UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tom Gornik Izrek Šarkovskega

Magistrsko delo

Mentor: izr. prof. dr. Aleš Vavpetič

Kazalo

Izrek Šarkovskega

Povzetek

Sharkovsky theorem

Abstract

Math. Subj. Class. (2010):

Ključne besede:

Keywords: V tem poglavju bomo dokazali glavni del izreka Šarkovskega. Vemo že,

da izrek velja, če obstaja točka cikla, ki ne menja strani. V primeru, da vse točke menjajo strani, bomo podobno kot v primeru ?? cikel razdelili na levo in desno polovico. Vsaka polovica tvori cikel za funkcijo f^2 . Informacijo o ciklih funkcije f^2 bomo nato prenesli na cikle funkcije f.

Trditev 0.1. Naj bosta m in l naravni števili v relaciji m > l in naj bo \mathcal{O} m-cikel. Potem obstaja \mathcal{O} -vsiljena elementarna l-zanka \mathcal{O} -intervalov in posledično točka s periodo l.

Dokaz. Izrek bomo dokazali s pomočjo indukcije na število m.

Če je m=1, je trditev avtomatično izpolnjena, saj je 1 zadnji člen zaporedja Šarkovskega in edino število l, za katerega velja $l \triangleleft 1$ je 1.

Predpostavimo, da izrek velja za vse cikle, katerih dolžina je krajša od m. Radi bi dokazali, da velja tudi za poljuben m-cikel \mathcal{O} . Ce obstaja točka iz cikla \mathcal{O} , ki ne menja strani, potem je po trditvi ?? resična tudi trditev 0.1. V nasprotnem primeru vse točke cikla \mathcal{O} menjajo strani. Označimo najmanjšo točko cikla \mathcal{O} z Lin največjo točko cikla \mathcal{O} z R. Množica \mathcal{O}_L vsebuje vse točke iz cikla \mathcal{O} , ki ležijo levo od centra c, množica \mathcal{O}_R pa vsebuje vse točke, ki ležijo desno od centra c. Ker vse točke iz cikla \mathcal{O} menjajo strani, funkcija f slika množico \mathcal{O}_L v množico \mathcal{O}_R in obratno. Funkcija $f|_{\mathcal{O}_L}$ je bijekcija iz množice \mathcal{O}_L v množico \mathcal{O}_R in funkcija $f|_{\mathcal{O}_R}$ je bijekcija iz množice \mathcal{O}_R v množico \mathcal{O}_L . Ugotovimo, da množici \mathcal{O}_L in \mathcal{O}_R vsebujeta enako število točk, zato je število m sodo in obstaja naravno število n, za katerega je m=2n. Ker je m sodo število, je lahko neko naravno število l v relaciji $l \triangleleft m$ samo, če je l = 1 ali pa je l sodo število. V drugem primeru obstaja tako naravno število k, za katerega je l=2k. Iz zgornjega razmisleka in iz trditve ?? sledi, da je neko naravno število l v relaciji $l \triangleleft m$ natanko tedaj, ko je l = 1 ali pa je l=2k in je število k v relaciji $k \triangleleft n$. To pomeni, da moramo pokazati, da ima f elementarno 1-zanko in elementarno \mathcal{O} -vsiljeno 2k-zanko \mathcal{O} -intervalov za vsako naravno število k za katerega velja relacija $k \triangleleft n$. Elementarno 1-zanko dobimo s pomočjo intervala [p,q]. Točka p je največja točka množice \mathcal{O}_L in točka q je najmanjša točka množice \mathcal{O}_R . Ker točka f(p) leži v množici \mathcal{O}_R in točka f(q) leži v množici \mathcal{O}_L dobimo elementarno 1-zanko $[p,q] \to [p,q]$. Pri dokazovanju obstoja 2k-zanke za vsako naravno število k, ki ustreza relaciji $k \triangleleft n$, si bomo pomagali z indukcijsko predpostavko. Opazimo, da sta množici \mathcal{O}_L in \mathcal{O}_R cikla dolžine n za funkcijo f^2 . Ker je dolžina obeh ciklov manjša od m, lahko uporabimo indukcijsko predpostavko. Ce indukcijsko predpostavko uporabimo na ciklu \mathcal{O}_R , ugotovimo, da za vsako naravno število k, za katerega je $k \triangleleft n$, obstaja elementarna \mathcal{O}_R -vsiljena k-zanka \mathcal{O}_R intervalov za funkcijo f^2 . Pokazati moramo, da te zanke zagotavljajo obstoj elementarnih l-zank za funkcijo f. Zapišimo poljubno elementarno k-zanko \mathcal{O}_R intervalov za funkcijo f^2 :

(1)
$$I_0 \xrightarrow{f^2} I_1 \xrightarrow{f^2} I_2 \xrightarrow{f^2} \cdots \xrightarrow{f^2} I_{k-1} \xrightarrow{f^2} I_0.$$

Za vsako naravno število $0 \le i < k$ označimo najkrajši zaprti interval, ki vsebuje množico $f(I_i \cap \mathcal{O}) \subseteq \mathcal{O}_L$, z I_i' . Intervali I_i' so \mathcal{O} -intervali za katere veljajo relacije pokritja $I_i \xrightarrow{f} I_i'$. Če interval I_0 označimo z I_k lahko naradimo naslednji razmislek. Za vsako naravno število $0 \le i < k$ lahko zapišemo \mathcal{O}_R -vsiljene relacije pokritja $I_i \xrightarrow{f^2} I_{i+1}$, zato obstajata taki točki $a_i, b_i \in I_i \cap \mathcal{O}_R$, da interval I_{i+1} leži v intervalu omejenim s točkama $f^2(a_i)$ in $f^2(b_i)$. Točki $a_i' := f(a_i)$ in $b_i' := f(b_i)$ ležita v množici $I_i' \cap \mathcal{O}$ in zaprt interval omejen s točkama $f(a_i') = f^2(a_i)$ in $f(b_i') = f^2(b_i)$ vsebuje

interval I_{i+1} . Dobili smo \mathcal{O} vsiljeno relacijo pokritja $I'_i \xrightarrow{f} I_{i+1}$. S pomočjo zgornjih relacij pokritja lahko zapišemo naslednjo \mathcal{O} -vsiljeno l-zanko:

(2)
$$I_0 \xrightarrow{f} I'_0 \xrightarrow{f} I_1 \xrightarrow{f} I'_1 \xrightarrow{f} \cdots \xrightarrow{f} I_{k-1} \xrightarrow{f} I'_{k-1} \xrightarrow{f} I_0$$

Prepričajmo se, da je zanka (2) elementarna. Naj bo točka x periodična točka za funkcijo f, ki sledi zanki (2). Točka x je periodična točka za funkcijo f^2 , ki sledi zanki (1). Torej, točka x ima periodo k za funkcijo f^2 , kar pomeni, da k točk f-orbite leži v množici \mathcal{O}_R . Ker intervali v zanki (2) ležijo izmenično na levi oziroma desni strani točke c, tudi iteracije točke x ležijo izmenično na levi oziroma desni strani točke c. To pomeni, da k točk, ki predstavljajo lihe iteracije točke x ležijo v množici \mathcal{O}_L . Zato orbita točke x vsebuje 2k = l različnih točk in je tudi perioda točke x za funkcijo f enaka l. Sklepamo, da je zanka (2) elementarna, kar zakluči dokaz.