



# GPU Accelerated Vessel Segmentation Using Laplacian Eigenmaps

Lin Cheng, Hyunsu Cho, Peter Yoon, and Jiajia Zhao Trinity College, Hartford, CT 06106

#### 1. Abstract

Laplacian eigenmap is a useful technique to improve clusterbased segmentation of multivariate images. However, this approach requires an excessive amount of computations when processing large image datasets. To that end, we present a GPU-based acceleration procedure for vessel segmentation problems.

# 2. Laplacian Eigenmap

As described in Laskaris et. al. [1], the Laplacian Eigenmap is an effective dimensionality reduction method that maps a set of multivariate *features vectors* to points on the real line. Each features vector characterizes a group of neighboring pixels referred to as a *patch*. Once the projection is completed, a conventional method can be used to classify the projected points into one or more clusters.

# 1 Generate patches

• Let **x**<sub>i</sub> be the multidimensional vector representing the *i*<sup>th</sup> patch.



### Generate the weight matrix W

 Build a weighted graph whose nodes are the terminals of the vectors. Let W be the associated weight matrix.



- Characteristics of W
  - Two endpoints that are close enough should be connected with an edge.  $\rightarrow W$  is symmetric.
  - An edge carries more weight as its endpoints are far apart.

$$W_{ij} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{M\alpha^2}\right) \exp\left(-\frac{\|\mathbf{p}_i - \mathbf{p}_j\|^2}{2\beta^2}\right)$$

- diff square()
  - Compute "difference vectors"  $\mathbf{d}_{ii}$  and  $\mathbf{f}_{ii}$ .

$$\mathbf{d}_{ij}(k) = (\mathbf{x}_i(k) - \mathbf{x}_j(k))^2$$

- $\mathbf{f}_{ij}(k) = \left(\mathbf{p}_i(k) \mathbf{p}_j(k)\right)^2$
- Divide labor among GPU blocks.
  - Fix index *j* and vary *i* from 0 to *N* 1, where *N* is the number of features vectors.
  - There is no data dependency between any two difference vectors.



- reduce(): binary reduction
- Use multiple GPU threads to compute partial sums in the shared memory.
- Synchronization is required.



#### 3 Compute Laplacian matrix L

- $L = I D^{1/2}WD^{1/2}$ 
  - D is a diagonal matrix where each entry is the sum of the corresponding column of W.
- Use cublasDsymm() for a matrix multiplication.

#### 4 Solve the generalized eigenvector problem

- A solution  $\mathbf{y} = (y_0, y_1, ..., y_{N-1})$  to the generalized eigenvector problem  $L\mathbf{y} = \lambda D\mathbf{y}$  defines the map.
- Use magma dsyevd() in MAGMA.
  - Compute all the eigenvalues and eigenvectors of a symmetric matrix.
- Components of y are the projections of the multivariate features vectors onto the real line.



## 3. Results and Performance



**GPU** 

GPU

**CPU** 



13.7 x

Performace by steps: Case 3 068

2.3 x

Case '

 Not only does the framework yield satisfactory segmentation results, but it also presents a significant performance gain, a speedup of 14x for the largest test case.

Case 3

Capillary pattern in retina

 $(448 \times 352)$ 

 Solving the generalized eigenvector problem is the most time-consuming part of the entire segmentation procedure.

#### **Testing Environment**

- 1 Nvidia Tesla C2050, 3GB memory
- 2 quad-core 2.4GHz Intel Xeon CPU, 12 GB memory
- CUDA 5.0 running on Linux OS

#### Reference

[1] N. Laskaris et. al. "Multivariate image segmentation using Laplacian eigenmaps." EUSIPCO 2004: Proc. of Euro. Signal Processing Conf: 2004.

Euro. Signal Processing Conf: 2004.
[2] J. Schmid et. al. "A GPU framework for parallel segmentation of volumetric images using discrete



600

500

300

200