T.D. IV - Espaces vectoriels

I - Systèmes linéaires

Exercice 1. Résoudre les systèmes suivants.

1.
$$(\mathscr{S}_1)$$
 $\begin{cases} x + 2y - z &= 1 \\ 3x + 4y - z &= 2 \\ x + 3y + z &= 10 \end{cases}$ 4. (\mathscr{S}_4) $\{x + y + z &= 5 .$
2. (\mathscr{S}_2) $\begin{cases} 2x + 3y + z &= 7 \\ x - y + 2z &= -3 . \\ 3x + y - z &= 6 \end{cases}$ 5. (\mathscr{S}_5) $\begin{cases} x + 2y - 3z &= -1 \\ 3x - y + 2z &= 7 . \\ 5x + 3y - 4z &= 2 \end{cases}$ 6. (\mathscr{S}_6) $\begin{cases} 2x - 3y + 5z &= 8 \\ -x + 2y + 4z &= -11 \end{cases}$ 7. $F = \{(2\lambda, 0, -3\lambda), \lambda \in \mathbb{R}\}.$ 8. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 8. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 8. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 8. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 9. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 10. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 11. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 12. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 13. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 13. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 14. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 15. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 16. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 17. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 18. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 18. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda, \mu, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda, \mu, \mu \in \mathbb{R}\}.$ 19. $F = \{(2\lambda + \mu, 2\mu, 3\lambda, \mu, \mu,$

3.
$$(\mathscr{S}_3)$$

$$\begin{cases} 2x - y + 4z &= 2\\ x + 2y - 3z &= 6\\ 4x + 3y - 2z &= 14 \end{cases}$$

4.
$$(\mathscr{S}_4) \left\{ x + y + z = 5 \right.$$

5.
$$(\mathscr{S}_5)$$

$$\begin{cases} x + 2y - 3z & = -1\\ 3x - y + 2z & = 7\\ 5x + 3y - 4z & = 2 \end{cases}$$

6.
$$(\mathscr{S}_6)$$

$$\begin{cases} 2x - 3y + 5z &= 8 \\ -x + 2y + 4z &= -11 \end{cases}.$$

Exercice 2. Identifier les réels λ pour lesquels le système d'équations suivant possède une solution.

$$(\mathscr{S}) \begin{cases} 2x_1 - x_2 + x_3 + x_4 &= 1\\ x_1 + 2x_2 - x_3 + 4x_4 &= 2\\ x_1 + 7x_2 - 4x_3 + 11x_4 &= \lambda \end{cases}$$

II - Familles de vecteurs

Exercice 3. (Familles libres) Montrer que les familles suivantes sont libres:

1.
$$((-1,-1,1,2),(1,-1,1,5))$$
.

2.
$$((8,4,1,-2),(1,3,0,5))$$
.

3.
$$((1,1,3,2),(1,-1,1,3),(0,1,5,2))$$
.

4.
$$((1,2,3,4),(-1,3,2,1),(2,1,-1,1))$$

Exercice 4. (Familles génératrices) Déterminer une famille génératrice des espaces vectoriels suivants :

1.
$$F = \{(2\lambda, -\lambda, -3\lambda), \lambda \in \mathbb{R}\}.$$

2.
$$F = \{(2\lambda, 0, -3\lambda), \lambda \in \mathbb{R}\}.$$

3.
$$F = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}$$

4.
$$F = \{(2\lambda + \mu, 5\lambda + 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}$$

Exercice 5. (Bases) Déterminer une base des sous-espaces vectoriels sui-

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 : 2x - 3y + z = 0\}.$$

2.
$$F = \{(x, y, z) \in \mathbb{R}^3 : 4x + y + z = 0 \text{ et } 3x + z = 0\}.$$

3.
$$F = \{(x, y, z) \in \mathbb{R}^3 : x - y - z = 0 \text{ ET } 2x + 3y + z = 0 \text{ ET } 5x + 5y + z = 0\}.$$

4.
$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 : \begin{cases} x + 2y + 3z + t &= 0 \\ x + y - t &= 0 \\ 2x + 3y + 2z &= 0 \end{cases} \right\}.$$

Exercice 6. (Équations cartésiennes) Pour chacune des guestions suivantes, déterminer une équation cartésienne de l'espace vectoriel.

1. Vect
$$\{(1,1,2),(1,0,1)\}.$$

3. Vect
$$\{(1,0,1),(2,3,1)\}$$
.

2. Vect
$$\{(1,2),(4,6)\}.$$

4. Vect
$$\{(1,1,1)\}$$
.

Exercice 7. (Coordonnées)

1. Montrer que $\mathcal{B}_1 = ((-1,1,1),(1,-1,1),(1,1,-1))$ est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8,4,2) dans cette base.

2. Montrer que $\mathcal{B}_2 = ((-1, -1, 1), (1, -1, 1), (2, 2, -1))$ est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8,4,2) dans cette base.

3. Soit $\mathscr{B} = ((-1, -1, 1), (2, 2, -1))$ et $F = \text{Vect } \mathscr{B}$. Déterminer les coordonnées de (3, 3, -1) dans la base \mathscr{B}

T.D. IV - Espaces vectoriels

III - Questions plus théoriques

Exercice 8. Soit F, G deux sous-espaces vectoriels de \mathbb{R}^n .

1. Montrer que $F \cap G$ est un sous-espace vectoriel de \mathbb{R}^n .

2. On note $F+G=\{f+g,\,(f,g)\in F\times G\}$. Montrer que F+G est un sous-espace vectoriel de \mathbb{R}^n .

3. Montrer que, en général, $F \cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^n .

Indication: Exhiber un contre-exemple lorsque n = 2.

Exercice 9. Soient $u_1 = (1, 2, 3, 4)$, $u_2 = (1, 1, 1, 3)$, $u_3 = (2, 1, 1, 1)$, $u_4 = (-1, 0, -1, 2)$ et $u_5 = (2, 3, 0, 1)$. On considère les sous-espaces vectoriels U, V de \mathbb{R}^4 définis par $U = \text{Vect}\{u_1, u_2, u_3\}$ et $V = \text{Vect}\{u_4, u_5\}$. Quelles sont les dimensions de $U, V, U \cap V$ et U + V?

Exercice 10. Soit $F = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 + \dots + x_n = 0\}$. Déterminer la dimension et une base de F.