Chapter 6. Energy stores and transfers

i. Energy		
Unit: ()		
Is energy a scalar or vector? ()		
2. Energy stores		
Gravitational potential energy(g.p.e.):()		
Kinetic energy(k.e.): ()		
Elastic energy; Internal energy; Chemical energy; Nuclear energy; I	Electrical enerç	ЭУ
3. Energy transfers		
Doing work(W); Heat; Light(Electromagnetic radiation, e.g. Sun); El	ectrical curren	t
4. Energy conservation:		
()
Sankey diagram:	chemical	kinet
A flow of diagram representing energy conservation. Arrow width	(stored in fuel and	
proportional to energy. Total width remains constant	oxygen)	gravitatio potentia energy
5		chergy
Dissipated (Energy loss): energy that is spread out is not useful;		internal energy of the
usually through: ()		surroundings
Efficiency = ()		
Linciency – (
常考点:		
· 大京· · · · · · · · · · · · · · · · · ·		
・能量转换 :看看物体 状态 发生了什么 变化 ,对应什么 能量 改变		
e.g. h => g.p.e.) ; v =>k.e.; change size/shape => elastic energy; T	=> internal/the	ermal; nuclear
reaction =>nuclear energy: chemical reaction => chemical energy		

reaction =>nuclear energy; chemical reaction => chemical energy

hydro-electricity(dam, tidal power station): g.p.e => k.e. => electrical energy

a.c. generator: k.e. => electrical

motor: electrical => k.e.

Nuclear power station: nuclear => heat => k.e. => electrical

・ 能量守恒:

e.g. bouncing ball (can not return to original height due to energy loss)

Falling: () => k.e. + heat(internal)

Bouncing: energy loss(heat, sound)

Bouncing back: () => () + heat(internal)

Chapter 7. Energy Resources

Energy resource	Source	From sun / not	Energy forms	Renewabl e /not	reliable/ not	Use steam/ not
Solar	the Sun					
Wind	wind					
Wave	water					
Hydroelectric	water					
Boimass	biomass					
Fossil	oil gas coal					
Nuclear	Uranium					
Geothermal	the Earth					
Tidal	water					

Non-renewables: ()
Renewable (def): (
Not from the Sun: ()
Sun's energy comes fro	m (splitting heavy nucleus into 2/3 nuclei) in the Sun's
core vs	_(fuse light nuclei into heavy nucleus) used in nuclear power station.

Energy resources to **generate electricity**:

Chapter 8. Work & Power

<u>1. Work = </u>

2. Work =

Unit:

- a. 判断做功与否: 力的方向上是否有运动距离
- b. work done = energy transfer 从转移能量多少 判断做功多少

- c. useful work: 增加的useful energy, e.g. raise an object from ground to 5m high: useful work W = mgh = ΔE_p ; e.g. push an object from 1m/s to 5m/s: useful work W = ΔE_k
- d. 物体下落: g.p.e -> k.e.
- e. Work against gravity/friction

物体在竖直向上拉力F下缓慢上升,g.p.e increases
work done by gravity 重力做负功: W = -mgh (< 0)
Work against gravity F 抵抗重力做正功: W = mgh (>0)

物体在水平推力F下加速, 运动s米, e.k. increases
work done by friction 摩擦力做负功: W = -fs (< 0)
Work against gravity F 抵抗重力做正功: W = fs (>0)

3. power =

Unit:

4. percentage efficiency =