Module 1: Supervised vs Unsupervised Learning

1.1 What is Machine Learning?

Definition

Arthur Samuel's Definition: "The field of study that gives computers the ability to learn without being explicitly programmed"

Key Example

- Samuel's checkers program (1950s)
- Computer learned by playing thousands of games against itself
- Identified winning/losing positions through experience
- Became better than Samuel himself

Core Principle

More training opportunities \rightarrow Better performance

Two Main Types

- 1. Supervised Learning Most widely used in real-world applications
- 2. Unsupervised Learning Second most common type

Course Structure

- Courses 1-2: Supervised Learning
- Course 3: Unsupervised Learning, Recommender Systems, Reinforcement Learning

1.2 Supervised Learning

Definition

Learning algorithm that maps inputs (x) to outputs (y)

Key Characteristic: Training with labeled examples (correct input-output pairs)

Applications

- Email Spam Filtering: Email → Spam/Not Spam
- Speech Recognition: Audio \rightarrow Text transcript
- Machine Translation: English \rightarrow Other languages
- Online Advertising: User/Ad info \rightarrow Click prediction
- Self-Driving Cars: Image/Sensor data \rightarrow Position of objects
- Manufacturing: Product image \rightarrow Defect detection

Type 1: Regression

Predicts continuous numerical values from infinitely many possibili-

Example: Housing Price Prediction

- Input (x): House size (sq ft)
- **Output (y)**: Price (\$)
- Can fit straight line or curve to data
- Predicts any number (e.g., \$150,000, \$183,000, \$200,000)

Mathematical representation: y = f(x) where $y \in \mathbb{R}$

Type 2: Classification

Predicts discrete categories from a small, finite set of possibilities

Example: Breast Cancer Detection

• Input (x): Tumor size

• Output (y): Benign (0) or Malignant (1)

• Can have 2+ categories (e.g., Type 0, Type 1, Type 2 cancer)

Key Difference from Regression:

• Classification: Small finite set of categories

• Regression: Infinitely many possible numbers

Multiple Input Features Can use multiple inputs simultaneously:

- Tumor size AND patient age
- Algorithm finds decision boundary separating categories
- Real applications use many features (thickness, uniformity, cell size, etc.)

Mathematical representation: $y \in \{0, 1\}$ or $y \in \{0, 1, 2, ..., n\}$

1.3 Unsupervised Learning

Definition

Given data with **only inputs** (x), no output labels (y)

Goal: Find structure, patterns, or interesting relationships in data

Type 1: Clustering

Groups similar data points together automatically

Applications 1. Google News

- Groups related articles together
- Finds common words (e.g., "panda," "twin," "zoo")
- Adapts to new topics daily without human supervision

2. DNA/Genetic Data Analysis

- Groups individuals by genetic similarities
- Identifies "types" of people based on gene expression
- No predefined categories

3. Market Segmentation

- Groups customers by behavior/motivation
- Example: Knowledge seekers, Career developers, Industry updaters
- Enables targeted marketing strategies

Type 2: Anomaly Detection

Detects unusual events or outliers

Applications

- Fraud detection in financial systems
- Identifying unusual transactions
- Security monitoring

Type 3: Dimensionality Reduction

Compresses large datasets while preserving information

- Reduces data size
- Maintains essential patterns
- Improves computational efficiency

Key Comparisons

Aspect	Supervised Learning	Unsupervised Learning
Data	Inputs $(x) + Labels (y)$	Only inputs (x)

Aspect	Supervised Learning	Unsupervised Learning
Goal	Predict y for new x	Find patterns/structure
Examples	Regression, Classification	Clustering, Anomaly detection
Training	Learn from "right answers"	Discover hidden structure

Summary

Supervised Learning

- Regression: Predict continuous numbers (housing prices, temperature)
- Classification: Predict categories (spam/not spam, disease diagnosis)

Unsupervised Learning

- Clustering: Group similar data (news articles, customer segments)
- Anomaly Detection: Find unusual patterns (fraud detection)
- Dimensionality Reduction: Compress data efficiently

Best Practice

Success requires both:

- 1. Understanding the algorithms (tools)
- 2. Knowing how to apply them effectively (practical skills)