Tópicos de Matemática Discreta

exame da época especial — 1 de setembro de 2015 — $ext{dura}$ ção: 2 horas — $ext{dura}$

- 1. Diga, justificando, se cada uma das seguintes afirmações é verdadeira:
 - (a) As fórmulas proposicionais $p_0 \to \neg p_1$ e $\neg (p_0 \land p_1)$ são logicamente equivalentes.
 - (b) Para quaisquer proposições p e q, para provar que $p \leftrightarrow q$ é verdadeira, basta provar que se p é verdadeira, então q é verdadeira.
- 2. Considere os conjuntos $A = \{1, \{4\}\} \in B = \{n^2 \mid n \in \mathbb{N} \land 2n < 5\}$. Justificando,
 - (a) determine $A \times B$;
 - (b) determine $\mathcal{P}(A \setminus B)$.
- 3. (a) Dê um exemplo de conjuntos A, B e C de tal modo que a afirmação $A \cap B \subseteq C$ seja verdadeira e, no entanto, a afirmação $A \subseteq C \vee B \subseteq C$ seja falsa. Justifique.
 - (b) Prove que, para quaisquer conjuntos $A, B \in C$, se $A \subseteq C \vee B \subseteq C$, então $A \cap B \subseteq C$.
- 4. Prove, por indução nos naturais, que $n! \geq 2^n$, para todo $n \geq 4$.
- 5. Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida da seguinte forma

$$f(x) = \begin{cases} x^2 & \text{se } x \le -2 \\ x+2 & \text{se } x > -2 \end{cases}.$$

- (a) Indique, sem justificar, f([-3,0]) e $f^{\leftarrow}(\{-4,0,4\})$.
- (b) Diga, justificando, se f é injetiva.
- 6. Seja R a relação de equivalência em $A = \{-3, 1, 2, 3, 5, 11\}$ definida por: xRy se e só se x y é múltiplo de 3, para quaisquer $x, y \in A$.
 - (a) Indique, sem justificar, $[3]_R$ e A/R.
 - (b) Mostre que, de facto, R é uma relação simétrica.
- 7. Sejam $A = \{a, b, c, d, e, f\}$ e $X = \{e, f\}$. Considere o c.p.o. (A, \leq) em que $\leq = \{(a, a), (a, c), (a, e), (a, f), (b, b), (b, e), (c, c), (c, e), (c, f), (d, d), (d, f), (e, e), (f, f)\}.$
 - (a) Represente o c.p.o. (A, \leq) através de um diagrama de Hasse.
 - (b) Indique, sem justificar, o conjunto dos minorantes de X.
 - (c) Dê exemplo, caso exista, de um subconjunto próprio Y de A tal que (Y, \leq) tenha pelo menos 3 elementos e seja um reticulado. Justifique a sua resposta.
- 8. Seja G = (V, E) um grafo que admite $A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ como matriz de adjacência.
 - (a) Desenhe G.
 - (b) Indique, sem justificar, o grau de cada um dos vértices de G.
 - (c) Diga, justificando, se a afirmação "G é uma árvore" é verdadeira.

Cotogoog	1.	2.	3.	4.	5.	6.	7.	8.
Cotações	1,75+1,75	1 +1	1,5 + 1,5	1,75	1+1	1,25+1	1+0.75+1	1+0.75+1