Definition: Euclidean Algorithm

Divide m by n and let r be the remainder where $0 \le r < n$ If r = 0, the algorithm terminates; n is the answer. Set $m \leftarrow n$, $n \leftarrow r$ and return to step 1

Given two positive integers m and n find their greatest common divisor, that is, the largest positive integer that evenly divides both m and n.

Algorithm Euclid_Algisinputs: n, $mr \leftarrow m \% n$ if r = 0 then return r end return Euclid_Alg(n, r)end AlgorithmEuclid_Algis

Correctness —

_____ Proof _____

• Note that by the GCD invariant we have: gcd(m,n) = gcd(n,r), then each time we go to step 3 this chain of equalities would expand by one see

• After finitely many iterations our algorithm get to the second step (read the termination proof) and say it's called with n_t , r_t (t for termination)

why we would be applying the quotient remainder theorem on n in the next iteration to obtain $n = qn_1 + r_1$, then we would have $\gcd(n, m) = \gcd(n, r) = \gcd(n_1, r_1)$

• It's in the second step so
$$r_t = 0$$
 and $n_t = \gcd(n_t, 0) = \gcd(n_t, r_t) = \dots \gcd(n_1, r_1) = \gcd(n, r) = \gcd(m, n)$ (the chain of equalities)

- It s in the second step so $r_t = 0$ and $n_t = \gcd(n_t, 0) = \gcd(n_t, r_t) = \ldots \gcd(n_t, r_t) = \gcd(n, r) = \gcd(n, n)$ (the C
- Our output would be $n_t = \gcd(n, m)$, as required.

Termination ————

The program terminates if r = 0, the value of n decreases by at least 1 after each iteration specified by the strict inequality from the quotient remainder theorem, therefore if n_k is the value of n after k iterations then $n_0, n_1, ...$ is a decreasing sequence of positive integers, and so it must be finite, therefore there is a $r \in \mathbb{N}$ such that the algorithm terminates on iteration r (as $n_r = 0$)