lab 10: structural bioinformatics

Elsa Chen (A16632961)

Table of contents

Introduction to the RCSB Protein Data Bank (PDB)	1
PDB statistics	1
Visualizing the HIV-1 protease structure	3
Using Mol* <molstar.org viewer=""></molstar.org> to get to know HIV-Pr	3
Bio3D in R	3
Predicting functional motions of a single structure	6

Introduction to the RCSB Protein Data Bank (PDB)

PDB is the main repository of biomolecular structure info <www.rcsb.org>

PDB statistics

```
PDBstats <- read.csv("Data Export Summary.csv")
PDBstats
```

	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Other
1	Protein (only)	163,468	13,582	12,390	204	74	32
2	Protein/Oligosaccharide	9,437	2,287	34	8	2	0
3	Protein/NA	8,482	4,181	286	7	0	0
4	Nucleic acid (only)	2,800	132	1,488	14	3	1
5	Other	164	9	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						

^{1 189,750}

^{2 11,768}

^{3 12,956}

```
4 4,438
5 206
6 22
Q1: V
```

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

need to get rid of commas in columns

```
decomma <- function(x){
   as.numeric(gsub(",", "", x))
}

PDBstats[-1] <- apply(PDBstats[-1], 2, decomma)
PDBstats</pre>
```

	Molecular.Type	X.ray	EM	NMR	${\tt Multiple.methods}$	${\tt Neutron}$	Other
1	Protein (only)	163468	13582	12390	204	74	32
2	Protein/Oligosaccharide	9437	2287	34	8	2	0
3	Protein/NA	8482	4181	286	7	0	0
4	Nucleic acid (only)	2800	132	1488	14	3	1
5	Other	164	9	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						

1 189750

2 11768

12956

4 4438

5 206

6 22

```
(sum(PDBstats$X.ray))/(sum(PDBstats$Total))*100
```

[1] 84.12978

```
(sum(PDBstats$EM))/(sum(PDBstats$Total))*100
```

[1] 9.213745

84.12978% of structures in the PDB are solved by X-Ray, 9.2137446% of structures in the PDB are solved by EM

Visualizing the HIV-1 protease structure

Using Mol* <molstar.org/viewer/> to get to know HIV-Pr

Figure 1: HIV-Pr molecular image

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

Because the resolution of this experiment isn't high enough to see the very small hydrogens

Bio3D in R

library(bio3d)

Warning: package 'bio3d' was built under R version 4.3.3

pdb <- read.pdb("1hsg")</pre>

Figure 2: HIV-Pr highlighting ligand, D25, and H2O $308\,$

```
Note: Accessing on-line PDB file
  pdb
       read.pdb(file = "1hsg")
Call:
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                                  z o
                                                     X
1 ATOM
          1
                N < NA >
                         PRO
                                       1 <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
               CA <NA>
                         PRO
                                       1 <NA> 30.307 38.663 5.319 1 40.62
                                 Α
3 ATOM
                         PRO
          3
                C <NA>
                                 Α
                                       1 <NA> 29.760 38.071 4.022 1 42.64
                                 Α
                                       1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
          4
                O <NA>
                         PRO
5 ATOM
          5
               CB <NA>
                         PRO
                                      1 <NA> 30.508 37.541 6.342 1 37.87
                                 Α
               CG <NA>
                         PRO
                                       1 <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
          6
                                 Α
 segid elesy charge
1 <NA>
           N
               <NA>
           C
2 <NA>
               <NA>
3 <NA>
           C <NA>
4 <NA>
           O <NA>
5 <NA>
           C <NA>
```

6 <NA>

C <NA>

```
pdbseq(pdb)[25]
 25
"D"
Predicting functional motions of a single structure
we can predict the dynamics of a molecule
  adk <- read.pdb("6s36")
  Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
  adk
        read.pdb(file = "6s36")
 Call:
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
```

m <- nma(adk) # normal mode analysis

Building Hessian... Done in 0.07 seconds. Diagonalizing Hessian... Done in 0.56 seconds.

plot(m)

mktrj(m, file="adk_m7.pdb")