

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/622,053	07/17/2003	Brantley W. Coile	062891.1136	2275
5073	7590	01/23/2008		EXAMINER
BAKER BOTTS L.L.P. 2001 ROSS AVENUE SUITE 600 DALLAS, TX 75201-2980				WANG, LIANG CHE A
			ART UNIT	PAPER NUMBER
			2153	
				NOTIFICATION DATE
				DELIVERY MODE
			01/23/2008	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

ptomail1@bakerbotts.com
glenda.orrantia@bakerbotts.com

Office Action Summary	Application No.	Applicant(s)
	10/622,053	COILE ET AL.
	Examiner	Art Unit
	Liang-che Alex Wang	2153

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 30 July 2007.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,3-7,9-13,15-19 and 21-25 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1,3-7,9-13,15-19 and 21-25 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. Claims 1, 3-7, 9-13, 15-19, 21-25 are presented for examination.
2. This action is in response to Pre-Brief Conference Request filed on 7/30/2007 and Pre-Brief Appeal Conference decision dated 11/19/2007. Previous rejection is withdrawn and a new grounds rejection is provided.

The New Grounds of Rejection

3. Applicant's amendment and argument with respect to claims 1, 3-7, 9-13, 15-19, 21-25 filed on 5/29/2007 have been fully considered but they are deemed to be moot in views of the new grounds of rejection.

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.
5. Claims 1, 5-7, 11-13, 17-19, 23-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lim et al., US Patent Number 6,718,550, hereinafter Lim, in views of Arndt et al., US Patent Number 5,708,654, hereinafter Arndt.
6. Referring to claim 1, Lim teaches a method for communicating data between a client and a server (Col 4 line 66- Col 5 line 2, Col 8 lines 62-65, Col 10 lines 41-45), comprising:

- a. initiating a participating application (Col 2 lines 47-51, there are remote process dispatch methods and local process dispatch methods, each corresponds to an application; remote process dispatch which passes through the transport layer corresponds to “a participating application” and when the remote dispatch method is arranged to cause invocation requests to be routed through a transport layer corresponds to the action of “initiating”;) for transmitting packets between a client and a server (Col 8 lines 44-48, Col 10 lines 41-45, remote request (packets) are transmitted from client to server), wherein the participating application participates in a transport protocol (Col 8 lines 44-61; when remote dispatch method is selected, packets are sent using path 77 shown on figure 1b, which passes through transport layer 38, and remote dispatch having packets passing through transport layer corresponds to “the participating application participates in a transport protocol”);
- b. initiating a non-participating application (Col 2 lines 51-57, local process dispatch which bypasses the transport layer corresponds to “a non-participating application”; and when the local dispatch method is arranged to cause invocation requests to be pass to a servant without being routed through a transport layer corresponds to the action of “initiating”) for transmitting packets between the client and the server (Col 8 lines 44-48, Col 10 lines 41-45, remote request (packets) are transmitted from client to server), wherein the non-participating application does not participate in the transport protocol (Col 8 line 62- Col 9 line 9; Col 10 lines 45-48; when a local process is identified, path 75 and 76 are taken,

local dispatch process using path 75 and 76 to bypass transport 38 corresponds to “the non-participating application does not participate in the transport protocol”);

- c. determining (Col 7 lines 7-17, method table dispatch 24 is used to make determination) whether a pointer is in a list of non-participating connections to the server (Col 2 lines 39-42, 51-57, Col 6 lines 61-67 (local method table corresponds to “a list of non-participating connections to the server”)); and
- d. in response to determining that the pointer is in the list (Col 7 lines 7-11; Col 2 lines 54-57; Col 8 line 62 –Col 9 line 9, if the client and server are determined to be in a local process), transmitting the packets on the non-participating path (paths 75, 76, figure 1b) through the non-participating application (Col 8 line 62 – Col 9 line 9; Col 2 lines 51-57, local process dispatch which bypasses the transport layer which corresponds to “a non-participating application” is used);
- e. in response to determining that the pointer is in not the list (Col 7 lines 12-15), transmitting the packets on the participating path (path 77, figure 1b) through the participating application (Col 2 lines 47-51, remote process dispatch which passes through the transport layer corresponds to “a participating application”).

Lim does not teach a quad of packets is in the list and the determination is made by using the quad of packets.

Arndt teaches routers that connect local and remote segments operate by forwarding packets based on IP addresses stored in its router table (Col 2 lines 49-60).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to have Lim's system route local process and remote processing

by using a routing table because both Lim and Arndt teaches routing packets to destinations.

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the routing method taught by Arndt would facilitate the connection between a source device and a target device as taught by Arndt (Col 2 lines 49-51).

7. Referring to claim 5, Lim as modified teaches the method of claim 1, wherein the non-participating application comprises an application that modifies a packet header of packets transmitted by the non-participating application (Col 19 lines 13-40, the headers are masked out (modified) when the process is local (non-participating application)).
8. Referring to claim 6, Lim as modified teaches the method of claim 1, further comprising determining whether to add a quad associated with the client to the list based on a security status of the client (Col 5 line 60-Col 6 line 3, security services are used between processes on different computers, so if a remote client is sending a packet to remote server, the security status of the client would be processed on different computers, which is serviced by the participating application. Therefore the packets transmitted with the same machine which are having the different security status compared to the packets transmitted processed in different computers, are being determined to be added on the list for local processing).
9. Referring to claim 7, Lim teaches a system for communicating data between a client and a server (figure 1a) comprising:
 - a. a client (item 20 figure 1a);

- b. a server (Col 8 line 63);
- c. a memory (local m-table) operable to store a list of quads, wherein each quad is associated with a non-participating connections between one of plurality of clients and server (Col 9 line 66-Col 10 line 14);
- d. a participating application (remote process dispatch which passes through the transport layer corresponds to a participating application), operable to transmit packets from the client to the server using a transport protocol (Col 2 lines 47-51; Col 8 lines 44-61; Col 10 lines 42-45);
- e. a non-participating application (local process dispatch which bypasses the transport layer corresponds to a non-participating application), operable to transmit packets from the client to the server without using a transport protocol (Col 2 lines 51-57; Col 8 line 62- Col 9 line 9; Col 10 lines 45-48);
- f. an intercepting controller (Object Request Broker 11, figure 1a) operable to determine whether a pointer is in the list (Col 7 lines 7-17);
- g. in response to determining that the pointer is in the list (Col 7 lines 7-11; Col 2 lines 54-57; Col 8 line 62 –Col 9 line 9, if the client and server are determined to be in a local process), transmitting the packet on the non-participating path (paths 75, 76, figure 1b) through the non-participating application (Col 8 line 62 –Col 9 line 9; Col 2 lines 51-57, local process dispatch which bypasses the transport layer which corresponds to “a non-participating application” is used);
- h. in response to determining that the pointer is in not the list (Col 7 lines 12-15), transmitting the packet on the participating path (path 77, figure 1b) through the

participating application (Col 2 lines 47-51, remote process dispatch which passes through the transport layer corresponds to “a participating application”); Lim does not teach a quad of packets is in the list and the determination is made by using the quad of packets.

Arndt teaches routers that connect local and remote segments operate by forwarding packets based on IP addresses stored in its router table (Col 2 lines 49-60).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to have Lim's system route local process and remote processing by using a routing table because both Lim and Arndt teaches routing packets to destinations.

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the routing method taught by Arndt would facilitate the connection between a source device and a target device as taught by Arndt (Col 2 lines 49-51).

10. Referring to claim 11, Lim as modified teaches the system of claim 7, wherein the non-participating application comprises an application that modifies a packet header of packets transmitted by the non-participating application (Col 10 lines 45-53; Col 19 lines 13-40).

11. Referring to claim 12, Lim as modified teaches the system of claim 7, wherein the intercepting controller is further operable to determine whether to add a quad associated with a particular one of the plurality of clients to the list based on a security status of the particular client (Col 5 line 60-Col 6 line 3, security services are used between processes

on different computers, so if a remote client is sending a packet to remote server, the security status of the client would be process on different computers, which is serviced by the participating application. Therefore the packets transmitted with the same machine which are having the different security status compared to the packets transmitted processed in different computers, are being determined to be added on the list for local processing).

12. Referring to claim 13, Lim teaches an apparatus for communicating data between a client and a server (figure 1a) comprising:

- a. a memory (local m-table) operable to store a list of quads, wherein each quad is associated with a non-participating connections between one of plurality of clients and server (Col 9 line 66-Col 10 line 14);
- b. a participating application (remote process dispatch which passes through the transport layer corresponds to a participating application), operable to transmit packets from the client to the server using a transport protocol (Col 2 lines 47-51; Col 8 lines 44-61; Col 10 lines 42-45);
- c. a non-participating application (local process dispatch which bypasses the transport layer corresponds to a non-participating application), operable to transmit packets from the client to the server without using a transport protocol (Col 2 lines 51-57; Col 8 line 62- Col 9 line 9; Col 10 lines 45-48);
- d. an intercepting controller (Object Request Broker 11, figure 1a) operable to determine whether a pointer is in the list (Col 7 lines 7-17);

e. in response to determining that the pointer is in the list (Col 7 lines 7-11; Col 2 lines 54-57; Col 8 line 62 –Col 9 line 9, if the client and server are determined to be in a local process), transmitting the packet on the non-participating path (paths 75, 76, figure 1b) through the non-participating application (Col 8 line 62 –Col 9 line 9; Col 2 lines 51-57, local process dispatch which bypasses the transport layer which corresponds to “a non-participating application” is used).

Lim does not teach a quad of packets is in the list and the determination is made by using the quad of packets.

Arndt teaches routers that connect local and remote segments operate by forwarding packets based on IP addresses stored in its router table (Col 2 lines 49-60).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to have Lim's system route local process and remote processing by using a routing table because both Lim and Arndt teaches routing packets to destinations.

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the routing method taught by Arndt would facilitate the connection between a source device and a target device as taught by Arndt (Col 2 lines 49-51).

13. Referring to claim 17, Lim as modified teaches the apparatus of claim 13, wherein the non-participating application comprises an application that modifies a packet header of packets transmitted by the non-participating application (Col 10 lines 45-53; Col 19 lines 13-40).

14. Referring to claim 18, Lim as modified teaches the apparatus of claim 13, wherein the intercepting controller is further operable to determine whether to add a quad associated with a particular one of the plurality of clients to the list based on a security status of the client (Col 5 line 60-Col 6 line 3, security services are used between processes on different computers, so if a remote client is sending a packet to remote server, the security status of the client would be process on different computers, which is serviced by the participating application. Therefore the packets transmitted with the same machine which are having the different security status compared to the packets transmitted processed in different computers, are being determined to be added on the list for local processing).
15. Referring to claim 19, Lim teaches a computer program product for transmitting packets between a client and a server, the computer program product being embodied in a computer readable medium, and comprising instruction for:

- a. initiating a participating application (Col 2 lines 47-51, there are remote process dispatch methods and local process dispatch methods, each corresponds to an application; remote process dispatch which passes through the transport layer corresponds to “a participating application” and when the remote dispatch method is arranged to cause invocation requests to be routed through a transport layer corresponds to the action of “initiating”;) for transmitting packets between a client and a server (Col 8 lines 44-48, Col 10 lines 41-45, remote request (packets) are transmitted from client to server), wherein the participating application participates in a transport protocol (Col 8 lines 44-61; when remote dispatch

method is selected, packets are sent using path 77 shown on figure 1b, which passes through transport layer 38, and remote dispatch having packets passing through transport layer corresponds to “the participating application participates in a transport protocol”);

- b. initiating a non-participating application (Col 2 lines 51-57, local process dispatch which bypasses the transport layer corresponds to “a non-participating application”; and when the local dispatch method is arranged to cause invocation requests to be pass to a servant without being routed through a transport layer corresponds to the action of “initiating”) for transmitting packets between the client and the server (Col 8 lines 44-48, Col 10 lines 41-45, remote request (packets) are transmitted from client to server), wherein the non-participating application does not participate in the transport protocol (Col 8 line 62- Col 9 line 9; Col 10 lines 45-48; when a local process is identified, path 75 and 76 are taken, local dispatch process using path 75 and 76 to bypass transport 38 corresponds to “the non-participating application does not participate in the transport protocol”);
- c. determining (Col 7 lines 7-17, method table dispatch 24 is used to make determination) whether a pointer is in a list of non-participating connections to the server (Col 2 lines 39-42, 51-57, (local method table corresponds to “a list of non-participating connections to the server”)); and
- d. in response to determining that the pointer is in the list (Col 7 lines 7-11; Col 2 lines 54-57; Col 8 line 62 –Col 9 line 9, if the client and server are determined to be in a local process), transmitting the packet on the non-participating path (paths

75, 76, figure 1b) through the non-participating application (Col 8 line 62 –Col 9 line 9; Col 2 lines 51-57, local process dispatch which bypasses the transport layer which corresponds to “a non-participating application” is used);

- e. in response to determining that the pointer is in not the list (Col 7 lines 12-15), transmitting the packet on the participating path (path 77, figure 1b) through the participating application (Col 2 lines 47-51, remote process dispatch which passes through the transport layer corresponds to “a participating application”).

Lim does not teach a quad of packets is in the list and the determination is made by using the quad of packets.

Arndt teaches routers that connect local and remote segments operate by forwarding packets based on IP addresses stored in its router table (Col 2 lines 49-60).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to have Lim's system route local process and remote processing by using a routing table because both Lim and Arndt teaches routing packets to destinations.

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the routing method taught by Arndt would facilitate the connection between a source device and a target device as taught by Arndt (Col 2 lines 49-51).

16. Referring to claim 23, Lim as modified teaches the computer program product of claim 19, wherein the non-participating application comprises an application that modifies a packet header of packets transmitted by the non-participating application (Col 19 lines

13-40, the headers are masked out (modified) when the process is local (non-participating application)).

17. Referring to claim 24, Lim as modified teaches the computer program of claim 19, wherein the computer program is further operable to determine whether to add a quad associated with the client to the list based on a security status of the client (Col 5 line 60-Col 6 line 3, security services are used between processes on different computers, so if a remote client is sending a packet to remote server, the security status of the client would be process on different computers, which is serviced by the participating application. Therefore the packets transmitted with the same machine which are having the different security status compared to the packets transmitted processed in different computers, are being determined to be added on the list for local processing).

18. Referring to claim 25, Lim teaches a system for communicating data between a client and a server (Col 4 line 66- Col 5 line 2, Col 8 lines 62-65, Col 10 lines 41-45), comprising:

- a. means for initiating a participating application (Col 2 lines 47-51, there are remote process dispatch methods and local process dispatch methods, each corresponds to an application; remote process dispatch which passes through the transport layer corresponds to “a participating application” and when the remote dispatch method is arranged to cause invocation requests to be routed through a transport layer corresponds to the action of “initiating”;) for transmitting packets between a client and a server (Col 8 lines 44-48, Col 10 lines 41-45, remote request (packets) are transmitted from client to server), wherein the participating application participates in a transport protocol (Col 8 lines 44-61; when remote

dispatch method is selected, packets are sent using path 77 shown on figure 1b,

which passes through transport layer 38, and remote dispatch having packets passing through transport layer corresponds to “the participating application participates in a transport protocol”);

- b. means for initiating a non-participating application (Col 2 lines 51-57, local process dispatch which bypasses the transport layer corresponds to “a non-participating application”; and when the local dispatch method is arranged to cause invocation requests to be pass to a servant without being routed through a transport layer corresponds to the action of “initiating”) for transmitting packets between the client and the server (Col 8 lines 44-48, Col 10 lines 41-45, remote request (packets) are transmitted from client to server), wherein the non-participating application does not participate in the transport protocol (Col 8 line 62- Col 9 line 9; Col 10 lines 45-48; when a local process is identified, path 75 and 76 are taken, local dispatch process using path 75 and 76 to bypass transport 38 corresponds to “the non-participating application does not participate in the transport protocol”);
- c. means for determining whether to transmit a packet from the client to the server using the participating application or the non-participating application (Col 7 lines 7-17, method table dispatch 24 determines a local stub function (non-participating application) should be called or a remote function (participating application) should be called).

- d. means for determining (Col 7 lines 7-17, method table dispatch 24 is used to make determination) whether a pointer is in a list of non-participating connections to the server (Col 2 lines 39-42, 51-57, (local method table corresponds to “a list of non-participating connections to the server”)); and
 - e. means for transmitting the pointer on the non-participating path (paths 75, 76, figure 1b) through the non-participating application (Col 8 line 62 –Col 9 line 9; Col 2 lines 51-57, local process dispatch which bypasses the transport layer which corresponds to “a non-participating application” is used) in response to determining that the pointer is in the list (Col 7 lines 7-11; Col 2 lines 54-57; Col 8 line 62 –Col 9 line 9, if the client and server are determined to be in a local process);
 - f. means for transmitting the packet on the participating path (path 77, figure 1b) through the participating application (Col 2 lines 47-51, remote process dispatch which passes through the transport layer corresponds to “a participating application”) in response to determining that the quad of the packet is in not the list (Col 7 lines 12-15).
19. Claims 3, 4, 9, 10, 15, 16, 21 and 22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lim in views of Arndt and in further views of Transmission Control Protocol RFC 793, hereinafter RFC 793.
20. Referring to claims 3 and 4, Lim as modified teaches the method of claim 1, wherein if a non-participating application is determined to be used (Col 8 line 62-Col 9 line 9, if a

local process is identified), TCP/IP layer (transport layer) is bypassed (path 75 and 76, figure 1b, bypass transport layer)).

Lim does not expressly teach wherein the non-participating application does not acknowledge packets transmitted by the non-participating application, and wherein non-participating application does not check a checksum of packets transmitted by the non-participating application.

However, RFC793 teaches acknowledgement and checksums calculating are required in a TCP/IP connection (page 15-16, 21, also see page 14 lines 16-24 of specification).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to not acknowledge packets nor check a check checksum of packets transmitted in a TCP/IP protocol when using the non-participating application of Lim because Lim does not anticipated in TCP/IP connection when using a non-participating application (see figure 1b and Col 8 line 67-Col 9 line 4).

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the shorter path, which does not acknowledge packets nor check a check checksum would allow Lim to reduce computing overhead by avoiding unnecessary anticipation of transport layer as taught by Lim (Col 2 lines 20-25).

21. Referring to claims 9 and 10, Lim as modified teaches the system of claim 7, wherein if a non-participating application is determined to be used (Col 8 line 62-Col 9 line 9, if a local process is identified), TCP/IP layer (transport layer) is bypassed (path 75 and 76, figure 1b, bypass transport layer)).

Lim does not expressly teach wherein the non-participating application does not acknowledge packets transmitted by the non-participating application, and wherein non-participating application does not check a checksum of packets transmitted by the non-participating application.

However, RFC793 teaches acknowledgement and checksums calculating are required in a TCP/IP connection (page 15-16, 21, also see page 14 lines 16-24 of specification).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to not acknowledge packets nor check a check checksum of packets transmitted in a TCP/IP protocol when using the non-participating application of Lim because Lim does not anticipated in TCP/IP connection when using a non-participating application (see figure 1b and Col 8 line 67-Col 9 line 4).

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the shorter path, which does not acknowledge packets nor check a check checksum would allow Lim to reduce computing overhead by avoiding unnecessary anticipation of transport layer as taught by Lim (Col 2 lines 20-25).

22. Referring to claims 15 and 16, Lim as modified teaches the apparatus of claim 13, wherein if a non-participating application is determined to be used (Col 8 line 62-Col 9 line 9, if a local process is identified), TCP/IP layer (transport layer) is bypassed (path 75 and 76, figure 1b, bypass transport layer)).

Lim does not expressly teach wherein the non-participating application does not acknowledge packets transmitted by the non-participating application, and wherein non-

participating application does not check a checksum of packets transmitted by the non-participating application.

However, RFC793 teaches acknowledgement and checksums calculating are required in a TCP/IP connection (page 15-16, 21, also see page 14 lines 16-24 of specification).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to not acknowledge packets nor check a check checksum of packets transmitted in a TCP/IP protocol when using the non-participating application of Lim because Lim does not anticipate in TCP/IP connection when using a non-participating application (see figure 1b and Col 8 line 67-Col 9 line 4).

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the shorter path, which does not acknowledge packets nor check a check checksum would allow Lim to reduce computing overhead by avoiding unnecessary anticipation of transport layer as taught by Lim (Col 2 lines 20-25).

23. Referring to claims 21 and 22, Lim as modified teaches the computer program product of claim 19, wherein if a non-participating application is determined to be used (Col 8 line 62-Col 9 line 9, if a local process is identified), TCP/IP layer (transport layer) is bypassed (path 75 and 76, figure 1b, bypass transport layer)).

Lim does not expressly teach wherein the non-participating application does not acknowledge packets transmitted by the non-participating application, and wherein non-participating application does not check a checksum of packets transmitted by the non-participating application.

However, RFC793 teaches acknowledgement and checksums calculating are required in a TCP/IP connection (page 15-16, 21, also see page 14 lines 16-24 of specification).

It would have been obvious to a person with ordinary skill in the art at the time the invention was made to not acknowledge packets nor check a check checksum of packets transmitted in a TCP/IP protocol when using the non-participating application of Lim because Lim does not anticipate in TCP/IP connection when using a non-participating application (see figure 1b and Col 8 line 67-Col 9 line 4).

A person with ordinary skill in the art would have been motivated to make the modification to Lim because having the shorter path, which does not acknowledge packets nor check a check checksum would allow Lim to reduce computing overhead by avoiding unnecessary anticipation of transport layer as taught by Lim (Col 2 lines 20-25).

Conclusion

24. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Liang-che Alex Wang whose telephone number is (571)272-3992. The examiner can normally be reached on Monday thru Friday, 8:30 am to 5:00 pm.
25. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Glenton B Burgess can be reached on (571)272-3949. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

26. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Liang-che Alex Wang
January 3, 2008

A handwritten signature in black ink, appearing to read "Liang-che Wang".