CMPT 825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

10/25/10

Context-free Grammars

- Set of rules by which valid sentences can be constructed.
- Example:

Sentence → Noun Verb Object

Noun → trees | parsers

Verb → are | grow

Object → on Noun | Adjective

Adjective → slowly | interesting

- What strings can Sentence derive?
- Syntax only no semantic checking

Derivations of a CFG

- parsers grow on trees
- parsers grow on Noun
- parsers grow **Object**
- parsers Verb Object
- Noun Verb Object
- Sentence

10/25/10

Derivations and parse trees

10/25/10 4

Ambiguity

- An input is ambiguous with respect to a CFG if it can be derived with two different parse trees
- A parser needs a mechanical definition of ambiguity as it parses the input string
- Is a parser choice really ambiguous, i.e. does it lead to ambiguous parse trees? or not?
- We can formally define ambiguity in terms of the derivations possible in a CFG

10/25/10 5

Ambiguity

- We can now define ambiguity for a context-free parser
- If a parser has a choice of two different leftmost derivations,
- or if a parser has a choice of two different rightmost derivations,
- for a particular input then that input is ambiguous

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost	
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c
⇒cB	A→c	← AcbB	B→ca
⇒ccbB	B→cbB	←AB	B→cbB
⇒ccbca	B→ca	← S	S→AB

10/25/10 7

Ambiguity

- Grammar is ambiguous if more than one parse tree is possible for some sentences
- Examples in English:
 - Two sisters reunited after 18 years in checkout counter
- It is undecidable to check using an algorithm whether a grammar is ambiguous

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print yes if the input string is generated by the grammar, print no otherwise
- This problem is called recognition

10/25/10

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF is one of many grammar transformations that *preserve* the language
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

$$A \rightarrow BC$$

$$A \rightarrow a$$

10/25/10

Epsilon Removal

• First step, remove epsilon rules

$$A \rightarrow BC$$

$$C \rightarrow \varepsilon \mid C D \mid a$$

$$D \rightarrow b \quad B \rightarrow b$$

• After ε-removal:

$$C \rightarrow D \mid C D D \mid a D \mid C D \mid a$$

$$D \rightarrow b \quad B \rightarrow b$$

Removal of Chain Rules

• Second step, remove chain rules

$$A \rightarrow B C \mid C D C$$

 $C \rightarrow D \mid a$
 $D \rightarrow d \quad B \rightarrow b$

• After removal of chain rules:

$$A \rightarrow Ba|BD|aDa|aDD|DDa|DDD$$

 $D \rightarrow d \quad B \rightarrow b$

10/25/10

Eliminate terminals from RHS

 Third step, remove terminals from the rhs of rules

$$A \rightarrow B a C d$$

• After removal of terminals from the rhs:

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

Binarize RHS with Nonterminals

 Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

• After converting to binary form:

$$A \rightarrow B N_3$$
 $N_1 \rightarrow a$
 $N_3 \rightarrow N_1 N_4$ $N_2 \rightarrow d$
 $N_4 \rightarrow C N_2$

10/25/10

CKY algorithm

 We will consider the working of the algorithm on an example CFG and input string

16

• Example CFG:

$$S \rightarrow A X \mid Y B$$

 $X \rightarrow A B \mid B A \qquad Y \rightarrow B A$
 $A \rightarrow a \quad B \rightarrow a$

• Example input string: aaa

CKY Algorithm

Parse trees

CKY Algorithm

```
Input string input of size n

Create a 2D table chart of size n²

for i=0 to n-1
    chart[i][i+1] = A if there is a rule A → a and input[i]=a

for j=2 to N

    for i=j-2 downto 0
        for k=i+1 to j-1
        chart[i][j] = A if there is a rule A → B C and chart
        [i][k] = B and chart[k][j] = C

return yes if chart[o][n] has the start symbol

else return no

10/25/10
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is O
 (|G|² n³)
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars

Parsing - Additional Results

- $O(n^2)$ time complexity for linear grammars
 - All rules are of the form $S \rightarrow aSb$ or $S \rightarrow a$
 - Reason for $O(n^2)$ bound is the linear grammar normal form: A → aB, A → Ba, A → B, A → a
- Left corner parsers
 - extension of top-down parsing to arbitrary CFGs
- Earley's parsing algorithm
 - O(n³) worst case time for arbitrary CFGs just like CKY
 - O(n²) worst case time for unambiguous CFGs
 - O(n) for specific unambiguous grammars

$$_{10/25/10}$$
 (e.g. S \rightarrow aSa | bSb | ε)

21

Non-CF Languages

$$L_1 = \{wcw \mid w \in (a|b)*\}$$
 $L_2 = \{a^nb^mc^nd^m \mid n \ge 1, m \ge 1\}$
 $L_3 = \{a^nb^nc^n \mid n \ge 0\}$

CF Languages

$$L_4 = \{wcw^R \mid w \in (a|b)*\}$$
 $S \to aSa \mid bSb \mid c$
 $L_5 = \{a^nb^mc^md^n \mid n \ge 1, m \ge 1\}$
 $S \to aSd \mid aAd$
 $A \to bAc \mid bc$

10/25/10 23

Context-free languages and Pushdown Automata

- Recall that for each regular language there was an equivalent finite-state automaton
- The FSA was used as a recognizer of the regular language
- For each context-free language there is also an automaton that recognizes it: called a **pushdown automaton (pda)**

24

Pushdown Automata

- PDA has
 - an alphabet (terminals) and
 - stack symbols (like non-terminals),
 - a finite-state automaton, and

• stack

e.g. PDA for language $L = \{ 0^n 1^n : n >= 0 \}$

→ implies a push/pop of stack symbol(s)

Shift-reduce parser as a pda

Context-free languages and Pushdown Automata

- Similar to FSAs there are non-deterministic pda and deterministic pda
- Unlike in the case of FSAs we cannot always convert a npda to a dpda
- The construction of a pda will provide us with the algorithm for parsing (take in strings and provide the parse tree)

10/25/10 27

CKY algorithm for PCFGs

- We will consider the working of the algorithm on an example PCFG and input string
- Example PCFG:

```
S \to A X (0.3) | Y B (0.7)

X \to A B (0.1) | B A (0.9)  Y \to B A (1.0)

A \to a (1.0) B \to a (1.0)
```

• Example input string: aaa

Parse trees

PCFG is consistent: 0.7 + 0.27 + 0.03 = 1.0

