EE8257 Information Security

Lecture 2
Mathematical Concepts Related to
Cryptography

P. S. Ranaweera
E₃₁₃
Department of Electrical and Information Engineering
Faculty of Engineering
University of Ruhuna

Outline

- Number Sets
- Divisibility
- Prime & Composed Numbers
- Divisors
- Co-Prime Numbers
- Fundamental Theorem of Arithmetic
- Euclidian Theorem
- Modular Arithmetic
- Permutations
- Substitution Box

Number Sets

- Prime Numbers (P)
- Natural Numbers (N)
- Integers (Z)
- Rational Numbers (Q)
- Real Numbers (\mathbb{R})
- Complex Numbers (C)

- **→** {2,3,5,7,11,......}
- **→** {0,1,2,3,....}
- **→** {....,-2,-1,0,1,2,....}
- \rightarrow **Q** = { $a/b : a, b \in \mathbf{Z}, b \neq o$ }
- → rational and irrational numbers
- \rightarrow C = { $a + bi : a, b \in \mathbb{R}$ }

Divisibility

- If a = kd where $a, d \in \mathbb{Z}$ and k is an integer

 - d divides a
 - Examples
- If d > 0,
 - d is the **Divisor** of a
 - a is the **Multiple** of d
- Trivial Divisors
 - Trivial divisors of $a \rightarrow 1$ and a
- Non trivial divisors → Factors
 - E.g.: $12 \rightarrow 2,3,4 \text{ and } 6$

Divisibility (Cont...)

Properties of divisibility:

- $_{\scriptscriptstyle 1.}$ 1|a
- $a|0,a\neq 0$
- $(a|b \wedge b|a) \Longrightarrow a = \pm b$
- $^{4} \left(a|b \wedge b|c \right) \Longrightarrow a|c$
- 5. $a|b \Rightarrow a|bx \forall x \in Z$
- 6. $(a|b \land a|c) \Rightarrow a|(bx+cy) \ \forall x, y \in Z$

Prime and Composed Numbers

- An integer *a* > 1 that has only trivial divisors 1 and *a* is called a *Prime Number*
 - E.g.: 2,3,5,7,11,13,.....
- An integer *a* > 1 that is not a prime number, is called as a *Composed Number*
- 'Unit' or 1: is neither prime nor composed

Prime and Composed Numbers (Cont...)

- If $n \in \mathbb{Z}^{+}$ is a composed positive integer, then
 - \exists a prime p, s.t.: p|n
 - Examples :
 - 20 → 2 and 5

Divisors

- Common Divisor :
 - d is a divisor of both a and b , then $\Rightarrow d$ is the common divisor of both a and b
 - Mathematical expression
 - Examples

Greatest Common Divisor

Greatest Common Divisor

- Let $a,b \in \mathbb{Z}$, an integer $c \in \mathbb{Z}^+$ is called *Greatest Common Divisor* (g.c.d.) if,
 - c|a and c|b
 - For all common divisors of a and b denoted by $d \rightarrow d|c$

Relatively Prime (Co-Prime) Numbers

- a and b are Relatively Prime if, gcd(a,b)=1
 - 14 and 15
 - 8 and 9

• If
$$a,b,p \in Z^+$$
, and
$$((\gcd(a,p)=1) \land (\gcd(b,p)=1)) \Rightarrow \gcd(ab,p)=1$$

Fundamental Theorem of Arithmetic

Unique Prime Factorization Theorem:

• Every integer a > 1 can be uniquely presented in the form:

$$a = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$$

 p_i is prime

$$e_i \in \mathbb{Z}^+$$

Euclidean Theorem

• For all non-negative integers *a* and *b*

$$\gcd(a,b) = \gcd(b, a \bmod b)$$

$$a \mod b = a - \left\lfloor \frac{a}{b} \right\rfloor \times b$$

Euclidean Algorithm

function: gcd(|a|,|b|)

if
$$b = 0$$

then return a

else return $gcd(b, a \mod b)$

Modular Arithmetic

F

 Is a Calculation system where all the calculations are done in 'modulo m' → mod m

$$x \mod m \equiv x - \left\lfloor \frac{x}{m} \right\rfloor \times m$$

Shift Ciphers, RSA, Elgammal, Diffie-Hellman

Understanding Modular Concept

Circular Representation

Properties:

- Reflexivity: $x \mod m \equiv x, x \in \mathbb{Z}$
- Symmetry: $a \equiv b \mod m \iff b \equiv a \mod m$
- Transitivity:

$$(a \equiv b \mod m) \land (b \equiv c \mod m) \Rightarrow a \equiv c \mod m$$

- If, $a \equiv b \mod m \Rightarrow m | (b-a) \text{ OR } a = b + km, k \in \mathbb{Z}$
- Residue classes

$$a \mod m = \{a, a \pm m, a \pm 2m, \dots, a \pm km\} \mod m, k \in \mathbb{Z}$$

Theorem:

if, $a \equiv b \mod m$ and $c \equiv d \mod m$ $-a = -b \mod m$, $(a+c) = (b+d) \mod m$ $ac = bd \mod m$

Modular Inverse:

Additive Inverse

Multiplicative Inverse

Additive Modulo Inverse:

 $-x \mod m$

• Number which should be added to x, in order to obtain $0 \mod m$

• E.g.:
$$-4 \mod 7 = 3$$

Multiplicative Modulo Inverse:

$$x^{-1} \mod m$$

- Number which should be multiplied by x, in order to obtain $1 \mod m$
- E.g.: $7^{-1} \mod 10 = 3$
- Multiplicative Modulo Inverse does not always exist
- x and m should be co-prime $\rightarrow \gcd(x, m) = 1$

Totient Function:

$$\phi(m)$$

- Number of positive integers less than *m* that are coprime to m
- E.g.: $\phi(5) = 4$
- For a prime number: $\phi(p) = p 1$
- Product of prime numbers:

$$\phi(pq) = (p-1)(q-1)$$

Permutations

Permutation (arrangement) of a given set S is an ordered list of all the elements in S in which each element appears exactly once

• E.g.:
$$S = \{0,1,2,3,4,5,6\} \Rightarrow S = \{4,3,0,5,6,2,1\}$$

• Number of Permutations:

$$S = \{0,1,2,3,...,n-1,n\} \implies n!$$

$$1 \quad 2 \quad 3 \quad 4 \quad 0 \quad 0 \quad 0 \quad 0 \quad n-1 \quad n$$

$$n \quad n-1 \quad n-2 \quad n-3 \qquad 2 \quad 1$$

Symmetric-Key Cryptography

Substitution Box (S-Box)

- Deployed in DES
- Designed to cause Confusion

	Input bits 1 and 6 Input bits 2 thru 5 \$\times \big 0000 \big 0001 \big 0011 \big 0101 \big 0101 \big 0111 \big 1000 \big 1001 \big 1011 \big 1000 \big 1001 \big 1011 \big 1000 \big 1001 \big 1001 \big 1000 \big 1000 \big 1001 \big 1000 \big 1001 \big 1000 \big 1																
	1	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	1110	0100	1101	0001	0010	1111	1011	1000	0011	1010	0110	1100	0101	1001	0000	0111
>(01	0000	1111	0111	0100	1110	0010	1101	0001	1010	0110	1100	1011	1001	0101	0011	1000
	10	0100	0001	1110	1000	1101	0110	0010	1011	1111	1100	1001	0111	0011	1010	0101	0000
	11	1111	1100	1000	0010	0100	1001	0001	0111	0101	1011	0011	1110	1010	0000	0110	1101