Portail René Descartes, Aix-Marseille Université

Analyse 1, Fiche d'exercices 5

Année 2022-23, semestre 2

Exercice 1 (Suite arithmético-géométrique) _

Soit la suite $(u_n)_n$ définie par $u_{n+1} = au_n + b$ où $a \in \mathbb{R} \setminus \{0, 1\}$ et $b \in \mathbb{R}$.

- 1. Quelle est la seule limite possible ℓ de la suite $(u_n)_n$?
- 2. Soit $(v_n)_n$ la suite définie par $v_n = u_n \ell$. Démontrer que $(v_n)_n$ est géométrique. En déduire la convergence de la suite $(u_n)_n$.

Exercice 2 (Suite arithmético-géométrique - 2)

Soit $(u_n)_n$ définie par : $u_0 = 5$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n - 3$.

Exprimer u_n en fonction de n et étudier la convergence de la suite.

Exercice 3

Soit la suite $(u_n)_n$ définie par récurrence par : $u_0 > 2$, $u_{n+1} = u_n^2 - 2$.

- 1. Montrer que $u_n > 2$ pour tout $n \in \mathbb{N}$.
- 2. On suppose que la suite $(u_n)_n$ converge. Quelle est sa limite ℓ ?
- 3. Montrer que la suite $(u_n)_n$ est croissante.
- 4. En déduire la nature de la suite $(u_n)_n$ (convergente ou pas).

Exercice 4

Soit (v_n) la suite définie par

$$v_1 = 0$$
, $v_n = \sqrt{2 + v_{n-1}}$, $n \ge 2$.

- 1. Calculer quelques premiers termes de cette suite.
- 2. Montrer que la suite (v_n) est croissante et majorée par 2.
- 3. Justifier que la suite (v_n) est convergente et déterminer sa limite.
- 4. Vérifier par récurrence l'égalité

$$v_n = 2 \cos\left(\frac{\pi}{2^n}\right) .$$

Exercice 5 (Méthode de Héron)

Soit a>0. On définit la suite $(u_n)_{n\geqslant 0}$ par u_0 un réel vérifiant $u_0>0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right) .$$

On se propose de montrer que $(u_n)_n$ tend vers \sqrt{a} .

1. Montrer que

$$(u_{n+1})^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}$$
.

- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- 3. En déduire que la suite $(u_n)_n$ converge vers \sqrt{a} .

- 4. En utilisant la relation $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a})$ donner une majoration de $u_{n+1} \sqrt{a}$ en fonction de $u_n \sqrt{a}$.
- 5. Si $u_1 \sqrt{a} \leqslant k$ et pour $n \geqslant 1$ montrer que

$$u_n - \sqrt{a} \leqslant 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}.$$

6. Application : Calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

Exercice 6

Soit a et b deux nombres réels strictement positifs. On définit les suites $(u_n)_n$ et $(v_n)_n$ par $u_0 = a$, $v_0 = b$, et pour tout entier $n \ge 0$ les relations $u_{n+1} = \frac{1}{2}(u_n + v_n)$, $v_{n+1} = \frac{1}{2}(u_{n+1} + v_n)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, les nombres u_n et v_n sont positifs et inférieurs au $\max(a,b)$.
- 2. Établir une relation simple entre $u_{n+1} v_{n+1}$ et $u_n v_n$, et en déduire l'expression de $u_n v_n$ en fonction de n.
- 3. Montrer que les suites $(u_n)_n$ et $(v_n)_n$ ont une limite commune ℓ .
- 4. Étudier la suite $(u_n + 2v_n)_n$ et en déduire la valeur de ℓ .

Exercice 7

Soient a et b deux réels, a < b. On considère une fonction $f : [a, b] \longrightarrow [a, b]$ et une suite récurrente $(u_n)_n$ définie par :

$$u_0 \in [a, b]$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- 1. On suppose que f est croissante. Montrer que $(u_n)_n$ est monotone, puis qu'elle converge.
- 2. On suppose que f est décroissante. Montrer que $f \circ f$ est croissante. En déduire que les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ sont monotones et convergentes. La suite $(u_n)_n$ est-elle monotone? Converge-t-elle?
- 3. Étudier la convergence de la suite définie par

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = (1 - u_n)^2$.

Exercice 8 (Récurrences d'ordre 2)

Soient $a \in \mathbb{R}$, $b \in \mathbb{R} \setminus \{0\}$ et $(u_n)_n$ une suite dans \mathbb{R} satisfaisant la relation de récurrence $u_{n+2} = au_{n+1} + bu_n$. L'équation caractéristique associée à cette relation de récurrence est

$$r^2 - ar - b = 0.$$

- 1. Montrer que:
 - a) La suite $(u_n)_n$ est déterminée par les deux premiers termes u_0, u_1 .
 - b) Si l'équation caractéristique a deux racines réelles distinctes r_1 , r_2 , alors le terme général de la suite $(u_n)_n$ est donné par $u_n = \lambda r_1^n + \mu r_2^n$, où λ , μ sont des constantes réelles.
 - c) Si r_0 est une racine double de l'équation caractéristique, alors le terme général de la suite $(u_n)_n$ est donné par $u_n = (\lambda + \mu n)r_0^n$, où λ , μ sont des constantes réelles.
 - d) Si l'équation caractéristique a deux racines complexes $r_1 = \rho e^{i\theta}$, $r_2 = \rho e^{-i\theta}$ alors le terme général de la suite $(u_n)_n$ est donné par $u_n = \rho^n(\lambda \cos(n\theta) + \mu \sin(n\theta))$, où λ , μ sont des constantes réelles.
- 2. Dans chaque cas déterminer les constantes λ , μ en fonction de u_0 , u_1 .
- 3. Dans chaque cas étudier la convergence de la suite $(u_n)_n$.
- 4. **Application :** Soit $(u_n)_n$ une suite de Fibonacci, donc une suite qui satisfait la relation récurrence $u_{n+2} = u_{n+1} + u_n$. Donner la formule du terme général en fonction des termes initiaux u_0 , u_1 . Pour quelles paires $(u_0, u_1) \in \mathbb{R}^2$ la suite de Fibonacci associée est convergente?