Univariate Time Series Analysis

Kevin Sheppard

https://kevinsheppard.com/teaching/mfe/

$$\begin{split} \mathsf{KS} &= \max_{x'} \left| \sum_{i=\pm}^{\tau} \mathcal{I}_{\left| \mathbf{x}_{i} < \frac{\pi}{2} \right|} - \frac{\mathbf{d}}{\tau} \right| \qquad \sqrt{\gamma} \left(\hat{\mathbf{S}} - \mathbf{S} \right) \overset{d}{\to} \mathcal{N} \left(\boldsymbol{\varrho}, \mathbf{1} - \frac{\mu \mu_{5}}{\sigma^{3}} + \frac{\mu^{2} \left(\mu_{4} - \sigma^{3} \right)}{q_{0}\sigma^{6}} \right) \\ \mu_{r} &\equiv \mathbb{E} \left[(\mathbf{X} - \boldsymbol{\mu})^{\gamma} \right] = \int_{-\infty}^{\infty} \left(\mathbf{x} - \boldsymbol{\mu})^{r} \, \hat{\mathbf{f}} \left(\mathbf{x} \right) \, \mathrm{d} \mathbf{x} \\ \Delta y_{t} &= \phi_{p} + \delta_{5} \, \mathbf{t} + \gamma y_{t-\pm} + \sum_{p=3}^{h} \phi_{p} \Delta y_{t-p} + \epsilon_{4} \qquad \text{AIC c} \ln \hat{\sigma}^{2} + \frac{2k}{\sigma} \\ &= \frac{\sqrt{\gamma} \left(\mathbf{R} \hat{\boldsymbol{\theta}} - r_{5} \right)}{\sqrt{R} \left(\mathbf{R}^{3} - r_{5} \right)} \overset{d}{\to} \mathcal{N}(\boldsymbol{\varrho}, \mathbf{x}) & \text{BIC c} \ln \hat{\sigma}^{2} + \frac{k \ln \sigma}{\sigma} \\ &= \frac{\mathbb{E} \left[\left(\mathbf{X} - \mathbf{E} \left| \mathbf{X} \right| \right]^{\gamma} \right]}{\mathcal{N}(\mu_{2} + \beta^{\prime} \left(\mathbf{X}_{2} - \mu_{2} \right), \boldsymbol{\Sigma}_{3.5} - \beta^{\prime} \boldsymbol{\Sigma}_{22} \boldsymbol{\beta})} & \overset{\mathbf{F}}{\bullet} \mathbf{0} \end{split}$$

 $\frac{\rho_{x}}{(\sigma^{3})^{2}} = \frac{\rho_{x}}{(\sigma^{3})^{2}} = \frac{\rho_{x}}{(\sigma^{3})^{2}} = \frac{\rho_{x}}{(\sigma^{3})^{2}} = \frac{\rho_{x}}{(\sigma^{3})^{2}} + \frac{\rho_$

 $\underset{\beta}{\operatorname{argmin}} \ (\mathbf{y} - \mathbf{X}\beta) \ (\mathbf{y} - \mathbf{X}\beta) + \lambda \sum_{j=5}^{n} |\beta_{j}| \\ \sqrt{\gamma} \frac{y_{k} - \mu_{0}}{\sigma_{n}} \stackrel{d}{\rightarrow} M(\rho, \mathbf{z})$ $\sqrt{\gamma} \frac{y_{k} - \mu_{0}}{\sigma_{n}} \stackrel{d}{\rightarrow} M(\rho, \mathbf{z})$ $- \mathbf{z} \frac{y_{k} - \mu_{0}}{\sigma_{n}} \stackrel{d}{\rightarrow} M(\rho, \mathbf{z})$

Modules

Overview

- Introduction to Time Series Analysis
- Key Concepts in Time Series Analysis
- Autoregressive Moving-Average Processes
- Properties of ARMA Processes
- Autocorrelations and Partial Autocorrelations
- Estimating Autocorrelations and Partial Autocorrelations
- Parameter Estimation
- Model Building
- Forecasting
- Forecast Evaluation
- Nonstationary Time Series
- Random Walks, Unit Roots and Stochastic Trend
- Non-linear Models

Stochastic Processes

Definition (Stochastic Process)

A stochastic process is a collection of random variables $\{Y_t\}$ defined on a common probability space indexed by a set $\mathcal T$ usually defined as $\mathbb N$ for discrete time processes or $[0,\infty)$ for continuous time processes.

Basic Example: An i.i.d. time series

$$Y_t \stackrel{ ext{i.i.d.}}{\sim} N(0,1)$$

More Complex Examples

Random Walk

$$Y_t = Y_{t-1} + \epsilon_t, \ \epsilon_t \stackrel{\text{i.i.d.}}{\sim} N\left(0, \sigma^2\right)$$

■ ARMA(1,1)

$$Y_t = \phi_1 Y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

- Series focuses on ARMA
- GARCH(1,1)

$$Y_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \omega + \alpha Y_{t-1}^2 + \beta \sigma_{t-1}^2$$

- GARCH and other non-linear processes later
- Ornstein-Uhlenbeck Process

$$Y(t) = e^{-\beta t} Y(0) + \sigma \int_0^t e^{-\beta(t-s)} dW(s)$$

Review

Stochastic Processes

Key Concepts

Stochastic Process

Review Questions

- What are the requirements for a sequence of random variables to be a stochastic process?
- Are cross-sectional random variables indexed by i a stochastic process?
- Are the observations of stochastic processes always regularly spaced in time?

Autocovariance

Definition (Autocovariance)

The autocovariance of a covariance stationary scalar process $\{Y_t\}$ is defined

$$\gamma_s = \mathrm{E}\left[(Y_t - \mu)(Y_{t-s} - \mu) \right]$$

where $\mu = E[Y_t]$. Note that $\gamma_0 = E[(Y_t - \mu)(Y_t - \mu)] = V[Y_t]$.

- Covariance of a process at different points in time
- Otherwise identical to usual covariance

Stationarity

The future resembles the past

Key concept

- Stationarity is a statistically meaningful form of regularity
- First type:

Definition (Covariance Stationarity)

A stochastic process $\{Y_t\}$ is covariance stationary if

$$\begin{split} \operatorname{E}\left[Y_{t}\right] &= \mu \quad \text{ for } t = 1, 2, \dots \\ \operatorname{V}\left[Y_{t}\right] &= \sigma^{2} < \infty \quad \text{ for } t = 1, 2, \dots \\ \operatorname{E}\left[\left(Y_{t} - \mu\right)\left(Y_{t-s} - \mu\right)\right] &= \gamma_{s} \quad \text{ for } t = 1, 2, \dots, s = 1, 2, \dots, t-1 \end{split}$$

Unconditional mean, variance and autocovariance do not depend on time

Stationarity

Second type (stronger):

Definition (Strict Stationarity)

A stochastic process $\{Y_t\}$ is strictly stationary if the joint distribution of $\{Y_t, Y_{t+1}, \dots, Y_{t+h}\}$ only depends only on h and not on t.

- Entire joint distribution does not depend on time.
- Examples of stationary time series:
 - ▶ i.i.d.: Always strict, covariance if $\sigma^2 < \infty$
 - \blacktriangleright i.i.d. sequence of t_2 random variables, strict only
 - Multivariate normal, both
 - ▶ AR(1): $Y_t = \phi_1 Y_{t-1} + \epsilon_t$, covariance if $|\phi_1| < 1$ and $V[\epsilon_t] < \infty$, strict is ϵ_t is i.i.d.
 - ► ARCH(1): $Y_t \sim N(0, \sigma_t^2), \sigma_t^2 = \omega + \alpha Y_{t-1}^2$ both if $\alpha < 1$.

What processes are not stationary?

Nonstationary time series

- Seasonalities, Diurnality, Hebdomadality: $Y_t + \mu + I_{Q1} + \epsilon_t$
 - ightharpoonup $\mathrm{E}[Y_t]$ is different in Q1 than in other quarters
- Time trends: $Y_t = t + \epsilon_t$
 - ightharpoonup $\mathrm{E}[Y_t] = t$
- Random walks: $Y_t = Y_{t-1} + \epsilon_t$
 - $ightharpoonup V[Y_t] = t\sigma^2$
- Processes with structural breaks: $Y_t = \mu_1 + \epsilon_t$ if t < 1974, $Y_t = \mu_2 + \epsilon_t$, $t \ge 1974$.
 - $E[Y_t] = \mu_1 + (\mu_2 \mu_1)(1 I_{t<1974})$

Ergodicity

Measure of "asymptotic independence"

Theorem (Ergodic Theorem)

If $\{Y_t\}$ is ergodic and the r^{th} moment μ_r is finite, then $T^{-1}\sum_{t=1}^T Y_t^r \stackrel{p}{\to} \mu_r$.

- Asymptotic independence ensures that averages that use points far apart in time converge to their expected value
- Example of a nonergodic process:

$$Y_t = \mu + \epsilon_t$$

- $\blacktriangleright \ \mu \sim N(0,1) \ \text{and} \ \epsilon_t \stackrel{\text{i.i.d.}}{\sim} \ N(0,1)$
- ightharpoonup $\mathrm{E}[Y_t] = 0$
- $T^{-1} \sum_{t=1}^{T} Y_t \stackrel{p}{\to} \mu \neq 0$
- lacktriangledown has a permanent effect on all Y_t

Review

Stationarity and Ergodicity

Key Concepts

Covariance Stationarity, Strict Stationarity, Ergodicity

Questions

- Why is stationarity important when modeling and forecasting a time series?
- What is the difference between strict and covariance stationarity?
- Why does asymptotic independence help to ensure that a LLN will apply?
- What are the four main sources of non-stationarity in a time series?

Problems

- 1. Why are the two processes below non-stationary when $\epsilon_t \stackrel{\text{i.i.d.}}{\sim} N\left(0, \sigma^2\right)$?
 - a. $Y_t = 0.3t + \epsilon_t$
 - b. $Y_t = 0.7 + 0.2I_{[t>2020]} + \epsilon_t$.

White noise

Essential Building Block of Time Series

Definition (White Noise)

A process $\{\epsilon_t\}$ is known as white noise if

$$\begin{split} & \operatorname{E}\left[\epsilon_{t}\right] = 0 & \quad \text{for } t = 1, 2, \dots \\ & \operatorname{V}\left[\epsilon_{t}\right] = \sigma^{2} < \infty & \quad \text{for } t = 1, 2, \dots \\ & \operatorname{E}\left[\epsilon_{t}\epsilon_{t-j}\right] = 0 & \quad \text{for } t = 1, 2, \dots, \ j \neq 0 \end{split}$$

- Not necessarily independent
 - ► ARCH(1) process $Y_t \sim N(0, \sigma_t^2), \, \sigma_t^2 = \omega + \alpha Y_{t-1}^2$
 - ► Variance is dependent, mean is not

Linear Time-series Processes

Standard tool of time-series analysis

Linear time series process can always be expressed as

$$Y_t = \delta_t + Y_0 + \sum_{i=0}^t \theta_i \epsilon_{t-i}$$

- ► Linear in the errors
- δ_t is a purely deterministic process
- $\{\epsilon_t\}$ is a White Noise process
- Example of non-linear processes
 - ► GARCH(1,1)

$$Y_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \omega + \alpha Y_{t-1}^2 + \beta \sigma_{t-1}^2$$

► Threshold Autoregression

$$Y_t = \phi_s Y_{t-1} + \epsilon_t, \ \phi_s = 1 \text{ if } L < Y_{t-1} < U \text{ otherwise } 0.9$$

ARMA Processes

■ Inclusive class of all linear time-series processes

Definition (Autoregressive-Moving Average Process)

An Autoregressive Moving Average process with orders P and Q, abbreviated ARMA(P,Q), has dynamics which follow

$$Y_{t} = \phi_{0} + \sum_{p=1}^{P} \phi_{p} Y_{t-p} + \sum_{q=1}^{Q} \theta_{q} \epsilon_{t-q} + \epsilon_{t}$$

where ϵ_t is a white noise process with the additional property that $E_{t-1}[\epsilon_t] = 0$.

■ ARMA(1,1)

$$Y_t = \phi_1 Y_{t-1} + \theta_1 \epsilon_{t-1} + \epsilon_t$$

Special case: Moving Average

■ ARMA family compromises two sub-classes

Definition (Moving Average Process of Order Q)

A Moving Average process of order Q, abbreviated MA(Q), has dynamics which follow

$$Y_t = \phi_0 + \sum_{q=1}^{Q} \theta_q \epsilon_{t-q} + \epsilon_t$$

where ϵ_t is white noise series with the additional property that $E_{t-1}[\epsilon_t] = 0$.

■ 1st order Moving Average (MA(1))

$$Y_t = \phi_0 + \theta_1 \epsilon_{t-1} + \epsilon_t$$

Simplest non-degenerate time series process

Special cases of ARMA processes: Autoregression

Other sub-class of ARMA

Definition (Autoregressive Process of Order *P*)

An Autoregressive process of order P, abbreviated AR(P), has dynamics which follow

$$Y_t = \phi_0 + \sum_{p=1}^{P} \phi_p Y_{t-p} + \epsilon_t$$

where ϵ_t is white noise series with the additional property that $E_{t-1}[\epsilon_t] = 0$.

■ 1st order Autoregression (AR(1))

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \epsilon_t$$

Moments and Autocovariances

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \epsilon_t$$

Unconditional Mean

$$\mathrm{E}\left[Y_{t}\right]$$

Unconditional Variance

$$\gamma_0 = V[Y_t]$$

Autocovariance

$$\gamma_s = E[(Y_t - E[Y_t]) (Y_{t-s} - E[Y_{t-s}])]$$

Conditional Mean

$$E_t[Y_{t+1}] = E[Y_{t+1}|\mathcal{F}_t]$$

Conditional Variance

$$V_t[Y_{t+1}] = E_t[(Y_{t+1} - E_t[Y_{t+1}])^2]$$

Review

Linear Time Series Processes

Key Concepts

White Noise, Linear Stochastic Process, Autoregression, Moving Average, ARMA, Conditional Moment

Questions

- Is White Noise covariance stationary?
- Is White Noise homoskedastic?
- Is an i.i.d. sequence White Noise?
- Is an i.i.d. normal sequence White Noise?
- In what sense is a linear process *linear*?
- Why are linear processes important in the context of covariance stationary time series?
- What is the difference between a conditional and an unconditional moment?
- What is the difference between an AR and an MA model?

How to work with ARMA processes: AR(1)

The $MA(\infty)$ Representation

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \epsilon_t$$

■ Use backward substitution (assume $|\phi_1| < 1$)

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \epsilon_{t}$$

$$= \phi_{0} + \phi_{1}(\phi_{0} + \phi_{1}Y_{t-2} + \epsilon_{t-1}) + \epsilon_{t}$$

$$= \phi_{0} + \phi_{1}\phi_{0} + \phi_{1}^{2}Y_{t-2} + \phi_{1}\epsilon_{t-1} + \epsilon_{t}$$

$$= \phi_{0} + \phi_{1}\phi_{0} + \phi_{1}^{2}(\phi_{0} + \phi_{1}Y_{t-3} + \epsilon_{t-2}) + \phi_{1}\epsilon_{t-1} + \epsilon_{t}$$

$$= \phi_{0} \sum_{i=0}^{\infty} \phi_{1}^{i} + \sum_{i=0}^{\infty} \phi_{1}^{i}\epsilon_{t-i}$$

$$= \frac{\phi_{0}}{1 - \phi_{1}} + \sum_{i=0}^{\infty} \phi_{1}^{i}\epsilon_{t-i}$$

Properties of an AR(1)

$$\begin{split} \mathrm{E}[Y_t] &= \mathrm{E}\left[\frac{\phi_0}{1-\phi_1} + \sum_{i=0}^t \phi_1^i \epsilon_{t-i}\right] \\ &= \frac{\phi_0}{1-\phi_1} + \sum_{i=0}^t \phi_1^i \mathrm{E}\left[\epsilon_{t-i}\right] \\ &= \frac{\phi_0}{1-\phi_1} + \sum_{i=0}^t \phi_1^i 0 \\ &= \frac{\phi_0}{1-\phi_1} + \sum_{i=0}^t \phi_1^i 0 \end{split}$$

$$\blacksquare \text{ In general AR(P): } \mathrm{E}[Y_t] = \frac{\phi_0}{1-\phi_1-\phi_2-\ldots-\phi_P} \end{split}$$

- Only sensible if $\phi_1 + \phi_2 + \ldots + \phi_P < 1$
- Variance can be shown in same manner
 - ► AR(1): $V[Y_t] = \frac{\sigma^2}{1 \phi_1^2}$
 - ► AR(P): $V[Y_t] = \frac{\sigma^2}{1 \rho_1 \phi_1 \rho_2 \phi_2 ... \rho_P \phi_P}$
 - ho hos are autocorrelations

Autocovariance of an AR(1)

$$E[(Y_t - E[Y_t])(Y_{t-s} - E[Y_{t-s}])] = E\left[\left(\sum_{i=0}^{\infty} \phi_1^i \epsilon_{t-i}\right) \left(\sum_{i=0}^{\infty} \phi_1^i \epsilon_{t-s-i}\right)\right]$$
$$= \phi_1^s \frac{\sigma^2}{1 - \phi_1^2}$$

Full details in notes

$$\gamma_s = \phi_1^s \left\{ \frac{\sigma^2}{1 - \phi_1^2} \right\}$$

- Autocovariance declines geometrically with the lag length
- Requires $\phi_1^2 < 1$ to exist
 - ► Same condition as the mean

Stationarity of ARMA processes

- Primarily interested in covariance stationarity
- Stationarity depends on parameters of AR portion
- AR(0) or finite order MA: always stationary
- AR(1) or ARMA(1,Q): $Y_t = \phi_1 Y_{t-1} + \mathsf{MA} + \epsilon_t$
 - $|\phi_1| < 1$
- AR(P) or ARMA(P,Q) $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_P Y_{t-P} + \mathsf{MA} + \epsilon_t$
- Rewrite $Y_t \phi_1 Y_{t-1} \phi_2 Y_{t-2} \ldots \phi_P Y_{t-P} = \mathsf{MA} + \epsilon_t$
- Easy to determine using the characteristic equation and corresponding characteristic roots

The characteristic equation

Definition (Characteristic Equation)

Let Y_t follow a Pth order linear difference equation

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_P Y_{t-P} + x_t$$

which can be rewritten as

$$Y_t - \phi_1 Y_{t-1} - \phi_2 Y_{t-2} - \dots - \phi_P Y_{t-P} = \phi_0 + x_t$$
$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_P L^P) Y_t = \phi_0 + x_t$$

The characteristic equation of this process is

$$z^{P} - \phi_1 z^{P-1} - \phi_2 z^{P-2} - \dots - \phi_{P-1} z - \phi_P = 0$$

- Key is in the forming of the characteristic equation and its roots
- L is known as "lag operator"

Characteristic roots

Definition (Characteristic Root)

Let

$$z^{P} - \phi_1 z^{P-1} - \phi_2 z^{P-2} - \dots - \phi_{P-1} z - \phi_P = 0$$

be the characteristic polynomial associated with some P^{th} order linear difference equation. The P characteristic roots, c_1, c_2, \ldots, c_P are defined as the solution to this polynomial

$$(z-c_1)(z-c_2)\dots(z-c_P)=0.$$

- The roots are c_1, c_2, \ldots, c_P
- lacktriangledown AR(P) or ARMA(P,Q) is covariance stationary if $|c_j| < 1$ for all j
- If complex, $|c_j| = |a_j + b_j i| = \sqrt{a^2 + b^2}$ (complex modulus)

Characteristic roots example

Difficult to determine by inspection

Example 1

$$Y_t = .1Y_{t-1} + .7Y_{t-2} + .2Y_{t-3} + \epsilon_t$$

Characteristic equation

$$z^3 - .1z^2 - .7z^1 - .2$$

■ Roots: 1, -.5, and $-.4 \Rightarrow$ nonstationary

Example 2

$$Y_t = 1.7Y_{t-1} - .72Y_{t-2} + \epsilon_t$$

Characteristic equation

$$z^2 - 1.7z^1 + .72$$

■ Roots: .9 and $.8 \Rightarrow$ stationary

Review

Properties or ARMA Models

Key Concepts

Backward Substitution, Characteristic Equation, Characteristic Root

Questions

- What role so the MA component play in determining stationarity?
- What is the key condition for stationarity of an ARMA model?
- What is complex modulus and why is it needed?

Problems

- 1. Which of the models listed below are covariance stationary?
 - a. $Y_t = 1.8Y_{t-1} 0.8Y_{t-2} + \epsilon_t$
 - b. $Y_t = 0.4 0.75Y_{t-1} 0.25Y_{t-2} + \epsilon_t$
 - c. $Y_t = 10 + \sum_{j=1}^{100} 0.01 Y_{t-j} + \epsilon_t$
- 2. Use backward substitution to write the model $Y_t = -0.5\epsilon_{t-1} + \epsilon_t$ as an AR (∞) using the relationship that $Y_{t-1} = -0.5\epsilon_{t-2} + \epsilon_{t-1}$ implies $\epsilon_{t-1} = Y_{t-1} + 0.5\epsilon_{t-2}$.

Autocorrelations and the ACF

Autocorrelations are a key element of model building

Definition (Autocorrelation)

The autocorrelation of a scalar process is defined

$$\rho_s = \frac{\gamma_s}{\gamma_0}$$

where
$$\gamma_s = \mathrm{E}\left[(Y_t - \mu)(Y_{t-s} - \mu)\right]$$
.

- Measures the correlation of a process at different points in time
- AR(1):

$$\rho_s = \phi_1^s$$

- One of two possibilities
 - ▶ Decay geometrically if $0 < \phi_1 < 1$
 - ▶ Oscillate and decay $-1 < \phi_1 < 0$

Partial Autocorrelations (PACF)

- Partial Autocorrelation is the other key element of model building
- More complicated than autocorrelations:
- Regression interpretation of sth partial autocorrelation:

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_{s-1} Y_{t-s+1} + \varphi_s Y_{t-s} + \epsilon_t$$

- lacksquare φ_s is the sth partial autocorrelation
 - Population (not sample) value of φ_s
- AR(1):

$$arphi_s = \left\{ egin{array}{l} \phi_1^s \ ext{for s=} -1, 0, 1 \ 0 \ ext{otherwise} \end{array}
ight.$$

■ Partial autocorrelation function maps the parameters of a process to the sth autocorrelation, $\varphi(s)$

Using the ACF and PACF to categorize processes

■ ACF and PACF are useful when choosing models

		•
Process	ACF	PACF
White Noise	All 0	All 0
AR(1)	$\rho_s = \phi_1^s$	0 beyond lag 2
AR(P)	Decays toward zero	Non-zero through lag P,
	exponentially	0 thereafter
MA(1)	$\rho_1 \neq 0, \rho_s = 0, s > 0$	Decays toward zero
		exponentially
MA(Q)	$ \rho_s \neq 0 \ s \leq Q, $	Decays toward zero
	$\rho_s \neq 0 \ s \leq Q,$ $\rho_s = 0, \ s > Q$	exponentially, possible oscillating
ARMA(P,Q)	Exponential Decay	Exponential Decay

Review

Autocorrelation and Partial Autocorrelation

Key Concepts

Autocorrelation, Partial Autocorrelation

Questions

- What is the difference between the *h*-lag autocorrelation and the *h*-lag partial autocorrelation?
- When are the autocorrelation and partial autocorrelation always the same for any DGP?
- What shape would you expect in the ACF and PACF of an AR(3)?
- What shape would you expect in the ACF and PACF of an MA(12)?

Problems

- 1. What is the ACF and PACF of an AR(1) $Y_t = \phi_1 Y_{t-1} + \epsilon_t$?
- 2. What is the ACF of an MA(2) $Y_t = \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \epsilon_t$?

Sample ACF and PACF

Sample autocorrelations

$$\hat{\rho}_s = \frac{\sum_{t=s+1}^T Y_t^* Y_{t-s}^*}{\sum_{t=1}^T Y_t^{*2}} = \frac{\hat{\gamma}_s}{\hat{\gamma}_0}$$

- $ightharpoonup Y_t^* = Y_t \bar{Y} ext{ where } \bar{Y} = T^{-1} \sum_{t=1}^T Y_t$
- Some prefer the small-sample-size corrected version

$$\hat{\rho}_s = \frac{\sum_{t=s+1}^T Y_t^* Y_{t-s}^*}{\sqrt{\sum_{t=s+1}^T Y_t^{*2} \sum_{t=1}^{T-s} Y_t^{*2}}}.$$

- Sample partial autocorrelations
 - ▶ Run regression to estimate $\hat{\varphi}_s$

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \varphi_s Y_{t-s} + \epsilon_t$$

More efficient ways to compute PACF using Yule-Walker (see notes)

Testing autocorrelations and partial ACs

Inference on autocorrelations:

$$V[\hat{\rho}_s]=T^{-1} \qquad \qquad \text{for } s=1$$

$$=T^{-1}(1+2\sum_{j=1}^{s-1}\hat{\rho}_j^2) \qquad \qquad \text{for } s>1$$
 Standard $t\text{-stats}$
$$\frac{\hat{\rho}_s}{\sqrt{V[\hat{\rho}_s]}} \overset{A}{\sim} N(0,1).$$

Inference on partial autocorrelations:

$$V[\hat{\varphi}_s] \approx T^{-1}$$

■ Standard *t*-stats

$$T^{\frac{1}{2}}\hat{\varphi}_s \stackrel{A}{\sim} N(0,1)$$

Testing multiple autocorrelations

■ Testing multiple autocorrelations: Ljung-Box $Q, H_0: \rho_1 = \ldots = \rho_s = 0$

$$Q = T(T+2) \sum_{k=1}^{s} \frac{\hat{\rho}_k^2}{T-k} \sim \chi_s^2$$

■ Note: Not heteroskedasticity robust, use LM test for serial correlation

Definition (LM test for serial correlation)

Under the null, $\mathrm{E}[Y_t^*Y_{t-j}^*]=0$ for $1\leq j\leq s$. The LM-test for serial correlation is constructed by defining the score vector $\mathbf{s}_t=Y_t^*\left[Y_{t-1}^*Y_{t-2}^*\ldots Y_{t-s}^*\right]'$,

$$LM = T\bar{\mathbf{s}}'\hat{\mathbf{S}}^{-1}\bar{\mathbf{s}} \stackrel{d}{\to} \chi_s^2$$

where $\bar{\mathbf{s}} = T^{-1} \sum_{t=1}^T \mathbf{s}_t$, $\hat{\mathbf{S}} = T^{-1} \sum_{t=1}^T \mathbf{s}_t \mathbf{s}_t'$ and $Y_t^* = Y_t - \bar{Y}$ where $\bar{Y} = T^{-1} \sum_{t=1}^T Y_t$.

Review

Sample Autocorrelations and Partial Autocorrelations

Key Concepts

Sample Autocorrelation, Sample Partial Autocorrelation, Ljung-Box Test, LM Test for Serial Correlation

Questions

- What is the asymptotic distribution of estimated autocorrelations and partial autocorrelations?
- Where does the rule-of-thump $2/\sqrt{T}$ come from when plotting sample autocorrelations?
- What is the difference between the *Q*-test and an LM test for serial correlation?
- If you computed a sample autocorrelation in Excel using the correl function by copying and shifting a variable by h places, would you get the usual sample autocorrelation estimator?

Conditional MLE

- Conditional MLE assuming distribution of $Y_t|Y_{t-1}, \epsilon_{t-1}, Y_{t-2}, \epsilon_{t-2}, \dots$ is $N(0, \sigma^2)$
- If $\epsilon_{t-1}, \epsilon_{t-2}, ..., \epsilon_{t-Q}$ are observable, identical to least squares

$$\underset{\boldsymbol{\phi},\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{t=P+1}^{T} (Y_t - \phi_0 - \phi_1 Y_{t-1} - \dots - \phi_P Y_{t-P} - \theta_1 \epsilon_{t-1} - \dots - \theta_Q \epsilon_{t-Q})^2$$

- Ignore distribution of $Y_1, ... Y_P$ in fit
 - ► Finite sample effects, asymptotically irrelevant
- If $\epsilon_{P-1}, \ldots, \epsilon_{P-Q}$ are observable, can recursively compute $\epsilon_P, \ldots, \epsilon_T$ for a set of parameters ϕ, θ
- lacksquare Overcome missing initial shocks by assuming $\epsilon_{P-1}=\ldots=\epsilon_{P-Q}=0$

Ordinary Least Squares

• If Q = 0, conditional MLE simplifies

$$\underset{\phi}{\operatorname{argmin}} \sum_{t=P+1}^{T} (Y_t - \phi_0 - \phi_1 Y_{t-1} - \dots - \phi_P Y_{t-P})^2$$

- Conditional MLE is identical to OLS
- Inference is identical
- Use classical or White's covariance estimator as appropriate
- Can also incorporate deterministic terms such as time trends while maintaining simplicity of OLS

Exact MLE

■ Define the vector of data

$$\mathbf{y} = [Y_1, Y_2, \dots, Y_{T-1} Y_T]'$$

 \blacksquare Γ be the T by T covariance matrix of \mathbf{y}

$$\Gamma = \begin{bmatrix}
\gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 & \dots & \gamma_{T-2} & \gamma_{T-1} \\
\gamma_1 & \gamma_0 & \gamma_1 & \gamma_2 & \dots & \gamma_{T-3} & \gamma_{T-2} \\
\gamma_2 & \gamma_1 & \gamma_0 & \gamma_1 & \dots & \gamma_{T-4} & \gamma_{T-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\gamma_{T-2} & \gamma_{T-3} & \gamma_{T-4} & \gamma_{T-5} & \dots & \gamma_0 & \gamma_1 \\
\gamma_{T-1} & \gamma_{T-2} & \gamma_{T-3} & \gamma_{T-4} & \dots & \gamma_1 & \gamma_0
\end{bmatrix}$$

■ The joint likelihood of y

$$f(\mathbf{y}|\boldsymbol{\phi},\boldsymbol{\theta},\sigma^2) = (2\pi)^{-\frac{T}{2}} |\mathbf{\Gamma}|^{-\frac{T}{2}} \exp\left(-\frac{\mathbf{y}'\mathbf{\Gamma}^{-1}\mathbf{y}}{2}\right)$$

■ Log-likelihood

$$l(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^2; \mathbf{y}) = -\frac{T}{2} \ln(2\pi) - \frac{T}{2} \ln|\mathbf{\Gamma}| - \frac{1}{2} \mathbf{y}' \mathbf{\Gamma}^{-1} \mathbf{y}$$

Review

Parameter Estimation

Key Concepts

Conditional Maximum Likelihood, Exact Maximum Likelihood

Questions

- How are missing initial innovations addressed in conditional MLE?
- What is the key advantage of exact MLE over conditional MLE?
- When does conditional MLE reduce to OLS?
- How is the autocovariance matrix computed in exact MLE?

Model building the Box-Jenkins way

- Model building is similar to cross-section regression
- Can use same techniques
 - General to Specific or Specific to General
 - ► Information criteria: AIC, BIC
- Box-Jenkins is dominant methodology, 2-steps
 - ► Identification: Use ACF and PACF to choose model
 - Estimation: Estimate model and do diagnostic checks
- Two principles
 - Parsimony
 - Invertibility

Strategies

- General to Specific
 - Fit largest specification
 - Drop regressor with largest p-value
 - ▶ Refit
 - lacktriangle Stop if all p-values indicate significance using a size of lpha
 - $ightarrow \ lpha$ is the econometrician's choice
- Specific to General
 - Fit all specifications with a single variable
 - ► Retail variable with smallest p-value
 - Extend this model adding on additional variables one at a time
 - $\,\blacktriangleright\,$ Stop if the p-values of all excluded variables are larger than α

Information Criteria

- Information Criteria
 - Akaike Information Criterion (AIC)

$$AIC = \ln \hat{\sigma}^2 + k\frac{2}{T}$$

Schwartz (Bayesian) Information Criterion (SIC/BIC)

$$BIC = \ln \hat{\sigma}^2 + k \frac{\ln T}{T}$$

- Both have versions suitable for likelihood based estimation
- **Proof** Reward for better fit: Reduce $\ln \hat{\sigma}^2$
- Penalty for more parameters: k_T^2 or $k_T^{\ln T}$
- Choose model with smallest IC
 - ► AIC has fixed penalty ⇒ inclusion of extraneous variables
 - ▶ BIC has larger penalty if $\ln T > 2$ (T > 7)

Model Diagnostics

- Important to assess whether your model "fits"
 - Are the residuals white noise?
 - Eye-ball test
 - \triangleright Ljung-Box Q stat or LM serial correlation test of $H_0: \rho_1 = \ldots = \rho_s = 0$.
 - ⊳ SACF/SPACF of the residuals
 - Are there any large outliers?
 - Eye-ball test
- What to do if there are problems?
 - Use SPACF/SACF to repeat Box-Jenkins and augment your model with correct dynamics to pick up problem
 - Repeat diagnostics
- Concern: Repeated testing may render critical values misleading

Review

Model Selection

Key Concepts

Invertibility, Parsimony, AIC, BIC

Questions

- How are the ACF and PACF used to identify candidate models?
- How does GtS differ in an ARMA from application to a linear regression?
- Which chooses a larger model, AIC or BIC, and why?
- What property should residuals have from a well specified model?
- What use is the parsimony principle?
- What does invertibility ensure?

The information set and the law of iterated expectations

- Information set: \mathcal{F}_t
- Contains a lot of information!
 - ► Every time *t* measurable event
 - ▶ Observed variables: prices, returns, GDP, interest rates, FX rates
 - ► Functions of these
 - Excludes variables which are latent: volatility
- Conditional expectation:

$$\mathrm{E}[Y_{t+1}|\mathcal{F}_t]$$

Conditional Variance

$$V[Y_{t+1}|\mathcal{F}_t]$$

- ▶ Shorthand $E_t[Y_{t+1}]$ and $V_t[Y_{t+1}]$
- Law of Iterated Expectation (LIE):

$$E_t[E_{t+1}[Y_{t+2}]] = E_t[Y_{t+2}]$$

 Monday's belief about what Tuesday's belief about Wednesday is the same as Monday's belief of Wednesday

Forecasting

- A h-step ahead forecast, $\hat{Y}_{t+h|t}$, is designed to minimize a loss function
 - ► MSE: $(Y_{t+h} \hat{Y}_{t+h|t})^2$
 - ▶ MAD: $|Y_{t+h} \hat{Y}_{t+h|t}|$
 - ▶ Quad-Quad: $\alpha_1(Y_{t+h} \hat{Y}_{t+h|t})^2 + \alpha_2 I_{[Y_{t+h} \hat{Y}_{t+h|t} < 0]} (Y_{t+h} \hat{Y}_{t+h|t})^2$
 - $\Rightarrow \text{ Asymmetric if } \alpha_1 \neq \alpha_2$

The MSE Optimal Forecast is the conditional mean

- $\blacksquare \text{ Let } Y_{t+h}^* = \mathrm{E}_t[Y_{t+h}]$
- Let \tilde{Y}_{t+h} be any other value

$$E_{t}[(Y_{t+h} - \tilde{Y}_{t+h})^{2}] = E_{t}[(Y_{t+h} - Y_{t+h}^{*}) + (Y_{t+h}^{*} - \tilde{Y}_{t+h})^{2}]$$

$$= E_{t}[(Y_{t+h} - Y_{t+h}^{*})^{2} + 2(Y_{t+h} - Y_{t+h}^{*})(Y_{t+h}^{*} - \tilde{Y}_{t+h}) + (Y_{t+h}^{*} - \tilde{Y}_{t+h})^{2}]$$

$$= V_{t}[Y_{t+h}] + 2E_{t}[(Y_{t+h} - Y_{t+h}^{*})(Y_{t+h}^{*} - \tilde{Y}_{t+h})] + E_{t}[(Y_{t+h}^{*} - \tilde{Y}_{t+h})^{2}]$$

$$= V_{t}[Y_{t+h}] + 2(Y_{t+h}^{*} - \tilde{Y}_{t+h}) + E_{t}[(Y_{t+h}^{*} - Y_{t+h}^{*})] + E_{t}[(Y_{t+h}^{*} - \tilde{Y}_{t+h})^{2}]$$

$$= V_{t}[Y_{t+h}] + 2(Y_{t+h}^{*} - \tilde{Y}_{t+h}) \cdot 0 + E_{t}[(Y_{t+h}^{*} - \tilde{Y}_{t+h})^{2}]$$

$$= V_{t}[Y_{t+h}] + (Y_{t+h}^{*} - \tilde{Y}_{t+h})^{2}$$

Forecasting

■ MSE optimal forecast for an AR(1):

$$Y_{t} = \phi_{1}Y_{t-1} + \epsilon_{t}$$

$$E_{t}[Y_{t+1}] = E_{t}[\phi_{1}Y_{t} + \epsilon_{t+1}]$$

$$= \phi_{1}E_{t}[Y_{t}] + E_{t}[\epsilon_{t+1}]$$

$$= \phi_{1}Y_{t} + 0$$

$$E_{t}[Y_{t+2}] = E_{t}[\phi_{1}Y_{t+1} + \epsilon_{t+2}]$$

$$= \phi_{1}E_{t}[Y_{t+1}] + E_{t}[\epsilon_{t+2}]$$

$$= \phi_{1}(\phi_{1}Y_{t}) + 0$$

$$= \phi_{1}^{2}Y_{t} + 0$$

Note: Long-run forecast is always $E[Y_t]$ for a covariance stationary process

Forecast Errors

$$\begin{aligned} \mathbf{V}_t[Y_{t+1}] &= \mathbf{E}_t \left[\left(Y_{t+1} - \mathbf{E}_t \left[Y_{t+1} \right] \right)^2 \right] \\ &= \mathbf{E}_t \left[\left(\phi Y_t + \epsilon_{t+1} - \phi Y_t \right)^2 \right] \\ &= \mathbf{E}_t \left[\epsilon_{t+1}^2 \right] = \sigma^2 \text{ if homoskedastic} \end{aligned}$$

$$\begin{split} \mathbf{V}_t[Y_{t+2}] &= \mathbf{E}_t \left[\left(Y_{t+2} - \mathbf{E}_t \left[Y_{t+2} \right] \right)^2 \right] \\ &= \mathbf{E}_t \left[\left(\phi^2 Y_t + \phi \epsilon_{t+1} + \epsilon_{t+2} - \phi^2 Y_t \right)^2 \right] \\ &= \mathbf{E}_t \left[\left(\phi \epsilon_{t+1} + \epsilon_{t+2} \right)^2 \right] \\ &= \phi \mathbf{E}_t^2 \left[\epsilon_{t+1}^2 \right] + \mathbf{E}_t \left[\epsilon_{t+2}^2 \right] = \left(1 + \phi^2 \right) \sigma^2 \text{ if homoskedastic} \end{split}$$

Note: Long-run forecast error variance is always $V[Y_t]$ for a covariance stationary process

Review

Forecasting

Key Concepts

Mean Square Error, Conditional Expectation

Questions

- How is the MSE optimal forecast related to the conditional mean? What about the conditional median?
- What is the key principle for producing multi-step forecasts?
- What does the long-run forecast for a covariance stationary time series always converge to? What is the long-run variance of the error?

Problems

- 1. What are the first three forecasts from the model $Y_t = \phi_0 + \phi_1 Y_{t-1} + \theta_1 \epsilon_{t-1} + \epsilon_t$?
- 2. What are the first three forecasts errors?
- 3. What is the variance of the first three forecast errors?

Forecast evaluation

Mincer-Zarnowitz regressions

Objective Forcecast Evaluation

$$Y_{t+h} = \alpha + \beta \hat{Y}_{t+h|t} + \eta_t$$

- $H_0: \alpha = 0, \beta = 1, H_1: \alpha \neq 0 \cup \beta \neq 1$
 - Use any test: Wald, LR, LM
- Can be generalized to include any variable available when the forecast was produced

$$Y_{t+h} = \alpha + \beta \hat{Y}_{t+h|t} + \gamma \mathbf{x}_t + \eta_t$$

- \blacksquare $H_0: \alpha=0, \beta=1, \gamma=0$, , $H_1: \alpha \neq 0 \cup \beta \neq 1 \cup \gamma_j \neq 0$
- **•** \mathbf{x}_t *must* be in the time t information set
- Important when working with macro data

Relative evaluation: Diebold-Mariano

- \blacksquare Two forecasts, $\hat{Y}_{t+h|t}^{A}$ and $\hat{Y}_{t+h|t}^{B}$
- \blacksquare Two losses, $l_t^A=(Y_{t+h}-\hat{Y}_{t+h|t}^A)^2$ and $l_t^B=(Y_{t+h}-\hat{Y}_{t+h|t}^B)^2$
 - ► Losses do not need to be MSE
- \blacksquare If equally good or bad, $\mathrm{E}[l_t^A] = \mathrm{E}[l_t^B]$ or $\mathrm{E}[l_t^A l_t^B] = 0$
- Define $\delta_t = l_t^A l_t^B$

Relative evaluation: Diebold-Mariano

- Implemented as a t-test that $E[\delta_t] = 0$
- $H_0 : E[\delta_t] = 0, H_1^A : E[\delta_t] < 0, H_1^B : E[\delta_t] > 0$
 - ▶ Composite alternative
 - ► Sign indicates which model is favored

$$DM = \frac{\overline{\delta}}{\sqrt{\widehat{\mathbf{V}[\overline{\delta}]}}}$$

- One complication: $\{\delta_t\}$ cannot be assumed to be uncorrelated, so a more complicated variance estimator is required
- Newey-West covariance estimator:

$$\hat{\sigma}^2 = \hat{\gamma}_0 + 2\sum_{l=1}^{L} \left[1 - \frac{l}{L+1} \right] \hat{\gamma}_l$$

Implementing a Diebold-Mariano Test

$$DM = \frac{\overline{\delta}}{\sqrt{\widehat{\mathbf{V}[\overline{\delta}]}}}$$

Algorithm (Diebold-Mariano Test)

- 1. Using the two forecasts, $\hat{Y}_{t+h|t}^A$ and $\hat{Y}_{t+h|t}^B$, compute $\delta_t = l_t^A l_t^B$
- 2. Run the regression

$$\delta_t = \beta + \eta_t$$

- 3. Use a Newey-West covariance estimator (cov_type="HAC")
- 4. T-test $H_0: \beta = 0$ against $H_1^A: \beta < 0$, and $H_1^B: \beta > 0$
- 5. Reject if $|t| > C_{\alpha}$ where C_{α} is the critical value for a 2-sided test using a normal distribution with a size of α . If significant, reject in favor of model A if test statistic is negative or in favor of model B if test statistic is positive.

Review

Forecast Evaluation

Key Concepts

Objective Forecast Evaluation, Relative Forecast Evaluation, Mincer-Zarnowitz Test, Diebold-Mariano Test, Newey-West Variance Estimator

Questions

- What is the difference between objective and relative forecast evaluation?
- Why is a Newey-West covariance estimator used in Diebold-Mariano test?
- How is rejection of the null in a Newey-West test different from most tests?
- Why is a multi-step forecast be sensitive to a future realization of the time series between the current period and the forecast horizon?
- How is a MZ regression transformed to an Augmented MZ regression?

Nonstationarity defined

- Any series which is not stationary is nonstationary
- Four major types
 - Seasonality
 - Only slightly problematic
 - ► Deterministic trends: growth over time
 - Linear
 - Polynomial
 - Random walks or unit roots
 - Structural breaks

Deterministic trends

Trending series can be decomposed

$$Y_t =$$
deterministic trend $+$ stationary component $+$ noise

- Two major types
 - Polynomial

$$Y_t = \phi_0 + \delta_1 t + \delta_2 t^2 + \ldots + \delta_s t^s + \epsilon_t$$

$$Y_t = \phi_0 + \delta_1 t + \epsilon_t$$

Exponential

$$ln Y_t = \phi_0 + \delta_1 t + \epsilon_t$$

- Solution is to detrend
 - Detrended series is a stationary process
 - Standard model building on residuals
 - Can directly include time trends in ARMA models

The Lag Operator

- The Lag Operator is a useful tool in time series
- Simplifies expressing complex models with seasonal dynamics
- Key properties
 - 1. $LY_t = Y_{t-1}$
 - 2. $L^2Y_t = LY_{t-1} = L(LY_t) = Y_{t-2}$
 - 3. $L^a L^b = L^{(a+b)}$
 - 4. Lc = c where c is a constant

Seasonality

- Seasonality is technically a form of non-stationarity
 - ▶ Mean explicitly depends on the quarter, month, day or minute
- Three types:

Definition (Seasonality)

Data are said to be seasonal if they exhibit a non-constant deterministic pattern on an annual basis.

Definition (Hebdomadality)

Data which exhibit day-of-week deterministic effects are said to be hebdomadal.

Definition (Diurnality)

Data which exhibit intra-daily deterministic effects are said to be diurnal.

Seasonality

- Simpler to think of processes with seasonality as having two models
 - Short-run AR and MA dynamics
 - Seasonal AR and MA dynamics
- Model building is standard with these two goals in mind
- Also consider seasonal deterministic terms
 - Seasonal dummy variables
 - Seasonal Fourier series

ARMA Modeling of Seasonality

Four Components

Observation AR

$$(1 - \phi_1 L) Y_t = \phi_0 + \epsilon_t$$

Seasonal AR

$$(1 - \phi_s L^s) Y_t = \phi_0 + \epsilon_t$$

Observation MA

$$Y_t = \phi_0 + \left(1 + \theta_1 L^1\right) \epsilon_t$$

Seasonal MA

$$Y_t = \phi_0 + (1 + \theta_s L^s) \,\epsilon_t$$

Combined Model

$$(1 - \phi_1 L) (1 - \phi_s L^s) Y_t = (1 + \theta_1 L^1) (1 + \theta_s L^s) \epsilon_t$$

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_s Y_{t-s} - \phi_1 \phi_s Y_{t-s-1} + \theta_1 \epsilon_{t-1} + \theta_s \epsilon_{t-s} + \theta_1 \theta_s \epsilon_{t-s-1} + \epsilon_t$$

ARMA Modeling of Seasonality

Four Components

- Generalizes to higher orders of each term
- Known as SARIMA $(p, 0, q) \times (P, 0, Q, s)$
- Imposes restrictions on parameters due to multiplication of terms
- Can estimate unrestricted equivalent

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \phi_{s}Y_{t-s} + \phi_{s+1}Y_{t-s-1} + \theta_{1}\epsilon_{t-1} + \theta_{s}\epsilon_{t-s} + \theta_{s+1}\epsilon_{t-s-1} + \epsilon_{t}$$

■ Can test $H_0: \phi_{s+1} = \phi_1 \phi_s \cap \theta_{s+1} = \theta_1 \theta_s$

Review

Seasonality

Key Concepts

Seasonality, Lag Operator, SARIMA, Deterministic Trend, Exponential Trend Questions

- How can seasonality be modeled in an ARMA model?
- Define diurnality, hebdomadality and seasonality.
- What are seasonal determinist terms and how do they differ from seasonal AR and MA terms?
- What is an exponential trend?
- What do the orders in a SARIMA mean?
- How could a standard AR be used to model a time series with a seasonal AR component?

Stochastic trends

- Stochastic trends are similar to deterministic trends
 - Dominant feature of a process

```
Y_t = stochastic trend + stationary component + noise
```

- Most common stochastic trend is a unit root
- There are others (generally non-linear)
- Removed using stochastic detrending (differencing)
 - ► Meaningfully different that deterministic detrending

Short-run Dynamics in a Unit Root process

- Unit root processes, in the long-run, behave like random walks
- In the short run, can have stationary dynamics

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-3} + \epsilon_t$$

- If this process contains a unit root, $\phi_1 + \phi_2 + \phi_3 = 1$
- Can see the SR dynamics by differencing

$$\begin{array}{rcl} Y_t & = & \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-2} - \phi_3 Y_{t-2} + \phi_3 Y_{t-3} + \epsilon_t \\ Y_t & = & \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-2} - \phi_3 \Delta Y_{t-2} + \epsilon_t \\ \Delta Y_t & = & -(\phi_2 + \phi_3) \Delta Y_{t-1} - \phi_3 \Delta Y_{t-2} + \epsilon_t \\ \Delta Y_t & = & \pi_1 \Delta Y_{t-1} + \pi_2 \Delta Y_{t-2} + \epsilon_2 \end{array}$$

What's the problem with unit roots?

- Unit roots cause a number of problems
 - Exploding variance: $V[Y_t] = t\sigma^2$
 - ► Inconsistent parameter estimates
 - ► Spurious regression
 - ► No mean reversion in long-run forecasts
- Crucial to understand whether a process is stationary or contains a unit root
- Has large economic consequences
 - ► PPP
 - Covered interest rate parity
 - Carry trades

Testing for unit roots

■ Dickey-Fuller looks like a standard *t*-test

$$Y_t = \phi_1 Y_{t-1} + \epsilon_t$$

- \blacksquare $H_0: \phi_1 = 1, H_1: \phi_1 < 1$
- Impose the null:

$$Y_t - Y_{t-1} = \phi_1 Y_{t-1} - Y_{t-1} + \epsilon_t$$
$$\Delta Y_t = (\phi_1 - 1) Y_{t-1} + \epsilon_t$$
$$\Delta Y_t = \gamma Y_{t-1} + \epsilon_t$$

- New $H_0: \gamma = 0, H_1: \gamma < 0$
- Augmented Dickey Fuller (ADF) captures short run dynamics as well

$$\Delta Y_t = \gamma Y_{t-1} + \rho_1 \Delta Y_{t-1} + \rho_2 \Delta Y_{t-2} + \dots + \rho_P \Delta Y_{t-P} + \epsilon_t$$

- **E**xtra terms (ΔY_{t-1}) , if relevant, can reduce the variance of the errors
 - ► Increase the *t*-stat ⇒ increase the power

The problem

- t-stat is no longer asymptotically normal
- Requires Dickey-Fuller distribution
 - Most software packages contain the correct critical value
- Many processes with unit roots also contain deterministic components
- Asymptotic distribution depends on choice of model:

$$\Delta Y_t = \gamma Y_{t-1} + \sum_{p=1}^P \phi_p \Delta Y_{t-p} + \epsilon_t \tag{No trend}$$

$$\Delta Y_t = \delta_0 + \gamma Y_{t-1} + \sum_{p=1}^P \phi_p \Delta Y_{t-p} + \epsilon_t \tag{Constant, linear in } Y_t)$$

$$\Delta Y_t = \delta_0 + \delta_1 t + \gamma Y_{t-1} + \sum_{p=1}^P \phi_p \Delta Y_{t-p} + \epsilon_t \tag{Constant, quadratic in } Y_t)$$

- More deterministic regressors lower the critical value
- Reject null of unit root if t-stat of γ is *negative* and below the critical value

Important considerations

- Unit root tests are well known for having low power
- Power = 1-Pr(type II)
 - Chance you don't reject when alternative is true
- Some suggestions
 - Use a loose model selection criteria when choosing the number of lags of ΔY_{t-j} , e.g. AIC
 - ► Be conservative in excluding deterministic regressors.
 - Including a constant or time-trend when absent hurts power
 - Excluding a constant or time-trend when present results in no power
 - More powerful tests than the ADF are available: DF-GLS
 - Visually inspect the data and differenced data
 - Use a general-to-specific search
- Number of differences needed is the *order of integration*
 - ▶ Integrated of Order 1 or I(1): Y_t is nonstationary but ΔY_t is stationary
 - ▶ I(d): Y_t is nonstationary, $\Delta^j Y_t$ also nonstationary when j < d, $\Delta^d Y_t$ is stationary

Seasonal Differencing

Seasonal series should use seasonal differencing

$$\Delta_s Y_t = Y_t - Y_{t-s}$$

- Complete SARIMA $(P, D, Q) \times (P_s, D_s, Q_s, s)$ model
 - D is order of observational difference
 - ▶ D_s is order of seasonal difference
 - ▶ P and Q are observational AR and MA orders
 - ▶ P_s and Q_s are seasonal AR and MA orders
- Special Cases
 - ► ARMA(P,Q): $D = D_s = P_s = Q_s = 0$
 - ► ARIMA(P, D, Q): $D_s = P_s = Q_s = 0$
 - ► SARMA $(P,Q) \times (P_s,Q_s,s)$: $D=D_s=0$

Review

Unit Roots and Integration

Key Concepts

Unit Root, Integrated Process, I(1), Augmented Dickey-Fuller Test, Seasonal Difference Questions

- What happens if a relevant deterministic term is omitted in a ADF test?
- What is the effect of including an unnecessary deterministic in an ADF test?
- How should you decide how many lags of the differenced variable to include in an ADF test?
- When should you use seasonal differencing?
- What is the relationship between a random walk and a unit root process?
- What are the consequences of ignoring a unit root when modeling a time series?

Nonlinear Models for the mean

■ *Linear* time series process

$$Y_t = Y_0 + \sum_{i=0}^t \theta_i \epsilon_{t-i}$$

- Anything else
 - Markov Switching Autoregression (MSAR)
 - Threshold Autoregression (TAR)
 - Self-exciting Threshold Autoregression (SETAR)
 - Many, many others
 - Nonlinear models can capture different dynamics
 - \triangleright A picture is worth 10^3 words.
 - ► State-dependent parameters

$$Y_t = \phi_0^{s_t} + \phi_1^{s_t} Y_{t-1} + \sigma^{s_t} \epsilon_t$$

Models differ in how s_t evolves

Markov Switching Example

 \blacksquare Two states, H and L

$$Y_t = \left\{ \begin{array}{l} \phi^H + \epsilon_t \\ \phi^L + \epsilon_t \end{array} \right.$$

States evolve according to a 1st order Markov Chain

$$\{s_t\} = \{H, H, H, L, L, L, H, L, \ldots\}$$

Transition Probabilities

$$\left[\begin{array}{cc} p_{HH} & p_{HL} \\ p_{LH} & p_{LL} \end{array}\right] = \left[\begin{array}{cc} p_{HH} & 1 - p_{LL} \\ 1 - p_{HH} & p_{LL} \end{array}\right]$$

- ▶ p_{HH} is the probability $s_{t+1} = H$ given $s_t = H$.
- Model will switch between a high mean state and a low mean state
- Models like this are very flexible and nest ARMA
 - ► Successful in financial econometrics for asset allocation, volatility modeling, modeling series with business-cycle length patterns: GDP

Markov Switching: i.i.d. Mixture

Markov Switching: Symmetric Persistent

Markov Switching: Asymmetric Persistent

Markov Switching: Different Variances

Review Questions

Non-linear Time Series Models

Key Concepts

Self-exciting Threshold Autoregression, Markov Switching Processe

Questions

- It is always necessary to consider nonlinear models to model covariance stationary time series?
- What advantages might a nonlinear model have over a linear model when modeling a covariance stationary time series?