正态的极限

May 10, 2020

设X是一随机变量, X_n 是一列随机变量. (1)如果对于 F_X 的每个连续点 $x \in \mathbb{R}$, 都有 $\lim_{n \to \infty} F_{X_n}(x) = F(x)$, 则称 X_n 依分布收敛于X, 记为 $X_n \overset{d}{\to} X$.

设X是一随机变量, X_n 是一列随机变量.

- (1)如果对于 F_X 的每个连续点 $x \in \mathbb{R}$,都有 $\lim_{n \to \infty} F_{X_n}(x) = F(x)$,则称 X_n 依分布收敛于X,记为 $X_n \overset{d}{\to} X$.
- (2) 如果X 和 X_n , $n \ge 1$, 是定义在同一概率空间 (Ω, \mathcal{F}, P) 上的, 且对任何 $\varepsilon > 0$ 都有,

$$\lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0,$$

则称 X_n 依概率收敛于X, 记为 $X_n \stackrel{P}{\rightarrow} X$.

4□ > 4□ > 4 = > 4 = > = 90

 (3) 如果X 和 X_n , $n \ge 1$, 是定义在同一概率空间 (Ω, \mathcal{F}, P) 上的,且存在 $\Omega_0 \in \mathcal{F}$ 使得 $P(\Omega_0) = 1$ 且对任意 $\omega \in \Omega_0$ 有 $\lim_{n \to \infty} X_n(\omega) = X(\omega)$,则称 X_n 以概率1收敛或几乎必然收敛于X,记为 $X_n \to X$ a.s.

性质: (1) 如果 $X_n \rightarrow X$ a.s., 那么 $X_n \stackrel{P}{\rightarrow} X$.

() 正态的极限 May 10, 2020

性质: (1) 如果 $X_n \rightarrow X$ a.s., 那么 $X_n \stackrel{P}{\rightarrow} X$.

(2) **如果** $X_n \stackrel{P}{\rightarrow} X$, **那么** $X_n \stackrel{d}{\rightarrow} X$.

 $(L\acute{e}vy$ 连续性定理): 如果 $X_n \stackrel{d}{\to} X$, 则 $\phi_n(t)$ 关于t在任何有界区间内一致收敛于 $\phi(t)$, 这里 $\phi_n(t) = E(e^{itX_n})$ 为 X_n 的特征函数, $\phi(t) = E(e^{itX})$ 为X的特征函数.

正态的极限 May 10, 2020 5

f (逆极限定理): 设 $\phi_n(t) = E(e^{itX_n})$ 为 X_n 的特征函数. 如果对于每一个 $t \in \mathbb{R}$,都有 $\lim_{n \to \infty} \phi_n(t) = \phi(t)$,且 $\phi(t)$ 在t = 0处连续,则 $\phi(t)$ 一定是某个随机变量X的特征函数,且 $X_n \stackrel{d}{\to} X$.

设 $X_n \sim N(\mu_n, \sigma_n^2)$, 且 $X_n \stackrel{d}{\to} X$, 则X也是正态分布,即存在 μ 和 $\sigma \geq 0$ 使得 $X \sim N(\mu, \sigma^2)$.(这里 σ 可以为0, 此时 $P(X = \mu) = 1$.)

() 正态的极限 May 10, 2020 7 / 9

设 $X_n \sim N(\mu_n, \sigma_n^2)$, 且 $X_n \stackrel{d}{\to} X$, 则X也是正态分布,即存 时 $P(X = \mu) = 1.$)

数. 由于 $X_n \stackrel{d}{\to} X$. 由Lévv连续性定理得:

 $\lim_{n\to\infty}\phi_n(t)=\phi(t).$

设 $X_n \sim N(\mu_n, \sigma_n^2)$, 且 $X_n \stackrel{d}{\to} X$, 则X也是正态分布,即存在 μ 和 $\sigma \geq 0$ 使得 $X \sim N(\mu, \sigma^2)$.(这里 σ 可以为0, 此时 $P(X = \mu) = 1$.)

证明: 令 $\phi_n(t) = E(e^{itX_n})$ 为 X_n 的特征函数,则 $\phi_n(t) = e^{it\mu_n - t^2\sigma_n^2/2}$. 令 $\phi(t) = E(e^{itX})$ 为X的特征函数. 由于 $X_n \stackrel{d}{\to} X$,由Lévy连续性定理得: $\lim_{n \to \infty} \phi_n(t) = \phi(t)$.

只需证明存在 μ 和 $\sigma \ge 0$ 使得 $\phi(t) = e^{it\mu - t^2\sigma^2/2}$.

4□ > 4□ > 4≡ > 4≡ > 9<</p>

() 正态的极限 May 10, 2020 7 / 9

由 $\lim_{n\to\infty} \phi_n(t) = \phi(t)$. 推出 $\lim_{n\to\infty} |\phi_n(t)| = |\phi(t)|$, 即 $\lim_{n\to\infty} e^{-t^2\sigma_n^2/2} = |\phi(t)|$. 特别地.

$$\lim_{n\to\infty}e^{-\sigma_n^2/2}=|\phi(1)|\leq 1.$$

因此

$$\lim_{n \to \infty} e^{-t^2 \sigma_n^2 / 2} = (|\phi(1)|)^{t^2},$$

从而
$$|\phi(t)| = |\phi(1)|^{t^2}$$
.

4□ > 4□ > 4 = > 4 = > 9 < </p>

8 / 9

由 $\lim_{n\to\infty} \phi_n(t) = \phi(t)$. 推出 $\lim_{n\to\infty} |\phi_n(t)| = |\phi(t)|$, 即 $\lim_{n\to\infty} e^{-t^2\sigma_n^2/2} = |\phi(t)|$. 特别地.

$$\lim_{n\to\infty}e^{-\sigma_n^2/2}=|\phi(1)|\leq 1.$$

因此

$$\lim_{n \to \infty} e^{-t^2 \sigma_n^2 / 2} = (|\phi(1)|)^{t^2},$$

从而 $|\phi(t)|=|\phi(1)|^{t^2}$. 因为 $\lim_{t\to 0}\phi(t)=\phi(0)=1$,所以 $\phi(1)\neq 0$. 因此存在 $\sigma\geq 0$ 使得 $|\phi(1)|=e^{-\sigma^2/2}$ 从而 $|\phi(t)|=e^{-t^2\sigma^2/2}$.

 令 $f_n(t) = e^{i\mu_n t} = e^{t^2 \sigma_n^2 / t} \phi_n(t)$. 则 f_n 是常数值随机变量 μ_n 的特征函数. 令 $f(t) = e^{t^2 \sigma^2 / t} \phi(t)$, 则 $\lim_{n \to \infty} f_n(t) = f(t)$ 且f在t = 0连续,由逆极限定理,存在随机变量Y使得 $\mu_n \overset{d}{\to} Y$. 对于 F_Y 的连续点y有: $F_Y(y) = \lim_{n \to \infty} P(\mu_n \le y)$ 为0或1. 令 $\mu = \inf\{y: F_Y(y) = 1\}$,则可证 $P(Y = \mu) = 1$ 从而 $f(t) = e^{it\mu}$.