1 Lezione del 24-04-25

Riprendiamo la trattazione delle regole di tracciamento del luogo delle radici.

1.0.1 Regole di tracciamento 3

8. Come anticipato, la regola (8) è in qualche modo duale alla (7), e riguarda gli angoli dei rami entranti negli zeri.

Riprendiamo la condizione di fase:

$$\begin{cases} \angle n(s) - \angle d(s) = -\pi \pm 2h\pi, & K > 0 \\ \angle n(s) - \angle d(s) = \pm 2h\pi, & K < 0 \end{cases}$$

E notiamo che preso uno zero particolare in z^* , ad esempio riguardo al luogo diretto, si avrà che l'angolo di entrata θ^* è:

$$\angle n^*(s) + \theta^* - \angle d(s) \Big|_{s=z^*} = -\pi \implies \theta^* = -\pi + \angle d(s) - \angle n^*(s) \Big|_{s=z^*}$$

dove $n^*(s)$ è il numeratore rimosso lo zero z^* preso in considerazione.

Potremo quindi usare questa formula generale per calcolare l'angolo di entrata dei rami negli zeri. Da questo ricaviamo fra l'altro che i rami entranti nei poli con molteplicità > 1 dividono il piano in parti equiangole e simmetriche rispetto all'asse reale.

Esempio

Calcoliamo gli angoli di entrata negli zeri della funzione di trasferimento:

$$G(s) = \frac{s^2 + 20s + 101}{s(s+5)^3}$$

Partiamo sempre col trovare zeri e poli, che saranno:

$$z_{1,2} = -10 \pm i$$
, $p_1 = 0$, $p_{2,3,4} = -5$

per cui potremo fattorizzare la funzione di trasferimento:

$$G(s) = \frac{(s+10-i)(s+10+i)}{s(s+5)^3}$$

Calcoliamo allora gli angoli veri e propri per ogni zero, applicando la legge appena trovata:

• Per lo zero z_1 si ha:

$$\theta_1 = -\pi + \angle d(s) - \angle n^1(s) \Big|_{s=z_1} = -\pi + \angle (10+i) + 3 \cdot \angle (-5+i) - \angle 2i$$
$$= -180^\circ + 174.3^\circ + 506.07^\circ - 90^\circ = 50.37^\circ$$

• Per lo zero z_2 , complesso coniugato allo z_1 , ci aspettiamo di ottenere l'opposto di θ_1 . Verifichiamo:

$$\theta_2 = -\pi + \angle d(s) - \angle n^2(s) \Big|_{s=z_2} = -\pi + \angle (-10 - i) + 3 \cdot \angle (-5 - i) - \angle - 2i$$
$$= -180^\circ - 174.3^\circ - 506.07^\circ + 90^\circ = -50.37^\circ$$

1.0.2 Riassunto sul luogo delle radici

Abbiamo quindi che il luogo delle radici è una tecnica per determinare lo spostamento dei poli dal ciclo aperto al ciclo chiuso: inserito un controllore proporzionale di guadagno K, abbiamo ch al variare di K i poli in ciclo chiuso cambiano posizione, appunto quelle che figurano nel luogo delle radici.

Il procedimento che seguiremo nel progetto dei controllori sarà quindi:

- Fissare i poli/zeri del regolatore sulla base delle specifiche date;
- Variare *K* per individuare il valore che fissa i *poli dominanti* del sistema nella regione opportuna, sulla base delle specifiche, del piano complesso.