Bush 631-607: Quantitative Methods

Lecture 8 (10.19.2021): Prediction vol. III

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Fall 2021

What is today's plan?

- ▶ Predictions: Linear model and causal inference.
- Binary predictors and randomized experiments.
- ► Multiple predictors, heterogeneous treatment effects
- R work: Im(), levels(), coef().

Least squared

THE LINEAR MODEL

$$Y = \alpha + \beta * X_i + \epsilon$$

Elements of model:

- Intercept (α) : the average value of Y when X is zero.
- ▶ Slope (β) : the average increase in Y when X increases by 1 unit.
- ▶ Error/disturbance term (ϵ): the deviation of an observation from a perfect linear relationship.

Minimize the prediction error

Confused by data?

Regression to the mean - its everywhere

How sure are we?

- What does our model tell us?
- Do the results mean anything?

Causal inference:

- Predicting the counter-factual.
- \blacktriangleright Assumptions \rightarrow use regression models for prediction.

Randomized experiments: women politicians and policy outcomes

QSS example: West Bengal (1990's)

```
dim(women)
## [1] 322 6
head(women)
```

##		GP	village	reserved	female	irrigation	water
##	1	1	2	1	1	0	10
##	2	1	1	1	1	5	0
##	3	2	2	1	1	2	2
##	4	2	1	1	1	4	31
##	5	3	2	0	0	0	0
##	6	3	1	0	0	0	0

Promoting women's issues

[1] -0.3693319

```
## drinking-water facilities
mean(women$water[women$reserved == 1]) -
    mean(women$water[women$reserved == 0])

## [1] 9.252423

## Irrigation facilities
mean(women$irrigation[women$reserved == 1]) -
    mean(women$irrigation[women$reserved == 0])
```

Promoting women's issues: regression analysis

```
# Drinking water model
lm(water ~ reserved, data = women)
##
## Call:
## lm(formula = water ~ reserved, data = women)
##
## Coefficients:
## (Intercept) reserved
##
   14.738 9.252
# Irrigation facilities model
lm(irrigation ~ reserved, data = women)
##
## Call:
## lm(formula = irrigation ~ reserved, data = women)
##
## Coefficients:
## (Intercept) reserved
       3.3879 -0.3693
##
```

Binary dependent variable:

- slope coefficient (β) = diff-in-means estimator
- $ightharpoonup \hat{eta}$: estimated average treatment effect
- ▶ Effect with/without women leaders.
- ▶ Why works?
 - ightharpoonup Randomization ightarrow causal interpretation

Women leaders of Government

Women leaders & Foreign policy

Women leaders in crisis

Women leaders in conflict

Women leaders of Government

Schwartz and Blair (2020)

Women in crisis

Schwartz and Blair (2020)

- ► Audience costs → empty threat, inconsistency.
- ▶ Belligerence costs → issue a threat.
- ► Gender stereotypes: weak, ill-prepared, emotional.
- Leader competence: male-female dyads.

Women in crisis

- Design: experiment
- ► Treatments: dyads of conflict interactions.
- Outcome measures: approval (scale and binary).

```
dim(leader)
```

```
## [1] 2342 58
```

Women leaders

Gender stereotyping: small scale evidence

```
### General: higher disapproval for women
mean(leader$Disapproval[leader$FemaleUS == 1], na.rm = T) -
 mean(leader$Disapproval[leader$FemaleUS == 0], na.rm = T)
## [1] 0.04998737
mean(leader$DisapprovalBinary[leader$FemaleUS == 1], na.rm = T) -
 mean(leader$DisapprovalBinary[leader$FemaleUS == 0], na.rm = T)
## [1] 0.01466212
mean(leader$Disapproval[leader$FemaleOpp == 1], na.rm = T) -
 mean(leader$Disapproval[leader$FemaleOpp == 0], na.rm = T)
## [1] 0.131284
mean(leader$DisapprovalBinary[leader$FemaleOpp == 1], na.rm = T) -
 mean(leader$DisapprovalBinary[leader$FemaleOpp == 0], na.rm = T)
## [1] 0.0202939
```

Women leaders

```
# Linear model coefficients == diff-in-means estimators
lm(DisapprovalBinary ~ FemaleUS, data = leader)
##
## Call:
## lm(formula = DisapprovalBinary ~ FemaleUS, data = leader)
##
## Coefficients:
## (Intercept) FemaleUS
      0.49831 0.01466
##
lm(DisapprovalBinary ~ FemaleOpp, data = leader)
##
## Call:
  lm(formula = DisapprovalBinary ~ FemaleOpp, data = leader)
##
## Coefficients:
## (Intercept) FemaleOpp
      0.49521
                   0.02029
##
```

Gender and conflict approval

[1] -0.114592

Inconsistency in male only vs. mixed dyads

```
# Male dyad <--> Male US, Female foreign
mean(leader$DisapprovalBinary[leader$MM_NotEngage == 1], na.rm = T) -
    mean(leader$DisapprovalBinary[leader$MF_NotEngage == 1], na.rm = T)

## [1] -0.05852317
# Male dyad <--> Female US, Male foreign
mean(leader$DisapprovalBinary[leader$MM_NotEngage == 1], na.rm = T) -
    mean(leader$DisapprovalBinary[leader$FM_NotEngage == 1], na.rm = T)
```

Gender and audience costs

```
mean(leader$DisapprovalBinary[leader$MM_NotEngage == 1], na.rm = T) -
 mean(leader$DisapprovalBinary[leader$MM_Engage == 1], na.rm = T)
## [1] 0.3262621
mean(leader$DisapprovalBinary[leader$FM_NotEngage == 1], na.rm = T) -
 mean(leader$DisapprovalBinary[leader$FM_Engage == 1], na.rm = T)
## [1] 0.5198552
mean(leader$DisapprovalBinary[leader$MF_NotEngage == 1], na.rm = T) -
 mean(leader$DisapprovalBinary[leader$MF_Engage == 1], na.rm = T)
## [1] 0.4359946
mean(leader$DisapprovalBinary[leader$FF NotEngage == 1], na.rm = T) -
 mean(leader$DisapprovalBinary[leader$FF_Engage == 1], na.rm = T)
## [1] 0.4980188
```

Gender and belligerence costs

Make a threat or not...

[1] 0.2473684

```
# Belligerence costs by gender
mean(leader$DisapprovalBinary[leader$MM_StayOut == 1], na.rm = T) -
    mean(leader$DisapprovalBinary[leader$MM_Engage == 1], na.rm = T)

## [1] 0.135034
mean(leader$DisapprovalBinary[leader$FM_StayOut == 1], na.rm = T) -
    mean(leader$DisapprovalBinary[leader$FM_Engage == 1], na.rm = T)
```

Inconsistency in gender dyads

Binary predictors

Linear model elements:

Slope (β): the average increase in Y when X increases by 1 unit.

When X is binary:

- ► Treatment: yes or no (female leader follow-through or not).
- ▶ X change by 1 unit \rightarrow no to yes.
- Y (disapproval) changes as well (measured in percentages).

Regression model

Why sanctions fail?

	Likelihood of Success Versus Failure							
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	
Hypothesized Variables								
All Busters	-0.24 (0.12)**	-0.46 (0.15)***						
Black Knight Allies			0.05 (0.25)	-0.08(0.27)				
Black Knight Great Powers					-0.27 (0.24)	-0.44(0.40)		
HSE Black Knight							0.03 (0.67)	
Control Variables								
US Cooperation		-0.99 (0.57)*		-0.93 (0.57)		-0.84 (0.57)		
IO Support		-2.76 (1.41)*		-2.56 (1.46)*		-2.17(1.49)		
IO × Coop		1.59 (0.60)***		1.54 (0.61)**		1.37 (0.62)**		
US Defensive Alliance		-0.70(0.76)		-0.59 (0.72)		-0.73 (0.77)		
Target Defense Alliances		0.00 (0.02)		0.00 (0.02)		0.00 (0.02)		
Modest Goal		1.82 (0.68)***		1.77 (0.68)***		1.73 (0.66)***		
Prior Relations		1.38 (0.46)***		1.37 (0.45)***		1.34 (0.46)***		
Democracy		-0.58(0.71)		-0.46 (0.68)		-0.31 (0.71)		
Post-Cold War		-0.79(0.64)		-0.79(0.61)		-0.74 (0.64)		
Time	-0.08 (-0.18)	0.04 (0.77)	-0.01 (0.69)	-0.11 (0.76)	-0.09 (0.18)	-0.08 (0.76)	-0.11 (0.18)	
$Time^2$	0.00 (-0.01)	0.03 (0.14)	0.04 (0.13)	0.05 (0.14)	0.00 (0.01)	0.05 (0.15)	0.00 (0.01)	
Time ³	-0.00 (0.00)	-0.00 (0.01)	-0.00 (0.01)	-0.00 (0.01)	00 (.00)	-0.00 (0.01)	0.00 (0.00)	
Constant	$0.40 \ (-0.63)$	-1.88 (1.59)	-0.77 (1.02)	-3.08 (1.61)*	12 (.51)	-2.79 (1.60)*	-0.25 (0.51)	
$Prob > X^2$	0.02	0.00	0.07	0.00	0.02	0.00	0.01	
Observations	840	753	789	753	840	753	840	

Regression model

Multiple predictors

$$Y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + \dots + \beta_p * X_p + \epsilon$$

How to interpret β_j ?

- ▶ Change in Y with 1-unit increase in X_{j} ...
- As all other predictors are held constant.
- ▶ Independent effect of each β .

Least squared: Multiple predictors

Sum of Squared Residuals (SSR)

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta}_{1} * X_{1} - \hat{\beta}_{1} * X_{1} - \dots - \hat{\beta}_{p} * X_{p})^{2}$$

- Estimate parameters: $\hat{\alpha}, \hat{\beta}_{p}$.
- ▶ Minimize SSR.

Women in crisis data

- Multiple predictors for leader's approval
- Using factor variables: binary outcome

```
### Generate a Factor variable
leader$inconsis_cond <- NA
leader$inconsis_cond[leader$MM_NotEngage == 1] <-"MM"
leader$inconsis_cond[leader$MF_NotEngage == 1] <-"MF"
leader$inconsis_cond[leader$FM_NotEngage == 1] <-"FM"
leader$inconsis_cond[leader$FF_NotEngage == 1] <-"FF"

# levels of factor
levels(factor(leader$inconsis_cond))</pre>
```

```
## [1] "FF" "FM" "MF" "MM"
```

Multiple binary predictors

```
Y(Disapproval) = \alpha + \beta_1 * MM + \beta_2 * MF + \beta_3 * FM + \beta_4 * FF + \epsilon
```

```
fit <- lm(DisapprovalBinary ~ factor(inconsis_cond), data = leader)</pre>
fit
##
## Call:
## lm(formula = DisapprovalBinary ~ factor(inconsis_cond), data = leader)
##
## Coefficients:
##
               (Intercept) factor(inconsis cond)FM factor(inconsis cond)MF
                   0.74661
                                             0.02588
                                                                       -0.03019
##
## factor(inconsis cond)MM
##
                  -0.08871
```

Multiple binary predictors

Coefficients = diff-in-means??

Regression w/o the intercepts

```
fit3 <- lm(DisapprovalBinary ~ -1 + inconsis_cond, data = leader)
fit3

##

## Call:
## lm(formula = DisapprovalBinary ~ -1 + inconsis_cond, data = leader)
##

## Coefficients:
## inconsis_condFF inconsis_condFM inconsis_condMF inconsis_condMM
## 0.7466     0.7725     0.7164     0.6579</pre>
```

Multiple binary predictors

Same with tapply()

```
tapply(leader$DisapprovalBinary, leader$inconsis_cond, mean)

## FF FM MF MM

## 0.7466063 0.7724868 0.7164179 0.6578947

Average treatment effect versus control (MM) dvad)
```

Average treatment effect versus control (MM dyad)

```
# Using coef() function
coef(fit3)["inconsis_condFM"] - coef(fit3)["inconsis_condMM"]

## inconsis_condFM
## 0.114592
coef(fit3)["inconsis_condFF"] - coef(fit3)["inconsis_condMM"]

## inconsis_condFF
## 0.0887116
```

Model fit: multiple predictors

 R^2 with multiple predictors \rightarrow Adjusted R^2

Degrees of freedom (DOF):

- How many observations vary 'freely'?
- ▶ DOF: (n-p-1) = n (p+1)
- ▶ Multiple predictors \rightarrow larger R^2
- ▶ Large sample (data) \rightarrow not much difference b-w R^2 and adjusted R^2

Model fit: multiple predictors

R^2 and adjusted R^2 in regression model

```
# summaru() model
summary(lm(DisapprovalBinary ~ MF_NotEngage + FM_NotEngage +
            FF_NotEngage, data = leader))
##
## Call:
## lm(formula = DisapprovalBinary ~ MF_NotEngage + FM_NotEngage +
      FF_NotEngage, data = leader)
##
##
## Residuals:
      Min 1Q Median
                                     Max
## -0.7725 -0.4211 0.2275 0.5789 0.5789
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.42114 0.01153 36.532 < 2e-16 ***
## MF NotEngage 0.29527 0.03574 8.262 2.38e-16 ***
## FM_NotEngage 0.35134 0.03674 9.562 < 2e-16 ***
## FF NotEngage 0.32546 0.03426 9.499 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4796 on 2338 degrees of freedom
## Multiple R-squared: 0.08127, Adjusted R-squared: 0.08009
## F-statistic: 68.94 on 3 and 2338 DF, p-value: < 2.2e-16
```

Heterogenous treatment effects

- Variation in effect of main predictor
- ► When?
- ATE vary among individuals: positive/negative
- Experiments: differences guide treatment assignment

Women leaders:

- Respondents' gender and views of leader
- Do women judge female leaders more harshly?

Heterogenous treatment effects

[1] 0.1652623

Leader criticism by respondents gender

```
# Subset of female respondents
lead.gen <- subset(leader, Gender == 1)</pre>
# Diff-in-means: support for female versus male leader
mean(lead.gen$Disapproval[lead.gen$FemaleUS == 1], na.rm = T) -
  mean(lead.gen$Disapproval[lead.gen$FemaleUS == 0], na.rm = T)
## [1] -0.06103819
# Subset of male respondents
lead.gen2 <- subset(leader, Gender == 0)</pre>
# Diff-in-means: support for female versus male leader
mean(lead.gen2$Disapproval[lead.gen2$FemaleUS == 1], na.rm = T) -
  mean(lead.gen2$Disapproval[lead.gen2$FemaleUS == 0], na.rm = T)
```

Estimated ATE

```
# Estimated treatment effect for gender
(mean(lead.gen$Disapproval[lead.gen$FemaleUS == 1], na.rm = T) -
mean(lead.gen$Disapproval[lead.gen$FemaleUS == 0], na.rm = T)) -
(mean(lead.gen2$Disapproval[lead.gen2$FemaleUS == 1], na.rm = T) -
mean(lead.gen2$Disapproval[lead.gen2$FemaleUS == 0], na.rm = T))
```

```
## [1] -0.2263005
```

▶ Women respondents are less critical on female leaders

Regression model: conditional effects

► Add predictor to the model

$$Y(Disapproval) = \alpha + \beta_1 * LeaderDyad + \beta_2 * RespondentGender + \epsilon$$

▶ However, *conditional effect* → Interaction model

$$Y(Disapproval) = \alpha + \beta_1 * LeaderDyad + \beta_2 * RespondentGender + \beta_3 * LeaderDyad * RespondentGender + \epsilon$$

Interaction models

$$Y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_1 * X_2 + \epsilon$$

- ▶ Coefficient β_3 : How X_1 depends on X_2 .
- ▶ Average effect of women respondent (and leader): $\beta_2 + \beta_3$.
- ▶ Average effect of men respondent: β_2 .

Interaction model in R

Syntax: use the (*) or (:) between factors

```
# Female leader and respondents gender: Interaction model
summarv(lm(Disapproval ~ FemaleUS * Gender, data = leader))
##
## Call:
## lm(formula = Disapproval ~ FemaleUS * Gender, data = leader)
##
## Residuals:
      Min 10 Median 30
                                   Max
## -3 5809 -1 4157 0 4191 1 4398 2 5843
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                           0.06740 65.511 <2e-16 ***
## (Intercept) 4.41567
## FemaleUS
               0.14453 0.09488 1.523 0.1278
## Gender
## FemaleUS:Gender -0.22630 0.13515 -1.674 0.0942 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.633 on 2334 degrees of freedom
    (4 observations deleted due to missingness)
## Multiple R-squared: 0.001536. Adjusted R-squared: 0.0002522
## F-statistic: 1.197 on 3 and 2334 DF. p-value: 0.3096
```

Interaction model: continous predictors

- ▶ How the average treatment effect varies along age scale?
- ▶ Linearity assumption: one-unit increase in predictor → similar increase in outcome.
- Data: ICB (observational).
- Variables:
 - ▶ International crises: 1918-2015.
 - Y: Crisis management technique (how to respond).
 - \triangleright X_1 : Trigger event severity/type
 - ► X₂: Leaders' age.
 - Model: how response varies based on tirgger event (and leader's age).

$$CrisisAction = \alpha + \beta_1 * Trigger + \beta_2 * Age + \beta_3 * Trigger * Age + \epsilon$$

^	cracid ‡	actor	\$ systrgyr \$	systrgda ‡	crisname	‡ leader		cris_date ;	triggr	[‡] crismg	0	lead_age
1		USA	1937		PANAY INCIDENT	Roose	welt, F.	12/12/37		9		55
2			1946		TURKISH STRAITS	Trum	an	8/7/46				62
3			1947		TRUMAN DOCTRINE	Trum	an					63
4			1948		BERLIN BLOCKADE	Trum	an	6/24/48				64
5			1948		CHINA CIVIL WAR	Trum	an	9/23/48				64
6		USA	1950		KOREAN WAR I	Trum	an					66
7					KOREAN WAR II	Trum	an					66
8		USA			KOREAN WAR III	Eisenh	hower					63
9					GUATEMALA	Eisenh	hower					63
10		USA	1954		DIEN BIEN PHU	Eisenh	hower					64
11					TAIWAN STRAIT I	Eisenh	hower					64
12			1956		SUEZ NATNWAR	Eisenh	hower	10/29/56				66
13					SYRIA/TURKEY CONFRNT.	Eisenh	hower					67
14		USA	1958		IRAQ/LEB. UPHEAVAL	Eisenh	hower	5/8/58				68
15					TAIWAN STRAIT II	Eisenh	hower					68
16			1958		BERLIN DEADLINE	Eisenh	hower					68
17			1961		PATHET LAO OFFENSIVE	Kenne	edy .					44
18	2	USA	1961	15	BAY OF PIGS	Kenne	edy	4/15/61		2	5	44

Outcome - crisis management method:

- Negotiation, mediation
- ► Non-military pressure (economic)
- ► Non-violent military
- Violence

Predictor - triggering event: Verbal/political act, violent act.

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 18.00 48.00 56.00 55.84 64.00 91.00 2
```

```
summary(fit.age <- lm(crismg ~ triggr * lead_age, data = mydata))</pre>
##
## Call:
## lm(formula = crismg ~ triggr * lead_age, data = mydata)
##
## Residuals:
      Min
              10 Median
                               30
                                     Max
## -5.2086 -1.6012 0.9619 1.8246 4.0730
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 6.512835 0.935138 6.965 6.24e-12 ***
## triggr
                 -0.113761 0.134857 -0.844 0.39913
## lead_age
                 -0.041579 0.016074 -2.587 0.00984 **
## triggr:lead_age 0.005672 0.002337 2.427 0.01541 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.387 on 927 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.06487, Adjusted R-squared: 0.06184
## F-statistic: 21.44 on 3 and 927 DF, p-value: 1.984e-13
```

Heterogeneous treatment effects: trigger over age

Causality with observational data

► The problem of *free riding*

Leaders and alliance contribution

Business experience and military alliances (Fuhrmann 2020):

- Leader experience explain variations.
- Business: executive level.
- Smaller contributions (defense expenditures), Why?
- Egoistic tendencies.
- Belief in self-efficacy and power.

Our goals:

- 1. Evaluate casual effect with linear regression (Δ spending per year).
- 2. Run placebo test: strengthen the proposed causal links.

Alliance contribution

head(matt1)

NATO Defense spending data (1949-2020)

```
## # A tibble: 6 x 74
    Country ccode '1949' '1950' '1951' '1952' '1953' '1954' '1955'
                                                                        `19
##
##
    <chr>
            <dbl> <dbl>
                         <dbl>
                                  <dbl>
                                         <dbl>
                                                  <dbl>
                                                          <dbl>
                                                                 <dbl>
                                                                         <d
## 1 Canada
               20
                     NA
                           3809.
                                   7718. 12405. 14234.
                                                         13242.
                                                                13113.
                                                                        133
## 2 USA
            2 147593, 158620, 339387, 478080, 492223, 424699, 402015, 4072
## 3 Czechia
            316
                     NΑ
                             NΑ
                                     NΑ
                                            NΑ
                                                    NΑ
                                                            NΑ
                                                                   NΑ
## 4 Hungary 310
                     NA
                             NΑ
                                     NA
                                            NΑ
                                                    NA
                                                            NA
                                                                   NΑ
## 5 Poland 290
                     NA
                             NA
                                     NΑ
                                            NA
                                                    NA
                                                            NΑ
                                                                   NΑ
## 6 Belgium
             211
                   2074. 2092.
                                  3095. 4574.
                                                  4554.
                                                         4698.
                                                                 3891.
                                                                         37
## # ... with 64 more variables: 1957 <dbl>, 1958 <dbl>, 1959 <dbl>, 1960 <dbl>
## #
      1961 <dbl>, 1962 <dbl>, 1963 <dbl>, 1964 <dbl>, 1965 <dbl>, 1966 <dbl>,
      1967 <dbl>, 1968 <dbl>, 1969 <dbl>, 1970 <dbl>, 1971 <dbl>, 1972 <dbl>,
## #
## #
      1973 <dbl>, 1974 <dbl>, 1975 <dbl>, 1976 <dbl>, 1977 <dbl>, 1978 <dbl>,
## #
      1979 <dbl>. 1980 <dbl>. 1981 <dbl>. 1982 <dbl>. 1983 <dbl>. 1984 <dbl>.
      1985 <dbl>, 1986 <dbl>, 1987 <dbl>, 1988 <dbl>, 1989 <dbl>, 1990 <dbl>,
## #
## #
      1991 <dbl>, 1992 <dbl>, 1993 <dbl>, 1994 <dbl>, 1995 <dbl>, 1996 <dbl>,
```

Leaders and military alliances expenditures

NATO leaders and defense spending data

ccode \textsc{COW numeric country code}	÷	year ‡ \textsc{year}	leadername \$ \textsc{leader name}	business \textsc{business experience}	÷	Country	def.exp ‡	def.delta ‡
	2	2003	G.W. Bush		1	USA	612232.612	13.81651492
		2004	G.W. Bush			USA	667284.639	8.99201159
		2005	G.W. Bush			USA	698019.039	4.60589054
		2006	G.W. Bush			USA	708077.303	1.44097276
:		2007	G.W. Bush			USA	726971.529	2.66838457
		2008	G.W. Bush			USA	779854.123	7.27436936
:		2009	Obama			USA	841220.473	7.86895241
		2010	Obama			USA	865268.025	2.85865034
		2011	Obama			USA	855022.313	-1.18410840
		2012	Obama			USA	807530.267	-5.55448034
:		2013	Obama			USA	745415.975	-7.69188406
		2014	Obama			USA	699563.842	-6.15121420
2	0	1949	St. Laurent			Canada		NA
24	0	1950	St. Laurent			Canada	3808.656	NA
24	0	1951	St. Laurent			Canada	7718.028	102.64439720
2	0	1952	St. Laurent			Canada	12404.681	60.72344453
2	0	1953	St. Laurent		0	Canada	14234.412	14.75032982

Testing a causal mechanism

Does business experience matter?

```
# subsets by business experience
no.business <- subset(def.matt, subset = (business == 0))
business <- subset(def.matt, subset = (business == 1))</pre>
## Diff-in-means estimator
mean(business$def.delta, na.rm = T) -
 mean(no.business$def.delta, na.rm = T)
## [1] -2.134511
# Regression model
lm(def.delta ~ business, data = def.matt)
##
## Call:
## lm(formula = def.delta ~ business, data = def.matt)
##
## Coefficients:
## (Intercept)
                  business
         2.847 -2.135
##
```

The Placebo test

- ▶ Data: non-defense related expenses
- ▶ Business experience matters → not on other issues.

```
## Diff-in-means estimator: non-defense spending
mean(business$nondefspend_ch, na.rm = T) -
 mean(no.business$nondefspend_ch, na.rm = T)
## [1] -0.1239881
# Regression model
lm(nondefspend_ch ~ business, data = def.matt)
##
## Call:
## lm(formula = nondefspend_ch ~ business, data = def.matt)
##
## Coefficients:
## (Intercept)
                  business
        3.164
                     -0.124
##
```

Businessmen, politicians and spending

Wrapping up week 8

Summary:

- Prediction and causal inference.
- Binary predictors and linear regression models.
- Multiple predictors.
- ► Heterogeneous effects: interaction models.
- ► Causal inference with observational data.

Task 3