Guía VI

Cálculo II

1. Determinar el radio de convergencia de cada una de las siguientes series de potencias.

a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n}.$$

 \mathbf{R} : Convergente en [1,3[y divergente fuera de el.

b)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n}}$$

R:Convergente en $[-2,0[\ \mathbf{y}\ \mathbf{divergente}\ \mathbf{fuera}\ \mathbf{de}\ \mathbf{el}.$

c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1}$$

c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n-1}}{2n-1}$ R:Convergente en [-1,1] y divergente fuera de el.

d)
$$\sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{(n-1)^2}$$

R:Convergente en [2,4] y divergente fuera de el.

- 2. Escriba la función $f(x) = \sqrt{x}$ como el polinomio de Taylor de grado 5 centrado en a = 3, más el respectivo resto.
- 3. Obtenga la serie de Taylor de $f(x) = \ln x$, centrada en a = 4, y calcule su intervalo y radio de convergencia.
- 4. Use la fórmula $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$, para demostrar que:

$$\cos^2 x = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^2 \cdot 2^{2n-1} \cdot x^{2n}}{(2n)!}.$$

5. Sea
$$f(x) = \frac{1}{1+x^2}$$

- a) Encuentre la serie de Taylor de f(x), centrada en $x_0 = 0$.
- b) Determine el radio de convergencia.
- c) A partir de la serie de f(x), obtenga la serie de Taylor de $g(x) = \arctan x$, centrada en $x_0 = 0$, con su respectivo intervalo de convergencia.
- a) Calcule los tres primeros términos, distintos de cero, del desarrollo de Taylor para la función $f(x) = \ln(\cos x)$ en torno a $x_0 = 0$.
 - b) Use el polinomio obtenido en el ítem anterior para calcular un valor aproximado de $f(\pi/20)$.

1