

Alessandro Zinni, Filippo Momesso, Gabriele Padovani, Thomas De Min

Table of Contents

- Initial source;
- Background on Semi-supervised image classification;
- Pseudo Labeling;
- Consistency Regularization;
- Hybrid methods;
- USB;
- Experiments.

Initial Source

A Survey on Deep Semi-supervised Learning

Xiangli Yang, Zixing Song, Irwin King, Fellow, IEEE, Zenglin Xu, Senior Member, IEEE

Abstract—Deep semi-supervised learning is a fast-growing field with a range of practical applications. This paper provides a comprehensive survey on both fundamentals and recent advances in deep semi-supervised learning methods from perspectives of model design and unsupervised loss functions. We first present a taxonomy for deep semi-supervised learning that categorizes existing methods, including deep generative methods, consistency regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Then we provide a comprehensive review of 52 representative methods and offer a detailed comparison of these methods in terms of the type of losses, contributions, and architecture differences. In addition to the progress in the past few years, we further discuss some shortcomings of existing methods and provide some tentative heuristic solutions for solving these open problems.

Background

- Dataset can be divided into 2 subset:
 - Labeled;
 - Unlabeled;
- Objective: Learning with small set of unlabeled examples:
 - L << U.

$$\min_{\theta} \sum_{x \in X_L, y \in Y_L} \mathcal{L}_s(x, y, \theta) + \alpha \sum_{x \in X_U} \mathcal{L}_u(x, \theta) + \beta \sum_{x \in X} \mathcal{R}(x, \theta)$$
supervised loss
unsupervised loss
regularization

Pseudo-labeling

- PL methods use confident predictions to drive the search:
 - Network jointly trained with labeled and unlabeled data;
 - High confidence predictions on unlabeled data used as pseudo-lab $\{0.2,0.1,0.7,0.0\}$ [0,0,1,0]
 - The corresponding samples are added to the labeled set and used for supervised training;
 - Unlabeled data can also be used for regularization;
- Methods:
 - Entropy Minimization;
 - Tri-Net.

Tri-net

- Three classifiers and separated labeled datasets;
- Each dataset augmented with pseudo-labeled samples;
- Pseudo-Labels computation is based on agreement.

Consistency Regularization

- Consistency regularization term applied to the final loss;
- Force similar outputs to different perturbations of the same sample;
- Methods:
 - Π-Model;
 - Temporal Ensembling;
 - Mean Teacher;
 - Virtual Adversarial Training.

П-Model & Temporal Ensembling

Mean Teacher

Virtual Adversarial Training

$$LDS(x) = D \left[h_{\hat{\theta}, \hat{\phi}}(x), h_{\theta, \phi}(x + r_{\text{vadv}}) \right]$$

$$r_{\text{vadv}} = \underset{r; ||r||_{2} \le \epsilon}{\operatorname{argmax}} D \left[h_{\hat{\theta}, \hat{\phi}}(x), h_{\theta, \phi}(x + r) \right]$$

Hybrid methods

- Methods that combine Pseudo Labeling and Consistency Regularization;
- Two families:

FixMatch

Dash FlexMatch CRMatch

MixMatch

ReMixMatch

FixMatch

Follow-up:

- Dash
- FlexMatch

CRMatch

MixMatch & ReMixMatch

MixMatch

ReMixMatch

Distribution alignment Berthelot et al., MixMatch and ReMixMatch, both 2019

Augmentation Anchoring

USB

USB: A Unified Semi-supervised Learning Benchmark for Classification

Yidong Wang^{1,2,3*}, Hao Chen^{4*}, Yue Fan^{5*}, Wang Sun⁶, Ran Tao⁴, Wenxin Hou⁷, Renjie Wang⁸, Linyi Yang², Zhi Zhou⁸, Lan-Zhe Guo⁸, Heli Qi⁹, Zhen Wu⁸, Yu-Feng Li⁸, Satoshi Nakamura⁹, Wei Ye¹⁰, Marios Savvides⁴, Bhiksha Raj⁴, Takahiro Shinozaki³, Bernt Schiele⁵, Jindong Wang^{1†}, Xing Xie¹, Yue Zhang^{2†}

¹Microsoft Research Asia, ²Westlake University, ³Tokyo Institute of Technology, ⁴Carnegie Mellon University, ⁵Max-Planck-Institut für Informatik, ⁶Tsinghua University, ⁷Microsoft STCA, ⁸Nanjing University, ⁹Nara Institute of Science and Technology, ¹⁰Peking University

USB

- PyTorch benchmark for Semi-supervised classification;
- Audio, Text, and Vision domains;
- Most of the presented methods are implemented;
- Each approach trains a ViT-Small.

Experiments

- We conducted experiments on 6 different approaches;
- When choosing them we tried to include:
 - Basic methods;
 - Popular methods;
 - State of the Art methods;
- Dataset used: CIFAR-100 due to restricted computational resources;
- Hardware: a single NVIDIA Tesla K80 GPU.

Experiments

TABLE I ACCURACIES ON CIFAR-100 WITH 200 AND 400 LABELS.

	Method	200 labels	400 labels
USB	Pseudo-Labeling	$66.84_{\pm 1.20}$	$74.71_{\pm 0.67}$
	Π-model	63.76 ± 0.27	$73.51_{\pm 0.64}$
	Mean Teacher	64.39 ± 0.38	74.03 ± 0.37
	VAT	68.39 ± 1.37	$78.71_{\pm 0.32}$
	MixMatch	$62.57_{\pm 0.58}$	$73.83_{\pm0.24}$
	ReMixMatch	$79.15_{\pm 1.42}$	$83.20_{\pm 0.59}$
	FixMatch	69.55 ± 0.65	80.52 ± 0.93
	Dash	$69.81_{\pm 1.34}$	$81.10_{\pm 0.42}$
	CRMatch	$70.57_{\pm 1.11}$	81.50 ± 0.26
	FlexMatch	$72.92_{\pm 0.90}$	$82.33_{\pm 0.66}$
Ours	Pseudo-Labeling	66.84	74.05
	Π-Model	64.06	74.33
	VAT	67.95	77.80
	ReMixMatch	72.83	80.76
	FixMatch	69.30	77.17
	FlexMatch	73.32	76.03
Lower Bound	Supervised	$64.37_{\pm 0.07}$	$73.92_{\pm 0.50}$
Upper Bound	Fully Supervised	$91.56_{\pm 0.07}$	

Results

- Comparison between USB results and ours;
- Some methods are worse due to insufficient computational power.

Next milestone

- Implementation of a method and support for TinyImagenet dataset not present in USB;
- Evaluation of SSL in the case of cross-domain training on Adaptiope,

Thanks for your attention