Matemática Discreta I - MATA42

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 21/02/2019

Matemática Discreta - MATA42 - Conteúdo

CONTEÚDO PROGRAMÁTICO

• Introdução e Motivação

- Relevância da Matemática para a Computação.
- Técnicas de Demonstração.
- Lógica Proposicional.

Conjuntos

- Operações sobre conjuntos.
- Produto Cartesiano.
- Relações e funções, funções injetoras, sobrejetoras e bijetoras; exemplos.
- Operações sobre funções (composição, inverso, produto).
- Conjuntos finitos, contáveis e não-contáveis: enumerabilidade de conjuntos.
- Prova de Cantor (diagonalização).
- Propriedades de conjuntos enumeráveis (contáveis).
- Cardinalidade de conjuntos.

Os números naturais

- Os axiomas de Peano.
- Definição da adição e propriedades.
- Introdução de ordem nos naturais.
- O princípio da indução (primeira e segunda formas)
- Exemplos de provas por indução.
- O princípio da definição recursiva de funções.
- Teorema da recursão. Exemplos de definições recursivas de funções.

Matemática Discreta - MATA42 - Conteúdo

CONTEÚDO PROGRAMÁTICO

- Propriedades de relações binárias
 - Simetria, reflexividade e transitividade de relações.
 - Relações de equivalência, partições de conjuntos, propriedades básicas.
 - Equivalência entre particão e relação de equivalência.
 - Exemplos de relações de equivalência.
 - Fecho transitivo e reflexivo de uma relação; exemplos.
- Análise combinatória
 - Princípios elementares de contagem
 - Coeficientes fundamentais de contagem (coeficiente binomial, número de Stirling da segunda ordem)
 - Permutações (ciclos, pontos fixos, números de Stirling da primeira ordem)
 - Problema da escolha de k-elementos de um conjunto de n elementos (escolha ordenada, não ordenada, sem repetição, com repetição)
 - Recursão e o Triângulo de Pascal (o Teorema Binomial, a Identidade de Vandermonde)
 - Recursão e os números de Stirling

Matemática Discreta - MATA42 - Bibliografia

BIBLIOGRAFIA PRINCIPAL

- Menneth H. Rosen: Matemática Discreta e suas Aplicações; Mc-Graw Hill Brasil.
- Wenneth H. Rosen: Discrete Mathematics and its Applications; Mc-Graw Hill.
- Oleção Schaum: Teoria dos Conjuntos.
- E. Alencar Filho: Teoria dos Conjuntos.
- 5 J. Monteiro: Elementos de Álgebra.
- L. Lovasz: Matemática Discreta.
- O D. Stuart e D. McAllister: Discrete Mathematics in Computer Science.
- J. Gersting: Fundamentos Matemáticos para a Ciência da Computação.

Matemática Discreta - MATA42 - Avaliação

Avaliações

- 1^a Prova: 04/04/2019 (quinta-feira) sala:207 PAFI
- 2^a Prova: 16/05/2019 (quinta-feira) sala:207 PAFI
- 3^a Prova: 27/06/2019 (quinta-feira) sala:207 PAFI
- 2^a chamada: 04/07/2019 (quinta-feira) sala:207 PAFI
- Cálculo da Média:
 A Média Final(MF) incluirá a nota das Provas(P1, P2, P3):

$$MF = \frac{(3.(P1) + 3.(P2) + 4.(P3))}{10}$$

Teoria Ingênua de Conjuntos

Definição:

Um CONJUNTO é uma coleção não ordenada de objetos denominados "elementos" (ou "membros").

Notação: os conjuntos serão denotados por letras maiúsculas (A, B, C, \cdots) .

EXEMPLOS:

- \bullet $A := \{Paulo, Rita, Mateus, João\}$
- V := {a, e, i, o, u} "Conjunto das vogais"
- **1** $P := \{x | x \text{ \'e par }\}$ "Conjunto dos números pares"
- $O := \{0, 1, 2, 3, 4, 5, \cdots, 9\}$

Observação: Os conjuntos A e V estão na forma EXPLÍCITA; enquanto que P e O estão na forma IMPLÍCITA.

Teoria Ingênua de Conjuntos

Relação de Pertinência:

- Se x é elemento de um conjunto A, escrevemos: $x \in A$ (lê-se: "x pertence ao conjunto A".)
- Se x não é elemento de um conjunto A, escrevemos:
 x ∉ A (lê-se: "x não pertence ao conjunto A".)

EXEMPLO:

Seja o conjunto $D:=\{1,3,5,7,9\}$ na sua forma explícita. Assim, podemos dizer que: $1\in D$ e $2\notin D$.

Teoria de Conjuntos - Conjuntos Importantes

- CONJUNTO DOS NATURAIS: $\mathbb{N} := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \dots\}$
- **2** Conjunto dos Inteiros: $\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7, \cdots\}$
- **3** Conjunto dos Inteiros Positivos: $\mathbb{Z}^+ := \{x \in \mathbb{Z} | x > 0\};$ O conjunto dos Inteiros Não-Negativos: $\{x \in \mathbb{Z} | x \geq 0\};$
- **4** Conjunto dos Inteiros Negativos: $\mathbb{Z}^- := \{x \in \mathbb{Z} | x < 0\};$ O conjunto dos Inteiros Não-Positivos: $\{x \in \mathbb{Z} | x \leq 0\};$

Teoria de Conjuntos - Conjuntos Importantes

• Conjunto dos Racionais:

$$\mathbb{Q} := \{ x \mid x = \frac{a}{b}; a, b \in \mathbb{Z}; b \neq 0 \}$$

- Conjunto dos Irracionais:
 - $I := \{x \mid x \text{ \'e d\'izima não peri\'odica } \}$
- 3 Conjunto dos Reais:

$$\mathbb{R} := \{ x \mid x \in \mathbb{Q} \text{ ou } x \in \mathbb{I} \}$$

4 Conjunto dos Complexos:

$$\mathbb{C} := \{ x \mid x = a + bi; a, b \in \mathbb{R}; i = \sqrt{-1} \}$$

Teoria Ingênua de Conjuntos

Ingenuamente podemos dizer que um conjunto tem a seguinte forma:

$$\{x \mid \psi(x)\};$$

onde, $\psi(x)$ é uma propriedade bem escolhida do elemento x.

- **2** $B := \{x \in \mathbb{N} \mid x \ge 7\}$

Teoria de Conjuntos - Igualdade de Conjuntos

Axioma da Extensionalidade

Dois conjuntos A e B são IGUAIS se, e somente se, contêm os mesmos elementos. NOTAÇÃO: A = B.

Caso contrário, dizemos que A e B são DIFERENTES.

Notação: $A \neq B$.

EXEMPLOS:

- **1** $A := \{1,3,5\}$ e $B := \{3,3,1,5,1,5\}$; A = B
- ② $A := \{a\} \in B := \{a, b\}; A \neq B$
- **3** $A := \{a, \{a\}\} \in B := \{a\}; A \neq B$

NOTE QUE: a *ordem* e a *repetição* dos elementos em um conjunto são irrelevantes:

$$A := \{1, a, a, 1, 1, H\} = \{a, H, 1\}.$$

Teoria de Conjuntos - Conjuntos Importantes

DEFINIÇÃO: (Conjunto Vazio)

Dizemos que o conjunto que não possui elemento é o Conjunto Vazio. Notação: \emptyset ou $\{\}$.

EXEMPLOS:

- **1** $A := \{x \in \mathbb{N} \mid x = x + 1\} = \emptyset;$
- **2** $B := \{x \in \mathbb{N} \mid x \neq x\} = \emptyset$

DEFINIÇÃO: (Conjunto Unitário)

Dizemos que o conjunto que possui um único elemento é o CONJUNTO UNITÁRIO. NOTAÇÃO: $\{x\}$; onde x é um objeto.

- $A := \{x \in \mathbb{N} \mid 2x 1 = 3\} = \{2\};$
- **2** $B := \{\emptyset\}$

Teoria de Conjuntos - Relação de Inclusão

Definição: (Sunconjunto)

Dizemos que o conjunto A é subconjunto do conjunto B se, e somente se, todos os elementos de A pertencem ao B; ou seja, se $x \in A$ então $x \in B$.

NOTAÇÃO: $A \subseteq B$. lê-se: "A está contido em B".

- OBSERVAÇÃO.1: Neste caso, dizemos também que: B ⊇ A. lê-se: B contém A.
- OBSERVAÇÃO.2: Se existe pelo menos um elemento de A que não pertença a B, então A não é subconjunto de B.
 NOTAÇÃO: A ⊈ B; lê-se: "A não está contido em B". ou seja, B não contém A. NOTAÇÃO: B ⊉ A

Teoria de Conjuntos - Relação de Inclusão

- OBSERVAÇÃO.3: A relação de inclusão é uma RELAÇÃO TRANSITIVA : Sejam os conjuntos A, B, C. Se $(A \subseteq B)$ e $(B \subseteq C)$ então $(A \subseteq C)$.
- OBSERVAÇÃO.4: O conjunto vazio é subconjunto de qualquer conjunto A: ∅ ⊆ A.
- OBSERVAÇÃO.5: Todo conjunto A é subconjunto dele próprio; ou seja, A ⊆ A.

Teoria de Conjuntos - Relação de Inclusão

• OBSERVAÇÃO.6: O AXIOMA DA EXTENSIONALIDADE constata que para os conjuntos $A \in B$ com A = B, temos que $A \subseteq B \in B \subseteq A$.

Teoria de Conjuntos - Relação de Conjuntos

DEFINIÇÃO: (Sunbconjunto Próprio)

Sejam os conjuntos A e B quaisquer. Dizemos que A é ${\rm SUBCONJUNTO\ PRÓPRIO\ de\ }B$ se, e somente se, A é subconjunto de B e $A \neq B$.

NOTAÇÃO: $A \subset B$; ou seja, $B \supset A$.

 OBSERVAÇÃO.7: Note que neste caso, todos os elementos de A pertencem ao B; porém, existe elemento em B que não pertence ao A.

- $\mathbf{0} \ \mathbb{N} \subset \mathbb{Z}$
- ② Seja $A := \{x \mid x \text{ \'e um inteiro n\~ao negativo }\}; \mathbb{N} \subseteq A.$

Teoria de Conjuntos - Operações sobre Conjuntos

DEFINIÇÃO: (Intersecção)

Sejam A e B conjuntos quaisquer. Dizemos que o conjunto

 $C := \{x \mid x \in A \text{ e } x \in B\}$ é a Intersecção de A e B.

Notação: $A \cap B$.

EXEMPLOS:

- **①** Sejam $A := \{0, 1, 4, 6\}$ e $B := \{1, 3, 4, 5\}$ então $(A \cap B) := \{1, 4\}$
- ② Sejam $A:=\{x\in\mathbb{N}\mid x<15\}$ e $B:=\{x\in\mathbb{N}\mid 10< x<20\}$ então $(A\cap B):=\{x\in\mathbb{N}\mid 10< x<15\}$

DEFINIÇÃO: (Conjuntos Disjuntos)

Dizemos que dois conjuntos A e B são DISJUNTOS se, e somente se, $A \cap B = \emptyset$.

Teoria de Conjuntos - Operações sobre Conjuntos

DEFINIÇÃO: (União)

Sejam A e B conjuntos quaisquer. Dizemos que o conjunto

 $C := \{x \mid x \in A \text{ ou } x \in B\} \text{ \'e a UNIÃO de } A \in B.$

Notação: $A \cup B$.

- Sejam $A := \{0, 2, 4, 6\}$ e $B := \{1, 3, 5\}$ então $(A \cup B) := \{0, 1, 2, 3, 4, 5, 6\}$
- ② Sejam $A := \{x \in \mathbb{N} \mid x < 7\}$ e $B := \{x \in \mathbb{N} \mid 10 < x < 20\}$ então $(A \cup B) := \{x \in \mathbb{N} \mid x < 7 \text{ ou } 10 < x < 20\}$
- ③ Sejam $A := \{x \in \mathbb{N} \mid x \text{ \'e par }\} \text{ e } B := \{x \in \mathbb{N} \mid x \text{ \'e impar }\}$ então $(A \cup B) := \{x \in \mathbb{N} \mid x \text{ \'e par ou } x \text{ \'e impar }\} = \mathbb{N}$

Teoria de Conjuntos - Propriedades em Conjuntos

Propriedades: Sejam A, B e C conjuntos quaisquer. Então;

- (i) Idempotência: $A \cup A = A$ $A \cap A = A$
- (ii) Associatividade: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- (iii) Comutatividade: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- (iv) DISTRIBUTIVIDADE: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (v) $A \cup \emptyset = A \in A \cap \emptyset = \emptyset$
- (vi) ABSORÇÃO: $A \cup (A \cap B) = A$ e $A \cap (A \cup B) = A$

Teoria de Conjuntos - Propriedades em Conjuntos

• Observação.8:

Se
$$(A \subset B)$$
 então $(A \cap B) = A$ e $(A \cup B) = B$.

Teoria de Conjuntos - Operações sobre Conjuntos

DEFINIÇÃO: (Diferença)

Sejam A e B conjuntos quaisquer. Dizemos que o conjunto $C:=\{x\mid x\in A \text{ e }x\notin B\}$ é a DIFERENÇA de A com B, também denominada COMPLEMENTO DE B RELATIVO AO A.

NOTAÇÃO: A - B ou $A \setminus B$.

- Sejam $A := \{0, 1, 4, 5, 6\}$ e $B := \{1, 3, 5\}$ então $(A \backslash B) := \{0, 4, 6\}$
- ② Sejam $A := \{x \in \mathbb{N} \mid 10 \le x \le 20\}$ e $B := \{x \in \mathbb{N} \mid 10 < x < 20\}$ então $(A \setminus B) := \{10, 20\}$

Teoria de Conjuntos - Operações sobre Conjuntos

OBSERVAÇÃO.9:Sejam A e B conjuntos quaisquer então $A \setminus B \neq B \setminus A$.

- **①** Sejam $A:=\{0,1,4,5,6\}$ e $B:=\{1,3,5\}$ então $(A \backslash B):=\{0,4,6\}$ e, $(B \backslash A):=\{3\}$
- ② Sejam $A := \{x \in \mathbb{N} \mid 10 \le x \le 20\}$ e $B := \{x \in \mathbb{N} \mid 10 < x < 20\}$ então $(A \setminus B) := \{10, 20\}$ e, $(B \setminus A) := \emptyset$

Teoria de Conjuntos - Cardinalidade

DEFINIÇÃO: (Cardinalidade)

Seja A um conjunto qualquer e seja $n \in \mathbb{N}$. Se existem exatamente n elementos distintos em A, dizemos que A é um CONJUNTO FINITO e que n é a CARDINALIDADE de A.

NOTAÇÃO: |A| ou #A.

EXEMPLO:

- $A := \{x \in \mathbb{N} \mid x < 10\}; |A| = 10$
- $|\emptyset| = 0$
- $A := \{x \mid x \text{ \'e uma vogal }\}; |A| = 5$

OBSERVAÇÃO.10: Dizemos que um conjunto A é INFINITO se, e somente se, A não é finito.

Teoria de Conjuntos - Pontência

DEFINIÇÃO: (Potência)

Seja A um conjunto qualquer. Dizemos que o conjunto de todos os subconjuntos do conjunto A é o CONJUNTO POTÊNCIA de A. NOTAÇÃO: $\mathcal{P}(A)$.

- $\begin{array}{l} \bullet \ \ A := \{1,2,3\} \\ \mathcal{P}(A) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \end{array}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

Teoria de Conjuntos - Pontência

OBSERVAÇÃO.11: Sejam A um conjunto qualquer e $n \in \mathbb{N}$. Se A possui n elementos então seu conjunto potência, $\mathcal{P}(A)$, possui 2^n elementos.

- $A := \{1, 2, 3\}$ $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $|\mathcal{P}(A)| = 2^3 = 8$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ $|\mathcal{P}(\emptyset)| = 2^0 = 1$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ $|\mathcal{P}(\emptyset)| = 2^1 = 2$

Teoria de Conjuntos - Conjuntos das Partes

DEFINIÇÃO: (Partição)

Seja $A \neq \emptyset$ um conjunto e $\mathcal P$ um conjunto cujos elementos são subconjuntos de A, ou seja, $\mathcal P \subset \mathcal P(A)$. Dizemos que o conjunto $\mathcal P$ é uma Partição de A se, e somente se, os elementos de $\mathcal P$ são não vazios, disjuntos dois a dois, e a união de todos os elementos de $\mathcal P$ é A.

Notação: \mathcal{P} .

$$\begin{array}{l} \textit{A} := \{1,2,3\} \\ \mathcal{P}(\textit{A}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}; \ e \\ \mathcal{P} = \{\{1\},\{2\},\{3\}\} \ \text{ou} \ \mathcal{P} = \{\{1\},\{2,3\}\} \ \text{ou} \ \mathcal{P} = \{\{1,2\},\{3\}\} \ \text{ou} \ \mathcal{P} = \{\{1,2,3\}\} \end{array}$$

Teoria de Conjuntos - Propriedades

Observação.12:

- A é sempre uma PARTIÇÃO de A.
- Se $B \subset A$ e $B \neq \emptyset$ então o conjunto $\{B, A \setminus B\}$ também é uma partição de A.