Usefull Shit

Taylor Expansions

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1} \qquad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} x^{2n}$$

Random shit I always forget

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{u(x)}{v(x)} \right] = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$\int (uv') = uv - \int (u'v)$$

Trigenometric Identities

$$e^{\pm ix} = \cos x \pm i \sin x$$

$$\cos x = \frac{1}{2} (e^{ix} + e^{-ix}) \qquad \sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$$

$$\sinh z = \frac{1}{2} (e^z - e^{-z}) \qquad \cosh z = \frac{1}{2} (e^z + e^{-z})$$

Common ODE solutions

Harmonic oscilator

$$u''(z) = -\omega^2 u(z)$$
$$u(z) = k_1 \cos(\omega z) + k_2 \sin(\omega z) = c_1 e^{i\omega x} + c_2 e^{-i\omega x}$$

Complex analysis

Usefull shit

- Positively oriented contour integrals are counter-clockwise
- $(z-z_0) < R$ means all complex numbers within radius R of z_0 in the complex field.
- In many functions, the order of it's pole is very obvious. i.e 1/(z-3) is a first order pole at z=3, and $1/(z+2i)^3$ is a third order pole at z=-2i.
- When encountered by a fraction with i in the denominator, multiply by the complex conjugate to move the i upstairs. (i.e. 1/(3+2i), multiply by (3-2i)). In general:

$$(x+iy)(x-iy) = (x^2+y^2)$$

• When showing that a contour integral is 0, an upper-bound estimate is often usefull.

$$\ln z = \ln |z| + i\theta, \qquad \theta \in [-\pi, \pi]$$

Polar representation and roots

$$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$

Powers of z:

$$z^{n} = (re^{i\theta})^{n} = r^{n}e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$$

Roots of z:

$$z^{1/n} = r^{1/n}e^{i(\theta+2\pi k)/n},$$
 $k \in \{0, 1, 2, ..., n-1\}$

 $z^{1/n}$ has n roots, spread evenly in a circle in the complex plane.

Complex Series

The complex sequence

$${z_n} = {z_1, z_2, z_3, ...}$$

converges if both the real and imaginary parts of z_n approaches zero for large n.

The complex series

$$s_n = \sum_{k=1}^n z_k$$

converges if z_k converges.

Ratio test: if $\frac{z_{n+1}}{z_n} \leq 1$ for large n, then z_k converges.

Complex Power Series

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Around a point z_0 , series converges for the area of z where

$$|z - z_0| < \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R$$

where R is called the radius of convergence.

Analytic Functions

Analytic functions are special in that they treat z = x + iy as a single unit, i.e. respect the complex structure.

If the output can be expressed solely in z (without x or y), the function is analytic. Remember that $x = \frac{1}{2}(z+z^*)$ and $= \frac{1}{2i}(z-z^*)$.

An function analytic in a region always has an unique derivatives of all orders in that region.

Regular point: Point where f is analytic. Singular point: Point where f is not analytic.

Cauchy-Riemann Equations

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}$$
 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Criteria for a function to be analytic in a region, derived from demanding existence of the derivative.

Harmonic Functions

Harmonic functions are solutions to the ${\bf 2D}$ Laplace equation:

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

If f(z) = u(x, y) + iv(x, y) is analytic in some region, then u(x, y) and v(x, y) are harmonic functions.

Theorem: Given a harmonic function u(x,y), we can always find it's harmonic conjugate v(x,y) such that f=u+iv is an analytic function

Contour Integrals of Complex Functions

$$\int_{\Gamma} f(z) \, \mathrm{d}z$$

Upper Bound Estimate of Contour Integral

$$\left| \int_{\Gamma} f(z) \, \mathrm{d}z \right| \le M \cdot L$$

where M is the maximum value of f(z) on Γ , and L is the length of Γ .

Independence of Path

If Γ_1 and Γ_2 are two contours that can be continously deformed into one another (without crossing singularities), then

$$\int_{\Gamma_1} f(z) \, \mathrm{d}z = \int_{\Gamma_2} f(z) \, \mathrm{d}z$$

Cauchy's Theorem: As a result, any contour integral that doesn't enclose a singularity, is 0, as it can be shrinked to a point.

Cauchy's Integral Formula

Formula for evaluating the contour integral around a n+1'th order pole at z_0 .

$$\int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

Note: Rewrite the expression until it is on the form above. If the contour contains several singularities, rewrite the above expression to handle each of the poles seperately.

Taylor Series

$$f(z_0) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \qquad a_n = \frac{f^{(n)}(z_0)}{n!}$$

Theorem: If f(z) is analytic in the disk $|z - z_0| \le R$, then the Taylor series converges for all z inside the disk.

Laurent Series

We combine the *Taylor* series with a *Principal* series of negative powers.

$$f(z_0) = \sum_{n=0}^{\infty} a_k (z - z_0)^n - \sum_{n=1}^{\infty} b_k \frac{1}{(z - z_0)^n}$$

- The Taylor series of positive powers converge *inside* some circle $|z z_0| < R_2$.
- The Principal series of negative powers converge *outside* some circle $R_1 < |z z_0|$.
- The Laurent series converges in the donut between the two circles, $R_1 < |z z_0| < R_2$.

Tip: If you only need the series to converge outside/inside some circle, you only need one of the series.

The factor b_0 is called the **residue** of f at z_0 .

Finding Laurent Series

If the Laurent Series should expand from a point $z_0 \neq 0$, make a substitution $w = z - z_0$, such that the series expands from w = 0.

By Geometric Series: Manipulate the function to the form

$$f(w) = C(w) \cdot \frac{1}{1 - g}$$

where g is any factor/power of w, and C(w) is any function of w. The Laurent Series is then given as

$$f(w) = C(w) \cdot \frac{1}{1-g} = \begin{cases} C(w) \sum_{n=0}^{\infty} w^n & \text{(Taylor)} \\ -C(w) \sum_{n=1}^{\infty} \frac{1}{w^n} & \text{(Principal)} \end{cases}$$

By Taylor Expansion: If the function has no singularities, you can simply make a Taylor expansion of it. Make sure to do the substitution first.

Singularities and zeros

The order of a zero or singularity is the number of times you must derivate the function until the zero or infinity disapears.

Assume f(z) has an isolated singularity at z_0 , and it's Larent series is as given above.

- If all $b_n = 0$, z_0 is a removable singularity (not actually a singularity).
- If $b_n \neq 0$ for some n, but zero for all factors above n (such that $(z-z_0)^{-n}$ is the biggest negative power), we say that z_0 is a *pole* of order n.
- If there are infinite negative terms, we say that z_0 is an essential singularity.

Residue Theory

Any integral over a contour Γ can be split up into integrals over only infinitesimally small contours around all singularities in Γ .

An contour integral containing N singularities z_k is given as the sum of the residues at all the singularities.

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} Res(f, z_k)$$

Ways of finding residues

- <u>Use Laurent Series</u> (always works): Write out the Laurent Series of the expression around the singularities, and find the b_1 term (the 1/z coefficient).
- For Simple Poles (alt 1):

$$Res(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

• For Simple Poles (alt 2):

If f is a rational function $f(z) = \frac{P(z_0)}{Q(z_0)}$:

$$Res(f, z_0) = \frac{P(z_0)}{Q'(z_0)}$$

• For Multiple Poles: If f has a pole of order m at z_0 , and $M \ge m$, then

$$Res(f, z_0) = \lim_{z \to \infty} \frac{1}{(M-1)!} \frac{\mathrm{d}^{M-1}}{\mathrm{d}z^{M-1}} [(z-z_0)^M f(z)]$$

Naturally, if you know the order of the pole, you pick M=m

Applications to Real Integrals

Type I: Trigonometric integrals over $[0, 2\pi]$

$$\int_0^{2\pi} u(\cos\theta, \sin\theta) \,\mathrm{d}\theta$$

Substitute for

$$\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$
 $\sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right)$ $d\theta = \frac{dz}{iz}$

The integral is now around a circular contour in the complex plane, centered around (0,0) with radius 1. Evaluate the integral by finding singularities inside the circle and solving for residues.

Type IIa: Rational Functions Over $[-\infty, \infty]$

$$I = \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx$$

$$I = 2\pi i \sum Res(f, z_n)$$

where z_n are the singularities in the *upper* plane.

Works if

- $degree(Q) \ge degree(P) + 2$
- f is analytic on and above the complex plane.

Jordan's Lemma

If m > 0 is real, and P and Q are polynomials such that P/Q is rational, and $degree(Q) \ge degree(P) + 1$ then:

$$\lim_{\rho \to \infty} \int_{C_{-}} \frac{P(z)}{Q(z)} e^{imz} dz = 0$$

where C_{ρ} is a half-circle contour with radius ρ

Same holds for the lower plane if m < 0.

Type IIb: ... with Trigonometric Functions

$$I = \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos(mx) \, dx \qquad \text{(or sin)}$$

Type III: Singularities on the real axis (Principal Value)

When a real integral passes singularities, we say that the integral is not defined, but it's **principal value** is. It behaves just as an ordinary integral:

$$PV \int_{a}^{b} f(x) dx = \lim_{r \to 0^{+}} \left[\int_{a}^{C-r} f(x) dx + \int_{c-r}^{b} f(x) dx \right]$$

where C is a singularity. Using the same logic as in Type II, with an added infinite half-circle on the upper plane, this evaluates to

$$PV \int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k} Res(f; z_k) + \pi i \sum_{j} Res(f; z_j)$$

where z_k are singularities in the upper half plane, and z_j are singularities on the real axis.

We see that singularities on the exit contribute half of those above.

Ordinary Differential Equations

First Order, Linear, ODEs - Integrating Factor $\,$

$$y'(x) + P(x)y(x) = Q(x)$$

$$y(x)\mu(x) = \int Q(x)\mu(x) dx + C$$

with

$$\mu(x) = e^{\int P(x) \mathrm{d}x}$$

Homogenous ODEs

$$y'' + P(x)y' + Q(x)y = 0$$

Properties

- Linear combination of solutions is also a solution
- General solution on form $y(x) = c_1y_1(x) + c_2y_2(x)$
- \bullet Linearly independent solutions have a Wronskian of 0.

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}$$

Variation of the constant

If you have one of the two linearly indepedent solutions, you can find the other as $y_2(x) = C(x) \cdot y_1(x)$, where C(x) is a functions determined by inserting $y_2(x)$ into the ODE.

When you arrive at a solution for C(x), you may discard any constants or coefficients, i.e. $C(x) = \alpha x^3 + \beta$.

${\bf Constant\ coefficients\ \textbf{-}\ Particular\ Equation}$

$$y''(x) + ay'(x) + by(x) = 0$$

Solve the particular equation

$$\lambda^2 + a\lambda + b = 0$$

for λ_1 and λ_2 .

Two, real roots

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

One, real root

$$y(x) = (C_1 + xC_2)e^{\lambda x}$$

Two, complex roots

$$= e^{-a/2x} \left[\hat{A} \cos \omega x + \hat{B} \sin \omega x \right]$$

Euler-Cauchy Equations

$$x^2y'' + a_1xy' + a_0y = 0$$

Introducing

 $x = e^z$

2

 $z = \ln |x|$

The equation can be rewritten to

$$\frac{\partial^2 y}{\partial z^2} + (a_1 - 1)\frac{\partial y}{\partial z} + a_0 y = 0$$

Solve the ODE, and insert for z.

Power methods

- Represent P(x) and Q(x) as power series (polynomials).
- Assume solution on the form

$$-y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$-y'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$-y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

- Insert back into ODE.
- Split into equations of matching powers of x.

This will give you one or two undetermined coefficients. The equations maybe give the coefficients as a series depending on each other, like $a_{s+1} = a_s^2$. If the series are odd/even, two undetermined coefficients are required to describe them, so the solution is complete.

Fröbenius method

$$x^{2}y'' + xb(x)y' + c(x)y = 0$$

Assuming solution on form

$$y_p(x) = \sum_{m=0}^{\infty} a_m x^{m+s}$$

where s is some real number determined the *indicial equation*

$$s(s-1) + b_0 s + c_0 = 0$$

where $b_0 = b(0)$, and $c_0 = c(0)$

Three possible scenarios:

- Different roots, $s_1 \neq s_2$, and $s_1 s_2 \neq$ integer.
 - Two independent solutions $y_i(x) = x^{si} \sum_{m=0}^{\infty} a_0 x^m$
- Different roots, $s_1 \neq s_2$, but $s_1 s_2 = \text{integer}$. $(s_1 > s_2)$.
 - Solve for both by Power Series.
 - Often, s_2 gives the complete solution (two undetermined coefficients), so try this first.
 - Sometimes, only s_1 gives a solution. Find the other by variation of the constant.
- Double root, $s_1 = s_2$.
 - Find the solution by Power Series.
 - Find the second solution by variation of the constant.

Inhomogenous ODEs

$$y'' + P(x)y' + Q(x)y = R(x)$$

Remember to always rewrite to this form.

Properties

- Solutions on form $y(x) = y_h(x) + y_p(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x)$.
- $y_h(x)$ is the solution to the homogenous equation.
- $y_p(x)$ is any solution to the whole ODE.
- Since y_h contains two arbitrary constants, y_p should contain none.

Inhomo ODEs with constant coefficients

$$y'' + ay' + by = R(x)$$

- Make a guess at y_p with the same form as R(x), with unknown coefficients.
- Insert back into ODE to solve for coefficients.

Special case: $R(x) = Ae^{kx}$.

Let α and β be the roots of $\lambda^2 + a\lambda + b = 0$.

- 1. If $k \neq \alpha, \beta$: Try $y_p = Ce^{\lambda x}$.
- 2. If $k = \alpha$ or β : Try $y_p = Cxe^{\lambda x}$.
- 3. If $k = \alpha = \beta$: Try $y_p = Ce^{\lambda x}$.

Inhomo ODEs with varying coefficients

$$y'' + P(x)y' + Q(x)y = R(x)$$

Factorization

If u(x) is a known solution to the homo-ODE, a particular solution is $y_p = u(x) \cdot v(x)$ where

$$w' = v$$

$$w' + \left[\frac{2u'}{u} + P\right]w = \frac{R}{u}$$

Solve the ODE for w with integrating factor.

Variation of parameters

$$y_p = -y_1 \int \frac{y_2 R}{W} dx + y_2 \int \frac{y_1 R}{W} dx$$

where y_1 and y_2 are known linearly indepedendent solutions to the homo-ODE.

NOTE: Remember that R(x) is the RHS after the ODE is rewritten on the standard form.

Trigonometric Functions

Usefull Shit

• recognize **odd** and **even** integrands. I.e $\int_{-\infty}^{\infty} \sin x/x^2 = 0$ due to odd, and $\int_{-\infty}^{\infty} \cos x/(1+x^2) = 2 \int_{-\infty}^{\infty} \cos x/(1+x^2)$ due to even.

Orthogonality

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \pi \delta_{mn}$$

Fourier Series

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right)$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
 $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L} \qquad c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L}$$

Even and Odd functions

If f(x) is **even** [f(x) = f(-x)]:

$$a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
 $b_n = 0$

If f(x) is **odd** [f(x) = -f(-x)]:

$$a_n = 0$$
 $b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$

Dirichlet Conditions for Fourier Series

- 1. Finite number of min/max in interval.
- 2. Finitite number of (only) finite discontinuities.

If this holds, then the series will converge to f(x) at all points. At discontinuities, the series will converge to the mid-point.

Parseval's Theorem

$$\int_{-L}^{L} |f(x)|^2 dx = 2L \sum_{-\infty}^{\infty} |c_n|^2$$

Fourier Transforms

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx} dk \qquad F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

Odd and even functions

If f(x) is an odd function, f(x) = -f(-x), the Fourier transform can be done using only sine (as cosine is symmetric around 0):

$$f(x) = \sqrt{\frac{2}{\pi}} i \int_{0}^{\infty} F(k) \sin(kx) dk \quad F(k) = \sqrt{\frac{2}{\pi}} i \int_{0}^{\infty} f(x) \sin(kx) dx$$

If f(x) is even, f(x) = f(-x), we need only cosine (as sine is anti-symmetric):

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(k) \cos(kx) dk \quad F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos(kx) dx$$

FT of a derivative

$$\mathcal{F}\Big[f^{(n)}(x)\Big] = (ik)^n \mathcal{F}[f(x)]$$

Partial Differential Equations

Notes

- In symentrical systems, it seems your can switch x<->y if it
 is required to suit boundary conditions (example: Diritchlet
 conditions are at x=a instad of at y=b).
- When resulting in cos/sin solutions of frequencies, include n=0 for cos, as it gives a non-zero solution, but not for sin.

Separation of variables

1) The the solution function as a product of functions of each variable, i.e:

$$u(x,y) = X(x)Y(y)$$
 $u(r,\theta) = R(r)T(\theta)$

- 2) Insert this into the equation, and separate the equation into parts of only each variable. Each side must then be constant, and equals some *separation constant*.
- 3) Solve each side of the equation (equaling the separation constant), giving an infinite set of eigenfunctions, $u_n(x, y)$ for the equation.
- 4) The final solution is a linear combination of the eigenfunctions.

$$u(x,y) = \sum_{n=-\infty}^{\infty} c_n u_n(x,y)$$

Laplace Equation - 2D Cartesian

$$\nabla u(x,y) = 0$$

Separation of variables, u(x,y) = X(x)Y(y) gives solutions

$$u(x,y) = X(x)Y(y) = \begin{cases} e^{ky} \\ e^{-ky} \end{cases} \times \begin{cases} \sin(kx) \\ \cos(kx) \end{cases}$$

Diritchlet BC: u(x,0) = u(0,y) = u(a,y) = 0, u(x,b) = f(x) Eigenfunctions on form

$$u_n(x,y) = A_n F_n(x) G_n(x) = A_n \sin(n\pi x/a) \sinh(n\pi y/a)$$

Wave Equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2}{\partial t}$$

Separation of variables, u(x,t) = F(x)G(t) gives equations

$$F''(x) = -k^2 F(x)$$
 $\ddot{G}(t) = -k^2 c^2 G(t)$

where the separation constant, $-k^2$ must be negative, else the solutions would blow up.

The equations has solutions on the form

$$y(x,t) = \begin{cases} \sin(kx) \\ \cos(kx) \end{cases} \times \begin{cases} \sin(kct) \\ \cos(kct) \end{cases}$$

The end-points are usually fixed at 0, leaving only the $\sin(kt)$ term, and forcing $k = n\pi/L$.

If the velocity is 0 at t=0, we discard the sin-velocity term and get

$$y(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi ct}{L}\right)$$

If position is 0 at t = 0, we discard the cos-velocity term instead.

Initial position will be on the form

$$y(x,0) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) = f(x)$$

where f(x) is the initial position or velocity. The coefficients b_n are now Fourier coefficients, given as:

$$b_n = \frac{1}{2L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Orthogonal Functions

Functions on the form

$$p(x)y'' + p'(x)y' + [q(x) + \lambda r(x)]y = 0$$

on some interval [a,b] has solutions as linear combinations of eigenfunctions $y_n(x)$ which are orthogonal with respect to r(x) such that

$$\int_{a}^{b} r(x)y_{n}(x)y_{m}(x)^{*} dx = 0 \quad \text{for } \lambda_{n} \neq \lambda m$$

Any function can be written as a linear combination of these eigenfunctions \sim

$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x)$$

then the set $\{y_n(x)\}\$ is complete. The coefficients a_n are determined by the orthogonality:

$$a_n = \int_a^b f(x)r(x)y_n(x)^* dx$$