Marking Scheme

AU3EL08 / ME3EL02 Mechanical Vibrations

							$K.E = \frac{7}{2}mx_1 + \frac{7}{2}10$
Q.1	i.	In spring mass system if the mass of the system is doubled with spring stiffness halved, the natural frequency of longitudinal vibration					$P.E = \frac{1}{2}kx_2^2$
		(c) Is halved					Equation for simple harmonic motion
	ii.	The reciprocal of the interval of time taken by a a cycle is called	vibrating body to complete	1			$\ddot{\theta} + \left(\frac{kR^2}{mr^2 + I}\right)\theta = 0$
		(a) Frequency		_			
	iii.	In the case of Coulomb's damping, the dampi	ng force is with	1			Natural frequency
		respect to relative velocity.					$\omega_n = \sqrt{\frac{kR^2}{mr^2 + I}}$
	177	(c) Independent The amount of dempine pagescary for a system	to be critically demand is	1	OD		11111 1 1
	iv.	The amount of damping, necessary for a system known as	to be critically damped, is	1	OR	iii.	Determine the natural frequency for smal
		(c) Critical damping co-efficient					Solution K.E equation
	v.	In vibration isolation system if ω/ω_n is less than $\sqrt{2}$, then for all values of		1			Translation
	٧.	damping factor, the transmissibility will be	1 V2, then for all values of	•			4
		(c) Greater than unity					$\frac{1}{2}m(R-r)^2\dot{\theta}^2$
	vi.	The ratio of the maximum displacement of the	ne forced vibration to the	1			Rotational
	, 1.	deflection due to the static force, is known as		-			$1 = {}_{2}(R)^{2} \dot{a}^{2}$
		(d) Magnification factor					$\frac{1}{4}mr^2\left(\frac{R}{r}-1\right)^2\dot{\theta}^2$
	vii.			1			P.E equation
							$mg(\vec{R}-r)(1-\cos\theta)$
							Equation for harmonic motion
	viii.	viii. In semi definite system one of the natural frequencies is (a) Zero		1			$\frac{3}{2}(R-r)\ddot{\theta} + g\theta = 0$
							<u> </u>
	ix.	(d) All of these		1			Natural frequency
							$\omega_n = \sqrt{\frac{2g}{3(R-r)}}$
	х.	Vibration analysis is a technique adopted under		1			$\sqrt{3(R-r)}$
		(c) Predictive maintenance					· · · · · · · · · · · · · · · · · ·
Q.2	:	(a) What is beat phenomena		4	Q.3	1.	Discuss in brief, various types of dampin
Q.2	1.	Definition	1 mark	4		ii.	Definition 0.5 mark for each find:
		Diagram	1 mark			11.	(a) Critical damping coefficient,
		(b) Find the natural frequency of the system	1 mark				(b) Damping factor,
		Equivalent stiffness in parallel = 5000 N/m	1 mark				(c) Logarithmic decrement
		$\omega_0 = 31.62 \text{ rad/sec}$	0.5 mark				(d) Ratio of two consecutive amplitudes.
		$f_n = 5.03 \text{ Hz}$	0.5 mark		OR	iii.	What will be its displacement from equi
	ii.	Determine the natural frequency of the system s	hown in Fig. [2] by energy	6	on	111.	second?
		method					Solution
		Solution					Natural frequency $\omega_n = 15.33$ rad/sec
		Energy Method	3 marks				

Energy equation

$$K.E = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}I\dot{\theta}^2$$

1 mark 1 mark

1 mark

all oscillation about the lowest point 6

1 mark

1 mark

1 mark

2 marks

1 mark

2 ng.

(0.5 mark * 4)

8

- 2 marks
- 2 marks
- 2 marks
- 2 marks
- tilibrium position at the end of first 8

1 mark

		Critical damping coefficient = 613.2 N.s/m Damping ratio = 0.2397 Displacement equation Displacement = $0.0437 \times 10^{-3} \text{m}$	2 marks 2 marks 1 mark 2 marks				
Q.4	i.	Magnification factor and how does it vary with frequency ratio					
		Definition	2 marks				
		Diagram	1 mark				
	ii.	Determine the amplitude ratio of the trailer when fu	illy loaded and empty.	7			
		Solution					
		Empty trailer					
		Forcing frequency = 34.896 rad/sec	1 mark				
		Natural frequency = 37.416 rad/sec	1 mark				
		Frequency ratio = 0.933	1 mark				
		Ratio of amplitude of vibration $= 1.4518$	1 mark				
		Fully loaded trailer					
		Natural frequency = 18.708 rad/sec	1 mark				
		Frequency ratio = 1.8653	1 mark				
ΟD		Ratio of amplitude of vibration = 0.6819	1 mark	7			
OR	iii.	Solution Stiffenson (V) 40v 105N/vv	1 o l .	7			
		Stiffness (K) = 49×10^5 N/m	1 mark				
		Forcing frequency = 157 rad/sec	1 mark 1 mark				
		Natural frequency = 70 rad/sec Frequency ratio = 2.2428	1 mark 1 mark				
		The force transmitted to the foundation $(F_T) = 798.8$					
		The force transmitted to the foundation $(FT) = 798.8 \text{ N}$ 1 mark					
		The amplitude of vibration of machine (A) = 1.207×10^{-4} m					
		The amplitude of vioration of machine $(A) = 1.207 \times 10^{-11}$ m 1 mark					
		The phase $lag = -12.5^{\circ} \text{ or } 167^{\circ}25'$	1 mark				
			THURK				
Q.5	i.	Any three difference between a Vibration Absorber and a Vibration Isolator.					
V .0	1 mark for each (1 mark * 3)						
	ii.		· · · · · · · · · · · · · · · · · · ·	7			
	11.	1 7					
		Solution Equations of motion 1 mark					
		Equations of motion	1 Illark				
		$\ddot{\theta}_1 + \frac{m_2 l_2}{(m_1 + m_2) l_2} \dot{\theta} + \frac{g}{l} \theta_1 = 0$					
		Amplitude Ratio equation	2 marks				
		$A_1 m_2 l_2 \omega^2$					
		$\frac{A_{1}}{A_{2}} = \frac{m_{2}l_{2}\omega^{2}}{(m_{1} + m_{2})l_{2}(-\omega^{2} + \frac{g}{I})}$					
		Frequency equation	2 marks				
		$\omega^4 - \frac{(m_1 + m_2)\omega^2(l_1 + l_2)}{m_1 l_1 l_2} g + \frac{(m_1 + m_2)g^2}{m_1 l_1 l_2} = 0$					

Natural frequency 2 marks $\omega_1 = 11.56 \text{rad/sec}$ $\omega_2 = 4.8 \text{rad/sec}$ OR iii. Find the natural frequency of the 3-d.o.f. system. Use matrix method. 7 Solution Equation of motion 1 mark $4m\ddot{x}_1 + 4kx_1 - kx_2 = 0$ $2m\ddot{x}_2 + 2kx_2 - kx_1 - kx_3 = 0$ $m\ddot{x}_3 + kx_3 - kx_2 = 0$ Matrix Equation 1 mark $[m]{\ddot{x}}+[k]{x}=0$ $\{\ddot{x}\} + [c]\{x\} = 0$ $[m]^{-1} = \frac{adj(m)}{|m|}$ $[\lambda I - c]\{x\} = 0$ Roots of quadratic equation 2 marks $\lambda_1 = 0.21(k/m)$ $\lambda_2 = 0.21(k/m)$ Natural frequency 3 marks Write short notes on any two: Seismic Measuring Instrument 5 i. 2 marks Diagram Working principle 2 marks Application 1 mark **Condition Monitoring** 5 Basic concept 2 marks Method 2 marks Advantages 1 mark iii. FFT Analyser 5 Working principle 2 marks Importance of the FFT Analyser to Mechanical Engineers 2 marks Application 1 mark

Q.6

[4]

OR iii. Find the natural frequency of the 3-d.o.f. system shown in Fig. [5]. Use 7 matrix method.

Q.6 Write short notes on any two:

i. Seismic Measuring Instrumentii. Condition Monitoring

iii. FFT Analyser 5

Total No. of Questions: 6

Total No. of Printed Pages:2

Enrollment No.....

5

Faculty of Engineering

End Sem (Even) Examination May-2019 AU3EL08 / ME3EL02 Mechanical Vibrations

Programme: B.Tech. Branch/Specialisation: AU/ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. In spring mass system if the mass of the system is doubled with spring 1 stiffness halved, the natural frequency of longitudinal vibration
 - (a) Remained unchanged
- (b) Is doubled

(c) Is halved

- (d) Is quadrupled
- ii. The reciprocal of the interval of time taken by a vibrating body to complete 1 a cycle is called
 - (a) Frequency (b) Period
- (c) Amplitude (d) None of these
- iii. In the case of Coulomb's damping, the damping force is _____ with 1 respect to relative velocity.
 - (a) Directly proportional
- (b) Inversely proportional
- (c) Independent
- (d) None of these
- iv. The amount of damping, necessary for a system to be critically damped, is **1** known as
 - (a) Damping factor
 - (b) Magnification factor
 - (c) Critical damping co-efficient
 - (d) Logarithmic decrement
- V. In vibration isolation system if ω/ω_n is less than $\sqrt{2}$, then for all values of damping factor, the transmissibility will be
 - (a) Less than unity
- (b) Equal to unity
- (c) Greater than unity
- (d) Zero.

P.T.O.

- The ratio of the maximum displacement of the forced vibration to the 1 deflection due to the static force, is known as
 - (a) Damping factor
- (b) Damping coefficient
- (c) Logarithmic decrement (d) Magnification factor
- vii. For a multi-degree freedom system having n d.o.f., the number of natural 1 frequency possible will be
 - (a) 2
- (b) 3
- (c) n
- $(d) \infty$
- viii. In semi definite system one of the natural frequencies is
 - (a) Zero
- (b) Non-zero (c) Infinite
- (d) One

1

1

1

- Seismic instruments are used to measure
 - (a) Displacement
- (b) Velocity
- (c) Acceleration
- (d) All of these
- Vibration analysis is a technique adopted under
 - (a) Breakdown maintenance (b) Proactive maintenance
- - (c) Predictive maintenance (d) Preventive maintenance
- (a) What is beat phenomena? Q.2 i.
 - (b) Find the natural frequency of the system shown in Fig. [1]
 - Determine the natural frequency of the system shown in Fig. [2] by energy 6 method.
- OR iii. The cylinder of mass m and radius r rolls without slipping on a circular 6 surface of radius R. Determine the natural frequency for small oscillation about the lowest point Fig. [3].

- Q.3 i. Discuss in brief, various types of damping.
 - The measurements on a mechanical vibrating system show that it has a 8 mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness 5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the mass has a velocity of 1 m/s, find:
 - (a) Critical damping coefficient,
 - (b) Damping factor,
 - (c) Logarithmic decrement
 - (d) Ratio of two consecutive amplitudes.
- A 20 kg mass is resting on a spring of 4700 N/m and dashpot of 147 N- 8 OR iii. sec/m in parallel. If a velocity of 0.10 m/sec is applied to the mass at the rest position, what will be its displacement from equilibrium position at the end of first second?
- What is Magnification factor and how does it vary with frequency ratio? Q.4 i.
 - A trailer has 1000 kg mass when fully loaded and 250 kg when empty. The 7 spring of the suspension is 350 kN/m. The damping factor is 0.5 when the trailer is fully loaded. The speed is 100 km/hr. The road varies sinusoidally with a wave length of 5 m. Determine the amplitude ratio of the trailer when fully loaded and empty.
- A machine of mass one tonne is acted upon by an external force of 2450 N 7 OR iii. at a frequency of 1500 rpm. To reduce the effects of vibration, isolator of rubber having a static deflection of 2 mm under the machine load and an estimated damping $\zeta = 0.2$ are used. Determine:
 - (a) The force transmitted to the foundation,
 - (b) The amplitude of vibration of machine
 - (c) The phase lag.
- Write any three difference between a Vibration Absorber and a Vibration 3 Q.5 i. Isolator.
 - Determine the natural frequency of oscillation of double pendulum as 7 shown in Fig. [4]. Find its value when $M_1 = M_2 = 5$ kg, $L_1 = L_2 = 25$ cm.

P.T.O.

2