

Labor Physik - Versuch S2

Bestimmung der Schallgeschwindigkeit mit dem Resonanzrohr

Marius Neumann & Nico Herkner

17. November 2017

Inhaltsverzeichnis

1	Theorie	1
2	Versuch	1
3	Versuchsdurchführung	1
4		
	4.5 Zusammenfassung der Ergebnisse und Vergleich mit Literaturwert	
5	Geräteliste	5
A	nhang	5
6	Messprotokoll	6

1 Theorie

Wir haben uns anhand [1, 2, 3] mit den genannten Themen vertraut gemacht und uns die Versuchsanleitung sorgfältig durchgelesen. Uns sind keine weiteren Fragen offengeblieben. Des weiteren haben wir uns die Vorbereitungsstichpunkte genau angeschaut.

2 Versuch

Wir haben uns sorgfältig mit dem Versuchsaufbau beschäftigt. Die Skizze zum Versuchsaufbau befindet sich in der Versuchsanleitung.

3 Versuchsdurchführung

Wir haben die Messung, wie im Laborumdruck beschrieben, für vier verschiedene Messungen durchgeführt und die Messwerte im Messprotokoll eingetragen. Siehe Tabelle 6.1 bis 6.5.

4 Auswertung

4.1 Berechnung von $\overline{\Delta l_n}$

Die Tabellen 4.1 bis 4.4 zeigen unsere Messergebnisse mit den dazu gehörigen Differenzen. Δl_n wurde wie folgt berechnet:

$$\Delta l_n = l_{max,n} - l_{min,n} \tag{4.1}$$

Tabelle 4.1: Messwerte mit berechneten Differenzen für die 1. Messung (500 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,5	98,5	98,4	98,6	98,6	98,8	98,7	98,5	98,8	98,8	98,6
$l_{min,1}$	6,0	6,0	6,1	6,0	6,1	6,1	6,1	6,0	6,0	6,1	6,1
Δl_1	92,5	92,5	92,3	92,6	92,5	92,7	92,6	92,5	92,8	92,7	92,6

Tabelle 4.2: Messwerte mit berechneten Differenzen für die 2. Messung (1000 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,5	98,5	98,4	98,6	98,6	98,8	98,7	98,5	98,8	98,8	98,6
$l_{min,1}$	6,0	6,0	6,1	6,0	6,1	6,1	6,1	6,0	6,0	6,1	6,1
Δl_1	92,5	92,5	92,3	92,6	92,5	92,7	92,6	92,5	92,8	92,7	92,6

Tabelle 4.3: Messwerte mit berechneten Differenzen für die 3. Messung (1500 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,3	98,2	98,1	98,2	98,3	98,4	98,4	98,3	98,5	98,5	98,3
$l_{min,1}$	7,5	7,5	7,5	7,6	7,6	7,7	7,7	7,8	7,8	7,8	7,7
Δl_3	90,8	90,7	90,6	90,6	90,7	90,7	90,7	90,5	90,7	90,7	90,7

Tabelle 4.4: Messwerte mit berechneten Differenzen für die 4. Messung (2000 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,4	98,5	98,6	98,3	98,1	98,1	98,1	98,0	97,8	98,0	98,2
$l_{min,1}$	3,7	3,6	3,6	3,6	3,7	3,5	3,5	3,5	3,5	3,6	3,6
Δl_4	94,7	94,9	95,0	94,7	94,4	94,6	94,6	94,5	94,3	94,4	94,6

4.2 Berechnung der Wellenlänge λ

Abbildung 4.1 zeigt die stehende Welle im Resonanzrohr mit den dazugehörigen Längenbeziehungen. Die Anzahl der Resonanzen ist in blau eingezeichnet, wobei bei der Resonanz l_{min} mit eins zu zählen begonnen wurde.

Frau Dr. Nicolaus Labor Physik - Versuch S2 Auswertung

Abbildung 4.1: Veranschaulichung der Stehenden Welle im Resonanzrohr mit Wellenparametern

Aus der Abbildung lässt sich folgender Zusammenhang ableiten:

$$\lambda_n = \frac{\Delta l_n}{n-1} \cdot 2 \tag{4.2}$$

Mit dem Mittelwert aus 4.1 und der Gleichung wurden für jede der vier Messung die Wellenlänge λ berechnet und in Tabelle 4.5 dargestellt.

Tabelle 4.5: Berechnete Wellenlänge für die vier Messungen

Messung	$\overline{\Delta l_n}$ in cm	$\mid n \mid$	λ in cm
1	$92,\!57$	4	61,71
2	68,04	5	34,02
3	90,67	9	22,67
4	94,61	12	17,20

4.3 Berechnung der Schallgeschwindigkeit c

Die Schallgeschwindigkeit c wurde wie folgt berechnet und ist in Tabelle 4.6 für jede Messung zu finden.

$$c_n = f_n \cdot \lambda \tag{4.3}$$

Tabelle 4.6: Ergebnisse der Berechnung der Schallgeschwindigkeit

Messung	f in Hz	λ in cm	c in m/s
1	500	61,7	308,6
2	1000	34,0	340,2
3	1510	22,7	342,3
4	2000	17,2	344,0

4.4 Korrektur des Temperatureinflusses

Die Schallgeschwindigkeiten bei 20 °C der vier Messungen wurde mit Gleichung (11) berechnet und sind in Tabelle 4.7

Tabelle 4.7: Werte der Schallgeschwindigkeit bei 20 °C der einzelnen Messungen

Messung	$T_v \text{ in } {}^{\circ}C$	T_n in ${}^{\circ}C$	c in m/s	$c_{exp}(20 {}^{\circ}C) \text{ in } m/s$
1	20,0	20,1	$308,\!57$	308,54
2	20,1	20,0	340,20	340,17
3	20,0	20,1	342,28	342,25
4	20,1	19,9	344,02	344,02

4.5 Zusammenfassung der Ergebnisse und Vergleich mit Literaturwert

Tabelle 4.8 zeigt den Vergleich des experimentellen Wertes c_{exp} und dem Literaturwert $c_{lit}=343,14$ in Luft bei 20 °C.

Tabelle 4.8: Vergleich der Messwerte mit dem Literaturwert bei 20 °C

	0			
Messung	$c_{exp}(20 {}^{\circ}C)$	$c_{lit}(20 {}^{\circ}C)$	abs. Abweichung	rel. Abweichung
1	$308,\!540\ m/s$	$343,14 \ m/s$	$-34,600 \ m/s$	-10,083%
2	$340,\!171\ m/s$	$343,14 \ m/s$	$-2,969 \ m/s$	-0.865 %
3	$342,250 \ m/s$	$343,14 \ m/s$	$-0.890 \ m/s$	-0,259 %
4	$344,018 \ m/s$	$343,14 \ m/s$	$0.878 \ m/s$	0,256 %
Mittelwert	$333,745 \ m/s$	$343,14 \ m/s$	$-9,395 \ m/s$	-2,738 %

4.6 Diskussion der Ergebnisse

5 Geräteliste

Tabelle 5.1: Geräteliste

Nr.	Gerät
1	${ m Lautsprecher}$
2	${ m Resonanzrohr}$
3	Rohr mit Wasser
4	Frequenzgenerator
5	Mikrofon
6	$\operatorname{Verst\ddot{a}rker}$
7	Digitaloszolloskop
8	${ m Thermometer}$

Literatur

- [1] Bleckwedel, Axel: Vorlesung Analysis und Statistik: Mitschrift von Nico Herkner, Sommersemester 2017, Wolfenbüttel, Ostfalia, Hochschule für angewandte Wissenschaften, Fakultät Elektrotechnik.
- [2] Dorn, Friedrich und Bader, Franz: Physik Gymnasium Sek II. Schroedel, Hannover, 2008.
- [3] Turtur, Claus Wilhelm: Vorlesung Physik: Mitschrift von Nico Herkner, Sommersemester 2017, Wolfenbüttel, Ostfalia, Hochschule für angewandte Wissenschaften, Fakultät Elektrotechnik.

Anhang

Frau Dr. Nicolaus Labor Physik - Versuch S2 Messprotokoll

6 Messprotokoll

Tabelle 6.2: Messwerte der 1. Messung

f_1 in Hz										
$T_1 \text{ in } {}^{\circ}C$										
Resonanzen n_1										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,1}$										
$l_{min,1}$										

Tabelle 6.3: Messwerte der 2. Messung

f_2 in Hz										
T_2 in ${}^{\circ}C$										
Resonanzen n_2										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,2}$										
$l_{min,2}$										

Tabelle 6.4: Messwerte der 3. Messung

f_3 in Hz										
T_3 in ${}^{\circ}C$										
Resonanzen n_3										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,3}$										
$l_{min,3}$										

Tabelle 6.5: Messwerte der 4. Messung

f_4 in Hz										
T_4 in ${}^{\circ}C$										
Resonanzen n_4										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,4}$										
$l_{min,4}$										

Zusätzliche Bemerkungen:

Nico Herkner, 70452700 Marius Neumann, 70453277 D1, 17. November 2017

Frau Dr. Nicolaus Labor Physik - Versuch S2 Messprotokoll

Fakultät: Elektrotechnik

																		_
					[[[]	
												\vdash						