Reducciones de problemas. MT restringidas. Misceláneas.

Comentario: Intentar hacer por lo menos los ejercicios 1 al 5.

Ejercicio 1. Considerando la reducción de HP a Lu descripta en clase, responder:

- a. Explicar por qué la función identidad, es decir la función que a toda cadena le asigna la misma cadena, no es una reducción de HP a L_{U} .
- b. Explicar por qué las MT M' generadas en los pares (<M'>, w), o bien paran aceptando, o bien loopean.
- c. Explicar por qué la función utilizada para reducir HP a L_U también sirve para reducir HP^c a L_U ^c.
- d. Explicar por qué la función utilizada para reducir HP a Lu no sirve para reducir Lu a HP.
- e. Explicar por qué la siguiente MT M_f no computa una reducción de HP a L_U: dada una cadena válida (<M>, w), M_f ejecuta M sobre w, si M acepta entonces genera el output (<M>, w), y si M rechaza entonces genera una cadena inválida, por ejemplo la cadena 1.

Ejercicio 2. Considerando la reducción de L_U a L_{Σ*} descripta en clase, responder:

- a. Explicar por qué no sirve como función de reducción alternativa la función siguiente: a todo input le asigna como output el código <M∑⁺>.
- b. Explicar por qué la reducción descripta en clase no sirve para probar que L_{Σ*} ∉ RE.

Ejercicio 3. Un autómata linealmente acotado (ALA) es una MT con una sola cinta, con la restricción de que su cabezal sólo puede moverse a lo largo de las celdas ocupadas por el input. Probar que el lenguaje aceptado por un ALA es recursivo. *Ayuda: ¿en cuántos pasos se puede detectar que el ALA entra en loop?*

Ejercicio 4. Construir un autómata finito que reconozca el lenguaje de las cadenas de {0, 1}*, es decir todas las cadenas de 0 y 1 de cualquier tamaño incluso la vacía, tales que a todo cero le siga un uno. Ayuda: En general conviene primero construir el diagrama de transición de estados, porque da una idea de cómo construir el autómata finito.

Ejercicio 5. Sea el lenguaje $D_{HP} = \{w_i \mid M_i \text{ para desde } w_i, \text{ según el orden canónico}\}$. Encontrar una reducción de D_{HP} a HP.

Ejercicio 6. Sea el lenguaje $L\varnothing = \{ <M > | L(M) = \varnothing \}$. Responder:

- a. Encontrar una reducción de L_U^C a L_{\varnothing} . Ayuda: basarse en la idea de la reducción de L_U a L_{Σ^*} , es muy similar.
- b. Considerando la reducción desarrollada en (a), ¿qué se puede decir de L∅, a qué clase de la jerarquía de la computabilidad no pertenece?

Ejercicio 7. Construir una MT que genere todos los índices i tales que $(<M_i>, w_i) \in HP$, según el orden canónico.