<mark>第一节 数列的极限</mark>

第二节 函数的极限

第三节 无穷小与无穷大

▶ 数列的极限 1/24

第一节 数列的极限

第二节 函数的极限

第三节 无穷小与无穷大

▶ 函数的极限 2/24

第一节 数列的极限

第二节 函数的极限

第三节 无穷小与无穷大

▶ 无穷小与无穷大 3/24

第三节	无穷小与无穷大
3.1	无穷小
3.2	无穷大
3.3	小结 思考

无穷小

定义 如果 $\lim_{x \to x_0} f(x) = 0$,就称f(x)为当 $x \to x_0$ 时的无穷小.

小注: f(x)为当 $x \to x_0$ 时的无穷小 $\Leftrightarrow \forall \epsilon > 0$, 当 $\delta > 0$, 当 $\delta < |x - x_0| < \delta$ 时,有 $|f(x)| < \epsilon$

小注: 类似地,可以定义 $X \to \infty$ 、 $X \to -\infty$ 、 $X \to +\infty$ 时的无穷小。

▶ 无穷小与无穷大 ▷ 无穷小

无穷小

例子 $0 \cdot x \cdot x^2 \cdot \sin x \cdot 1 - \cos x \cdot \sqrt{1+x} - 1$ 和 $e^x - 1$ 都是 $x \to 0$ 时的无穷小。

例子 函数
$$\frac{1}{x}$$
、 $\frac{2}{1+x}$ 和 $\frac{x}{x^2+1}$ 都是 $x \to \infty$ 时的无穷小。

小注: 无穷小是变量,不能与很小的数混淆。

小注: 零是可以作为无穷小的唯一的数

无穷小与函数极限的关系

定理 $\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha(x)$, 其中 $\alpha(x)$ 是当 $x \to x_0$ 时的无穷小.

定理的意义:

- 1 将一般极限问题转化为特殊极限问题 (无穷小);
- 2 给出了函数 f(x) 在 x_0 附近的近似表达式 $f(x) \approx A$, 误差为 $\alpha(x)$.

无穷小与无穷大 D 无穷小

无穷小与函数极限的关系

证明.

必要性: 因 $\lim_{x\to x_0} f(x) = A$, 所以对 $\forall \epsilon > 0$, $\exists \delta > 0$, 使得 当 $0 < |x-x_0| < \delta$ 时有

$$|f(x)-A|<\epsilon$$
.

令 $\alpha(x) = f(x) - A$, 则有 $\alpha(x)$ 是当 $x \to x_0$ 时的无穷小, 且 $f(x) = A + \alpha(x)$.

充分性: 设 $f(x) = A + \alpha(x)$, 其中 $\alpha(x)$ 是当 $x \to x_0$ 时的无穷小,则对 $\forall \epsilon > 0$, $\exists \delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,有 $|\alpha(x)| < \epsilon$, 即 $|f(x) - A| < \epsilon$,

也即
$$\lim_{x\to x_0} f(x) = A$$
.

定理 两个(有限个)无穷小的和差还是无穷小.

证明.

 $\exists X_1 > 0, X_2 > 0$, 使得 当 $|x| > X_1$ 时恒有

$$|\alpha| < \frac{\epsilon}{2};$$

当 |x| > X2 时恒有

$$|\beta| < \frac{\epsilon}{2};$$

取 $X = \max \{X_1, X_2\}$, 当 |x| > X 时,恒有

$$|\alpha\pm\beta|\leq |\alpha|+|\beta|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,$$

故
$$\alpha \pm \beta \rightarrow 0(x \rightarrow \infty)$$
。

问题 无穷多个无穷小的和是不是无穷小?

答案 不是,例如

1 1/2 1/3 1/4 1/5 ...
$$\rightarrow 0(n \rightarrow \infty)$$

0 1/2 1/3 1/4 1/5 ... $\rightarrow 0(n \rightarrow \infty)$
0 0 1/3 1/4 1/5 ... $\rightarrow 0(n \rightarrow \infty)$
: : : : ... $\rightarrow 0(n \rightarrow \infty)$

1 1 1 1 ...
$$\rightarrow 1(n \rightarrow \infty)$$

定理1 无穷小和有界量的乘积还是无穷小.

证明.

设函数 u 在 $\mathring{U}(x_0, \delta_1)$ 内有界, 则ョ $M > 0, \delta_1 > 0$, 使得当 $0 < |x - x_0| < \delta_1$ 时恒有 $|u| \le M$.

又设 α 是当 $x \to x_0$ 时的无穷小,则对 $\forall \epsilon > 0$, $\exists \delta_2 > 0$, 使得当 $0 < |x - x_0| < \delta_2$ 时恒有

$$|\alpha| < \frac{\epsilon}{M}$$
.

取 $\delta = \min \{\delta_1, \delta_2\}$, 则当 $0 < |x - x_0| < \delta$ 时,恒有

$$|u \cdot \alpha| = |u| \cdot |\alpha| < M \cdot \frac{\varepsilon}{M} = \epsilon.$$

所以当 $x \rightarrow x_0$ 时, $u \cdot \alpha$ 为无穷小.

▷ 无穷小与无穷大 ▷ 无穷小

推论 常数与无穷小的积是无穷小。

推论 有限个无穷小的积是无穷小。

注意:两个无穷小的商不一定是无穷小。

▶ 无穷小与无穷大 ▷ 无穷小

问题 无穷多个无穷小的积是不是无穷小?

答案 不是,例如:

```
1 1/2 1/3 1/4 1/5 ... \rightarrow 0(n \rightarrow \infty)

1 2 1/3 1/4 1/5 ... \rightarrow 0(n \rightarrow \infty)

1 1 3<sup>2</sup> 1/4 1/5 ... \rightarrow 0(n \rightarrow \infty)

\vdots \vdots \vdots \vdots ... \rightarrow 0(n \rightarrow \infty)
```

1 1 1 1 ... $\rightarrow 1(n \rightarrow \infty)$

▷ 无穷小与无穷大 ▷ 无穷小

无穷小

例子 求函数极限 $\lim_{x\to 0} x \sin(\frac{1}{x})$ 。

练习 求下列函数极限:

无穷小与无穷大

无穷小

第三节	无穷小与无穷大
3.1	无穷小
3.2	无穷大
3.3	小结 思考

绝对值无限增大的变量称为无穷大.

定义 设函数f(x)在 x_0 的某个去心邻域有定义。如果对任何给定的M>0,总存在 $\delta>0$,使得只要 $0<|x-x_0|<\delta$,就有|f(x)|>M,则称f(x)当 $x\to x_0$ 时为无穷大,记为 $\lim_{x\to x_0}f(x)=\infty$ 。

小注: 类似地,可以定义 $x \to \infty$ 、 $x \to -\infty$ 、 $x \to +\infty$ 时的无穷大。

小注: 特殊情况: 正无穷大, 负无穷大

1 无穷大是变量,不能与很大的数混淆;

2 $\lim_{x\to x_0} f(x) = \infty$ 是极限不存在的一种特殊情形。

3 无穷大是一种特殊的无界变量,但是无界变量未必是无穷大 (例: 1 1 - sin(-)). x x

▷ 无穷小与无穷大 ▷ 无穷大

例子 证明
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$
.

证: $\forall M > 0$, 要使 $\left| \frac{1}{x-1} \right| > M$,只需要 $|x-1| < \frac{1}{M}$. 取 $\delta = \frac{1}{M}$, 当 $0 < |x-1| < \delta = \frac{1}{M}$ 时, 就有

$$\left|\frac{1}{x-1}\right| > M.$$

所以

$$\lim_{x \to 1} \frac{1}{x - 1} = \infty.$$

定义 2 如果 $\lim_{x\to x_0} f(x) = \infty$, 则直线 $x = x_0$ 是函数 y = f(x) 的图形的铅直渐近线.

▶ 无穷小与无穷大 ▶ 无穷大

练习
$$\frac{1}{x}$$
 和 $\frac{x+1}{x^2}$ 是 $x \to 0$ 时的无穷大。

练习
$$\frac{x+2}{x^2-1}$$
 是 $x \to 1$ 时的无穷大。

无穷小与无穷大的关系

定理3 无穷大的倒数为无穷小,而非零无穷小的倒数为无穷大.

证明.

设
$$\lim_{x \to x_0} f(x) = \infty$$
, 则对 $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时恒有 $|f(x)| > \frac{1}{\epsilon}$, 即 $\left| \frac{1}{f(x)} \right| < \epsilon$. 所以当 $x \to x_0$ 时, $\frac{1}{f(x)}$ 为无穷小

▷ 无穷小与无穷大 ▷ 无穷大

无穷小与无穷大的关系

续.

反之,设
$$\lim_{x\to x_0} f(x) = 0$$
, 且 $f(x) \neq 0$.则 $\forall M > 0$, $\exists \delta > 0$, 使得当 $0 < |x-x_0| < \delta$ 时恒有 $|f(x)| < \frac{1}{M}$, 由于 $f(x) \neq 0$, 从而 $\left|\frac{1}{f(x)}\right| > M$. 所以当 $x \to x_0$ 时, $\frac{1}{f(x)}$ 为无穷大.

小注: 关于无穷大的讨论,都可归结为关于无穷小的讨论.

例 4
$$\lim_{x \to \infty} \frac{3x+1}{2x^2+1} = 0 \implies \lim_{x \to \infty} \frac{2x^2+1}{3x+1} = \infty$$
。

▷ 无穷小与无穷大 ▷ 无穷大

第三节	无穷小与无穷大
3.1	无穷小
3.2	无穷大
3.3	小结 思考

小结

主要内容: 两个定义;四个定理;三个推论.

几点注意:

- 无穷小(大)是变量,不能与很小(大)的数混淆,零是唯一的 无穷小的数;
- 2 无穷多个无穷小的代数和(乘积)未必是无穷小;
- 3 无界变量未必是无穷大.

思考

在自变量的同一过程中, 无穷大的倒数为无穷小: 反之, 无穷小的倒数是否一定为无穷大?

答案不一定。

0 是无穷小,但其倒数不存在.

所以课本上表示为"非零的无穷小的倒数是无穷大".