Dérivation locale et globale

Terminale STMG2

1 Tangente

- 1. Rappeler la définition de tangente à la courbe d'une fonction.
- 2. Représenter la tangente en 0 de la courbe de la fonction représentée ci-après.

3. Quelle information nous donne la pente de la tangente que vous venez de représenter?

Définition 1. Soit f une fonction, et a un nombre. On suppose que f est définie sur a, et que la courbe représentative C_f admet une tangente en a. Alors la pente de cette tangente est appelée **dérivée** de f en a, et notée f'(a).

2 Fonction dérivée

Pour chaque point a sur laquelle la courbe C_f admet une tangente, la tangente présente une pente. On représente ci-après la fonction suivante, qui à chaque a associe la pente correspondante f'(a).

- 1. Indiquer comment lire cette nouvelle courbe pour en déduire des informations sur la première.
- 2. En déduire précisément sur quel intervalle la fonction f est décroissante.

Définition 2. Soit f une fonction. On dit que la fonction est dérivable sur un ensemble I si sa

courbe représentative admet une tangente sur chaque point de I. Dans ce cas, la **fonction dérivée** de f sur I est la fonction définie sur I qui à chaque nombre $a \in I$ associe la pente de la tangente de C_f en a.

Proposition 1. Soit f une fonction dérivable sur un ensemble I. Alors f est croissante sur les ensembles où f' est positive, et f est décroissante sur les fonctions où f est négative.

3 Calcul de fonction dérivée

Proposition 2.

- La fonction $x \mapsto 1$ est dérivable sur \mathbb{R} , et sa dérivée est la fonction $x \mapsto 0$.
- La fonction $x \mapsto x$ est dérivable sur \mathbb{R} , et sa dérivée est la fonction $x \mapsto 1$.
- La fonction $x \mapsto x^2$ est dérivable sur \mathbb{R} , et sa dérivée est la fonction $x \mapsto 2x$.
- La fonction $x \mapsto x^3$ est dérivable sur \mathbb{R} , et sa dérivée est la fonction $x \mapsto 3x^2$.

Proposition 3.

- Soit c un nombre reel et une fonction f dérivable sur un ensemble I. Alors la fonction $x \mapsto c \times f(x)$ est dérivable sur I de dérivée $x \mapsto c \times f'(x)$.
- Soient f et g deux fonctions dérivables sur un ensemble I. Alors la fonction $x \mapsto f(x) + g(x)$ est dérivable sur I de dérivée $x \mapsto f'(x) + g'(x)$.
- 1. Calculer la dérivée de $g: x \mapsto x^2 3x + 1$.
- 2. En déduire le tableau de variation de g.

x	$-\infty$	$+\infty$
Signe de $f'(x)$		
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$		

3. Mêmes questions pour $h: x \mapsto x^2 - 4x - 5$ et $i: x \mapsto -2x^3 - 7x$.