Course code	20CSEAC 08	BIG DATA ANALYTICS	L	T	P	C
Core/Electiv	e/Supportive	Core	3	0	1	4
Pre-requisite		Knowledge on Data and data types	Syllabus Version		2020- 2021	

Course Objectives:

The main objectives of this course are to:

- 1. To understand Data source evolution, data Characteristics and Big data processing models.
- 2. To understand and apply Data Analytics Techniques on Datasets
- 3. To analyze and Build Data Analytics use cases for specific domain and applications.

Expected Course Outcomes:

On the successful completion of the course, student will be able to:

1	Understand Data sources, generations, data formats, Data Evolution, Data from various domains	K1, K2
2	Understand Big Data Characteristics, Frameworks, components and Limitation of traditional approaches and map Big Vs to Data Domains	К3
3	Understand the Concepts of Data Analytics Phases and Techniques	K2
4	Apply Data Analytics Techniques practically using R environment	K2-K5
5	Analyze various domains of Data Characteristics, Platform, Programming Model and Design Data Analytic ecosystem, and data processing framework	K4-K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Unit:1 Big Data Landscape

18- hours

Data Evolution: Data Development Time Line – ICT Advancement-a Perspective – Data Growth-a Perspective – IT Components-Business Process – Landscape-Data to Data Science – Understanding data: Data Classification – Hot Data – Cold Data – Warm Data – Thick Data – Thin Data - Classification of digital Data: Structured, Semi-Structured and Un-Structured. Data Sources - Data Science-Components – Data Science vs Statistics – Mathematics - Programming Language - Database, - Machine Learning. Data Analytics Relation: Data Science, Analytics, Big Data Analytics

Unit:2 Big Data Components

18- hours

Big Data: Introduction To Big Data: - Evolution What is Big Data - Sources of Big Data. Characteristics of Big Data 6Vs - Big data-Challenges of Conventional Systems- - Data Processing Models - Limitation of Conventional Data Processing Approaches - Big Data Myths - Data Discovery-Traditional Approach, Big Data Technology: Big Data Exploration - Data Augmentation - Operational Analysis - 360 View of Customers - Security and Intelligence - Hadoop: Basic Concepts-An Overview of Hadoop-The Hadoop Distributed File System-Anatomy of a Hadoop Cluster-Hadoop Ecosystem Components -SPARK architecture: RDD - Transformation - SPARK Vs Hadoop - NoSQL Database: Types

Unit:3	Data Analytics using R	18 hours
Analytics - Architect, I Frames – P	vtics Classification – Descriptive – Diagnostic – Predictive – Case Studies – Data mining in Big Data –Big Data Roles Data Analyst – Skills - R Basics Data Structures – Vectors – I ackages - Visualization plots: Data Analytics: Histogram – Boxple Chart – Mosaic Plot – MASS – R Reporting – Markdown – Flex	Data Scientist, Data Lists - Tuples - Data ot - Scatter Plot - Bar
II-la 4	Data Analysis Tarkeiner	10 1
Unit:4	Data Analytics Techniques f Data mining: Data Mining Vs. Data Analytics - Data Preproce	18 hours
algorithms	- Introduction to neural network - learning in NN- Genetic algo	withm - Classification
Technique: construction	Introduction – Decision Trees: Tree Construction Princip n Algorithm – CART – ID3 – Random Forest – Rule Based Appr g – Recommender Algorithms	ole - Decision Tree
Technique: construction Rule Minin	Introduction – Decision Trees: Tree Construction Princip n Algorithm – CART – ID3 – Random Forest – Rule Based App g – Recommender Algorithms	ole - Decision Tree roaches - Association
Technique: construction Rule Minin	Introduction – Decision Trees: Tree Construction Princip n Algorithm – CART – ID3 – Random Forest – Rule Based App g – Recommender Algorithms Data Science Usecases	ole - Decision Tree roaches - Association
Technique: construction Rule Minin Unit:5 Data Science – Data Typ Framework Domains :	Introduction – Decision Trees: Tree Construction Princip n Algorithm – CART – ID3 – Random Forest – Rule Based App g – Recommender Algorithms	le - Decision Tree roaches - Association 18 hours Sources Identification cience P's - Big Data
Technique: construction Rule Minin Unit:5 Data Science – Data Typ Framework Domains :	Introduction — Decision Trees: Tree Construction Princip In Algorithm — CART — ID3 — Random Forest — Rule Based Appr Ig — Recommender Algorithms Data Science Usecases Dec - Big Data—Big Data and AI - Use cases — Discussion — Data Des — Data Classification — Data Characteristics of Big V's — Data S Is — Data Analytics Classification Customer Insights — Behavioural Analysis — Marketing — Retail	le - Decision Tree roaches - Association 18 hours Sources Identification cience P's - Big Data

Total Lecture hours

92-- hours