Muth 5600

6/5/14

- Recall
$$f(x) = \sum_{i=0}^{N} d_i b_i(x) = p(x)$$

The coefficients doington are chosen such that

$$\|f(x) - p(x)\|^2 = (f - p, f - p) = min$$

when (,) is an inner product with the properties:

$$(f,g) = (g,f)$$

 $(f+g,h) = (f,h) + (g,h)$
 $(f,f) > 0$

$$(f,f) = 0 \Rightarrow f = 0$$

$$(cf,g) = c(f,g)$$

- Example
$$(f,g) = \int_{u}^{b} w(x) f(x) g(x) dx$$

We get the linear system

$$[(b; 15;)][do] = [(f,5;)]_{i=0,...,n}$$

$$i,j=0,...,n$$

- It it; => (b; 15) = U the b; are orthogonal with respect to the given inner produced)
 - We can use the Gram-Schmidt Process to construct orthogonal basis vectors.
 - you may have seen it in tensors of ordinary vectors with (V, w) = v w = v.w
- We are given bossis functions

bo 1 b, 1 bz 1000

Ve want to construct a new sequence

- such that

$$(q_{i},q_{i}) = S_{ij} = \begin{cases} i & \text{if } i = i \\ o & \text{if } i \neq i \end{cases}$$

and

we stant with

$$q_o = \frac{b_o}{\|b_o\|}$$

Then, for k = 1,2, --

define
$$Z_{k} = b_{k} - \sum_{i=0}^{k-1} (b_{k}, q_{i}) q_{i}$$

$$q_k = \frac{z_k}{||z_k||}$$

This works since

$$(z_{k}, q_{j}) = (b_{k}, q_{j}) - \sum_{i=\nu}^{k-1} (b_{k}, q_{i})(q_{i}, q_{j})$$

= $(b_{k}, q_{j}) - (b_{k}, q_{i}) = 0$

$$b_k(x) = x^k$$
 $(f,g) = \int_0^x f(t)g(t) dx$

$$q_o(x) = \frac{1}{\sqrt{\dot{s}_{1:1} dt}}$$

$$Z_{i}(x) = x - \int_{0}^{x} t \cdot i \, dt = x - \frac{1}{2}$$

$$q_{1}(x) = \frac{x - 1/2}{\int_{0}^{1} (1 + 1/2)^{2} dt} = 2 \sqrt{37} (x - 1/2)$$

$$z_{2} = x^{2} - \int_{0}^{2} t^{2} \cdot 1 dt \cdot 1 - \int_{0}^{2} 2\sqrt{3} (t - 1/2) t^{2} dt \cdot 2\sqrt{3} (x - 1/2)$$

$$= x^{2} - x + 1/2$$

$$\eta_2 = \frac{x^2 - x + 1/6}{\left(\frac{1}{5}(t^2 - 1 + 1/6)^2 dt\right)^{1/2}} = 6 \cdot \sqrt{5} \left(\frac{x^2 - x + \frac{1}{6}}{6}\right)$$

The Gram-Schmidt process works for any inner product and any set of basis functions.

)- However, for the speciene case theret b; = x' and

 $(f,g) = \int_{\alpha}^{\beta} w(x) f(x) g(x) dx$ w(x) > 0

the resulting polynomials are usually normalised so that their beckering coefficient is 1. The brown-schmidt process simplifies to the "three-term recurrence relation";

 $Q_n = Q_n(x) = x^n + L.O.T$

Q = 1

Q = x-a,

Qn = (x-an) Qn-1 - bn Qn-2

 $a_{n} = \frac{(xQ_{n-1}, Q_{n-1})}{(Q_{n-1}, Q_{n-1})} \qquad b_{n} = \frac{(xQ_{n-1}, Q_{n-2})}{(Q_{n-2}, Q_{n-2})}$

- Note that for auditrary an and by this creates a sequence of polynomials with leading coefficient 1-

Also note that the denominators one

$$(f,g) = \int_{0}^{1} f(x)g(x)dx$$

Example Shifted Legendre

$$Q_{N} = (x - \alpha_{N}) Q_{N-1} - b_{N} Q_{N-2}$$

$$Q_{N} = \frac{(x Q_{N-1}, Q_{N-1})}{(Q_{N-1}, Q_{N-1})}$$

$$b_{N} = \frac{(x Q_{N-1}, Q_{N-1})}{(Q_{N-2}, Q_{N-2})}$$

$$Q_0 = 1$$
 $a_1 = \frac{\int f \, df}{\int 1 \, df} = 1/2$

$$Q_1 = x - a_1 = x - 1/2$$

$$a_2 = \frac{\int_0^1 t (t - 1/2)^2 dt}{\int_0^1 (t - 1/2)^2 dt} = \frac{1}{2} \quad (not \quad 0)$$

$$b_2 = \frac{\int_0^1 t(t-1/2) dt}{\int_0^1 t^2 dt} = \frac{1}{12}$$

$$Q_{2} = (x - \frac{1}{2})(x - \frac{1}{2}) - \frac{1}{12}$$

$$= x^{2} - x + \frac{1}{4} - \frac{1}{12}$$

$$= x^{2} - x + \frac{1}{6} \quad \text{as with Garason-Schmidt}$$

Proof by induction

$$(a_{i}, a_{o}) = (x - (x_{i}, 1), y - (x_{i}) - (x_{i}) = 0$$

suppose Qo, Q, ..., Qu-, are orthogonal, and KLH $(Q_{i}, Q_{o}) = \left(x - \frac{(x_{i}, l)}{(l_{i}, l)}, l\right) - (x_{i}) - \frac{(x_{i})(l_{i}, l)}{(l_{i}, l)} = 0$

$$\left(Q_{n}, Q_{k}\right) = \left(\left(x - \frac{\left(x Q_{n-1}, Q_{n-1}\right)}{\left(Q_{n-1}, Q_{n-1}\right)}\right) Q_{n-1} - \frac{\left(x Q_{n-1}, Q_{n-2}\right)}{\left(Q_{n-2}, Q_{n-1}\right)} Q_{n-2}, Q_{k}\right)$$

$$= (\times Q_{n-1} | Q_{n}) - (\times Q_{n-1} | Q_{n-1}) (Q_{n-1} | Q_{n}) - (\times Q_{n-1} | Q_{n-2}) (Q_{n-2} | Q_{n})$$

Three cases:

	1				22.2. Orthogonality Relations	ality Relations		
),(Z)	Name of Polynomial	e	q	w(z)	Standardization	19	
22.2.1	$P_{x}^{(r,\theta)}(z)$	Jacobi	7		$(1-x)^{\alpha}(1+x)^{\beta}$	Pie.0) (1) = (1+1)	20+8+1	Kemarks
22.2.2	G.(p, q, z)	Jacohi	0	1	(1-3) 0-620-1	, , , , , , , , , , , , , , , , , , ,	$2n+\alpha+\beta+1 \qquad n!\Gamma(n+\alpha+\beta+1)$ $n!\Gamma(n+\beta)\Gamma(n+\beta)\Gamma(n+\beta-\alpha+1)$	a>-1, 8>-
22.2.3	(£) (£)	Ultraspherical (Gogenbauer)	ī	pre	(1-z²)=-i	رية (۱)	$\frac{(2n+p) \ln(2n+p)}{\pi^{21-2n}(n+2a)}$	√ 6 - 1 - √ 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
						$=\binom{n+2n-1}{n}$ $(a\neq 0)$		
						$G_n^{(1)}(1) = \frac{2}{n}$ $G_n^{(4)}(1) = 1$	$\frac{2\pi}{n^3} \alpha = 0$	
22.2.4	7.,(c)	Chebysher of the first kind	ī		(1-2:3)-4	$T_{\alpha}(1)=1$	#162 A #	
22.2.5	(F, (z)	Chebyshev of the second kind	ī	_	$\{(1-x^2)\}$	$U_n(1) = n + 1$	T name O	
22.2.6	.X. (E)	Chebyshev of the first kind	13	¢3	$\frac{1}{1-\left(\frac{k^2}{4}\right)^{-\frac{1}{2}}}$	$S_n(2) = n+1$	0 m n ap	8
22.2.7	(J*(Z)	Chebyshev of the second kind	8)	C3	$\left(\frac{1-\frac{1}{2}}{4}-1\right)$	C _n (2) = 2	8s n=0 4s	
22.2.8	T* (3)	Shifted Chebyshow	0		(x-x)-i	$T_n^{\bullet}(i) = i$) Je u	
25.2.9	(1,*(x)	Shifted Chebyshev of the second kind	9	<i></i>	(x-x ³) i	?**(!) = n+1	i + 10	
22.2.10	P _n (x)	Lagendre (Spherical)	ī	~		$P_n(1) = 1$	c3	
22.2.11	P. (z)	Shifted Legendre	0			•	2n+1	
*See page 11.	Ro 11.	·	-	-			2n+1	

22.2.
Orthogonality
Relations-Continued

	•			# - O			
	$f_n(x)$	2	d,	# _D	g = (z)	k.,	Remarks
22.3.1	$P_n^{(a,\beta)}(x)$	*	2012	$\binom{n+\alpha}{m}\binom{n+\beta}{n-m}$	$(x-1)^{n-m}(x+1)^{m}$	$\frac{1}{2^n} \binom{2n+a+\beta}{n}$	a>-1, β>-1
22.3.2	P(ab)(x)	*	$\frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)}$	$\binom{n}{m} \frac{\Gamma(\alpha+\beta+n+m+1)}{2^{m}\Gamma(\alpha+m+1)}$	(z - 1) m	$\frac{1}{2^n}\binom{2n+\alpha+\beta}{n}$	u>−1, β>−1
22.3.3	$G_n(p, q, x)$	*	$\frac{\Gamma(q+n)}{\Gamma(p+2n)}$	$(-1)^m \binom{n}{m} \frac{\Gamma(p+2n-m)}{\Gamma(q+n-m)}$	t;	u	p-q>-1, q>0
22.3.4	C'(4) (2)	2017	1'(a)	$(-1)^n \frac{1!(\alpha+n-n!)}{m!(n-2m)!}$	(2z) 4-9m	$\frac{2^n}{n!} \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$	a> -1, a 140
22.3.5	C'm(x)	ພາສ	P	$(-1) = \frac{(n-m-1)!}{m!(n-2m)!}$	(22) n-i=	2 11 11 11 10	n ≠ 0, C'en(1) == 1
22.3.6	$T_n(x)$	212	ria	$(-1)^m \frac{(n-m-1)!}{m!(n-2m)!}$	(2x) n-2m	2	
22.3.7	U , (x)	2012	6.4	$(-1)=\frac{(n-m)!}{m!(n-2m)!}$	(2z) a-1a	2,	
22.3.8	P, (x)	212	23/-	$(-1)^n \binom{n}{m} \binom{2n-2m}{n}$	H 2 1 2 1	(2n)! 2n(n!)?	
22.3.9	L(a)(x)	2		$\frac{1}{ m } {m-n \choose n+\alpha} \frac{1}{ m }$	¥;	(-1),n	a>
22.3.10	$H_n(x)$	2017	24.	$(-1)^n \frac{1}{m!(n-2m)!}$	(22) n-3m	K.	SUP 22.11
22.3.11	He _n (x)	2012	n!	$(-1)^n \frac{1}{n!2^n(n-2m)!}$	H 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

22.2.15	22.2.14	22.2.13	22.2.12
He _a (x)	$H_n(x)$	$L_n(x)$	$L_n^{(a)}(x)$
Hermito	Hermite	Laguerre	Generalized Laguerre
i B	 8	0	c
8	8	8	8
65 Hg	6- 12	6.7	637e
<i>a</i> , ■ (−1),	a, = (-1)*	$k_{n}=\frac{(-1)^{n}}{n!}$	$k_n = \frac{(-1)^n}{n!}$
√2eni	V#2*#!	-	$\frac{\Gamma(n+n+1)}{n!}$
 	•		

22.3. Explicit Expressions

7	
p == (x)	
M	>
c_#_(
H	

	-							
	√2ml	Ø, E (-1) 1	e 193	8	l B	Hermite	$He_{\mathbf{q}}(x)$	
	V=2"n!	a,=(-1).	9,	8	1	Hermite	$H_n(x)$	•
	_	$k_{\parallel} = \frac{(-1)^n}{n!}$	e 4	8	0	Laguerre	$L_n(x)$	
(I-1)	$\frac{\Gamma(\alpha+n+1)}{n!}$	$k_n = \frac{(-1)^n}{n!}$	8 C-13	8	0	Generalized Laguerre	$L_n^{(a)}(x)$	