Εισαγωγή στις Επικοινωνίες Δεδομένων

Εισηγητής: Χρήστος Δαλαμάγκας

cdalamagkas@gmail.com

Άδεια χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται στη διεθνή άδεια χρήσης Creative Commons Attribution-ShareAlike 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

Βιβλιογραφία

- Σημειώσεις κ. Πιτσιούγκα Ευάγγελου, Ρούστα Μιχαήλ, Τουφεξή Ευάγγελου
- Σημειώσεις δρας Μαλαματής Λούτας, Πανεπιστήμιο Δυτικής Μακεδονίας
 - https://eclass.uowm.gr/modules/document/?course=ICTE277
 - https://eclass.uowm.gr/modules/document/?course=ICTE278
- «Τηλεπικοινωνίες Και Δίκτυα Υπολογιστών», Άρης Αλεξόπουλος, Γιώργος Λαγογιάννης

Ύλη μαθήματος

- Τα εννοιολογικά μοντέλα OSI και TCP/IP
- Σήματα και κωδικοποίηση
- Μέθοδοι μετάδοσης
- Τοπολογίες και μοντέλα επικοινωνιών
- Μέσα μετάδοσης
- Βασικές μετρικές αξιολόγησης επικοινωνιών
- Τεχνικές πολυπλεξίας
- Τεχνικές διόρθωσης σφαλμάτων
- Αρχιτεκτονικές δικτύων WAN
- Τεχνικές μετάδοσης στο WAN
- Ευρυζωνικές επικοινωνίες DSL και FTTx
- Βασικές δικτυακές συσκευές

Application

Transport

Network

Network access

Τηλεπικοινωνιακό Μοντέλο

Τα δύο βασικά εννοιολογικά μοντέλα

TCP/IP		osi		
	HTTP/2, DNS, DHCP	Application		
Application	TLS, JPEG, TIFF, GIF	Presentation		
	RPC	Session		
Transport	TCP, UDP	Transport		
Network	IP	Network		
Network	Ethernet	Data link		
access	NRZ, Manchester	Physical		

Με λίγα λόγια...

Application Layer: Εφαρμογές/υπηρεσίες προς τον χρήστη.

Presentation Layer: Πρωτόκολλα αναπαράστασης και κρυπτογράφησης.

Session Layer: Διαχείριση σύνδεσης στο επίπεδο εφαρμογών.

Transport Layer: Έλεγχος ροής, τεμαχισμός, διαχείριση σύνδεσης.

Network Layer: Δρομολόγηση πακέτων

Data link Layer: (Από)πλαισίωση πακέτων, τοποθέτηση bit στο μέσο μετάδοσης

Physical Link: (Από)κωδικοποίηση bit, δημιουργία σήματος

Ενθυλάκωση

Αποστολέας: Από Application layer προς Link Layer

Παραλήπτης: Από Link Layer προς Application Layer

Κωδικοποίηση

- Τα ψηφιακά συστήματα αναγνωρίζουν μόνο με 0 και 1
- Κώδικες: Αντιστοιχούν ακολουθίες bit σε αναγνώσιμους χαρακτήρες
 - ASCII, UNICODE
- Βασικές αρχές:
 - Αποδοτικότητα: A = (1/μ) log₂N
 Ν το πλήθος των χαρακτήρων που κωδικοποιούνται
 μ το πλήθος bit που απαιτούνται για την αναπαράσταση ενός χαρακτήρα
 - Η υλοποίηση να διευκολύνει τα προγράμματα ταξινόμησης και τον διαχωρισμό των διαφόρων ειδών χαρακτήρων (αλφαριθμητικα, σύμβολα, χαρακτηρες ελέγχου)
 - Χαρακτήρες ελέγχου για την ομαλή ροή δεδομένων και την αναγνώριση/διόρθωση σφαλμάτων

Γνωστοί Κώδικες

Morse

ΠΙΝΑΚΑΣ 2.1 ΚΩΔΙΚΑΣ MORSE

Ο ΠΙΝΑΚΑΣ ASCII

Κώδικας ASCII

- 7 bit πληροφορίας
- 1 bit για έλεγχο ισοτιμίας
- 2⁷ = 128 χαρακτήρες
- 95 χαρακτήρες για αναπαράσταση γραμμάτων, αριθμών και συμβόλων
- 33 χαρακτήρες ελέγχου
- Υποστηρίζει μόνο το λατινικό αλφάβητο!!

	Bi	ts	k	7 b6 b5	000	001	010	011	100	101	110	111
b4	b3	b2	b1	HEX	0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р
0	0	0	1	1	SOH	DC1	!	1	Α	Q	а	q
0	0	1	0	2	STX	DC2		2	В	R	b	r
0	0	1	1	3	ETX	DC3	#	3	С	S	С	s
0	1	0	0	4	EOT	DC4	\$	4	D	Т	d ,	t
0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
0	1	1	0	6	ACK	SYN	&	6	F	٧	f	٧
0	1	1	1	7	BEL	ETB	,	7	G	W	g	w
1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
1	0	0	1	9	нт	EM)	9	1	Υ	i	у
1	0	1	0	Α	LF	SUB	*	:	J	Z	j	z
1	0	1	1	В	VT	ESC	+	;	К	[k	{
1	1	0	0	С	FF	FS	•	<	L	\	1	- 1
1	1	0	1	D	CR	GS	-	=	М]	m	}
1	1	1	0	Е	so	RS		>	N	^	n	~
1	1	1	1	F	SI	US	/	?	0	-	0	DEL

Unicode

- Το σύγχρονο πρότυπο για την αναπαράσταση της πληροφορίας
- Διάφοροι επιμέρους κώδικες: UTF-8, UTF-16,
 UTF-32
- UTF-8: Από 1 μέχρι 4 byte των 8-bit για αναπαράσταη μιας πληροφορίας (RFC 3629)
- Υποστηρίζει 1,.12.064 χαρακτήρες
- Πλήρως συμβατό με ASCII
- Οι κώδικες έχουν μεταβλητό μήκος, σε αντίθεση με το ASCII

Παράδειγμα χρήσης κωδίκων

- Επεξεργαστές κειμένου
- Το Notepad++ μας επιτρέπει να μετατρέπουμε αρχεία μεταξύ Unicode και ASCII
- ΤeX: Σύστημα στοιχειοθεσίας κειμένου
 - Χρησιμοποιεί ASCII από προεπιλογή
 - Ξεχωριστές υλοποιήσεις της μηχανής στοιχειοθεσίας ΤeX χρειάζονται για την υποστήριξη Unicode (xetex)
- Λοιποί κώδικες: ISO 8859-7 για αναπαράσταση ελληνικών χαρακτήρων. Ας τους αποφεύγουμε!

Σήματα

- Στις ψηφιακές επικοινωνίες, Ο και 1 αναπαρίστανται με παλμούς
- Τα bit κωδικοποιούνται με την εναλλαγή στην τάση
- Τρόποι αναπαράστασης των παλμών (line coding)
 - Return to zero
 - Non return to zero
 - Bipolar
 - Machester

Τρόποι μετάδοσης

• Σειριακά

- Τα bit μεταδίδονται σειριακά, το ένα μετά το άλλο
- Συνήθως, πρώτα εκπέμπεται πρώτο το λιγότερο σημαντικό bit
- Ο Απλός στην υλοποίηση
- Ο Κυρίαρχος τρόπος μετάδοσης τόσο με μεγάλες όσο και σε μικρές αποστάσεις

Τρόποι μετάδοσης

• Παράλληλα

- Μεταδίδονται πολλά bit ταυτόχρονα
- Πολλαπλοί αγωγοί παράλληλα συνδεδεμένοι για τη μετάδοση
- Συνήθως 8 κανάλια για τη μετάδοση ενός byte συν κανάλια για μεταφορά μηνυμάτων ελέγχου
- Δύσκολη η υλοποίηση, απαιτείται ακριβής συχρονισμός.
- Σήμερα, συναντάται μόνο σε επίπεδο κυκλωμάτων

Συγχρονισμός μετάδοσης

- Ο πομπός και ο δέκτης έχουν προσυμφωνήσει στην ταχύτητα μετάδοσης
 των bit, στη διάρκεια του καθενός και στον κώδικα γραμμής.
- Ο δέκτης πρέπει να ξέρει πότε τελειώνει και πότε αρχίζει η μετάδοση ενός
 bit
- Διαφορετικά κυκλώματα χρονισμού για πομπό και δέκτη
- Μικρές αποκλήσεις πιθανές
- Συγχρονισμός: Μηχανισμοί που επιτρέπουν στον δέκτη και τον πομπό να διατηρούν κοινό σημείο αναφοράς

Συγχρονισμός μετάδοσης

- Ασύγχρονη μετάδοση
 - Είναι η μετάδοση χωρίς ξεχωριστή σηματοδοσία ρολογιού
 - Το κανάλι διατηρείται σε κατάσταση αδράνειας IDLE
 - Ένα start bit εκκινεί το κύκλωμα χρονισμού του δέκτη και τον προετοιμάζει για τα επακόλουθα bit
 - Κάθε ομάδα bit διαχωρίζεται με το άλλο χρονικά ώστε να τα διακρίνει ο δέκτης

Συγχρονισμός μετάδοσης

• Σύγχρονος

- Ξεχωριστό κανάλι για τη σηματοδοσία του ρολογιού
- Δεν υπάρχει κενός χρόνος (IDLE) μεταξύ των ομάδων μετάδοσης
- Ειδικοί χαρακτήρες για τον συγχρονισμό χαρακτήρων (ASCII SYN: 00010110)
- Για τη μετάδοση bit: Flag 01111110
- Δυο συνεχόμενοι χαρακτήρες SYN για τον συγχονισμό
- pad: Ακολουθία bit για τον αποσυγχρονισμό

Σχήμα 2.5 Σύγχρονη μετάδοση

Αμφιδρομικότητα επικοινωνίας

t٥ Μονόδρομη H/Y - A H/Y - B Simplex to H/Y - A H/Y - B Ημιαμφίδρομη Half Duplex t٥ H/Y - B H/Y - A Πλήρως αμφίδρομη Full Duplex

Τεχνικές Πολυπλεξίας

- Πολυπλεξία Διαίρεσης Συχνότητας (FDM)
 - Ο Χρήση πολλών συχνοτήτων στο ίδιο φυσικό μέσο
 - Πολυπλεξία Ορθογώνιας Συχνότητας (OFDM)
- Πολυπλεξία Διαίρεσης Χρόνου (TDM)
 - Ο Χωρισμός του χρόνου σε χρονοθυρίδες και εξυπηρέτηση σε γύρους
- Πολυπλεξία Διαίρεσης Κώδικα (CDM)
 - Ο Κωδικοποίηση του σήματος με κάποιον κώδικα / εξάπλωση φάσματος
- Πολυπλεξία Διαίρεσης Μήκους Κύματος (WDM)
 - Ο Παραλλαγή του FDM για τα μήκη κύματος
- Πολυπλεξία Διαίρεσης Χώρου (SDM)
 - Ο πομπός αντιλαμβάνεται τη θέση του κινητού τερματικού και προσαρμόζει κατάλληλα την εκπομπή
 - Ο Εφαρμόσιμο και στις οπτικές επικοινωνίες ΜΙΜΟ