MobiCharged Hazard Analysis

Team Super Charged (No.33)
Nashit Mohammad - mohamn31
Eric Nguyen - nguyee13
Samuel De Haan - dehaas1
Eamon Earl - earle2
Mustafa Choueib - choueibm

March 14, 2023, Rev. 1

Contents

1	Rev	vision 1	History	1
2	Inti	coduct	ion	1
	2.1	Purpo	ose	1
	2.2	Backg	ground	1
	2.3	Scope	of Hazard Analysis	3
	2.4	Defini	tions & Assumptions	4
		2.4.1	Definitions	4
		2.4.2	Assumptions	4
3	Cor	npone:	nt Overview	5
	3.1	-	are System	5
		3.1.1	Front End User Display	5
		3.1.2	Back-End Calculations	5
		3.1.3	Machine-Learning Algorithm	5
		3.1.4	Data Exporting	6
		3.1.5	Server	6
		3.1.6	Simulation Integration Software	6
	3.2	Hardy	vare Systems	6
		3.2.1	Power Supply System	6
		3.2.2	Phase-Shift System	6
		3.2.3	Antenna-Array System	7
		3.2.4	System Enclosure	7
		3.2.5	Hardware Display System	7
		3.2.6	Circuits & Logic	7
4	Fail	ure M	lodes & Effects Analysis Table	7
5	Fun	ctiona	d Architecture	13
	5.1	Funct	ional Requirements	13
		5.1.1	Software System Functional Requirements	13
		5.1.2	Hardware System Functional Requirements	14
	5.2	Non-f	unctional Requirements	14
		5.2.1	Look and Feel Requirements	14
		5.2.2	Appearance Requirements	14
		5 2 3	Access Requirements	14

5.2.4	Integrity Requirements	14
5.2.5	Style Requirements	15
5.2.6	Usability and Humanity Requirements	15
5.2.7	Ease of use Requirements	15
5.2.8	Learning Requirements	15
5.2.9	Understandability and Politeness Requirements	
5.2.10	Speed and Latency Requirements	15
	Safety Critical Requirements	
5.2.12	Precision of Accuracy Requirements	
	Reliability and Availability Requirements	
	Robustness of Fault Tolerance Requirements	
	Capacity Requirements	
	Physical Environment	
	Release Requirements	
	Maintenance Requirements	
	Adaptability Requirements	
	Security Requirements	
	Access Requirements	
	Privacy Requirements	
	Legal Requirements	
5.2.24	Health and Safety Requirements	17
6 Conclusion	ı	17
Tigt of Fi	orumo c	
List of Fi	gures	
	1 1	
List of Ta	ables	

1 Revision History

Table 1: Revision History

Author	Date	Version	Description
All	October 19,	Rev 0	Created first draft of document
	2022		
Nashit	March 18, 2023	Rev 1	Updated "Scope" to "Scope of
			Hazard Analysis"
Nashit	March 18, 2023	Rev 1	Updated "Definitions and As-
			sumptions" to be Specific to the
			Hazard Analysis
Nashit	March 18, 2023	Rev 1	Updated FMEA Table & Func-
			tional Architecture

2 Introduction

2.1 Purpose

The purpose of this Hazard Analysis document is to examine the MobiCharged project in its stage of development to outline all potential hazards. These hazards include, but are not limited to safety risks, areas of failure and security issues. Along with the highlighted areas of potential hazards, solutions to remove these issues (or mitigate these issues at best) will be outlined.

2.2 Background

Engineers are tasked with design in construction to exceed requirements without hindering safety. Safety is a topic that is never missed within the industry and is continuously being highlighted amongst designs; especially as Engineers are reminded of their moral obligations to society by their awarded rings upon graduation.

As a current process, the construction industry places sensors within concrete spaces to continuously test and/or monitor the integrity of buildings

during as well as after construction. Ultimately however, these sensors run out of battery and are required to be re-charged.

The industry still faces challenges when attempting to charge these sensors with the method of remote charging as the current products that satisfy remote charging abilities are yet to be optimized. There are a significant number of buildings being built in the Greater-Toronto-Area, which is emphasized considering that 70% of cranes within Canada are in just the GTA alone. To place innovation in the sub-field of safety within the industry, it is indeed a requirement to modernize the ability of producing efficient remote charging systems by having the design process optimized to provide the most effective results.

The system-solution for this will be the development of MobiCharged. This system is separated into two separate components - the software for users as well as the hardware / prototype.

The software component of MobiCharged is a machine-learned system that will react to the input of users (in which the input will be the desired outputs / application requirements for the remote charging device) and provide the necessary results (these variables depending on the user inputs can be antenna types, layouts, wavelengths, phases, etc.) in order to satisfy the user's inputs such that they may proceed with producing the devices in a way that it is optimized. This software can be operated in any environment the user chooses such that it can be used in any computing system with sufficient speed, memory & the required processors.

The hardware component of MobiCharged is a prototype to be developed for the purpose of demonstration as well as development for the software. This physical component will allow the system to be rooted to the core optimization problem in the real world, as it applies to real products. The physical system will allow placing absolute constraints and limitations into the software for optimal outputs in the software. In addition, this physical system can be implemented for an actual use-case in the field for demonstrations. The environments in which these physical systems operate are typically from roof-tops and/or high-altitude locations with spacial capabilities to place arrays of these systems. These systems react to user inputted (remotely) data such as the location of the device required to be charged, so that it may orient itself in a manner optimal for that application.

2.3 Scope of Hazard Analysis

The objective of this hazard analysis is to identify any and ideally all potential hazards/risks project MobiCharged may encounter. Moreover, the goal is to evaluate the likelihood and severity of these risks while generating solutions to remove and/or mitigate them.

The scope of the hazard analysis will be limited to the software system as well as the hardware system. The software system will be analyzed for anything that can create errors and/or issues for the users which include but are not limited to incorrect outputs, crashing of the software and security issues. The hardware system will be analyzed for anything that can bring harm to the user which includes voltage/current spikes, malfunction of hardware system and areas of physical danger. The project being analyzed will be analyzed for when it is in operation but also for the cases when it is not in operation.

${\bf 2.4}\quad {\bf Definitions}\ \&\ {\bf Assumptions}$

2.4.1 Definitions

Table 2: Naming Conventions and Terminology

Word	Definition/Context
System Hazard	A hazard associated with the system which
	typically exists regardless of the status of op-
	eration.
Accident	An unintended event which generally leads
	to a form of loss.
Risk	A probability of exposure to danger.
Phase-Shift System	A system designed to alter the waves dis-
	tributed such that it moves the phase of a
	wave.
Antenna Array	A system of antenna designed to distribute
	waves in an organized layout.
ASCII Values	A standard data-encoding format for elec-
	tronic communication between computers.
Output Limitation Timers	A software algorithm module designed to
	measure the time it takes for a process to
	complete and cancel the process if the time
	elapsed exceeds a programmed amount.
FR - Functional Requirement	Requirements that describe what the prod-
	uct is supposed to do
NFR - Non-functional Require-	Requirements that describe qualities that
ment	product will have
General Contractor	Third party companies that acquire services
	by Mobilite-Power
ECA	The Electrical Construction Association
Data Smoothing	The process of using old data as well as "fu-
	ture" data in order to predict designs.
ML	"Machine Learning" algorithm.

2.4.2 Assumptions

• There is an assumption that the developers will eventually have access to enough processing power to conduct large quantities of simulations.

- A large underlying assumption regarding the software system is that the user does not intentionally attempt to enter inputs incorrectly, as well as provide positive feedback to the system when it is not correct.
- The user will be ages 14 and up for hardware system. Ages 16 and up for software system.
- The user has a fundamental background in hardware operation safety.

3 Component Overview

3.1 Software System

3.1.1 Front End User Display

The Front End User Display component is the component in which the user is able to view. This area is where the user navigates through the software, log-in their accounts, enters inputs, requests data and/or verification, and receives outputs.

3.1.2 Back-End Calculations

The Back-End Calculations component of the software system is for the computerized calculations to occur based on the user's inputs. Note that this does not refer to simulations; this component is merely where the user's inputs are calculated to higher level variables such that the software may then be used to process to create outputs.

3.1.3 Machine-Learning Algorithm

The Machine-Learning component of this software system is where the system receives feedback either from the outputs themselves, or from the user in regards to desirable solutions. The more positive feedback it receives, the more of these inputs the system will retain. Similarly, the more negative feedback the system receives, the less of those specific inputs it will retain. As the system continues to learn, the concept of the system providing suggestions, limitations and of course the optimal solutions will become present.

3.1.4 Data Exporting

The Data Exporting component of the software system is the area of the software system where it exports the results. This not only refers to merely outputting the data to the front-end display component, but also refers to exporting into desirable file systems to be stored as well as encryption processes during transfer.

3.1.5 Server

The Server component will be used to maximize the training available to the machine learner, by having the simulations run on local machines, and passing the data via the online connections to an isolated machine and database, which will encapsulate the Machine-Learning Algorithm component. This will be in a future iteration of the design.

3.1.6 Simulation Integration Software

This component encompasses the pre-existing Matlab simulations with which we will integrate our machine learning algorithm, and the software required to integrate them. It will likely involve a database system as well as kernel modules for real-time polling of said database(s), with a dynamic scheduler.

3.2 Hardware Systems

3.2.1 Power Supply System

The purpose of the power supply system component is to provide usable power to subsequent systems.

3.2.2 Phase-Shift System

This component will work to provide the phase shift required for the antenna array system to properly create wave required interference. The purpose of this is to facilitate constructive interference at the desired location for charging.

3.2.3 Antenna-Array System

This component will contain multiple small arrays and will work in conjunction with the Power Supply system and Phase-Shift System.

3.2.4 System Enclosure

This component is present to enclose the system. Typically, the material of this enclosure is a form of wave-reflective metal. The purpose of the enclosure is such that the waves create a destructive interference in the direction that it is not desired to go towards, and creates an amplified constructive interference in the direction that it is desired in.

3.2.5 Hardware Display System

This component is for the user to understand when the device is operational, functional, etc. The current display system is under development, however, the use of LEDs will most likely be implemented.

3.2.6 Circuits & Logic

This will consist of any circuitry required for proper control and use of the overall system.

4 Failure Modes & Effects Analysis Table

Below is a failure modes and effects analysis (FMEA) for MobiCharged system.

Design Compo-	Ref.#	Failure Modes	Causes of Failure	Effects of Failure	Detection	Controls	Recommended Action
_	4.1.1.0 (NFR11)	Modes Incorrect	Failure	Users carry incorrect outputs that are later used to produce the remote charging devices. This results in a device produced that is not actually the one optimized for certain application	-Software can detect incorrect input types based on ASCII values -Other forms are not de- tectable	N/A	-Display confirmation screen containing inputs provided by the user -Display/Export the data of outputs along with the user's inputs at all times -Create an "Incorrect Input" pop-up display when the user enters an incorrect input type
							-Display examples of inputs for user -Display input limitations -Display a "Calculation Failed" screen if calculation fails (and have program execute fail-safe) -Ensure Race Conditions & concurrency errors do not occur by correctly writing program to avoid it (eg: using semaphores)
	4.1.1.1 (NFR13)	Frozen Screen and/or Crash	-User inputs values exceeding calculation capabilities (eg;dividing by 0) -Removal of power to software system during process -Deadlock	-Reboot necessary -Loss of data	Interrupted process by loss of data (only detected once in operation again)	N/A	-Avoid incorrect programming that may cause deadlocks and ensure robustness in code -Limit users from inputting incorrect data -Provide users examples of acceptable data types -Produce an emergency module that informs user of the loss of data after the crash, while advising them to report the issue to the manufacturer if repeated

Design	Ref.#	Failure	Causes of	Effects of Failure	Detection	Controls	Recommended Action
Compo-	1001.77	Modes	Failure	Effects of Famare	Detection	Controls	recommended rector
nent							
Front	4.1.1.2	Incorrect	User	Loss of previous	N/A	N/A	-Generate security
End	(NFR4)	Login In-	forgets	data history for			questions during ac-
User		formation	password	user			count creation, thus, if
Display			and/or				user forgets password they can reset it using
			username				security questions
							-Make software tied to
							online servers, allowing
							users to get a reset link
Backend	1100	Failed	-User en-	Carl Carl L	NT / A	NT / A	their email address
Calcula-	4.1.2.0 (SR4)	ranea Calcu-	-User en- ters values	-Crash of calculations and no out-	N/A	N/A	-Limit the data types users can input based
tions	(5104)	lations	that lead	puts			on ASCII values
		(unde-	to un-	-Potentially out-			-Ensure correct and
		fined	defined	putting incorrect			sufficient testing is
		answers)	answers	data without warn-			implemented during
			-User enters	ing, which could then be used to			development
			incorrect	produce remote			
			data types	charging devices			
			-User				
			enters ex-				
			treme data values				
Machine	4.1.3.0	Infinite	-Incorrect	-Software crash	-	N/A	-Ensure correct pro-
Learn-	(NFR5)	loop	program-	-Computer crash	Computer		gramming to avoid in-
ing			ming	-Reboot system	built-in		finite loops
Algo- rithm			- Negligence	-Loss of data	exiting programs		-Enter states of polling to ensure processing
11011111			of exiting		-Output		does not exceed time
			loops		limi-		limits
					tation		-Create failure states
	4101	т .	T C	T	timers	NT / A	within code
	4.1.3.1 (NFR13)	Incorrect Data-	-Ineffective algorithms	-Incorrect data out- put leading to non-	N/A	N/A	-Produce extensive re- search to implement
	(111.1119)	Smoothing		optimized solutions			the most effective data-
		.58	mented	and devices			smoothing algorithm
			-Limit	-Catastrophic er-			-Increase data set over-
			of data	rors may occur if			time
			present	positive feedback is provided to incor-			
				rect output			
				1 - T	<u> </u>	<u> </u>	

Design Compo-	Ref.#	Failure Modes	Causes of Failure	Effects of Failure	Detection	Controls	Recommended Action
nent Machine Learning Algo- rithm	4.1.3.2 (SR2)	Positive feedback applied to incorrect results (misla- belled data)	-Incorrect algorithms implemented Feedback entered incorrectly, repeatedly	-Catastrophic as incorrect outputs will be produced every time -Incorrect data will be imple- mented when producing re- mote charging devices -System failure	Compariso through data	nN/A	-Apply verification checks periodically to machine-learned algorithm to ensure it matches up correctly to existing solutions and data -Disallow users from directly inputting labelled data (can only be passed as the output to a simulation)
Data- Exporting	4.1.4.0 (SR3)	Unable to export	-Export file type not supported -Exporting process stopped due to higher priority pre- emption or power loss during pro- cess	as a whole -Exporting failed, data is not exported to user -Data is not saved	-Software check - Computer built in exit pro- grams	N/A	-Provide user the requirements of installing the software to ensure the necessary support is present -Deny the installation of the software system if necessary support is not present -Create the programs modular and preemptable such that the process can continue after halt
	4.1.4.1 (SR4)	Incorrect data outputted	-Race conditions -Incorrect indexing through data	Incorrect solution provided	Visual check between correct data dis- played to user and exported data	N/A	-Thorough programming to avoid race conditions -Apply verifications to ensure indexing is correct
	4.1.4.2 (NFR1	Vulnerable 7)lata	-Data leaks	Possibly critical client data available to malicious parties	Ethical hacking attempts to assess vulnerabilities	N/A	Encrypt outbound data on local machines be- fore transmitting via the server (SR3)

Design	Ref.#	Failure	Causes of	Effects of Failure	Detection	Controls	Recommended Action
Compo-		Modes	Failure				
nent							
Server	4.1.5.0	Server in-	-Server at ca-	-Inability to	An in-	N/A	-Timeout for idle clients
	(SR5)	accessible	pacity	serve users	evitable		on the server
	, ,		-server	-Loss of data	hazard,		-Local backups of un-
			hardware		must use		transmitted data
			malfunction		recom-		
			/ internet		mended		
			access re-		actions		
			stricted		as fail-		
					safes		
imulation	14.1.6.0	Inaccurate	-	Our Machine-	-	N/A	If error found to be large,
ntegra-	(SR6)	results	computational	Learning Al-	Developme	ent	alterations of the simula-
on			error	gorithm may	of hard-		tions would be in order to
oftware				only achieve a	ware,		purify the data fed to our
				certain percent	and com-		learner
				accuracy at	parison		
				best, even with	between		
				infinite labelled	Matlab		
				input data	simu-		
					lation		
					output		
					and real-		
					world		
					testing		
	4.1.6.1		-Simulations	Simulation data	Have a	N/A	-Dynamic polling speeds,
	(SR1)	overflow	produce out-	is lost as the	flag for		for increase in clients us-
			puts faster	queue is at ca-	when		ing the server in the fu-
			than can be	pacity	overflow		ture
			processed		occurs		-Third party database
			by the ML				monitoring software,
			algorithm, or				for if simulation speeds
			considerably				greatly increase down
			faster than				the line
			the server				
			polling speed				

Design Compo- nent	Ref.#	Failure Modes	Causes of Failure	Effects of Failure	Detection	Controls	Recommended Action
Power Supply System	4.2.1.0 (NFR12	No)power supplied to sub- sequent systems	-Fault in power supply -Fault in power supply cables to downstream systems	-System crash -Loss of data	Current measure- ments taken at antenna- array sys- tem	N/A	-Disconnect power supply system from remaining systems -Conduct testing of power supply components to determine mode of failure
	4.2.1.1 (NFR12	Voltage)swell	Large change in loads seen by power sys- tem	System short cir- cuited	Voltage measure- ments taken at antenna- array sys- tem	Protection devices (fuses) down- stream from power sup- ply	Conduct testing of power supply components to determine mode of failure
Phase- Shift System	4.2.2.0 (NFR6)	com- ponent failure	Component break down	- System failure - Incorrect phase applied to system and unintended waves will be created - Device intended to be charged may not be charged	Measurement of induced radio waves	N/A	Testing of units prior to assembly
Antenna Array System	4.2.3.0 (NFR6)	Antenna Array Com- ponent failure	-Component break down -Over current supplied	- System Failure - Waves will not be distributed - Devices will not be charged	Measurement of induced radio waves	Protection devices (fuses) to limit current to antenna within operating range	-Testing of units prior to assembly -Monitor power supplied to units

Design	Ref.#	Failure	Causes	of	Effects of F	ailur	е	Detection	Contro	ls	Recommen	nded Ac-
Compo-		Modes	Failure								tion	
nent												
System	4.2.4.0	Enclosure	Gap	in	- Waves	will	leak	-	N/A		-Inspection	n prior to
Enclo-	(NFR12)"leak"	wave	re-	through	the	gap	Measureme	nt		use	
sure			flective		and cor	nstru	ctive	of induced			-Remove	sensitive
			enclosur	e	interference	3	will	radio			equipment	from af-
			system		occur in ur	ainter	nded	waves			fected area	a
					directions			-Visual in-				
					- The	inter	nded	spection				
					directions	for	the					
					waves to	be	dis-					
					tributed	will	be					
					minimized;	$\mathrm{d}\epsilon$	evice					
					may not be	e cha	rged					
					due to le	ength	of					
					waves not s	sent						
Hardware	4.2.5.0	False in-	Display		- Confusion	amo	ngst	Verification	Wire	in-	Disconnec	t the de-
Display	(NFR12)dication	stuck	in	user			down-	dicatio	n	vice from t	the power
System			"on"	or	- Incorrec	et u	sage	stream to	in	line	supply sy	stem un-
			"off" sta	ate	may occur	by us	ser	determine	with p	ower	til failure	mode has
								state of	supply	to	been deter	rmined
								device	device			

5 Functional Architecture

As many constraints require feasible prototypes, the requirements are subject to change accordingly.

5.1 Functional Requirements

5.1.1 Software System Functional Requirements

- SR1. ML Model must optimize inputs faster than the existing process.
- **SR2.** ML Model must be able to develop "new" simulations based on previous optimal models.
- **SR3.** ML Model must be able to encrypt optimized data before exporting for the purpose of security and privacy.

- **SR4.** The software system must determine and output the optimized and correct solution.
- **SR5.** ML Model must be able to process incoming simulation data from multiple source devices.
- **SR6.** ML Model must be able to interpret data exported directly from Matlab simulations.

5.1.2 Hardware System Functional Requirements

- **HR1.** The system must be able to simulate a remote charging device by levitating a particle in an air medium within the hardware capsule for at least 5 minutes.
- **HR2.** The system must be able to levitate the particles for simulation purposes within 15 seconds.

5.2 Non-functional Requirements

5.2.1 Look and Feel Requirements

- **NFR1.** The hardware system will be packaged neatly such that all wiring is hidden and not exposed to the users.
- **NFR2.** The software system will be produced with front end design colors such that strains to the eye are minimized.

5.2.2 Appearance Requirements

NFR3. The system will consist of a simple user interface by minimizing unnecessary and complex functionalities.

5.2.3 Access Requirements

NFR4. Authorized users will have access to the system while unauthorized users will not.

5.2.4 Integrity Requirements

NFR5. The system must be able to store its current state locally in the event of a failure.

NFR6. The individual components of the physical system must be inspected and tested.

5.2.5 Style Requirements

N/A

5.2.6 Usability and Humanity Requirements

N/A

5.2.7 Ease of use Requirements

NFR7. The system shall be simple to install within 10 steps and within one hour.

5.2.8 Learning Requirements

NFR8. The system shall be understandable within an hour of use.

5.2.9 Understandability and Politeness Requirements

N/A

5.2.10 Speed and Latency Requirements

NFR9. The system must compute optimal configuration within 6 hours.

5.2.11 Safety Critical Requirements

NFR10. The hardware system must have a fail safe option such that at the system shuts off at the event of failure to reduce potential harm.

5.2.12 Precision of Accuracy Requirements

NFR11. The system must have a relative accuracy of 5% compared to current Matlab simulation.

5.2.13 Reliability and Availability Requirements

NFR12. The system must be available at all times.

5.2.14 Robustness of Fault Tolerance Requirements

NFR13. The system must be able to discard any corrupted data without adding it to the database.

5.2.15 Capacity Requirements

N/A

5.2.16 Physical Environment

NFR14. The hardware system must be able to withstand an input of an upper limit of 15 volts

5.2.17 Release Requirements

N/A

5.2.18 Maintenance Requirements

N/A

5.2.19 Adaptability Requirements

NFR15. The system must be functional on Windows and macOS.

5.2.20 Security Requirements

NFR17 - Client data must be protected.

5.2.21 Access Requirements

N/A

5.2.22 Privacy Requirements

NFR16. The system must encrypt all exported data.

5.2.23 Legal Requirements

N/A

5.2.24 Health and Safety Requirements

N/A

6 Conclusion

Designing a software system is an intricate process, one that requires an inhuman-like insight into the very minute details of various sub-systems, independently nuanced and dependently coupled. For these reasons, they often contain far more mistakes and vulnerabilities than their proud creators suspect or even care to believe. This fact underlines the importance of acknowledging our faults and the likely faults of our current designs, which in turn allows us to not only protect against them but also further iterate on our pre-existing plans for development. By highlighting these hazards, we have been forced to further understand and define the constraints that are laid around our problem space, and how we might work to achieve all of them and the safest system possible. It is also important to notice the cyclical nature of data flow in our system, which can be seen in the various diagrams showing our system context in SRS Rev 0; thus our software system is especially vulnerable to the propagation of errors, and to the injection of poor data. In looking at the vulnerabilities we have been forced to understand the internal communications of all of our main components - the nature of their coupling as well as their own modular behaviour. The state of our problem definition, goals, and development plan are all better for it.

References

We will be referring to documentations provided by Mobilite-Power, however, as of now there are no references to mention.