Comparison of Various Time Series Models

Group No 6

Problem Statement

"Stock market is a complex and challenging system where people will either gain money or lose their entire life savings, We are trying to come up with the best model which has better accuracy for the HDFC Bank share price"

Data Dictionary

Variable	Refers	Datatype
Date	Date at which the price was noted	Datetime
Open Price	Current day's open price	float
Close Price	Closing Price of the stock	float
High Price	Current day's highest Price	float
Low Price	Current day's lowest price	float

Pre-Processing & Exploratory Data Analysis

Data Distribution

- 31 Missing Values found -Imputed using forward fill
- No Outliers Found

Base Models

Moving Average

Holt's Linear Trend

Holt's Winter Trend

Performance Metrics

MSE	RMSE	MAE
7114.858072	84.349618	68.891102
7114.858072	84.349618	68.891102
6726.594466	82.015818	66.632910
6470.897086	80.441886	65.092771
5281.537399	72.674187	58.470691
5472.769356	73.978168	58.359440
	7114.858072 7114.858072 6726.594466 6470.897086 5281.537399	7114.858072 84.349618 7114.858072 84.349618 6726.594466 82.015818

Additive Decomposition

Multiplicative Decomposition

Stationarity Check

```
from statsmodels.tsa.stattools import adfuller
result = adfuller(df['Close Price'])
print(f'Test Statistics: {result[0]}')
print(f'p-value: {result[1]}')
print(f'Critial Values: {result[4]}')
if result[1] > 0.05 :
  print('Series is not Stationary')
else:
  print('Series is Stationary')
Test Statistics: -1.202703287847015
p-value: 0.672431745985324
Critial Values: {'1%': -3.442060292264578, '5%': -2.866705729876777, '10%': -2.569521171354946}
Series is not Stationary
```

Differencing

```
result = adfuller(df['Close Price'].diff().dropna())
print(f'Test Statistics: {result[0]}')
print(f'p-value: {result[1]}')
print(f'Critial Values: {result[4]}')
if result[1] > 0.05 :
 print('Series is not Stationary')
else:
 print('Series is Stationary')
Test Statistics: -8.43651407556981
p-value: 1.8105665571755115e-13
Critial Values: {'1%': -3.442060292264578, '5%': -2.866705729876777, '10%': -2.569521171354946}
Series is Stationary
```



```
from pmdarima.arima.utils import ndiffs
y = df['Close Price']
## Adf Test
print(ndiffs(y, test='adf'))
# KPSS test
print(ndiffs(y, test='kpss'))
# PP test:
print(ndiffs(y, test='pp'))
```

ARIMA and SARIMA

ARIMA

	param	AIC
3	(0, 1, 0)	3714.448380
17	(2, 1, 2)	3715.195847
4	(0, 1, 1)	3715.614392
9	(1, 1, 0)	3715.702520
15	(2, 1, 0)	3716.432179

SARIMA

	param	seasonal	AIC
3119	(2, 1, 2)	(0, 1, 2, 12)	3380.753836
959	(0, 1, 2)	(0, 1, 2, 12)	3392.630875
1019	(0, 1, 2)	(1, 1, 2, 12)	3392.686622
2099	(1, 1, 2)	(1, 1, 2, 12)	3394.360341
2039	(1, 1, 2)	(0, 1, 2, 12)	3394.391278

Performance metrics

	MSE	RMSE	MAE		
Model_Name					
ARIMA	5325.129870	72.973487	54.133885		
SARIMA	4135.333795	64.306561	49.791887		

PROPHET

Prophet

	ds	yhat	yhat_lower	yhat_upper	У
243	2021-12-27	1695.934495	1450.367449	1942.051595	1450.80
244	2021-12-28	1705.417733	1453.918485	1947.968916	1460.80
245	2021-12-29	1708.874098	1458.622114	1952.116442	1453.85
246	2021-12-30	1707.696148	1455.759018	1961.029989	1461.50
247	2021-12-31	1709.647145	1449.435518	1960.311169	1479.40

Forecast:

Cross Validation metric

Performance Metrics

DEPLOYMENT

Thank You!

Contact us

Prasanna Pprakash | LinkedIn

Dhanvanthri | LinkedIn

Boobesh | LinkedIn