Heights of algebraic numbers

Last time:

We defined H= Q-)K

 $\frac{a}{b}$ \longrightarrow $\max(|a|, |b|)$

gcd(a,b) = 1

Today's goal. Define H: Q -> IR

Collection of all algebraic numbri

\$1 Intro to algebraic # thy

Defn 1: A number field is a field

K is a finite extension of Q.

The degree of a # field k is its dimension a Q-vector speci [K: Q]-Example: Satbi: a, b & Q] is a field. It's a degree 2 Hitield. 21, i 4 b-sis as a Q-rector space. Defri. An algebraic # is an element of a number field. If a alg H in a Observe: #field K

 $\{\alpha, \alpha^2, \alpha^3, \dots \}$ is an infinite vollection of rectors inside a finite din Q-rentor space. =) There is a non-trivial linear dependence relation and + and + - +a, =0 for some at to, not allzen Example: The algebraic # i Satistres 1. 12 + 1 = 0 1.13-1.120 Basis for { athi: a, b & Q3 = S1, i3 (X+1)

Defn: The minimal polynomist of an elg # d is the polynamical f(x) e Z(x) of lowestolegree Such that $-\int (\alpha) = 0$ $-\gcd(\alpha_{0_1}\alpha_{1_1}-\alpha_n)=1$ - Q₀ 7 D f(x)=0,xx+---Ex: Chech that the min. polynomi! is irreducible on ZCXJ.

Q: How to build a number field K? A: Pich f(x) e Q(x) irreduable, desree n. (f(x)) C &(x) maximal ideal.) QCX) is a field! CHECK: K:= Q(X) is a # field f(x) of desree n. Explicit basis: {1, X, x3, --, x"-1}

X modf is a rout of the polynomil f in K= (x) (f(x))is irreduke $C_{\chi}: \chi^2 + 1$ But in K= WCA $\chi^2 + 1 = (\chi + t) (\chi - t)$ Examples Min. poly. Hisel desse Alg # of6 bx-a

gcd(a,b)=1

b70			
Ĉ	χ^2+1	$(\times^2 + 1)$	2
J2+1	$(\chi - 1)^2 - 2$	$((\sqrt{2}) = (\sqrt{2})$ $\chi^2 - 2$	2
3/2	$\times^3 - 2$	$\mathbb{Q}(3/2)$ $= \mathbb{Z} \mathbb{Q}(x)$ $\times^{3} - 2$	3
Primitive pth not ut unity prime Prime	$Q_{p(X)} = \frac{X^{p}-1}{X-1}$ $pth ayclotomic$ $polynomial$ $= X^{p-1} + \cdots + 1$	QCXJ Qp(X) = Q(Gp) physlutomic fie(d.	P=1

Defn: The collection of all algebranic numbers inside C is a subfield - denoted & _- an 'algebraic dosure' of Q. Primitive Element Theorem Grery number field K is of the form $\frac{Q(x)}{f(x)}$ for some reducible polynomid fix) & das A root of fin Kis called a primitive element.

dessee 4 number field $\left(f(x)\right) \qquad x^{4} - 10x^{2} + 1$ minimal polynomed of 52+53 Proof: Dwitted.

We want to define H: @ > K Ne have complex absolute vehic

 $|a+b^2| = \sqrt{a^2+b^2}$ Lemma: An alg #field K= QCXS of destree 19 has n distinct embeddings $\sigma_1, \sigma_2, \ldots, \sigma_n$: $K \hookrightarrow G$ Prouf: Qay (X) 1 + 1 F(x) D

X Poot of fire Aistinct. $C \times : K = \frac{Q(x)}{x^2 + 1}$ $\begin{array}{c} & & & \\ & &$ & 2: Heights d algebraic #

Weil (absolute height of a H(x)= [10,17] max (2, ldjl) jes loganthmic height h&1= log H&1.

Example: 1) $d = \frac{\alpha}{L} \in K - Q \stackrel{(3)}{\subset} C$ g cd(a,b)=1,b>0 Minimal polynomia: bx-a Only conjugate of d is 3. $H(\alpha) = \begin{bmatrix} b \\ mex \\ \frac{a}{b} \end{bmatrix}$ if 17 (2) = 5 lb1 1

=
$$\frac{1}{2}$$
 lb1 if lb1 $\frac{1}{2}$ la1

= $\frac{1}{2}$ la1 if lb1 $\frac{1}{2}$ la1

= $\frac{1}{2}$ max (|a|, |b|)

2) $\frac{1}{2}$ = $\frac{1}{2}$ Minimal polynomial leading coefficient. 1

 $\frac{1}{2}$ = $\frac{1}{2}$ C $\frac{1}{2}$ C

$$\begin{array}{c} X \\ X \\ \end{array} \begin{array}{c} X \\ \end{array} \begin{array}{c}$$

3) 2= 5p primitive root of unity Min. poly- ap(x)= xt-1 =1.XP-1+--Conjugates of & = { e P } e P e P 2d

4)
$$\alpha = \sqrt{2+1}$$
 $\beta = (\sqrt{2+1})^2$

Min. poly. $f(x) = (x-1)^2 - 2$
 $= \sqrt{2} + 2$
 $=$

$$d_{1} = G_{1}(d) = J_{2} + 1$$

$$d_{2} = G_{2}(d) = -J_{2} + 1$$

$$J_{2+1} = J_{2} + 1$$

$$H(d) = J_{2} + 1$$

$$max(J_{1} | J_{2} + 1) = 1$$

$$max(J_{1} | J_{2} + 1) = 1$$

$$= J_{2} + 1$$

$$max(J_{1} | J_{2} + 1) = 1$$

$$= J_{2} + 1$$

3/2 43 -d: 1. | 3/2 | · | 3/2 | · | 3/2 |

6)
$$\lambda = \frac{1}{3\sqrt{2}}$$

Min poly of $\frac{1}{3\sqrt{2}} = -f^{rev}(x)$
 $= 2x^3 - 1$
 $H(\lambda) = \left[121 \text{ max}(1; \left[\frac{1}{3\sqrt{2}}\right]) + \frac{1}{3\sqrt{2}}\right]$
 $= (2.1.1.1)^{\frac{1}{3}} = 3(2)$

Properties of Heighly (a) If I 4 2 a home same min. poly., then H(d)=H(d'). (b) H(d) 7 1 (cc) If $\alpha \neq 0$, $H(\alpha^{-1}) = H(\alpha)^{2}$ (near) $H(\alpha^{-1}) = H(\alpha)^{2}$ $H(\alpha^{-1}) = H(\alpha)^{2}$ (d) Northcott property
There are only many alg#s

of bounded heights & boundel degree. Proof shetch (d) Fix degree n Fex bound N73 Will show only fin- mons algets of degreen, hes +an (290) (et +(x) == a , xn+ -min. poly of &

Will show $|a| \leq 2^n N^{n(n+1)}$ Stritely many such about, $f(x) = a_0 \times^{n} + a_i x^{n-i} + a_n$ $=\alpha_{0}\left(X-\alpha_{1}\right)-\cdots\left(X-\alpha_{n}\right)$ $\in\mathbb{C}(X)$ Cheel; C(1) = C(1) =

 $|\alpha_i| \leq |\alpha_0| \left(\leq |(-1)\alpha_{s_i}, -\alpha_{s_i}| \right)$ Trampe 6hegn (ib) $\leq |a_0| \binom{n}{max} \binom{n}{n}$ $\leq H(\alpha)$ $\binom{n}{i}$ $\binom{H(\alpha)^{n}}{j}$ $\leq H(\alpha)$ 2 $\sim N^{n+n}$ ~ 2

Kronecker's theorem 270 $H(\alpha) = 1$ if and only f d is a root of amity.

Prout: (=). Supprese H(x)=1 $\left[+ \left(\alpha^{m} \right) = H \left(\alpha \right)^{m} = 1$ · degree (dm) $\leq n$ am e K # field, dieng n.

4 = S · \(\d \d \d \d \d \d \) ... bounded height (=3)? brundled depree (En) Sis finite!

Northwells =) In > m $\alpha^n = \alpha^m$ = 1 $\mathbb{P}^{r_1}(K)$ Next time: Heights on for K # field.

ZEQQ :: ??? WK Poline algebraic integers of K