Contents lists available at ScienceDirect

Applied Catalysis B: Environment and Energy

journal homepage: www.elsevier.com/locate/apcatb

Ultra-efficient decontamination via functionalized reactive electrochemical membrane for peroxymonosulfate activation: High water flux with extremely low energy consumption

Jiana Jing ^{a,b,c}, Huizhong Wu ^{a,b,c}, Jinxin Xie ^{a,b,c}, Xuechun Wang ^{a,b,c}, Minghua Zhou ^{a,b,c,*}

- a Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350. China
- b Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350 China
- c Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350. China

ARTICLE INFO

Keywords: Reactive electrochemical membrane Peroxymonosulfate Perovskite Decontamination Pharmaceutical wastewater

ABSTRACT

A perovskite LaCoO3 functionalized Ti₄O7 reactive electrochemical membrane (REM) was developed for electroenhanced peroxymonosulfate (PMS) activation (E-REM-PMS), addressing limitations in wastewater treatment efficiency, reusability, and interference resistance. It achieved 100% carbamazepine (CBZ) removal at a rate constant of 39.69 min^{-1} , 233 and 23 times of electro-REM (E-REM) system without PMS and REM-PMS system without electricity. In-situ Fourier transform infrared spectroscopy (FTIR) highlighted the promotion of electroactivation on PMS, while density functional theory (DFT) calculations elucidated mechanism differences under three adsorption configurations. $^{1}O_{2}$ (2.97×10 $^{-9}$ M), $SO_{4}^{\bullet-}$ (2.09×10 $^{-11}$ M) and $^{\bullet}OH$ (7.36×10 $^{-12}$ M) dominated the E-REM-PMS system, consistent with sequence of reactive species by DFT results. Continuous treatment of pharmaceutical wastewater confirmed 100% CBZ removal and 60%-70% TOC mineralization at ultrahigh water flux (642.86 L/m²·h) with minimal energy consumption (0.01 kWh/m³·order). This work proposed a highperformance and anti-fouling REM, offering an efficient and economical solution for wastewater treatment.

1. Introduction

Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are drawing immense attention to eliminate refractory contaminants through triggering different pathways [1,2], generating powerful reactive oxygen species (ROS) with redox potentials of 1.8 \sim 3.1 V vs. NHE [3], including sulfate radical ($SO_4^{\bullet-}$), hydroxyl radical (${}^{\bullet}$ OH), superoxide radical (${}^{\bullet}$ O₂) and non-radical singlet oxygen (1 O₂) [4, 5]. Transition metals have been widely used in PMS activation to overcome the high cleavage energy, of which cobalt is regarded as the most promising [6]. However, the following challenges still remain in the heterogeneous cobalt catalyst: (i) low activation efficiency of PMS owing to the insufficient utilization of active sites; (ii) application limitations of catalyst reusability and poor performance in complex wastewater treatment [7].

Various strategies have been executed to enhance PMS activation, among which designing a highly efficient cobalt-based catalyst is the most direct and significant. Perovskite oxides (ABO3) have been extensively utilized for PMS activation and showed significant potential in practical wastewater treatment [8]. Perovskites possessed excellent structure flexibility since the A and B sites can accommodate a wide range of metals, where A is a rare-earth or alkaline earth element and B is a transition metal. The A-site predominantly serves to stabilize the crystal structure of perovskite, whereas the B-site functions as the primary active site for catalysis [9]. The variation of A or B sites will affect the physicochemical properties of perovskites. For A-site, LaCoO3 showed faster reaction rate for phenol degradation than that of CeCoO₃ and BaCoO3 [10]. For B-site, LaCoO3 was the most active catalysts among LaMO₃ (M=Co, Fe, Cu and Mn) perovskites with exceptional reusability and low metal leaching [11]. Hence, LaCoO3 would be an outstanding catalyst to efficiently activate PMS for contaminants

E-mail address: zhoumh@nankai.edu.cn (M. Zhou).

^{*} Corresponding author.at: Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

elimination.

Considering the complex matrix of actual wastewater, PMS approach alone may not achieve satisfactory decontamination [12]. To further promote the activation kinetics of PMS and the mass transport performance, a novel reactive electrochemical membrane (REM) system has been proposed as a breakthrough in electrochemical water treatment because its mass transfer rate $(k_{\rm m})$ is 1-2 orders of magnitude larger than the $k_{\rm m}$ (10^{-5} m/s) in a flow-by system [13]. The REM system can also improve the oxidation kinetics by ~ 10 times, reduce the electric energy cost by ~ 90 % [14], and alleviate the membrane pollution due to the electrostatic repulsion between charged pollutants and the membrane electrode [15].

Magnéli phase titanium oxide Ti₄O₇, as a typical REM, exhibits outstanding potential for electrochemical oxidation due to its excellent electric conductivity (1500 S/cm), high redox potential (2.5 V vs. Ag/ AgCl), and corrosion resistance [16,17], making it effective in degrading contaminants [18]. Ti₄O₇ as a potential anode REM can produce ROS by direct electron transfer, but the generated ROS are insufficient to rapidly and efficiently remove contaminants due to poor electron mobility and the lack of reactive sites [19]. Notwithstanding the commendable electrochemical stability and cost-effectiveness of Ti₄O₇, its comparatively constrained electro-oxidation capability resulted in prolonged wastewater purification periods. Coincidentally, PMS is recognized as an effective approach for enhancing water treatment performance. Based on the above analysis, it would be reasonable to propose a perovskite-functionalized REM to enhance the activation efficiency of PMS, simultaneously promoting the removal of micropollutants with high efficiency and low energy consumption while maintaining the stability of REM and overcoming the application limitations of catalyst recovery and water matrix interference in actual wastewater treatment.

Herein, in this work, Ti₄O₇ was selected as the membrane substrate, and a small quantity of LaCoO₃ was introduced as an exceptional catalyst to efficiently activate PMS in a flow-through mode. An enhanced carbamazepine (CBZ) degradation was envisaged due to the synergistic effects of LaCoO₃/Ti₄O₇ REM, PMS and the electric field. The superiority of electro-enhanced activation process of PMS by LaCoO₃/Ti₄O₇ REM (E-REM-PMS) system and the reaction mechanism were proposed based on experimental results, electron paramagnetic resonance (EPR), density functional theory (DFT) calculations and *in-situ* Fourier Transform Infrared Spectroscopy (FTIR). The degradation pathway and toxicity assessment were also analyzed. The practical application prospect was evaluated by taking water quality tolerance, energy consumption and durability into account. This work provides a strategy to create an economical, effective and environmentally friendly continuous-flow system for water decontamination.

2. Experimental section

2.1. Chemicals and materials

All the chemicals and reagents used in the experiments were analytical grade, and the detailed information was provided in Text S1. Deionized water (DI water) was employed throughout the research.

2.2. Synthesis of Ti₄O₇ and LaCoO₃/Ti₄O₇ REMs

The Ti_4O_7 REM was synthesized by firstly mixing 10 g Ti_4O_7 powder with 2 mL paraffin oil as a binder. The powder and binder were thoroughly mixed for 20 min using mortar and pestle. The resulting mixture was then loaded into a stainless-steel die with a diameter of 3.8 cm. To compact the mixture, a uniaxial pressure of approximately 8 MPa was achieved using a hydraulic press (769YP-15A, Xinnuo, Shanghai, China). Subsequently, the pellet, with a thickness of 1.9 mm, underwent calcination in a tube furnace at 800 $^{\circ}$ C for 6 h under 1.0 atm Ar. This calcination step aimed to remove the binder and promote particle sintering, thereby achieving successful synthesis of Ti_4O_7 REM.

The LaCoO₃ perovskite was produced via a typical sol-gel process. Stoichiometric amounts of La(NO₃)₃·6 H₂O and Co(NO₃)₂·6 H₂O were dissolved in 30 mL deionized water under magnetic stirring. An equal amount of citric acid monohydrate (metal/citric acid molar ratio = 1/1) was added into the solution, then ultrasonically dispersing for 30 min. The resultant mixture was continuously stirred and condensed at 70 °C in a water bath for 4 h to evaporate water until the wet gel formed. Then dried it in an oven at 60 °C overnight. Subsequently, the powders were calcined at 800 °C for 2 h with a heating rate of 5 °C/min in a muffle furnace. Different qualities of the as-received LaCoO3 were evenly mixed with 10 g Ti₄O₇ powder for 10 min. 2 mL paraffin oil was added and mixed with the powders for 20 min. Then the mixture was also placed in a die, pressed and calcined using the same method as the Ti₄O₇ REM (Fig. S1). In-situ FTIR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffractometer (XRD) and the Brunauer-Emmett-Teller (BET) method were performed to explore the characteristics of REMs. Details of the characterization methods for the REMs were illustrated in Text S2.

2.3. Electro-PMS activation for CBZ removal

The treatment of 0.1-20 mg/L CBZ was carried out at room temperature via activating PMS in a flow-through reactor as schematically shown in Fig. 1. LaCoO₃/Ti₄O₇ REM (Φ30 mm, thickness: 1.9 mm) and carbon felt (CF) were installed in the reactor as anode and cathode respectively with an electrode spacing of 8 mm. Unless specifically stated, a neutral solution of CBZ (20 mg/L) containing PMS (2 mM) was passed through the filtration system at flowrate of 7.5 mL/min under a constant current of 5 mA. In the mixture of CBZ and PMS, 2 mM PMS alone exhibited negligible degradation of 20 mg/L CBZ within 120 min (Fig. S2). The PMS acted two roles, i.e., as a catalyst for ROS activation and as an electrolyte. The adjustment of pH was performed by NaOH (0.1 mol/L) and H₂SO₄ (0.1 mol/L). At given time period, 0.5 mL of reaction solution was withdrawn and quenched with 1 mL methanol (MeOH) and 0.5 mL 50 mM L-histidine (L-His). Afterwards, the sample was filtered through a $0.22 \, \mu m$ membrane for further measurement. The concentration of CBZ was analyzed using high-performance liquid chromatography (HPLC, Ultimate 3000, ThermoFisher, America) with C18 column (3 μ m, ϕ 3.0 \times 100 mm) equipped with a DAD detector. The specific analytical parameters were provided in Table S1. Residual PMS was quantified by an iodometric method, and the resulting absorbance was measured at 352 nm using a UV-Vis spectrophotometer (UV835, Shanghai Lab-Spectrum Instrument Co., Ltd.). The calculation of hydraulic residence time, rate constant, synergistic factor, electric energy consumption and water flux were displayed in Text S3.

The effects of parameters (e.g., solution pH, current density, PMS dose and flow rate), co-existing ions (SO_4^2 –, Cl^- , NO_3^- , CO_3^2 – and PO_4^{3-}) and natural organic matters (humic acid (HA) and fulvic acid (FA)) were investigated. The system was also applied to treat actual pharmaceutical wastewater, and the durability of $LaCoO_3/Ti_4O_7$ REM was tested through consecutive CBZ removal for 10 hours. The used REMs were washed with DI water and dried naturally before initiating a new cycle. The versatility of the process was evaluated by degrading other refractory pharmaceuticals (20 mg/L), including sulfamethazine (SMT), sulfamethoxazole (SMX), atrazine (ATZ) and tetracycline (TC). All experiments were conducted in triplicate. The relevant analytical methods and electrochemical measurements were given in Text S3. The quantitative analysis of ROS was presented in Text S4. The operational methods of *in-situ* FTIR spectroscopy were described in Text S5. The details of DFT calculations were provided in Text S6.

Fig. 1. The schematic diagram of the reaction process.

3. Results and discussion

3.1. Characterization and properties of the LaCoO₃/Ti₄O₇ REM

To verify the successful synthesis of LaCoO₃/Ti₄O₇, the structure, composition and morphology of prepared REMs were investigated by SEM, TEM, XRD and N2 adsorption-desorption isotherm. It was observed that Ti₄O₇ showed micron-sized particles with a smooth surface (Fig. 2a and S3a). In Fig. 2b-c and S3b-d, the rough surface of LaCoO₃/Ti₄O₇ might be ascribed to the nanoparticles of LaCoO3. Massive structured Ti₄O₇ serves as the base of the composite, while LaCoO₃ distributes on its surface as the active sites for PMS activation. The surface of the LaCoO₃/Ti₄O₇ REM displayed distinct microporous morphology. In high-resolution SEM images, pore-like structures resembling cracks can be observed, possibly arising from the volatilization of paraffin oil binder during electrode calcination processes (Fig. S3b-d). The lattice spacings of 0.338 nm and 0.272 nm in the high-resolution transmission electron microscopy (HRTEM, Fig. 2d) images are associated with Ti₄O₇ (1 −2 0) and LaCoO₃ (1 1 0), respectively. The energy dispersive spectroscopy (EDS) of LaCoO₃/Ti₄O₇ in Fig. 2e depicted that the elements of Ti, La, Co and O are evenly distributed on the surface. As calculated, the loading amounts of La and Co in a LaCoO₃/Ti₄O₇ REM are approximately 8.5 mg and 3.6 mg, which correspond to 0.085 wt% and 0.036 wt%, respectively. The loading amount of catalyst is significantly lower compared to the similar electro-activated PMS processes such as Fe-SA/Mo₂TiC₂T_x filter (1.8 wt% Fe) [7] and Fe₃O₄-MnO₂/CNT filter (2.8 wt% Fe, 3.2 wt% Mn) [20].

As shown in Fig. 2f, the sharp XRD patterns illustrated well crystal-line natures of 0.15 wt% LaCoO $_3$ /Ti $_4$ O $_7$, LaCoO $_3$ and Ti $_4$ O $_7$. The Ti $_4$ O $_7$ showed well characteristic diffraction peaks of Ti $_4$ O $_7$ phase (JCPDS No. 72–1722). The LaCoO $_3$ powders were also successfully synthesized, in accordance with the rhombohedral structure (lattice constants a = 5.4410 Å, b = 5.4410 Å, and c = 13.0880 Å) in the reference code (JCPDS No. 25–1060). When 0.15 wt% LaCoO $_3$ was mixed with Ti $_4$ O $_7$, Ti $_4$ O $_7$ still maintained the high-purity Magneli phases, indicating the introduction of 0.15 wt% LaCoO $_3$ did not oxidize or reduce Ti $_4$ O $_7$. The diffraction peak corresponding to LaCoO $_3$ was a little weak in the obtained composite, mainly attributing to the minimal content of LaCoO $_3$. But if the XRD pattern of 0.15 wt% LaCoO $_3$ /Ti $_4$ O $_7$ was magnified (Fig. S4), the peaks of LaCoO $_3$ obviously existed at 23.2°, 32.9°, 33.3°, 47.5° and 59.0°.

To assess the adsorption and degradation properties of LaCoO₃/

 Ti_4O_7 , two significant indexes of specific surface area and pore structure were explored. As revealed in Fig. 2g, the N_2 adsorption-desorption isotherm of 0.15 wt% $LaCoO_3/Ti_4O_7$ conformed to the typical type II curve with H4 hysteresis loop according to the IUPAC classification. The BET surface area of $LaCoO_3/Ti_4O_7$ was $1.72~m^2/g$, higher than the 0.54 m^2/g of pure Ti_4O_7 . Fig. 2g inset showed that Ti_4O_7 displayed a pore size distribution spanning from 2.3 to 57.5 nm, demonstrating solely mesoporous characteristics. In regard to $LaCoO_3/Ti_4O_7$, the pore size ranged from 1.7 nm to 28.3 nm, with micropores accounting for 16% and mesopores for 84%. The introduction of $LaCoO_3$ resulted in the emergence of micropores, accompanied by a significant increase in pore structures below 10 nm. The multistage porous structure of $LaCoO_3/Ti_4O_7$ REM is conducive to transfer between pollutants and oxidants as wastewater passed through REM.

Electrochemical measurements were conducted to assess the reactivity of the pristine Ti₄O₇ and LaCoO₃/Ti₄O₇ REM. As the linear sweep voltammetry (LSV) spectra displayed in Fig. S5a, LaCoO₃/Ti₄O₇ exhibited a slightly higher oxygen evolution potential (OEP) of 2.05 V vs Ag/AgCl than 1.95 V of pristine Ti₄O₇. Open circuit electrochemical impedance spectroscopy (EIS) measurements were conducted to characterize the electron transport and electron transfer of the pristine Ti₄O₇ and LaCoO₃/Ti₄O₇. From Fig. 2h, LaCoO₃/Ti₄O₇ revealed a charge transfer resistance (R_{ct}) of 95.43 Ω , which was lower than the 98.84 Ω of Ti₄O₇. Despite the doping amount of LaCoO₃ being only 0.15 wt%, an observable reduction in resistance was observed. The lower R_{ct} is more conducive to improving the catalytic activity and electron transfer kinetics. Cyclic voltammetry (CV) presented in Fig. S5b showed an improved anodic peak current (Ipa) on the LaCoO3/Ti4O7 electrode, which increased by about 1.5 times, indicating an enhanced electrochemical reactivity compared with the pristine Ti₄O₇ electrode. The CV curves also elucidated that the LaCoO3/Ti4O7 electrode had a larger electroactive area than Ti₄O₇ electrode, certifying that LaCoO₃ provided additional reactive sites on the surface of Ti₄O₇.

3.2. Electro-PMS activation performance of LaCoO₃/Ti₄O₇ REM

CBZ was selected as the model micropollutant to evaluate the catalytic performance of the LaCoO₃/Ti₄O₇ REM toward electro-PMS activation. As depicted in Fig. 3a, marginal CBZ removal (<2%) was observed in the presence of LaCoO₃/Ti₄O₇ REM or PMS alone, suggesting that contributions from the adsorption and PMS oxidation were negligible. About 11% CBZ removal occurring in electro-activation of

Fig. 2. SEM of pure Ti_4O_7 (a), SEM (b) TEM (c), HRTEM (d) and EDS mappings (e) of 0.15 wt% $LaCoO_3/Ti_4O_7$, XRD patterns of 0.15 wt% $LaCoO_3/Ti_4O_7$, LaCoO3 and Ti_4O_7 (f), N_2 adsorption-desorption isotherm for $LaCoO_3/Ti_4O_7$ with pore size distribution (inset) (g) and Open circuit EIS measurements (h).

PMS by Ti_4O_7 REM (E- Ti_4O_7 -PMS) system was still dissatisfactory, but the introduction of LaCoO $_3$ significantly improved the catalytic activity. In Fig. S6, the CBZ removal increased with the dosage of LaCoO $_3$ increasing from 0 to 0.15%. As the dosage of LaCoO $_3$ increased to 0.15%, 100% CBZ degradation was obtained by a single pass through the E-LaCoO $_3$ /Ti $_4O_7$ -PMS system at a current density 0.5 mA/cm 2 . When the content of LaCoO $_3$ exceeded 0.15%, the complete decomposition of CBZ could also be maintained within 120 min. Combined with economic and environmental benefits, 0.15% LaCoO $_3$ /Ti $_4O_7$ REM was selected as the optimized anode and utilized in the subsequent E-REM-PMS system if not specified.

The E-REM-PMS system possessing excellent CBZ elimination (\sim 100 %) and short hydraulic retention time ($\tau \sim 10.6$ s) confirmed the enhanced removal performance of the integrated system. The removal efficiency of CBZ decreased to \sim 30 % and 3 % in the absence of electric field and PMS, which were both dissatisfied. Data from the CBZ removal experiments were fitted to pseudo-first-order kinetics for quantitative comparison of the different systems [21]. The apparent rate constant (k)

for CBZ removal in the E-REM-PMS system (39.69 min $^{-1}$) was 233 and 23 times of electro-REM (E-REM) system (0.17 min $^{-1}$) without PMS addition and REM activating PMS (REM-PMS) system (1.7 min $^{-1}$) without electricity input, respectively. The TOC removal reached 45 % by a single pass through the E-REM-PMS system during CBZ degradation, which was more than three times that in the other systems (Fig. 3b). Applying a very low current density of 0.5 mA/cm 2 enhanced 73 % CBZ removal and 32 % TOC mineralization. The synergistic factor (S) was calculated from Eq. (S5) to quantify the interaction degree of electric field and PMS [22]. The high S (21.22) was attributed to the electro-enhanced activation of PMS by LaCoO $_3$ /Ti $_4$ O $_7$ REM, which significantly accelerated the degradation and mineralization kinetics of CBZ. These results illustrated that the LaCoO $_3$ /Ti $_4$ O $_7$ REM can serve as a superior catalyst for electro-PMS activation, highlighting the evident synergistic effect between the PMS and electric field.

The significant difference between E-REM-PMS and REM-PMS system suggested that the electric field played an important role in the degradation of CBZ. As the applied current density increasing from 0 to

Fig. 3. CBZ removal (a) and TOC mineralization (b) in different reaction systems. Reaction conditions: [CBZ] = 20 mg/L, [PMS] = 2 mM, flow rate = 7.5 mL/min, influent solution pH = 7, current density $= 0.5 \text{ mA/cm}^2$. CBZ removal influenced by applied current density (c), TOC mineralization and total removal quality of CBZ within 120 min under different flow rate (d) and the rate constant and flux of LaCoO₃/Ti₄O₇ REM compared with the literature (e).

0.5 mA/cm², the CBZ removal was improved from 28% to 100% (Fig. 3c). The trend of PMS consumption was consistent with the CBZ removal, further suggesting that the electric field promoted the decomposition of PMS (Fig. S8a). The minimum energy consumption occurred at 0.5 mA/cm², indicating that it was the optimal current density for achieving the highest removal efficiency. Compared to the batch mode, the efficient convection-enhanced mass transport improved the performance of the flow-through system [7]. The flow rate determined the contact time between contaminants and REM, and excessive flow rate led to inadequate reaction of ROS. Notably, when the flow rate varying from 2.5 to 7.5 mL/min, the degradation efficiency of CBZ in single-pass mode maintained ~100% and the TOC mineralization was around 45% (Fig. 3d and S7a). With the flow rate exceeding 7.5 mL/min, decreases appeared both in the oxidation efficiencies of CBZ and TOC. Besides, the PMS decomposition obviously weakened at high flow rates of 10.0 and 12.5 mL/min, further illustrating the insufficient contact when PMS flowing through REM (Fig. S8b). The total removal quantity of CBZ within 120 min greatly enhanced from 5.99 mg to 17.87 mg as the flow rate increasing from 2.5 to 7.5 mL/min. While the flow rate raised to 12.5 mL/min, the CBZ removal slowly reached 20.7 mg (Fig. 3d). Despite a slight increase in the total removal quality of CBZ at flow rates exceeding 7.5 mL/min, the excessively high flow rate was unable to achieve complete elimination of CBZ. Consequently, a flow rate of 7.5 mL/min was identified as the preferred option, striking commendable performances in both removal efficiency and total removal quality of CBZ. PMS also played a crucial role in the E-REM-PMS system. As depicted in Fig. S7b, the CBZ removal was markedly enhanced from ~3% to 100% with the PMS dosage increasing from 0 to 2 mM. However, a further increase of PMS dosage to 3 mM brought a reduction in CBZ degradation instead, which might be attributed to the self-quenching effect between the generated radicals and excess PMS (HSO $_5^- + SO_4^{\bullet-} \rightarrow SO_4^{2-} + SO_5^{\bullet-} + H^+, HSO_5^- + {}^{\bullet}OH \rightarrow$ $SO_5^{\bullet-} + H_2O$) [23]. From the PMS consumption in Fig. S8c, it was noticed

that slight PMS was not sufficient to produce enough ROS to completely remove CBZ, and excessive PMS led to competition between CBZ and surplus PMS. Hence, current density of $0.5~\text{mA/cm}^2$, flow rate of 7.5~mL/min and PMS of 2~mM were identified as the optimal parameters for subsequent experiments.

Energy consumption is another important parameter to judge the feasibility of electrochemical technology in practical wastewater treatments. The E-REM-PMS system exhibited an impressively low energy consumption (electrical energy per order, EEO) of 0.01 \pm 0.001 kWh/ m³·order (Eq. (S6)), which was merely 2.7% of advanced Cu-SA/Ti₃C₂T_v filter (0.37 kWh/m³·order) and 3.6% of Fe₃O₄-MnO₂/CNT filter (0.28 kWh/m³·order) in the same single-pass mode (Table 1) [20,21]. The remarkable energy efficiency of the E-REM-PMS system positioned it as a superior alternative to conventional filtration technologies. Additionally, the E-REM-PMS system achieved a remarkable rate constant of 39.69 min⁻¹, surpassing other processes in Fig. 3e by over tenfold. Less reagent use (2 mM) and lower current application (0.5 mA/cm²) can greatly improve the removal efficiency compared to the E-REM system and REM-PMS system. The water flux of LaCoO3/Ti4O7 REM (642.86 L/m²·h) was the highest in Fig. 3e and outperformed state-of-the-art membrane processes, such as the electrocatalytic oxidation using carbon-nanofiber-based membrane (424.5 $L/m^2 \cdot h$) and PMS activation by the Cu-SA/MXene-900/PVDF membrane (357-400 L/m²·h) (Table S4) [24,25]. The enhanced capability enabled the E-REM-PMS system to rapidly and efficiently process larger volumes of sewage, showing great potential for the practical applications.

3.3. Mechanism study

3.3.1. Qualitative and quantitative identification of ROS

Quenching experiments were conducted to identify the ROS during the electro-PMS-activated removal of CBZ using LaCoO $_3$ /Ti $_4$ O $_7$ REM.

Table 1Performance comparison of electro-PMS catalytic membrane with the literature.

Anode	Cathode	pollutant	Conditions	Regent	Removal	k (min ⁻¹)	Energy consumption	Ref.
Titanium mesh	MnFe ₂ O ₄ -rGO membrane	Oxytetracycline (10 mg/L)	pH 7, Voltage 3 V	PMS 0.98 mM, K ₂ SO ₄ 0.57 mM	88.3 % (100 min)			[26]
Ti/RuO_2 - IrO_2 plate $(3.14 cm^2)$	$GO/Fe_3O_4@Ti_4O_7$ membrane (3.14 cm^2)	1,4-dioxane (88 mg/L)	pH initial, current density 20 mA/cm ²	PMS 25 mM, Na ₂ SO ₄ 20 mM	84 % (180 min)	7.21×10^{-3}	-	[27]
Perforated titanium plate	CNT-Fe ₃ O ₄ filter	Roxarsone (1.5 mg/L)	Voltage -1 V	PMS 1.5 mM	91.8 % (120 min)	0.025	-	[28]
Graphite	Graphite	Ni-EDTA (0.1 mM)	pH 2.3, boron 1 g/L, Boron/PMS-electrolysis membrane, current density 6.887 mA/cm ²	PMS 30 mM, Na ₂ SO ₄ 50 mM	95.6 % (40 min)	0.1399	-	[29]
Ti plate	CNT cross-linked polypyrrole membrane (CNT-PPy/PVDF)	Carbamazepine (2 mg/L)	pH 3.2, current density 2.3 mA/cm ²	PDS 50 mM	>95 %	~0.27	0.1193 kWh/m ³	[30]
Porous titanium mesh	Pd-ceramic membrane	Methylene Blue (3.2 mg/L)	pH 5.7, Voltage 1.6 V, flow rate 0.8 mL/min	PMS 0.1 mM, Na ₂ SO ₄ 10 mM	94.5 % (23 s)	-	1.78 kWh/kg	[31]
Perforated titanium sheet	Fe ₃ O ₄ -MnO ₂ /CNT filter	Sulfamethoxazole (10 mg/L)	pH 6.2 \pm 0.1, Voltage 1.5 V, 1.1 mA, flow rate 1.5 mL/min	PMS 1.5 mM	100 % (2 s)	1.47	0.28 kWh/ m³-order	[20]
Perforated titanium sheet	Fe-SA/ Mo ₂ TiC ₂ T _x filter	Sulfamethoxazole (15 mg/L)	Voltage 2 V, flow rate 1.5 mL/min	PMS 1 mM, K ₂ SO ₄ 0.57 mM	100 % (2 s)	2.89	0.003 kWh/kg SMX	[7]
Perforated titanium sheet	Cu-SA/ $Ti_3C_2T_x$ filter	Sulfamethoxazole (10 mg/L)	pH 6.2 \pm 0.2, Voltage 1 V, flow rate 1.5 mL/min	PMS 1.5 mM	100 % (150 ms)	3.19	0.37 kWh/ m ³ ·order	[21]
LaCoO ₃ /Ti ₄ O ₇ REM (7 cm ²)	CF (7 cm ²)	Carbamazepine (20 mg/L)	pH 7, current density 0.5 mA/cm ² , flow rate 7.5 mL/min	PMS 2 mM	100 % (10.6 s)	39.69	0.01 ± 0.001 kWh/m 3 ·order	This work

Fig. 4. The effect of different concentration TBA, MeOH and L-His (a) as scavengers on CBZ degradation in the E-REM-PMS system. Reaction conditions: [CBZ] = 20 mg/L, [PMS] = 2 mM, flow rate = 7.5 mL/min, influent solution pH = 7, current density $= 0.5 \text{ mA/cm}^2$. The steady-state concentrations of ${}^{\bullet}OH$, $SO_4^{\bullet-}$ and ${}^{1}O_2$ in the E-REM-PMS system using NB, BA and FFA as probes (b). EPR spectra of DMPO- ${}^{\bullet}OH$ or DMPO- $SO_4^{\bullet-}$ (c), DMPO- $O_2^{\bullet-}$ (d), TEMP- ${}^{1}O_2$ (e) at 60 min in the different systems, and PMS consumption in the E-REM-PMS systems (f).

Methanol (MeOH) can efficiently scavenge both ${}^{\bullet}$ OH ($k_{\bullet OH} = 9.7 \times 10^8$ McHallor (web) and SO₄⁴ ($k_{SO_4^{*-}} = 3.2 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$), while tert-butanol (TBA) is more selective toward ⁶OH ($k_{\bullet OH} = 3.8 \times 10^8 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$) compared with SO₄⁴ ($k_{SO_4^{*-}} = 4 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$) [7]. Fig. 4a showed that the CBZ degradation was weakened with the TBA concentration increasing from 100 to 500 mM, elucidating OH contributed to the CBZ degradation in the E-REM-PMS system. MeOH exhibited a stronger inhibition than TBA with the increasing dosage, and the CBZ removal just maintained $\sim 10 \,\%$ in the presence of 100 mM MeOH. The apparent inhibition gap between MeOH and TBA implied that $SO_4^{\bullet-}$ was one of the major ROS in the system. Additionally, the introduction of L-Histidine (L-His) as a $^{1}\mathrm{O}_{2}$ quencher ($k_{1_{0}} = 1.5 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$) had a significant suppression on CBZ removal. The degradation of CBZ was almost 100 % inhibited by 20 mM L-His, and even 1 mM L-His can still achieve ~85 % inhibition effect. Consequently, ¹O₂ should be the dominant ROS responsible for CBZ degradation in this system. Furthermore, the negligible effect from superoxide dismutase (SOD), a quencher of $O_2^{\bullet-}$, indicated no significant contribution to CBZ degradation by O₂[•] (Fig. S9). Hence, ¹O₂, SO₄[•] and OH are the major ROS in the E-REM-PMS system.

Nitrobenzene (NB), benzoic acid (BA) and furfuryl alcohol (FFA) were further chosen as probes to quantify the above major ROS. The steady-state concentrations of ${}^{\bullet}OH$ ($[{}^{\bullet}OH]_{ss}$), $SO_4^{\bullet-}$ ($[SO_4^{\bullet-}]_{ss}$) and ${}^{1}O_2$ $([^{1}O_{2}]_{ss})$ in the E-REM-PMS system can be obtained as Eqs. (S8)-(S10) [32,33]. The rate constants for the degradation of NB, BA and FFA were 1.72, 2.43, and 40.55 min⁻¹, respectively (Fig. S10). As calculated, approximately 7.36 \times 10⁻¹² M of [$^{\bullet}$ OH]_{ss}, 2.09 \times 10⁻¹¹ M of [SO $_{4}^{\bullet}$]_{ss} and 2.97×10^{-9} M of $[^{1}O_{2}]_{ss}$ were detected in this system (Fig. 4b). The steady-state concentrations in the E-REM-PMS system follow the sequence ${}^{1}O_{2} > SO_{4}^{\bullet-} > {}^{\bullet}OH$, consistent with the results of quenching experiments (Fig. 4a). Possible reaction mechanisms of ¹O₂ have been reported: (i) ene reaction (reaction with alkene), (ii) endoperoxide formation (reaction with 1,3-dienes), (iii) sulfide oxidation, and (iv) electron transfer. Owing to the 1,3-diene moiety in the CBZ molecule, ¹O₂ potentially reacted with 1,3-dienes to form endoperoxides ($\sim \! 10^8 \ \text{M}^{-1}$ s^{-1}) [34,35].

Direct electron transfer has been reported to mediate organic degradation when contaminants and activated PMS coexist on the catalyst surface [32]. Chronoamperometric analysis was performed to assess the electron transfer process. As shown in Fig. S11, the injection of PMS induced a slight current response ($\sim 1.5 \mu A$), which can be ascribed to the electron redistribution by the interaction between PMS and the LaCoO₃/Ti₄O₇ surface [36]. However, the subsequent addition of CBZ did not produce any obvious current response, manifesting that CBZ was not directly oxidized by the electron transfer process. These results confirmed that PMS can be directly activated by the electrons from LaCoO₃/Ti₄O₇, producing ROS for CBZ degradation [37]. Co(II)/peroxide systems have been found to enable the generation of high-valent cobalt (Co(IV)) in acid medium [38]. However, corresponding sulfone (PMSO₂) was not detected in the E-REM-PMS process by using 250 μM methyl phenyl sulfoxide (PMSO) as the chemical probes, further confirming the negligible role of Co(IV) (Fig. S12). In summary, ¹O₂, SO₄• and OH played the major roles in the E-REM-PMS system, and the ROS contributions to CBZ removal conformed to ${}^{1}O_{2} > SO_{4}^{\bullet -} > {}^{\bullet}OH$.

3.3.2. Synergistic effect between electric field and PMS

The water decontamination performance in Fig. 3a-3b has shown that electric field and PMS synergistically eliminated the CBZ and TOC in the E-REM-PMS system. To investigate the synergistic effect of electric field and PMS, EPR spin trapping experiments were performed to explore the ROS generated in the different systems using DMPO and TEMP to target *OH, SO*_{-} and $^{1}\mathrm{O}_{2}$, respectively. As depicted in Fig. 4c-e, weak signals of DMPO-*OH, DMPO-SO*_{-} and TEMP- $^{1}\mathrm{O}_{2}$ existed and dominated the reaction process in the REM-PMS system, and DMPO-O*_{-} disappeared in the absence of electric field. After applying a current of 5 mA, the *OH and SO*_{-} appeared, and the intensity of $^{1}\mathrm{O}_{2}$

obviously strengthened. The signal of DMPO-O $_2^{\bullet-}$ was negligible in the E-REM-PMS system, which was coincident with the quenching experiment. To further discuss the role of electric field, we tested the consumption of PMS in the E-REM-PMS and REM-PMS systems. In Fig. 4f, less than 20% PMS was decomposed and used for the degradation of CBZ without electricity. As the applied current density increasing to 0.5 mA/cm 2 , the PMS consumption rose to over 85% (Fig. S8a). More than 65% improvement of PMS utilization appeared after applying a current density of 0.5 mA/cm 2 (Fig. 4f). The introduction of electricity greatly accelerated the decomposition of PMS and facilitated the generation of ROS. This phenomenon might be attributed to that electric field gathered HSO $_5^-$ at the anode through electrostatic attraction, promoting the activation of PMS by LaCoO $_3$ /Ti $_4$ O $_7$ anode REM [39].

Except for electric field, the effect of PMS also cannot be ignored in the E-REM-PMS system. The DMPO-O₂•- and TEMP-¹O₂ were absent in the E-REM system, and the intensity of DMPO-OH was much lower than the E-REM-PMS system. Only 3% removal of CBZ in the E-REM system was achieved by the oxidation on LaCoO₃/Ti₄O₇ anode REM (Fig. 3a). PMS served as a prerequisite for the ROS, significantly improving the production of OH, SO₄ and O₂. The steady-state concentrations of E-REM and REM-PMS system were calculated to evaluate the synergistic effect of electric field and PMS in depth. In Fig. 4b, only 4.09×10^{-12} M of [OH]ss without other ROS appeared in the E-REM system, in accordance with the EPR results. As for the REM-PMS system, the steady concentrations of ${}^{\bullet}$ OH (3.04 × 10⁻¹² M), $SO_4^{\bullet-}$ (3.41 × 10⁻¹² M) and ${}^{1}O_2$ $(8.50 \times 10^{-11} \text{ M})$ were just 41.3%, 16.3% and 2.9% of those in the E-REM-PMS system, respectively. The results of synergistic factor, EPR analysis, ROS quantification and PMS utilization efficiency confirmed that both electric field and PMS play crucial roles in the E-REM-PMS system for water decontamination. Neither electric field nor PMS alone can effectively remove CBZ, but only the synergistic effect of both can completely degrade CBZ.

3.3.3. Proposed activation mechanisms

To examine the activation mechanism of PMS, in-situ FTIR spectroscopy was used to follow the evolution of the PMS on the effects of LaCoO₃/Ti₄O₇ and electric field. As shown in Fig. 5a, the peaks at 1254 and 1102 cm⁻¹ in the spectrum of PMS alone were indexed to the S-O bonds of HSO₅ and S-O bonds of SO₄²⁻, respectively [7]. The bands observed around 2357 cm⁻¹ were assigned to CO₂ in air. When LaCoO₃/Ti₄O₇ was added, the slightly diminished intensity of HSO₅ indicated that LaCoO₃/Ti₄O₇ possessed the ability to activate PMS. To further illustrate the facilitating role of the electric field on the PMS activation by LaCoO₃/Ti₄O₇, real-time data acquisition by in-situ FTIR spectroscopy were conducted at a series of potentials (0-0.3 V). In Fig. 5b, a significant blue shift of PMS from 1254 to 1199 cm⁻¹ was observed with the increasing potential, which did not occur in the coexistence of LaCoO₃/Ti₄O₇ and PMS (Fig. 5a). It potentially suggested that electricity facilitated the PMS (HSO₅) to replace the -OH bonded to the catalyst surface and form a metastable Mⁿ⁺-(HO)OSO₃ complex [40]. The broad upward peaks around 3300 cm⁻¹ originated from the correction of background peaks of OH in H2O molecule. Furthermore, the peak intensity of PMS rapidly decreased in the presence of electric field, which should be the consequence of the rapid decomposition of PMS. The reduction in PMS peak intensity provided additional evidence supporting the experimental results of PMS activation under the applied electric field. The bands at 885 and 1060 cm⁻¹ corresponding to the stretching vibration of S-O bond emerged upon applying an electricity and strengthened with the increasing potential, possibly due to the products of PMS decomposition. These results demonstrated that the electric field expedited the decomposition of PMS and the generation of ${}^{1}O_{2}$, $SO_{4}^{\bullet-}$ and ${}^{\bullet}OH$, leading to the ultrafast degradation of pollutants.

DFT simulation calculations were performed to analyze the adsorption configurations of PMS molecule on LaCoO $_3$ /Ti $_4$ O $_7$ REM and explore the probable formation mode of ROS. In the E-REM-PMS system, PMS

Fig. 5. In-situ FTIR spectra of PMS after adding LaCoO $_3$ /Ti $_4$ O $_7$ (a) and real-time spectra at a series of potentials (0–0.3 V vs Ag/AgCl) (b), the optimal adsorption configurations of Type I (O $_i$ -Co), Type II (O $_i$ -Co), and Type III (O $_i$ -Co) (c), possible pathways for PMS activation via Type I (d), Type II (e) and Type III (f) adsorption configurations, the Gibbs free energy for the generation of ${}^{\bullet}$ OH, SO $_{-}^{\bullet}$ and 1 O $_{2}$ in six pathways (g) and comparation of the primary route for ${}^{\bullet}$ OH, SO $_{-}^{\bullet}$ and 1 O $_{2}$ (h).

was apt to be adsorbed and further activated by $LaCoO_3$ ($E_{ads} =$ -3.15 eV; Fig. S13a) rather than Ti₄O₇ ($E_{\text{ads}} = -0.85 \text{ eV}$; Fig. S13b). The La atoms at A position are responsible for stabilizing the crystal structure of LaCoO₃, while the Co atoms at B position are the active sites for PMS adsorption and activation [9]. It has been reported that adsorption types involving different O atoms for binding and exposure led to diverse routes of PMS activation and resultant ROS generation [41]. As depicted in Fig. 5c, PMS comprises three types of O atoms to bind the Co active site, one hydroxyl O atom (Oi), one peroxy O atom (Oii), and three terminal O atoms (Oiii). The corresponding adsorption configurations are designated as Type I, Type II, and Type III, respectively. The optimal configurations for Types I, II, and III, as determined through DFT calculations, were presented in Fig. 5c, respectively. Notably, the adsorption energy of O_{iii} exhibited the most negative value ($E_{ads} = -3.15 \text{ eV}$) among the three types, signifying the exceptional stability and prevalence of Type III PMS adsorption. According to different adsorption configurations, PMS can produce different ROS through different intermediates in six ways. The cleavage of peroxy bond (O_i-O_{ii}) emerged as a pivotal factor in the radical-based oxidation mechanism [41]. In Fig. 5d-f, pathway I-1 represented the pathway for generating SO₄^{o-}, while II-1 and III-1 depicted the pathways for OH formation. The length of O_i-O_i bond in Type III was lower than that in Type II, supporting that OH was more prone to producing through the cleavage of the Oi-Oii bond in Pathway II-1 (Table S5). The Gibbs free energy (ΔG) provided compelling evidence for the PMS activation mechanism (Fig. 5g). Pathway II-1 was thermodynamically easier to happen compared to pathway III-1, also suggesting that II-1 was the primary route for generating OH. Pathway I-1 governed the exclusive production of SO₄^o.

Generally, the 1O_2 may be derived from several possible pathways: (i) the self-decomposition of PMS, (ii) recombination or proton-promoted disproportionation from the $O_2^{\bullet-}$ intermediate, and (iii) nucleophilic addition between active sites on the catalysts and PMS. From the results in Fig. 3a-b, PMS has extremely minimal impact on the degradation and mineralization of CBZ, illustrating the negligible role of self-decomposition of PMS for 1O_2 conversion. The quenching

experiments and EPR spectra (Fig. S9 and Fig. 4d) indicated the virtual absence of $O_2^{\bullet-}$ in the system, implying the second pathway for 1O_2 could also be disregarded. Thus, the third way from nucleophilic addition of active sites and PMS predominated the ¹O₂ formation in the E-REM-PMS system. As discovered in the previous research, PMS bound to the catalyst could react with another PMS molecule to generate ¹O₂ via the potential pathways I-2, II-2, and III-2 [41]. It has been reported that ${}^{1}O_{2}$ generation predominantly occurred through the interaction between Oi and Oii from the same PMS attached to the catalyst, and the remaining HSO₃ combined with another PMS to produce two HSO₄ molecules [41]. Due to the adsorption of O_i or O_{ii} by LaCoO₃ in pathways I-2 and II-2, a higher energy requirement was necessary to break the bonds of PMS oxygen atom and metal atom to liberate the singlet O_i-O_{ii}. Pathway III-2 with fully exposed O_i or O_{ii} presented the lowest energy barriers among the three pathways, which was more prone to be activated into ${}^{1}O_{2}$ (Fig. 5g). The cleavage of S-O_{ii} bond was crucial for the formation of ¹O₂. As shown in Table S5, the relative elongation value of S-O_{ii} bond was significantly larger than that of O_i-O_{ii} bond in Type III, indicating a preference for the generation of ¹O₂ over [•]OH. Furthermore, the length of S-O_{ii} bond in the Type III exceeded those in Types I and II, providing additional evidence for the predominance of pathway III-2 in ¹O₂ generation (Table S5). However, the elongation values of S-Oii bond were shorter than those of the O_i-O_{ii} bond in Types I and II, suggesting that Types I and II were more conducive to the cleavage of O_i-O_{ii} and generation of $SO_4^{\bullet-}$ and ${}^{\bullet}OH$. Hence, I-1, II-1 and III-2 were the primary mechanisms governing the formation of $SO_4^{\bullet-}$, ${}^{\bullet}OH$ and ${}^{1}O_2$, respectively. Based on the comparative analysis in Fig. 5h, III-2 is the most likely to occur, followed by I-1, and lastly II-1. This finding established the sequence of ROS generation as ${}^{1}O_{2}$, $SO_{4}^{\bullet-}$ and ${}^{\bullet}OH$, in accordance with the experiments results.

Therefore, the activation mechanism in the E-REM-PMS system was proposed in Fig. 6. Initially, PMS (HSO_5^-) substituted some surface -OH and bonded with the Co atoms of $LaCoO_3$ to form three types of metastable complexes named as $Co^{2+}-(HO)OSO_3^-$ (O_i site), $Co^{2+}-O(HO)SO_3^-$ (O_{ii} site) and $(HO)OSO_3^--Co^{2+}$ (O_{iii} site) (Eq. (1)).

Fig. 6. Schematic of the proposed mechanism for CBZ degradation in the E-REM-PMS system.

Subsequently, the metastable $\text{Co}^{2+}-(\text{HO})\text{OSO}_3^-$ species rapidly decomposed into $\text{Co}^{3+}-\text{OH}^-$ and SO_4^+ from pathway I-1 as Eq. (2) [42]. *OH derived from the direct decomposition at O_{ii} site in $\text{Co}^{2+}-O(\text{HO})\text{SO}_3^-$ and $(\text{HO})\text{OSO}_3^--\text{Co}^{2+}$ as depicted in pathway II-1 and III-1 (Eqs. (3)-(4)). The reaction pathway I-2, II-2 and III-2 between three types of metastable complexes and another HSO_5^- contributed to the production of $^1\text{O}_2$ (Eqs. (5)-(7)). Due to the results of DFT calculation, pathway III-2, I-1 and II-1 dominated the formation of $^1\text{O}_2$, SO_4^+ and *OH, respectively. Theoretical calculation and experiments result consistently demonstrated that $^1\text{O}_2$ assumed a leading role in this system, followed by $\text{SO}_4^{\bullet-}$ and *OH.

$$Co^{2+} - OH^{-} + HSO_{5}^{-} \rightarrow Co^{2+} - (HO)OSO_{3}^{-}/Co^{2+} - O(HO)SO_{3}^{-}/(HO)OSO_{3}^{-} - Co^{2+} + OH^{-}$$
(1)

$$\text{Co}^{2+} - (\text{HO})\text{OSO}_3^- \rightarrow \text{SO}_4^{\bullet -} + \text{Co}^{3+} - \text{OH}^-$$
 (2)

$$Co^{2+} - O(HO)SO_3^{-} \rightarrow {}^{\bullet}OH + Co^{3+} - SO_4^{2-}$$
 (3)

$$(HO)OSO_{3}^{-} - Co^{2+} \rightarrow {}^{\bullet}OH + Co^{3+} - SO_{4}^{2-}$$
(4)

$$\text{Co}^{2+} - (\text{HO})\text{OSO}_3^- + \text{HSO}_5^- \rightarrow {}^{1}\text{O}_2 + \text{Co}^{2+} + 2\text{HSO}_4^-$$
 (5)

$$\text{Co}^{2+} - \text{O(HO)SO}_3^- + \text{HSO}_5^- \rightarrow {}^{1}\text{O}_2 + \text{Co}^{2+} + 2\text{HSO}_4^-$$
 (6)

$$(HO)OSO_3^- - Co^{2+} + HSO_5^- \rightarrow {}^1O_2 + (HO)OSO_3^- - Co^{2+} + HSO_4^-$$
 (7)

3.4. Degradation pathway and toxicity evaluation

It has been reported that the HOMO (Highest Occupied Molecular Orbital) of CBZ molecule is principally located on both sides of C=C, where is more willing to be attacked by electrophiles [43]. The active sites of the olefin double bond with the highest Fukui index value are most likely to be attacked by electrophilic species. Therefore, unsaturated bonds and carbon atoms on the benzene ring were prone to be cleaved by $^{1}\text{O}_{2}$ and $\text{SO}_{4}^{\bullet-}$ [44,45]. As clarified in Fig. 7a, the double bonds on the central heterocyclic ring of CBZ olefin were converted to alcohols, ketones and aldehydes, while the external two aromatic rings remained intact in all products (Table S6). CBZ was easily attacked by $^{1}\text{O}_{2}$ and $\text{SO}_{4}^{\bullet-}$ and epoxidized into a possible degradation product P1 (10,11-epoxycarbamazepine, m/z=253). Three pathways were speculated to exist in the further degradation of P253. First, both intramolecular cyclisation and amine/acrylamide cleavage could occur simultaneously, leading to the formation of P2 (m/z=210). P3

Fig. 7. Proposed CBZ degradation pathways in the E-REM-PMS system (a), Daphnia magna LC₅₀ (48 h) (b), *T. pyriformis* IGC₅₀ (48 h) (c), developmental toxicity (d) and bioconcentration factor Log₁₀ (e) of CBZ and its possible degradation intermediates.

(m/z=180) generated after losing the carbonyl group from P2 and then oxidized by $^{1}O_{2}$ to yield P4 (m/z=198).[46] In the second pathway, P1 intermediate could be oxidized and shrunk to generate P5 (m/z=208) through oxidation ring, and subsequently P5 might undergo further oxidation to yield smaller molecules P3 (m/z=180) and P6 (m/z=174) [47]. For the third pathway, the C-C bond of P1 might be cleaved to form the dialdehyde product P7 (m/z=269). P7 was converted to P8 (m/z=224) due to benzene ring on P7 could spin around the C-N bond and amine/acylamido cleavage [37]. The intermediate P8 presumably removed aldehyde group to form P9 (m/z=196), and P9 was further oxidized into P3 (m/z=180) through incision [48]. Ultimately, the intermediates were attacked by ROS, resulting in ring cleavage and the formation of smaller molecules or CO₂.

The Toxicity Estimation Software Tool (T.E.S.T) based on the quantitative structure-activity relationship (QSAR) was employed to evaluate the degradation intermediates of CBZ in the E-REM-PMS system. As depicted in Fig. 7 and Table S7, acute toxicity LC50, growth inhibition IGC50, developmental toxicity and bioconcentration factor of CBZ and possible intermediates were predicted. The Daphnia magna LC₅₀ (48 h) and T. pyriformis IGC₅₀ (48 h) of CBZ were categorized as "Toxic" pollution, whereas most of intermediates exhibited higher LC₅₀ and IGC50 values than 10 mg/L and turned into "Harmful" pollution (Fig. 7b-c). Moreover, most of the degradation products showed less developmental toxicity than CBZ except P1 and P7 which displayed slightly higher toxicity than CBZ, with P3 and P9 even reaching "nontoxicant" (Fig. 7d). The main final products (P3, P4 and P6) in the three pathways were less toxic than CBZ despite high toxicity of partial intermediates, indicating that the acute and developmental toxicity of CBZ were effectively diminished after degradation. The bioconcentration factors of some intermediates were higher than CBZ, but no bioaccumulation or genotoxicity was discerned for the evaluated degradation intermediates (Fig. 7e) [49]. The overall prediction results demonstrated that the environmental risks of CBZ could be mitigated

during degradation process in E-REM-PMS system.

3.5. Potential environmental applications

3.5.1. Broad pH suitability

The pH applicability, versatility, stability and interference immunity are the key indexes to estimate the application prospects in practical wastewater treatment. To verify the pH suitability of LaCoO₃/Ti₄O₇ REM, the influence of initial pH values (3-10) on CBZ removal was conducted. In Fig. 8a, the CBZ removal maintained above 85% over the p H range 4–10 in the continuous flow mode, while regrettably weaker performance (60%) presented at pH 3. It can be clearly observed that the reaction process was hindered under strong acidic (pH 3-4) and strong alkaline conditions (pH 10). The results could be elucidated from the following aspects: (i) Under strong acid conditions, massive H⁺ in solution quenched the free radicals (SO₄^{o-} and OH) formed in the system (Eqs. (8)-(9)), weakening the ability of the system to degrade CBZ. Additionally, the stabilizing effect of H⁺ on HSO₅ species is not conducive to activate PMS to remove pollutants in the superacid conditions [50]. (ii) HSO₅⁻ is the primary PMS species in acidic and neutral solutions (pK_{a1} < 0 and pK_{a2} = 9.4), whereas SO₅²⁻ with weaker activity mainly existed at a strongly alkaline condition [51]. Therefore, the slight decrease of CBZ degradation at pH 10 might be caused by the relatively poor catalytic activity of SO_{E}^{2-} .

$$H^{+} + SO_{4}^{\bullet -} + e^{-} \rightarrow HSO_{4}^{-}$$
 (8)

$$H^{+} + {}^{\bullet}OH + e^{-} \rightarrow H_{2}O \tag{9}$$

The leakages of La and Co were tested to evaluate whether E-REM-PMS system throwed a potential risk to the environment. As shown in Fig. 8b, the leaching concentrations of La and Co gradually decreased with the initial pH increasing. The metal leakages were relatively high in

Fig. 8. The effect of initial pH on CBZ elimination in the E-REM-PMS system (a), the leakage of La and Co under different pH (b), pH evolution after the reaction under different initial pH (c), CBZ removal under the initial concentration of 0.1–30 mg/L (d), the TOC mineralization at different concentrations of CBZ (e) and the versatility of the E-REM-PMS system for various pharmaceuticals (f). Reaction conditions: [PMS] = 2 mM, flow rate = 7.5 mL/min, current density = 0.5 mA/cm².

acidic condition, and especially at pH 3, the leaching La and Co reached 0.99 mg/L and 0.48 mg/L respectively. The increased leaching might arise from acidic conditions that disrupt the structure of a fraction of LaCoO3 perovskite. Compared to Co ions, the higher release of La is primarily attributed to its larger relative atomic mass. More metal loss in the catalyst might lead to weaker contaminant removal at pH=3. The pH evolution after the reaction under different initial pH was monitored and displayed in Fig. 8c. When the reaction began, the pH of the continuousflow effluent immediately dropped and remained around 3 due to the formation of strong acidic byproducts during the deep mineralization. And the lower the initial pH, the lower the post-reaction pH and the more metal leakage. However, higher metal leakage under pH 3 did not lead to better CBZ removal, indicating that the E-REM-PMS system was mainly driven by the heterogeneous reaction of the LaCoO₃/Ti₄O₇ REM rather than the homogeneous reaction. The adaptability in wide pH range (4-10) of E-REM-PMS system showed great potentials to the treatments of wastewater with different pH levels.

3.5.2. Versatility

The versatility of E-REM-PMS system determines the application potential in the actual wastewater decontamination, which was estimated by different CBZ concentrations and various micropollutants. As displayed in Fig. 8d, approximate 100% CBZ could be removed under the initial concentration of 0.1–20 mg/L. When the CBZ concentration increased to 30 mg/L, the instantaneous removal of CBZ reduced to 85% as the reaction time extended to 120 min. It can be speculated that high concentration would cause partial CBZ to adsorb and occupy the active site of LaCoO₃/Ti₄O₇ REM, lowering the PMS activation ability of anode REM. TOC mineralization in the E-REM-PMS system was negatively correlated with CBZ concentration (Fig. 8e). As the CBZ dosage decreased from 30 to 1 mg/L, the TOC removal gradually enhanced from 21% to 95%. Thus it can be conjectured that the system showed great prospect for attaining nearly 100% mineralization when the

concentration of CBZ falls below 1 mg/L. The mineralization of 10 mg/L CBZ in the E-REM-PMS system reached 67.8%, which was higher than that of 10 mg/L SMX in the advanced Fe-SA/Mo₂TiC₂T_x/PMS system (58.8%) [7]. The outstanding removal of CBZ and TOC illustrated significant advantages of E-REM-PMS system, enabling highly efficient and environmentally decontamination.

Various pharmaceuticals (20 mg/L) including TC, SMT, SMX and ATZ were selected to explore the versatility of LaCoO₃/Ti₄O₇ REM. In Fig. 8f, CBZ, TC and SMX could be degraded above 98%, and the elimination of SMT and ATZ also reached more than 90%. The E-REM-PMS system exhibited outstanding removal capacity for different contaminants, which is conducive to the treatment of practical wastewater with combined pollution. Besides, inorganic ions and natural organic matters (NOMs) were chosen to evaluate the interference immunity of E-REM-PMS system. In Fig. 9a, SO₄²⁻, Cl⁻, NO₃, HA and FA hardly disturbed the removal of CBZ, while PO₄³⁻ restrained CBZ removal by 15%, which might be caused by the competitive effect between PO₄³⁻ and reactive species [52]. CO₃²⁻ showed gradual inhibition to the CBZ degradation, which could be ascribed to the formation of carbonate radical $(CO_2^{\bullet-})$ from Eqs. (10)-(11) with much less reactive and more selective than SO₄⁻ and OH [53]. The versatility and anti-interference performance showed good potential of E-REM-PMS system for water treatment.

$$CO_3^{2-} + SO_4^{\bullet-} \rightarrow CO_3^{\bullet-} + SO_4^{2-}$$
 (10)

$$CO_3^{2-} + {}^{\bullet}OH \rightarrow CO_3^{\bullet-} + OH^{-}$$
 (11)

3.5.3. Reusability

Except for pH applicability and versatility, the stability and durability of REM are also crucial. In Fig. 9b, the LaCoO₃/Ti₄O₇ REM possessed a satisfactory reusability in 20 consecutive experiments. Reasonable stability was achieved in the first 15 cycles, with the degradation efficiency of CBZ showing slight fluctuation. After 15

Fig. 9. The effects of co-existing substances in the E-REM-PMS system (a), CBZ and TOC removal in 20 consecutive experiments (b), XRD patterns of $LaCoO_3/Ti_4O_7$ before or after 20 cycles (c) and the leaching La and Co in the E-REM-PMS system in 20 consecutive experiments (d). Reaction conditions: [CBZ] = 20 mg/L, [PMS] = 2 mM, current density $= 0.5 \text{ mA/cm}^2$, flow rate = 7.5 mL/min, influent solution pH = 7.

cycles, the CBZ removal in the E-REM-PMS system exhibited a small decrease, which declined to 93.3% in the 20th cycle. The TOC mineralization reached 45.6% and 41.1% in the first and second cycle, then undulating around 30% in the following cycles. The XRD patterns of LaCoO₃/Ti₄O₇ before and after reusing 20 times displayed no significant difference (Fig. 9c). Besides, the concentrations of leaching La and Co reduced with the increasing cycles in 20 consecutive rounds (Fig. 9d). La leakage was higher in the first 5 cycles, and then lower than 0.2 mg/L in the subsequent 15 cycles. Cobalt dissolution was generally low, less than 0.1 mg/L after the 4th round and even below 0.05 mg/L after the 9th round. The initial higher leaching in the first few cycles may be attributed to the initially unstable structure of the REM. As the reaction progresses over five cycles, the electrode gradually stabilizes, resulting in a stabilized leaching of metal ions. As calculated, the total La and Co leakages in 20 cycles were 1.33 mg and 0.62 mg, respectively. Each 0.15 wt% LaCoO₃/Ti₄O₇ contains 15 mg LaCoO₃, comprising 8.5 mg of La and 3.6 mg of Co. Hence, the leached amounts of La and Co accounted for approximately 15.6% and 17.2% of the fresh LaCoO₃/ Ti₄O₇. The fewer amount of metal leaching would not impact the sustained performance of the LaCoO₃/Ti₄O₇ REM, which maintained 93.3% CBZ removal even after 20 reuses. The concentration of residual homogeneous Co ions in the solution remains below the allowable wastewater discharge standard, as stipulated by the Emission Standard of Pollutants for Copper, Nickel, Cobalt Industry of China (Co ≤1 mg/L) [54]. At the end of their operational lifespan, REMs can be easily recovered and processed, thereby minimizing their environmental impact. These results showed the LaCoO₃/Ti₄O₇ REM has a high corrosion resistance and a good stability under anodic conditions [55]. The minimal metal leaching and convenient recovery of REM substantiated the safety and potential of employing LaCoO3/Ti4O7 REM. The outstanding reusability for 20 cycles indicated the huge potential of LaCoO₃/Ti₄O₇ anode REM in practical application, superior to the advanced research of PMS activation via Fe-SA/Mo $_2$ TiC $_2$ T $_x$ electroactive filter with ~86% SMX degradation after five consecutive running cycles [7]. The exceptional stability of $LaCoO_3/Ti_4O_7$ REM might be attributed to the physical stability and chemical inertness of the inherent structures of both $LaCoO_3$ and Ti_4O_7 , which avoided being affected by reactants or reaction conditions. In summary, the E-REM-PMS system has shown excellent application prospects in simulated wastewater.

3.6. Actual pharmaceutical wastewater treatment

To explore the potential of LaCoO₃/Ti₄O₇ REM in practical water matrix, continuous experiment (10 h) was conducted in the pharmaceutical wastewater. The quality parameters of pharmaceutical wastewater were listed in Table S8. It has been reported that the concentration of CBZ in the actual pharmaceutical wastewater is 0.77-7.5 µg/L in hospital effluents of different countries [56]. And the mean concentrations of CBZ were 60.58, 93.19 and 132 µg/L in wastewater treatment plants of the Bizerte, Jendouba and Tunis, respectively [57]. Hence, environmentally relevant concentrations (0.1 mg/L or 0.5 mg/L) of CBZ were added into the pharmaceutical wastewater to investigate the removal performance of the E-REM-PMS system in practical application. As shown in Fig. 10a, both 0.1 mg/L and 0.5 mg/L CBZ could be removed ~100 % sustaining 10 h operations in the pharmaceutical wastewater at a high water flux of 642.86 L/m²·h. The TOC mineralization of pharmaceutical wastewater could be maintained at a range of 60 %-70 % during the continuous reaction for 10 h, corresponding to approximately 35-42 mg/L of TOC removal. As calculated, the total treatment capacity of pharmaceutical wastewater can reach 4.5 L within a 10-hour duration. The continuous and stable removal of CBZ and TOC of LaCoO₃/Ti₄O₇ REM confirmed that the E-REM-PMS system possessed superior catalytic activity and exceptional durability. Different from homogeneous and heterogeneous processes, the LaCoO3/Ti4O7 REM also possessed the advantage of convenient recovery. Moreover, the elimination of all organic substances in pharmaceutical wastewater was assessed through three-dimensional excitation and emission matrix (3D-EEM). As depicted in Fig. 10b and 10d, the original pharmaceutical

Fig. 10. CBZ and TOC removal in pharmaceutical wastewater by the E-REM-PMS system (with the addition of 0.1 mg/L and 0.5 mg/L CBZ) (a), 3D-EEM fluorescence spectra of pharmaceutical wastewater with the addition of 0.1 mg/L CBZ before (b) and after treatment (c), 3D-EEM results of pharmaceutical wastewater with the addition of 0.5 mg/L CBZ before (d) and after treatment (e). Reaction conditions: [PMS] = 2 mM, flow rate = 7.5 mL/min, influent solution pH = unadjusted, current density = 0.5 mA/cm².

wastewater with 0.1 mg/L or 0.5 mg/L CBZ adding contained five parts of fluorescent substances, indicating tyrosine aromatic proteins (I), tryptophan aromatic proteins (II), FA-like (III), soluble microbial byproduct (IV) and HA-like substances (V). The pharmaceutical wastewater with 0.5 mg/L CBZ exhibited a higher initial fluorescence intensity compared to that with 0.1 mg/L CBZ. The fluorescence intensity of both wastewater samples was significantly reduced after treatment, indicating that the E-REM-PMS system could mineralize and decompose macromolecular organics into small molecular organics (Fig. 10c and 10e). The EEM results substantiated the efficient decontamination wastewater performance of this system for real pharmaceutical wastewater. The ultrafast wastewater decontamination ($k = 39.69 \, \text{min}^{-1}$), high water flux (642.86 L/m²·h), extremely low energy consumption (0.01 \pm 0.001 kWh/m³·order) and convenient recovery made it a highly promising solution for practical applications in wastewater treatment.

4. Conclusion

This study highly enhanced the efficiency and overcame the limitations of catalyst recovery, reusability and poor performance in actual wastewater treatment via designing a LaCoO₃/Ti₄O₇ REM to activate PMS by a flow-through mode. The E-REM-PMS system successfully achieved a remarkable rate constant, high water flux and long-term test in pharmaceutical wastewater at a very low energy consumption. The enhanced CBZ degradation kinetics could be attributed to the synergistic effects of the LaCoO₃/T₄O₇ REM, electric field and PMS. The reaction mechanism including leading species and generation pathways of ROS were confirmed via DFT calculations and in-situ FTIR spectroscopy. The desirable reusability, interference immunity of LaCoO₃/T₄O₇ REM and versatility for various contaminants suggested a great potential for practical applications. The sustained and stable performance of the E-REM-PMS process in the long-term treatment of actual pharmaceutical wastewater affirmed its viability as an environmentally friendly strategy for wastewater management. We envision that this work will lay a scientific foundation for the ultra-efficient and low-cost decontamination of wastewater.

CRediT authorship contribution statement

Huizhong Wu: Software, Methodology, Investigation. **Minghua Zhou:** Writing – review & editing, Supervision, Project administration, Formal analysis, Conceptualization. **Xuechun Wang:** Validation, Software. **Jinxin Xie:** Investigation, Formal analysis. **Jiana Jing:** Writing – original draft, Software, Methodology, Investigation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This work was financially supported by National Key Research and Development Program International Cooperation Project (2023YFE0108100), Natural Science Foundation of China (Nos. 52170085 and U23B20165), Key Project of Natural Science Foundation of Tianjin (No. 21JCZDJC00320), and Fundamental Research Funds for the Central Universities, Nankai University.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.124109.

References

- [1] Z. Xiao, B. Yang, X. Feng, Z. Liao, H. Shi, W. Jiang, C. Wang, N. Ren, Density functional theory and machine learning-based quantitative structure-activity relationship models enabling prediction of contaminant degradation performance with heterogeneous peroxymonosulfate treatments, Environ. Sci. Technol. 57 (2023) 3951–3961.
- [2] J. Lee, U. von Gunten, J.H. Kim, Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks, Environ. Sci. Technol. 54 (2020) 3064–3081.
- [3] Z. Xu, Y. Wu, X. Wang, Q. Ji, T. Li, H. He, H. Song, S. Yang, S. Li, S. Yan, L. Zhang, Z. Zou, Identifying the role of oxygen vacancy on cobalt-based perovskites towards peroxymonosulfate activation for efficient iohexol degradation, Appl. Catal. B Environ. 319 (2022) 121901.
- [4] B.C. Hodges, E.L. Cates, J.H. Kim, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nat. Nanotechnol. 13 (2018) 642–650.
- [5] X. Mi, P. Wang, S. Xu, L. Su, H. Zhong, H. Wang, Y. Li, S. Zhan, Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN₂₊₂ sites, Angew. Chem. Int. Ed. Engl. 60 (2021) 4588–4593.
- [6] G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol. 38 (2004) 3705–3712.
- [7] L. Jin, S. You, N. Ren, B. Ding, Y. Liu, Mo vacancy-mediated activation of peroxymonosulfate for ultrafast micropollutant removal using an electrified MXene filter functionalized with Fe single atoms, Environ. Sci. Technol. 56 (2022) 11750–11759.
- [8] K. Wang, C. Han, F. Li, Y. Liu, Z. Shao, L. Liu, S. Wang, S. Liu, An intrinsic descriptor of perovskite cobaltites for catalytic peroxymonosulfate activation toward water remediation, Appl. Catal. B: Environ. 320 (2023) 121990.
- [9] M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev. 101 (2001) 1981–2017.
- [10] S.B. Hammouda, F. Zhao, Z. Safaei, V. Srivastava, D. Lakshmi Ramasamy, S. Iftekhar, S. kalliola, M. Sillanpää, Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO₃ (A = La, Ba, Sr and Ce): characterization, kinetics and mechanism study, Appl. Catal. B Environ. 215 (2017) 60–73.
- [11] D. Manos, F. Papadopoulou, A. Margellou, D. Petrakis, I. Konstantinou, Heterogeneous activation of persulfate by LaMO₃ (M=Co, Fe, Cu, Mn, Ni) perovskite catalysts for the degradation of organic compounds, Catalysts 12 (2022) 187.
- [12] X. Wang, J. Jing, M. Zhou, R. Dewil, Recent advances in H₂O₂-based advanced oxidation processes for removal of antibiotics from wastewater, Chin. Chem. Lett. 34 (2023) 107621.
- [13] C. Trellu, B.P. Chaplin, C. Coetsier, R. Esmilaire, S. Cerneaux, C. Causserand, M. Cretin, Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere 208 (2018) 159–175.
- [14] K. Yang, H. Lin, X. Feng, J. Jiang, J. Ma, Z. Yang, Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti₄O₇ reactive electrochemical ceramic membrane: matrix effects and implications for byproduct formation, Water Res. 224 (2022) 119047.
- [15] B.P. Chaplin, The prospect of electrochemical technologies advancing worldwide water treatment, Acc. Chem. Res. 52 (2019) 596–604.
- [16] S. Almassi, Z. Li, W. Xu, C. Pu, T. Zeng, B.P. Chaplin, Simultaneous adsorption and electrochemical reduction of N-nitrosodimethylamine using carbon-Ti₄O₇ composite reactive electrochemical membranes, Environ. Sci. Technol. 53 (2019) 928–937.
- [17] M. Li, Y.T. Jin, J.F. Yan, Z. Liu, N.X. Feng, W. Han, L.W. Huang, Q.K. Li, K.L. Yeung, S.Q. Zhou, C.H. Mo, Exploration of perfluorooctane sulfonate degradation properties and mechanism via electron-transfer dominated radical process, Water Res. 215 (2022) 118259.
- [18] P. Gayen, C. Chen, J.T. Abiade, B.P. Chaplin, Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO₂-Ti_nO_{2n-1} electrocatalytic reactive electrochemical membranes, Environ. Sci. Technol. 52 (2018) 12675–12684.
- [19] K. He, W. Li, L. Tang, L. Chen, G. Wang, Q. Liu, X. Xin, C. Yang, Z. Wang, S. Lv, D. Xing, Insight into the design of a Ti₃C₂ MXene/Ti₄O₇ composite ceramic membrane boosts the electrocatalytic activity for 1,4-dioxane electro-oxidation, Appl. Catal. B: Environ. 338 (2023) 123077.
- [20] L. Jin, S. You, X. Duan, Y. Yao, J. Yang, Y. Liu, Peroxymonosulfate activation by Fe₃O₄-MnO₂/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: performance and mechanism, J. Hazard. Mater. 423 (2022) 127111
- [21] L. Jin, S. You, Y. Yao, H. Chen, Y. Wang, Y. Liu, An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination, J. Mater. Chem. A 9 (2021) 25964–25973.
- [22] S. Li, M. Zhou, H. Wu, G. Song, J. Jing, N. Meng, W. Wang, High-efficiency degradation of carbamazepine by the synergistic electro-activation and bimetals (FeCo@NC) catalytic-activation of peroxymonosulfate, Appl. Catal. B: Environ. 338 (2023) 123064.

- [23] Y. Yuan, M. Nie, C. Yan, L. Wu, W. Dong, M. Ding, P. Wang, Solar light promoted degradation of bisphenol s in carbonate/peroxymonosulfate system through accelerating singlet oxygen generation, Chem. Eng. J. 452 (2023).
- [24] Y. Gao, S. Liang, B. Liu, C. Jiang, C. Xu, X. Zhang, P. Liang, M. Elimelech, X. Huang, Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation, Nat. Commun. 14 (2023) 2059.
- [25] P. Yang, Y. Long, W. Huang, D. Liu, Single-atom copper embedded in twodimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100 % selectivity for enhanced Fenton-like reactions, Appl. Catal. B Environ. 324 (2023) 122245.
- [26] X. Wang, H. Wang, F. Li, X. Hu, Z. Xie, T. Hua, Activation of peroxymonosulfate in an electrochemical filter by MnFe₂O₄-rGO electro-assisted catalytic membrane for the degradation of oxytetracycline, J. Environ. Chem. Eng. 10 (2022) 107008.
- [27] W. Li, R. Xiao, H. Lin, K. Yang, W. Li, K. He, L.H. Yang, M. Pu, M. Li, S. Lv, Electro-activation of peroxymonosulfate by a graphene oxide/iron oxide nanoparticle-doped Ti₄O₇ ceramic membrane: mechanism of singlet oxygen generation in the removal of 1,4-dioxane, J. Hazard. Mater. 424 (2022) 127342.
- [28] Z. Zhao, W. Zheng, L. Jin, S. Zhang, S. You, Y. Liu, Effective peroxymonosulfate activation using electrified nanohybrid filter towards one-step decontamination of roxarsone: performance and mechanism, J. Environ. Chem. Eng. 10 (2022)
- [29] J. Zhang, C. Yu, L. Xu, Z. Zhao, D. Wu, Electro-enhanced metal-free peroxymonosulfate activator coupled with membrane-assisted process for simultaneous Ni-EDTA decomplexation and Ni ions recovery, Chemosphere 338 (2023) 139447.
- [30] Q. Xu, Y. Liu, Y. Wang, Y. Song, C. Zhao, L. Han, Synergistic oxidation-filtration process of electroactive peroxydisulfate with a cathodic composite CNT-PPy/PVDF ultrafiltration membrane, Water Res. 210 (2022) 117971.
- [31] Y. Zhao, M. Sun, Y. Zhao, L. Wang, D. Lu, J. Ma, Electrified ceramic membrane actuates non-radical mediated peroxymonosulfate activation for highly efficient water decontamination, Water Res. 225 (2022) 119140.
- [32] Y. Zhang, X. Chen, C. Liang, L. Yin, Y. Yang, Reconstructing the coordination environment of single atomic Fe-catalysts for boosting the Fenton-like degradation activities, Appl. Catal. B Environ. 315 (2022) 121536.
- [33] X. Yu, H. Liu, Y. Huang, C. Li, L. Kuang, J. Zhong, S. Zhu, Y. Gou, Y. Wang, Y. Zhang, G. Shan, Z. Lv, S. Zhang, L. Zhu, A green edge-hosted zinc single-site heterogeneous catalyst for superior Fenton-like activity, Proc. Natl. Acad. Sci. U.S. A. 120 (2023) e2221228120.
- [34] F.E. Scully Jr., J. Hoigné, Rate constants for reactions of singlet oxygen with phenols and other compounds in water, Chemosphere 16 (1987) 681–694.
- [35] M.M. Dong, R. Trenholm, F.L. Rosario-Ortiz, Photochemical degradation of atenolol, carbamazepine, meprobamate, phenytoin and primidone in wastewater effluents, J. Hazard. Mater. 282 (2015) 216–223.
- [36] B. Zhang, X. Li, K. Akiyama, P.A. Bingham, S. Kubuki, Elucidating the mechanistic origin of a spin state-dependent FeN_x-C catalyst toward organic contaminant oxidation via peroxymonosulfate activation, Environ. Sci. Technol. 56 (2022) 1321–1330.
- [37] C. Kuang, G. Zeng, Y. Zhou, Y. Wu, D. Li, Y. Wang, C. Li, Integrating anodic sulfate activation with cathodic H₂O₂ production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants, Water Res. 229 (2023) 119464.
- [38] Y. Zong, X. Guan, J. Xu, Y. Feng, Y. Mao, L. Xu, H. Chu, D. Wu, Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the Cobalt(II)-activated peroxymonosulfate process, Environ. Sci. Technol. 54 (2020) 16231–16239
- [39] H. Song, L. Yan, J. Jiang, J. Ma, Z. Zhang, J. Zhang, P. Liu, T. Yang, Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation? Water Res. 128 (2018) 393–401.
- [40] F. Mo, C. Song, Q. Zhou, W. Xue, S. Ouyang, Q. Wang, Z. Hou, S. Wang, J. Wang, The optimized Fenton-like activity of Fe single-atom sites by Fe atomic clustersmediated electronic configuration modulation, Proc. Natl. Acad. Sci. U.S.A. 120 (2023) e2300281120.

- [41] J. Hu, Y. Li, Y. Zou, L. Lin, B. Li, X.-y Li, Transition metal single-atom embedded on N-doped carbon as a catalyst for peroxymonosulfate activation: a DFT study, Chem. Eng. J. 437 (2022) 135428.
- [42] T. Zhang, H. Zhu, J.P. Croue, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe₂O₄ spinel in water: efficiency, stability, and mechanism, Environ. Sci. Technol. 47 (2013) 2784–2791.
- [43] Y. Wang, W. Qiu, X. Lu, X. Zhou, H. Zhang, X. Gong, B. Gong, J. Ma, Nitrilotriacetic acid-assisted Mn(II) activated periodate for rapid and long-lasting degradation of carbamazepine: The importance of Mn(IV)-oxo species, Water Res. 241 (2023) 120156.
- [44] G. Song, H. Wu, J. Jing, X. Zhang, X. Wang, S. Li, M. Zhou, Insights into electrochemical dehalogenation by non-noble metal single-atom cobalt with high efficiency and low energy consumption, Environ. Sci. Technol. 57 (2023) 14482–14492
- [45] Z. Wu, Z. Xiong, R. Liu, C. He, Y. Liu, Z. Pan, G. Yao, B. Lai, Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability, J. Hazard. Mater. 427 (2022) 128204.
- [46] Y. Ding, G. Zhang, X. Wang, L. Zhu, H. Tang, Chemical and photocatalytic oxidative degradation of carbamazepine by using metastable Bi³⁺ self-doped NaBiO₃ nanosheets as a bifunctional material, Appl. Catal. B Environ. 202 (2017) 528–538.
- [47] J. Hu, Y. Chen, Y. Zhou, L. Zeng, Y. Huang, S. Lan, M. Zhu, Piezo-enhanced charge carrier separation over plasmonic Au-BiOBr for piezo-photocatalytic carbamazepine removal, Appl. Catal. B Environ. 311 (2022) 121369.
- [48] Y. Cheng, J. Chen, P. Wang, W. Liu, H. Che, X. Gao, B. Liu, Y. Ao, Interfacial engineering boosting the piezocatalytic performance of Z-scheme heterojunction for carbamazepine degradation: Mechanism, degradation pathway and DFT calculation, Appl. Catal. B Environ. 317 (2022) 121793.
- [49] H. Yang, R. Qiu, Y. Tang, S. Ye, S. Wu, F. Qin, L. Xiang, X. Tan, G. Zeng, M. Yan, Carbonyl and defect of metal-free char trigger electron transfer and O2 in persulfate activation for Aniline aerofloat degradation, Water Res. 231 (2023) 119659.
- [50] Q. Wang, J. Lu, Y. Jiang, S. Yang, Y. Yang, Z. Wang, FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants, Chem. Eng. J. 443 (2022) 136483.
- [51] L. Zhang, Y. Zhang, J. Wei, W. Liu, Perovskite LaFe_xCo_{1-x}O_{3-λ} deposited SiO₂ catalytic membrane for deeply cleaning wastewater, Chem. Eng. J. 403 (2021) 126386.
- [52] J. Jing, X. Wang, M. Zhou, Electro-enhanced activation of peroxymonosulfate by a novel perovskite-Ti₄O₇ composite anode with ultra-high efficiency and low energy consumption: The generation and dominant role of singlet oxygen, Water Res. 232 (2023) 119682.
- [53] A. Cabrera-Reina, M. Aliste, M.I. Polo-Lopez, S. Malato, I. Oller, Individual and combined effect of ions species and organic matter on the removal of microcontaminants by Fe³⁺-EDDS/solar-light activated persulfate, Water Res. 230 (2023) 119566.
- [54] F. Xiao, Z. Wang, J. Fan, T. Majima, H. Zhao, G. Zhao, Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants, Angew. Chem. Int. Ed. Engl. 60 (2021) 10375–10383.
- [55] H. Lin, R. Xiao, R. Xie, L. Yang, C. Tang, R. Wang, J. Chen, S. Lv, Q. Huang, Defect engineering on a Ti₄O₇ electrode by Ce³⁺ doping for the efficient electrooxidation of perfluorooctanesulfonate, Environ. Sci. Technol. 55 (2021) 2597–2607.
- [56] V.K. Parida, D. Sikarwar, A. Majumder, A.K. Gupta, An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19, J. Environ. Manag. 308 (2022) 114609.
- [57] H. Khazri, S. Ben Hassine, I. Ghorbel–Abid, R. Kalfat, M. Trabelsi-Ayadi, Presence of carbamazepine, naproxen, and ibuprofen in wastewater from Northern Tunisia, Environ. Forensics. 20 (2019) 121–128.