

Labs

Safety issues

 Wear long pants please. No shorts, no skirts,—A make-up opportunity may be provided if you could not attend the lab due to this but will NOT for future cases.

Being absent

- With reasonable excuses: arrange to other sessions
- Without reasonable excuses: no makeup

For questions about the lab and your report grades, please contact your TA.

- YU Zejie: zejieyu2-c@my.cityu.edu.hk
- LIAO Junchen: junchliao2-c@my.cityu.edu.hk
- CAO Hui: huicao8-c@my.cityu.edu.hk
- WANG Shuideng: sdwang8-c@my.cityu.edu.hk

Marking schemes

- posted before the end of the first deadline of all Labs and reminded during Lecture 5.
- not for telling you what should be included in the reports--the components have been listed in the Lab instructions
- just for telling you the marks for each part of your report.

IV. Mechanics of Biomaterials

7

Tension/Tensile, Compression, Shear, Torsion, and Bending

Standardizing Load

- Stress
 - Force has to be normalized Termed: "Stress"
 - Force per square meter

$$\sigma = \frac{F}{A} (N/m^2)$$

• Where F is internal force and A is internal area (analysis plane)

10

Stress to Strain

- As forces act on materials (Stress), the material may deform
- The measure of this deformation is termed: Strain
- Measurement of deformation
 - Strain

$$\varepsilon = \frac{L_f - L_i}{L_i} = \frac{\Delta L}{L_i}$$

$$\varepsilon = \frac{L_f - Li}{L_i} = \frac{\Delta L}{L_i} \times 100 = \% Strain$$

Tension: Tensile Stress

Figure 9.2 The humerus is loaded axially in tension when you do a chin-up.

12

Compression: Compressive Stress

Figure 9.3 The humerus is loaded axially in compression when you do a push-up.

Poisson's Ratio

Poisson effect

Poisson's ratio

- A specific ratio of strain in the axial direction to strain in the transverse direction exists for each different type of material.
- Values of Poisson's ratio can be as low as 0.1 and as high as 0.5, but for most materials they are between 0.25 and 0.35.

14

Shear: Shear Stress

Shear Strain

 Shear strain occurs with a change in orientation of adjacent molecules as a result of these molecules slipping past each other.

Figure 9.14 Illustration of deformation caused by shear. The change in the angle (θ) indicates the shear strain.

16

Beam Bending

Simply Supported Beam	Slopes and Deflections
Beam	Slope
v L D	$\theta_{\text{max}} = \frac{-PL^2}{16EI}$

Deflection	Elastic Curve
$v_{\text{max}} = \frac{-PL^3}{48EI}$	$v = \frac{-Px}{48EI} (3L^2 - 4x^2)$ $0 \le x \le L/2$

3-Point Bending Test

- In this lab, a Tinius Olsen H50KT system is used to perform 3point bending tests under displacement control at a constant displacement rate at room temperature in air.
- Flexural stress, σ_f , at the out surface of the center section of the beam can be calculated based on simple beam theory by equation

$$\sigma_f = \frac{PLD}{8I}$$

18

3-Point Bending Test

- Flexural stress $\sigma_f = \frac{PLD}{8I}$
- where, P is the value of concentration load, L is the supporting span, D is the outer diameter of the cross section of the beam, and I is the geometry dependent moment of inertia which could be calculated by the equations shown in Figure (b).

3-Point Bending Test

– The elastic flexural deflection $\delta_{elastic}$ at the center of the beam can be calculated by

$$\delta_{elastic} = \frac{PL^3}{48EI}$$

where, $\it E$ is elastic modulus which can be obtained from this equation once $\delta_{elastic}$ is measured.

$$E = \frac{PL^3}{48I\delta_{elastic}}$$

3-Point Bending Test

– The flexural strain ε_f can then be calculated by

$$\varepsilon_f = \frac{\sigma_f}{E} = \frac{\frac{PLD}{8I}}{\frac{PL^3}{48I\delta_{elastic}}} = \frac{6D\delta_{elastic}}{L^2}$$

Moment of inertia I

Rectangular area

 $I_x = \frac{1}{36} bh^3$

 $I_x = \frac{1}{8} \pi r^4$ $I_{\rm v} = \frac{1}{8} \pi r^4$

 $I_x = \frac{1}{4} \pi r^4$ $I_{\rm y}=rac{1}{4}\pi r^4$

Circular area

Triangular area

Semiparabolic area

Trapezoidal area

Exparabolic area

22

3	$A = \frac{\pi r^2}{2}$
(r.)	$\frac{4r}{3\pi}$
	C

Semicircular area

Beam

v L D	$\theta_{\rm max} = \frac{-PL^2}{16EI}$	$v_{\rm max} = \frac{-PL^3}{48EI}$	$v = \frac{-Px}{48EI} (3L^2 - 4x^2)$ $0 \le x \le L/2$
v θ_1 θ_2 A	$\theta_1 = \frac{-Pab(L+b)}{6EIL}$ $\theta_2 = \frac{Pab(L+a)}{6EIL}$	$v\Big _{x=a} = \frac{-Pba}{6EIL}(L^2 - b^2 - a^2)$	$v = \frac{-Pbx}{6EIL} (L^2 - b^2 - x^2)$ $0 \le x \le a$
v θ_1 $L \longrightarrow M_0$ x	$\theta_1 = \frac{-M_0 L}{6EI}$ $\theta_2 = \frac{M_0 L}{3EI}$	$v_{\text{max}} = \frac{-M_0 L^2}{9\sqrt{3} EI}$ at $x = 0.5774L$	$v = \frac{-M_0 x}{6EIL} (L^2 - x^2)$
v L w x	$\theta_{\text{max}} = \frac{-wL^3}{24EI}$	$v_{\text{max}} = \frac{-5wL^4}{384EI}$	$v = \frac{-wx}{24EI} (x^3 - 2Lx^2 + L^3)$
v w θ_2 x $\frac{L}{2}$ $\frac{L}{2}$	$\theta_1 = \frac{-3wL^3}{128EI}$ $\theta_2 = \frac{7wL^3}{384EI}$	$v \bigg _{x=L/2} = \frac{-5wL^4}{768EI}$ $v_{\text{max}} = -0.006563 \frac{wL^4}{EI}$ at $x = 0.4598L$	$v = \frac{1}{384EI} (16x^3 - 24Lx^2 + 9L^3)$ $0 \le x \le L/2$ $v = \frac{-wL}{384EI} (8x^3 - 24Lx^2 + 17L^2x - L^3)$ $L/2 \le x < L$
v wo			

 $-7w_0L^3$

360*EI*

 w_0L^3

45*EI*

 $v_{\text{max}} = -0.00652 \frac{w_0 L^4}{E_0}$

at x = 0.5193L

Slope

Beam	Slope	Deflection	Elastic Curve
	$ heta_{ m max} = rac{-PL^2}{2EI}$	$v_{\rm max} = \frac{-PL^3}{3EI}$	$v = \frac{-Px^2}{6EI} (3L - x)$
$ \begin{array}{c c} P \\ \hline v_{\text{max}} \\ \hline -L \\ \hline 2 \end{array} $	$ heta_{ m max} = rac{-PL^2}{8EI}$	$v_{ m max} = rac{-5PL^3}{48EI}$	$v = \frac{-Px^2}{12EI} (3L - 2x) 0 \le x \le L$ $v = \frac{-PL^2}{48EI} (6x - L) L/2 \le x \le L$
$L \longrightarrow V_{v_{\max}}$	$\theta_{\max} = \frac{-wL^3}{6EI}$	$v_{\max} = \frac{-wL^4}{8EI}$	$v = \frac{-wx^2}{24EI} (x^2 - 4Lx + 6L^2)$
L $M_0 v_0$	$\theta_{\max} = \frac{M_0 L}{EI}$	$v_{\text{max}} = \frac{M_0 L^2}{2EI}$	$v = \frac{M_0 x^2}{2EI}$
v_{max} $-\frac{L}{2}$ $-\frac{L}{2}$ $-\frac{V}{2}$	$\theta_{\text{max}} = \frac{-wL^3}{48EI}$	$v_{\text{max}} = \frac{-7wL^4}{384EI}$	$v = \frac{-wx^2}{24EI} \left(x^2 - 2Lx + \frac{3}{2}L^2\right)$ $0 \le x \le 1$ $v = \frac{-wL^3}{384EI} \left(8x - L\right)$
			$L/2 \le x$:

24

Stress & Strain Relationship

- As forces act on a material (Stress) the material may deform (Strain)
- Depending on the "Stiffness" of a material the relationship curve may differ
- Stiffness AKA Young's Modulus or Elastic Modulus

 $E = \frac{\Delta \sigma}{\Delta \varepsilon}$

E = elastic modulus,

 $\Delta \sigma$ = change in stress, and

 $\Delta \varepsilon$ = change in strain.

Material Toughness

Mechanical Properties of the Musculoskeletal System: Connective Tissues in the Body

- Bone
- Cartilage
- Tendon
 - Muscle to Bone
- Ligament
 - Bone to Bone

26

Collagen & Water Tissue Content

- Collagen is the main structural protein in the extracellular matrix in the various connective tissues in the body.
- Bone
 - 30% collagen & 20% water (45% mineral)
- Cartilage
 - 20% collagen & 70% water
- Tendon & Ligament
 - 25% collagen & 70% water

28

Viscoelasticity

Viscoelastic properties occur when the stress and strain on a materials are dependent on how quickly or slowly the load applied

Viscoelastic Creep

Constant compressive stress

- Increases strain as water content is squeezed out
- Strain reaches a maximum
- Ex
 - Gravity & Spinal Cord

30

Viscoelastic Stress Relaxation

Constant strain results in

- Stress increases as water content is squeezed out
- Stress maxes out
- Stress then decreases
- Ex
 - A long static stretch

Figure 9.26 Stress relaxation in articular cartilage under constant compressive strain.

Hysteresis

- Hysteresis is an elastic properly describing a material that has a different stressstrain curve when being uploaded compared to loaded
- Area under curved is energy stored/released
- Difference between loaded/unloaded energy lost
 - Energy lost because few materials are perfectly elastic
 - Less area = more elastic or more efficient

32

Isotropic vs Anisotropic Behavior

Isotropic

 A material that has the same mechanical properties regardless of loading direction

Anisotropic

 A material that has different mechanical properties dependent on how it is loaded

FIG. 12-8 Anisotropic behavior of cortical bone specimens machined from a human femoral shaft and tested in tension. The orientation of load application—longitudinal (*L*), tilted 30° with respect to the bone axis, tilted 60°, and transverse (*T*)—strongly influences both the stiffness and the ultimate strength. (Frankel VH, Nordin M: Basic Biomechanics of the Skeletal System, p. 22. Philadelphia, Lea & Febiger, 1980)

Bone Loading

Ultimate strength of bone

Loading Type	Ultimate Strength					
Compression	200 MPa (29,000lb/in²)					
Tension	125 MPa					
Shear	65 MPa (9,425lb/in²)					

Hayes, 1986

34

Bone

- Tested in compression
- The hard outer layer of bones is composed of cortical bone, which is also called compact bone as it is much denser than cancellous bone. It forms the hard exterior (cortex) of bones.
- Cancellous bone, also called trabecular or spongy bone, is the internal tissue of the skeletal bone and is an open cell porous network.

Collagen in Cartilage

36

Collagen in Tendon & Ligaments

Figure 9.27 Parallel arrangement of collagen fibers in tendon, and nearly parallel arrangement of collagen fibers in ligament.

Muscle Architecture

- Single Joint Muscles
 - Muscles that cross one single joint
 - Ex: Vastus Group
- Biarticular Muscles
 - Muscle that cross/span two joints
 - More complex movement
 - Ex: Rectus Femoris

38

Muscle Architecture

- 3 Leg Biarticulate Muscles
 - Hamstrings:
 Semitendinosus,
 Semimembranosus, &
 Biceps Femoris
 - ➤ Joints: Hip & Knee
 - Action: Hip Extension & Knee Flexion
 - Rectus Femoris
 - > Joints: Hip & Knee
 - Action: Hip Flexion & Knee Extension
 - Gastrocnemius
 - ➤ Joints: Knee & Ankle
 - Action: Knee Flexion & Ankle Plantar Flexion

Muscle Contraction Process

https://www.youtube.com/watch?v=ousflrOzQHc

40

Muscle Anatomy

Figure 3.6. The macroscopic structure of muscle includes several layers of connective tissue and bundles of muscle fibers called fascicles. Muscle fibers (cells) are multinucleated and composed of many myofibrils.

Connective Tissues

- Cell
- Collagen
- Mineral
- Water
- Elastin

42

Muscle Anatomy

Figure 3.8. The microscopic structure of myofibril components of muscle fibers. Schematics of the sarcomere, as well as of the actin and myosin filaments are illustrated.

Sliding Filament Theory

- Myosin will create a crossbridge with Actin and pull forwards the center
- Sarcomere Shortens = Muscle Contraction

Figure 3.8. The microscopic structure of myofibril components of muscle fibers. Schematics of the sarcomere, as well as of the actin and myosin filaments are illustrated.

44

Muscle Types

- Type I
 - Slow Twitch
 - Slow Oxidative
- Type II
 - Fast Twitch
 - Fast Glycolytic

Figure 4.9. The twitch response of fast-twitch (FG) and slow-twitch (SO) muscle fibers. Force output is essentially identical for equal cross-sectional areas, but there are dramatic differences in the rise and decay of tension between fiber types that affect the potential speed of movement.

Muscle Architecture

- Parallel
 - Greater ROM
 - Less tension
- Pennate
 - Less ROM
 - Greater tension
 - Cross-sectional area

46

Muscle Architecture

- Parallel
 - Greater ROM
 - Less tension
- Pennate
 - Less ROM
 - Greater tension
 - Cross-sectional area

48

Mechanical Muscle Factors

50

Parallel Elastic Component

Parallel Elastic Component

52

Parallel Elastic Component

Series Elastic Component

54

Force-Length Principle

Minimum length for producing active tension

Force-Length Principle

56

Force-Length Principle

Force-Length Principle

58

Force-Length Principle

Force-Length Principle

- Single joint muscle
 - Can be stretched roughly 160%
 - Ex: Vastus Lateralis
 - Maximum Tension: ~120% L_o

Figure 11.14 The relationship between muscle length and tension.

- Biarticular muscle
 - Can be stretched beyond 160%
 - Ex: Rectus femoris (Hip & Knee)
 - Ex: Hamstrings Semimembranosus, Semitendinosus, & Biceps Femoris (Hip & Knee)

Maximum Tension: >160% L_o

60

Summary

A simple one-dimensional model of a skeletal muscle

Figure 4.5

(a) Basic structure of a contractile element (sarcomere) of a muscle (b) Cross section of a muscle, vertical stripes correspond to Z-discs.

62

A simple one-dimensional model of a skeletal muscle

- l_0 : the length of the muscle in the non-activated state
- l_c : the length of the muscle in the activated or contracted but unloaded state.
- l: the length of the muscle in the activated and loaded state.
- Now, in contrast with a simple elastic spring, the contracted length $l_{\rm c}$ serves as the reference length, such that the force in the muscle may be expressed as:

$$F = c\left(\frac{\ell}{\ell_c} - 1\right) \qquad \lambda_c = \frac{\ell_c}{\ell_0} \qquad \lambda = \frac{\ell}{\ell_0}$$

activation or

A simple one-dimensional model of a skeletal muscle

- l₀: the length of the muscle in the non-activated state
- l_c: the length of the muscle in the activated or contracted but unloaded state.
- l: the length of the muscle in the activated and loaded state.
- Now, in contrast with a simple elastic spring, the contracted length $l_{\rm c}$ serves as the reference length, such that the force in the muscle may be expressed as:

$$F = c \left(\frac{\lambda}{\lambda_{c}} - 1 \right) \text{ with } \lambda = \frac{\ell}{\ell_{0}}$$

64

More complicated models of a skeletal muscle

- A large group of models is based on experimental work by Hill and supply a phenomenological description of the non-linear activated muscle. These models account for the effect of contraction velocity and for the difference in activated and passive state of the muscle.
 - Hill, A. V. (1938) The heat of shortening and the dynamic constants in muscle. Proc. Roy. Soc. London 126, 136–65.
- Microstructural models were developed based on the sliding filament theories of Huxley. These models can even account for the calcium activation of the muscle.
 - Huxley, A. F. (1957). Muscle structure and theory of contraction. Prog. Biochem. Biophysic. Chem., 255–318.
- A discussion of these models is beyond the scope of this course but may be a good topic for the project.

Elastic fibers in three dimensions

$$\ell_0 = |\vec{x}_{0,B} - \vec{x}_{0,A}| \qquad \lambda = \frac{\ell}{\ell_0} \qquad \ell = |\vec{x}_B - \vec{x}_A|$$

$$\vec{a}_0 = \frac{\vec{x}_{0,B} - \vec{x}_{0,A}}{|\vec{x}_{0,B} - \vec{x}_{0,A}|} \qquad \vec{a} = \frac{\vec{x}_B - \vec{x}_A}{|\vec{x}_B - \vec{x}_A|}$$

$$\vec{F}_B = -\vec{F}_A$$

$$\vec{F}_B = F\vec{a}.$$

$$\vec{F}_B = F\vec{a}.$$

$$\vec{F}_B = c(\lambda - 1)\vec{a}$$

$$\vec{F}_A = -c(\lambda - 1)\vec{a}.$$

Example

The Achilles tendon is attached to the rear of the ankle (the calcaneus) and is connected to two muscle groups: the gastrocnemius and the soleus, which, in turn, are connected to the tibia, see Fig. 4.12(a, b). A schematic drawing of this, using a lateral view, is given in Fig. 4.12(c). If the ankle is rotated with respect to the pivot point O, i.e. the origin of the coordinate system, the attachment point A is displaced causing a length change of the muscle system.

- (a) The ankle and foot.
- (1) tibia, (2) fibula,
- (3) medial malleolus,
- (4) lateral malleolus,
- (5) talus, (6) calcaneus

(b) Ankle muscles, posterior view. (1) gastrocnemius, (2) soleus,(3) Achillies tendon

gure 4.12

Muscle attached to tibia and calcaneus

Example

- $\vec{F}_{\rm B}=$?
- The position of the attachment point A is given by

$$\vec{x}_A = -R\sin(\alpha)\vec{e}_x - R\cos(\alpha)\vec{e}_y$$

 where R is the constant distance of the attachment point A to the pivot point. The angle α is defined in clockwise direction. The muscles are connected to the tibia at point B, hence:

$$\vec{x}_{\rm B} = H\vec{e}_{\rm v}$$

 with H the distance of point B to the pivot point.

69

Example

 The positions in the undeformed, unstretched configuration of these points are

$$\vec{x}_{0,A} = -R\sin(\alpha_0)\vec{e}_x - R\cos(\alpha_0)\vec{e}_y$$

and

$$\vec{x}_{0,B} = H\vec{e}_y$$
.

 Hence, the stretch of the muscle follows from

$$\begin{split} \lambda &= \frac{|\vec{x}_{A} - \vec{x}_{B}|}{|\vec{x}_{0,A} - \vec{x}_{0,B}|} \\ &= \frac{\sqrt{(R \sin(\alpha))^{2} + (R \cos(\alpha) + H)^{2}}}{\sqrt{(R \sin(\alpha_{0}))^{2} + (R \cos(\alpha_{0}) + H)^{2}}}, \end{split}$$

Example

 while the orientation of the muscle is given by and

$$\vec{a} = \frac{R\sin(\alpha)\vec{e}_x + (R\cos(\alpha) + H)\vec{e}_y}{\sqrt{(R\sin(\alpha))^2 + (R\cos(\alpha) + H)^2}}.$$

 From these results the force acting on the muscle at point B may be computed:

$$\vec{F}_{\rm B} = c(\lambda - 1)\vec{a}.$$

71

Example

$$\vec{a} = \frac{R\sin(\alpha)\vec{e}_x + (R\cos(\alpha) + H)\vec{e}_y}{\sqrt{(R\sin(\alpha))^2 + (R\cos(\alpha) + H)^2}}$$
$$\lambda = \frac{\sqrt{(R\sin(\alpha))^2 + (R\cos(\alpha) + H)^2}}{\sqrt{(R\sin(\alpha_0))^2 + (R\cos(\alpha_0) + H)^2}}$$

The force components in the *x*-and *y*-direction, scaled by the constant *c*, are depicted in Fig. 4.13 in case *R* = 5 [cm], *H* = 40 [cm] and an initial angle α₀ = π/4.

 $\vec{F}_{\rm R} = c(\lambda - 1)\vec{a}.$

Figure 4.13

Force in muscle.

Biomaterials

 Biomaterials is a term used to indicate materials that constitute parts of medical implants, extracorporeal devices, and disposables that have been utilized in medicine, surgery, dentistry, and veterinary medicine as well as in every aspect of patient health care.

73

Mechanical Properties of Some Implant Materials and Tissues

	Elastic modulus (GPa)	Yield strength (MPa)	Tensile strength (MPa)	Elongation to failure (%)		
Al ₂ O ₃	350	_	1000 to 10,000	0		
CoCr Alloya	225	525	735	10		
316 S.S. ^b	210	240 (800) ^c	$600 (1000)^c$	$55(20)^c$		
Ti-6Al-4V	120	830	900	18		
Bone (cortical)	15 to 30	30 to 70	70 to 150	0-8		
PMMA	3.0	_	35 to 50	0.5		
Polyethylene ^d	0.6 - 1.8	_	23 to 40	200-400		
Cartilage	e	_	7 to 15	20		

^a28% Cr, 2% Ni, 7% Mo, 0.3% C (max), Co balance.

BIOMATERIALS SCIENCE
An Introduction to Materials in Medicine 2nd Edition
Edited by
Buddy D. Ratner, Ph.D. Prolone, Brongment, and Climad I squeezing [Invested Climates] Antiques of Squeezing Demantics In WEE, on NSS Inguierre, Research Control [Invested W. Walngan, Sanital, W. R. Ed.
Allan S. Hoffman, ScD. Professor of Recognising and Chemical Engineering UNEST Invarigation Conversely of Washington, Limit, WA USA
Frederick J. Schoen, M.D., Ph.D. Penjam of plathing and Stands Homen and Fundading 18821 frameworks for the Standard Partial Standard Sta
Jack E. Lemons, Ph.D. Professe and Guesse of Biomastrals Labouries Surgical Research

ELNVER
ELNVER
Ender

^bStainless steel, 18% Cr, 14% Ni, 2 to 4% Mo, 0.03 C (max), Fe balance.

^cValues in parentheses are for the cold-worked state.

^dHigh density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE)

^eStrongly viscoelastic.

Average Mechanical Properties of Typical Engineering Materials^a (SI Units)

Materials	Density ρ (Mg/m³)	Moduls of Elasticity E (GPa)	Modulus of Rigidity G (GPa)	Yiel	ld Strength (N σ_Y Comp.b	(IPa) Shear	Ultin Tens.	mate Strength σ_u Comp. ^b	(MPa) Shear	%Elongation in 50 mm specimen	Poisson's Ratio v	Coef. of Therm Expansion α (10 ⁻⁶)/°C
Metallic												
Aluminum -2014-T6	2.79	73.1	27	414	414	172	469	469	290	10	0.35	23
Wrought Alloys 6061-T6	2.71	68.9	26	255	255	131	290	290	186	12	0.35	24
Cast Iron — Gray ASTM 20	7.19	67.0	27	-	-		179	669	-	0.6	0.28	12
Alloys Malleable ASTM A-197	7.28	172	68	1		-	276	572	-	5	0.28	12
Copper Red Brass C83400	8.74	101	37	70.0	70.0	-	241	241	1 -	35	0.35	18
Alloys Bronze C86100	8.83	103	38	345	345	_	655	655	-	20	0.34	17
Magnesium Alloy [Am 1004-T61]	1.83	44.7	18	152	152	-	276	276	152	1	0.30	26
Structural A-36	7.85	200	75	250	250	-	400	400		30	0.32	12
Steel — Structural A992	7.85	200	75	345	345	_	450	450	-	30	0.32	12
Alloys Stainless 304	7.86	193	75	207	207	_	517	517	-	40	0.27	17
Tool L2	8.16	200	75	703	703	-	800	800	-	22	0.32	12
Titanium Alloy [Ti-6Al-4V]	4.43	120	44	924	924	12	1,000	1,000	72	16	0.36	9.4
Nonmetallic		200000				2505					2.7260	7100
Concrete Low Strength	2.38	22.1	-	-	-	12	-	-	-	-	0.15	11
High Strength	2.37	29.0	-	-	-	38		-	-	-	0.15	11
Plastic Kevlar 49	1.45	131	177	1275	a)	-	717	483	20.3	2.8	0.34	
Reinforced30% Glass	1.45	72.4	12	12	2	2	90	131	12	-	0.34	21
Wood — Douglas Fir	0.47	13.1	-		_	_	2.1c	26 ^d	6.2 ^d	-	0.29°	
Select Structural White Spruce	0.36	9.65	-	: -	-	-	2.5°	36 ^d	6.7 ^d	1-1	0.31e	-

^a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value reference books for the material should be consulted.

Hibbeler, Russell C.. Mechanics of Materials in SI Units, Pearson Education Limited, 2017.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

c Measured perpendicular to the grain.

d Measured parallel to the grain.

^e Deformation measured perpendicular to the grain when the load is applied along the grain.