CSC 503 Homework Assignment 4

Out: September 19, 2018 Due: September 26, 2018 Unity ID: zzha

Let a and b be constant symbols, f a function symbol with three arguments, g a function symbol with one argument, h a function symbol with two arguments, P a predicate symbol with three arguments, and Q a predicate symbol with two arguments, and x, y, and z variable symbols.

Indicate, for each of the following strings, which strings are formulas in predicate logic, and state a reason for failure for strings which are not. No credit will be given for strings correctly identified as not being formulas without correct identification of a reason why the string is not a formula.

1. **[5 points]** $\exists y \ P(x, b, y) \land P(h(b, x), h(y, b), g(y)(a))$

Answer

Not a formula, g(y)(a) is not a valid term.

2. [5 points] $\exists b \ \forall x \ Q(f(b,y,x),g(h(a,x)))$

Answer

Not a formula, b is not a variable where after the existential quatifier.

3. [5 points] $\forall z \exists x P(g(h(b,x),z), f(a,y))$

Answer

Not a formula, P needs 3 arguments.

4. **[5 points]** $\forall y \ g(Q(z,y)) \rightarrow P(h(f(y,z,z),z))$

Answer

Not a formula, implies only apply to valid formula, g(Q(z,y)) is not a valid formula.

5. **[5 points]** $P(a, g(g(f(a, \neg b, a))), a) \rightarrow P(a, f(a, \neg b, a), a)$

Answer

Yes, it is a valid formula.

Now let R be a predicate symbol with arity 2, f be a function of arity 2, and ϕ be the formula

$$\forall x \left[\left(R(x,z) \land \exists z \ \neg R(z,f(x,y)) \right) \rightarrow \forall y \ R(y,z) \right]$$

6. [5 points] Indicate, for each occurrence of each variable in ϕ , whether that occurrence is free or bound.

Answer

$$\forall x \left[\left(R(x_{bound}, z_{free}) \land \exists z \ \neg R(z_{bound}, f(x_{bound}, y_{free})) \right) \rightarrow \forall y \ R(y_{bound}, z_{free}) \right]$$

7. [5 points] List all variables which occur both free and bound in ϕ .

Answer

- (a) z
- (b) y
- 8. [5 points] Compute $\phi[t/x]$ for t = h(f(g(y), x), a, x). Is t free for x in ϕ ?

Answer

Yes, t is free for x in ϕ . Because all the occurrences of x are bounded, thus no substitution is performed, and therefor no free x leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

9. **[5 points]** Compute $\phi[t/y]$ for t = h(f(g(y), x), a, x). Is t free for y in ϕ ?

Answer

No, t is not free for y in ϕ . Because the free y is bound in the scope of $\forall x$, where variable x occurring in t.

10. **[5 points]** Compute $\phi[t/z]$ for t = h(f(g(y), x), a, x). Is t free for z in ϕ ?

Answer

No, t is not free for z in ϕ . Because the free z is bound in the scope of $\forall x$ and $\forall y$, where variable x and y occurring in t.

Now consider a language in which the only nonlogical symbols are a predicate symbol R of two arguments and a function symbol f of one argument. Let ϕ_1 and ϕ_2 be the sentences

$$\phi_1 = \forall x \forall y \forall z \ R(x,y) \land R(y,z) \to R(x,z)
\phi_2 = \forall x \forall y \forall z \ R(x,y) \to R(f(x,z),f(y,z))$$

Recall that an interpretation of the language identifies a domain of interpretation M (a set), and maps each of the predicate and function symbols to a set of tuples of elements of M of the appropriate size.

11. **[15 points]:** Give a formal interpretation I that makes ϕ_1 true and ϕ_2 false.

Answer

- (a) Domain $M = \{a, b\}$
- (b) Function f(a, a) = b; f(a, b) = b; f(b, a) = b; f(b, b) = b;
- (c) Interpretation $R^I = \{(a, a)\}$
- 12. **[5 points]:** Briefly explain why I makes ϕ_1 true.

Answer

In order to make for all x, y, z, the ϕ_1 being true:

- (a) Case 1: if x = y = z = a, then R(x, y), R(y, z), R(x, z) all are true.
- (b) Other than Case 1: any x, y, z combination will result a case either R(x, y) or R(y, z) being false, which makes the whole being true.
- 13. **[5 points]:** Briefly explain why I makes ϕ_2 false.

Answer

In order to make for all x, y, z, the ϕ_2 being false, just need to find there exist one false case:

if x = a, y = a, then R(x, y) is true, and R(f(x, z), f(y, z)) would be R(b, b) which is false, therefore makes the ϕ_2 being false.

14. [15 points]: Give the formal definition of an interpretation J that makes ϕ_1 false and ϕ_2 true.

Answer

- (a) Domain $M = \{a, b\}$
- (b) Function f(a, a) = a; f(a, b) = a; f(b, a) = b; f(b, b) = b;
- (c) Interpretation $R^I = \{(a, b), (b, a)\}$
- 15. **[5 points]:** Briefly explain why J makes ϕ_1 false.

Answer

In order to make for all x, y, z, the ϕ_1 being false, just need to find there exist one false case:

if x = a, y = b, z = a, then R(x, y) and R(y, z) is true, and R(x, z) is false, therefore makes the ϕ_1 being false.

16. **[5 points]:** Briefly explain why J makes ϕ_2 true.

Answer

In order to make for all x, y, z, the ϕ_2 being true:

- (a) Case 1: if x = y, then R(x, y) is either R(a, a) or R(b, b), which is false, makes the whole being true.
- (b) Other 2: $x \neq y$, then R(f(x,z),f(y,z)) would be either R(a,b) or R(b,a) which is true in either case, which makes the whole being true.