Intervalles - 1

A. <u>Comprendre la notion d'intervalle.</u>

- On peut représenter les nombres réels sur un axe gradué.
- Pour représenter un ensemble de nombres, on peut colorier une ou plusieurs parties de l'axe.

Définition. Un **intervalle** est un *ensemble* <u>continu</u> de nombres réels.

Exemple. L'ensemble colorié ci-dessous des nombres entre -1,75 et 1 est un intervalle car il n'a qu'une partie.

- En général, un intervalle est délimité par deux valeurs, appelées borne inférieure, et borne supérieure.
- Chacune des deux bornes peut être soit incluse, soit exclue, et peut être soit finie, soit infinie : ∞

B. Désigner ou représenter un intervalle.

Méthode. Pour désigner un intervalle à partir de sa représentation :

- On commence par écrire : borne inférieure ; borne supérieure
- On entoure avec des crochets tournés vers l'intérieur si la borne est incluse, vers l'extérieur sinon.

Exemples.

Schéma										Intervalle	Borne inf.	Borne sup.
-5	-4	-3	<u>o</u>	-1	0	1	2	3	4] - 2;1]	−2 est exclus	1 est inclus
-3	-2	-1	0	1	2	3	4	5	6	[-1;4]	−1 est inclus	4 est inclus
-5	-4	-3	-2	-1	- 0	1	2	3	4			
-3	-2	-1	0	1	2	3	-0	5	6			
-2	-1	0	1	2	3	4	5	6	7	[2;∞[2 est inclus	∞ est exclus
7	8	9	10	11	12	13	14	15	16			
-4	-3	-2	-1	0	1	2	3	4	5			

• L'intervalle] $-\infty$; ∞ [contient tous les nombres réels. C'est donc l'ensemble des nombres réels $\mathbb{R}=]-\infty$; ∞ [

Exercice B1. Ecrire les intervalles correspondants :

Exercice B2. Représenter sur une droite graduée les intervalles suivants avec 4 couleurs différentes :

- a)]1;4]
- b) [-0.5;3]
- c) $]-\infty;2]$
- d) $[0; +\infty[$

Exercice B3. Vrai ou faux

- (a) $3 \in [1; 5[$
- (b) $2 \in [2;4]$
- (c) $2 \in [2;3]$
- (d) $6 \in]-\infty;5]$

C. <u>Traduire l'appartenance à un intervalle par une inégalité et réciproquement.</u>

Méthode. Pour traduire l'appartenance d'un nombre x à un intervalle, en une inégalité :

- On peut commencer par écrire : borne inférieure < x < borne supérieure
- Si un crochet est tourné vers l'intérieur (si sa borne est incluse), on ajoute un trait sous le signe < qui devient ≤
- Si une des bornes est infinie, on n'écrit qu'une inégalité simple. Un nombre x vérifie toujours $-\infty < x$ et $x < \infty$.

Exemples.

Méthode. Pour traduire une inégalité sur un nombre x, en l'appartenance de x à un intervalle :

- On peut commencer par écrire : $x \in borne inférieure$; borne supérieure
- Si une inégalité est stricte < on met un crochet vers l'extérieur. Si elle est large ≤ on met un crochet vers l'intérieur.
- S'il n'y a qu'une inégalité simple, la borne manquante est ∞ ou $-\infty$ (suivant qu'elle est supérieure ou inférieure).

Exemple. Traduire l'inégalité par l'appartenance à un intervalle.

 $5 < x \le 7$

 \Leftrightarrow

Exercice C1. Traduire chaque appartenance par une inégalité.

(a)
$$x \in [0; 2]$$

$$\Leftrightarrow$$

(b)
$$y \in]-5;3]$$

$$\Leftrightarrow$$

(c)
$$2 + z \in [0; 3]$$

$$\Leftrightarrow$$

(d)
$$a \in]-\infty$$
; 5,88]

$$\leftarrow$$

(e)
$$b \in]-3,5; \infty[$$

$$\Leftrightarrow$$

Exercice C2. Traduire chaque inégalité par l'appartenance à un intervalle.

(a)
$$3 \le x \le 6$$

$$\Leftrightarrow$$

(b)
$$-5.2 < y \le 2$$

 $1 \le x - 2 < 3$

$$\Leftrightarrow$$

(d)
$$c \leq -5$$

(c)

$$\Leftrightarrow$$

(e)
$$2 < z$$

$$\Leftrightarrow$$

D. Représenter et simplifier l'intersection de deux intervalles

Définition. L'intersection des intervalles I et J est l'ensemble noté $I \cap J$ des nombres qui appartiennent à I <u>et</u> à J.

Méthode. Pour représenter l'intersection de deux intervalles :

- Sur un axe gradué, on colorie les deux intervalles avec deux couleurs différentes.
- L'intersection est l'ensemble des points coloriés par les deux couleurs à la fois.

Exemple. Représenter puis simplifier $A = [3; 6] \cap [4; 8]$

Exercice D1. Représenter puis simplifier :

(a)
$$A = [-4, 5] \cap [0, 10]$$

- (b) $B =] 5; 2] \cap [4; 7]$
- (c) $C = [10; 20] \cap [0; 15]$
- (d) $D = [0; 8[\cap]2; 5]$

E. <u>Traduire l'appartenance à une intersection d'intervalles</u>

Exemple. Traduire $x \in [3, 6] \cap [4, 8]$ par des inégalités :

 $x \in]3;6] \cap [4;8[\Leftrightarrow x \in]3;6] \text{ et } x \in [4;8[\Leftrightarrow$

Exemple. Traduire $x \in [-2; 3[\cap [-3; 0]])$ par des inégalités :

$$x \in [-2; 3[\cap [-3; 0]$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

 $3 < x \le 6$ et $4 \le x < 8$

Exemple. Traduire $-3 \le x < 0$ et -2 < x < 5 avec une intersection d'intervalles. Représenter puis simplifier.

 $-3 \le x < 0$ et -2 < x < 5 \Leftrightarrow

 \hookrightarrow

Exercice E1. Traduire chaque affirmation par des inégalités :

- (a) $x \in [-1; 1] \cap [0; 2] \Leftrightarrow$
- (b) $z \in]3; 5] \cap [1; 4] \Leftrightarrow$
- (c) $y \in [0; 2] \cap [2; 3[$ \Leftrightarrow

Exercice E2. Traduire chaque affirmation par l'appartenance à une intersection. Simplifier.

- (a) 3 < x < 10 et $2 \le x \le 5$ \Leftrightarrow
- (b) $-5 \le b \le 2 \text{ et } -10 < b < 2 \Leftrightarrow$
- (c) -2 < z < -1 et $3 \le z < 5 \iff$

F. Représenter et simplifier l'union de deux intervalles

Définition. L'union des intervalles I et J est l'ensemble noté $I \cup J$ des nombres qui appartiennent à I ou à J.

Méthode. Pour représenter *l'union* de deux intervalles :

- Sur un axe gradué, on colorie les deux intervalles.
- L'union est l'ensemble des points coloriés. Ce n'est pas toujours un intervalle.

Exemple. Représenter puis simplifier $A = [3; 6] \cup [4; 8]$

Exercice F1. Représenter puis simplifier *si possible* :

(a)
$$A = [-4; 5] \cup [0; 10]$$

- (b) $B =] 5; 2] \cup [4; 7]$
- (c) $C = [10; 20] \cup [0; 15]$
- (d) $D = [0; 8[\cup]2; 5]$

G. <u>Traduire l'appartenance à une union d'intervalles</u>

Exemple. Traduire $x \in [3; 6] \cup [4; 8[$ par des inégalités :

$$x \in]3; 6] \cup [4; 8[\Leftrightarrow x \in]3; 6] \text{ ou } x \in [4; 8[$$

Exemple. Traduire $x \in [-2; 3[\cup [-3; 0]$ par des inégalités : \Leftrightarrow

Exemple. Traduire $-3 \le x < 0$ ou -2 < x < 5 avec une union d'intervalles. Représenter puis simplifier.

 \Leftrightarrow

 $3 < x \le 6$ ou $4 \le x < 8$

 $-3 \le x < 0$ ou -2 < x < 5 \Leftrightarrow

Exercice G1. Traduire chaque affirmation par des inégalités :

- (a) $x \in [-1; 1] \cup [0; 2] \Leftrightarrow$
- (b) $z \in]3; 5] \cup]1; 4] \Leftrightarrow$
- (c) $y \in [0; 2] \cup [2; 3[\Leftrightarrow$

Exercice G2. Traduire chaque affirmation par l'appartenance à une union. Simplifier si possible.

- (a) 3 < x < 10 ou $2 \le x \le 5$ \Leftrightarrow
- (b) $-5 \le b \le 2 \text{ ou } -10 < b < 2 \iff$
- (c) $-2 < z < -1 \text{ ou } 3 \le z < 5 \iff$