1. Using Yahoo Finance (via yfinance)

Installation

```
In [2]: pip install yfinance
       Requirement already satisfied: yfinance in c:\users\ezeki\anaconda3\lib\site-package
       s (0.2.55)
       Requirement already satisfied: pandas>=1.3.0 in c:\users\ezeki\anaconda3\lib\site-pa
       ckages (from yfinance) (2.1.4)
       Requirement already satisfied: numpy>=1.16.5 in c:\users\ezeki\anaconda3\lib\site-pa
       ckages (from yfinance) (1.26.4)
       Requirement already satisfied: requests>=2.31 in c:\users\ezeki\anaconda3\lib\site-p
       ackages (from yfinance) (2.32.3)
       Requirement already satisfied: multitasking>=0.0.7 in c:\users\ezeki\anaconda3\lib\s
       ite-packages (from yfinance) (0.0.11)
       Requirement already satisfied: platformdirs>=2.0.0 in c:\users\ezeki\anaconda3\lib\s
       ite-packages (from yfinance) (3.10.0)
       Requirement already satisfied: pytz>=2022.5 in c:\users\ezeki\anaconda3\lib\site-pac
       kages (from yfinance) (2023.3.post1)
       Requirement already satisfied: frozendict>=2.3.4 in c:\users\ezeki\anaconda3\lib\sit
       e-packages (from yfinance) (2.4.2)
       Requirement already satisfied: peewee>=3.16.2 in c:\users\ezeki\anaconda3\lib\site-p
       ackages (from yfinance) (3.17.9)
       Requirement already satisfied: beautifulsoup4>=4.11.1 in c:\users\ezeki\anaconda3\li
       b\site-packages (from yfinance) (4.12.2)
       Requirement already satisfied: soupsieve>1.2 in c:\users\ezeki\anaconda3\lib\site-pa
       ckages (from beautifulsoup4>=4.11.1->yfinance) (2.5)
       Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\ezeki\anaconda3\li
       b\site-packages (from pandas>=1.3.0->yfinance) (2.8.2)
       Requirement already satisfied: tzdata>=2022.1 in c:\users\ezeki\anaconda3\lib\site-p
       ackages (from pandas>=1.3.0->yfinance) (2023.3)
       Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\ezeki\anaconda3
       \lib\site-packages (from requests>=2.31->yfinance) (2.0.4)
       Requirement already satisfied: idna<4,>=2.5 in c:\users\ezeki\anaconda3\lib\site-pac
       kages (from requests>=2.31->yfinance) (3.4)
       Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\ezeki\anaconda3\lib\si
       te-packages (from requests>=2.31->yfinance) (2.0.7)
       Requirement already satisfied: certifi>=2017.4.17 in c:\users\ezeki\anaconda3\lib\si
       te-packages (from requests>=2.31->yfinance) (2025.1.31)
       Requirement already satisfied: six>=1.5 in c:\users\ezeki\anaconda3\lib\site-package
       s (from python-dateutil>=2.8.2->pandas>=1.3.0->yfinance) (1.16.0)
```

2. Obtaining the Historical Price Data

We'll use the yfinance library to fetch historical closing prices for the top 30 holdings over the past 6 months (approximately 120 trading days).

Note: you may need to restart the kernel to use updated packages.

```
import yfinance as yf
import pandas as pd
from datetime import datetime, timedelta

# Define the list of top 30 tickers
tickers = ['PLD', 'WELL', 'EQIX', 'AMT', 'SPG', 'DLR', 'O', 'PSA', 'CBRE', 'CCI',
```

YF.download() has changed argument auto_adjust default to True

In [7]: data

Out[7]:	Ticker	AMT	ARE	AVB	ВХР	CBRE	CCI	DLR
	Date							
	2024- 10-17	220.373062	117.961929	221.892929	86.474564	124.930000	108.169281	161.263367
	2024- 10-18	222.476898	118.487289	223.536423	87.252571	125.680000	108.779099	162.928314
	2024- 10-21	217.728500	116.278839	220.593872	84.539299	123.519997	106.659271	162.750961
	2024- 10-22	217.718674	114.770874	221.154831	84.432320	122.730003	106.252724	162.800232
	2024- 10-23	222.447403	116.648537	225.898361	84.568474	123.120003	107.133575	163.342087
	•••							
	2025- 04-08	202.989868	76.940002	187.229996	56.860001	113.940002	94.830002	136.110001
	2025- 04-09	205.786850	80.820000	200.389999	61.590000	121.269997	95.540001	145.770004
	2025- 04-10	206.620010	74.570000	193.589996	59.660000	116.650002	95.160004	142.289993
	2025- 04-11	213.220001	76.919998	193.000000	60.639999	115.949997	96.669998	145.089996
	2025- 04-14	217.789993	79.699997	200.919998	62.840000	119.010002	99.839996	146.309998

122 rows × 30 columns

3. Compute Daily Returns

Calculating the daily percentage change in closing prices.

```
In [10]: # Compute daily returns
daily_returns = data.pct_change().dropna()
```

4. Calculate Covariance Matrix

Computing the covariance matrix of daily returns to understand how the assets move together.

```
In [15]: # Calculate covariance matrix
    cov_matrix = daily_returns.cov()
    print(cov_matrix)
```

Ticker	AMT	ARE	AVB	ВХР	CBRE	CCI	DLR
Ticker							
AMT	0.000362	0.000173	0.000129	0.000160	0.000127	0.000278	0.000058
ARE	0.000173	0.000403	0.000231	0.000315	0.000231	0.000178	0.000151
AVB	0.000129	0.000231	0.000268	0.000266	0.000241	0.000134	0.000146
BXP	0.000160	0.000315	0.000266	0.000496	0.000315	0.000152	0.000230
CBRE	0.000127	0.000231	0.000241	0.000315	0.000505	0.000118	0.000281
CCI	0.000278	0.000178	0.000134	0.000152	0.000118	0.000359	0.000035
DLR	0.000058	0.000151	0.000146	0.000230	0.000281	0.000035	0.000493
DOC	0.000163	0.000245	0.000202	0.000252	0.000192	0.000163	0.000117
EQIX	0.000088	0.000173	0.000169	0.000214	0.000283	0.000052	0.000318
EQR	0.000151	0.000251	0.000278	0.000286	0.000255	0.000151	0.000160
ESS	0.000143	0.000252	0.000275	0.000290	0.000248	0.000162	0.000148
EXR	0.000219	0.000242	0.000226	0.000275	0.000230	0.000193	0.000153
FRT	0.000113	0.000231	0.000231	0.000287	0.000243	0.000126	0.000170
HIW	0.000137	0.000256	0.000222	0.000342	0.000238	0.000138	0.000172
HPP	0.000259	0.000569	0.000423	0.000734	0.000638	0.000254	0.000338
HST	0.000033	0.000248	0.000216	0.000322	0.000275	0.000053	0.000225
IRM	0.000186	0.000251	0.000247	0.000312	0.000357	0.000131	0.000405
KIM	0.000120	0.000223	0.000210	0.000280	0.000234	0.000133	0.000166
MAA	0.000142	0.000194	0.000217	0.000208	0.000187	0.000145	0.000091
0	0.000164	0.000151	0.000140	0.000166	0.000115	0.000166	0.000063
PLD	0.000104	0.000192	0.000244	0.000328	0.000318	0.000133	0.000202
PSA	0.000143	0.000233	0.000244	0.000323	0.000310	0.000132	0.000202
REG	0.000111	0.000112	0.000201	0.000232	0.000192	0.000117	0.000132
SLG	0.000111	0.000103	0.000132	0.000221	0.000132	0.000117	0.000123
SPG	0.000103	0.000319	0.000271	0.000443	0.000370	0.000117	0.000237
UDR	0.000003	0.000230	0.000243	0.000308	0.000301	0.000160	0.000237
VNO							0.000142
	0.000115	0.000359	0.000294	0.000523	0.000447	0.000109	
VTR	0.000129	0.000150	0.000170	0.000171	0.000168	0.000120	0.000103
WELL	0.000111	0.000143	0.000170	0.000163	0.000170	0.000124	0.000115
WY	0.000170	0.000257	0.000213	0.000262	0.000259	0.000163	0.000143
Ticker	DOC	EQIX	EQR	• • •	PLD	PSA	REG \
Ticker							
AMT	0.000163	0.000088	0.000151	0.00	0.00	0.00	0111
ARE	0.000245	0.000173	0.000251	0.00	0.00	0.00	0189
AVB	0.000202	0.000169	0.000278	0.00	0.00	0.00	0192
BXP	0.000252	0.000214	0.000286	0.00	0.00	0.00	0221
CBRE	0.000192	0.000283	0.000255	0.00	0.00	0202 0.00	0192
CCI	0.000163	0.000052	0.000151	0.00	0.00	0200 0.00	0117
DLR	0.000117	0.000318	0.000160	0.00	0.00	0152 0.00	0125
DOC	0.000244	0.000138	0.000207	0.00	0.00	0.00	0153
EQIX	0.000138	0.000313	0.000187	0.00	0.00	0164 0.00	0137
EQR	0.000207	0.000187	0.000312	0.00	0.00	0.00	0205
ESS	0.000209	0.000179	0.000300	0.00	0.00	0.00	0209
EXR	0.000201	0.000171	0.000243		0.00	0268 0.00	0184
FRT	0.000185	0.000173	0.000249	0.00	0.00	0.00	0220
HIW	0.000212	0.000170	0.000241				0185
HPP	0.000389	0.000382	0.000452				0345
HST	0.000162	0.000195	0.000241				0184
IRM	0.000199	0.000333	0.000280				0191
KIM	0.000180	0.000165	0.000228				0194
MAA	0.000173	0.000126	0.000232				0157
0	0.000143	0.000080	0.000161				0117
PLD	0.000212	0.000232	0.000271				0219
	·						

```
PSA
       0.000182 0.000164 0.000221
                                    ... 0.000240
                                                  0.000274
                                                            0.000160
REG
       0.000153 0.000137 0.000205
                                         0.000219
                                                  0.000160
                                                            0.000201
       0.000250 0.000230 0.000295
                                    ... 0.000343
                                                  0.000215
SLG
                                                            0.000227
SPG
       0.000180 0.000232 0.000263
                                    ... 0.000316
                                                  0.000190 0.000213
UDR
       0.000204 0.000174 0.000285
                                    ... 0.000257
                                                  0.000217
                                                            0.000203
VNO
       0.000276 0.000301 0.000315
                                    ... 0.000397
                                                  0.000226 0.000240
VTR
       0.000173 0.000117 0.000174
                                    ... 0.000156
                                                  0.000141
                                                            0.000136
WELL
       0.000150 0.000127 0.000175
                                    ... 0.000165
                                                  0.000145
                                                            0.000153
WY
       0.000187 0.000182 0.000236
                                    ... 0.000298
                                                  0.000222 0.000173
            SLG
                     SPG
                               UDR
                                         VNO
                                                                      WY
Ticker
                                                  VTR
                                                           WELL
Ticker
AMT
       0.000103
                 0.000069 0.000151
                                    0.000115
                                             0.000129 0.000111 0.000170
ARE
       0.000319 0.000236 0.000239 0.000359 0.000150 0.000143
                                                                0.000257
AVB
       0.000271 0.000243 0.000259 0.000294 0.000170 0.000170 0.000213
BXP
       0.000449 0.000308 0.000273 0.000523 0.000171 0.000163 0.000262
       0.000376 0.000301 0.000232 0.000447 0.000168 0.000170
CBRE
                                                                0.000259
CCI
       0.000117 0.000076 0.000160 0.000109 0.000120 0.000124 0.000163
DLR
       0.000257 0.000237 0.000142 0.000320 0.000103 0.000115 0.000143
DOC
       0.000250 0.000180 0.000204 0.000276 0.000173 0.000150 0.000187
EQIX
       0.000230 0.000232 0.000174 0.000301 0.000117 0.000127 0.000182
EQR
       0.000295 0.000263 0.000285 0.000315 0.000174 0.000175
                                                                0.000236
ESS
       0.000292 \quad 0.000259 \quad 0.000288 \quad 0.000307 \quad 0.000168 \quad 0.000179 \quad 0.000229
EXR
       0.000259 0.000223 0.000237 0.000273 0.000158 0.000160 0.000237
FRT
       0.000312 0.000273 0.000243 0.000334 0.000146 0.000165 0.000224
HIW
       0.000365 0.000253 0.000236 0.000386 0.000152 0.000144 0.000232
       0.000807 0.000496 0.000449 0.000922 0.000248 0.000225
HPP
                                                                0.000492
       0.000369 0.000294 0.000228 0.000434 0.000109 0.000095 0.000241
HST
       0.000328 0.000300 0.000246 0.000412 0.000135 0.000172 0.000232
IRM
KIM
       0.000292 0.000261 0.000218 0.000328 0.000135 0.000140 0.000218
MAA
       0.000205 0.000188 0.000226 0.000217 0.000149 0.000139
                                                                0.000184
0
       0.000151 0.000133 0.000153 0.000148 0.000136 0.000121 0.000150
PLD
       0.000343 0.000316 0.000257 0.000397 0.000156 0.000165 0.000298
       0.000215 0.000190 0.000217 0.000226 0.000141 0.000145 0.000222
PSA
REG
       0.000227 0.000213 0.000203 0.000240 0.000136 0.000153 0.000173
SLG
       0.000602 0.000353 0.000281 0.000592 0.000168 0.000175 0.000290
SPG
       0.000353 0.000374 0.000247
                                    0.000399 0.000158 0.000177
                                                                0.000244
UDR
       0.000281 0.000247 0.000289 0.000297 0.000175 0.000176 0.000225
       0.000592 0.000399 0.000297 0.000762 0.000162 0.000159
VNO
                                                                0.000306
VTR
       0.000168 0.000158 0.000175 0.000162 0.000263 0.000211 0.000133
WELL
       0.000175 0.000177 0.000176 0.000159 0.000211 0.000249
                                                                0.000132
WY
       0.000290 \quad 0.000244 \quad 0.000225 \quad 0.000306 \quad 0.000133 \quad 0.000132 \quad 0.000341
```

[30 rows x 30 columns]

5. Perform Principal Component Analysis (PCA)

We apply PCA to reduce dimensionality and identify the principal components that explain the most variance in the data.

```
In [19]: from sklearn.decomposition import PCA

# Initialize PCA
pca = PCA()
pca.fit(daily_returns)
```

```
# Explained variance ratio
explained_variance = pca.explained_variance_ratio_
print("Explained Variance Ratio:", explained_variance)

Explained Variance Ratio: [6.02691768e-01 1.01757186e-01 7.03334710e-02 4.34443155e-02

2.64139844e-02 2.21292246e-02 1.79260943e-02 1.51903313e-02

1.27386337e-02 1.05174602e-02 9.54581680e-03 8.61527902e-03

7.99650373e-03 6.23564432e-03 6.07306096e-03 5.18738763e-03

4.82970135e-03 4.39607324e-03 3.95959073e-03 3.51087617e-03

3.04845992e-03 2.69791252e-03 2.01802063e-03 1.89964550e-03

1.60317549e-03 1.49817643e-03 1.29583568e-03 1.19617747e-03

8.12371691e-04 4.37821783e-04]
```

6. Perform Singular Value Decomposition (SVD)

Use SVD to decompose the daily returns matrix into its singular vectors and singular values.

```
In [24]: import numpy as np

# Perform SVD

U, S, Vt = np.linalg.svd(daily_returns, full_matrices=False)
print("Singular Values (U):", U)
print("Singular Values (S):", S)
print("Singular Values (Vt):", Vt)
```

```
Singular Values (U): [[-8.51809470e-02 9.78603949e-02 4.28670084e-02 ... -1.243103
38e-02
  -6.57846383e-02 6.79478441e-02]
 [ 1.13055856e-01 4.78157722e-02 -8.41210073e-02 ... 4.37554518e-02
  1.24417220e-01 -3.97007327e-02]
 [ 1.53280668e-04 -5.04533101e-02 -1.14099377e-02 ... 1.90169560e-01
  7.69481852e-02 3.95429033e-02]
 [ 1.96011876e-01 -8.08115900e-02 6.77615435e-02 ... 1.37374869e-01
  1.27388918e-01 -8.43767483e-03]
 [-5.72831229e-02 -4.06630767e-02 1.92078524e-02 ... -2.85775796e-02
  2.13270181e-02 3.15023304e-02]
 [-1.30431367e-01 -9.73138847e-02 8.78442104e-02 ... -4.67613489e-02
  1.06082132e-02 -1.85788171e-01]]
Singular Values (S): [0.97512108 0.40010711 0.33194741 0.26090544 0.20491072 0.18684
975
0.11242726 0.09927949 0.09766129 0.09057569 0.08710619 0.08357745
0.07884254 0.07435474 0.06926055 0.06542129 0.05626488 0.05455431
 0.05011748 0.04928599 0.04520645 0.04336274 0.03568776 0.02644303]
Singular Values (Vt): [[-9.82224894e-02 -1.80769334e-01 -1.58455429e-01 -2.21223622e
  -1.96474112e-01 -9.66528525e-02 -1.37168644e-01 -1.40028362e-01
 -1.39605691e-01 -1.71688868e-01 -1.69808378e-01 -1.62827439e-01
  -1.68692399e-01 -1.78780516e-01 -4.42676928e-01 -1.82506463e-01
  -1.96844233e-01 -1.58825992e-01 -1.30359667e-01 -9.97929950e-02
  -1.98345323e-01 -1.43898082e-01 -1.29894704e-01 -2.36908753e-01
  -1.81494398e-01 -1.64477672e-01 -2.64993950e-01 -1.04228293e-01
 -1.03796903e-01 -1.65621266e-01]
 [-1.84290157e-01 -5.00318480e-02 -1.36673498e-01 1.83658586e-02
  -1.56170547e-02 -1.75693620e-01 -8.31919395e-02 -1.09494704e-01
  -7.90469176e-02 -1.54389180e-01 -1.45519992e-01 -1.45826493e-01
  -8.02010607e-02 -5.24043996e-03 7.75438425e-01 5.01073295e-02
  -1.56119221e-01 -9.07300910e-02 -1.12302624e-01 -1.17408471e-01
  -6.79730760e-02 -1.53972448e-01 -1.13042633e-01 7.78003809e-02
  -8.45024455e-02 -1.42411134e-01 1.15996444e-01 -1.60207217e-01
  -1.79301077e-01 -8.27082797e-02]
 [ 3.35040861e-01 1.01071478e-01 4.06421058e-02 -3.39998603e-02
  -1.84756224e-01 3.66383030e-01 -4.36696256e-01 1.10688821e-01
  -2.51335899e-01 4.18080113e-02 6.47221322e-02 1.32470823e-01
  -8.58029234e-03 2.45030873e-02 2.78503552e-01 -1.89012437e-01
  -2.98683598e-01 -2.29618594e-02 1.26252565e-01 1.81292750e-01
  -2.76930318e-02 1.42606704e-01 2.68644081e-02 -1.45437400e-01
  -1.72000169e-01 7.76668903e-02 -2.56202185e-01 1.06395790e-01
  6.33035353e-02 6.83515167e-02]
 [-3.36171118e-01 6.72744574e-02 9.38442173e-02 1.35746151e-01
  -1.37545310e-01 -2.04397803e-01 -3.86738283e-01 3.62898550e-02
  -2.52530255e-01 8.57556718e-02 1.07479317e-01 -6.63681911e-02
  1.45869756e-01 1.35824217e-01 -2.38514443e-01 2.54771904e-01
  -4.74807103e-01 1.07192411e-01 3.68500235e-02 -1.13534293e-02
  1.04329887e-01 -1.33477479e-01 9.98946748e-02 2.33524153e-01
  1.51520580e-01 9.41973844e-02 1.72702743e-01 2.11847358e-02
  2.30441037e-04 3.61053237e-02]
 [ 2.96267706e-01 2.17263426e-01 -1.78795476e-01 2.73534916e-01
  -1.32977920e-01 2.67367552e-01 -7.74670028e-03 7.97088943e-02
  -1.24686012e-01 -1.55275578e-01 -1.78517036e-01 6.60447615e-02
```

```
-8.42638597e-02 1.41799486e-01 -2.28954377e-01 6.86260087e-02
 5.92053142e-02 3.40390930e-02 -1.75858586e-01 2.53393628e-02
 5.15448796e-03 6.29964782e-02 -1.27014712e-01 2.35356083e-01
-1.54201978e-01 -1.61503780e-01 3.49363005e-01 -3.09676141e-01
-3.39516865e-01 8.71005106e-02]
[-3.18434722e-02 8.48022604e-02 -1.94283216e-02 -2.17625565e-01
-8.62889545e-02 -7.45509982e-02 -4.13576278e-02 -1.93683158e-01
 6.80209928e-02 3.91190589e-02 5.76024993e-03 1.59985217e-01
 9.11576760e-02 -1.13452603e-01 3.22424130e-02 3.26473230e-01
 1.99291546e-02 9.58604376e-02 -2.97201385e-05 -6.25148109e-03
 4.33943640e-01 1.51449186e-01 2.09164864e-02 -2.98922402e-01
 8.89943755e-02 1.32103033e-02 -2.70868074e-01 -3.75238629e-01
 -3.20050362e-01 3.09638499e-01]
[ 1.11822455e-01 -1.17338119e-01 -1.78835243e-01 -9.25510823e-02
 5.16936006e-01 7.64574376e-02 -6.46486224e-03 -1.77789863e-02
 1.11682770e-01 -2.21416877e-01 -2.41858819e-01 3.81077024e-02
-4.54357194e-02 -5.90238650e-02 -6.07521723e-02 -5.59258144e-02
-4.11807829e-01 -3.19880701e-02 -1.68902031e-01 4.68305463e-02
 3.80516717e-01 3.29118363e-02 -2.38459450e-02 5.73658439e-02
 6.51701927e-02 -1.88907130e-01 7.70735492e-02 2.28929794e-01
 1.70216555e-01 2.18217152e-01]
[-5.40174894e-02 1.17157404e-01 -1.48144306e-01 1.02381122e-01
-5.53223337e-01 -5.26346019e-02 4.51025434e-01 7.39181989e-02
 7.75076745e-02 -1.69732460e-01 -1.82287018e-01 8.33514407e-02
 9.04795066e-02 1.82720695e-01 6.06432571e-02 1.70221677e-01
-2.09837797e-01 4.80440693e-02 -1.62978665e-01 1.77844700e-01
 9.21660884e-02 8.70485777e-02 3.69970946e-02 -5.26887554e-02
 3.00707844e-02 -9.72028359e-02 -1.88261440e-01 2.64023595e-01
 1.85654059e-01 -9.63098372e-02]
[ 8.56863381e-02 -7.08947656e-01 -5.82683923e-02 4.74212914e-02
 1.69052325e-02 2.37830699e-01 6.64990927e-02 -3.06509297e-01
-1.74240718e-01 -2.49076017e-02 -3.41906725e-02 1.07705504e-01
 2.43798223e-01 6.93092964e-02 1.83485806e-02 1.75728631e-01
-2.79496142e-02 2.25434230e-01 -1.64516501e-02 1.34573315e-01
-1.85478046e-01 1.18377297e-01 1.24800076e-01 1.09289156e-01
 1.15886516e-01 1.70969319e-02 -2.03248141e-02 -1.28290250e-01
 -6.79538353e-03 -1.15857609e-01]
[-6.39732981e-02 1.96233765e-02 1.18592737e-01 -6.68685314e-02
 1.91266819e-01 2.38423902e-01 3.51085812e-01 3.61541512e-02
 1.50478779e-01 1.22708533e-01 1.52166324e-01 -7.13929738e-02
-1.84699200e-01 8.02718278e-02 -3.07318680e-02 3.71960629e-01
-4.27164738e-01 -1.83151408e-01 1.63547985e-01 -4.04165738e-02
-3.28395747e-01 5.77874182e-02 -1.43521129e-01 -2.84301169e-02
-2.08722329e-01 1.45047689e-01 -4.74993762e-02 2.87192331e-02
-2.39071727e-01 1.06558039e-01]
[-1.28580366e-01 3.13870457e-01 -1.09463178e-01 -3.26671577e-01
 8.54041934e-02 4.58267265e-01 -9.19622868e-03 1.44755319e-02
-1.88791394e-01 -1.02074754e-01 -9.12976079e-02 -3.04523682e-01
 1.69792051e-01 -1.58067642e-01 2.13248516e-02 3.10432109e-01
 1.91320030e-01 2.11660890e-01 -6.12095394e-02 1.94959315e-02
-1.29393206e-01 -2.97689196e-01 1.26757138e-01 -1.14382509e-03
 6.63179541e-02 -8.95380213e-02 -3.83791551e-02 6.42850637e-02
 1.60095854e-01 1.66806789e-02]
[ 1.78115828e-01 -1.21737597e-01 1.75712240e-02 1.38719362e-01
 7.71870277e-02 -1.37767403e-01 -1.82161414e-01 9.51839565e-02
-1.09342125e-01 2.14533821e-02 -9.94289497e-02 9.14947835e-02
```

```
-1.59711026e-01 -1.26583084e-01 -1.49123394e-02 5.16786001e-01
 1.62322121e-01 -1.27036792e-02 5.94091571e-02 1.02160909e-01
 1.31377730e-01 -7.03632531e-02 -8.65520187e-02 -3.99943836e-01
-1.79829711e-01 -1.15684752e-02 2.24701503e-01 3.16678034e-01
-3.89541597e-02 -3.35154807e-01]
[ 4.96477753e-02 -1.15012482e-01 -3.32396991e-02 -2.49938856e-01
-9.30879247e-02 -2.56583253e-01 -1.64552209e-01 -1.12641881e-04
 -1.14561907e-01 1.30856575e-02 -1.62841577e-01 8.63696369e-02
-1.84273661e-01 1.14214547e-01 -7.97409298e-03 2.37127698e-01
 2.79200262e-01 -1.08361262e-01 2.74000688e-02 1.22078438e-01
-2.14003017e-01 8.03800312e-02 -2.31242723e-01 3.77229269e-01
-2.58741618e-02 -3.97272345e-02 -1.57053055e-01 2.39352904e-01
 7.42112227e-02 4.74862917e-01]
[-1.95830884e-01 1.85571987e-01 3.65627243e-02 -1.30240435e-02
 2.33283424e-01 2.98384302e-02 6.53311008e-02 -5.17105327e-02
-2.84434810e-01 1.21391966e-03 4.85247365e-02 3.88261007e-01
-4.22418101e-02 -9.57663231e-02 -1.78698801e-02 1.08310182e-01
 5.65247650e-02 -1.28767503e-01 -1.05971553e-01 -1.19564417e-01
 1.49130911e-01 2.02286316e-01 1.25878258e-03 3.77867799e-01
-2.48454307e-01 -3.01032169e-02 -3.19865192e-01 -8.97828919e-02
 1.13497270e-01 -4.11463338e-01]
[-2.78916889e-02 -2.46122715e-01 -1.91545304e-02 -8.76672417e-02
-2.22676667e-01 2.89349855e-01 4.75666800e-02 -8.03360974e-02
-1.68648267e-02 1.40961616e-01 2.18787707e-01 -3.19439598e-01
-2.21981090e-01 1.27587265e-01 3.33603998e-03 1.25651420e-02
 1.13511399e-01 -3.34856117e-01 -2.21911083e-02 1.18873176e-01
 5.32602376e-01 -1.92756229e-01 -1.54569012e-01 1.77840110e-01
-5.30731991e-02 1.32186591e-01 3.26010531e-02 -3.76171600e-02
 9.79750455e-02 -6.66208830e-02]
[-2.03605898e-02 -2.21494348e-02 -9.34092707e-03 5.86969696e-01
 2.26938062e-01 -2.69579939e-02 2.27948690e-02 -8.49089355e-02
 -1.69586558e-01 -3.82482390e-03 8.19666830e-02 -2.00465486e-01
 1.77413986e-02 2.71469674e-01 -1.50222096e-02 2.96243366e-02
 1.32924351e-01 2.55443073e-02 -1.31137825e-01 -9.27407573e-02
 2.58721223e-02 -2.27312409e-01 7.90715615e-02 -1.61266027e-01
-1.83592146e-01 -8.43457411e-02 -4.41494862e-01 5.53356369e-02
 1.53708731e-02 2.75625527e-01]
4.47878569e-02 -3.09516816e-01 6.52615022e-02 6.75582094e-02
 6.41217395e-02 5.37954125e-02 -2.64757745e-02 -2.03363177e-01
 3.44716166e-01 1.77579889e-01 -1.33133745e-02 4.88509105e-02
-6.92743317e-02 -1.11919682e-02 -1.29124833e-02 -8.87734177e-02
 8.21640188e-02 -1.84163286e-01 2.99330624e-01 2.10925670e-01
-3.36632438e-01 9.62572764e-02 -8.78467977e-02 2.95542434e-03
-1.50756617e-01 -1.42240871e-01]
[ 2.05710424e-01 3.97085557e-02 -4.92921592e-02 9.93510974e-02
-2.08815393e-01 3.36893102e-02 -5.64661298e-02 -3.52776575e-01
 9.90918836e-02 -3.40968568e-02 9.86411039e-02 8.88958366e-02
-4.99373100e-02 -2.12404292e-01 4.67659729e-03 1.84397548e-01
-5.09816571e-02 -1.91407919e-01 -1.35987214e-01 -5.15282836e-01
-8.84920482e-02 3.82878335e-02 2.06083635e-01 -2.44437435e-02
-1.12788006e-01 1.28554764e-01 1.95049898e-01 -2.97726350e-02
 4.23642740e-01 1.94726039e-01]
[ 3.81897528e-01 2.76490479e-01 -6.07294158e-02 6.65477923e-02
 8.36909488e-02 -1.27847047e-01 8.73084737e-02 -4.12839827e-01
-1.48596699e-01 1.08801658e-01 5.91942755e-02 -2.39888580e-02
```

```
-2.15257096e-01 -1.74635359e-02 -2.85662402e-03 3.59782560e-02
-9.75067469e-02 -1.58731076e-01 5.16443563e-02 1.75273911e-01
-9.71061337e-02 -1.60387703e-01 8.66754152e-04 6.60009803e-02
 5.62305355e-01 -3.79943271e-02 -1.25628712e-01 2.33499988e-02
-8.00181085e-02 -1.85141076e-01]
[-6.64301111e-02 7.00943244e-02 -9.71313776e-02 -1.57642507e-01
 1.22319231e-01 8.38058337e-02 -3.29375910e-01 -1.48474990e-02
 3.24883638e-01 -9.23829994e-02 -3.20450353e-02 5.87002198e-02
-3.11411099e-02 6.74490711e-01 -2.68363862e-02 1.28118556e-01
 7.76734045e-02 -1.56657821e-01 -1.61392637e-01 -6.02567894e-02
-1.20801802e-01 1.09535937e-01 1.86233581e-02 -1.72578096e-01
 1.48436088e-01 2.16692479e-02 -4.01995598e-02 -1.46794088e-01
 1.43563951e-01 -2.25483269e-01]
[-1.26006813e-01 1.53794181e-01 -9.53373033e-02 1.01231266e-01
 5.72966915e-02 -7.93232357e-02 -1.28123428e-01 -3.34497066e-01
 2.90440017e-01 1.64973207e-01 7.44158744e-02 -1.56208267e-02
 2.08645186e-01 -1.71258327e-01 -2.55706380e-02 -2.03791760e-03
-1.10265378e-02 -1.03606085e-01 -1.82933505e-01 6.34501619e-01
-1.26791106e-01 -8.86986869e-03 -1.00872952e-02 2.05363270e-02
-3.43014894e-01 -1.17890361e-02 9.34423315e-02 -8.74278701e-02
 1.17637886e-01 2.78789934e-02]
[-6.56460226e-02 8.58950844e-02 1.38369896e-01 -1.69659820e-01
 9.43968987e-02 -1.18214099e-01 2.58378712e-01 -1.32600011e-01
-5.47162859e-01 7.70193166e-02 -1.52557220e-01 -7.99275081e-02
 1.33130073e-01 2.59878603e-01 -8.98650401e-03 -1.09338128e-01
 1.39623578e-02 -2.60940286e-01 8.90620940e-02 9.42436227e-02
 1.60598436e-02 2.18783711e-01 5.47268665e-02 -3.04021263e-01
-8.86707200e-02 -4.28345818e-02 3.11145779e-01 -1.21358651e-01
 1.83087791e-01 1.32181587e-01]
[-6.64909841e-02 1.49008847e-01 -4.88784862e-02 -9.20589656e-02
-2.60762632e-02 5.49107427e-02 -2.04401967e-02 -5.17684002e-01
 1.42429434e-02 1.51585207e-01 -4.93489416e-02 -8.83268809e-02
-5.35394734e-02 2.04920428e-01 -1.28933543e-02 -1.64757624e-01
 1.40822457e-02 4.63573220e-01 3.96165274e-02 -2.04922207e-01
 1.05336491e-01 1.60404461e-01 -2.53542773e-01 9.81090100e-03
-1.94363701e-01 9.73476848e-02 8.22489498e-02 3.72765824e-01
 -1.58660398e-01 -8.24671558e-02]
[-8.57406909e-02 4.80566875e-02 -1.25578995e-01 2.37347906e-01
 3.12276207e-03 5.36148862e-02 -1.08737157e-01 -7.43526595e-02
 1.40287307e-01 -6.57547584e-02 -4.91442201e-01 -3.27362850e-01
 2.69613157e-02 -9.92510259e-02 -3.50288930e-02 5.17756201e-02
 5.27517814e-02 -1.85033467e-01 5.32603917e-01 -1.06040442e-02
 6.15598758e-02 2.99097168e-01 1.88258290e-01 1.27308601e-01
 6.55902954e-03 1.47924436e-01 -1.24384542e-01 -3.37664708e-02
-4.57156971e-03 -8.10735359e-02]
[ 2.27563127e-01 1.43757279e-02 1.28324817e-02 6.03097092e-02
 4.85335086e-02 -1.52819426e-01 5.20038145e-04 1.59622197e-01
-2.83259511e-03 1.13444681e-01 8.35978180e-02 -3.72678238e-01
 7.65593984e-02 -8.08428963e-02 8.02838387e-03 1.34123883e-01
-1.03892961e-01 2.64966894e-01 -2.33610604e-02 -4.86608114e-02
-9.73221703e-03 2.76205885e-01 -5.10889557e-01 6.95067090e-03
 3.70580488e-02 -9.24771685e-02 -1.01609393e-01 -3.11226819e-01
 3.94224402e-01 -9.96553173e-02]
[ 1.01731216e-02 2.13069560e-03 -3.88849764e-03 -6.89650707e-02
-4.23249752e-03 -8.70166922e-02 7.96430735e-02 -6.45188441e-02
 5.69612665e-02 -9.29553915e-02 -1.05980361e-02 1.65538416e-01
```

```
-4.53961757e-01 1.50738093e-01 -7.60884821e-03 -3.55684197e-03
-6.91935303e-02 3.72733364e-01 4.20160265e-01 1.42483853e-01
 3.98870500e-02 -2.89616575e-01 1.93747026e-01 2.02950453e-02
-2.17487256e-01 -1.34442034e-01 2.80607832e-02 -3.04204878e-01
 2.92816491e-01 1.82526119e-02]
[ 4.14098260e-02 5.03074764e-03 3.79491646e-01 5.78864161e-02
-6.35039168e-02 1.45515553e-01 -1.47216097e-02 -1.17629717e-01
 1.45076718e-01 1.46504570e-01 -3.42042292e-01 2.68530924e-01
 3.59156735e-01 4.88798405e-02 -1.44491100e-02 -7.98558504e-03
 -3.47973607e-02 -1.49733620e-01 2.05459061e-01 -1.33898935e-01
 3.81837531e-02 -4.06915478e-01 -3.75459745e-01 1.55287682e-02
 1.06757021e-02 -2.14089713e-01 -3.63087464e-02 -4.28586614e-02
 8.44968402e-02 -1.00091758e-02]
7.36662410e-02 -7.36806670e-02 6.18728014e-02 -9.20126850e-03
 -1.04676530e-01 -4.10201056e-01 2.00811299e-01 1.84175205e-01
 2.68326227e-01 2.89923945e-02 -2.79936017e-02 -3.58315000e-02
 2.61738371e-02 -6.01404275e-02 2.74751969e-01 1.42274949e-02
 1.43397160e-03 -1.96632960e-01 -3.47794472e-01 -5.69845652e-02
 -1.29083233e-02 4.59275988e-01 1.83801392e-02 -2.09698307e-02
 4.83505203e-02 3.02547620e-02]
[ 1.59018866e-02 1.38058870e-02 1.21643198e-01 -2.23981609e-02
 -5.50228446e-02 -2.54098657e-03 -6.42311289e-02 -1.41551876e-01
 6.58152145e-02 -4.11905928e-01 4.72166567e-01 -1.04190548e-01
 1.66243383e-01 2.59670277e-02 -2.65074953e-02 5.60181415e-02
 5.28592103e-02 -1.21012390e-01 3.07815084e-01 -1.31952486e-02
 2.99833298e-02 1.83795478e-01 1.05791740e-02 4.78283505e-02
-3.59407771e-02 -5.78468380e-01 4.30008816e-02 1.50203239e-01
-8.32322213e-02 -2.04366914e-02]
[-5.58786658e-02 -4.31564337e-02 -6.40095004e-01 -1.16716872e-02
-8.94791788e-03 2.33648566e-02 1.37713920e-02 1.34373969e-01
-1.47517119e-02 5.67195365e-01 9.76452287e-02 1.24964710e-01
 1.04057570e-01 3.00294156e-02 4.32602463e-04 -1.05619468e-02
-1.71249263e-02 -7.83246068e-02 1.98937198e-01 -1.54800196e-01
-1.66403767e-02 -1.75153728e-02 4.42945738e-02 -3.57230807e-02
 4.70473592e-03 -3.61602700e-01 3.00129085e-02 4.07025551e-02
 4.84496422e-03 1.47057501e-02]]
```

In [28]: pip install pypandoc

Collecting pypandocNote: you may need to restart the kernel to use updated packages.

```
Downloading pypandoc-1.15-py3-none-any.whl.metadata (16 kB)
Downloading pypandoc-1.15-py3-none-any.whl (21 kB)
Installing collected packages: pypandoc
Successfully installed pypandoc-1.15
```

```
In [ ]:
```