模拟运算电路

微电子学院

2022.12.12

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

一、实验题目

- ·集成运算放大器的基本应用——模拟运算电路 实验目的
- 1. 了解集成运放的外形结构及各引脚功能;
- 2. 掌握集成运放的三种输入方式,研究由集成运放组成的比例、加法、减法、积分和微分等基本运算电路的功能;
- 3. 了解集成运放在实际应用时应考虑的一些问题。

二、实验原理

1. 集成运放的电路符号和特性:

- 1) 输入阻抗 Z_{in} → ∞
- 2) 输出阻抗 **Z**_{out} → **0**
- 3) $u_0 = A_{od}(u_+ u_-)$ $A_{od} \rightarrow \infty$
- 4)模拟运算电路特征:深度电压负反馈
 - a. 虚假短路: u₊ = u₋
 - b. 虚断: i₊ = i₋ = 0
- 2. 741集成运放的管脚图和主要性能参数:

差动增	输入阻抗	CMRR	输出	输入失	输入失	特征频
益			阻抗	调电流	调电压	率
200000	大于2MΩ	90dB	75 Ω	200nA	1至5mV	1MHz

3. 反相比例运算电路(如图1)

2022.12.12

17号台

PB21061324 徐铭鸧 PB21081565 王蕴璇

图1 反向比例运算电路

$$U_0 = -\frac{R_F}{R_I} U_i$$

4. 反相加法电路(如图2)

$$U_0 = -\left(\frac{R_F}{R_I}U_{i1} + \frac{R_F}{R_2}U_{i2}\right)$$

5. 同相比例运算电路(如图3)

图3 同相比例运算电路

$$U_0 = (1 + \frac{R_F}{R_1}) U_i$$

6. 差动放大电路(减法器)(如图4)

7. 积分运算电路(如图5)

2022.12.12

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

图5 反相积分运算电路

$$u_0(t) = -\frac{1}{RC} \int_0^t u_i dt + u_c(0)$$

8. 微分运算电路(如图6)

图6 反相微分运算电路

$$u_0(t) = -R_F C \frac{du_i}{dt}$$

三、实验内容

1.实验一: 反相比例运算电路

按图1正确连线。输入 \mathbf{f} =500Hz, $\mathbf{U}_{\mathbf{i}}$ =0.5V(有效值)的正弦交流信号,测量 $\mathbf{U}_{\mathbf{i}}$ 、 $\mathbf{U}_{\mathbf{0}}$ 有效值,并观察 $\mathbf{U}_{\mathbf{0}}$ 和 $\mathbf{U}_{\mathbf{i}}$ 的相位关系,记录结果。

2.实验二: 反相加法运算电路

按图2接线, U_{i1}和U_{i2}采用直流稳压电源输入,用万用表DCV档测量 U_{i1}和U_{i2}及输出电压V_o,记录结果。

3.实验三: 同相比例运算电路

按图3正确连线。输入f=500Hz, $U_i=0.5V$ (有效值)的正弦交流信号,测量 U_i 、 U_o 有效值,并观察 U_o 和 U_i 的相位关系,记录结果。

4.实验四:差动放大电路(减法器)

按图4正确连接实验电路, U_{i1} 和 U_{i2} 采用直流稳压电源输入,用万用表测 量 U_{i1} 和 U_{i2} 及输出电压 U_{o} ,注意 U_{i1} 和 U_{i2} 输入不能过大,防止 U_{o} 进入饱和区,记录结果。

5.实验五:积分运算电路

按积分电路如图5所示正确连接电路,取频率f为100Hz,峰峰值为2V的方波作为输入信号 U_i ,用示波器测量并记录 U_i , U_o 波形,计算理论的 U_{onn} ,进行误差计算和分析。

6.实验六: 微分电路

模拟运算电路

微电子学院

2022.12.12

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

按图7微分电路所示正确连接。输入三角波信号U_i的频率为f=1kHz 峰峰值为2 V,用示波器观察并定量画出输入、输出波形。理论计 算,误差计算和分析。

四、原始数据

1. 实验一: 反相比例运算电路放大器动态指标测试 波形见原始数据

U _i	U_o	R_1	R_{F}
0.496V	5.37V	9.7555kΩ	105.36kΩ

2. 实验二: 反相加法运算电路

波形见原始数据

U _{i1}	-0.1061V	0.3045V	-0.1036V	-0.3033V
U _{i2}	0.2036V	0.6028V	-0.2031V	-0.6027V
U ₀	-2.1241V	-6.0253V	2.1108V	6.2216V

3. 实验三: 同相比例运算电路

波形见原始数据

U_i	U_o	R_1	R_F
0.503V	5.37V	9.7344kΩ	100.88kΩ

4. 实验四: 差动放大电路(减法器)

波形见原始数据

U _{i1}	1.0046V	2.0033V	-1.0031V	-2.0027V
U _{i2}	0.5029V	1.7022V	-0.5026V	-1.7021V
U _o	-5.2020V	-3.0851V	5.1407V	3.0007V

 $R_1 = 9.7342 k\Omega$, $R_2 = 9.7551 k\Omega$, $R_3 = 105.27 k\Omega$, $R_F = 100.77 k\Omega$

5. 实验五: 积分运算电路

波形见原始数据

R_1	С	V_{op+}	V_{op-}	$V_{\rm opp}$
99.517kΩ	0.105µF	281.25mV	-262.5mV	543.75mV

6. 实验六: 微分电路

波形见原始数据

R_F	С	V_{op+}	V_{op-}	$V_{\sf opp}$
$9.7755k\Omega$	0.1055µF	3.79V	-4.03V	7.82V

五、数据处理与分析

1. 实验一: 反相比例运算电路放大器动态指标测试

2022.12.12

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

$$egin{aligned} A_{u\#\&} &= -rac{R_F}{R_1} = -10.800 \ A_{u\&pin} &= -rac{U_o}{U_i} = -10.827 \ A_{u\#\&} - A_{u\&pin} \ A_{u\#\&} \end{pmatrix} \times 100\% = 0.25\% \end{aligned}$$

2. 实验二: 反相加法运算电路

$$U_{\text{o}_{1}} = -\left(\frac{R_F}{R_1}U_{i1} + \frac{R_F}{R_2}U_{i2}\right) = -\left(10.2U_{i1} + 5.04U_{i2}\right)$$

U _{i1}	-0.1061V	0.3045V	-0.1036V	-0.3033V
U _{i2}	0.2036V	0.6028V	-0.2031V	-0.6027V
U _{0测量}	-2.1241V	-6.0253V	2.1108V	6.2216V
U _{0理论}	-2.1084V	-6.1440V	2.0803V	6.1313V
相对误差	0.74%	2.09%	1.47%	1.47%

3. 实验三: 同相比例运算电路

$$\begin{split} A_{u \mp \hat{\kappa}} &= 1 + \frac{R_F}{R_1} = 11.363 \\ A_{u \neq \bar{\kappa}} &= \frac{U_o}{U_i} = 11.391 \\ |\frac{A_{u \mp \hat{\kappa}} - A_{u \neq \bar{\kappa}}}{A_{u \mp \hat{\kappa}}}| \times 100\% = 0.25\% \end{split}$$

4. 实验四: 差动放大电路(减法器)

$$\begin{split} V_{+} &= \frac{R_{3}}{R_{2} + R_{3}} U_{i2}, V_{-} = \frac{R_{F} U_{i1} + R_{1} U_{o}}{R_{1} + R_{F}}, V_{+} = V_{-} \\ U_{o \not\equiv \dot{\mathcal{R}}} &= (1 + \frac{R_{F}}{R_{1}}) \left(\frac{R_{3}}{R_{2} + R_{3}} U_{i2} - \frac{R_{F}}{R_{1} + R_{F}} U_{i1} \right) \\ &= 10.206 U_{i2} - 10.215 U_{i1} \end{split}$$

U _{i1}	1.0046V	2.0033V	-1.0031V	-2.0027V
U _{i2}	0.5029V	1.7022V	-0.5026V	-1.7021V
U _{o测量}	-5.2020V	-3.0851V	5.1407V	3.0007V
U _{o理论}	-5.1293V	-3.0911V	5.1171V	3.0859V
相对误差	1.42%	0.19%	0.46%	2.76%

5. 实验五: 积分运算电路

$$\begin{split} &V_{opp \mp \hat{\mathcal{W}}} = \frac{1}{R_1 C} \int_0^{\frac{T}{2}} u_i dt = \frac{u_i T}{2R_1 C} = 473.7 \text{mV} \\ &V_{opp \mp \hat{\mathcal{W}}} - V_{opp \pm \hat{\mathcal{W}}} \\ &V_{opp \mp \hat{\mathcal{W}}} | \times 100\% = 12.8\% \end{split}$$

6. 实验六: 微分电路

2022.12.12

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

$$\begin{split} V_{op+2\pm ik} &= R_F C \frac{du_i}{dt} = R_F C \frac{2V_{ipp}}{T} = 4.2V, V_{op-2\pm ik} = -4.2V \\ &| \frac{V_{op+2\pm ik} - V_{op+2\pm ik}}{V_{op+2\pm ik}}| \times 100\% = 9.76\%, \\ &| \frac{V_{op-2\pm ik} - V_{op-2\pm ik}}{V_{op-2\pm ik}}| \times 100\% = 4.04\% \end{split}$$

误差分析:

- 1) 电阻实际阻值与标称值有误差;
- 2) 运放与理想运放有误差;
- 3) 电源电压与标称值12V之间有误差;
- 4) 万用表测量误差:

六、思考题

1. 如何判断集成运算放大器的好坏?为了不损坏集成运算放大器,实验中应注意什么问题?

答: 判断好坏的方法:

给集成运算放大器同时接正负直流电源,分别将同相输入端或反相输入端接地,检测输出电压Uo是否为Uom值(电源电压为±12 V时),若是,则该器件基本良好,否则说明器件已损坏。

实验时应该注意:

- (1)不要接错电源的极性;
- (2)输入信号的幅值要在运算放大器允许的范围之内。
- 2. 在反相加法运算电路中,如果U_{i1}和U_{i2}均采用直流信号,并选定U_{i2}=-1V,考虑到运算放大器的最大输出幅度为±12V,U_{i1}的绝对值不应超过多少伏?

答:该运放电路输入和输出满足

$$V_0 = -\left(\frac{R_F}{R_1}V_{i1} + \frac{R_F}{R_2}V_{i2}\right) = 10V_{i1} - 5$$

即有**|10V**_{i1} - **5**|≤12, 得-0.7≤ **V**_{i1}≤1.7V

输入正电压时,绝对值不能超过1.7V,

输入负电压时,绝对值不能超过0.7V。

3. 在积分运算电路中,分析电阻R_f的作用,说明R_f的精度对积分电路的精度有何影响?

答: 电路中R_f能有效抑制积分饱和(限制低频积分增益)和截止现象; 但是会对总电流和电容的充放电电流起到到分流作用,存在一个分流电流小量,从而会产生小误差,为了减小这个误差, 通常R_f选择满足R_f>>R₁, 即电路时间常数远小于电容C在和R_f构成回路中放电的时间常数。

模拟运算电路

微电子学院

2022.12.12

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

4. 设计一个能够实现下列运算关系的运算电路(运放数≤2),已知条件如下:1)U₀ = 2U₁₁ + U₁₂ - 3U₁₃; 2)U₀ = 2U₁₁ - 3U₁₂

七、实验总结

- 1. 通过本次实验,掌握了集成运放的基本特性;
- 2. 研究了集成运放中加法电路、减法电路、比例电路、微分电路和积分电路并进行了实验,达到了实验要求,完成了实验目的,加深了对理论知识的理解;
- 3. 通过实验思考题,自主设计电路,对于运算电路有了更为深刻的理解。