2024

Mateus Augusto Ali Fontes
Metro College of Technology
12/13/2024

Contents

Summary	2
About dataset	3
Where I find this dataset?	3
Technical information about Bicycle Thefts dataset	4
Contents about dataset.	4
Segmentations / Descriptions	6
Univariate Analysis	8
Q1 - Annual Bicycle Theft Analysis	8
Q2 - Monthly Bicycle Theft	9
Q3 - During which period of the day are bicycles most frequently stolen	11
Q4 - Bicycle Theft by Day of the Week	12
Q5 - Bicycle Theft Type	14
Q6 - Bicycle Theft by Premise Type	16
Q7 - What is the average price of a stolen bicycle?	18
Q8 - What is the average maximum speed of stolen bicycles?	20
Q9 - How many bicycles were recovered?	21
Q10 - How many days, on average, pass between the date a bicycle is stolen and the date theft is reported?	
Bivariate Analysis	23
Q1 - What has been the growth in e-bike thefts from 2020 to 2024?	23
Q2 - Does the day of the week affect the cost of the bike that was stolen?	24
Q3 - Does the time of day affect the cost of the bike that was stolen?	26
Q4 - Is there any relationship between the premises where the bike was stolen and the se of the year?	
Q5 - Is there any correlation between the maximum speed of the bike and its cost?	30
Q6 - Is there any relationship between the average bike cost and weekdays versus weeker	nds?32
Q7	35
Conclusion	37

Summary

In this report you can find some analysis about dataset that contains information's about bicycles was theft in Toronto – Canada for the last 5 years.

I performed some univariate and bivariate analysis that is possible we have some conclusions about the data, and make some predictions.

About dataset

Where I find this dataset?

This dataset contains Bicycle Thefts occurrences by reported date and details regarding the stolen item where available. This data includes all bicycle theft occurrences reported to the Toronto Police Service, including those where the location has not been able to be verified. As a result, coordinate fields may appear blank. Likewise, this includes occurrences where the coordinate location is outside the City of Toronto.

Note: Fields have been included for both the old 140 City of Toronto Neighbourhoods structure as well as the new 158 City of Toronto Neighbourhoods structure

Limitations

This dataset contains Bicycle Thefts occurrences from 2014-2024/09. The location of crime occurrences has been deliberately offset to the nearest road intersection node to protect the privacy of parties involved in the occurrence. Due to the offset of occurrence location, the numbers by Division and Neighbourhood may not reflect the exact count of occurrences reported within these geographies. Therefore, the Toronto Police Service does not guarantee the accuracy, completeness, timeliness of the data and it should not be compared to any other source of crime data.

Source: https://open.toronto.ca/dataset/bicycle-thefts/

Technical information about Bicycle Thefts dataset.

This dataset was not normally, then I for better visualization and analysis I cleaned it, excluding all observations lower from first quartile and all observations upper from third quartile. (SAS code line 28 to 47).

Contents about dataset.

The CONTENTS Procedure				
Data Set Name	ALI.BICYCLE_THEFTS_2020_2024	Observations	11363	
Member Type	DATA	Variables	30	
Engine	V9	Indexes	0	
Created	2024-12-17 10:28:45	Observation Length	432	
Last Modified	2024-12-17 10:28:45	Deleted Observations	0	
Protection		Compressed	NO	
Data Set Type		Sorted	NO	
Label				
Data Representation	WINDOWS_64			
Encoding	wlatin1 Western (Windows)			

Engine/Host Dependent Information				
Data Set Page Size	65536			
Number of Data Set Pages	76			
First Data Page	1			
Max Obs per Page	151			
Obs in First Data Page	141			
Number of Data Set Repairs	0			
ExtendObsCounter	YES			
Filename	D:\DSA - College\FDA\bicycle_thefts_2020_2024.sas7bdat			
Release Created	9.0401M7			
Host Created	X64_10PRO			
Owner Name	DESKTOP-C8GPL1G\mateu			
File Size	5MB			
File Size (bytes)	5046272			

	Alphabetic List of Variables and Attributes					
#	Variable	Туре	Len	Format	Informat	
25	BIKE_COLOUR	Char	6	\$6.	\$6.	
26	BIKE_COST	Num	8	BEST12.	BEST32.	
21	BIKE_MAKE	Char	15	\$15 .	\$15 .	
22	BIKE_MODEL	Char	17	\$17.	\$17.	
24	BIKE_SPEED	Num	8	BEST12.	BEST32.	
23	BIKE_TYPE	Char	2	\$2.	\$2.	
18	DIVISION	Char	3	\$3.	\$3.	
2	EVENT_UNIQUE_ID	Char	14	\$14.	\$14.	
29	LAT_WGS84	Num	8	BEST12.	BEST32.	
19	LOCATION_TYPE	Char	72	\$72.	\$72.	
28	LONG_WGS84	Num	8	BEST12.	BEST32.	
4	OCC_DATE	Num	8	YYMMDD10.	YYMMDD10.	
8	OCC_DAY	Num	8	BEST12.	BEST32.	
7	OCC_DOW	Char	9	\$9.	\$9.	
9	OCC_DOY	Num	8	BEST12.	BEST32.	
10	OCC_HOUR	Num	8	BEST12.	BEST32.	
6	OCC_MONTH	Char	9	\$9.	\$9.	
5	OCC_YEAR	Num	8	BEST12.	BEST32.	
20	PREMISES_TYPE	Char	11	\$11.	\$11.	
3	PRIMARY_OFFENCE	Char	30	\$30.	\$30.	
11	REPORT_DATE	Num	8	YYMMDD10.	YYMMDD10.	
15	REPORT_DAY	Num	8	BEST12.	BEST32.	
14	REPORT_DOW	Char	9	\$9.	\$9.	
16	REPORT_DOY	Num	8	BEST12.	BEST32.	
17	REPORT_HOUR	Num	8	BEST12.	BEST32.	
13	REPORT_MONTH	Char	8	\$8.	\$8.	
12	REPORT_YEAR	Num	8	BEST12.	BEST32.	
27	STATUS	Char	9	\$9.	\$9.	
1	_id	Num	8	BEST12.	BEST32.	
30	geometry	Char	92	\$92.	\$92.	

For my analysis univariate and bivariate I just used this follow variables:

OCC_DOW	Day of the Week Offence Occurred
REPORT_DATE	Date Offence was Reported
OCC_DATE	Date of Offence
OCC_YEAR	Year Offence Occurred
BIKE_SPEED	Speed of Bicycle
BIKE_COST	Cost of Bicycle
STATUS	Status of Bicycle
PREMISES_TYPE	Premises Type of Offence
OCC_MONTH	Month Offence Occurred
OCC_HOUR	Hour Offence Occurred
BIKE_TYPE	Type of Bicycle

Segmentations / Descriptions

Segmentations created to analysis better the data set (SAS code lines 52 to 139)

For the variable BIKE_SPEED, I divided the observations into four groups:

- "Non-motorized" includes all observations below 1 km/h.
- "Up to 25 km/h" includes all observations from 1 km/h to 25 km/h.
- "Up to 50 km/h" includes all observations from 26 km/h to 50 km/h.
- "Above 50 km/h" includes all observations above 51 km/h.

For the variable BIKE TYPE, I classified different types of bikes:

- BMX, Electric, Folding, Mountain, Road, Touring bikes, and others were labeled for clear identification.

For the variable BIKE_COST, I divided bike prices into ranges:

- "Below \$500" includes bikes costing up to \$500.
- "\$500 \$1000" includes bikes in that price range.
- "\$1000 \$2000" includes bikes priced between \$1000 and \$2000.
- Higher ranges continue up to "Above \$5000."

For the variable DIF_DAYS, I segmented the number of days into periods:

- "Up to 5 Days" includes observations within 5 days.
- "6 to 10 Days" through "Over 50 Days" covers progressively longer time spans.

For the variable HOURPERIODS, I divided hours into four periods:

- "Night" from 0 to 6 hours.
- "Morning" from 7 to 12 hours.
- "Afternoon" from 13 to 18 hours.
- "Evening" from 19 to 23 hours.

For the variable SEASON, I categorized months into seasons:

- "Spring" includes March, April, and May.
- "Summer" includes June, July, and August.
- "Fall" includes September, October, and November.
- "Winter" includes December, January, and February.

For the variable WKDAYS, I classified days of the week into:

- "Weekday" for Monday through Friday.
- "Weekend" for Saturday and Sunday.

For the variable REPORTDAYS, I divided reporting times into:

- "On-time Report" for observations reported within 14 days.
- "Late Report" for reports submitted after 14 days.

Univariate Analysis

Q1 - Annual Bicycle Theft Analysis

To determine the number of bicycles stolen each year, we performed a frequency analysis using the PROC FREQ statement. This allowed us to calculate the frequency and percentage of bicycle theft incidents by year.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: OCC_YEAR

Visualization Method: Vertical Bar Chart (VBAR) / Box Plot

Analysis Technique: PROC FREQ

Conclusion: As we can see, the number of bike thefts in Toronto has started to decrease from 2021 to 2024, dropping from 2,626 to 1,786.

Q2 - Monthly Bicycle Theft

To analyze the distribution of bicycle thefts across different months, we used the PROC FREQ statement to calculate the frequency and percentage of theft incidents by month.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: OCC_MONTH

Visualization Method: Vertical Bar Chart (VBAR)

Analysis Technique: PROC FREQ

Univariate - Qualitative

Variable: OCC_MONTH (Month Offence Occurred)

Q2 - How many bicyles was thetf by month?

The FREQ Procedure

OCC_MONTH	Frequency	Percent	Cumulative Frequency	Cumulative Percent
July	1468	15.97	1468	15.97
August	1390	15.12	2858	31.09
June	1168	12.70	4026	43.79
September	1165	12.67	5191	56.46
May	1050	11.42	6241	67.88
October	784	8.53	7025	76.41
April	605	6.58	7630	82.99
November	420	4.57	8050	87.56
March	385	4.19	8435	91.74
January	265	2.88	8700	94.63
February	256	2.78	8956	97.41
December	238	2.59	9194	100.00

In this analysis of the frequency of bicycle thefts by month, we observe that July is the month with the highest number of bike thefts. Additionally, we can infer that the season of the year directly affects the number of bike thefts. As shown in the pie chart, summer is the season with the most thefts.

Q3 - During which period of the day are bicycles most frequently stolen

To answer this questions we need use the statement PROC FREQ to check the frequencies and calculate percentage of how many bicycles was theft in specifically hour of the day, also we need do some aggregation. Check proc format *hourperiods*.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: OCC_HOUR

Visualization Method: Vertical Bar Chart (VBAR)

Analysis Technique: PROC FREQ

Conclusion:

In this analysis of the **OCC_HOUR** variable, we observe that the afternoon is the time of day with the highest number of bike thefts. Additionally, I applied segmentation to the hours of the day, which can be reviewed on page X.

Q4 - Bicycle Theft by Day of the Week

To examine the distribution of bicycle theft incidents by day of the week, we used the PROC FREQ statement. This helped us calculate the frequency and percentage of theft occurrences for each day.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: OCC_DOW

Visualization Method: Vertical Bar Chart (VBAR)

Analysis Technique: PROC FREQ

Univariate - Qualitative

Variable: OCC_DOW (Day of week the offence occurred)

*Q4 - On which day of the week are bicycles most frequently theft?

The FREQ Procedure

OCC_DOW	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Friday	1354	14.73	1354	14.73
Monday	1303	14.17	2657	28.90
Saturday	1270	13.81	3927	42.71
Sunday	1262	13.73	5189	56.44
Thursday	1328	14.44	6517	70.88
Tuesday	1434	15.60	7951	86.48
Wednesday	1243	13.52	9194	100.00

In this analysis of the **OCC_DOW** variable, we observe that the difference between days of week is almost the same percentage between 13% and 16%.

Q5 - Bicycle Theft Type

We analyzed the number of bicycle thefts for each type of bike using the PROC FREQ statement. This allowed us to calculate the frequency and percentage of thefts for each type.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: BIKE_TYPE

Visualization Method: Vertical Bar Chart (VBAR)

Analysis Technique: PROC FREQ

Univariate - Qualitative

Variable:BIKE_TYPE (Type of Bicycle)

*Q5 - Whats type of bike is usually is more theft?

The FREQ Procedure

BIKE_TYPE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
BMX Bike	87	0.95	87	0.95
Electric Bike	1063	11.56	1150	12.51
Folding Bike	102	1.11	1252	13.62
Mountain Bike	2638	28.69	3890	42.31
Other Bikes	1145	12.45	5035	54.76
Road Bike	573	6.23	5608	61.00
Recumbent Bike	4	0.04	5612	61.04
Regular/Hybrid	2732	29.72	8344	90.75
Scooter	477	5.19	8821	95.94
Tandem Bike	3	0.03	8824	95.98
Touring Bike	340	3.70	9164	99.67
Tricycle	22	0.24	9186	99.91
Unknown	8	0.09	9194	100.00

By analyzing the frequency table, we can see that Regular/Hybrid bikes and Mountain bikes account for a total of 58.41% of bike thefts.

Q6 - Bicycle Theft by Premise Type

To determine the most common premises where bicycle thefts occur, we used the PROC FREQ statement. This allowed us to calculate the frequency and percentage of theft incidents by premise type.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: PREMISE_TYPE

Visualization Method: Vertical Bar Chart (VBAR)

Analysis Technique: PROC FREQ

Univariate - Qualitative

Variable:PREMISES_TYPE (Premises Type of Offence)

Q6 - What types of premises are bicycles most frequently stolen from?

The FREQ Procedure

PREMISES_TYPE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Apartment	3161	27.82	3161	27.82
Commercial	1455	12.80	4616	40.62
Educational	415	3.65	5031	44.28
House	1317	11.59	6348	55.87
Other	1741	15.32	8089	71.19
Outside	2986	26.28	11075	97.47
Transit	288	2.53	11363	100.00

By analyzing the frequency table, we can see that 54.10% of bike thefts is from Apartment and Outside places.

Q7 - What is the average price of a stolen bicycle?

To answer this question, we will analyze the BIKE_COST variable, which represents the cost of stolen bikes.

Analysis Overview:

Type: Univariate Analysis

Numerical Variable: BIKE_COST (Continuous)

Visualization: Box Plot (Horizontal Box Plot)

Analysis Method: Univariate

Univariate - Quantitative

Variable:BIKE_COST (Cost of Bicycle)

Q7 - What is the average price of a theft bicycle?

The UNIVARIATE Procedure Variable: BIKE_COST

Moments					
N	9194	Sum Weights	9194		
Mean	900.533663	Sum Observations	8279506.5		
Std Deviation	604.312406	Variance	365193.484		
Skewness	1.01963653	Kurtosis	0.48767011		
Uncorrected SS	1.08132E10	Corrected SS	3357223697		
Coeff Variation	67.1060317	Std Error Mean	6.30244784		

Basic Statistical Measures				
Location Variability				
Mean	900.534	Std Deviation	604.31241	
Median	780.000	Variance	365193	
Mode	1000.000	Range	2749	
		Interquartile Range	705.00000	

Tests for Location: Mu0=0				
Test	Statistic p Value			
Student's t	t 142.8863		Pr > t	<.0001
Sign	M	4597	Pr >= M	<.0001
Signed Rank	S	21134708	Pr >= S	<.0001

Quantiles (Definition 5)					
Level	Quantile				
100% Max	2750				
99%	2500				
95%	2200				
90%	1900				
75% Q3	1200				
50% Median	780				
25% Q1	495				
10%	250				
5%	168				
1%	100				
0% Min	1				

Extreme Observations						
Low	est	High	est			
Value	Obs	Value	Obs			
1	4264	2728	4398			
3	7186	2730	6542			
5	3983	2750	6197			
12	5863	2750	6655			
20	4916	2750	8263			

For the **BIKE_COST** variable, I performed a univariate analysis in SAS, which allowed us to examine specific values. Based on this analysis, we can conclude that the average cost of a stolen bike is \$900.53. The five-number summary reveals that the median cost is \$980. Additionally, 25% (Q1) of our observations have a cost of \$495, while 75% (Q3) have a cost of \$1,200. The minimum reported price was \$1 CAD, and the maximum was \$2,750.

Q8 - What is the average maximum speed of stolen bicycles?

To answer this question, we will analyze the **BIKE_SPEED** variable, which represents the minimum, maximum and average speed of the stolen bicycles.

Analysis Overview:

Type: Univariate Analysis

Numerical Variable: BIKE_SPEED (Continuous)

Visualization: Box Plot (Horizontal Box Plot)

Analysis Method: Means

Conclusion:

Based on means table, we can see that the average of speed of bike stolen is 13.06 km/h max.

Q9 - How many bicycles were recovered?

To answer this question, we need to use the **PROC FREQ** statement to analyze the frequency and calculate the percentage of bicycles that were stolen by year.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: STATUS

Visualization Method: Pie Chart / Vertical Bar Chart (VBAR)

Analysis Method: Frequency Distribution (PROC FREQ)

Conclusion:

Only 0.47% of bikes thefts was recovered.

Q10 - How many days, on average, pass between the date a bicycle is stolen and the date the theft is reported?

To answer this question, we will analyze the **NDAYS** variable, which represents the number of days between the theft and the report date.

Analysis Overview:

Type: Univariate - Qualitative

Categorical Variable: NDAYS

Visualization: Bar Chart (VBAR)

Analysis Method: Frequency Distribution (PROC FREQ)

	ble:STAT between the	US (Sta		ycle)
NDAYS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	154	1.68	154	1.68
5 Days	7499	81.56	7653	83.24
10 Days	636	6.92	8289	90.16
20 Days	438	4.76	8727	94.92
30 Days	180	1.96	8907	96.88
40 Days	105	1.14	9012	98.02
50 Days	45	0.49	9057	98.51
More 50 Days	137	1.49	9194	100.00

Conclusion:

Based on results from frequencies table we can say that 81.56% reported the theft in 5 days maximum after the theft, and 1.49% reported just after 50 days.

Bivariate Analysis

Q1 - What has been the growth in e-bike thefts from 2020 to 2024?

To answer this question, we will examine the relationship between e-bike thefts and the years reported, focusing on the **BIKE_TYPE** and **REPORT_YEAR** variables.

Analysis Overview:

Type: Bivariate

Categorical vs. Categorical Variables: BIKE_TYPE * REPORT_YEAR

Visualization: Bar Chart (VBAR)

Test of Independence: Contingency Table

Conclusion:

E-bike thefts have shown substantial growth from 2021 to 2023 with an increase of 135.56%.

However, there has been a decline of 33.65% in 2024 (up to September) compared to 2023.

Q2 - Does the day of the week affect the cost of the bike that was stolen?

To answer this question, we will analyze the relationship between the day of the week and the cost of the stolen bike.

Analysis Overview:

Type: Bivariate

Categorical Variables: OCC_DOW (day of the week) and BIKE_COST (after formatting)

Visualization: Clustered Bar Chart

Test of Independence: Contingency Table

Bivariate - CONTIGENCE TABLE

Variables: OCC_DOW * BIKE_COST

Q2 -The day of the week is affected the cost of bike was theft?

The FREQ Procedure

Frequency	Table of OCC_DOW by BIKE_COST									
Percent										
	OCC_DOW	Low than \$500	between \$500 and \$1000	between \$1000 and \$2000	between \$2000 and \$3000	Total				
	Friday	459 4.99	511 5.56	315 3.43	69 0.75	1354 14.73				
	Monday	428 4.66	487 5.30	324 3.52	64 0.70	1303 14.17				
	Saturday	387 4.21	498 5.42	323 3.51	62 0.67	1270 13.81				
	Sunday	403 4.38	451 4.91	319 3.47	89 0.97	1262 13.73				
	Thursday	478 5.20	460 5.00	314 3.42	76 0.83	1328 14.44				
	Tuesday	473 5.14	529 5.75	337 3.67	95 1.03	1434 15.60				
	Wednesday	415 4.51	460 5.00	287 3.12	81 0.88	1243 13.52				
	Total	3043 33.10	3396 36.94	2219 24.14	536 5.83	9194 100.00				

Across all days of the week, most thefts occur in the \$500–\$1,000 cost range, accounting for 36.94% of total thefts.

The \$2,000–\$3,000 range consistently has the fewest thefts (5.83% total).

Tuesday has the highest overall percentage of thefts (15.60%), while Wednesday has the lowest (13.52%).

The patterns are generally consistent across all days, with slight variations in percentages

Since the p-values are greater than α =0.05\alpha = 0.05 α =0.05, we **fail to reject the null hypothesis**. This suggests that there is no statistically significant association between the day of the week (OCC_DOW) and the cost of the stolen bike (BIKE_COST).

Q3 - Does the time of day affect the cost of the bike that was stolen?

To answer this question, we will analyze the relationship between the time of day and the cost of the stolen bike.

Analysis Overview:

Type: Bivariate

Categorical Variables: BIKE_COST (after formatting) and OCC_HOUR (after formatting)

Visualization: Clustered Bar Chart

Test of Independence: Chi-Square Test

Bivariate - CHI SQUARE

Variables: OCC_HOUR * BIKE_COST

Q3 - Is the period of day affect the bike cost was theft?

The FREQ Procedure

Frequency
Percent

	Tab	le of OCC_HOUR	R by BIKE_COST							
	BIKE_COST									
OCC_HOUR	Low than \$500	between \$500 and \$1000	between \$1000 and \$2000	between \$2000 and \$3000	Total					
Night	498	552	329	92	1471					
	5.42	6.00	3.58	1.00	16.00					
Morning	732	853	519	125	2229					
	7.96	9.28	5.64	1.36	24.24					
Afternoon	1040	1187	821	180	3228					
	11.31	12.91	8.93	1.96	35.11					
Evening	773	804	550	139	2266					
	8.41	8.74	5.98	1.51	24.65					
Total	3043	3396	2219	536	9194					
	33.10	36.94	24.14	5.83	100.00					

Since the p-value (0.3115) is greater than the significance level α =0.05, **we fail to reject the null hypothesis**. Therefore, we conclude that there is no significant association between the period of the day and the cost of the bike.

Q4 - Is there any relationship between the premises where the bike was stolen and the season of the year?

To answer this question, we will analyze the relationship between the type of premises and the month of the theft.

Analysis Overview:

Type: Bivariate

Categorical Variables: PREMISES_TYPE and OCC_MONTH

Visualization: Bar Chart (VBAR)

Test of Independence: Chi-Square Test

Bivariate - CHI SQUARE

Variables:PREMISES_TYPE*OCC_MONTH

Q4 - Is any relatioshinp between premises where bike wa theft and season of year?

The FREQ Procedure

Frequency
Percent

Table of PREMISES_TYPE by OCC_MONTH							
		OCC_MONTH					
PREMISES_TYPE	Spring	Summer	Winter	Fall	Total		
Apartment	623	1104	280	587	2594		
	6.78	12.01	3.05	6.38	28.21		
Commercial	248	538	86	341	1213		
	2.70	5.85	0.94	3.71	13.19		
Educational	86	114	12	159	371		
	0.94	1.24	0.13	1.73	4.04		
House	246	479	75	237	1037		
	2.68	5.21	0.82	2.58	11.28		
Other	304	661	95	350	1410		
	3.31	7.19	1.03	3.81	15.34		
Outside	501	1018	197	611	2327		
	5.45	11.07	2.14	6.65	25.31		
Transit	32	112	14	84	242		
	0.35	1.22	0.15	0.91	2.63		
Total	2040	4026	759	2369	9194		
	22.19	43.79	8.26	25.77	100.00		

Since the p-value is less than significance level α =0.05, we can reject the null hypothesis, and conclude that there is an association between premises type and season of year.

Q5 - Is there any correlation between the maximum speed of the bike and its cost?

To answer this question, we will analyze the relationship between the bike's cost and its maximum speed.

Analysis Overview:

Type: Bivariate

Continuous Variables: BIKE_COST and BIKE_SPEED

Visualization: Scatter Plot Matrix

Test of Independence: Correlation (PROC CORR)

Correlation Value: The correlation coefficient is 0.04873, indicating a very weak linear relationship between bike speed and bike cost. This suggests that bike speed and cost are almost independent, with no meaningful relationship.

P-value (0.001): Since the p-value is slightly below 0.05, the result is statistically significant at the 5% level. This means that while the correlation is very close to zero, there is weak evidence of a small inverse relationship.

Q6 - Is there any relationship between the average bike cost and weekdays versus weekends?

To answer this question, we will analyze the relationship between the average bike cost and the day of the week.

Analysis Overview:

Type: Bivariate

Continuous Variable: BIKE_COST (Dependent)

Categorical Variable: OCC_DOW (Independent)

Test of Independence: T-Test

Bivariate - T-TEST

Variable:BIKE_COST VS OCC_DOW

Q6 - Any relationship between the avarage of bike cost and week days and weekend?

The TTEST Procedure

Variable: BIKE_COST

OCC_DOW	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
Week Day		6662	892.5	603.2	7.3903	1.0000	2750.0
Weekend		2532	921.8	606.8	12.0595	3.0000	2750.0
Diff (1-2)	Pooled		-29.2870	604.2	14.1059		
Diff (1-2)	Satterthwaite		-29.2870		14.1438		

OCC_DOW	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
Week Day		892.5	878.0	907.0	603.2	593.1	613.6
Weekend		921.8	898.1	945.4	606.8	590.6	624.0
Diff (1-2)	Pooled	-29.2870	-56.9377	-1.6363	604.2	595.6	613.1
Diff (1-2)	Satterthwaite	-29.2870	-57.0158	-1.5582			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	9192	-2.08	0.0379
Satterthwaite	Unequal	4545.4	-2.07	0.0384

	Equality of Variances						
Meth	od	Num DF	Den DF	F Value	Pr > F		
Folde	ed F	2531	6661	1.01	0.7134		

Histogram Analysis

Both distributions are slightly right-skewed, meaning higher-cost bikes are less frequent but present in both categories.

The kernel density plot shows the general trend of the data, while the normal curve (blue line) suggests the data is not perfectly normal.

Comparison of Means

Weekdays seem to have a slightly higher concentration of lower-cost bikes, with the mid-range

Weekends show a broader spread, indicating that more high-cost bikes involved in thefts compared to weekdays.

Box Plot Analysis

The medians appear slightly higher for weekends compared to weekdays, also the interquartile (IQR) is wider on weekends, suggesting higher variability in bike cost during theses days. Both categories show outliers, but in weekends having more extreme values.

Q-Q Plots

The values for both categoric isn't normally distributed in the tails, in the middle of the range are consistent with normal distribution.

Conclusion:

The difference in means is 29.2870 – weekends having a slightly higher average bike cost.

Base that we now the both standard deviation is similar we should look at Pooled confidence interval.

P-value: is less the 0.05 this indicate a statistically significant difference in the average bike cost between weekdays and weekend.

"Formal" hypothesis, Folded F – test has p-value that indicating that the variances between the two groups are not significantly different. Also because p-value is grater then (0.5) we fail to eject the null hypothesis.

Q7 – Can we say that the price of the bike changes if the speed changes as well?

Analysis Overview:

Type: Bivariate

Continuous Variable: BIKE_COST (Dependent)

Continuous Variable: BIKE_SPEED (Independent)

Test of Independence: ANOVA

R-Square: 0.0291

This indicates that 0.0291 of the variance in BIKE_COST is explained by BIKE_SPEED. This suggests that while the relationship is statistically significant, bike speed only explains a small portion of the variability in bike cost.

Based on the p-value (<.0001), you can conclude that there is a statistically significant relationship between bike cost and bike speed.

After my analysis, I can conclude that for all univariate analyses, I was able to draw meaningful conclusions about certain variables, such as which season of the year, time of day, or day of the week bicycles were most often stolen. Based on these conclusions, we can make predictions. On the other hand, for the bivariate analysis, the data wasn't properly cleaned, which compromised my univariate analysis. Since this dataset does not follow a normal distribution, we cannot rely on the results from this type of analysis to make accurate predictions.