PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-040442

(43)Date of publication of application: 13.02.2001

(51)Int.Cl.

C22C 19/00 // H01M 4/38

(21)Application number: 11-363882

(71)Applicant: MITSUI MINING & SMELTING CO LTD

(22)Date of filing:

22.12.1999

(72)Inventor: YASUDA KIYOTAKA

SAKAI MINORU UCHIYAMA AKIRA OKIFUJI TAKASHI SAKAGUCHI YOSHIKI

(30)Priority

Priority number: 11146452

Priority date : 26.05.1999

Priority country: JP

(54) HYDROGEN STORAGE ALLOY

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an alloy excellent in hydrogen storage characteristics, having pulverizing characteristics, good initial characteristics and outputting characteristics and excellent in durability and preservability by allowing it to have a prescribed CaCu5 type crystal structure, reducing the containing ratio of Co and extremely reducing the containing ratios of Mn and Al as corrosive components. SOLUTION: This alloy has a CaCu5 type crystal structure expressed by the formula I. In the formula I, Mm denotes misch metal, and 3.7≤a≤4.2, 0<b≤0.3, 0<c≤0.4, 0.2≤d≤0.4, b+c<0.5, 5.00≤ a+b+c+d≤5.20 are satisfied. Preferably, it is an alloy having a CaCu5 type crystal structure expressed by the formula II. In the formula II, Mm denotes misch metal, X denotes Fe and/or Cu, and 3.7≤a≤4.2, 0<b≤0.3, 0<c≤0.4, 0.2≤d≤0.4, 0<e≤0.4, b+c<0.5, 5.00≤ a+b+c+d+e≤5.20 are satisfied. Moreover, the content of La in Mm is controlled to 20 to 30 wt.% in the hydrogen alloy.

MmN1. Mn. Al. Co.

MmNi. Mn. Al. Co. X.

П

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-40442 (P2001 - 40442A)

(43)公開日 平成13年2月13日(2001.2.13)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C 2 2 C 19/00

// H01M 4/38

C 2 2 C 19/00 H01M 4/38

F Α

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号

特顧平11-363882

(22)出顧日

平成11年12月22日(1999.12.22)

(31)優先権主張番号 特顯平11-146452

(32)優先日

平成11年5月26日(1999.5.26)

(33)優先權主張国

日本 (JP)

(71)出願人 000006183

三井金属鉱業株式会社

東京都品川区大崎1丁目11番1号

(72)発明者 安田 清隆

広島県竹原市港町1-8-11

(72)発明者 酒井 実

広島県竹原市塩町3丁目19-10

(72)発明者 内山 朗

広島県竹原市本町2-7-1

(72)発明者 沖藤 貴嗣

広島県豊田郡安芸津町風早895-100

(74)代理人 100076532

弁理士 羽鳥 修

最終頁に続く

(54)【発明の名称】 水素吸蔵合金

(57)【要約】

【課題】 コバルトの含有割合を少なくすることと同時 に、合金中の腐食成分であるマンガン及びアルミニウム の含有割合を極めて少なくし、水素吸蔵特性に優れると 共に、微粉化特性や良好な初期特性や出力特性を有し、 しかも耐久性や保存性について高い信頼性を有する水素 吸蔵合金を提供する。

【解決手段】 一般式

MmNi. Mn. Alc Cod X.

(式中、Mmはミッシュメタル、XはFe及び/又はC $u\,,\ 3.\ 7 \leqq a \leqq 4.\ 2\,,\ 0 \leqq b \leqq 0\,.\ 3\,,\ 0 \leqq c \leqq$ 0. 4, 0. $2 \le d \le 0$. 4, $0 \le e \le 0$. 4, 5. 0 $0 \le a + b + c + d + e \le 5$. 20、但しb = c = 0の 場合を除く、また0<b≤0.3、かつ0<c≤0.4 の場合は、b+c < 0. 5 である) で表される C a C u5 型の結晶構造を有することを特徴とする水素吸蔵合 金。

【特許請求の範囲】

【請求項1】 一般式

MmNi. Mn. Alc Coa

(式中、Mmはミッシュメタル、3. $7 \le a \le 4$. 2、 $0 < b \le 0$. 3、 $0 < c \le 0$. 4、0. $2 \le d \le 0$. 4、b+c < 0. 5、5. $0 0 \le a+b+c+d \le 5$. 2 0) で表されるC a C us 型の結晶構造を有することを特徴とする水素吸蔵合金。

1

【請求項2】 一般式

MmNi. Mn. Alc Coa Xe

(式中、Mmはミッシュメタル、XはF e 及び/又はC u、3. $7 \le a \le 4$. 2、 $0 < b \le 0$. 3、 $0 < c \le 0$. 4、0. $2 \le d \le 0$. 4、 $0 < e \le 0$. 4、b + c < 0. 5、5、 $0 \cdot 0 \le a + b + c + d + e \le 5$. 20) で表されるC a C us 型の結晶構造を有することを特徴とする水素吸蔵合金。

【請求項3】 一般式

MmNi. Alc Coa

(式中、Mmはミッシュメタル、3. $7 \le a \le 4$. 2、 $0 < c \le 0$. 4、0. $2 \le d \le 0$. 4、5. $0 0 \le a + c + d \le 5$. 20) で表されるCaCus 型の結晶構造を有することを特徴とする水素吸蔵合金。

【請求項4】 一般式

MmNi. Alc Cod Xe

(式中、Mmはミッシュメタル、XはF e Qび/YはC u、3. $7 \le a \le 4$. $2 < 0 < c \le 0$. 4 < 0. $2 \le d \le 0$. $4 < 0 < e \le 0$. 4 < 5. $0 \le a + c + d + e \le 5$. $2 \circ 0$) で表される $C \circ a \circ C \circ u$ 。型の結晶構造を有することを特徴とする水素吸蔵合金。

【請求項5】 一般式

MmNi. Mn. Coa

(式中、Mmはミッシュメタル、3. $7 \le a \le 4$. 2、 $0 < b \le 0$. 3、0. $2 \le d \le 0$. 4、5. $0.0 \le a + b + d \le 5$. 20) で表されるCaCu。型の結晶構造を有することを特徴とする水素吸蔵合金。

【請求項6】 一般式

MmNi. Mn. Co. X.

(式中、Mmはミッシュメタル、XはF e 及び/又はC u、3. $7 \le a \le 4$. 2、 $0 < b \le 0$. 3、0. $2 \le d$ ≤ 0 . 4、 $0 < e \le 0$. 4、5. $0 0 \le a + b + d + e$ ≤ 5 . 20) で表されるC a C us 型の結晶構造を有することを特徴とする水素吸蔵合金。

【請求項7】 上記Mm中のLa量が水素合金中20~30重量%である請求項1~6のいずれかに記載の水素吸蔵合金。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金に関し、詳しくは合金中のコバルト、マンガン、アルミニウムの含有割合を極めて少なくしつつ、微粉化特性及び水 50

素吸蔵特性 (PCT特性) に優れ、しかも電池特性として重要な、初期活性に優れるばかりか、電動工具等の高出力特性やハイブリッド電気自動車用途の低温特性が良好で、しかも耐久性や保存性について高い信頼性を有する水素吸蔵合金に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、ニッケルーカドミウム蓄電池に代わる高容量アルカリ蓄電池として、水素吸蔵合金を負極に用いたニッケルー水素蓄電池(二次電池)が注目されている。この水素吸蔵合金は、現在では希土類系の混合物であるMm(ミッシュメタル)とNi、Al、Mn、Coとの5元素の水素吸蔵合金が汎用されている。

【0003】このMm-Ni-Mn-Al-Co合金は、La系のそれに比べて比較的安価な材料で負極を構成でき、サイクル寿命が長く、過充電時の発生ガスによる内圧上昇が少ない密閉型ニッケル水素蓄電池を得ることができることから、電極材料として広く用いられている。

20 【0004】現在用いられているMm-Ni-Mn-Al-Co合金は、合金の微粉化を抑制してサイクル寿命を長くしているが、一般的にこの微粉化抑制のためには10重量%程度のCo(原子比で0.6~1.0)を必要とすることが知られている。また、優れた水素吸蔵特性及び耐食性を得るためにも一定量のCoの含有は必要とされている。

【0005】しかしながら、Coの含有率が高いとそれだけ原料コストが高くなり、原料コストの面から問題視されている。特に、電気自動車用電源(EV:Electric Vehicle)等の大型電池への適用やニッケルー水素蓄電池の更なる市場の増大に対しては、原料コストは、電極負極材料の選定において大きな割合を占め、このことが問題となっていた。

【0006】このような問題を解決するために、特開平9-213319号公報には、Mm-Ni-Mn-Al-Co系合金の組成を変化させ、これにさらに少量の1元素を加えることが提案されている。同公報に記載の水素吸蔵合金粉末を負極に用いることによって、Coが少量にも拘わらず、合金の微粉化による負極の劣化を一定限度抑制し、電池のサイクル寿命を長くすることができる。

【0007】しかしながら、特開平9-213319号公報にある組成合金は、必ずしも特性が安定しておらず、そのため本発明者らによる特開平11-152533号公報では、良好な初期活性を得るための組成と製造方法が提案されており、これにより低Co合金は特定の用途で使用されるに至っている。

【0008】しかるに、同公報(特開平9-213319号公報、特開平11-152533号公報)に開示の水素吸蔵合金を用いた場合には、出力特性、特に低温で

3

の出力が十分ではなく、電動工具等の高出力特性やハイブリッド電気自動車用途としては使用できないという問題がある。

【0009】さらに、水素吸蔵合金には特に電気自動車に適用した場合、長期使用時の耐久や高温保存時の腐食に対して高い信頼性が求められている。しかしながら、一般に広く使用されている水素吸蔵合金には、特性維持のために必要とされている必須元素のMnやAlが、MnとAlの総和で0.7モル程度含有されており、これら元素が電池の充放電サイクル時や保存時に腐食して電池劣化を起こすことが問題となっている。

【0010】従って、本発明の目的は、コバルトの含有割合を少なくすることと同時に、合金中の腐食成分であるマンガン及びアルミニウムの含有割合を極めて少なくして、水素吸蔵特性に優れると共に、微粉化特性や良好な初期特性や出力特性を有し、しかも耐久性や保存性について高い信頼性を有する水素吸蔵合金を提供することにある。

[0011]

【課題を解決するための手段】本発明者等は種々の研究 20 を重ねた結果、マンガン及びアルミニウムの含有量を従来より低減し、かつミッシュメタル中のランタン量を調整し、ABx型合金組成を特定の化学量論比とすることによって、上記目的を達成し得ることを知見した。

【0012】本発明は、上記知見に基づきなされたもので、一般式

MmNi. Mnb Alc Cod Xe

(式中、Mmはミッシュメタル、XはF e Qび/YはC u、3. $7 \le a \le 4$. 2、 $0 \le b \le 0$. 3、 $0 \le c \le 0$. 4、0. $2 \le d \le 0$. 4、 $0 \le e \le 0$. 4、5. 0 30 $0 \le a + b + c + d + e \le 5$. 2 0、d 0 b = c = 0 の場合を除く、また $0 < b \le 0$. 3、かつ $0 < c \le 0$. 4 の場合は、b + c < 0. 5 である)で表されるC a C u s 型の結晶構造を有することを特徴とする水素吸蔵合金を提供するものである。

[0013]

【発明の実施の形態】本発明の水素吸蔵合金は、一般式 MmNi Mn Al CO AX。

(式中、Mmはミッシュメタル、XはF e Qび/又はC u、3. $7 \le a \le 4$. 2、 $0 \le b \le 0$. 3、 $0 \le c \le 40$ 0. 4、0. $2 \le d \le 0$. 4、 $0 \le e \le 0$. 4、5. 0 $0 \le a + b + c + d + e \le 5$. 20、d = b = c = 0の 場合を除く、また $0 < b \le 0$. 3、かつ $0 < c \le 0$. 4 の場合は、b + c < 0. 5である)で表されるd = c = 0の場合は、d = c = 0のは、d = c = 0の場合は、d = c = 0のは、d = c = 0のは、d = c = 0のは、d = c = 0の場合は、d = c = 0のは、d = 0のは

造を有する A B₅ 型水素吸蔵合金であり、 A B_{5.00} ~₅ の B サイトリッチの非化学量論組成である。

【0015】この水素吸蔵合金において、Ni. Mn。 Alc Co X X (XはCu及び/又はFe) の組成割 合(原子比)は、下記の関係を有するものである。すな わち、Niの割合は3.7≤a≤4.2であり、Mnの 割合は $0 \le b \le 0$. 3であり、Alの割合は $0 \le c \le$ 4であり、Coの割合は0.2≦d≦0.4であ り、Xの割合は $0 \le e \le 0$. 4であり、かつa+b+c+d+eが5.00~5.20の範囲にある。但し、b = c = 0 の場合は除かれる。また、 $0 < b \le 0$. 3、か つ0 < c ≤ 0. 4 の場合は、b + c < 0. 5 である。 【0016】上記のように、Niの割合aは3.7~ 4. 2、望ましくは3. 9~4. 1であり、aが3. 7 未満では初期活性特性や出力特性が良好でなく、4.2 を超えると微粉化特性や寿命特性の劣化が認められる。 【0017】Mnの割合bは0~0.3、好ましくは0 ~0.25であり、bが0.3を超えると鋳造の条件に よっては結晶粒界の均質化のための熱処理を施してもM nを含む偏析を消失できない部位が生じ、腐食を促進す る場合が認められ、耐久性や保存性について高い信頼性 が得られない。

【0018】A1の割合 c は $0\sim0$. 4、好ましくは $0\sim0$. 25であり、0. 4を超えると保存性について高い信頼性が得られない。

【0019】MnとA1の総量b+cが0となることはなく、またMnとA1のいずれも含む場合には、その総量b+cが0. 5未満である。b+cが0. 5以上であると初期の活性が損なわれるばかりか、耐久性や保存性について高い信頼性が得られない。

【0020】Coの割合dは0.2~0.4であり、dが0.2未満では水素吸蔵特性や微粉化特性に劣り、0.4を超えるとCoの割合が多くなり、コストの低減が図れない。

【0021】 Xの割合 e は $0\sim0$. 4、好ましくは $0\sim0$. 3 であり、e が0. 4 を超えると初期活性特性や出力特性が損なわれ、また、水素吸蔵量も損なわれる。

【0022】a+b+c+d+e(以下、場合によってxと総称する)は $5.00\sim5.20$ であり、xが5.00未満では電池寿命や微粉化特性が損なわれ、5.20を超えた場合には、水素吸蔵特性が減少すると同時に出力特性も損なわれる。

【0023】次に、本発明の水素吸蔵合金の好ましい製造方法について説明する。先ず、上記で示したような合金組成となるように、水素吸蔵合金原料を秤量、混合し、例えば誘導加熱による高周波加熱溶解炉を用いて、上記水素吸蔵合金原料を溶解して溶湯となす、これを鋳型、例えば水冷型の鋳型に流し込んで水素吸蔵合金を1350~1550℃で鋳造する。また、この際の鋳湯温度は1200~1450℃である。

【0024】次に、得られた水素吸蔵合金を不活性ガス 雰囲気中、例えばアルゴンガス中で熱処理する。熱処理 条件は1070~1100℃、1~6時間である。この ような熱処理を行うのは、鋳造された合金の組織には通 常Mn主体の微細な粒界偏析が認められるが、これを加 熱することによって均質化するためである。

【0025】このようにして、コバルト、マンガン、ア ルミニウムの含有割合を低減したにも拘わらず、微粉化 特性及び水素吸蔵特性に優れると共に、良好な出力特性 及び初期特性を有し、しかも耐久性や保存性について高 10 を間にして挟み込み、比重1.30のKOH水溶液中に い信頼性を有する水素吸蔵合金が得られる。

【0026】この水素吸蔵合金は、粗粉砕、微粉砕後、 高出力用アルカリ蓄電池の負極として好適に用いられ る。かかるアルカリ蓄電池は、初期特性や低温高出力特 性が良好で、合金の微粉化による負極の劣化が抑制さ れ、サイクル寿命の長いものとなる。

[0027]

【実施例】以下、本発明を実施例等に基づき具体的に説

【0028】[実施例1] Mm、Ni、Mn、Al、C 20 ·温度:0℃ o及びFeを合金組成でMmNi 4.2 Mno2 Alo3 Coa4 Fear (ABs.2)となるように、各水素吸 蔵合金原料を秤量、混合し、その混合物をルツボに入れ て高周波溶解炉に固定し、10⁴~10⁵ Torrまで 真空状態にした後、アルゴンガス雰囲気中で加熱溶解し た後、水冷式銅鋳型に流し込み、1350℃(鋳湯温度 1250℃)で鋳造を行い、合金を得た。さらに、この 合金をアルゴンガス雰囲気中で、1080℃、3時間熱 処理を行い、水素吸蔵合金を得た。

【0029】 [実施例2~20及び比較例1~6] 合金 30 組成を表1に示したように変更した以外は、実施例1と 同様にして水素吸蔵合金を得た。

【0030】 [特性評価] 実施例1~20及び比較例1 ~6で得られた水素吸蔵合金について、下記に示す方法 によってPCT容量、微粉化残存率、初期容量、電極寿 命、出力特性、保存腐食(Al及びMn)を測定した。 結果を表2に示す。

【0031】<PCT容量>45℃で測定した吸蔵特性 から計算した。H/M:0~0.5MPa

【0032】<微粉化残存率>PCT装置で、粒度22 40 ~53ミクロンに調整した水素吸蔵合金に、30bar

の水素ガスを導入して水素を吸蔵させ、その後脱蔵排気 する処理を10回繰り返した後、サイクル試験前の平均 粒度に対するサイクル試験後の平均粒度の比で計算し、 比較例1の値を100とした指数で表示した。

【0033】(電極セルの作製) 粒度22~53ミクロ ンに調整した水素吸蔵合金粉末を、導電材及び結合材と 共に所定量混合し、得られた混合粉をプレスしてペレッ ト電極を作製し、負極とした。このペレット負極を、十 分な容量の正極(焼結式水酸化ニッケル)でセパレータ 浸漬させモデルセルを作製した。

(充放電条件の設定)

- 1) 初期活性化試験
- ・充電0.2C-130%;放電0.2C-0.7Vカ
- ・サイクル:15サイクル
- ・温度:20℃
- 2) 出力特性
- ・充電0.2C-130%;放電1C-0.7Vカット
- 3)寿命試験
- · 充電 2 C / 3 1 h; 放電 2 C / 3 1 h
- ・サイクル:100サイクル

【0034】 <初期容量>上記初期活性試験で、1サイ クル目の放電容量の値を表示した。

【0035】〈電極寿命〉上記寿命試験後、充電0.2 C-130%、放電0.2C-0.7Vカット時の放電 容量を測定し、活性化後の初期放電容量に対する比を残 存容量として評価した。

【0036】<出力特性>初期活性化後、上記条件によ り0℃、1℃での低温ハイレートでの放電容量を測定し

【0037】<保存腐食>保存時の腐食挙動を評価する のに、分級した水素吸蔵合金粉末を比重1.30のKO H水溶液中に、75℃で48時間放置し、マンガン及び アルミニウムの溶出試験を行い、ICP化学分析にて定 量し、比較例1の値をそれぞれ100とした場合の指数 で表示した。

[0038]

【表1】

7

_										o
台	合金組成		La	Mn	Al	Ni	Со	Fe	Cu	AB.
	1	1	9 0	0	0.4	4. 1	0.4	0. 2	0.1	5. 2 0
	2	1	9 0	0	0. 3	4. 2	0. 4	0. 2	0. 1	5. 2 0
	3	1	8 0	0. 1	0. 3	4. 1	0. 3	0. 2	0. 2	5. 2 0
	4	l	9 0	0. 1	0. 3	4. 2	0. 4	0. 2	0	5. 2 0
	5	l	8 0	0, 2	0. 2	4. 1	0. 3	0. 3	0. 1	5. 2 0
実	6	1	9 0	0. 2	0. 2	4. 2	0. 4	0. 1	0. 1	5. 2 0
~	7	1	8 0	0. 3	0	4. 1	0. 4	0. 2	0	5. 2 0
	8	1	8 0	0	0. 4	4. 1	0. 4	0. 2	0	5. 1 0
	9	1	8 0	0. 1	0. 2	4. 1	0. 4	0.2	0.1	5. 1 0
施	10	1	8 0	0. 1	0. 3	4. 1	0. 4	0. 2	0	5.10
""	11	1	8 0	0. 3	0. 1	4. 1	0.4	0. 2	0	5. 1 0
	12	1	8 0	0. 3	0	4. 1	0. 4	0. 3	0	5. 1 0
	13	1	8 0	0	0. 4	4. 0	0. 4	0. 2	0	5.00
91	14	1	9 0	0. 3	0.15	4. 1	0.4	0. 1	0.1	5. 1 5
"	15	1	9 0	0. 3	0.15	4. 1	0.4	0	0. 2	5. 1 5
	16	l	8 0	0. 3 5	0.05	4. 1	0. 4	0.05	0. 2	5. 1 5
	17	l	90	0. 3	0. 1	4. 2	0.4	0	0.2	5. 2
	18	ì	8 0	0. 2	0. 2	4. 2	0.4	0	0.2	5. 2
	19	1	90	0.35	0. 1	4. 2	0.4	0	0.1	5. 1 5
	20	1	90	0.35	0	4. 1	0. 4	0	0. 3	5. 1 5
	1	1	4 0	0. 4	0. 3	3. 5 5	0.75	0	0	5.00
比	2	1	6 0	0.45	0. 3	3.95	0.4	0	0.1	5.20
較	3	1	6 0	0.4	0. 3	4. 1	0. 2	0. 2	0	5. 2 0
₹X	4	l	5 0	0. 3	0. 1	4. 1	0. 4	0. 3	0	5.20
例	5	1	90	0. 3	1.0	4. 0	0. 2	0. 3	0. 3	5.20
	6	1	90	0.3	0. 3	4. 4	0. 3	0	0	5.10

[0039]

		9		(0)				10
合金	Het:	PCT容量	微粉化特性	初期容量	電極寿命	出力特性	保存機会	保存機食
ישנים	HUX	(H∕M)	(%)	(mAlt/g)	Vs. ММ	(mAh/g)	Al	MIII
	1	0.81	9 1	105	9 9	220	100	0
	2	0.82	8 9	110	98	220	9 5	0
	3	0.80	9 7	5 0	103	200	9 0	5 0
	4	0.82	9 2	8 5	102	2 1 5	8 5	2 5
実	5	0.80	9 8	4 5	103	200	100	4 0
	6	0.83	9 6	8 0	9 9	2 2 0	8 0	6 0
	7	0.85	9 3	90	98	230	0	7 0
	8	0.85	9 2	1 1 5	9 7	2 2 5	105	0
施	9	0.83	9 4	105	104	220	6 0	5 0
	10	0. 8 1	9 3	110	9 5	230	8 5	4 0
	11	0.84	9 3	8 0	100	2 1 5	3 0	8 5
	12	0.83	9 7	8 5	105	210	0	8 5
	13	0.86	9 2	120	98	2 3 0	9 0	0
例	14	0.85	9 2	8 0	102	240	4 5	70
	15	0.83	9 3	1 1 0	100	2 2 5	5 0	5 5
	16	0.86	9 4	9 5	99	2 3 5	1 5	6 0
	17	0.82	9 2	9 0	98	2 3 0	2 0	5 0
	18	0.81	9 1	105	9 9	2 5 5	60	4 0
	19	0.83	9 0	110	9 5	250	2 0	60
	20	0.82	8 9	90	100	2 4 0	0	6 5
	1	0.82	9 2	2 0	100	2 1 5	100	100
比	2	0.82	9 4	5	9 5	170	105	120
較	3	0.80	9 4	10	9 3	165	9 0	150
	4	0.70	9 1	60	8 8	170	100	9 0

9 2

7 5

10

110

150

200

【0040】表2の結果から明らかなように、実施例 $1\sim 20$ は比較例 $1\sim 6$ よりも初期容量が大幅に高く、また保存性にも優れている。

5

0.70

0.85

95

60

[0041]

【発明の効果】以上説明したように、本発明の水素吸蔵 合金は、コバルトの含有割合を極めて少なくすることと 同時に、合金中の腐食成分であるマンガン及びアルミニウムの含有割合を極めて少なくし、水素吸蔵特性に優れると共に、微粉化特性や良好な出力特性及び初期特性を有し、しかも耐久性や保存性について高い信頼性を有する。

90

90

90

120

フロントページの続き

(72)発明者 坂口 善樹 広島県竹原市本町2-7-1