

Data Structure and Algorithm

Training Assignments

Document Code	25e-BM/HR/HDCV/FSOFT
Version	1.1
Effective Date	20/02/2021

^ -	4	ents
		Inte
		-

Assignment 2: Linked List	3
3	
Objectives:	3
	•
Assignment Descriptions:	

CODE:

TYPE: N/A

LOC: N/A

DURATION: 180 MINUTES

Issue/Revision: x/1

Assignment 2: Linked List

Objectives:

- » Understand the basics of LinkedList?
- » Able to use Singly LinkedList to solve basic algorithms.

Assignment Descriptions:

Problem 1: Suppose that a linked list is made up of nodes of integer

Singly Linked List

that you are given a pointer "list" of type link, which points to the first node of the list; and that the last node has NULL as its link.

- a) Write a code fragment to insert a new node at the given position.
- b) Write a code fragment to delete an existed node at the given position.
- c) Write an iterative function count() that takes a link as input, and prints out the number of elements in the linked list.
- d) Write an iterative function max() that takes a link as input, and returns the value of the maximum key in the linked list.

Assume all keys are positive, and return -1 if the list is empty.

-- THE END --