Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics

Kamil Korzekwa

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Poland

Outline

I. Overview

II. Background

- 1. Quantum hypothesis testing
- 2. Quantum dichotomies
- 3. Quantum thermodynamics
- 4. Formal statement of the problem

III. Results

- 1. Optimal transformation rates
- 2. Optimal thermodynamic protocols
- 3. Resource resonance

IV. Outlook

Patryk Lipka-Bartosik University of Geneva

Christopher Chubb $ETH \ Zurich$

 $\begin{array}{c} \text{Marco Tomamichel} \\ \textit{National University of Singapore} \end{array}$

Joe Renes ETH Zurich

Overview

Problem: thermodynamic transformations between non-equilibrium states

- Coherent: superpositions of energy eigenstates
- Asymptotic: number of systems $n \to \infty$

Problem: Quantum hypothesis testing

Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics

Background

Quantum hypothesis testing

		It was	
		ρ	σ
You guessed	ρ	Success $p_{\rm I} = {\rm Tr}(\Pi \rho)$	Type II error $\epsilon_{\rm II} = {\rm Tr}(\Pi \sigma)$
	σ	Type I error $\epsilon_{\rm I} = 1 - {\rm Tr}(\Pi \rho)$	Success $p_{\rm II} = 1 - \text{Tr}(\Pi \sigma)$

Optimal type-II error given type-I error

$$\beta_x(\rho \| \sigma) := \min_{\Pi} \{ \epsilon_{\Pi} \mid \epsilon_{\Pi} = x \}$$

Quantum dichotomies

Quantum dichotomy: (ρ, σ)

Blackwell order: $(\rho_1, \sigma_1) \succ (\rho_2, \sigma_2) \iff \exists \mathcal{E} : \mathcal{E}(\rho_1) = \rho_2 \text{ and } \mathcal{E}(\sigma_1) = \sigma_2$

Approximate order: $(\rho_1, \sigma_1) \succ_{(\epsilon_{\rho}, \epsilon_{\sigma})} (\rho_2, \sigma_2) \iff \exists \mathcal{E} : \delta(\mathcal{E}(\rho_1), \rho_2) \leq \epsilon_{\rho} \text{ and } \delta(\mathcal{E}(\sigma_1), \sigma_2) \leq \epsilon_{\sigma}$

Relation between dichotomies and hypothesis testing

$$[\rho_{1}, \sigma_{1}] = [\rho_{2}, \sigma_{2}] = 0$$

$$[\rho_{1}, \sigma_{1}] \neq 0, \quad [\rho_{2}, \sigma_{2}] = 0$$

$$\begin{cases} \forall \beta_{x}(\rho_{1} \| \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \\ \downarrow \\ (\rho_{1}, \sigma_{1}) \succ_{(\epsilon_{\rho}, \epsilon_{\sigma})} (\rho_{2}, \sigma_{2}) \end{cases}$$

$$\begin{cases} \forall \beta_{x}(\rho_{1} \| \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \\ \uparrow \\ (\rho_{1}, \sigma_{1}) \succ_{(\epsilon_{\rho}, \epsilon_{\sigma})} (\rho_{2}, \sigma_{2}) \end{cases}$$

$$\begin{cases} \beta_{x}(\rho \| \sigma) = \beta_{x}(\mathcal{D}_{\sigma}(\rho) \| \sigma) \\ \mathcal{D}_{\sigma} : \text{ pinching w.r.t. } \sigma \end{cases}$$

$$\begin{cases} \forall \beta_{x}(\rho_{1} \| \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \\ \forall \beta_{x}(\rho_{1} \| \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

*J. Math. Phys. **57**, 122202 (2016)

Quantum thermodynamics

Thermal operations framework*

$$\rho_1 \xrightarrow{\text{TO}} \rho_2 \iff \rho_2 = \text{Tr}_{B'} \left(U \left(\rho_1 \otimes \gamma_B \right) U^{\dagger} \right)$$

$$\text{with } [U, H \otimes \mathbb{I}_B + \mathbb{I} \otimes H_B] = 0$$

Approximate thermal operations**

$$\rho_1 \xrightarrow[\text{TO}]{\epsilon} \rho_2 \iff \rho_1 \xrightarrow[\text{TO}]{\epsilon} \widetilde{\rho}_2 \text{ and } \delta(\widetilde{\rho}_2, \rho_2) \leq \epsilon$$

Thermal state of the system: $\gamma \propto \exp(-\beta H)$

*Nat. Commun. **4**, 2059 (2013) **Quantum **2**, 108 (2018)

Quantum thermodynamics

Relation between thermodynamic transformations, dichotomies, and hypothesis testing

*Int. J. Theor. Phys. 39, 2717 (2000)

Formal statement of the problem

Optimal transformation rate $R_n^*(\epsilon_n)$ is the largest rate R_n such that:

$$(\rho_1^{\otimes n}, \sigma_1^{\otimes n}) \succeq_{(\epsilon_n, 0)} (\rho_2^{\otimes R_n n}, \sigma_2^{\otimes R_n n}).$$

Technical goal: Find the asymptotic scaling of $R_n^*(\epsilon_n)$ for $[\rho_2, \sigma_2] = 0$ in various error regimes.

As a result, we will also want to get optimal transformation rates for:

Thermodynamics

(choose
$$\sigma_1 = \sigma_2 = \gamma$$
)

$$\rho_1^{\otimes n} \xrightarrow[\text{TO}]{\epsilon} \rho_2^{R_n n}$$

Entanglement

(choose
$$\rho_i = \text{Tr}_B(\left|\psi_i^{AB}\right\rangle\!\!\left\langle\psi_i^{AB}\right|)$$
 and $\sigma_1 = \sigma_2 \propto \mathbb{I}$)

 $\left|\psi_1^{AB}\right\rangle^{\otimes n} \xrightarrow[\text{LOCC}]{\epsilon} \left|\psi_2^{AB}\right\rangle^{R_n n}$

$$\left|\psi_1^{AB}\right\rangle^{\otimes n} \xrightarrow{\epsilon} \left|\psi_2^{AB}\right\rangle^{R_n n}$$

Results

Optimal transformation rates

Idea

Prove that up to second order asymptotics:

$$\widetilde{\beta}_x(\rho^{\otimes n} \| \sigma^{\otimes n}) \approx \beta_x(\rho^{\otimes n} \| \sigma^{\otimes n})$$

Regime	$\mathbf{Error}\epsilon_n$	Rate R_n	Tight?
Zero-error	Zero	Theorem 7	No
$Large_{<}$	Approaching 0 exponentially	Theorem 5	No
$Moderate_{<}$	Approaching 0 subexponentially	Theorem 4	Yes
$Small_{\leq}$	Constant, < 0.5	Theorem 3	Yes

Regime	$\mathbf{Error}\epsilon_n$	Rate R_n	Tight?
Small>	Constant, > 0.5	Theorem 3	Yes
$Moderate_{>}$	Approaching 1 subexponentially	Theorem 4	Yes
Large>	Approaching 1 exponentialy	Theorem 6	Yes
Extreme	Approaching 1 superexponentially	Theorem 8	Yes

*arXiv:2303.05524

Optimal transformation rates: small deviations

Optimal thermodynamic transformation rate from coherent to incoherent states

$$R_n^*(\epsilon) \simeq \frac{D(\rho_1 \| \gamma) + \sqrt{V(\rho_1 \| \gamma)/n} \cdot S_{1/\xi}^{-1}(\epsilon)}{D(\rho_2 \| \gamma)}$$

Nonequilibrium free energy: $D(\rho || \gamma) := (\text{Tr} \rho (\log \rho - \log \gamma))$

Free energy fluctuations: $V(\rho \| \gamma) := \text{Tr}\left(\rho \left(\log \rho - \log \gamma\right)^2\right) - D(\rho \| \gamma)^2$

Sesquinormal distribution*: $S_{\nu}^{-1}(\epsilon) = \inf_{x \in (\epsilon, 1)} \sqrt{\nu} \Phi^{-1}(x) - \Phi^{-1}(x - \epsilon)$

Reversibility parameter: $\xi := \frac{V(\rho_1 \| \gamma)}{D(\rho_1 \| \gamma)} / \frac{V(\rho_2 \| \gamma)}{D(\rho_2 \| \gamma)}$

*arXiv:2303.05524

Optimal thermodynamic protocols

Work extraction

The amount of ε -deterministic work extractable from $\rho^{\otimes n}$ is the maximal value w such that:

$$\rho^{\otimes n} \otimes |0\rangle\langle 0|_W \xrightarrow[\text{TO}]{\epsilon} |1\rangle\langle 1|_W$$

Our results yield:

$$\frac{\beta w}{n} \simeq D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon)$$

Information erasure

The amount of work needed to reset $\rho^{\otimes n}$ is the minimal value of w such that:

$$\rho^{\otimes n} \otimes |0\rangle\langle 0|_W \xrightarrow[\text{TO}]{\epsilon} |0\rangle\langle 0|^{\otimes n} \otimes |1\rangle\langle 1|_W$$

Our results yield:

$$\frac{\beta|w|}{n} \simeq S(\rho) - \sqrt{\frac{V(\rho||\mathbb{I})}{n}} \Phi^{-1}(\epsilon)$$

Quantum dichotomies & coherent thermodynamics

Resource resonance

$$R_n^*(\epsilon) \simeq \frac{D(\rho_1 \| \gamma) + \sqrt{V(\rho_1 \| \gamma)/n} \cdot S_{1/\xi}^{-1}(\epsilon)}{D(\rho_2 \| \gamma)}$$

$$\stackrel{\xi = 1}{\Longrightarrow}$$

$$R_n^*(0) \simeq \frac{D(\rho_1 || \gamma)}{D(\rho_2 || \gamma)}$$

Outlook

- Use hypothesis testing approach to go beyond thermodynamic transformations of independent systems (include corelations).
- Investigate the explicit form of optimal thermodynamic protocols in different asymptotic regimes.
- Generalise our results so that they also apply to non-commutative output dichotomies.
- Generalise the obtained dichotomy results to multichotomies.
- Find the analogue of resonance phenomenon in a more traditional thermodynamic framework.
- Look for the resonance in other resource theories.

Check more:

arXiv:2303.05524 (2023)

Thank you!