Homework 11

Neha Maddali November 13, 2023

Problem 8.4

Part a:

They are equal.

Part b:

 $MSE(\hat{\theta}) > V(\hat{\theta})$

Problem 8.6

Part a:

$$E(\hat{\theta}_3) = E(a\hat{\theta}_1 + (1-a)\hat{\theta}_2)$$

$$E(\hat{\theta}_3) = aE(\theta_1) + (1-a)E(\hat{\theta}_2)$$

$$E(\hat{\theta}_3) = a\theta + (1-a)\theta = \theta$$

Part b:

If $\hat{\theta}_1$ and $\hat{\theta}_2$ are independent.

$$V(\hat{\theta_3}) = V(a\hat{\theta_1} + (1-a)\hat{\theta_2}) = a^2V(\hat{\theta_1}) + (1-a)^2V(\hat{\theta_2})$$

To minimize the variance of $\hat{\theta_3}$, then constant a can be determined like so: $V(\hat{\theta_3}) = a^2 \sigma^2_1 + (1 - a)^2 \sigma^2_2$

a)
$$\sigma^{2}(\theta) = 0$$
 $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ So $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$ $\sigma^{2}(\theta) = 0$

Problem 8.8

Part a:

 $\hat{\sigma_1}, \hat{\sigma_2}, \hat{\sigma_3}, \hat{\sigma_5}$ are simple linear combinations of $Y_1, Y_2 and Y_3$. So it can be shown that these four estimators are unbiased. $\hat{\sigma_4}$ has an exponential distribution with mean $\theta/3$ so this estimator is biased.

Part b:

$$V(\hat{\sigma_1}) = \theta^2$$

$$V(\hat{\sigma}_2) = \theta^2/2$$

$$V(\hat{\sigma_3}) = 5\theta^2/9$$

$$V(\hat{\sigma_5}) = \theta^2/9$$

So the estimator $V(\hat{\sigma}_5)$ is unbiased and also has the smallest variance.

Problem 8.12

Part a:

There is uniform distribution. So $E(Y_i) = \frac{\theta + \theta + 1}{2} = \theta + 0.5$. So $E(\bar{Y}) = \theta + 0.5$ and $B(\bar{Y}) = 0.5$

1

Part b:

Based on \bar{Y} , the unbiased estimator is $\bar{Y} - 0.5$.

$$V(\bar{Y}) = \frac{1}{12n}$$
. So $MSE(\bar{Y}) = \frac{1}{12n} + 0.25$

Problem 8.18

The density function for $Y_{(1)}$ is like so:

$$g_{(1)}(y) = \frac{n}{\theta} (1 - \frac{y}{\theta})^{n-1}, 0 \le y \le \theta.$$

Then the $E(Y_{(1)}) = \theta/(n+1)$ and the unbiased estimator for θ is $(n+1)Y_{(1)}$

Problem 9.2

Part a:

$$E(\hat{\mu_1}) = 1/2(E(Y_1) + E(Y_2)) = 1/2(\mu + \mu) = \mu$$

$$E(\hat{\mu}_1) = \frac{1}{2}(E(1_1) + E(1_2))$$

$$E(\hat{\mu}_2) = \frac{\mu}{4} + \frac{(n-2)\mu}{2(n-2)} + \frac{\mu}{4} = \mu$$

$$E(\hat{\mu_3}) = E(\bar{Y}) = \mu$$

So all three estimators are unbiased.

Part b:

First, find the variances of the three estimators.

$$V(\hat{\mu_1}) = \frac{1}{4}(\sigma^2 + \sigma^2) = 1/2\sigma^2$$

$$V(\hat{\mu_1}) = \frac{1}{4}(\sigma^2 + \sigma^2) = 1/2\sigma^2$$

$$V(\hat{\mu_2}) = \frac{\sigma^2}{16} + \frac{(n-2)\sigma^2}{4(n-2)^2} + \frac{\sigma^2}{16} = \frac{\sigma^2}{8} + \frac{\sigma^2}{4n-8}$$

$$V(\hat{\mu_3}) = \frac{\sigma^2}{n}$$

So the efficiency $(\hat{\mu_3}, \hat{\mu_2}) = \frac{n^2}{8(n-2)}$ and efficiency $(\hat{\mu_3}, \hat{\mu_1}) = \frac{n}{2}$

Problem 9.3

Part a:

The density function of
$$\hat{\theta}_2 = Y_{(n)} : g_n(y) = n(y-\theta)^{n-1}, \theta \le y \le \theta + 1.$$

So
$$E(\hat{\theta_1}) = E(\bar{Y}) - 1/2 = \theta + 1/2 - 1/2 = \theta$$
. and $E(\hat{\theta_2}) = E(Y_{(n)}) - \frac{n}{n+1} = \theta$

Part b:

Find the variances:

$$V(\hat{\theta_1}) = V(\bar{Y}) = \frac{\sigma^2}{n} = 1/12n$$

$$V(\hat{\theta}_2) = V(Y_{(n)}) = \frac{n}{(n+2)(n+1)^2}$$

$$V(\hat{\theta_2}) = V(Y_{(n)}) = \frac{n}{(n+2)(n+1)^2}$$

So efficiency $(\hat{\theta_1}, \hat{\theta_2}) = \frac{12n^2}{(n+2)(n+1)^2}$

Problem 9.7

We know that the estimator $\hat{\theta_1}$ is an unbiased estimator so $MSE(\hat{\theta_1}) = V(\hat{\theta_1}) = \theta^2$. The $\hat{\theta_2} = \bar{Y}$ is unbiased for θ and $V(\hat{\theta_2}) = \frac{\sigma^2}{n} = \frac{\theta^2}{n}$. So the efficiency $(\hat{\theta_1}, \hat{\theta_2}) = \frac{1}{n}$