Clustering (unsupervised learning)

JJ Valletta

March 4, 2015

www.exeter.ac.uk/as/rdp/

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

JJ Valletta Clustering March 4, 2015 2 / 23

- What is clustering?

JJ Valletta March 4, 2015 2 / 23

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

Formal definition

Identifying homogeneous and well separated groups of data points (features) by some similarity measure

Formal definition

Identifying homogeneous and well separated groups of data points (features) by some similarity measure

Informal definition

The process of stereotyping your data e.g these are round(ish) faces, these are short(ish) people

Formal definition

Identifying homogeneous and well separated groups of data points (features) by some similarity measure

Informal definition

The process of stereotyping your data e.g these are round(ish) faces, these are short(ish) people

But how many groups?

An unsolved problem. Issue lies in the subjectivity of the word **similar** and its mathematical definition

Are they similar?

Are they similar?

What are we after?

- High intra-cluster similarity
- Low inter-cluster similarity
- Elucidate on how the data is structured (maybe identify outliers)

Where is clustering used?

Biological systematics: finding organisms sharing similar attributes

Computer vision: segmenting a digital image for object recognition

Epidemiology: identifying geographical clusters of diseases

Gene expression: discovering co-regulated genes

Medical imaging: differentiating between tissues

Mathematical chemistry: grouping compounds by topological indices

Clustering is particularly useful in applications where labelling the data is very time consuming/expensive

JJ Valletta Clustering March 4, 2015 7 / 23

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statis distributions

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

What is the distance $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

What is the distance $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

example: $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^2$

Manhattan

$$|a_1 - b_1| + |a_2 - b_2|$$

• Euclidean

• Minkowski (p-norm)

in general: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^d$

$$\sum_{i=1}^{d} |a_i - b_i| = \|\mathbf{a} - \mathbf{b}\|_1$$

$$\left(\sum_{i=1}^{d} (a_i - b_i)^2\right)^{\frac{1}{2}} = \|\mathbf{a} - \mathbf{b}\|_2$$

What is the distance $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

example: $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^{2^l}$

- Manhattan $|a_1 b_1| + |a_2 b_2|$
- Euclidean $\sqrt{(a_1-b_1)^2+(a_2-b_2)^2}$
- Minkowski (p-norm) $p/|a_1-b_1|^p + |a_2-b_2|^p$

in general: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^d$

$$\sum_{i=1}^{d} |a_i - b_i| = \|\mathbf{a} - \mathbf{b}\|_1$$

$$\left(\sum_{i=1}^{d} (a_i - b_i)^2\right)^{\frac{1}{2}} = \|\mathbf{a} - \mathbf{b}\|_2$$

 $\left(\sum_{i=1}^{d} |a_i - b_i|^p\right)^{\frac{1}{p}} = \|\mathbf{a} - \mathbf{b}\|_p$

What is the distance $d(\mathbf{a},\ \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

9 / 23

example: $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^2$

- Manhattan $|a_1 b_1| + |a_2 b_2|$
- Euclidean $\sqrt{(a_1-b_1)^2+(a_2-b_2)^2}$
- Minkowski (p-norm) $\sqrt[p]{|a_1-b_1|^p+|a_2-b_2|^p}$

in general: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^d$

$$\sum_{i=1}^{d} |a_i - b_i| = \|\mathbf{a} - \mathbf{b}\|_1$$

$$\left(\sum_{i=1}^{d} (a_i - b_i)^2\right)^{\frac{1}{2}} = \|\mathbf{a} - \mathbf{b}\|_2$$

$$\left(\sum_{i=1}^{d} |a_i - b_i|^p\right)^{\frac{1}{p}} = \|\mathbf{a} - \mathbf{b}\|_p$$

JJ Valletta Clustering March 4, 2015

What is the distance $d(\mathbf{a},\ \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

example: $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^2$ in general: $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^d$ • Canberra $\frac{|a_1-b_1|}{|a_1|+|b_1|} + \frac{|a_2-b_2|}{|a_2|+|b_2|}$ • Cosine similarity $\frac{a_1b_1+a_2b_2}{\sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2}}$ • Correlation distance $\frac{\sum_{i=1}^d a_ib_i}{\sqrt{\sum_{i=1}^d (a_i)^2}\sqrt{\sum_{i=1}^d (b_i)^2}} = \frac{\mathbf{a}.\mathbf{b}}{\|a\|_2\|b\|_2}$ • Correlation distance

JJ Valletta Clustering March 4, 2015 10 / 23

What is the distance $d(\mathbf{a},\ \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

example: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^2$

Canberra

$$\frac{|a_1 - b_1|}{|a_1| + |b_1|} + \frac{|a_2 - b_2|}{|a_2| + |b_2|}$$

- Cosine similarity $\frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}}$
- Correlation distance

in general: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^d$

$$\sum_{i=1}^{d} \frac{|a_i - b_i|}{|a_i| + |b_i|}$$

 $\sqrt{\sum_{i=1}^{d} (a_i)^2} \sqrt{\sum_{i=1}^{d} (b_i)^2}$

Pearson (ρ) , Spearman, Kendall (τ)

What is the distance $d(\mathbf{a}, \ \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

example: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^2$

- Canberra $\frac{|a_1-b_1|}{|a_1|+|b_1|} + \frac{|a_2-b_2|}{|a_2|+|b_2|}$
- Cosine similarity $\frac{a_1b_1+a_2b_2}{\sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2}}$
- Correlation distance

in general: $\mathbf{a}, \; \mathbf{b} \in \mathbb{R}^d$

$$\sum_{i=1}^{d} \frac{|a_i - b_i|}{|a_i| + |b_i|}$$

$$\frac{\sum_{i=1}^{d} a_i b_i}{\sqrt{\sum_{i=1}^{d} (a_i)^2} \sqrt{\sum_{i=1}^{d} (b_i)^2}} = \frac{\mathbf{a.b}}{\|a\|_2 \|b\|_2}$$

Pearson (ρ) , Spearman, Kendall (τ)

What is the distance $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} ?

example: $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^2$

- Canberra $\frac{|a_1-b_1|}{|a_1|+|b_1|} + \frac{|a_2-b_2|}{|a_2|+|b_2|}$
- Cosine similarity $\frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}}$
- Correlation distance

in general: $\mathbf{a},\ \mathbf{b} \in \mathbb{R}^d$

$$\sum_{i=1}^{d} \frac{|a_i - b_i|}{|a_i| + |b_i|}$$

$$\frac{\sum_{i=1}^{d} a_i b_i}{\sqrt{\sum_{i=1}^{d} (a_i)^2} \sqrt{\sum_{i=1}^{d} (b_i)^2}} = \frac{\mathbf{a.b}}{\|a\|_2 \|b\|_2}$$

Pearson (ρ) , Spearman, Kendall (τ)

10 / 23

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- Select k centroids at random
- ② Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- \bullet Select k centroids at random
- ② Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- $oldsymbol{1}$ Select k centroids at random
- 2 Calculate distance between centroids and each data point
- Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- \bigcirc Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- $oldsymbol{1}$ Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- 4 Compute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- \bullet Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- 4 Compute new centroids; the average of all data points in that cluster
- **6** Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- $oldsymbol{1}$ Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- 4 Compute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

Note: k-means clustering should *only* be used with continuous data

Pros

- Simple and intuitive
- Computationally inexpensive/fast

Cons

- What is *k*?
- · Only applicable to continuous data where a mean is defined
- No guarantee of a global optimum solution

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- Assign each data point as its own cluster
- ② Compute distance between each cluster
- Merge the closest pair into a single cluster
- Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- Merge the closest pair into a single cluster
- Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- Merge the closest pair into a single cluster
- Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- 3 Merge the closest pair into a single cluster
- @ Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- 3 Merge the closest pair into a single cluster
- 4 Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- Assign each data point as its own cluster
- 2 Compute distance between each cluster
- 3 Merge the closest pair into a single cluster
- 4 Repeat 2 to 3 until you're left with one cluster

Note: Step 3 is *key*, the distance method and linkage function dictate the final result

How do we calculate the inter-cluster distance? The linkage function

```
Centroid: mean of data points (same as in k-means)
```

Single: distance between closest pair of points

Complete: distance between furthest pair of points

How do we calculate the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of points

How do we calculate the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of

points

Complete: distance between furthest pair of points

How do we calculate the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of

points

How do we calculate the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of

points

Average: mean pairwise distance between

all points

Hierarchical clustering in gene expression studies

Hierarchical clustering

Pros

- ullet No need to specify k
- Results can be visualised nicely irrespective of number of dimensions

Cons

- Can be computationally expensive
- Interpretation is subjective. Where should we draw the line (to separate clusters)?
- Choice of distance method and linkage function can significantly change the result

```
library(mclust)
fit <- Mclust(data, G)
# data - data frame
# G - no. of Gaussians</pre>
```

1 Fit k multivariate Gaussian distributions

The Expectation-Maximisation (EM) algorithm is used to estimate the parameters π_i (mixing coefficients), μ_i and σ_i

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \Sigma_i)$$
 and $\sum_{i=1}^{k} \pi_i = 1$

Can be seen as a "soft" version of k-means because *every* point is part of *every* cluster but with varying levels of membership

19 / 23

Pros

- Intuitive interpretation
- Computationally inexpensive

Cons

- What is k?
- Strong assumption on the data (normality)
- No guarantee of a global optimum solution

How do we determine the correct number of clusters?

Short answer: you can't

Because data is unlabelled the correct number of k is ambiguous

However we can plot some indices as a function of k to help us evaluate cluster validity:

- Within cluster sum of square distances
- Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) when using distribution-based methods
- Silhouette plot $-1 \ge s(i) \le 1$ where:
 - s(i) = 1, ith datum is appropriately clustered (good)
 - s(i)=0, ith datum is borderline between two clusters (meh.)
 - s(i) = -1, ith datum should be in neighbouring cluster (bad)

How do we determine the correct number of clusters?

How do we determine the correct number of clusters?

The NbClust package provides 30 different cluster validity metrics. A majority vote can be taken to deduce the appropriate number of clusters

```
library(NbClust)
NbClust(data, distance, method, min.nc, max.nc, index)
# data - data frame
# distance - similarity measure e.g "euclidean"
# method - clustering algorithm e.g "kmeans"
# min.nc - min number of clusters to consider
# max.nc - max number of clusters to consider
# index - which indices to compute, "all" computes all of them
```

Note: These indices can *only* give us a ballpark range for the correct number of clusters

JJ Valletta Clustering March 4, 2015 23 / 23