Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MAT201

Course Name: Partial Differential equations and Complex analysis

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions. Each question carries 3 marks

Marks

- Derive a partial differential equation from the relation $z = (x + y) f(x^2 y^2)$ (3)
- Solve using direct integration $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ (3)
- Solve 2z=xp+yq. (3)
- Write any three assumptions in deriving one dimensional heat equation. (3)
- Show that an analytic function f(z) = u+iv is constant if its real part is constant. (3)
- Show that the function $u = \sin x \cos hy$ is harmonic. (3)
- 7 Find the Maclaurin series of $f(z) = \sin z$ (3)
- 8 Evaluate $\oint_C \ln z \, dz$, where C is the unit circle |z| = 1. (3)
- 9 Find all singular points and residue of the function cosec z (3)
- Determine the location and order of zeros of the function $sin^4(\frac{z}{2})$ (3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

- 11 (a) Form the Partial differential equation by eliminating the arbitrary constants (5) from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$
 - (b) Solve $2xz p x^2 2qxy + pq = 0$ (9)
- 12 (a) Solve $\frac{\partial^3 z}{\partial^2 x \partial y} = \text{Cos}(2x+3y)$ (7)
 - (b) Solve $x^2 (y-z)p + y^2 (z-x)q = z^2 (x-y)$

Module 2

- Derive the solution of the one dimensional wave equation $\frac{\partial^{2y}}{\partial t^2} = c^2 \frac{\partial^{2y}}{\partial x^2}$ (6) using variable separable method.
 - (b) An insulated rod of length 1 has its ends A and B maintained at 0^o C and

0800MAT201122001

 100^{0} C respectively until steady state conditions prevail. If B is suddenly reduced to 0^{0} C and maintained at 0^{0} C, find the temperature at a distance x from A at time t.

- 14 (a) Derive the one dimensional heat flow equation. (6)
 - (b) A tightly stretched string of length l with fixed ends is initially in equilibrium position. If it is set vibrating by giving each points a velocity $v_0 sin^3(\frac{\pi x}{l})$. Find the displacement y(x,t).

Module 3

- 15 (a) Find an analytic function whose real part is $u = \sin x \cosh y$ (7)
 - (b) Find the image of the strip $\frac{1}{2} \le x \le 1$ under the transformation $w = z^2$
- 16 (a) Check whether w = log z is analytic. (8)
 - (b) Show that under the transformation $w = \frac{1}{z}$, the circle $x^2 + y^2 6x = 0$ is transformed into a straight line in the W plane. (6)

Module 4

- 17 (a) Integrate counter clockwise around the unit circle $\oint_C \frac{\sin 2z}{z^4} dz$ (7)
 - (b) Find the Taylor series of $\frac{1}{1+z}$ about the centre $z_0 = i$ (7)
- 18 (a) Evaluate $\int_0^{1+i} (x y + ix^2) dz$ along the parabola $y = x^2$. (7)
 - (b) Evaluate $\oint_C \frac{\log z}{(z-4)^2} dz$ counter clockwise around the circle |z-3|=2. (7)

Module 5

- Find the Laurent's series expansion of $\frac{z^2-1}{z^2-5z+6}$ about z=0 in the region (5) 2 < |z| < 3
 - (b) Evaluate $\int_0^{2\pi} \frac{d\theta}{\sqrt{2} \cos\theta}$. (9)
- 20 (a) Evaluate $\oint_C \frac{z-23}{z^2-4z-5} dz$ where C : |z-2-i| = 3.2 using Residue (5) theorem.

(b) Evaluate
$$\int_0^\infty \frac{(x^2+2)dx}{(x^2+1)(x^2+4)}.$$
 (9)
