

Course > Week 1 > Proble... > Proble...

Problem: Simple Pendulum

Simple Pendulum

0.0/10.0 points (graded)

The lecture introduced the simple pendulum as a benchmark nonlinear system. Recall that the second-order dynamics of a damped pendulum are

$$ml^2\ddot{\theta} + mgl\sin\theta = -b\dot{\theta} + u$$

Consider the case where the control input u takes on a constant value. Take the constants m=3, l=1, g=10, and b=2. Plot (but do not submit) the bifurcation diagram $\theta^*vs.u$ showing the equilibrium point(s) for a fixed u. Note what happens when u increases to 30 and above.

For u=10, provide the equilibrium point(s) as a comma-separated list θ_1,θ_2,\ldots . Ensure that the number of equilibrium points is correct (no duplicate entries). The error tolerance for each element in the list is 10^{-3} . Restrict your answers to the interval $(-\pi,\pi]$.

		Answer: 0.339837,2.801756
0.339837,2.8	301756	
Do the same	e for $u=30$.	
		Answer: 1.570796
1.570796		
Submit	You have used 0 of 1 attempt	

1 Answers are displayed within the problem

© All Rights Reserved