

Data Warehouse Modelling

Lecture for INFO8002 - Large-scale Data Systems, ULiège

I'm Olivier Bui Quoc

Liège Université / HEC Liège

Data Architect @ KBL

olivier.buiquoc@hermes-ecs.com

Agenda

- ► Introduction
- Data Warehouse
- ► Relational vs Dimensional
- ► Approaches
- Data Modelling
- ► Size Estimation
- Example
- ► BI and Big Data

Introduction

Business Intelligence?

Business Intelligence

Business intelligence (BI) is a broad category of applications and technologies for gathering, storing, analyzing, and providing access to data to help enterprise users **make better business decisions**.

Source: SearchCrm.com

The BI Process

The BI Process

BI Maturity Model

Business Intelligence Maturity Model COST VALUE PRENATAL INFANT CHILD TEENAGER ADULT SAGE GULF Financial System **Executive System** Analytical System Monitoring System Strategic System **Business Service** Type of System Scorecards/ Customer BI OLAP/ Static Reports Spreadsheets Dashboards **Analytic Tools** Ad hoc Reports Analytics Embedded BI Operational Enterprise Data Spreadmarts Data Marts BI Services Architecture Reporting Warehouses DW "Inform "Empower "Drive the "Drive the "Monitor "Cost Center" Performance" Executives" Workers" Business" Market"

Context

- Business users have built their own analysis and reporting solutions
- Data processing is complex and « manual »
- Data consistency is not always ensured
- Lack of compliance with IT standards (process and tools)
- Lack of automation
- IT is reduced to the role of Data Provider with few business insight
- Data is not available in a easy and ergonomic way for analysis

What is a Data Warehouse?

A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of data in support of management's decision making process.

- Bill Inmon

• Subject-Oriented: A data warehouse can be used to analyze a particular

subject area.

Integrated: A data warehouse integrates data from multiple data sources.
 There will be only a single way of identifying a same concept shared by sources.

• Time-Variant: Historical data is kept in a data warehouse. This contrasts with a transactions system, where often only the most recent data is kept.

• Non-volatile: Once data is in the data warehouse, it will not change. So, historical data in a data warehouse should never be altered.

What is a Data Mart?

A data mart is a subject-oriented subset of data stored within the overall data warehouse, for the needs of a specific team, section or department within the business organization.

Data Mart

• A data mart makes specific subsets of data available to a set group of users so they have quicker access to the relevant data.

 Data marts make it much easier for individual departments to access key data insights more quickly as they are tailored for their needs

 They help prevent departments from interfering with each other's data within the organization.

Relational vs Dimensional

OLTP vs OLAP

	OLTP	OLAP
Uses	RDBMS	Data Warehouse
Operations	Update	Analysis
Access types	Read/Write	Read
Level of analysis	Elementary	Global
Amount of data processed	Small	Large
Orientation	Row	Multi-dimensional
Database size	Small (GB)	Large (TB)
Data freshness	Most recent	Historical

From operational to dimensional

Operational Data Model

Dimensional Data Model

Allows redundancy for performance aspects

Approaches

Bill Inmon

- Top-down
- A data warehouse is a subject oriented, nonvolatile, integrated, time variant collection of data in support of management's decisions

Ralph Kimball

- Bottom-up
- A copy of transaction data specifically structured for query and analysis

Bus architecture, ••• conformed dimensions

Approaches comparison

Pro's and Con's?

Approaches comparison

	Pro's	Con's
Bill Inmon (Top-down)	Enterprise-wide integration	Quite complex Longer start-up time Low user accessibility
Ralph Kimball (Bottom-up)	Fairly simple Time to delivery High user accessibility	Scalability with growing number of datamarts

Architecture: Inmon

Architecture: Kimball

Architectures

Metadata

Metadata / mɛtədeɪtə/

Noun noun: meta-data

a set of data that describes and gives information about other data.

Data Modelling

Facts and Dimensions

Fact tables

- Contain the data related to a particular business process.
- Each row represents a single event associated with a process and contains the measurement data associated with that event.

Dimension tables

- Contain the data describing the events of the fact tables.
- They categorize the measures in order to enables users to answer business questions.

Facts and Dimensions

Dimensions

- Axis of analysis
- Qualitative
- Smaller size
- Columns
 - Primary Key (Surrogate)
 - Natural Key
 - Attributes
 - Some technical fields

Product Dimension

Product Key (PK)

SKU Number (Natural Key)

Product Description

Brand Name

Category Name

Department Name

Package Type

Package Size

Abrasive Indicator

Weight

Weight Unit of Measure

Storage Type

Shelf Life Type

Shelf Width

Shelf Height

Shelf Depth

•••

Facts and Dimensions

Facts

- Measures
- Quantitative
- Large size
- Columns
 - Foreign Keys to dimensions
 - Measures

Retail Sales Fact

Date Key (FK)

Product Key (FK)

Store Key (FK)

Promotion Key (FK)

Customer Key (FK)

Clerk Key (FK)

Transaction #

Sales Dollars

Sales Units

Models

Data Models

- Star schema
 - Fact and dimensions

Data Models

- Snowflake
 - Hierarchies

branch_type

city_key

country

province_or_state

city

27-11-18

city_key

Data Models

Poissons

Verseau

Constellation

Conformed dimensions

Cube representation

- Drill
 - Drill-down
 - Roll-up
 - Drill-across

Rotate

• Slice

• Dice/Scope

		2016	2017	2018
Frais	IdF	220	265	284
5	Province	225	245	240
Liquide	IdF	163	152	145
	Province	187	174	184

		2016	2017
Frais	IdF	220	265
	Province	225	245

How to keep track of history?

Facts

- Transaction
- Periodic snapshot
- Accumulating snapshot
 - Process, pipeline

SCD: Slowly Changing Dimension

- 3 main types
 - SCD1 : update
 - SCD 2 : add new row (versioning)
 - SCD 3 : original/previous and current versions
- 5 other types have been defined to address issues such as:
 - SCD2 is growing too fast
 - Provide historical and current versions of data

SCD1 : Update

Original row in Product dimension:

Product Key	SKU (NK)		Department Name
12345	ABC922-Z	IntelliKidz	Education

Updated row in Product dimension:

Product Key	SKU (NK)		Department Name
12345	ABC922-Z	IntelliKidz	Strategy

SCD2 : Add new row (Versioning)

Original row in Product dimension:

Product Key	SKU (NK)	Product Description	Department Name	 Row Effective Date	Row Expiration Date	Current Row Indicator
12345	ABC922-Z	IntelliKidz	Education	 2012-01-01	9999-12-31	Current

Rows in Product dimension following department reassignment:

Product Key	SKU (NK)	Product Description	Department Name	:	Row Effective Date	Row Expiration Date	Current Row Indicator
12345	ABC922-Z	IntelliKidz	Education		2012-01-01	2013-01-31	Expired
25984	ABC922-Z	IntelliKidz	Strategy		2013-02-01	9999-12-31	Current

SCD3: Original/Previous and current versions

Original row in Product dimension:

Product Key	SKU (NK)		Department Name
12345	ABC922-Z	IntelliKidz	Education

Updated row in Product dimension:

Product Key	SKU (NK)	Product Description	Department Name	Prior Department Name
12345	ABC922-Z	IntelliKidz	Strategy	Education

SCD : Summary

SCD Type	Dimension Table Action	Impact on Fact Analysis
Type 0	No change to attribute value	Facts associated with attribute's original value
Type 1	Overwrite attribute value	Facts associated with attribute's current value
Type 2	Add new dimension row for profile with new attribute value	Facts associated with attribute value in effect when fact occurred
Type 3	Add new column to preserve attribute's current and prior values	Facts associated with both current and prior attribute alternative values
Type 4	Add mini-dimension table containing rapidly changing attributes	Facts associated with rapidly changing attributes in effect when fact occurred
Type 5	Add type 4 mini-dimension, along with overwritten type 1 mini-dimension key in base dimension	Facts associated with rapidly changing attributes in effect when fact occurred, plus current rapidly changing attribute values
Туре 6	Add type 1 overwritten attributes to type 2 dimension row, and overwrite all prior dimension rows	Facts associated with attribute value in effect when fact occurred, plus current values
Туре 7	Add type 2 dimension row with new attribute value, plus view limited to current rows and/or attribute values	Facts associated with attribute value in effect when fact occurred, plus current values

Source: www.kimballgroup.com

What about the Business Users?

Semantic Layer

- Business representation of corporate data that helps end users access data autonomously using common business terms.
- Maps complex data into familiar business terms such as product, customer, or revenue to offer a unified, consolidated view of data across the organization

- Wikipedia

The market in 2018

Figure 1. Magic Quadrant for Analytics and Business Intelligence Platforms

Source: Gartner (February 2018)

The market in 2018: the leaders

Process & Size Estimation

Dimensional Design Process

- 1. Select the business process
- 2. Declare the grain
- 3. Identify the Dimensions
- 4. Identify the Facts

Size Estimation

Steps	Example : supermarket
Identify granularity	Retention time: 4 years Grain: daily records # Stores: 300 # Products: 200.000 references (10% sold each day)
Count expected events	4 x 365 x 300 x 20.000 = 8,76 billion rows
Count number of fields	3 for FK, 5 measures (4 bytes each)
Compute size estimation	8,76 x 10 ⁹ x 8 x 4 bytes
Total	280 GB

Example

Retail Store

- HQ of a large grocery chain
- 100 stores across 5 states
- Each store has several departments: grocery, frozen foods, bakery, etc.
- 60.000 individual products
- Point of sale ticket example

Allstar Grocery 123 Loon Street Green Prairie, MN 55555 (952) 555-1212

Store: 0022

Cashier: 00245409/Alan

 0030503347 Baked Well Multigrain Muffins
 2.50

 2120201195 Diet Cola 12-pack Saved \$.50 off \$5.49
 4.99

 0070806048 Sparkly Toothpaste Coupon \$.30 off \$2.29
 1.99

2840201912 SoySoy Milk Quart 3.19

TOTAL 12.67

AMOUNT TENDERED

CASH 12.67

ITEM COUNT:

Transaction: 649 4/15/2013 10:56 AM

Thank you for shopping at Allstar

0064900220415201300245409 Source: www.kimballgroup.com

A Data Model

63

27-11-18 Source: www.kimballgroup.com

Business Intelligence and Big Data

Architecture overview

• From

To

Source: www.clearpeaks.com

Business Intelligence and Big Data

	Big Data	ВІ	
Types of analysis	Ad hoc (on read)	Prepared (on write)	
Types of data	Structured, non- and semi-structured	Structured	
Types of data sources	Operational, internal and external, all types of data \rightarrow processing challenge	Operational, mostly internal, structured for analysis	
Amounts of data	Peta/Exabytes	Terabytes	
Speed of information processing	Fast on any kind of data	Fast on structured data only	
Same goals	Data collecting, analyzing and reporting for better decisions Why? Where? What? How? Achieve business goals and predict the future		

What drives an architecture choice?

Conclusion

« Without data, you are just another person with an opinion »

- W. Edwards Deming

Thank you for you attention

References

► Ralph Kimball, "The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 3rd Edition

▶ W. H. Inmon, «Building the Data Warehouse», ed. Wiley, 1ère édition : 1996, 4ème édition: Oct 2005, voir http://www.billinmon.com/

Annexes

ETL vs ELT

Figure 1: Traditional ETL approach compared to E-LT approach

Source: Oracle

Data mart vs Data Lake

74

Data Marts

- A data mart offers analytical capability for a restricted area of data
- Part of a larger data warehouse system
- Uses "schema on write" system to optimize data for analytical processing

Data Lakes

- Offers massive storage and agile analytics to a wide variety of users
- Can be used with or without a data warehouse system
- Uses "schema on read" approach to answer a business intelligence question

« A detail oriented, historical tracking and uniquely linked set of normalized tables that support one of more functional areas of business.

It is a hybrid approach encompassing the best of breed between 3NF and Star Schemas.

The design is flexible, scalable, consistent and adaptable to the needs of the enterprise »

- Dan Linstedt

- Hub
 - Business entity

- Link
 - Relationship

- Satellite
 - Description

Some benefits

- Rapidly reduce business cycle time for implementing changes
- Ease of integration: consolidate disparate data stores
- Scale to hundreds of Terabytes or Petabytes (Big Data)
- Near-Real-Time loads
- Auditability: trace all data back to the source systems
- Rapid ROI and Delivery of information to new Star Schemas

Traditional Model – "Schema on Write"

Clipper la diapositive

• With the traditional relational database paradigm, forward & reverse engineering can both create and read database structure using a graphical data model.

Big Data

Big Data Model - "Schema on Read"

Clipper la diapositive

• With the Big Data and NoSQL paradigm, "Schema-on-Read" means you do not need to know how you will use your data when you are storing it.

- You do need to know how you will use your data when you are using it and model accordingly.
 - · i.e. it's not magic.
 - For example, you may first place the data on HDFS in files, then apply a table structure in Hive.
- Apache Hive provides a mechanism to project structure onto the data in Hadoop and to query that data using a SQL-like language called HiveQL (HQL).

Table Structures

Create table ...

Analysis

Analyze & understand the data. Build a data structure to suite your needs.

File system

hdfs dfs -put /local/path/userdump /hdfs/path/data/users

