

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Инженерная школа природных ресурсов Направление подготовки Химическая технология Отделение химической инженерии

РҮТНО ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Отчет по лабораторной работе № 4 Минимизация функций

Выполнил студент гр. 2ДМ24	(Подпись)	Иванцов П.С.
	_	2023 г.
Отчет принят:		
Преподаватель доцент ОХИ ИШПР, к.т.н.	(Подпись)	В.А. Чузлов
		2023 г

Задание 1

Найдите минимум следующих функций, используя методы минимизации, доступные в функции scipy.optimize.minimize().

Начальное приближение: x0 = [0, 0].

1. Функция Экли:

$$f(x,y) = -20 \exp\left[-0.2\sqrt{0.5(x^2 + y^2)}\right] - \exp[0.5(\cos(2\pi x) + \cos(2\pi y))] + e + 20$$

2. Функция Била:

$$f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2$$

3. Функция Гольдшейна-Прайса:

$$f(x,y) = [1 + (x + y + 1)^{2}(19 - 14x + 3x^{2} - 14y + 6xy + 3y^{2})] \cdot$$

$$\cdot [30 + (2x - 3y)^{2} \cdot (18 - 32x + 12x^{2} + 48y - 36xy + 27y^{2})]$$

Функция Матьяса:

$$f(x,y) = 0.26(x^2 + y^2) - 0.48xy$$

Программная реализация:

```
from scipy.optimize import minimize
         import numpy as np
         def ackley_function(xy):
             return -20 * np.exp(-0.2 * np.sqrt(0.5 * (x**2 + y**2))) - np.exp(0.5 * (np.cos(2 * np.pi * x)
+ np.cos(2 * np.pi * y))) + np.e + 20
         def beales function(xy):
             x, y = xy
             return (1.5 - x + x * y)**2 + (2.25 - x + x * y**2)**2 + (2.625 - x + x * y**3)**2
         def goldstein_price_function(xy):
return (1 + (x + y + 1)**2 * (19 - 14 * x + 3 * x**2 - 14 * y + 6 * x * y + 3 * y**2)) * (30 + (2 * x - 3 * y)**2 * (18 - 32 * x + 12 * x**2 + 48 * y - 36 * x * y + 27 * y**2))
         def matyas_function(xy):
             x, y = xy
             return 0.26 * (x**2 + y**2) - 0.48 * x * y
         x0 = [0, 0]
         result_ackley = minimize(ackley_function, x0, method='Nelder-Mead')
         result_beales = minimize(beales_function, x0, method='Nelder-Mead')
         result_goldstein_price = minimize(goldstein_price_function, x0, method='Nelder-Mead')
         result_matyas = minimize(matyas_function, x0, method='Nelder-Mead')
         print("Ackley Function Minimum:", result_ackley.x)
print("Beale's Function Minimum:", result_beales.x)
         print("Goldstein-Price Function Minimum:", result_goldstein_price.x)
         print("Matyas Function Minimum:", result_matyas.x)
```

Ответ:

Ackley Function Minimum: [0. 0.]

Beale's Function Minimum: [2.99994196 0.49998485]

Goldstein-Price Function Minimum: [-0.59995602 -0.40003256]

Matyas Function Minimum: [0. 0.]

Задание 2

Пусть дана схема химических превращений:

$$A \stackrel{k_1}{\longleftarrow} B \stackrel{k_2}{\underset{k_3}{\longleftarrow}} C$$

Необходимо определить с помощью генетического алгоритма и метода Нелдера-Мида (можно воспользоваться функцией scipy.optimize.mnimize(), указав соответствующее значение опционального аргумента method) константы скоростей реакций: k1, k2 и k3, если известно, что к моменту времени t=1(c) концентрации компонентов равны: CA=0.1423; CB=1.5243; CC=0.5956 моль/л. Начальные условия: CA(0)=1.0; CB=0.0; CC=0.5 моль/л. Область поиска для всех констант ограничьте интервалом [0;2].

Программная реализация:

```
from scipy.integrate import solve_ivp
from scipy.optimize import minimize
import numpy as np
def chemical_system(t, concentrations, k1, k2, k3):
    CA, CB, CC = concentrations
   dCAdt = -k1 * CA
    dCBdt = 2 * k1 * CA - 2 * k2 * CB**2 + 2 * k3 * CC
    dCCdt = k2 * CB**2 - k3 * CC
    return [dCAdt, dCBdt, dCCdt]
def objective_function(rate_constants):
   k1, k2, k3 = rate constants
   result = solve_ivp(chemical_system, [0, 1], [1.0, 0.0, 0.5], args=(k1, k2, k3))
    CA, CB, CC = result.y[:, -1]
   error = (CA - 0.1423)**2 + (CB - 1.5243)**2 + (CC - 0.5956)**2
   return error
initial guess = [1, 1, 1]
opt_result = minimize(objective_function, initial_guess, method='Nelder-Mead')
print("Optimized Rate Constants:", opt_result.x)e)
plt.show()
```

Ответ:

Optimized Rate Constants: [1.95009837 0.33183658 0.83200744]