Devoir à la maison n°13

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Centrale Maths I PC 2011

Le but des deux premières parties est d'étudier l'existence d'une fonction de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{C} , dont on a fixé a priori les valeurs des dérivées successives en 0. Les deux parties suivantes sont consacrées à des classes de fonctions pour lesquelles les dérivées successives en 0 de f déterminent complètement la fonction f. On note \mathcal{W} l'ensemble des fonctions \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{C} nulles en dehors d'un segment (qui dépend de la fonction considérée dans \mathcal{W}).

I Intervention des séries entières

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. On cherche dans cette partie des fonctions $f\in\mathcal{C}^\infty(\mathbb{R},\mathbb{C})$, qui sont somme d'une série entière sur un intervalle $]-\delta,\delta[$ pour au moins un réel $\delta>0$ et vérifiant $\forall n\in\mathbb{N}, f^{(n)}(0)=u_n$.

I Si
$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
 pour tout $x \in]-\delta, \delta[$, avec $\delta > 0$, donner $f^{(n)}(0)$ en fonction de a_n pour tout $n \in \mathbb{N}$.

2 Dans les exemples suivants, proposer une solution f, en précisant une valeur de δ convenable :

2.a
$$\forall n \in \mathbb{N}, u_n = 2^n$$
.

2.b Pour tout
$$n \in \mathbb{N}$$
, $u_{2n} = \frac{(-1)^n}{(2n)!}$ et $u_{2n+1} = 0$.

Pour la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, u_n=(2n)!$, montrer qu'aucune fonction du type considéré dans cette partie n'est solution du problème.

II Le théorème de Borel

II.A Une fonction en cloche

Soit g la fonction de \mathbb{R} dans \mathbb{R} définie par $g(x) = \begin{cases} e^{\frac{1}{x(x-1)}} & \text{si } x \in]0,1[\\ 0 & \text{sinon} \end{cases}$

4.a Montrer que pour tout naturel p, il existe un polynôme $Q_p \in \mathbb{R}[X]$ tel que

$$\forall x \in]0,1[, g^{(p)}(x) = \frac{Q_p(x)}{(x(x-1))^{2p}} e^{\frac{1}{x(x-1)}}$$

1

Pour tout entier $p \ge 1$, exprimer Q_p en fonction de Q_{p-1} et Q'_{p-1} .

4.b En déduire que, pour tout entier naturel p non nul, Q_p est de degré 3p-2.

 $\boxed{5}$ 5.a Montrer que pour tout entier naturel p,

$$\lim_{x \to 0^+} g^{(p)}(x) = \lim_{x \to 1^-} g^{(p)}(x) = 0$$

5.b En déduire que $g \in \mathcal{W}$.

II.B Une fonction en plateau

Soit h la fonction de \mathbb{R} dans \mathbb{R} définie, pour tout réel x, par $h(x) = \frac{\int_{x-1}^{1} g(t) dt}{\int_{0}^{1} g(t) dt}$.

- **6** Montrer que h est de classe \mathcal{C}^{∞} sur \mathbb{R} , constante sur $]-\infty,1]$ et sur $[2,+\infty[$.
- **7** Soit φ la fonction de \mathbb{R} dans \mathbb{R} définie par $\varphi(x) = h(2x)h(-2x)$ pour tout réel x.
 - **7.a** Montrer que φ est de classe \mathcal{C}^{∞} sur \mathbb{R} et que $\varphi^{(p)}(0) = 0$ pour tout $p \ge 1$.
 - **7.b** Montrer que φ est nulle en dehors de [-1,1] et tracer sommairement l'allure de son graphe.
 - 7.c Justifier pour tout entier naturel p non nul l'existence du réel

$$\lambda_p = \max_{k \in [0, p-1]} \max_{x \in [-1, 1]} |\varphi^{(k)}(x)|$$

II.C Le théorème de Borel

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. On définit pour tout entier naturel n une fonction g_n par

$$\forall x \in \mathbb{R}, \ g_0(x) = \varphi(x) \text{ et si } n \ge 1, \ g_n(x) = \frac{x^n}{n!} \varphi(\beta_n x)$$

où $\beta_n = \max(1, 4^n |u_n| \lambda_n)$.

- **8.a** Montrer que pour tout entier naturel n, la fonction g_n est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **8.b** Montrer que g_n est nulle hors du segment $\left[-\frac{1}{\beta_n}, \frac{1}{\beta_n}\right]$.
- 9 Soit n et j des entiers naturels tels que j < n.
 - **9.a** Montrer que

$$\forall x \in \mathbb{R}, \ g_n^{(j)}(x) = \sum_{i=0}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{x^{n-j+i}}{(n-j+i)!}$$

- **9.b** En déduire que $g_n^{(j)}(0) = 0$.
- **9.c** Montrer que, pour tout réel x tel que $|x| \ge \frac{1}{\beta_n}$, on a $g_n^{(j)}(x) = 0$.
- **9.d** Montrer que, pour tout réel x tel que $|x| \le \frac{1}{\beta_n}$, on a $|u_n g_n^{(j)}(x)| \le 2^{-(n+1)}$.
- 10 Déduire des questions précédentes que pour $n, j \in \mathbb{N}$,

$$g_n^{(j)}(0) = \begin{cases} 0 & \text{si } j \neq n \\ 1 & \text{si } j = n \end{cases}$$

I1 En considérant $\sigma = \sum_{n=0}^{\infty} u_n g_n$, montrer qu'il existe une fonction f de classe \mathcal{C}^{∞} sur \mathbb{R} telle que $\forall j \in \mathbb{N}$, $f^{(j)}(0) = u_j$ (théorème de Borel).

III Un autre élément de \mathcal{W}

On considère une suite $(a_n)_{n\in\mathbb{N}}$ de réels strictement positifs, décroissante de limite nulle, et telle que la série $\sum_{n=1}^{\infty} a_n$ converge.

III.A Une fonction affine par morceaux

On pose pour tout x réel

$$f_0(x) = \frac{1}{2a_0^2} (|x + a_0| + |x - a_0| - 2|x|)$$

- Montrer que f_0 est nulle en dehors de $[-a_0, a_0]$, préciser sa valeur sur $[-a_0, 0]$ et $[0, a_0]$, justifier sa continuité et tracer rapidement son graphe.
- $\boxed{13} \text{ On pose } k = \frac{1}{a_0^2}.$
 - **13.a** Pour tout réel x, montrer que $|f_0(x)| \le \frac{1}{a_0}$.
 - **13.b** Montrer que f_0 est lipschitzienne de rapport k sur \mathbb{R} .

III.B La première étape

On pose pour tout x réel

$$f_1(x) = \frac{1}{2a_1} \int_{x-a_1}^{x+a_1} f_0(t) dt$$

- 14 Montrer que f_1 est de classe \mathcal{C}^1 sur \mathbb{R} et calculer $f_1'(x)$ pour tout x réel.
- 15 Montrer que f_1 est nulle en dehors de $[-a_0 a_1, a_0 + a_1]$.
- 16 Montrer que $\forall x \in \mathbb{R}, |f_1(x)| \le \frac{1}{a_0}$ et $|f_1'(x)| \le \frac{1}{a_0 a_1}$.
- 17 Montrer que f_1 est lipschitzienne de rapport k sur \mathbb{R} .

III.C Une suite de fonctions

On définit par récurrence une suite (f_n) de fonctions par f_0 et f_1 définies comme dans les questions précédentes et, pour tout naturel $n \ge 2$ et tout x réel,

$$f_n(x) = \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} f_{n-1}(t) dt$$

- 18 Montrer que f_n est de classe \mathcal{C}^n sur \mathbb{R} et calculer $f'_n(x)$ pour tout x réel.
- 19 Montrer que f_n est nulle en dehors de $\left[-\sum_{i=0}^n a_i, \sum_{i=0}^n a_i\right]$.
- **20** Pour tout $x \in \mathbb{R}$, montrer que $|f_n(x)| \le \frac{1}{a_0}$ et que, si $p \le n$, on a $|f_n^{(p)}(x)| \le \frac{1}{a_0 a_1 \dots a_p}$.
- **21** Montrer que f_n est lipschitzienne de rapport k sur \mathbb{R} .
- 22 Montrer que pour tout naturel n,

$$\int_{-S}^{S} f_n(t) dt = 1 \text{ où } S = \sum_{n=0}^{+\infty} a_n$$

III.D La limite

On considère la série de fonctions $\sum_{n\geq 1} k_n$ où $k_n=f_n-f_{n-1}$ pour tout $n\geq 1$.

- **23 23.a** Pour tout entier $n \ge 1$ et tout réel x, montrer que $|k_n(x)| \le \frac{k}{2}a_n$.
 - **23.b** En déduire la convergence normale de la série de fonctions $\sum k_n$ Pour tout réel x, on note

$$s(x) = \sum_{n=1}^{+\infty} k_n$$

- **24 24.a** Montrer que pour tout x réel, $f_n(x)$ converge vers une limite que l'on notera w(x) et qui vérifie $w(x) = f_0(x) + s(x)$.
 - **24.b** Pour tout x réel, montrer que $|w(x)| \le \frac{1}{a_0}$.
 - **24.c** Montrer que w est lipschitzienne de rapport k sur \mathbb{R} .
 - **24.d** Montrer que w est nulle en dehors du segment [-S, S].

25 25.a Montrer que
$$\int_{-S}^{S} w(t) dt = 1$$
.

25.b En déduire que w n'est pas constante nulle sur \mathbb{R} .

- **26 26.a** Montrer que $\sum (f'_n f'_{n-1})$ converge normalement sur \mathbb{R} .
 - **26.b** Trouver un lien entre w, f_1 et $\sum (f_n f_{n-1})$.
 - **26.c** En déduire que w est de classe \mathcal{C}^1 sur \mathbb{R} .
 - **26.d** Montrer que pour tout x réel, $|w'(x)| \le \frac{1}{a_0 a_1}$.

27 Soit $p \ge 2$.

- **27.a** Montrer que $\sum_{n \geq p+1} (f_n^{(p)} f_{n-1}^{(p)})$ converge normalement sur \mathbb{R} .
- **27.b** Trouver un lien entre w, f_p et $\sum_{n=p+1}^{+\infty} (f_n f_{n-1})$.
- **27.c** En déduire que w est de classe \mathcal{C}^p sur \mathbb{R} .
- **27.d** Montrer que pour tout x réel, $|w^{(p)}(x)| \le \frac{1}{a_0 a_1 \dots a_p}$.

IV Classes quasi-analytiques

On considère une suite réelle $\mathbf{M}=(\mathbf{M}_n)_{n\geq 0}$ vérifiant les trois conditions :

$$\forall n \in \mathbb{N}, \ \mathbf{M}_n > 0 \tag{IV.1}$$

$$M_0 = 1 (IV.2)$$

$$\forall n \ge 1, \ M_n^2 \le M_{n-1} M_{n+1}$$
 (IV.3)

On note $\mathcal{C}(M)$ l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{C}$ de classe \mathcal{C}^∞ pour lesquelles il existe deux constantes A>0 et B>0 (dépendantes de f) telles que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |f^{(n)}(x)| \le AB^n M_n$$

L'ensemble $\mathcal{C}(M)$ est dit classe associée à la suite M.

La classe $\mathcal{C}(M)$ est dite quasi-analytique si

$$\forall f \in \mathcal{C}(M), (\forall k \in \mathbb{N}, f^{(k)}(0) = 0) \implies f = 0$$

IV.A Quelques propriétés d'une classe

Montrer que si $f \in \mathcal{C}(M)$ et $(a,b) \in \mathbb{R}^2$, alors la fonction $g: x \mapsto f(ax+b)$ appartient aussi à $\mathcal{C}(M)$.

29 Vérifier que $\mathcal{C}(M)$ est un espace vectoriel sur \mathbb{C} .

- **30.a** Montrer que pour tous $n, k \in \mathbb{N}$ tels que $k \le n$, on a $M_k M_{n-k} \le M_n$. On pourra étudier, pour p fixé, la monotonie de la suite $(M_n/M_{n-p})_{n \ge p}$.
 - **30.b** En déduire que le produit de deux éléments quelconques de $\mathcal{C}(M)$ est un élément de $\mathcal{C}(M)$.

IV.B Un exemple de classe quasi-analytique

On note U la suite définie par $U_n = n!$ pour tout $n \in \mathbb{N}$.

- 31 Montrer que la suite U vérifie les conditions IV.1, IV.2 et IV.3.
- 32 Soit $f \in \mathcal{C}(U)$; on fixe A > 0, B > 0 tels que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |f^{(n)}(x)| \leq AB^n n!$$

32.a Dans cette question et la suivante, on suppose que le réel α vérifie $\forall k \in \mathbb{N}, f^{(k)}(\alpha) = 0$. Montrer que

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ f(x) = \int_{\alpha}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) \ dt$$

- **32.b** En déduire que $\forall x \in \mathbb{R}, |x \alpha| \le \frac{1}{2B} \implies f(x) = 0.$
- **32.c** Montrer que $\mathcal{C}(U)$ est une classe quasi-analytique.

IV.C

- **33** Montrer que si $\mathcal{C}(M)$ est quasi-analytique, alors $\mathcal{C}(M) \cap \mathcal{W} = \{0\}$.
- Montrer la réciproque; on pourra montrer, lorsque $\mathcal{C}(M)$ n'est pas quasi-analytique, l'existence d'une fonction $g \neq 0$ dans $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$, nulle sur $]-\infty, 0]$, puis considérer $h: x \mapsto g(x)g(c-x)$ pour un $c \in \mathbb{R}$ bien choisi.

IV.D

On se donne une suite réelle $M=(M_n)_{n\geq 0}$ vérifiant les trois conditions IV.1, IV.2 et IV.3 et on considère les assertions :

la série
$$\sum_{n>1} \left(\frac{1}{M_n}\right)^{\frac{1}{n}}$$
 converge (IV.4)

la série
$$\sum_{n\geq 1} \frac{M_{n-1}}{M_n}$$
 converge (IV.5)

la classe
$$\mathcal{C}(M)$$
 n'est pas quasi analytique (IV.6)

Pour tout $n \ge 1$, on note $\alpha_n = M_{n-1}/M_n$.

- 35 Exprimer M_n en fonction de $\alpha_1, \dots, \alpha_n$ et en déduire que IV.4 \Longrightarrow IV.5
- 36 Démontrer en utilisant la partie III que IV.5 \implies IV.6.

On peut montrer à l'aide d'outils mathématiques plus élaborés que IV.6 \implies IV.4, ce qui donne une caractérisation des classes quasi-analytiques. Ce résultat constitue une partie du théorème de Denjoy-Carleman.