Linear Algebra Notes

Ishaan Dey | Spring 2020

MATH 3350 | Holt Linear Algebra 2nd Ed.

Ch 1

1.2 Intro stuff

Thm: Any system of linear egs has either 0, exactly 1, or ∞ many solutions

How to: check how many solutions there are in a given system of eq:

If there last line is 0 = c, then there is $no\ solution$

If not, are there free variables? If so, there are inf many solutions, otherwise 1 solutions.

<u>Thm:</u> Homogenous systems ALWAYS are consistent, aka they have either 1 or inf many solutions. This is b/c the trivial solution will always exist when $A\mathbf{x} = 0$

Ch 2

2.1 Linear Combinations

How to: find all vectors $\binom{a}{b}$ s.t. $c_1u_1+c_2u_2=\binom{a}{b}$? > Augment the vector with $\binom{a}{b}$ and row reduce, the remaining things in the augment become the scalars c_1,c_2

<u>How to</u>: show that a certain vector ${\bf b}$ cannot be obtained as a linear combination of some other vectors? > Augment the matrix with ${\bf b}$ then row reduce, you'll find an inconsistent set with ${\bf 0}=c$

2.2 Span

<u>Definition</u> of $span\{\mathbf{u_1...u_m}\}$ is the set of ALL linear combinations

<u>How to</u>: See if some vector \mathbf{v} is an element of $span\{\mathbf{u_1...u_m}\}$? > iff the linear system w/ \mathbf{v} as the augment has a solution

<u>Thm</u>: IF \mathbf{u}, \mathbf{v} are in $span\{\mathbf{u_1...u_m}\}$, THEN $\mathbf{u} + \mathbf{v} \& a\mathbf{u}$ are in that span (linear combinations of the vectors are in that span)

How to: Find a vector **b** not in a given span of vectors?

- > Set matrix equal (by augment) to some (a,b,c), and track what happens to it until matrix is row reduced.
- > If the row is $[0\ 0\ 0|f(c)]$, then any vector that has $f(c)\neq 0$ is not in the span

 $\underline{\mathsf{Thm:}}\,(span\{u_1\ldots u_m\}=\mathbb{R}^n)\iff (B\,\mathsf{has}\;\mathsf{a}\;\underline{\mathsf{pivot}}\;\mathsf{in}\;\mathsf{every}\;\underline{\mathsf{row}})$

How to: check if a set of vectors span \mathbb{R}^n ?

- > Row reduce the matrix augmented with $[a\ b\ c]$
 - > Check if there is a row of 0s, which would imply that there could be a vector not in that span
- > If there is a pivot in every row, there are either 1 or inf many ways to get to any point in \mathbb{R}^n (depending on if there are free variables in any of the columns)

<u>How to</u>: Find what values of h in a $n \times m$ matrix allow it to span \mathbb{R}^n ?

- a. Row reduce the matrix, moving the h down as needed to the last row.
- b. The vectors in A span $\mathbb{R}^n \iff$ there is a trivial solution, which only occurs when $f(h) \neq 0$
- c. The final answer should be all vectors with $\{h|h\neq 27\}$ or something

<u>How to:</u> find $span(\{a_1...a_m\})$ (aka the columns of T)?

<u>Thm:</u> For a given set of m vectors in \mathbb{R}^n :

- a. IF m < n, THEN the set does <u>not</u> span \mathbf{R}^n (b/c theres no way to have a pivot in every row)
- b. IF $m \ge n$, THEN the set could span \mathbf{R}^n (depends on whether or not they are linearly independent)

<u>Thm</u>: $\mathbf{b} \in span\{\mathbf{a_1...a_m}\}$ in $\mathbb{R}^n \iff A\mathbf{x} = \mathbf{b}$ has at least 1 solution

2.3 Linear Independence

<u>Definition</u>: IF the only way to express $\mathbf{0}$ as a linear combination of \mathbf{A} is the trivial solution $\mathbf{0}$, THEN the system is *linearly independent*. Nontrivial solutions imply *linear dependence*.

 $\underline{\text{Thm}}$: $(\mathbf{A}\mathbf{x}=\mathbf{0} \text{ has only the trivial solution}) \iff (\{\mathbf{a_1...a_m}\} \text{ is linearly independent})$

How to: Check if a system is linearly independent?

a. Set the sytem equal to ${f 0}$, and row reduce. The only solution should be ${f x}={f 0}$ (which will happen when there is a pivot in every column)

Thm: $(m \text{ vectors in } \mathbb{R}^n \text{ are linearly independent}) \implies (m < n)$

(b/c you can't have pivots in every column if there are too many columns)

(in other words, there are more variables than equations in the system)

<u>Thm:</u> For a given set of m vectors in \mathbb{R}^n :

- a. ($span\{u_1 \dots u_m\} = \mathbb{R}^n$) \iff (B has a pivot in every \underline{row})
- b. $(\{u_1 \dots u_m\})$ are linearly independent $) \iff (B \text{ has a pivot in every } \underline{\text{column}})$

How to: Check if one vector lies in the span of others in a set?

- a. Row reduce the matrix augmented with 0
- b. If B does not have a pivot in every column \implies the system is linearly dependent \implies one of the vectors lies in the span of the others

General vs. Particular Solutions to Ax=0

Thm: $\mathbf{x_g} = \mathbf{x_p} + \mathbf{x_h}$, where $\mathbf{x_g}$ is the solution to $\mathbf{Ax} = \mathbf{b}$, $\mathbf{x_h}$ is the solution to the associated homogenous system $\mathbf{Ax} = \mathbf{0}$, and $\mathbf{x_p}$ is a particular solution to $\mathbf{x_g}$

<u>Thm:</u> For a given set of vectors $\{a_1 \dots a_m\}$ and b in \mathbb{R}^n :

a. (
$$\{\mathbf{a_1...a_m}\}$$
 are linearly independent) \iff $(\mathbf{Ax} = \mathbf{b})$

Ch 3

3.1 Linear Transformations

<u>Definition</u>: A transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is <u>linear</u> if both:

a.
$$T(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u}) + \mathbf{A}(\mathbf{v}) = \mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})$$

b.
$$T(r\mathbf{u}) = \mathbf{A}(r\mathbf{u}) = r\mathbf{A}(\mathbf{u}) = rT(\mathbf{u})$$

Thm: $T(\mathbf{x}) = \mathbf{A}\mathbf{x} \implies T$ is a linear transformation, where A is a nxm matrix, and T goes from $\mathbf{R^m}$ to $\mathbf{R^n}$

How to: Check if a given transformation is linear:

- a. Convert the system into a matrix A
- b. Plug in the vectors $\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$ for ${\bf u}$ and $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ for ${\bf v}$ to prove the general case true
- c. Try the basis vectors $\begin{pmatrix} 1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1 \end{pmatrix}$ independently and check if the output fails to prove *false*

<u>How to</u>: Find range(T), where $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$:

- a. $range(T) = span(\{\mathbf{a_1 \dots a_m}\})$
- b. range is the set of linear combinations of the columns of A

<u>How to:</u> Check if a given vector \mathbf{w} is in $range(\mathbf{T})$:

a. Make matrix of $[\mathbf{A} \mid \mathbf{w}]$ and solve

One-to-One vs Onto

<u>Definition</u>: A transformation is *one-to-one* when there's at most one input that maps to an output

Definition: A transformation is *onto* when no element in the codomain B is left out

<u>Thm</u>: Given $T: \mathbb{R}^m \to \mathbb{R}^n$ and $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where B is A in row-echelon form:

1a. (T is one-to-one) \iff (columns of A are linearly independent) \iff (B has a pivot in every column)

1b. $n < m \implies$ T is not one-to-one (aka if output space is smaller than input space)

2a. (T is onto) \iff (columns of A span the codomain \mathbb{R}^n aka $range(T)=\mathbb{R}^n) \iff$ (B has a pivot in every row)

2b. $n > m \implies T$ is not onto (aka if output space is bigger than input space)

- > "No matrix that goes from bigger space to smaller space can be one-to-one"
- > "No matrix that goes from small space to bigger space can be onto"

Geometry of transformations

<u>How to</u>: Rotate a vector CCW by θ :

a.
$$T_r(\mathbf{x}) = egin{pmatrix} cos(heta) & -sin(heta) \ sin(heta) & cos(heta) \end{pmatrix} \mathbf{x}$$

How to: Shear to the right:

a.
$$T_r(\mathbf{x}) = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} \mathbf{x}$$

<u>How to:</u> Find the transformation for a parallelogram from a unit square:

a. a_1 , or the first column of A defines where the first basis vector, i, lands; same for a_2

3.2 Matrix Algebra

Properties of Elementary Matrices

a.
$$A(BC) = (AB)C$$

b.
$$A(B+C) = AB + AC$$

c.
$$(A+B)C = AC + BC$$

$$\mathsf{d.}\ s(AB) = (sA)B = A(sB)$$

e.
$$AI = IA = A$$

Non-Properties of Nonzero Matrices

a. It is possible that $AB \neq BA$ (Unless both are square)

b.
$$AB=0$$
 does not imply that $A=0$ or $B=0$

c. AC = BC does not imply that A = B or C = 0 (unless A is invertible)

Transpose of a Matrix

a.
$$(A + B)^T = A^T + B^T$$

b.
$$(sA)^T = sA^T$$

c.
$$(AC)^T = C^T A^T$$

3.3 Inverses

Definition: If T is a linear transformation, Then

- a. T has an inverse $\implies m=n$
- b. If T is invertible, then T^{-1} is also a linear transformation

 $(T \text{ is invertible}) \iff (T \text{ is one-to-one AND onto})$

How to: find an invertible matrix A^{-1} ?

a. Augment matrix A with I_n , then row reduce until you get I_n augmented with A^{-1} (aka $[A|I_n] o [I_n|A^{-1}]$)

Thm: Elementary matrices are invertible

Properties of Inverses

a.
$$(A^{-1})^{-1} = A$$

b.
$$(AB)^{-1} = B^{-1}A^{-1}$$

c.
$$AC = AD \implies C = D$$

d.
$$AC=0_{nm} \implies C=0_{nm}$$

Ch 4

4.1 Subspaces

<u>Definition</u>: A subset of S is a subspace if all three conditions are true:

- a. S contains $\mathbf{0}$ (S contains the origin)
- b. If \mathbf{u} and \mathbf{v} are both in S, then $(\mathbf{u} + \mathbf{v})$ is in S(S) is closed under addition
- c. If $r \in \mathbb{R}$, then $r\mathbf{u}$ is also in S (S is closed under scalar multiplication)

Thm: If $S = span\{\mathbf{u_1...u_m}\}$ in \mathbb{R}^n , then S is a subspace of \mathbb{R}^n

How to: Check if S is a subspace?

- a. Check if $\mathbf{0}$ is in S, which it must be to be a subspace
- b. Try to show S is generated by a set of vectors (See if it can be composed as a matrix of coefficients)

<u>Definition</u>: If **A** is a $n \times m$ matrix, then the set of solutions to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is called $null(\mathbf{A})$

(aka the null space is all linear combinations where $\mathbf{A}\mathbf{x}=\mathbf{0}$)

(aka the null space is the solution to the homogenous system)

Thm: If **A** is a $n \times m$ matrix, then the set of solutions to $\mathbf{A} \times \mathbf{a} = \mathbf{0}$ forms a subspace of \mathbb{R}^m (aka null space is a subspace)

<u>Thm</u>: Given $T: \mathbb{R}^m \to \mathbb{R}^n$ is a *linear* transformation:

- a. ker(T) is a subspace of the domain \mathbb{R}^m
- b. range(T) is a subspace of the codomain \mathbb{R}^n
- > "The kernel is the set of vectors that are sent to $\{0\}$ after applying T"
- > "The range of T is the span after applying T"

<u>How to</u>: Find ker(T) of $T(\mathbf{x}) = A(\mathbf{x})$?

a. $(T(\mathbf{x}) = \mathbf{A}\mathbf{x}) \Longrightarrow (ker(T) = null(A))$, so solve for $\mathbf{A}\mathbf{x} = \mathbf{0}$, and ker(T) is the span of that answer

How to: Find range(T) of $T(\mathbf{x}) = A(\mathbf{x})$?

a. $range(T) = span({f a_1 \dots a_m})$, so just delete any linearly *dependent* columns of ${f A}$ and that's your answer

 $\underline{\mathsf{Thm}}$: (T is one-to-one) \iff ($ker(T) = \{\mathbf{0}\}$)

4.2 Basis vectors

<u>Definition</u>: Set $\mathcal{B} = \{\mathbf{u_1...u_m}\}$ is a *basis* of subspace S iff:

- a. \mathcal{B} spans S
- b. \mathcal{B} is linearly independent

"To get to any point in S, you can take a linear combination of the basis vectors to get there"

<u>How to</u>: find a basis for $S = span\{\mathbf{u_1...u_m}\}$?

Method 1 (Thm 4.10):

- a. Create a matrix $\begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
- b. Row reduce to B
- c. The nonzero *rows* of B give a basis of S

Method 2 (Thm 4.11):

- a. Create a matrix out of $\{\mathbf{u_1...u_m}\}$
- b. Row reduce to B. The pivot columns of B are linearly independent (the other cols are dependent on the pivot columns)
- c. The columns of A corresponding to the pivot columns of B form a basis of S.

Dimension

<u>Thm</u>: If S is a subspace of \mathbb{R}^n , then every basis of S has the same number of vectors

<u>Definition</u>: If S is a subspace of \mathbb{R}^n , then the *dimension* of S is the number of vectors in any basis of S

<u>Thm</u>: $\mathcal{U} = \{\mathbf{u_1...u_m}\}$ is a set of m vectors in subspace S of dimension m.

IF \mathcal{U} is *either* linearly independent or spans S, THEN \mathcal{U} is a basis for S.

How to: expand a set of vectors to become a basis of \mathbb{R}^n :

- a. Append on all the unit vectors of $\mathbb R$, $\ e_i$, that you have and then row reduce down to B.
- b. The original columns of A that correspond w/ the pivots of B become the basis vectors for \mathbb{R}^n

<u>Unifying Theorem</u>: Given $S = \{a_1 \dots a_m\}, \{a_1 \dots a_m\} \epsilon \mathbb{R}^n, A = [\mathbf{a_1} \dots \mathbf{a_m}]$, and

$$T: \mathbb{R}^m
ightarrow \mathbb{R}^n, T(\mathbf{x}) = A\mathbf{x}$$
:

- a. S spans \mathbb{R}^n
- b. S is linearly independent
- c. $A\mathbf{x} = \mathbf{b}$ has precisely 1 unique solution $orall \ b \ \epsilon \ \mathbb{R}^n$
- d. T is onto
- e. T is one-to-one
- f. A is invertible
- g. $ker\{T\} = \{\mathbf{0}\} \iff null(A) = \{\mathbf{0}\}$
- h. S is a basis of \mathbb{R}^n

4.3 Row and Column Spaces

<u>Definition</u>: Row vectors of A come from viewing A as a set of rows; Column vectors of A come from viewing A as a set of columns.

Definition: Given A is a $n \times m$ matrix:

- a. row(A) or row space is the subspace of \mathbb{R}^{m} spanned by *row vectors* of A
- b. col(A) or column space is the subspace of \mathbb{R}^n spanned by *column* vectors of A

<u>Thm</u>: Given matrix A and B in echelon form:

a. Nonzero rows of B form a basis for row(A)

(The redundant rows get killed off by row reduction)

b. The cols of A corresponding to pivot columns of B form a basis for col(A)

(The pivot columns are linearly independent \implies they form the column space of A)

<u>Thm</u>: For any matrix A, the dimension of row(A) equals the dimension of col(A) (aka the number of basis vectors needed to define row(A) the number needed to define col(A))

<u>Definition</u>: rank(A) is the dimension of row(A) or col(A)

Rank-Nullity Thm: IF A is a $n \times m$ matrix, THEN rank(A) + nullity(A) = m (# of cols) (nullity(A)) is the number of free variables in the system $A\mathbf{x} = 0$)
*Note: ker(T) is null(A), and range(T) is col(A)

<u>Thm</u>: IF A is a $n \times m$ matrix, and **b** is a vector in \mathbb{R}^n :

- a. The system $A\mathbf{x} = \mathbf{b}$ is consistent (one or many solutions) $\iff \mathbf{b}$ is in col(A)
- b. The system $A_{\bf X}={\bf b}$ has a unique solution (exactly 1 solution) \iff ${\bf b}$ is in col(A) and columns of A are linearly independent

<u>Unifying Theorem</u>: Given $S = \{a_1 \dots a_m\}, \{a_1 \dots a_m\} \in \mathbb{R}^n, A = [\mathbf{a_1 \dots a_m}], \text{ and } T : \mathbb{R}^m \to \mathbb{R}^n, T(\mathbf{x}) = A\mathbf{x}$:

- a. S spans \mathbb{R}^n
- b. S is linearly independent
- c. $A\mathbf{x} = \mathbf{b}$ has precisely 1 unique solution $\forall \ b \ \epsilon \ \mathbb{R}^n$
- $\mathsf{d}.\ T$ is onto
- e. T is one-to-one
- f. A is invertible
- $\text{g. } ker\{T\} = \{\mathbf{0}\} \iff null(A) = \{\mathbf{0}\}$
- h. S is a basis of \mathbb{R}^n
- i. $col(A) = \mathbb{R}^n$
- j. $col(A) = \mathbb{R}^n$
- k. rank(A) = n

4.4 Change of Basis

<u>Definition</u>: Suppose that $B=\{\mathbf{u_1...u_n}\}$ forms a basis of \mathbb{R}^n , and if $\mathbf{y}=y_1\mathbf{u_1}+\ldots+y_n\mathbf{u_n}$:

Then the
$$\emph{coordinate vector}$$
 of y w.r.t. B is $[\mathbf{y}]_B = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$

"the coordinate vector contains the coeffs required to express y as a linear combination of vectors in basis B"

$$Uegin{pmatrix} y_1 \ \dots \ y_n \end{pmatrix} = y_1 \mathbf{u_1} {+} \dots {+} y_n \mathbf{u_n}$$

 $\mathbf{y} = U[\mathbf{y}]_B$; where U is the *change of basis matrix* that transforms the coordinate vector wrt B back to the standard basis

(U is just the n x n matrix containing the basis vectors of set B: $[\mathbf{u_1} \ldots \mathbf{u_n}]$)

<u>Thm</u>: Let \mathbf{x} be expressed wrt standard basis, and $B = \{\mathbf{u_1...u_n}\}$ be any basis for \mathbb{R}^n :

If
$$U = [\mathbf{u_1 \dots u_n}]$$
, then: $\mathbf{x} = U[\mathbf{x}]_B$ and $[\mathbf{x}]_B = U^{-1}\mathbf{x}$

"U takes us from a vector described with a weird basis into our standard definition"

" U^{-1} tells us how to define a vector w/ standard definition into back into weird basis land"

How to: Move from one nonstandard basis to another?

If $B_1 = \{\mathbf{u_1...u_n}\}$ corresponds to U and $B_2 = \{\mathbf{v_1...v_n}\}$ corresponds to V, then:

$$[{f x}]_{B_2} = V^{-1} U[{f x}]_{B_1}$$

$$[{f x}]_{B_1} = U^{-1}V[{f x}]_{B_2}$$

"To go from basis 1 to basis 2, apply U to go from basis 1 land into standard basis, then apply $\,V^{-1}\,$ to go to basis 2 land"

INSERT PIC

Ch 5

5.1 Determinant

<u>Definition:</u> Given A is a nxn matrix, each position is defined as a_{ij} :

a. cofactor $C_{ij}=(-1)^{i+j}*det(M_{ij})$, where M_{ij} is the rest of the matrix that doesn't include the ith row & jth column (M_{ij} is called the Minor of i,j)

b. $det(A) = a_{11}C_{ij} + \ldots + a_{1n}C_{1n}$: for each element in the *first* column, multiply each times its cofactor.

c. In general, you can expand down any row or column and apply the same formula (Thm 5.8)

Matrix of signs of cofactors: $\begin{pmatrix} +-+- \\ -+-+ \\ +-+- \\ -+-+ \end{pmatrix}$; where $C_{ij}=(-1)^{i+j}$

Thm 5.5: $det(I_n) = 1$

Thm 5.6: A is invertible $\iff det(A) \neq 0$

> This would invoke unifying theorem, so you could say things like: "cols of A form a basis of \mathbb{R}^n " etc.

Thm 5.9: If A is triangular matrix, then det(A) is product of terms along the diagonal

Thm 5.11: If A is a square matrix, then:

- a. If A has a row or column of zeros, then det(A) = 0
- b. If A has two identical rows or columns, then det(A) = 0

5.2 Properties of Determiniants

Thm 5.13:

- a. Swap 2 rows of A $\implies -det(A)$
- b. Multiply row of A by $c \implies c * det(A)$
- c. Add multiple of one row of A to another $\implies det(A)$

Thm 5.10: If A is a square matrix, then $det(A^T) = det(A)$

If A is invertible, $det(A^{-1}) = \frac{1}{det(A)}$

Thm 5.12: det(AB) = det(A)det(B) if A and B are both $n \times n$ matrices

5.3 Applications of Determinants

<u>Cramer's Rule (Thm 5.17):</u> Let A be invertible; to find unique solution, \mathbf{x} , to $A\mathbf{x} = \mathbf{b}$: $\mathbf{x}_i = \frac{det(A_i)}{det(A)}$, where A_i is the matrix A but with the ith column replaced by \mathbf{b}

<u>How To:</u> Find the unique solution to $A\mathbf{x} = \mathbf{b}$:

> Apply Cramer's Rule for each column in A

Thm 5.18: If A is invertible, then:

$$A^{-1}=rac{adj(A)}{det(A)}$$
 , where $\mathrm{adj}(A)=C^T$, the transpose of the cofactor matrix of A

 $\underline{\mathsf{Thm}} : A(\mathrm{adj}(A)) = \det(A) * I_n$

Thm 5.20: Let D be a region w finite area in \mathbf{R}^2 , $T(\mathbf{x}) = A\mathbf{x}$, and T(D) is the image of D under T, then: $\operatorname{area}(T(D)) = |\det(A)| * \operatorname{area}(D)$

Thm 5.21: Same thing as Thm 5.20 but w/ volume in ${f R}^3$

Ch 6

6.1 Eigenvalues and Eigenvectors

<u>Definition</u>: Let A be a $n \times n$ matrix; **u** is an eigenvector of A if there exists a scalar λ s.t.

 $A\mathbf{u} = \lambda \mathbf{u}$; where λ is an eigen*value* of A

Intuition: If A is a transofrmation that changes the basis vectors of our subspace, then we expect most vectors to also be transformed in some manner (sheared, etc). Eigen*vectors* are the specific vectors that remain parallel after the transformation, and the degree to which its scaled is called the eigen*value*

<u>Thm 6.2:</u> If **u** is an eigenvector of A associated with λ , then c**u** is also associated w/ λ

<u>How to:</u> Check if a given vector \mathbf{u} is a eigenvector of A?

a. Multiply $A * \mathbf{u}$, and the result should be some multiple $c\mathbf{u}$

<u>How to:</u> Find an eigenvector if you know the eigenvalues for a given $n \times n$ matrix A:

For a specific eigenvector, say $\lambda=6$: $(A\mathbf{u}-6I_n)\mathbf{u}=\mathbf{0}$

- a. Subtract off 6 from each value along the diagonal of A
- b. Then set equal to 0 and solve out
- c. You'll get something like $s_1 \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, which means any vector ${\bf u}$ that is a linear

combination of the

those two is an eigenvector (this is called the eigenspace btw)

<u>Thm 6.3:</u> If A is a $n \times n$ matrix w/ eigenvalue λ , and S is the set of all eigenvectors associated w/ λ , including $\mathbf{0}$:

Then S is a subspace of \mathbf{R}^n

<u>Definition:</u> Eigenspace of A is the subspace of all eigenvectors associated w/ λ together w/ 0

Thm 6.5: λ is an eigenvalue of $A \iff det(A - \lambda I_n) = 0$

How to: find eigenvalues of A:

- a. Subtract off λ from each diagonal, and take the determinant of that matrix. The result is called the characteristic polynomial btw
- b. Set that equal to 0, and solve for lambda

<u>Definition:</u> Multiplicity is the number of times a root of the characteristic equation is repeated, aka multiplicity is equal to its factor's exponent

<u>Thm 6.6:</u> Let A be a square matrix w/ eigenvalue λ : Then \dim of associated eigenspace is \leq multiplicity of λ

<u>Thm 6.7</u>: Unifying thm: $\lambda=0$ is not an eigenvalue of A

In other words, if $\lambda=0$ is an eigenvalue of A, then one of the columns is linearly dependent or something

6.2 Diagonalization

<u>Definition</u>: A is diagonalizable if there exists $n \times n$ matrices D and P, s.t. D is diagonal and P is invertible:

$$=> A = PDP^{-1}$$

<u>How to:</u> Find P and D to diagonalize matrix A:

- a. Find each eigenvalue using $det(A \lambda I_n) = 0$
- b. Find the associateed eigenvector by solving the homogenous system $(A-I_n)\mathbf{u}=\mathbf{0}$

c.
$$P = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n]$$
 ; $D = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$

Thm:

$$det(A)=det(PDP^{-1})=det(D)=$$
 product of λ_i s If A is triangular, eigenvalues lie along the diagonal

Thm 6.9: A is diagonalizable \iff A has eigenvectors that form a basis for \mathbf{R}^n

 $\iff A \text{ has } n \text{ linearly } independent \text{ eigenvectors}$

Thm 6.10: If $\{\lambda_1, \dots, \lambda_k\}$ are distinct eigenvalues of A,

then any set of associated eigenvectors $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ are linearly independent

- > Means that vectors from *distinct* eigenspaces are linearly independent
- > This also means that A can be not invertible and yet diagonalizable

Thm 6.11: If A has only real eigenvalues, then:

A is diagonalizable $\iff \dim$ of each eigenspace *equals* the multiplicity of corresponding eigenvalue

> Means that you'll know that a matrix isn't diagonalizable (for example) when you see that there's one basis vector of an eigenspace when the root had a power of 2

Thm 6.12: If A is a $n \times n$ matrix with n distinct real eigenvalues, then A is diagonalizable

How to: Get kth power of matrix: $A^k = PD^kP^{-1}$

Ch 7

7.1 Vector Spaces + Subspaces

<u>Definition</u>: Vector space is a set V of vectors, together w/ operations of addition and scalar multiplication:

- a. V is closed under addition: If ${f v}_1$ and ${f v}_2$ are in V, then so is ${f v}_1+{f v}_2$
- b. V is closed under scalar multiplication: If c is a real scalar and \mathbf{v} is in V, then so is $c\mathbf{v}$
- c. There exists a zero vector ${\bf 0}$ in V s.t. ${\bf 0}+{\bf v}={\bf v}$ for all ${\bf v}$ in V
- d. There exists an additive inverse $-{\bf v}$ in V s.t. $-{\bf v}+{\bf v}={\bf 0}$ for all ${\bf v}$ in V
- e. For all $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in V:

a.
$$\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_2 + \mathbf{v}_1$$

b.
$$(\mathbf{v}_1 + \mathbf{v}_2) + \mathbf{v}_3 = \mathbf{v}_1 + (\mathbf{v}_2 + \mathbf{v}_3)$$

c.
$$c_1(\mathbf{v}_1 + \mathbf{v}_2) = c_1\mathbf{v}_1 + c_1\mathbf{v}_2$$

d.
$$(c_1 + c_2)\mathbf{v}_1 = c_1\mathbf{v}_1 + c_2\mathbf{v}_1$$

e.
$$(c_1c_2)\mathbf{v}_1 = c_1(c_2\mathbf{v}_1)$$

f.
$$1 * \mathbf{v}_1 = \mathbf{v}_1$$

Thm 7.2: Let \mathbf{v} be in vector space V:

- a. ${f 0}$ is the zero vector in $V \implies {f v} + {f 0} = {f v}$
- b. $-\mathbf{v}$ is the additive inverse of $\mathbf{v} \implies -\mathbf{v} + \mathbf{v} = \mathbf{0}$
- c. ${f v}$ has a unique additive inverse $-{f v}$
- d. Zero vector 0 is unique
- e. 0 * v = 0

f.
$$(-1) * \mathbf{v} = -\mathbf{v}$$

<u>Definition</u>: A subset S of a vector space V is a subspace if S:

- a. S contains the zero vector, $\mathbf{0}$
- b. If \mathbf{u}, \mathbf{v} is in S, then $\mathbf{u} + \mathbf{v}$ is also in S
- c. If c is a scalar and \mathbf{v} is in S, then $c\mathbf{v}$ is also in S

7.2 Span and Linear Independence

<u>Definition:</u> Span of set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is set of all linear combinations of the form: $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m$

Thm 7.6: Suppose that $\mathcal V$ is a subset of vector space V, and let $S=\operatorname{span}(\mathcal V)$ then S is a subspace of $\mathcal V$

<u>Definition:</u> Set $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is linearly *in*dependent if $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m = \mathbf{0}$ has only the trivial solution

Thm 7.8 Set $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is linearly *dependent* \iff at least one vector is in the span of the others

Thm 7.9 If set $V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subset of V, then:

- a. $\mathcal V$ is *linearly independent* $\iff \{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_m\} = \mathbf v$ has *at most* one solution for each $\mathbf v$ in V
- b. V spans $V \iff \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} = \mathbf{v}$ has at least one solution for each \mathbf{v} in V

How to: Check if a system is linearly independent, i.e. given a(1) + b(sin(x)) + c(cos(x)) = 0?

- a. To generate a system of equations, take the first and second derivatives wrt. \boldsymbol{x} to generate 3 equations
- b. Check if the determinant $\neq 0$, \implies the matrix is invertible, \implies the system $A\mathbf{x} = \mathbf{0}$ has a unique solution which is the trivial solution.

<u>Application:</u> Decomposition of signal frequencies:

I.e. Given $1, sin(x), cos(x), sin(2x), cos(2x), \ldots, sin(nx), cos(nx)$, is this system linearly independent?

<u>Definition:</u> \mathbb{P}^n is the set of all polynomials of degree $\leq n$

- a. Standard bases: $\{1, x, x^2, \dots, x^n\} \implies dim(\mathbb{P}^n) = n+1$
- b. $\dim \mathbb{P} = \infty$, enough to show that there is no finite basis

b1.
$$\mathbb{P}\subseteq C(\mathbb{R}) \implies \dim C(\mathbb{R}) = \infty$$

<u>How to</u>: check if a given set of polynomials, i.e. $\{x+1, x^2-1, x^2+x+1\}$, is a basis of \mathbb{P}^2 ?

a. Check linear independence: Assign a scalar c_i to each polynomial; each column represents c_i , and each element in each column corresponds to a different degree of that polynomial, i.e. x^2

$$egin{aligned} c_1(x+1) + c_2(x^2-1) + c_3(x^2+x+1) &= \mathbf{0} \ \implies (c_1-c_2+c_3)*1 + (c_1+c_3)*x + (c_2+c_3)*x^2 &= 0 \ \implies egin{aligned} 1 &= 1 & 1 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{aligned} egin{aligned} c_1 \ c_2 \ c_3 \end{pmatrix} &= egin{aligned} 0 \ 0 \ 0 \ 0 \end{aligned}$$

- a1. Check that determinant $\neq 0$ which would imply unique trivial solution, which implies linear independence
 - b. Could also check that they $\operatorname{span} \mathbb{P}^2$

$$\implies egin{pmatrix} 1 & -1 & 1 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix} egin{pmatrix} c_1 \ c_2 \ c_3 \end{pmatrix} = egin{pmatrix} a \ b \ c \end{pmatrix}$$

c. Could also check matrix of derivatives: if there exists at least a single value of x that makes $det(A) \neq 0 \implies \text{linear independence}$

$$egin{bmatrix} x+1 & x^2-1 & x^2+x+1 \ 1 & 2x & 2x+1 \ 0 & 2 & 2 \end{bmatrix}$$

7.3 Basis and Dimension

<u>Definition:</u> \mathcal{V} is a basis of V if \mathcal{V} is linearly independent and spans V

Thm 7.11 Set
$$V = \{ \mathbf{v}_1, \dots, \mathbf{v}_m \}$$
 is a basis of vector space V iff: $\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \} = \mathbf{v}$ has a *unique* solution for every \mathbf{v} in V

Thm 7.12 If V_1 and V_2 are both bases of vector space V, then V_1 and V_2 have the same number of elements

<u>Definition</u> Dimension of V is equal to the number of vectors in any basis of V. It's possible for dimension to be infinite if the basis of V is infinitely long

Thm 7.14 Let $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be a subset of *nontrivial, finite, dimensional* vector space V:

- a. If $\mathcal V$ spans V, then either $\mathcal V$ is a basis of V or vectors can be removed from $\mathcal V$ to form a basis of V
- b. If $\mathcal V$ is linearly independent, then either $\mathcal V$ is a basis of V or vectors can be added to $\mathcal V$ to form a basis of V

Thm 7.15: If V_1 is a subspace of V_2 , then $\dim(V_1) \leq \dim(V_2)$

Thm 7.16: Let $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be a subset of V with $\dim(V) = n$.

- a. If m < n, then ${\cal V}$ does not span V
- b. If m>n, then ${\cal V}$ is not linearly independent

Thm 7.17: Let $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be a subset of V with $\dim(V) = m$.

a. If $\mathcal V$ is linearly independent or spans V, then $\mathcal V$ is a basis for V

How to: find $dim \ {
m span}\{T_1,T_2,T_3\}$, given something like $T_1{f x}=\overline{\left(egin{array}{c} x_1+x_2 \\ 2x_1 \end{array}
ight)}$, etc.?

- a. Check linear independence of $T_1,\overline{T_2},T_3$ (Must hold $\forall~x$)
 - a1. Assign each T_i a scalar c_i which become its own columns; each element in that matrix has its own row on that particular column
- b. Row reduce: if you get a free variable in a certain column, say s_1 , then that column is a linear comination of the others
 - b. Check how many Ts are needed to maintain linear independence, that is $dim \mathrm{span}$

Ch 8

8.1 Dot Products and Orthogonal Sets

Thm 8.2: Properties of dot products:

- a. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\overline{ ext{b. } (\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}}$
- c. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
- d. $\mathbf{u} \cdot \mathbf{u} >= 0$
- e. $\mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0}$

<u>Definition:</u> Norm or length of $\mathbf{x} = ||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$

$$||c\mathbf{x}|| = |c| ||\mathbf{x}||$$

Definition: Unit vector in direction of x:

$$\left|\left|\frac{\mathbf{x}}{\left|\left|\mathbf{x}\right|\right|}\right|\right|=1$$

<u>Definition:</u> The distance between ${f u}$ and ${f v}$ in ${f R}^n$ is $||{f u}-{f v}||$

- a. Subtract v_1 from u_1 , etc., then take the magnitude of that resulting vector
- b. This is really the distance between the endpoints of the rays

<u>Definition:</u> Vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$

Pythagorean Thm 8.6:
$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 \iff \mathbf{u} \cdot \mathbf{v} = 0$$

a. Think middle school geometry: pythagorean thm applies iff right triangle

Cauchy-Schwarz Inequality Thm 8.7: $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$

a. Define
$$cos(heta) = rac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \; ||\mathbf{v}||}$$

<u>Triangle Inequality Thm 8.8</u> $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$

a. This says that the line segment between two vectors is the shortest way between those two points

Orthogonal Subspaces

<u>Definition:</u> Vector $\mathbf u$ is orthogonal to subspace S if $\mathbf u \cdot \mathbf v = 0 \ \forall \ \mathbf s \in S$. The set of all such vectors $\mathbf u$ is called the orthogonal complement of S and is denoted by S^\perp

$$S^{\perp} = \{ \mathbf{u} \ \in \ \mathbb{R}^n \mid \mathbf{u} \cdot \mathbf{s} = 0 \ orall \ \mathbf{s} \in S \}$$

Thm 8.10: S ~ subspace of $\mathbb{R}^n \implies S^\perp$ ~ subspace of \mathbb{R}^n

Thm 8.11: Let $\mathcal{V} = \{\mathbf{s}_1, \dots, \mathbf{s}_k\}$ be a basis for subspace S and \mathbf{u} be a vector.

Then
$$\mathbf{u}\cdot\mathbf{s}_1=0,\mathbf{u}\cdot\mathbf{s}_2=0,\ldots,\mathbf{u}\cdot\mathbf{s}_k=0\iff \mathbf{u}\in S^\perp$$

How to: find a basis for S^\perp , given $S=span\{egin{bmatrix}1\\1\\1\end{bmatrix},egin{bmatrix}-1\\0\\2\end{bmatrix}\}$: (think of this as a 2D plane in \mathbb{R}^3)

- a. Make the basis vectors for S into rows of a matrix
- b. Because $A{f u}=egin{bmatrix} {f s}_1\cdot{f u} \ {f s}_2\cdot{f u} \end{bmatrix}$, ${f u}$ is in S^\perp only when $A{f u}={f 0}$
- c. Solve out $A{f u}={f 0}$, and find something like ${f u}=t_1egin{bmatrix}2\\-3\\1\end{bmatrix}$

d.
$$S^{\perp}=\mathrm{span}\{egin{bmatrix}2\-3\1\end{bmatrix}\}$$

<u>Definition:</u> A set of vectors $\mathcal V$ in $\mathbb R^n$ form an orthogonal set if $\mathbf v_i\cdot\mathbf v_j=0,\ orall\ \mathbf v_i\ \&\ \mathbf v_j$ in $\mathcal V$, with i
eq j

a. All of the vectors in the set must be orthogonal to each other

How to: check if a set of vectors is orthogonal?

a. Take the dot product of each possible pair, and if all are 0, then set is orthogonal

Thm 8.13: An orthogonal set of nonzero vectors is linearly independent

Definition: Orthogonal basis of a subspace is a basis which is also an orthogonal set

<u>How to:</u> express s as a linear combination of a given orthogonal vector basis:

a. Use Thm 8.14 to get a c_i for each vector in the basis, and the result will be something like ${f s}=-2{f v}_1+{f v}_2$

8.2 Projection

<u>Definition:</u> Projection of \mathbf{u} onto \mathbf{v} : $\mathrm{proj}_v \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2} \mathbf{v}$

<u>Thm 8.16:</u> For a projection when v is nonzero:

- a. $\operatorname{proj}_v \mathbf{u}$ lies on $\operatorname{span}\{\mathbf{v}\}$
- b. $\mathbf{u} \mathrm{proj}_v \mathbf{u}$ is orthogonal to \mathbf{u}
- c. if ${f u}$ is in ${
 m span}\{{f v}\}$, then ${
 m proj}_v{f u}={f u}$
- d. $\operatorname{proj}_{v} \mathbf{u} = \operatorname{proj}_{cv} \mathbf{u}$

<u>Definition:</u> Let S be a nonzero subspace w/ orthogonal basis = $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$:

$$\operatorname{proj}_{s} \mathbf{u} = \operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u} + \ldots + \operatorname{proj}_{\mathbf{v}_{k}} \mathbf{u}$$

Thm 8.18: For a projection on subspace when S is nonzero:

- a. $\mathrm{proj}_s\mathbf{u}$ lies in S
- b. $\mathbf{u} \operatorname{proj}_{s} \mathbf{u}$ is orthogonal to S
- c. If \mathbf{u} is in S, then $\operatorname{proj}_S \mathbf{u} = \mathbf{u}$
- d. $\operatorname{proj}_s \mathbf{u}$ is independent of the choice of the orthogonal basis of S

Gram-Schmidt Processes

<u>Thm 8.19</u>: Let S be a subspace with basis $\{s_1, \ldots, s_k\}$. v_1, v_2, \ldots, v_k is defined as:

$$\mathbf{v}_1 = \mathbf{s}_1$$

$$\mathbf{v}_2 = \mathbf{s}_2 - \operatorname{proj}_{\mathbf{v}_1} \mathbf{s}_2$$

$$\mathbf{v}_3 = \mathbf{s}_3 - \mathrm{proj}_{\mathbf{v}_1} \mathbf{s}_3 - \mathrm{proj}_{\mathbf{v}_2} \mathbf{s}_3$$

$$\mathbf{v}_k = \mathbf{s}_k - \mathrm{proj}_{\mathbf{v}_1} \mathbf{s}_k - \mathrm{proj}_{\mathbf{v}_2} \mathbf{s}_k {-} \ldots {-} \mathrm{proj}_{\mathbf{v}_{k-1}} \mathbf{s}_k$$

(The pattern here is that the row defining the ith vector uses the original basis vector \mathbf{s}_i on that row only.

The vertical columns are unique to each orthogonal vector, that is to say, column 1 is always nothing, column 2 is \mathbf{v}_1 , and column k is $\mathbf{v}_{k-1} \leftarrow$ you're recursively defining the next vector)

Intuition: The basis vectors of S are already linearly independent, so you know that none of them are parallel to the others. We start off with the first basis vector of S becoming the first orthogonal basis vector \mathbf{v}_1 . We can find a basis vector orthogonal to that by taking the second basis vector, and subtracting off it's projection onto the previous vector to define the new orthogonal basis vector \mathbf{v}_2 (because we know that difference will be orthogonal). We can keep going for all the basis vectors, such that $span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}=span\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k\}$, then not only are the \mathbf{v} vectors defining the same subspace, but they also are orthogonal to each other.

<u>Definition:</u> A set of vectors $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ is orthonormal IF the set is orthogonal AND $||\mathbf{w}_j||=1\ orall\ j=1,2,\dots,k$ $\mathbf{w}_j=rac{1}{||\mathbf{v}_j||}\mathbf{v}_j$ for $j=1,2,\dots,k$

<u>How to:</u> Find a set of orthonormal basis vectors from a given set of basis vectors i.e. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$

- a. Orthogonalize $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$ using GS process to o
- b. Normalize to obtain an orthonormal basis of $span\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$

8.3 Diagonalizing Symmetric Matrices

 $\underline{\text{Thm 8.21}}$ If $A \sim \text{symmetric matrix}$, \implies then the eigenvectors associated w/ distinct eigenvalues are orthogonal

<u>Definition:</u> $P \sim \text{square}, n \times n$ with orthonormal columns is called an orthogonal matrix

*Cols must be orthonormal, not just orthogonal

$$\implies P^T P = I_n$$

Thm 8.23: If $P \sim nxn$, orthonormal, \implies then $P^{-1} = P^{T}$

<u>How to:</u> Check if a given matrix A is orthogonal:

- a. Check that dot products of the columns are 0
- b. Check that the norm of each column is 1

<u>Definition</u> $A \sim orthogonally$ diagonalizable if there exists an *orthogonal* matrix P and a diagonal matrix D s.t. $A = PDP^{-1} = PDP^{T}$

P represents the *change of basis matrix* from the standard basis into the one defined by the eigenvectors

Spectral Thm 8.26 $A \sim$ orthogonally diagonalizable $\iff A \sim$ symmetric

- a. \implies All eigenvalues of a symmetric matrix A are real
- b. Each eigenspace of a symmetric matrix A has dimension equal to the multiplicity of the associated eigenvalue

How to: Orthogonally diagonalize a matrix A:

- a. Get characteristic equation of $det(A \lambda I_n)$, find eigenvalues
- b. Find eigenvectors for each eigenvalue (these are all orthogonal to other eigenvectors, but may not be within the same eigenspace)
- c. Apply Gram-Schmidt process to orthogonalize ${\bf u}_1, {\bf u}_2$ in a common eigenspace (do this step for every eigenspace)
 - d. Normalize the the orthogonal set of vectors (even the ones from $\dim 1$)
- e. Construct D normally, construct P using the corresponding orthonormal eigenvectors, and write inverse of P as P^T . (Make sure to position eigenvectors s.t. P is symmetrical)

Thm 8.27: If $A \sim \text{real matrix}$, \implies then $A^T A$ has nonnegative eigenvalues

Note: this works on 2x3 matrices, for example

 A^TA is always symmetric \implies all the stuff from this chapter holds, plus the fact that the eigenvalues are nonnegative

Ch 10

10.1 Inner Products

<u>Definition</u>: Inner product on V is a function that takes two *vectors* in V as input and produces a *scalar* as output, and is denoted by $\langle \mathbf{u}, \mathbf{v} \rangle$. It must satisfy:

a.
$$\langle \mathbf{u}, \mathbf{v}
angle = \langle \mathbf{v}, \mathbf{u}
angle$$

b.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

c.
$$\langle c\mathbf{u},\mathbf{v}
angle = \langle \mathbf{u},\mathbf{c}\mathbf{v}
angle = c\langle \mathbf{u},\mathbf{v}
angle$$

d.
$$\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$$
, and $\langle \mathbf{u}, \mathbf{u} = 0 \rangle$ only when $\mathbf{u} = 0$

Dot product is an inner product on \mathbb{R}^n , it could also be "weighted" by some third param t_i for every u_i and v_i in $\mathbf{u} \cdot \mathbf{v}$

<u>Definition</u>: \mathbf{u} and \mathbf{v} are orthogonal $\iff \langle \mathbf{u}, \mathbf{v} \rangle = 0$

<u>Definition</u>: The norm of \mathbf{v} : $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$

a. Distance between vectors: $||\mathbf{u} - \mathbf{v}||$

b. Norm of $\mathbf{c}\mathbf{v} = |c| \ ||\mathbf{u}||$

<u>Pythagorean Thm 10.4</u>: \mathbf{u} and \mathbf{v} are orthogonal $\iff ||\mathbf{u}||^2 + ||\mathbf{v}||^2 = ||\mathbf{u} + \mathbf{v}||^2$

 $\underline{\text{Definition}}\text{: Projection of }\mathbf{u}\text{ onto }\mathbf{v}\text{: }\mathrm{proj}_{\mathbf{v}}\mathbf{u}=\frac{\langle\mathbf{u},\mathbf{v}\rangle}{\langle\mathbf{v},\mathbf{v}\rangle}\mathbf{v}=\frac{\langle\mathbf{u},\mathbf{v}\rangle}{||\mathbf{v}||^2}\mathbf{v}$

Thm 10.6: For a projection when \mathbf{v} and c is nonzero: a. $\operatorname{proj}_v \mathbf{u}$ lies on $\operatorname{span}\{\mathbf{v}\}$ b. $\mathbf{u} - \operatorname{proj}_v \mathbf{u}$ is orthogonal to \mathbf{v}

c. if
$${f u}$$
 is in ${
m span}\{{f v}\}$, then ${
m proj}_v{f u}={f u}$

d.
$$\operatorname{proj}_v \mathbf{u} = \operatorname{proj}_{cv} \mathbf{u}$$

Cauchy-Schwarz Inequality Thm 10.7: $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||$

 $\underline{\text{Triangle Inequality Thm 10.8}} \ ||\mathbf{u} + \mathbf{v}|| \leq ||\mathbf{u}|| + \overline{||\mathbf{v}||}$

10.2 Gram-Schmidt Revisted

<u>Definition:</u> If $\mathbb{V} = \{ \bigvee_{v}_1, \bigcup_{v}^s \text{ is an orthogonal set of nonzero vectors in inner product space V, <math>\sinh_v \text{ independent}$

How to: find orthonormal basis of a given basis:

- a. Do GS process to a new set of orthogonal basis vectors
- b. Normalize each one by dividing by the norms

Definition:

Definition:

Definition: