# Digitális Laboratóriumi Gyakorlatok

Jegyzőkönyv

1. gyakorlat

2024. február 22.

## Elméleti összefoglaló

Késő február, korai március tavaszi vizeire térve, a tavasz és tél kemény elektronikai laborjait nem felejtve folytatjuk tovább a kalandunkat a digitális áramkörök világában. A munkánkat az erősítő áramköröknél hagytuk abba, ami meg is alapozza a következő tanulmányainkat.

Röviden összefoglalva az ismert tudásainkat két fontos dologra kell emlékeznünk. Az egyik a tranzisztor, aminek volt egy olyan felhasználási módja, amikor a bázis feszültséggel irányítottunk, hogy a kollektor áram folyjon az emitter felé. Ezt előző félévben arra használtuk ki, hogy jel erősítést hajtsunk végre a bázis feszültségre, viszont ebben a félévben ez inkább csak az irányítás kontextusában fog előkerülni. A másik alkatrész amire emlékeznünk kell az a műveleti erősítő, ami egyszerűen azt csinálja, hogy a "két bemenetén" (invertáló és egyenes bemenet) lévő feszültség különbségét megszorozza "végtelennel" és azt kiadja a kimenetén. Továbbá ezen túl rendelkezik két tápegység bemenettel, ahonnan azt a feszültséget kapja, aminek keretein belül a végtelent kitudja adni. Természetesen ez így nem lenne túl hasznos, de ha a kimenetét negatívan visszacsatoljuk (összekötjük az invertáló bemenettel), akkor tuduk megfelelő feszültségosztókkal feszültség többszöröző (akár egyszerező) áramkört készíteni, ami azért jó, mert így nem a bejövő feszültséget terheljük, hanem a műveleti erősítőt.

A digitális világban 10 féle ember létezik, aki érti a kettes számrendszert, és aki nem. Az általunk használt IC-k (integrált áramkörök) az előbbibe tartoznak, viszont mást nem értenek. Természetesen a folyamatosan értelmezett feszültségek világában elég nehéz lenne egy fix értéket meghatározni, vagy azt tartani (mivel még a kábelnek is van ellenállása, így feszültség esik rajta), ezért "igazszerű" és "hamiskás" értékeket, amik az 1 és 0 értéket képviselik, egyegy feszültség tartományban értelmezzük. De, mint a világban minden sztenderdizált dolognál, így itt is, legalább egy fél tucatnyi sztenderd létezik arra, hogy ez milyen tartomány. Az első feladatban megtekinthető a legelterjedtebb, most piacon is megtalálható, logikai tartomány sztenderdek. Ezek úgy értelmezendőek, hogy a kimeneti ábrán láthatjuk, hogy egy IC-nek milyen feszültséget kell kiadnia, ha igazat, vagy hamisat szeretne jelölni. Ha a kettő értéktartomány között találjuk az IC-t, akkor az épp érvénytelen jelet ad ki, és lehet az eszközünk érvénytelen bemenetet kapott, vagy megsérült. Ehhez hasonlóan a bemeneti ábra azt jelzi, hogy milyen feszültséget fogad majd a chip el logikai bemenetként. Ha ezen feszültségeken kívül vagyunk, akkor kockáztatjuk az eszköz hibás működését, vagy feszültség túllépés esetén az irreverzibilis anyagátalakulását. Ahogy láthatjuk a kimeneti feszültségek szigorúbban vannak mindig megadva, mint a bemeneti feszültségek, ez azért van, hogy előkészítsék számunkra, hogy az egyes aktív alkatrészeket, számunkra kedvező módon, egymás után kössük, és így érjünk el logikai működést (lásd későbbi laborok).

A hosszú fizikai bevezető után áttérünk a logikai bevezetőre. A logika igaz és hamis értékekkel dolgozik. Vannak logikai változóink, amik ezen két értékből választhatnak maguknak, és ezeket a változókat egyes műveletek kötik össze. Ezeket a műveletsorokat, kifejezéseket tudjuk speciális alakokra hozni a könnyebb munka érdekében. Két nagy iránya az informatikus számára a számítástudomány, ahol mindenről azt szeretnénk bemutatni, hogy kielégíthetetlenek az állítások és ezekhez CNF-et (Konjuktív normálformát) használunk, és a digitális elektronika, ahol meg mindenhez megoldást szeretnénk találni és DNF-et (Diszjunktív normálformát) használunk. Ezen a laboron még csak a logikai tagadással fogunk megismerkedni, ami egy adott logikai értéknek az ellenkezőjét adja vissza.

## Feladatok

#### 1. Feladat

Az elérhető források alapján (internet használható), gyűjtse össze a jelenleg használatban lévő különböző logikai áramkörcsaládok be és kimeneti feszültségszintjeit (pl. TTL, HCT, 3,3 V, ...) A talált adatokat foglalja táblázatba! Hivatkozzon forrásaira!



#### TTL áramkör esetén

$$\begin{aligned} &V_{IL_{max}}=0.8V, V_{IH_{min}}=2V\\ &V_{OL_{max}}=0.4V, V_{OH_{min}}=2.7V~(3.3V~\text{eset\'en}~V_{OH_{min}}=2.4V) \end{aligned}$$

#### 5V CMOS áramkör esetén

$$\begin{split} &V_{IL_{max}} = 1,5V, V_{IH_{min}} = 3,5V \\ &V_{OL_{max}} = 0,5V, V_{OH_{min}} = 4,5V \end{split}$$

#### HTC áramkör esetén

$$V_{IL_{max}} = 1,5V, V_{IH_{min}} = 3,5V$$
  
 $V_{OL_{max}} = 0,33V, V_{OH_{min}} = 3,84V$   
Mingesz Róbert 2020. 09. 25-ég

Mingesz Róbert 2020. 09. 25-én tartott Digitális architektúrák előadásfóliái alapján:

https://learn.sparkfun.com/tutorials/logic-levels

https://vlsi-design-engineers.blogspot.com/2015/07/cmos-logic-families.html

#### 2. Feladat

Építsen egy NEM kaput egy tranzisztor felhasználásával az alábbi ábra alapján. A  $P_1$  potenciométer helyett a tápegység szabályozható kimenete segítségével állítsa elő az  $U_{be}$  feszültséget. Mérje meg, és ábrázolja a létrehozott kapu  $U_{ki}(U_{be})$  karakterisztikáját. Mely áramkörcsaládokkal kompatibilis a kapu?  $(R_1 = 4,7k\Omega, R_2 = 2,4k\Omega, P_1 = 1k\Omega)$ 



#### Szimulátor



## Karakterisztika



## Magyarázat

A mérések alapján a TTL áramkörökkel kompatibilis az épített NEM kapu.

## Táblázat

| $V_{be}$ | $V_{ki}$ |
|----------|----------|
| 4.93     | 0.02     |
| 4.1      | 0.022    |
| 3.26     | 0.026    |
| 2.1      | 0.037    |
| 1.074    | 0.0732   |
| 0.955    | 0.086    |
| 0.88     | 0.098    |
| 0.849    | 0.104    |
| 0.796    | 0.121    |
| 0.7      | 0.1562   |
| 0.658    | 3.45     |
| 0.602    | 4.69     |
| 0.543    | 4.97     |
| 0.251    | 4.97     |
| 0.1      | 4.97     |

### 3-4. Feladat

Mérje meg a 74LS04 inverter bemeneti  $(I_{be}(U_{be}))$  és transzferkarakterisztikáját  $(U_{ki}(U_{be}))$ . A  $P_1$  potenciométer helyett a tápegység szabályozható kimenete segítségével állítsa elő az  $U_{be}$  feszültséget. A kapcsolás bemenetét egészítse ki a megfelelő védóáramkörrel!  $(P_1 = 1k\Omega)$ 

#### Szimulátor



#### Karakterisztika



## Táblázat

| $V_{be}$ | $V_{ki}$ |
|----------|----------|
| 0.361    | 4.11     |
| 0.51     | 4.04     |
| 0.652    | 3.93     |
| 0.885    | 3.74     |
| 0.986    | 3.1      |
| 1.28     | 0.171    |
| 2.0      | 0.172    |
| 3.02     | 0.172    |
| 4.03     | 0.172    |
| 4.92     | 0.172    |

## 5. Feladat

Mérje meg és ábrázolja a 74AHCT14 Schmitt-trigger kapu transzfer karakterisztikáját!

## Karakterisztika



#### Táblázat

| 1 aviazat             |                |               |               |  |
|-----------------------|----------------|---------------|---------------|--|
| V <sub>be</sub> - Fel | $V_{ki}$ - Fel | $V_{be}$ - Le | $V_{ki}$ - Le |  |
| 0.176                 | 4.23           | 4.9           | 0.184         |  |
| 0.99                  | 4.23           | 4.0           | 0.184         |  |
| 1.165                 | 4.23           | 3.0           | 0.185         |  |
| 1.39                  | 4.24           | 2.0           | 0.184         |  |
| 1.58                  | 4.24           | 1.89          | 0.184         |  |
| 1.82                  | 0.182          | 1.58          | 0.184         |  |
| 2.0                   | 0.182          | 1.21          | 0.184         |  |
| 3.0                   | 0.182          | 1.08          | 0.184         |  |
| 4.0                   | 0.182          | 0.99          | 4.24          |  |
| 4.9                   | 0.182          | 0.176         | 4.24          |  |