Suport pentru Examen

1 Algoritmul de unificare

Doi termeni t_1 și t_2 se unifică dacă există o substituție Θ astfel încât $\Theta(t_1) = \Theta(t_2)$. Un unificator Θ pentru t_1 și t_2 este cel mai general unificator (cmgu,mgu) dacă pentru orice alt unificator Θ' pentru t_1 și t_2 , există o substituție Δ astfel încât $\Theta' = \Theta$; Δ .

Algoritmul de unificare:

	Lista soluție	Lista de rezolvat
	S	R
Inițial	Ø	$t_1 \stackrel{.}{=} t_1', \dots, t_n \stackrel{.}{=} t_n'$
SCOATE	S	$R', t \stackrel{\cdot}{=} t$
	S	R'
DESCOMPUNE	S	$R', f(t_1, \ldots, t_n) \stackrel{\cdot}{=} f(t'_1, \ldots, t'_n)$
	S	$R', t_1 = t'_1, \dots t_n = t'_n$
REZOLVĂ	S	R', x = t sau $t = x, x$ nu apare în t
	$x \stackrel{.}{=} t, S[t/x]$	R'[t/x]
Final	S	Ø

S[t/x]: în toate ecuațiile din S, x este înlocuit cu t

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S conține cmgu. Algoritmul este oprit cu concluzia inexistenței unui unificator dacă:

- (i) În R există o ecuație de forma $f(t_1, \ldots, t_n) = g(t'_1, \ldots, t'_k)$ cu $f \neq g$.
- (ii) În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

2 Rezoluția SLD și arbori de căutare

Orice regulă din Prolog de forma h := b1,...,bn. este transformată într-o clauză definită $h \vee \neg b1 \vee ... \vee \neg bn$.

Orice întrebare din Prolog de forma ?- q1,..qn este transformată într-o clauză definită $\neg q1 \lor ... \lor \neg qn$.

Rezoluția SLD: Fie KB o mulțime de clauze definite.

SLD
$$\frac{\neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n}{\theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n)}$$

unde $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din KB în care toate variabilele au fost redenumite cu variabile noi, iar θ este cmgu pentru Q_i și Q.

Fie $Q_1 \wedge \ldots \wedge Q_m$ o întrebare, unde Q_i sunt formule atomice. **O derivare** din KB prin rezoluție SLD este o secvență

$$G_0 := \neg Q_1 \lor \ldots \lor \neg Q_m, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD. Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește **SLD-respingere**.

Arbori SLD: Presupunem că avem o mulțime de clauze definite KB și o țintă $G_0 = \neg Q_1 \lor ... \lor \neg Q_m$. Construim un arbore de căutare (**arbore SLD**) astfel:

- Fiecare nod al arborelui este o tintă (posibil vidă)
- Rădăcina este G_0
- Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in KB$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .

Dacă un arbore SLD cu rădăcina G_0 are o frunză \square (clauza vidă), atunci există o SLD-respingere a lui G_0 din KB.

3 Type checking

Vrem să verificăm dacă o judecată $\Gamma \vdash M : \sigma$ este legală. Pentru aceasta avem două variante:

- (i) Găsim tipuri pentru variabilele legate din M și apoi construim un arbore de derivare în sistemul $(\lambda \rightarrow)$.
- (ii) Construim un arbore de derivare în sistemul ($\lambda \rightarrow$) cu constrângeri, construind constrângerile C și verificând la final dacă constrângerile găsite au soluție (adică dacă există un unificator pentru ele).

Sistemul
$$\lambda \rightarrow$$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma} (var) \operatorname{dac} x : \sigma \in \Gamma$$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma . M) : \sigma \to \tau} (\to_I)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \ N : \tau} \ (\to_E$$

 σ, τ variabile de tip

Sistemul $\lambda \rightarrow$ cu constrângeri

$$\Gamma \vdash M : \sigma \triangleright C$$

$$\overline{\Gamma \vdash x : \sigma} \ (var) \ \mathrm{dac\,\check{a}} \ x : \sigma \in \Gamma \qquad \overline{\Gamma \cup \{x : \tau\} \vdash x : \sigma \triangleright \{\sigma \stackrel{.}{=} \tau\}} \ (var^*)$$

$$\Gamma, x : \sigma \vdash M : \tau' \triangleright C'$$

$$\frac{C = C' \cup \{\tau \stackrel{.}{=} \sigma \to \tau'\}}{\Gamma \vdash (\lambda x : \sigma . M) : \tau \triangleright C} (\to_I^*)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M : \tau} (\to_{E}) \qquad \frac{\Gamma \vdash M : \tau_{1} \triangleright C_{1} \quad \Gamma \vdash N : \tau_{2} \triangleright C_{2}}{\frac{C = C_{1} \cup C_{2} \cup \{\tau_{1} \stackrel{.}{=} \tau_{2} \to \tau\}}{\Gamma \vdash M : \tau \triangleright C}} (\to_{E}^{*})$$

 $\sigma, \tau, \tau', \tau_1, \tau_2$ variabile de tip