Comparison of variation operators and survival strategies

Prakash Kotecha, Associate Professor

Debasis Maharana, Teaching Assistant & Remya Kommadath, Teaching Assistant Department of Chemical Engineering Indian Institute of Technology Guwahati

Teaching Learning Based Optimization (TLBO)

Teacher phase:

$$\boldsymbol{X}_{new} = \boldsymbol{X}_i + r \Big(\boldsymbol{X}_{best} - \boldsymbol{T}_f \boldsymbol{X}_{mean} \Big)$$

Learner phase:

$$X_{new} = \begin{cases} X_i + r(X_i - X_p) & if \ f_i < f_p \\ X_i - r(X_i - X_p) & otherwise \end{cases}$$

X Current solution

X_{new} New solution

X_{best} Teacher

X_{mean} Mean of the population

T_f Teaching factor, either 1 or 2

r Random numbers between 0 and 1

Xp Partner solution

f_i Fitness of current solution

f_p Fitness of partner solution

Particle Swarm Optimization (PSO)

➤ Particle velocity

$$v_i = wv_i + c_1r_1(p_{best,i} - X_i) + c_2r_2(g_{best} - X_i)$$

➤ Position of particle

$$X_i = X_i + v_i$$

v_i Velocity of the ith particle

w Inertia of the particles

c₁ and c₂ Acceleration coefficients

 r_1 and r_2 Random numbers [0,1] of size (1xD)

p_{best,i} Personal best of ith particle

g_{best} Global best

X_i Position of ith particle

Differential Evolution (DE)

➤ Donor vector using DE/rand/1 mutation strategy

$$V = X_{r_1} + F\left(X_{r_2} - X_{r_3}\right)$$

F Scaling factor, a constant between 0 and 2

 r_1, r_2, r_3 Random solutions $r_1, r_2, r_3 \in \{1, 2, 3, ..., N_p\}$ and $r_1 \neq r_2 \neq r_3 \neq i$ where *i* is the index of current solution

Trial vector using binomial crossover

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

p_c crossover probability $\delta \quad \text{randomly selected variable location } \delta \in \{1, 2, 3, ..., D\}$ $r \quad \text{random number between 0 and 1}$ $u^{j} \quad j^{\text{th}} \text{ variable of trial vector}$ $v^{j} \quad j^{\text{th}} \text{ variable of donor vector}$ $x^{j} \quad j^{\text{th}} \text{ variable of target vector}$

Genetic Algorithm (GA)

➤ Offspring generated using SBX crossover

$$\beta = \begin{cases} (2u)^{\frac{1}{(\eta_c+1)}} & \text{if } u \leq 0.5 \\ \left(\frac{1}{2(1-u)}\right)^{\frac{1}{(\eta_c+1)}} & \text{otherwise} \end{cases}$$

$$O_a = 0.5 \left[\left(1 + \beta \right) P_a + \left(1 - \beta \right) P_b \right]$$

$$O_b = 0.5 \left[\left(1 - \beta \right) P_a + \left(1 + \beta \right) P_b \right]$$
if $r_c < p_c$

 r_c and u are random numbers between 0 and 1 p_c is the crossover probability η_c is distribution index

$$P_a^{'}$$
 Parent 1 O_a Offspring 1 $P_b^{'}$ Parent 2 O_b Offspring 2

\triangleright Offspring generated (if $r_m < p_m$) using polynomial mutation

$$\delta = \begin{cases} (2r)^{\frac{1}{(\eta_m+1)}} - 1 & \text{if } r < 0.5 \\ 1 - \left[2(1-r)\right]^{\frac{1}{(\eta_m+1)}} & \text{if } r \ge 0.5 \end{cases}$$

$$O = O + (ub - lb)\delta \text{ if } r_m < p_m$$

 r_m and r are random numbers between 0 and 1 p_m is the mutation probability η_m is distribution index O Offspring solution upper bound lower bound

Artificial Bee Colony (ABC)

Employed bee phase

$$X_{new}^{j} = X^{j} + \phi \left(X^{j} - X_{p}^{j} \right)$$

Onlooker bee phase

$$prob_i = 0.9 \left(\frac{fit_i}{\max(fit)} \right) + 0.1$$

$$X_{new}^{j} = X^{j} + \phi(X^{j} - X_{p}^{j}) \text{ if } r < prob_{i}$$

Scout bee phase

$$X_k = lb + (ub - lb)r$$
 if $\max trial_k > limit$

 X^{j} jth variable of solution X X_{p}^{j} jth variable of partner solution Probability of ith solution prob; Fitness of ith solution fit_i ϕ Random number between -1 and 1 Random numbers between 0 and 1 r Lower bound of decision variable lbUpper bound of decision variable ub

Equations used for variation

TLBO

$$X_{new} = X_i + r(X_{best} - T_f X_{mean})$$

$$X_{new} = X_i + r(X_{best} - T_f X_{mean})$$

$$X_{new} = \begin{cases} X_i + r(X_i - X_p) & \text{if } f_i < f_p \\ X_i - r(X_i - X_p) & \text{otherwise} \end{cases}$$

PSO

$$v_{i} = wv_{i} + c_{1}r_{1}(p_{best,i} - X_{i}) + c_{2}r_{2}(g_{best} - X_{i})$$

$$X_{i} = X_{i} + v_{i}$$

$$X_i = X_i + v_i$$

DE

$$V = X_{r_1} + F(X_{r_2} - X_{r_3})$$

$$V = X_{r_1} + F(X_{r_2} - X_{r_3})$$

$$u^j = \begin{cases} v^j & \text{if } r \le p_c \text{ } OR \text{ } j = \delta \\ x^j & \text{if } r > p_c \text{ } AND \text{ } j \ne \delta \end{cases}$$

GA

$$\beta = \begin{cases} (2u)^{\frac{1}{(\eta_c+1)}} & \text{if } u \leq 0.5\\ \left(\frac{1}{2(1-u)}\right)^{\frac{1}{(\eta_c+1)}} & \text{otherwise} \end{cases}$$

$$O_a = 0.5 \left[\left(1 + \beta \right) P_a + \left(1 - \beta \right) P_b \right]$$

$$O_b = 0.5 \left[\left(1 - \beta \right) P_a + \left(1 + \beta \right) P_b \right]$$
if $r_c < p_c$

$$\delta = \begin{cases} (2r)^{\frac{1}{(\eta_m + 1)}} - 1 & \text{if } r < 0.5 \\ 1 - \left[2(1 - r) \right]^{\frac{1}{(\eta_m + 1)}} & \text{if } r \ge 0.5 \end{cases}$$

$$O = O + (ub - lb) \delta \text{ if } r_m < p_m$$

ABC

$$X_{new}^{j} = X^{j} + \phi \left(X^{j} - X_{p}^{j} \right)$$

$$prob_i = 0.9 \left(\frac{fit_i}{\max(fit)} \right) + 0.1$$

$$X_{new}^{j} = X^{j} + \phi \left(X^{j} - X_{p}^{j} \right) \text{ if } r < prob_{i}$$

$$X_k = lb + (ub - lb)r$$
 if $\max trial_k > limit$

Survival strategy

Old Solution		New Solution		Greedy strategy		(μ, λ) strategy		(μ + λ) strategy	
Sol	f	Sol	f	Sol	f	Sol	f	Sol	f
[3 1]	10	[4 3]	25	[3 1]	10	[4 3]	25	[1 0]	1
[1 5]	26	[1 2]	5	[1 2]	5	[1 2]	5	[2 0]	4
[3 3]	18	[4 2]	20	[3 3]	18	[4 2]	20	[1 2]	5
[2 0]	4	[1 0]	1	[1 0]	1	[1 0]	1	[3 1]	10
[4 1]	17	[3 1]	10	[3 1]	10	[3 1]	10	[3 1]	10
Algorithms ->			TLBO DE ABC (except scout phase)		PSO Scout phase of ABC		GA		

Thank You!!!