Midterm 2

Last Name	First Name	SID

Left Neighbor First and Last Name	Right Neighbor First and Last Name	

Rules.

- Unless otherwise stated, all your answers need to be justified and your work must be shown. Answers without sufficient justification will get no credit.
- You have 80 minutes to complete the exam. (DSP students with X% time accommodation should spend $80 \cdot X\%$ time on the exam and 10 minutes to submit).
- This exam is not open book. No calculator or phones allowed.
- Collaboration is prohibited. If caught cheating, you may fail and face disciplinary actions.
- Write in your SID on every page to receive 1 point.

Problem	points earned	out of
SID		1
Problem 1		12
Problem 2		11
Problem 3		9
Problem 4		14
Problem 5		8
Problem 6		13
Total		68

1 A Poisson Chain [2+2+2+3+3] points

Andy runs a discrete-time Markov chain $(X_n)_{n\geq 0}$, starting from $X_0=0$. At each time step, if the current state is 0, he samples from a Poisson distribution with a fixed parameter $\lambda\in(0,\infty)$, independent of all other samples, and sets the state to the outcome. Otherwise, if the state is non-zero, he decrements the state by 1. In other words, if $Y \sim \text{Poisson}(\lambda)$, the transition matrix P contains the following values:

$$P_{ij} = \begin{cases} \Pr\{Y = j\} & i = 0 \text{ and } j \ge 0\\ 1 & i > 0 \text{ and } j = i - 1\\ 0 & \text{otherwise} \end{cases}$$

For each question, please provide a brief justification for full credit.

- a) What is the state space of this Markov chain?
- b) Is this Markov chain irreducible?
- c) What is the period of this Markov chain?
- d) Is this Markov chain positive recurrent, null recurrent, or transient? Also, find the expected return time to state 0.
- e) Does a unique stationary distribution π exist for this Markov chain? If it does, what is π_0 ?

2 Coin Flipping! [5 + 6 points]

- a) One day, Han is bored and decides to flip coins to pass time. These coins are *special*: they will stand up on the thin edge w.p. (with probability) p, land heads w.p. 9p, and land tails otherwise. Han flips 10 of these coins and observes 5 heads, 3 tails, and 2 coins standing on their edge. Using MLE, what's the most likely value for p?
- b) Now, suppose Clark flips a different coin. This coin is fair (shows only heads and tails with equal probability) with probability $\frac{1}{3}$ and otherwise it is a special coin (as defined in the previous problem, now with p=0.05). Given that Clark flips this coin 10 times and observes h heads and 10-h tails, what is the MAP rule for whether or not he is flipping a special coin? Simplify the MAP rule into a single inequality involving h.

3 Convergence [9 points]

The Central Limit Theorem says that for $(X_i)_{i=1}^{\infty}$ that are i.i.d. mean zero and variance 1,

$$Z_n := \frac{X_1 + \dots + X_n}{\sqrt{n}} \stackrel{\mathrm{d}}{\to} \mathcal{N}(0, 1).$$

Show that this limit cannot be upgraded to convergence almost surely. Hint: It may help to consider the sequence of random variables $(\sqrt{2}Z_{2n} - Z_n)$.

4 Café 126 [4 + 4 + 6 points]

The EECS 126 staff are opening a café! They need your help in planning their business. Suppose that customers arrive according to a Poisson process with rate λ per hour.

- a) Let $N(s,t) := N_s N_t$ be the number of customers that arrive between times t and s. What are $\mathbb{E}[N(3,1) \mid N(6,2)]$ and $\text{Var}[N(3,1) \mid N(6,2)]$?
- b) Each customer independently orders exactly one drink, which is a cappuccino with probability 1/2, an espresso with probability 1/3, and a cold brew with probability 1/6. What is the probability that exactly 1 of each drink (cappuccino, espresso, and cold brew) have been sold at the end of T hours?
- c) Unfortunately, Café 126 is located adjacent to their competitor, Sunducks. Customers enter Sunducks according to a Poisson Process at rate μ , independent of arrivals to Café 126. What is the probability that, at the time when Café 126 gets their kth customer, Sunducks will have had exactly n customers?

5 Confident Gambling [4 + 4 points]

It is suspected that a casino is cheating with a die. It is further believed that the probability for a roll resulting in a 6 is set to p, and the probability for each of the other outcomes (1, 2, 3, 4 or 5) is set to (1-p)/5. To investigate this, we first estimate p after N rolls by $(X_1 + X_2 + ... + X_N)/N$, where $X_i = 1$ if roll number i has the outcome of 6, and $X_i = 0$, otherwise. We roll the die 100 times, and observe a 6 on 25 of those rolls.

Hints/Facts: The variance of a Bernoulli random variable is at most 1/4. Assume $\Phi^{-1}(0.95) = 1.65$, $\Phi^{-1}(0.975) = 2$ and $\Phi^{-1}(0.99) = 2.32$, where Φ is the CDF of $\mathcal{N}(0,1)$ distribution.

- a) Find the 95% confidence interval for p by indicating the numerical values of the endpoints of the interval.
- b) Suppose you want to be sure that the true value of p is within 0.01 of the estimate with at least 0.95 probability. Approximate the minimum value of N required.

6 Jackson [2 + 3 + 3 + 3 + 2 points]

Consider the Jackson network shown in the figure below. Jobs arrive to the network according to a Poisson process with rate $\lambda = 1.2$ jobs/s, and the exponential service rates at Queue-1 and Queue-2 are $\mu_1 = 5$ and $\mu_2 = 6$ jobs/s, respectively. Also, $p_1 = 0.4$ and $p_2 = 0.2$ are the probabilities for a job to rejoin the first queue after service at Queue-1 and Queue-2, respectively. Note that from the time a job enters the network until it leaves the network, it's always at one of the two queues, i.e., routing occurs in zero time.

- a) Find the rates r_1 and r_2 , the total rates at which jobs enter the two queues, respectively.
- b) Find the invariant probability that there are no jobs in the entire network.
- c) Find the average number of total jobs in the network under the invariant distribution.
- d) What's the average delay for a job (duration from the arrival to and departure from the network) assuming the network is operational for a long time?
- e) Is the two-dimensional CTMC associated with this Jackson network reversible? Justify your answer.