Operation regions of MOSFET

Triode or ohmic region: $V_{GD} > V_{TH}$ $I_D = k_n [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$

Source Gate + Drain

S D

p-Type Substrate

Saturation region: $V_{GD} < V_{TH}$ $I_D = \frac{1}{2} k_n (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$

- $\lambda = \frac{L-L'}{V_{DS}L}$: channel length modulation coefficient
- L': actual channel length

Cut-off region: $V_{GS} < V_{TH}$ $I_D = 0$

Triode and cut-off region: switching devices Saturation region: amplifier

MOSFET—small-signal model

P-depletion

$$V_{GS} = 0 \Rightarrow 0N$$

$$V_{GS} = -Ve \Rightarrow 0N$$

NI-enhancment

P-enhancment

BJT

Structure

Yes

No

Symmetric fabrication

$$I_D = \frac{1}{2}k_n(V_{GS} - V_{TH})^2(1 + \lambda V_{DS})$$
 – Saturation

 $I_C = I_S(e^{\frac{V_{BE}}{V_T}} - 1)$ — forward active

Current control

No current flowing through G and S. The voltage of GS that controls the current through D and S.

A small current flowing through B and E controls a much larger current through C and E.

Three basic configurations: MOSFT VS. BJT

Three basic configurations: MOSFT VS. BJT

OPGAVE REGNINGER

Assignments:

8.1:

A MOSFET circuit is shown in Fig. 1. It is assumed that: $V_{DD}=10$ V, $R_{G}=33~K\Omega$, $R_D=5.6~K\Omega$ and the channel length modulation coefficient $\lambda=0$. Furthermore, we assume that $V_{TH}=2\ V$ and $k_n=0.9*10^{-3}\ A/V^2$.

- (a) To achieve $I_D=1\ mA, V_{GS}=?$
- (b) To have V_{GS} obtained in (a), $V_{BB} = ?$ Explain why.
- (c) To ensure the MOSFET operating in saturation, how large is the output signal swing?
- (d) Setup a small signal circuit and calculate the component values and voltage gain A...
- (e) To achieve a maximum output signal swing for $I_D=1\ mA,R_D=?$
- (f) If the channel length modulation coefficient $\lambda=0.5$ and $R_D=5.6$ K Ω are considered, the output resistance $r_o = ?$ The voltage gain $A_v = ?$

Solution:

:
$$I_{D} = \frac{1}{2} k_{\gamma} \left(V_{G} - V_{TH} \right)$$

$$\frac{1}{2} k_{\gamma} \left(V_{G} - V_{TH} \right)^{2} \rightarrow V_{TH} = \frac{2I_{D}}{2} + V_{TH} \approx 35 V$$

(a)
$$I_D = \frac{1}{2} k_n (V_{GS} - V_{TH})^2 \rightarrow V_{GS} = \sqrt{\frac{2I_D}{k_n}} + V_{TH} \approx 3.5 \text{ V}$$

(b) Since $I_G = 0 \rightarrow V_{R_G} = 0 \rightarrow V_{BB} = V_{GS} = 3.5 \text{ V}$
(c) $V_{DS} = V_{DD} - R_D I_D = 10 - 5.6 \text{K}\Omega * 1 \text{mA} = 4.4 \text{ V}$

To ensure the MOSFET working in saturation, $V_{DS} \ge V_{GS} - V_{TH} = 1.5~V$, i.e., $V_{DS,min} = 1.5~V$. In addition, $V_{DS} \le V_{DD} = 10~V$. Thus, the swing of the output signal = $\min\{4.4 - 1.5, 10 - 4.4\} = 2.9 V$.

(d)
$$g_m = \frac{\overline{2}I_D}{V_{GS} - V_{TH}} = 1.3 \text{ mS} \rightarrow A_v = -g_m R_D \approx -7.5$$

(e) To achieve a maximum output signal swing, we need to ensure the $V_{DS,Q}$ is located in the middle of the available range:

$$\begin{split} & \underbrace{V_{range} = V_{DD} - V_{DS,min} = 10 - 1.5 = 8.5 \, V \Rightarrow V_{DS,Q} = \frac{v_{range}}{2} + V_{DS,min} = \\ & 5.75 \, V \Rightarrow V_{R_D} = V_{DD} - V_{DS,Q} = 4.25 \\ & \Rightarrow R_D = \frac{v_{R_D}}{l_D} = \frac{4.25V}{1 \, \text{mA}} = 4.25 \, K\Omega \\ & \text{(f)} \ \ v_o = \frac{1}{l_D \lambda} = \frac{1}{1 \, \text{mA} * 0.5} = 2 \, K\Omega \\ & \overline{A_V = -g_m * (R_D || r_o)} = -1.3 \, mS * (5.6K\Omega || 2K\Omega) = 1.9 \end{split}$$

A common gate amplifier is given in Fig.2.

- (a) Draw the internal capacitors of the circuit.
- (b) Simplify the circuit by merging the capacitors.
- (c) Is there any floating capacitor in the circuit?
- (d) If yes, how to decompose the floating capacitor into two capacitors connected to AC ground by using Millers theorem?

Rember that:

Solution:

No floating capacitor in the circuit.

