PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-032767

(43) Date of publication of application: 12.02.1988

(51)Int.CI.

G11B 20/10

(21)Application number: 61-175616

(71)Applicant : HITACHI LTD

HITACHI VIDEO ENG CO LTD

(22)Date of filing:

28.07.1986

(72)Inventor: ITO SHIGEYUKI

WATAYA YOSHIZUMI TSUNOKA AKITOSHI

(54) DIGITAL SIGNAL RECORDING AND REPRODUCING SYSTEM

(57)Abstract:

PURPOSE: To attain the function such as high sound quality and sound dubbing or the like and the high density recording by using a means compressing the dynamic range so as to decrease the bit number of a digital signal more than the output bit number. CONSTITUTION: A left (L) and a right (R) sound signal inputted from input terminals 1, 2 are subject to band limit by LPFs 7, 8 after through switch circuits (SW) 5, 6. An output signal of the LPFs 7, 8 is converted into LR sequential 16-bit digital signal by an SW 9 and an AD conversion circuit 11. The dynamic range of the input sound signal in the output signal of the circuit 11 is subject to 1/2 logarithmic compression by a digital noise reduction (NR) 16 through the SW 13 and a digital LPF 14 and the signal is compressed into 10-bit data from the 16-bit data. Then an output signal of the NR 16 is subject to time axis compression by a PCM modulation circuit 27 through a 10-8 conversion circuit 25 and the result is recorded on a magnetic tape 31. Thus, the

function of high sound quality and sound dubbing or the like and the high density recording are attained in this way.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19日本国特許庁(JP)

⑩特許出願公開

四公開特許公報(A)

昭63-32767

⑤Int Cl.4
G 11 B 20/10

. .

識別記号

庁内整理番号 A-6733-5D ❸公開 昭和63年(1988)2月12日

審査請求 未請求 発明の数 1 (全12頁)

❷発明の名称 デイジタル信号記録再生システム

②特 顧 昭61-175616

❷出 願 昭61(1986)7月28日

個発 明 者 伊 藤 滋 行 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 所家電研究所内

⁶⁰発 明 者 綿 谷 由 純 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 所家電研究所内

¹ 砂発 明 者 角 鹿 明 俊 神奈川県横浜市戸塚区吉田町292番地 日立ビデオエンジ ニアリング株式会社内

外1名

⑪出 願 人 株式会社日立製作所 東京都千代田区神田駿河台4丁目6番地 ⑪出 願 人 日立ビデオエンジニア 神奈川県横浜市戸塚区吉田町292番地

リング株式会社

弁理士 小川 勝男

明 細 書

1. 発明の名称 ディジタル信号記録再生システム

2. 特許請求の範囲

四代 理 人

- 上記ダイナミックレンジを圧縮する手段が、 高域成分を強調する第1のエンファシス回路と 第2のエンファシス回路と、第5のエンファシ

ス回路と、振幅レベルを検波する検波回路とを 有しており、上配第 1 と第 2 のエンファシス回路は配録時と再生時とで逆特性を有するように 特性が切換えられることを特徴とする特許請求 の範囲第 1 項配載のディジタル信号配録再生システム。

- 5. 上記エンファシス回路と検波回路とが、IIR 形ディジタルフィルタにて構成され、かつ、第 1及び第2のエンファシス回路のフィルタ係数 が配録/再生にて切換えられることを特徴とす る特許請求の範囲第2項記載のディジタル信号 記録再生システム。
- 5. 発明の詳細な説明
 - 〔産業上の利用分野〕

本発明は、信号のダイナミックレンジをディジタル処理形ノイズリダクショアによって圧縮したのちディジタル信号として記録し、再生時には再生ディジタル信号を再び上記ディジタル処理形ノイズリダクションにて元のダイナミックレンジに伸及するディジタル信号記録再生システムに関す

る。

〔従来の技術〕

. . .

現在、一般的に使用されているカセット式VTR に代表される家庭用映像信号磁気記録再生装置 (以下、PCRと略記する。)では、映像信号を周 波数変調(PM)し、回転ヘッドにて磁気テーブ上 に斜めの記録トラックとして記録し、音声信号は 磁気テーブの端部に長手方向のトラックとして固 定ヘッドにて髙周波パイアスにて記録している。

また、近年の磁気テーブ,ヘッド,信号記録技 術などの進歩が目覚しく、これにより記録密度が 大幅に向上して、約10年前のPTRに比べて17倍以 上もの高密度記録が達成されている。

これら高密度記録は、テ-ブ走行速度の低速化 による記録トラック幅の狭小化を行なっており、 テーブ走行速度は11 m/。である。

とのような低テーブ走行速度になると、固定へ ッドによる音声信号記録方式では、ワウ・フラッ タ特性,再生 S/N,再生周波数特性等が劣化し、 十分な音質が得られなくなり、上記高記録密度化

ングの機能とを両立させることができる。

また、この方法の応用として、特開昭 58 – 222402 号に記載されているように、映像信号記録 トラックを分割し、各分割トラックに時間軸圧縮 した音声信号を記録し、映像信号プラス音声信号 記録モードと、音声信号専用記録モードとを有し たVCRが提案されている。

〔 発明が解決しようとする問題点〕

ところで、家庭用VCRでは磁気テープの記録可 能時間をできるだけ長くし、テープ利用効率をあ げることが必要である。そこで、上記した時間軸 圧縮音声信号を記録するエリアはできるだけ小さ いことが望ましい。

しかしながら、磁気テープ上に記録できる波長 には限界があり、現状の家庭用高密度記録VCRで は高々7~BMHz程度までである。

一方、高音質化を達成するためには、

ダイナミックレンジ: 80 48 以上

周波数帝域 : 15 kHz 以上 による小形・軽量・低コスト化のニーズと高画賞・ 高音質化のニーズとを両立させることが困難であ

これらを両立させる一方法として、音声信号を PMし、映像信号記録トラック上に回転ヘッドで記 録する方法がある。この方法により、ワウ・フラ ッタ特性,再生 S/N,再生周波数特性等の音質面 の劣化は解消され、高音質の再生音声信号が得ら れる。しかしながら、この方式では音声信号と映 像信号とが同一トラック上に記録されるため、縕 集等における音声信号のみの後追い記録(音声ダ ピング)を行なうことができないという問題があ

そとで、上記ニーズを両立させる他の方法とし て、特公昭 60 - 8525 号に記載されているように **磁気テープを回転シリンダに従来よりも 8 だけ多** く巻付け、映像信号記録トラックと音声信号記録 トラック(8部分)とを分割し、この音声信号記 録トラックには時間軸圧縮した音声信号を記録す る方法がある。これにより、高音質化と音声ダビ

パルス・コード変調(PCM)を用いたとすると音 声信号データでも、

52 (kHz) × 16 (bit) × 2 (ch) = 1024 Hbit/, が必要であり、時間軸を1/6に圧縮(音声信号記 録エリア:約 30°, 映像信号記録エリア: 180°) したとすると、記録化必要な音声データの伝送レ

1024 (Mbit/.) × 6 - 6144 (Mbit/.) 必要となる。このほかに、アドレスデータ,エラ - 訂正データ等を配録する必要があり、記録信号 の伝送ビットレートとして変調方式にもよるが、 十数 Mbit/。が必要となる。

したがって、上述の高音質化と、音声ダビング などの機能及び高密度記録を達成するためには、 伝送ピットレートを低くして、かつ高音質を確保 する信号記録方法が不可欠であるが、上記従来技 術では、これらの点に触れていない。

本発明の目的は、上記高音質化と、音声ダビン グ等の機能及び高密度配録を達成するディジタル が必要となる。この音質を得るために、たとえば 信号記録再生システムを提供することにある。

〔問題点を解決するための手段〕

. .

上記目的は、入力音声信号をアナログーディジ タル変換(ADC)にて16ビットのディジタル信号 に変換したのち、このディジタル信号のダイナミ ックレンジを対数的に 1/2 に圧縮して (ディジタ ル NR), ディジタル 信号の情報 ピット数を10ビッ トに圧縮したのち、時間軸圧縮及び変調して、磁 気テープ上に記録を行ない、再生時は、再生信号 を復調及び時間軸伸長して得られた10ビットディ ジタル信号を上記ダイナミックレンジ圧縮特性と 逆特性を有する伸長手段(ディジタルNR)で、元 のダイナミックレンジに伸長(16ピットディジタ ル信号)し、ディジタルーアナログ変換(DAC) を通して再生音声信号を得ることにより遊成でき 高音質ダイナミックレンジ: 80 dB 以上,周波数 帯域:15 kBz以上を確保したままで、記録ディジ タル信号のピット数を少なくとも 1/2 以下に圧縮 することができる。

(作用)

上記ディジタル信号のダイナミックレンジを圧

第1のエンファンス回路と第2のエンファシス回路の両方の特性が与えられた圧縮ディジタル信号が得られる。 このようにすることで、伝送ビットレートの低減を目的とするダイナミックレンジの圧縮に伴ない発生する雑音、すなわち、ノイメレベル変動に起因するノイズの息づき現象(プリージング現象)を軽減している。

縮伸長すで構成で、IIR 形形では、IIR 形形では、IIR 形形では、IIR 形形では、IIR 形形では、IIR 形形では、IIR 形では、IIR 形では、IIR 形では、IIR 形では、III のののので、III ののので、III ののので、III ののので、III ののので、III ののので、III ののので、III のので、III ののでは、III のののでは、III のののでは、III のののでは、III のののでは、III のののでは、III ののでは、III ののでは、III ののでは、III ののでは、III のののでは、III のののでは、III のののでは、III のののでは、III のののでは、III のののでは、III のののでは、III ののでは、III のののでは、III のののでは、III のののでは、III のののでは、III のののでは、III ののでは、III ののでは、I

とで、上記第2のエンファンス回路とりまーティンク回路は、記録時には同一の高域強調問問を有しており、定常状態(検波回路の動作期間)では、第1のエンファシス回路の特性のみが与えては、第1のエンファシス回路の特性のみが与れた圧縮ディンタル信号が得られ、機関間に相当する状態(低域大振幅信号には、域小信号が重量されたような状態)においては、

した出力信号との掛算を行なりことでダイナミッ . クレンジを元のレンジに伸長している。

ここで、上記第1のエンファシス回路と第2のエンファシス回路は、再生時には記録時と逆特性の高域抑圧特性を有するように切換えられる。また、検波回路は、記録時と同様にアタックタイム特性・ホールドタイム特性,リカバリタイム特性を有している。

このように、ダイナミックレンジの圧縮伸長により伝送ビットレートの低減を行なうとともに、ダイナミックレンジ圧縮伸長によって生じる音質劣化(ブリージング現象,オーバーフロー等)の防止をも行なっている。

また、ディジタル信号処理により上記圧総仲長を行なっているため、素子パランキによるアタックタイム特性・ホールドタイム特性・リカパリタイム特性・エンファシス特性等の特性パラツキが生じない。時定数やレベル等の調整が必要ないので、IC化に適していると共に、小形・軽量のディジタル信号記録

再生システムが構築できるなどの多くのメリット を有している。

〔 與 施 例 〕

. 41

以下、本発明の実施例について図面を用いて詳細に説明する。

第: 図は、本発明の一実施例を示すシステムブロック図である。

記録時(\overline{PB} 時)には、入力端!及び2から入力した左側(L)と右側(R)音声信号は、各々スイッチ回路(SF)5.6(\overline{PB} 側)を通ったのち、帯線制限フィルタ(LPP)7.8にて折返し雑音防止のためサンブリング周波数(例えば、64kBz)の1/2以下に帯域制限される。LPP7.8の出力信号は、スイッチ回路(SF)9とAD変換回路(ADC)11にて、LR 順次の16 ビットのディジタル信号に変換される。ADC11の出力信号は、SF15(\overline{PB} 側)を通ってディジタルLPP14にて、 配録音声信号帯域(例えば、15kBz)に帯域制限及びサンブリング周波数変換(64kBzから 32kBzへ)されたのち、ディジタルノイズリダクション(ディジタル

S W 13 (PB 倒) を通って、ディジタル LP P 14 にて不要帯域成分の除去及びサンプリング周波数変換(32 k B z から 64 k B z へ) されたのち、 D A 変換回路(D A C) 12 にてアナログ音声信号に変換され、S W 10 にて、L・R の 2 チャンネル信号に交互に扱分けられたのち、 S W 5 , 6 及び LP P 7 , 8 で不要成分除去後に、出力端 3 , 4 より再生音声信号として出力される。

ここで、ディジタルNR 16 は、IIR形ディジタルフィルタにて構成される第1及び第2のエンファンス回路としてのエンファシス回路 21,22 , ウェーティング回路25 . 提幅レベル検波回路19 , 割算回路 18 , 掛算回路 17 , SF 20,24 とで構成されている。このディジタルNR 16 の動作について第2図,第5図に示すフローチャートを用いて説明する。

まず、第 2 図を用いて記録時(\overline{PB} 時)について 説明する。ディジタル LPP14 の出力信号 X (第 2 図ステップ e) は、割算回路 18 にて振幅 レベル検波回路 19 の出力信号 Y にて割られる (ステップ e)。 NR)16 で入力音声信号のダイナミックレンジを 1/2 に対数圧縮され、16ビットデータから10ビットデータにデータ圧縮される。ディジタル NR 16 の出力信号は、10ビット→8 ビット変換回路にて さらに10ビットデータが8 ビットデータに折線圧 縮されたのち、PCM変調回路27にて、エラー訂正 データ,アドレス等が付加されたのち、時間軸圧 縮・変調が行なわれて回転ヘッド29にて磁気テー ブ51上に記録される。

再生時(PB時)には、磁気テーブ51より回転へッド50にて再生された再生信号は、データ・ストロープ回路32にて、波形等化の後にデータ再生されて、再生ディジタル信号となる。この再生ディジタル信号は、PCM復調回路28にて、得調・時間軸伸長等が行なわれて、8ビットデータになる。PCM復期回路28の出力信号は、8ビット→10ビット変換回路26にて8ビットデータから10ビットデータに伸長されたのち、ディジタルNR16にて元のダイナミックレンジに伸長され、16ビットデータとなる。ディジタルNR16の出力信号は、

割算回路18の出力信号は、 SIF 20 (PB 側) を通っ て、エンファシス回路21,エンファシス回路22に て、高坡強調されたのち(ステップ。デ)、一方 は圧縮出力として10ピット→8ビット変換回路25 に出力され、他方は S F 24 (PB) を通って、ディ ジタルNR 16 の制御信号を発生するウェーティン グ回路23、検波回路19に出力する。ウェーティン グ回路25は、エンファシス回路22と同一の特性を 有しており、エンファシス回路22の出力信号はさ らに高域強調されたのち (ステップ g) 、振幅レ ベル検波回路19内で絶対値変換(ステップム)が 行なわれ、この出力レペルアとディジタル NR 16 の制御信号である検波回路19の出力信号ととが比 較され、比較結果に応じて、ディジタルNR 16 の 追渡応答特性を制御するホールド,リカバリ、ア タックの3モードに分けられる(ステップ j, k, m)。

アタックモードでは、ステップ j K おいて検波 出力信号 Y が絶対値変換出力信号 W より小さい場合(W≥Y)であり、検波回路定数としてアタック 係数(例えば、アタックタイム 5 ms)が設定され 検波回路19にて入力信号レベルが検波され、検波 出力信号?として出力される(ステップ n,p)。

. . .

ホールド、及びリカバリモードは、ステップ j においてP < P の場合であり、まずホールドモードが行なわれ(検波動作停止と検波出力のホールド)、一定時間経過後(ステップ m)リカバリモードとなる。

ホールドモードは、圧伸によるノイズの息継ぎ現象を軽減するため、一定時間(例えば、15 m.)ディジタル NR 16 の動作をホールドするものである。まず、振幅レベル検波回路19の演算をホールド期間停止し、その期間は演算停止前の検波回路出力信号をホールドする(ステップ。, t)。

リカバリモードは、ホールド期間(例えば、15 m。)終了後、リカバリ期間(例えば 40 m。) 振幅レベル検波回路19への入力信号レベルを零とし、かつ、検波回路定数をリカバリ係数が設定されたのち、検波回路19の演算結果を出力する(ステップ。、q、r、)。 なお、上述のごとくウェーティング回路23とエンファンス回路22とは同一の特性を有

以上説明した実施例においては、16ビットデータをBビットに圧縮していることから、音声データに関して、1/2 に圧縮されたことになり、記録信号伝送ビットレートを少なくとも1/2 以下にできる。また、音質面に関しては、

- (1) サンプリング周波数: 32 k Hz
- (2) 量子化ビット数 : 16ビットから、

していることから、定常状態(検波回路19の動作期間)では、エンファシス回路21の特性のみが付加され、過度状態(検波回路19の不応動状態)ではエンファシス回路21とエンファシス回路22の特性の両方が付加されることになる。このようにすることで、ブリージング現象の軽波を図り、ダイナミックレンジ圧縮伸長による音質劣化を防止している。

次に第3図を用いて、再生時(PB時)の動作に ついて説明する。

8 ビット→10ビット変換回路26の出力信号は、 S IV 20,24 (PB 側)を通して、ウェーティング回路 25,エンファシス回路21に入力する。(ステップ k', a') ここで、エンファシス回路21の係数は、 入力端15より入力する PB/PB 制御信号に応じて 切換わり、ディエンファシス特性(高域抑制特性) を有する。エンファシス回路21の出力は、エンファシス回路21にの出力は、エンファシス回路21の出力は、エンファシス回路21の出力は、エンファシス回路21の出力は、エンファンス回路22に入力し(ステップ b')、一方ウェーティング回路23の出力信号は、振幅レベル検波 回路19(ステップ j'~ ε')に入力する。ここで、

- (I) 音声周波数蒂域 : 15 k Hz 以上
- (2) ダイナミックレンジ:90 dB 以上 を得ることができる。

次に、ディジタル NR 16 の具体的な回路構成の一例を第 4 図に示す。

第4図において、破線で囲んであるプロック 21. 22 がエンファシス回路 21 及びエンファシス回路 22 であり、ブロック 25 がウェーティング回路 25. ブロック 19が検波回路 19である。エンファシス回路 21, エンファンス回路 22, ウェーティング回路 25 は、同一構成の IIR形ディジタルフィルタで構成されており、かつ、各回路は、交互に送出される R 信号, L 信号に対応するように 切換 SFF にて 制御される。

エンファシス回路 21は、加算器 42,43 , 掛算器 44,49,50,ディレイ用のラッチ回路 46,47 , L·R 信号切換用 S F 45,48 , 係数メモリ 53,54,147 , 148 , 係数切換用 S F 51,52,145 と負数化回路 55 で構成されている。エンファシス回路 22は、加算器 56,57 , 掛算器 58,63,64 , ディレイ 用のラッチ

回路 60,61, L·R 信号切換用 S W 59,62,係数メモリ 67,68,149,150,係数切換用 S W 65,66,146, 食飲化回路 69で構成されている。ウェーティング回路 23は、加算器 70,71, 掛算器 72,77,78, ディレイ用のラッチ回路 74,75, L·R 信号切換用 S W 75,76,係数メモリ79,80,81で構成されている。

. . .

据幅レベル検波回路19は、検波部58,絶対値変換回路82,ホールド回路59,アタック・リカバリ・ホールド制御部40,41で構成されている。検波部58は、加算器84.85,掛算器92,ディレイ用のラッチ回路89,90, L・R信号切換用5 W 86,91,係数メモリ94,95,係数切換用5 W 95,788で構成されている。ホールド削御用5 W 85,87,88で構成されている。ホールド回路59は、ディレイ用のラッチ回路99,100、L・R信号用切換5 W 96,101,ホールド用5 W 97,98で構成されている。アタック・リカバリ・ホールド制御部40,41は、比較回路102、105、モノマルチ(MMV)105,104,106,107、L・R信号切換用5 W 108,109で構成されている。なかアタック・リカバリ・ホールド制御部40は L信号

ただし、記録と再生とで逆特性となれば良いので、単に係数の入れ替え用 SV と負数化で達成できる。

ところで、第4図は各ブロックとも同一形態の 『IR形ディジタルフィルタを基本として構成して いるため、集積回路化(IC化)においては第5図 に示すような一実施例に採用してもよい。

第 5 図は、ディジタル N R の基本構成の 1 つである I I R 形ディジタルフィルタを I I R 演算ユニット 126 で兼用処理し、かつ、割算回路 18 と掛算回路 17 も掛算・割算ユニット 116 で兼用処理される構成となっている。 このため、マルチブレクサ 124、128 とラッチ回路 115、117、125、127 と切換 S F 118、119 を用いている。

マルチブレクサ(MPX) 124,128 は、入力増 112,115 から入力するセレクト信号 51,52 に よって制御されており、制御形態は表 2 に示す通り である。

以下余白

制御用で、アタック・リカバリ・ホールド制御部41はR信号制御用である。

また、エンファシス回路 21, エンファシス回路 22, ウェーティング回路 23, 検波部 38 の各係数例 は、殺 1 に示すようであり、エンファシス回路 21 とエンファシス回路 22は、記録時 (PB) と再生時 (PB) とで係数を切換える。

畏1 各部係数値

係数	名	記録(PB)	再生(PB)
	<u>a</u>	0.24377	0.69936
エンファシス	ь	- 0.69956	- 0.24577
l l	c	2.51541	
	d	_	0.39755
	•	0.37035	0.69956
エンファシス	f	- 0.69936	- 0.37035
2	g	2.09457	
	Á		0.47747
		0.37035	6
ウェーティング	j	- 0.69936	-
	*	209456	←
検 故 部	78.	0.98	-
	n	0.99	←

段 2. マルチプレクサ動作表

SI	5 2	マルチプレクサ 124	マルチプレクサ 128		
0	0	端子 120	端子 129		
0	1	121	150		
1	0	, 122	, 151		
1	1	125	132		

0:コーレベル、 1:ハイレベル

また、IIR演算ユニット 126 は、第 6 図に示す 掛算器 155,157,158,加算器 153,154,ディレイ回路 156,係数回路 159,160,161 で構成されて、演算を行ない、各係数は入力端 112,115 から入力 されるセレクト信号 51,52 及び入力端 15 より入力 される PB/PB 側御信号にて係数 制御回路 162 で制御され、表 3 に示す通りである。また、IIR 演算ユニット 126 内のディレイ 回路は、 R 信号・ L 信号を 女互に処理する 構成であり、かつ、入力端 152 から入力するホールド 制御信号にても制御される。

以下余白

表 3. IIR演算ユニット係数制御

PB/ PB	S I	5 2	<i>k</i> 1	k 2	4.5
PB	0	0	0.24377	- 0 69956	2.51541
PB	0	1	. 0. 37 0 3 5	- 0 69956	2.09437
PB	1	0	0.37035	- 0.69936	209457
PB	ī	1	<i>アタック</i> Q 98 リカバリ Q 99	1.0	1.0
P B	0	0	0.69956	- 0.24577	0.39755
P B	0	1	Q 69936	- 0.37035	0.47747
PB	1	0	0.57035	- 0.69936	2.09437
P B	1	,	<i>アタック</i> Q98 リカバリQ99	1.0	1.0

次に、掛箕・割箕ユニット 116 の具体的構成の一例を第 7 図に示す。

第7図において、掛算・割算ユニット 116 は、対数変換回路(底 2 の対数) 155,159 ,加算器 156 ,対数逆変換回路 157 ,符号反転・非反転制御回路 158 から構成されており、上記符号反転・非反転制御回路 158 は入力端15より入力する PB/PB 割御信号に応じて、PB時非反転,PB時

以上説明した第 4 図及び第 5 図に示した本発明の実施例にて得られたディジタル NR 16 のアタックタイム特性,ホールドタイム特性,リカバリタイム特性の例を第 8 図に示す。

次に、本発明の他の一実施例について第9図を

反転するように動作する。例えば、<u>PB</u> 時入力増 155から X が入力し、入力増 140 から Y が入力し たとすると、

o g : X - # o g : Y = # o g : X/Y(i)
が対数逆変換回路 137 に入力されることになり、 出力器 141 からは、

同様に PB 時に入力端 153 から X が、入力端 140 から Y が入力されると、

 $\ell \circ g_2^{-1} (\ell \circ g_2 X \cdot Y) = X \cdot Y$ (4) が出力され、掛箕が行なわれる。

したがって、単に符号反転・非反転を行なうだけで掛算・割算が行なえることとになる。このように、第 5 図に示した構成を用いることにより、小規模な回路にて 10 化を達成できる。

用いて説明する。なお、第1図と同一の働きをす るプロックについては同一の番号を付した。記録 時(PB時)には、入力端 1 及び 2 から入力した L 個号とR個号は、各々SF5.6(PB側)を通った のち、LPP7,8にて折返し雑音防止のため、サン ブリング周波数(例えば、64 kHz)の 1/2 以下に 帯域制限される。LPF7.8の出力信号は、 5F9 とADC 11 にて、LR 順次の16ピットのディジタル 信号に変換される。ADC 11 の出力信号は、SW 15 (PB 側)を通ってディジタル LPF 14 にて音声帯域 (例えば、15 kHz)に帯域制限し、かつサンプリ ング周波数を 64 kHz から 32 kHz へ変換したのち. ディジタルNR 16 へ入力する。ディジタルNR 16で は、まず S F 142 (PB 側) を通ってエンファシス回 路21にて高坡成分を強調したのち、割箕回路18に 入力する。割算回路18では、提幅レベル検波回路 19 の出力信号レベルに応じて入力音声信号のダイ ナミックレンジを対数的に 1/2 に圧縮するように 動作する。割算回路 18 の出力信号は、 S 17 143

が強調されたのち、一方は10ビット→8ビット変 換回路25を通って8ビットデータになったのち、 PCH変調回路27を経て、回転ヘッド29にてテー ブ上に記録される。他方は、ウェーティング回路 23 を通って高域強調されたのち、提幅レベル検波 回路19に入力し、提幅レベルが検波され、ダイナ ミックレンジを圧縮するための割算回路18の入力 データとなる。

.

再生時には、記録時と全く逆の動作を行うを2倍には、記録時と全く逆の動作を行うを2倍になる。16にてダイナミックレンジを換るといり、8 F 145、144を26の出力信号(10ビット)は、5 F 145、144を回路26の出力信号(10ビット)はフェーティンのエンス回路25に入力する。25に入力する。25に入力する。25に入力する。25に入力する。25により、記録時(PB 時)とは逆時性と20回回のよりにより、記録を5にて近端が切換を5になが切換を5にでは立める25にではないでは25にはないとが掛箕器17で掛箕され、ダイナ

- (II) ディジタル信号のダイナミックレンジを圧縮 伸及することで伝送ビットレートの低減を図る とともに、ダイナミックレンジの圧縮伸及に、ダイナミックレンジの圧縮伸及により生ずるブリージング現象やオーバーフロー等 の音質劣化を2系統のエンファシス回路とのエンファンス回路とのエンファシスの路とのエンファンスの路とのエンファンスの路とのサールドタイム特性・リカバリタイム特性とで遊成では、低伝送ビットレートと高音質化とを達成できる。
- (2) ダイナミックレンジの圧縮伸長動作をディジ タル処理することで、
 - (i) 業子パラッキによる特性(エンファシス, アタック、ホールド、リカパリ等)の変動が 生じない。
 - (ji) 上記エンファシス等の時定数回路が係数データとなるため、周辺部品及び調整箇所が不要
- (3) ディジタル NR の圧縮動作, 伸長動作を記録再

ミックレンジが元のレベルに伸長される。掛箕器 17 の出力は、エンファシス回路 21 で PB 時には高級 抑圧されたのち、 S F 13 、ディ ジタル L P P 14 を 通して DAC 12 に て アナログ信号に変換される。 DAC 12 の出力信号は S F 10,5,6 を経て、 L P F 7,8 に て 不 役信号を 除去 したのち、出力 端 3,4 か ら 再生 音声 信号として 出力 される。

なお、各ブロックの動作は、第1図、第4図、 第5図と同様であるので、詳細説明は省略する。

このように、ディジタル NR 16 によるダイナミックレンジの圧縮伸長により、記録データ伝送レートを 1/2 以下に低減することができる。

なお、ディジタル処理によるダイナミックレンジ圧縮・伸長として他の構成も考えられるが、本発明の延旨は、ディジタル NR によりダイナミックレンジを圧縮し、伝送ピットレートを大幅に低減し、かつ、1c 化に適したものを提供することであり、他の構成でも良いことは明らかである。

[発明の効果]

以上説明したように本発明によれば、

生にて係数データ切換などで兼用化が行なえる。
(4) 上記(1)~(3)の特長を総合して、超小形・磁量のディジタル信号記録再生システムの構築が可能である。

等の多くのメリットを有しており、その効果は大 である。

4. 図面の簡単な説明

第1図は本発明の一実施例を示すブロック図、第2図、第3図は第1図の動作を説明するフローチャート、第4図、第5図は第1図に示した本発明の一実施例の具体的構成の一例を示すブロック図、第6図、第7図は第5図に示した回路の主な部分の具体的な構成の一例を示すブロック図、第8図は第1図、第4図、第5図の過渡特性の一例を説明するための波形図、第9図は本発明の他の一実施例を示すブロック図である。

16 ·····・ ディジタル NR

17 …… 掛算器

18朝實器

19 …………… 振幅レベル検波器

特開昭63-32767(9)

