

NAVY EXPERIMENTAL DIVING UNIT

19950322 079

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT

321 BULLFINCH ROAD PANAMA CITY, FLORIDA 32407-7015

IN REPLY REFER TO:

NAVSEA TASK 92-002 & 92-003

NAVY EXPERIMENTAL DIVING UNIT

REPORT NO. 12-94

EVALUATION OF MAKO 5436 HIGH PRESSURE BREATHING AIR COMPRESSOR

GEORGE D. SULLIVAN April 1994

Approved for public release; distribution unlimited

LCDR, USN
Executive Officer

Submitted by:	Reviewed by;
	al John
G. D. SULLIVAN	R. Í. JOHNSTON
GS-11	GM-13
Test Director	Hyperbaric Engineer
	BOTEKALIZ
	B. D. MCKINLEY
	LCDR, USN
	Senior Projects
	Officer
	J. R. Wale
	J. R. CLARKE
	GM-15
	Seientifie Director

Approved by:	
Hertma C	
BERT MARSH	
CDR, USN	
Commanding Officer	r
·	

Accesi	on For	0 ag - 3a
DTIC	ounced	A
By Distrib	ution/	
А	vailability Co	des
Dist	Avail and/o Special	or
A-1		

	<u>. </u>	REPORT DO	CUMEN	TATION PAG	 E				
1a. REPORT SECURITY CLA	SSIFICAT	ION	11	b. RESTRIC	TIVE MARKIN	IGS			
2a. SECURITY CLASSIFICA	TION AUT	HORITY	3.	. DISTRIBU	JTION/AVAIL	ABILITY OF	REPO	ORT	
2b. DECLASSIFICATION/DO	WNGRADIN	G SCHEDULE		DISTRIBUTE release;	JTION STATE ; distribut	MENT A: A ion is unl	Approv imite	ved for pub ed	olic
4. PERFORMING ORGANIZA NEDU Report #12-94	TION REPO	ORT NUMBER(S)	5.	. MONITORI	ING ORGANIZ	ATION REPO	ORT NU	MBER(S)	
6a. NAME OF PERFORMING (Navy Experimental Diving	ORGANIZ. g Unit	6b. OFFICE SYMBOL (If applicable)	7a	. NAME OF	MONITORING	ORGANIZAT	ION		
6c. ADDRESS (City, State Panama City, Florida 324		IP Code)	7b	. ADDRESS	(City, Sta	te, and ZI	P Cod	e)	
8a. NAME OF FUNDING/SPON ORGANIZATION Naval Sea Systems Comman		6b. OFFICE SYMBOL (If applicable	9.	PROCUREM	ENT INSTRU	MENT IDENT	IFICA	TION NUMBE	R
8c. ADDRESS (City, State	and 71	P Code)	10	SOURCE O	E ELINDANO	Marse	**		
Washington, D.C. 20362-5	101	r code)	PR	OGRAM EMENT NO.	PROJECT N		2	WORK UNIT ACCESSION	
11. TITLE (Include Secur Evaluation of MAKO 5436	ity Clas High Pre	sification) ssure Breathing Ai	r Com	pressor					
12. PERSONAL AUTHOR(S) Mr. David Sullivan									
13a. TYPE OF REPORT FINAL		ME COVERED		14. DATE	OF REPORT (Year,Month	n,Day)	15. PAGE	COUNT
16. SUPPLEMENTARY NOTATI	ON					-		1 10	
17. COSATI CODES FIELD GROUP SU	B-GROUP	_ 18. SUBJECT TERMS	S (Cor	ntinue on i	reverse if	necessary	and i	dentify	
	o anoor	MAKO 5436 His		essure Brea	athina Air	Compressor			
									}
19. ABSTRACT (Continue o	n revers	e if necessary and	ident	tify by blo	ock number)			•	
In response to NAVSEA tame Pressure Breathing Air Compressor, when operation recommends to NAVSEA OOC.	ompresso ng at 500	r from April 1994 1 00 PSI, met Navy di	to May iving	/1994. The community	nis test wa requiremen	s to deter	mine lon t	if the	,
20. DISTRIBUTION/AVAILAB			IC US		ABSTRACT SE	CURITY CLA	SSIFI	CATION	
22a. NAME OF RESPONSIBLE NEDU Library	INDIVIDU		22b.		(Include A	rea Code)	22c.	OFFICE SY	MBOL

CONTENTS

I. INTRODUCTION
II. EQUIPMENT DESCRIPTION
III. TEST PROCEDURE
IV. OBSERVATIONS/RECOMMENDATIONS
A. AIR DELIVERY
B. AIR SAMPLING
C. OIL LUBRICATION
D. MAINTENANCE
E. PRIME MOVER
F. CADMIUM FITTINGS
V. CONCLUSIONS
IV. REFERENCES
APPENDIX A - TEST LOG Appendix-A-1 thru A-4
APPENDIX B - SAMPLE RESULTS Appendix-B-1 thru B-2

ILLUSTRATIONS

Figure No.		Page No.
1	Mako Model 5436 High Pressure Air Compressor	2
2	NEDU Test No. 93-35 Equipment Configuration	6

I. INTRODUCTION

In response to NAVSEA tasking¹ a MAKO HIGH PRESSURE AIR COMPRESSOR, MODEL 5436, ELECTRIC DRIVE was tested² by Navy Experimental Diving Unit (NEDU). The unit was previously tested (NEDU Test No. 91-04) and approved by NAVSEA for inclusion in the ANU list³ at an operating pressure of 211 bar (3000 psig). The purpose of this test was to reevaluate the unit at 345 bar (5000 psig) and:

- A. Determine if the compressor provides compressed air at the required pressures, flow rates, quality and cleanliness required by the U.S. Navy⁴.
- B. Determine the adequacy of the manufacturer's information, instructions and guidance for the safe operation and overall management of the compressor.

II. EQUIPMENT DESCRIPTION

A. GENERAL

The MAKO, MODEL 5436 high pressure, breathing air compressor (Figure 1) is of a four stage, four cylinder, single acting, "vee" configuration.

A forced lubrication system is utilized. Lubricating oil is supplied under pressure to the main bearings via a filter and crankshaft passages. Oil is forced through the bearing clearance and thrown off the rotating crankshaft to ensure an adequate supply to cylinders, pistons, and crossheads. The third and fourth stages are lubricated through a dedicated mechanical lubricator. Sight glasses allow observation of compressor sump oil level and the feed rate of the third and fourth stage mechanical lubricator. The mechanical lubricator tank is supplied by the compressor oil sump. The compressor requires approximately 45 liters (11.8 gallons) of lubricating oil, and the cylinder lubricator requires 1.0 liter (2.1 pint) of oil.

Compressor cooling is by water through a closed radiator type system. Water from this system is pumped through the jackets and passages of the compressor and returned to the radiator for heat removal.

The drive unit for this test was a 460 Volt, 3 Phase, 75 Horsepower, Reliance A/C motor. It is equipped with a slide motor plate and "V" belt pulley. Rotational torque is transferred to the compressor by five "V" belts. Electric motors purchased for use with this compressor shall comply with Navy standards for sealed insulation units⁵.

Figure 1 5436 High Pressure Air Compressor

The MAKO compressor unit consists of a compressor block, auto drain monitoring system, and a drive motor mounted on a steel frame secured to a concrete floor.

The compressor air system consists of an interstage separator, auto drain system, and auto drain reservoir. The interstage separators are installed between the 2nd and 3rd, and the 3rd and 4th stages. Internal operation of the interstage separators is through a nozzle which separates water and oil from the compressed air. The interfilter requires routine maintenance (periodic draining).

The auto drain system blows down the separators at 15 minute intervals. This is accomplished by an electric timer which deactivates a solenoid valve that controls the pressure on a bank of piston type valves isolating the separators from the reservoir. Residual oil and water vapors not drained by the auto-drain system are removed by a down stream filter purification system.

The MAKO 5436 compressor has a rated capacity of 2548 liters per minute (90 scfm) free air delivered at 345 bars (5,000 psi).

A pressure maintaining/non-return valve set at 145 bars (2,100 psi) is provided. This ensures that pressure build-up occurs during start up and initial compressor air delivery. This achieves constant, optimum moisture separation, fourth stage piston ring expansion/cylinder sealing, and prevents compressed air return from the storage flasks to the compressor during unit shut down. All four stages of the compressor are protected by safety relief valves.

The MAKO, MODEL 5436 comes with one Breathing Air Module Owner's Manual⁵ which is divided into the following sections;

- 1. Leading Particulars
- 2. General Description
- 3. Installation
- 4. Commissioning or Recommissioning
- 5. Operation & Routine Maintenance
- 6. Valve Servicing
- 7. Fault Guide
- 8. Illustrated List of Parts

III. TEST PROCEDURE

There are various methods of testing compressor capacities, stability, and reliability. For this compressor evaluation², NEDU chose to continuously run the compressor for extended periods charging a 178.39 liter floodable volume (6.3 cuft) cylinder bank from 0 bars to 345 bars (0 to 5,000 psig).

The compressor was a permanently installed part of the NEDU EDF air system. A Cole Palmer Model 8502-14 temperature monitor and Yellow Springs Instruments 700 Series thermistor probes were attached for measuring compressor discharge and ambient temperatures. Figure 2 provides a diagram of the test equipment set up.

Appendix A shows the recorded data from the Test Log. The unit was operated in an interior work area, open to ambient temperature and humidity. The testing included subjective evaluation of the system operation but did not include detailed mechanical review of the individual components of the system.

The compressor was operated using one external final separator. No other purification systems were used. A total of 25 test hours were expended. The following parameters were recorded:

- 1. Date
- 2. Time
- 3. Meter Test Hours
- 4. Ambient Temperature
- 5. Compressor Air Discharge Temperature
- 6. Ambient Humidity
- 7. Cylinder Charging Time
- 8. Compressor Water Pressure
- 9. Compressor 3rd Stage Temperature
- 10. Compressor Oil Pressure
- 11. Compressor Stage Pressures
- 12. Final Discharge Pressure
- 13. Compressor free air capacity flow rate

Appendix A is recorded data from the Test Log.

IV. OBSERVATIONS/RECOMMENDATIONS

A. AIR DELIVERY

Compressor capacity was determined to be 2,763.66 liters per minute (97.6 cfm) by calculating the average time to charge a 178.39 liter (6.3 cuft) floodable volume cylinder from 0 to 345 bars (0 to 5,000 psig). Calculations are shown in Appendix A.

B. AIR SAMPLING

Air samples were taken from the compressor discharge at the 1 and 25 hour running time. The samples were sent to the Coastal Systems Station (CSS) Laboratory, Code 5130, for purity analysis. Analysis of air samples are listed in Appendix B.

C. OIL LUBRICATION

At the beginning of the test, the compressor oil sump level indicated full. Oil level was checked every 30 minutes using the oil level sight glass. Oil consumption was logged in Appendix A. During the 25 hours, a total of 0.94 liters (1 quart) of oil was added to the compressor. The oil used during the test was Anderol 750 compressor oil. MAKO Technical Manual⁶ CAUTION states:

"The following synthetic oils are approved:

Reavellite Anderol 500

The above oils have been found to give better and more consistent valve life on high pressure valves (i.e. third and fourth stages)."

D. MAINTENANCE

No factory maintenance was scheduled during this test.

E. PRIME MOVER

This task requested NEDU to test the compressor only. Commands procuring primemovers for these compressors must ensure that they meet Navy specifications. The prime mover, if electric, should be a sealed insulation system (service A use) in accordance with MIL- $M-17060~E^6$, Amendment 1.

F. CADMIUM FITTINGS

General Specifications⁷ state that cadmium coated fittings cannot be used in systems that exceed 400 degrees Fahrenheit or if the cadmium could come in contact with petroleum products. At this time the only authorized HP compressor lubricant by the Navy is the petroleum based 2190 TEP (a petroleum based product). Recommend cadmium coated fittings be replaced with a suitable substitute.

Figure 2 NEDU Test No. 93.35 Equipment Configuration

V. CONCLUSIONS

- A. The high pressure air compressor delivers air which meets U.S. Navy standards⁴ at an average rate of 2,763.66 liters per minute (97.6 cfm) per Appendix A. This meets the manufacturer's specification.
- B. The unit is sturdy, reliable and readily maintained.
- C. Based on the results of testing, the MAKO 5436 high pressure air compressor system is recommended for inclusion on the Authorized for Navy Use List³.
- D. The vendor and NAVSEA should be contacted prior to purchase to ensure the unit meets the user's needs.

VI. REFERENCES

- 1. NAVSEA Task 92-002; <u>Evaluation of Commercially Available Divers Air Compressors</u>
- 2. MAKO 5436 High Pressure Air Compressor Evaluation 5000 PSIG (Unmanned) Test Plan 93-35 (Limited Distribution), Navy Experimental Diving Unit, September 1993
- 3. NAVSEAINST 10560.2B Diving Equipment Authorized for U. S. Navy Use
- 4. NAVSEA 0994-LP-001-9010 U.S. Navy Diving Manual Volume 1, Rev. 3, Paras 5.3.2. Air purity standards, and 6.7.2.1. Air Compressors
- 5. <u>Breathing Air Module (5436) Manual</u>, Mako Compressors, Inc. 1634 SW 17 Street Ocala. Florida 34474
- 6 MIL-M-17060 E Amendment 1, <u>Sealed Insulated Systems</u>, (service A use). Navy specification for compressor power source
- 7. Navy Publication No. S9AA-AA-SPN-010/GENSPEC, General Specifications for Ships of the Navy, Cadmium Fittings, January 19, 1987

TIME	MET ER HOURS	TEMP°F	<u> </u>	AMBI HUMID %	CYL FILL TIME	CY	CYLINDER CHARGING INFORMATION	NOI	CHARGED CYLINDER SIZE	GED DER E	WATER	COMP TEMP °F	OIL PRESS		CYLINDER STAGES PSI	ESSOR R STAGES	
/		AMBI TEMP°F	COMP DSCHG			START	END	END PSI	RATED	RATED PSI				TSI	2ND	ЗКБ	4ТН
0845	431.4	78	54	19	·	,	r		,	,	35	110	35	40	220	1050	2100
0060	431.6	78	56	\$9	•	٠	٠		,	,	35	135	33	44	250	1100	2350
0630	432.1	77	113	29		0920	ı	,	,	,	35	158	35	44	260	1280	4100
1000	432.6	78	105	79	:22	•	1012	2000	6.3	2000	35	150	34	44	250	1090	2100
1030	433.1	80	601	79	,	1	,	ı		1	35	145	33	44	250	1090	2100
1100	433.6	81	118	75		1110	,	1		,	35	150	33	44	250	1100	2200
1130	434.1	08	122	73	:22	,	1132	2000	6.3	2000	35	155	33	44	260	1200	3200
1200	434.6	82	66	70	,	,	,			4	35	140	33	4	250	1050	2100
1230	435.2	18	611	7.1	,	,	,	,	,	1	35	160	33	4	260	1150	3100
1300	135 6	82	119	73	,	,	,		,	,	35	165	33	4	260	1250	4000
0830 Checked oil levels 0845 Started compressor testing 1300 Secured compressor testing	levels pressor testing pressor testing																

The mean time for pressurzing an 178.39 liter (6.3cuft) flask from 0 to 345 bars (0 to 5,000 psi) 341.14 ATA is: $\frac{22 + 22}{2} = 22$

minutes. Therefore, the charging rate is: $\frac{178.39 \times 341.14}{22}$ = 2766.21 LPM (97.6CFM)

DATE: MAY 2, 1994

			T	Т	Т	_	Г	Τ-	_	т-	П	Г		_	_	1	_	Т
	4TH	2100	4200	2100	4900	2100	3600	4800	2200	4100	2100	4000	2100	3200	2200	2100	2000	
COMPRESSOR CYLINDER STAGES PSI	ЗКБ	1050	1300	1050	1300	1050	1200	1300	1100	1300	1050	1250	1050	1200	1100	1100	1300	
CYLINDE	2ND	240	260	250	260	250	260	260	250	260	250	260	250	260	250	250	260	
	1ST	40	44	44	45	44	44	4	44	44	44	44	44	4	44	4	4	
OIL PRESS		36	33	35	34	34	34	34	34	33	33	33	33	33	33	33	32	
COMP TEMP °F		95	145	145	155	140	150	091	145	165	150	165	155	160	150	155	170	
WATER		35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	
GED IDER E	RATED PSI	,	ı	2000	-	,		•		,	,	2000	•	1	-		-	
CHARGED CYLINDER SIZE	RATED		ı	6.3	_	-	-	•	1	,	,	6.3	-	-	-	•	-	
TION	END	-		2000		,	,	,			,	2000	,		,		٠	
CYLINDER CHARGING INFORMATION	END		,	0220	,	,	,	,	r		,	1224	,	,	'	,	,	
CHARGING	START	,	0728	•	1	,	,	'	•	4		1202	,	1		,	'	
CYL FILL TIME			,	22:	1	,	,	,		,	,	:22	,		•	,	,	
AMBI HUMID %		100	95	16	91	91	8	98	87	íæ	67	82	81	80	78	73	76	
보。	COMP DSCHG* F	59	103	96	114	101	115	118	109	117	110	117	113	118	110	114	121	
TEMP°F	AMBI TFMP°F	69	70	70	07	70	72	73	73	7.3	74	76	76	76	78	62	80	Ē
METER HOURS		435.6	136.0	436.5	437 0	137.5	438.0	438.5	139.1	439.5	0:01:1	5'0+1	441.0	441.5	442.0	142.5	143.0	0645 Checked compressor oil level
TIME		0020	0725	0800	0830	0060	0630	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	0645 Checked

0645 Checked compressor oil level 0700 Started compressor testing 1445 Secured compressor testing

minutes. Therefore, the charging rate is: $\frac{178.39 \times 341.14}{22} = 2766.21 \ LPM \ (97.6 \ CPM)$ The mean time for pressurizing an 178.39 liter (6.3cuit) flask from 0 to 345 bars (0 to 5,000 psi) 341.14 ATA is: $\frac{22 + 22}{2} = 22$

44.61.3 CAMBIT CAMBIT CAMBIT FINAL FINAL RATID RATID RATID RATID RATID RATID RATID CALTIN FINAL RATID RATID CALTIN FINAL CALTIN RATID CALTIN RATID CALTIN CALTIN RATID CALTIN CALTIN <t< th=""><th></th><th>METER HOURS</th><th>TEMP°F</th><th>4</th><th>AMBI HUMID %</th><th>CYL FILL TIME</th><th>CY CHARGING</th><th>CYLINDER CHARGING INFORMATION</th><th>NOI</th><th>CHARGED CYLINDER SIZE</th><th>GED UDER TE</th><th>WATER</th><th>COMP TEMP °F</th><th>OIL</th><th></th><th>COMPRESSOR CYLINDER STAGES PSI</th><th>ESSOR S STAGES SI</th><th></th></t<>		METER HOURS	TEMP°F	4	AMBI HUMID %	CYL FILL TIME	CY CHARGING	CYLINDER CHARGING INFORMATION	NOI	CHARGED CYLINDER SIZE	GED UDER TE	WATER	COMP TEMP °F	OIL		COMPRESSOR CYLINDER STAGES PSI	ESSOR S STAGES SI	
71 73 73 74 74 75<			AMBI TEMP°F	COMP DSCHG*F			START	END	END PSI	RATED	RATED PSI				IST	2ND	ЗКD	4TH
77 107 92 7 <td></td> <td>443.3</td> <td>73</td> <td>53</td> <td>06</td> <td></td> <td>,</td> <td>,</td> <td>,</td> <td>-</td> <td>-</td> <td>35</td> <td>100</td> <td>37</td> <td>40</td> <td>240</td> <td>1050</td> <td>2100</td>		443.3	73	53	06		,	,	,	-	-	35	100	37	40	240	1050	2100
7 7 7 8 9 94		443.8	73	107	92	-	·	,		-	-	35	. 155	35	44	260	1200	3200
7 10 10 12 12 10 12 </td <td>Г</td> <td>4.444</td> <td>73</td> <td>66</td> <td>94</td> <td>,</td> <td>0816</td> <td>ŧ</td> <td>2000</td> <td>6.3</td> <td>2000</td> <td>35</td> <td>140</td> <td>34</td> <td>43</td> <td>250</td> <td>1050</td> <td>2100</td>	Г	4.444	73	66	94	,	0816	ŧ	2000	6.3	2000	35	140	34	43	250	1050	2100
7 11 85		444.9	76	601	72	:22	,	0838	,	٠		35	150	34	43	250	1150	2300
446.4 78 114 86 7 7 7 7 7 7 7 140 33 443 150 1		445.3	76	711	85		,	,	,		,	35	091	34	44	360	1300	4400
79 106 80		445.9	77	114	98	,	,		,	,	,	35	140	33	43	250	1150	3000
79 116 81 - <td></td> <td>446.4</td> <td>78</td> <td>108</td> <td>80</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>35</td> <td>150</td> <td>33</td> <td>43</td> <td>250</td> <td>1100</td> <td>2150</td>		446.4	78	108	80	,	,	,	,	,	,	35	150	33	43	250	1100	2150
79 110 83 - <td></td> <td>446.9</td> <td>Q.L</td> <td>116</td> <td>81</td> <td>٠</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>35</td> <td>091</td> <td>33</td> <td>43</td> <td>360</td> <td>1200</td> <td>3200</td>		446.9	Q.L	116	81	٠	,	,	,	,	,	35	091	33	43	360	1200	3200
78 112 81 81 81 82 82 145 156 135 145 150 150 110		4.7.4	79	011	83		-	,	,	,	,	35	150	33	43	250	0011	2200
78 104 87 87 87 87 87 87 150 33 44 550 150		447.9	78	112	18	,	•	,	,	,	,	35	145	33	44	250	1100	2300
78 116 89 - <td></td> <td>418.4</td> <td>78</td> <td>104</td> <td>87</td> <td></td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td></td> <td>35</td> <td>150</td> <td>33</td> <td>44</td> <td>250</td> <td>1050</td> <td>2100</td>		418.4	78	104	87		,	,	,	,		35	150	33	44	250	1050	2100
78 116 89 - <td></td> <td>448.9</td> <td>78</td> <td>611</td> <td>68</td> <td></td> <td>•</td> <td></td> <td>,</td> <td>,</td> <td>,</td> <td>35</td> <td>170</td> <td>33</td> <td>44</td> <td>260</td> <td>1300</td> <td>4800</td>		448.9	78	611	68		•		,	,	,	35	170	33	44	260	1300	4800
78 95 87 -		149.4	78	116	68	•				•	,	35	150	33	44	250	1150	3000
78 117 89 - <td></td> <td>419.9</td> <td>78</td> <td>56</td> <td>87</td> <td>,</td> <td>•</td> <td>,</td> <td></td> <td>,</td> <td>-</td> <td>35</td> <td>145</td> <td>33</td> <td>44</td> <td>250</td> <td>1050</td> <td>2100</td>		419.9	78	56	87	,	•	,		,	-	35	145	33	44	250	1050	2100
450,9 78 107 90 35 150 33 44 250 1050 1050 1451.2 SECURED		450.4	78	117	68	,	•	٠	,	,		35	160	33	44	260	1250	4200
SECURED		450.9	78	107	96	•	,	,	,	,	-	35	150	33	44	250	1050	2100
		451.2	SECURED			,		·			•	•	٠		,	,	,	,

0650 Checked compressor oil level 0655 Started compressor testing 1450 Secured compressor testing

The mean time for pressurizing an 178.39 liter (6.3cuit) flask from 0 to 345 bars (0 to 5,000 psi) 341.14 ATA is: 22 minutes. Therefore, the charging rate is: 178.39 X 341.14 and 197.6 CFM)

DATE: MAY 4, 1994

TIME	METER	TEMP°F	PoF.	AMBI HUMID %	CYL FILL TIME	CY	CYLINDER CHARGING INFORMATION	NOI	CHARGED CYLINDER SIZE	GED (DER (E	WATER PRESS	COMP TEMP °F	OIL PRESS		COMPRESSOR CYLINDER STAGES PSI	ESSOR R STAGES	
		AMBI TEMP°F	COMP DSCHG*F			START TIME	END	END PSI	RATED CUFT	RATED PSI				1ST	SND	3RD	4TH
0650	451.2	7.1	51	88	1	,		,	ŀ	ŧ	35	110	35	40	240	1050	2100
0020	+ 15+	73	99	68	,	-	,	,	•		35	. 135	33	42	240	0501	2100
0730		*	٠	,	,	,	٠	,	,	,	,	•	•	,	,	,	
0800	,	•					t	,	•	•	,	,		٠	٠	,	
0830	452.0	75	105	73		•	,	,		,	35	155	35	44	260	1300	3600
0060	452.4	79	100	52	,	•			-	·	35	145	35	44	250	1050	2100
0860	452.9	79	117	57	,	0936			•	,	35	170	33	44	260	0081	4900
1000	453.4	80	105	63	:22	•	8560	5,000	6.3	2,000	35	091	33	44	250	0501	2100
1030	451.9	97	811	0,2		,		,	,		35	170	33	44	260	1250	3800
1100	454 4	980	109	89	,		,		_		35	155	33	44	250	1050	2100
1130	6 †\$†	81	123	65		'	,		1	,	35	175	33	44	360	1300	4600
1200	455.4	82	121	99		•	,		•	,	35	170	33	44	260	1250	3800
1230	456.0	81	117	89	,	١	,	ŀ	,	,	35	091	33	44	250	1150	2600
1300	456.4	18	611	67	'	,	,	,		,	35	165	33	44	260	1200	3200
0,645 Charles	[o sel les respectations bedeen 5 550]	-															

0645 Checked compressor oil level
0650 Started compressor testing
0710 Secured due to back-pressure regulator failure
0817 Sarted compressor testing (repaired back-pressure regulator
1300 Secured compressor testing (125 hours)
1305 Added 0.94 Hiers (1 quart) Anderol 750 oil to refill compressor

The mean time for pressurizing an 178.39 liter (6.3cuft) flask from 0 to 345 bars (0 to 5,000 psi) 341.14 ATA is: 22 minutes. Therefore, the charging rate is: $\frac{178.39 \times 341.14}{22} = 2766.21 \text{ LPM} (97.6 \text{ CPM})$

To: Dave Sullivan, NEDU

From: Glen Deason, Code 2530

· 123

Subject: Analysis of air sample marked MAKO 543 ϕ' Evaluation Test

93-35 1 hour Sample.

In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Standard Components

Component	Level	Limit
Oxygen	21.0%	20-22% ²
Nitrogen	78.1%	NONE ²
Argon	0.9%	NONE ²
Carbon Dioxide	335 PPM	1000 PPM ²
Total Hydrocarbons ¹	1.6 PPM	25 PPM ²
Carbon Monoxide	1.6 PPM	20 PPM ²
Methane	1.6 PPM	1000 PPM ²
Acetone Benzene Chloroform Ethanol Freon 113 Freon 11 Freon 12 Freon 114 Isopropyl Alcohol Methanol Methyl Chloroform Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylene Chloride Toluene	<0.1 PPM	200 PPM ² 1 PPM ² 1 PPM ² 100 PPM ² 10 PPM ² 20 PPM ²
Trimethyl Benzenes	<0.1 PPM	3 PPM ²
Xylenes	<0.1 PPM	50 PPM ²
er Components		

Other Components

Component Level Limit

NONE

C4+ <0.1 PPM NONE

¹Expressed as methane equivalents.

²Limits taken from Navy Dive Manual; Vol. 2, Rev. 3.

³OSHA Final Rule limits published as of July 1992 (not specified in Navy Dive Manual).

2. The above sample showed no appreciable contamination; all components were within the acceptable range.

Glen Deason Chemist To: Dave Sullivan, NEDU

From: Glen Deason, Code 2530

Subject: Analysis of air sample marked MAKO 5436 Evaluation Test # 93-35, 25 hour Sample.

In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Standard Components

Component	Level	Limit
Oxygen Nitrogen Argon Carbon Dioxide	21.0% 78.1% 0.9% 322 PPM	20-22% ² NONE ² NONE ² 1000 PPM ²
Total Hydrocarbons ¹ Carbon Monoxide Methane	1.7 PPM 2.4 PPM 1.7 PPM	25 PPM ² 20 PPM ² 1000 PPM ²
Acetone Benzene Chloroform Ethanol Freon 113 Freon 11 Freon 12 Freon 114 Isopropyl Alcohol Methanol Methyl Chloroform Methyl Ethyl Ketone Methyl Isobutyl Ketone	<0.1 PPM <0.1 PPM	200 PPM ² 1 PPM ² 1 PPM ² 100 PPM ² 20 PPM ² 20 PPM ² 25 PPM ²
Methylene Chloride Toluene Trimethyl Benzenes Xylenes r Components	<0.1 PPM <0.1 PPM <0.1 PPM <0.1 PPM	25 PPM ² 20 PPM ² 3 PPM ² 50 PPM ²

Other

Limit Component Level

NONE

NONE <0.1 PPM C4+

Expressed as methane equivalents.

²Limits taken from Navy Dive Manual; Vol. 2, Rev. 3. ³OSHA Final Rule limits published as of July 1992 (not specified in Navy Dive Manual).

2. The above sample showed no appreciable contamination; all components were within the acceptable range.

Glen Deason Chemist