0413HW_Integration [74 marks]

Let $f(x)=6-\ln(x^2+2)$, for $x\in\mathbb{R}.$ The graph of f passes through the point $(p,\,4),$ where p>0.

1a. Find the value of p. [2 marks]

Markscheme

valid approach (M1)

eg~f(p)=4, intersection with $y=4,~\pm 2.32$

2.32143

 $p=\sqrt{\mathrm{e}^2-2}$ (exact), 2.32 $\hspace{0.2cm}$ **A1** $\hspace{0.2cm}$ **N2**

[2 marks]

1b. The following diagram shows part of the graph of f.

[3 marks]

The region enclosed by the graph of f, the x-axis and the lines x=-p and x=p is rotated 360° about the x-axis. Find the volume of the solid formed.

Markscheme

attempt to substitute **either their** limits **or** the function into volume formula (must involve f^2 , accept reversed limits and absence of π and/or dx, but do not accept any other errors) (M1)

eg
$$\int_{-2.32}^{2.32} f^2$$
, $\pi \int (6 - \ln(x^2 + 2))^2 dx$, 105.675

331.989

 $volume = 332 \quad \textit{A2} \quad \textit{N3}$

[3 marks]

2a. Find $\int x e^{x^2 - 1} dx$.

[4 marks]

Markscheme

valid approach to set up integration by substitution/inspection (M1)

eg
$$u = x^2 - 1$$
, $du = 2x$, $\int 2x e^{x^2 - 1} dx$

correct expression (A1)

eg
$$\frac{1}{2}\int 2x\mathrm{e}^{x^2-1}\mathrm{d}x$$
, $\frac{1}{2}\int \mathrm{e}^u\mathrm{d}u$

$$\frac{1}{2}e^{x^2-1}+c$$
 A2 N4

Notes: Award $\emph{A1}$ if missing "+c".

[4 marks]

2b. Find f(x), given that $f'(x) = x e^{x^2 - 1}$ and f(-1) = 3.

[3 marks]

Markscheme

substituting x=-1 into ${\it their}$ answer from (a) $\mbox{\it (M1)}$

eg
$$\frac{1}{2}e^0$$
, $\frac{1}{2}e^{1-1} = 3$

correct working (A1)

eg
$$\frac{1}{2} + c = 3, c = 2.5$$

$$f(x) = \frac{1}{2}e^{x^2-1} + 2.5$$
 A1 N2

[3 marks]

3. Let
$$f'(x)=rac{3x^2}{(x^3+1)^5}.$$
 Given that $f(0)=1,$ find $f(x).$

[6 marks]

Markscheme

valid approach (M1)

eg
$$\int f' \mathrm{d}x, \int rac{3x^2}{(x^3+1)^5} \mathrm{d}x$$

correct integration by substitution/inspection

eg
$$f(x) = -\frac{1}{4}(x^3+1)^{-4} + c, \ \frac{-1}{4(x^3+1)^4}$$

eg
$$1 = \frac{-1}{4(0^3+1)^4} + c, -\frac{1}{4} + c = 1$$

Note: Award M0 if candidates substitute into f' or f''.

$$c = \frac{5}{4}$$
 (A1)

$$f(x)=-\tfrac{1}{4}(x^3+1)^{-4}+\tfrac{5}{4}\,\left(=\tfrac{-1}{4(x^3+1)^4}+\tfrac{5}{4},\,\tfrac{5(x^3+1)^4-1}{4(x^3+1)^4}\right) \quad \textit{A1} \quad \textit{N4}$$

4. Let
$$f'(x) = \sin^3(2x)\cos(2x)$$
. Find $f(x)$, given that $f\left(\frac{\pi}{4}\right) = 1$.

Markscheme

evidence of integration (M1)

eg $\int f'(x) dx$

correct integration (accept missing C) (A2)

eg
$$\frac{1}{2} imes \frac{\sin^4(2x)}{4}, \, \frac{1}{8} \sin^4(2x) + C$$

substituting initial condition into their integrated expression (must have +C) ${\it M1}$

eg
$$1 = \frac{1}{8}\sin^4\left(\frac{\pi}{2}\right) + C$$

Note: Award M0 if they substitute into the original or differentiated function.

recognizing $\sin\left(\frac{\pi}{2}\right)=1$ (A1)

eg
$$1 = \frac{1}{8}(1)^4 + C$$

$$C = \frac{7}{8}$$
 (A1)

$$f(x) = \frac{1}{8} \sin^4(2x) + \frac{7}{8}$$
 A1 N5

[7 marks]

Let
$$f(x) = xe^{-x}$$
 and $g(x) = -3f(x) + 1$.

The graphs of f and g intersect at x = p and x = q, where p < q.

5a. Find the value of p and of q.

[3 marks]

Markscheme

valid attempt to find the intersection (M1)

eg

f=g, sketch, one correct answer

 $p=0.357402,\ q=2.15329$

 $p = 0.357, \ q = 2.15$ A1A1 N3

[3 marks]

5b. Hence, find the area of the region enclosed by the graphs of f and g.

[3 marks]

Markscheme

attempt to set up an integral involving subtraction (in any order) (M1)

eg
$$\int_p^q [f(x)-g(x)] dx$$
, $\int_p^q f(x) dx - \int_p^q g(x) dx$

0.537667

 $area = 0.538 \quad \textit{A2} \quad \textit{N3}$

[3 marks]

A particle P moves along a straight line. Its velocity $v_{\rm P}\,{\rm m}\,{\rm s}^{-1}$ after t seconds is given by $v_{\rm P}=\sqrt{t}\,{\rm sin}\Big(\frac{\pi}{2}t\Big)$, for $0\leqslant t\leqslant 8$. The following diagram shows the graph of $v_{\rm P}$.

 $_{\mbox{\scriptsize 6a.}}$ Write down the first value of t at which P changes direction.

[1 mark]

Markscheme

$$t=2$$
 A1 N1

[1 mark]

6b. Find the **total** distance travelled by P, for $0\leqslant t\leqslant 8$.

[2 marks]

Markscheme

substitution of limits or function into formula or correct sum (A1)

eg
$$\int_0^8 |v| \, \mathrm{d}t$$
, $\int |v_Q| \, \mathrm{d}t$, $\int_0^2 v \, \mathrm{d}t - \int_2^4 v \, \mathrm{d}t + \int_4^6 v \, \mathrm{d}t - \int_6^8 v \, \mathrm{d}t$

9.64782

distance $= 9.65 \, (\mathrm{metres})$ A1 N2

[2 marks]

6c. A second particle Q also moves along a straight line. Its velocity, $v_{\rm Q}~{
m m s^{-1}}$ after t seconds is given by $v_{\rm Q}=\sqrt{t}$ for $0\leqslant t\leqslant 8$. After [4 marks] k seconds Q has travelled the same total distance as P.

Find k.

Markscheme

correct approach (A1)

eg
$$s = \int \sqrt{t}, \int_0^k \sqrt{t} dt, \int_0^k |v_Q| dt$$

correct integration (A1)

eg
$$\int \sqrt{t} = \frac{2}{3}t^{\frac{3}{2}} + c$$
, $\left[\frac{2}{3}x^{\frac{3}{2}}\right]_0^k$, $\frac{2}{3}k^{\frac{3}{2}}$

equating their expression to the distance travelled by their P (M1)

eg
$$\frac{2}{3}k^{\frac{3}{2}} = 9.65$$
, $\int_0^k \sqrt{t} dt = 9.65$

5.93855

5.94 (seconds) A1 N3

[4 marks]

All lengths in this question are in metres.

Let $f(x)=-0.8x^2+0.5$, for $-0.5\leqslant x\leqslant 0.5$. Mark uses f(x) as a model to create a barrel. The region enclosed by the graph of f, the x-axis, the line x=-0.5 and the line x=0.5 is rotated 360° about the x-axis. This is shown in the following diagram.

7a. Use the model to find the volume of the barrel.

[3 marks]

Markscheme

attempt to substitute correct limits or the function into the formula involving

 y^2

eg
$$\pi \int_{-0.5}^{0.5} y^2 \mathrm{d}x, \ \pi \int (-0.8x^2 + 0.5)^2 \mathrm{d}x$$

0.601091

$$\text{volume} = 0.601 \ (m^3) \quad \textit{A2} \quad \textit{N3}$$

[3 marks]

7b. The empty barrel is being filled with water. The volume $V\,\mathrm{m}^3$ of water in the barrel after t minutes is given by $V=0.8(1-\mathrm{e}^{-0.1t})$. How long will it take for the barrel to be half-full?

[3 marks]

Markscheme

attempt to equate half $\it their$ volume to $\it V$ (M1)

eg

$$0.30055 = 0.8(1 - e^{-0.1t})$$
, graph

4.71104

[3 marks]

A particle P starts from a point A and moves along a horizontal straight line. Its velocity $v\,\mathrm{cm}\,\mathrm{s}^{-1}$ after t seconds is given by

$$v(t) = \left\{ egin{array}{ll} -2t+2, & ext{for } 0\leqslant t\leqslant 1 \ 3\sqrt{t}+rac{4}{t^2}-7, & ext{for } 1\leqslant t\leqslant 12 \end{array}
ight.$$

The following diagram shows the graph of $\ensuremath{\boldsymbol{v}}.$

 $_{\mbox{8a.}}$ Find the initial velocity of P.

[2 marks]

Markscheme

valid attempt to substitute t=0 into the correct function $\it (M1)$

$$eg -2(0) + 2$$

2 **A1 N2**

[2 marks]

P is at rest when t = 1 and t = p.

8b. Find the value of p.

[2 marks]

Markscheme

recognizing v=0 when P is at rest $\hspace{1.5cm}$ (M1)

5.21834

 $p=5.22~({
m seconds})$ A1 N2

[2 marks]

When t=q, the acceleration of P is zero.

8c. (i) Find the value of q.

[4 marks]

(ii) Hence, find the **speed** of P when t=q.

Markscheme

```
(i) recognizing that a=v' (M1) eg v'=0, \ \text{minimum on graph} 1.95343 q=1.95 A1 N2 (ii) valid approach to find their minimum (M1) eg v(q), \ -1.75879, \ \text{reference to min on graph} 1.75879 \ \text{speed}=1.76\ (c\,\mathrm{m\,s^{-1}}) A1 N2 [4 marks]
```

8d. (i) Find the total distance travelled by P between t=1 and t=p.

[6 marks]

(ii) Hence or otherwise, find the displacement of P from A when t=p.

Markscheme

(i) substitution of $\operatorname{correct} v(t)$ into distance formula, (A1)

eg
$$\int_{1}^{p} \left| 3\sqrt{t} + \frac{4}{t^{2}} - 7 \right| dt, \left| \int 3\sqrt{t} + \frac{4}{t^{2}} - 7 dt \right|$$

4.45368

$${\rm distance} = 4.45 \ ({\rm cm}) \quad \textit{A1} \quad \textit{N2}$$

(ii) displacement from t=1 to t=p (seen anywhere) (A1)

eg
$$-4.45368$$
, $\int_{1}^{p} \left(3\sqrt{t} + \frac{4}{t^2} - 7\right) dt$

eg
$$\int_0^1 (-2t+2) dt$$
, $0.5 \times 1 \times 2$, 1

valid approach to find displacement for $0\leqslant t\leqslant p$

eg
$$\int_0^1 (-2t+2) dt + \int_1^p \left(3\sqrt{t} + \frac{4}{t^2} - 7\right) dt$$
, $\int_0^1 (-2t+2) dt - 4.45$

-3.45368

$$\label{eq:displacement} \mbox{displacement} = -3.45 \; (cm) \quad \textit{A1} \quad \textit{N2}$$

The following diagram shows the graph of $f(x)=2x\sqrt{a^2-x^2},$ for $-1\leqslant x\leqslant a,$ where a>1.

The line L is the tangent to the graph of f at the origin, O. The point $\mathrm{P}(a,\,b)$ lies on L.

ga. (i) Given that $f'(x)=rac{2a^2-4x^2}{\sqrt{a^2-x^2}},$ for $-1\leqslant x< a,$ find the equation of

[6 marks]

L.

(ii) Hence or otherwise, find an expression for b in terms of a.

Markscheme

(i) recognizing the need to find the gradient when x=0 (seen anywhere) $\it R1$

eg f'(0)

correct substitution (A1)

$$f'(0) = rac{2a^2 - 4(0)}{\sqrt{a^2 - 0}}$$

$$f'(0) = 2a$$
 (A1)

correct equation with gradient 2

eg
$$y = 2ax$$
, $y - b = 2a(x - a)$, $y = 2ax - 2a^2 + b$

(ii) METHOD 1

attempt to substitute x=a into **their** equation of L (M1)

$$\textit{eg } y = 2a \times a$$

$$b=2a^2$$
 A1 N2

METHOD 2

equating gradients (M1)

eg
$$\frac{b}{a} = 2a$$

$$b=2a^2$$
 A1 N2

The point

 $Q(a,\,0)$ lies on the graph of f. Let R be the region enclosed by the graph of f and the x-axis. This information is shown in the following diagram

Let A_R be the area of the region R.

9b. Show that $A_R = \frac{2}{3}a^3$.

[6 marks]

Markscheme

METHOD 1

recognizing that area $=\int_0^a f(x) \mathrm{d}x$ (seen anywhere) $\,$ *R1*

valid approach using substitution or inspection (M1)

eg
$$\int 2x\sqrt{u} \mathrm{d}x, \ u = a^2 - x^2, \ \mathrm{d}u = -2x \mathrm{d}x, \ frac{2}{3}(a^2 - x^2)^{rac{3}{2}}$$

correct working (A1)

eg
$$\int 2x\sqrt{a^2-x^2}\mathrm{d}x = \int -\sqrt{u}\mathrm{d}u$$

$$\int -\sqrt{u}\mathrm{d}u = -rac{u^{rac{3}{2}}}{rac{3}{2}}$$
 (A1)

$$\int f(x) \mathrm{d}x = -rac{2}{3} (a^2 - x^2)^{rac{3}{2}} + c$$
 (A1)

substituting limits and subtracting

eg
$$A_R=-rac{2}{3}(a^2-a^2)^{rac{3}{2}}+rac{2}{3}(a^2-0)^{rac{3}{2}}, rac{2}{3}(a^2)^{rac{3}{2}}$$

$$A_R=rac{2}{3}a^3$$
 AG NO

METHOD 2

recognizing that area $=\int_0^a f(x) \mathrm{d}x$ (seen anywhere) $\,$ *R1*

valid approach using substitution or inspection (M1)

eg
$$\int 2x\sqrt{u}\mathrm{d}x,\, u=a^2-x^2,\, \mathrm{d}u=-2x\mathrm{d}x,\, rac{2}{3}(a^2-x^2)^{rac{3}{2}}$$

correct working (A1)

eg
$$\int 2x\sqrt{a^2-x^2}\mathrm{d}x = \int -\sqrt{u}\mathrm{d}u$$

$$\int -\sqrt{u}\mathrm{d}u = -rac{u^{rac{3}{2}}}{rac{3}{2}}$$
 (A1)

new limits for u (even if integration is incorrect) (A1)

eg
$$u=0 \text{ and } u=a^2, \ \int_0^{a^2} u^{\frac{1}{2}} \mathrm{d}u, \ \left[-\frac{2}{3}u^{\frac{3}{2}}\right]_{a^2}^0$$

eg
$$A_R = -\left(0 - \frac{2}{3}a^3\right), \, \frac{2}{3}(a^2)^{\frac{3}{2}}$$

$$A_R=rac{2}{3}a^3$$
 AG NO

[4 marks]

Markscheme

METHOD

valid approach to find area of triangle (M1)

eg
$$\frac{1}{2}(OQ)(PQ), \frac{1}{2}ab$$

correct substitution into formula for A_T (seen anywhere) $\hspace{1.5cm}$ (A1)

eg
$$A_T = \frac{1}{2} \times a \times 2a^2$$
, a^3

valid attempt to find k (must be in terms of a) (M1)

eg
$$a^3=krac{2}{3}a^3,\ k=rac{a^3}{rac{2}{3}a^3}$$

$$k=rac{3}{2}$$
 A1 N2

METHOD 2

valid approach to find area of triangle (M1)

eg
$$\int_0^a (2ax) dx$$

correct working (A1)

eg
$$[ax^2]_0^a, a^3$$

valid attempt to find k (must be in terms of a) (M1)

eg
$$a^3 = k \frac{2}{3} a^3$$
, $k = \frac{a^3}{\frac{2}{3} a^3}$

$$k=rac{3}{2}$$
 A1 N2

[4 marks]

© International Baccalaureate Organization 2018
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

