

## planetmath.org

Math for the people, by the people.

## proof of the début theorem

Canonical name ProofOfTheDebutTheorem

Date of creation 2013-03-22 18:39:15 Last modified on 2013-03-22 18:39:15

Owner gel (22282)Last modified by gel (22282)

Numerical id 6

Author gel (22282)

Entry type Proof

Classification msc 60G40 Classification msc 60G05 Let  $(\mathcal{F})_{t\in\mathbb{T}}$  be a right-continuous http://planetmath.org/FiltrationOfSigmaAlgebrasfiltrat on the measurable space  $(\Omega, \mathcal{F})$ , It is assumed that  $\mathbb{T}$  is a closed subset of  $\mathbb{R}$  and that  $\mathcal{F}_t$  is universally complete for each  $t\in\mathbb{T}$ .

If  $A\subseteq \mathbb{T}\times \Omega$  is a progressively measurable set, then we show that its début

$$D(A) = \inf \{ t \in \mathbb{T} : (t, \omega) \in A \}$$

is a stopping time.

As A is progressively measurable, the set  $A \cap ((-\infty, t) \times \Omega)$  is  $\mathcal{B}(\mathbb{T}) \times \mathcal{F}_{t}$ -measurable. By the measurable projection theorem it follows that

$$\{D(A) < t\} = \{\omega \in \Omega : (s, \omega) \in A \cap ((-\infty, t) \times \Omega) \text{ for some } s \in \mathbb{T}\}\$$

is in  $\mathcal{F}_t$ . If there exists a sequence  $t_n \in \mathbb{T}$  with  $t_n > t$  and  $t_n \to t$ , then

$${D(A) \le t} = \bigcap_{n} {D(A) < t_n} \in \bigcap_{n} \mathcal{F}_{t_n} = \mathcal{F}_{t_+} = \mathcal{F}_t.$$

On the other hand, if t is not a right limit point of  $\mathbb{T}$  then

$$\{D(A) \le t\} = \{D(A) < t\} \cup \{\omega \in \Omega : (t, \omega) \in A\} \in \mathcal{F}_t.$$

In either case,  $\{D(A) \leq t\}$  is in  $\mathcal{F}_t$ , so D(A) is a stopping time.