

Université Libre de Bruxelles

Synthèse

Métrologie nucléaire PHYS-H-407

Auteur:

Nicolas Englebert

Professeur:
Nicolas Pauly

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Nicolas Pauly à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer surtout

que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LAT_EX, mais aussi *git*. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi un README contenant de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence:

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Table des matières

1	$\operatorname{Int}\epsilon$	eractio	n des particules o	chargées avec	la matière :	considérations d	le base	1
	1.1	Introd	luction					1
		1.1.1	Interaction des par	rticules chargées	s avec la mati	ère		2

Chapitre 1

Interaction des particules chargées avec la matière : considérations de base

1.1 Introduction

Il existe trois types de rayonnements ionisants (ionizing radiations)

- 1. Les particules chargées
 - Électron, positron, ions, ...
- 2. Les photons (particules neutres sans masses)
 - Les γ (origine **nucléaire**)
 - Les X (origine atomique)
- 3. Neutrons (particules neutres)

Notons que ce qui fait vraiment la différence entre un γ et un X est le mode d'émission et non pas l'énergie (conséquence).

Pour chacun de ces types de rayonnement, il existe un mécanisme d'interaction particulier avec la matière ¹.

- Les particules chargées interagissent par interactions coulombienne (noyaux et électrons), les collisions sont donc fréquentes et on peut considérer que l'énergie est perdue de façon (quasi-)continue. La particule s'arrête ainsi à distance finie dans la matière de sorte à ce qu'on puisse définir un "parcours" (range) de celle ci : de tels rayonnements sont directement ionisants
- Les particules neutres (pas d'interaction coulombienne) ont une probabilité de traverser la matière sans interactions, il n'est donc pas possible de définir un range. Elles peuvent par contre déposées de l'énergie à des particules chargées qui vont causés une ionisation : de tels rayonnements sont *indirectement* ionisants

Les interactions d'un rayonnement avec la matière peut modifier l'état du rayonnement (absorbé, dévié, ...) et aussi l'état de la matière (excités, ionisés,...).

^{1.} Assemblage d'atomes isolés sans interaction entre-eux : gaz d'atome. Il s'agit de la définition de ce cours, qui évoluera au fil des chapitres

1.1.1 Interaction des particules chargées avec la matière

FIGURE 1.1 – Trajectoire d'une particule chargée

Comme annoncé ci-dessus, les particules chargées subissent des collisions coulombiennes 2 avec :

Les noyaux (rare) : cause une importante perte d'énergie et une grande déviation angulaire

Les électrons (fréquent) : cause des excitations/ionisations se traduisant par des faibles pertes d'énergie et déviations angulaires

Chaque collision cause alors une perte d'énergie T_j , causés par un grand nombre de projectiles N qui suivent N histoires propres : le nombre de collision étant très important, les fluctuations sont faibles et il devient possible de définir des quantités moyennes.

Figure 1.2

Pour introduire ces valeurs moyennes, il faut avant tout introduire la notion de section efficace.

La section efficace est l'aire fictive que doit avoir une particule incidente pour reproduire la probabilité de collision observée avec une particule cible.

Figure 1.3

Il existe plusieurs sortes de section efficace. Pour s'en rendre compte, définissons ce qu'est une collision. Il s'agit de l'interaction entre une particule incidente et une particule cible qui implique un effet spécifique mesurable. Ainsi, la section efficace ne dépend pas que des particules incidentes/cibles et de leur vitesse **mais aussi** de l'effet physique!

Sur le grand nombre d'interaction existant, on peut s'intéresser à une perte d'énergie (section efficace différentielle en énergie $d\sigma/dE$) ou à une émission dans une direction donnée ((section efficace différentielle en énergie $d\sigma/d\Omega$).

Quel est le rapport avec les valeurs moyennes annoncées cidessus? Il n'est pas possible de déterminer expérimentalement les sections efficaces microscopiques en bombardant un atome avec une seule particule, il va falloir travailler avec des informations **statistiques** venant d'un bombardement (faisceau) sur la matière (milieu). Nous ferons l'hypothèse que les projectiles du faisceau n'interagissent pas entre-eux.

Figure 1.4

^{2.} Les réactions nucléaires sont laissées de côté.

La section efficace sera ainsi définie par une probabilité. Soit un faisceau de particule (densité de courant J), un milieu cible (aire S plus petites que l'aire du faisceau) et processus d'interaction A (caractérisé par σ_A). Le nombre d'interaction A induits par le faisceau par unité de temps n_A s'écrit

$$n_A = JS \times \frac{\sigma_A}{S} = J\sigma_A \tag{1.1}$$

Figure 1.5

Considérons un volume V = S.x et une densité de particule cible N

$$n_A = N \times Sx \times J\sigma_A = JS \times Nx\sigma_A \quad \Rightarrow \quad P_A = Nx\sigma_A \quad \text{pour} \quad Nx\sigma_A \ll 1$$
 (1.2)

où P_A est la probabilité pour un projectile de subir un processus A.

Dans le cas où $N.x.\sigma_A$ n'est pas petit, on peut observer une collision et, s'il n'y a pas d'absorption, la particule peut en subir une nouvelle : on parle de **collisions multiples**. Soit P_n la probabilité d'initier n événements A. Cette situation est équivalente à considérer n particules cibles dans un cylindre de volume $v = x.\sigma_A$ associé à une trajectoire. Ce problème est un classique de la théorie cinétique des gaz, on peut montrer que P_n quit une distribution de Poisson

$$P_n = \frac{(Nv)^n}{n!} e^{-Nv} \tag{1.3}$$

La valeur moyenne se définit alors comme

$$\langle n \rangle = Nv = Nx\sigma_A \tag{1.4}$$

On en tire la LOI DE LAMBERT & BEER gouvernant les phénomènes d'absorption

$$P_0 = e^{-Nx\sigma_A} \tag{1.5}$$

Il s'agit de la probabilité de ne pas se faire absorbé. Si $Nx\sigma_A\ll 1$, on peut utiliser l'approximation suivante

$$P_n \simeq \begin{cases} 1 - Nx\sigma_A & \text{pour} \quad n = 0\\ Nx\sigma_A & \text{pour} \quad n = 1\\ 0 & \text{pour} \quad n \ge 2 \end{cases}$$
 (1.6)

Cette distribution nous permet de définir aisément la distance moyenne entre deux processus de type A, soit le **libre parcours moyen** λ_A

$$\lambda_A = \frac{1}{N\sigma_A} \tag{1.7}$$

Ceci se généralise pour les processus multiples

$$\sigma_{total} = \sigma_A + \sigma_B + \sigma_C + \dots, \qquad \frac{1}{\lambda_{total}} = \frac{1}{\lambda_A} + \frac{1}{\lambda_B} + \frac{1}{\lambda_C} + \dots$$
 (1.8)

Pouvoir d'arrêt

Les pertes en énergies sont caractérisée par le **pouvoir d'arrêt** (*stopping power*) : il s'agit de la grandeur la plus importante pour une particule chargée. Il s'agit - pour une particule chargée

d'énergie cinétique E dans un matériau - de la perte d'énergie moyenne (ΔE) par unité de longueur subie par la particule le long de sa trajectoire (Δx)

$$\frac{\Delta E}{\Delta x} \qquad [J.M^{-1}] = [eV.m^{-1}] \tag{1.9}$$

Afin de l'exprimer mathématiquement, considérons une cible de petite épaisseur (par rapport à la profondeur de pénétration) Δx et un projectile d'énergie E. En considérant des pertes d'énergies discrète $T_i \ll E$:

$$\Delta E = \sum_{j} n_j T_j \tag{1.10}$$

L'énergie moyenne se calcule donc

$$\langle \Delta E \rangle = \sum_{j} \langle n_j \rangle T_j \tag{1.11}$$

où $\langle n_j \rangle = N \Delta x \sigma_j$. Nous avons alors

$$\langle \Delta E \rangle = N \Delta x \sum_{j} T_{j} \sigma_{j} \tag{1.12}$$

En définissant la section efficace d'arrêt S

$$S = \sum T_j \sigma_j \tag{1.13}$$

On définit le pouvoir d'arrêt

$$\frac{\langle \Delta E \rangle}{\Delta x} = NS = N \sum_{j} T_{j} \sigma_{j} \tag{1.14}$$

Le pouvoir d'arrêt est donc une propriété macroscopique tandis que la section efficace d'arrêt est une propriété microscopique.

Paramètres de straggling

Tant que nous sommes dans les statistiques, calculons les écarts quadratiques moyens des fluctuations en énergie

$$\Omega^2 = \overline{(\Delta E - \langle \Delta E \rangle)^2} \tag{1.15}$$

En considérant $\Delta E - \langle \Delta E \rangle = \sum_j (n_j - \langle n_j \rangle) T_j$, on obtient

$$\overline{(\Delta E - \langle \Delta E \rangle)^2} = \sum_{j,l} \overline{(n_j - \langle n_j \rangle)(n_l - \langle n_l \rangle)} T_j T_l$$
(1.16)

Deux cas sont possibles

1. j = l; on peut utiliser les propriétés de la distribution de Poisson

$$\overline{(n_j - \langle n_j \rangle)^2} = \langle n_j \rangle = N \Delta x \sigma_j \tag{1.17}$$

2. $j \neq m$; on transforme la moyenne du produit en produit des moyennes (ceci suggère l'indépendance statistiques des différents types de collisions)

$$\overline{(n_j - \langle n_j \rangle)(n_l - \langle n_l \rangle)} = \overline{(n_j - \langle n_j \rangle)} \times \overline{(n_l - \langle n_l \rangle)}$$
(1.18)

Or, comme $\overline{n_j - \langle n_j \rangle} = 0$, les termes avec $j \neq l$ sont nuls

On obtient donc

$$\Omega^2 = \sum_{j} \langle n_j \rangle T_j^2 = N \Delta x \sum_{j} T_j^2 \sigma_j = N \Delta x W$$
 (1.19)

où W est le **paramètre de straggling** qui caractérise les fluctuations en énergie et est défini comme 3

$$W = \sum_{j} T_j^2 \sigma_j \tag{1.20}$$

Notation intégrale et cible épaisse

Comme annoncé, le grand nombre de collision implique une perte d'énergie quasi-continue (et donc un spectre continu)

$$\sigma_j \to \frac{d\sigma}{dT} \Delta T_j$$
 (1.21)

Si ΔT_i est suffisamment petit, les sommes deviennent des intégrales

$$S = \int T \, d\sigma, \qquad W = \int T^2 d\sigma \tag{1.22}$$

où $d\sigma = \frac{d\sigma}{dT}dT$.

Nous avions jusqu'ici considéré Δx petit impliquant E constant, mais en général S et W dépendent de E. En considérant que les fluctuations des pertes d'énergies sont négligeables, l'énergie E est bien définie en fonction de la profondeur de pénétration x^4 . On fait alors l'approximation du ralentissement continu (Continuous Slowing Down Approximation - CSDA)

$$\frac{dE}{dx} = -NS(E) \tag{1.23}$$

où le signe négatif tient compte de la diminution d'énergie du projectile.

Le parcours (range) R d'une particule chargée d'énergie E dans un milieu est la valeur moyenne $\langle l \rangle$ de la longueur l de sa trajectoire suivie jusqu'à son arrêt (sans tenir compte du mouvement thermique). En CSDA, on trouve comme profondeur de pénétration

$$x = \int_{E(x)}^{E} \frac{dE'}{NS(E')}$$
 (1.24)

Le range en CSDA est donné pour x = l avec E(l) = 0

$$R_{CSDA} = \int_0^E \frac{dE'}{NS(E')} \tag{1.25}$$

Rappelons que cette expression valable pour un straggling en énergie négligeable, à cause de notre première hypothèse.

^{3.} Paramètre microscopique.

^{4.} $E \to E(x)$

Modèle classique du pouvoir d'arrêt

Il s'agit d'un modèle classique non-relativiste établi en 1913 par Niels BOHR qui est incroyablement correct pour une certaine plage d'énergie.

FIGURE 1.6

fert de quantité de mouvement ⁶

Soit un projectile de charge e_1 , de masse m_1 , de vitesse v et une particule cible (m_2, e_2) initialement **au repos**. Cette condition initiale implique un scattering de Coulomb avec un paramètre d'impact p^5 supposé pas trop petit (soft collision).

Supposons que la particule cible reçoit une quantité de mouvement faible tel qu'elle peut être considérée au repos durant l'interaction : on note le transfert de la quantité de mouvement (unités CGS)

$$\overrightarrow{\Delta P} = \int_{-\infty}^{+\infty} dt \, \overrightarrow{F}(t) \tag{1.26}$$

où $F(t) = \frac{e_1 e_2}{p^2 + (vt)^2}$. En décomposant la force $\overrightarrow{F} = F_{\parallel} \overrightarrow{1}_{\parallel} + F_{\perp} \overrightarrow{1}_{\perp}$, on obtient les composantes \parallel et \perp du trans-

FIGURE 1.7

$$\Delta P_{\parallel} = e_1 e_2 \int_{-\infty}^{+\infty} dt \frac{vt}{(p^2 + (vt)^2)^{3/2}} = 0$$
 (1.27)

$$\Delta P_{\perp} = e_1 e_2 \int_{-\infty}^{+\infty} dt \frac{p}{(p^2 + (vt)^2)^{3/2}} = \frac{2|e_1 e_2|}{pv}$$
 (1.28)

Il est possible d'estimer la durée de la collision, qui correspond au temps durant lequel le transfert d'énergie se passe

$$\Delta P_{\perp} \simeq F_{max} \tau \tag{1.29}$$

où $F_{max}=e_1e_2/p^2$, la force pour la distance minimale d'approche $(p\ {\rm en}\ t=0).$ En substituant, on trouve

$$\tau \simeq \frac{2p}{v} \tag{1.30}$$

Cette expression est cohérente avec la Figure 1.6 (p/v à gauche et à droite, d'où le facteur 2).Il ne s'agit que d'un ordre de grandeur qui nous informe que les deux particules interagissent de même façon effective sur une distance 2p le long de la trajectoire de la particule incidente.

Figure 1.8

L'énergie T transférée de 1 vers 2 s'obtient en explicitant ΔP_{\perp}^2

$$T = \frac{\Delta P_{\perp}^2}{2m_2} \simeq \frac{2e_1^2 e_2^2}{m_2 v^2 p^2} \tag{1.31}$$

Le seul paramètre (aléatoire) dont dépend T est le paramètre d'impact p. Ainsi, le nombre de collisions caractérisés par un transfert d'énergie compris entre T et T+dT

- 5. Pour rappel, il s'agit de la distance entre la trajectoire initiale de 1 et 2.
- 6. J'étais en retard...Quelqu'un à des notes? Sur le graphique surtout

est caractérisé par un paramètre d'impact entre p et p+dp. Comme nous sommes en présence d'une géométrie cylindrique, la particule incidente devra se trouver dans un anneau. La section efficace du projectile $d\sigma$ doit forcément être l'aire de cet anneau

$$d\sigma = 2\pi p dp = \left| \frac{d(\pi p^2)}{dT} \right| dT \tag{1.32}$$

En calculant la dérivée de (1.31) dans l'expression (1.32), on trouve la forme de la section efficace de Rutherford pour la diffusion (scattering) coulombienne qui sera déduite bien plus tard (exactement) par la mécanique quantique.

$$d\sigma \approx 2\pi \frac{e_1^2 e_2^2}{m_2 v^2} \frac{dT}{T^2}$$
 (1.33)

Résultats préliminaires

Cette formule nous permet d'obtenir des résultats préliminaire pour le stopping et le straggling. Sachant que $S = \int T d\sigma$ et $W = \int T^2 d\sigma$, on trouve

$$S \simeq 2\pi \frac{e_1^2 e_2^2}{m_2 v^2} \int_{T_{max}}^{T_{min}} \frac{dT}{T}, \qquad W \simeq 2\pi \frac{e_1^2 e_2^2}{m_2 v^2} \int_{T_{max}}^{T_{min}} dT \qquad (1.34)$$

Après intégration (à connaître par coeur!)

$$S \simeq 2\pi \frac{e_1^2 e_2^2}{m_2 v^2} \int_{T_{max}}^{T_{min}} \frac{dT}{T}$$
 (1.35)

$$W \simeq 2\pi \frac{e_1^2 e_2^2}{m_2 v^2} \int_{T_{max}}^{T_{min}} dT$$
 (1.36)

En utilisant le **nombre d'arrêt** ($stopping\ number$) $L=\frac{1}{2}\ln\left(\frac{T_{max}}{T_{min}}\right)$ on peut ré-écrire

$$S \simeq 4\pi \frac{e_1^2 e_2^2}{m_2 v^2} L \tag{1.37}$$

RÉSULTATS PRÉLIMINAIRES POUR LE STOPPING

Soit les électrons (e) de la cible (densité NZ_2 , masse m et charge -e) et les noyaux (n) de la cible (densité N, masse M_2 et charge Z_2e). On peut calculer l'énergie moyenne en multipliant S_e par $NZ_2\Delta x$. En faisant de même pour S_n :

$$S_e = \frac{4\pi e_1^2 e^2}{mv^2} L_e \Rightarrow \langle \Delta E \rangle_e \simeq N Z_2 \Delta x \times \frac{4\pi e_1^2 e^2}{mv^2} L_e$$
 (1.38)

$$S_n = \frac{4\pi e_1^2 Z_2^2 e^2}{M_2 v^2} L_n \Rightarrow \langle \Delta E \rangle_n \simeq N \Delta x \times \frac{4\pi e_1^2 Z_2^2 e^2}{M_2 v^2} L_n$$
 (1.39)

Effectuons le rapport de ces deux dernières expressions

$$\frac{\langle \Delta E \rangle_n}{\langle \Delta E \rangle_e} \simeq \frac{m}{M_2} Z_2 \frac{L_n}{L_e} \text{ or } \frac{mZ_2}{M_2} < 10^{-3}$$
 (1.40)

En laissant pour l'instant tomber le rapport des L (straggling number), on obtient un terme inférieur à 10^{-3} : un électron incident va perdre beaucoup plus d'énergie lorsqu'il va interagir avec d'autres électrons plutôt qu'avec des neutrons.

Détermination de l'énergie transférée maximale T_{max}

Soit T_{max} , l'énergie cinétique maximale qui peut être transférée dans une collision. Celle-ci est obtenue pour p=0, soit quand la particule cible est le plus proche possible de la particule incidente. Nous ne sommes plus ici dans le cadre du précédent modèle (soft collision) mais ce n'est pas grave car seule une limite maximale est recherchée. L'image ci-contre représente le système du laboratoire.

Figure 1.9

Dans le système du centre de masse (désigné par un prim)

$$v_{CM} = \frac{m_1 v}{m_1 + m_2}, \qquad v' = v - v_{CM} \tag{1.41}$$

Considérons une collision élastique avec uniquement un transfert d'énergie cinétique. L'intérêt d'une telle collision dans le système du centre de masse est que seule la direction change : la vitesse et le module restent inchangés.

Figure 1.10

La situation correspondant à un maximum d'énergie transférée correspond à celle où la variation de la direction est la pus importante, soit quand tout change de sens. Dans le système du laboratoire, la vitesse maximale $v_{2,max}$ de la particule 2 s'écrit

$$v_{2,max} = \frac{2m_1v}{m_1 + m_2} \tag{1.42}$$

L'énergie maximale transférée vaut donc

$$T_{max} = \frac{m_2 v_{2,max}^2}{2} = \gamma E \tag{1.43}$$

où
$$\gamma = \frac{4m_1m_2}{(m_1 + m_2)^2}$$
 et $E = \frac{m_1v^2}{2}$.

Ceci mène directement à deux implications

- 1. Pour $m_1=m_2\to\gamma=1$; l'énergie transférée peut valoir toute l'énergie de la particule incidente
- 2. Pour $m_1 \ll m_2$ ou l'inverse $\rightarrow \gamma$ petit

Il en vient que

- Un grand transfert d'énergie est possible pour l'interaction e^-/e^-
- Un petit transfert d'énergie est possible pour l'interaction ion/ e^-
- Un petit transfert d'énergie est possible pour l'interaction e^-/ion
- Un petit transfert d'énergie est possible pour l'interaction ion/ion

Notons que l'on parle de transfert possible et pas de probabilité.

Détermination de l'énergie transférée minimale T_{min}

Nous allons calculer T_{min} dans le cas d'une collision avec un e^- (il s'agit du cas pratique le plus intéressant). Pour un électron isolé et libre, on trouve $T_{min} = 0$. Or, la section efficace de stopping contient le logarithme du rapport T_{max}/T_{min} , il y aura divergence. Deux façon de lever la divergence existent

- 1. Considérer que les e^- sont liés à une molécule ou à un atome
- 2. Considérer l'écrantage de l'interaction de Coulomb

La première solution sera retenue?. Le plus simple est le modèle simple de Thompson où T_{min} est l'énergie d'excitation la plus faible. Néanmoins, on s'intéressera ici au modèle de Bohr, plus proche du résultat quantique.

La vision de Bohr revient à voir la matière comme une collection d'oscillateurs harmonique classiques. En cas de choc lent $(2\pi/\omega_0 \ll \tau)$, l'oscillateur peut directement se remettre en place et le transfert d'énergie est négligeable (invariance adiabatique). L'orbite de l'électron n'est que provisoirement déformée, les états initiaux et finaux sont identiques.

Si par contre le temps d'interaction est court par rapport à la période de l'oscillateur ($\tau \ll 2\pi/\omega_0$), l'oscillateur reçoit une impulsion $F \times \tau$. C'est ce que nous considérons ici. En utilisant l'expression du temps d'interaction, on trouve un ordre pour T_{min}

$$\frac{2p}{v} \ll \frac{2\pi}{\omega_0} \Rightarrow p_{max} \sim \frac{v}{\omega_0} \Rightarrow T_{min} \sim \frac{2e_1^2 e^2 \omega_0^2}{mv^4}$$
 (1.44)

avec $T \simeq \frac{2e_1^2e_2^2}{mv^2p^2}$ et p_{max} , le rayon adiabatique de Bohr.

On peut alors, dans le modèle de Bohr (en reprenant les précedentes expressions), calculer la section efficace de stopping électronique comme il n'y a plus divergence

$$S_e = \frac{4\pi Z_2 e_1^2 e^2}{mv^2} L_e \quad \text{avec} \quad L_e = \ln \frac{Cmv^3}{|e_1 e| \omega_0} \quad \text{et} \quad C \simeq 1$$
 (1.45)

où $L = \frac{1}{2} \ln \left(\frac{T_{max}}{T_{min}} \right)$ et C, une correction introduite par Bohr que nous ne prendrons pas en compte.

Déviation angulaire maximale

Soit $m_2 \leq m_1$. Soit à gauche le référentiel du laboratoire et à droite, celui du centre de masse

Figure 1.11

Dans le référentiel du centre de masse

$$v_{CM} = \frac{m_1}{m_1 + m_2} v_{1i}, v' = v - v_{CM} (1.46)$$

On en tire

$$v'_{1i} = v_{1i} - v_{CM} = \frac{m_2}{m_1 + m_2} v_{1i}$$
(1.47)

Comme nous avons une collision élastique dans le repère du centre de masse, seule la direction est modifiée (et donc $v'_{1f} = v'_{1i}$)

$$v_{1f}' = \frac{m_2}{m_1 + m_2} v_{1i} \tag{1.48}$$

L'angle maximal θ_{max} est obtenu lorsqu'un angle droit est formé au niveau de la circonférence du cercle. On choisit alors v'_{1f} (v_{CM}) étant fixé de sorte à avoir θ_{max} . Après un peu de trigonométrie

$$\sin \theta_{max} = \frac{v'_{1f}}{v_{CM}} = \frac{m_2}{m_1} \tag{1.49}$$

Si $m_2 \ge m_1$, on trouve $\theta_{max} = \pi$.

FIGURE 1.12

En conclusion

- Grandes déviations possibles ($\theta_{max} = \pi/2$) pour l'interaction e^-/e^-
- Très grandes déviations possibles $(\theta_{max} = \pi)$ pour l'interaction e^-/ion
- Petites déviations pour l'interaction ion/ e^-
- Grandes déviations possibles (dépendant de m_1 et m_2) pour l'interaction ion/ ion

1.1.2 Conclusions à propos de ces considérations de base

Pour les ions incidents

De façon générale les pertes électroniques dominent (petits transfert d'énergie et petites déviations angulaires) et les pertes nucléaires (collisions noyaux) sont rares (se produisent pour un faible nombre de projectives mais de grand transferts d'énergies sont possibles ainsi que de grandes déviations angulaires). Ils ont une trajectoire rectilignes accompagnées de pertes d'énergie faibles et continues.

Pour les électrons incidents

Les pertes électroniques dominent (mais cette fois grands transferts d'énergie et grandes déviations angulaires possibles). On retrouve aussi des pertes nucléaires (petits transferts d'énergie mais très grandes déviations angulaires possibles (possibilité de rétro-diffusion). Ils ont une trajectoire courbée accompagnée de grandes pertes d'énergie.