226359

September 30, 2019

1 Jimi Togni - RA: 226359

1.1 Parte 1 - Atividade teorica

Atintoolo Teorico

EF(1)

Jimi Tozmi RA-226353

(x1) 2)
$$P(X=1) = \frac{1}{8} + \frac{1}{3} = \frac{11}{24}$$
 $P(Y=1) = \frac{3}{6} + \frac{1}{3} = \frac{12}{24}$
 $P(X=0) = \frac{1}{6} + \frac{1}{3} = \frac{1}{24}$
 $P(Y=0) = \frac{1}{6} + \frac{1}{3} = \frac{7}{24}$
 $P(Y=0) = \frac{1}{6} + \frac{1}{3} = \frac{7}{24}$
 $P(X=0) = \frac{1}{6} + \frac{1}{3} = \frac{7}{24}$

Ex 1 d) NÃO Dão inde pendentes, umo nay que P(X=1 (Y=1) = 1 = 0,176 3 + 1 # H = - Z Pilgeli [& 2 (a) P(x=1)=3 H(x) = (-3 log 3) + (=4 log 2 4) = 0,811/ H(Y)=(=3/0823)+(-5/8825)=0,954 H(X, Y) = (-1 boz 1) + (-3 boz 2) + (-3 boz 2) = = 1,561/ Q-) - (4/x)=(-1/821) + (-3/8/20,5)+(-3/920,5)=0,75 H(X|Y)=(=+10g2Q4)+(=3lg21)+(=3lg296)=0,60 C) I(x,y)=H(x)-H(x|y)=H(y)-H(y|x)=\$ 0,204/

$$\begin{cases} G(x) = 0 = \frac{1}{2} \cdot 0, 7e^{\frac{1}{2} \left(\frac{x+1}{2}\right)^2} = \frac{1}{2} \cdot 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x-1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} - 0, 3e^{-\frac{1}{2} \left(\frac{x+1}{2}\right)^2} \right) \\ = \sum_{1/2} \left(0, 7e^{-\frac{1}{2} \left(\frac{x+1}{$$

1.2 Parte 2 – Atividade computacional

Ultimos 10 registros da base de dados.

	Data	${\tt Temperature}$
3640	22/12/1990	13.2
3641	23/12/1990	13.9
3642	24/12/1990	10.0
3643	25/12/1990	12.9
3644	26/12/1990	14.6
3645	27/12/1990	14.0
3646	28/12/1990	13.6
3647	29/12/1990	13.5
3648	30/12/1990	15.7
3649	31/12/1990	13.0

/usr/lib/python3/dist-packages/ipykernel_launcher.py:7: UserWarning: This pattern has match grainport sys

Grafico de toda a base de dados.

Divisão dos dados para treinamento e, o ultimo ano, para teste.

Para evitar sobreajuste, foi utilizada a tecnica de k-fold, que resumidamente, consiste em de divisoes do dataset de treinamento e validacao em partes menores, o grafico abaixo demonstra a distribuicao para uma das 10 pastas

Exercício 1 Estipulando o range para os k atrasos

Valores:

Min: 0.0, Max: 24.72

Executando a Regressão Linear, com K variando de 1 a 30 e k-fold variando de 1 a 20 folds Resultados:

Melhores valores encontrados:

K: 9
k-fold: 6

No primeiro gráfico, pode-se observar o resultado do modelo, utilizando para o hiperparâmetro k=9, o erro médio com MSE = 5.261.

No segundo gráfico é demonstrada a variação do MSE ao longo das 30 pastas. Demonstra-se na tabela a baixo, 10 resultados apos as iteracoes.

	K	k-fold	Fold de V	Validacao	Média MSE
272	16	3		3	6.105617
254	15	3		3	6.113649
236	14	3		3	6.118070
218	13	3		3	6.130893
149	9	6		6	6.134120
167	10	6		6	6.134760

164	10	3	3	6.143207
146	9	3	3	6.144946
182	11	3	3	6.145171
166	10	5	5	6.150721

Exercício 2 Para a quantidade de atributos gerados, vamos utilizar 100 iterações, com uma distribuição uniforme que variou de -1 até 1.

OS valores do lambda variaram de 1e+1 - 1e-4

Para a normalização, os dados foram enquadrados entre os valores mínimo e máximo, obtidos anteriormente.

Os valores de K estão entre 7 a 22, e o K-Fold utilizado foi de 1 até 10 folds.

6 valores para o lambda -> [1.e+01 1.e+00 1.e-01 1.e-02 1.e-03 1.e-04]

```
1 -> K: 7
2 -> K: 8
3 -> K: 9
4 -> K: 10
5 -> K: 11
6 -> K: 12
7 -> K: 13
8 -> K: 14
9 -> K: 15
10 -> K: 16
11 -> K: 17
12 -> K: 18
13 -> K: 19
14 -> K: 20
15 -> K: 21
16 -> K: 22
```

Melhores resultados obtidos:

k-fold: 1
K'atrasos': 7
T: 99

lambda: 0.001

MSE: 6.852442664258398

Os dados obtidos após a passagem pelo segundo modelo de regressão linear foram:

	K	K-Fold	Fold de	Validacao	T	Regularizacao	Média MSE
11204	16	3		2	95	0.0100	6.533775
11205	16	3		2	96	0.0001	6.541001
7566	13	3		2	93	0.0010	6.575138
8770	14	3		2	85	0.0010	6.575419
7562	13	3		2	89	0.0010	6.578258
9974	15	3		2	77	0.0010	6.581564
11201	16	3		2	92	0.0010	6.581609
8776	14	3		2	91	0.0001	6.583636
11185	16	3		2	76	0.0001	6.584036
11200	16	3		2	91	0.0010	6.584299

Observa-se que, nos dois modelos implementados nesta lista de exercícios, ambos apresentaram resultados aproximados em relação ao erro médio e a predição dos dados, porém, o ganho de acurácia no segundo modelo, foi visivelmente melhor