14 Successioni

Definizione 14.0.1 (Successione). Una successione¹² è una funzione $f: S \to \mathbb{R}$ dove S è una semiretta di \mathbb{N} , cioè $S = \{n \in \mathbb{R} \mid x \geq n_0\}$ per qualche n_0 .

Esempio 14.0.1. Consideriamo $f(n) = n^2$ con $S = \mathbb{N}$.

Da questa funzione posso calcolare tutti i valori:
$$f(0)=0^2=0,\ f(1)=1^2=1,\ f(2)=2^2=4$$

E possibile disegnare un grafico di una successione che è composto da una serie di punti sparsi.

Esempio 14.0.2. $f(n) = \frac{1}{n}$, come S non posso prendere tutti i naturali perché con 0 non ha senso quindi $S = \{n \in \mathbb{N} \mid n \ge 1\}$. $f(1) = \frac{1}{1} = 1$, $f(2) = \frac{1}{2}$, $f(3) = \frac{1}{3}$.

14.1 Notazione

Nelle successioni invece di scrivere f(n) di solito una successione si denota con a_n . Negli esempio di prima si sarebbe: $a_n = n^2$, $a_n = \frac{1}{n}$.

L'intera successione si denota con $\{a_n\}$ oppure $\{a_n\}_{n\in\mathbb{N}}$, $\{a_n\}_{n\in\mathbb{N}}$.

Esempio 14.1.1. $a_n = \frac{1}{n-5}$. La formula ha senso per $n \neq 5$, quindi si può prendere $S = \{n \in \mathbb{N} | n \geq 6\}$ (avrei anche potuto prendere $n \geq 7$ o $n \geq 8$).

Esempio 14.1.2. $a_n = \sqrt{5-n}$. La formula ha senso se $5-n \ge 0$ cioè $n \le 5$. Nessuna semiretta va bene perché in una successione n diventa sicuramente più grande ad un certo punto quindi non definisce una successione.

14.2 Limiti di Successioni

Come per le funzioni bisogna guardare come si comporta la successioni all'avvicinarsi ad un limite. L'unico limite che ha senso è il limite per $n \to +\infty$, perché $+\infty$ è l'unico punto di accumulazione di tutto il dominio (perché $S \subseteq \mathbb{N}$).

Definizione 14.2.1 (Limite di successione). Si ha che $\lim_{n\to+\infty} a_n = l$ se \forall U intorno di l si ha che $\exists \overline{n} \in \mathbb{N}$ tale che $a_n \in U \ \forall n \geq \overline{n}$.

Si dice che a_n converge a l se $\lim_{n\to+\infty}a_n=l$ e $l\in\mathbb{R}$ e che diverge $a\pm\infty$ se $\lim_{n\to+\infty}a_n=\pm\infty$.

(a) Graficamente se il limite è in \mathbb{R} quindi $l \in \mathbb{R}$

Esiste una **Terminologia** quando si parla di queste cose: se P(n) è un predicato la cui verità dipende da $n \in \mathbb{N}$ (esempio: P(n) = "n è pari") si dice che P(n) è vero definitivamente se $\exists \overline{n} \in \mathbb{N}$ tale che P(n) è vero $\forall n \geq \overline{n}$.

Quindi $\lim_{n \to +\infty} a_n = l$ se $\forall U$ introno di l si ha che $a_n \in U$ definitivamente.

 $^{^{12}}$ Nelle successioni si è soliti scrivere n
 al posto di x come simbolo per la variabile ess. f(n)

Sottosuccessioni (estratte)

Definizione 14.3.1 (Sottosuccessione). Dato $a_n: S \to \mathbb{R}$ una successione, consideriamo $k_n: \mathbb{N} \to S$ strettamente crescente (cioè $k_n > k_m$ quando n > m), possiamo considerare la composizione a_{k_n} . Questa è una nuova successione detta sottosuccessione di $\{a_n\}$ (In pratica scegliamo solo un certo sottoinsieme di indici, in modo crescente).

Esempio 14.3.1. Prendiamo la successione $a_n = \frac{1}{n}$.

Per avere una sottosuccessione prendo $k_n: \mathbb{N} \to S$,e prendo $n \mapsto 2n+1$. Abbiamo $a_{k_n} = \frac{1}{k_n} = \frac{1}{2n+1}$. Quindi graficamente: $a_{k_0} = \frac{1}{0+1} = 1$, $a_{k_1} = \frac{1}{2\cdot 1+1} = \frac{1}{3} = a_3$, $a_{k_2} = \frac{1}{2\cdot 2+1} = \frac{1}{5} = a_5$.

$$a_{k_0} = \frac{1}{0+1} = 1, \ a_{k_1} = \frac{1}{2 \cdot 1 + 1} = \frac{1}{3} = a_3, \ a_{k_2} = \frac{1}{2 \cdot 2 + 1} = \frac{1}{5} = a_5.$$

Teorema 14.3.1. Data una successione $\lim_{n\to+\infty}a_n=l$ se e solo se vale $\lim_{n\to+\infty}a_{k_n}=l$ per ogni sottosuccessione di $\{a_n\}$.

A volta si può usare per dimostrare che una successione non

Esempio 14.3.2.
$$a_n = (-1)^h = \begin{cases} -1 & \text{se n è pari} \\ -1 & \text{se n è dispari} \end{cases}$$

Questo successione non ha limite e si dimostra con il teorema visto sopra. Infatti, consideriamo le sottosuccessioni $\{a_{2n}\}$ e $\{a_{2n+1}\}$ date da indici pari e dispari.

Abbiamo che $a_{2n} = (-1)^{2n} = (1)^n = 1$ che converge a 1 mentre, $a_{2n+1} = (-1)^{2n+1} = -1$ e quindi converge a -1. Visto che questi limiti esistono e sono diversi, segue dal teorema che $\{a_n\}$ non può avere limite.

Osservazione 14.3.1. Per i limiti di successioni valogono molti dei teoremi visti per le funzioni, ad esepio:

- Formule per limiti di somme, prodotti, quozienti, esponenziali etc.
- Teorema di permanenza del segno.
- Teorema dei carabinieri.
- Teorema del confronto, ed altri...

Esempio 14.3.3. Per esempio il teorema della permanenza del segno per le successioni dice: se abbiamo una successione che $\lim_{n\to+\infty}a_n=l>0$, allora $a_n>0$ definitivamente.

14.4 Monotonia

Definizione 14.4.1 (Monotonia). Una successione $\{a_n\}$ essa si dice:

- Debolmente crescente se $n > m \Longrightarrow a_n \ge a_n$.
- Strettamente crescente se $n > m \Longrightarrow a > a_m$.
- Debolmente decrescente se $n > m \Longrightarrow a_n \le a_m$.
- Strettamente decrescente se $n > m \Longrightarrow a_n < a_m$.

Successione è monotona quando vale una di queste 4 proprietà.

Osservazione 14.4.1. $\{a_n\}$ è debolmente crescente se e solo se vale $a_{n+1} \geq a_n \forall n \in S$ (basta guardare termini successivi).

Infatti, se so che $a_{n+1} \ge a_n \forall n \in \mathbb{N}$, poi se n > m allora $a_n \ge ... \ge a_{m+2} \ge a_{m+1} \ge a_m$.

Esempio 14.4.1. Prendiamo $a_n = n^2$ e controlliamo che è strettamente crescente: vediamo che $a_{n+1} > a_n$. Infatti $a_{n+1} = (n+1)^2 = n^2 + 2n + 1$ e $a_n = n^2$ e quindi $n^2 + 2n + 1 > n^2 \iff 2n + 1 > 0$ che è vero $\forall n \in \mathbb{N}$.

Teorema 14.4.1. Se $\{a_n\}$ è monotona (cioè debolmente crescente o decrescente) allora ammette limite. Se è debolmente crescente, il limite non può essere $-\infty$ e se Se è debolmente decrescente, il limite non può essere $+\infty$

14.5 Limitatezza

Definizione 14.5.1 (Limitatezza). Una successione $\{a_n\}$ è limitata superiormente se $\exists M \in \mathbb{R}$ tale che $a_n \subseteq M \forall \in S$ e limitata inferiormente se $\exists m \in \mathbb{R}$ tale che $a_n \geq m \forall n \in S$ e limitata se è limitata sia inferiormente e superiormente. (immagine 46a)

Osservazione 14.5.1. Una successione convergente (che ha limite finito) è limitata. Questo non è vero per funzioni di variabile reale.

Esempio 14.5.1. $f(x) = \frac{1}{x}$, $f:(0,+\infty) \to \mathbb{R}$ abbiamo $\lim_{x \to +\infty} f(x) = 0$ ma f non è limitata, perché $\lim_{x \to 0^+} f(x) = +\infty$ però $a_n = \frac{1}{n}$ invece è limitata.

Teorema 14.5.1. Se $\lim_{n\to+\infty} a_n = +\infty$, allora $\{a_n\}$ ha minimo (cioè $\exists n_{min} \in \mathbb{N}$ tale che $a_n \geq a_{n_{min}} \ \forall n \in S$). Se invece $\lim_{n\to+\infty} a_n = -\infty$ allora a_n ha massimo. (immagine 46b)

- (a) Graficamente definizione di limiti inf, sup
- (b) Graficamente teorema minimo massimo

Figure 46: Raffigurazione di definizione limitatezza e teorema minimo massimo

Ci si può chiedere come domanda se una successione $\{a_n\}$ è limitata, necessariamente massimo e minimo? La risposte è no.

Esempio 14.5.2. Se prendiamo $a_n = \frac{1}{n}$ è limitata: $1 \ge \frac{1}{n} > 0$ ma non ha minimo. $max\{a_n\} = 1$ e $inf\{a_n\} = 0$ (uguale a $\lim_{n \to +\infty} a_n$). Non ha minimo perché non esiste $n \in \mathbb{N}$ tale che $\frac{1}{n} = 0$

Inoltre è possibile chiedersi se $\{a_n\}$ è limitata, esiste almeno uno tra massimo minimo? E la risposta anche in questo caso è no.

Esempio 14.5.3. Prendiamo
$$a_n = (1 - \frac{1}{n})(-1)^n = \begin{cases} 1 - \frac{1}{n} & \text{per n pari} \\ -(1 - \frac{1}{n}) & \text{per n dispari} \end{cases}$$

Complessivamente possiamo vedere la la successione oscilla avvicinandosi con $sun\{a_n\} = 1$ e $inf\{a_n\} = -1$, e non esistono massimo e minimo, anche se a_n è limitata, visto che $-1 < a_n < 1$.

14.5 Limitatezza 77

Esempio 14.5.4. Prendiamo $a_n = \frac{(-1)^n}{n}$ e ci chiediamo se ha limite e sa ha massimo e o minimo.

Abbiamo che $\lim_{n \to +\infty} = 0$. Infatti abbiamo che $-\frac{1}{n} \le a_n \le \frac{1}{n}$ e visto che $\lim_{n \to +\infty} -\frac{1}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0$ per il teorema dei carabinieri abbiamo che $\lim_{n \to +\infty} a_n = 0$. Quindi ha massimo e minimo il massimo è in n = 2 ed il minimo in n = 1.

Teorema 14.5.2. Se ho usa successione che converge $\lim_{n\to +\infty} a_n = l$ finito allora:

- $\exists \overline{n} \in \mathbb{N}$ tale che $a_{\overline{n}} \geq l \Longrightarrow \{a_n\}$ ha massimo.
- $\exists \overline{n} \in \mathbb{N}$ tale che $a_{\overline{n}} \leq l \longrightarrow \{a_n\}$ ha minimo.

14.6 Legame tra limiti di funzione e successioni

Teorema 14.6.1. Prendiamo una funzione definita in $A \subseteq \mathbb{R}$ sottoinsieme $f: A \to \mathbb{R}$, e $x_0 \in acc(A)$. Allora abbiamo che $\lim_{x \to x_0} f(x) = l$ se e solo se $\lim_{n \to +\infty} f(a_n) = l$ per ogni successione $\{a_n\} \subseteq A$ tale che $\lim_{n \to +\infty} a_n = x_0$ e $a_n \neq x_0$ definitivamente.

Questo teorema a volte si può utilizzare per dimostrare che non esiste $\lim_{x \to x_0} f(x)$.

Esempio 14.6.1. Dimostriamo che non esiste $\lim_{x \to a} \sin(x)$.

Esibiamo due successioni a_n, b_n che tendono a $+\infty$, tali che $\lim_{n\to +\infty} \sin(a_n)$ e $\lim_{n\to +\infty} \sin(b_n)$ esistono, ma sono diversi.

Prendo $a_n = n\pi$. Abbiamo $\lim_{a \to +\infty} a_n = n\pi = +\infty$. Inoltre $\lim_{n \to +\infty} \sin(a_n) = \lim_{n \to +\infty} \sin(n\pi) = 0$ e $b_n = \frac{\pi}{2} + 2n\pi$. Di nuovo, $\lim_{n \to +\infty} b_n = +\infty$ ma questa volta $\lim_{n \to +\infty} \sin(b_n) = \sin(\frac{\pi}{2} + 2n\pi) = 1$.

Per il teorema concludo che non esiste il $\lim_{x\to +\infty}\sin(x)$ In particolare il teorema implica che se $\lim_{x\to +\infty}f(x)=l$, allora $\lim_{n\to +\infty}f(n)=l$. Attenzione che non è vero il viceversa.

Esempio 14.6.2. $f(x) = \sin(x\pi)$. Abbiamo $f(n) = \sin(n\pi) = 0$. Quindi $\lim_{n \to +\infty} f(n) = 0$, ma non esiste $\lim_{x \to +\infty} \sin(x\pi)$.

14.7 Calcolo dei limiti di successioni

Teorema 14.7.1. Se abbiamo due successioni $a_n \to l$ e $b_n \to l'$ allora $a_n + b_n \to l + l'$, $a_n \cdot b_n \to l \cdot l'$, $\frac{a_n}{b_n} \to \frac{l}{l'}$ (se $l' \neq 0$ e $b_n \neq 0$ definitivamente), $a_n^{n^n} \to l^{l'}$ (se l > 0 e $a_n > 0$ definitivamente), se $a_n = c \forall n \in \mathbb{N}$ allora $\lim_{n \to +\infty} a_n = c$.

Questo teorema vale solo se supponiamo che non vengono forme indeterminate che sono le stesse viste con le funzioni.

Teorema 14.7.2. Se $f: A \to \mathbb{R}$ e $x_0 \in acc(A)$ e $\lim_{x \to x_0} f(x) = l$ e $a_n: S \to A$ tale che $a_n \to x_0$ e $a_n \neq x_0$ definitivamente allora $\lim_{n \to +\infty} f(a_n) = l$. In particolare se $\lim_{x \to +\infty} f(x) = l$, allora $\lim_{n \to +\infty} f(n) = l$.

Esempio 14.7.1. Alcuni esempi di calcolo dei limiti con successioni:

• $\lim_{n \to +\infty} (n^2 + 2n)$. Partendo da $\lim_{n \to +\infty} n = +\infty$ troviamo $(\lim_{n \to +\infty} n^2) + \lim_{n \to +\infty} (2n) = (\lim_{n \to +\infty} n) (\lim_{n \to +\infty} n) + 2 \lim_{n \to +\infty} n = (+\infty) \cdot (+\infty) + 2(+\infty) = +\infty$.

- $\lim_{n \to +\infty} (n^2 2n) = +\infty \infty$ possiamo fare $n^2 2n = n(n-2) \to +\infty \cdot (+\infty) = +\infty$. Si poteva anche dire $f(x) = x^2 2x$ visto che $\lim_{x \to +\infty} (x^2 2x) = +\infty$ allora $\lim_{n \to +\infty} f(n) = +\infty$.
- $\lim_{n \to +\infty} \frac{n^2 2n}{n} = + \frac{+\infty}{+\infty}$ possiamo però fare $\frac{n^2 2n}{n} = n 2 \to +\infty$.
- $\lim_{n \to +\infty} e^n$, consideriamo $f(x) = e^x$, so che $\lim_{x \to +\infty} e^x = +\infty$ quindi $\lim_{n \to +\infty} f(n) = +\infty$.
- $\lim_{n \to +\infty} n \cdot \sin \frac{1}{n} = +\infty \cdot 0$, pongo $f(x) = x \cdot \sin \frac{1}{x}$ e calcoliamo $\lim_{x \to +\infty} x \cdot \sin \frac{1}{x} = \frac{\sin \frac{1}{x}}{\frac{1}{x}}$ e $\frac{1}{x} \to 0$ quando $x \to +\infty$, poniamo $t = \frac{1}{x}$ e viene $\lim_{x \to +\infty} \frac{\sin t}{t} = 1$.

Altro modo utilizzando taylor: poniamo $\sin t = t + o(t)$ per $t \to 0$ sostituisco $t = \frac{1}{n}$ (infatti $\frac{1}{n} \to 0$ quando $n \to +\infty$), po $\sin \frac{1}{n} = \frac{1}{n} + o(\frac{1}{n})$ quindi $n \cdot \sin \frac{1}{n} = n \cdot (\frac{1}{n} + o(\frac{1}{n})) = 1 + o(1) \to 1$ per $x \to +\infty$.

Osservazione 14.7.1. f(n) può avere limite anche se f(x) non c'è l'ha infatti per esempio: $f(x) = \sin \pi x$ non ha limite per $x \to +\infty$ ma $f(n) = \sin \pi n$ ha limite.

Quindi il metodo di utilizzare la funzione può non sempre funzionare.

Esempio 14.7.2. Ci chiediamo se esiste $\lim_{n\to+\infty} \sin(n)$. Vediamo che il limite non esiste:

Chiediamo quando $\sin(x) \ge \frac{1}{2}$ in $[0, \pi]$ succede esattamente per $x \in [\frac{\pi}{6}, \frac{5}{6}\pi]$. L'intervallo ha lunghezza $\frac{5}{6}\pi - \frac{1}{6}\pi = \frac{4}{6}\pi = \frac{2}{8}\pi > 2$. Quindi l'intervallo contiene almeno due numeri interi (in \mathbb{N}) e lo stesso vale per tutti gli traslati di multipli di 2π .

Questo ci permette di costruire una successione crescete h_n di numeri naturali tale che $\sin(h_n) \ge \frac{1}{2} \, \forall \, n \in \mathbb{N}$. Questo mi dice che se esiste $\lim_{n \to +\infty} \sin(n) = l$, allora sicuramente $l \ge \frac{1}{2}$ (conseguenza della permanenza del segno).

Posso fare lo stesso discorso partendo da $\sin(x) \le -\frac{1}{2}$, e trovo che $l \le -\frac{1}{2}$. Questo è assurdo, e mi dimostra che non esiste $\lim_{n \to +\infty} \sin(n)$.

Esempio 14.7.3. $\lim_{n\to+\infty} n^2 \cdot \sin n$, ci chiediamo se esiste il limite.

Considerando la successione dell'esempio precedente h_n , troviamo una sottosuccessione $h_n^2 \cdot \sin(h_n)$, $\sin(h_n) \geq \frac{1}{2}$ quindi $h_n^2 \cdot \sin(h_n) \geq \frac{1}{2} \cdot h_n^2 \to +\infty$. Se k_n è una successione di naturali tale che $\sin(k_n) \leq -\frac{1}{2} \forall n$, abbiamo una sottosuccessione $k_n^2 \cdot \sin(k_n) \leq -\frac{1}{2} k n^2 \to +\infty$. Quindi ho due sottosuccessioni di $n^2 \sin n$ che hanno limiti diversi. Segue che non esiste $\lim_{n \to +\infty} n^2 \cdot \sin n$.

Teorema 14.7.3. Sia $\{a_n\}_{n\in\mathbb{N}}$ (nota ¹³) una successione, e $\{a_{h_n}\}$ e $\{a_{k_n}\}$ due sottosuccessioni tale che $\{h_n \mid n \in \mathbb{N}\} \cup \{k_n \mid n \in \mathbb{N}\} = \mathbb{N}$. (si dice che le due sottosuccessioni "saturano tutti gli indici"). Se $\exists \lim_{n \to +\infty} A_n$ e $\exists \lim_{n \to +\infty} a_{k_n}$ e sono uguali, allora esiste anche $\lim_{n \to +\infty} a_n$ ed è uguale agli altri due.

Un caso tipico in cui si utilizza questo teorema è quando si prendono gli indici pari e dispari.

Esempio 14.7.4. $\lim_{n\to+\infty}\frac{(\log n+1)^{(-1)^h}}{n^3}$. Guardiamo gli indici pari $k_n=2n$ con il quale ho $\frac{(\log(2n+1))^1}{(2n)=3}\to 2n$

0, e poi guardiamo gli indici dispari $h_n = 2n + 1$ dove viene $\frac{(\log(2n+1))^{-1}}{(2n+1)^3} = \frac{1}{(2n+1)^3 \log(2n+1)} = \frac{1}{+\infty} = 0$ quindi le sottosuccessioni saturano tutti gli indici.

Usando il teorema concludiamo che $\lim_{n\to+\infty} \frac{(\log n+1)^{(-1)^h}}{n^3} = 0.$

14.7.1 Criterio del rapporto

Teorema 14.7.4 (Criterio del rapporto). Sia $\{a_n\}$ una successione. Se $a_n > 0$ definitivamente, e se esiste $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$ allora:

 $^{^{13} \}mathrm{In}$ questa scrittura ci sono tutti i numeri naturali

- 1. Se $0 \le l \le 1$, allora $\lim_{n \to +\infty} a_n = 0$.
- 2. Se l > 1, allora $\lim_{n \to +\infty} a_n = +\infty$.

Osservazione 14.7.2. Se l=1, non si può dire niente sul comportamento di a_n .

Esempio 14.7.5. Esempi del criterio del rapporto con l=1:

- Prendo $a_n = 1 \forall n \in \mathbb{N}$. Allora $\frac{a_{n+1}}{a_n} = \frac{1}{1} = 1 \to 1$ quindi l = 1 e a_n converge a 1.
- Con $a_n = n$. Allora $\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \to 1$ quindi l = 1 e $a_n \to +\infty$.
- Con $a_n = \frac{1}{n}$, di nuovo $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \to 1$ sempre l=1 e $a_n \to 0$.

Esempio 14.7.6. Esempi di applicazioni del criterio del rapporto:

- $a_n = (\frac{1}{2})^n$. Usando il criterio $\frac{a_{n+1}}{a_n} = \frac{(\frac{1}{2})^{n+1}}{(\frac{1}{2})^n} = \frac{2^n}{2^{n+1}} = \frac{1}{2} = l$ e ho $0 \le l \le 1$. Quindi $a_n \to 0$.
- $a_n=2^n$ (si può usare $f(x)=2^x$ e il fatto che $\lim_{x\to+\infty}2^x=+\infty$). Usiamo il criterio del rapporto quindi $\frac{a_n+1}{a_n}=\frac{2^{n+1}}{2^n}=2=l$ e con l>2 concludo che $a_n\to+\infty$.
- $a_n = n!$. Criterio del rapporto che $\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{n!} = \frac{(n+1)n!}{n!} = n+1 \to +\infty = l$ quindi l > 1 e quindi $a_n \to +\infty$. In questo caso si poteva anche osservare che n! > n e $n \to +\infty$ quindi per confronto segue che $n! \to +\infty$.

Confronto di n! con n^k , b^n , n^n :

- Potenza (n^k) con $(k \ge 1)$. Vogliamo guardare che $\lim_{n \to +\infty} \frac{n!}{n^k} = \frac{+\infty}{+\infty}$ forma indeterminata. Usiamo quindi il criterio del rapporto per $a_n = \frac{n!}{n^k}$. Ho $\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^k} \cdot \frac{n^k}{n!} = \frac{(n+1)!}{n!} \cdot \frac{n^k}{(n+1)^k} = (n+1) \cdot (\frac{n}{n+1})^k \to +\infty \cdot (1)^k = +\infty = l$ quindi l > 1. Segue che $\frac{n!}{n^k} \to +\infty$, quindi n! "tende a $+\infty$ più velocemente di n^k ".
- Esponenziale (b^n) con b > 1. $\lim_{n \to +\infty} \frac{n!}{b^n} = \frac{+\infty}{+\infty}$ forma indeterminata. Guardiamo quindi il rapporto, per $a_n = \frac{n!}{b^n}$. Quindi abbiamo $\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{b^{n+1}} \cdot \frac{b^n}{n!} = \frac{(n+1)!}{n!} \cdot \frac{b^n}{b^{n+1}} = (n+1) \cdot \frac{1}{b} \to +\infty = l > 1$. Segue che $\frac{n!}{b^n} \to +\infty$, quindi n! tende $a + \infty$ più velocemente di b^n .
- Esponenziale potentissimo (n^n) . Notare che $n^n \to +\infty$ ad esempio perché $n^n \ge n$ e $n \to +\infty$. Facciamo $\lim_{n \to +\infty} \frac{n^n}{n!} = \frac{+\infty}{+\infty}$ forma indeterminata. Usiamo il criterio del rapporto per $a_n = \frac{n^n}{n!}$. $\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{n!}{(n+1)!} \cdot \frac{(n+1)^{n+1}}{n^n} = \frac{1}{n+1} \cdot \frac{(n+1)^{n+1}}{n^n} = (\frac{n+1}{n})^n = (1+\frac{1}{n})^n \text{ che è un limite notevole che } \to e > 1. \text{ (per vederlo ad esempio si può scrivere } (1+\frac{1}{n})^n = e^{\log(1+\frac{1}{n})^n} = e^{n \cdot \log(1+\frac{1}{n})} = e^{n \cdot (\frac{1}{n}+o(\frac{1}{n}))} = e^{1+o(1)} \to e^1 = e).$ Quindi segue che $\frac{n^n}{n!} \to +\infty$ quindi n^n tende a $+\infty$ più velocemente di n!.

14.7.2 Criterio della radice

Teorema 14.7.5. Se $a_n > 0$ definitivamente, e $\exists \lim_{n \to +\infty} \sqrt[n]{a_n} = l$, allora:

- 1. Se $0 \le l < 1$, allora $\lim_{n \to +\infty} a_n = 0$.
- 2. Se l > 1, allora $\lim_{n \to +\infty} a_n = +\infty$.

Osservazione 14.7.3. Se l=1 non si può dire niente riguardo al comportamento di a_n come sul criterio del rapporto.

Dimotrazione 14.7.1. Dimostrazione dei due casi del criterio della radice.

1. Suppongo che $0 \le l \le 1$ e fisso un $m \in \mathbb{R}$ tale che l < m < 1. Visto che $\sqrt[n]{a_n} \to l$ definitivamente avrò $\sqrt[n]{a_n} < m$, quindi $a_n < m^n$. Ora visto che m < 1 abbiamo visto che $m^n \to 0$, quindi visto che $0 < a_n < m^n$ per il teorema dei carabinieri segue che $a_n \to 0$.

2. Questo punto si fa analogo, se invece l > 1 scelto $m \in \mathbb{R}$ tale che 1 < m < l. Visto che $\sqrt[n]{a_n} \to l$ avrò $\sqrt[n]{a_n} > m$ definitivamente segue che definitivamente ho $a_n > m^n$ e visto che n > 1 ho $m^n \to +\infty$. Per confronto segue che $a_n \to +\infty$.

14.7.3 Relazione fra criteri del rapporto e della radice

Teorema 14.7.6 (Relazione fra rapporto e radice). Se $a_n > 0$ definitivamente e se $\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$, allora $\exists \lim_{n \to +\infty} \sqrt[n]{a_n}$ ed è uguale a l.

Osservazione 14.7.4. Questo teorema è vero anche con l=1.

Osservazione 14.7.5. Potrebbe esiste $\lim_{n \to +\infty} \sqrt[n]{a_n}$ e non esistere il $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n}$ (quindi questo teorema vale solo per un verso e non il viceversa).

Esempio 14.7.7. Alcuni esempi utilizzando quest'ultimo teorema.

- Fissiamo un a>0. Proviamo a calcolare $\lim_{n\to+\infty}\sqrt[n]{a}$. (Si può fare in diversi modi come $\sqrt[n]{a}=a^{\frac{1}{n}}\to a^0=1$). Usiamo l'ultimo teorema $a_n=a$ successione costante. Abbiamo quindi $\frac{a_{n+1}}{n}=\frac{a}{a}=1$. Per il teorema segue che $\sqrt[n]{a_n}=\sqrt[n]{a}=1$.
- Proviamo a fare $\lim_{n \to +\infty} \sqrt[n]{n}$. usiamo il teorema con $a_n = n$. Abbiamo quindi $\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \to 1$. Quindi segue che $\sqrt[n]{a_n} = \sqrt[n]{n} \to 1$.
- Nello stesso modo dell'esempio sopra si vede che $\sqrt[n]{p(n)} \to 1$ dove p(n) è un polinomio in n.

Esempio 14.7.8. Esiste $\lim_{n\to+\infty} \sqrt[n]{a_n}$ ma non esiste $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n}$. Prendiamo $a_n = \begin{cases} 1 & \text{se n è pari} \\ 2 & \text{se n è dispari} \end{cases}$

Abbiamo $\sqrt[n]{1} \le \sqrt[n]{a_n} \le \sqrt[n]{2} \ \forall n \in \mathbb{N}$. Abbiamo appena visto che $\sqrt[n]{1} \to 1$ e $\sqrt[n]{2} \to 1$, per il teorema dei carabinieri segue che $\sqrt[n]{2} \to 1$.

Ora $\frac{a_{n+1}}{a_n} = \begin{cases} \frac{2}{1} = 2 & \text{se n è pari} \\ \frac{1}{2} & \text{se n è dispari} \end{cases}$ e questa successione non ha limite.

Esempio 14.7.9. Calcoliamo $\lim_{n\to +\infty} \sqrt[n]{2+\sin n}$. Usare il rapporto non sembra promettente perché se $a_n=2+\sin n$, sarebbe $\frac{a_{n+1}}{a_n}=\frac{2+\sin n+1}{2+\sin n}$. Visto che $-1\leq \sin n\leq 1$ abbiamo che $\sqrt[n]{1}\leq \sqrt[n]{2+\sin n}\leq \sqrt[n]{3}$, in questo caso sia $\sqrt[n]{1}\to 1$ che $\sqrt[n]{3}\to 1$ quindi per il teorema dei carabinieri, il limite è 1.

In riferimento all'esempio di prima possiamo dire più in generale, che se a_n è limitata $m \le a_n \le M$ definitivamente (definitivamente limitata), con m > 0 allora ho $\sqrt[n]{m} \le \sqrt[n]{a_n} \le \sqrt[n]{M}$ e come sopra visto che $\sqrt[n]{1} \to 1$ e $\sqrt[n]{3} \to 1$ concludo che $\sqrt[n]{a_n} \to 1$.

Esempio 14.7.10. $\lim_{n\to+\infty} \sqrt[n]{n!}$, pongo $a_n=n!$ e $\frac{a_{n+1}}{a_n}=\frac{(n+1)!}{n!}=n+1\to+\infty$. Dall'ultimo teorema visto segue che $\sqrt[n]{a_n}=\sqrt[n]{n!}\to+\infty$.