Lab 9

Ensembles

Introduction

Objectives

- Learn to train ensembles of classifiers
- Voting: hard, soft vote
- Bagging, random forests, extremely randomized trees
- Boosting, AdaBoost, Gradient boosting, XGBoost

Ensemble learning

- Why does it work?
 - Different models may be good at different 'parts' of data (even if they are underfit)
 - Individual mistakes can be 'averaged' (especially if models overfit)
- Which models should be combined? According to bias-variance analysis:
 - If model underfits (high bias, low variance): combine with other low-variance models
 - Need to be different 'experts' on different parts of the data
 - Bias reduction. Can be done with Boosting
 - If model overfits (low bias, high variance): combine with other low-bias models
 - Need to be different: individual mistakes must be different
 - Variance reduction. Can be done with Bagging
 - Models must be uncorrelated but good enough (otherwise the ensemble is worse)
 - We can also learn how to combine the classifiers (Stacking)

Ensemble learning

Voting classifiers:

- Train diverse models and aggregate the predictions
 - Hard vote: majority class wins (class order breaks ties)
 - **Soft vote:** sum class probabilities p_{mc} over M models, $argmax \sum_{m=1}^{M} w_c p_{mc}$., classes can get different weights w_c (default $w_c = 1$)

Ensemble learning

Voting classifiers:

Ex hard majority voting


```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

log_clf = LogisticRegression(solver="lbfgs", random_state=42)
rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)
svm_clf = SVC(gamma="scale", random_state=42)

voting_clf = VotingClassifier(
estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],
voting='hard')
```


Bagging (bootstrap aggregating)

- Obtain different models by training the same model on different training samples
 - Reduce overfitting by averaging out individual predictions (variance reduction)
- In practice: take N bootstrap samples of data, train a model on each bootstrap
 - Higher N: more models, more smoothing (but slower training and prediction)
- Base models should be unstable: different training samples yield different models
 - Eg. deep decision trees or randomized decision trees
- Prediction by averaging predictions of base models
 - Soft voting for classification (possible weighted)
- Can produce uncertainty estimates as well
 - By combining class probabilities of individual models

Bagging (bootstrap aggregating)

Random forests

- Uses randomized trees to make models even less correlated (more unstable)
 - At every split, only consider max_features features, randomly selected
 - Extremely randomized trees: considers only 1 random threshold for random set of features (faster to train)
 - Effect on bias and variance
 - Increasing the number of models (trees) decreases variance (less overfitting)
 - Bias is mostly unaffected, but will increase if forest becomes too large (oversmoothing)
- Feature importance: computed by considering how much the tree nodes that use that feature reduce impurity on average (across all trees in the forest).

Bagging in practice

- Different implementations can be used. In scikit-learn
 - BaggingClassifier: you can choose base model and sampling procedure
 - RandomForestClassifier: default implementation, many options
 - ExtraTreesClassifier: uses extremely randomized trees
- Most important parameters:
 - n_estimators (>100, higher is better, but diminishing returns)
 - Will start to underfit (bias error component increases slightly)
 - max_features:
 - Defaults sqrt(p) for classification
 - Set smaller to reduce space/time requirements
 - Parameters of trees: max_depth, min_samples_split
 - Prepruning useful to reduce model size, but not too much
- Easy to parallelize (set n_jobs to -1)
- Fix random state (bootstrap samples) for reproducibility

Machine Learning

9

Boosting

- Combine several weak learners into a strong learner: train predictors sequentially, each trying to correct the previous one.
- Many boosting methods available, the most popular is Adaboost

Adaptive Boosting (AdaBoost)

- Obtain different models by reweighting the training data every iteration
 - Reduce overfitting by focusing on the 'hard' training examples
- Increase weights of instances misclassified by the ensemble
- Base model should be simple so that different instance weights lead to different models
 - Underfitting models: decision stumps (or very shallow trees)
 - Each is an 'expert' on some parts of the data
- Additive model: predictions at iteration I are sum of base model predictions (weight by accuracy)

$$f_I(\mathbf{x}) = \sum_{i=1}^I w_i g_i(\mathbf{x})$$

- Effect on bias and variance
 - Adaboost reduces bias (and a little variance)
 - Boosting is a bias reduction technique
 - Boosting too much will eventually increase variance

Adaboost

Example AdaBoost with 'stumps' (decision trees of depth=1)

```
from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1), n_estimators=200,
    algorithm="SAMME.R", learning_rate=0.5, random_state=42)
    ada_clf.fit(X_train, y_train)

y_pred_ada = ada_clf.predict(X_test)
    print(accuracy_score(y_test, y_pred_ada))
    cmat = confusion_matrix(y_test,y_pred_ada)
    print(cmat)
```


Gradient boosting

- Generalization of boosting to arbitrary differentiable loss functions
- Ensemble of models, each fixing the remaining mistakes of the previous ones
 - Each iteration, instead of changing the weights, the task is to predict the residual error of the ensemble
 - Additive model: predictions at iteration I are sum of base model predictions. Each new predictor is fitted to minimize a loss function, given the previous ensemble.
 - Learning rate (or shrinkage) η : small updates work better (reduces variance)

$$f_I(\mathbf{x}) = g_0(\mathbf{x}) + \sum_{i=1}^I \eta \cdot g_i(\mathbf{x}) = f_{I-1}(\mathbf{x}) + \eta \cdot g_I(\mathbf{x})$$

- Effect on bias and variance
 - Gradient boosting is very effective at reducing bias error
 - Boosting too much will eventually increase variance

Gradient boosting

- Among the most powerful and widely used models
- Work well on heterogeneous features and different scales
- Typically better than random forests, but requires more tuning, longer training
- Does not work well on high-dimensional sparse data

Many hyperparameters

- n_estimators: higher is better, but will start to overfit
- learning_rate: lower rates mean more trees are needed to get more complex models
 - Set n estimators as high as possible and tune learning_rate
 - Or choose a learning rate and use early stopping to avoid overfitting
- max depth: typically kept low (<5), reduce when overfitting
- max features: can also be tuned, similar to random forests
- n_iter_no_change: early stopping, algorithm stops if improvement is less than a certain tolerance tol for more than n_iter_no_change iterations
- loss: loss function (default 'log_loss' cross-entropy)

Extreme Gradient Boosting (XGBoost)

- Faster version of gradient boosting: allows more iterations on larger datasets
- XGBoost in practice:
 - Not part of scikit-learn, but HistGradientBoostingClassifier is similar
 - The xgboost python package is scikit-learn compatible https://xgboost.readthedocs.io/en/stable/

Lab9

- Toy example
 - Voting
 - Hard
 - Soft
 - Bagging with decision trees
 - Boosting: adaboost with decision stumps
 - Gradient boosting
- MNIST with ensembles
- Optional: MNIST with XGBoost