CS546 Project Report Yedong Liu A20344124

For k means clustering, I wrote a serial code together with a MPI version.

For the serial code:

1. Randomly select k data points as the initial cluster centers

2. Calculate the distance between every data point and all cluster centers to determine which cluster this data point belongs to

3. Re-calculate the cluster centers based on the pivot point of every cluster

4. Repeat 2 and 3 until the error is small enough.

Progress:

Progress	Done or not
Algorithm design	Υ
Coding structure	Υ
Input format	Υ
Random Input	N
Coding	Υ
Testing	Half done
Modification	N, in doubt

For the MPI code:

Using master-slave structure, rank 0 will assign work to every other rank, and after every rank finished its calculation, it will send data back to rank 0.

Algorithm design:

- 1. Rank 0 is the master, reading input from the file and assign work to other ranks.
- 2. Rank 0 will calculate the cluster centers and send to other ranks.
- 3. Other ranks calculate the distance between cluster centers and all data points, identify the cluster the data point belongs to, then send back to rank 0.
- 4. Rank 0 re-calculate the centers and send to other ranks, then calculate the total distance of all data points to their cluster center.
- 5. Repeat 3 and 4 until the error is small enough.

Progress	Done or not
Algorithm design	Y(based on serial)
Coding structure	Y(based on serial)
Input format	Y(based on serial)
Random Input	N
Coding	Half done
Testing	N
Modification	N, in doubt