

Conditional Probability Table

A node without parents has an unconditional probability

P(Burglary)
.001

- The sum of probabilities must be 1
 - If there is a single input variable, it is possible to remove the redundancy

Alarm (A)	P(JohnCalls .)	P(-JohnCalls .)
True	0.90	0.10
False	0.05	0.95

Alarm (A)	P(JohnCalls .)
True	0.90
False	0.05

 A node with k parents has 2^k possible rows in the table

Burglary	Earthquake	P(Alarm .)
Т	Т	.95
Т	F	.94

• Semantics of Bayesian Networks

• Constructing a Bayesian Network

Bayesian Networks: Semantics

- There are two equivalent semantic interpretations of a Bayesian Network
 - 1. Joint Distribution View
 - The network encodes the joint probability distribution over all variables
 - Computed as the product of local conditional probabilities:

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \mid \mathsf{Parents}(X_i))$$

- Useful for constructing models and understanding overall behavior
- 2. Conditional Independence View
 - The structure encodes *conditional independency* between variables
 - Useful for inference and reasoning
 - A variable is conditionally independent of its non-descendants given its parents

Chain Rule for a Joint Distribution

- A joint distribution can always be expressed using the chain rule for any:
 - Subset of its RVs
 - Ordering of the RVs
- 1. You express one variable conditionally to the remaining ones

$$Pr(x_1,...,x_{n-1},x_n) = Pr(x_n|x_{n-1},...,x_1) Pr(x_{n-1},...,x_1)$$

Apply the same formula recursively, until you get an unconditional probability

$$Pr(x_{1}, x_{2}, ..., x_{n-2}, x_{n-1}, x_{n})$$

$$= Pr(x_{n}|x_{n-1}, ..., x_{1}) Pr(x_{n-1}, ..., x_{1})$$

$$= Pr(x_{n}|x_{n-1}, ..., x_{1}) Pr(x_{n-1}|x_{n-2}, ..., x_{1}) Pr(x_{n-2}, ..., x_{1})$$
...
$$= Pr(x_{n}|x_{n-1}, ..., x_{1}) Pr(x_{n-1}|x_{n-2}, ..., x_{1}) Pr(x_{n-2}|x_{n-3}, ..., x_{1}) ... Pr(x_{2}|x_{1}) Pr(x_{1})$$

$$= \prod_{i=1}^{n} Pr(x_{i}|x_{i-1}, ..., x_{1})$$

Statement Probability from Bayesian Network

• The **full joint distribution** represents the probability of an assignment to each variable $X_i = x_i$:

$$\Pr(x_1,...,x_n) \triangleq \Pr(X_1 = x_1 \wedge ... \wedge X_n = x_n)$$

- To evaluate a Bayesian network
 - Sort the nodes in topological order
 - There are several orderings consistent with the directed graph structure
 - Use the chain rule with the topological ordering:

$$Pr(X_1,...,X_n) = \prod_{i=1}^n Pr(X_i|X_{i-1},...,X_1)$$

 Since the probability of each node is conditionally independent of all its predecessors given its parents

$$Pr(X_i|X_{i-1},...,X_1) = Pr(X_i|Parents(X_i))$$

 Express the joint probability in terms of the Conditional Probability Tables (CPTs):

$$Pr(X_1,...,X_n) = \prod_{i=1}^{n} Pr(X_i|Parents(X_i))$$

Statement Probability From Bayes Nets: Example

- Given Pearl LA example, you want to compute the probability that:
 - The alarm has sounded: Alarm
 - Neither a burglary nor an earthquake has occurred: ¬Burglary ∧ ¬Earthquake
 - Both John and Mary call: *JohnCalls*, MaryCalls

Solution

 Compute the probability as a product of conditional probabilities from the Bayesian Network

- Semantics of Bayesian Networks
- Constructing a Bayesian Network

Constructing a Bayesian Network

- 1. Gather domain knowledge
 - Identify key variables and their potential interactions
 - List all relevant random variables necessary to describe the system
- 2. Order the nodes according to cause-effects dependencies
 - So that the Bayesian network is minimal
- 3. For each node, pick the minimum set of parents $Parents(X_i)$
 - Add edges to represent the dependencies
 - Avoid redundant connections
- 4. Estimate the conditional probability $Pr(X_i|Parents(X_i))$ for each node
 - Gather data or expert opinion
 - Use statistical techniques if necessary
- 5. Validate the model
 - · Have domain experts review it
 - Ensure that the network is a Directed Acyclic Graph (DAG)
 - Test the network by predicting known outcomes and comparing with actual data

Bayesian Networks: Properties

- Bayesian networks are a representation with several interesting properties
 - Complete
 - Encode all information in a joint probability
 - Consistent (non-redundant)
 - In a Bayesian network, there are no redundant probability values
 - One (e.g., a domain expert) can't create a Bayesian network violating probability axioms
 - Compact (locally structured, sparse)
 - Each subcomponent interacts directly with a limited number of other components
 - Typically yields linear (not exponential) growth in complexity
 - Sometimes we ignore real-world dependency to keep the graph simple
- In fully connected systems
 - Each variable is influenced by all others
 - The Bayesian network has the same complexity as the joint probability

Ordering of Nodes

 The complexity of the Bayesian network depends on the choice in ordering the nodes

• The graph is "minimal" in terms of connectivity when all edges are causal

Causal vs Diagnostic Models

- A causal model goes from causes to symptoms
 - E.g., Burglary → Alarm
 - Simpler (i.e., fewer and more robust dependencies)
 - "Easier" to estimate
- A diagnostic model goes from symptoms to causes
 - E.g., MaryCalls → Alarm or Alarm → Burglary
 - Tenuous / unstable
 - Difficult to estimate
 - This is what we care about: use Bayes' rule to invert the probability

Markov Blanket of a Node

- The Markov blanket of a node X consists of:
 - 1. The parents of X
 - The nodes that influence X
 - 2. The children of X
 - The nodes that are directly influenced by X
 - 3. The spouses of X
 - The nodes that are parents of the children nodes
 - I.e., "co-parent"

Conditional Independence on Markov Blanket

- In a Bayesian network, each variable is conditionally independent of :
 - Its predecessors given its parents (by construction)
 - All other nodes in the network given its Markov blanket, i.e., its parents, its children, and its spouses
- The Markov blanket of a node X_i :
 - Contains all the nodes necessary to predict the state of the node X_i, making the network irrelevant
 - Enables efficient and localized inference

How Can a Node Be Influenced by Its Children?

- A descendant can influence its ancestor indirectly through "explaining away" (diagnostic model)
 - Information flows both ways (casual and diagnostic)
 - Evidence about the descendant can change what we believe about the ancestor through dependent paths
- E.g.,
 - Consider the Bayesian network for the Garden World
 - You know the grass is wet
 - This evidence increases the probability of either causes Rain or Sprinkler
 - If you find out that the Sprinkler was on, this "explains away" the WetGrass, and the probability of Rain goes down
 - The evidence from a descendant WetGrass can update your belief about an ancestor (Rain)

Markov Blanket: Medical Example

 Consider risk factors and outcomes for heart disease

- Target node
- Parent nodes (direct influence of H, risk factors)
- Children nodes (directly influenced by H, outcomes)
- Note that A, G, D, E also influence BP and C so they are spouse nodes
 of H
- Knowing the state of A, G, D, E, BP, C (Markov Blanket) allows to compute H, without any other information

Markov Blanket: Economic Example

- Consider factors affecting house prices in a particular region
- Target node
 - House prices
- Parent nodes
 - Economic growth
 - Interest rate
 - Unemployment rate
- Children nodes
 - Disposable income
 - The house price affects how much money people have left after housing costs
 - Demand for houses
 - Higher prices can reduce demand

Markov Blanket: Finance Example

- Consider factors affecting an individual company's stock price
- Target node
 - SP: Stock Price
- Parent nodes
 - IP: Industry performance
 - EPS: Earnings per share
 - MS: Market sentiment
- Children nodes
 - TV: Trading volume
 - · Changes in stock price influence how much stock is being traded
- Grandparents nodes
 - RC: Regulatory changes in the technology sector
 - Influences IP and EPS, but not directly TV
 - GE: Global economic conditions
 - Influences MS and EPS, but not directly TV

