Instrumente Inteligente pentru Bunăstare Socială (Intelligent Tools for Social Good - ITSG)

Tema 2

Laura Dioşan

Vom vorbi despre...

■ Rezolvarea de probleme – ca orice curs de informatică

Tehnici pentru rezolvarea problemelor dificile (hard-problems)

Tehnici pentru rezolvarea problemelor dificile (hard-problems)

- Pentru om, dar şi pentru calculator probleme dificile computațional (spațiu de căutare imens)
 - Exemple:
 - Probleme combinatoriale
 - Probleme de optimizare
- Pentru calculator (pentru oameni fiind relativ simple)
 - ill-posed problems
 - Nu pot fi formalizate foarte ușor
 - Există doar câteva exemple complete și multe incomplete sau incosistente
 - Exemple:
 - Recunoașterea caracterelor
 - Recunoașterea vorbirii

Tehnici pentru rezolvarea problemelor dificile (hard-problems)

□ Ill-posed problems

- Metodele de rezolvare trebuie să poată
 - Extrage modele din exemple (să învețe)
 - Lucra în medii dinamice (să se (auto)adapteze)
 - Lucra cu date cu zgomot, incomplete sau incosistente (să fie robuste)
 - Furniza un rezultat înt-un timp rezonabil (să fie eficiente)

Probleme de optimizare

Identificarea unuia sau mai multor elemente într-un spațiu de căutare care optimizează (min sau max) unul sau mai multe obiective și satisfac una sau mai multe cosntrângeri

Provocări

- Spaţiul de căutare
 - Mare
 - Constrângeri complexe
 - Discret (probleme combinatoriale de planificare, alocare sau seleţie) sau continu (estimări de parametri, minimizarea energiei, etc.)
- Funcțiile obiectiv
 - Black-box
 - Multi-modale
 - Cu zgomot
 - Multi-objectiv

Probleme de optimizare

- Tehnici de rezolvare
 - Deterministe
 - Metode convexe de optimizare (https://web.stanford.edu/~boyd/cvxbook/)
 - Metode de gradient
 - Metoda lui Newton
 - Metoda punctului interior
 - Non-deterministe (probabilistice)
 - Monte Carlo simulations
 - Metaeuristici
 - Schema de căutare bazate pe
 - Traiectorie
 - Populaţii
 - Zona de căutare
 - Locale
 - Globale
 - Metafora de la baza lor
 - Biologică (EAs)
 - Interacțiune socială (PSO, ACO)
 - Fizică (HC, SA, TS)

Referințe utile

- S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004, https://web.stanford.edu/~boyd/cvxbook/
- S. P. Bradley, A. C. Hax, T. L. Magnanti, *Applied Mathematical Programming*, Addison-Wesley, 1977 http://web.mit.edu/15.053/www/AMP.htm
- S. Luke: Essentials of Metaheuristics, Lulu, second edition, 2013, http://cs.gmu.edu/~sean/book/metaheuristics
- Z. Michalewicz, D. Fogel: How to Solve It. Modern Heuristics. Springer, 1999 https://paginas.fe.up.pt/~mac/ensino/docs/OR/HowToSolveIt/Chapters_1-6_How_to_Solve_It_Modern_Heuristics.pdf
- □ J. Brownlee: Clever Algorithms. Nature-inspired Programming Recipes, 2011, http://www.CleverAlgorithms.com