Relevant Python modules: Pandas

AM

Pandas

- Created by Wes McKinney, a 'quant' for hedge-fund AQR.
- a library for processing tabular data, both numeric and time series.
- it provides data structures (series, dataframe) and methods for data analysis.

W. McKinney, Python for Data Analysis, 3/e. O'Reilly 2022.

```
pip install pandas
```

Available by default with Anaconda.

Data Structures - Series

A one-dimensional object containing values and associated labels, called Index.

Unless we assign indices, Pandas will simply enumerate the items.

```
import numpy as np
import pandas as pd
```

```
# a simple series
s1 = pd.Series([10, 20, 30, 40])
s1
```

- 0 10
- 1 20
- 2 30
- 3 40

dtype: int64

```
# Assign explicit indices to our data
s2 = pd.Series([10, 20, 30, 40], index = ['a', 'b', 'c', 'd'])
s2
     10
a
     20
     30
     40
dtype: int64
# Alternatively, convert a Py. dictionary into a DataFrame:
# keys correspond to indices.
d1 = {'a':10, 'b':20, 'c':30, 'd':40}
s3 = pd.Series(d1)
s3
     10
     20
     30
     40
dtype: int64
```

Data Structures - Series

Use the index to select one or more specific values.

```
# Get the data on position 'a' of s3
s3['a']

10
# Get the data indexed 'a' and 'c' of s3
s3[['a', 'c']]
```

```
10
a
     30
dtype: int64
Filter elements
# Get the data smaller than 25
s3[s3<25]
     10
a
     20
dtype: int64
apply element-wise mathematical operations... \,
# Square every element of s3
s3**2
      100
a
      400
      900
     1600
dtype: int64
or a combination of both:
# Square every element of s3 smaller than 25
s3[s3<25]**2
     100
     400
```

dtype: int64

Data Structures - DataFrame

DataFrames are 2D structures.

Values are labelled by their index and column location.

	Integers
$\overline{\mathbf{a}}$	10
b	20
c	30
d	40

```
# Implicitly add a column.
new_df['Floats'] = (1.5, 2.5, 3.5, 4.5)
new_df
```

	Integers	Floats
a	10	1.5
b	20	2.5
\mathbf{c}	30	3.5
d	40	4.5

Data Structures: DataFrame - loc

Select data according to their location label.

```
# here loc slices data using index name.
new_df.loc['c']
```

```
Integers
            30.0
Floats
             3.5
Name: c, dtype: float64
# here loc slices data using column name.
new_df.loc[:, 'Integers'] #or new_df['numbers']
     10
a
     20
b
     30
     40
Name: Integers, dtype: int64
# here we use both index and column name.
new_df.loc['c', 'Integers']
30
Data Structures: DataFrame - iloc
Select a specific slice of data according to its position.
# here loc slices data using index number.
new_df.iloc[2]
Integers
            30.0
             3.5
Floats
Name: c, dtype: float64
# here loc slices data using column number.
new_df.iloc[:, 0]
     10
a
     20
b
     30
     40
d
```

Name: Integers, dtype: int64

```
# here we use both index and column number.
new_df.iloc[2, 0]
```

30

Data Structures: DataFrame - filters

Complex selection is achieved applying Boolean filters. Multiple conditions can be combined in one statement.

new_df[new_df['Integers']>10]

	Integers	Floats
b	20	2.5
\mathbf{c}	30	3.5
d	40	4.5

```
\mbox{\tt\#} here we apply conditions to both columns.
```

```
new_df[(new_df.Integers>10) & (new_df.Floats>2.5)]
```

	Integers	Floats
$^{\rm c}$	30	3.5
d	40	4.5

Data Structures: DataFrame - Axis

DataFrames operate on 2 dimensions.

Axis = 0 invokes functions across rows; it's the default behaviour when the axis is not specified.

new_df.sum()

Integers 100.0 Floats 12.0 dtype: float64

Axis = 1 invokes functions across columns.

new_df.sum(axis=1)

a 11.5 b 22.5 c 33.5 d 44.5 dtype: float64

Data Structures: DataFrame - Axis

We can mix element-wise operations with functions applied to a given axis

Example: Create a column with the sum of squares of each row.

```
# Just one line of code!
new_df['Sumsq'] = (new_df**2).sum(axis=1)
new_df
```

	Integers	Floats	Sumsq
a	10	1.5	102.25
b	20	2.5	406.25
\mathbf{c}	30	3.5	912.25
d	40	4.5	1620.25

Importing data

Read a datafile and turn it into a DataFrame. Several arguments are available to specify the behavior of the process:

index_col sets the column of the csv file to be used as index of the DataFrame
sep specifies the separator in the source file

parse_dates sets the column to be converted as datetime objects

Biostats data - info()

The info() method outputs top-down information on the DataFrame

```
FILE = 'data/biostats.csv'

df_bio = pd.read_csv(FILE)

df_bio.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18 entries, 0 to 17
Data columns (total 5 columns):
```

		· · · · · · · · · · · · · · · · · · ·	
#	Column	Non-Null Count	Dtype
0	Name	18 non-null	object
1	Sex	18 non-null	object
2	Age	18 non-null	int64
3	<pre>Height(in)</pre>	18 non-null	int64
4	Weight(lbs)	18 non-null	int64

dtypes: int64(3), object(2)
memory usage: 852.0+ bytes

Biostats data - head() and tail()

These convenient methods visualise respectively the first/last n rows (default = 5) in the DataFrame.

df_bio.head()

	Name	Sex	Age	Height(in)	Weight(lbs)
0	Alex	M	41	74	170
1	Bert	${\bf M}$	42	68	166
2	Dave	${\bf M}$	32	70	155
3	Dave	M	39	72	167
4	Elly	\mathbf{F}	30	66	124

df_bio.tail()

	Name	Sex	Age	Height(in)	Weight(lbs)
13	Neil	Μ	36	75	160
14	Omar	M	38	70	145
15	Page	\mathbf{F}	31	67	135
16	Luke	\mathbf{M}	29	71	176
17	Ruth	\mathbf{F}	28	65	131

Biostats data - index column

Selecting the index column affects the structure of the DataFrame and thus information retrieval.

CAUTION: the index does not have to be unique. Multiple rows could have the same index name.

```
# here we set the Name column as the index
df_bio2 = pd.read_csv(FILE, index_col=0)
df_bio2.head()
```

	Sex	Age	Height(in)	Weight(lbs)
Name				
Alex	Μ	41	74	170
Bert	M	42	68	166
Dave	M	32	70	155
Dave	M	39	72	167
Elly	\mathbf{F}	30	66	124

 ${\tt \#It}$ is now possible to use elements of the Name column to select an entire row ${\tt df_bio2.loc['Bert']}$

Sex M Age 42 Height(in) 68 Weight(lbs) 166

Name: Bert, dtype: object

Descriptive statistics - describe()

Compute the descriptive statistics of quantitative variables

```
# Descriptive stats
df_bio.describe()
```

	Age	Height(in)	Weight(lbs)
count	18.000000	18.000000	18.000000
mean	34.666667	69.055556	146.722222
std	7.577055	3.522570	22.540958
\min	23.000000	62.000000	98.000000
25%	30.000000	66.250000	132.000000
50%	32.500000	69.500000	150.000000
75%	38.750000	71.750000	165.250000
max	53.000000	75.000000	176.000000

```
# Descriptive statistics for the Age variable
df_bio['Age'].describe()
```

```
count
         18.000000
         34.666667
mean
          7.577055
std
min
         23.000000
25%
         30.000000
50%
         32.500000
75%
         38.750000
         53.000000
max
Name: Age, dtype: float64
```

Descriptive statistics - categorcal variables

The value_counts() method computes the unique values and how many times they occur.

```
# Descriptive statistics for the entire DataFrame
df_bio.Sex.value_counts()
```

```
Sex
M 11
F 7
Name: count, dtype: int64
```