Meilenstein 2

Christopher Schieszler

October 2025

- 1 Introduction
- 2 Simulation
- 3 Messen

Abbildung 1: Enter Caption

4 Schaltplan

5 Praktischer Aufbau und Messung

5.1 Ziel dieses Abschnitts

In diesem Teil wird das zuvor berechnete analoge Frontend des Oszilloskops praktisch aufgebaut, vermessen und überprüft. Ziel ist es, die theoretischen Spannungsteiler, Offsetnetzwerke und Pufferstufen zu validieren und sicherzustellen, dass die Ausgangsspannungen im zulässigen ADC-Bereich $[0\dots3,3]$ V liegen.

5.2 Schaltungsübersicht CH1

Abbildung 2: Schaltung CH1 – Messbereiche ± 1 V und ± 10 V mit Buffer-Stufen

Tabelle 1: Widerstandswerte CH1 (praktische Umsetzung)

Messbereich	$R_1 [k\Omega]$	$R_2 [k\Omega]$	$R_3 [k\Omega]$	OPV
±1 V	220	430	$750 \\ 240$	MCP6002 (U1A, V = 3)
±10 V	750	370		MCP6002 (U1B)

5.3 Bauteilliste CH1

Tabelle 2: Bauteile für CH1

100 cm 2. Baatom 101 C111					
Bezeichnung	Wert	Funktion	Hinweis		
R1, R2, R3	220 k Ω / 430 k Ω /750 $k\Omega$	Spannungsteiler ± 1 V	Offsetnetzwerk		
R4, R5, R6	$240 \text{ k}\Omega/750k\Omega/370k\Omega$	Spannungsteiler $\pm 10V$	Offsetnetzwerk		
R13, R14	$200 \text{ k}\Omega/100k\Omega$	Nichtinvertierender Verstärker (V=3)	Bereich ± 1 V		
R15, R16	$100~\Omega – 1k\Omega$	Serienwiderstände	Eingangsschutz		
U1A, U1B	MCP6002	Buffer / Verstärker	Rail-to-Rail OP		

5.4 Messaufbau CH1

Abbildung 3: Messaufbau für CH1 – Versorgung, Signalgenerator und Multimeter

Zur Verifikation wurden die beiden Messbereiche separat getestet:

- Eingangssignal: $\pm 1 \,\mathrm{V}$ (nach Verstärkung $\approx 0 \dots 3.3 \,\mathrm{V}$).
- Eingangssignal: $\pm 10 \text{ V}$ (Offset-Netzwerk mit 3,3 V).
- Versorgung: $U_{\text{ref}} = 3.3 \text{ V}$, OPV-Versorgung ebenfalls 3.3 V.

Messwerte:

$$U_{\text{out.max}} \approx 3.29 \,\text{V}, \quad U_{\text{out.min}} \approx 0.05 \,\text{V}.$$

Damit stimmt die Verstärkung und der Offset für beide Bereiche mit der Berechnung überein.

5.5 Fazit CH1

Die Schaltung CH1 funktioniert wie geplant. Der nichtinvertierende Verstärker im ± 1 V-Bereich skaliert das Ausgangssignal exakt auf 0–3,3 V. Die ± 10 V-Stufe liefert

stabile Ergebnisse über den ganzen Messbereich. Durch den MCP6002 als Buffer bleibt die Eingangsimpedanz hoch und der ADC wird optimal angesteuert. CH1 ist damit vollständig verifiziert und kann ins finale Layout übernommen werden.

5.6 Schaltungsübersicht CH2

Abbildung 4: Schaltung CH2 – Messbereiche $\pm 10 \mathrm{V}$ und $\pm 36 \mathrm{V}$ mit Buffer-Stufen

Tabelle 3: Widerstandswerte CH2 (praktische Umsetzung)

Messbereich	$R_1 [k\Omega]$	$R_2 [k\Omega]$	$R_3 [k\Omega]$	OPV
±36 V	910	91	82	MCP6002 (U2A)
±10 V	750	370	240	MCP6002 (U2B)

5.7 Bauteilliste CH2

Tabelle 4: Bauteile für CH2

Bezeichnung	Wert	Funktion	Hinweis
R7, R8, R9	$82 \ k\Omega/910k\Omega/91k\Omega$	Spannungsteiler ± 36 V	Offsetnetzwerk
R10, R11, R12	$240 \text{ k}\Omega/750k\Omega/370k\Omega$	Spannungsteiler $\pm 10~\mathrm{V}$	Offsetnetzwerk
R17, R18	100 Ω –1 $k\Omega$	Serienwiderstände	Eingangsbegrenzung
U2A, U2B	MCP6002	Impedanzwandler	Rail-to-Rail OPV

5.8 Messaufbau CH2

Abbildung 5: Messaufbau für CH2 – Versorgung, Signalgenerator und Multimeter

Zur Verifikation wurden folgende Messungen durchgeführt:

- Eingangssignal: $\pm 10 \,\mathrm{V}$ bzw. $\pm 36 \,\mathrm{V}$ (Sinus und DC).
- Offsetversorgung: $U_{\text{ref}} = 3.3 \,\text{V}.$
- Ausgang: hinter dem Impedanzwandler gemessen.

Messergebnisse:

$$U_{\text{out,max}} \approx 3.28 \,\text{V}, \quad U_{\text{out,min}} \approx 0.04 \,\text{V}.$$

Somit wird der ADC-Eingangsbereich optimal ausgenutzt.

5.9 Fazit CH2

Beide Spannungsteiler und Buffer funktionieren wie berechnet. Der simultane Betrieb beider Messbereiche ist stabil, da die OPV-Stufen voneinander entkoppelt sind. Die gemessenen Spannungen liegen innerhalb der Toleranz. Der MCP6002 eignet sich ideal als Impedanzwandler bei 3,3 V Versorgung. Damit ist $\mathbf{CH2}$ vollständig funktionsfähig und layout-fertig.

6 Layouten