OR: confusion via math!

Chapter 3

no actions, no rewards

Markov Reward Porcess rewards

Markov Decision Process

actions + rewards

Markov Decision Process

actions + rewards + observations

Markov Property: next state only dependent on previous state

state = order of cards

state = order of cards dynamics = riffle shuffle

state = order of cards dynamics = riffle shuffle $\text{distributions} = d_0, d_1, d_2, d_3, \dots$ $d_0 = \text{all weight on one state}$

state = order of cards dynamics = riffle shuffle distributions = $d_0, d_1, d_2, d_3, \dots$ $d_0 = \text{all weight on one state}$ d =stationary distribution **THM** $\log n$ steps to d.

states: $S = \{1, ..., n\}$

states: $S = \{1, ..., n\}$

trajectory: s_1, s_2, s_3, \ldots

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4$$

states:
$$S = \{1, ..., n\}$$

trajectory: s_1, s_2, s_3, \ldots

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4$$

transition matrix: M $M_{ij} = p(i|j)$

states: $S = \{1, ..., n\}$

trajectory: s_1, s_2, s_3, \ldots

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4$$

transition matrix: M $M_{ij} = p(i|j)$

dynamics: $p(s' = s_{t+1} | s_t = s)$

states: $S = \{1, ..., n\}$

trajectory: s_1, s_2, s_3, \ldots

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4$$

transition matrix: M $M_{ij} = p(i|j)$

dynamics: $p(s' = s_{t+1} | s_t = s)$

distributions: $d_0, d_1, d_2, d_3, \dots$

states: $S = \{1, ..., n\}$

trajectory: s_1, s_2, s_3, \ldots

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4$$

transition matrix: M $M_{ij} = p(i|j)$

dynamics: $p(s' = s_{t+1} | s_t = s)$

distributions: $d_0, d_1, d_2, d_3, \dots$

transition: $d_{i+1} = Md_i$

Assignment 3

Use a random number generator and produce a short trajectory.

2 Write down the transition matrix. Compute the distributions d_1, d_2, d_3 . $d_0 = (1,0)$

Post on Teams

3 Find one example related to nature.

Example Markov Reward Process

The weather in the entire world. The weather tomorrow is a probabilistic function of the weather today. Weather gives rewards in many ways plants grow, freezing temperatures allow us to go skating. :)

states: $S = \{1, ..., n\}$

states: $S = \{1, \ldots, n\}$

rewards: $R \subseteq \mathbb{R}$

states: $S = \{1, ..., n\}$

rewards: $R \subseteq \mathbb{R}$

states: $S = \{1, ..., n\}$

rewards: $R \subseteq \mathbb{R}$

dynamics:
$$p(s' = s_{t+1}, r = r_{t+1} | s_t = s)$$
 $p(s', r | s)$

states: $S = \{1, ..., n\}$

rewards: $R \subseteq \mathbb{R}$

dynamics: $p(s' = s_{t+1}, r = r_{t+1} | s_t = s)$ p(s', r | s)

horizon = steps till terminal state episodic vs continuing

states: $S = \{1, ..., n\}$

rewards: $R \subseteq \mathbb{R}$

dynamics: $p(s' = s_{t+1}, r = r_{t+1} | s_t = s)$ p(s', r | s)horizon = steps till terminal state

episodic vs continuing

return $G(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$

discount factor $0 < \gamma \le 1$.

states: $S = \{1, ..., n\}$

rewards: $R \subseteq \mathbb{R}$

dynamics: $p(s' = s_{t+1}, r = r_{t+1} | s_t = s)$ p(s', r | s)

horizon = steps till terminal state

episodic vs continuing

return $G(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$

discount factor $0 < \gamma \le 1$.

value: $v(s) = \mathbb{E} G(s)$

Assignment 4

Give an example of a **continuing** Markov reward process related to the real world.

- Describe the statespace.
- Describe the rewards.
- Give a short example trajectory.
- Describe the dynamics.
- Argue that you satisfy the Markov property.
- What discount factor seems useful?
- Compute the return of your example trajectory.

Post on

Teams

Example Markov Decision Process

Quiz Game, 10 levels, random question, win and go to the next level or loose everything, actions: continue or quit.

states S, rewards R, actions A

states S, rewards R, actions A trajectory: $s_1, r_1, a_1, s_2, r_2, a_2, s_3, r_3, a_3, \ldots$

states S, rewards R, actions A trajectory: $s_1, r_1, a_1, s_2, r_2, a_2, s_3, r_3, a_3, \ldots$

dynamics: p(s', r|s, a)

states S, rewards R, actions A trajectory: $s_1, r_1, a_1, s_2, r_2, a_2, s_3, r_3, a_3, \ldots$

dynamics: p(s', r|s, a)

policy $\pi:S\to A$ $\pi:S\to d(A)$

states S, rewards R, actions A trajectory: $s_1, r_1, a_1, s_2, r_2, a_2, s_3, r_3, a_3, \ldots$

dynamics: p(s', r|s, a)

policy $\pi: S \to A$ $\pi: S \to d(A)$

return: $G(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$ (trajectory)

states S, rewards R, actions A trajectory: $s_1, r_1, a_1, s_2, r_2, a_2, s_3, r_3, a_3, \ldots$

dynamics: p(s', r|s, a)

policy $\pi: S \to A$ $\pi: S \to d(A)$

return: $G(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$ (trajectory)

value: $v_{\pi}(s) = \mathbb{E}_{\pi} \ G(s)$

