

Multi-Modal Multi-Correlation Learning for Audio-Visual Speech Separation

Xiaoyu Wang^{1,2}, Xiangyu Kong², Xiulian Peng², Yan Lu² ¹Xi'an Jiaotong University ²Microsoft Research Asia

encoder embedding speaker identification model video frames reading Contrastive learning:

$\mathcal{L}_1 = \max\{d(\mathbf{i}_{\mathcal{A}_1}^a, \mathbf{i}_{\mathcal{A}_2}^v) - d(\mathbf{i}_{\mathcal{A}_1}^a, \mathbf{i}_{\mathcal{B}}^v) + m, 0\}$

$$\mathcal{L}_2 = \max\{d(\mathbf{p}_{\mathcal{A}}^a, \mathbf{p}_{\mathcal{A}}^v) - d((\mathbf{p}_{\mathcal{A}}^a, \mathbf{p}_{\mathcal{B}}^v) + m, 0\}$$

identification model ʃ facial attribute: 🌑 I'm Li Ming, Speech how are you? predicted audio recognition phoneme Adversarial training:

oackbone network

- [1] R. Gao and K. Grauman. "VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency". In CVPR 2021.
- [2] N. Makishima, M. Ihori, A. Takashima, T. Tanaka, S. Orihashi, and R. Masumura, "Audio-visual speech separation using cross- modal correspondence loss". In ICASSP 2021
- [3] T. Afouras, J. S. Chung, A. Zisserman LRS3-TED: a large-scale dataset for visual speech recognition arXiv preprint arXiv:1809.00496

Experiments

 $\mathcal{L}_{\mathcal{G}} = \min_{C} \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{v}} \log(D(\mathbf{x})) + \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{a}} \log(1 - D(\mathbf{x}))$ $\mathcal{L}_{\mathcal{D}} = \max_{\mathbf{x}} \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{v}} \log(D(\mathbf{x})) + \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{a}} \log(1 - D(\mathbf{x}))$

The Proposed Framework

	SDR	PESQ	STOI
[2](AV Baseline)	8.46	2.27	0.843
[2](CMC loss)	8.85	2.39	0.854
Ours(AV baseline)	9.392	2.536	0.851
Ours(triplet)	9.623	2.545	0.855
Ours(adversarial)	9.982	2.584	0.861

	SDR	SIR	SAR	PESQ	STOI	SI-SNR
[1](Reported)	10.2	17.2	11.3	2.83	0.87	-
[1](Released)	7.023	13.708	9.546	2.569	0.792	6.471
[1](Our impl.)	7.692	14.347	10.195	2.579	0.791	7.467
Ours(triplet)	8.178	14.692	10.38	2.6	0.793	7.676
Ours(adversarial)	8.949	16.012	10.79	2.687	0.811	8.477

[4] J. S. Chung*, A. Nagrani*, A. Zisserman VoxCeleb2: Deep Speaker Recognition INTERSPEECH, 2018.