Discrete logarithm in finite fields of small characteristic

September 6, 2017

CONTENTS

INTRODUCTION

INDEX CALCULUS

QUASI-POLYNOMIAL ALGORITHMS

INTRODUCTION

CONTEXT

- $G = \langle g \rangle$ cyclic group generated by g
- $\triangleright N = \operatorname{Card} G$.

We have an isomorphism

$$\exp_g: (\mathbb{Z}/N\mathbb{Z}, +) \to (G, \times)$$

$$n \mapsto g^n$$

- $ightharpoonup \log_{g} := \exp_{g}^{-1}$
- ► Compute g^n from n: easy (polynomial in $\log n$)
- ightharpoonup Compute *n* from g^n : **hard** (discrete logarithm problem)

DEFINITIONS

Two families of algorithms:

- ▶ The *generic* algorithms (complexity: $O(\sqrt{N})$)
- ▶ The *index calculus* algorithms, using group structure
 - from now on: $G = \mathbb{F}_{q^n}^{\times}$

Terminology:

- *small characteristic*: \mathbb{F}_{q^n} with $q \ll q^n$
- *quasi-polynomial* complexity: $\ell^{O(\log \ell)}$ where $\ell = \log(q^n)$
- ► *Notation:*

$$L_N(\alpha) = \exp((c + o(1))(\log N)^{\alpha}(\log\log N)^{1-\alpha})$$

$$L_N(0) = (\log N)^{c+o(1)}$$
 $L_N(1) = N^{c+o(1)}$

HISTORICAL BACKGROUND

- ► First appearance in [Diffie, Hellman '76]
- ► First sub-exponential algorithm in $\mathbb{Z}/p\mathbb{Z}$ [Adleman '79]: $L_N(1/2)$
- ▶ Between 1984 and 2006: algorithms in $L_N(1/3)$

And more recently, in finite fields of small characteristic:

- ▶ New algorithm with $L_N(1/4)$ complexity [Joux '13]
- Quasi-polynomial algorithm [Barbulescu, Gaudry, Joux, Thomé '14]
- Second quasi-polynomial algorithm [Granger, Kleinjung, Zumbrägel '14]

SOME PRACTICAL RECORDS

Date	Field	Bitsize	Algorithm	Authors
	4==0			
2013/02	2^{1778}	1778	L(1/4)	Joux
2013/02	2^{1991}	1991	GKZ	Göloglu, Granger,
·	- -6169		T (4 /4)	McGuire, Zumbrägel
2013/05	2^{6168}	6168	L(1/4)	Joux
2014/01	$3^{6\cdot 137}$	1303	L(1/4), GKZ	Adj, Menezes, Oliveira,
				Rodríguez-Henríquez
2014/01	2^{9234}	9234	L(1/4), GKZ	Granger, Kleinjung,
				Zumbrägel Adj, Menezes, Oliveira,
2014	$3^{6\cdot509}$	4034	L(1/4), GKZ	Rodríguez-Henríquez
				Rodriguez Herinquez

▶ Runtime of the last computation: 220 CPU years

INDEX CALCULUS

OVERVIEW

Goal: find $\log_{\mathfrak{G}}(h)$

- 0. first choose $F \subset G$ with $\langle F \rangle = G$
- 1. find multiplicative relations between elements in *F*
- 2. solve the associated linear system for $\{\log_g(f) \mid f \in F\}$
- 3. express h as a product of elements in F

Steps 1 and 3 depend on the structure of the finite field, different fields give different complexities for the index calculus.

EXAMPLE. ADLE

Context:

- ▶ $G = \mathbb{F}_p^{\times} = \langle g \rangle$ for a prime p and N = |G| = p 1
- ▶ $F = \{f \mid f \leq B, f \text{ prime}\}$ for a chosen integer B

Step 1: relations generation

- ▶ randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- test if g^e is B-smooth
- ▶ if it is the case, it yields a relation in *G*:

$$g^e = \prod_{f \in F} f^{e_f}, e_f \in \mathbb{N}$$

that can be written

$$e = \sum_{f \in F} e_f \log_g(f).$$

AN EXAMPLE

Step 2: linear algebra: solve the linear system Step 3: express h as a function of the elements in F:

- ▶ randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- \blacktriangleright test if hg^e is B-smooth
- if it is the case, it yields a relation:

$$\log_{g}(h) = \sum_{f \in F} e_{f} \log_{g}(f) - e$$

Depends on B:

- ▶ *B* large: easier to find relations
- ▶ *B* large: need more relations to solve the system

Complexity: $L_N(1/2)$

QUASI-POLYNOMIAL ALGORITHMS

COMPARISON WITH ADLEMAN

Algorithm	Adleman	Quasi-polynomial
Field	$\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$	$\mathbb{F}_{q^n} \cong \mathbb{F}_q[X]/(P)$
Elements repr. by	integers	polynomials
Subset $F \subset G$	primes $\leq B$	irreducibles of degree $\leq B$

Goal: find polynomials that factor into irreducible polynomials of small degree.

MAIN IDEAS

- 1. Use homographies:
 - Q polynomial that factors nicely
 - $m(X) = \frac{aX+b}{cX+d}$ an homography

$$m \cdot Q = (cX + d)^{\deg Q} Q(\frac{aX + b}{cX + d})$$
 factors nicely too

- 2. Use Idea 1 on $X^q X$ (factors into linear polynomials)
- 3. Take advantage of the freedom for the defining polynomial P of $\mathbb{F}_{q^n} = \mathbb{F}_q[X]/(P)$ to simplify X^q
 - ▶ We choose $P \mid h_1X^q h_0$ with h_0, h_1 polynomials of small degree (existence of h_0, h_1 heuristic)
 - We obtain $X^q \equiv \frac{h_0(X)}{h_1(X)}$ in $\mathbb{F}_q[X]/(P)$

QUASI-POLYNOMIAL COMPLEXITY

Goal: \mathbb{F}_{q^n} field, find $\log Q$ for $Q \in \mathbb{F}_{q^n}$

▶ not able to express log *Q* as elements in *F* in one step

Proposition

Let Q be an element of a field \mathbb{F}_{q^n} . There exists a heuristic algorithm whose complexity is polynomial in $\ell = \log(q^n)$ which returns an expression of $\log Q$ as a linear combination of at most $O(\mathcal{N})$ logarithms $\log Q_j$ with $\deg Q_j \leq \lceil \frac{1}{2} \deg Q \rceil$.

- ▶ Barbulescu, Gaudry, Joux, Thomé: n even and $\mathcal{N} = q^2 \frac{n}{2}$
- ▶ Granger, Kleinjung, Zumbrägel: $\mathcal{N} = q + 2$

THE DESCENT

Figure: The descent tree

- ► Each node: one application of the Proposition (polynomial time algorithm), number of node = arity^{depth}
- arity = $\mathcal{N} = O(\ell^{O(1)})$, depth = $O(\log(\ell))$
- ► Complexity: $\ell^{O(\log \ell)}$

Barbulescu, Gaudry, Joux and Thomé

Context:

- ▶ $\mathbb{K} = \mathbb{F}_{q^{2m}} = \mathbb{F}_{q^2}[X]/(P)$ with P irreducible polynomial of degree m dividing $h_1X^q h_0$, deg $h_i \leq 2$.
- ▶ $F = \{ \text{degree one polynomials} \} \cup \{h_1\}$

Descent: based on the equation

$$X^{q}Y - XY^{q} = Y \prod_{a \in \mathbb{F}_{q}} (X - aY) \tag{1}$$

- ▶ Substitute X by aQ + b and Y by cQ + d in (1)
- ► Combine these equations to express Q as polynomials of degree $\leq \lceil \frac{1}{2} \deg Q \rceil$ (linear algebra)

GRANGER, KLEINJUNG AND ZUMBRÄGEL

Context:

▶ $\mathbb{K} = \mathbb{F}_{q^n} = \mathbb{F}_q[X]/(P)$ with P irreducible polynomial of degree n dividing $h_1X^q - h_0$.

Descent: $Q \in \mathbb{F}_q[X]$ irreducible of degree 2*d*

- ► Factor Q in \mathbb{F}_{q^d} : $Q = \prod_{j=0}^{d-1} Q_j$ with deg $Q_j = 2$
- ► Express each Q_j as q + 2 linear polynomials $R_{j,k}$ in $\mathbb{F}_{q^d}[X]$ (this is called "on-the-fly" elimination)
- *Q* is expressed as q + 2 polynomials $N_k = \prod_{j=0}^{d-1} R_{j,k}$

Fact: The polynomials N_k are of degree d in $\mathbb{F}_q[X]$ (not $\mathbb{F}_{q^d}[X]$).

"ON THE FLY" ELIMINATION

Input:

▶ $Q \in \mathbb{F}_{a^m}[X]$ and deg Q = 2

Output:

▶ $Q \rightsquigarrow q + 2$ polynomials Q_i with deg $Q_i = 1$ and $Q_i \in \mathbb{F}_{q^m}[X]$

Ideas

- Find (a, b, c) such that
 - 1. $\Delta = X^{q+1} + aX^q + bX + c$ splits into linear factors in $\mathbb{F}_{q^m}[X]$
 - 2. $Q \mid (X + a)h_0 + (bX + c)h_1$ (degree 3)

(can be reduced to root finding)

- $\Delta = \frac{1}{h_1}((X+a)h_0 + (bX+c)h_1) \mod P$
- $h_1\Delta = QL \mod P$

EXPERIMENTAL RESULTS

Implementation in Julia (based on Nemo/Flint):

Algorithm	BGJT	GKZ
Bottleneck	linear algebra	root finding
arity ($\mathbb{F}_{17^{2\cdot 17}}$)	794	291
descent runtime ($\mathbb{F}_{17^{2}}$ 17) (seconds)	9.6	34
arity ($\mathbb{F}_{23^{2\cdot 23}}$)	1477	531
descent runtime ($\mathbb{F}_{23^{2\cdot 23}}$) (seconds)	80	140
arity $(\mathbb{F}_{29^{2\cdot 29}})$	2360	843
descent runtime ($\mathbb{F}_{29^{2\cdot 29}}$) (seconds)	570	400

Open problems:

- practical improvements
- proofs of heuristics
- polynomial (heuristic) algorithm