Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje

Algoritmi

Vježba 4

Nositelj kolegija: izv.prof.dr.sc Matko Šarić

Suradnici u nastavi: asistent Marin Maslov, mag.ing.

Vježba 4

Zadatak 1.

Iako je vrijeme izvršavanja $Merge\ sort$ algoritma $\Theta(nldn)$, a vrijeme izvršavanja $Bubble\ sort$ algoritma (sortirnanja umetanjem; insertion sort) $\Theta(n^2)$, utjecaj konstantnog faktora rezultira u bržem izvršavanju $Bubble\ sorta$ za male vrijednosti n. Stoga ima smisla modificirati $Merge\ sort$ na način da koristimo $Bublle\ sort$ kada potproblem postane dovoljno mali.

Razmotrimo modifikaciju $Merge\ sorta$ u kojoj se $\frac{n}{k}$ podpolja dužine k sortira upotrebom $Bubble\ sorta$ te se potom sortirana podpolja udružuju standardnim udruživanjem (merging).

- (a) Pokažite da se $\frac{n}{k}$ podpolja, svaki dužine k, mogu svi zajedno sortirati u $\Theta(nk)$ vremenu.
- (b) Pokažite da se sva podpolja mogu udružiti (merging) u $\Theta(nld(\frac{n}{k}))$ vremenu.
- (c) Koliko je vrijeme izvršavanja takvog novog algoritma koji koristi i *Merge sort* i sortiranje umetanjem?
- (d) Izračunajte asimptotsku vrijednost k za koju modificirani algoritam ima isto vrijeme izvršavanja kao i standardni *Merge sort*.
- (e) Kako i koliki bi k u praksi trebalo izabrati.

Zadatak 2.

Riješi sljedeću rekurziju primjenom metode rekurzivnog stabla.

$$T(n) = \begin{cases} 1 & za \ n = 1 \\ 3T\left(\frac{n}{4}\right) + n^2 & za \ ostale \end{cases}$$

Zadatak 3.

Neka je zadano sortirano polje A[1...n] s n različitih cijelih brojeva (pozitivnih ili negativnih). Nađite algoritam kojim ćete pronaći indeks i (ako postoji) takav da je i=A[i] (ne treba naći sve indekse). Algoritam bi trebao imati vrijeme izvršavanja od $\Theta(logn)$.