

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral II — Avaliação PS Prof. Adriano Barbosa

Eng. de Energia	07/12/2018
Eng. de Energia	01/12/2010

1	
2	
3	
4	
5	
Nota	

Aluno(a):.....

Todas as respostas devem ser justificadas.

Avaliação P1:

- 1. Resolva a integral indefinida $\int e^x \cos x \ dx$.
- 2. Resolva a integral definida $\int_0^{\pi/2} \sin x \ e^{\cos x} \ dx$.
- 3. Calcule a integral $\int \frac{x+2}{x^2-9} dx$.
- 4. Determine se a integral imprópria $\int_1^\infty \frac{\ln x}{x} dx$ é convergente ou divergente.
- 5. Resolva a integral definida $\int_0^{\pi} x + x \cos x \ dx$.

Avaliação P2:

- 1. Resolva a equação diferencial $y' = xe^{-\cos x} + y \sin x$.
- 2. Resolva o problema de valor inicial $y' = 3x^2e^y$, y(0) = 1.
- 3. Aplique a mudança de variáveis u=y'' e resolva a equação diferencial $y^{(4)}-y''=0$.
- 4. Resolva as equações lineares de segunda ordem:

(a)
$$y'' - 2y' - 3y = 0$$

(b)
$$y'' - 2y' - 3y = x + 2$$

5. Verifique se a função $y(x) = c_1 e^x + c_2 e^{-x}$ é solução da equação diferencial y''' - y' = 0.

Avaliação P3:

1. Calcule $\lim_{n\to\infty} x_n$, onde:

(a)
$$x_n = \frac{2 + n^{2018}}{1 + 2n^{2019}}$$

$$(b) x_n = \frac{1}{2^n}$$

- 2. Escreva o número 4,17326326326... como uma fração.
- 3. Determine se as séries são convergentes:

(a)
$$\sum_{n=1}^{\infty} \frac{n^3}{n+1}$$

(b)
$$\sum_{n=1}^{\infty} n^{-\pi}$$

- 4. Determine para quais valores de x a série $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$ é convergente.
- 5. Escreva a série de Maclaurin da função $f(x) = \sin x$.