

CSE 5255

INTRODUCTION TO COMPUTER GRAPHICS CLASS NOTES

Dr. William D. Shoaff

Spring 1996

Table of Contents

Introduction
Data Structures for Graphics 1.1
Basic Math for Graphics
Transformations
View Coordinates4.1
Projections and Normalized Device Coordinates5.1
Clipping 6.1
Scan Conversion
Rendering and Illumination Models8.1
Visible Object Algorithms9.1
Color Models10.1
Exams and Quizzes
Bibliography B.1
0 1 0

Color in Computer Graphics

- Color and gray scale required for modern computer graphics
- Complex subject concepts from physics, physiology, psychology, art, etc.
- Interpreted color of an object depends on
 - object's surface rough, smooth, shiny, dull
 - light source point, linear, area, position
 - surrounding environment outside, inside
 - human visual system color vision, perceived range of colors

- Achromatic light runs from black through grays to white
- The *quantity* of light is the only attribute of achromatic light
- Physicists talk of intensity or luminance of the light's energy
- Psychologists talk of the brightness of the perceived intensity
- Luminance and brightness are related by not identical concepts
- Zero (0) is defined as black; One (1) as white
- Some display devices can produce gray scales (values between 0 and 1)
- Some display devices produce only bilevel images

Gamma Correction of CRTs

- The eye is sensitive to ratios of intensity levels rather than absolute intensity
- For example, the perceived change in intensity from 0.1 to 0.11 is the same as the perceived change in intensity from 0.5 to 0.55
- ullet To select n+1 intensities between 0 and 1 so that they have equal steps in brightness (perceived intensity) we have

$$I_0 = I_0, I_1 = rI_0, I_2 = rI_1 = r^2I_0, \dots, I_n = r^nI_0 = 1$$

• Therefore,

$$r = (1/I_0)^{1/(n)}$$

and

$$I_j = r^{j-1}I_0 = I_0^{(n-j)/(n)}, \quad 1 \le j \le n$$

- ullet Typical values for I_0 are between 0.005 and 0.025
- The dynamic range $1/I_0$ of a CRT is the ratio between maximum and minimum intensities

Color Models

Gamma Correction of CRTs

- Display of the intensities I_i is tricky
 - Given N electrons in a beam hitting a phosphor, the intensity of light output is

$$I = kN^{\gamma}$$

where k and γ are constants, with γ typically in the range 2.2 to 2.5

 $-\ N$ is proportional to the control grid voltage, which is proportional to the value V specified for the pixel, thus

$$I = KV^{\gamma}, \quad V = (I/K)^{1/\gamma}$$

- Given I, we calculate the nearest intensity I_j by

$$I_j = r^j I_0$$
, where $j = \lfloor \log_r(I/I_0) + 0.5 \rfloor$

The pixel value is

$$V_j = \lfloor (I_j/K)^{1/\gamma} + 0.5 \rfloor$$

— The value V_j is placed in the frame buffer, or j is placed in the frame buffer and V_j in entry j of the look-up table

- Multiple pixels on a device can be used to represent a single pixel from an image when the image has fewer pixels than the device
- For bilevel displays the perceived intensity range can be increased, at a cost of reduced spatial resolution, by halftoning
- Halftoning or clustered-dot ordered dither used variable sized black circles to produce different intensity levels
- Graphics devices can approximate variable-area circles
- ullet For example, with a 2×2 grid, 5 different intensity levels can be achieved
- An $n \times n$ grid can produce $n^2 + 1$ intensity levels

- Selecting the set of patterns for halftoning
 - Avoid patterns that will introduce visual artifact, eg. horizontal, vertical, or diagonal line, in the image
 - Form a growth sequence with the patterns any pixel intensified at level j is intensified at level k for k>j
 - Grow the patterns outward from the center, to create effect of increasing dot size
 - For devices that can't plot isolated dots well, eg.
 laser printers, all "on" pixels should be adjacent
- Dither matrices can be used to represent a sequence of patterns, eg.

$$D^{(2)} = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}, \quad D^{(3)} = \begin{bmatrix} 6 & 8 & 4 \\ 1 & 0 & 3 \\ 5 & 2 & 7 \end{bmatrix}$$

- Halftone approximation can be applied to gray-scale and color devices
- Consider a gray-scale device
 - With m bits/pixel, 2^m intensities can be represented $(0, \ldots, 2^m 1)$
 - Using an $n \times n$ pattern, $n^2 * (2^m 1) + 1$ intensities from 0 to $n^2 * (2^m 1)$ can be represented
- Consider a RGB color device
 - Assume m_R , m_G , and m_B bits for red, green, and blue respectively
 - Then

$$(n^2*(2^{m_R}-1)+1)*(n^2*(2^{m_G}-1)+1)*(n^2*(2^{m_B}-1)+1)$$

intensities can be represented

- Dispersed-dot ordered dithering can be used on devices able to display individual dots
- ullet When the device and the image have the same number of pixels, a pixel at $(x,\,y)$ can be intensified if the intensity $S(x,\,y)$ is greater than the value in the dither matrix at the entry $(i,\,j)$ corresponding to $(x,\,y)$, ie. if

$$S(x, y) > D_{ij}^{(n)}$$
, where $i = x \mod n$, $j = y \mod n$

• The effect of equal image and display arrays is apparent only in areas where intensity varies

- Color perception involves three attributes: *hue*, saturation, and *lightness*
- Hue classifies the color as red, yellow, green, blue, or intermediate color between any contiguous pair of these colors
- Saturation (chroma) is the degree of difference from the achromatic light of the same brightness — a saturated color is a pure spectral color, an unsaturated color is pastel
- Lightness (value) is the perceived intensity of a reflecting object
- Brightness is the perceived intensity of a self-luminous object — a light source
- Colorimetry is a branch of physics which provides an objective, quantitative way of measuring color
 - Dominant wavelength corresponds to the perceptual notion of hue
 - Excitation purity corresponds to saturation
 - Luminance measures intensity or energy of light

- Light is electromagnetic energy in the 400 to 700 nanometer wavelength range
- The hues range from violet to indigo to blue to green to yellow to orange to red
- ullet Light can also be described by frequency f where f is related to wavelength λ by

$$f = \frac{c}{\lambda}$$
 $c = 300,000$ kilometers/second

- \bullet The spectral energy distribution $P(\lambda)$ gives the amount of energy present at each wavelength λ
- Two spectral energy distributions that "look" the same are called metamers

- ullet The dominant wavelength λ_d is where the largest spike e_d in the spectral energy distribution occurs
- ullet The excitation purity is the percentage difference between e_d and the uniform distribution of energy
- The luminance is proportional to the area under the spectral energy distribution curve, weighted by the *luminous-efficiency function*

- The *tristimulus theory* of color perception is based on the hypothesis that the retina has three kinds of *cones* with peak sensitivity to red, green, or blue lights
- Experiments produce *spectral-response functions* with show
 - Blue has peak response around 440 nm, with about
 2% of light absorbed by the blue cones
 - Green has peak response around 545 nm, with about 20% of light absorbed by the green cones
 - Red has peak response around 580 nm, with about
 19% of light absorbed by the red cones
 - The eye's response to blue light is much less strong than it is to green or red
- The luminous-efficiency function is the eye's response to light of constant luminance as the dominant wavelength is varied
- Our peak sensitivity is to yellow-green light around 550
 nm

Color Matching

- Imagine viewing a test color with the left eye and have 3 knob to control the red, green, and blue components of a second color, seen with the right eye (suppose the knobs turn in 1 nm increments)
- As the test color's dominant wavelength is varied, three color matching functions, r_{λ} , g_{λ} , and b_{λ} , showing the amount of red, green, and blue needed to match the test color are generated
- For some test colors, the values of r_{λ} , g_{λ} , or b_{λ} may be negative indicating the light needs to be moved to the test color side
- Not all colors can be represented by positive RGB mixes
- The human eye can distinguish hundreds of thousands of colors
- Near the ends of the spectrum colors of noticeably different hues may be about 10 nm apart
- Most distinguishable hues are with 4 nm
- About 128 fully saturated hues can be distinguished
- The eye is less sensitive to saturated light

- In 1931, the Commission Internationale de l'Éclairage (CIE) defined three primaries called X, Y, and Z to be used in color matching
- Color matching functions x_{λ} , y_{λ} , and z_{λ} are all positive for matching any visible color
- ullet The ${f Y}$ primary's color matching function y_{λ} exactly matches the luminous-efficiency function
- ullet These color matching functions are tabulated at 1 nm intervals using color samples that subtend a 2° field of view on the retina
- ullet The amount of ${\bf X}$, ${\bf Y}$, and ${\bf Z}$ needed to match a color with spectral energy function $P(\lambda)$ are:

$$X = k \int P(\lambda) x_{\lambda} d\lambda, \quad Y = k \int P(\lambda) y_{\lambda} d\lambda, \quad Z = k \int P(\lambda) z_{\lambda} d\lambda$$

- For self-luminous objects, k is 680 lumens/watt
- For reflecting objects

$$k = \frac{100}{\int P_w(\lambda) y_\lambda d\lambda}$$

where $P_w(\lambda)$ is the spectral energy function of "standard" white

ullet The visible colors are contained in a cone-shaped region of XYZ space that extends from the origin into the positive octant

• Let color C be matched by

$$C = XX + YY + ZZ$$

• Define chromaticity values by

$$x = \frac{X}{X + Y + Z}, \ y = \frac{Y}{X + Y + Z}, \ z = \frac{Z}{X + Y + Z}$$

ullet Given $(x,\,y,\,Y)$ we can recover $(X,\,Y,\,Z)$

$$X = \frac{x}{y}Y$$
, $Y = Y$, $Z = \frac{1 - x - y}{y}Y$

- ullet Note X+Y+Z can be thought of as the total amount of light energy
- The chromaticities depend only on dominant wavelength and excitation purity (they are independent of luminous energy)

Color Models

- The chromaticities are on the plane X + Y + Z = 1
- The orthographic projection of this plane onto the XY plane is called the CIE chromaticity diagram
- ullet The CIE chromaticity diagram is a plot of x and y for all visible colors
- 100% spectrally pure colors are on the boundary of the CIE diagram
- A standard white light, (approximately sunlight) called illuminant C is near where x=y=z=1/3

- Complementary colors when mixed produce white they lie on opposite sides of a line through C
- The dominant wavelength of a *nonspectral* color F is found by intersecting the line from the color through C with the "horseshoe" part of the CIE diagram
- The excitation purity is the ratio of length CF to CG, where G is the closest point on the boundary along the line through C and F
- A color gamut is the set of all colors that can be formed by mixing the colors it is the convex hull of the colors in the CIE diagram
- Color gamuts of different color devices can be compared using the chromaticity diagram
- Color gamuts for monitors are triangular, film and print gamuts may be more complex shapes
- ullet The CIE LUV uniform color space was developed in 1976 to solve the problem that changes $\triangle C$ in color are not perceived to be equal

The RGB Color Model

- The red, green, and blue (RGB) color model is used in color CRT monitors
- The model is represented by a unit cube
- Red, green, and blue are at corners (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- Black is at (0, 0, 0) with grays along the diagonal to white at (1, 1, 1)
- The RGB primaries are additive
 - Cyan (0, 1, 1) is formed by adding green and blue
 - Magenta (1, 0, 1) is formed by adding red and blue
 - Yellow (1, 1, 0) is formed by adding red and green
 - Red and cyan are complementary; green and magenta are complementary; blue and yellow are complementary

The RGB Color Model

- The color gamut of the RGB model is defined by the chromaticities of a CRT's phosphors
- Let (x_r, y_r) , (x_g, y_g) , and (x_b, y_b) be the chromaticities for the vertices of a monitor's RGB color gamut
- Let Y_r , Y_g , Y_b be the luminances of maximum-brightness red, green and blue
- Let $C_r = Y_r/y_r = X_r + Y_r + Z_r$, $C_g = Y_g/y_g = X_g + Y_g + Z_g$, $C_b = Y_b/x_b = X_b + Y_b + Z_b$
- The transformation from RGB to CIE is given by

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x_r C_r & x_g C_g & x_b C_b \\ y_r C_r & y_g C_g & y_b C_b \\ z_r C_r & z_g C_g & z_b C_b \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

where $z_r = 1 - x_r - y_r$ and similarly for z_g , z_b

- ullet If M_1 maps monitor 1's RGB to CIE and M_2 maps monitor 2's RGB to CIE, then $M_2^{-1}M_1$ maps monitor 1's RGB to monitor 2's RGB
- Of course, some values may not be displayable on both monitors

Color Models

The CMY Color Model

- Cyan, magenta, and yellow are used with hardcopy devices that deposit colored pigment onto paper
- The CMY model describes this model with *subtractive* primaries
- Cyan subtract (filters) red from reflected white light allowing only green and blue to be seen
- Magenta absorbs green; yellow absorbs blue
- The CMY model uses a unit cube with a relabeling of corners; colors are specified by what is subtracted from white light
- The (ideal) transformations between CMY and RGB are given by

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

The CMY Color Model

- Four color printing uses the CMYK color model where K represents black
- The (ideal) conversion from CMY to CMYK is

$$\begin{split} K &= min(C, M, Y) \\ C &= C - K \end{split}$$

$$M = M - K$$

$$Y = Y - K$$

The HSV Color Model

- A system closer to the artist's model of color mixing
- Hue, Saturation, and Value (brightness)
- The model is defined on a hexcone, or six-sided pyramid
- ullet The top of the cone, given by V=1, contains the brightest colors
- The apex of the cone corresponds to black
- The hue is measured by angles around the cone's vertical axis (Red = 0° , Green = 120° , Blue = 240°)
- ullet The saturation ranges from 0 on the V axis to 1 on the cone's faces
- The top of the hexcone is the projection of the RGB cube looking along the principal diagonal

 Conversion from RGB to HSV — determines the value as the largest RGB component, the saturation as the relative range of RGB values, and the hue as the relative angular displacement from the largest RGB component

```
RGB-to-HSV(float r, g, b, h, s, v)
 max = Maximum(r, g, b);
 min = Minimum(r, g, b);
v = max;
if max \neq 0 then s = (max-min)/max;
else s = 0:
if s == 0 then h = UNDEFINED;
else {
   delta = max - min:
   if r = max then h = (g - b)/delta;
   else if g = max then h = 2 + (b - r)/delta;
   else h = 4 + (r - g)/delta;
   h = h * 60:
   if h < 0 then h = h + 360;
```

The HLS Color Model

- The hue, lightness, and saturation color model uses a double hexcone
- ullet White is at L=1 and black at L=0
- ullet Hues are measured in angles from 0° to 360°
- ullet Saturation varies from 0 on the L axis to 1 on the face of the cone
- \bullet Grays have S=0
- ullet Maximally saturated color have S=1, L=0.5

```
 RGB-to\text{-}HLS(\textbf{float}\ r,\ g,\ b,\ h,\ l,\ s) \\ \{ \\ max = \text{Maximum}(r,\ g,\ b); \\ min = \text{Minimum}(r,\ g,\ b); \\ l = (max + min)/2; \\ \textbf{if}\ max = min\ \textbf{then}\ s = 0;\ h = UNDEFINED; \\ \textbf{else}\ \{ \\ \textbf{if}\ l < 0.5\ \textbf{then}\ s = (max\text{-}min)/(max\text{+}min); \\ \textbf{else}\ s = (max\text{-}min)/(2\text{-}max\text{-}min); \\ delta = max\ \textbf{-}min; \\ \textbf{if}\ r = max\ \textbf{then}\ h = (g-b)/delta; \\ \textbf{else}\ \textbf{if}\ g = max\ \textbf{then}\ h = 2 + (b-r)/delta; \\ \textbf{else}\ h = 4 + (r-g)/delta; \\ h = h*60; \\ \textbf{if}\ h < 0\ \textbf{then}\ h = h + 360; \\ \} \\ \}
```

The CNS Color Model and Munsell Colors

- The Color Naming System is based on natural language color categories
 - Lightness is chosen from very dark, dark, medium, light, or very light
 - Saturation can be grayish, moderate, strong, or vivid
 - Thirty-one hues are formed from seven generic hues: red, orange, brown, yellow, green, blue, and purple
 - Halfway hues are denoted by hyphenation, eg, green-blue
 - Quarterway hues with an ish suffix, eg yellowish-green
- The Munsell color-order system is a set of published standard colors organized in a space of hue, value, and chroma (saturation)
- Each color in the Munsell system is named and ordered to have an equally perceived "distance" in color space from its neighbors

Interpolating in Color Space

- Color interpolation needed for (1) Gouraud shading, (2) antialiasing, (3) blending images (fade-in, fade-out)
- Results of interpolation depend on color model
- If map from one color model to another is linear, then linear interpolation in both models will be the same (RGB, CMY, CIE, YIQ).
- Map from RGB to HSV or HLS is non-linear
- Example:
 - Consider $(1-t)(1,\,0,\,0)+t(0,\,1,\,0)$ which linearly interpolates from red to green in RGB space
 - At t = 0.5 the color (0.5, 0.5, 0) maps to $(60^{\circ}, 1, 0.5)$ in HSV
 - Consider $(1-t)(0^\circ, 1, 1) + t(120^\circ, 1, 1)$ which linearly interpolates from red to green in HSV space
 - At t = 0.5 the color $(60^{\circ}, 1, 1)$
- For Gouraud shading any model can be use because the two interpolants are so close together.
- For antialiasing and fade-in, fade-out then RGB is appropriate.

Reproducing Color

- Spatial integration of RGB triad on color monitors and 4-color (CMY+Black) printing
- Dithering use 2×2 (or larger grids of pixels)
 - Extend color range, but lose resolution
 - If 3-bits/pixel (1 for red, green and blue), then there are 5 different reds, greens and blues or 125 color combinations.
- Xerography, ink-jets and thermal color copiers actually mix subtractive color pigments.

Reproducing Color

- Given a color image with n bits/pixel to be displayed on a device with m < n bits/pixel
 - Which 2^m colors should be displayed?
 - What map from the 2^n colors in the image to the 2^m colors should be used?
 - Solution 1: Use a fixed set of display colors and a fixed mapping (eg. m=8, use 3 bit for red and green, 2 bits for blue)
 - Solution 2: popularity algorithm create histogram of the image's color and use the 2^m most frequent colors.
 - Solution 3: median-cut algorithm recursively fit a box around the colors used in the image, splitting the box along its longer dimension at the median until 2^m boxes have been created. Use the centroid of the box as the display color for all image colors in the box.
- Accurate color reproduction is difficult.

Using Color in Computer Graphics

- Select colors by some method, eg. traversing a smooth curve or restricting to a plane in color space
- Avoid the simultaneous display of highly saturated, spectrally extreme colors
- Pure blue should be avoided for text, thin lines, and small shapes
- Avoid adjacent colors that differ only in the amount of blue
- Older operators need higher brightness levels to distinguish colors
- Colors change in appearance as the ambient light level changes
- The magnitude of a detectable change in color varies across the spectrum
- It is difficult to focus upon edges created by color alone

Using Color in Computer Graphics

- Avoid red and green in the periphery of large-scale displays
- Opponent colors go well together
- For color-deficient observers, avoid single-color distinctions
- Random selection of different hues is usually garish
- If a display contains only a few colors, the complement of one color should be used as the background
- A neutral (gray) should be used for the background for an image with many colors
- If two adjoining colors are not harmonious, place thin black border between them

Problems

- 1. Define achromatic light and chromatic light.
- 2. Explain how can grey shades be achieved on a bi-level (black and white) display?
- 3. Carefully describe the CIE and RGB color models.
- 4. How would you specify a medium gray using the RGB color model?
- 5. How would you specify a dark blue using the RGB color model?
- 6. How would you specify a medium gray using the HSV color model?
- 7. How would you specify a dark blue using the HSV color model?
- 8. What are hue and dominant wavelength and how do they differ?
- 9. What is the color gamut of colors C_1 , C_2 and C_3 ?
- 10. Distinguish additive and subtractive color models?