Lecture 6: Balanced Binary Search Trees

Lecture Overview

- The importance of being balanced
- AVL trees
 - Definition and balance
 - Rotations
 - Insert
- Other balanced trees
- Data structures in general
- Lower bounds

Recall: Binary Search Trees (BSTs)

- rooted binary tree
- each node has
 - key
 - left pointer
 - right pointer
 - parent pointer

See Fig. 1

Figure 1: Heights of nodes in a BST

Figure 2: BST property

- BST property (see Fig. 2).
- $\underline{\text{height}}$ of node = length (# edges) of longest downward path to a leaf (see CLRS B.5 for details).

The Importance of Being Balanced:

- BSTs support insert, delete, min, max, next-larger, next-smaller, etc. in O(h) time, where h = height of tree (= height of root).
- h is between $\lg n$ and n: Fig. 3.

Figure 3: Balancing BSTs

• <u>balanced BST</u> maintains $h = O(\lg n) \Rightarrow$ all operations run in $O(\lg n)$ time.

AVL Trees: Adel'son-Vel'skii & Landis 1962

For every node, require heights of left & right children to differ by at most ± 1 .

- treat nil tree as height -1
- each node stores its height (<u>DATA STRUCTURE AUGMENTATION</u>) (like subtree size) (alternatively, can just store difference in heights)

This is illustrated in Fig. 4

Figure 4: AVL Tree Concept

Balance:

Worst when every node differs by 1 — let $N_h = (\min.) \# \text{nodes in height-}h \text{ AVL tree}$

$$\implies N_h = N_{h-1} + N_{h-2} + 1$$

$$> 2N_{h-2}$$

$$\implies N_h > 2^{h/2}$$

$$\implies h < 2 \lg N_h$$

Alternatively:

 $\overline{N_h} > F_h \ (n \text{th Fibonacci number})$

- In fact $N_h = F_{n+1} 1$ (simple induction)
- $F_h = \frac{\varphi_h}{\sqrt{5}}$ rounded to nearest integer where $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$ (golden ratio)
- \implies max. $h \approx \log_{\varphi} n \approx 1.440 \lg n$

AVL Insert:

- 1. insert as in simple BST
- 2. work your way up tree, restoring AVL property (and updating heights as you go).

Each Step:

- \bullet suppose x is lowest node violating AVL
- assume x is right-heavy (left case symmetric)
- if x's right child is right-heavy or balanced: follow steps in Fig. 5

Figure 5: AVL Insert Balancing

ullet else: follow steps in Fig. 6

Figure 6: AVL Insert Balancing

• then continue up to x's grandparent, greatgrandparent ...

Example: An example implementation of the AVL Insert process is illustrated in Fig. 7

Figure 7: Illustration of AVL Tree Insert Process

Comment 1. In general, process may need several rotations before done with an Insert.

Comment 2. Delete(-min) is similar — harder but possible.

AVL sort:

• insert each item into AVL tree $\Theta(n \lg n)$

• in-order traversal $\frac{\Theta(n)}{\Theta(n \lg n)}$

Balanced Search Trees:

There are many balanced search trees.

AVL Trees Adel'son-Velsii and Landis 1962

B-Trees/2-3-4 Trees Bayer and McCreight 1972 (see CLRS 18)

 $BB[\alpha]$ Trees Nievergelt and Reingold 1973

Red-black Trees CLRS Chapter 13

(A) — Splay-Trees Sleator and Tarjan 1985

(R) — Skip Lists Pugh 1989

(A) — Scapegoat Trees Galperin and Rivest 1993
 (R) — Treaps Seidel and Aragon 1996

(R) = use random numbers to make decisions fast with high probability

(A) = "amortized": adding up costs for several operations \implies fast on average

For example, Splay Trees are a current research topic — see 6.854 (Advanced Algorithms) and 6.851 (Advanced Data Structures)

Big Picture:

Abstract Data Type(ADT): interface spec.

vs.

Data Structure (**DS**): algorithm for each op.

There are many possible DSs for one ADT. One example that we will discuss much later in the course is the "heap" priority queue.

Priority Queue ADT	heap	AVL tree
Q = new-empty-queue()	$\Theta(1)$	$\Theta(1)$
Q.insert(x)	$\Theta(\lg n)$	$\Theta(\lg n)$
x = Q.deletemin()	$\Theta(\lg n)$	$\Theta(\lg n)$
x = Q.findmin()	$\Theta(1)$	$\Theta(\lg n) \to \Theta(1)$

Predecessor/Successor ADT	heap	AVL tree
S = new-empty()	$\Theta(1)$	$\Theta(1)$
S.insert(x)	$\Theta(\lg n)$	$\Theta(\lg n)$
S.delete(x)	$\Theta(\lg n)$	$\Theta(\lg n)$
$y = S.predecessor(x) \rightarrow next-$	$\Theta(n)$	$\Theta(\lg n)$
smaller		
$y = S.successor(x) \rightarrow next-larger$	$\Theta(n)$	$\Theta(\lg n)$

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.