Содержание

Рормулы	
Распределения	
Нормальное распределение	
Гамма распределение	
Распределение Парето	
Распределение Вейбулла	
Распределение Бернулли	
Распределение Пуассона	
Замечание	

Инструкция

Программа моделирует создание структур разной периодичности в стиле бус Бахо. На замкнутой красной нити последовательно появляются бусы, расстояние между которыми определяется значением случайной величины. Бусы можно создавать в ручном режиме ("Получить новое значение") либо запустить ("Запустить") процесс с определенным периодом обновления ("Замедление процесса") и позже остановить ("Остановить") либо сбросить ("Сбросить").

Введем некоторые обозначения:

 ξ - случайная величина равная расстоянию между последовательно сгенерированным бусами

```
p(x) := p(\xi = x) - плотность распределения случайной величины
```

 Δx_i - расстояние между i и i+1 бусами

 $\Rightarrow x_k = \sum_{i=1}^{k-1} \Delta x_i$ - координата k бусины

Исходя из наших определений Δx_i - реализация случайной величины ξ

Пользователь может отслеживать следующие выборочные характеристики, где выборкой является $\{\Delta x_i\}_{i=1}^N$:

- 1. Среднее
- 2. Дисперсия
- 3. Энтропия
- 4. Периодичность
- 5. Эмпирическая плотность распределения

В соответствующем списке можно выбрать вид распределения ξ , были реализованы следующие:

- 1. Нормальное
- 2. Экспоненциальное
- 3. Гамма
- 4. Парето
- 5. Вейбулла
- 6. Бернулли
- 7. Пуассона

Формулы

Для вычисления выборочных значений были использованы следующие формулы:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \Delta x_i$$
 - выборочное среднее $\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (\Delta x_i - \mu)^2$ - выборочная дисперсия $T = 1 - \frac{\sigma^2}{\mu^2}$ - периодичность

Определим эмпирическую плотность распределения следующим образом: $p(\Delta x, x, h) = \frac{1}{N} \sum_{i=1}^{N} I(x < \Delta x_i < x + h)$, где I(x) - индикаторная функция, которая равняется $1 \iff$ выполнено х $S = -\int_{B} p(t, x, h) \log (p(t, x, h)) dt$ - выборочная энтропия

Распределения

Главная цель программы - показать как от распределения ξ зависит вид структуры, поэтому самой важным является выбор распределения и его параметра. Ниже описаны основные распределения и их плотности распределения.

Нормальное распределение

Нормальное распределение задается двумя параметрами $m \in R$ - коэффициент сдвига $\sigma > 0$ - коэффициент масштаба $x \in R$ $\xi \sim N(m,\sigma) \iff p(\xi=x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$ $E_p(\xi) = m$ $D_p(\xi) = \sigma^2$

Рис. 1: Плотность нормального распределения

Гамма распределение

Гамма распределение задается параметрами $\alpha>0$ - параметр формы $\beta>0$ - коэффициент масштаба $x\geq 0$ $\xi\sim\Gamma(\alpha,\beta)\equiv\Gamma(k,\theta)\iff p(\xi=x)=\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}$ $E_p(\xi)=\beta\alpha$ $D_p(\xi)=\beta\alpha^2$

Рис. 2: Плотность гамма распределения

Распределение Парето

Распределение Парето задается параметрами $x_m>0$ - коэффициент масштаба $\alpha>0$ - параметр формы $x\geq x_m$ $\xi\sim Pareto(x_m,\alpha)\iff p(\xi=x)=\frac{\alpha x_m^\alpha}{x^{\alpha+1}}$ $E_p(\xi)=\frac{\alpha x_m}{\alpha-1},\ \alpha>1$ $D_p(\xi)=\left(\frac{x_m}{\alpha-1}\right)^2\frac{\alpha}{\alpha-2},\ \alpha>2$

Рис. 3: Плотность распределения Парето

Распределение Вейбулла

Распределение Парето задается параметрами

 $\lambda>0$ - коэффициент масштаба

k>0 - параметр формы

 $x \ge 0$

 $E_p(\xi) = \lambda \Gamma(1 + 1/k)$ $D_p(\xi) = \lambda^2 \Gamma(1 + 2/k) - (E_p(\xi))^2$

Рис. 4: Плотность распределения Вейбулла

Распределение Бернулли

Распределение Бернулли задается параметром р $p\in[0,1]$ $x\in\{0,1\}$ $\xi\sim Br(p)\iff p(\xi=1)=p;\ p(\xi=0)=1-p$ $E_p(\xi)=p$ $D_p(\xi)=p(1-p)$

Распределение Пуассона

Распределение Пуассона задается параметром

$$\begin{array}{l} \lambda > 0 \\ k \in \{0, 1, 2, \dots\} \\ \xi \sim Poiss(\lambda) \iff p(\xi = k) = \frac{e^{-\lambda} \lambda^k}{k!} \\ E_p(\xi) = \lambda \\ D_p(\xi) = \lambda \end{array}$$

Рис. 5: Плотность распределения Пуассона

Замечание

Для некоторых распределений в программе введен коэффициент масштаба k>0 идейно он отображает $\xi\to k\xi$

Субпуассоновские и суперпуассоновские процессы

Выделим 2 вида процесса, на основе их периодичности:

- 1. Процесс, для которого $T \in (0,1]$ будем называть субпуассоновским
- 2. Процесс, для которого T < 0 будем называть суперпуассоновский

В первом случае мы видим отрицательную корреляцию между импульсами. Появление одного уменьшает вероятность появления другого в ближайшем будущем, а при суперпуассоновской статистике корреляции положительные. В программе соответствующие процессы получаются, например, с помощью распределений Pareto(30,100) и $\Gamma(0.01,0.01)$.

Наглядный пример двух статистик дают лисицы и лисички. Первые тщательно охраняют свою территорию определенного размера. Эта территория обозначена метками, все другие лисицы с нее прогоняются. Поэтому, встретив одну лису маловероятно встретить другую в ближайшее время. А лисички растут колониями, принадлежащими к одной микоризе, поэтому, найдя одну, есть большая вероятность найти следующую. Это приводит к суперпуассоновской статистике.