USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

II Semester B. E. Examinations Oct-2023

(Common to EC, EE, EI, ET)

VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.
- 3. Use of mathematics Handbook is permitted. Do not write anything on handbook.

PART-A

1	1.1	The region of convergence for the Laplace transform of e^{-4t} is	
			01
	1.2	Laplace Transform of the function $t^5\delta(t-3)$ is	01
	1.3	If $L[f(t)] = \frac{3}{s(s^2-5)}$, then $L\left[f\left(\frac{t}{2}\right)\right] = \underline{\hspace{1cm}}$.	01
	1.4	Find the Laplace transform of the function $f(t) = \frac{3}{\sqrt{t}}$.	01
	1.5	Relationship between line integral and surface integral is established	
		in	01
	1.6	If \overrightarrow{G} represents force acting on a particle, then $\int_C \overrightarrow{G} \cdot d\overrightarrow{r}$ represents	
			01
	1.7	Find the gradient of the function $2yz + z^2$ at the point $(1, -1, 3)$.	02
	1.8	Compute the divergence of $\vec{f} = (\cos \theta + \sin \theta)\hat{e}_r + (\cos \theta - \sin \theta)\hat{e}_\theta + \hat{e}_z$	
		specified in the cylindrical coordinates (r, θ, z) .	02
	1.9	$L^{-1}\left[\frac{1}{s(s-2)}\right] $ is	02
	1.10	If the signal in the frequency domain in $\frac{s}{(s+3)^2}$, then the function in the	
		time domain is	02
	1.11	Evaluate $\int_C y^2 dx - 2x^2 dy$ along the parabola $y = x^2$ from (0,0) to (2,4).	02
	1.12	First approximate value of a real root of the equation $x^4 - x = 10$ near	
		x = 2 by Newton –Raphson method is	02
	1.13	The approximate solution of $\frac{dy}{dx} = x^2 + y^2$ with $y(0) = 2$ at $x = 0.1$ using	
		Taylor series up to second degree term is	02

PART-B

2	а	Show that the vector $\vec{F} = (y^2 \cos x + z^3) \hat{\imath} + (2y \sin x - 4)\hat{\jmath} + 3xz^2 \hat{k}$ is	
		irrotational and find its scalar potential ϕ such that $\vec{F} = \nabla \phi$.	06
	b	Find the angle between the surface $xlog_e(z) = y^2 - 1$ and $x^2y = 2 - z$	
		at the point (1,1,1).	06
	С	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = \vec{r} $, then show that $\frac{\vec{r}}{r^3}$ is solenoidal.	04

3	a	If $\vec{F} = (2x + y^2)\hat{\imath} + (3y - 4x)\hat{\jmath}$, evaluate $\oint_C \vec{F} \cdot d\vec{r}$ around the triangle in the xy plane with vertices $(0,0)$, $(2,0)$ and $(2,1)$.	08
	b	Evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ if $\vec{F} = yz\hat{\imath} + xz\hat{\jmath} + xy\hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.	08
4	a	Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{\imath} + (2xz - y)\hat{\jmath} + z\hat{k}$ along the curve defined by $x^2 = 4y, 3x^3 = 8z$ from $x = 0$ to $x = 2$.	06
	b	Using Stoke's theorem, evaluate $\int_C (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices $(2,0,0)$, $(0,3,0)$ and	
		(0,0,6).	10
5	a b	Find the Laplace transform of $t\cos(3t) + \int_0^t \frac{e^{-3t}\sin(2t)}{t} dt$. Show that the Laplace transform of the periodic function	08
		$f(t) = \begin{cases} 1+t, & 0 \le t \le 1 \\ 3-t, & 1 \le t \le 2 \end{cases} \text{ with } f(t+2) = f(t) \text{ is } \frac{1}{s} + \frac{1}{s^2} \tanh\left(\frac{s}{2}\right). \text{ Also sketch the graph of the function.}$	08
6	a	i) Evaluate $\int_0^\infty \frac{e^{-t}\sin(t)}{t} dt$ using Laplace transform.	
	b	ii) Find $L[\sin 2t \cos 3t]$. Express the piecewise continuous function $f(t) = \begin{cases} 2t^2, & 0 \le t < 3 \\ t + 4, & 3 \le t < 5 \\ 9, & t \ge 5 \end{cases}$	08
		in terms of the unit step function and then find its Laplace transform. 0	08
7	a	Find $L^{-1} \left[\log_e \left(\frac{s+2}{s+5} \right) + \frac{s+3}{s^2 - 10s + 29} \right]$	08
	b	Solve $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{3t}$, $y(0) = 1$, $y'(0) = 0$ using Laplace transform.	08
8	a	Using convolution theorem, obtain inverse Laplace transform of	
		$\frac{s}{(s^2+1)(s^2+4)}$.	08
	b	Find the inverse Laplace transform of $\frac{s+2}{(s^2+4s+5)^2} + e^{-s} \left(\frac{1+\sqrt{s}}{s^3}\right)$	08
9	a b	Compute the real root of the equation $x^3 - 4x + 1 = 0$ in the interval [0,1] correct to three decimal places using Regula-Falsi method. Perform four iterations. Use the Runge-Kutta method of fourth order with $h = 0.1$ to find	06
		approximate value for the solution of the initial value problem $\frac{dy}{dx} = x^2 + y^2$, $y(1) = 1.5$ at $x = 1.1$ and $x = 1.2$.	10
10	a	Apply Milne's predictor-corrector method to find the solution of the differential equation $\frac{dy}{dx} = xy + y^2$ at $x = 0.4$ given that $y(0) = 1$,	
	b	y(0.1) = 0.1169, y(0.2) = 1.2773, y(0.3) = 1.5049. Apply corrector formula twice. Using Newton –Raphson method, find the root of the equation	10
		$\sin x = 1 - x$ correct to four decimal places choosing the initial guess $x_0 = 0.6$.	06