論理回路

問題1.以下の問いについて、それぞれ指定された解答用紙に解答しなさい.

二進数 $X=(X_4X_3X_2X_1X_0)_2$ に対し、X の約数のうち1を除くものの個数を二進数 $Y=(Y_2Y_1Y_0)_2$ とするとき、 Y_0 、 Y_1 、 Y_2 を表す論理式を積和形式で表すことを考える。次のステップに従って回答せよ。なお、 X_0 、 Y_0 はそれぞれの入出力の最下位ビットを表す。 Y_0 に対する値は don't care とする。「 Y_0 0の約数のうち1を除くもの」は Y_0 0、 Y_0 0 の Y_0 0 個である。

- (1-1) 解答用紙のフォーマットに従って真理値表を作れ. don't care 部は「-」を記せ.
- (1-2) 解答用紙のフォーマットに従ってカルノー図を作れ. don't care 部は「一」を記せ.
- (1-3) Y₀の論理式を示せ、カルノー図を用いて簡単化すること、

問題2.以下の問いについて、それぞれ指定された解答用紙に解答しなさい.

2人のユーザの前にそれぞれ3つのボタンが置いてあり、3つのランプがある(下記図左).3つのボタンはそれぞれ「グー」「チョキ」「パー」に対応し、ランプはそれぞれじゃんけんにAが勝った、Bが勝った、引き分けのときに光るようにしたい、ただし、じゃんけんの非同時性や一人が複数のボタンを同時押しすることについては考慮しなくてよい、両者がボタンを同時に押しているときにのみランプがつきそれ以外のときにはつかないようにするものとする.

(2-1) 下記図右に示す 4 入力マルチプレクサ(MUX)と 4 入力エンコーダ(Enc)を用いた回路は、引き分けを示す X_I の出力を意図したものである. エンコーダの入力を何にすればよいかを解答用紙の図中(ボックス内)に書き込め. ここで、エンコーダ、マルチプレクサにおいて A が上位ビット、B が下位ビットである. エンコーダの出力はすべての入力が 0 のときは 0 となる.

(2-2)(2-1)の回路に書き加える形で 4 入力マルチプレクサ 2 個を追加して X_0 , X_2 の回路を完成せよ.

(次ページに続く)

2021 年度神戸大学大学院工学研究科博士課程前期課程入学試験

問題3.以下の問いについて、それぞれ指定された解答用紙に解答しなさい.

(3-1)下記のネガティブエッジトリガ型 JK フリップフロップ(JK-FF)を用いた回路のタイムチャートを完成させよ. フリップフロップの初期値はすべて0とする.

(3-2)(3-1) の回路に最小限の配線を加えて3進カウンタを構成せよ、NAND ゲートを1個 追加してもよい、ここで3進カウンタとはある初期値において3ステップで状態遷移を巡回 するカウンタのことをいう、

以上

C