Tarea 3 Microeconomía I

Profesora: Adriana Piazza **Ayudantes**: Jorge Arenas, Kevin Sepúlveda, Alberto Undurraga

Otoño 2021

1. Economía forestal (2 puntos)

Considere el modelo de una plantación forestal visto en clases:

- \blacksquare La plantación se compone de una sola especie forestal que vive exactamente N años.
- Los coeficientes de biomasa b_i , $i=1,\ldots,N,\ b\geq 0$ indican el volumen de madera contenido en una hectárea cubierta por árboles de edad $i=1,\ldots,N$.

Agregaremos dos supuestos (con respecto al modelo visto en clases):

- ullet La superficie disponible de tierra es exactamente igual a S.
- La tierra está completamente cubierta de árboles.

Recuerde que la tierra es perfectamente divisible.

- a) Encuentre el conjunto de posibilidades de producción (Y).
- b) Indique cuales de las siguientes propiedades son satisfechas por Y (Justifique).
 - 1) No free lunch
 - 2) Posibilidad de inacción
 - 3) Free disposal
 - 4) Rendimientos crecientes a escala? Decrecientes a escala?
 - 5) Convexidad
 - 6) Aditividad
- c) A partir de ahora asumimos que el valor de S es variable.
 - Suponga que el único costo de producción es el arriendo de la tierra y que el mismo es de w/hectárea cada año. La tasa de interés es r. Resuelva el problema de minimización del costo de producción si se requiere producir un volumen de madera igual a q.
- d) ¿Qué superficie de tierra necesita para producir exactamente un volumen de madera igual a q todos los años? Describa su plantación en un año cualquiera.
- 2. (1 punto) Considere una firma que produce un único producto y a partir de un único insumo z y cuyo conjunto de posibilidades de producción viene dado por: $y \le 0$ si el insumo $z \in [0,1]$ y $y \le \ln(z)$ si $z \ge 1$. ²
 - a) Calcule la función de beneficio $\pi(p,w)$. ¿Cuál es el beneficio máximo cuando p=w/2?
 - b) Verifique que se cumple el Lema de Hotelling.
- 3. (1 punto) Considere una firma que produce un único producto. Demuestre matemáticamente que si la firma maximiza utilidades, está minimizando costos.

¹Sugerencia: Tenga en cuenta que para producir una hectárea de árboles de edad i necesitará arrendar la tierra durante i años (anteriores al momento de cosechar). Por ejemplo, para cosechar una hectárea de árboles de edad 2, el costo de producción sería $w \cdot (1 + \frac{1}{\delta})$ con $\delta = \frac{1}{1+r}$.

²En este ejercicio el insumo está considerado como no-negativo.

4. (1 punto) Una firma tiene dos plantas que producen el mismo producto único. La función de producción de la primera planta es $f_1(x_1,x_2)=x_1^ax_2^{1-a}$ y la función de producción de la segunda planta es $f_2(x_1,x_2)=x_1^bx_2^{1-b}$. Demuestre que el costo mínimo para producir q unidades es

$$c(w_1,w_2) = \min \left\{ \left[\left(\frac{a}{1-a}\right)^{1-a} + \left(\frac{1-a}{a}\right)^a \right] w_1^a w_2^{1-a} q, \left[\left(\frac{b}{1-b}\right)^{1-b} + \left(\frac{1-b}{b}\right)^b \right] w_1^b w_2^{1-b} q \right\}.$$

5. (1 punto) Dado un conjunto productivo Y, se dice que un plan de producción $y \in Y$ es débilmente eficiente si no existe $y' \in Y$ que cumpla y' >> y. Por ejemplo, en la Figura 1 se muestra el punto y que es débilmente eficiente (aunque no es eficiente en el sentido usual).

Asumiendo que Y es convexo, demuestre que si $y \in Y$ es débilmente eficiente entonces y es maximizador de utilidades para algún precio $p \ge 0$.

Figura 1: y es débilmente eficiente