

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2020-21

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 1h30m (15m de tolerância)

Prova de Reavaliação Global

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>quatro grupos</u> utilizando <u>folhas de capa distintas</u>. Na resolução da prova deve utilizar uma esferográfica azul ou preta. Em cada pergunta da prova é apresentada a cotação prevista.

GRUPO I

1. [4,0] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, onde $\vec{a} = (2,1,1,-1)$, $\vec{b} = (1,-1,1,0)$ e $\vec{c} = (1,2,1,0)$. Seja $H = \{(x,y,z,w) \in \mathbb{R}^4 : y = 0 \land z - 2w = 0\}$ um subespaço de \mathbb{R}^4 .

Determine:

- a) O subespaço gerado pelo conjunto S, L(S), e conclua em relação à sua dimensão. Indique uma base, U, para o subespaço obtido que inclua o maior número possível de elementos de S. Justifique.
- **b)** Uma base, W, para o espaço \mathbb{R}^4 que inclua dois elementos não ortogonais de H e um elemento de L(S). Justifique.
- 2. [4,5] Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$m(T) = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 8 \\ 1 & 3 & 4 \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 . Seja $U = \{(\alpha, 0, \delta), (1, 2, 1), (\delta, 1, -\delta)\}$ um conjunto de vetores próprios de m(T) e $B = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$ uma base para o espaço \mathbb{R}^3 . Determine:

- a) Os valores próprios e os respetivos vetores próprios e espaços próprios; indique, para cada um dos espaços próprios, uma base e a dimensão.
- **b)** Os valores de $\alpha, \delta \in \mathbb{R}$, de modo que U seja uma base de vetores próprios para \mathbb{R}^3 e as matrizes $m(T)_{\mathrm{U,U}}$ e $m(T)_{\mathrm{B,B}}$. Justifique devidamente.

(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 1h30m (15m de tolerância)

Prova de Reavaliação Global

GRUPO II

3. [2,5] Considere o plano M: x+y=1 e a reta, r, com a equação vetorial $X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, tal que P = (0,1,3) e $\vec{a} = (1,1,1)$. Obtenha a equação vetorial de uma reta, h, que passa no ponto Q = (2,0,-1), é concorrente com a reta r e faz o ângulo $\alpha = \pi/6$ com o plano M.

GRUPO III

- **4.** [2,0] Sejam $A \in C = (A \alpha I)^2$, $\alpha \in \mathbb{R}$, matrizes quadradas de ordem n, sendo I a matriz identidade. Seja X um vetor próprio de A associado ao valor próprio λ .
 - a) Mostre que X é um vetor próprio de C associado ao valor próprio $(\lambda \alpha)^2$.
 - **b)** Para que valores de λ a matriz C é não singular? Justifique.
- **5.** [4,5] Sejam as transformações lineares $S \in L(\mathbb{R}^2, \mathbb{R}^3)$ e $T \in L(\mathbb{R}^3, \mathbb{R}^2)$, definidas por S(x, y) = (x + 2y, -x y, -3x 4y) e T(x, y, z) = (x + y z, -x + z)

em relação às bases canónicas, E_3 , para o espaço \mathbb{R}^3 , e E_2 , para o espaço \mathbb{R}^2 .

- a) Obtenha o núcleo e o contradomínio de S. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- b) Mostre que apenas S é uma função injetiva e determine a sua função inversa.

GRUPO IV

6. [2,5] Considere as transformações lineares definidas na questão 5. e a base $V = {\vec{v_1}, \vec{v_2}} = {(1,2), (1,1)} \subset \mathbb{R}^2$. Usando o cálculo matricial, obtenha a representação matricial da composição possível de S com T em relação à base V (domínio e conjunto de chegada).