function for lateral load = wind angle = varies The lateral wind-force drag coefficient depends upon the hull and superstructure of the vessel: $C_{yw} = 0.92 \left[\left(\frac{v_S}{\overline{v}_R} \right)^2 A_S + \left(\frac{v_H}{\overline{v}_R} \right)^2 A_H \right] / A_y$ - lateral wind-force drag coefficient V_{c}/V_{c} = average normalized wind velocity over superstructure lateral projected area of superstructure only, in A_S square feet = 1000 ft = wind velocity on super structure - average normalized wind velocity over hull = lateral projected area of hull only, in square feet 4210,12 A_H = lateral projected area of ship, in square feet = reference wind velocity at 33.33 feet above sea level

 $\frac{v_S}{v_R} - \left(\frac{h_S}{h_R}\right)^{1/7}$

The values of v_S/v_R and v_H/v_R are determined using the following equations:

page <u>S</u> af

Fru = 4.338 Vw2/21.00 -0.05 31.500)

`.-

144

. .

ے۔ کا اوال

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE		
Calcs made by: date: Calcs ck'd by: date:		
(b) Longitudinal wind lost termined using the following equation:	ad. Longitudinal wind load is de-	
$F_{xw} = \frac{1}{2} \rho_a v_w^2 A_x C_{xw} f$	_{κω} (θ _ω)	
WHERE: F = longitudinal wind load	i, in pounds	
Pa = mass density of air =	0.00237 slugs per cubic foot at 68°F	
V = wind velocity, in feet	t per second	
A = longitudinal projected	d area of ship, in square feet = 1600++	
C = longitudinal wind-ford	ce drag coefficient	
$f_{xw}(\theta_{w})$ = shape function for longer	ngitudinal load	
The longitudinal wind-force drag contype and characteristics. Additionally, cient is provided for headwind (over the (over the stern: 0 = 180 degrees) conditioned drag coefficient is designated C drag coefficient is designated C xwS.	bow: 0 = 0 degrees) and tailwind	
Because the barge gro shape over the bow Clus = 0.7	or sterm, CXUB=	
longitudinal shape functions over the headwind a The incident wind angle longitudinal force, a	tion, tem (Ow), differs and tail wind regions. that produces no net lesignated Owe for	

has a Owe

The barg- goop

Č.

Ź

ŗ

page < '7 of __

CHESAPEAKE DIVISION PROJECT: **Naval Facilities Engineering Command** Station: DISCIPLINE E S R: _____ Contract: Calcs made by: _/// Hank date: Calculations for: Calcs ck'd by: . date: Ships with distributed superstructures are characterized by a "humped" cosine wave. The shape function for longitudinal load is: $f_{xw}(\theta_w) = \frac{-\left(\sin \delta - \frac{\sin \delta}{10}\right)}{1 - \frac{1}{1}}$ $\chi^{(-)} = \left(\frac{\theta^{(-)}}{30^{\circ}}\right) \theta^{m} + 30^{\circ}$ $\delta_{(+)} = \left(\frac{90^{\circ}}{180^{\circ} - \theta_{wz}}\right) \theta_{w} + \left(180^{\circ} - \frac{90^{\circ} \theta_{wz}}{180^{\circ} - \theta}\right) \text{ for } \theta_{w} > \theta_{wz}$

As explained above, use $360^{\circ} - \theta_{w}$ for θ_{w} when $\theta_{w} > 180^{\circ}$.

D

$$\delta_{13} = \frac{90^{\circ}}{90^{\circ}} (\theta_{w}) + 90 = \theta_{w} + 90^{\circ}, \Theta_{w} < \Theta_{w} = 0$$

$$\delta_{14} = \left(\frac{90^{\circ}}{180^{\circ} - 90^{\circ}}\right) + 20^{\circ} + \left(180^{\circ} - \frac{90^{\circ}(100^{\circ})}{180^{\circ} - 90^{\circ}}\right)$$

$$= \Theta_{w} + 90^{\circ} \qquad \Theta_{w} > \Theta_{w} = 0$$

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE	ESR:Contract:
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
following equation: Maryw = \frac{1}{2} \rangle a V \frac{2}{4} V \frac	
A = lateral projected	area of ship, in square feet = 5210ft2
L = length of ship - 4	051
$C_{xyw}(\theta_{w}) = normalized yaw-momentum$	ent coefficient
-0.10 -0.10	
-0.15	90 120 150 18
	DIRECTION, Ow, IN DEGREES page 2 of

GPO 885-653

Ė

Ú

....

ŗ

CHESAPEAKE DIVISION	ON PROJECT:
Naval Facilities Engineering Command	NDW Station:
DISCIPLINE	E S R: Contract:
Calcs made by: date:	— Calculations for:
Calcs ck'd by: wms date:	
, ==	5210:405) Cxrw (Ow)
b. Current Load.	Cario (Gir)
the following equation:	Lateral current load is determined from
$F_{yc} = \frac{1}{2} \rho_{w} v_{c}^{2} L_{w}$ WHERE: F_{c} = lateral current load,	• • •
yc	
V _c = current velocity, in f	= 2 slugs per cubic foot for sea water
L = vessel waterline lengt T = vessel draft, in feet :	
C _{yc} = lateral current-force	drag coefficient
θ = current angle : γα	
The lateral current-force drag coeff	
C _{yc} = C _{yc} 0 + (C _{yc} 1 -	$C_{yc} \propto e^{-k} \left(\frac{wd}{T} - 1\right)$
WHERE: C = lateral current-for	ce drag coefficient
Cyc = limiting value of 1 for large values o	ateral current-force drag coefficient f $\frac{\text{wd}}{\text{T}}$
$\begin{array}{c c} C \\ yc \\ 1 \end{array} = \begin{array}{c c} limiting value of 1 \\ for \\ \hline T \end{array} = 1$	ateral current-force drag coefficient
e = 2.7182818	
k = coefficient	
wd = water depth, in fee	
T = vessel draft in fe	page <u>Clo</u> of

= vessel draft, in feet: 8 ft.

Ł

Ŋ

E

CHESAPEAKE DIVISION PROJECT: ____ **Naval Facilities Engineering Command** Station: _____ NDW DISCIPLINE E S R: _____ Contract: Calcs made by: /// Hull. date: Calculations for: ____ WMS Calcs ck'd by: date: 12.0 10.0 8.0 0.70 6.0 4.0 cycloo 0.50 2.0 0.5 0.6 0.7 0.8 Figure 3.4 BLOCK COEFFICIENT, \$ The block coefficient is defined as: = vessel block coefficient WHERE: = vessel displacement, in long tons: 606 tons L_{wL} = vessel waterline length, in feet ... 5 ft. = vessel beam, in feet ·) · = vessel draft, in feet = 8 +1 $\phi = \frac{35(6062)}{405(105)8} = 0.624$ 1 w/B = 405 = 3.86

Cyc = 0.46

D

1

F

page <u>CII</u> of __

CHESAPEAKE	DIVISION	PROJECT:
Naval Facilities Engineering	Command NDW	Station:
DISCIPLINE		E S R:
Calcs made by: ///	date:	Calculations for:
Calcs ck'd by:	date:	
7.0 6.0 3.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	To the section coefficient of the section coeffi	essel $\frac{Cplul}{\sqrt{T}} = 0.6 \ge 4 (405)$ $= 89$ t p section $Cycl_1 = 5.$
Because the Cm	a barge has	a square midship section page <12 of

É

1.4.4.

1

X

PROJECT: DIVISION CHESAPEAKE Station: _____ **Naval Facilities Engineering Command** NDW E S R: _____ Contract: DISCIPLINE Calcs made by: /// Hulf date: Calculations for: ____ NAS Calcs ck'd by: _ date: 4.00 BLOCK-SHAPED HULL 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.7 Figure 3.6 BLOCK COEFFICIENT, Q $C_{yc} = 0.46 + (5. -0.46) 2.7182818$ = 1.4 Frc = 1/2(2) 1/2 (405) 8 (1.4) 511 0e = 4536 Ve sin De

Y

7

į

page 42 of

	N PROJECT:
Naval Facilities Engineering Command NDV DISCIPLINE	
Calcs made by: // date:	E S R: Contract:
Calcs ck'd by: date:	- Valuations 101.
cedures are taken from Cox (1982). Lo using the following equation:	
F = F x form + F x fric	tion + F x prop
WHERE: F = total longitudin	al current load
F = longitudinal cur	rent load due to form drag
F x friction = longitudinal cur	rent load due to skin friction drag
F = longitudinal cur	rent load due to propeller drag = O, for barges
Form drag is given by the followi	
$F_{x \text{ form}} = -\frac{1}{2} / v_{c}^{2} B$	T C cose c
WHERE: F = longitudinal current	load due to form drag
water = mass density of water	r = 2 slugs per cubic foot for sea
V = average current spee	d, in feet per second = $2.5 + \frac{1}{2}ec$.
B = vessel beam, in feet	=105 ft.
T = vessel draft, in fee	t = 8ft.
C = longitudinal current	form-drag coefficient = 0.1
e = current angle	
Fx form = - /2 (2) Ve 105	(8)(1) cos Oc
= -84 V2 Co=	0c

Y.

þ

<u>:</u>

Ė

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE Calcs made by:	PROJECT: Station: Contract: Calculations for:
Friction drag is given by the folo $F_{\mathbf{x} \text{ friction}} = -\frac{1}{2} / \mathbf{v}_{\mathbf{c}}$	² S C _{xca} cos 0 c
water	ater = 2 slugs per cubic foot for sea
S = wetted surface are = (1.7 T L wL) +	$(\frac{35 D}{T})$
42	in feet = 8ft of vessel, in feet = 40 fft. hip, in long tons = 5252 ton;
R = Reynolds number =	V _c L _{wL} cosθ _c / 2 /
<pre> p = kinematic viscosi feet per second) c = current angle </pre>	ty of water (1.4 x 10 ⁻⁵ square
The formula above for area will not be use group. The actual we soft the combined bargoe se used.	for wet surface ed for the barge treates, 46,484 ft., will
Fxfriction = 2(2) Ve 2 16,484 (10) = -Ve 2 3,486. / (log Ve	775 9 1/2 405 605 00 -2)2 COS 0 c 1.4 x103 2.8 43 x103 cos 0 c -2)2 (05 0 c page 6 c of

7,

ij

. . .

1

2

P. C

CHESAPEAKE Naval Facilities Engine DISCIPLINE	ering Command NDW	F.S.R. Contract:
Calcs made by: Calcs ck'd by:	/	Calculations for:
F,	V2 C= Oc (34	- +(log Ve Z. 993 KIO7 COSAe -2)2)
		Current yaw moment is determined
using the follow	ring equation:	'⊌L
where: M xyc	ring equation: $ \frac{M}{xyc} = F_{yc} \left(\frac{e_c}{L_{wL}} \right) I $ = current yaw moment, in = lateral current load, = ratio of eccentricity	in pounds = 4536 Ve sin Ge of lateral current load measured along of the vessel from amidships to
where: M_{xyc} $\begin{pmatrix} F_{yc} \\ \frac{e_c}{L_{wL}} \end{pmatrix}$	ring equation: Maryc = Fyc (ec/LwL) I current yaw moment, in lateral current load, ratio of eccentricity the longitudinal axis	in pounds = $4 = 36 \sqrt{2} \sin \theta_c$ of lateral current load measured along of the vessel from amidships to

Ì

The value of (| ec) is derived from the graph on the following page. The vessel curve that will be used is the small auxiliary floating dry dock (AFDL). This carrie is used over the other curves because the AFDL has the same under water hull shape res barges.

Figure 3.7

Mayo = 4536 /c = 5100 (ec) 405

= 1.837 × 106 /c = 5100 (ec)

These are all the formulas used to calculate the environmental loads on the barges.

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW	
DISCIPLINE Calcs made by: // // date:	· · · · · · · · · · · · · · · · · · ·
Calcs made by: // ///// date: date:	Calculations for:
· · · · · · · · · · · · · · · · · · ·	it.e loads on the YTB
for the YTB. There	to e the details for
17B - Length 105' Bean, 28' Draft 13' Displacement 3: Area Side 17 Front 5:	20 tons 90 ft ² 60 ft ²
Wind loads Fyw: 1/2 Pa Vw? Ay	Gu fyu (On)
$\frac{V_{H}}{V_{R}} = \left(\frac{3}{3333}\right)^{\frac{1}{2}} = 0.76$	09
$\frac{V_3}{V_R} = \left(\frac{16}{33.37}\right)^{1/7} = 0.9$	
<u>-</u>	+(0.704)2/630)]/1790 = 0.6457
Fyr = 1/2 (0,00 237) 1/12 (1790)	(0.6457) (5110 Qu - 0.05 Sin 50 w)
= 1.370 Viv 2 5111 Gw-	0.05 51.1 500

Z

page (12 of .

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW	
DICCIDI INF	
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
Exw - 1/2 Pa Vw A, Can	trul in
Cano: 7	stant superstructures long tudinal shape below:
such as TIE the	love tuding these
finetion is given	below:
Friv(On) = - co	<i>=</i> Ø
Ow= = 80° if the =.	open state of the 13
forward of mid ships	2
d= (90) to w to	, Ow Owa
= 90 Ow fo	, Ou < 80°
1 = 1200-0m2) (Om -On	12) + 40° for Cw 7 Owz
) + p° for Ow 780°
= .7/Qw-80°) +70	o^
Fxw = 1/2(000237) /w2(560)(.7)(-co= p)
= 0.1645 Vu2/-e	25 (?)
group are small there of	one they will not be ming the moments moment crossing

E

555

D

page <u>C19</u> of

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	PROJECT: Station: E S R: Contract:	
Calcs made by: date: Calcs ck'd by: date:	Calculations for:	
Fyc : 1/2 Pw Ve Luis	T C/. =1.A.	
,	rel, - (rela) e - [/ wd - 1)	
wd - 22 - 1.7		
D = 100 = 35/	29	
Lin = 105 - 3.7	5	
Use limiting Kal	" = for y= = 0,4	
$C_{p} = \frac{b}{C_{m}} = \frac{29}{.85} = \frac{1}{.85}$		
Cin = 0.85 from	at tag shape	
Colui 157 = .34 Use limiting Val	(105)//13 = 9.9 Le for Cyc' = 2.0	
K= .75 Cye = 0.4 + (2-0.1) 2.7	75(1.7-1) 182818	
= 1.346		
Fyc = /2(2) Ve2(105)(13)(1.346) 511 Be	

. 1

D

.

ŗ

page Con of ___

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE Calcs made by: date: Calcs ck'd by: date:	PROJECT: Station: Contract: Calculations for:
Fre= From + Tx Ann	+ (*x , 2 · 0, 2
Fator : - 2 Par Ve	BT Cx cb Cos Ge
= -1/2 (2) Ve ² = -36.4 Ve ²	(28)(13)(1) cos 0 c
Fxfriction = /2 Pos Ke	5 Crea cos Ac
3= 1,7 (T/L L, = 1.7 (13)105	+ 35(320) = 3182
Cxea = log Veluice	=056e - 2)2
Fxfriction = 1/2 (2) Ve? = - (109 Ve?	(3182) (log Velwicos de - Z) 2 COS Qe 7 Vc2 COS De 5 1106 COS De - Z) 2
Propeller drag is the form drag of shaft. Propeller drag is given by the f	the vessel's propeller with a locked following equation:
$\mathbf{F}_{\mathbf{x} \text{ prop}} = -\frac{1}{2} / \mathbf{v}_{\mathbf{c}}^{2} \mathbf{A}_{\mathbf{p}}$	C cos0 c
WHERE: F = longitudinal current l	load due to propeller drag
mass density of water water	= 2 slugs per cubic foot for sea
V = average current speed,	, in feet per second
A = propeller expanded (or feet	developed) blade area, in square
C prop = propeller-drag coeffic	tient (assumed to be 1)
9 current angle	page <u>c</u> of

Ė

D

ŗ

CHESAPEAKE

Ė

D

「我の一大な一大な一大な」のは、なる。など、 など、

DIVISION

Naval Facilities Engineering Command DISCIPLINE

NDW

PROJECT: _____ Station: _____

E S R: _____ Contract: _

Calcs made by: 1/1/4/21

date: date:

Calculations for: ____

A is siven by:

$$A_p = \frac{A_{Tpp}}{1.067 - 0.229 \text{ p/d}} = \frac{A_{Tpp}}{0.838}$$

= propeller expanded (or developed) blade area, in square feet

 $\mathbf{A}_{\mathrm{Tpp}}$ = total projected propeller area, in square feet

p/d = propeller pitch to diameter ratio (assumed to be 1)

$$A_{Tpp} = \frac{L_{wL}}{A_{R}}$$

WHERE: A = total projected propeller area, in square feet

= waterline length of vessel, in feet

- vessel beam, in feet

= area ratio, found in Table 1

TABLE 1 Ap for Propeller Drag

	Area Ratio,
Vessel Type	A _R
estroyer	100
Cruiser	160
Carrier	125
Cargo	240
Canker	
Submarine	125

YTB has a very small AR and a YTM has Ap = 27 ft = 0 a PTB's Ap will be larger Use AR = 75 for YTB

page 5 2 of

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE Calcs made by: date:	Station:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:
Ap = 372 - 166 xx	
Fxprop = - /2 (2) /2 (4	(6.8)(1) ca= 0 e
= - 46.3 Ve ca	5 Ce
Fxc = - Ve 2 cos De (36.9	+ (log Ve (75 × 109) cos Ge - 2) = + 46.8)
=-V2 co= A= [83.2 +11	238.7 100 Ve (7.5 x10.6) cosac -2)2
Now all the formulas the vessels moored of iterative process pay mooring group position when wind and or on, it.	at Mooring A. Now and
The environment	d coming out of the ec and the river The current NE or 22.50 gran on page 2
Qui = Pri - Pur = 11.25	

calculate Fyer for Piv = Piv, = -11.25°

Ě

Ż

Ė

page sof _

Ü

page __ of

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE Calcs made by: /// Hall. date:	E S R: Contract:
Calcs ck'd by: date:	Calculations for:
01:00 01:01 - 1.	
EM, = Mxyr + Fyr (1/2) Lwl = =-430600 - (-5858) = 755,691 ft 165	(.5) 705
Znd Try Ocz : 0, Qur = 0	, -Pwe: 0-22.5° = -22.5
Fywag. = 4.338/w2 (31.00) = - 22,870 165	0.95
FYINTE = 1.37 VW \ 5.1.80 = -7,220 165	-0.05 211.50w)
Fyw Tot == 30,090 16,	
Fre for Or, -0°, =0	
Fyr = -30,090 16:	
Mxxw for Qw = -275 Mxxw = 2500Vw Cxxw(8 =-1,302,350 ft	Ω w)
Mare for 0- 0, =0	
Mxyr = -1,302,350 f+16,	
≤M2: Mxxr - Fyr (1/2) Lu1 =-1,302,310-(-30010)(1/2) = 4,790,900 ft.16;	(105)

7

Ď

ŗ

page 些 of

CHESAPEAKE DIVISION	
Naval Facilities Engineering Command NDW	Station:
Calcs made by: date:	E S R: Contract:
Calco akid by: Arth C	Calculations for:
Calcs ck'd by: date:	
EM, +0 EMz did no Ocz = Ocw = 2 Owz = Ocz - Owc	t eliange =1911; Ez,50 = 22.50 = 00
Fyw = 0 Fyc barge = 4536Ve = 11. = 10,350 lb=	e.
Fyc 418: 12:74 31.62 = 4390 165 Fycror = 15240 165	
Mxyw for Owe : 0°, 0	
Marc for Gez 22.50 Marc = 1.837 x16 V. 3 = 702,990 ft May = 702,990 ft-16,	'br
EMZ = Mxyr - Fyr (/2) lwi = 702990 - (15240) 2,383,110 ft).5 ((05)
Third Try - Certon !!	1 25°+ 22.5° 16.875° - 22.5° = -5.625°
Frubago = 4.3:8/2/311, 0.	C.75

Υ.

Ź

P

page <u>< 36</u> of

CHESAPEAKE DIVISION	
Naval Facilities Engineering Command NDW DISCIPLINE	Station: Contract:
Calcs made by: // /// date:	Calculations for:
Calcs ck'd by: 9/01.5 date:	
F/10 to = 137 Vw (Per = -1600 16= F/10 Tot6660 165	-0.05 Sin 500)
Mxyw = 2500 Kis (xxx) = 2500 Vw2 (-0.01 = - 3,721,000 ft))
Maye = 1837 x10° Ve = 52 6,600	
May = Maxin + 11 xxe =	-3,194,100 ft.16,
Fyering 8230 165	<u></u>
F/c yrg = 1837 Ve 312 = 3230 /65	0.
Fyr = -3330 165	
= Mxyr - Fyr (2) Lul -3/44,400 - (-3330 (- 2,520,000 ft	
EM3 and EM2 di	d not change = 14.0625 1.0625°-22,5°: -8.4375° Dage Citof
	page <u>Colof</u>

Ž

Ĭ.

اجا

Ħ

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	PROJECT: Station: Contract:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:
FINTER : FYWbarge + FYWY = -10:20 165	= 5.703 Va (31-8-0.05 = 1.50 a
FYCTO = 9680 16	6373 Vez 311, Be
Fyr = - 440/65	
Mxxxx for Pw. = -3137 Mxxxx = -744,200 ft-16:	5°, Caylo = - 0.02
Mxye for Ge 4 = 1906. Mxye = 4 ZGBOO ft-165	-, [] 0.153
Mxyr =-317,400 ft-165	
= M4 = Mxrr - Frr (2)(1m1) = -313400-1-440(.5) = -228,300 ft-165) 405)
The graph on the follo of the EM with refer graphical solution she	rene e to Oe. The
: 0w = 0e - 0we = 1	3.5 - ZZ.5 = -9°
The loads will now b. Ow = 90 and Oc	e calculated using = 13.50

Ĺ

Ľ

14

page <u><</u> ≉ of

CHESAPEAKE Naval Facilities Engineerin	DIVISION g Command NDW	Station:
DISCIPLINE Calcs made by:	// date:	E S R: Contract:
Calcs ck'd by: Yas	date:	Calculations for:
5 2 nd 4 3 EM(+) 2 1 EM(-) 2		θ _c ≈ 13.5° 15° 20° 4 th Try
	tia 38	Date Server of

Y.

1

-

Ě

F

という はいという はい かいしょう とうこうしゅう かんしゅう

	CHESAPEAKE DIVISION PROJECT:			
DISCIPLINE F. Contract:		:		
		date:	Calculations for:	· · · · _ · _ · _ · · _ · · _ ·
Calcs ck'd	by: 4/1/15	date:		
	: - <i>5</i>	230 15:	-97 - 0.05 = 10 1490 - 0.75	
	E 12916 = 1	2600 (bs	0.75	
,	EyluTot =	- 10,830 lbs		
F,	110lm.g. = =	1.526 (22) (-(-23,140 lbs	(38(-0.1 = 1.,5(A1°)))	d=-9+90°
,	Fxwyre -	0.4645(122) ² -6300 16=	-cos(8019°)	
4	- XWTotal -	2 7,940 1b=		
	Frebange	4536(2.5)° = 6600 160	5/2 13,50	
	Fye ITB	= 1837 (2.1) = 5 = 2680 165	/n /3,5 °	
	· -	9280 lbs		
	Fxchige	= - 2.5 cms 1	3.5° (34+(107/2.5) 2.8°	93 x101 cos 13.5°-2)
	Fre YIB = -	2.5 co= 13.5 [83.2 = -550 lbs	2387 - + log(2.5)(7.5x105) cos13,50-	[5(5-

È

Ü

1

Ë

F

CHESAPEAKE DIVISION	PROJECT:
DISCIPLINE , ,	Station: Contract:
Calcs made by: date: date:	Calculations for:

Fx = 1-tal = 1633 163

 $F_{YT} = -.0,830 + 7280 = -1550169$ $F_{XT} = 29940 + 1,680 = -31,620169$ $f_{Amser} = 1536 + 31620^{2}$ $= 11550^{2} + 31620^{2}$

The houser load calculation takes about Alire to no with someone that is experienced and the is any for one wind direction. There are 9 wind directions to do. The volue of the answer is aso limited in that it toes not give a feel for the loads no the inserts move, hence a state or among We in Ches Div developed some enfinance to do this lengthy -alandation on a compater. This hand rateulation was done to validate the software. On the pages that follow, this softium e and the output from it will be explained.

page <u>< >//</u> of _

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	Station:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:
Soft work for solution	tion of knower loads
The soft ware a	un the previous
hand calendation.	The metput is in
the mome it and	graph which shows
as the vessel is	rotated 360°
A single graph is	city, and direction.
and carrent, velo	city, and direction.
tabas about it	lor a single graph
Anexample of	no output for the
problem which was	donce by hand is shown
an the following	onts for the other loading
cof the graph muty	onts for the other loading
	own just to validate
the software. The	e a evo moment
occurs when the	e vessel has a heading
nf 8° or Qw =-8° a	d Oc = 14.5°. /k.
There is some	e. load is 31.7 kips.
1 1 1 1 1	
The Mad sur	a manuary show that
the soft ware is wit	The less than 570 of
the solt ware is wit	thin less than 570 of the less than Dol To ad this validating

D

Ĺ

page Carof _

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLIME	E S R: Contract:
Calcs made by: date:	Calculations for:
Calcs ck'd by: Mas date:	
136	/
/	/
+ /	/
80+ / Fa	KIP 9)
+ / / "	\ \ \
	/
group /	
Mn* \	\
٧ 40+	/
7 60t Mn *	
20	
0 11 11 11 11 11 11 11 11 11 11 11 11 11	++++++++++++
0 60 120 1 8 0	240 300
SHIP AZIM	UNH (DEC)
Sitti Aziri	51/1026/
	DDENT ODEED/EDOX A/DEOX 2 5 22 5
WIND SPEED(FPS),A(DEG)=122.0 0.0 CU	
184 16.E+004 -7.E+005 42.E+004 -9.E+ 184 1.E+004 -3.E+005 -5.E+005 47.E+	003 71.E+002 -3.E+004 -1.E +003 31.7 002 -9.E+003 30.E+00 3 6.E+ 002 31.6
£M=008°	Hawser Load - 31.7 hips
h	
lyare 3.9	
* Mn 15 a normalized dimension	
to indicate Dero momente	page <33 of

E

ġ

近のま できる

í

Į,

CHESAPEAKE Naval Facilities Engineering C DISCIPLINE	ommand NDW	PROJECT: Station: Contract:
Calcs made by:	date:	Calculations for:
Calcs ck'd by:	date:	

È

Aguari-dynamie solution un be deresimen using the graphical solution shown previously When a ressal is in a mos wind is up, the slip swings or flors this. This deviation from the direction that the wind blowsean be ces much n + 200 from the direction of the wind. This amount of flagging is a function of many things such as Laughte of linuser, speed of wind, in, stiffies: Speries system and others, A 200 deviation will be analysis.

FIGURE 3, 10 Manner in which a ship swings in the wind when at anchor.

page < 34 of

Naval Facilities Engineering Command NDW	PROJECT: Station: Contract:
Calcs made by: /// date: date:	Calculations for:

D

_

1

The additional lange are in the ships

flags, is can be derived from the graphical
output of the entrumere. Twenty degrees

are added to and subtracted from the
zero moment crossing. From the graph below
one can see that the +200 from zero moment
increased the load to 54 kips.

Naval Facilities Engineering Command	IDW	PROJECT: Station: E S R: Contract:
Calcs made by: //// date: date:		Calculations for:

All & wind direction: were run with

either flooding or -thing secret. The

static solution for zero indied to

was obtained and then ±20° indied to

that zero moment crossing, thus

obtaining a guasi-dynamic solution

from the flagging. From this a

polar plot was made of the hower

loads of both the static and guasi
dynamic solutions, which is shown below.

CHESAPEAKE DIVISION	PROJECT:
	Station:
Calcs made by: /// ///////////////////////////////	E S R: Contract: Calculations for:

Ď

The last figure strong as strong are etiminal loading for the incorring. The highest loads use a 51 kips for the East direction. This directionality will have to the accounted for in the incorring orrentation.

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
<u>DISCIPLINE</u>	E S R: Contract:
Calcs made by: date:	Calculations for
Calcs ck'd by: date:	

IN Pynamic Environmental Loading

Wave Action Dynamies

The moorings are located in a

tiver where there is a limited

fetch for which waves can be

generated. Significant wave heights

were predicted using COE, Coastal Engineering

Research Center, Coastal Engineering

Technical Note -I-6, 3/81. A figure from that

report is shown below.

Figure 4.1 Forecasting Curves for Shallow-water Waves. Constant Depth = 25 Feet.

The results are that the North direction has BOMPH wind but only 3600 ft. of fatch generate a 1.9 ft wave, and the Southwest has 6340ft of fatch but only 56 uph winds generate a 1.75 ft wave.

Ħ

CUECADEAVE	ONI PROJECT
CHESAPEAKE DIVISI	
Naval Facilities Engineering Command	NDW Station:
DISCIPLINE Calcs made by: date:	E S R: Contract:
Calca and by AMS	——— Calculations for:
Calcs ck'd by: date:	
These limited waves will not ha	we a dynamic effect on the moorings
Wind Action	
,	with the dynamic effect that wind
	A one degree of freedom
	ooring dranamies was created
in-house of Mr. W-eeing	.This paper can be found in
	analysis is another technique
	hauser loads. When compared
the load response is rea	nes as shown on figure 4.3,
	a wind spectrum. This spectrum
	del of the real time wind
which is the forcing &	tin the model was derived
	estual Division, Promodings of the
ASCE, June 1968 titled Gu	
	he spectrum was also used by
"/2 udelines to Decount	- Port single Point Mooring
Design"	
	so seen in Ligare 4.2
on the following pa	ge. The remaining,
7 graphs Lot the	ather directional
loads can be see	2., in the Appendix C.

From these grapheal outputs a hauser load rose was ereated forthe

į-

page P2of ___

CHESAPEAKE DIVISION PROJECT: _ **Naval Facilities Engineering Command** Ü DISCIPLINE NDW Station: _ Caics made by: _____ E S R: _____ Contract: date: Calcs ck'd by: Wms Calculations for: date: 900 800 700 600 18.7-Highest Dynamic Load TIME (SEC) 200 400 300 2002 Ebb 100 20 13 0 10 ហ HVMSEK LENSION(KIPS) 0 page P

Ě

Naval Facilities Engineering Command NDW	PROJECT: Station: E S R: Contract:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:

Ö

1

dynamic response. It was platter on the load vose created previously and can be seen below. The dynamic load was greater than the greasi-dynamic in one case only. This was the North direction and it only increased by I kip over the 54 kips of the greasing and it only increased by I kip over the

Naval Facilities Engineering Command NDW DISCIPLINE	PROJECT: Station: E S R: Contract:
Calcs made by: date: Calcs ck'd by: date:	Calculations for

The conclusions from the state and dynamic survenmental loading of the mornings are that the maximum load will be 55 kips from the North and East and 30kips from the South and West. Because these loads are relatively low, all moorings will be doingn't and built for a load of 55 kips from any direction.

The dynamics fire the movement of the mooring group is considered to be minimal because the waves are small and the barges will be rafted together with wire rope. Therefore the dynamic loading dree to the articulating vessel group was not considered in this realysis.

P

page 🖳 of 🗕

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	Station:
Calcs made by: date: Calcs ck'd by: date:	Calculations for:
V Marry Tystem Dazy	4
11 Anchor selection	Data
data Army Carps	->ures of gentalimical
Port he Horrity and	TOE gentinational
long vibra cores	derived from 20ft.
adja-e.	ed 20 # of black
organie silti	
1.1.2 The Jackson	ville Port Distraction data
a Lived Fridge	and the ather set
The money site	f data. The overview
of the geotechnical	13 shown in figure
5,11.3 Law Figures.	g investigated the
5.1.1.3 Law Figures. mooring site mille results can be four	and in Appendix D.

3

F 115

· · ·

1.5.4.

è

Ë

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	PROJECT: Station: Contract:
Calcs made by: date: date:	Calculations for:
Geoterhaical	Overview.
2500 FF Old Moor 50 at 4 Site	New Mooring 2,500 ft Site North MSL
-10 Wate.	-
- 70	Very Soft 5.14
-30	-
-40 Jand)
-50	
-60 Linestone	
-70 Sketch _ Figure 5.1	
1.1.4 Condusions The skatch al	pove shows a
georeanical prospetion silt at all geotechnical did not have there of an all and them. There was a	The very soft al investigation - ites ength analysis performed site on the South of
to that did have she	incorings are adjacent par strangth values.

E

Ş

E

では、10mmの人を含める。10mmの人がないのでは、10mmの人がないのでは、10mmの人がないのでは、10mmの人がないのでは、10mmの人がないのでは、10mmの人がないのでは、10mmの人がない

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE Calcs made by: date: Calcs ck'd by: date:	Station:
The soils at this is a souling this which strates as at the line strates as a strate with depth at 27 According to NCEL	his the same hoping site. hoping site. The top 16ft C PSF at the top tolow the top. gth increases PSF / ft. Technical Note-
N. 1588 an increase In soil strength of sufficient for a Novy with stabilizers a The next question softi-ient thickness a stockless ancho titled "Design Guide for Anchors", Technical Not will be need to se	ing in mad. tockless anchor ill be used. is if there is find to hold r. The NCEL Report
capacity, Hu.	The factor of sofety, FS, for stockless anchor is 1.5

33

page 🗀 of

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE			
Calcs made by:	date:	Calculations for:	
Calcs ck'd by:	date:		
Anchor System Holding Capacity. T _M (KIPS)	To the transfer of the transfe		
	2		
2 3	4 5 6 7 8	9 10 20 30 40 Veight, W _A (KIPS)	

Š

Figure 5.2 Holding capacity at mudline - mud (anchor-chain system).

The selected anchor is a 20 kip stockless with fixed fluxes opened to 50°.

page <u>F1</u> of _

Naval Facilities Engineering Command NDW	PROJECT: Station:
Calcs made by: // // // date: date:	E S R: Contract: Calculations for:

Ē

Veterinine - - southerkness is asequate The normalized plake top penervation for a stockless in mud is 3. This amultiplied by the Llake length of 6.8 ft nives a required soil thickness of 20.4 ft. The silt layer at the incoming site is any about 18 ft. thick. After consulting with NCEL and using a mathematical medel for predicting hold capacity, as new soil thick ness was calculated to be 15 ft of 12 p=+/ft =oil, which has an altimate holding expectly 9,300 bs. Therefore the ZOKIP stockless and him is approved if the soil depth and shear strength if the anchor location meet the above criteria. Because ZOK anchors are available only on the West Const. a 25 kip stockless nichor will be used, For the 25k stockless to have a holding capacity of 55+10=, '9 ft.
of 311+ must be present at all anchor locations. Once again the flakes will be set open at 50°.

page --- of ---

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	PROJECT: Station: E S R: Contract:
Calcs made by: date: date:	Calculations for:
Chain Selection	
Tu, Ultimate copon x Resign Load,	ty = 1.15 x Factor of Sufety.3
Tie = 1.15 x3 x 55k	= 18 9.75k
134 in stind link Gra of 249 kip and would because of ava stud link chain w	de 2 has a breaking strength be sufficient but ilability 2" grade 3 ill De cesed.
Retermine tens	sion at vessel
$T_D = \omega(k+d)$	
w = chain o k = His/w d = water o	= 55000/31.9 = 1724 lepth = ZZ'+3'+1d= Z5
TD = 55800 11	65
TU = F5 XTp = 3 x 5580 = 167,400 /3	
To for Z" Grade 3	Chain 15 45 4,000 lbs
¿. Chain is ok	to use

GPO 885-653

Ď

1.7.

.

ř.

	
CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE	E S R: Contract:
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
The chain length class D Mooring who for each ground le chain. There will all water weight sinks ground ring.	e. Il loe a standard reli has 2½ shots g plus the riser so be a lokip r attached to the
Length of chain 15 25' which multiplied by r equals about 800 lbs. 7' books at site wi	
	1 (475)2(5)64-7700(boog wt.)
= 17	TKIPS
Cothodia Protection	
un painted	Cpec A-18001) produces

E

P.

		mmand NDW	Station:
alcs made by: _ alcs ck'd by: _	MMS	date: date:	Calculations for:
<u> </u>	0 1110/11	necd in	sea water
	·		- a 25016 anoda
			10 61.4 ft = 16 yrs.
		,	
•	A 250	16 zine a	node with continuity
, . ,	re wil	i de lose	~

É

3

Č

4

page FR of

Naval Facilities Engineering Command NDW		PROJECT: Station: E S R: Contract:
Calcs made by:	date:	Calculations for:

Concluding Requirements

È

1. Adequate 5.1+ thick ness of 19 ft.
has to be determed at each anchor location.

2. The ground legs will be oriented
North, South, East and West.

3. At the time of installation the
anchors will be proof loaded
to design inco of 55 kips for a
perior of 15 minutes.

page 17 of ___

CHESAPEAKE DIVISION	PROJECT:
Naval Facilities Engineering Command NDW	Station:
DISCIPLINE	E S R: Contract:
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
II Bill of Material for	Que mooring
11 15 1	104
Iten Deserption	Qty
1 25kip Stockless Anchor w/	· · · · · · · · · · · · · · · · · · ·
Z Chan Z' Grade 2 1 shot 3 Chan Z' Grade 3 1/2 sh	+
4 Okip In water Weight 5	1 . 1
5 Ground Ring Z'elian.	· · · · · · · · · · · · · · · · · · ·
6 Swivel 2"	5
7 Detachable Link, 2"	13
8 Anchor Joining Link 2	10
9 Detachable Link 2/2"	
10 Zine Anodes 250 lbs	9
Il Hose Clamps	320
12 Continuity Wire 18"1	WAC 1000
This list does not ear	de-s (4'x7.4'10.9) 10
	,
posts for morning h	ard ware.
; i	
1	
	naga af

Á

Percentification (Section (Sec

CHESAPEAKE Naval Facilities Engineering DISCIPLINE		PROJECT: Station: Contract:
Calcs made by:Calcs ck'd by:		Calculations for:
		
199		
an.	F	(KIPS)
1		
60 		
+ 0+ \	M	
20+		
0 + + + + + + + + + + + + + + + + + + +	+++++++++ 120 18	
	SHIP AZI	MUTH (DEC)
WIND BREED(FRS).A(D	Æ6)≈ 39.5 45.0 Ct	URRENT SPEED(FPS).A(DEG)* 2.5 22.5
33 [1.8+004 48.8+0 [1.5 -1.8+004 54.8+0	04 29.E+004 79.E+ 04 -4.E+005 -5.E+	+002 -5.E+003 -1.E+004 -1.E+003 18.1 +003 86.E+002 16.E+003 17.E+002 17.8

7

Î.

page 63 of.

Possossas (Pacacaca paradada) (Possossa)

CHESAPEAKE Naval Facilities Engineering Comm DISCIPLINE	DIVISION and NDW	PROJECT: Station: E.S. R [.]		_
Calcs made by:				
Calcs ck'd by:	date:			
136 + 80+ + 40+ + 20+ + 0 + + + + + + + + + + + + + + + + +	M F (1) 120 18 SHIP AZIM	\$ 540	++++++	
ลไซD SREED(FFS),ล(ปียีรี)=1 3 13.5+004 -7.5+005 42 184 -1.5+004 -2.5+005 -	(20.9 m.3 €) 8.8+004 -9.8 8.8+005 42.8	RRENT (PEED (FF) -003 71.2+002 + -002 -1.2+003 B	S),A(DEG)= 2.5 3.E+004 -1.E+003 0.E+003 15.E+002	31.7 31.6

Ë

Ņ

Ĺ

ŢŢ

CHESAPEAKE Naval Facilities Engineering C DISCIPLINE	PROJECT: Station: Contract:	
Calcs made by: Calcs ck'd by:	Calculations for:	

È

Ü

N

F

إدار المججد فاضعها والمرابية بالمرابية

Appendix A - Static Solutions for Free-Ewing Moorings.

page 🖅 of ___

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE	
Calcs made by: date:	Calculations for:
Calcs ck'd by: date:	
100 + 80+ + 40+ + 20+ 0 ++++++++++++++++++++++++++++++++++	i++++++++++++ 30 240 300
SHIP AZI	MUTH (DEG)
	URRENT SPEED(FPS).A(DEG)= 2.5 22.5
37 12.8+004 13.8+005 89.8+004 30.8+ 256 -4.8+005 15.8+005 -7.8+005 -1.8+	+903 -2.E+004 -3.E+004 -1.E+003 32.4 +004 23.E+003 19.E+003 11.E+002 31.0
	page <u>& +</u> of

Š

The seal seed and

...

CHESAPEAKE Naval Facilities Engineerin	DIVISION IN SECTION IN	PROJECT: Station:
DISCIPLINE Calcs made by:		E S R: Contract:
Calcs ck'd by:	date:	Calculations for:
19 0		
T		
80 +		
+		
60	F	(KIPS)
+	· ·	
40		
T \	<u> </u>	
20t		
- -		
0 +++++++	· ,	H++++++++++++++ 30 240 300
/	•	MUTH (DEG)
/	J. 11. 11.2.1.	NOTITIOE CO.
WIND SPEED(FPS).AC	DEG)= 79.6135.0 C	JRRENT SPEED(FPS).A(DEG)= 2.5 22.5
35 '5.E+004 67.E+	004 66.E+904 31.E-	+603 -2.E+004 -8.E+003 -8.E+002 11.3 +304 27.E+003 12.E+003 48.E+001 13.3
- 1.0 - 1.0 1000 - 2.12 ·	900 5,67000 2.6	1004 In this out the 1991 No. 12 No. 12 St.
		page 55 of

E

Ä

F

DISCIPLINE Calcs made by:	CHESAPEAKE Naval Facilities Engineerin	DIVISION g Command NDW	PROJECT:
Calcs made by:			
100 + 80 60 - 40 40 - 40 - 40			
### 80; ################################	Calcs ck'd by:	date:	
### 80	100		
#IND OPEED(FPS), ACDEG) = 36.9180.0 CURRENT SPEED(FPS), ACDEG) = 2.5 22.5	•		
### ##################################			
### ##################################	-		
F(KIPS) 1 20	60 1		
20			
20: 	<u> </u>	F	(KIPS)
O ++++++++++++++++++++++++++++++++++++			
0 60 M20 180 240 300 SHIP AZIMUTH (DEG) AIND SPEED (FPS), ACDEG) = 86.9180.0 CURRENT SPEED (FPS), ACDEG) = 2.5 22.5 148 81.5+003 83.5+004 -7.5+005 23.5+003 -0.5+004 -1.5+004 19.5+002 13.3	÷-		
SHIP AZIMUTH (DEG) WIND OPEED (FPS), A(DEG) = 86.9180.0 CURRENT SPEED (FPS), A(DEG) = 2.5 22.5 148 81.8+003 83.8+004 -7.8+005 23.8+003 -0.8+004 -1.8+004 10.8+002 13.9	-	+++++++++	-+++++++++++
WIND CREED(FPS),ACDEG) = 86.9180.0 CURRENT SPEED(FPS),ACDEG) = 2.5 22.5 148 81.5+003 83.5+004 -7.5+005 23.5+003 -0.5+004 -1.5+004 10.5+002 13.9	0 60	180 18	0 240 300 \
		SHIP AZII	NUTH (DEG)
148 81.5+003 83.5+004 -7.5+005 23.5+003 -3.5+004 -1.5+004 10.5+002 13.5 347 -3.5+304 74.5+004 86.5+004 -8.5+003 16.5+003 15.5+003 -1.5+003 16.5	WIND SPEED(FPS),AC)EG)≈ 86.9180.0 Cl	RRENT SPEED(FPS).A(DEG)= 2.5 22.5
- 347 - 2.21304 74,21304 30.21304 - 6.21305 - 3.21300 - 3.21300 - 3.21003 - 10.2	 148 81.8+003 83.8+6 147 22 5+304 74 5+6	004 -7.5+005 23.5+	003 -1.6+004 -1.5+004 10.6+002 13.9
	1947 C.E. (1944 74.21)	104 30.E1304 6.E1	000 0.2/000 0.2/000 7.2/000 70.2

q

paragraph reserves bases and a

8

F

page <u>66</u> of

CUPCADEAVE	DIVICION	
CHESAPEAKE	DIVISION	PROJECT:
Naval Facilities Engineering Comma DISCIPLINE	and NDW	Station: Contract:
Calcs made by:	date:	Calculations for:
-	date:	Calculations for.
19 0		
•		
80 1		
+.		
60 ₁		
- 		
4Gr	F	(KIP S)
+/	M	
207		
+		
┃ ┃ ┃ ╊╊╋╋	<u> </u>	
0 60	120 18	7
	SHIP AZI	WITH CIECO
	3:111 //21	45.11(BE6)
winD SPEED(FPS),A(DEG)= 7	75.627a.u de	RRENT SPEED(FPS).A(DEG)= 2.5 22.5
127 -7.£+004 -1.£+006 -3.	E+005 21.5+	007 (2.5+004 11.5+003 48.5+001 13.2
517 14.6+604 -6.6+005 66. 	E+004 -2,E+	004 06.E+003 -9.E+003 -7.E+002 9.6
		page <u>G-7</u> of

. ئ

S.

Ľ

CHESAPEAKE	DIVISION		
Naval Facilities Engineerin DISCIPLINE	ng Command NDW	Station:	_ '
Calcs made by:	date:	E S R: Contract:	
Calcs ck'd by:		Calculations for:	
10 0			
- T -			
80 			
4.		-	
60 1			
+ /			
40 _T	√, M		
	F	(KIPS)	
+ /			
201	$\setminus \bigvee$		
4.			
0 ++++++ 0 60		 	
	SHIP AZN	MUTH (DEG)	
ł		URRENT SPEED(FPS),A(DEG)= 2.5 (22.5
155 -1.2+005 -6.6+ 345 55.2+003 -5.6+	-005 -8.5+005 12.5- +005 87.5+004 -1.5	+003 -2.6+004 12.6+003 13.6+002 1 +004 17.6+003 -1.6+004 -1.6+003	15.3 12.9
ł			

*

Ü

É

page <u>62</u> of

CHESAPEAKE Naval Facilities Engineering	DIVISION Command NDW		
DISCIPLINE			Contract:
Caics made by:			
Calcs ck'd by:	date:		
10 0			
· · ·			
80 +			
•			
60 † ∙	Γ.	et a de majoria	
+	Γ'	(KIPS)	
4 0 <u>+</u>			
70		\	
20+			
+			
0++++++			╌╊╌╂╌╂┈╊┉╆┉┧
0 60	120 180	0 2,40 3	100
	X		
	SHIP AZIM	1UTH COEGS	
		/	
).A(DEG)= 2.5 202.5
93 -2.2+004 11.2+00 991 14 F+004 50 F+01	05 -5.8+005 -2.8+	-004 37.5+003 to	.£+003 62.E+001 11.1 .£+003 -9.E+002 9.6
881 (7)E1007 (0,E100	14 / / - ET904 ZJ.E=	1903 te+304 -y.	.6+003 -9.6+002 9.6
			page <u>69</u> of

È

Ä

Ľ

j 7

CHESAPEAKE	DIVISION	PROJECT:
Naval Facilities Engineering		Station:
DISCIPLINE		E S R: Contract:
Calcs made by:		Calculations for:
Calcs ck'd by:	date:	
100 100 100 100 100 100 100 100	date:	(KIPS)
MIND SPEED(FPS).A(DE	:G)= 75.6270.0 CU	RRENT OPEED(FPS),A(DEG)= 2.5 202.5
 ⊼ก -9 ह∓กก4 97.ह+8€)4 -8.£+005 -1.£+	004 17.8+003 12.8+003 14.8+002 13.9
233 :6.E+004 66.E+00)4 81.E+004 21.E+	004 17.8+003 12.8+003 14.8+002 13.0 003 -1.8+004 -1.8+004 -1.8+003 13.8
		page G10 of

THE REPORT OF THE PROPERTY OF

Ë

Ž,

44. 14.

Fi

the properties appropriate the

of excess and expenses the second of the property between the part of the property of the part of the

CHESAPEAKE Naval Facilities Engineering Comm	DIVISION and NDW	PROJECT:	_
DISCIPLINE		E S R:	Contract:
Calcs made by: Calcs ck'd by:		Calculations for: _	
19 8			
₹'			
80 i.			
; '1 '			-
60)			
T /			
40+	F	(KAPS)	
/			
20			
1			
0 +++++++++	+++++++++	 	- + + + + + + + + + + + + + + + +
t) 60	120 / 18 M		300
	SHIP AZI	MUTH (DEG)	
ABND SPEED(FFS),A(DEG)=	79.6135.0 C	RRENT SPEED GERS	3).A(DEG)= 2.5 202.5
184 13.8+004 -7.8+005 88 887 -1.8+005 -8.8+605 -8	.E+004 -1.E+	304 18.8+003 -	'.E+004 -:.E+003 :4.1
10/ 12/7/0 0,2/000	*E1007 E*E*	70 5 71. C 7984	5.c.+003 \L.E+002 \6.3
			page <u>G ()</u> of

<u>.</u>

Ĉ.

F

CHESAPEAKE DIVISION Naval Facilities Engineering Command DISCIPLINE	NDW Station: Contract:
Calcs made by: date:	——— Calculations for:
Calcs ck'd by: date:	
10 0	
- -	
89 †	F(KIPS)
+	
60 1	
<u> </u>	
40+	
20+	
÷ \	
0 +++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++
SHIP	AZAMUTH (DEG)
M	
WIND SPEED(FRS).ACDEG)= 86.3225.	.o current deceptars).Acded= 0.5 202.5
.6 +1.8+005 51.8+004 -4.8+005 -1 112 28.8+003 47.8+004 26.8+004 8	-5.E+000 06.E+002 15.E+003 17.E+002 16.9 32.E+002 -4.E+003 -1.E+004 -1.E+003 17.4
	page <u>< / 2</u> of

COCCUPATIONS TO SEE TO SEE TO SEE THE SECOND
į,

CHESAPEAKE	DIVISION	PROJECT:	
Naval Facilities Engineering Comm			
DISCIPLINE			_ Contract:
Calcs made by:	date:		- Contract:
Calcs ck'd by:			
196 	FO 18 120 18 18 18 18 18 18 18 18 18 18 18 18 18	MUTH (DEG) RRENT (LPS) (1000)	
			page <u>& 12</u> of

Ė

Ò

F

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE				
				_
Calcs made by:	date:			
Calcs ck'd by:				
10 0				
' 1'				
80 1				
+				
60+		(KIPS)		
+				
40tr				
+	· · · · · · · · · · · · · · · · · · ·			
20+				
2010				
	┡╶╄╌╊╌╊╴╊╌╊╴╊╌╊╶╊╶╊			
0 +4++++			+++++ 300	
	SUTA AZZE	ACTUADED)		
	SHIP AZI: M	MUTH (DEG)		
	الرز			
0010 SERED(FRS),4(8)66)= 96.9190.J CU	RRENT AREED(F)	PS),A(DEG)= 2.5 ,	202.5
-1.2+965 -4. <u>6</u> +0)05 -4.2+n05 42.2÷	-802 -7.E+808	15.6+003 17.6+002	:7.2
191 18.8+004 -4.ਈ+0	J05 32.E+004 -6.E+	àò3 57.Ē+òò∂ -	-1.6+604 -1.E+603	17.0

Ė

Ö

ŗ

page <u>614</u> of

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE			
Calcs made by: Calcs ck'd by:			
valus on a sy.	uato.		
			-
A PP	endix B-Num	nerical Mode	ed of Mooring
A PP	endix B-Num	nerical Mode Dynamic	d of Mooring
A PP	endiz B-Num	nerical Mode Dynamic	ed of Mooring
A PP	endix B-Num	nerical Mode Dynamic	d of Mooring

* 6.5

Ď

Š

FA Ç

page GLE of .

	PROJECT: Mooring Dynamics - Long Waves Station:
nicridi inc	P e D. O. A A.
Calcs made by: Seelig date: 9 DEC 82 Calcs ck'd by: date:	Calculations for: Problem Statement &

Forces on mooring consist of two types, static and dynamic. Static forces can be determined from DM 26 or computer programs, such as STATMOR. The purpose of this analysis is to predict dynamic mooring line forces for the case of long waves.

In this simple analysis the system consists of a mooring, vessel, steady and dynamic forces. Steady Forcing

E

Steady forces must first be determined and the entire mooring line system by statically analyzed with the CHESDIVNAVFACENGCOM catenary program to determine the load deflection curve.

In this analysis the load-deflection curve is represented by the the power formula:

$$F1 = K1*X1 + K2*X1^2 +$$
 (1)

where X1 is the deflection from the neutral position and F1 is the horizontal component of the mooring line force at the vessel. Here only the first two terms in Eq (1) have been used.

page <u>6 16</u> of

CHESAPEAKE

Calcs ck'd by: _

E

2

DIVISION

Naval Facilities Engineering Command DISCIPLINE

NDW

Calcs made by: Seelig

date: 9 DEC 82

PROJECT: __Mooring Dynamics ______
Station: ______
E S R: _____ Contract: ______
Calculations for: ______

In this analysis the ship is represented by a mass, MO, that includes the ship mass, M, and the added mass of water around the ship. This total mass is given by:

$$MO = C_H M \tag{2}$$

where C_{H} is a mass coefficient determined from the curves on the following page (found in DM-25.1).

The analyzed system is then treated as a damped forced mass restrained by a non-linear spring:

V is the velocity of the vessel at any instant in time and A is the acceleration of the mass (only sway, surge motion are considered in this analysis).

U is the velocity of water at the vessel induced by long waves, such as harbor oscillations or surf beat. These long waves may be considered as "shallow water" waves, so:

$$U = a \sqrt{\frac{g}{d}} \sin(2 \Re t/T)$$
 (3)

where a is the long wave amplitude, g is the acceleration due to gravity, d is water depth, t is time and T is period of the long wave(see the "Shore Protection Mannual", US Army Corps of Engineers, CERC, 1977).

If V is the velocity of the vessel and U is the velocity of the water, then the relative water velocity is given by:

$$W = U - V$$

A.

4.5

Ď

[4]

(after DM-25.1, Figure 47)

Recommended Ship Mass Coefficients (added mass of water included)

5,

þ

Calcs made by: Seelig date: 9 Dec 82

E S R: _____ Contract: _____ Calculations for:

Calcs ck'd by: _____ date: ____ Calculation

The drag force on the vessel due to relative water motion is taken as:

$$F3 = \frac{\rho}{2} C_d A W |W| \qquad (5)$$

where ρ is the fluid density, A is the projected area of the body in the direction of flow and C_d is a drag coefficient. Typical values of C_d for idealized shapes are given in the figure on the next page.

Steady forces are due to uniform wind and currents, F5, and a "wave drift force" due to the change of wind wave height around the ship. This wave drift force, F4, can be determined using the method of Remery et al. (1973, OTC Paper No. 1741).

A sketch of the modeled system with forces is shown below:

U= Current relocity

W = U-V

page <u>6.9</u> of ___

CHESAPEAKE Naval Facilities Engineering C		PROJECT: Mooring Dynamics Station:
DISCIPLINE		E S R: Contract:
Calcs made by:Seelig	date: 9 Dec 82	Calculations for: Drag Coefficients
Calcs ck'd by:	date:	

Drag Coefficients for Idealized Shapes

(after Roberson and Crowe, <u>Engineering Fluid Mechanics</u>, Houghton Mifflin Co., Boston, Mass., 1975)

page 620 of ___

CHESAPEAKE DIVISION PROJECT: Mooring Dynamics

Naval Facilities Engineering Command NDW Station:

DISCIPLINE

Calcs made by: Seelig date: 9 Dec 82 Calculations for:

Calcs ck'd by: date:

At any given instant in time the sum of forces acting on the body is:

$$F = F1 + F2 + F3 + F4 + F5$$
 (7)

where the location is XI and ship velocity is V. To find the ship position at some very small time step into the future, Δ t, the equation of motion is first used to find the ship acceleration:

$$A = \underbrace{F}_{MO} \tag{8}$$

The change in distance, ΔXI , is then found from the following finite-difference equation:

$$\Delta XI = V \Delta t + A (\Delta t^2/2)$$
 (9)

and new vessel location given by:

Ė

73.33

$$x_1 = x_1 + \Delta x_1 \tag{10}$$

The above proceedure is applied in very small time steps to determine the vessel position and horizontal forces in the mooring as a function of time. In this analysis, the forcing is assumed to be periodic to allow easy computation on a desk-top computer. This is assumed to be adequate for a first "quick look".

Probably the most difficult portion of the analysis is determining the vessel coefficients to be used as input. These can be obtained from DM26 or other sources of marine architecture. When in doubt, I recommend that several values of the coefficients over a reasonable range be tested to determine if the value significantly influences results.

page 621 of ___

CHESAPEAKE Naval Facilities Engineering	DIVISION Command NDW	PROJECT: _ Station:	Mooring Dynamics
DISCIPLINE Calcs made by: Seelig Calcs ck'd by:		E S R:	Contract: for: Program Listing
	10 FLOTTER 13 1 20 OPTION PASE 30 DEG 30 DIS TABODALA 30 DISP "SHIP D 30 INPUT MO 30 DISP "MASS C 30 INPUT C 30 M0=C#2240/32	1 (300F.Z. 185.L735, 66FF.CH+"	

ジョーシス

- 17.7. - 17.7. -

120 DISP "CROSS-SECT AREAUFT2"". 130 INPUT 69 DISP "DRAG COEFF" 150 170 IMPUT C 190 DISP "STEADY FORCE/K)", THEUT ES 190 220 DISP "MOORING Ki=". 230 IMPUT LI 40 DISP "+2="; 250 280 280 290 INFUT 12 D198 MIRKSEC M. าไท้คับวายอ 300 P1≈P2+ 1 301 DISP "MAX WELOCITY/FPS>=" 210 18897 H2 320 €=1 94+€+A9>:900 338 F=1 331 333 1 = 0 02=jee0 73=0 337 340 F4=0 341 F4≃ñ 习费例 医皮盘医毒牛奶后 网络羊头一种1+30甲头,1×3-44株2半年底。。。 360 2##2/ T9≃ 04#P1 370 ទី80 ក្ន≈កម+កម+ ក្ .÷ _ 790 9-7 391 05: ជម្ងៃ ុងរ≕ ភ្+ ភូពិថ្វ 410 F8=0 411 56=-1690 412 07=1000 430 T0≈0 430 M=6 440 FOR I=1 10 994 450 T0≈T0+T9 460 U=82*8IN(9*70) 476 V=(%1-%0) T9

page <u>622</u>0f

CHESAPEAKE	DIVISION	PROJECT:	Mooring Dynamics
Naval Facilities Engineerin	g Command NDW	Station:	
DISCIPLINE	20.0	E S R:	Contract:
Calcs made by:Seelig		² Calculations	for: Program Listing
Calcs ck'd by:	date:		
471 NØ=N1			
473 N2=AB9(%1)			
473 81=X2/X1 480 F1=-((K1*)	 2+k2*x2*X2*X2)*51)		
490 W=U-V			
510 F3=0*W*ABS 520 A=(F1+F3+F			
530 X1=X0+V*T9 542 T3=T3+T9	!+A≭T8		
	N GOTO 640		
550 N=I MOD 10			
563 IMAGE 4(DO			
570 M=M+1			
586 T(M)=T3 590 X(M)=b			
595 F1=-F1	and production of the contract		
600 IF F1>01 T 601 IF F1>01 T	HEM NOFI(M) HEM 01=F1		
602 IF F1(02 T 610 FkM1=F1			
620 IF F10F8 T	HER FR≅=Fi		
640 IF M1>D6 T 641 IF M1 <d7 t<="" td=""><td></td><td>:</td><td></td></d7>		:	
642 NENT I		·	
643 DY= S¥(Q1+) 648 PRINT USIN	02) G 657 - 01.02,66	r.	
. .			
559 (UHGE "(="	.000 / " F=" -0000	Đ	
653 IMAGE 4(D0) 660 OLEAR	00 000		
670 FEN 1 @ GC:			
680 SCALE -109 681 S3= 1≭P2	,T(M),−5,30		
684 XAXIS 0,83		708 769	I2= 75≭M 01=01+2
686 YAXIS 0.5/ 688 MOVE T(4)/		710	MOVE > 5.01
692 FOP I=4 TO	i 1	715 716	LABEL "F" X0=X(I2)-2 5
693 DRAW T(I). 694 NEMT I	- • 1)	717	MOVE T(12),X6
695 MOVE 0.0 696 FOR I=1 TO	t.1	722	LABEL "0" %0=T+M)* 4
		705	村直以見 火直 こうさ
698 IF I0=0 TH 699 IF 18\0 TH	EN MOVE TKI (1001) EN DRAW 1(1) (101)	740	END "F&U Vo T
TAM NEWT I	± r s = altricomen = 1 t ± it = 2 it = 2 it ± it ± it		

•

Fi

704 MOVE 105,25 706 LABEL "25"

esessons recekted perception perception because percept and the contract perception and the contract perception

I Facilities Engineering Command NDW			Contract:
	• —-		s for: Example
	e case of a large submar Sasebo Harbor, Japan.		e attached to mooring
GIVEN:	The ship displacement in The added mass coefficion The ship cross-section The drag coefficient is	ent is 2.6 (see th flow area is 700 s	quare feet.
FIND:	The maximum force in the reversing current with wave is taken as 450 seproduces a 5 kip steady	2.6 fps maximum. conds. A light wi	The period of this nd is assumed, which
NPUT:	The above information i format:	s input to the pro	gram in the following
	1324 1483 2 6 1403 756 1440 1 2	: 00884404++ :3-8801 AREA F1 : 008FF1 :00 P0808++ 10 :000 F1#1	

D

.

CHESAPEAKE	DIVISION	PROJECT: Mooring Dynamics
Naval Facilities Engineering		Station:
DISCIPLINE		E S R: Contract:
Calcs made by: Seelig	date: ²² Dec 82	Calculations for: Example
Calcs ck'd hv	date.	

OUTPUT: One line of printed output is available that includes:

1.11

maximum and minimum horizontal forces at the buoy (kips)

ਤਿਸ਼ਕ ਤੂਰ ਬੋਦੇਸ਼ ਤੂਰਵਾਉ maximum and minimum excursion of the buoy (feet)

The watch circle is the extent of this excursion, which is 14 feet for this case.

A plotted time history of the forcing currents, U, (shown by the dashed line) and the resulting forces (F) are also produced (see below).

In this example the first wave is predicted to produce little force in the mooring because of interia in the system. However, subsequent waves produce significant forces due to resonance in this case. More detailed analysis shows that the magnitude of the maximum current, wave period and magnitude of the steady forcing are all inportant in determing the amount of dynamic forcing and motion of the vessel.

page <u>625</u> of

CHESAPEAKE DIVISION Naval Facilities Engineering Command NDW DISCIPLINE		Station:	_ Contract:	
Calcs made by		date:		
Calcs ck'd by	·	date:	-	
٨	1	_		
API	<i>sendix</i>	C - Dynami	e Solutions	
		·		

25

Ŋ

Ĉ

page 6.26 of

MICROCOP'

CHART

45° Wind Azimuth

THE CHENCE PROPERTY SAME

Ď.

1863 KIRI

11.00 COM

)

SAME RESERVED

135° Wind Azimuth

| 1000 À

CANADAN CASSESS (STANSON

Z D

Section 1888

econoge transpose messaces topopoles.

225° Wind Azimeth

×.e

Ţ

COLLECTION ISSOSSES PROSESTA

多多

×

Witters

E DE LE LA MINISTER DE LA SERVICIO DEL SERVICIO DE LA SERVICIO DEL SERVICIO DE LA SERVICIO DEL SERVICIO

270° Wind Azimuth

. $\hat{\mathbf{z}}$

P

315° Wind Azimuth

E SE ... Ý 人名 人名 医三种 Ď ANNUAL PROPERTY OF THE PROPERTY OF

五

CHESAPEAKE Naval Facilities Engineering Comm DISCIPLINE	nand NDW	PROJECT: Station: Contract:
Calcs made by:		Calculations for:

Z

Ź

P

Appendin D- Law Engineering Testing Co Report

page 635 of ___

3901 CARMICHAEL AVENUE P.O. BOX 5726 • JACKSONVILLE, FLORIDA (904) 396-5173

DLCURY & ASSOCIATES. INC. CONSULTING ENGINEERS

Movember 2, 1982

Frank Shumer, Architect 10695 Beach Boulevard Jacksonville, Florida 32216

Attention: Mr. George G. Gooden

Report of Exploratory Borings

Mayport Hurricane Moorings at Blount Island

Jacksonville, Florida LETCO Job No. J-4033

Gentlemen:

Law Engineering Testing Company has completed a series of exploratory borings for the subject project. This report briefly outlines our exploratory techniques and presents the data obtained.

We are pleased to be of service on this phase of your project. If you have any questions concerning this report or desire assistance in evaluating the data, please contact us.

Very truly yours.

LAW ENGINEERING TESTING COMPANY

James A. Horton, P.E. Senior Geotechnical Engineer

Registered, Florida 23315

Louis E. Hay (RIA) Lewis E. Hay

Engineering Geologist

Distribution: Frank Shumer, Architect (2) D loughy & Associates (1)

JAH/LEH:/kk

FIELD EXPLORATION

As shown on the Site Location and Field Exploration Plan, the site of the borings is located in the old St. Johns River channel on the northwest side of Blount Island in north Jacksonville, Florida. For this exploration three soil test borings were made to the designated depth of 50 to 55 feet each below the existing water surface at the locations requested by your office. The attached Site Location and Field Exploration Plan also shows the locations of all the borings. The borings were located in the field by our drill crew using tape measurements from features such as the existing dolphins. The water surface elevations at the boring locations were established by measuring the level of water relative to the Blount Island Wharf at the time of drilling.

Soil Test Borings

12. P.S.

The soil test borings were made in general accordance with ASTM D-1586, "Penetration Test and Split-Barrel Sampling of Soils." A three-inch I.D. casing was initially extended from slightly above the expected high water level to below river bottom. A rotary drilling process was subsequently used and bentonite drilling fluid was circulated in the bore holes to stabilize the sides and flush the cuttings. At regular intervals, the drilling tools were removed and soil samples were obtained with a standard 1.4 inch I.D., 2.0 inch 0.D., split-tube sampler. The sampler was first seated six inches and then driven an additional foot with blows of a 140 pound hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is designated the "Penetration Resistance."

Page 637

Representative portions of the soil samples, obtained from the sampler, were placed in glass jars and transported to our laboratory. The samples were then examined by an engineer in order to verify the field classifications.

For detailed information about the soil conditions encountered at each boring location, the attached Test Boring Records should be consulted. The horizontal stratification lines on these records indicate the approximate boundary between soil types and in some cases the transition may be gradual. It should be understood when reviewing these records that the soil conditions could vary between the boring locations.

Pa - 100

ATTACHMENTS

1

14,0034

Pay a GAR

water table at time of drilling

J-4033 JOB NO. _

LAW ENGINEERING TESTING CO

Pago 641

LEP		ELEVAS	· .	PENETRA	TION-BLC	WS PE	RFT		
FT 40.0	-	-38	Weight	96 Rod	30 4	o. •<	801	00	
42.0	SOFT dark blue-grey slightly clayey SILT								
	SOFT brown slightly sandy SILT	-43	•				\coprod		
46.5			L						
	Brown cemented to slightly cemented silty fine SAND with zones	-48					444	į	į
	of brown slightly silty fine sand (Silty sandy LIMESTONE)								
5.0		-53							
	BORING TERMINATED								
		-		+					
	NOTE: Borehole cased to 35 feet.								
		-	<u> </u> 	-		H		1	
				+					
ì	<u></u>		PAGE TW	O OF TW	0 (2 0	f 2)	ш	J	_
) 				TEST			IG F	REC	OI
- (0)	RING AND SAMPLING MEETS ASTM D-1506 REDRICLING MEETS ASTM D-2113 METRATION IS THE NUMBER OF BLOWS OF 140 LB, HAMMER			8	ORING	NO	8-1		_

DATE DRILLED 10/18/82

J-4033 JOB NO. ____

LAW ENGINEERING TESTING CO.

Pag . 642

LEPT!!	DES JRIPTION		ELEV.,		PENETRA	ATION BI	LOWS	PER	FT		
0.0		 _	+ 3	MSL	10 . 2	0 30	40 .	60	80	100	_
			- 2								
WATER			- 7								
6.0			-12								
			-17				_				
VERY S sand s	OFT dark grey SILT with eams in lower 6 feet		-22				-				
sand s			-27	Weight	of Ro	d	-				
24.5	OOSE grey fine SAND with	-	-32	•	+		+				
silt s	eams		-37	PAGE ON	E OF T	WO (1	of :	2)			
					TES	T BC	DR	IN	G	REC	C
BORING AND SAMP CORE DRILLING ME PENETRATION IS TO FALLING 30 IN REG	LING MEETS ASTM 0-1506 ETS ASTM 0-2113 IE NUMBER OF BLOWS OF 140 LB. HAMMER UIRED TO DRIVE 1 4 IN, I.D. SAMPLER 1 FT					ORING				2	

LOSS OF DRILLING WATER

J-4033

LAW ENGINEERING TESTING CO.

Peg 4 6 43

-42 -47			. 26	30	40	60	80 1	100
								100
								100
								100
-47								100
							Ш	1
					1	1 I	HH	
3								
						\parallel		1
			-			H		1
	-					H	$\frac{1}{1}$	ł
	PAGE	TW0	OF TV	10 (2	of	2)		
	7 / / / / /						G F	REC
		PAGE					PAGE TWO OF TWO (2 of 2) TEST BORING	PAGE TWO OF TWO (2 of 2) TEST BORING F

PENETRATION IS THE NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30 IN REQUIRED TO DRIVE 1 4 IN LD SAMPLER 1 FT

WATER TABLE AT TIME OF DRILLING

BORING NO. ___ 8-2 DATE DRILLED 10/19/82 J-4033 JOB NO. _

LAW ENGINEERING TESTING CO

UNDISTURSED SAMPLE

water table at time of drilling

LOSS OF DRILLING WATER

DATE DRILLED 10/13/82 J-4033 JOB NO. _

LAW ENGINEERING TESTING CO. Page 645

LAW ENGINEERING TESTING CO

KEY TO SUIL CLASSIFICATION

Correlation of Penetration Resistances with Relative Density and Consistency

	NO. OF BLOWS, N	RELATIVE DENSITY
ANDS AND CRAVELS		
	0 - 4	Very Loose
	5 - 10	Loose
	11 - 20	Firm
	21 - 30	Very Firm
	31 - 50	Dense
•		
	Over 50	Yery Dense
······································	NO. OF BLOWS, N	CONSISTENCY
ILTS AND CLAYS		
	0 - 2	Very Soft
	3 - 4	Soft
	5 - 8	Firm
	9 - 15	Stiff
	16 - 30	Very Stiff
	31 - 50	Hard
	0ver 50	Very Hard
	(MOP NI	TERV RAPP

100 - 100 -

<u>Particle Size Identification</u> (Unified Classification System)

Boulders - Diameter exceeds 8 inches Cobbles - 3 to 8 inches diameter

Gravel: Coarse - 3/4 to 3 inches in diameter

Fine - 4.76 mm to 3/4 inch diameter

Sand: Coarse - 2.0 mm to 4.76 mm diameter

Medium - 0.42 mm to 2.0 mm diameter Fine - 0.074 mm to 0.42 mm diameter

Silt and Clay: Less than 0.07 mm (Particles cannot

be seen with naked eye)

MODIFIERS

The modifiers provide our estimate of the amount of fines (silt or clay size particles) in the soil sample.

	APPROXIMATE FINES CONTENT	MODIFIERS
	5% Fines 12%	Slightly silty or slightly clayey
1	12% Fines 30%	Silty or clayey
1	30% Fines 50%	Very silty or very clayey

CANCEL CONTRACTOR