

ELTE TTK

ELEKTRONMIKROSZKÓPIA

Olar Alex

Tartalomjegyzék

I.	Elméleti összefoglaló, mérési eszközök	2
II.	Kalibráció	2
III	Egykristrály diffrakció	4
IV	Összegzés	6

I. Elméleti összefoglaló, mérési eszközök

A mérés során egy transzmissziós elektronmikroszkópot használtunk, mellyel különböző mintákat vizsgáltunk meg. A feladatunk a mikroszkóp kameraállandójának meghatározása volt, majd ezután egy Si mintán végeztük diffrakciós mérést.

A mérés során a képeket 'image plate'-re rögzítettük, amiket előhívás után, elektronikus formában megkaptunk.

II. Kalibráció

Polikristályos nikkelt használva a klaibráláshoz igen egyszerű összefüggést kapunk köbös rácsra

$$R_{hkl} = \frac{L\lambda}{a}\sqrt{h^2 + k^2 + l^2} \tag{1}$$

Ahol a a rácsállandó, λ az elektron hullámhossz. Természetesen ez még ennél is egyszerűbb hiszen $d=\frac{a}{\sqrt{h^2+k^2+l^2}}$, ami meg van adva a http://www.energia.mta.hu/~labar/Ni_cF4_04-010-6148.pdf alatt.

1. ábra. A nikkel gyűrűs diffrakciós képe, ami a polikristályos elrendeződés miatt alakul ki. A kalibrációhoz függőlegesen a 754. pixelnél vettem ki egy oszlopot

A kalibrációhoz használt intenzitás csúcsokat ábrázolva

2. ábra. Az intenzitás (255 - intenzitásként) van ábrázolva, hogy a fekete gyűrűk legyenek a csúcsok

A csúcsokra Gauss-függvényeket illesztettem konstans háttérrel. A középső foltra nem illesztettem, csak az azt határoló 8 csúcsra. Ebből kaptam 4 csúcsot, melyek rendre

Csúcs helye [pixel]	Δ csúcs helye [pixel]
257.74	0.11
308.49	0.01
395.56	0.05
422.93	0.11
784.17	0.07
812.01	0.09
899.2	0.07
950.06	0.05

Ebből már könnyen számolhatóak a sugarak, mert csak páronként ki kell vonni egymásból a mért értékeket (első négyből a második négyet). A hibát négyzetes hibaterjedéssel számoltam.

Sorrendben ezek a gyűrűk sugarai, a legintenzívebb pontot kihagyva. Az ezekhez tartozó d távolságokat a korábbi linkről véve:

R [pixel]	$\Delta R [pixel]$	d [Å]
180.62	0.13	2.037180
208.23	0.10	1.764250
295.36	0.07	1.247510
346.16	0.12	1.063880

Egyenest illesztve tehát kapjuk a meredekségből a kameraállandót

3. ábra. Az intenzitás (255 - intenzitásként) van ábrázolva, hogy a fekete gyűrűk legyenek a csúcsok

$$L\lambda = (368.16 \pm 0.21) \ pixel \cdot \text{Å} \tag{2}$$

III. Egykristrály diffrakció

A következőkben mindannyian egy Si kristályról készült, különböző állású diffrakciós képet vizsgáltunk. Az én képem a következő volt

4. ábra. Si egykristály diffrakciós képe

Jelölve az ábrán a kiértékelt pontokat, majd a legintezívebb ponttól számítva K(738,630) [px,px] kiértékelve azok távolságát, az indexelést elvégeztem.

5. ábra. Si egykristály diffrakciós képe, a pontok az azonosításhoz betüzve vannak

Pont	x [pixel]	y [pixel]	$ \Delta x $ [pixel]	$ \Delta y $ [pixel]	Δ [pixel]	d [Å]	Δd [Å]	index
A	640	790	98	160	187.63	1.962	0.001	{220}
В	858	814	120	184	219.67	1.676	0.001	{311}
С	960	652	222	22	223.09	1.650	0.001	{311}
D	1069	490	322	140	351.12	1.049	0.001	{511}
Е	834	466	96	164	190.03	1.937	0.001	{220}
F	618	444	120	186	221.35	1.663	0.001	{311}
G	514	608	224	22	225.08	1.636	0.001	{311}

Ez természtesen még nem jó, hiszen így nem adják ki a lineárkombinációk egymást, permutálást és előjelváltást kell végezni a tükrözési és forgatási szimmetriák miátt. Így

Pont	x [pixel]	y [pixel]	d [Å]	index	egy vektoriálisan helyes indexelés
A	640	790	1.962	{220}	{2,2,0}
В	858	814	1.676	{311}	{-1,3,-1}
С	960	652	1.65	{311}	{-3,1,-1}
D	1069	490	1.0485	{511}	{-5,-1,-1}
E	834	466	1.937	{220}	{-2,-2,0}
F	618	444	1.663	{131}	{1,-3,1}
G	514	608	1.636	{311}	{3,-3,1}

Az indexelés során A-t tetszőlegesen választhattam így azt meghagytam a kezdeti indexelés szerint. A B-t úgy válaszottam meg, hogy a (-1)-szeresével kiadja a C-t, ami

olyan típusú, mint az B csak esetleg permutálva, előjelcserével. Ha helyesen jártam el, akkor meg kellett kapjam a C-t és az E-t amelyek 'vektoriális' összegének ki kellett adnia a D-t. Ez ellenőrizhető.

A labor alatt megbeszéltek alapján a zónatengely a két bázisvektor, jelen esetben A-hoz és B-hez tartozó indexek, de ugyan így lehetne akár C és E is, vektoriális szorzata.

$$\vec{A} \times \vec{B} = (2, 2, 0) \times (-1, 3, -1) = (-2, 2, 8)$$
 $(-1, 4, 4)$

IV. Összegzés

A harmadik fejezetben a leolvasás során vétettem hibát termszetesen, ezért nem túl pontosan illeszkednek a d távolságok a http://www.energia.mta.hu/~labar/Si_cF8_04-002-0118.pdf alatt találhatóakhoz, de nagyjából be lehetett lőni azokat. A legnagyobb bizonytalanságot a D pont jelentette, mert az közelebb volt a (4,2,2)-es index hármashoz, de a többi pont alapján egyértelműen nem annak kellett lennie. Összességénen sikeresnek tekinthető a mérésem.