Álgebra Linear - Lista de Exercícios 1

Yuri F. Saporito

- 1. Quais condições para y_1, y_2 e y_3 fazem com que os pontos $(0, y_1), (1, y_2)$ e $(2, y_3)$ caiam numa reta?
- 2. Se (a,b) é um múltiplo de (c,d) e são todos não-zeros, mostre que (a,c) é um múltiplo de (b,d). O que isso nos diz sobre a matriz

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}?$$

- 3. Se \mathbf{w} e \mathbf{v} são vetores unitários, calcule os produtos internos de (a) \mathbf{v} e $-\mathbf{v}$; (b) $\mathbf{v} + \mathbf{w}$ e $\mathbf{v} \mathbf{w}$; (c) $\mathbf{v} 2\mathbf{w}$ e $\mathbf{v} + 2\mathbf{w}$.
- 4. Se $\|\mathbf{v}\| = 5$ e $\|\mathbf{w}\| = 3$, quais são o menor e maior valores possíveis para $\|\mathbf{v} \mathbf{w}\|$? E para $\mathbf{v} \cdot \mathbf{w}$?
- 5. Considere o desenho dos vetores \mathbf{w} e \mathbf{v} abaixo. Hachure as regiões definidas pelas combinações lineares $c\mathbf{v} + d\mathbf{w}$ considerando as seguintes restrições: c+d=1 (não necessariamente positivos), $c,d\in[0,1]$ e $c,d\geq 0$ (note que são três regiões distintas).

- 6. É possível que três vetores em \mathbb{R}^2 tenham $\mathbf{u} \cdot \mathbf{v} < 0$, $\mathbf{v} \cdot \mathbf{w} < 0$ e $\mathbf{u} \cdot \mathbf{w} < 0$? Argumente.
- 7. Sejam x, y, z satisfazendo x + y + z = 0. Calcule o ângulo entre os vetores (x, y, z) e (z, x, y).
- 8. Resolva o sistema linear abaixo:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Escreva a solução \mathbf{x} como uma matriz A vezes o vetor \mathbf{b} .

9. Repita o problema acima para a matriz:

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}.$$

10. Considere a equação de recorrência $-x_{i+1} + 2x_i - x_{i-1} = i$ para i = 1, 2, 3, 4 com $x_0 = x_5 = 0$. Escreva essas equações em notação matricial $A\mathbf{x} = \mathbf{b}$ e ache \mathbf{x} .

1

11. (Bônus) Use o seguinte código em numpy para gerar um vetor aleatório $\mathbf{v} = \text{numpy.random.normal}(\text{size=[3,1]})$ em \mathbb{R}^3 . Fazendo $\mathbf{u} = \mathbf{v}/\|\mathbf{v}\|$ criamos então um vetor unitário aleatório. Crie 30 outros vetores unitários aleatórios \mathbf{u}_j (use numpy.random.normal(size=[3,30])). Calcule a média dos produtos internos $|\mathbf{u} \cdot \mathbf{u}_j|$ e compare com o valor exato $\frac{1}{\pi} \int_0^{\pi} |\cos \theta| d\theta = \frac{2}{\pi}$.