EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE

William B. Johnson and Joram Lindenstrauss 2

INTRODUCTION

In this note we consider the following extension problem for Lipschitz functions: Given a metric space X and $n = 2, 3, 4, \ldots$, estimate the smallest constant L = L(X, n) so that every mapping f from every n-element subset of X into ℓ_2 extends to a mapping $\overset{\sim}{\mathrm{f}}$ from X into ℓ_2 with

$$\|\tilde{\mathbf{f}}\|_{\ell ip} \leq L \|\mathbf{f}\|_{\ell ip}$$
.

(Here $\|\mathbf{g}\|_{\ell$ ip is the Lipschitz constant of the function g.) A classical result of Kirszbraun's [14, p. 48] states that $L(\ell_2, n) = 1$ for all n, but it is easy to see that $L(X, n) \rightarrow \infty$ as $n \rightarrow \infty$ for many metric spaces X.

Marcus and Pisier [10] initiated the study of L(X, n) for $X = L_n$. (For brevity, we will use hereafter the notation L(p, n) for $L(L_n(0,1), n)$.) They prove that for each 1 there is a constant <math>C(p) so that for n = 2, 3, 4, , , ,

$$L(p, n) \le C(p) (Log n)^{1/p} - 1/2$$

The main result of this note is a verification of their conjecture that for some constant C and all n = 2, 3, 4, , , , $L(X,\ n) \, \leq \, C(Log\ n) \, \ \frac{1}{2} \label{eq:L(X,n)}$

$$L(X, n) \le C(Log n)^{1/2}$$

for all metric spaces X. While our proof is completely different from that of Marcus and Pisier, there is a common theme: Probabilistic techniques developed for linear theory are combined with Kirszbraun's theorem to yield extension theorems.

The main tool for proving Theorem 1 is a simply stated elementary geometric lemma, which we now describe: Given n points in Euclidean space, what

Supported in part by NSF MCS-7903042.

²Supported in part by NSF MCS-8102714.

is the smallest k = k(n) so that these points can be moved into k-dimensional Euclidean space via a transformation which expands or contracts all pairwise distances by a factor of at most $1 + \epsilon$? The answer, that $k \le C(\epsilon)$ Log n, is a simple consequence of the isoperimetric inequality for the n-sphere in the form studied in [2].

It seems likely that the Marcus-Pisier result and Theorem 1 give the right order of growth for $L(p,\,n)$. While we cannot verify this, in Theorem 3 we get the estimate

$$L(p, n) \ge \delta \left(\frac{\text{Log } n}{\text{Log Log } n}\right)^{1/p - 1/2} \quad (1 \le p < 2)$$

for some absolute constant $\delta > 0$. (Throughout this paper we use the convention that Log x denotes the maximum of 1 and the natural logarithm of x.) This of course gives a lower estimate of

$$\delta \left(\frac{\text{Log n}}{\text{Log Log n}} \right)^{1/2}$$

for L(∞ , n). That our approach cannot give a lower bound of $\delta(\log n)^{1/p} - 1/2$ for L(p, n) is shown by Theorem 2, which is an extension theorem for mappings into ℓ_2 whose domains are ϵ -separated.

The minimal notation we use is introduced as needed. Here we note only that $B_Y(y,\,\epsilon)$ (respectively, $b_Y(y,\,\epsilon)$) is the closed (respectively, open) ball in Y about y of radius ϵ . If y=0, we use $B_Y(\epsilon)$ and $b_Y(\epsilon)$, and we drop the subscript Y when there is no ambiguity. S(Y) is the unit sphere of the normed space Y. For isomorphic normed spaces X and Y, we let

$$d(X,Y) = \inf \| \|T\| \| \|T^{-1}\|,$$

where the inf is over all invertible linear operators from $\, X \,$ onto $\, Y \,$. Given a bounded Banach space valued function $\, f \,$ on a set $\, K \,$, we set

$$\|f\|_{\infty} = \sup_{\mathbf{x} \in K} \|f(\mathbf{x})\|.$$

1. THE EXTENSION THEOREMS

We begin with the geometrical lemma mentioned in the introduction.

LEMMA 1. For each $1 > \tau > 0$ there is a constant $K = K(\tau) > 0$ so that if $A \subset \ell_2^n$, A = n for some $n = 2, 3, \ldots$, then there is a mapping f from A onto a subset of ℓ_2^k ($k \in [K \log n]$) which satisfies

$$\|\tilde{f}\|_{\ell_{\text{ip}}} \|\tilde{f}^{-1}\|_{\ell_{\text{ip}}} \le \frac{1+\tau}{1-\tau}$$
.

PROOF. The proof will show that if one chooses at random a rank $\,k\,$ orthogonal projection on $\,\ell_2^n,\,$ then, with positive probability (which can be made arbitrarily close to one by adjusting $\,k\,$), the projection restricted to $\,A\,$ will satisfy the condition on $\,\hat{f}.\,$ To make this precise, we let $\,Q\,$ be the projection onto the first $\,k\,$ coordinates of $\,\ell_2^n\,$ and let $\,\sigma\,$ be normalized Haar measure on $\,0(n)\,$, the orthogonal group on $\,\ell_2^n\,$. Then the random variable

$$f: (0(n), \sigma) \rightarrow L(\ell_2^n)$$

defined by

$$f(u) = U * QU$$

determines the notion of "random rank k projection." The applications of Levy's inequality in the first few self-contained pages of [2] make it easy to check that f(u) has the desired property. For the convenience of the reader, we follow the notation of [2].

Let $|\cdot|\cdot|\cdot|$ denote the usual Euclidean norm on \mathbb{R}^n and for $1\leq k\leq n$ and $x\in\mathbb{R}^n$ set

$$r(x) = r_k(x) = \sqrt{n} \begin{pmatrix} k & 1/2 \\ \sum x(i)^2 \end{pmatrix}$$

which is equal to

$$\sqrt{n}$$
 |||Qx|||

for our eventual choice of k = [K log n]. Thus $r(\cdot)$ is a semi-norm on ℓ_2^n which satisfies

$$r(x) \le \sqrt{n} ||x||| (x \in \ell_2^n).$$

(In [2], $r(\cdot)$ is assumed to be a norm, but inasmuch as the left estimate $a|\cdot||x||\cdot| \le r(x)$ in formula (2.5) of [2] is not needed in the present situation, it is okay that $r(\cdot)$ is only a semi-norm.)

Setting

$$B = \left\{ \frac{x - y}{|||x - y|||} : x, y \in A; x \neq y \right\} \subset S^{n-1},$$

we want to select $U \in O(n)$ so that for some constant M,

$$M(1 - \tau) \le r(Ux) \le M(1 + \tau) \quad (x \in B)$$
.

Let M_r be the median of $r(\cdot)$ on S^{n-1} , so that

$$\mu_{n-1}[x \in S^{n-1} : r(x) \ge M_r] \ge 1/2$$

and

$$\mu_{n-1}[x \in S^{n-1} : r(x) \le M_r] \le 1/2$$

where μ_{n-1} is normalized rotationally invariant measure on s^{n-1} . We have from page 58 of [2] that for each $y \in s^{n-1}$ and $\epsilon > 0$,

$$\sigma[\text{U} \in \text{O(n)} : \text{M}_{r} - \sqrt{n} \epsilon \leq r(\text{Uy}) \leq \text{M}_{r} + \sqrt{n} \epsilon] \geq 1 - 4 \exp\left(\frac{-n\epsilon^{2}}{2}\right).$$

Hence

(1.1)
$$\sigma[U \in O(n) : M_r - \sqrt{n} \epsilon \le r(Uy)) \le M_r + \sqrt{n} \epsilon \text{ for all } y \in B] \ge 2n(n+1) \exp \left(\frac{-n\epsilon^2}{2}\right).$$

By Lemma 1.7 of [2], there is a constant

$$C \le 4 \sum_{m=1}^{\infty} (m+1) e^{-m^2/2}$$

so that

(1.2)
$$|\int_{S_{n-1}} r(x) d\mu_{n-1}(x) - M_r| < C .$$

We now repeat a known argument for estimating \int r(x) d μ_{n-1} (x) which uses only Khintchine's inequality.

For $1 \le k \le n$ we have:

Setting

$$\alpha_n = \int_{S^{n-1}} |< x, \delta_1 > | d\mu_{n-1}(x)$$

we have from Khintchine's inequality that for each $1 \le k \le n$,

$$\sqrt{nk} \alpha_n \le \int_{S^{n-1}} r_k(x) d\mu_{n-1}(x) \le \sqrt{2nk} \alpha_n$$
.

(We plugged in the exact constant of $\sqrt{2}$ in Khintchine's inequality calculated in [5] and [13], but of course any constant would serve as well.) Since obviously $r_n(x) = \sqrt{n}$, we conclude that for $1 \le k \le n$

(1.3)
$$\sqrt{k/} \le \int_{S^{n-1}} r_k(x) d\mu_{n-1}(x) \le \sqrt{k}$$
.

Specializing now to the case $k = [K \log n]$, we have from (1.2) and (1.3) that

$$\sqrt{k/3} \leq M_r$$

at least for K log n sufficiently large. Thus if we define

$$\varepsilon = \tau \sqrt{k/3n}$$

we get from (1.1) that

which is positive if, say,

$$K \ge (10/\tau)^2.$$

It is easily seen that the estimate K log n in Lemma 1 cannot be improved. Indeed, in a ball of radius 2 in ℓ_2^k there are at most 4^k vectors $\{x_i\}$ so that $\|x_i-x_j\|\geq 1$ for every $i\neq j$ (see the proof of Lemma 3 below). Hence for τ sufficiently small there is no map F which maps an orthonormal set with more than 4^k vectors into a k-dimensional subspace of ℓ_2 with

$$\|\mathbf{F}\|_{\text{lip}} \quad \|\mathbf{F}^{-1}\|_{\text{lip}} \leq \frac{1 \, + \, \tau}{1 \, - \, \tau} \ .$$

We can now verify the conjecture of Marcus and Pisier [10].

THEOREM 1. Sup $(\log n)^{-1/2}L(\infty, n) < \infty$. In other words: there is a n = 2, 3, ... constant K so that for all metric spaces X and all finite subsets M of X (card M = n, say) every function f from M into ℓ_2 has a Lipschitz extension f: $X \rightarrow \ell_2$ which satisfies

$$\|\mathbf{f}\|_{\ell ip} \leq K \sqrt{\log n} \|\mathbf{f}\|_{\ell ip}.$$

PROOF. Given X, M \subset X with card M = n, and f : M \rightarrow ℓ_2 , set A = f [M]. We apply Lemma 1 with τ = 1/2 to get a one-to-one function g^{-1} from A onto a subset $g^{-1}[A]$ of ℓ_2^k (where $k \leq K \log n$) which satisfies

$$\|\mathbf{g}^{-1}\|_{\ell \mathbf{i} \mathbf{p}} \le 1; \quad \|\mathbf{g}\|_{\ell \mathbf{i} \mathbf{p}} \le 3$$
.

By Kirszbraun's theorem, we can extend g to a function $\stackrel{\sim}{g}:\ell_2^k \to \ell_2$ in such a way that

$$\|\ddot{g}\|_{\ell ip} \leq 3$$
.

Let I: $\ell_2^k \to \ell_\infty^k$ denote the formal identity map, so that

$$\|\mathbf{I}\| = 1$$
, $\|\mathbf{I}^{-1}\| = \sqrt{k}$.

Then

$$h = Ig^{-1}f$$
, $h : M \rightarrow \ell_{\infty}^{k}$

has Lipschitz norm at most $\|f\|_{\ell ip}$, so by the non-linear Hahn-Banach theorem (see, e.g., p. 48 of [14]), h can be extended to a mapping

$$h: X \to \ell_m^k$$

which satisfies

$$\|\hat{h}\|_{\ell_{\mathbf{i}p}} \leq \|f\|_{\ell_{\mathbf{i}p}}$$
.

Then

$$\tilde{f} = \tilde{g} I^{-1} \tilde{h}; \quad \tilde{f} : X \rightarrow \ell_2$$

is an extension of f and satisfies

$$\|\mathbf{\hat{f}}\|_{\ell_{\mathbf{i}\mathbf{p}}} \leq 3 \sqrt{\mathbf{k}} \|\mathbf{f}\|_{\ell_{\mathbf{i}\mathbf{p}}} \leq 3K \sqrt{\log n} \|\mathbf{f}\|_{\ell_{\mathbf{i}\mathbf{p}}}.$$

Next we outline our approach to the problem of obtaining a lower bound for $L(^{\infty},n)$. Take for f the inclusion mapping from an ϵ -net for S^{N-1} into ℓ_2^N , and consider ℓ_2^N isometrically embedded into L_{∞} . A Lipschitz extension of f to a mapping $\tilde{f}: L_{\infty} \to \ell_2$ should act like the identity ℓ_2^N , so the techniques of [8] should yield a linear projection from L_{∞} onto ℓ_2^N whose norm is of order $\|f\|_{\ell_1p}$. Since ℓ_2^N is complemented in L_{∞} only of order \sqrt{N} and there are ϵ -nets for S^{N-1} of cardinality $n \equiv [4/\epsilon]^N$, we should get that

$$L(^{\infty},n) \geq \sqrt{N} \geq \delta \left(\frac{Log \ n}{-Log \ \varepsilon}\right)^{1/2}$$
.

In Theorem 2 we make this approach work when ϵ is of order N^{-2} , so we get

$$L(\infty,n) \ge \delta! \left(\frac{\text{Log } n}{\text{Log Log } n}\right)^{1/2}$$
.

That the difficulties we incur with the outlined approach for larger values of ϵ are not purely technical is the gist of the following extension result.

(*)THEOREM 2. Suppose that X is a metric space, $A \subseteq X$, $f: A \to \ell_2$ is Lipschitz and $d(x,y) \ge \varepsilon > 0$ for all $x \ne y \in A$. Then there is an extension $\widetilde{f}: X \to \ell_2$ of f so that

$$\|f\|_{\ell ip} \le \frac{6D}{\varepsilon} \|f\|_{\ell ip}$$
,

where D is the diameter of A.

PROOF. We can assume by translating f that there is a point $0 \in A$ so that f(0) = 0. Set $B = A \sim \{0\}$ and define

F:
$$A \to \ell_1^B$$
 by

F(b) =
$$\begin{cases} \delta_b, b \neq 0 \\ 0, b = 0 \end{cases}$$

G: $\ell_1^B \to \ell_2$

Define

by

$$G(\sum_{b \in B} \alpha_b \delta_b) = \sum_{b \in B} \alpha_b f (b) .$$

^(*) See the appendix for a generalization of Theorem 2 proved by Yoav Benyamini.

Then

$$G F = f$$
, G is linear with

$$\|\,\mathsf{G}\| \, \leq \, \left\|\,\mathsf{f}\,\right\|_{\,\ell\,\mathsf{ip}}, \quad \text{and} \quad \left\|\,\mathsf{F}\,\right\|_{\,\ell\,\mathsf{ip}} \, \leq \, 2/\epsilon\,.$$

A weakened form of Grothendieck's inequality (see section 2.6 in [9]) yields that G (as any bounded linear operator from an L_1 space into a Hilbert space) factors through an $\ell_\infty(N)$ space:

$$G = H J, ||J|| = 1, ||H|| \le 3 ||G||,$$

$$J : \ell_1^B \to \ell_{\infty}(\mathcal{H}), H : \ell_{\infty}(\mathcal{H}) \to \ell_2.$$

By the non-linear Hahn-Banach Theorem the mapping JF has an extension

E :
$$X \to \ell_{\infty}(X)$$
 which satisfies

$$\|\mathbf{E}\|_{\ell_{ip}} \leq \|\mathbf{J} \mathbf{F}\|_{\ell_{ip}} \leq 2/\epsilon$$
.

Then
$$f \equiv H \to extends$$
 f and $||f|| \le \frac{6D}{\varepsilon} ||f||_{\ell \downarrow p}$, as desired.

For the proof of Theorem 3, we need three well known facts which we state as lemmas.

LEMMA 2. Suppose that Y, X are normed spaces and f: $S(Y) \rightarrow X$ is Lipschitz with f (0) = 0. Then the positively homogeneous extension of f, defined for $y \in Y$ by

$$\vec{f}$$
 (y) = $\|y\| f(\frac{y}{\|y\|})$, (y \neq 0); \vec{f} (0) = 0

is Lipschitz and

$$\|\hat{\mathbf{f}}\|_{\ell_{\mathbf{i}\mathbf{p}}} \le 2 \|\mathbf{f}\|_{\ell_{\mathbf{i}\mathbf{p}}} + \|\mathbf{f}\|_{\infty}.$$

PROOF. Given y_1 , $y_2 \in Y$ with $0 < ||y_1|| \le ||y_2||$,

$$\leq \| \, \mathbf{f} \|_{\infty} \, \| \, \mathbf{y}_{1} \, - \, \mathbf{y}_{2} \| \, + \, \| \, \mathbf{f} \|_{\ell \, \mathbf{1P}} \quad \left[\left(\frac{\| \, \mathbf{y}_{2} \|}{\| \, \mathbf{y}_{1} \|} \, - \, \mathbf{1} \right) \, \| \, \mathbf{y}_{1} \| \, + \, \| \, \mathbf{y}_{1} \, - \, \mathbf{y}_{2} \| \right]$$

$$\leq \left(\left\| f \right\|_{\infty} + 2 \left\| f \right\|_{\ell \perp p} \right) \quad \left\| y_1 - y_2 \right\|.$$

LEMMA 3. If Y is an n-dimensional Banach space and $0 < \epsilon$, then S(Y) admits an ϵ -net of cardinality at most $(1 + 4/\epsilon)^n$.

PROOF. Let M be a subset of S(Y) maximal with respect to $\|x-y\| \ge \varepsilon$ for all $x \ne y \in M$.

Then the sets

$$b(y, \varepsilon/2) \cap S(Y)$$
, $(y \in M)$

are pairwise disjoint hence so are the sets

$$b(y, \varepsilon/4), (y \in M).$$

Since these last sets are all contained in $b(1 + \epsilon/4)$, we have that

card M • vol
$$b(\epsilon/4) \le \text{vol } b(1 + \epsilon/4)$$

so that

card
$$M \leq \left[\frac{4}{\epsilon} (1 + \epsilon/4)\right]^n$$
.

LEMMA 4. There is a constant $\delta>0$ so that for each $1\leq p<2$ and each $N=1,\ 2,\ \dots,\ L_p$ contains a subspace E such that

$$d(E, \ell_2^N) \leq 2$$

PROOF. Given a finite dimensional Banach space X and $1 \le p < \infty$, let

$$\gamma_p(x) = \inf \; \{ \|\mathbf{T}\| \; \|\mathbf{S}\| \; : \; \mathbf{T} \; : \; \mathbf{X} \rightarrow \mathbf{L}_p, \quad \mathbf{S} : \mathbf{L}_p \rightarrow \mathbf{X}, \quad \mathbf{S} \; \mathbf{T} = \mathbf{I}_{\mathbf{X}} \} \; .$$

So $\gamma_{\infty}(X)$ is the projection constant of X, hence by [4], [12]

$$\gamma_1(\ell_2^N) = \gamma_\infty(\ell_2^N) = \sqrt{2n/\pi}$$
.

This gives the p = 1 case.

For 1 we reduce to the case <math>p = 1 by using Example 3.1 of [2], which asserts that there is a constant $C < \infty$ so that for $1 \le p < 2$ ℓ^{CN}_p contains a subspace E with $d(E, \ell^N_2) \le 2$. Since, obviously,

$$d(\ell_p^{CN}, \ell_1^{CN}) \leq (cn)^{1 - 1/p}$$

we get that if E is K-complemented in ℓ_p^{CN} , then

$$\pi^{-1/2} (2n)^{1/2} = \gamma_1(\ell_2^N) \le d(E, \ell_2^N) d(\ell_p^{CN}, \ell_1^{CN}) K$$

$$\leq 2 (CN)^{1 - 1/p} K.$$

The next piece of background information we need for Theorem 3 is a linearization result which is an easy consequence of the results in [8].

PROPOSITION 1. Suppose X C Y and Z are Banach spaces, f: Y \rightarrow Z is Lipschitz, and U: X \rightarrow Z is bounded, linear. Then there is a linear operator G: Z* \rightarrow Y* so that $\|G\| \leq \|f\|_{\ell$ ip and

$$\|R_2 G - U*\| \le \|f_{X} - U\|_{\ell_{1p}}$$

where R₂ is the natural restriction map from Y* onto X*.

REMARK. Note that if Z is reflexive, the mapping $F \in G^*|_Y : Y \to Z$ satisfies $\|F\| \le \|f\|_{\ell_{ip}}$ and $\|F\|_{X} - U\| \le \|f\|_{X} - U\|_{\ell_{ip}}$.

PROOF. We first recall some notation from [8]. If Y is a Banach space, $Y^{\#}$ denotes the Banach space of all scalar valued Lipschitz functions, $Y^{\#}$ from Y for which $Y^{\#}(0) = 0$, with the norm $\|Y^{\#}\|_{\ell \text{ip}}$. There is an obvious isometric inclusion from $Y^{\#}$ into $Y^{\#}$. For a Lipschitz mapping $f: Y \to Z$, Z a normed space, we can define a linear mapping

$$f^{\#}: Z^* \to Y^{\#}$$
 by

Given Banach spaces $X \subseteq Y$, Theorem 2 of [8] asserts that there are norm one linear projections

$$P_{Y} : Y^{\#} \rightarrow Y^{*}, \quad P_{X} : X^{\#} \rightarrow X^{*}$$

so that

$$P_X R_1 = R_2 P_Y$$

where R_1 is the restriction mapping from $Y^\#$ onto $X^\#$. Thus if $X\subset Y$, f, U, Z are as in the hypothesis of Proposition 1, the linear mapping $P_{\mathbf{v}}$ f $^\#$ satisfies

$$\|P_{Y} f^{\#}\| \le \|f\|_{\ell_{1p}}, \quad R_{2} P_{Y} f^{\#} = P_{X} R_{1} f^{\#}.$$

Since U: $X \rightarrow Z$ is linear.

$$U^* = P_X U^{\#}$$

so

$$\|R_{2} P_{Y} f^{\#} - U^{*}\| = \|P_{X}(R_{1}f^{\#} - U^{\#})\|$$

$$\leq \|R_{1} f^{\#} - U^{\#}\| = \sup_{z^{*} \in S(Z^{*})} \|R_{1} f^{\#} z^{*} - U^{\#} z^{*}\|$$

$$= \sup_{z^{*} \in S(Z^{*})} \|(z^{*} f)|_{|X} - z^{*} U\| \leq \|f|_{|X} - U\|_{\ell_{1}p}.$$

The final lemma we use in the proof of Theorem 3 is a smoothing result for homogeneous Lipschitz functions.

LEMMA 5. Suppose X C Y and Z are Banach spaces with dim X = k < ∞ , F: Y \rightarrow Z is Lipschitz with F positively homogeneous (i.e. F(λ y) = λ F(y) for $\lambda \geq 0$, y \in Y) and U: X \rightarrow Z is linear. Then there is a positively homogeneous Lipschitz mapping

$$\tilde{F}$$
: Y \rightarrow Z which satisfies

$$(1) \quad \|\widetilde{F}_{|X} - U\|_{\ell ip} \leq (8k + 2) \quad \|F_{|S(X)} - U_{|S(X)}\|_{\infty}$$

(2)
$$\|\tilde{F}\|_{\ell ip} \le 4 \|F\|_{\ell ip}$$
.

PROOF. For $y \in S(Y)$ define

$$\hat{F}y = \int_{B_X(1)} F(y+x) d\mu(x)$$

where $\mu(\cdot)$ is Haar measure on X (= \mathbb{R}^k) normalized so that

$$\mu(B_{X}(1)) = 1.$$

For $y_1, y_2 \in S(Y)$ we have

$$\begin{split} \| \hat{\mathbf{f}} \mathbf{y}_{1} - \hat{\mathbf{f}} \mathbf{y}_{2} \| & \leq \int_{\mathbf{B}_{X}(1)} \| \mathbf{F}(\mathbf{y}_{1} + \mathbf{x}) - \mathbf{F}(\mathbf{y}_{2} + \mathbf{x}) \| d\mu(\mathbf{x}) \\ & \leq \| \mathbf{F} \|_{\ell 1 \mathbf{p}} \| \mathbf{y}_{1} - \mathbf{y}_{2} \| \end{split}$$

so

$$\|\hat{\mathbf{f}}\|_{\ell \perp p} \leq \|\mathbf{f}\|_{\ell \perp p}$$
.

For x_1 , $x_2 \in S(X)$ with $||x_1 - x_2|| = \delta > 0$ we have, since U is linear, that

$$\|(\hat{F} - U)x_1 - (\hat{F} - U)x_2\| =$$

$$\| \int_{B_{X}(1)} F(x_{1} + x) d\mu(x) - \int_{B_{X}(1)} U(x_{1} + x) d\mu(x) - \int_{B_{X}(1)} F(x_{2} + x) d\mu(x) + \frac{1}{2} \int_{B_{X}(1)} F(x_{2} + x) d\mu(x) d\mu(x) + \frac{1}{2} \int_{B_{X}(1)} F(x_{2} + x) d\mu(x) d\mu(x$$

$$\int_{B_{X}(1)} U(x_{2} + x) d\mu(x) \| \le$$

$$\leq \int_{B_{X}(x_{1}; 1)} \frac{\|\operatorname{Fx} - \operatorname{Ux}\| \ d\mu(x)}{\Delta B_{X}(x_{2}; 1)} \leq$$

$$\leq \sup_{\mathbf{x} \in B_{\mathbf{X}}(2)} \| \mathbf{F} \mathbf{x} - \mathbf{U} \mathbf{x} \| \mu [\mathbf{B}_{\mathbf{X}}(\mathbf{x}_1; 1) \Delta \mathbf{B}_{\mathbf{X}}(\mathbf{x}_2; 1)]$$

=
$$2 \sup_{\mathbf{X} \in \mathcal{B}_{\mathbf{X}}(1)} \| \mathbf{F} \mathbf{X} - \mathbf{U} \mathbf{X} \| \mu [\mathbf{B}_{\mathbf{X}}(\mathbf{x}_1; 1) \Delta \mathbf{B}_{\mathbf{X}}(\mathbf{x}_2; 1)]$$
 since F is positively homogeneous

Since

$${}^{B}{}_{X}({}^{x}{}_{1};\ 1)\ \Delta\ {}^{B}{}_{X}({}^{x}{}_{2};\ 1)\ \subset\ [{}^{B}{}_{X}({}^{x}{}_{1};\ 1)\ \sim\ {}^{B}{}_{X}({}^{x}{}_{1};\ 1-\delta)\,]\ \cup\ [{}^{B}{}_{X}({}^{x}{}_{2};\ 1)\ \sim\ {}^{B}{}_{X}({}^{x}{}_{2};\ 1-\delta)\,]$$

we have if $\delta \leq 1$ that

$$\mu[B_{X}(x_{2}; 1) \land B_{X}(x_{2}; 1)] \leq 2[1 - (1-\delta)^{k}]$$

≤ 2 k δ

and hence for all $x_1, x_2 \in S(X)$ that

$$\|(\hat{F} - U) x_1 - (\hat{F} - U) x_2\| \le 4k \|F_{|S(X)} - U_{|S(X)}\| \|x_1 - x_2\|$$

whence

$$\|\hat{F}\|_{S(X)} - U\|_{S(X)}\|_{\ell ip} \le 4k \|F\|_{S(X)} - U\|_{S(X)}\|_{\infty}$$

Finally, note that the positive homogeniety of F implies that

$$\|\hat{\mathbf{f}}\|_{\infty} \leq 2 \|\mathbf{f}\|_{\ell i p} \quad \text{and} \quad \|\hat{\mathbf{f}}\|_{S(X)} - \mathbf{U}_{S(X)}\|_{\infty} \leq 2 \|\mathbf{f}\|_{S(X)} - \mathbf{U}_{S(X)}\|_{\infty}.$$

It now follows from Lemma 2 that the positively homogeneous extension \tilde{F} of \hat{F} satisfies the conclusions of Lemma 5.

THEOREM 3. There is a constant $\tau > 0$ so that for all n = 2, 3, 4, ... and all $1 \le p < 2$,

$$L(p,n) \, \geq \, \tau \, \, \left(\frac{\text{Log } n}{\text{Log Log } n}\right)^{1/p \, - \, 1/2} \ .$$

REMARK. Since $L(\infty,n) \ge L(1,n)$, we get the lower estimate for $L(\infty,n)$ mentioned in the introduction.

PROOF. Given p and n, for a certain value of N = N(n) to be specified later choose a subspace E of L with d(E, ℓ_2^N) \leq 2 and E only δ N $^{1/p}$ - $^{1/2}$ -complemented in L (Lemma 4). For a value ϵ = ϵ (n) > 0 to be specified later, let A be a minimal ϵ -net of S(E), so, by Lemma 3,

card
$$A \leq (1 + 4/\epsilon)^{N}$$
.

One relation among $\, n \,$, $\, N \,$, $\, \epsilon \,$ we need is

$$(1.4) (1 + 4/\epsilon)^{N} + 1 \leq n.$$

Let $f: A \cup \{0\} \to E$ be the identify map. Since $d(E, \ell_2^N) \le 2$, we can by Lemma 2 get a positively homogeneous extension $\tilde{f}: L_D \to E$ of f so that

$$\|\tilde{f}\|_{\ell,p} \le 6 L(p,n)$$
.

Since $\tilde{f}(a) = f(a) = a$ for $a \in A$ and A is an ϵ -net for S(E), we get that for $x \in S(E)$,

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{x}\| \le (6 L(\mathbf{p}, \mathbf{n}) + 1) \varepsilon$$
.

Therefore, from Lemma 5 we get a Lipschitz mapping $\hat{f}: L_{D} \rightarrow E$ which satisfies

$$\|\hat{\mathbf{f}}\|_{\ell ip} \le 24 L(p,n)$$

(1.5)
$$\|\hat{f}_{|E} - I_{E}\| \le (8N + 2)(6 L(p,n) + 1)\epsilon.$$

Note that if

$$(1.6) (8N + 2)(6 L(p,n) + 1)\varepsilon \le 1/2,$$

(1.5) implies that there is a linear projection from L_p onto E with norm at most 48 L(p,n), so we can conclude that

$$L(p,n) > \delta/48 N^{1/p} - 1/2$$
.

Finally, we just need to observe that (1.4) and (1.6) are satisfied (at least for sufficiently large $\, n) \,$ if we set

$$\varepsilon = \text{Log}^{-2} n$$
, $N = \frac{\text{Log } n}{2 \text{ Log Log } n}$.

2. OPEN PROBLEMS.

Besides the obvious question left open by the preceding discussion (i.e. whether the estimate for $L(\infty,n)$ given in Theorem 1 is indeed the best possible), there are several other problems which arise naturally in the present context. We mention here only some of them.

PROBLEM 1. Is it true that for 1 , every subset X of L <math>(0,1), and every Lipschitz map f from X into ℓ_2^k there is an extension f of f from L (0,1) into ℓ_2^k with

(2.1)
$$\|\tilde{f}\|_{\ell ip} \le C(p) \|f\|_{\ell ip} k^{1/p} - 1/2$$

where C(p) depends only on p?

A positive answer to problem 1 combined with Lemma 1 above will of course provide an alternative proof to the result of Marcus and Pisier [10] mentioned in the introduction. The linear version of problem 1 (where X is a subspace and f a linear operator) is known to be true (cf. [7] and [3]).

PROBLEM 2. What happens in the Marcus-Pisier theorem if $2 ? Is the Lipschitz analogue of Maurey's extension theorem [11] (cf. also [3]) true? In other words, is it true that for <math>2 there is a c(p) such that for every Lipschitz map f from a subset X of <math>L_p(0,1)$ into ℓ_2 there is a Lipschitz extension f from $L_p(0,1)$ into ℓ_2 with

$$\|\tilde{\mathbf{f}}\|_{\ell_{\mathbf{i}p}} \le c(p)\|\mathbf{f}\|_{\ell_{\mathbf{i}p}}$$
?

PROBLEM 3. What are the analogues of Lemma 1 in the setting of Banach spaces different from Hilbert spaces? The most interesting special case seems to be concerning the spaces ℓ_∞^n . It is well known that every finite metric space $X = \{x_i\}_{i=1}^n$ embeds isometrically into ℓ_∞^n (the point x_i is mapped to the n-tuple $\{d(x_1, x_i), d(x_2, x_i), \ldots, d(x_n, x_i)\}$ in ℓ_∞^n). Hence in view of Lemma 1 it is quite natural to ask the following. Does there exist for all $\epsilon > 0$ (or alternatively for some $\epsilon > 0$) a constant $K(\epsilon)$ so that for every metric space X with cardinality n there is a Banach space Y with dim $Y \leq K(\epsilon) \log n$ and a map f from X into Y so that

A weaker version of Problem 3 is

PROBLEM 4. It is true that for every metric space X with cardinality n there is a subset \tilde{X} in ℓ_2 and a Lipschitz map F from X onto \tilde{X} so that (2.2) $\|F\|_{\ell \text{ip}} \|F^{-1}\|_{\ell \text{ip}} \leq K \sqrt{\log n}$

for some absolute constant K?

Since for every Banach space Y with dim Y = k we have $d(Y, \ell_2^k) \le \sqrt{k}$ (cf. [6]) it is clear that a positive answer to problem 3 implies a positive answer to problem 4. V. Milman pointed out to us that it follows easily from an inequality of Enflo (cf. [1]) that (2.2), if true, gives the best possible estimate. (In the notation of [1], observe that the "m-cube"

$$\mathbf{x}_{\theta} = (\theta_1, \theta_2, \dots, \theta_m) (\theta \in \{-1, 1\}^m)$$

in $\ell_1^{\mathfrak{m}}$ has all "diagonals" of length 2m and all "edges" of length 2, so that if F is any Lipschitz mapping from these $2^{\mathfrak{m}}$ points in $\ell_1^{\mathfrak{m}}$ into a Hilbert space, the corollary in [1] implies that

$$\|F\|_{\ell ip} \|F^{-1}\|_{\ell ip} \ge m^{1/2}$$
.)

APPENDIX.

After this note was written, Yoav Benyamini discovered that Theorem 2 remains valid if ℓ_2 is replaced with any Banach space. He kindly allowed us to reproduce here his proof. The main lemma Benyamini uses is:

LEMMA 6. Let Γ be an indexing set and let $\{e_{\gamma}\}_{\gamma} \in \Gamma$ be the unit vector basis for $c_{0}(\Gamma)$. Set

$$A = \{\alpha \in \gamma : 0 \le \alpha \le 1; \gamma \in \Gamma\}$$

$$B = \overline{\text{conv}} A \text{ (= positive part of } B_{\ell_1}(\Gamma)\text{)}.$$

Then

- (i) there is a retraction G from $\ell_{\infty}(\Gamma)$ onto B which satisfies $\|G\|_{\ell$ ip \leq 2
- (ii) there is a mapping H from $\ell_{\infty}(\Gamma)$ into A which satisfies $\|\mathrm{H}\|_{\ell$ ip \leq 4 and He $_{\gamma}$ = e $_{\gamma}$ for all $\gamma \in \Gamma$.

PROOF. Since the mapping $x \to x^+$ is a contractive retraction from $\ell_{\infty}(\Gamma)$ onto its positive cone, $\ell_{\infty}(\Gamma)^+$; to prove (i) it is enough to define G only on $\ell_{\infty}(\Gamma)^+$.

For $y \in \ell_{\infty}(\Gamma)^+$, let

$$g(y) = \inf \{t : ||(y - te)^{+}||_{1} \le 1\}$$

where $e \in \ell_{\infty}(\Gamma)$ is the function identically equal to one and $\|\cdot\|_1$ is the usual norm in $\ell_1(\Gamma)$. Clearly the inf is actually a minimum and $0 \le g(y) \le \|y\|_{\infty}$. Note that

$$|g(y) - g(z)| \le ||y-z||$$
.

Indeed, assume that $g(y) \ge g(z)$. Then

$$y - [g(z) + ||y-z||_{\infty} e] \le y - g(z)e + z - y \le z - g(z)e$$

and hence

$$\|(y-[g(z) + \|y-z\|_{\infty}]e)^{+}\|_{1} \le 1;$$

that is

$$g(y) \leq g(z) + ||y-z||_{\infty}$$

Now set for $y \in \ell_{\infty}(\Gamma)^+$

$$G(y) = (y - g(y)e)^{+}.$$

To prove (ii), it is enough, in view of (i), to define H on B with $\|H\|_{B}\|_{\text{lip}} \leq 2. \quad \text{For} \quad y \in B, \quad y = \left\{y(\gamma)\right\}_{\gamma \in \Gamma}, \quad \text{defined Hy by}$

$$Hy(\gamma) = (2y(\gamma) - 1)^{+}.$$

For y \in B, there is at most one $\gamma \in \Gamma$ for which $y(\gamma) > \frac{1}{2}$, hence HB \subset A. Evidently He $_{\gamma}$ = e $_{\gamma}$ for $\gamma \in \Gamma$ and $\|H\|_{B}\|_{\ell ip} \leq 2$.

THEOREM 2 (Y. Benyamini). Suppose that X is a metric space, Y is a subset of X with $d(x,y) \ge \varepsilon > 0$ for all $x \ne y \in Y$, Z is a Banach space, and $f: Y \to Z$ is Lipschitz. Then there is an extension $f: X \to Z$ of f so that

$$\|\mathbf{f}\|_{\ell_{1p}} \le (4D/\epsilon)\|\mathbf{f}\|_{\ell_{1p}}$$

where D is the diameter of Y.

PROOF. Represent

$$Y = \{0\} \cup \{y_{\gamma} : \gamma \in \Gamma\}$$

and assume, by translating f, that f(0) = 0. We can factor f through the subset $C = \{0\} \cup \{e_{\gamma} : \gamma \in \Gamma\}$ of $\ell_{\infty}(\Gamma)$ by defining $g : Y \to C$, $h : C \to Z$ by

$$g(y_{\gamma}) = e_{\gamma}, g(0) = 0$$

 $h(e_{\gamma}) = f(y_{\gamma}), h(0) = 0.$

Evidently,

$$\|\mathbf{g}\|_{\ell_{\text{ip}}} \le 1/\epsilon$$
, $\|\mathbf{h}\|_{\ell_{\text{ip}}} \le D\|\mathbf{f}\|_{\ell_{\text{ip}}}$.

By the non-linear Hahn-Banach theorem, g has an extension to a function $\ddot{g}: X \to \ell_{\infty}(\Gamma)$ with $\|\ddot{g}\|_{\text{lip}} = \|g\|_{\text{lip}}$, so to complete the proof, it suffices to extend h to a function $\ddot{h}: B \to Z$ with $\|\ddot{h}\|_{\text{lip}} = \|h\|_{\text{lip}}$ and apply Lemma 6(ii).

Define for $0 \le t \le 1$ and $\gamma \in \Gamma$

$$h(te_{\gamma}) = th(e_{\gamma}).$$

If $1 \ge t \ge s \ge 0$ and $\gamma \ne \Delta \in \Gamma$ then

$$\begin{split} \|\tilde{h}(te_{\gamma}) &-\tilde{h}(se_{\Delta})\| \, \leq \, (t-s)\|h(e_{\gamma})\| + \, s \, \|h(e_{\Delta}) \, - \, h(e_{\gamma})\| \\ &\leq \, (t-s)\|h\|_{\ell \text{ip}} \, + \, s\|h\|_{\ell \text{ip}} = \|h\|_{\ell \text{ip}}\|te_{\gamma} \, - \, se_{\Delta}\|_{\infty}, \end{split}$$

so
$$\|\mathbf{h}\|_{\ell i \mathbf{p}} = \|\mathbf{h}\|_{\ell i \mathbf{p}}$$

REFERENCES

- 1. P. Enflo, On the non-existence of uniform homeomorphisms between L p spaces, Arkiv for Matematik 8 (1969), 195-197.
- T. Figiel, J. Lindenstrauss and V. Milman, The dimension of almost spherical sections of convex bodies, Acta. Math. 139 (1977), 53-94.
- T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math 33 (1979), 155-171.
- 4. D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite-dimensional Banach spaces, Israel J. Math $\underline{9}$ (1971), 346-361.
- 5. U. Haagerup, The best constant in the Khintchine inequality, Studia Math 70 (1982), 231-283.
- F. John, Extremum problems with inequalities as subsidiary conditions, Courant anniversary volume, Interscience N.Y. (1948), 187-204.
- 7. D. Lewis, Finite dimensional subspaces of L_p , Studia Math. <u>63</u> (1978), 207-212.
- 8. J. Lindenstrauss, On non-linear projections in Banach spaces, Mich. Math. J. 11 (1964), 263-287.
- 9. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces Vol. I sequence spaces, Ergebnisse n. 92, Springer Verlag, 1977.
- 10. M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, to appear.
- 11. B. Maurey, Un theoreme de prolongment, C. R. Acad. Paris <u>279</u> (1974), 329-332.
- 12. D. Rutovitz, some parameters associated with finite dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241-255.
- 13. S. J. Szarek, On the best constant in the Khintchine inequality, Studia Math. 58 (1978), 197-208.
- 14. J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Ergebnisse n. <u>84</u> Springer Verlag 1975.

William B. Johnson The Ohio State University and Texas A & M University

Joram Lindenstrauss
The Hebrew University of Jerusalem,
Texas A & M University, and
The Ohio State University