		Date
Expt	t. No0 4	Page No
	Aim:	
	To determine the Reynold's mumber apparatus.	by Reynold's
	Reference:-	
	Requirement:	
	Reynold's apparatus (1) Pump (1) Water tank (1)	
	Coloured solution (KMn0g).	
	Theory !-	
	Fluid can flow through a fipe in to ways. At low flow rates the pressu	no different
	in the field fluid increases direc	fly with
	the fluid velocity and at high rates much more propidly. At low a veloc	it increases ily the
	fluid velocity and at high rates it	increases
	much more rapidly. At low relacity will travel as layers and there is no	o mixing of
	the layers of the fluid. This type is called laminar flow. At high velo	of blow
	Teacher's Signature	

Fig: - Assemble of Reynold's Apparatus.

	Date	_
Expt.	No Page No	
	pattern of flow is catted tominan flow. pattern of flow is disturbed and there will be a complete mixing of the layers and production of turbulence. This type of flow is called tod turbulent flow.	,
	Operating Procedure:	
<i>i)</i>	Clean the apparatus make all the parts of the apparatus dust free.	
(1))	Close the drain valves provided.	
(iii)	Fill the reservois tank 3/4 th with clear water.	
	Prepare a dye solution (KMnOg) and litre in Pure water, close the flow control value for the dye solution.	
(v)	Put this sol " on the dye vessel after removing all the solid particles from it.	
(vi)	Open the flow control value and the byfan value	•
(vii)	Switch on the Power supply.	
(viii)	Switch on the pump.	
	Teacher's Signature	

Observat	inn	and	1 0	al	cul	ation
ubservac	chair	61.10	an entire	-	Mary Control	-

S.Na	Type of blow observed	Volume collected (mi)	+ (sec)	V/m/seu	Q (m ³ /s)	Reynold's rumber (RE)
1	Same No Victoria	Table 1			17.00	S
2	The same		102 DI		e Lule	
3.			. 558	97 7		A. A
4.						
5.				and hard		
6						

Area of the glass tube = ... m^2 Kinematic viscosity of water = at 0° c = 1.788 × 10^{-6} m^2/s = at 20° c = 1.006 × 10^{-6} m^2/s

To convert litre to m3 multipled with 0.001.

Reynold's no (RE) = Pvd/u

where,

P = Density of the bluid in kg/m3

M = Viscosity of the bluid in Ns/m2

V = Average velocity of the bluid blow in misce...

v = Volume of water collected m3.

+ : time taken to collect. V m3 of water

A = Area of the glass habe

M/P = Kinematic viscosity m3/s.

Discharge of the fluid (V/+) = m3/s

	Date
Ехр	t. No Page No
ix)	The water is filled in the I water tank, and the overflow is maintained at minium.
(x)	A Allow the water to pass through the glass tube from the water tank at minimum flow rate by regulating the value at the end of the glass tube.
*1)	Adjust the flow of the dye solution through the capillary tube so as to get a narrow fine coloured line of the dye sol" at the centre of the glass tube.
	Determine the flow rate with the help of measuring cylinder and stop clock.
xiij)	Now slowly in crease the flow through the glass tuke with the help of flow control. Value present at the end of the glass tuke.
	Now the clear cooled coloured solo starts to travel in a way wavy from (upper critical velocity).
×v)	Find out the discharge and the flow rate.
x vî)	Further increase the flow rate so that coloured sol's completely diffusing in to the water (Turbulent flow)
*	
XVII)	Determine the discharge and the flow mate.
	Teacher's Signature

*

	Date
Expt	. No Page No
xviji	Decrease the flow of the liquid so as to get
	Decrease the flow of the liquid so as to get the flow in such a way the coloured so! trovels in wary from. Find out the discharge and flow rate.
x ix)	Again decrease the flow so that the wavy fashion
	Again decrease the flow so that the wavy fashion of the flow of the coloured solution starts to charge in to straight line. Find out the flow grate (lower critical relouty)
XX)	Finally keep the flow in such a way that the coloured sol " is moving in a straight line without any disturbance.
xxi)	After taking all the readings switch off the fump and the power supply.
	Report:
	Different types of blow Pattern is demonstrated and studied Reynold's number for
	Laminar flow o
	Toonsition flow = Turbulent flow:
	The critical velocity is found to be =
	Teacher's Signature