Boolean Algebra and Logic Gates

CS211 Chapter 2

James YU yujq3@sustech.edu.cn

Department of Computer Science and Engineering Southern University of Science and Technology

Jul. 5, 2022

Boolean Algebra

- The previous binary logic is two-valued Boolean algebra.
 - On a set of two elements: 0 and 1.
 - With rules for the three binary operators: +, · and '.
- Common properties:
 - A + 0 = A and $A \cdot 1 = A$.
 - A+1=1 and $A\cdot 0=0$.
 - A + A' = 1 and $A \cdot A' = 0$.
 - A + A = A and $A \cdot A = A$.
 - (A')' = A.

Postulates

- Closure: A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S.
- Associative law: A + (B + C) = (A + B) + C and A(BC) = (AB)C.
- Commutative law: A + B = B + A and AB = BA.
- **Identity element**: A set S is to have an identity element with respect to a binary operation * on S, if there exists an element $E \in S$ with the property E*A=A*E=A.
 - Element 0 is an identity element of +, and 1 is an identity element of .
- Distributive law: A(B+C) = AB + AC and A+BC = (A+B)(A+C).
- **DeMorgan**: (A+B)' = A'B' and (AB)' = A' + B'.
- Absorption: A + AB = A and A(A + B) = A.

Duality property

- Every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
- Change + to · and vice versa.
- Change ∅ to 1 and vice versa.
 - $A + A' = 1 \rightarrow A \cdot A' = 0$.
 - $A + B = B + A \rightarrow AB = BA$.
 - $A(B+C) = AB + AC \to A + BC = (A+B)(A+C)$.
 - $(A+B)' = A'B' \to (AB)' = A' + B'$.

Boolean function

- Binary variables have two values, either ∅ or 1.
- A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses and equal sign.
- The value of a function may be 0 or 1, depending on the values of variables present in the Boolean function or expression.
- Example: F = AB'C.
 - F=1 when A=C=1 and B=0,
 - otherwise F = 0.

Boolean function

- Boolean functions can also be represented by truth tables.
 - Tabular form of the values of a Boolean function according to the all possible values of its variables.
- n number of variables $\rightarrow 2^n$ combinations of 1's and 0's
- One column representing function values according to the different combinations.
- Example: F = AB + C.

\overline{A}	В	C	\overline{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Boolean function simplification

- A Boolean function from an algebraic expression can be realized to a logic diagram composed of logic gates.
- Minimization of the number of literals and the number of terms leads to less complex circuits as well as less number of gates.
 - We first try use postulates and theorems of Boolean algebra to simplify.

$$F = AB + BC + B'C$$
 $F = A'B'C + A'BC + AB'$ $F = XYZ + XY'Z + XYZ'$
 $= AB + C(B + B')$ $= A'C(B' + B) + AB'$ $= XZ(Y + Y') + XY(Z + Z')$
 $= AB + C$ $= XZ + XY = X(Y + Z')$

 Each Boolean function has one representation in truth table, but a variety of ways in algebraic form.

Algebraic manipulation

- Reduce the total number of terms and literals.
- Usually not possible by hand for complex functions, use computer minimization program.
- More advanced techniques in the next lectures.

Boolean function complement

- Complement a Boolean function from F to F'.
 - Change 0's to 1's and vice versa in the truth table.
 - Use Use DeMorgan's theorem for multiple variables.
- Example: F = x'yz' + x'y'z.

Complement:

Dual:

$$F' = (x'yz' + x'y'z)'$$

= $(x'yz')'(x'y'z)'$
= $(x + y' + z)(x + y + z')$

$$F^* = (x' + y + z')(x' + y' + z)$$

Canonical forms

- Logical functions are generally expressed in terms of different combinations of logical variables with their true forms as well as the complement forms: x and x'.
- An arbitrary logic function can be expressed in the following forms, called canonical forms:
 - Sum of products (SOP), and
 - Product of sums (POS).
- What are the products and sums?

Canonical forms

- The logical product of several variables on which a function depends is considered to be a product term.
 - Called *minterms* when all variables are involved: For x and y, xy, x'y, xy', and x'y' are all the minterms.
- The logical sum of several variables on which a function depends is considered to be a sum term.
 - Called *maxterms* when all variables are involved: For x and y, x + y, x' + y, x + y', and x' + y' are all the maxterms.
- **SOP**: The logical sum of two or more logical product terms is referred to as a sum of products expression.
- POS: The logical product of two or more logical sum terms is referred to as a product of sums expression.

 In the minterm, a variable will possess the value 1 if it is in true or uncomplemented form, whereas, it contains the value 0 if it is in complemented form.

A	B	C	Minterm
0	0	0	A'B'C'
0	0	1	A'B'C
0	1	0	A'BC'
0	1	1	A'BC
1	0	0	AB'C'
1	0	1	AB'C
1	1	0	ABC'
1	1	1	ABC

- It possesses the value of 1 for only one combination of n input variables
 - The rest of the $2^n 1$ combinations have the logic value of \emptyset .

• Canonical SOP expression, or sum of minterms: A Boolean function expressed as the logical sum of all the minterms from the rows of a truth table with value 1.

A	B	C	F	Minterms
0	0	0	0	A'B'C'
0	0	1	1	A'B'C
0	1	0	0	A'BC'
0	1	1	1	A'BC
1	0	0	0	AB'C'
1	0	1	1	AB'C
1	1	0	1	ABC'
1	1	1	1	ABC

- $F = AB + C = A'B'C + A'BC + AB'C + ABC' + ABC = \sum (1, 3, 5, 6, 7).$
 - A compact form by listing the corresponding decimal-equivalent codes of the minterms.

- The canonical sum of products form of a logic function can be obtained by using the following procedure.
 - 1 Check each term in the given logic function. Retain if it is a minterm, continue to examine the next term in the same manner.
 - 2 Examine for the variables that are missing in each product which is not a minterm.
 - $lacksquare{3}$ If the missing variable in the minterm is X, multiply that minterm with (X+X').
 - Example: $A + B \rightarrow A(B + B') + B(A + A')$
 - 4 Multiply all the products and discard the redundant terms.

• Example: F(A, B, C, D) = AB + ACD.

$$F(A, B, C, D) = AB + ACD$$

$$= AB(C + C')(D + D') + ACD(B + B')$$

$$= (ABC + ABC')(D + D') + ABCD + AB'CD$$

$$= ABCD + ABCD' + ABC'D + ABC'D' + ABCD + AB'CD$$

$$= ABCD + ABCD' + ABC'D + ABC'D' + AB'CD$$

Maxterms

 In the maxterm, a variable will possess the value 0, if it is in true or uncomplemented form, whereas, it contains the value 1, if it is in complemented form.

A	В	C	Maxterm
0	0	0	A+B+C
0	0	1	A + B + C'
0	1	0	A + B' + C
0	1	1	A + B' + C'
1	0	0	A' + B + C
1	0	1	A' + B + C'
1	1	0	A' + B' + C
1	1	1	A' + B' + C'

- It possesses the value of \emptyset for only one combination of n input variables
 - The rest of the $2^n 1$ combinations have the logic value of 1.

Maxterms

- Canonical POS expression, or product of maxterms: A Boolean function expressed as the logical product of all the maxterms from the rows of a truth table with value 0.
- $F = (A + B + C)(A + B' + C)(A' + B + C') = \prod (0, 2, 5).$
 - A compact form by listing the corresponding decimal-equivalent codes of the maxterms.

Maxterms

• Example: F(A, B, C, D) = A + B'C.

$$\begin{split} F(A,B,C,D) &= A + B'C \\ &= (A+B')(A+C) \\ &= (A+B'+CC')(A+C+BB') \\ &= (A+B'+C)(A+B'+C')(A+B+C)(A+B'+C) \\ & \text{using the distributive property: } X+YZ = (X+Y)(X+Z) \\ &= (A+B'+C)(A+B'+C')(A+B+C) \end{split}$$

Derive from a truth table

A	B	C	F	Minterm	Maxterm
0	0	0	0		A+B+C
0	0	1	0		A + B + C'
0	1	0	1	A'BC'	
0	1	1	0		A + B' + C'
1	0	0	1	AB'C'	
1	0	1	1	AB'C	
1	1	0	1	ABC'	
1	1	1	0		A' + B' + C'

- The final **canonical SOP** for the output *F* is derived by summing or performing an **OR** operation of the four product terms as shown below:
 - $F = A'BC' + AB'C' + AB'C + ABC' = \sum (2, 4, 5, 6)$.
- The final **canonical POS** for the output *F* is derived by summing or performing an **AND** operation of the four sum terms as shown below:

•
$$F = (A + B + C)(A + B + C')(A + B' + C')(A' + B' + C') = \prod_{i=1}^{n} (0, 1, 3, 7).$$

Conversion between minterms and maxterms

- Minterms are the complement of corresponding maxterms: $m_i = M'_i$.
 - Example: A' + B' + C' = (ABC)'.

$$F(A, B, C) = \sum (2, 4, 5, 6) = m_2 + m_4 + m_5 + m_6$$

$$= A'BC' + AB'C' + AB'C + ABC'$$

$$F'(A, B, C) = \sum (0, 1, 3, 7) = m_0 + m_1 + m_3 + m_7$$

$$F(A, B, C) = (F'(A, B, C))' = (m_0 + m_1 + m_3 + m_7)'$$

$$= m'_0 m'_1 m'_3 m'_7$$

$$= M_0 M_1 M_3 M_7$$

$$= \prod (0, 1, 3, 7)$$

$$= (A + B + C)(A + B + C')(A + B' + C')(A' + B' + C').$$

Other logic operators

• When the binary operators AND and OR are applied on two variables A and B, they form two Boolean functions AB and A+B respectively.

Other logic operators

• When the three operators AND, OR, and NOT are applied on two variables *A* and *B*, they form 16 Boolean functions:

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Digital logic gates

- As Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to implement the Boolean functions with these basic types of gates.
 - It is possible to construct other types of logic gates.
- The following factors are to be considered for construction of other types of gates.
 - The feasibility and economy of producing the gate with physical parameters.
 - The possibility of extending to more than two inputs.
 - The basic properties of the binary operator such as commutability and associability.
 - The ability of the gate to **implement Boolean functions** alone or in conjunction with other gates.

Digital logic gates

			A	В	\overline{F}
	A = B = F	E = AD	0	0	0
AND			0	1	0
AND		$\Gamma = AD$	1	0	0
			1	1	1
	$A \longrightarrow F$	F = A + B	0	0	0
OR			0	1	1
OR			1	0	1
			1	1	1
NOT	A-	F = A'	0	-	1
NOT			1	-	0
Buffer	$A \longrightarrow F$	F = A	0	-	0
Dunel	''		1	-	1

Digital logic gates

			A	B	F
			0	0	1
NAND	A - F	E = (AD)/	0	1	1
NAND	B— F	$F = (AB)^r$	1	0	1
			1	1	0
	$A - \bigcirc F$		0	0	1
NOR		E = (A + D)/	0	1	0
NOR		$F = (A + B)^r$	1	0	0
			1	1	0
XOR	$A \rightarrow F$		0	0	0
		F = AB' + A'B	0	1	1
		$=A\oplus B$	1	0	1
			1	1	0

Multiple input logic gates

- A gate can be extended to have multiple inputs if its binary operation is commutative and associative.
- AND and OR gates are both commutative and associative.
 - F = ABC = (AB)C.
 - F = A + B + C = (A + B) + C.

Multiple input logic gates

- The NAND and NOR functions are the complements of AND and OR functions respectively.
 - They are commutative, but not associative.
 - $((AB)'C)' \neq (A(BC)')'$: does not follow associativity.
 - $((A+B)'+C)' \neq (A+(B+C)')'$: does not follow associativity.
- We modify the definition of multi-input NAND and NOR:

$$\begin{array}{c} A \\ B \\ C \end{array} \longrightarrow F = (ABC)' = A' + B' + C' \\ A \\ B \\ C \end{array} \longrightarrow F = (A+B+C)' = A'B'C'$$

Multiple input logic gates

- The XOR gates and equivalence gates both possess commutative and associative properties.
 - Gate output is low when even numbers of 1's are applied to the inputs, and when the number of 1's is odd the output is logic ∅.
 - Multiple-input exclusive-OR and equivalence gates are uncommon in practice.

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$-F = A \oplus B \oplus C$$

Universal gates

- NAND gates and NOR gates are called universal gates or universal building blocks.
 - Any type of gates or logic functions can be implemented by these gates.

Universal gates

- Universal gates are easier to fabricate with electronic components.
 - Also reduce the number of varieties of gates.
- Example: F = AB + CD requires two AND and one OR gates.
 - Or three NAND gates.
 - F = AB + CD = ((AB + CD)')' = ((AB)'(CD)')'

