Assignment 2

Due: 2:15 pm, 21 October 2021 (Thursday)

Course: Quantum Mechanics - 1

Tata Institute of Fundamental Research Hyderabad, India

Instructor: ramakrishnan@tifrh.res.in

Problem 1

Determine the probability densities in the position representation, $|\psi_n(x)|^2 = |\langle x|n\rangle|^2$, and the joint uncertainty $\Delta x \Delta p$ for a onedimensional system in a state given by ket $|n\rangle$ having the following probability densities in the momentum representation, $|\phi_n(p)|^2 =$ $|\langle p|n\rangle|^2$. As the first step, normalize the probability densities appropriately.

a)
$$|\langle p|n\rangle|^2 = \begin{cases} p+B; & -A \ge p \ge 0\\ -p+B; & 0 \ge p \ge +A \\ 0; & |p| > A \end{cases}$$
 b) $|\langle p|n\rangle|^2 = \exp\left(-Ap^2\right); & -\infty \le p \le \infty$

c)
$$|\langle p|n\rangle|^2 = \exp(-A|p|); \quad -\infty \le p \le \infty$$

Problem 2

Prove the following:

1.
$$\langle x|\hat{p}^{n}|a\rangle = (-i\hbar)^{n} \frac{\partial^{n}}{\partial x^{n}} \langle x|a\rangle$$

2. $\langle b|\hat{p}^{n}|a\rangle = \int_{-\infty}^{+\infty} dx \, \langle b|x\rangle \, (-i\hbar)^{n} \, \frac{\partial^{n}}{\partial x^{n}} \langle x|a\rangle$
3. $\langle p|\hat{x}^{n}|a\rangle = (+i\hbar)^{n} \, \frac{\partial^{n}}{\partial p^{n}} \langle p|a\rangle$
4. $\langle b|\hat{x}^{n}|a\rangle = \int_{-\infty}^{+\infty} dp \, \langle b|p\rangle \, (+i\hbar)^{n} \, \frac{\partial^{n}}{\partial p^{n}} \langle p|a\rangle$

where *n* is a positive integer, $|x\rangle$ and $|p\rangle$ are position and momentum eigenkets, respectively, while $|a\rangle$ and $|b\rangle$ are kets of two arbitrary states.

Problem 3

Show that the following holds for any two Hermitian operators, \hat{A} and \hat{B}

$$\langle \hat{A}^2 \rangle \langle \hat{B}^2 \rangle \geq \frac{\langle \hat{C} \rangle^2 + \langle \hat{D} \rangle^2}{4}$$

where $\hat{C} = -i[\hat{A}, \hat{B}]$ and $\hat{D} = \{\hat{A}, \hat{B}\}.$

Problem 4

We learned recently that $\langle \hat{p} \rangle = 0$ for all states of the particle-in-a-box problem. Show that in general for discrete stationary states of any quantum mechanical problem, $\langle \hat{\vec{p}} \rangle = 0$.

Problem 5

For the particle-in-a-box, derive $\langle \hat{x} \rangle$, $\langle \hat{x}^2 \rangle$, $\langle \hat{p} \rangle$, and $\langle \hat{p}^2 \rangle$ in both position and momentum representations for a system in $|n\rangle$.