Problem 1.

Sketch the curve with parametric equations

$$x = 3t, y = \frac{3}{t}$$

The point P on the curve has parameter t=2. The normal at P meets the curve again at the point Q.

- (a) Show that the normal at P has equation 2y = 8x 45.
- (b) Find the value of t at Q.

Solution

Part (a)

Consider $\frac{\mathrm{d}y}{\mathrm{d}x}$.

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

$$= \frac{dy}{dt} \cdot \left(\frac{dx}{dt}\right)^{-1}$$

$$= \left(-\frac{3}{t^2}\right) \cdot \frac{1}{3}$$

$$= -\frac{1}{t^2}$$

Hence, the tangent to the curve has gradient $-\frac{1}{t^2}$, whence the normal to the curve has gradient $\frac{-1}{-\frac{1}{t^2}} = t^2$. Thus, the normal to the curve at P has gradient $2^2 = 4$. Note that P

has coordinates $\left(3\cdot 2,\frac{3}{2}\right)=\left(6,\frac{3}{2}\right)$. Using the point-slope formula,

$$y - \frac{3}{2} = 4(x - 6)$$

$$\implies y - \frac{3}{2} = 4x - 24$$

$$\implies y = 4x - 24 + \frac{3}{2}$$

$$\implies 2y = 8x - 48 + 3$$

$$= 8x - 45$$

Thus, the normal at P has equation 2y = 8x - 45.

Part (b)

Observe that $x = 3t \implies t = \frac{x}{3} \implies y = \frac{3}{\frac{x}{3}} = \frac{9}{x}$. Substituting $y = \frac{9}{x}$ into the equation of the normal at P,

$$2 \cdot \frac{9}{x} = 8x - 45$$

$$\implies \frac{18}{x} = 8x - 45$$

$$\implies 18 = 8x^2 - 45x$$

$$\implies 8x^2 - 45x - 18 = 0$$

$$\implies (x - 6)(8x + 3) = 0$$

Hence, $x = -\frac{3}{8}$ at Q. Note that we reject x = 6 since x = 6 at P. Thus, $t = \frac{-\frac{3}{8}}{3} = -\frac{1}{8}$ at Q.

$$t = -\frac{1}{8}$$

Problem 2.

A pond with a constant depth of 1 m is being designed for a park. The pond comprises a rectangle x m by y m and two semicircles of diameter y m, as shown in the diagram. The cost to build a boundary around the pond is \$30 per metre for straight parts and \$60 per metre for the semicircular parts. Given that the budget for the boundary is fixed at \$6000, using differentiation or otherwise, find in terms of π , the exact values of x and y which give the pond a maximum volume.

Solution

Observe that the total length of the straight parts is 2x m and the total length of the semicircular parts is $2 \cdot \frac{1}{2}\pi y = \pi y$ m. Hence,

$$30 \cdot 2x + 60 \cdot \pi y = 6000$$

$$\implies 60x + 60\pi y = 6000$$

$$\implies x + \pi y = 100$$

$$\implies x = 100 - \pi y$$

Let V(y) m³ be the volume of the pond.

$$V(y) = 1 \cdot \left(\pi \left(\frac{y}{2}\right)^2 + xy\right)$$

$$= \frac{\pi}{4}y^2 + xy$$

$$= \frac{\pi}{4}y^2 + (100 - \pi y)y$$

$$= \frac{\pi}{4}y^2 + 100y - \pi y^2$$

$$= -\frac{3}{4}\pi y^2 + 100y$$

Consider the stationary points of V(y). For stationary points, V'(y) = 0.

$$V'(y) = 0$$

$$\implies -\frac{3}{4}\pi \cdot 2y + 100 = 0$$

$$\implies y = \frac{200}{3}\pi$$

Assignment B5B Applications of Differentiation

y	$\left(\frac{200}{3}\pi\right)^{-}$	$\frac{200}{3}\pi$	$\left(\frac{200}{3}\pi\right)^{+}$
V'(y)	+ve	0	-ve

By the First Derivative Test, the maximum volume of the pond is achieved when $y = \frac{200}{3}\pi$. Thus, $x = 100 - \pi y = \frac{100}{3}$.

$$x = \frac{100}{3}, y = \frac{200}{3}\pi$$

Problem 3.

A circular cylinder is expanding in such a way that, at time t seconds, the length of the cylinder is 20x cm and the area of the cross-section is x cm². Given that, when x = 5, the area of the cross-section is increasing at a rate of 0.025 cm²s⁻¹, find the rate of increase at this instant of

- (a) the length of the cylinder,
- (b) the volume of the cylinder,
- (c) the radius of the cylinder.

Solution

Let A = x cm² be the cross-sectional area of the cylinder. Then $\frac{dA}{dt} = \frac{dA}{dx} \cdot \frac{dx}{dt} = \frac{dx}{dt}$, whence $\frac{dA}{dt}\Big|_{x=5} = \frac{dx}{dt}\Big|_{x=5} = 0.025$.

Part (a)

Let L = 20x cm be the length of the cylinder. Then $\frac{dL}{dt} = \frac{dL}{dx} \cdot \frac{dx}{dt} = 20 \cdot \frac{dx}{dt}$. Hence, $\frac{dL}{dt}\Big|_{x=5} = \left(20 \cdot \frac{dx}{dt}\right)\Big|_{x=5} = 20 \cdot 0.025 = 0.5$.

The length of the cylinder is increasing at a rate of 0.5 cm/s.

Part (b)

Let $V = AL = 20x^2$ cm³ be the volume of the cylinder. Then $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = 40x \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$. Hence, $\frac{\mathrm{d}V}{\mathrm{d}t}\Big|_{x=5} = \left(40x \cdot \frac{\mathrm{d}x}{\mathrm{d}t}\right)\Big|_{x=5} = 40 \cdot 5 \cdot 0.025 = 5$.

The volume of the cylinder is increasing at a rate of $5 \text{ cm}^3/\text{s}$.

Part (c)

Let R cm be the radius of the cylinder. Since $\pi R^2 = A = x$, we have $R = \sqrt{\frac{x}{\pi}} = \frac{\sqrt{x}}{\sqrt{\pi}}$. Hence, $\frac{\mathrm{d}R}{\mathrm{d}t} = \frac{\mathrm{d}R}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{\sqrt{\pi}} \cdot \frac{1}{2\sqrt{x}} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$. Thus, $evalder\frac{\mathrm{d}R}{\mathrm{d}t}x = 5 = \left(\frac{1}{\sqrt{\pi}} \cdot \frac{1}{2\sqrt{x}} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}\right)\Big|_{x=5} = \frac{1}{\sqrt{\pi}} \cdot \frac{1}{2\sqrt{5}} \cdot 0.025 = 0.00315$ (3 s.f.).

The radius of the cylinder is increasing at a rate of 0.00315 cm/s.

Problem 4.

The curve C has equation $2^{-y} = x$. The point A on C has x-coordinate a where a > 0. Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{a\ln 2}$ at A and find the equation of the tangent to C at A. Hence, find the equation of the tangent to C which passes through the origin.

The straight line y = mx intersects C at 2 distinct points. Write down the range of values of m.

Solution

Implicitly differentiating the given equation,

$$2^{-y} \cdot \ln 2 \cdot -y' = 1$$

$$\implies x \cdot \ln 2 \cdot -y' = 1$$

$$\implies y' = -\frac{1}{x \ln 2}$$

At A, x = a. Hence, $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{a \ln 2}$.

Note that $2^{-y} = x \implies y = -\log_2 x$. Hence, A has coordinates $(a, -\log_2 a)$. Using the point-slope formula, the tangent to C at A has equation

$$y - (-\log_2 a) = -\frac{1}{a \ln 2}(x - a)$$

$$\implies \qquad y = -\frac{x}{a \ln 2} + \frac{1}{\ln 2} - \log_2 a$$

$$= -\frac{x}{a \ln 2} + \frac{1}{\ln 2} - \frac{\ln a}{\ln 2}$$

$$= -\frac{x}{a \ln 2} + \frac{1 - \ln a}{\ln 2}$$

The tangent to
$$C$$
 at A has equation $y = -\frac{x}{a \ln 2} + \frac{1 - \ln a}{\ln 2}$.

Consider the straight line y = mx that is tangent to C and passes through the origin.

$$0 = -\frac{0}{a \ln 2} + \frac{1 - \ln a}{\ln 2}$$

$$\implies 1 - \ln a = 0$$

$$\implies a = e$$

Hence, the equation of the tangent to C that passes through the origin is $y = -\frac{x}{e \ln 2}$. Consider the graph of $2^{-y} = x$.

Hence, m must be strictly between $-\frac{1}{e \ln 2}$ and 0.

$$m \in \left(-\frac{1}{e \ln 2}, 0\right)$$