40

Soit la suite (u_n) définie sur \mathbb{N} par : $u_n = 2n + 1$.

- 1. Exprimer u_{n+1} en fonction de n.
- 2. Exprimer $u_{n+1} u_n$ en fonction de n.
- 3. Déterminer le signe de $u_{n+1} u_n$.
- 4. En déduire le sens de variation de la suite (u_n) .

41

Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = 3n + 4$.

- 1. Exprimer v_{n+1} en fonction de n.
- 2. Exprimer $v_{n+1} v_n$ en fonction de n.
- 3. Déterminer le signe de $v_{n+1} v_n$.
- 4. En déduire le sens de variation de la suite (v_n) .

42

Soit la suite (w_n) définie sur \mathbb{N} par : $w_n = -5n+3$.

- 1. Exprimer w_{n+1} en fonction de n.
- 2. Exprimer $w_{n+1} w_n$ en fonction de n.
- 3. Déterminer le signe de $w_{n+1} w_n$.
- 4. En déduire le sens de variation de la suite (w_n) .

43

Soit la suite (x_n) définie sur \mathbb{N} par : $x_n = -4n + 2$. Donner le sens de variation de la suite (x_n) .

44

Soit la suite (y_n) définie sur \mathbb{N} par : $y_n = n^2$. Donner le sens de variation de la suite (y_n) .

45

Soit la suite (z_n) définie sur $\mathbb N$ par : $z_n = \frac{n}{n+1}$. Donner le sens de variation de la suite (z_n) .

46

Soit la suite (u_n) définie sur $\mathbb N$ par : $u_n = \frac{3n+1}{n}$. Donner son sens de variation.

47

Soit la suite (v_n) définie sur $\mathbb N$ par : $v_n=4^n$ et la suite (w_n) définie sur $\mathbb N$ par : $w_n=(-4)^n$.

- 1. Donner le sens de variation de la suite (v_n) .
- 2. Calculer ses cinq premiers termes de la suite (w_n) . Que peut-on en déduire sur son sens de variation?

48

Soit la suite (a_n) définie pour tout entier naturel n par : $a_n = 3n - 2$. La suite (a_n) est :

- (a) croissante
- (b) décroissante
- (c) constante

49

Soit la suite (b_n) définie pour tout entier naturel n par : $b_n = 4 - 2n$. La suite (b_n) est :

- (a) croissante
- (b) décroissante
- (c) constante

50

On considére la suite (u_n) définie par $u_0=5$ et, pour tout entier naturel n, par $u_{n+1}=u_n+7$. Étudier le sens de variation de la suite (u_n) .

51

Soit la suite (v_n) définie par $v_0=1$ et, pour tout entier naturel n, par $v_{n+1}=\frac{1}{v_n+5}$. Étudier le sens de variation de la suite (v_n) .

Suites définies de façon explicite

52

Calculer les quatre premiers termes de chacune des suites ci-dessous définies sur N.

- 1. $a_n = 3n^2 n + 5$.
- 2. $b_n = \sqrt{n+9}$
- 3. $c_p = p^3 + 2p^2 5$.
- 4. $e_n = 5 + 2^n$.
- 5. $b_n = \frac{2n+4}{n+1}$.
- 6. $c_n = 6n \frac{2}{n+3}$.

53

On considère la suite (u_n) définie pour tout $n\in\mathbb{N}$ par $u_n=2^n-1$. Calculer les cinq premiers termes de la suite (u_n)

54

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = 4n + 1$. Calculer v_0 , v_1 et v_5

55

Soit (w_n) la suite définie pour tout $n \in \mathbb{N}$ par $w_n = -3n + 2$. Calculer w_0 , w_1 et w_3

56

Soit (x_n) la suite définie pour tout $n \in \mathbb{N}$ par $x_n = \frac{n+1}{2n-3}$. Calculer x_0 et x_{10} .

57

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 2n + 3$. Calculer u_0 , u_1 et u_2 et représenterles graphiquement.

58

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = n^2$. Calculer v_0 , v_1 et v_3 et représenter-les graphiquement.

59

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 2n-1$. Exprimer u_{n+1}, u_{n-1}, u_{2n} et u_n+1 en fonction de n.

60

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 + 1$. Exprimer u_{n+1}, u_{n-1}, u_{2n} et $u_n + 1$ en fonction de n.

61

Dans chaque cas, déterminer pour quelle(s) valeur(s) de n, u_n prend la valeur 5.

1. (u_n) définie pour tout $n \in \mathbb{N}$ par :

$$u_n = -2n + 21$$

2. (u_n) définie pour tout $n \in \mathbb{N}$ par :

$$u_n = \frac{n+26}{n+2}$$

Suites définies par récurrence

62

Parmi les suites suivantes, lesquelles sont définies par récurrence?

- $u_n = 4n + 5$
- $v_{n+1} = 7v_n + 5$
- $w_n = w_{n-1} 3$
- $x_n = n^3 + 7$
- $y_{n+2} = y_{n+1}^2$
- $z_n = n$

63

On considère la suite (u_n) définie par $u_0=3$ et, pour tout $n \in \mathbb{N}$, $u_{n+1}=u_n+1$. Calculer u_1 et u_2 .

64

On considère la suite (v_n) définie par $v_0 = -2$ et, pour tout $n \in \mathbb{N}$, $v_{n+1} = 5v_n$. Calculer v_1 à v_4 .

65

Pour chaque suite définie ci-dessous, calculer les quatre premiers termes.

- 1. $a_0 = 5$ et pour tout $n \in \mathbb{N}$, $a_{n+1} = a_n 3$.
- 2. $b_0 = 7$ et pour tout $n \in \mathbb{N}$, $b_{n+1} = 2b_n 1$.
- 3. $c_0 = 2$ et pour tout $n \in \mathbb{N}$, $c_{n+1} = c_n^2 + 2$.
- 4. $d_0=1$ et pour tout $n\in\mathbb{N},\ d_{n+1}=d_n\times 4$.
- 5. $e_0 = 3$ et pour tout $n \in \mathbb{N}$, $f_{n+1} = \frac{1}{f_n}$.
- 6. $f_0 = 4$ et pour tout $n \in \mathbb{N}, e_{n+1} = \sqrt{e_n + 2}$.
- 7. $g_0 = -2$ et pour tout $n \in \mathbb{N}$, $g_{n+1} = g_n^2 + g_n$.
- 8. $h_1=2$ et pour tout $n\in\mathbb{N}^*, h_{n+1}=rac{h_n-3}{h_n+1}.$

66

On considère la suite (u_n) définie par $u_2=-3$ et, pour tout entier naturel $n\geqslant 2, u_{n+1}=u_n^2-6$ Déterminer la valeur des quatre premiers termes de la suite.

67

Pour chaque suite ci-dessous, calculer leurs quatre premiers termes.