Funktionalanalysis

Prof. Dr. Lutz Weis

Wintersemester 2015

Martin Belica

Vorwort

Dieses Skript wurde im Wintersemester 2015/2016 von Martin Belica geschrieben. Es beinhaltet die Mitschriften aus der Vorlesung von Prof. Dr. Weis sowie die Mitschriften einiger Übungen.

Einleitung

Die Funktionalanalysis liefert den begrifflichen Rahmen sowie allgemeine Methoden, die in weiten Teilen der modernen Analysis verwendet werden. Zum Beispiel ist es möglich Integralund Differentialgleichungen als lineare Gleichungen in einem geeigneten unendlichdimensionalen
Vektorraum (wie z.B. einem Raum stetiger oder integrierbarer Funktionen) aufzufassen. Will
man nun auf diese unendlichdimensionalen Gleichungen Ideen der linearen Algebra anwenden,
so treten Konvergenz- und Kompaktheitsprobleme auf, die wir in dieser Vorlesung behandeln
wollen. Zu den Themen gehören:

- Beschränkte und abgeschlossene Operatoren auf normierten Räumen
- Stetigkeit und Kompaktheit auf metrischen Räumen
- Geometrie und Operatorentheorie in Hilberträumen
- Der Satz von Hahn-Banach und Dualität von Banachräumen

Die allgemeinen Aussagen werden durch konkrete Beispiele von Räumen und Operatoren der Analysis illustriert.

Erforderliche Vorkenntnisse

Analysis I-III, Lineare Algebra I-II

Contents

Einführ	rung	4
1	Themengebiete	4
	1.1 Räume	4
		5
	1.3 Anwendungen	5
Kompa	kte Operatoren	8
2	Normierte Räume	8
3	Beschränkte und lineare Operatoren	13
4	Metrische Räume	22
5	Vollständigkeit	
	5.1 Anhang zu Kapitel 5: Vervollständigung	37
6		40
7	Kompakte Operatoren	45
8	Approximation von L^p Funktionen	49
Elemer	nte der Operatortheorie	58
9	Der Satz von Baire und der Satz von Banach-Steinhaus	58
10	Satz von der offenen Abbildung	63
11		65
12	Abgeschlossene Operatoren	67
13	Spektrum und Resolvente	
14	Das Spektrum kompakter Operatoren	
Operat	oren auf Hilberträumen	78
15		78
Abkürz	zungsverzeichnis	82
		o-า

Einführung

1 Themengebiete

1.1 Räume

Sei X ein Vektorraum, $dim X < \infty$ und sei $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$

$$||x||_2 := \left(\sum_{k=1}^n ||x_i^2||\right)^{\frac{1}{2}}$$

 $||x||_{\infty} := \max_{i=1}^n ||x_i||$

Diese Normen sind äquivalent, denn: $||x||_{\infty} \le ||x||_2 \le n^{\frac{1}{2}} ||x||_{\infty}$

Satz 1.1 (Bolzano-Weierstraß)

Sei $A \subset \mathbb{R}^n$ beschränkt. Dann hat jede Folge $(x_n)_{n \in \mathbb{N}} \subset A$ eine konvergente Teilfolge.

Beispiel 1.2

Betrachte $X = C[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ stetig auf } [0,1]\}$ mit $||f||_{\infty} := \max_{t \in [0,1]} ||f(t)||$. Sei weiter $f_n : t \to t^n$, damit gilt $||f_n||_{\infty} \le 1$ $\forall n \in \mathbb{N}$.

Figure 1.1: f_n für n = 3, 8, 20 und 50

Die Folge $(f_n)_{n\geq 1}$ besitzt damit aber in X keine konvergente Teilfolge, da die Grenzfunktion

$$f = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1 \end{cases}$$

nicht in X liegt. \Rightarrow Satz von Bolzano-Weierstraß gilt im unendlich dimensionalen i.A. nicht!

1.2 Operatoren

Sei N = dim X, M = dim Y und seien (e_n) bzw. (f_n) Basen von X bzw. Y. Sei $T: X \to Y$ gegeben durch:

$$X \xrightarrow{T} Y$$

$$\alpha_n \to \sum \alpha_n e_n \downarrow \qquad \qquad \downarrow \beta_n \to \sum \beta_n f_n$$

$$\mathbb{R}^N \xrightarrow{A} \mathbb{R}^n$$

wobei $x = \sum \alpha_n e_n$, $Tx = \sum \beta_n f_n$, $\beta_m = \sum_{n=1}^N a_{mn} \alpha_n$.

Daraus folgt:

- T ist stetig
- $X = Y \iff T$ injektiv $\iff T$ surjektiv (Dimensionsformel) (Die Gleichung Tx = y ist eindeutig lösbar \iff Gleichung hat für alle $y \in Y$ eine Lösung.)
- Falls A selbstadjungiert ist, d.h. $A = A^*$, gibt es eine Basis aus Eigenvektoren (e_n) von A, d.h. $T(\sum_{n=1}^N \alpha_n e_n) = \sum_{n=1}^N \lambda_n \alpha_n e_n$, wobei λ_n Eigenwerte sind, d.h. $A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$

Beispiel 1.3

$$X = C^{1}[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ stetig auf } [0,1] \}$$

 $Tf = f', T : X \to C[0,1] \text{ stetig. (Aber: } T : C[0,1] \to C[0,1], \text{ hier ist } T \text{ nicht definiert.)}$

T ist nicht stetig bzgl. $\|\cdot\|_{\infty}$ -Norm, da:

$$f_n(t) = \frac{1}{\sqrt{n}}e^{int}$$
, dann: $||f_n|| \to 0$ für $t \to \infty$

$$Tf_n(t) = i\sqrt{n}e^{int}$$
, mit: $||Tf_n||_{\infty} \to \infty$, für $n \to \infty$

Beispiel 1.4
$$X = L_2 = \{(a_n) : \left(\sum_{n \ge 1}^{\infty} \|a_n\|\right)^{\frac{1}{2}} < \infty\}$$
 $T(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, a_3, \ldots)$

T ist injektiv, aber nicht surjektiv

1.3 Anwendungen

1. Fredholm'sche Integralgleichungen $X = C[0,1], k: [0,1] \times [0,1] \to \mathbb{R}$ stetig

$$Tf(t) = \int_0^1 k(t,s)f(s)ds$$

Analogie zum endlich dim. ('Verallg. der Matrixmultiplikation'): $T(f_j)(i) = \sum_{j=1}^n a_{ij} f_j$

T ist in diesem Fall linear und stetig und es gilt die Fredholm'sche Alternative:

$$\lambda \in \mathbb{R} \setminus \{0\} : (\lambda Id - T)(f) = y, \quad f, g \in C[0, 1]$$

Dann existiert eine Lösung genau dann, wenn diese eindeutig ist.

2. Dirichletproblem

 $\Omega\subset\mathbb{R}^n$ Gebiet, offen, beschränkt, glatter Rand. Sei $g:\partial\Omega\to\mathbb{R}$ stetig Gesucht ist ein $f \in C(\bar{\Omega}) \cap C^{(\Omega)}$, so dass $\nabla f = \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}} = 0$ in Ω und $f_{|\partial\Omega} = g$

Beispiel: Durch Wärmeverteilung auf dem Rand auf die Wärmeverteilung im Inneren schließen.

Lösung: Dirichletintegral $J(u)=\int_{\Omega}(\nabla u)^2dx$, wobei $u\in M=\{v\in C^1(\bar{\Omega})|\ v_{|\partial\Omega}=g\}$ Sei v_0 das absolute Minimum von J, d.h. $J(v_0) = \inf\{J(w) : w \in M\}$ $v \in C^1(\Omega)$ mit v = 0 in einer Umgebung von ∂U . $\epsilon \to J(u_0 + \epsilon v)$:

$$\frac{d}{d\epsilon}J(u_0+\epsilon v) = \int_{\Omega} \frac{d}{d\epsilon}(\nabla u_0 + \epsilon \nabla v)^2 dx = 2\int_{\Omega} (\nabla u_0 + \epsilon \nabla v)(\nabla v) dx\Big|_{\epsilon=0} = 2\int_{\Omega} (\nabla u_0)(\nabla v) dx$$

Mit
$$0 \ge J(u_0 + \epsilon v) - J(u_0) \ge 0$$
: $\int (\nabla u_0)(\nabla v) dx \stackrel{\text{P.I.}}{=} - \int (\nabla u_0)v dx = 0$

$$\Rightarrow \nabla u_0 = 0,$$
außerdem $u_0^{}\mid_{\partial\Omega} = g$ (s.o.)

Im Allgemeinen existiert das, das absolute Minimum $u_0 \in J$ aber nicht.

Ausweg: $X = \{ f \in L^2(\Omega), f' \in L^2(\Omega) \} \supset \{ f \in C(\bar{\Omega}), f' \in C(\bar{\Omega}) \}$

In diesem Raum X (Sobolevräume) gibt es ein Minimum u_0 von J.

3. Sturm-Liouville Problem

$$X = C^2([0,1]), Tu = (pu')' + qu, \text{ mit } q \in C[0,1], p \in C^1[0,1]$$

Problem: bei gegebenen $f \in C[0,1]$ finde $u \in X$ mit $Tu = f, v(0) = 0, v'(1) = 0$

 $Y = \{ f \in L^2[0,1], f' \in L^2[0,1] \}$ Hilbertraum.

Orthonormalbasis (e_n) von Y wäre: $||e_n||_2 = 1, \int e_n(x)e_m(x)dx = 0$ für $m \neq m$ $f \in Y: f = \sum_{n=1}^{\infty} \alpha_n e_n \text{ mit } ||f||^2 = \sum_{n=1}^{\infty} |\alpha_n|^2$ Die (e_n) sind außerdem Eigenvektoren des Operatoren T, d.h. $Te_n = \lambda_n e_n$

$$Ty = f \Rightarrow \int Ty(x)e_n(x)dx = \int f(x)e_n(x)dx, y = \sum_{n=1}^{\infty} \alpha_n e_n$$

Gesucht sind die Koeffizienten α_n

$$\int f(x)e_n(x)dx = \sum_m \lambda_m \alpha_m \int Te_n(x)e_m(x)dx$$
$$= \lambda_n \alpha_n \int e_n(x)e_n(x)dx$$
$$\iff \alpha_n = \frac{1}{\lambda_n} \int f(x)e_n(x)dx$$

Kompakte Operatoren

2 Normierte Räume

Definition 2.1

Sei X ein Vektorraum über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}_+$ heißt eine **Norm**, wenn

$$(N1) ||x|| \ge 0, ||x|| = 0 \iff x = 0$$

$$(N2) \quad \|\lambda x\| = |\lambda\|x\|$$

$$(N3) \|x+y\| \le \|x\| + \|y\|$$

Bemerkung 2.2

Falls $\|\cdot\|$ all die oben genannten Eigenschaften erfüllt außer $\|x\|=0 \Rightarrow x=0$, dann heißt $\|\cdot\|$ Halbnorm.

Vereinbarung:

Die Menge $U_X = \{x \in X : ||x|| \le 1\}$ heißt **Einheitskugel**.

Eine Folge (x_n) des normierten Raums X konvergiert gegen ein $x \in X$, falls $||x_n - x|| \xrightarrow[n \to \infty]{} 0$.

Bemerkung 2.3

Für zwei Elemente $x, y \in (X, \|\cdot\|)$ in normierten Räumen gilt auch die umgekehrte Dreiecksungleichung $(\|x\| + \|y\|) \le \|x + y\|$

Beispiel 2.4

Sei $X = \mathbb{K}^n$, $x = (x_1, \dots, x_n)$, $x_i \in \mathbb{K}$

$$||x||_p = \left(\sum_{j=1}^n |x_j^p|\right)^{\frac{1}{p}}, \quad 1 \le p < \infty \quad (p = 2 : \text{ Euklidische Norm})$$
$$||x||_{\infty} = \sup_{j=1}^n |x_j|$$

Beh.: $\|\cdot\|$ ist Norm auf \mathbb{K}^n für $1 \leq p \leq \infty$

 $\|x+y\|_{\infty}=\sup_{j=1}^k|x_j+y_j|\leq \|x\|_{\infty}+\|y\|_{\infty}$ Für $p\in(1,\infty), p\neq 2$: siehe Übungsaufgabe (Fall p=2 läuft über Cauchy-Schwarz)

Beachte: $||x||_{\infty} \le ||x||_p \le n^{\frac{1}{p}} ||x||_{\infty} \le n||x||_{\infty}$

Definition 2.5

Zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ heißen **äquivalent** auf X, falls es $0 < m, M < \infty$ gibt, so dass für alle $x \in X$ gilt:

$$m||x||_2 \le ||x||_1 \le M||x||_2$$

Satz 2.6

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

Beweis

Wähle eine algebraische Basis (e_1, \ldots, e_n) von X, wobei $n = dim X < \infty$. Definiere $||x|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$, wobei $x = \sum_{i=1}^n x_i e_i$

z. z. die gegeben Norm $\|\cdot\|$ ist äquivalent zu $\|\cdot\|$.

Beweis:

In der einen Richtung betrachte:

$$||x|| = \left\| \sum_{i=1}^{n} x_i e_i \right\| \le \sum_{i=1}^{n} |x_i| ||e_i||$$

$$\le \underbrace{\left(\sum_{i=1}^{n} |x_i|^2 \right)^{\frac{1}{2}}}_{=:||x||} \underbrace{\left(\sum_{i=1}^{n} ||e_i||^2 \right)^{\frac{1}{2}}}_{=:\nu}$$

Für die Umkehrung benutze die Funktion $J: \mathbb{K}^n \to X, \ J(x_1, \dots, x_n) = \sum_{i=1}^n x_i e_i$

Die Abbildung $y \in \mathbb{K}^n \to ||Jy||$ ist stetig, denn

$$||Jy|| = ||y||_{\mathbb{K}^n} = \left(\sum_{i=1}^n |y_i|^2\right)^{\frac{1}{2}}, y = (y_1, \dots, y_n)$$
und $||Jy|| - ||Jz||| \le ||Jy - Jz|| = ||J(y - z)||$

$$\le \nu ||J(y - z)||$$

$$= M||y - z||_{\mathbb{K}^n}$$

Daraus folgt die Stetigkeit von $y \to ||Jy|| \in \mathbb{R}$

Sei $S = \{y \in \mathbb{K}^n : ||y||_{\mathbb{K}^n} = 1\}$. Dann ist S abgeschlossen und beschränkt. Die Abbildung $N: y \in S \to ||Jy|| > 0$ ist wie in (*) gezeigt stetig. Nach Analysis II nimmt N sein Minimum in einem Punkt $y_0 \in S$ an. Setze

$$m = \inf\{||x|| : |||x||| = 1\} = \inf\{||Jy|| : y \in S\}$$
$$= ||Jy_0|| > 0$$

Also
$$m \le \|\frac{x}{\|x\|}\| = \frac{\|x\|}{\|x\|} \Rightarrow \|x\| \le m\|x\|.$$

Proposition 2.7

Für zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ auf X sind äquivalent:

- a) $\|\cdot\|_1, \|\cdot\|_2$ sind äquivalent
- b) Für alle $(x_n) \subset X$, $x \in X$ gilt $||x_n x||_1 \to 0 \iff ||x_n x||_2 \to 0$
- c) Für alle $(x_n) \subset X$ gilt $||x_n||_1 \to 0 \iff ||x_n||_2 \to 0$
- d) Es gibt Konstanten $0 < m, M < \infty$, so dass $mU_{(X,\|\cdot\|_1)} \le U_{(X,\|\cdot\|_2)} \le MU_{(X,\|\cdot\|_1)}$

Beweis

- $(a) \Rightarrow (b) \Rightarrow (c)$ folgt direkt durch die Definition von äquivalenten Normen.
- $c)\Rightarrow d)$ Annahme: Es existiert kein M mit $U_{(X,\|\cdot\|_2)}\subset MU_{(X,\|\cdot\|_1)}$. Dann gibt es eine Folge $x_n\in U_{(X,\|\cdot\|_2)}$ mit $\|x_n\|_1\geq n^2$ Setze $y_n=\frac{1}{n}x_n$. Dann gilt $\|y_n\|_1\to 0$ und $\|y_n\|_2\to\infty$. Widerspruch zu c).
- $\begin{array}{l} d)\Rightarrow a) \text{ Gegeben ist } U_{(X,\|\cdot\|_2)}\subset MU_{(X,\|\cdot\|_1)}\\ \text{ Das ist "aquivalent zu } \|x\|_2\leq M\|x\|_1\\ \text{ Analog folgt aus } mU_{(X,\|\cdot\|_1)}\subset U_{(X,\|\cdot\|_2)} \text{ dann } m\|x\|_1\leq \|x\|_2.\\ \text{ Also } m\|x\|_1\leq \|x\|_2\leq M\|x\|_1 \end{array}$

Vereinbarung:

Sei $\mathbb{F} = \{(x_n) \in \mathbb{K}^{\mathbb{N}} : x_i = 0 \text{ bis auf endlich viele } n \in \mathbb{N} \}$ der **Folgenraum** und $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ der Einheitsvektor, wobei die 1 an j-ter Stelle steht.

Beispiel 2.8

- $\ell^p = \{x = (x_n) \in \mathbb{K}^{\mathbb{N}} : ||x||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} < \infty \}$
- $\ell^{\infty} = \{x = (x_n) \in \mathbb{K}^{\mathbb{N}} : ||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n| < \infty \}$
- $c_0 = \{x = (x_n) \in \ell^\infty : \lim_{n \to \infty} |x_n| = 0\}$

Gültigkeit der Dreiecksungleichung beweist man ähnlich wie bei $(\mathbb{K}^n, \|\cdot\|_p)$.

Lemma 2.9

Minkowskii-Ungleichung: $(\sum_{i=1}^{\infty} |x_i + y_i|^p)^{\frac{1}{p}} \le (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |y_i|^p)^{\frac{1}{p}}$ Hölder-Ungleichung: mit $\frac{1}{p} + \frac{1}{p'} = 1$ gilt $\sum_{i=1}^{\infty} |x_i| |y_i| \le (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |y_i|^{p'})^{\frac{1}{p'}}$

Bemerkung 2.10

Im unendlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf \mathbb{F} nicht äquivalent.

Beweis

Sei p > q, setze

$$X_n := \sum_{j=2^{n+1}}^{2^{n+1}} j^{-\frac{1}{p}} e_j, \quad e_j = (\delta_{ij})_{u \in \mathbb{N}}$$

Damit gilt $x_n \in \mathbb{F}$ und weiter

$$||x_n||_p = \left(\sum_{j=2^n}^{2^{n+1}} \frac{1}{j}\right)^{\frac{1}{p}} \simeq (\ln(2))^{\frac{1}{p}}$$

aber $||x_n||_q \to \infty$, also sind $||\cdot||_p$, $||\cdot||_q$ keine äquivalente Normen.

Beispiel 2.11

- a) Raum der stetigen Funktionen $\Omega \subset \mathbb{R}^n, \ C(\Omega) = \{f: \Omega \to \mathbb{R} \mid f \text{ stetig}\}, \quad \|f\|_{\infty} = \sup_{u \in \Omega} |f(u)|$ $\Rightarrow \|f f_n\|_{\infty} \to 0 \text{ bedeutet gleichmäßige Konvergenz von } f_n \text{ gegen } f \text{ auf } \Omega.$
- b) Raum der differenzierbaren Funktionen $\Omega \subset \mathbb{R}^n \text{ offen, } f: \Omega \to \mathbb{R}, \quad \alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}_0^m$ $D^{\alpha} f(x) = \frac{\delta^{|\alpha|}}{\delta x_1^{\alpha_1} \dots \delta x_n^{\alpha_n}} f(x), \text{ wobei } |\alpha| = \alpha_1 + \dots + \alpha_n$

Definition 2.12

Wir nennen $C_b^m(\Omega) = \{f : \Omega \to \mathbb{R} | D^{\alpha}f \text{ sind stetig in } \Omega, \text{ beschränkt auf } \Omega \text{ für alle } \alpha \in \mathbb{N}^n, |\alpha| \leq m\}$ den Raum der beschränkten, m-fach stetig differenzierbaren Funktionen. Auf C_b^m definieren wir die Norm: $||f||_{C_b^m} = \sum_{|\alpha| < m} ||D^{\alpha}f||_{\infty}$

Bemerkung 2.13

Auf $C_b^m[0,1]$ ist eine äquivalente Norm zu $||f||_{C_b^m}$ gegeben durch

$$||f||_0 = \sum_{i=0}^{m-1} |f^{(i)}(0)| + ||f^{(m)}||_{\infty}$$

Denn $f^{(i)}(t) = f^{(i)}(0) + \int_0^t f^{(i+1)}(s)ds$ und damit $||f^{(i)}||_{\infty} \le |f^{(i)}(0)| + ||f^{(i+1)}||_{\infty}$

Beispiel 2.14

 $X = C(\bar{\Omega}), \Omega \subset \mathbb{R}^n$ offen, beschränkt.

Definiere $||f||_{L^p} = \left(\int_{\Omega} |f(u)|^p du\right)^{\frac{1}{p}}$ und betrachte $f_k(t) = t^k, t \in [0,1]$, dann gilt:

$$||f||_{L^p} = \left(\frac{1}{kp+1}\right)^{\frac{1}{p}} \xrightarrow[k \to \infty]{} 0, \quad p < \infty$$

Definition 2.15 (Quotientenräume)

Sei $(X, \|\cdot\|)$ ein normierter Raum. $M \subset X$ sei abgeschlossener, linearer Unterraum.

(abgeschlossen: d.h. für alle
$$(x_n) \in M, ||x_n - x|| \to 0 \Rightarrow x \in M$$
)

Definiere $\hat{X}=X/M, \ \hat{x}\in X/M: \ \hat{x}=\{y\in X: y-x\in M\}=x+M$ Dabei gilt unter anderem $\hat{x}_1+\hat{x}_2=\widehat{x_1+x_2}$ und $\lambda\hat{x}_1=\widehat{\lambda x_1}; \ \hat{X}$ bildet somit einen Vektorraum. Definieren wir eine Norm für die Äquivalenzklassen mittels $\|\hat{x}\|_{\hat{X}}:=\inf\{\|x-y\|_X: y\in M\}=:d(x,Y)$

Behauptung: $(\hat{X}, \|\cdot\|_{\hat{X}})$ ein normierter Raum.

Beweis: Sei $\hat{x} \in \hat{X}$ beliebig mit $\|\hat{x}\|_{\hat{X}} = 0$

dann existiert ein $y_n \in \hat{X}$ mit $||y_n|| \to 0$ und $x - y_n \in M$

$$\Rightarrow x \in M, \hat{x} = 0$$

Zu $\epsilon>0$ wähle für $\hat{x}_1,\hat{x}_2\in \hat{X},y_1,y_2\in M$ mit

$$\|\hat{x}_i\| \ge \|x_i - y_i\| - \epsilon$$

Damit folgt:

$$\|\widehat{x+y}\| \le \|x_1 + x_2 - y_1 - y_2\|$$

$$\le \|x_1 - y_1\| + \|x_2 - y_2\|$$

$$\le \|\widehat{x}_1\| + \|\widehat{x}_2\| + 2\epsilon$$

Bemerkung 2.16

Ist $\|\cdot\|$ nur eine Halbnorm auf X, so ist $M=\{x:\|x\|=0\}$ ein abgeschlossener, linearer Teilraum von X und der Quotientenraum $(\hat{X},\|\cdot\|_{\hat{X}})$ ist ein normierter Raum.

Beispiel 2.17

• Hölderstetige Funktionen

Wenn $h_{\alpha}(f) = \sup_{u,v \in \mathbb{R}, u \neq v} \frac{\|f(u) - f(v)\|}{\|u - v\|^{\alpha}} < \infty \quad (\alpha \in (0,1]), \text{ dann nennt man } f \text{ h\"olderstetig.}$

$$C^{\alpha}(\Omega) := \{ f : \Omega \to \mathbb{R} : h_{\alpha}(f) < \infty \} \quad \Omega \subset \mathbb{R}^n,$$

Im Moment ist $h_{\alpha}(\cdot)$ eine Halbnorm. Unter der Voraussetzung Ω zusammenhängend gilt aber weiter:

$$h_{\alpha}(f) = 0 \iff f \equiv c \text{ konstant}$$

Wenn z.B. $M = \{1\Omega\}$ und $V = C^{\alpha}/M$ ist oben genanntes sogar ein normierter Raum.

• Lebesgues-Integrierbare Funktionen Sei $\Omega \subset \mathbb{R}^n$ offen, $\mathcal{L}^p(\Omega) = \{f : \Omega \to \mathbb{R} : |f|^p \text{ ist Lesbesgue-integrierbar auf } \Omega \}$. Wir definieren $||f||_p := \left(\int_{\Omega} |f(x)|^p d\mu\right)^{\frac{1}{p}}$, wobei $||\cdot||_p$ hier eine Halbnorm bildet.

$$||f||_p = 0 \iff f(x) = 0$$
 fast überall auf Ω

Wähle $M = \{ f : \Omega \to \mathbb{R} : f = 0 \text{ fast "überall auf } \Omega \}.$

Dann ist

$$L^p(\Omega) := {\mathcal L}^p(\Omega) /_M$$
 ein normierter Raum.

3 Beschränkte und lineare Operatoren

Definition 3.1

Eine Teilmenge V eines normieren Raums $(X, \|\cdot\|)$ heißt **beschränkt**, falls

$$c := \sup_{x \in V} \|x\| < \infty$$
, und damit auch $V \subset cU_{(X,\|\cdot\|)}$.

Bemerkung 3.2

Eine konvergente Folge $(x_n) \in X, x_n \to x$ ist beschränkt, denn $x_m \in \{y : ||x - y|| \le 1\}$ für fast alle m.

Satz 3.3

Seien $X,\,Y$ normierte Räume. Für einen linearen Operator $S:X\to Y$ sind äquivalent:

- a) T stetig, d.h. $x_n \to x$ impliziert $Tx_n \to Tx$
- b) T stetig in 0
- c) $T(U_{(X,\|\cdot\|)})$ ist beschränkt in Y
- d) Es gibt ein $c < \infty$ mit $||Tx|| \le c||x||$

Beweis

- $a) \Rightarrow b$) klar, ist ein Spezialfall.
- $(b) \Rightarrow (c)$ Wäre (c) falsch, dann gibt es ein (c) mit

$$||Tx_n|| \ge \frac{1}{n^2}$$

Setze $y_n = \frac{1}{n}x_n$, dann gilt

$$||y_n|| \le \frac{1}{n} ||x_n|| \to 0, ||Ty_n|| = n^2 ||T(x_n)|| \ge \frac{n^2}{n} \to \infty$$

Widerspruch zur Voraussetzung.

$$(c) \Rightarrow d$$
) Sei $T(U_X) \subset U_Y$
Für $x \in X \setminus \{0\}, \frac{x}{\|x\|} \in U_X$ folgt:

$$T\left(\frac{x}{\|x\|}\right) \in cU_Y$$

$$\Rightarrow \|T\left(\frac{x}{\|x\|}\right)\| \le c \Rightarrow \|Tx\|_Y \le c\|x\|_X$$

 $(d) \Rightarrow a)$ Für $x_n \to x$ in X folgt:

$$||Tx_n - Tx|| = ||T(x_n - x)||$$

 $\leq c||x_n - x|| \to 0$

$$\Rightarrow Tx_n \to Tx \text{ in } Y$$

Definition 3.4

Seien X, Y normierte Räume. Mit B(X, Y) bezeichnen wir den **Vektorraum der beschränkten, linearen Operatoren** $T: X \to Y$. Ist X = Y schreiben wir auch kurz B(X) := B(X, X).

Für $T \in B(X, Y)$ setze

$$||T|| = \sup\{\frac{||Tx||}{||x||} : x \in X \ 0\}$$
$$= \sup\{||Tx|| : ||x|| \le 1\}$$

Die Norm ||T|| von T ist die kleinste Konstante c, für welche die Gleichung $||Tx|| \le c||x||$ für alle $x \in X$ gilt.

Satz 3.5

 $(B(X,Y),\|\cdot\|)$ ist ebenfalls ein normierter Raum und für X=Y gilt für $S,T\in B(X)$:

$$||S \cdot T|| \le ||S|| ||T||$$

Beweis

$$\|T\| \geq 0, \ \|T\| = 0 \ \Rightarrow \|Tx\| = 0 \text{ für } \|x\| \leq 1 \ \Rightarrow \ Tx = 0 \ \Rightarrow \ T = 0$$

$$||(T+S)(x)|| = ||Tx + Sx|| \le ||Tx|| + ||Sx||$$

 $\le ||T|| + ||S||$

Nehme das Supremum über $||x|| \leq 1$:

$$||T + S|| \le ||T|| + ||S||$$

$$||(S \cdot T)(x)|| = ||S(Tx)|| \le ||S|| ||Tx||$$

$$\le ||S|| ||T|| ||x||$$

$$\Rightarrow ||ST|| \le ||S|| ||T||$$

Beispiel 3.6

- a) Idx = x, ||Id|| = 1
- b) Falls $dim X = n < \infty, Y$ normierter Raum, dann sind alle linearen Operatoren $T: X \to Y$ beschränkt.

Beweis

Wähle die Basis e_1, \ldots, e_n von X

Für $x = \sum_{i=1}^{n} x_i e_i$ gilt:

$$||Tx|| = ||\sum_{i=1}^{n} x_i Te_i|| \le \sum_{i=1}^{n} |x_i| ||Te_i||$$

$$\le \max_{i=1}^{n} ||Te_i||_Y \sum_{i=1}^{n} |x_i|$$

$$\le c||x||, \text{ da } ||x|| = \sum_{i=1}^{n} |x_i|$$

Aber: Wenn $dim X = \infty, dim Y < \infty$ so gibt es viele unbeschränkte, lineare Operatoren von X nach Y.

- c) $X = C^{\infty}(0,1), ||f||_{\infty} = \sup_{u \in (0,1)} |f(u)|$ $T: X \to X, Tf = f', f_k(t) = e^{i2\pi kt} \in X, Tf_k(t) = 2\pi i k f_k(t)$ $||f_k|| = 1, ||Tf_k|| = 2\pi k \to \infty$
- d) $\mathbb{F} = \{(x_n) \in \mathbb{R}^n : x_n = 0 \text{ bis auf endlich viele } n\}$

$$T: \mathbb{F} \to \mathbb{R}, \quad T((x_n)) = \sum_{n \in \mathbb{N}} nx_n \in \mathbb{R}, \quad ||Te_n|| = n \to \infty$$

Beispiel 3.7 (Integral operator)

 $X = Y = C(\bar{\Omega}), \Omega \subset \mathbb{R}^n$ offen, beschränkt. Gegeben sei $k \in \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$

Für
$$f \in C(\bar{\Omega})$$
 setze: $Tf(u) = \int_{\Omega} k(u,v)f(v)dv$, $(A(f_j))_i = \sum_{j=1}^n a_{ij}f_j$, $A = (a_{ij})_{i,j=1,\dots,n}$

Dann ist $Tf \in C(\bar{\Omega})$ (nach Lebesguesschem Konvergenzsatz)

$$|Tf(u)| \le \int_{\Omega} |k(u, v)| |f(u)| du$$

$$\le \int_{\Omega} |k(u, v)| du \sup_{u \in \Omega} |f(u)|$$

sup über $u \in \Omega$ liefert dann:

$$||Tf||_{\infty} \le \sup_{u \in \Omega} \int |k(u, v)| dv ||f||_{\infty}$$

$$\Rightarrow ||T|| = \sup_{u \in \Omega} \int |k(u, v)| dv < \infty,$$

Die Abbildung $u \in \bar{\Omega} \to \int |k(u,v)| dv \in \mathbb{R}$ ist stetig nach dem Konvergenzsatz von Lebesgue.

Beweis

" \leq " ist klar " \geq " Falls $k(u,v) \geq 0$ dann ist $T \cdot \mathbb{1}(u) = \int k(u,v) dv = \int |k(u,v)| dv$

$$||T \cdot \mathbb{1}|| = \sup_{u \in \Omega} \int |k(u, v)| dv \le ||T||, \text{ d.h. } ||\mathbb{1}|| = 1$$

Skizze:

$$\sup \int |k(u,v)| dv \sim \int |k(u_0,v)| dv = \int k(u_0,v)g(v) dv$$

mit $g(v) = sign(v)k(u_0, v)$, g ist aber nicht stetig.

Ggf. Approximation des Signums durch stetige Funktionen.

Beispiel 3.8 (Kompositionsoperator)

 $\Omega \subset \mathbb{R}^n$ offen.

$$\sigma: \bar{\Omega} \to \bar{\Omega}$$
 stetig, für $f \in C(\bar{\Omega}): Tf(u) = f(\sigma(u))$

z.B.: σ als Transposition der Elemente in Ω

$$||Tf||_{\infty} \le ||f||_{\infty}, \quad ||T|| = 1$$

Beispiel 3.9 (Differentialoperatoren)

 $\Omega \subset \mathbb{R}^n$ offen, $m \in \mathbb{N}$, $X = C^m(\bar{\Omega})$, $Y = C_b(\Omega)$,

$$T: X \to Y, \ Tf(u) = \sum_{|\alpha| < m} a_{\alpha} D^{\alpha} f(u), u \in \mathbb{R}, a_{\alpha} \in C\bar{\Omega}$$
 damit $||Tf||_{\infty} \le \sum_{|\alpha| \le m} ||a_{\alpha}||_{\infty} ||D^{\alpha} f||_{\infty} \le c||f||_{\infty}$

Beispiel 3.10 (Matrizenmultiplikation)

Für $p \in [1, \infty]$ und $T \in B(\ell^p)$ setzen wir

$$e_l := (0, \dots, 0, 1, 0, \dots), \quad l \in \mathbb{N},$$
 wobei die 1 an l-ter Stelle steht.

und $a_{kl} = (Te_l)_k$, sowie $A = (a_{kl})_{k,l \in \mathbb{N}}$

$$\Rightarrow (Tx)_k = (\sum_{l=1}^{\infty} x_l Te_l)_k = \sum_{l=1}^{\infty} a_{kl} k_l, \quad k \in \mathbb{N} \Rightarrow Tx = Ax \text{ (unendliches Matrixprodukt)}$$

a) Die Hille-Tamarkin-Bedingung (nur hinreichend) Sei $p \in (1, \infty)$ und $\frac{1}{p} + \frac{1}{q} = 1$. Setze

$$c := \left(\sum_{k \ge 1} \left(\sum_{l \ge 1} |a_{kl}|^q\right)^{\frac{p}{q}}\right)^{\frac{1}{p}} < \infty$$

so definiert T einen Operator $T \in B(\ell^p)$ mit $||T|| \leq c$

Beweis

a) Wohldefiniertheit: (und Beschränktheit)

Für $x \in \ell^p$ folgt

$$||Tx||_{\ell^{p}}^{p} = \sum_{k\geq 1} |(Tx)_{k}|^{p}$$

$$= \sum_{k\geq 1} |\sum_{l\geq 1} |a_{kl}x_{l}|^{p}$$

$$\leq \sum_{k\geq 1} \left(\sum_{l\geq 1} |a_{kl}|^{q}\right)^{\frac{p}{q}} \left(\sum_{l\geq 1} |x_{l}|^{p}\right)^{\frac{p}{q}}$$

$$= c^{p} ||x||_{\ell^{p}}^{p} < \infty$$

b) Linearität

Wegen $c < \infty$ ist $(\sum_{l} |a_{kl}|^q)^{\frac{1}{q}} < \infty, \ \forall k \in \mathbb{N}$

Für $x \in \ell^p$ konvergiert die Reihe nach Hölder. Damit ist T offensichtlich linear.

b) Der Fall ℓ^1 :

Es ist $T \in B(\ell^1)$ genau dann, wenn

$$c_1 := \sup_{l} \sum_{k} |a_{kl}| < \infty$$

und in diesem Fall ist $||T|| = c_1$.

Beweis

" \Rightarrow " Sei $T \in B(\ell^1)$. Dann gilt für $l \in \mathbb{N}$

$$\sum_{k} |a_{kl}| = \sum_{k} |(Te_l)_k|$$

$$= ||Te_l||_{\ell^1}$$

$$\leq ||T|| ||e_l||_{\ell^1} = ||T|| < \infty$$

" \Leftarrow " folgt genau wie in a) mit Hölder. Außerdem gilt $||T|| \leq c_1$

c) Der Fall ℓ^{∞} :

Es ist $T \in B(\ell^{\infty})$ genau dann, wenn

$$c_{\infty} := \sup_{k} \sum_{l} |a_{kl}| < \infty$$

und in diesem Fall ist $||T|| = c_{\infty}$

Beweis

Beweis
"
$$\Rightarrow$$
 " Sei $T \in B(\ell^{\infty})$. Für $k \in \mathbb{N}$ setze dann $x^{(k)} = \begin{cases} \frac{|a_{kl}|}{a_{kl}} & a_{kl} \neq 0 \\ 0 & a_{kl} = 0 \end{cases}$

dann ist $x^{(k)} \in \ell^{\infty}$ mit $||x^{(k)}||_{\ell^{\infty}} = 1$ und weiter

$$\sum_{l} |a_{kl}| = |\sum_{l=1}^{\infty} a_{nl} x_l^{(k)}|$$

$$= |(Tx^{(k)})_k|$$

$$\leq ||Tx^{(k)}||_{\infty}$$

$$\leq ||T|| ||x^{(k)}||_{\ell^{\infty}} = ||T||$$

$$\Rightarrow c_{\infty} \leq ||T||$$

" \Leftarrow " folgt genau wie in a) mit Hölder. Außerdem gilt $||T|| \leq c_{\infty}$

d) Interpolation

Ist
$$T \in B(\ell^1) \cap B(\ell^\infty)$$
, dann ist $T \in B(\ell^p)$ für alle $p \in (1, \infty)$ mit $||T|| \leq c_1^{\frac{1}{p}} c_{\infty}^{\frac{1}{q}}$, wobei $\frac{1}{p} + \frac{1}{q} = 1$

Beweis

Für $x \in \ell^p$ setzen wir $y_k := |(Tx)_k|^{p-1}, \ k \in \mathbb{N}$

$$\Rightarrow ||y||_{\ell^q} = \left(\sum_{k \ge 1} |(Tx)_k|^{\frac{q(p-1)}{p}}\right)^{\frac{1}{q}} = ||Tx||_{\ell^p}^{p-1}$$

Damit folgt

$$||Tx||_{\ell^{p}}^{p} = \sum_{k\geq 1} y_{k}|(Tx)_{k}| \leq \sum_{k\geq 1} \sum_{l\geq 1} y_{k}|a_{kl}||x_{l}|$$

$$= \sum_{k\geq 1} \sum_{l\geq 1} |a_{kl}|^{\frac{1}{p}}|a_{kl}|^{\frac{1}{q}}|y_{k}||x_{l}|$$

$$\leq \left(\sum_{k\geq 1} \sum_{l\geq 1} |a_{kl}||y_{k}|^{q}\right)^{\frac{1}{q}} \left(\sum_{k\geq 1} \sum_{l\geq 1} |a_{kl}||x_{l}|^{p}\right)^{\frac{1}{p}}$$

$$\leq c_{\infty}^{\frac{1}{q}}||y||_{\ell^{q}} c_{1}^{\frac{1}{p}}||x||_{\ell^{p}}$$

$$= c_{\infty}^{\frac{1}{q}} c_{1}^{\frac{1}{p}}||x||_{\ell^{p}}||Tx||_{\ell^{p}}^{p-1}$$

$$\Rightarrow ||Tx||_{\ell^{p}} < c_{1}^{\frac{1}{p}} c_{\infty}^{\frac{1}{q}}||x||_{\ell^{p}} \text{ und } ||T|| < c_{1}^{\frac{1}{p}} c_{\infty}^{\frac{1}{q}}$$

Definition 3.11

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

- a) T heißt **Isometrie**, falls $||Tx||_Y = ||x||_X \quad \forall x \in X$
- b) T heißt stetige Einbettung, falls T stetig und injektiv ist
- c) T heißt isomorphe Einbettung, falls T injektiv ist und ein c > 0 existiert mit

$$\frac{1}{c} \|x\|_X \le \|Tx\|_Y \le c \|x\|_x$$

In diesem Fall identifizieren wir oft X mit dem Bild von T in $Y, X \cong T(X) \subset Y$

d) T heißt **Isomorphismus**, falls T bijektiv und stetig ist und $T^{-1}: Y \to X$ ebenfalls stetig ist.

d.h. falls
$$\exists c > 0 : \frac{1}{c} ||x||_X \le ||Tx||_Y \le c ||x||_X$$

(daraus folgt dann auch für $T^{-1}:Y\to X$ aus der ersten Ungleichung

$$||T^{-1}y||_X \le c||T(T^{-1}y)||_Y = c||y||_Y$$
, d.h. T^{-1} ist stetig.)

In diesem Fall Identifizieren wir $X\cong Y$ und sagen X und Y sind isomorph (da X,Y normierte Vektorräume sind, fordern wir im Gegensatz zur Linearen Algebra, dass T,T^{-1} zusätzlich stetig sind).

Beispiel 3.12

a) Seien $(X, \|\cdot\|_1)$ und $(X, \|\cdot\|_2)$ normierte Vektorräume. Dann gilt

$$\|\cdot\|_1 \sim \|\cdot\|_2 \iff I: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2), Ix = x \text{ ist isomorph}$$

b) $I: c_0 \hookrightarrow \ell^{\infty}, Ix = x$ ist isometrische Einbettung

Definition 3.13

Sei X ein normierter Vektorraum. Der Raum

$$X' = B(X, \mathbb{K})$$

heißt **Dualraum** von X oder Raum der linearen Funktionalen.

Beispiel 3.14

Sei
$$X = \ell^p$$
 für $p \in (1, \infty)$ und $\frac{1}{p} + \frac{1}{q} = 1$
Die Abbildung

$$\Phi_p : \ell^p \to (\ell^p)', \quad [\Phi_p(x)](y) = \sum_{n=1}^{\infty} x_n y_n, \quad x \in \ell^p, y \in \ell^q$$

Ist ein isometrischer Isomorphismus, d.h. $(\ell^p)' \cong \ell^q$, (insbesondere $(\ell^2)' \cong \ell^2$)

Beweis

Nach Hölder konvergiert die Reihe $[\Phi_p(x)](y)$ absolut mit

$$|[\Phi_p(x)](y)| \le \sum_n |x_n y_n| \le ||x||_{\ell^q} ||y||_{\ell^p}$$

Da $\Phi_p(x)$ linear in Y ist, folgt $\Phi_p(x) \in (\ell^p)'$ mit

$$\|\Phi_p(x)\|_{(\ell^p)'} \le \|x\|_{\ell^q}$$

Es bleibt zu zeigen, dass $\|\Phi_p(x)\|_{(\ell^p)'} \ge \|x\|_{\ell^q}$ und Φ_p surjektiv ist. Sei $y' \in (\ell^p)'$, dann setze $x_n := y'(e_n), n \in \mathbb{N}$ und $x = (x_n)_{n \ge 1}$. Setze außerdem

$$z_n := \begin{cases} \frac{|x_n|^q}{x_n} & x_n \neq 0\\ 0 & x_n = 0 \end{cases}, \quad n \in \mathbb{N}$$

Dann gilt für $N \in \mathbb{N}$

$$\sum_{n=1}^{N} |x_n|^q = \sum_{n=1}^{N} x_n z_n$$

$$= \sum_{n=1}^{N} y'(e_n) z_n = y' \left(\sum_{n=1}^{N} z_n e_n \right)$$

$$\leq \|y'\|_{(\ell^p)'} \quad \|\sum_{n=1}^{N} z_n e_n\|_{\ell^p}$$

$$= \left(\sum_{n=1}^{N} |x_n|^q \right)^{\frac{1}{p}}$$

$$= \left(\sum_{n=1}^{N} |x_n|^q \right)^{\frac{1}{p}}$$
Also zusammen:
$$\left(\sum_{n=1}^{N} |x_n|^q \right)^{1-\frac{1}{p}} \leq \|y\|_{(\ell^p)'}, \text{ wobei } 1 - \frac{1}{p} = \frac{1}{q}$$

$$\xrightarrow{N \to \infty} \|x\|_{\ell^q} \leq \|y'\|_{\ell^\infty} < \infty, \text{ d.h. } x \in \ell^q$$

$$(0.1)$$

Da für $y \in \ell^p$

$$||y - \sum_{n=1}^{N} y_n e_n||_{\ell^p}^p = \sum_{n>N+1} |y_n|^p \to 0 \text{ für } N \to \infty$$

folgt

$$|y'(y) - \sum_{n=1}^{N} y'(y_n e_n)| \le ||y'|| ||y - \sum_{n=1}^{N} y_n e_n||_{\ell^p} \to 0 \quad (N \to \infty)$$

und damit

$$[\Phi_p(x)](y) = \sum_{n=1}^{\infty} x_n y_n$$
$$= \sum_{n=1}^{\infty} y'(y_n e_n)$$
$$= y'(y) \forall y \in \ell^p$$

d.h. $\Phi_p(x) = y'$ und damit Φ_p surjektiv. Außerdem gilt nach (0.1)

$$\|\Phi_p(x)\|_{(\ell^p)'} \ge \|x\|_{\ell^q},$$

womit die Behauptung gezeigt ist.

Bemerkung

- a) Analog zu obigem zeigt man $(\ell^1)' \cong \ell^{\infty}$ und $(c_0)' \cong \ell^1$
- b) Eine ähnliche Aussage gilt auch für L^p -Räume auf einem Maßraum $(\Omega, \mathcal{A}, \mu)$: Hier gilt:

$$L^p(\Omega,\mu)' \cong L^q(\Omega,\mu)$$

bezüglich der Dualität $[\Phi_p(f)](g) (=\langle f,g\rangle) = \int_{\Omega} f(x)g(x)d\mu(x)$ wobei $p\in [1,\infty), \frac{1}{p}+\frac{1}{q}=1$

Beispiel 3.15

a) Sei $K \subset \mathbb{R}^n$ kompakt, $x \in K$. Dann definieren wir

$$\delta_x(f) := f(x) \text{ für } f \in C(K)$$

Wir versetzen C(K) mit der Supremumsnorm. Dann gilt:

$$|\delta_x(f)| = |f(x)| \le ||f||_{\infty}$$

und offensichtlich ist δ_x linear, d.h. $\delta_x \in (C(K))'$ mit $||\delta_x|| \leq 1$.

b) Sei $K \subset \mathbb{R}^n$ kompakt und μ ein endliches Maß auf $\mathcal{B}(K)$. Dann definieren wir

$$\delta_{\mu}(f) = \int_{K} f(x)d\mu(x) \text{ für } f \in C(K)$$

Dann gilt

$$|\delta_{\mu}(f)| \leq \mu(K) ||f||_{\infty}.$$

Da δ_{μ} linear ist, gilt $\delta_{\mu} \in (C(K))'$ mit $\delta_{\mu} \leq \|\mu(K)\|$. In diesem Sinne sind Maße Elemente von (C(K))'

Bemerkung 3.16

Man kann zeigen, dass $(C(K))' \cong M(K)$, wobei M(K) die Menge der 'regulären' Borelmaße versehen mit der Variationsnorm ist. Die Dualität ist gegeben durch

$$(T\mu)(f) = \int_{K} f(x)d\mu(x)$$

4 Metrische Räume

Definition 4.1

a) Sei M eine nichtleere Menge. Eine Abbildung $d: M \times M \to \mathbb{R}$ heißt **Metrik** auf M, falls $\forall x, y, z \in M$:

$$(M1)$$
 $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$ (positive Definitheit)

$$(M2)$$
 $d(x,y) = d(y,x)$ (Symmetrie)

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$
 (Dreiecksungleichung)

Das Tupel (M, d) nennen wir dann einen metrischen Raum.

b) Eine Folge $(x_n)_{n\geq 1}\subset M$ konvergiert gegen $x\in M$, falls

$$d(x_n, x) \to 0$$
 für $n \to \infty$

Notation: $x = \lim_{n \to \infty} x_n$ (in M)

Bemerkung

Der Grenzwert einer konvergenten Folge ist stets eindeutig, denn: Sei $(x_n)_{n\geq 1}\subset M$ mit $\lim_{n\to\infty}x_n=x\in M$ und $\lim_{n\to\infty}x_n=y\in M$, dann folgt:

$$d(x,y) \le d(x,x_n) + d(x_n,y)$$

 $\to 0 \text{ für } n \to \infty$

d.h.
$$d(x,y) = 0 \Rightarrow x = y$$

Beispiel 4.2

- a) Sei X ein normierter Vektorraum und $M \subset X$ (nichtleere) Teilmenge. Dann definiert $d(x,y) := \|x-y\|, \ x,y \in M$ eine Metrik auf MEin Unterschied hier: Eine Norm setzt eine lineare Struktur auf X voraus, eine Metrik macht auch Sinn auf nicht-linearen Teilmengen.
- b) Sei M eine nichtleere Menge, dann definieren wir die **diskrete Metrik** auf M durch

$$d(x,y) := \begin{cases} 1 & , x \neq y \\ 0 & , x = y \end{cases}$$

Dann ist (M, d) ein metrischer Raum und es gilt:

$$x_n \to x \text{ in } M \iff \exists N \in \mathbb{N} \text{ mit } x_n = x \ \forall n > N$$

Beispiel 4.3

a) Sei X ein Vektorraum und p_j für $j \in \mathbb{N}$ Halbnormen auf X mit der Eigenschaft, dass für jedes $x \in X \setminus \{0\}$ ein $K \in \mathbb{N}$ existiert mit $p_K > 0$. Dann definiert

$$d(x,y) := \sum_{j \ge 1} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)}, \quad x, y \in X$$

eine Metrik auf X mit

$$d(x_n, x) \to 0 \iff p_j(x_n - x) \to 0 \ (n \to \infty) \ \forall j \in \mathbb{N}$$

Beweis siehe Übung

b) Für $X = \mathbb{K}^{\mathbb{N}} = \{(x_n)_{n \geq 1} : x_n \in \mathbb{K}\}$ und $p_j(x) := |x_j|, j \in \mathbb{N}$ definiert also

$$d(x,y) = \sum_{j=1}^{\infty} 2^{-j} \frac{|x_j - y_j|}{1 + |x_j - y_j|}$$
 gerade die komponentenweise Konvergenz auf X

c) In ℓ^{∞} entspricht die Konvergenz bezüglich $\|\cdot\|_{\ell^{\infty}}$ gerade der gleichmäßigen Konvergenz der Folge $x_n := (x_{n,i})_{(i \in \mathbb{N})}$ gegen $x := (x_i)_{(i \in \mathbb{N})}$

$$||x_n - x||_{\ell^{\infty}} = \sup_{i \in \mathbb{N}} |x_{n,i} - x_i| \to 0 \quad (n \to \infty)$$

d) In C[a, b] entspricht die Konvergenz bezüglich $\|\cdot\|_{\infty}$ ebenfalls die gleichmäßige Konvergenz von Funktionen

$$f_n \to f$$
 in $[a, b] \iff ||f_n - f||_{\infty} = \sup_{t \in [a, b]} |f_n(t) - f(t)| \to 0$
 $\iff f_n \to f$ gleichmäßig.

Definition 4.4

Sei (M, d) ein metrischer Raum.

- a) Eine Teilmenge $A \subset M$ heißt **abgeschlossen** (in M), falls für alle in M konvergenten Folgen $(x_n)_{n\geq 1} \subset A$ der Grenzwert von (x_n) in A liegt
- b) Eine Teilmenge $U\subset M$ heißt offen (in M), falls zu jedem $x\in U$ ein $\epsilon>0$ existiert, sodass

$$\{y \in M : d(x,y) < \epsilon\} \subset U$$

Bemerkung 4.5

a) Wir benutzen die Bezeichnungen

$$K(x,r) := \{y \in M : d(x,y) < r\}$$
 offene Kugel $\bar{K}(x,r) := \{y \in M : d(x,y) \le r\}$ abgeschlossene Kugel

für $x \in M, r > 0$. Man sieht leicht, dass K(x,r) offen und $\bar{K}(x,r)$ abgeschlossen ist.

Beweis

a) Sei $y \in K(x,r)$ und wähle $\rho := r - d(x,y) > 0$ Wir zeigen: $K(y,\rho) \subset K(x,r)$ (Dann ist K(x,r) offen). Sei dazu $z \in K(y,\rho)$. Dann folgt

$$d(x,y) \le d(x,z) + d(z,y) \le r - \rho + d(z,y)$$

$$\le r - \rho + \rho = r$$

$$\Rightarrow z \in K(x,r)$$

Da z beliebig war, folgt die Behauptung.

b) Sei $(y_n)_{n\geq 1}\subset \bar{K}(x,r)$ eine beliebige Folge mit $\lim_{n\to\infty}y_n=y\in M$. Wir müssen zeigen, dass $y\in \bar{K}(x,r)$ (Dann ist $\bar{K}(x,r)$ abgeschlossen).

$$d(x,y) \le d(x,y_n) + d(y_n,y)$$

$$\le r + d(y_n,y) \to r$$

$$\Rightarrow d(x,y) \le r, \text{ d.h. } y \in \bar{K}(x,r).$$

- b) \emptyset , M sind sowohl offen, als auch abgeschlossen (in M)
- c) Bezüglich der diskreten Metrik d aus Beispiel 4.2 b) ist $\{x\} \subset M$ offen für jedes $x \in M$, da

$$K(x,r)=\{x\}\subset\{x\}$$
 für $r\in(0,1]$

Wir fassen als Nächstes die grundlegenden Eigenschaften offener und abgeschlossener Mengen zusammen.

Proposition 4.6

Sei (M,d) ein metrischer Raum und I eine beliebige Indexmenge

- a) $A \subset M$ ist abgeschlossen in M genau dann, wenn $U = M \setminus A$ offen ist
- b) Für eine beliebige Familie von abgeschlossenen Mengen $(A_i)_{i \in I}$ sind

$$A := \bigcap_{i \in I} A_i$$
 und $A_{i_1} \cup \ldots \cup A_{i_N}$ $(i_1, \ldots, i_N \in I)$

abgeschlossen in M.

c) Für eine beliebige Familie offenere Mengen $(U_i)_{i\in I}$ sind

$$U := \bigcup_{i \in I} U_i$$
 und $U_{i_1} \cap \ldots \cap U_{i_N}$ $(i_1, \ldots, i_N \in I)$

offen in M.

Beweis

a) Sei U nicht offen. Dann existiert ein $x_0 \in U$ und ein $x_n \in K(x_0, \frac{1}{n})$ mit $x_n \notin U$, d.h. $x_n \in U^c = A \forall n \in \mathbb{N}$.

Da $d(x_n, x_0) \leq \frac{1}{n} \to 0$ und $x_0 \notin A$, ist A nicht abgeschlossen.

Sei umgekehrt A nicht abgeschlossen. Dann existiert eine Folge $(x_n)_{n\geq 1}\subset A$ mit $\lim_{n\to\infty}x_n=x\notin A$, d.h. $x\in U$.

Für beliebige $\epsilon > 0$ existiert dann ein $N_{\epsilon} \in \mathbb{N}$ mit $d(x_n, x) < \epsilon \ \forall n \geq N_{\epsilon}$

$$\Rightarrow (x_n)_{n \geq N_{\epsilon}} \subset K(x, \epsilon) \cap A = K(x, \epsilon) \cap U^c$$

 $\Rightarrow \forall \epsilon > 0$ ist $K(x, \epsilon) \not\subset U$, d.h. U ist nicht offen.

b) folgt aus a) & c), da

$$M \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} M \setminus A_i$$

c) Sei $x \in U$. Dann existiert ein U_{i_0} mit $x \in U_{i_0}$

$$\Rightarrow \exists r > 0 : K(x,r) \subset U_{i_0} \subset U$$
, d.h. U ist offen.

Sei $x \in U_{i_1} \cap \ldots \cap U_{i_N}$. Dann existieren $r_1, \ldots, r_N > 0$ mit

$$K(x,r_n) \subset U_{i_n}$$
 $n=1,\ldots,N$

Setze $r := \min\{r_1, \dots, r_n\} > 0$. Dann ist $K(x, r) \subset U_{i_n} \ \forall n \in \{1, \dots, N\}$

$$\Rightarrow K(x,r) \subset U_{i_1} \cap \ldots \cap U_{i_N},$$

d.h. $U_{i_1} \cap \ldots \cap U_{i_N}$ ist offen.

Definition 4.7

Sei (M,d) ein metrischer Raum und $V \subset M$. Dann heißt

- a) $\bar{V} := \bigcap \{A \subset M : A \text{ ist abgeschlossen mit } V \subset A\}$ der **Abschluss** von V.
- b) $\mathring{V} := \bigcup \{U \subset M : U \text{ ist offen mit } U \subset V\} \text{ das Innere von } V.$
- c) $\partial V := \bar{V} \setminus \mathring{V}$ der **Rand** von V.

Hierfür gelten die folgenden Eigenschaften:

Proposition 4.8

Sei (M,d) ein metrischer Raum und $V \subset M$

- a) a) \bar{V} ist die kleinste abgeschlossene Menge, die V enthält.
 - b) V ist abgeschlossen $\iff V = \bar{V}$
 - c) $\bar{V} = \{x \in M : \exists (x_n) \subset V \text{ mit } \lim_{n \to \infty} x_n = x\} =: \tilde{V}$
- b) a) \mathring{V} ist die größte offene Teilmenge von V.
 - b) V ist offen $\iff V = \mathring{V}$
 - c) $\mathring{V} = \{x \in M : \exists \epsilon > 0 \text{ mit } K(x, \epsilon) \subset V\} =: \mathring{V}$
- c) a) ∂V ist abgeschlossen.
 - b) $\partial V = \{x \in M : \exists (x_n) \subset V, (y_n) \subset M \ V \text{ mit } \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = x\}$

Beweis

- a) Nach Definition gilt $V \subseteq \bar{V}$ und \bar{V} ist nach Proposition 4.7 abgeschlossen. Falls $V \subseteq A \subseteq \bar{V}$ und A abgeschlossen, dann gilt $\bar{V} \subseteq A$ nach der Definition von \bar{V} , d.h. $A = \bar{V}$.
 - b) folgt aus (i)
 - c) Per Definition ist \tilde{V} abgeschlossen, denn zu $(x_n) \subseteq \tilde{V}$ mit $\lim_{n \to \infty} x_n = x \in M$ existieren Folgen $(x_{n,m})_{m \ge 1}$ mit $\lim_{m \to \infty} x_{n,m} = x_n$. Dann folgt aber für $(x_{n,n})_{n \ge 1} \subseteq V$:

$$d(x, x_{n,n}) \le d(x, x_n) + d(x_n, x_{n,n}) \to 0$$
 für $n \to \infty$

d.h. $x \in \tilde{V}$. Sei nun $A \subseteq M$ abgeschlossen mit $V \subseteq A$. Dann gilt nach Definition 4.4 $\tilde{V} \subseteq A$ und nach (i) damit $\bar{V} = \tilde{V}$.

- b) a) zeigt man wie a) (i)
 - b) folgt aus (i)
 - c) \hat{V} ist per Definition offen, denn zu $x \in \hat{V}$ existiert ein $\epsilon > 0$ mit $K(x, \epsilon) \subseteq V$. Dann existiert aber zu jedem $y \in K(x, \epsilon)$ ein $\delta > 0$ mit $K(y, \delta) \subseteq K(x, \epsilon) \subseteq V$, d.h. $y \in \hat{V}$. $\Rightarrow K(x, \epsilon) \subseteq \hat{V}$ Falls nun $U \subseteq V$ offen, so ist nach Definition 4.4 $U \subseteq \hat{V}$ und somit $\mathring{V} = \hat{V}$ nach (i)
- c) a) Da $\partial V = \overline{V} \cap (\mathring{V})^c$ ist ∂V als Schnitz zweier abgeschlossenen Mengen wieder abgeschlossen.

b) Nach Definition 4.6 gilt $(\mathring{V})^c = \overline{V^c}$ (und $(\overline{V})^c = (V^c)^\circ$) Damit folgt die Behauptung auf $\partial V = \overline{V}_n \cap \overline{V}^c$ und a)

Definition 4.9

Sei (M, d) ein metrischer Raum

- a) Eine Menge $V \subset M$ heißt **dicht** in M, falls $\overline{V} = M$, d.h. jeder Punkt in M ist Grenzwert einer Folge aus V.
- b) M heißt **seperabel**, falls es eine abzählbare Teilmenge $V \subset M$ gibt, die dicht in M liegt.

Bemerkung 4.10

- a) All die Begriffe und Bezeichnungen aus Definition 4.4, Bemerkung 4.5, Definition 4.7 und Definition 4.9 werden wir auch in normieren Räumen benutzen bzgl. der kanonischen Metrik d(x,y) = ||x-y||
- b) Sei (M,d) ein metrischer Raum, $U \subset M$. Dann ist auch (U,d) ein metrischer Raum. Für $V \subset U$ muss man dann aber unterscheiden bzgl. Abgeschlossenheit (bzw. Offenheit) von V in U oder in M. Man sagt dann, dass V relativ offen bzw. relativ abgeschlossen in U ist.

Beispiel 4.11

- a) Sei X ein normierter Vektorraum (!), $x \in X, r > 0$. Dann gilt
 - a) $\bar{K}(x,r) = \overline{K(x,r)}$
 - b) $\bar{K}(x,r)^{\circ} = K(x,r)$
 - c) $\partial \bar{K}(x,r) = \partial K(x,r) (= \{ y \in X : ||x-y|| = r \})$

Beweis

- a) Da $\bar{K}(x,r)$ abgeschlossen ist mit $K(x,r) \subset \bar{K}(x,r)$ folgt aus Proposition 4.8 a) (i) $\overline{K}(x,r) \subset \bar{K}(x,r)$. Sei umgekehrt $y \in \bar{K}(x,r)$ und $y_n = y \frac{1}{n}(y-x), n \in \mathbb{N}$. Dann ist $y_n \in K(x,r)$ mit $\lim_{n\to\infty} y_n = y$, d.h. $y \in \overline{K}(x,r)$ nach Proposition 4.8 a) (iii).
- b) Da K(x,r) offen ist mit $K(x,r) \subset \overline{K}(x,r)$ folgt mit Proposition 4.8 b) (ii):

$$K(x,r) \subset \bar{K}(x,r)^{\circ}$$

Sei umgekehrt $y \in \bar{K}(x,r)^{\circ}$. Dann existiert ein $\epsilon > 0$ mit $K(y,\epsilon) \subseteq \bar{K}(x,r)$. Angenommen ||x-y|| = r. Setze in diesem Fall $z := y + \frac{\epsilon}{2r}(y-x)$. Dann gilt $z \in K(y,\epsilon)$, aber $z \notin \bar{K}(x,r)$, was zu einem Widerspruch führt. Also ist ||x-y|| < r, d.h. $y \in K(x,r)$.

- c) Aussage über Rand folgt aus i) und ii)
- b) Die Aussagen in a) sind im Allgemeinen falsch für metrische Räume. Sei M nichtleer mit mindestens 2 Elementen und d die diskrete Metrik, dann gilt:

$$K(x,1)=\{x\},\quad \bar{K}(x,1)=M,\quad \overline{K(x,1)}=\{x\}$$

$$\Rightarrow \overline{K(x,1)}\subsetneq \bar{K}(x,1)$$

c) Sei X = C[0,1] und a,b > 0 mit a < b. Dann ist die Menge

$$A := \{ f \in X : f(t) \in (a, b) \quad \forall t \in [0, 1] \}$$

offen mit

$$\bar{A} = \{ f \in X : f(t) \in [a, b] \quad \forall t \in [0, 1] \}$$
$$\partial A = \{ f \in \bar{A} : \exists t \in [0, 1] \text{ mit } f(t) \in \{a, b\} \}$$

Beweis

a) Sei $f \in A$ beliebig. Da f stetig auf [0,1] existieren $t_1, t_2 \in [0,1]$ mit

$$f(t_1) = \min_{t \in [0,1]} f(t) =: c_1 > a$$

$$f(t_2) = \max_{t \in [0,1]} f(t) =: c_2 < b$$

Figure 4.1: ϵ -Kugel um f bzgl. $\|\cdot\|_{\infty}$

Für $\epsilon \in (0, \min\{c_1 - a, b - c_2\})$ gilt dann $K(f, \epsilon) \subseteq A$, d.h. A ist offen.

b) Da Konvergenz bezüglich $\|\cdot\|_{\infty}$ punktweise Konvergenz impliziert, folgt direkt

$$\overline{A} \subseteq \{ f \in X : f(t) \in [a, b] \mid \forall t \in [a, b] \}.$$

Ist umgekehrt $f \in X$ mit $f(t) \in [a, b]$ für alle $t \in [0, 1]$, so definieren wir

$$f_n(t) = \begin{cases} a + \frac{1}{n} & , f(t) \le a + \frac{1}{n} \\ b - \frac{1}{n} & , f(t) \ge b - \frac{1}{n} \\ f(t) & , \text{ sonst.} \end{cases}$$

Figure 4.2: f bzw. f_n für konkretes $n \in \mathbb{N}$

$$\Rightarrow f_n \in A \text{ mit } ||f_n - f||_{\infty} \to 0 \ (n \to \infty), \text{ d.h. } f \in \bar{A}$$

- c) Aussage über ∂A folgt aus i) und ii)
- d) Sei X ein normierter Vektorraum und $Y\subseteq X$ abzählbar mit $\overline{linY}=X$. Dann ist X seperabel.

Beweis

Wir definieren

$$lin_{\mathbb{Q}}Y := \{ y = \sum_{i=1}^{n} q_j y_j : q_j \in \mathbb{Q} \quad (q_j \in \mathbb{Q} + i\mathbb{Q}), y_j \in Y, n \in \mathbb{N} \}$$

Dann ist linY abzählbar, da Y abzählbar ist. Sei nun $\epsilon > 0$ beliebig, $x \in X$. Nach Voraussetzung existiert dann ein $y \in linY$ mit $\|x - y\| < \epsilon$ Zu diesem y finden wir ein $z \in lin_{\mathbb{Q}}Y$ mit $\|y - z\| < \epsilon$

$$\Rightarrow ||x - z|| < 2\epsilon, \quad \text{d.h. } \overline{lin_{\mathbb{Q}}Y} = X$$

- e) C[0,1] ist seperabel, da $lin\{t^n, n \in \mathbb{N}\}$ dicht in C[0,1] liegt nach dem Approximationssatz von Weierstrass.
- f) Die Räume $\ell^p, p \in [1, \infty)$ und c_0 sind seperabel, da

$$D = lin\{e_k, k \in \mathbb{K}\}$$
 dicht in allen Räumen liegt.

g) Der Raum ℓ^{∞} ist nicht seperabel: Die Menge Ω der $\{0,1\}$ -wertigen Folgen ist überabzählbar. Für $x,y\in\Omega$ mit $x\neq y$ gilt $\|x-y\|_{\infty}=1$ Angenommen: $\overline{\{v_k,k\in\mathbb{N}\}}=\ell^{\infty}$. Dann

$$\Omega \subseteq \bigcup_{k \in \mathbb{N}} K\left(v_k, \frac{1}{4}\right)$$

Wegen $||x - y||_{\ell^{\infty}} = 1 \ \forall x, y \in \Omega$ kann aber in jeder Kugel $K(v_k, \frac{1}{4})$ nur ein Element auf Ω liegen. (d.h. zu $x \in \Omega$ existiert ein $k(x) \in \mathbb{K}$ mit $x \in K(v_{k(x)}, \frac{1}{4})$)

- \Rightarrow die Abbildung $J:\Omega\to\mathbb{N},x\to k(x)$ ist injektiv
- $\Rightarrow \Omega$ ist abzählbar, Widerspruch.

Schließlich betrachten wir Stetigkeit:

Definition 4.12

Seien $(M, d_M), (N, d_N)$ metrische Räume.

Eine Abbildung $f: M \to N$ heißt **stetig in** $x_0 \in M$, falls für alle $(x_n) \subset M$ gilt

$$x_n \to x_0$$
 in $M \Rightarrow f(x_n) \to f(x_0)$ in N

$$(d_M(x_n, x_0) \to 0 \ (n \to \infty) \Rightarrow d_N(f(x_n), f(x_0)) \to (n \to \infty))$$

Die Abbildung f heißt **stetig auf** M, falls f in jedem Punkt von M stetig ist.

Hierfür gelten folgende Eigenschaften:

Proposition 4.13

Sei $(K, d_K), (M, d_M)$ und (N, d_N) metrische Räume und $f: M \to N, g: K \to M$. Dann gilt:

a) Ist g stetig in x_0 , f stetig in $g(x_0)$, dann ist auch

$$f \circ g : K \to N$$
 stetig in x_0

b) f ist stetig in $x_0 \in M$ genau dann, wenn

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in M \ \text{mit} \ d_M(x, x_0) < \delta \ \text{gilt} \ d_N(f(x), f(x_0)) < \epsilon$$

- c) Die folgenden Aussagen sind äquivalent:
 - a) f ist stetig auf M
 - b) Ist $U \subset N$ offen, so ist auch $f^{-1}(U)$ offen in M
 - c) Ist $A \subset N$ abgeschlossen, so ist auch $f^{-1}(A)$ abgeschlossen in M.

Beweis

- a) Folgt direkt aus der Definition
- b) " \Rightarrow ": Annahme, das ϵ - δ -Kriterium gilt nicht. Dann existiert eine $\epsilon > 0$ und für jedes $n \in \mathbb{N}$ ein $x_n \in K(x_0, \frac{1}{n})$ mit $d_M(f(x_n), f(x_0)) \ge \epsilon$. Dann gilt aber $d_M(x_n, x_0) < \frac{1}{n} \to 0$ für $n \to \infty$ und $d_N(f(x_n, f(x_0)) \ge \epsilon \not\to 0$ für $n \to \infty$, d.h. f ist nicht stetig in x_0 .
 - " \Leftarrow ": Es gelte das ϵ - δ -Kriterium. Sei $(x_n) \subseteq M$ mit $x_n \to x_0, \epsilon > 0$. Dann gilt $d_N(f(x_n), f(x_0)) < \epsilon$ für n groß genug. Da $\epsilon > 0$ beliebig, folgt $d_N(f(x_n), f(f_0)) \to 0$ für $n \to \infty$.
- c) (i) \Rightarrow (iii): Sei $A \subseteq N$ abgeschlossen und $(x_n) \subseteq f^{-1}(A)$ mit $x_n \to x$ in M für $n \to \infty$. Dann gilt nach (i) $f(x_n) \to f(x)$ in N für $n \to \infty$. Da $(f(x_n))_{n \ge 1} \subseteq A$ und A abgeschlossen ist, folgt $f(x) \in A$, d.h. $x \in f^{-1}(A)$. Also ist $f^{-1}(A)$ abgeschlossen.

 $(iii) \Rightarrow (ii)$: Sei $U \subset N$ offen $\Rightarrow U^c$ abgeschlossen $\Rightarrow f^{-1}(U^c) = f^{-1}(U)^c$ ist abgeschlossen $\Rightarrow f^{-1}(U)$ offen.

 $(ii) \Rightarrow (i)$: Sei $x_0 \in M$ beliebig. Für $\epsilon > 0$ ist nach (ii) dann auch $f^{-1}(K(f(x_0), \epsilon))$ offen in M.

Da $x_0 \in f^{-1}(K(f(x_0), \epsilon))$, existiert ein $\delta > 0$ mit $K(x_0, \delta) \subseteq f^{-1}(K(f(x_0), \epsilon))$ Das bedeutet gerade

$$\forall \epsilon > 0 \; \exists \delta > 0 : \forall x \in M \; \text{mit} \; d_M(x_0, x) < \delta \; \text{gilt auch}$$

$$d_N(f(x_0), f(x)) < \epsilon$$

Nach b) bedeutet dies gerade, dass f stetig in x_0 ist.

Beispiel 4.14

a) Sind $(M_1, d_1 \text{ und } (M_2, d_2) \text{ metrische Räume, so definiert}$

$$d(x,y) := d_1(x_1,y_1) + d_2(x_2,y_2)$$

für $x = (x_1, x_2), y = (y_1, y_2) \in M_1 \times M_2$ eine Metrik mit

$$d(x_n, x) \to 0 \iff d_1(x_{n,1}, x_1) \to 0, d_2(x_{n,2}, x_2) \to 0$$

In diesem Sinne ist jede Metrik $d: M \times M \to \mathbb{R}$ stetig. Denn: Sei $(x_n, y_n) \to (x, y)$ in $M \times M$, d.h.

$$d(x_n, x) \to 0$$
 und $d(y_n, y) \to 0$ $(n \to \infty)$

$$d(x_n, y_n) - d(x, y) \le d(x_n, x) + d(x, y_n) - d(x, y)$$

$$\le d(x_n, x) + d(x, y) + d(y, y_n) - d(x, y)$$

$$d(x, y) - d(x_n, y_n) \le \dots \le d(x, x_n) + d(y_n, y)$$

$$\Rightarrow |d(x,y) - d(x_n, y_n)| \le d(x, x_n) + d(y_n, y) \to 0 \quad (n \to \infty)$$

b) Sei X ein normierter Vektorraum und

$$A: \mathbb{K} \times X \to X, \quad A(\alpha, x) = \alpha x$$

 $S: X \times X \to X, \quad S(x, y) = x + y$

Dann sind A und S stetig.

c) Sei $X = C[0,1], t_0 \in [0,1], \psi : X \to \mathbb{K}, \psi(f) = f(t_0)$ Nach Beispiel 3.15 ist ψ stetig. D.h. ist $A \subset \mathbb{K}$ offen (abgeschlossen), so ist $\psi^{-1}(A)$ offen (abgeschlossen) nach Proposition 4.13.

5 Vollständigkeit

Definition 5.1

Sei (M, d) ein metrischer Raum.

a) $x_n \in M$ heißt Cauchy-Folge, falls es zu jedem $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass $\forall m, n \geq n_0$ gilt:

$$d(x_n, x_m) \le \epsilon$$

b) (M,d) heißt vollständig, falls jede Cauchy-Folge $(x_n) \subset M$ einen Grenzwert in M hat:

$$\lim_{n \to \infty} x_n = x \quad x \in M$$

c) Ein normierter Raum $(X, \|\cdot\|)$, der vollständig ist bezüglich $d(x, y) = \|x - y\|$ heißt Banachraum.

Bemerkung 5.2

a) Jede konvergente Folge in (M, d) ist eine Cauchy-Folge:

Sei
$$\lim_{n \to \infty} x_n = x$$
: $d(x_n, x_m) \le d(x_n, x) + d(x, x_m) \xrightarrow[n, m \to \infty]{} 0$

b) Aber: nicht jede Cauchy-Folge eines normierten Raums X konvergiert in X

Beispiel
$$X = C[0, 2], \quad ||f||_1 = \int_0^2 |f(t)| dt, \quad f_n(x) = \begin{cases} x^n & \text{für } x \in [0, 1] \\ 1 & \text{für } x \in [1, 2] \end{cases}$$

$$f_n(x) \to f(x) = \begin{cases} 0 & \text{für } x \in [0,1) \\ 1 & \text{für } x \in [1,2] \end{cases} \text{ für feste } x \in [0,2]$$

Nach dem Satz von Lebesgue folgt $||f - f_n||_1 \to 0$ für $n \to \infty$, aber $f \notin C[0, 2]$ Demnach ist f_n zwar eine Cauchy-Folge, aber f_n konvergiert nicht gegen f in X bezüglich der $||\cdot||_1$ -Norm.

Proposition 5.3

Sei X ein metrischer Raum, Y ei Banachraum.

$$C(x,Y) = \{f : X \to Y : f \text{ stetig}\}, \quad ||f||_{\infty} = \sup_{x \in X} ||f(x)||_{Y}$$

Dann ist C(X,Y) ein (linearer) Banachraum.

Beispiel

$$\Omega \subseteq \mathbb{R}^n$$
, $C(\Omega, \mathbb{R})$

Beweis

Sei (f_n) eine Cauchy-Folge in C(X,Y).

Für alle $x \in X$:

$$||f_n(x) - f_m(x)||_Y \le ||f_n - f_m||_{\infty} \xrightarrow[n,m\to\infty]{} 0$$

Für alle $x \in X$: $(f(x))_{n \in \mathbb{N}}$ ist eine Cauchy-Folge in Y. da Y vollständig ist, existiert $f(x) := \lim_{n \to \infty} f_n(x)$ in Y.

z.z. $f \in C(X, Y)$, $||f - f_n||_{\infty} \to 0$.

Zu $\epsilon > 0$ gibt es ein n_0 , sodass für alle $x \in X$:

$$||f_n(x) - f_m(x)||_Y \le ||f_n - f_m||_{\infty} \le \epsilon$$

Für jedes $x \in X$ fest, folgt für $m \to \infty$:

$$||f_n(x) - f(x)|| \le \epsilon$$
 für $n \ge n_0$

$$\Rightarrow \|f_n - f\|_{\infty} \le \epsilon$$
 für $n \ge n_0$ nehme das Supremum über $x \in X$

 $f \in C(X,Y)$, da der gleichmäßige Limes stetiger Funktionen stetig ist.

Beispiel 5.4

Sei $\Omega \subseteq \mathbb{R}^n$ offen und beschränkt. $C^m(\bar{\Omega})$ ist vollständig bezüglich der Supremums-Norm.

Beweis

Für $C^1(\bar{\Omega})$ gilt $||f||_{C^1} = ||f||_{\infty} + \sum_{i=1}^n ||\frac{\partial}{\partial x_i} f||_{\infty}$. Sei $(f_i) \subset F$ in $C^1(\bar{\Omega})$.

$$\Rightarrow (f_j)_{j \in \mathbb{N}}, \quad (\frac{\partial}{\partial x_j} f_j)_{j \in \mathbb{N}}, \quad i = 1, \dots, n \text{ Cauchy-Folgen in } C(\bar{\Omega})$$

Da $C(\bar{\Omega})$ vollständig ist, existieren für $i \in \{1, \dots, n\}$

$$f = \lim_{j \to \infty} f_j$$
$$g_i = \lim_{j \to \infty} \frac{\partial}{\partial x_i} f_j$$

in $C(\bar{\Omega})$. Setze $g = (g_1, \dots, g_n)$

z. z. $f \in C^1(\bar{\Omega})$ und $g = \nabla f$

Beweis: zu $u\in\Omega$ und vnahe beiu wähle

$$u_t = (1 - t)u + tv$$

$$\begin{split} |f_k(v) - f_k(u) - \nabla f_k(u)(v - u)| &= |\int_0^1 [\nabla f_k(u_t) - \nabla f_k(u)](v - u) dt \\ &\leq \int_0^1 |\nabla f_k(u_t) - \nabla f_k(u)| dt (v - u) \\ &\leq \left[\int_0^1 |\nabla f_k(u_t) - g(u_t)| dt + \int_0^1 |g(u_t) - g(u)| dt + \int_0^1 |g(u) - \nabla f_k(u)| dt \right] \\ &\qquad \qquad \cdot |v - u| \\ &\leq \left[z \|\nabla f_k - g\|_{\infty} + \sup_{0 \leq t \leq 1} |g(u_t) - g(u)| \right] |v - u| \end{split}$$

für
$$k \to \infty: |f(v) - f(u) - g(u)(v - u)| \le \sup_{t \in [0,1]} |g(u_t) - g(u)||v - u|$$

 $\to 0$ für $v \to u$ (da g gleichmäßig stetig)

Bemerkung 5.5

a) $\|\cdot\|_1, \|\cdot\|_2$ seien äquivalente Normen auf X. Ist X bezüglich $\|\cdot\|_1$, so auch bezüglich $\|\cdot\|_2$.

Beweis

Äquivalente Normen haben gleiche Cauchy-Folgen.

Bsp.: $C^1[0,1]$, $|||f||| = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$. Früher: $||| \cdot ||| \sim || \cdot ||_{\infty} \Rightarrow (C[0,1], ||| \cdot |||)$ ist vollständig.

b) Abgeschlossene Teilmengen von Banachräumen sind vollständige metrische Räume bezüglich $d(x,y) = \|x-y\|$

Beweis

$$(x_n) \subset M$$
, Cauchy-Folge in $X \Rightarrow \lim_{n \to \infty} x_n = x \in X \xrightarrow{Mabg.} x \in M$ existiert.

Bsp.: $X = C([0,1], \mathbb{C}), M = \{f \in X : |f(t)| = 1\}$ ist ein vollständiger metrischer Raum.

Satz 5.6

Sei X ein normiert Raum, Y ein Banachraum. Dann ist B(X,Y) mit der Operatornorm vollständig.

Insbesondere: $X' = B(X, \mathbb{K})$ ist immer vollständig.

Beweis

Sei $(T_n) \subset B(X,Y)$ eine Cauchy-Folge bezüglich der Operatornorm. Sei $x \in X$

$$||T_n x - T_m||_Y \le ||T_n - T_m|| ||x||_X$$

Also $(T_nx)_{n\in\mathbb{N}}$ eine Cauchy-Folge in Y für alle $x\in X$. Definiere $Tx:=\lim_{n\to\infty}T_nx$ z.z. $T\in B(X,Y),\ s\|T_n-T\|\to 0$

$$T_n(x+y) = T_n x + T_n y \xrightarrow[n \to \infty]{} T(x+y) = Tx + Ty$$

$$||Tx - T_n x|| \stackrel{Norm \ stetig}{=} \lim_{m \to \infty} ||T_m x - T_n x||$$

$$\leq \lim_{m \to \infty} ||T_n - T_m|| ||x||$$

$$\leq \epsilon ||x|| \text{ für n groß genug.}$$

Wobei $||T - T_n|| \le \epsilon$ für n groß genug. Also für $||x|| \le 1$:

$$||Tx|| \le ||T_nx|| + \epsilon \le ||T_n|| + \epsilon$$

$$\Rightarrow ||T|| \le ||T_n|| + \epsilon, \quad \text{also } T \in B(X, Y)$$

Bemerkung 5.7 (Exponentialfunktion)

 $A \in B(X)$, X Banachraum

Funktionalanalysis

• Frage: e^{tA}

• Idee: $e^{tA} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n A^n$

• Setze $S_m = \sum_{n=0}^m \frac{1}{n!} t^n A^n$

z. z. S_m ist eine Cauchy-Folge in B(X) Seien $k, m \in \mathbb{N}, k > 0$

$$||S_k - S_m|| \le \sum_{n=m+1}^k ||\frac{1}{n!} t^n A^n||$$

$$\le \sum_{n=m+1}^k \frac{1}{n!} |t^n| ||A^n|| \xrightarrow[k,m\to\infty]{} 0$$

Da B(X) vollständig ist, ist $e^{tA} = \lim_{m \to \infty} S_m$ in B(X).

Proposition 5.8 (Neumann'sche Reihe)

Sei $A \in B(X)$, X ein Banachraum mit ||A|| < 1.

Dann ist Id - A invertierbar und

$$(Id - A)^{-1} = \sum_{n=0}^{\infty} A^n$$

Beweis

 $S_m = \sum_{n=0}^m A^n$ ist eine Cauchy-Folge in B(X), denn für

$$k > m: \quad ||S_k - S_m|| \le \sum_{n=m+1}^k ||A^n||$$

 $\le \sum_{n=m+1}^k ||A||^n \to 0 \text{ für } m, n \to \infty, \text{ da}||A|| < 1$

 $R := \lim_{m \to \infty} S_m$ existiert in B(X), da B(X) vollständig.

$$S_m(Id - A) = (Id - A)S_m = Id - A^m$$

 $\min \|A^m\| \le \|A\|^m \to 0 \text{ für } m \to \infty$

$$\Rightarrow R(Id - A) = (Id - A)R = Id, \quad R = (Id - A)^{-1}$$

Korollar 5.9

X sei ein Banachraum und $J:X\to X$ ein (surjektiver) Isomorphismus. Für $A\in B(X)$ und $\|A\|<\|J^{-1}\|^{-1}$ ist auch J-A ein Isomorphismus

Insbesondere: $G = \{T \in B(X) : T \text{ stetig und invertierbar}\}$ ist eine offene Menge in B(X).

Beweis

Da $J - A = J(Id - J^{-1}A)$ folgt:

$$||J^{-1}A|| \le ||J^{-1}|| \underbrace{||A||}_{<||J^{-1}||^{-1}} < 1$$

Nach 5.8 ist $(Id - J^{-1}A)$ invertierbar mit

$$(J-A)^{-1} = (Id - J^{-1}A)^{-1}J^{-1}$$
$$= \sum_{n=0}^{\infty} (J^{-1}A)^n J^{-1}$$

Proposition 5.10

Sei X ein normierter Raum, Y ein Banachraum und $D\subset X$ ein dichter Teilraum. Jeder linearere Operator $T:X\to Y$ mit

$$||Tx||_Y \leq M||x||_X$$
, für alle $x \in D$

lässt sich zu einem eindeutig bestimmten Operator $\tilde{T} \in B(X,Y)$ mit $\|\tilde{T}\| \leq c$ fortsetzen.

Korollar 5.11

Sei X ein normierter Banachraum, $D \subset X$ dicht in X und sei eine Folge $T_n \in B(X,Y)$, wobei $(T_n x)$ eine Cauchy-Folge für jedes $x \in D$ sei.

Dann gibt es genau einen Operator $T \in B(X,Y)$ mit

$$\lim_{n \to \infty} T_n x = T x$$

Beweis

Setze für $x \in D$: $Tx = \lim_{n \to \infty} T_n(x)$, da Y vollständig

Dieses $T: X \to Y$ ist linear.

Nach 5.10 gibt es genau ein $\tilde{T} \in B(X,Y)$ mit $\tilde{T}x = Tx$ für $x \in D$, $\|\tilde{T}\| \leq M$, denn für $x \in D$:

$$||Tx|| \le \limsup ||T_n x|| \le M||x||$$

z. z. $\tilde{T}x = \lim_{n \to \infty} T_n x$ für alle $x \in X$.

Zu $\epsilon > 0$ wähle $y \in D$ mit $||x - y|| \le \frac{\epsilon}{2M}$. Dann:

$$\|\tilde{T}x - T_n x\| \le \|\tilde{T}x - Ty\| + \|Ty - T_n y\| + \|T_n y - T_n x\|$$

$$\le \|\tilde{T}\| \|x - y\| + \|Ty - T_n y\| + \|T_n\| \|x - y\|$$

$$\limsup_{n \to \infty} \|\tilde{T}x - T_n x\| \le M \frac{\epsilon}{2M} + \limsup_{n \to \infty} \|Ty - T_n y\| + M \frac{\epsilon}{2M} \le \epsilon + 0$$

Beispiel 5.12

 $e_n(t) = e^{2\pi nit} = \cos(2\pi nt) + i\sin(2\pi nt), \quad D = \{(\alpha_n) \in L^2(\mathbb{Z}) : \text{Nur endlich viele } \alpha_n \neq 0\}$

$$T: \begin{cases} D \to L^2[0,1] \\ (\alpha_n) \to \sum_{n \in \mathbb{Z}} \alpha_n e_n \end{cases}$$

Wie kann man unendlich Reihen $\sum_{n\in\mathbb{Z}} \alpha_n e_n$ definieren? Ohne Beweis aus der Fourieranalysis:

- Es gibt $(\alpha_n) \in \mathbb{C}^2$, so dass $\sum_{n \in \mathbb{Z}} \alpha_n e_n(t)$ nicht für alle $t \in [0, 1]$ konvergent.
- Für alle $(\alpha_n) \in \mathbb{C}^2$ konvergiert $\sum_{n \in \mathbb{Z}} \alpha_n e_n(t)$ punktweise für fast alle t $t \in [0,1]$

•
$$\int_0^1 e_n \overline{e}_m dt = \delta_{n,m}$$

Für $(\alpha_n) \in D$ wie in der Linearen Algebra folgt:

$$\|\sum_{n} \alpha_{n} e_{n}(t)\|_{L^{2}[0,1]}^{2} = \int (\sum_{n} \alpha_{n} e_{n}(t)) \overline{(\sum_{m} \alpha_{m} e_{m}(t))} dt$$

$$= \sum_{n,m} \alpha_{n} \alpha_{m} \int e_{n}(t) \overline{e_{m}(t)} dt$$

$$= \sum_{n} |\alpha_{n}|^{2}$$

D.h. $||T(\alpha_n)|| \le 1 \left(\sum_n |\alpha_n|^2\right)^{\frac{1}{2}} = ||\alpha_n||_{L^2}, \ (M=1).$ Nach 5.10 gibt es dann ein $\tilde{T}: \ell^2[0,1] \to 0$ $L^2(0,1) \text{ mit } ||\tilde{T}|| \le 1$

 $\underline{\underline{\operatorname{Zusatz:}}} \ T_m((\alpha_n)) = \sum_{n=m}^{\infty} \alpha_n e_n. \ T_m : \ell^2 \to L^2[0,1], \ \|Tm\| \le 1$ $\underline{\operatorname{Für}} \ (\alpha_n) \in \ell^2 \ \text{gilt:} \ T(\alpha_n) = \lim_{m \to \infty} T_m(\alpha_n).$

Nach Kor. 11: $T_m(\alpha_n) \to T(\alpha_n)$ in $L^2[0,1]$ für alle $(\alpha_n) \in \ell^2$. Damit konvergiert die Partialsumme der Fourierreihen in $L^2[0,1]$.

Lemma 5.13

Für einen normierten Raum $(X, \|\cdot\|)$ sind äquivalent:

- a) X ist vollständig
- b) Jede absolut konvergente Reihe $\sum_{n\geq 1} x_n$ mit

$$x_n \in X, \sum_{n \ge 1} \|x_n\| < \infty$$

hat einen Limes in X.

Beweis

 $a)\Rightarrow b)\ y_n=\sum_{m=1}^n x_m$ ist eine Cauchy-Folge in X, denn für l>n:

$$||y_l - y_n|| = ||\sum_{m=n+1}^{l} x_m|| \le \sum_{m=n+1}^{l} ||x_m|| \xrightarrow[n,l \to \infty]{} 0$$

Also ist (y_n) eine Cauchy-Folge und konvergiert da X vollständig ist.

 $(b) \Rightarrow a$) Sei (x_n) eine Cauchy-Folge in X, d.h. für $\epsilon = 2^{-k} (k \in \mathbb{N})$ gibt es ein n_k so, dass:

$$||x_n - x_m|| \le 2^{-k} \text{ für } n, m \ge n_k$$

Wähle zu $k \in \mathbb{N}$ ein x_{n_k} so, dass

$$||x_{n_{k+1}} - x_{n_k}|| \le 2^{-k}.$$

Setze $y_0 = x_{k_1}$ und für $k \in \mathbb{N}$: $y_k = y_{n_{k+1}} - y_{n_k}$. Dann gilt: $\sum_{k \ge 1} \|y_k\| \le \sum_{k \ge 1} 2^{-k} < \infty$. Nach b) konvergiert die Reihe $\sum_{k \ge 1} y_k$ in Y.

Korollar 5.14

Sei X ein Banachraum und $M \subset X$ ein abgeschlossener, linearer Teilraum.

Dann
$$\hat{X} = X / M$$
 ist vollständig.

Beweis (mit Lemma 5.13)

Sei $x_k \in X$ so, dass für $\hat{x}_k \in \hat{X}$ gilt:

$$\sum_{k>1} \|\hat{x}_k\|_{\hat{X}} < \infty$$

Nach der Definition des Quotientenraums kann man annehmen, dass

$$||x_k||_X \le ||\hat{x}_k||_{\hat{X}} + \frac{1}{2^k}, \quad k \in \mathbb{K} \quad \text{(vgl. Quotientennorm)}$$

Dann $\sum_{k\geq 1} \|x_k\|_X \leq \sum_{k\geq 1} \|\hat{x}_k\|_{\hat{X}} + \sum_{k\geq 1} 2^{-k} < \infty$ Da X vollständig ist, gibt es nach 5. 13 ein $x\in X$ mit:

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} x_k \text{ in } X.$$

Anwendung der Quotientenabbildung liefert $\hat{x} = \lim_{n \to \infty} \sum_{k=1}^{n} \hat{x}_k$ konvergiert in \hat{X} .

5.1 Anhang zu Kapitel 5: Vervollständigung

$$\mathbb{Q} \to \mathbb{R}, \quad C[0,1], \quad \int_0^1 |f(t)| dt \to L^1[0,1]$$

Sei X ein normierter Vektorraum, $M \subset X$ beliebig, $d(x,y) := \|x-y\|$, wobei $x,y \in M$ und

damit (M, d) ein metrischer Raum.

Definition 5.15

 $f: M \to \mathbb{R}$ heißt **Lipschitz**, falls:

$$\sup_{x,y \notin M, x \neq y} \frac{|f(x) - f(y)|}{d(x,y)} = \underbrace{\|f\|_L}_{Lipschitz - Konstante} < \infty$$

Bemerkung 5.16

Sei (M, d) ein metrischer Raum, $x_0 \in M$ fest.

$$X = \{f : M \to \mathbb{R} : f \text{ Lipschitz}, f(x_0) = 0\}$$
 ist bezüglich $\|\cdot\|_L$ ein normierter Raum. Dann ist $X' = B(X, \mathbb{R})$ vollständig.

Beweis

Seien $f, g \in X$, dann gilt:

$$||f + g||_{L} = \sup_{x,y \in X} \frac{|f(x) + g(x) - f(y) - g(y)|}{d(x,y)}$$

$$\leq \sup_{x,y \in X} \frac{|f(x) - f(y)|}{d(x,y)} + \sup_{x,y \in X} \frac{|g(x) - g(y)|}{d(x,y)}$$

$$= ||f||_{L} + ||g||_{l}$$

Satz 5.17

Sei (M, d) ein metrische Raum, $x_0 \in M$ fest, X definiert wie in 5.15:

Zu $x \in M$ definiere $F_x \in X'$ durch $F_x(f) = f(x)$ für $f : M \to \mathbb{R}$ in X. Dann ist $x \in M \to F_x \in X'$ eine Abbildung, die eine isometrische Einbettung von M nach X' gibt, d.h.

$$d(x,y) = ||F_x - F_y||_{X'}$$

Beweis

Für die eine Richtung betrachten wir:

$$||F_x - F_y||_{X'} = \sup_{\|f\|_L \le 1} |(F_x - F_y)(f)|$$

$$= \sup_{\|f\|_L = 1} |(F_x - F_y)|$$

$$= \left(\sup_{\|f\|_L = 1} \frac{|f(x) - f(y)|}{d(x, y)}\right) d(x, y)$$

$$\le 1 \cdot d(x, y)$$

Zur Umkehrung wähle für $x \in M$ fest: f(z) = d(x, z). Für diese Funktion gilt nach umgekehrter Dreiecksungleichung:

$$|f(z_1 - f(z_2))| = |d(x, z_1) - d(x, z_2)| \le d(z_1, z_2) \Rightarrow ||f||_L \le 1$$

$$||F_x - F_y|| = \sup_{\|y\| \le 1} |(F_x - F_y)(y)| \ge (F_x - F_y)(f)$$

$$= f(x) - f(y) = d(x, y)$$

$$\Rightarrow d(x, y) = ||F_x - F_y||$$

$$F_{x_0} = 0 \text{ in } X', ||F_x||_{X'} = ||F_x - F_{x_0}|| = d(x, x_0) < \infty$$

Beispiel 5.18

- a) M = Polynome auf [0, 1]
- b) missing example b
- c) missing example c

Satz 5.19

Zu jedem metrischen Raum (M,d) gibt es eine Vervollständigung, die bis auf Isometrie eindeutig bestimmt ist.

Beweis

missing proof \Box

Bemerkung 5.20

Alternativer Beweis der Existenz der Vervollständigung (nach Cantor) für einen normierten Raum $(X, \|\cdot\|)$: missing a part + proof

6 Kompakte Mengen

Definition 6.1

Sei (M, d) ein metrischer Raum. Eine Menge $K \subseteq M$ heißt (folgen-)**kompakt**, falls es in jeder Folge $(x_n) \subset M$ eine Teilfolge (x_{n_k}) und ein $x \in K$ gibt, so dass

$$\lim_{k \to \infty} x_{n_k} = x$$

 $K \subseteq M$ heißt **relativ kompakt**, falls \overline{K} in M kompakt ist.

Satz 6.2

Sei X ein normierter Vektorraum. Dann ist

$$\overline{U_x} = \{ x \in X : ||x|| \le 1 \}$$

genau dann kompakt, wenn $dim X < \infty$.

Beweis

" \Rightarrow " $X \cong \mathbb{K}^d$, $d = \dim X$, U_X ist abgeschlossen, beschränkt $\xrightarrow{Heine-Borell} U_X$ ist kompakt.

" \Leftarrow " Sei dim $X = \infty$. Wähle $x_1 \in X$ mig $||x_1|| = 1$.

Nach (6.3) mit $Y = \overline{span}\{x_1\}$ finde zu $\delta = \frac{1}{2}$ ein $x_2 \in X$, $||x_2|| = 1$ und $||x_2 - x_1|| \ge \frac{1}{2}$ Wieder nach (6.3) mit $Y = \overline{span}\{x_1, x_2\}$ finde zu $\delta = \frac{1}{2}$ ein $x_3 \in X$, $||x_3|| = 1$ und $||x_3 - x_j|| \ge \frac{1}{2}$ für j = 1, 2

Induktiv erhält man eine Folge $x_i \in X$ mit $||x_i|| = 1$ und $||x_i - x_j|| \ge \frac{1}{2}$ für $j = 1, \ldots, i - 1$. Dieses Folge $(x_i)_{i \ge 1}$ hat keine Teilfolge, die eine Cauchy-Folge ist und demnach ist U_X nicht relativ kompakt in X.

Lemma 6.3 (Riesz)

Sei Y ein abgeschlossener Teilraum von X und $X \neq Y$. Zu $\delta \in (0,1)$ existiert ein $x_{\delta} \in X \setminus Y$, sodass

$$||x|| = 1$$
, $||x_{\delta} - y|| \ge 1 - \delta$ für alle $y \in Y$

Beweis

Sei $x \in X \setminus Y$ und $d := \inf\{\|x - y\| : y \in Y\} > 0$, da Y ein abgeschlossener Teilraum ist. Da $d < \frac{d}{1 - \delta}$ gibt es ein $y_{\delta} \in Y$ mit $\|x - y_{\delta}\| < \frac{d}{1 - \delta}$.

Setze $x_{\delta} = \frac{x - y_{\delta}}{\|x - y_{\delta}\|}$, damit gilt $\|x_{\delta}\| = 1$ und weiter

$$||x_{\delta} - y|| = ||\frac{x}{||x - y_{\delta}||} - \frac{y_{\delta}}{||x - y_{\delta} - y||}||$$

$$= \frac{1}{||x - y_{\delta}||} ||x - \underbrace{y_{\delta} - ||x - y_{\delta}||y}_{\leq y}||$$

$$\geq \frac{d}{||x - y_{\delta}||}$$

$$\geq 1 - \delta$$

Beispiel 6.4

Sei $X=\ell^p$ für $1\leq p<\infty$ gilt:

 $M \subset \ell^p$ ist kompakt genau dann, wenn

$$\sup\{\sum_{n=1}^{\infty} |x_n|^p : x = (x_m) \in M\} \xrightarrow[k \to \infty]{} 0$$

(Kompakte Mengen lassen sich gut durch endliche Mengen approximieren)

Beweis

siehe Übung.

Satz 6.5

Sei (M,d) ein metrischer Raum . Für $k \subset M$ sind folgende Aussagen äquivalent:

- a) K ist (folgen-)kompakt
- b) K ist vollständig und total beschränkt, d.h. für alle $\epsilon > 0$ gibt es endlich viele $x_1, \ldots, x_m \in M$ so dass

$$K \subset \bigcup_{j=1}^{m} K(x_j, \epsilon)$$

c) Jede Überdeckung von K durch offene Mengen $U_j, j \in J$ mit $K \subset \bigcup_{j \in J} U_j$ besitzt eine endliche Teilüberdeckung, d.h. j_1, \ldots, j_m mit

$$K \subset \bigcup_{k=1}^{m} U_{j_k}$$

Beweis

 $(a) \Rightarrow b$) (indirekt)

Angenommen b) ist falsch. Dann gibt es ein $\epsilon > 0$, so dass für alle $x_1, \ldots, x_n, n \in \mathbb{N}$ gilt:

$$K \not\subset K(x_1, \epsilon) \cup \ldots \cup K(x_n, \epsilon)$$

Um einen Widerspruch zu erhalten konstruieren wir eine Folge ohne konvergente Teilfolge: Wähle $y_1 \in K$ beliebig, dann gilt nach Voraussetzung $K \not\subset K(y_1, \epsilon)$. Wähle weiter $y_2 \in$

 $K \setminus K(y_1, \epsilon)$ beliebig, dann gilt $K \not\subset K(y_1, \epsilon) \cup K(y_2, \epsilon)$.

Induktiv erhält man eine Folge $y_j \in K$ mit $y_j \notin \{K(y_1, \epsilon) \cup \ldots \cup K(y_{j-1}, \epsilon)\}$.

D.h. $||y_j - y_k|| \ge \epsilon$ für k = 1, ..., j - 1. D.h. y_j hat keine konvergente Teilfolge, was ein Widerspruch zu a) ist.

 $(b) \Rightarrow c$ (indirekt)

Sei c) falsch, d.h. es gibt eine offene Überdeckung $K \subset \bigcup_{j \in J} U_j$ ohne endliche Teilüberdeckung. Zu ϵ_1 gibt es nach b) aber endlich viele $x_1^1, ..., x_m^1 \in K$, so dass

$$K \subset \bigcup_{j=1}^{m} K(x_j^1, \epsilon_1)$$

Setze der Kürze halber $y_1 := x_{j_0}^1$. Nun gibt es eine dieser Kugeln $K(y_1, \epsilon_1)$, sodass $\underbrace{K \cap K(y_1, 1)}_{=:L_1}$

nicht durch endlich viele der U_j überdeckt werden kann. Nach B) gibt es aber auch zu $\epsilon_2=\frac{1}{2}$ endlich viele $x_1^2,\ldots,x_{m'}^2$, sodass

$$L_1 \subset K(x_1^2, \epsilon_2) \cup \ldots \cup K(x_{m'}^2, \epsilon_2).$$

Wieder muss es nach Voraussetzung eine dieser Kugeln $K(y_2, \epsilon_2)$ geben, sodass $\underbrace{K \cap K(y_1, \epsilon_1) \cap K(y_2, \epsilon_2)}_{=:L_2}$

sich nicht durch endlich viele der U_j überdecken lässt. Induktiv finden wir zu $\epsilon_l=\frac{1}{2^{l-1}}$ eine Folge $y_l\in K$, so dass

$$L_l := K \cap K(y_1, \epsilon_1) \cap \ldots \cap K(y_l, \epsilon_l)$$

sich nicht durch endlich viele der U_i überdecken lässt.

Nun ist aber $L_l \subset K(y_{l-1}, \epsilon_{l-1}) \cap K(y_l, \epsilon_l) \neq \emptyset$. Mit $z \in K(y_{l-1}, \epsilon_{l-1}) \cap K(y_l, \epsilon_l)$ gilt

$$d(y_l, y_{l-1}) \le d(y_l, z) + d(z, y_{l-1}) \le \frac{1}{2^{l-1}} + \frac{1}{2^{l-2}} \le \frac{1}{2^{l-3}}.$$

Für n < m: $d(y_n, y_m) \le \sum_{l=n}^m \frac{1}{2^l} \xrightarrow[n,m\to\infty]{} 0$, d.h. $(y_n)_{n\ge 1}$ ist Cauchy-Folge in K.

Da K vollständig ist nach b), gilt $y:=\lim_{l\to\infty}y_l\in K$. Wähle n so groß, dass $d(y_n,y)<$ $\frac{\delta}{2}$, $2^{1-n} < \frac{\delta}{2}$.

$$\Rightarrow L_n = K \cap K(y_1, 1) \cap \ldots \cap K(y_n, \frac{1}{2^{n-1}}) \subset K(y_n, \frac{1}{2^{n-1}}) \subset K(y_n, \frac{1}{2^{n-1}}) \subset K(y_n, \frac{1}{2^{n-1}})$$

Was jedoch Widerspruch zur Konstruktion der L_n wäre.

 $(c) \Rightarrow a$) (indirekt)

Angenommen a) wäre falsch. D.h. es gibt eine Folge $(x_n)_{n\geq 1}\subset K$ ohne konvergente Teilfolge. Sei o.B.d.A. $|K| = \infty$. Zu jedem $y \in K$ gibt es ein $\epsilon(y)$, so dass $K(y, \epsilon(y))$ nur endlich viele der x_n enthält. $K \subset \bigcup_{y \in K} K(y, \epsilon(y))$, wobei alle $K(y, \epsilon(y))$ offen sind.

Nach c) existiert eine endliche Teilüberdeckung, so dass $K \subset K(y_1, \epsilon(y_1)) \cup \ldots \cup K(y_n, \epsilon(y_n))$. \Rightarrow (x_n) besteht nur aus endlich vielen Elementen und hat damit eine konvergente Teilfolge, was ein Widerspruch zur Wahl von (x_n) ist.

Proposition 6.6

Sei (M, d) ein metrischer Raum.

a) Eine kompakte Teilmenge $K \subset M$ ist immer vollständig und abgeschlossen in M.

- b) Eine abgeschlossene Teilmenge eine kompakten Raums ist kompakt.
- c) Jede kompakte Menge in M ist seperabel.
- d) Eine kompakte Teilmenge eines normierten Raums ist beschränkt.

Beweis

- a) siehe 6.5 b)
- b) Nach Definition
- c) Nach 6.5 b) gibt es zu $n \in \mathbb{N}$ eine endliche Menge L_n mit:

$$\inf \|y - x\| : x \in L_n \le \frac{1}{n} \text{ für alle } x \in K.$$

Dann ist $L = \bigcup_{n \ge 1} L_n$ abzählbar und L ist dicht in K (d.h. $\overline{L} = K$), also ist K seperabel.

d) Falls K unbeschränkt ist, dann gibt es $x_n \in K$ mit $||x_n|| \ge n, n \in \mathbb{N}$. (x_n) kann dann keine konvergente Teilfolge besitzen.

Satz 6.7 (Arzelà-Ascoli)

Sei (S, d) ein kompakter, metrischer Raum

$$C(S) = \{d : S \to \mathbb{K} \text{ stetig}\}\$$

 $||f||_{\infty} = \sup_{s \in S} |f(s)|$. Eine Teilmenge $M \subset C(S)$ ist kompakt, genau dann wenn gilt

- a) M ist beschränkt in C(S),
- b) M ist abgeschlossen in C(S) und
- c) M ist gleichgradig stetig, d.h.

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in M : d(s,t) < \delta \Rightarrow |x(s) - x(t)| < \epsilon$$

Beweis

" \Rightarrow " Sei M kompakt \Rightarrow a,b) nach 6.6

z.z. M ist gleichgradig stetig:

Nach 6.5 b) ist M totalbeschränkt. Damit gibt es zu $\epsilon > 0$ x_1, \ldots, x_m , so dass zu $x \in M$ ein x_i existiert mit $||x - x_i||_M \le \epsilon$ (*)

Da stetige Funktionen auf kompakten Mengen gleichmäßig stetig sind, $\operatorname{sind} x_1, \ldots, x_m \in M$ gleichmäßig stetig und damit folgt

$$\exists \delta_1, \dots, \delta_m \text{ mit } d(s,t) < \delta_i \Rightarrow |x_i(t) - x_i(s)| < \epsilon, \ i = 1, \dots, m \quad (**)$$

Definiere $\delta := \min(\delta_1, \dots, \delta_m) > 0$, dann gilt für $x \in M$:

$$|x(t) - x(s)| \le \underbrace{|x(t) - x_i(s)|}_{\le ||x - x_i|| \le \epsilon \text{ nach } (*)} + \underbrace{|x_i(t) - x_i(s)|}_{\le \epsilon \text{ nach } (**)} + \underbrace{|x_i(s) - x(s)|}_{\le \epsilon}$$
$$\le 3\epsilon \text{ für } d(s, t) < \delta$$

" \Leftarrow " Nach 6.6 ist S seperabel. Sei also (S_n) eine dichte Folge in S. Sei weiter eine Folge $(x_n) \subset M$ gegeben.

Da M beschränkt in C(S) ist, gibt es ein $C < \infty$ mit $|x_n(s)| \le C$ für alle $s \in S, n \in \mathbb{N}$. Also ist für festes m $(x_n(s_m))_{n \in \mathbb{N}}$ beschränkt und hat somit eine konvergente Teilfolge.

$$\exists N_1 \subseteq \mathbb{N} \text{ mit } |N_1| = \infty \text{ so, dass } (x_n(s_1))_{n \in N_1} \text{ konvergiert.}$$

$$\exists N_2 \subseteq N_1 \text{ mit } |N_2| = \infty \text{ so, dass } (x_n(s_2))_{n \in N_2} \text{ konvergiert.}$$

Induktiv gibt es $N_1 \supset N_2 \supset \ldots \supset N_l \supset \ldots$ mit $|N_l| = \infty$ so, dass $(x_n(s_m))_{n \in N_m}$ konvergiert. Wähle $n_j \in N_j$ mit $n_j \to \infty$ für $j \to \infty$. Dann gilt: $(x_{n_j}(s_m))_{j \in \mathbb{N}}$ konvergiert in \mathbb{K} für jedes $m \in \mathbb{N}$. (**)

z.z. (x_{n_i}) konvergiert gleichmäßig auf S.

Zu $\epsilon > 0$ wähle δ wie in der Definition für gleichgradige Stetigkeit. Da die Überdeckung $S = \bigcup_{n=1}^{\infty} K(s_n, \delta)$ kompakt ist, gibt es eine endliche Teilüberdeckung $S' = K(s_1, \delta) \cup \ldots \cup K(s_m, \delta)$. Setze zur Abkürzung $x_j = x_{n_j}$ und $s_k = s_{n_k}$.

Zum bereits gewählten $\epsilon > 0$ gibt es ein i_0 mit

$$|x_j(s_k) - x_i(s_k)| \le \epsilon$$
 $i, j \ge i_0, k = 1, \dots, m$

Dann gilt ebenfalls für $i, j \geq i_0, s \in S$:

$$|x_{j}(s) - x_{i}(s)| \leq \underbrace{|x(t) - x_{i}(s)|}_{\text{(wg. glgrd. Stetigkeit)}} + \underbrace{|x_{j}(s_{k}) - x_{i}(s_{k})|}_{\leq \epsilon} + \underbrace{|x_{i}(s_{k}) - x_{i}(s)|}_{\text{(wg. glgrd. Stetigkeit)}} \leq 3\epsilon$$

$$\Rightarrow ||x_{j} - x_{i}||_{\infty} \leq 3\epsilon \text{ d. h. } x_{j} \text{ ist eine Cauchy-Folge in } C(S).$$

$$\Rightarrow x = \lim_{j \to \infty} x_{j} \text{ existiert mit } x \in M$$

something is missing here

7 Kompakte Operatoren

Definition 7.1

Sei X ein normierter Raum, Y ein Banachraum. Ein linearer Operator $T: X \to Y$ heißt kompakt, falls $T(U_X)$ relativ kompakt ist in Y.

Vereinbarung:

K(X,Y) = Raum der linearen, kompakten Operatoren von X nach Y.

Bemerkung

- a) $T \in K(X,Y) \iff$ jede beschränkte Folge $(x_n) \subset X$ besitzt eine Teilfolge (x_{n_k}) mit $T(x_{n_k})$ ist Cauchy-Folge in Y.
- b) $K(X,Y) \subset B(X,Y)$, da die kompakte Menge $\overline{T(U_X)}$ beschränkt in Y ist.

Beispiel

- a) $Id_X \in K(X, X) \iff \dim X < \infty \text{ (nach 6.2)}.$
- b) Endlich dimensionale Operatoren sind kompakt

$$X \xrightarrow{T} T(X) \subset Y_0 \subset Y \text{ mit } \dim Y_0 < \infty$$

Beispiel 7.2

$$X = \ell^p, 1 \le p < \infty.$$
 $Q_n \in B(\ell^p) : Q_n(x_j) := (0, \dots, 0, x_{n+1}, x_{n+2}, \dots)$
Behauptung:

$$T \in B(\ell^p)$$
 kompakt $\iff ||Q_nT|| \xrightarrow[n \to \infty]{} 0$

$$\iff \sup_{\|x\|_p \le 1} \left(\sum_{j=n+1}^{\infty} (Tx)_j \right)^{\frac{1}{p}} \xrightarrow[n \to \infty]{} 0 \iff T(U_X) \text{ ist relativ kompakt in } \ell^p \text{ nach } 6.4$$

a) $T(x_j) = (\lambda_j x_j)_{j \in \mathbb{N}}$ mit $\lambda_j \in \mathbb{K}$ Diagonal operator T ist kompakt $\iff \lambda_j \to 0$, für $j \to \infty$.

Beweis

Da $Q_n \in B(\ell^p)$ gilt:

$$||Q_n T(X_j)|| = ||(0, \dots, 0, \lambda_{n+1}, x_{n+1}, \lambda_{n+2}, x_{n+2}, \dots)||_{\ell^p}$$

$$= \left(\sum_{j=1}^{\infty} |\lambda_j|^p |x_j|^p\right)^{\frac{1}{p}}$$

$$\leq \sup_{j=n+1} |\lambda_j| ||x||_{\ell^p}$$

$$\Rightarrow \sup_{||x|| \leq 1} ||Q_n Tx|| \xrightarrow[n \to \infty]{} 0, \text{ falls } \lambda_j \to 0$$

Sei umgekehrt: $\lambda_i \to 0$, dann $\exists \lambda_{i_k} \to \lambda \neq 0$

$$T(e_{i_k}) = \lambda_{i_k} e_{i_k}, T(\lambda_{j_k}) \approx \lambda e_{j_k}$$
 hat keine konvergente Teilfolge.

b) $T(x_i) = (0, x_1, x_2, x_3, ...)$, "Shift" Isometrie! $||T(x_i)|| = ||x_i|| \Rightarrow$ nicht kompakt. c)
$$[T(x_j)]_i = \sum_{j=1}^{\infty} a_{ij} x_j, T \in B(\ell^p)$$
, falls $\left(\sum_i \left(\sum_j |a_{ij}|^{p'}\right)^{\frac{p}{p'}}\right)^{\frac{1}{p}} < \infty, \frac{1}{p} + \frac{1}{p'} = 1$. Diese Hille-Tamerkin-Operatoren sind kompakt.

Beweis

$$\| \left[Q_n T(x_j) \right]_i \| \le \left(\sum_{j=n+1}^{\infty} \left(\sum_j |a_{ij}|^{p'} \right)^{\frac{p}{p'}} \right)^{\frac{1}{p}} \to 0, n \to \infty$$

Beispiel 7.3

Sei $X = C(\Omega)$, mit $\Omega \subset \mathbb{R}^d$ kompakt. Für $k : \Omega \times \Omega \to \mathbb{K}$, ist der Integraloperator

$$(Tx)(u) = \int_{\Omega} k(u, v)x(v)dv$$
 kompakt.

Beweis

Wir führen den Beweis mittels Arzèla-Ascoli. Beachte

$$\exists M \text{ mit } |k(u,v)| \leq M \text{ für } u,v \in \Omega$$

 $k:\Omega\times\Omega\to\mathbb{K}$ ist gleichmäßig stetig, da $\Omega\times\Omega$ kompakt ist.

$$\forall \epsilon > 0 \exists \delta > 0 \| (u_1, v_1) - (u_2, v_2) \|_{\mathbb{R}^{2d}} < \delta \Rightarrow |k(u_1, v_1) - k(u_2, v_2)| < \epsilon$$

Dann gilt $T(U_{C(\Omega)})$ ist beschränkt, denn

$$|Tx(u)| \le \int_{\Omega} |k(u,v)| |x(v)| dv \le M \underbrace{v_0(\Omega)}_{<\infty} ||x||_{\infty}$$

Für $x \in U_{C(\Omega)} : ||Tx||_{\infty} \leq Mv_0(\Omega) < \infty$ Damit ist $T(U_{C(\Omega)})$ gleichgradig stetig, da

$$|Tx(v_1) - Tx(v_2)| \le \int_{\Omega} (k(u_1, v) - k(u_2, v)) x(v) dv \le v_0(\Omega) \sup_{v \in \Omega} |k(u_1, v) - k(u_2, v)| \underbrace{\|x\|_{\infty}}_{\le 1}$$

Sei $\epsilon>0$. Wähle $\delta>0$ bzgl. glw. Stetigkeit: dann folgt für $|u_1-u_2|<\delta$:

$$|Tx(u_1) - Tx(u_2)| \le v_0(\Omega)\epsilon, \quad \forall x \in U_{C(\Omega)}$$

Dann nur noch Arzèla-Ascoli mit der gezeigten gleichgradigen Stetigkeit anwenden.

Beispiel 7.4

$$j: C^1[0,1] \hookrightarrow C[0,1], j$$
 Inklusion. Dann $j \in K(C^1[0,1], C[0,1]).$

Beweis

 $j(U_{C^1[0,1]})$ ist relativ kompakt in C[0,1] nach 6.9. (auch nach Arzèla-Ascoli).

Satz 7.5

Seien X, Y und Z Banachräume.

- a) K(X,Y) ist ist ein linearer, abgeschlossener Teilraum von B(X,Y).
- b) Seien $T \in B(X,Y), S \in B(Y,Z)$ und entweder T oder S kompakt. Dann ist $S \circ T \in K(X,Z)$.

Insbesondere: K(X) = K(X, X) ist ein Ideal in B(X).

Beweis

a) $S, T \in K(X, Y).\lambda \in \mathbb{K} \Rightarrow \lambda T \in K(X, Y).$

Zu $(x_i) \in U_X$ wähle x_{n_k} und x_{n_l} so, dass $T(x_{n_k})$ und $S(x_n)$ jeweils Cauchy-Folgen sind.

$$\Rightarrow (S+T)x_{k_j} = Sx_{k_j} + Tx_{k_j}$$
 ist Cauchy-Folge.

z.z.: K(X,Y) ist abgeschlossen in B(X,Y).

Seien $T_n \in K(X,Y), T \in B(X,Y)$ mit $||T_n - T|| \to 0$.

z.z.: $T \in K(X, Y)$.

Sei $\epsilon > 0$. Wähle n_0 so, dass $||T - T_n|| \le \epsilon$ für $n \ge n_0$.

Da $T_{n_0}(U_X)$ relativ kompakt ist, gibt es zu $\epsilon>0,y_1,\ldots,y_j\in T_{n_0}(U_X)$:

$$T_{n_0}(U_X) \subset K(y_1, \epsilon) \cup \ldots \cup K(y_m, \epsilon)$$

Sei $x \in U_X$. Wähle j_0 mit $||T_{n_0}x - y_{j_0}||_Y \le \epsilon$.

$$||Tx - y_{j_0}|| \leq \underbrace{||Tx - T_{n_0}x||}_{\leq \underbrace{||T - T_{n_0}||}_{\leq \epsilon}} + \underbrace{||T_{n_0} - y_{j_0}||}_{\leq \epsilon} \leq 2\epsilon$$

d.h. $T(U_X) \subset \bigcup_{j=1}^n K(y_j, 2\epsilon)$, d.h. $T(U_X)$ ist relativ kompakt.

b) $||x_n||_X \leq 1, S$ kompakt $\Rightarrow \exists n_k : S(Tx_{n_k})$ ist eine Cauchy-Folge.

$$\Rightarrow S(Tx_{n_k})$$
ist Cauchy-Folge, da Sstetig ist.

Korollar 7.6

Seien X, Y Banachräume, $T \in B(X, Y)$.

Falls es endlich dimensionale Operatoren $T_n \in B(X,Y)$ gibt, dann ist $T \in K(X,Y)$.

Beweis

Bemerkung nach 7.1, 7.5 a)

Beispiel

 $X = \ell^p, T \in B(\ell^p)$ ist kompakt $\iff ||Q_n T|| \to 0.$

 $P_n = Id - Q_n, P_n(x_j) = (x_1, \dots, x_n, 0, \dots), P_n$ endlich dimensional.

$$T \in B(\ell^p) \iff ||P_nT - T|| = ||Q_nT|| \to 0$$

 $T \in K(\ell^p) \iff T$ ist limes von endlichen Operatoren in der Operatornorm.

Satz 7.7

Seien X, Y Banachräume und X habe die **Approximationseigenschaft** (d.h. es existieren endlich dimensionale Operatoren $S_n \in B(X) : S_n x \to x, \quad \forall x \in X$).

Dann gilt: $K(X,Y) = \overline{F(X,Y)}$ in der Operatornorm, wobei $F(X,Y) = \{T \in B(X,Y) : \dim T(X) < \infty\}.$

Beweis

Für $T \in K(X,Y)$ setze $T_n = S_n T \in F(X,Y)$.

Wegen 7.6 bleibt z.z.: $||T - T_n|| \to 0$.

Da $T(U_X)$ relativ kompakt ist, d.h. zu $\epsilon > 0$ gibt es y_1, \ldots, y_m so, dass

$$T(U_X) \subset \bigcup_{j=1}^m K(y_j, \epsilon)$$

Aufgrund der Approximationseigenschaft gibt es ein n_0 so, dass $||S_n y_j - y_j|| \le \epsilon$ für $n \ge n_0, j = 1, \ldots, m$. Zu $x \in U_X$ wähle j_0 mit $||Tx - y_{j_0}|| \le \epsilon$ und damit

$$||T_{n}x - Tx|| \leq ||S_{n}Tx - S_{n}y_{j_{0}}|| + ||S_{n}y_{j_{0}} - y_{j_{0}}|| + ||y_{j_{0}} - Tx||$$

$$\leq ||S_{n}|| \underbrace{||Tx - y_{j}||}_{\leq \epsilon} + \epsilon + \epsilon$$

$$\leq \left(\sup_{n} ||S_{n}|| + 2\right) \epsilon$$

$$= (c' + 2) \epsilon \quad \text{für } n \geq n_{0}.$$

$$\Rightarrow ||T_n - T|| \le c\epsilon$$
 für $n \ge n_0$

sth missing here

8 Approximation von L^p Funktionen

Sei $x = (x_1, x_2, \dots) \in \ell^p, x_m = (x_1, \dots, x_m, \dots).$

Dann
$$||x - x_m|| \to 0$$
 für $m \to \infty$.

Betrachten wir $L^p(\Omega)$, mit z.B. $\Omega = \mathbb{R}^d$ und die Integraloperatoren $T: L^p(\Omega) \to L^p(\Omega)$

$$Tf(u) = \int k(u, v)f(v)dv \quad (*)$$

wobei $k: \Omega \times \Omega \to \mathbb{K}$ messbar.

Satz 8.1

Sei $k: \Omega \times \Omega \to \mathbb{K}$ messbar und

$$\sup_{u \in \Omega} \int_{\Omega} |k(u, v)| dv \le C_1 < \infty \text{ und}$$

$$\sup_{v \in \Omega} \int_{\Omega} |k(u, v)| du \le C_2 < \infty$$

Dann wird durch (*) ein beschränkter Operator $T: L^p(\Omega) \to L^p(\Omega)$ mit

$$||T||_{L^p \to L^p} \le C_1^{\frac{1}{p'}} C_1^{\frac{1}{p}}, \quad \frac{1}{p'} + \frac{1}{p} = 1$$

und $1 \le p \le \infty$.

Beweis

•
$$p = \infty : f \in L^{\infty}(\Omega)$$

$$|Tf(u)| \le \int |k(u,v)||f(v)|dv$$

$$\le \int_{\Omega} |k(u,v)|dv||f||_{\infty}$$

$$\le C_1||f||_{\infty} \quad \forall u \in \Omega$$

$$\Rightarrow ||T|| \leq C_1$$

• $p = 1 : f \in L^1(\Omega)$

$$||Tf||_{L^{1}} = \int_{\Omega} \left| \int_{\Omega} k(u, v) f(v) dv \right| du$$

$$\leq \int \int |k(u, v)| |f(v)| du dv$$

$$= \int \left(\int |k(u, v)| du \right) |f(v)| dv$$

$$\leq C_{2} \int |f(v)| dv$$

$$= C_{2} ||f||_{L^{1}}$$

• 1 .

Definiere $g(u) = \left(\int |Tf(u)|^p du\right)^{-\frac{1}{p'}} |Tf(u)|^{p-1} \operatorname{sign}(Tf(u)).$

$$||Tf||_{L^{p}} = \left(\int_{\Omega} |Tf(u)|^{p} du\right) \left(\int_{\Omega} |Tf(u)|^{p}\right)^{\frac{1}{p}-1}$$

$$= \int g(u)Tf(u)du$$

$$= \int \int g(u)k(u,v)f(v)dvdu$$

$$\leq \int_{\Omega \times \Omega} |g(u)||k(u,v)|^{\frac{1}{p'}}|k(u,v)|^{\frac{1}{p}}|f(v)|d(u,v), \quad \text{durch H\"older auf } \Omega \times \Omega \text{ folgt}$$

$$\leq \left(\int_{\Omega \times \Omega} |g(u)|^{p'}|k(u,v)|d(u,v)\right)^{\frac{1}{p'}} \left(\int_{\Omega \times \Omega} |k(u,v)||f(v)|^{p}d(u,v)\right)^{\frac{1}{p}} \quad (*)$$

Definiere nun: $T_1h(v) = \int |k(u,v)|h(u)du$, $T_1h(u) = \int |k(u,v)|h(v)dv$

Mit diesen Notationen wird (*):

$$\left(\int_{\Omega} T_{1}[|g|^{p'}](v)dv\right)^{\frac{1}{p'}} \left(\int_{\Omega} T_{2}[|f|^{p}]dv\right)^{\frac{1}{p}} = \|T_{1}[|g|^{p'}]\|_{L^{1}}^{\frac{1}{p'}} \|T_{2}[|f|^{p}]\|_{L^{1}}^{\frac{1}{p}} \\
\leq \underbrace{\|T_{1}\|_{L^{1} \to L^{1}}^{\frac{1}{p'}}}_{\leq C_{1}^{\frac{1}{p'}}} \underbrace{\||g|^{p'}\|_{L^{1}}^{\frac{1}{p'}}}_{\leq C_{2}^{\frac{1}{p}}} \underbrace{\||f|^{p}\|_{L^{p}}^{\frac{1}{p}}}_{\|f\|_{L^{p}}} \\
\leq C_{1}^{\frac{1}{p'}} C_{2}^{\frac{1}{p}} \|f\|_{L^{p}} \|g\|_{L^{p'}}$$

Wir wollen noch zeigen, dass $||g||_{L^{p'}} \le 1$, da wir dann die richtige Abschätzung auf einer dichten Teilmenge gefunden haben.

$$||g||_{L^{p'}} = \left(\int |Tf(u)|^p du\right)^{-\frac{1}{p'}} \left(\int |Tf(u)|^{(p-1)p'} du\right)^{\frac{1}{p'}} = 1 \text{ da } (p-1)p' = p$$

Definition 8.2 (Bedingter Erwartungsoperator)

Sei $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$ eine Partition von Ω in paarweise disjunkte, messbare Mengen A_n mit $0 < \infty$

 $\mu(A_n) < \infty$. Setze

$$\mathbb{E}_{\mathcal{A}}(f)(s) = \sum_{n} \left[\frac{1}{\mu(A_n)} \int_{A_n} f(t)dt \right] \mathbb{1}_{A_n}(s)$$

Korollar 8.3

- a) Für jede Partition $\mathcal{A} = \{A_n\}$ von Ω ist $\mathbb{E}_{\mathcal{A}} \in B(L^p(\Omega))$ für alle $1 \leq p \leq \infty$ mit $\|\mathbb{E}_{\mathcal{A}}\|_{L^p \to L^p} = 1$.
- b) Bild $\mathbb{E}_{\mathcal{A}} = \mathbb{E}_{\mathcal{A}}(L^p)$ ist isometrisch zu $\ell_m^p \cong (\mathbb{K}^m, \|\cdot\|_p)$, mit m = card(A).

Beweis

a) Setze $k(s,t) = \sum_n \mu(A_n)^{-1} \mathbbm{1}_{A_n}(s) \mathbbm{1}_{A_n}(t)$. Dann gilt für $s \in A_n$:

$$\mathbb{E}_{\mathcal{A}}f(s) = \frac{1}{\mu(A_n)} \int_{A_n} f(t)dt$$
$$= \int_{\Omega} k(s,t)f(t)dt$$

und außerdem $\int k(s,u)du = 1$ für $s \in \Omega$, $\int k(s,u)ds = 1$ für $u \in \Omega$. Aus 8.1 folgt damit mit $C_1 = 1, C_2 = 1$: $\|\mathbb{E}_{\mathcal{A}}\|_{L^p \to L^p} \le 1$.

b) $J: \ell_m^p \to L^p(\Omega), J(\alpha_n) = \sum_{n} \alpha_n \mu(A_n)^{-\frac{1}{p}} \mathbb{1}_{A_n}.$

da Bild
$$J = \operatorname{span}\{\mathbb{1}_{A_n}\} = \operatorname{Bild} \mathbb{E}_{A}$$

$$||J(\alpha_n)||_{L^p}^p = \int_{\Omega} |\sum_n \alpha_n \mu(A_n)^{-\frac{1}{p}} \mathbb{1}_{A_n}(s)|^p ds = \int_{\Omega} \sum_n |\alpha_n|^p \frac{1}{\mu(A_n)} \mathbb{1}_{A_n} ds = \sum_n |\alpha_n|^p$$

Satz 8.4

Sei $\mathcal{A}_m = \{A_{n,m} : n = 1, \dots, m_n\}$ eine Zerlegung von $\Omega \cap K(0, r_m), \Omega \subset \mathbb{R}^d r_m \to \infty$ und $\mathcal{A}_m \subset \mathcal{A}_{m+1}, r_m \to \infty$.

$$d_m = \sup\{|t-s|: s,t \in A_{m,n}, n=1,\ldots,m_n\}$$
 'Feinheit der Zerlegung'

Dann gilt für alle $f \in L^p(\Omega), 1 \le p < \infty$

$$\|\mathbb{E}_{A_m} f - f\|_{L^p} \to 0$$
 für $m \to \infty$

Beweis

1. Beweis

$$D= \text{ span } \{\mathbbm{1}_{A_{n,m}}: n=1,\ldots,m_n, m\in\mathbb{N}\}.$$
 Da $d_m\xrightarrow[m\to\infty]{}0$ "weiß man", dass D dicht ist.

2. Beweis

$$D=C_0(\Omega)=\{f\in C(\Omega),\{t:f(t)\neq 0\}$$
 kompakt\} "Man weiß", dass D dicht in $L^p(\Omega)$ ist.

Dann gilt zu zeigen: Für $f \in C_0(\Omega)$ gilt $\|\mathbb{E}_{\mathcal{A}_m} f - f\|_{L^p} \to 0$ für $m \to \infty$.

Annahme $f \in C(K(0, r_m)), f$ gleichmäßig stetig, $supp(f) \subset K(0, r_m)$ für m groß genug

$$\begin{split} \|\mathbb{E}_{A_{m}}f - f\|_{L^{p}}^{p} &= \int_{\Omega} |\sum_{n} (\mathbb{E}_{A_{m}}f - f) \, \mathbb{1}_{A_{m,n}}(s)|^{p} ds \\ &= \sum_{n} \int |(\mathbb{E}_{A_{m}}f - f) \, \mathbb{1}_{A_{m,n}}(s)|^{p} ds \\ &= \sum_{n=1}^{m_{n}} \int \left| \frac{1}{\mu(A_{m,n})} \int_{A_{m,n}} [f(t)dt - f(s)] \, \mathbb{1}_{A_{m,n}}(s) \right|^{p} ds \\ &= \sum_{n=1} \int_{K(0,r_{m})\cap A_{n,m}} \left| \frac{1}{\mu(A_{m,n})} \int_{A_{m,n}} [f(t) - f(s)] \, dt \right|^{p} ds \\ &\leq \sum_{n} \mu\left(K(0,r_{m})\cap A_{n,m}\right) \sup\{|f(t) - f(s)| : s, t \in A_{m,n}\} \\ &\leq \left(\sum_{n} \mu\left(K(0,r_{m})\cap A_{n,m}\right)\right) \sup\{|f(t) - f(s)| : |s - t| < d_{m}\} \\ &\leq \mu\left(K(0,r_{m})\right) \sup_{|s - t| \leq d_{m}} |f(s) - f(t)| \end{split}$$

Beispiel

$$\Omega = \mathbb{R}, \mathcal{A}_m = \{ [\frac{n-1}{2m}, \frac{n}{2m}) : -2^{2m}, \dots, 0, \dots, 2^{2m} \}, r_m = 2^m.$$

Korollar

Für $X = L^p(\Omega), 1 \le p < \infty$ gilt:

$$K(X,X) = \overline{\mathcal{F}(X,X)}$$
 = Abschluss der endl. dim. Operatoren

Beweis (siehe 7.7)

Die Behauptung ist richtig, falls L^p die Approximationseigenschaft hat:

$$\exists S_n \in \mathcal{F}(x), ||S_n|| < 1, S_n f \to f \text{ in } L^p \text{ für } n \to \infty$$

Wähle $S_n = \mathbb{E}_{\mathcal{A}_n}$.

Satz 8.5 (Young)

Für $k \in L^{1}(\mathbb{R}^{d})$ setze für $f \in L^{p}(\mathbb{R}^{d})$

$$(k * f)(u) = \int_{\mathbb{R}^d} k(u - v) f(v) dv \quad (*)$$

k * f heißt **Faltung** von k und f.

Dann definiert (*) einen beschränkten Operator Tf = k * f von $L^p(\mathbb{R}^d)$ nach $L^p(\mathbb{R}^d)$ für $1 \le p \le \infty$ und $||T||_{L^p \to L^p} \le ||k||_{L^1}$.

Beweis

Setze k(u, v) := k(u - v). Dann gilt:

$$\int |k(u,v)|dv = \int |k(u-v)|dv = ||k||_{L^1} \text{ für alle } u \in \mathbb{R}^d$$

$$\int |k(u,v)|du = \int |k(u-v)|du = ||k||_{L^1} \text{ für alle } v \in \mathbb{R}^d$$

Wende Satz 8.1 an: $||T|| \le ||k||_{L^1}$

Bemerkung

 $D \subseteq L^p(\mathbb{R}^d)$ dicht, z.B.: $D = \{ f \in L^\infty(\mathbb{R}^d) : \operatorname{supp}(f) \text{ comp. } \} f \in D : \int_{\mathbb{R}^d} k(u-v)f(v)dv$ existiert als Lebesgueintegral für alle $f \in D$.

Nach Satz 8.1 gilt $||Tf||_{L^p} \le ||k||_{L^1} \cdot ||f||_{L^p}$ für $f \in D$.

T ist die **stetige Fortsetzung** von $T_{\mid D}$ auf ganz $L^p(\mathbb{R}^d)$.

Definition 8.6

Sei $\phi \in L^1(\mathbb{R}^d)$ mit $\phi \geq 0$ und $\int_{\mathbb{R}^d} \phi(u) du = 1$. Dann heißt $\phi_{\epsilon}(u) = \epsilon^{-d} \phi(\epsilon^{-1}u), \epsilon > 0$, approximative Eins.

Notation: $\phi_{\epsilon} * f(u) = \int \phi_{\epsilon}(u-v)f(v)dv$.

Beispiel

$$\phi(u) = \frac{1}{|B(0,1)|} \cdot \mathbb{1}_{B(0,1)}(u), \phi \ge 0, \int \phi du = 1$$

$$\begin{split} \phi_{\epsilon} * f(u) &= \frac{1}{|B(u,\epsilon)|} \int \mathbbm{1}_{B(u,\epsilon)}(u-v) f(v) dv \\ &= \frac{1}{|B(u,\epsilon)|} \int_{(u,\epsilon)} f(v) dv \\ &= \text{"Durchschnitt" von } f \text{ "ber die Kugel } B(u,\epsilon). \end{split}$$

Vermutung: $\phi_{\epsilon} * f(u) \xrightarrow[\epsilon \to 0]{} f(u)$. In welchem Sinne jedoch ist noch unklar.

Bemerkung 8.7

- i) $\int \phi_{\epsilon}(u)du = 1$
- ii) $\int_{\mathbb{R}^d \setminus B(0,r)} \phi_{\epsilon}(u) du \xrightarrow[\epsilon \to 0]{} 0$
- iii) $\operatorname{supp}(\phi) \subset B(0,r) \Rightarrow \operatorname{supp}(\phi_{\epsilon}) \subset B(0,\epsilon)$
- iv) $\|\phi_{\epsilon} * f\|_{L^p} \le 1 \|f\|_{L^p}$ (nach 8.5)

Satz 8.8

Sei $(\phi_{\epsilon})_{\epsilon>0}$ eine approximative Eins. Dann gilt für alle $f\in L^p(\mathbb{R}^d), 1\leq p<\infty$

$$||f - \phi_{\epsilon} * f||_{L^p} \xrightarrow[\epsilon \to 0]{} 0$$

Beweis

Sei $D=\{f\in C(\mathbb{R}^d): \operatorname{supp}(f) \text{ kompakt }\}, D\subset L^p(\mathbb{R}^d) \text{ dicht.}$ Für $f\in D, \operatorname{supp}(f)\subset B(0,r_0)$

$$\phi_{\epsilon} * f(u) - f(u) = \int_{\mathbb{R}^d} \phi_{\epsilon}(u - v) [f(v) - f(u)] dv \quad (da \int \phi_{\epsilon}(u) du = 1)$$
$$= \int \phi_{\epsilon}(h) [f(u - h) - f(u)] dh$$

$$\|\phi_{\epsilon} * f - f\|_{L^{p}} \leq \left\| \int_{|h| \leq r} \phi_{\epsilon}(h) \left[f(\cdot - h) - f(\cdot) \right] dh \right\|_{L^{p}(\cdot)} + \left\| \int_{|h| \geq r} \phi_{\epsilon}(h) \left[f(\cdot - h) - f(\cdot) \right] dh \right\|_{L^{p}(\cdot)}$$

$$\leq \underbrace{\left(\int_{|h| \leq r} \phi_{\epsilon}(h) dh \right)}_{|h| \leq r} \|f(\cdot - h) - f(\cdot)\|_{L^{p}} + \int_{|h| \geq r} \phi_{\epsilon}(h) dh \left(\|f(\cdot - h)\|_{L^{p}} + \|f(\cdot)\|_{L^{p}} \right)$$

$$\leq \sup_{|h| \leq r} \|f(\cdot - h) - f(\cdot)\|_{L^{p}(\cdot)} + \underbrace{\int_{|h| \geq r} \phi_{\epsilon}(h) dh}_{\rightarrow 0 \text{ für } \epsilon \to 0 \text{ nach } 8.7ii} (2 \cdot \|f\|_{L^{p}}) \quad (L^{p} \text{ ist translations invariant})$$

Gegeben ein $\tau > 0$ wähle r so groß, dass der erste Teil kleiner ist als τ . Gegeben r und τ wähle $\epsilon > 0$ so klein, dass der zweite Teil kleiner ist als τ , d.h.

$$\|\phi_{\epsilon} * f - f\|_{L^p} \le 2\tau$$
 für ϵ klein genug, für $f \in D$.

Nach 8.7 iv): $\|\phi_{\epsilon} * f\|_{L^p} \leq \|f\|_{L^p}$ Für $T_{\epsilon}f = \phi_{\epsilon} * f$ gilt:

- $||T_{\epsilon}|| \le 1$ für alle $\epsilon > 0$
- $T_{\epsilon}f \xrightarrow[\epsilon \to 0]{} f$ in L^p für alle $f \in D$
- D ist dicht in L^p
- \Rightarrow Behauptung nach Proposition 5.10

Korollar 8.9

Sei $\Omega \subseteq \mathbb{R}^d$ offen. Dann liegt $C_c^{\infty}(\Omega) = \{f : f \text{ ist unendlich oft differenzierbar und supp}(f) \text{ ist kompakt. } \}$ dicht in $L^p(\Omega)$.

Beweis

Sei $\phi_{\delta}, \delta > 0$ eine approximative Eins und $\phi \in C^{\infty}(\mathbb{R}^d)$, supp $(\phi) \leq B(0,1)$. Gegeben $f \in L^p(\Omega), \epsilon > 0$ wähle $g \in L^{\infty}(\Omega)$ mit

- $\operatorname{supp}(g) = \overline{\{x \in \Omega : g(x) \neq 0\}} =: A \subseteq \Omega, A \text{ kompakt}$
- $||f g||_{L^p} \le \epsilon$

$$\delta_0 = \inf\{|t - s| : t \in \mathbb{R}^d \setminus \Omega, s \in A\}$$
 Abstand von A und Ω^c

Da supp $(\phi_{\delta}) \subset B(0, \delta)$ nach 8.7 ii)

$$\Rightarrow \operatorname{supp}(g * \phi_{\delta}) \subset A + B\left(0, \frac{\delta_0}{2}\right) \subset \Omega \text{ für } \delta < \frac{\delta_0}{2}$$

(mit $A + B := \{x + y : x \in A, y \in B\}$), denn $g * \phi_{\delta}(u) = \int \phi_{\delta}(u - v)g(v)dv \neq 0$ nur wenn $v \in A$ und $||u - v|| < \delta$.

Also $g * \phi_{\delta} \in C_c(\Omega)$. Zu zeigen: $g * \phi_{\delta} \in C^{\infty}(\Omega)$

$$D_u^{\alpha}(\phi_{\delta} * g)(u) = \int_A \left[D_u^{\alpha} \phi_{\delta}(u - v) \right] \underbrace{g(v)}_{\text{beschränkt}} gv$$

d.h. $\phi_{\delta} * g \in C^{\infty}$; in einfachen Worten bedeutet das, dass $C_{\delta} * g$ alle guten Eigenschaften von ϕ "erbt", auch wenn g "schlecht" ist.

$$||f - \phi_{\delta} * g||_{L^{p}} \leq \underbrace{||f - g||}_{\leq \epsilon} + \underbrace{||g - \phi_{\delta} * g||_{L^{p}}}_{\leq \epsilon} \text{ für } \epsilon \text{ klein genug nach } 8.8$$

Bemerkung

Es gilt:

- $\operatorname{supp}(f) \subset A, \operatorname{supp}(g) \subset B \Rightarrow \operatorname{supp}(f+g) \subset A+B$
- f * q = q * f

Korollar 8.10

Sei $\Omega \subseteq \mathbb{R}^d$ offen. Sei $f \in L^p(\Omega), p \in [1, \infty)$ mit $\int f(u)g(u)du = 0$ für alle $g \in C_c^{\infty}(\Omega)$. Dann ist f = 0.

Beweis

Zu $f \in L^p$ gibt es ein $g \in L^{p'}, \frac{1}{p} + \frac{1}{p'} = 1$ mit

$$||f||_{L^p} = \int f(u)g(u)du, \quad ||g||_{L^{p'}} = 1$$

Wähle $g(u) = |f(u)|^{p-1} \left(sign(f(u)) \right) \cdot ||f||_{L^p}^{\frac{1}{p}-1}$. Dann ist

$$||f||_{L^{p}} = \left(\int |f(u)|^{p} du\right)^{\frac{1}{p}} = ||f||_{L^{p}}^{\frac{1}{p}-1} \int |f(u)|^{p} du$$

$$= \int f(u) \underbrace{\frac{sign(f(u))|f(u)|^{p-1}}{||f||^{1-\frac{1}{p}}}}_{=:g(u)} du$$

$$= \int f(u)g(u)du$$

 $\|g\|_{L^{p'}}=1$ mit $\frac{1}{p}+\frac{1}{p'}=1.$ (sieh auch Beweis 8.1)

$$\|f\|_{L^p} = \int f(u)g(u)du = \int f(u)[g(u) - \phi(u)]du \text{ für alle } \phi \in C_c^{\infty}(\Omega), \quad \text{ denn } \int f(u)\phi(u)du = 0$$

Wähle nach 8.9 ein $\phi \in C_c^\infty(\Omega)$ mit $\|g-\phi\|_{L^{p'}(\Omega)} < \frac{1}{2}$

Also $||f||_{L^p} \le ||f||_{L^p} ||f - \phi||_{L^{p'}} < \frac{1}{2} ||f||_{L^p}$, was einen Widerspruch zu $f \ne 0$ darstellt, demnach gilt $||f||_{L^p} = 0, f = 0$.

nn

Elemente der Operatortheorie

9 Der Satz von Baire und der Satz von Banach-Steinhaus

Satz 9.1 (Satz von Baire)

Sei (M,d) ein vollständiger metrischer Raum und seien $U_n, n \in \mathbb{N}$ offen und dicht in M.

Dann ist
$$\bigcap_{n\in\mathbb{N}} U_n$$
 dicht in M .

Beweis

Der Kürze halber definieren wir $D := \bigcap_{n \in \mathbb{N}} U_n$.

Zu zeigen gilt, dass zu jeder Kugel $K(x_0, \epsilon), x_0 \in M, \epsilon > 0$. Beweis:

• $U_1 \cap K(x_0, \epsilon)$ ist offen und nichtleer, da U_1 dicht ist. Also existiert ein $x_1 \in U_1$ und $\epsilon_1 > 0$ mit $\epsilon_1 < \frac{1}{2}\epsilon$ so, dass $K(x_1, 2\epsilon_1) \subset U_1 \cap K(x_0, \epsilon)$

$$\Rightarrow \overline{K(x_1,\epsilon)} \subseteq U_1 \cap K(x_0,\epsilon)$$

• Nun ist $U_2 \cap K(x_1, \epsilon_1)$ offen und nichtleer, da U_1 dicht ist. Also existiert ein $x_2 \in U_2$ und ein $\epsilon_2 < \frac{1}{2}\epsilon_1$ mit

$$\overline{K(x_2, \epsilon_2)} \subset K(x_2, 2\epsilon_2) \subset U_2 \cap K(x_1, \epsilon_1) \subset U_2 \cap U_1 \cap K(x_0, \epsilon)$$

- Induktiv findet man Folgen $\epsilon_n > 0, x_n$ mit
 - (i) $\epsilon_n < \frac{1}{2}\epsilon_{n-1}$ und damit $\epsilon_n \le \frac{1}{2^n}\epsilon$

(ii)
$$\overline{K(x_n, \epsilon_n)} \subset U_n \cap K(x_{n-1}, \epsilon_{n-1}) \subset \ldots \subset U_n \cap \ldots \cap U_1 \cap K(x_0, \epsilon)$$

Insbesondere für n > N:

$$d(x_n, x_N) \le \sum_{j=N+1}^n d(x_j, x_{j-1}) \le \sum_{j=N+1}^n \epsilon_n \le \left(\sum_{j=N+1}^\infty \frac{1}{2^j}\right) \epsilon$$

d.h. (x_n) ist eine Cauchy-Folge und da M vollständig ist, existiert $\lim_{n\to\infty} x_n =: x$ in M. Mit ii gilt: $x_n \in \overline{K(x_N, \epsilon_N)}$ für $n \geq N$

$$\Rightarrow x = \lim_{n} x_n \in \overline{K(x_N, \epsilon_N)} \subset U_N \cap \ldots \cap U_1 \cap K(x_0, \epsilon)$$
 für alle N

$$\Rightarrow x \in \bigcap_{n=1}^{\infty} U_n \cap K(x_0, \epsilon)$$

Definition 9.2

- a) Eine Teilmenge L eines metrischen Raums M heißt nirgends dicht, falls \overline{L} keine inneren Punkte enthält.
- b) Eine Teilmenge L, die sich als Vereinigung von einer Folge von nirgends dichten Mengen L_n darstellen lässt, d.h. $L = \bigcup_{n \in \mathbb{N}} L_n$ heißt von 1. Kategorie.
- c) L heißt von 2. Kategorie, falls L nicht von erster Kategorie ist.

Bemerkung

- Ist L nirgends dicht, dann ist $M \setminus \overline{L}$ dicht in M
- Ist L nirgends dicht oder von Kategorie 1, dann ist L "dünn", "voller Löcher".

Korollar 9.3 (Kategoriensatz von Baire)

- a) In einem vollständigen metrischen Raum (M,d) liegt das Komplement einer Menge L von 1. Kategorie stets dicht. Insbesondere:
- b) Ein vollständig metrischer Raum ist von 2. Kategorie
- c) Sei (M,d) vollständig und $M_n, n \in \mathbb{N}$ eine Folge abgeschlossener Mengen mit M= $\bigcup_{n\in\mathbb{N}} M_n$. Dann enthält mindestens ein M_n eine Kugel

Beweis

 $L = \bigcup_{n \in \mathbb{N}} L_n$, L_n nirgends dicht.

Damit gilt $L^c = \left(\bigcup_{n \in \mathbb{N}} L_n\right)^c = \bigcap_{n \in \mathbb{N}} L_n^c \supset \bigcap_{n \in \mathbb{N}} \overline{L_n}^c$, mit $\overline{L_n}^c$ offen. Da L_n nirgends dicht ist, ist daher $\overline{L_n}^c$ dicht in M

Nach 9.1 ist auch $\bigcap_{n\in\mathbb{N}} \overline{L_n}^c$ dicht in M und da $\bigcap_{n\in\mathbb{N}} \overline{L_n}^c \subset L^c$, ist auch L^c dicht in M.

 $(a) \Rightarrow (b) \Rightarrow (c)$ nach Definition.

Satz 9.4

 $E = \{x \in C[0,1] : x \text{ ist in keinem Punkt von } [0,1] \text{ differenzierbar } \} \text{ ist dicht in } (C[0,1], \| \cdot \|)$

Insbesondere:

- E ≠ ∅
- $C^{1}[0,1]$ ist von 1. Kategorie in C[0,1], also $C^{1}[0,1] \subset C[0,1]$ dicht

Beweis

Betrachte

$$E_n = \{x \in C[0,1] : \sup_{0 < |h| \le \frac{1}{n}} \left| \frac{x(t+h) - x(t)}{h} \right| > n, \text{ für alle } t \in [0,1] \},$$

dann ist $\bigcap E_n \subset E$. Wir wolle nun zeigen, dass

- i) E_n sind offen in C[0,1] für alle n
- ii) E_n sind dicht in C[0,1] für alle n

Damit können den Satz von Baire anwenden und erhalten dass $\bigcap_{n\in\mathbb{N}} E_n$ und damit auch die Menge E dicht in C[0,1] ist.

i) Sei $n \in \mathbb{N}$ und $x \in E_n$ fest. Zu jedem $t \in [0,1]$ wähle f_t definiert durch

$$\sup_{0<|h|\leq \frac{1}{n}} \left| \frac{x(t+h) - x(t)}{h} \right| = n + 2\delta_t$$

$$\Rightarrow \left| \frac{x(s+h_t)-x(s)}{h_t} \right| > n + \delta_t \text{ für } s \in U_t, \ 0 < |h_t| \le \frac{1}{n}$$

Da x stetig ist, gibt es zu t eine kleine Umgebung U_t mit

$$\left| \frac{x(s+h_t) - x(s)}{h_t} \right| > n + \delta_t \text{ für } s \in U_t, \quad 0 < |h_t| \le \frac{1}{n}$$

Da [0,1] kompakt und $[0,1]=\bigcup_{t\in[0,1]}U_t$ gibt es endlich viele U_{t_1},\dots,U_{t_n} mit $[0,1]\subset$ $U_{t_1} \cup \ldots \cup U_{t_n}$

Setze $\delta := \min\{\delta_{t_1}, \dots, \delta_{t_1}\} > 0, \quad h := \min\{h_{t_1}, \dots, h_{t_n}\}.$

Wähle nun ein ϵ mit $0 < \epsilon < \frac{1}{2}h\delta$.

Zu zeigen bleibt $K(x, \epsilon) \subset E_n$:

Sei $y \in C[0,1]$ mit $||x-y||_{\infty} < \epsilon$. Zu $t \in [0,1]$ wähle $i \in \{1,\ldots,n\}$ mit $t \in U_i$. Dann:

$$\left| \frac{y(t + h_{t_i}) - y(t)}{h_{t_i}} \right| \stackrel{\triangle - \text{Ungl.}}{\geq} \left| \frac{x(t + h_{t_i}) - x(t)}{h_{t_i}} \right| - 2 \frac{\|x - y\|_{\infty}}{|h_{t_i}|}$$

$$\stackrel{t \in U_{t_i}}{>} n + \delta - 2 \frac{\epsilon}{n}$$

$$> n \quad \text{nach Wahl von } \epsilon$$

 $\Rightarrow x \in E_n, K(x, \epsilon) \subseteq E_n \Rightarrow A_n \text{ offen, } n \in \mathbb{N}.$

ii) Wir wollen noch zeigen, dass U_n dicht in C[0,1] ist.

Sei $V \subset C[0,1]$ offen, $V \neq \emptyset$. Nach dem Approximationssatz von Weierstraß gibt es ein Polynom p mit $p \in V, \epsilon > 0 : ||x - p||_{\infty} \le \epsilon \Rightarrow x \in V$.

Sei weiter y_m eine Sägezahnfunktion mit $y_m:[0,1]\to[0,\epsilon]$ und der Steigung $\pm m$. Dann ist $x := p + m \in K(p, \epsilon)$.

Wähle zu n die Zahl $m \in \mathbb{N}$ so, dass $m > n + ||p||_{\infty}$.

Für $t \in [0, 1], 0 < |n| \le \frac{1}{n}$ gilt:

$$\left| \frac{x_m(t+h) - x(t)}{h} \right| \stackrel{\triangle - \text{Ungl.}}{\ge} \left| \frac{y_m(t+h) - y(t)}{h} \right| - \underbrace{\left| \frac{p(t+h)_p(t)}{h} \right|}_{\le ||p'||_{\infty} \text{ nach MWS}}$$

$$\Rightarrow \sup_{0 < |h| \le \frac{1}{n}} \left| \frac{x_m(t+h) - x_m(t)}{h} \right| \ge m - ||p'||_{\infty} \underset{\text{von } m}{\overset{\text{nach Wahl}}{\ge}} n$$

Damit ist $x_m \in E_n$ und sogar $x_m \in E_n \cap V$

$$\Rightarrow E_n \cap V \neq \emptyset \quad \Rightarrow E_n \text{ dicht.}$$

Satz 9.5 (Banach-Steinhaus)

Sei X ein Banachraum, Y ein normierter Raum, I eine Indexmenge und $(T_i)_i \in B(X,Y)$. Falls:

$$\sup_{i \in I} ||T_i x|| = C(X) < \infty \quad \forall x \in X$$

Dann:

$$\sup_{i \in I} ||T_i|| = \sup_{i \in I} \sup_{||x|| \le 1} ||T_i x|| < \infty.$$

Beweis

siehe Werner

Bemerkung 9.6

- a) Aus C(X) kann man $\sup_{i \in I} ||T_i||$ nicht herleiten (Baire ist nicht konstruktiv).
- b) Die Vollständigkeit von X ist notwendig.

Beispiel

Sei $F = \{(x_n)_n : x_n = 0 \text{ für alle, bis auf endlich viele } n\}$ mit $\|(x_n)_n\|_p = \sup_{n \in \mathbb{N}} |x_n|$. Betrachte $T_k(x_n)_n = kx_k$, dann gilt $\|T_k\| = k$ und $\sup_{k \in \mathbb{N}} \|T_k\| = \infty$ Aber $\sup_{k \in \mathbb{N}} \|T_k(x_n)_n\| = \sup_{k \in \mathbb{N}} \|kx_k\| < \infty$, da sup nur über endlich viele Werte genommen wird.

Korollar 9.7

Sei X ein Banachraum, Y normiert und $(T_n)_n \subset B(X,Y)$ derart, dass

$$\lim_{n\to\infty} T_n x =: y \text{ existiert für alle } x \in X$$

Dann ist $T_x := y_x$ linear und $T \in B(X, Y)$

Beweis

T ist linear, da lim und T_n jeweils linear sind.

$$(T_n x)_n$$
 ist beschränkt $\xrightarrow{\text{Banach-}} \sup_{n \in \mathbb{N}} ||T_n|| < \infty$

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| \le \sup_{n \in \mathbb{N}} ||T_n|| \cdot ||x||$$

$$\Rightarrow T \in B(X, Y) \text{ mit } ||T|| \le \sup_{n \in \mathbb{N}} ||T_n||.$$

Frage: $T_n \xrightarrow[n \to \infty]{} T$ in B(x, Y)? Nein!

Beispiel

$$X = Y = \ell^p, \quad T_k(x_n)_n = (x_1, \dots, x_k, 0, \dots)$$

$$||T_k(x_n)_n - I(x_n)_n|| = \left(\sum_{n=k+q}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \xrightarrow[n \to \infty]{} 0$$
 (Identität ist punktweiser Gw.)

Aber:
$$||T_k - I|| \ge ||(T_k - I)\underbrace{(0, \dots, 0, 1, 0, \dots)}_{1 \text{ an } k+1-\text{ter Stelle}}||_{\ell^p} = 1 \xrightarrow[k \to \infty]{} 0$$

10 Satz von der offenen Abbildung

Definition 10.1

Eine Abbildung zwischen metrischen Räumen heißt **offen**, wenn offene Mengen auf offene Mengen abgebildet werden.

Lemma 10.2

Seien X,Y normiert und $T:X\to Y$ ein linearer Operator.

Dann sind äquivalent:

- a) T ist offen
- b) $\exists \epsilon > 0 : K_y(0, \epsilon) \subset T(K_x(0, 1))$

Beweis

" \Rightarrow " : $T(K_X(0,1))$ ist offen und T(0) = 0.

" \Leftarrow ": Sei $U \subset X$ offen, $x \in U, \epsilon > 0$: $K_X(x, \epsilon) \subset \overline{U}$.

$$\Rightarrow T(K_X(x,\epsilon)) \subset T(y)$$

\Rightarrow T_X + \epsilon T(K_X(0,1)) = Tx + T(K_X(0,\epsilon)) \subseteq T(U)

Nach b) $\exists \delta > 0 : K_Y(0, \delta) \subset T(K_X(0, 1))$

$$\Rightarrow K_Y(Tx, \epsilon\delta) = Tx + \epsilon K_Y(0, \delta) \subset T(U)$$

\Rightarrow T(U) ist offen

Satz 10.3 (von der offenen Abbildung)

Seien X, Y Banachräume und $T \in B(X, Y)$.

Dann gilt:

T surjektiv $\iff T$ offen

Beweis

" \Rightarrow ": Nach Lemma 10.2 $\exists \epsilon > 0 : K_Y(0, \epsilon) \subset T(K_X(0, 1))$

$$\Rightarrow K_Y(0,R) \subset T(K_X(0,\frac{R}{\epsilon})) \quad \forall R > 0$$
$$\Rightarrow Y \subset T(X)$$

" \Leftarrow ": siehe Werner (S. 154f).

Korollar 10.4

Seien X, Y Banachräume und $T \in B(X,Y)$ bijektv. Dann ist $T^{-1} \in B(Y,X)$

Beweis

Nach 10.3 ist T offen, d.h. ist $U \subset X$ offen, so ist auch T(U) offen in Y.

$$\Rightarrow T(U) = (T^{-1})^{-1}(U)$$
 offen

 \Rightarrow Urbilder offener Mengen sind offen unter $T^{-1} \Rightarrow T^{-1}$ ist stetig

Die Inverser linearer Operatoren ist bekanntlich linear.

Korollar 10.5

Sei X ein Vektorraum, der mit $\|\cdot\|, \|\|\cdot\|$ ausgestattet ein Banachraum wird. Gibt es ein $c>0: \|x\|\leq c\cdot \|\|x\|\| \ \forall x\in X,$ dann sind die Normen äquivalent (d.h. $\exists \hat{c}$ mit $\hat{c}\cdot \|\|x\|\| \leq \|x\| \ \forall x\in X$).

Beweis

Nach Voraussetzung ist $I:(X,\|\|\cdot\|) \to (X,\|\cdot\|)$ beschränkt.

$$\xrightarrow{{\color{red} 10.4}} I: (X,\|\cdot\|) \to (X,\|\!|\!|\cdot|\!|\!|)$$
 beschränkt.

11 Projektionen

Definition 11.1

Sei X ein Banachraum. $P: X \to X$ heißt **Projektion**, wenn P linear und $P^2 = P$ ist.

Frage: Wann ist P beschränkt?

Beispiel 11.2

a)
$$X = L^p(\mathbb{R}), \ \Omega \subset \mathbb{R} : \mu(\Omega) > 0, \mu(\mathbb{R} \setminus \Omega) > 0$$

$$Pf := \mathbb{1}_{\Omega} f \Rightarrow P^2 f = \mathbb{1}_{\Omega}^2 f = \mathbb{1}_{\Omega} f = Pf$$

$$||Pf||_{L^p} = \left(\int |\mathbb{1}_{\Omega}|^p\right)^{\frac{1}{p}} = \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} \le ||f||_{L^p} \Rightarrow P \text{ ist beschränkt.}$$

b)
$$X = L^p[0,1]^2$$
, mit $1 \le p < \infty$, $Pf(x,y) := \int_0^1 f(s,y) ds$

$$\Rightarrow P^2f(x,y) = \int_0^1 \int_0^1 f(s,y) ds dt = \int_0^1 f(s,y) ds = Pf(x,y)$$

$$||Pf||_{L^{p}} = \left(\int_{0}^{1} \int_{0}^{1} \left| \int_{0}^{1} f(s, y) ds \right|^{p} dy dx\right)^{\frac{1}{p}}$$

$$\stackrel{\triangle-\text{Ungl.}}{\leq} \left(\int_{0}^{1} \left(\int_{0}^{1} |f(s, y)| ds\right)^{p} dy\right)^{\frac{1}{p}}$$

$$\stackrel{\text{Jensen}}{\leq} \left(\int_{0}^{1} \int_{0}^{1} |f(s, y)|^{p} ds dy\right)^{\frac{1}{p}}$$

$$= ||f||_{L^{p}}$$

Bemerkung 11.3

Sei X ein Vektorraum, $M\subset X$ ein Untervektorraum. Es gibt nach dem Basisergänzungssatz eine lineare Projektion $P:X\to X,\, P(X)=M$

Beweis

Sei $(b_i)_{i\in I}$ eine Basis von M und $(b_j)_{j\in J}$ von X, mit $I\subset J$. Nun existiert ein $(\alpha_i(x))_i$:

$$x = \sum_{j \in I} \alpha_j(x) b_j$$
 und höchstens endlich viele $\alpha_j(x) = 0$.

$$P(X) := \sum_{i \in I} \alpha_i(x) b_i.$$

Erinnerung:

Sind X, Y Banachräume, dann ist auch $X \oplus Y$ ein Banachraum mit $\|(x,y)\|_{X \bigoplus Y} = \|x\|_X + \|y\|_Y$ $\forall x \in X, y \in Y$

Satz 11.4

Sei X ein Banachraum, $M\subset X$ ein abgeschlossener Untervektorraum. Dann sind folgende Aussagen äquivalent:

- a) Es gibt eine stetige Projektion $P: X \to X$ mit P(X) = M
- b) Es gibt einen abgeschlossenen Untervektorraum $N \subset X : X = M \oplus N$.
- c) Es gibt einen abgeschlossenen Untervekottraum $N \subset X$ und $J: M \oplus N \to X, J(x,y) = x + y$ ist ein Isomorphismus, insbesondere $\exists c > 0 \ \forall x \in M, y \in N : c(\|x\| + \|y\|) \le \|x + y\| \le \|x\| + \|y\|$

Beweis

 $a) \Rightarrow b$) Definiere N = (I + P)(X). Dann gilt

$$X = P(X) + (I - P)(X)$$
 und $P(X) \cap (I - P)(X) = \{0\}$

N ist abgeschlossen, dann $N = \text{Kern } P = P^{-1}\{0\}$ und P ist stetig.

 $(b) \Rightarrow (c)$ Sei N wie in b). $J: M \oplus N \to X, J(x,y) = x+y$. Dann gilt:

$$||x + y|| = ||J(x, y)|| \quad \forall x \in M, y \in N$$

 $\leq ||x|| + ||y||$
 $= ||(x, y)||_{M \oplus N}$

Außerdem ist J bijektiv, da $X = M \oplus N \xrightarrow{10.5} J^{-1}stetig, \exists \hat{c} > 0 : \forall x \in M, y \in N$:

$$||x + y|| - ||(x, y)|| = ||J^{-1}(x + y)|| \le \hat{c}||x + y||$$

$$(c) \Rightarrow a)$$
 Definiere $\hat{P}: M \oplus N \to M \oplus N, \hat{P}(x,y) = (x,0)$

$$\Rightarrow \hat{P}(M \oplus N) = M \oplus \{0\}$$
. Setze $P = J\hat{P}J^{-1}$ (P ist Projektion!)

$$P(X) = M$$
, denn $P(X) = J\hat{P}(M \oplus N) = J(M \oplus \{0\}) = M$

Vereinbarung:

M heißt komplementierter Raum, N = Kern(P) Komplementärraum.

Beispiel

a)
$$X = L^p(\mathbb{R}) \ \Omega \subseteq \mathbb{R}, \ Pf = \mathbbm{1}_{\Omega} f$$

$$M = P(X) = \{ f \in L^p(\mathbb{R}) : f = 0 \text{ fast "überall auf } \Omega^c \}$$
$$N = \operatorname{Kern}(f) = \{ f \in L^p(\mathbb{R}) : f = 0 \text{ fast "überall auf } \Omega \}$$

b)
$$X = L^p([0,1]^2) \ Pf(x,y) = \int_0^1 f(s,y) ds$$

$$M = \{ f \in L^p([0,1]^2), f \text{ konstant in 1. Komponente} \}$$

$$N = \{ f \in L^p([0,1]^2) : \int_0^1 f(s,y) ds = 0 \text{ fast "überall}, \ y \in [0,1] \}$$

(a)&b)) Da P stetig ist, gilt: $X=M\oplus N$.

12 Abgeschlossene Operatoren

Sei X ein Banachraum, D(A) ein dichter Untervektorraum und $A:D(A)\to X$ linear

Erinnerung:

Gilt $||Ax|| \le c||x|| \ \forall x \in D(A)$, so lässt sich A zu einem beschränkten Operator fortsetzen $A \in B(X)$

Beispiel 12.1

a) Sei $X = C[0,1], D(A) = C^1([0,1]), Ax = x'$ Behauptung: A ist nicht beschränkt $\lambda > 0, x_{\lambda}(t) = e^{i\lambda t} \quad t \in [0,1] \Rightarrow Ax_{\lambda}(t) = i\lambda e^{i\lambda t}$ $\Rightarrow \|x_{\lambda}\|_{\infty} = 1, \|Ax_{\lambda}\|_{\infty} = \lambda \xrightarrow{\lambda \to \infty} \infty \Rightarrow A$ ist nicht beschränkt auf D(A).

b)
$$X = L^p[0,1], Bx(t) = \frac{1}{t}x(t).$$

$$D(B) = \{x \in L^p([0,1]): \exists \epsilon(x), x = 0 \text{ fast "überall auf } [0,\epsilon]\}$$

$$B$$
 bildet nach X ab, denn $||Bx||_{L^p} = \left(\int_{\epsilon}^1 t^{-p}|x(t)|^p dt\right)^{\frac{1}{p}} \leq \frac{1}{\epsilon(x)}||x||_{L^p}$

z.B.:
$$x_{\lambda} = \mathbb{1}_{\left[\frac{1}{\lambda}, 1\right]} \Rightarrow \|x_{\lambda}\|_{L^{p}} = \left(\int_{\frac{1}{\lambda}}^{1} |x_{\lambda}(t)|^{p} dt\right)^{\frac{1}{p}} = \left(\int_{\frac{1}{\lambda}}^{1} dt\right)^{\frac{1}{p}} < 1$$

$$||Bx_{\lambda}|| = \left(\int_{\frac{1}{\lambda}}^{1} t^{-p} dt\right) \xrightarrow{\lambda \to \infty} \infty$$

 $\Rightarrow B$ ist unbeschränkt auf D(B).

Beobachtung:

- \bullet A, B lassen sich nicht auf X fortsetzen
- Es gibt viele Möglichkeiten D(A), D(B) zu wählen; $D(A) = C^{\infty}[0,1]$ ist genauso möglich.

Definition 12.2

Auf D(A) definieren wir die **Graphennorm**

$$||x||_A := ||x|| + ||A|| \quad \forall x \in D$$

Insbesondere: $A:(D(A),\|\cdot\|_A)\to X$ stetig, denn $\|X\|\leq \|x\|+\|Ax\|=\|x\|_A$

Satz 12.3

Es sind äquivalent

- a) $(D(A), \|\cdot\|_A)$ ist ein Banachraum
- b) graph $(A) = \{(x, Ax) : x \in D(A)\} \subset X \times X$ ist abgeschlossen

c) Wenn
$$(x_n)_n \subset D(A)$$
:
$$\begin{cases} x_n \xrightarrow{n \to \infty} x & \text{in } X \\ Ax_n \xrightarrow{n \to \infty} y & \text{in } X \end{cases}$$
, so ist $x \in D(A), Ax = y$

Beweis

$$(a) \Rightarrow b) \ J : D(A) \to X \times X, J(x) = (x, Ax).$$
 Dann gilt

$$\|(x,Ax)\|_{X\times X} = \|x\| + \|Ax\| = \|x\|_A \Rightarrow J$$
 ist Isometrie (erhält Vollständigkeit)

 $\Rightarrow \operatorname{graph}(A) = \operatorname{Bild}(J)$ ist vollständig $\Rightarrow \operatorname{graph}(A)$ ist abgeschlossen.

$$(b) \Rightarrow c)$$
 Sei $(x_n)_n \subset D(A)$ mit $x_n \xrightarrow{n \to \infty} x$ und $Ax_n \xrightarrow{n \to \infty} y$ in X .

$$\Rightarrow (x_n, Ax_n) \xrightarrow{n \to \infty} (x, y) \text{ in } X \times X$$

$$\xrightarrow{\text{Aabg.}} (x, y) \in \text{graph}(A) \Rightarrow x \in D(A), Ax = y.$$

 $c) \Rightarrow a$) Sei $(x_n)_n$ eine Cauchy-Folge in D(A). Es folgt, dass $(x_n)_n$ und $(Ax_n)_n$ auch Cauchy-Folgen in X sind.

Da X vollständig ist folgt, dass $\exists x, y \in X$ mit $x_n \xrightarrow{n \to \infty} x$ und $Ax_n \xrightarrow{n \to \infty} y$

$$\stackrel{c)}{\Rightarrow} x \in D(A) \text{ und } Ax = y \Rightarrow ||x_n - x||_A = ||x - x_n|| + ||y - Ax_n|| \xrightarrow{n \to \infty} 0$$

Definition 12.4

A heißt abgeschlossen, wenn a) – c) aus 12.3 erfüllt sind

Bemerkung 12.5 (Abgeschlossen vs. stetig)

$$A \text{ stetig: } x_n \xrightarrow{n \to \infty} x \Rightarrow Ax \xrightarrow{n \to \infty} y, Ax = y$$

$$A \text{ abgeschlossen: } x_n \xrightarrow{n \to \infty} x, Ax_n \xrightarrow{n \to \infty} y \Rightarrow Ax = y$$

Satz 12.6 (Satz vom abgeschlossenen Graphen)

Ist A abgeschlossen und D(A) = X, so ist A stetig auf X.

Beweis

 $(X,\|\cdot\|_A)$ und $(X,\|\cdot\|)$ sind Banachräume. Außerdem gilt $\|x\|_X \leq \|x\|_A \ \forall x \in X$

$$\stackrel{10.6}{\Longrightarrow} \exists c > 0: ||x||_A \le c||x|| \forall x \in X$$

$$\Rightarrow ||x|| + ||Ax|| \le c||x|| \ x \in X \Rightarrow ||Ax|| \le c||x|| \ x \in X \Rightarrow A \text{ stetig.}$$

Beispiel 12.7

a)
$$X = C[0,1], D(A) = C^1[0,1], Ax = x'$$

Behauptung: A ist abgeschlossen.

Beweis

$$||x||_A = ||x||_\infty + ||x'||_\infty = ||x||_{C^1}$$

$$(D(A), \|\cdot\|_A) = (C^1[0,1], \|\cdot\|_{C^1})$$

 $\Rightarrow D(A)$ ist vollständig.

b)
$$X = L^p[0,1], Ax(t) = \frac{1}{t}x(t), t \in [0,1]$$

$$D_1(A) = \{ f \in L^p[0,1] : \exists \epsilon > 0, f = 0 \text{ fast "überall auf } [0,\epsilon] \}$$

$$D_2(A) = \{ f \in L^p[0,1] : t \to \frac{1}{t}f(t) \in L^p([0,1]) \}$$

Behauptung: A ist auf D_2 abgeschlossen.

Beweis (Beweisverfahren Klausurrelevant!)
$$(x_n)_n \subset D_2 : x_n \xrightarrow{n \to \infty} x \text{ in } L^p[0,1] \text{ und } Ax_n \xrightarrow{n \to \infty} y \text{ in } L^p[0,1] \\ \Rightarrow \exists (x_{n_k})_k \subset D_2 : x_{n_k} \xrightarrow{k \to \infty} x \text{ fast "überall und } Ax_{n_k} \xrightarrow{k \to \infty} y \text{ fast "überall.}$$

$$\frac{1}{t}x(t) \leftarrow \frac{1}{t}x_{n_k}(t) = Ax_{n_k} \xrightarrow{k \to \infty} y(t) \text{ fast "überall für } t \in [0, 1]$$

$$\Rightarrow y(t) = \frac{1}{t}x(t)$$
 fast überall $\Rightarrow Ax = y, x \in D_2$

Behauptung:
$$A$$
 ist nicht abgeschlossen auf D_1
Beweis: $x_n(t) = \begin{cases} t & \text{auf } (\frac{1}{n}, 1) \\ 0 & \text{auf } [0, \frac{1}{n}] \end{cases}$, $y(t) = 1, \forall t \in [0, 1] \Rightarrow x(t) = t, t \in [0, 1]$

Dann gilt:

$$||x_n - x||_{L^p} = \left(\int_0^{\frac{1}{n}} t^p dt\right)^{\frac{1}{p}} \xrightarrow{n \to \infty} 0$$
$$||Ax_n - y||_{L^p} = \left(\int_0^{\frac{1}{n}} 1 dt\right)^{\frac{1}{p}} \xrightarrow{n \to \infty} 0$$

Aber $x \notin D_1 \Rightarrow A$ ist nicht abgeschlossen.

13 Spektrum und Resolvente

Sei $Y \supset D(A) \to X$ linear, $\lambda \in \mathbb{C}$.

$$(\lambda I - A)x = y \quad (*)$$

Problem: Gegeben $y \in X$ finde $x \in D(A)$ so, dass (*) erfüllt ist. Formel: $x = (\lambda I - A)^{-1}$ ist Lösung, falls $(\lambda I - A)^{-1}$ existiert.

Definition 13.1

Sei X ein Banachraum über \mathbb{C} , $X \supset D(A) \to X$ linear und abgeschlossen.

a) $\lambda \in \mathbb{C}$ gehört zur **Resolventenmenge** von $A, \lambda \in \rho(A)$, falls

$$\lambda I - A : D(A) \to X$$
 bijektiv, d.h. $(\lambda I - A)^{-1} : X \to D(A)$ linear

- b) $\sigma(A) = \mathbb{C} \setminus \rho(A)$ heißt **Spektrum** von A
- c) $\lambda \in \rho(A) \to R(\lambda, A) = (\lambda A)^{-1}$ heißt **Resolventenfunktion** von A

Erinnerung:

A abgeschlossen \iff ... todo

Bemerkung 13.2

A ist abgeschlossen, falls $\lambda \in \rho(A)$, so ist $R(\lambda, A) \in B(X)$ und $R(\lambda, A) : X \to A) : X \to (D(A), \|\cdot\|_A)$ ein Isomorphismus.

Beweis

 $(\lambda - A) : (D(A), \|\cdot\|_A) \to A$ ist bijektiv und stetig, denn $\|(\lambda - A)x\| \le \max(1, |\lambda|)(\|x\| + \|Ax\|) = c\|x\|_A$

Nach dem Satz der offenen Abbildung ist

$$R(\lambda, A): X \to (D(A), \|\cdot\|_A)$$

ein Isomorphismus: $X \xrightarrow{R(\lambda,A)} (D(A), \|\cdot\|_A) \subset X$. Also $R(\lambda,A) \in B(X)$.

Beispiel 13.3

a) $X = \mathbb{C}^d, A \in B(X) \cong M(d, d)$

$$\sigma(A) = \{\lambda \text{ Eigenwerte von A}\}\$$

b) Sei $\alpha_n \in \mathbb{C}$, $X = \ell^p$, $1 \le p < \infty$, $A(x_n) = (\alpha_n x_n)$, $(x_n) \in D(A) = \{(x_n) : \sum_{n \ge 1} |\alpha_n x_n|^p < \infty\}$.

Falls (α_n) beschränkt ist, dann ist $D(A) = \ell^p, A \in B(\ell^p)$.

Für allgemeine $(\alpha_n) \subset \mathbb{C}$ ist A nur abgeschlossen (Übung).

Dann ist $\sigma(A) = \overline{\{\alpha_n, n \in \mathbb{N}\}}^c$, da $A(e_n) - \alpha_n(e_n) = 0$ (e_n n-ter Einheitsvektor)

Beweis:
$$(\lambda I - A)(x_n) = ((\lambda - \alpha)x_n)$$

Formal: $(\lambda I - A)^{-1}(x_n) = ((\lambda - \alpha_n)^{-1}x_n)$

$$\|(\lambda - A)^{-1}\| = \sup_{n} |\lambda - \alpha_n|^n = \frac{1}{d(\lambda, \overline{(\alpha_n)})} < \infty \iff d(\lambda, \overline{(\alpha_n)}) > 0$$
$$\iff \lambda \notin \overline{(\alpha_n)}$$

$$\Rightarrow \lambda \in \rho(A) \iff \lambda \in \overline{\{\alpha_n\}}, \ \lambda \in \sigma(A) \iff \lambda \in \overline{(\alpha_n)}$$

Folgerung: Jede abgeschlossene Menge $S \subseteq \mathbb{C}$ kann das Spektrum eines abgeschlossenen Operators sein. Insbesondere: $\sigma(A)$ kann überabzählbar sein. Das Spektrum $\sigma(A)$ besteht im Allgemeinen nicht nur aus Eigenwerten.

Beweis

Gegeben
$$M \subset \mathbb{C}$$
 abgeschlossen, wähle dichte Folge $\alpha_n \in M$, d.h. $\{\alpha_n\} = M$
Wähle $X = \ell^p$, $A(x_n) = (\alpha_n x_n)$, $\sigma(A) = \overline{\{\alpha_n\}} = M$.

Falls $\lambda \in \overline{\{\lambda_n\}} \setminus \{\lambda_n\}$ dann ist λ kein Eigenwert von A.

c) Sei $X = \ell^p$, e_n Einheitsvektoren.

$$A(e_1) = 0, A(e_n) = e_{n-1}, n > 1 \Rightarrow A(x_1, x_2, x_3, \dots) = (x_2, x_2, x_3, \dots)$$

$$B(e_n) = e_{n+1}, n \ge 1 \Rightarrow B(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$$
Übung: $\sigma(A) = \sigma(B) = \{\lambda : |\lambda| \le 1\}$

Satz 13.4 (Resolventendarstellung)

Sei $X \supset D(A) \xrightarrow{A} X$ abgeschlossen, X ein Banachraum.

Für $\lambda: 0 \in \rho(A)$ und $\lambda \in \mathbb{C}$ mit $|\lambda - \lambda_0| < \frac{1}{\|R(\lambda_0, A)\|}$ ist auch

$$\lambda \in \rho(A)$$
 und $R(\lambda, A) = \sum_{n \ge 0} (\lambda_0 - \lambda)^n R(\lambda_0, A)^{n+1}$.

Insbesondere ist $\rho(A)$ offen und $\sigma(A)$ abgeschlossen.

Beweis

$$(\lambda - A) = (\lambda_0 + \lambda) + (\lambda_0 - A) = (\lambda_0 - A) [I - (\lambda_0 - \lambda)R(\lambda_0, A)]$$
$$= (\lambda_0 - A)(I - S) \quad \text{mit } S = (\lambda_0 - \lambda)R(\lambda_0, A)$$

 $\Rightarrow \|S\| \leq |\lambda_0 - \lambda| \|R(\lambda_0, A)\| \stackrel{Vor.}{<} 1$. Nach dem Satz über die Neumannsche Reihe: $(I - S)^{-1} = \sum_{n \geq 0} S^n$

Dann ist $(\lambda - A)$ ein Produkt von invertierbaren Operatoren $(\lambda_0 - A)$ und (I - S), d.h.

$$(\lambda - A)^{-1} = (I - S)^{-1} (\lambda_0 - A)^{-1}$$

$$= \sum_{n \ge 0} \underbrace{(\lambda_0 - \lambda)^n R(\lambda_0, A)^n}_{=S^n} R(\lambda_0, A)$$

$$= \sum_{n \ge 0} (\lambda_0 - \lambda)^n R(\lambda_0, A)^{n+1}$$

Satz 13.5 (Resolventengleichung)

Sei A ein abgeschlossener Operator auf X. Für $\lambda, \mu \in \rho(A)$ gilt:

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\lambda, A)R(\mu, A)$$

Insbesondere ist $\lambda \in \rho(A) \to R(\lambda, A) \in B(X)$ eine komplex differenzierbare Abbildung und

$$\frac{d}{d\lambda}R(\lambda, A) = -R(\lambda, A)^2$$

Beweis

$$R(\lambda, A) - R(\mu, A) = R(\lambda, A) [I - (\lambda - A)R(\mu, A)]$$
$$= R(\lambda, A) [\mu - A - \lambda + A] R(\mu, A)$$

 \Rightarrow Behauptung. (Idee: $\frac{1}{\lambda - a} - \frac{1}{\mu - a} = \frac{\mu - \lambda}{(\lambda - a)(\mu - a)}$)

$$\frac{d}{dx}R(\lambda,A) = \lim_{\mu \to \lambda} \frac{R(\mu,A) - R(\lambda,A)}{\mu - \lambda}$$

$$\stackrel{s.o.}{=} \lim_{\mu \to \lambda} \left[-R(\lambda,A)R(\mu,A) \right]$$

$$= -R(\lambda,A)^2, \text{ denn } \lambda \in \rho(A) \to R(\lambda,A) \in B(X) \text{ ist stetig als Potenzreihe.}$$

Satz 13.6

Falls $A \in B(X)$, dann ist $\sigma(A)$ nichtleer und kompakt mit $\sigma(A) \subset \{\lambda : |\lambda| \leq ||A||\}$

Für
$$\lambda > ||A||$$
 gilt: $R(\lambda, A) = \sum_{n \ge 0} \lambda^{-n-1} A^n$

Reweis

Für $|\lambda| > ||A||$ gilt: $\lambda - A = \lambda[I - S]$ mit $S = \frac{A}{\lambda}, ||S|| \le \frac{||A||}{|\lambda|} < 1$ nach Voraussetzung. Nach Neumann:

$$(I - S)^{-1} = \sum_{n=0}^{\infty} S^n (\lambda - A)^{-1}$$
$$= \lambda^{-1} [I - S]^{-1}$$
$$= \lambda^{-1} \sum_{n=0}^{\infty} \left(\frac{A}{\lambda}\right)^n$$
$$= \sum_{n=0}^{\infty} \lambda^{-n-1} A^n$$

Also: $\sigma(A) \subset \{\lambda : |\lambda| \leq ||A||\}, \sigma(A)$ beschränkt, abgeschlossen $\Rightarrow \sigma(A)$ kompakt. Wir müssen noch zeigen, dass $\sigma(A) \neq \emptyset$.

Nach Bemerkung 8.7 gibt es in jedem Banachraum X $x \in X$, $x' \in X'$ mit $x'(x) \neq 0$ (*) Indirekter Beweis für $\sigma(A) \neq \emptyset$.

Annahme $\sigma(A) = \emptyset$ bzw. $\rho(A) = \mathbb{C}$

 $\Rightarrow \lambda \in \mathbb{C} \to r(\lambda) = x'[R(\lambda, A)x] \in \mathbb{C} \text{ mit } x, x' \text{ wie in } (*).$

 $r(\lambda)$ ist holomorph auf \mathbb{C} , denn lokal gilt:

$$r(\lambda) = \sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n \underbrace{x'[R(\lambda, A)x]}_{\text{CC}}, \quad |\lambda - \lambda_0| \stackrel{13.4}{<} \frac{1}{\|R(\lambda_0, A)\|}$$

Wir definieren $\Gamma = \{\lambda : |\lambda| = 2||A||\}.$

Nach dem Cauchischen Integralsatz: $0 = \int_{\Gamma} r(x) d\lambda$

$$\lambda \in \Gamma, |\lambda| > ||A||, R(\lambda, A) = \sum_{n=0}^{\infty} \lambda^{-n-1} A^n$$

$$\Rightarrow r(\lambda) = x'(R(\lambda, A)x) = \sum_{n=0}^{\infty} \lambda^{-n-1} x'(A^n x)$$

Dann ist $0 = \int_{\Gamma} r(\lambda) d\lambda = \int_{\Gamma} \left[\sum_{n=0}^{\infty} \lambda^{-n-1} x'(A^n x) \right] dx$

$$0 = \sum_{n=0}^{\infty} \underbrace{\left[\int_{\Gamma} \lambda^{-n-1} d\lambda \right]}_{=0, \text{ für } n > 0, =2\pi i, \text{ für } n=0} x'(A^n x)$$

 $\Rightarrow \sigma(A) \neq \emptyset$.

Bemerkung 13.7

Für $X = L^p(\Omega)$ ist (*) erfüllt. $x \in L^p(\Omega), x \neq 0, x'(w) = |x(w)|^{p-1} \operatorname{sign}(w), w \in \Omega$ Dann ist

$$x'(x) = \int |x(w)|^p dw \neq 0, x' \in L^{p'}, \int |x'|^{p'} dw = \int |x(w)|^{(p-1)p'} dw$$

Allgemein folgt (*) aus dem Satz von Hahn-Banach.

Definition 13.8

Für $A \in B(X)$ heißt $r(A) = \sup\{|\lambda| : \lambda \in \sigma(A)\}Q$ der **Spektralradius** von A.

Satz 13.9

Für
$$A \in B(X)$$
 ist $r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} = \inf n \in \mathbb{N} ||A^n||^{\frac{1}{n}}$

Hilfssatz: Ist $a_n \in \mathbb{R}$ mit $0 \le a_{n+m} \le a_n \cdot a_m, n, m \in \mathbb{N}$, dann gilt $\lim_{n \to \infty} a_n^{\frac{1}{n}} = \inf_{n \in \mathbb{N}} a_n^{\frac{1}{n}}$

Beweis

Beweis des Hilfsatzes:

todo

Beweis von 13.9:

todo

Wie in der Funktionentheorie zeigt man, dass wegen (??) $R(\lambda, A)$ im größten Kreis, der zum Holomorphie-Gebiet von $\frac{1}{\lambda} \in \rho(A) \to R(\frac{1}{\lambda}, A)$ gehört, dort als die Potenzreihe in (??) dargestellt werden kann.

Also
$$\lim_n \|A^n\|^{\frac{1}{n}} = r(A)$$

Im Allgemeinen gilt r(A) < ||A||.

Beispiel 13.10

Sei X=C[0,1] und $Q=\{(s,t)\in[0,1]^2:s\leq t\}$, betrachte $k:Q\to\mathbb{R}$ stetig. Wir definieren einen Volterraoperator $V:C[0,1]\to C[0,1]$ durch

$$(Vx)(t) = \int_0^t k(t,s)x(s)ds, t \in [0,1], x \in C[0,1]$$

Behauptung: $V \in B(C[0,1]), ||V|| = \sup_{t \in [0,1]} \int_0^t k(t,s) ds > 0, \ r(v) = 0, \ \sigma(v) = \{0\}, \ \text{d.h.}$

$$(\lambda - v)x = y$$
 ist für alle $y \in C[0,1], \lambda \neq 0$, eine eindeutige Lösung $x = (\lambda - A)^{-1}y \in C[0,1]$

Beweis

todo

14 Das Spektrum kompakter Operatoren

Sei X ein Banachraum, $T \in B(X)$. Spezialfall: dim $X < \infty$

Grundlegende Aussagen zur Lösungstheorie linearer Gleichungen:

$$\lambda x = Tx = y \quad (*)$$

- i) Für ein festes $\lambda \in \mathbb{C}$ hat (*) für $y \in X$ eine (eindeutig bestimmte) Lösung genau dann, wenn $\lambda x Tx = 0$ nur die triviale Lösung hat (folgt aus der Dimensionsformel).
- ii) Bis auf endlich viele Eigenwerte $\lambda \in \sigma(T)$ hat (*) stets eine eindeutig bestimmte Lösung.

Idee: Kompakte Operatoren lassen sich durch endlich dimensionale Operatoren "approximieren".

Ziel:

- i) bleibt richtig! (Variante der Fredholm Alternative)
- Die Ausnahmemenge in ii) besteht zwar nicht mehr nur aus endlich vielen Eigenwerten, aber höchstens eine Nullfolge von Eigenwerten der {0}

Satz 14.1

Sei X ein Banchraum, $K \in K(X)$ (d.h. $K \in B(X)$ kompakt bzw. $K(U_X)$ ist relativ kompakt in X), dann hat I - K ein abgeschlossenen Bildraum und

$$\dim \operatorname{Kern}(I-K) = \operatorname{codim}(I-K)(X) \left[= \dim X \middle/ (I-K)(X) \right] < \infty$$

Insbesondere: I - K injektiv $\iff I - K$ surjektiv

Beweis

siehe Werner VI.2 S.263ff

Lemma 14.2

Zu jedem endlich dimensionalen $F \in B(X)$ (dim $F(X) < \infty$) gibt es eine Zerlegung

$$X = X_0 \oplus X_1$$
, dim $X_1 < \infty$ und $F(X_1) \subset X_1$, $F_{\mid X_0} = 0$

Satz 14.3

Sei $dim X = \infty$, $K \in B(X)$ kompakt, dann ist $0 \in \sigma(K)$ und $\sigma(K)$ ist endlich oder besteht aus einer Nullfolge.

Jedes $\lambda \in \sigma(K), \lambda \neq 0$ ist ein Eigenwert mit endlich dimensionalem Eigenraum.

Beweis

Wäre $0 \in \rho(K)$ dann wäre $I = \underbrace{K}_{kompakt} \underbrace{K^{-1}}_{beschr.}$ kompakt. \Rightarrow Einheitskugel kompakt $\Longrightarrow \dim X < \infty$. Widerspruch.

 $\Rightarrow 0 \in \sigma(K)$.

Sei $\lambda \in \sigma(K) \setminus \{0\}$, dann gilt nach 14.1 dim Kern $(I - \lambda^{-1}K) = \operatorname{codim} \operatorname{Bild}(I - \lambda^{-1}K)$ (*) Entweder ist $I - \lambda^{-1}K$ nicht injektiv oder nicht surjektiv (da $\lambda \in \sigma(K)$).

Nach (*) ist in jedem Fall $\operatorname{Kern}(I - \lambda^{-1}K) \neq \{0\}$, d.h. in jedem Fall ist λ ein Eigenwert it endlich dimensionalem Eigenraum Kern $(I - \lambda^{-1}K)$.

Zu zeigen bleibt noch, dass für alle $\epsilon > 0$ liegen in $\{\lambda : |\lambda| \geq \epsilon\}$ höchstens endlich viele Spektralwerte.

Indirekter Beweis: Zu $\epsilon > 0$ gibt es eine Filge von verschiedenen Eigenwerten (λ_n) , wobei $|\lambda_n| \geq \epsilon$, mit Eigenvektoren (u_n) .

Setze $U_n = \operatorname{span}(u_1, \dots, u_n), U_{n-1} \subsetneq U_n$, denn Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig.

Nach dem Lemma von Riesz 6.3 gibt es Vektoren $u_n \in U_n$ mit $||u_n|| = 1, ||u_n - x|| \ge \frac{1}{2}$, für alle $x \in U_{n-1}$.

$$x \in U_{n-1}$$
.
Sei $m < n : Ku_n - Ku_m = \lambda_n(v_n - x)$ mit $x = \lambda_n^{-1}(\lambda_n u_n - Ku_n + \underbrace{Ku_m}_{\in U_{m-1}, \text{ s.u.}})$

 $K(U_n) \subset U_n$, d.h. $KU_m \in U_m \subset U_{n-1}, m < n$ $u_n \in U_n$ kann man schreiben als $u_n = \alpha u_n + y, y \in U_{n-1}, \alpha \in \mathbb{K}$

$$\Rightarrow \lambda_n u_n - K u_n = \alpha u_n + \lambda_n y - K(\alpha u_n) - K(y)$$
$$= \alpha \lambda_n u_n - \alpha \lambda_n u_n + \lambda_n y - K(y) \in U_{n-1}$$

Also
$$x \in U_{n-1}$$
, $||Ku_n - Ku_m|| = |\lambda_n| \underbrace{||u_n - x||}_{\geq \frac{1}{2}} \geq \frac{\epsilon}{2} \quad \forall n, m$

d.h. Ku_n hat keine Chauchy-Teilfolge, was ein Widerspruch ist zu $K \in K(X)$.

Beispiel 14.4

a) $X = \ell^p, 1 \le p < \infty$. Gegeben $\lambda \in \mathbb{C} \setminus \{0\}, |\lambda_n| \to 0$:

$$A(x_n = (\lambda_n x_n) \text{ für } (x_n) \in \ell^p$$

Da $|y_n| \to 0$ gilt: $A \in K(\ell^p)$ $(U(U_{\ell^p}) \text{ kompakt})$.

 λ_n Eigenwerte mit Eigenraum zum Eigenwert $\lambda_n = \operatorname{span}\{e_m : \lambda = \lambda_m\}$ endlich dimen-

 $0 \in \sigma(A)$, aber kein Eigenwert, da A injektiv.

b) Sei $X = C[0,1], k : \{(s,t) \in [0,1]^2 : s \le t\} \to \mathbb{R}_+$ stetig.

Volterraoperator: $Vx(t) = \int_0^t k(t,s)x(s)ds$ komapkt. Nach 13.10 $\sigma(V) = \{0\}$. Falls z.B. $k(s,t) \equiv 1$ ist 0 kein Eigenwert, da

$$Vx(t) = \int_0^t x(s)ds = 0x(t)$$

 $\Rightarrow x(t) = 0, t \in [0, 1], \text{ d.h. } V \text{ ist injektiv.}$

Satz 14.5

Sei $X \supset D(A) \xrightarrow{A} X$ ein abgeschlossener, linearer Operator, $\rho(A) \neq \emptyset$, $(D(A), \|\cdot\|_A) \hookrightarrow X$ kompakt.

Dann besteht $\sigma(A)$ aus endlich vielen Eigenwerten oder einer Folge von Eigenwerten mit $|\lambda_n| \to \infty$ und die zugehörigen Eigenräume sind endlich dimensional.

Operatoren auf Hilberträumen

15 Hilberträume

Definition 15.1

Sei X ein Vektorraum über \mathbb{K} . Eine Abbildung

$$\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$$

heißt Skalarprodukt, falls für $x, y \in X, \lambda \in \mathbb{K}$ gilt:

(S1)
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$

 $\langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$

(S2)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$$

$$(S3) \quad \langle x, y \rangle = \overline{\langle y, x \rangle}$$

$$(S4)$$
 $\langle x, y \rangle \ge 0$, $\langle x, x \rangle = 0 \iff x = 0$

Proposition 15.2

Sei X ein Vektor mit Skalarprodukt $\langle \cdot, \cdot \rangle$

a) Für $x, y \in X$ gilt die Cauchy-Schwarz-Ungleichung

$$|\langle x, y \rangle| \le \langle x, x \rangle \cdot \langle y, y \rangle$$

b) $||x|| = \langle x, x \rangle$ definiert eine Norm auf X Insbesondere: $\langle x, y \rangle \leq ||x|| \cdot ||y||$

Bemerkung

$$\langle x + y, x + y \rangle = ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2 \quad (*)$$

Beweis

a) Für $\lambda \in \mathbb{K}$ gilt:

$$0 \le \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \langle x, y \rangle + |\lambda|^2 \langle y, y \rangle$$

Für $\lambda := -\frac{\langle x,y \rangle}{\langle y,y \rangle}$ folgt:

$$0 \le \langle x, y \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$

$$\iff 0 \le \langle x, x \rangle \cdot \langle y, y \rangle + |\langle x, y \rangle|^2 \Rightarrow \text{Behauptung } a)$$

b) $||x|| \ge 0$, $||x|| = 0 \iff x = 0$ folgt aus (S4)

$$||x+y||^2 = \langle x+y, x+y \rangle \stackrel{\text{(S1)}, (S2)}{=} \langle x, x \rangle + \langle x, y \rangle + \overline{\langle x, y \rangle} + \langle y, y \rangle$$
$$= ||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2$$

Damit ist auch (*) gezeigt.

$$||x + y||^2 \le ||x||^2 + ||x|| \cdot ||y|| + ||y||^2$$

$$\stackrel{a)}{=} (||x|| + ||y||)^2$$

 \Rightarrow Die Dreiecksungleichung gilt für $\|\cdot\|$.

Bemerkung 15.3

Man kann aus der in b) definierten Norm das Skalarprodukt zurückgewinnen durch:

Falls
$$\mathbb{K} = \mathbb{R} : \langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Falls $\mathbb{K} = \mathbb{C} : \langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$

Definition 15.4

Ein metrischer Raum $(X, \|\cdot\|)$ heißt **Prä-Hilbertraum**, falls es ein Skalarprodukt $\langle\cdot,\cdot\rangle$ auf $X\times X$ gibt mit

$$||x|| = \langle x, x \rangle^{\frac{1}{2}}$$

Falls $(X, \|\cdot\|)$ außerdem noch vollständig ist, dann heißt X ein **Hilbertraum**.

Beispiel 15.5

a)
$$\mathbb{C}$$
 mit $\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$ für $x = (x_i), y = (y_i) \in \mathbb{C}^n$

$$||x|| = \left(\sum |x_i|^2\right)^{\frac{1}{2}}$$

b)
$$X = \ell^2, x = (x_i)_{i \in \mathbb{N}} \in \ell^2, y = (y_i)_{i \in \mathbb{N}} \in \ell^2$$

$$\langle x, y \rangle = \sum_{\mathbf{R} \in \mathbb{N}} x_i \overline{y_i}, \quad \|x\| = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}}$$

 $X = \ell^p$ ist kein Hilbertraum für $n \neq 2$ (Übung).

c) $X = C(\Omega), \Omega \subset \mathbb{R}^n$ beschränkt und abgeschlossen

$$\langle x, y \rangle = \int_{\Omega} x(u) \overline{y(u)} du$$

Dann ist $(X, \langle \cdot, \cdot \rangle)$ ist ein Prä-Hilbertraum, aber nicht vollständig. $(L^2(\Omega), \langle \cdot, \cdot \rangle)$ ist ein Hilbertraum, da vollständig.

Bemerkung

 $L^p(\Omega)$ ist kein Hilbertraum für $n \neq 2$.

Satz 15.6

Ein normierter Raum $(X, \|\cdot\|)$ ist genau dann ein Prä-Hilbertraum, falls die sogenannte **Prallelogramm-Gleichung** gilt, d.h.

$$\forall x, y \in X: \quad \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2 \quad (P)$$

Beweis

Nehmen wir an $(X, \|\cdot\|)$ sei ein Prä-Hilbertraum \Rightarrow (P) gilt (einfaches nachrechnen mit (*)). Angenommen es gilt (P) und sei o.B.d.A $\mathbb{K} = \mathbb{R}$ (der Fall \mathbb{C} absolut analog)

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Überprüfe die Eigenschaften des Skalarproduktes:

i) Zu zeigen: $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$

$$\langle x_1 + x_2, y \rangle = \frac{1}{4} \left(\|x_1 + x_2 + y\|^2 - \|x_1 + x_2 - y\|^2 \right)$$
 (1)
$$\langle x_1, y \rangle + \langle x_2, y \rangle = \frac{1}{4} \left(\|x_1 + y\|^2 + \|x_2 + y\|^2 - \|x_1 - y\|^2 - \|x_2 - y\|^2 \right)$$
 (2)

Wir müssen also zeigen, dass (1) = (2). Nach (P) folgt:

$$||x_1 + x_2 + y||^2 = 2||x_1 + y||^2 + 2||x_2||^2 - ||x_1 - x_2 + y||^2$$
$$||x_1 + x_2 + y||^2 = 2||x_2 + y||^2 + 2||x_1||^2 - ||-x_1 + x_2 + y||^2$$

Addieren dieser beiden Gleichungen liefert

$$||x_1 + x_2 + y||^2 = ||x_1 + y||^2 + ||x_2||^2 + ||x_2 + y||^2 + ||x_1||^2 - \frac{1}{2} (||x_1 - x_2 + y||^2 + ||-x_1 + x_2 + y||^2)$$

Ersetze y durch (-y):

$$||x_1 + x_2 - y||^2 = ||x_1 - y||^2 + ||x_2||^2 + ||x_2 - y||^2 + ||x_1||^2 - \frac{1}{2} (||x_1 - x_2 - y||^2 + ||-x_1 + x_2 - y||^2)$$

Subtrahieren der letzten beiden Zeilen liefert damit:

$$||x_1 + x_2 + y||^2 - ||x_1 + x_2 - y||^2 = ||x_1 + y||^2 + ||x_2 + y||^2 - ||x_1 - y||^2 - ||x_2 - y||^2$$

Dividieren durch 4 liefert gerade die Behauptung.

- ii) klar, da $\mathbb{K} = \mathbb{R}$, mit $\langle x, x \rangle = ||x||$.
- iii) Aussage $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$ gilt falls $\lambda \in \mathbb{N}$ (nach (S1)) Nach Definition okay für $\lambda = 0, \lambda = -1$ und damit auch für $\lambda \in \mathbb{Z}$ Für $\lambda \in \mathbb{Q}$, setze $\lambda = \frac{m}{n}$ mit $m, n \in \mathbb{Z}, n \neq 0$

$$n\langle \lambda x, y \rangle = \langle n\lambda x, y \rangle = \langle mx, y \rangle = m\langle x, y \rangle$$

$$\langle \lambda x, y \rangle = \frac{m}{n} \langle x, y \rangle = \lambda \langle x, y \rangle, \quad \lambda \in \mathbb{Q}$$

 $\lambda: \mathbb{R} \to \langle \lambda x, y \rangle, \lambda: \mathbb{R} \to \lambda \langle x, y \rangle$ sind stetige Funktionen auf \mathbb{R} , die auf dichten Teilmenge von \mathbb{Q} übereinstimmen.

Satz 15.7 (Beste Approximation)

Sei X ein Hilbertraum und K eine konvexe und abgeschlossene Teilmenge von X.

a) Zu jedem $x \in X$ gibt es genau ein $y_0 \in K$ so, dass

$$||x - y_0|| = \inf\{||x - y|| : y \in K\}$$

b) Dieses $y_0 \in K$ ist charakterisiert durch die Ungleichung

$$\operatorname{Re}\langle x - y_0, y - y_0 \rangle \le 0$$

Beweis

a) Da Aussage invariant ist gegenüber von Translationen ist, sei o.B.d.A. x=0 und $0 \notin K$.

Existenz: Setze $d := \inf\{||y|| : y \in K\}$

Wähle eine Folge $y_n \in K$ mit $\lim_n ||y_n|| = d$; wir wollen zeigen, dass dann (y_n) eine Cauchy-Folge in X ist.

Da K konvex ist, gilt $\frac{y_n+y_m}{2} \in K : \|\frac{y_n+y_m}{2}\| \ge d$. Mit (P) folgt:

$$d^{2} \leq \left\| \frac{y_{n} + y_{m}}{2} \right\|^{2} + \left\| \frac{y_{n} - y_{m}}{2} \right\|^{2} \stackrel{\text{(P)}}{=} \frac{1}{2} \|y_{n}\|^{2} + \frac{1}{2} \|y_{m}\|^{2} \xrightarrow[n,m\to\infty]{} d^{2}$$

Also $||y_n - y_m|| \xrightarrow[n,m\to\infty]{} 0$, d.h. (y_n) ist eine Cauchy-Folge, $\lim_{n\to\infty} y_n = y_0$ existiert in X und $y_0 \in K$, da K abgeschlossen ist.

Demnach $y_0 \in K$, $||y_0|| = \lim_n ||y_n|| = d = \inf\{||y|| : y \in K\}.$

Eindeutigkeit: Seien $y_1, y_2 \in K$, $||y_1|| = ||y_2|| = d$, $y_1 \neq y_2$ Mit (P) gilt:

$$\left| \frac{y_0 + y_1}{2} \right|^2 < \left| \frac{y_0 + y_1}{2} \right|^2 + \left| \frac{y_0 - y_1}{2} \right|^2 \stackrel{\text{(P)}}{=} \frac{1}{2} ||y_0||^2 + \frac{1}{2} ||y_1||^2 = d^2$$

Also $\frac{y_0+y_1}{2} \in K$ und $\|\frac{y_0+y_1}{2}\| < d$, was ein Widerspruch zur Definition von D ist

Vereinbarung:

Das Element $y_0 \in K$ im Satz heißt das **Element bester Approximation** von x zu K.

Abkürzungsverzeichnis

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heißt

Def. Definition

etc. et cetera

ex. existieren

Hom. Homomorphismus

i. A. im Allgemeinen

o. B. d. A. ohne Beschränkung der Allgemeinheit

Prop. Proposition

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

zhgd. zusammenhängend

z. z. zu zeigen

Stichwortverzeichnis

äquivalent, 8 1. Kategorie, 59 2. Kategorie, 59 abgeschlossen, 23 Abschluss, 25	kompakt, 40 kompakter Operator, 45 Kompositionsoperator, 16 konvergiert, 8 l [∞] -Raum, 10
Approximationseigenschaft, 48 approximative Eins, 53 Arzelà-Ascoli, 43	l ^p -Raum, 10 Lebesgue-Integrierbare Funktionen, 12 Lipschitz, 37
Banach-Steinhaus, 61	Matrizenmultiplikation, 16
Banachraum, 31	Metrik, 22
Bedingter Erwartungsoperator, 50	Minkowskii-Ungleichung, 10
beschränkt, 13	Willikowskii Oligicichang, 10
Bolzano-Weierstrass, 4	nirgends dicht, 59 Norm, 8
c ₀ -Raum, 10	
Cauchy-Folge, 31	offen, 23, 63
Cauchy-Schwarz-Ungleichung, 78	
outerly believed to inflorentiality, 10	Prä-Hilbertraum, 79
dicht, 26	Prallelogramm-Gleichung, 79
Differential operatoren, 16	Projektion, 65
Dirichletproblem, 6	Oustientennäums 11
diskrete Metrik, 22	Quotientenräume, 11
Dualraum, 19	Rand, 25
	Raum der beschränkten, m-fach stetig dif-
Einheitskugel, 8	ferenzierbaren Funktionen, 11
Element bester Approximation, 81	Raum der differenzierbaren Funktionen, 11
D. I. Ko	Raum der stetigen Funktionen, 11
Faltung, 52	relativ abgeschlossen, 26
Folgenraum, 10	relativ kompakt, 40
Fredholm'sche Integralgleichung, 5	relativ offen, 26
Graphennorm, 67	Resolventenfunktion, 70
Graphemorn, V	Resolventengleichung, 72
Hölder-Ungleichung, 10	Resolventenmenge, 70
Hölderstetige Funktionen, 12	Riesz, 40
Hilbertraum, 79	,
,	Satz vom abgeschlossenen Graphen, 68
Innere, 25	Satz von der offenen Abbildung, 63
Integral operator, 15	seperabel, 26
Isometrie, 18	Skalarprodukt, 78
isomorphe Einbettung, 18	Spektralradius, 73
Isomorphismus, 19	Spektrum, 70

Stichwortverzeichnis

```
stetig, 29
stetige Einbettung, 18
stetige Fortsetzung, 53
Sturm-Liouville Problem, 6

Vektorraum der beschränkten, linearen Operatoren, 14
vollständig, 31
Volterraoperator, 76
```

