POWERED BY Dialog

ILLUMINATION DEVICE, PROJECTION ALIGNER AND DEVICE MANUFACTURING METHOD

Publication Number: 2003-045774 (JP 2003045774 A), February 14, 2003

Inventors:

TSUJI TOSHIHIKO

Applicants

CANON INC

Application Number: 2001-228796 (JP 2001228796), July 27, 2001

International Class:

- H01L-021/027
- G02B-027/18
- G03F-001/16
- G03F-007/20

Abstract:

PROBLEM TO BE SOLVED: To provide an illumination device, an aligner and a device manufacturing method using the same, in which an illuminating region is illuminated with uniform illuminance, and the center of gravity of the light intensity of light beams incident on the illuminating region coincides with a center of the light beams. SOLUTION: In an illumination device, an aligner and a device manufacturing method using the same, an illumination surface is illuminated with a beam of wavelength 200 nm or higher from a light source. The illuminating device, the aligner and the device manufacturing method, using the same have a first reflection-type integrator; a first collector mirror for overlapping a plurality of beams from the first reflection-type integrator on the illuminating surface; and a second collector mirror, which is provided between the light source and the first reflection-type integrator for overlapping a second reflection-type integrator and a plurality of beams from the second reflection-type integrator on the first reflection-type integrator. COPYRIGHT: (C)2003,JPO

JAPIO

© 2004 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 7551934

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003—45774

(P2003-45774A)

(43)公開日 平成15年2月14日(2003.2.14)

(51) Int.Cl.7		識別記号		FΙ			รี	-7]-}*(参考)
H01L	21/027			G 0 2	B 27/18		Z	2H095
G 0 2 B	27/18			G 0 3	F 1/16		Α	2H097
G03F	1/16				7/20		5 0 3	5 F 0 4 6
	7/20	503		H01	L 21/30		527	
							517	
			審查請求	有	育求項の数14	OL	(全 16 頁)	最終頁に続く

(21) 出願番号 特願2001-228796(P2001-228796)

(22) 出願日 平成13年7月27日(2001.7.27)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72) 発明者 辻 俊彦

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 100110412

弁理士 藤元 亮輔

Fターム(参考) 2H095 BA10

2H097 CA06 CA15 LA10

5F046 BA05 CA08 CB02 CB03 CB05

CB13 CB23 GA03 GA06 GA07

GB01 GC03

(54) 【発明の名称】 照明装置、投影露光装置及びデバイス製造方法

(57)【要約】

【課題】 被照明領域を均一な照度で照明すると共に、被照明領域に入射する光線の光強度の重心を光線の中心に一致させる照明装置、露光装置及びこれを用いたデバイス製造方法を提供する。

【解決手段】 光源からの波長200nm以下の光で被照明面を照明する照明装置、露光装置及びこれを用いたデバイス製造方法であって、第1の反射型インテグレータと、該第1のインテグレータからの複数の光束を前記被照明面上に重ねる第1の集光ミラーと、前記光源と前記第1の反射型インテグレータの間に設けられた、第2の反射型インテグレータ及び当該第2の反射型インテグレータからの複数の光束を前記第1の反射型インテグレータ上に重ねる第2の集光ミラーと、を有する照明装置、露光装置及びこれを用いたデバイス製造方法を提供する。

【特許請求の範囲】

【請求項1】 光源からの波長200nm以下の光で被照明面を照明する照明装置であって、

第1の反射型インテグレータと、該第1のインテグレータからの複数の光束を前記被照明面上に重ねる第1の集光ミラーと、

前記光源と前記第1の反射型インテグレータの間に設けられた、第2の反射型インテグレータ及び当該第2の反射型インテグレータからの複数の光束を前記第1の反射型インテグレータ上に重ねる第2の集光ミラーとを有す 10る照明装置。

【請求項2】 前記第1及び第2の反射型インテグレータは、円筒面の一部が複数個平行に配置され、前記第1及び第2の反射型インテグレータの前記円筒面の母線は互いにほぼ直交する請求項1記載の照明装置。

【請求項3】 前記円筒面は、凸型、凹型又はそれらの組み合わせである請求項2記載の照明装置。

【請求項4】 前記第1の反射型インテグレータは、前記被照明面を光学系のメリジオナル断面に関してはクリティカル照明し且つ前記光学系のサジタル断面に関して 20はケーラー照明するように構成してある請求項1に記載の照明装置。

【請求項5】 前記第1の反射型インテグレータは、繰返し構造の反射面を有する請求項1記載の照明装置。

【請求項6】 前記第1の反射型インテグレータと前記 被照明面との間に配置され、前記被照明面に円弧状照明 領域を定義する円弧状開口部を有する視野絞りと、

当該視野絞りの前記開口を経た前記光束で、前記開口を 前記被照明面に結像する反射光学系とを有する請求項 1 記載の照明装置。

【請求項7】 前記第1の反射型インテグレータと前記 被照明面との間で前記被照明面の近傍に配置され、前記 被照明面を円弧状の光で照明するための円弧状開口部を 有する視野絞りを有する請求項1記載の照明装置。

【請求項8】 前記第2の反射型インテグレータの反射面位置と前記被照明面位置は光学的に共役な位置関係にあり、前記第2の反射型インテグレータの反射面上又は近傍に、開口径が可変な絞りを有する請求項1記載の照明装置。

【請求項9】 前記被照明面に円弧状の照明領域を形成 40 するものであって、

前記第1の反射型インテグレータは、前記円弧状の領域の角度方向には前記光源からの二次光源を重畳し、前記円弧状の領域の径方向には前記複数の光束を集光するように前記被照明領域を照明する請求項1記載の照明装置。

【請求項10】 光源からの波長200nm以下の光で 被照明面を照明する照明装置であって、

前記被照明面に円弧状の照明領域を定義する円弧状開口部を有する視野絞りと、

当該視野絞りの前記円弧状開口を経た光束で、前記円弧 状の開口を前記被照明面に結像する反射光学系と、

前記円弧状開口を経た光束の主光線の前記被照明面に対する入射角を調節する調節機構とを有する照明装置。

【請求項11】 前記補正機構は前記反射光学系の少なくとも一のミラーの偏心及び/又は回転移動を調節する機構を含む請求項10記載の照明装置。

【請求項12】 前記光源からの前記光の波長は20 n m以下である請求項1乃至11のいずれか一項記載の照明装置。

【請求項13】 請求項1乃至12のうちいずれか一項 記載の照明装置によりレチクル又はマスクに形成された パターンを照明し、当該パターンを投影光学系により被 処理体上に投影する露光装置。

【請求項14】 請求項13記載の露光装置を用いてデバイスパターンで基板を露光する工程と、

前記露光された基板に所定のプロセスを行う工程とを有するデバイス製造方法。

【発明の詳細な説明】

0 [0001]

【産業上の利用分野】本発明は照明装置に関し、特に光源として波長200nm乃至10nmの極端紫外線領域(EUV:extreme ultraviole t)、又はX線領域の発光光源を利用して、半導体ウェハ用の単結晶基板、液晶ディスプレイ(LCD)用のガラス基板などの被処理体を露光する照明装置、露光装置及びデバイス製造方法に関する。

[0002]

【従来の技術】微細パターンをもつ半導体回路素子などを製造する方法として、例えば、波長13.4nmのEUV光を用いた縮小投影露光方法がある。この方法では、回路パターンが形成されたマスク又はレチクル(本出願ではこれらを交換可能に使用する。)をEUV光で照明し、マスク上のパターンの像をウェハ面に縮小投影し、その表面のレジストを露光してパターンを転写する。

【0003】投影露光装置の解像度Rは、露光光源の波長入、露光装置の開口数(NA)及び比例定数k」を用いて次式で与えられる。

[0004]

【数1】

$$R = k_{\rm l} \times \frac{\lambda}{NA}$$

【0005】また、一定の結像性能を維持できる焦点範囲を焦点深度といい、焦点深度DOFは、比例定数k2を用いて次式で与えられる。

[0006]

【数2】

$$DOF = k_2 \times \frac{\lambda}{NA^2}$$

50

【0007】従来のEUV縮小投影露光装置1000の要部概略を図18に示す。図18において、1001はEUV光の発光点、1002はEUV光束、1003はフィルタ、1004は第1の回転放物面ミラー、1005は反射型インテグレータ、1006は第2の回転放物面ミラー、1007は反射型マスク、1008は投影光学系を構成する複数のミラー系、1009はウェハ、1010はマスクステージ、1011はウェハステージ、1012は円弧状アパーチャ、1013はレーザ光源、1014はレーザ集光光学系、1017は真空容器である。また、図19は、マスク1007上の照明領域1015と露光が行われる円弧状領域1016との関係を示す平面図である。

【0008】 このように、露光装置1000は、EUV 光を生成する光源部1013及び1014、照明光学系 (即ち、第1の回転放物面ミラー1004、反射型イン テグレータ1005及び第2の回転放物面ミラー100 6)、反射型マスク1007、投影光学系1008、ウ ェハ1009、マスクを搭載したステージ1010、ウ ェハを搭載したステージ1011、マスクやウェハの位 20 置を精密に合わせる図示しないアライメント機構、EU V光の減衰を防ぐために光学系全体を真空に保つための 真空容器1017と図示しない排気装置などからなる。 【0009】照明光学系は、発光点1001からのEU V光1002を第1の回転放物面ミラー1004で集光 し、反射型インテグレータ1005に照射して2次光源 を形成し、更に、この2次光源からのEUV光を第2の 回転放物面ミラー1006で重畳されるように集光し、 マスク1007を均一に照明する。

【0010】反射型マスク1007は多層膜反射鏡の上 30 にEUV吸収体などからなる非反射部を設けた転写バターンが形成されたものである。反射型マスク1007で反射された回路バターンの情報を有するEUV光は、投影光学系1008によってウェハ1009面上に結像する。

【0011】投影光学系1008は光軸中心に対して軸外の細い円弧状の領域が良好な結像性能をもつように設計されている。従って、露光はこの細い円弧状領域のみが利用されるように、ウェハ1009直前に円弧状開口をもったアパーチャ1012が設けられている。そして 40矩型形状をしたマスク全面のパターンを転写するため、反射型マスク1007とウェハ1009が同時にスキャンして露光が行われる。

【0012】ことで投影光学系1008は複数の多層膜 反射鏡によって構成され、マスク1007上のパターン をウェハ1009表面に縮小投影する構成となっており、通常、像側テレセントリック系が用いられている。なお、物体側(反射型マスク側)は、反射型マスク1007に入射する照明光束との物理的干渉を避けるために、通常、非テレセントリックな構成となっている。

【0013】レーザ光源1013からのレーザ光はレーザ集光光学系1014により発光点1001の位置にある不図示のターゲットに集光され、高温のプラズマ光源を生成する。このプラズマ光源から熱輻射により放射されたEUV光1002は第1の回転放物面ミラー1004で反射して平行なEUV光束となる。この光束が反射型インテグレータ1005で反射して、多数の2次光源を形成する。

1012は円弧状アパーチャ、1013はレーザ光源、
1014はレーザ集光光学系、1017は真空容器であ
3。また、図19は、マスク1007上の照明領域10
15と露光が行われる円弧状領域1016との関係を示
す平面図である。
【0008】このように、露光装置1000は、EUV(0014】この2次光源からのEUV光は第2の回転
放物面ミラー1006で反射して反射型マスク1007
を照明する。ここで該2次光源から第2の回転放物面ミラー1006から反射型マスク1007までの距離は、第2の回転放物面ミラー1006の焦点距離に等しく設定されている。

【0015】2次光源の位置に第2の回転放物面ミラー1006の焦点が位置しているので2次光源の1つから出たEUV光は反射型マスク1007を平行光束で照射する。これによりケーラー照明が満たされている。即ち、反射型マスク1007上のある1点を照明するEUV光は全ての2次光源から出たEUV光の重なったものである。

【0016】マスク面上の照明領域1015は、図19 に示すように、反射型インテグレータ1005の構成要素である凸又は凹面ミラーの反射面の平面形状と相似であり、実際に露光が行われる円弧領域1016を含むほぼ矩形領域である。投影光学系1008は2次光源の像が投影光学系1008の入射瞳面に投影されるように設計されている。

[0017]

【発明が解決しようとしている課題】マスク1007の円弧領域は照度ムラがなく照明されることが必要であるが、それに加えて、円弧領域に入射する光線の光強度の重心を光線の中心に一致させる必要がある。しかし、従来のEUV縮小投影露光装置1000ではこれらの条件がかならずしも満足されていなかった。そのため、円弧領域のある点において光線の重心が中心に一致していなければ、実質的に照明光の主光線は所望する方向からずれて入射したと同様の効果となり、マスクパターンが正常に露光できなくなるという問題を有していた。

【0018】また、図19に示すように、マスク1007には実際に露光が行われる円弧領域1016を含むほぼ矩形領域1015に対してEUV光が照射されるため、露光に寄与しないEUV光はウェハ1009上の円弧状アパーチャ1012により遮光されて無駄になっていた。即ち、従来のEUV縮小投影露光装置1000では露光光量の損失が非常に大きいために露光時間が長くかかり、スループットを高めることができないという問題も有していた。

【0019】更に、従来のEUV縮小投影露光装置10 50 00は、マスク1007からの反射光の光軸が投影光学 系1008の光軸と一致せずに投影光学系1008によって反射光がケラレてしまうという問題も有していた。【0020】そこで、本発明の目的は、被照明領域を均一な照度で照明すると共に、被照明領域に入射する光線の光強度の重心を光線の中心に一致させる照明装置、露光装置及びこれを用いたデバイス製造方法を提供することにある。

【0021】また、本発明の他の目的は、光量の損失が少なく、露光時間の短縮とスループットの向上をもたらす照明装置、露光装置及びこれを用いたデバイス製造方 10 法を提供することにある。

【0022】また、本発明の更に別の目的は、マスクからの反射光の光軸を投影光学系の光軸に一致させる照明 装置、露光装置及びこれを用いたデバイス製造方法を提供することにある。

[0023]

【課題を解決するための手段】かかる目的を達成するために、本発明の一側面としての照明装置は、光源からの波長200nm以下の光で被照明面を照明する照明装置であって、第1の反射型インテグレータと、該第1のインテグレータからの複数の光束を前記被照明面上に重ねる第1の集光ミラーと、前記光源と前記第1の反射型インテグレータの間に設けられた、第2の反射型インテグレータ及び当該第2の反射型インテグレータ上に重ねる第2の集光ミラーとを有する。かかる照明装置は、第2の反射型インテグレータを均一に照明するため、第1のインテグレータは被照明領域を均一の照度分布及び角度分布で照明できる。即ち、この構成により、投影光学系瞳面における有効光源分布30を均一にもしている。

【0024】前記第1及び第2の反射型インテグレータ は、円筒面の一部が複数個平行に配置され、前記第1及 び第2の反射型インテグレータの前記円筒面の母線は互 いにほぼ直交してもよい。なお、前記円筒面は、凸型、 凹型またはそれらの組み合わせであってもよい。前記照 明装置は、前記第1の反射型インテグレータと前記被照 明面との間に配置され、前記被照明面に円弧状照明領域 を定義する円弧状開口部を有する視野絞りと、当該視野 絞りの前記開口を経た前記光束で、前記開口を前記被照 40 明面に結像する反射光学系とを有してもよい。マスキン グブレードにより不要な照明光を遮断できると共にマス キングブレードの幅を部分的に可変とする事で照度ムラ を補正することができる。代替的に、前記照明装置は、 前記第1の反射型インテグレータと前記被照明面との間 で前記被照明面の近傍に配置され、前記被照明面を円弧 状の光で照明するための円弧状開口部を有する視野絞り を有してもよい。かかる照明装置は、前記反射光学系を 省略することにより照明光学系の効率を向上させてい る。このように、マスキングブレードは被照明領域に近 50

接していてもよいし離間していてもよい。

【0025】前記第2の反射型インテグレータの反射面位置と前記被照明面位置は光学的に共役な位置関係にあり、前記第2の反射型インテグレータの反射面上又は近傍に、開口径が可変な絞りを有してもよい。かかる絞りは、被照明領域の照度ムラを防止することができる。

【0026】上述の照明装置においては、例えば、前記被照明面に円弧状の照明領域を形成するものであって、前記第1の反射型インテグレータは、前記円弧状の領域の角度方向には前記光源からの二次光源を重畳し、前記円弧状の領域の径方向には前記複数の光束を集光するように前記被照明領域を照明する。このような第1のインテグレータによる照明方法は、ハエの目レンズを使用したケーラー照明の照明光学系とは異なり、本発明のような円弧領域の照明に好適である。

【0027】光源からの波長200nm以下の光で被照明面を照明する照明装置であって、前記被照明面に円弧状の照明領域を定義する円弧状開口部を有する視野絞りと、当該視野絞りの前記円弧状開口を経た光束で、前記円弧状の開口を前記被照明面に結像する反射光学系と、前記円弧状開口を経た光束の主光線の前記被照明面に対する入射角を調節する調節機構とを有する。前記補正機構は、例えば、前記反射光学系の少なくとも一のミラーの偏心及び/又は回転移動を調節する機構を含んでもよい。

【0028】また、本発明の別の側面としての露光装置は、上述の照明装置によりレチクル又はマスクに形成されたパターンを照明し、当該パターンを投影光学系により被処理体上に投影する。かかる露光装置も上述の照明装置と同様の作用を奏する。

【0029】本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いてデバイスパターンで基板を露光する工程と、前記露光された基板に所定のプロセスを行う工程とを有する。上述の露光装置の作用と同様の作用を奏するデバイス製造方法の請求項は、中間及び最終結果物であるデバイス自体にもその効力が及ぶ。また、かかるデバイスは、例えば、LSIやVLSIなどの半導体チップ、CCD、LCD、磁気センサー、薄膜磁気ヘッドなどを含む。

【0030】本発明の他の目的及び更なる特徴は以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。

[0031]

【発明の実施の形態】以下、添付図面を参照して、本発明の第1の実施形態の露光装置10を詳細に説明する。本発明の露光装置10は露光用の照明光としてEUV光(例えば、波長13.4nm)を用いて、ステップ・アンド・スキャン方式の露光を行う投影露光装置である。露光装置10は、図1に示すように、光源部100と、照明光学系200と、マスク300と、投影光学系40

0と、被処理体500とを有する。また、露光装置10 は、マスク300を載置するマスクステージ350と、 被処理体500を載置するウェハステージ550とを更 に有し、マスクステージ350とウェハステージ550 は図示しない制御部に接続されて駆動制御されている。 光源部100と照明光学系200は照明装置を構成す る。ことで、図1は、露光装置10の概略図である。 【0032】EUV光は大気に対する透過率が低いた め、露光装置10は、光源部100を真空容器12に収 納し、残りの構成要素200乃至550を真空容器14 に収納している。但し、本発明は少なくともEUV光が 通る光路が真空雰囲気に維持された場合を含むものであ

【0033】光源部100は、プラズマ発光点120か ちEUV光を生成する。光源部100は、プラズマ生成 のターゲットとなる液滴を噴射するノズル130と、励 起レーザ光が照射されなかった液滴を回収して再利用す るための液滴回収部140と、回転楕円ミラー150 と、フィルタ170とを有する。

【0034】不図示の励起レーザ光源及び集光光学系か 20 らなる励起レーザ部から放射された、髙出力の励起パル スレーザ光110は、発光点120の位置に集光するよ うに構成されている。またレーザプラズマ光源のターゲ ットとなる液滴(例えば、Xe)は、ノズル130から 一定の時間間隔で連続的に噴射され、集光点120を通 過するようになっている。そして上記のように噴射され た液滴が、ちょうど120の位置にきた時に、励起パル スレーザ光110がその液滴を照射することで高温のブ ラズマ発光点120を生成し、このプラズマからの熱輻 射によってEUV光が放射状に発生する。

【0035】なお、本実施形態はターゲットとしてXe の液滴を用いたが、ターゲットとしてXeガスをノズル から真空中に噴射して、断熱膨張により生じるクラスタ を用いたり、Xeガスを金属表面で冷却して固体化した ものを用いたり、Cu等の金属を用いたテープを選択し てもよい。また、本実施形態はレーザプラズマ方式を採 用してEUV光を生成しているが、EUV光源としてア ンジュレータを用いてもよい。また、EUV光の製造方 法としてZピンチ方式、プラズマ・フォーカス、キャピ Zビンチ等のディスチャージ方式を使用してもよい。

【0036】プラズマ発光点120から放射されたEU V光は、回転楕円ミラー150により集光されて、EU V光束160として取りだされる。回転楕円ミラー15 0は、EUV光を効率良く反射するための反射多層膜が 成膜されており、髙温のプラズマ120からの放射エネ ルギーを一部吸収するために、露光中に高温になる。そ のために材質としては熱伝導性の高い金属等の材料を用 いるとともに、不図示の冷却手段を有して、常に冷却さ 散粒子(デブリ)をカットしたり、EUV露光に不要な 波長をカットしたりする。EUV光束160は、真空容 器12及び14の境界面に設けられた窓部210から、 真空容器14の照明光学系200に導入される。窓部2 10は真空を維持したままEUV光束160を通過する 機能を有する。

【0037】照明光学系200は、反射型縮小投影光学 系400の円弧状の視野に対応する円弧状のEUV光に よりマスク300を均一に照明し、回転放物面ミラー2 20及び260と放物面ミラー240と、反射型インテ グレータ230及び250と、マスキングブレード27 0と、リレー光学系282乃至286(以下、特に断ら ない限り「280」で総括する。)と、補正機構290 とを有する。

【0038】回転放物面ミラー220は、窓部210か ら導入されたEUV光東160を反射して平行光東22 2を形成する。次に、平行光束となったEUV光222 は、複数の凸状円筒面232を有する反射型凸状円筒面 インテグレータ230に入射する。インテグレータ23 0の各円筒面232により形成された2次光源から放射 されるEUV光を放物面ミラー240により集光して重 畳することにより、複数の凸状円筒面252を有する反 射型インテグレータ250の円筒整列方向をほぼ均一な 強度分布で照明することができる。

【0039】反射型インテグレータ230は複数の円筒 面を有し、回転放物面ミラー240と共に、反射型イン テグレータ250を均一に(即ち、後述するようにほぼ ケーラー照明で) 照明する。これにより、後述する円弧 照明領域の径方向の光強度分布を均一にすると共に反射 30 型インテグレータ250からの有効光源分布を均一にす ることができる。反射型インテグレータ230、250 は、図7に示すような繰返し周期を有する微小な凸又は 凹球面を2次元に多数配列したフライアイミラー230 Aに置換されてもよい。

【0040】反射型インテグレータ250は複数の円筒 面を有し、マスク面を均一に照明する。ここで、インテ グレータ250によって円弧領域を均一に照明する原理 について、図2乃至図4を参照して詳細に説明する。と こで、図2(a)は、複数の反射型凸状円筒面252を ラリー・ディスチャージ、ホロウカソード・トリガード 40 有するインテグレータ250に平行光が入射した場合の 摸式的斜視図である。光線の入射方向はインテグレータ 250の場合を表現している。図2(b)は、図2

(a) と同様の効果を有する複数の反射型凹状円筒面2 52Aを有するインテグレータ250Aの模式的斜視図 である。インテグレータ230も、図2(a)に示す反 射型凸状円筒面252を有するインテグレータ250と 同様の構造を有する。インテグレータ230及び250 は、共に、図2(b)に示す反射型凹状円筒面252A を有するインテグレータ250Aによって置換されても れている。フィルタ170は、プラズマや周辺からの飛 50 よく、あるいはこれらの凹凸の組み合わせによって構成

9

されてもよい。

【0041】図2(a)に示すように、複数の円筒面252を有する反射型インテグレータ250にほぼ平行なEUV光束を入射すると、インテグレータ250によって2次光源が形成されると共に、この2次光源から放射されるEUV光の角度分布が円錐面状となる。次に、この2次光源位置を焦点とする反射鏡で前記EUV光を反射してマスク300あるいはマスク300と共役な面を照明することにより、円弧形状の照明が可能となる。

【0042】図3は反射型凸状円筒面252を有するイ 10 ンテグレータ250の部分拡大図、図4(a)及び図4(b)は反射型凸状円筒面252を有するインテグレータ250の円筒面252でのEUV光反射を説明するための斜視図及びベクトル図、図5は反射型凸円筒面252で反射したEUV光の角度分布を説明するための図である。

【0043】複数の円筒面252をもった反射型インテグレータ250の作用を説明するために、まず、一つの円筒面反射鏡に平行光が入射した場合の反射光の振る舞いについて図4を参照して説明する。今、図4(a)に 20 示すように、一の円筒面にその中心軸であるZ軸に垂直な面(xy 平面)に対して θ の角度で平行光を入射する場合を考える。平行な入射光の光線ベクトルを P_1 とし、円筒面形状の反射面の法線ベクトルをn とすると、 p_1 及びn は以下のベクトル式で定義される。なお、便宜上、特に付してある以外は、 p_1 やn などの頭に付されるベクトルを表す矢印は省略する。

[0044]

【数3】

* [数7] $\overrightarrow{P_2} = \overrightarrow{P_1} - 2(\overrightarrow{P_1} \cdot \overrightarrow{n}) \overrightarrow{n} = \begin{pmatrix} 0 \\ -\cos\theta \\ \sin\theta \end{pmatrix} + 2\cos\theta\cos\alpha \begin{pmatrix} -\sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix} = \begin{pmatrix} -\cos\theta\sin2\alpha \\ \cos\theta\cos2\alpha \\ \sin\theta \end{pmatrix}$

【0052】このとき反射光P₂の光線ベクトルをxy 平面に射影したベクトルをQとすると、Qは次式で与え られる。

 $\vec{Q} = \begin{pmatrix} -\cos\theta\sin 2\alpha \\ \cos\theta\cos 2\alpha \end{pmatrix} = \cos\theta \cdot \begin{pmatrix} -\sin 2\alpha \\ \cos 2\alpha \end{pmatrix} = R\begin{pmatrix} -\sin 2\alpha \\ \cos 2\alpha \end{pmatrix}$

【0054】これより、図5に示す位相空間にプロット 40 すれば、Qは半径 $R=cos\theta$ の円周上で $-2\phi \le 2\alpha$ $\le 2\phi$ の範囲に存在する。即ち、反射光 P_2 は円錐面状の発散光となり、この円錐面の頂点の位置に2次光源が存在することになる。この2次光源は円筒面が凹面であれば反射面の外部に実像として存在し、凸面であれば反射面の内部に、虚像として存在することになる。

【0055】また、図3に示すように反射面が円筒面の一部に限られていて、その中心角が2々である場合は、第5図に示すように反射光P2の光線ベクトルはxy平面上で中心角4々の円弧となる。

 $\overline{P_1} = \begin{pmatrix} 0 \\ -\cos\theta \\ \sin\theta \end{pmatrix}$

【0045】 【数4】

$$\vec{n} = \begin{pmatrix} -\sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix}$$

【0046】図4(b)を参照するに、-P, のnへの 正射影ベクトルをaとすると、aは次式で表される。 【0047】

【数5】

$$\vec{a} = |\vec{P_1}| \cos \phi \cdot \vec{n} = |\vec{P_1}| \cdot \frac{(-\vec{P_1} \cdot \vec{n})}{|-\vec{P_1}||\vec{n}|} \cdot \vec{n} = -(\vec{P_1} \cdot \vec{n})\vec{n}$$

0 【0048】また、反射光P。の光線ベクトルは、次式で与えられる。

[0049]

【数6】

$$\overrightarrow{P_2} = \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{a} + (\overrightarrow{P_1} + \overrightarrow{a}) = \overrightarrow{P_1} + 2\overrightarrow{a}$$

【0050】数式5及び6より、P₂ は次式で与えられる。 【0051】

% [0053]

こ 【0056】次に、円筒面の一部からなる反射鏡に平行 光が入射し、この2次光源の位置に焦点をもつ焦点距離 fの回転放物面反射鏡と、更にこの回転放物面反射鏡からfだけ離れた位置に被照射面を配置した場合を考え る。2次光源から出た光は円錐面状の発散光になり焦点 距離fの反射鏡で反射したのち、平行光となる。このと きの反射光は半径f×cos fで中心角4 中の円弧状断 面のシートビームになる。従って被照射面上の半径f× cos fで中心角4 中の円弧状領域のみが照明されることになる。

50 【0057】これまでは1つの円筒面反射鏡について説

12

明してきたが、次に、図2(a)に示すように多数の円 筒面252を平行に多数並べた広い面積のインテグレー タ250に、太さDの平行光が図示した方向に入射した 場合を考える。先の例と同様に、回転方物面反射鏡とマ スク300を配置したとすれば、円筒面を平行に多数並 べた反射鏡で反射された光の角度分布は先の例と変わら ないので、マスク300上では半径 $f \times cos\theta$ で中心 角4 Φの円弧状領域が照明される。また、マスク300 上の一点に入射する光は円筒面を平行に多数並べた反射 鏡の照射領域全域から到達するので、その角度広がりは 10 D/fとなる。開口数NAは $sin\theta$ で与えられ、照明 光学系200の開口数はD/(2f)となる。投影光学 系400のマスク300側の開口数をNAp1とする と、コヒーレンスファクタ σ は σ =D/(2fNAp 1)となる。従って、インテグレータ250に入射する 平行光の太さによって、最適なコヒーレンスファクタσ に設定することができる。

【0058】以上で述べたインテグレータ250によって円弧領域を照明する原理と、更にインテグレータ230を用いて、円弧領域をより効果的に均一に照明するこ20とが可能な本実施形態の主要な構成について、図1のインテグレータ230及び250付近を抜粋した図6を参照して、以下に詳細に説明する。

【0059】図6において、インテグレータ230の複数の凸状円筒反射面232の直線方向235は、紙面に対して垂直な方向に配置されている。図中、233はインテグレータ230の下面である。また、インテグレータ250の複数の凸状円筒反射面252の直線方向255は、紙面に対して平行な方向に配置されている。図中、253はインテグレータ250の上面である。

【0060】上述したように、2つのインテグレータ230及び250の空間的配置を凸状円筒反射面232及び252の整列方向235及び255を互いに直交させることが本実施態様の重要な点であり、これにより以下に示すようにより均一な円弧照明が可能となる。

【0061】ほぼ平行なEUV光東222が、インテグレータ230の反射面231に図6に示すように、即ち、方向235に対して垂直に入射すると、インテグレータ230の内部に2次光源の虚像が生成されて、比較的小さい所定の発散角 θ 1、で各2次光源からEUV光が 40反射される。その発散するEUV光を放物面ミラー240を介してインテグレータ250の反射面251にほぼ平行光束として入射させる。

【0062】放物面ミラー240は、その焦点位置がインテグレータ230の反射面231にほぼ一致するように配置されており、反射面231上の各円筒面232からの反射光がインテグレータ250の反射面251上でそれぞれ重畳するように設定されている。放物面ミラー240は、インテグレータ250の円筒反射面251の長手方向に関する光強度分布を均一にすればよいので、

放物断面を有する必要はあるが、必ずしも回転方物面ミラーである必要はない。このように放物面ミラー240はインテグレータ250の反射面251上に対して、ほぼケーラー照明となるように配置されている。このような配置とすることで、インテグレータ250の反射面251上で、特に、255の方向に対してより均一な強度分布が形成される。

【0063】そして複数の凸状円筒反射面252を有するインテグレータ250により反射されたEUV光束は、すでに図2乃至図5を参照して詳細に説明したとおり、回転放物面ミラー260により集光されて、その焦点距離fの位置に配置されたマスキングブレード270上に、均一な円弧照明領域を形成する。

【0064】マスキングブレード270は、EUV光を吸収する材質により構成された遮光部272と、図6の一部に示す正面図に示すように露光に最適な所望の円弧形状の開口部274とを有する。マスキングブレード270は、円弧照明に寄与しない不要な迷光を遮光すると共に、不図示のスリット幅可変機構により、所望のスリット幅に設定したり、部分的にスリット幅を変えることで照度ムラを良好に補正したりする機能を有する。

【0065】上記のような構成により、円弧照明領域においては、その円弧に沿った角度方向(即ち、6方向)についてはインテグレータ250の複数の円筒面252からの複数の光束が重畳されることでその均一性が達成され、円弧に垂直な径方向(即ち、r方向)については、インテグレータ230からの複数の光束が重畳されることでその均一性が達成されている。これにより従来よりも飛躍的に効率がよく均一な円弧照明を行うことが可能となる。

【0066】マスキングブレード270の円弧形状開口部を通過したEUV光東は、リレー光学系280により所望の倍率に変換されたのち、マスクステージ350に保持された反射型マスク300上に円弧照明領域を形成することによって円弧照明を行う。複数のミラー面から形成されるリレー光学系280は、円弧形状を所定の倍率で拡大または縮小する機能を有する。

【0067】補正機構290は主光線(光軸)調整機構であり、リレー光学系280のミラー位置を微小に偏心移動及び回転移動することにより、反射型マスク300からの反射光が投影光学系400の入射側光軸と良好に一致するように補正する機能を有する。

【0068】また、図8に示すように、マスキングブレード270をマスク300の近傍に配置してリレー光学系280を減少してもよい。ここで、図8は、図1に示す露光装置10の変形例の要部概略図である。図1と同一の部材には同一の参照符号を付して重複説明は省略する。

【0069】マスク300を含む各ミラーの表面には殆ど直入射のEUV光に対して高い反射率を得るために、

屈折率の差が大きく吸収が小さい2種類の材料層を露光 波長の約半分の周期で繰り返し積層させた多層膜が成膜 されている。できるだけ高い反射率を得るために、材料 としてはMo及びSiを用いるのが通常であるが、その 場合においても得られる反射率は、約60%から70%

【0070】従って照明光学系200において、反射強 度の損失を抑えるためには、使用するミラー枚数を最小 にする必要がある。本実施形態の特徴は、円弧形状の開 □部を有するマスキングブレード270を、反射型マス 10 ク300の反射面近傍に配置することで、第1図におけ るリレー光学系282及び284を省略し、照明光学系 200の効率を向上させている点である。

【0071】次に、所望の照明条件を設定することが可 能な本発明の別の実施形態について図9を参照して説明 する。ととで、図9は、本発明の第3の実施形態の露光 装置10 Bを示す概略図である。

【0072】図1に示す露光装置10と対比すると、露 光装置10 Bは、所望の照明条件に応じて切り替え可能 な2つの反射型インテグレータ230及び230Bと、 絞り236及び256と、絞り駆動系238及び258 とを有する。

【0073】反射型インテグレータ230及び230B は、複数の凸状円筒面を有する反射型インテグレータで あるがその円筒面の曲率半径(と、従ってパワー)が互 いに異なる。以下、インテグレータ230と230Bを 切り替えることで、コヒーレンスファクタσ、即ち、照 明系の開口数を所望の値に設定する方法について説明す る。

【0074】図10は、複数の凸状円筒反射面232を 30 有するインテグレータ230の表面の模式図であり、図 11はインテグレータ230Bの表面の模式図である。 ここでインテグレータ230と230Bの円筒面232 及び232Bの曲率半径r₁及びr₂はr₁ < r₂に設 定されている。

【0075】今、図10において、紙面上方から平行光 東がインテグレータ230の凸状円筒反射面231に入 射した場合を考える。この場合、凸状円筒反射面231 によって光束は発散するが、その集光点は凸面の内部の る。従って、反射光は次式で与えられる発散角母」で発 散する。

[0076]

【数9】

$$\theta_1 \cong \frac{2W}{r_1}$$

【0077】同様に、インテグレータ230Bにおいて は、集光点は凸状円筒面232Bの曲率中心〇から距離 r2/2の位置に虚像として存在する。従って、反射光 50 ンスファクタσが大きくなる。

は次式で与えられる発散角 θ 。で発散する。

[0078]

【数10】

$$\theta_2 \cong \frac{2W}{r_2}$$

[0079] CCで、 $r_1 < r_2$ より、 $\theta_1 > \theta_2$ の関 係が成り立つ。つまり、インテグレータ230により反 射する光束の発散角 θ 」の方がインテグレータ230B により反射する光束の発散角θ2よりも大きくなる。

【0080】図12及び図13は、インテグレータ23 0と230Bとの切り替えによって照明光学系200の 開口数を切り替える方法を説明する模式図である。図1 2において、ほぼ平行なEUV光束222が絞り236 を経てインテグレータ230の円筒反射面231に図に 示すように入射すると、インテグレータ230の内部に 2次光源の虚像が生成されて、所定の発散角θ」で各2 次光源からEUV光が反射される。その発散するEUV 光を焦点距離 f , の放物面ミラー240により集光し 20 て、絞り256を介してインテグレータ250の反射面 251にほぼ平行光束として入射する。

【0081】複数の凸状円筒反射面251を有するイン テグレータ250により反射されたEUV光束は、回転 放物面ミラー260により集光されて、その焦点距離 f 2 の位置に配置されたマスキングブレード270上に、 均一な円弧照明領域を形成する。ことで、マスキングブ レード270における照明光学系200の開口数をNA 」は次式で与えられる。

[0082]

【数11】

$$NA_1 = \frac{\theta_1'}{2} \cong \frac{f_1 \cdot \theta_1}{2 f_2}$$

【0083】開口数NA」は反射型マスク300上にお ける照明光学系200の開口数に比例する量であり、発 散角 θ に比例する。

【0084】図13に示すように、インテグレータ23 0を230Bに不図示の切り替え機構により切り替えた 曲率中心Oから距離 r 1/2の位置に虚像として存在す 40 場合、同様に、マスキングブレード270における照明 光学系200の開口数NA2は次式で与えられる。

[0085]

【数12】

$$NA_2 = \frac{\theta_2}{2} \cong \frac{f_1 \cdot \theta_2}{2f_2}$$

用いた場合はインテグレータ230Bを用いた場合より も大きな照明光学系200の開口数が得られ、コヒーレ

【0087】上記の説明では、2個のインテグレータ2 30及び230Bを切り替える例を示したが、コヒーレ ンスファクタσを段階的に変化させるために、2個以上 の発散角の異なるインテグレータ230をターレットな どを用いて切り替えるように構成してもよい。インテグ レータ230の切り替えに応じて、絞り256を切り替 えてインテグレータ250への入射光束径を所望の大き

【0088】絞り236は、反射型インテグレータ23 0又は230Bの前面に設けられ、遮光部237aと開 口部237bとを有する。絞り236は絞り駆動系23 8によって駆動されて開口部237bの開口径を連続的 に可変することができる。 開口部237bの開口径は、 絞り駆動系238に入力された不図示の制御系からの信 号により調整される。絞り駆動系238には、カムを利 用した虹彩絞り装置など当業界で既知のいかなる構成を も適用することができる。

さに制御することで、更に精度の高いσの制御を行って

もよい。

【0089】絞り236の開口径を変えることで(図中 に点線で示すように)インテグレータ250に入射する 20 光束の紙面に平行な方向への広がりを調整することがで きる。即ち、図9において絞り236の開口径が大きく なれば、これによってマスキングブレード270におい て照明領域となる円弧スリットの径方向の幅を調整する ことが可能である。また、インテグレータ230、23 0 Bの切り換えだけでなく、絞り256を調節すること によってインテグレータ250に入射する光線の太さD を変更し、コヒーレンスファクタσを所望のものに変更 したり照度ムラを補正したりすることもできる。

【0090】絞り256は、反射型インテグレータ25 0の前面に設けられ、絞り駆動系258によって駆動さ れて所望の有効光源分布を形成することができる。絞り 256は遮光部257aと開口部257bとを有する。 【0091】絞り256を介して複数の凸状円筒反射面 を有するインテグレータ250により反射されたEUV 光束は、回転放物面ミラー260により集光されて、そ の焦点位置に配置されたマスキングブレード270上 に、均一な円弧照明領域を形成する。

【0092】以下、図14及び図15を参照して、絞り 法について説明する。図14(a)乃至(c)は、絞り 256に適用可能な絞りを示す平面図である。図14 (a)は通常照明の場合の絞り256Aを示し、図14 (b)はいわゆる輪帯照明の場合の絞り256Bを示 し、図14(c)はいわゆる四重極照明の場合の絞り2 56Cを示している。 このようないくつかの開口パター ンを図9の絞り256に示すように、例えば、ターレッ トとして用意しておき、絞り駆動系258により不図示 の制御系からの信号を受けてターレットを回転させると とで、所望の開口形状に切り替えることができる。ま

16

た、ターレットを用いずに他の機械的な方法、例えば、 複数の絞りを並べて順次切り替えてもよい。 【0093】絞り256は図9に示すように、インテグ

レータ250の反射面251近傍に配置される。従っ て、インテグレータ250に入射する光束の入射角をθ とすると、インテグレータ250の反射面251におい て、光東径は紙面に平行な方向に 1 / c o s θ の倍率で 伸長する。これにより絞り256の開口部2576の形 状も同一方向に 1 / c ο s θ の倍率で伸長しておく必要 がある。図14において、例えば、絞り256Aは、入 射光束径を円形に絞るために用いられるが、この楕円の 縦横比は1/cosθになっている。絞り256B及び 256Cも同様である。

【0094】次に、絞り256によって変形照明が行わ れる原理について、輪帯照明モードとする絞り256B を例に説明する。変形照明法は、数式1において比例定 数k,の値を小さくすることにより微細化を図る超解像 技術 (RET: Resolution Enhance d Technology)の一つである。数式1にお いて短波長化による解像度の向上を行えば数式2におい て焦点深度の短縮を伴うが、変形照明法は、数式2にお いて焦点深度の短縮を伴わないので好ましい。

【0095】図15は、図9に示すインテグレータ25 0、回転放物面ミラー260、マスキングブレード27 0を抜き出した図であり、図15(a)は側面図、図1 5(b)はミラー260を透過した状態で見た上面図で ある。輪帯照明モードとする絞り256日は図15

(a) に示すように配置されるが図15(b) では説明 を容易にするために図示していない。

【0096】反射型インテグレータ250に入射した光 30 束は、絞り256によって光軸中心部部分と外径部の一 部を遮光されて楕円状の輪帯形状分布259で反射す る。分布259の形状は絞り256Bの開口部の形状に 一致する。この光束を回転放物面反射鏡260により集 光して、その焦点距離f2の位置に配置したマスキング ブレード270の位置に円弧形状の均一な照明領域を形 成する。この時、光束の中心を遮光されているために、 集光された光束は図15のハッチング部262に示す光 束となる。これは図15(b)においても同様であり、 256の切り替えにより輪帯照明等の変形照明を行う方 40 ハッチング部264に示す光束となる。このように、反 射型インテグレータ250は、円弧領域の角度方向には 二次光源を重畳し、円弧領域の径方向には全ての光束を 一点に集光するようにマスク300を(クリティカル照 明によって)照明する。これは主光線と光学軸との交点 の位置、即ち、瞳面位置295において278のような 分布、即ち、輪帯照明が行われていることを示してい

> 【0097】再び、図1に戻り、本実施形態の露光方法 について引き続き説明する。なお、マスク300以降は 50 図8及び図9でも同様である。

【0098】反射型マスク300は多層膜反射鏡の上に EUV吸収体などからなる非反射部を設けた転写パター ンが形成されている。円弧形状に照明された反射型マス ク300からの回路パターン情報を有するEUV反射光 は、投影光学系400により露光に最適な倍率で感光材 が塗布された被処理体500に投影結像されることで、 回路パターンの露光が行なわれる。本実施例の投影光学 系400は6枚のミラーから構成されている反射型投影 光学系であるが、ミラーの枚数は6枚に限定されず、4 枚、5枚、8枚など所望の数を使用することができる。 【0099】上記被処理体500はウェハステージ55 0に固定されており、紙面上で上下前後左右に平行移動 する機能を持ち、その移動は不図示のレーザ干渉計等の 測長器で制御されている。そして、投影光学系400の 倍率をMとすると、例えば反射型マスク300を紙面に 平行な方向に速度 v で走査すると同時に、被処理体50 0を紙面に平行な方向に速度 v / Mにて同期走査すると

【0100】本実施形態ではウェハへの露光としているが、露光対象としての被処理帯500はウェハに限られ 20 るものではなく、液晶基板その他の被処理体を広く含む。被処理体500にはフォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、ブリベーク処理とを含む。前処理は洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethylーdisilazane)などの有機膜をコート又は蒸気処理する。ブリベークはベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。

とで、全面露光が行なわれる。

【0101】ウェハステージ550は被処理体500を支持する。ステージ550は、当業界で周知のいかなる構成をも適用することができ、例えば、リニアモータを利用してXYZ方向に被処理体500を移動する。マスク300と被処理体500は、図示しない制御部により制御され同期して走査される。また、マスクステージ350とウェハステージ550の位置は、例えば、レーザ干渉計などにより監視され、両者は一定の速度比率で駆動される。

【0102】次に、図16及び図17を参照して、上述の露光装置10を利用したデバイスの製造方法の実施例を説明する。図16は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)ではデバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)ではシリコンなどの材料

18

を用いてウェハを製造する。ステップ4(ウェハプロセス)は前工程と呼ばれ、マスクとウェハを用いてリソグラフィ技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、バッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。

【0103】図17は、ステップ4のウェハブロセスの 詳細なフローチャートである。ステップ11(酸化)で はウェハの表面を酸化させる。ステップ12(CVD) では、ウェハの表面に絶縁膜を形成する。ステップ13 (電極形成)では、ウェハ上に電極を蒸着などによって 形成する。ステップ14(イオン打ち込み)ではウェハ にイオンを打ち込む。ステップ15(レジスト処理)で はウェハに感光剤を塗布する。ステップ16 (露光)で は、露光装置1によってマスクの回路パターンをウェハ に露光する。ステップ17 (現像)では、露光したウェ ハを現像する。ステップ18 (エッチング)では、現像 したレジスト像以外の部分を削り取る。ステップ19 (レジスト剥離)では、エッチングが済んで不要となっ たレジストを取り除く。これらのステップを繰り返し行 うことによってウェハ上に多重に回路パターンが形成さ れる。本実施例の製造方法によれば従来よりも高品位の デバイスを製造することができる。このように、かかる 露光装置10を使用するデバイス製造方法、並びに結果 物としてのデバイスも本発明の一側面として機能するも のである。

【0104】以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本実施形態ではEUV光を使用して説明したが、本発明はX線領域の光源にも適用することができる。

[0105]

50とウェハステージ550の位置は、例えば、レーザ 【発明の効果】本発明による照明装置及び露光装置によ 干渉計などにより監視され、両者は一定の速度比率で駆 40 れば、高効率で均一な円弧照明を行ない、照度ムラをな 動される。 くすことができる。また、光源に変動があっても、被照 射面への光束入射角度が安定することで露光への影響を の露光装置 10を利用したデバイスの製造方法の実施例 除去することができる。

【図面の簡単な説明】

【図1】 本発明の第1の実施形態の露光装置を示す概略図である。

【図2】 図1に示す露光装置の反射型インテグレータ に適用可能な2種類のインテグレータを示す概略斜視図 である。

る。ステップ3(ウェハ製造)ではシリコンなどの材料 50 【図3】 図2(a)に示す凸状円筒面を有する反射型

20

インテグレータの動作を説明するための模式図である。 【図4】 図3に示す反射型インテグレータの円筒面に

おける光束反射を説明するための模式的斜視図である。

【図5】 図4に示す円筒面で反射した光束の角度分布を説明するための図である。

【図6】 図1に示す露光装置の2つのインテグレータ による円弧照明を形成する拡大図である。

【図7】 図1に示す光源側の反射型インテグレータの変形例を示す概略斜視図である。

【図8】 本発明の第2の実施形態の露光装置を示す概 10 略図である。

【図9】 本発明の第3の実施形態の露光装置を示す概略図である。

【図10】 図9に示す露光装置に設けられる一方の光源側インテグレータの模式図である。

【図11】 図9に示す露光装置に設けられる他方の光 源側インテグレータの模式図である。

【図12】 図9に示す露光装置の光源側インテグレータの切り替えによって照明光学系の開口数を切り替える方法を説明する模式図である。

【図13】 図9に示す露光装置の光源側インテグレータの切り替えによって照明光学系の開口数を切り替える方法を説明する模式図である。

【図14】 図9に示す露光装置のマスク側インテグレータに使用される絞りの例を示す平面図である。

【図15】 図9に示す露光装置のマスク側インテグレータ、回転放物面ミラー、マスキングブレードを抜き出した図である。

【図16】 デバイス(ICやLSIなどの半導体チッ米

*プ、LCD、CCD等)の製造を説明するためのフローチャートである。

【図17】 図16に示すステップ4のウェハプロセス の詳細なフローチャートである。

【図18】 従来の露光装置の概略図である。

【図19】 図18に示す露光装置のマスクの照明領域 と露光に使用される領域との関係を説明するための平面 図である。

【符号の説明】

10, 10A, 10B	露光装置
1 0 0	光源部
200	照明光学系
230, 230A, 230B	反射型インテグレー
タ	
2 3 1	反射面
2 3 2	円筒面
2 3 6	絞り
2 4 0	放物面ミラー
250, 250A	反射型インテグレー
タ	
2 5 1	反射面
2 5 2	円筒面
256, 256A-C	絞り
270	マスキングブレード
280 (282-288)	リレー光学系
300	反射型マスク
4 0 0	投影光学系
500 ·	被処理体

【図1】

【図3】

【図6】

[図9]

10B

[図8]

フロントページの続き

(51)Int.Cl.⁷

識別記号

FI H01L 21/30 531A

テーマコード(参考)