

Conditional Bernoulli Mixtures for Multi-label Classification

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam {chengli, rainicy, vip, jaa}@ ccs.neu.edu

ICNL 2016

Problem

Multi-label classification: assigns a subset of candidate labels to an object (image, document, video, etc.)

{clouds, lake, sky, sunset, water, reflection} \(\leq \) {airport, animal, clouds, book, lake, sky, sunset, cars, water, reflection...}

Existing Approaches

Binary Relevance: predict each binary label independently ignore label dependency

Power-Set: treat each subset as a class + multi-class

✗ poor scalability; cannot predict unseen subsets

CRF: specify label dependency with graphical models

X only model limited (e.g. pair-wise) dependency

PCC: predict next label based on previous labels

intractable exact inference

CDN: full conditional + Gibbs sampling

cannot handle perfect correlations/anti-correlations

Proposed Model

Approximate the conditional joint by Conditional Bernoulli Mixtures (CBM) with fully factorized mixture components

$$p(\mathbf{y}|\mathbf{x},oldsymbol{ heta}) = \sum_{k=1}^{\mathcal{K}} \pi(z^k = 1|\mathbf{x},oldsymbol{lpha}) \prod_{\ell=1}^{\mathcal{L}} b(y_\ell|\mathbf{x},oldsymbol{eta}_\ell^k)$$

 $\pi(z^k = 1 | \mathbf{x}, \boldsymbol{\alpha})$: probability of belonging to component k; instantiated with a multi-class classifier

 $b(y_{\ell}|\mathbf{x}, \boldsymbol{\beta}_{\ell}^{k})$: probability of getting label y_{ℓ} in component k; instantiated with a binary classifier

- ✓ capture label dependency: $p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \neq \prod_{\ell=1}^{L} p(y_{\ell}|\mathbf{x}, \boldsymbol{\theta})$
- ✓ require no prior knowledge on the form of label dependency
- ✓ subsume Binary Relevance and Power-Set as special cases
- can predict unseen subsets
- ✓ simple EM training
- ✓ efficient inference for both marginal modes and joint mode

Capturing Label Dependency: an Illustration

Top 4 most influential CBM components for the example image

- water, lake, sunset have high marginal probabilities; reflection has a low marginal probability independent predictions miss reflection
- reflection is positively correlated with lake, water, and sunset $\rho_{\text{reflection,lake}} = 0.5$, $\rho_{\text{reflection,water}} = 0.4$, $\rho_{\text{reflection,sunset}} = 0.17$
- predicting the most probable subset includes reflection

Training with EM

Given training dataset $\{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$, use EM to minimize an upper bound of negative log likelihood:

$$\sum_{n=1}^{N} \mathbb{KL}(\Gamma(\mathbf{z}_n)||\pi(\mathbf{z}_n|\mathbf{x}_n,\boldsymbol{\alpha})) + \sum_{k=1}^{K} \sum_{\ell=1}^{L} \sum_{n=1}^{N} \gamma_n^k \mathbb{KL}(\text{Ber}(Y_{n\ell}|y_{n\ell})||b(Y_{n\ell}|\mathbf{x}_n,\boldsymbol{\beta}_{\ell}^k))$$

 $\Gamma(\mathbf{z}_n) = (\gamma_n^1, \gamma_n^2, ..., \gamma_n^K)$ is the posterior categorical distribution $p(\mathbf{z}_n | \mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta})$. Ber $(Y_{n\ell} | y_{n\ell})$ is the Bernoulli distribution with head probability $y_{n\ell}$. **E step**:

$$\gamma_n^k = rac{\pi(z_n^k = 1 | \mathbf{x}_n, oldsymbol{lpha}) \prod_{\ell=1}^L b(y_{n\ell} | \mathbf{x}_n, oldsymbol{eta}_\ell^k)}{\sum_{k=1}^K \pi(z_n^k = 1 | \mathbf{x}_n, oldsymbol{lpha}) \prod_{\ell=1}^L b(y_{n\ell} | \mathbf{x}_n, oldsymbol{eta}_\ell^k)}$$

M step: nice decomposition into a series of separate optimization problems

$$oldsymbol{lpha}_{new} = \mathop{\mathrm{argmin}}_{oldsymbol{lpha}} \sum_{n=1}^{N} \mathbb{KL}(\Gamma(\mathbf{z}_n) || \pi(\mathbf{z}_n | \mathbf{x}_n, oldsymbol{lpha}))$$
 $oldsymbol{eta}_{\ell \ new}^k = \mathop{\mathrm{argmin}}_{oldsymbol{eta}_{\ell}} \sum_{n=1}^{N} \gamma_n^k \mathbb{KL}(\mathop{\mathrm{Ber}}(Y_{n\ell} | y_{n\ell}) || b(Y_{n\ell} | \mathbf{x}_n, oldsymbol{eta}_{\ell}^k))$

Two concrete instantiations:

- with logistic regressions learners: EM + LBFGS
- ullet with gradient boosted trees learners: EM + functional gradient descent

Prediction by Dynamic Programming

Main target measure: subset accuracy

$$\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}[\mathbf{y}_n=\hat{\mathbf{y}}_n]$$

Optimal prediction strategy for subset accuracy: joint mode

$$h^*(\mathbf{x}) = \underset{\mathbf{y}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x})$$

Find joint mode by dynamic programming:

- To get a high overall probability, at least one component probability must be high
- In each component, list label subsets in a decreasing probability order with DP
- Iterate round-robin across components and prune remaining suboptimal subsets

Results

Test subset accuracy of different methods on five datasets. All numbers are in percentages.

				I	T	_
	dataset	SCENE	RCV1	TMC2007	MEDIAMILL	NUS-WIDE
	domain	image	text	text	video	image
#labels / #	label subsets	6 / 15	103 / 799	22 / 1341	101 / 6555	81 / 18K
#features /	#datapoints	294 / 2407	47K / 6000	49K / 29K	120 / 44K	128 / 270K
Method	Learner					
BinRel	LR	51.5	40.4	25.3	9.6	24.7
PowSet	LR	68.1	50.2	28.2	9.0	26.6
CC	LR	62.9	48.2	26.2	10.9	26.0
PCC	LR	64.8	48.3	26.8	10.9	26.3
ECC-label	LR	60.6	46.5	26.0	11.3	26.0
ECC-subset	LR	63.1	49.2	25.9	11.5	26.0
CDN	LR	59.9	12.6	16.8	5.4	17.1
pairCRF	linear	68.8	46.4	28.1	10.3	26.4
CBM	LR	69.7	49.9	28.7	13.5	27.3
BinRel	GB	59.3	30.1	25.4	11.2	24.4
PowSet	GB	70.5	38.2	23.1	10.1	23.6
CBM	GB	70.5	43.0	27.5	14.1	26.5

Analysis

Test subset accuracy on TMC dataset with varying number of components K for CBM+LR

- ullet K=1, CBM only estimates marginals and performs similarly to Binary Relevance
- \bullet K > 1, CBM becomes a better joint estimator and achieves better subset accuracy
- \bullet K = 30, performance asymptotes