

### Introduction au calcul flottant

MT09 Vincent.Martin@utc.fr

> UTC Compiègne France

UTC, A2019



UTC. A2019

## Plan

Introduction

Représentation des nombres

3 Calculs en précision limitée



## Plan

Introduction

Représentation des nombres

3 Calculs en précision limitée



#### Une suite curieuse

Quelle est la limite de la suite  $(u_n)_{n\in\mathbb{N}}$ ?

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}, \qquad u_0 = 2, \ u_1 = -4$$

```
17
                                   7.2350211655349
3
      18.5000000000000
                            18
       9.37837837837838
                                  22.0620784635258
5
       7.80115273775217
                            19
                                  78.5755748878722
       7.15441448097533
                            20
                                  98.3495031221654
7
       6.80678473692481
                            21
                                  99.8985692661829
8
       6.59263276872179
                            22
                                  99.9938709889028
9
       6.44946593405393
                            23
                                  99.9996303872863
       6.34845206074662
                            24
                                  99.9999777306795
11
       6.27443866272812
                            25
                                  99.9999986592167
12
       6 21869676858216
                            26
                                  99 9999999193218
13
       6.17585385581539
                            27
                                  99.999999951478
14
       6.14262717048101
                            28
                                  99.999999997083
15
       6.12024870457016
                            29
                                  99.999999999825
16
       6.16608655959810
                            30
                                  99.999999999989
```



#### Une suite curieuse

Quelle est la limite de la suite  $(u_n)_{n\in\mathbb{N}}$ ?

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}, \qquad u_0 = 2, \ u_1 = -4$$

Pourtant:

$$u_n = \frac{3 \cdot 6^{n+1} - 4 \cdot 5^{n+1}}{3 \cdot 6^n - 4 \cdot 5^n} \Rightarrow \lim_{n \to \infty} u_n = 6$$



## Plan

Introduction

Représentation des nombres

3 Calculs en précision limitée



## Écriture des entiers en base 2

#### En base 10

Chiffres 0, 1, ..., 9

$$n = \textit{d}_{\textit{p}} 10^{\textit{p}} + \ldots + \textit{d}_{1} 10 + \textit{d}_{0}, \quad 0 \leq \textit{d}_{\textit{i}} \leq 9, \ \textit{d}_{\textit{p}} \neq 0$$

$$1789 = 1000 + 700 + 80 + 9 = 1 \cdot 10^3 + 7 \cdot 10^2 + 8 \cdot 10^1 + 9 \cdot 10^0$$

## Écriture des entiers en base 2

#### En base 10

Chiffres 0, 1, . . . , 9

$$n = \textit{d}_{\textit{p}} 10^{\textit{p}} + \ldots + \textit{d}_{1} 10 + \textit{d}_{0}, \quad 0 \leq \textit{d}_{\textit{i}} \leq 9, \ \textit{d}_{\textit{p}} \neq 0$$

$$1789 = 1000 + 700 + 80 + 9 = 1 \cdot 10^3 + 7 \cdot 10^2 + 8 \cdot 10^1 + 9 \cdot 10^0$$

#### En base 2

Chiffres = 0, 1

$$n = d_p 2^p + \ldots + d_1 2 + d_0, \quad 0 \le d_i \le 1, \ d_p \ne 0,$$

$$(42)_{10} = 32 + 8 + 2 = 1 \cdot 2^5 + 0.2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$
  
= (101010)<sub>2</sub>



# Écriture scientifique des réels

$$x = \pm f \cdot 10^e$$
,  $1/10 \le f < 1$ 

#### Exemple

- $825.34 = 0.8253410^3$  écriture finie
- $\bullet$  8.2534 = 0.82534 10<sup>1</sup>
- $0.0082534 = 0.8253410^{-2}$
- $1/2 = 0.5 \, 10^0$  fraction, écriture finie
- $1/3 = 0.3333333333... 10^0$  fraction, périodique
- $\bullet$  4/7 = 0.5714285714285... fraction périodique
- $\pi = 0.314159265358...10^{1}$ , infini, non périodique



UTC. A2019

$$x = \pm f \cdot 2^e$$
,  $2^{-1} \le f < 1$ 

*f* mantisse, *e* exposant (entier, unique si  $x \neq 0$ )



$$x = \pm f \cdot 2^e$$
,  $2^{-1} \le f < 1$ 

*f* mantisse, *e* exposant (entier, unique si  $x \neq 0$ )

#### Nombres flottants: f sur t chiffres

Taille mot mémoire limitée  $\Rightarrow x \in F$  ensemble fini (nombre flottants machine)

$$f = \frac{d_1}{2} + \frac{d_2}{2^2} + \dots + \frac{d_t}{2^t}, \qquad 0 \le d_i \le 1, \qquad d_1 \ne 0$$
  
=  $(0.d_1d_2...d_t)_2$ 

Exposant  $L \le e \le U$ 



$$x = \pm f \cdot 2^e$$
,  $2^{-1} \le f < 1$ 

*f* mantisse, *e* exposant (entier, unique si  $x \neq 0$ )

#### Nombres flottants: f sur t chiffres

Taille mot mémoire limitée  $\Rightarrow x \in F$  ensemble fini (nombre flottants machine)

$$f = \frac{d_1}{2} + \frac{d_2}{2^2} + \dots + \frac{d_t}{2^t}, \qquad 0 \le d_i \le 1, \qquad d_1 \ne 0$$
  
=  $(0.d_1 d_2 \dots d_t)_2$ 

Exposant  $L \le e \le U$ 

#### Système caractérisé par

Nombre de chiffres t (en base 2)

Exposants min et max L et U



$$x = \pm f \cdot 2^e$$
,  $2^{-1} \le f < 1$ 

*f* mantisse, *e* exposant (entier, unique si  $x \neq 0$ )

#### Nombres flottants: f sur t chiffres

Taille mot mémoire limitée  $\Rightarrow x \in F$  ensemble fini (nombre flottants machine)

$$f = \frac{d_1}{2} + \frac{d_2}{2^2} + \dots + \frac{d_t}{2^t}, \qquad 0 \le d_i \le 1, \qquad d_1 \ne 0$$
  
=  $(0.d_1 d_2 \dots d_t)_2$ 

Exposant  $L \le e \le U$ 

Système caractérisé par

Nombre de chiffres t (en base 2)

Exposants min et max L et U

Ensemble fini

$$\operatorname{card} F = 1 + 2^t (U - L + 1)$$

# Quelques exemples

• 
$$3/2 = 1 + 1/2 = 2(1/2 + 1/4) = 2^1 \times 0.11$$



# Quelques exemples

• 
$$3/2 = 1 + 1/2 = 2(1/2 + 1/4) = 2^1 \times 0.11$$

• 
$$5/2 = 2 + 1/2 = 4(1/2 + 1/8) = 2^2 \times 0.101$$
,



# Quelques exemples

• 
$$3/2 = 1 + 1/2 = 2(1/2 + 1/4) = 2^1 \times 0.11$$

• 
$$5/2 = 2 + 1/2 = 4(1/2 + 1/8) = 2^2 \times 0.101$$
,

1/10, pas de représentation finie :

$$1/10 = \frac{1}{16} \frac{16}{10} = \frac{1}{16} (1 + \frac{3}{5}) = \frac{1}{16} (1 + \frac{9}{16} \frac{1}{1 - 1/16})$$

$$= 2^{-4} \left( 1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \dots \right)$$

$$= 2^{-3} \left( \frac{1}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \underbrace{\frac{0}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{0}{2^7} + \frac{0}{2^8} + \frac{1}{2^9} + \dots}_{\text{période}} \right)$$



### Nombre flottants

Exemple : t = 3, L = -1, U = 2, card F = 33





### Nombre flottants

Exemple : 
$$t = 3, L = -1, U = 2, \text{ card} F = 33$$



Nombre positifs de  $\digamma$  entre 1/2 et 1 (e=0):

$$\begin{array}{lll} 1/2 = & (0.100)_2, & 3/4 = 1/2 + 1/4 & = (0.110)_2 \\ 5/8 = 1/2 + 1/8 & = (0.101)_2, & 7/8 = 1/2 + 1/4 + 1/8 & = (0.111)_2 \end{array}$$



### Nombre flottants

Exemple : 
$$t = 3, L = -1, U = 2, \text{ card } F = 33$$



Nombre positifs de F entre 1/2 et 1 (e = 0):

$$1/2 = (0.100)_2, \quad 3/4 = 1/2 + 1/4 = (0.110)_2$$
  
 $5/8 = 1/2 + 1/8 = (0.101)_2, \quad 7/8 = 1/2 + 1/4 + 1/8 = (0.111)_2$ 

Espacement variable (facteur 2 à chaque puissance de 2), mais distance relative constante  $\varepsilon_{mach}=1/8=1/2^3$ 

« Trou » important autour de 0, plus petit nombre positif de F: 1/4

## Nombre flottants : le système IEEE 754

Simple précision (float):

32 bits, 
$$t = 23 + 1$$
,  $L = -126$ ,  $U = 127$ ,  $x_{\text{max}} \approx 10^{38}$ ,  $x_{\text{min}} \approx 10^{-38}$ 

## Nombre flottants : le système IEEE 754

#### Simple précision (float):

32 bits, 
$$t = 23 + 1$$
,  $L = -126$ ,  $U = 127$ ,  $x_{\text{max}} \approx 10^{38}$ ,  $x_{\text{min}} \approx 10^{-38}$ 

#### Double précision (double):

64 bits, 
$$t = 52 + 1$$
,  $L = -1022$ ,  $U = 1023$ ,  $x_{\text{max}} \approx 10^{308}$ ,  $x_{\text{min}} \approx 10^{-308}$ 



## Propriétés de la norme IEEE 754

Utilisé par Java, processeurs Intel, PowerPC (norme internationale)

Bit caché gagne en précision

Norme précise règles d'arrondi (au plus proche, vers 0, vers  $\pm \infty$ )

Il existe  $\pm 0$ ,  $\pm \infty$ 

Nombres dénormalisés (entre 0 et  $x_{min}$ )

NaN = " Not a Number" pour 0/0,  $\infty/\infty$ , fonction isnan(x)



## Arrondi – epsilon machine

Approcher  $x \in \mathbb{R}$  par  $fl(x) \in F : (x > 0)$ 

Arrondi au plus proche f(x) est l'élément de F le plus proche de x

$$\frac{|x-fl(x)|}{|x|} \leq 2^{-t}$$

## Arrondi – epsilon machine

Approcher  $x \in \mathbb{R}$  par  $fl(x) \in F : (x > 0)$ 

Arrondi au plus proche f(x) est l'élément de F le plus proche de x

$$\frac{|x-fl(x)|}{|x|} \leq 2^{-t}$$

Exemple (5 chiffres significatifs) :  $x = \sqrt{7} \approx 2.6457513...$ Arrondi fl(x) = 2.6458



# Arrondi – epsilon machine

Approcher  $x \in \mathbb{R}$  par  $fl(x) \in F : (x > 0)$ 

Arrondi au plus proche f(x) est l'élément de F le plus proche de x

$$\frac{|x-fl(x)|}{|x|}\leq 2^{-t}$$

Exemple (5 chiffres significatifs) :  $x = \sqrt{7} \approx 2.6457513...$ 

Arrondi fl(x) = 2.6458

 $\varepsilon_{\rm mach} = 2^{-t}$  caractéristique de l'arithmétique.

$$fl(x) = x(1+\varepsilon), \ |\varepsilon| \le \varepsilon_{\mathsf{mach}}$$

Calculatrice  $\varepsilon_{\text{mach}} \approx 10^{-10}$ Avec Scilab  $\varepsilon_{\text{mach}} = 2^{-53} \approx 1.11 \, 10^{-16} \approx 16 \, \text{chiffres}$ (Scilab: "%eps" =  $2\varepsilon_{\text{mach}} \approx 2.22 \, 10^{-16}$ ).



## Plan

Introduction

Représentation des nombres

Calculs en précision limitée



### Calcul sur les nombres flottants

En général le résultat exact d'une opération sur deux flottants n'est pas un flottant machine

#### Exemple

En base 2, avec 3 chiffres significatifs (t = 3): 0.101

$$\frac{5}{8} + \frac{3}{4} = \frac{11}{8} = 1 + \frac{3}{8} \not\in F$$

$$+ \frac{0.110}{1.011}$$

$$= 0.1011 2^{1}$$

Le dernier chiffre (en rouge) ne peut pas être pris en compte.



### Calcul sur les nombres flottants

En général le résultat exact d'une opération sur deux flottants n'est pas un flottant machine

#### Exemple

En base 2, avec 3 chiffres significatifs (t = 3):

$$\frac{5}{8} + \frac{3}{4} = \frac{11}{8} = 1 + \frac{3}{8} \notin F$$

$$+ \frac{0.110}{1.011}$$

$$= 0.1011 2^{1}$$

Le dernier chiffre (en rouge) ne peut pas être pris en compte.

Axiome Pour  $(x, y) \in F^2$ :  $(x \otimes y)$  est l'arrondi de la valeur exacte de x \* y, si  $* \in \{+, -, \times, \setminus, \sqrt{}\}$ 

$$(x \circledast y) = fl(x * y)$$





15/19

## Propriétés de l'arithmétique flottante

L'arithmétique flottante est commutatitve, et non associative

```
Exemple (arithmétique base 10, 7 chiffres):
a = 0.1234567, b = 0.4711325 \cdot 10^4, c = -b
b \oplus c = 0, (a \oplus (b \oplus c)) = a = 0.1234567
   0.47113250000
                        10^{4}
                                               0.4711448
                                                              10^{4}
                        10^{4}
                                             - 0.4711325
                                                              10^{4}
 + 0.00001234567
   0.471\overline{14484567} 10^4
                                                              10^{4}
                                               0.0000123
  (a \oplus b) = 0.471144810^4
                                  (a \oplus b) \oplus c = 0.123
```



## Propriétés de l'arithmétique flottante

L'arithmétique flottante est commutatitve, et non associative

```
Exemple (arithmétique base 10, 7 chiffres): a = 0.1234567, b = 0.4711325 \cdot 10^4, c = -b b \oplus c = 0, (a \oplus (b \oplus c)) = a = 0.1234567  0.47113250000 \quad 10^4 \\ + 0.00001234567 \quad 10^4 \\ \hline 0.47114484567 \quad 10^4 \\ \hline (a \oplus b) = 0.4711448 \quad 10^4, (a \oplus b) \oplus c = 0.123
```

#### Soustraction de deux nombres voisins

a = 0.1234567, b = 0.1234560,  $a \ominus b = 0.710^{-6}$  (exact). Si a et b sont connus à 6 chiffres près,  $a \ominus b$  n'a qu'un chiffre significatif : révèle une perte de précision dans un calcul précédent.



#### Annulation destructrice

a=123456, b=12.3456, c=123450, arithmétique (décimale) avec 6 chiffres. Calcul de a+b-c=18.3456 (résultat exact).



#### Annulation destructrice

a = 123456, b = 12.3456, c = 123450, arithmétique (décimale) avec 6 chiffres. Calcul de a + b - c = 18.3456 (résultat exact).

Annulation destructrice: seulement deux chiffres exacts. Erreur d'arrondi dans la première opération, la seconde est exacte. L'annulation révèle une perte d'information précédente (même résultat pour  $b \in [11.5, 12.5]$ ).

17 / 19

#### Annulation destructrice

a= 123456, b= 12.3456, c= 123450, arithmétique (décimale) avec 6 chiffres. Calcul de a+b-c= 18.3456 (résultat exact).

Annulation destructrice: seulement deux chiffres exacts. Erreur d'arrondi dans la première opération, la seconde est exacte. L'annulation révèle une perte d'information précédente (même résultat pour  $b \in [11.5, 12.5[)$ .

#### Autre ordre

MT09

 $a \ominus c = 6$ , puis  $b \oplus (a \ominus c) = 18.3456$ , exact.



17 / 19

UTC. A2019

Calcul des racines de  $x^2 - 2px + 1$ , quand  $p \gg 1$  (ex :  $p = 10^7$ )



Calcul des racines de  $x^2 - 2px + 1$ , quand  $p \gg 1$  (ex :  $p = 10^7$ )

## Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = p - \sqrt{p^{2} - 1}$ 

## Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$ 



Calcul des racines de  $x^2 - 2px + 1$ , quand  $p \gg 1$  (ex :  $p = 10^7$ )

### Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = p - \sqrt{p^{2} - 1}$ 

#### Avec Scilab

## Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$ 

#### Avec Scilab

$$x^+ = 2.000000000000010^7$$
  
 $x^- = 5.00000000000010^{-8}$ 



UTC. A2019

Calcul des racines de  $x^2 - 2px + 1$ , quand  $p \gg 1$  (ex :  $p = 10^7$ )

## Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = p - \sqrt{p^{2} - 1}$ 

#### Avec Scilab

$$x^+ = 2.000000000000010^7$$

 $x^- = 5.029141902923610^{-8}$ 

Algorithme instable

## Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$ 

#### Avec Scilab

$$x^+ = 2.000000000000010^7$$

$$x^- = 5.000000000000010^{-8}$$

Algorithme stable



Calcul des racines de  $x^2 - 2px + 1$ , quand  $p \gg 1$  (ex :  $p = 10^7$ )

## Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = p - \sqrt{p^{2} - 1}$ 

#### Avec Scilab

#### Algorithme instable

## Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$
  
 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$ 

#### Avec Scilab

$$x^+ = 2.000000000000010^7$$
  
 $x^- = 5.00000000000010^{-8}$ 

#### Algorithme stable

#### Solutions exactes:



## Une suite curieuse (très simple)

$$u_{n+1} = \alpha u_n + \beta, \quad n = 0, 1, \dots, \quad u_0 \text{ donné}$$

Solution :  $u_n = \alpha^n u_0 + \frac{\alpha^{n-1}}{\alpha-1} \beta$ .

On prend :  $\alpha = 4$ ,  $\beta = -1$  :  $u_n = 1/3 + 4^n(u_0 - 1/3)$ .

Si  $u_0 = 1/3$ , alors la suite est constante :  $u_n = 1/3$ ,  $\forall n$ . Pourtant...



## Une suite curieuse (très simple)

$$u_{n+1} = \alpha u_n + \beta$$
,  $n = 0, 1, \dots$ ,  $u_0$  donné

Solution :  $u_n = \alpha^n u_0 + \frac{\alpha^{n-1}}{\alpha-1} \beta$ .

On prend :  $\alpha = 4$ ,  $\beta = -1$  :  $u_n = 1/3 + 4^n(u_0 - 1/3)$ .

Si  $u_0 = 1/3$ , alors la suite est constante :  $u_n = 1/3$ ,  $\forall n$ . Pourtant...

0 0.333333333333

1 0.3333333333333

2 0.333333333333

11 0.333333333255

23 0.33203125

24 0.328125

25 0.3125

26 0.25

27 0.0

28 - 1.0

29 - 5.0

30 - 21.0



## Une suite curieuse (très simple)

$$u_{n+1} = \alpha u_n + \beta$$
,  $n = 0, 1, \dots$ ,  $u_0$  donné

Solution :  $u_n = \alpha^n u_0 + \frac{\alpha^{n-1}}{\alpha-1} \beta$ .

On prend :  $\alpha = 4$ ,  $\beta = -1$  :  $u_n = 1/3 + 4^n(u_0 - 1/3)$ .

Si  $u_0 = 1/3$ , alors la suite est constante :  $u_n = 1/3$ ,  $\forall n$ . Pourtant...

Si  $u_0 = 1/3(1-\delta)$  avec  $\delta \approx \varepsilon_{\text{mach}}$ , alors  $u_n = 1/3(1-4^n\delta) \to -\infty$ !!

