Student Information

Full Name : ANSWER SHEET Id Number : ANSWER SHEET

Answer 1

a)

 $G_R = (V_R, E_R)$ is a **digraph** to represent R. Where

 $V_R = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{0, 1, 2\}\}$ and

 $E_R = \{(\emptyset,\emptyset), (\emptyset,\{0\}), (\emptyset,\{1\}), (\emptyset,\{2\}), (\emptyset,\{0,1\}), (\emptyset,\{1,2\}), (\emptyset,\{0,2\}), (\emptyset,\{0,1,2\}), (\{0\},\{0\}), (\{0\},\{0,1\}), (\{0\},\{0,1\}), (\{0\},\{0,1\}), (\{1\},\{1\}), (\{1\},\{1\}), (\{1\},\{1,2\}), (\{1\},\{0,1,2\}), (\{2\},\{2\}), (\{2\},\{1,2\}), (\{2\},\{0,2\}), (\{2\},\{0,1,2\}), (\{0,1\},\{0,1\}), (\{0,1\},\{0,1,2\}), (\{1,2\},\{1,2\}), (\{1,2\},\{0,1,2\}), (\{0,2\},\{0,1,2\}), (\{0,1,2\},\{0,1,2\})\}$

Figure 1: Directed graph representation of R. (G_R)

b)

(S,R) is a poset iff R on S is a partial order relation which requires R to be **reflexive**, **antisymmetric** and **transitive**.

R is **reflexive** since for all $x \in S$ $(x, x) \in R$ as x is a subset of itself.

R is **antisymmetric** for all $x, y \in S$ if $(x, y) \in R$ and $(y, x) \in R$ then x = y. Using G_R in a), you may deduce that R antisymmetric since apart from the self loops due to reflexivity, no two edges of the form (v_1, v_2) and (v_2, v_1) such that $v_1, v_2 \in R$ occur in E_R at the same time.

R is **transitive** since for all $x, y, z \in S$ if $(x, y) \in R$ and $(y, z) \in R$, it means that x is a subset of y and y is a subset of z then by the definition of subset x is must also be a subset of z.

c)

A totally ordered set is a partially ordered set in which every two elements are *comparable*. If we order the subsets of the set $\{0, 1, 2\}$ by inclusion (the boolean lattice on a set of size 3), we don't get a total order because $\{0, 1\}$ and $\{2\}$ are incomparable (there are no inclusion relations between them).

d)

Hasse diagram for (S,R): eliminate self-loops, directed arcs due to transitivity, and direction on arcs via introducing an order for undirected arcs (bottom-up). Hasse diagram is shown in the Figure-2.

 \emptyset is the minimal element and $\{0,1,2\}$ is the maximal element.

Figure 2: Hasse diagram for (S,R)

e)

The poset consisting of all the subsets of $\{0,1,2\}$ is a lattice. because for every pair of objects exists there is a unique greatest lower bound and least upper bound.

The greatest lower bound of two subsets is the intersection of the two subsets:

for example, $\{0,1\} \land \{1,2\} = \{0,1\} \cap \{1,2\} = \{1\}.$

The least upper bound is the union of the two subsets:

for example, $\{0,1\} \vee \{1,2\} = \{0,1\} \cup \{1,2\} = \{0,1,2\}.$

Answer 2

a)

vertex	adjacent vertices
a	-
b	a, c
\mathbf{c}	f
d	a,c,d,e,g
e	c,f,g
\mathbf{f}	b
g	d

b)

 $\mathbf{c})$

vertex, v	$\deg^+(v)$	$\deg^-(v)$
a	2	0
b	1	2
\mathbf{c}	3	1
d	2	5
e	1	3
f	2	1
g	2	1

d)

$$e - g - d - f$$

 $e - c - f - b$
 $e - f - b - a$
 $d - e - f - b$
 $g - d - e - c$
 $g - d - e - f$

e)

Simple Circuit: A circuit in which the only repeated vertices are the first and last vertices.

d-e-g-d

g-d-e-g

e - g - d - e

b-c-f-b

f - b - c - f

c - f - b - c

f)

Oriented graph G = (V, E) is weakly connected graph if and only if for every two vertices $u, v \in V$ exists a directed path from u to v or directed path from v to u.

The underlying graph of G is G' and it is provided in Figure-3. G' is connected because there is a path between every pair of vertex.

Figure 3: Graph G' (Graph in Q2 undirected representation).

When you perform DFS on G' it yields to the tree in Figure-4. And every tree is connected by definition. Hence G is weakly-connected.

Figure 4: The tree created after by applying DFS to the undirected graph provided in the previous picture.

 \mathbf{g}

A directed graph is strongly connected if there is a path between all pairs of vertices. A strongly connected component (SCC) of a directed graph is a maximal strongly connected subgraph.

SCC's of
$$G$$
 are: $\{b,c,f\},\{a\},\{d,e,g\}$

h)

Let G be a graph with adjacency matrix A with respect to the ordering $v_1, v_2, \dots v_n$ of the vertices of the graph (with directed or undirected edges, with multiple edges and loops allowed). The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the $(i, j)_{th}$ entry of A^r .

Step 1: Find adjacency matrix of H:

Step 2: Find H^2 :

$$H^2 = egin{array}{c|cccc} & d & e & f & g \\ d & 2 & 1 & 1 & 2 \\ & 1 & 0 & 0 & 0 \\ & f & 0 & 0 & 0 & 0 \\ & g & 1 & 1 & 0 & 1 \\ \hline \end{array}$$

Step 3: Find H^3 and find the length value from d to g which is 3.

Notice that we can use non-simple paths. The three paths found in matrix calculation are:

$$d-d-d-g$$

$$d-d-e-g$$

$$d-g-d-g$$

Answer 3

a)

If a graph G has an Euler path, then it must have exactly two odd vertices. The degrees of the vertices are:

a: 2, b: 3, c: 2, d: 5, e: 4, f: 2, g: 2, h: 2 (b and d are odd vertices).

Then the graph has an Euler path.

b)

The graph has an Euler path but has no Euler circuit. It has two odd vertices B and D. Euler theorems say if a graph has odd vertices, then the graph has no Euler circuit; if the graph is connected and has only two odd vertices, then the graph has an Euler path.

c)

Yes it has a hamiltonian path f-g-h-e-d-a-b-c.

d)

The graph has no Hamilton circuit. If one travels from A, B, C, D to E, F, G, H and comes back, D and E will be visited at least twice. Such a circuit is not a Hamilton circuit.

Answer 4

The graphical arrangement of the vertices and edges makes them look different but nevertheless, they are the same graph.

Formally:

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijective function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in $G_2 \forall a, b \in V_1$.

Let f be a bijective function from V to V'. Let the correspondence between the graphs be:

a' = f(a)

b' = f(e)

c' = f(c)

d' = f(d)

e' = f(b)

The above correspondence preserves adjacency as a is adjacent to b and e in G, and f(a) = a' is adjacent to f(b) = e' and f(e) = b' in G'.

Similarly, it can be shown that the adjacency is preserved for all vertices. Hence, G and G' are isomorphic.

Answer 5

a)

step 1: Initialization

Set the l() values of the neighbors of a to the length of the edge between a and them. Mark a with a (*) since the shortest path to itself is found whose length is 0. For the other vertices set the l() value to ∞ .

step 2:

The next vertex is b which has the minimum distance of 3. We update l() values of c and f.

step 3:

The next one is h, f and i are updated.

step 4:

Arbitrarily chose c as the new one. f, g and d are updated.

step 5:

The new one is e. No update.

step 6:

The next is i. j is updated.

step 7:

The next is f. j is updated.

step 8:

The next is d. k is updated.

step 9:

Randomly choose j. Path is a, b, c, f, j and the length is 10.

	new	a	b	\mathbf{c}	d	e	f	g	h	i	j	k
$\operatorname{st1}$	a	*0	3	∞	∞	5	∞	∞	4	∞	∞	∞
$\operatorname{st2}$	b	*0	*3	5	∞	5	10	∞	4	∞	∞	∞
st3	h	*0	*3	5	∞	5	9	∞	*4	6	∞	∞
$\operatorname{st4}$	\mathbf{c}	*0	*3	*5	8	5	7	11	*4	6	∞	∞
$\operatorname{st5}$	e	*0	*3	*5	8	*5	7	11	*4	6	∞	∞
st6	i	*0	*3	*5	8	*5	7	11	*4	*6	12	∞
$\operatorname{st7}$	f	*0	*3	*5	8	*5	*7	11	*4	*6	10	∞
st8	d	*0	*3	*5	*8	*5	*7	11	*4	*6	10	10
st9	j	*0	*3	*5	*8	*5	*7	11	*4	*6	*10	10

b)

We will create a list of visited nodes, starting from a:

$$visited = \{ a \}$$

Using Prim's algorithm, the smallest weighted adjacent edge is (a, b, 3).

$$visited = \{ a, b \}$$

Then, the least weighted edge from the list is to c with edge (b, c, 2).

$$visited = \{ a, b, c \}$$

Then, the least weighted edge from the list is to vertex f with edge (c, f, 2).

$$visited = \{ a, b, c, f \}$$

Then, the least weighted edge from the list is to vertex d with edge (c, d, 3).

$$visited = \{ a, b, c, f, d \}$$

Then, the least weighted edge from the list is to vertex k with edge (d, k, 2).

$$visited = \{ a, b, c, f, d, k \}$$

Then, the least weighted edge from the list is to vertex j with edge (f, j, 3).

$$visited = \{ a, b, c, f, d, k, j \}$$

Then, the least weighted edge from the list is to vertex e with edge (f, e, 4).

$$visited = \{ a, b, c, f, d, k, j, e \}$$

Then, the least weighted edge from the list is to vertex i with edge (f, i, 4).

$$visited = \{ a, b, c, f, d, k, j, e, i \}$$

Then, the least weighted edge from the list is to vertex h with edge (i, h, 2).

$$visited = \{ a, b, c, f, d, k, j, e, i, h \}$$

Then, the final least weighted edge from the list is to vertex g with edge (f, g, 4).

$$visited = \{ a, b, c, f, d, k, j, e, i, h, g \}$$

Thus, all the nodes has been visited and Prim's algorithm has been complete. The resulting spanning tree, with a total weight of 29, is the following:

Figure 5: Minimum Spanning Tree of Graph G

Answer 6

a)

There are 7 vertices and 6 edges (Always |v| vertices and |v-1| edges). The height is 3, it can be reached by the paths A, C, E, G or A, C, E, F.

b)

$$a-b-c-d-e-f-g$$

c)

$$b - d - f - g - e - c - a$$

d)

$$b-a-d-c-f-e-g$$

 $\mathbf{e})$

A binary tree T is full if each node is either a leaf or possesses exactly two child nodes. In this sense our tree T is a full binary tree.

f)

A binary tree T with n levels is complete if all levels except possibly the last are completely full, and the last level has all its nodes to the left side. Our tree T is not complete because not all the levels are full.

 \mathbf{g}

No it is not because f: 23 > c: 24 should hold, but it does not.

h)

A height 5 full binary tree with minimum possible vertices is drawn below. There are 11 vertices.

Figure 6: A minimum vertice full binary tree of height 5.

i)

Figure 7: Complete tree with set of integer keys 1,2,3,4,5,6.

j)

4 - 2 - 1

4 - 6

k)

A minimum spanning tree for the tree in $\mathbb{Q}2$.

Figure 8: A minimum spanning tree for the tree in $\mathbb{Q}2$

l)

A BST with max height should have a linear structure which would yield a height of k-1.