# 2. Groups

# 2.1 Groups

Let G be a set with the  $\cdot$  operation. Then  $(G,\cdot)$  is a group  $\iff$ 

1. 
$$a,b \in G \Rightarrow ab \in G$$
 - closure

2. 
$$a,b,c\in G\Rightarrow (ab)c=a(bc)$$
 - Assiociativity

3. 
$$\exists \ e \in G \ s.t \ ae = ea = e, \ \forall \ a \in G$$
 - Identity

4. 
$$\forall~a\in G~\exists a'\in G~s.t.~aa'=a'a=e$$
 - Inverses

## Examples:

| Group          | Operation                   | Identity                                       | Form of<br>Element                              | Inverse                                                                                                          | Abelian |
|----------------|-----------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------|
| Z              | Addition                    | 0                                              | k                                               | -k                                                                                                               | Yes     |
| $Q^+$          | Multiplication              | 1                                              | m/n, $m, n > 0$                                 | n/m                                                                                                              | Yes     |
| $Z_n$          | Addition mod n              | 0                                              | k                                               | n-k                                                                                                              | Yes     |
| R*             | Multiplication              | 1                                              | X                                               | 1/ <i>x</i>                                                                                                      | Yes     |
| C*             | Multiplication              | 1                                              | a + bi                                          | $\frac{1}{a^2 + b^2}a - \frac{1}{a^2 - b^2}bi$                                                                   | Yes     |
| GL(2, F)       | Matrix<br>multiplication    | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ | $\begin{bmatrix} a & b \\ c & d \end{bmatrix},$ | $\begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$ | No      |
| U(n)           | Multiplication mod <i>n</i> | 1                                              | $ad - bc \neq 0$ $k,$ $\gcd(k, n) = 1$          |                                                                                                                  | Yes     |
| $\mathbb{R}^n$ | Componentwise addition      | (0, 0,, 0)                                     |                                                 | $(-a_1, -a_2,, -a_n)$                                                                                            | Yes     |
| SL(2, F)       | Matrix<br>multiplication    | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ | $\begin{bmatrix} a & b \\ c & d \end{bmatrix},$ | $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$                                                                 | No      |
| $D_n$          | Composition                 | $R_0$                                          | $ad - bc = 1$ $R_{\alpha}, L$                   | $R_{360-\alpha}$ , $L$                                                                                           | No      |

# **Propreties**

The identity e is unique

The inverse of an element  $\boldsymbol{a}$  is unique

$$(ab)^{-1} = b^{-1}a^{-1}$$

# 2.2 Mappings

# **Example**

•  $f: \mathbb{R} \to \mathbb{R}; \ f(x) = x^2 \iff x \mapsto x^2$ 

injectivity, bijectivity, surjectivity - known identity mapping, Inverse, composites - known

# **Permutations**

P(S) is a  $oldsymbol{\mathsf{group}}$  with the composittion as law

# 2.3 Homomorphisms

Let

• G, G' be groups

A Homomorphism is a map f:G o G' with the following property:

$$f(xy) = f(x)f(y) \ \forall x, y, \in G$$

• Homomorphisms preserve structure

## **Example**

 $x\mapsto e^x$  is a homomorphism from the multiplicative to the additive group

Proprieties of a homomorphism f:G o G'

- 1. Let e,e' be the unit elements  $\Rightarrow f(e)=e'$ 
  - Proof:

$$\circ \ f(e) = f(ee) = f(e)f(e)|_{\cdot f(e)^{-1}} \iff e' = f(e)$$

- 2. Let  $x \in G \Rightarrow f(x^{-1}) = f(x)^{-1}$ 
  - o Proof:

$$\circ \ e' = f(e) = f(xx^{-1}) = f(x)f(x^{-1})_{\cdot f(x)^{-1}} \iff f(x)^{-1} = f(x^{-1})$$

3. Let g:G' o G'' be a group homomorphism  $\Rightarrow g\circ f$  is a group homomorphism from G to G''

Consider the statement:  $\mathbb{Z}_3 < D_3$ . Here is a visual:



The group  $D_3$  contains a size-3 cyclic subgroup  $\langle r \rangle$ , which is identical to  $\mathbb{Z}_3$  in structure only. None of the elements of  $\mathbb{Z}_3$  (namely 0, 1, 2) are actually in  $D_3$ .

When we say  $\mathbb{Z}_3 < D_3$ , we really mean that the structure of  $\mathbb{Z}_3$  shows up in  $D_3$ .

In particular, there is a bijective correspondence between the elements in  $\mathbb{Z}_3$  and those in the subgroup  $\langle r \rangle$  in  $D_3$ . Furthermore, the *relationship* between the corresponding nodes is the same.

# **Preimage**

If  $f:G\to H$  is a homomorphism and  $h\in Im(f)< H$  the **preiamge** of h is the set  $f^{-1}(h)=\{g\in G:f(g)=h\}$ 



### **Property**

· All preimages have the same structure

## Kernel of a homomorphism

All 
$$g \in G$$
 with  $f(g) = e'$  form the **kernel** = Preimage of  $e'$ 

## **Proprieties**

• if Ker(f) = e then f is injective

$$\circ$$
 *Proof*:  $x,y\in G$  and  $f(x)=f(y)$ 

$$\circ \ e' = f(x)f(y)^{-1} = f(xy^{-1}) \Rightarrow xy^{-1} = e \Rightarrow x = y$$

An injective homomorphism is called an embedding

# Isomorphism

Let  $f:G\to G'$  be a group homomorphism f is an **Isomorphism**  $\iff\exists g:G'\to G$  s.t  $f\circ g$  and  $g\circ f$  are the identity mappings

### **Theorem**

- If Ker(f)=e then f is an isomorphism with the image f(G)
  - $\circ$  *Proof*: f is always surjective into its image and we proved above it's injective

# 2.4 Cosets

Let G be a group and H be a subgroup. The **set** of all elements ax with  $x \in H$  is called a **coset** of H in G

ullet Denoted by aH

| $g_nH$           |
|------------------|
| :                |
|                  |
| g <sub>2</sub> H |
| $g_1H$           |
| Н                |



- https://www.youtube.com/watch?v=TCcSZEL\_3CQ&list=PLi01XoE8jYoi3SgnnGorR\_XOW3IcK-TP6&index=7
- https://www.youtube.com/watch?v=la\_CSTWVkuc&list=PLwV-9DG53NDxU337smpTwm6sef4x-SCLv&index=12

### **Proprieties**

# Let H < G and $a,b \in G$

- Two cosets of the same subgroup either are equal or have no element in common
- ullet |H|=|aH|=|bH| same number of elements
- $a \in aH$
- $aH = H \iff a \in H$
- $aH = bH \iff a \in bH$
- $aH = Ha \iff H = aHa^{-1}$
- $aH < G \iff a \in H$



#### **Note**

• The coset is **not** necessarily a group

# **Normal subgroup**

• https://en.wikipedia.org/wiki/Normal\_subgroup

<a href="https://math.stackexchange.com/questions/1014535/is-there-any-intuitive-understanding-of-normal-subgroup/1014791">https://math.stackexchange.com/questions/1014535/is-there-any-intuitive-understanding-of-normal-subgroup/1014791</a>

# **Definition - normal subgroup**

A subgroup H of a group G is called a **normal subgroup** of G if  $aH = Ha \ \forall a \in G$ Notation:  $H \lhd G$ .

## **Definition - conjugate**

Let  $a \in G$  The set  $aHa^{-1} = \{aha^{-1} | h \in H\}$  is called the conjugate of H by a

Test to see if H is normal

• H is a normal subgroup of  $G \iff aHa^-1 \subseteq H \forall a \in G$ 

#### Note

- for an element  $h \in H$ , ah is not necessarily equal to ha.
- The idea is that the cosets are equal.

Intuition

· Looks the same over all perspectives

# 2.5 Cyclic groups

A group G is cyclic if  $\exists a \in G \ s.t. \ G = \{a^n | n \in \mathbb{Z}\}$  Notation:  $G = \langle a \rangle$ 

#### **Theorem**

Let a be an element of order n and k a positive int  $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$  and  $|a^k| = n/gcd(n,k)$ 

#### Proof

- Let  $d = \gcd(n, k), \ k = dr$
- Since  $a^k = (a^d)^r \Rightarrow \langle a^k \rangle \subseteq \langle a^d \rangle$  (1)
- By  $\gcd\Rightarrow\exists s,t\in\mathbb{Z}\ s.t.\ d=ns+kt\Rightarrow a^d=a^{ns+kt}=a^{ns}a^{kt}=e(a^{kt})=(a^k)^t\in\langle a^k\rangle\Rightarrow\langle a^d\rangle\subset\langle a^k\rangle\ (2)$
- ullet By (1) and (2) we proved the theorem

### Theorem - Lagrange

Let  $G = \langle a \rangle$ 

The order of any subgroup H of G divides the order of G

### Theorem - Isomorphisms between cyclic groups

Any 2 cyclic groups of order d are isomorphic.

If a is a generator of G then there is a unique isomorphism  $f: \mathbb{Z}/d\mathbb{Z} \to G$  s.t. f(1) = a

#### Note

· All groups of prime order are cyclic

# 2.6 Direct product

## **External**

Let  $G_1, ..., G_n$  a finite collection of groups

The **external direct product** is the set of all n-tuples for which the i'th component is an element of  $G_i$  with the operation componentwise

Notation  $G_1 \oplus G_2 \oplus ... \oplus G_n = \{(g_1,...g_n) | g_i \in G_i\}$ 

# **Example**

- $\mathbb{Z}_2 \oplus \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$
- ullet Note that  $\mathbb{Z}_2\oplus\mathbb{Z}_3\sim\mathbb{Z}_6$

## Theorem - order of an element in the external direct product

$$|(g_1,g_2,...,g_n) = lcm(|g_1|,|g_2|,...,|g_n|)$$

# Theorem - isomorphism

Let 
$$m=n_1n_2...n_k$$
  
Then  $\mathbb{Z}_m$  is isomorphic to  $\mathbb{Z}_{n_1}\oplus\mathbb{Z}_{n_2}\oplus...\oplus\mathbb{Z}_{n_k}\iff\gcd(n_i,n_i)=1$  for  $i\neq j$ 

### Theorem - direct product is cyclic?

$$G \oplus H$$
 is cyclic  $\iff \gcd(|G|,|H|) = 1$ 

### **Application - Binary strings**

• An n-bit string can be an element of  $\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus...\oplus\mathbb{Z}_2$  - n times

### Internal

Let 
$$H, K < G$$
 
$$G = H \times K \text{ if } H, K \text{ are normal subgroups and } G = HK \text{ and } H \cap K = \{e\}$$

# 2.7 Finite ableian groups

#### **Torsion element**

An element  $a \in A$  is said to be a **torsion element** if it has finite period

The subset of all torsion elements of A is a **subgroup** of A and is called the **torsion** 

## subgroup

## **Proprerty**

- a has period m
- b has period n
- ullet  $\Rightarrow a \pm b$  has period dividing mn

#### **Theorem**

The group A is the direct sum of its subgroups A(p) for all primes p dividing n

# **Fundamental Theorem of Finite Abelian Groups**

Every finite Abelian group is a direct product of cyclic groups of prime power order Moreover the number of terms and the orders of the cyclic groups are **uniquely** determiend by the group

Every abelian cyclic group  $G pprox \mathbb{Z}_{p_1^{n_1}} \, \oplus \mathbb{Z}_{p_2^{n_2}} \, \oplus \cdots \oplus \mathbb{Z}_{p_{\Bbbk}^{n_{\Bbbk}}}$ 

#### **Note**

ullet  $p_i$  aren't necessarily distinct primes

## Existenc eof subgroups of abelian groups

If m divides  $\left|G\right|$  then G has a subgroups of order m