Previously, we defined

Def (Divisibility). We say that a *divides* b if there is an integer k such that

$$b = a \cdot k$$
.

We write $a \mid b$ if a divides b. Otherwise, we write $a \nmid b$.

Theorem (The Division Algorithm). Let a be an integer and d a positive integer. Then there are *unique* integers q and r, such that 0 < r < d and

$$a = dq + r$$
.

GCD is a linear combination

Relative primes Fundamental

theorem of arithmetic

Congruence

Modular arithmetic

GCD is a linear combination

Def (GCD).

Theorem (Bezout's Theorem). If a and b are positive integers, then there exist integers s and t such that

$$\gcd(a,b) = sa + tb.$$

Exmaple: gcd(52, 44) = 4

$$6 \cdot 52 + (-7) \cdot 44 = 4$$

So called Extended Euclid's algorithm constructs such s and t, and so proves the theorem. The algorithm is described in the last section of this lecture.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Relative primes (co-primes)

Def (Prime numbers).

Def (Relative primes). a and b are relative primes (or co-primes) if

$$gcd(a, b) = 1.$$

By Bezout's theorem, *a* and *b* are co-primes if and only if there exist *s* and *t* such that

$$sa + tb = 1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Factorization of positive integers

Theorem (Fundamental theorem of arithmetic). Every positive integer n can be written in a unique way as a product of primes

$$n = p_1 \cdot p_2 \cdot \ldots \cdot p_j$$
 $(p_1 \le p_2 \le \ldots \le p_j)$

This product is called prime factorization.

See Lehman and Leighton (p. 67) for the proof.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

$$\dots -2 \quad -1 \qquad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \qquad 7 \quad 8\dots$$

What if instead of integers, we deal with a finite set of periodically repeating integers?

 $\ldots 6 \quad 7 \quad \rightarrow \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad \rightarrow \quad 0 \quad 1 \ldots$

GCD is a linear combination

Relative primes
Fundamental

theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

$$\dots -2 \quad -1 \qquad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \qquad 7 \quad 8\dots$$

What if instead of integers, we deal with a finite set of periodically repeating integers?

...6
$$7 \rightarrow 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \rightarrow 0 \ 1...$$

For example, the days of the week behave in this way.

Mon, Tue, Wed, Thr, Fri, Sat, Sun, are followed again by Mon, Tue, and so on.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

...6
$$7 \rightarrow 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \rightarrow 0 \ 1...$$

We want to add, subtract, multiply, and, hopefully, divide such special "integers" . . .

$$4+4$$
 is 1
 $7-1$ is 6
 $14\cdot 5$ is 0
 -7 is 0 is 7 is 14 is 21...

First, we need to rigorously define, which integers can be called "equal" in such modular arithmetic. We will call them congruent.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Congruence

Def. For a positive integer n, a is *congruent* to b modulo n if

$$n \mid (a-b)$$
.

This is denoted

$$a \equiv b \pmod{n}$$
.

Example:

$$8 \equiv 1 \pmod{7}$$

$$15 \equiv 1 \pmod{7}$$

$$8 \equiv 15 \pmod{7}$$

because

$$7 \mid (\underbrace{8-1}_{=7}), \quad 7 \mid (\underbrace{15-1}_{=14}), \quad 7 \mid (\underbrace{15-8}_{=7})$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Congruence

Lemma. If $a \equiv b \pmod{n}$, then exists $k \in \mathbb{Z}$ s.t. a = b + kn.

Lemma. Two numbers are congruent modulo n if and only if they have the same remainder when divided by n.

$$a \equiv b \pmod{n}$$
 if and only if $a \operatorname{rem} n = b \operatorname{rem} n$.

Proof: By the division algorithm,

$$a = q_1 n + r_1,$$
 $b = q_2 n + r_2.$
 $a - b = (q_1 - q_2)n + (r_1 - r_2)$

" \Rightarrow ": If $a \equiv b \pmod{n}$ then $n \mid (a - b)$. So $r_1 - r_2 = 0$, the remainders are equal.

"\(\infty\)": If
$$r_1 = r_2$$
, then $n \mid (a - b)$, so $a \equiv b \pmod{n}$.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Congruence

Integers are divided into 3 congruence classes:

..., 0, 3, 6, 9, 12, ... are congruent modulo 3.

..., 1, 4, 7, 10, 13, ... are congruent modulo 3.

..., 2, 5, 8, 11, 14, ... are congruent modulo 3.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Addition, subtraction, and multiplication preserve congruence.

Theorem. if
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then

$$a+c \equiv b+d \pmod{n}$$
.

Theorem. if
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Proof.

Exist $x, y \in \mathbb{Z}$ such that a - b = xn and c - d = yn.

$$ac - bd = (b + xn)(d + yn) - bd = n(xd + by + xny)$$

Thus
$$ac \equiv bd \pmod{n}$$
.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic
Congruence

Modular arithmetic

Multiplicative inverse

What about division?

Theorem. if a and n are relative primes, i.e. gcd(a, n) = 1, then exists integer a^{-1} called *multiplicative inverse*, such that

$$aa^{-1} \equiv 1 \pmod{n}$$

Proof.

Exist s and t, such that sa + tn = 1. Therefore,

$$sa - 1 = tn$$

$$sa \equiv 1 \pmod{n}$$

Therefore,
$$a^{-1} = s$$
.

GCD is a linear combination

Relative primes Fundamental

theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Corollary. If a and n are relative primes, then there exists a *unique* multiplicative inverse $a^{-1} \in \{1, 2, ..., n-1\}$ such that

$$aa^{-1} \equiv 1 \pmod{n}$$
.

Ok, uniqueness is great, but we need a procedure for finding multiplicative inverses.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Find inverse of 101 modulo 4620, that is *x* such that

$$101 \cdot x \equiv 1 \pmod{4620}$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

 $Modular\, arithmetic$

Congruence

Modular arithmetic

Find inverse of 101 modulo 4620, that is *x* such that

$$101 \cdot x \equiv 1 \pmod{4620}$$

If 101 and 4620 are relative primes:

$$gcd(101, 4620) = 1,$$

by Bezout's theorem: Exist s and t such that

$$101 \cdot s + 4620 \cdot t = \gcd(101, 4620) = 1$$

$$101 \cdot s \equiv 1 \pmod{4620}$$

We have to find Bezout coefficients *s* and *t*. Then *s* is the inverse.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Recall Euclid's Algorithm

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

GCD is a linear combination

Relative primes
Fundamental

theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

The task:

Given two numbers $a_0 \ge a_1$, run Euclid's agorithm, computing

$$a_2 = \dots$$
 $a_3 = \dots$
 \dots
 $a_k = \gcd(a_0, a_1)$

In addition, find the coefficients x_k and y_k such that

$$a_k = x_k a_0 + y_k a_1$$

We find a recurrent solution for x_k and y_k .

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Need to find the coefficients x_k and y_k such that

$$a_k = \gcd(a_0, a_1) = x_k a_0 + y_k a_1$$

But we compute more than that. We want to represent all a_i as a linear combination of a_0 and a_1

$$a_0 = x_0 a_0 + y_0 a_1$$

$$a_1 = x_1 a_0 + y_1 a_1$$

$$a_2 = x_2 a_0 + y_2 a_1$$

$$a_3 = x_3 a_0 + y_3 a_1$$
...
$$a_k = \gcd(a_0, a_1) = x_k a_0 + y_k a_1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

$$a_0 = x_0 a_0 + y_0 a_1$$

$$a_1 = x_1 a_0 + y_1 a_1$$

$$a_2 = x_2 a_0 + y_2 a_1$$

$$a_3 = x_3 a_0 + y_3 a_1$$
...
$$a_k = x_k a_0 + y_k a_1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

$$a_0 = x_0 a_0 + y_0 a_1$$
 $a_0 = 1 a_0 + 0 a_1$
 $a_1 = x_1 a_0 + y_1 a_1$ $a_1 = 0 a_0 + 1 a_1$
 $a_2 = x_2 a_0 + y_2 a_1$
 $a_3 = x_3 a_0 + y_3 a_1$
...
 $a_k = x_k a_0 + y_k a_1$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

$$a_0 = x_0 a_0 + y_0 a_1$$
 $a_0 = 1 a_0 + 0 a_1$
 $a_1 = x_1 a_0 + y_1 a_1$ $a_1 = 0 a_0 + 1 a_1$
 $a_2 = x_2 a_0 + y_2 a_1$
 $a_3 = x_3 a_0 + y_3 a_1$
...
 $a_k = x_k a_0 + y_k a_1$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

The other x_i and y_i can be derived using the relations between a_i 's:

$$a_i = a_{i-2} - q_{i-1} \cdot a_{i-1}$$

Euclid's algorithm computes the next remainder, a_i , this way:

$$a_i = a_{i-2} - q_{i-1} \cdot a_{i-1}$$

Two previous remainders are

$$a_{i-2} = x_{i-2} a_0 + y_{i-2} a_1$$
 and $a_{i-1} = x_{i-1} a_0 + y_{i-1} a_1$

$$a_i = a_{i-2} - q_{i-1} \cdot a_{i-1}$$

$$= x_{i-2} \cdot a_0 + y_{i-2} \cdot a_1 - q_{i-1}(x_{i-1} \cdot a_0 + y_{i-1} \cdot a_1)$$

= $(x_{i-2} - q_{i-1}x_{i-1}) \cdot a_0 + (y_{i-2} - q_{i-1}y_{i-1}) \cdot a_1$

$$= \left(\underbrace{x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}}_{=x_i}\right) \cdot a_0 + \left(\underbrace{y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}}_{=y_i}\right) \cdot a_1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

$$a_i = a_{i-2} - q_{i-1} \cdot a_{i-1}$$

This is how we compute all x_i and y_i up to x_k and y_k :

$$x_{0} = 1$$
 $y_{0} = 0$ $y_{1} = 1$... $x_{i} = x_{i-2} - \underbrace{\frac{a_{i-2} - a_{i}}{a_{i-1}}}_{=q_{i-1}} x_{i-1}$ $y_{i} = y_{i-2} - \underbrace{\frac{a_{i-2} - a_{i}}{a_{i-1}}}_{=q_{i-1}} y_{i-1}$...

In the end, we get two numbers x_k and y_k , so we can express the GCD as a linear combination of a_0 and a_1 :

$$\gcd(\mathbf{a_0}, a_1) = a_k = x_k \cdot \mathbf{a_0} + y_k \cdot a_1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

$$x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$$

$$x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$$
 $y_i = y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$
$$a_1 = 101$$

$$a_2 = 75$$

Compute coefficients:

$$x_0 = 1$$
$$x_1 = 0$$

$$y_0 = 0$$

$$y_1 = 1$$

$$q = \frac{4620 - 75}{101} = 45$$

$$x_2 = 1 - 45 \cdot 0 = 1$$

$$y_2 = 0 - 45 \cdot 1 = -45$$

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

 $x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$ $y_i = y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}$

Compute coefficients:

GCD is a linear combination Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

 $v_1 = 1$

 $v_0 = 0$

Multiplicative inverse

 $x_2 = 1 - 45 \cdot 0 = 1$ $y_2 = 0 - 45 \cdot 1 = -45$ $q = \frac{101-26}{75} = 1$

 $x_2 = 0 - 1 \cdot 1 = -1$ $y_2 = 1 - 1 \cdot (-45) = 46$

 $q = \frac{26-3}{22} = 1$

 $x_5 = -1 - 1 \cdot 3 = -4$ $y_5 = 46 - 1 \cdot (-137) = 183$

Run Euclid's algorithm: $a_0 = 4620 = 45 \cdot 101 + 75$ $a_1 = 101 = 1 \cdot 75 + 26$

 $a_2 = 75 = 2 \cdot 26 + 23$

 $a_3 = 26 = 1 \cdot 23 + 3$

 $a_4 = 23$

 $a_5 = 3$

 $q = \frac{4620 - 75}{101} = 45$

 $x_0 = 1$

 $x_1 = 0$

 $q = \frac{75-23}{26} = 2$

 $x_4 = 1 - 2 \cdot (-1) = 3$ $y_4 = -45 - 2 \cdot 46 = -137$

$$x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$$

$$x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$$
 $y_i = y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Compute coefficients:

$$x_0 = 1$$
 $y_0 = 0$
 $x_1 = 0$ $y_1 = 1$
 $x_2 = 1$ $y_2 = -45$
 $x_3 = -1$ $y_3 = 46$
 $x_4 = 3$ $y_4 = -137$
 $x_5 = -4$ $y_5 = 183$
 $q = \frac{23-2}{3} = 7$
 $x_6 = 31$ $y_6 = -1418$

 $x_7 = -35$ $y_7 = 1601$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

While computing the sequence of a_i 's with Euclid's algorithm, we eventually produced coefficients

$$x_7 = -35, \qquad y_7 = 1601$$

By construction, they satisfy the equation

$$a_7 = x_7 \cdot a_0 + y_7 \cdot a_1$$

$$1 = \underbrace{-35}_{=x_7} \cdot \underbrace{4620}_{=a_0} + \underbrace{1601}_{=y_7} \cdot \underbrace{101}_{=a_1}$$

But from the last equation we can find the inverse of a_1 modulo a_0 , and the inverse of a_0 modulo a_1 .

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic

Finding a multiplicative inverse

Take this equation and find the multuiplicative inverse of $a_1 = 101$ modulo $a_0 = 4620$.

$$1 = \underbrace{-35}_{=x_7} \cdot \underbrace{4620}_{=a_0} + \underbrace{1601}_{=y_7} \cdot \underbrace{101}_{=a_1}$$

$$1601 \cdot 101 - 1 = 35 \cdot 4620$$

Therefore, by definition of congruence,

$$101 \cdot 1601 \equiv 1 \pmod{4620}$$
.

So, 1601 is a multiplicative inverse of 101 modulo 4620.

We were able to find the inverse, because 101 and 4620 are relative primes, that is, their GCD is equal to 1.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Modular arithmetic

Congruence

Modular arithmetic