PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-011382

(43)Date of publication of application: 13.01.1995

(51)Int.Cl.

C22C 38/00

C21D 8/02 C22C 38/14

C22C 38/50

(21)Application number: 05-181932

(71)Applicant: KOBE STEEL LTD

(22)Date of filing:

28.06.1993

(72)Inventor: KASHIMA TAKAHIRO

TSUKATANI ICHIRO

(54) HIGH STRENGTH HOT ROLLED STEEL PLATE EXCELLENT IN STRETCH FLANGING PROPERTY AND ITS PRODUCTION

(57) Abstract:

PURPOSE: To obtain a high strength hot rolled steel plate having excellent stretch flanging properties even if it has high strength of ≥70kgf/mm2 tensile strength.

CONSTITUTION: The high strength hot rolled steel plate excellent in stretch flanging properties has chemical components contg., by weight 0.02 to 0.10% C, \leq 2.0% Si, 0.5 to 2.0% Mn, \leq 0.08% P, \leq 0.006% S, \leq 0.005% N and 0.01 to 0.1% Al and contg. one or more kinds of Ti and Nb by the amt. of 0.50 \leq [Ti-3.43n-1.5S)/4+Nb/7.75]/C, and the balance Fe with other inevitable impurities, consists of an acicular-ferritic structre, and has a structure in which fine TiC and/or NbC are precipitated.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]weight % (hereafter the same) — C:0.02 to 0.10%, Si<=2.0%, and Mn: — 0.5 to 2.0%, P<=0.08%, S<=0.006%, N<=0.005%, and aluminum:0.01–0.1% are contained, and they are less than Ti:0.3% and less than Nb:0.2% — 0.50 [and] — < [(Ti=3.43N=1.5S) /4+Nb/7.75] It has a chemical entity which the remainder becomes from Fe and other inevitable impurities including one or more sorts of Ti and Nb of quantity used as /C, High intensity hot rolled sheet steel excellent in elongation flange nature having the organization where it consists of a reed cura ferrite, and detailed TiC and/or NbC deposit.

[Claim 2] The hot rolled sheet steel according to claim 1 in which said steel contains Cu:0.2-1.5% further.

[Claim 3]said steel — further — Mo:0.05–0.5%, V:0.01 to 0.2%, Zr:0.01–0.2%, and Cr: — 0.1 to 2.0%, nickel:0.1–2.0%, less than Ca:0.01%, and ** — the hot rolled sheet steel according to claim 1 or 2 containing at least one or more sorts.

[Claim 4]By heating steel of the chemical entity according to claim 1, 2, or 3 at temperature of not less than 1100 **, rolling between the post heating, and rolling round at temperature of 550–700 **, A manufacturing method of high intensity hot rolled sheet steel excellent in elongation flange nature obtaining an organization where it consists of a reed cura ferrite, and detailed TiC and/or NbC deposit.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

兵庫県加古川市尾上町池田宇池田開拓2222

特開平7-11382

(43)公開日 平成7年(1995)1月13日

(51) Int.Cl. ⁶		識別記号	}	庁内整理番号	FI				技術表示	示箇所
C 2 2 C	38/00	301	Α							
C 2 1 D	8/02		Α	7412-4K						
C 2 2 C	38/14									
	38/50			,						
					客查請求	未請求	請求項の数4	FD	(全 9) 頁)
(21)出願番	 身	特願平 5-18193	32		(71)出願人	0000011	99			
			• •			株式会社	上神戸製鋼所			
(22)出願日		平成5年(1993)	6月	128日		兵庫県本	申戸市中央区脇	英町1	厂目3者	18号
					(72)発明者	鹿島高弘	L			,
						兵庫県加	1古川市尾上町?	也田字》	也田開报	2222
						番地1相	大式会社神戸製作	列所加	与川研究	地区

番地 1 株式会社神戸製鋼所加古川研究地区 内

内 (72)発明者 塚谷一郎

(74)代理人 弁理士 中村 尚

(54) 【発明の名称】 伸びフランジ性に優れた高強度熱延鋼板とその製造方法

(57)【要約】 (修正有)

【目的】 引張強度が $70 \, \text{kgf}/\text{m}^2$ 以上の高強度であっても、優れた伸びフランジ性を有する高強度熱延鋼板。 【構成】 重量%で、 $C:0.02\sim0.10$ 、 $Si \leq 2.0$ 、 $Mn:0.5\sim2.0$ 、 $P \leq 0.08$ 、 $S \leq 0.00$ 6、 $N \leq 0.005$ 、 $A1:0.01\sim0.1$ を含有し、Ti:0.3以下で、Nb:0.2以下で、かつ、0.50 < [(Ti-3.43N-1.5S)/4+Nb/7.75]/Cとなる量の<math>Ti及びNbの1種以上を含み、残部がFe及び他の不可避的不純物よりなる化学成分を有し、アシキュラー・フェライト組織からなり、かつ微細なTiC及び/又はNbCが析出している組織を有する、伸びフランジ性に優れた高強度熱延鋼板。

【特許請求の範囲】

【請求項1】 重量%(以下、同じ)で、

 $C:0.02\sim0.10\%$

 $Si \leq 2.0\%$

 $Mn: 0.5 \sim 2.0\%$

 $P \le 0.08\%$

 $S \leq 0.006\%$

 $N \le 0.005\%$

 $A1:0.01\sim0.1\%$

を含有し、

Ti:0.3%以下、Nb:0.2%以下で、かつ、 0.50< [(Ti-3.43N-1.5S)/4+Nb/7. 75]/C

となる量のTi及びNbの1種以上を含み、残部がFe及び他の不可避的不純物よりなる化学成分を有し、アシキュラー・フェライト組織からなり、かつ、微細なTiC及び/又はNbCが析出している組織を有することを特徴とする伸びフランジ性に優れた高強度熱延鋼板。

【請求項2】 前記鋼が、更に、Cu: 0.2~1.5% を含んでいる請求項1に記載の熱延鋼板。

【請求項3】 前記鋼が、更に、Mo:0.05~0.5 %、V:0.01~0.2%、Zr:0.01~0.2%、 Cr:0.1~2.0%、Ni:0.1~2.0%、Ca:0. 01%以下、のうちの少なくとも1種以上を含んでいる 請求項1又は2に記載の熱延鋼板。

【請求項4】 請求項1、2又は3に記載の化学成分の鋼を、1100℃以上の温度にて加熱し、その後熱間圧延し、550~700℃の温度にて巻取りを行うことにより、アシキュラー・フェライト組織からなり、かつ、微細なTiC及び/又はNbCが析出している組織を得ることを特徴とする伸びフランジ性に優れた高強度熱延鋼板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は伸びフランジ加工性に優れた高強度熱延鋼板とその製造方法に関するものである。

[0002]

【従来の技術】近年、自動車、建築等の多くの産業分野における部材の軽量化の傾向が高まり、それに伴い高強 40度の熱延鋼板が用いられているが、熱延鋼板が用いられる用途においては、優れた伸びフランジ性が要求されることが多い。

【0003】従来、かゝる加工用高強度熱延鋼板としては、フェライト・マルテンサイト組織或いはフェライト・ベイナイト組織からなる混合組織のものが広く知られている。

【0004】しかし、フェライト・マルテンサイト組織は、変形の初期からマルテンサイトの周囲にミクロ・ボイドが発生して割れを生じるため、伸びフランジ性に劣 50

る問題がある。

【0005】また、フェライト・ベイナイト組織は、伸びフランジ性は優れており、これまでに特開昭57-101649号公報及び特開昭61-130454号公報で、伸びフランジ性が優れたフェライト・ベイナイト組織高強度熱延鋼板が既に提案されているが、この組織を用いて伸びフランジ性を確保しなが $570 \, \mathrm{kgf} / \mathrm{mn}^2$ 以上の強度を得るのは困難である。

【0006】一方、特開平2-8349号公報では、冷 間加工性及び溶接性に優れた55kgf/m²以上の高張力 熱延鋼帯が既に提案されているが、70kgf/mm²以上の 強度では第2相体積率が高く、厳しい曲げ加工及び伸び フランジ加工を行うのは困難である。また、これまでの 析出強化による高強度熱延鋼板は、パーライト等のセメ ンタイトが多量に存在したために優れた伸びフランジ性 を得ることができなかった。また、特公平3-6542 5号公報では、TiC析出を利用した70kgf/m²以上 の伸びフランジ性に優れた高張力熱延鋼板が示されてい るが、基本的にセメンタイトがその構成要素の一つとな るベイナイト組織が存在するもので、後述のように、フ ェライト組織である本発明とは異なるものである。 【0007】本発明は、上記従来技術の問題点を解決 し、引張強度が70kgf/m^{*}以上の高強度であっても、 優れた伸びフランジ性を有する高強度熱延鋼板並びにそ の製造方法を提供することを目的とするものである。

[0008]

【課題を解決するための手段】本発明者らは、上記の問題点を解決するために鋭意研究した結果、鋼の化学成分を適切に調整した上で、製造条件を規制し、組織をアシキュラー状フェライト組織とし、更にTiC及び/又はNbCをこの組織に析出させることにより、引張強度が70kgf/m²以上で従来より優れた伸びフランジ性が得られることを見い出して、ここに本発明に至ったものである。

【0009】すなわち、本発明は、 $C:0.02\sim0.1$ 0%、 $Si \le 2.0$ %、 $Mn:0.5\sim2.0$ %、 $P \le 0.0$ 8%、 $S \le 0.006$ %、 $N \le 0.005$ %、 $Al:0.01\sim0.1$ %、を含有し、Ti:0.3%以下、Nb:0.2%以下で、かつ、

0.50 < ((Ti-3.43N-1.5S)/4+Nb/7.75)/C

となる量のTi及びNbの1種以上を含み、必要に応じて更に、 $Cu:0.2\sim1.5\%$ 、及び/又は、 $Mo:0.05\sim0.5\%$ 、 $V:0.01\sim0.2\%$ 、 $Zr:0.01\sim0.2\%$ 、 $Cr:0.1\sim2.0\%$ 、Ca:0.01%以下、のうちの少なくとも1種以上を含み、残部がFe及び他の不可避的不純物よりなる化学成分を有し、アシキュラー・フェライト組織からなり、かつ、微細なTiC及び/又はNbCが析出している組織を有することを特徴とする伸びフランジ性に優れた

高強度熱延鋼板を要旨としている。

【0010】また、その製造方法は、上記化学成分の鋼を、1100 C以上の温度にて加熱し、その後熱間圧延し、 $550\sim700$ Cの温度にて巻取りを行うことにより、アシキュラー・フェライト組織からなり、かつ、微細な Ti C 及び/又は Nb C が析出している組織を得ることを特徴としている。

[0011]

【作用】以下に本発明を更に詳細に説明する。まず、本発明における鋼の化学成分の限定理由は以下のとおりで 10ある。

【0012】C: Cは鋼の強化を高めるために添加され、か>る効果を有効に発揮させるためには少なくとも0.02%を添加する必要がある。しかし、過多に添加すると、炭化物を形成するのに必要なTi或いはNbの添加量が増加し、コストアップとなるばかりか、伸びフランジ性が劣化するので、添加量の上限を0.10%とする。

【0013】Si:Siはポリゴナルフェライトの生成を促し、フェライトの固溶C量を低減させ、更に伸びフラ 20ンジ性を余り劣化させずに強度を上げるのに有効な元素であるが、過多に添加すれば、熱間変形抵抗を増加させ、溶接部の脆化を招くのみならず、表面性状を劣化させるので、本発明では2.0%以下とする。

【0014】Mn: Mnは鋼の固溶強化に有効な元素であるが、その効果を得るには少なくとも0.5%の添加を必要とする。しかし、過多に添加すれば、焼入れ性が高くなり、変態生成物を多量に生成し、高い伸びフランジ性を得ることが困難となるので、その上限を2.0%とする。

【0015】P:Pは延性を劣化させずに固溶強化する 有効な元素であるが、過多に添加すると加工後、遷移温 度を上昇させるので、0.08%以下とする。

【0016】S:Sはこれを0.006%を超えて多量に含有させると、伸びフランジ性を劣化させるので、0.006%以下とする。

【0017】A1: A1は鋼の溶製時の脱酸剤として添加され、その範囲は0.01~0.1%が適当である。

【0018】 Ti、Nb: Ti、Nbはスラブ加熱温度をおよそ1100℃以上に加熱することにより鋼中に固溶し始める(図4参照)。この固溶Tiや固溶Nbは、熱延終了後に生成するフェライトの核生成を抑制し、転位密度の高いアシキュラー・フェライト組織を生成する(図6、図7参照)。

【0019】更に、550~700℃の温度で巻取ることにより、Cをアシキュラー・フェライト組織中にTiCやNbCとして析出させ、この析出強化によって強度を上げると共に、アシキュラー・フェライト組織中に析出させたことにより、特に伸びフランジ性を向上させることができる(図3、図5参照)。これは、転位密度の高50

いアシキュラー・フェライト組織中に析出した析出物は、転位の移動を抑制して n 値を高めると共に、ボイドやクラックの原因となる転位の集中を抑えて伸びフランジ性を高くするものと考えられる。

【0020】 これらの効果を得るために必要な Ti及び Nbの量は、0.50 < ((Ti-3.43N-1.5S)/4+Nb/7.75) / Cで規定される量が必要であることが判明した。

【0021】但し、Tiが0.3%、Nbが0.2%を超えて過多に添加すると延性が劣化し、或いは上記効果が飽和して経済的にも不利であるので、Tiは0.3%以下、Nbは0.2%以下とする。

【0022】Cu: CuはTi、Nb添加によるアシキュラー・フェライト組織の生成時に作用し、ラス状フェライト組織を生成させる効果がある。このラス状フェライト組織は更に伸びフランジ加工性を向上させるので、必要に応じてCuを添加することができる。添加する場合、これらの効果はおよそ0.2%以上で生じ、1.5%で飽和するので、0.2~1.5%の範囲とする。

【0023】更に、本発明においては、Mo、V、Zr、Cr、Ni及びCaよりなる群から選ばれる少なくとも1種の元素を必要に応じて添加することができる。これらは上記の効果を損なうものではなく、むしろ高強度化や加工性向上に寄与する。

【0024】V、Zr: V及びZrは炭化物を形成し、フェライト中の固溶C量を低減し、伸びフランジ性を向上させ強化する効果がある。これらの効果を発揮するにはそれぞれ少なくとも0.01%の添加が必要である。しかし、過多に添加すると上記効果が飽和して経済的にも不利であるので、それぞれの上限を0.2%とする。

【0025】Mo、Cr、Ni: Mo及びCrは固溶強化元素として有効であるが、その効果を発揮するにはMoは少なくとも0.05%の添加が必要であり、Cr及びNiは少なくとも0.1%の添加が必要である。しかし、過多に添加すると低温変態生成物を多量に生成するので、Moの上限を0.5%、Cr及びNiの上限をそれぞれ2.0%とする。

【0026】Ca: Caは硫化物を球状化し、伸びフランジ性を向上させるが、0.01%を超えるとその効果が飽和し、コストアップとなるので、0.01%を上限とする。

【0027】これらの元素は単独で添加してもよく、また、複合添加してもよいが、複合添加することにより相乗的な効果を得ることができるので有利である。

【0028】次に製造方法及び条件について説明する。 【0029】上記化学成分を有する鋼は、常法によりスラブとし、熱間圧延に供されるが、スラブの加熱温度は1100℃以上とする必要がある。これは、y域中にTiC、NbCが固溶し始める温度が1100℃であり、この温度以上に加熱することによって固溶Ti又は固溶Nb 20

5

を鋼中に固溶させるためである。固溶したTiや固溶Nbは熱間圧延終了後のフェライト生成時にフェライトをアシキュラー状にする作用がある。

【0030】熱間圧延に関しては通常の熱間圧延を行えばよく、特別な条件規制はないが、熱延終了温度はおよそ750~950℃とするとアシキュラー状フェライトとなり易いので望ましい。熱延終了後の冷却はMs点以下まで冷却することを避けるため、およそ350℃以上にて冷却を終了することが望ましい。しかし、これらの温度は各鋼種の成分やスラブ加熱温度、圧下率などによりて異なるので適宜決められる。冷却速度は、通常の空冷から水冷に近いミスト冷却に至るまで採ることができる。

【0031】巻取温度は550~700℃とする。この巻取処理によって、アシキュラー・フェライトにTiC、NbCを析出させ、穴拡げ特性及び強度を上げることができる。550℃未満並びに700℃を超えると、熱間圧延後にアシキュラー・フェライト組織が得られても、この組織に十分な量のTiC、NbCを析出させることが困難となる。

【0032】かくして、得られる熱延鋼板は、アシキュラー・フェライト組織からなり、かつ、微細なTiC及び/又はNbCが析出している組織を有している。このアシキュラー・フェライト組織には、一部又は全面ラス構造を有するフェライト組織(ベイニティック・フェライト組織)を含んでもよい。

【0033】なお、N含有量によっては、Ti、NbはTiN、NbNとしても析出する。

【0034】次に本発明の実施例を示す。

【実施例】

【0035】表1に示す化学成分を有する鋼スラブを1000~1150℃のスラブ加熱温度に加熱し、30分保持後、通常の熱間圧延工程によって仕上温度780℃で2.5㎜厚に仕上げた。この後、冷却速度30℃/sで冷却し、450~750℃の巻取温度で30分保持の巻取り処理後、空冷し熱延鋼板を製造した。表2に製造条件を示す。

【0036】このようにして得られた熱延鋼板について、JIS5号による圧延方向の引張試験、穴拡げ試験並びにSEM及びTEM組織観察を行った。

【0037】なお、穴拡げ試験は、径 $10m\phi$ の打ち抜き穴を60°円錐ポンチにて押し広げ、割れが鋼板板厚を貫通した時点での穴径dを測定し、穴広げ率 λ を次式にて計算した(図1参照)。

 $\lambda = [(d-d_0)/10] \times 100(\%)$ $(d_0 = 10 m)$ [0038] また、TiC、NbCの析出状態を知るため、スラブ加熱温度(SRT)を950~1250 Cに30分保持し、急冷後、電解抽出法により各試料の析出量を測定した。更に、巻取温度によるこれらの析出状態を知るため、スラブ加熱温度(SRT)1200 Cにて溶体化処理を施して後、450~750 D0 D0 を取相当の各温度で30分保持後空冷し、電解抽出法により各試料の析出量を測定した。

【0039】試験結果を表 2、表 3 に示すと共に、図 2 ~図 5 に整理して示す。表 1 における鋼No. 1、6、7 は T i 添加鋼、鋼No. 7、8 は T i ・N b添加鋼、鋼No. 9 は N b添加鋼、鋼No. 1、17、18 は C 量を変化させた鋼、鋼No. 10~16 はそれぞれ任意添加元素を添加した鋼である。

【0040】試験結果より明らかなように、本発明例は、いずれも、 $80 \, \text{kgf/m}^2$ の高強度において穴広げ率 λ が $80 \, \text{%以上と優れた伸びフランジ性を示している。}$ 【0041】図2及び図3は鋼No.1(本発明例)とNo.8(比較例)について巻取温度(CT)と引張強さ(TS)及び穴広げ率(λ)の関係を整理したものであり、本発明範囲の化学成分並びに製造条件(スラブ加熱温度、巻取温度)とすることにより、高強度で且つ伸びフランジ性が優れたものとすることができることがわかる。

【0042】また、図4及び図5はTi及びNbの析出物の量とスラブ加熱温度(SRT)及び巻取温度(CT)の関係を整理したものであり、スラブ加熱温度を本発明範囲とすることにより、Ti及びNbの完全な固溶を促進し、その上で巻取温度を本発明範囲とすることによって、アシキュラー・フェライト組織に微細なTiC及びNbCが十分に析出することがわかる。なお、電解抽出法によるTiやNbの析出物の量の値は、あくまで相対値(参考値)であり、絶対値ではないが、本発明において、スラブ加熱中にTi、Nbが固溶し巻取り処理中にTiやNbの析出物の生成が必須であることを示している。

【0043】鋼No.1の600℃巻取材のSEM組織(SRT:1200℃、1000℃)を図6に、TEM組織を図7に示すように、スラブ加熱温度(SRT)を本発明範囲(1100℃以上)とすることにより、アシキュラー・フェライト組織が生成されると共にその組織に析出物が微細に析出するが、スラブ加熱温度が低いとポリゴナル・フェライト組織が得られるだけである。

[0044]

【表1】

	鶴苑	0	0	×	0	0	×	×	0	C	0	C	0	0	0	0	0	×	×
	Ti*+Nb/C	1.5	1.5	1.5	1.5	9.0	0.4	0.4	1.2	0.9	1.2	1.2	1,2	1.1	1.2	1.2	1.2	1.0	1:1
	Z	0.0026	0.0025	0.0023	0.0023	0.0028	0.0024	0.0025	0.0026	0.0031	0.0030	0.0030	0.0029	0.0030	0.0029	0.0029	0.0028	0.0025	0.0028
	N _P	1	1			1	1	0.012	0.013	0.279	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	Ti	0.250	0.246	0.251	0.246	0.086	0.077	0.057	0.151	1	0.150	0.151	0.151	0.150	0.150	0.150	0.150	0.083	0.560
y (et%)	その他	<u>i</u>		1	1			-			Cu 1.0	Mo 0.3	V 0.1	Zr 0.1	Cr 1.0	Ni 1.0	Ca 0.0023	1	1
化学成5	A1	0.030	0.025	0.030	0.028	0.031	0.033	0.031	0.035	0.034	0.035	0.036	0.038	0.036	0.038	0.036	0.035	0.034	0.034
供試鋼の化学成分	S	0.0012	0.0011	0.0012	0.0009	0.0010	0.0010	0.0010	0.0012	0.0010	6000.0	0.0008	0.0010	0.0011	0.0010	0.0011	0.0010	0.0009	0.0009
表1	Ъ	0.012	0.011	0.013	0.071	0.010	0.012	0.012	0.010	0.011	0.013	0.011	0.010	0.012	0.011	0.011	0.011	0.011	0.010
1.10	Mn	1.51	1.52	2.53	1.45	1.48	1.43	1.40	1.48	1.52	1.53	1.48	1.45	1.48	1.50	1.51	1,58	1.52	1.48
	Si	0.51	2.10	0.52	0.51	0.50	0.48	0.43	0.51	0.48	0.51	0.47	0.51	0.48	0.50	0.51	0.52	0.51	0.50
	Ö	0.04	0.03	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.02	0.15
	E		7	က	4	വ	9	-	80	တ	10	1-1	12	1 3	14	1	1 6	17	11 8

(注1) Ti*+Nb/C= [(Ti-3.43N-1.5S)/4+Nb/7.75]/C (注2) O: 本発明鋼、x:比較鋼

表2	製造条件、	乳膀袢雷
3 X L	数归来作。	10人可发来17.7个

実験	鋼	SRT	CT	TS	E1	2	TiC, NbC,	組織	備考
No.	No.	(℃)	1	(N/mn^2)	ľ		Tin, Nbn		DHB2
				,		(%)	の折出		
1	1	1150	300	782	17	25	無	p.F+M	×
2	"	"	400	765	19	30	無	a.F	×
3	"	"	500	842	12	55	無	a.F	×
4	H	17	550	856	13	80	多	a.F	0
5	"	"	600	868	13	110	多	a.F	0
6	"	17	650	880	12	105	多	a.F	0
7	n	1150	400	704	19	60	無	p.F+M	×
8	"	"	450	703	18	63	無	a.F	×
9	p	#	500	714	17	60	無	a.F	×
10	"	p	550	723	16	58	多	a.F	×
1 1	"	if .	600	751	18	75	多	a.F	×
1 2	"	11	650	745	17	80	多	a.F	×
13	n	1000	400	554	29	80	無	p.F	×
14	"))	450	525	28	80	無	p.F	×
15	"	n	500	. 524	30	76	無	p.F	×
16	n	Ħ	550	528	29	80	多	p.F	×
17	11	"	600	525	32	75	多	p.F	×
18	"	n	650	527	32	70	多	p.F	×
19	8	1150	300	784	17	17	無	p.F+M	×
20	'n	n	400	768	19	24	無	á.F	×
2 1	#	H	500	771	12	34	無	a.F	×
22	"	17	550	836	13	90	多	a.F	0
23	17	n	600	845	13	100	多	a.F	0
24	<i>II</i> .	17	650	832	12	98	多	a.F	0
2 5	17	1050	400	642	18	74	無	p.F+M	×
26	- 17	"	450	648	17	74	無	a.F	×
27	n	17	500	628	18	70	無	a.F	×
28	"	n	550	659	16	72	多	a.F	×
29	"	"	600	702	18	84	多	a.F	×
30	"	η.	650	725	17	83	多	a.F	_×_
3 1	n	1000	400	554	27	85	無	p.F	×
3 2	"	ŋ	450	572	26	85	無	p.F	×
3 3	. 11	"	500	542	28	82	無	p.F	×
3 4	ņ	n	550	572	29	81	多	p.F	×
3 5	"	n	600	550	31	82	多 多	p.F	×
3 6	II .	<i>IP</i>	650	548	30	80	多	p.F	×

(注1) a.F:アシキュラー・フェライト、p.F:ポリゴナル・フェライト

M:マルテンサイト

(注2) O:本発明例、×:比較例

12

表3 製造条件、試験結果

					110	1		,	
実験	鋼	SRT	CT	TS	El	l	TiC, NbC	組織	備考
Na.	Na	(°C)	(°C)	(N/mm².)	(%)	(%)	Tin, Nbn		
							の析出		
3 7	2	1150	600	810	19	81	多	p.F	×
38	3	"	"	862	15	58	多	a.F+B	×
3 9	4	"	Į)	843	15	105	多	a.F	0
40	5	"	"	824	16	81	多	a.F	0
4 1	6	n	"	801	17	85	無	a.F	×
42	7	11	"	805	18	109	無	a.F	×
43	9	77	"	846	14	130	多	a.F	0
44	10	n	"	859	15	130	多	a,F	0
4 5	1 1	B	n	864	15	100	多	a.F	0
46	12	"	"	841	16	108	多	a.F	0
47	13	n	"	812	17	110	多	a.F	0
48	14	B	11	814	18	108	多	a.F	0
49	1 5	n	"	805	18	102	多	a.F	0
50	16	"	"	801	17	111	多	a.F	0
5.1	17	"	77	815	16	85	無	a.F	×
5 2	1.8	# .	n	814	17	84	無	a.F	×

(注1) a.F:アシキュラー・フェライト

p.F:ポリゴナル・フェライト

B: ベイナイト

(注2) O:本発明例、X:比較例

[0047]

【発明の効果】以上詳述したように、本発明によれば、適切な成分調整と製造条件の規制によってアシキュラー・フェライト組織で、かつ、微細なTiC及び/又はNbCが析出している組織とするので、引張強度が70kgf/m²以上の高強度であっても、従来より優れた優れた伸びフランジ性を有する高強度熱延鋼板を提供することができ、特に自動車、建築等の様々な分野における部材の軽量化に寄与する効果は顕著である。

【図面の簡単な説明】

【図1】穴拡げ試験の要領を示す説明図で、(a)は打ち抜き時のサンプル、(b)は穴拡げ加工時のサンプル、(c)は穴拡げ後のサンプルを示している。

【図2】引張強度(TS)に及ぼす巻取温度(CT)の影響を示す図である。

【図3】穴拡げ率(λ値)に及ぼす巻取温度(CT)の影響を示す図である。

【図4】Ti及びNb析出物量に及ぼすスラブ加熱温度(SRT)の影響を示す図である。

【図5】Ti及びNb析出物量に及ぼす巻取温度(CT)の影響を示す図である。

【図6】実施例の鋼No.1の600℃巻取材(SRT: 1200℃、1000℃)のSEM組織(金属組織)を示す写真であり、(a)はSRTが1000℃、(b)はSRTが1200℃の場合である。

【図7】実施例の鋼No.1の600℃巻取材(SRT: 1200℃、1000℃)のTEM組織(金属組織)を示す写真であり、(a)はSRTが1000℃、(b)はSRTが1200℃の場合である。

20µm

20 μт

