PRÁCTICA 6: SISTEMAS DE TIPOS

Ejercicio 1. (Extensión con cuantificadores de primer orden). Sea Σ una signatura de primer orden. Para evitar confusiones con las variables y términos del cálculo- λ usamos mayúsculas, notando X,Y,Z,\ldots a las variables de primer orden y T,T',T'',\ldots a los términos sobre la signatura Σ . Suponemos fijado además un conjunto $\mathcal{P}=\{P_1,P_2,\ldots\}$ de símbolos de predicado, cada uno con su aridad.

El cálculo- λ^{FOL} es una extensión del cálculo- λ simplemente tipado con un cuantificador universal de primer orden. Los tipos se definen de la siguiente manera:

$$A ::= P(T_1, \dots, T_n) \mid A \to A \mid \forall X. A$$

donde en lugar de tipos atómicos $(\alpha, \beta, ...)$ tenemos fórmulas de primer orden atómicas, de la forma $P(T_1, ..., T_n)$, donde se asume que P es un símbolo de predicado de aridad n.

Los términos del cálculo se extienden con la abstracción sobre una variable de primer orden y la aplicación a un término de primer orden:

$$t ::= \ldots \mid \Lambda X. t \mid t T$$

Las reglas de tipado se extienden, agregando:

$$\frac{\Gamma \vdash t : A \quad X \not \in \mathsf{fv}(\Gamma)}{\Gamma \vdash \Lambda X.\, t : \forall X.\, A} \; \mathsf{I} \forall \quad \frac{\Gamma \vdash t : \forall X.\, A}{\Gamma \vdash t\, T : A\{X := T\}} \; \mathsf{E} \forall$$

Las reglas de reducción se extienden, incoporando la siguiente regla, además de la usual regla β :

$$(\Lambda X. t) T \to_{\varphi} t \{ X := T \}$$

1. Dar un término del cálculo- λ^{FOL} que demuestre la siguiente fórmula de primer orden sobre la signatura $\Sigma = \{F^1\}$:

$$\forall X. (P(X) \to P(F(X))) \to \forall X. (P(X) \to P(F(F(X)))$$

2. Dar una traducción que a cada tipo A de λ^{FOL} le asocie un tipo A^* del cálculo- λ simplemente tipado, a cada término t un término t^* , y a cada contexto Γ un término Γ^* , de tal modo que se verifiquen:

$$\Gamma \vdash t : A \text{ vale en } \lambda^{\text{FOL}} \implies \Gamma^* \vdash t^* : A^* \text{ vale en } \lambda \text{ simplemente tipado} \qquad t \to_{\beta\varphi} s \implies t^* \to_{\beta} s^*$$

Concluir que λ^{FOL} es SN.

Ejercicio 2. Considerar la extensión del cálculo- λ simplemente tipado con el tipo de datos de los números naturales:

$$A ::= \alpha \mid A \to A \mid \mathbb{N} \qquad \qquad t ::= x \mid \lambda x. \ t \mid t \ t \mid \mathbf{0} \mid \mathbf{S}(t) \mid \mathbf{rec}(t, t, x.t)$$

Se agregan las siguientes reglas de tipado y de reducción: