CHEM 132A LEC A (40758)

Midterm 1 (Fall Qtr 2017) - LETTER SIZE

8076 (3770)

<u>Instructions to Instructor:</u>

Do not alter this coversheet in ANY way. Substantial delays and additional fees may apply.

Instructions to Student:

- 1. Clearly print your Last Name, First Name and the Date
- 2. Clearly print your Student ID number in the boxes provided. Use large, dark numbers. These numbers are captured automatically during the scanning process.
- 3. Bubble in each number of your Student ID completely. The bubbles are used only if your written ID number is not captured.
- 4. Write your Name and Student ID number in the upper right corner of all following pages of your exam.

Last Name	e, First Name	:						Date:	//
STUDEN	IT ID:	For A	ccess UCI stu	ident, leave fii	rst column blo	ınk then enter	your 7-digit	Student ID nu	mber.
1	0	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	0	0	2
3	0	0	0	0	0	0	0	0	3
4	0	0	0	0	0	0	0	0	4
5	0	0	0	0	0	0	0	0	5
6	0	0	0	0	0	0	0	0	6
7	0	0	0	0	0	0	0	0	7
8	0	0	0	0	0	0	0	0	8
9	0	0	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	0	0
			(This s	pace for Inst	ructor/TA us	se only)			
Gr	aded by: _					Total Cor	rect:		

1. a 10 points For each of the following indicate i	If it is an intensive or extensive property.
<u>Property</u>	intensive or extensive?
Volume	
Mass	
Entropy	
Ratio of mass to volume (density)	
Internal Energy	
Pressure	
Temperature	
Gibbs free energy	
Helmholtz free energy	
Constant pressure heat capacity	·
1.b. 10 points Indicate whether the indicated pro	operties are state functions or not
<u>Function</u>	State function or not?
Temperature	
Gibbs free energy	
Work	
Heat	
Entropy	

NAME:_____

STUDENT ID_____

NAME:	
STUDENT ID	

2. 10 points

Consider the phase diagram shown above.

Is the difference in molar volumes $[V_m(liquid) - V_m(solid)]$ positive or negative. State clearly how you arrive at your answer. A simple "positive" or "negative" without any explanation will receive no credit.

NAME:	
STUDENT ID	

3. 25 points

a. Reversible Work:

Consider a reversible, constant temperature process. Starting from the definition of the Helmholtz Free Energy, show that the Helmholtz Free Energy is equal to the reversible work for the process.

b. Maximum Work for Propane Combustion:

Consider the reaction associated with the combustion of propane:

 $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$

Note that as written this reaction is not balanced—you should balance it.

Assuming propane is an ideal gas and a constant temperature of 298K, compute the maximum work that can be obtained from the combustion of propane:

Given at 298K:

 $\Delta G_{rxn}^{0} = -2108 \text{ kJ/mol}$

R = 8.314 J/mol•K

NAME:	 	
STUDENT ID		

4. 25 points

Consider the following diagram for one mole of a gas. For this system, all processes are done reversibly and the Internal Energy of the gas is only a function of temperature.

Figure 1: Point 1: (P1,V1,T1), Point 2: (P2,V2,T1), Point 3: (P1,V2,T3).

Consider only pV work. Calculate the Internal Energy (ΔU), the Entropy (ΔS), the Heat (q), and the work (w) associated with pathways A,B, and C. Comment: Be sure to algebraically simplify each step as much as possible. Label all variables with associated pathway and points.

PUT YOUR ANSWER ON THIS PAGE AND THE NEXT BLANK PAGE.

NAME:	
STUDENT ID	

NAME:	 	
STUDENT ID		

5. 20 points

Consider the combustion of ethanol under constant pressure conditions (1 atm) and at a temperature of 370K. The balanced reaction for this combustion is shown below. Use the data provided here to calculate the $\Delta H_{rxn}(370K)$. $CH_3CH_2OH(gas) + 3 O_2(gas) = 2 CO_2(gas) + 3 H_2O(liquid)$

For ethanol (liquid) the following data are available

$$\Delta H_{f}^{0}(298K) = -277.69kJmol^{-1}$$

$$\Delta H_{vap}^{0} = 38.6kJmol^{-1}$$
 Normal boiling point of ethanol = 351.45K C_p(ethanol liquid) = 111.46 JK⁻¹mol⁻¹ C_p(ethanol gas) = 65.44 JK⁻¹mol⁻¹ For O₂(gas): C_p = 29.355 JK⁻¹mol⁻¹ For CO₂(gas)
$$\Delta H_{f}^{0}(298K) = -393.51 \text{ kJmol}^{-1}$$
 C_p = 37.11 JK⁻¹mol⁻¹ For H₂O (liquid)
$$\Delta H_{f}^{0}(298K) = -285.83 \text{ kJmol}^{-1}$$
 C_p = 75.291 JK⁻¹mol⁻¹

Show your reasoning and your work. Simple numerical answers will receive no credit. **Clearly indicate any assumptions you make.** You can continue your answer on the next blank page if necessary.

NAME:	
STUDENT ID	

5. Extra page for your answer to problem 5.