Композиции классификаторов

K. B. Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

16 апреля 2018

Содержание

- Взвешенное голосование и бустинг
 - Алгоритм бустинга AdaBoost
 - Обобщающая способность бустинга
 - Градиентный бустинг, AnyBoost, XGBoost
- Простое голосование и бэггинг
 - Бэггинг и метод случайных подпространств
 - Комитетный бустинг
 - Случайные леса
- Омеси алгоритмов
 - Идея областей компетентности
 - Итерационный метод обучения смеси
 - Последовательное наращивание смеси

Определение композиции

$$X^\ell = (x_i, y_i)_{i=1}^\ell \subset X imes Y$$
 — обучающая выборка, $y_i = y^*(x_i)$;

$$a(x) = C(b(x))$$
 — алгоритм, где

 $b \colon X \to R$ — базовый алгоритм (алгоритмический оператор),

 $C \colon R o Y$ — решающее правило,

R — пространство оценок;

Определение

Композиция базовых алгоритмов b_1, \ldots, b_T

$$a(x) = C(F(b_1(x), \ldots, b_T(x))),$$

где $F: R^T o R$ — корректирующая операция.

Зачем вводится R?

В задачах классификации множество отображений $\{F\colon R^T\to R\}$ существенно шире, чем $\{F\colon Y^T\to Y\}$.

Примеры пространств оценок и решающих правил

• Пример 1: классификация на 2 класса, $Y = \{-1, +1\}$:

$$a(x) = \operatorname{sign}(b(x)),$$

где
$$R=\mathbb{R},\;\;b\colon X o\mathbb{R},\;\; {\it C}(b)\equiv {\it sign}(b).$$

ullet Пример 2: классификация на M классов $Y = \{1, \dots, M\}$:

$$a(x) = \arg \max_{y \in Y} b_y(x),$$

где
$$R=\mathbb{R}^M$$
, $b\colon X o \mathbb{R}^M$, $C(b_1,\ldots,b_M)\equiv rg\max_{y\in Y}b_y.$

● Пример 3: регрессия, $Y = R = \mathbb{R}$: $C(b) \equiv b$ — решающее правило не нужно.

Примеры корректирующих операций

• Пример 1: Простое голосование (Simple Voting):

$$F(b_1(x),\ldots,b_T(x))=\frac{1}{T}\sum_{t=1}^T b_t(x), \quad x\in X.$$

• Пример 2: Взвешенное голосование (Weighted Voting):

$$F(b_1(x),\ldots,b_T(x)) = \sum_{t=1}^T \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in \mathbb{R}.$$

• Пример 3: Смесь алгоритмов (Mixture of Experts)

$$F(b_1(x),\ldots,b_T(x)) = \sum_{t=1}^T g_t(x)b_t(x), \quad x \in X, \quad g_t \colon X \to \mathbb{R}.$$

Бустинг для задачи классификации с двумя классами

Возьмём
$$Y=\{\pm 1\}$$
, $b_t\colon X\to \{-1,0,+1\}$, $C(b)=\mathrm{sign}(b)$. $b_t(x)=0$ — отказ (лучше промолчать, чем соврать).

Взвешенное голосование:

$$a(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right), \quad x \in X.$$

Функционал качества композиции — число ошибок на X^ℓ :

$$Q_T = \sum_{i=1}^{\ell} \left[y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0 \right].$$

Две основные эвристики бустинга:

- ullet фиксация $lpha_1 b_1(x), \dots, lpha_{t-1} b_{t-1}(x)$ при добавлении $lpha_t b_t(x)$;
- ullet гладкая аппроксимация пороговой функции потерь $[M\leqslant 0].$

Гладкие аппроксимации пороговой функции потерь [M < 0]

$$E(M) = e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M) = \log_2(1 + e^{-M})$ — логарифмическая (LogitBoost); $Q(M) = (1 - M)^2$ — квадратичная (GentleBoost); $G(M) = \exp(-cM(M+s))$ — гауссовская (BrownBoost); $S(M) = 2(1 + e^M)^{-1}$ — сигмоидная; $V(M) = (1 - M)_+$ — кусочно-линейная (из SVM);

Экспоненциальная аппроксимация пороговой функции потерь

Оценка функционала качества Q_T сверху:

$$Q_{T} \leqslant \widetilde{Q}_{T} = \sum_{i=1}^{\ell} \underbrace{\exp\left(-y_{i} \sum_{t=1}^{T-1} \alpha_{t} b_{t}(x_{i})\right)}_{w_{i}} \exp\left(-y_{i} \alpha_{T} b_{T}(x_{i})\right)$$

Нормированные веса: $\widetilde{W}^\ell = (\widetilde{w}_1, \dots, \widetilde{w}_\ell), \ \ \widetilde{w}_i = w_i \ \big/ \ \sum_{j=1}^\ell w_j.$

Взвешенное число ошибочных (negative) и правильных (positive) классификаций при векторе весов $U^\ell=(u_1,\ldots,u_\ell)$:

$$N(b, U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = -y_i]; \quad P(b, U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = y_i].$$

1 - N - P — взвешенное число отказов от классификации.

Основная теорема бустинга (для AdaBoost)

Пусть B — достаточно богатое семейство базовых алгоритмов.

Teopeма (Freund, Schapire, 1996)

Пусть для любого нормированного вектора весов U^ℓ существует алгоритм $b\in B$, классифицирующий выборку хотя бы немного лучше, чем наугад: $P(b;U^\ell)>N(b;U^\ell)$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$\begin{split} b_T &= \arg\max_{b \in B} \sqrt{P(b;\widetilde{W}^\ell)} - \sqrt{N(b;\widetilde{W}^\ell)}. \\ \alpha_T &= \frac{1}{2} \ln\frac{P(b_T;\widetilde{W}^\ell)}{N(b_T;\widetilde{W}^\ell)}. \end{split}$$

Доказательство (шаг 1 из 2)

Воспользуемся тождеством $\forall \alpha \in \mathbb{R}, \ \forall b \in \{-1,0,+1\}$: $e^{-\alpha b}=e^{-\alpha}[b\!=\!1]+e^{\alpha}[b\!=\!-1]+[b\!=\!0].$

Положим для краткости $lpha=lpha_T$ и $b_i=b_T(x_i)$. Тогда

$$\widetilde{Q}_{T} = \left(e^{-\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = y_{i}] + e^{\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = -y_{i}] + \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = 0]\right) \underbrace{\sum_{i=1}^{\ell} w_{i}}_{1-P-N}$$

$$= \left(e^{-\alpha}P + e^{\alpha}N + (1-P-N)\right) \widetilde{Q}_{T-1} \to \min_{\alpha, b}.$$

$$\tfrac{\partial}{\partial \alpha} \widetilde{Q}_T = \left(-e^{-\alpha} P + e^{\alpha} N \right) \widetilde{Q}_{T-1} = 0 \ \Rightarrow \ e^{-\alpha} P = e^{\alpha} N \ \Rightarrow \ e^{2\alpha} = \tfrac{P}{N}.$$

Получили требуемое: $\alpha_T = \frac{1}{2} \ln \frac{P}{N}$.

Доказательство (шаг 2 из 2)

Подставим оптимальное значение $lpha=rac{1}{2}\lnrac{P}{N}$ обратно в $\widetilde{Q}_{\mathcal{T}}$:

$$\begin{split} \widetilde{Q}_{\mathcal{T}} &= \left(e^{-\alpha}P + e^{\alpha}N + (1-P-N)\right)\widetilde{Q}_{\mathcal{T}-1} = \\ &= \left(1 + \sqrt{\frac{N}{P}}P + \sqrt{\frac{P}{N}}N - P - N\right)\widetilde{Q}_{\mathcal{T}-1} = \\ &= \left(1 - \left(\sqrt{P} - \sqrt{N}\right)^2\right)\widetilde{Q}_{\mathcal{T}-1} \to \min_b. \end{split}$$

Поскольку \widetilde{Q}_{T-1} не зависит от α_T и b_T , минимизация \widetilde{Q}_T эквивалентна либо максимизации $\sqrt{P}-\sqrt{N}$ при P>N, либо максимизации $\sqrt{N}-\sqrt{P}$ при P< N, однако второй случай исключён условием теоремы.

Получили
$$b_T = rg \max_b \sqrt{P} - \sqrt{N}$$
 . Теорема доказана.

Следствие 1. Классический вариант AdaBoost

Пусть отказов нет, $b_t \colon X o \{\pm 1\}$. Тогда P = 1 - N.

Teopeма (Freund, Schapire, 1995)

Пусть для любого нормированного вектора весов U^ℓ существует алгоритм $b\in B$, классифицирующий выборку хотя бы немного лучше, чем наугад: $N(b;U^\ell)<\frac{1}{2}$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$b_T = \arg\min_{b \in B} N(b; \widetilde{W}^{\ell}).$$

$$\alpha_T = \frac{1}{2} \ln \frac{1 - N(b_T; \widetilde{W}^\ell)}{N(b_T; \widetilde{W}^\ell)}.$$

Следствие 2. Сходимость

Теорема

Если на каждом шаге семейство B и метод обучения обеспечивают построение базового алгоритма b_t такого, что

$$\sqrt{P(b_t; \widetilde{W}^{\ell})} - \sqrt{N(b_t; \widetilde{W}^{\ell})} = \gamma_t > \gamma$$

при некотором $\gamma>0$, то за конечное число шагов будет построен корректный алгоритм a(x).

Доказательство. Q_T сходится к нулю со скоростью геометрической прогрессии:

$$Q_{T+1} \leqslant \widetilde{Q}_{T+1} = \widetilde{Q}_{T}(1-\gamma^{2}) \leqslant \cdots \leqslant \widetilde{Q}_{1}(1-\gamma^{2})^{T}.$$

Наступит момент, когда $\widetilde{Q}_{\mathcal{T}} < 1$. Но тогда $Q_{\mathcal{T}} = 0$, поскольку $Q_{\mathcal{T}} \in \{0,1,\ldots,\ell\}$.

Алгоритм AdaBoost

```
Вход: обучающая выборка X^{\ell}: параметр T:
Выход: базовые алгоритмы и их веса \alpha_t b_t, t=1,\ldots,T;
 1: инициализировать веса объектов:
     w_i := 1/\ell, \quad i = 1, \dots, \ell:
 2: для всех t = 1, ..., T
 3: обучить базовый алгоритм:
        b_t := \arg\min N(b; W^{\ell});
       \alpha_t := \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_t; \mathcal{W}^{\ell})}{\mathcal{N}(b_t; \mathcal{W}^{\ell})};
        обновить веса объектов:
 5:
        w_i := w_i \exp(-\alpha_t y_i b_t(x_i)), \quad i = 1, \dots, \ell;
 6:
        нормировать веса объектов:
        w_0 := \sum_{i=1}^{\ell} w_i;
        w_i := w_i / w_0, \quad i = 1, \dots, \ell
```

Бустинг и другие методы классификации

Эксперименты на трёх двумерных модельных выборках:

Эвристики и рекомендации

- Базовые классификаторы (weak classifiers):
 - решающие деревья используются чаще всего;
 - пороговые правила (data stumps)

$$B = \left\{ b(x) = \left[f_j(x) \leq \theta \right] \mid j = 1, \ldots, n, \ \theta \in \mathbb{R} \right\};$$

- для SVM бустинг не эффективен.
- Отсев шума: отбросить объекты с наибольшими w_i .
- ullet Модификация формулы для $lpha_t$ на случай ${\it N}=0$:

$$\alpha_t := \frac{1}{2} \ln \frac{1 - N(b_t; W^{\ell}) + \frac{1}{\ell}}{N(b_t; W^{\ell}) + \frac{1}{\ell}};$$

Дополнительный критерий остановки:
 увеличение частоты ошибок на контрольной выборке.

Эксперименты с бустингом

Удивительное отсутствие переобучения вплоть до T=1000 (нижняя кривая — обучение, верхняя — контроль):

Schapire, Freund, Lee, Bartlett. Boosting the margin: a new explanation for the effectiveness of voting methods // Annals of Statistics, 1998.

Обоснование бустинга

Усиление понятия *частоты ошибок* алгоритма $a(x)=\operatorname{sign} b(x)$:

$$\nu_{\theta}(a,X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} [b(x_i)y_i \leqslant \theta], \quad \theta > 0.$$

Обычная частота ошибок $u_0(a,X^\ell)\leqslant
u_{ heta}(a,X^\ell)$ при heta>0.

Teopeма (Freund, Schapire, Bartlett, 1998)

Если $|B|<\infty$, то orall heta>0, $orall \eta\in(0,1)$ с вероятностью $1-\eta$

$$P[ya(x) < 0] \leqslant \nu_{\theta}(a, X^{\ell}) + C\sqrt{\frac{\ln|B| \ln \ell}{\ell \theta^2} + \frac{1}{\ell} \ln \frac{1}{\eta}}$$

Основной вывод: оценка зависит от |B|, но не от T. Голосование не увеличивает сложность эффективно используемого множества алгоритмов.

Обоснование бустинга: что же всё-таки происходит?

Распределение отступов: доля объектов, имеющих отступ меньше заданного θ после 5, 100, 1000 итераций (Задача UCI:vehicle)

- С ростом T распределение отступов сдвигается вправо, то есть бустинг «раздвигает» классы в пространстве векторов растущей размерности $(b_1(x), \ldots, b_T(x))$
- Значит, в оценке можно уменьшить второй член, увеличив θ и не изменив $\nu_{\theta}(a, X^{\ell})$.
- Можно уменьшить второй член, если уменьшить |B|, то есть взять простое семейство базовых алгоритмов.

Schapire R., Freund Y., Lee W.S., Bartlett P. Boosting the margin: a new explanation for the effectiveness of voting methods. 1998.

Недостатки AdaBoost

- ullet Чрезмерная чувствительность к выбросам из-за e^{-M}
- AdaBoost строит «чёрные ящики» громоздкие неинтерпретируемые композиции из сотен алгоритмов
- Не удаётся строить короткие композиции из «сильных» алгоритмов типа SVM (только длинные из слабых)
- Требуются достаточно большие обучающие выборки (бэггинг обходится более короткими — см. далее)

Способы устранения:

- Другие аппроксимации пороговой функции потерь
- ullet Непрерывные вещественные базовые алгоритмы $b_t\colon X o \mathbb{R}$
- Явная оптимизация отступов, без аппроксимации
- Менее жадные стратегии наращивания композиции

Градиентный бустинг для произвольной функции потерь

Линейная (выпуклая) комбинация базовых алгоритмов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in \mathbb{R}_+.$$

Функционал качества с произвольной функцией потерь $\mathscr{L}(a,y)$:

$$Q(\alpha, b; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i)}_{f_{T-1,i}} + \alpha b(x_i), y_i\right) \to \min_{\alpha, b}.$$

 $f_{T-1} = (f_{T-1,i})_{i=1}^\ell$ — текущее приближение $f_T = (f_{T,i})_{i=1}^\ell$ — следующее приближение

Параметрическая аппроксимация градиентного шага

Градиентный метод минимизации $Q(f) o \mathsf{min},\ f\in\mathbb{R}^\ell$:

 $f_0 :=$ начальное приближение;

$$f_{T,i} := f_{T-1,i} - \alpha g_i, \quad i = 1, \dots, \ell;$$

 $g_i = \mathscr{L}'ig(f_{T-1,i},\,y_iig)$ — компоненты вектора градиента, lpha — градиентный шаг.

Наблюдение: это очень похоже на одну итерацию бустинга!

$$f_{T,i} := f_{T-1,i} + \alpha b(x_i), \quad i = 1, \dots, \ell$$

Идея: будем искать такой базовый алгоритм b_T , чтобы вектор $(b_T(x_i))_{i=1}^\ell$ приближал вектор антиградиента $(-g_i)_{i=1}^\ell$:

$$b_T := \arg\min_b \sum_{i=1}^{\ell} (b(x_i) + g_i)^2$$

Алгоритм градиентного бустинга (Gradient Boosting)

Вход: обучающая выборка X^{ℓ} ; параметр T; **Выход**: базовые алгоритмы и их веса $\alpha_t b_t$, t = 1, ..., T; 1: инициализация: $f_i := 0, i = 1, \ldots, \ell$; 2: для всех t = 1, ..., Tбазовый алгоритм, приближающий антиградиент: 3: $b_t := \arg\min_{b} \sum_{i=1}^{c} (b(x_i) + \mathcal{L}'(f_i, y_i))^2;$ 4: задача одномерной минимизации: $\alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{\ell} \mathscr{L} \big(f_i + \alpha b_t(x_i), y_i \big);$ обновление вектора значений на объектах выборки: 5: $f_i := f_i + \alpha_t b_t(x_i); \quad i = 1, \ldots, \ell;$

Стохастический градиентный бустинг (SGB)

Идея: на шагах 3-5 использовать не всю выборку X^{ℓ} , а случайную подвыборку без возвращений

Преимущества:

- улучшается качество
- улучшается сходимость
- уменьшается время обучения

Регрессия и AdaBoost

Регрессия: $\mathcal{L}(a,y) = (a-y)^2$

- $b_T(x)$ обучается на разностях $y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)$
- ullet если регрессия линейная, то $lpha_t$ можно не обучать.

Классификация: $\mathscr{L}(a,y) = e^{-ay}, \;\; b_t \in \{-1,0,+1\}$

• GB в точности совпадает с AdaBoost.

Классификация: $\mathscr{L}(a,y) = \mathscr{L}(-ay), \ b_t \in \mathbb{R}$

• GB совпадает с AnyBoost — см. далее.

AnyBoost: классификация с произвольной функцией потерь

Возьмём
$$Y=\{\pm 1\},\;\;b_t\colon X\to\mathbb{R},\;\;C(b)=\operatorname{sign}(b);\;\;\mathscr{L}(M)$$
 — функция потерь, гладкая функция отступа M ;

$$M_T(x_i) = y_i \sum\limits_{t=1}^T lpha_t b_t(x_i)$$
 — отступ композиции на объекте x_i ;

Оценка сверху для числа ошибок композиции:

$$Q_T \leqslant \widetilde{Q}_T = \sum_{i=1}^{\ell} \mathscr{L}\big(M_{T-1}(x_i) + \alpha y_i b(x_i)\big) \to \min_{\alpha, b}.$$

Линеаризация функции потерь по lpha в окрестности lpha= 0:

$$\widetilde{Q}_{T} \approx \sum_{i=1}^{\ell} \mathscr{L}(M_{T-1}(x_{i})) - \alpha \sum_{i=1}^{\ell} \underbrace{-\mathscr{L}'(M_{T-1}(x_{i}))}_{w_{i}} y_{i} b(x_{i}) \to \min_{b},$$

где w_i — веса объектов.

Принцип явной максимизации отступов

Минимизация линеаризованного $\widetilde{\mathcal{Q}}_{\mathcal{T}}$ при фиксированном lpha

$$\widetilde{Q}_{\mathcal{T}} pprox \sum_{i=1}^{\ell} \mathscr{L}\big(M_{\mathcal{T}-1}(x_i)\big) - \alpha \sum_{i=1}^{\ell} w_i y_i b(x_i) \to \min_{b}.$$

приводит к принципу *явной максимизации отступов* (direct optimization of margin, DOOM):

$$\sum_{i=1}^{\ell} w_i y_i b(x_i) \to \max_b.$$

Затем lpha определяется путём одномерной минимизации $\widetilde{Q}_{\mathcal{T}}.$

Итерации этих двух шагов приводят к алгоритму AnyBoost.

Замечание. AnyBoost переходит в AdaBoost в частном случае, при $b_t \colon X \to \{-1,0,+1\}$ и $\mathscr{L}(M) = e^{-M}$.

Алгоритм AnyBoost

```
Вход: обучающая выборка X^{\ell}; параметр T;
Выход: базовые алгоритмы и их веса \alpha_t b_t, t=1,\ldots,T:
 1: инициализировать отступы: M_i := 0, i = 1, \ldots, \ell;
 2: для всех t = 1, ..., T
       вычислить веса объектов:
 3:
       w_i = -\mathcal{L}'(M_i), \quad i = 1, \ldots, \ell;
       обучить базовый алгоритм согласно принципу DOOM:
 4:
       b_t := \arg \max_b \sum_{i=1} w_i y_i b(x_i);
 5:
       решить задачу одномерной минимизации:
       \alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{\ell} \mathscr{L}(M_i + \alpha b_t(x_i)y_i);
       обновить значения отступов:
 6:
       M_i := M_i + \alpha_t b_t(x_i) y_i; \quad i = 1, \ldots, \ell;
```

XGBoost — популярная и быстрая реализация GB над деревьями

Деревья регрессии и классификации (CART):

$$b(x) = \sum_{j=1}^{J} w_j [x \in R_j]$$

где R_j — область пространства, покрываемая листом j, w_i — веса листьев, J — число листьев в дереве.

Функционал качества с суммой L_0 , L_1 , L_2 регуляризаторов:

$$Q(b, \{w_j\}_{j=1}^J; X^{\ell}) = \sum_{i=1}^{\ell} \mathcal{L}\left(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha b(x_i), y_i\right) +$$

$$+ \gamma \sum_{j=1}^{J} [w_j \neq 0] + \mu \sum_{j=1}^{J} |w_j| + \frac{\lambda}{2} \sum_{j=1}^{J} w_j^2 \to \min_{b, \{w_j\}}.$$

По w_j задача имеет аналитическое решение.

Стохастические методы построения композиций

Чтобы алгоритмы в композиции были различными

- их обучают по (случайным) подвыборкам,
- либо по (случайным) подмножествам признаков.

Первую идею реализует bagging (bootstrap aggregation) [Breiman, 1996]: подвыборки длины ℓ с повторениями, доля объектов, попадающих в выборку: $(1-\frac{1}{e})\approx 0.632$

Вторую идею реализует RSM (random subspace method) [Ho, 1998].

Совместим обе идеи в одном алгоритме.

 $\mathscr{F}=\{f_1,\ldots,f_n\}$ — признаки, $\mu(\mathscr{G},U)$ — метод обучения алгоритма по подвыборке $U\subseteq X^\ell$, использующий только признаки из $\mathscr{G}\subseteq \mathscr{F}$.

Бэггинг и метод случайных подпространств

```
Вход: обучающая выборка X^{\ell}; параметры: T;
    \ell' — длина обучающих подвыборок;
    n' — длина признакового подописания;
    \varepsilon_1 — порог качества базовых алгоритмов на обучении;
    \varepsilon_2 — порог качества базовых алгоритмов на контроле;
Выход: базовые алгоритмы b_t, t = 1, ..., T;
 1: для всех t = 1, ..., T
       U:= случайное подмножество X^{\ell} длины \ell':
     \mathscr{G}:= случайное подмножество \mathscr{F} длины n';
 3:
 4:
     b_t := \mu(\mathscr{G}, U):
      если Q(b_t,U)>arepsilon_1 или Q(b_t,X^\ell\setminus U)>arepsilon_2 то
 5:
         не включать b_t в композицию;
 6:
Композиция — простое голосование: a(x) = C\Big(\sum_{t=1}^{t} b_t(x)\Big).
```

Сравнение: boosting — bagging — RSM

- Бустинг лучше для больших обучающих выборок и для классов с границами сложной формы
- Бэггинг и RSM лучше для коротких обучающих выборок
- RSM лучше в тех случаях, когда признаков больше, чем объектов, или когда много неинформативных признаков
- Бэггинг и RSM эффективно распараллеливаются, бустинг выполняется строго последовательно

И ещё несколько эмпирических наблюдений:

- Веса алгоритмов не столь важны для выравнивания отступов
- Веса объектов не столь важны для обеспечения различности
- Короткие композиции из «сильных» алгоритмов типа SVM строить труднее, чем длинные из слабых

Оптимизация распределения отступов на каждом шаге

Возьмём
$$Y = \{\pm 1\}$$
, $F(b_1, \ldots, b_T) = \frac{1}{T} \sum_{t=1}^T b_t$, $C(b) = \operatorname{sign}(b)$.

Функционал качества композиции — число ошибок на обучении:

$$Q(a, X^{\ell}) = \sum_{i=1}^{\ell} [y_i a(x_i) < 0] = \sum_{i=1}^{\ell} [\underbrace{y_i b_1(x_i) + \dots + y_i b_T(x_i)}_{M_{iT}} < 0],$$

$$M_{it} = y_i b_1(x_i) + \cdots + y_i b_t(x_i)$$
 — отступ (margin) объекта x_i .

 $\mathbf{Эвристика}$: чтобы b_{t+1} компенсировал ошибки композиции,

$$Q(b, U) = \sum_{x_i \in U} [y_i b(x_i) < 0] \rightarrow \min_b,$$

где
$$U = \{x_i \colon M_0 < M_{it} \leqslant M_1\}$$
, M_0 , M_1 — параметры метода обучения.

Подбор параметров M_0 и M_1

Упорядочим объекты по возрастанию отступов M_{it} :

Принцип максимизации и выравнивания отступов.

Два случая, когда b_{t+1} на объекте x_i обучать не надо:

$$M_{it} < M_0$$
, $i < \ell_0$ — объект x_i шумовой;

 $M_{it} > M_1$, $i > \ell_1$ — объект x_i уже надёжно классифицируется.

Алгоритм ComBoost (Committee Boosting)

```
Вход: обучающая выборка X^{\ell}; параметры T, \ell_0, \ell_1, \ell_2, \Delta \ell;
Выход: b_1, \ldots, b_T
 1: b_1 := \arg\min Q(b, X^{\ell});
    упорядочить X^{\ell} по возрастанию M_i = y_i b_t(x_i), i = 1, \dots, \ell;
 2: для всех t = 1, ..., T
       для всех k = \ell_1, \ldots, \ell_2 с шагом \Delta \ell
 3:
          U = \{x_i \in X^\ell : \ell_0 \leqslant i \leqslant k\};
 4:
          b_{tk} := \arg \min Q(b, U),
 5:
       выбрать наилучший b_t \in \{b_{tk}\} по критерию Q;
 6:
       обновить отступы: M_i := M_i + y_i b_t(x_i), i = 1, \dots, \ell;
 7:
       упорядочить выборку X^{\ell} по возрастанию отступов M_i;
 8:
       опция: скорректировать значения параметров \ell_0, \ell_1, \Delta \ell:
 9:
10: пока Q существенно улучшается.
```

Результаты эксперимента на 4 задачах из репозитория UCI

Средняя частота ошибок на контроле по 50 случайным разбиениям в отношении «обучение : контроль» = 4 : 1.

	ionoshere	pima	bupa	votes
SVM	12,9	24,2	42	4,6
$ComBoost_0[SVM]$	12,6	23,1	34,2	4
ComBoost[SVM]	12,3	22,5	30,9	3,8
AdaBoost[SVM]	15	22,7	30,6	4
Parzen	6,3	25,1	41,6	6,9
${\tt ComBoost_0[Parzen]}$	6,1	25	38,1	6,8
ComBoost[Parzen]	5,8	24,7	30,6	6,2
AdaBoost[Parzen]	6	24,8	30,5	6,5

 ${\tt ComBoost}_0$ — с подбором ℓ_0 и $\ell_1\!=\!\ell_2$ по скользящему контролю; ${\tt ComBoost}$ — с подбором длины подвыборки U;

Parzen — окно Парзена с евклидовой метрикой и подбором ширины окна скользящим контролем LOO.

Результаты эксперимента на 4 задачах из репозитория UCI

Мощность композиций:

Число базовых алгоритмов	ionoshere	pima	bupa	votes
ComBoost _O над SVM	4	2	5	2
ComBoost над SVM	5	2	5	3
AdaBoost над SVM	65	18	15	8

Критерий останова: отсутствие существенного улучшения качества классификации обучающей выборки.

Маценов А. А. Комитетный бустинг: минимизация числа базовых алгоритмов при простом голосовании // MMPO-13, 2007.

Обобщение для задач с произвольным числом классов

Пусть теперь $Y = \{1, ..., M\}$.

Композиция — простое голосование, причём каждый базовый алгоритм b_{vt} голосует только за свой класс y:

$$a(x) = \arg\max_{y \in Y} \Gamma_y(x); \qquad \Gamma_y(x) = \frac{1}{|T_y|} \sum_{t \in T_y} b_{yt}(x).$$

В алгоритме только два изменения:

— изменится определение отступа M_i :

$$M_i = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus \{y_i\}} \Gamma_y(x_i).$$

— в алгоритме ComBoost на шаге 3 придётся решать, за какой класс строить очередной базовый алгоритм, кроме того, немного изменится шаг 7 (пересчёт отступов).

Преобразование простого голосования во взвешенное

Линейный классификатор над признаками $b_t(x)$:

$$a(x) = \operatorname{sign} \sum_{t=1}^{T} \alpha_t b_t(x),$$

1. Метод обучения: SVM, логистическая регрессия, и т.п.:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}\left(y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)\right) \to \min_{\alpha}.$$

- 2. Регуляризация: $\alpha_t\geqslant 0$ либо LASSO: $\sum\limits_{t=1}^{I}|\alpha_t|\leqslant \varkappa$.
- 3. Наивный байесовский классификатор приводит к простому аналитическому решению:

$$\alpha_t = \ln \frac{1 - \rho_t}{\rho_t}, \quad t = 1, \dots, T,$$

где p_t — оценка вероятности ошибки базового алгоритма b_t .

Случайный лес (Random Forest)

Обучение случайного леса:

- бэггинг над решающими деревьями, без pruning
- признак в каждой вершине дерева выбирается из случайного подмножества k из n признаков
- ullet регрессия: $k=\lfloor n/3 \rfloor$; классификация: $k=\lfloor \sqrt{n} \rfloor$

Подбор числа деревьев T по критерию *out-of-bag*: число ошибок на объектах x_i , если не учитывать голоса деревьев, для которых x_i был обучающим:

out-of-bag(a) =
$$\sum_{i=1}^{\ell} \left[\operatorname{sign} \left(\sum_{t=1}^{T} \left[x_i \notin U_t \right] b_t(x_i) \right) \neq y_i \right] \rightarrow \min$$

Это несмещённая оценка обобщающей способности.

Breiman L. Random Forests // Machine Learning. 2001.

Квазилинейная композиция (смесь алгоритмов)

Смесь алгоритмов (Mixture of Experts)

$$a(x) = C\left(\sum_{t=1}^{T} g_t(x)b_t(x)\right),$$

 $b_t \colon X \to \mathbb{R}$ — базовый алгоритм,

 $g_t \colon X o \mathbb{R}$ — функция компетентности, шлюз (gate).

Чем больше $g_t(x)$, тем выше доверие к ответу $b_t(x)$.

Условие нормировки: $\sum\limits_{t=1}^{T}g_{t}(x)=1$ для любого $x\in X$.

Нормировка «мягкого максимума» SoftMax: $\mathbb{R}^T \to \mathbb{R}^T$:

$$\tilde{g}_t(x) = \mathsf{SoftMax}_tig(g_1(x), \dots, g_T(x); \gammaig) = rac{e^{\gamma g_t(x)}}{e^{\gamma g_1(x)} + \dots + e^{\gamma g_T(x)}}.$$

При $\gamma o \infty$ SoftMax выделяет максимальную из T величин.

Вид функций компетентности

Функции компетентности выбираются из содержательных соображений и могут определяться:

- признаком f(x): $g(x; \alpha, \beta) = \sigma(\alpha f(x) + \beta), \quad \alpha, \beta \in \mathbb{R};$
- ullet неизвестным направлением $lpha \in \mathbb{R}^n$:

$$g(x; \alpha, \beta) = \sigma(x^{\mathsf{T}}\alpha + \beta), \quad \alpha \in \mathbb{R}^n, \ \beta \in \mathbb{R};$$

ullet расстоянием до неизвестной точки $lpha\in\mathbb{R}^n$:

$$g(x; \alpha, \beta) = \exp(-\beta ||x - \alpha||^2), \quad \alpha \in \mathbb{R}^n, \ \beta \in \mathbb{R};$$

где $\alpha,\beta\in\mathbb{R}$ — параметры, *частично* обучаемые по выборке, $\sigma(z)=\frac{1}{1+e^{-z}}$ — сигмоидная функция.

Выпуклые функции потерь

Функция потерь
$$\mathscr{L}(b,y)$$
 называется *выпуклой* по b , если $orall \ y \in Y, \ orall \ b_1, b_2 \in R, \ orall \ g_1, g_2 \geqslant 0 \colon \ g_1 + g_2 = 1$, выполняется $\mathscr{L}(g_1b_1 + g_2b_2, y) \leqslant g_1\mathscr{L}(b_1,y) + g_2\mathscr{L}(b_2,y).$

Интерпретация: потери растут не медленнее, чем величина отклонения от правильного ответа y.

Примеры выпуклых функций потерь:

$$\mathscr{L}(b,y) = \begin{cases} (b-y)^2 & -\text{ квадратичная (МНК-регрессия);} \\ e^{-by} & -\text{ экспоненциальная (AdaBoost);} \\ \log_2(1+e^{-by}) & -\text{ логарифмическая (LR);} \\ (1-by)_+ & -\text{ кусочно-линейная (SVM).} \end{cases}$$

Пример невыпуклой функции потерь: $\mathscr{L}(b,y) = [by < 0]$.

Основная идея применения выпуклых функций потерь

Пусть $\forall x \; \sum_{t=1}^T g_t(x) = 1$ и функция потерь $\mathscr L$ выпукла.

Тогда Q(a) распадается на T независимых функционалов Q_t :

$$Q(a) = \sum_{i=1}^{\ell} \mathscr{L}\left(\sum_{t=1}^{T} g_t(x_i)b_t(x_i), y_i\right) \leqslant \sum_{t=1}^{T} \underbrace{\sum_{i=1}^{\ell} g_t(x_i)\mathscr{L}\left(b_t(x_i), y_i\right)}_{Q_t(g_t, b_t)}.$$

Итерационный процесс, аналогичный ЕМ-алгоритму:

- 1: начальное приближение функций компетентности g_t ;
- 2: повторять
- 3: **М-шаг:** при фиксированных g_t обучить все b_t ;
- 4: **E-шаг:** при фиксированных b_t оценить все g_t ;
- 5: **пока** значения компетентностей $g_t(x_i)$ не стабилизируются.

Алгоритм МЕ: обучение смеси алгоритмов

Итерационный процесс, аналогичный ЕМ-алгоритму:

Вход: выборка X^{ℓ} , нормированные $(g_t)_{t=1}^T$, параметры T, δ , γ ; Выход: $g_t(x), b_t(x), t=1,\ldots,T$;

- 1: повторять
- 2: $g_t^0 := g_t$ для всех $t = 1, \dots, T$;
- 3: **М-шаг:** при фиксированных g_t обучить все b_t :

$$b_t := \arg\min_{b} \sum_{i=1}^{c} g_t(x_i) \mathcal{L}(b(x_i), y_i), \quad t = 1, \dots, T;$$

4: **E-шаг:** при фиксированных b_t оценить все g_t :

$$g_t := \arg\min_{g_t} \sum_{i=1}^{\ell} \mathscr{L}\bigg(\frac{\sum_{s=1}^{T} e^{\gamma g_s(x_i)} b_s(x_i)}{\sum_{s=1}^{T} e^{\gamma g_s(x_i)}}, y_i\bigg), \quad t = 1, \dots, \textcolor{red}{T};$$

5: нормировать компетентности:

$$(g_1(x_i),\ldots,g_T(x_i)) := \mathsf{SoftMax}(g_1(x_i),\ldots,g_T(x_i);\gamma);$$

6: пока
$$\max_{t,i} \left| g_t(x_i) - g_t^0(x_i) \right| > \delta$$
.

Обучение смеси с автоматическим определением числа Т

```
Вход: выборка X^{\ell}, параметры \ell_0, \mathcal{L}_0, \delta, \gamma;
Выход: T, g_t(x), b_t(x), t = 1, ..., T;
 1: начальное приближение:
```

$$b_1 := \arg\min_{b} \sum_{i=1}^{\ell} \mathscr{L}(b(x_i), y_i), \quad g_1(x_i) := 1, \quad i = 1, \dots, \ell;$$

- 2: для всех t = 2, ..., T
- множество трудных объектов: 3:

$$X_t := \{x_i \colon \mathcal{L}(a_{t-1}(x_i), y_i) > \mathcal{L}_0\};$$

- если $|X_t| \leqslant \ell_0$ то выход; 4:
- $b_t := \arg\min_{b} \sum_{x_i \in X_t} \mathscr{L}(b(x_i), y_i);$ 5:

6:
$$g_t := \arg\min_{g_t} \sum_{i=1}^{\ell} \mathscr{L}\left(\sum_{s=1}^{t} g_s(x_i) b_s(x_i), y_i\right);$$

7:
$$(g_s, b_s)_{s=1}^t := ME(X^{\ell}, (g_s)_{s=1}^t, t, \frac{\delta}{\delta}, \gamma);$$

Резюме

- Композиции позволяют решать сложные задачи, которые плохо решаются отдельными алгоритмами
- Бустинг обучает базовые алгоритмы по очереди
- Бэггинг обучает базовые алгоритмы независимо
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности T
- ComBoost короткие композиции из сильных базовых
- Градиентный бустинг наиболее общий из всех бустингов
- XGBoost наиболее популярный вариант GB
- Смеси алгоритмов модели областей компетентности