

FROM UTPA TO NASA GLENN RESEARCH CENTER, A JOURNEY TO THE COOLEST JOB ON THE PLANET!

Dr. Maricela Lizcano
Research Materials Engineer
Ceramics Branch
Structures and Materials Division
NASA Glenn Research Center
Cleveland, OH

April 5, 2013

Educational Background

2004 B.S. Mechanical Engineering
Research: Nano Reinforced Polymeric Materials - UTPA

2006 M.S. Mechanical Engineering
Research: Electrorheology of C₆₀ Suspension Fluids-UTPA

2011 Ph.D. Mechanical Engineering
Research: Low-Temperature Processing of Inorganic Polymers TAMU

Growing Up...An Engineer in the Making

Dr. Lizcano grew up in Edinburg, TX. Her parents were born in Monterrey , Mexico. She has 7 siblings!

Ever since she was a child, she was fascinated by how things worked and was always trying to fix broken things around the house!

First Stop, UTPA College of Engineering and Computer Science A Smart Academic Investment

- AFFORDABLE
- Faculty with High Standard of Excellence
- State-of-the-Art Facilities

Zinc Oxide and Zintl Compound $\text{Ca}_5\text{Al}_2\text{Sb}_6$

SEM images taken by Jonathan Mackey PhD Student at University of Akron.

Pathways to Success

UTPA Undergraduate Opportunities

- Research Work Opportunities
 - Mechanical Engineering-Research with Faculty
 - Physics- Research with Faculty ,Instrumentation and Lab Instructor
 - Mathematics- Research with Faculty
 - Internships-NREL Internship and REU at UTPA and Vanderbilt University
 - HESTEC 2004 and 2005 Competition Coordinator
 - Scholarships-Lockheed Martin, LSAMP, Bridge to a Doctorate
- Faculty
 - Student/Teacher ratio
 - Dedication and Commitment
 - High Standard of Excellence
- Results
 - A **STRONG COMPETITIVE RESUME** Highlighting Academic Achievements, Work Skills such as Knowledge of Research Instrumentation, Data Processing and Analysis.

Next Stop, Graduate School!

Picking A School-My Choices

- University of Texas Austin
- New Mexico State University
- **Texas A&M University**
- University of Colorado at Boulder

Making A Choice

- Education Standard/Location/ **Cost of Living**
 - In-state Tuition
 - Available Scholarships
 - Best Opportunity

Applied to 1 school Texas A&M

- School Visit
- Accepted

<http://fcor.tamu.edu/mission.aspx>

http://commons.wikimedia.org/wiki/File:2007_TAMU_band_T.jpg

There is NO DOUBT in my mind, I was very well prepared for the challenges of a PhD program due to my experience at UTPA.

The Day It All PAID OFF!

Monday, April 25, 2011 11:51 AM

NASA Glenn Ceramics Branch Monday, April 25, 2011 11:51 AM

From:"Grady, Joseph E. (GRC-RXC0)" [REDACTED]

To: "marcilizano@[REDACTED]"

Maricela – I recently received your
the Ceramics Branch at NASA Glenn.
ceramic composite material
cells. Please let me know if you would like
to talk about this further or if you would like
brief summary of our work.

Thanks,
Joe Grady
Chief, Ceramics Branch
NASA Glenn Research Center

NASA!!??!!

Final Destination, NASA Glenn Research Center Cleveland, OH

Technology Areas of Expertise at NASA-GRC

- Materials
- Human Health
- Electronics
- Environmental Emissions
- Sensors, Instrumentation and Communication
- Energy and Power
- Industrial Processes
- Software Applications
- Physical Sciences

NASA GRC Work Profile

Aeronautics Research

Mission Support

Cross Agency Support

Science

Space Operations

Exploration Systems

31%

10%

8%

39%

6%

6%

Job Title: Research Materials Engineer

Material Processing

Microwave Furnace

Magnetron
Circulator

Electric Tube furnace

Fiber Weaving

Material Property Testing

Hot Section Engine Environment

Mechanical Testing for long term durability testing to 3000°F in air with strain measurement

Mach 0.3 Burner Rigs

Jet fuel combustors: 700° to 2500°F exposure in oxidative or corrosive environments

Erosion Burner Rig
Jet fuel combustor
Particle impingement

High Pressure Burner Rig

Jet fuel combustor
Gas temperatures of 1500 °F - 3000 °F
Test pressures between 5 - 10 atm.
Gas flow velocities 30 - 100 ft/sec.

Acoustic Testing of the CMC Mixer Nozzle

Aero-Acoustic Propulsion Laboratory (AAPL)

Anechoic wedges are on all surfaces inside the 65 foot radius geodesic dome prevent community noise or reflective noise from contaminating data.

Material Characterization

Microstructure Apollo Era Space Suit and Lunar Dust

9000X

EDS-B

X-ray Analysis of Lunar Dust Particle

1000X

BeanSuit 2.0kV 11.6mm x1.00k SE(L) 2/5/2007

50X

BeanSuit 2.0kV 11.6mm x50 SE(L) 2/5/2007

Fiber samples removed from A. Bean spacesuit (Apollo 12)

FESEM samples A & B

Exposed area

Sample from Left Knee

Sample from Left Shoulder

"clean" Area under flag

ApolloCh_01 2.0kV 11.7mm x250 SE(L) 2/5/2007

200μm

200μm

Purpose: Preparation for extended stay on the moon.

Teflon coated fiber glass

Ceramic Matrix Composites (CMC) ERA Goals: Reduced Aircraft Noise, Emissions and Fuel Burn

CMC engine component
reduce cooling air
requirements

	Combustor	High Pressure Turbine	Low Pressure Turbine	Exhaust Nozzle
Temperature	2200-2700°F	2400-2700°F	2200-2300°F	1500-1800°F
CMC System	SiC / SiC	SiC / SiC	SiC / SiC	Oxide / Oxide
Engine Benefit	<ul style="list-style-type: none">• Reduced cooling• Reduced NOx• Pattern Factor	<ul style="list-style-type: none">• Reduced cooling• Reduced SFC	<ul style="list-style-type: none">• Reduced cooling• Strength / weight	<ul style="list-style-type: none">• Light weight• Noise reduction• Higher use temp
Challenges	<ul style="list-style-type: none">• Durability• Attachment & Integration	<ul style="list-style-type: none">• Manufacturing• Durability• Attachment & Integration	<ul style="list-style-type: none">• Manufacturing• Durability• Attachment & Integration	<ul style="list-style-type: none">• Manufacturing• Durability

Radioisotope Power Systems (RPS) For Deep Space Exploration

<http://solarsystem.nasa.gov/rps/galileo.cfm>

Heat to Electric Power Generation

Objective: High Conversion Efficiency

- Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power

- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh (10^{12}) Barrels of Oil – 170 giga-barrels (10^9)
- World-energy consumption ~120 tera-kWh (10^{12})
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO₂ emission

A photograph of a space shuttle launching from a launch pad. The shuttle is positioned vertically, with its white payload fairing and orange external fuel tank visible. A massive plume of white smoke and fire erupts from its solid rocket boosters and main engine. To the left, the metal structure of the launch tower stands tall. The background is a clear blue sky.

Engineering Materials for Space Flight

Thermal Protection Systems

Reinforced Carbon/Carbon (RCC) in the Shuttle

High Temperature Reusable Surface Insulation (HTRSI)

Re-entry Environment

Coated Reinforced Carbon/Carbon Composite

- Temperature to 2000 K
- Reduced pressure--0.005 to 0.010 atm
- Gases--O₂, N₂, CO₂
 - Shock leads to O, N and ions
- Short times ~15 minutes/re-entry
- Best simulated with arc-jet

Cracks in flange
near bolt holes

RCS Thrusters

REACTION CONTROL THRUSTERS

Just for fun...Your Next Picnic!

THANK YOU!!!

QUESTIONS?