Kiváltott agyi jelek informatikai feldolgozása

Agyi jelek biológiai háttere Agyi jelek mérési módszerei

Elektroencefalográfia EEG

Történeti áttekintés

- 1860-as évek.
 - Első elektromos jelek rögzítése, izom idegsejteknél (Carlo Matteucci, Emil Du Dois-Reymond). Hermann Von Helmholz bevezeti az akciós feszültséget.
- 1875
 - Az első agyi tevékenységet mérő galvanométer Richard Caton által (két elektród a koponyán). Az EEG fogalmának bevezetése. Elektro(agyi jelek elektromos rögzítése)encefalo(a fejen keresztül sugárzott jel)-gráf(ábrázolás, rajzolás).
- Az emberi EEG felfedezése és első kutatásai: Hans Berger (1873-1941).
 - A jelek feldolgozása főleg Fourier-transzformációval.
- 1930-as évek
 - többcsatornás felvételek készítése.
- 1947
 - Az American EEG Society megalakulása.
- 1948
 - Jelek rögzítése az agy mély rétegeiben (deep brain signals) intracerebrális elektródákkal.
- 1968
 - MEG (magnetoenkefalográfia) jelek mérése (David Cohen).

Központi idegrendszer /1

- A központi idegrendszer (central nervous system, CNS)
 - Gliasejtek
 - Támasztó, tápláló és ingerülettovábbító szerepük van
 - Neuronok
 - Ingerelhető sejtek lényeges elektromos tulajdonságokkal
 - Az aktivitásuk elektromos és mágneses mezőt hozhat létre
 - Felépítésük:
 - Sejtmag
 - Az idegsejtet határoló sejthártya
 - Sejtplazma
 - Proteinszintézis, amely az idegsejtet építi fel, és az ingerülettovábbítást segíti elő
 - Dendritek
 - rövidebb nyúlványok, az ingerületet a sejttest felé továbbítják
 - Axon
 - hosszabb nyúlvány, az ingerületet a sejttest felől az axonvég felé továbbítja
 - neurononként csak egy van
 - Reagálnak az ingerületre és továbbítják azt

Központi idegrendszer /2

- Szinapszisok
 - sejtek közötti kapcsolódási helyek, ahol az ingerület továbbítódik
 - Szinaptikus rés
 - két különböző neuronhoz tartozó ektoplazmatikus (plazmán kívüli) membrán közötti távolság
 - Az emberi agyban lévő idegsejtek soha nem érnek össze közvetlenül (kivéve, amikor mégis!)
 - A CNS aktivitása főként a szinaptikus feszültségek átviteléből áll
 - Kémiai és elektromos úton
- Nyugalmi állapotban a sejtmembránon belül 60-70 mV negatív polaritású potenciált lehet mérni
 - szinaptikus aktivitással ez a feszültség változik
- Az ingerület továbbításában szerepet játszó két idegsejt:
 - pre-szinaptikus neuron: ahonnan az ingerület indul
 - poszt-szinaptikus neuron: ahová az ingerület továbbítódik

Idegsejt felépítése

Dendrites Cell body Collect Integrates is electrical signals and signals outgoing signals

Integrates incoming signals and generates outgoing signal to axon

Axon

Passes electrical signals to dendrites of another cell or to an effector cell

Központi idegrendszer /3

- A neuronok aktiválásukkor időben változó elektromos áramot állítanak elő
 - Ezek ion áramok, amelyek sejtmembrán szinten keletkeznek
- Két fajta neuronális aktivációt különböztethetünk meg
 - Az idegsejtek membránjának gyors depolarizációja
 - Akciós potenciált vált ki
 - Szinaptikus aktiváció miatti lassabb membrán potenciál változás
 - Neurotranszmitter rendszer által közvetítve
 - Serkentő (excitatory postsynaptic potential, EPSP)
 - Gátló (inhibitory postsynaptic potential, IPSP)
 - Függ a neurotransmitter és a megfelelő receptor fajtájától

Akciós potenciál (AP)

- Az idegsejt membránpotenciáljának gyors megváltozása
- A neuron membránjának depolarizálódása váltja ki
 - Ha az idegsejt depolarizálódása egy adott szintet elér, akkor a további depolarizálódási folyamat nem függ az eddigi külső behatástól
- Az akciós potenciál egy ideiglenes, gyors membrán potenciál változás, amelyet a neuron membránján keresztüli ion kicserélődés okoz
- Egy irányba terjed
 - A membrán potenciál depolarizálódik, tüskét okozva.
 - A tüske után a membrán újra polarizálódik (hiperpolarizálódik),
 - majd az eredeti állapotba tér vissza
- Az idegnek 2 ms-ra van szüksége, mielőtt új ingerület érkezne. Ezalatt AP nem váltódik ki (refraktor periódus)
- Időtartama: 5-10 ms.
- Számos inger okozhatja
 - kémiai, fény, elektromos, érintés, nyomás, nyújtás. A CNS idegeit a szinapszisok kémiai aktivitása stimulálja.
- Az akciós potenciál kiváltásához az ingernek el kell érnie egy küszöbértéket (kb. -55 mV)

- I. A dendriteken érkezett ingerület hatására Na⁺ csatornák nyílnak ki. Amennyiben a beáramló ionok elegendőek ahhoz, hogy a belső potenciált kb. -55 mV-ra emeljék, a folyamat folytatódik.
- II. További Na⁺ csatornák nyílnak ki, a membránt depolarizálva, a sejt belső potenciálját kb. +30mV-ig emelve.
- III. A Na⁺ csatornák bezárulnak és K⁺ csatornák nyílnak ki. A K⁺ csatornák nyitódása lassabb.
- IV. A K⁺ ionok kiáramlása újra polarizálja a sejtet.
- V. A repolarizáció túlmegy az eredeti állapoton, hiperpolarizációt okozva, kb. -90 mV-ig. Ez a hiperpolarizáció biztosítja, hogy a neuron egy rövid időn belül ne tüzeljen újra (legalábbis megemeli a küszöbszintet), garantálva, hogy az ingerület csak egy irányba terjedjen.
- VI. A hiperpolarizáció után a Na⁺/K⁺ pumpák a membránt nyugalmi állapotra hozzák vissza (kb. -70 mV).

Neuron nyugalmi állapotban

Ingerelt sejt, az akciós potenciál "utazik" az axonon

EPSP, IPSP

- Az akciós potenciál az axon idegvégződésein beindítja a neurotranszmissziót
- A poszt-szinaptikus neuronban a transzmisszió két módon befolyásolja a akciós potenciál létrejöttét
 - Serkentő posztszinaptikus potenciál (excitatory postsynaptic potential, EPSP)
 - Az akciós potenciál létrejöttét segíti
 - A nyugalmi potenciált pozitív irányba mozdítja
 - Egy serkentő neurotranszmisszió nem elég
 - Gátló posztszinaptikus potenciál (inhibitory postsynaptic potential, IPSP)
 - Hátráltatja az akciós potenciálok létrejöttét
 - A nyugalmi potenciált a küszöb alatt tartja

Glia sejtek

- A neuronok közötti tér jelentős részét foglalják el
- Tápláló és ingerületvezetés gyorsító szerep
- Réskapcsolatokon (gap junction) keresztül kapcsolódnak egymáshoz
 - Ennek vezetőképessége nagyon függ a pH értéktől és a sejten kívüli K+ éa Ca²⁺ ionoktól
 - > különböző fiziológiai és patológiai kondíciók esetén megváltozik

 A sejten kívüli rész térfogata is változhat különböző fiziológiai ás natalágiai hatásakra

és patológiai hatásokra

Geometriai elhelyezkedés

- Az elektromos aktivitás neuronális forrásainak geometriája lényegesen befolyásolja a mérhetőséget
- A kérgi felszínre érintőlegesen/sugárirányban elhelyezkedő idegek hoznak létre mérhető mezőket
 - A MEG berendezések a koponyára merőleges mágneses mezőt érzékelik
 - A kérgi felszínnel párhuzamosan elhelyezkedő idegek hoznak létre mérhető mágneses mezőket
 - Főként a kérgi felszínre merőlegesen elhelyezkedő idegek hoznak létre mérhető elektromos mezőket
 - Pl. oszlopokban lévő piramis sejtek
- A piramissejtek (piramis alakú idegsejtek) együttes szinkron aktiválódása elektromos/mágneses mezőt hoz létre
- Ezek mérhetőek relatíve kis távolságról

apical dendrite

soma

basal dendrite

axon

Kérg

Molecular layer

Layer of smallpyramidal cells

- Az agyk alapján
 - Réteg
- A kifejle vékony merőle large pyramidal cells

- Kb. 41
- Egy for
 - te
- Sok mir kapcsol

Layer of polymorphous cells

- A szoma tartalm
 - Durva

ezési elve

neuronok eken,

(b. 2.5-szörös

távolságú szloppá) inicolumn-ot

Kérgi szerveződés /2

- 40 μm szélességgel számolva, 100 neuronból álló minicolumn esetén, 50000 neuronból álló kortikális felszín 0.63 mm² keresztmet-területű foltot alkot
- Funkcionális szempontból a kortikális oszlopok különböző dinamikai állapotban létezhetnek
 - Fiziológiai makrooszlopok (physiological macrocolumn): kortikális oszlopok egy csoportja, amely azonos funkcionális állapotban vagy neurális folyamatban működnek együtt
 - A fiziológiai makrooszlopok dinamikus együttesek
 - a kortikális oszlopok szerveződése időben változhat
- A különböző oszlopok végezhetnek oszcilláló aktivitást a közöttük lévő érintőirányú visszacsatolt kapcsolódásokon közvetítve

Piramis sejt, mint dipólus

Dipole character of pyramidal cells

adapted from Ritter

EPSP és IPSP dipólusok

Depending on location of EPSP and IPSP, different scalp EEG are generated adapted from Ritter

Az EPSP-k és IPSP-kösszeadódnak, és szintén egy dipólusként viselkednek.

Ezek a generált mágneses és elektromos mezők eljutnak a fej felszínére, ahol mérhetők.

Piros: dipólus

Zöld: mágneses mező (MEG)

Sárga: generált másodlagos áramok (EEG)

Mérhető értékek összefoglalása

Local Field Potential (LFP)

Elektrofiziológiás jel, amelyet az egymáshoz közeli neuronoknál összegzett elektromos áram állít elő az idegrendszeri szövet egy adott kis térfogatán.

Mérése

Sejten kívüli térben mikroelektródát helyezünk el, amely elegendően távol van a neuronoktól, hogy egyik idegsejt se domináljon az előálló jelben.

Agy felépítése

- Születéskor kb. 10¹¹ db neuron fejlődik, ez átlagosan 10⁴ neuront eredményez mm³-enként. A neuronok szinpaszisokon keresztül kapcsolódnak egymáshoz, neurális hálókat alkotva. Egy felnőtt ember 5·10¹⁴ szinapszissal rendelkezik.
- A szinapszisok száma a korral növekszik, a neuronok száma viszont csökken.
- Az agy fő területei:
 - Nagyagy (cerebrum): mozgás kezdeményezés, az érzékelés tudatos figyelése, komplex analízis, érzelmek és viselkedés kifejezése.
 - Kisagy (cerebellum): izmok szándékos mozgatása, egyensúly fenntartása.
 - Agytörzs (brain stem): reflexszerű funkciók (légzés, szívritmus szabályzás, bioritmus, hormonális szabályzás, hormonkiválasztás).

- Az EEG jel az agykéreg piramissejtjeinél a dendritek szinaptikus ingerlései során folyó áramok mérése
- Az agyi idegsejtek aktiválásakor szinaptikus áram keletkezik a dendritekben, amely MEG-el mérhető mágneses mezőt, valamint másodlagos elektromos mezőt hoz létre a koponya felett, amely pedig már EEG-vel mérhető
- A fej rétegei:
 - **Fejbőr** (bőr, kötőszövet, koponyacsonthártya): 0.2-0.5 cm széles, 300-400 Ω ellenállású.
 - Koponya: 0.3-0.7 cm széles, 10-25 kΩ ellenállású.
 - Agykéreg (az agy vékony fedőrétege): 0.1-0.3 cm széles, 50-150 Ω ellenállású
- Mivel a rétegek különböző elektromos tulajdonságokkal rendelkeznek, az EEG az agyi források nemlineáris összege

- Az agyon belül, illetve a fejbőr mentén akkora zajok keletkeznek, hogy csak nagyszámú aktív neuront lehet mérni
- Az EEG fő felhasználási területei:
 - Figyelem, kóma és agyhalál monitorozása,
 - fejsérülést, sztrókot és tumort követő sérülés lokalizálása,
 - afferens utak tesztelése (ingerület-érzékelés útvonal),
 - kognitív figyelem monitorozása,
 - altatási mélység vezérlése,
 - epilepszia és roham eredetének lokalizálása,
 - epilepszia hatások tesztelése,
 - agy fejlődésének monitorozása,
 - drogok görcs hatásának tesztelése,
 - alvászavarok és pszichológiai vizsgálatok,
 - mentális rendellenességek vizsgálata

Sávszélesség

 Az EEG méréséhez alapesetben elég a 200 Hz, mivel az információ max. 100 Hz. Nagyobb sávszélesség esetén max. 2000 Hz-et szoktak használni.

Mintavételezés

16 bites mintavételezés a leggyakoribb

Példa: egy óra felvétel mérete. 128 elektróda esetén, 16 bites kvantálással, 500 Hz mintavételi frekvenciával 128 x 60 x 60 x 500 x 16 = 3.68 Gbit = 0.45 GB szükséges.

Az EEG **elektródák típusai**:

- eldobható (gél nélküli, előre gélezett),
- újrahasználható lemez elektródák (arany, ezüst, rozsdamentes acél vagy ón),
- fejpánt vagy elektróda sapka,
- sóoldatos elektróda,
- tű elektróda

Tin (pure)

Silver/Silver

- A leggyakoribb elektróda sapkák 3 mm-nél kisebb átmérőjű
 Ag-AgCl lemezeket tartalmaznak, hosszú flexibilis vezetékekkel.
- Az agykéreg és az elektródák közötti **nagy ellenállás** a konkrét EEG jelek maszkolásához is vezethet. Az általánosan megengedett legnagyobb ellenállás 5 k Ω lehet, az egyes elektródák között pedig 1 k Ω .
- Fontos megjegyzés: az agy rétegezett és spirális szerkezete miatt a potenciálok eloszlása a fejbőrön nem egyenletes.

EEG elrendezések:

- Az International Federation of Societes for Electroenkephalography and Clinical Neurophysiology ajánlása: 10-20-as elrendezés (21 db elektróda). Általában az A1-A2 (bal-jobb fülcimpához csatlakoztatott) elektródák szolgálnak referenciaként. Az elnevezés a fix jelölőpontoktól mért 10 vagy 20%-os távolságokból adódik, létezik több eltérő darabszámú elrendezése.
- Egyéb elrendezés adott terület jobb érzékelésére
- Brain-computer interfész esetén a mozgásért felelős területekről választanak több számú elektródát.

EEG/6

Time

bipolar

Referenciapont megválasztása

- Nagy átlag
- Közös referenciapont
- Páronkénti referenciapont

MEG/1

- Az EEG jelekhez hasonlóak, ám annál zajosabbak.
- A generált mágneses mező 10 fT nagyságrendű, amely jóval kisebb, mint a környezeti mágneses zaj
- A neuronok dendritjeiben folyó ionikus áramok generálják.
 Minden elektromos áram vele ortogonális mágneses mezőt kelt, amelyet a MEG berendezés érzékel. Az érzékelhető mezőhöz kb. 50000 neuron szükséges. Ezért a koponyára érintőlegesen elhelyezkedő piramis-sejt kötegek generálják, amelyek a barázdákban vannak
- A MEG jelet nem csillapítja az agyi szövet. Ezért a fej sokkal homogénebb közeg, mint az EEG esetén. A mély agyi aktivitás is jobban detektálható

MEG/2

- A dipólusok által generált egyes aktivitások kiolthatják egymást.
- A MEG előnye az EEG jelekhez képest az, hogy kevésbé érzékenyek az agyi szövetek nem linearitására. Az EEG jelek viszont kevésbé környezeti zajosak és a mérőeszközök jóval olcsóbbak.
- Az EEG és MEG jelek mérésének történelme folyamatos, manapság léteznek invazív és nem invazív eljárások is.

Elektrokortikográfia (ECoG/ECG)

- invazív eljárás
 - az agykéreg felszínén elektródákat helyeznek el
 - koponyán át fúrt lyukon keresztül néhány mikron csúcsátmérőjű mikroelektródát helyeznek el az agyszövetben
- egyre gyakrabban használják embereken is
 - epilepsziás betegeknél az operáció előtt az epilepsziás góc pontos beazonosítására
- Más elnevezés
 - szubdurális EEG (sdEEG)
 - intracranialis EEG
- előnye a skalpról elvezetett EEG-vel szemben az, hogy a kis feszültségű, magas frekvenciájú komponensek tisztán elvezethetőek

Elektrookulográfia (Electrooculography, EOG)

- Szemmozgás követése
- A szaruhártya (cornea) és a retina közötti potenciálkülönbséget méri
- Elektródapárok alkalmazása
 - fent/lent, bal/jobb oldal

Human Eye Anatomy

Elektrookulográfia /2

- A szem dipólusként viselkedik
- Balra nézés esetén
 - A szaruhártya megközelíti a bal szem külső szemzugánál lévő elektródát
 - Negatív változás a potenciál különbségben
- Jobbra nézés
 - A szaruhártya megközelíti a bal szem belső szemzugánál lévő elektródát
 - Pozitív változás a potenciál különbségben

Mágneses rezonancia MRI

Mágneses rezonancia MRI

Orvosi diagnosztikában alkalmazott testi képalkotó módszer. Alkalmas agyi képalkotásra is. Létezik strukturális és funkcionális MRI képalkotás.

bevezetés

- A mágneses rezonancia képalkotás (magnetic resonance imaging, MRI) során a mért jel a szövet sejtmagjának hidrogén atomjából (protonjából) ered
- Spin
 - A proton fizikai paramétere
 - Mágneses dipólusként működik
 - Elképzelhető egy iránytűként

MRI spin

- A spin iránya mágneses mezőbe helyezve felveszi a mező irányát
 - Vagy pontosan ellenkezőleg áll vele, de ez az MRI-ben használt mágneses erőtér (B) nagysága mellett elenyésző

MRI spin mágneses térben

A mágneses momentumok összeadódnak, és egy M makroszkopikus mágnesességet hoznak létre, amely párhuzamos Bvel

→ az M jelenléte protonok jelenlétére utal, megfelelő térbeli felbontással kép alkotható

Larmor frekvencia

- Ha a protonokat a B mágneses mezőben az un. Larmor frekvenciával azonos elektromágneses hullám éri, az M mágnesezettség elfordul a kitettséggel időarányosan
 - Az M iránya fokozatosan visszatér az egyensúlyi helyzetbe (párhuzamos B-vel): relaxáció
- Az elfordított mágnesezettség a mágneses mező vektora körül forog: precesszió (precession)

 Precesszió közben a Larmor frekvenciának megfelelő elektromágneses hullámot hoz létre

MRI FM

- A Larmor frekvencia a B nagyságával arányos: 42.6 MHz/T
 - Ez egy átlagos MRI-nél (1.5 T) 64 MHz
 - A mérés így FM adóval és vevővel lehetséges
- A mérés:
 - Egy FM adóhoz hasonló eszközzel pár ms-os nagyságrendű elektromágneses hullámot keltenek, amely létrehozza a precessziót
 - Egy, a Larmor frekvenciára hangolt FM rádió vevőhöz hasonló eszközzel mérik a jelet
 - Mért jel esetén a mért térben proton van
- A mágnesezettség csak akkor térül el, ha a leadott elektromágneses jel pontosan a proton Larmor frekvenciájával egyezik meg
 - Rezonancia hatás lép fel: MRI elnevezés
 (Az MR hatást 1946-ban írták le először)

MRI térbeli képalkotás

X irány: frekvencia kódolás Y irány: fázis kódolás Z irány: szelet kiválasztás

MRI frekvencia kódolás

- Kezdeti elektromágneses impulzus
- G_x irányú gradienstér bekapcsolása

 - A Larmor frekvencia az x irányú pozíciótól függ
 - A generált elektromágneses jel frekvenciája is az x pozíciótól függ
 - FM vevővel detektáljuk az összeg jelet
 - Frekvencia elemzéssel kiválogatjuk az egyes komponenseket
- "read gradient"

fázis kódolás

- G_v gradienstér alkalmazása 2D-s kép alkotásához
 - A jel mérése előtt y irányú gradienstérrel a protonok Larmor frekvenciájának megváltoztatása y irányban
 - A G_x gradiens kezdetekor a (G_y kikapcsolva) azonos x pozíciónál azonos Larmor frekvencia lesz, de eltérő kezdeti amplitúdó: fázis különbség
- "phase gradient"

szelet kiválasztás

- G_z irányú gradienstér bekapcsolása az RF impulzus alatt
 - Csak az a z-irányú szelet ad rezonancia választ, amelyiknél $\mathbf{f_L} = \mathbf{f_0}$
- "slice selective gradient"

relaxációs idők

- A precessziós mozgás egy idő után csillapodik és a mágnesezettség iránya újra megegyezik a B mágneses tér irányával: relaxáció
- Longitudinal relaxation time: T1
 - A longitudinális (hosszanti) komponens maximum értékének elérése
- Transverse relaxation time: T2
 - a külső térre merőleges rendezettség (pl. k eltűnésének karakterisztikus ideje
- T2*: a mágneses mezők inhomogenitása miatt hamarabb csillapodik

MRI relaxációs idők

T1 átlagos értékei

White matter: 850 ms

Grey matter: 1 300 ms

• CSF: 4 500 ms

 A T1 időt kihasználó eljárások morfológiai vizualizációt tesznek lehetővé

relaxációs idők

- T2 átlagos értékei
 - White/Grey matter: 80-110 ms
 - CSF: 2 000 ms
- Lehetővé teszi az agyi szövetek és a folyadékkal telt üregek (pl. ödéma) megkülönböztetését

MRI gradiens echo

- A gradiens mágneses mező miatt a különböző frekvenciájú protonok destruktív interferencia miatt jelveszteséget okoznak (dephrasing)
- A gradiens megfordításakor a jel újra felerősödik (rephrasing)
- T2*-súlyozott: a jel csillapodása arányos az effektív T2-vel
 - Alacsonyabb jel intenzitás az alacsonyabb T2* értékű területeken

MRI gradiens echo eljárás

- TE: echo time
 - Nem lehet >> T2*
 - Nem lehet << T2*

 Neuronális aktivitás mérése:
 neuronális aktivitás kis
 T2-beli változást okoz
 (BOLD signal)

MRI K-tér

Hasznos matematikai leírása és kódolása az MR képalkotásnak K-tér: k_x , k_y koordináták

• k-értékek (k_x , k_y): a G_x és G_y gradiensek alatti terület

MRI k-tér

Echo Planar Imaging (EPI)

- A gradiens echo megoldás időigényes
 - Minden új PE (phase encoding) iteráció új szelet kiválasztó impulzust igényel
- EPI megoldás: a szelet kiválasztás után gradiens echo sorozat mérése a read gradient folyamatos invertálásával
 - Rövid y-irányú gradiens pulzust ("blip") kapcsolunk be a mérések között
- Egyetlen szelet kiválasztó impulzust igényel, egy szelet mérése 100 ms nagyságrendű
- Erősen T2*-súlyozott
 - Csökkent intenzitás az inhomogén lokális mágneses mezőknél
 - Ideális fMRI méréshez

MRI Echo Planar Imaging (EPI)

MRI Gradiens echo vs EPI

Specific Absorption Rate (SAR)

- A rádiófrekvenciás impulzus során energiát adunk a spin rendszernek
- A baj, hogy az RF elektromos áramot is indukál a szövetben
 - A szövetet felmelegíti!
- > Így az RF energiájának csupán egy része jut a spinek gerjesztésére, a maradék nem kívánt hőt eredményez
- SAR: az RF teljesítményének azon része, amelyet a szövet felvesz
 - Mértékegysége: [W/kg]
- A legnagyobb megengedett SAR: 3.2 W/kg
 - Az EPI alacsony SAR értékű (egyetlen RF szükséges szeletenként)
- Elektromos eszközök használata az MR készülékben körültekintést igényel

fMRI Neuronális aktivitás - BOLD jel

- BOLD: Blood-oxygen-level dependent, vér-oxigén-szint függő
- A gradiens echo mérési technikák esetén a neuronális aktivitások területein átmeneti jelerősödés figyelhető meg
 - Megfelelő TE idő esetén
- Nyugalmi állapotban:
 - Deoxyhaemoglobin: paramágneses
 - Lokálisan erősíti a statikus mágneses teret
 - Agyi szövet: diamágneses
 - Gyengíti a statikus mágneses teret
 - > inhomogenitások a mágneses mezőben
 - Rövidebb T2* idők → gyengébb jel a T2-súlyozott mérésekben
- Neuronális aktivitás esetén több oxigén áramlik az aktivitás területére
 - Diamágneses oxyhaemoglobin koncentráció növekszik
 - Inhomogenitások csökkennek → nagyobb jelerősség

Agyi véráramlás (Cerebral blood flow, CBF)

- CBF: mérték az artériás vér szállítására
 - Az agyi szövetek oxigénellátására
- Megemelkedett CBF lehet a neuronális aktivitás által előidézett megnövekedett oxigénigény miatt
 - Magasabb oxyhaemoglobin sűrűség -> "BOLD hatás"
- Csökkent CBF oxigénhiányos állapotot jelez (hypoxia)
 - Agyi sérülés jelzése (pl. stroke)
- Lényeges paraméter orvosi patológiai diagnózisban
 - Stroke
 - Epilepszia
 - Rák

Agyi véráramlás (Cerebral blood flow, CBF)

 Mértékét leírhatjuk a kapillárisokhoz szállított artériás vér szállítási rátájával az agy egy V térfogatú részén (általánosan használt egysége 100 ml vagy 100 g)

$$CBF = \frac{1}{V} \cdot \frac{\Delta V_B}{\Delta t}$$

Csak a kapillárisokban lévő vér járul hozzá a CBF-hez, az erekben és az artériákban lévő nem

Agyi véráramlás (Cerebral blood flow, CBF)

Két fő eljárás létezik a CBF mérésére

- Dynamic susceptibility contrast MRI, DSC
- Arterial spin labelling (ASL)

MRI DSC

- Paramágneses kontrasztanyag (Gd-DTPA, gadolinium)
 - Invazív eljárás
 - Lokálisan csökkenti a T1, T2 és T2* időket
 - Gyors sorozatok mérése lehetővé teszi a kontrasztanyag haladását
- T2 és T2* súlyozott mérési technikák esetén jobb időbeli felbontás
- A festékanyag áthaladásának időgörbéjéből információ nyerhető a CBF-ről, a CBV-ről
- A jel intenzitásából mérhetjük a T2 és T2* időket
 - Ezek arányosak a kontrasztanyag koncentrációjával
 - Koncentráció-idő görbét kaphatunk
- Hátrány
 - A CBF információ kinyerése bonyolult
 - Lassú: a kontrasztanyagnak ki kell ürülnie

MRI ASL

Az artériás vért **mágneses jelölés**sel látjuk el

- RF impulzussal 180 fokkal megfordítjuk a spineket egy adott terület alatt
- Az invertált vér csökkenti a szövetek mágnesezettségét
 - Csökkent MRI jel

Nem invazív

- 180 fokos rádiófrekvenciás invertáló impulzus
- Mágnesesen invertált vér áramlásának alkalmazása nyomkövetőként

4-10 perces felvételi idő

Többszeletes, nagy felbontású, kvantitatív teljes képalkotáskor

Lehetővé teszi a **sorozatos CBF meghatározás**t Hátrány

- Alacsony SNR
- A nyomkövető anyag gyorsan kiürül (T1 idővel)
- → Erős mágneses mezőben történő vizsgálatok alkalmával használható

MRI ASL

- 1. RF impulzussal megjelöljük a vért
- 2. Képet alkotunk a kívánt szeletről
- 3. Jelölést kihagyjuk
- 4. Kontrol képet alkotunk a szeletről

Cerebral Blood Volume, CBV

- Adott szövet tömegen vagy térfogaton mért vér térfogat
 - ml/100 g vagy ml/100 ml
- Szürkeállomány: 5 ml (/100 ml)
- Fehérállomány: 2.5 ml (/100 ml)
- agyi aktivitás mérése
 - Pl. BOLD hatás hátterének vizsgálatakor
- Betegségek jelzése
 - Agyi érrendszeri elváltozások
- Invazív mérési módszerek
 - DSC (dynamic susceptibility contrast imaging)
 - T2-súlyozott
 - Steady-state imaging
 - T1-súlyozott
- Nem invazív mérési módszer
 - Vascular Space Occupancy Measurement

fMRI BOLD jel – hemodinamikai válasz

- Cerebral metabolic rate of oxygen consumption (CMRO₂) megemelkedik
 - Nagyobb oxigén fogyasztás

 magasabb deoxyhaemoglobin koncentráció
 - Jelerősség csökkentése

 kezdeti "merülés" (dip)
- CBF és CBV megemelkedik
 - Ellentétes hatás
 - CBF emelkedés miatt oxigén szállítódik az aktiváció helyére
 - CBV emelkedés miatt a deoxyhaemoglobin koncentráció emelkedik
 - A CBF eleinte kiszorítja a CMRO₂ és CBV hatását
 - Pozitív BOLD válasz
- A CMRO₂ és CBF szint lecsökken
 - A CBV magasabb szintje miatt negatív "túllövés" keletkezik

"Haemodynamic response"

fMRI BOLD jel – negatív válasz

- A BOLD válasz lehet negatív irányú is
- Sem a pozitív, sem a negatív BOLD jel mögött lévő pontos mechanizmus nem ismert
 - A neuronális aktivitás csökkenése a véráramlás lecsökkenésével jár
 - A neuronális aktivitás növekedése a véráramlás növekedésével jár
- Kimutatták, hogy a főemlősöknél a neuronális aktivitás csökkenése negatív BOLD jelet eredményez
- A megnövekedett LFP (local field potential) a pozitív BOLD jellel mutat erős korrelációt

fMRI BOLD jel – TE idő

- A TE idő megválasztása fontos tényező

 - Nagy értéknél a relaxáció miatt jelbeli veszteség lép fel
- A TE-t a lehető legrövidebbre kell választani
 - A különböző üregek és szövetek okozta mágneses mező inhomogenitás miatt
- 3 T értéknél TE = 30 ms
- 1.5 T értéknél TE = 50 ms

Agyi jelek mérése

fMRI

- az időbelis felbontás rossz
- csak azokat lehet kimutatni, amelyek a vér oxigénszintjét befolyásolják
- drága
- térbeli felbontása jó

EEG, MEG

- térbeli felbontás rossz
- nagyban függ az elektródák számától
- időbeli felbontása jó
 - akár ms nagyságrendű

Directional References