PCT

(21) 国際出願番号

世界知的所有権機関 際 事 務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 (11) 国際公開番号 WO97/07630 H04N 5/335 A1 (43) 国際公開日 1997年2月27日(27.02.97)

JР

JP

ΙÞ

PCT/JP96/02281

(22) 国際出願日 1996年8月12日(12.08.96) (30) 優先権データ 特願平7/206140 1995年8月11日(11.08.95) 特願平7/206143 1995年8月11日(11.08.95) 特願平8/53220 1996年3月11日(11.03.96) 特願平8/59845 1996年3月15日(15.03.96) (71) 出願人(米国を除くすべての指定国について) 株式会社 東芝(KABUSHIKI KAISHA TOSHIBA)[JP/JP] 〒210 神奈川県川崎市幸区堀川町72番地 Kanagawa, (JP) (72) 発明者;および (75) 発明者/出願人 (米国についてのみ) 松長誠之(MATSUNAGA, Yoshiyuki)[JP/JP] 〒247 神奈川県鎌倉市小袋谷1-4-21-212 Kanagawa, (JP)

〒146 東京都大田区東矢口1-5-22 Tokyo, (JP) 三浦浩樹(MIURA, Hiroki)[JP/JP] 〒235 神奈川県横浜市磯子区汐見台2-8-2 Kanagawa, (JP) 田中長孝(TANAKA, Nagataka)[JP/JP] 〒224 神奈川県横浜市都筑区仲町台4-19-18-409 Kanagawa, (JP) 馬渕圭司(MABUCHI, Keiji)[JP/JP] 〒211 神奈川県川崎市幸区南加瀬2-14-10 Kanagawa, (JP) (74) 代理人 弁理士 鈴江武彦, 外(SUZUYE, Takehiko et al.) 〒100 東京都千代田区霞が関3丁目7番2号 鈴榮內外國特許事務所 Tokyo, (JP)

山下浩史(YAMASHITA, Hirofumi)[JP/JP]

(81) 指定国 JP, KR, US, 欧州特許 (DE, FI, FR, NL).

添付公開書類 国際調査報告書

MOS IMAGE PICKUP DEVICE (54) Title:

〒243-04 神奈川県海老名市国分北1-21-24-204

〒183 東京都府中市東芝町2-1-E620 Tokyo、(JP)

(54)発明の名称 MOS型固体操像装置

中村信男(NAKAMURA, Nobuo)[JP/JP]

大澤慎治(OHSAWA, Shinji)[JP/JP]

(57) Abstract

Kanagawa, (JP)

A MOS image pickup device in which unit cells are arranged two-dimensionally in a matrix, a horizontal line (column) of unit cells is selected by means of a vertical address circuit, a vertical signal line to which the outputs of one vertical line (row) of unit cells are fed by means of a horizontal address circuit, and the signals of the unit cells are sequentially outputted. Each unit cell is provided with an output circuit which outputs the output of a photodiode to a vertical signal line, a plurality of photodiodes connected in parallel with the output circuit, and selection switch which selects one of the photodiodes and connects the selected photodiode to the output circuit. The output circuit is composed of an amplifying transistor which amplifies the outputs of the photodiodes, a selection transistor which selects one of the unit cells, and a reset transistor which resets the electric charge of the photodiodes.

(57) 要約

多数の単位セルが 2 次元マトリクス状に配列され、垂直アドレス回路により 1 水平ライン (行)の単位セルを選択し、1 垂直ライン (列)の単位セルの出力が供給される垂直信号線を水平アドレス回路により選択することにより、各単位セルの信号を順次出力するMOS型固体撮像装置において、単位セルは、フォトダイオードの出力を垂直信号線へ出力する出力回路と、出力回路に対して並列に接続される複数のフォトダイオードと、これらのフォトダイオードのいずれかを選択して、出力回路へ接続する選択スイッチとを具備し、出力回路はフォトダイオードの出力を増幅する増幅トランジスタと、単位セルを選択する選択トランジスタと、フォトダイオードの電荷をリセットするリセットトランジスタからなる。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

DDEEFFGGGGKLEISTFEGFRABEFFGGGGKHILITIKKKKRD コード・アード・アード・アード・アード・アード・アード・アード・アード・アード・ア	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LLLLLLLLMMMM MMMMNNNNNNNNNNNNNNNNNNNNNN	PPRRSSSSSSSTTTTTTTUUUUVV アルーシーウンロロネワヤージルルリクガメズィー アルーシーウンロロネワヤージルルリクガメズィー アルーシーウンロロネワヤージルルリクガメズィー アルーシーウンロロネワヤージルルリクガメズィー アルーシーウンロロネワヤージルルリクガメズィー クレーシーウンローメリケー アルーシーウンローメリケー アルーシーウンローメリケー アルーシーウンローメリケー アルーシーウンローメリケー アルーシーウンローメリケー アルーシーウンフウー アルーシーウンフレー アルーシーウンフレー アルーシーウンフレー アルーシーウンフレー アルーシーウンフレー アルーシーウンフレー アルーシーウンフレー アルーシーウンフレー アルーシー アルー アルー アルー アルー アルー アルー アルー アル
---	--------------------------------------	---	---

ŀ

明 細 書 MOS型固体撮像装置

技術分野

5 本発明は、信号電荷をセル内で増幅する増幅型MOSセンサを用いた固体 撮像装置に関する。

背景技術

しかし、固体撮像装置のチップサイズの縮小により、微細化による取り扱い信号電荷量が減少するという問題がある。この結果、固体撮像装置のダイナミックレンジの減少が生じ、鮮明な解像感のある映像を得ることができない、などの問題が生じている。また、2値や3値以上の多数の電源電圧を使用していることから、カメラシステムの構成や取扱いの上で簡単なシステムで対応できない、などの問題がある。即ち、携帯用カメラやパソコンカメラへの応用のためには、この低消費電力・低電圧化と共に、S/Nの良い、単つ電源の固体撮像装置が望まれている。

この問題を解決する方法として、増幅型のトランジスタを用いた固体撮像 装置が幾つか提案されている。この固体撮像装置は、各セル内でフォトダイ オードで検出した信号をトランジスタで増幅するものであり、高感度という 特徴を持つ。

25 図1は、増幅型MOSセンサを用いた従来の固体撮像装置を示す回路構成 図である。単位セルPOーiーjが縦、横に2次元マトリクス状に配列され ている。図では、2×2しか示していないが、実際は数千個×数千個ある。 iは水平(row)方向の変数、jは垂直(column)方向の変数である。各単位 セルPOーiーjは、入射光を検出するフォトダイオード1ーiーjと、フ

オトダイオード1ーiーjのカソードがゲートに接続され、その検出信号を増幅する増幅トランジスタ2ーiーjと、増幅トランジスタ2ーiーjのドレインに接続され、信号を読み出す水平ラインを選択する垂直選択トランジスタ3ーiーjと、フォトダイオード1ーiーjのカソードに接続され、信号電荷をリセットするリセットトランジスタ4ーiーjからなる。垂直選択トランジスタ3ーiーjのソースとリセットトランジスタ4ーiーjのソースがドレイン電圧端子に共通に接続される。

垂直アドレス回路 5 から水平方向に配線されている垂直アドレス線 6 - 1, 6 - 2, …は各行の単位セルの垂直選択トランジスタ 3 - 1 - 1, …のゲートに接続され、信号を読み出す水平ラインを決めている。同様に、垂直アドレス回路 5 から水平方向に配線されているリセット線 7 - 1, 7 - 2, …は、各行のリセットトランジスタ 4 - 1 - 1、…のゲートに接続されている。

各列の単位セルの増幅トランジスタ2-1-1、…のソースは列方向に配置された垂直信号線8-1,8-2,…に接続され、垂直信号線8-1,8-2,…の一端には負荷トランジスタ9-1,9-2,…が設けられている。垂直信号線8-1,8-2,…の他端は、1行分の信号を取り込む信号転送トランジスタ10-1,10-2,…を介して、1行分の信号を蓄積する蓄積容量11-1,11-2,…に接続されるとともに、水平アドレス回路13から供給される水平アドレスパルスにより選択される水平選択トランジスタ12-1,12-2,…を介して信号出力端(水平信号線)15に接続されている。

以下、図2のタイミングチャートを参照して、このMOS型固体撮像装置の動作について説明する。

垂直アドレス線 6-iをハイレベルにするアドレスパルスが印加されると、 25 この行の選択トランジスタ 3-i-1, 3-i-2, …のみオンとなり、この行の増幅トランジスタ 2-i-1, 2-i-2, …と負荷トランジスタ 9-1, 9-2, …でソースフォロワ回路が構成される。

これにより、増幅トランジスタ 2-i-1, 2-i-2, …のゲート電圧、 すなわちフォトダイオード 1-i-1, 1-i-2, …の電圧とほぼ同等の

20

電圧が垂直信号線8-1,8-2,…に現れる。

このとき、信号転送トランジスタ10-1, 10-2, …の共通ゲート14に信号転送パルスを印加すると、増幅信号蓄積容量11-1, 11-2, …には垂直信号線8-1, 8-2, …に現れた電圧とその容量との積で表される増幅された信号電荷が蓄積される。

増幅信号蓄積容量 11-1, 11-2, …に信号電荷が蓄積され、信号転送トランジスタ 10-1, 10-2, …をオフした後、リセットライン 7-1, 7-2, …にリセットパルスを印加し、リセットトランジスタ 4-i-1, 4-i-2, …をオンさせ、フォトダイオード 1-i-1, 1-i-2, …に蓄積された信号電荷をリセットする。

つぎに、水平アドレス回路13から水平アドレスパルスを水平選択トランジスタ12-1,12-2,…に順次印加し、信号出力端(水平信号線)15から1行分の出力信号を順次取り出す。

この動作を次の行(水平ライン)、次の行と順次続けることにより、2次 15 元状に配置されたフォトダイオードのすべての信号を読み出すことができる。

上述した従来のMOS型固体撮像装置の単位セルPOーiーjは、フォトダイオード1ーiーjからの電荷信号を増幅する増幅トランジスタ2ーiーj、信号を読み出すラインを選択する垂直選択トランジスタ3ーiーj、増幅トランジスタのゲートのゲートを充放電するリセットトランジスタ4ーiーjの3つのトランジスタを備えているため、単位セルを微細化、ひいては撮像装置自体を微細化することが難しいという問題があった。

本発明の目的は、微細化することができるMOS型固体撮像装置を提供することである。

25 発明の開示

本発明によるMOS型固体撮像装置は、配列されている多数の単位セルと、単位セルを選択する手段とを具備するMOS型固体撮像装置において、上記単位セルは複数の光電変換部と、上記複数の光電変換部にそれぞれ接続され、いずれか1つの光電変換部の出力信号を選択する複数の選択手段と、上記複

数の選択手段により選択されたいずれか1つの光電変換部の出力信号が入力 され、該出力信号を増幅して単位セルから出力する出力手段とを具備するも のである。

ここで、上記複数の光電変換部は上記出力手段に対して並列に接続されて いることを特徴とする。

上記複数の光電変換部と上記複数の選択手段は直列に接続されていること を特徴とする。

上記単位セルは2次元マトリクス状に配列され、上記単位セル内の複数の 光電変換部は垂直方向に配列されていることを特徴とする。

10 単位セルの行を選択するとともに、上記選択手段を制御する垂直選択手段 と、単位セルの列を選択する水平選択手段とをさらに具備することを特徴と する。

上記単位セルは2次元マトリクス状に配列され、上記単位セル内の複数の 光電変換部は水平方向に配列されていることを特徴とする。

15 単位セルの行を選択するとともに、上記選択手段を制御する垂直選択手段 と、単位セルの列を選択する水平選択手段とをさらに具備することを特徴と する。

上記単位セルは2次元マトリクス状に配列され、上記単位セル内の複数の 光電変換部は2次元マトリクス状に配列されていることを特徴とする。

20 単位セルの行を選択するとともに、上記選択手段を制御する垂直選択手段 と、単位セルの列を選択する水平選択手段とをさらに具備することを特徴と する。

上記単位セルは1次元アレイ状に配列され、上記単位セル内の複数の光電 変換部はアレイと直交する方向に配列されていることを特徴とする。

25 上記単位セルは1次元アレイ状に配列され、上記単位セル内の複数の光電 変換部はアレイに沿った方向に配列されていることを特徴とする。

上記単位セルは1次元アレイ状に配列され、上記単位セル内の複数の光電 変換部はマトリクス状に配列されていることを特徴とする。

上記単位セルは、上記複数の選択手段により選択されたいずれか1つの光

10

電変換部の出力信号を増幅する増幅トランジスタと、該光電変換部の出力信号をリセットするリセットトランジスタと、上記増幅トランジスタを選択する選択トランジスタからなることを特徴とする。

上記単位セルは、上記複数の選択手段により選択されたいずれか1つの光 電変換部の出力信号を増幅する増幅トランジスタと、該光電変換部の出力信 号をリセットするリセットトランジスタと、上記増幅トランジスタを選択す る選択容量からなることを特徴とする。

本発明のMOS型固体撮像装置は、半導体基板に複数の単位セルが形成されたMOS型固体撮像装置において、上記半導体基板はp-型不純物基体と、上記p-型不純物基体に形成されたp+型不純物層とからなり、上記単位セルが上記p+型不純物層に形成されていることを特徴とする。

本発明のMOS型固体撮像装置は、半導体基板に複数の単位セルが形成されたMOS型固体撮像装置において、上記半導体基板はp-型不純物基体と、上記p-型不純物基体に形成されたp+型不純物層とからなり、上記単位セルは複数の光電変換部と、上記複数の光電変換部にそれぞれ接続され、いずれか1つの光電変換部の出力信号を選択する複数の選択手段と、上記複数の選択手段により選択されたいずれか1つの光電変換部の出力信号が入力され、該出力信号を増幅して単位セルから出力する出力手段とを具備することを特徴とする。

- 20 また、本発明は、入射光に応じた電荷を発生する複数の光電変換部と、上記複数の光電変換部が並列に接続され、いずれか1つの光電変換部から発生された電荷に対応する電圧信号を出力する信号出力手段とを具備する複数の単位セルが半導体基板の表面領域に形成されたMOS型固体撮像装置の駆動方法において、上記信号出力手段はテレビジョン信号の1フレーム期間内に
- 25 上記電圧信号を出力する動作を少なくとも2回以上行なうことを特徴とする。 本発明のMOS型固体撮像装置歯、単位セルの出力手段の増幅特性のバラ ツキを補償する手段をさらに具備することを特徴とする。

ここで、上記補償手段は上記単位セルの出力から雑音成分のみを減算する ノイズキャンセラを具備することを特徴とする。

15

20

上記補償手段は上記単位セルの出力を表す電荷から雑音成分のみを表す電荷を減算するノイズキャンセラを具備することを特徴とする。

上記補償手段は、上記単位セルの出力信号が供給されるソースフォロワ回路と、ソースフォロワ回路の出力信号がサンプルホールドトランジスタ、クランプ容量を介して供給されるサンプルホールド容量と、サンプルホールド容量とクランプ容量との接続点に接続され、接続点をオン・オフするサンプルホールドトランジスタとを具備することを特徴とする。

上記サンプルホールド容量とクランプ容量とは積層されることを特徴とする。

10 上記補償手段は、上記単位セルの出力信号がクランプ容量、サンプルホールドトランジスタを介して供給されるサンプルホールド容量と、クランプ容量とサンプルホールドトランジスタとの接続点に接続され、クランプ容量をオン・オフするクランプトランジスタとを具備することを特徴とする。

上記補償手段は、クランプ容量のオン・オフ時のインピーダンスの差を小さくする補正手段を具備することを特徴とする。

上記補正手段は、クランプトランジスタのオフ時にクランプ容量を増加するための補正容量を具備することを特徴とする。

上記補償手段は、上記単位セルの出力信号が供給されるソースフォロワ回路と、ソースフォロワ回路の出力信号がクランプ容量、サンプルホールドトランジスタを介して供給されるサンプルホールド容量と、クランプ容量とサンプルホールドトランジスタとの接続点に接続され、クランプ容量をオン・オフするクランプトランジスタとを具備することを特徴とする。

上記補償手段は、上記単位セルの出力信号がゲートに供給されるスライストランジスタと、スライストランジスタのソースに接続されるスライス容量 及びスライスリセットトランジスタと、スライストランジスタのドレインに接続されるスライス電荷転送容量及びドレインリセットトランジスタとを具備することを特徴とする。

上記補償手段は、上記単位セルの出力信号がサンプルホールドトランジスタ、クランプ容量を介して供給されるサンプルホールド容量と、サンプルホ

ールド容量とクランプ容量との接続点に接続され、接続点をオン・オフする サンプルホールドトランジスタとを具備することを特徴とする。

図面の簡単な説明

- 5 図1はMOS型固体撮像装置の従来例の構成を示す回路図、
 - 図2は図1の従来例の動作を示すタイミングチャート、
 - 図3は本発明によるMOS型固体撮像装置の第1実施例の構成を示す回路 図、
 - 図4は第1実施例の垂直アドレス回路の回路構成を示す図、
- 10 図 5 は第 1 実施例の垂直アドレス回路の他の回路構成を示す図、
 - 図6は第1実施例の垂直アドレス回路のさらに他の回路構成を示す図、
 - 図7は第1実施例の単位セルの回路図、
 - 図8は第1実施例の動作を示すタイミングチャート、
 - 図9は第1実施例のノイズキャンセラ部分の装置構造を示す断面図、
- 15 図10A、図10Bは第1実施例の単位セルの装置構造を示す断面図、
 - 図11は第1実施例の単位セルの部分の半導体基板の変形例を示す図、
 - 図12はCCD型固体撮像装置の従来例のセルの断面図、
 - 図13は第1実施例の単位セルの部分の半導体基板の他の変形例を示す図、
 - 図14は第1実施例の単位セルの部分の半導体基板のさらに他の変形例を
- 20 示す図、
 - 図15は第1実施例の単位セルの部分の半導体基板のさらに他の変形例を 示す図、
 - 図16は第1実施例の単位セルの部分の半導体基板のさらに他の変形例を 示す図、
- 25 図17は第1実施例の単位セルの部分の半導体基板のさらに他の変形例を 示す図、
 - 図18は第1実施例の単位セルの出力回路の変形例の回路図、
 - 図19は本発明によるMOS型固体撮像装置の第2実施例の構成を示す回路図、

- 図20は第2実施例の動作を示すタイミングチャート、
- 図21は本発明によるMOS型固体撮像装置の第3実施例の構成を示す回 路図、
- 図22は本発明によるMOS型固体撮像装置の第4実施例の構成を示す回 5 路図、
 - 図23は第4実施例の動作を示すタイミングチャート、
 - 図24は第4実施例のスライストランジスタのポテンシャル図、
 - 図25は本発明によるMOS型固体撮像装置の第5実施例の構成を示す回 路図、
- 10 図 2 6 は本発明によるMOS型固体撮像装置の第 6 実施例の第 1 の構成を 示す回路図、
 - 図27は本発明によるMOS型固体撮像装置の第6実施例の第2の構成を 示す回路図、
 - 図28は第6実施例の動作を示すタイミングチャート、
- 15 図29は第6実施例のノイズキャンセラ回路のポテンシャル図
 - 図30は本発明によるMOS型固体撮像装置の第7実施例の構成を示す回路図、
 - 図31は第7実施例の動作を示すタイミングチャート、
- 図32は本発明によるMOS型固体撮像装置の第8実施例の構成を示す回 20 路図、
 - 図33は第8実施例の単位セルの回路図、
 - 図34は本発明の変形例において、水平信号線に接続されるビデオアンプの回路図である。
- 25 発明を実施するための最良の形態
 - 以下、図面を参照して本発明によるMOS型固体撮像装置の実施例を説明する。
 - 第1実施例
 - 図3は、本発明の第1実施例に係るMOS型固体撮像装置の構成を示す。

単位セルP1-i-jが縦、横に2次元マトリクス状に配列されている。図では、 2×2 しか示していないが、実際は数千個×数千個ある。iは水平 (row) 方向の変数、jは垂直 (column) 方向の変数である。各単位セルP1-i-jの詳細は図7、図18に示す。

5 本発明の固体撮像装置の応用分野としては、ビデオカメラ、電子スチルカ メラ、ディジタルカメラ、ファクシミリ、複写機、スキャナ等がある。

垂直アドレス回路 5 から水平方向に配線されている垂直アドレス線 6-1, 6-2, …は各行の単位セルに接続され、信号を読み出す水平ラインを決めている。同様に、垂直アドレス回路 5 から水平方向に配線されているリセッ

- 10 ト線 7-1, 7-2, …は、各列の単位セルに接続されている。後述するように、本実施例の単位セルは2つのフォトダイオードを含んでいるので、垂直アドレス回路5からは第1のフォトダイオード選択線22-1、22-2, …、第2のフォトダイオード選択線24-1、24-2, …も水平方向に出力され、これらも各行の単位セルに接続されている。
- 15 各列の単位セルは列方向に配置された垂直信号線 8-1, 8-2, …に接続され、垂直信号線 8-1, 8-2, …の一端には負荷トランジスタ 9-1, 9-2, …が設けられている。負荷トランジスタ 9-1, 9-2, …のゲートとドレインは共通にドレイン電圧端子 20 に接続される。

垂直信号線8-1,8-2,…の他端は、MOSトランジスタ26-1,26-2,…のゲートに接続される。MOSトランジスタ26-1,26-2,…のソースはMOSトランジスタ28-1,28-2,…のドレインに接続され、MOSトランジスタ26-1,26-2,…、28-1,28-2,…はソースフォロワ回路として動作する。MOSトランジスタ28-1,28-2,…のゲートは共通ゲート端子36に接続される。

25 MOSトランジスタ26-1, 26-2, …とMOSトランジスタ28-1, 28-2, …との接続点がサンプルホールドトランジスタ30-1, 3 0-2, …を介してクランプ容量32-1, 32-2, …の一端に接続される。クランプ容量32-1, 32-2, …の他端にはサンプルホールド容量34-1, 34-2, …とクランプトランジスタ40-1, 40-2, …が

並列に接続されている。サンプルホールド容量 34-1, 34-2, …の他端は接地されている。クランプ容量 32-1, 32-2, …の他端は水平選択トランジスタ 12-1, 12-2, …を介して信号出力端(水平信号線) 15にも接続される。

垂直アドレス回路5は、複数、ここでは4本の信号を纏めてシフトする回路であり、図4、図5、図6のいずれかの回路により実現される。図4の例では、入力信号46を多数の出力端から順次シフトして出力するシフトレジスタ44の出力がマルチプレクサ48により4入力信号50と合成される。図5の例では、エンコード入力54をデコードするデコーダ52の出力がマルチプレクサ56により4入力信号58と合成される。図6の例では、4つのシフトレジスタ60a,60b,60c,60dの出力を束ねて各行の制御信号線とする。

図 7 は、図 3 に示した単位セルP 1-1-1 の一構成例を示す。ここでは、単位セルP 1-1-1 の構成のみを示すが、他の単位セルP 1-1-2 、~についても同様の構成が採用されている。

同図に示すように、本実施例のMOS型固体撮像装置の単位セルは、垂直方向に隣り合う2個のフォトダイオード62a,62bと、どちらのフォトダイオード62a,62bと、どちらのフォトダイオード62a,62bの検出信号を単位セルの出力とするかを選択する2個のフォトダイオード選択トランジスタ63a,63bと、選択トランジスタ63a,63bと、選択トランジスタ63a,63bで選択されたフォトダイオードの出力信号を単位セルから出力する出力回路68を有する。各選択スイッチ63a,63bは、独立にオン/オフ制御されるものであって、各選択スイッチをオンにすることにより、フォトダイオード62a,62bに蓄積された電荷を時分割的に出力回路68に供給することができる。

25 出力回路 6 8 は、フォトダイオードからの電荷信号がゲートに供給され、 それを増幅する増幅トランジスタ 6 4、信号を読み出す単位セルを選択する 垂直選択トランジスタ 6 5、増幅トランジスタ 6 4 のゲートを充放電するリ セットトランジスタ 6 6 から構成されている。

垂直アドレス回路5から水平方向に配線されている水平アドレス線6-1

. 5

10

15

20

は、垂直選択トランジスタ65のゲートに接続され、信号を読み出すラインを選択する。同様に、垂直アドレス回路5から水平方向に配線されているリセット線7-1、フォトダイオード選択線22-1,24-1は、それぞれリセットトランジスタ66のゲート、フォトダイオード選択トランジスタ63a,63bのゲートに接続されている。

このように本実施例のMOS型固体撮像装置の単位セルは、従来例(一フォトダイオード/単位セル)とは異なり複数の、ここでは垂直方向に隣接する2つのフォトダイオードが1つの出力回路68を共有している。このため、単位セルは、フォトダイオード選択用の2つのトランジスタを含めて5個のトランジスタで構成されることになる。すなわち、1つのフォトダイオードに対して2.5個のトランジスタが存在している。そのため、1つのフォトダイオードに3個のトランジスタが必要である図1に示す従来例に比べて単位セルの面積を縮小でき、小型化できる固体撮像装置が実現される。

また、本実施例に係るMOS型固体撮像装置の単位セルの特徴は、2つのフォトダイオード62a,62bが選択トランジスタ63a,63bを介して出力回路68に対してそれぞれ接続されている、すなわち、フォトダイオード62a,62bが並列に接続されていることにある。複数のフォトダイオード62で1つの出力回路68を共有する方法としては、上記方法に限らず、1つのフォトダイオードのみ出力回路に接続し、他のフォトダイオードは出力回路に接続された上記フォトダイオードを介して出力回路に接続する、いわゆる直列接続による方法もある。しかし、この直列接続による方法では、他のフォトダイオードに蓄積された検出信号を破壊することなく、複数のフォトダイオードの検出信号を独立して読み出すことは困難である。

一般的に、増幅型MOS型固体撮像装置においては、増幅トランジスタ6 4の関値電圧のバラツキが信号に重畳するため、フォトダイオード62の電 位が同じでも出力信号が同じとはならず、写した画像を再生すると増幅トラ ンジスタ64の関値バラツキに対応する2次元状の雑音(場所的に固定され ているという意味で、固定パターン雑音と称される)が発生する。このため、 本実施例においては、図1の信号転送トランジスタと蓄積容量の代わりに、 この固定パターン雑音を抑圧するための雑音除去回路が設けられている。図3では、雑音除去回路としては電圧領域で信号と雑音との差分をとる相関二重サンプリング型を示したが、雑音除去回路の型は、相関二重サンプリング型には限定されず、種々の雑音除去回路が用いられている。

- 5 次に、図8のタイミングチャートを参照して、このように構成されたMO S型固体撮像装置の動作について説明する。なお、負荷トランジスタ9の共 通ドレイン端子20、インピーダンス変換回路のトランジスタ28の共通ゲ ート端子36、クランプトランジスタ40の共通ソース端子38はDC駆動 であるので、タイミングチャートから省略している。
- 10 垂直アドレス線 6-1 にハイレベルのアドレスパルスを印加すると、当該 垂直アドレス線 6-1 に接続されている単位セル P 1-1-1, P 1-1-2, …の垂直選択トランジスタ 6 5 がオンとなり、増幅トランジスタ 6 4 と 負荷トランジスタ 9-1, 9-2, …でソースフォロワ回路が構成される。

サンプルホールドトランジスタ30-1,30-2,…の共通ゲート37

15 をハイレベルとしてサンプルホールドトランジスタ30-1,30-2,…
をオンする。この後、クランプトランジスタ40-1,40-2,…の共通
ゲート42をハイレベルとしてクランプトランジスタ40-1,40-2,
…をオンする。

次に、リセット線 7-1にハイレベルのリセットパルスを印加すると、当 該リセット線 7-1に接続されている単位セル P1-1-1, P1-1-2, …のリセットトランジスタ 6 6 がオンとなり、出力回路 6 8 の入力端子の電荷がリセットされる。このため、出力回路 6 8 からはフォトダイオード 6 2 に信号電荷が無い時の増幅トランジスタ 6 4 の閾値バラツキに応じた雑音成分が出力される。

次に、クランプトランジスタ40-1,40-2,…の共通ゲート42をローレベルとしてクランプトランジスタ40-1,40-2,…をオフする。このため、垂直信号線8-1,8-2,…に現れている雑音成分はクランプ容量32-1,32-2,…に背積される。このように、垂直信号線8-1,8-2,…の電位がクランプ容量32-1,32-2,…にクランプされる

20

タイミングは、クランプトランジスタの共通ゲート42に印加されるクランプパルスがローレベルに戻る時であり、リセットパルスとフォトダイオード選択パルスの間である。

単位セルP1-1-1, P1-1-2, …においては、フォトダイオード 62 a はリセット後、信号電荷の蓄積が行われており、次に、これを読み出す。そのため、フォトダイオード選択線22-1にハイレベルの選択パルスを印加すると、出力回路68からはフォトダイオード62 a の出力信号(信号電荷成分プラス雑音成分)が出力される。前述したように、クランプ容量32-1,32-2,…には雑音成分が蓄積されているので、クランプノード41-1,41-2,…には垂直信号線8-1,8-2,…の電圧変化分、すなわち信号成分プラス雑音成分から雑音成分を差し引いた、固定パターン雑音のない信号電圧のみが現れる。

ここで、先ず、雑音成分のみを読み出し、この後、信号成分プラス雑音成分を読み出すと、リセット動作によって生じるランダム雑音も同時に除去することができる。

そして、サンプルホールドトランジスタ30-1, 30-2, …の共通ゲート37をローレベルとしてサンプルホールドトランジスタ30-1, 30-2, …をオフする。このため、クランプノード41-1, 41-2, …に現れている雑音のない電圧がサンプルホールド容量34-1, 34-2, …に蓄積される。

この後、水平選択トランジスタ12-1, 12-2, …に水平アドレスパルスを順次印加することにより、サンプルホールド容量34-1, 34-2, …に蓄積されている雑音のないフォトダイオード62 a の信号が出力端子(水平信号線)15 から読み出される。

25 次に、垂直アドレス線 6-1にハイレベルのアドレスパルスを印加するときは、フォトダイオード選択線 22-1の代わりにフォトダイオード選択線 24-1にハイレベルの選択パルスを印加し、出力回路 68 からフォトダイオード 62 b の出力信号を出力させる。他の動作は上と同じである。

以下、同様に、垂直アドレス線6-2, 6-3, …について上述の動作を

25

繰り返すことにより、2次元状に配置された全てのセルの信号を取り出すことが出来る。

従来のように1フレーム期間中に出力回路を1回しか動作させない場合には、その出力回路に対応する複数のフォトダイオードの検出信号を1フレーム期間中に全て読み出すことは出来ない。

しかし、本実施例のMOS型固体撮像装置の駆動方法は、1フレーム期間中の連続した2回の水平プランキング期間に1回ずつ垂直選択トランジスタ65をオンにして出力回路68を動作させ、1回目はフォトダイオード62a、2回目はフォトダイオード62bの検出信号を読み出すので、単位セルが微細化されたMOS型固体撮像装置を駆動することができる。

このように、1フレーム期間中に出力回路を2回以上動作させないと、全てのフォトダイオードの検出信号を読み出すことは出来ない。また、1回読み出してから次に読み出す前に出力回路をリセットしないと、次回からの読み出し信号には前回の読み出しの時の信号が重畳されてしまう。

また、本実施例のMOS型固体撮像装置においては、充放電用のリセットトランジスタ66が増幅トランジスタ64のゲートに接続されており、フォトダイオードの電位のリセットをフォトダイオード選択トランジスタ63を介して行なうという特徴がある。この場合、フォトダイオード62a,62bに増幅トランジスタ64が1つずつ接続されている場合と比較して、単位セル当たりのトランジスタの数が減るという利点がある。

また、本実施例においては、垂直方向に隣合う2つのフォトダイオードが 出力回路を共有しているという特徴がある。このため、1水平ブランキング 期間中に増幅トランジスタ64を用いて電荷信号を読み出す回数が1回であ り、駆動しやすい。要するに、本実施例の特徴は、読みだし方向と共有方向 とが異なっていることである。

ここで、図8のタイミングの先後関係を説明する。必須の順番は、次の3つある。

(1) 垂直アドレスの立ち上がり→リセットパルスの立ち下がり→クランプ パルスの立ち下がり→フォトダイオード選択パルスの立ち上がり→フォトダ

イオード選択パルスの立ち下がり→サンプルホールドパルスの立ち下がり→ 垂直アドレスの立ち下がり

- (2) サンプルホールドパルスの立ち上がり→フォトダイオード選択パルス の立ち上がり
- 5 (3) クランプパルスの立ち上がり→フォトダイオード選択パルスの立ち上がり

なお、垂直アドレスの立ち上がり、サンプルホールドパルスの立ち上がり、 クランプパルスの立ち上がり、リセットパルスの立ち上がりの前後関係は任 意であるが、好ましくは、次の順番がよい。

10 垂直アドレスの立ち上がり→サンプルホールドパルスの立ち上がり→クランプパルスの立ち上がり→リセットパルスの立ち上がり

このように、図8の動作によれば、クランプノード41には、リセットされて信号がない時と、信号(プラス雑音)がある時との差の電圧が現れるため、増幅トランジスタ64の閾値バラツキによる固定パターン雑音が補償される。すなわち、クランプトランジスタ30、クランプ容量31、サンプルホールドトランジスタ40、サンプルホールド容量34からなる回路がノイズキャンセラとして作用する。

なお、本実施例のノイズキャンセラは、ソースフォロワ回路からなるインピーダンス変換回路26、28を介して垂直信号線8に接続されている。すなわち、垂直信号線はトランジスタ26のゲートに接続されている。このゲート容量は非常に小さいので、セルの増幅トランジスタ64は垂直信号線8-1,8-2,…のみを充電するので、CRの時定数が短く、すぐに定常状態になる。そのため、リセットパルス、フォトダイオード選択パルスの印加タイミングを早くすることができ、短時間でノイズキャンセル動作をさせることができる。テレビジョン信号の場合、ノイズキャンセル動作は水平ブランキング期間内に行う必要があり、短時間で正確にノイズキャンセルできることは大きな長所である。さらに、ノイズキャンセル動作に含まれる雑音出力時と信号プラス雑音出力時とで、単位セルから見たノイズキャンセラのインピーダンスが同じであるので、正確にノイズをキャンセルすることができ

る。

15

次に、本実施例の構造を説明する。

図3の回路構成から分るように、クランプ容量32とサンプルホールド容量34が直接接続されて近接しているので、これらを同一面上に積層して形成することができ、単位セルを小型化できる。

具体的には、図9に示すように、シリコン基板72上に第1の絶縁膜74 を介して第1の電極76を形成することにより、サンプルホールド容量34 を構成し、さらに第1の電極76上に第2の絶縁膜78を介して第2の電極80を形成することにより、クランプ容量32を構成する。

10 この図からも明らかなように、第1の電極76が共通電極となり、クランプ容量32とサンプルホールド容量34が積層形成されているので、個別に形成する場合の1/2の面積で同じ容量値を得ることが可能となる。

本実施例においては、単位セルP1-1-1、P1-1-2, …や、垂直 アドレス回路5、水平アドレス回路13などの周辺回路は、p⁻型基板上に p⁺型不純物層を形成した半導体基板上に形成されている。

図10A, 10Bは、このような半導体基板の断面図である。

図10Aに示すように、p⁻型基板81上にp⁺型不純物層82を形成した 半導体基板にフォトダイオード83などのセル要素が形成されている。

半導体基板をこのような構成にすることにより、 p^-/p^+ 境界にある拡散 電位により、 p^- 型基板 81 で発生した暗電流が p^+ 側へ流れ込むのを一部防止することができる。

電子の流れを詳しく解析した結果を簡単に述べると、 p^- 側で発生した電子にとって p^+ 不純物層 8 2 の厚さ L が p^+ と p^- の濃度の比倍すなわち L ・ p^+ / p^- に見える。

25 すなわち、図10Bに示すように、暗電流の発生源であるp⁻基板81からフォトダイオード83までの距離がp⁺/p⁻倍遠くなったように見えることになる。暗電流は、基板深部から流れ込むもの以外にフォトダイオード83近傍の空乏層内で発生するものがあり、この空乏層内で発生する暗電流は、基板深部から流れ込む暗電流とほぼ同じ程度ある。空乏層の厚さは約1

10

15

μ m程度であり、基板深部から流れ込む暗電流は約100μmの深さからも流れてくる。この深さはp型半導体内部での電子の拡散距離と呼ばれているものである。この厚さの差にも関わらず暗電流が同等なのは、単位体積あたりの暗電流の発生確率が空乏層内部の方が高いためである。ここで、空乏層で発生する暗電流は原理的に信号電流と分離することができないので、暗電流の低減は基板深部から流れ込む成分を減ずることによってなされる。

また、p⁻型基板 7 1 上に p⁺型不純物層 7 2 を形成した半導体基板にセルを形成するので、暗電流が発生することによる基板電位の変動を防止することができ、p型基板は厚いため、抵抗が低く、後述するように、雑音除去回路を確実に動作させることができる。

また、素子温度が上昇すると基板深部からの成分の方が急激に増加するので、これが重要である。その目安は、基板深部からの成分が空乏層で発生した成分よりも十分小さいことであり、具体的には、基板深部からの暗電流が空乏層内部からのものに比べて約1桁下であればいい。すなわち、 p^+/p^- を10に設定して基板深部からのものを約1/10にすればいい。

さらに、基板深部からの暗電流は、n型基板とp型ウェルとで構成される 半導体基板ではほぼ全くないといってよいが、このような半導体基板と同じ レベルにするためには p^+/p^- を100に設定して基板深部からの暗電流 を約1/100にする必要がある。

20 従来の実績のあるCCDでは、n型の埋め込みチャネルの不純物濃度が約 10^{16} c m^{-3} 程度であり、この埋め込みチャネルの拡散層を安定して製造するための埋め込みチャネルを囲むp型層(ここではp型基板)の不純物濃度は約 10^{15} c m^{-3} である。

p + 層の濃度はp + / p ⁻を10にする場合は約10 ¹⁶ c m ⁻³程度、p + / p 25 ⁻を100にする場合は約10 ¹⁷ c m ⁻³程度となり、n型の埋め込みチャネルの不純物濃度の約10 ¹⁶ c m ⁻³と同程度又は1桁逆転してしまう。

このため、従来実績のあるのCCDではこのような不純物濃度の p^+ 層を使うことは考えられなかった。また、 p^- 層の濃度を下げると基板のシート抵抗が高くなるという問題が出てくる。

15

20

25

しかしながら、増幅型のMOS撮像装置ではCCDの埋め込みチャネルがないためp⁻層の濃度を下げずにp⁺/p⁻の値をある程度自由に設定できる。 そこで、p型ウェルの抵抗を下げ、n型基板とp型ウェルとで構成される 半導体基板の構造を改善することによってもセルを構成することができる。

図11は、n型基板85上にシート抵抗の低いp⁺ウェル86を用いた単位セルの断面図である。また、図12は、CCDの単位セルの断面図を示す。

CCDの単位セルの n 型基板 8.7、p 型ウェル 8.6、n 型埋め込みチャネル 8.9 の不純物濃度は安定して製造を行うために、それぞれ約 1.0^{14} c m^{-3} 、約 1.0^{15} c m^{-3} 、約 1.0^{16} c m^{-3} 程度にしてある。

10 n型フォトダイオード90の不純物濃度はある程度自由に設定できるため 製造上の制約はあまりない。p型ウェル86のシート抵抗は上記の不純物濃 度では約100kΩ/□程度の値である。CCDは、前述のようにこのよう な高い値でも雑音が非常に小さい。

一方、増幅型のMOS撮像装置で雑音除去回路を使用する場合、このp型ウェルのシート抵抗は非常に重要である。何故ならば、リセットパルスによるp型ウェル86の電位の擾乱が収まる時間がこの装置を応用するシステムにマッチングしなければならないからである。

現行のテレビ方式であるNTSC方式では、雑音除去回路を動作させるのは水平帰線期間である約 $11[\mu s]$ の間である。この時間のあいだにp型ウェル86の電位の擾乱が0.1[mV]程度まで収まる必要がある。

この0.1 [mV] という非常に小さい値は、CCDの雑音電圧出力がこの程度であることから起因している。 $11[\mu s]$ という非常に短い時間で 0.1 [mV] という非常に小さい値に落ちつかせるには、詳しい解析よると p型ウェル86のシート抵抗を $1k\Omega$ /口以下にしなければならない。これは従来のCCDの約1/100である。

そのためには、p型ウェル86の不純物濃度を約100倍にする必要があり、p型基板のところで前述したように、CCDでは不可能な濃度である。さらにハイビジョンテレビ方式では水平帰線期間が3.77[μ s]であり、p型ウェル86のシート抵抗を3000/□以下にしなければならない。

他の変形例としては、高濃度の p +型サンドイッチ層を基板上に形成し、 表面をそれより濃度の低い p 型層にすることが考えられる。

図13は、p⁻型基板91とp型層93との間にp⁺型サンドイッチ層92を形成した半導体基板の構成を示す図である。また、図14は、n型基板95とp型層97との間にp⁺型サンドイッチ層96を形成した半導体基板の構成を示す図である。

このようなp⁺型サンドイッチ層は高加速度のメガボルトイオン打ち込み機により実現できる。

上記p型層には、単位セルの構成要素であるフォトダイオー83、トラン 10 ジスタなどの他に、水平アドレス回路、垂直アドレス回路などの周辺回路も 形成される。

図15は、フォトダイオード83の周囲を高濃度のp型ウェル103で囲み、n型基板101上の他の部分を他のp型ウェル102で形成することにより構成される半導体基板の構成を示す図である。

15 このような構成を採用することにより、フォトダイオード83への暗電流 の漏れ込みを防止することができる。なお、半導体基板101は、p⁻型基 板であってもよい。

さらに、セル周辺の水平アドレス回路や垂直アドレス回路の一部又は全部を形成するp型ウェルの濃度は回路設計の方から決められており、セルの最適値とは異なるため撮像領域を形成するp型ウェルとは別のp型層にすることも考えられる。

図16は、n型基板105上に撮像領域を構成するp型ウェル106を形成するとともに、周辺回路部を構成する他のp型ウェル107を別々に形成した半導体基板の構成を示す図である。

25 このような構成とすることにより、各構成要素に適したp型ウェルを形成することができる。なお、上記n型基板105は、p⁻型基板であっても良い。

図17は、n型基板105上に撮像領域を形成するp⁺型サンドイッチ層 108及び濃度の低いp型層109を形成するとともに、周辺回路部に他の

p型ウェル107を形成したものである。

このような構成とすることにより、各構成要素に適したp型ウェルを形成することができ、フォトダイオードへの暗電流の漏れ込みを防止することができる。なお、上記n型基板105は、p⁻型基板であっても良い。

5 以上説明したように、本実施例によれば、垂直方向に隣接する複数 (ここでは、2つ)のフォトダイオードで1つの出力回路を共有する単位セルを用いているので、単位セルの面積を微細化することができる。出力回路を共有するフォトダイオードの数は2つに限られずに、3つ以上でも良い。

なお、出力回路 6 8 の変形例として、図18に示すように、垂直選択トランジスタ 6 6 の代わりに垂直選択容量 6 9 を設けられてもよい。この構成では、単位セル当たりのトランジスタの数をさらに削減することができ、セルの微細化に有利である。アドレス線 6 - 1 にハイレベルの電圧を印加すると、増幅トランジスタ 6 4 のゲート電圧が高電圧側にシフトする。隣接する単位セルの増幅トランジスタ 6 4 のゲート電圧は低いままであるので、垂直信号線 8 - 1 にはアドレスされた増幅トランジスタ 6 4 の信号が現れる。

また、単位セルの出力をノイズキャンセラを介して出力しているので、単位セルの増幅トランジスタの閾値バラツキに応じた固定パターン雑音を取り除くことができる。さらに、ノイズキャンセラにおいては、クランプ容量32-1,32-2,… (以下、これらを32と総称する。他の添え字付きの部材についても同様)とサンプルホールド容量34が直接接続されて近接しているので、これらを同一面上に積層して形成することができ、容量を小型化できる。

さらに、単位セルの出力をインピーダンス変換回路を介してノイズキャンセラに供給しているので、雑音出力時と信号プラス雑音出力時とで、単位セルから見たノイズキャンセラのインピーダンスがほぼ同一であるため、両出力時で雑音成分はほぼ同一となり、両者の差分をとると、正確に雑音出力を除去でき、信号成分のみ取り出すことが可能となり、正確にノイズをキャンセルすることができる。また、単位セルからノイズキャンセラを見ると、インピーダンス的にはゲート容量しか見えず、その容量は非常に小さいので、

短時間に確実にノイズをキャンセルすることができる。

また、単位セルを形成する半導体基板として、p-型不純物基体と、p-型不純物基体上に形成されたp+型不純物層とからなる基板を用いることにより、単位セルに進入する暗電流を低減することができ、かつ、基板表面の電 位を安定させることができるので、雑音除去回路を確実に動作させることができる。

次に、第1実施例において、ノイズキャンセラ回路部分を変形した実施例 を説明する。

第2実施例

10 図19は、本発明の第2実施例に係わる増幅型MOSセンサを用いた撮像 装置の回路構成図である。単位セルP1-i-j付近の回路構成は第1実施 例と同じである。

垂直信号線8-1,8-2,…の他端は、クランプ容量131-1,13 1-2,…、クランプトランジスタ132-1,132-2,…、水平選択 トランジスタ12-1,12-2,…を介して信号出力端(水平信号線)1 5に接続される。クランプ容量131-1,131-2,…と、サンプルホールドトランジスタ133-1,133-2,…との間にはクランプトランジスタ132-1,132-2,…のドレインが接続される。クランプトランジスタ132-1,132-2,…のソースは共通ソース端子141に接 6. 続され、ゲートは共通ゲート端子142に接続される。サンプルホールドトランジスタ133-1,133-2,…と、水平選択トランジスタ12-1,12-2,…との接続点はサンプルホールド容量134-1,134-2,…を介して接地される。

次に、図20のタイミングチャートを参照して、このように構成されたM OS型固体撮像装置の動作について説明する。なお、負荷トランジスタ9の共通ドレイン端子20、クランプトランジスタ132の共通ソース端子14 1はDC駆動であるので、タイミングチャートから省略している。単位セルは図7に示すもので説明する。

垂直アドレス線6-1にハイレベルのアドレスパルスを印加すると、当該

垂直アドレス線 6-1 に接続されている単位セルP1-1-1, P1-1-2, …の垂直選択トランジスタ 6 5 がオンとなり、増幅トランジスタ 6 4 と 負荷トランジスタ 9-1, 9-2, …でソースフォロワ回路が構成される。

サンプルホールドトランジスタ133-1, 133-2, …の共通ゲート 143をハイレベルとしてサンプルホールドトランジスタ133-1, 133-2, …をオンする。この後、クランプトランジスタ132-1, 132-2, …の共通ゲート142をハイレベルとしてクランプトランジスタ132-1, 132-2, …をオンする。

次に、リセット線 7 - 1 にハイレベルのリセットパルスを印加すると、当 i i j セット線 7 - 1 に接続されている単位セル P 1 - 1 - 1, P 1 - 1 - 2, …のリセットトランジスタ 6 6 がオンとなり、出力回路 6 8 の入力端子の電荷がリセットされる。このため、出力回路 6 8 からはフォトダイオード 6 2 に信号電荷が無い時の増幅トランジスタ 6 4 の閾値バラツキに応じた雑音成分が出力される。

次に、クランプトランジスタ132-1, 132-2, …の共通ゲート142に印加されるクランプトランジスタ132-1, 132-2, …をオフする。このため、垂直信号線8-1, 8-2, …に現れている雑音成分はクランプ容量131-1, 131-2, …に蓄積される。このように、垂直信号線8-1, 8-2, …の電位がクランプ容量131-1, 131-2, …にクランプされるタイミングは、クランプトランジスタの共通ゲート142に印加されるクランプパルスがローレベルに戻る時であり、リセットパルスとフォトダイオード選択パルスの間である。

単位セルP1-1-1, P1-1-2, …においては、フォトダイオード62aはリセット後、信号電荷の蓄積が行われており、次に、これを読み出す。そのため、フォトダイオード選択線22-1にハイレベルの選択パルスを印加すると、出力回路68からはフォトダイオード62aの出力信号(信号電荷成分プラス雑音成分)が出力される。前述したように、クランプ容量131-1, 131-2, …には雑音成分が蓄積されているので、クランプノード145-1, 145-2, …には垂直信号線8-1, 8-2, …の電

圧変化分、すなわち信号成分プラス雑音成分から雑音成分を差し引いた、固定パターン雑音のない信号電圧のみが現れる。サンプルホールドトランジスタ133-1,133-2,…はオンされており、同じ信号電圧がサンプルホールド容量134-1,134-2,…の端子に現れている。

- そして、サンプルホールドトランジスタ133-1, 133-2, …の共通ゲート143をローレベルとしてサンプルホールドトランジスタ133-1, 133-2, …をオフする。このとき、クランプノード145-1, 145-2, …に現れている雑音のない電圧がサンプルホールド容量134-1, 134-2, …に保持される。
- 10 この後、水平選択トランジスタ12-1, 12-2, …に水平アドレスパルスを順次印加することにより、サンプルホールド容量134-1, 134-2, …に蓄積されている雑音のないフォトダイオード62aの信号が出力端子(水平信号線)15から読み出される。

次に、垂直アドレス線 6-1 にハイレベルのアドレスパルスを印加すると 15 きは、フォトダイオード選択線 22-1 の代わりにフォトダイオード選択線 24-1 にハイレベルの選択パルスを印加し、出力回路 68 からフォトダイ オード 62 b の出力信号を出力させる。他の動作は上と同じである。

以下、同様に、垂直アドレス線 6-2, 6-3, …について上述の動作を繰り返すことにより、 2次元状に配置された全てのセルの信号を取り出すことが出来る。

第3実施例

20

図21は、本発明の第3実施例に係わる増幅型MOSセンサを用いた撮像 装置の回路構成図である。単位セルP1-i-j付近の回路構成は第1実施 例と同じである。

25 第3実施例は、第1実施例のインピーダンス変換回路を第2実施例のノイ ズキャンセラに接続した例である。なお、クランプトランジスタ132の共 通ソースは本実施例ではDC駆動している。

第4実施例

図22は、本発明の第4実施例に係わる増幅型MOSセンサを用いた撮像

装置の回路構成図である。単位セルP1-i-j付近の回路構成は第1実施例と同じである。

負荷トランジスタ 9 - 1, 9 - 2, …とは反対側の垂直信号線 8 - 1, 8 - 2, …の端部は、スライストランジスタ 1 5 0 - 1, 1 5 0 - 2, …のゲ 5 ートにそれぞれ接続されている。スライストランジスタ 1 5 0 - 1、 1 5 0 - 2, …のソースにはスライス容量 1 5 2 - 1, 1 5 2 - 2, …の一端が接続されており、スライス容量 1 5 2 - 1, 1 5 2 - 2, …の他端はスライスパルス供給端子 1 5 4 に接続されている。スライストランジスタ 1 5 0 - 2, …のソース電位をリセットするために、スライストランジスタのソースとスライス電源端子 1 5 8 との間にスライスリセットトランジスタ 1 5 6 - 1, 1 5 6 - 2, …のゲートにスライスリセット端子 1 6 0 が接続されている。

スライストランジスタ150-1, 150-2, …のドレインには、スライス電荷転送容量162-1, 162-2, …が接続されている。また、ス15 ライストランジスタ150-1, 150-2, …のドレイン電位をリセットするために、そのドレインと蓄積ドレイン電源端子164との間にドレインリセットトランジスタ166-1, 166-2, …が設けられ、このトランジスタ166-1, 166-2, …のゲートにドレインリセット端子168が接続されている。さらに、スライストランジスタ150-1, 150-2, …のドレインは、水平アドレス回路13から供給される水平アドレスパルスにより駆動される水平選択トランジスタ12-1, 12-2, …を介して信号出力端15に接続されている。

このように第4実施例のCMOSセンサは第3図に示した第1実施例に対して、単位セルP1-i-jの構成は同じであるが、ノイズキャンセラの部分の構成が異なり、第4実施例のノイズキャンセラは、垂直信号線8-1,8-2,…に現れる電圧をスライストランジスタ150のゲート容量を介して電荷に変換し、電荷領域で引き算をすることにより雑音を抑圧することが特徴である。

次に、本実施例の駆動方法について説明する。図23は本実施例の動作を

示すタイミングチャートであり、図24はスライストランジスタ150-1, 150-2, …のポテンシャル図を示している。ここで、スライストランジ スタはpチャネル型とする。

まず、1行目の垂直アドレス線6-1にハイレベルの垂直アドレスパルスを印加すると、この行の単位セルの垂直選択トランジスタ66のみオンし、この行の増幅トランジスタ64と負荷トランジスタ9-1,9-2,…でソースフォロワ回路が構成される。

次いで、スライスリセット端子160にスライスリセットパルスを印加し、スライスリセットトランジスタ156-1, 156-2, …をオンし、スライス容量152-1, 152-2, …の電荷を初期化する。

さらに、スライスリセットトランジスタ156をオフする。この初期化の 前、または後にリセット線7-1にハイレベルのリセットパルスを印加する と、当該リセット線7-1に接続されている単位セルP1-1-1, P1-1-2, …のリセットトランジスタ66がオンとなり、出力回路68の入力 端子の電荷がリセットされる。このため、出力回路68からはフォトダイオ 15 ード62に信号電荷が無い時の増幅トランジスタ64の閾値バラツキに応じ た雑音成分が出力される。スライスパルス供給端子154に第1のスライス パルスSP1を印加する。これにより、信号が無い時のスライストランジス タ150のゲート下のチャンネル電位Voch を越えて、第1のスライス電荷 がドレインに転送される。このとき、ドレインリセット端子168にはドレ 20 インリセットパルスが印加され、ドレインリセットトランジスタ166はオ ンするので、ドレイン電位は蓄積ドレイン電源端子164の電圧V sdd に固 定されている。従って、第1のスライス電荷はドレインリセットトランジス タ166を通って蓄積ドレイン電源端子164へ排出される。

25 次いで、フォトダイオード選択線22-1にハイレベルの選択パルスを印加すると、出力回路68からはフォトダイオード62aの出力信号(信号電荷成分プラス雑音成分)が出力される。

次いで、スライスパルス供給端子154に第2のスライスパルスSP2を 印加する。これにより、信号電荷があるときの電圧がかかっているスライス

トランジスタ150のゲート下のチャンネル電位 V sch を越えて、第2のスライス電荷がドレインに転送される。このとき、ドレインリセットトランジスタ166はオフしているので、第2のスライス電荷はドレインに接続されているスライス電荷転送容量162に転送される。

5 次いで、水平アドレス回路13から水平選択パルスを水平選択トランジスタ12-1,12-2,…に順次印加し、水平信号線15から1ライン分の信号を順次取り出す。この動作を、次のライン、その次のラインと順次続けることにより、2次元状の全ての信号を読み出すことができる。

このデバイスでは、スライス容量152の値をCslとすると、最終的に水 10 平信号線15に読み出される電荷(第2のスライス電荷)は

 $C sl \times (V sch - V 0ch)$

となり、信号があるときとリセットされ信号がないときの差に比例する電荷が現れるため、単位セル内の増幅トランジスタ 6 4 の閾値ばらつきによる固定パターン雑音が抑圧されるという特徴がある。このように、垂直信号線 8 に現れる電圧を電荷に変換し、電荷領域で引き算をする回路構成もノイズキャンセラと呼ぶことができる。

この型のノイズキャンセラの方法は、例えば図3の第1の実施例とは異なる。第1の実施例では、クランプノード41では、電圧領域でノイズがなくなっており、電圧領域でノイズキャンセルをしている。一方、この型では、

20 スライストランジスタ150のソース端では、電圧領域ではノイズはキャンセルされていないが、第2のスライスパルスSP2が印加されたとき、はじめてノイズがキャンセルされた電荷がドレインに転送される。すなわち、電荷領域では、ノイズがキャンセルされている。

以上説明したように、第4実施例によれば、単位セルの出力をノイズキャ 25 ンセラを介して出力しているので、単位セルの増幅トランジスタの閾値バラ ツキに応じた固定パターン雑音を取り除くことができる。

さらに、単位セルの出力をスライストランジスタのゲート容量を介してノイズキャンセラに供給しているので、雑音出力時と信号プラス雑音出力時とで、単位セルから見たノイズキャンセラのインピーダンスがほぼ同一である

ため、両出力時で、雑音成分はほぼ同一となり、両者の差分をとると、正確に雑音出力を除去でき、信号成分のみ取り出すことが可能となり、正確にノイズをキャンセルすることができる。また、単位セルからノイズキャンセラを見ると、インピーダンス的にはゲート容量しか見えず、その容量は非常に小さいので、短時間に確実にノイズをキャンセルすることができる。

なお、第2のスライスパルスSP2は直前の第1のスライスパルスSP1の影響を受けることがある。そのため、第1及び第2のトランジスタの動作に対する第1、第2のスライスパルスの影響を同じにするために、第1のスライスパルスSP1の直前にダミースライスパルスを入れることが有効である。また、第1のスライスパルスと第2のスライスパルスの振幅が同じであると、微妙な電圧条件では、微小信号領域で信号電荷が読み出せなくなったり直線性が悪くなったりするので、第1のスライスパルスの振幅に比べ第2のスライスパルスの振幅を大きくし第2のスライスパルスで読み出す電荷にバイアス電荷をはかせる方が動作が安定する。さらに、第1のスライスパルスの幅を広くする方法も有力である。

第5実施例

図25は、本発明の第5実施例に係わる増幅型MOSセンサを用いた撮像装置の回路構成図である。単位セルP1-i-j付近の回路構成は第1実施例と同じである。

20 第5実施例は図3に示した第1実施例からインピーダンス変換回路を省略 した実施例である。

第6実施例

25

図26、図27は、本発明の第6実施例に係わる増幅型MOSセンサを用いた撮像装置の回路構成図である。単位セルP1-i-j付近の回路構成は第1実施例と同じである。

本実施例は図19に示した第2実施例と共通する部分が多いが、異なる点は、信号プラス雑音出力時と雑音出力時との単位セル側から見たノイズキャンセラのインピーダンスの違いを補正するための容量 C CMP 160-1, 160-2, …が、クランプ容量131より撮像領域(単位セル)側に、垂直

信号線8-1,8-2,…に対して並列に、スイッチ162-1,162-2,…を介して接続されていることである。補正容量160とスイッチ162は、図26の場合にはクランプ容量131と撮像領域の間に、また図27の場合には撮像領域と負荷トランジスタ9との間に接続されている。

5 図28は、本実施例における動作タイミングを示す。スイッチ162はクランプトランジスタ132によるクランプが終了し、垂直信号線に信号が出力されている期間にオン状態にする。パルスの位相では、サンプルホールドトランジスタ133-1,133-2,…の共通ゲート143に印加されるパルスの立ち下がり時に、スイッチングトランジスタ162-1,162-2,…の共通ゲート164がハイレベルにあることが必須である。また、フォトダイオード選択トランジスタ22-1(または24-1)が立ち上がる前にスイッチングトランジスタ162-1,162-2,…の共通ゲート164が立ち上がることが好ましい。ただし、その立ち上がりはクランプパルスの立ち下がりより後でなければならない。そうすると、サンプルホールド時に垂直信号線8に連なる容量は、サンプルホールド容量134をCSH、クランプ容量131をCCLとすると、次のようになる。

 $C = C CMP + C SH \cdot C CL / (C CL + C SH)$

補正容量 C CMP の大きさを、

2 { $C CL - C CL \cdot C SH / (C CL + C SH)$ } > C CMP > 0

20 の範囲で設定すると、補正容量が無い時に比べて、サンプルホールド時に垂 直信号線に連なる容量は、クランプ容量131の容量CCLの大きさに近づく。 そのため、差分VCLはより小さくなり、そのため雑音も小さくなる。

図29に垂直信号線8の電位とクランプノード145の電位の時間変化を示した。本実施例では、信号が0の暗時の場合のように垂直信号線8の電位25 がクランプ時に戻る電位とサンプルホールド時に戻る電位が同じ場合、サンプルホールド終了時点でのクランプノードの電位は、ΔVCLに近い値まで戻ることなく0になる。従って、暗時であり信号が0であるのにも拘らずΔVCLに相当する信号が現れてしまう等の不都合はない。このため、ΔVCLのばらつきに起因する雑音の発生を未然に防止することができる。

20

25

このように本実施例によれば、雑音除去回路付きMOS型固体撮像素子において、垂直信号線8に補正容量160を設けることにより、雑音が発生する原因であった雑音除去動作中の容量変化を抑制することができ、より一層の雑音低下に寄与することが可能となる。すなわち、セルから見たインピーダンスがフォトダイオード選択後の信号プラスノイズ出力時と、リセット終了後のノイズ出力時で同一になり、正確にノイズキャンセルができる。

なお、第6実施例の変形例として、図3に示した第1実施例、図21に示した第3実施例。図25に示した第5実施例のノイズキャンセラにおいて、補正用容量を接続してもよい。

10 第2実施例~第6実施例としては、第1実施例に対してノイズキャンセラ 回路部分が異なる実施例を説明したが、次に、第1~第6実施例に対して単 位セルの構成が異なる他の実施例を説明する。

第7実施例

全体の構成は図3に示した第1実施例と同じであるので、図示省略する。 15 ただし、図3の単位セルP1の代わりに図30に示した単位セルP2を用いることが特徴である。

本実施例の単位セルP2の特徴は、フォトダイオード62a, 62bが、 垂直方向ではなく、水平方向に隣合って配置されており、それぞれがフォト ダイオード選択トランジスタ63a, 63bを介してリセットトランジスタ 66のソースと、増幅トランジスタ64のゲートに接続され、1つの出力回 路68を共有していることである。

次に、図31のタイミングチャートを参照して、動作について説明する。 まず、水平プランキング期間において、先ず、垂直アドレス線6-1及び フォトダイオード選択線22-1をハイレベルにし、垂直選択トランジスタ 65及びフォトダイオード選択トランジスタ63aをオンにする。

この結果、フォトダイオード62aとほぼ同等の電圧が増幅トランジスタ 64のゲートに現れる。さらに、増幅トランジスタ64と負荷トランジスタ 9-1でソースフォロワが形成され、増幅トランジスタ64のゲート電圧と ほぼ等しい電圧が垂直信号線8-1に現れる。

次いで、垂直アドレスパルス6-1をロウレベルにし、垂直選択トランジスタ65をオフにする。この結果、ソースフォロワは動作しなくなるが、垂直信号線8-1の電位が直ちに変化することはなく、リセット前の増幅トランジスタ64のゲート電圧とほぼ等しい電圧が保たれる。

5 次いで、リセット線7-1をハイレベルにし、リセットトランジスタ66 をオンにし、増幅トランジスタ64のゲート及びフォトダイオード62aの 電位を初期化する。

また、水平アドレス回路13から水平アドレスパルスを水平選択トランジスタ12-1のゲートに印加し、水平信号線15から、フォトダイオード63aの信号を取り出す。

次に、同一の水平ブランキング期間内において、上述と同様な動作において、フォトダイオード選択トランジスタ63aの代わりにフォトダイオード 選択トランジスタ63bをオンする。この結果、水平信号線15から、フォトダイオード63bの信号を取り出す。

15 図示していないが、この水平ブランキング期間内において、同じ垂直アドレスの下で水平アドレスを順次変更して1行分の信号を順次取り出す。次の水平ブランキング期間内に次の垂直アドレスについて同様の動作を行い、順次、各行の信号を取り出す。

このように、本実施例に係るMOS型固体撮像装置によれば、第1実施例 20 の効果に加えて、ある1フレーム期間中には、垂直アドレス線がオン・オフ するのは、ある1つの水平期間だけであるので、垂直アドレス線の制御(垂直アドレス回路の構成)が簡単であるという利点がある。

第7実施例も第1実施例と同様にノイズキャンセラ部分を変形することができる。すなわち、図3~図29の説明は第7実施例にも等しく適用できる。

25 また、第7実施例の単位セルに含まれる水平方向に隣接するフォトダイオードの数も2つに限らず、3つ以上でも良い。図18に示すように、出力回路は垂直選択トランジスタの代わりに垂直選択容量を用いても良い。

第8実施例

図32は第8実施例に係るMOS型固体撮像装置の構成を示す。単位セル

P3-i-jが縦、横に2次元マトリクス状に配列されている。

図33は、図32に示した単位セルP3-1-1の構成を示す図である。 ここでは、単位セルP3-1-1の構成のみを示すが、他の単位セルP3-1-2、~についても同様の構成が採用されている。

5 同図に示すように、本実施例のMOS型固体撮像装置の単位セルは、4個のフォトダイオード62a~62d、4個のフォトダイオード選択トランジスタ63a~63d、1つの出力回路68から構成されている。4個のフォトダイオードは2行2列のマトリクス状に配置されている。

フォトダイオード $62a\sim62d$ は、それぞれ選択トランジスタ $63a\sim10$ 63dを介して共通の出力回路 68に接続されている。選択トランジスタ $63a\sim63d$ は垂直アドレス回路 5 から水平方向に配設されているフォトダイオード選択線 22-1, 24-1, 172-1, 174-1により独立してオンオフ制御される。

このように、4つのフォトダイオード62a~62dに対して共通の出力 15 回路64を接続して単位セルP1-1-1を構成することにより、従来のM OS型固体撮像装置の単位セルと比較して、三つの出力回路を省略することができる。

このように、本実施例に係るMOS型固体撮像装置によれば、第1実施例、第2実施例を組み合わせた効果を得ることができる。

20 第8実施例も第1実施例と同様にノイズキャンセラ部分を変形することができる。すなわち、図3〜図29の説明は第8実施例にも等しく適用できる。また、第8実施例の単位セルに含まれるフォトダイオードの数も2行2列に限らず、3つ以上のマトリクスでもよいし、正方形のマトリクスでなくても良い。図18に示すように、出力回路は垂直選択トランジスタの代わりに垂直選択容量を用いても良い。

本発明は上述した実施例に限定されず、種々変形して実施可能である。例えば、単位セルの増幅トランジスタを閾値バラツキがないように製造できれば、固定パターン雑音は発生しないので、ノイズキャンセラは省略することができる。あるいは、固定パターン雑音が発生しても、画質に影響が無けれ

ば、同じくノイズキャンセラは省略することができる。この場合は、図1のような回路が垂直信号線と出力端子15の間に接続される。

負荷トランジスタのゲートとソースは同一の電源ラインに接続されているが、別々の電源に接続してもよい。これにより、流れる電流を制御することができ、消費電力を下げることができる。

各実施例のノイズキャンセラにおいては、入力信号がないときに読み出す信号電流(雑音成分のみ)が小さい方が雑音が少ないので、蓄積ドレイン電源端子に印加されている電圧とビデオバイアス電圧とをほぼ等しくすることが好ましい。ビデオバイアス電圧とは、水平信号線15から信号を電流で読み出すときに水平信号線15がほぼ固定される電圧である。これを実現した変形例を図34に示す。出力信号線15にオペアンプ176が接続され、オペアンプ176の入出力端間に負荷抵抗178が接続される。これによると、信号電流が強制的に負荷抵抗178に流され、水平信号線15は仮想的にある電圧、すなわちビデオバイアス電圧に固定される。

15 さらに、単位セルは2次元マトリクス状に配列した実施例を説明したが、本発明は単位セルを1次元アレイ状に配列する撮像装置にも適用できることは言うまでもない。この場合、単位セル内のフォトダイオードの配列は単位セルの配列とは無関係に、垂直方向、水平方向、両方向にマトリクス状に配列することが可能である。

20

産業上の利用可能性

以上のように本発明によれば、微細化することが可能なMOS型固体撮像 装置が提供される。

20

請求の範囲

1. 配列されている多数の単位セルと、単位セルを選択する手段とを具備するMOS型固体撮像装置において、

前記単位セルは

5 複数の光電変換部と、

前記複数の光電変換部にそれぞれ接続され、いずれか1つの光電変換部の出力信号を選択する複数の選択手段と、

前記複数の選択手段により選択されたいずれか1つの光電変換部の出力信号が入力され、該出力信号を増幅して単位セルから出力する出力手段とを具備するMOS型固体撮像装置。

- 2. 前記複数の光電変換部は前記出力手段に対して並列に接続されている ことを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。
- 3. 前記複数の光電変換部と前記複数の選択手段は直列に接続されている ことを特徴とする請求の範囲第2項記載のMOS型固体撮像装置。
- 4. 前記単位セルは2次元マトリクス状に配列され、前記単位セル内の複数の光電変換部は垂直方向に配列されていることを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。
 - 5. 単位セルの行を選択するとともに、前記選択手段を制御する垂直選択 手段と、単位セルの列を選択する水平選択手段とをさらに具備することを特 徴とする請求の範囲第4項記載のMOS型固体撮像装置。
 - 6. 前記単位セルは2次元マトリクス状に配列され、前記単位セル内の複数の光電変換部は水平方向に配列されていることを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。
- 7. 単位セルの行を選択するとともに、前記選択手段を制御する垂直選択 25 手段と、単位セルの列を選択する水平選択手段とをさらに具備することを特 徴とする請求の範囲第6項記載のMOS型固体撮像装置。
 - 8. 前記単位セルは2次元マトリクス状に配列され、前記単位セル内の複数の光電変換部は2次元マトリクス状に配列されていることを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。

- 9. 単位セルの行を選択するとともに、前記選択手段を制御する垂直選択 手段と、単位セルの列を選択する水平選択手段とをさらに具備することを特 徴とする請求の範囲第8項記載のMOS型固体撮像装置。
- 10. 前記単位セルは1次元アレイ状に配列され、前記単位セル内の複数 の光電変換部はアレイと直交する方向に配列されていることを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。
 - 11. 前記単位セルは1次元アレイ状に配列され、前記単位セル内の複数の光電変換部はアレイに沿った方向に配列されていることを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。
- 10 12. 前記単位セルは1次元アレイ状に配列され、前記単位セル内の複数 の光電変換部はマトリクス状に配列されていることを特徴とする請求の範囲 第1項記載のMOS型固体撮像装置。
- 13. 前記単位セルは、前記複数の選択手段により選択されたいずれか1 つの光電変換部の出力信号を増幅する増幅トランジスタと、該光電変換部の 出力信号をリセットするリセットトランジスタと、前記増幅トランジスタを 選択する選択トランジスタからなることを特徴とする請求の範囲第1項記載 のMOS型固体撮像装置。
 - 14. 前記単位セルは、前記複数の選択手段により選択されたいずれか1つの光電変換部の出力信号を増幅する増幅トランジスタと、該光電変換部の出力信号をリセットするリセットトランジスタと、前記増幅トランジスタを選択する選択容量からなることを特徴とする請求の範囲第1項記載のMOS型固体撮像装置。
 - 15. 半導体基板に複数の単位セルが形成されたMOS型固体撮像装置に おいて、
- 25 前記半導体基板は、p-型不純物基体と、前記p-型不純物基体に形成されたp+型不純物層とからなり、

前記単位セルが前記p+型不純物層に形成されている。

16. 半導体基板に複数の単位セルが形成されたMOS型固体撮像装置に おいて、

20

前記半導体基板は、p-型不純物基体と、前記p-型不純物基体に形成されたp+型不純物層とからなり、

前記単位セルは

複数の光電変換部と、

5 前記複数の光電変換部にそれぞれ接続され、いずれか1つの光電変換部 の出力信号を選択する複数の選択手段と、

前記複数の選択手段により選択されたいずれか1つの光電変換部の出力信号が入力され、該出力信号を増幅して単位セルから出力する出力手段とを具備するMOS型固体撮像装置。

10 17.入射光に応じた電荷を発生する複数の光電変換部と、

前記複数の光電変換部が並列に接続され、いずれか1つの光電変換部から 発生された電荷に対応する電圧信号を出力する信号出力手段とを具備する複 数の単位セルが半導体基板の表面領域に形成されたMOS型固体撮像装置の 駆動方法において、

- 15 前記信号出力手段はテレビジョン信号の1フレーム期間内に前記電圧信号 を出力する動作を少なくとも2回以上行なうことを特徴とするMOS型固体 撮像装置の駆動方法。
 - 18.多数の単位セルの出力手段の増幅特性のバラツキを補償する手段を さらに具備することを特徴とする請求の範囲第1項記載のMOS型固体撮像 装置。
 - 19. 前記補償手段は前記単位セルの出力から雑音成分のみを減算するノイズキャンセラを具備することを特徴とする請求の範囲第18項記載のMOS型固体撮像装置。
- 20. 前記補償手段は前記単位セルの出力を表す電荷から雑音成分のみを 表す電荷を減算するノイズキャンセラを具備することを特徴とする請求の範 囲第18項記載のMOS型固体撮像装置。
 - 21. 前記補償手段は、前記単位セルの出力信号が供給されるソースフォロワ回路と、ソースフォロワ回路の出力信号がサンプルホールドトランジスタ、クランプ容量を介して供給されるサンプルホールド容量と、サンプルホ

10

20

25

ールド容量とクランプ容量との接続点に接続され、接続点をオン・オフするサンプルホールドトランジスタとを具備することを特徴とする請求の範囲第18項記載のMOS型固体撮像装置。

- - 23. 前記補償手段は、前記単位セルの出力信号がクランプ容量、サンプルホールドトランジスタを介して供給されるサンプルホールド容量と、クランプ容量とサンプルホールドトランジスタとの接続点に接続され、クランプ容量をオン・オフするクランプトランジスタとを具備することを特徴とする請求の範囲第18項記載のMOS型固体撮像装置。
 - 24. 前記補償手段は、クランプ容量のオン・オフ時のインピーダンスの差を小さくする補正手段を具備することを特徴とする請求の範囲第23項記載のMOS型固体撮像装置。
- 25. 前記補正手段は、クランプトランジスタのオフ時にクランプ容量を 15 増加するための補正容量を具備することを特徴とする請求の範囲第24項記 載のMOS型固体撮像装置。
 - 26. 前記補償手段は、前記単位セルの出力信号が供給されるソースフォロワ回路と、ソースフォロワ回路の出力信号がクランプ容量、サンプルホールドトランジスタを介して供給されるサンプルホールド容量と、クランプ容量とサンプルホールドトランジスタとの接続点に接続され、クランプ容量をオン・オフするクランプトランジスタとを具備することを特徴とする請求の範囲第18項記載のMOS型固体撮像装置。
 - 27. 前記補償手段は、前記単位セルの出力信号がゲートに供給されるスライストランジスタと、スライストランジスタのソースに接続されるスライス容量及びスライスリセットトランジスタと、スライストランジスタのドレインに接続されるスライス電荷転送容量及びドレインリセットトランジスタとを具備することを特徴とする請求の範囲第18項記載のMOS型固体撮像装置。
 - 28. 前記補償手段は、前記単位セルの出力信号がサンプルホールドトラ

ンジスタ、クランプ容量を介して供給されるサンプルホールド容量と、サンプルホールド容量とクランプ容量との接続点に接続され、接続点をオン・オフするサンプルホールドトランジスタとを具備することを特徴とする請求範囲第18項記載のMOS型固体撮像装置。

FIG. 1

FIG. 3

WO 97/07630 PCT/JP96/02281

FIG.4

FIG.5

FIG. 6

FIG. 7

<u>Ε</u>...α

FIG.9

FIG.11

FIG.12

FIG.13

FIG.14

FIG.15

FIG.16

FIG.17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG.24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

24/29

8の電位

クランプノード電位

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG.34

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/02281

	101/0190/02201	
A. CLASSIFICATION OF SUBJECT MATTER	•	
Int. Cl6 H04N5/335		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FTELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols)		
Int. Cl ⁶ H04N5/30-H04N5/335		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Jitsuyo Shinan Koho 1926 - 1996 Kokai Jitsuyo Shinan Koho 1971 - 1996		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, w	there appropriate, of the relevant passages Relevant to claim No.	
JP, 05-207376, A (Olympus Optical Co., Ltd.), August 13, 1993 (13. 08. 93) (Family: none) X Fig. 4 1 - 13		
A Fig. 4	14 - 28	
ļ		
·]	
Further documents are listed in the continuation of Box C. See patent family annex.		
Special categories of cited documents: "A" document defining the general state of the art which is not conto be of particular relevance.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E" carlier document but published on or after the international fill "L" document which may throw doubts on priority claim(s) or v	which is considered novel or cannot be considered to involve an inventive	
cited to establish the publication date of another citation of special reason (as specified) "O" document referring to an oral disclosure, use, exhibition of	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	
means "P" document published prior to the international filing date but is the priority date claimed	combined with one or more other such documents, such combination being obvious to a person skilled in the art ster than "&" document member of the same patent family	
October 2, 1996 (02. 10. 96	Date of mailing of the international search report October 15, 1996 (15, 10, 96)	
Name and mailing address of the ISA/	Authorized officer	
Japanese Patent Office		
Facsimile No.	Telephone No.	

国際出願番号 PCT/JP96/02281 国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. C1°H04N5/335 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1 HO4N5/30-HO4N5/335 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-1996年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP, 05-207376, A (オリンパス光学工業株式会社) 13.8月.1993 (13.08.93) (ファミリなし) 第4図 1 - 13Х 14 - 28第4図 □ C欄の続きにも文献が列挙されている。 | | パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願
- 「T」国際出願日又は優先日後に公妻された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 02.10.96	国際調査報告の発送日 15.10.96
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP)	特許庁審査官 (権限のある職員) 5 C 9374 馬場 清
郵便番号100 東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線3543