

Approximation and fitting

Sean Woodham, Charly Stephens-Cohen, Fei Yang and Maxim Zalutskiy

Outline

- Norm approximation and least-norm problems
- Regularized approximation
- Robust approximation

Function fitting and interpolation

Matlab Examples

Norm Approximation

- Simplest form of a Norm Approximation problem is , minimize ||Ax b||
- $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are the problem data, $x \in \mathbb{R}^n$ is the variable
- Refer to the solution of the problem as an approximation solution $Ax \approx b$, where the vector r = Ax b is the *residual*.

Properties of the Norm Approximation Problem

- It is always convex and solvable.
- Its optimal value is zero if and only if $b \in R(A)$
- For the cases where b not in R(A), the columns of A are linearly independent and in the matrix A is m > n.

Least Norm problems

- Basic Least Norm Problems have the form minimize ||x|| subject to Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$ is the variable.
- They have the following properties:
 - The problem only becomes interesting when m < n.
 - With x_0 as any solution to Ax = b and $Z \in \mathbb{R}^{n \times k}$ as any matrix whose columns are a basis for the *nullspace* of A. It can be rewritten as $||x_0 + Zu||$ with the variable $u \in \mathbb{R}^k$.

Interpretation and Example

• Estimation: b = Ax are given measurements of x, x' is the smallest estimate consistent with measurements.

Examples of the Least Norm Problems

Least squares solution of linear equations: Minimize $||x||_2^2$ subject to Ax = b. This can be solved analytically by $2x^* + A^Tv^* = 0$, $Ax^* = b$ which is a pair of linear equations and can be readily solved. From the first equation we can see that $x^* = -(1/2)A^Tv^*$, then substituting this into the second equation we get $-(1/2)AA^Tv^* = b$, and conclude that $v^* = -2(AA^T)^{-1}b$ and $x^* = A^T(AA^T)^{-1}b$.

Bi-criterion formulation in Regularization

 Bi-criterion Problem is a vector optimization problem with two objectives:

minimize $(w. r. t. R_+^2) (||Ax - b||, ||x||)$

- The *optimal trade-off curve* of ||Ax b||, the residual, versus ||x|| shows how large one of the objectives must be to have the other one small.
- Solution: $x = A^{-1}b$.

Regularization

- The goal of Regularization is to find a good approximation of Ax ≈ b with a small vector x.
- Adds an extra term or parameter associated with the norm of x.
- Examples:
 - minimize $||Ax b|| + \gamma ||x||$, where $\gamma > 0$.
 - minimize $||Ax b||^2 + \delta ||x||^2$ where $\delta > 0$.

Tikhonov regularization

minimize

$$||Ax - b||_2^2 + \delta ||x||_2^2$$

where $\delta > 0$.

Can be solved as a least-squares problem:

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

• Solution: $x = (A^T A + \delta I)^{-1} A^T b$

Other Regularization Methods

Smoothing regularization

- Replaces ||x|| with ||Dx||
- The matrix D represents the approximate second-order differentiation operator term and measures the smoothness of x.

&1-norm regularization

- minimize $||Ax b||_2 + \gamma ||x||_1$ where $\gamma > 0$.
- Can approximate the *optimal trade-off curve* between $||Ax b||_2$ and cardinality *card(x)* of the vector x.

Reconstruction and Smoothing

- Reconstruction is the process of forming an estimate \hat{x} of an original signal represented by a vector $x \in \mathbb{R}^n$
- Usually assumed that x_i ≈ x_{i+1}.
- x is corrupted by an additive noise v:

$$x_{cor} = x + v$$

- Smoothing happens as an operation on x_{cor} to produce \hat{x} .
- The reconstruction problem: minimize $(w.r.t.R_+^2)$ ($\|\hat{x} - x_{cor}\|_2$, $\phi(\hat{x})$)
- Measures the lack of *smoothness* of the estimate \hat{x} .

Quadratic smoothing

The Quadratic Smoothing Function:

$$\varphi_{quad}(x) = \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2 = ||Dx||_2^2$$

where $D \in R^{(n-1)\times n}$ is the *bidiagonal* matrix.

The bi-criterion problem minimizes:

$$\|\hat{x} - x_{cor}\|_2^2 + \delta \|D\hat{x}\|_2^2$$

where $\delta > 0$.

• Solution: $\hat{x} = (I + \delta D^T D)^{-1} x_{cor}$

Total variation reconstruction

- Used when the original signal is very smooth, and the noise is rapidly varying.
- Based on the smoothing function:

$$\varphi_{tv}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i| = ||D\hat{x}||_1$$

Robust Approximation

Recall the simplest norm approximation problem:

minimize
$$||Ax - b||$$

It is always desirable to take the possible *variation* of the matrix $A \in \mathbb{R}^{m \times n}$ into consideration, which is called the **Robust Approximation**.

- Stochastic Robust Approximation Problem (SRAP)
- Worst- Case Robust Approximation Problem(WCRAP)
- Properties of SRAP and WCRAP
- Examples

Stochastic Robust Approximation Problem

Idea

Decompose the random matrix A in $\mathbb{R}^{m \times n}$ in the following way,

$$A = \bar{A} + U$$
.

where $\bar{A} = E(A)$ and U is a random matrix in $\mathbb{R}^{m \times n}$ with zero mean.

Objective

minimize E||Ax - b||.

Worst- Case Robust Approximation Problem

Idea

Develop a *nonempty* and *bounded* set A, s.t. $A \in A \subseteq \mathbb{R}^{m \times n}$, and take account the variation in A by considering the worst-case error of a candidate solution, x, given by

$$e_{wc}(x) = \sup\{||Ax - b|| |A \in \mathcal{A}\}$$

Objective

minimize
$$e_{wc}(x) = \sup\{||Ax - b|| | A \in \mathcal{A}\}.$$

Properties of SRAP and WCRAP

- Both of them are always convex problems.
- Most of SRAP are intractable due to the difficulty in evaluating the objective and its derivative.
- The tractability of WCRAP depends on the norm used and the uncertainty set A.

Example 1: Least-Square Problem of SRAP

Requirement

 \bar{A} and the covariance matrix of U^T are known and given by $P = \mathbb{E}[U^T U] = \mathbb{E}[A^T A]$

Objective

minimize
$$E||Ax - b||_2^2$$

$$\rightarrow$$
 minimize $||\overline{A}x - b||_2^2 + ||\sqrt{P}x||_2^2$

Comments

i. It's a tractable case of SRAP.

ii. It has a solution as $\mathbf{x}^* = (\bar{A}^T \bar{A} + P)^{-1} \bar{A}^T b$, which corresponds to *Tikhonov regularization* with data matrix \bar{A} and $\Gamma = \sqrt{P}$.

Example 2: Sum-of-Norm Problem

Requirement

Data matrix A have only finite values, that is,

$$Pr(A = A_i) = p_i, \quad i = 1, \dots, k.$$

where $A_i \in \mathbb{R}^{m \times n}$, $1^T p = 1$, $p \ge 0$.

Objective

minimize
$$p_1 ||A_1 x - b|| + \dots + p_k ||A_k x - b||$$
.

Comments

- i. It's a tractable SRAP.
- ii. Converted into a LP if l_{∞} -norm or l_1 -norm are used.

Example 3: Norm Bound Error Problem

Requirement

$$\mathcal{A} = \{\bar{A} + U | ||U|| \le a\}$$
 is a norm ball, where $|| \bullet ||$ is a norm on $\mathbb{R}^{m \times n}$.

• **Objective** (if the Euclidean norm on \mathbb{R}^m and maximum singular value norm on $\mathbb{R}^{m \times n}$ are used)

minimize
$$||\bar{A}x - b||_2 + a||x||_2$$

 \rightarrow minimize $||\bar{A}x - b||_2^2 + \delta||x||_2^2$

Comments

- i. If particular norms are used, the norm bound error problem is converted into a *regularized least square problem*.
- ii. Vice versa, we have another aspect to consider the regularized least square problem.

Example 4: Finite Set of WCRAP

Requirement

$$\mathcal{A}$$
 is a finite set, $\mathcal{A} = \{A_1, \dots, A_k\}$ or $\mathcal{A} = \text{conv}(\{A_1, \dots, A_k\})$.

Objective

minimize
$$\max ||A_i x - b||$$
.

Comment

Converted into a LP if l_{∞} -norm or l_1 -norm are used.

Interpolation or the fit?

Problem statement

Data points

$$(u_1, y_1), ..., (u_m, y_m)$$

Approximating function

$$f(u) = x_1 f_1(u) + \dots + x_n f_n(u)$$

The family {f₁,...,f_n}
 (polynomials, trigonometric functions, splines, etc.)

Constraints

Interpolation conditions

$$f(u_i) = y_i, \qquad i = 1, \dots, m,$$

Lipschitz constraint

$$\left| f(u_j) - f(u_k) \right| \le L \|u_j - u_k\|$$

- Nonnegativity
- Derivative / Integral

Types of problems

• Least-square norm minimize $\sum_{i=1}^{m} (f(u_i) - y_i)^2$

• Basis pursuit minimize
$$\sum_{i=1}^{m} (f(u_i) - y_i)^2 + \gamma ||x||_1,$$

Fitting with a convex function

minimize
$$\sum_{i=1}^{m} (f(u_i) - y_i)^2$$
subject to $f: \mathbf{R}^{\mathbf{k}} \to \mathbf{R}$ is convex

Extracting info from black hole radiation

Bibliography

- 1. http://www.stanford.edu/~boyd/cvxbook/bv cvxbook/bv cvxbook/bv
- Robust Approximation. Nishakova Irina, Seminar Optimierung
- 3. Applications of Convex Optimization in Signal Processing and Communications: Lecture 14. Andre Tkacenko, Signal Processing Research Group Jet Propulsion Laboratory. May 17, 2012.
- 4. http://en.wikipedia.org/wiki/Flat spline, April 13,2013
- 5. http://www.systems.caltech.edu/dsp/ee150 acospc/lectures/EE 150 Lecture14 April 2013

