(19)

Russian Agency for Patents and Trademarks

(11) Publication number: RU 2105128 C1

(46) Date of publication: 19980220

(21) Application number: 95120663

(22) Date of filing: 19951201

(51) Int. Cl: E21B29/00

(71) Applicant: Aktsionernoe obshchestvo otkrytogo tipa "Sibirskij nauchno-issledovatel'skij institut neftjanoj promyshlennosti"

(72) Inventor: Kolotov A.V., Ogorodnova A.B., Sukhinin N.P., Kolotov A.V., Ogorodnova A.B., Sukhinin N.P.

(73)Proprietor: Aktsionernoe obshchestvo otkrytogo tipa "Sibirskij nauchno-issledovatel'skij institut nefljanoj promyshlennosti"

(54) METHOD FOR RESTORING TIGHTNESS OF CASING STRINGS

(57) Abstract:

FIELD: oil and gas production industry. SUBSTANCE: this relates to repair and maintenance of casing strings and improving its efficiency. According to method, zone of disturbed tightness of casing string is covered from inside of casing string by patch made of deformable pipe produced from thermoplastic material, for example polyethylene. Excess pressure is created due to expansion of self-heating and self-expanding material such as limestone mixture for mining and drilling operations. Pipe produced of thermoplastic material is filled with this mixture before covering zone of disturbed tightness of casing string. EFFECT: higher efficiency. 2 cl.

(21) Application number: 95120663

(22) Date of filing: 19951201

(51) Int. Cl: E21B29/00

(56) References cited:

1. Блажевич В.А. и др. Справочник мастера по капитальному ремонту скважин. - М.: Недра, 1985, с. 163. 2. SU, авторское свидетельство, 1601130, ил. Е 21 В 29/10, 1990.

(71) Applicant: Акционерное общество открытого типа "Сибирский научно-исследовательский институт нефтяной промышленности"

(72) Inventor: Колотов А.В., Огороднова А.Б., Сухинин Н.П., Колотов А.В., Огороднова А.Б., Сухинин Н.П.,

(73) Proprietor: Акционерное общество открытого типа "Сибирский научно-исследовательский институт нефтяной промышленности"

(54) СПОСОБ ВОССТАНОВЛЕНИЯ ГЕРМЕТИЧНОСТИ ОБСАДНЫХ КОЛОНН

(57) Abstract:

Изобретение относится к области ремонтно-изоляционных работ и направлено на повышение эффективности. Суть изобретения: способ заключается в перекрытии зоны негерметичности обсадной колонны изнутри пластырем из деформируемой трубы, изготовленной из термопластичного материала, например полиэтилена, а избыточное давление создают за счет расширения саморазогревающегося и саморасширяющегося материала, например, СИГБ - смеси известковой для горных и буровых работ, которым заполняют трубу из термопластичного материала перед перекрытием зоны негерметичности обсадной колонны. 2 з.п. ф-лы. 1 табл.

Description [Описание изобретения]:

Изобретение относится к области ремонтно-изоляционных работ (РИР), а именно к способам восстановления герметичности обсадных колонн.

Известен способ восстановления герметичности обсадных колонн, включающий спуск колонны насосно-компрессорных труб (НКТ) ниже интервала нарушения обсадной колонны, закачивание тампонирующего раствора в НКТ при открытом затрубном пространстве, подъем НКТ выше расчетного уровня тампонирующего раствора в скважине, продавливание тампонирующего раствора за обсадную колонну при закрытом затрубном пространстве [1].

Недостатки аналога заключаются в том, что, во-первых, продавка тампонирующего раствора в заколонное пространство возможна только под высоким избыточным давлением, что небезопасно для целостности остальной части обсадной колонны, во-вторых из-за усадочности тампонирующих материалов результативность операций не превышает 50%.

Наиболее близким к изобретению по технической сущности является способ установки пластыря в интервале негереметичности обсадной колонны путем перекрытия зоны негерметичности изнутри пластырем из металлической трубы с последующим ее расширением за счет создания избыточного павления [2].

Недостаток известного способа заключается в том, что пластырь выполнен из металла, а это не позволяет материал пластыря задавливать в свищ или трещину в обсадной колонне.

Задача заключается в повышении эффективности ремонтно-изолящионных работ при одновременном снижении трудозатрат.

Поставленная задача достигается тем, что в способе, включающем перекрытие зоны негерметичности обсадных колони изнутри пластырем, выполненным в виде деформируемой трубы, расширение пластыря по всей длине путем создания избыточного давления, в качестве деформируемой трубы используют трубу из термопластичного материала, а избыточное давление создают за счет расширения саморазогревающегося и расширяющегося материала, которым заполняют трубу из термопластичного материала перед перекрытием зоны негерметичности обсадной колонны. В качестве термопластичного материала используют полиэтилен, а в качестве саморазогревающегося и саморасширяющегося материала используют СИГБ - смесь известковую для горных и буровых работ.

СИГБ применяют, гланным образом, при разрушении прочных хрупких материалов (скальные породы), бетонных и железобетонных изделий, каменных кладок, для добычи природного камия. Он представляет собой порошкообразный негорючий и невзрывоопасный материал, дающий с водой щелочную реакцию (рН 12). При смешивании порошка СИГБ с водой образуется суспензия (рабочая смесь), которая, будучи залита в шпур, сделанный в объекте, подлежащем разрушению, с течением времени скватывается, твердеет, одновременно увеличиваясь в объеме. Увеличение объема - следствие гидратации компонентов, входящих в состав СИГБ, приводит к развитию в шпуре гидратационного давления (более 40 МПа). Под действием гидратационного давления в теле объекта развиваются напряжения, приводящие к его разрушению [3].

Если суспензию СИГБ залить в трубу из термопластичного материала, то есть из материала, размягчающегося при нагревании, загерметизировать конщы, то через 1,5 ч начнется реакция с выделением тепла и распирением СИГБ. Тепла выделяется достаточно, чтобы разогреть трубу до 110-120°С, а это выше температуры, при которой, например, полиэтилен размягчается и проявляет извышенную текучесть. Труба увеличивается диаметре без разрушения, и в случае ее предварительного слуска в скважину в эону негерметичности обсадной колонны с натягом прижимается к обсадной колонне, термопластичный материал проникает в свящ или трещину и после окончания реакции и нормализации температуры затвердевает и обеспечивает надежную изоляцию повреждений в обсадной колонне.

Пример реализации. Предположим, что на глубине 400 м эксплуатационная колонна диаметром 146 мм с толщиной стенок 8 мм имеет трещину шириной 2 мм и длиной 2 м.

Берут полизтиленовую трубу длиной 4 м с наружным дваметром на 2 мм меньше внутреннего диаметра обсадной колонны в интервале негерметичности (т.е. 128 мм) и толщиной стенок 6 - 8 мм. Заглушают нижний конец труб. Готовят суспензию СИГБ, для чего берут 100 кг порошка и 30 л технической воды. Суспензию заливают в полиэтиленовую трубу. Герметизируют верхний конец труб и на колонне НКТ или тросике трубу спускают в зону негерметичности обсадной колонны.

Через 1,5 ч начинается реакция и происходит разогрев и раздувание полиэтиленовой трубы вплоть для соприкосновения со стенками обсадной колонны. Более того, поскольку материал трубы размилчен, он проникает и в трещину, таким образом дополнительно ее герметизирует.

После окончания реакции, которая протекает 0,5 - 1,0 ч. скважину оставляют в покое на 4 - 5 ч для восстановления температуры и затвердевания полиэтиленовой трубы. Затем колонну НКТ или тросик, на которых пластырь был спущен в скважину, поднимают на поверхность. В скважину спускают колонну бурильных труб с малогабаритным турбобуром, долотом или фрезой и разбуривают герметизирующие узлы и содержимое полиэтиленовой трубы. Колонну бурильных труб поднимают. Производят опрессовку обсадной колонны согласно действующим инструкциям.

Преимущества предлагаемого способа основываются на том, что повреждение в обсадной колонне изолируется более надежно за счет проникновения материала пластыря в свищ или трещину. К тому же пластырь из синтетического материала долговечнее, так как не подвержен коррозии.

Источники информации: 1. Блаженич В.А., Уметбаев В.Г. Справочник мастера по капитальному ремонту скважин. М., Недра, 1985, с.163.

- 2. Авторское свидетельство N 1601330, СССР, кл. E 21 B 29/10, 1990 прототип.
- 3. Инструкция по применению смеси известковой для горных и буровых работ (СИГБ). Изд. АО "Стройматериалы", 7 с.

Claims [Формула изобретения]:

- 1. Способ восстановления герметичности обсадных колони, включающий перекрытие зоны негерметичности изнутри пластырем, выполненным в виде деформируемой трубы, и расширение пластыря по всей длине путем создания избыточного давления, отличающийся тем, что в качестве деформируемой трубы используют трубу из термопластичного материала, а избыточное давление создают за счет расширения саморазогревающегося и саморасширяющегося материала, которым заполняют трубу из термопластичного материала перед перекрытием зоны негерметичности обсадной колонны.
- 2. Способ по п.1, отличающийся тем, что в качестве термопластичного материала вспользуют полиэтилен.
- 3. Способ по mi.1 и 2, отличающийся тем, что в качестве саморазогревающегося и саморасширяющегося материала используют СИГБ смесь известжовую для горных и буровых работ.

Drawing(s) [Чертежи]:

Характеристика СИГБ

Характеристика	Значение
1. Водо-смесевое отношение суспензии	0,3
2. Расход порошка на 1 м ³ объема, т	1,8
3. Растекаемость по конусу АзНИИ, см	20.0
4. Плотность суспензии, г/см	1,8
5. Время начала реакции гидратации при	•
температуре 20-25°С, мин	около 90
6. Температура саморазогревания, °С	более 100
7. Сцепление камня с трубой, МПа	5.0
8. Сопротивление камня фильтрации воды, МПа	более 60,0
9. Давление при расширении, МПа	до 45,0