

Elmore Family School of Electrical

and Computer Engineering

DELTA: Decoupling Long-Tailed Online Continual Learning

CVPR
JUNE 17-21, 2024
SEATTLE, WA

Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu Elmore Family School of Electrical and Computer Engineering, Purdue University

Long-Tailed Online Continual Learning

Challenge

- Imbalanced class representation Dealing with real-world scenarios where the data follows long-tailed distributions where each class may not be equally represented.
- Catastrophic forgetting and model bias Limited set of exemplars can be biased towards the frequently appearing classes.
- Exemplar Management and Data Efficiency: Utilizing existing continual learning models can introduce distribution challenges and biases, making it difficult to adapt to evolving data distributions while maintaining balanced performance across all classes.

Outcome

- Develop a **two-stage decoupling strategy** that effectively handles real-world distribution scenarios, ensuring freedom from biases and enhancing performance outcomes.
- We propose a **multi-exemplar pairing strategy** to demonstrate the potential performance enhancement in Long-Tail Online Continual Learning

Methodology

Decoupling learning through two stage training.

Stage 1

$$\mathcal{L}_{stage1}(O^{t}(G_{t})) = \mathcal{L}_{contrastive}(O^{t}(G_{t}))$$

$$L_{contrastive}(Z_T) = \sum_{j \in T} \frac{-1}{|P(j)|} \sum_{p \in P(j)} \frac{exp(v_j \cdot v_p/\tau)}{\sum_{k \in A(j)} exp(v_j \cdot v_p/\tau)}$$

Stage 2

$$\mathcal{L}_{stage2}(O^t(G_t)) = \mathcal{L}_{EQ}(O^t(G_t))$$

$$\mathcal{L}_{EQ}(O^t(I_x)) = \sum_{i=1}^{k^{1:t}} -I_{y_{(i)}} \sigma([\log[(P(k^t)] + O^t(I_x))])$$

Multi-exemplar pairing

Motivation

- Mitigating Class Imbalance and balance the input training batch
- Selecting a **diverse exemplar** set ensures better learning, improving generalization and performance.
- Dynamic Adaptation to varying data distribution.

Continual Learner

Experiments

Methods			CIFAR	100-LT					VFI	N-LT		
	20 tasks	20 tasks	20 tasks	10 tasks	10 tasks	10 tasks	15 tasks	15 tasks	15 tasks	7 tasks	7 tasks	7 tasks
	M = 0.5 K	M=1K	M=2K	M = 0.5 K	M=1K	M=2K	M = 0.5 K	M=1K	M=2K	M = 0.5K	M=1K	M=2K
OnPRO[ICCV '23]	14.02 ± 0.44	16.28 ± 0.81	18.01 ± 0.22	16.53 ± 0.55	16.92 ± 0.08	18.85 ± 0.32	11.93 ± 0.04	12.77 ± 0.07	13.50 ± 0.05	$\textbf{8.02}\pm\textbf{0.60}$	9.38 ± 0.21	11.84 ± 0.49
SCR[CVPRW '21]	12.22 ± 0.72	13.48 ± 0.90	15.88 ± 0.79	16.65 ± 0.90	17.02 ± 0.77	17.58 ± 0.66	11.55 ± 0.17	11.82 ± 0.10	12.39 ± 0.73	7.71 ± 0.49	9.19 ± 0.46	9.48 ± 0.47
ASER[AAAI '21]	8.86 ± 0.30	7.86 ± 0.61	8.18 ± 0.31	12.68 ± 0.70	13.76 ± 0.01	15.90 ± 0.91	6.85 ± 0.34	7.61 ± 0.38	7.22 ± 0.36	7.46 ± 1.18	7.52 ± 1.09	6.35 ± 0.19
PRS[ECCV '20]	7.61 ± 0.09	7.54 ± 0.21	7.03 ± 0.13	7.34 ± 0.92	8.95 ± 0.33	9.01 ± 0.39	7.17 ± 0.83	8.72 ± 0.15	8.39 ± 0.19	7.85 ± 0.50	8.66 ± 0.22	9.21 ± 0.30
CBRS[ICML '20]	8.51 ± 0.19	8.66 ± 0.61	8.91 ± 0.33	9.50 ± 0.48	7.22 ± 0.43	7.31 ± 0.08	8.12 ± 0.94	8.35 ± 0.33	8.18 ± 0.44	7.52 ± 0.11	7.64 ± 0.08	7.92 ± 0.34
GSS[NeurIPS '19]	5.16 ± 0.10	5.22 ± 0.22	5.09 ± 0.21	8.97 ± 0.65	10.12 ± 0.02	9.96 ± 0.47	5.86 ± 0.30	6.01 ± 0.91	5.86 ± 0.06	5.92 ± 0.54	4.30 ± 0.22	4.66 ± 0.60
LT-CIL(offline)	3.01 ± 0.77	2.67 ± 0.04	2.43 ± 0.02	1.76 ± 0.11	2.36 ± 0.25	3.76 ± 0.22	1.82 ± 0.45	2.02 ± 0.44	2.38 ± 0.08	3.08 ± 0.71	2.92 ± 0.04	1.99 ± 0.31
DELTA (ours)	$\textbf{16.53} \pm \textbf{0.01}$	17.71 ± 0.11	19.93 ± 0.07	$\textbf{20.25}\pm\textbf{0.71}$	$\textbf{21.06}\pm\textbf{0.23}$	$\textbf{22.47}\pm\textbf{0.51}$	$\textbf{12.5}\pm\textbf{0.01}$	$\textbf{13.45}\pm\textbf{0.02}$	$\textbf{13.84}\pm\textbf{0.01}$	8.00 ± 0.39	$\textbf{10.41}\pm\textbf{0.52}$	$\textbf{12.84}\pm\textbf{0.54}$

Average Accuracy \pm standard deviation (\uparrow) in the long-tailed scenario on Split CIFAR-100-LT, VFN-LT with single exemplar pairing. The highest accuracy is highlighted in red, while the second highest is in blue.

Imbalance ratio (ρ)	SCR	CBRS	DELTA (ours)
0.005	3.59 ± 0.64	7.60 ± 0.06	$\textbf{18.02}\pm\textbf{0.79}$
0.03	4.11 ± 0.42	8.88 ± 0.47	$\textbf{20.21}\pm\textbf{0.22}$
0.07	8.34 ± 0.04	9.47 ± 0.61	$\textbf{23.60}\pm\textbf{0.09}$
0.1	6.12 ± 0.35	10.26 ± 0.38	$\textbf{24.28}\pm\textbf{0.60}$
1.0 (Conventional)	20.74 ± 0.40	15.79 ± 0.33	33.23 ± 0.97

Average Accuracy \pm standard deviation (\uparrow) the long-tailed scenario on Split CIFAR-100-LT with varying imbalance factors. Best results in **bold**

Contact:
Sid Raghavan
raghav12@purdue.edu