Recap Short-circuiting Models Case Study Advanced Issues Introducing Games

CS 440: Introduction to Artificial Intelligence Lecture 21, Nov 23, 2015

Matthew Stone

November 30, 2015

Recap—Decision principle

Agent prefers outcome that maximizes expected utility

Recap—Decision principle

Agent prefers outcome that maximizes expected utility

Formalism

► Choose a as

$$\operatorname*{argmax}_{a} EU(a|\mathbf{e})$$

Recap—Methodology

- Build prototype agent
- Build schema of possible designs
- Get experience from agent acting randomly
- Build model from schema plus experience
- Solve model for policy
- Use policy

Recap—Efficient Representation

- Have set of states
- Have set of actions
- ▶ Have transition model $P(S_{i+1}|A_i, S_i)$
- ▶ Have reward function $R(S_i, A_i, S_{i+1})$
- Utility is sum of rewards, perhaps discounted into the future (1 unit of fun tomorrow is worth γ units of fun now)

Value and Q-value

▶ Value V gives expected outcome for each state.

$$V(S) = \max_{A} \sum_{S'} P(S'|A,S)(R(S,A,S') + \gamma V(S'))$$

 Q-value Q gives expected outcome for each action in each state

$$Q(S,A) = \sum_{S'} P(S'|A,S)(R(S,A,S') + \gamma V(S'))$$

or

$$Q(S,A) = \sum_{S'} P(S'|A,S)(R(S,A,S') + \gamma \max_{A'} Q(S',A'))$$

Basic Q Learning

- ► Have table of *Q*-values
- Start in state S
- Choose action A
- ► Get reward *r*
- ▶ Move to state S'
- ▶ That gives new estimate of Q(S, A):

$$r + \gamma \max_{A'} Q(S', A')$$

Adjustment rule:

$$Q(S,A) \leftarrow Q(S,A) + \alpha(r + \gamma \max_{A'} Q(S',A') - Q(S,A))$$

Demo http://thierry.masson.free.fr/IA/en/
qlearning_applet.htm

Case Study: Simple Blackjack

- Cards have point values (face value, 10 for face cards, 1 or 11 for ace)
- Must have 21 or less to win
- Must have more than dealer to win
- Dealt 2 cards to start
- ▶ Then as many more as you ask for
- Can't see dealer's card—simplification!
- Win or lose only—simplification of actual betting!

Modeling

States with choices:
Total score (4 to 20)
Extra bit for scores 12 to 20:

Is there an ace counted for 11 that could be counted 1? (yes states numbered 23–31 in demo)

- Plus final stop state with reward from game outcome
- Decision:Hit get another cardStand stop
- ► Transition:

 $\mathsf{State} \times \mathsf{Stand} \to \mathsf{Stop}$

State \times Hit \to Total with new card or Stop if over 21

Reward: 1 if you win, -1 if you lose.

Demo

▶ Dealer stands at 17 or higher.

Demo: http://lcn.epfl.ch/tutorial/english/reinf-bj/ html/index.html

Approximating Q-values

Q learning is based on comparing prediction

to actual outcome

$$r + \gamma \max_{A'} Q(S', A')$$

Works by incremental adjustments

$$Q(S,A) \leftarrow Q(S,A) + \alpha(r + \gamma \max_{A'} Q(S',A') - Q(S,A))$$

Much Like Perceptron Learning

► Make prediction

$$w \cdot x > 1$$

- Compare to actual outcome
 ε is sign of error given true class of x
- Make incremental adjustments

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \epsilon \mathbf{x}_i$$

Until weights converge

Combining Neural Nets and Reinforcement Learning

- Represent state S in terms of a feature vector x_S What are the important aspects of the world that predict successful strategy in S?
- ▶ Use function approximation to model Q(S, A)For example: $Q(S, A) = w_A \cdot x_S$
- Update by temporal difference procedure
 Shared by Q-learning and perceptron learning

Combining Neural Nets and Reinforcement Learning

Get estimate from experience:

$$r + \gamma \max_{A'} (w_{A'} \cdot x_{S'})$$

Update weights to reduce error:

$$w_A \leftarrow w_A + \alpha (r + \gamma \max_{A'} (w_{A'} \cdot x_{S'}) - w_A \cdot x_S) x_S$$

Generalization of this technique used in first top computer Backgammon player (Tesauro)

Games

A game is an environment with rewards that depend on the action of more than one agent.

- Games with turns tic-tac-toe, checkers, chess, backgammon, go
- Games with simultaneous moves
 Rock-paper-scissors, prisoner's dilemma, sealed-bid auctions
- Approaches in the two cases are different

Games with Turns

Intuitively like planning

- Map out the future
- Anticipate that you will make good choices
- Expect that your opponent will make good choices
- Work backwards to what you should do now

Games with Turns

Wind up with a strategy

- Describes optimal play
- Given optimal (or possible) play by opponent

Example

Example

Games with simultaneous play

Intuitively like solving an equation

- Your move depends on your opponent's move
- ► Their move depends on yours
- You choose them simultaneously
- Good strategies "balance" the decisions

Example: Rock-paper-scissors

R and C choose actions jointly. C gets these payoffs:

		С		
		rock	paper	scissors
R	rock	0	1	-1
	paper	-1	0	1
	scissors	1	-1	0

Example: Rock-paper-scissors

Need to be unpredictable

- ▶ If R knows what C is going to do, R can win
- ▶ If C knows what R is going to do, C can win

If both guess any move randomly with probability $\frac{1}{3}$, neither can exploit the other

Different needs for AI techniques

Games with turns

- manage large search spaces
- develop good heuristics and approximations
- (only secondarily) learn specifically about opponent

Games with simultaneous play

- learn specifically about opponent
- (less so) develop good heuristics and approximations
- (only secondarily) manage search