Homework 5

1a. sum id

Variable	Obs	Mean	Std. Dev	. Min	Max
	+				
id	660	11729.01	1071.583	10002	13921

There are 660 households in survey.

egen numstate = group(state) sum numstate

Variable	(Obs	Mean	Std.	Dev.	Min	Max
	+						
numstate	1	660 24.	57879	14.36	511	1	49

There are 49 states in the survey.

tabulate state

home state	1	Freq.	Percent	Cum.
	-+			
AL		10	1.52	1.52
AR		6	0.91	2.42
AZ		7	1.06	3.48
CA		66	10.00	13.48
CO		7	1.06	14.55
CT		8	1.21	15.76
DC		3	0.45	16.21
DE		1	0.15	16.36
FL		33	5.00	21.36
GA		14	2.12	23.48
IA		9	1.36	24.85
ID		3	0.45	25.30
IL		30	4.55	29.85
IN		12	1.82	31.67
KS		5	0.76	32.42
KY		10	1.52	33.94
LA		9	1.36	35.30
MA		14	2.12	37.42

MD	1	20	3.03	40.45
ME	1	5	0.76	41.21
MI	1	25	3.79	45.00
MN	1	24	3.64	48.64
MO	1	15	2.27	50.91
MS	1	4	0.61	51.52
MT	1	2	0.30	51.82
NC	1	15	2.27	54.09
ND	1	3	0.45	54.55
NE	1	3	0.45	55.00
NH	1	4	0.61	55.61
NJ	1	20	3.03	58.64
NM	1	4	0.61	59.24
NV	1	4	0.61	59.85
NY	1	47	7.12	66.97
ОН	1	32	4.85	71.82
OK	1	7	1.06	72.88
OR	1	5	0.76	73.64
PA	1	22	3.33	76.97
RI	1	3	0.45	77.42
SC	1	10	1.52	78.94
SD	1	3	0.45	79.39
TN	1	15	2.27	81.67
TX	1	41	6.21	87.88
UT	1	7	1.06	88.94
VA	1	24	3.64	92.58
VT	1	7	1.06	93.64
WA	1	10	1.52	95.15
WI	1	23	3.48	98.64
WV	1	7	1.06	99.70
WY		2	0.30	100.00
Total	6	60 10	00.00	

California has the highest frequency with 66 households.

1b. sum apples_lbs regprc educ hhsize faminc

Variable	Obs	Mean	Std. Dev.	Min	Max
apples_lbs	660	1.497778	2.920994	0	42.39999
regprc	660	.8827273	.2444687	.59	1.19
educ	660	14.38182	2.274014	8	20
hhsize	660	2.940909	1.526049	1	9
faminc	660	53.40909	35.74122	5	250

The summary tells us that the average values of Number of pounds of apples purchased (1.498), Price of Apples (0.883), Education Level (14.382), Household size (1.526), Family income (35.741)

1c. reg apples_lbs regprc male educ hhsize faminc age

Model Residual Total	 +	86.963784 5535.76104	653	14.49396 8.4774288	54 Pro 34 R-s Adj	, 653) b > F quared R-squared t MSE	= = =	1.71 0.1161 0.0155 0.0064 2.9116
apples_lbs	 +		Std. Err.				 onf.	Interval]
regprc	1	-1.027972	.4664261	-2.20	0.028	-1.9438	48	1120959
male		.3211917	.2647422	1.21	0.225	1986	57	.8410403
educ		0396405	.0528399	-0.75	0.453	14339	72	.0641162
hhsize		.1418416	.0810334	1.75	0.081	01727	58	.3009591
faminc		.0024789	.0033627	0.74	0.461	00412	41	.009082
age		.0094249	.0080286	1.17	0.241	00634	01	.02519
_cons		1.921942	1.041491	1.85	0.065	12313	33 	3.967017

A dollar increase in price of regular apple, we would expect the number of pounds of apples purchased to go down by 1.028. Since the p-value is less than 0.05, t-statistics is greater than 1.96 and 95% confidence interval does not include zero, coefficient estimate is statistically significant at the 95% level.

1d. sum apples lbs if state == "FL"

Variable	Obs	Mean	Std. Dev.	Min	Max
apples lbs	33	1.180808	1.632101	0	6.1

sum apples_lbs if state == "PA"

Variable	Obs	Mean	Std. Dev.	Min	Max
apples lbs I	2.2	9242424	1.269095	. 1	4.2

Average n fumber of pounds of apples purchased by households in Florida and Pennsylvania are 1.180 and 0.924 respectively. It implies that there are characteristic differences across the states regarding demand of apples.

1e. reg apples_lbs regprc male educ hhsize faminc age i.numstate

Source	SS	df	MS	Number of obs	=	660
	+			F(54, 605)	=	1.56
Model	685.906448	54	12.7019713	B Prob > F	=	0.0083
Residual	4936.81837	605	8.16003037	R-squared	=	0.1220
	+			- Adj R-squared	l =	0.0436
Total	5622.72482	659	8.53220762	Root MSE	=	2.8566
apples_lbs	Coef.	Std. Err.	. t	P> t [95% C	onf.	<pre>Interval]</pre>
	+					

regprc	8114498	.4781683	-1.70	0.090	-1.750521	.1276215
male	.457658	.2709651	1.69	0.092	0744885	.9898044
educ	017166	.0535754	-0.32	0.749	1223824	.0880504
hhsize	.1446226	.0824746	1.75	0.080	0173486	.3065938
faminc	.0040926	.0034233	1.20	0.232	0026303	.0108156
age	.0133857	.0081886	1.63	0.103	0026957	.0294671
	I					
numstate	I					
2	4572004	1.480593	-0.31	0.758	-3.364925	2.450525
3	4.951965	1.410811	3.51	0.000	2.181284	7.722646
4	743705	.9758255	-0.76	0.446	-2.660122	1.172712
5	6883411	1.417363	-0.49	0.627	-3.471891	2.095208
6	1333388	1.362565	-0.10	0.922	-2.809271	2.542594
7	-1.316459	1.893853	-0.70	0.487	-5.035784	2.402865
8	6682974	3.013737	-0.22	0.825	-6.586954	5.250359
9	8032456	1.037605	-0.77	0.439	-2.84099	1.234499
10	4215923	1.191333	-0.35	0.724	-2.761242	1.918057
11	.1661876	1.319684	0.13	0.900	-2.42553	2.757905
12	.2472551	1.89681	0.13	0.896	-3.477877	3.972387
13	9623816	1.04885	-0.92	0.359	-3.02221	1.097447
14	-1.005569	1.226727	-0.82	0.413	-3.414728	1.403591
15	-1.586257	1.569629	-1.01	0.313	-4.66884	1.496327
16	.1230167	1.282967	0.10	0.924	-2.396593	2.642626
17	8287789	1.318848	-0.63	0.530	-3.418854	1.761297
18	6602663	1.192865	-0.55	0.580	-3.002925	1.682392
19	7618931	1.109911	-0.69	0.493	-2.94164	1.417854
20	-1.691418	1.573108	-1.08	0.283	-4.780834	1.397998
21	-1.030283	1.072114	-0.96	0.337	-3.1358	1.075235
22	4859612	1.080482	-0.45	0.653	-2.607912	1.635989
23	8887496	1.170823	-0.76	0.448	-3.188121	1.410622
24	.1516768	1.693161	0.09	0.929	-3.17351	3.476864
25	10.44809	2.219871	4.71	0.000	6.088502	14.80768
26	6319742	1.170687	-0.54	0.590	-2.931078	1.66713
27	1.347375	1.884038	0.72	0.475	-2.352674	5.047424
28	-1.198276	1.891852	-0.63	0.527	-4.91367	2.517118
29	6103308	1.695744	-0.36	0.719	-3.940591	2.719929
30	.0203974	1.108653	0.02	0.985	-2.156879	2.197674
31	4267479	1.698344	-0.25	0.802	-3.762114	2.908618
32	9558965	1.697468	-0.56	0.574	-4.289542	2.377749
33	7249031	.9996124	-0.73	0.469	-2.688035	1.238228
34	780548	1.035977	-0.75	0.451	-2.815096	1.254
35	5302519	1.420171	-0.37	0.709	-3.319316	2.258812
36	4642612	1.568743	-0.30	0.767	-3.545104	2.616582
37	-1.046057	1.095672	-0.95	0.340	-3.197839	1.105725
38	.6023063	1.88337	0.32	0.749	-3.09643	4.301043
39	3778999	1.282072	-0.29	0.768	-2.895751	2.139951
40	-1.352621	1.892034	-0.71	0.475	-5.068373	2.363132
41	-1.041843	1.168103	-0.89	0.373	-3.335871	1.252185
42	2459613	1.011002	-0.24	0.808	-2.23146	1.739538
43	2642982	1.415027	-0.19	0.852	-3.04326	2.514663
44	.8746097	1.077482	0.81	0.417	-1.241449	2.990668
45	-1.357642	1.417327	-0.96	0.339	-4.14112	1.425837
46	9831189	1.289526	-0.76	0.446	-3.515611	1.549373
47	9585888	1.08967	-0.88	0.379	-3.098584	1.181407
48	7961631	1.41173	-0.56	0.573	-3.568649	1.976323
49	-1.427018	2.216522	-0.64	0.520	-5.780029	2.925993
	I					

```
_cons | 1.619633 1.37227 1.18 0.238 -1.075359 4.314624
```

The magnitude of coefficient estimate goes down to -0.8114, and it is not statistically significant any more. This includes tate fixed effects provides estimate taking the state characteristics into account by controlling for fixed characteristics across states by comparing apple consumptions only across people within each state.

2a. tab year

1980 to	1			
1987	1	Freq.	Percent	Cum.
	+			
1980	1	105	12.50	12.50
1981	1	105	12.50	25.00
1982	I	105	12.50	37.50
1983	1	105	12.50	50.00
1984	1	105	12.50	62.50
1985	1	105	12.50	75.00
1986	1	105	12.50	87.50
1987	1	105	12.50	100.00
	+			
Total	I	840	100.00	

It is panel data, where data is about multiple individuals over time. We observe 8 years of data for each individual, because there is data for each individual over time, we can find number of individuals by dividing the total number of observations by 8. Total number of observations can be found.

sum nr

Variable		Mean	Std. Dev.		Max
nr	840		3359.317	17	12548

There are 105 individuals included in the data.

2b. reg lwage union

Source	SS	df	MS	Numbe	r of obs	=	840
				F(1,	838)	=	10.54
Model	2.73936706	1	2.73936706	Prob	> F	=	0.0012
Residual	217.815704	838	.259923275	R-squ	ared	=	0.0124
				Adj F	-squared	=	0.0112
Total	220.555071	839	.262878512	Root	MSE	=	.50983
- ·	Coef.				•		-
				0.001	.05536		.2246933
_cons	1.597672	.0198	80.69	0.000	1.5588	8 0	1.636535

If the person is a member of the union, the wage is expected to be 14% higher than the people who are not members of the union.

2c. reg lwage union i.nr

Source	SS	df	MS	Number F(105,	of obs = 734) =	
Model	95.3035021	105	.907652401			
Residual		734	.170642465			
+				-	squared =	
Total	220.555071	839	.262878512	_	=	
lwage	Coef.	Std. Err.	t 	P> t 	[95% Conf.	Interval]
union 	.1594263	.0478191	3.33	0.001	.0655478	.2533048
nr						
45	.0960207	.2068901	0.46	0.643	3101463	.5021877
259	0215594	.2079237	-0.10	0.917	4297555	.3866367
353	.0673359	.2066309	0.33	0.745	3383223	.472994
729		.2068901	2.05	0.041	.0180483	.8303822
847		.2079237	0.30	0.761	3448062	.471586
863		.2065445	0.60	0.549	2817574	.5292193
910		.2065445	1.14	0.255	1703977	.640579
1081	2648868	.2065445	-1.28	0.200	6703751	.1406016
1094	.1402554	.2065445	0.68	0.497	265233	.5457437
1098	.4505421	.2065445	2.18	0.029	.0450538	.8560305
1107	.1408674	.2065445	0.68	0.495	2646209	.5463558
1180		.2068901	0.94		2108798	.6014542
1316		.2065445	1.83	0.068	028427	.7825497
1318		.2065445	-1.69	0.092	7535284	.0574483
1434	4848421	.2068901	-2.34	0.019	8910091	0786751
1576	.089009	.2065445	0.43	0.667	3164794	.4944973
1654	.1017975	.2065445	0.49	0.622	3036909	.5072858
1744	.1137849	.2079237	0.55	0.584	2944113	.521981
1988		.2066309	-2.50	0.013	9217004	1103841
2108		.21074	1.60	0.110	0763857	.7510644
2157		.2066309	-2.79	0.005	9818897	1705734
2216		.2066309	0.81	0.420	2388356	.5724806
2227	2304973	.2068901	-1.11 -2.55		6366643	.1756696
2306 2312	5274109 .3956799	.2066309	1.92	0.011	9330691	1217528
2351	3981536	.2065445	-1.93	0.054	0098084 8036419	.8011683
2401	.0178165	.2003443	0.09	0.932	3891972	.4248302
		.2066309	-0.41	0.682	4903538	.3209624
2445 2721	5711787	.2068901	-2.76		9773457	1650117
2774	.4434422	.2065445		0.032	.0379539	.8489306
2842	.3632436	.2065445	1.76		0422448	.7687319
3059	0240733	.2120077	-0.11		4402872	.3921405
3138	.0368	.2086956	0.18		3729114	.4465114
3200	1320197	.2086956	-0.63		5417311	.2776917
3271	0189044	.2068901	-0.09	0.927	4250714	.3872626
92.1			- • • • •			

3282	.1341108	.2068901	0.65	0.517	2720562	.5402778
3414	.3261157	.2065445	1.58	0.115	0793727	.731604
3526	.0163638	.2079237	0.08	0.937	3918324	.4245599
3706	.0774979	.2065445	0.38	0.708	3279904	.4829863
3847	.6535028	.2073214	3.15	0.002	.2464891	1.060516
3882	3552479	.2066309	-1.72	0.086	760906	.0504102
4000	.003609	.2065445	0.02	0.986	4018794	.4090973
4025	3071502	.2066309	-1.49	0.138	7128083	.0985079
4046	1446274	.2065445	-0.70	0.484	5501158	.2608609
4128	3509784	.21074	-1.67	0.096	7647034	.0627466
4261	.2519924	.2066309	1.22	0.223	1536657	.6576505
4278	.1341302	.2065445	0.65	0.516	2713582	.5396185
4365	4477431	.2065445	-2.17	0.030	8532314	0422547
4380	.2811218	.2086956	1.35	0.178	1285897	.6908332
4559	2464531	.2065445	-1.19	0.233	6519415	.1590352
4563	3555635	.2066309	-1.72	0.086	7612216	.0500946
4607	2763503	.2066309	-1.34	0.182	6820084	.1293078
4633	.0063617	.2066309	0.03	0.975	3992964	.4120199
4716	347167	.2079237	-1.67	0.095	7553631	.0610292
4759	0114174	.21074	-0.05	0.957	4251424	.4023076
4884	0517639	.2073214	-0.25	0.803	4587776	.3552498
4901	3989057	.2120077	-1.88	0.060	8151195	.0173082
5017	.7130193	.2065445	3.45	0.001	.307531	1.118508
5033	.6401384	.2065445	3.10	0.002	.2346501	1.045627
5141	.3141813	.2065445	1.52	0.129	091307	.7196696
5579	1918611	.2065445	-0.93	0.353	5973495	.2136272
5698	.0882877	.2096351	0.42	0.674	3232681	.4998435
5772	4059995	.2065445	-1.97	0.050	8114878	0005112
5816	2660695	.2065445	-1.29	0.198	6715578	.1394189
5851	331496	.2065445	-1.60	0.109	7369844	.0739923
6020	8610274	.2065445	-4.17	0.000	-1.266516	4555391
6463	47733	.2065445	-2.31	0.021	8828183	0718416
6559	.177383	.2065445	0.86	0.391	2281053	.5828714
7060	.0159366	.2073214	0.08	0.939	3910771	.4229503
7087	6804779	.2073214	-3.28	0.001	-1.087492	2734642
7342	2302803	.2065445	-1.11	0.265	6357686	.1752081
7411	51977	.2086956	-2.49	0.013	9294814	1100586
7454	.286005	.2065445	1.38	0.167	1194833	.6914934
7474	1869763	.21074	-0.89	0.375	6007013	.2267487
7783	0571807	.2065445	-0.28	0.782	462669	.3483076
8224	.1250242	.2068901	0.60	0.546	2811427	.5311912
8364	1276324	.2066309	-0.62	0.537	5332905	.2780257
8370	.3124729	.2086956	1.50	0.135	0972385	.7221843
8415	4318591	.2096351	-2.06	0.040	843415	0203033
8518	.5568141	.2096351	2.66	0.008	.1452582	.9683699
8524	5230085	.2096351	-2.49	0.013	9345643	1114527
8743	.0551623	.2065445	0.27	0.789	3503261	.4606506
8749	1102718	.2065445	-0.53	0.594	5157602	.2952165
8758	.0754359	.2065445	0.37	0.715	3300524	.4809243
8842	2698157	.2065445	-1.31	0.192	675304	.1356727
9082	2814707	.2065445	-1.36	0.173	686959	.1240177
9131	2988473	.2065445	-1.45	0.148	7043356	.1066411
9132	1133751	.2066309	-0.55	0.583	5190332	.292283
9390	.1360907	.2073214	0.66	0.512	270923	.5431044
9391	1362316	.2065445	-0.66	0.510	5417199	.2692568
9683	5182686	.2068901	-2.51	0.012	9244356	1121016
9791	0354533	.2065445	-0.17	0.864	4409416	.3700351

	9846	.3553605	.2066309	1.72	0.086	0502976	.7610186
	9936	.368808	.2086956	1.77	0.078	0409034	.7785194
	10043	7313702	.2066309	-3.54	0.000	-1.137028	3257121
	10067	.1008419	.2065445	0.49	0.626	3046465	.5063302
	10091	.0715577	.2066309	0.35	0.729	3341004	.4772158
	10209	3829557	.2065445	-1.85	0.064	788444	.0225327
	10265	.5794677	.2066309	2.80	0.005	.1738096	.9851258
	12012	1328268	.2065445	-0.64	0.520	5383151	.2726616
	12122	4650195	.2065445	-2.25	0.025	8705078	0595312
	12385	.1633052	.2065445	0.79	0.429	2421831	.5687936
	12534	.5333491	.2065445	2.58	0.010	.1278607	.9388374
	12548	3153899	.2073214	-1.52	0.129	7224036	.0916238
	_cons	1.637786	.146049	11.21	0.000	1.351063	1.92451
_		 					

Adding individual fixed effects raises the coefficient estimate to 0.159. The estimate with individual fixed effects provides the relationship between wage and the membership by controlling for individual characteristics, such as work ethics. However omitting such individuals created downward bias and implies workers may not have better work ethics. Therefore concern not valid.

2d. reg lwage union year

Source	l SS	df	MS	Numb	per of obs	s =	840
	+			- F(2)	, 837)	=	43.83
Model	20.9080259	2	10.45401	3 Prob	o > F	=	0.0000
Residual	199.647045	837	.23852693	6 R-s	quared	=	0.0948
	+			- Adj	R-squared	= £	0.0926
Total	220.555071	839	.26287851	2 Root	t MSE	=	.48839
lwage	Coef.				-	Conf.	Interval]
union	.1140039	.0414279	2.75	0.006	.03268	 391	.1953187
year	.0643532	.0073736	8.73	0.000	.04988	304	.0788261
_cons	-126.0414	14.62485	-8.62	0.000	-154.7	471	-97.33575

Coefficient estimate decreased by 0.114, implies both union membership and wages increase over time, by controlling time trend, extract the true effect of union membership. The concern was valid.

2e. reg lwage union i.year

Source	SS	df	MS	Number of ob	s =	840
+				F(8, 831)	=	11.64
Model	22.2201426	8	2.77751783	Prob > F	=	0.0000
Residual	198.334929	831	.238670191	R-squared	=	0.1007
+				Adj R-square	d =	0.0921
Total	220.555071	839	.262878512	Root MSE	=	.48854
lwage	Coef.	Std. Err.	t	P> t [95%	Conf.	<pre>Interval]</pre>
+						

union	ı	.1094027	.0415557	2.63	0.009	.0278363	.1909691
	1						
year							
1981		.1759985	.0674433	2.61	0.009	.0436192	.3083778
1982		.246268	.0674817	3.65	0.000	.1138135	.3787226
1983		.2479505	.0674259	3.68	0.000	.1156053	.3802956
1984		.3804267	.0675652	5.63	0.000	.2478083	.5130451
1985		.3770881	.0674817	5.59	0.000	.2446335	.5095426
1986		.4389489	.0674538	6.51	0.000	.3065491	.5713488
1987		.5101333	.067652	7.54	0.000	.3773443	.6429222
	1						
_cons		1.307024	.0480952	27.18	0.000	1.212621	1.401426

Use year fixed effects her due to concern that relation between wage and union membership vary from year to year. Adding year fixed effects lowers estimate results by 0.109, with the 95% confidence, it isn't significant any longer. This implies may not be strong relationship between wage and union membership. Instead, the year fixed differences created bias and looked like there was a relationship. Relation between wage and union is biased if not include year fix effects.

3a. reg raise missed

Source	SS	df	MS	Number of obs $=$ 5
+				F(1,3) = 39.62
Model	19.3359477	1	19.3359477	Prob > F = 0.0081
Residual	1.46405229	3	.488017429	R-squared $= 0.9296$
+				Adj R-squared = 0.9062
Total	20.8	4	5.2	Root MSE = .69858

raise	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
	+				
missed	5620915	.089298	-6.29	0.008	84627772779053
_cons	5.673203	.5019789	11.30	0.001	4.075682 7.270724

Riase = 5.67 - 0.56Missed + u

reg distance missed

Source	SS	df	MS	Number of obs $=$ 5
+-				F(1,3) = 11.96
Model	18.2281046	1	18.2281046	Prob > F = 0.0407
Residual	4.57189542	3	1.52396514	R-squared $= 0.7995$
+-				Adj R-squared = 0.7326
Total	22.8	4	5.7	Root MSE = 1.2345

distance		Std. Err.			[95% Conf. Interval]
•		.1578017			.043556 1.047947
_cons	2.398693	.8870648	2.70	0.074	4243433 5.221729

Distance = 2.40 + 0.55Missed + u

3b. "Lazy" and "raised", it would be negative. With "lazy" and "missed", it would be positive. It would be biased downward because we would expect true coefficient to be higher towards direction of zero.

3c. Two restrictions distance must satisfy in order to be valid instrument are inclusion and exclusion.

Inclusion: Cov (Missed,Distance) $\neq 0$ [Missed and Distance has to be related]

Exclusion: Cov (Distance,u) = 0, Cov (Distance,Lazy) = 0

3d. ivregress 2sls raise (missed=distance)

Instrumental variables (2SLS) regression Number of obs = 5Wald chi2(1) = 36.89Prob > chi2 = 0.0000R-squared = 0.9193

raise	Coef.	Std. Err.		1 1	[95% Conf. Interval]
·	502994	.0828143		0.000	665307340681
_cons	5.413174	.4470868	12.11	0.000	4.5369 6.289448

Instrumented: missed

Instruments: distance

3e. The coefficient went from -0.56 in part a to -0.50 in part d. The coefficient did increase however, there is a 3/4 of a standard error shift which is significant. What is important is that in part d, we added distance where in part a, it is only the raise and missed variables.

4a. It is the slope of regression of Employed on H for those who are not drafted into the military. By taking the derivative with respect to H, we get $d_{employed}/d_{h(68)} = 0.023$ -0.013Military, which implies with one inch taller height, the probability of being employed will be increased by 0.023-0.013Military. Therefore when the person is not drafted into the military, the person with one inch taller height will have 0.023 higher probability to be employed at age 30.

4b. It is the difference between the slopes of regressions for non-military people and/for military people. The difference between partial derivatives of military person and non-military person is $dEmployed_{M=1}/d(h-68)$ - $dEmployed_{M=0} = 0.013$, the effect of being one inch taller decreases by 0.013 if the person was drafted into the military.

4c. It is the regression discontinuity estimate. It implies the comparisons of the people who are cut off at 68 inch height. The people who are drafted have 0.084 higher probability in getting employed at age 30 than non-drafted.

4d.
$$H_0: \beta_3 = 0: \beta_3 \neq 0$$

$$T_{95\%} = 1.96$$

$$t = (0.084-0)/0.033 = 2.55 > 1.96$$

Therefore we can reject the null hypothesis that being drafted into military has no effect on being employed at the 95% confidence level

4e.

4f. The person who is 5'7" is not drafted into the military because his/her height is below 68. The predicted employed for this person is then,

Employed₆₇ =
$$0.612 + 0.023 (67 - 68) - 0.013 (67 - 68)(0) + 0.084(0)$$

= $0.612 + 0.023(67 - 68)$
= 0.589

And for the person who is 68" is

Employed_{6 7}=
$$0.612 + 0.023(68 - 68) - 0.013(68 - 68)(1) + 0.084(1)$$

= $0.612 + 0.084$
= 0.696

Total difference in the employment rate is 0.107 (0.696 - 0.589). If the person with 68" was not drafted, expected employment rate should have been 0.612; one inch difference in height increases the rate by 0.023. Because the person drafted, their expected employment rate increases even more, by 0.084; crossing military service height threshold increases rate by 0.084.