AMENDMENTS TO THE CLAIMS

2

(Currently Amended) A compound of Formula I: 1.

I

wherein

M represents a macrolide subunit M represents a group of Formula II:

II

wherein:

Z and W independently are: >C=O, >CH₂, >CH-NR₁R_s, >N-R_N or >C=N-R_M or a bond wherein:

Rt and Rs independently are hydrogen or alkyl;

3

 R_{M} is hydroxy, alkoxy, substituted alkoxy or OR^{p} ;

 R_N is hydrogen, R^p , alkyl, alkenyl, alkoxy, alkoxy, alkoxyalkyl, or $-C(X)-NR_tR_s$; wherein X is =0 or =S;

provided that Z and W cannot both simultaneously be, >C=O, >CH₂,

 \geq CH-NR_tR_s, \geq N-R_N or \geq C=N-R_M or a bond,

U and Y independently are hydrogen, halogen, alkyl, or hydroxyalkyl;

 R^1 is hydroxy, OR^p , $-O-S^2$ group or an =O;

S¹ is a sugar moiety of formula:

wherein

 R^8 and R^9 are both hydrogen or together form a bond, or R^9 is hydrogen and R^8 is - $N(CH_3)R^9$, wherein

 R^y is R^p , R^z or $-C(O)R^z$ wherein R^z is hydrogen or alkyl or alkenyl or alkynyl or cycloalkyl or aryl or heteroaryl or alkyl substituted with C_2 - C_7 -alkyl, C_2 - C_7 -alkynyl, aryl or heteroaryl

 \underline{R}^{10} is hydrogen or \underline{R}^p ;

S² is a sugar moiety of formula:

wherein:

R³ is hydrogen or methyl;

D represents a nonsteroidal subunit D is derived from the NSAIDs selected from the group consisting of: aceclofenac, acemetacin, acetaminophen, acetaminosalol, acetyl-salicylic acid, acetyl-salicylic-2-amino-4-picoline-acid, 5-aminoacetylsalicylic acid, alclofenac, aminoprofen, amfenac, ampyrone, ampiroxicam, anileridine, bendazac, benoxaprofen, bermoprofen, α-bisabolol, bromfenac, 5-bromosalicylic acid acetate, bromosaligenin,

bucloxic acid, butibufen, carprofen, celexocib, chromoglycate, cinmetacin, clindanac, clopirac, sodium diclofenac, diflunisal, ditazol, droxicam, enfenamic acid, etodolac, etofenamate, felbinac, fenbufen, fenclozic acid, fendosal, fenoprofen, fentiazac, fepradinol, flufenac, flufenamic acid, flunixin, flunoxaprofen, flurbiprofen, glutametacin, glycol salicylate, ibufenac, ibuprofen, ibuproxam, indomethacin, indoprofen, isofezolac, isoxepac, isoxicam, ketoprofen, ketorolac, lornoxicam, loxoprofen, meclofenamic acid, mefenamic acid, meloxicam, mesalamine, metiazinic acid, mofezolac, montelukast, nabumetone, naproxen, niflumic acid, nimesulide, olsalazine, oxaceprol, oxaprozin, oxyphenbutazone, paracetamol, parsalmide, perisoxal, phenyl-acethyl-salicylate, phenylbutazone, phenylsalicylate, pyrazolac, piroxicam, pirprofen, pranoprofen, protizinic acid, reserveratol, salacetamide, salicylamide, salicylamide-O-acetyl acid, salicylsulphuric acid, salicin, salicylamide, salsalate, sulindac, suprofen, suxibutazone, tamoxifen, tenoxicam, tiaprofenic acid, tiaramide, ticlopridine, tinoridine, tolfenamic acid, tolmetin, tropesin, xenbucin, ximoprofen, zaltoprofen, zomepirac, tomoxiprol, zafirlukast and cyclosporin;

L is a linker molecule to which each of M and D are coyalently linked; and

pharmaceutically acceptable salts and solvates thereof and individual diastereoisomers thereof.

2. (Currently Amended) A compound according to claim 1 of the Formula I

wherein M represents a group of

Formula II:

II

wherein:

Z and W independently are: >C=O, >CH₂, >CH-NR_tR_s, >N-R_N or >C=N-R_M or a bond wherein:

 R_{t} and R_{s} independently are hydrogen or alkyl;

R_M is hydroxy, alkoxy, substituted alkoxy or OR^p;

 R_N is hydrogen, R^p , alkyl, alkenyl, alkoxy, alkoxyalkyl, or $-C(X)-NR_tR_s$; wherein X is =0 or =S;

provided that Z and W cannot both simultaneously be, >C=O, >CH₂,

>CH-NR_tR_s, >N-R_N or >C=N-R_M or a bond,

U and Y independently are hydrogen, halogen, alkyl, or hydroxyalkyl;

 R^1 is hydroxy, OR^p , $-O-S^2$ group or an =O;

S¹ is a sugar moiety of formula:

wherein

R⁸ and R⁹ are both hydrogen or together form a bond, or R⁹ is hydrogen and R⁸ is - N(CH₃)R^y, wherein

 R^y is R^p , R^z or $-C(O)R^z$ wherein R^z is hydrogen or alkyl or alkenyl or alkynyl or cycloalkyl or aryl or heteroaryl or alkyl substituted with C_2 - C_7 -alkyl, C_2 - C_7 -alkynyl, aryl or heteroaryl

R¹⁰ is hydrogen or R^p;

S² is a sugar moiety of formula:

wherein:

R³' is hydrogen or methyl;

 R^{11} is hydrogen, R^p or O- R^{11} is a group that with R^{12} and with C/4" carbon atom forms a >C=O or epoxy group;

R¹² is hydrogen or a group that with O-R¹¹ group and with C/4" carbon atom forms a >C=O or epoxy group;

R² is hydrogen, hydroxy, OR^p or alkoxy

A is hydrogen or methyl;

B is methyl or epoxy;

E is hydrogen or halogen;

 R^3 is hydroxy, OR^p , alkoxy or R^3 is a group that with R^5 and with C/11 and C/12 carbon atoms forms a cyclic carbonate or carbamate; or if W or Z is $>N-R_N$ R^3 is a group that with W or Z forms a cyclic carbamate;

 R^4 is C_1 - C_4 alkyl;

 R^5 is hydrogen, hydroxy, OR^p , C_1 - C_4 -alkoxy, or a group that with R^3 and with C/11 and C/12 carbon atoms forms a cyclic carbonate or carbamate;

R⁶ is hydrogen or C₁-C₄-alkyl;

wherein M has a linkage site through which it is linked to D via linking group L; provided that the linkage site being at one or more of the following:

- a) any reactive hydroxy, nitrogen, or epoxy group located on S^1 , S^2 , or an aglycone oxygen if S^1 or/and S^2 is cleaved off;
- b) a reactive $>N-R_N$ or $-NR_tR_s$ or =O group located on Z or W;
- c) a reactive hydroxy group located at any one of R¹, R², R³, and R⁵;
- d) any other group that can be first derivatized to a hydroxy or
- -NRtRs group and

R^p is hydroxyl or amino protective group;

wherein L represents a group of

Formula IV:

X^{1} -(CH₂)_m-Q-(CH₂)_n- X^{2}

 \underline{IV}

wherein

 X^1 is selected from: $-CH_2$ -, -C(O)-, OC(O)-, N-O- or -OC(O)NH-, -C(O)NH-; X^2 is -NH- or -NHC(O)-, -OC(O)-, -C(O)-, -O or $-CH_2$ -; O is -NH- or $-CH_2$ -, or absent;

wherein each $-CH_2$ - or -NH- group may be optionally substituted by C_1 - C_7 -alkyl, C_2 - C_7 -alkynyl, $C(O)R^x$, $C(O)OR^x$, $C(O)NHR^x$ wherein R^x may be C_1 - C_7 -alkyl, aryl or heteroaryl;

the symbols m and n independently are a whole number from 0 to 4, with the proviso that if Q is NH, n cannot be 0

wherein **D** is derived from the NSAIDs selecting from the group consisting of: accelofenac, acemetacin, acetaminophen, acetaminosalol, acetyl-salicylic acid, acetyl-salicylic-2-amino-4picoline-acid, 5-aminoacetylsalicylic acid, alclofenac, aminoprofen, amfenac, ampyrone, ampiroxicam, anileridine, bendazac, benoxaprofen, bermoprofen, α-bisabolol, bromfenac, 5bromosalicylic acid acetate, bromosaligenin, bucloxic acid, butibufen, carprofen, celexocib, chromoglycate, cinmetacin, clindanac, clopirac, sodium diclofenac, diflunisal, ditazol, droxicam, enfenamic acid, etodolac, etofenamate, felbinac, fenbufen, fenclozic acid, fendosal, fenoprofen, fentiazac, fepradinol, flufenac, flufenamic acid, flunixin, flunoxaprofen, flurbiprofen, glutametacin, glycol salicylate, ibufenac, ibuprofen, ibuproxam, indomethacin, indoprofen, isofezolac, isoxepac, isoxicam, ketoprofen, ketorolac, lornoxicam, loxoprofen, meclofenamic acid, mefenamic acid, meloxicam, mesalamine, metiazinic acid, mofezolac, montelukast, nabumetone, naproxen, niflumic acid, nimesulide, olsalazine, oxaceprol, oxaprozin, oxyphenbutazone, paracetamol, parsalmide, perisoxal, phenyl-acethyl-salicylate, phenylbutazone, phenylsalicylate, pyrazolac, piroxicam, pirprofen, pranoprofen, protizinic acid, reserveratol, salacetamide, salicylamide, salicylamide-Oacetyl acid, salicylsulphuric acid, salicin, salicylamide, salsalate, sulindac, suprofen, suxibutazone, tamoxifen, tenoxicam, tiaprofenic acid, tiaramide, ticlopridine, tinoridine, tolfenamic acid, tolmetin, tropesin, xenbucin, ximoprofen, zaltoprofen, zomepirac, tomoxiprol, zafirlukast and cyclosporin;

and a pharmaceutically acceptable salts and solvates thereof.

- 3. (Canceled)
- 4. (Canceled)
- 5. (Previously Presented) A compound according to claim 2 wherein Z and W together are: N(CH₃)- CH₂-, -NH-CH₂-, -CH₂-NH-, -C(O)-NH- or -NH-C(O)-;

A and B are methyl;

E is hydrogen;

R² is hydroxy or methoxy;

S¹ represents desosamine sugar wherein R⁸ is selected from: hydrogen, methyl,

amino, C₁-C₆ alkylamino or C₁-C₆ dialkylamino;

R⁹ and R¹⁰ are hydrogen;

 R^1 is hydroxy or the O-S² group wherein the S² represents a cladinose sugar wherein:

 R^{11} is hydrogen, or O- R^{11} is a group that with R^{12} and with C/4" carbon atom forms a >C=O or epoxy group; R^{12} is hydrogen or a group that with O- R^{11} and with C/4" carbon atom forms a >C=O or epoxy group;

R¹³ is methyl;

U is hydrogen

Y is methyl;

R₆ is hydroxy, methyl or ethyl;

R⁵ is hydrogen, hydroxy, methoxy or a group that with R³ and with C/11 and C/12 carbon atoms forms a cyclic carbonate or carbamate bridge;

 R^3 is hydroxy or a group that forms a cyclic carbamate bridge with W or Z, or R^3 is a group that with R^5 and with C/11 and C/12 carbon atoms forms a cyclic carbonate or carbamate bridge; R^4 is methyl;

provided that the linkage is through the nitrogen of Z at N/9a position or through the carbon of R^{12} or through the oxygen of R^{11} both at C/4"position of the S^2 sugar.

6. (Currently Amended) A compound according to claim [[3]] 2 wherein

 X^1 is -CH₂- or -OC(O)-;

 X^2 is -NHC(O)-;

Q is -NH- or absent.

7. (Currently Amended) A compound according to claim [[4]] 2 wherein

D is derived from a NSAID selecting from the group consisting of: S-(+) - ibuprofen, indomethacin, flurbiprofen, naproxen, ketoprofen, acetyl salicylic acid, sulindac, etodolac, ketorolac, suprofen, flunixin, diclofenac sodium and tolmetin sodium.

8. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

10. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

12. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

14. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

16. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

18. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

17

and pharmaceutically acceptable salts and solvates thereof.

20. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

21. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

18

and pharmaceutically acceptable salts and solvates thereof.

23. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

25. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

27. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

29. (Currently Amended) A compound of the formula

and pharmaceutically acceptable salts and solvates thereof.

and pharmaceutically acceptable salts and solvates thereof.

31. (Currently Amended) A process Process for the preparation a compound of Formula I

M represents a group of

Formula II:

wherein:

Z and W independently are: >C=O, $>CH_2$, $>CH-NR_1R_5$, $>N-R_N$ or $>C=N-R_M$ or a bond wherein:

Rt and Rs independently are hydrogen or alkyl;

R_M is hydroxy, alkoxy, substituted alkoxy or OR^p;

 R_N is hydrogen, R^p , alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, or $-C(X)-NR_tR_s$; wherein X is =0 or =S;

provided that Z and W cannot both simultaneously be, >C=O, >CH₂,

 \geq CH-NR_tR_s, \geq N-R_N or \geq C=N-R_M or a bond,

U and Y independently are hydrogen, halogen, alkyl, or hydroxyalkyl;

 R^1 is hydroxy, OR^p , $-O-S^2$ group or an =O;

S¹ is a sugar moiety of formula:

wherein

 R^8 and R^9 are both hydrogen or together form a bond, or R^9 is hydrogen and R^8 is - $N(CH_3)R^y$, wherein

 R^y is R^p , R^z or $-C(O)R^z$ wherein R^z is hydrogen or alkyl or alkenyl or alkynyl or cycloalkyl or aryl or heteroaryl or alkyl substituted with C_2 - C_7 -alkyl, C_2 - C_7 -alkynyl, aryl or heteroaryl

 R^{10} is hydrogen or R^p ;

S² is a sugar moiety of formula:

wherein:

R³' is hydrogen or methyl;

 $\underline{R^{11}}$ is hydrogen, R^p or O- R^{11} is a group that with R^{12} and with C/4" carbon atom forms a

>C=O or epoxy group;

R¹² is hydrogen or a group that with O-R¹¹ group and with C/4" carbon atom forms a

>C=O or epoxy group;

R² is hydrogen, hydroxy, OR^p or alkoxy

A is hydrogen or methyl;

B is methyl or epoxy;

E is hydrogen or halogen;

R³ is hydroxy, OR^p, alkoxy or R³ is a group that with R⁵ and with C/11 and C/12 carbon atoms forms a cyclic carbonate or carbamate; or if W or Z is >N-R_N R³ is a group that with W or Z forms a cyclic carbamate;

 R^4 is C_1 - C_4 alkyl;

R⁵ is hydrogen, hydroxy, OR^p, C₁-C₄-alkoxy, or a group that with R³ and with C/11 and

· C/12 carbon atoms forms a cyclic carbonate or carbamate;

R⁶ is hydrogen or C₁-C₄-alkyl;

wherein M has a linkage site through which it is linked to D via linking group L; provided that the linkage site being at one or more of the following:

a) any reactive hydroxy, nitrogen, or epoxy group located on S^1 , S^2 , or an aglycone oxygen if S^1 or/and S^2 is cleaved off;

b) a reactive $>N-R_N$ or $-NR_1R_s$ or =O group located on Z or W;

c) a reactive hydroxy group located at any one of R¹, R², R³, and R⁵;

Application No.: 10/615,010 25 Docket No.: 03818/100L651-US1

d) any other group that can be first derivatized to a hydroxy or -NR_tR_s group and

R^p is hydroxyl or amino protective group;

D is derived from the NSAIDs selected from the group consisting of: aceclofenac, acemetacin, acetaminophen, acetaminosalol, acetyl-salicylic acid, acetyl-salicylic-2-amino-4picoline-acid, 5-aminoacetylsalicylic acid, alclofenac, aminoprofen, amfenac, ampyrone, ampiroxicam, anileridine, bendazac, benoxaprofen, bermoprofen, α-bisabolol, bromfenac, 5bromosalicylic acid acetate, bromosaligenin, bucloxic acid, butibufen, carprofen, celexocib, chromoglycate, cinmetacin, clindanac, clopirac, sodium diclofenac, diflunisal, ditazol, droxicam, enfenamic acid, etodolac, etofenamate, felbinac, fenbufen, fenclozic acid, fendosal, fenoprofen, fentiazac, fepradinol, flufenac, flufenamic acid, flunixin, flunoxaprofen, flurbiprofen, glutametacin, glycol salicylate, ibufenac, ibuprofen, ibuproxam, indomethacin, indoprofen, isofezolac, isoxepac, isoxicam, ketoprofen, ketorolac, lornoxicam, loxoprofen, meclofenamic acid, mefenamic acid, meloxicam, mesalamine, metiazinic acid, mofezolac, montelukast, nabumetone, naproxen, niflumic acid, nimesulide, olsalazine, oxaceprol, oxaprozin, oxyphenbutazone, paracetamol, parsalmide, perisoxal, phenyl-acethyl-salicylate, phenylbutazone, phenylsalicylate, pyrazolac, piroxicam, pirprofen, pranoprofen, protizinic acid, reserveratol, salacetamide, salicylamide, salicylamide-Oacetyl acid, salicylsulphuric acid, salicin, salicylamide, salsalate, sulindac, suprofen, suxibutazone, tamoxifen, tenoxicam, tiaprofenic acid, tiaramide, ticlopridine, tinoridine, tolfenamic acid, tolmetin, tropesin, xenbucin, ximoprofen, zaltoprofen, zomepirac, tomoxiprol, zafirlukast and cyclosporin; L is a linker molecule to which each of M and D are covalently linked;

which comprises:

a) for a compound of Formula I, where X^2 is -NHC(O)-, by reacting a compound of Formula V:

V

wherein L¹ represents a leaving group, and a free amino group of a macrolide represented by Formula VIa:

b) for a compound of Formula I, where X² is -OC(O)-, by reacting a compound of Formula V and the free hydroxyl group of a macrolide represented by Formula VIb:

VIb

c) for a compound of Formula I, wherein X^1 is -OC(O)-, Q is -NH- and X^2 is -NHC(O)-, by reacting a macrolide represented by formula:

and a a free amino group of the compound represented by formula:

$$H_2N$$
— K — NH

d) for a compound of Formula I, where X^1 is -OC(O)NH- and X^2 is -NHC(O)-, by reacting a macrolide represented by formula

and free amino group of of the compound represented by formula:

- e) for a compound of Formula I, where X^1 is -CH₂-, Q is -NH- and X^2 is
- -NHC(O)-, by reacting a macrolide represented by formula:

and a compound of Formula V;

f) for a compound of Formula I by reacting a macrolide represented by Formula VIIf or by Formula VIIg or by Formula VIIh having a leaving group L²

VIIg

VIIh

Application No.: 10/615,010 29 Docket No.: 03818/100L651-US1

with a free carboxylic acid of nonsteroidal anti-inflammatory subunit.

- 32. (Currently Amended) A pharmaceutical composition comprising a compound according to claim 1 and pharmaceutically acceptable salts or solvate solvates thereof as well as a pharmaceutically acceptable diluent or carrier.
- 33. (Previously Presented) A method of treating inflammatory diseases, disorders and conditions characterized by or associated with an undesirable inflammatory immune response, and all diseases and conditions induced by or associated with an excessive secretion of TNF-α and IL-1 which comprises administering to a subject a therapeutically effective amount of a compound according to claim 1.
- 34. (Currently Amended) A method of treating inflammatory conditions and immune or anaphylactic disorders associated with infiltration of leukocytes into inflamed tissue in a subject in need thereof which comprises administering to said subject a therapeutically effective amount of the a compound represented by Formula I or a pharmaceutically acceptable salts or solvate thereof according to claim 1.
- 35. (Previously Presented) The method according to claim 34, wherein inflammatory conditions and immune disorders are selected from the group consisting of asthma, adult respiratory distress syndrome, bronchitis, and cystic fibrosis.
- 36. (Previously Presented) A method according to claim 34, wherein said inflammatory conditions and immune disorders are selected from the group consisting of inflammatory conditions or immune disorders of the lungs, joints, eyes, bowel, skin, and heart.
- 37. (Previously Presented) A method according to claim 34, wherein said inflammatory conditions and immune disorders are selected from the group consisting of asthma, adult respiratory distress syndrome, bronchitis, cystic fibrosis, rheumatoid arthritis, rheumatoid spondylitis,

Application No.: 10/615,010 30 Docket No.: 03818/100L651-US1

osteoarthritis, gouty arthritis, uveitis, conjunctivitis, inflammatory bowel conditions, Crohn's disease, ulcerative colitis, distal proctitis, psoriasis, eczema, dermatitis, coronary infarct damage, chronic inflammation, endotoxin shock, and smooth muscle proliferation disorders.

38. (Currently Amended) A method for abating inflammation in an affected organ or tissue comprising delivering to said organ or tissue a therapeutically effective amount of the <u>a</u> compound represented by Formula I or a pharmaceutically acceptable salts or solvate thereof according to claim 1.