Mathématiques et Calcul 2 - Chapitre 3

Groupe de TD numéro 10

 $31~\mathrm{mars}~2023$

1. Déterminer la nature des intégrales suivantes:

(a)

$$\int_{1}^{+\infty} \frac{\arctan(\frac{1}{\sqrt{t}})}{\sqrt{t^2 + 1}} \, \mathrm{d}t$$

(b)

$$\int_{1}^{+\infty} t \sin(t) e^{-t} dt$$

2. Trouver une condition nécessaire et suffisante sur $b\in\mathbb{R}$ pour que l'intégrale suivante converge:

$$\int_{1}^{+\infty} \frac{(e^{-t+1} - 1)e^{-t+1}}{t(t-1)^{b}} dt$$

Rappel: $e^x = 1 + x + o_{x\to 0}(x)$

Corrigé

1. Déterminer la nature des intégrales suivantes:

(a)
$$\int_{1}^{+\infty} \frac{\arctan(\frac{1}{\sqrt{t}})}{\sqrt{t^2 + 1}} dt$$

Correction

Posons $f: t \mapsto \frac{\arctan(\frac{1}{\sqrt{t}})}{\sqrt{t^2+1}}$ qui est définie, continue et positive sur $[1, +\infty[$.

 $f(t) \underset{t \to \infty}{\sim} \frac{\frac{1}{\sqrt{t}}}{t} = \frac{1}{t^{3/2}}$ qui est le terme général d'une intégrale de Riemann convergente ($\alpha = 3/2 > 1$) donc $\int_1^{+\infty} f(t) dt$ converge par critère d'équivalence.

(b)
$$\int_{1}^{+\infty} t \sin(t) e^{-t} \, \mathrm{d}t$$

Correction

Posons $f: t \mapsto t \sin(t) e^{-t}$ qui est définie et continue sur $[1, +\infty[$ mais qui n'est pas de signe constant.

Pour tout $t \geq 1$, $|f(t)| \leq te^{-t}$ et $\exists T \in [1, +\infty[$ tel que pour tout t > T, $e^{-t} \leq \frac{1}{t^3}$. Dans ce cas, $|f(t)| \leq \frac{1}{t^2}$ qui est le terme générale d'une intégrale de Riemann convergente $(\alpha = 2 > 1)$ donc $\int_1^{+\infty} f(t) \, \mathrm{d}t$ converge absolument par critère de majoration et donc converge.

2. Trouver une condition nécessaire et suffisante sur $b \in \mathbb{R}$ pour que l'intégrale suivante converge:

$$\int_{1}^{+\infty} \frac{(e^{-t+1} - 1)e^{-t+1}}{t(t-1)^{b}} dt$$

Correction

Posons $f: t \mapsto \frac{(e^{-t+1}-1)e^{-t+1}}{t(t-1)^b}$ qui est définie, continue et négative sur $]1, +\infty[$ pour tout $b \in \mathbb{R}$. On introduit donc la fonction g définie, pour tout $t \in]1, +\infty[$, par g(t) = -f(t). g est donc définie, continue et positive sur $]1, +\infty[$.

$$I = \int_{1}^{2} g(t) dt + \int_{2}^{+\infty} g(t) dt$$

• Au voisinage de $+\infty$: On a $g(t) \underset{t \to +\infty}{\sim} \frac{e^{-t+1}}{t^{b+1}} = h(t)$. Or, $\exists T \in [2, +\infty[$ tel que pour tout t > T, $e^{-t} \leq \frac{1}{t^{1-b}}$. Dans ce cas, $h(t) \leq \frac{e}{t^2}$ qui est le terme général d'une intégrale de Riemann convergente. Ainsi, par critère de majoration $\int_2^{+\infty} h(t) \, \mathrm{d}t$ converge et par critère d'équivalence $\int_2^{+\infty} g(t) \, \mathrm{d}t$ converge pour tout $b \in \mathbb{R}$. Donc $\int_2^{+\infty} f(t) \, \mathrm{d}t$ converge pour tout

• Au voisinage de 1:

On se ramène à une borne impropre en 0 par changement de variable: Variable actuelle: $t \in]1, 2], t \geq 1$.

Nouvelle variable: s > 0

 $t \ge 1 \iff t-1 \ge 0$, on pose s = t-1.

Soit
$$x \in]1,2]$$
, posons $F(x) = \int_x^2 g(t) dt$.
Donc $F(x) = \int_x^2 \frac{(1-e^{-t+1})e^{-t+1}}{t(t-1)^b} dt = \int_{x-1}^1 \frac{(1-e^{-s})e^{-s}}{(s+1)s^b} ds \xrightarrow[x \to 1]{} \int_0^1 \frac{(1-e^{-s})e^{-s}}{(s+1)s^b} ds$

Pour tout $s \in]0,1]$, posons $h(s) = \frac{(1-e^{-s})e^{-s}}{(s+1)s^b} \sim \sum_{s \to 0} \frac{1}{s^b} = \frac{1}{s^{b-1}}$ qui est le terme général d'une intégrale de Riemann convergente ssi b-1 < 1. Donc, d'après le critère d'équivalence, $\int_0^1 h(s) \, \mathrm{d}s = \int_1^2 g(t) \, \mathrm{d}t$ converge ssi b < 2. Ainsi, $\int_1^2 f(t) \, \mathrm{d}t$ converge ssi b < 2.

• Conclusion: I converge ssi b < 2.