Lezione 13 Algebra I

Federico De Sisti2025-04-28

0.1 Estensioni

Definizione 1

 \mathbb{F} campo, Un'estensione di \mathbb{F} è una coppia (\mathbb{K}, φ) dove \mathbb{K} è un campo e $\varphi : \mathbb{F} \to \mathbb{K}$ è un omomorfismo iniettivo di anelli

Notazione 1

 $scriveremo \ \mathbb{F} \subseteq \mathbb{K}$

Notazione 2

 $p \in \mathbb{Z}_{>0}$ primo \mathbb{F}_p è il campo $(\mathbb{Z}/(p), +, \cdot)$

Proposizione 1

 \mathbb{K} è un campo, Allora $\mathbb{Q} \subseteq \mathbb{K}$ oppure esiste $p \in \mathbb{Z}_{\geq 0}$ primo tale che \mathbb{F}_p

Dimostrazione

Ricordo che esiste un unico omomorfismo di anelli $\chi: \mathbb{Z} \to \mathbb{K}$ che è definito da

$$\chi(1_{\mathbb{Z}})=1_{\mathbb{K}}.$$

Ricordo che

$$\ker(\chi) = \begin{cases} 0 \\ p & con \ p \in \mathbb{Z}_{\geq 0} \ primo \end{cases}$$

perché \mathbb{K} è dominio d'integrità. Abbiamo $\mathbb{Z}/\ker(\phi) \cong im(\chi) \subseteq \mathbb{K}$

(sottoanello) 2 casi:

• $Se \ker(\phi) = (p) \ allora$

$$\mathbb{F}_p = \mathbb{Z}/(p) \cong im(\chi) \subseteq \mathbb{K}.$$

quindi è un'estensione di campi

• $\ker(\phi) = (0)$ allora

$$\mathbb{Z} \cong im(\chi) \subset \mathbb{K}$$
.

non è estensione di campi ma solo un sottoanello. Dalla proprietà universale del campo dei quozienti AGGIUNGI IMMAGINE 1 34 Quindi $\mathbb{Q} \subseteq L$ è un'estensione di campi

Esercizio

Se $\mathbb{F}\subseteq\mathbb{K}$ è estensione di campi, allora \mathbb{K} è un $\mathbb{F}\text{-spazio}$ vettoriale.

Definizione 2

Il grado di un'estensione $\mathbb{F} \subseteq \mathbb{K}$ è

$$[\mathbb{K}:\mathbb{F}]=\dim_{\mathbb{F}}(\mathbb{K}).$$

Esempio

 $\mathbb{R} \subseteq \mathbb{C}$ estensione $[\mathbb{C} : \mathbb{R}] = 2$ infatti $\{1, i\}$ è una base di \mathbb{C} come \mathbb{R} spazio vettoriale.

esempio:

 $\mathbb{F} \text{ campo, } \mathbb{K} = Frac(\mathbb{F}[x]) = \mathbb{F}(x)$

$$\mathbb{F} \subseteq \mathbb{F}[x] \subseteq \mathbb{F}(x) = \mathbb{K}$$

Dimostrare che

$$[\mathbb{K}:\mathbb{F}]=+\infty$$

Proposizione 2

Siano $\mathbb{F} \subseteq \mathbb{K}$ e $\mathbb{K} \subseteq \mathbb{L}$ estensioni di campi. Allora

$$[\mathbb{L}:\mathbb{F}] = [\mathbb{L}:\mathbb{K}] \cdot [\mathbb{K}:\mathbb{F}].$$

Dimostrazione

 $\dot{E} \text{ sufficiente studiare il caso } \begin{cases} [\mathbb{L} : \mathbb{K}] = m \\ [\mathbb{K} : \mathbb{F}] = n \end{cases}$

dato che il caso in cui i gradi sono infiniti è banale.

Dobbiamo dimostrare che $[\mathbb{L} : \mathbb{F}] = m \cdot n$

$$B_{\mathbb{L},\mathbb{K}} = \{v_1,\ldots,v_m\}$$

$$B_{\mathbb{K}} = \{w_1, \ldots, w_n\}$$

 $B_{\mathbb{L},\mathbb{K}} = \{v_1, \dots, v_m\}$ $B_{\mathbb{K},\mathbb{F}} = \{w_1, \dots, w_n\}$ Dimostriamo che una base di \mathbb{L} su \mathbb{F} è

$$B_{\mathbb{L},\mathbb{F}} = \{w_j, v_i\}_{\substack{j=1,\dots,n\\i=1,\dots,m}}$$

• $B_{\mathbb{L},\mathbb{F}}$ è un insieme di generatori.

Infatti
$$h \in \mathbb{L}$$

 $\Rightarrow l = \sum_{i=1}^{m} b_i v_i \text{ con } b_i \in \mathbb{K} = \sum_{i=i}^{m} \sum_{j=1}^{n} a_{ij}(w_j v_i)$

• $B_{\mathbb{L}.\mathbb{F}}$ è un insieme di vettori lineramente indipendenti. Infatti:

$$\sum_{i,j} a_{ij}(w_j v_i) = 0.$$

 $base\ di\ \mathbb{L}\ su\ \mathbb{K}$ $base\ di\ \mathbb{K}\ su\ \mathbb{F}$

$$\Rightarrow \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} w_{j} \right) v_{i} = 0.$$

è una combinazione lineare in L a coefficienti in \mathbb{K} di v_1, \ldots, v_m Quindi:

$$\sum_{j=1}^{n} a_{ij} w_j = 0 \quad \forall i \in \{1, \dots, m\}.$$

Notazione 3

 $\mathbb{F}\subseteq\mathbb{K}$ estensione, $S\subseteq\mathbb{K}$ sottoinsieme Denotiamo:

- 1. $\mathbb{F}[S]$ il più piccolo sottoanello di \mathbb{K} contenente \mathbb{F} ed S
- 2. $\mathbb{F}(S) = Frac(\mathbb{F}[S])$

Esercizio

Dimostrare che $\mathbb{F}(S)$ è il più piccolo sottocampo di \mathbb{K} contenente \mathbb{F} e S. $\mathbb{F}(S)$ è l'intersezione di tutti i tali sottocampi (contenenti \mathbb{F} e S).

Definizione 3

 $\mathbb{F} \subseteq \mathbb{K}$ estensione, $s \in \mathbb{K}$ si dice

- algebrico su \mathbb{F} se esiste un polinomio $\in \mathbb{F}[x]$ tale che f(s) = 0
- ullet trascendente su $\mathbb F$ se non è algebrico su $\mathbb F$

Esempi: $\mathbb{Q} \subseteq \mathbb{C}$

- π è trascendente su $\mathbb Q$
- i è algebrico su \mathbb{Q} poichè soddisfa $x^2 + 1$
- e^{π} è trascendente su \mathbb{O}
- π^e non è noto se sia algebrico o trascendente su $\mathbb Q$

Definizione 4

 $\mathbb{F} \subseteq \mathbb{K}$ estensione $s \in \mathbb{K}$ definiamo

$$\psi_s : \mathbb{F}[x] \to \mathbb{K}$$
$$f \to f(s)$$

 ψ_s si dice omomorfismo di valutazione su s

Esercizio

Dimostrare che ψ_s è un omomorfismo di anelli.

Esercizio

Dimostrare che $(\psi_s) = \mathbb{F}[s]$ Osservazione

Se s è algebrico su \mathbb{F} esiste un unico polinomio monico $p \in \mathbb{F}[x]$ tale che

$$(\psi_s)=(p).$$

Infatti $\mathbb{F}[x]$ è un PID

quindi $\ker(\psi_s) \subseteq \mathbb{F}[x]$ è generato da un solo elemento

L'unicità segue dal fatto che lo scegliamo monico.

Definizione 5

 $\mathbb{F} \subseteq \mathbb{K}$ estensione se \mathbb{K} algebrico su \mathbb{F} .

Allora il polinomio dell'osservazione si dice polinomio minimo di s su \mathbb{F}

Osservazione

 $\mathbb{F} \subseteq \mathbb{K}$ estensione, $s \in \mathbb{K}$ trascendente su \mathbb{F} . Allora $\ker(\psi_s) = \{0\}$

Proposizione 3

 $\mathbb{F} \subseteq \mathbb{K}$ estensione $s \in \mathbb{K}$ trascendente, Allora $[\mathbb{K} : \mathbb{F}] = \infty$

Dimostrazione

$$\psi_s: \mathbb{F}[x] \to \mathbb{K}$$

è iniettivo

$$\Rightarrow \mathbb{F}[x] \cong im(\psi_s) = \mathbb{F}[s]$$

$$\Rightarrow F(x) \cong Frac(\mathbb{F}[s]) = \mathbb{F}(s)$$

$$\Rightarrow [\mathbb{F}(s) : \mathbb{F}] = \infty$$

$$Ma \mathbb{F}(s) \subseteq \mathbb{K} \ quindi \ [\mathbb{K} : \mathbb{F}] = \infty$$

Corollario 1

 $\mathbb{F}\subseteq\mathbb{K}$ estensione tale che $[\mathbb{K}:\mathbb{F}]<-\infty$ Allora tutti gli elementi di \mathbb{K} sono algebrici su \mathbb{F}

Esempio:

- 1. tutti gli elementi di \mathbb{C} sono algebrici su \mathbb{R} poiché $[\mathbb{C}:\mathbb{R}]=2$
- 2. π trascendente su $\mathbb{Q} \Rightarrow [\mathbb{R} : \mathbb{Q}] = \infty$

Proposizione 4

 $\mathbb{F} \subseteq \mathbb{K}$ estensione $s \in \mathbb{K}$ algebrico su \mathbb{F} .

Allora:

- 1. $\mathbb{F}(s) = \mathbb{F}[s] \cong \mathbb{F}[x]/(p)$ dove $p \ è \ il \ polinomio \ minimo \ di \ s \ su \ \mathbb{F}$
- 2. $[\mathbb{F}(s):\mathbb{F}] = deg(p) < \infty$

Dimostrazione

$$1)\psi_s: \mathbb{F}[x] \to \mathbb{K}$$

$$\mathbb{F}[x]/(p) = \mathbb{F}[x]/\ker(\psi_s) \cong im(\psi_s) = \mathbb{F}[s].$$

```
Per verificare che \mathbb{F}(s) = \mathbb{F}[s] è sufficiente dimostrare che \mathbb{F}[s] è un campo Ora \mathbb{F}[s] \subseteq \mathbb{K} \Rightarrow \mathbb{F}[s] dominio d'integrità. \Rightarrow \mathbb{F}[s] \cong \mathbb{F}[x]/(p) quindi (p) è un ideale primo in \mathbb{F}[x] Ma in un PID un ideale è primo se e solo se è massimale Quindi \mathbb{F}[x]/(p) è un campo. 2) Una base di \mathbb{F}[x](p) come \mathbb{F}-spazio vettoriale è \{1, x, x^2, \ldots, x^{\deg(p)-1}\} \Rightarrow [\mathbb{F}(s) : \mathbb{F}] = deg(p)
```

Corollario 2

 $\mathbb{F} \subseteq \mathbb{K} \ estensione$

- $s \in \mathbb{K} \ \dot{e} \ algebrico \Leftrightarrow [\mathbb{F}(s) : \mathbb{F}] < \infty$
- $s \in \mathbb{K} \ \dot{e} \ transcendente \Leftrightarrow [\mathbb{F}(s) : \mathbb{F}] = \infty$

Esercizi

1. $\mathbb{F}\subseteq\mathbb{K}$ estensione, $s\in\mathbb{K}$ algebrico su \mathbb{F} Allora il suo polinomio minimo è irriducibile in $\mathbb{F}[x]$

Sol: Abbiamo visto che $(p) \subseteq \mathbb{F}[x]$ è massimale $\Rightarrow p$ è irriducibile.

- 2. $\mathbb{F}\subseteq\mathbb{K}$ estensione, $f\in\mathbb{F}[x]$ irriducibile e monico, se $s\in\mathbb{K}$ soddisfa f(s)=0 allora f è il polinomio minimo di s su \mathbb{F}
- Sol: Sia $p \in \mathbb{F}[x]$ il polinomio minimo di s su \mathbb{F} . Allora: $f \in (p)$ $\Rightarrow p \mid f$ in $\mathbb{F}[x]$ Ma l'ipotesi di irriducibilità di f implica che p, f associati ed essendo entrambi monici $\Rightarrow f = p$
 - 3. Dimostrare che se \mathbb{K} è campo finito allora $|\mathbb{K}|=p^n$ dove $p,n\in\mathbb{Z}_{\geq 0}$ e p primo.