Trabalho de conclusão de curso

Projeto e Desenvolvimento de uma Régua Inteligente para Monitoramento do Consumo de Energia de Eletrodomésticos

Aluno: Fabiano Azevedo César Jardim

Orientador : Professor Alair Dias Júnior

Visão geral

Construção de um dispositivo que seja capaz de medir o consumo de energia elétrica e de uma interface para mostrar os dados calculados.

Régua Inteligente = *hardware* + *software*

Sumário

- 1. Motivação
- 2. Objetivo
- 3. Metodologia
- 4. Especificações do sistema
- 5. Materiais e métodos
- 6. Resultados
- 7. Conclusões
- 8. Considerações finais

Motivação

- Sustentabilidade;
- Internet of Things (IoT);
- Big data.

Objetivo

Construir uma Régua Inteligente que possibilitará o monitoramento local ou remoto de energia elétrica e apresentará as informações obtidas através de uma interface construída para navegadores Web.

Metodologia

- Revisão de trabalhos;
- Especificações do sistema;
- Pesquisar e selecionar os componentes do hardware;
- Pesquisar e selecionar as ferramentas de software;
- Montar o hardware:
- Implementar o software;
- Integrar o hardware com o software;
- Validar o dispositivo.

Especificações do sistema

Hardware:

Software:

Sensor de tensão:

- Faixa de medição deve estar entre +-220Vef ou mais;
- Nível máximo de tensão suportado deve ser no mínimo +- 240Vef.

Sensor de corrente:

- Faixa de medição deve estar entre +-15A ou mais;
- Nível máximo de corrente suportada deve ser no mínimo +- 20A.

Quanto maior for a banda de passagem dos sensores, melhor será.

Tabela	P_{av} (W)	P_{av} dos os aparelhos com potência $<=$ 4400W (W)	Potência Má- xima (W)	Potência Mí- nima (W)	I_{av} para tensão de 127 Vrms (A)	I_{av} para tensão de 220 Vrms (A)
1	2531	718	52200	10	6	3
2	1079	1079	4400	40	9	5
3	1418	798	12100	10	6	
4	1606	1023	7500	50	8	5
5	2243	737	38000	5	5 6	
6	592	487	5500	3	4	2
7	741	602	6600	9	5	3
8	522	447	4500	6	4	2

Conversor A/D:

- Taxa de amostragem próxima de 1000 amostras por segundo;
- A resolução deve ser de 12 bits;
- A quantidade de canais deve ser 4.

Microcontrolador:

- Deve possuir um hardware e firmware que facilite a comunicação Wi-Fi;
- Deve possuir memória suficiente para armazenar o programa que processará os dados e estabelecerá a comunicação com o servidor web.

O tipo de comunicação entre o conversor A/D e microcontrolador deve ser serial.

Para todos:

- As tensões de operação devem ser de 0 a 5V ou 0 a 3,3V;
- O consumo de energia dos módulos deve ser o menor possível.

Especificações do sistema (software)

Servidor web: API:

- Deverá ser capaz de tratar 400 requisições por segundo;
- Deverá tratar as requisições entregues ao servidor;
- Bibliotecas ou frameworks devem ser utilizados para facilitar a realização do tratamento.

Banco de dados:

 Deverá existir um banco de dados para que os dados da aplicação possam ser armazenados e recuperados de uma forma estruturada.

Especificações do sistema (software)

Interface de visualização:

- Deverá ser desenvolvida para o ambiente de navegadores e deverá possuir informações (gráficos e consumo total) relevantes ao usuário;
- Deverá ser desenvolvida com a utilização de bibliotecas ou frameworks mais utilizados atualmente.

Microcontrolador:

 O software do microcontrolador deverá comunicar com o conversor A/D para processar os dados convertidos por ele e enviar a informação gerada ao servidor web.

Sensor de tensão ZMPT101B:

Parâmetro	Valor 5 a $30V_{dc}$		
Tensão de alimentação do módulo			
Corrente de consumo	2mA		
Potência consumida	$10mW$ (à $5V_{dc}$ de alimentação)		
Tensão de entrada	$\pm 250V_{ef}$		
Tensão de saída	0 a 5V		
Frequência de operação	50 a 60Hz		
Precisão de leitura	$\pm 0,5\%$		
Temperatura de operação	$-40^{\circ}C$ a $70^{\circ}C$		
Dimensões	49mmX19mmX22mm		
Peso	20g		

Sensor de corrente ACS712:

Parâmetro	Valor		
Tensão de alimentação do módulo	$5V_{dc}$		
Corrente de consumo	10mA		
Potência consumida	50mW		
Corrente de entrada	$\pm 20A$		
Tensão de saída	0,5 a 4,5V		
Sensibilidade	100mV/A		
Banda de passagem	80kHz		
Precisão de leitura	$\pm 1.5\%$ em $25^{\circ}C$		
Temperatura de operação	-40°C a 85°C		
Dimensões	31mmX13mmX11mm		
Peso	< 1g		

Conversor A/D ADS1015:

Parâmetro	Valor		
Tensão de alimentação do módulo	$2 \text{ a } 5V_{dc}$		
Corrente de consumo	$150uA \text{ em } 25^{\circ}C$		
Potência consumida	0,75mW (à 5V _{dc} de alimentação)		
Quantidade de canais	4		
Resolução	12bits		
Taxa de amostragem programável	$128sps \ a \ 3, 3ksps$		
Comunicação serial	I2C		
Temperatura de operação	$-40^{\circ}C$ a $125^{\circ}C$		
Dimensões	25mmX9mmX2mm		
Peso	< 1g		

Conversor lógico:

Parâmetro	Valor		
Tensões de alimentação	$3,3V \ { m e} \ 5,5V$		
Máxima corrente suportada	150mA		
Máximo baud rate estável	28800bps		
Dimensões	16mmX16mmX2mm		
Peso	< 1g		

Microcontrolador ESP8266 D1 mini: Conversor DC/DC:

Parâmetro	Valor		
Tensão de alimentação	$3, 3V_{dc}$		
Corrente de consumo	80mA		
Potência consumida	264mW		
Quantidade de pinos digitais I/O	11		
Quantidade de pinos analógicos	1		
Mémoria flash	4MB		
Comunicação serial	I2C		
Firmware	NodeMCU		
Stack TCP/IP integrada	Sim		
Suporte aos protocolos Wi-Fi	802.11 b/g/n		
Tipo de antena	PCB Trace		
Temperatura de operação	-40°C a 125°C		
Dimensões	34mmX25mmX8mm		
Peso	5g		

Parâmetro	Valor		
Tensão de alimentação	$4,5 \text{ a } 24V_{dc}$		
Máxima corrente suportada	3A		
Eficiência	97,5%		
Precisão da conversão de tensão	$\pm 0,5\%$		
Dimensões	20mmX10mmX5mm		
Peso	< 1g		

Servidor HTTP Apache:

- Facilidade de encontrar informações;
- Boa documentação;
- Open source;
- Desempenho suficiente.

Banco de dados MySQL:

- Facilidade de encontrar informações;
- Boa documentação;
- Open source;
- Desempenho suficiente.

API Python:

- Facilidade de encontrar informações;
- Boa documentação;
- Muitos frameworks, bibliotecas e pacotes disponíveis;
- Simplificação do desenvolvimento de softwares complexos.

Interface Angular:

- Single page application;
- Alta performance;
- Facilita a implementação de requisições HTTP;
- Open source.

Estrutura completa:

Resultados

Voltson WiFi Outlet

$$P = \frac{1}{N}\sum_{n=0}^{N-1}v[n]i[n]$$

$$U_{rms} = \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} u[n]^2}$$

$$S = V_{rms}I_{rms}$$

$$F.P. = \frac{P}{S}$$

Resultados

Cargas Testadas	Pi(W)	Ii(A)	F.P.i	Pv(W)	Pr(W)	Ir(A)	F.P.r
Lâmpada LED Philips	8	0,075	0,92	9,000	7,733	0,07503	0,827
Lâmpada fluorescente FLC	15	0,216	0,55	15,821	12,955	0,21343	0,481
Lâmpada fluorescente Golden	15	0,191	0,50	14,750	11,909	0,18397	0,515
Lâmpada incandescente OSRAM	100	0,790	-	91,136	90,871	0,78904	0,919
Ventilador Mondial maxi power 30	50	0,390		47,563	45,283	0,40905	0,879
Ventilador Britânia C50 turbo 200W	200	1,500	51	114,000	101,567	1,02235	0,797
Secador de cabelo Taiff	1200	9,500	25	610,523	623,890	5,50658	0,944
TV Samsung	110	0,870	23	65,793	62,076	0,59632	0,834
1011							

Cargas Testadas	(Pr-Pi)*100/Pi	(Ir-Ii)*100/Ii	(F.P.r-F.P.I)*100/F.P.i	(Pr-Pv)*100/Pv
Lâmpada LED Philips	-3,336	0,036	-10,152	-14,077
Lâmpada fluorescente FLC	-13,635	-1,188	-12,598	-18,119
Lâmpada fluorescente Golden	-20,604	-3,679	2,947	-19,259
Lâmpada incandescente OSRAM	-9,129	-0,121	-	-0,291
Ventilador Mondial maxi power 30	-9,433	4,885	-	-4,792
Ventilador Britânia C50 turbo 200W	-49,216	-31,843	2	-10,906
Secador de cabelo Taiff	-48,009	-42,036	9	2,189
TV Samsung	-43,567	-31,458	_	-5,650

Conclusões

- Os módulos de hardware selecionados funcionam;
- Melhorar a calibração dos sensores;
- Resta desenvolver o servidor e a interface de visualização;
- Desenvolvimento de habilidades.

Informações

https://github.com/fabianojardim/smart-plug

Obrigado!