2 COMO ENFRENTARSE 2 DATOS COMPLEJOS?

INTRODUCCIÓN AL ANÁLISIS MULTIVARIANTE: TÉCNICAS BÁSICAS DE ORDENACIÓN Y CLASIFICACIÓN EN R.

- > JULIA VEGA ÁLVAREZ
- > JENNIFER MORALES BARBERO

CONTENIDO

1. PRIMEROS PASOS

- 2. TÉCNICAS DE ORDENACIÓN
 - 2.1 ANÁLISIS INDIRECTOS DE GRADIENTE (PCA, PCOA, NMDS y CA)
 - 2.2 ANÁLISIS DIRECTOS DE GRADIENTE (CCA y RDA)
- 3. MÉTODOS DE CLASIFICACIÓN CLUSTER
- 4. EDICIÓN DE GRÁFICOS DE ORDENACIÓN EN R

PRIMEROS PASOS

CONSIDER ACIONES PREVIAS

CONSIDER EXPLORATORIO

ANALISIS EXPLORATORIO

DUDAS EXISTENCIALES

¿Qué tengo?

¿Qué hago con lo que tengo?

CONSIDERACIONES PREVIAS

- > ¿SON BUENOS MIS DATOS?
 - ¿He recogido muestras representativas de la población en estudio?
 - ¿Existe algún sesgo en los datos recogidos?
- > ¿ESTÁN CORRECTAMENTE EXPRESADOS?
 - Revisar las matrices de datos en busca de errores de codificación
- > ¿QUÉ TIPO DE VARIABLES TENGO?
 - CUANTITATIVAS (DISCRETA o CONTINUA)
 - CUALITATIVAS (NOMINAL u ORDINAL)
- ¿CÓMO PUEDO TRANSFORMAR MIS DATOS PARA AJUSTARLOS A LOS ANÁLISIS QUE VOY A REALIZAR?
 - ELIMINAR DATOS ATÍPICOS o OUTLIERS que introduzcan ruido en los análisis.
 - DIVIDIR EL ARCHIVO de los datos en varias partes para facilitar su interpretación.
 - ELIMINAR/AGRUPAR VARIABLES con el fin de mejorar la interpretabilidad de los datos.
 - TRANSFORMAR matemáticamente las variables para que se puedan aplicar las técnicas estadísticas elegidas.

ANÁLISIS EXPLORATORIO DE DATOS

"Conjunto de técnicas estadísticas cuya finalidad es conseguir un entendimiento básico de los datos y de las relaciones existentes entre las variables analizadas".

>¿ME FALTA INFORMACIÓN?

Tratamiento y evaluación de DATOS AUSENTES (MISSING)

>¿HAY CASOS RAROS?

Identificación de CASOS ATÍPICOS (OUTLIERS)

>¿CUMPLEN MIS DATOS CON LOS SUPUESTOS TEÓRICOS NECESARIOS PARA APLICAR LAS TÉCNICAS ESTADÍSTICAS QUE QUIERO UTILIZAR?

 Comprobación de los SUPUESTOS de las técnicas MULTIVARIANTES (normalidad, linealidad, homocedasticidad)

ESTADÍSTICA DESCRIPTIVA BÁSICA

- > ¿QUÉ ESTRUCTURA Y CARACTERÍSTICAS BÁSICAS TIENEN MIS DATOS?
 - MEDIDAS DE POSICIÓN: CUARTILES, DECILES Y PERCENTILES
 - MEDIDAS DE TENDENCIA CENTRAL: MEDIA, MEDIANA Y MODA.
 - COEFICIENTES DE ASIMETRÍA (SKEWNESS)
 - GRADO DE APUNTAMIENTO O CURTOSIS
 - CORRELACIÓN ENTRE VARIABLES

Tipo de variable	Representación gráfica	Medida de tendencia central	Medida de dispersión
NOMINAL	Diagrama de barras, líneas, sectores	Moda	
ORDINAL	Boxplot	Mediana	Rango intercuartílico
NUMÉRICA	Histograma Polígono de frecuencias	Media	Desviación típica

TÉCNICAS DE ORDENACIÓN

· ANÁLISIS INDIRECTO DE GRADIENTE ANALISIS DIRECTO DE GRADIENTE

ANÁLISIS DE GRADIENTE

"Conjunto de técnicas que permiten estudiar las relaciones existentes entre la composición de las comunidades naturales y las características ambientales de las mismas"

> PREMISAS

> Se asume una estructura latente en los datos de composición, que viene determinada por unas variables ambientales conocidas o desconocidas.

> OBJETIVOS

- > REDUCIR LA COMPLEJIDAD DE LOS DATOS, mediante su representación en un diagrama de ordenación de pocas dimensiones.
- CONSERVAR la máxima cantidad de INFORMACIÓN posible, mediante la generación de unos factores latentes que se ordenan según la varianza o inercia explicada.
- DESCRIBIR GRÁFICAMENTE los patrones de composición y las relaciones entre individuos y variables.
- FACILITAR LA INTERPRETACIÓN de la distribución de los individuos en relación a GRADIENTES determinados por variables ambientales conocidas (directos) o desconocidas (indirectos).

ANÁLISIS DE GRADIENTE

Individuos

<u>Individuos</u>

- **Especies**
- **Pacientes**
- Consumidores
- **Trabajadores**
- **Empresas**
- **Industrias**
- Genes
- **Productos**
- Grupos de población
- Elementos químicos

Variables

Variables <u>cuantitativas</u> <u>continuas</u>

- Altura
- Peso
- Edad
- Diversidad
- Indicadores económicos
- **Factores** ambientales
- Distancia geográfica
- Tiempo

Muestras

- Unidades de muestreo
- Puntos geográficos
- Entidades privadas
- Comunidades ecológicas
- Países
- Sectores económicos

<u>Medidas</u>

- Abundancia
- Nº Individuos
- Densidad
- Cobertura
- Producción
- Rendimiento
- Pres/Aus

- ☐ MUESTRAS = VARIABLES CATEGÓRICAS
- ☐ INDIVIDUOS = VARIABLES CUANTITATIVAS

ANÁLISIS DE GRADIENTE

>ANÁLISIS INDIRECTO DE GRADIENTE

(Sin información ambiental)

Individuos

>ANÁLISIS DIRECTO DE GRADIENTE

(Ejes constreñidos por información ambiental)

Individuos

MÉTODOS INDIRECTOS de GRADIENTE

- > DETECCIÓN INDIRECTA DE GRADIENTES DE VARIACIÓN DE COMPOSICIÓN ENTRE MUESTRAS.
- CREAR UN CONJUNTO DE DIMENSIONES LATENTES, NO CONSTREÑIDAS POR FACTORES EXTERNOS, QUE MEJOR RESUMAN LA VARIABILIDAD DEL CONJUNTO DE DATOS
- LOS EJES DE ORDENACIÓN INFIEREN GRADIENTES

Individuos

ANÁLISIS INDIRECTO DE GRADIENTE		RELACIÓN LINEAL	RELACIÓN NO LINEAL
MEDIDA DE DISTANCIA	EUCLÍDEA	PCA	
	χ²		CA
	CUALQUIERA	PCoA/ MDS	NMDS

¿QUÉ TIPO DE DISTANCIA QUIERO PRESERVAR EN EL PLANO DE ORDENACIÓN?

¿QUÉ TIPO DE RELACIÓN EXISTE ENTRE INDIVIDUOS Y MUESTRAS?

PROCESO DE LOS MÉTODOS DE ORDENACIÓN INDIRECTOS

MATRIZ ORIGINAL DE DATOS

- COMPOSICIÓN (PCA, CA)
- DISTANCIA (MDS, NMDS)

ESCALADO DE DATOS

- CENTRADO
- ESTANDARIZADO

MATRIZ DE PARTIDA

- CORRELACIÓN/ COVARIANZAS (PCA, CA)
- **DISTANCIAS** (MDS, NMDS)

SELECCIÓN DE EJES

- MÁXIMA VARIABILIDAD: EIGENVALUES
 - (PCA, CA, MDS)
- DISTANCIAS ORIGINALES (NMDS)

ORDENACIÓN FINAL

DISTANCIAS

CORR/COV

ROTACIÓN DE EJES

- VARIMAX
- QUARTIMAX
- ROTACIÓN DE DIMENSIONES
 CON VARIABLE EXTERNA

1) ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

A. PREMISAS

- VARIABLES CUANTITATIVAS, CORRELACIONADAS ENTRE SÍ
- SENSIBLE AL TIPO DE ESCALADO DE LAS VARIABLES ORIGINALES, 0.
- SUPUESTOS DE NORMALIDAD, LINEALIDAD, CORRELACIÓN Y NO MULTICOLINEALIDAD
- DISTRIBUCIÓN DE LAS VARIABLES Y RELACIÓN ENTRE VARIABLES LINEAL

B. FUNDAMENTO

- EJES= COMPONENTES PRINCIPALES = COMBINACIÓN LINEAL DE LAS VARIABLES ORIGINALES.
- Preserva DISTANCIA EUCLÍDEA entre variables
- Busca el espacio que recoge la MÁXIMA VARIABILIDAD ORIGINAL

C. OBJETIVO

Resumir el CONJUNTO DE DATOS y estudiar las RELACIONES ENTRE VARIABLES.

PCA en R

library(vegan)

data(dune)

pca.dune <- rda(dune, scale = F)

summary(pca.dune)
screeplot(pca.dune)

pca <- biplot(pca.dune, choices = c(1,2), scaling = 3, type = c("text", "points"))

goodness(pca.dune, choices = c(1,2), statistic = c("explained"), summarize = TRUE)

INTERPRETACIÓN GRÁFICA

- 1. ABUNDANCIA DE INDIVIDUOS EN LAS MUESTRAS
 - Proyecciones ortogonales de los puntos sobre los vectores
- 2. VARIABILIDAD DE LOS INDIVIDUOS
 - Longitud de los vectores
- 3. CORRELACIÓN/COVARIANZA ENTRE INDIVIDUOS
 - Ángulos entre vectores
- ANÁLISIS DE ITEMS EN VALIDACIÓN DE TESTS

Matriz PCA

Supone relaciones LINEALES Preserva distancia EUCLÍDEA

- PUNTUACIONES FACTORIALES (scores)
- Coordenadas en el plano de ordenación
- CARGAS FACTORIALES (loadings)

Contribución relativa de las variables en los componentes

2) ANÁLISIS DE COORDENADAS PRINCIPALES (PCOA) = ESCALAMIENTO MULTIDIMENSIONAL MÉTRICO (MDS)

A. PREMISAS

- VARIABLES CUANTITATIVAS/CUALITATIVAS/MIXTAS
- SENSIBLE AL TIPO DE MEDIDA USADO. Si Euclídea MDS=PCA
- RELACIÓN INDIVIDUOS/MUESTRAS LINEAL

B. FUNDAMENTO

- EJES= COORDENADAS PRINCIPALES = Distancia euclídea entre coordenadas ≈ distancias originales. Representación euclídea de un conjunto de objetos cuyas relaciones son medidas por cualquier medida de distancia elegida por el usuario.
- Preserva CUALQUIER DISTANCIA entre muestras: Bray-Curtis, Jaccard, Manhattan...
- Busca el espacio que REPRODUCE APROXIMADAMENTE LAS DISTANCIAS ORIGINALES y recoge la MÁXIMA VARIABILIDAD de la matriz de distancias

C. OBJETIVO

 RESUMIR LAS DISIMILARIDADES ENTRE MUESTRAS y ENCONTRAR GRUPOS HOMOGÉNEOS DE MUESTRAS.

MDS en R

library(vegan) data (varespec)

- > braydist <- vegdist(varespec, method = "bray")</pre>
- > mds.vares <- cmdscale(braydist, k = 2, eig = F, wascores = T)
- > plot.mds <- ordiplot(mds.vares, type = "t")
- > abline(h=0, v=0)

INTERPRETACIÓN GRÁFICA

- 1. SIMILARIDAD en términos de medida de distancia ENTRE MUESTRAS
 - Distancia entre puntos.
- 2. DETECCIÓN DE GRUPOS HOMOGÉNEOS DE MUESTRAS
 - Proximidad entre grupos de puntos

- ESTUDIOS DE ESTRUCTURA GENÉTICA
- MAPAS PERCEPTUALES

Matriz PCoA/MDS

Supone relaciones LINEALES
Preserva CUALQUIER distancia

Sites scores = POSICIÓN de las muestras en el plano de ordenación

3) ESCALAMIENTO MULTIDIMENSIONAL NO MÉTRICO (NMDS)

A. PREMISAS

- VARIABLES CUANTITATIVAS/CUALITATIVAS/MIXTAS
- SENSIBLE AL TIPO DE MEDIDA USADO
- RELACIÓN INDIVIDUOS/MUESTRAS NO LINEAL

B. FUNDAMENTO

- EJES = DIMENSIONES = Recoge SIMILARIDAD ENTRE PARES DE MUESTRAS
- Preserva CUALQUIER DISTANCIA entre muestras: : Bray-Curtis, Jaccard, Manhattan...
- Busca el espacio que MEJOR REPRESENTE LAS DISTANCIAS ORIGINALES en términos de rangos de orden (Algoritmo iterativo < STRESS)

C. OBJETIVO

 RESUMIR LAS DISIMILARIDADES ENTRE MUESTRAS y ENCONTRAR GRUPOS HOMOGÉNEOS DE MUESTRAS.

NMDS en R

library(vegan) library(MASS)

data (varespec)

- > braydist <- vegdist(varespec)
- > nmds.vares <- metaMDS(varespec, distance ="bray", wascores = T, autotransform = F)
- > plot(nmds.vares, display = "sites", type = 't', xlim = c(-1, 1.5), ylim = c(-1, 1))
- > stressplot(nmds.vares)
- > goodness(nmds.vares, display = c("sites"), choices = c(1,2), statistic = c("distance"))

INTERPRETACIÓN GRÁFICA

- 1. PROBABILIDAD DE SIMILARIDAD ENTRE MUESTRAS en términos de rangos de orden
 - Distancia entre puntos.
- 2. DETECCIÓN DE GRUPOS HOMOGÉNEOS DE MUESTRAS
 - Proximidad entre grupos definidos de puntos

Se superponen las coordenadas para especies como medias ponderadas

MAPAS PERCEPTUALES: Estudiar las preferencias o percepciones de Personas/Clientes/Consumidores sobre Políticas/Productos/Servicios...

- MARKETING
- CIENCIAS SOCIALES

Supone relaciones NO LINEALES CUALQUIER DISTANCIA

❖ MEDIDA DE BONDAD DE AJUSTE = STRESS < 0.1

4) ANÁLISIS (FACTORIAL) DE CORRESPONDENCIAS (CA)

A. PREMISAS

- VARIABLES NOMINALES, datos de frecuencia, presencia/ausencia...
- SENSIBLE A DATOS RELATIVIZADOS, OUTLIERS,
- DISTRIBUCIÓN DE LAS VARIABLES UNIMODAL

B. FUNDAMENTO

- EJES = FACTORES = MÁXIMA ABSORCIÓN INERCIA
- TRABAJA CON PERFILES: coordenadas ponderadas por frecuencia relativa
- Preserva **DISTANCIA** χ^2 entre perfiles fila o columna.
- Busca el subespacio que MEJOR REPRESENTE LA CORRESPONDENCIA ENTRE MUESTRAS e INDIVIDUOS (< χ^2 entre perfiles)

C. OBJETIVO

 REPRESENTAR LOS PERFILES FILA O COLUMNA con precisión y estudiar las RELACIONES ENTRE ELLOS.

CA en R

library(vegan)
data (varespec)

- > ca.vares <- cca(varespec)
- > plot(ca.vares, scaling = 3)
- > screeplot(ca.vares)
- > summary(ca.vares)
- > goodness(ca.vares, display = c("sites"), choices = c(1,2), statistic = c("explained"), summarize = TRUE)

Tabla de contingencia

INTERPRETACIÓN GRÁFICA BIPLOT

- 1. SIMILARIDAD DE COMPOSICIÓN ENTRE MUESTRAS
 - Distancia entre puntos
- 2. PROBABILIDAD DE QUE UN INDIVIDUO SEA FRECUENTE EN UNA MUESTRA/PROBABILIDAD DE ASOCIACIÓN ENTRE CATEGORÍAS
 - Distancia entre puntos individuos y puntos muestras.
- □ Peor representación hacia el origen ≈ perfil promedio
- No representa las distancias originales
- ESTUDIOS ECOLÓGICOS DE GRADIENTE LARGO
- ESTUDIOS PSICOLÓGICOS

Supone relaciones UNIMODALES Distancia χ^2

- **❖ PUNTOS= PERFILES = CENTROIDES**
- **❖ INERCIA= VARIABILIDAD EXPLICADA**

Matriz CA

ANÁLISIS DIRECTO de GRADIENTE

- DETECCIÓN DIRECTA DE GRADIENTES DE VARIACIÓN DE COMPOSICIÓN ENTRE MUESTRAS EN FUNCIÓN DE UNAS VARIABLES DETERMINADAS A PRIORI
- CREAR UN CONJUNTO DE DIMENSIONES LATENTES DENOMINADAS FACTORES CONSTREÑIDOS POR VARIABLES EXTERNAS
- LOS EJES DE ORDENACIÓN REPRESENTAN GRADIENTES

ANÁLISIS DIRECTO DE GRADIENTE		RELACIÓN LINEAL	RELACIÓN NO LINEAL
A DE	EUCLÍDEA	RDA	
MEDID, DISTAN	χ²		CCA

¿QUÉ TIPO DE DISTANCIA QUIERO PRESERVAR EN EL PLANO DE ORDENACIÓN?

¿QUÉ TIPO DE RELACIÓN EXISTE ENTRE INDIVIDUOS Y MUESTRAS?

PROCESO DE LOS MÉTODOS DE ORDENACIÓN DIRECTOS

1) ANÁLISIS DE REDUNDANCIA (RDA)

A. PREMISAS

- VARIABLES RESPUESTA (y): CUANTITATIVAS, distribución LINEAL
- VARIABLES EXPLICATIVAS (x): CUANTITATIVAS, relación LINEAL con VARIABLES RESPUESTA.
- VARIABLES EXPLICATIVAS < N° DE MUESTRAS

> anova(rda.dune)

B. FUNDAMENTO

- EJES CANÓNICOS = COMBINACIÓN LINEAL DE LAS VARIABLES AMBIENTALES.
- Busca el subespacio RESTRINGIDO POR LAS VARIABLES AMBIENTALES que recoge la MÁXIMA VARIABILIDAD ORIGINAL
- VARIANZA TOTAL= VARIANZA CONSTREÑIDA + VARIANZA NO CONSTREÑIDA. (V.C > V.N.C)

C. OBJETIVO

 RESUMIR LA VARIACIÓN DE COMPOSICIÓN DE LAS MUESTRAS QUE PUEDE SER EXPLICADA POR VARIABLES AMBIENTALES.

PDA en R | > rda.dune <- rda(dune ~ Manure, dune.env, scale= F) | > plot(rda.dune, scaling = 3) | > screeplot(rda.dune) | > summary(rda.dune) | > goodness(rda.dune, display = c("species"), choices = c(1,2), statistic = c("explained"), | summarize = TRUE)

INTERPRETACIÓN GRÁFICA TRIPLOT

- 4. VALOR DE LAS VARIABLES EN LAS MUESTRAS
 - Proyecciones ortogonales de los puntos sobre los vectores

'ORES RAYADOS = VARIABLES = VAR. AMBIENTALES

2) ANÁLISIS CANÓNICO DE CORRESPONDENCIAS (CCA)

A. PREMISAS

- VARIABLES RESPUESTA (y): NOMINALES, distribución UNIMODAL
- VARIABLES EXPLICATIVAS (x): CUANTITATIVAS, relación LINEAL con VARIABLES RESPUESTA.
- VARIABLES EXPLICATIVAS < N° DE MUESTRAS

B. FUNDAMENTO

- EJES CANÓNICOS = COMBINACIÓN LINEAL DE LAS VARIABLES AMBIENTALES.
- Busca el subespacio restringido por las VARIABLES AMBIENTALES que MEJOR REPRESENTE LA CORRESPONDENCIA ENTRE MUESTRAS e INDIVIDUOS (< χ^2 entre perfiles)
- INERCIA TOTAL= INERCIA CONSTREÑIDA + INERCIA NO CONSTREÑIDA. (I.C > I.N.C)

C. OBJETIVO

• RESUMIR LAS POSICIONES DE LOS PERFILES FILA O COLUMNA con precisión EN RELACIÓN A UN GRADIENTE AMBIENTAL DEFINIDO y estudiar las RELACIONES ENTRE ELLOS.

CCA en R

- > cca.vares <- cca(varespec, varechem)
- > plot(cca.vares, scaling = 3)
- library(vegan)
- > screeplot(cca.vares)
 > summary(cca.vares)
- data (varespec)
 data(varechem)
- > goodness(cca.vares, display = c("sites"), choices = c(1,2), statistic = c("explained"), summarize = TRUE)
- > anova(cca.vares)
- > vif.cca(cca.vares)

INTERPRETACIÓN GRÁFICA TRIPLOT

- 4. VALOR DE LA VARIABLE EN LA MUESTRA/ ÓPTIMO DEL INDIVIDUO EN LA VARIABLE
 - Proyecciones ortogonales de los puntos sobre los vectores
- 5. CORRELACIÓN/COVARIANZA ENTRE VARIABLES AMBIENTALES
 - Ángulos entre vectores

APLICACIONES

- ESTUDIOS ECOLÓGICOS DE GRADIENTE LARGO
- ANÁLISIS TEXTUAL (TEXT MINING)

- ❖ PUNTOS = PERFILES = CENTROIDES
- ❖ VECTORES = VARIABLES AMBIENTALES

MUESTRAS = TIPOS DE RESTAURANTES

- PIZZERÍAS
- HAMBURGUESERÍAS
- ITALIANO
- COCINA DE AUTOR
- ORIENTAL

INDIVIDUOS= % Clientes por sexo y edad

- MUJER < 25
- MUJER 25-40
- MUJER > 40
- HOMBRE < 25
- HOMBRE 25-40
- HOMBRE > 40

VARIABLES que constriñen los ejes

- Precio medio del menu
- Rapidez del servicio
- Calidad nutricional
- Prestigio culinario

- **❖ PUNTOS = MUESTRAS = UNIDADES DE MUESTREO**
- **❖ VECTORES AZUL = INDIVIDUOS = VARIABLES RESPUESTA**
- ❖ VECTORES ROSA = VARIABLES AMBIENTALES = VARIABLES EXPLICATIVAS

MÉTODOS DE CLASIFICACIÓN

· ANALISIS CLUSTER

ANÁLISIS CLUSTER

"Conjunto de técnicas multivariantes que tienen por objetivo la clasificación de las muestras en grupos homogéneos o cluster"

- 1. ELECCIÓN DE DATOS
 - Estandarización
- 2. MEDIDA DE DISTANCIA/SIMILITUD
 - Euclídea, Manhattan, Mahalanobis...
- 3. CRITERIO DE AGRUPACIÓN
 - JERÁRQUICO
 - AGLOMERATIVO
 - O DIVISIVO
 - NO JERÁRQUICO
- 4. ELECCIÓN DEL NÚMERO DE GRUPOS

Cluster Dendrogram

bray hclust (*, "complete")

CLUSTER en R

library(vegan)

```
## JERÁRQUICO ##
##GENERAR MATRIZ DE DISTANCIAS##
> bray <-vegdist(dune, method = "bray", binary = "FALSE")
##GENERAR DENDROGRAMA##
> cluster <- hclust(bray, method = "complete", members = NULL)
> plot(cluster)
```

ANÁLISIS CLUSTER

> TIPOS

A. MÉTODOS JERÁRQUICOS

- Dendrograma o árbol de clasificación
- Las muestras se asignan a los cluster por un criterio de DISTANCIA
- AGLOMERATIVOS
 - Nearest Neighbour o Single linkage (distancia mínima)
 - Furthest Neighbour o Complete linkage (Distancia máxima)
 - Distancia entre centroides (centroid)
 - Distancia promedio (UPGMA o average linkage)
 - Distancia mediana (Median)
 - Ward
- DIVISIVOS
 - Cálculo iterativo de centros
 - Monothetic
 - Polythetic

B. MÉTODOS NO JERÁRQUICOS

- N° de cluster definido a priori
- Las muestras se intercambian entre los cluster, sin establecer relaciones entre ellos, según un criterio de optimización
 - ■K-means

EDICIÓN DE GRÁFICOS EN R

Constrained Correspondence Analysis

Constrained Correspondence Analysis

orditkplot()

MUCHAS GRACIAS PORSU ATENCIÓN