Poglavje 4

Relacije in funkcije

4.5 Funkcije

Definicija 1 Funkcija ali preslikava je enolična dvomestna relacija.

Definicija 2 Urejena trojica (f, A, B) je funkcija ali preslikava množice A v množico B, če je f enolična relacija v množici $A \cup B$, $\mathcal{D}_f = A$ in $\mathcal{Z}_f \subseteq B$.

Trojico (f, A, B) pišemo v obliki $f: A \to B$ ali $A \xrightarrow{f} B$. Množica A je domena ali definicijsko območje, množica \mathcal{Z}_f zaloga vrednosti, množica B pa kodomena preslikave $f: A \to B$.

Pripomba 1 1. Podatek A v trojici (f, A, B) je sicer odveč, saj je $A = \mathcal{D}_f$, vendar je iz praktičnih razlogov dobro, da ga navajamo tudi eksplicitno.

- 2. Kadar definiramo neko preslikavo $f: A \to B$, moramo paziti na dvoje:
 - 1. $vrednost\ f(x) \in B \ mora\ biti\ definirana\ \underline{za}\ vsak\ x \in \underline{A}\ (celovitost),$
 - 2. ta vrednost mora biti $z x \in A$ enolično določena (enoličnost).
- 3. Za vsako dvomestno relacijo R je očitno $R \subseteq \mathcal{D}_R \times \mathcal{Z}_R$. Če je $f: A \to B$, je torej $f \subseteq \mathcal{D}_f \times \mathcal{Z}_f \subseteq A \times B$.

Funkcijska pisava: Če je f funkcija, namesto relacijske pisave xfy uporabljamo $funkcijsko \ pisavo \ y = f(x)$ ali $f: x \mapsto y$ in preberemo:

- y je vrednost f pri argumentu x, ali:
- y je f-slika originala x.

Formulo f(x) = f(y) uporabljamo kot okrajšavo za formulo

$$\exists z : (xfz \land yfz).$$

4.5.1 Lastnosti funkcij

Definicija 3 Naj bo $f: A \rightarrow B$.

- 1. f je injektivna, če $\forall x, y \in A$: $(f(x) = f(y) \implies x = y)$.
- 2. f je surjektivna, če je $\mathcal{Z}_f = B$.
- 3. f je bijektivna, če je injektivna in surjektivna.

Zgled 1 1. \emptyset je prazna funkcija, $\emptyset: \emptyset \to A$ je prazna preslikava v množico A.

- 2. $id_A: A \to A$, kjer za vsak $x \in A$ velja: $id_A(x) = x$, je identiteta na A.
- 3. Naj bo $A \subseteq B$. Preslikavo $i: A \hookrightarrow B$, kjer za vsak $x \in A$ velja: i(x) = x, imenujemo vložitev $A \vee B$.
- 4. Naj bo $n \in \mathbb{N}$, $n \geq 2$. Za vse $i \in \{1, 2, ..., n\}$ je preslikava $p_i : A_1 \times A_2 \times \cdots \times A_n \to A_i$, kjer za vsako urejeno n-terico $x = (a_1, a_2, ..., a_n) \in A_1 \times A_2 \times \cdots \times A_n$ velja: $p_i(x) = a_i$, projekcija $A_1 \times A_2 \times \cdots \times A_n$ na i-to komponento.
- 5. Naj bo $R \subseteq A \times A$ ekvivalenčna relacija v A. Preslikava $p: A \to A/R$, kjer za vsak $x \in A$ velja: p(x) = R[x], je naravna kvocientna projekcija množice A na množico A/R.
- 6. Naj bo $A \subseteq S$. Preslikava $\chi_A \colon S \to \{0,1\}$, kjer za vsak $x \in S$ velja:

$$\chi_A(x) = \begin{cases} 1, & \text{\'e } x \in A, \\ 0, & \text{\'e } x \notin A, \end{cases}$$

je karakteristična funkcija množice A glede na S.

Prazna preslikava in vložitev sta injektivni, identiteta je bijektivna, projekcije nepraznega kartezičnega produkta na posamezne komponente so surjektivne, prav tako je surjektivna naravna kvocientna projekcija. Če $A \notin \{\emptyset, S\}$, je tudi karakteristična funkcija χ_A surjektivna.

Definicija 4 Naj bo $f: A \to B$ in $C \subseteq A$. Preslikava $g: C \to B$, kjer za vse $x \in C$ velja: g(x) = f(x), je zožitev f na C. Pišemo: $g = f|_C$.

Zgled 2 Naj bo $C \subseteq A$. Vložitev $i: C \hookrightarrow A$ je zožitev id_A na C, torej $i = \mathrm{id}_A|_C$.

Definicija 5 Preslikavo $f: A_1 \times A_2 \times \cdots \times A_n \to B$ imenujemo tudi funkcija n spremenljivk. Tedaj namesto $f((a_1, a_2, \dots, a_n))$ pišemo kar $f(a_1, a_2, \dots, a_n)$.

4.5. FUNKCIJE

4.5.2 Operacije s funkcijami

Kot za vsako relacijo tudi za vsako funkcijo f obstaja transponirana relacija f^T . Očitno je $\mathcal{D}_{f^T} = \mathcal{Z}_f$ in $\mathcal{Z}_{f^T} = \mathcal{D}_f$. Kdaj pa je relacija f^T tudi funkcija?

Trditev 1

- 1. Naj bo f funkcija. Potem je f^T funkcija natanko tedaj, ko je f injektivna.
- 2. Naj bo $f:A\to B$. Potem je $f^T:B\to A$ natanko tedaj, ko je f bijektivna.

Dokaz:

1.
$$f^T$$
 funkcija $\iff f^T$ enolična relacija $\iff \forall x, y, z \colon (xf^Ty \land xf^Tz \Rightarrow y = z)$ $\iff \forall x, y, z \colon (yfx \land zfx \Rightarrow y = z)$ $\iff \forall y, z, x \colon (\neg(yfx \land zfx) \lor y = z)$ $\iff \forall y \forall z \colon (\forall x \colon (\neg(yfx \land zfx)) \lor y = z)$ $\iff \forall y \forall z \colon (\neg\exists x \colon (yfx \land zfx) \lor y = z)$ $\iff \forall y \forall z \colon (\neg(f(y) = f(z)) \lor y = z)$ $\iff \forall y \forall z \colon (f(y) = f(z) \Rightarrow y = z)$ $\iff f \text{ injektivna}$

2.
$$f^T: B \to A \implies f^T$$
 funkcija $\land \mathcal{D}_{f^T} = B$

$$\implies f \text{ injektivna } \land \mathcal{Z}_f = B$$

$$\implies f \text{ bijektivna}$$

$$f$$
 bijektivna $\implies f$ injektivna $\land \mathcal{D}_f = A \land \mathcal{Z}_f = B$

$$\implies f^T \text{ funkcija } \land \mathcal{Z}_{f^T} = A \land \mathcal{D}_{f^T} = B$$

$$\implies f^T \colon B \to A$$

Če je funkcija f injektivna, imenujemo funkcijo f^T tudi inverzna funkcija funkcije f in jo označimo z f^{-1} .

Definicija 6 Preslikavi $f: A \to B$ priredimo relacijo $K_f \subseteq A \times A$ takole:

$$x K_f y \iff f(x) = f(y).$$

Očitno je K_f ekvivalenčna relacija v A in velja

$$\forall x \in A \colon K_f[x] = \{ y \in A; \ f(y) = f(x) \}.$$

Relacija K_f je kongruenca preslikave f.

Trditev 2 Naj bo $f: A \to B$. Potem velja:

1.
$$f^T \circ f = K_f$$

2.
$$f \circ f^T = \mathrm{id}_{\mathcal{Z}_f}$$

- 3. f injektivna $\iff f^T \circ f = id_A$
- 4. f surjektivna \iff $f \circ f^T = id_B$

Dokaz:

1.
$$x f^T \circ f y \iff \exists u \colon (x f u \land u f^T y) \iff \exists u \colon (x f u \land y f u)$$

 $\iff f(x) = f(y) \iff x K_f y$

2.
$$x f \circ f^T y \iff \exists u \colon (x f^T u \land u f y) \iff \exists u \colon (u f x \land u f y)$$

 $\iff \exists u \colon (x = f(u) \land y = f(u)) \iff x = y \land x \in \mathcal{Z}_f \land y \in \mathcal{Z}_f$
 $\iff x \operatorname{id}_{\mathcal{Z}_f} y$

3.
$$f$$
 injektivna $\iff \forall x, y \in A \colon (f(x) = f(y) \Leftrightarrow x = y)$
 $\iff \forall x, y \in A \colon (xK_f y \Leftrightarrow x = y)$
 $\iff K_f = \mathrm{id}_A \iff f^T \circ f = \mathrm{id}_A$

4.
$$f$$
 surjektivna $\iff \mathcal{Z}_f = B \iff \mathrm{id}_{\mathcal{Z}_f} = \mathrm{id}_B \iff f \circ f^T = \mathrm{id}_B$

Posledica 1 Naj bo $f: A \to B$ bijekcija. Potem je $f^{-1} \circ f = \mathrm{id}_A$ in $f \circ f^{-1} = \mathrm{id}_B$.

Izrek 1 1. Če sta f in g funkciji, je tudi $f \circ g$ funkcija in za vsak $x \in \mathcal{D}_{f \circ g}$ je $(f \circ g)(x) = f(g(x))$.

2. Naj bo $g: A \to B$ in $f: B \to C$. Potem je $f \circ g: A \to C$.

4.5. FUNKCIJE 5

Dokaz: 1. Naj bo $x(f \circ g)y$ in $x(f \circ g)z$. Potem obstajata u in v, tako da je

$$x g u \wedge u f y \wedge x g v \wedge v f z$$
.

Zaradi enoličnosti g sledi od tod u=v. Torej je ufy in ufz, od tod pa zaradi enoličnosti f sledi še y=z. Potemtakem je tudi relacija $f\circ g$ enolična.

Naj bo $x \in \mathcal{D}_{f \circ g}$ in $y = (f \circ g)(x)$ oziroma $x(f \circ g)y$. Potem obstaja u, tako da je x g u in u f y oziroma u = g(x) in y = f(u) = f(g(x)). Torej je $(f \circ g)(x) = f(g(x))$.

2. Ker je $\mathcal{Z}_g \subseteq B = \mathcal{D}_f$, je $\underline{\mathcal{D}_{f \circ g}} = \mathcal{D}_g = A$. Ker je $g \subseteq A \times B$ in $f \subseteq B \times C$, je $f \circ g \subseteq A \times C$ in zato $\underline{\mathcal{Z}_{f \circ g}} \subseteq C$. Torej je $f \circ g : A \to C$.

Trditev 3 Naj bo $f: A \to B$. Potem je $f \circ id_A = id_B \circ f = f$.

Dokaz:

$$x(f \circ id_A) y \iff \exists u \colon (x = u \land ufy) \iff xfy \checkmark$$

 $x(id_B \circ f) y \iff \exists u \colon (xfu \land u = y) \iff xfy \checkmark$

Trditev 4 Naj bo $g: A \to B$ in $f: B \to C$. Potem velja:

- 1. $f, g injektivni \implies f \circ g injektivna$
- 2. $f, g \text{ surjektivni} \implies f \circ g \text{ surjektivna}$
- 3. $f \circ g$ injektivna $\implies g$ injektivna
- 4. $f \circ g$ surjektivna $\implies f$ surjektivna

Dokaz: 3. $g(x) = g(y) \implies f(g(x)) = f(g(y)) \implies (f \circ g)(x) = (f \circ g)(y) \implies x = y.$