Problem sheet: Week 6

6 Topics: Expectation, independence of random variables, probability generating functions

6.1 Prerequisites: Lecture 14

Exercice 6-1: (Suggested for personal/peer tutorial) Indicator variables and their expectation: Recall that we defined the indicator of an event $A \in \mathcal{F}$ in Definition 7.3.2 as follows: For an event $A \in \mathcal{F}$, we denote by

$$\mathbb{I}_A(\omega) = \left\{ \begin{array}{ll} 1, & \text{if } \omega \in A, \\ 0, & \text{if } \omega \notin A, \end{array} \right.$$

the indicator variable of the event A.

- (a) For events $A, B \in \mathcal{F}$, show that
 - i. $(\mathbb{I}_A)^k = \mathbb{I}_A$ for any $k \in \mathbb{N}$,
 - ii. $\mathbb{I}_{A^c} = 1 \mathbb{I}_A$,
 - iii. $\mathbb{I}_{A\cap B} = \mathbb{I}_A \mathbb{I}_B$,
 - iv. $\mathbb{I}_{A\cup B} = \mathbb{I}_A + \mathbb{I}_B \mathbb{I}_A \mathbb{I}_B$.
- (b) Prove the fundamental bridge between probability and expectation, i.e. show that there is a one-to-one correspondence between events and indicator random variables and for any $A \in \mathcal{F}$ we have

$$P(A) = E(\mathbb{I}_A).$$

Exercice 6-2: Prove Theorem 10.2.5: Consider a discrete/continuous random variable X with finite expectation.

- (a) If X is non-negative, then $E(X) \ge 0$.
- (b) If $a, b \in \mathbb{R}$, then E(aX + b) = aE(X) + b.

Exercice 6-3: Prove Theorem 10.3.3: Let X be a discrete random variable with finite variance and consider deterministic constants $a, b \in \mathbb{R}$. Then

$$Var(aX + b) = a^2 Var(X).$$

6.2 Prerequisites: Lecture 15

Exercice 6-4: Consider a sequence of *Bernoulli* random variables $X_1, ..., X_n$ each with parameter θ resulting from independent binary trials, so that

$$P(X = 0) = 1 - \theta$$
, $P(X = 1) = \theta$.

Find the probability mass functions of the random variables

- (a) $Y = \text{Min} \{X_1, ..., X_n\}$
- (b) $Z = \text{Max} \{X_1, ..., X_n\}$

[Hint: find the ranges of Y and Z, and consider P(Y = 1), P(Z = 0).]

Week 6 Page 1 of 2

6.3 Prerequisites: Lecture 16

Exercice 6-5: Suppose that $F_{X,Y}(x,y)$ is the joint distribution function of (X,Y). Find an expression for $P(X \le x, Y > y)$ in terms of $F_{X,Y}$.

Exercice 6-6: Consider a probability space given by $\Omega = \{-1, 0, 1\}, \mathcal{F} = \mathcal{P}(\Omega)$ and P is defined by

$$P(-1) = P(0) = P(1) = \frac{1}{3}.$$

We define two discrete random variables by $X(\omega) = \omega$ and $Y(\omega) = |\omega|$.

- (a) Compute P(X = 0, Y = 1), P(X = 0) and P(Y = 1). What can you conclude?
- (b) Compute E(XY) and E(X)E(Y). What can you conclude?

Exercice 6-7: Show that discrete random variables X and Y on (Ω, \mathcal{F}, P) are independent if and only if

$$E(g(X)h(Y)) = E(g(X))E(h(Y)), \tag{6.1}$$

Problem sheet: Week 6

for all functions $g, h : \mathbb{R} \to \mathbb{R}$ for which the expectations on the right hand side exist.

Exercice 6-8: Convolution theorem: Consider jointly discrete/continuous random variables X and Y and define their sum as Z = X + Y. Find the probability mass function/density function of Z (leaving your expression as a sum/integral). If you assume that X and Y are independent, can you simplify the p.m.f./p.d.f. of Z?

Exercice 6-9: Prove Theorem 11.6.2: For jointly discrete/continuous random variables X, Y with finite expectations, we have

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

Exercice 6- 10: Prove Theorem 11.6.6: Let X, Y denote two jointly discrete/continuous random variables with finite variances. Then

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).$$

6.4 Prerequisites: Lecture 17

Exercice 6-11: Suppose that X_1, \ldots, X_n are independent $\operatorname{Ber}(p)$ random variables. Define $S_n = \sum_{i=1}^n X_i$. Use probability generating functions to show that $S_n \sim \operatorname{Bin}(n,p)$.

Exercice 6-12: Suppose that X_1, \ldots, X_n are independent Poisson random variables – not necessarily with the same parameter, i.e. $X_i \sim \operatorname{Poi}(\lambda_i)$. Define $S_n = \sum_{i=1}^n X_i$. Use probability generating functions to show that $S_n \sim \operatorname{Poi}(\sum_{i=1}^n \lambda_i, p)$.

Week 6 Page 2 of 2