# Chapter 1

# Introduction

Cyber Physical Systems (CPS) are nowadays widely used in different application domains, such as smart-homes, smart-cities, hospitals, etc... They are mainly composed of two entities: a cyber part consisting in a computing and networking component, and a physical part consisting in different controllers and sensors. The existence of a connected cyber part implies its susceptibility to multiple cyber threats. The malfunctioning of these systems, due to a cyber threat, can cause severe impacts on the real life and the safety of the community, for example a blackout or water contamination. That is why many algorithms have been designed for the security monitoring of those systems, in particular the anomaly and attack detection.

Nowadays, machine and deep learning algorithms are used to detect those anomalies and intrusions. But, in majority, they rely only on the cyber part of the systems and on the data describing their behaviour, ignoring their physical models. The idea behind this work is to employ a hybrid machine learning algorithm, in particular neural networks, to detect anomalies and attacks in CPS considering its physical model.

## 1.1 Physic guided machine learning in literature

As mentioned before, the aim of the work is to fuse the black-box and theory-based models together to get better predictions. However this is not the first time such a fusion is examined. In the literature various approaches of the fusion of neural networks with theory-based models were presented. Those approaches can be divided into two types given what aspect of the algorithm they're changing: those that modify in first place the input to take into consideration the physical constraints, and those that modify the structure of the neural network.

->here comes some more explanations-<

## 1.2 Case study

In order to focus on the implementation of the hybrid machine learning algorithm, a CPS, with ready to use datasets, was chosen from a list provided in [1]: the **power system** [2], which network diagram was represented on figure 1-1. The system is composed of two power generators who are alimenting the whole system. Intelligent Electronic Devices (IEDs) R1 to R4 and the breakers BR1 to BR4 can be found connected directly to those generators. Each IED switches its corresponding breaker when a fault is detected, valid or fake. The communication between the IEDs and the Substation Switch is done wirelessly. On the other hand the Substation Switch is connected with the Primary Domain Controller (PDC) and the Control Room.



Figure 1-1: Power system network diagram [2]

The operation of this power system can be described following 6 main scenarios:

- normal behaviour,
- short-circuit,
- line maintenance,
- remotely opening the breakers (attack),
- disruption of fault protection system (attack),

• fault imitation (attack).

Each of those scenarios can be divided into several sub-scenarios concerning different entities of the system or/and the failure range. Every scenario was labelled with a number between 1 and 41. In this way 37 scenarios are obtained, divided and numbered as follows:

- 1 no events scenario, its number it is 41,
- 8 natural fault scenarios, its number ranges are 1-6 (short-circuit) and 13-14 (line maintenance),
- 28 attack scenarios, its number ranges are 7-12 (fault imitation), 15-20 (remotely opening the breakers), 20-30 and 35-40 (disruption of fault protection system).

The reason for dropping the numbers between 31 and 34 in the naming process of scenarios is not known.

The datasets provided in [1] represent **78377 events**, in which one of those scenarios was reproduced in the system. They have been grouped by scenario into 3 datasets: binary (attack or normal operation), three-class (attack, normal fault and no events) and multiclass (differentiating all 37 scenarios). Each of these 3 datasets is composed of 15 arff or act comporting in average 141 events for each of 37 scenarios. The exact number of events per file for each scheme is illustrated on figure 1-2. For the 3 class dataset **55663 attack**, **18309 natural fault** and **4405 normal operation** events were found. The distribution of these schemes throughout the files is shown on figure 1-3.



Figure 1-2: Scenarios distribution throughout all 15 files



Figure 1-3: Scenarios distribution throughout the 3-class dataset files

Figure 1-3 shows also this distribution for the binary datasets. It is sufficient to add the number of natural (orange) and normal operation (green) events.

The scenarios are not equally distributed in the case of the 37 schemes dataset, it is especially shown by the standard deviation of 61, which is an important value compared to some scenarios counting less than 100 events. On the other hand, in the case of 3-class scenarios, the distribution is even more not equal compared to the 37 schemes dataset. The **mean standard deviation among** all files is equal to 1767, which is an enormous result given that some scenarios count only around 100 events.

Every electrical grid around the world uses a **3-phased** electric power. Such a grid is composed of three alternating current generators combined. Those generators pass the current in three conductors. That way three conductors are obtained, and each of them conducts a phase of current named A, B and C respectively. The current phases have the same frequency, but a difference of phase of 1/3 of a cycle between each of them. In addition to that, each current has a corresponding voltage, with the same frequency and phases differences [3].

In order to simplify the analysis of three-phase power systems, symmetrical components transformation is used, for both voltage and current. This transformation is defined as:

$$\begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix}, \tag{1.1}$$

where  $V_0$ ,  $V_1$ ,  $V_2$  are called respectively zero sequence, positive sequence and negative sequence,  $a = e^{i\frac{2\pi}{3}}$  and  $V_A$ ,  $V_B$ ,  $V_C$  the A-C voltage phases [4]. As each sequence is a weighted sum of sinusoidal functions (A-C phases), it can be on its own written as one sinusoidal function after mathematical transformations.

Each phase is a **sinusoidal** function. Its equation form is  $y = A \cdot \sin(\omega t + \theta)$ , where A is the amplitude,  $\omega$  the angular frequency and  $\theta$  the initial phase. Two terms will be used in what follows: the **magnitude** which is the absolute value of the amplitude and the **angle** which refers to initial phase. These two variables were illustrated on figure 1-4.



Figure 1-4: Magnitude and angle  $(\theta)$  of sinusoidal functions

Moreover, when talking about electrical components, the term of impedance can come across. The impedance can be seen as a generalization of resistance of an electrical component. It is defined as the ratio of the voltage over current that passes through this component and takes a complex value of form z = x + yi. Every complex number can be also written in form of  $z = e^{i\phi}$ , where  $\phi$  is the angle of the complex number z, and in this particular case the angle of the impedance.

Every previously mentioned event is described by **128 features**: 116 provided by four IEDs (each one provides 29 types of measurements) and 12 other features are reserved for control panel logs, snort <sup>1</sup> alerts, relay logs of 4 IEDs. The mentioned 116 features, each has a label formed by **concatenation** of the **source IED reference** (it can be R1, R2, R3, R4) and the **measurement name**, as provided in table 1.1. For example R4-PM5:I stands for phase B current phase magnitude measured by R4.

<sup>&</sup>lt;sup>1</sup>Snort - Network Intrusion Detection and Prevention System

Table 1.1: IED measurements [2]

| Feature           | Description                            |
|-------------------|----------------------------------------|
| PA1:VH – PA3:VH   | Phase A-C Voltage Phase Angle          |
| PM1:V - PM3:V     | Phase A-C Voltage Phase Magnitude      |
| PA4:IH – PA6:IH   | Phase A-C Current Phase Angle          |
| PM4:I-PM6:I       | Phase A-C Current Phase Magnitude      |
| PA7:VH – PA9:VH   | Pos.–Neg.– Zero Voltage Sequence Angle |
| PM7:V - PM9:V     | PosNegZero Voltage Sequence Magnitude  |
| PA10:VH - PA12:VH | PosNegZero Current Sequence Angle      |
| PM10:V - PM12:V   | PosNegZero Current Sequence Magnitude  |
| F                 | Frequency for relays                   |
| DF                | Frequency Delta (dF/dt) for relays     |
| PA:Z              | Appearance Impedance for relays        |
| PA:ZH             | Appearance Impedance Angle for relays  |
| S                 | Status Flag for relays                 |

Those datasets have been used in several works related to CPS cyber-attack classification, one of which is [5], where the author try to find the most accurate algorithm to predict the status of the power system. The following chapter shows an attempt to partially reproduce the results obtained by them.

# Chapter 2

# Machine learning algorithms comparison

Before going further and analysing neural networks, a deeper look at classical machine learning algorithms will be taken, in particular Random Forest, Support Vector Machine (SVM) and NaïveBayes in the context of anomaly detection in the CPS presented in chapter 1. However this was done before in [5] using the black-box model algorithms only. In their approach they used Weka [6] in order to find the most performant algorithm among 7 they have chosen (OneR, NNge, Random Forest, Naïve Bayes, SVM, JRipper, Adaboost).

This chapter shows an attempt to reproduce the results provided in [5], using two different machine learning toolkits (Weka and scikit-learn [7]) in order to confirm the obtained results. That is why, first, these two toolkits will be presented, then the obtained results will be discussed.

## 2.1 Machine learning toolkits

### 2.1.1 Weka

Weka, or more exactly Waikato Environment for Knowledge Analysis, is an open source machine learning software developed at The University of Waikato in Hamilton, New Zealand and based on Java programming language. It is well known especially in academic environments and a lot of machine learning researches were conducted using it, one of them the mentioned before [5]. It incorporates various machine learning tools: classifiers, regressors, visualizers, data pre-processor etc...

Weka is characterised by 3 main operating schemes. First, it can be run using a **graphical user** interface (GUI), enabling the user, even without deep knowledge in programming, to make machine learning experiments and analyse available classifiers. Second, more advanced users have the option to run all the available tools using a **command line**. Finally, Weka's tools can be integrated

directly into code in several programming languages (Java, Python, R, Spark), which enables even larger versatility.

#### 2.1.2 scikit-learn

scikit-learn is an open-source machine learning **Python library** developed originally by David Cournapeau as a Google Summer of Code project and now it is maintained by a team of volunteers. It is well known in both academic and commercial environments, since it is used by many enterprises such as Spotify, Evernote, Booking.com, and research facilities like Inria or Télécom ParisTech [8]. It includes, just like Weka, various machine learning tools such as classifiers, regressors, data preprocessor etc... Its visualisation capabilities are limited, however there exist many additional Python packages for data visualisation such as YellowBrick, Eli5 and others... They will be further discussed in next chapter.

scikit-learn can be used only as an extension of Python language, what makes a bit harder for non experts to start working with it. However, since Python is an user friendly programming language and scikit-learn has a well made documentation, this toolkit is easy to use. Along with other Python packages, and especially pandas, scikit-learn is a very powerful, ergonomic and versatile solution for machine learning problems.

It might be also interesting to mention that scikit-learn can be used within Weka after installing the appropriate add-on. This enables Weka users to use scikit-learn classifiers and regressors and run Python code just inside Weka's GUI.

## 2.2 Used machine learning algorithms

Before talking about the comparison of machine learning algorithms, the used classifiers are briefly described in this section in order to better understand how do they work. In parallel, values of classifiers' parameters used during all the tests are presented in tables 2.1, 2.2 and 2.3, and, in majority, they represent the default values found in Weka, in order to reproduce the results from [5].

#### 2.2.1 Random Forest

Random Forest, as the name indicates, is an **ensemble** of a given number of trees, and more exactly **decision trees**. This given number of trees is set using the parameter numIterations in Weka and  $n\_estimators$  in scikit-learn. Each of decision trees is created based on a randomly chosen set of features of the dataset. The number of features is given by the parameter numFeatures in Weka and

max\_features in scikit-learn, which indicate the way it is calculated - in this case as the logarithm of base 2 of the number of features.

On the other hand, decision trees represent a structure capable of determining the class of the predicted sample. It is composed of nodes connected to each other in a form of tree. Each node corresponds to a condition related to the features, for example if a particular feature is higher than a certain number. Each node, except the decision ones, has two child nodes corresponding to the answer as yes or no to the condition from from parent node. For each of two answers, particular classes are assigned, for example, given the case study in this work, yes answer can correspond to classes Attack and Natural and the answer no to class NoEvents. When running a tree on a particular sample, the nodes are followed given the answers on conditions, until arriving to the decision node. The class corresponding to this node is taken as the final output of the decision tree. The number of layers of nodes is called the depth of the tree and it is set using the parameter maxDepth in both Weka and scikit-learn.

The choice of condition in a node is based on calculating **gini impurity** or **information gain** metric for each feature and determining, based on one of them, which feature has the biggest effect on the choice of the class. Gini impurity determines the probability of a feature being classified incorrectly when selected randomly, it is given by the equation:

Gini impurity = 
$$1 - \sum_{i=1}^{n} (p_i)^2,$$
 (2.1)

where n is the number of classes and  $p_i$  the probability of the feature being classified for the class i. The information gain on the other hand, determines the quantity of information that the features gives about a particular class, it is calculated as:

$$E(S) = \sum_{i=1}^{n} -p_i \log_2 p_i.$$
 (2.2)

Weka uses the information gain metric, while in scikit-learn it is possible to choose the metric using the parameter *criterion*, which by default is set to gini impurity, which is less computationally complex.

The random forest, composed of a number of those decision trees, determines the class of a sample taking the class, which was chosen by the biggest amount of decision trees. In both Weka and scikit-learn, this classifier comes with more, less crucial parameters, which are all listed in table 2.1.

Table 2.1: Random Forest classifier parameters

(a) Weka [9]

(b) scikit-learn [10]

| Parameter                               | Value | Parameter                           | Value    |
|-----------------------------------------|-------|-------------------------------------|----------|
| bagSizePercent                          | 100   | n_estimators                        | 100      |
| batchSize                               | 100   | criterion                           | "gini"   |
| ${\it breakTies} Randomly$              | False | $\max\_depth$                       | None     |
| ${\rm calcOutOfBag}$                    | False | $min\_samples\_split$               | 2        |
| ${\bf compute Attribute Importance}$    | False | $min\_samples\_leaf$                | 1        |
| debug                                   | False | ${\rm min\_weight\_fraction\_leaf}$ | 0.0      |
| ${\it doNotCHeckCapabilities}$          | False | $\max_{features}$                   | $\log 2$ |
| $\max$ Depth                            | 0     | $max\_leaf\_nodes$                  | None     |
| numDecimalPlaces                        | 2     | ${\it min\_impurity\_decrease}$     | 0.0      |
| ${\bf num Execution Slots}$             | 1     | $\min_{} impurity_{} split$         | None     |
| numFeatures                             | 0     | bootstrap                           | True     |
| numIterations                           | 100   | $oob\_score$                        | False    |
| output Out Of Bag Complexity Statistics | False | n_jobs                              | None     |
| printClassifiers                        | False | $random\_state$                     | None     |
| seed                                    | 1     | verbose                             | 0        |
| ${\it storeOutOfBagPredictions}$        | False | $warm\_start$                       | False    |
|                                         |       | class_weight                        | None     |
|                                         |       | $ccp\_alpha$                        | 0.0      |
|                                         |       | $\max\_samples$                     | None     |

### 2.2.2 SVM

SVM, or more exactly **Support Vector Machine**, is a classifier that creates an N-dimensional space, in which all the samples from the training dataset are put, and then divided, geometrically, into regions, where each region corresponds to one class. The N dimensions of this space corresponds to all the features of the datasets and their transformations (for example a square of one of the features). Those transformations are done using a kernel function which can be set in Weka and scikit-learn using the *kernelType/kernel* parameter. Three kernel types are more commonly used: linear, polynomial and radial basis function (exponent based). The default kernel in both Weka and scikit-learn is radial basis function. Each type of kernel function comes with a set a parameters itself, like the degree in the case of polynomial and all of them can be set through the parameters of both used machine learning toolkits.

In fact, the transformations do not calculate additional dimensions for every sample, but calculate the distance between points in the N-dimensional space. This distance is mathematically defined as the dot product of the two points. The dot product on other hand is defined of the sum of products of coordinates for every dimension.

The division is made by determining so called **hyperplane**, which for example in a 2D features spaces is just a line. The points from each class that are the closest to the hyperplane are called support vector points, from where comes the name of this classifier [11] [12].

The algorithm is running within a set number of iterations (can be set within Weka and scikitlearn) dividing the training dataset to smaller tranches using the cross-validation technique. The goal is to find the hyperplane that way so the number of misclassified samples is the smallest in that particular iteration.

SVM in Weka and scikit-learn comes additionally with other parameters than a:re listed on table 2.2.

Table 2.2: SVM classifier parameters

| (a) | Weka | [13] | ı |
|-----|------|------|---|
| ıα  | weka | IТЭ  |   |

| Parameter |  |
|-----------|--|
| C         |  |

(b) scikit-learn [14]

| Parameter                             | Value                  |
|---------------------------------------|------------------------|
| SVMType                               | C-SVC (classification) |
| batchSize                             | 100                    |
| cacheSize                             | 40.0                   |
| coef0                                 | 0.0                    |
| cost                                  | 1.0                    |
| debug                                 | False                  |
| degree                                | 3                      |
| ${\bf doNotCHeckCapabilities}$        | False                  |
| ${\bf do Not Replace Missing Values}$ | False                  |
| eps                                   | 0.001                  |
| gamma                                 | 0.0                    |
| kernelType                            | radial basis function  |
| loss                                  | 0.1                    |
| modelFile                             | Weka-3-8-4             |
| normalize                             | False                  |
| nu                                    | 0.5                    |
| num Decimal Places                    | 2                      |
| ${\it probability} Estimates$         | False                  |
| seed                                  | 1                      |
| shrinking                             | True                   |
| weights                               |                        |

| Parameter                         | Value        |
|-----------------------------------|--------------|
| C                                 | 1.0          |
| kernel                            | $"{ m rbf}"$ |
| degree                            | 3            |
| gamma                             | "scale"      |
| coef0                             | 0.0          |
| shrinking                         | True         |
| probability                       | True         |
| tol                               | 1e-3         |
| cache_size                        | 7000         |
| class_weight                      | None         |
| verbose                           | False        |
| $\max_{}$ iter                    | 1000         |
| ${\it decision\_function\_shape}$ | "ovr"        |
| break_ties                        | False        |
| random_state                      | None         |

### 2.2.3 NaïveBayes

NaïveBayes is a classifier based on the **Bayes theorem**, which states that the probability of event A, given that the event B happened is equal to the product of the probability of B given that A occurred and the probability of A, divided by the probability of B:

$$P(A|B) = \frac{P(B|A)\dot{P}(A)}{P(B)}. (2.3)$$

While the naivety of the algorithm is due to it does not taking into consideration the eventual relations between the features.

The NaïveBayes classifier can be both **multinomial** and **gaussian**. In the multinomial case the probabilities are calculated the classical way (number of occurrences over all samples), whereas in the gaussian case, the probabilities are taken from the gaussian distribution of a given event. For both Weka and scikit-learn the gaussian case were used.

The list of all the parameters available is listed on table 2.3, however they impact on how the algorithm works is marginal.

Table 2.3: NaïveBayes classifier parameters

| (a) | weka | [15] |
|-----|------|------|
|-----|------|------|

| Parameter                           | Value |
|-------------------------------------|-------|
| batchSize                           | 100   |
| debug                               | False |
| ${\it display} Model In Old Format$ | False |
| ${\bf doNotCHeckCapabilities}$      | False |
| numDecimalPlaces                    | 2     |
| use Kernel Estimator                | False |
| use Supervised Discretization       | False |

### (b) scikit-learn [16]

| Parameter     | Value |
|---------------|-------|
| priors        | None  |
| var_smoothing | 1e-9  |

# 2.3 Metrics for classifiers comparison

All those classifiers give predictions that can be divided into 4 main groups. Assuming for a moment, for illustration purposes, that normal fault class is positive and attack class is negative, it could be differentiated between:

- true positive predictions (tp): correct prediction of the normal fault class,
- true negative predictions (tn): correct prediction of the attack class,

- false positive predictions (**fp**): incorrect prediction of normal fault class,
- false negative predictions (fn): incorrect prediction of attack class.

For that two classes, several metrics can be defined, that will be useful to compare between the used classifiers:

• accuracy: ratio of correct classifications over the total number of samples, or in other words:

$$accuracy = \frac{tp + tn}{tp + tn + fp + fn}$$
 (2.4)

• **precision**: ratio of correct classifications for a particular class over all classifications that indicated that class, or:

$$precision = \frac{tp}{tp + fp}$$
 (2.5)

• recall: ratio of correct classifications for a particular class, over all samples corresponding for this class, or:

$$recall = \frac{tp}{tp + fn} \tag{2.6}$$

• **f-measure**: weighted average of precision and recall given by the equation:

f-measure = 
$$2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$
.

Given that those metrics work only with binary problems with a positive and a negative class, for multiclass problems the accuracy is always calculated as the ratio of true classifications over all classifications, however for precision, recall and f-measure, the average is calculated, and that in 3 different ways [17]:

- micro average: the metrics are determined globally by calculating true positives as all correct predictions, false negatives and false positives as all incorrect predictions (assuming two classes A and B, when A is misclassified as B is a false positive for A, and in the same time a false negative for B). In this case precision, recall, f-measure and accuracy have exactly the same value,
- macro average: the metrics are calculated for each class, the concerned class is considered as positive, while the sum of others as negative. Then their arithmetic mean value is calculated,
- weighted average: the metrics are calculated for each class, then it calculates their weighted average value by the number of true instances for each class.

scikit-learn supports the calculation of precision, recall and f-measure in the 3 different ways explicitly, however in Weka only for f-measure all 3 are available, while for precision and recall there is the choice between the generic ones and the weighted averages. The generic ones the most probably correspond to the macro average, since, after some tests, the obtained values for those metrics are not the same. The exact information about the nature of those averages could not be found in Weka's documentation.

## 2.4 Comparison results

In order to reproduce the results presented in [5], Weka version 3.8.4 and scikit-learn version 0.23.1, running on Anaconda 3.18.11 with Python 3.7.6.final.0, were used. SVM in Weka comes from a package untitled *libsvm* available for this toolkit. The results are shown in tables below:



Figure 2-1: Accuracy for three-class datasets



Figure 2-2: Accuracy for binary datasets



Figure 2-3: Accuracy for multiclass datasets



Figure 2-4: Precision



Figure 2-5: Recall



Figure 2-6: F-measure



Figure 2-7: F-measure macro



Figure 2-8: F-measure micro



Figure 2-9: F-measure weighted



Figure 2-10: Precision weighted



Figure 2-11: Recall weighted

The obtained results indicate clearly that Random Forest algorithm is the more accurate and gives clearly the best results, with Adaboost+JRIP with slightly worse performance. On the other hand, the results presented in [5] shows better results for Adaboost+JRIP. For SVM and Naïve

Bayes the results are comparable, expect for precision value for SVM. The origin of this difference is so far unknown.

It can be observed that the obtained results are partially different from those obtained using Weka. The results for MLP and Naïve Bayes are comparable to those from Weka, but on the other hand, the results for Random Forest and SVM differ considerably. This made MLP the most reliable classifier compared to others in this comparison.

It can be also deducted that Weka is calculating metrics globally (corresponds to micro in scikit-learn).

## 2.5 scikit-learn further methods' analysis

In addition to all that, scikit-learn enables the user to plot the receiver operating characteristic (ROC) curves for each class and the confusion matrix. The ROC curve represents the plot od true positive rate when the false positive rate changes. The confusion matrix on the other hand shows the normalized number (over the total number of samples) of predicted values of each class for each class. The results are illustrated on figures 2-12, 2-13, 2-14 and 2-15.



Figure 2-12: Random Forest ROC curve and confusion matrix



Figure 2-13: SVM ROC curve and confusion matrix



Figure 2-14: Naïve Bayes ROC curve and confusion matrix



Figure 2-15: MLP ROC curve and confusion matrix

The previous figures show that Random Forest classifier has the higher capacities to distinguish between the occurrence of each class, or it's absence. It's visible on both ROC curve and the confusion matrix, where the highest number of predictions is shown for the true positives for each class. SVM tends to predict only NoEvents and Attacks but does not really succeed in distinguishing between them. Naïve Bayes fails to make true predictions, it considers everything of class natural. Finally MLP, it succeeds in determining the class NoEvents, but does not distinguish over classes almost at all, despite the high accuracy (it is due because of the huge number of samples of class NoEvents).

Given this analysis, it can be deducted that Random Forest algorithm acts the best, and that is why it will be adapted in next chapters, in which, at first, an analysis of features and their importance will be made. However a deeper look at the amelioration of MLP will be also made later.

# Chapter 3

# Features' importance

After having determined the most performant algorithm, which is Random Forest, it is time to go further and analyse which features impact the results of classification the most. The focus will be especially on false predictions. In order to do that, six tools will be compared: LIME [18], ELI5 [19], YellowBrick [20], Treeinterpreter [21], dtreeviz [22] and export\_graphviz tool from scikit-learn, where the last three ones are designed for Decision Tree and Random Forest classifiers.

# 3.1 Result's interpreters' comparison

#### 3.1.1 LIME

LIME (Local Interpretable Model-agnostic Explanations) is a tool that is used to explain the behaviour of machine learning classifiers. It supports, as for this day, only the explanation of individual predictions for any scikit-learn classifier or regressor. This explanation consist in a list of features ordered by their relative importance for a particular prediction. This list can be shown is a raw mode (as a python list) or in a visual form (pyplot figure, jupyter notebook or html file).

In order to class the features according to their importance, LIME approximates the model by an interpretable one, created based on perturbing the features of the examined instance. More the perturbed instances are similar to the examined instance, higher is the weight of the perturbed feature.

#### 3.1.2 ELI5

ELI5 (Explain like I am a 5-year old) is a tool, in form of a Python package, used to debug machine learning classifiers and explain their predictions. It supports multiple machine learning frameworks, including scikit-learn. It can be used to explain how the model works both locally for one prediction

and globally for the whole model. The output can take several forms just like in LIME case.

For white-box models, ELI5 works as an extension of scikit-learn and it's capable to extract the weights of model's features for different classes. In addition to that it can show the weights that contributed in a particular prediction. On the other hand, for black-box models, this tool integrates a modified version of LIME, supporting more machine learning frameworks, and a permutation importance method, which checks how the model's accuracy decreases when removing one of the features and on this basis determines the importance of the features.

### 3.1.3 YellowBrick

YellowBrick is another Python package, which is an extension of scikit-learn framework. It is meant to give global interpretation of the analysed model on different levels. It is possible not only to visualize features importances calculated directly by scikit-learn, but also to give a classification report (accuracy, recall, precision, f-measure), plot a confusion matrix, a ROC curve and much more. In addition to all that, YellowBrick comes with a tool for determination of correlation between features in the dataset.

### 3.1.4 Treeinterpreter

Treeinterpreter is a simple Python package that works with scikit-learn trees and random forest classifiers. It's only usage consists in decomposing the obtained prediction into bias and contributions of different features. The output is given in the form of a numpy array.

### 3.1.5 scikit-learn export\_graphviz

export\_graphviz is a scikit-learn embedded function that enables the user to visualise a decision tree with all the branches and save it into Graphviz<sup>1</sup> format, that can be converted into a vector graphic. It is possible also to visualise decision trees composing random forest model in scikit-learn, since the possibility to extract particular decision trees when using this framework. However the interpretability of results for random forest classifier can be hard.

#### 3.1.6 dtreeviz

dtreeviz is a more advanced version of export\_graphviz available in scikit-learn. For every leaf in the tree it can show a histogram indicating the influence of feature value on class selection. In addition

<sup>&</sup>lt;sup>1</sup>a set of tools for diagram creation using graphs.

to that, dtreeviz enables the user to show the path of a particular prediction. The result is saved in the form of a svg vector graphic.

### **3.1.7** Summary

It can be concluded that ELI5 is the most versatile package compared to others, especially because it enables both global and local interpretations and does not limit its support to scikit-learn, plus it has LIME integrated in it. YellowBrick, on other hand, adds the possibility to analyse from a statistical view the features available in the dataset. Finally comes Treeinterpreter and dtreeviz that are interesting tools when analysing especially Decision Trees. A summary of the most import features of all 5 packages is shown in table 3.1, where 6 comparison metrics where taken into consideration:

- global interpretation: capacity of the tool to interpret the whole model,
- local interpretation: capacity of the tool to interpret a particular sample from the dataset,
- black-box models support: the fact if the tool supports only black-box models (models that can not be simply interpreted),
- features' statistical analysis: the fact if the tool supports statistical analysis of features in the dataset, without taking into consideration the model,
- works only with scikit-learn,
- decision trees graphical visualisation.

Table 3.1: Comparison of tools for model analysis

|                                        | LIME | ELI5 | YellowBrick | Treeinterpreter | dtreeviz |
|----------------------------------------|------|------|-------------|-----------------|----------|
| Global interpretation                  | X    | ✓    | ✓           | Х               | X        |
| Local interpretation                   | ✓    | ✓    | ×           | ✓               | ✓        |
| Black-box models support               | ✓    | ✓    | ✓           | ×               | X        |
| Features' statistical analysis         | X    | X    | ✓           | ×               | X        |
| Works only with scikit-learn           | ✓    | X    | ✓           | ✓               | ✓        |
| Decision Trees graphical visualisation | X    | X    | ×           | ×               | ✓        |

## 3.2 Features' importance determination

For the rest of the chapter LIME was chosen to determine the features' importance because of it working with all black-box models available in scikit-learn. The capabilities of LIME were sufficient and that is why ELI5 was not used in his place.

Since in this case the explanations of single samples are not really interesting, an attempt to generalize the results was made: Lime explainer was run on 100 false predictions of a chosen class. The results are concatenated together, and for all the features that are duplicated, the importance is calculated as the mean value of the importances and only one entry is kept with the calculated average importance. This algorithm was also run omitting the differentiation between classes. The results, reduced to 10 entries each, are shown below.

For NoEvents class:

|                                   | importance |
|-----------------------------------|------------|
| feature                           |            |
| R2-PM1:V > 130872.03              | -0.013013  |
| R3-PA2:VH <= -93.75               | -0.011134  |
| R2-PA7:VH <= -101.20              | -0.010218  |
| R3-PM2:V > 130431.15              | -0.009583  |
| R2-PM7:V > 130857.40              | -0.009377  |
| •••                               |            |
| R3-PM5:I <= 330.70                | 0.005762   |
| 0.00 < R1-PA12:IH <= 32.04        | 0.007514   |
| 128762.21 < R2-PM1:V <= 129859.49 | 0.007776   |
| R3-PM2:V <= 128425.29             | 0.007998   |
| R4-PA5:IH > 115.38                | 0.008534   |

[361 rows x 1 columns]

For Attack class:

|                              | importance |
|------------------------------|------------|
| feature                      |            |
| R3-PA2:VH > 113.97           | -0.012837  |
| -97.10 < R4-PA7:VH <= -35.66 | -0.010994  |
| -97.43 < R1-PA7:VH <= -35.85 | -0.010306  |
| R2-PA2:VH > 114.00           | -0.009730  |

| R3-PM2:V <= 128425.29 | -0.006914 |
|-----------------------|-----------|
| • • •                 |           |
| R3-PA2:VH <= -93.75   | 0.008307  |
| R3-PA7:VH <= -101.22  | 0.008676  |
| R2-PM1:V > 130872.03  | 0.009242  |
| R3:S > 0.00           | 0.010717  |
| R2-PA7:VH <= -101.20  | 0.014018  |

## [380 rows x 1 columns]

## For Natural class:

|                       | importance |
|-----------------------|------------|
| feature               |            |
| R2-PA5:IH <= -74.26   | -0.003613  |
| R4-PM3:V > 132484.78  | -0.002835  |
| R4-PM2:V > 132187.18  | -0.002437  |
| R2-PM7:V <= 128751.24 | -0.002290  |
| R2-PM1:V <= 128762.21 | -0.002151  |
|                       |            |
| R1-PA1:VH > 71.28     | 0.003518   |
| R2-PM7:V > 130857.40  | 0.003693   |
| R2-PA5:IH > 63.30     | 0.004103   |
| R3:F > 60.00          | 0.004873   |
| R2:F > 60.00          | 0.005168   |

### [331 rows x 1 columns]

### For all classes:

|                             | importance |
|-----------------------------|------------|
| feature                     |            |
| R3-PM2:V <= 128425.29       | -0.006715  |
| R2-PA7:VH > 65.91           | -0.006353  |
| R3-PM5:I <= 330.70          | -0.006009  |
| -40.44 < R3-PA1:VH <= 65.76 | -0.005808  |
| R3-PA4:IH <= -65.22         | -0.005764  |

...

[331 rows x 1 columns]

# Bibliography

- [1] T. Morris, "Industrial Control System (ICS) Cyber Attack Datasets Tommy Morris." https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets.
- [2] U. Adhikari, S. Pan, and T. Morris, "Power System Attack Datasets," Apr. 2014.
- [3] "Three-phase electric power," Wikipedia, May 2020.
- [4] J.L. Kirtley Jr., "Introduction To Symmetrical Components," 6.061 Introduction to Power Systems, vol. Class Notes Chapter 4.
- [5] R. C. Borges Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and S. Pan, "Machine learning for power system disturbance and cyber-attack discrimination," in 2014 7th International Symposium on Resilient Control Systems (ISRCS), (Denver, CO, USA), pp. 1–8, IEEE, Aug. 2014.
- [6] "Appendix B The WEKA workbench," in *Data Mining (Fourth Edition)* (I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, eds.), pp. 553–571, Morgan Kaufmann, fourth edition ed., 2017.
- [7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine Learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.
- [8] "Who is using scikit-learn? scikit-learn 0.23.1 documentation." https://scikit-learn.org/stable/testimonials/testimonials.html.
- $[9] \ ``RandomForest." \ https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html.$
- [10] "Sklearn.ensemble.RandomForestClassifier scikit-learn 0.23.1 documentation." https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

- [11] A. Yadav, "SUPPORT VECTOR MACHINES(SVM)." https://towardsdatascience.com/support-vector-machines-svm-c9ef22815589, Oct. 2018.
- [12] "Support Vector Machines, Clearly Explained!!!," Jan. 2014.
- [13] "LibSVM." https://javadoc.scijava.org/Weka/weka/classifiers/functions/LibSVM.html.
- [14] "Sklearn.svm.SVC scikit-learn 0.23.1 documentation." https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
- [15] "NaiveBayes." https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayes.html.
- [16] "Sklearn.naive\_bayes.GaussianNB scikit-learn 0.23.1 documentation." https://scikit-learn.org/stable/modules/generated/sklearn.naive\_bayes.GaussianNB.html.
- [17] B. Shmueli, "Multi-Class Metrics Made Simple, Part II: The F1-score." https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1, June 2020.
- [18] M. T. Ribeiro, S. Singh, and C. Guestrin, ""Why Should I Trust You?": Explaining the predictions of any classifier," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 1135–1144, 2016.
- [19] Mikhail Korobov and Konstantin Lopuhin, "ELI5." https://github.com/TeamHG-Memex/eli5.
- [20] B. Bengfort, R. Bilbro, N. Danielsen, L. Gray, K. McIntyre, P. Roman, Z. Poh, et al., "Yellow-brick," 2018-11-14, 2018.
- [21] Ando Saabas, "TreeInterpreter." https://github.com/andosa/treeinterpreter.
- [22] Terence Parr and Prince Grover, "Dtreeviz." https://github.com/parrt/dtreeviz.