1. Uvod

- Financiranje zdravstva kroz: Obavezni doprinosi poslodavca-Oporezivanje-Privatna osiguranja-Out-ofpocket
- Tipovi sustava pružanja zdravstvene skrbi:
 - o Beverige kroz poreze, bolnice u vlasništvu države, niski troškovi po glavi
 - UK, Španj, Skandinavske zemlje, HK, NZ
 - Bismarck više osiguravatelja pokriva cijelu populaciji, bolnice su privatnici
 - Njemačka, Nizozemska, Japan, Francuska, Švicarska
 - Nacionalni jedinstveni zdravstveni osiguravatelj kroz odbitne na plaću, porezi i dodatna osiguranja, bolnice privatne, a plaćanja od javnog osiguravatelja
 - Značajna uloga u pregovaranju
 - Hrv, Taiwan, J koreja, I Europa
 - o Out of pocket nepravedno, u Africi
- Stupnjevi zaštite:
 - Primarna prva i posljednja točka u skrbi, 80% problema rješava
 - Holistički pristup- gleda fizičke siptome, psih značajke, i značajke emocionalnog i socijalnog okruženja
 - Sekundarna poliklinike, specijalistički odjeli i lječilišta
 - Treba uputnica iz primarne i vraća se u primarnu za terapiju
 - Tercijarna klinike, klinički centri i kliničko bolnički centri
 - Hospitalizacije i sofisticirana oprema
- Razine interoperabilnosti:
 - Tehnička razina, zakonski okvir, poslovni procesi i semantiak

2. Uvod u HL7

- HL7- vodeća inicijativa u interoperabinlosti ICT, 1987. u SAD
 - o Ima i u HR podružnica
- HL7 poruka
 - Definira konstrukciju u abstract message syntax table
 - o Ima 1 Trigger event zbog kojeg dolazi do komunikacije
 - 1 Message Type definira svrhu
 - 1 MT može bit vezan uz više TE, ali ne i suprotno

- Segment = logička grupa polja, ima ID od 3 znaka
 - Obavezni i opcionalni, ponavljajuci 1 ili više puta
 - Polja u segmentu opisana s segment attribute table
 - Polje : Populated, Not populated, Null
 - Obavezni segmenti: MSH- Msg Header, OBR-Obervation Request, OBX- Observation Result

Razine potvrde:

- Application Acknowledgement -potvrda na app razini, u Orginal mode i Enhanced
 - MSH 15 i 16 su null ili not present
- Accept Ack potvrda da je spremljena u bazu poruka, samo Enhanced

Z proširenja

- Z poruka samo treba imat MSH
- o Z segment- mogu u Z i HL7 poruke
 - Postojeće u HL7 poruke bolje ne
 - Lokalna il postojeća polja
 - Može se proširit postojeći segment, al ne promjenti što postoji
- o Z tipovi podataka u lokalnim poljima, postojeće tipove ne dirati

Procesiranje poruka:

- o Ignorira se što se ne očekuje, očekivani a kojih nema su prazna polja
- HL7v2- nema upute za konstrukciju poruka ni eksplicitnu metodologiju
 - o Zato v3

HL7v3

- Normizacija poruka na sintaktičkoj i semantičkoj razini
- o RIM Statički model koji obuhvaća zdravstvene informacije u području normizacije HL7 norme
 - Modeliran UML-om
 - 4 vrste objekta: radnja, sudjelovanje, entitet i uloga
 - Radnja opisuje slučaj
 - Sudjelovanje kontekst
 - Entitet- stvari i osobe koje sudjeluju
 - Uloga- uloga pojedinog entiteta
- Izvor informacijskih modela: DMIM, RMIM, HMD, MT
 - DMIM (Domain Message Information Model) –obuhvaća informacije od interesa za pojedini tehnički odbor, specijalnu interesnu grupu ili projekt
 - RMIM (Refined Message Information Model) –opisuje povezanu grupu poruka koristeći HL7 pravila modeliranja
 - HMD –tablična reprezentacija sekvence elemenata sadržanih u RMIM-u
- HL7 interakcij: Tigger event, Composite Message Type, Receiver Responsibility

3. HL7 CDA

- 6 karakteristika CDA:
 - Perzistentnost, upravljivost, mogućnost autentifikacije, očuvanje konteksta, cjelovitost, ljudka čitljivost
- Interoperabilnost na 2 razine: ljudska i računalna
- CDA
 - Kodiran s XML
 - Baziran na RIM i HL7v3 tipovima podataka
 - o Ne uvjetuje: transport, fizičku pohranu, kreiranje i upravljanje
 - Uvjetuje samo: format za razmjenu
 - Struktura:
 - Header- kontekst i ključni podaci izmjene dokumenta
 - Identifikacija i klasifikacija, jezik, povjerljivost, potpisi, primatelj, menadžer, upisnik, pacijent, autor...
 - Body XML hijerarhija, klinički podaci
 - U formi BLOB-a ili strukturirani markup
 - Građen od sectiona, svaki section ima:
 - Section.text- narativni blok
 - o 0-n Entry klinički element

- Entry
 - Za rač procesiranje, kodira stvari iz Section.text
 - Tipovi: Observacije, regije od interesa, administracija lijekova, nabava materijala, procedure, odnosi epizoda lječenje, Organiser klasa i generički akt
- Razine:
 - Level 1 slobodan CDA tekst s formatiranjem
 - Level 2 section level templates kodiranje sekcija
 - Level 3 entry level templates kodiranje ključnih riječi unutar sekcija
- RIM atributi:
 - Mandatory bold i *, mora se poslati
 - Required-*, mora se popuniti di je poznata
- Validacija:
 - Primatelj mora postaviti default di se nezna, procesirat cijeli Header,a Body kolko treba za prikaz
 - Primatelj ne mora poznavati sve Entries, validirat cijeli dokument po predlošku
- Razmjena preko HL7 poruke:

- CDA je MIME objekt kodiran s ED
- U v2- unutar OBX
- U v3 kako god
- C-CDA (Consolidated CDA)
 - Set predložaka
 - Razine:
 - Level 1 predložak na razini dokumenta
 - Level 2- predložak na razini sekcije
 - Level 3 preložak na razini podatka

4. HL7 FHIR

- Naglasak na implementacije, javno dostupni resursi, koristi postojeće web tehnologije
 - Specifikcija od 2 dijela:
 - o Definicija informacijskog modela
 - o Specifikacija za razmjenu info
- Resurs
 - Najmanja jedinica, definira ponašanje ili značenje
 - Tipovi: Foundation, Base, Clinical, Financial, Specialised
 - Foundation osnovni set, često korišteni
 - Base krajnji resurs u grafu, često ga se referencira, al on NE referencira druge, treba bit konzistentan
 - Clinical često korištene u kliničkoj praksi, referenciraju Base
 - Financial grade se iz Base i Clinical
 - Specialized odnose na rijeđe Use case
 - Definiran s: URL, tip, set elemenata i verzija
 - DomainResource osnovni tip koji većina nasljeđuje
 - Ima ljudski čitljiv dio, dodatne resurse i ekstenziej
 - Identifikacija
 - Logical Id- pristup na lokalnom poslužitelju, mijenja se s promjenom lokacije
 - Business Id ostaje fiksan, za prepoznat isti sadržaj s više poslužitelja
 - Canonical URL za referenciranje izvora znanja i profila podržanosti, zapravo URI
 - NIJE FHIR resurs: spol, krvni tlak, trudnoća, elektronički zdravstveni zapis
 - Referenciranje
 - Generičke reference

- Treba bar 1 od: reference, ld ili display
- Reference ima url kao apsolutni, relativni ili contained resource = Literal resouces
- Logične reference- kroz id
- Display za opis resursa
- Kanoničke reference
- Contained Resources
 - Resurs ne postoji izvan ovog koji ga sadrži nema id, niti se može prenosi sam
 - Npr kad postoji samo parcijalna informacija
 - Treba izbjegavati
- Podatkovni elementi u resursima:
 - Primitivni: time, date, decimal, id, integer, string
 - Kompleksi za generalnu upotrebu: ratio, period, money, age, distance, adress
 - Meda data: contractDetail, Contributor, DataRequirement, Expression
 - Podatkovni elementi za spec upotrebu: Reference, xhtml, Narrative, Extension
- 4 implementacijske paradigme:
 - o REST- razmjena info
 - o Documents slanje u trenutku i kontekstu
 - Messages slanje info o događaju
 - o Services ostale razmjene info
- Bundle kontejner za skup resursa
 - 3 resursa koji omogućavaju grupiranje:
 - List Resource
 - Group Resource grupa specifičnih ljudi, životinja
 - Composition Resource set info koje daju jedinstveni sadržaj i kontekst
- Ekstenzije
 - o kontrolirane, upravjive i objavljene u registru
 - 80/20 koncept 20% su ekstenzije
 - Svaki element može imat ekstenziju
 - Aplikacije mogu odbiti resurs ne zbog ekstenzije nego zbog specifičnog sadržaja ekstenzije
- Implementacije:
 - Argonaut Project, Da Vinci Project, Industry Pledge
- Protiv FHIRa:
 - 80/20 do neupravljivog broja ekstenzija
 - Nema query language

5. IHE profili

- IHE –Integrating the Healthcare Enterprise, 1998. U SAD
- IHE implementacijski okvir definira ograničenja i odabir konfiguracijskih opcija
- Norme su: fundamentalne, široke u impl i interpretaciji a uske u primjeni, komplekse i mnogobrojne, fokusirane na implementacije
- Implementacijska strategija
 - Pragmatičnost norme za brzi razvoj
 - Fleksibilnost sloboda u izradi arhitekture
 - o Primjenjivost podrška novim UC-ovima
- Ključne komponente:
 - o Actor apstrakcija funkcije, jasno definirana uloga
 - Skup uloga i odgovornosti koje snosi pojedini sustav, mapira se na aplikacije
 - Transactions sudionici su uključeni u jasno definirane transakcije
 - Set interakcija ili poruka između 2 sudionika
 - Definira suradnju da se ispuni zadatak
 - o Integracijski profil skup izmjena info u stvarnom svijetu
 - Definirani aktori i transakcije
- Tehnički okvir = implementacijski okvir za integracijske profile
 - Najčešće obuhvaća više integracijskih profila
 - Connectathon 7 dana testiranja, dokaz izmjene info s drugim proizvodom
 - Product registry
- IHE ITI profili:
 - o Consistent Time Network Time protokol , sinkronizacija satova i vremenskih oznaka na mreži
 - o ATNA sigurnosne mjere
 - Autentikacija i identifikacija hosta, sigurni čvorovi za kontrolu pristupa i audit log
 - Patient Identifier Cross Referencing PIX referenciranja ID pacijenta između bolnica
 - 2 domene:
 - Patient identifier domain skup sustava s istom politikom id
 - Patient identifier cross domain
 - Patient Demographics Query PDQ dohvat demografskih info
 - Baziranih na: parc ili cijelom imenu i id-ju pacijenta, datumu rođenja, dobi, id-ju kreveta
 - XDS- Cross document sharing profile
 - Entiteti:

- Document repository odgovoran za pohranu i upite za dohvat
- Document Registry pohranu info o dokumentima da se lako nađu
- Document Consumer kroz njega se pristupa dokumentima
- Affinity domena grupa app i organizacija koje dijele komunikacijsku infrastrukturu
 - Očekuje se da postoje jasne definicije i poslovna pravila, al se ne definiraju
- XDS neutralan po sadržaju, može bilo kakvu kliničku info slat
- Actors:
 - Document Source stvara dokumente i šalje u repozitorij, osigurava metopodatke za Registry
 - Doc Consumer šalje upit registru i prima dokument od Repositorija
 - Doc Registry održava metapodatke od dokumentima, odgovara na upite consumera
 - Doc Repository odgovoran za perzistenciju dokumenata i registraciju u Registry

6. IHE Profili 2

- EHR-CR apstrakcija informacijskog sustava, ne uvjetuje kako funkcionira interno
 - Document Souce ili Consumer
- XDS
 - > XDS Document najmanja jedinica koja se može poslat Repo i registrirati
 - Mogućnost upravljanja, autentikacije, cijelovitost i prezistencija
 - Submission request način na koji se razmjenjuju dokumenti
 - Treba sadržavati: metapodatke za entries, listu dokumenta i kazala koji se šalju, mapa koje se kreiraju, mapa u koje se pohranjuju dokumenti
 - Dokumenti se šalju kao octet streams
 - Submission Set se kreira za svaki request veže se za jedinstvenu transakciju Source-Repo ili Repo-Registry
 - XDS mape grupira dokumente za jedinstvenog pacijenta, dokumenti mogu iz više Souceova, mape su permanente u Registriju i imaju globalni ID, mape nemogu bit ugnježdene, isti dokument može u više mapa
 - Document Entry metapodaci za dokument
 - Stable ili On-Demand
 - Primarni atributi: patient Id, Service Time, Doc Creation Time, Doc Class, Healthcare Facility, ...
 - IHE Transakcije
 - Definirane kroz: okvir i UC, dionike, norme koje se koriste, poruke i protokol i sigurnosni aspekti

- BPPC Basic Patient Privacy Consent
 - Izražava politike pristupa pojedinim dokumentima svaka politika ima OID
 - o 2 dionika:
 - Content creator- šalje sadržaj i kreira BPP dokument s kojim potvrđuje neku politiku
 - BPP se tretira kao medical document
 - Content Consumer prima sadržaj i može pregledati dokument vezan uz politiku
 - Unutar XDS
 - Consumer dohvaća Patient Privacy Policy Acknowledgement i mapira doc s politikama
 - confidatialityCode koja se politika primjenjuje
- XCA Cross Comunity Access
 - Gateway je sučelje između zajendica
 - o 2 Transakcije:
 - Query šalje upit s ID pacijenta, dobiva set identifikatora za dohvat dokumenta
 - Retreive dohvaća dokument iz druge zajednice
- XCPD Cross Community Patient Discovery
 - Pronalaženje zajednica koje imaju podatke o pacijentima od interesa pa razmjenu identifikatora od tih pacijenata
 - XCDR Cross Community Document Reliable Interchange
 - Oslanja se na XDS i XDR
- epSOS projekt
 - Dizajn izrada i evaluacija arhitekture za razmjenu medicinskih podataka između članica EU
 - Svaka članica ima neku svoju infrastukturu koja se ne mijenja
 - National Contract Point je gateway između država
- MHD Mobile Access to Health
 - 4 transkacije
 - slanje seta dokumenata i metapodataka
 - Pronalaženje seta metapodataka
 - Pronalaženje documentEntries
 - Dohvat kopije dokumenta
- IHE Devices domena
 - PCD Patient Care Device certificirani medicinski uređaj komunicira s drugim med uređajem ili informacijskim sustavom
 - PCH Personal Connected Health integracija osobnih monitoring uređaja i kliničkih sustava

7. openEHR

- Sveti gral zdravstva elektronički zdravstveni zapis za svakog pojedinca bez obzira na tehnologiju, lokaciju i aplikaciju
- openEHR
 - o radi na tome da pretvori fizičke zapise u elektroničke i osiguraju interoperabilnost
 - Two level modelling
 - Archetypes maksimalni data set
 - Templates
 - Struktura EHR:
 - EHR-access tko može pristupiti
 - EHR_status status i control info, može imat subjekta(pacijenta)
 - Directory- hijerarhija foldera za organizaciju Kompozicija
 - Kompozicija najmanja jedinica koja se može primiti
 - Sadrži: tko, što, gdje i kada i kontekst
 - Može imat koje su Sekcije dopuštene
 - Updateovi se spremaju kao nove verzije
 - Sekcija
 - Standardizira organizaciju info unutar Kompozicije
 - Entry clinical statement
 - 2 vrste Care Entry i Admin Entry
 - Značajke:
 - Protokol info o metodi observacije, info koje nisu kritične za interpretaciju
 - History zapis tajminga observacija
 - State info bitne za dobru interpretaciju
 - Pathway definicija workflowa i koraci
 - Vrste:
 - Observation observacija, mjerenje ili doživljaj pacijenta
 - Kad treba znati vrijeme i stanje
 - Evaluacija mišljenje, cilj, interpretirani pronalazak koji proizlazi iz observiranih ili mjerenih info
 - o Instrukcije intervencije nakon evaluacije
 - Activity ako su u budućnosit
 - Actions ako se zapisuje što se več desilo
 - o Actions -poredani slijed aktivnosti

- Klasteri
 - Compound entries
 - Dobri za re-use
 - o Omogućuju ugnježdavanje granularnih detalja
- 2- level moddeling:
 - Reference model- stabilan model objekata iz kojeg se radi software
 - Archetypes i templates definicije na razini domene
- Archetypes specifikacija za klinički koncept, maksimiziraju interoperabilnost
 - Deployaju se u runtimeu preko templates
- Templates specificira drvo archetypeova

Figure 30. How Archetypes apply to Data

- Archetypes Query Language AQL
 - Nezavisan od aplikacija, programskih jezika, sistemskih okruženja i modela spremanja
 - Sinteza SQL i XPath

```
SELECT o/[at0000]/data[at0001]/events[at0002]/data[at0003]/item[0004]/value
FROM EHR [uid=@ehrUid]
CONTAINS COMPOSITION c [openEHR-EHR-COMPOSITION.report.v1]
CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.body_mass_index.v1]
WHERE o/[at0000]/data[at0001]/events[at0002]/data[at0003]/item[0004]/value > 30
```

- Verzioniranje
 - Promjene preko change seta zvanih Contributions
- Identifikacija:
 - U 1 sistemu nesmije bit 2 EHR za isti subjekt
 - U distrubuiranom okruženju, pacijent može imat više EHR u različitim sustavima
 - U integiranom okruženju može EHR na više sustava ali s istim id
- Terminologija svaki archetype ima vlastitu, da se definira značenje elemenata
 - Može se i povezati s vanjskim i mapirat s pojmovima
- Sigurnost
 - Sadržaj je odvojen od identificiranja demografskih info
 - Sve odluke o pristupu po politici u EHR_ACCESS