P01. Regular Language

For the following pair of regular expressions, find the Finite Automaton that defines L1∩L2:

L1: (a+b)*a

L2: (a+b)*aa(a+b)*

Must find the compliment of both languages

Note: L1 accepts all strings that end in a

Find Compliment

L1':

Note: L2 accepts all strings that contain 2 as

Find Compliment **L2'**:

Must find L1' + L2'

(1) Start State:
$$(z1) = (x1)$$
 or $(y1) (-)(+)$


```
(2) At state (z1) which is (x1) or (y1) if reading a, L1'->(x2) and L2'->(y2), so (z2) = (x2) or (y2) (+) if reading b, L1'->(x1) and L2'->(y1), so (z1) = (x1) or (y1) (not new) (+)
```



```
(3) At state (z2) which is (x2) or (y2) if reading a, L1'->(x2) and L2'->(y3), so (z3) = (x2) or (y3) if reading b, L1'->(x1) and L2'->(y1), so (z1) = (x1) or (y1) (not new) (+)
```


(4) At state (**z3**) which is (x2) or (y3) if reading a, L1'->(x2) and L2'->(y3), so (**z3**) = (x2) or (y3) (not new) if reading b, L1'->(x1) and L2'->(y3), so (**z4**) = (x1) or (y3) (+)

(4) At state (**z4**) which is (x1) or (y3) if reading a, L1'->(x2) and L2'->(y3), so (**z3**) = (x2) or (y3) (not new) if reading b, L1'->(x1) and L2'->(y3), so (**z4**) = (x1) or (y3) (not new)

Must find the compliment of this union of L1' + L2'

P02. Non-regular Language

Use the pumping lemma to show that the following language is non-regular: $a^{(n)} b^{(2n)}$, n>1

- 1. Need to find the substrings x y and z such that y can be pumped
- 2. This language will have some as then twice that number of bs

Lets try a few out:

X Y Z a abbbbbb

If y is pumped there will be too many as

X Y Z aaa bbbb bb

If y is pumped there will be too many **b**s

$$\frac{X}{aa}$$
 $\frac{Y}{abb}$ $\frac{Z}{bbbb}$

If y is pumped the string will be out of order, we will get abbabb

Cannot find a substring to be pumped that satisfies the properties of the language, so this language is non regular