New Math Spec Name (interim)	Candidate Root Name (capitilization TBD)	Operation
MxM	*mxm*	$C \bigoplus = \neg A^{T} \bigoplus . \bigotimes \neg B^{T}$
MxV	*mxv*	$c \bigoplus = \neg A^{T} \bigoplus . \otimes \neg b$
VxM	*vxm*	$c \bigoplus = \neg a^{T} \bigoplus . \bigotimes \neg B^{T}$
Extract	*extract*	$C \bigoplus = \neg A^{T}(i,j)$
Assign	*assign*	$C(i,j) \bigoplus = \neg A^{T}$
EwiseAdd	*ewiseadd*	$C \bigoplus = \neg A^T \bigoplus \neg B^T$
EwiseMult	*ewisemult*	$C \bigoplus = \neg A^T \bigotimes \neg B^T$
Apply	*apply*	$\mathbf{C} \bigoplus = \mathbf{f}(\neg \mathbf{A}^T)$
Reduce	*reduce*	$c \bigoplus = \bigoplus_i A(i,:)$
		$c \bigoplus = \bigoplus_{j} A(:,j)$
BuildMatrix	*buildmatrix*	$C \bigoplus = S^{N \times M}(i,j,v,\bigoplus)$
ExtractTuples	*extracttuples*	(i,j,v) = A
Transpose	*transpose*	$\mathbf{C} \bigoplus = \neg \mathbf{A}^{T}$
Kron (proposal)	*kron*	$C \bigoplus = \neg A^{T} \otimes \neg B^{T}$
vector inner product	*v'.'v*	s ⊕= ¬ v' .'w
vector outer product	*vxv*	C⊕= ¬v⊗w
replicate	*roll*	$\mathbf{C} \oplus = (\neg \mathbf{v} \rho \mathbf{k})^{T}$
	ewiseadd	z ⊕= ¬v ⊕ ¬w
	ewisemult	z ⊕= ¬v ⊗ ¬w
	apply	z ⊕= f(¬ v)
	reduce	$z \bigoplus = \bigoplus_i (\neg v(i))$
	buildvector	$z \bigoplus = S^{N}(i,v)$
	extracttuples	(i,v) = v
Explicit conversion between pure vetors and single	*assign*	z=A ^T
row/column matrix	*assign*	$C=v^T$

all pure vectors are column vectors. In above, **c** is column vector transpose of pure vector gives a 1xn matrix

Perhaps we shouls use a different symbol for circle-plus on the rightr of =. (it is a different operator than the circle-plus in black.)

VXM: a column deficient matrix (vector of 1 column) will be replicated column wise.

Outputs -> 1 2 3 4 5 6 Inputs -> 1 2 3 4 5 6 7 8 9 10 \oplus = $\neg A ^{\mathsf{T}} \oplus \otimes \neg B ^{\mathsf{T}}$ C \oplus = $\neg A^{\mathsf{T}} \oplus \otimes \neg b$ С \oplus = ¬ a $\oplus \otimes$ ¬ B С \bigoplus = ¬ A ^T i j C \bigoplus = $\neg A^T i j$ C \oplus = ¬ A ^T \oplus ¬ B ^T C \oplus = $\neg A ^{\mathsf{T}} \otimes \neg B ^{\mathsf{T}}$ C \bigoplus = f ¬ A ^T C **⊕**= **A ⊕** С **⊕**= **A ⊕** С \oplus = S NM i j v \oplus C i j v Α C ⊕= ¬ A \bigoplus = $\neg A ^{\mathsf{T}} \otimes \neg B ^{\mathsf{T}}$ С \oplus = $\neg v \oplus \otimes w$ S C ⊕= ¬ v ⊗ W C ⊕= ¬ **v** k ⊕= ¬ v ⊕ Z Z ⊕= ¬ v ⊗ W Z ⊕= f ¬ v ⊕= ¬ v ⊕ Z **⊕**= **N** i **v** Z i v = V \mathbf{A}^{T} = Z

C

v ^T