OPTIMASI PENJADWALAN FLEXIBLE JOB-SHOP MENGGUNAKAN ALGORITMA GENETIKA

Optimization Of Flexible Job-Shop Scheduling Using Genetic Algorithm

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

TODO TUA SITORUS 6705160108

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Permasalahan penjadwalan *Flexible Job-Shop* adalah kelanjutan dan perluasan dari permasalahan penjadwalan *Job-Shop* klasik. Pada umumnya, di dalam model *Job-Shop* klasik, semua *job* mengikuti jalur produksi yang tetap, walau tidak harus sama dalam setiap *job*, dan setiap satu operasi dari setiap *job* harus diproses di satu mesin yang telah ditentukan. Penjadwalan *Job-Shop* klasik digunakan untuk menentukan urutan dari setiap operasi tersebut pada setiap satu mesin untuk mengoptimalkan satu atau beberapa kegiatan produksi. Namun sebaliknya, jika ada dua atau lebih mesin yang digunakan untuk memproses satu operasi, maka model tersebut dinamakan *Flexible Job-Shop*.

Flexible Job-Shop banyak diaplikasikan di industri, seperti pada manufaktur semikonduktor, perakitan mobil, dan tekstil, dimana sekelompok mesin digunakan untuk mengerjakan satu operasi. Flexible Job-Shop saat ini adalah model penjadwalan yang umum di lingkungan industri modern, namun seringkali karena tingkat kompleksitas yang tinggi perlu dilakukan optimasi agar mengurangi konflik di antara jalur produksi tersebut

Algoritma Genetika adalah salah satu algoritma optimasi yang banyak diaplikasikan pada berbagai permasalahan penelitian di dunia nyata, salah satunya adalah permasalahan penjadwalan produksi, dimana perlu dirumuskan tujuan objektif dengan berbagai kondisi batasan atau konflik antara *job*, operasi dan mesin yang harus dicari solusi dengan mencari nilai-nilai yang dianggap paling terbaik, termasuk dalam permasalahan penjadwalan *Flexible Job-Shop*. Dalam Algoritma Genetika ada beberapa tahap yang dilakukan yaitu proses *crossover*, proses *mutation*, dan terakhir digunakan proses *tournament selection* untuk mendapatkan probabilitas yang terbaik sebagai hasil dari optimasi.

Studi Literatur Penelitian Terkait

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	An Effective Hybrid	2018	Dalam penelitian ini dilakukan
	Algorithm For		penelitian untuk mengatasi
	Multi-Objective Flexible		permasalahan penjadwalan multi
	Job-Shop		objective flexible job-shop
	Scheduling Problem [1]		menggunakan metode hybrid,
			yaitu menggabungkan algoritma
			genetika dengan PSO
2.	Review On Flexible Job	2019	Dalam penelitian dilakukan
	Shop Scheduling [2]		pembahasan mendalam tentang
			penjadwalan flexible job-shop,
			serta beberapa contoh
			penyelesaiannya menggunakan
			algoritma heuristic dan meta-
			heuristic
3.	Penyelesaian Multi-	2018	Dalam penelitian ini bertujuan
	Objective Flexible Job Shop		untuk bertujuan untuk
	Scheduling Problem		menyelesaikan masalah
	Menggunakan Hybrid		penjadwalan Multi-tujuan
	Algoritma Imun [3]		Fleksibel Job Shop dengan
			meminimalkan makespan, beban
			kerja terbesar dan total beban
			kerja semua mesin
4.	A Genetic Algorithm For	2017	Dalam penelitian ini akan
	The Flexible Job-Shop		dibahas solusi permasalahan
	Scheduling Problem [4]		penjadwalan Flexible Job-Shop
			menggunakan Algoritma
			Genetika

5.	Optimality Of The Flexible	2015	Dalam penelitian dijelaskan
	Job Shop Scheduling		bahwa Flexible Job-Shop
	Problem [5]		termasuk ke dalam permasalahan
			non-polynomial NP-hard. Pada
			dasarnya tidak ada metode yang
			paling efisien untuk mengatasi
			permasalahan ini, namun
			beberapa metode di bahas
			sebagai solusi alternatif untuk
			memecahkan permasalahan
			model matematika yang ada di
			Flexible Job-Shop
6.	Job Shop And Flexible Job	2020	Dalam penelitian ini menjelaskan
	Shop Scheduling Problems:		beberapa catatan penelitian
	Scheduling Operations [6]		tentang penjadwalan Job-Shop
			dan Flexible Job-Shop dalam
			sistem manufaktur

Rancangan Sistem

Dalam rancangan sistem penjadwalan *Flexible Job-Shop* dalam penelitian ini ada satu set independen *job* yang terdiri dari {J₁, J₂,...J_n} yang harus diproses pada satu set mesin {M₁,M₂,...M_n}. Dalam setiap *job* dapat terdiri dari satu atau lebih operasi, dan setiap *job* tersebut bisa saja berbeda dalam setiap jalur produksi, kemudian yang menjadi acuan utama sekaligus meningkatkan kompleksitas penjadwalan, yaitu pada *Flexible Job-Shop*, setiap operasi dapat ditangani atau diproses oleh satu atau lebih mesin, dan waktu pemrosesan setiap operasi tersebut sangat tergantung pada setiap mesin yang bekerja untuk menyelesaikan operasi tersebut.

Beberapa asumsi yang akan digunakan untuk merancang sistem penjadwalan *Flexible Job-Shop* dalam penelitian ini adalah sebagai berikut :

- Setiap job tidak bergantung satu sama lain di antaranya, dan semuanya dilakukan secara terpisah dimulai dari awal mula job tersebut mulai diproses.
- 2. Setiap *job* memiliki prioritas sama untuk mulai diproses
- 3. Interupsi pada setiap *job* tidak diperbolehkan atau dianggap tidak akan pernah ada
- 4. Untuk setiap operasi, pasti akan tersedia satu atau lebih mesin yang mampu memprosesnya, tidak ada operasi yang terbengkalai atau tidak dapat diproses
- 5. Sebuah operasi tidak diperbolehkan diproses jika proses operasi sebelumnya belum selesai dilakukan, walaupun ada mesin yang mengganggur atau diam
- 6. Setiap mesin dapat memproses paling banyak satu operasi pada setiap saat, satu mesin tidak dapat memproses lebih dari satu operasi.

Gambar 1 Model Sistem Penjadwalan Flexible Job-Shop

Beberapa parameter yang digunakan dalam perancangan sistem, adalah sebagai berikut:

m =total jumlah mesin di lantai produksi

M =satu set mesin

Mi = mesin ke- i (i = 1,.., m)

n = total jumlah job

J = satu set job

Jj = job ke- j (j = 1,., n)

hj = jumlah operasi asosiasi dengan job (Jj) ke-j (j = 1,..., n)

Ojh = operasi ke-h asosiasi dengan job (Jj) (j = 1,.., n, and h = 1,.., hj)

 Ωjh = sub dari 1 set mesin yang dibutuhkan untuk memproses operasi (Ojh)

mjh = jumlah mesin yang dibutuhkan untuk memproses operasi (Ojh)

Pijh = waktu yang dibutuhkan untuk memproses operasi (Ojh) oleh mesin (Mi)

Sjh =waktu mulai operasi (Ojh) atau waktu rilis

Cjh = waktu penyelesaian operasi (Ojh)

 $dj = \text{tanggal jatuh tempo } (due \ date) \ job \ (Jj)$

Cj = waktu penyelesaian job (Jj)

Cmax = waktu penyelesaian maksimum untuk semua *job* (*makespan*)

H = bilangan bulan positif besar

 $T_0 = total$ jumlah semua operasi

Variabel keputusan yang digunakan dalam perancangan sistem, adalah sebagai berikut :

$$\textit{Xijh} = \left\{ \frac{=1}{=0} \right\} \frac{\textit{jika operasi Ojh diproses oleh mesin Mi}}{\textit{lainnya}}$$

$$\textit{Xijh} = \left\{\frac{=1}{=0}\right\} \frac{\textit{jika operasi Ojh mendahului Okl diproses oleh mesin Mi}}{\textit{lainnya}}$$

Asumsi-asumsi perlu dilakukan dalam perancangan sistem yang dibuat, asumsi-asumsi itu terdiri dari fungsi objektif dan batasan-batasan / kendala (*constraints*). *Fungsi* objektif yang digunakan dalam penelitian ini bertujuan untuk meminimasi *makespan* (*Cmax*), *bottleneck* beban kerja mesin (*Wm*), dan total beban kerja mesin (*Wt*), yaitu yang dirumuskan sebagai berikut:

$$C_{max} = min\left(\max_{1 \leqslant j \leqslant n} (C_j)\right) \quad (1)$$

$$W_m = \min\left(\max_{1 \le i \le m} \sum_{j=1}^n \sum_{h=1}^{h_j} P_{ijh} x_{ijh}\right)$$
 (2)

$$W_t = min\left(\sum_{i=1}^m \sum_{j=1}^n \sum_{h=1}^{h_j} P_{ijh} x_{ijh}\right)$$
(3)

Selanjutnya adalah *constraint* (batasan / kendala) yang dignakan dalam penelitian ini sesuai dengan fungsi objektif yang digunakan di atas, adalah sebagai berikut :

$$c_{jh} - s_{jh} - \sum_{\{i:O_{jh} \in \Omega_{jh}\}} (P_{ijh}x_{ijh}) = 0 \quad \forall j, \ h = 1, \ldots, h_j$$
 (4)

$$\sum_{i=1}^{m_{jh}} x_{ijh} = 1 \quad j = 1, \dots, n; \ h = 1, \dots, h_j$$
 (5)

$$c_{jh} \le s_{j(h+1)}$$
 $j = 1, ..., n; h = 1, ..., h_j - 1$ (6)

$$c_{jh} - c_{kl} + Hy_{ijkhl} + H(1 - x_{ijh}) + H(1 - x_{ikl}) \ge P_{ijh}$$

$$\forall i, (j, h), (k, l) : O_{ih} \in \Omega_{ih}, O_{kl} \in \Omega_{kl}$$
 (7)

$$s_{jh} + x_{ijh}P_{ijh} \le c_{jh}$$
 $i = 1, ..., m; j = 1, ..., n; h = 1, ..., h_j$
(8)

$$c_{jh_j} \leq C_{max} \quad j = 1, \dots, n \tag{9}$$

Constraint (4) menunjukkan bahwa perbedaan antara waktu penyelesaian dan waktu mulai pengoperasian *Ojh* di mesin *Mi* sama dengan waktu pemrosesannya di mesin *Mi*, artinya operasi tersebut harus diselesaikan tanpa gangguan sama sekali sebelum operasi lain dimulai, sesuai dengan asumsi (3). Constraint (5) sesuai dengan asumsi (4), menyajikan fakta bahwa operasi harus dilakukan ditetapkan hanya ke satu mesin di antara sub set dari mesin alternatif pada suatu waktu. Untuk menjamin asumsi (5), constraint (6) dan (7) menangani secara seksama urutan operasi yang telah ditentukan terkait dengan setiap pekerjaan. Constraint (8) memastikan asumsi (6), yaitu masing-masing mesin hanya dapat melakukan paling banyak satu operasi pada a waktu. Constraint (9) menjelaskan bahwa waktu penyelesaian setiap operasi tidak boleh lebih dari Cmax. Constraint (10) menentukan domain variabel keputusan.

References

- [1] X. Huang, Z. Guan and L. Yang, "An effective hybrid algorithm for multi-objective flexible jobshop scheduling problem," *Advances in Mechanical Engineering*, vol. 10(9), pp. 1-14, 2018.
- [2] X. Li, K. Peng, L. Gao, J. Xie and H. Li, "Review on flexible job shop scheduling," *IET Collaborative Intelligent Manufacturing*, vol. 1(2), 2019.
- [3] Y. Habibi, G. Swalaganata and A. D. Yustita, "PENYELESAIAN MULTI-OBJECTIVE FLEXIBLE JOB SHOP SCHEDULING PROBLEM MENGGUNAKAN HYBRID ALGORITMA IMUN," *Jurnal Teknosains*, Vols. 6, No. 2, no. Pascasarjana Universitas Gadjah Mada, 2017.
- [4] F. Pezzella, G. Morganti and G. Ciaschetti, "A genetic algorithm for the Flexible Job-shop Scheduling Problem," *Computers & Operations Research*, vol. 35, p. 3202–3212, 2018.
- [5] M. Abd Elazeem, M. S. Ali Osman and M. B. Ali Hassan, "Optimality of the flexible job shop scheduling problem," *African Journal of Mathematics and Computer Science Research*, vol. 4(10), no. Academic Journals, pp. 321-328, 2011.
- [6] A. K. Agarwal and D. R. Kumar, "JOB SHOP AND FLEXIBLE JOB SHOP SCHEDULING PROBLEMS:," *INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT]*, vol. 7, no. 5, 2020.

PROYEK AKHIR SEMESTER GANJIL* TA 2020/2021

Tanggal : 2 Oktober	2020	
Kami yang bertanda ta	angan dibawah ini:	
CALON PEMBIMBING	1	
Kode : SGO		
Nama : Sugondo H	ladiyoso, S.T., M.T.	
CALON PEMBIMBING	2	
Kode :		
Nama :		
Menyatakan bersedia	menjadi dosen pembimbing P	royek Akhir bagi mahasiswa berikut,
NIM	: 6705160108	
Nama	: Todo Tua Sitorus	
Prodi / Peminatan	: D3TT / TT	
Calon Judul PA	: <u>OPTIMASI PENJADWALA</u>	N FLEXIBLE JOB-SHOP MENGGUNAKAN ALGORITMA GENETIKA
Dengan ini akan memo Akhir yang berlaku.	enuhi segala hak dan kewajiba	an sebagai dosen pembimbing sesuai dengan Aturan Proyek
Calon	Pembimbing 1	Calon Pembimbing 2
(Sugondo Had	liyokso, S.T., M.T.	()

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman & Template Desember 2013.rar"
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl. Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705160108

Nama : TODO TUA SITORUS

Dosen Wali : SGO / SUGONDO HADIYOSO
Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	С
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	АВ
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	В
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	С
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	AB
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	В
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	С
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	В
	Jumlah SKS				

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	ВС
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	AB
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	ВС
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	С
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	ВС
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	AB
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	В
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	AB
5	LUH1A2	BAHASA INDONESIA	INDONESIAN	2	AB
5	DTH3A2	BAHASA INGGRIS TEKNIK II (ACADEMIC PRESENTATION AND COMMUNICATION)	ENGLISH TECHNIQUES II (ACADEMIC PRESENTATION AND COMMUNICATION)	2	В
5	DTH3E2	BENGKEL JARINGAN DAN MULTIMEDIA	NETWORKING AND MULTIMEDIA WORKSHOP	2	AB
5	DTH3B3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND TELECOMMUNICATION NETWORKS	3	В
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	AB
		Jumlah SKS		104	2.82

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	DTH3F3	KOMUNIKASI NIRKABEL BROADBAND	BROADBAND WIRELESS COMMUNICATIONS	3	ВС
5	DTH3C3	KEAMANAN JARINGAN	NETWORK SECURITY	3	С
5	DTH3D3	TEKNIK SWITCHING BROADBAND	SWITCHING TECHNIQUES BROADBAND	3	С
6	DMH3A6	MAGANG	APPRENTICE	6	А
	Jumlah SKS				2.82

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	E
5	VTI3C3	TEKNIK ANTENNA & PROPAGASI	ANTENNA AND PROPAGATION TECHNIQUES	3	
6	VTI3F4	PROYEK I	PROJECT I	4	
6	DTH3G4	PROYEK AKHIR	FINAL PROJECT	4	Т
	Jumlah SKS				_

Mata Kuliah yang Diulang

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	E
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	E
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	E
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	E
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	E
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	Е

Jumlah SKS	24	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	E
5	DTH3C3	KEAMANAN JARINGAN	NETWORK SECURITY	3	E
	Jumlah SKS			24	

Tingkat I	: 41 SKS	Belum Lulus	IPK : 2.6
Tingkat II	: 81 SKS	Belum Lulus	IPK : 2.64
Tingkat III	: 107 SKS	Belum Lulus	IPK : 2.74
Jumlah SKS	: 104 SKS		IPK: 2.74

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 03 Oktober 2020 13:04:17 oleh TODO TUA SITORUS