

Algoritmos para la detección de comunidades en redes

Trabajo de fin de grado

Grado en Ingeniería Informática 2018/19

Autor: Miguel Jiménez Gomis

Índice

- 1. Resumen
- 2. Introducción y descripción del problema
- 3. Antecedentes
- 4. Algoritmo propuesto
- 5. Experiencia computacional
- 6. Summary and conclusions
- 7. Presupuesto
- 8. Bibliografía
- 9. Preguntas

1. Resumen

En este trabajo, se propone un nuevo algoritmo para la detección de comunidades en redes que permita realizar asignaciones rápidas a las diferentes comunidades existentes en el grafo, cuando se tratan con datos en tiempo real. El objetivo de este algoritmo es reducir la carga computacional de estos análisis y tener soluciones válidas aproximadas en el menor tiempo, haciendo posible la identificación de los datos existentes en el solapamiento de diferentes comunidades para tenerlos en cuenta y obtener mejores resultados.

Para comprobar la viabilidad del algoritmo propuesto se realizó una experimentación sobre data set reales, para poder compararlos de manera sencilla con la literatura; y con un conjunto de datos artificial, con el objetivo de que el análisis fuera más amplio.

La experimentación realizada y análisis previos llevados a cabo en este proyecto establecen unas bases sólidas sobre las que seguir trabajando para completar y mejorar el algoritmo propuesto.

2. Introducción y descripción del problema

Hitos

- Revisión bibliográfica de la literatura relativa a las técnicas y campos de aplicación de la detección de comunidades en redes complejas
- 2. Diseño e implementación de al menos una técnica de detección de comunidades solapadas en redes estáticas
- 3. Diseño de experimentos y comparativa con la literatura
- 4. Desarrollo de herramienta para representación gráfica de soluciones
- 5. Diseño e implementación de al menos una técnica de detección de comunidades solapadas en redes dinámicas

3. Antecedentes

Grafos

Comunidades en grafos

- Grado interno
- Grado interno promedio
- Densidad de aristas internas
- Grado externo
- Grado externo promedio
- Densidad de aristas externas

Comunidades solapadas

Modularidad:

 $M = \Sigma(i) [(ls/L) - (ds/2L)^2]$

Grado promedio:

AD(c)=2*(|E(c)|/|c|)

Estructura local:

 $\Gamma(v) = \{ w \in V | (v,w) \in E \} \cup \{v\}$

Equivalencia estructural:

 $\sigma(u,v) = (|\Gamma(u) \Gamma(v)|) / \sqrt{(|\Gamma(u)|^* |\Gamma(v)|)}$

4. Algoritmo propuesto

Fase 1. Detección de comunidades iniciales

Algoritmos clásicos:

- CPM
- CONGA
- LED
- Fuzzy clustering
- Girvan–Newman

Fase 2. Inserción de elementos

Pseudocódigo de la inserción por medio de Modularidad.

Require graph G, , initialCommunities, error (%)

- 1. maxModularity = 0;
- 2. insertions = [];
- 3. For each community in initialCommunities:
- 4.calculate modularity of data;
- 5. If datamodularity >= max Modularity * (error/100):
- 6. insertions.add community;
- 7. End Loop;
- 8. For each community in insertions:
- 9 add data to community;
- 10. End Loop;

Fase 3. Revisión de comunidades y obtención de métricas

5. Experiencia computacional

Diseño de la experimentación

Test artificial

Test con datos reales

- Karate Club Dataset
- College football Dataset

Algoritmo LED (Loop Edge Detection)

Pseudocódigo del algoritmo LED. Primera parte.

Algorithm 1. LED algorithm.

Require: Graph G, a

Ensure: Clusters Ci; where i(1; 2; ...; k).

1: curG=G; //pointer to current graph

2: edgeListi; //store the ith deleted edges

3: graphListti;//store the ith graph

//Step1 and Step2: Calculating Structural Similarity and

Deleting edges less than α

4: repeat

5: for each edge in curG do

6: Calculate Structural Similarity;

7: end for

8: push curG into graphList;

9: copy curG to G';

10: if $w(e) < \alpha$ then

11: curG = curG - {e};

12: edgeListi = edgeListi + (e);

Pseudocódigo del algoritmo LED. Segunda parte.

13: end if

14: until edgeListi is not empty

15: label each inter-connected-components as an initial community Ci;

//Step3: Identify Overlapping Vertices

16: for each edgeListi in reverse order do

17: if two vertices of the edge in different initial communities then

18: judge the vertices of the edge is overlapping or not using AD(c) (formula(4));

19: end if

20: end for

//extend initial communities

21: attach the isolated vertices to the one initial community with highest Structural Similarity; return Clusters;

Algoritmo LED (Loop Edge Detection)

Modificación de LED. El código de esta tabla sustituye las líneas desde la 4 hasta la 14 del pseudocódigo del algoritmo original.

- 4: def recursive (graph, α):
- 5: Calculate Structural Similarity;
- 6. Delete edges;
- 7. Check if G.inter-connected-components == 1:
- 8: Mark G as initial community;
- 9. Else:
- 10: For each inter-connected-components in G:
- 11. recursive(inter-connected-components, α);
- 12. end IF;

Implementación de la experiencia computacional

Herramienta para la representación gráfica de soluciones y Metodología de desarrollo

Ejemplo de Output

Karate: 50%	[Init:0.08584043421635067	0:0.09768049410826109	1:0.09399468539381972	2:0.10341814395936527	3:0.09965771865291029
	4:0.11043152607484653	5:0.10651111309137723	6:0.0976627260230579	7:0.09292490191673984	8:0.10927017858449642
	9:0.10583776684667907	10:0.12545129759045792	11:0.1257536841177242	12:0.13799999999999998	13:0.1417270012496024
	14:0.1640586899713655	15:0.2286394456622278	16:0.33645316800701813]		
Football: 90%	[Init:0.05455563624354258	0:0.05777997107911524	1:0.059904	2:0.06100027142427686	3:0.0639940164642304
	4:0.0662735500056825	5:0.06967257664383456	6:0.07349992822276138	7:0.0745844747787063	8:0.0807056482930449
6	9:0.0458209346501329	10:0.05038561318926301	11:0.06295292548589213]		

Ejemplo con datos reales

Karate club dataset				
n nodos	34	AND RESERVED TO SERVED TO		
% de nodos iniciales	Mod inicial	Numero de inserciones	Mod final	
10	0.01776008983786565	30	0.3516153268219384	
30	0.062160314432529784	23	0.3462234462175538	
50	0.08584043421635067	17	0.33645316800701813	
70	0.10360052405421631	10	0.3367305503318155	
90	0.1332006737839924	3	0.32143477176559476	
College footbal				
n nodos	115			
% de nodos iniciales	Mod inicial	Numero de inserciones	Mod final	
10	0.002899091781057818	119	0.8515159050521792	
30	0.016472112392373967	93	0.6236254483254857	
50	0.030835794398524064	66	0.428625145345822	
70	0.044408815009840216	37	0.2251049497997793	
90	0.05455563624354258	12	0.06295292548589213	

Comparativa con la literatura

	Girvan-Newman	LED	Algoritmo Propuesto
Karate Club	0.4012	0.4155	0.3384
College Football	0.5995	0.5995	0.4383

Matriz del incremento de la modularidad promedio

		% inicial de nodos							
		10	20	30	40	50	60	70	80
	2	0,35121973	0,272680517	0,11062632	0,088436272	0,058642505	0,0491006	0,03337	0,02377
	3	0,372644041	0,272398667	0,08058366	0,057857441	0,038876257	0,03228378	0,02201	0,01562
	4	0,340143973	0,193151157	0,05660807	0,041107448	0,028420146	0,02426021	0,01638	0,01166
Numero de clusters	5	0,307157836	0,178992724	0,0412227	0,032354638	0,022572885	0,01876108	0,01275	0,00911
ivalliero de clusters	6	0,223209366	0,15335754	0,02378096	0,024614851	0,018058249	0,01495072	0,0102	0,00728
	7	0,180863377	0,051130252	0,01981867	0,021989164	0,014874251	0,01231747	0,0084	0,00599
	8	0,156568514	0,063063257	0,01615324	0,01613298	0,012528755	0,01037929	0,0071	0,00505
	9	0,156112422		0,01486007	0,01434122	0,010755671	0,00890281	0,00611	0,00435

Matriz de modularidad inicial

		% inicial de nodos							
		10	20	30	40	50	60	70	80
	2	0,107122749	0,11703904	0,12781469	0,130175164	0,134100991	0,13482386	0,13624	0,13656
	3	0,059715596	0,065052993	0,0723227	0,076071651	0,081504793	0,08375222	0,087	0,08854
	4	0,038974462	0,042513888	0,04767701	0,051195456	0,056068253	0,06004258	0,0637	0,06547
Numero de clusters	5	0,02839904	0,031177625	0,0353245	0,038360337	0,042742841	0,04492286	0,04822	0,04993
Numero de ciusters	6	0,021523372	0,023695537	0,026969	0,029562587	0,03325717	0,03524671	0,03816	0,03972
	7	0,017004724	0,018770975	0,02143279	0,02365335	0,026824995	0,02857633	0,03117	0,03259
	8	0,013861208	0,015332056	0,01755827	0,019478385	0,022228271	0,02377479	0,02606	0,02737
	9	0,011577105	0,012821321	0,01471618	0,016390528	0,018795391	0,02018303	0,02221	0,0234

6. Summary and conclusions

Conclusions

- Community detection is a computationally demanding task.
- Promising results for the provisional assignment task.
- The main source of error is the initial community detection.
- A first version of this algorithm could be implemented as an API.
- More thorough experimentation and investigation must be conducted.

Future Work

Deepen the analysis and investigation of this algorithm to improve it.

Implement a usable version of the algorithm.

7. Presupuesto

Costes del proyecto	
Número de horas trabajadas	350
Coste por hora	10 €
Total	3.500 €

Bibliografía

- [1] A. Katal, M. Wazid and R. H. Goudar, "Big data: Issues, challenges, tools and Good practices," 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, 2013, pp. 404-409. doi: 10.1109/IC3.2013.6612229
- [2] Trudeau, Richard J. Introduction to Graph Theory. New York: Dover, 1993. Print.
- [3] Santo Fortunato. Community detection in networks: A user guide
- [4] M. Girvan, M.E. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. 99 (12) (2002) 7821–7826.
- [5] Y. Cai, C. Shi, Y. Dong, Q. Ke, B. Wu, A novel genetic algorithm for overlapping community detection, in: Advanced Data Mining and Applications, Springer, Beijing, China, 2011, pp. 97–108.
- [6] H. Sun, J. Huang, X. Zhang, et al., IncOrder: incremental density-based community detection in dynamic networks, Knowl.-Based Syst. 72 (2014) 1–12.
- [7] M.E. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69 (2) (2004) 026113.
- [8] S. Zhang, R.-S. Wang, X.-S. Zhang, Identification of overlapping community structure in complex networks using fuzzy c-means clustering, Phys. A: Stat. Mech. Appl. 374 (1) (2007) 483–490.
- [9] T. Ma, Y. Wang, M. Tang, J. Cao, Y. Tian
- Abdullah al-dhelaan, mznah al-rodhaan, LED: a fast overlapping communities detection algorithm based on structural clustering

 Neurocomputing, 207 (2016), pp. 488-500

- [10] Girvan M. and Newman M. E. J., Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)
- [11] Alba, Richard D. (1973), "A graph-theoretic definition of a sociometric clique" (PDF), Journal of Mathematical Sociology, 3 (1): 113–126, doi:10.1080/0022250X.1973.9989826.
- [12] Zachary's karate club: social network of friendships between 34 members of a karate club at a US university in the 1970s. Please cite W. W. Zachary, An information flow model for conflict and fission in small groups, Journal of Anthropological Research 33, 452-473 (1977).
- [13] American College football: network of American football games between Division IA colleges during regular season Fall 2000. Please cite M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002).
- [14] Java: https://www.java.com/
- [15] Github: https://github.com/
- [16] Eclipse: https://www.eclipse.org/
- [17] JGraphT: https://jgrapht.org/
- [18] JGraph: https://github.com/jgraph/
- [19] Graph Strem: http://graphstream-project.org/
- [20] Weka. https://www.cs.waikato.ac.nz/ml/weka/ (last visited on July 2019)
- [21] https://www.indeed.es/salaries/Investigador/a-Salaries

¿Preguntas?

https://github.com/MiguelJG/TFG