Exercise 1. Find an example of two curves in \mathbb{P}^2 that have the same degree but are not isomorphic.

Answer

Let us consider the curves $V_1 = \mathbb{V}(xy)$ and $V_2 = \mathbb{V}(xy - z^2)$. To find the degrees of these curves we will calculate their Hilbert polynomials. To that effect let us decompose $\mathbb{C}[x,y,z]$ into equally graded parts and then use the relations in our ideals:

$$\mathbb{C}[x, y, z] = \mathbb{C} \oplus \text{gen}(x, y, z) \oplus \text{gen}(x^2, y^2, z^2, xy, xz, yz) \oplus \dots$$

And so, applying the relation xy = 0 we lose an xy in the R_2 component. Looking at the degree 3 component we get

$$\text{gen}(x^3, y^3, z^3, \underline{x^2y}, x^2z, \underline{y^2x}, y^2z, z^2x, z^2y, \underline{xyz}),$$

where the underlined elements are the generators we lose. We can see that the elements we have lost are the degree 1 generators multiplied by xy. Likewise in the case of R_2 we lost the xy when we multiplied 1 by it. Therefore, the amount of generators of R_m in $\mathbb{C}[V_1]$ will be $\binom{2+1}{m} - \binom{2+1}{m-2}$. This quantity is

$$\binom{2+m}{m} - \binom{2+m-2}{m-2} = \frac{(m+2)!}{2m!} - \frac{m!}{2(m-2)!}$$

$$= \frac{(m+2)(m+1)}{2} - \frac{m(m-1)}{2}$$

$$= 2m+1.$$

and so if the degree of the Hilbert polynomial is k, then $\deg(V) = k!a_k$. It holds that the degree of $\mathbb{V}(xy)$ is 2. This can also be seen by intersecting a *general line* through the variety.

On the other hand, when taking the quotient by $gen(xy-z^2)$ and doing the same process we are losing^a the same amount (albeit different ones) of generators on each step. Thus the Hilbert polynomial for V_2 is also 2m + 1.

Finally, notice that V_1 is a reducible variety as $V_1 = \mathbb{V}(x) \cup \mathbb{V}(y)$ and V_2 is irreducible. Should there be an isomorphism between these varieties, it should preserve reducibility. This is impossible so it holds that V_1 and V_2 are not isomorphic, but they have the same degrees.

^aNot exactly losing, I think a better word or description would be *adding a trivial generator to our set*.

Exercise 2. Do the following:

- (a) Find the Hilbert polynomial P of a k-dimensional linear subvariety of \mathbb{P}^n .
- (b) Describe the Hilbert scheme of varieties in \mathbb{P}^n with Hilbert polynomial P.

Answer

Exercise 3. Assume that the variety $V \subseteq \mathbb{P}^n$ has the Hilbert polynomial P(n). Calculate the Hilbert polynomial of the image variety $\nu_d(V) \subseteq \mathbb{P}^{\binom{n+d}{d}-1}$ of the Veronese map. $\llbracket \text{Hint: Do the case of } V = \mathbb{P}^1 \text{ first. } \rrbracket$

Answer

Recall that the Hilbert function for \mathbb{P}^1 is the dimension of, R_m , the m^{th} graded piece of $\mathbb{C}[x,y]$. The homogenous polynomials in $\mathbb{C}[x,y]$ have

$$\{x^m, x^{m-1}y, \dots, xy^{m-1}, y^m\}$$

as a basis. So in this case $m \mapsto \dim(R_m) = m+1$ is the Hilbert function of \mathbb{P}^1 . Let us now consider the image of \mathbb{P}^1 through the d^{th} Veronese embedding.

Exercise 4. Using the theorem describing the defining equations for T_pV in terms of the equations for V, compute the tangent spaces of the curves in examples (1), (2), and (3) at the origin.

Answer

(a) The curve in question is $\mathbb{V}(y-x^2)$, our function is $P_1(x,y)=y-x^2$ then $\nabla P_1(x,y)=(-2x,1)$. The tangent space at the origin is the zero locus of

$$\langle \nabla P_1(0,0)|(x,y)-(0,0)\rangle = \langle (0,1)|(x,y)\rangle = y.$$

This coincides with our original finding because V(y) is precisely the x-axis which is tangent to the parabola at the origin.

(b) Now we are working with $\mathbb{V}(y^2 - x^2 - x^3)$, then $P_2(x,y) = y^2 - x^2 - x^3$. The differential in this case is

$$\nabla P_2(x,y) = (-2x - 3x^2, 2y) \xrightarrow{\varepsilon_0} \nabla P_2(0,0) = (0,0)$$

and so the variety in question is the zero locus of the zero function. As the whole of \mathbb{A}^2 is such set, we can see that this makes sense because the origin is a singular point of our variety.

(c) Finally let us consider $V(y^2 - x^3)$. In this case

$$\langle \nabla P_3(0,0)|(x,y) - (0,0)\rangle = \langle (-3(0)^2, 2(0))|(x,y)\rangle = 0,$$

and once again our tangent space is the whole affine plane. This is agrees with what we have seen, the curve has a singular point at the origin.

Exercise 5. Let $V \subseteq \mathbb{P}^n$ be a hypersurface defined by a homogeneous irreducible polynomial F. Find an explicit description of the tangent space to V at a point p. What conditions on p ensure that the tangent space to V at p has dimension n-1?

Answer

Let us begin by considering an affine chart $U_i \simeq \mathbb{A}^n$ which contains p. Our projective variety V becomes an affine variety $V \cap U_i$ which is the zero locus of the de-homogenized polynomial $\widetilde{F} = F\big|_{x_i=1}$.

We can now describe the tangent space at p as

$$T_p(V \cap U_i) = \mathbb{V}\left(\left\langle \nabla \widetilde{F}(p) \middle| \mathbf{x} - p \right\rangle\right).$$

The projective closure of this affine algebraic variety is the *projective tangent* space of V at p. To find this, let us simplify notation a bit by calling L the linear polynomial in question.

- \diamond We can see that L is an irreducible polynomial through a degree argument. If L were reducible then L=pq and $\deg(L)=\deg(p)+\deg(q)$. As the degree is an integer, p or q must be a linear polynomial and the other a constant.
- \diamond Now the polynomial ring we are working in is a UFD so irreducibles are prime, then it holds that gen(L) is a prime ideal and therefore radical.
- \diamond Recall, by the projective closure theorem, the ideal generated by the homogenization of *all* elements of $\sqrt{\operatorname{gen}(L)}$ is $\mathbb{I}(\overline{V})$. But as $\sqrt{\operatorname{gen}(L)} = \operatorname{gen}(L)$ we have that $\mathbb{I}(\overline{V})$ is generated by elements of the form ${}^h(p \cdot L)$ where the homogenization is taken with respect to the variable x_i .

In summary the tangent space is the zero locus of $gen(^h(p \cdot L))$ where p is any polynomial and L is the differential of F.

Now, as F is an homogeneous irreducible polynomial, the variety V has dimension n-1. For the tangent space to have that same dimension, it must hold that p is a *smooth point* of V. For this to happen p must not be a *singular point* and this happens when

$$p \notin \mathbb{V}(\partial_0 F, \partial_1 F, \dots, \partial_n F).$$