Midterm 1 Answer Key

- 1. i. $\forall k \in \mathbb{Z} : \exists \ell \in \mathbb{Z} : k\ell = 1$
 - ii. $\exists k \in \mathbb{Z} : \forall \ell \in \mathbb{Z} : k\ell \neq 1$
 - iii. false
 - iv. Put k=0 and let $\ell \in \mathbb{Z}$. It follows that $k\ell=0 \neq 1$.
- 2. i. $\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : x < y^2$
 - ii. $\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x \ge y^2$
 - iii. true
 - iv. Let x = -1 and choose $y \in \mathbb{R}$. We have $x < y^2$.
- 3. i. \forall sets $A, B, C : (A \subseteq B \subseteq C) \implies (A \cap B) \subseteq (A \cap C)$
 - ii. \exists sets $A, B, C : (A \subseteq B \subseteq C) \land (A \cap B) \not\subseteq (A \cap C)$
 - iii. true
 - iv. Let $x \in A \cap B$. It follows that $x \in A$ and $x \in B$. From $B \subseteq C$, it follows that $x \in C$. We conclude that $x \in A \cap C$.
- 4. i. \forall injective $f: A \rightarrow B, g: B \rightarrow C: g \circ f$ injective
 - ii. \exists injective $f: A \to B, g: B \to C: g \circ f$ noninjective
 - iii. true
 - iv. Suppose that $a, a' \in A$ with g(f(a)) = g(f(a')). By the injectivity of g we have f(a) = f(a'), and by the injectivity of f we conclude that a = a'.
- 5. i. \forall surjective $f: A \to B: \forall$ injective $g: B \to C: g \circ f$ bijective
 - ii. \exists surjective $f:A \to B: \exists$ injective $g:B \to C: g \circ f$ nonbijective
 - iii. false
 - iv. Let $f:\{1,2\} \to \{1\}$ and $g:\{1\} \to \{1\}$ be the constant functions with value 1. Observe that the composition $g \circ f$ is noninjective and thus nonbijective.
- 6. Fix M > 0, choose $N = \sqrt{M}$, and let x > N. From $x > \sqrt{M}$, it follows that $x^2 > M$.