Concours en Mathématiques et Physique Session 2008

Corrigé de l'épreuve de physique

PROBLEME 1 : Interférence et diffraction de la lumière

1.a)	M_2 M_1 M_2 M_2 M_2 M_3 M_4 M_2 M_2 M_3 M_4 M_4 M_5 M_4 M_5 M_5 M_5 M_5 M_6 M_7 M_8 M_8 M_8 M_9	2
1.b)	La lentille sert à faire converger les deux ondes qui interfèrent à l'infini en un point du plan focal image (constituant l'écran d'observation).	1
2.a)	En désignant par S* image de S par rapport à (L_S) , M_2^* image de M_2 par rapport à (L_S) . Le Michelson réglé en lame d'air est équivalent à une lame d'air formée par M_1 et M_2^* . En désignant par δ la différence de marche on a : $\delta = (S*M)_2 - (S*M)_1 = IJ + JK - IL = \frac{2e}{\cos i} - IK \sin i = \frac{2e}{\cos i} - 2e \tan i \sin i$ D'où : $\delta = 2e \cos i$	1.5
2.b)	Les deux ondes (1) et (2) correspondant à une incidence i convergent en un point du plan focal image de (L); par symétrie de révolution autour de l'axe optique de la lentille, les franges d'interférences seront donc des anneaux. Ces anneaux correspondent à i = constante, ils sont donc dits anneaux d'égale inclinaison.	1
2.c)	Interférences à deux ondes : $I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\frac{2\pi}{\lambda}\delta(M))$	1
	Or on a: $I_1 = I_2 = I_0$, d'où: $I(M) = 2I_0 \left(1 + \cos(\frac{4\pi}{\lambda} e \cos i) \right)$	

3.a)	L'ordre au centre est $p_0 = \frac{2e}{\lambda}$. AN : $p_0 = 3563.55$	1
3.a)	p_0 est demi-entier le centre des anneaux est donc sombre.	
	L'ordre du k^{jeme} anneau sombre est donné par $p_k = p_0 - k$, avec k entier.	
	Pour le $k^{i\hat{e}me}$ anneau sombre on a: $\delta(M) = 2e \cos i_k \approx 2e(1 - \frac{i_k^2}{2}) = (p_0 - k)\lambda$;	
3.b)	or $2e = p_0 \lambda d'o\dot{u}$: $i_k = \sqrt{\frac{k\lambda}{e}}$	1
	Comme $tgi_k \approx i_k = \frac{R_k}{f}$, on enduit: $R_k = f i_k = f \sqrt{\frac{k\lambda}{e}}$	0.5
3.c)	La détermination de λ peut être faite à l'aide d'une mesure des rayons des anneaux sombres.	1
3.d)	On a $\log R_k^2 = \log f^2 + \log \frac{k\lambda}{e}$; d'où $\Delta \lambda = \lambda (\frac{2\Delta R_k}{R_k} + \frac{\Delta e}{e})$	1
4.a)	La disparition des anneaux correspond à une superposition d'un phénomène d'interférence constructif pour une longueur d'onde donnée avec un phénomène d'interférence destructif produit par la deuxième longueur d'onde. On parle d'anticoincidence des phénomènes d'interférence.	1
4.b)	$I_{\lambda_1}(M) = \frac{I_{\text{max}}}{2} \left(1 + \cos(\frac{4\pi}{\lambda_1} e \cos i) \right)$	1
	$I_{\lambda_2}(M) = \frac{I_{\text{max}}}{2} \left(1 + \cos(\frac{4\pi}{\lambda_2} e \cos i) \right)$	1
4.c)	Les deux radiations sont incohérentes entre elles, l'intensité résultante sur l'écran est alors la somme des intensités :	
	$I(M) = I_{\lambda_1}(M) + I_{\lambda_2}(M) = \frac{I_{\text{max}}}{2} \left(2 + \cos(\frac{4\pi}{\lambda_1}e\cos i) + \cos(\frac{4\pi}{\lambda_2}e\cos i) \right)$	
	$I(M) = I_{\text{max}} \left(1 + \cos(\frac{4\pi}{\lambda} e \cos i) \cos(\frac{2\pi\Delta\lambda}{\lambda^2} e \cos i) \right)$	1.5
	$V = \cos(\frac{2\pi\Delta\lambda}{\lambda^2}e\cos i) ;$	0.5
	V représente le contraste.	0.5
4.d)	Au voisinage du centre $V = \cos(\frac{2\pi\Delta\lambda}{\lambda^2}e)$; la disparition des anneaux correspond à	
	une annulation du contraste. La disparition des anneaux au voisinage du centre se traduit alors par	
	$V(i=0) = 0 \text{ soit } \cos(\frac{2\pi\Delta\lambda}{\lambda^2}e_1) = 0 \implies \Delta\lambda = \frac{\lambda^2}{4e}(2k+1)$	
	La quatrième annulation correspond à $k = 3$ et donc à $\Delta \lambda = \frac{7\lambda^2}{4e}$	1
	AN: $\Delta \lambda = 0.6 \text{ nm} = 6 \text{ A}$	0.5

5.a)	$p_{\lambda_1} - p_{\lambda_2} = \frac{2e}{\lambda_1} - \frac{2e}{\lambda_2} = \frac{2e\Delta\lambda}{\lambda_1\lambda_2} \approx \frac{2\Delta\lambda}{\lambda^2} e$	1
	$\Rightarrow \Delta p = f(e) \text{ est une droite linéaire de pente } a = \frac{2\Delta\lambda}{2^2}$	
5.b)	$p_{\lambda_2} = p_{\lambda_1} - n - \frac{1}{2}; n \in \mathbb{N} \text{ pour une annulation donnée du contraste}$	
	$p_{\lambda_2} = p_{\lambda_1} - n - 1 - \frac{1}{2}; n \in \mathbb{N}$, pour une annulation succédant la précédente	
	D'où $\Delta p - \Delta p' = 1$; $\Delta p = p_{\lambda_2} - p_{\lambda_1}$; $\Delta p' = p'_{\lambda_2} - p'_{\lambda_1}$	1
	Ainsi pour calculer la pente de la droite dont l'expression est donnée dans 5.a) il suffit de considérer deux annulations successives du contraste soit par exemple	0.5
	$a = \frac{1}{e_5 - e_4}$ où e_5 et e_4 désignent respectivement deux épaisseurs donnant deux	0.5
	brouillages successifs. AN: $a = 3448.3 \cdot 10^3 \text{ m}^{-1}$.	
	$\Delta \lambda = \frac{\lambda^2 a}{2} = 5.98 10^{-10} \mathrm{m} \approx 0.6 \mathrm{nm}$	0.5
Dem	cième partie	
1.a)	Sachant que la face d'entrée du prisme diffracte la lumière, un rayon incident arrivant en incidence normale sur le prisme sera diffracté dans toutes les directions. Un point M de (E) correspond donc à une direction d'observation de l'onde diffractée.	
	\tilde{S} \tilde{k}_d \tilde{k}_d M	1
1.b)	D=i'-A or n sin A = sini' soit nA \approx i' Soit D = (n-1) A A A D	1
2.a)	$\underline{\mathbf{s}}(\mathbf{M}) = \alpha \ \underline{\mathbf{s}}_0 a \int_0^h \exp \left[j \frac{2\pi}{\lambda} (1 - n) AX \right] \exp \left[j (\vec{\mathbf{k}}_d - \vec{\mathbf{k}}_i) \cdot \overrightarrow{OP} \right] dX \ ; \text{ or } \vec{\mathbf{k}}_i \cdot \overrightarrow{OP} = 0$	
	$\vec{k}_d.\overrightarrow{OP} = \vec{k}_d.\overrightarrow{OH} + \vec{k}_d.\overrightarrow{HP} = -\frac{2\pi}{\lambda}X\sin\beta$;	2.5
	$\sin \beta = \tan \beta = -\frac{x}{f_2}$ $\int_{\tilde{k}_d} \frac{1}{\tilde{k}_d} \left[\frac{2\pi}{\tilde{k}_d} x \right] dx$	
	$\underline{\mathbf{s}}(\mathbf{M}) = \alpha \ \underline{\mathbf{s}}_0 a \int_0^h \exp \left[j \frac{2\pi}{\lambda} X \left((1 - n)A + \frac{x}{f_2} \right) \right] dX$	

	$\underline{\mathbf{s}}(\mathbf{M}) = \alpha \ \underline{\mathbf{s}}_0 a \ h \exp \left[j \frac{\pi h}{\lambda} \left(\frac{x}{f_2} + (1 - n)A \right) \right] \sin c \left[\frac{\pi h}{\lambda} \left[\frac{x}{f_2} + (1 - n)A \right] \right]$	
2.b)	$I = \underline{s} \underline{s}^* = I_0 \sin c^2 \left[\frac{\pi h}{\lambda f_2} (x - x_0(\lambda)) \right]$	1
defended to the second	avec: $x_0(\lambda) = (n(\lambda) - 1)Af_2 = (n(\lambda) - 1)\frac{e}{h}f_2$	1
	$I_0 = \alpha ^2 \left \underline{\mathbf{s}}_0 \right ^2 a^2 h^2$	
	I = I ₀ pour $x = x_0(\lambda) = (n(\lambda) - 1)\frac{e}{h}f_2 = f_2 tgD \approx f_2 D$; cette position sur l'écran	1
	correspond à une déviation de D de la direction d'incidence qui n'est autre que la direction prévue par l'optique géométrique.	
3.a)		1.5
3.b)	Le premier minimum se produit pour $x - x_0(\lambda) = \pm \frac{\lambda f_2}{h}$	1.5
3.c)	Pour passer d'un maximum d'intensité produit par λ à celui produit par $\lambda+d\lambda$, x_0	
	doit varier de dx_0 tel que $dx_0 = \frac{dn}{d\lambda} \frac{e}{h} f_2 d\lambda$; à la limite de résolution on a :	
	$dx_0 = \frac{dn}{d\lambda} \frac{e}{h} f_2 d\lambda_{\min} = \frac{\lambda f_2}{h}. \text{ Soit } d\lambda_{\min} = \frac{\lambda}{e} \left(\frac{dn}{d\lambda}\right)^{-1}$	2.5
	n est une fonction décroissante de λ d'où :	1
	$R_0 = -\frac{\lambda}{d\lambda_{\min}} = \frac{2eB}{\lambda^3}$	1
4.a)	$\Delta heta_{ m e}$	
	$\ell_{e} \uparrow \qquad \qquad \lambda \theta_{g} \qquad \ell_{g} \qquad \qquad \ell_$	2
	Par construction géométrique on a : $\Delta \theta_e = \Delta \theta_g$ soit $\frac{\ell_e}{f_1} = \frac{\ell_g}{f_2} \Rightarrow \ell_g = \frac{f_2}{f_1} \ell_e$	1
4.b)	$\ell_{g} = \frac{f_{2}}{f_{1}} \ell_{e} ; AN : \ell_{g} = 1,5 mm$	
	La taille de la tache centrale de diffraction est $\frac{2\lambda f_2}{h} = 23,57 \mu\text{m} < \ell_g$.	1
	Donc l'image géométrique de la fente source masque la tache centrale de	

	diffraction. Il en résulte que la taille de l'image géométrique de la fente source limite le pouvoir de résolution. A la limite de résolution on a :	1
	$dx_0 = \ell_g \Rightarrow \frac{dn}{d\lambda} \frac{e}{h} f_2 d\lambda_{\min} = \frac{f_2}{f_1} \ell_e \text{ soit } d\lambda_{\min} = \frac{\ell_e}{f_1} \left(\frac{dn}{d\lambda} \frac{e}{h}\right)^{-1}$	
	Ainsi $d\lambda_{\min} = \frac{\ell_e}{f_1} \left(-\frac{2B}{\lambda^3} \frac{e}{h} \right)^{-1} \Longrightarrow R = \frac{f_1 \lambda}{h \ell_e} \frac{2eB}{\lambda^3} = R_0 \frac{f_1 \lambda}{h \ell_e}$	1
4.c)	R = 3,84; $R_1 = \frac{\lambda_1 + \lambda_2}{2(\lambda_2 - \lambda_1)} = 982,2 > R$ donc pas de résolution	2
	Où bien, $d\lambda_{\min} = 153.5 \text{ nm}$ et $\lambda_2 - \lambda_1 = 0.6 \text{nm}$ << $d\lambda_{\min}$ donc pas de résolution.	

PROBLEME 2 : Induction électromagnétique et transferts thermiques

	Première partie : Induction électromagnétique	
1)	$R_{s} = N \frac{1}{\sigma} \frac{2 \pi R_{m}}{\frac{L}{N} (R_{e} - R_{i})} = N^{2} r_{s} \text{ avec } r_{s} = \frac{2 \pi R_{m}}{\sigma L (R_{e} - R_{i})}$	1.5
2.a)	La force de Laplace qui s'exerce sur un élément de courant d'une spire est : $d^3\vec{f} = \vec{j} d\tau \wedge \vec{B} = j B_0 d\tau \vec{u}_z$ La force de Laplace qui s'exerce sur une spire a donc pour expression :	
	$\frac{\vec{f} = \pi j (R_e^2 - R_i^2) \frac{L}{N} B_0 \vec{u}_z}{L'\text{intensit\'e I du courant qui traverse une spire est} : I = \iint_S j \vec{u}_\theta . d\vec{S} = j \frac{L}{N} (R_e - R_i)$	2
	D'où:	1
2.b)	La force de Laplace qui s'applique sur le solénoïde comportant N spires est :	
	$\overline{F} = N \overline{f} = 2 \pi R_m B_0 N I \overrightarrow{u}_z = N I k_1 \overrightarrow{u}_z$	0.5
	avec $\frac{\mathbf{k}_1 = 2 \pi \mathbf{R}_m \mathbf{B}_0}{\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4 + \mathbf{k}_5 + \mathbf{k}_6 $	0.5
	Le champ électromoteur est donné par :	
3.a)	$\vec{E}_{m} = \vec{v} \wedge \vec{B} = v \vec{u}_{z} \wedge (-B_{0} \vec{u}_{r}) = -B_{0} v \vec{u}_{\theta}$	1.5
	La f.e.m induite e dans une spire est donnée par la circulation de \vec{E}_m sur la spire :	
3.b)	$e = \oint_{\text{spire}} \vec{E}_{m} \cdot d\vec{\ell} = -\oint_{\text{spire}} B_{0} v \vec{u}_{\theta} \cdot d\vec{\ell} = -B_{0} v \int_{0}^{2\pi} R_{m} d\theta = -2\pi R_{m} B_{0} v$ $e = -2\pi R_{m} B_{0} v = k_{2} v$	1.5
	avec: $k_2 = -2\pi R_m B_0$	

	La f.e.m induite totale E dans le solénoïde a donc pour expression :	
	$E = Ne = Nk_2 v$	0.5
	On a: $k_1 = -k_2$	0.5
3.c)	Le travail de la force de Laplace appliquée à une spire au cours d'un déplacement	
	élémentaire suivant Oz est donné par : $\delta W_L = \vec{f} \cdot \vec{u}_z dz = I k_1 dz$,
	Ce travail est égal à l'opposé du travail électrique $\delta W_e = e I dt = k_2 v I dt$ $\delta W_L = -\delta W_e \Rightarrow I k_1 dz = -k_2 I v dt = -k_2 dz \Rightarrow k_1 = -k_2$	2
	$0 \times 1 \times $	
4.a)	$\vec{B}(L/2) = \frac{\mu_0 \text{ N I}}{2 \text{ L}} \frac{2 \frac{L}{2}}{\sqrt{R_m^2 + (L/2)^2}} \vec{u}_z$	1
	$ \frac{\vec{B}(L/2) = \frac{\mu_0 \ \text{N I}}{2} \frac{1}{\sqrt{R_m^2 + (L/2)^2}} \vec{u}_z}{\sqrt{R_m^2 + (L/2)^2}} $	
	Sachant que \bar{B} est supposé uniforme à l'intérieur du solénoïde, l'énergie magnétique W_m emmagasinée dans ce dernier a pour expression :	
4.b)	$W_{m} = \iiint \frac{\vec{B}^{2}}{2 \mu_{0}} d\tau = \frac{B^{2}(L/2)}{2 \mu_{0}} \iiint d\tau = \frac{B^{2}(L/2)}{2 \mu_{0}} \pi R_{m}^{2} L$	
	$W_{m} = \frac{\mu_{0} N^{2} I^{2}}{8} \frac{\pi R_{m}^{2} L}{R_{m}^{2} + (L/2)^{2}}$	1.5
	or $W_m = \frac{1}{2} \mathcal{L} I^2 \implies \mathcal{L} = N^2 \frac{\mu_0 \pi R_m^2 L}{4 \left[R_m^2 + (L/2)^2 \right]} = N^2 h$	1
	avec: $h = \frac{\mu_0 \pi R_m^2 L}{4(R_m^2 + (L/2)^2)}$	0.5
5.a)	$E \longrightarrow \stackrel{\mathcal{L}}{\longleftarrow} \stackrel{R_S}{\longleftarrow}$	1
	U	
	$U + E - L \frac{dI}{dt} - R_s I = 0$	1
5.b)	$U = R_s I + L \frac{dI}{dt} - E = N^2 r_s I + N^2 h \frac{dI}{dt} - N k_2 v$	1
	On pose $I_e = NI$ \Rightarrow $U = N\left(r_S I_e + h \frac{dI_e}{dt} - k_2 v\right)$ (1)	

50	En régime permanent, $\frac{dI_e}{dt} = 0$, $N = N_0$, $U = U_0$ et $v = v_0$	
5.c)	dt $(1) \Rightarrow U_0 = N_0 (r_S I_e - k_2 v_0)$	
	Or $k_2 = -k_1$ et d'après 2.b) $F = NIk_1 = I_e k_1 = -I_e k_2$	
	D'où: $N_0 = \frac{U_0}{F}$; avec $I_e = NI = N j \frac{L}{N} (R_e - R_i) = j L (R_e - R_i)$	
	$r_S I_e + \frac{1}{I_e} v_0$	
	$N_0 = \frac{U_0}{r_{\rm S} j L(R_{\rm e} - R_i) + \frac{F v_0}{j L(R_{\rm c} - R_i)}}$	2
	$\frac{r_{\rm S} j L (R_{\rm e} - R_{\rm i}) + \frac{v}{j L (R_{\rm e} - R_{\rm i})}$	
	Pour une géométrie donnée et pour une densité de courant j et une vitesse de mouvement v_0 , le choix du nombre de spires N_0 impose une valeur de F en régime permanent. Plus N_0 est important plus faible sera la force de Laplace et par conséquent la puissance électrique disponible aux bornes du solénoïde sera moins importante.	0.5
6)	On impose, à $t=0$, au solénoïde un échelon de tension continue d'amplitude U_0 : Sachant que $E=N$ k_2 v , (1) s'écrit :	
6.a)	$U_0 = N r_S I_e + N h \frac{dI_e}{dt} - E \qquad (2)$	
	• Si $\underline{v} = 0$, alors $E = 0$ et (2) devient : $U_0 = N r_S I_e + N h \frac{dI_e}{dt}$	
	$\frac{dI_e}{dt} + \frac{N r_S}{N h} I_e = \frac{U_0}{N h} \implies \frac{dI_e}{dt} + \frac{I_e}{\tau} = \frac{U_0}{N h} \qquad (3) \text{avec} \tau = \frac{h}{r_S}$	0.5
	(3) admet comme solution : $I_e(t) = \frac{U_0}{N r_S} (1 - e^{-t/\tau})$	
	Or $I_e = N I \implies I(t) = \frac{U_0}{N^2 r_S} (1 - e^{-t/\tau})$ et comme $R_S = N^2 r_S$, on obtient :	
6.b)	$I(t) = \frac{U_0}{R_s} \left(1 - e^{-t/\tau} \right)$	1.5
	• Si $v \neq 0$, alors $E = E_0$ et (2) devient : $U_0 = N r_S I_e + N h \frac{dI_e}{dt} - E_0$	
	$\Rightarrow \frac{dI_e}{dt} + \frac{I_e}{\tau} = \frac{U_0 + E_0}{N h} \text{ qui admet comme solution :}$	
	$I_e(t) = \frac{U_0 + E_0}{N r_s} (1 - e^{-t/\tau}); \text{ or } I_e = NI$	
	$\Rightarrow I(t) = \frac{U_0 + E_0}{N^2 r_S} \left(1 - e^{-t/\tau} \right) = \frac{U_0 + E_0}{R_S} \left(1 - e^{-t/\tau} \right)$	1.5

	Deuxième partie : Transferts thermiques	T
	$C_{t} = \iiint c \mu d\tau = c \mu \iiint d\tau = c \mu \frac{L}{N} (R_{e} - R_{i}) 2\pi R_{m} N$	
1	$C_t = \mu c \pi (R_e^2 - R_i^2) L$	1
	La puissance totale dissipée par effet Joule P _J est donnée par :	
2)	$P_{J} = \iiint \frac{j^{2}}{\sigma} d\tau = \frac{j^{2}}{\sigma} \iiint d\tau = \frac{j^{2}}{\sigma} L \pi (R_{e}^{2} - R_{i}^{2})$	1
3.a	La puissance thermique P _e évacuée par les deux surfaces latérales est :	
3.2	$P_e = h (I_S - I_a) 2\pi R_e L + h (I_S - I_a) 2\pi R_i L \Rightarrow P_e = h (T_S - T_a) 2\pi L (R_e + R_i)$	1.5
	La résistance thermique est donnée par :	
	$R_i = \frac{T_S - T_a}{P_e} = \frac{1}{2 \pi h L(R_e + R_i)}$	1
	Bilan d'énergie : $(P_J + P_e) dt = C_t dT$	
	$\left[\left[\frac{j^2}{\sigma} L \pi (R_e^2 - R_i^2) - h (T_S - T_a) 2 \pi L (R_e + R_i) \right] dt = C_t \frac{dT}{dt} dt$	
	$C_t \frac{dT}{dt} = -\frac{T_S - T_a}{R_t} + \frac{j^2}{\sigma} L \pi (R_e^2 - R_i^2)$ (4)	
	Comme T_a = Cste, alors $dT = d(T_S - T_a) = d\Delta T$. (4) devient:	!
	$\frac{d\Delta T}{dt} + \frac{\Delta T}{CR} = \frac{j^2}{C\sigma} L \pi (R_e^2 - R_i^2)$	2.5
3.b)	et admet comme solution :	
	$\Delta T = \frac{R_t j^2}{\sigma} L \pi (R_e^2 - R_i^2) \left[1 - e^{-t/\tau_i} \right]$	2.5 1.5 0.5
	avec: $\tau_t = R_t C_t$	0.5
	T,	
	T_a	1.5
	Profil de T _S (t)	
	En régime permanent :	
3.c)	$\Delta T = \Delta T_{P} = \frac{R_{t} j_{P}^{2}}{\sigma} L \pi (R_{e}^{2} - R_{i}^{2}) \Rightarrow j_{P} = \sqrt{\frac{\sigma \Delta T_{P}}{R_{t} L \pi (R_{e}^{2} - R_{i}^{2})}}$	1.5
L	$\sqrt{K_t L \pi (K_e - K_i)}$	