Introduction to Computing Systems Homework 2

PB20000051 Fu Shen(fushen@mail.ustc.edu.com)

October 26, 2021

Question 1.

Question 2.

Question 3.

a. See Figure 1.

Figure 1: 3-input gate (Made by Logisim)

b. See Figure 2. The output of NAND gate is 1 and the output of NOR gate is 0;

Figure 2: Circuit's operation (Made by Logisim)

c. See Figure 3.

Figure 3: The answer to question 3.c

Question 4.

- **a.** X
- **b.** 1

- **c.** 0
- **d.** X
- **e.** 0
- **f.** 0

Question 5.

Logic circuit 2 involve the storage of information but logic circuit 1 do not. For example, when the voltage at input A goes from 0 to 1, the output of logic circuit 1 will go from C to B. But if the input B in logic circuit 2 is 1, the output D won't change, remaining to be 1, which is described the *quiescent* state, so the previous information is stored. And if the input B is 0, the output D will go from a uncertain state to 0. The name of logic circuit is the 2-to-1 mux, and the name of the other is the R-S latch.

Question 6.

6.1) See Table 1.

Table 1: Truth table of Question 6.(1)

S1	S0	A	В	С	D	OUT	S1	S0	A	В	С	D	OUT
0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	0	0	1	0
0	0	0	0	1	0	0	1	0	0	0	1	0	1
0	0	0	0	1	1	0	1	0	0	0	1	1	1
0	0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	0	1	0	1	0	1	0	0	1	0	1	0
0	0	0	1	1	0	0	1	0	0	1	1	0	1
0	0	0	1	1	1	0	1	0	0	1	1	1	1
0	0	1	0	0	0	1	1	0	1	0	0	0	0
0	0	1	0	0	1	1	1	0	1	0	0	1	0
0	0	1	0	1	0	1	1	0	1	0	1	0	1
0	0	1	0	1	1	1	1	0	1	0	1	1	1
0	0	1	1	0	0	1	1	0	1	1	0	0	0
0	0	1	1	0	1	1	1	0	1	1	0	1	0
0	0	1	1	1	0	1	1	0	1	1	1	0	1
0	0	1	1	1	1	1	1	0	1	1	1	1	1
0	1	0	0	0	0	0	1	1	0	0	0	0	0
0	1	0	0	0	1	0	1	1	0	0	0	1	1
0	1	0	0	1	0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1	0	0	1	1	1
0	1	0	1	0	0	1	1	1	0	1	0	0	0
0	1	0	1	0	1	1	1	1	0	1	0	1	1
0	1	0	1	1	0	1	1	1	0	1	1	0	0
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	0	0	0	1	1	1	0	0	0	0
0	1	1	0	0	1	0	1	1	1	0	0	1	1
0	1	1	0	1	0	0	1	1	1	0	1	0	0
0	1	1	0	1	1	0	1	1	1	0	1	1	1
0	1	1	1	0	0	1	1	1	1	1	0	0	0
0	1	1	1	0	1	1	1	1	1	1	0	1	1
0	1	1	1	1	0	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1

- **6.2**) See Figure 4(a).
- **6.3**) See Figure 4(b).

Figure 4: The implementation using 2-to-1 muxes. (Made by Logisim)

Question 7.

- **a.** It's 3.
- **b.** It's 12.
- **c.** See Figure 5. Its propagation delay is 3, instead of 4 in the question figure.

Figure 5: A different implementation. (Made by Logisim)

Question 8.

Just connect every condition that Si/Ci+1 is 1 with the corresponding OR gate. See Figure 6.

Figure 6: A full-adder. (Made by Logisim)

Question 9.

a. See Figure 7

Figure 7: The state diagram of the elevator scheduling

b. See Table 2. The representation of State is S, and the representation of input & output is In & Out.

<u>Tab</u>	le 2:	Truth	table	<u>ot elevator</u>	controller.
S_1	S_0	In_1	In_0	S_1'/Out_1'	S_0'/Out_0'
0	0	0	X	0	0
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	X	0	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	X	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	X	1	1

Table 2: Truth table of elevator controller.

Question 10.

The state after 50 cycles is 111000. It takes 6 cycles for a specific state to show up again, that is $100000 \rightarrow 111000 \rightarrow 111110 \rightarrow 011111 \rightarrow 000111 \rightarrow 000001 \rightarrow 100000$

Question 11.

See Figure 8.

Figure 8: 2 input XOR gate

Question 12.

a. See Table 3.

Table 3: The truth table for a 1-bit comparator.

A	В	G	Ε	L
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

- **b.** See Figure 9(a).
- c. See Figure 9(b).

(a) In plementation of 1-bit comparator. (b) In plementation of 4-bit comparator.

Figure 9: Comparator

Question 13.

See Table 4 and Figure 10.

Figure 10: The logic circuit for the alarm.

Table 4: The truth table for the alarm.

A	В	\mathbf{C}	D	\mathbf{Z}
0	X	0	0	0
0	0	1	0	0
0	0	\mathbf{x}	1	1
0	1	0	1	0
0	1	1	\mathbf{x}	1
1	\mathbf{X}	0	0	0
1	\mathbf{X}	0	1	1
1	X	1	X	1

Question 14.

It's obvious that

$$\mathrm{NOT}\ X = X\ \mathrm{NAND}\ X$$

$$X\ \mathrm{AND}\ Y = \mathrm{NOT}\ (X\ \mathrm{NAND}\ Y) = (X\ \mathrm{NAND}\ Y)\ \mathrm{NAND}\ (X\ \mathrm{NAND}\ Y)$$

$$X\ \mathrm{OR}\ Y = (\mathrm{NOT}\ X)\ \mathrm{NAND}\ (\mathrm{NOT}\ Y) = (X\ \mathrm{NAND}\ X)\ \mathrm{NAND}\ (Y\ \mathrm{NAND}\ Y)$$

And because the set of gates {AND, OR, NOT} is logically complete , NAND is logically complete.