Facultad de Ingeniería Ingeniería Civil Informática

Implementación de Técnicas de Inteligencia Artificial para el Comportamiento Autónomo de un NPC en Videojuegos

Alumno: Raimundo

Armijo

Profesor:

Doctor Pablo Schwarzenberg

Fecha:11/12/2024

Introducción

- Un agente virtual, o agente autónomo, es un personaje no jugable (NPC) que interactúa en entornos digitales imitando comportamientos humanos o animales.
- Se buscará determinar si el desempeño de un agente virtual es capaz de aprender un patrón de comportamiento similar al de un humano

[1] today.com/parents/teens/npc-meaning-slang-rcna

Marco Teórico

[2] freecodecamp.org/an-introduction-to-q-learning-reinforcement-learning

[4] cs.us.es/~fsancho/Blog/posts/Aprendizaje_por_Refuerzo_Q_Learning.md

[3] datacamp.com/es/tutorial/introduction-q-learning-beginner-tutorial

Marco Teórico

[5] linkedin.com/pulse/decision-tree-machine-learning-raji-shanmugam

Objetivos

- Desarrollo de lA Avanzada: Crear un agente virtual usando Q-learning y árboles de decisión, capaz de tomar decisiones autónomas basadas en recompensas dinámicas y estados predefinidos.
- Sistema de Memoria y Reseteo: Implementar un mecanismo que permita al agente aprender, retener información y reiniciar su conocimiento para explorar nuevas estrategias.
- Videojuego Medieval 2D: Diseñar un entorno donde el jugador interactúe y observe el comportamiento adaptativo del agente, evaluando su capacidad para reaccionar y emular patrones realistas.

Metodología

Modelos

Modelo de Aprendizaje con Árbol de Decisión y Q-Table

Recolección de Datos

State	Action	Value
Idle	Idle	0,9179564
Idle	Pursue	0,8748335
Idle	Flee	0,8824086
Pursue	Flee	0,9109514
Attack	Pursue	0,9172875
Flee	Idle	0,8733693
Flee	Attack	0,8850789
Idle	Idle	0,08201442
Idle	Pursue	0,05474388
Idle	Flee	0,04770442
Pursue	Flee	0,00322684
Attack	Pursue	0,02359277
Flee	Idle	0,07515725
Idle	Pursue	0,04432861
Pursue	Flee	0,06432467
Pursue	Pursue	0,02229115
Attack	Flee	0,0360494

State	Action	Before Reset	After Reset
Pursue	Attack	0,8203782	0,09896803
Pursue	Flee	0,8326589	0,05615147
Attack	Pursue	0,8749589	0,03635165
Attack	Flee	0,8239063	0,09080958
Flee	Pursue	0,8132162	0,07553311
Idle	Attack	0,9651506	0,06682535
Idle	Pursue	0,830566	0,07827975

Análisis de Datos

Q-Table Heatmap Before and After Reset

Análisis de Datos

Conclusiones

- 1 Comportamiento Adaptativo
- 2. Impacto del sistema de Reseteo
- 3. Balance y Áreas de Mejora

[6] blog.spiceai.org/posts/2021/12/15/understanding-q-learning-how-a-reward-is-all-you-need/

Limitaciones y Trabajo futuro Liversidad Andrés Bello

Limitaciones:

- Falta de pruebas con usuarios reales.
- Restricciones de tiempo limitaron el alcance del proyecto.

Trabajo futuro:

- Optimización del Reseteo
- Modelos Avanzados y Pruebas
- Análisis de Largo Plazo

Referencias

- Susana Fernández, Roberto Adarve, Miguel Pérez, Martin Rybarczyk, and Daniel Borrajo. 2006. Planning for an Al based virtual agents game. In Proceedings of the Workshop Al Planning for Computer Games and Synthetic Characters in the ICAPS. Citeseer.
- Yenifer del Valle Guevara and Omar Correa Madrigal. 2013. Sistema de percepcion generico para agentes autonomos en videojuegos serios. Master's thesis. Universidad de las ciencias informaticas.
- DI Wang, Budhitama Subagdja, Ah-Hwee Tan, and Gee-Wah Ng. 2009. Creating human-like autonomous players in real-time first person shooter computer games. In Twenty-First IAAI Conference.
- Kao-Shing Hwang, Yu-Jen Chen, Wei-Cheng Jiang, and Tsung-Wen Yang. 2012. Induced states in a decision tree constructed by Q-learning. Information Sciences 213 (2012), 39–49.
- Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning 8 (1992), 279–292.

Facultad de Ingeniería Ingeniería Civil Informática

Implementación de Técnicas de Inteligencia Artificial para el Comportamiento Autónomo de un NPC en Videojuegos

Alumno: Raimundo

Armijo

Profesor:

Doctor Pablo Schwarzenberg

Fecha:11/12/2024