census project

John Calabrese

data

- Census survey
- 40 demographic features

objectives

- Predict income: more or less than \$50k
- Customer segmentation

raw data

- 200k samples
- 40+2 features
 - numerical and categorical

Two are special:

- 'label'
- 'instance weight'

age	int64
class of worker	object
detailed industry recode	int64
detailed occupation recode	int64
education	object
wage per hour	int64
enroll in edu inst last wk	object
marital stat	object
major industry code	object
major occupation code	object
race	object
hispanic origin	object
sex	object
member of a labor union	object
reason for unemployment	object
full or part time employment stat	object
capital gains	int64
capital losses	int64
dividends from stocks	int64
tax filer stat	object
region of previous residence	object
state of previous residence	object
detailed household and family stat	object
detailed household summary in household	object
instance weight f	float64
migration code-change in msa	object
migration code-change in reg	object
migration code-move within reg	object
live in this house 1 year ago	object
migration prev res in sunbelt	object
num persons worked for employer	int64
family members under 18	object
country of birth father	object
country of birth mother	object
country of birth self	object
citizenship	object
own business or self employed	int64
fill inc questionnaire for veteran's admin	object
veterans benefits	int64
weeks worked in year	int64
year	int64
label	object
dtype: object	

instance weight (sanity check)

missing values

numerical features

cleaning

- 1/0 encoding of binary features (e.g. label, sex, year)
- one-hot encoding of categorical features
- drop duplicate features (high linear correlation)

more cleaning

more cleaning

cleaned data

26+2 features
 (before one-hot encoding)

age	int64
class of worker	object
education	object
wage per hour	int64
enroll in edu inst last wk	object
marital stat	object
major occupation code	object
race	object
hispanic origin	object
member of a labor union	object
reason for unemployment	object
full or part time employment stat	object
capital gains	int64
capital losses	int64
dividends from stocks	int64
tax filer stat	object
region of previous residence	object
detailed household summary in household	object
instance weight	float64
num persons worked for employer	int64
family members under 18	object
own business or self employed	int64
veterans benefits	int64
weeks worked in year	int64
label_encoded	int64
sex_encoded	int64
year_encoded	int64
country	object
dtype: object	

PCA

explained variance:

2 components overwhelm

PCA: visualized

- PCA projection onto first two components
- data squashed near origin

income prediction

- 80/20 train/test split
- logistic regression + L1 regularization: gridsearch+CV
- random forest: 50 trees, max_depth=12.

random forest performed better

raw scores

Training:

- f1: 0.61
- precision: 0.52
- recall: 0.73
- accuracy: 0.94
- auc: 0.94

threshold = 0.2

Testing:

- f1: 0.56
- precision: 0.48
- recall: 0.68
- accuracy: 0.93
- auc: 0.94

roc and precision/recall

feature importance (permutation): train

top 5: capital gains, education, major occupation code, weeks worked in a year, sex.

feature importance (permutation): test

top 5: capital gains, weeks worked in a year, major occupation code, education, sex.

segmentation

- hierarchical clustering (too slow)
- k-means (with mini-batches)

how many clusters?

- mini-batch k-means
- batch size = 10k
 - o (5% of samples)
- --> 4 clusters

what do the clusters look like?

what do the clusters look like?

next steps

- income prediction
 - fancier tree model / neural network
 - improve feature selection
- segmentation
 - different clustering method
 - o with clear goal: rules + clustering

thanks