

All Contests > BlackRock CodeSprint > Fixed-Income Security Trade Allocation

Fixed-Income Security Trade Allocation

Problem

Submissions

Leaderboard

Discussions

A portfolio is a grouping of financial assets, such as stocks, bonds, or fixed-income securities. Each portfolio is managed by a Portfolio Manager who is in charge of sending portfolio orders to a Trader.

A Trader receives orders of varying sizes from different portfolios to buy a quantity of a security on the market. They then identify a Seller that is willing

In a best-case scenario, the Seller is selling enough of the security to fulfill all of the portfolio orders for the security; however, if that is not the case, the Trader must buy as much of the security as possible and fairly allocate it amongst the portfolios.

Fixed-Income Security

A fixed-income security has the following properties:

- minimum_trade_size The smallest number of units that can be traded with this security.
- *increment* The number of units the trade can be incremented with.
- $tradeable_amount = (minimum_trade_size) + (increment \times n)$, where n is a non-negative integer.
- avaliable_units The number of units of the security that are available for purchase on the market.

Fixed-Income Trade Orders

A fixed-income *Trader* has the following information:

- portfolio_order The number of units of the fixed-income security that a single portfolio wants to buy.
- total_order The total (sum) number of units made up of all the underlying portfolio_orders.

Defining a Proportional Allocation

If there are not enough avaliable units to fulfill all of the portfolio orders, we must find the proportional allocation for each portfolio's order of the available_units on the market.

We get a portfolio's **proportional_allocation** with this expression:

$$proportional_allocation = \frac{portfolio_order}{total_order} \times available_units$$

How Do We Fairly Allocate Units?

- Iterate through every underlying portfolio_order from smallest to largest (if two portfolios order the same number of units, then sort them lexicographically by ascending ID) and apply the following process:
 - If the portfolio's proportional_allocation is less than the minimum_trade_size, check if proportional_allocation is greater than $minimum_trade_size$
 - If false, do not allocate anything.
 - If true, attempt to allocate the minimum_trade_size within the defined rules.
 - If this fails; allocate nothing.

- If the portfolio's *proportional_allocation* is greater than or equal to *minimum_trade_size*:
 - If the proportional_allocation is larger than or equal to the portfolio_order, allocate the portfolio_order.
 - If the proportional_allocation is not a tradeable_amount, round it down to the closest tradeable_amount that you can allocate
 within the defined rules. If you fail to find a tradeable_amount that satisfies the rules, allocate nothing.
- After allocating units (including the case when you allocate nothing) to a portfolio, perform the following steps to ensure that as much of the available security is purchased as is possible:
 - Recalculate the total_order based on the orders from the remaining portfolios (i.e., those whose orders haven't yet been allocated).
 - Subtract the quantity of units that were just allocated to an order and recalculate avaliable_units.
 - Recalculate the proportional_allocation of each portfolio awaiting allocation based on the remaining avaliable_units.

Rules That Always Hold

- A portfolio manager only orders tradeable amounts from the Trader.
- Each portfolio has to issue its own trade, hence the quantity allocated to each portfolio must be a tradeable_amount.
- An untradeable amount is a value that cannot be represented as a tradeable amount. Note that an exception of 0 is allowed (meaning that 0 is a tradeable amount). You must try to never leave a portfolio with leftover units (portfolio_order allocated_amount) that can't be traded on the market (i.e., an untradeable amount).

Given the basic information for a fixed-income security and a list of portfolio orders, find the **proportional_allocation** for each portfolio using the rules and processes defined above. Then, print each **portfolio_identifier** along with the amount of the security allocated to it as two space-separated values on a new line. Order your output alphabetically by **portfolio_identifier**.

Input Format

The first line contains an integer, T, denoting the number of portfolios hoping to place orders.

The second line contains three space-separated integers denoting the respective values for the *minimum_trade_size*, *increment*, and *available_units* for the fixed-income security.

Each of the **T** subsequent lines defines a portfolio order as two space-separated values; the first value is a string denoting the **portfolio_identifier**, and the second value is an integer denoting the **portfolio_order**.

Constraints

- 0 < T < 1000
- 0 < increment < minimum_trade_size < available_units
- $portfolio_order = minimum_trade_size + increment \times n$ for some non-negative integer, n.
- minimum_trade_size × number of portfolios < available_units

Output Format

Print *T* lines where each line contains two space-separated values: a *portfolio_identifier* followed by the number of units allocated to the portfolio. Your output must be ordered alphabetically by *portfolio_identifier*.

Sample Input

```
2
10 2 40
p1 16
p2 134
```

Sample Output

```
p1 0
p2 40
```

Explanation

First, we have the following information about our fixed-income security:

- $minimum_trade_size = 10$
- increment = 2
- available_units = 40

Next, we have T=2 portfolio orders:

- 1. p1's $portfolio_order = 16$.
- 2. p2's $portfolio_order = 134$.

We can calculate $total_order = 16 + 134 = 150$

$$p1_proportional_allocation = \frac{16}{16+134} \times 40 = 4.26$$

Because $p1_proportional_allocation < \frac{minimum_trade_size}{2} \implies 4.26 < 5$, nothing is allocated to p1. Therefore, all 40 $available_units$ are allocated to p2.

in ¥ f

Submissions: 179
Max Score: 20

Difficulty: Moderate

More

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature