СТУДЕНЧЕСКАЯ МЕДИЦИНСКАЯ НАУКА XXI BEKA

IV ФОРУМ МОЛОДЕЖНЫХ НАУЧНЫХ ОБЩЕСТВ

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ОРДЕНА ДРУЖБЫ НАРОДОВ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

СТУДЕНЧЕСКАЯ МЕДИЦИНСКАЯ НАУКА XXI ВЕКА

IV ФОРУМ МОЛОДЕЖНЫХ НАУЧНЫХ ОБЩЕСТВ

Материалы XIX международной научно-практической конференции студентов и молодых ученых и IV Форума молодежных научных обществ

23-24 октября 2019 года

УДК 61:378378:001 ''XIX'' ББК 5я431+52.82я431 С 88

Рецензенты:

С.А. Кабанова, В.В. Кугач, С.П. Кулик, И.М. Лысенко, О.Д. Мяделец, И.В. Самсонова, В.М. Семенов, Г.И. Юпатов

Редакционная коллегия:

А.Т. Щастный (редактор), И.В. Городецкая, Н.Г. Луд, С.А. Сушков, О.М. Хишова, Ю.П. Чернявский

С 88 Студенческая медицинская наука XXI века. IV Форум молодежных научных обществ : материалы XIX междунар. науч.-практ. кон. студентов и молодых ученых и IV Форума молодеж. науч. обществ (Витебск, 23-24 окт. 2019 г.) / под ред. А. Т. Щастного. – Витебск : ВГМУ, 2019. – 1180 с.

ISBN 978-985-466-967-0

В сборнике представлены материалы докладов, прочитанных на научно-практической конференции студентов и молодых ученых. Сборник посвящен актуальным вопросам современной медицины и включает материалы по следующим направлениям: «Медико-биологические науки», «Хирургические болезни», «Здоровая мать — здоровый ребенок», «Внутренние болезни», «Сердечно-сосудистые заболевания», «Инфекции», «Общественное здоровье и здравоохранение, гигиена и эпидемиология», «Стоматология», «Лекарственные средства», «Социально-гуманитарные науки», «Здоровый студент — здоровый врач — здоровая нация».

В сборник включены также материалы І Форума молодежных научных обществ.

ISBN 978-985-466-967-0

УДК 61:378378:001 "XIX" ББК 5я431+52.82я431

© УО "Витебский государственный медицинский университет", 2019

УДК 57.024

ПРЕДСКАЗАНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ САЛЬСОЛИНОЛА ПО ОТНОШЕНИЮ К КАННАБИНОИДНЫМ РЕЦЕПТОРАМ ПЕРВОГО ТИПА

Марцинкевич А.Ф. (ст. преподаватель), Уселёнок Г.О. (ст. преподаватель), Марцинкевич А.С. (1 курс, военно-медицинский факультета) Научный руководитель: к.б.н. Марцинкевич А.Ф. Витебский государственный медицинский университет, г. Витебск Белорусский государственный медицинский университет, г. Минск

Аннотация: в настоящей работе проведено исследование связи количественных характеристик строения различных лигандов и их активности по отношению к каннабиноидным рецепторам первого типа (CB1). Полученная модель логистической регрессии имела приемлемые показатели точности, специфичности и чувствительности. На основании расчетов показано, что сальсолинол способен связываться с рецепторами CB1.

Ключевые слова: сальсолинол, каннабиноидный рецептор, QSAR.

Введение. Алкогольная зависимость является одной из древнейших и, в то же время, распространенных проблем современной наркологии. Не смотря на то, что злоупотребление алкоголем существует с незапамятных времен, непосредственно о механизме формирования зависимости известно немногое: подавляющее количество работ посвящены последствиям, но не причине данного заболевания. Как правило первопричиной считают молекулу этилового спирта, которая косвенно или напрямую служит активатором для рецепторов дофамина и ГАМК. Предполагается, что этанол способен изменить вязкоэластичные свойства липидного бислоя, окружающего дофаминовый рецептор, таким образом, чтобы понизить порог его активации. Для рецептора ГАМК же предполагается прямая активация посредством взаимодействия с этанолсвязывающим участком.

Вместе с тем, у данной теории существует ряд недостатков. Так, например, не объясняется, почему изменение микровязкости прибелковых липидов приводит к активации рецептора, а не к обратному процессу, не учитывается факт того, что этанол склонен образовывать ди- и тримеры, а также сложные многомолекулярные кластеры [1], которые достаточно стабильны и значительно крупнее одиночной молекулы, вследствие чего вряд ли смогут выполнять роль лиганда. Также неучтенным оказывается то, что после попадания в организм человека алкоголь практически сразу же начинает преобразовываться в ацетальдегид и без повторного введения его концентрация будет снижаться, в то время как степень опьянения возрастает.

Ацетальдегиду зачастую отводиться роль исключительно продукта деградации, обуславливающего симптоматику похмелья и отравления. Вместе с

тем, достаточно давно известно, что ацетальдегид способен конденсироваться с многими нейромедиаторами, такими как дофамин, серотонин и катехоламины, продуцируя аддукты схожего строения. Одним из таких аддуктов является сальсолинол — продукт конденсации ацетальдегида и дофамина, влияющий, исходя из наших предыдущих исследований, на работу дофаминовой и опиоидной системы [2, 3]. Существует также мнение, что рецептор эндогенных каннабиноидов может быть перспективной мишенью для лекарственных средств, направленных на борьбу с алкогольной зависимостью, но количество исследований в данной области крайне мало, что, на наш взгляд, является упущением.

Вместе с тем, первым шагом к моделированию лиганд-белковых взаимодействий является количественная оценка связи «структура-активность», которая, как минимум, поможет предположить перспективность последующей работы. В то время как эксперименты *in vivo* являются весьма дорогостоящими и занимают продолжительное время, компьютерное моделирование способно дать теоретическое обоснование тем или иным предположениям. Таким образом, настоящее исследование является продолжением предыдущих и ставит своей целью изучение возможности взаимодействия сальсолинола и каннабиноидных рецепторов первого типа.

Материалы и методы исследования. Исходным набором данных служили сведения об активности различных соединений по отношению к каннабиноидным рецепторам первого типа, полученные из базы данных Национальной медицинской библиотеки США [4]. Всего было исследовано 3998 активных и 218 неактивных молекул. Все соединения проходили через процедуру расчета дескрипторов строения и топологии, которые впоследствии использовались для построения логистической регрессии. Модель оценивали при помощи ROC-анализа, кросс-валидации и коэффициентов псевдо-R² МакФедден и Крэгга-Улера.

Статистическая обработка данных и их графическое представление осуществлено при помощи комплекса программ R [5]. Отличия считались статистически значимыми при p < 0.05.

Результаты и их обсуждение. Оценка построенной в результате исследования модели множественной логистической регрессии при помощи ROC-анализа дала следующие результаты:

Рисунок 1. ROC-кривая для полученной логистической регрессии

Важно отметить, что не смотря на относительно невысокое значение специфичности (70,64%), чувствительность (способность определять истинно положительные случаи) составила 98,70%. Точность, оцененная в ходе кроссвалидации по методу k-fold была равна 95,10%. Тест максимального правдоподобия показал, что полученная модель статистически значимо (p < 0,0001) отличается от модели без предикторов. Коэффициент псевдо- R^2 МакФедден был равен 64,91%, Крэгга-Улера — 69,44%.

Таким образом, была показана пригодность модели для предсказания наличия у соединения активности по отношению к рецепторам СВ1. Затем дескрипторы были рассчитаны для сальсолинола и использованы в качестве предикторов в модели. Согласно полученному результату сальсолинол с вероятностью в 83,64% обладает сродством к рецепторам СВ1. В целом, это может расцениваться как стимул для продолжения исследований в данном направлении.

Выводы. В ходе исследования была построена и провалидирована модель логистической регрессии, описывающая характеристики строения молекулы и вероятность того, что данное соединение будет активно по отношению к каннабиноидным рецептором первого типа. Согласно полученным результатам сальсолинол с вероятностью в 83,64% будет обладать указанными свойствами.

Список литературы:

- 1. Provencal, R. A. Hydrogen Bonding in Alcohol Clusters: A Comparative Study by Infrared Cavity Ringdown Laser Absorption Spectroscopy / R. A. Provencal [et al.] // J. Phys. Chem. A. − 2000. − № 104. − P. 1423-1429.
- 2. Уселёнок, Г.О. Молекулярное моделирование связывания сальсолинола с дофаминовым транспортером / Г.О. Уселёнок, Я.С. Марцинкевич, А.Ф. Марцинкевич // Будущее фундаментальной и прикладной науки: проблемы и перспективы: сборник научных статей по материалам Второй международной научно-практической конференции студентов и молодых ученых / под общ. ред. Н.П. Коробковой. М.: Глобальное партнерство, 2018. С. 57-59.

- 3. Молекулярное моделирование взаимодействия сальсолинола с опиоидным μ -рецептором / Γ . О. Уселёнок [и др.] // «Интернаука»: научный журнал. -2018. N $_2$ 9(43). C. 6-8.
- 4. Protein summary: Cannabinoid receptor 1 [Electronic resource]. Mode of access: https://pubchem.ncbi.nlm.nih.gov/protein/AAI00969. Date of access: 10.09.2019.
- 5. The R Project for Statistical Computing [Electronic resource]. Mode of access: http://www.r-project.org. Date of access: 10.09.2019.