Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Thermodynamics and Thermochemistry

DPP: 2

- **Q1** If $400 \, \mathrm{kJ}$ work is done by the system and $150~\mathrm{kJ}$ heat is given to system then what will be effect on internal energy?
 - (A) Increases by $250~\mathrm{kJ}$
 - (B) Decreases by $250 \mathrm{\ kJ}$
 - (C) Increases by 600 kJ
 - (D) Increases by $600 \mathrm{\ kJ}$
- Q2 In Isobaric process
 - (A) Pressure is constant
 - (B) Temperature is constant
 - (C) No heat is exchanged
 - (D) Volume is constant
- Q3 For an adiabatic process which of the relations is correct
 - (A) $P\Delta V = 0$
 - (B) $P\Delta V = 0$
 - (C) q = 0
 - (D) q = +W
- **Q4** Under isothermal condition, a gas at $300 \, \mathrm{K}$ expands from $0.1\,\mathrm{L}$ to $0.25\,\mathrm{L}$ against a constant external pressure of 2 bar. The work done by the gas is (Given that 1 L bar = 100 J)
 - (A) -30 J
 - (B) 5 kJ
 - (C) 25 J
 - (D) 30 J
- Q5 A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of $2.50\,\mathrm{L}$ to a

final volume of $4.50 \, \mathrm{L}$. The change in internal energy ΔU of the gas in joules will be:

- (A) -500 J
- (B) -505 J
- (C) +505 J
- (D) 1136.25 J
- **Q6** A gas expands from $3.0\ L$ to $3.5\ L$ against an external pressure of 1 atm. Calculate the PV work done.
 - (A) -0.5 L atm
 - (B) -1 L atm
 - (C) -100 J
 - (D) -200 J
- Q7 When 1 mole of a gas is heated at constant volume, temperature is raised from 298 to $308~\mathrm{K}$. If heat supplied to the gas is $500~\mathrm{J}$ then which statement is correct?
 - (A) $q = w = 500 J, \Delta U = 0$
 - (B) $q = \Delta U = 500 \text{ J}, w = 0$
 - (C) q = -w = 500 J, $\Delta U = 0$
 - (D) $\Delta U = 0$, q = w = -500 J
- **Q8** A system is provided $50 \, \mathrm{J}$ of heat and work done on the system is 10 J. The change in internal energy during the process is
 - (A) $40 \, J$
 - (B) $60 \, J$
 - (C) 80 J
 - (D) $50 \, J$
- Q9 The first law of thermodynamics is represented by the equation:

- (A) $\Delta E = Q + W$
- (B) $\Delta E = Q W$
- (C) $\Delta E = Q$
- (D) $Q = W \Delta E$
- Q10 The net internal energy change in reversible cyclic process is:
 - (A) $\frac{3}{2}$ RT
 - (B) Zero
 - (C) Greater than zero
 - (D) Less than zero
- **Q11** A system absorbs $600 \, \mathrm{J}$ of heat and does work equivalent to $300 \, \mathrm{J}$ on its surroundings. The change in internal energy is
 - (A) $200 \, J$
- (B) $300 \, J$
- (C) $400 \, \mathrm{J}$
- (D) $600 \, J$
- **Q12** A piston filled with $0.04 \, \mathrm{mol}$ of an ideal gas expands reversibly from $50.0~\mathrm{mL}$ to $375~\mathrm{mL}$ at a constant temperature of 37.0° C. As it does so, it absorbs $208 \, \mathrm{J}$ of heat. The values of q and wfor the process will be (R = 8.314 J/molK, In 7.5 = 2.01)
 - (A) q = +208 J, w = +208 J
 - (B) q = +208 J, w = -208 J
 - (C) q = -208 J, w = -208 J
 - (D) q = -208 J, w = +208 J
- Q13 Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
 - (A) $q=0, \Delta T<0, w\neq 0$
 - (B) $q=0, \Delta T
 eq 0, w=0$
 - (C) $q \neq 0, \Delta T = 0, w = 0$
 - (D) $q = 0, \Delta T = 0, w = 0$
- Q14 Which one of the following equation does not first correctly represent the law of thermodynamics for the given process?
 - (A) Isothermal process: q = -w

- (B) Cyclic process: q = -w
- (C) Isochoric process: $\Delta E = q$
- (D) Adiabatic process: $\Delta E = -w$
- **Q15** ΔE is always positive when
 - (A) System absorbs heat and work is done on it
 - (B) System emits heat and work is done on it
 - (C) System emits heat and no work is done on it
 - (D) System absorbs heat and work is done by it
- Q16 Out of the following, the correct statement is:
 - (A) w is a state function
 - (B) $\Delta \mathrm{E} = q + w$ for every thermodynamic system at rest in the absence of external field
 - (C) q=0 for every cyclic process
 - (D) $\Delta E = 0$ for every cyclic process
- Q17 In an isothermal expansion of an ideal gas
 - (A) q = 0
 - (B) $\Delta V = 0$
 - (C) $\Delta U = 0$
 - (D) w=0

Answer Key

Q1	(B)	Q10	(B)
Q2	(A)	Q11	(B)
Q3	(C)	Q12	(B)
Q4	(A)	Q13	(D)
Q5	(B)	Q14	(D)
Q6	(A)	Q15	(A)
Q7	(B)	Q16	(D)
Q8	(B)	Q17	(C)
Q9	(A)		

Android App | iOS App | PW Website