Klausur Berechenbarkeit und Komplexität

NAME:	
VORNAME:	
MATRIKELNUMMER:	
STUDIENGANG:	
Hinweise:	
• Die Bearbeitungszeit beträ	gt 120 Minuten.
• Bitte versehen Sie jedes Bl	att mit Namen und Matrikelnummer.
• Bitte schreiben Sie deutlich gewertet.	a. Unleserliches wird nicht korrigiert und als fehlerhaft
<u>-</u>	nungen, die nicht gewertet werden sollen, durch oder gkenntlich. Bei mehreren Lösungsversuchen pro Aufgewertet.
	dokumentenechten Stift mit blauer oder schwarzer zeinen Tintenkiller oder Ähnliches. Benutzen Sie ausng gestellte Papier.
• Halten Sie bitte Ihren Studtrolle bereit.	lierendenausweis und einen Lichtbildausweis zur Kon-
• Bitte schalten Sie Ihre Mol	biltelefone aus!
•	selbstständig bearbeitet zu haben, und mir ist ei einem Täuschungsversuch mit "nicht bestan-
	(Unterschrift)
Aufraha	1 2 3 4 Casamt

Aufgabe	1	2	3	4	Gesamt
Punkte	20	20	20	20	80
erreicht					

Aufgabe 1:

(a) Definieren Sie, wann eine Menge M abzählbar ist.

(3 Punkte)

(b) Geben Sie (ohne weitere Begründung) eine Sprache L an, sodass weder die Sprache L selbst noch ihr Komplement \overline{L} semi-entscheidbar sind.

(c) Formulieren Sie den Satz von Matijasevich.

(3 Punkte)

(d) Formulieren Sie die Entscheidungsvariante des Problems **CLIQUE**, ohne **(3 Punkte)** dabei das Wort "Clique" zu verwenden.

- (e) Wann hat ein Algorithmus pseudo-polynomielle Laufzeit?
- (3 Punkte)

(f) Definieren Sie die Komplexitätsklasse **PSPACE**.

(3 Punkte)

(g) Auf welche in der Vorlesung behandelten Berechnungsmodelle beziehen sich die folgenden drei Abbildungen? Ordnen Sie Ihre Antworten den Abbildungen zu. (2 Punkte)

41: CLOAD 5

 $\begin{array}{c} Nach folger funktion \\ s(n) = n{+}1 \end{array}$

Aufgabe 2:

(a) Eine **BuK-Funktion** ist eine Funktion $f : \mathbb{N} \to \mathbb{N}$, die die folgende Bedingung erfüllt: (4 **Punkte**)

$$f(n) \in \{n, n+1\}$$
 für alle $n \in \mathbb{N}$.

Anmerkung: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ ist die Menge der nicht-negativen ganzen Zahlen.

Wir betrachten zunächst eine konkrete BuK-Funktion $f^* : \mathbb{N} \to \mathbb{N}$, die wie folgt definiert ist:

$$f^*(2k) = 2k$$
 und $f^*(2k+1) = 2k+2$ für alle ganzen Zahlen $k \ge 0$.

Zeigen Sie, dass diese BuK-Funktion f^* LOOP-berechenbar ist.

Anmerkung: Für Ihre Lösung dürfen Sie alle in Vorlesung und Übung eingeführten Makros verwenden.

(b) Es seien $f, g : \mathbb{N} \to \mathbb{N}$ zwei BuK-Funktionen, sodass $f(n) \neq g(n)$ für alle $n \geq 1$ gilt. Zeigen Sie: Wenn f primitiv rekursiv ist, so ist auch g primitiv rekursiv.

(c) Beweisen Sie: Nicht jede BuK-Funktion ist **berechenbar**.

(10 Punkte)

Seite	7	von	16

(2 Punkte)

Aufgabe 3:

(a) Wir betrachten n Prozesse P_1, \ldots, P_n , die auf einer Maschine bearbeitet werden sollen. Dabei gibt es für jeden Prozess P_i für $i \in \{1, \ldots, n\}$ eine Bearbeitungs-Zeit $t_i \in \mathbb{N}, t_i \geq 1$ und ein Zeit-Intervall, gegeben durch eine Startzeit $\ell_i \in \mathbb{N}$ und eine Zielzeit $r_i \in \mathbb{N}$, in dem P_i bearbeitet werden soll. Die Maschine kann zu jedem Zeitpunkt maximal einen Prozess bearbeiten. Ein Prozess P_i kann frühestens ab Zeitpunkt ℓ_i bearbeitet werden. Nach t_i Zeiteinheiten ist der Prozess bearbeitet, und die Maschine kann potentiell sofort beginnen einen neuen Prozess zu bearbeiten. Jeder Prozess P_i für $i \in \{1, \ldots, n\}$ muss spätestens zum Zeitpunkt r_i bearbeitet sein. Die Bearbeitung eines Prozesses darf nicht unterbrochen werden.

Beispiel: Prozesse P_1 mit $t_1 = 1$, $\ell_1 = 1$ und $r_1 = 2$ sowie P_2 mit $t_2 = 3$, $\ell_2 = 0$ und $r_2 = 5$ könnten wie folgt bearbeitet werden: Zum Zeitpunkt 1 wird P_1 gestartet. Zum Zeitpunkt 2 ist Prozess P_1 fertig bearbeitet und die Maschine wieder frei. Somit kann zum Zeitpunkt 2 der Prozess P_2 gestartet werden, der zum Zeitpunkt 5 fertig ist.

Wir betrachten dazu das Entscheidungsproblem PROZESS-PLANUNG:

Eingabe: Positive ganze Zahlen t_1, \ldots, t_n und nicht-negative ganze Zahlen ℓ_1, \ldots, ℓ_n und r_1, \ldots, r_n

Frage: Gibt es einen Bearbeitungsplan, der alle Prozesse rechtzeitig fertig stellt?

Betrachten Sie die folgende Instanz des PROZESS-PLANUNG Problems:

Prozess	P_1	P_2	P_3	P_4	P_5	P_6	P_7
t_i	1	2	2	3	3	4	4
ℓ_i	9			0			
r_i	10	19	19	19	19	19	19

Ist diese Instanz eine JA-Instanz? Geben sie eine kurze Begründung an.

(b) Formulieren Sie die Zertifikat-Charakterisierung von NP. (4 Punkte)

(6 Punkte)

(c) Zeigen Sie, dass das in Teil (a) definierte Problem PROZESS-PLANUNG die Zertifikat-Charakterisierung von NP erfüllt: **Beschreiben** Sie Ihr Zertifikat und **analysieren** Sie seine Länge. **Beschreiben** Sie das Verhalten Ihres Verifizierers und **analysieren** Sie seine Laufzeit.

(d) Beweisen Sie durch eine polynomielle Reduktion: PROZESS-PLANUNG ist **(8 Punkte) NP-schwer**.

Seite	11	von	16

Aufgabe 4:

(a) Definieren Sie das **uniforme** Kostenmaß für Berechnungen auf der RAM. (3 Punkte) Definieren Sie das **logarithmische** Kostenmaß für Berechnungen auf der RAM.

- (b) Beantworten Sie für jede ganze Zahl $m \geq 0$: Wenn die folgende RAM R als (6 Punkte) Eingabe im Register c(1) eine Zahl m erhält, welcher Wert steht dann bei Termination im Register c(2)? Beweisen Sie Ihre Antwort.
 - 1: CLOAD 5
 - 2: STORE 2
 - 3: LOAD 1
 - 4: IF c(0)>0 THEN GOTO 6
 - 5: END
 - 6: CSUB 1
 - 7: STORE 1
 - 8: LOAD 2
 - 9: MULT 2
 - 10: STORE 2
 - 11: GOTO 3

Erinnerung: Bei der RAM setzt zum Beispiel der Befehl ADD i das Register 0 auf den Wert c(0) = c(0) + c(i). Der Befehl CADD i hingegen setzt den Wert von Register 0 auf c(0) = c(0) + i.

Seite	13	von	16
-------	----	-----	----

(Fortsetzung Teil (b))

(c) Analysieren Sie die Laufzeit der RAM R aus Aufgabenteil (b) im **uniformen Kostenmaß**. Nehmen Sie dazu an, dass die Eingabe im Register c(1) eine Binärzahl mit n Bits ist.

(d) Widerlegen Sie die folgende Aussage: Wenn die RAM R aus Aufgabenteil (8 Punkte) (b) im uniformen Kostenmaß t(n)-zeitbeschränkt ist, dann existieren ein Polynom $q: \mathbb{N} \to \mathbb{N}$ und eine q(n+t(n))-zeitbeschränkte deterministische TM M, die R simuliert.

Seite	15	von	16

Seite	16	won	16