Université de Rennes 1 Licence de mathématiques Module Anneaux et Arithmétique

Feuille de TD n°2

Exercice 2.1

Soit A un anneau et a un élément de A. Montrer que le sous-anneau de A engendré par $\{a\}$ est $\mathbf{Z}[a]$ (image de $\mathbf{Z}[X]$ par l'unique morphisme d'anneaux $\mathbf{Z}[X] \to A$ qui envoie X sur a). Généraliser au sous-anneau engendré par une partie finie S de A.

Exercice 2.2

Soit A un anneau. Soit \mathcal{I} et \mathcal{J} des idéaux de A. Soit $\Pi(\mathcal{I}, \mathcal{J})$ l'ensemble des éléments de A qui s'écrivent xy où x est un élément de \mathcal{I} et \mathcal{J} est un élément de A. On rappelle que l'idéal produit $\mathcal{I} \cdot \mathcal{J}$ est l'idéal engendré par $\Pi(\mathcal{I}, \mathcal{J})$.

- 1. On suppose qu'il existe $a, b \in A$ tels que $\mathcal{I} = a \cdot A$ et $\mathcal{J} = b \cdot A$. Montrer que $\Pi(\mathcal{I}, \mathcal{J})$ est l'idéal de A engendré par ab. En particulier $\Pi(\mathcal{I}, \mathcal{J}) = \mathcal{I} \cdot \mathcal{J}$.
- 2. Pour $n \in \mathbf{Z}$, on note \mathcal{I}_n l'idéal de $\mathbf{Z}[X]$ engendré par n et X.
 - (a) Montrer que $\mathcal{I}_n = \{ P \in \mathbf{Z}[X], n | P(0) \}.$
 - (b) Montrer que $\Pi(\mathcal{I}_2, \mathcal{I}_2)$ est inclus strictement dans $\mathcal{I}_2 \cdot \mathcal{I}_2$.
 - (c) Soit $m \in \mathbf{Z}$ et δ le pgcd de m et n. Montrer que $\mathcal{I}_n \cdot \mathcal{I}_m$ est égal à l'ensemble des polynômes $P \in \mathbf{Z}[X]$ tels que n m divise P(0) et δ divise le coefficient de X dans P.

Exercice 2.3

Soit E un ensemble et $(A_e)_{e \in E}$ une famille d'anneaux indexée par E, $B := \prod_{e \in E} A_e$ l'anneau produit. Pour tout $e \in E$, on note $\pi_e : B \to A_e$ le morphisme d'anneaux (cf. cours ou exercice 1.3.2) donné par la projection sur A_e . Soit C un anneau. Montrer que l'application suivante est bijective :

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{anneaux}}(C,B) & \longrightarrow & \prod_{e \in E} \operatorname{Hom}_{\operatorname{anneaux}}(C,A_e) \\ \varphi & \longmapsto & (\pi_e \circ \varphi)_{e \in E} \end{array}.$$

Exercice 2.4

- 1. Soit n un entier positif. Décrire tous les idéaux de $\mathbf{Z}/n\mathbf{Z}$ et les relations d'inclusion entre ces idéaux.
- 2. Soit **K** un corps. Décrire tous les idéaux de $\mathbf{K}[X]/\langle X^4+3\,X^3+2\,X^2\rangle$ et les relations d'inclusion entre ces idéaux.

Exercice 2.5

On note $\mathcal{C}^{\infty}(\mathbf{R},\mathbf{R})$ l'ensemble des fonctions de classe \mathcal{C}^{∞} sur \mathbf{R} .

- 1. Montrer que cet ensemble, muni de l'addition et de la multiplication ponctuelles, est un anneau.
- 2. Soit $x_0 \in \mathbf{R}$. Montrer que $\{f \in \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R}), f(x_0) = 0\}$ est un idéal maximal de $\mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$.

3. Soit

$$\mathcal{I} = \{ f \in \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R}), \forall n \in \mathbf{N}, f^{(n)}(x_0) = 0 \}$$

Montrer que \mathcal{I} est un idéal premier non nul de $\mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$ (idéal des fonctions « plates » en x_0), et construire un morphisme injectif de $\mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})/\mathcal{I}$ vers $\mathbf{R}[[X]]$. Note : on peut en fait construire un isomorphisme de $\mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})/\mathcal{I}$ sur $\mathbf{R}[[X]]$ (théorème de Borel). On obtient ainsi une interprétation fonctionnelle de l'anneau de séries formelles $\mathbf{R}[[X]]$: c'est l'anneau des fonctions \mathcal{C}^{∞} sur \mathbf{R} modulo les fonctions plates en un point fixé.

4. (si vous connaissez la notion de fonction holomorphe) Que se passe-t-il si on s'intéresse aux objets analogues quand on remplace $\mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$ par l'anneau des fonctions holomorphes sur \mathbf{C} ?

Exercice 2.6

On désigne par i un élément de ${\bf C}$ tel que $i^2=-1$. Soit ${\bf Z}[i\sqrt{3}]$ l'image dans ${\bf C}$ de l'unique morphisme d'anneaux ${\bf Z}[X]\to {\bf C}$ qui envoie X sur $i\sqrt{3}$.

1. Montrer que $\mathbf{Z}[i\sqrt{3}]$ est un anneau intègre isomorphe à $\mathbf{Z}[X]/\langle X^2+3\rangle$ et que

$$\mathbf{Z}[i\sqrt{3}] = \{a + i \, b \, \sqrt{3}\}_{(a,b) \in \mathbf{Z}^2}.$$

2. Montrer que l'application

$$N: \begin{array}{ccc} \mathbf{Z}[i\sqrt{3}] & \longrightarrow & \mathbf{N} \\ z & \longmapsto & z\bar{z} \end{array}$$

est bien définie et vérifie

$$\forall (z_1, z_2) \in \mathbf{Z}[i\sqrt{3}]^2, \quad N(z_1 z_2) = N(z_1)N(z_2).$$

En déduire les éléments de $\mathbf{Z}[i\sqrt{3}]^{\times}$.

3. Montrer que l'équation

$$a^2 + 3b^2 = 2$$
, $(a, b) \in \mathbf{Z}^2$

n'a pas de solution. En déduire que 2 est un élément irréductible de $\mathbf{Z}[i\sqrt{3}]$.

- 4. Montrer que $2 \cdot \mathbf{Z}[i\sqrt{3}]$ n'est pas un idéal premier de $\mathbf{Z}[i\sqrt{3}]$ de deux façons différentes :
 - (a) en calculant le quotient $\mathbf{Z}[i\sqrt{3}]/2 \cdot \mathbf{Z}[i\sqrt{3}]$;
 - (b) en utilisant la relation $4 = (1 + i\sqrt{3})(1 i\sqrt{3})$.

Exercice 2.7

Soit p un nombre premier et $\mathbf{Z}_{(p)} = \left\{\frac{a}{b}\right\}_{a \in \mathbf{Z}, b \in \mathbf{Z} \setminus p\mathbf{Z}}$ (cf. l'exercice 1.7.3). Décrire l'ensemble des éléments irréductibles de $\mathbf{Z}_{(p)}$. Combien y a-t-il de classes d'éléments irréductibles pour la relation d'association? Énoncer et démontrer un théorème de « factorisation unique » dans $\mathbf{Z}_{(p)}$.

Exercice 2.8

Soit x un entier non nul et $\mathbf{Z}\left[\frac{1}{x}\right]$ l'image de $\mathbf{Z}[X]$ par l'unique morphisme d'anneaux de $\mathbf{Z}[X]$ vers \mathbf{Q} envoyant X sur $\frac{1}{x}$ (cf. l'exercice 1.7.2). Décrire l'ensemble des classes d'éléments irréductibles pour la relation d'association. Énoncer et démontrer un théorème de « factorisation unique » dans $\mathbf{Z}\left[\frac{1}{x}\right]$.

Exercice 2.9

Résoudre l'équation $x^3 = 2$, $x \in A$ où A désigne successivement l'un des anneaux suivants (et 2 désigne l'image de 2 dans A par l'unique morphisme d'anneaux $\mathbf{Z} \to A$):

R, **Q**, **Q**[X]/
$$\langle X^3 - 2 \rangle$$
, **C**, **Z**/ n **Z** $(n \in \{5, 10, 35, 25, 125\})$

Exercice 2.10

Pour tout anneau A, on note $car(A) \in \mathbf{N}$ la caractéristique de A.

- 1. Soit A un anneau et n un entier positif. Montrer que les conditions suivantes sont équivalentes :
 - (a) A est de caractéristique n;
 - (b) (si n > 0) 1_A est d'ordre n en tant qu'élément du groupe (A, +);
 - (c) A contient un sous-anneau isomorphe à $\mathbb{Z}/n\mathbb{Z}$.
- 2. Donner les caractéristiques de l'anneau nul, de \mathbf{Z} , \mathbf{Q} , \mathbf{R} , \mathbf{C} et $\mathbf{Z}/n\mathbf{Z}$ ($n \in \mathbf{N}$).
- 3. Montrer que la caractéristique d'un anneau intègre est soit nulle, soit un nombre premier.
- 4. Soit A un anneau et B un sous anneau de A. Montrer que car(A) = car(B).
- 5. Soit $\varphi \colon A \to B$ un morphisme d'anneaux. Montrer que $\operatorname{car}(B)$ divise $\operatorname{car}(A)$.
- 6. Soit A un anneau. Exprimer car(A[X]) en fonction de car(A).
- 7. Soit A et B des anneaux. Exprimer $car(A \times B)$ en fonction de car(A) et car(B).
- 8. Soit E un ensemble et A un anneau. Exprimer $car(A^E)$ en fonction de car(A).
- 9. Soit E un ensemble et $(A_e)_{e \in E}$ une famille d'anneaux indexée par E. Exprimer $\operatorname{car}(\prod_{e \in A} A_e)$ en fonction des $\operatorname{car}(A_e)$.
- 10. Soit p un nombre premier et A un anneau de caractéristique p. Montrer que $x \mapsto x^p$ est un morphisme d'anneaux. Donner un exemple d'un anneau de caractéristique 4 pour lequel $x \mapsto x^4$ n'est pas un morphisme d'anneaux.

Exercice 2.11

On désigne par i un élément de \mathbb{C} tel que $i^2 = -1$. Soit $\mathbb{Z}[i]$ l'image de l'unique morphisme d'anneaux $\mathbb{Z}[X] \to \mathbb{C}$ qui envoie X sur i (cf. l'exercice 1.7.1).

- 1. Soit p un nombre premier. Montrer que les conditions suivantes sont équivalentes, et qu'elles sont entraînées par la condition « p n'est pas un élément irréductible de $\mathbf{Z}[i]$ ».
 - (a) $p\mathbf{Z}[i]$ n'est pas un idéal premier de $\mathbf{Z}[i]$;
 - (b) -1 est un carré modulo p.
- 2. Soit $z \in \mathbf{Z}[i]$. Montrer que $z \in \mathbf{Z}[i]^{\times}$ si et seulement si N(z) = 1 (cf. l'exercice 1.7.1).
- 3. Soit $z_1, z_2 \in \mathbf{Z}[i]$ tels que $N(z_1) = N(z_2)$ et z_1 divise z_2 . Montrer que z_1 et z_2 sont associés.
- 4. Soit $z \in \mathbf{Z}[i]$ tel que N(z) est un nombre premier. Montrer que z est un élément irréductible de $\mathbf{Z}[i]$.
- 5. Soit p un nombre premier tel que p est une somme de deux carrés, c'est-à-dire qu'il existe $(a,b) \in \mathbf{Z}^2$ tel que $p=a^2+b^2$. Montrer que -1 est un carré modulo p, et que p n'est pas un élément irréductible de $\mathbf{Z}[i]$.

- 6. On admet (provisoirement) la propriété (\mathcal{P}) suivante : soit $(a,b,c) \in \mathbf{Z}[i]^3$; on suppose que a et b sont irréductibles, non associés, et divisent c; alors ab divise c. Soit p un nombre premier. Montrer que les conditions suivantes sont équivalentes :
 - (a) p n'est pas un élément irréductible de $\mathbf{Z}[i]$;
 - (b) $p\mathbf{Z}[i]$ n'est pas un idéal premier de $\mathbf{Z}[i]$;
 - (c) -1 est un carré modulo p;
 - (d) p est une somme de deux carrés.
- 7. Montrer que l'analogue de la propriété (\mathcal{P}) pour $\mathbf{Z}[i\sqrt{3}]$ est fausse (cf. exercice 2.6).

Exercice 2.12

1. Soit A un anneaux et \mathcal{I}_1 , \mathcal{I}_2 , \mathcal{I}_3 trois idéaux de A, supposé deux à deux étrangers. Montrer que les idéaux \mathcal{I}_1 et $\mathcal{I}_2 \cdot \mathcal{I}_3$ sont étrangers. En déduire que $\mathcal{I}_1 \cdot \mathcal{I}_2 \cdot \mathcal{I}_3 = \mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3$ et que le morphisme naturel

$$A \to A/\mathcal{I}_1 \times A/\mathcal{I}_2 \times A/\mathcal{I}_3$$

est surjectif.

- 2. Démontrer la version générale du théorème chinois énoncée en cours.
- 3. Résoudre les systèmes de congruences suivants d'inconnue $x \in \mathbf{Z}$:

$$(1) \left\{ \begin{array}{cccc} x & \equiv & 3 & [12] \\ x & \equiv & 3 & [21] \end{array} \right. \qquad (2) \left\{ \begin{array}{cccc} x & \equiv & 5 & [15] \\ x & \equiv & 4 & [14] \\ x & \equiv & 3 & [13] \end{array} \right.$$

$$(3) \begin{cases} 2x & \equiv 1 \ [25] \\ x & \equiv 5 \ [13] \end{cases} \qquad (4) \begin{cases} x & \equiv 1 \ [10] \\ x & \equiv 5 \ [15] \end{cases}$$

$$(5) \left\{ \begin{array}{cccc} x & \equiv & 17 & [21] \\ x & \equiv & 2 & [6] \end{array} \right. \qquad (6) \left\{ \begin{array}{cccc} 9x & \equiv & 2 & [15] \\ x & \equiv & 6 & [17] \end{array} \right.$$

Exercice 2.13

1. Soit A un anneau. On note $\iota: A \to A[X]$ le morphisme d'anneaux injectif naturel. Soit C un anneau, $\theta \in \operatorname{Hom}_{\operatorname{anneaux}}(A,C)$ et $c \in C$. On suppose que le triplet (C,θ,c) vérifie la propriété suivante : pour tout anneau B, l'application

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{anneaux}}(C,B) & \longrightarrow & \operatorname{Hom}_{\operatorname{anneaux}}(A,B) \times B \\ \varphi & \longmapsto & (\varphi \circ \theta, \varphi(c)) \end{array}$$

est une bijection. Montrer qu'il existe un unique isomorphisme d'anneaux $\psi \colon A[X] \to C$ tel que $\psi \circ \iota = \theta$ et qui envoie X sur c.

2. Soit A un anneau, C une A-algèbre et $c \in C$. On suppose que le couple (C, c) vérifie la propriété suivante : pour toute A-algèbre B, l'application

$$\operatorname{Hom}_{A-\operatorname{algèbres}}(C,B) \ \longrightarrow \ B \\ \varphi \ \longmapsto \ \varphi(c)$$

est une bijection. Montrer qu'il existe un unique isomorphisme de A-algèbres de A[X] vers C qui envoie X sur c.

3. Comparer les deux énoncés.

Exercice 2.14

Cet exercice vise à mettre en lumière un certain nombre de résultats illustrant le fait que toutes les notions relatives à la théorie des anneaux développées dans le cours sont (et c'est heureux) « invariantes par isomorphisme d'anneaux ». Certaines définitions utilisées dans cet exercice seront données plus tard dans le cours ; si vous ne les connaissez pas, vous pouvez attendre qu'elles soient données pour revenir ensuite sur les propriétés correspondantes à démontrer dans cet exercice.

Dans tous les énoncés, A et B sont des anneaux supposés isomorphes, et $\varphi \colon A \to B$ est un isomorphisme d'anneaux de A sur B. On demande de montrer les propriétés suivantes.

- 1. Pour tout a dans A, on a $a \in A^{\times}$ si et seulement si $\varphi(a) \in A^{\times}$; en outre φ induit un isomorphisme de groupes de A^{\times} sur B^{\times} .
- 2. Pour tout a dans A, a est irréductible si et seulement si $\varphi(a)$ est irréductible.
- 3. Pour tout a dans A, a est diviseur de zéro si et seulement si $\varphi(a)$ est diviseur de zéro.
- 4. Pour tout a dans A, a est nilpotent si et seulement si $\varphi(a)$ est nilpotent; pour la définition de « nilpotent », se reporter à l'exercice 1.10.
- 5. Pour tout idéal \mathcal{I} de A, $\varphi(\mathcal{I})$ est un idéal de B, et \mathcal{I} est premier (respectivement maximal) si et seulement si $\varphi(\mathcal{I})$ est premier (respectivement maximal).
- 6. A est intègre si et seulement si B est intègre.
- 7. A est réduit si et seulement si B est réduit ; pour la définition de « réduit », se reporter à l'exercice 1.10.
- 8. A est un corps si et seulement si B est un corps.
- 9. A est euclidien si et seulement si B est euclidien.
- 10. A est factoriel si et seulement si B est factoriel.
- 11. A et B ont même caractéristique.