Функционални редици и редове

4 април 2020г.

Нека разгледаме редица от функции

$$f_1, f_2, \ldots, f_n, \ldots$$

с обща дефиниционна област $f_n:D\longrightarrow \mathbb{R},\ n\in\mathbb{N}.$ Интересуваме се кога при фиксирано $x\in D$ числовата редица $\{f_n(x)\}_{n\to 1}^\infty$ е сходяща. Множеството

$$D' := \left\{ x \in D : \lim_{n=1} f_n(x) \text{ съществува} \right\}$$

наричаме област на сходимост на функционалната редица $\{f_n\}_{n=1}^{\infty}$. Функцията $f: D' \longrightarrow \mathbb{R}$, дефинирана с $f(x) := \lim_{n=1} f_n(x)$, наричаме гранична функция на $\{f_n\}_{n=1}^{\infty}$ и казваме, че функционалната редица $\{f_n\}_{n=1}^{\infty}$ поточково клони към f в D'.

Аналогично, ако $u_n: D \longrightarrow \mathbb{R}$, $n \in \mathbb{N}$, казваме, че функционалният ред $\sum_{n=1}^{\infty} u_n(x)$ (ред, чиито членове са функции) е (поточково) сходящ в множеството $D' \subset D$, ако функционалната редица $S_n(x) = \sum_{i=1}^n u_i(x)$ има област на сходимост D'.

Примери: 1) $f_n(x) = x^n$, M = [0, 1].

Ако $x\in [0,1)$ то $f_n(x)=x^n\to_{n\to\infty}0,$ а $f_n(1)=1\to_{n\to\infty}1,$ т.е. граничната функция е

$$f(x) = \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1 \end{cases}$$

2) $f_n(x) = \frac{1}{1+nx}$, M = [0,1]. $f_n(0) = 1 \to_{n\to\infty} 1$, а ако $x \in (0,1]$ то $f_n(x) \to_{n\to\infty} 0$,

т.е. граничната функция е

$$f(x) = \begin{cases} 1, & x = 0 \\ 0, & x \in (0, 1] \end{cases}$$

3) $f_n(x) = \frac{nx}{1+n^2x^2}$, M = [0,1]. $f_n(0) = 0 \to_{n\to\infty} 0$, а ако $x \in (0,1]$ то

т.е. граничната функция е f(x) = 0 за всяко $x \in [0, 1]$.

4) $f_n(x)=\frac{\sin nx}{n}, \quad M=(-\infty,+\infty).$ Т.к. $|f_n(x)|\leq \frac{1}{n}\to_{n\to\infty} 0$, то f(x)=0 за всяко $x\in[0,1].$

Дефиниция: Казваме, че f_n клони към f равномерно в $M \subset D$, ако за всяко $\varepsilon > 0$ може да се намери такова n_0 , че ако $n \geq n_0$, да е изпълнено $|f_n(x) - f(x)| < \varepsilon$ едновременно за всички $x \in M$. Пишем $f_n \Longrightarrow_{n\to\infty} f \ B \ M.$

Дефиниция: Казваме, че редът $\sum_{n=1}^{\infty}u_n(x)$ е равномерно сходящ в $M\subset D$, ако редицата от парциалните му суми S_n клони към S равномерно BM.

Разлика между поточковата сходимост и равномерната сходимост в M:

Поточкова сходимост: За всяко $x \in M$ и за всяко $\varepsilon > 0$ съществува n_0 такова, че ако $n \geq n_0$, да е изпълнено $|f_n(x) - f(x)| < \varepsilon$. (Тук е допустимо $n_0 = n_0(x)$.)

Равномерна сходимост: За всяко $\varepsilon > 0$ съществува такова n_0 , че за всички $x \in M$ и за всички $n \ge n_0$ да е изпълнено $|f_n(x) - f(x)| < \varepsilon$. (Тук не е допустимо $n_0 = n_0(x)$.)

Да отбележим, че тривиално от равномерна сходимост следва поточкова сходимост (в същото множество) към същата граница.

Примери: 1) $f_n(x) = \frac{1}{1+nx}$, M = [0,1].

Тук имаме само поточкова сходимост.

Наистина за $x \in (0,1]$ неравенството $|f_n(x) - f(x)| = \frac{1}{1+nx} < \varepsilon$

означава $n>\frac{1}{x}\left(\frac{1}{\varepsilon}-1\right)\;(=n_0(x)).$ 2) $f_n(x)=\frac{\sin nx}{n}\Longrightarrow_{n\to\infty}0$ в $(-\infty,+\infty)$. Сходимостта е равномерна, T.K

$$|f_n(x) - f(x)| = \left| \frac{\sin nx}{n} \right| \le \frac{1}{n} < \varepsilon$$

означава $n > \frac{1}{\varepsilon} (= n_0)$.

Наблюдение: $f_n(x) \Longrightarrow_{n\to\infty} f(x)$ в $M \iff \sup_{x\in M} |f_n(x)|$ $f(x)| \longrightarrow_{n \to \infty} 0.$

(Грубо казано, най-голямата разлика между f_n и f клони към 0. Нарисувайте си картинка!)

Доказателство на наблюдението:

 (\Longrightarrow) Нека $f_n(x)$ клони към f(x) равномерно в M, т.е. за всяко $\varepsilon > 0$ може да се намери такова n_0 , че ако $n \geq n_0$ да е изпълнено $|f_n(x)|$ $|f(x)| < \varepsilon/2$ едновременно за всички $x \in M$. Тогава

$$\sup_{x \in M} |f_n(x) - f(x)| \le \varepsilon/2 < \varepsilon$$

и следователно $\lim_{n\to\infty}\sup_{x\in M}|f_n(x)-f(x)|=0.$

 (\longleftarrow) Нека $\lim_{n\to\infty}\sup_{x\in M}|f_n(x)-f(x)|=0$. Тогава за всяко $\varepsilon>0$ може да се намери такова n_0 ,че ако $n \ge n_0$ да е изпълнено $\sup_{x \in M} |f_n(x) |f(x)| < \varepsilon$, следователно $|f_n(x) - f(x)| < \varepsilon$ едновременно за всички $x \in M$, T.e. $f_n(x) \Longrightarrow_{n\to\infty} f(x)$ в M.

Примери: 1) $f_n(x) = x^n$, M = [0, 1].

Сходимостта не е равномерна, тъй като

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} x^n = 1$$

не клони към нула при
$$n \to \infty$$
. $2) f_n(x) = \frac{1}{1+nx}, \ M = [0,1].$

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \sup_{x \in (0,1]} \frac{1}{1 + nx} = 1,$$

не клони към нула при $n \to \infty$, следователно сходимостта не е равномерна.

3) $f_n(x)=\frac{\sin nx}{n}\Longrightarrow_{n\to\infty}0,\ \ x\in(-\infty,+\infty).$ Сходимостта е равномерна, тъй като

$$\sup_{x \in (-\infty, +\infty)} |f_n(x) - f(x)| = \sup_{x \in (-\infty, +\infty)} \left| \frac{\sin nx}{n} \right| = \frac{1}{n} \to_{n \to \infty} 0.$$

4)
$$\sum_{n=1}^{\infty} x^n = x + x^2 + \ldots + x^n + \ldots \;\;, \;\; x \in (-1,1).$$

$$S_n(x) = x \frac{1 - x^n}{1 - x} \to_{n \to \infty} \frac{x}{1 - x} = S(x), \quad |S_n(x) - S(x)| = \frac{|x|^{n+1}}{1 - x}$$

Т.к. $\lim_{x\to 1}\frac{|x|^{n+1}}{1-x}=\infty$, то $\sup_{x\in (-1,1)}|S_n(x)-S(x)|$ (> 1) не може да клони към нула при $n\to\infty$, т.е. редът е сходящ неравномерно.

 $f_n(x) = x^n(1-x), \ M = [0,1].$ Граничната функция е f(x) = 0. Производната $f'_n(x) = x^{n-1}[n - (n+1)x]$ се анулира за x = 0 и $x = \frac{n}{n+1}$ и тогава

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} f_n(x) = f_n\left(\frac{n}{n+1}\right) =$$
$$= \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \frac{1}{n+1} \to \frac{1}{e}.0 = 0$$

Следователно сходимостта е равномерна в [0,1].

Теорема (Необходимо и достатъчно условие на Коши за равномерна сходимост на функционални редици):

Редицата $f_n \Longrightarrow_{n\to\infty} f$ в M точно тогава, когато за всяко $\varepsilon > 0$ може да се намери такова n_0 , че за всяко $x \in M$, за всяко $n \ge n_0$ и за всяко $p \in \mathbb{N}$ да е изпълнено $|f_{n+p}(x) - f_n(x)| < \varepsilon$.

Доказателство: Необходимостта е тривиална. Наистина, нека $\{f_n\}_{n=1}^{\infty}$ клони към f равномерно в M и нека $\varepsilon > 0$ е произволно. Тогава $|f_n(x) - f(x)| < \varepsilon/2$ за всяко $x \in M$ и за всяко $n \ge n_0$. Следователно

$$|f_{n+p}(x) - f_n(x)| \le |f_{n+p}(x) - f(x)| + |f(x) - f_n(x)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

за всяко $x \in M$, за всяко $n \geq n_0$ и за всяко $p \in \mathbb{N}$ (защото очевидно $n+p \geq n_0$).

По-интересна е достатъчността. Първо трябва да намерим кандидат за граница. Фиксираме $x \in M$ и тогава условието на Коши от формулировката на теоремата тривиално влече, че числовата редица $\{f_n(x)\}_{n=1}^{\infty}$ е фундаментална и следователно е сходяща. Означаваме границата и́ с f(x). По такъв начин имаме дефинирана гранична функция $f:M \longrightarrow \mathbb{R}$. Знаем, че нашата функционална редица клони към f поточково, но ние трябва да докажем равномерна сходимост. Фиксираме $\varepsilon > 0$. Тогава съществува такова n_0 , че за всяко $x \in M$, за всяко $n \ge n_0$ и за всяко $p \in \mathbb{N}$ да е изпълнено $|f_{n+p}(x) - f_n(x)| < \varepsilon/2$. В това неравенство извършваме граничен преход по $p \to \infty$ и получаваме $|f(x) - f_n(x)| \le \varepsilon/2 < \varepsilon$, с което теоремата е доказана.

Следствие (Необходимо и достатъчно условие на Коши за равномерна сходимост на функционални редове):

Редът $\sum_{n=1}^{\infty} u_n$ е равномерно сходящ в M, ако за всяко $\varepsilon > 0$ може да се намери такова n_0 , че за всяко $x \in M$, за всяко $n \ge n_0$ и за всяко $p \in \mathbb{N}$ да е изпълнено

$$|u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+p}(x)| < \varepsilon.$$

За доказателството е достатъчно да се приложи предното твърдение за редицата от парциалните суми S_n .

Следващото твърдение е само достатъчно условие за равномерна сходимост на ред, но е много удобно и често използвано.

Твърдение (Критерий на Вайерщрас за равномерна сходимост на функционален ред):

Нека $|u_n(x)| \leq c_n$ за всяко $x \in M$ и нека числовият ред $\sum_{n=1}^{\infty} c_n$ е сходящ. Тогава редът $\sum_{n=1}^{\infty} u_n$ е равномерно сходящ в M. (Нещо повече, редът от абсолютните стойности е също равномерно сходящ в M.)

Доказателство: Редът $\sum_{n=1}^{\infty} c_n$ е сходящ, следователно за всяко $\varepsilon>0$ може да се намери такова n_0 , че за всяко $n\geq n_0$ и за всяко $p\in\mathbb{N}$ да е изпълнено

$$|c_{n+1} + c_{n+2} + \dots + c_{n+p}| < \varepsilon.$$

Неравенствата

$$|u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+p}(x)| \le |u_{n+1}(x)| + |u_{n+2}(x)| + \dots + |u_{n+p}(x)| \le c_{n+1} + c_{n+2} + \dots + c_{n+p} < \varepsilon,$$

са изпълнени при $n \geq n_0$ и $p \in \mathbb{N}$ едновременно за всички $x \in M$.

Следователно, съгласно необходимото и достатъчно условие на Коши за равномерна сходимост на функционални редове, редът $\sum_{n=1}^{\infty} u_n$ е равномерно сходящ в M.

Теорема (за непрекъснатост на граничната функция):

Нека $\{f_n\}_{n=1}^{\infty}$ е редица от непрекъснати в $D \subset \mathbb{R}$ функции, която клони към f равномерно в D. Тогава f е непрекъсната в D. (Равномерна граница на непрекъснати функции е непрекъсната.) Всъщност, ако всеки елемент на $\{f_n\}_{n=1}^{\infty}$ е функция, непрекъсната в $x_0 \in D$, то граничната функция f е непрекъсната в x_0 .

Доказателство: Нека фиксираме $\varepsilon > 0$ произволно. Тъй като $\{f_n\}_{n=1}^\infty$ клони към f равномерно в D, съществува такова n_0 , че за всички $x \in D$ и за всички $n \geq n_0$ е изпълнено $|f_n(x) - f(x)| < \varepsilon/3$. Знаем, че функцията f_{n_0} е непрекъсната в точката $x_0 \in D$, следователно можем да намерим $\delta > 0$ такова, че от $|x - x_0| < \delta$ да следва $|f_{n_0}(x) - f_{n_0}(x_0)| < \varepsilon/3$. Тогава

$$|f(x) - f(x_0)| = |f(x) - f_{n_0}(x) + f_{n_0}(x) - f_{n_0}(x_0) + f_{n_0}(x_0) - f(x_0)| \le$$

 $\leq |f(x)-f_{n_0}(x)|+|f_{n_0}(x)-f_{n_0}(x_0)|+|f_{n_0}(x_0)-f(x_0)|<arepsilon/3+arepsilon/3+arepsilon/3=arepsilon.$ Следователно f е непрекъсната в x_0 .

Забележка: Да отбележим, че горната теорема е само достатъчно условие, но не и необходимо. Наистина да разгледаме редицата

$$f_n(x)=rac{nx}{1+n^2x^2},\ D=[0,1].\ f_n(0)=0$$
 $\to_{n\to\infty}0,$ а ако $x\in(0,1]$ то $f_n(x)\to_{n\to\infty}0,$

т.е. граничната функция е f(x)=0 за всяко $x\in[0,1]$, която е една непрекъсната функция. Сходимостта на f_n към f , обаче не е равномерна. От неравенството

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \frac{nx}{1 + n^2 x^2} = f\left(\frac{1}{n}\right) = \frac{1}{2}$$

следва, че $\sup_{x \in [0,1]} |f_n(x) - f(x)|$ не клони към нула и сходимостта наистина не е равномерна.

Следствие: Нека u_n са непрекъснати в $D \subset \mathbb{R}$ функции и нека редът $\sum_{n=1}^{\infty} u_n$ е равномерно сходящ в D. Тогава неговата сума е непрекъсната в D функция.

Следващата теорема дава достатъчно условие границата на редица от диференцируеми функции да е диференцируема. Равномерна сходимост на редицата не стига, както показва следният пример: очевидно редицата $\{f_n\}_{n=1}^{\infty}$, където $f_n(x) = \frac{\sin(n^3x)}{n}$, клони равномерно към константата нула върху цялата реална права, при това всички членове на редицата са безброй пъти диференцируеми (точният израз е диференцируеми n пъти за всяко естествено n). Но редицата от производните $f'_n(x) = n^2 \cos(n^3x)$ е разходяща за всяко x, което не е цяло кратно на $\pi/2$.

Теорема (за почленното диференциране): Нека Δ е краен интервал и $\{f_n\}_{n=1}^{\infty}$ е редица от диференцируеми функции с дефиниционна област Δ . Предполагаме, че редицата от производните им $\{f'_n\}_{n=1}^{\infty}$ е равномерно сходяща в Δ . Нека съществува точка $x_0 \in \Delta$ такава, че числовата редица $\{f_n(x_0)\}_{n=1}^{\infty}$ е сходяща. Тогава функционалната редица $\{f_n\}_{n=1}^{\infty}$ е равномерно сходяща в Δ , границата й е диференцируема функция и производната на границата е равна на границата на производните, тоест

$$\left(\lim_{n\to\infty}f_n(x)\right)'=\lim_{n\to\infty}f_n'(x)$$
 за всяко $x\in\Delta$.

Доказателство:

Първо ще докажем, че при условията на теоремата редицата $\{f_n\}_{n=1}^{\infty}$ е равномерно сходяща в Δ . Ще започнем с малко анализ. Нека $x \in \Delta$, $n \in \mathbb{N}$ и $p \in \mathbb{N}$ са произволни (засега). Тогава (като използваме теоремата за крайните нараствания за $f_n - f_{n+p}$) можем да получим оценката

$$|f_n(x) - f_{n+p}(x)| \le |(f_n(x) - f_{n+p}(x)) - (f_n(x_0) - f_{n+p}(x_0))| +$$

$$+ |f_n(x_0) - f_{n+p}(x_0)| = |f'_n(\eta) - f'_{n+p}(\eta)| \cdot |x - x_0| + |f_n(x_0) - f_{n+p}(x_0)|,$$

където η е между x и x_0 . Вече сме готови за строгото разсъждение. Нека M>0 е толкова голямо реално число, че $[x_0-M,x_0+M]\supset \Delta$ (такова има, защото Δ е ограничен). Фиксираме произволно $\varepsilon>0$. Тъй като числовата редица $\{f_n(x_0)\}_{n=1}^\infty$ е сходяща, тя е фундаментална и следователно съществува $n_1\in\mathbb{N}$ такова, че $|f_n(x_0)-f_{n+p}(x_0)|<\varepsilon/2$ за всяко $n\geq n_1$ и за всяко $p\in\mathbb{N}$. Като използваме необходимото и достатъчно условие на Коши за равномерна сходимост на функционални редици, намираме $n_2\in\mathbb{N}$ такова, че $\left|f'_n(x)-f'_{n+p}(x)\right|<\frac{\varepsilon}{2M}$ за всяко $n\geq n_2$, за всяко $p\in\mathbb{N}$ и за всяко $x\in\Delta$. Полагаме $n_0:=\max\{n_1,n_2\}$. Тогава за всяко $n\geq n_0$, за всяко $p\in\mathbb{N}$ и за всяко $x\in\Delta$ е в сила

$$|f_n(x) - f_{n+p}(x)| < \frac{\varepsilon}{2M} \cdot M + \frac{\varepsilon}{2} = \varepsilon$$
.

Това означава, че необходимото и достатъчно условие на Коши за равномерна сходимост на функционални редици е изпълнено за редицата $\{f_n\}_{n=1}^{\infty}$ в Δ и следователно тя е равномерно сходяща в Δ .

Cera се обръщаме към доказателството на втората част от заключението на теоремата. Означаваме

$$f(x):=\lim_{n o\infty}f_n(x)$$
 и $\varphi(x):=\lim_{n o\infty}f'_n(x)$ за всяко $x\in\Delta$.

Да фиксираме произволна точка $\xi \in \Delta$. Диференцируемостта на f в ξ и точната стойност на производната ще бъдат доказани, ако успеем да докажем, че

$$\left| \frac{f(x) - f(\xi)}{x - \xi} - \varphi(\xi) \right| \longrightarrow_{x \to \xi} 0.$$

Отново първо ще направим някаква оценка (засега тук $x \in \Delta$, $n \in \mathbb{N}$ и $p \in \mathbb{N}$ са произволни):

$$\left| \frac{f(x) - f(\xi)}{x - \xi} - \varphi(\xi) \right| \le |\varphi(\xi) - f'_n(\xi)| + \left| f'_n(\xi) - \frac{f_n(x) - f_n(\xi)}{x - \xi} \right| + \left| \frac{f_n(x) - f_n(\xi)}{x - \xi} - \frac{f_{n+p}(x) - f_{n+p}(\xi)}{x - \xi} \right| + \left| \frac{f_{n+p}(x) - f_{n+p}(\xi)}{x - \xi} - \frac{f(x) - f(\xi)}{x - \xi} \right|.$$

Да фиксираме произволно $\varepsilon > 0$. Искаме да направим дясната част горе малка за сметка на близостта между x и ξ , като параметрите $n \in \mathbb{N}$ и $p \in \mathbb{N}$ са на наше разположение да ги избираме както искаме. Ще се опитаме да направим всяко събираемо по-малко от $\varepsilon/4$.

Тъй като $\varphi(\xi)=\lim_{n\to\infty}f_n'(\xi)$, съществува $n_1\in\mathbb{N}$ такова, че $|\varphi(\xi)-f_n'(\xi)|<\varepsilon/4$ за всяко $n\geq n_1$. Да покажем, че и третото събираемо може да се направи малко за сметка само на n. Наистина

$$\left| \frac{f_n(x) - f_n(\xi)}{x - \xi} - \frac{f_{n+p}(x) - f_{n+p}(\xi)}{x - \xi} \right| =$$

$$= \left| \frac{(f_n(x) - f_{n+p}(x)) - (f_n(\xi) - f_{n+p}(\xi))}{x - \xi} \right| = \left| f'_n(\eta) - f'_{n+p}(\eta) \right|$$

за някое η е между x и ξ (след прилагане на теоремата за крайните нараствания). Сега необходимото и достатъчно условие на Коши за равномерна сходимост на функционални редици, приложено за редицата от производните, ни дава съществуването на $n_2 \in \mathbb{N}$ такова, че $\left|f_n'(x) - f_{n+p}'(x)\right| < \frac{\varepsilon}{4}$ за всяко $n \geq n_2$, за всяко $p \in \mathbb{N}$ и за всяко $x \in \Delta$. Полагаме $n_0 := \max\{n_1, n_2\}$ и фиксираме някое $n \geq n_0$. С това този параметър е фиксиран, а първото и третото събираемо са малки независимо от $x \in \Delta$ и $p \in \mathbb{N}$. Тъй като f_n е диференцируема в ξ , съществува $\delta > 0$ такова, че за всички $x \in (\xi - \delta, \xi + \delta) \cap \Delta$ е в сила

$$\left| f_n'(\xi) - \frac{f_n(x) - f_n(\xi)}{x - \xi} \right| < \frac{\varepsilon}{4} .$$

Сега вече фиксираме и x. Можем да направим последното събираемо малко само за сметка на p, защото $\lim_{p\to\infty} f_{n+p}(x) = f(x)$ и $\lim_{p\to\infty} f_{n+p}(\xi) = f(\xi)$:

$$\left| \frac{f_{n+p}(x) - f_{n+p}(\xi)}{x - \xi} - \frac{f(x) - f(\xi)}{x - \xi} \right| = \left| \frac{f_{n+p}(x) - f(x)}{x - \xi} - \frac{f_{n+p}(\xi) - f(\xi)}{x - \xi} \right| < \frac{\varepsilon}{4}$$

за всички достатъчно големи р. И тъй, получихме

$$\left| \frac{f(x) - f(\xi)}{x - \xi} - \varphi(\xi) \right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon$$

за всяко $x \in (\xi - \delta, \xi + \delta) \cap \Delta$. С това теоремата е доказана.

Следствие: Нека Δ е краен интервал и $\sum_{n=1}^{\infty} f_n$ е ред от диференцируеми функции с дефиниционна област Δ . Предполагаме, че редът от производните $\sum_{n=1}^{\infty} f'_n$ е равномерно сходящ в Δ . Нека съществува точка $x_0 \in \Delta$ такава, че числовият ред $\sum_{n=1}^{\infty} f_n(x_0)$ е сходящ. Тогава функционалният ред $\sum_{n=1}^{\infty} f_n$ е равномерно сходящ в Δ , сумата му е диференцируема функция и производната на сумата е равна на сумата на реда от производните, тоест

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f_n'(x)$$
 за всяко $x \in \Delta$.

За доказателство приложете теоремата за редицата от парциални суми $\{S_n\}_{n=1}^\infty$, като забележите, че

$$S'_n(x) = (f_1(x) + f_2(x) + \ldots + f_n(x))' = f'_1(x) + f'_2(x) + \ldots + f'_n(x) .$$