

EL TEOREMA DE CLASIFICACIÓN DE SUPERFICIES COMPACTAS

Lourdes Kristel Rosales Alarcón

Asesorado por Alan Reyes

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

EL TEOREMA DE CLASIFICACIÓN DE SUPERFICIES COMPACTAS

TRABAJO DE GRADUACIÓN
PRESENTADO A LA JEFATURA DEL
DEPARTAMENTO DE MATEMÁTICA
POR

LOURDES KRISTEL ROSALES ALARCÓN ASESORADO POR ALAN REYES

AL CONFERÍRSELE EL TÍTULO DE LICENCIADO EN MATEMÁTICA APLICADA

GUATEMALA, JULIO DE 2017

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

CONSEJO DIRECTIVO

DIRECTOR M.Sc. Edgar Anibal Cifuentes Anléu

SECRETARIO ACADÉMICO Ing. José Rodolfo Samayoa Dardón

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

EXAMINADOR ...

EXAMINADOR ...

EXAMINADOR ...

	Fecha
datos	
cuerpo	
despedida	
firma	
nombre	

Este archivo pdf es una muestra

AGRADECIMIENTOS

۸ .	1 1 / 1 *	, 1 1	•		~	. 1		, ,
Amisc	atedraticos	nor toda Is	nacier	ncia no	r enseñarme	todo	sin ser	egoistas
11 IIIIs C	aucuraurcus	por toda i	i pacici.	icia, po	i chischarine	iouo	BIII BUI	CgOistas

DEDICATORIA

 ${\bf A}$ mi familia, mí mama por apoyarme, estar conmigo, tenerme paciencia. ${\bf A}$ mi papa por

ÍNDICE GENERAL

ÍNDICE DE FIGURAS	III
ÍNDICE DE TABLAS	\mathbf{V}
LISTA DE SÍMBOLOS	VII
OBJETIVOS	IX
INTRODUCCIÓN	XI
1. CONCEPTOS PRELIMINARES 1.1. subespacios, espacio cociente 1.1.1. Subespacios 1.1.2. Espacio Cociente 1.2. Topología cociente	1 1
2. SUPERFICIES	3
3. EL GRUPO FUNDAMENTAL	5
4. TRIANGULACÓN DE SUPERFICIES	7
5. CLASIFICACIÓN DE SUPERFICIES	9
CONCLUSIONES	11
RECOMENDACIONES	13
Referencias	15

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

LISTA DE SÍMBOLOS

Símbolo	Significado
:=	es definido por
\sim	es relación de equivalencia
X	es espacio topológico
\subseteq	es contenido en
\cap	es intersección

OBJETIVOS

General

Escriba el objetivo general.

Específicos

Enumere los objetivos específicos.

1.

2.

INTRODUCCIÓN

holasdal (d, asd)

1. CONCEPTOS PRELIMINARES

1.1. subespacios, espacio cociente

1.1.1. Subespacios

Sea X un espacio topológico y sea S \subseteq X un subconjunto. Entonces definimos τ_s en S como

 $\tau_s = \{U \subseteq S : S \cap V \ para \ algun \ subconjunto \ abierto \ V \subseteq X\}$

Proposición 1.1. Supongamos que S es subconjuto de un espacio topológico X.

- 1. Si $U \subseteq S \subseteq \mathring{X}$, U es un abierto en S, y S es abierto en X, entonces es U es abierto en X, lo mismo para cerrados.
- 2. Si U es un subconjunto de S que es abierto y cerrado en X entonces también es abierto y cerrado en S.

1.1.2. Espacio Cociente

Supongamos que X es un espacio topológico, y supongamos que tenemos una relación de equivalencia definido en X. Sea X^* el conjunto de \sim , entonces queremos definir una topología en X^* , la cual es llamada topología cociente. Para ello tomaremos una función (proyección canónica).

$$\pi: X \to X^*$$

la cual esta definida por

$$\pi(x) = [x]$$

Es decir π es la función de X en el conjunto potencia de X que asigna a cada $x \in X$ a un subconjunto de X llamado las clases de equivalencia del punto x. Debido a que $x \in X$ esta en una sola clase de equivalencia, la función $x \to [x]$ esta bien

definida, ya que cada clase de equivalencia tiene al menos un elemento, esta función es sobreyectiva. Algunos ejemplos de conjuntos cocientes X^*

Ejemplo 1.1. wewf

1.2. Topología cociente

Pensando en la construcción del espacio X^* tomando un conjunto de X tomando algunas partes juntas, queremos que la transición de X a X^* sea continua. Tomando la proyección como

$$\pi: X \to X^*$$
 $\pi(x)[x]$

continua, con esto obtenemos que en X^* : si un conjunto U es abierto en X^* entonces $\pi^{-1}(U)$ es abierto en X

2. SUPERFICIES

3. EL GRUPO FUNDAMENTAL

4. TRIANGULACÓN DE SUPERFICIES

5. CLASIFICACIÓN DE SUPERFICIES

CONCLUSIONES

- 1. Conclusión 1.
- 2. Conclusión 2.
- 3. Conclusión 3.

RECOMENDACIONES

- 1. Recomendación 1.
- 2. Recomendación 2.
- 3. Recomendación 3.

Referencias

d. (asd). hola (asd, Ed.). basd.