

Medhin Berhe Hagos

MAT Number: 127546

Supervisor: Prof: XHINA ENDRIT

GIS Systems - University of Camerino

Geo Web Map

A full-stack GIS web application for managing, visualizing, and analyzing spatial data using PostGIS, Node.js, and Leaflet.js.

Table of Contents

- Abstract
- 2 Introduction
- Features
- 4 Getting Started
- 6 API Endpoints
- Technologies Used
- Development Workflow
- Testing Strategy
- Use Limitations and Future Work
- 10 UML Diagrams
- Conclusion
- Acknowledgements

Abstract

Geo Web Map is a full-stack GIS web application integrating PostgreSQL/PostGIS spatial database, Node.js/Express backend, and Leaflet.js frontend for interactive geospatial data management and visualization. It supports:

- CRUD on geospatial features
- Spatial filtering and attribute-based queries
- Dynamic styling and shortest-path routing via pgRouting
- Geometry editing

Ideal for academic, research, or professional GIS applications.

Introduction

- Full-stack GIS web app for managing, visualizing, analyzing spatial data.
- Uses PostgreSQL/PostGIS for spatial storage and queries.
- Node.js backend for API and business logic.
- Leaflet.js frontend for dynamic map visualization.
- Features include:
 - CRUD operations (points, lines, polygons)
 - Attribute and spatial filtering
 - Routing via pgRouting
 - Dynamic styling and map legends

Features

Interactive Map Visualization:

- Render points, lines, polygons dynamically
- Zoom, pan, inspect attributes

CRUD Operations:

- Create, read, update, delete spatial features
- Drag-and-drop editing of geometries

Filtering and Spatial Queries:

- Attribute and spatial filters
- Find nearest features, intersecting geometries

More Features

- Routing and network analysis (shortest paths via Dijkstra and pg Routing)
- Dynamic styling map legends
- UI-based filters (text input, dropdown selectors)
- Geometry editing (move points, reshape lines/polygons)

Getting Started

Prerequisites:

- Node.js (v14+), PostgreSQL (v13+)
- PostGIS and pgRouting extensions

Installation Highlights:

- Clone repo, set up database with PostGIS and pgRouting
- Install backend dependencies and start server
- Install frontend dependencies and start client

Core API Endpoints

Method	Endpoint	Description
GET	/features	Retrieve all spatial features
POST	/features	Add new feature
PUT	/features/:id	Update feature
DELETE	/features/:id	Delete feature
GET	/route	Compute shortest path route
GET	/nearest	Find nearest features

Technologies Used

Frontend Leaflet.js, HTML, CSS, JS

Backend Node.js, Express.js

Visualization Leaflet.js

Dev Tools pgAdmin4, VS Code

Version Control Git & GitHub

Development Workflow

- Phase 1: Requirements Analysis Identify user needs, GIS use cases
- Phase 2: Spatial Database Design Create spatial tables using PostGIS
- Phase 3: API Development Build RESTful endpoints using Node.js/Express
- Phase 4: Frontend Implementation Render and edit maps using Leaflet.js
- Phase 5: Feature Integration Add filtering, routing, styling, editing
- Phase 6: Testing & Debugging Unit tests, spatial validation, cross-browser checks
- Phase 7: Documentation Create README.md, API docs, UML diagrams
- Phase 8: Final Deployment Host frontend and backend on local or cloud server

Testing Strategy

- Unit Tests: API endpoints for CRUD and routing
- Manual Testing: Draw/edit features, inspect data
- Data Validation: PostGIS geometry checks
- Browser Testing: Chrome, Firefox, mobile responsiveness

Limitations and Future Work

Limitations:

- No authentication layer (currently public)
- Routing limited to static network dataset
- Basic UI (could be more polished)

Future Enhancements:

- Add user login and role-based permissions
- Realtime data support with WebSockets
- Mobile-friendly layout improvements
- Export/Import GeoJSON support

UML Diagram

Figure: UML Diagram

UML Use Case Diagram

Figure: UML Class Diagram

Conclusion

- Geo Web Map integrates spatial database, backend API, and frontend mapping tools.
- Supports full CRUD, spatial filtering, editing, and routing.
- Suitable for academic and professional GIS applications.
- Modular architecture allows future enhancements.

Acknowledgements

- PostGIS and pgRouting communities
- Leaflet.js project
- Node.js and Express.js teams
- Open source GIS tutorials and repositories
- OpenStreetMap contributors
- University of Camerino GIS Systems course
- Prof. XHINA ENDRIT for guidance and supervision throughout the project