Exercise 6 – Evaluation II

Introduction to Machine Learning

Hint: Useful libraries

R

```
# Consider the following libraries for this exercise sheet:
library(mlbench)
library(mlr3)
library(mlr3learners)
```

Python

```
# Consider the following libraries for this exercise sheet:

# general
import numpy as np
import pandas as pd

# sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import RepeatedStratifiedKFold
```

Exercise 1: Overfitting & underfitting

Learning goals

Discuss for given situations if they might lead to overfitting / underfitting

Assume a polynomial regression model with a continuous target variable y, a continuous, p-dimensional feature vector \mathbf{x} and polynomials of degree d, i.e.,

$$f\left(\mathbf{x}^{(i)}\right) = \sum_{j=1}^{p} \sum_{k=0}^{d} \theta_{j,k}(\mathbf{x}_{j}^{(i)})^{k}.$$

For each of the following situations, indicate whether we would generally expect the performance of a flexible polynomial learner (high d) to be better or worse than an inflexible one (low d). Justify your answer.

NB

We can only state tendencies here; performance strongly depends on the specific data situation.

- i. The sample size n is extremely large, and the number of features p is small.
- ii. The number of features p is extremely large, and the number of observations n is small.
- iii. The true relationship between the features and the response is highly non-linear.
- iv. The data could only be observed with a high level of noise.

Are overfitting and underfitting properties of a learner or of a fixed model? Explain your answer.
Should we aim to completely avoid both overfitting and underfitting?
Exercise 2: Resampling strategies
Learning goals
 Implement resampling procedures in R/Python Understand how the choice of resampling strategy affects the quality of the GE estimator
Why would we apply resampling rather than a single holdout split? Classify the german_credit data into solvent and insolvent debtors using logistic regression.
Compute the training error w.r.t. MCE.
Python Hint Read the already preprocessed file german_credit_for_py.csv
In order to evaluate your learner, compare the test MCE using
 three times ten-fold cross validation (3x10-CV) 10x3-CV 3x10-CV with stratification for the feature foreign_worker to ensure equal representation in all folds a single holdout split with 90% training data

Hint

ı	Ļ	ė	,
ı			١

You will need rsmp, resample and aggregate.

Python

You will need RepeatedKFold, RepeatedStratifiedKFold and train_test_split.
Discuss and compare your findings and compare them to the training error computed previously.

Would you consider LOO-CV to be a good alternative?