MATH117 Mathematics for Architects

Week

- 4. Intervals
- 5. Cartesian Coordinates
- 6. Functions
- 7. Sigma Notation

Intervals

Definiti<u>on</u>

A subset of \mathbb{R} is called an *interval* if

- 1 it contains at least 2 numbers; and
- 2 it doesn't have any holes in it.

Example

The set $\{x \mid x \text{ is a real number and } x > 6\}$ is an interval.

6

Because 6 is not in this set, we use \circ at 6.

Example

The set of all real numbers x such that $-2 \le x \le 5$ is an interval.

-2 5

Because -2 and 5 are in this set, we use \bullet at -2 and 5.

Example

The set $\{x \mid x \in \mathbb{R} \text{ and } x \neq 0\}$ is not an interval.

a hole at 0

A finite interval is

- *closed* if it contains both its endpoints;
- *half-open* if it contains one of its endpoints;
- open if it does not contain its endpoints;

Notation	Set	Туре	Picture
(a,b)	$\{x a < x < b\}$	open	a b
[a,b]	$\begin{cases} x a \le x \le b \end{cases}$	closed	a b
[a,b)	$\begin{cases} x a \le x < b \end{cases}$	half open	a b
[a,b]	$\{x a < x \le b\}$	half open	a b

An infinite interval is

- *closed* if it contains a finite endpoint;
- lacktriangledown open if it is not closed.

There is one exception to this rule: The whole real line is called both open and closed.

Notation	Set	Туре	Picture
(a,∞)	$\{x a < x\}$	open	
$[a,\infty)$	$\{x a < x\}$ $\{x a \le x\}$ $\{x x < b\}$ $\{x x \le b\}$ \mathbb{R}	closed	
$(-\infty,b)$		open	<u> </u>
$[-\infty,b]$	$\{x x \le b\}$	closed	b
$(-\infty,\infty)$	\mathbb{R}	both open and closed	

We can combine two (or more) intervals with the notation \cup . For example, $[-8, -2] \cup [2, 8]$ is called the *union* of [-8, -2] and [2, 8] and is shown below.

Definition

The set

$$\{(x,y)|x,y\in\mathbb{R}\}$$

is denoted by \mathbb{R}^2 .

Definition

The point O(0,0) is called the *origin*.

Example

Let A(2,-1) and B(3,1) be points in \mathbb{R}^2 . Draw the triangle OAB.

solution:

Example

Draw the region of points which satisfy $1 \le x \le 3$. solution:

Example

Draw the region of points which satisfy $1 \le x \le 2$ and $1 \le y \le 3$. solution:

Definition

The distance between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$||P_1P_2|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Example

The distance between A(1,3) and B(4,-1) is

$$||AB|| = \sqrt{(4-1)^2 + (-1-3)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5.$$

Functions

$$y = f(x)$$

"y is equal to f of x"

"y is equal to f of x"

Definition

A function from a set D to a set Y is a rule that assigns a unique element of Y to each element of D.

Definition

The set D of all possible values of x is called the *domain* of f.

Definition

The set Y is called the target of f.

Definition

The set of all possible values of f(x) is called the range of f.

If f is a function with domain D and target Y, we can write

Example

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
.

Example

$$f:(-\infty,\infty)\to[0,\infty), f(x)=x^2.$$

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	
$y = \sqrt{x}$	$[0,\infty)$	
$y = \sqrt{4 - x}$		
$y = \sqrt{1 - x^2}$		

domain (x)	range (y)
$(-\infty,\infty)$	$[0,\infty)$
$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	
$[0,\infty)$	
	$(-\infty, \infty)$ $\{x \mid x \in \mathbb{R}, x \neq 0\}$

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	
$y = \sqrt{x}$	$[0,\infty)$	
$y = \sqrt{4 - x}$		
$y = \sqrt{1 - x^2}$		

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$ \left\{ x \mid x \in \mathbb{R}, x \neq 0 \right\} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$		
$y = \sqrt{1 - x^2}$		

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$ \begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	
$y = \sqrt{1 - x^2}$		

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$ \begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$		

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$ \begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \left \{ x \mid x \in \mathbb{R}, x \neq 0 \} \right $	$ \begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

	I	
function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$ \begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	
$y = x^2$	$[2,\infty)$	
$y = x^2$	$(-\infty, -2]$	

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$\{x \mid x \in \mathbb{R}, x \neq 0\}$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	[1,4]
$y = x^2$	$[2,\infty)$	
$y = x^2$	$(-\infty, -2]$	

function	domain (x)	no no co (u)
Tunction	$\frac{\text{domain}(x)}{}$	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \left \{ x \mid x \in \mathbb{R}, x \neq 0 \} \right $	$ \left\{ x \mid x \in \mathbb{R}, x \neq 0 \right\} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	[1,4]
$y = x^2$	$[2,\infty)$	$[4,\infty)$
$y = x^2$	$(-\infty, -2]$	

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$\begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases}$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	[1,4]
$y = x^2$	$[2,\infty)$	$[4,\infty)$
$y = x^2$	$(-\infty, -2]$	$[4,\infty)$

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$\begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases}$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	[1,4]
$y = x^2$	$[2,\infty)$	$[4,\infty)$
$y = x^2$	$(-\infty, -2]$	$[4,\infty)$
$y = 1 + x^2$	[1,3)	
$y = 1 - \sqrt{x}$	$[0,\infty)$	

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$\begin{cases} x \mid x \in \mathbb{R}, x \neq 0 \end{cases}$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	[1,4]
$y = x^2$	$[2,\infty)$	$[4,\infty)$
$y = x^2$	$(-\infty, -2]$	$[4,\infty)$
$y = 1 + x^2$	[1,3)	[2, 10)
$y = 1 - \sqrt{x}$	$[0,\infty)$	

function	domain (x)	range (y)
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$ \{x \mid x \in \mathbb{R}, x \neq 0\} $	$ \left\{ x \mid x \in \mathbb{R}, x \neq 0 \right\} $
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = x^2$	[1,2]	[1,4]
$y = x^2$	$[2,\infty)$	$[4,\infty)$
$y = x^2$	$(-\infty, -2]$	$[4,\infty)$
$y = 1 + x^2$	[1,3)	[2, 10)
$y = 1 - \sqrt{x}$	$[0,\infty)$	$(-\infty,1]$

Graphs of Functions

Definition

The graph of f is the set containing all the points (x, y) which satisfy y = f(x).

${\bf Example}$

Graph the function $y = 1 + x^2$ over the interval [-2, 2].

solution:

■ Make a table of (x, y) points which satisfy $y = 1 + x^2$.

x	y
-2	5
-1	2
0	1
1	2
$\begin{array}{ c c }\hline 1\\ \frac{3}{2}\\ 2\\ \end{array}$	$\frac{13}{4} = 3\frac{1}{4}$
2	5

2 Plot these points.

3 Draw a smooth curve through these points.

The Vertical Line Test

Not every curve that you draw is a graph of a function.

A function can have only one value f(x) for each $x \in D$. This means that a vertical line can intersect the graph of a function at most once.

A circle can not be the graph of a function because some vertical lines intersect the circle at two points.

If $a \in D$, then the vertical line x = a will intersect the graph of $f: D \to Y$ only at the point (a, f(a)).

Piecewise-Defined Functions

Example

Example

$$f(x) = \begin{cases} -x & x < 0 \\ \frac{x^2}{1} & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

Increasing and Decreasing Functions

Definition

Let I be an interval. Let $f: I \to \mathbb{R}$ be a function.

 \blacksquare f is called increasing on I if

$$f(x_1) < f(x_2)$$

for all $x_1, x_2 \in I$ which satisfy $x_1 < x_2$;

 $\mathbf{2}$ f is called decreasing on I if

$$f(x_1) > f(x_2)$$

for all $x_1, x_2 \in I$ which satisfy $x_1 < x_2$.

Even Functions and Odd Functions

Recall that

- $2,4,6,8,10,\ldots$ are even numbers; and
- $1, 3, 5, 7, 9, \dots$ are odd numbers.

Definition

- If $f: D \to \mathbb{R}$ is an even function if f(-x) = f(x) for all $x \in D$;
- 2 $f: D \to \mathbb{R}$ is an odd function if f(-x) = -f(x) for all $x \in D$.

Example

 $f(x) = x^2$ is an even function because

$$f(-x) = (-x)^2 = x^2 = f(x).$$

Example

 $f(x) = x^3$ is an odd function because

$$f(-x) = (-x)^3 = -x^3 = -f(x).$$

Example

Is $f(x) = x^2 + 1$ even, odd or neither? solution: Since

$$f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x),$$

f is an even function.

Example

Is g(x) = x + 1 even, odd or neither? solution: Since g(-2) = -2 + 1 = -1 and g(2) = 3, we have $g(-2) \neq g(2)$ and $g(-2) \neq -g(2)$. Hence g is neither even nor odd.

Linear Functions

Power Functions

$$f(x) = x^a$$

 $(a \in \mathbb{R})$ "x to the power of a"

Polynomials

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
$$(n \in \mathbb{N} \cup \{0\}, a_j \in \mathbb{R}).$$

The domain of a polynomial is always $(-\infty, \infty)$. If n > 0 and $a_n \neq 0$, then n is called the *degree* of p(x).

Rational Functions

$$f(x) = rac{p(x)}{q(x)}$$
 — polynomial rational function

Example

$$f(x) = \frac{2x^3 - 3}{7x + 4}$$

Exponential Functions

$$f(x) = a^x$$
$$(a \in \mathbb{R}, a > 0, a \neq 1)$$

The domain of an exponential function is $(-\infty, \infty)$.

Logarithmic Functions

$$y = \log_a x \iff x = a^y$$

 $(a \in \mathbb{R}, a > 0, a \neq 1)$

"log base a of x"

Angles

There are two ways to measure angles. Using degrees or using

We have that

$$\pi$$
 radians = 180 degrees
1 radian = $\frac{180}{\pi}$ degrees
1 degree = $\frac{\pi}{180}$ radians.

Remark

In Calculus, we use radians!!!! If you see an angle in Part IV of this course, it will be in radians. Calculus doesn't work with degrees!!

Trigonometric Functions

Remark

Note that $\tan \theta$ and $\sec \theta$ are only defined if $\cos \theta \neq 0$; and $\csc \theta$ and $\cot \theta$ are only defined if $\sin \theta \neq 0$.

$$\sin 45^{\circ} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\cos 45^{\circ} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = \tan \frac{\pi}{4} = 1$$

$$\sec 45^{\circ} = \sec \frac{\pi}{4} = \sqrt{2}$$

$$\csc 45^{\circ} = \csc \frac{\pi}{4} = \sqrt{2}$$

$$\cot 45^{\circ} = \cot \frac{\pi}{4} = 1$$

$$\sin 60^\circ = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos 60^\circ = \cos \frac{\pi}{3} = \frac{1}{2}$$

$$\tan 60^\circ = \tan \frac{\pi}{3} = \sqrt{3}$$

$$\sec 60^\circ = \sec \frac{\pi}{3} = 2$$

$$\csc 60^\circ = \csc \frac{\pi}{3} = \frac{2}{\sqrt{3}}$$

$$\cot 60^\circ = \cot \frac{\pi}{3} = \frac{1}{\sqrt{3}}$$

Sigma Notation

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots + a_{n-1} + a_n$$

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots + a_{n-1} + a_n$$

$$\sum_{k=1}^{n} a_k$$

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots + a_{n-1} + a_n$$

$$\sum_{k=1}^{ ext{the Greek}} a_k$$

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots + a_{n-1} + a_n$$

the Greek
$$n$$
letter Sigma $\sum_{k=1}^n a_k$

the sum starts at k = 1

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots + a_{n-1} + a_n$$

Example

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + 6^{2} + 7^{2} + 8^{2} + 9^{2} + 10^{2} + 11^{2} = \sum_{k=1}^{11} k^{2}$$
$$f(1) + f(2) + f(3) + \dots + f(99) + f(100) = \sum_{k=1}^{100} f(k)$$
$$\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15$$

Example

$$\sum_{k=1}^{3} (-1)^k k = (-1)(1) + (-1)^2(2) + (-1)^3(3) = -1 + 2 - 3 = -2$$

$$\sum_{k=1}^{2} \frac{k}{k+1} = \frac{1}{1+1} + \frac{2}{2+1} = \frac{1}{2} + \frac{2}{3} = \frac{7}{6}$$

$$\sum_{k=4}^{5} \frac{k^2}{k-1} = \frac{4^2}{4-1} + \frac{5^2}{5-1} = \frac{16}{3} + \frac{25}{4} = \frac{139}{12}$$

Example

I want to find a formula for $1+2+3+\ldots+n$.

Example

I want to find a formula for $1+2+3+\ldots+n$.

Note that

$$2(1+2+3+4+5+\ldots+(n-1)+n)$$

$$= 1 + 2 + 3 + 4 + 5 + \ldots + (n-1) + n$$

$$+ n + (n-1) + (n-2) + (n-3) + (n-4) + \ldots + 2 + 1$$

$$= (n+1)+(n+1) + (n+1) + (n+1) + (n+1) + \ldots + (n+1) + (n+1)$$

$$= n(n+1).$$

Example

I want to find a formula for $1+2+3+\ldots+n$.

Note that

$$2(1+2+3+4+5+\ldots+(n-1)+n)$$

$$= 1 + 2 + 3 + 4 + 5 + \ldots + (n-1) + n$$

$$+ n + (n-1) + (n-2) + (n-3) + (n-4) + \ldots + 2 + 1$$

$$= (n+1)+(n+1) + (n+1) + (n+1) + (n+1) + \ldots + (n+1) + (n+1)$$

$$= n(n+1).$$

Therefore

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Similarly (but more difficult) we can find that

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

and

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Next Week

- 8. Polar Coordinates
- 9. Conic Sections
- 10. Three Dimensional Cartesian Coordinates