3D Particle Diffusions

Shiyu Liu

Advisors: Dr. Hoa Nguyen, Dr. Orrin Shindell

Brownian Motion

Newton's Second Law:

$$F_{net} = ma$$

For the Sphere:

$$m\frac{du}{dt} = -\gamma u + F_{random}$$

In Low Reynolds Number Flow:

$$\gamma = 6\pi \eta r$$

Fluid (η)

Stoke Flows

- How to simulate the process of Brownian motion computationally

$$\mu \Delta \vec{u} = \nabla p - \vec{F}$$
$$\nabla \cdot \vec{u} = 0$$
$$\Rightarrow \Delta p = \nabla \cdot \vec{F}$$

 μ is the viscosity of the fluid, $\vec{u}(\vec{x})$ is the velocity of the fluid, $p(\vec{x})$ is the pressure, $\vec{F}(\vec{x})$ is an external force, and (\vec{x}) is a point in the fluid. $\Delta \equiv \nabla \cdot \nabla$ is the Laplacian.

Method of Regularized Stokeslets (MRS)

Cortez, R., Fauci, L., & Medovikov, A.S. (2005). *The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming.* Physics of Fluids, 17(3) 031504

Blob function $\phi_{\epsilon}(x-x_0) = \frac{15\epsilon^4}{8\pi(r^2+\epsilon^2)^{7/2}},$

$$\mathbf{u}(\mathbf{x}) = \sum_{k=1}^{N} \frac{-\mathbf{f}_{k}}{4\pi\mu} \left[\ln\left(\sqrt{r_{k}^{2} + \epsilon^{2}} + \epsilon\right) - \frac{\epsilon\left(\sqrt{r_{k}^{2} + \epsilon^{2}} + 2\epsilon\right)}{\left(\sqrt{r_{k}^{2} + \epsilon^{2}} + \epsilon\right)\sqrt{r_{k}^{2} + \epsilon^{2}}} \right] + \frac{1}{4\pi\mu} [\mathbf{f}_{k} \cdot (\mathbf{x} - \mathbf{x}_{k})](\mathbf{x} - \mathbf{x}_{k}) \left[\frac{\sqrt{r_{k}^{2} + \epsilon^{2}} + 2\epsilon}}{\left(\sqrt{r_{k}^{2} + \epsilon^{2}} + \epsilon\right)^{2}\sqrt{r_{k}^{2} + \epsilon^{2}}} \right],$$

Due to the linear relationship between force and velocity, this formula can be written as

$$U = MF$$

Method of Images for Regularized Stokeslets (MIRS)

$$\mathbf{U}(\mathbf{x}_{e}) = \sum_{k=1}^{M} \left[\mathbf{f}_{k} H_{1}(\mid \mathbf{x}_{k}^{*} \mid) + (\mathbf{f}_{k} \cdot \mathbf{x}_{k}^{*}) \mathbf{x}_{k}^{*} H_{2}(\mid \mathbf{x}_{k}^{*} \mid) \right] - \left[\mathbf{f}_{k} H_{1}(\mid \mathbf{x}_{k} \mid) + (\mathbf{f}_{k} \cdot \mathbf{x}_{k}) \mathbf{x}_{k} H_{2}(\mid \mathbf{x}_{k} \mid) \right] - h_{k}^{2} \left[\mathbf{g}_{k} D_{1}(\mid \mathbf{x}_{k} \mid) + (\mathbf{g}_{k} \cdot \mathbf{x}_{k}) \mathbf{x}_{k} D_{2}(\mid \mathbf{x}_{k} \mid) \right] - 2h_{k} \left[\frac{H'_{1}(\mid \mathbf{x}_{k} \mid)}{\mid \mathbf{x}_{k} \mid} + H_{2}(\mid \mathbf{x}_{k} \mid) \right] \left(\mathbf{L}_{k} \times \mathbf{x}_{k} \right) + 2h_{k} \left[(\mathbf{g}_{k} \cdot \mathbf{e}_{1}) \mathbf{x}_{k} H_{2}(\mid \mathbf{x}_{k} \mid) + (\mathbf{x}_{k} \cdot \mathbf{e}_{1}) \mathbf{g}_{k} H_{2}(\mid \mathbf{x}_{k} \mid) + (\mathbf{g}_{k} \cdot \mathbf{x}_{k}) \mathbf{e}_{1} \frac{H'_{1}(\mid \mathbf{x}_{k} \mid)}{\mid \mathbf{x}_{k} \mid} + (\mathbf{x}_{k} \cdot \mathbf{e}_{1}) (\mathbf{g}_{k} \cdot \mathbf{x}_{k}) \mathbf{x}_{k} \frac{H'_{2}(\mid \mathbf{x}_{k} \mid)}{\mid \mathbf{x}_{k} \mid} \right],$$

Due to the linear relationship between force and velocity, this formula can be written as

$$U = MF$$

Schematic of the fluid domain with the wall at x = w, the location of the Stokeslet at \mathbf{x}_0 and the image point.

Ainley, J., Durkin, S., Embid, R., Boindala, P., & Cortez, R. (2008). *The method of images for regularized Stokeslets*. Journal of Computational Physics, 227(9), 4600–4616.

particle

position

N particles/simulation VS.
1 particle/simulation for N simulations

MRS vs. MIRS

3-D Task 1: Find Drag Radius as a Function of ϵ

• Impose a constant velocity \vec{u} to a blob of size ϵ , find the drag force \vec{F} , and use the Stokes Drag Formula $F = (6\pi \eta r)u$...

Figure 1. F_D versus $6\pi\eta U$ for various values of ϵ .

Figure 2. $\frac{F_D}{6\pi\eta U} = r$ versus ϵ . The slope gives a scaling from ϵ to r.

Result

6πηU

Blob size $\mathcal{E} = 1.5r$ where r is the radius of a particle.

2. Simulate Brownian Motion

• Add in a random force at each time step, calculate the probability density of the particle being found at position \vec{x} at time t.

$$P(\vec{x},t)$$

$$P(\vec{x},t) = \frac{1}{\sqrt{(4\pi Dt)^3}} e^{-\frac{\vec{x}^2}{4Dt}}$$

Results for N particles/simulation using MRS (no surface)

Results for 1 particle/simulation with N simulations using MRS (no surface)

3-D Task 3: Impose Surface Hydrodynamic Interactions

Results for N particles/simulation using MIRS

(density distribution in the y; surface at -2.5 x)

Results for N particles/simulation using MIRS

(density distribution in the x direction; surface at x = -2.5)

Results for 1 particle/simulation with N simulations using MIRS (density distribution in the y or z direction; surface at x = -1)

Results for 1 particle/simulation with N simulations using MIRS (density distribution in the x direction; surface at $x = \frac{-1}{2}$)

Conclusion 1: Surface Effect (No Particle-Particle Interactions)

1 particle/simulation for N simulations (density distribution in the x direction)

Conclusion 2: Surface Effect *and*Particle-Particle Interactions

N particles/simulation (density distribution in the x direction)

MRS (infinite 3D space)

MIRS (surface at x = -2.5)

Lessons & Future directions

- Time management
- Communication with advisors regularly
- Similarity to machine learning

Future directions

- Realistic random force
- Further applications

Acknowledgement

- Nicholas Coltharp
- Dr. Shindell
- Dr. Nguyen
- Dr. Lewis for coming today!