Model Identification from Data

Using System Identification Toolbox MATLAB

We have a temperature control system with 2 inputs and 2 outputs

Let's try out first State space model for the system

State Space Model

The blue curve represents the predictions using the state space model and black curve is the true output

Validation of State Space model:

Output Y-1:

Output Y-2:

Transient Response: Step Response

U_1→ Y_1:

U_1→ Y_2:

U_2→ Y_1:

U_2→ Y_1:

We can do better than this ...

Let's move to polynomial models like ARX and ARMX

ARX -Model AND ARMAX MODEL:

Different orders of ARX and ARMAX are estimated and the performance of the resulting models are analysed with the

- 1. Output predictions
- 2. Model Residuals (very imp. as the models are built with the assumption of white noise)
- 3. Transient Response (for stability)
- 4. Frequency Response (for stability)

After testing out these models on the above-mentioned criteria ARMAX 4th order model turn out to be the best. In performance wise ARX 4th order and ARMAX 4th order were very similar but it was found that ARX is auto-correlated.

FINAL MODEL:

```
amx4444 =
Discrete-time ARMAX model:
 Model for output "y1": A(z)y_1(t) = -A_i(z)y_i(t) + B(z)u(t) + C(z)e_1(t)
   A(z) = 1 - 1.496 z^{-1} - 0.3103 z^{-2} + 1.305 z^{-3} - 0.4953 z^{-4}
   A 2(z) = -0.01415 z^{-1} - 0.0007124 z^{-2} + 0.04868 z^{-3} - 0.03411 z^{-4}
   B1(z) = 0.0017 z^{-1} + 0.003082 z^{-2} - 0.009475 z^{-3} + 0.007064 z^{-4}
    B2(z) = 0.00448 z^{-1} - 0.01311 z^{-2} + 0.01294 z^{-3} - 0.003967 z^{-4}
   C(z) = 1 - 1.151 z^{-1} - 0.5397 z^{-2} + 1.065 z^{-3} - 0.3256 z^{-4}
 Model for output "y2": A(z)y_2(t) = -A_i(z)y_i(t) + B(z)u(t) + C(z)e_2(t)
   A(z) = 1 - 0.4166 z^{-1} - 0.88 z^{-2} - 0.2321 z^{-3} + 0.5459 z^{-4}
   A 1(z) = -0.0855 z^{-1} + 0.04324 z^{-2} - 0.05946 z^{-3} + 0.09431 z^{-4}
   B1(z) = 0.01347 z^{-1} - 0.01901 z^{-2} + 0.002323 z^{-3} + 0.002028 z^{-4}
   B2(z) = 0.01925 z^{-1} - 0.02972 z^{-2} + 0.01346 z^{-3} + 0.002311 z^{-4}
    C(z) = 1 - 0.2112 z^{-1} - 0.8309 z^{-2} - 0.328 z^{-3} + 0.495 z^{-4}
Name: amx4444
Sample time: 4 seconds
```

A glimpse of all models predictions on a single plot

