Task-1-weather data analysis/Analyze Daily Weather.ipynb at main · Asifkhan180/Task-1-weather data analysis

In [18]: # Load the weather dataset (assuming it's in the same directory as this scrip weather df = pd.read csv('weather.csv') print(weather_df) MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir 24.3 0.0 3.4 6.3 0 1 14.0 26.9 3.6 4.4 9.7 **ENE** 5.8 2 13.7 23.4 3.3 3.6 NW 3 13.3 15.5 39.8 7.2 9.1 NW SSE 4 7.6 16.1 2.8 5.6 10.6 9.0 30.7 0.0 7.6 12.1 NNW 361 7.1 362 28.4 0.0 11.6 12.7 Ν 5.3 363 12.5 19.9 0.0 8.4 **ESE** 364 12.5 26.9 0.0 5.0 7.1 NW 365 12.3 30.2 0.0 6.0 12.6 NW WindGustSpeed WindDir9am WindDir3pm WindSpeed9am . . . Humidity3pm 0 30.0 SW NW 6.0 29 39.0 1 Ε W 4.0 36 . . . 85.0 2 Ν NNE 6.0 69 . . . 3 54.0 WNW W 56 30.0 4 50.0 SSE **ESE** 20.0 49 SSE 7.0 76.0 NW 15 361 362 48.0 NNW NNW 2.0 22 363 43.0 ENE **ENE** 11.0 47 6.0 39 364 46.0 SSW WNW 365 78.0 NW WNW 31.0 13 . . . Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm 1019.7 1015.0 7 7 23.6 0 14.4 25.7 1 1012.4 1008.4 5 3 17.5 2 1007.2 8 7 15.4 20.2 1009.5 3 1005.5 1007.0 2 7 13.5 14.1 7 4 1018.3 1018.5 7 11.1 15.4 . 361 1016.1 1010.8 1 3 20.4 30.0 1016.9 0 362 1020.0 1 17.2 28.2 363 1024.0 3 2 14.5 18.3 1022.8 7 364 1021.0 1016.2 6 15.8 25.9 365 1009.6 1009.2 23.8 28.6 1 1 RainToday RISK MM RainTomorrow 0 3.6 No Yes 1 Yes 3.6 Yes 2 39.8 Yes Yes Yes 2.8 3 Yes 4 Yes 0.0 No 361 0.0 No No 362 No 0.0 No 363 0.0 No No

0.0

0.0

No

No

No

No

364

365

Task-1-weather data analysis/Analyze Daily Weather.ipynb at main Asifkhan180/Task-1-weather data analysis <class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 366 entries, 0 to 365
Data columns (total 22 columns):
```

#	Column	Non-Nul	l Count	Dtype	
0	MinTemp	366 non	-null	float64	
1	MaxTemp	366 non	-null	float64	
2	Rainfall	366 non	-null	float64	
3	Evaporation	366 non	-null	float64	
4	Sunshine	363 non	-null	float64	
5	WindGustDir	363 non	-null	object	
6	WindGustSpeed	364 non	-null	float64	
7	WindDir9am	335 non	-null	object	
8	WindDir3pm	365 non	-null	object	
9	WindSpeed9am	359 non	-null	float64	
10	WindSpeed3pm	366 non	-null	int64	
11	Humidity9am	366 non	-null	int64	
12	Humidity3pm	366 non	-null	int64	
13	Pressure9am	366 non	-null	float64	
14	Pressure3pm	366 non	-null	float64	
15	Cloud9am	366 non	-null	int64	
16	Cloud3pm	366 non	-null	int64	
17	Temp9am	366 non	-null	float64	
18	Temp3pm	366 non	-null	float64	
19	RainToday	366 non	-null	object	
20	RISK_MM	366 non	-null	float64	
21	RainTomorrow	366 non	-null	object	
dtypes: float64(12), int64(5), object(5)					
memory usage: 63.0+ KB					
None					

None

In [21]:

```
# Create pair plots to visualize relationships between numeric variables
sns.pairplot(weather_df[['MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine']])
plt.show()
```

R:\anaconda\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_ as na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

R:\anaconda\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_ as na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

R:\anaconda\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

R:\anaconda\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_ as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option context('mode.use inf as na', True):


```
In [22]: # Calculate statistics for specific columns
   mean_rainfall = weather_df['Rainfall'].mean()
   max_temp = weather_df['MaxTemp'].max()

   print(f"Mean rainfall: {mean_rainfall:.2f} mm")
   print(f"Maximum temperature: {max_temp:.2f} °C")
```

Mean rainfall: 1.43 mm
Maximum temperature: 35.80 °C

```
# Distribution of rainfall
plt.figure(figsize=(8, 6))
sns.histplot(weather_df['Rainfall'], bins=20, kde=True, color='skyblue')
plt.xlabel('Rainfall (mm)')
plt.ylabel('Frequency')
plt.title('Distribution of Rainfall')
plt.show()
```

R:\anaconda\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_ as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

Distribution of Rainfall


```
In [25]: # Box plot for MaxTemp and Rainfall
plt.figure(figsize=(8, 6))
sns.boxplot(x='RainToday', y='MaxTemp', data=weather_df, palette='pastel')
plt.xlabel('Rain Today')
plt.ylabel('Max Temperature (°C)')
plt.title('Max Temperature vs. Rainfall')
plt.show()
```



```
In [26]: # Example: Rainfall prediction using Linear Regression (for demonstration pur)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

X = weather_df[['MaxTemp']]
y = weather_df['Rainfall']

X train. X test. v train. v test = train test split(X, v, test size=0.2, rand)
```

4982 1

```
rainfall_pred = model.predict(X_test)
    Task-1-weather_data_analysis/Analyze_Daily_Weather.ipynb at main · Asifkhan180/Task-1-weather_data_analysis
print(f"Sample rainfall predictions: {rainfall_pred[:5]}")

Sample rainfall predictions: [1.24920459 0.95342914 0.7265329 1.37480786 0.880
```

```
In [29]:
          #### Final Conclusion and Insights #####
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          # Read the weather dataset from 'weather.csv'
          file_path = 'weather.csv'
          df = pd.read_csv(file_path)
          # Calculate average maximum temperature (MaxTemp)
          max_temp_mean = df['MaxTemp'].mean()
          # Calculate total rainfall
          rainfall_sum = df['Rainfall'].sum()
          # Calculate average humidity at 9 am (Humidity9am) and 3 pm (Humidity3pm)
          humidity 9am mean = df['Humidity9am'].mean()
          humidity_3pm_mean = df['Humidity3pm'].mean()
          # Calculate average atmospheric pressure at 9 am (Pressure9am) and 3 pm (Pres
          pressure 9am mean = df['Pressure9am'].mean()
          pressure_3pm_mean = df['Pressure3pm'].mean()
          # Display conclusions and insights
          print("Conclusions and Insights:")
          print(f"1. Average Max Temperature: {max_temp_mean:.2f} °C")
          print(f"2. Total Rainfall: {rainfall_sum:.2f} mm")
          print(f"3. Average Humidity at 9 am: {humidity 9am mean:.2f}%")
          print(f"4. Average Humidity at 3 pm: {humidity_3pm_mean:.2f}%")
          print(f"5. Average Pressure at 9 am: {pressure_9am_mean:.2f} hPa")
          print(f"6. Average Pressure at 3 pm: {pressure_3pm_mean:.2f} hPa")
          # Feel free to customize and expand this analysis further!
```

Conclusions and Insights:

- 1. Average Max Temperature: 20.55 °C
- 2. Total Rainfall: 522.80 mm
- 3. Average Humidity at 9 am: 72.04%
- 4. Average Humidity at 3 pm: 44.52%
- 5. Average Pressure at 9 am: 1019.71 hPa
- 6. Average Pressure at 3 pm: 1016.81 hPa

In []:

6/29/24, 7:21 PM	Task-1-weather_data_analysis/Analyze_Daily_Weather.ipynb at main · Asifkhan180/Task-1-weather_data_analysis