Cálculo de Programas

2.° ano

Lic. Ciências da Computação e Mestrado Integrado em Engenharia Informática UNIVERSIDADE DO MINHO

2016/17 - Ficha nr.º 2

- 1. Seja dada a função swap = $\langle \pi_2, \pi_1 \rangle$. Faça um diagrama que explique o tipo de swap e mostre, usando o cálculo de programas, que swap · swap = id, onde id é a função identidade.
- 2. O diagrama de blocos

descreve o combinador funcional produto

$$f \times g = \langle f \cdot \pi_1, g \cdot \pi_2 \rangle \tag{1}$$

que capta a aplicação paralela e independente de duas funções $~A \stackrel{f}{-\!-\!-\!-\!-} C~$ e $~B \stackrel{g}{-\!-\!-\!-\!-\!-\!-} D$.

- (a) Mostre que $(f \times g)$ $(x, y) = (f \ x, g \ y)$.
- (b) Sem recorrer à alínea anterior, demonstre as igualdades

$$id \times id = id$$

$$\pi_1 \cdot (f \times g) = f \cdot \pi_1$$

$$\pi_2 \cdot (f \times g) = g \cdot \pi_2$$

3. Suponha que tem uma relação $db_1 \in (Dat \times Jog^*)^*$ de todos os jogos que se efectuaram numa dada competição, organizados por data. Seja ainda $db_2 \in (Jog \times Atl^*)^*$ a relação, para cada jogo, dos atletas que nele participaram.

Um comentador desportivo pede-lhe que derive de db_1 e de db_2 a relação, ordenada por nome, das datas em que cada atleta jogou, datas essas também ordenadas:

$$f: (Dat \times Jog^*)^* \to (Jog \times Atl^*)^* \to (Atl \times Dat^*)^*$$

$$f db_1 db_2 = \dots$$

Mostre que f pode ser escrita numa só linha usando os combinadores $f \cdot g$, $f \times g$, etc que até agora estudou, desde que tenha à sua disposição a seguinte biblioteca de funções **genéricas**:

- $\bullet \ sort:A^*\to A^*$
 - ordena listas de A segundo uma ordem previamente assumida

- collect: (A × B)* → (A × B*)*
 agrupa uma sequência de pares segundo os respectivos primeiros elementos, e.g. collect [(1, 2), (5, 6), (1, 3)] = [(1, [2, 3]), (5, [6])]
- $discollect: (A \times B^*)^* \to (A \times B)^*$ — inversa da anterior
- converse: (A × B)* → (B × A)*
 troca os elementos de cada par entre si
- $comp: (A \times B)^* \to (B \times C)^* \to (A \times C)^*$ encadeia as sequências de entrada de acordo com os elementos em comum (de tipo B).
- 4. Recorde as propriedades universais dos combinadores $\langle f, g \rangle$ e [f, g],

$$k = \langle f, g \rangle \equiv \begin{cases} \pi_1 \cdot k = f \\ \pi_2 \cdot k = g \end{cases}$$

 $k = [f, g] \equiv \begin{cases} k \cdot i_1 = f \\ k \cdot i_2 = g \end{cases}$

das quais, como sabe, podem ser derivadas todas as outras que aparecem no respectivo grupo, no formulário.

- (a) Use a segunda para demonstrar a lei $[i_1, i_2] = id$ conhecida por $Reflex\tilde{a}o++$.
- (b) Use a primeira para demonstrar a lei

$$\langle f, g \rangle = \langle h, k \rangle \equiv \begin{cases} f = h \\ g = k \end{cases}$$

que também consta desse formulário sob a designação $Eq-\times$.

5. Uma função diz-se *constante* sempre que o seu resultado é o mesmo, qualquer que seja o argumento. Por isso se designa uma tal função sublinhando o valor do seu resultado: se este for k, por exemplo, ter-se-á a função $\underline{k} :: a \to b$, para k um valor de k, que satisfaz sempre a propriedade

$$\underline{k} \cdot f = \underline{k}$$

qualquer que seja k e f.

Mostre que $[\underline{k}, \underline{k}] = \underline{k}$ aplicando a segunda lei universal dada acima.

6. O combinador funcional soma define-se por:

$$f + g = [i_1 \cdot f, i_2 \cdot g] \tag{2}$$

Identifique os nomes das seguintes propriedades

$$id + id = id$$

$$(f + g) \cdot i_1 = i_1 \cdot f$$

$$(f + g) \cdot i_2 = i_2 \cdot g$$

no formulário da disciplina e demonstre-as usando o cálculo de programas.

7. Repita a questão 1 para a função coswap = $[i_2, i_1]$.

 $^{^1\}mathrm{A}$ função \underline{k} escreve-se const k em Haskell.