```
In [1]: import os
    import glob
    import pandas as pd
    import matplotlib.pyplot as plt
    import datetime as dt
    from concurrent import futures
    import numpy as np
    import pandas_datareader.data as web
    from scipy.stats import gaussian_kde
    from scipy.cluster.hierarchy import linkage, dendrogram, fcluster, set_link_color
    from sklearn.manifold import TSNE
    from sklearn.cluster import DBSCAN
    from sklearn.cluster import KMeans
    data_dir = "./data/stock_data_for_clustering"
    os.makedirs(data_dir, exist_ok=True)
```

In [3]: tables = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
 first_table = tables[0]
 print(first_table.shape)
 first_table["Symbol"] = first_table["Symbol"].map(lambda x: x.replace(".", "-"))
 sp500_tickers = list(first_table["Symbol"])
 first_table.head()

(504, 9)

Out[3]:

	Symbol	Security	SEC filings	GICS Sector	GICS Sub- Industry	Headquarters Location	Date first added	CIK	Founded
0	MMM	3M	reports	Industrials	Industrial Conglomerates	Saint Paul, Minnesota	1976- 08-09	66740	1902
1	AOS	A. O. Smith	reports	Industrials	Building Products	Milwaukee, Wisconsin	2017- 07-26	91142	1916
2	ABT	Abbott	reports	Health Care	Health Care Equipment	North Chicago, Illinois	1964- 03-31	1800	1888
3	ABBV	AbbVie	reports	Health Care	Pharmaceuticals	North Chicago, Illinois	2012- 12-31	1551152	2013 (1888)
4	ABMD	Abiomed	reports	Health Care	Health Care Equipment	Danvers, Massachusetts	2018- 05-31	815094	1981

```
In [4]: def download stock(stock):
            try:
                print(stock)
                stock df = web.DataReader(stock,'yahoo', start time, end time)
                stock_df['Name'] = stock
                output_name = f"{data_dir}/{stock}.csv"
                stock df.to csv(output name)
            except:
                bad names.append(stock)
                print('bad: %s' % (stock))
        """ set the download window """
        start_time = dt.datetime(2021, 12, 1)
        end_time = dt.datetime(2022, 3, 1)
        bad_names =[] #to keep track of failed queries
        #set the maximum thread number
        max_workers = 20
        now = dt.datetime.now()
        workers = min(max_workers, len(sp500_tickers)) #in case a smaller number of stock
        with futures.ThreadPoolExecutor(workers) as executor:
            res = executor.map(download stock, sp500 tickers)
        """ Save failed queries to a text file to retry """
        if len(bad names) > 0:
            with open(f'{data dir}/failed queries.txt','w') as outfile:
                for name in bad names:
                    outfile.write(name+'\n')
        finish time = dt.datetime.now()
        duration = finish time - now
        minutes, seconds = divmod(duration.seconds, 60)
        print(f'The threaded script took {minutes} minutes and {seconds} seconds to run.
        print(f"{len(bad_names)} stocks failed: ", bad_names)
        MMMAOS
        ABT
        ABBV
        ABMD
        ACN
        ATVI
        ADM
        ADBE
        ADP
        AAP
        AES
        AFL
        Α
        AIG
        APD
        AKAM
        ALK
        ALB
        4 D E
```

```
In [5]: historical_stock_data_files = glob.glob(f"./{data_dir}/*.csv")
        reference_day = "2021-12-31"
        start day = "2022-01-03"
        midterm day = "2022-01-18"
        end_day = "2022-01-31"
        price_change_list = []
        tickers_to_ignore = []
        for files in historical stock data files:
            df = pd.read_csv(files, index_col=["Date"])
            ticker = os.path.splitext(os.path.basename(files))[0]
            try:
                price_close = df[reference_day: end_day][["Close"]]
                price_change = (price_close / price_close.loc[reference_day, "Close"] - 1
                price change = price change.iloc[1: ,:]
                price_change = price_change.rename(columns={"Close": ticker})
                price_change_list.append(price_change)
            except KeyError as e:
                # some stocks started trading after 2021-12-31
                print(ticker)
                tickers to ignore.append(ticker)
        df = pd.concat(price_change_list, axis=1)
        print(df.shape)
        df.head()
        CEG
        (20, 503)
```

Out[5]:

	Α	AAL	AAP	AAPL	ABBV	ABC	ABMD	ABT	
Date									
2022- 01-03	-1.985592	4.398669	-1.292315	2.500415	0.014774	-0.203179	1.982347	-1.207910	-1.77
2022- 01-04	-5.299087	5.902012	-1.179757	1.199521	-0.177245	-1.151327	0.673771	-3.531335	-2.47
2022- 01-05	-6.921383	4.008916	-1.429885	-1.492374	0.347121	-0.293475	-5.838461	-3.964759	-4.19
2022- 01-06	-6.595678	3.396440	0.737864	-3.136795	-0.125553	-1.836107	-6.328482	-3.978972	-8.81
2022- 01-07	-9.082368	7.349675	-0.746210	-3.041059	-0.384039	0.173072	-11.106165	-3.680551	-10.56

5 rows × 503 columns

```
In [6]: data_1 = df.loc[[end_day], :]
    display(data_1.head())
    data_2 = df.loc[[start_day, midterm_day, end_day], :]
    display(data_2.head())
    data_3 = df
    display(data_3.head())
```

	Α	AAL	AAP	AAPL	ABBV	ABC	ABMD	ABT	1
Date									
2022- 01-31	-12.734098	-8.296213	-3.489249	-1.571216	1.100447	2.49078	-17.623971	-9.435843	-14.707

1 rows × 503 columns

4									•
	Α	AAL	AAP	AAPL	ABBV	ABC	ABMD	ABT	
Date									
2022- 01-03	-1.985592	4.398669	-1.292315	2.500415	0.014774	-0.203179	1.982347	-1.207910	-1.
2022- 01-18	-12.013776	-0.334073	-0.821244	-4.375741	1.019206	0.692301	-18.595653	-10.068215	-15.
2022- 01-31	-12.734098	-8.296213	-3.489249	-1.571216	1.100447	2.490780	-17.623971	-9.435843	-14.

3 rows × 503 columns

4									•
	Α	AAL	AAP	AAPL	ABBV	ABC	ABMD	ABT	
Date									
2022- 01-03	-1.985592	4.398669	-1.292315	2.500415	0.014774	-0.203179	1.982347	-1.207910	-1.77
2022- 01-04	-5.299087	5.902012	-1.179757	1.199521	-0.177245	-1.151327	0.673771	-3.531335	-2.47
2022- 01-05	-6.921383	4.008916	-1.429885	-1.492374	0.347121	-0.293475	-5.838461	-3.964759	-4.19
2022- 01-06	-6.595678	3.396440	0.737864	-3.136795	-0.125553	-1.836107	-6.328482	-3.978972	-8.81
2022- 01-07	-9.082368	7.349675	-0.746210	-3.041059	-0.384039	0.173072	-11.106165	-3.680551	-10.56

5 rows × 503 columns

Exploratory Data Analysis(EDA) January is usually a month when the market tends to rise, but January 2022 was a difficult month. Here is a quick analysis of how stocks performed.

```
In [7]: first_table = first_table[~first_table["Symbol"].isin(tickers_to_ignore)]
    industry_list = list(first_table["GICS Sector"].unique())
    performance_by_industry = [data_1.loc[:, first_table[first_table["GICS Sector"]==
    plt.boxplot(performance_by_industry, labels=industry_list)
    plt.xticks(rotation=90)
    plt.xlabel("sector")
    plt.ylabel(f"performance(%) at {end_day}")
    plt.show()
```


Clustering

One-dimentional data We will first perform clustering using Type 1 data.

Before clustering, we first check the distribution of the data

```
In [8]: # Kernel density estimation
    x = np.linspace(-35, 35, 1000)
    kde = gaussian_kde(data_1.values)
    y = kde(x)
    plt.hist(data_1.loc[end_day, :], bins=20, density=True)
    plt.plot(x, y)
    plt.xlabel(f"performance(%) at {end_day}")
    plt.show()
```


You don't think clustering is particularly necessary because the data is nicely distributed around -5 and there is no cluster.

If you dare to do clustering, you can, for example, arbitrarily divide the data into clusters smaller than 0 and clusters greater than 0.

```
In [9]: plt.hist(data_1[data_1 < 0].loc[end_day, :], bins=10)
    plt.hist(data_1[data_1 >= 0].loc[end_day, :], bins=10)
    plt.xlabel(f"performance(%) at {end_day}")
    plt.show()
```


Here we will use KMeans clustering to divide the data into three clusters as a test. We could indeed divide them into three, but the boundaries of the clusters are not appropriate.

```
In [10]: n_clusters = 3
    kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(data_1.T.values)
    for i in range(n_clusters):
        plt.hist(data_1.loc[end_day, kmeans.labels_ == i], bins=8)
    plt.xlabel(f"performance(%) at {end_day}")
    plt.show()
```



```
In [11]: dummy_zero = np.random.normal(0,1,100)
    dummy_minus = np.random.normal(-8,1,100)
    dummy_plus = np.random.normal(8,1,100)
    dummy = np.concatenate([dummy_zero, dummy_minus, dummy_plus])
    plt.hist(dummy, bins=25)
    plt.xlabel("performance(%)")
    plt.show()
```



```
In [12]: n_clusters = 3
    kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(dummy.reshape(-1,1))
    for i in range(n_clusters):
        plt.hist(dummy[kmeans.labels_ == i], bins=8)
    plt.xlabel("performance(%)")
    plt.show()
```


Two-dimentional data What if the data is two-dimensional? The distribution of the data becomes a bit more complex.

Let's check the distribution of type 2 data.

Note that type 2 data has three dimensions. So we are going to slice the data and plot the twodimensional data.

We first plot performance on January 18 and January 31.

```
In [16]: def scatter_hist(x, y, ax, ax_histx, ax_histy):
    # no labels
    ax_histx.tick_params(axis="x", labelbottom=False)
    ax_histy.tick_params(axis="y", labelleft=False)
# the scatter plot:
    ax.scatter(x, y, alpha=0.5)
```

```
In [18]: # now determine nice limits by hand:
binwidth = 0.25
xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))
lim = (int(xymax/binwidth) + 1) * binwidth
```