$$2^{n+1} - 1$$
. **3. a)** $a_n = 2a_{n-1} + a_{n-5}$ for $n \ge 5$ **b)** $a_0 = 1$, $a_1 = 2$, $a_2 = 4$, $a_3 = 8$, $a_4 = 16$ **c)** 1217 **5.** 9494

4.

We'll approach this problem working backwards. Consider the situation where the bill costs $n \geq 100$ pesos. Then we can break into cases based on the last denomination in the payment: they could have finished their payment with a 1 peso coin, a 2 peso coin, etc. Let a_n be the number of ways to pay n pesos given the denominations listed. In each of these cases, if the last denomination they paid was worth p pesos, then the number of ways they could have paid n pesos is a_{n-p} . Thus, summing the terms from each of the cases, we have $a_n = a_{n-1} + a_{n-2} + 2a_{n-5} + 2a_{n-10} + a_{n-20} + a_{n-50} + a_{n-100}$.

7. a)
$$a_n = a_{n-1} + a_{n-2} + 2^{n-2}$$
 for $n \ge 2$ **b)** $a_0 = 0$, $a_1 = 0$ **c)** 94

9. a)
$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$
 for $n \ge 3$ **b)** $a_0 = 1$, $a_1 = 2$, $a_2 = 4$ **c)** 81 **11. a)** $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$ **b)** $a_0 = 1$, $a_1 = 1$

c) 81 **11. a**)
$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 2$ **b**) $a_0 = 1$, $a_1 = 1$

c) 34 **13. a)**
$$a_n = 2a_{n-1} + 2a_{n-2}$$
 for $n \ge 2$ **b)** $a_0 = 1$, $a_1 = 3$

c) 34 **13. a)**
$$a_n = 2a_{n-1} + 2a_{n-2}$$
 for $n \ge 2$ **b)** $a_0 = 1$, $a_1 = 3$

c) 448 **15. a)**
$$a_n = 2a_{n-1} + a_{n-2}$$
 for $n \ge 2$ **b)** $a_0 = 1$, $a_1 = 3$

c) 448 **15. a)**
$$a_n = 2a_{n-1} + a_{n-2}$$
 for $n \ge 2$ **b)** $a_0 = 1$, $a_1 = 3$

c) 239 **17. a)**
$$a_n = 2a_{n-1}$$
 for $n \ge 2$ **b)** $a_1 = 3$ **c)** 96

17. a)
$$a_n = 2a_{n-1}$$
 for $n \ge 2$ b) $a_1 = 3$ c) 96

19. a)
$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 2$ **b**) $a_0 = 1$, $a_1 = 1$ **c**) 89 **21. a**) $R_n = n + R_{n-1}$, $R_0 = 1$ **b**) $R_n = n(n+1)/2 + 1$