Problem 1: Thematic Role

Question	Noun Phrase	Thematic Role
a	John	agent
a	the sidewalk	theme
a	snow shovel	instrument
b	A raffle	theme
b	the local charity	beneficiary
c	Joe	agent
c	Susan	co-agent
c	ski	theme
d	Tom	recipient
d	a bike	theme
e	The dress	theme
e	Lisa	agent
e	matching shoes	co-theme
f	Julie	agent
f	grandmother	recipient
f	a letter	theme
g	George	experiencer
g	car	theme
h	The image	theme
h	Adobe Photoshop	instrument
h	cartoonist	agent

Problem 2: Similarities Between Vectors

(a)
$$ManhattanDistance(x,y) = \sum_{i=1}^{N} |x_i - y_i| = 3 + 5 + 4 + 5 = 17$$

Manhattan Distance of 17

(b)
$$ManhattanDistance(x,y) = \sum_{i=1}^{N} |x_i - y_i| = 5 + 4 + 5 + 3 = 17$$

Manhattan Distance of 17

(c)
$$Jaccard(x,y) = \frac{\sum_{i=1}^{N} min(x_i, y_i)}{\sum_{i=1}^{N} max(x_i, y_i)} = \frac{6+2+4+0}{9+7+8+5} = \frac{12}{29}$$

Jaccard Similarity of $\frac{12}{29}$

(d)
$$Jaccard(x,y) = \frac{\sum_{i=1}^{N} min(x_i, y_i)}{\sum_{i=1}^{N} max(x_i, y_i)} = \frac{1+3+4+2}{6+7+9+5} = \frac{10}{27}$$

Jaccard Similarity of $\frac{10}{27}$

(e)

$$Cosine(x,y) = \frac{\sum_{i=1}^{N} (x_i * y_i)}{\sqrt{\sum_{i=1}^{N} x_i^2} \sqrt{\sum_{i=i}^{N} y_i^2}} = \frac{54 + 14 + 32 + 0}{\sqrt{81 + 4 + 64 + 0} * \sqrt{36 + 49 + 16 + 25}} = 0.73$$

Cosine Similarity of 0.73

(f)

$$Cosine(x,y) = \frac{\sum_{i=1}^{N} (x_i * y_i)}{\sqrt{\sum_{i=1}^{N} x_i^2} \sqrt{\sum_{i=i}^{N} y_i^2}} = \frac{6 + 21 + 36 + 10}{\sqrt{36 + 49 + 16 + 25} * \sqrt{1 + 9 + 81 + 4}} = 0.67$$

Cosine Similarity of 0.67

Problem 3: Collins & Singer

(a)

Rule	Probability
$\textbf{If Contains}(\text{apple}) \rightarrow \texttt{PRODUCT}$	1/3
$\textbf{If Contains}(\text{apple}) \rightarrow \texttt{COMPANY}$	2/3
$\textbf{If Contains(} \textbf{tablet)} \rightarrow \mathtt{PRODUCT}$	3/4
$\mathbf{If}\;\mathbf{Contains}(\mathrm{tablet})\to\mathtt{COMPANY}$	1/4
$\textbf{If Contains}(\text{microsoft}) \rightarrow \texttt{PRODUCT}$	1/3
$\textbf{If Contains}(\text{microsoft}) \rightarrow \texttt{COMPANY}$	2/3
$\mathbf{If}\;\mathbf{Contains}(\mathbf{british})\to\mathtt{PRODUCT}$	1/2
$\textbf{If Contains}(\text{british}) \rightarrow \texttt{COMPANY}$	1/2
$\fbox{ \textbf{If Contains}(corporation)} \rightarrow {\tt COMPANY}$	3/3

(b)

Rule	Probability
$\textbf{If Contains}(\text{mobile}) \rightarrow \texttt{PRODUCT}$	2/3
$\textbf{If Contains}(\text{mobile}) \rightarrow \texttt{COMPANY}$	1/3
$\textbf{If Contains}(\text{computer}) \rightarrow \texttt{PRODUCT}$	3/4
$ \textbf{If Contains}(\text{computer}) \rightarrow \texttt{COMPANY} $	1/4
$\textbf{If Contains}(\text{tech}) \rightarrow \texttt{PRODUCT}$	1/4
$\textbf{If Contains}(\text{tech}) \rightarrow \texttt{COMPANY}$	3/4
$\textbf{If Contains}(\text{giant}) \rightarrow \texttt{COMPANY}$	3/3
$\textbf{If Contains}(\text{leader}) \rightarrow \texttt{COMPANY}$	2/2

Problem 4: Salience Values

There are four sentences with a FISH context: S1, S5, S6, and S7.

There are five sentences with a MUSIC context: S2, S3, S4, S5, and S6.

Note that S5 and S6 have both a FISH and MUSIC context.

(a) *Utah* appears in three sentences with a FISH context: **S1**, **S6**, and **S7**. *Utah* appears 4 times in the corpus.

$$salience(Utah,FISH) = \frac{P(Utah|FISH)}{P(Utah)} = \frac{3/4}{4/60} = 11.25$$

Salience value of 11.25.

(b) *Electric* appears in two sentences with a FISH context: **S5** and **S6**. *Electric* appears 3 times in the corpus.

$$salience(electric, FISH) = \frac{P(electric|FISH)}{P(electric)} = \frac{2/4}{3/60} = 10$$

Salience value of 10.

(c) Bass appears in two sentences with a FISH context: S5 and S6. Bass appears 5 times in the corpus.

$$salience(bass,FISH) = \frac{P(bass|FISH)}{P(bass)} = \frac{2/4}{5/60} = 6$$

Salience value of 6.

(d) *Utah* appears in two sentences with a MUSIC context: **S2** and **S6**. *Utah* appears 4 times in the corpus.

$$salience(Utah, MUSIC) = \frac{P(Utah|MUSIC)}{P(Utah)} = \frac{2/5}{4/60} = 6$$

Salience value of 6.

(e) *Electric* appears in three sentences with a MUSIC context: S3, S5 and S6. *Electric* appears 3 times in the corpus.

$$salience(electric, MUSIC) = \frac{P(electric|MUSIC)}{P(electric)} = \frac{3/5}{3/60} = 12$$

Salience value of 12.

(f) Bass appears in five sentences with a MUSIC context: S2, S3, S4, S5 and S6. Bass appears 5 times in the corpus.

$$salience(bass, MUSIC) = \frac{P(bass|MUSIC)}{P(bass)} = \frac{5/5}{5/60} = 12$$

Salience value of 12.

Problem 5: Antecedents and Pronouns

(a)

- John Smith
- John
- his
- him

(b)

- 10 oranges
- groceries

(c)

- 10 oranges
- groceries

- (d)
 - himself
- (e)
 - his
 - his
 - \bullet their
 - \bullet her
- **(f)**
 - It, it
- **(g)**
 - his neighbor
 - George