AMENDMENTS TO THE CLAIMS

What is claimed is:

1. (Currently Amended) salt thereof,

A compound of Formula (I), or a pharmaceutically acceptable

(I)

wherein:

R_b is a hydrogen or a lower alkyl group;

D is a hydrogen, V₃ or K;

U₃ at each occurrence is independently an oxygen, -S(O)_e-or-N(R_e)R_i;

o is an integer from 0 to 2;

$$\label{eq:Kis} \begin{split} K \ is \ -(W_3)_a - E_b - (C(R_e)(R_f))_{p1} - E_c - (C(R_e)(R_f))_x - (W_3)_d - (C(R_e)(R_f))_y - (W_3)_i - E_j - (W_3)_g - (C(R_e)(R_f))_z - U_3 - V_3; \end{split}$$

 V_3 is a hydrogen or -NO₂;

a, b, c, d, g, i and j are each independently an integer from 0 to 3;

p₁, x, y and z are each independently an integer from 0 to 10;

 W_3 at each occurrence is independently -C(O)-, -C(S)-, -T₃-, -(C(R_e)(R_f))_h-, an alkyl group, an aryl-group, a heterocyclic ring, an arylheterocyclic ring, or -(CH₂CH₂O)_{q1}-;

E at each occurrence is independently -T₃-, an alkyl group, an aryl group,

 $-(C(R_e)(R_f))_h$, a heterocyclic ring, an arytheterocyclic ring, or $-(CH_2CH_2O)_{01}$ -;

 T_3 at each occurrence is independently a covalent bond, a carbonyl, an oxygen, $-S(O)_{\theta}$ -or - $N(R_a)R_i$;

h is an integer form 1 to 10;

q₁ is an integer from 1 to 5;

 R_e and R_f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, an alkylaryl, an alkylcycloalkyl, an alkylheterocyclic ring, a cycloalkylalkyl, a cycloalkylthio, an arylalklythio, an arylalklythioalkyl, an alkylthioalkyl a cycloalkenyl, an heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, an alkylaryl, a carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarbonyl, an arylcarbonyl, an ester, a carboxylic ester, an alkylcarboxylic ester, an alkylsulfonyloxy, an arylsulfonyl, arylsulfonamido, an arylsulfonamido, an alkylsulfonyloxy, a sulfonic ester, an alkyl ester, an aryl ester, a urea, a phosphoryl, a nitro or K; or R_e and R_f taken together with the carbons to which they are attached form a carbonyl, a methanthial, a heterocyclic ring, a cycloalkyl group, an aryl group, an oxime, a hydrazone or a bridged cycloalkyl group;

R_a is a lone pair of electrons, a hydrogen or an alkyl group;

 R_i is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylaryl, an alkylsulfinyl, an alkylsulfonyl, an alkylsulfonyloxy, an arylsulfinyl, an arylsulfonyl, arylsulphonyloxy, a sulfonamido, a carboxamido, a carboxylic ester, an aminoalkyl, an aminoaryl, - CH_2 - $C(U_3$ - $V_3)(R_e)(R_f)$, a bond to an adjacent atom creating a double bond to that atom, - $(N_2O_2$ -) $^{\bullet}M_1^{+}$, wherein M_1^{+} is an organic or inorganic cation; and

with the proviso that the compounds of Formula (I) must contain least one of a nitrate or a thionitrate group.

- 2. (Original) A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.
- 3. (Original) The compound of claim 1, wherein the compound of Formula (I) is a nitrosated glutamic acid compound.

- 4. (Currently Amended) The compound of claim 1, wherein K is:
- $(1) Y (CR_4R_4')_p T (CR_4R_4')_p ONO_2;$

(2)

— wherein T is ortho, meta or para;

----(3)

- (4) (2) -Y-(CR₄C₄')_p-V-B-T-(CR₄R₄')_p-ONO₂;
- (5) (3) -Y-(CR₄R₄')_p-T-C(O)-(CR₄R₄')_k-(CH₂)-ONO₂;
- (6) (4) -Y-(CR₄R₄')_p-C(Z)-(CH₂)_q-T-(CR₄R₄')_q-(CH₂)-ONO₂;
- (7) (5) -Y-(CR₄R₄')₀-T-(CH₂)_q-V-(CR₄R₄')_q-(CH₂)-ONO₂;
- (8) (6) -Y-(CR₄R₄')_p-V-(CH₂)_q-V-(CR₄R₄')_q-(CH₂)-ONO₂;
- (9) (7) -Y-(CR₄R₄')_k-(W)_a-(CR₄R₄')_k-(CH₂)-ONO₂;
- (10) (8) $-NR_1-O-(CH_2)_k-V-(CR_4R_4')_q-(CH_2)-ONO_2;$
- (H_1) (9) -NR_i-O-(CH₂)_k-(W)_q-(CR₄R₄')_q-(CH₂)-ONO₂;
- $\frac{(12)}{(10)}$ -O-NR_i-(CH₂)_k-(W)_q-(CR₄R₄')_q-(CH₂)-ONO₂;
- $\frac{(13)}{(11)} Y (CH_2)_k (W)_q (CH_2)_k V (CR_4R_4')_k Q' (CR_4R_4')_k (CH_2) ONO_2;$
- (14) (12) -Y- $(CR_4R_4')_p$ -V- $(CH_2)_k$ - $(W)_q$ - $(CR_4R_4')_q$ - (CH_2) -ONO₂;
- (15) (13) $-O-NR_i-(CH_2)_k-V-(CR_4R_4')_0-(CH_2)-ONO_2;$
- (16) (14) -Y- $(CR_4R_4')_k$ -Q'- $(CR_4R_4')_k$ -V- $(CR_4R_4')_k$ -(CH₂)-ONO₂;
- $\frac{(17)}{(15)}$ -Y-(CR₄R₄')_k-Q'-(CR₄R₄')_k-(W)_q-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(18)}{(16)}$ -Y-(CR₄R₄')_p-T-(CR₄R₄')_p-Q'-(CR₄R₄')_k-(CH₂)-ONO₂;
- (19) (17) -Y-(CR_4R_4 ')_q-C(Z)-(CR_4R_4 ')_k-(CH_2)-ONO₂;
- $\frac{(20)}{(18)}$ -Y-(CR₄R₄')_p-Q'-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(21)}{(19)}$ -Y-(CR₄R₄')_q-P(O)MM';

- (22) (20) -Y-(CR₄R₄')_k-Q'-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(23)}{(21)}$ -Y- $\frac{(CR_4R_4)_k}{(CR_4R_4)_k}$ - $\frac{(CR_4R_4)_k}{$
- (24) (22) -Y-(CR₄R₄')_q-(W)_q-(CR₄R₄')_k-Q'-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(25)}{(23)}$ -Y-(CR₄R₄')_q-V-(CR₄R₄')_k-Q'-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(26)}{(24)}$ -Y-(CR₄R₄')_p-(T)_o-(W)_q-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(27)}{(25)}$ -Y-(CR₄R₄')_p-(W)_q-(T)_o-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(28)}{(26)}$ -Y-(CR₄R₄')_a-C(Z)-V-(CR₄R₄')_a-(CH₂)-ONO₂;
- $\frac{(29)}{(27)}$ -Y-(CR₄R₄')_k-C(R₄)(ONO₂)-(CR₄R₄')_g-(T)_o-(W)_o-(T)_o-(CR₄R₄')_k-R₅;
- (30) (28) -Y- $(CR_4R_4')_k$ -V- $(CR_4R_4')_k$ -Q'- $(CR_4R_4')_k$ - (CH_2) -ONO₂;
- (31) (29) -Y-(CR₄R₄')₀-C(Z)-Q'-(CR₄R₄')_k-(CH₂)-ONO₂;
- $\frac{(32)}{(30)}$ -Y- $\frac{(CR_4R_4)_p-V-(CR_4R_4)_p-(CH_2)-ONO_2}{(CR_4R_4)_p-(CH_2)-ONO_2}$
- (33) (31) -Y- $(CR_4R_4')_0$ -V- $(CH_2)_0$ - $(T)_0$ - $(CR_4R_4')_0$ - (CH_2) - ONO_2 ;
- (34) (32) -Y- $(CR_4R_4')_p$ - $(T)_o$ - $(CR_4R_4')_q$ - (CH_2) - ONO_2 ;
- $\frac{(35)}{(33)}$ -Y- $\frac{(CR_4R_4)_0}{(CR_4R_4)_0}$ -C(Z)- $\frac{(CR_4R_4)_0}{(CR_4R_4)_k}$ -Q'- $\frac{(CR_4R_4)_k}{(CR_4R_4)_k}$ -Q'- $\frac{(CR_4R_4$
- $(34) Y (CR_4R_4')_0 C(Z) (CR_4R_4')_0 (W)_0 (CR_4R_4')_k Q' (CR_4R_4')_k (CH_2) ONO_2;$
- (37) (35) $-NR_i-O-(CH_2)_k-V-(CR_4R_4')_k-Q'-(CH_2)-ONO_2;$
- (38) (36) -NR_i-O-(CH₂)_k-(W)_q-(CR₄R₄')_k-Q'-(CH₂)-ONO₂;
- (39) (37) -O-NR₁-(CH₂)_k-(W)_q-(CR₄R₄')_k-Q'-(CH₂)-ONO₂;
- (40) (38) $-O-NR_i-(CH_2)_k-V-(CR_4R_4')_k-Q'-(CH_2)-ONO_2;$
- (41) $(39) NR_i NR_i (CR_4R_4)_p (W)_q (T)_o (CR_4R_4)_k (CH_2) ONO_2$; or
- (42) (40) -Y- $(CR_4R_4')_k$ -Q'- $(CR_4R_4')_k$ -ONO₂; or
- (43) (41) -Y- $(CR_4R_4')_k$ -V- $(CR_4R_4')_k$ -Q- $(CR_4R_4')_k$ -ONO₂;

R₄ and R₄' at each occurrence are independently a hydrogen, lower alkyl group,

-OH, -CH₂OH, -ONO₂, -NO₂ or -CH₂ONO₂; or R₄-and R₄' taken together with the carbon atom to which they are attached are a cycloalkyl group or a heterocyclic ring;

W is a covalent bond or a carbonyl group;

T at each occurrence is independently an oxygen, $(S(O)_e)_e$ or NR_i ;

 R_j is a hydrogen, an alkyl group, an aryl group, a heterocyclic ring, an alkylcarbonyl group, an alkylsulfinyl group, an alkylsulfinyl group, an arylsulfinyl group, an arylsulfinyl group, a N-alkylsulfonamido group, a N,N-diarylsulfonamido group, a N-arylsulfonamido group, a N-arylsulfonamido group, a N-alkyl-N-arylsulfonamido group, a carboxamido group or a hydroxyl group;

```
p at each occurrence is independently an integer from 1 to 6;
q at each occurrence is independently an integer from 1 to 3;
o at each occurrence is independently an integer from 0 to 2;
k at each occurrence is independently an integer from 0 to 4;
Y is independently a covalent bond, a carbonyl, an oxygen, -S(O)<sub>0</sub>- or -NR<sub>j</sub>;
B is either phenyl or (CH<sub>2</sub>)<sub>0</sub>;
Q' is a cycloalkyl group, a heterocyclic ring or an aryl group;
Z is (=O), (=N-OR<sub>5</sub>), (=N-NR<sub>5</sub>R'<sub>5</sub>) or (=CR<sub>5</sub>R'<sub>5</sub>);
M and M' are each independently -O H<sub>3</sub>N<sup>+</sup>-(CR<sub>4</sub>R'<sub>4</sub>)<sub>q</sub>-CH<sub>2</sub>ONO<sub>2</sub> or
-T-(CR<sub>4</sub>R'<sub>4</sub>)<sub>k</sub>-CH<sub>2</sub>ONO<sub>2</sub>; and
```

R₅ and R₅' at each occurrence are independently a hydrogen, a hydroxyl group, an alkyl group, an aryl group, an alkylsulfonyl group, an arylsulfonyl group, a carboxylic ester, an alkylcarbonyl group, an arylcarbonyl group, a carboxamido group, an alkoxyalkyl group, an alkoxyaryl group, a cycloalkyl group or a heterocyclic ring.

5. (Currently Amended) The compound of claim 1, wherein K is:

(11) (11)(6)

-(6)<u>-(2)</u>

wherein T' maybe ortho, meta or para

$$(21)$$
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)
 (21)

$$\begin{array}{c}
(31) (15) \\
\stackrel{R_6}{\longrightarrow} \\
NO_{1}
\end{array}$$

$$\begin{array}{c} (28) \underline{(12)} \\ \\ \text{ if } \\ \\ \text{ if$$

(41) <u>(22)</u>

(43) <u>(24)</u>

$$(R_8)_2$$
 $(R_8)_2$
 $(R_8)_2$
 $(R_8)_2$
 $(R_8)_2$
 $(R_8)_2$
 $(R_8)_2$

(42) <u>(23)</u>

Application No. 10/573,030 Amendment dated March 18, 2009

Reply to Office Action of December 19, 2008

Docket No.: 0102258.00175US2

wherein:

Y' a covalent bond, a carbonyl, an oxygen, $-S(O)_{\theta}$ - or $-NR_6$;

T' is oxygen, sulfur or NR₆;

 X_5 is oxygen, $(S(O)_{\Theta})_{\Theta}$ or NR₆;

R₆ is a hydrogen, a lower alkyl group, an aryl group;

R₇ is a lower alkyl group or an aryl group;

R₈ at each occurrence is independently is a hydrogen, a hydroxyl group, a lower alkyl group, an aryl group, -NO₂, -CH₂-ONO₂ or -CH₂-OH;

n' and m' are each independently an integer from 0 to 10; and o is an integer from 0 to 2.

6. (Currently Amended) The compound of claim 1, wherein the compound of Formula (I) is compound of Formula (II), or a pharmaceutically acceptable salt thereof,

wherein the compound of Formula (II) is:

$$R_b$$
 OH OH OH OH

wherein

R_n is

(3) NO ₂ NO ₂	(4) X_5 NO_2
(5) NO ₂	(6) NO ₂
(7) NO ₂	(8) NO ₂
(9) NO ₂	(10) -1
(11) (5) ¹ / ₂ / ₂ , O NO ₂	(12) (6) 1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
(13) (7)	(14) (8) 7- 7- NO ₂ NO ₂

(15) (9) NO ₂ NO ₂ NO ₂	(16) (10) NO ₂ V ₂ NO ₂
(17) (11) 12, NO ₂ NO ₂	(18) (12) NO ₂ NO ₂
(19) (13) pr pr 10 NO ₂	(20) PO2
(21) (14) 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	(22) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(23) O NO ₂ reference of the control of the cont	(24) ONO2 NO2

Application No. 10/573,030 Amendment dated March 18, 2009 Reply to Office Action of December 19, 2008

(25) O NO ₂ N O NO ₂	(26) 0 NO ₂
(27) NO ₂	(28) 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
(29) (15) O NO ₂ NO ₂	(30) (16) O R ₉ NO ₂
(31) (17) R9 NO2	(32) H O—NO ₂
(33) (18) R ₉ NO ₂	(34) · O NO2

(35) (19) H ₃ C CH ₃ NO ₂	O_2N O_2N O_2N O_2N O_2N
(37) NO ₂	(38) NO ₂
(39) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(40) H ₃ C CH ₃ NO ₂
(41) (21) 10 (41) (21) 10 NO ₂	(42) (22) yrr ^x O NO ₂
(43)-(23) ONO2 OH ONO2 Or	(44) (24) O NO ₂ O NO ₂ O NO ₂
(45)	(46) 0 NO ₂

Application No. 10/573,030 Amendment dated March 18, 2009 Reply to Office Action of December 19, 2008

or T2-Rn taken together are:

$$(3) \qquad (4) \qquad (8) \qquad (8) \qquad (8) \qquad (1) \qquad (1)$$

R₉ is a lower alkyl group or an aryl group;

 T_2 is oxygen, sulfur, NR_6 or $N(R_{10})(R_{11})$;

 R_{10} and R_{11} taken together are a heterocyclic ring; and

Application No. 10/573,030 Amendment dated March 18, 2009

Reply to Office Action of December 19, 2008

 X_5 , R_b and R_6 are as defined herein.

- 7 9 (Cancelled).
- 10. (Original) A method for treating a renovascular disease in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.

Docket No.: 0102258.00175US2

- 11. (Original) The method of claim 10, wherein the renovascular disease is renal failure or renal insufficiency.
 - 12 13 (Cancelled).
- 14. (Original) The composition of claim 2, further comprising (i) at least one therapeutic agent; (ii) at least one nitric oxide donor compound; or (iii) at least one therapeutic agent and at least one nitric oxide donor compound.
- 15. (Original) The composition of claim 14, wherein the therapeutic agent is an aldosterone antagonist, an alpha-adrenergic receptor antagonist, an angiotensin II antagonist, an angiotensin-converting enzyme inhibitor, an antidiabetic compound, an anti-hyperlipidemic compound, an antioxidant, an antithrombotic and vasodilator compound, a β-adrenergic antagonist, a calcium channel blocker, a digitalis, a diuretic, an endothelin antagonist, a hydralazine compound, a H₂ receptor antagonist, a neutral endopeptidase inhibitor, a nonsteroidal antiinflammatory compound, a phosphodiesterase inhibitor, a potassium channel blocker, a platelet reducing agent, a proton pump inhibitor, a renin inhibitor, a selective cyclooxygenase-2 inhibitor, or a combination of two or more thereof.
- 16. (Original) The composition of claim 15, wherein the therapeutic agent is at least one compound selected from the group consisting of an aldosterone antagonist, an angiotensin II antagonist, an angiotensin-converting enzyme inhibitor, a β -adrenergic antagonist, a diuretic and a hydralazine compound.
- 17. (Original) The composition of claim 16, wherein the aldosterone antagonist is eplerenone or spironolactone; the angiotensin II antagonist is candesartan cilexetil, eprosartan mesylate, irbesartan, losartan potassium, medoxomil, telmisartan, trandolapril, trandolaprilat or valsartan; the angiotensin-converting enzyme inhibitor is benazepril hydrochloride, captopril, enalapril maleate, fosinopril sodium, lisinopril, moexipril hydrochloride, quinapril hydrochloride;

the β -adrenergic antagonist is bisoprolol fumarate, carvedilol, metoprolol tartrate, propranolol hydrochloride or timolol maleate; the diuretic is amiloride hydrochloride, chlorthalidone, hydrochlorothiazide or triamterene; and the hydralazine compound is hydralazine hydrochloride.

Docket No.: 0102258.00175US2

- 18. (Original) The composition of claim 14, wherein the nitric oxide donor compound is selected from the group consisting of a S-nitrosothiol, a nitrite, a nitrate, a S-nitrothiol, a sydnonimine, a NONOate, a N-nitrosoamine, a N-hydroxyl nitrosamine, a nitrosimine, a diazetine dioxide, an oxatriazole 5-imine, an oxime, a hydroxylamine, a N-hydroxyguanidine, a hydroxyurea or a furoxan.
- 19. (Currently Amended) The method of claim 7, 10, 12 or 13; further comprising administering (i) at least one therapeutic agent; (ii) at least one nitric oxide donor compound; or (iii) at least one therapeutic agent and at least one nitric oxide donor compound.
- 20. (Original) The method of claim 19, wherein the therapeutic agent is an aldosterone antagonist, an alpha-adrenergic receptor antagonist, an angiotensin II antagonist, an angiotensin-converting enzyme inhibitor, an antidiabetic compound, an anti-hyperlipidemic compound, an antioxidant, an antithrombotic and vasodilator compound, a β-adrenergic antagonist, a calcium channel blocker, a digitalis, a diuretic, an endothelin antagonist, a hydralazine compound, a H₂ receptor antagonist, a neutral endopeptidase inhibitor, a nonsteroidal antiinflammatory compound, a phosphodiesterase inhibitor, a potassium channel blocker, a platelet reducing agent, a proton pump inhibitor, a renin inhibitor, a selective cyclooxygenase-2 inhibitor, or a combination of two or more thereof.
- 21. (Original) The method of claim 20, wherein the therapeutic agent is at least one compound selected from the group consisting of an aldosterone antagonist, an angiotensin II antagonist, an angiotensin-converting enzyme inhibitor, a β -adrenergic antagonist, a diuretic and a hydralazine compound.
- 22. (Original) The method of claim 21, wherein the aldosterone antagonist is eplerenone or spironolactone; the angiotensin II antagonist is candesartan cilexetil, eprosartan mesylate, irbesartan, losartan potassium, medoxomil, telmisartan, trandolapril, trandolaprilat or valsartan; the angiotensin-converting enzyme inhibitor is benazepril hydrochloride, captopril, enalapril maleate, fosinopril sodium, lisinopril, moexipril hydrochloride or quinapril hydrochloride; the β-adrenergic

antagonist is bisoprolol fumarate, carvedilol, metoprolol tartrate, propranolol hydrochloride or timolol maleate; the diuretic is amiloride hydrochloride, chlorthalidone, hydrochlorothiazide or triamterene; and the hydralazine compound is hydralazine hydrochloride.

- 23. (Original) The method of claim 19, wherein the nitric oxide donor compound is selected from the group consisting of a S-nitrosothiol, a nitrite, a nitrate, a S-nitrothiol, a sydnonimine, a NONOate, a N-nitrosoamine, a N-hydroxyl nitrosamine, a nitrosimine, a diazetine dioxide, an oxatriazole 5-imine, an oxime, a hydroxylamine, a N-hydroxyguanidine, a hydroxyurea or a furoxan.
 - 24. (Original) A kit comprising at least one compound of claim 1.
- 25. (Original) The kit of claim 24, further comprising further comprising (i) at least one therapeutic agent; (ii) at least one nitric oxide donor compound; or (iii) at least one therapeutic agent and at least one nitric oxide donor compound.
- 26. (Original) The kit of claim 25, wherein the (i) at least one therapeutic agent; (ii) at least one nitric oxide donor compound; or (iii) at least one therapeutic agent and at least one nitric oxide donor compound are in the form of separate components in the kit.
- 27. (Currently Amended) A compound selected from the group consisting of: (2S) 4-{[(1S,2S,5S,6R)-6-(nitrooxy)-4,8-dioxabicyclo[3.3.0]oct-2-yl]oxycarbonyl}-2-aminobutanoic acid, hydrochloride salt;
- 4-{{(2R)-2,3-bis(nitrooxy)propyl]oxycarbonyl}(2S)-2-aminobutanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{[2-(nitrooxy)ethyl]oxycarbonyl} butanoic acid, 2,2,2-trifluoroacetic acid;
- (2S)-2-amino-4-[(2-(nitrooxy)ethyl]sulfonyl}ethyl)oxycarbonyl] butanoic acid, hydrochloride salt;
- (2S) 2-amino-5-{4-[2-(nitrooxy)ethyl]piperidyl}-5-oxopentanoic acid; hydrochloride salt;
- (2S)-4-{[(2S)-2,3-bis(nitrooxy)propyl]oxycarbonyl}-2-aminobutanoic acid, hydrochloride salt;
- (2S) 2 amino 4-[({4-[2 (nitrooxy)ethyl]phenyl}methyl) oxycarbonyl]butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{N-[3-(nitrooxy)propyl]carbamoyl}butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{N-[2,2-dimethyl-3-(nitrooxy)propyl]carbamoyl} butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{[3-(nitrooxy)propyl]oxycarbonyl} butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-(N-{2-[2-(nitrooxy)ethoxy]ethyl}carbamoyl)butanoic acid, hydrochloride salt;

- Docket No.: 0102258.00175US2
- (2S)-2-amino-4-({2-(nitrooxy)-1-[(nitrooxy)methyl]ethyl} oxycarbonyl)butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{[2,2-dimethyl-3-(nitrooxy)propyl]oxycarbonyl} butanoic acid, hydrochloride salt; tert-butyl (2S)-2-[(tert-butoxy)carbonylamino]-4-(N-{2-(nitrooxy)-1-[(nitrooxy)methyl]ethyl}carbamoyl)butanoate;
- (2S)-2-amino-4-[({4-[(nitrooxy)methyl]phenyl}methyl) oxycarbonyl]butanoic acid, hydrochloride salt;
- (2S)-2-amino-5-[4-(nitrooxy)piperidyl]-5-oxopentanoic acid, hydrochloride salt;
- (2S)-2-amino-4 ({2 [4 (nitrooxy)piperidyl]ethyl}oxycarbonyl) butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{[4-(nitrooxy)but-2-ynyl]oxycarbonyl} butanoic acid, hydrochloride salt
- (2S)-4-{N-[(2S)-2,3-bis(nitrooxy)propyl]carbamoyl}-2-aminobutanoic acid, hydrochloride salt;
- -(2S)-2-amino-5-{4-[(nitrooxy)methyl]oiperidyl}-5-oxopentanoic-acid, hydrochloride-salt
- (2S)-2-amino-5-{3-[4-(nitrooxy)piperidin-1-yl]propoxy}-5-oxopentanoic acid dihydrochloride salt
- (2S)-2-amino-5-{3-[(nitrooxy)methyl]piperidyl}-5-oxopentanoic acid, hydrochloride salt;
- (2S)-2-amino-4-[(3-{4-[2,2-dimethyl-3-(nitrooxy)propanoyl] piperazinyl} propyl)oxycarbonyl]butanoic acid; bis hydrochloride salt;
- 4-{[(3R)-3,4-bis(nitrooxy)butyl]oxycarbonyl}(2S)-2-aminobutanoic acid, hydrochloride salt;
- (2S)-2-amino-4-({2,2-bis[(nitrooxy)methyl]-3-hydroxypropyl} oxycarbonyl)butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-({2,2-bis[(nitrooxy)methyl]-3-(nitrooxy)propyl}oxycarbonyl)butanoic acid, hydrochloride salt;
- (2S)-2-amino-4-{[4,5-bis(nitrooxy)pentyl]oxycarbonyl} butanoic acid, hydrochloride salt;
- (2S) 2 amino 4 [(2-{4-[2,2-dimethyl-3-(nitrooxy)propanoyl] piperazinyl} ethyl)oxycarbonyl]butanoic acid, bis hydrochloride salt.