UNIDAD 5: TRANSFORMACIONES LINEALES

Veremos ahora algunos ejemplos de transformaciones

Simetría axial

Simetría radial

Homotecias

Rotaciones

Contracciones

Cizalladura

Las Transformaciones lineales presentes en la vida real

Proyección sobre un plano

Matrices asociadas estándares especiales en IR²

a) Reflexión o simetría respecto del eje de abscisas

$$T: IR^2 \to IR^2$$

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ -y \end{pmatrix}$$

$$T(\mathbf{u}) = (\mathbf{x}; -\mathbf{y})$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

b) Reflexión o simetría respecto del eje de ordenadas

$$T: IR^2 \rightarrow IR^2$$

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} -x \\ y \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

c) Reflexión o simetría respecto del origen de coordenadas

$$T: IR^2 \rightarrow IR^2$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

d) Reflexión o simetría respecto de la recta identidad

$$T:IR^2 \rightarrow IR^2$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

e) Proyección sobre el eje x

$$T:IR^2 \rightarrow IR^2$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

f) Proyección sobre el eje y

$$T: IR^2 \rightarrow IR^2$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

g) Dilatación o contracción en la dirección del eje x

$$T: IR^2 \rightarrow IR^2$$
 , $k \in IR^+$ y $k \neq 1$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ y \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

i) Corte o cizalladura horizontal

$$T: IR^2 \to IR^2$$
 $\underline{k} \in IR \ y \ k \neq 0$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+ky \\ y \end{pmatrix},$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

j) Corte o cizalladura vertical

$$T: IR^2 \rightarrow IR^2$$
 , $k \in IR$ y $k \neq 0$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y+kx \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

k) Rotación de ángulo α en sentido positivo

$$T: IR^2 \rightarrow IR^2$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} \cos\theta & -sen\theta \\ sen\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$