On-line learning dynamics of ReLU neural networks using statistical physics techniques

M. Straat, M. Biehl

University of Groningen

April 26, 2019

Content

- Learning from a teacher network
- Description in terms of order parameters
- 3 Evolution of order parameters in the thermodynamic limit
- 4 Behavior of the ReLU perceptron and Soft Committee Machine

Learning from a teacher network

At timestep μ , the input $\boldsymbol{\xi}^{\mu} \in \mathbb{R}^{N}$ is presented.

Figure: Teacher with weights $\boldsymbol{B} \in \mathbb{R}^N$

Figure: Student with weights $\boldsymbol{J} \in \mathbb{R}^N$

 $y^{\mu} = \mathbf{B} \cdot \boldsymbol{\xi}^{\mu}$ and $x^{\mu} = \mathbf{J} \cdot \boldsymbol{\xi}^{\mu}$ are pre-activations and $g(\cdot)$ the activation function.

On-line learning from a teacher network

On-line gradient descent

- **1** Error for the μ th example: $\epsilon^{\mu} = \frac{1}{2}(\tau^{\mu} \sigma^{\mu})^2$
- 2 Update weights ${m J}$ to reduce ϵ^{μ} : ${m J}^{\mu+1}={m J}^{\mu}+\Delta{m J}$, where $\Delta{m J}=-\frac{\eta}{N}\nabla_{{m J}}\epsilon^{\mu}$

Weight update

$$\mathbf{J}^{\mu+1} = \mathbf{J}^{\mu} + \frac{\eta}{N} \delta^{\mu} \boldsymbol{\xi}^{\mu}, \quad \delta^{\mu} = (\tau^{\mu} - \sigma^{\mu}) g'(x^{\mu})$$

Generalization error: $\epsilon_g(\boldsymbol{J}) = \langle \epsilon \rangle_{\boldsymbol{\xi}}$

Here we assume i.i.d. $\xi_i \sim \mathcal{N}(0,1)$ such that $\langle \xi_i \xi_j \rangle = 0, \quad i \neq j$

The weights J and B are the microscopics of the system.

Macroscopics: Order parameters

Order parameters aggregate the microscopics into a few descriptive parameters.

Overlap $R = \mathbf{J} \cdot \mathbf{B}$

Student magnitude $Q = \boldsymbol{J} \cdot \boldsymbol{J}$

Teacher magnitude $T = \mathbf{B} \cdot \mathbf{B} = 1$

$$R = \sqrt{Q}\sqrt{T}\cos\phi$$

Macroscopics: Order parameters

Order parameters aggregate the microscopics into a few descriptive parameters.

Overlap $R = \mathbf{J} \cdot \mathbf{B}$

Student magnitude $Q = \boldsymbol{J} \cdot \boldsymbol{J}$

Teacher magnitude $T = \mathbf{B} \cdot \mathbf{B} = 1$

$$R = \sqrt{Q}\sqrt{T}\cos\phi$$

$$R^{\mu+1}$$
 and $Q^{\mu+1}$ follow from substituting $J^{\mu+1}$:

$$R^{\mu+1} = R^{\mu} + \frac{\eta}{N} \delta^{\mu} y^{\mu}$$

$$Q^{\mu+1} = Q^{\mu} + 2\frac{\eta}{N}\delta^{\mu}x^{\mu} + \frac{\eta^2}{N}(\delta^{\mu})^2$$

Erf activation

ReLU activation

Learning behavior on the level of order parameters

$$oldsymbol{\xi} \in \mathbb{R}^3$$
 i.i.d $\xi_i \sim \mathcal{N}(0,1)$ and $R(0) = 0, Q(0) = 0.2$

Time $\alpha = \mu/N$

◆ロ > ← (日 > ← ())))))))))))))))))))))))))))

Learning a rule in higher dimensions

$$oldsymbol{\xi} \in \mathbb{R}^{N}$$
 i.i.d $\xi_{i} \sim \mathcal{N}(0,1)$ and $R(0) = 0, Q(0) = 0.2$

Figure: Learning in \mathbb{R}^{60}

Time
$$\alpha = \mu/N$$

Figure: Learning in \mathbb{R}^{1000}

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Differential equations $N \to \infty$

$$\frac{dR}{d\alpha} = \eta \langle \delta y \rangle_{\xi}$$

$$\frac{dQ}{d\alpha} = 2\eta \langle \delta x \rangle_{\xi} + \eta^2 \langle \delta^2 \rangle_{\xi}$$

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Differential equations $N \to \infty$

$$\frac{dR}{d\alpha} = \eta \langle \delta y \rangle_{\xi}$$

$$\frac{dQ}{d\alpha} = 2\eta \langle \delta x \rangle_{\xi} + \eta^2 \langle \delta^2 \rangle_{\xi}$$

Pre-activations $x = \sum_{i=1}^{N} J_i \xi_i$ and $y = \sum_{i=1}^{N} B_i \xi_i$ are Gaussians for large N (CLT). Joint density P(x, y) with:

$$\langle x \rangle = \langle y \rangle = 0$$
 and $C = \begin{pmatrix} Q & R \\ R & T \end{pmatrix}$.

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Differential equations $N o \infty$

$$\frac{dR}{d\alpha} = \eta \langle \delta y \rangle_{\xi}$$

$$\frac{dQ}{d\alpha} = 2\eta \langle \delta x \rangle_{\xi} + \eta^2 \langle \delta^2 \rangle_{\xi}$$

Pre-activations $x = \sum_{i=1}^{N} J_i \xi_i$ and $y = \sum_{i=1}^{N} B_i \xi_i$ are Gaussians for large N (CLT). Joint density P(x, y) with:

$$\langle x \rangle = \langle y \rangle = 0$$
 and $C = \begin{pmatrix} Q & R \\ R & T \end{pmatrix}$.

Averages $\langle \cdot \rangle_{\xi}$ taken over P(x,y) for $g(x) = x\Theta(x)$.

Solving the ODE system

Figure: Left: Evolution of R and Q with $\eta=0.1$, R(0)=0 and Q(0)=0.25. Right: Evolution of ϵ_g for different η . Lines and symbols show theoretical and simulation (N=1000) results, respectively.

Soft committee machine

Figure: Soft committee machine with K hidden units.

Weight matrix $\boldsymbol{J} \in \mathbb{R}^{N \times K}$

Student output
$$\sigma^{\mu} = \sum_{i=1}^{K} g(\mathbf{J}_i \cdot \boldsymbol{\xi}^{\mu})$$

Teacher output $\sum_{m=1}^{M} \mathbf{r}(\mathbf{R})$

 $au^{\mu} = \sum_{n=1}^{M} g(\boldsymbol{B}_{n} \cdot \boldsymbol{\xi}^{\mu})$

M=3 teacher hidden units and K=3 student hidden units.

 $R_{in} = \boldsymbol{J}_i \cdot \boldsymbol{B}_n$

Teacher hidden layer

$$T_{nm} = \boldsymbol{B}_n \cdot \boldsymbol{B}_m = \delta_{nm}$$

Student hidden layer

 $Q_{ik} = \mathbf{J}_i \cdot \mathbf{J}_k$

M=3 teacher hidden units and K=3 student hidden units.

 $R_{in} = \boldsymbol{J}_i \cdot \boldsymbol{B}_n$

Teacher hidden layer

$$T_{nm} = \boldsymbol{B}_n \cdot \boldsymbol{B}_m = \delta_{nm}$$

Student hidden layer

$$g(J_1 \cdot \xi)$$

$$g(J_3 \cdot \xi)$$

$$Q_{ik} = \mathbf{J}_i \cdot \mathbf{J}_k$$

M=3 teacher hidden units and K=3 student hidden units.

 $R_{in} = \boldsymbol{J}_i \cdot \boldsymbol{B}_n$

Teacher hidden layer

$$T_{nm} = \boldsymbol{B}_n \cdot \boldsymbol{B}_m = \delta_{nm}$$

Student hidden layer

$$g(J_1 \cdot \xi)$$

$$g(J_2 \cdot \xi)$$

$$g(J_3 \cdot \xi)$$

$$Q_{ik} = \mathbf{J}_i \cdot \mathbf{J}_k$$

M=3 teacher hidden units and K=3 student hidden units.

M! possible permutations and therefore realizations of the rule.

SCM: Solving the ODE system

M=2 teacher units and K=2 student.

Initial state:
$$R(0) = \begin{pmatrix} 10^{-3} & 0 \\ 0 & 10^{-3} \end{pmatrix}, \quad Q(0) = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.2 \end{pmatrix}$$

Figure: K = M = 2 and $\eta = 0.1$. Symbols show simulation results for $N = 10^4$.

SCM: Solving the ODE system

Figure: K = M = 2 and $\eta = 0.1$. Symbols show simulation results for $N = 10^4$.

Plateau: $R_{in} = R$, $Q_{ii} = Q$ and $Q_{ik} = C$ (fixed point of ODE). Eigenvalue $\lambda_5 = 0.24$ with eigenvector $\mathbf{u}_5 = (0.5, -0.5, -0.5, 0.5, 0, 0, 0)^T$ guides the escape from symmetry to the start of specialization: $\mathbf{J}_1 \to \mathbf{B}_1$ and $\mathbf{J}_2 \to \mathbf{B}_2$

Overrealizable scenarios K > M

M=2 teacher units and K=3 student units, $R_{11}(0)=10^{-3}$

ReLU: $\max(\mathbf{B}_2 \cdot \boldsymbol{\xi}, 0) = \max(a\mathbf{B}_2 \cdot \boldsymbol{\xi}, 0) + \max(b\mathbf{B}_2 \cdot \boldsymbol{\xi}, 0)$ for a + b = 1Not possible for non-linear Erf function: $Q_{22} \rightarrow 0$

Future work

- Regularization techniques (e.g. Dropout)
- Compare behavior of activation functions
- Concept drift
- Learning rate adaptation
- Adaptive second layer weights
- Extension to more layers

Thank you

We acknowledge financial support through the Northern Netherlands Region of Smart Factories (RoSF) consortium, see http://www.rosf.nl.