# STA2001 Probability and Statistics (I)

Lecture 9

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

#### Review

Negative binomial distribution with parameter p and r:
X, the number of Bernoulli trials at which the rth success is observed, and its pmf takes the form of

pmf: 
$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x \in \overline{S} = \{r, r+1, \cdots\}$$

▶ Poisson distribution with parameter  $\lambda > 0$ :

X, the number of occurrences of an event in a unit interval and its pmf takes the form of

pmf: 
$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, x \in \overline{S} = \{0, 1, \dots\}$$

## **Chapter 3 Continuous Distribution**

### Section 3.1 Random Variable of Continuous Type

#### **Continuous RV**

Recall that a RV  $X:S\to \overline{S}$  is called a discrete RV if  $\overline{S}$  contains finite or countably infinite number of outcomes.

Now we consider RVs with  $\overline{S}$  that is an interval or unions of intervals, which are quite common (e.g., velocity of a vehicle traveling along the high way)

## Discrete RV vs. Continuous RV

RV 
$$X$$
 is a function  $X: S \to \overline{S} \subseteq R$ 

Discrete RV:

Continuous RV:

pmf 
$$f(x): \overline{S} \to (0, 1]$$

- 1. f(x) > 0
- $2. \sum_{x \in \overline{S}} f(x) = 1$
- 3.  $P(X \in A) = \sum_{x \in A} f(x)$

### **Continuous RV**

#### Definition

A RV X with  $\overline{S}$  that is an interval or unions of intervals is said to be continuous RV, if there exists a function  $f(x):\overline{S} \to (0,\infty)$  such that

- 1. f(x) > 0,  $x \in \overline{S}$
- $2. \int_{\overline{S}} f(x) dx = 1$
- 3. If  $[a, b] \subseteq \overline{S}$

$$P(a \le X \le b) \stackrel{\Delta}{=} \int_a^b f(x) dx$$

f is the so called probability density function (pdf).

## Discrete RV vs. Continuous RV

RV 
$$X$$
 is a function  $X: S \to \overline{S} \subseteq R$ 

Discrete RV:

pmf 
$$f(x): \overline{S} \to (0, 1]$$

- 1. f(x) > 0
- $2. \sum_{x \in \overline{S}} f(x) = 1$
- 3.  $P(X \in A) = \sum_{x \in A} f(x)$

Continuous RV:

pdf 
$$f(x): \overline{S} \to (0, \infty)$$

- 1. f(x) > 0
- $2. \int_{\overline{S}} f(x) dx = 1$
- 3.  $P(X \in A) = \int_A f(x) dx$

# Interpretation of pdf



# Interpretation of pdf



1. We often extend the domain of f(x) from  $\overline{S}$  to R and let  $f(x)=0, x\notin \overline{S}$ . In this case,  $f(x):R\to [0,\infty)$  and  $\overline{S}$  is called the support of X.

1. We often extend the domain of f(x) from  $\overline{S}$  to R and let

$$f(x)=0, x\notin \overline{S}$$
. In this case,  $f(x):R\to [0,\infty)$  and  $\overline{S}$  is called the support of  $X$ .

$$\begin{cases} f(x) \ge 0, & x \in R \\ \int_{-\infty}^{\infty} f(x) dx = 1 \\ P(a \le X \le b) = \int_{a}^{b} f(x) dx \end{cases}$$

2. For any single value a,  $P(X = a) = \int_a^a f(x) dx = 0$ .

Therefore, including or excluding the end points of an interval has no effect on its probability:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

2. For any single value a,  $P(X = a) = \int_a^a f(x) dx = 0$ .

Therefore, including or excluding the end points of an interval has no effect on its probability:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

3. pdf needs not to be continuous

$$f(x) = \begin{cases} \frac{1}{2}, & 0 < x < 1, & 2 < x \le 3\\ 0, & \text{otherwise} \end{cases}$$

4. pdf needs not to be bounded, e.g., the Gamma distribution

#### Cumulative distribution function

#### Definition

 $\operatorname{cdf} F(x): R \to [0,1]$ 

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

- 1. F(x) is nondecreasing
- 2. relation between the probability function and the cdf

$$P(a \le X \le b) = F(b) - F(a)$$

relation between the pdf and the cdf

$$f(x) = F'(x)$$

for those values of x at which F(x) is differentiable  $(x) = (x + 1)^{-1} + (x + 1)^{-1} +$ 



# **Example 1 [Uniform Distribution]**

Let the RV X denote the outcome when a point is selected randomly from [a,b] with  $-\infty < a < b < \infty$ .

Define the pdf of X

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

What is the cdf of X?

# **Example 1 [Uniform Distribution]**

Let the RV X denote the outcome when a point is selected randomly from [a,b] with  $-\infty < a < b < \infty$ .

Define the pdf of X

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

What is the cdf of X?

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

#### **Uniform Distribution**

For any 
$$x \in [a, b]$$
,  $P(X \le x) = \frac{x - a}{b - a}$ 

implies the probability of selecting a point from the interval [a, x] is proportional to the length of [a, x]. Such distribution is called uniform distribution and denoted by  $X \sim U(a, b)$ .

### **Uniform Distribution**

For any 
$$x \in [a, b]$$
,  $P(X \le x) = \frac{x - a}{b - a}$ 

implies the probability of selecting a point from the interval [a,x] is proportional to the length of [a,x]. Such distribution is called uniform distribution and denoted by  $X \sim U(a,b)$ .

For example, let  $X \sim U(0.1, 0.2)$ 





# Example 2, page 96

Let Y be a continuous RV with pdf g(y) = 2y, 0 < y < 1.

What is the cdf of *Y*,  $P(\frac{1}{2} < Y \le \frac{3}{4})$ ,  $P(\frac{1}{4} < Y < 2)$ ?

# Example 2, page 96

Let Y be a continuous RV with pdf g(y) = 2y, 0 < y < 1.

What is the cdf of Y,  $P(\frac{1}{2} < Y \le \frac{3}{4})$ ,  $P(\frac{1}{4} < Y < 2)$ ?

$$G(y) = P(Y \le y) = \int_{-\infty}^{y} g(t)dt = \begin{cases} 0, & y \le 0 \\ y^{2}, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

# Example 2, page 96

Let Y be a continuous RV with pdf g(y) = 2y, 0 < y < 1.

What is the cdf of Y,  $P(\frac{1}{2} < Y \le \frac{3}{4})$ ,  $P(\frac{1}{4} < Y < 2)$ ?

$$G(y) = P(Y \le y) = \int_{-\infty}^{y} g(t)dt = \begin{cases} 0, & y \le 0 \\ y^{2}, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

$$g(y)$$

$$G(y)$$

$$G(y)$$

$$1$$

$$1$$

$$1$$

$$P(\frac{1}{2} < Y \le \frac{3}{4}) = G(\frac{3}{4}) - G(\frac{1}{2}) = \frac{5}{16}$$

$$P(\frac{1}{4} < Y < 2) = G(2) - G(\frac{1}{4}) = \frac{15}{16}$$