2/18/2020

Estimate and Scoping

Enterprise Reporting Solution

Kartik Sojitra 100723768

Table of Contents

Section 1 -	Work Package Analysis
Table 1:	- Parallel Work Packages
Section 2 -	Task Analysis
Table 2:	Work Package Dependencies
Section 3 -	Critical Path
Table 3:	Critical Path Table

Section 1 - Work Package Analysis

Work Package Name (1)	Sub-Work Package Name (1)	Work Package Name (2)	Sub-Work Package Name (2)	Justification for Reasoning
1.2 PROCUREMENT	1.2.1 Development Team	1.2 PROCUREMENT	1.2.2 Consultant: Business Analyst & BI Specialist	The given tasks come under a single resource and tasks are to be performed by the same team. As these tasks are not interdependent, they can be done parallelly.
3.2 Design Documents	3.2.1 TRAIS Documentation	3.2 Design Documentation	3.2.2 GHGIS Documents	TRAIS and GHGIS consist of identical work but at the same time, they both are different from each other. Both the data sets have distinct information to be worked upon so teams can work on them at the same time.
5.1 BUILD ETL SOLUTION	5.1.1 ETL 1 TRAIS/GHGIS (to staging db.)	5.1 BUILD ETL SOLUTION	5.1.2 ETL 2 TRAIS/GHGIS (staging to data mart)	Both the data sets of TRAIS/GHGIS have the same resources assigned to perform the task. So, it becomes more convenient to work on its side by side.
8.1 Operations	8.1.1 Document ETL Run Book (TRAIS)	8.1 Operations	8.1.3 Document ETL Run Book (GHGIS)	TRAIS/GHGIS has the same resources assigned to perform the task. So, it becomes more convenient to work on it side by side.
8.1 Operations	8.1.5 Document ETL Scheduler System Document - TRAIS	8.1 Operations	8.1.7 Document ETL Scheduler System Document - GHGIS	Documentation of TRAIS and GHGIS are independent of each other.

Table 1: - Parallel Work Packages

1) What work packages can be done in parallel?

The work packages that are independent with respect to each other can be worked upon at the same time. Those type of work packages does not get affected by the timeline of other tasks.

2) Do you have enough project resources to work in parallel?

Yes, there are enough project resources for the assigned tasks to work on them in parallel.

Estimate and Scoping

3) For the identical tasks, is the estimated effort correct? Or, can the effort be shortened if the tasks are done in parallel.

The estimated effort can be shortened by performing the identical tasks in parallel which lessens the overall project time frame leading to early completion of the project. Also, on reducing the effort for similar tasks, more effort can be added to the tasks that are on the critical path or the tasks that might be potentially delayed.

Section 2 - Task Analysis

1) Using the template provided, identify all the dependencies between the work packages, sub-tasks, and tasks.

Work Package Name (1)	Sub-Work Package Name (1)	Task Name (1)	Work Package Name (2)	Sub-Work Package Name (2)	Task Name (2)	Justification for Reasoning
1.2 PROCUREMENT	1.2.1 Dev team 1.2.2 Consultant: Business Analyst & BI Specialist	1.2.1.6 Obtain Signatures 1.2.2.12 Resource Start Date	1.3 VENDOR RAMP UP	N/A	1.3.1 I&IT Standards Review Workshop(s) 1.3.2 I&IT Design & Build Standards Workshop 1.3.3 QA Standards	Unless an approval is granted for the change requests the I&IT standards are difficult to develop.
3.1 SOLUTION DESIGN	3.1.1.1 XML Schema	3.1.2.1.4 XML Acceptance	3.1 SOLUTION DESIGN	3.1.1.2 Physical Data Model (Relational) 3.1.1.3 Physical Dimensional Data Model	3.1.1.2.1 Draft Physical Data Model 3.1.1.3.1 Draft Physical Data Model	Any physical model cannot be built unless its schema is built.
2.2 REQUIREMENTS ANALYSIS	2.2.1 Physical Data Model 3.2.1 TRAIS	2.2.2.1 Physical Data Model Analysis (TRAIS) 2.2.2.2 Physical Data	5.1 BUILD ETL SOLUTION	5.1.1 ETL 1 TRAIS/GHGIS (to staging db.)	5.1.1.1 Build/Test ETL1 5.1.2.1 Build/Test ETL2	A project can lead to the data loading section after the requirements and model design are produced.
3.2 DESIGN DOCUMENTATION	Documentation 3.2.2 Documentation (GHGIS)	Model Analysis (GHGIS) 3.2.1.3 TRAIS Acceptance		5.1.2 ETL 2 TRAIS/GHGIS (staging to data mart)		

Estimate and Scoping

		3.2.2.3 GHGIS Acceptance				
4.1 Build Test Environment	N/A	4.1.1 Create database in Test Environment 4.1.2 Setup & Config Cognos Environment 4.1.3 Test setup of components (SWIM, SSI, COGNOS)	6.1 SYSTEM TEST (Functional Testing)	6.1.4 System Test & Defect Resolution Cycle	6.1.4.1 ETL 1 TRAIS/GHGIS (to staging db.) 6.1.4.2 ETL 2 TRAIS/GHGIS (staging to data mart) 6.1.4.3 Cognos Reports TRAIS (incl defect cycle) 6.1.4.4 Cognos Reports GHGIS (incl defect cycle)	In order to test the functionality of the model/ product there must be a test environment produced that fulfills all the requirements and allows a successful model testing.
6.1 SYSTEM TEST (Functional Testing)	6.1.2 Test Data	6.1.2.1 Create/Acquire TRAIS test data 6.1.2.2 Create/Acquire GHGIS test data 6.1.2.3 Load data to test environment 6.1.2.4 Establish Tester Usernames/Passwords	6.2 USER ACCEPTANCE TESTING (Staging Environment)	N/A	6.2.1 Load data to staging environment	A model/product can only be tested after a proper confirmation is obtained.

Table 2: Work Package Dependencies

2) What is the anticipated end date of the project?

The anticipated end date of the project is 2015/04/27.

Estimate and Scoping

Section 3 - Critical Path

1) Using your completed project schedule, determine the critical path for the end-to-end project.

Activity Sequence	Predecessor	Months
PLANNING	Start	4
REQUIREMENTS	PLANNING	6
DESIGN	REQUIREMENTS	15
INFRASTRUCTURE SETUP & IMPLEMENTATION	DESIGN	6
CONSTRUCTION	INFRASTRUCTURE SETUP & IMPLEMENTATION	11
TEST	CONSTRUCTION	8
IMPLEMENTATION	TEST	0.18
TRANSITON TO OPERATIONS	IMPLEMENTATION	7
PROJECT CLOSE-OUT	TRANSITON TO OPERATIONS	2
End	PROJECT CLOSE- OUT	

Table 3: Critical Path Table

Critical Path:

PLANNING-→REQUIREMENTS→DESIGN→INFRASTRUCTURE SETUP & IMPLEMENTATION→CONSTRUCTION→TEST→IMPLEMENTATION→TRANSITON TO OPERATIONS→PROJECT CLOSE-OUT