Pricing Options using the COS method

Dimitris Nikitas

January 15, 2025

Abstract

This document presents the mathematical derivation and formulation of the multivariate COS method for pricing European basket options, as outlined in the works of Fang and Oosterlee [1] and Ruijter and Oosterlee [2]. Equations (1) to (10) contain the complete development, including a new generalized expression for the COS coefficients (Equation (10)) which simplifies the summation structure by avoiding alternating sign terms (\pm) as in the original 2D COS paper. While the resulting expressions are more intricate, they provide a systematic and compact framework applicable to higher dimensions.

We consider a basket put option on assets modeled by Geometric Brownian Motion. Using the arithmetic mean of the asset prices and a strike price K=1, we apply the derived COS expansion method to compute the option price. A numerical implementation in Python is provided separately, capable of handling arbitrary dimensions N, although computational cost becomes significant for N>10, consistent with observations in [2]. When run with N=2, the implementation also demonstrates probability density function reconstruction through COS expansion visualizations.

References

- [1] Fang, Fang and Oosterlee, Cornelis W. A novel pricing method for European options based on Fourier cosine series expansions. SIAM Journal on Scientific Computing, 2009.
- [2] Ruijter, Marlies J. and Oosterlee, Cornelis W. Two-dimensional Fourier cosine series expansion method for pricing financial options. SIAM Journal on Scientific Computing, 2012.

Part 1: Approximation of Discounted Expected Payoffs using COS method

For example, the value of a European option with a pay-off function $g(\cdot)$ is given by the risk neutral option evaluation formula:

$$v(t_0, x) = e^{-r\Delta t} \int_{\mathbb{R}^u} g(y) \cdot f(y \mid x) \, dy \tag{1}$$

Where:

- r: risk-free rate
- $\Delta t = T t_0$: time to expiration
- $x = (x_1, x_2, \dots, x_n)$: current state
- $f(y \mid x) = f(y_1, y_2, \dots, y_u \mid x_1, x_2, \dots, x_u)$: conditional density function to approximate
- g(y): payoff for each possible outcome y

Fourier Pair

• Forward integral:

$$\phi(\omega) = \int_{\mathbb{R}^u} e^{i\langle x, \omega \rangle} f(x) \, dx \tag{2}$$

(with $\langle x, \omega \rangle$ the dot product)

• Inverse integral:

$$f(x) = \frac{1}{(2\pi)^u} \int_{\mathbb{R}^u} e^{-i\langle \omega, x \rangle} \phi(\omega) \, d\omega \tag{3}$$

COS Expansion

For a function supported on $[0,\pi]^u$, the cosine expansion reads:

$$f(\omega_1, \omega_2, \dots, \omega_u) = \sum_{k=0}^{\infty} \sum_{k_2=0}^{\infty} \dots \sum_{k_u=0}^{\infty} A_{k_1, k_2, \dots, k_u} \cos(k_1 \omega_1) \cos(k_2 \omega_2) \dots \cos(k_u \omega_u)$$

Here, the coefficients are given by:

$$A_{k_1,k_2,\dots,k_u} = \left(\frac{2}{\pi}\right)^u \int_{[0,\pi]^u} f(\omega_1,\dots,\omega_u) \cos(k_1\omega_1) \cdots \cos(k_u\omega_u) d\omega_1 \cdots d\omega_u$$
(4)

Note: \sum^* indicates that the first term of the sum has half the weight.

Change of Variables for Finite Domain

For a function supported on the interval $[a_k, b_k]$, the Fourier cosine expansion is obtained via the variable change:

$$\theta_k = \frac{x_k - a_k}{b_k - a_k} \pi, \quad \Rightarrow \quad d\theta_k = \frac{\pi}{b_k - a_k} dx_k$$

Hence, the function can be expanded as follows:

$$f(x_1, x_2, \dots, x_u) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \dots \sum_{k_u=0}^{\infty} A_{k_1, k_2, \dots, k_u} \cos\left(k_1 \frac{x_1 - a_1}{b_1 - a_1} \pi\right) \dots \cos\left(k_u \frac{x_u - a_u}{b_u - a_u} \pi\right)$$
(5)

With the cosine expansion coefficients given by:

$$A_{k_1,k_2,\dots,k_u} = \prod_{k=1}^{u} \left(\frac{2}{b_k - a_k}\right) \int_{a_1}^{b_1} \dots \int_{a_u}^{b_u} f(x_1,\dots,x_u) \cos\left(k_1 \frac{x_1 - a_1}{b_1 - a_1} \pi\right) \dots \cos\left(k_u \frac{x_u - a_u}{b_u - a_u} \pi\right) dx_1 \dots dx_u$$
(6)

Assumption 1

Suppose $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_u, b_u] \subset \mathbb{R}^u$ is chosen such that the truncated integral approximates the infinite counterpart very well, i.e.

$$\bar{\phi}(\omega) = \int_{a_1}^{b_1} \cdots \int_{a_u}^{b_u} e^{i\langle \omega, x \rangle} f(x) \, dx \approx \int_{\mathbb{R}^u} e^{i\langle \omega, x \rangle} f(x) \, dx = \phi(\omega) \tag{7}$$

Let's denote:

$$\psi_i(x_i) = k_i \pi \frac{x_i - a_i}{b_i - a_i}$$

Proposition 1: Product of Cosines to Sum

The following identity allows us to rewrite a product of cosines as a sum of cosines:

$$\prod_{i=1}^{u} \cos(q_i) = \frac{1}{2^{u-1}} \sum_{\substack{\varepsilon_i = \pm 1 \\ \varepsilon_1 = +1}} \cos\left(\sum_{i=1}^{u} \varepsilon_i q_i\right)$$
(8)

(Sketch of the proof is provided is provided in the end). In our case, equation (8) corresponds to:

$$\prod_{i=1}^{u} \cos(\psi_i(x_i)) = \frac{1}{2^{u-1}} \sum_{\substack{\varepsilon_i = \pm 1 \\ i \ge 1 \\ \varepsilon_1 = +1}} \cos\left(\psi_1(x_1) + \sum_{i=2}^{u} \varepsilon_i \psi_i(x_i)\right)$$
(9)

Thus, the coefficient expression (6) becomes:

$$A_{k_1,\dots,k_u} = \prod_{i=1}^u \left(\frac{2}{b_i - a_i}\right) \int_{a_1}^{b_1} \dots \int_{a_u}^{b_u} f(x_1,\dots,x_u) \cdot \frac{1}{2^{u-1}} \sum_{\substack{\varepsilon_i = \pm 1 \\ i \ge 1 \\ \varepsilon_1 = +1}} \cos\left(\psi_1(x_1) + \sum_{i=2}^u \varepsilon_i \psi_i(x_i)\right) dx_1 \dots dx_u$$

Using Euler's identity and rearranging:

$$= \prod_{i=1}^{u} \left(\frac{2}{b_i - a_i} \right) \int_{a_1}^{b_1} \cdots \int_{a_u}^{b_u} f(x) \cdot \frac{1}{2^{u-1}} \sum_{\epsilon_i = \pm 1} \Re \left[e^{i \left(\psi_1(x_1) + \sum_{i=2}^{u} \epsilon_i \psi_i(x_i) \right)} \right] dx$$

Note that

$$\psi_i(x_i) = k_i \pi \cdot \frac{x_i - a_i}{b_i - a_i} \Rightarrow \psi_i(x_i) = \frac{k_i \pi x_i}{b_i - a_i} - \frac{k_i \pi a_i}{b_i - a_i}$$

So, by linearity of the exponential and the integral, constants (independent of x) can be factored out of the integral.

Remark: Due to linearity and independence from x, some terms can be removed from the integral.

Combining previous steps, we write:

$$A_{k_1,\dots,k_u} = \prod_{i=1}^u \left(\frac{2}{b_i - a_i}\right) \cdot \sum_{\substack{\varepsilon_i = \pm 1 \\ i > 1}} \frac{1}{2^{u-1}}$$

$$\cdot \Re\left[\int_{a_1}^{b_1} \dots \int_{a_u}^{b_u} f(x) \cdot \exp\left(j\left(k_1 \pi \frac{x_1}{b_1 - a_1} + \sum_{i=2}^u \varepsilon_i k_i \pi \frac{x_i}{b_i - a_i}\right)\right) dx\right]$$

$$\cdot \exp\left(-j\left(k_1 \pi \frac{a_1}{b_1 - a_1} + \sum_{i=2}^u \varepsilon_i k_i \pi \frac{a_i}{b_i - a_i}\right)\right)$$

Using Assumption 1 from earlier:

$$A_{k_1,\dots,k_u} \approx \prod_{i=1}^u \left(\frac{2}{b_i - a_i}\right) \cdot \frac{1}{2^{u-1}} \sum_{\substack{\varepsilon_i = \pm 1 \\ i > 1}} \Re\left[\phi\left(\frac{k_1 \pi}{b_1 - a_1}, \dots, \frac{\varepsilon_u k_u \pi}{b_u - a_u}\right)\right]$$

$$\cdot \exp\left(-j\left(k_1 \pi \frac{a_1}{b_1 - a_1} + \sum_{i=2}^u \varepsilon_i k_i \pi \frac{a_i}{b_i - a_i}\right)\right)$$

$$(10)$$

Summary: Equation (10) provides a compact formula for the coefficients $A_{k_1,...,k_u}$.

Using these coefficients, we can approximate $f(x_1, x_2, ..., x_u)$ on the basis of the truncated series of cosines in Equation (5).

If ϕ takes real values, we only need the real part of the exponent in (10).

Proposition 1: Sketch of Proof for Product of Cosines

For u = 2:

$$\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a+b) + \cos(a-b)\right)$$

For u = 3:

$$\cos(a)\cos(b)\cos(c) = \frac{1}{4}\left[\cos(a+b+c) + \cos(a+b-c) + \cos(a-b+c) + \cos(a-b-c)\right]$$

For u = 4:

$$\cos(q_1)\cos(q_2)\cos(q_3)\cos(q_4) = \frac{1}{8} \sum_{\substack{\varepsilon_i = \pm 1 \\ i > 1}} \cos(q_1 + \varepsilon_2 q_2 + \varepsilon_3 q_3 + q_4)$$

This result can be rigorously proved using mathematical induction and the basic identity for $\cos(a)\cos(b)$.

Part 2: Application to Bucket Option Characteristic Function

We define the characteristic function $\varphi(t)$ of a bucket option as:

$$\varphi(t) = \mathbb{E}\left[e^{it \cdot \frac{1}{N} \sum_{j} S_{j}(\tau)}\right] = \int_{\mathbb{R}^{N}} e^{it \cdot \frac{1}{N} \sum_{j} S_{j}(\tau)} \cdot p_{w}(\omega_{1}, \dots, \omega_{N}) d\omega_{1} \cdots d\omega_{N}$$
 (14)

Now we use the COS method approximation for the multivariate density function $p(\cdot)$, which becomes:

$$p_w(\omega_1, \dots, \omega_N) = \sum_{k_1, \dots, k_N}' A_{k_1, \dots, k_N} \prod_{j=1}^N \cos\left(k_j \pi \cdot \frac{\omega_j - a}{b - a}\right)$$
(12)

Thus, the characteristic function becomes the following.

$$\varphi(t) = \sum_{k_1, \dots, k_N}' A_{k_1, \dots, k_N} \int_{\mathbb{R}^N} \exp\left(it \cdot \frac{1}{N} \sum_{j=1}^N \left(\left(r - \frac{\sigma_j^2}{2}\right) T + \sigma_j \omega_j \right) \right)$$

$$\cdot \prod_{j=1}^N \cos\left(k_j \pi \cdot \frac{\omega_j - a}{b - a}\right) d\omega_1 \cdots d\omega_N$$
(13)

Decoupling the Integral

Using the identity:

$$e^{q_1+q_2+\dots+q_N} = \prod_{j=1}^N e^{q_j}$$

we can write:

$$\varphi(t) = \sum_{k_1, \dots, k_N}' A_{k_1, \dots, k_N} \int_{\mathbb{R}^N} \prod_{j=1}^N \left[e^{it \cdot \frac{1}{N} \left(\left(r - \frac{\sigma_j^2}{2} \right) T + \sigma_j \omega_j \right)} \cdot \cos \left(k_j \pi \cdot \frac{\omega_j - a}{b - a} \right) \right] d\omega_1 \cdots d\omega_N$$
(1)

6. Splitting the Products into 1D Integrals

Now we combine the product terms into one:

$$\varphi(t) = \sum_{k_1, \dots, k_N}' A_{k_1, \dots, k_N} \int_{\mathbb{R}^N} \prod_{j=1}^N \left[e^{it \cdot \frac{1}{N} \left(\left(r - \frac{\sigma_j^2}{2} \right) T + \sigma_j \omega_j \right)} \cdot \cos \left(k_j \pi \cdot \frac{\omega_j - a}{b - a} \right) \right] d\omega_1 \cdots d\omega_N$$
(2)

This becomes:

$$\varphi(t) = \sum_{k_1, \dots, k_N}' A_{k_1, \dots, k_N} \prod_{j=1}^N \int_{\mathbb{R}} e^{it \cdot \frac{1}{N} \left(\left(r - \frac{\sigma_j^2}{2} \right) T + \sigma_j \omega_j \right)} \cdot \cos \left(k_j \pi \cdot \frac{\omega_j - a}{b - a} \right) d\omega_j$$
(3)

Remark: This is now a product of 1D integrals.

We approximate the integrals by bounding them over [a, b]:

$$\varphi(t) \approx \sum_{k_1,\dots,k_N}' A_{k_1,\dots,k_N} \prod_{j=1}^N \int_a^b e^{it \cdot \frac{1}{N} \left(\left(r - \frac{\sigma_j^2}{2} \right) T + \sigma_j \omega_j \right)} \cdot \cos \left(k_j \pi \cdot \frac{\omega_j - a}{b - a} \right) d\omega_j$$
(4)

$$= \sum_{k_1,\dots,k_N}' A_{k_1,\dots,k_N} \prod_{j=1}^N I_j(t)$$
 (15)

Numerical Evaluation of $I_i(t)$

For each fixed t, we can numerically evaluate $I_j(t)$ for j = 1, ..., N.

Since the integrand is complex-valued, we split it into real and imaginary parts:

$$I_j(t) = \int_a^b \Re[q(\omega_j)] d\omega_j + \int_a^b \Im[q(\omega_j)] d\omega_j$$
 (15')

Alternative Formulation of $\varphi(t)$

We start from:

$$\varphi(t) = \mathbb{E}\left[e^{it \cdot \frac{1}{N} \sum_{j} S_{j}(\tau)}\right], \quad S_{j}(\tau) = S_{j,0} \cdot e^{\left(r - \frac{\sigma_{j}^{2}}{2}\right)T + \sigma_{j}W_{j}(\tau)}$$
 (5)

$$= \mathbb{E}\left[e^{it\cdot\frac{1}{N}\sum_{j}S_{j,0}\cdot e^{\left(r-\frac{\sigma_{j}^{2}}{2}\right)T+\sigma_{j}W_{j}(\tau)}}\right]$$
(6)

$$= \int_{\mathbb{R}^N} e^{it \cdot \frac{1}{N} S_0 e^{\left(r - \frac{\sigma^2}{2}\right) T}} \sum_j e^{\omega_j} \cdot p_{\omega}(\omega_1, \dots, \omega_N) \, d\omega_1 \cdots d\omega_N \tag{7}$$

Here, p_{ω} is the multivariate density of the ω_{j} , which we approximate using the COS method.

Aggregating the Variables We now reduce the dimensionality of the integral by considering the aggregated variable:

$$\bar{W}(\tau) = \sum_{i} e^{W_j(\tau)} \in \mathbb{R}_+^*$$

Then the characteristic function becomes:

$$\varphi(t) = \int_{\mathbb{R}_+} \exp\left[it \cdot \frac{1}{N} S_0 \cdot e^{\left(r - \frac{\sigma^2}{2}\right)T} \cdot \bar{W}\right] \cdot p_{\bar{W}(\tau)}(\bar{W}) d\bar{W}$$
(8)

This reduces the dimensionality but introduces an unknown distribution $p_{\bar{W}(\tau)}.$

Notes

- $W_i \sim \mathcal{N} \Rightarrow e^{W_j} \sim \text{Lognormal}$
- But: sum of dependent lognormals $\sum_{i} e^{W_{i}}$ is not lognormal
- We must estimate $p_{\bar{W}(\tau)}$ via:
 - 1. Monte Carlo simulation
 - 2. Assuming simplifications for $p_{\bar{W}(\tau)}$

Pricing the Basket Option

To find the price/value of the basket option, we follow the reasoning of the paper:

$$\mathbb{P} = \frac{1}{2}(b' - a')e^{-rT} \sum_{k=0}^{N-1} F_k \cdot V_k \tag{16}$$

- a', b' correspond to the truncation limits when using the 1-dimensional COS method with respect to the characteristic function $\varphi(t)$.
 - -a'=0, b'=1, selected after Monte Carlo estimation
- V_k are the cosine series coefficients for the payoff function:

$$g(x) = \max(k - x, 0)$$
 (Put option)

• F_k are the cosine series coefficients for the COS method w.r.t. $\varphi(t)$, using the 1-dimensional COS method.

The coefficients F_k are calculated numerically as:

$$f_k = \frac{2}{b' - a'} \Re \left\{ \varphi \left(\frac{k\pi}{b' - a'} \right) \cdot e^{-i\frac{k\pi a'}{b' - a'}} \right\}$$
 (9)

$$= 2 \cdot \Re \{ \varphi (k\pi) \} \quad \text{if } b' = 1, a' = 0$$
 (17)

COS Coefficients for Payoff Function and Monte Carlo Estimator

The coefficients V_k are calculated as:

$$V_0 = 2 \int_0^1 (k - x) \, dx \tag{10}$$

$$V_k = 2 \int_0^1 (k - x) \cos(k\pi x) \, dx, \quad k \ge 1$$
 (18)

Evaluation of V_0 :

$$V_0 = 2 \left[kx - \frac{x^2}{2} \right]_0^1 = 2 \left(k - \frac{1}{2} \right) = 2k - 1$$
 with $k = 1 \Rightarrow V_0 = 1$

Evaluation of V_k for $k \ge 1$:

$$V_k = 2\left(k\int_0^1 \cos(k\pi x) dx - \int_0^1 x \cos(k\pi x) dx\right)$$
$$= -2 \cdot \frac{\cos(k\pi) - 1}{(k\pi)^2} = -2 \cdot \frac{(-1)^k - 1}{(k\pi)^2} = \frac{1 - (-1)^k}{(k\pi)^2}$$

This uses the fact that:

$$\max(k - x, 0) = k - x \quad \text{for } x \in [0, k]$$

Monte Carlo Estimator

$$\mathbb{P}_{MC} = e^{-rT} \cdot \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} \max\{k - B_T^{(i)}, 0\}$$
 (19)

Where:

$$B_T = \frac{1}{N} \sum_{j=1}^{N} S_j(T)$$

Alternatively (as a limit when $N_{\rm MC} \to \infty$):

$$\mathbb{P}_{MC} \approx e^{-rT} \cdot \mathbb{E}\left[\max\{k - B_T, 0\}\right]$$
 (Payoff function)

Notation and Parameter Explanation

- \bullet N Number of assets in the basket.
- $S_i(T)$ Price of asset j at maturity time T.
- $S_{j,0}$ Initial price of asset j.
- σ Volatility (assumed same for all assets in simplified case).
- r Risk-free interest rate.
- T Time to maturity.
- K Strike price of the option.
- $W_j(T)$ Brownian motion (Wiener process) for asset j.
- B_T Value of the basket at time T: $B_T = \frac{1}{N} \sum_{j=1}^{N} S_j(T)$.
- $\phi(t)$ Characteristic function of the basket payoff distribution.
- f(x) Probability density function of the basket value.
- [a, b] Truncation domain for COS expansion (chosen to contain most of the probability mass).
- A_k , $A_{k_1,...,k_n}$ COS coefficients in 1D and multivariate case, respectively.
- $\varepsilon_i \in \{-1, +1\}$ Auxiliary sign variables used for multidimensional Fourier transform symmetry.
- k, k_i Frequency indices for cosine expansion (number of terms in Fourier series).
- u Dimension of the integral (equal to number of underlying assets).
- j Imaginary unit, $j = \sqrt{-1}$.
- P_{COS} Option price computed using the COS method.
- \bullet F_k Fourier-Cosine coefficients of the probability density function.
- V_k Fourier-Cosine coefficients of the payoff function.
- $P_{\rm MC}$ Option price estimated by Monte Carlo simulation.
- $N_{\rm MC}$ Number of Monte Carlo paths/simulations.
- $B_T^{(i)}$ Basket value in the *i*-th Monte Carlo path.