Reading Group, presented by Minseop Park

One-shot Generalization in Deep Generative Model

Danilo J. Rezende, Shakir Mohamed, ICML 2016

Reference Papers

Auto-Encoding Variational Bayes (D.P. Kingma, M. Welling, ICLR 2014) DRAW: A Recurrent Neural Network For Image Generation (K. Gregor et al, ICML 2015) Spatial Transformer Networks (M. Jaderberg et al, NIPS 2015)

One-shot Generalization

Task

Generation of novel variations of a giv en exemplar

How?

By conditional, sequential generative model

One-shot learning vs. One-shot gener alization

(b) One-step of the conditional generative model.

DRAW: overview

- DRAW: Deep Recurrent Attentive Writer
- Basic model of sequential generative model
- Sequential VAE + attention
- Idea : Images like MNIST are generated sequentially
- https://www.youtube.com/watch?v=Zt-7MI9e KEo

Time →

Variational Autoencoder

Optimization of Variation Lower Bound

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z}) \right]$$

Encoder network
$$q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$$
 : \mathbf{X} FNN(Φ) Gaussian Param eters

Decoder network
$$p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z}): \quad \mathbf{Z} \quad \text{FNN}(\boldsymbol{\theta}) \quad \text{Parameter}$$

DRAW

Key Features

- Encoder / Decoder Network : LST
 M
- Additive Canvas
- Attention; where to read, where/w hat to write

DRAW

$$\hat{x}_t = x - \sigma(c_{t-1})$$

$$r_t = read(x_t, \hat{x}_t, h_{t-1}^{dec})$$

$$h_t^{enc} = RNN^{enc}(h_{t-1}^{enc}, [r_t, h_{t-1}^{dec}])$$

$$z_t \sim Q(Z_t | h_t^{enc})$$

$$h_t^{dec} = RNN^{dec}(h_{t-1}^{dec}, z_t)$$

$$c_t = c_{t-1} + write(h_t^{dec})$$

 $C \downarrow t$: canvas matrix $C \downarrow T$ is used to parameterize P(x|z) read/write: attention mechanism

DRAW

-Approximate posterior $Qz \downarrow t \ h \downarrow t \uparrow enc = Nz \downarrow t \ \mu \downarrow t$, $\sigma \downarrow t$ where $\mu_t = W(h_t^{enc}), \quad \sigma_t^2 = \exp(W(h_t^{enc}))$

- -Data distribution $Pxz \downarrow 1: T = B(x | \sigma(c \downarrow T))$
- -Data Generation

$$\tilde{z}_{t} \sim P(Z_{t})$$

$$\tilde{h}_{t}^{dec} = RNN^{dec}(\tilde{h}_{t-1}^{dec}, \tilde{z}_{t})$$

$$\tilde{c}_{t} = \tilde{c}_{t-1} + write(\tilde{h}_{t}^{dec})$$

$$\tilde{x} \sim D(X|\tilde{c_{T}})$$

Selective Attention Model

- from the A x B input image, to obtain and N x N attention patch
- Horizontal and vertical filterbank $F \downarrow X$ (N x A) and $F \downarrow Y$ (N x B)

Selective Attention Model

- Attention Parameters are obtained from LSTM output at each time step
- Initial patch covers the whole input image

$$(\tilde{g}_X, \tilde{g}_Y, \log \sigma^2, \log \tilde{\delta}, \log \gamma) = W(h^{dec})$$
 $g_X = \frac{A+1}{2}(\tilde{g}_X+1)$
 $g_Y = \frac{B+1}{2}(\tilde{g}_Y+1)$
 $\delta = \frac{\max(A, B) - 1}{\delta}$

Read / Write Attention

 Read: from the A x B input image, to obtain and N x N at tention patch

$$read(x, \hat{x}_t, h_{t-1}^{dec}) = \gamma[F_Y x F_X^T, F_Y \hat{x} F_X^T]$$

Write: from the N x N attention patch, back to A x B input image

$$w_t = W(h_t^{dec})$$

$$write(h_t^{dec}) = \frac{1}{\hat{\gamma}} \hat{F}_Y^T w_t \hat{F}_X$$

DRAW: results

Figure 12. Generated CIFAR images. The rightmost column shows the nearest training examples to the column beside it.

Figure 6. Generated MNIST images. All digits were generated by DRAW except those in the rightmost column, which shows the training set images closest to those in the column second to the right (pixelwise L^2 is the distance measure). Note that the network was trained on binary samples, while the generated images are mean probabilities.

Sequential Generative Model

- Attention model : 2D Gaussian to Spatial Transformer
- Downsize the # of parameters by cutting the connection of canvas to hidden state
- Conditional generative model

(a) Unconditional generative model.

(b) One-step of the conditional generative model.

Conditional Generative Model

(b) One-step of the conditional generative model.

```
Latent variables \mathbf{z}_t \sim \mathcal{N}(\mathbf{z}_t | \mathbf{0}, \mathbf{I}) \ t = 1, \dots, T
              Context \mathbf{v}_t = f_v(\mathbf{h}_{t-1}, \mathbf{x}'; \theta_v)
     Hidden state \mathbf{h}_t = f_h(\mathbf{h}_{t-1}, \mathbf{z}_t, \mathbf{v}_t; \theta_h)
 Hidden Canvas \mathbf{c}_t = f_c(\mathbf{c}_{t-1}, \mathbf{h}_t; \theta_c)
      Observation \mathbf{x} \sim p(\mathbf{x}|f_o(\mathbf{c}_T;\theta_o))
           f_c(\mathbf{c}_{t-1}, \mathbf{h}_t; \theta_c) = \mathbf{c}_{t-1} + f_w(\mathbf{h}_t; \theta_c),
    f \downarrow h: LSTM, state transitio
     f \downarrow c: Additive Canvas
     f \downarrow v: read attention
     f \downarrow w: write attention (Spa
     tial Transformer)
```

Spatial Transformer

- Differentiable attention model with affine transformation
- Learn parameters of affine transform

Result comparison

Table 1. Test set negative log-likelihood on MNIST.

Model	Test NLL
From Gregor et al. (2015) and Burda et al. (20))
DBM 2hl	≈84.62
DBN 2hl	≈84.55
NADE	88.33
DLGM-VAE	≈ 86.60
VAE + HVI/Norm Flow	≈ 85.10
DARN	≈ 84.13
DRAW (64 steps, no attention)	≤ 87.40
DRAW (64 steps, Gaussian attention)	≤ 80.97
IWAE (2 layers; 50 particles)	≈ 82.90

Sequential	agnarativa	modele
sequentui	generanve	moueis

Attention	Canvas	Steps	Train	Test NLL
Spatial tr.	CGRU	80	78.5	\leq 80.5(0.3)
Spatial tr.	Additive	80	80.1	$\leq 81.6(0.4)$
Spatial tr.	CGRU	30	80.1	$\leq 81.5(0.4)$
Spatial tr.	Additive	30	79.1	\leq 82.6(0.5)
Fully conn.	CGRU	80	80.0	\leq 98.7(0.8)

0393895294	Ц
1513990132	
4038054207	7
4641244462	d
1498262691	
3784357572	
1121382931	
5977543616	6
3851622718	8
3404935029	

8621393443681888338

76	4 1	40	46	£	41	B	73	Ġ	3
09	66	幸	6,	90	ટુઉ	پ ر	5 6	E	13
\$	જુ	િષ્	P B	o 9	3	20	G	9 2	98
9	0	46	B	8	27	9.7	b	3	G
80	3 q	OF	Ŗ	0 8	94	09	29	99	2 3
C\$	19	7 ³	08	\$	34	HP	9	180	09
₂ 3	別	36	3	30	36	\$	Ù	ß	61
72	80	18	00	47	۹ ا	Ou.	3	67	20
6	5 9	9	89	d	9	24	8	05	જી
7	5	œ,	1 1 1 1 1 1 1 1 1 1	6	3 [©]	0 3	53	8	34

Ø	9 4	0	ь З	17	6	76	ż
⁵ 3	FB	b 2	ź	3	وي	3	2

One-shot generalization: 3 tasks

- Task 1 : Unconditional free generation
- Task 2: Generation of novel variations of a given exemplar
- Task 3: Generation of representative samples from a novel alphabet

Result for task 1

Figure 8. Unconditional samples for 52×52 omniglot (task 1). For a video of the generation process, see https://www.youtube.com/

watch?v=HQEI2xfTgm4

One-shot generalization: results

Figure 9. Generating new examplars of a given character for the weak generalization test (task 2a). The first row shows the test images and the next 10 are one-shot samples from the model.

Figure 11. Generating new exemplars from a novel alphabet (task 3). The first row shows the test images, and the next 10 rows are one-shot samples generated by the model.

Thank you