Calculus I The Chain Rule

Todor Milev

2019

Outline

- 1 The Chain Rule
 - Chain rule proof

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

The Chain Rule

• What is the derivative of $f(x) = \sqrt{x^2 + 1}$?

The Chain Rule

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- y = g(u) = ? .
- u = h(x) = ?
- Then y = f(x) = g(h(x)) =

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- y = g(u) = ?.
- u = h(x) = ?
- Then y = f(x) = g(h(x)) =

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- u = h(x) = ?
- Then y = f(x) = g(h(x)) =

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- u = h(x) =?
- Then y = f(x) = g(h(x)) =

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- u = h(x) = ?
- Then y = f(x) = g(h(x)) =

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then y = f(x) = g(h(x)) =

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of g and h:
- g'(u) = ?
- h'(x) = ?.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- g'(u) = ?
- h'(x) = ?.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- h'(x) = ?.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- h'(x) = ?.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- h'(x) = 2x.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- $h'(x) = \bar{2}x$.
- It would be nice if we could find the derivative of f in terms of the derivatives of y and u.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- h'(x) = 2x.
- It would be nice if we could find the derivative of f in terms of the derivatives of y and u.
- It turns out that the derivative of the composition $g \circ h$ is the product of the derivative of g and the derivative of h.

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- h'(x) = 2x.
- It would be nice if we could find the derivative of f in terms of the derivatives of y and u.
- It turns out that the derivative of the composition $g \circ h$ is the product of the derivative of g and the derivative of h.
- This important fact is called the Chain Rule.

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x)$$
 (notation 1)

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x)$$

(notation 1) equivalently:

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x)$$
 (notation 1)
equivalently:
 $f'(x) = (g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x) \qquad (notation 1)$$

$$equivalently:$$

$$f'(x) = (g(u))' = g'(u)u' \qquad where u = h(x) \quad (notation 2)$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \qquad where y = g(u) \quad (notation 3)$$

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x) \qquad (notation 1)$$

$$equivalently:$$

$$f'(x) = (g(u))' = g'(u)u' \qquad where u = h(x) \quad (notation 2)$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \qquad where y = g(u) \quad (notation 3) \quad .$$

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x) \qquad (notation 1)$$

$$equivalently:$$

$$f'(x) = (g(u))' = g'(u)u' \qquad where u = h(x) \quad (notation 2)$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \qquad where y = g(u) \quad (notation 3) \quad .$$

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x) \qquad (notation 1)$$

$$equivalently:$$

$$f'(x) = (g(u))' = g'(u)u' \qquad where u = h(x) \quad (notation 2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} \qquad where y = g(u) \quad (notation 3) \quad .$$

The last equality uses the Leibniz notation (due to G. Leibniz (1646-1716)).

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{dx} \frac{du}{dx}$ where $y = g(u)$ (notation 3).

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3)

 The three notations are all accepted and can be used interchangeably.

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

- The three notations are all accepted and can be used interchangeably.
- Most authors tend to prefer one of these notations over the others.

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

- interchangeably.
- Most authors tend to prefer one of these notations over the others.
- In order to exercise ourselves we shall use all three notations throughout our course.

The three notations are all accepted and can be used

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

interchangeably.

The three notations are all accepted and can be used

- Most authors tend to prefer one of these notations over the others.
- In order to exercise ourselves we shall use all three notations throughout our course.
- There are additional notations (not covered here) used in practice.

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

- interchangeably.
- Most authors tend to prefer one of these notations over the others.
- In order to exercise ourselves we shall use all three notations throughout our course.

The three notations are all accepted and can be used

- There are additional notations (not covered here) used in practice.
- Whenever in doubt about derivative notation, if possible, request clarification.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = ?$
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= (?)$

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{2\sqrt{h(x)}}\right) (?)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{2\sqrt{h(x)}}\right) (?)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3) .

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{2\sqrt{h(x)}}\right)(2x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3) .

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{2\sqrt{h(x)}}\right)(2x)$$

$$= \frac{x}{\sqrt{x^2 + 1}}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = ?$
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (?)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(\frac{1}{2\sqrt{u}}\right)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(\frac{1}{2\sqrt{u}}\right)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(\frac{1}{2\sqrt{u}}\right)$ (2x)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$= \left(\frac{1}{2\sqrt{u}}\right)(2x)$$

$$= \frac{x}{\sqrt{x^2 + 1}}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = ?$
Then $y = ?$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = ?$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = ?$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \frac{2}{3} \frac{dy}{dx} \frac{dy}{dx}$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{2\sqrt{u}}\right) (?)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{2\sqrt{u}}\right)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{2\sqrt{u}}\right) (2x)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Then $y = \sqrt{u}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{2\sqrt{u}}\right)(2x)$
 $= \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = ?$
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.

Example (Chain Rule, Notation 1, square root of a trigonometric function)

```
Differentiate f(x) = \sqrt{\sin x + 2}.

Let h(x) = \sin x + 2.

Let g(u) = \sqrt{u}.

Then f(x) = g(h(x)).

Chain Rule: f'(x) = g'(h(x))h'(x)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= (?)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(\frac{1}{2\sqrt{h(x)}}\right)(?)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{2\sqrt{h(x)}}\right)(?)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3) .

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(\frac{1}{2\sqrt{h(x)}}\right)(\cos x)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)

$$(g(u))' = g'(u)u'$$
 where $u = h(x)$ (notation 2)

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate
$$f(x) = \sqrt{\sin x + 2}$$
.
Let $h(x) = \sin x + 2$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{2\sqrt{h(x)}}\right)(\cos x)$$

$$= \frac{\cos x}{2\sqrt{\sin x + 2}}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = ?$
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = \cos u$.
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = \cos u$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (?)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (-\sin u) (?)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos(x^3).
        Let u = x^3.
      Let g(u) = \cos u.
Then f(x) = g(u).
Chain Rule: f'(x) = g'(u)u'
                   = (-\sin u) (?
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos(x^3).

Let u = x^3.

Let g(u) = \cos u.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (-\sin u)(3x^2)
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u = x^3$.
Let $g(u) = \cos u$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (-\sin u)(3x^2)$
 $= -3x^2\sin(x^3)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos^3 x.

Let u = ?

Let g(u) = ?

Then f(x) = g(u).
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos^3 x.

Let u = \cos x.

Let g(u) = ?

Then f(x) = g(u).
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos^3 x.

Let u = \cos x.

Let g(u) = u^3.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos^3 x.

Let u = \cos x.

Let g(u) = u^3.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (?) (?
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (3u^2)$ (?

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos^3 x.

Let u = \cos x.

Let g(u) = u^3.

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'

= (3u^2) (?
```

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (3u^2)(-\sin x)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u = \cos x$.
Let $g(u) = u^3$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(3u^2\right)(-\sin x)$
 $= -3\sin x(\cos x)^2$.

• In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.

- In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.
- The derivative was $\frac{dy}{dx} = 3u^2 \frac{du}{dx} = (3\cos^2 x)(-\sin x)$.

13/25

• In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.

- The derivative was $\frac{dy}{dx} = 3u^2 \frac{du}{dx} = (3\cos^2 x)(-\sin x)$.
- We can generalize this:

The Chain Rule

Observation (The Power Rule Combined with the Chain Rule)

If n is any real number and u = h(x) is differentiable, then

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Alternatively,

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = ?$
Then $y = ?$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = ?$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = ?$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)}$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)$ $(?)$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99})$ (?)

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99})$ (?)

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99}) (3x^2)$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99})(3x^2)$
 $= 300x^2(x^3 - 1)^{99}$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) =$?
Let $g(u) =$?
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2+x+1}}$$
.
Let $h(x) = x^2+x+1$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2+x+1}}$$
.
Let $h(x) = x^2+x+1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2+x+1}}$$
.
Let $h(x) = x^2+x+1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= (?)$ (?)

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)$ (?)

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)$ (?

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)(2x + 1)$

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)(2x + 1)$$

$$= -\frac{2x + 1}{3}(x^2 + x + 1)^{-\frac{4}{3}}$$
.

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t) = \left(\frac{t-2}{2t+1}\right)^9.$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{\frac{d}{dt}(t-2)\cdot(2t+1)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^8\frac{\frac{d}{dt}(t-2)\cdot(2t+1)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^2}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2)\cdot(2t+1)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{?\cdot(2t+1)-(t-2)\cdot?}{(2t+1)^{2}}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt}\left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2)\cdot(2t+1)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{1\cdot(2t+1)-(t-2)\cdot?}{(2t+1)^{2}}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2)\cdot(2t+1)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{1\cdot(2t+1)-(t-2)\cdot?}{(2t+1)^{2}}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt} \left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2)\cdot(2t+1)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8} \frac{1\cdot(2t+1)-(t-2)\cdot\frac{2}{2t+1}}{(2t+1)^{2}}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt}\left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2) \cdot (2t+1) - (t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{1 \cdot (2t+1) - (t-2) \cdot 2}{(2t+1)^{2}}$$

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{2t+1-2t+4}{(2t+1)^{2}}$$

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt}\left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2) \cdot (2t+1) - (t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{1 \cdot (2t+1) - (t-2) \cdot 2}{(2t+1)^{2}}$$

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{2t+1-2t+4}{(2t+1)^{2}} = \frac{45(t-2)^{8}}{(2t+1)^{10}}.$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'= \frac{d}{dx} ((2x+1)^5) (x^3-x+1)^4 + (2x+1)^5 \frac{d}{dx} ((x^3-x+1)^4)$$

Example

Find the derivative of $y = (2x + 1)^5 (x^3 - x + 1)^4$.

Product Rule:

$$y'= \frac{d}{dx} ((2x+1)^5) (x^3-x+1)^4 + (2x+1)^5 \frac{d}{dx} ((x^3-x+1)^4)$$

The Chain Rule

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'= \frac{d}{dx} ((2x+1)^5) (x^3-x+1)^4 + (2x+1)^5 \frac{d}{dx} ((x^3-x+1)^4)$$

Chain Rule:

$$= \left(? \atop + (2x+1)^5 \right) (x^3 - x + 1)^4$$

The Chain Rule

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'= \frac{d}{dx} ((2x+1)^5) (x^3-x+1)^4 + (2x+1)^5 \frac{d}{dx} ((x^3-x+1)^4)$$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(?\right)$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'= \frac{d}{dx} ((2x+1)^5) (x^3-x+1)^4 + (2x+1)^5 \frac{d}{dx} ((x^3-x+1)^4)$$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y' = \frac{d}{dx} \left((2x+1)^5 \right) (x^3 - x + 1)^4 + (2x+1)^5 \frac{d}{dx} \left((x^3 - x + 1)^4 \right)$$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right)$$

The Chain Rule

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right)$$

$$= 5(2x+1)^4 (?) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (?)$$

The Chain Rule

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right) = 5(2x+1)^4 (?) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right) = 5(2x+1)^4 (?) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right) = 5(2x+1)^4 (2) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right)$$

$$= 5(2x+1)^4 (2) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)$$
Common factor $2(2x+1)^4 (x^3 - x + 1)^3$:

$$= 2(2x+1)^4(x^3-x+1)^3(2(2x+1)(3x^2-1)+5(x^3-x+1)))$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right) = 5(2x+1)^4 (2) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)$$
Common factor $2(2x+1)^4 (x^3 - x + 1)^3$:

$$= 2(2x+1)^4(x^3-x+1)^3(2(2x+1)(3x^2-1)+5(x^3-x+1)))$$

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right) = 5(2x+1)^4 (2) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)
Common factor $2(2x+1)^4 (x^3 - x + 1)^3$:$$

$$= 2(2x+1)^4(x^3-x+1)^3(2(2x+1)(3x^2-1)+5(x^3-x+1)))$$

$$= 2(2x+1)^4(x^3-x+1)^3(17x^3+6x^2-9x+3)$$

Example (Chain Rule, general exponential function)

Differentiate $y = 2^x$.

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
. $y = (e^?)^x$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
$$y = \left(e^{\ln 2}\right)^x$$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
$$y = \left(e^{\ln 2}\right)^x$$

$$y = e^{x \ln 2}$$
.

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
. $y = \left(e^{\ln 2}\right)^x$ $y = e^{x \ln 2}$. Let $u = ?$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
. $y = \left(e^{\ln 2}\right)^x$ $y = e^{x \ln 2}$. Let $u = x \ln 2$.

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)(?)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(?)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(?)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(?)}\right)(\ln 2)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(x \ln 2)}\right)(\ln 2)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(e^u\right) \left(\ln 2\right)$
 $= \left(e^{\ln 2}\right)^x \left(\ln 2\right)$

Example (Chain Rule, general exponential function)

Differentiate
$$y = \frac{2^x}{2}$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(x \ln 2)}\right)(\ln 2)$
 $= \left(e^{\ln 2}\right)^x(\ln 2)$
 $= \frac{2^x}{2} \ln 2$.

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = \left(e^{\ln 2}\right)^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= \left(e^{(x \ln 2)}\right)(\ln 2)$
 $= \left(e^{\ln 2}\right)^x(\ln 2)$
 $= 2^x \ln 2$.

Example (Chain Rule, general exponential function)

Differentiate
$$y = a^x$$
.
 $y = \left(e^{\ln a}\right)^x$
 $y = e^{x \ln a}$.
Let $u = x \ln a$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln a)$
 $= \left(e^{(x \ln a)}\right)(\ln a)$
 $= \left(e^{\ln a}\right)^x(\ln a)$
 $= a^x \ln a$.

Theorem (The Derivative of a^x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$

• We can add more "links" when we use the Chain Rule.

• We can add more "links" when we use the Chain Rule.

- y = f(u)
- u = g(x)
- x = h(t)

• We can add more "links" when we use the Chain Rule.

- y = f(u)
- u = g(x)
- x = h(t)
- Use the Chain Rule twice:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}t}$$

• We can add more "links" when we use the Chain Rule.

- y = f(u)
- \bullet u = g(x)
- x = h(t)
- Use the Chain Rule twice:

$$\frac{dy}{dt} = \frac{dy}{du}\frac{du}{dt} = \frac{dy}{du}\frac{du}{dx}\frac{dx}{dt}$$

Example (Using the Chain Rule twice)

Differentiate: $y = \sin \sqrt{10^x + 1}$.

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin \sqrt{10^x + 1} \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin \sqrt{10^x + 1} \right)$$

Example (Using the Chain Rule twice)

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \left(? \right) \frac{d}{dx} \left(10^x + 1 \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin \sqrt{10^x + 1} \right)$$

Chain Rule:
$$= \left(\cos\sqrt{10^x + 1}\right) \frac{d}{dx} \left(\sqrt{10^x + 1}\right)$$

Chain Rule:
$$= \left(\cos\sqrt{10^x + 1}\right) \left(\frac{1}{2\sqrt{10^x + 1}}\right) \frac{d}{dx} (10^x + 1)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \frac{d}{dx} \left(10^x + 1 \right)$$

$$= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right)$$
 (?

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \frac{d}{dx} \left(10^x + 1 \right)$$

$$= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \left(10^x \ln 10 \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$$
 Chain Rule:
$$= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \frac{d}{dx} \left(10^x + 1 \right)$$

$$= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \left(10^x \ln 10 \right)$$

$$= \frac{(\ln 10)10^x \cos \sqrt{10^x + 1}}{2\sqrt{10^x + 1}} .$$

Example (Using the Chain Rule twice)

Differentiate: $y = e^{\tan(\pi x)}$.

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule: $= \left(? \right) \frac{d}{dx} \left(\tan(\pi x) \right)$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \left(? \right) \frac{d}{dx} (\pi x)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) \frac{d}{dx} (\pi x)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) \frac{d}{dx} (\pi x)$$

$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) (?)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) \frac{d}{dx} (\pi x)$$

$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) (\pi)$$

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \frac{d}{dx} \left(\tan(\pi x) \right)$$
 Chain Rule:
$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) \frac{d}{dx} (\pi x)$$

$$= \left(e^{\tan(\pi x)} \right) \left(\sec^2(\pi x) \right) (\pi)$$

$$= \pi e^{\tan(\pi x)} \sec^2(\pi x) .$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$.

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$.

$$(f \circ g)'(a) =$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$.

$$(f\circ g)'(a) = \lim_{x\to a} \frac{f(g(x))-f(g(a))}{x-a}$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$
$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right)$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \left(\frac{g(x) - g(a)}{x - a}\right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a}\right)$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right)$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \left(\frac{g(x) - g(a)}{x - a}\right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a}\right)$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \left(\frac{g(x) - g(a)}{x - a}\right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a}\right)$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow G(g(x))$ is continuous at a.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \left(\frac{g(x) - g(a)}{x - a}\right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)}\right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a}\right)$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow G(g(x))$ is continuous at a.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \left(\lim_{y = g(x), y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)} \right) g'(a) =$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow G(g(x))$ is continuous at a. Furthermore g(x) is continuous at a.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \left(\lim_{y = g(x), y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)} \right) g'(a) =$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow G(g(x))$ is continuous at a. Furthermore g(x) is continuous at a.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \left(\lim_{y = g(x), y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)} \right) g'(a) = f'(g(a))g'(a) .$$

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow G(g(x))$ is continuous at a. Furthermore g(x) is continuous at a.

$$\begin{aligned} (f \circ g)'(a) &= \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} \\ &= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right) \\ &= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right) \\ &= \left(\lim_{y = g(x), y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)} \right) g'(a) = f'(g(a))g'(a) \end{aligned} .$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

The Chain Rule 2019

Theorem (Chain rule)

$$g$$
-diff. near a , f -diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
.

The Chain Rule 2019

Theorem (Chain rule)

$$g$$
-diff. near a , f -diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a .

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

Theorem (Chain rule)

$$g$$
-diff. near a , f -diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

Theorem (Chain rule)

$$g$$
-diff. near a , f -diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} =$$

10

Theorem (Chain rule)

$$g$$
-diff. near a , f -diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))(g(x)-g(a))}{(g(x)-g(a))(x-a)}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a}, & g(x) = g(a) \end{cases}$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y)=\left\{ egin{array}{ll} rac{f(y)-f(g(a))}{y-g(a)}, & y
eq g(a) \\ f'(g(a)), & y=g(a) \end{array} \right.$$
 . $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a))=\lim_{y
ightarrow a}Q(y)=\lim_{x
ightarrow a}Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \end{cases}$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y)=\left\{ egin{array}{ll} rac{f(y)-f(g(a))}{y-g(a)}, & y
eq g(a) \\ f'(g(a)), & y=g(a) \end{array} \right.$$
 . $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a))=\lim_{y
ightarrow a}Q(y)=\lim_{x
ightarrow a}Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ = \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ = \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$\begin{array}{lcl} Q(g(x))\frac{g(x)-g(a)}{x-a} & = & \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))}\frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \end{cases} \\ & = & \frac{f(g(x))-f(a)}{x-a}. \end{array}$$

$$(f \circ g)'(a) =$$

n

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y)=\left\{ egin{array}{ll} rac{f(y)-f(g(a))}{y-g(a)}, & y
eq g(a) \\ f'(g(a)), & y=g(a) \end{array} \right.$$
 . $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a))=\lim_{y
ightarrow a}Q(y)=\lim_{x
ightarrow a}Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))}\frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ & = \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

$$(f\circ g)'(a) = \lim_{x\to a} \frac{f(g(x))-f(g(a))}{x-a} =$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$\frac{Q(g(x))\frac{g(x)-g(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} = \begin{cases}
\frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\
f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\
= \frac{f(g(x))-f(a)}{x-a}.
\end{cases}$$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} Q(g(x)) \frac{g(x) - g(a)}{x - a}$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ = \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} Q(g(x)) \frac{g(x) - g(a)}{x - a}$$
$$= \lim_{x \to a} Q(g(x)) \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$\begin{array}{lcl} Q(g(x))\frac{g(x)-g(a)}{x-a} & = & \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))}\frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ & = & \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} Q(g(x)) \frac{g(x) - g(a)}{x - a}$$

$$= \lim_{x \to a} Q(g(x)) \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(g(a))g'(a) .$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y) = \begin{cases} \frac{f(y) - f(g(a))}{y - g(a)}, & y \neq g(a) \\ f'(g(a)), & y = g(a) \end{cases}$$
. $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a)) = \lim_{y \to a} Q(y) = \lim_{x \to a} Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ = \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} Q(g(x)) \frac{g(x) - g(a)}{x - a}$$

$$= \lim_{x \to a} Q(g(x)) \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(g(a))g'(a) .$$

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y)=\left\{ egin{array}{ll} rac{f(y)-f(g(a))}{y-g(a)}, & y
eq g(a) \\ f'(g(a)), & y=g(a) \end{array}
ight.$$
 . $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a))=\lim_{y
ightarrow a}Q(y)=\lim_{x
ightarrow a}Q(g(x))$.

$$Q(g(x))\frac{g(x)-g(a)}{x-a} = \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))} \frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ = \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} Q(g(x)) \frac{g(x) - g(a)}{x - a}$$

$$= \lim_{x \to a} Q(g(x)) \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(g(a))g'(a) .$$