january 27th shift1 2024

1

EE24BTECH11066 - YERRA AKHILESH

16)	The portion of the line $4x + 5y = 20$ in the first quadrant is trisected by the lines L_1
	and L_2 passing through the origin. The tangent of an angle between the lines L_1 and
	L_2 is:

- a) $\frac{8}{5}$ b) $\frac{25}{41}$ c) $\frac{2}{5}$ d) $\frac{30}{41}$
- 17) Let $\bar{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\bar{b} = 3(\hat{i} \hat{j} + \hat{k})$. Let \bar{c} be the vector such that $\bar{a} \times \bar{c} = \bar{b}$ and $\bar{a} \cdot \bar{c} = 3$. Then $\bar{a} \cdot ((\bar{c} \times \bar{b}) \bar{b} \bar{c})$ is equal to :
 - a) 32 b) 24 c) 20 d) 36
- 18) If $a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} \sqrt{2}}{x^4}$ and $b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} \sqrt{1 + \cos x}}$, then the value of ab^3 is:
 - a) 36 b) 32 c) 25 d) 30
- 19) Consider the matrix $f(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Given below are two statements: Statement 1: f(-x) is the inverse of the matrix f(x).

In the light of the above statements, choose the correct answer from the options given below

a) Statement 1 is false but Statement 2 is true

Statement 2: f(x)f(y) = f(x + y).

- b) Both Statement 1 and Statement 2 are false
- c) Statement 1 is true but Statement 2 is false
- d) Both Statement 1 and Statement 2 are true
- 20) The function $f: N \{1\} \to N$; defined by f(n) = the highest prime factor of n, is:
 - a) both one-one and onto
 - b) one-one only
 - c) onto only
 - d) neither one-one nor onto
- 21) The least positive integral value of α , for which the angle between the vectors $\alpha \hat{i} 2\hat{j} + 2\hat{k}$ and $\alpha \hat{i} + 2\alpha \hat{j} 2\hat{k}$ is acute, is _____
- 22) Let for a differentiable function $f:(0,\infty)\to R, f(x)-f(y)\geq \ln\left(\frac{x}{y}\right)+x-y, \forall x,y\in(0,\infty)$. Then $\sum_{n=1}^{20}f'\left(\frac{1}{n^2}\right)$ is equal to _____

- 23) If the solution of the differential equation (2x + 3y 2) dx + (4x + 6y 7) dy = 0, y(0) = 3, is $\alpha x + \beta y + 3ln |2x + 3y \gamma| = 6$, then $\alpha + 2\beta + 3\gamma$ is equal to _____
- 24) Let the area of the region $\{(x,y): x-2y+4 \ge 0, x+2y^2 \ge 0, x+4y^2 \le 8, y \ge 0\}$ be $\frac{m}{n}$, where m and n are coprime numbers. Then m+n is equal to _____
- 25) If $8 = 3 + \frac{1}{4}(3+p) + \frac{1}{4^2}(3+2p) + \frac{1}{4^3}(3+3p) + \cdots \infty$, then the value of p is _____
- 26) A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let a = P(X = 3), $b = P(X \ge 3)$ and $c = P(X \ge 6|X > 3)$. Then $\frac{b+c}{a}$ is equal to _____
- 27) Let the set of all $a \in \mathbb{R}$ such that the equation $\cos 2x + a \sin x = 2a 7$ has a solution be [p, q] and $r = \tan 9^{\circ} \tan 27^{\circ} \frac{1}{\cot 63^{\circ}} + \tan 81^{\circ}$, then pqr is equal to _____
- 28) Let $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3), x \in \mathbb{R}$. Then f'(10) is equal to _____
- 29) Let $A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} B_1 & B_2 & B_3 \end{pmatrix}$, where B_1, B_2, B_3 are column matrices, and $AB_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $AB_2 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$, $AB_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$. If $\alpha = |B|$ and β is the sum of all the diagonal elements B, then $\alpha^3 + \beta^3$ is equal to _____
- 30) If α satisfies the equation $x^2 + x + 1 = 0$ and $(1 + \alpha)^7 = A + B\alpha + C\alpha^2, A, B, C \ge 0$, then 5(3A 2B C) is equal to _____