	29. Oci	новные теор	емы диф	ференци	ального и	счисления	A		
omp;	f: (a,6) -	PR. Ic	€ (a, 6)	- m . v	LOK. MC	ex (min) <=>]	Us (20)	_
	f: (a,6);	4 oce 128	(ao) .	f (oc) =	flas)	(f (x).	> S(20)) (
	max,	min - 2	nempe	ey er	,				
Teop.	ema Pej	ug, Ji	yems 4	2-8-f	gueg-	ers b a	i , $x_0 \in C$	(a,e),	
2 ₀ -	max, eug Pej Tu, Ke	aperey.	ug,	Torga	f (Ola)	=0.			
BOK-	· Go; f g	по, в п	1 Olo 6	=> 1 L	ouer, f	1/DL0) (> f1(0	(6) = -f'	(Xo)=
	=-f	(500)	,						
20-	Tu, May =	=> 7 M8	(Xo);	f(x)	<- f(x0)	# oc €	(200-D	, coto,) .
DC,	< x < x0+8	-5/26)	-f (5co)	£0 =	=> lim=	f(x) =	(Xo) _	0 =>	
		2	700		27204	02-1	0		
=	=> 54 (20).	<0=>5	(Xo) =	D					

 $x_0-8 < x < x_0$ $f(x)-f(x_0) > 0 => f'(x_0) > 0$ 51/26) 40, 51(26) >0 (=> 51/26)=0, Zaneraonees; 1) reon, curver. " sacon-s x 20-ry q-un f (20) 6 m, sueuspeuspeus, ecue ones cyry-eur, 1/0x. 2) m-no Pepus galin moresto fectox-e you-ne manplemying, Thrues: $y' = 30c^2, y'(0) = 0,$ a= OHL 2B1. MOUNCER lox. secup. 8 54

3) m-ug Pepuez gaiea neoōx, yeerue montrogue breymp. morke skeu peuigiez $3 = \begin{cases} 32^{2}, -1 \le x \le 2, \\ 4, & x > 2 \end{cases}$ $x = -1 - \pi, \quad x > x \le x \le x$

Teopenia Ponns. Tychio f(x) unp. Hg [a,6], gup-ng ng (a,6) f(a)=f(b), Torgo f(x)=f(a,b): f'(a)=0, 80 K-lo; f ∈ C[a, 6] => orp. (1-8 m. Beliepyurpaces), m. e. $m = nnf f(x) \in \mathbb{R}$, $M = sup f(x) \in \mathbb{R}$ $\alpha \in [a, 6]$ $\alpha \in [a, 6]$ $\exists x_1, x_2 \in [a, b]: f(x_1) = m, f(x_2) = ll (2-8 m, B)$ m=11 => f(x) = const => f'(x) = 0 + x = (a,6) m < M, levy f(a) = m um f(b) = M, mo $x_2 \in (e, b)$ $(\bar{m} \cdot \kappa \cdot f(a) = f(b)) = 7 \hat{m} \cdot x_2 \in (a, b) - \bar{m}$, nor max = 7 $f'(x_2) = 0$ Rem f(a) = U we f(b) = U, we $\alpha_1 \in (a; b) \Rightarrow f'(x_1) = 0$

Formeranue; 1) reou, curren: upu bonnomenny beex yen-i M-Mo Ho Voque q-my y=f(x), x + (96) mangem as mores, caeam-3 6 compres /10x. 2) ven rapyralie X, 5. ogres vez 3-x yerlobre és telopluser mo you 6-ve replecaer sorre le prorus. y=1-101, x ∈ [-1,1] Acc (-1,1); y'(c)=0

Teopleus darparema (o koner, upurause renex), Rener & E € C[G6], greep me pres (aj6), mo] 8 € (a;6); f(6)-f(a)=f'(8)(6-a). DOX-boi pacciel, p-10 F(x) = f(x) - 1 x.) on regenuer wax, rusova $F(a) = F(b) (=) f(a) - \lambda a = f(b) - \lambda b$ Due F(x) Bruonneur Bce yeu-8 th. Power => => = 18 = (a; 6). $F'(r) = f'(r) - \lambda = 0 \iff f'(r) = \lambda = \frac{f(6) - f(a)}{6 - a}$

Fauerances, 1) rever, cuercie f'(8) = f/6) - f/a) 6-a yupaigneen larpatt o a r 2) N = (a; b) (=> N = a+ O(b-a), 0 < 0 < 1 $f(6) - f(a) = f'(a + B(6-a)) \cdot (6-a), 04B < 1$ 9=2, $6-\alpha=3x$, $6-x+\Delta x$ $f(x+\Delta x)-f(x)=f'(x+\partial x)$, Δx

Cuegerabree (omrekax payporbs upouzbog reais gueg-ou que). Tryétub f(x) gueg-us res (a; b), morga f'(x) re leonein mueitus res (a; b) ru yempaninum pazporbob, ru payporbob heploro ρος 8. Dox- 60; C ← (a; 6), l₁ = lim f'/x), l₂ = lim f'/x), α → ε - ο '/x), l₂ = lim f'/x), , Hat (a,b), a>c7. larpating Ha (c,x): f(x) - f(c) = f'(x)(x-c), ge ge (c,x)greater, $f'(c) = \lim_{x \to c+0} f(x) - f(c) = \lim_{x \to c+0} f'(x) = lx$ $f'(x) - f(c) = \lim_{x \to c+0} f'(x) - f(c) = \lim_{x \to c+0} f'(x) = lx$ $f'(c) = \lim_{x \to c+0} f'(x) - \lim_{x \to c+0} f'(x) = lx$ $f'(c) = \lim_{x \to c+0} f'(x) - \lim_{x \to c+0} f'(x) = lx$ A Haveourses f'(c)=l1. => f'/oc) recup. B iii. C

Fuer useems workern. Typuller; $f(x) = 2 \quad \text{in } x \neq 0,$ $f(x) = 2 \quad \text{o, } x \neq 0,$ $f \in C(-1;1)$, geep-eeg tea (-1,1) f'(x) uneen payons 2 ro pogg b in, x=0 $\alpha \neq 0$; $f'(\alpha) = (\alpha^2 \sin \frac{1}{x})' = 2\alpha \sin \frac{1}{x} - \cos \frac{1}{x}$ $f'(0) = \lim_{\Delta X \to 0} \frac{f(0+\Delta X) - f(0)}{\Delta X} = \lim_{\Delta X \to 0} \frac{f(\Delta X) - f(0)}{\Delta X} =$ $-\lim_{\Delta X \to 0} \frac{\Delta X^2 \sin \frac{1}{\Delta X}}{\Delta X} = \lim_{\Delta X \to 0} \Delta X \sin \frac{1}{\Delta X} = 0$ $\Delta X \to 0 \quad \Delta X \to 0$ $\Delta X \to 0 \quad \Delta X \to 0$ $\Delta X \to 0 \quad \Delta X \to 0$ $\Delta X \to 0 \quad \Delta X \to 0$

Teopening Kown (o scorer, upupaeyerenex). Tyeins $f(x) \cup g(x)$ rulp. In [a, B] gley-un rig (a; B), $g'(x) \neq 0 + x \in (a, B)$, wrongs $\exists x \in (a, B)$: f(B) - f(a) = f'(x) = g'(x). Steven $g(6) = g(a) \Rightarrow uo\tau$, Portular $\exists c \in (a; 6): g'(c) = 0 - uponthoperue your <math>g'(x) \neq 0 \forall x \in (a; 6)$. $f(x) = f(x) - \lambda g(x)$ $\lambda : F(a) = F(b) (=)$ (=>-f(a)-/g(a)-f(b)-/g(b) (=) Thom. Porus 7 80 (a;6): F (8)=0 F1/x)=51/x)-2g1/x)=>51/7)-1g1/x)=>

 $\Rightarrow \frac{f'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{f'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g(t) - g(a)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g'(r)}$ $\Rightarrow \frac{g'(r)}{g'(r)} = \lambda = \frac{f'(s) - f(o)}{g'(r)}$

2) NOW. Currey $g = g(H), y = f(\infty), \frac{g'(\sigma)}{g'(\sigma)} = \frac{g'}{g'(\sigma)} = \frac{g'}{g'(\sigma)}$ $\frac{f/6)-f/a}{g(6)-g(a)}=y_{x}|_{x=\infty}$

Teoperes 1, Tyens f(x), g(x) gus-nor Hg(a, 8), $\lim_{x \to a+o} f(x) =$ $= \lim_{x \to a+o} g(x) = 0, \quad g'(x) \neq 0 \quad \forall x \in (a, 6). \quad Torgs, exy$ cyry-lin (kotter, une seekotter.) upregent lin f /2) -A, mo upregent lin f /2) makrene cepey-lin u out powert. $\text{Box-bo}; \text{SC} \in (a;6). \quad -f(a) = g(a) = 0$ f(x), g(x) reing, reg (a, ∞) in greep, reg (a, ∞) , To (a, ∞) , (a, ∞) , (a, ∞) ; f(x) - f(a) = f'(x)g(x) - g(a) g'/r) f(x) = f'(x) g1x) g1/2) 8-> a+0 => x-> a+0

 $\lim_{\alpha \to a+0} \frac{f(x)}{g(x)} = \lim_{\alpha \to a+0} \frac{f'(x)}{g'(x)} = f$ Zamerencie: in-me bepres you x = 90-0, x -> a.