Introduction to Beamer for the Lightboard

Module 1A

Beamer Basics

Beamer

We use Beamer instead of PowerPoint to create presentations to be projected on a screen. Since it is based on LATEX, it is excellent for presentations with mathematical formulas.

Indeed, we assume the user is already familiar with LATEX.

This slide deck uses the ep-dark style which provides a particularly simple, clean design featuring white text on a black backgound. This is ideal for use on the Lightboard.

Keep it clean! Don't put too many words on a slide.

Blocks

This is a block

A block structure is useful for highlighting particular information.

Definition

The definition environment is a type of block used for definitions. Highlight the word you are defining.

Itemized lists

Itemized lists are useful for sequential points.

Itemized lists

- Itemized lists are useful for sequential points.
- In this example, each item appears on subsequent slides.

Itemized lists

- Itemized lists are useful for sequential points.
- In this example, each item appears on subsequent slides.
- Items are added one by one until done.

Pauses

The pause command

Pauses

The pause command is a mechanism for building up a slide in pieces.

The only command provides more fine control in revealing material on a slide.

The only command provides more fine control in revealing material on a slide. This sentence will only appear after the first the first one.

The only command provides more fine control in revealing material on a slide. The second sentence was only on the 2nd slide; this sentence will be on slides 3 and all subsequent slides.

The only command provides more fine control in revealing material on a slide. The second sentence was only on the 2nd slide; this sentence will be on slides 3 and all subsequent slides. Finally, this sentence appears.

Mathematics

Because Beamer is built in $\angle T_EX$ it does mathematics beautifully either inside a sentence, $\sqrt{2} + \cos \theta$, or in display mode:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Do it right! Notice this difference between $cos\theta$ [wrong!] and $cos\theta$ [yes!].

$$|z| = \sqrt{z \cdot \overline{z}}$$

$$|z| = \sqrt{z \cdot \overline{z}}$$

$$\therefore |a+bi| = \sqrt{(a+bi)(a-bi)}$$

$$|z| = \sqrt{z \cdot \overline{z}}$$

$$\therefore |a + bi| = \sqrt{(a + bi)(a - bi)}$$

$$= \sqrt{a^2 + abi - abi - b^2i^2}$$

$$|z| = \sqrt{z \cdot \overline{z}}$$

$$\therefore |a + bi| = \sqrt{(a + bi)(a - bi)}$$

$$= \sqrt{a^2 + abi - abi - b^2 i^2}$$

$$= \sqrt{a^2 + b^2}$$

Figures

The graphicx package provides the includegraphics command. Prepare graphics with a drawing program using light colored lines and shapes on a black or transparent background. Save in a standard graphics format.

Math extras

Use the amsmath and amsthm packages for additional math functionality.

Theorem (Binomial)

Let n be a nonnegative integer. Then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}. \quad \Box$$