Układy arytmetyczne. Układy iteracyjne. Liczby zmiennoprzecinkowe.

Data wykonania 11.12.2020

Zadanie 2.d Sumator wielobitowy można zrealizować jako układ iteracyjny zbudowany z łańcucha połączonych sumatorów 1-bitowych. Czy na podobnej zasadzie można zrealizować układ realizujący odejmowanie? Jak będą wyglądały funkcje różnica i pożyczka?

(20)	aibic;	Odejm	Pożyczka	Odej w	Poryalea
	000		0	a; b; 0 1	a: 6: 0 1
	001		1	0000	0009
	010	1	1	01(1)0	0173
	011	0	1	110(1)	1 1 0 (1)
	100	1	0	1090	1000
	101	0	0		
	110	0	0	Odejm=a6c+	Pozyczla = ac + ab + 6c
	1 110		1	06c +	
				a6c+	
				aēč	
				Odeju = XOR(a,6,c)

Zdjęcie 1: Wyprowadzenie funkcji różnica i pożyczka.

Zrzut ekranu 1: Schemat układu odejmującego w Logisim

Zrzut ekranu 2: Układ realizujący odejmowanie liczb 4-bitowych.

Zadanie 9. Ostanie 2 cyfry numeru indeksu potraktuj jako liczbę. Podziel tę liczbę przez 10. Do otrzymanego wyniku dodaj 0.1.

- a) Otrzymaną liczbę przedstaw jako liczbę zmiennoprzecinkową 32-bitową zgodną ze standardem IEEE 754
- b) Zapisz otrzymany w poprzednim punkcie wynik postaci szesnastkowej

Zdjęcie 2: Rozwiązanie zadania 9.

Sprawdzenia wyniku dokonano za pomocą strony internetowej: https://www.exploringbinary.com/floating-point-converter/

Decimal	
Enter a decimal number (e.g., 3.1415, 1.56e-11, 4e20) (no suffixes, commas, operators)	
8.4	
Convert Clear	
Options:	
Precision (check one or both): Double Single	
Output formats (check all desired):	
Decimal (e.g., 122.75)	
☑ Binary (e.g., 1111010.11)	
Normalized decimal scientific notation (e.g., 1.2275 * 10^2)	
✓Normalized binary scientific notation (e.g., 1.111010111 * 2^6)	
Normalized decimal times a power of two (e.g., 1.91796875 * 2^6)	
Decimal integer times a power of two (e.g., 491 * 2^-2)	
Decimal integer times a power of ten (e.g., 12275 * 10^-2)	
Hexadecimal floating-point constant (e.g., ox1.ebp6)	
Raw binary (e.g., o 10000101 111010110000000000000000000	
☑Raw hexadecimal (e.g., 42f58000)	
Floating-Point Converts to this binary floating-point number (selected forms shown): Binary	
Single:	
1000.011001100110011	
Normalized Binary Scientific Notation	
Single:	
1.000011001100110011 * 2^3	
Raw Binary (sign field exponent field significand field)	
Single:	
0 10000010 0000110011001100110	
Raw Hexadecimal (sign field exponent field significand field)	
Single:	
41066666	

Zrzut ekranu 3: Sprawdzenie obliczeń wykonanych w zadaniu 9.