Quiz-4

 $D \subseteq \mathbb{R}$ such that $\exists a_D \in \mathbb{R}^+ : a_D > 0$ and $\forall d \in D, d \geq a_D$

$$f_n(x) := \frac{nx}{1 + n^2 x^2}$$

Need to show that this sequence converges uniformly on D, but not on $[0, \infty)$

Proof:

$$f_n(x) := \frac{nx}{1 + n^2 x^2} = \frac{\frac{1}{nx}}{\frac{1}{nx} + nx} < \frac{1}{nx}$$
$$[\because n, x > 0 \implies \frac{1}{nx} + nx > 1]$$

Showing uniform convergence to 0 on D

Fix any set D as stipulated, with $a := a_D$; Also, let $x \in D \implies x \ge a_D > 0 \implies \frac{1}{x} \le \frac{1}{a_D}$ And let $\epsilon = \frac{1}{n}$ where $n \in \mathbb{N}$. For this ϵ , define $\delta_{\epsilon} := \frac{2}{a\epsilon} = \frac{2n}{a}$. So that,

$$k > \delta_{\epsilon} \implies |f_k(x) - 0| < \frac{1}{kx} \le \frac{1}{ka} < \frac{1}{\delta_{\epsilon}a}$$
Thus, $|f_k(x)| < \frac{a\epsilon}{2} \cdot \frac{1}{a} = \epsilon/2 < \epsilon$

Showing non-uniform pointwise convergence to 0 on $[0, \infty)$

let
$$x \in [0, \infty)$$
, and $\epsilon = \frac{1}{n}$

if
$$x = 0$$
, then $f_n(x) = f_n(0) = 0 < \frac{1}{n} = \epsilon$
else, if $x \in (0, \infty)$, then define $\delta_x = \frac{2n}{x}$
 $k > \delta_x \implies |f_k(x) - 0| < \frac{1}{kx} < \frac{1}{\delta_x x} = \frac{x}{2nx} = \epsilon/2 < \epsilon$

So, if the sequence of $f_n(x)$ uniformly converges on $[0, \infty)$, then it does so to 0. Suppose, if at all possible, that $f_n(x) \rightrightarrows 0$. So, for $\epsilon = \frac{1}{3}$, $\exists \delta > 0$ such that

$$\forall x \in [0, \infty), n > \delta \implies |f_n(x)| < \frac{1}{3}$$

But, taking $x = x_{\delta} := \frac{1}{(\delta+1)}$ gives

$$|f_{\delta+1(x_{\delta})}| = \frac{(\delta+1)x}{1+(\delta+1)^2x^2} = \frac{1}{2}$$

Thus, for any δ, x_{δ} is such that

$$|f_{\delta+1(x_{\delta})}| = 0.5 > 0.\overline{3} = \epsilon$$

Hence, the sequence of funtions can't uniformly converge on $[0, \infty)$.