We only need to consider the top m most frequent integers.

- 1. Let f[i][j] denote whether the first i most frequent integers can satisfy customer set j. $O(n+3^m \cdot m)$.
- 2. Let f[i] denote the minimum pair (a, b) where it's possible to use the first (a 1) most frequent integers and b copies of the a-th most frequent integers to satisfy customer set j. $O(n + 2^m \cdot m)$.

Distribute Repeating Integers

Submission Detail

Accepted Solutions Runtime Distribution

 ${\it Runtime:}~40~ms,~{\it faster~than}~100.00\%~{\it of}~{\it C++}~{\it online~submissions~for~Distribute~Repeating~Integers}.$

 $Memory\ Usage:\ 74.9\ MB,\ less\ than\ 33.77\%\ of\ C++\ online\ submissions\ for\ Distribute\ Repeating\ Integers.$

References