Physics Courses

V A P E N A T I O N

EPITA S3 [2017]

Contents

1	Electrostatics			
	1.1	Discrete distribution of charges		
			Definitions	
		1.1.2	Electric field and force	2
		1.1.3	Electric potential	;
		1.1.4	Units	;
		1.1.5	Field lines	
2	Continuous state			4
3	Gauss'Theorem			5
4	Electrokinetics			6

Electrostatics

1.1 Discrete distribution of charges

1.1.1 Definitions

• Discrete distribution : We are for the moment only considering point like charges $q_i, i = 1,..., n \neq 0$ or q < 0

Remember that charge has a unit of Coulomb (C).

• The elementary charge $e=1, 6*10^{-19}C$, this corresponds to the electric monopole, the so-called electron : $q_{e-}=-e$

1.1.2 Electric field and force

a) Electric field \vec{E}

• Any charge q_i creates an electric field at point M : $\vec{E}_i(M)$, which reads: *SCHEMA*

$$\vec{E}_i(M) = k \frac{q_i}{r^2} \vec{u}_i = k \frac{q_i}{||O_i M||^3} \vec{O}_i M$$

 \bullet If we now consider all charges, the total electric field is just given by superposition theorem:

$$\vec{E_{tot}}(M) = \sum_{i=0}^{n} \vec{E_i}(M) = \sum_{i=0}^{n} k \frac{q_i}{r^2} \vec{v_i}$$

• k is the constant $\frac{1}{4\pi\epsilon_0}$ and $\vec{u_i}$ depends on the point O_i .

$$\vec{E_{tot}} = k \sum_{i} \frac{q_i}{r^2} \vec{u_i}$$

b)Induced force (s)

Let's introuce charge q_m at point M. The distribution acts on charge q_m and this force reads :

$$\vec{F_{tot}}(M) = q_m E_{tot}(M) = \sum \vec{F_i}(M)$$

1.1.3 Electric potential

 $q_i,\ i=1,..,n$ Charge q_i creates at point M a potential : $V(M)=k\frac{q_i}{r_i}$ And total potential $V_{tot}(M)=\sum V_i(M)$

1.1.4 Units

- \bullet [Potential] Volt (V)
- •[Electric field] Volt/Meter $(V.m^{-2})$
- $\bullet [\text{Electric force}] \ \text{Newton} \ (N) = (C.V.m^{-1}) = [k][C]^2[m]^{-2} = (kg.m.s^{-2})$
- •[Energy] Joule (J) Newton * Meter (N.m)
- •[k] = $(kg.m^3.C^{-2}.s^{-2}) = [\epsilon_0]^{-1}$
- $\bullet[\mathbf{g}] = (m.s^2)$

1.1.5 Field lines

Consider two charges q_i and q_j *SCHEMA* For instance $q_i > 0$, *SCHEMA*

Continuous state

Gauss'Theorem

Electrokinetics