Plan:

- 1. Work through an ML example
- 2. Introduce overfitting

Machine Learning: Example

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

Can we build a model that distinguishes a house in NY from a house in San Francisco?

First, some intuition

Let's say you had to determine whether a home is in **San Francisco** or in **New York**. In machine learning terms, categorizing data points is a **classification** task.

San Fran is hilly ...so elevation may be a helpful feature.

With the data here, homes > ~73m should be classified as San Fran homes

Adding nuance

Elevation isn't a perfect feature for classification, so we can look at its relationship to other features, like *price per square* foot

Drawing boundaries

Boundaries can be drawn so that if a house falls in the green box, it's classified as a San Fran home. Blue box, New York. Statistical learning figures out how to best draw these boxes.

Our training set will use 7 different **features**. At the right we see the **scatterplot matrix** of the relationship between these features.

Patterns are clear, but boundaries for delineation are not obvious.

Our training set will u **features**. At the righ scatterplot matrix relationship between

Patterns are clear, bu delineation are not ob

And now, machine learning

Determining the best boundary is where machine learning comes in.

Decision trees are one example of machine learning method for classification tasks.

Finding better boundaries

We guessed ~73m before. Let's improve on that guess...

In machine learning, the splits are called **forks** and they split the data into **branches** based on some value.

The value that splits the branches is the **split point.** Homes to the left get categorized differently than those on the right.

Your first fork

A decision tree uses if-then statements to define patterns in the data.

Tradeoffs

Splitting at ~73m incorrectly classifies some San Francisco homes as New York homes.

If you split to capture *every* home in San Fran, you'll also get a bunch of New York homes (**false positives**)

The best split

The best split point aims for branches that are as homogenous (pure) as possible

Recursion

Additional split points are determined through repetition (**recursion**)

elevation

Growing a tree

Additional forks add new information to improve **prediction accuracy**.

Accuracy: 82%

Growing a tree

Additional forks add new information to improve **prediction accuracy**.

Accuracy: 86%

Growing a tree

Additional forks add new information to improve **prediction accuracy**.

Accuracy: 96%

It's possible to add branches until your model is **100% accurate**.

Accuracy: 100%

Making predictions

The decision tree **model** can then predict which homes are in which city.

Here, we're using the **training data**.

Because our tree was trained on this data and we grew the tree to 100% accuracy, each house is perfectly sorted

Reality check

But...how does this tree on data that the model hasn't seen before?

The **test set** then makes it way through the decision tree.

Ideally the tree should perform similarly on both known and unknown data

These errors are due to **overfitting**. Fitting every single detail in the training data led to a tree that modeled unimportant features, that did not allow for similar accuracy in new data.

Recap

- 1. Machine learning identifies patterns using **statistical learning** and computers by unearthing **boundaries** in data sets. You can use it to make predictions.
- 2. One method for making predictions is called a decision trees, which uses a series of if-then statements to identify boundaries and define patterns in the data.
- 3. **Overfitting** happens when some boundaries are based on on *distinctions that* don't make a difference. You can see if a model overfits by having test data flow through the model.