Basic Electrochemistry

with a focus on lithium ion batteries

John R Owen at

SEPTEMBER 17-20, 2018SALA D'ACTES CARLES MIRAVITLLES ICMAB-CSIC, Bellaterra, Spain

Term	Description	Unit
V	Voltage or potential	V
$E_{\rm e}^{\ 0}$ or E^0	Standard potential	V
$E^0(Ox/R)$	Standard potential of the Ox/R redox couple	V
F	Faraday's constant	C mol ⁻¹
n	number of electrons involved in an electrochemical reaction	/
ΔG	free energy change	J mol ⁻¹
C	number of moles involved in an electrochemical reaction	mol
t	time	S
Q	charge	С
I	current = dQ/dt	A
$c_{\rm i}$	concentration of species 'i'	mol cm ⁻³
V	volume	cm ³

Solution

R

Redox Reactions

Electrode

OR

VS.

Edutormina

Applied potential, v vs. Electrode Potential, E determines reaction direction, e.g. for an acid at pH0, $E = E^{o}$

Oxidant	Ε°	Reductant
H+ + e-	0.00	½ H ₂

Therefore at negative potentials Hydrogen is evolved.

OR

e-

Reference electrodes

 Only the potential difference across a cell can be measured

 Standard Hydrogen Electrode (SHE) or Normal Hydrogen Electrode

Pt(s)
$$| H_2(g) | H^+(aq),$$

 $E_{cell}{}^0 = 0 \text{ V} \qquad a_{H^+} = 1$
 $a_{H_2} = 1$

The Electrochemical Series

Oxidant	Eº	Reductant
F ₂ + 2e ⁻	3.05	2F-
Cl ₂ + 2e-	1.72	2CI-
Co ³⁺ + e	1.92	Co ²⁺
$O_2 + 4H^++4e^-$	1.23	40H-
Ag+ + e-	0.80	Ag
Fe ³⁺ + e ⁻	0.77	Fe ²⁺
Cu ²⁺ + 2e ⁻	0.34	Cu
H+ + e-	0.00	½ H ₂
Ti ³⁺ + e ⁻	-0.44	Ti ²⁺
Zn ²⁺ + 2e ⁻	-0.44	Zn
Al ³⁺ + 3e ⁻	-1.68	Al
Mg ²⁺ + 2e ⁻	-2.36	Mg
Na+	-2.71	Na
Li+	-3.04	Li

Reduction Potentials vs. Standard Hydrogen Reference Electrode SHE at pH0, 1atm H₂, 0°C

The more positive E^o the more oxidising the oxidised form

The more positive E^o the more reducing the reduced form

E^o values are measured or compared in electrochemical cells with **reference electrodes**.

Electrochemical cells asleep

(Daniel cell)

- Open circuit cell is <u>in equilibrium</u>
- Anode reaction (corresponding to oxidation)
 Zn(s) = Zn²⁺(aq) + 2e⁻
- Cathode reaction (reduction)
 - $-Cu^{2+}(aq) + 2e^{-} \Rightarrow Cu(s)$
- Zn(s) | Zn²⁺(aq) | | Cu²⁺(aq) | Cu(s)

$$E^{0}_{cell}=E^{0}_{cathode}-E^{0}_{anode}=1.10 \text{ V}$$

•
$$\Delta_r G = -nFE^0_{cell}$$
 where

$$F = 96485 \text{ C mol}^{-1}$$

n: number of electrons

Electrochemical cells working

(Daniel cell)

$$E^0$$
 (Cu²⁺/Cu)= +0.340 V,
 E^0 (Zn²⁺/Zn)=-0.763 V.

- What happens once the cell is connected (for instance, connect the two electrodes with a cable)?
- Potential difference ΔE appears across the electrolyte
 - $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
 - $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
 - Cations will go from the Zn compartment (anode) to the Cu compartment (cathode)
 - Anions will go in the opposite direction
 - current $I = \Delta V / R$ where
 - $R = total\ resistance,\ \Delta V \approx \Delta E$

Electrochemical cells

PROBLEM

$$E^0$$
 (Cu²⁺/Cu)= +0.340 V,
 E^0 (Zn²⁺/Zn)=-0.763 V.

Question: calculate the standard Gibbs energy of the reaction:

 $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$ taking into account that, for **each** electrochemical reaction:

$$\Delta_r G(\text{reduction}) = -nFE^0$$

where *F* is Faraday's constant, *n* is the number of electrons and *E*⁰ is the standard potential.

Answer: -212.8kJ/mol

Chemical Redox reactions

PROBLEM

What would happen if I immerse a Zn metal bar into a solution containing Cu²⁺?

Answer: $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$

because E^0 (Cu²⁺/Cu) > E^0 (Zn²⁺/Zn)

Chemical Redox Reactions

PROBLEM

 Consider the mixing of two redox reagents O1 and R2 where

1.
$$H^+ + e^- \Rightarrow \frac{1}{2} H_2$$
 $E^0_1 = 0$ and

$$E_{1}^{0}=0$$
 and

2.
$$Zn^{2+} + 2e^{-} \Rightarrow Zn$$
 $E^{0}_{2} = -0.44 \text{ v},$

$$E_2^0 = -0.44 \text{ v},$$

If E⁰₁>E⁰₂ they should react:

$$(2x1. - 2. above) 2H^+ + Zn \Rightarrow Zn^{2+} + H_2 \Delta E^0 = 0.44 v$$

because

- 1. Zn is a more powerful reductant than H₂
- $2.\Delta G = -nFE = -0.88x96485 \approx -85 \text{ kJ mol}^{-1}$

Chemical Redox reactions

What reaction will happen if I mix $Fe(CN)_6^{4-}$ and $Ru(CN)_6^{3-}$?

Note that $E^0 = 0.36 \text{ V}$ for $Fe(CN)_6^{4-}/Fe(CN)_6^{3-}$ system and $E^0 = 0.52 \text{ V}$ for $Ru(CN)_6^{4-}/Ru(CN)_6^{3-}$ system.

Identify O and R in each case

Determine which are the most powerful O and R

Answer: $Ru(CN)_6^{3-} + Fe(CN)_6^{4-} \rightarrow Ru(CN)_6^{4-} + Fe(CN)_6^{3-}$

Rocking chair battery

Anode and Cathode

	Anode	Cathode
General Definition	oxidation	reduction
Galvanic cell, Fuel cell, primary battery	negative electrode	positive electrode
Electrolyser	Positive electrode	negative electrode
Secondary (rechargeable) battery	Negative on discharge positive on charge ¹	Positive on discharge negative on charge
Secondary battery industrial jargon	Always negative during normal operation	Always positive during normal operation

¹ Because the direction of the reaction changes from discharge to charge

Lithium Ion Battery

PROBLEM

Write down the spontaneous (discharge) reaction of a battery made of a LiCoO₂ positive electrode and a graphite negative electrode

Note that $E^0 \approx 4V$ vs. Li⁺/Li for LiCoO₂/CoO₂ and $E^0 \approx 0V$ vs. Li⁺/Li for LiC₆/C

Answer:

$$CoO_2 + Li^+ + e^- \rightarrow LiCoO_2$$

 $LiC_6 \rightarrow 6 C + Li^+ + e^-$

Reaction of the cell: $LiC_6 + CoO_2 \rightarrow LiCoO_2 + 6 C$

In reality: $x \operatorname{LiC}_6 + \operatorname{Li}_{1-x} \operatorname{CoO}_2 \to \operatorname{LiCoO}_2 + 6x \operatorname{C}$

Lithium Ion Battery

Write down the reaction to **recharge** a battery made of a LiCoO₂ positive electrode and a graphite negative electrode

Answer:

 $LiCoO_2 \rightarrow CoO_2 + Li^+ + e^-$ 6 C + Li⁺ + $e^- \rightarrow LiC_6$

Reaction of the cell: $LiCoO_2 + 6 C \rightarrow LiC_6 + CoO_2$ In reality: $LiCoO_2 + 6x C \rightarrow x LiC_6 + Li_{1-x}CoO_2$ This is achieved by applying a potential higher than ca. 4 V to the whole battery to "force" the electrons to go from the $LiCoO_2$ electrode to the graphite electrode.

Faraday's law

charge Q = n F m

Number of moles

Note that *F* has units of coulombs per mole of electrons

Example:

Calculate the number of Ah of charge available from a lithium metal negative electrode weighing 1 g, assuming an atomic mass [Li] = 7g

Answer:

Number of moles Li, m = 1/7. Li to Li+ n=1 Q = 96485/7 C = 96485/(7*3600) Ah ~ 3.8 Ah

Faraday's law

PROBLEM

1. Calculate the mass of LiFePO₄ required to act as the positive electrode of a 4 Ah lithium ion cell, assuming the charge reaction is LiFePO₄ \rightarrow FePO₄ + Li⁺ + e⁻

Use atomic masses/g Li = 7, Fe= 56, P= 31, O = 16 Hint - Convert 4Ah into Coulombs, then moles, then grams

2. Calculate the mass of graphite required to act as the negative electrode of a 4 Ah lithium ion cell, assuming the charge reaction is $6C + Li^+ + e^- \rightarrow LiC_6$

Use atomic masses/g C= 12, Li= 7

3. Calculate the specific capacity (Ah/g) for each electrode.

A choice of cathodes and anodes

High Voltage Li-ion batteries have a high energy density

Specific Energy = Potential difference x (charge per mass)

A. Manthiram, The Journal of Physical Chemistry Letters, 2011, 2, 176–184.

Specific Energy, Owen Plot

Cyclic Voltammetry (CV)

- This technique applies a scanning voltage to a cell while measuring the current. When the top of the chosen voltage range is reached, the scan is reversed.
- Current peaks identify the potentials at which anodic and cathodic reactions occur according to

current
$$I = n F \frac{dm}{dt}$$
Reaction rate

A Cyclic Voltammogram

Electrochemical Techniques for the Characterisation of Solids, c. 1991

Prof D Pletcher c. 1991

Here's one
I did in
junior
school
Ha!Ha!

Prof P N Bartlett c. 2010

Phase changes in graphite

Problem: In CV the IR Drop increases with I

What went wrong?

Capacitance per volume $C_v \sim F \times 15M$ Resistance

(nonaqueous electrolyte)

 $R \sim 10 \text{ k}\Omega$

Minimum feature resolution

$$\Delta V > \text{scan rate x } RC$$

or $\Delta V > \text{scan rate x } \frac{L^2}{D}$

Voltage / V

Let's Try Another Way!

Derivative (differential)

Coulometric

Titration

Derivative Coulometric Titration

IR drop is constant - does not increase toward peak top

SSCV vs DCT for Graphite

Derivative coulometric titration is better than CV for thermodynamic da

Summary

- Electrochemical and Chemical redox reactions explained
- Electrode potential measured vs a Reference Electrode
- Faraday's law shows the Theoretical Specific Energy
- Cyclic voltammetry identifies potentials roughly.
- Differential Coulometric Titration gives better resolution of voltage peaks.

