

General Description

The MAX317/MAX318/MAX319 are precision, CMOS, monolithic analog switches. The single-pole singlethrow (SPST) MAX317 is normally closed (NC), the SPST MAX318 is normally open (NO), and the single-pole double-throw (SPDT) MAX319 has one normally open and one normally closed switch. All three parts offer low on resistance (less than 35Ω), guaranteed to match within 2Ω between channels and to remain flat over the analog signal range ($\Delta 3\Omega$ max). They also offer low leakage (less than 250pA at +25°C and less than 6nA at +85°C) and fast switching (turn-on time less than 175ns and turn-off time less than 145ns)

The MAX317/MAX318/MAX319 are fabricated with Maxim's new improved silicon-gate process. Design improvements guarantee extremely low charge injection (10pC), low power consumption (35µW), and electrostatic discharge (ESD) greater than ±2000V. The 44V maximum breakdown voltage allows rail-to-rail analog signal handling capability.

Applications

Sample-and-Hold Circuits Guidance and Control Systems Heads-Up Displays Test Equipment Military Radios Communications Systems Battery-Powered Systems PBX, PABX

Features

- ♦ Low On Resistance <20Ω Typical (35Ω Max)
- **Guaranteed Matched On Resistance Between** Channels < 20
- **♦** Guaranteed Flat On Resistance over Analog Signal Range Δ3Ω Max
- **♦** Guaranteed Charge Injection <10pC
- ♦ Guaranteed Off-Channel Leakage <6nA at +85°C
- ♦ ESD Guaranteed > 2000V per Method 3015.7
- ♦ Single-Supply Operation (+10V to +30V) Bipolar-Supply Operation (±4.5V to ±20V)
- **♦ TTL-/CMOS-Logic Compatible**
- ♦ Rail-to-Rail Analog Signal Handling Capability

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX317CPA	0°C to +70°C	8 Plastic DIP
MAX317CSA	0°C to +70°C	8 SO
MAX317CJA	0°C to +70°C	8 CERDIP
MAX317C/D	0°C to +70°C	Dice*
MAX317EPA	-40°C to +85°C	8 Plastic DIP
MAX317ESA	-40°C to +85°C	8 SO
MAX317EJA	-40°C to +85°C	8 CERDIP
MAX317MJA	-55°C to +125°C	8 CERDIP

Ordering Information continued on last page.

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

Contact factory for dice specifications

ABSOLUTE MAXIMUM RATINGS

١	oltage Referenced to V-
	V++44V
	GND+25V
	V ₁ (GND - 0.3V) to (V+ + 0.3V)
	IN, COM, NC, NO(V 2V) to (V+ + 2V) or 30mA,
	whichever occurs first
	Continuous Current (any terminal)30mA
-	eak Current, NC, NO, COM
	(pulsed at 1ms, 10% duty cycle max)100mA
I	SD±2000V

Continuous Power Dissipation $(T_A = +70^{\circ}C)$ (
Plastic DIP (derate 9.09mW/°C above +70°	°C)727mW
SO (derate 5.88mW/°C above +70°C)	471mW
CERDIP (derate 8.00mW/°C above +70°C)	640mW
Operating Temperature Ranges:	
MAX31_C	0°C to +70°C
MAX31_E	40°C to +85°C
MAX31_MJA	55°C to +125°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+300°C

Note 1: All leads are soldered or welded to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS — Dual Supplies

 $(V+=15V,\,V-=-15V,\,V_L=5V,\,GND=0V,\,V_{INL}=0.8V,\,V_{INH}=2.4V,\,T_A=T_{MIN}^{\bullet\bullet}\,to\,T_{MAX},\,unless\,otherwise\,noted.)$

PARAMETER	SYMBOL	CONDITION	S	TEMP.		MIN	TYP (Note 2)	MAX	UNITS	
Analog-Signal Range	V _{COM} , V _{NO} , V _{NC}	(Note 3)				-15		15	V	
		$V_{COM} = \pm 12.5V$,		$T_A = +25^{\circ}C$	C, E		20	35		
On Resistance	R _{ON}	$I_{(NC \text{ or } NO)} = -10\text{mA},$		1A - +23 C	М			30	Ω	
		V+ = 13.5V, V- = -13.	5V	$T_A = T_{MIN}$ to	Γ _{MAX}			45		
On Resistance Match	R _{ON}	$I_{(NC OR NO)} = -10 \text{mA},$ $V_{COM} = 10 \text{V or } -10 \text{V},$		$T_A = +25^{\circ}$	С			2	Ω	
Between Channels (Note 4)	ON	V+ = 15V, V- = -15V		$T_A = T_{MIN}$ to	Γ_{MAX}			3		
On Resistance Flatness	R _{ON}	$I_{(NC OR NO)} = -10 mA,$ $V_{COM} = 5V \text{ or } -5V,$		$T_A = +25^{\circ}$				3	Ω	
(Note 4)	···ON	V _{COM} = 5V 01 -5V, V+ = 15V, V- = -15V		$T_A = T_{MIN}$ to	Γ _{MAX}			5		
NO or NC Off Leakage Current	INC _(OFF)	V+ = 16.5V, V- = -16.	5V,	$T_A = +25^{\circ}$	С	-0.25		0.25		
	or	$V_{COM} = +15.5V$		C, E		-6		6	nA	
	INO _(OFF)	V_{NC} or $V_{NO} = \pm 15.5V$	or $V_{NO} = \pm 15.5V$			-20		20		
	ICOM _(OFF)	$V+ = 16.5V, V- = -16.5V, V_{COM} = \pm 15.5V, V_{NC} or V_{NO} = \mp 15.5V$	MAX317, MAX318	$T_A = +25^{\circ}$	С	-0.25	-0.1	0.25		
				C, E		-6		6		
COM Off Leakage Current				М		-20		20	nA	
John on Edakage darrent	OOW (OFF)			$T_A = +25^{\circ}$	С	-0.75	-0.1	0.75] ""	
				C, E		-10		10		
				М		-60		60		
			1441/047	$T_A = +25^{\circ}$	С	-0.4		0.4		
		V + = 16.5V, V - = -16.5V, V_{NC} or $V_{NO} = V_{D} =$	MAX317, MAX318	C, E		-10		10]	
COM On Leakage Current	ICOM _(ON)			М		-40		40	nA	
CON ON Leakage Current				$T_A = +25^{\circ}$	С	-0.75		0.75		
				C, E		-10		10		
				М		-60		60		

ELECTRICAL CHARACTERISTICS — Dual Supplies (continued)

 $(V+=15V,\,V-=-15V,\,V_L=5V,\,GND=0V,\,V_{INL}=0.8V,\,V_{INH}=2.4V,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.)$

PARAMETER	SYMBOL	CONDITION	ıs	TEMP.	MIN	TYP (Note 2)	MAX	UNITS
LOGIC INPUT								
Logic Input Current (Input Voltage High)	I _{IH}	V _{IN} = 2.4V			-0.5	0.005	0.5	μA
Logic Input Current (Input Voltage Low)	I _{IL}	V _{IN} = 0.8V			-0.5	0.005	0.5	μA
DYNAMIC								
Turn-On Time	t _{ON}	MAX317, MAX318, F	igure 2,	$T_A = +25^{\circ}C$		100	175	ns
	, ON	$V_{COM} = \pm 10V$		$T_A = T_{MIN}$ to T_{MAX}			250	
Turn-Off Time	t _{OFF}	MAX317, MAX318, F	igure 2,	$T_A = +25^{\circ}C$		60	145	ns
	-011	$V_{COM} = \pm 10V$		$T_A = T_{MIN}$ to T_{MAX}			210	
Transition Time	t _{TRANS}	MAX319, Figure 3,	401	$T_A = +25^{\circ}C$			175	ns
	TRANS	$V_{NO} = \pm 10V$, $V_{NC} = \pm 10V$	£10V	$T_A = T_{MIN}$ to T_{MAX}			250	
Break-Before-Make Interval	t _D	MAX319, Figure 4, $V_{NO} = V_{NC} = \pm 10V$		$T_A = +25$ °C	5	13		ns
Charge Injection	Q	V _{GEN} = 0V, Figure 5		$T_A = +25^{\circ}C$		3	10	рС
Off Isolation (Note 5)	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 7		$T_A = +25^{\circ}C$		68		dB
Crosstalk (Note 6)		$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz. Figure 8		T _A = +25°C		85		dB
COM Off Capacitance	C _{COM(OFF)}	V _{COM} = 0V, f = 1MHz, Figure 8		T _A = +25°C		8		pF
Off Capacitance NC or NO	C _(OFF)	V _{COM} = 0V, f = 1MHz		$T_A = +25^{\circ}C$		8		pF
Channel-On Capacitance	C _{COM(ON)}	$V_S = 0V$, $f = 1MHz$,	MAX317, MAX318	T _A = +25°C		30		pF
COM Terminal	, ,	Figure 9	MAX319	1		35		1
SUPPLY								
Positive Supply Current	1+	$V_{IN} = 0V \text{ or } 5V, V+=$	16.5V,	$T_A = +25^{\circ}C$	-1	0.0001	1	
Positive Supply Current	1+	V- = -16.5V		$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA
Negative Supply Current	I-	$V_{IN} = 0V \text{ or } 5V, V+=$	16.5V,	$T_A = +25^{\circ}C$	-1	-0.0001	1	μА
	1-	V- = -16.5V		$T_A = T_{MIN}$ to T_{MAX}	-5		5	- μΑ
Logio Cupply Current		$V_{IN} = 0V \text{ or } 5V, V+=$	16.5V,	$T_A = +25^{\circ}C$	-1	0.0001	1	μΑ
Logic Supply Current	IL	V- = -16.5V		$T_A = T_{MIN}$ to T_{MAX}	-5		5] μΑ
Ground Current	1	$V_{IN} = 0V \text{ or } 5V, V+=$	16.5V,	$T_A = +25^{\circ}C$	-1	-0.0001	1	
Ground Current	I _{GND}	V- = -16.5V		$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA

ELECTRICAL CHARACTERISTICS — Single Supply

 $(V + = 12V, V - = 0V, V_L = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP (Note 2)	MAX	UNITS
SWITCH						
Analog-Signal Range	V _{COM} , V _{NO} , V _{NC}	(Note 3)	0		12	V
Drain-Source On Resistance	R _(ON)	$I_{(NC \text{ or } NO)} = -10\text{mA}, V_{COM} = 3.8\text{V}, V_{+} = 10.8\text{V}$		40	100	Ω
DYNAMIC			·			
Turn-On Time	t _{ON}	V _{COM} = 8V, Figure 2		110		ns
Turn-Off Time	t _{OFF}	V _{COM} = 8V, Figure 2		40		ns
Break-Before-Make Time Delay	t _D	MAX319, $R_L = 1000\Omega$, $C_L = 35pF$, Figure 4		60		ns
Charge Injection	O	$C_L = 10nF$, $V_{GEN} = 0V$, $R_{GEN} = 0V$, Figure 5		2	10	рС
SUPPLY						
Positive Supply Current	I+	$V_{+} = 13.2V$, all channels on or off, $V_{IN} = 0V$ or $5V$, $V_{L} = 5.25V$		0.0001		μA
Negative Supply Current	I-	$V_{+} = 13.2V$, all channels on or off, $V_{IN} = 0V$ or 5V, $V_{L} = 5.25V$		0.0001		μA
Logic Supply Current	IL	$V_L = 5.25V$, all channels on or off, $V_{IN} = 0V$ or $5V$		0.0001		μА
Ground Current	I _{GND}	$V_L = 5.25V$, all channels on or off, $V_{IN} = 0V$ or $5V$		-0.0001		μА

Note 2: Typical values are for design aid only, not guaranteed, not subject to production testing.

Note 3: Guaranteed by design.

Note 4: On resistance match between channels and flatness are guaranteed only with bipolar-supply operation.

Note 5: Off Isolation = $20log_{10}$ ($\frac{V_{COM}}{V_{NC}}$), V_{COM} = output, V_{NC} or V_{NO} = input to off switch. Note 6: Between any two switches.

_Typical Operating Characteristics

 $(T_A = +25^{\circ}C, unless otherwise noted).$

PIN		PIN		PIN		FUNCTION
MAX317	MAX318	MAX319	NAME	FUNCTION		
1	1	1	COM	Analog-switch common terminal		
2	2	_	N.C.	No connect — not internally connected		
_	_	8	NO	Analog-switch normally open terminal		
3	3	3	GND	Logic ground		
4	4	4	V+	Analog-signal positive supply input		
5	5	5	VL	Logic-level positive supply input		
6	6	6	IN	Logic-level input		
7	7	7	V-	Analog-signal negative supply input		
8	_	2	NC	Analog-switch normally closed terminal		
_	8	_	NO	Analog-switch normally open terminal		

_Applications Information

Operation with Supply Voltages Other Than ±15V

The main limitation of supply voltages other than $\pm 15 \text{V}$ is analog signal range reduction. The MAX317/MAX318/MAX319 switches operate with bipolar supplies of $\pm 5 \text{V}$ to $\pm 20 \text{V}$. Typical Operating Characteristics graphs show typical on resistance for $\pm 15 \text{V}$, $\pm 10 \text{V}$, and $\pm 5 \text{V}$ supplies. Switching times increase by a factor of two or more for operation at $\pm 5 \text{V}$. The MAX317/MAX318/MAX319 can operate from unipolar supplies of $\pm 10 \text{V}$ to $\pm 30 \text{V}$. Both parts can also operate from unbalanced supplies such as $\pm 24 \text{V}$ and $\pm 5 \text{V}$.

Connect V- to 0V when operating with a single supply. This means that VL must be connected to +5V to be TTL compatible, or to V+ for CMOS logic input levels.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. It is important not to exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by VL, V-, and logic inputs. If power-supply sequencing is not possible, protect the devices from overvoltage by

adding two small signal diodes in series with the supply pins (Figure 1). Adding the diodes reduces the analog signal range to 1V below V+ and 1V below V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ to V- should not exceed +44V.

Pin Description

Figure 1. Overvoltage Protection Using Blocking Diodes

Test Circuits/Timing Diagrams

Figure 2. MAX317/MAX318 Switching-Time Test Circuit

Figure 3. MAX319 Transition Time

_Test Circuits/Timing Diagrams (continued)

Figure 4. MAX319 Break-Before-Make Test Circuit

Figure 5. Charge-Injection Test Circuit

_Test Circuits/Timing Diagrams (continued)

Figure 6. Off-Isolation Test Circuit

Figure 7. MAX319 Crosstalk Test Circuit

Figure 8. Channel-Off Capacitance Test Circuit

Figure 9. Channel-On Capacitance Test Circuit

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX318CPA	0°C to +70°C	8 Plastic DIP
MAX318CSA	0°C to +70°C	8 SO
MAX318CJA	0°C to +70°C	8 CERDIP
MAX318C/D	0°C to +70°C	Dice*
MAX318EPA	-40°C to +85°C	8 Plastic DIP
MAX318ESA	-40°C to +85°C	8 SO
MAX318 EJA	-40°C to +85°C	8 CERDIP
MAX318MJA	-55°C to +125°C	8 CERDIP**
MAX319CPA	0°C to +70°C	8 Plastic DIP
MAX319CSA	0°C to +70°C	8 SO
MAX319CJA	0°C to +70°C	8 CERDIP
MAX319C/D	0°C to +70°C	Dice*
MAX319EPA	-40°C to +85°C	8 Plastic DIP
MAX319ESA	-40°C to +85°C	8 SO
MAX319EJA	-40°C to +85°C	8 CERDIP
MAX319MJA	-55°C to +125°C	8 CERDIP**

TRANSISTOR COUNT: 32; SUBSTRATE CONNECTED TO V+.

DIE PAD	MAX317	MAX318	MAX319	
1	СОМ	NC	NC	
2	GND	GND	GND	
3	V+	V+	V+	
4	VL	VL	VL	
5	IN	IN	IN	
6	V-	V-	V-	
7	7 N.C. NO		NO	
8	N.C.	СОМ	СОМ	
9	NC	NC	COM	

^{*} Contact factory for dice specifications.
** Contact factory for availability and processing to MIL-STD-883.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.