

Laplacian Subdivision Surface

Alexander Pinzón Fernandez Advisor: Eduardo Romero

Universidad Nacional de Colombia

October 11, 2012

Outline

Introduction

2 Normalized LBO over triangles and quads

3 GSOC 2012 Mesh Smoothing

Laplacian smooth

The functional used in many laplacian smoothing approach to constrain energy minimization is based on a total curvature of a surface S.

$$E(S) = \int_{S} \kappa_1^2 + \kappa_2^2 dS \tag{1}$$

Gradient of Voronoi Area

Consider a surface S compound by a set of triangles around vertex v_i . We can define the *Voronoi region* of v_i , the change in area produced by move v_i is named gradient of *Voronoi region*.

$$\nabla A = \frac{1}{2} \sum_{j} \left(\cot \alpha_j + \cot \beta_j \right) \left(v_i - v_j \right) \tag{2}$$

Figure: Area of Voronoi region around v_i in dark blue. v_j 1-ring neighbors around v_i . α_j and β_j opposite angles to edge $\overrightarrow{v_j - v_i}$.

Laplace Beltrami Operator

If we normalize this gradient in equation (2) by the total area in 1-ring around v_i , we have the *discrete mean curvature normal* of a surface S.

$$2\kappa \mathbf{n} = \frac{\nabla A}{A} \tag{3}$$

The LBO has desirable features, one feature of the LBO is in direction of surface area minimization, allowing us to minimize energy using it on a total curvature of a surface S equation (1).

$$\triangle_{g}S = 2\kappa \mathbf{n} \tag{4}$$

Normalized LBO over triangles and quads

$$L(i,j) = \begin{cases} -\frac{w_{ij}}{\sum w_{ij}} & \text{if } j \in N(v_i) \\ \delta_{ij} & \text{otherwise} \end{cases}$$

Where $N(v_i)$ is the 1-ring neighbors with shared face to v_i , and δ_{ij} being the Kronecker delta function.

The 5 basic triangle-quad cases

$$w_{ij} = \begin{cases} \frac{1}{2} \left(\cot \alpha_j + \cot \beta_j \right) & \text{case a.} \\ \frac{1}{4} \left(\cot \theta_{(j-1)1} + \cot \theta_{(j-1)4} + \cot \theta_{j3} + \cot \theta_{j6} \right) & \text{case b.} \\ \frac{1}{4} \left(\cot \theta_{j2} + \cot \theta_{j5} \right) & \text{case c.} \\ \frac{1}{4} \left(\cot \theta_{j3} + \cot \theta_{j6} \right) + \frac{1}{2} \cot \beta_j & \text{case d.} \\ \frac{1}{4} \left(\cot \theta_{(j-1)1} + \cot \theta_{(j-1)4} \right) + \frac{1}{2} \cot \alpha_j & \text{case e.} \end{cases}$$

Figure: The 5 basic triangle-quad cases with common vertex V_i and the relationship with V_j and V'_j . (a) Two triangles. (b) (c) Two quads and one quad. (d) (e) Triangles and quads.

Results Enhancing Features

Results Enhancing Features

Results Enhancing Features

Blender

- Blender is the free open source 3D content creation suite, available for all major operating systems under the GNU General Public License..
- Use OpenNL for solve sparse system

Results

Bibliography

Alexa, M. and Boubekeur, T. 2008.

Subdivision shading.

In ACM SIGGRAPH Asia 2008 papers. SIGGRAPH Asia '08. ACM, New York, NY, USA, 142:1–142:4.

Belkin, M., Sun, J., and Wang, Y. 2008.

Discrete laplace operator on meshed surfaces.

In *Proceedings of the twenty-fourth annual symposium on Computational geometry.* SCG '08. ACM, New York, NY, USA, 278–287.

Biermann, H., Levin, A., and Zorin, D. 2000.

Piecewise smooth subdivision surfaces with normal control.

In *Proceedings of the 27th annual conference on Computer graphics and interactive techniques.* SIGGRAPH '00. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 113–120.

Botsch, M., Pauly, M., Rossl, C., Bischoff, S., and Kobbelt, L. 2006.

Geometric modeling based on triangle meshes.

In ACM SIGGRAPH 2006 Courses. SIGGRAPH '06. ACM, New York, NY, USA.

