

Alma Mater Studiorum · Università di Bologna

Dipartimento dell'energia elettrica e dell'informazione «Guglielmo Marconi»

Predictive Modeling of Grapevine Growth: Estimating Development Over Time

Presentata da: Abess Ouardi Relatore: Lorenzo Marconi

Anno accademico 2023/2024 Sessione V

Approcci esistenti

PBCMs

- Basato su fisiologia reale
- Interpretabile
- · Buona generalizzazione

- Nessuna rappresentazione della forma
- Richiede parametrizzazione precisa

FSPMs

- Rappresentazione strutturale dettagliata
- Legame tra fisiologia e geometria
 - Complessità computazionale
 - Alta richiesta di dati e parametrizzazione

AI driven

- Nessuna assunzione biologica
- Addestrabile su grandi dataset
- Predizione visiva
 - Scarsa interpretabilità
- · Generalizzazione limitata
- Richiede molti dati

Visione del framework ibrido implementato

PBCM: processi modellati & implementazione

Input richiesti

Concentrazione di anidride carbonica **Temperatura** ARPAE Emilia Romagna ARPAE Emilia Romagna Data, Tmin, Tmax, Precipitazioni Data ,value [part per million] radiazione solare Umidità del suolo AI generated AI generated Data, Light Intensity (MJ/m²) Data ,Soil Moisture (%)

Fenologia

GDD (Growing Degree Days)

Il GDD è un approccio che consente di calcolare l'occorrenza dei stati fenologici della pianta mediante la seguente:

$$GDD = T_{average} - T_{base}$$

STATO FENOLOGICO	GDD	T _{base}
Germogliamento	114	6,5°C
Fioritura	354	8,2°C
invaiatura	727	9,7°C
Maturazione	1267	10°C

Chilling-forcing units

Il metodo Chilling-Forcing Units combina l'accumulo di freddo invernale (chilling) con il successivo accumulo di calore primaverile (forcing) per stimare l'occorrenza del germogliamento.

$$CU = \sum_{i} f(T_{i})$$

$$FU = \sum_{l} \max(0, T_{mean} - T_{base})$$

STATO FENOLOGICO	CU	FU	T _{base}
Germogliamento	78	198	6,5°C

Fotosintesi

Il modello calcola giornalmente la fotosintesi netta sulla base dell'intensità luminosa incidente, la concentrazione atmosferica di $\rm CO_2$ e la temperatura. I valori giornalieri vengono integrati moltiplicandoli per l'indice di area fogliare (LAI) e un coefficiente di efficienza

- PlantLeafArea = SLAS * (LeafNumberRate)^{SLAE} * ShootNumber
- $LAI = \frac{PlantLeafArea*PSA}{PlantArea*10000}$
- RadIntercepted= $1-e^{-(CropCoefficent-LAI)}$

Biomassa e relativa allocazione

La biomassa è prodotta dalla fotosintesi in funzione della radiazione intercettata e dell'efficienza d'uso della radiazione (RUE), quest'ultima è funzione sia della temperatura che della concentrazione di CO2 nell'aria

PhotoRate=GSR* RadIntercepted* RUE* PhotoStress

TotBiomass = TotBiomass + PhotoRate

Il totale è allocato dinamicamente in funzione dello stato fenologico della pianta:

STATO FENOLOGICO	Biomassa fogliare	Biomassa del frutto	Biomassa dei tralci
Germogliamento	10%	0%	90%
Fioritura	60%	0%	40%
Invaiatura	(TotBio-FB)*0,7	$FB = TotBio * \sum HI * FSI$	(TotBio-FB)*0,3
Maturazione	(TotBio-FB)*0,8	$FB = TotBio * \sum HI * FSI$	(TotBio-FB)*0,2

Deep Neural Networks

- Le Deep Neural Networks (DNN), o reti neurali profonde, sono una classe di modelli di apprendimento automatico composti da una sequenza di strati (layers) interconnessi, progettati per apprendere rappresentazioni gerarchiche dei dati.
- A seconda del tipo di dati e problema, esistono architetture specializzate:
 MIP
 - RNN
 - C) D
 - CNN
 - LSTM
 - Autoencoder
 - Tranformer
 - GAN

Una GAN condizionata: Pix2Pix

Le Generative Adversarial Networks (GAN) sono una classe di reti neurali profonde composte da due reti: un Generatore G e un discriminatore D.

Le due reti sono addestrate contemporaneamente in un gioco a somma zero descritto dalla seguente:

$$\operatorname{minmax} V(D,G) = E_{x \sim p_{data}}[\log D(x)] + E_{z \sim p_z}[\log(1 - D(G(z)))]$$

La Pix2Pix GAN è una particolare architettura di GAN condizionata sviluppata per risolvere problemi di Image-to-Image Translation. Il generatore è una U-Net mentre il discriminatore è una PatchGAN.

Il dataset utilizzato proviene dal repository open-source Buds-Dataset e contiene un totale di 98 immagini.

- Il dataset utilizzato proviene dal repository open-source Buds-Dataset e contiene un totale di 98 immagini.
- Per simulare una situazione post-potatura le immagini sono state binarizzate e modificate tramite photo editors

- Il dataset utilizzato proviene dal repository open-source Buds-Dataset e contiene un totale di 98 immagini.
- Per simulare una situazione post-potatura le immagini sono state binarizzate e modificate tramite photo editors
- Il dataset è stato suddiviso in:
 - 78 pic per training
 - 10 pic per la validazione
 - 10 pic per il testing
- Per aumentare la varietà del training dataset e migliorare la generalizzazione del modello è stato effettuato un processo di data Augmentation.

- Il dataset utilizzato proviene dal repository open-source Buds-Dataset e contiene un totale di 98 immagini.
- Per simulare una situazione post-potatura le immagini sono state binarizzate e modificate tramite photo editors
- Il dataset è stato suddiviso in:
 - 78 pic per training
 - 10 pic per la validazione
 - 10 pic per il testing
- Per aumentare la varietà del training dataset e migliorare la generalizzazione del modello è stato effettuato un processo di data Augmentation.
- Per compatibilità con l'architettura, le immagini sono state ridimensionate a 256x256

U-net come Generatore

- La U-Net è una rete neurale composta da due parti principali, che formano graficamente una "U"
 - Encoder (contrazione); costituito da una serie di blocchi convoluzionali seguiti da layer d'attivazione (ReLu) e Pooling layers
 Decoder (espansione): serie di Un-convolutions per ricostruire l'immagine
 - Decoder (espansione); serie di Up-convolutions per ricostruire l'immagine
 La caratteristica principale di queste reti è la presenza delle Skip Connections, fondamentali per preservare la geometria dell'immagine

PatchGAN come Discriminatore

Il PatchGAN è un tipo di discriminatore utilizzato nelle architetture GAN che, invece di classificare l'intera immagine come reale o falsa, si focalizza sulla valutazione locale della realisticità, analizzando porzioni (patches) dell'immagine.

Loss functions & Training

- Le funzioni di perdita (o funzioni obiettivo) sono formule matematiche utilizzate per misurare quanto l'output di un modello differisce dal risultato atteso. L'obiettivo del modello è minimizzare la funzione di perdita o come in questo caso una combinazione di varie loss functions:
 - · Adversarial loss
 - SSIM loss
 - Dice loss
 - Edge loss

$$L_{tot} = \lambda_{\textit{adv}} * L_{\textit{adv}} + \lambda_{\textit{SSIM}} * L_{\textit{SSIM}} + \lambda_{\textit{dice}} * L_{\textit{dice}} + \lambda_{\textit{edge}} * L_{\textit{edge}}$$

L'addestramento è stato condotto su batch di 12 immagini, per un totale di 200 epoche, con ottimizzazione tramite algoritmo Adam. I coefficienti delle loss sono stati adattati ogni 10-30 epoche sulla base dell'andamento delle metriche di valutazione, al fine di migliorare la coerenza strutturale e la nitidezza delle predizioni.

Risultati

Il modello presenta un SSIM score nel training set pari a 0,92 e un Dice score pari a 0,87. Invece nel test set i valori sono inferiori pari a 0,81 (±0,07) per il SSIM score e un valore pari a 0,74((±0,05) per il Dice score.

Esempi di predizione sulle immagini di test:

Integrazione degli output

Lo scopo del merging è integrare i dati numerici generati dal modello fisiologico (PBCM),che simula l'accumulo di biomassa, con le immagini strutturali generate dal modello GAN, che predice la morfologia della pianta a fine stagione

 $L'output \ della \ GAN\ \`e inizialmente un'immagine che presenta rumore e artefatti visivi. Si applicano quindi vari passaggi di preprocessing descritti dalla seguente pipeline:$

Visual

Per integrare dati fisiologici privi di spazialità con una struttura visiva generata, è stato necessario tradurre la biomassa simulata in pixel attivabili, permettendo così una rappresentazione temporale e morfologica coerente della crescita della pianta.

Conclusione e sviluppi futuri

Il lavoro presentato ha dimostrato la possibilità di integrare con successo due approcci distinti — fisiologico e strutturale — per la modellazione della crescita della vite. Attraverso l'unione di un modello process-based (PBCM), in grado di simulare l'accumulo di biomassa sulla base di parametri ambientali, e un modulo generativo (Pix2Pix GAN), capace di predire la morfologia della pianta a fine stagione

- Possibili sviluppi futuri:
 - Espansione del Dataset
 - Validazione sperimentale sul campo
 - Integrazione con dati real time (IoT)
 - · Modelizzazione di ulteriori processi fisiologici

Alma Mater Studiorum · Università di Bologna

Dipartimento dell'energia elettrica e dell'informazione «Guglielmo Marconi»

Grazie per l'attenzione