Lojik Tasarım

Ders 2

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Binary Sayılarda aritmetik işlemler

Aşağıda verilen ikili sayılarla ilgili işlemleri yapınız

- \blacksquare 11+01=?(100)
- **•** 0110 + 1101 =? (10011)
- **■** 10001+01100 =? (11101)
- **11101-1100 =? (10001)**
- **1**0011-1101=? (00110)
- **•** 00-01 =? (11)

Sayıların Tümleyeni

- Sayıların tümleyeni sayısal bilgisayarlarda çıkarma işlemini basitleştirmek için kullanılır.
- Herhangi bir sayının iki tür tümleyeni vardır;
 - Taban tümleyeni
 - Taban-1 tümleyeni

olarak isimlendirilir

Taban-1 Tümleyeni

- r tabanındaki n haneli bir N sayısı için N'in r-1 tümleyeni (rⁿ-1) N olarak tanımlanır.
- Ornek:
 - \sim n=4 için 10⁴=10000 ve 10⁴-1=9999'dur
 - Buradan görüldüğü gibi onlu bir sayının 9'a tümleyeni her bir hanenin '9'dan çıkarılmasıyla elde edilir.
- Örnek:
- ► 546700 sayısının 9'a tümleyeni = 999999 546700 = 453299
- 012398 sayısının 9'a tümleyeni = 999999 012398 = 987601

Binary sayılar için 1'e tümleyen

- Binary sayıların 1'e tümleyeni hesaplanırken her bir hanenin 1'den çıkarılmasıyla bulunur.
- Pratik yol : Her bir hane terslenir
- Örnek:
 - 1011000 ikili sayısının 1'e tümleyeni = 0100111
 - 0101101 ikili sayısının 1'e tümleyeni = 1010010

Taban Tümleyeni

- Bir sayının taban tümleyeni hesaplanırken (taban-1) tümleyeni değerine 1 eklenir.
- Örnek:
 - 012398 onluk sayısının 10'a tümleyeni = 987602
 - 246700 onluk sayısının 10'a tümleyeni = 753300
 - 1101100 ikili sayısının ikiye tümleyeni = 0010100
 - 0110111 ikili sayısının ikiye tümleyeni = 1001001

Tümleyen kullanarak çıkarma işlemi

- İlk öğrendiğimiz çıkarma işlemi ödünç kavramını kullanır.
- n haneli ve işaretsiz iki sayıdan oluşan, r tabanındaki M N çıkarma işlemi aşağıda tanımlanan şekilde yapılır:
 - N sayısının r'ye göre tümleyeni bulunur ve M sayısı ile toplanır. Böylece M+(rⁿ-N) = M-N+rⁿ işlemi yapılmış olur.
 - M>= N ise toplama sonucundan oluşan rⁿ etkisi atılır ve M-N işleminin sonucu elde edilir
 - M<N ise, toplama sonucunda elde oluşmaz ve sonuç rⁿ –(N-M) ye eşittir. Bu sayı aslında (M-N)'nin r'ye tümleyenine eşittir. İşlem sonucu negatiftir. Sonucu alışılmış negatif sayı gösteriminde ifade etmek için sonucun r'ye tümleyeni alınır ve önüne negatif simgesi eklenir.

EXAMPLE 1.5

Using 10's complement, subtract 72532 - 3250.

M = 72532

10's complement of N = + 96750

Sum = 169282

Discard end carry $10^5 = -100000$

Answer = 69282

EXAMPLE 1.6

Using 10's complement, subtract 3250 - 72532.

$$M = 03250$$
10's complement of $N = + 27468$

$$Sum = 30718$$

- Elde oluşmadı. Bu durumda sayı negatiftir.
- 30718 sayısının 10'a tümleyeni alınır. Sonuç = -69282

Binary sayılarda çıkarma işlemi (1'e tümleyene göre)

Sayının 1'e tümleyeni alınır ve çıkarılacak sayı ile toplanır. Elde biti oluşmuşsa sonuç pozitiftir. Oluşan elde biti sonuca eklenir. Elde biti oluşmamışsa sonuç negatiftir.

■ 0111 - 0011 =? (0100)

■ 01101 − 01001 =? (00100)

■ 010 – 110 =? (-100)

Binary sayılarda çıkarma işlemi (2'ye tümleyene göre)

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X by using 2's complements.

(a)
$$X = 1010100$$

2's complement of
$$Y = + 0111101$$

$$Sum = 10010001$$

Discard end carry
$$2^7 = -10000000$$

Answer:
$$X - Y = 0010001$$

(b)
$$Y = 1000011$$

2's complement of
$$X = + 0101100$$

$$Sum = 1101111$$

Binary sayılarda çıkarma işlemi

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1's complement.

(a)
$$X - Y = 1010100 - 1000011$$

$$X = 1010100$$

1's complement of
$$Y = + 0111100$$

$$Sum = 10010000$$

End-around carry
$$= +$$

Answer:
$$X - Y = 0010001$$

(b)
$$Y - X = 1000011 - 1010100$$

$$Y = 1000011$$

1's complement of
$$X = + \underline{0101011}$$

$$Sum = 11011110$$

There is no end carry. Therefore, the answer is Y - X = -(1's complement of 1101110) = -0010001.

Binary sayılarda çıkarma işlemi (2'ye tümleyene göre)

- **•** 0111 0011 =? (0100)
- **•** 01101 01001 =? (00100)
- **■** 010 110 =? (-100)
- **■** 0110-1011 =? (-0101)

Günümüz bilgisayarlarında 2'ye tümleyen işlemi kullanılır

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

İkili (Binary) Kodlar

- Bit nedir?
- Word nedir?
- Byte nedir?
- Bilgisayarın işleyişinde tüm işlemler 2'li sayı sistemleri temel alınarak yapılır. Yani sadece 0 ve 1'ler vardır.
- Anlamlı yapılar oluşturabilmek için binary değerler birleştirilir. Bu işlem kodlama olarak da isimlendirilebilir.

BCD Kodu

Bu kodlama sisteminde 4 bit bulunur

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_2$$

Onlu Sayılar İçin Bazı İkili Kodlar

Four D	Different	Binary (Codes	for the	Decimal	Digits
		,				

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Gray Kodu

Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

1	0	1	1 +	- 0	İKİLİK
				$\overline{}$	
1	1	1	0	1	GRAY

ASCII Karakter Kodu

American Standard Code for Information Interchange (ASCII)

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	\mathbf{v}
0111	BEL	ETB	4	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

Hata Bulma Kodları

- Parity (Eşlik Kodu) Kodu
 - Tek Parity
 - Cift Parity

Parity Kodu

Desimal	BCD	Tek Parite (Eşlik)	Çift Parite (Eşlik)
0	0000	1	0
1	0001	0	1
2	0010	0	1
3	0011	1	0
4	0100	0	1
5	0101	1	0
6	0110	1	0
7	0111	0	1
8	1000	0	1
9	1001	1	0

ASCII A = 1000001ASCII T = 1010100 With even parity 01000001 11010100 With odd parity 11000001 01010100

Diğer kodlama sistemleri

- Buraya kadar bahsedilenler bilgisayar sistemlerinde kullanılan en temel kodlama sistemleridir.
- Günümüz modern bilgisayarlarında kullanılan farklı kodlama sistemleri de bulunmaktadır.

İkili bilginin saklanması ve transferi

İkili bilginin işlenmesi

Lojik Değerlerin Sinyal Seviyeleri

Lojik İşlemlerin Doğruluk Tabloları

	VE		VEYA			DEGIL		
,	AN	D	OR		ı	NOT		
Х	y	$x \cdot y$	X	y	x + y	х	x'	
0	0	0	0	0	0	O	1	
0	1	0	0	1	1	1	. 0	
1	0	0	1	0	1		'	
1	1	1	1	1	1			
		•						

Sayısal Lojik Devrelerin Sembolleri

$$\begin{array}{c|c}
A \\
B \\
C
\end{array}$$

$$\begin{array}{c|c}
F = ABC \\
C \\
D
\end{array}$$

$$\begin{array}{c|c}
A \\
C \\
D
\end{array}$$

$$\begin{array}{c|c}
G = A + B + C + D \\
C \\
D
\end{array}$$

(a) Three-input AND gate

(b) Four-input OR gate

Lojik Kapıların Giriş – Çıkış Sinyalleri (Zaman Diyagramları)

VE (AND) Kapısı

Sembolü

Giri	Çıkış	
X	Y	Q
0	0	0
0	1	0
1	0	0
1	1	1

VE (AND) Kapısı

GİRİ	ŞLER	ÇIKIŞ
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

VEYA (OR) Kapısı

Sembolü

Giri	Çıkış	
X	Y	Q
0	0	0
0	1	1
1	0	1
1	1	1

VEYA (OR) Kapısı

GİRİ	ŞLER	ÇIKIŞ
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

DEĞİL (NOT) Kapısı

Sembolü

Elektrik Eşdeğer Devresi

Giriş	Çıkış
X	Q
0	1
1	0

DEĞİL (NOT) Kapısı

VE DEĞİL (NAND) Kapısı

Girişler		Çıkış	
X	Y	Q	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

VEYA DEĞİL (NOR) Kapısı

Girişler		Çıkış	
X	Y	Q	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

ÖZEL VEYA (Exlusive Or - EXOR) Kapısı

Girişler		Çıkış
X	Y	Q
0	0	0
0	1	1
1	0	1
1	1	0

ÖZEL VEYADEĞİL (EXNOR) Kapısı

Girişler		Çıkış	
X	Y	Q	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Soru: Aşağıda verilen lojik devreye ait doğruluk tablosunu oluşturunuz.

а	b	С	f	g
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Soru: Aşağıda verilen lojik devreye ait zaman diyagramını çiziniz.

Gelecek Hafta

Boolean Cebri (Matematiği) ve Lojik Kapılar