Ala Vectors and Matrices: Example Sheet 1

Michaelmas 2016

A* denotes a question, or part of a question, that should not be done at the expense of questions on later sheets. Starred questions are **not** necessarily harder than unstarred questions.

Corrections and suggestions should be emailed to N.Peake@damtp.cam.ac.uk.

1. Let S be the interior of the circle |z-1-i|=1. Show, by using suitable inequalities for $|z_1\pm z_2|$, that if $z\in S$ then

$$\sqrt{5} - 1 < |z - 3| < \sqrt{5} + 1.$$

Obtain the same result geometrically by considering the line containing the centre of the circle and the point 3.

2. Given |z| = 1 and $\arg z = \theta$, find both algebraically and geometrically the modulus-argument forms

(i)
$$1+z$$
, (ii) $1-z$.

Show that the locus of w as z varies with |z| = 1, where w is given by

$$w^2 = \left(\frac{1-z}{1+z}\right) \,,$$

is a pair of straight lines.

3. Use complex numbers to show that the medians of a triangle are concurrent.

Hint: represent the vertices of the triangle by complex numbers z_1 , z_2 and z_3 (or 0, z_1 and z_2 if you prefer), then write down equations for two of the medians and find their intersection.

*4. Express

$$I = \frac{z^5 - 1}{z - 1}$$

as a polynomial in z. By considering the complex fifth root of unity ω , obtain the four factors of I linear in z. Hence write I as the product of two real quadratic factors. By considering the term in z^2 in the identity so obtained for I, show that

$$4\cos\frac{\pi}{5}\,\sin\frac{\pi}{10} = 1\ .$$

- 5. Show the equation $\sin z = 2$ has infinitely many solutions.
- 6. (a) Let $z, a, b \in \mathbb{C}$ $(a \neq b)$ correspond to the points P, A, B of the Argand plane. Let C_{λ} be the locus of P defined by

$$PA/PB = \lambda$$
,

where λ is a fixed real positive constant. Show that C_{λ} is a circle, unless $\lambda = 1$, and find its centre and radius. What if $\lambda = 1$?

*(b) For the case a = -b = p, $p \in \mathbb{R}$, and for each fixed $\mu \in \mathbb{R}$, show that the curve

$$S_{\mu} = \left\{z \in \mathbb{C} : |z - i\mu| = \sqrt{p^2 + \mu^2}\right\}$$

is a circle passing through A and B with its centre on the perpendicular bisector of AB. Show that the circles C_{λ} and S_{μ} are orthogonal for all λ, μ .

7. Show by vector methods that the altitudes of a triangle are concurrent.

Hint: let the altitudes AD, BE of $\triangle ABC$ meet at H, and show that CH is perpendicular to AB.

8. Given that vectors \mathbf{x} and \mathbf{y} satisfy

$$\mathbf{x} + \mathbf{y}(\mathbf{x} \cdot \mathbf{y}) = \mathbf{a}$$
,

for fixed vector a, show that

$$(\mathbf{x} \cdot \mathbf{y})^2 = \frac{|\mathbf{a}|^2 - |\mathbf{x}|^2}{2 + |\mathbf{y}|^2}.$$

Deduce using the Schwarz inequality (or otherwise) that

$$|\mathbf{x}|(1+|\mathbf{y}|^2) \geqslant |\mathbf{a}| \geqslant |\mathbf{x}|$$
.

Explain the circumstances under which either of the inequalities can be replaced by equalities, and describe the relation between \mathbf{x} , \mathbf{y} and \mathbf{a} in these circumstances.

9. (a) In $\triangle ABC$, let \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} be denoted by \mathbf{u} , \mathbf{v} and \mathbf{w} . Show that

$$\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{u}, \tag{*}$$

and hence obtain the sine rule for $\triangle ABC$.

(b) Given any three vectors **p**, **q**, **r** such that

$$\mathbf{p} \times \mathbf{q} = \mathbf{q} \times \mathbf{r} = \mathbf{r} \times \mathbf{p} \,, \tag{\dagger}$$

with $|\mathbf{p} \times \mathbf{q}| \neq 0$, show that

$$\mathbf{p} + \mathbf{q} + \mathbf{r} = \mathbf{0}$$
.

10. (a) Using the identity $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$, deduce that

(i)
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}),$$

(ii)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$$
.

Relate the case $\mathbf{c} = \mathbf{a}$, $\mathbf{d} = \mathbf{b}$ of (i) to a well-known trigonometric identity.

Evaluate $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d})$ in two distinct ways and use the result to display explicitly a linear dependence relation amongst the four vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} .

(b) Given $[\mathbf{a}, \mathbf{b}, \mathbf{c}] \equiv \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$, show that

$$[\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}] = [\mathbf{a}, \mathbf{b}, \mathbf{c}]^2.$$

*11. For $\phi, \theta \in \mathbb{R}$, let the vectors \mathbf{e}_r , \mathbf{e}_θ and \mathbf{e}_ϕ in \mathbb{R}^3 be defined in terms of the Cartesian basis $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ by

$$\mathbf{e}_r = \cos\phi\sin\theta\,\mathbf{i} + \sin\phi\sin\theta\,\mathbf{j} + \cos\theta\,\mathbf{k}$$

$$\mathbf{e}_{\theta} = \cos \phi \cos \theta \, \mathbf{i} + \sin \phi \cos \theta \, \mathbf{j} - \sin \theta \, \mathbf{k}$$

$$\mathbf{e}_{\phi} = -\sin\phi\,\mathbf{i} + \cos\phi\,\mathbf{j}\,.$$

Show that $(\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_\phi)$ constitute an orthonormal right-handed basis. Discuss the significance of this [local] basis.

12. The set X contains the six real vectors

$$(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1).$$

Find two different subsets Y of X whose members are linearly independent, each of which yields a linearly dependent subset of X whenever any element $x \in X$ with $x \notin Y$ is adjoined to Y.

13. Let V be the set of all vectors $\mathbf{x} = (x_1, \dots, x_n)$ in \mathbb{R}^n $(n \ge 4)$ such that their components satisfy

$$x_i + x_{i+1} + x_{i+2} + x_{i+3} = 0$$
 for $i = 1, 2, ..., n - 3$.

Find a basis for V.

14. Let \mathbf{x} and \mathbf{y} be non-zero vectors in \mathbb{R}^n with scalar product denoted by $\mathbf{x} \cdot \mathbf{y}$. Prove that

$$(\mathbf{x} \cdot \mathbf{y})^2 \leqslant (\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y}),$$

and prove also that $(\mathbf{x} \cdot \mathbf{y})^2 = (\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y})$ if and only if $\mathbf{x} = \lambda \mathbf{y}$ for some scalar λ .

(a) By considering suitable vectors in \mathbb{R}^3 , or otherwise, prove that the inequality

$$x^2 + y^2 + z^2 \geqslant yz + zx + xy$$

holds for any real numbers x, y and z.

(b) By considering suitable vectors in \mathbb{R}^4 , or otherwise, show that only one choice of real numbers x, y and z satisfies

$$3(x^{2} + y^{2} + z^{2} + 4) - 2(yz + zx + xy) - 4(x + y + z) = 0,$$

and find these numbers.