Aprendizagem por Reforço

Wuerike Henrique da Silva Cavalheiro

Sumário

- Introdução
- Processo de decisão de Markov
- Retorno esperado
- Políticas
- Funções de valor
- Política ótima
- Q-Learning
- Conceitos complementares

Introdução

- Aprendizagem supervisionada
 - Generalização de novos dados partindo de exemplos
- Aprendizagem não supervisionada
 - Identificação de padrões em dados não rotulados
- Aprendizagem por reforço
 - Aprende como se comportar através da iteração com ambiente
 - Um agente interage com o ambiente, buscando tomar ações que tragam a maior recompensa

Processo de decisão de Markov

- Propriedade de Markov
 - O futuro é independente do passado para um dado presente
- Elementos de um Processo de Decisão de Markov
 - Agente
 - Ambiente
 - Estado S
 - Ação A
 - Recompensa R
- O objetivo do agente é maximizar as recompensas acumuladas durante sua trajetória

Processo de decisão de Markov

- Fluxo de um Processo de Decisão de Markov
 - No tempo t, o ambiente esta no estado S
 - O agente observa o ambiente e realiza a ação A_t
 - O ambiente muda para S_{t+1} e retorna a recompensa R_{t+1}
 - O processo é executado novamente para t+1

Processo de decisão de Markov

A realização de uma ação leva a um estado onde diversas outras ações podem ser tomadas

Retorno esperado

• É o somatório das recompensas esperadas no futuro

•
$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Retorno Descontado

•
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• Cenário para R=1 constante e $\gamma < 1$

•
$$G_t = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}$$

 O objetivo do agente é maximizar o retorno descontado esperado durante sua trajetória

Políticas

- Nos fala sobre o comportamento do agente
 - Qual a probabilidade de um agente selecionar um ação específica quando estiver em um determinado estado?
- A politica π é uma função que retorna a probabilidade da escolha de uma ação em um estado.
- Se um agente segue a política π no instante t, então $\pi(a|s)$ é a probabilidade de $A_t = a$ se $S_t = s$.

Funções de valor

- Estima o quão bom é para o agente tomar uma determinada ação estando num certo estado
- O valor da ação a no estado s seguindo a política π equivale ao retorno esperado descontado dados s e a

$$q_{\pi}(s, a) = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

• A função de valor q_{π} é normalmente chamada de Q-function e o seu valor é chamado de Q-value

Política ótima

- Dadas as políticas π e π'
 - $\pi \geq \pi'$ apenas se $q_{\pi}(s, a) \geq q_{\pi'}(s, a)$ para todo $s \in S$ e $a \in A(s)$
- A política ótima tem uma função valor ótima

•
$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- Equação de Bellman
 - $q_*(s,a) = E\left[R_{t+1} + \gamma \max_{a'} q_*(s',a')\right]$

Resolução do MDP aplicando a Equação de Bellman

$$q_{new}(s, a) = (1 - \alpha)q_{old}(s, a) + \alpha \left[R_{t+1} + \gamma \max_{a'} q_*(s', a')\right]$$

	Actions				
		Left	Right	Up	Down
States	1 cricket	0	0	0	0
	Empty 1	0	0	0	0
	Empty 2	0	0	0	0
	Empty 3	0	0	0	0
	Bird	0	0	0	0
	Empty 4	0	0	0	0
	Empty 5	0	0	0	0
	Empty 6	0	0	0	0
	5 crickets	0	0	0	0

UFSC

Resolução do MDP aplicando a Equação de Bellman

$$q_{new}(s, a) = (1 - \alpha)q_{old}(s, a) + \alpha \left[R_{t+1} + \gamma \max_{a'} q_*(s', a')\right]$$

	Actions					
		Left	Right	Up	Down	
States	1 cricket	0	0	0	0	
	Empty 1	0	0	0	0	
	Empty 2	0	0	0	0	
	Empty 3	0	0	0	0	
	Bird	0	0	0	0	
	Empty 4	0	0	0	0	
	Empty 5	0	0	-1	0	
	Empty 6	0	0	0	0	
	5 crickets	0	0	0	0	

UFSC

Resolução do MDP aplicando a Equação de Bellman

$$q_{new}(s, a) = (1 - \alpha)q_{old}(s, a) + \alpha \left[R_{t+1} + \gamma \max_{a'} q_*(s', a')\right]$$

	Actions					
		Left	Right	Up	Down	
States	1 cricket	0	0	0	0	
	Empty 1	0	0	0	0	
	Empty 2	0	0	0	0	
	Empty 3	0	-10	0	0	
	Bird	0	0	0	0	
	Empty 4	0	0	0	0	
	Empty 5	0	0	-1	0	
	Empty 6	0	0	0	0	
	5 crickets	0	0	0	0	

UFSC

Ações:

Norte

Sul

Leste

Oeste

Embarque

Desembarque

Recompensas:

- -1 por ação
- -10 por ação impossível
- +20 ao finalizar

Conceitos complementares

- Delayed reward
- Episodic vs Continuing Tasks
- Models
- State-Value Function
- Exploration vs exploitation tradeoff
- Learning Rate

Contato

E-mail: wuerike.henri@gmail.com

Telefone: (47) 99648-9327

