Math 250A, Fall 2015

8/27

```
A group G acts on a set S:
    G \times S \rightarrow S
     (g,s) \mapsto g \cdot s
    e \cdot s = s
     (gg') \cdot s = g \cdot (g' \cdot s)
Alternatively,
     \phi: G \to Perm(S) is a homomorphism
     (\phi(g))(s) = g \cdot s
Examples
    trivial action: (\forall g) g \mapsto e_{Perm(S)}
    G acting on self by left/right translation, conjugation
    G acting on the set of subgroups of G by conjugation: g \cdot H = gHg^{-1} = \{ghg^{-1} | h \in H\}
    normal subgroup N \subseteq G: all g \in G fix N under conjugation
    V vector space over a field K, GL(V) acts on V by L \cdot v = L(v)
The orbit of s, O(s) := \{g \cdot s | g \in G\}
    constitutes an equivalence relation on S
The stabilizer (isotropy group) of s \in S, G_s := \{g \in G | g \cdot s = s\}
    G_s is closed under inverses: g \in G_s \to g \cdot s = s \to g^{-1}gs = g^{-1}s \to s = g^{-1}s
There exists a natural bijection \alpha: G/G_s \to O(s), gG_s \mapsto g \cdot s
    well-defined: g_1G_s = g_2G_s \to \exists g \in G_s, g_1 = g_2g, \alpha(g_1G_s) = g_1s = g_2gs = g_2s = \alpha(g_2G_s)
injective: \alpha(g_1G_s) = g_1 \cdot s = g_2 \cdot s = \alpha(g_2G_s) \to g_2^{-1}g_1 \cdot s = s, g_2^{-1}g_1 \in G_s, so g_1G_s = g_2G_s
Action under conjugation:
     the conjugacy classes of a set are the orbits of the action
     O(g) = \{g\} \leftrightarrow g \in Z(G) the center of the group
    Z(G) = \{ g \in G : xg = gx \ \forall x \in G \}
    in a permutation group, \sigma(a_1, a_2, a_3, ... a_k) \sigma^{-1} = (\sigma a_1, \sigma a_2, \sigma a_3, ... \sigma a_k)
9/1
Let \Sigma be a set of representative elements of the orbits of S.
    The index of a subgroup H is (G:H) = \#(G/H)
    For finite G, (G:H) = \frac{\#G}{\#H} (g \notin H, \exists \text{ natural bijection } H \to gH)
    \#S = \sum_{s \in \Sigma} \#O(s) = \sum_s (G:G_s)
    defines a 'mass formula' \#S = (\sum_s \frac{1}{\#(G_s)})(\#G)
Let G act on a subgroup H by left translation.
    \#H_s = \#H and from the above \#G = (G:H) \cdot \#H.
```

this is a statement of Lagrange's Theorem, $(G: H) = \frac{\#G}{\#H}$.

The kernel of the action $K = \bigcap_{s \in S} G_s$, which is just the kernel of $G \xrightarrow{\varphi} Perm(S)$. We can relate the stabilizers of points in the same orbit.

Let s' = gs.

Assume $x \in G_s$.

Since $x \in G_{s, s}(gxg^{-1})gs = g(xs) = gs$.

Hence $gxg^{-1} \in G_{gs}$, so $gG_sg^{-1} \subset G_{gs}$.

Apply this relation with $g \to g^{-1}$ and $s \to gs$:

Assume $x \in G_{gs}$.

Then $(g^{-1}xg)(s) = (g^{-1})(xgs) = (g^{-1}gs) = s$. So $g^{-1}G_{gs}g \subset G_s \to G_{gs} \subset gG_sg^{-1}$

Thus, $gG_sg^{-1} = G_{gs} = G_{s'}$.

The stabilizer of s' = gs is a conjugate of the stabilizer of s.

p: prime

p-group: a finite group G, $\#G = p^n, n \ge 1$

"A p-group has a non-trivial center"

Notation: S^G is the set of points in S fixed under the group action. $(gs = s \ \forall g \in G)$ Let G act on itself by conjugation (S = G). Then $S^G = Z(G)$.

For $s \in S(=G)$, G_s is a subgroup, and its order divides the order of the group, p^n .

Either O(s) is trivial, and $s \in S^G = Z(G)$, otherwise $\#(O(s)) = p^k$ for k > 0

 $\#S = \text{sum of } \#S = \text{sum o$

 $\#Z(G) \equiv_{modp} \#(S^G) \equiv_{modp} \#S = \#G = p^n \equiv_{modp} 0.$

Z(G) cannot be 1, since the identity of the group is in the center.

Thus, the order of the center is divisible by p, and must be non-trivial.

 $H \leq G$ a finite group, (G: H) = p, the smallest prime dividing $\#G \rightarrow H \subseteq G$

Let S = G/H; #(S) = (G : H) = p, and let G act on S by left translation.

This induces $\varphi: G \to S_P$; recall $\#S_v = p!$

The stabilizer of H, $G_H = \{x \in G | xH = H\}$, hence $G_H = H$.

By inspection, we can see that $G_{gH} = gHg^{-1}$.

Let $K = \bigcap_{g \in G} gHg^{-1}$, the largest normal subgroup contained in H.

For each coset gH, K stabilizes that coset, hence K is the kernel of φ .

By the First Isomorphism Theorem $\varphi(G) \leq S_{\nu}$.

 $(G:K) = \#(G/K) = \#(\varphi(G)), \text{ which divides } \#(S_p) = p!$

Further, since $K \le H \le G$, (G:K) = (G:H)(H:K).

Since (G:K) divides p! and (G:H) divides p, (H:K) divides (p-1)!.

But p is the smallest prime dividing #G, so (H:K)=1, K=H and H is normal.

A familiar embedding of a group into a larger group; "Cauchy's Theorem"

 $G \hookrightarrow Perm(G)$ by letting G act on itself by left-translation.

Its kernel $K = \{g \in G | gs = s \forall s\} = \{e\}$ (consider s = e), so an injection \rightarrow an embedding.

Recall $S_n \subset \text{group of } n \times n \text{ invertible matrices. } \sigma \mapsto M(\sigma) \text{ a permutation matrix.}$

```
Need to be careful in the construction to ensure M(\sigma\tau)=M(\sigma)M(\tau)! E.g. \sigma=(132) does M(\sigma) have 1 in the 1st column, 3rd row? Or in the 1st row, 3rd column? One of these yields M(\sigma\tau)=M(\tau)M(\sigma). G finite of order n; V the vector space of functions G \xrightarrow{f} \mathbb{Z}; note V \cong \mathbb{Z}^n Linear maps V \to V correspond to n \times n matrices over \mathbb{Z}: GL(V) \approx GL(n,\mathbb{Z}). Similarly, invertible linear maps correspond to n \times n invertible matrices over \mathbb{Z}. We can embed G in GL(n,\mathbb{Z}) by using a left action of G on GL(n,\mathbb{Z}) = \{\phi: V \to V\} Can think of this as an action on \mathbb{Z}^n \cong V, whose permutation group is simply GL(n,\mathbb{Z}). Recall that V = \{f: G \to \mathbb{Z}\}. This left action takes the form L_g \mapsto \phi where \phi(f(x)) = f(xg) L_{gg'} = L_{g'} \circ L_g as desired? Verify for yourself. Yes: L_{gg'}(\varphi(x)) = \varphi(xgg') = L_{g'}(\varphi(xg)) = L_{g'} \circ L_g(\varphi(x)) g \mapsto L_g is a homomorphism G \to GL(V) Using \mathbb{F}_p instead of \mathbb{Z}, get G \hookrightarrow GL(n,\mathbb{F}_p), an embedding into a finite group.
```

9/3

Proof:

Sylow Theorems

Lagrange: If $H \leq G$ then #(H) | #(G). A_4 with n = 6 gives the counterexample to the converse. If $|G| = p^k \cdot r$, (p,r) = 1, a p-Sylow subgroup of G is an $H \le G$ such that $|H| = p^k$ \mathbb{Z}_{12} has 2-sylow subgroup $\{0,3,6,9\}$ and 3-sylow subgroup $\{0,4,8\}$ D_6 generated by r, s subject to $rs = sr^{-1}$, $r^6 = e$, $s^2 = e$ $\#(D_6) = 12$ so has 3-sylow subgroup $\{1, r^2, r^4\}$ Also has 2-sylow subgroups $\{1, r^3, s, r^3s\}$, $\{1, r^3, rs, r^4s\}$, $\{1, r^3, r^2s, r^5s\}$ $G = GL_n(\mathbb{F}_p)$, $n \times n$ linear transformations in \mathbb{F}_p , equal to $Aut(\mathbb{F}_p^n)$ Approximating the order of |G|: Asserting linear independence in each vector of an $n \times n$ matrix $|G| = (p^n - 1)(p^n - p)(p^n - p^2) \cdots (p^n - p^{n-1}) = p^{1+2+3+\cdots+n-1} \cdot r = p^{\frac{n^2-n}{2}} \cdot r, (p,r) = 1$ Consider P the set of $n \times n$ upper triangular matrices with 1's on the diagonal. Then $|P| = p^{1+2+3+\cdots+n-1} = p^{\frac{n^2-n}{2}}$, and P is a p-Sylow subgroup. Will use this fact in the subsequent proof. Theorem: (Sylow I) For $|H| = p^k \cdot r$, (p,r) = 1, H has a p-Sylow subgroup. Proof Sketch: Show $\exists G, H \leq G$, such that G has a p-Sylow subgroup Show that if G has a p-Sylow subgroup and $H \leq G$, then H has a p-Sylow subgroup

Alternatively, consider $V \cong \mathbb{F}_p^n$, the vector space of functions $\varphi : G \to \mathbb{F}_p$. Embed H into GL(V) by the action $g \in H \mapsto$ automorphism taking $\varphi(x)$ to $\varphi(xg)$.

Additionally $S_n \leq GL_n(\mathbb{F}_p)$ mapping to permutation matrices.

Cayley's theorem, can embed H (of order n) in S_n by acting on itself by translation.

We know that $GL_n(\mathbb{F}_p)$ has p-Sylow subgroups. (from the lower triangular matrices)

Let P be a p-Sylow subgroup of $G = GL_n(\mathbb{F}_p)$. Let G act on the cosets of P.

Now, $G_{gP} = gPg^{-1}$. Similarly, when H acts on G/P, $G_{gP} = (gPg^{-1} \cap H)$

This intersection is a p-group.

Want to choose $g \in G$ such that $gPg^{-1} \cap H$ is a p-Sylow subgroup.

If $(H : (gPg^{-1} \cap H))$ is coprime to p, then $gPg^{-1} \cap H$ is a p-Sylow subgroup.

By Orbit-Stabilizer, $(H : (gPg^{-1} \cap H)) = O(gP)$.

Note this is an orbit of G/P induced by the action of the group H.

Since P is a p-Sylow subgroup of G, $|G/P| \not\equiv_{mod p} 0$.

The sum of the orbits is |G/P|.

Hence there must be some orbit with size coprime to p.

The stabilizer of this orbit $gPg^{-1} \cap H$ is a p-Sylow subgroup H_p .

Corollary: All p-subgroups of H are contained in a conjugate of P.

Let $J \le H$ be a p-subgroup. Then $J \cap gPg^{-1}$ is a p-Sylow subgroup of J for some $g \in G$. A p-group can't contain a proper p-Sylow subgroup, so $J \cap gPg^{-1} = J$ and $J \subset gPg^{-1}$.

Corollary: (Sylow II) All p-Sylow groups are conjugate.

Let $H \leq G$ and $P \leq G$ be p-Sylow subgroups.

By the preceding corollary ($G \le G$, $H \le G$), $H \subset gPg^{-1}$ for some $g \in G$.

Since $|H| = |P| = |gPg^{-1}|$, $H \cap gPg^{-1} = H$.

Corollary: Every p-subgroup of G is contained in a p-Sylow of G.

By the above, each is contained in a conjugate of P, said conjugate being a p-Sylow.

The p-Sylow subgroups in G are all conjugate, so that:

If P is a p-Sylow of G then (N(P) = normalizer of P) $G/N(P) \leftrightarrow \text{set of p-Sylows in G}$. There are (G : N(P)) p-Sylows in total.

Lemma: If a finite p-group Γ acts on a set X, then $\#(X) \equiv_{mod p} \#(X^{\Gamma})$

(X^Γ the fixed points of X under Γ).

Proof:

Each
$$\frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} 1$$
 if x_i fixed, else $\frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} 0$.

Hence
$$\#X = \sum_{i} \#Orb(x_i) = \sum_{i} \frac{|\Gamma|}{|Stab(x_i)|} \equiv_{mod p} \#X^{\Gamma}$$
.

Let $Syl_p(G)$ describe the p-Sylow subgroups of G and n_p denote its cardinality.

Theorem: (Sylow III) If $|G| = p^k \cdot r$, k > 0 then $n_p \equiv_{mod p} 1$. Further, $n_p | r$.

Proof:

Let P act on $Syl_p(G)$ by conjugation.

By the lemma, $\#Syl_p(G) = n_p \equiv_{modp} (Syl_p(G))^p$.

Suppose Q is fixed under the group action. Then $pQp^{-1} = Q \ \forall p \in P$.

Then $P \leq N(Q)$; similarly $Q \leq N(Q)$.

P, Q are p-Sylow subgroups of N(Q); therefore P, Q are conjugate in N(Q).

However, $Q \subseteq N(Q)$ so that Q is equal to all its conjugates in N(Q), and P = Q. Hence P is the only fixed Sylow-p subgroup so $(Syl_P(G))^P \equiv_{mod p} 1$. G acts on $Syl_p(G)$ as only one orbit since all p-Sylows in G are conjugate. $(G:P) = n_p, n_p = |G| = p^k \cdot r, n_p|p^k \cdot r,$ but $n_p \nmid p$, so $n_p|r$.

9/8

Review of Sylow Theorems

Prove existence by showing existence in a larger known subgroup.

And then that contained subgroups must have their own Sylow p-subgroups.

$$O(s) = S = \{p\text{-Sylows}\}$$

 $O(s) = G/G_s = G/N(P)$ The number of p-Sylows is notated $n_p = (G:N(P))$

P, Q p-Sylows and $P \subset N(Q)$ then P = Q

reason: $PQ \le G$ a subgroup of G

HK not necessarily a group, but will be if one normalizes the other

ie $H \subset N(K)$

Theorem $n_p \equiv_{mod p} 1$

Consider the action of *P* on *S* by conjugation

Take $x \in P$ and $x : Q \mapsto xQx^{-1}$

The number of fixed points is 1, since *P* fixes only itself

A simple group has

more than one element

no non-trivial proper normal subgroups

(kind of like a prime number)

G finite abelian

 $G ext{ simple} \leftrightarrow G ext{ cyclic of prime order (simple easy exercise)}$

continuing...

non-sporadic finite simple groups

$$A_n (n \leq 5)$$

recall the alternating groups A_n are the even permutations on $\{1, \dots, n\}$

Lie groups over finite fields, e.g. $\{\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\} \subset SL(2, \mathbb{Z}|p\mathbb{Z})$

P = projective; $PSL(2, \mathbb{Z}|p\mathbb{Z}) = SL(2, \mathbb{Z}|p\mathbb{Z})$

Simple groups of order ≤ 60 .

- (a) There are no non-abelian simple groups of order < 60
- (b) If G is simple of order 60, then $G \cong A_5$.

$$(\#A_n = \frac{n!}{2})$$

G simple of order 60.

H < G simple (finite), H proper, $(G : H) = n \ge 2$

G acts on G/H by left translation.

The action is transitive (for each pair xH,yH, \exists permutation taking one to the other) Therefore, this action is non-trivial.

 $\pi: G \to Perm(G/H) = S_n$

 $ker(\pi) \neq G$ and is a normal subgroup \rightarrow the kernel is trivial.

 $\pi: G \hookrightarrow S_n$ and in fact $\pi: G \hookrightarrow A_n$ (if #G > 2)

Why? because $G \cap A_n \subseteq G$

If $G \subset S_n$.

Then $G \to S_n / A_n = \{\pm 1\}$ by the sign map, kernel is $G \cap A_n$.

Recall $sgn: S_n \to \{\pm 1\}$ $sgn(\sigma) = (-1)^t$ given t, num of transpositions

 $G/(G\cap A_n)\hookrightarrow S_n/A_n=\{\pm 1\}$

 $(G: G \cap A_n) = 1 \text{ or } 2.$

If G is simple then this cannot be 2 (would be normal subgroup), so =1.

And $G \hookrightarrow A_n$ for that A_n .

G simple, order 60.

H a proper subgroup of G, index n. (consider small values of n)

If n = 2 then H is normal in G, a contradiction.

(smallest prime dividing the order of a group)

If n = 3 or n = 4: $G \hookrightarrow A_3, A_4$ but their orders are too small (3, 12)

If n = 5: $G \hookrightarrow A_5$ and they are equal in cardinality \rightarrow done.

Remaining case: n = 15.

What is n_5 , the number of 5-Sylow subgroups.

 $n_5|60/5 = 12$, $n_5 = (G:N(P))$ n_5 divides the index

Also, $n_5 \equiv_{mod 5} 1$.

Thus $n_5 = 1$ or $n_5 = 6$.

If $n_5 = 1$ then only one 5-Sylow subgroup of G, must be normal.

This is impossible since G is simple.

Then $n_5 = 6$: tells you there are lots of elements of order 5 in G.

There is no overlap (excepting at the identity) between 5-Sylows.

Hence the number of elements of order 5 is $6 \cdot 4 = 24$

Elements of order 5 in A_5 are 5-cycles (a b c d e).

Need to take all strings of length 5: 120, and divide out by rotations 5.

Thus we get 120/5 = 24 (check).

Consider n_2 the number of 2-Sylow subgroups.

Then n_2 divides 60/4 = 15, and $n_2 \neq 1$ because of simplicity.

Also, $n_2 = (G : N(P_2))$, and this can't be 3 since G has no subgroup of index 3.

If $n_2 = 5$ then $N(P_2)$ is the desired index-5 subgroup \rightarrow done.

From divisibility $n_2 = 1,3,5,15$.

Elminate 1 by simplicity, 3 since the index is too small, 5 works, consider 15.

Considering the situation where there are 15 2-Sylow subgroups (of order 4).

These are groups like the Klein 4-group (no elements of order 4).

There are 2 2-Sylow subgroups P and Q where $P \cap Q$ has order 2.

Prove by counting.

Taking intersection, must be proper else they would be the same.

Hence $P \cap Q$ has order 1 or 2.

If there is utterly no overlap, there are $15 \cdot 3 + 1 = 46$ elt's of 2-Sylows.

And these do not have order 5. But there are 24 elements of order 5. Too many.

Now we know that some of these 2-Sylow subgroups have non-trivial overlap.

Consider $N(P \cap Q)$ for some such intersection, will be a subgroup of G.

Cannot be all of G, G is simple. (would make $P \cap Q$ normal)

 $N(P \cap Q)$ contains P and Q since both are abelian.

Each are normal subgroups of $N(P \cap Q)$, so its order is divisible by 4.

Hence could have order 12, 20, or 60 (divisible by 4, divides 60).

Its index cannot be 1 (G is simple) cannot be 3 (A_n too small), = 5.

QED (revisit why).

Jordan-Hölder theorem

Website reference.

G finite non-trivial. Is G simple? $\{e\} \subset G$, $G/\{e\}$ simple.

Not simple $G \supset G_1 \supset (e)$, $G_1 \subseteq G$, G_1 , G/G_1 smaller than G.

Keep going until 'end', using principle of string induction.c

Proposition: $\exists G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n$, $G_{i+1} \subseteq G_i$, G_i/G_{i+1} simple.

A normal tower or composition series, the simple quotients are the constituents.

Obtain a successive extension of simple groups.

Main point.

 $N = p_1 \cdots p_n$

 $\{p_1, p_2, \dots, p_n\}$ a set where order doesn't count but multiplicity does.

Gauss's theorem: (FTA) each prime decomposition of N yields the same set.

Similarly, given G and $G_i/G_{i+1}=Q_i$ and $\{Q_0,\cdots,Q_{n-1}\}$.

Order not mattering, multiplicity matters, up to isomorphism.

Theorem: Each composition yields the same multiset.

Theorem of "Camille Jordan and some guy named Hölder."

9/10

Jordan-Hölder Theorem.

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n$$

 $G_{i+1} \subseteq G_i, G_i/G_{i+1} = Q_i \text{ simple.}$

Statement of the theorem:

The "set" (multiplicity matters) $\{Q_0, \dots, Q_{n-1}\}$ is independent of the filtration. Order doesn't count, Q_i up to isomorphism.

Proof strategy: by induction.

If G has a filtration with n quotients, then all filtrations have n quotients.

And all filters have the same set of quotients.

Question, can two different groups have the same reduction?

Answer: yes. $S_3 \supset A_3 \supset \{e\}$. Quotients $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$.

Also $\mathbb{Z}/6\mathbb{Z} \supset 3\mathbb{Z}/6\mathbb{Z} \supset 6\mathbb{Z}/6\mathbb{Z}$, same quotients but radically different structure.

"Knowing the building blocks does not confer knowledge of the building".

Demonstrating the existence of such a filtration for a group $G \neq \{e\}$.

Similar to the proof of prime decompositions.

If it is simple, then the filtration is $G \supset \{e\}$, done.

If G is not simple, $G \supset N \supset \{e\}$, and G/N, N smaller than G.

Strong induction. $\overline{G} = G/N$, then $\overline{G} \supset \overline{G_1} \supset \cdots$ and similarly for $N \supset H_1 \supset \cdots$

Note there is a correspondence b/t subgroups of G con't N and subgroups of G/N $G \supset L \supset N, L/N \subset G/N$ and $\pi : G \to G/N, \pi^{-1}(K) \subset G$ and $K \subset G/N$.

Base case n = 1, $G \supset \{e\}$, $G/\{e\}$ simple and G simple.

Supposing $G \supset G_1 \supset \cdots \supset G_n \supset \{e\} = G_{n+1}$ and $G \supset G'_1 \supset \cdots \supset G'_m \supset \{e\} = G'_{m+1}$. m = n, $\{G_i/G_{i+1}\} = \{G'_i/G'_{i+1}\}$... If $G'_1 = G_1$, then done by induction.

Assume G_1, G_1' are distinct. Then $G_1 \cap G_1'$ is smaller than G_1 or G_1' .

Also, G_1G_1' is a subgroup since its factors are normal by hypothesis.

Indeed, it is also a normal subgroup since G_1 and G'_1 are invariant under conjugation.

Additionally, G_1G_1' is of size larger than G_1 and G_1' . Thus it must be equal to G.

Can map $G_1'/(G_1 \cap G_1') \to G_1G_1'/G_1$. Kernel is exactly $G_1 \cap G_1'$, hence injection.

This defines $G_1'/(G_1 \cap G_1') \hookrightarrow G/G_1$. Symmetrically, $G_1/(G_1 \cap G_1') = G/G_1'$.

Have $G_1 \supset \cdots \supset G_n \supset \{e\} = G_{n+1}$.

Take $G_1 \supset G_1 \cap G_1' = H \supset H_1 \supset H_2 \supset \cdots \supset H_k \supset \{e\}$, a Jordan-Hölder filtration of G_1 . Obtained by induction.

Note $G_1/H = G/G_1'$ is the first quotient of this filtration.

By induction, these two filtrations have the same length.

The constituents of G_1 are the constituents of H, with $G_1/H = G/G_1'$ appended.

Constituents: G/G_1 + constituents of $G_1 = G/G_1 + G/G_1'$ + constituents of H.

Have $G \supset G_1' \supset H \supset H_1 \supset \cdots \supset H_k = \{e\}$, same length as $G_1' \supset G_2' \supset \cdots \supset G_m' = \{e\}$.

Have related two different filtrations that have are unrelated, by a common filtration, which depends on the intersection of these two filtrations.

Free Groups

S a set, define the free abelian group on S, $\mathbb{Z}^S = \mathbb{Z}\langle S \rangle = \{\sum_{s \in S} n_s \cdot s | n_s \in \mathbb{Z}\}.$

Where all but finitely many of the n_s are 0.

$$S = \{1, \dots, n\}, \mathbb{Z}^S = \mathbb{Z}^n = \{(c_1, \dots, c_n) | c_i \in \mathbb{Z}\}$$

$$\sum_{i=0}^{\infty} n_i x^i = \sum_{i=0}^{\infty} n_i \cdot i \in \mathbb{Z}\langle S \rangle$$

where $n_i = 0$ for i >> 0.

"To map $\mathbb{Z}(X)$ to A in the world of abelian groups is to map S to A in the world of sets."

 $S \to \mathbb{Z}\langle S \rangle$ a set map, $s \in S \mapsto 1 \cdot s$.

Given $f : \mathbb{Z}\langle S \rangle A$ homomorphism.

And in fact, $F: Hom(\mathbb{Z}\langle X \rangle, A) \to Maps(S, A)$, F is a bijection.

These elements of the free abelian group are "formal sums".

That is, an $f: S \to \mathbb{Z}$.

Let $f: \mathbb{Z}\langle S \rangle \to A$, $f(\sum n_s s) = \sum_{s \in S} n_s f(s)$

An abelian group A is free of finite rank if $A \cong \mathbb{Z}^n$ for some $n \ge 0$ ($\mathbb{Z} = \mathbb{Z}\langle \emptyset \rangle = 0$).

Define rank(A) = n. If $\mathbb{Z}^m \cong A \cong \mathbb{Z}^n$ then n = m.

Why? Take positive integer > 1, e.g. 2. Then $\mathbb{Z}^n/2\mathbb{Z}^n \cong \mathbb{Z}^m/2\mathbb{Z}^m$.

LHS has 2^n elts and RHS has 2^m elts so n = m.

A subgroup of a free abelian group of rank n is a free abelian group of rank $\leq n$. Proof: by induction on n.

$$n = 0$$
: $A = (0) = B$.

n = 1: $A = \mathbb{Z} \supset B$. What are the subgroups of \mathbb{Z} ? $(0), (t) = t\mathbb{Z}, t \ge 1$.

Proof by division algorithm: $\mathbb{Z} \supset B \neq 0$, t =smallest positive integer in B.

Division algorithm ensures that all elements are multiples of t.

$$B \subset \mathbb{Z}^n \xrightarrow{\pi} \mathbb{Z}$$
.

$$\pi:(c_1,\cdots,c_n)\mapsto c_n\in\mathbb{Z}.$$

Cases:

(1)
$$\pi(B) = (0)$$
, $B \subset \mathbb{Z}^{n-1}$, free of rank $\leq n-1$

(2)
$$\pi$$
(*B*) = t ℤ, t ≥ 1

$$B \xrightarrow{\pi|_B} t\mathbb{Z} \xrightarrow{surj.} 0$$

$$ker(\pi)|_B = C$$
 free of rank $\leq n - 1$.

Choose $b \in B$ such that $\pi(b) = t$.

$$C \subset \mathbb{Z}^{n-1}$$
: $C = ker(\pi)|_B$, free of rank $\leq n-1$.

$$C = B \cap \mathbb{Z}^{n-1}$$

$$C \subset B$$
, $\mathbb{Z} \cdot b \subset B$

Missing (pf in Lang)

Simple linear algebra.

 $a_1, \dots, a_n \in A$ corresponds to a homomorphism $\mathbb{Z}^n \to A$, $(c_1, \dots, c_n) \mapsto \sum_{i=1}^n c_i a_i$.

These are linearly independent if f is 1-to-1, and these span/generate A if f is onto.

A is finitely generated if A is spanned by a_1, \dots, a_n for some $n \ge 0$, $a_i \in A$

A is finitely generated iff A is a quotient of \mathbb{Z}^n for some n.

Corollary: a subgroup of a finitely generated abelian group is again finitely generated.

$$\mathbb{Z}^n \xrightarrow{f} A$$
 finitely generated, have $B \subset A$, $f^{-1}(B) \leq \mathbb{Z}^n$, and $f^{-1}(B) \cong \mathbb{Z}^k$, $k \leq n$.

A finitely generated, torsion-free.

I.e. given $a \in A$ and $n \cdot a = 0$, $n \ge 1$, then a = 0.

Statement: A is free and of finite rank.

Proof: Take a finite set of generators S in which take T lin indep and large as possible.

take
$$T = a_1, \dots, a_k$$
 and $S = a_1, \dots, a_k, \dots, a_m$

$$\sum_{1}^{k+1} c_k a_k = 0, c_{k+1} \neq 0$$

$$B = span\{a_1, \cdots, a_k\} \cong \mathbb{Z}^k$$
.

 a_{k+1}, \cdots, a_m : some multiple lies on B.

$$N \ge 1$$
; $N \cdot A \subset B$.

Th: NA free, $N: A \rightarrow NA$ A torsion free.

Multiplication on A by a positive integer is injective.

A is isomorphic to NA by the mutliplication by n, since NA is free, A is free.

9/15

Abelian group, finitely generated.

Last week:

free group has to do with some correspondence to a \mathbb{Z}^n

subgroups of free finitely generated abelian groups are free and finitely generated subgroups of finitely generated abelian groups are finitely generated

finitely generated, torsion free abelian group is a free abelian group

recall torsion free: for all $n \ge 1$, mult by n, $n \cdot A$ is injective

opposite A torsion: for all $a \in A$, $\exists n \ge 1$ such that $n \times a = 0$

Example of a torsion abelian group: \mathbb{Q}/\mathbb{Z}

element $p/q \mod \mathbb{Z}, q \ge 1, p \in \mathbb{Z}; q \times \frac{p}{q} = 0 \text{ in } \mathbb{Q}/\mathbb{Z}$

finitely generated abelian groups up to isomorphism

A is a direct sum of a free part \mathbb{Z}^r and a torsion part (a direct sum of cyclic groups) Direct product of sets A_i indexed by S:

$$\bigoplus_{i \in S} A_i = \{ f : S \to \cup_{i \in S} A_i : f(i) \in A_i \}$$

where for all but finitely many i, f(i) = 0

this is equivalent to the direct product when S is finite

Image 1: a map from a $\bigoplus_{i \in S} A_i$ to B is determined by the mappings from the A_i The direct sum is a coproduct.

Image 2: a map into a $\prod_{i \in S} A_i$ is determined by the mappings into the A_i

The direct product is a product (in the categorical sense).

S countably infinite, $A_i = \mathbb{Z}/2\mathbb{Z}$

 $\bigoplus_{i \in S} A_i$ is countable, but $\prod_{i \in S} A_i$ is not

Categories: products, coproducts, morphisms

 $Mor(?,B) = \prod Mor(A_i,B)$? = co-product

The coproduct of sets is disjoint union.

Abelian group A and subgroups X and Y

we have inclusions from each into A

$$X \times Y = X \oplus Y \xrightarrow{h} A, (x,y) \mapsto x + y$$

h is injective if every $a \in A$ is of the form x + y

h is one-to-one \leftrightarrow you can't write x + y = x' + y' unless x = x', y = y'

If true, say A is the direct sum of its submodules X and Y.

Suppose A, $X \subset A$, A / X is free (f.g. free): then X has a complement Y in A, $A \cong X \oplus A / X$

$$A \xrightarrow{\pi} A/X$$

 $Y \subset A$, $\pi|_Y$ is an isom $Y \to A/X$.

 $\pi|_{Y}$ inj $\leftrightarrow Y \cap X = (0)$.

 $\pi|_{Y}$ surjective: given $a + X \in A/X$ we can find $y \in Y$ s.t. y + X = a + X

 $x = y \cdot a \in X$

 $a = y \cdot x, x \in X, y \in Y$

A/X free, say $\stackrel{\circ}{\cong} \mathbb{Z}^r$

```
To map A/X to A is to choose images in A of the generators of A/X corresponding to
the unit vectors of \mathbb{Z}^r.
    There is a unique homomorphism s: A/X \to A so that s(q_i) = a_i for i = 1, \dots, r
     (\pi \cdot s)(q_i) = \pi(a_i) = q_i
     \pi \circ s = id_{A/X}
     Y = \text{image of } S \subset A.
     \pi|_{Y} surjective. \pi(s(q)) = q for all q \in A/X
     \pi|_{Y} is 1-1. /pi(s(q_0)) = 0 but s(q_0) = q_0 so equals 0.
A a finitely generated abelian group
     X = A_{tors} = \{a \in A | na = 0 \text{ for some } n \ge 1\}.
     X f.g., tors \rightarrow X finite abelian group.
     A/X torsion free, f.g. \to A free \approx \mathbb{Z}^r
A \approx \mathbb{Z}^r \oplus A_{tors}. A_{tors} = ???
    it is a finite abelian group, let B = A_{tors}
    p prime, B_p = \{b \in B | p^t \cdot b = 0 \text{ for some } t \geq 0\}.
     B_P \subset B.
     \bigoplus_{p} B_{p} \xrightarrow{\iota} B
    Proposition: \iota is an isomorphism. (formal proof in Lang's book)
Proof essence:
    suppose 60 \cdot b = 0, 60 = 4 \cdot 3 \cdot 5 = 12 \cdot 5
     (12,5) = 1
     1 = r5 + s12 = 25 - 24
    b = r \cdot 5 \cdot b + s \cdot 12 \cdot b
    12x = 0, 5y = 0
    Every element can be written as a sum of terms killed by a power of a prime
A = \mathbb{Z}^r \oplus (\bigoplus_{p} B_p)
\mathbb{Z}^n \approx F \xrightarrow{\varphi} A A finitely generated (by n elements)
     Ker(\varphi) = X \subset F.
     ? understand A! understand X inside F.
Elementary division theorem
    There exists a basis of F \approx \mathbb{Z}^n s.t. ... X = \bigoplus_{i \le r} 0 \oplus a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus \cdots \oplus a_{n-r} \mathbb{Z}, a_i \ge 1
     X \subset \mathbb{Z}^n
    a_1|a_2|a_3|\cdots|a_{n-r}, increasing multiplicatively
     A = F/X = \mathbb{Z}^r \oplus \mathbb{Z}/a_1\mathbb{Z} \oplus \mathbb{Z}/a_2\mathbb{Z} \oplus \cdots, a_i|a_{i+1}
     A a finite abelian group \rightarrow A is a direct sum of cyclic groups
p prime, \#A = p^4 = a_1 a_2 a_3 \cdots
     A is direct sum of cyclic groups of p-power order.
     A \approx \mathbb{Z}|p^i \oplus \mathbb{Z}|p^j \oplus \mathbb{Z}|p^k \oplus \mathbb{Z}|p^l at most
```

9/17

A arbitrary finitely generated group that we want to understand

 $i \le j \le k \le l, i + j + k + l = 4, i, j, k, l, \ge 1$

Pick some generators g_1, \dots, g_n

Get a map from $Y = \mathbb{Z}^n$ to A, has some kernel

Considering A = Y/X, and how X lies in Y gives indication of structure of A

Can think of X, Y, as lattices

Theorem: $Y \cong \mathbb{Z}^n$ exists v_1, \dots, v_n basis of Y

such that in that basis $X = a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus \cdots \oplus a_m \mathbb{Z} \oplus 0 \oplus 0 \oplus \cdots \oplus 0$.

 $a_i \geq 1$, $a_1 | a_2, a_2 | a_3, \cdots a_{m-1} | a_m$.

Example: $A = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$

 $Y = \mathbb{Z} \oplus \mathbb{Z}$

 $Y \supset X = 2\mathbb{Z} \oplus 3\mathbb{Z}$

Not at all true that the integers divide each other.

Puzzle. Not the case as in the theorem.

Need to prove to self that in some new basis, $Y = \mathbb{Z} \oplus \mathbb{Z}$,

and $X = \mathbb{Z} \oplus 6/\mathbb{Z}$, $Y/X = \mathbb{Z}/6\mathbb{Z}$.

 $a_1 = 1$, and $a_2 = 6$.

 $X \subset \mathbb{Z}^n$. Ask whether X = (0) the zero submodule. If so, simple. So can assume nonzero. Consider linear forms, homomorphisms $\mathbb{Z}^n \to \mathbb{Z}$.

For each λ have $\lambda(X) \subset \mathbb{Z}$. e.g., $\lambda(X) = 3\mathbb{Z}$. Some λ s are nonzero since X is nonzero.

Choose λ so that $\lambda(X)$ is maximal.

Example: $X = 2\mathbb{Z} \oplus 3\mathbb{Z}$. The first coordinate fn yields $2\mathbb{Z}$,

the second coordinate fn yields $3\mathbb{Z}$.

But with $\lambda(u,v) = v - u$ we can get all of \mathbb{Z} .

possible to get λ s yielding images $2\mathbb{Z}$, $3\mathbb{Z}$, but not to get λ , $\lambda(X)$ containing both?

In any case, take a maximal λ , fix that λ .

 $\lambda(X) = a\mathbb{Z}$ maximal

Pick $x \in X$ so that $\lambda(x) = a$.

Claim: $\mu(x) = b$ is divisible by a for all $\mu \in Hom(\mathbb{Z}^n, \mathbb{Z})$

gcd(a,b) = g = ra + sb

 $\tau := r\lambda + s\mu, \, \tau(x) = g$

Now $\tau(X) \supset \mathbb{Z}g \supset \mathbb{Z}a$

So $\tau(x) = \lambda(x)$, $\mathbb{Z}g = \mathbb{Z}a$

a|b for this reason of maximality

"Executive session"

R a commutative ring

R-module: M

1) abelian group

2) endowed with a scalar multiplication $r \in R$, $m \in M$, $rm \in M$

same as a vector space definition except R is not assumed to be a field

The context in which this elementary divisor theorem works.

A a finitely generated abelian group replaced by a finitely generated R-module

And there are 2 conditions on R.

R is an integral domain: $rs = 0 \rightarrow r = 0$ or s = 0

Ideals of R are principal $M \subset R \to M = R \cdot a$

Digression: motivation. Killer example.

K a field, and R = K[t]. (very much like \mathbb{Z} , can do Euclidean division by remainders)

Have V and action of K[t]: (action of K and action of t)

V + action of $K \rightarrow K$ -vector space

Action of t: $T: V \to V$ multiplication by t, $v \mapsto t \cdot v$, $T(v) = t \cdot v$

Conversely, can form the corresponding polynomial in the linear transformation

Principal Ideal domain. Element of smallest degree, Euclidean algorithm.

Suppose we have an R-module V. This is a K-vector space V with action of t

Multiplication by t gives a linear operator $T: V \to V$ (t commutes with K)

Remark: if V is of finite dimension over K, then it is finitely generated as a K-module In particular, it's finitely generated over the ring R = K[t]

A an abelian group. If A is torsion, we are especially interested.

Suppose we start with a linear operator on a finite-dimension vector space.

There is a characteristic polynomial h such that h(T) = 0.

Cayley-Hamilton theorem.

$$h(t) \in R = K[t]$$
. So $h(t) \cdot v = 0$.

V is a torsion module because h(t) annihilates V.

Summary of what we have so far:

$$0 \neq X \subset Y = \mathbb{Z}^n$$
, $\lambda : Y \to \mathbb{Z}$, $\lambda(X)$ is maximal among $\mu(X)$ s, $\lambda(X) = a\mathbb{Z}$.

Have shown that $a = \lambda(x)$, then $\mu(x)$ is divisible by a for all μ .

Take μ to be the i^{th} coordinate function, $x=(x_1,\cdots,x_n)\in\mathbb{Z}^n$, $a|x_i$ for all $i=1,\cdots,n$, $x=a\cdot y,y\in\mathbb{Z}^n$, $\lambda(y)=\lambda(x)/a=1$

Think of Y: contains two submodules (subgroups)

 $Y \supset ker(\lambda), Y \supset \mathbb{Z} \cdot y.$

Claim: $Y = ker(\lambda) \oplus \mathbb{Z}y$

1) each
$$z \in Y$$
 is: e.g. $(z - \lambda(z) \cdot y) + \lambda(z)y$

2) if my is in $ker(\lambda)$ then $0 = \lambda(my) = m\lambda(y) = m$ so m = 0, my = 0, intersection is 0

The corresponding statement for X is that $X = (\ker(\lambda|_X)) \oplus \mathbb{Z}_X$

Kind of obvious that the intersection is 0.

Each component is a submodule of the corresp. one in Y.

$$z \in X$$
, $\lambda(z) = m\lambda(x) = ma\lambda(y)$.

$$z = z - \lambda(z)y + \lambda(z)y$$

$$\lambda(z)y = m \cdot a \cdot y = mx$$

$$(z - \lambda(z)y) \in ker(\lambda) \cap X = ker(\lambda|_X)$$

$$\mathbb{Z}^n = Y = \ker(\lambda) \oplus \mathbb{Z}y$$

$$Y \supset X = ker(\lambda|_X) \oplus \mathbb{Z}ay$$

Apply inductively to portion of lower rank, having pulled off $\mathbb{Z}a$

$$X = a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus \cdots \oplus a_m \mathbb{Z} \oplus 0 \cdots 0 \subset Y = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$$

need to have some kind of divisibility among these a, need to be explained $a_1 | a_2, \cdots$

 $Y = \mathbb{Z} \oplus Y'$ and $X = a\mathbb{Z} + X'$, working rightward

start thinking of various linear maps $\tilde{\lambda}': Y' \to \mathbb{Z}$, and how they restrict to X taking a maximal one, etc., etc.

need to understand somehow that if we take this $\lambda'(X') = a'\mathbb{Z}$

we want a|a', meaning $a'\mathbb{Z} \subset a\mathbb{Z}$, do this with some greatest common divisor argument Introduce g = gcd(a, a') which we want to be a, write in form ra + sa'

```
Need to find some interesting linear map from Y to Z
```

Have a map $Y' \xrightarrow{\lambda'} \mathbb{Z}$ and $\mathbb{Z} \to \mathbb{Z}$ the identity

Both of these are linear maps that give linear maps $Y \to \mathbb{Z}$.

Choose $x' \in X'$ so that $\lambda'(x') = a'$

Have (a,0) in X so that the second linear map (just taking the first coordinate)...

...applied to (a,0) gives a

Take $Y = \mathbb{Z} \oplus Y'$

$$\mathbb{Z} \oplus \Upsilon' \xrightarrow{f} \mathbb{Z}$$

 $\mathbb{Z} \oplus Y' \to Y' \to Y' \xrightarrow{\lambda'} \mathbb{Z}$, the composition of which call *g*

$$Y = \mathbb{Z} \oplus Y' \ni (a, x') \in X$$

$$f(a, x') = a$$

$$g(a, x') = \lambda(x') = a'$$

$$(rf + sg)(a, x') = G, rf + sg = \mu$$

$$\mu(X) \supset \mathbb{Z} \cdot G \supset \mathbb{Z}a$$

Maximality $\rightarrow G = a$.

Tells us that a really divides a' by maximality.

The Y and the X really divide off into two separate worlds.

$$Y = \mathbb{Z} \oplus Y'$$
 and $X = a\mathbb{Z} \oplus X'$

The world which we have already considered, and the trailing-off world of Y' and X' New map μ defined on all of Y and X, by leaving the first coordinate alone.

Go back to the original example of the 2 and the 3. $Y = \mathbb{Z} \oplus \mathbb{Z} \supset X = 2\mathbb{Z} \oplus 3\mathbb{Z}$

$$\lambda(u,v) = v - u$$

$$x = (2,3), \lambda(x) = 1$$

 $a = 1, \lambda(X) = \mathbb{Z}$, need to see how that line splits off in \mathbb{Z} and in X.

$$Y = \mathbb{Z} \cdot y \oplus ker(\lambda)$$

$$y = x/a = x$$
, $ker(\lambda) = \{(u, v) : u = v\} = \mathbb{Z} \cdot (1, 1)$

$$Y = \mathbb{Z} \cdot (2,3) \oplus \mathbb{Z} \cdot (1,1) = \mathbb{Z}^2$$

$$X = \mathbb{Z} \cdot (2,3) \oplus \mathbb{Z} \cdot (1,1) \cap (2\mathbb{Z} \oplus 3\mathbb{Z})$$

so
$$X = \mathbb{Z} \cdot (2,3) \oplus 6 \cdot \mathbb{Z}(1,1)$$

$$Y/X = \mathbb{Z}/\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/6\mathbb{Z}.$$

9/22

Rings R, A (= 'anneau')

definition: whether or not $1 \in R$ is can vary

Lang: $1 \in R$, Hungerford: $1 \notin R$

In the former, $2\mathbb{Z}$ is not a ring, in the latter, it is

gold standard of a ring, the ring of integers \mathbb{Z}

Ring: has an addition and a multiplication, modeled off of the integers

under +, ring is an abelian group with distinguished element $\boldsymbol{0}$

associative product (not necessarily commutative) with distinguished element 1

distributive laws $(x + y)z = \cdots$ and z(x + y) = zx + zy

Example, given A an abelian group, the ring of endomorphisms

$$R = End(A) = Hom(A, A), (f + g)(a) = f(a) + g(a), fg = f \circ g$$

End(A) can be viewed as a ring of matrices under matrix multiplication if $A = \mathbb{Z}^n$ Example, any field e.g. \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Q}(i) = \{a + bi | a, b \in \mathbb{Q}\}$

Fields are commutative, and non-zero elements have multiplicative inverses To be explored: X a set, R = P(X), r + s = symmetric difference, $r \cdot s =$ intersection Hamilton quaternions over \mathbb{R} , \mathbb{Q} , a + bi + cj + dk a "skew field"

An inverse is $\frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$

G a group (written multiplicitavely), take $\mathbb{Z}[G] = \mathbb{Z}\langle G \rangle$ the free abelian group on G elements $\sum n_g \cdot g, n_g \in \mathbb{Z}$ the sum finite can multiply

$$(\sum n_g \cdot g)(\sum m_h \cdot h) = \sum_{x \in G} (\sum_{g,h,gh=x} n_g m_h) x$$
$$c_x = \sum_g n_g m_{g^{-1}x}$$

a convolution product

$$G = \{x^i | i \in \mathbb{Z}\}, x^i x^j = x^{i+j}$$

typical element finite
$$\sum_i n_i x^i$$
, $n_i \in \mathbb{Z}$ e.g. $x^{-3} + 2x^{-2} + 7x^{-1} + 9x^{100}$ a polynomial in x, x^{-1}

Ring Homomorphisms

is a homomorphism of abelian groups, and respects the multiplication operation

$$\varphi(xy) = \varphi(x)\varphi(y)$$
, note $\varphi(1) \neq 1$ is possible $ker(\varphi) = \{r \in R | \varphi(r) = 0\}$

Satisfies the property for being an ideal: $x \in R, r \in ker(\varphi) \to xr, rx \in ker(\varphi)$ **Ideals**

 $xI \subset I$ left-sided, $Ix \subset I$ right-sided, 2-sided (bilateral)

exact analogues of normal subgroups

two-sided ideal: well-defined quotient multiplication

$$(r+I)\cdot(s+I):=rs+I$$

$$(r+I)(s+I) = r(s+i) + I = rs + ri + I$$
 and similarly

$$(r+I)(s+I) = (r+i)s + I = rs + is + I$$

ideals are kernels of ring homomorphisms

Principal Ideal $I = R \cdot a$ for some $a \in R$

the Ideal that *a* generates, (*a*) (minimal ideal containing *a*)

is exactly all multiples of a in R

for subset X, intersection of all ideals containing X (intersections of ideals are ideals)

if $X = \{a_1, \dots, a_t\}$, the ideal is (a_1, \dots, a_t) the ideals of \mathbb{Z} are the additive subgroups of \mathbb{Z} , $a\mathbb{Z}$, $a \ge 0 = (a)$

an ideal of R is an additive subgroup with ideal property

K field, R = K[x]

euclidean division

all ideals of *R* are principal

```
R = K[x,y] polynomials in x and y
    R \xrightarrow{\varphi} K, f(x,y) \mapsto f(0,0) \in K (the constant term of the polynomial)
    (x,y) = ker(\varphi) = \{\text{polynomials with 0 constant term}\}.
    this is not principal
    elements look like 0 + ax + by + cx^2 + \cdots
Prime ideal P \subset R shall be:
    proper
    if rs \in P then r \in P or s \in P
    If P divides rs then P divides r or s
Prime ideals of \mathbb{Z}
    (0), (p) = p\mathbb{Z}, p prime.
If \varphi : R \to S is a ring homomorphism and S contains a prime ideal P
    then \varphi^{-1}(P) is a prime ideal of R
Proof:
    Let x, y \in R and suppose xy \in \varphi^{-1}(P) = P'
    then \varphi(x)\varphi(y) = \varphi(xy) \in P \to \varphi(x) \in P \text{ or } \varphi(y) \in P \square
Corollary: Suppose \varphi: R \to S a non-trivial homomorphism of rings and (0) is prime in S
    Then the kernel of \varphi is prime.
S is called an integral domain if
    (0) \neq S
    if xy = 0 then x = 0 or y = 0
Proposition: P \subset R is a prime ideal \leftrightarrow R/P is an integral domain
Maximal ideal M \subset R if M \neq R and M \subset M' a proper ideal, M = M'
Proposition: M is maximal \leftrightarrow R/M is a field
Example: \mathbb{Z} \supset a\mathbb{Z} maximal \leftrightarrow a is prime
Corollary: Maximal ideals are prime
    Pf: Fields are integral domains.
```

9/24: Midterm

9/29