MA 361 HOMEWORK-1

06.08.2024

Instruction: The homework is due on 11:30 am, 13.08.2024. You can either submit a hard copy in the beginning of the class or send a soft copy to sudeshnab@iisc.ac.in. Only submit the blue coloured problems for grading.

Problem 1. Let X be an arbitrary set. Let $\mathcal{F} := \{A \subseteq X : A \text{ is countable or } A^c \text{ is countable } \}$. Prove that \mathcal{F} is a sigma-algebra. Let S be the collection of all singletons in X. Prove that $\sigma(S) = \mathcal{F}$.

Problem 2. On [0,1], let \mathcal{A} be the algebra generated by finite unions of left-open, right-closed intervals and let \mathcal{B} be the Borel sigma-algebra. Define $\mu: \mathcal{A} \to [0,1]$ by $\mu(A) = 1$ if $A \supseteq (0,\varepsilon)$ for some $\varepsilon > 0$ and $\mu(A) = 0$ otherwise.

- (1) Show that μ is a finitely additive measure on \mathcal{A} .
- (2) Show that μ can not be extended to a measure on \mathcal{B} .
- (3) Why does this not contradict the Carathèodory extension theorem?

Problem 3. Let \mathcal{F} be a σ -algebra of subsets of Ω .

- (1) Show that \mathcal{F} is closed under countable intersections $(\bigcap_n A_n)$, under set differences $(A \setminus B)$, under symmetric differences $(A \Delta B)$.
- (2) If A_n is a countable sequence of subsets of Ω , the set $\limsup A_n$ (respectively $\liminf A_n$) is defined as the set of all $\omega \in \Omega$ that belongs to infinitely many (respectively, all but finitely many) of the sets A_n .
 - If $A_n \in \mathcal{F}$ for all n, show that $\limsup A_n \in \mathcal{F}$ and $\liminf A_n \in \mathcal{F}$. [Hint: First express $\limsup A_n$ and $\liminf A_n$ in terms of A_n s and basic set operations].
- (3) If $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$, what are $\limsup A_n$ and $\liminf A_n$?

Problem 4. Let (Ω, \mathcal{F}) be a set with a σ -algebra.

- (1) Suppose **P** is a probability measure on \mathcal{F} . If $A_n \in \mathcal{F}$ and A_n increase to A (respectively, decrease to A), show that $\mathbf{P}(A_n)$ increases to (respectively, decreases to) $\mathbf{P}(A)$.
- (2) Suppose $\mathbf{P}: \mathcal{F} \to [0,1]$ is a function such that (a) $\mathbf{P}(\Omega) = 1$, (b) \mathbf{P} is finitely additive, (c) if $A_n, A \in \mathcal{F}$ and A_n s increase to A, then $\mathbf{P}(A_n) \uparrow \mathbf{P}(A)$. Then, show that \mathbf{P} is a probability measure on \mathcal{F} .

Problem 5. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Let $\mathcal{G} = \{A \in \mathcal{F} : \mathbf{P}(A) = 0 \text{ or } 1\}$. Show that \mathcal{G} is a σ -algebra.

Problem 6. Let \mathcal{F} be a sigma-algebra on \mathbb{N} that is strictly smaller than the power set. Show that there exist $m \neq n$ such that elements of \mathcal{F} do not separate m and n (i.e., the following holds: any $A \in \mathcal{F}$ either contains both m, n or neither). Is the same conclusion valid if \mathbb{N} is replaced by any set Ω ?

Problem 7. Let X be an arbitrary set.

- (1) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set in S either contains a and b both, or contains neither. Let $\mathcal{F} = \sigma(S)$. Show that any set in \mathcal{F} has the same property (either contains both a and b or contains neither).
- (2) Let $S = \{(a, b] \cup [-b, -a) : a < b \text{ are real numbers} \}$. Show that $\sigma(S)$ is strictly smaller than the Borel σ -algebra of \mathbb{R} .

Problem 8. Show that each of the following collection of subsets of \mathbb{R} generate the same sigma-algebra (which we call the Borel sigma-algebra).

- (1) $\{[a,b]: a \le b \text{ and } a,b \in \mathbf{Q}\}.$
- (2) The collection of all compact sets.

Problem 9. Let Ω be an infinite set and let $\mathcal{A} = \{A \subseteq \Omega : A \text{ is finite or } A^c \text{ is finite } \}$. Define $\mu : \mathcal{A} \to \mathbb{R}_+$ by $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ if A^c is finite.

- (1) Show that \mathcal{A} is an algebra and that μ is finitely additive on \mathcal{A} .
- (2) Show that if Ω is countable μ does not extend to a measure on $\mathcal{F} = \sigma(\mathcal{A})$.
- (3) Under what conditions does μ extend to a probability measure on \mathcal{F} ?

Problem 10. On $\mathbb{N} = \{1, 2, ...\}$, let A_p denote the subset of numbers divisible by p. Describe $\sigma(\{A_p : p \text{ is prime}\})$ as explicitly as possible.