CLAIMS

What is claimed	ıs	•

	4	^ _batamia	201/200	COMPRISIDA
1			DACKADE	CONTINUESTIC
			paonago	Comprising
•		A photonic	P ~ 0.1. ~ 3 •	OOpo,

- 2 a housing;
- a semiconductor light source disposed within the housing, the semiconductor
- 4 light source having a first light beam output having data encoded thereon;
- a beam splitter cube (BSC) disposed inside the housing to create a first split
- 6 output of said first light beam output, said BSC having a light beam splitting
- 7 characteristic that negatively impacts said encoding of said data in said first light
- 8 beam within a predetermined limited threshold; and
- g a photodetector disposed inside the housing to receive the first split output,
- with the photodetector being adapted to determine properties of the first split output
- 11 notwithstanding said first split output being created in said limited impact manner.
- 1 2. The photonic package of claim 1 further comprising
- a first lens, optically coupled to the semiconductor light source, the first lens
- 3 equipped to collimate the first light beam output,
- a second split output of said first light beam output created by the BSC, and
- a second lens, optically coupled to the BSC and an optical fiber, the second
- 6 lens equipped to focus the second split output to the optical fiber.
- 1 3. The photonic package of claim 1, wherein BSC comprises a BSC
- 2 incorporated with an electro-optic (EO) modulator.

- 1 4. The photonic package of claim 3, wherein the BSC further comprises a
- 2 cleaved yittrium-iron garnet type crystal.
- 1 5. The photonic package of claim 1, wherein the semiconductor light source
- 2 comprises a semiconductor laser.
- 1 6. The photonic package of claim 5, wherein the semiconductor laser comprises
- 2 a gallium arsenide based semiconductor laser.
- 1 7. The photonic package of claim 1, wherein the BSC comprises a nonpolarizing
- 2 dielectric BSC.
- 1 8. The photonic package of claim 7, wherein the nonpolarizing dielectric BSC
- 2 comprises a first right angle prism and a second right angle prism adhesively joined
- 3 at the hypotenuse.
- 1 9. The photonic package of claim 1, wherein the BSC comprises a BSC having
- 2 a dielectric material to create the first split output.
- 1 10. The photonic package of claim 1, wherein the predetermined limited threshold
- 2 comprises the first split output being of a percentage of the first light beam output.

- 1 11. The photonic package of claim 10, wherein the percentage of the first light
- 2 beam output is 2%.
- 1 12. The photonic package of claim 1, wherein the BSC comprises a BSC made of
- 2 a high quality glass.
- 1 13. The photonic package of claim 12, wherein the high quality glass is BK7A
- 2 glass.
- 1 14. The photonic package of claim 1, wherein the photodetector comprises a
- 2 photodiode.
- 1 15. The photonic package of claim 14, wherein the photodiode comprises a p-i-n
- 2 junction photodiode.
- 1 16. The photonic package of claim 1 further comprising a processor to receive
- 2 electrical signals from the photodetector.
- 1 17. The photonic package of claim 16, wherein the processor comprises a
- 2 processor having at least access to characterization data to facilitate calibration of
- 3 the received first split output.

1	18.	A method of monitoring a semiconductor light source utilizing a beamsplitter		
2	cube	(BSC), comprising:		
3		generating a first light beam output by the semiconductor light source that is		
4	inclu	ded in a housing, the first light beam output having data encoded thereon;		
5		providing the first light beam output to the BSC that is included in the housing,		
6	the E	SC having a light beam splitting characteristic that negatively affects said		
7	enco	ded data in said first light beam within a predetermined limited threshold;		
8		creating a first split output of the first light beam output at said BSC; and		
9		providing the first split output to a photodetector that is disposed within the		
10	hous	ing, the photodetector adapted to determine properties of the first split output		
11	notw	ithstanding the first split output being created in the limited impact manner.		
1	19.	The method of claim 18 further comprising		
2		collimating the first light beam output;		
3		creating a second split output of the first light beam output at said BSC;		
4		optically coupling the BSC to an optical fiber; and		
5		focusing the second split output to the optical fiber.		
1	20.	The method of claim 18 further comprising receiving electrical signals from		
2	the photodetector at a processor.			

- 1 21. The method of claim 20 further comprises calibrating the photodetector by the
- 2 processor for receiving the first split output.

1	22.	A photonic package comprising:
2		a housing;
3		a semiconductor light source disposed within the housing, the semiconductor
4	light s	ource having a first light beam output having data encoded thereon;
5		an optical isolator structure optically coupled to the semiconductor light
6	sourc	e and disposed inside the housing, the optical isolator structure having a beam
7	splitte	er cube (BSC), the BSC having a light beam splitting characteristic that
8	negat	ively impacts said encoding of said data in said first light beam within a
9	prede	etermined threshold; and
10		a photodetector disposed inside the housing to receive the first split output,
11	with t	he photodetector being adapted to determine properties of the first split output
12	notwi	thstanding said first split output being created in said limited impact manner.
1	23.	The photonic package of claim 22 further comprising
2		a lens, optically coupled to the semiconductor light source, the lens equipped
3	to col	limate the first light beam output,

- a second split output of said first light beam output created by the BSC and
 being provided to an optical fiber.
- 1 24. The photonic package of claim 22, wherein the semiconductor light source
 2 comprises a semiconductor laser.

- 1 25. The photonic package of claim 24, wherein the semiconductor laser
- 2 comprises a gallium arsenide based semiconductor laser.
- 1 26. The photonic package of claim 22, wherein the BSC comprises a
- 2 nonpolarizing dielectric BSC.
- 1 27. The photonic package of claim 26, wherein the BSC comprises a BSC having
- 2 a dielectric material to create the first split output.
- 1 28. The photonic package of claim 22, wherein the BSC comprises a polarizing
- 2 dielectric BSC.
- 1 29. The photonic package of claim 28, wherein the BSC comprises a BSC having
- 2 a dielectric material to create the first split output.
- 1 30. The photonic package of claim 22, wherein the BSC comprises a cleaved
- 2 light isolator element.
- 1 31. The photonic package of claim 30, wherein the light isolator element
- 2 comprises a bismuth garnet.

- 1 32. The photonic package of claim 22, wherein the predetermined limited
- 2 threshold comprises the first split output being of a percentage of the first light beam
- 3 output.
- 1 33. The photonic package of claim 32, wherein the percentage of the first light
- 2 beam output is a maximum of 2%.