

2024 FS CAS PML - Supervised Learning 3 Regression 3.3 ML Methoden

Werner Dähler 2024

3 Regression - AGENDA

- 31. Einleitung
- 32. Regression klassisch (OLS)
- 33. Regression mit ML
 - 331.KNeighborsRegressor
 - 332. DecisionTreeRegressor
 - 333. RandomForestRegressor
 - 334.SVR
 - 335.MLPRegressor
- 34. Vergleiche über alle Modelle

- die meisten der unter Klassifikation vorgestellten Methoden (Klassen) haben "Geschwister", welche auch für Regressions-Modelle eingesetzt werden können
- eine Übersicht:

Modul	Klassifikation	Regression
sklearn.linear_model	(kein analoger Klassifikator)	LinearRegression
sklearn.neighbors	KNeighborsClassifier	KNeighborsRegressor
sklearn.tree	DecisionTreeClassifier	DecisionTreeRegressor
sklearn.ensemble	RandomForestClassifier	RandomForestRegressor
sklearn.ensemble	AdaBoostClassifier	AdaBoostRegressor
sklearn.ensemble	GradientBoostingClassifier	GradientBoostingRegressor
sklearn.ensemble	${\tt HistGradientBoostingClassifier}$	HistGradientBoostingRegressor
sklearn.svm	SVC	SVR
sklearn.neural_network	MLPClassifier	MLPRegressor
catboost	CatBoostClassifier	CatBoostRegressor
lightgbm.sklearn	LGBMClassifier	LGBMRegressor

sie heissen nicht nur (fast) gleich, auch die Tuning-Parameter sind mehrheitlich dieselben

Vorbereitungen

Voraussetzungen: die üblichen Libraries sind importiert und die notwendigen Daten geladen (vgl. 3.1.4)

- ein synthetisches Testset
 - für die folgenden Methoden wird im Theorieteil ein synthetisches Testset verwendet werden, um die Funktionsweise beim Trainieren mit den Demo-Daten zu visualisieren
 - der untenstehende Code erstellt einen Array über den gesamten Wertebereich von X_demo mit 100 gleich grossen Schritten

```
X_synth = np.linspace(X_demo.min(), X_demo.max(), 100).reshape(-1,1)
```

- das Modell wird jeweils mit X_demo trainiert und dann eine Prediction mit X_synth erstellt
- diese wird danach für eine Visualisierung verwendet (jeweils orange "Kurve")
- eine Validierung mit einer Performance Metrik unterbleibt hier, da sie hier nicht relevant ist (kein Train - Test - Split), diese wird im Praxis-Teil auf dem Melbourne Housing Dataset durchgeführt und diskutiert
- vgl. Funktion show_pred_on_synth() in Modul bfh_cas_pml.py

Vorbereitungen

- 2. Vorbereitung für Praxis:
 - da im Folgenden für jede Regressionsklasse derselbe Ablauf zur Anwendung kommt, wird hier eine Funktion definiert, die das parametrisierte Modell sowie die Daten entgegennimmt, und dann folgendes ausführt:
 - train
 - predict
 - berechnen und ausgeben der Metriken
 - erstellen Scatterplot von y_pred vs. y_test (optional, default=True)
 - die Funktion gibt das trainierte Modell zurück, um nach deren Aufruf dort bei Bedarf noch einige Interna (Modellattribute) untersuchen zu können, ausserdem wird r2_score in der Konsole ausgegeben

Vorbereitungen

die Funktionsdefinition (ein Ausschnitt davon, vgl. Modul bfh_cas_pml):

```
def test regression model(
    model, X_train, y_train, X_test, y_test, show_plot=True):
    from sklearn.metrics import r2 score
    from sklearn.metrics import mean squared error
   model = model model.fit(X train, y train)
    y pred = model.predict(X test)
    print('R2 = %0.4f' %(r2 score(y test, y pred)))
    if show plot == True:
    return (model)
```

Vorbereitungen

- vor Aufruf der Funktion muss sichergestellt sein, dass die Regressionsklasse bereits importiert ist
- als Parameter werden das parametrisierte Objekt sowie alle notwendigen Daten übergeben, dazu kann mit dem optionalen Parameter show_plot gesteuert werden, ob der Scatterplot ausgegeben werden soll
- ausserdem wird das trainierte Modell (Rückgabe der Funktion) als Objekt zurückgegeben, um dies bedarfsweise nach Aufruf der Funktion weiter untersuchen zu können
- ein beispielhafter Aufruf mit LinearRegression()

```
from bfh_cas_pml import test_regression_model
from sklearn.linear_model import LinearRegression
this_model = test_regression_model(
    LinearRegression(), X_train, y_train, X_test, y_test, show_plot=False)
```

R2 = 0.5601

3.3.1.1 Theorie

- analog KNeighborsClassifier werden die k ähnlichsten Beobachtungen im Trainingsset in Bezug auf Feature Werte berücksichtigt
- ein Zahlenbeispiel zur Illustration:
 - ein Modell basierend auf demo_data_regr.csv soll auf eine neue Test-Beobachtung mit einem Wert X = 3.4 angewendet werden (vertikale Linie)
 - die 5 nächsten Nachbarn dieser Beobachtungen weisen für y folgende Werte auf: 1.1, 1.0, 1.0, 1.3, 1.0 (speziell ausgezeichnet)
 - als Prediction wird der Mittelwert von y dieser 5 Beobachtungen zurückgegeben:

$$\frac{1}{5} \cdot (1.1 + 1.0 + 1.0 + 1.3 + 1.0) = 1.08$$
(horizontale Linie)

3.3.1.1 Theorie

- Analogie zu KNeighborsClassifier
 - KNeighborsClassifier: Prediction ist der Modalwert des Labels der k nächsten Beobachtungen
 - KNeighborsRegressor: Prediction ist der Mittelwert des Labels der k nächsten Beobachtungen

3.3.1.1 Theorie

 die untenstehende Darstellung zeigt den Vergleich der Predictions (orange) bei 3 resp. 10 nächsten Nachbarn

blau: Demo Daten

orange: Prediction des trainierten Modells auf das synthetische Testset mit unterschiedlichen Werten für n_neighbors

provisorisches Fazit:
 kleine Werte von
 n_neighbors führen
 tendenziell zu Overfitting

3.3.1.2 Praxis

```
from sklearn.neighbors import KNeighborsRegressor
this_model = test_regression_model(
    KNeighborsRegressor(), X_train, y_train, X_test, y_test)
```

```
R2 = 0.4493
```

- wichtigste Parameter:
 - n_neighbors=5: selbstsprechend (vgl. Klassifikator)
 - metric='minkowski'
 - ▶ p=2: zusammen mit metrics \rightarrow Euklidisch Distanz
 - weitere: scikit-learn Dokumentation
- Fazit
 - ist zwar deutlich schlechter als OLS (0.5601), aber negative Vorhersagen und Nichtlinearität sind bereinigt

3.3.2.1 Theorie

- Aufbau des Regressionsbaums analog Klassifikationsbaum
 - für jedes Feature wird die optimale Splitposition gesucht
 - das Feature mit dem besten Splitverhalten wird ausgewählt und der Split durchgeführt
- Split Kriterium: MSE (Mean squared error regression loss) anstelle von gini oder entropy

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

dabei bedeuten

n: Anzahl Beobachtungen der Testdaten

y_i: wahrer Targetwert der i-ten Beobachtung der Testdaten

 \hat{y}_i : Mittelwert aller Targetwerte der Testdaten

entspricht somit der Varianz (Quadrat der Standardabweichung, vgl. Kap. 1.2.3.1)

(Ausblick: MSE werden wir auch leicht modifiziert als Performance-Metrik wieder sehen, vgl. Kap. 4.4.2.2)

3.3.2.1 Theorie

- Abbruchkriterium: standardmässig wird der Baum komplett aufgebaut, da aber verschiedene Beobachtungen denselben X Wert aufweisen können, kann es in den Endblättern mehrere Beobachtungen mit unterschiedlichem Predict-Werten haben - dort wird dann der Mittelwert als Prediction zurückgegeben (vgl. KNeighborsRegressor)
- die Parameter sind mehrheitlich dieselben wie beim analogen Klassifikator
 - Berechnung analog Klassifikation
 - für jeden Split wird die Impurity (hier also MSE) vor und nach dem Split berechnet
 - vor dem Split MSE gegenüber dem Mittelwert aller Beobachtungen
 - nach dem Split der gewichtete Mittelwert der beiden MSE Werte der Kindknoten
 - die Differenz dann wiederum gewichtet am Anteil des untersuchten Knotens in Bezug auf Root-Knoten (vgl. DecisionTreeClassifier)

3.3.2.1 Theorie

- Prediction vor einem ersten Split: Mittelwert über alle y (schwarze horizontale Linie)
- ein (hypothetischer) Split an der Stelle X=4.95 (vertikale Linie) teilt die Instanzen in zwei Teilmengen (orange und blau)
- für jede dieser Teilmengen wird der Mittelwert von y bestimmt (horizontale Linien) und für die jeweilige Teilmenge als Prediction betrachtet
- darauf basierend wird für beide Teilmengen MSE gegenüber dem jeweiligen Mittelwert berechnet
- zur Bestimmung von MSE nach dem Split werden beide MSE gewichtet gemittelt

3.3.2.1 Theorie

- analog DecisionTreeClassifier wird für jedes Feature der gesamte Bereich gescannt, um die jeweils beste Split Position zu ermitteln
- hier abgekürztes Verfahren: da auch hier die maximale Verminderung der "impurity" herzugezogen wird, genügt es, die gewichteten MSE-Werte nach dem Split zu vergleichen und das Minimum zu ermitteln
- am Demo Datensatz ergeben sich dabei die folgenden Ergebnisse

min_MSE : 0.0644

min_split : 4.7500

 der hier dargestellte Wert min_MSE entspricht dem gewichteten Mittelwert der entsprechenden Kindknoten nach dem Split (vgl. Baumdarstellung unten)

3.3.2.1 Theorie

Kontrolle mit DecisionTreeRegressor

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import export_text
model = DecisionTreeRegressor(max_depth=1)
model.fit(X_demo, y_demo)
print(export_text(model))
```

für dieses Beispiel wurde max_depth=1 gesetzt, Vorgabe ist aber 'None', d.h. der Baum würde viel detaillierter aufgebaut (mehr dazu unter Praxis)

3.3.2.1 Theorie

- wie schon bei DecisionTreeClassifier ist max_depth nicht unbedingt ein idealer Parameter, wurde hier nur zu Demozwecken verwendet
- ein Beispiel mit zwei unterschiedlichen Werten für max_depth
- auch hier gilt: mittels Parameter Tuning die besten Parameter sowie deren Werte experimentell zu ermitteln

3.3.2.2 Praxis

Anwendung der eingangs definierten Funktion:

```
from sklearn.tree import DecisionTreeRegressor
this_model = test_regression_model(DecisionTreeRegressor(random_state=1234),
    X_test, y_test, X_train, y_train)
```

```
R2 = 0.5502
```

- Fazit, Performance vergleichbar mit OLS, ausserdem keine negativen Voraussagen und keine Nichtlinearität
- einige interne Methoden:

```
print('get_depth() : ', this_model.get_depth())
print('get_n_leaves() : ', this_model.get_n_leaves())

get_depth() : 33
get_n_leaves() : 5947
```


3.3.2.2 Praxis

Parameter-Tuning: max_depth

- ein Vergleich von r2_score für Train und Testdaten über einen Bereich von max_depth zeigt
 - r2 für train steigt kontinuierlich an und erreicht bei max_depth ≈ 20 ein Plateau nahe bei 1
 - r2 für test erreicht das Maximum im Bereich zwischen 7 und 9 und nimmt dann wieder ab Vorschlag: max depth=8

(i)

3.3.2.2 Praxis

Ausblick auf Grid Search und Kreuzvalidierung (vgl. Kap. 4.3)

- es werden für min_samples_leaf die Werte von 1 bis 10 untersucht
- für jeden Wert wird eine 5-fache Kreuzvalidierung (default) durchgeführt
- die Resultate werden anschliessend mit sogenannten Error-Bars dargestellt
- hier zeigt sich, dass bei 3 ein erstes Plateau erreicht wird, ein zweites dann noch bei 6 (vgl. [ipynb])

3.3.3 Regression - ML Methoden - RandomForestRegressor

3.3.3.1 Theorie

- das Verfahren entspricht weitgehend dem RandomForestClassifier
- es wird eine vorgegebene Anzahl Regressionsbäume auf unterschiedlichen Subsets der Trainingsdaten erstellt, mit den schon bekannten Parametern
 - n_estimators=100

max_features='auto', im Gegensatz zu RandomForestClassifier n_features

(und nicht sqrt(n_features))

 Training auf den Demodaten mit Standard Parametern und Predict auf synthetische Testdaten zeigt nebenstehendes Bild

3.3.3 Regression - ML Methoden - RandomForestRegressor

3.3.3.2 Praxis

```
from sklearn.ensemble import RandomForestRegressor
this_model = test_regression_model(
    RandomForestRegressor(n_estimators=100, random_state=1234),
    X_train, y_train, X_test, y_test)
```

R2 = 0.7779

Fazit:

beste Performance bisher

3.3.4 Regression - ML Methoden - Weitere Ensemble Regressoren

- analog der Klassifikation existieren auch für Regression weitere Learner für Regressionsfragestellungen:
 - sklearn.ensemble
 - AdaBoostRegressor
 - GradientBoostingRegressor
 - HistGradientBoostingRegressor
 - catboost
 - CatBoostRegressor
 - lightgbm.sklearn
 - LGBMRegressor
- während die Learner-Klassen von sklearn in der Anaconda-Distribution vorliegen, müssen jene für catboost und lightgbm explizit nachinstalliert werden (falls dies nicht bereits für die entsprechenden Klassifikatoren geschehen ist, vgl. Kap. 2.2.7)

3.3.4 Regression - ML Methoden - Weitere Ensemble Regressoren

hier exemplarisch zusammengestellt, zusammen mit den bisher behandelten, jeweils für Standard-Parametrisierung, vgl. Code in extra_3.3.4_weitere_ensemble_regressoren.ipynb

Regressor	R2	weitere	sklearn-extern
sklearn.linear_model.LinearRegression	0.5601		
sklearn.neighbors.KNeighborsRegressor	0.4493		
sklearn.tree.DecisionTreeRegressor	0.5502		
sklearn.ensemble.RandomForestRegressor	0.7779		
sklearn.ensemble.AdaBoostRegressor	<mark>-0.3023</mark>	ja	
sklearn.ensemble.GradientBoostingRegressor	0.7250	ja	
sklearn.ensemble.HistGradientBoostingRegressor	0.7855	ja	
catboost.CatBoostRegressor	0.8003	ja	ja
lightgbm.LGBMRegressor	0.7882	ja	ja

Fazit:

AdaBoostRegressor ist mit Standard-Parametrisierung untauglich, Potential bei Parameter-Tuning?

Workshop 09

Gruppen zu 2 bis 4, Zeit: 30'

- es wurde festgestellt, dass z.B. AdaBoostRegressor unter Standard-Parametrisierung ein unbrauchbares Ergebnis liefert
- untersuchen Sie das Potential von Parameter-Tuning für diesen Regressor
- konzentrieren Sie sich auf folgende Parameter
 - learning_rate, Parameter von AdaBoostRegressor
 - max_depth, interner Parameter des Basis-Estimators, hier DecisionTreeRegressor
- falls Zeit übrig, untersuchen Sie noch andere Regressoren Ihrer Wahl dahingehend

3.3.5.1 Theorie

- grundsätzlich gleiches Verfahren wie SVC ausser
 - es wird eine Hyperebene gesucht, welche die Daten möglichst gut abbildet
 - vorab kann ein maximaler Fehler ε (L2-Form) festgelegt werden (Hyperparameter)
- vgl.
 - kaggle
 - Towards Data Science

3.3.5.1 Theorie

- ein Vergleich mit den Demodaten und Prediction auf synthetische Daten ergibt folgendes Bild
- im Gegensatz zu den Regelbasierten Regressionsmodellen ist folgendes zu erkennen:
 - die Prediction des Modells führt nicht mehr zu einer abgestuften Vorhersage, sondern zu einer geglättet eingepassten Kurve (smoothed curve)
 - dieses Verhalten wird auch bei den folgenden mathematischen ML Methoden zu beobachten sein

3.3.5.2 Praxis

```
from sklearn.svm import SVR
test_regression_model(SVR())
```

R2 = -0.0773

- suboptimal:
 - die Prediction ist ausschliesslich der Mittelwert von y_train
 - r2 ist negativ (!)
- mögliche Probleme bei dieser Methode:
 - verlangt vorgängiges standardisieren der Features Verteilung des Target ist rechts-schief logarithmieren)

3.3.5.2 Praxis

- Parameter-Tuning für diesen Regressor auf den vorliegenden Daten ist wenig zielführend und wegen der langen Rechenzeit auch sehr aufwändig
- daher wurde der Einfluss unterschiedlichen Preprocessings einander gegenübergestellt vgl. extra_3.3.5.2_variants_of_SVR.ipynb
 svR
- Ergebnisse

scale features	log target	r2_score	
		-0.0773	
X		-0.0768	
	X	0.0687	
X	X	0.8054	

- für eine faire Beurteilung müssten letztere zur Berechnung von r2 wiederum exponentiell dargestellt werden
- r2 wäre dann 0.7310, was immerhin annehmbar ist

3.3.5.3 Skalieren und Trainieren in einer Pipeline (Ausblick)

- sklearn.pipeline bietet die Möglichkeit, sequentielle Schritte mit einem abschliessenden Learner in einem Aufruf zu kombinieren (eine Abkürzung)
- im untenstehende Code Beispiel werden StandardScaler() und SVR() in einer solchen Sequenz zusammengestellt und danach .fit() und .score() auf der Pipeline aufgerufen

```
from sklearn.pipeline import Pipeline
pipe = Pipeline([
    ('scaler', StandardScaler()),
    ('svr', SVR())])
pipe.fit(X_train, y_train)
score = 0.5726
```

3.3.6 Regression - ML Methoden - MLPRegressor

3.3.6.1 Theorie

- die primäre Prediction bei MLPClassifier ist ein numerischer Wert zwischen 0 und 1 (allenfalls -1 und +1), welcher dann aber in die wahrscheinlichste Klasse transformiert wird
- die Modifikation von MLPRegressor besteht hauptsächlich darin, dass am Output Port gerade der Wert des Targets vorausgesagt werden soll

eine Train - Predict Sequenz mit den Demodaten und Standard Parametrisierung zeigt erst einmal nebenstehendes Bild
MLPRegressor: default

- MLPRegressor verfügt (wie auch MLPClassifier) über umfangreiche Möglichkeiten zur Parametrisierung, auf die aber hier nicht weiter eingegangen werden soll
 - vgl. Kursteil Neuronale Netze

3.3.6 Regression - ML Methoden - MLPRegressor

3.3.6.2 Praxis

```
from sklearn.neural_network import MLPRegressor
    test_regression_model(
    MLPRegressor(random_state=1234),
    X_train, y_train, X_test, y_test,
    show_plot=False)
... ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached
and the optimization hasn't converged yet.
```

```
R2 = 0.0258
```

- die angezeigte Warnung signalisiert, dass die per Default gewählte Anzahl maximaler Iterationen noch nicht zu Konvergenz geführt hat
- Abhilfe: Erhöhen des Parameterwertes max_iter, was allerdings noch nicht zu einer Verbesserung des unbrauchbaren Score-Wertes führt!

3.3.6 Regression - ML Methoden - MLPRegressor

3.3.6.2 Praxis

Versuche mit alternativem Preprocessing (analog SVC) führen dagegen zu folgenden Ergebnissen (vgl. extra_3.3.6.2_variants_of_MLPRegressor.ipynb)

kein Preprocessing

skalieren der Features

skalieren der Features **und** logarithmieren des Targets

$$R2 = 0.7205$$

allerdings ist auch hier zu beachten, dass nach einer Rücktransformation des Targets die Performance wieder etwas schlechter wird (0.6553)