IODOMETRIE

I. Quelques notions théoriques

1.2. Espèces redox du soufre

• Les réactions

$$S_4O_6^{2-} + 2e^{-} \stackrel{\longrightarrow}{\leftarrow} 2S_2O_3^{2-}$$

 $SO_4^{2-} + 2e^{-} + 2H^+ \stackrel{\longrightarrow}{\leftarrow} SO_3^{2-} + H_2O$

1.3. Principe de l'iodomètrie

Les réactions

$$I_2 + 2e^{-} \stackrel{\rightarrow}{\sim} 2I^{-}$$

Le couple peut servir d'indicateur coloré en effet I₂ est de couleur jaune tandis que I⁻ est incolore

1.4. La normalité d'une solution

 \rightarrow L'ion thiosulfate : $S_2O_3^{2-}$ est associé à un e⁻ ainsi N = C \Rightarrow N = 0,1 mol.L⁻¹ Le thiosulfate est un réducteur, la solution est une solution réductrice

II. Préparation de la solution

2.1. Problème expérimental

• Nombres de moles de KI

$$M = 126,9 + 39,1 = 166 \text{ g.mol}^{-1}$$

 $n = \frac{m}{M} = 0,06 \text{ mol}$

• Concentration

$$C = \frac{n}{V} = 2,4 \text{ mol.L}^{-1}$$

Solution décinormale

N₁₂ = 2C en effet une molécule de diode est associée à deux électrons

$$N_{I2} = 2\frac{n}{V} = 2\frac{m}{VM}$$

On retrouve le résultat avec m =1,27 g

2.2. Réalisation pratique

• Environ 10 g de KI

C'est l'espèce qui permet la dilution, il doit être en excès peu importe la quantité.

Précisément I₂

C'est l'espèce qui va servir pour faire la solution étalon. Sa concentration doit être précise.

III. Dosage du thiosulfate

3.1. La réaction de dosage

$$I_2 + 2S_2O_3^{2-} \xrightarrow{} 2I^- + S_4O_6^{2-} K = 10^{17}$$

La réaction est quasitotale

• Relation à l'équivalence

Le nombre d'électrons cédé par le réducteur est égal au nombre d'électrons capté par l'oxydant $N_I V_I = N_t V_t$

3.2. Le dosage

La coloration jaune est due à la goute en trop du I_2 qui ne réagit plus A l'équivalence on a donc $N_t = \frac{N_J V_{eq}}{V_t}$

3.3. Autre dosage

On retrouve la même normalité pour le thiosulfate (environ)

IV. Dosage ne retour

4.1. Principe du dosage en retour

On ne peut pas pour x raisons doser directement SO_3^{2-} par I_2 . On utilise alors la méthode du dosage en retour.

On verse dans un grand bêcher un volume V_0 de SO_3^{2-} et un volume V_1 de I_2 , de normalité connue. Le volume de I_2 est choisi de sorte que la solution reste jaune par l'excès de I_2 .

$$I_2 + SO_3^{2-} + 3H_2O \xrightarrow{\leftarrow} SO_4^{2-} + 2I^- + 2H_3O^+$$

A la fin de cette réaction il reste dans le bêcher : I_2 , SO_4^{2-} et I^- Il ne reste plus qu'à doser par ${}_2O_3^{2-}$ la quantité de I_2 restant dans le bêcher :

$$I_2 + 2S_2O_3^{2-} \xrightarrow{} 2I^- + S_4O_6^{2-}$$

Ainsi à l'équivalence lorsque la solution devient limpide on a $N_tV_t=N_1V_1$ - N_0V_0 correspondant à la quantité de I_2 restant. On en déduit alors N_0

Autre méthode:

- Le nombre d'électrons apportés : N₀V₀ + N_tV_t
- Le nombre d'électrons captés : N_IV_I

On retrouve alors la même relation

Les différentes étapes du dosage de 3.3.

- (a) solution de I₂
- (b) décoloration partielle de la solution avec le S₂O₃²-
- (c) Ajout de l'empois d'amidon
- (d) Equivalence du dosage