西安交通大学 软件学院

操作系统原理

Operating System Principle

田丽华

3-8 消息传递

Message passing system 消息传递

If P and Q wish to communicate, they need to 若P与Q要通信,需要:

establish a *communication link* between them 建立通信连接 exchange messages via send/receive 通过send/receive交换消息

Implementation of communication link 通信连接的实现

physical (e.g., shared memory, hardware bus)物理的 (如, 共享存储, 硬件总线)

logical (e.g., logical properties)逻辑的(如,逻辑特性)

Implementation Questions

实现中的问题

How are links established? 连接如何建立?

1.

3.

How many links can there be between every pair of communicating processes? 每对通信进程有多少连接?

Can a link be associated with more than two processes? 连接可同多于两个的进程相关吗?

Implementation Questions

实现中的问题

at is the capacity of a link?
一个连接的容量是多少?

4.

Is a link unidirectional or bi-directional? 连接是无向的还是双向的?

6.

Is the size of a message that the link can accommodate fixed or variable? 连接可使用的固定或可变消息的大小?

直接通信

Processes must name each other explicitly: 进程必须显式的命名

- send (P, message) send a message to process P向进程P发消息
- receive (*Q, message*) receive a message from process Q从进程Q收消息

Properties of communication link 通信连接的特性

- Links are established automatically. 连接自动建立
- A link is associated with exactly one pair of communicating processes. 连接精确的与一对在通信的进程相关
- Between each pair there exists exactly one link. 在每一对之间就存在一个连接
- The link may be unidirectional, but is usually bidirectional.
 连接可以无向,但通常是双向的

Direct Communication 直接通信

asymmetric communication

02

Sender names the recipient, the recipient _ is not required to name the sender.

03 Disadvantage: the limited modularity

send (P, message) — send a message to process P向进程P发消息
receive (id message) — receive a message from process Q从进程Q收消息

间接通信

1.

Messages are directed and received from mailboxes (also referred to as ports).消息导向至信箱并从信箱接收(被视作端口)

- Each mailbox has a unique id. 每一个信箱有一个唯一的id
- Processes can communicate only if they share a mailbox. 仅当共享一个信箱时进程才能通信
- 2. **>**

Primitives are defined as

<u>send(A, message)</u> – send a message to mailbox A
<u>receive(A, message)</u> – receive a message from mailbox A

间接通信

- 3. **>**
- Properties of communication link 通信连接的特性
- Link established only if processes share a common mailbox 仅当进程共有一个信箱时连接才能建立
- A link may be associated with many processes.连接可同多个进程相关
- Each pair of processes may share several communication links. 每一对进程可共享多个通信连接
- Link may be unidirectional or bi-directional.连接可是无向或双向的
- 4.

Operations操作

- create a new mailbox 创建新的信箱
- send and receive messages through mailbox 通过信箱发送和接收消息
- destroy a mailbox 销毁信箱

间接通信

Mailbox sharing 信箱共享

- P1, P2, and P3 share mailbox A. P1, P2与P3共享信箱A
- P1, sends; P2 and P3 receive. P1发送; P2与P3接受
- Who gets the message?谁得到消息?

间接通信

Synchronization

同步

Message passing may be either blocking or non-blocking

2

Blocking is considered synchronous

- Blocking send has the sender block until the message is received
- Blocking receive has the receiver block until a message is available

3

Non-blocking is considered asynchronous

- Non-blocking send has the sender send the message and continue
- Non-blocking receive has the receiver receive a valid message or null

Buffering

缓冲

Queue of messages attached to the link; implemented in one of three ways.

消息队列附加在连接上;有以下三种实现方案

- Zero capacity 0 messages零容量 0 消息
 Sender must wait for receiver (rendezvous).发送者必须等待接收者
- Bounded capacity finite length of *n* messages 有界容量 *n*个消息有限长度 Sender must wait if link full.若连接满了发送者必须等待
- Unbounded capacity infinite length 无界容量 无限长度 Sender never waits.发送者从不等待