

CONTENTS

Characteristics of Forest Soils of the Northwestern United States. W. L. POWERS....	1
The Distribution of Potassium in Deciduous Orchard Soils in California. OMUND LILLELAND.....	11
Determination of the Rate of Decomposition of Organic Matter Under Field Conditions. M. B. STURGIS.....	19
The Soil as a Habitat for Growth of Green Algae. C. E. SKINNER.....	25
Notes on the Association of Microorganisms and Roots. CHARLES THOM AND HARRY HUMFELD.....	29
Influence of Continuous Aeration upon the Growth of Tomato Plants in Solution Cul- tures. H. E. CLARK AND J. W. SHIVE.....	37
Contribution to Our Knowledge of the Chemical Nature and Origin of Humus: I. On the Synthesis of the "Humus Nucleus." SELMAN A. WAKSMAN AND K. R. N. IYER....	43
Contribution to Our Knowledge of the Chemical Nature and Origin of Humus: II. The Influence of "Synthesized" Humus Compounds and of "Natural Humus" Upon Soil Microbiological Processes. SELMAN A. WAKSMAN AND K. R. N. IYER.....	71
Book Review.....	81
The Applicability of the Azotobacter (Plaque) Method for Determining the Fertility Requirements of Arizona Soils. ROBERT A. GREENE.....	83
The Microbiological Population of Peat. SELMAN A. WAKSMAN AND E. R. PURVIS....	95
A New Manometric Apparatus for the Mechanical Analysis of Soils and Other Disperse Systems. AMAR NATH PURI.....	115
Lysimeter Studies: I. Moisture Percolation Through the Soil Profile. J. S. JOFFE....	123
Soluble Aluminum Studies: I. The Concentration of Aluminum in the Displaced Soil Solution of Naturally Acid Soils. W. H. PIERRE, G. GORDON POHLMAN, AND T. C. MCILVAINE.....	145
Mull and Duff as Biotic Equilibria. L. G. ROMELL.....	161
Comparative Rate of Decomposition of Composted Manure and Spent Mushroom Soil. SELMAN A. WAKSMAN AND M. C. ALLEN.....	189
Further Studies on the Value of Various Types of Organic Matter for Improving the Physical Condition of Soils for Plant Growth. H. B. SPRAGUE AND J. F. MARRERO.....	197
The Laws of Soil Colloidal Behavior: IX. Amphoteric Reactions and Isoelectric Weathering. SANTE MATTISON.....	209
Some Important Soil Profiles of Southern Puerto Rico. JAMES THORP.....	241
A Method for Determining Combined Water and Organic Matter in Soils. GEORGE BOUYOCOS.....	259
On the Determination of the Ion Exchange Capacity of Soils. J. S. CSIKY.....	269
Some Transformations of Urea and Their Resultant Effects on the Soil. H. W. JONES.....	281
Boron Requirements of Cotton. FRANK M. EATON.....	301
Soluble Aluminum Studies: II. Minimum Concentrations of Aluminum Found to be Toxic to Corn, Sorghum, and Barley in Culture Solutions. W. S. LIGON AND W. H. PIERRE.....	307
The Influence of Moisture upon the Rapidity of Decomposition of Lowmoor Peat. SELMAN A. WAKSMAN AND E. R. PURVIS.....	323

The Influence of Temperature on the Nitrate Content of Soil in the Presence of Decomposing Cellulose. JAMES E. FULLER AND LINUS H. JONES.....	337
Causes of Low Nitrification Capacity of Certain Soils. G. S. FRAPS AND A. J. STERGES.....	353
The Microflora of the Ash of Katmai Volcano with Especial Reference to Nitrogen Fixing Bacteria. NATHAN R. SMITH AND ROBERT F. GRIGGS.....	365
Nitrogen-Fixers of Leached Alkali Soils. J. E. GREAVES AND J. DUDLEY GREAVES.....	375
Effect of Exchangeable Base and Soil Treatments on Phosphorus Solubility. ALFRED T. PERKINS, H. H. KING, AND E. J. BENNE.....	385
A Simple and Rapid Method for Measuring the Stickiness of Soils. GEORGE BOYOUCOS.....	393
Professor K. K. Gedroiz.....	403
Academician Konstantin Kaetonovitch Gedroiz.....	405
The Determination of Effective Strains of Rhizobium Trifolii Dangeard, the Root Nodule Bacteria of Clover, Under Bacteriologically Controlled Conditions. DOROTHEA L. KEENEY.....	417
Preliminary Studies in the Use of Nitrate of Soda on Certain Indiana Soils. FRANK MOSER.....	445
The Laws of Soil Colloidal Behavior: X. Exchange Neutrality and Combining Capacity. SANTE MATTSON AND JACKSON B. HESTER.....	459

ILLUSTRATIONS

PLATES

INFLUENCE OF CONTINUOUS AERATION UPON THE GROWTH OF TOMATO PLANTS IN SOLUTION CULTURES

Plate 1. Influence of Aeration upon Root and Top Growth of Tomatoes in Solution Cultures.....	41
Fig. 1. Typical cultures from series B.....	41
2. Typical cultures from series C.....	41

THE MICROBIOLOGICAL POPULATION OF PEAT

Plate 1. Growth of Actinomycetes in Lowmoor Peat Partially Drained.....	111
2. Development on Plates of Bacteria from Different Depths of a Highmoor Peat Profile.....	113

LYSIMETER STUDIES: I. MOISTURE PERCOLATION THROUGH THE SOIL PROFILE

Plate 1. Views of the Lysimeter Pit.....	143
Fig. 1. A general view of the location of the lysimeter pit.....	143
2. Interior view of end of pit where entrance is located.....	143
3. Interior view of end opposite to entrance of pit.....	143

SOME IMPORTANT SOIL PROFILES OF SOUTHERN PUERTO RICO

Plate 1. Soils of Puerto Rico.....	255
Fig. 1. Note the coarsely granular surface soil, the exceedingly heavy and cloddy upper subsoil, and the white silty and concretionary lime accumulations.....	255
2. A chernozem-clay pan soil just west of Coamo Springs.....	255
3. Hard limestone hill southwest of Coamo Springs.....	255
Plate 2. Vegetation on Puerto Rico Soils.....	257
Fig. 1. Heavy sugar cane yield on recent alluvial soils near Hacienda Cortada.....	257
2. A study of halophytic vegetation near the south coast of Puerto Rico.	257

A METHOD FOR DETERMINING COMBINED WATER AND ORGANIC MATTER IN SOILS

Plate 1. Bomb Used for Determining Combined Water by Distillation.....	267
--	-----

SOLUBLE ALUMINUM STUDIES: II. MINIMUM CONCENTRATIONS OF ALUMINUM FOUND TO BE TOXIC TO CORN, SORGHUM, AND BARLEY IN CULTURE SOLUTIONS

Plate 1. Effect of Various Concentrations of Aluminum on Growth of Corn and Sorghum.....	319
Fig. 1. Effect on corn.....	319
2. Effect on sorghum.....	319
Plate 2. Effect of Various Concentrations of Aluminum on Growth of Barley.....	321

THE INFLUENCE OF TEMPERATURE ON THE NITRATE CONTENT OF SOIL IN THE PRESENCE OF
DECOMPOSING CELLULOSE

Plate 1. Constant Soil Temperature Apparatus.....	351
Fig. 1. Complete apparatus.....	351
2. A unit of the apparatus.....	351

NITROGEN-FIXERS OF LEACHED ALKALI SOILS

Plate 1. Microorganisms from Leached Alkali Soil.....	383
Fig. 1. <i>Bacterium</i> 16b.....	383
2. <i>Micrococcus</i> 17b.....	383
3. <i>Bacillus</i> 6b.....	383
4. <i>Bacterium</i> 119b.....	383
5. <i>Micrococcus</i> 115a.....	383
6. <i>Achromobacter</i> 11a.....	383
7. <i>Micrococcus</i> 114d.....	383
8. <i>Bacterium</i> 202.....	383
9. <i>Actinomyces</i> 227a.....	383
10. <i>Bacterium</i> 16e.....	383
11. <i>Micrococcus</i> 4.....	383

A SIMPLE AND RAPID METHOD FOR MEASURING THE STICKINESS OF SOILS

Plate 1. Spring Balance and Disk for Measuring the Stickiness of Soils.....	401
---	-----

ACADEMICIAN KONSTANTIN KAETONOVITCH GEDROIZ, 1872-1932

Plate 1. Professor K. K. Gedroiz.....	415
Fig. 1. Professor Gedroiz, just preceding the World War.....	415
2. Professor Gedroiz lecturing at the Nossov Experiment Station on the value of vegetation experiments.....	415

THE DETERMINATION OF EFFECTIVE STRAINS OF *Rhizobium trifolii* DANGEARD, THE ROOT
NODULE BACTERIA OF CLOVER, UNDER BACTERIOLOGICALLY CONTROLLED CONDITIONS

Plate 1. Cultures of <i>Rhizobium trifolii</i>	439
Fig. 1. Test tube cultures showing nodule production with the cultures IX, I, and VI, all locally isolated strains.....	439
2. General set-up of cultures in the greenhouse.....	439
3. An individual culture.....	439
Plate 2. Contrasting Strains as to Growth of Cultures in Set X.....	441
Fig. 1. Comparison of strains V and 9.....	441
2. Comparison of strains VI and 7.....	441
3. A very good culture, VI, compared with a check, A.....	441
4. A very poor culture, V, compared with a check, B.....	441
Plate 3. Field Plots of Red Clover.....	443
Fig. 1. Plot inoculated with culture II. Measuring stick is in inches.....	443
2. Plot inoculated with culture V.....	443
3. Plot inoculated with culture I.....	443
4. Uninoculated control.....	443

THE LAWS OF SOIL COLLOIDAL BEHAVIOR: X. EXCHANGE NEUTRALITY AND COMBINING
CAPACITY

Plate 2. The Lakewood Podzol Profile from Which the Samples Whose Neutralization Curves Shown in Figure 31 Were Taken.....	483
---	-----

TEXT-FIGURES

CHARACTERISTICS OF FOREST SOILS OF THE NORTHWESTERN UNITED STATES	
Fig. 1. Base Exchange Capacity of Two Forest Soil Profiles.....	3
2. Base Exchange Capacity of Peat and Clay Colloid Mixtures.....	8
CONTRIBUTION TO OUR KNOWLEDGE OF THE CHEMICAL NATURE AND ORIGIN OF HUMUS: I. ON THE SYNTHESIS OF THE "HUMUS NUCLEUS"	
Fig. 1. Influence of Acid-Lignin and Alkali-Lignin upon the Decomposition of Casein and Gliadin by Microorganisms in Sand Medium, as Shown by the Liberation of CO ₂	51
2. Course of Decomposition of Casein, Lignin, Soil Humus, and Ligno-Protein Complexes in Soil, as Measured by the Evolution of CO ₂	58
3. Schematic Representation of the Mechanism of Humus Formation in the Decom- position of Plant Residues in the Soil.....	65
CONTRIBUTION TO OUR KNOWLEDGE OF THE CHEMICAL NATURE AND ORIGIN OF HUMUS: II. THE INFLUENCE OF "SYNTHESIZED" HUMUS COMPOUNDS AND OF "NATURAL HUMUS" UPON SOIL MICROBIOLOGICAL PROCESSES	
Fig. 1. The Influence of Lignin, Ligno-Protein Complexes, and Soil "Humus" upon the Decomposition of Cellulose by Microorganisms in Sand Media, as Measured by Evolution of CO ₂	73
2. Influence of Lignin and Ligno-Proteins upon the Decomposition of Trichoderma Mycelium (T.M.) and Casein in Sand Medium, as Measured by the Evolu- tion of CO ₂	75
A NEW MANOMETRIC APPARATUS FOR THE MECHANICAL ANALYSIS OF SOILS AND OTHER DISPERSE SYSTEMS	
Fig. 1. Diagram of the Manometric Apparatus for the Mechanical Analysis of Soils....	117
LYSIMETER STUDIES: I. MOISTURE PERCOLATION THROUGH THE SOIL PROFILE	
Fig. 1. Diagrammatic Sketch of Lysimeters under Respective Horizons.....	124
COMPARATIVE RATE OF DECOMPOSITION OF COMPOSTED MANURE AND SPENT MUSHROOM SOIL	
Fig. 1. Rate of CO ₂ Evolution from 100-gm. Portions of Soil to Which Were Added 2-gm. Portions of Fresh and Composted Manure, Kept as Controls or in Which the Cultivated Mushroom <i>Agaricus campestris</i> Has Grown for 216 Days.....	191
THE LAWS OF SOIL COLLOIDAL BEHAVIOR: IX. AMPHOTERIC REACTIONS AND ISOELECTRIC WEATHERING	
Fig. 23. Theoretical Neutralization Curves of an Ampholyte.....	216
24. Theoretical Neutralization Curves of an Ampholyte.....	217
25. Theoretical Neutralization Curves of an Ampholyte.....	218
26. Theoretical Neutralization Curves of a Tri-Basic Acid.....	221
27. The Number of Mols of Silica Isoelectrically Precipitated by 1 Mol Aluminum and Ferric Oxide at Various pH.....	228
SOME IMPORTANT SOIL PROFILES OF SOUTHERN PUERTO RICO	
Fig. 1. Map of Porto Rico.....	242
2. Physiography of Ponce Area.....	242
3. Rainfall of Porto Rico in Inches.....	243
4. Ideal Cross Section in Ponce Area Near Juana Diaz Showing Relationship of Soils to Climatic and Geological Factors.....	243

ON THE DETERMINATION OF THE ION EXCHANGE CAPACITY OF SOILS

Fig. 1. Relationship between H ⁺ Exchanged 1:2.5 Soil/Reagent Ratio and the <i>q</i> Value (Experimental Soils).....	273
2. Relationship between H ⁺ Exchanged at Different Material/Reagent Ratios and the <i>q</i> Value (Soils and Other Colloids).....	274

SOME TRANSFORMATIONS OF UREA AND THEIR RESULTANT EFFECTS ON THE SOIL

Figs. 1, 2, and 3. The Effect of Time and Moisture on the Conversion of Urea to Ammonia Nitrogen and Nitrate Nitrogen, and the Subsequent Effect of the Accumulation of These Products on the Hydrogen-Ion Concentration of Soil Cultures.....	286
Figs. 4, 5, 6, and 7. The Effect of Temperature and Moisture on the Conversion of Urea to Nitrates and the Resultant Effect on the pH of Soil Cultures.....	290
Figs. 8, 9, 10, and 11. The Effect of Temperature and Moisture on the Conversion of Urea to Nitrates and the Resultant Effect on the pH of Soil Cultures.....	290
Fig. 12. Comparison of Variable Temperature of Greenhouse and Constant Temperature of 21°C. on the Rate of Conversion of Urea Nitrogen to Nitrate Nitrogen.....	292
13. Effect of Leaching the Soluble Salts from the Soil on Its pH Value as Correlated with the Ammonia and Nitrate Nitrogen Content of the Soil.....	293

THE INFLUENCE OF MOISTURE UPON THE RAPIDITY OF DECOMPOSITION OF LOWMOOR PEAT

Fig. 1. Influence of Moisture upon the Evolution of CO ₂ in the Decomposition of Peat Taken from the Surface 30 Cm. Layer of a Lowmoor Florida Peat, on the Basis of 100 Gm. of Dry Peat.....	330
2. Influence of Moisture upon the Evolution of CO ₂ in the Decomposition of Peat Taken from the 30–60 Cm. Layer of a Lowmoor Florida Peat, on the Basis of 100 Gm. of Dry Peat.....	330
3. Influence of Moisture upon the Evolution of CO ₂ in the Decomposition of Peat Taken from the 60–75 Cm. Layer of a Lowmoor Florida Peat, on the Basis of 100 Gm. of Dry Peat.....	331
4. Comparative Rate of Evolution of CO ₂ in the Decomposition of a Lowmoor Florida Peat, Taken from Three Different Depths, on the Basis of 100 Gm. of Dry Peat.....	331
5. Influence of Moisture upon the Decomposition of Peat, Taken from the Surface 30 Cm. of the Bog, During the Early Stages of Decomposition, as Shown by Evolution of CO ₂ and Liberation of Nitrogen in an Available Form.....	332

THE INFLUENCE OF TEMPERATURE ON THE NITRATE CONTENT OF SOIL IN THE PRESENCE OF DECOMPOSING CELLULOSE

Fig. 1. Nitrate at Different Temperatures in a Nitrogen-poor Soil without and with Added Cellulose.....	340
2. Nitrate at Different Temperatures in a Nitrogen-poor Soil without and with Added Cellulose, and Treated with CaCO ₃ or with CaSO ₄	341
3. Nitrate at Different Temperatures in a Compost Soil without and with Added Cellulose.....	343
4. Nitrate at Different Temperatures in a Soil of Medium Nitrogen Content, without and with Added Cellulose, and Treated with CaCO ₃	344

CAUSES OF LOW NITRIFICATION CAPACITY OF CERTAIN SOILS

Fig. 1. Relation of the Nitric Nitrogen Produced in Different Sterilized Soils to the Quantity of the Same Inoculant.....	358
2. Relation of the Nitric Nitrogen Produced to the Quantity of Nitrifying Cultures from Different Soils Added to the Same Sterilized Soil.....	358

THE DETERMINATION OF EFFECTIVE STRAINS OF *Rhizobium Trifolii* DANGEARD, THE ROOT NODULE BACTERIA OF CLOVER, UNDER BACTERIOLOGICALLY CONTROLLED CONDITIONS

Fig. 1. Arrangement of Apparatus for Distillation.....	424
2. Apparatus for Bacteriologically Controlled Cultures.....	425

THE LAWS OF SOIL COLLOIDAL BEHAVIOR: X. EXCHANGE NEUTRALITY AND COMBINING CAPACITY

Fig. 28. The pH of Exchange Neutrality and the Capacity of Three Different Electrodialyzed Soils to Bind Acid and Base.....	466
29. The pH of Exchange Neutrality and Combining Capacity of the Electrodialyzed Sassafras Soil and Colloid.....	467
30. The Neutralization Curves of the Three Electrodialyzed Soils in Figure 28 When Taken in Quantities of Equivalent Base-binding Power at pH 7.....	469
31. The pH of Exchange Neutrality and the Capacity to Bind Acid and Base of Electrodialyzed Samples from the Different Horizons of a Lakewood Podzol Profile.....	471
32. The pH of Exchange Neutrality and the Combining Capacity of Electrodialyzed Aluminum Hydroxide, Silica Gel and Three Aluminum "Silicates".....	473
33. The pH of Exchange Neutrality and the Combining Capacity of Electrodialyzed Ferric Hydroxide and Two Ferric "Silicates".....	473
34. The pH of Exchange Neutrality and the Combining Capacity of Two Electrodialyzed Aluminum "Phosphates" and of Al(OH) ₃	475
35. The pH of Exchange Neutrality and the Combining Capacity of Three Electrodialyzed Ferric "Phosphates" and of Fe(OH) ₃	475
36. The pH of Exchange Neutrality and the Combining Capacity of Electrodialyzed Aluminum and Ferric "Humates" and of "Humic Acid".....	477
37. The Neutralization Curves of Albumin, of "Humic Acid," and of Albumin "Humate".....	478