

Reaction Class-Based CHON Combustion Mechanism Development

Mark E. Fuller¹, K. Alexander Heufer¹

¹Physico-Chemical Fundamentals of Combustion RWTH Aachen University

Introduction

- ▶ Interactions of NO_x (NO and NO_2) with the combustion process are increasingly relevant in engines with exhaust gas recirculation (EGR) and/or alkyl nitrate cetane enhancers
- ► Low-temperature combustion reactions with nitrogen are not well-studied and may have significant effects
- \blacktriangleright Sustainable fuels, produced from bio-based carbon feedstocks, CO_2 , and renewable electricity, contain additional functional groups whose reactions with NO_x are not well-characterized

Model Development

► Pentane isomer mechanism (CHO) of Bugler *et al.* utilized as C₀-C₅ base mechanism

Modeling results

RO RO2 \rightarrow QOOH NO NO2 NO +O2 \rightarrow RH (OH +) R \rightarrow β -scission Check this shit out!

Work-in-progress

Ab initio calculations

REFERENCES

M. E. Fuller DOI: 10.1016/j.enconman.2014.08.015.