Zadanie 1. Liczba binarna (8 pkt)

Kod uzupełnień do jedności to jeden ze sposobów maszynowego zapisu liczb całkowitych, tradycyjnie oznaczany skrótem U1.

Zapis liczb całkowitych dodatnich w kodzie U1 uzyskuje się poprzez zapisanie liczby w kodzie binarnym oraz dodanie na początek zapisu tak zwanego bitu znaku, dla liczb nieujemnych równego zawsze **0**.

Przykład dla liczby dziesiętnej 9:

$$9_{10} = 1001_2$$
 $9_{10} = 01001_{U1}$
bit znaku

Zapis w kodzie U1 liczb ujemnych uzyskuje się, negując każdy bit reprezentacji binarnej liczby oraz dodając na początek zapisu bit znaku, dla liczb ujemnych równy 1.

Przykład dla liczby dziesiętnej (-9):

$$9_{10} = 1001_{2}$$
negacja $1001=0110$
 $-9_{10} = 10110_{U1}$
bit znaku

Podsumowując:

w zapisie dziesiętnym	w U1
9	01001
-9	10110

Liczba 0₁₀ reprezentowana jest przez 00_{U1}.

Wykonaj następujące polecenia:

a) Uzupełnij tabelę, zapisując liczby dziesiętne w kodzie U1.

w zapisie dziesiętnym	w U1
46	0101110
-46	1010010

Miejsce na obliczenia

b) Uzupełnij tabelę, zamieniając liczby binarne zapisane w kodzie U1 na liczby zapisane w systemie dziesiętnym.

w U1	w zapisie dziesiętnym
0100111	3 9
1001101	-51

c) Dla podanej poniżej specyfikacji zapisz (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania) algorytm, który oblicza wartość liczby zapisanej w kodzie U1.

Specyfikacja algorytmu

Dane:

d – długość zapisu U1, d>1 bin[1..d] – tablica, której elementami są pojedyncze bity zapisu U1, z czego bin[1] to bit znaku

Wynik:

x – wartość liczby zapisanej w tablicy bin[1..d]

Przykład: Dla d = 5 i bin[1...5] = [10110] wynikiem jest x = -9.

