```
import numpy as np
import pandas as pd
iris = 'https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/639388c2cbc2120a14dcf466e85730eb8be498bb/iris.csv' (a) the complex of the compl
df_iris = pd.read_csv(iris, sep=',') #tsv
print(type(df_iris))
             <class 'pandas.core.frame.DataFrame'>
file_id='11J_owJhixVPaRfruDJ_Gj-pT5G2qZFMd'
link='http://drive.google.com/uc?export=download&id={FILE_ID}'
                                                                                                                                                                                                    #当我从kaggle调用别的数据库的时候老是出问题,需要以cvs结尾?
csv_url=link.format(FILE_ID=file_id)
df_uk_rain = pd.read_csv(csv_url)
print(type(df_uk_rain))
             <class 'pandas.core.frame.DataFrame'>
df_uk_rain.columns
             Index(['Water Year', 'Rain (mm) Oct-Sep', 'Outflow (m3/s) Oct-Sep',
                                  'Rain (mm) Dec-Feb', 'Outflow (m3/s) Dec-Feb', 'Rain (mm) Jun-Aug',
                                  'Outflow (m3/s) Jun-Aug'],
                             dtype='object')
df_uk_rain.columns = ["water_year","rain_octsep","outflow_octsep",
                                                              "rain_decfeb","outflow_decfeb","rain_junaug","outflow_junaug"]
df_uk_rain.columns
             Index(['water_year', 'rain_octsep', 'outflow_octsep', 'rain_decfeb',
                                  'outflow_decfeb', 'rain_junaug', 'outflow_junaug'],
                              dtype='object')
df uk rain.head()
```

	Water Year	Rain (mm) Oct-Sep	Outflow (m3/s) Oct- Sep	Rain (mm) Dec-Feb	Outflow (m3/s) Dec- Feb	Rain (mm) Jun-Aug	Outflow (m3/s) Jun– Aug
(1980	1182	5408	292	7248	174	2212
1	1 1981	1098	5112	257	7316	242	1936
2	1982	1156	5701	330	8567	124	1802
3	3 1983	993	4265	391	8905	141	1078
2	1 1984	1182	5364	217	5813	343	4313

```
s=pd.Series([1,3,5,6,8])
print(type(s))
     <class 'pandas.core.series.Series'>
    0
          3
    1
     2
         5
    3
         6
         8
    dtype: int64
```

d=pd.DataFrame({"col1":[1,2,3,4,5,6],"col2":["1","2","3","4","5","6"],"col3":["1",2,3,4,5,None]}) print(d)

```
col1 col2 col3
0
      1
            1
                   1
1
      2
            2
                   2
      3
            3
                   3
2
                   4
3
      4
            4
4
      5
            5
                   5
            6
               None
```

d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 3 columns):
Column Non-Null Count Dtype
--- 0 coll 6 non-null int64
1 col2 6 non-null object
2 col3 5 non-null object
dtypes: int64(1), object(2)
memory usage: 272.0+ bytes

df_iris.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype				
0	sepal_length	150 non-null	float64				
1	sepal_width	150 non-null	float64				
2	petal_length	150 non-null	float64				
3	petal_width	150 non-null	float64				
4	species	150 non-null	object				
dtypes: float64(4), object(1)							
memo	memory usage: 6.0+ KB						

df_iris.head(10)

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

df_iris.tail(10)

	sepal_length	sepal_width	petal_length	petal_width	species
140	6.7	3.1	5.6	2.4	virginica
141	6.9	3.1	5.1	2.3	virginica
142	5.8	2.7	5.1	1.9	virginica
143	6.8	3.2	5.9	2.3	virginica
144	6.7	3.3	5.7	2.5	virginica
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

df_iris.describe()

```
sepal_length sepal_width petal_length petal_width
                             150.000000
                                            150.000000
                                                         150.000000
      count
               150.000000
      mean
                 5.843333
                               3.054000
                                              3.758667
                                                            1.198667
       std
                 0.828066
                               0.433594
                                              1.764420
                                                            0.763161
                 4.300000
                               2.000000
                                              1.000000
                                                           0.100000
      min
                               2.800000
      25%
                 5.100000
                                              1.600000
                                                           0.300000
      50%
                 5.800000
                               3.000000
                                                           1.300000
                                             4.350000
      75%
                 6.400000
                               3.300000
                                              5.100000
                                                           1.800000
                 7.900000
                               4.400000
                                             6.900000
                                                           2.500000
      max
df_iris.dtypes
     sepal_length
                      float64
     sepal_width
                      float64
     petal_length
                      float64
     petal_width
                      float64
     species
                       object
     dtype: object
print(df_iris.index)
     RangeIndex(start=0, stop=150, step=1)
df_iris.columns
     Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
             'species'],
           dtype='object')
attributes =["sepal_length", "sepal_width", "petal_length", "petal_width", "class"]
df_iris.columns = attributes
df_iris.head()
        sepal_length sepal_width petal_length petal_width class
     0
                   5.1
                                3.5
                                               1.4
                                                            0.2 setosa
      1
                   4.9
                                3.0
                                               1.4
                                                            0.2 setosa
     2
                   4.7
                                3.2
                                               1.3
                                                            0.2 setosa
      3
                                               1.5
                   4.6
                                 3.1
                                                            0.2 setosa
      4
                   5.0
                                3.6
                                               1.4
                                                            0.2 setosa
df1=df_iris["sepal_length"]
print(df1.head())
print(type(df1))
     0
          5.1
     1
          4.9
     2
          4.7
     3
          4.6
          5.0
    Name: sepal_length, dtype: float64
     <class 'pandas.core.series.Series'>
df2=df_iris[["sepal_length"]]
print(df2.head())
print(type(df2))
        sepal_length
     0
                 5.1
                  4.9
     1
     2
                 4.7
     3
                 4.6
                 5.0
     <class 'pandas.core.frame.DataFrame'>
```

```
df3=df_iris[["sepal_length","petal_length"]]
print(df3.head())
print(type(df3))
       sepal length petal length
    0
                 5.1
                               1.4
    1
                 4.9
                               1.4
                 4.7
    2
                               1.3
    3
                 4.6
                               1.5
    4
                 5.0
                               1.4
    <class 'pandas.core.frame.DataFrame'>
df4=df_iris[1:3][["sepal_length","petal_length"]]。#切片是要放在前面的对吧?
print(df4)
print(type(df4))
       sepal_length
                     petal_length
    1
                 4.9
                               1.4
    2
                 4.7
                               1.3
    <class 'pandas.core.frame.DataFrame'>
df_iris["sepal_length"] >6.0 #什么时候用下划线, 什么时候用点?
    0
            False
            False
    1
            False
    3
            False
    4
            False
    145
            True
    146
            True
    147
            True
    148
            True
    149
            False
    Name: sepal_length, Length: 150, dtype: bool
df1=df_iris[(df_iris["sepal_length"] > 6.0)&(df_iris["petal_length"]<5.0)] #所有是true的值都打印出来?
print(df1)
print(type(df1))
          sepal_length
                       sepal_width petal_length petal_width
                                                                       class
    50
                                                                 versicolor
                   7.0
                                3.2
                                                            1.4
                                               4.7
    51
                   6.4
                                3.2
                                               4.5
                                                            1.5
                                                                 versicolor
    52
                   6.9
                                3.1
                                               4.9
                                                            1.5
                                                                 versicolor
    54
                   6.5
                                2.8
                                               4.6
                                                            1.5
                                                                 versicolor
    56
                                3.3
                   6.3
                                               4.7
                                                            1.6
                                                                 versicolor
    58
                   6.6
                                2.9
                                               4.6
                                                            1.3
                                                                 versicolor
    63
                                               4.7
                   6.1
                                2.9
                                                            1.4
                                                                 versicolor
                   6.7
                                               4.4
    65
                                3.1
                                                            1.4
                                                                 versicolor
                                                                 versicolor
    68
                   6.2
                                2.2
                                               4.5
                                                            1.5
    71
                   6.1
                                2.8
                                               4.0
                                                            1.3
                                                                 versicolor
    72
                   6.3
                                2.5
                                               4.9
                                                            1.5
                                                                 versicolor
    73
                   6.1
                                2.8
                                               4.7
                                                            1.2
                                                                 versicolor
    74
                   6.4
                                2.9
                                               4.3
                                                            1.3
                                                                 versicolor
    75
                   6.6
                                3.0
                                               4.4
                                                            1.4 versicolor
    76
                   6.8
                                2.8
                                               4.8
                                                            1.4 versicolor
    86
                   6.7
                                3.1
                                               4.7
                                                            1.5
                                                                 versicolor
    87
                   6.3
                                2.3
                                               4.4
                                                            1.3
                                                                 versicolor
    91
                   6.1
                                3.0
                                               4.6
                                                                 versicolor
                                                            1.4
    97
                                               4.3
                   6.2
                                2.9
                                                            1.3
                                                                 versicolor
    123
                   6.3
                                2.7
                                               4.9
                                                            1.8
                                                                  virginica
    126
                   6.2
                                2.8
                                               4.8
                                                            1.8
                                                                  virginica
                                               4.9
                                                                  virginica
    127
                   6.1
                                3.0
                                                            1.8
    <class 'pandas.core.frame.DataFrame'>
(df_iris["sepal_length"] > 6.0)&(df_iris["petal_length"]<5.0)</pre>
    0
            False
            False
    1
            False
    2
    3
            False
            False
    145
            False
    146
            False
    147
            False
    148
            False
    149
            False
    Length: 150, dtype: bool
```

df1=df1.reset_index(drop=False). #没有特别明白这句话的含义? print(df1)

	level_0	index	sepal_length	sepal_width	petal_length	petal_width	\
0	_0	50	7.0	3.2	4.7	1.4	
1	1	51	6.4	3.2	4.5	1.5	
2	2	52	6.9	3.1	4.9	1.5	
3	3	54	6.5	2.8	4.6	1.5	
4	4	56	6.3	3.3	4.7	1.6	
5	5	58	6.6	2.9	4.6	1.3	
6	6	63	6.1	2.9	4.7	1.4	
7	7	65	6.7	3.1	4.4	1.4	
8	8	68	6.2	2.2	4.5	1.5	
9	9	71	6.1	2.8	4.0	1.3	
10	10	72	6.3	2.5	4.9	1.5	
11	11	73	6.1	2.8	4.7	1.2	
12	12	74	6.4	2.9	4.3	1.3	
13	13	75	6.6	3.0	4.4	1.4	
14	14	76	6.8	2.8	4.8	1.4	
15	15	86	6.7	3.1	4.7	1.5	
16	16	87	6.3	2.3	4.4	1.3	
17	17	91	6.1	3.0	4.6	1.4	
18	18	97	6.2	2.9	4.3	1.3	
19	19	123	6.3	2.7	4.9	1.8	
20	20	126	6.2	2.8	4.8	1.8	
21	21	127	6.1	3.0	4.9	1.8	

class

0 versicolor 1 versicolor

versicolor 2

3 versicolor

4 versicolor

5 versicolor 6

versicolor versicolor

8 versicolor

versicolor 9

10 versicolor

11 versicolor

12 versicolor

13 versicolor

14 versicolor 15 versicolor

16 versicolor

17 versicolor

18 versicolor

19 virginica

20 virginica

21 virginica

 $\label{lem:df_right} $$ df_right=pd.DataFrame(\{"year":np.arange(1980,1990),"rain_cn":np.arange(800,810)\}) $$$ df_right2=pd.DataFrame({"year":[1991],"rain_cn":[800]}) df_right

	year	rain_cn
0	1980	800
1	1981	801
2	1982	802
3	1983	803
4	1984	804
5	1985	805
6	1986	806
7	1987	807
8	1988	808
9	1989	809

df_right2

	year	rain_cn
0	1991	800

df_right3=pd.concat([df_right,df_right2],ignore_index = True)
df_right3

	year	rain_cn
0	1980	800
1	1981	801
2	1982	802
3	1983	803
4	1984	804
5	1985	805
6	1986	806
7	1987	807
8	1988	808
9	1989	809
10	1991	800

df_right2.columns=["year","rain_cn1"]
df_right2

	year	rain_cn1
0	1991	800

df_right3=pd.concat([df_right,df_right2],ignore_index = True)
df_right3

	year	rain_cn	rain_cn1
0	1980	800.0	NaN
1	1981	801.0	NaN
2	1982	802.0	NaN
3	1983	803.0	NaN
4	1984	804.0	NaN
5	1985	805.0	NaN
6	1986	806.0	NaN
7	1987	807.0	NaN
8	1988	808.0	NaN
9	1989	809.0	NaN
10	1991	NaN	800.0

df_right3.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11 entries, 0 to 10
Data columns (total 3 columns):

Data	CO Culli13	(total 5 columns)	•		
#	Column	Non-Null Count	Dtype		
0	year	11 non-null	int64		
1	rain_cn	10 non-null	float64		
2	rain_cn1	1 non-null	float64		
dtypes: float64(2) int64(1)					

dtypes: float64(2), int64(1)
memory usage: 392.0 bytes

df_uk_rain.head(10)

	Water Year	Rain (mm) Oct-Sep	Outflow (m3/s) Oct- Sep	Rain (mm) Dec-Feb	Outflow (m3/s) Dec- Feb	Rain (mm) Jun-Aug	Outflow (m3/s) Jun- Aug
0	1980	1182	5408	292	7248	174	2212
1	1981	1098	5112	257	7316	242	1936
2	1982	1156	5701	330	8567	124	1802
3	1983	993	4265	391	8905	141	1078
4	1984	1182	5364	217	5813	343	4313
5	1985	1027	4991	304	7951	229	2595
6	1986	1151	5196	295	7593	267	2826
7	1987	1210	5572	343	8456	294	3154
8	1988	976	4330	309	6465	200	1440
9	1989	1130	4973	470	10520	209	1740

df_right3.head(11)

	year	rain_cn	rain_cn1
0	1980	800.0	NaN
1	1981	801.0	NaN
2	1982	802.0	NaN
3	1983	803.0	NaN
4	1984	804.0	NaN
5	1985	805.0	NaN
6	1986	806.0	NaN
7	1987	807.0	NaN
8	1988	808.0	NaN
9	1989	809.0	NaN
10	1991	NaN	800.0

 $df_join=pd.merge(df_uk_rain,df_right3,left_on="water_year",right_on="year",how="inner")$ #第一个uk-rain没有1991,为什么最后一行能够出现: df_join

	water_year	rain_octsep	outflow_octsep	rain_decfeb	outflow_decfeb	rain_jun
0	1980	1182	5408	292	7248	
1	1981	1098	5112	257	7316	
2	1982	1156	5701	330	8567	
3	1983	993	4265	391	8905	
4	1984	1182	5364	217	5813	
5	1985	1027	4991	304	7951	
6	1986	1151	5196	295	7593	
7	1987	1210	5572	343	8456	
8	1988	976	4330	309	6465	
9	1989	1130	4973	470	10520	

 $\label{lem:control_decomposition} $$ df_uk_rain.groupby(df_uk_rain["water_year"]//10*10)[["rain_octsep","outflow_octsep","rain_decfeb","outflow_decfeb"]].max() $$ df_uk_rain.groupby(df_uk_rain["water_year"]//10*10)[["rain_octsep","outflow_octsep","rain_decfeb","outflow_decfeb"]].$$$

rain_octsep outflow_octsep rain_decfeb outflow_decfeb

water_year				
1980	1210	5701	470	10520
1990	1268	5824	484	11486
2000	1387	6391	437	10926
2010	1285	5500	350	9615

df_uk_rain["water_year"]//10*10

```
1980
      1980
1
      1980
2
3
      1980
      1980
      1980
      1980
      1980
      1980
8
9
      1980
10
      1990
11
      1990
12
      1990
13
      1990
14
      1990
15
      1990
16
      1990
17
      1990
      1990
18
19
      1990
20
      2000
21
22
      2000
      2000
23
      2000
24
25
26
      2000
      2000
      2000
27
      2000
28
      2000
29
      2000
30
      2010
31
      2010
32
      2010
```

Name: water_year, dtype: int64

##Data Preprocessing #Duplication #Outlier #Missing Value

df_uk_rain[df_uk_rain["rain_octsep"].duplicated(keep=False)]#这就直接将重复的部分删掉了吗?

	water_year	rain_octsep	outflow_octsep	rain_decfeb	outflow_decfeb	rain_jun
0	1980	1182	5408	292	7248	
4	1984	1182	5364	217	5813	
6	1986	1151	5196	295	7593	
9	1989	1130	4973	470	10520	
11	1991	1151	4506	246	5493	
10	1000	1100	50.10	222	^754	

```
df_dup=df_uk_rain
df_dup_addon=df_dup.iloc[[0]]
df_dup=pd.concat([df_dup,df_dup_addon],ignore_index=True).
                                                            #ignore index?keep=false?一个意思?
df_dup.iloc[[0,-1]]
                                                              #倒着切? slicing
```

	water_year	rain_octsep	outflow_octsep	rain_decfeb	outflow_decfeb	rain_juı
0	1980	1182	5408	292	7248	

df_dup[df_dup.duplicated(keep=False)] #上下两个式子是一样的功能? 只是找出来了? 然后有返回值? 并没有去除掉?

	water_year	rain_octsep	outflow_octsep	${\tt rain_decfeb}$	outflow_decfeb	rain_juı
0	1980	1182	5408	292	7248	
-						

df_dedup=df_dup.drop_duplicates()
df_dedup.iloc[[0,-1]]

	water_year	rain_octsep	outflow_octsep	rain_decfeb	outflow_decfeb	rain_juı
0	1980	1182	5408	292	7248	

import seaborn as sns dt_outlier=np.concatenate([np.random.randn(1000),np.random.normal(7,1,10)])#选了1000个数,用正太分布函数? 7, 1, 10分别代表的是什么? sns.set_style("whitegrid") #做出来的图和课件上不太一样,横纵坐标不太一样 sns.displot(dt_outlier)

<seaborn.axisgrid.FacetGrid at 0x7f573cceda90>

sns.boxplot(dt_outlier,orient="v")#orient=v的意义是什么?没有的时候画出来的图是一样的?

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: warnings.warn(

/usr/local/lib/python3.8/dist-packages/seaborn/_core.py:1326: UserWarning: Verti
warnings.warn(single_var_warning.format("Vertical", "x"))
<AxesSubplot:>


```
def iqr_outlier_rm(dt_input):
    lq,uq=np.percentile(dt_input,[25,75])
    lower_l=lq-1.5*(uq-lq) #1.5这个数字是哪里来的? 是一个常量吗?
    upper_l=uq+1.5*(uq-lq)
    return dt_input[(dt_input >= lower_l)&(dt_input <= upper_l)]

dt_outlier_ws=iqr_outlier_rm(dt_outlier)
sns.boxplot(dt_outlier_ws,orient="v")

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning:
    warnings.warn(
    /usr/local/lib/python3.8/dist-packages/seaborn/_core.py:1326: UserWarning: Verti
    warnings.warn(single_var_warning.format("Vertical", "x"))
    <AxesSubplot:>
```


	name	age	gender	preMLScore	postMLScore
0	Jason	36.0	m	1.0	65.0
1	NaN	NaN	NaN	NaN	NaN
2	Mike	36.0	m	NaN	NaN
3	Rayman	18.0	NaN	2.0	62.0
4	Alex	36.0	f	3.0	70.0
5	Meimei	16.0	f	90.0	100.0

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
Column Non-Null Count Dty

#	Column	No	on-Null Count	Dtype
0	name	5	non-null	object
1	age	5	non-null	float64
2	gender	4	non-null	object
3	preMLScore	4	non-null	float64
4	postMLScore	4	non-null	float64
dtyp	es: float64(3),	object(2)	
memo	ry usage: 368	.0-	+ bytes	

df.isnull()

24/4/8 22:21								
		name	age	gender	preMLScore	postMLScore		
	0	False	False	False	False	False		
	1	True	True	True	True	True		
	2	False	False	False	True	True		
	3	False	False	True	False	False		
	4	False	False	False	False	False		
	5	False	False	False	False	False		
df.i		ll().s	um()	1				
name age gender preMLScore postMLScore dtype: int64			ore	1 1 2 2 2				
df.n	otn	ull().	sum()					
name age gender preMLScore postMLScore dtype: int64			ore	5 5 4 4 4				
df.isnull().all()#这个为什么age这一列不是true								
name age gender preMLScore postMLScore				False False False False False				

dtype: bool

df.isnull().all(axis=1)

0 False True 2 False 3 False False False dtype: bool

df.isnull().any(axis=0)

name True age True gender preMLScore postMLScore True True True dtype: bool

df

	name	age	gender	preMLScore	${\tt postMLScore}$
0	Jason	36.0	m	1.0	65.0
1	NaN	NaN	NaN	NaN	NaN
2	Mike	36.0	m	NaN	NaN
3	Rayman	18.0	NaN	2.0	62.0
4	Alex	36.0	f	3.0	70.0
5	Meimei	16.0	f	90.0	100.0

df.dropna(axis=0,how="any")#为什么是how不是row?

	name	age	gender	preMLScore	postMLScore
0	Jason	36.0	m	1.0	65.0
4	Alex	36.0	f	3.0	70.0
5	Meimei	16.0	f	90.0	100.0

df=df.dropna(how="all",inplace=False)
df

	name	age	gender	preMLScore	postMLScore
0	Jason	36.0	m	1.0	65.0
2	Mike	36.0	m	NaN	NaN
3	Rayman	18.0	NaN	2.0	62.0
4	Alex	36.0	f	3.0	70.0
5	Meimei	16.0	f	90.0	100.0

df["playgames"]=np.nan
df

<ipython-input-109-26c78c39d6a9>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view df["playgames"]=np.nan

NI-NI
NaN

df.dropna(axis=1,how="any")

df

	name	age	gender	preMLScore	postMLScore	playgames
0	Jason	36.0	m	1.0	65.0	NaN
2	Mike	36.0	m	NaN	NaN	NaN
3	Rayman	18.0	NaN	2.0	62.0	NaN
4	Alex	36.0	f	3.0	70.0	NaN
5	Meimei	16.0	f	90.0	100.0	NaN

df.dropna(thresh=5)

#至少有5个有效值?

	name	age	gender	preMLScore	postMLScore	playgames
0	Jason	36.0	m	1.0	65.0	NaN

df.fillna(0)

na	me	age	gender	preMLScore	postMLScore	playgames
0 Jas	son	36.0	m	1.0	65.0	0.0
2 M	ike	36.0	m	0.0	0.0	0.0
3 Raym	nan	18.0	0	2.0	62.0	0.0
4 A	lex	36.0	f	3.0	70.0	0.0
5 Meir	nei	16.0	f	90.0	100.0	0.0

df

	name	age	gender	preMLScore	postMLScore	playgames
0	Jason	36.0	m	1.0	65.0	NaN
2	Mike	36.0	m	NaN	NaN	NaN
3	Rayman	18.0	NaN	2.0	62.0	NaN
4	Alex	36.0	f	3.0	70.0	NaN
5	Meimei	16.0	f	90.0	100.0	NaN

df["gender"].fillna(method="bfill")

0 m 2 m 3 f 4 f 5 f

Name: gender. dtvpe: obiect