LAPORAN PRATIKUM

BAGIAN IV – MODEL REGRESI VARIAN DUMMY MATA KULIAH STATISTIKA REGRESI KELAS B

"Hasil Analisis Regresi Terhadap Varian Dummy"

DISUSUN OLEH:

ANGELA LISANTHONI (21083010032)

DOSEN PENGAMPU:

TRIMONO, S.SI., M.SI DR. ENG. IR. ANGGRAINI PUSPITA SARI., ST., MT.

PROGRAM STUDI SAINS DATA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN"
JAWA TIMUR
2022

1. BAB 1: PENDAHULUAN

1.1 Tujuan Pratikum

1.1.1 Tujuan Instruksional Umum (TIU)

Tujuan instruksional umum dari laporan ini adalah mahasiswa mampu melakukan pengolahan, analisis dan membuat model regresi dari data pengamatan berdasarkan model yang dibangun dengan menggunakan SPSS.

1.1.2 Tujuan Instruksional Khusus (TIK)

Tujuan instruksional khusus dari laporan ini adalah mahasiswa mampu mengestimasi koefisien regresi variabel dummy serta berbagai nilai statistic yang berkait dengan variabel dummy yang diperoleh dari hasil pengamatan menggunakan SPSS.

1.2 Permasalahan

Adapun permasalahan yang dibahas dalam laporan ini adalah:

- Bagaimana bentuk model regresi antara data uji yang melibatkan variabel dummy menggunakan SSPS?
- Bagaimana menerapkan uji hipotesis terhadap data uji yang melibatkan variabel dummy menggunakan SSPS?
- Bagaimana menerapkan uji asumsi terhadap data uji yang melibatkan variabel dummy menggunakan SSPS?

2. BAB II: TINJAUAN PUSTAKA

2.1 Model Regresi Variabel Dummy

Berdasarkan (Krisnawardhani, Salam, & Anggraini, 2010), Analisis regresi merupakan analisis untuk menjelaskan hubungan antar variabel bebas dan terikat. Variabel bebas ada yang berbentuk kualitatif seperti jenis kelamin, musim, warna, Pendidikan, dan lain sebagainya. Variabel dummy akan mendefinisikan kategorinya dengan bilangan biner yakni 0 dan 1. Sehingga Model umum regresi linier berganda dengan variabel dummy adalah:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \varepsilon_i \tag{1}$$

2.2 Uji Hipotesis

2.2.1 Uji Koefisien Regresi Secara Bersama – sama (Uji F)

Uji F digunakan untuk melihat apakah model regresi yang ada layak atau tidak. Kelayakan yang dimaksud adalah apakah model regresi dapat digunakan untuk menjelaskan pengaruhi variable independent pada dependen. Perhitungannya akan mengasumsikan H_0 : model tidak sesuai dan H_1 : model sesuai. H_0 ditolak apabila |f| hitung| > f| tabel atau sig $| < \alpha|$ (Nanincova, 2019).

2.2.2 Uji Koefisien Regresi secara Individu (Uji T)

Uji t adalah suatu uji yang menunjukkan seberapa jauh pengaruh satu variable independent secara individual dalam menerangkan variable dependen. Perhitungannya akan mengasumsikan H_0 : variable independent tidak mempunyai pengaruhi signifikan terhadap variable dependen dan H_1 : variable independent mempunyai pengaruhi signifikan terhadap variable dependen. H_0 ditolak apabila $|t\ hitung| > t\ tabel$ atau sig $< \alpha$ (Magdalena & Krisanti, 2019).

2.3 Uji Asumsi

2.3.1 Uji Normalitas

Uji normalitas dilakukan untuk mengetahui apakah nilai residual terdistribusi normal atau tidak dan model regresi yang baik adalah yang memiliki nilai residual berdistribusi normal. Cara dasar untuk mengetauinya adalah melalui penyebaran data pada suber diagonal pada grafik P Plot of regression standardized (Mardiatmoko, 2020). Perhitungan uji normalitas bisa secara manual dengan H₀: sisaan berdistribusi normal dan H₁: sisaan tidak berdistribusi normal. Serta bagian statistic uji, bisa melalui kolmogorof-Smirnov maupun Shapiro-Wilk (Wardani, Susanti, & Subanti, 2021) dengan kriteria penguji:

- nilai sig $> \alpha$, maka data berdistribusi normal
- nilai sig $< \alpha$, maka data tidak berdistribusi normal

2.3.2 Uji Linieritas

Uji Linieritas digunakan untuk mengetahui apakah dua variable secara signifikan mempunyai hubungan yang linear atau tidak (Harling, 2020).

2.3.3 Uji Homoskedastisitas

Uji Homoskedastisitas merupakan keadaan dimana terjadi ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. model yang baik adalah model yang tidak terjadi heteroskedastisitas (Mardiatmoko, 2020).

2.3.4 Uji Non Autokorelasi

Uji Non autikorelasi bertujuan untuk melihat apakah dalam model regresi linear ada korelasi antara sisaan pada periode t dengan sisaan pada periode t-1 (sebelumnya) yang biasanya menggunakan uji Durbin-Watson. Perhitungannya akan mengasumsikan H_0 : tidak ada autokorelasi antar sisaan dan H_1 : terdapat autokorelasi antar sisaan. H_0 ditolak apabila $d < d_L$ atau $d > (4-d_L)$ atau H_0 diterima apabila $d_u < d < (4-d_u)$ (Wardani, Susanti, & Subanti, 2021).

2.3.5 Uji Non multikolinieritas

Uji Non multikolinieritas bertujuan untuk membuktikan bahwa tidak ada hubungan antar variabel independent dalam model regresi. Uji Non multikoliniearitas tepnuhi apabila nilai VIF (Variance inflation Factor) < 10 atau nilai Tolerance > 0.1 (Mardiatmoko, 2020).

3. BAB III: ANALISIS DAN PEMBAHASAN

3.1 Model Regresi Variabel Dummy

				Coe	fficients ^a					
		Unstandardize	d Coefficients	Standardized Coefficients			95,0% Confider	nce Interval for B	Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	109.539	1.074		3.525	.002	45.258	173.821		
	Jenis Kelamin	-37.833	2.905	304	-1.652	.112	-85.216	9.549	.267	3.752
	Pendapatan	.026	.008	.615	3.340	.003	.010	.043	.267	3.752

Berdasarkan tabel Coefficient, didapatkan:

 $\beta_0 = 109.539$

 $\beta_1 = 0.026$

 $\beta_2 = -37.833$

Maka persamaan regresi awalnya adalah:

Y = 109.539 + 0.026X - 37.833D

3.2 Uji Hipotesis

3.2.1 Uji Koefisien Regresi Secara Bersama – sama (Uji F)

• H_0 : $\beta_0 = \beta_1 = 0$ (model regresi tidak sesuai)

 $H_1: \beta_1 \neq 0$ (model regresi sesuai)

- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

		A	NOVA				
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	79087.086	2	39543.543	43.762	.000b	
	Residual	20783.000	23	903.609			
	Total	99870.087	25				
a. D	ependent Variat	le: Tabungan					

b. Predictors: (Constant), Pendapatan, Jenis Kelamin

Berdasarkan tabel ANOVA dapat diketahui:

F = 43.762

sig = 0.000

• Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig < α . dan Diperhitungan ini, sig < α (0.000 < 0.05) sehingga H_0 ditolak yang artinya model regresi sesuai

3.2.2 Uji Koefisien Regresi secara Individu (Uji T)

Uji Variabel X

• $H_0: \beta_1 = 0$ (X tidak mempengaruhi Y)

 $H_1: \beta_1 \neq 0 (X \text{ mempengaruhi } Y)$

- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

				Coe	efficients ^a					
		Unstandardized Coefficients		Standardized Coefficients			95,0% Confidence Interval for B		Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	109.539	31.074		3.525	.002	45.258	173.821		
	Jenis Kelamin	-37.833	22.905	304	-1.652	.112	-85.216	9.549	.267	3.752
	Pendapatan	.026	.008	.615	3.340	.003	.010	.043	.267	3.752
a. D	ependent Variable	: Tabungan								

Berdasarkan tabel Coefficients dapat diketahui:

t = 3.340

sig = 0.003

Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig < α . dan Diperhitungan ini, sig < α (0.003 < 0.05) sehingga H_0 ditolak yang artinya X mempengaruhi Y.

Uji Variabel Dummy

• H₀: $\beta_2 = 0$ (Variabel Dummy tidak mempengaruhi Y) H₁: $\beta_2 \neq 0$ (Variabel Dummy mempengaruhi Y)

- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

				Coe	efficients ^a						
		Unstandardize	d Coefficients	Standardized Coefficients			95,0% Confider	nce Interval for B	Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF	
1	(Constant)	109.539	31.074		3.525	.002	45.258	173.821			
	Jenis Kelamin	-37.833	22.905	304	-1.652	.112	-85.216	9.549	.267	3.752	
	Pendapatan	.026	.008	.615	3.340	.003	.010	.043	.267	3.752	
a. Dependent Variable: Tabungan											

Berdasarkan tabel Coefficients dapat diketahui:

$$t = -1.652$$

$$sig = 0.112$$

• Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila sig < α . dan Diperhitungan ini, sig > α (0.112 > 0.05) sehingga H_0 diterima yang artinya Variabel Dummy tidak berpengaruh signifikan terhadap Y.

3.3 Uji Asumsi

3.3.1 Uji Normalitas

a. Secara Visual

Pada gambar diatas, dapat dilihat bahwa plot nya mengikuti garis lurus sehingga bisa disimpulkan bahwa residual berdistribusi normal jika secara visual.

b. Secara perhitungan

- H₀: residual berdistribusi normal H₁: residual tidak berdistribusi normal.
- taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

	Te	sts of No	rmality			
	Kolmo	gorov-Smiri	nov ^a	S	hapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.156	26	.101	.956	26	.323
a Lilliefors Significance	Correction					

Berdasarkan tabel Tests of Normality, didapatkan (ditinjau melalui Kolmogorov Smirnov):

$$|FT - FS| = 0.156$$

sig = 0.101

• Keputusan

Tolak H_0 apabila nilai sig $< \alpha$ namun, dalam perhitungan ini nilai sig $> \alpha$ (0.101 > 0.05) sehingga H_0 diterima yang artinya residual data berdistribusi normal.

3.3.2 Uji Linieritas

Berdasarkan gambar diatas terlihat bahwa sebaran datanya terjadi secara acak dan tidak membentuk pola tertentu. Maka bisa disimpulkan bahwa uji linieritas terpenuhi.

3.3.3 Uji Homoskedastisitas

Berdasarkan gambar diatas, terlihat bahwa sebaran datanya terjadi secara acak dan tidak membentuk pola tertentu. Maka bisa disimpulkan bahwa uji homoskedastisitas terpenuhi.

3.3.4 Uji Non-Autokorelasi

- H₀: tidak ada autokorelasi antar sisaan
 H₁: terdapat autokorelasi antar sisaan
- Taraf signifikansi ($\alpha = 5\%$)
- Statistik uji

Berdasarkan Model Summary, didapatkan bahwa DW (Durbin-Watson) = 1.046

Dari tabel Durbin Watson dengan $\alpha = 5\%$ dengan n=26 dan k=2 maka:

Estadístico de Durbin-Watson - Puntos críticos de d_L y d_u al nivel de significación de k^* corresponde al número de regresores del modelo excluido el término independiente (es decir, $k^*=l$

	k*	= 1	k:*	= 2	k*	= 3	k*	= 4	k*	= 5	k*	= 6
n	d_L	du	d_L	du	d_L	d_u	dL	du	dL	d_{v}	dL	d_u
6	0.610	1.400	NY / / / / / / / / / / / / / / / / / / /	one consult								
7	0.700	1.356	0.467	1.896								
8	0.763	1.332	0.559	1.777	0.368	2.287						
9	0.824	1.320	0.629	1.699	0.455	2.128	0.296	2.588				
10	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822		
11	0.927	1.324	0.658	1.604	0.595	1.928	0.444	2.283	0.316	2.645	0.203	3.005
12	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.379	2.506	0.268	2.832
13	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.445	2.390	0.328	2.692
14	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296	0.389	2.572
15	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220	0.447	2.472
16	1.106	1.371	0.982	1.539	0.857	1.728	0.734	1.935	0.615	2.157	0.502	2.388
17	1.133	1.381	1.015	1.536	0.897	1.710	0.779	1.900	0.664	2.104	0.554	2.318
18	1.158	1.391	1.046	1.535	0.933	1.696	0.820	1.872	0.710	2.060	0.603	2.257
19	1.180	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	0.649	2.206
20	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991	0.692	2.162
21	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	0.732	2.124
22	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940	0.769	2.090
23	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920	0.804	2.061
24	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	0.837	2.035
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886	0.868	2.012
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992
27	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.974
28	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028	1.850	0.951	1.958
29	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050	1.841	0.975	1.944
30	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833	0.998	1.931
31	1.363	1.496	1.297	1.570	1.229	1.650	1.160	1.735	1.090	1.825	1.020	1.920
32	1.373	1.502	1.309	1.574	1.244	1.650	1.177	1.732	1.109	1.819	1.041	1.909
33	1.383	1.508	1.321	1.577	1.258	1.651	1.193	1.730	1.127	1.813	1.061	1.900
34	1.393	1.514	1.333	1.580	1.271	1.652	1.208	1.728	1.144	1.808	1.080	1.891
35	1.402	1.519	1.343	1.584	1.283	1.653	1.222	1.726	1.160	1.803	1.097	1.884

dL = 1.224dU = 1.553

• Keputusan

Berdasarkan landasan teori diatas, H_0 ditolak apabila dW < d_L . Karena pada perhitungan ini, dW < d_L (1.046 < 1.224) sehingga H_0 ditolak yang artinya ada autokorelasi antar residual dan uji non-autokorelasi tidak terpenuhi.

3.3.5 Uji Non-Multikolinieritas

Berdasarkan gambar diatas, terlihat nilai VIF didapakan 3.572. Berdasarkan Teori Penunjang diatas, jika nilai VIF < 10 maka uji non-multikolinieritas terpenuhi. Maka, dalam data ini non-multikolinieritas terpenuhi sehingga tidak ada korelasi antar variabel bebas.

3.4 Koefisien Determinasi

Berdasarkan gambar 9, didapatkan nilai Koefisien Korelasi (R) = 0.792 yang artinya antara X dan Y memiliki korelasi tinggi. ada 79.2% variable Y dipengaruhi oleh X sedangkan 20.8% variable Y dipengaruhi factor lain.

3.5 Model Akhir

Berdasarkan uji F, model regresi yang dibuat cocok digunakan untuk analisis lebih lanjut dan berdasarkan uji t, koefisien parameter regresi X yaitu β_1 berpengaruh signifikan terhadap Y namun, Variabel Dummy D yang memiliki koefisien parameter β_2 tidak berpengaruh signifikan terhadap Y. Sehingga bisa dibuang. Dapat disimpulkan model akhir berbeda dengan model awal yang dibuat yaitu: Y = 109.539 + 0.026X saja yang digunakan.

4. BAB IV: KESIMPULAN

Model regresi akhir didapatkan Y = 109.539 + 0.026X dimana yang menunjukkan jika X naik, Y juga akan naik sebesar 0.026 dengan nilai konstan 109.539. Model regresi ini dinyatakan telah sesuai berdasarkan uji F dan nilai X mempengaruhi secara signifikan terhadap nilai Y berdasarkan uji t namun, nilai Dummy tidak berpengaruh signifikan oleh sebab itu model regresi akhir berbeda dengan model regresi awal dan berdasarkan nilai koefisien korelasi, X mempengaruhi sebesar 79.2% variable Y. Residual dari Y prediksi berdistribusi normal menurut uji normalitas, serta karena residual yang didapat tidak menghasilkan pola maka disimpulkan uji linieritas dan uji Homoskedastisitas terpenuhi yang artinya kedua variable ada hubungan linear dan ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. Dari Uji Non Autokorelasi, terlihat bahwa setiap residual terdapat korelasi. Serta, dari uji nonmultikolinieritas terbukti bahwa tidak ada korelasi antar variabel bebas.

5. DAFTAR PUSTAKA

- Harling, V. N. (2020). ANALISIS HUBUNGAN KEDISIPLINAN BELAJAR DARI RUMAH (BDR) DENGAN PRESTASI BELAJAR KIMIA SISWA SELAMA MASA PANDEMI. *SOSCIED*.
- Krisnawardhani, T., Salam, N., & Anggraini, D. (2010). Analisis Regresi Linear Berganda Dengan Satu Variabel Boneka (Dummy Variable). *Jurnal Matematika dan Terapan*, 14-20.
- Magdalena, R., & Krisanti, M. A. (2019). Analisis Penyebab dan Solusi Rekonsiliasi Finished Goods Menggunakan Hipotesis Statistik dengan Metode Pengujian Independent Sample T-Testdi PT.Merck, Tbk. *TEKNO*, 35 48.
- Mardiatmoko, G. (2020). PENTINGNYA UJIASUMSIKLASIK PADAANALISIS REGRESI LINIER BERGANDA (STUDI KASUS PENYUSUNAN PERSAMAAN ALLOMETRIK KENARI MUDA [CANARIUM INDICUML.]). BAREKENG: Jurnal Ilmu Matematika dan Terapan, 333-342.
- Nanincova, N. (2019). PENGARUH KUALITAS LAYANAN TERHADAP KEPUASAN PELANGGAN NOACH CAFE AND BISTRO. *AGORA*.
- Wardani, I. K., Susanti, Y., & Subanti, S. (2021). PEMODELAN INDEKS KEDALAMAN KEMISKINAN DI INDONESIA MENGGUNAKAN ANALISIS REGRESI ROBUST. *Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST)*, (pp. 15 23). Yogyakarta.

6. LAMPIRAN

- 6.1 Langkah Analisis
 - a. Definisikan variable Y, variable X, dan variabel Dummy pada bagian Variabel View

Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Y_032	Numeric	8	1	Tabungan	None	None	8	■ Right		> Input
X_032	Numeric	8	1	Pendapatan	None	None	8	■ Right		> Input
D_032	Numeric	8	0	Jenis Kelamin	None	None	8	Right	Nominal	> Input

b. Isikan data pada kolom yang sesuai pada bagian Data View

Variabel Dummy terletak pada bagian jenis kelamin dimana perempuan didefinisikan sebagai 1, sedangkan laki – laki didefinisikan sebagai 0.

c. klik menu Analyze → Regresion → Linear

d. lalu akan muncul kotak seperti berikut. Masukkan bagian data Y ke Dependent sedangkan Data X dan Data Dummy ke bagian independent

e. Klik Statistics dan dan centang pada opsi estimates, Confidence interval, Model fit, Colinearity diagnostics, dan Durbin-Watson

f. Klik plot, lalu masukkan *SRESID ke kotak Y dan *ZPRED ke kotak X Klik Next, lalu masukkan *ZRESID ke kotak Y dan *ZPRED ke kotak X Centang Normal Probability Plot → continue

g. Klik save lalu centang opsi Unstandardized di kolom predictec Values dan Residuals

h. Klik OK

- i. Dilakukan khusus untuk uji normalitas
 - Menu analyze → Descriptive Statistics → explore

• Masukkan data RES_1 ke bagian dependent list

• klik plots dan centang normalisty plots with tests

Klik OK

6.2 Output Analisis pada SPSS

→ Regression

[DataSet0]

Variables Entered/Removed^a

Model	Entered	Removed	Method
1	Pendapatan, Jenis Kelamin ^b		Enter

a. Dependent Variable: Tabungan b. All requested variables entered.

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.890ª	.792	.774	30.0601	1.046

a. Predictors: (Constant), Pendapatan, Jenis Kelamin

b. Dependent Variable: Tabungan

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	79087.086	2	39543.543	43.762	.000b
	Residual	20783.000	23	903.609		
	Total	99870.087	25			

a. Dependent Variable: Tabungan

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	90.951	250.370	162.088	56.2449	26
Std. Predicted Value	-1.265	1.570	.000	1.000	26
Standard Error of Predicted Value	8.079	14.568	10.064	1.757	26
Adjusted Predicted Value	94.545	253.888	161.791	56.7465	26
Residual	-53.0531	69.1595	.0000	28.8326	26
Std. Residual	-1.765	2.301	.000	.959	26
Stud. Residual	-1.946	2.478	.005	1.031	26
Deleted Residual	-64.4882	80.2431	.2976	33.3080	26
Stud. Deleted Residual	-2.082	2.831	.021	1.087	26
Mahal. Distance	.844	4.910	1.923	1.083	26
Cook's Distance	.000	.328	.053	.086	26
Centered Leverage Value	.034	.196	.077	.043	26

a. Dependent Variable: Tabungan

Coefficientsa

	Unstandardized Coefficients		Standardized Coefficients			95,0% Confider	nce Interval for B	Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	109.539	31.074		3.525	.002	45.258	173.821		
	Jenis Kelamin	-37.833	22.905	304	-1.652	.112	-85.216	9.549	.267	3.752
	Pendapatan	.026	.008	.615	3.340	.003	.010	.043	.267	3.752

Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions			
				(Constant)	Jenis Kelamin	Pendapatan	
1	1	2.265	1.000	.01	.02	.01	
	2	.715	1.780	.00	.13	.03	
	3	.020	10.567	.99	.86	.96	

a. Dependent Variable: Tabungan

Normal P-P Plot of Regression Standardized Residual

Hasil output untuk bagian uji normalitas

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Unstandardized Residual	26	100.0%	0	0.0%	26	100.0%

Descriptives

			Statistic	Std. Error
Unstandardized Residual	Mean	.0000000	5.65454210	
	95% Confidence Interval for Mean	Lower Bound	-11.6457475	
		Upper Bound	11.6457475	
	5% Trimmed Mean	9580748		
	Median	-4.8278516		
	Variance	831.320		
	Std. Deviation	28.83262050		
	Minimum		-53.05314	
	Maximum	69.15948		
	Range	122.21262		
	Interquartile Range	40.82563		
	Skewness	.658	.456	
	Kurtosis		.148	.887

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.156	26	.101	.956	26	.323

a. Lilliefors Significance Correction

Unstandardized Residual

Unstandardized Residual Stem-and-Leaf Plot

Frequency	Stem	&	Leaf	
1,00	-0		5	
6,00	-0		222233	
9,00	-0		000000111	
4,00	0		0011	
3,00	0		233	
2,00	0		45	
1 00	0		c	

Stem width: 100,0000
Each leaf: 1 case(s)

