TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỚI MỰC 9-10 ĐIỂM

Một số tính chất cần nhớ.

1. Môđun của số phức:

- Số phức z = a + bi được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Độ dài của vécto \overrightarrow{OM} được gọi là môđun của số phức z. Kí hiệu $|z| = |a + bi| = \sqrt{a^2 + b^2}$
- Tính chất
- $|z| = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}} = |\overline{OM}|$ $|z| \ge 0, \forall z \in \mathbb{C}, |z| = 0 \Leftrightarrow z = 0$

- $\bullet \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}, (z' \neq 0) \bullet ||z| |z'|| \leq |z \pm z'| \leq |z| + |z'|$
- $|kz| = |k|.|z|, k \in \mathbb{R}$
- ★ Chú ý: $|z^2| = |a^2 b^2 + 2abi| = \sqrt{(a^2 b^2)^2 + 4a^2b^2} = a^2 + b^2 = |z|^2 = |\overline{z}|^2 = z.\overline{z}$.

Lưu ý:

- $|z_1 + z_2| \le |z_1| + |z_2|$ dấu bằng xảy ra $\Leftrightarrow z_1 = kz_2 (k \ge 0)$
- $|z_1 z_2| \le |z_1| + |z_2|$ dấu bằng xảy ra $\Leftrightarrow z_1 = kz_2 (k \le 0)$.
- $|z_1 + z_2| \ge ||z_1| |z_2||$ dấu bằng xảy ra $\iff z_1 = kz_2 (k \le 0)$
- $|z_1 z_2| \ge ||z_1| |z_2||$ dấu bằng xảy ra $\iff z_1 = kz_2 (k \ge 0)$
- $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
- $|z|^2 = |\overline{z}||z| = |\overline{z}|^2$ $\forall z \in \mathbb{C}$

2.Một số quỹ tích nên nhớ	
Biểu thức liên hệ x, y	Quỹ tích điểm M
ax + by + c = 0 (1)	(1) Đường thẳng Δ : ax + by + c = 0
z-a-bi = z-c-di (2)	(2) Đường trung trực đoạn AB
	$\operatorname{v\'oi}ig(A(a,b),B(c,d)ig)$
$(x-a)^2 + (y-b)^2 = R^2 \text{ hoặc}$	Đường tròn tâm $I(a;b)$, bán kính R
z-a-bi =R	
$(x-a)^2 + (y-b)^2 \le R^2 \text{ hoặc}$	Hình tròn tâm $I(a;b)$, bán kính R
$ z-a-bi \le R$	
$r^2 \le (x-a)^2 + (y-b)^2 \le R^2 \text{hoặc}$	Hình vành khăn giới hạn bởi hai đường tròn đồn
$\begin{vmatrix} r \leq z - a - bi \leq R \end{vmatrix}$	tâm $I(a;b)$, bán kính lần lượt là r,R
1	
$\int \int y = ax^2 + bx + c$	Parabol
$\begin{bmatrix} y = ax^2 + bx + c \\ x = ay^2 + by + c \end{bmatrix} (c \neq 0)$	
$\frac{(x+a)^2}{b^2} + \frac{(y+c)^2}{d^2} = 1(1)$ hoặc	(1) Elip
$ z-a_1-b_1i + z-a_2-b_2i =2a$	(2) Elip nếu $2a > AB$, $A(a_1, b_1), B(a_2, b_2)$
	Đoạn AB nếu $2a = AB$
$\frac{(x+a)^2}{b^2} - \frac{(y+c)^2}{d^2} = 1$	Hypebol
$\frac{1}{b^2} - \frac{1}{d^2} = 1$	

Một số dạng đặc biệt cần lưu ý:

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng.

TQ1: Cho số phức z thỏa mãn $\left|z-a-bi\right|=\left|z\right|$, tìm $\left|z\right|_{Min}$. Khi đó ta có

 \checkmark Quỹ tích điểm M(x;y) biểu diễn số phức z là đường trung trực đoạn OA với A(a;b)

$$\checkmark \begin{cases}
|z|_{Min} = \frac{1}{2}|z_0| = \frac{1}{2}\sqrt{a^2 + b^2} \\
z = \frac{a}{2} + \frac{b}{2}i
\end{cases}$$

TQ2: Cho số phức thỏa mãn điều kiện |z-a-bi|=|z-c-di|. Tìm $|z|_{\min}$. Ta có

 \checkmark Quỹ tích điểm M(x;y) biểu diễn số phức z là đường trung trực đoạn AB với A(a;b), B(c;d)

$$\checkmark$$
 $|z|_{Min} = d(O, AB) = \frac{|a^2 + b^2 - c^2 - d^2|}{2\sqrt{(a-c)^2 + (b-d)^2}}$

Lưu ý: Đề bài có thể suy biến bài toán thành 1 số dạng, khi đó ta cần thực hiện biến đổi để đưa về dạng cơ bản.

Ví du 1:

✓ Cho số phức thỏa mãn điều kiện |z-a-bi| = |z-c-di|. Khi đó ta biến đổi

$$|\overline{z} - a - bi| = |z - c - di| \Leftrightarrow |z - a + bi| = |z - c - di|.$$

✓ Cho số phức thỏa mãn điều kiện |iz-a-bi|=|z-c-di|. Khi đó ta biến đổi

$$\left|iz - a - bi\right| = \left|iz - c - di\right| \iff \left|z + \frac{-a - bi}{i}\right| = \left|z + \frac{-c - di}{i}\right| \iff \left|z + b + ai\right| = \left|z + d + ci\right|.$$

Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn.

TQ: Cho số phức z thỏa mãn điều kiện $\left|z-a-bi\right|=R>0\left(\left|z-z_0\right|=R\right)$. Tìm $\left|z\right|_{\mathit{Max}}$, $\left|z\right|_{\mathit{Min}}$. Ta có

 \checkmark Quỹ tích điểm M(x;y) biểu diễn số phức z là đường tròn tâm I(a;b) bán kính R

$$\checkmark \begin{cases}
 |z|_{Max} = OI + R = \sqrt{a^2 + b^2} + R = |z_0| + R \\
 |z|_{Min} = |OI - R| = |\sqrt{a^2 + b^2} - R| = ||z_0| - R|
\end{cases}$$

Lưu ý: Đề bài có thể cho ở dạng khác, ta cần thực hiện các phép biến đổi để đưa về dạng cơ bản.

Ví dụ 1: Cho số phức z thỏa mãn điều kiện $|iz - a - bi| = R \Leftrightarrow \left|z + \frac{-a - bi}{i}\right| = \frac{R}{|i|}$ (Chia hai vế cho |i|)

$$\Leftrightarrow |z+b+ai| = R$$

Ví dụ 2: Cho số phức z thỏa mãn điều kiện $|z-a-bi| = R \Leftrightarrow |z-a+bi| = R$ (Lấy liên hợp 2 vế)

Ví dụ 3: Cho số phức z thỏa mãn điều kiện

$$\left| (c+di)z - a - bi \right| = R \Leftrightarrow \left| z + \frac{-a - bi}{c + di} \right| = \frac{R}{\left| c + di \right|} = \frac{R}{\sqrt{c^2 + d^2}}$$

Hay viết gọn $|z_0z-z_1|=R \Leftrightarrow \left|z-\frac{z_1}{z_0}\right|=\frac{R}{|z_0|}$ (Chia cả hai vế cho $|z_0|$)

Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip.

TQ1: (Elip chính tắc). Cho số phức z thỏa mãn điều kiện |z-c|+|z+c|=2a, (a>c) Khi đó ta có

✓ Quỹ tích điểm M(x;y) biểu diễn số phức z là Elip: $\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$

$$\checkmark \begin{cases}
|z|_{Max} = a \\
|z|_{Min} = \sqrt{a^2 - c^2}
\end{cases}$$

TQ2: (Elip không chính tắc). Cho số phức z thỏa mãn điều kiện $|z-z_1|+|z-z_2|=2a$

Thỏa mãn $2a > |z_1 - z_2|$.

Khi đó ta thực hiện phép biến đổi để đưa Elip về dạng chính tắc

Ta có

Khi đề cho Elip dạng không chính tắc $|z-z_1|+|z-z_2|=\overline{2a,(|z_1-z_2|<2a)}$ và $z_1,z_2\neq\pm c,\pm ci$). Tìm Max, Min của $P = |z - z_0|$.

Đặt
$$\begin{cases} |z_1 - z_2| = 2c \\ b^2 = a^2 - c^2 \end{cases}$$

(b - u - c)	
$ \nabla \hat{\mathbf{v}} \left z_0 - \frac{z_1 + z_2}{2} \right = 0$	$\begin{cases} P_{Max} = a \\ P_{Min} = b \end{cases} $ (dạng chính tắc)
Nếu $\begin{cases} \left z_0 - \frac{z_1 + z_2}{2} \right > a \\ z_0 - z_1 = k \left(z_0 - z_2 \right) \end{cases}$	$\begin{cases} P_{Max} = \left z_0 - \frac{z_1 + z_2}{2} \right + a \\ P_{Min} = \left z_0 - \frac{z_1 + z_2}{2} \right - a \end{cases}$
Nếu $\begin{cases} \left z_0 - \frac{z_1 + z_2}{2} \right < a \\ z_0 - z_1 = k \left(z_0 - z_2 \right) \end{cases}$	$P_{Max} = \left z_0 - \frac{z_1 + z_2}{2} \right + a$
Nếu $ z_0 - z_1 = z_0 - z_2 $	$P_{Min} = \left \left z_0 - \frac{z_1 + z_2}{2} \right - b \right $

(Đề Tham Khảo 2018) Xét số phức z=a+bi $\left(a,b\in\mathbb{R}\right)$ thỏa mãn $\left|z-4-3i\right|=\sqrt{5}$. Tính Câu 1. P = a + b khi |z+1-3i| + |z-1+i| đạt giá trị lớn nhất.

A.
$$P = 8$$

B.
$$P = 10$$

C.
$$P = 4$$

D.
$$P = 6$$

(Đề Tham Khảo 2017) Xét số phức z thỏa mãn $|z+2-i|+|z-4-7i|=6\sqrt{2}$. Gọi m, M lần lượt Câu 2. là giá trị nhỏ nhất và giá trị lớn nhất của |z-1+i|. Tính P=m+M.

A.
$$P = \frac{5\sqrt{2} + 2\sqrt{73}}{2}$$
 B. $P = 5\sqrt{2} + \sqrt{73}$ **C.** $P = \frac{5\sqrt{2} + \sqrt{73}}{2}$ **D.** $P = \sqrt{13} + \sqrt{73}$

B.
$$P = 5\sqrt{2} + \sqrt{73}$$

C.
$$P = \frac{5\sqrt{2} + \sqrt{73}}{2}$$

D.
$$P = \sqrt{13} + \sqrt{73}$$

Câu 3. (KTNL Gia Bình 2019) Cho hai số phức z_1, z_2 thỏa mãn đồng thời hai điều kiện sau $|z-1| = \sqrt{34}, |z+1+mi| = |z+m+2i|$ (trong đó m là số thực) và sao cho $|z_1-z_2|$ là lớn nhất. Khi đó giá trị $|z_1 + z_2|$ bằng

A.
$$\sqrt{2}$$

D.
$$\sqrt{130}$$

(THPT Cẩm Giàng 2 2019) Cho số phức z thỏa mãn |z-2-2i|=1. Số phức z-i có môđun Câu 4. nhỏ nhất là:

A.
$$\sqrt{5} - 2$$
.

B.
$$\sqrt{5}$$
 -1.

C.
$$\sqrt{5} + 1$$
.

D.
$$\sqrt{5} + 2$$
.

	~	2		
NGIIY	VÊN B	RÁO	VIIONG	- 0946798489

(THPT Gia Lộc Hải Dương 2019) Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất Câu 5. của $P = \left| \frac{2z+i}{z} \right|$ với z là số phức khác 0 và thỏa mãn $|z| \ge 2$. Tính tỉ số $\frac{M}{m}$.

A. $\frac{M}{}$ = 3.

B. $\frac{M}{m} = \frac{4}{3}$. **C.** $\frac{M}{m} = \frac{5}{3}$. **D.** $\frac{M}{m} = 2$.

Cho số phức z thoả mãn |z-2-3i|=1. Tìm giá trị lớn nhất của $|\overline{z}+1+i|$. Câu 6.

A. $\sqrt{13} + 3$.

B. $\sqrt{13} + 5$. **C.** $\sqrt{13} + 1$.

Xét tất cả các số phức z thỏa mãn |z-3i+4|=1. Giá trị nhỏ nhất của $|z^2+7-24i|$ nằm trong Câu 7. khoảng nào?

A. (0;1009).

B. (1009; 2018). **C.** (2018; 4036).

D. $(4036; +\infty)$.

(Chuyen Phan Bội Châu Nghệ An 2019) Cho số phức z thỏa mãn $\left|z+\overline{z}\right|+\left|z-\overline{z}\right|=4$. Gọi M, mCâu 8. lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = |z-2-2i|. Đặt A = M + m. Mệnh đề nào sau đây là đúng?

A. $A \in (\sqrt{34}; 6)$.

B. $A \in (6; \sqrt{42})$. **C.** $A \in (2\sqrt{7}; \sqrt{33})$. **D.** $A \in (4; 3\sqrt{3})$.

(Chuyên Hạ Long 2019) Cho số phức z thỏa mãn |z-6|+|z+6|=20. Gọi M, n lần lượt là Câu 9. môđun lớn nhất và nhỏ nhất của z. Tính M-n

A. M - n = 2.

B. M - n = 4. **C.** M - n = 7. **D.** M - n = 14.

(THPT Quang Trung Đống Đa Hà Nội 2019) Cho số phức z thỏa mãn |z-3+4i|=2 và **Câu 10.** w = 2z + 1 - i. Khi đó |w| có giá trị lớn nhất bằng

A. $4 + \sqrt{74}$.

B. $2+\sqrt{130}$. **C.** $4+\sqrt{130}$.

D. $16 + \sqrt{74}$

(THPT Quang Trung Đống Đa Hà Nội 2019) Xét số phức z và số phức liên hợp của nó có Câu 11. điểm biểu diễn là M và M' . Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn là N và N'. Biết rằng $M,\ M'$, N, N' là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của |z + 4i - 5|.

A. $\frac{5}{\sqrt{24}}$.

B. $\frac{2}{\sqrt{5}}$. C. $\frac{1}{\sqrt{2}}$. D. $\frac{4}{\sqrt{13}}$.

Câu 12. Biết số phức z thỏa mãn |iz-3|=|z-2-i| và |z| có giá trị nhỏ nhất. Phần thực của số phức z

A. $\frac{2}{5}$.

B. $\frac{1}{5}$. **D.** $-\frac{1}{5}$.

(Chuyên Nguyễn Trãi Hải Dương -2019) Xét các số phức z thỏa mãn |z-1-3i|=2. Số phức Câu 13. z mà |z-1| nhỏ nhất là

A. z = 1 + 5i.

B. z = 1 + i.

C. z = 1 + 3i.

D. z = 1 - i

(Chuyên Phan Bội Châu -2019) Cho số phức z thỏa mãn $|z+\overline{z}|+|z-\overline{z}|=4$. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = |z - 2 - 2i|. Đặt A = M + m. Mệnh đề nào sau đây là đúng?

A.
$$A \in (\sqrt{34}; 6)$$

B.
$$A \in (6; \sqrt{42})$$

A.
$$A \in (\sqrt{34}; 6)$$
. **B.** $A \in (6; \sqrt{42})$. **C.** $A \in (2\sqrt{7}; \sqrt{33})$. **D.** $A \in [4; 3\sqrt{3})$.

D.
$$A \in [4; 3\sqrt{3})$$
.

Câu 15. (Chuyên Lê Quý Đôn Điện Biên 2019) Trong các số phức z thỏa mãn |z-1+i|=|z+1-2i|, số phức z có mô đun nhỏ nhất có phần ảo là

A.
$$\frac{3}{10}$$
.

B.
$$\frac{3}{5}$$
.

C.
$$-\frac{3}{5}$$
.

C.
$$-\frac{3}{5}$$
. D. $-\frac{3}{10}$.

Câu 16. Cho hai số phức z_1, z_2 thỏa mãn $\left| \frac{z_1 - i}{z_1 + 2 - 3i} \right| = 1; \left| \frac{z_2 + i}{z_2 - 1 + i} \right| = \sqrt{2}$. Giá trị nhỏ nhất của $\left| z_1 - z_2 \right|$ là

A.
$$2\sqrt{2}$$
.

B.
$$\sqrt{2}$$
 .

D.
$$\sqrt{2} - 1$$
.

(Sở Bình Phước 2019) Gọi S là tập hợp các số phức z thỏa mãn $|z-1|=\sqrt{34}$ và Câu 17. $\left|z+1+mi\right|=\left|z+m+2i\right|$, (trong đó $m\in\mathbb{R}$). Gọi z_1 , z_2 là hai số phức thuộc S sao cho $\left|z_1-z_2\right|$ lớn nhất, khi đó giá trị của $|z_1 + z_2|$ bằng

C.
$$\sqrt{2}$$

D.
$$\sqrt{130}$$

Câu 18. Cho hai số phức z, w thỏa mãn $\left|z-3\sqrt{2}\right|=\sqrt{2}$, $\left|w-4\sqrt{2}i\right|=2\sqrt{2}$. Biết rằng $\left|z-w\right|$ đạt giá trị nhỏ nhất khi $z = z_0$, $w = w_0$. Tính $|3z_0 - w_0|$.

A.
$$2\sqrt{2}$$
.

B.
$$4\sqrt{2}$$
.

D.
$$6\sqrt{2}$$
.

Câu 19. Cho hai số phức z và w thỏa mãn z + 2w = 8 - 6i và |z - w| = 4. Giá trị lớn nhất của biểu thức |z|+|w| bằng

A.
$$4\sqrt{6}$$
.

B.
$$2\sqrt{26}$$
. **C.** $\sqrt{66}$.

C.
$$\sqrt{66}$$

D.
$$3\sqrt{6}$$
.

Câu 20. Cho số phức z thoả mãn |z|=1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P = |z + 1| + |z^2 - z + 1|$. Tính M.m

A.
$$\frac{13\sqrt{3}}{4}$$
.

B.
$$\frac{39}{4}$$
.

C.
$$3\sqrt{3}$$
.

D.
$$\frac{13}{4}$$
.

(THPT Yên Khánh - Ninh Bình - 2019) Cho hai số phức z và $\omega = a + bi$ thỏa mãn $\left|z+\sqrt{5}\right|+\left|z-\sqrt{5}\right|=6$; 5a-4b-20=0. Giá trị nhỏ nhất của $\left|z-\omega\right|$ là

A.
$$\frac{3}{\sqrt{41}}$$
.

B.
$$\frac{5}{\sqrt{41}}$$

B.
$$\frac{5}{\sqrt{41}}$$
. **C.** $\frac{4}{\sqrt{41}}$.

D.
$$\frac{3}{41}$$
.

(KTNL GV THPT Lý Thái Tổ 2019) Gọi z = a + bi $(a, b \in \mathbb{R})$ là số phức thỏa mãn điều kiện **Câu 22.** $|z-1-2i| + |z+2-3i| = \sqrt{10}$ và

có mô đun nhỏ nhất. Tính S = 7a + b?

(KTNL GV Thuận Thành 2 Bắc Ninh 2019) Cho số phức z thỏa mãn $\left|z+\overline{z}\right|+2\left|z-\overline{z}\right|=8$. Câu 23. Gọi M,m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức $P=\left|z-3-3i\right|$. Tính M+m.

A.
$$\sqrt{10} + \sqrt{34}$$
.

B.
$$2\sqrt{10}$$
.

C.
$$\sqrt{10} + \sqrt{58}$$
. **D.** $\sqrt{5} + \sqrt{58}$.

D.
$$\sqrt{5} + \sqrt{58}$$
.

	~	2		
NGIIY	VÊN B	RÁO	VIIONG	- 0946798489

Câu 24.	(Chuyên Bắc Giang	-2019) Cho số phức	z có $ z =1$. Tìm giá t	rị lớn nhất của biểu thức
	$P = z^2 - z + z^2 + z + 1 .$			
	A. $\frac{13}{4}$	B. 3	C. $\sqrt{3}$	D. $\frac{11}{4}$
Câu 25.	(Chuyên Đại Học Vin	h -2019) Giả sử z_1, z_2 là	hai trong các số phức th	nỏa mãn $(z-6)(8+\overline{zi})$ là số
	thực. Biết rằng $ z_1 - z_2 $	=4, giá trị nhỏ nhất của	$ z_1 + 3z_2 $ bằng	
	A. $5 - \sqrt{21}$	B. $20-4\sqrt{21}$	C. $20-4\sqrt{22}$	D. $5 - \sqrt{22}$
Câu 26.	Trong các số phức z th	noa mãn $ z-3-4i =2$	có hai số phức z_1, z_2 th	ỏa mãn $ z_1 - z_2 = 1$. Giá trị
	nhỏ nhất của $\left z_1\right ^2 - \left z_2\right ^2$			
	A. -10	B. $-4 - 3\sqrt{5}$	C. –5	D. $-6-2\sqrt{5}$
Câu 27.		_		phức z_1, z_2 thoả mãn
				a biểu thức $T = z_1 + z_2 $.
	A. $\sqrt{2} - 1$.	B. $\sqrt{2} + 1$.	C. $2\sqrt{2} + 1$.	D. $2\sqrt{2}-1$.
Câu 28.	(Chuyên Nguyễn Tất	Thành Yên Bái 2019) Cho z là số phức thơ	ba mãn $\left \overline{z} \right = \left z + 2i \right $. Giá trị
	nhỏ nhất của $ z-1+2i $	·		
	A. $5\sqrt{2}$.	B. $\sqrt{13}$.	C. $\sqrt{29}$.	D. $\sqrt{5}$.
Câu 29.				à số phức z thay đổi thỏa
	$m\tilde{a}n z-z_1 ^2 + z-z_2 ^2 =$:16. Gọi <i>M</i> và <i>m</i> lần	lượt là giá trị lớn nhất	và giá trị nhỏ nhất của $ z $.
	Giá trị biểu thức $M^2 - r$		C 11	D 0
Câu 20	A. 15. (Chuyển Quang Trun	B. 7.	C. 11.	D. 8.
Câu 30.	trị lớn nhất của biểu thứ		2 thoa man $ z-zi \le z $	z-4i và $ z-3-3i =1$. Giá
		B. $\sqrt{10} + 1$.	C. $\sqrt{13}$.	D. $\sqrt{10}$.
Câu 31.				fre P = z - 1 - i + z - 5 - 2i
	bằng	1 1	•	1 11 1
	A. $1+\sqrt{10}$.	B. 4.	C. √17	D. 5.
Câu 32.				ọi M và m lần lượt là giá
		ỏ nhất của biểu thức P	$ z- z-2 ^2- z-i ^2$. Môđu	on của số phức $w = M + mi$
	là $\mathbf{A} \cdot w = 3\sqrt{137}$.	$ \mathbf{p}_{1} = \sqrt{1258}$	$C_{1} w = 2\sqrt{300}$	$ \mathbf{p}_{1} = 2\sqrt{314}$
		_		
Câu 33.			z_1, z_2 thỏa mãn $ z_1 + 1 - i $	$= 2$ và $z_2 = iz_1$. Tìm giá trị
	nhỏ nhất m của biểu thu		C 2	D 2/2 2
	A. $m = \sqrt{2} - 1$.	B. $m = 2\sqrt{2}$.	C. $m = 2$.	D. $m = 2\sqrt{2} - 2$.

Câu 34. (SGD Bắc Giang - 2018) Heho hai số phức z, w thỏa mãn $\begin{cases} |z-3-2i| \le 1 \\ |w+1+2i| \le |w-2-i| \end{cases}$. Tìm giá trị nhỏ nhất P_{\min} của biểu thức $P = \left|z - \mathbf{w}\right|$.

A. $P_{\min} = \frac{3\sqrt{2} - 2}{2}$. **B.** $P_{\min} = \sqrt{2} + 1$. **C.** $P_{\min} = \frac{5\sqrt{2} - 2}{2}$. **D.** $P_{\min} = \frac{3\sqrt{2} - 2}{2}$.

Câu 35. (Chuyên Lê Hồng Phong - TPHCM - 2018) Cho số phức z thỏa |z|=1. Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức $P = \left|z^5 + \overline{z}^3 + 6z\right| - 2\left|z^4 + 1\right|$. Tính M - m.

B. m = 4, n = 3 **C.** m = -4, n = 4. **D.** m = 4, n = -4.

(Chuyên Đh Vinh - 2018) Cho các số phức w, z thỏa mãn $|w+i| = \frac{3\sqrt{5}}{5}$ và Câu 36. 5w = (2+i)(z-4). Giá trị lớn nhất của biểu thức P = |z-1-2i| + |z-5-2i| bằng

A. $6\sqrt{7}$

B. $4 + 2\sqrt{13}$

C. $2\sqrt{53}$

Câu 37. (**Kim Liên - Hà Nội - 2018**) Xét các số phức z = a + bi $(a, b \in \mathbb{R})$ thỏa mãn |z - 3 - 2i| = 2. Tính a+b khi |z+1-2i|+2|z-2-5i| đạt giá trị nhỏ nhất.

B. $2 + \sqrt{3}$.

C. 3.

D. $4 + \sqrt{3}$

(**Liên Trường - Nghệ An - 2018**) Biết rằng hai số phức z_1 , z_2 thỏa mãn $|z_1-3-4i|=1$ và Câu 38. $|z_2-3-4i|=\frac{1}{2}$. Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a-2b=12. Giá trị nhỏ nhất của $P = |z - z_1| + |z - 2z_2| + 2$ bằng:

A. $P_{\min} = \frac{\sqrt{9945}}{11}$. **B.** $P_{\min} = 5 - 2\sqrt{3}$. **C.** $P_{\min} = \frac{\sqrt{9945}}{13}$. **D.** $P_{\min} = 5 + 2\sqrt{5}$.

Câu 39. (Chuyên Lê Quý Đôn – Điện Biên - 2019) Trong các số phức thỏa mãn: $|z-1+i| = |\overline{z}+1-2i|$, số phức z có mô đun nhỏ nhất có phần ảo là

A. $\frac{3}{10}$.

B. $\frac{3}{5}$.

C. $-\frac{3}{5}$. D. $-\frac{3}{10}$.

(Chuyên Bắc Giang 2019) Cho số phức z thỏa mãn |z|=1. Gọi M,m lần lượt là giá trị lớn Câu 40. nhất, giá trị lớn nhất của $P = \left|z^5 + \overline{z}^3 + 6z\right| - 2\left|z^4 + 1\right|$. Tính M - m.

A. M - m = 1.

B. M - m = 7. **C.** M - m = 6. **D.** M - m = 3.

Câu 41. (Bình Giang-Hải Dương 2019) Cho số phức z thỏa mãn |z|=1. Giá trị lớn nhất của biểu thức P = |1+z| + 2|1-z| bằng

A. $6\sqrt{5}$.

B. $4\sqrt{5}$

C. $2\sqrt{5}$.

(SGD Hưng Yên 2019) Cho số phức z thoả mãn |z|=1. Gọi M và m lần lượt là giá trị lớn Câu 42. nhất và giá trị nhỏ nhất của biểu thức $P = \left|z+1\right| + \left|z^2-z+1\right|$. Tính M.m

A. $\frac{13\sqrt{3}}{4}$.

B. $\frac{39}{4}$.

C. $3\sqrt{3}$.

D. $\frac{13}{4}$.

NGUYĒN BẢO VƯƠNG - 0946798489

(Chuyên - KHTN - Hà Nội - 2019) Cho số phức z thỏa mãn : |z| = |z + 2i|. Giá trị nhỏ nhất của Câu 43. biểu thức P = |z - i| + |z - 4| là

A. 5.

C. $3\sqrt{3}$.

D. 6.

(SGD Bến Tre 2019) Cho các số phức $z_1 = 1 + 3i$, $z_2 = -5 - 3i$. Tìm điểm $M\left(x;y\right)$ biểu diễn số Câu 44. phức z_3 , biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x-2y+1=0 và mô đun số phức $w = 3z_3 - z_2 - 2z_1$ đạt gí trị nhỏ nhất.

A. $M\left(-\frac{3}{5}; \frac{1}{5}\right)$. **B.** $M\left(\frac{3}{5}; \frac{1}{5}\right)$. **C.** $M\left(-\frac{3}{5}; -\frac{1}{5}\right)$. **D.** $M\left(\frac{3}{5}; -\frac{1}{5}\right)$.

(SGD Cần Thơ 2019) Cho số phức z thoả mãn $|z-1+2i|=\sqrt{5}$. Giá trị lớn nhất của |z+1+i|bằng

A. $\sqrt{5}$.

B. $5\sqrt{2}$

C. 20

D. $2\sqrt{5}$

(Thi thử hội 8 trường chuyên 2019) Cho số phức z thỏa mãn $(2-i)z-(2+i)\overline{z}=2i$. Giá trị nhỏ nhất của |z| bằng

A. 1.

B. $\frac{2\sqrt{5}}{5}$. **C.** 2.

D. $\frac{\sqrt{5}}{5}$.

Câu 47. (**Chuyên Nguyễn Du-Đăk**L**ăk 2019**) Số phức z có môđun nhỏ nhất thoả mãn $\left|-2-3i+\overline{z}\right|=\left|z-i\right|$

A. $\frac{6}{5} - \frac{3}{5}i$.

B. $\frac{3}{5} + \frac{6}{5}i$. **D.** $\frac{6}{5} + \frac{3}{5}i$.

(Sở GD Nam Định - 2019) Trong các số phức z thỏa mãn $\left| \frac{(12-5i)z+17+7i}{z-2-i} \right| = 13$. Tìm giá trị Câu 48. nhỏ nhất của |z|.

A. $\frac{3\sqrt{13}}{26}$.

B. $\frac{\sqrt{5}}{5}$.

 $C. \frac{1}{2}$.

Câu 49. (Chuyên Nguyễn Huệ-HN-2019) Cho số phức z thỏa mãn $\left|z^2-2z+5\right|=\left|\left(z-1+2i\right)\left(z+3i-1\right)\right|$. Tính min |w|, với w = z - 2 + 2i.

A. $\min |w| = \frac{1}{2}$. **B.** $\min |w| = 1$. **C.** $\min |w| = \frac{3}{2}$. **D.** $\min |w| = 2$.

(Kim Liên - Hà Nội 2019) Xét các số phức z thỏa mãn $|z+3-2i|+|z-3+i|=3\sqrt{5}$. Gọi M, mCâu 50. lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z+2| + |z-1-3i|. Tìm M, m.

A. $M = \sqrt{17} + \sqrt{5}$: $m = 3\sqrt{2}$.

B. $M = \sqrt{26} + 2\sqrt{5}$: $m = \sqrt{2}$

C. $M = \sqrt{26} + 2\sqrt{5}$; $m = 3\sqrt{2}$.

D. $M = \sqrt{17} + \sqrt{5}$: $m = \sqrt{3}$

(Chuyên Nguyễn Trãi Hải Dương 2019) Xét các số phức z thỏa mãn |z-1-3i|=2. Số phức Câu 51. z mà |z-1| nhỏ nhất là

A. z = 1 + 5i.

B. z = 1 + i. **C.** z = 1 + 3i. **D.** z = 1 - i.

Câu 52.	(Chuyên Ngữ Hà N	ôi 2019) Cho các số p		LIỆU ÔN THI THPTQG 2021 hỏa mãn các điều kiện sau:
O		_		'ìm giá trị nhỏ nhất của biểu
	thức $T = z - z_1 ^2 + z $	_	2 8	<i>5</i> .
	A. 9.	B. 2.	C. 5.	D. 4.
Câu 53.	(Chuyên Bắc Gian	g 2019) Cho số ph	ức z thỏa mãn $ z-$	$3-4i = \sqrt{5}$ và biểu thức
		t giá trị lớn nhất. Tính		'
		B. $\sqrt{41}$.	•	D. $3\sqrt{5}$.
Câu 54.	(Đại học Hồng Đứ	rc –Thanh Hóa –201	19) Cho số phức $z =$	$a+bi\ (a,b\in\mathbb{R})$ thỏa mãn
		o nhất của biểu thức P		
	A. $3-\sqrt{2}$.	B. $2-\sqrt{2}$.	C. $3-2\sqrt{2}$.	D. $2+\sqrt{2}$.
Câu 55.	(Đại học Hồng Đức	-Thanh Hóa 2019) Cl	ho số phức $z = a + bi$ ($a, b \in \mathbb{R}$) thỏa mãn $ z = 1$.
	Tìm giá trị lớn nhất củ	a biểu thức $A = z+2 +$	2 z-2 .	
	A. 10.	B. $5\sqrt{2}$.	C. $10\sqrt{2}$.	D. 7.
Câu 56.				và số phức z thỏa mãn
	$\frac{z}{\sqrt{a^2+1}} = \frac{i-a}{1-a(a-2i)}$	Trên mặt phẳng tọa	độ, gọi M là điểm biể	ểu diễn số phức z . Khoảng
		điểm M và $Iigl(-3;4igr)$ (
	A. 6.	B. 5.		D. 3.
Câu 57.	(Chuyên Lê Hồng Pl	nong-Nam Định- 2019)	Xét số phức z thỏa mã	$\sin z - 2 - 4i = \sqrt{5} . \text{ Goi } a \text{ và}$
	b lần lượt là giá trị lới	n nhất và giá trị nhỏ nhấ	t của $ z $. Giá trị biểu thư	$\operatorname{crc} a^2 - b^2$ bằng
	A. 40.	B. $4\sqrt{5}$.	C. 20.	D. $2\sqrt{5}$.
Câu 58.	(Hậu Lộc 2-Thanh I	Ióa- 2019) Cho z_1, z_2 1	à hai trong các số phức	thỏa mãn $\left z-3+\sqrt{3}i\right =2$ và
		n nhất của $ z_1 + z_2 $ bằng		
	A. 8.	B. $4\sqrt{3}$.	C. 4.	D. $2+2\sqrt{3}$.
Câu 59.	(Chuyên Đại học Vi	nh - 2019) Giả sử z_1, z_2	là hai trong các số phức	e thỏa mãn $(z-6)(8+\overline{zi})$ là
		$ z_2 = 4$. Giá trị nhỏ nhấ		
	A. $5 - \sqrt{21}$.		C. $20-4\sqrt{22}$.	D. $5 - \sqrt{22}$.
Câu 60.	(Chuyên Hoàng Văn	Thụ-Hòa Bình-2019)	Trong các số phức z th	nỏa mãn $ z^2+1 =2 z $ gọi z_1
				trị của biểu thức $ z_1 ^2 + z_2 ^2$
	bằng	_		
	A. 6.	B. $2\sqrt{2}$.		D. 2.
Câu 61.			iôđun nhỏ nhất thỏa mãn	n điều kiện $ z-2-8i = \sqrt{17}$.
	Biết $z = a + bi(a, b \in \mathbb{I})$		C 10	D 44
	A. $m = -18$.	B. $m = 54$. Facebook Nguyễn Vươn	C. $m = -10$. ng https://www.facebool	D. $m = 14$. s.com/phong.baovuong Trang 9

	BÃO VƯƠNG - 09467984 (Nho Quan A - Ni		ét các số phức $z=a$	$a+biig(a,b\in\mathbb{R}ig)$ thỏa mãn
	$ z+2-3i =2\sqrt{2}$. Tính	P = 2a + b khi z + 1 + 6	5i + z - 7 - 2i đạt giá trị	ị lớn nhất.
	A. $P = 3$.	B. $P = -3$.	C. $P = 1$.	D. $P = 7$.
Câu 63.	(SGD Bắc Ninh 2019)	Cho số phức z thỏa mã		2 . Giá trị lớn nhất của biểu
	thức $P = z + 2 + i + \sqrt{6}$	z-2-3i bằng		
	A. $5\sqrt{6}$.	B. $\sqrt{15} \left(1 + \sqrt{6} \right)$.	C. $6\sqrt{5}$.	D. $\sqrt{10} + 3\sqrt{15}$.
Câu 64.				+1-i =3. Giá trị nhỏ nhất

của biểu thức A = 2|z-4+5i| + |z+1-7i| bằng $a\sqrt{b}$ (với a, b là các số nguyên tố). Tính S = a + b?

A. 20.

B. 18.

C. 24.

D. 17.

(Nguyễn Huệ- Ninh Bình- 2019) Cho z_1 , z_2 là nghiệm phương trình |6-3i+iz|=|2z-6-9i| và Câu 65. thỏa mãn $|z_1 - z_2| = \frac{8}{5}$. Giá trị lớn nhất của $|z_1 + z_2|$ bằng

A. $\frac{56}{5}$.

B. $\frac{28}{5}$.

D. 5.

Câu 66. Cho các số phức z và w thỏa mãn $(3-i)|z| = \frac{z}{w-1} + 1 - i$. Tìm giá trị lớn nhất T = |w+i|

A. $\frac{\sqrt{2}}{2}$. **B.** $\frac{3\sqrt{2}}{2}$. **C.** 2.

D. $\frac{1}{2}$.

Câu 67. Cho các số phức z thỏa mãn $\left|z-\sqrt{2}\right|+\left|z+\sqrt{2}\right|=2\sqrt{3}$. Tìm giá trị nhỏ nhất của biểu thức $P = |z + 2\sqrt{3} + i| + |z - 3\sqrt{3} + 2i| + |z - 3i|.$

A. 12.

B. 6.

C. 8.

D. 10.

Câu 68. Cho số phức z = x + yi, $x, y \in \mathbb{R}$ thỏa mãn $|z|^2 + 3y^2 = 16$. Biểu thức P = ||z - i| - |z - 2|| đạt giá trị lớn nhất tại $\left(x_{_0}\,;y_{_0}\right)$ với $\,x_{_0}<0\,,y_{_0}>0$. Khi đó: $\,x_{_0}^2+y_{_0}^2\,$ bằng

A. $\frac{20-3\sqrt{6}}{2}$. **B.** $\frac{20+3\sqrt{7}}{2}$. **C.** $\frac{20+3\sqrt{6}}{2}$. **D.** $\frac{20-3\sqrt{7}}{2}$.

Câu 69. Cho số phức z = a + bi $(a,b \in \mathbb{R})$ thỏa mãn |z+4|+|z-4|=10 và |z-6| lớn nhất. Tính S = a + b.

A. S = 11.

B. S = -5. **C.** S = -3.

D. S = 5.

Câu 70. Cho số phức z = a + bi $(a, b \in \mathbb{R})$ thỏa |z + 4| + |z - 4| = 10 và |z - 6| lớn nhất. Tính S = a + b?

A. S = -3.

B. S = 5.

C. S = -5.

D. S = 11.

Câu 71. Cho số phức z thỏa mãn |z|=1, M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = |1+z|+2|1-z|. Giá trị của biểu thức M+m bằng

A. $2\sqrt{5} + 2$.

B. 6.

C. $2\sqrt{5} + 4$

D. 7.

	^		
TĂI LIỀU	ON THI	THPTOG	2021

Câu 72.	Xét tập hợp S các số p	hức $z = x + yi(x, y \in \mathbb{R})$) thỏa mãn điều kiện 3.	$ z-\overline{z} = (1+i)(2+2i) $. Biểu
				$= x_0 + y_0 i$ (khi z thay đổi
	trong tập S). Tính giá			
	A. $T = -\frac{9\sqrt{3}}{2}$.	B. $T = \frac{9\sqrt{3}}{4}$.	C. $T = \frac{9\sqrt{3}}{2}$.	D. $T = -\frac{9\sqrt{3}}{4}$.
Câu 73.	(THPT Hậu Lộc 2 2	(019) Cho z_1, z_2 là ha	i trong các số phức th	oa mãn $\left z-3+\sqrt{3}i\right =2$ và
	$ z_1 - z_2 = 4$. Giá trị lớn	nhất của $ z_1 + z_2 $ bằng		
	A. 8.	B. $4\sqrt{3}$.	C. 4.	D. $2+2\sqrt{3}$.
Câu 74.				phức z_1 , z_2 thỏa mãn
				ủa biểu thức $T = z_1 + z_2 $.
	A. $2\sqrt{2} + 1$.	B. $\sqrt{2}-1$.	C. $2\sqrt{2}-1$.	D. $\sqrt{2} + 1$.
Câu 75.				$ z_1 - 4 - 5i = z_2 - 1 = 1$ và
	$\left \overline{z} + 4i \right = \left z - 8 + 4i \right $. Tin	$h z_1 - z_2 khi \ P = z - z_2 $	$z_1 + z - z_2 $ đạt giá trị nh	nỏ nhất
	A. 8	B. 6.	C. $\sqrt{41}$.	D. $2\sqrt{5}$.
Câu 76.	(Chuyên ĐH Vinh- 20	019) Cho các số phức <i>z</i>	và ω thỏa mãn $(2+i) z$	$z = \frac{z}{\omega} + 1 - i$. Tìm giá trị lớn
	nhất của $T = \omega + 1 - i $	4	A TO LEA	ω
	A. $\frac{4\sqrt{2}}{3}$	$\mathbf{B} \cdot \frac{\sqrt{2}}{2}$	C. $\frac{2\sqrt{2}}{\sqrt{2}}$	D. $\sqrt{2}$
Câu 77	3	<i>3</i>	3	$z^2 + 8i = 0 (z_1 \text{ có phần thực})$
Cau 11.	Cho so phae 2 va goi	z_1, z_2 ia nai nginçin p	mure eug maireme irina	
			1	I
			1	$+\frac{z_2}{2}$ được viết dưới dạng
	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó	nất của biểu thức $P = $ $n, p \in \mathbb{N} \; ; \; m \; , \; q \; $ là các	$ z-z_1 + z_2-z + z+2z_1 $ số nguyên tố). Tổng m	$+\frac{z_2}{2}$ được viết dưới dạng
	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q} \text{ (trong đó } \mathbf{A. 3.}$	nất của biểu thức $P=ig $ $n,p\in\mathbb{N}\;;\;m\;,\;q\;$ là các $\mathbf{B.}\;4\;.$	$ z-z_1 + z_2-z + z+2z_1 $ số nguyên tố). Tổng m C. 0.	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng D. 2.
Câu 78.	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q} \text{ (trong đó } \mathbf{A. 3.}$ Trong các số phức z th	nất của biểu thức $P=ig $ $n,p\in\mathbb{N}\;;\;m\;,\;q\;$ là các $\mathbf{B.}\;4\;.$ nỏa mãn $ig z^2+1ig =2ig z \;$ g	$ z-z_1 + z_2-z +$ $ z+2z_1 $ số nguyên tố). Tổng m \mathbf{C} . 0 . gọi z_1 và z_2 lần lượt là	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng
Câu 78.	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị	nất của biểu thức $P= m,p\in\mathbb{N}\;;\;m\;,\;q\;$ là các $\mathbf{B.}\;4\;.$ nỏa mãn $\left z^2+1\right =2\left z\right \;$ gi của biểu thức $\left z_1\right ^2+\left z_2\right $	$ z-z_1 + z_2-z + z+2z_1 $ số nguyên tố). Tổng m C. 0. gọi z_1 và z_2 lần lượt là z_1	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng D. 2. các số phức có môđun nhỏ
Câu 78.	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị A. 6.	nất của biểu thức $P=\begin{vmatrix} n,p\in\mathbb{N} \ ; \ m \ , \ q \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ z-z_1 + z_2-z +\left \stackrel{-}{z}+2z_1\right $ số nguyên tố). Tổng m $\mathbf{C}.\ 0$. gọi z_1 và z_2 lần lượt là \mathbf{c} bằng $\mathbf{C}.\ 4\sqrt{2}$.	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng \mathbf{D} . 2. các số phức có môđun nhỏ \mathbf{D} . 2.
Câu 78. Câu 79.	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị A. 6.	nất của biểu thức $P=\begin{vmatrix} n,p\in\mathbb{N} \ ; \ m \ , \ q \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ z-z_1 + z_2-z +\left \stackrel{-}{z}+2z_1\right $ số nguyên tố). Tổng m $\mathbf{C}.\ 0$. gọi z_1 và z_2 lần lượt là \mathbf{c} bằng $\mathbf{C}.\ 4\sqrt{2}$.	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng D. 2. các số phức có môđun nhỏ
	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị A. 6.	nất của biểu thức $P = $ $n, p \in \mathbb{N}$; m , q là các $\mathbf{B.}$ 4. nỏa mãn $ z^2 + 1 = 2 z $ gi của biểu thức $ z_1 ^2 + z_2 $ $\mathbf{B.}$ $2\sqrt{2}$.	$ z-z_1 + z_2-z + z+2z_1 $ số nguyên tố). Tổng m C. 0. gọi z_1 và z_2 lần lượt là $z_1 z_2 z_1$ C. $z_2 z_1 z_2$ C. $z_2 z_2 z_3$ C. $z_2 z_3 z_4$	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng \mathbf{D} . 2. các số phức có môđun nhỏ \mathbf{D} . 2.
	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị A. 6. (Sở Nam Định - 2019)	nất của biểu thức $P = $ $n, p \in \mathbb{N}$; m , q là các $\mathbf{B.}$ 4. nỏa mãn $ z^2 + 1 = 2 z $ g $\mathbf{B.}$ của biểu thức $ z_1 ^2 + z_2 $ $\mathbf{B.}$ $2\sqrt{2}$. D) Xét các số phức \mathbf{W} , biểu thức $P = z - 2i + z_2 $	$ z-z_1 + z_2-z + z+2z_1 $ số nguyên tố). Tổng m C. 0. gọi z_1 và z_2 lần lượt là $z_1 z_2 z_1$ C. $z_2 z_1 z_2$ C. $z_2 z_2 z_3$ C. $z_2 z_3 z_4$	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng \mathbf{D} . 2. các số phức có môđun nhỏ \mathbf{D} . 2. $\frac{3\sqrt{5}}{5}$ và $5w = (2+i)(z-4)$.
Câu 79.	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị A. 6. (Sở Nam Định - 2019 Tìm giá trị lớn nhất của A. 7.	nất của biểu thức $P= n,p\in\mathbb{N}; m,q $ là các $\mathbf{B.} 4$. nỏa mãn $ z^2+1 =2 z $ gi của biểu thức $ z_1 ^2+ z_2 $ $\mathbf{B.} 2\sqrt{2}$. D) Xét các số phức \mathbf{W} , biểu thức $P= z-2i +1$ $\mathbf{B.} 2\sqrt{53}$.	$ z-z_1 + z_2-z +$ $ z+2z_1 $ số nguyên tố). Tổng m C. 0. gọi z_1 và z_2 lần lượt là z_1 bằng C. $4\sqrt{2}$. z = 1 thỏa mãn $ w+i = 1$ $ z-6-2i $. C. $2\sqrt{58}$.	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng \mathbf{D} . 2. các số phức có môđun nhỏ \mathbf{D} . 2. $\frac{3\sqrt{5}}{5}$ và $5w = (2+i)(z-4)$.
Câu 79.	dương). Giá trị nhỏ nh $m\sqrt{n} + p\sqrt{q}$ (trong đó A. 3. Trong các số phức z th nhất và lớn nhất. Giá trị A. 6. (Sở Nam Định - 2019 Tìm giá trị lớn nhất của A. 7.	nất của biểu thức $P= n,p\in\mathbb{N}; m,q $ là các $\mathbf{B.} 4$. nỏa mãn $ z^2+1 =2 z $ gi của biểu thức $ z_1 ^2+ z_2 $ $\mathbf{B.} 2\sqrt{2}$. D) Xét các số phức \mathbf{W} , biểu thức $P= z-2i +1$ $\mathbf{B.} 2\sqrt{53}$. dều khác 1 và -1	$ z-z_1 + z_2-z +$ $ z+2z_1 $ số nguyên tố). Tổng m C. 0. gọi z_1 và z_2 lần lượt là z_1 bằng C. $4\sqrt{2}$. z = 1 thỏa mãn $ w+i = 1$ $ z-6-2i $. C. $2\sqrt{58}$.	$+\frac{z_2}{2}$ được viết dưới dạng $+n-p-q$ bằng \mathbf{D} . 2. các số phức có môđun nhỏ \mathbf{D} . 2. $3\sqrt{5}$ và $5w = (2+i)(z-4)$. \mathbf{D} . $4\sqrt{13}$.

NGUYĒN BAO VƯƠNG - 0946798489

Câu 81. Cho các số phức z_1 , z_2 , z_3 thỏa mãn $\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=1$. Tính giá trị lớn nhất của biểu thức $P = |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2.$

- **C.** P = 8. **D.** P = 12.
- **Câu 82.** Cho số phức z thỏa mãn $3\left|z+\overline{z}\right|+2\left|z-\overline{z}\right|\leq 12$. Gọi M,m lần lượt là giá trị lớn nhất, nhỏ nhất của |z-4+3i|. Giá trị của M.m bằng:

A. 28.

- **B.** 24.
- **C.** 26.
- **D.** 20.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

Thttps://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-70pKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SÓM NHẤT NHÉ!