

Éléments de Physique : Mécanique

CHAPITRE 3: LOIS DE NEWTON

Table des matières

- 1. Lois de Newton et conséquences
- 2. Types de forces
 - 1. Gravitation
 - 2. Forces de rappel
 - 3. Forces de contact

Introduction

Si un objet est **mis en mouvement**, c'est parce qu'il est soumis à une **force**.

- Une force est une grandeur vectorielle (unité : Newton [N])
 - Intensité
 - Direction
 - > Sens
 - Point d'application

Exemple: le poids W, la force gravitationnelle sur un objet.

> La force totale est la somme vectorielle des forces.

La **masse** gravitationnelle m est définie comme $m=\frac{w}{g}$ [kg]. Il s'agit d'une grandeur scalaire.

$$\boldsymbol{w} = m\boldsymbol{g}$$

Référentiel

- Un référentiel est une base de vecteurs pour l'espace, muni d'une origine.
- > Il existe une **infinité** de choix, mais certains sont plus pratiques.
- La physique est indépendante du référentiel (Galilée/Einstein).
- Il faut indiquer explicitement le choix du référentiel !

Exemple : bloc sur un plan incliné

Deux choix classiques : axe orthogonal au plan ou vertical

Première loi de Newton

Tout objet conserve son état de repos ou de mouvement rectiligne uniforme en absence de force agissant sur lui.

Ex: disque sur une table "à air". Une fois qu'on frappe le disque, il continue à vitesse constante.

Référentiel d'inertie

La 1^{ère} loi ne nous semble pas toujours vérifiée...

Exemple: manège

On tourne à « vitesse constante » et on sent une force vers l'extérieur.

Définition: Un **référentiel d'inertie** est un référentiel dans lequel la **1ère loi de Newton est applicable**.

Le manège n'est donc pas un référentiel d'inertie.

Corollaire

Tout référentiel se déplaçant à vitesse constante par rapport à un référentiel d'inertie en est un lui-même.

Exemple 1 : même origine, orientation fixe différente

Exemple 2 : repères se déplaçant à une vitesse relative v_c

Repère 1

1.
$$v = 0$$

2.
$$v = v_0 = \text{constante}$$

3.
$$v = at \neq constante$$

Repère 2

1.
$$v = v_c$$

2.
$$v = v_0 + v_c = constante$$

3.
$$v = at \neq \text{constante}$$
 3. $v = at + v_c \neq \text{constante}$

L'équilibre

Définition: Un objet dont l'état de mouvement reste inchangé (v =cste) est dit en équilibre.

On distingue différents types d'équilibre:

A: instable

B: stable

C: indifférent

NB : n'implique pas v = 0 ! (C ou référentiel en mouvement)

L'équilibre

Conséquence de la première loi de Newton :

lorsqu'un corps est à l'équilibre, $\sum_i \mathbf{F}_i = 0$.

Il s'agit d'une condition nécessaire, mais non suffisante (cf rotations, voir chapitre 4).

Troisième loi de Newton

Si un objet A exerce une force F sur un autre objet B, alors B exerce sur A une force égale en norme mais de sens opposé, -F

(Principe d'action-réaction)

Les forces d'action et de réaction s'exercent sur des objets différents : leurs effets ne s'annulent pas.

Seules les forces s'exerçant sur un objet particulier peuvent modifier son état de mouvement.

Distinction entre les forces internes et externes à un système.

Troisième loi de Newton

Exemple: Trouvez l'intrus.

Deuxième loi de Newton

(dans un repère d'inertie)

Quand une force s'exerce sur un objet, celui-ci est soumis à une accélération qui a la même direction :

$$F = ma$$

- Coefficient = masse d'inertie de l'objet
- Propriété intrinsèque qui mesure la quantité de matière
- \triangleright Unités : [N] = [kg . m / s²]

Deuxième loi de Newton

La **même force** appliquée à des objets différents produira une **accélération différente** :

$$F = ma$$
 $\rightarrow a = \frac{F}{m} \propto \frac{1}{m}$

m mesure l'inertie au mouvement

Exemple : action-réaction dans le cas où $m_1 \neq m_2$

Types de forces

4 interactions fondamentales:

- Gravitation
- Interaction électromagnétique
- > Interaction nucléaire forte
- > Interaction nucléaire faible

Gravitation ordinaire

A la surface terrestre, l'accélération gravitationnelle est (presque) constante.

La force doit donc être proportionnelle à la masse :

$$F = mg$$

Loi de la gravitation universelle

La force gravitationnelle est :

- toujours attractive
- proportionnelle au produit des masses
- inversement proportionnelle au carré de la distance

Force exercée par la masse 2 sur la masse 1 :

$$\boldsymbol{F}_{21} = -G \, \frac{m_1 m_2}{r^2} \, \hat{\boldsymbol{r}}_{21}$$

Constante gravitationnelle :
$$G = 6.67 \times 10^{-11} \frac{\text{N.m}^2}{\text{kg}^2}$$

Poids d'un objet

Force gravitationnelle qui agit au voisinage de la surface de la terre :

$$w = G \frac{mM_T}{R_T^2} = m \frac{GM_T}{R_T^2} = mg$$

$$g = G \frac{M_T}{R_T^2} = 6.67 \times 10^{-11} \frac{\text{N.m}^2}{\text{kg}^2} \frac{6.0 \times 10^{24} \text{ kg}}{(6400 \text{ km})^2}$$
$$= 9.81 \text{ m/s}^2$$

Evolution de g avec l'altitude

Amplitude de F_g par rapport à w

Force gravitationnelle entre 2 masses de 10 kg:

$$w = mg = 10 \times 9.81 = 98.1 \text{ N}$$

$$F_g = G \frac{mm'}{r^2} = 6,67 \times 10^{-11} \frac{100}{0.01} = 6,67 \times 10^{-7} \text{ N}$$

$$\frac{F_g}{W} = 6.81 \times 10^{-9}$$
 \rightarrow négligeable

Nous ne remarquons pas les attractions gravitationnelles entre objets de dimensions "ordinaires".

Poids effectif w^e

- > Poids w : constant au voisinage de la surface terrestre
- Perception du poids : peut varier selon les circonstances
- \succ Poids effectif w^e : force totale exercée par un objet sur une balance, opposé de la force s exercée par le sol sur l'objet

Exemple:

$$s - mg = ma$$

$$\Leftrightarrow s = m(g + a)$$

$$w^e = -m(g+a)$$
$$g^e = g+a$$

Lorsque a=-g, on a $w^e=0$ \rightarrow état d'apesanteur

Ressorts

Un ressort est un objet déformable réversiblement.

- Force linéaire avec la déformation x
- Proportionnalité = constante de ressort k

$$F(x) = -k\mathbf{x}$$

La force est toujours une force de rappel (compression ou extension).

Ressorts - trajectoire

- Solution simple des équations de Newton
- Sinus ou cosinus
- \triangleright Fonctions périodiques de fréquence ω

$$F = -kx = ma = m\frac{d^2x}{dt^2}$$

$$\Leftrightarrow \frac{d^2x}{dt^2} = -\left(\frac{k}{m}\right)x$$

$$\Rightarrow x(t) = x(0)\cos(\omega t)$$
 avec $\omega = \sqrt{\frac{k}{m}}$

Tension dans une corde

- \triangleright Action réaction sur la corde : $-F_1 + F_2 = ma$
- \triangleright Si $m \approx 0$ (ou a = 0): $F_1 = F_2$
- La corde **transmet** la force d'une extrémité à l'autre.
- La **tension** *T* est la force exercée en tout point de la corde.

Exemple: ascenseur

- Quels sont les points d'application des forces ?
- Que vaut la tension dans le câble ?

$$\sum F = ma$$

$$F = ma$$

$$T - \underbrace{w}_{mg} = ma_y$$

$$\Rightarrow T = m(g + a_y)$$

Exemple : chariots

Comment minimiser la tension entre les 2 chariots?

Valeur de T et a:

Wagon 1 :
$$F - T = m_1 a$$

Wagon 2 :
$$T = m_2 a$$

$$F = (m_1 + m_2)a \longrightarrow a = \frac{F}{m_1 + m_2}$$

$$T = \frac{m_2 F}{m_1 + m_2}$$

Pour minimiser T, il faut mettre le chariot léger derrière.

Exercice: bloc + poulie

- Quelle est la tension dans la corde ?
- Quelle est l'accélération du bloc 2 ?

Bloc 1 : selon
$$y \rightarrow N_1 = w_1 = m_1 g$$

selon $x \rightarrow T = m_1 a$
Bloc 2 : selon $y \rightarrow T - w_2 = -m_2 a$

Exercice: bloc + poulie (suite)

- Quelle est la tension dans la corde ?
- Quelle est l'accélération du bloc 2 ?

$$N_1 = w_1 = m_1 g$$

$$T = m_1 a$$

$$T - w_2 = -m_2 a$$

$$m_1 a - m_2 g = -m_2 a$$

$$T = m_1 a$$

$$\rightarrow a = \frac{m_2}{m_1 + m_2} g$$

$$\rightarrow T = \frac{m_1 m_2}{m_1 + m_2} g$$

Forces de réaction

Une **force de réaction** est une **force de contact**/support qui empêche deux corps solides de se superposer.

Origine : interactions électrostatiques entre les atomes

- \triangleright Maintient les atomes à des distances de quelques Å (10^{-10} m)
- > Apparence macroscopique: "ressort" parfait infiniment rigide
- > Force normale à l'interface

Frottement

Force qui agit pour **s'opposer au mouvement** d'un objet qui glisse sur un autre.

Origine:

- Adhérence mécanique due à la rugosité des surfaces
- Liaisons de faible énergie entre les atomes

Solutions:

- Les **roulements**, qui rendent la séparation des surfaces plus aisée (minimiser la surface).
- Les **fluides**, où les frottements sont faibles comparés aux frottements solide-solide.

Forces de frottement

Frottement statique:

- $\triangleright f_S = F$
- $ightharpoonup f_s(\max)$ indépendant de l'aire de contact
- $\triangleright f_s(\max) = \mu_s N$
- μ_s coefficient de frottement statique (< 1)

Frottement cinétique :

- $\triangleright f_c < f_s(\max)$
- $ightharpoonup f_c$ indépendant de l'aire de contact
- $\rightarrow f_c = \mu_c N$
- μ_c coefficient de frottement cinétique ($\mu_c < \mu_s$)

Détermination de μ_S

selon $x: N = w \cos \theta$

selon $y: f_S = w \sin \theta$

$$\rightarrow \frac{f_S}{N} = \tan \theta$$

A la limite du glissement, $\theta = \theta_{\text{max}}$: $f_S = f_S(\text{max}) = \mu_S N$

$$\mu_{s} = \tan \theta_{\max}$$

Coefficients de frottement

Matériaux	$\mu_{\rm s}$	$\mu_{\rm c}$
Acier sur glace	0,1	0,05
Acier sur acier - sec	0,6	0,4
Acier sur acier - graissé	0,1	0,05
Corde sur bois	0,5	0,3
Téflon sur acier	0,04	0,04
Chaussure sur glace	0,1	0,05
Bottes de montagne sur rocher	1,0	0,8
Semelles de cuir sur tapis	0,6	0,5
Semelles de cuir sur bois	0,3	0,2
Semelles de caoutchouc sur bois	0,9	0,7
Pneus de voiture sur béton sec	1,0	0,7-0,8
Pneus de voiture sur béton mouillé	0,7	0,5
Pneus de voiture sur béton verglacé	0,3	0,02
Caoutchouc sur asphalte	0,60	. 0,40
Téflon sur téflon	0,04	0,04
Bois sur bois	0,5	0,3
Glace sur glace	0,05-0,15	0,02
Verre sur verre	0,9	0,4

^{*} La première colonne donne la valeur approchée du coefficient de frottement dia tique. La seconde colonne donne la valeur du coefficient de frottement cinétique qui sera discuté dans la suite.

Résumé

Les forces à prendre en compte lorsqu'un objet est posé sur un support :

- ➤ Le poids (vertical) : w
- > Les forces de contact
 - \triangleright tangentielle : F_f
 - > normale : N

Les aventures de Superman

Superman: m = 100 kg

$$\mu_S = \mu_C = 1$$

Camion: $v_0 = 30 \text{ m/s}$

$$M = 50 \text{ T}$$

Force maximale exercée par Superman : $F = \mu_{s/c} N = \mu_{s/c} mg = 981 \text{ N}$

Décélération du camion : $a = \frac{F}{M} = \frac{-981}{50000} = -0.0196 \text{ m/s}^2$

Distance nécessaire pour arrêter le camion : $v^2 = v_0^2 + 2a\Delta x$

$$\rightarrow \Delta x = \frac{v^2 - v_0^2}{2a} = \frac{900}{0,0392} = 23000 \text{ m}$$