then the feasible solution u^+ given by

$$u_{i}^{+} = \begin{cases} u_{i} - \theta^{j^{+}} \gamma_{i}^{j^{+}} & \text{if } i \in K \\ \theta^{j^{+}} & \text{if } i = j^{+} \\ 0 & \text{if } i \notin K \cup \{j^{+}\} \end{cases}$$

is a vertex of $\mathcal{P}(A,b)$. If we pick any index $k^- \in K$ such that $\theta^{j^+} = u_{k^-}/\gamma_{k^-}^{j^+}$, then $K^+ = (K - \{k^-\}) \cup \{j^+\}$ is a basis for u^+ . The vector A^{j^+} enters the new basis K^+ , and the vector A^{k^-} leaves the old basis K. This is a *pivoting step*. The objective function increases strictly. This is demonstrated by Example 46.2 with $K = \{3,4,5\}$, j=1, and k=4, Then $\gamma_{\{3,4,5\}}^1 = (-1,1,0)$, with $\gamma_4^1 = 1$. Since u = (0,0,1,3,2), $\theta^1 = \frac{u_4}{\gamma_4^1} = 3$, and the new optimal solutions becomes $u^+ = (3,0,1-3(-1),3-3(1),2-3(0)) = (3,0,4,0,2)$.

Case (B3).

There is some index $j \notin K$ such that $c_j - \sum_{k \in K} \gamma_k^j c_k > 0$, and for each of the indices $j \notin K$ satisfying the above property we have simultaneously

- (1) $c_j \sum_{k \in K} \gamma_k^j c_k > 0$, which means that the objective function can potentially be increased;
- (2) There is some $k \in K$ such that $\gamma_k^j > 0$, and $u_k = 0$, which implies that $\theta^j = 0$.

Consequently, the objective function does not change. In this case, u is a degenerate basic feasible solution.

We can associate to $u^+ = u$ a new basis K^+ as follows: Pick any index $j^+ \notin K$ such that

$$c_{j^+} - \sum_{k \in K} \gamma_k^{j^+} c_k > 0,$$

and any index $k^- \in K$ such that

$$\gamma_{k^-}^{j^+} > 0,$$

and let $K^+ = (K - \{k^-\}) \cup \{j^+\}$. As in Case (B2), The vector A^{j^+} enters the new basis K^+ , and the vector A^{k^-} leaves the old basis K. This is a *pivoting step*. However, the objective function *does not change* since $\theta^{j+} = 0$. This is demonstrated by Example 46.1 with $K = \{3, 4\}, j = 2$, and k = 3.

It is easy to prove that in Case (A) the basic feasible solution u is an optimal solution, and that in Case (B1) the linear program is unbounded. We already proved that in Case (B2) the vector u^+ and its basis K^+ constitutes a basic feasible solution, and the proof in Case (B3) is similar. For details, see Ciarlet [41] (Chapter 10).