Using R for Differential Gene Expression Analysis

Harvard Chan Bioinformatics Core

October 20, 2016

http://tinyurl.com/hbc-DGEworkshop

Learning Objectives

- ✓ Understand the considerations for performing statistical analysis on RNA-Seq data
- ✓ Utilize R knowledge to perform a standard differential expression analysis
 - ✓ Starting with Gene Counts (after alignment and counting), perform basic QC on the count data
 - ✓ Use DESeq2 to perform differential expression (DE) analysis on the count data and obtain a list of significantly different genes
 - √ Visualize expression patterns of DE genes

From sequence data to count matrix

High-throughput sequencing data

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	679	448	873	408	1138
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	515	621	365	587
ENSG0000000457	260	211	263	164	245
ENSG0000000460	60	55	40	35	78

High-throughput sequencing data

samples: want to see if differences across condition are significant (w.r.t. biological and technical variation)

High-throughput sequencing data

samples: want to see if differences across condition are significant (w.r.t. biological and technical variation)

counts need an appropriate statistical model (normalization and variance modeling)

MI Love: RNA-seq statistical analysis

Splice-aware mapping to genome

Count unique reads associated with genes

Normalization

DE workflow :: normalization

mRNAs to reads

mRNAs to reads

count of mapped reads proportional to:

- expression of RNA
- length of gene
- sequencing depth
- library prep. factors (PCR)
- etc...

Length of gene

Sequencing depth

Sequencing depth

MI Love: RNA-seq statistical analysis

(Pre)-scaled measures of expression

- Page 12 CPM (counts per million) counts scaled by the total number of reads
- > TPM (transcripts per million) the proportion of transcripts in your RNA (counts per base)
- (not recommended) RPKM (reads aligned per kilobase of exon per million reads mapped) Mortazavi et al 2008
- (not recommended) FPKM (fragments per kilobase of exon per million fragments mapped).
 Same idea for paired end sequencing
- Tool-specific metrics for normalization

Raw counts should be used as input for differential expression tools!

Median of ratios method

simple approach & works well for each gene look at the count ratios:

sample 1 / pseudo-reference sample

- in general: create a pseudo-reference-sample (rowwise geometric mean)
- calculate ratio of each sample to the reference
- take the median value as the normalization factor
- assumes that not ALL genes are DE (differentially expressed)
- robust to imbalance in up-/down- regulation and large numbers of DE genes

Splice-aware mapping to genome

Count unique reads associated with genes

Normalization

QC (gene-level and sample-level)

DE workflow :: quality control

QC: Sample-level

- Principal Component Analysis (PCA): A technique used to emphasize variation and bring out strong patterns in a dataset (dimensionality reduction)
- Project a line through the data points in n dimensional space (n = genes)
- Measure how much variance there is from that line (the distance from each point to the line).
- PC1 explains highest variance, PC2 next highest etc.

QC: Sample-level

Identify strong patterns in a dataset and potential outliers

- Correlation or distances for all pairwise combinations of samples.
- ► Generally high correlations with each other (values higher than 0.80)
- 'Blocks' indicate substructure in the data

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	679	448	873	408	1138
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	515	621	365	587
ENSG00000000457	260	211	263	164	245
ENSG00000000460	60	55	40	35	78

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516	
ENSG0000000003	679	448	873	408	1138	
ENSG0000000005	0	0	0	0	0	
ENSG0000000419	467	515	621	365	587	
ENSG0000000457	260	211	263	164	245	Genes with
ENSG0000000460	60	55	40	35	78	zero counts

Genes with extreme

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516

ENSG00000000003 ENSG000000000419 ENSG00000000457 ENSG00000000460

9500	SRR1039309	SRR1039312	SRR1039313	SRR1039316	
679	448	873	408	1138	
0	0	0	0	0	
467	515	621	365	587	
260	211	263	164	245	
60	55	40	35	78	

Genes with extreme count outlier

Genes with low mean normalized counts ('Independent filtering')

Splice-aware mapping to genome Count unique reads associated with genes Normalization QC (gene-level and sample-level) Differential expression analysis

DE workflow :: differential expression

Identifying differences in gene expression

Identifying differences in gene expression

- Looking for genes that change in expression between two or more groups
 - case vs. control
 - correlation of expression with some variable or clinical outcome

Identifying differences in gene expression

- Looking for genes that change in expression between two or more groups
 - case vs. control
 - correlation of expression with some variable or clinical outcome
- ▶ Rank the genes by how different they are between the two groups (based on fold change values). Why does this not work?

The measurement is the "sum" of many effects

Modeling gene-level data

Courtesy of Paul Pavlidis, UBC

Making sense of data

Data is what we observe. We want to infer something about "where it came from"

Characteristics of count data

- Discrete measurement for each gene
- Large dynamic range
- Not normally distributed
- Need regression models specific for count data; generalized linear models

Distribution of Counts: Poisson versus Negative Binomial

If the proportions of mRNA stays exactly constant between biological replicates we can expect **Poisson distribution**.

Distribution of Counts: Poisson versus Negative Binomial

If the proportions of mRNA stays exactly constant between biological replicates we can expect **Poisson distribution**.

But realistically, biological variation across sample units is expected and so a **Negative Binomial** distribution is more appropriate.

Biological vs. Technical Replicates

- Biological replicates represent multiple samples representing the same sample class
- Technical replicates represent the same sample but with technical steps replicated
- Usually biological variance > technical variance. They also allow us to make inferences about treatment groups

Biological replicates produce "over-dispersion" relative to Poisson

Poisson will underestimate the variability and the effect of the observed differences.

Instead we use the Negative Binomial.

The need for more replicates

- Genes with larger average expression have on average larger observed variances across samples, This phenomena of 'having different scatter' is known as data heteroscedasticity.
- Mean is not equal to variance

Increase the number of replicates...

- Scatter tends to reduce
- Standard deviations of averages become smaller
- With smaller SD, you get more precise estimates of group means, and ultimately greater confidence in the ability to distinguish differences between sample classes

2 replicates

10 replicates

Counts are modeled using the Negative Binomial (NB) distribution

$$K_{ij} \sim \mathrm{NB}(s_{ij}q_{ij}, \alpha_i)$$

We model read counts K_{ij} , as following the negative binomial distribution with mean μ_i and **dispersion** α_i

Counts are modeled using the Negative Binomial (NB) distribution

raw count for gene i, sample j

We model read counts K_{ij} , as following the negative binomial distribution with mean μ_i and **dispersion** α_i

Counts are modeled using the Negative Binomial (NB) distribution

We model read counts K_{ij} , as following the negative binomial distribution with mean μ_i and **dispersion** α_i

Counts are modeled using the Negative Binomial (NB) distribution

We model read counts K_{ij} , as following the negative binomial distribution with mean μ_i and **dispersion** \pmb{lpha}_i

Within group variability is accounted for using the dispersion parameter

The dispersion parameter $\alpha_{i,}$ describes the variance of counts via:

$$Var(K_{ij}) = \mu_{ij} + \alpha_i \mu_{ij}^2$$

Poisson part: sampling fragments

Extra variation due to biological variance

Shrinkage and dispersion

- Different genes naturally have different scales of biological variability
- Over all genes, there will be a distribution of reasonable estimates of dispersion
- With small sample size (n=3-5 replicates per group), we will make very bad estimates of gene-wise dispersion unless we share information across genes

Shrinkage of dispersion

- 1. Gene-wise estimate = just look at one gene (MLE)
- 2. Fitted dispersion trend = the middle for the prior
- 3. Final estimate = posterior, uses shared information (MAP)

The shrinkage procedure thereby helps avoid potential false positives, which can result from underestimates of dispersion

DESeq2

- Available through Bioconductor since 2013
- Publication: Genome Biology, Dec 2014.
 main text written with non-statisticians in mind
- Builds on good ideas for dispersion estimation and use of GLM from the DSS and edgeR methods
- See bioconductor.org/install for installation
- Note that the latest Bioconductor packages are only available with latest R version. Bioconductor and R versions are linked

DESeq2 steps

count matrix (from featureCounts, htseq, tximport, etc.)

- Describe experiment with formula, e.g.: ~ condition
- Per gene the design matrix looks like:

```
\log_2 q1 1 0

\log_2 q2 1 0

\log_2 q3 = 1 1

\log_2 q4 1 1
```

- Describe experiment with formula, e.g.: ~ condition
- Per gene the design matrix looks like:

All samples get an Intercept term

- Describe experiment with formula, e.g.: ~ condition
- Per gene the design matrix looks like:

All samples get an Intercept term

The B condition samples also get a term that accounts for the difference between B and A

MI Love: RNA-seq statistical analysis

```
log_2 q1 1 1 0 0 log_2 q2 1 1 0 0 Intercept log_2 q3 = 1 0 1 0 conditionA log_2 q4 1 0 1 0 conditionB log_2 q5 1 0 0 1 conditionC log_2 q6 1 0 0 1
```

log ₂ q1		1	1	0	0	
log ₂ q2		1	1	0	0	Intercept
log ₂ q3	=	1	0	1		conditionA
log ₂ q4		1	0	1	0	conditionB
log ₂ q5		1	0	0	1	conditionC
log ₂ q6		1	0	0	1	

log ₂ q1		1	1	0	0	
log ₂ q2		1	1	0	0	Intercept
log ₂ q3	=	1	0	1	0	conditionA
log ₂ q4		1	0	1	0	conditionB
log ₂ q5		1	0	0	1	conditionC
log ₂ q6		1	0	0	1	

log ₂ q1		1	1	0	0	
$log_2 q2$		1	1	0	0	Intercept
$log_2 q3$	=	1	0	1	0	conditionA
log ₂ q4		1	0	1	0	conditionB
$log_2 q5$		1	0	0	1	conditionC
log ₂ q6		1	0	0	1	

```
log_2 q1 1 1 0 0 log_2 q2 1 1 0 0 Intercept log_2 q3 = 1 0 1 0 conditionA log_2 q4 1 0 1 0 conditionB log_2 q5 1 0 0 1 conditionC log_2 q6 1 0 0 1
```

GLM: Generalized linear models

- Extension of linear models to non-normally distributed response data (in our case, negative binomial)
- Helps address the different mean-variance relationships
- GLM fit for a gene will return coefficients indicating the overall expression strength of the gene for each design matrix element

 A contrast is the comparison of coefficients we choose to evaluate

log ₂ q1		1	1	0	0	
log ₂ q2		1	1	0	0	Intercept
log ₂ q3	=	1	0	1	0	conditionA
log ₂ q4		1	0	1	0	conditionB
log ₂ q5		1	0	0	1	conditionC
log ₂ q6		1	0	0	1	

 A contrast is the comparison of coefficients we choose to evaluate

log ₂ q1		1	1	0	0	
log ₂ q2		1	1	0	0	Intercept
$log_2 q3$	=	1	0	1	0	conditionA
$log_2 q4$		1	0	1	0	conditionB
$log_2 q5$		1	0	0	1	conditionC
log ₂ q6		1	0	0	1	

 A contrast is the comparison of coefficients we choose to evaluate

log ₂ q1		1	1	0	0	
log ₂ q2		1	1	0	0	Intercept
log ₂ q3	=	1	0	1	0	conditionA
log ₂ q4		1	0	1	0	conditionB
log ₂ q5		1	0	0	1	conditionC
log ₂ q6		1	0	0	1	

A contrast is the comparison of coefficients we choose to evaluate

```
log_2 q1 1 1 0 0 log_2 q2 1 1 0 0 Intercept log_2 q3 = 1 0 1 0 conditionA log_2 q4 1 0 1 0 conditionB log_2 q5 1 0 0 1 log_2 q6 1 0 0 1
```

results(dds, contrast=c("condition", "B", "C"))

Hypothesis testing

Wald test

- use the shrunken estimate of the log2 fold-change divided by the SE
- this gives a Z-statistic which is compared to a standard normal distribution
- allows testing of individual coefficients, or contrasts of coefficients (i.e. two-level comparison)

Hypothesis testing

Wald test

- use the shrunken estimate of the log2 fold-change divided by the SE
- this gives a Z-statistic which is compared to a standard normal distribution
- allows testing of individual coefficients, or contrasts of coefficients (i.e. two-level comparison)

Likelihood ratio test (LRT)

- examines two different models: full and reduced model (with some terms removed)
- determines if the increased likelihood of the data using the extra terms in the full model is more than expected if those extra terms are truly zero
- useful for identifying any gene that is changing in expression with respect to the biological factor of interest (useful for 3 or more levels)

Controlling for different batches

- Using a design formula: ~ batch + condition, adds terms that control for batch differences
- If batches are unknown, possible to detect these with other methods: svaseq, RUVSeq

MI Love: RNA-seq statistical analysis

Controlling for different batches

- Using a design formula: ~ batch + condition, adds terms that control for batch differences
- If batches are unknown, possible to detect these with other methods: svaseq, RUVSeq

MI Love: RNA-seq statistical analysis

Complex designs

Want to test: treatment changes for enriched samples over baseline, controlling for individual effects

~individual + enrichment + treatment + enrichment:treatment

indiv	. en	rich. treat.
1	input	control
1	IP	control
1	input	treat
1	IP	treat
2	input	control
2	IP	control
2	input	treat
2	IP	treat

. . .

WE FOUND NO

WE FOUND NO LINK BETWEEN

▶ In our example using condition A vs. condition B we found 2,898 genes to be differentially expressed at p < 0.05

- ▶ In our example using condition A vs. condition B we found 2,898 genes to be differentially expressed at p < 0.05
- This is 12% of the genes we tested

- ▶ In our example using condition A vs. condition B we found 2,898 genes to be differentially expressed at p < 0.05
- This is 12% of the genes we tested
- Expect 5% by chance (this is what p < 0.05)

Multiple test correction

- ▶ In our example using condition A vs. condition B we found 2,898 genes to be differentially expressed at p < 0.05
- This is 12% of the genes we tested
- Expect 5% by chance (this is what p < 0.05)
- Probably ~1/3 genes we found are false positives

Multiple test correction

- ▶ In our example using condition A vs. condition B we found 2,898 genes to be differentially expressed at p < 0.05
- This is 12% of the genes we tested
- Expect 5% by chance (this is what p < 0.05)
- Probably ~1/3 genes we found are false positives

This is the multiple testing problem. The more tests we perform, the more we inflate the number of false positives observed.

Multiple test correction

Controlling the FWER

- Control α , the probability of making an error (false positive)
- **Bonferroni:** Reject any hypothesis with p-value $\leq \alpha/m$
 - Conservative; high probability of false negatives

Controlling the FDR

- FDR: false discovery rate: the expected percent of false predictions in the set of predictions
- ► Benjamini-Hochberg: Rank j / m multiplied by the FDR level
 - designed to control the FDR
- Q-value: The minimum FDR that can be attained when calling that feature significant

DE vs EDA

Two paths in DESeq2

MI Love: RNA-seq statistical analysis

Transformations

For comparison analyses when using unsupervised techniques, it can be useful to *transform* data. These techniques (VST and rlog) perform better when values have a similar dynamic range

renders data *homoskedastic* (variance of the gene is stabilized across expression levels

MI Love: RNA-seq statistical analysis

rlog stabilizes variances along the mean

rlog stabilizes variances along the mean

MI Love: RNA-seq statistical analysis

Variance stabilizing transform (VST)

- The variance stabilizing transformation is an earlier approach (from original DESeq) for transforming counts.
- Uses a function which is \log -like but doesn't go to $-\ln t$ at x=0.
- VST doesn't use size factors so is better for data that has consistent sequence depth across samples
- VST is closed form, so can be better for large datasets (n > 50) due to speed.

Comparison of methods

Count model vs linear model

- DESeq2 and edgeR similar approach, similar results
 - very sensitive, may sometimes underestimate FDR

- strong control of FDR, may be less sensitive for small sample size
- recommended when number of biological replicates
 per group grows large (e.g. > 20)

Credits

RNA-seq statistical analysis and gene-level differential expression

Mike Love @mikelove

Dept. of Biostatistics and Computational Biology

Dana-Farber Cancer Institute & Harvard TH Chan School of Public Health

Acknowledgements:

DESeq2/DEXSeq:

Work supported by:

Wolfgang Huber

Simon Anders

Alejandro Reyes

Rafael Irizarry

Dana-Farber Cancer

Institute

Harvard TH Chan School

of Public Health

NIH Training Grant

