Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Suppose that $\{A_n\}_{n\in\mathbb{N}}$ is a countable collection of countable sets.

(Is the union $\bigcup_{n\in\mathbb{N}} A_n = A_1 \cup A_2 \cup \ldots \cup A_n \cup \ldots$ countable? Try to prove or disprove your answer.)

Proof. Since we know that $\{A_n\}_{n\in\mathbb{N}}$ is the countable collection of countable sets, that means each set A_n where $n\in\mathbb{N}$ in the collection is countable. Because the union of two countable sets is still countable, then this means $A_1\cup A_2$ is countable and forms its own countable set, suppose it is called A_12 . Then doing $A_12\cup A_3$ would also lead to a countable set. This patten continues for all $n\in\mathbb{N}$.

(Is the product $\prod_{n\in\mathbb{N}} A_n = A_1 \times A_2 \times \ldots \times A_n \times \ldots$ countable? Again, try to prove or disprove your answer.)

Proof. Again, we know that $\{A_n\}_{n\in\mathbb{N}}$ is the countable collection of countable sets, that means each set A_n where $n\in\mathbb{N}$ in the collection is countable. Because the product of two countable sets is still countable, then this means $A_1\times A_2$ creates its own countable set called A_12 . Then doing $A_12\times A_3$ would also lead to a countable set. This pattern continues for all $n\in\mathbb{N}$.

2: Assuming the Schröder-Bernstein theorem (you may or may not find it helpful), see if you can explain whether the following sets have the same cardinality.

$$(A = (0,1) \text{ and } B = [0,1])$$

This doesn't have the same cardinality because the set of numbers in A do not include 2 numbers, 0 and 1, which are included in B. This means the cardinality of A will always be 2 less than B.

$$(A = (0, 1) \text{ and } B = \mathbb{R})$$

Assuming the theorem we can show that (0,1) is a subset of \mathbb{R} by simply taking a function $f:(0,1)\to\mathbb{R}$ where any number from (0,1) will give itself. This shows that $|(0,1)|\leq |\mathbb{R}|$. Now to show that $\mathbb{R}\geq (0,1)$ we create a second function $g:\mathbb{R}\to (0,1)$ where for any number $x\in\mathbb{R}$ if it is not negative you do $\frac{1}{2}+2^{-x-1}$ and if it is negative then you get 2^{n-1} . This maps the function from \mathbb{R} to (0,1) which shows that $|\mathbb{R}|\leq |(0,1)|$, and this means that they have the same cardinality.

$$(A=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2<1\}$$
 and $B=[0,1]\times[0,1])$

Trying to follow the same idea as before, I am stuck trying to create the first function showing that $|A| \le |B|$. Mainly this is because of the set A where I can't visualize the set because with x being 0 then y can be up to but not including 1, and if y were to be 0, then x can be up to but not including 1 as well. So with this I would think the range would be (1, 1) however, trying to restrict x such that using a large enough y will satisfy $x^2 + y^2 < 1$ is something I cannot seem to figure out.

3: For any set A, we have $|A| < |2^A|$.

An idea we can try to follow is the though of having a function that maps the elements from A to 2^A , and then try to show that not every element in A can map to an element in 2^A showing that 2^A has a larger cardinality.