ELL"] =, VAY [L] + ELD]

- 1-125+ 70.25 = >1.375

3. X is a uniform continuous random variable with $P[X \le 6] = 0.5$ and Var[X] = 12. Find the PDF $f_X(x)$ of X. (15pts)

4. X is a Gaussian random variable with P[X > 0] = 0.5 and $E[X^2] = 16$. Find P[|X| > 6]. (15pts)

5. X is a continuous random variables with the PDF

$$f_X(x) = \begin{cases} x/2 & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

Find E[X] and Var[X]. (20pts)

ELY] =
$$\int_{-\infty}^{\infty} x f_{X}(y) dy$$
 ELX] = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} x f_{X}(y) dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$
= $\int_{0}^{\infty} \frac{1}{2} x^{3} dy$ = $\int_{0}^{\infty} \frac{1}{2} x^{3}$