CHIẾN LƯỢC QUI HOẠCH ĐỘNG

- Các đặc trưng cơ bản
- Các ví dụ minh họa

- Giải một bài toán bằng cách giải các bài toán con kích thước nhỏ hơn
- Nghiệm của bài toán có được bằng cách kết hợp nghiệm của các bài toán con

 Nghiệm (lời giải) bài toán ban đầu và các bài toán con được biểu diễn bởi một hệ thức truy hồi

- Sử dụng chiến lược qui hoạch động để giải một bài toán được chia làm hai bước:
 - Mô hình hóa lời giải bài toán bằng một hệ thức truy hồi
 - Giải hệ thức truy hồi bằng một giải thuật hiệu quả (từ dưới lên)

- Chiến lược qui hoạch động phát triển giải thuật giải bài toán bằng cách giải các bài toán con từ dưới lên (bottom up)
- Kết quả các bài toán con được lưu trữ trong một bảng và được sử dụng để giải bài toán đã cho

• Lưu ý:

- Nếu giải hệ thức truy hồi bằng đệ qui (top down) thì độ phức tạp có thể rất lớn
- Chiến lược qui hoạch động giải bài toán từ dưới lên (bottom up) với giải thuật hiệu quả
- Qui hoạch động thường được ứng dụng để giải các bài toán tối ưu

CÁC VÍ DỤ MINH HỌA

- Bài toán dãy các đồng xu
- Bài toán robot nhặt các đồng xu
- Bài toán cái túi
- Bài toán xâu con chung dài nhất (tham khảo)

Cho một dãy n đồng xu có giá trị tương ứng là c₁, c₂, . . . ,
 c_n, hãy nhặt một số các đồng xu sao cho tổng giá trị lớn
 nhất và không có 2 đồng xu nào kề nhau

- Gọi F(n) là lượng tiền (giá trị) lớn nhất có thể nhặt được,
 xét hai trường hợp
 - Nếu đồng xu cuối cùng được chọn thì giá trị lớn nhất là c_n+F(n-2)
 - Nếu đồng xu cuối cùng không được chọn thì giá trị lớn nhất là F(n-1)

Suy ra hệ thức truy hồi là

$$F(n)=max\{c_n+F(n-2), F(n-1)\}\ v\acute{o}i \ n>1,$$

 $F(0)=0, F(1)=c_1$

ALGORITHM CoinRow(C[1..n])

```
1 F[0]\leftarrow 0; F[1]\leftarrow C[1]
```

2 for $i \leftarrow 2$ to n do

3
$$F[i]\leftarrow max(C[i]+ F[i-2], F[i-1])$$

4 **return** F[n]

- Kích thước đầu vào là số n
- Thao tác cơ bản là tính max của 2 số
- Gọi thời gian thao tác cơ bản là c

$$T(n)=(n-1)c=\Theta(n)$$

Ví dụ: Cho các c_i khởi đầu như trong bảng

index

C

F

0	1	2	3	4	5	6
	5	1	2	10	6	2
0	5					

$$F[0] = 0, F[1] = c_1 = 5$$

index C $F[2] = max{1 + 0, 5} = 5 F$

 $F[3] = max\{2+5, 5\} = 7$

0	1	2	3	4	5	6
	5	1	2	10	6	2
0	5	5				

index

_ _

 0
 1
 2
 3
 4
 5

 5
 1
 2
 10
 6

 0
 5
 5
 7

$$F(n)=max\{c_n+F(n-2), F(n-1)\}, n=2, 3$$

6

2

index C $F[4] = max{10+5, 7}= 15 F$

0	1	2	3	4	5	6
	5	1	2	10	6	2
0	5	5	7	15		

index C $F[5] = max{6+7, 15}=15$ F

$$F(n)=max\{c_n+F(n-2), F(n-1)\}, n=4, 5$$

index C $F[6] = max{2+15, 15}=17 F$

0	1	2	3	4	5	6	
	5	1	2	10	6	2	
0	5	5	7	15	15	17	

$$F(n)=max\{c_n+F(n-2), F(n-1)\}, n=6$$

Kết quả F(n)=17

- Tìm các đồng xu được chọn bằng cách theo vết quay lui (back-trace) của quá trình tính toán từ F(n) về F(2)
- Xét c_i+ F(i − 2) và F(i − 1), khi i=n, n-1, ...,
 - Nếu c_i+ F(i − 2)>F(i − 1) thì xu thứ i với giá trị c_i là được chọn
 - Ngược lại tìm đồng xu được chọn trong khi tính F(i 1)

- Trong ví dụ trên do $F(6)=c_6+F(4)>F(5)$ nên xu thứ 6 với $c_6=2$ được chọn
- Đồng xu trước xu thứ 6 được chọn trong khi tính F(4), do $F(4)=c_4+F(2)>F(3)$ nên xu thứ 4 với $c_4=10$ được chọn
- Đồng xu trước xu thứ 4 được chọn trong khi tính F(2), do $F(2)=F(1)>c_2+F(0)$ nên xu thứ 1 với $c_1=5$ được chọn (trong F(1)

Tổng
$$c_1+c_4+c_6=5+10+2=17$$

Một số đồng xu được đặt trong một bảng kích thước n × m, mỗi ô chỉ nhiều nhất một đồng xu. Một robot di chuyển từ ô (1,1) đến ô(n,m), mỗi bước di chuyển chỉ sẽ đến ô bên phải hoặc ô phía dưới. Khi robot đến một ô có đồng xu nó luôn luôn nhặt đồng xu đó. Thiết kế giải thuật cho robot nhặt nhiều đồng xu nhất và xác định đường đi của nó khi nhặt các đồng xu đó

Hai đường đi nhặt 5 đồng xu

- Gọi F(i, j) là số đồng xu lớn nhất mà robot nhặt được trên đường di chuyển đến ô(i, j)
- Robot chỉ có thể đến ô(i, j) từ ô(i − 1, j) hoặc ô(i, j − 1)
- Số đồng xu lớn nhất mà robot nhặt khi di chuyển đến ô(i 1, j)
 hoặc ô(i, j 1) tương ứng là F(i 1, j) hoặc F(i, j 1)
- Vì vậy F(i, j) là bằng F(i 1, j) hoặc F(i, j 1) cộng thêm 1 nếu trong ô(i, j) có một đồng xu

Hệ thức truy hồi cho F(i, j) là

```
\begin{split} F(i,j) &= \max\{F(i-1,j\ ),\, F(i,j-1)\} + c_{ij} \ \ //\, c_{ij} = 0,\, 1 \\ &\quad \text{v\'oi } 1 \leq i \leq n,\, 1 \leq j \leq m \\ &\quad \text{v\`a } F(0,j) = 0,\, 1 \leq j \leq m \text{ v\'a } F(i,\, 0) = 0,\, 1 \leq i \leq n, \\ &\quad \text{trong } \text{\'d\'o } c_{ii} = 1 \text{ n\'e\'u } \hat{o}(i,\, j) \text{ c\'o } \text{m\'ot } \text{\'d\'ong } \text{xu } \text{v\'a } c_{ij} = 0 \text{ n\'e\'u } \text{ngược } \text{lại} \end{split}
```

- Các ô(0, j) thuộc dòng thứ 0, không chứa đồng xu nào nên
 F(0,j)=0
- Các ô(i, 0) thuộc cột thứ 0, không chứa đồng xu nào nên
 F(i,0)=0

```
ALGORITHM RobotCoinCollection(C[1..n, 1..m])

1 F[1, 1]←C[1, 1]

2 for j ←2 to m do

3 F[1, j]←F[1, j − 1]+ C[1, j]

4 for i ←2 to n do

5 F[i, 1]←F[i − 1, 1]+ C[i, 1]

6 for j ←2 to m do

7 F[i, j]←max(F[i − 1, j], F[i, j − 1]) + C[i, j]

8 return F[n, m]
```

- Đường đi của robot có thể xác định bằng quay lui
 - Nếu F(i − 1, j) > F(i, j − 1), đường đi đến ô(i, j) phải đi qua ô(i − 1, j)
 - Nếu F(i − 1, j) < F(i, j − 1), đường đi đến ô(i, j) phải đi qua
 ô(i, j-1)
 - Nếu F(i − 1, j) = F(i, j − 1), đường đi đến ô(i, j) có thể từ ô(i−1, j) hoặc ô(i, j-1)

_	1	2	3	4	5	6
1	0	0	0	0	1	1
2	0	1	1	2	2	2
3	0	1	1	3	3	4
4	0	1	2	3	3	5
5	1	1	2	3	4	5

Kết quả các F(i, j)

Từ $\hat{o}(5, 6)$ ngược về $\hat{o}(4, 6)$, $\hat{o}(3, 6)$, ..., $\hat{o}(2, 3)$, $\hat{o}(2, 2)$, $\hat{o}(1, 2)$, $\hat{o}(1, 1)$

- Độ phức tạp của giải thuật
 - Kich thước đầu vào là n và m
 - Thao tác cơ bản là tìm max ở dòng 7
 - Gọi thời gian thao tác cơ bản là c
 - $T(n) = (n-1)(m-1)c = \Theta(nm)$
 - Thời gian tìm đường đi khi đã có bảng kết quả là Θ(n+m)

• Cho n đồ vật có trọng lượng là w₁, . . . , w_n và giá trị tương ứng là v₁, . . . , v_n và một cái túi có thể chứa được một trọng lượng là W, tìm một tập con các đồ vật có tổng giá trị lớn nhất mà có thể đặt được vào trong túi (giả thiết các trọng lượng của các vật là số nguyên, giá trị của chúng là số thực)

 Gọi F(i, j) là giá trị lớn nhất của các tập con của i vật đầu tiên có trọng lượng w₁, w₂, ..., w_i, giá trị v₁, v₂, ..., v_i có thể đặt được trong túi trọng lượng tối đa là j

- Chia tất cả các tập con của i vật thành hai loại, chứa vật thứ i và không chứa vật thứ i, khi đó
 - F(i,j)= F(i−1,j), nếu tập con được chọn không chứa vật thứ i
 - F(i, j)= v_i + F(i− 1, j−w_i), nếu tập con được chọn chứa vật thứ i, trong đó F(i − 1, j − w_i) là giá trị lớn nhất của tập con của i-1 vật không chứa vật thứ i, nếu trọng lượng w_i của vật thứ i lớn hơn j thì F(i, j)=F(i-1, j)

Hệ thức truy hồi cho F(i, j)

$$F(i, j) = \begin{cases} \max\{F(i-1, j), v_i + F(i-1, j-w_i)\}, & \text{n\'eu } j-w_i \geq 0 \\ F(i, j) = \begin{cases} F(i-1, j), & \text{n\'eu } j-w_i < 0 \end{cases} \end{cases}$$

trong đó

$$F(0, j) = 0$$
 với mọi $j \ge 0$ và $F(i, 0) = 0$ với mọi $i \ge 0$

Bài toán ban đầu được giải quyết khi cho i=n và j=W

Bảng tính toán các giá trị F[i, j]

	0	j-w _i	j	W
0	0	0	0	0
i-1	0	F(i −1, j −w _i)	F(i −1, j)
w _i , v _i i	0		F(i, j)	
n	0			goal

```
ALGORITHM knapsack(v[1..n], w[1..n], W)

1 for i \leftarrow 0 to n do F(i, 0) \leftarrow 0

2 for j \leftarrow 1 to W do F[0, j] \leftarrow 0

3 for i \leftarrow 1 to n do

4 for j \leftarrow 1 to W do

5 if j - w_i \ge 0

6 then F[i, j] \leftarrow max(F[i-1, j], v_i + F[i-1, j-w_i])

7 else F[i, j] \leftarrow F(i-1, j)

8 return F[n, W]
```

- Độ phức tạp của giải thuật
 - Kich thước đầu vào là n và W
 - Thao tác cơ bản là so sánh ở dòng 5
 - Gọi thời gian thao tác cơ bản là c
 - $T(n) = (n-1)(W-1)c = \Theta(nW)$

_	Vật	trọng số	giá trị	
	1	2	\$12	
	2	1	\$10	TL túi W = 5
	3	3	\$20	
	4	2	\$15	

Bảng tính toán giá trị F(i, j) theo trọng số j của túi

	i\j	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12
$w_2 = 1, v_2 = 10$	2	0	10	12	22	22	22
$w_3 = 3$, $v_3 = 20$	3	0	10	12	22	30	32
$w_4 = 2, v_4 = 15$	4	0	10	15	25	30	37

- Xác định tập các vật được chọn như sau:
 - Do F(4, 5)>F(3, 5) nên vật thứ 4 được chọn (nếu F(i, j)>F(i-1, j)
 thì chọn vật i, khi đó F(i, j) = v_i+F(i-1, j-w_i)
 - Do F(3, 5-2)=F(3, 3)=F(2,3) nên vật thứ 3 không được chọn (do $F(4, 5) = v_4 + F(4-1, 5-w_4) = V_4 + F(3, 5-2)$)
 - Vì $F(2, 3) = v_2 + F(1, 3-1) > F(1, 3)$ nên vật thứ 2 được chọn
 - Do F(1, 3-1)=F(1, 2)>F(0,2) nên vật thứ 1 được chọn
- Vậy các vật 1, 2, 4 được chọn với tổng trọng lượng w_1 + $w_2+w_4=2+1+2=5$ và tổng giá trị $v_1+v_2+v_4=12+10+15=37$

BÀI TOÁN XÂU CON CHUNG DÀI NHẤT

- Cho hai xâu $a=(a_1, a_2, ..., a_m)$ và $b=(b_1, b_2, ..., b_n)$, tìm xâu con chung $c=(c_1, c_2, ..., c_k)$ của a và b sao cho độ dài của c là lớn nhất
- Hướng dẫn: Tìm và đọc giải thuật qui hoạch động trong tài liệu "Introduction to Algorithms của Thomas H. Cormen, Charles E. Leiserson, Ronald D. Rivest"

BÀI TẬP VỀ NHÀ

- Đọc chương 8: Dynamic Programming sách Levitin
- Làm bài tập về nhà đã cho trong DS bài tập
- Kết hợp biến đổi và chia để trị để tính số Fibonacci f(n) = f(n-1) + f(n-2), $\forall n \ge 2$ và f(0) = 1, f(1) = 1
- Hiện thực các giải thuật đã học và vẽ đồ thị độ phức tạp