Organizační úvod

TODO!!!

Úvod

TODO!!!

Věta 0.1 (Spojitý obraz kompaktu)

 $Necht(P,\varrho)\ a\ (Q,\tau)\ jsou\ metrické\ prostory\ a\ f:P\to Q\ je\ spojité\ zobrazení.\ Necht\ K\subset P\ je\ kompaktní\ množina.\ Potom\ f(K)\ je\ kompaktní.$

Důkaz

Necht $y_n \in f(K)$. Pak $\exists x_n \in K$, $f(x_n) = y_n$. Z definice kompaktnosti $\exists x \in K$, $x_{n_k} \to x \in K$. Podle Heineho věty $f(x_{n_k}) = f(y_{n_k}) \to f(x) \in f(K)$.

Definice 0.1

Nechť (\mathbb{P}, ϱ) a (\mathbb{Q}, τ) jsou metrické prostory, $K \subset \mathbb{P}$ a $f : K \to \mathbb{Q}$. Řekneme, že f je na K stejnoměrně spojitá, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in K : (\varrho(x, y) < \delta \implies \tau (f(x), f(y))).$$

Věta 0.2 (O vztahu spojitosti a stejnoměrné spojitosti na MP)

Nechť (\mathbb{P}, ϱ) a (\mathbb{Q}, τ) jsou MP, $K \subset \mathbb{P}$ je kompaktní a nechť $f: K \to \mathbb{Q}$ je spojitá. Pak f je stejnoměrně spojitá na K.

Důkaz

Nechť f je spojitá, ale ne stejnoměrně. Potom

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in K : \rho(x, y) < \delta \wedge \tau (f(x), f(y)) > \varepsilon.$$

Zvolíme $\delta_n = \frac{1}{n}$ a pro každé si najdeme x_n, y_n . K je kompaktní, tedy existuje podposloupnost $x_{n_k} \to x_0 \in K$.

$$\varrho(y_{n_k}, x_0) \le \varrho(x_{n_k}, y_{n_k}) + \varrho(x_n, x_0) \le \frac{1}{n_k} + \varrho(x_n, x_0) \to 0 \implies y_{n_k} \to x_0$$

Z Heineho věty $f(x_{n_k}) \to f(x_0)$ a $f(y_{n_k}) \to f(x_0)$. Ale my máme, že jsou od sebe vzdáleny o ε . $\not =$

1 Úplné metrické prostory

Definice 1.1 (Cauchyovská posloupnost)

Nechť (\mathbb{P}, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost bodů z \mathbb{P} . Řekneme, že x_n splňuje Bolzano-Cauchyovu podmínku (případně, že je cauchyovská), jestliže platí:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m, n \geq n_0 : \varrho(x_n, x_m) < \varepsilon.$$

Důsledek

Každá konvergentní posloupnost je cauchyovská.

Definice 1.2 (Úplný prostor)

Řekneme, že metrický prostor (\mathbb{P},ϱ) je úplný, jestliže každá cauchy
ovská posloupnost je konvergentní.

Věta 1.1 (Vztah kompaktnosti a úplnosti)

 $Necht'(\mathbb{P}, \varrho)$ je MP a \mathbb{P} je kompaktní. Pak \mathbb{P} je úplný metrický prostor.

 $D\mathring{u}kaz$

Nechť $\{x_n\}_{n=1}^{\infty}$ je cauchyovská posloupnost. \mathbb{P} kompaktní $\Longrightarrow \exists x_{n_k} \to x \in \mathbb{P}$. Nechť $\varepsilon > 0$. Najdu n_0 z BC podmínky. Z $x_n \to x \exists k_0 \forall k \geq k_0 : \varrho(x_{n_k}, x) < \varepsilon$. Nalezneme n_k , $k \geq k_0$, $n_k \geq n_0$. Pak

$$\forall n \geq n_0 : \varrho(x_n, x) \leq \varrho(x_n, x_{n_k}) + \varrho(x_{n_k}, x) < 2\varepsilon.$$

1

Věta 1.2 (Úplnost a prostor spojitých funkcí)

 $Metrický\ prostor\ C([0,1])\ se\ supremovou\ metrikou\ je\ úplný.$

 \Box $D\mathring{u}kaz$

Nechť $\{f_n\}_{n=1}^{\infty}$ je cauchyovská posloupnost. Tedy

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \varrho(f_n, f_m) = \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$
 (*)

Zvolme $x \in [0, 1]$ pevné. Potom máme posloupnost reálných čísel místo funkcí, tedy z BC podmínky v \mathbb{R} je $f_n(x)$ cauchyovská, tedy existuje $\lim_{n\to\infty} f_n(x) = f(x) \in \mathbb{R}$. Takto jsme si zadefinovali novou funkci f.

 $f_n \to f$. Provedeme limitu $n \to \infty$ na (*).

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : \sup_{x \in [0,1]} |f(x) - f_n(x)| \le \varepsilon.$$

Tedy $\varrho(f, f_n) \leq \varepsilon \implies f_n \to f$.

f je spojitá: Nechť $y \in [0,1]$. Chceme dokázat, že f je spojitá v y. Nechť $\varepsilon > 0$. Z BC $\exists n_0 \ \forall x \in [0,1]: |f_n(x) - f_m(x)| < \varepsilon$. Zafixujeme n_0 . f_{n_0} je spojitá v y, tedy $\exists \delta > 0 \ \forall x \in [0,1], |x-y| < \delta: |f_{n_0}(x) - f_{n_0}(y)| < \varepsilon$. Nyní

$$\forall x \in [0,1], |x-y| < \delta : |f(x)-f(y)| \le |f(x)-f_{n_0}(x)| + |f_{n_0}(x)-f_n(y)| + |f_{n_0}(y)-f(y)| \le 3\varepsilon.$$

(Třetí člen dostaneme tak, že zafixujeme $m=n_0$ a n pošleme do nekonečna v BC podmínce výše.)

Věta 1.3 (Banachova, o kontrakci)

Nechť (\mathbb{P}, ϱ) je úplný MP a $T: \mathbb{P} \to \mathbb{P}$ je kontrakce (tedy $\exists \gamma \in (0,1) \ \forall x,y \in P: \varrho(T(x),T(y)) \leq \gamma \cdot \varrho(x,y)$). Pak existuje právě jedno $x \in \mathbb{P}$ tak, že T(x) = x.

 $D\mathring{u}kaz$

Zvolme $x_1 \in P$ libovolně. Definujeme indukcí $x_{n+1} = T(x_n)$. Tvrdíme, že x_n je cauchyovská:

$$\forall n \in \mathbb{N} : \varrho(x_{n+1}, x_n) = \varrho(T(x_n), T(x_{n+1})) \le \gamma \varrho(x_n, x_{n+1}) \le \gamma^2 \varrho(x_{n-1}, x_n) \le \ldots \le \gamma^n \varrho(x_1, x_2).$$

Necht $\varepsilon > 0$, zvolme n_0 , aby $\varrho(x_2, x_1) \gamma^{n_0 - 1} \frac{1}{1 - \gamma} < \varepsilon$. Nyní $\forall m, n \geq n_0, m < n$:

$$\varrho\left(x_{m}, x_{n}\right) \leq \varrho\left(x_{m+1}, x_{m}\right) + \ldots + \varrho\left(x_{n}, x_{n-1}\right) \leq \varrho(x_{1}, x_{2}) \cdot \left(\gamma^{m-1} + \ldots + \gamma^{n-2}\right) \leq \varrho\left(x_{2}, x_{1}\right) \gamma^{n_{0}} + \frac{1}{1 - \gamma}.$$

Tedy x_n je cauchyovská a má limitu.

Tvrdíme, že $T(x_n) \to T(x)$: T je spojité v x. K $\varepsilon > 0$ volme $\delta = \varepsilon$. Pak

$$\forall y \in B(x,\delta): \varrho(x,y) < \delta \implies \varrho(T(x),T(y)) \le \gamma \cdot \varrho(x,y) \le \gamma \delta < \varepsilon.$$

Podle Heineho věty $x_n \to x \implies T(x_n) \to T(x)$. Víme, že $x_{n+1} = T(x_n)$, tj. $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} T(x_n)$.

Jednoxznačnost: Necht $\exists x, y, T(x) = x \text{ a } T(y) = y$. Pak

$$\varrho(x,y) = \varrho(T(x),T(y)) \le \gamma \cdot \varrho(x,y) \implies \varrho(x,y) = 0 \implies x = y.$$

Věta 1.4 (O převedení na integrální tvar)

Nechť $I \subset \mathbb{R}$ je otevřený interval, $x_0 \in I$, $f: I \times \mathbb{R} \to \mathbb{R}$ spojité a $y: I \to \mathbb{R}$ je spojitá. Pak y je řešení ODR y' = f(x, y(x)) na I s počáteční podmínkou $y(x_0) = y_0$ právě tehdy, když $y(x) = y_0 + \int_{x_0}^x f(s, y(s)) ds$, $\forall xz \in I$.

 $D\mathring{u}kaz$

 \implies : víme y'(s) = f(s, y(s)) je spojité, tj. lze integrovat:

$$y(x) - y_0 = y(x) - y(x_0) = \int_{x_0}^x y'(s)ds = \int_{x_0}^x f(s, y(s))ds.$$

 \Leftarrow : zderivujeme (integrant je spojitý \Longrightarrow integrál lze zderivovat) y'(x)=f(x,y(x)). Zřejmě také $f(x_0)=y_0$.

Věta 1.5 (Picard)

Nechť $I \subset \mathbb{R}^2$ je otevřený interval a $(x_0, y_0) \in I$.

Poznámka

Stačí libovolná otevřená množina.

Důkaz

Nechť $f: I \to \mathbb{R}$ je spojitá a lokálně lipschitzovská vůči Y. Pak existuje $(x_0 - \delta, x_0 + \delta)$ okolí x_0 a funkce y(x) definovaná na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR y'(x, y(x)) na $(x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0$. Navíc y je jediné řešení na $(y_0 - \delta, y_0 + \delta)$.

 $D\mathring{u}kaz$

Zvolme $\delta, \Delta > 0$, aby $[x_0 - \delta, x_0 + \delta] \times [y_0 - \Delta, y_0 + \Delta] \subset I$. Definujeme $X = \{y \in C([x_0 - \delta, x_0 + \delta]) | y(s) \in T([x_0 - \delta, x_0 + \delta]) + C([x_0 - \delta, x_0 + \delta]) \}$ befinujeme operator $T : C([x_0 - \delta, x_0 + \delta]) \to C([x_0 - \delta, x_0 + \delta])$ tak, že $T[y](x) = y_0 + \int_{x_0}^x f(s, y(s)) ds$.

Klíčové pozorování: y řeší naši ODR $\Leftrightarrow T[y] = y$. (Z předchozí věty.)

X je úplný: Později.

Máme pevné $\delta, \Delta > 0$, že $A := [x_0 - \delta, x_0 + \delta] \times [y_0 - \Delta, y_0 + \Delta] \subset I$. f spojitá na tomto kompaktu $\Longrightarrow \exists M > 0, |f(x,y)| \leq M$ na A. Z lipschitzovskosti $\exists x > 0 : \forall [x,y] \in A, \forall [x,\tilde{y}]|f(x,y) - f(x,\tilde{y})| \leq K \cdot |y - \tilde{y}|$. Případným zmenšením $\delta > 0$ dosáhneme

$$\delta \leq \min \left\{ \frac{\Delta}{M}, \frac{1}{2K} \right\}.$$

Ukážeme $T: X \to X: y \in X, y(x) \in [y_0 - \Delta, y_0 + \Delta].$

$$|T[y](x) - y_0| = |\int_{x_0}^x f(s, y(x)) ds| \le |x - x_0| M \le \delta \cdot M \le \Delta.$$

$$\implies T[y](x) \in [y_0 - \Delta, y_0 + \Delta] \implies T[y] \in X.$$

Dokážeme, že je toto zobrazení kontrakce a pak už máme hotovo z věty výše. Kontrakce: Nechť $y, \tilde{y} \in X$ a $x \in [x_0 - \delta, x_0 + \delta]$.

$$T[y](x) - T[\tilde{y}](x)| = |\int_{x_0}^x (f(s, y(s)) - f(s, \tilde{y}(s)))ds| \le \int || \le f(s)| \le f(s) \le f(s)$$

$$\leq \int_{x_0}^x |K \cdot (y(s) - \tilde{y}(s))| ds < |x_0 - x| \cdot K \cdot \sup_{s \in [x_0 - \delta, x_0 + \delta]} (y(s) - \tilde{y}(s)) \leq \delta \cdot K \cdot \varrho(y, \tilde{y}) \leq \frac{1}{2} \varrho(y, \tilde{y}).$$

Supremum dá $\varrho(T[y], T[\tilde{y}]) \leq \frac{1}{2}\varrho(y, \tilde{y}).$