Apuntes de Estructuras Algebráicas

Elias Hernandis

8 de noviembre de 2018

Revisión del 8 de noviembre de 2018 a las 17:58.

Índice general

Ι	Primer parcial - hoja 1	5
1.	Grupos 1.1. Grupos 1.1.1. Ejemplos de grupos 1.2. Subgrupos 1.2.1. El teorema de Lagrange 1.2.2. Subgrupos normales y grupo cociente	7 8 8 10 11
2.	Homomorfismos de grupos 2.1. Homomorfismos de grupos	13 13 14 16 18
3.	Consideraciones adicionales 3.1. Producto libre de grupos	19 19 20
4.	Aplicaciones prácticas 4.1. Ejemplos de grupos . 4.1.1. Grupos infinitos . 4.1.2. Grupos finitos. 4.2. Clasificación de grupos finitos . 4.2.1. Teorema de clasificación de grupos finitos de orden pequeño . 4.3. Retículos de subgrupos importantes . 4.4. Construcción de homomorfismos e isomorfismos de grupos .	21 21 21 22 24 25 26
II	Parcial 2 - hojas 2, 3 y 4	29
5.	El teorema de Cauchy 5.1. Consideraciones previas 5.1.1. Centro de un grupo 5.1.2. Centralizador de un elemento 5.2. Teorema de Cauchy 5.3. P-grupos	31 31 31 32 34
6.	Lo nuevo 6.1. Producto semidirecto	39 41
7.	Teoremas de Sylow	43
II	II Apendices	49
8.	Índices	51

4 ÍNDICE GENERAL

Parte I Primer parcial - hoja 1

Capítulo 1

Grupos

1.1. Grupos

Definición 1 (Grupo). Llamamos grupo al par (G, *), donde G es un conjunto no vacío y $*: G \times G \to G$ es una función que cumple las siguientes propiedades:

- 1. Clausura. $\forall a, b \in G, a * b \in G$
- 2. Asociatividad. $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
- 3. Elemento neutro. $\exists e \in G, \forall a \in G \mid a * e = e * a = a$
- 4. Elemento inverso. $\forall a \in G, \exists a^{-1} \in G \mid a*a^{-1} = a^{-1}*a = e$

En general, la clausura es muy difícil de probar, por lo que recurrimos a dar un grupo como subgrupo de otro o dar una biyección entre un grupo existente y lo que queremos probar que es grupo.

Notación

- Aunque técnicamente el grupo es el par (G,*), es común referise al grupo como G.
- Cuando la operación es la suma, se suele llamar al elemento neutro $e = \mathbf{0}$. Cuando la operación es el producto, se suele llamar al elemento neutro $e = \mathbf{1}$.
- Denotamos por a^k :
 - si k > 0, $a^k = \underbrace{a * a * \cdots * a}_{\text{k veces}}$
 - si k = 0, $a^0 = e$
 - si k < 0, $a^k = \underbrace{a^{-1} * a^{-1} * \cdots * a^{-1}}_{\text{-k veces}}$
- Se suele omitir la operación. Sobre todo cuando la operación es el producto. Por ejemplo, en (G,\cdot) , $a\cdot b=ab$.

Teorema 1 (Propiedad cancelativa). Sea G un grupo, $a, b, c \in G$.

$$a * b = a * c \implies b = c \tag{1.1}$$

$$c * a = b * a \implies a = b \tag{1.2}$$

Demostración. Por la existencia del elemento inverso podemos multiplicar por a^{-1} a la izquierda en la primera expresión y obtenemos $a^{-1}ab = a^{-1}ac \implies eb = ec \implies b = c$. Lo mismo ocurre por la derecha en la segunda expresión.

Proposición 1 (Unicidad del elemento neutro). En un grupo G hay exactamente un elemento neutro e.

Demostración. Supongamos existen $e_1, e_2 \in G$ elementos neutros. Por ser e_1 elemento neutro se tiene que $e_1 * e_2 = e_2$ y por ser elemento neutro e_2 se tiene que $e_1 * e_2 = e_1$. Por tanto $e_1 = e_2$.

Proposición 2 (Unicidad del inverso de un elemento). Sea G un grupo, $g \in G$, entonces $\exists ! g^{-1} \mid g * g^{-1} = e$.

Demostración. Supongamos a tiene inversos b_1 y b_2 . Entonces $a*b_1=a*b_2=e$. Por la propiedad cancelativa $b_1=b_2$.

8 CAPÍTULO 1. GRUPOS

Definición 2 (Orden de un elemento). Sea (G, *) un grupo. Decimos que $a \in G$ tiene orden finito si $\exists k \in \mathbb{N}$ tal que $a^k = e$. Si existen tales valores de k, llamamos orden del elemento a al mínimo de ellos:

$$o(a) = \min\{k \in \mathbb{N} \mid a^k = e\} \tag{1.3}$$

Definición 3 (Orden o cardinalidad de un grupo). Sea $G = \{a_1, a_2, \dots\}$ un grupo junto con alguna operación. Si $|G| < \infty$ decimos que el orden de G, $|G| = |\{a_1, a_2, \dots, a_n\}| = n$.

Definición 4 (Grupo abeliano). Sea (G,*) un grupo. Diremos que G es abeliano $\iff \forall a,b \in G,\ a*b=b*a.$

Teorema 2. Sea G un grupo tal que $\forall g \in G, g * g = e$. Entonces G es abeliano.

Corolario 1. $\forall a \in G, \ o(a) = 2 \implies G \ es \ abeliano.$

Demostración. Sean $a, b \in G$. Tenemos que probar que a*b=b*a. Consideramos el elemento $(a*b) \in G$ por clausura. Por hipótesis tenemos que $(a*b)*(a*b)=e \implies (a*b)=(a*b)^{-1}=b^{-1}*a^{-1}=b*a$.

1.1.1. Ejemplos de grupos

Por último, vemos una manera de generar nuevos grupos a partir de grupos existentes.

Definición 5 (Producto directo de grupos). Sean $(G_1, *), (G_2, \bullet)$ grupos. Llamamos producto directo de los grupos $G_1 y G_2$ al grupo $(G_1 \times G_2, \sim)$. Donde $\sim: (G_1 \times G_2) \times (G_1 \times G_2) \rightarrow G_1 \times G_2, (g_1, g_2) \sim (g'_1, g'_2) = (g_1 * g'_1, g_2 \bullet g'_2)$.

1.2. Subgrupos

Definición 6 (Subgrupo). Sea (G, *) un grupo, $S \in G, S \neq \emptyset$. Diremos que (S, *) es un subgrupo de (G, *) y lo denotaremos por S < G si verifica las siguientes condiciones:

- 1. Clausura. $\forall a, b, a, b \in S \implies a * b \in S$
- 2. Elemento neutro. $e \in S$
- 3. Elemento inverso. $\forall s \in S, s^{-1} \in S$

(La propiedad asociativa siempre se hereda.)

En caso de que el grupo del que elegimos el subgrupo sea finito, la clausura no es tan complicada de probar.

Proposición 3. Si $\{S_i\}_{i\in\mathbb{N}}$ es una familia de subgrupos de G, entonces $\bigcap S_i$ también es un subgrupo de G.

Definición 7 (Subgrupo generado varios elementos). ^aSea (G, *) un grupo, $S \subset G$, $S \neq \emptyset$. El subgrupo generado por S es

$$\langle S \rangle = \{ s_1^{\alpha_1} * s_2^{\alpha_2} * \dots * s_n^{\alpha_n} \mid s_1, s_2, \dots, s_n \in S, \ \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{Z} \}$$
 (1.4)

Proposición 4. El subgrupo generado por S, $\langle S \rangle$ es el más pequeño que contiene a S.

El siguiente teorema no lo ha dado drácula¹ pero no me acuerdo pero viene en [DH96] y simplifica bastante la bida.

Teorema 3. Sea G un grupo y H un subconjunto de G. Entonces $H < G \iff \forall x, y \in H, xy^{-1} \in H$.

Demostración. De [DH96].

 $[^]a\mathrm{Este}$ teorema reemplaza al de grupo generado por dos elementos dado en clase.

¹De verdad que quería poner el nombre.

1.2. SUBGRUPOS 9

- (\Longrightarrow). Supongamos que H < G. Entonces $x, y \in H \implies xy \in H \land y \in H \implies y^{-1} \in H$ y por tanto $xy^{-1} \in H$.
- (\Leftarrow). Supongamos que $x, y \in H \implies xy^{-1} \in H$. Veamos que se cumplen las 3 condiciones para que sea subgrupo:
 - Elemento neutro. Tomamos y = x y tenemos que $xx^{-1} = e \in H$.
 - Elemento inverso. Tomamos ahora x = e, y = x y tenemos que $ex^{-1} = x^{-1} \in H$.
 - Clausura. Tenemos que si $x, y \in H$ por la propiedad anterior $y^{-1} \in H$ y por tanto $xy = x(y^{-1})^{-1} \in H$.

Normalmente, utilizaremos la definición restringida a un elemento:

Definición 8 (Subgrupo generado por un elemento). Sea G un grupo, $g \in G$. Llamamos subgrupo generado por g a

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \} \tag{1.5}$$

Proposición 5. El subgrupo generado por $g \in G$ en efecto es un subgrupo.

Demostración.

- 1. Es cerrado por * puesto que $\forall a^k, a^{k'} \in S, a^k * a^{k'} = a^{k+k'} \in S$.
- 2. $a^0 = e \in A$
- 3. $\forall a^k, a^{-k} \in A$

Proposición 6. Si o(g) = n, entonces $\langle g \rangle$ tiene n elementos (el orden de $\langle g \rangle$ es n).

Demostraci'on. Primero comprobamos que no hay más de n elementos distintos. Consideramos $k \in \mathbb{Z}, \ k = cn + r$ para algunos $c, r \in \mathbb{Z}, \ 0 \le r < n$ por el algoritmo de la división. Entonces $a^k = a^{cn+r} = a^{cn}a^r = a^r$ pues o(a) = n.

Ahora probaremos que no hay menos de n elementos distintos, es decir, que $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ Supongamos existen $0 \le i < j < n$ tales que $a^i = a^j$. Entonces por cancelación $a^{j-i} = e = a^0 \implies j = i$ lo que da una contradicción.

Teorema 4. Sea G un grupo, $g \in G$. El menor subgrupo de G que contiene a g es $\langle g \rangle$.

Demostración. Tenemos que probar que para cualquier H subgrupo de $G, g \in H \implies g^k, \forall k \in \mathbb{Z}$.

Definición 9 (Grupo cíclico). Sea (G, *) un grupo. Diremos que G es cíclico si $\exists g \in G \mid \langle g \rangle = G$.

Teorema 5. Si G es cíclico entonces G es abeliano.

Demostración. Tenemos que probar que $\forall a,b \in G,\ ab=ba.$ Sabemos que $a=g^i,b=g^j$ para algunos $i,j \in \mathbb{Z} \implies ab=a^ia^j=a^{i+j}=a^{j+1}=a^ja^i=ba.$

Teorema 6. Sea $g \in G$ tal que $o(g) = n \in \mathbb{N} \ge 1$ y sea $r \in \mathbb{N}$. Si r y n son coprimos, entonces $\langle g \rangle = \langle g^r \rangle$.

Corolario 2. Si r y n = o(q) son coprimos entonces $o(q) = o(q^r)$.

Demostración. Recordamos que $p \neq q$ son coprimos $\iff \exists \alpha, \beta \in \mathbb{Z} \mid \alpha p + \beta n = 1$. Recordamos que $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ donde n = o(g). Tenemos que probar la doble inclusión. Fijémonos en que $g^r \in \langle g \rangle \implies \langle g^r \rangle \subset \langle g \rangle$ pues $\langle g \rangle$ contiene a todos los elementos de la forma g^k , $k \in \mathbb{Z}$ (ver definición 8). Ahora probaremos que $\langle g \rangle \subset \langle g^r \rangle$. Como $r \neq n$ son coprimos, $g = g^{\alpha r + \beta n} = (g^r)^{\alpha} (g^n)^{\beta} = (g^r)^{\alpha} \in \langle g^r \rangle \implies \langle g \rangle \subset \langle g^r \rangle$. Concluimos que $\langle g \rangle = \langle g^r \rangle$.

Ejemplo 1. En $\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$ con la suma tomamos g = 1 y por tanto n = o(g) = 4, y tomamos r = 3 y por tanto mcd(n, r) = 1. Efectivamente se verifica que $o(1^3) = o(1 + 1 + 1) = o(3) = 4 = o(1)$ o lo que es lo mismo, $\langle 1 \rangle = \langle 3 \rangle$.

Proposición 7. Sea $g \in G$ tal que o(g) = n y sea $r \in \mathbb{N}$ con $r \mid n$ (r divide a n). Entonces $o(g^r) = \frac{n}{r}$.

CAPÍTULO 1. GRUPOS

Demostración. Sea n' tal que n = rn'. Probaremos que $r \mid n \implies o(g^r) = n'$.

$$\langle g^r \rangle = \{g^r, g^{2r}, g^{3r}, \dots, g^{n'r} = g^n\} \subset \{g, g^2, g^3, \dots, g^n\} = \langle g \rangle$$

 $\langle g^r \rangle$ tiene n' elementos distintos porque para cualquier $i=0,\ldots,n',\ o(g^{ir}) <= o(g)=n$ por lo que no se repite ninguno. Además cualquier g^{ir} está bien definido porque al dividir r a $n,\ ir \in \mathbb{N}$.

Teorema 7 (Hoja 1, ejercicio 9). Sea $o(g) = n \in \mathbb{N}$ y sea $N \in \mathbb{Z}$. Entonces $o(g^N) = \frac{o(g)}{mcd(N,o(g))}$.

Demostración. Afirmamos que $n ext{ y } N/d$, con d = mcd(N, n) son coprimos. Expresamos $g^N = (g^{N/d})^d$. Por el [corolario del] teorema 6 tenemos que $o(g^{N/d}) = o(g) = n$. Por la proposición 7 tenemos que $o((g^{N/d})^d) = \frac{o(g^{N/d})^d}{d} = \frac{n}{d}$.

Teorema 8 (Hoja 1, ejercicio 7). Sea (G, *) un grupo y $S \subset G$, $S \neq \emptyset$ un subconjunto finito de G. Si S es cerrado por la operación * entonces S es un subgrupo de G.

Demostración. Se verifican las 3 propiedades

1. Clausura. Por hipótesis.

10

- 2. Elemento neutro. Sea $s \in S$. Si s = e ya hemos terminado. Si $s \neq e$, sabemos que $\{s^1, s^2, \ldots\} \subset S$. Pero S es finito $\implies \exists \ 0 < i < j \text{ tales que } s^i = s^j \implies s^{j-i} = e$. Como $j > i \implies j-i > 0$, hemos obtenido e de operar s consigo mismo, luego $e \in S$.
- 3. Elemento inverso. Tomamos r = j i de la propiedad anterior. Tenemos $s^r = e \implies s * s^{r-1} = e \implies s^{r-1} = s^{-1}$.

*

1.2.1. El teorema de Lagrange

Definición 10 (Clase lateral). Sea (G, *) un grupo, $H < G, g \in G$. Definimos

- $\blacksquare \ g*H=gH=\{g*h\mid h\in H\}$ es una clase lateral izquierda de H
- $H * g = Hg = \{h * g \mid h \in H\}$ es una clase lateral derecha de H

Teorema 9. Si H < G tiene orden $n < \infty$ entonces |gH| = |Hg| = |H| = n.

Demostración. Consideramos la aplicación $f: H \to gH$, $f(h) \to g*h$ para un $g \in G$ dado. Es inyectiva: $f(h_1) = f(h_2) \Longrightarrow h_1 = h_2$ puesto que $xh_1 = xh_2 \Longrightarrow h_1 = h_2$ por la propiedad cancelativa. Es sobreyectiva porque $\forall h \in H$, g*h = f(h). Por tanto f es biyectiva y los órdenes son iguales.

Proposición 8. Sea H < G, $g \in G$. Las clases laterales gH y Hg cumplen las siguientes propiedades (las cumplen las dos pero damos solo las de la izquierda):

- 1. $g \in H \iff g * H = H$
- 2. $g \in g * H \implies G = \bigcup_{g \in G} g * H$
- $3. g' \in g * H \implies g' * H = g * H$
- 4. $g_1 * H \cap g_2 * H \neq \emptyset \implies g_1 * H = g_2 * H$

 $\begin{array}{l} \textit{Demostraci\'on.} \text{ (solo de la \'ultima propiedad) Sabemos que existe } \alpha \in g_1*H \cap g_2*H \text{ de la forma } \alpha = g_1*h_1 = g_2*h_2, \ h_1, h_2 \in H. \\ \text{Ahora bien, } g_1*h_1 = g_2*h_2 \iff g_2^{-1}*g_1*h_1 = h_2 \iff g_2^{-1}g_1 \in H \implies g_2(g_2^{-1}g_1)H = g_2(g_2^{-1}g_1H) = g_2H. \end{array}$

De las propiedades anteriores se obtiene que $\{g_i * H\}_{g_i \in G}$ es una partición de G. Además, por el teorema 9, como |g * H| = |H| la partición divide G en cajas iguales (ver cuadro 1.1). Pongamos que G es finito y que hay r cajas, entonces $|G| = r|g_i * H| = r|H| \implies |H| |G|$. A continuación veremos otra forma de dar esta relación de equivalencia.

Para algún H < G, la partición que hemos dado anteriormente es la definida por la relación de equivalencia $g_1Rg_2 \iff g_1*H = g_2*H$. Otra manera de definirla es $g_1Rg_2 \iff g_2^{-1}g_1 \in H$. Se verifica que esta nueva definición es una relación de equivalencia.

Teorema 10 (de Lagrange). Sea G un grupo finito y H < G. Entonces $|H| \mid |G|$ (el orden de H divide al orden de G).

1.2. SUBGRUPOS 11

$g_1 * H$	$g_2 * H$	
	H	
	$g_{r-1} * H$	$g_r * H$

Figura 1.1: Partición de G en r cajas iguales

Corolario 3. Sea G un grupo $y \in G$. Entonces $o(g) \mid |G|$ (el orden de un elemento divide al orden del grupo).

Corolario 4. Si G es un grupo de orden p, con p primo, entonces G es cíclico.

Demostración. Sea $g \in G$, $g \neq e$. Por el teorema de Lagrange $|\langle g \rangle| \mid |G| = p$. Como p es primo sus únicos divisores son 1 y p y como $|\langle g \rangle| > 1$ se ha de tener $|\langle g \rangle| = p$. Por tanto $\langle g \rangle = G$ y G es cíclico.

1.2.2. Subgrupos normales y grupo cociente

Definición 11 (Subgrupo normal). Sea H < G. Diremos que H es un subgrupo normal de G y lo denotaremos por $H \lhd G \iff \forall g \in G, \ g*H = H*g.$

Proposición 9. Si G es abeliano entonces todos sus subgrupos son normales.

Definición 12 (Conjunto cociente en grupos). Sea H < G. Definimos

$$G/H = \{ gH \mid g \in G \} = \{ \overline{x} \mid \overline{x} = \{ g \in G \mid g^{-1}x \in H \} \}$$
 (1.6)

Proposición 10. Sea $H \triangleleft G$. (G/H, *) con la operación $*: G/H \rightarrow G/H, (xH)(yH) \mapsto (xy)H$ es un grupo.

Demostración. La operación * está bien definida. $\forall \overline{x}, \overline{y} \in G/H, \ \overline{x} * \overline{y} = xHyH = xyHH = xyH = \overline{x} * \overline{y}.$

El elemento neutro es \overline{e} pues $\forall \overline{x} \in G/H, \ \overline{e} * \overline{x} = eHxH = exH = xH = \overline{x}.$

El elemento inverso está bien definido: $\overline{x}^{-1} = \overline{x^{-1}}$ pues $\forall \overline{x} \in G/H, \ \overline{xx}^{-1} = xHx^{-1}H = xx^{-1}H = eH = \overline{e}$.

Definición 13 (Índice). Sea H < G. Definimos el **índice de** H **en** G, y lo representamos mediante [G:H], como el cardinal del conjunto cociente G/H. [DH96]

Teorema 11. De $[DH96]^a$ Sea H < G con [G:H] = 2 (con índice de H en G igual a 2). Entonces H es normal.

^aNo lo hemos dado explícitamente pero se utiliza para algunos ejemplos.

12 CAPÍTULO 1. GRUPOS

Capítulo 2

Homomorfismos de grupos

2.1. Homomorfismos de grupos

Definición 14 (Homomorfismo de grupos). Sean $(G_1, \cdot), (G_2, *)$ grupos. Decimos que $f: G_1 \to G_2$ es un homomorfismo de grupos si $\forall a, b \in G_1, \ f(a \cdot b) = f(a) * f(b)$.

- \blacksquare si fes inyectiva, fes un monomorfismo
- \blacksquare si f es sobreyectiva, f es un epimorfismo
- \blacksquare si fes biyectiva, fes un isomorfismo
- $\bullet\,$ si $G_2=G_1$ y f es un isomorfismo, entonces f se llama automorfismo

Si existe un isomorfismo entre dos grupos, decimos que son isomorfos y lo denotamos por $G_1 \simeq G_2$.

Figura 2.1: Homomorfismo de grupos

Definición 15 (Núcleo de un homomorfismo). Sea $f:G_1\to G_2$ un homomorfismo. Definimos el núcleo ker $f=\{x\in G_1\mid f(x)=e_2\in G_2\}$ (los que van a parar al neutro).

Definición 16 (Imagen de un homomorfismo). Sea $f: G_1 \to G_2$ un homomorfismo. Definimos la imagen $\mathrm{Im} f = \{y \in G_2 \mid \exists x \in G_1, f(x) = y\}.$

Proposición 11. Sea $f: G_1 \to G_2$ un homomorfismo. ker $f < G_1$.

Demostración. Probamos las 3 propiedades de los subgrupos

- 1. $a, b \in \ker f \implies a \cdot b \in \ker f$. $f(a \cdot b) = f(a) * f(b) = e_2 * e_2 = e_2$.
- 2. $a \in \ker f \implies a^{-1} \in \ker f$. $f(a) = e_2$, $f(a^{-1}) = e_2 \implies (f(a))^{-1} = e_2$.
- $3. e_1 \in \ker f.$

Teorema 12. Sea $f: G_1 \to G_2$ un homomorfismo. Im $f < G_2$.

Demostración. Es análoga a la del ker f.

Teorema 13. Sea $f: G_1 \to G_2$ un homomorfismo. ker $f \lhd G_1$

Demostración. Tenemos que probar que $\forall a \in G_1, a(\ker f)a^{-1} \subset \ker f$. Sea $h \in \ker f$. $f(aha^{-1}) = f(a)\underbrace{f(h)}_{e_2} f(a^{-1}) = f(a)f(a^{-1}) = e_2 \subset \ker f$

Proposición 12. Sea $f: G_1 \to G_2$ un homomorfismo de grupos. f es inyectiva si y solo si $\ker f = \{e\}$.

Demostración.

- (\iff) Suponemos que f es inyectiva. Sabemos que en un homomorfismo $f(e_1) = e_2$ y además ker $f = e_1$ por hipótesis.
- (\Longrightarrow) Tenemos que probar que dados $a, b \in G_1$, $f(a) = f(b) \Longrightarrow a = b$. Decir que f(a) = f(b) es lo mismo que decir $e_2 = f(a)^{-1}f(b) = f(a^{-1})f(b) = f(a^{-1}b) \Longrightarrow a^{-1}b \in \ker f = \{e_1\} \Longrightarrow a = b$.

Proposición 13. Sean G_1, G_2, G_3 grupos y sean $f: G_1 \to G_2, g: G_2 \to G_3$ homomorfismos de grupos. Entonces $g \circ f$ es a su vez un homomorfismo de grupos.

Teorema 14. Sea $f: G_1 \to G_2$ un homomorfismo de grupos. Entonces o(f(g)) divide a o(g).

Teorema 15. Sea $f: G_1 \to G_2$ un isomorfismo de grupos. Entonces o(g) = o(f(g)).

Demostración. Consideramos f y f^{-1} para los que se verifica el teorema anterior. $o(g) \mid o(f(g)) \wedge o(f(g)) \mid o(f^{-1}(f(g))) = o(g) \implies o(g) = o(f(g))$.

2.2. Retículo de subgrupos

Definición 17 (Retículo de subgrupos). Dado un grupo G, el retículo de subgrupos es un grafo con todos los subgrupos de G. Denotamos la relación de inclusión con un vértice entre dos grupos. Es costumbre poner el mayor grupo arriba y denotar la inclusión por las diferencias en altura.

Lo importante de esta sección:

- Todo subgrupo de un grupo cíclico es cíclico.
- Dado un epimorfismo entre dos grupos existe una correspondencia biyectiva entre los subgrupos del primero y los del segundo.
- En $\mathbb{Z}/n\mathbb{Z}$ existe un subgrupo por cada divisor de n y esos son todos los subgrupos que hay.

Ejemplo 2 (Retículo de subgrupos \mathbb{Z}). \mathbb{Z} tiene infinitos subgrupos, todos los $k\mathbb{Z}$. En muchas ocasiones nos va a interesar solo dibujar unos pocos, para relacionarlos con subgrupos de otros grupos distintos de \mathbb{Z} . A continuación se muestra el retículo de subgrupos de \mathbb{Z} construido a partir de $6\mathbb{Z}$.

Figura 2.2: Una parte del retículo de subgrupos de \mathbb{Z} , en concreto la de los $n\mathbb{Z}$ con $n \mid 6$.

Los grupos que contienen a $6\mathbb{Z}$ son los de la forma $k\mathbb{Z}$ donde k divide a 6, ya que entre los múltiplos de los divisores de 6 también se encuentran los múltiplos de 6.

Proposición 14. Sea $n = \min_{r \in \mathbb{N}, r > 0} \{ r \in H, H < \mathbb{Z} \}$. Entonces $nH = \mathbb{Z}$.

Demostración. Probamos la doble inclusión. Por hipótesis $n \in H$ y por tanto $\langle n \rangle = n\mathbb{Z} \subset H$. Sea $\alpha \in H$. Por el algoritmo de la división, podemos expresar $\alpha = an + s$ con $0 \le s < n \implies s = 0 \implies H \subset n\mathbb{Z}$. Luego $H = n\mathbb{Z}$.

El siguiente teorema no lo ha dado Orlando explícitamente pero básicamente lo que dice es lo que dijo en las 3 clases sobre correspondencia entre subgrupos pero un poco más ordenado.

Teorema 16 (de correspondencia entre subgrupos mediante homomorfismos). Sea $f: G_1 \to G_2$ un homomorfismo de grupos. Se tiene [DH96]:

- 1. Si $H_1 < G_1$ entonces $f(H_1) < G_2$
- 2. Si $H_2 < G_2$ entonces $f^{-1}(H_2) = \{h_1 \in G_1 \mid f(h_1) \in H_2\} < G_2$
- 3. Si $H_2 \triangleleft G_2$ entonces $f^{-1}(H_2) \triangleleft G_1$
- 4. Si $H_1 \triangleleft G_1$ y f es además sobreyectiva (es un epimorfismo) entonces $f(H_1) \triangleleft G_2$

Demostración.

- 1. Demostramos que se cumplen las 3 propiedades de los grupos. Sabemos que $e_1 \in H_1 \implies e_2 \in f(H_1) = H_2$. Además, sabemos que $\forall x \in H_1, \ x^{-1} \in H_1$ y por ser f un homomorfismo tenemos que $\forall f(x) \in H_2, \ f(x)^{-1} = f(x^{-1}) \in H_2$. Por último, tenemos que $\forall x, y \in H, \ xy \in H_1 \implies \forall f(x), f(y) \in H_2, \ f(x)f(y) = f(xy) \in H_2$.
- 2. Es análoga a la de la primera afirmación.
- 3. Tenemos que probar que para un $g_1 \in G_1$, $\forall h_1 \in f^{-1}(H_2) = H_1$, $g_1h_1 = h_1g_1$. Sabemos que $\forall h_1, \exists h_2 \in H_2 \mid f^{-1}(h_2) = h_1$. Entonces $g_1h_1 = h_1g_1 \iff f^{-1}(g_2)f^{-1}(h_2) = f^{-1}(h_2)f^{-1}(g_2) \iff f^{-1}(g_2h_2) = f^{-1}(h_2g_2)$ que es cierto por hipótesis de que H_2 es normal.
- 4. Tenemos que probar que para $g_2 \in G_2$ dado, $\forall h_2 \in H_2 = f(H_1), \ g_2h_2 = h_2g_2$. Comenzamos por asegurar que $\exists g_1 \in G_1 \mid f(g_1) = g_2$ por ser f sobreyectiva. Por tanto $g_2h_2 = h_2g_2 \iff f(g_1)f(h_1) = f(h_1)f(g_1) \iff f(g_1h_1) = f(h_1g_1)$ que es cierto por hipótesis.

*

Queremos establecer una relación entre los retículos de subgrupos de dos grupos que son el dominio y la imágen de un epimorfismo $f: G_1 \to G_2$. Los subgrupos de G_2 siempre contendrán al elemento neutro e_2 por lo que podemos establecer una relación natural entre los subgrupos de G_1 que contienen a ker f con los subgrupos de G_2 .

Teorema 17. ^a Sea $f: G_1 \to G_2$ un epimorfismo. Existe una biyección entre el retículo de subgrupos de G_2 y subgrupos de G_1 que contienen al ker f. Se cumple que $H_2 < G_2 \iff f^{-1}(H_2) \supset \ker f$.

En particular, el número de subgrupos de G_2 es igual al número de subgrupos de G_1 que contienen al núcleo.

$$|\{H_2 \mid H_2 < G_2\}| = |\{H_1 < G_1 \mid \ker f \in H_1\}|$$

^aEste teorema es un desastre. Las hipótesis no las ha dado y las conclusiones tampoco. Es lo que más o menos he creido que quería decir. Es posible que se corresponda con la proposición 4.4.6 del [DH96] pero en dicha proposición no se exige que f sea sobre.

Demostración. Sabemos que por ser f homomorfismo, $H_1 < G_1 \implies f(H_1) < G_2$.

Veamos que la relación entre los subconjuntos de G_1 y de G_2 se mantiene al aplicar el epimorfismo. Sea $H_2 \subset G_2$. Como f es sobre $f(f^{-1}(H_2)) = H_2$. Ahora sea $H'_2 \mid H_2 \subset H'_2 \subset G_2$. Ocurre lo de antes y además $f^{-1}(H_2) \subset f^{-1}(H'_2) \subset G_1$.

Ahora lo extendemos de subconjuntos a subgrupos. Asociamos a cada $H_2 < G_2$ el subgrupo $f^{-1}(H_2) < G$. Es un subgrupo porque al ser f epimorfismo mantiene la operación. En particular, $e_2 \in H_2 \implies \ker f = f^{-1}(e_2) \subset f^{-1}(H_2)$.

Por último afirmamos que si ker $f \subset H_1 < G_1$, entonces $H_1 = f^{-1}(f(H_1))$. Para probar esto probamos la doble inclusión. $H_1 \in f^{-1}(f(H_1))$ es evidente pues $h \in H_1 \implies f(h) \in f(H_1)$. Ahora probamos ker $f \subset H_1 \implies H \subset f^{-1}(f(H_1))$.

$$\alpha \in f^{-1}(f(H_1)) \iff f(\alpha) \in f^{-1}(f(H_1))$$

$$\iff \exists h_1 \in f(H_1) \mid f(\alpha) \in f(H_1)$$

$$\iff \exists h_1 \in H \mid f(\alpha)(f(h_1))^{-1} = e_2$$

$$\iff \exists h_1 \in H_1 \mid f(\alpha h_1^{-1}) = e_2$$

$$\iff \exists h_1 \in H_1 \mid \alpha h_1^{-1} \in \ker f$$

$$\alpha h_1^{-1} h_1 \implies \alpha \in H_1$$

2.3. Teoremas de la isomorfía (versión de clase)

Proposición 15 (O ejemplo). Sea $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. f es un isomorfismo $\iff f(\overline{1}) = \overline{a} \in \mathcal{U}(\mathbb{Z}/n\mathbb{Z})$

Ejemplo 3. Sea $g \in G$ fijado. Definimos $\phi_g : G \to G$

$$G \to^{\phi_g} G \to^{\phi_g^{-1}} G$$

$$x \mapsto gxg^{-1}$$

$$z \mapsto g^{-1}x(g^{-1})^{-1}$$

 $Y \phi_g \cdot \phi_g^{-1} = Id.$

Demostración. Para que f sea isomorfismo tiene que ser sobre luego $o(\overline{a}) = n \implies \overline{a} \in \mathcal{U}(\mathbb{Z}/n\mathbb{Z}).$

Teorema 18. Sea $f: G_1 \to G_2$ un homomorfismo de grupos, $H \lhd G_1$ con $H \subset \ker f$. Sea $\pi: G_1 \to G_1/H$ el homomorfismo que genera las clases de equivalencia (ver figura 2.6). Entonces se cumple lo siguiente

- 1. existe un homomorfismo de grupos $\overline{f}:G_1/H\to G_2$ tal que $\overline{f}\circ\pi=f$
- 2. $\ker \overline{f} = \ker f/H$

Figura 2.3: Homomorfismos que intervienen en el teorema 18

Demostración.

- 1. Probaremos que si construimos \overline{f} con $\overline{f}(\overline{a}) = f(a)$ entonces \overline{f} está bien definida. Tenemos que ver que $\overline{a} = \overline{a'} \Longrightarrow f(a) = f(a')$. Partimos de $\overline{a} = \overline{a'} \Longrightarrow a(a')^{-1} \in H \Longrightarrow f(a(a')^{-1}) = e_2 \Longrightarrow f(a)f(a')^{-1} = e_2 \Longrightarrow f(a) = f(a')$.
- 2. Observemos que $\overline{f}(\overline{a}\overline{b}) = \overline{f}(\overline{a}\overline{b}) = f(ab) = f(a)f(b) = \overline{f}(\overline{a})\overline{f}(\overline{b})$. Ahora probamos las dos inclusiones a la vez $\overline{a} \in \ker \overline{f} \iff \overline{f}(\overline{a}) = e_2 \iff \overline{f}(a) = e_2 \iff \overline{a} \in \ker f$.

Teorema 19 (Primer de la isomorfía). Sea $f:G_1\to G_2$ un epimorfismo. Existe un isomorfismo $\overline{f}:G_1/\ker f\to G_2$.

Demostración. $f = \pi \circ \overline{f}$ y f es sobre, luego \overline{f} también es sobreyectiva.

Figura 2.4: Primer teorema de la isomorfía.

Teorema 20 (Segundo teorema de la isomorfía). Sean $H \triangleleft G$, $K \triangleleft G$ y $H \subset K$ Entonces

$$(G/H)/(K/H) = G/K (2.1)$$

Figura 2.5: Segundo teorema de la isomorfía.

Demostración. \overline{h} es sobreyectiva y ker $\overline{h} = K/H$

Teorema 21. Sea $f: G_1 \to G_2$ un epimorfismo. Si $N \lhd G_1$, entonces $f(N) \lhd G_2$. Como f es epimorfismo cualquier $g \in G_2$, $g_2 = f(g_1)$ para algún $g_1 \in G_1$. Como $N \lhd G_1$, tenemos que $gNg^{-1} \in N$. Que $f(N) \lhd G_2$ quiere decir que $\forall f(g) \in G_2, f(g)f(N)f(g^{-1}) \subset f(N)$. Ahora bien $f(g)f(N)f(g)^{-1}$. Y esto sigue pero lo ha dicho y no lo ha escrito y no me ha dado tiempo.

Lema. Sea $h: G_1 \to G_2$ homomorfismo de grupos. Sean $N \lhd G_1$ y $N \subset \ker h$.

- 1. Entonces existe un homomorfismo de grupos $\overline{f}:G_1/N\to G_2$ que cumple $\overline{f}\circ\pi=f$
- 2. $\ker \overline{f} = \ker f/N$.

Corolario 5. Si $N = \ker f$ entonces $\ker \overline{f} = \{0\}$ y \overline{f} es un monomorfismo.

Corolario 6. Si f es además un epimorfismo, entonces \overline{f} es una biyección.

Demostraci'on. Consideramos $f: H \to HK$ que es un homomorfismo porque H < HK (porque $h = he_k$, $\forall h \in H$ y satisface la definción de producto). Y ahora consideramos un epimorfismo $h: HK \to HK/K$ que existe porque $K \lhd HK$. Sea $\pi = f \circ g$. Afirmamos que ker $\pi = H \cap K$. Faltan cosas.

$$H/(H \cap K) \simeq HK/K$$

Corolario 7. Si H, K < G con $K \triangleleft G$ entonces existe un epimorfismo $\pi : H \to HK/K$ y ker $\pi = H \cap K$.

Teorema 22. ^a Sea $f: G_1 \to G_2$ un homomorfismo de grupos. Entonces $\text{Im} f \simeq G_1/\ker f$.

^aEsta vez si que dijo teorema.

Este teorema viene a decir que dado un homomorfismo $f: G_1 \to G_2$, si lo restringimos a $f: G_1 \to \operatorname{Im} f$ obtenemos un epimorfismo.

Proposición 16. Sea G un grupo con orden n. Sea H < G con índice de $H = p \mid mcd(p, n) = 1$. Entonces H es un subgrupo normal.

2.4. Teoremas de la isomorfía (versión con pies y cabeza)

Teorema 23. (Primer teorema de la isomorfía) Sea $f: G_1 \to G_2$ un epimorfismo y sea $\pi: G_1 \to G_1/\ker f$. Entonces existe un isomorfismo $\overline{g}: G_1/\ker f \to G_2$ tal que $f = \pi \circ \overline{f}$.

Figura 2.6: Primer teorema de la isomorfía.

Teorema 24. (Segundo teorema de la isomorfía) Sea G un grupo, $H \lhd G$, $K \lhd G$ y H < K. Entonces K/H es un subgrupo normal de G/H y

$$G/H/K/H \simeq G/K$$
 (2.2)

Teorema 25 (Tercer teorema de la isomorfía). Sea G un grupo, H < G, $K \lhd G$. Entonces HK < G, $K \lhd HK$ y $H \cap K \lhd H$. Además,

$$HK/K \simeq H/(H \cap K)$$
 (2.3)

Capítulo 3

Consideraciones adicionales

Este capítulo incluye más teoría que integra varios conceptos de los capítulos anteriores.

3.1. Producto libre de grupos

Definición 18 (Producto libre de grupos). Sean S, T subconjuntos del grupo G. Definimos $ST = \{s * t \mid s \in S \land t \in T\}$.

Es importante remarcar el el producto libre de [sub]grupos no siempre es un grupo. En general solo es un conjunto. Ver el teorema 27

Observemos que la función $f: S \times T \to ST, \ (s,t) \mapsto st$ no es un homomorfismo de grupos. Esto es porque al operar dos elementos de $S \times T$ no se comporta bien. Sean $s, s' \in S, t, t' \in T$

$$(s,t) \mapsto st$$

 $(s',t') \mapsto s't'$

esperamos que

$$f((s,t)(s',t')) = f(st,s't') \mapsto f(s,t)f(s',t') = sts't'$$

pero en realidad ocurre que

$$f((s,t),(s',t')) \mapsto ss'tt' \neq f(s,t)f(s',t')$$

No obstante, aunque la función que lleva $H_1 \times H_2 \to H_1 H_2$ no sea un homomorfismo, sí podemos saber cuantos elementos tiene $H_1 H_2$.

Teorema 26 (Cardinalidad del producto libre). Sean $H_1, H_2 < G$ con G finito. Entonces

$$|H_1 H_2| = \frac{|H_1||H_2|}{|H_1 \cap H_2|} \tag{3.1}$$

Demostración. Utilizaremos la función $f: H_1 \times H_2 \to H_1 H_2$ que es sobreyectiva por definición de $H_1 H_2$. Para una función sobreyectiva $f: A \to B, \ |A| = \sum_{b \in B} |f^{-1}(b)|$. Sean las fibras los conjuntos $f^{-1}(h_1 h_2)$ de los pares de elementos que van a parar al mismo $h_1 h_2 \in H_1 H_2$. La condición

Sean las fibras los conjuntos $f^{-1}(h_1h_2)$ de los pares de elementos que van a parar al mismo $h_1h_2 \in H_1H_2$. La condición necesaria y suficiente para que (h'_1, h'_2) esté en la misma fibra que (h_1, h_2) es que $h'_1 = h_1\alpha \wedge h'_2 = h_2\alpha$, $\alpha \in H_1 \cap H_2$. Entonces $|f^{-1}(h_1, h_2)| = |(h_1\alpha, h_2\alpha)$, $\alpha \in H_1 \cap H_2| = |H_1 \cap H_2| \implies |H_1||H_2| = |H_1H_2||H_1 \cap H_2|$

Teorema 27. Sean H_1, H_2 subgrupos de G, con G finito. Si $H_2 \triangleleft G$ entonces $H_1H_2 \triangleleft G$ (si uno de los subgrupos es normal, entonces el producto es subgrupo).

Demostración. Observamos que podemos escribir $H_1H_2 = \bigcap_{h \in H_1} h * H_2$. Como $H_2 \lhd G$, $h * H_2 \cdot h'H_2 = hh'H_2 \ \forall h \in H_1$. Si nos fijamos H_1H_2 es cerrado por la operación pues $hh'H_2 \in H_1H_2$ y como G es finito y por tanto H_1, H_2 también, H_1H_2 es un subgrupo.

Teorema 28. Si $H_1 \triangleleft G \land H_2 \triangleleft G \implies H_1H_2 \triangleleft G$ (si los dos subgrupos son normales, enotnces el producto también es normal).

Demostración. $H_1, H_2 < G$ luego $\forall g \in G, gH_1H_2g^{-1} = gH_1g^{-1}gHg^{-1} = H_1H_2$.

3.2. Grupos cíclicos

Teorema 29. Todo subgrupo de $\mathbb{Z}/n\mathbb{Z}$ es cíclico.

Demostración. La propiedad de cíclico se hereda de \mathbb{Z} y se prueba igual utilizando el algoritmo de la división.

*

Teorema 30. Consideramos $\mathbb{Z}/n\mathbb{Z}$ Para cada divisor d de n, existe un único subgrupo cíclico de orden d.

Demostración. $d \mid n \implies n = dn' \implies n'\mathbb{Z} < n\mathbb{Z}$ Además, por el teorema de prácticas, $|n'\mathbb{Z}| = d$ y por tanto $|f(n'\mathbb{Z})| = d$ donde $f: n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ es la relación de equivalencia habitual.

Teorema 31. Sean $\overline{k}, \overline{k'} \in \mathbb{Z}/n\mathbb{Z}$. Entonces $o(\overline{k}) = o(\overline{k'}) = d \implies \langle \overline{k} \rangle = \langle \overline{k'} \rangle$

Teorema 32. Sean $n, m \in \mathbb{N}$. El grupo producto directo $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ es cíclico $\iff mcd(n, m) = 1$.

Demostración. Para que $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ sea cíclico debe haber un elemento $a \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \mid o(a) = m \cdot n$. Si m y n no son coprimos entonces el orden de a no puede ser $m \cdot n$.

Teorema 33. Si G es abeliano y $|G| < \infty$ entonces G es un producto de grupos cíclicos finitos.

Demostración. Dice que no lo vamos a probar, pero veremos algunos resultados más adelante (en la sección sobre clasificación de grupos finitos 4.2.1).

Capítulo 4

Aplicaciones prácticas

En este capítulo se aplican las definiciones y teoremas generales dados en los capítulos anteriores para obtener teoremas más concretos. En gran medida, los teoremas que se plantean en esta sección están directamente relacionados con los ejercicios de la hoja 1.

4.1. Ejemplos de grupos

4.1.1. Grupos infinitos

Ejemplo 4 (Ejemplos de grupos infinitos).

- \blacksquare (\mathbb{R} , +) es un grupo
- \blacksquare (\mathbb{R},\cdot) no es un grupo porque el 0 no tiene inverso
- \blacksquare ($\mathbb{R}\setminus\{0\},\cdot$) es un grupo
- \blacksquare ($\mathbb{R} > 0, \cdot$) es un grupo (subgrupo de \mathbb{R})
- \blacksquare ($\mathbb{R}<0,\cdot)$ no es un subgrupo porque no es cerrado
- \blacksquare (\mathbb{Z} , +) es un grupo
- $\mathbb{Z} = \{\dots, -2n, -n, 0, n, 2n, \dots\}$ con la suma es un grupo
- $GL_2(\mathbb{R}) = \{A \in \mathbb{R}^{2 \times 2} \mid \det A \neq 0\}$ las matrices reales no singulares 2×2 forman un grupo con el producto
- Por lo anterior, las aplicaciones lineales que tienen inversa forman un grupo con la composición (componer aplicaciones es lo mismo que multiplicar matrices y la inversa existe \iff det $A \neq 0$)

4.1.2. Grupos finitos.

Ejemplo 5 (Grupo de las clases módulo n). $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ con la suma es un grupo.

Ejemplo 6. El conjunto $(\mathbb{Z}^*/n\mathbb{Z}, \cdot)$ formado por $\{1, 2, \dots, n\}$ con el producto no da un grupo, porque hay elementos que no tienen inverso. Es interesante considerar el conjunto de unidades en este conjunto:

$$\mathcal{U}(\mathbb{Z}^*/n\mathbb{Z}) = \{ a \in \mathbb{Z}^*/n\mathbb{Z} \mid \exists a^{-1}, aa^{-1} = 1 \}$$

que sí es un grupo con el producto.

Ejemplo 7 (Grupo de cuaterniones). Llamamos H al subgrupo de $GL_2(\mathbb{C})$ generado por A y B: $H = \langle A, B \rangle$ donde

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \ B = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right)$$

De probar las multiplicaciones de A y de B consigo mismas y entre ellas se obtiene la presentación.

$$o(A) = o(B) = 4$$
 $A^2 = B^2$ $BA = AB^3$

y queda que $H = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$. Es posible obtener cualquier operación de A y B a partir de la presentación.

Figura 4.1: Órdenes de los elementos de H

Figura 4.2: Simetría A y rotación B que compuestas forman los elementos del grupo D_4

Ejemplo 8 (El famoso grupo D_4). D_4 es el grupo formado por las composiciones de rotaciones y simetrías que llevan un cuadrado en un cuadrado $(f(\Box) = \Box)$. También se llama grupo diédrico de órden 4. Geométricamente,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \quad \alpha = \frac{\pi}{2}$$

pero una vez hemos comprobado que todas las posibles operaciones A^iB^j y B^iA^j quedan dentro del grupo (que es cerrado), que existe el neutro (la identidad) y que cada elemento tiene su inverso, podemos obviar el significado geométrico y pasar a describirlo mediante la presentación del grupo.

$$D_4 = \langle A, B \rangle \text{ donde } o(A) = 2, \ o(B) = 4, BA = AB^3$$
 (4.1)

y además queda que $D_4 = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}.$

Figura 4.3: Órdenes de los elementos de D_4

Nota: lo que hemos hecho con un cuadrado también se puede hacer con un triángulo.

Ejemplo 9 (Grupo de biyecciones S_3). Ver figura 4.4. Llamamos S_3 al grupo de las biyecciones $f: \{1,2,3\} \to \{1,2,3\}$. También podemos pensar en este grupo como el grupo de las permutaciones de 3 elementos. De hecho, utilizamos la siguiente notación para las biyecciones de S_3 :

- (1) indica que f(1) = 1. Por defecto, f(2) = 2 y f(3) = 3.
- (12) indica que f(1) = 2 y f(2) = 1. Por defecto f(3) = 3.
- (123) indica que f(1) = 2, f(2) = 3, f(3) = 1.
- (13) indica que f(1) = 3, f(3) = 1 y por defecto f(2) = 2.

En este grupo ocurre algo parecido a lo que ocurre en D_4 . Sea a=(123),b=(12). Podemos presentar el grupo con

$$S_3 = \langle a, b \rangle \text{ donde } o(a) = 3, \ o(b) = 2, \ ba = ab^2$$
 (4.2)

y por tanto $S_3 = \{1, a, a^2, b, ab, a^2b\} = \{(1), (12), (13), (23), (123), (132)\}.$

4.2. Clasificación de grupos finitos

Vamos a aplicar el teorema 33 a grupos abelianos.

Teorema 34. Sea G abeliano con $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$. Entonces

$$G \simeq \mathbb{Z}/p_1^{\beta_{11}} \mathbb{Z} \times \mathbb{Z}/p_1^{\beta_{1s_1}} \mathbb{Z} \times \dots \mathbb{Z}/p_n^{\beta_{n1}} \mathbb{Z} \times \mathbb{Z}/p_1^{\beta_{ns_n}} \mathbb{Z} \text{ donde } \alpha_i = \sum_{j=1...s_i} \beta_{ij}$$

$$(4.3)$$

Figura 4.4: Elemento (12) de S_3

En particular, se cumple que para grupos cíclicos G de orden n, donde $G \simeq \mathbb{Z}/n\mathbb{Z}$.

Teorema 35. Sea un número y su factorización en primos: $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$. Entonces

$$\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \mathbb{Z}/p_2^{\alpha_2}\mathbb{Z} \times \dots \times \mathbb{Z}/p_n^{\alpha_n}\mathbb{Z}$$

$$\tag{4.4}$$

 $\begin{array}{l} \textit{Demostraci\'on}. \text{ Sea } d \text{ tal que } d \mid n \text{ y } n = dn'. \text{ Por tanto } n' = p_2^{\alpha_2} \dots p_n^{\alpha} \text{ y } d = p_1^{\alpha_1}. \text{ Como } \mathbb{Z}/n\mathbb{Z} = \{0,1,2,\dots,n',\dots,n-1\} \\ \text{tenemos que } o(n') = p_1^{\alpha_1}. \text{ Luego } H = \langle n' \rangle \text{ es el \'unico subgrupo de orden } p_1^{\alpha_1} \text{ y } N = \langle p_1^{\alpha_1} \rangle \text{ es el \'unico subgrupo de orden } n'. \text{ Ahora bien, por c\'omo hemos elegido } n' \text{ y } d, \ mcd(n',d) = 1 \text{ por lo que } \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/n'\mathbb{Z}. \text{ Podemos repetir este procedimiento hasta que descompongamos } n \text{ en potencias de primos y tendremos que } mcd(p_1^{\alpha_1},p_2^{\alpha_2},\dots,p_n^{\alpha_n}) = 1 \text{ y por tanto } \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \mathbb{Z}/p_2^{\alpha_2}\mathbb{Z} \times \dots \times \mathbb{Z}/p_n^{\alpha_n}\mathbb{Z} \end{array}$

Lo que nos dice este teorema es que si un grupo es cíclico de orden n entonces es isomorfo a $\mathbb{Z}/n\mathbb{Z}$ y a su vez a un producto directo en el que cada uno de los factores tiene como orden un factor de n, sin separarlos con la multiplicidad.

Ejemplo 10. Si un grupo de orden 12 es cíclico entonces es isomorfo a $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, y no es isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Teorema 36. Sea G abeliano donde $|G| = r \cdot s$ con mcd(r, s) = 1 y ean $K < G \land N < G$ donde $|K| = r \land |N| = s$. Entonces $G \simeq K \times N$.

Demostración. Sabemos que $f: K \times N \to G$, $(k, h) \mapsto kh$ es un homomorfismo y por tanto $\mathrm{Im} f < G$. Para probar que f es un isomorfismo probaremos que $\mathrm{Im} f = G$. Como $|K| = r \wedge |N| = s$ y r y s son coprimos entonces $K \cap N = \{e\}$. Por tanto $|K \cap N| = 1$ y utilizando el teorema 26 tenemos que $|KN| = \frac{|K||N|}{|K \cap N|} = |K||N| = rs$ por lo que f es sobreyectiva, y, por tanto, biyectiva, es decir, que f es un isomorfismo.

Ejemplo 11. Podemos afirmar que si |G| = 6 y G es abeliano entonces $G \simeq \mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Observemos que la hipótesis de abeliano es fundamental (ver ejemplo 19).

4.2.1. Teorema de clasificación de grupos finitos de orden pequeño

Teorema 37 (Grupos notables de distintos órdenes finitos.).

- $|G| = 3, 5, 7, 11 \dots, p$ donde p es primo:
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/p\mathbb{Z}$.
 - Abelianos no cíclicos: no hay, por el corolario del teorema de Lagrange 10.
- |G| = 4:
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/4\mathbb{Z}$
 - Abelianos no cíclicos: son isomorfos con $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - No abelianos: no hay.
- |G| = 6:
 - Abelianos cíclicos: son isomorfos con Z/6Z.
 - Abelianos no cíclicos: no hay porque todo grupo abeliano cuyo orden se puede descomponer en dos primos es cíclico (ver Hoja 1 ejercicio 19).
 - No abelianos: todos son isomorfos con $D_3 \simeq S_3$ (ver ejemplo 12).
- |G| = 8:
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/8\mathbb{Z}$.
 - Abelianos no cíclicos: son isomorfos o bien con $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ o bien con $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (depende de los órdenes de los elementos de G).
 - No abelianos: son isomorfos o bien con el famoso grupo D_4 (ver ejemplo 8) o bien con el grupo de cuaterniones H (ver ejemplo 7). Ver ejemplo 13

Demostración. En lo que resta de sección se dan algunos ejemplos de los razonamientos que llevan a estas afirmaciones.

Ejemplo 12. Sea G no abeliano con |G| = 6. Entonces $G \simeq D_3$.

Demostración. 1. G no abeliano \implies G no cíclico $\implies \exists g \in G \mid o(g) \neq 6$

- 2. G no abeliano $\implies \exists b \in G \mid o(b) \neq 2 \implies o(b) = 3$ ya que si $b \in G$ entonces $o(b) \mid |G|$ (corolario teorema de Lagrange (10)).
- 3. Sabemos pues que $\langle b \rangle = \{1, b, b^2\} < G$ y $|\langle b \rangle| = 3 \implies [G : \langle b \rangle] = \frac{|G|}{|\langle b \rangle|} = 2$. Es decir, que hay otra caja disjunta en la partición a la que llamamos K
- 4. Por el teorema del cardinal del producto libre (teorema 26) tenemos que $6 \ge |HK| = \frac{|H||K|}{|\langle b \rangle \cap K|}$. Como $\langle b \rangle \cap K = \{e\}$ por ser las cajas disjuntas tenemos que |K| = 2 ya que si fuera |K| = 3 tendríamos que $|HK| = 9 \le 6$.
- 5. Definimos $\phi_a(x): G \to G$, $x \mapsto axa^{-1}$ (el isomorfismo de conjugación). ϕ_a es un isomorfismo, incluso cuando lo restringimos a un subgrupo normal. El subgrupo $\langle b \rangle$ es normal porque tiene índice 2 (ver teorema 11).
- 6. Por ello tenemos que si $\phi_a(x) = y$ entonces tiene que ser o(x) = y. Por tanto, aplicando ϕ_a a b tenemos lo siguiente:

$$\phi_a(b) = aba^{-1} = b \implies ab = ba \implies G$$
 abeliano
 $\phi_a(b) = aba^{-1} = b^{-1} \implies ab = b^2a \implies ba = ab^2$

7. La primera no puede ser por hipótesis. La segunda nos da el final de la presentación de D_3 :

$$D_3 = \langle a, b \rangle$$
 donde $o(a) = 2$, $o(b) = 3$, $ba = ab^2$

Ejemplo 13. Probar que si G es un grupo no abeliano con |G| = 8 entonces o bien $G \simeq D_4$ o bien $G \simeq H$ donde H es el grupo de cuaterniones (ver ejemplo 7).

Demostración.

- 1. Tenemos que G no es abeliano. Por el contrarrecíproco del teorema 5 tenemos que no puede ser cíclico por lo que $\nexists g \in G \mid o(g) = 8$.
- 2. Por el teorema 2 sabemos que $\exists b \in G \mid o(b) \neq 2 \implies \mathbf{o}(\mathbf{b}) = 4$.
- 3. Por el teorema de Lagrange 10 sabemos que dicho b tiene que tener o(b) = 4 ya que $\forall b \in G, o(b) \mid |G|$. Por tanto $\langle b \rangle = \{1, b, b^2, b^3\}$.
- 4. Como $\langle b \rangle$ tiene orden 4, el índice es $[G : \langle b \rangle] = 2$ por lo que hay otro subgrupo en G disjunto a $\langle b \rangle$. Sea a un elemento de dicho subgrupo.
- 5. Fijado a, definimos el isomorfismo de conjugación $\phi_a:G\to G,\ \phi_a(x)=axa^{-1}.$ Este isomorfismo sigue siendo un isomorfismo cuando lo restringimos a un subgrupo normal como es el caso de $\langle b \rangle$ (ver teorema 11).
- 6. Para $b \in G$ pueden ocurrir las siguientes, porque ϕ_a debe mantener los órdenes por ser isomorfismo:
 - $\phi_a(b)=aba^{-1}=b \implies ab=ba \implies G$ abeliano. Descartamos esta opción por hipótesis.
 - $\phi_a(b) = aba^{-1} = b^{-1} \implies ba = ab^{-1} = ab^3$
- 7. Ahora consideramos los posibles órdenes de a que pueden ser 2 o 4 por el teorema de Lagrange:
 - Si $\mathbf{o}(\mathbf{a}) = \mathbf{2}$ entonces $G \simeq D_4$ ♣
 - Si $\mathbf{o}(\mathbf{a}) = \mathbf{4}$ entonces $\langle a \rangle = \{1, a, a^2, a^3\}.$
 - a) Miramos $\langle a \rangle \cap \langle b \rangle = \{1, a, a^2, a^3\} \cap \{1, b, b^2, b^3\} = \{1\} \implies |\langle a \rangle \cap \langle b \rangle| = 1$
 - b) Por el teorema del orden del producto libre 26 tenemos que $|\langle a \rangle \langle b \rangle| = |\langle a \rangle| |\langle b \rangle| = 4 \cdot 4 = 16$, pero esto no puede ocurrir puesto que el orden del producto puede ser como máximo 8. Es decir, que $\langle a \rangle \cap \langle b \rangle \neq \{e\}$.
 - c) Ahora bien, la intersección de subgrupos debe ser un subgrupo, luego el orden debe ser divisor del orden de los grupos intersecados. El orden de $\langle a \rangle \cap \langle b \rangle$ puede ser 1, 2 o 4.
 - d) Ya hemos visto que no puede ser 1. Tampoco puede ser 4 porque... por qué? Luego $o(\langle a \rangle \cap \langle b \rangle) = 2$ por lo que $\langle a \rangle \cap \langle b \rangle$ tiene 2 elementos.
 - e) Uno de ellos es el neutro (1). El otro no puede ser ni a, ni b porque al tener estos orden 4 tendría que haber más elementos. Tampoco puede ser ni a^3 , ni b^3 porque también tienen orden 4 por el teorema 6. Luego $\langle a \rangle \cap \langle b \rangle = \{1, a^2\} = \{1, b^2\} \implies \mathbf{a^2} = \mathbf{b^2}$.
 - f) Recopilando $o(a)=4,\ o(b)=4,\ a^2=b^2,\ ba=ab^{-1}$ tenemos que $G\simeq H$

4.3. Retículos de subgrupos importantes

Ejemplo 14 (Retículo de subgrupos de $\mathbb{Z}/8\mathbb{Z}$). Queremos saber sobre los subgrupos que tiene $\mathbb{Z}/8\mathbb{Z}$ (ver figura ??). El epimorfismo que utilizamos es $f: \mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$, $z \mapsto f(z) = \overline{z}$ el habitual.

Para ver los subgrupos de $\mathbb{Z}/8\mathbb{Z}$ miramos qué subgrupos de \mathbb{Z} contienen a ker $f = \{z \in \mathbb{Z} \mid f(z) = \overline{0}\} = \{z \in \mathbb{Z} \mid z \text{ mód } 8 = 0\} = 8\mathbb{Z}$. Es decir, tenemos que encontrar los subgrupos de \mathbb{Z} que contengan a los múltiplos de 8 (8 \mathbb{Z}):

$$\mathbb{Z} \supset 2\mathbb{Z} \supset 4\mathbb{Z} \supset 8\mathbb{Z}$$

En general, en $n\mathbb{Z}$, los subgrupos que contienen al núcleo son los $m\mathbb{Z}$ tales que $m \mid n$ (m divide a n). Luego $\mathbb{Z}/8\mathbb{Z}$ tendrá 4 subgrupos que serán $f(8\mathbb{Z}) = \mathbb{Z}/8\mathbb{Z}$, $f(4\mathbb{Z}) = \mathbb{Z}/4\mathbb{Z}$, $f(2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$, $f(\mathbb{Z}) = \{e\}$.

Figura 4.5: Retículo de subgrupos de $\mathbb{Z}/8\mathbb{Z}$

Lo mismo podríamos hacer para obtener el retículo de $\mathbb{Z}/6\mathbb{Z}$ (ver figura ??).

Figura 4.6: Retículo de subgrupos de $\mathbb{Z}/6\mathbb{Z}$

Figura 4.7: Retículo de subgrupos de D_4

Ejemplo 15 (Retículo de subgrupos de D_4). Dar el retículo de subgrupos de $D_4 = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$, donde o(A) = 2, o(B) = 4, $BA = AB^3$. En este caso no tenemos más remedio que ir probando a ver qué combinaciones de elementos dan subgrupos. Como conocemos de dónde viene D_4 nos es más fácil (ver el ejemplo 8).

Nos ayudamos de la imágen para sacarlos. La manera de hacerlo sin tener más información que la presentación del grupo es hacerse todos los subgrupos generados por cada elemento y descartar los que son iguales. Luego hacerse todos los subgrupos generados por dos elementos y descartar los que son iguales. Por alguna razón no hace falta probar con los generados por más de dos elementos. Una vez obtenidos estos grupos establecemos las relaciones de inclusión y creamos el diagrama de Hasse.

Ejemplo 16. Retículo de subgrupos del grupo de cuaterniones H (figura 4.9)

Ejemplo 17 (Retóculo de subgrupos de D_5).

4.4. Construcción de homomorfismos e isomorfismos de grupos

Sea G abeliano con |G| = n = rs, sea H < G, K < G con |H| = r, |K| = s y $H \cap K = \{e\}$.

- \blacksquare Notemos que como G es abeliano, H y K son subgrupos normales.
- Al aplicar el teorema 26 tenemos que el denominador es $|H \cap K| = 1$ por lo que |HK| = |H||K| = rs = n.
- lacktriangle Como G es abeliano:
 - 1. G = HK (porque HK es un subgrupo con el mismo número de elementos que G por el teorema 26)
 - 2. La función $f: H \times K \to G$, $(h,k) \mapsto hk$ es un homomorfismo de grupos (nótese que esto no ocurriría si G no fuese abeliano).

Es más, si se cumple todo lo anterior, f es además un isomorfismo $\implies H \times K \simeq G$.

Ejemplo 18 (Homomorfismo trivial). Siempre nos queda el homomorfismo trivial $f: G_1 \to G_2, f(g_1) = e_2, \forall g_1 \in G_1.$

Ejemplo 19. Consideramos S_3 , que tiene $|S_3| = 6$ y no es abeliano y los subgrupos $H = \langle (12) \rangle$ y $K = \langle (123) \rangle$ con |H| = 2 y |K| = 3. Podemos construir la función $f : H \times K \to S_3$ pero no es un homomorfismo de grupos. De hecho, al ser $K \lhd S_3$, el producto HK es un subgrupo y la función f es una biyección, pero aún así no es compatible con la estructura de grupo.

Ejemplo 20. Consideramos D_4 y un grupo G con $a, b \in G$ donde hemos establecido un homomorfismo que definimos con f(A) = a y f(B) = b. Ocurre lo siguiente

- El homomorfismo queda totalmente definido ya que todos los elementos de D_4 son palabras en A y B y por la estructura de homomorfismo podemos operar tras aplicar la operación a cada letra. Por ejemplo f(ABA) = aba.
- Es necesario que o(a) = 2 y o(b) = 4, de lo contrario no se cumpliría la estructura de homomorfismo entre D_4 y G.

Figura 4.8: Retículo de subgrupos de D_4 de [Epp]

Figura 4.9: Retículo de subgrupos del grupo de cuaterniones H.

Ejemplo 21. Consideramos $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ La presentación de este grupo es o(1) = n. Queremos construir un homomorfismo $f: \mathbb{Z}/n\mathbb{Z} \to G'$. Para que f sea un homomorfismo necesitamos que f(0) = e. Ahora supongamos que establecemos f(1) = a. Naturalmente sigue (para que f sea un homomorfismo) que $f(2) = a * a = a^2$. Observamos que la condición necesaria y suficiente para que el homomorfismo definido por f(1) = a es que $a^n = e$, o lo que es lo mismo que o(a) divida a n.

$$f: \mathbb{Z}/n\mathbb{Z} \to G'$$

$$0 \mapsto e$$

$$1 \mapsto a$$

$$2 \mapsto a^{2}$$

$$\dots$$

$$n = 0 \mapsto a^{n} = 0$$

Ejemplo 22. En $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ podemos construir n homomorfismos ya que

- cualquier $a \in \mathbb{Z}/n\mathbb{Z}$ es cumple la condición necesaria para que f(1) = a induzca un homomorfismo
- todo homomorfismo queda determinado por f(1) = a para algún $a \in \mathbb{Z}/n\mathbb{Z}$.

Es decir que $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \simeq \mathbb{Z}/n\mathbb{Z}$.

Ejemplo 23. Si ahora nos preguntamos por los isomorfismos $\operatorname{Isom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \subset \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ nos damos cuenta de que los únicos $a \in \mathbb{Z}/n\mathbb{Z}$ que nos dan isomorfismos son aquellos que tienen o(a) = n.

Es decir que Isom $(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \simeq \mathcal{U}(\mathbb{Z}/n\mathbb{Z})$.

Ejemplo 24 (Isomorfismo conjugación). Fijamos $g \in G$ y definimos $\phi_g : G \to G$, $x \mapsto gxg^{-1}$. Es un homomorfismo de grupos pues $y \mapsto gyg^{-1}$ y $xy \mapsto gxyg^{-1} = gxg^{-1}gyg^{-1}$.

Ahora consideramos g^{-1} y $\phi_{g^{-1}}: G \to G$, $x \mapsto g^{-1}xg$ y como antes se verifica que es homomorfismo.

Además, $\phi_g \circ \phi_{q^{-1}} = id$ luego ϕ_g es un isomorfismo de grupos.

Figura 4.10: Retículo de subgrupos de D_5 .

Ejemplo 25. Consideramos ahora $N \triangleleft G$ y por tanto para cualquier $g \in G$, gN = Ng. La función $\phi_g(N) \subset N$ es un isomorfismo que además lleva los elementos de N en N, por tanto podemos restringirla a $\phi_g : N \to N$ e inducir un isomorfismo.

Es decir, los subgrupos que no se mueven por ninguna función ϕ_q son los subgrupos normales.

Ejemplo 26. Consideramos el grupo $(\mathbb{Z}, +)$ que es cíclico y un grupo G con $a \in G$. Utilizando notación multiplicativa en la que el 1 representa el elemento neutro (en este caso $\mathbf{1} = 0$)

$$Z \to G$$

$$\mathbf{1} \mapsto a$$

$$k \mapsto a^{k}$$

$$k + k' \mapsto a^{k+k'}$$

Es decir, que al seleccionar $\mathbf{1} \mapsto a$ queda determinada la imágen de todos los demás $k \in \mathbb{Z}$ y además la función que obtenemos es un homomorfismo. Por tanto el conjunto de los homomorfismos de \mathbb{Z} en G es TODO G: Hom $(\mathbb{Z}, G) = G$.

Ejemplo 27 (del primer teorema de la isomorfía). Consideramos el grupo $G = \{1, i, -1, -i\}$ con el producto y establecemos la función $f : \mathbb{Z} \to G$ que lleva $1 \mapsto i$. Además f es sobreyectiva y ker $f = \mathbb{Z}/4\mathbb{Z}$. El primer teorema de la isomorfía nos dice que existe un isomorfísmo $\overline{f} : \mathbb{Z}/\ker f \to G$ y este es \overline{f} , $\overline{f}([a]) \mapsto i^a$ (en ker f no se repiten los elementos por lo que convertimos el epimorfismo f en un homomorfismo \overline{f}).

En general todos los grupos cíclicos de orden n son isomorfos entre sí, porque todos son isomorfos a $\mathbb{Z}/n\mathbb{Z}$ y los isomorfismos son reversibles y la composición sigue siendo isomorfismo.

Hemos visto que $\operatorname{Hom}(\mathbb{Z},G)=G$ porque al determinar f(1)=a determinamos el homomorfismo y por tanto tenemos un homomorfismo para cada elemento $a\in G$.

¿Pero qué pasa si tomamos los homomorfismos $f: \mathbb{Z}/n\mathbb{Z} \to G$ con $a \in G$ definidos por $f(\overline{1}) = a$? Pasa que para que sean homomorfismos necesitamos que o(a) = o(1) = n para que así $\overline{0} = \overline{n} \mapsto a^n = e$.

Ejemplo 28. Veamos un ejemplo (notamos que $(12)^4 = id$)

$$f: \mathbb{Z}/4\mathbb{Z} \to S_3$$

$$\overline{1} \mapsto (12)$$

$$\overline{2} \mapsto id = (1)$$

$$\overline{3} \mapsto (12)$$

$$\overline{4} = \overline{0} \mapsto id$$

Observamos que $\operatorname{Hom}(\mathbb{Z}/4\mathbb{Z}, S_3) \subset \operatorname{Hom}(\mathbb{Z}, S_3)$ puesto que al tomar $\mathbb{Z}/4\mathbb{Z}$ no podemos tomar cualquier a sino que tenemos que asegurarnos de que o(a) = o(1) (en este caso o(a) = 2 pero sigue funcionando porque lo que importa es que $a^{o(1)} = id$).

Queremos analizar los homomorfismos $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Ahora no importa el \overline{a} que elijamos para que f sea homomorfismo porque $\mathrm{Im} f = \langle \overline{a} \rangle$.

Para que f sea epimorfismo, necesitamos que $\mathrm{Im} f = \langle \overline{a} \rangle = \mathbb{Z}/n\mathbb{Z}$ es decir que o(a) sea coprimo con n. Concluímos que $\mathrm{Aut}(\mathbb{Z}/n\mathbb{Z}) \subset \mathrm{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$.

Parte II Parcial 2 - hojas 2, 3 y 4

Capítulo 5

El teorema de Cauchy

5.1. Consideraciones previas

5.1.1. Centro de un grupo

Definición 19 (Centro de un grupo). Sea G un grupo finito. Definimos el centro de G, $Z(G) = \{a \in G \mid \forall g \in G, ag = ga\}$.

El centro es útil en grupos finitos no abelianos.

Proposición 17. Sean $a, b \in Z(G)$. Entonces $ab \in Z(G)$.

Demostración. Tenemos que ag = ga y que bg = gb. Ahora tenemos que probar que g(ab) = (ab)g. Es trivial manipulando (ab)g = agb = gab.

Proposición 18. Sea G un grupo. Z(G) es un subgrupo y además es un subgrupo normal.

$$Demostraci\'on. \ \forall g \in G, \ Z(G)g = \{ag \mid a \in G \land \forall b \in G, \ ab = ba\} = \{ga \mid a \in G \land \forall b \in G, \ ab = ba\} = gZ(G).$$

Proposición 19. Si H < Z(G) entonces H es abeliano y normal.

Proposición 20. Sea $g \in G$, $\phi_g : G \to G$ el isomorfismo definido por $\phi_g(x) = gxg^{-1}$. Entonces

$$x \in Z(G) \iff \forall g \in G, gx = xg \iff gxg^{-1} = x$$

 $x \in Z(G) \iff \forall g \in G, \ \phi_g(x) = x$

Proposición 21. G es abeliano $\iff G = Z(G)$

Sea $a \in G \land o(a) = n$. Si a es el único elemento de orden n entonces $n = 2 \land a \in Z(G)$. Probamos primero que n = 2. Si a es el único elemento de orden n entonces tiene que ocurrir que a y a^{n-1} tienen el mismo orden por lo que $1 = n - 1 \implies n = 2$.

Proposición 22. Si G/Z(G) es cíclico de orden n entonces n = 1. Otra manera de formularlo: Si G/Z(G) es cíclico, entonces G = Z(G). Otra manera más de formularlo: si G/Z(G) es cíclico entonces G es abeliano.

Demostración. Supongamos que $G/Z(G)\simeq \mathbb{Z}/n\mathbb{Z}$. Vamos a probar que n tiene que ser 1. Supongmos que $G/Z(G)=\{\overline{\alpha_i},i=1,\ldots,n\}$ donde $\overline{\alpha_i}=\alpha^i Z(G)$. Fijamos $g\in G$ con $g=\alpha^j h$, $h\in Z(G)$, $0\leqslant j< n$ y fijamos $f'\in G$ con $g'=\alpha^{j'}h'$, $h'\in Z(G)$, $0\leqslant j'< n$. Entonces $gg'=\alpha^j h\alpha^{j'}h'=\alpha^{j+j'}hh'=\alpha^{j'}h'\alpha^j h=gg'$ (podemos conmutar las h con cualquier elemento porque $h\in Z(G)$, por el contrario, los α no necesitamos conmutarlos, solo agruparlos cuando están juntos). Es decir, que $\forall g,g'\in G$ tenemos que gg'=g'g por lo que G es abeliano.

Ejemplo 29 (Hoja 1, ej 33). Sea G un grupo. Suponed que existe un único $a \in G$ de orden 2. Demostrad que $a \in Z(G)$.

Demostración. Recordamos que $a \in Z(G) \iff ga = ag, \ \forall g \in G$. Definimos el isomorfismo de conjugación $\phi_g(x) = gxg^{-1}$ para algún g. Como ϕ_g es isomorfismo lleva elementos de orden n en elementos de orden n. Entonces $\phi_g(a) = a$ ya que a es el único elemento de orden 2. Por tanto $gag^{-1} = a \implies ga = ag \implies a \in Z(G)$.

5.1.2. Centralizador de un elemento

Definición 20 (Grupo de automorfismos). Sea G un grupo. Llamamos grupo de automorfismos al grupo

$$Aut(G) = \{ f \mid f : G \to G \text{ isomorfismo} \}$$

$$(5.1)$$

Proposición 23. La función $\gamma: G \to Aut(G)$ definida con $\gamma(g) \mapsto \gamma_g$, donde $\gamma_g: G \to G, \gamma_g(x) = gxg^{-1}$, es un homomorfismo.

Demostración. Verifica la definición: para $g, g' \in G$

-

Definición 21 (Elementos conjugados). Sean $a, b \in G$. Decimos que a y b son conjugados $\iff \exists g \in G \mid \gamma_g(a) = b$.

Nota: La relación de conjugación solo merece la pena en grupos no abelianos, porque en un grupo abeliano, cualquier par de elementos es conjugado.

Ejemplo 30. En S_3 afirmamos lo siguiente:

- que 1 solo tiene como conjugado a sí mismo,
- que $\{(12), (13), (23)\}$ son conjugados entre sí,
- y que {(123), (132)} también son conjugados entre sí.

Es decir, que la conjugación nos genera una partición con 3 cajas disjuntas.

Proposición 24. La relación de conjugación es una relación de equivalencia aRb \iff a y b son conjugados.

Demostración. Comprobamos que R es una relación de equivalencia:

- 1. Reflexiva: $\forall a \in R, aRa$: tomamos q = e y automáticamente tenemos que $eae^{-1} = a$.
- 2. Simétrica: $\forall a, b \in R, aRb \implies bRa$: $\exists g, gag^{-1} = b$. Tomamos $\gamma_{g^{-1}}$ y tenemos que $\gamma_{g^{-1}}(b) = a \implies bRa$.
- 3. Transitiva: $\forall a, b, c \in G$, $aRb \land bRc \implies aRc$. Por hipótesis tenemos que $\exists g \in G \mid \gamma_g(a) = b \land \exists g' \in G \mid \gamma_{g'}(b) = c$. Por tanto $\gamma_{gg'}(a) = (\gamma_{g'}\gamma_g)(a) = \gamma_{g'}(b) = c$.

*

En esta relación de equivalencia, las clases de equivalencia son de la forma $\overline{a} = \{gag^{-1} \mid g \in G\}$ (conjuntos de los elementos que son conjugados de a). Queremos saber cuántos elementos hay en cada clase de equivalencia.

Fijamos $a \in G$ y definimos

Definición 22 (Centralizador de un elemento). Sea $a \in G$. Llamamos centralizador de a al conjunto

$$C(a) = \{ g \in G \mid \gamma_g(a) = gag^{-1} = a \}$$
(5.2)

Se tiene que $\forall a \in G, e \in C(a)$, es decir que C(a) no es vacío.

Proposición 25. $a \in Z(G) \iff C(a) = G \iff [G:C(a)] = 1$

Demostración. Es cristalina de las definiciones.

Proposición 26. C(a) es un subgrupo de G

Demostración. Por el teorema 8 solo necesitamos probar la clausura, es decir, tenemos que probar que $\forall g, g' \in G, g \in C(a) \land g' \in C(a) \implies gg' \in C(a)$. Sale solo $(gg')agg'^{-1} = gg'a(g')^{-1}g^{-1} = gag^{-1} = a \in C(a)$.

Proposición 27. $|\{gag^{-1} \mid g \in G\}| = [G : C(a)] = r$ (el número de elementos de una clase de equivalencia es el índice de un representante)

Demostración. Fijamos $a \in G$ y definimos $H = C(a) = \{g \in G \mid gag^{-1} = a\}.$

*

5.2. Teorema de Cauchy

Teorema 38 (de Cauchy). Sea G un grupo finito con |G| = n. Si p es primo y $p \mid n$ entonces G contiene un elemento de orden p.

Demostración. Procedemos por casos:

■ Si G es abeliano. Descomponemos $|G| = n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$. Por el teorema 33, $G \simeq \mathbb{Z}/p_1^{\beta_1} \mathbb{Z} \times \mathbb{Z}/p_2^{\beta_2} \mathbb{Z} \times \dots \times \mathbb{Z}/p_s^{\beta_r} \mathbb{Z}$ donde cada α_i es la suma de algunos β_r .

■ Si G no es abeliano. Particionamos G con la relación de equivalencia dada anteriormente (definición 21), $aRb \iff \exists g \in G \mid gag^{-1} = b$. Recordemos que cada clase de equivalencia es de la forma $\bar{c} = \{gcg^{-1} \mid g \in G\}$. Observamos que si partimos de e, el elemento neutro, $eRb \implies \exists g \mid geg^{-1} = b$ pero $\forall g \in G, geg^{-1} = e$ por lo que cl(e) tiene un único elemento.

Tomemos ahora una clase de equivalencia, la que contenga a $a \in G$. La clase es $cl(a) = \{gag^{-1} \mid g \in G\}$. Es claro que $a \in \overline{a}$ por la propiedad reflexiva de R, luego por lo menos en cl(a) tiene un elemento.

$$cl(a) = \{gag^{-1} \mid g \in G\} = \{a\} \iff gag^{-1} = a, \ \forall g \in G\}$$

 $\iff ga = ag, \ \forall g \in G\}$
 $|cl(a)| = 1 \iff \overline{a} = 1$
 $\iff a \in Z(G)$

Supongamos que la partición está dada por subconjuntos $cl(a_1), cl(a_2), \ldots, cl(a_s)$. Por ser una partición, cualquier elemento vive en una sola caja, luego para saber cuantos elementos tiene G nos vale con sumar los elementos de cada caja:

$$|G| = \sum_{i=1}^{s} |cl(a_i)| = \sum_{i=1}^{n} |\{ga_ig^{-1} \mid g \in G\}|$$

Ahora bien, por la proposición 27 tenemos que $|cl(a_i)| = [G:C(a_i)]$. Por tanto decir que $|cl(a_i)| = 1 \implies [G:C(a_i)] = 1 \implies G = C(a_i)$.

Ahora vamos a dividir el sumatorio en dos: por un lado las cajas de un solo elemento y luego las cajas de varios elementos:

$$|G| = |Z(G)| + \sum_{i=r+1}^{s} [G:C(a_i)] \text{ donde } |Z(G)| = r \text{ y } [G:C(a_i)] \ge 2, \forall i = r+1,\dots,s$$
 (5.3)

Ahora para probar el teorema de Cauchy procedemos por inducción en $n = |G| = [G : C(a_i)] \cdot |C(a_i)|$.

- 1. Caso n = 1. $G = \{e\}$ que es obvio.
- 2. Caso n=2. Son grupos cíclicos por lo que $\exists \alpha \in G \mid o(\alpha)=2$.
- 3. Caso $n \implies n+1$. Pueden pasar dos cosas:
 - o bien $p \mid |C(a_i)|$ para algún $i = r + 1, \ldots, s$ entonces, por hipótesis inductiva, $C(a_i)$ contiene algún elemento de orden p. Pues ya está: $C(a_i) < G$ porque $\alpha \in C(a_i) \mid o(\alpha) = p \implies \alpha \in G$ también).
 - o bien $p \nmid |C(a_i)|$, $\forall i = r+1, \ldots, s$. No podemos proceder por inducción. Por hipótesis $|G| = [G:C(a_i)] \cdot |C(a_i)| \wedge p \mid |G| \implies p \mid [G:C(a_i)]$, $\forall i = r+1, \ldots, s$. Como $|G| = |Z(G)| + \sum_{i=r+1}^{s} [G:C(a_i)]$ y por hipótesis $p \mid |G| \wedge p \mid [G:C(a_i)]$, $\forall i = r+1, \ldots, s \implies p \mid |Z(G)| \implies |Z(G)|$ es múltiplo de p. Como Z(G) es abeliano, $\exists \alpha \in Z(G) \mid o(\alpha) = p$. Luego se reduce al caso abeliano y ya estaría

Ejemplo 31. Sea G tal que |G| = pq. Entonces por le teorema de Cauchy $\exists a, b \in G \mid o(a) = p \land o(b) = q$. Como $p \neq q$ son primos los ordenes de $\langle a \rangle \neq \langle b \rangle$ son coprimos q por tanto $\langle a \rangle \cap \langle b \rangle = \{e\}$. Por el teorema del orden de conjunto producto libre (26), $|\langle a \rangle \langle b \rangle| = pq$. Lo que si que sabemos es que $G = \{a^i b^j \mid 0 \le i < p-1 \land 0 \le j < q-1\} = \langle a, b \rangle$.

Ejemplo 32. Sea G tal que |G|=2q. Análogamente al caso anterior llegamos a que o(a)=2. Como $\langle b \rangle$ tiene índice 2 entonces $\langle b \rangle \lhd G$. Esto nos permite saber como operar con las palabras a^ib^j una vez tenemos un isomorfismo que lleva $aba^{-1}=b^j$ (tiene que ir a algún b^j porque por ser isomorfismo tiene que llevar elementos de orden q en elementos de orden q: los $b \in \langle b \rangle$)

Dada la relación de equivalencia de conjugación (definición 21), definimos C como el conjunto de los representantes de las clases de equivalencia. Entonces podemos decir

$$G = \bigcup_{c: \in C} \{a \in G \mid aRc_i\}$$

Observemos que $d \in Z(G) \iff \{a \in G \mid aRd\} = \{gdg^{-1} \mid g \in G\} = \{d\}$. Y por tanto podemos escribir $C = Z(G) \cup (C \setminus Z(G))$

que aunque pareza obvio quiere decir que C se puede expresar como la unión disjunta de las cajas que tienen solo un elemento que se corresponden con elementos que están en el centro y las cajas que tienen más de uno. Y por lo visto en la demostración del teorema de Cauchy tenemos que

$$|G| = \sum_{c_i \in C} |\overline{c_i}| = |Z(G)| + \sum_{i=r+1}^s [G : C(a_i)] \text{ donde } [G : C(a_i)] \ge 2$$

 $^{^{1}}$ No sabemos si alguno es normal, luego no tenemos garantías de que el producto sea un grupo

5.3. P-grupos

Definición 23 (P-grupo). Sea p primo. Decimos que G es un p-grupo si $|G| = p^r$.

Nos interesan sobre todo los p-grupos no abelianos

Teorema 39. Si G es un p-grupo entonces Z(G) es no trivial (no es el vacío).

Demostración. Podemos escribir sin distinguir entre cajas de uno o varios elementos

$$|G| = |C(c_i)||[G : C(c_i)]|$$

es decir que tenemos una factorización de $|G| = p^r$ luego $|C(c_i)|$ y $|[G:C(c_i)]|$ son ambos potencias de p. Y aplicando esto a la expresión 5.3 tenemos que

$$\underbrace{|G|}_{\text{múltiplo de p}} = |Z(G)| + \sum_{i=r+1}^{s} \underbrace{[G:C(a_i)]}_{\text{múltiplo de p}} \text{ donde } [G:C(a_i)] \geqslant 2$$

por lo que |Z(g)| tiene que ser múltiplo p por lo que Z(G) no puede ser el trivial.

Ejemplo 33. Tenemos que $Z(D_4) = \{1, B^2\}$ y $Z(H) = \{1, B^2\}$ donde H es el grupo de cuateriones (ejemplo 7) y D_4 es el famoso grupo (ejemplo 8).

Proposición 28. Si p es primo $y|G| = p^2$ entonces G es abeliano.

Demostración. Por el la demostración del teorema anterior tenemos que o bien |Z(G)| = p o bien $|Z(G)| = p^2$. Afirmamos que $|Z(G)| \neq p$ ya que si fuera así $|G/Z(G)| = p \implies G/Z(G)$ cíclico pero hemos probado (proposición 22) que G/Z(G) no puede ser cíclico. Por lo tanto $|Z(G)| = p^2 \implies Z(G) = G \implies G$ es abeliano.

Sea \sim una relación de equivalencia definida por $a \sim b \iff \exists g \in G \mid gag^{-1} = b$ para $a, b \in G$. Esta relación da una partición de G en clases de la forma $cl(a) = \{gag^{-1} \mid g \in G\}$. En el caso abeliano esta relación es la de igualdad, por lo que no nos merece la pena liar este pifostio para saber que $a \sim b \iff a = b$.

Es muy importante saber cómo contamos los elementos de una clase, es decir, de cuantas formas podemos mover el elemento a con $g \in G$. Para ello definimos el centralizador (definición 22) como $C(a) = \{h \in G \mid hah^{-1} = a\} < G$. Queremos probar que |cl(a)| = [G:C(a)] = r.

Lo probamos tomando clases laterales a la izquierda (por ejemplo) y partiendo G en r cajas. Las cajas son de la forma $\alpha_i C(a), i = 1, \dots, r$. Esta partición no tiene que ver con la partición anterior. Observemos que para cualquier $g \in \alpha_i C(a), g = 1, \dots, r$ $\alpha_i h$, tenemos que $gag^{-1} = \alpha_i hah^{-1}\alpha_i^{-1} = \alpha_i a\alpha_i^{-1}$ es decir que los $g \in C(a)$ no se mueven fuera de la caja. Es decir, que si $\alpha_i \neq \alpha_j$ para $i \neq j$ entonces hay r maneras de mover a g y por tanto |cl(a)| = r.

Probaremos que en efecto los α_i son distintos. Sean $g_1, g_2 \in G$. $g_1 a g_1^{-1} = g_2 a g_2^{-1} \iff (g_2^{-1} g_1) a (g_1^{-1} g_2) = a \iff (g_2^{-1} g_1) a (g_2^{-1} g_1)^{-1} \iff C(a) g_2^{-1} g_1 \in C(a) \iff C(a) g_2^{-1} g_1 \in C(a)$ $g_1 \in g_2C(a)$.

Si G/\sim tiene N elementos, tomamos $\{c_1,\ldots,c_N\}$ como el conjunto de los representantes, donde c_i es un representante de cada conjunto de la partición. Entonces pordemos expresar

$$G = \bigcup_{c_i \in C} = cl(c_i)$$

donde $|cl(c_i)| = [G:C(c_i)]$. Por tanto decir que $|cl(c_i)| = 1$ es equivalente (\iff) a decir que $G = C(c_i) = \{ \forall g \in G, gcg^{-1} = 1 \}$ $c\} \iff c \in Z(G).$

Afirmábamos que

$$|G| = \sum_{c_i \in C} |cl(c_i)| = |Z(G)| + \sum_{c_i \in C \setminus Z(G)} [G : C(c_i)]$$

descomponiendo la suma en las clases con solo un elemento y las clases con más de dos elementos.

Ejemplo 34. Consideramos D_3 (ver ejemplo ??). Nos fijamos en que $B \notin Z(D_3)$ es decir que en cl(B) hay más de un elemento. En particular por lo visto anteriormente |cl(B)| = [G:C(B)]. Ahora bien $C(B) = \{1, B, B^2\}$ luego |cl(B)| = [G:C(B)] = 2. La pregunta es ¿quién es el compañero de B en su clase? Es fácil, recordamos que $\phi_q(x) = gxg^{-1}$ (el isomorfismo conjugación) es un isomorfismo y que $\{1, B, B^2\}$ es normal, por lo que $o(B) = o(\phi_q(B)) = 2$. Entonces $\phi_q(B) \neq 1$ porque no coinciden los órdenes, de manera que $\phi_q(B) = B^2$ por necesidad. Luego el otro elemento es el B^2 .

5.3. P-GRUPOS 35

¿Qué pasa con el elemento A? Pues ocurre que $A \in C(A)$ y $\{1,A\} \in C(A)$ y en realidad no puede haber más porque si hubiese un tercero, $\{1,A\}$ es un subgrupo de orden $2 \implies o(\{1,A\})$ no divide a $3 \implies$ si hubiese más, $C(A) = D_3$ y eso no puede ser $\implies C(A) = \{1,A\} \implies |cl(A)| = [D_3:C(A)] = 6/2 = 3$. Como las clases son disjuntas los tres elementos sobrantes forman la última caja.

Para conlcuir queda que la relación \sim parte D_3 en 3 cajas, a saber:

$$D_3 = \{ \underbrace{1}, \underbrace{B, B^2}, \underbrace{A, AB, AB^2} \}$$

Ejemplo 35. El caso del famoso grupo D_4 (ver ejemplo 8)es mucho más interesante porque $Z(D_4)$ no es trivial. Elegimos por ejemplo el elemento B^2 . Probar que $\phi_g(B^2) = gB^2g^{-1} = B^2$, $\forall g \in D_4$ es complicado. Pero fijémonos en que $\phi_B(B^2) = BB^2B^{-1} = B^2$ y que $\phi_A(B^2) = AB^2A^{-1} = B^2$. Entonces cualquier palabra en A y en B no mueve a B^2 , por ejemplo $AB(B^2)B^{-1}A^{-1} = B^2$. Nos convencemos de que $B^2 \in Z(D_4)$. Con esto ya tenemos que $|Z(D_4)| \ge 2$ (puesto que de momento ya sabemos que $1, B^2 \in Z(G)$. Podría ser entonces $|Z(D_4)| = 4,8$ (probamos los divisores de $|D_4|$). Como D_4 no es abeliano, es claro que $|Z(D_4)| \ne 8$. Tampoco puede ser $|Z(D_4)| \ne 4$ porque si tuviera 4, el cociente $D_4/Z(G)$ tendría orden 2 y por tanto sería cíclico. Pero ya hemos probado que G/Z(G) no puede ser cíclico (ver proposición 22). Luego ya sabemos que $Z(D_4) = \{1, B^2\}$.

Vamos a seguir sacando cajas. Veamos cl(B). Claramente $B \in C(B)$ y por alguna razón que me falta $C(B) = \{1, B, B^2, B^3\}$. Por la fórmula tenemos que $|cl(B)| = [D_4 : C(B)] = 2$. Tenemos una vez más que utilizar el isomorfismo de conjugación. Sabemos que $cl(B) = \{gag^{-1} \mid g \in G\}$. Pero al ser ϕ_g isomorfismo y $\langle B \rangle$ normal, tenemos que $\phi_g : \langle b \rangle \to \langle b \rangle$ también es isomorfismo y por tanto lleva elementos de orden n en elementos de orden n. Por tanto $\phi_g(B) = gBg^{-1}$ solo puede ser B^3 (a parte de B). Luego ya tenemos que $cl(B) = \{B, B^3\}$.

¿Qué pasa con A? Pues es claro que $C(A) \supset \{1, A, B^2, AB^2\}$ ya que $B^2 \in Z(G)$ por lo que está en todos los $C(c_i)$.

Vez pasada tomábamos $a \in G$ y teníamos $cl(a) = \{gag^{-1} \mid g \in G\} = \{a = a_1, a_2, \dots, a_r\}$ y $C(a) = \{g \in G \mid hah^{-1} = a\}$. Concluíamos que |cl(a)| = [G : C(a)].

Vamos a generalizar al caso $S \subset G$, $S \neq \emptyset$. Consideramos la familia de subconjuntos siguiente:

$$\{gSg^{-1} \mid g \in G\} = \{S = S_1, S_2, \dots, S_r\}$$

que tiene r subconjuntos distintos.

Recordemos que la conjugación dada $\phi_g(x) = gxg^{-1}$ (el isomorfismo conjugación) es un isomorfismo², y por tanto una biyección entre subconjuntos $S_i \subset G$. Por tanto $|S| = \phi_g(S)$.

Definición 24 (Normalizador de un subgrupo). Fijado $S \subset G$, definimos el normalizador de S:

$$N(S) = \{ h \in G \mid hSg^{-1} = S \}$$
 (5.4)

Se parece mucho a la definición de centralizador de un elemento (22). En el caso en que $S = \{a\}$ tenemos que $N(S) = \{h \in G \mid hah^{-1} = a\} = C(a)$.

Ojo, decir que $hSh^{-1} = S$ no significa que $\forall b_i \in S$, $hb_ih^{-1} = b_i$, sino que $hb_ih^{-1} \in S$ (no mandamos cada elemento a él mismo, sino que todos quedan dentro del subconjunto). Es decir que N(S) es el conjunto de la totalidad de elementos para los que ϕ_q manda el subconjunto S en sí mismo.

Proposición 29. Dado $S \subset G$, N(S) es un subgrupo.

Demostración.

Como G es finito, N(S) es subgrupo $\iff S \neq \emptyset \land N(S)$ es cerrado por la operación.

- Es claro que $e \in N(S)$ pues $eSe^{-1} = S$, luego $N(S) \neq \emptyset$.
- Tenemos que probar la clausura. Si $h_1Sh_1^{-1} = S \wedge h_2Sh_2^{-1} = S$ tenemos que $\underbrace{(h_2Sh_2^{-1})}_{\in S}h_1^{-1} = S \implies h_1h_2 \in N(S)$.

Proposición 30. $\{gSg^{-1} \mid g \in G\} = \{S = S_1, S_2, \dots, S_r\}$ son r subconjuntos distintos. Es decir que r = [G : N(S)].

Demostración. A la izquierda del lector.³

Supongamos ahora que en vez de ser $S \subset G$, tomamos S < G. Recordemos que dado $g \in G$, ϕ_g es un isomorfismo por tanto manda elementos de un subgrupo en otro subgrupo (si el subgrupo es normal, manda elementos de un subgrupo en sí mismo).

 $^{^2}$ A veces tomate frito llama a este isomorfismo γ_a

³Left to the reader.

Proposición 31. H < N(H)

Demostración. Si tomamos $h \in G$, tenemos que $hHg^{-1} = H$ y también $h^{-1}H(h^{-1})^{-1} = H$ (todo elemento de H tambéin tiene a su inverso en H).

Teorema 40. Sea G grupo, H < G. Entonces $H \lhd N(H)$ y N(H) es el mayor subgrupo de G con esta propiedad, es decir, $H \lhd H' \implies H' < N(H)$.

Demostración.

- Para probar que $N \triangleleft N(H)$ tiene sentido olivdarse del grupo G. Tenemos que $h \in N(H) \iff hHh^{-1} = H, \forall h \in G$. En particular, tenemos que $hHh^{-1} = H, \forall h \in N(H) \implies H$ es normal en N(H).
- Para porbar que N(H) es el mayor subgrupo con esta propiedad demostraremos que si H < H' y $H \triangleleft H'$ entonces $H' \subseteq N(H)$. La demostración es casi una tautología. Tenemos que $\forall h' \in H'$, $h'Hh'^{-1} = H \implies \forall h' \in H'$, $h' \in N(H) \implies H' \subset N(H)$.

Corolario 8. $H \triangleleft G \iff N(H) = G$

Demostración. Sabemos que $H \lhd H = \{gHg^{-1} \mid g \in G\}$ y dicho conjunto tiene [G:N(H)] = 1 elementos, luego N(H) = G. En otras palabras, el normalizador de un subgrupo H < G normal es todo el grupo G.

Proposición 32. Z(G) < N(H)

Demostración. Por definición de Z(G) tenemos que los elementos $g \in Z(G)$ fijan no solo los elementos dentro de subconjuntos, sino que los fijan uno a uno. Por lo que es claro que Z(G) < N(H).

Ejemplo 36. Vamos a empezar por $G = S_3$. En S_3 tenemos los subgrupos $\langle (12) \rangle, \langle (13) \rangle, \langle (23) \rangle$ de orden 2 y el subgrupo $\langle (123) \rangle = \{(1), (123), (132)\}$ de orden 3.

- En el caso de este último $g\langle (123)\rangle g^{-1} = \langle (123)\rangle$ porque es el único subgrupo de orden 3. Por tanto $\langle (123)\rangle \lhd S_3$ y entonces $N(\langle (123)\rangle) = S_3$.
- Sin encambio en el caso de los subgrupos de orden 2 es posible que $g\langle(12)\rangle \neq \langle(12)\rangle$, porque hay más de un subgrupo de orden 2. Observemos por ejemplo que $(13)(12)(13)^{-1} = (32) = (23)$, luego $\langle(12)\rangle$ no es normal en S_3 , ya que hemos encontrado $g = (13) \in G$ que lo mueve. Pero ¿quién es el normalizador $N(\langle(12)\rangle)$? Pues ya sabemos que es un subgrupo propio, porque no puede dar todo S_3 . Evidentemente $\langle(12)\rangle \subset N(\langle(12)\rangle)$. Luego tiene que ser que $N(\langle(12)\rangle) = \langle(12)\rangle^4$

Ejemplo 37. Seguimos por el famoso grupo D_4 (presentación en el ejemplo 8). Vimos anteriormente (ejemplo 35) que $Z(D_4) = \{1, B^2\}$. Tenemos su retículo en 4.7. Queremos ver de entre los subgrupos de D_4 , cuáles son los que conmutan.

- Empecemos por $\langle b \rangle = \{1, b, b^3, b^3\}$. Observamos que $\langle b \rangle$ es normal puesto que tiene índice 2, es decir que $\{g\langle B \rangle g^{-1} \mid g \in G\} = \{\langle B \rangle\}$ y tiene sentido que $[G: N(\langle B \rangle)] = 1$. Es decir que como $\langle B \rangle$ es normal tenemos que $N(\langle B \rangle) = D_4$.
- Seguimos por $H = \{1, A, B^2, AB^2\}$. Ocurre lo mismo, luego $N(H) = D_4$.
- Con el caso de $\langle B^2 \rangle$ tenemos también que $N(\langle B^2 \rangle) = D_4$ por ser normal.
- Agotados los subgrupos normales, nos quedan los más difíciles. Consideramos ahora $\langle A \rangle$. Una vez más nos preguntamos quién es el normalizador de $\langle A \rangle$.
 - 1. Es claro que $\langle A \rangle$ conjugará con otros subgrupos de orden 2.
 - 2. También es claro que $\langle A \rangle \subset N(\langle A \rangle)$ y que $\langle B^2 \rangle \subset N(\langle A \rangle)$. Luego $N(\langle A \rangle)$ tiene al menos 2 elementos.
 - 3. También sabemos que $N(\langle A \rangle) \subsetneq G$ puesto que $\langle A \rangle$ no es normal, por lo que no puede tener 8 elementos. Por esto y porque $N(\langle A \rangle) < G$, concluimos que $|N(\langle A \rangle)| = 4$.
 - 4. ¿Cuáles mueven al $\langle A \rangle$? Sabemos que no puede haber más de dos, pues el normalizador tiene 4 elementos. Pues mirando la presentación nos damos cuenta de que $BA = AB^{-1} \iff BAB^{-1} = AB^2$. Luego nos damos cuenta de que A se mueve a AB^2 .
 - 5. Análogamente nos damos cuenta de que AB se mueve a AB^3 .
 - 6. Ya tenemos los dos elementos que se mueven.

Ejemplo 38. Vamos ahora con el grupo de cuaterniones H descrito en el ejemplo 7.

⁴No tiene gracia que $\langle (12) \rangle$ sea normal en sí mismo, lo que tiene gracia es que $\langle (12) \rangle$ es el mayor grupo donde $\langle (12) \rangle$ es normal.

5.3. *P-GRUPOS* 37

- 1. Nos dibujamos el retículo.
- 2. Primeramente nos damos cuenta de que $\langle A \rangle \cap \langle b \rangle \supseteq \{e\}$ porque H tiene 8 elementos y por la fórmula del producto libre 26 y porque todo producto directo de subgrupos está contenido en el grupo aunque no sea subgrupo.
- 3. Ocurre lo mismo con los demás subgrupos de orden 4 ($\langle A \rangle$, $\langle AB \rangle$). Tiene que tener intersección no vacía. En concreto la intersección es el subgrupo generado $\langle A^2 = B^2 = (AB)^2 \rangle$.
- 4. En H todos los subgrupos son normales, por lo que no tienen "órbitas" de modo que es muy aburrido.

Ejemplo 39. Consideramos ahora D_5 que funciona como el D_4 :

$$D_5 = \{1, B, B^2, B^3, B^4, A, AB, AB^2, AB^3, AB^4\}$$
$$o(B) = 5$$

- Primera observación. Como o(B) = 5 que es primo, tenemos que $o(B^k) = 5$, k = 1, ..., 4. Luego cualquier subgrupo generado por $\langle B^k \rangle = \langle B \rangle$. Aquí falta algo.
- Observemos que los subgrupos propios pueden ser de 2 o 5 elementos.
- No puede haber subgrupos generados por dos elementos de D_5 (por qué?)
- Los únicos subgrupos son $\langle B \rangle$ y los generados por A, AB, AB^2, AB^3, AB^4 .
- Afirmamos que $\{gAg^{-1} \mid g \in G\} = \{\langle A \rangle, \langle AB \rangle, \langle AB^2 \rangle, \langle AB^3 \rangle, \langle AB^4 \rangle\}$. Vamos a probarlo.
 - 1. Primero nos damos cuenta de que $\{1, A\} \in N(\langle A \rangle)$.
 - 2. Además tenemos que no puede haber otro grupo por encima de $\langle A \rangle$ y D_5 por lo que tenemos que $N(A) = \langle A \rangle$.
 - 3. Por tanto en la órbita de A tenemos $[D_5:\langle A\rangle]=5$ grupos.

Sea X conjunto. Consideramos

$$Biy(X) = \{ f \mid f : X \to X \text{ biyección} \}$$

En el caso en que |X| = n, por ejemplo $X = \{1, 2, 3, ..., n\}$ tenemos que $Biy(X) = S_n$. Como $f: X \to X$ si f es inyectiva entonces automáticamente es sobre y por tanto biyectiva.

En general, tiene sentido pensar en Biy(X) aunque $|X| = \infty$. Además, en dicho conjunto viven la biyección identidad y la biyección inversa para cada biyección. Por tanto, tiene sentido pensar en $(Biy(X), \circ)$ como un grupo (la composición de biyecciones da una biyección).

Nos concentramos en el caso en el que |X| = n que nos da $Biy(X) = S_n$. Ya hemos visto que $S_2 = \{1, \sigma\} \implies |S_2| = 2$ y para S_3 tenemos $|S_3| = 3!$ y en general $|S_n| = n!$.

Fijamos un conjunto X y un homomorfismo de grupos $\alpha: X \to Biy(X)$. A partir de estos datos definimos una relación de equivalencia que nos da una partición de X, es decir, vamos a partir X en conjuntos disjuntos.

Ejemplo 40. Supongamos⁵ G = X, |G| = n y consideramos $\rho : G \to \operatorname{Aut}(G) \subset Biy(X)$. Definimos la relación en X = G

$$aRb \iff \exists g \in G \mid \phi_g(a) = b, \ \phi_g(x) = gxg^{-1}$$

que es la relación de conjugación dada por el isomorfismo de conjugación de toda la vida.

Ahora, en lugar de pensar en G = X pensamos en $X = \{H < G\}$ (los subgrupos de G). Para cualquier isomorfismo de grupos $\beta : G \to G$, tenemos que si H < G entonces $\beta(H) < G$.

Lo que hemos hecho aquí es un caso particular de lo que viene ahora.

Proposición 33. Sea $\alpha: G \to Biy(X), g \mapsto \alpha(g)$ un homomorfismo de grupos. Definimos la relación de equivalencia

$$aRb \iff \exists g \in G \mid \alpha(g)(a) = b$$
 (5.5)

Afirmamos que la relación es de equivalencia y que nos divide G en subconjuntos disjuntos (nos particiona G).

Demostración. Probamos las 3 propiedades de las relaciones de equivalencia.

- 1. Reflexiva: $\forall x \in X, aRa$. Por ser α homomorfismo tenemos que $\alpha(e_G) = id_X$ y por tanto $\alpha(e_G)(a) = a$.
- 2. Simétrica: $aRb \implies bRa$. Partimos de que $\exists g \in G \mid \alpha(g)(a) = b$. Tomamos $g^{-1} \in G$ y por ser α homomorfismo de grupos tenemos que $\alpha(g^{-1})(b) = (\alpha(g))^{-1}(b) = a$.

⁵Por qué cojones cambia ahora la letrita?

3. Transitiva: $aRb \wedge bRc \implies aRc$. Partimos de que $\exists g, g' \in G \mid \alpha(g)(a) = b \wedge \alpha(g')(b) = c$. Tomamos $g'g \in C$ y tenemos que $\alpha(g'g)(a) = \alpha(g')(\alpha(g)(a)) = \alpha(g')(b) = c$ por composición de biyecciones.

¿Cómo son las clases que da la partición?

Pues tenemos que $cl(a) = \{\alpha(g)(a) \mid g \in G\}$ para un $a \in G$. Definimos $H_a = \{g \in G \mid \alpha(g)(a) = a\}$. Tenemos por lo visto anteriormente que $H_a < G \land |cl(a)| = [G : H_a]$. Entonces tenemos lo siguiente:

- En el caso en que X = G tenemos que $H_a = C(a)$ donde C(a) es el centralizador de a (definición 22).
- En el caso en que $X = \{H < G\}$ tenemos que $H_a = N(a)$ donde N(a) es el normalizador de a (definición 24).

Veremos que se pueden dar más casos.

Ejemplo 41. Fijamos $\sigma \in S_n$ y $G = \langle \sigma \rangle$ subgrupo genereado por σ en S_n . Entonces $G = \langle \sigma \rangle \to S_n = Biy(X)$ algo pasó. Si $X = \{1, 2, ..., n\}$ definimos $\sigma(1) = 2$, $\sigma(2) = 1$, $\sigma(i) = i + 1$, i = 3, ..., n - 2, $\sigma(n - 1) = 3$. La clase $cl(i) = \{\sigma^k(i) \mid k \in \mathbb{Z}\}$ en particular contiene a la identidad ya que $\sigma^{n!} = id$ y $n! \in \mathbb{Z}$. Nos quedan dos clases

$$cl(1) = \{1, 2\}$$

 $cl(3) = \{3, 4, 5, \dots, n-1\}$

Vemos que si fijamos σ se define una partición en $\{1,\ldots,n\}$ de subconjuntos disjuntos

$$F_1 \cup F_2 \cup \cdots \cup F_n$$

Si
$$r = |F_i| > 1$$
, $F_i = \{i_0, i_1, \dots, i_r\}$ tal que $\sigma(i_0) = i_1, \sigma(i_1) = i_2, \dots, \sigma(i_r) = i_0$.

Definición 25 (Ciclo). Diremos que σ es un ciclo de longitud r si en la partición definida

$$F_1 \cup F_2 \cup \cdots \cup F_n$$

todas las cajas F_j , j < r tienen un único elemento y F_r tiene r elementos.

Proposición 34. Toda biyección $\sigma \in S_7$ se puede descomponer como composición de ciclos.

Ejemplo 42. Consideramos⁶

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 4 & 5 & 6 & 3 & 7 \end{array}\right)$$

que nos divide $X = \{1, 2, 3, 4, 5, 6, 7\}$ en tres subconjuntos disjuntos $\{1, 2\}$, $\{3, 4, 5, 6\}$, $\{7\}$. Por tanto podemos decir

$$\sigma = (12)(3456)(7) = (12)(3456) = (3456)(12)$$

(podemos conmutar porque al ser ciclos disjuntos lo que toque uno no lo toca el otro).

Proximamente vermos que a partir de la descomposición en ciclos disjuntos es fácil obtener el orden de σ .

⁶Utilizamos la notación de biyecciones de [DH96].

Capítulo 6

Lo nuevo

Esto es lo que he copiado después de faltar dos semanas menos un día que copié. Falta la semana fatídica de ANAMAT

- Recordemos que fijado $\sigma \in S_5$ podemos dar una descomposición en ciclos $\sigma = (123)(45)$ que es única aunque los ciclos se escriban diferente (por ejemplo (123) = (231)).
- Fijado $\tau \in S_5$, $\tau \sigma \tau^{-1} = (\tau(1)\tau(2)\tau(3))(\tau(4)\tau(5))$ la descomposición se mantiene
- Si dos permutaciones σ , σ' tienen descomposiciones del mismo tipo (un 3-ciclo y un 2-ciclo como antes) entonces existe un τ que hace pasar de una a otra.

Ejemplo 43 (Posibles descomposiciones en cíclos de S_4). \blacksquare Para (1234)

$$cl((1234)) = \{ \tau(1234)\tau^{-1} \mid \tau \in S_4 \}$$

• A la hora de definir τ tenemos varias posibilidades. En este caso, si empezamos por el 1, para fijar el segundo elemento solo tenemos 3 posibilidades, para el tercero 2 y para el último una. Por tanto

$$|cl((1234))| = 4$$

Recordemos que el centralizador

$$C_{S_4}((1234)) = \{ \sigma \in S_4 \mid \sigma(1234)\sigma^{-1} = (1234) \} < S_4$$

- Como S_4 tiene $|S_4| = 4! = 24$ y tenemos que $|cl((1234))| = [S_4 : C_{S_4}((1234))] = 6$ necesariamente $|C_{S_4}((1234))| = 4$.
- Nos proponemos calcular el grupo C((1234)). Un candidato para $\sigma \in C((1234))$ es $\sigma = (1234)$. En efecto $(1234)(1234)(1234) \in C((1234))$. Siempre ocurre que un elemento conmuta consigo mismo. Además, $\langle (1234) \rangle = C((1234))$ pero como $|\langle (1234) \rangle| = 4 = |C((1234))$ tiene que ocurrir que $\langle (1234) \rangle = C((1234))$. Es decir que de tipo 4 solo tenemos (1234).
- ¿Qué tipos tenemos? Pues tantos como maneras de descomponer 4 en suma de números positivos, a saber
 - (1234) de tipo 4
 - (123) de tipo 3+1
 - (12)(34) de tipo 2+2
 - (12) de tipo 2+1+1
 - Id de tipo 1+1+1+1 (que es la única que tiene descomposición en 4 unos)
- En general no es difícil calcular cuantos hay, por lo que a menudo utilizamos este argumento para calcular el grupo centralizador.
- \blacksquare Lo importante es que estamos descomponiendo S_4 de la siguiente manera:

$$S_4 = cl((1234)) \cap cl((1223)) \cap cl((12)(34)) \cap cl((12)) \cap cl(Id)$$

$$|S_4| = |cl((1234))| \cap |cl((1223))| \cap |cl((12)(34))| \cap |cl((12))| \cap |cl(Id)|$$

• Ahora analizamos la clase cl((123)) de los ciclos de tipo 3+1. Lo primero es saber cuantos hay. Pues tenemos que elegir 3 elementos de entre 4 y luego ordenar los dos que nos quedan por tanto

$$|cl((123))| = {4 \choose 3} \times 2 = 8$$

Por otro lado lo que sabemos es que $(123) \in C((123))$ (porque todos conmutan consigo mismos) y como antes |C((123))| = 3 (de la fórmula $|cl((123))| = [S_4 : C((123))]$), luego $C((123)) = \langle (123) \rangle$.

- Igual es un poco más interesante la clase de tipo 2+2. **Pregunta de examen:** halla generadores del subgrupo centralizador del elemento (12)(34).
 - Sabemos que el conjugado de un elemento de tipo 2 tiene que ser otro de tipo 2, por tanto tenemos que ver qué elementos distintos de tipo 2 tenemos. Pues fijamos el 1 por ejemplo y vemos qué parejas podemos hacer. Nos salen 3, a saber, 1 con 2, 1 con 3 y 1 con 4 de lo que concluímos que |cl((12)(34))| = 3.
 - De la misma fórmula que antes sacamos que |C((12)(34))| = 8. De orden 8 sabemos que hay solo unos pocos grupos (ver la clasificación en 4.2.1). Veamos con cuál de ellos es isomorfo.
 - Como siempre sabemos que $(12)(34) \in C((12)(34))$. Tenemos que encontrar los demás τ que conmutan $\tau \sigma \tau^{-1} = \tau(12)(34)\tau^{-1} = (\tau(1)\tau(2))(\tau(3)\tau(4))$. Probamos con $\tau = (1324)^1$.

$$(1324)(12)(34)(1324)^{-1}$$
 $(34)(21)$

Que es el mismo, luego hemos probado que τ conmuta y por tanto $\tau \in C((12)(34))$. Lástima que no valga porque nos damos cuenta de que $\tau^2 = (12)(34)$. Vaya. Drácula ha hecho chiste con esto y todo (X, d).

Lo que hacemos es quitar el (12)(34) y cambiarlo por el (12). Para evitar $\tau^2 \neq (12)$. En resumen, ya tenemos (12) $\in C((12)(34))$ y $\tau = (1324) \in C((12)(34))$. Si vemos sus grupos generados:

$$\langle (1324) \rangle = \{ (1324), (12)(23), (4321), Id \}$$

 $\langle (12) \rangle = \{ (12), Id \}$

La intersección de ambos subgrupos es solo la identidad y por la fórmula del producto libre averiguamos que $|\langle (1324)\rangle\langle (12)\rangle|=8$ por lo $C((12)(34))=\langle (1324),(12)\rangle$.

Tiene toda la pinta de ser D_4 porque está generado por dos elementos, no es abeliano y los órdenes de los generadores son o((1324)) = 4, o((12)) = 2. Solo nos quedaría probar que se sigue cumpliendo la ecuación de la presentación de D_4 :

$$BA = AB^3 \iff (1324)(12) = (12)(1324)^3$$

Lo comprobamos y al final sale.

■ Ahora hacemos lo mismo con C((12)). Siguiendo un razonamiento similar, llegamos a que C((12)) es isomorfo con el grupo de Klein y por extensión con $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Falta la semana fatídica de Estadística

Vez pasada considerabamos $G_1 \times G_2$ y fijado un homomorfismo de grupos $\phi: G_1 \to Aut(G_2)$ hacíamos lo siguiente. En $G_1 \times_{\phi} G_2$ viven los elementos $(a,b) \times_{\phi} (c,d)$ donde la operación cambiaba en la primera coordenada $(a\phi_b(c),bd)$. Probamos la última clase que $G_1 \times_{\phi} G_2$ era un grupo (probar la asociatividad no es trivial).

Observación:

$$\gamma: G \xrightarrow{Int} Aut(G)$$

 γ es un homomorfismo de grupos que lleva cada elemento $g \in G$ al automorfismo conjugación $\gamma_g(x) = gxg^{-1}$. Observamos que si $N \triangleleft G, \ \forall g \in G, \gamma_g(N) = gNg^{-1} = N$.

Proposición 35. N es normal en G $(N \triangleleft G)$ sí y solo sí al restringir ϕ_q a N la imagen es N:

$$G \xrightarrow{\gamma_g} G$$

$$N \xrightarrow{\gamma_g|_N} N$$

Es decir, que si N es normal, $\gamma_q|_N$ induce un isomorfismo $\gamma_q|_N: N \to N$.

Demostración. Cristalina de la definición de subgrupo normal.

En general, al restringir γ_g a un subgrupo de G no tenemos esta propiedad.

Además, si $N \triangleleft G$ tiene sentido restringir $\gamma: G \xrightarrow{Int} Aut(G)$ a Aut(N) y la restricción da un homomorfismo.

¹La idea de probar con este viene de decir: pues a ver qué pasa si cambio el 1 con el 3 y el 2 con el 4, que nos daría la permutación (1324). En cualquier caso esto es prueba y error, y parar de probar cuando tengamos un grupo generado de orden 8.

 $^{^2}$ Aquí se ve claramente que la elección del τ es casi al azar. Hemos elegido uno que prometía pero hemos tenido la mala suerte de que su cuadrado nos daba un elemento que suponíamos estaba en el grupo ($\tau^2 = (12)(34)$). Podríamos haber descartado este $\tau = (1324)$ pero hemos preferido descartar el elemento (12)(34) que sabíamos que estaba en el grupo. La razón de la sustitución de este último por el (12) es un misterio hasta la fecha.

6.1. Producto semidirecto

Sea G un grupo. Sea $N \triangleleft G$, H < G, $N \cap H = \{e\}$ y NH = G (recordemos que por ser N normal, NH es grupo). Entonces $G \simeq N \times H$.

Veamos quién es ese isomorfismo $\gamma: G \to N \times H$. Recordemos que considerando dos grupos G_1, G_2 y su producto directo $G_1 \times G_2$ existe un $\alpha: G_2 \to Aut(G_1)$. Veremos quien es este α para H y N, es decir, quién es $\alpha: H \to Aut(N)$. Construye α a partir de 4 isomorfismos.

Demostraci'on.

- Comenzamos por definir una función $j: N \times H \to G$, $(n,h) \mapsto nh$. Es función está bien definida por teoría de conjuntos pero no es un homomorfismo de grupos³⁴.
- Recordemos que por el teorema 26 tenemos que $|G| = |N||H| = |N \times H|$ por ser $N \cap H = \{e\}$.
- Volviendo a lo de la estructura especial. Dar una estructura especial es dar una operación para $N \times H$.
 - Sea A un conjunto. Es claro que si tenemos una biyección $\phi: A \to G$ podemos dotar a A de alguna estructura para que sea un grupo.
 - Para dotar a A de estructura tenemos que definir la operación. Forzamos que para cada $a, a' \in A$ para los que se tiene $\phi(g) = a, \phi(g') = a'$ la operación sea $aa' = \phi(gg')$.
 - En este caso nuestro A es $N \times H$. En lugar de utilizar la operación habitual del producto directo definimos otra operación. Para llegar a ella nos fijamos en $(n,h)(n',h') \mapsto nhn'h' = nhn'h^{-1}hh' = n(hn'h^{-1})hh' = nn'hh'$ (intercalamos el neutro, que es legal).
 - Redefinimos la operación en $N \times H$ para que cuadre con este resultado. Llamaremos al nuevo grupo con la nueva operación $N \times_{\phi} H$: para (n,h), (n',h') definimos $(n,h) \cdot (n',h') = (n(hn'h^{-1}),hh')$.
 - \bullet Comprobamos que en este caso j es un homomorfismo de grupos:

$$\begin{split} j: N \times_{\phi} H \to G \\ (n,h) &\mapsto nh \\ (n',h') &\mapsto n'h' \\ (n,h) \cdot (n',h') &\mapsto n(hn'h^{-1})hh' = nn'hh' \end{split}$$

Es muy interesante por que es muy natural llegar a situaciones de esta manera. ¡Y les voy a dar una!⁵

Ejemplo 44. Sea $|G| = p \cdot q$ y supongamos p < q primos. Por el teorema de Lagrange (10) tenemos que existe un subgrupo $H_p < G$ con $|H_p| = p$ y análogamente $\exists H_q \mid |H_q| = q$. A primera vista podríamos pensar que puede haber varios grupos de orden q. Pues no.

Demostración. Supongamos hay dos grupos H,H' de orden q distintos. La intersección tiene que dar un subgrupo y si los dos grupos tienen un número primo de elementos entonces la intersección solo puede ser el neutro, $H \cap H' = \{e\}$. Entonces por el teorema 26 tenemos que $|HH'| = q^2 > p \cdot q$ lo que es imposible. Luego sabemos que a lo sumo hay un grupo de orden q.

(Sigue el ejemplo) Supongamos que ese único grupo de orden q se llama N. Entonces $\phi_g(N) = N$ ya que un isomorfismo tiene que mandar un subgrupo de q elementos en otro subgrupo de q elementos y N es el único. Por tanto $N \triangleleft G$. Aplicando el teorema de antes, tenemos que $G \simeq N \times H$.

Ejemplo 45. Veamos un ejemplo con más pinta de problema. Demostrar que todo grupo de orden 77 es cíclico.

Demostración. Comenzamos por observar que 77 = 7 · 11. Por el teorema de Lagrange (10) tenemos que existen $H, N < G \mid |H| = 7, |N| = 11$ y por lo visto en el ejemplo anterior, $N \lhd H$. Como antes llegamos a que $H \cap N = \{e\}$ y a que |HN| = pq. Para aplicar el teorema anterior vemos qué estructura tiene que tener $N \times H$.

Mierda no me da tiempo.

³Ojo con por qué no es homomorfismo. Si tomamos $(n,h),(n',h') \in N \times H$ tenemos que j((n,h)(n',h')) = nn'hh'. Podríamos pensar que como N es normal, podemos conmutarlo y obtener nn'hh' = nhn'h' = j((n,h))j((n',h')). **Pero esto está mal.** Lo que significa ser normal es que para $h \in H$, se tiene que nh = hn'' para algún $n'' \in N$.

⁴Si los grupos son abelianos entonces sí es claro que es un homomorfismo. Lo que vamos a hacer es ver que dando una estructura especial, sí que es un homomorfismo de grupos incluso para grupos no abelianos

⁵Sugerencia: leelo con voz de tomatito.

Capítulo 7

Teoremas de Sylow

Son muchos teoremas para grupos finitos en los que el orden se puede expresar como

$$|G| = p^s m, \ mcd(p, m) = 1, s \ge 1$$
 (7.1)

Veremos y discutiremos 3 de ellos. Sirven sobre todo para contar cosas.

Definición 26 (P-subgrupo de Sylow). Dado G con $|G| = p^s m$ con $mcd(p, m) = 1, s \ge 1$, un p-subgrupo de Sylow de G es un subgrupo P < G con $|P| = p^s$.

Teorema 41 (Primero de Sylow). Sea G un grupo tal que $|G| = p^s m$, $mcd(p, m) = 1, s \ge 1$, p primo. Entonces existe un p-subgrupo de Sylow $H_1 < G$ con $|H_1| = p^s$.

^aEste teorema es el recíproco de algo que ya sabíamos. Podíamos afirmar que si P < G y $|P| = p^s$ entonces p^s dividía a |G|. Lo que dice el primer teorema de Sylow es que el recíproco es cierto.

El teorema de Cauchy (38) es una versión más débil de este primer teorema de Sylow.

Teorema 42 (Segundo de Sylow). Sea G grupo con $|G| = p^s m, mcd(p, m) = 1, s \ge 1$. Sea P un p-subgrupo de Sylow fijado. Si Q es un p-subgrupo de Sylow de G entonces $\exists g \in G \mid q \subset gPg^{-1}$.

Teorema 43 (Tercero de Sylow). Sea $F = \{gPg^{-1} \mid g \in G\} = \{P = P_1, \dots, P_{n_p}\}$ el conjunto de p-subgrupos de Sylow de G. Entonces n_p divide a m y $n_p \equiv 1 \mod p$.

Hemos hecho mucho hincapié en los subgrupos normales y tenemos que si $N \triangleleft G$ entonces existe $\pi: G \to G/N$ homomorfismo de grupos¹. Además teníamos que $|G| = |G/N| \cdot |N|$.

También establecíamos una biyección entre los submódulos de G que contienen a N y los submódulos de G/N. Si K es uno de ellos entonces $N \lhd G \implies N \lhd K$,

$$K/N = \overline{K} \subset K/N$$

$$|K| = |\overline{K}||N|$$

Vamos a discutir el teorema. Recordemos que dado G el centro Z(G) es el conjunto de los elementos que conmutan con todos (ver definición 19). Recordamos además las proposiciones 18 y 19 que nos dicen que el centro es normal y que cualquier subgrupo del centro es abeliano y normal. El centro está bien pero tampoco es para tanto: suele ser muy pequeño. WTF.

Aquí en medio ha desvariado bastante, remontándose hasta el teorema 17.

Demostración del teorema de Sylow. Procedemos por inducción [fuerte] en |G|.

- Si |G| = 1 no hay mucho que probar porque son grupos muy tontos.
- Suponemos que 2 el teorema es válido para |G| < n. Distinguimos los siguientes casos:

1.
$$|Z(G)| = 0$$

¹Por teoría de conjuntos tenemos que π es una función que existe y está bien definida, pero aquí interesa que además es homomorfismo.

²[La clase en silencio]. Orlando: Se pueden callar por favor. [El silencio se hace más hueco]. Orlando: No hagan ruiditos. Me cuesta concentrarme [agita las manos]. [Sigue la demostración.]

2. $|Z(G)| \neq 0$. Entonces Z(G) es un grupo abeliano no trivial. Es decir que $Z(G) \simeq \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_l\mathbb{Z}$. Como p divide a |Z(G)| podemos suponer que p divide a n_1 . Entonces $\overline{(n_1/p)} \in \mathbb{Z}/n_1\mathbb{Z}$ y por tanto

$$(\overline{\left(\frac{n_1}{p}\right)}, \overline{0}, \dots, \overline{0})$$
 tiene orden p

Es decir que tenemos un H < Z(G) con |H| = p.

Teníamos de antes que |G/H||H| = |G|. Por inducción existe $\overline{K} < G/H$ de orden p^{s-1} . Aplicamos $|K| = |\overline{K}||H|$ y como |H| = p, $|\overline{K}| = p^{s-1}$ tenemos que $|H| = p^s$.

Lo hemos probado para una hipótesis en concreto pero falta algo (no sé el qué). Seguimos con la demostración.

$$|G| = |Z(G)| + [G : C(a_{s+1})] + \dots + [G : C(a_r)]$$

|G| es no nulo módulo p y |Z(G) es nulo módulo p, por lo que necesariamente tiene que ocurrir que alguno de los $[G:C(a_i)]$ sea no nulo módulo p. Supongamos que es el primero, es decir, supongamos que $[G:C(a_{s+1})]$ es no nulo módulo p. Además tenemos que

$$\underbrace{|G|}_{p^s m} = \underbrace{|C(a)|}_{p^s m'} \cdot \underbrace{[G:C(a)]}_{\text{no divisible por p}}$$

Como $[G:C(a)] \ge 2$, $|C(a)| = p^s m' < |G|$ por inducción el subgrupo $C(a_{s+1})$ tiene un subgrupo de orden p^s .

Ejemplo 46. Supongamos $|G| = 2^2 \cdot 11 \cdot 13$. Por el teorema de Sylow tenemos que existen subgrupos $P_2, P_{11}, P_{13} < G$ con órdenes $|P_2| = 2^2$, $|P_{11}| = 11$, $|P_{13}| = 13$. Sin embargo no podemos garantizar que exista un Q con orden $|Q| = 2^2 \cdot 13$. Si ocurriera esto sería buenísimo porque existiría un P < G con $P \cap Q = \{e\}$ y por tanto $P \cdot Q = G$ y automáticamente $G \simeq P \times_{\phi} Q$. Esto no ocurre porque en general no sabemos si P_2 y P_1 3 son normales y por tanto no podemos garantizar que $Q = P_2 \cdot P_1$ 3 sea siquiera un grupo.

Lo interesante del ejemplo anterior es que si tenemos G descompuesto como producto directo de dos grupos y uno de ellos es normal, entonces tenemos automáticamente un producto semidirecto. Sin embargo, si tenemos G descompuesto en 3 grupos, no basta con que uno sea normal, sino que tienen que ser normales 2. Supongamos G se descompone en P,Q,R. Necesitamos que P sea normal para que $P \cdot Q$ sea grupo. Y necesitamos que R sea normal para que $P \cdot Q$ sea también un grupo y podamos dar un producto semidirecto.

Resultado muy fuerte que hay que saber probar.

Teorema 44. Sea G un grupo, $H_1, H_2 \triangleleft G \land H_1 \cap H_2 = \{e\}$. Entonces $\forall h_1 \in H_1, h_2 \in H_2$ se tiene que $h_1h_2 = h_2h_1$.

Demostración. Probaremos que $h_1h_2h_1^{-1}h_2^{-1}=e$. Para ello probaremos que $h_1h_2h_1^{-1}=h_2$. Sabemos que por ser $H_2 \triangleleft G$ tenemos que $h_1H_2h_1^{-1}=H_2$. Es decir, que $h_1h_2h_1^{-1}\in H_2$. Si multiplicamos a la derecha por $h_2^{-1}\in H_2$ nos sigue quedando un elemento de H_2 : $h_1h_2h_1^{-1}h_2^{-1}\in H_2$. Para H_1 tenemos lo mismo: $h_2h_1h_2^{-1}h_1^{-1}\in H_1$. Por alguna razón estos dos elementos son el mismo y como pertenece a ambos subgrupos entonces pertenece a la intersección y por tanto $h_1h_2h_1^{-1}h_2^{-1}=e$. ♣

Ejemplo 47. Consideramos D_4 que es un p-grupo pues $|D_4| = 2^3$. En este caso el centro no es el trivial: $Z(D_4) = \{1, B^2\}$.

Ejemplo 48. Consideramos H (el grupo de cuaterniones, ejemplo 7, y su retículo, figura ??) que también es un p-grupo pues $|H|=2^3$. El retículo de este grupo es extraño y volvemos a tener que $Z(H)=\{1,B^2\}$.

Ejemplo 49. Si G es un p-grupo con $|G| = p^s$ entonces G tiene subgrupos de orden $1, p, p^2, \ldots, p^s$.

Demostración. Procedemos por inducción en s. Para s=1 es trivial: el subgrupo es el propio G.

Supongamos que $|Z(G)| = p^{s'}$ con $s' \leq s$. Sabemos que $Z(G) \lhd G$ y además todo subgrupo de Z(G) es normal en G. $\exists \alpha \in Z(G) \mid o(\alpha) = p$. Tenemos que $\langle \alpha \rangle < Z(G)$ y por tanto $\langle \alpha \rangle \lhd G$. Consideramos ahora $G \to G/\langle \alpha \rangle$. Tenemos que $|G/\langle \alpha \rangle| = p^{s-1}$

Ejemplo 50 (de aplicación de los teoremas de Sylow). Sea G con $|G| = 3 \cdot 5$.

- Tenemos por el primer teorema de Sylow (41) que existen P_3 , $P_5 < G$ con $|P_3| = 3$, $|P_5| = 5$ (aplicamos el teorema dos veces primero cogiendo p = 3 y luego p = 5).
- Tenemos también que $P_3 \cap P_5 = \{e\}$ ya que los elementos de P_3 tienen orden que divide a 3 y los elementos de P_5 orden que divide a 5, por tanto, los elementos de la intersección tienen que tener orden que divida a 3 y a 5 por lo que solo puede ser el neutro.
- Como $P_3 \cap P_5 = \{e\}$ sabemos por el teorema 26 que P_3P_5 tiene 15 elementos. Si fuéramos capaces de probar que alguno de ellos es normal tendríamos un producto semidirecto.

- Aplicamos el tercer teorema de Sylow (43) para averiguar quién es n_3 (el número de 3-subgrupos de Sylow en G). Tomamos $|G| = 3^1 \cdot 5$ (cogemos p = 3, m = 5). Entonces $n_3 \in \{1, 5\}$ pues n_3 tiene que dividir a m = 5. Además $n_3 \equiv 1 \mod 3 \implies n_3 \in \{1, 4, 7, \ldots\}$. Concluimos que $n_3 = 1$.
- De aquí concluímos que el único conjugado de P_3 es P_3 (solo hay un 3-subgrupo de Sylow en 3, es decir, $\{gPg^{-1} \mid g \in G\} = \{P\} \implies gPg^{-1} = P, \ \forall g \in G \implies gP = Pg, \ \forall g\}$ luego $P_3 \lhd G$.
- Hacemos lo mismo con n_5 y obtenemos que $n_5 = 1$ y concluímos que $P_5 \triangleleft G$.
- No solo uno de ellos es normal, sino que los dos son normales. Tenemos un producto semidirecto y concluímos que $G \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Ejemplo 51. Hacemos lo mismo con un grupo G que tiene $|G| = 2 \cdot 7$.

- Del primer teorema de Sylow (41) tenemos que $\exists P_2, P_7 < G$ con órdenes $|P_2| = 2, |P_7| = 7$.
- Es claro que P_7 tiene que ser normal (de dibujarlo) pero aún así supongamos que no sabemos contar y somos creyentes de los teoremas de Sylow, veamos que P_7 es normal.
 - Obtenemos n_7 del tercer teorema:

$$\begin{cases} n_7 \text{ divide a 2} \\ n_7 \equiv 1 \mod 7 \end{cases} \implies n_7 = 1$$

- Análogamente obtenemos que $n_2 = 1$.
- Volvemos a tener dos subgrupos normales y tenemos que $|P_2 \cdot P_7| = 2 \cdot 7$ (con un razonamiento análogo al de antes) de lo que obtenemos un producto semidirecto y por tanto $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Ejemplo 52. Consideramos el grupo S_4 que tiene orden $|S_4| = 4! = 4 \cdot 3 \cdot 2 = 2^3 \cdot 3$.

- Del primer teorema de Sylow obtenemos que $\exists P_2, P_3 < S_4$ con $|P_2| = 8$, $|P_3| = 3$.
- ¿Será S_4 un producto semidirecto? ¿Será P_2 o P_3 un subgrupo normal?
 - Veamos quien es n_3 . Por el tercer teorema de Sylow (43) tenemos que n_3 divide a m=8 y que $n_3\equiv 1 \mod p=3$. Con estas condiciones tenemos que n_3 puede ser o bien 1 o bien 4. Recordemos que $\sigma\in S_4 \land o(\sigma)=3\iff \sigma$ es un ciclo de longitud 3. Y recordemos que en S_4 había 8 ciclos de longitud 3. Entonces tenemos que n_3 no puede ser 1 ya que en tal caso $P_3 \lhd S_4$ y por tanto en S_4 habría solo 2 ciclos de orden 3 resulta que hay ocho. Concluimos que $n_3=4$.
 - Veamos quien es $n_2 = \{gP_2g^{-1} \mid P\} = \{P_2 = P_2^{(1)}, \dots, P_2^{(n_2)}\}$. Por el tercer teorema de Sylow (43) tenemos que n_2 divide a m = 3 y que $n_2 \equiv 1 \mod p = 2$. Con estas condiciones tenemos que n_2 puede ser o bien 1 o bien 3. Para $n_2 = 1$ tendríamos que $P_2 \lhd S_4$ y por tanto todos los elementos de orden par tendrían que vivir en P_2 . De orden 2 hay 6 elementos y de orden 4 hay otros 6, es decir, que en P_2 que es un grupo de orden 8, viven al menos 6 + 6 = 12 con lo cual llegamos a una contradicción. Por lo que necesariamente $n_2 = 3$.
- Pues no, ninguno de los p-subgrupos de Sylow que encontramos es normal.
- No hemos conseguido un producto semidirecto, pero vamos a probar que $P_2 \simeq D_4$ (y por extensión todos sus conjugados porque tenemos el isomorfismo de conjugación entre ellos). Para eso, haremos una presentación de P_2 análoga a la de D_4 (ver ejemplo 8).
 - Tomamos A = (13), B = (1234). ¿Por qué? Por el contexto geométrico de D_4 que se puede ver en el ejemplo 8. Recordemos que la A es la simetría y B es el giro.
 - Vemos que todo funciona y que la presentación queda igual que la de D_4 .

Cogemos un grupo de Sylow $|G|=p^smmcd(m,p)=1, s\geqslant 1$. Tenemos para el F del segundo tercer teorema de Sylow que $|F|=|F_1|+|F_2|+\cdots+|F_l|$ donde cada $F_j=\{qP_{i_j}q^{-1}\mid q\in Q\}$ y $|F_j|=[Q:N_Q(P_{i_j})]$.

Proposición 36. Si Q es un p-subgrupo de Sylow y P' es un p-subgrupo de Sylow entonces el normalizador de P' en Q es

$$N_Q(P') = P' \cap Q$$

De aquí obtenemos que $|F_j| = [Q: N_Q(P_{i_j})] = [Q: Q \cap P_{i_j}]$. Como Q, P_{i_j} son p-subgrupos tienen órdenes que son potencias de p por lo que $|F_j|$ es cociente de potencias de p y por tanto es potencia de p.

Observación 1 (para la prueba del tercer teorema de Sylow). $n_p \equiv 1 \mod p$

³Orlando: Esto es buenísimo! [Se alegra muchísimo de lo que acaba de probar.]

⁴Efectivamente, de entre los 8 ciclos de longitud 3 que hay en S₄ salen 4 parejas que viven cada una en uno de los conjugados de P₃.

Demostración. En particular, tomamos P=Q. En este caso, la clase de P, $F_1=\{pPp^{-1}\mid p\in Q=P\}=\{P\}$. $|F_2|=[Q:N_Q(P_{i_2})]=[P:P\cap P_{i_2}]=p_{r_2}$ porque P y P_{i_2} no son iguales.

Observación 2. Si Q es un p-subgrupo de Sylow de G entonces $Q \subset gPg^{-1}$ para algún $g \in G$.

Demostración. Procedemos por refutación: supongamos que $Q \not\subset F$. Recordemos que

$$|F| = |F_1| + |F_2| + \dots + |F_s|$$
 $|F_k| = [Q: Q \cap P_{i_j}]$

Si afirmamos que $Q \not = Q$ entonces $|F_j|$ tiene que ser un múltiplo de p ya que al hacer la intersección $Q \cap P_{i_j}$ obtenemos un conjunto propio. De este modo, $|F| = \sum |F_j|$ también es un múltiplo de p. La contradicción llega con la observación anterior, ya que $|F| \equiv 1 \mod p$.

Lo interesante de verdad es el corolario que obtenemos de esta observación:

Corolario 9. F es el conjunto de todos los subgrupos de Sylow de G.

Observación 3. Por último probaremos que $n_p \mid m$.

Demostración. $F = \{gPg^{-1} \mid g \in G\}$ y tenemos que $|F| = [G : N_G(F)] \land |G| = p^s m \land P \subset N(P)$. Además

$$\underbrace{|G|}_{p^s m} = \underbrace{|P|}_{p^s} \underbrace{[G:P]}_{m}$$

Ahora $P \subset N(P)$ y también |G| = |N(P)[G:N(P)].

Ejemplo 53. Consideramos $|S_5| = 5! = 5 \cdot 4!$ tomamos p = 5, m = 4!, s = 1.

- Por el primer teorema tenemos que existen subgrupos de orden $p^s = 5$. Esto ya lo sabíamos.
- De hecho hasta sabíamos que había 4! = 24 ciclos de longitud 5. Como p = 5 es un número primo, los subgrupos de orden 5 no tienen elementos en común. Cada subgrupo tendrá 4 elementos y como hay 24 ciclos de orden 5 habrá 6 subgrupos de orden 5.

Ejemplo 54. Sea G un grupo, H < G, N < G subgrupos. Recordemos que si $H \cap N = \{e\}, HN = G \wedge N \lhd G$ entonces existe un producto semidirecto para el que $G \simeq H \times_{\phi} N$. Si $|G| = p^a q^b$ con $p \neq q$ primos, entonces existen $P_p, P_q < G$ con $|P_p| = a, |P_q| = b$. Además se tiene que $P_p \cap P_q = \{e\}, |P_pP_q| = |P_p||P_q|$ y por tanto $P_pP_q = G$.

Realizamos un estudio sistemático de los grupos dado el orden similar al del teorema 37 pero utilizando los teoremas de Sylow

- Si |G| = 1 no tiene interés estudiarlo.
- Si |G| = 2, 3 entonces $G \simeq \mathbb{Z}/2\mathbb{Z}$ o $G \simeq \mathbb{Z}/3\mathbb{Z}$.
- Si $|G| = 4 = 2^2$ entonces G es abeliano. Lo demostramos en la proposición 28 para todo grupo de orden p^2 con p primo.
- Si |G| = 5 entonces $G \simeq \mathbb{Z}/5\mathbb{Z}$.
- Si $|G| = 6 = 2 \cdot 3$ entonces $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ o $G \simeq D_3$. Sabemos por Sylow que existen $P_2, P_3 < G$ con $|P_2| = 2, |P_3| = 3$. Además del tercer teorema de Sylow obtenemos $n_3 = 1$, es decir que en F_3 tenemos solo un grupo. Para n_2 solo tenemos que $n_2 = 1, 3$. Ahora bien, como $n_3 = 1$ tenemos que $P_3 < G$. Por tanto, existe un producto semidirecto para el que $G \simeq P_3 \times_{\phi} P_2 = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}^5$.

Veamos que de este producto semidirecto nos salen dos estructuras. En primer lugar vemos quiénes son N y H. En este caso el grupo normal es P_3 por lo que $N=P_3$ y $H=P_2$. Veamos los automorfismos interiores $Int: H \to Aut(\mathbb{Z}/3\mathbb{Z}) = (\{\overline{1},\overline{2}\},\cdot) = \mathcal{U}(\mathbb{Z}/3\mathbb{Z})$. Como $Aut(\mathbb{Z}/3\mathbb{Z})$ tiene dos elementos, obtenemos dos estructuras

- Si tomamos que $e_H \mapsto e_{Aut(\mathbb{Z}/3\mathbb{Z})} = \overline{1}$ entonces encontramos que $G \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- Si tomamos que $e_H \mapsto \overline{2}$ ocurre que $G \simeq D_3$. Vamos a verlo. Supongamos que $P_3 = \langle a \rangle, o(a) = 3$. Si para algún $h \in H$ definimos la conjugación hxh^{-1} para $x \in G$ tenemos que como $P_3 \lhd G$ entonces $hP_3h^{-1} = P_3$. Ahora supongamos que $H = P_2 = \langle b \rangle, o(b) = 2$. Entonces para un b, con el automorfismo seleccionado $a \mapsto bab^{-1} = a^2 \implies ab = ba^2$ y llegamos a la presentación de D_3 (con las a's y las b's cambiadas.)
- Si |G| = 7 entonces $G \simeq \mathbb{Z}/7\mathbb{Z}$.
- Si |G| = 8 Sylow dice poco. Lo vimos en algún sitio
- \blacksquare Si |G|=9 tampoco tenemos mucho que decir

⁵Por convención ponemos el normal primero, para poder aplicar directamente la construcción sin liarnos.

■ Si $|G| = 10 = 2 \cdot 5$. Como de costumbre sabemos que existen $P_2, P_5 < G$ con los ordenes correspondientes. Por el tercer teorema llegamos a que $n_5 = 1$ y por tanto a que $P_5 \lhd G$. Para P_2 no tenemos nada, pero solo por ser P_5 normal existe un producto semidirecto para el que $G \simeq P_5 \times P_2 \simeq \mathbb{Z}/5\mathbb{Z} \times_{\phi} \mathbb{Z}/2\mathbb{Z}$. Como en el caso de |G| = 6 obtendremos dos estructuras.

Tomamos $N=P_5, H=P_2$. Tenemos que definir morfismos $Int: \mathbb{Z}/2\mathbb{Z} \to Auto(\mathbb{Z}/5\mathbb{Z}) = (\{\overline{1},\overline{2},\overline{3},\overline{4}\},\cdot) = \mathcal{U}(\mathbb{Z}/5\mathbb{Z})$. Para ver cuantos morfismos salen veamos el orden de los elementos de $Aut(\mathbb{Z}/5\mathbb{Z})$: Los elementos $\{\overline{1},\overline{2},\overline{3},\overline{4}\}$ tienen órdenes 1,4,4,2 respectivamente. En $\mathbb{Z}/2\mathbb{Z}=\{\overline{0},\overline{1}\}$ tenemos dos posibilidades Un automorfismo viene dado por donde enviamos el generador de $\mathbb{Z}/2\mathbb{Z}$ en este caso el $\overline{1}$.

- Si $\overline{1} \mapsto \overline{1}$ obtenemos el homomorfismo trivial y por tanto la estructura dada por la presentación $o(a) = 5, o(b) = 2, bab^{-1} = a \implies G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ abeliano.
- Si $\overline{1} \mapsto \overline{4}$ la estructura que obtenemos es $o(a) = 5, o(b) = 2, bab^{-1} = a^4 = a^{-1}$. Esta presentación es la del grupo D_5 .
- Si |G| = 11 pasa la historia de los primos.
- \bullet Si $|G|=12=2^2\cdot 3$. Entonces del tercero de Sylow tenemos $n_3=1,4$ y $n_2=1,3$. Tristeza.

Ahora se le ocurre afirmar que no puede ocurrir que $n_2 = 3 \land n_3 = 4$ simultáneamente.

Supongamos que $n_3=4$ entonces habría 4 subgrupos de orden 3 y por tanto habría $2\cdot 4$ elementos de orden 3 (el neutro tiene orden 1). Ya tenemos 9 elementos bajo control. Para controlar los 12 nos faltan 3 elementos que llamaremos a,b,c y que podrían formar un grupo con el neutro: $\{e,a,b,c\}$. Efectivamente esto dice Sylow, que hay un subgrupo de orden 4 (a,b,c) no pueden tener orden 3 porque si no no podrían pertenecer a un grupo de orden 4). Como ya hemos agotado los elementos, no es posible que haya más subgrupos de orden 4, por lo que necesariamente $n_2=1$.

⁶Estamos abusando un poco de la notación de clases, ir con cuidado.

⁷Orlando: Sylow nunca dice toda la verdad, se puede hilar más fino.

$\begin{array}{c} \textbf{Parte III} \\ \textbf{Apendices} \end{array}$

Capítulo 8

Índices

52 CAPÍTULO 8. ÍNDICES

Lista de definiciones

1.	Definición (Grupo)	-
2.	Definición (Orden de un elemento)	8
3.	Definición (Orden o cardinalidad de un grupo)	8
4.	Definición (Grupo abeliano)	8
5.	Definición (Producto directo de grupos)	8
6.	Definición (Subgrupo)	8
7.	Definición (Subgrupo generado varios elementos)	8
8.	Definición (Subgrupo generado por un elemento)	Ç
9.	Definición (Grupo cíclico)	Ç
10.	Definición (Clase lateral)	1(
11.		11
12.	Definición (Conjunto cociente en grupos)	11
13.		11
14.	Definición (Homomorfismo de grupos)	
15.	Definición (Núcleo de un homomorfismo)	
16.	Definición (Imagen de un homomorfismo)	
17.	Definición (Retículo de subgrupos)	14
18.	Definición (Producto libre de grupos)	19
19.	Definición (Centro de un grupo)	3
20.	(U 1)	3
20.		
22.	\	
23.		34
24.	0 1 /	35
25.	Definición (Ciclo)	38
26	Definición (P-subgrupo de Sylow)	4:

Lista de teoremas

1.	Teorema (Propiedad cancelativa)	7
7.	Teorema (Hoja 1, ejercicio 9)	10
8.	Teorema (Hoja 1, ejercicio 7)	10
10.	Teorema (de Lagrange)	10
16.	Teorema (de correspondencia entre subgrupos mediante homomorfismos)	15
19.	Teorema (Primer de la isomorfía)	16
20.	Teorema (Segundo teorema de la isomorfía)	17
25.	Teorema (Tercer teorema de la isomorfía)	18
26.	Teorema (Cardinalidad del producto libre)	19
37.	Teorema (Grupos notables de distintos órdenes finitos.)	24
38.	Teorema (de Cauchy)	32
41.	Teorema (Primero de Sylow)	43
42.	Teorema (Segundo de Sylow)	43
43.	Teorema (Tercero de Sylow)	43

56 LISTA DE TEOREMAS

Lista de ejemplos

2.	Ejemplo (Reticulo de subgrupos \mathbb{Z})	14
4.	Ejemplo (Ejemplos de grupos infinitos)	21
5.	Ejemplo (Grupo de las clases módulo n)	
7.	Ejemplo (Grupo de cuaterniones)	21
8.	Ejemplo (El famoso grupo D_4)	22
9.	Ejemplo (Grupo de biyecciones S_3)	
14.	Ejemplo (Retículo de subgrupos de $\mathbb{Z}/8\mathbb{Z}$)	25
15.	Ejemplo (Retículo de subgrupos de D_4)	
17.	Ejemplo (Retóculo de subgrupos de D_5)	26
18.	Ejemplo (Homomorfismo trivial)	26
24.	Ejemplo (Isomorfismo conjugación)	27
27.	Ejemplo (del primer teorema de la isomorfía)	28
29.	Ejemplo (Hoja 1, ej 33)	31
43.	Ejemplo (Posibles descomposiciones en cíclos de S_4)	39
50.	Ejemplo (de aplicación de los teoremas de Sylow)	44

58 LISTA DE EJEMPLOS

Bibliografía

[DH96] José Dorronsoro and Eugenio Hernandez. *Némeros, Grupos y Anillos*. Addison-Wesley Iberoamericana, S.A. - Universidad Autónoma de Madrid, 1996.

[Epp] David Eppstein. Dih4 subgroups.