Minimum bases in permutation groups

Lawrence Chen

October 22, 2022

Honours presentation

Contents

Some basic group theory

Permutations

Permutation groups

Generating a group

Group actions

Orbits and stabilisers

Blocks and primitivity

The Rubik's group

Representing the cube and its operations

The Rubik's group of permutations

Orbits in the Rubik's group

Transitive action on corners

Bases and stabiliser chains

Bases and stabiliser chains

Greedy bases

What is the size of the Rubik's group?

Base sizes of primitive groups

Affine groups

Large base permutation groups

Main result in thesis

• How can we represent *operations* of a cube?

- How can we represent *operations* of a cube?
- How can we tell how many states a Rubik's cube can take?

- How can we represent operations of a cube?
- How can we tell *how many* states a Rubik's cube can take?
- How can we better *understand* operations of a cube?

- How can we represent operations of a cube?
- How can we tell how many states a Rubik's cube can take?
- How can we better *understand* operations of a cube?

One answer: using permutations and computational group theory!

- How can we represent operations of a cube?
- How can we tell how many states a Rubik's cube can take?
- How can we better *understand* operations of a cube?

One answer: using permutations and computational group theory!

(J. A. Paulos, Innumeracy)

Ideal Toy Company stated on the package of the original Rubik cube that there were more than three billion possible states the cube could attain. It's analogous to McDonald's proudly announcing that they've sold more than 120 hamburgers.

Some basic group theory

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, \ldots, n\}$$
, write Sym (n) .)

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

σ

It means

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^{\sigma} = 4$,

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^{\sigma} = 4$, $4^{\sigma} = 5$,

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^{\sigma} = 4$, $4^{\sigma} = 5$, $5^{\sigma} = 1$,

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^{\sigma} = 4$, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$,

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^{\sigma} = 4$, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$, $6^{\sigma} = 2$,

Definition (permutation)

Permutation of Ω is bijection $\sigma: \Omega \to \Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^{\sigma} = 4$, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$, $6^{\sigma} = 2$, $3^{\sigma} = 3$.

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma \tau$ means "first σ , then τ ", so $i^{\sigma \tau} = (i^{\sigma})^{\tau}$.

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3)$,

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1,$$

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4,$$

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2$$

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2)$$

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in \text{Sym}(4).$$

Note: here, $\sigma \tau \neq \tau \sigma$, since $1^{\sigma \tau} = 4$ but $1^{\tau \sigma} = (1^{\tau})^{\sigma} = 3^{\sigma} = 1$. Identity 1 = () satisfies $1\sigma = \sigma 1 = \sigma$ for $\sigma \in \operatorname{Sym}(n)$.

Note: for $g, h, k \in \operatorname{Sym}(\Omega)$, (i) $gh \in \operatorname{Sym}(\Omega)$, (ii) $1 = () \in \operatorname{Sym}(\Omega)$, (iii) $g^{-1} \in \operatorname{Sym}(\Omega)$, (iv) (gh)k = g(hk). If true for subset:

Note: for $g, h, k \in \operatorname{Sym}(\Omega)$, (i) $gh \in \operatorname{Sym}(\Omega)$, (ii) $1 = () \in \operatorname{Sym}(\Omega)$, (iii) $g^{-1} \in \operatorname{Sym}(\Omega)$, (iv) (gh)k = g(hk). If true for subset:

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

(i) **(closure)** $gh \in G$ for $g, h \in G$;

Note: for $g, h, k \in \operatorname{Sym}(\Omega)$, (i) $gh \in \operatorname{Sym}(\Omega)$, (ii) $1 = () \in \operatorname{Sym}(\Omega)$, (iii) $g^{-1} \in \operatorname{Sym}(\Omega)$, (iv) (gh)k = g(hk). If true for subset:

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G;$

Note: for $g, h, k \in \operatorname{Sym}(\Omega)$, (i) $gh \in \operatorname{Sym}(\Omega)$, (ii) $1 = () \in \operatorname{Sym}(\Omega)$, (iii) $g^{-1} \in \operatorname{Sym}(\Omega)$, (iv) (gh)k = g(hk). If true for subset:

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Note: for $g, h, k \in \operatorname{Sym}(\Omega)$, (i) $gh \in \operatorname{Sym}(\Omega)$, (ii) $1 = () \in \operatorname{Sym}(\Omega)$, (iii) $g^{-1} \in \operatorname{Sym}(\Omega)$, (iv) (gh)k = g(hk). If true for subset:

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Example (alternating group)

Alternating group $Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\} < Sym(3).$

Note: for $g, h, k \in \operatorname{Sym}(\Omega)$, (i) $gh \in \operatorname{Sym}(\Omega)$, (ii) $1 = () \in \operatorname{Sym}(\Omega)$, (iii) $g^{-1} \in \operatorname{Sym}(\Omega)$, (iv) (gh)k = g(hk). If true for subset:

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Example (alternating group)

Alternating group $Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\} < Sym(3)$. In general, Alt(n) is all *even* permutations of [n] (product of even # of *transpositions* (i, j), e.g. $(1, 2, 3) = (1, 2)(1, 3) \in Sym(n)$).

Definition (generator)

Set X generates G if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$.

Definition (generator)

Set X generates G if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$.

(If $G = \langle X \rangle$ for some X with |X| = 1, G is **cyclic**.)

Definition (generator)

Set X generates G if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$.

(If $G = \langle X \rangle$ for some X with |X| = 1, G is **cyclic**.)

Example (cyclic group)

Consider Alt(3) = {(), (1, 2, 3), (1, 3, 2)}: (1, 2, 3)² = (1, 3, 2), (1, 2, 3)³ = (), so Alt(3) =
$$\langle (1, 2, 3) \rangle$$
 is cyclic (only for $n = 3$).

Definition (generator)

Set X **generates** G if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ **generators**; write $G = \langle X \rangle$.

(If $G = \langle X \rangle$ for some X with |X| = 1, G is **cyclic**.)

Example (cyclic group)

Consider Alt(3) = {(), (1, 2, 3), (1, 3, 2)}: (1, 2, 3)² = (1, 3, 2), (1, 2, 3)³ = (), so Alt(3) = $\langle (1, 2, 3) \rangle$ is cyclic (only for n = 3).

Example (symmetric group)

Consider $Sym(3) = \{(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}.$

Not cyclic, but $Sym(3) = \langle (1,2), (2,3) \rangle$ (adjacent swaps).

Also, $Sym(3) = \langle (1, 2), (1, 2, 3) \rangle$, e.g. (2, 3) = (1, 2, 3)(1, 2).

Group actions

Definition (group action)

For (perm) group G and set $\Omega \neq \emptyset$, a G-action is map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$. **Degree** of action is $|\Omega|$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects permutation product.

Group actions

Definition (group action)

For (perm) group G and set $\Omega \neq \emptyset$, a G-action is map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$. **Degree** of action is $|\Omega|$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects permutation product.

Example (natural action)

 $G \leq \operatorname{Sym}(\Omega)$ acts on Ω by $\alpha^g := \alpha^g$ (image) for $\alpha \in \Omega$, $g \in G$.

Group actions

Definition (group action)

For (perm) group G and set $\Omega \neq \emptyset$, a G-action is map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$. **Degree** of action is $|\Omega|$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects permutation product.

Example (natural action)

 $G \leq \operatorname{Sym}(\Omega)$ acts on Ω by $\alpha^g := \alpha^g$ (image) for $\alpha \in \Omega$, $g \in G$.

Example (right regular action)

Perm group G acts on $\Omega = G$ (itself) via $\alpha^g := \alpha g$ for $\alpha, g \in G$. (Check: $\alpha^1 = \alpha 1 = \alpha$ and $\alpha^{gh} = \alpha(gh) = (\alpha g)h = (\alpha^g)^h$.)

Example (dihedral group)

Let
$$r = (1, 2, 3, 4)$$
, $s = (1, 4)(2, 3) \in Sym(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$. *Idea:* moves $g \in G$ that fix given $\alpha \in \Omega$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$. *Idea:* moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (natural action)

 $G = Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\}$ acts on $\Omega = [3]$ naturally. Orbit of 1 is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$. *Idea:* moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (natural action)

 $G = Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\}$ acts on $\Omega = [3]$ naturally. Orbit of 1 is $1^G = \{1, 2, 3\} = [3]$; stabiliser of 1 is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$. *Idea:* moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (natural action)

 $G = Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\}$ acts on $\Omega = [3]$ naturally. Orbit of 1 is $1^G = \{1, 2, 3\} = [3]$; stabiliser of 1 is $G_1 = \{()\} = 1$.

One orbit only: **transitive** action.

Orbit α^G : states $\alpha^g \in \Omega$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall $G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$ where r = (1, 2, 3, 4), s = (1, 4)(2, 3).

Orbit of 1: $1^1 = 1$, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Orbit α^G : states $\alpha^g \in \Omega$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Orbit α^G : states $\alpha^g \in \Omega$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Note:
$$|1^G||G_1| = 4 \cdot 2 = 8 = |G|$$
. Coincidence?

Orbit α^G : states $\alpha^g \in \Omega$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Note:
$$|1^G||G_1| = 4 \cdot 2 = 8 = |G|$$
. Coincidence?

Theorem (orbit-stabiliser)

If G acts on Ω , then for $\alpha \in \Omega$, $|\alpha^G| |G_\alpha| = |G|$.

Definition (block)

If G acts transitively on Ω and $\Delta \subseteq \Omega$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq \Omega$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Definition (block)

If G acts transitively on Ω and $\Delta \subseteq \Omega$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq \Omega$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq \Omega$.

Examples of blocks: singletons, Ω , orbits.

Definition (block)

If G acts transitively on Ω and $\Delta \subseteq \Omega$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq \Omega$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq \Omega$.

Examples of blocks: singletons, Ω , orbits.

Definition (primitivity)

A *transitive G*-action is **primitive** if there are no nontrivial blocks; otherwise it is **imprimitive**.

If G is perm group with primitive natural action, G is **primitive**.

Definition (block)

If G acts transitively on Ω and $\Delta \subseteq \Omega$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq \Omega$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq \Omega$.

Examples of blocks: singletons, Ω , orbits.

Definition (primitivity)

A *transitive G*-action is **primitive** if there are no nontrivial blocks; otherwise it is **imprimitive**.

If *G* is perm group with primitive natural action, *G* is **primitive**.

For block Δ , define **block system** $\Sigma = \{\Delta^g : g \in G\}$ (partitions Ω); then G acts on Σ ; if Δ is *maximal*, then acts primitively.

Blocks and primitivity (ii)

Example (dihedral group)

Recall $G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$ where r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4).

Block is $\Delta = \{1, 3\}$ (nontrivial) with block system $\Sigma = \{\{1, 3\}, \{2, 4\}\}$ (opposite vertices stay opposite):

e.g.
$$\Delta^r = \{2, 4\},\$$

Blocks and primitivity (ii)

Example (dihedral group)

Recall $G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$ where r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4).

Block is $\Delta = \{1, 3\}$ (nontrivial) with block system $\Sigma = \{\{1, 3\}, \{2, 4\}\}$ (opposite vertices stay opposite):

e.g.
$$\Delta^r = \{2, 4\}, \Delta^s = \{4, 2\}, \Delta^{sr} = \{1, 3\} = \Delta.$$

 D_8 acts imprimitively on [4] but primitively on Σ (degree 2).

The Rubik's group

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

In **solved state** 1, label stickers (except each centre) using [48]:

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

In **solved state** 1, label stickers (except each centre) using [48]:

6 **generators** (*moves* in CC): *U*, *L*, *F*, *R*, *B*, *D* (rot. *clockwise*).

Representing the cube and its operations (ii)

From *solved state* 1, consider *F* which rotates front face clockwise:

Representing the cube and its operations (ii)

From *solved state* 1, consider *F* which rotates front face clockwise:

$$F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)$$

$$(7, 28, 42, 13)(8, 30, 41, 11) \in Sym(48).$$

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$, 1 = ().

Definition (Rubik's group)

 $\mathcal{G} = \langle U, L, F, R, B, D \rangle \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called **Rubik's group**.

Clearly G is finite, but what is |G|?

The Rubik's group of permutations (ii)

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
1 \cup := (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11.35.27.19)::
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35)::
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8,30,41,11);;
4 R := (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(
      8.33.48.24)::
5 \text{ B} := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1,14,48,27);;
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);;
7 G := Group( U, L, F, R, B, D );
```

The Rubik's group of permutations (ii)

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
1 \cup 1 = (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11.35.27.19)::
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35)::
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8,30,41,11);;
4 R := (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(
      8,33,48,24);;
5 \text{ B} := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1,14,48,27);;
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);;
7 G := Group(U, L, F, R, B, D);
```

Order cmd: $|\mathcal{G}| = 43\,252\,003\,274\,489\,856\,000 \approx 4.3 \cdot 10^{19}$. How?

Orbits in the Rubik's group

```
1 2 3 4 U 5 5 5 6 7 8 5 7 8 7 9 10 11 17 18 19 25 26 27 33 34 35 12 L 13 20 F 21 28 R 29 36 B 37 14 15 16 22 23 24 30 31 32 38 39 40 14 14 24 43 14 15 16 47 48
```

Two \mathcal{G} -orbits: corner stickers $1^{\mathcal{G}}$, edge stickers $2^{\mathcal{G}}$.

Transitive action on corners

 ${\mathcal G}$ acts transitively on corner stickers $1^{\mathcal G}.$ In this action:

Transitive action on corners

 $\mathcal G$ acts transitively on corner stickers $1^{\mathcal G}$. In this action:

is block system for maximal block {8, 25, 19} (URF corner).

Transitive action on corners (ii)

 ${\mathcal G}$ acts primitively on Σ (degree 8); $g\in {\mathcal G}$ induces perm of Σ , e.g.

Transitive action on corners (ii)

 ${\mathcal G}$ acts primitively on Σ (degree 8); $g\in {\mathcal G}$ induces perm of Σ , e.g.

$$F \mapsto (\underbrace{FUL}_{FDL^F}, \underbrace{FUR}_{FUL^F}, \underbrace{FDR}_{FUR^F}, \underbrace{FDL}_{FDR^F}) \in \operatorname{Sym}(\Sigma).$$

Transitive action on corners (ii)

 $\mathcal G$ acts primitively on Σ (degree 8); $g \in \mathcal G$ induces perm of Σ , e.g.

$$F \mapsto (\underbrace{FUL}_{FDL^F}, \underbrace{FUR}_{FUL^F}, \underbrace{FDR}_{FUR^F}, \underbrace{FDR}_{FDR^F}) \in \operatorname{Sym}(\Sigma).$$

 \mathcal{G} induces every perm of Σ (so Sym(8) "is" *primitive* quotient of \mathcal{G}).

Definition (Base, stabiliser chain)

If
$$G \leq \operatorname{Sym}(\Omega)$$
, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1, \dots, \beta_r} = 1$. (Recall: $G_{\beta_1, \dots, \beta_r} = \{g \in G : \beta_1^g = \beta_1, \dots, \beta_r^g = \beta_r\}$.)

Definition (Base, stabiliser chain)

If $G \leq \operatorname{Sym}(\Omega)$, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1,\dots,\beta_r} = 1$. (Recall: $G_{\beta_1,\dots,\beta_r} = \{g \in G : \beta_1^g = \beta_1,\dots,\beta_r^g = \beta_r\}$.)

Corresponding stabiliser chain is

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1$$

where
$$G^{i} = G_{\beta_{i}}^{i-1} = G_{\beta_{1},...,\beta_{i}}$$
.

Definition (Base, stabiliser chain)

If $G \leq \operatorname{Sym}(\Omega)$, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1, \dots, \beta_r} = 1$. (Recall: $G_{\beta_1, \dots, \beta_r} = \{g \in G : \beta_1^g = \beta_1, \dots, \beta_r^g = \beta_r\}$.)

Corresponding stabiliser chain is

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1$$

where $G^{i} = G_{\beta_{i}}^{i-1} = G_{\beta_{1},...,\beta_{i}}$.

Base B contains elts of Ω such that only $1 \in G$ fixes every $\beta_i \in B$. (Short base desirable: how to compute **min base** of length b(G)?)

Definition (Base, stabiliser chain)

If $G \leq \operatorname{Sym}(\Omega)$, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1,\dots,\beta_r} = 1$. (Recall: $G_{\beta_1,\dots,\beta_r} = \{g \in G : \beta_1^g = \beta_1,\dots,\beta_r^g = \beta_r\}$.)

Corresponding stabiliser chain is

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1$$

where $G^{i} = G_{\beta_{i}}^{i-1} = G_{\beta_{1},...,\beta_{i}}$.

Base B contains elts of Ω such that only $1 \in G$ fixes every $\beta_i \in B$. (Short base desirable: how to compute **min base** of length b(G)?)

Theorem (Blaha, 1992)

Problem of finding minimum base for G is NP-complete, even for cyclic groups (if $P \neq NP$, then no polynomial time algorithm).

Example (Rubik's group)

Using BaseOfGroup cmd in GAP, base of ${\cal G}$ of size 18 is

$$B = \big[1, 3, 6, 8, 2, 4, 5, 7, 12, 13, 14, 15, 16, 21, 23, 24, 29, 31\big].$$

Example (Rubik's group)

Using BaseOfGroup cmd in GAP, base of ${\cal G}$ of size 18 is

$$B = [1, 3, 6, 8, 2, 4, 5, 7, 12, 13, 14, 15, 16, 21, 23, 24, 29, 31].$$

Contains: 7 corner stickers (from 7 of 8 corners), 11 edge stickers (from 11 of 12 edges).

Example (Rubik's group)

Using BaseOfGroup cmd in GAP, base of ${\cal G}$ of size 18 is

$$B = [1, 3, 6, 8, 2, 4, 5, 7, 12, 13, 14, 15, 16, 21, 23, 24, 29, 31].$$

Contains: 7 corner stickers (from 7 of 8 corners), 11 edge stickers (from 11 of 12 edges).

Theorem

For Rubik's group G, b(G) = 18.

Stabiliser chain implemented in GAP; useful in algorithms.

Stabiliser chain implemented in GAP; useful in algorithms.

Let
$$G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$$
 have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \cdots \ge G^r = 1.$$

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Problem (random element generation)

Generate uniformly random element of *G*.

(Alternative:

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Problem (random element generation)

Generate uniformly random element of *G*.

(Alternative: random product of generators in X; transitive Markov chain on Cayley graph (find mixing time?); distribution?)

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Problem (random element generation)

Generate uniformly random element of *G*.

(Alternative: random product of generators in X; transitive Markov chain on Cayley graph (find mixing time?); distribution?)

Problem (membership testing)

For $g \in \text{Sym}(\Omega)$, test if $g \in G$.

(Application:

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Problem (random element generation)

Generate uniformly random element of *G*.

(Alternative: random product of generators in X; transitive Markov chain on Cayley graph (find mixing time?); distribution?)

Problem (membership testing)

For $g \in \operatorname{Sym}(\Omega)$, test if $g \in G$.

(Application: check if restickering of Rubik's cube is valid state.)

Algorithm (greedy base; Brown, Finkelstein & Purdom, 1989)

Construct base $B = [\beta_1, ..., \beta_r]$ for $G \leq \operatorname{Sym}(\Omega)$ by

Algorithm (greedy base; Brown, Finkelstein & Purdom, 1989)

Construct base $B = [\beta_1, \ldots, \beta_r]$ for $G \leq \operatorname{Sym}(\Omega)$ by choosing $\beta_i \in \Omega$ from largest orbit of G^i ($G^0 = G$), then setting $G^i = G^{i-1}_{\beta_i}$ until $G^r = 1$. Then $G = G^0 \geq G^1 \geq \cdots \geq G^r = 1$ is stabiliser chain.

Algorithm (greedy base; Brown, Finkelstein & Purdom, 1989)

Construct base $B = [\beta_1, \ldots, \beta_r]$ for $G \leq \operatorname{Sym}(\Omega)$ by choosing $\beta_i \in \Omega$ from largest orbit of G^i ($G^0 = G$), then setting $G^i = G^{i-1}_{\beta_i}$ until $G^r = 1$. Then $G = G^0 \geq G^1 \geq \cdots \geq G^r = 1$ is stabiliser chain.

Proposition (Blaha, 1992)

Greedy base algorithm does not necessarily find minimum base, even for cyclic groups.

Algorithm (greedy base; Brown, Finkelstein & Purdom, 1989)

Construct base $B = [\beta_1, \dots, \beta_r]$ for $G \leq \operatorname{Sym}(\Omega)$ by choosing $\beta_i \in \Omega$ from largest orbit of G^i ($G^0 = G$), then setting $G^i = G^{i-1}_{\beta_i}$ until $G^r = 1$. Then $G = G^0 \geq G^1 \geq \dots \geq G^r = 1$ is stabiliser chain.

Proposition (Blaha, 1992)

Greedy base algorithm does not necessarily find minimum base, even for cyclic groups.

Theorem (Blaha, 1992)

Size of greedy base for $G \leq \operatorname{Sym}(n)$ is at most $O(b(G) \log \log n)$.

Algorithm (greedy base; Brown, Finkelstein & Purdom, 1989)

Construct base $B = [\beta_1, \dots, \beta_r]$ for $G \leq \operatorname{Sym}(\Omega)$ by choosing $\beta_i \in \Omega$ from largest orbit of G^i ($G^0 = G$), then setting $G^i = G^{i-1}_{\beta_i}$ until $G^r = 1$. Then $G = G^0 \geq G^1 \geq \dots \geq G^r = 1$ is stabiliser chain.

Proposition (Blaha, 1992)

Greedy base algorithm does not necessarily find minimum base, even for cyclic groups.

Theorem (Blaha, 1992)

Size of greedy base for $G \leq \operatorname{Sym}(n)$ is at most $O(b(G) \log \log n)$. (Compared to arbitrary nonredundant base, with size $O(b(G) \log n)$.)

Theorem (size of perm group)

If
$$B = [\beta_1, ..., \beta_r]$$
 is base for $G \le \operatorname{Sym}(n)$ with stabiliser chain $G = G^0 \ge G^1 \ge ... \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Theorem (size of perm group)

If $B = [\beta_1, ..., \beta_r]$ is base for $G \le \operatorname{Sym}(n)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Orbits and stabilisers can be easily computed (e.g. using GAP).

Theorem (size of perm group)

If $B = [\beta_1, ..., \beta_r]$ is base for $G \le \operatorname{Sym}(n)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Orbits and stabilisers can be easily computed (e.g. using GAP).

Implementing base and stabiliser chain for Rubik's group ${\cal G}$ (using BaseOfGroup and StabChain cmds), GAP computes:

Theorem (size of perm group)

If $B = [\beta_1, ..., \beta_r]$ is base for $G \le \operatorname{Sym}(n)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Orbits and stabilisers can be easily computed (e.g. using GAP).

Implementing base and stabiliser chain for Rubik's group $\mathcal G$ (using BaseOfGroup and StabChain cmds), GAP computes:

Corollary

 $|\mathcal{G}| = 43\,252\,003\,274\,489\,856\,000 \approx 4.3\cdot 10^{19}.$

Base sizes of primitive groups

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in \mathrm{GL}_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in GL_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Note: $t_{a,v} \in \text{Sym}(K^d)$ (bijection).

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in GL_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Note: $t_{a,v} \in \text{Sym}(K^d)$ (bijection).

Definition

Affine group $AGL_d(K) \leq Sym(K^d)$ of dim d is affine transfs of K^d . For $K = \mathbb{F}_q$ finite field, write $AGL_d(q)$ (perm group of deg q^d).

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in GL_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Note: $t_{a,v} \in \text{Sym}(K^d)$ (bijection).

Definition

Affine group $AGL_d(K) \leq Sym(K^d)$ of dim d is affine transfs of K^d . For $K = \mathbb{F}_q$ finite field, write $AGL_d(q)$ (perm group of deg q^d).

Interested in q=2, i.e. field $\mathbb{F}_2=\{0,1\}$ with $1+1=0,\,1\cdot 1=1,\,\mathrm{etc.}$

Large base permutation groups

Definition

Perm group *G* of degree *n* is **large base** if

$$Alt(m)^r \le G \le Sym(m) \wr Sym(r)$$

for some m, r, k, where $\operatorname{Sym}(m)$ acts on $\binom{[m]}{k}$ and $n = \binom{m}{k}^r$.

Large base permutation groups

Definition

Perm group G of degree n is **large base** if

$$Alt(m)^r \le G \le Sym(m) \wr Sym(r)$$

for some m, r, k, where $\operatorname{Sym}(m)$ acts on $\binom{[m]}{k}$ and $n = \binom{m}{k}^r$.

Theorem (Liebeck, 1984)

For primitive perm group G of degree n, either:

- (i) G is large base; or
- (ii) $b(G) < 9 \log n$.

Large base permutation groups

Definition

Perm group *G* of degree *n* is **large base** if

$$Alt(m)^r \le G \le Sym(m) \wr Sym(r)$$

for some m, r, k, where $\operatorname{Sym}(m)$ acts on $\binom{[m]}{k}$ and $n = \binom{m}{k}^r$.

Theorem (Liebeck, 1984)

For primitive perm group G of degree n, either:

- (i) G is large base; or
- (ii) $b(G) < 9 \log n$.

"Remarkable" proof used *classification of finite simple groups*, *O'Nan-Scott theorem* (classifies primitive groups).

Large base permutation groups (ii)

Theorem (Moscatiello & Roney-Dougal, 2021)

For primitive perm group G of degree n, and G is non-large base:

- (i) G is the Mathieu group M_{24} (degree 24); or
- (ii) $b(G) \le \lceil \log n \rceil + 1$.

Large base permutation groups (ii)

Theorem (Moscatiello & Roney-Dougal, 2021)

For primitive perm group G of degree n, and G is non-large base:

- (i) G is the Mathieu group M_{24} (degree 24); or
- (ii) $b(G) \le \lceil \log n \rceil + 1$.

Moreover, if $b(G) = \log n + 1$ then $G \le AGL_d(2)$ with $n = 2^d$.

Large base permutation groups (ii)

Theorem (Moscatiello & Roney-Dougal, 2021)

For primitive perm group G of degree n, and G is non-large base:

- (i) G is the Mathieu group M_{24} (degree 24); or
- (ii) $b(G) \le \lceil \log n \rceil + 1$.

Moreover, if $b(G) = \log n + 1$ then $G \le AGL_d(2)$ with $n = 2^d$.

Question (Moscatiello & Roney-Dougal, 2021)

Which primitive groups $G \leq \operatorname{Sym}(n)$ satisfy $b(G) = \log n + 1$?

Main result in thesis

Theorem

Let $G \leq AGL_d(2)$ be primitive for some d with natural action on K^d with b(G) = d + 1. (Then G is perm group of degree $n = 2^d$.)

(i) For d = 1, there is no such G.

Main result in thesis

Theorem

Let $G \leq AGL_d(2)$ be primitive for some d with natural action on K^d with b(G) = d + 1. (Then G is perm group of degree $n = 2^d$.)

- (i) For d = 1, there is no such G.
- (ii) For odd $3 \le d \le 9$ and d = 2, then G is $AGL_d(2)$.

Main result in thesis

Theorem

Let $G \leq AGL_d(2)$ be primitive for some d with natural action on K^d with b(G) = d + 1. (Then G is perm group of degree $n = 2^d$.)

- (i) For d = 1, there is no such G.
- (ii) For odd $3 \le d \le 9$ and d = 2, then G is $AGL_d(2)$.
- (iii) For even $4 \le d \le 10$, then G is $AGL_d(2)$ or $2^d : Sp_d(2)$.

Proof (idea).

• Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.

Proof (idea).

- Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.
- Use greedy base algorithm to find base for M; if base of length at most d is found then b(M) ≤ d and discard.

Proof (idea).

- Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.
- Use greedy base algorithm to find base for M; if base of length at most d is found then b(M) ≤ d and discard.
- Otherwise, recursively check for each representative M.

Proof (idea).

- Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.
- Use greedy base algorithm to find base for M; if base of length at most d is found then b(M) ≤ d and discard.
- Otherwise, recursively check for each representative M.

Every primitive $G \le AGL_d(2)$ with b(G) = d + 1 is found by process (plus perhaps false positives), up to conjugacy.

Greedy base algorithm performed better than BaseOfGroup in testing; found no false positives.

From above theorem, we conjecture the following:

Conjecture

Primitive group $G \le \operatorname{Sym}(n)$ satisfies $b(G) = \log n + 1$ iff:

From above theorem, we conjecture the following:

Conjecture

Primitive group $G \le \operatorname{Sym}(n)$ satisfies $b(G) = \log n + 1$ iff:

- $n = 2^d$ with $d \ge 2$, and G is $AGL_d(2)$; or
- $n = 2^d$ with $d \ge 4$, and G is $2^d : \mathrm{Sp}_d(2)$.

Concluding remarks

References and resources

- Analyzing Rubik's cube with GAP: https://www.gap-system.org/Doc/Examples/rubik.html
- J. A. Paulos *Innumeracy* (book)
- Holt Handbook of Computational Group Theory (textbook)
- Dixon and Mortimer Permutation Groups (textbook)
- Blaha Minimum bases for permutation groups: The greedy approximation, 1992:

```
https://doi:10.1016/0196-6774(92)90020-D
```

- Liebeck On minimal degrees and base sizes of primitive permutation groups, 1984: https://doi.org/10.1007/bf01193603
- Moscatiello and Roney-Dougal: Base sizes of primitive permutation groups, 2021: https://doi.org/10.1007/s00605-021-01599-5