

DL Seminar

WaveNet

A Generative Model For Raw Audio

인공지능 연구실 김지성

Google DeepMind WaveNet

Sound Data

A second of Generated speech

- 음성데이터 : 시계열 데이터 사실적인 소리를 위해 1초에 16000bit(16k bps)를 사용
- Raw Audio: 압축되지 않은 오디오 Ex) 이미지에서 비트맵 이미지

Realistic Sound Data

- 32k bps : AM 품질
- 96k bps: FM 품질
- 192k bps: DAB (디지털 오디오 방송) 품질
- 224 ~ 320k bps : CD 품질
- 96 ~ 640k bps : 손실 데이터 압축 중 돌비 디지털 (AC3)규격의 비트레이트 범위
- 1,536k bps : DTS, CD 디지털 오디오의 PCM 소리 포맷
- 6,000k bps: 손실 데이터 압축 중 DTS-HD High Resolution AUDIO 규격의 최대 비트레이트
- 18,000k bps : 무손실 데이터 압축 -> Dolby TRUE HD 규격의 최대 비트레이트 (VBR)
- 24,500k bps: 무손실 데이터 압축 -> DTS-HD MASTER AUDIO 규격의 최대 비트레이트 (VBR)

Classical speech generation method

녹음된 음소정보

조합된 발음

- 파편화된 음성샘플을 조합하여 발음을 완성한다.
- 자연스러운 조합이 매우 어려워 일반적으로 부자연스러운 발음이 나타난다.

Objective

Linguistic features

- CNN을 사용해서 사실적인 시계열데이터를 생성하고 싶다
- 장기간의 시간 의존성을 유지하고 싶다.
- 다양한 Condition에 대해 유연하게 대처하고 싶다.

Causal Convolution Layers

					16	bi	t의 ⁷	경우	우의						1 /			15	
											f(a	$x_t) =$	sign	$\mathbf{n}(x_t)$	$\left(\frac{\ln \left(1\right)}{\ln \left(1\right)}\right)$	$\frac{1+\mu}{(1+\mu)}$	$\frac{u x}{ \mu }$	(t)) 55, -1<	
									•			μ	:-law	com	npandi	ng (μ	ı=25	55, -1<	$x_t < 1$
		8bit의 경우의 수(255개)																	
	<u>.</u>								•	,								-	
	<u> </u>																		

SoftMax를 위한 One-Hot 인코딩

WaveNet

$$p\left(\mathbf{x}\right) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}\right)$$

- 음성 $X = \{x_1, ..., x_{t-1}\}$ 오디오 샘플 x_t 는 x_{t-1} 까지의 샘플에 대해 조건화됨
- 조건부 확률 분포를 Stack of Convolution Layer로 모델링 PixelCNN을 이용

Causal Convolution Layers

Visualization of a stack of causal convolutional layers

Causal Convolution Layers

Visualization of a stack of Non causal convolutional layers

Visualization of a stack of causal convolutional layers

Dilated Convolution

Convolutions

Dilated Convolutions

Dilated causal Convolution Layers

Visualization of a stack of **dilated** causal convolutional layers

Visualization of a stack of dilated causal convolutional layers $tanh(W_{x,k} * x)$

1024 x 1 필터보다 효율적이다!

Dilated causal Convolution Layers

Visualization of a stack of dilated causal convolutional layers

Gated Activation Units

$$\mathbf{z} = \tanh\left(W_{f,k} * \mathbf{x}\right) \underbrace{\odot \sigma\left(W_{g,k} * \mathbf{x}\right)}_{\text{Gate Unit}}$$

- Z: output data
- W_f : learnable convolution filter of filter (for generate)
- W_q : learnable convolution filter of gate
- *:convolution operator
- X: input data
- • : Element-wise multiplication
- σ : sigmoid function
- k: layer index

Convolution을 수행한 값을 얼마나 참여시킬지 결정하는 Gate Unit을 추가

Entire Architecture

Overview of the residual block and the entire architecture

Entire Architecture

Overview of the residual block and the entire architecture

Global Conditional WaveNets

$$p\left(\mathbf{x} \mid \mathbf{h}\right) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}, \mathbf{h}\right)$$

새로운 조건 h가 추가될 경우의 조건부 확률

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} \right)$$

- $V_{?,k}$: learnable vector
- V^T : T 번에 걸쳐 broadcast

남자 목소리, 여자 목소리 처럼 데이터 전역에 적용하고 싶은 조건일 때 T는 무시일부에만 적용하고 싶을 때 broadcast 시간 T 사용

Local Conditional WaveNets

$$p\left(\mathbf{x} \mid \mathbf{h}\right) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}, \mathbf{h}\right)$$

새로운 조건 h가 추가될 경우의 조건부 확률

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y} \right)$$

- $V_{?,k}$: learnable vector
- y: 새로운 시계열 데이터
- * *y* : *y* 를 1x1 convolution

실험해보니 Local보다는 Global Conditioning이 Wavenet에 적합했다.

Experiments

Text To Speech

	Subjective 5-scale MOS in naturalness								
Speech samples	North American English	Mandarin Chinese							
LSTM-RNN parametric HMM-driven concatenative WaveNet (L+F)	3.67 ± 0.098 3.86 ± 0.137 4.21 ± 0.081	3.79 ± 0.084 3.47 ± 0.108 $\textbf{4.08} \pm 0.085$							
Natural (8-bit μ -law) Natural (16-bit linear PCM)	$4.46 \pm 0.067 4.55 \pm 0.075$	$4.25 \pm 0.082 \ 4.21 \pm 0.071$							

Subjective 5-scale mean opinion score of speech samples

Experiments

Music

Conclusion

- CNN을 사용해서 시계열데이터 생성 PixelCNN구조를 기반으로 오디오를 생성
- μ-law companding을 사용해도 사실적인 소리가 생성됨
 Softmax가 예측할 경우의 수 1/256 만큼 감소
- 장기간의 시간 의존성을 위해 Dilated Convolution 사용 receptive filed가 확장되며, filter size를 높이는 것 보다 효율적
- 하나의 모델이 다양한 목소리를 가질 수 있다. 활성함수에 Condition을 추가할 수 있어 다양한 Condition에 유연한 학습이 가능

참고문헌

Deepmind - WaveNet: A generative Model for Raw Audio

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Arxiv - WaveNet : A generative Model for Raw Audio

https://arxiv.org/pdf/1609.03499.pdf

Youtube - WaveNet - A Generative Model for Raw Audio

https://www.youtube.com/watch?v=GyQnex_DK2k&t=1325s

Youtube - Toward WaveNet speech synthesis

https://www.youtube.com/watch?v=m2A9q6Xu91l&t=174s

Blog - WaveNet: A generative Model For Raw Audio

https://computer-nerd.tistory.com/71

Github - WaveNet: A generative Model For Raw Audio(2016)

https://github.com/hwkim94/hwkim94.github.io/wiki/WAVENET:-A-GENERATIVE-MODEL-FOR-RAW-AUDIO(2016)

Github - Pixcel CNN & WaveNet Review

https://yangyangii.github.io/2017/12/30/PixelCNN-WaveNet.html

Wikipedia - WaveNet

https://en.wikipedia.org/wiki/WaveNet

Github - tensorflow-wavenet

https://github.com/ibab/tensorflow-wavenet

Slid - An implementation of WaveNet

https://slideplayer.com/slide/13025889/

Medium - WaveNet: Increasing reception field using dilated convolution

https://medium.com/@kion.kim/wavenet-a-network-good-to-know-7caaae735435

감사합니다.