

Clasificación de estado de presión de llantas de vehículos a partir de imágenes

Juan Nicolás Soto Rios Frank M. Córdoba O. Katherine Xiomar González Santacruz

Agenda

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Agenda

1. Contextualización

- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

• De acuerdo a la ANSV en Colombia las fallas de las llantas son la segunda causa que más provoca accidentes viales [1].

 Según el Registro único Nacional de Tránsito, en 2021 se registraron más de 1970 accidentes asociados a fallas en las llantas, en los cuales 640 personas resultaron heridas, 64 fallecieron y 1271 sufrieron daños materiales [2][3].

• El Ministerio de transporte sugiere que es importante realizar una revisión continua del estado de inflado de las llantas de los vehículos, para mejorar la seguridad a la hora de conducir, la economía del combustible y la vida útil de las llantas [2][3].

- Si las llantas se encuentran un 20% desinfladas [4]:
 - Se disminuye su vida útil en un 30%
 - Aumenta el consumo de combustible en un 3%
 - Riesgo de accidentes

Falta de conocimiento por parte de algunos conductores [6][7]:

Encuesta en carretera PMDT (pruebas de defectos mecánicos potenciales) [7]:

8% de los conductores **NO** midieron la presión de las llantas.

90% de los conductores revisaron sus llantas al menos una vez al mes.

Pero solo el 40% sabia como realizar correctamente las mediciones.

85 % de los encuestados opinaron que se deberían evaluar conocimientos sobre mantenimiento de neumáticos antes de emitir un permiso de conducción.

En las resoluciones número **1349** del 2017 y **1600** de 2005 [8][9] del Ministerio de transporte, donde se habla del examen teórico-práctico para obtener la licencia de conducción:

NO se menciona que sea obligatorio saber cómo medir la presión de aire de las llantas para poder aprobar los exámenes de conducción.

"Todas las precauciones que pueda tener en cuenta previo a un recorrido y la atención que preste cuando detecte alguna **señal de alerta** mientras conduce, le pueden salvar su vida y la de quienes lo acompañan. Las llantas son uno de los elementos más importantes de un vehículo" - **Director de la ANSV** [3].

 Se realizan campañas de concientización para revisión de diferentes aspectos técnicos de los vehículo, como las llantas [3][10].

Todo esto ha promovido la necesidad de implementar sistemas donde se pretende facilitar el reconocimiento del estado de las llantas a través de la tecnología [5] [15] [16]:

Inteligencia artificial con reconocimiento de imágenes.

Se implementa un mecanismo de clasificación utilizando algoritmos genéticos para determinar el estado – inflado o desinflado – de una llanta, a partir de imágenes, con el fin de aumentar la seguridad de la conducción, reducir el consumo de combustible, y mejorar la vida útil de las llantas.

Fuente [11]

Propuestas de uso:

 Alertar a conductores en Peajes

Fuente [12]

Propuestas de uso:

 Para revisión de vehículos en Empresas de Transporte

Fuente [13]

Propuestas de uso:

 Aplicación Móvil para revisión del estado de las llantas

Fuente: elaboración propia con [14]

Agenda

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Estado del arte [15]

Classification Techniques of Neural Networks Using Improved Genetic Algorithms

Ming Chen, Zhengwei Yao School of Computer Science & Engineering Shanghai University, Shanghai 200072, China cmyes@shu.edu.cn

Estado del arte [15]

Puntos Clave

- Tecnología de clasificación basada en un algoritmo genético que practica una red neuronal.
- Datos del Balance Scale Database del Repositorio de aprendizaje automático UCI.
- Algoritmo genético simple (SGA) y mejorado (IGA).
- Precisión máxima del 96%.

Estado del arte [16]

Application of SVM Based on Genetic Algorithm in Classification of Cataract Fundus Images

Zhiqiang Qiao¹, Qinyan Zhang¹, Yanyan Dong¹, Ji-Jiang Yang²

- Automation School, Beijing University of Post and Telecommunications, Beijing, 100876
 - Research Institute of Information Technology, Tsinghua University, Beijing, 100084
 Corresponding author: yangjijiang@tsinghua.edu.cn

Estado del arte [16]

processing method	normal	abnormal	overall
non-segment & non-weight	96.14%	76.33%	88.12%
non-segment & weighted	97.43%	85.55%	92.61%
segmented & non-weight	96.22%	91.10%	94.14%
segmented & weighted	96.72%	93.30%	95.33%

processing method	normal	mild	moderate	severe	overall
non-segment & non-weight	95.07%	80.55%	56.15%	25.22%	84.55%
non-segment & weighted	95.36%	81.16%	60.96%	39.13%	85.95%
segmented & non-weight	96.15%	80.70%	41.18%	46.09%	85.06%
segmented & weighted	96.65%	80.70%	67.38%	47.83%	87.52%

Puntos Clave

- Clasificación de ojos en normal, con cataratas leve, moderada y grave a partir de imágenes del fondo del ojo.
- Máquina de vectores de soporte (SVM) basada en un algoritmo genético para la ponderación de características.
- La precisión general más alta se da en la de dos categorías (normales-anormales) 95,33%.

Estado del arte [17]

Evolutionary Deep Learning: A Genetic Programming Approach to Image Classification

Benjamin Evans, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science

Victoria University of Wellington, P.O. Box 600

Wellington 6140, New Zealand

{benjamin.evans,harith.al-sahaf,bing.xue,mengjie.zhang}@ecs.vuw.ac.nz

Estado del arte [17]

		Training Accura	icy (%)	Testing Accuracy (%)		Training Time (minute)		Testing Time (millisecond)	
	Classifier	$\bar{x} \pm s$	Max	$\bar{x} \pm s$	Max	$\bar{x} \pm s$	Max	$\bar{x} \pm s$	Max
Cars	AdaB J48 k-NN NB SVM ConvNet 2TGP ConvGP	95.27 ± 1.95 99.53 ± 0.09 100.0 ± 0.00 93.00 ± 0.43 100.0 ± 0.00 100.0 ± 0.00 93.71 ± 3.04 94.26 ± 2.11	97.20 99.60 100.0 93.60 100.0 100.0 97.60 97.60	88.27 ± 1.09 = 85.27 ± 3.08 = 94.00 ± 1.40 = 92.20 ± 0.71 - 95.33 ± 0.90 - 97.88 ± 0.56 - 89.45 ± 3.98 = 90.29 ± 2.84	89.40 89.60 95.60 92.80 96.60 99.40 97.40 95.80	$\begin{array}{c} 2.29 \pm 0.12 \\ 0.88 \pm 0.09 \\ 3.28 \pm 0.12 \\ 0.79 \pm 0.05 \\ 0.26 \pm 0.03 \\ 302.30 \pm 12.40 \\ 557.72 \pm 137.45 \\ 1957.34 \pm 1369.23 \end{array}$	2.66 1.17 3.65 0.94 0.39 332.12 1038.68 7097.00	$\begin{array}{c} 0.00\pm0.00\\ 0.01\pm0.03\\ 5.65\pm0.48\\ 0.57\pm0.02\\ 0.02\pm0.00\\ 1.07\pm0.11\\ 0.03\pm0.01\\ 0.19\pm0.19 \end{array}$	0.01 0.19 6.46 0.66 0.02 1.77 0.08 0.77
JAFFE	AdaB J48 k-NN NB SVM ConvNet 2TGP ConvGP	100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 87.78 ± 1.05 100.0 ± 0.00 89.93 ± 13.72 96.93 ± 3.17 96.19 ± 3.55	100.0 100.0 100.0 90.00 100.0 100.0 100.0 100.0	84.44 ± 2.96 - 82.22 ± 2.43 - 68.89 ± 5.51 = 61.11 ± 2.75 + 91.11 ± 2.75 - 80.74 ± 13.4 - 75.22 ± 11.7 = 73.52 ± 10.5	93.33 90.00 86.67 70.00 100.0 100.0 96.67 96.67	$\begin{array}{c} 0.36 \pm 0.20 \\ 0.07 \pm 0.04 \\ 0.07 \pm 0.02 \\ 0.32 \pm 0.06 \\ 0.06 \pm 0.04 \\ 322.84 \pm 1079.72 \\ 135.62 \pm 63.66 \\ 354.09 \pm 238.60 \end{array}$	1.06 0.29 0.17 0.48 0.26 7915.27 294.90 1090.92	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.08 \pm 0.01 \\ 0.22 \pm 0.04 \\ 0.01 \pm 0.00 \\ 0.39 \pm 0.04 \\ 0.01 \pm 0.02 \\ 0.03 \pm 0.02 \\ \end{array}$	0.02 0.00 0.20 0.34 0.02 0.63 0.14 0.12
Faces	AdaB J48 k-NN NB SVM ConvNet 2TGP ConvGP	91.51 ± 0.48 99.72 ± 0.11 100.0 ± 0.00 91.62 ± 0.70 99.38 ± 0.18 99.81 ± 0.20 96.26 ± 2.35 95.29 ± 2.81	92.17 99.80 100.0 92.60 99.63 99.97 98.80 99.23	$\begin{array}{c} 90.80 \pm 1.37 + \\ 96.57 \pm 0.38 - \\ 96.52 \pm 0.31 - \\ 92.19 \pm 0.45 + \\ 97.48 \pm 0.31 - \\ 99.29 \pm 0.24 - \\ 96.04 \pm 2.38 - \\ 94.93 \pm 2.68 \end{array}$	91.87 96.97 96.93 92.67 97.83 99.63 98.60 98.47	$\begin{array}{c} 1.02 \pm 0.12 \\ 0.89 \pm 0.12 \\ 6.70 \pm 0.38 \\ 0.45 \pm 0.06 \\ 0.96 \pm 0.15 \\ 113.22 \pm 11.64 \\ 424.64 \pm 108.20 \\ 963.11 \pm 598.58 \end{array}$	1.57 1.34 7.55 0.66 1.31 148.91 822.19 2646.28	$\begin{array}{c} 0.00 \pm 0.01 \\ 0.01 \pm 0.02 \\ 8.56 \pm 0.68 \\ 0.33 \pm 0.02 \\ 0.01 \pm 0.00 \\ 0.43 \pm 0.07 \\ 0.03 \pm 0.02 \\ 0.10 \pm 0.09 \\ \end{array}$	0.06 0.12 9.88 0.43 0.02 0.69 0.19 0.39
Pedestrian	AdaB J48 k-NN NB SVM ConvNet 2TGP ConvGP	79.26 ± 1.81 99.28 ± 0.08 100.0 ± 0.00 77.21 ± 0.24 90.65 ± 0.12 99.96 ± 0.04 82.53 ± 2.35 81.27 ± 2.95	80.96 99.38 100.0 77.38 90.79 100.0 86.33 86.96	$77.72 \pm 1.57 =$ $89.24 \pm 0.31 -$ $98.08 \pm 0.24 -$ $76.53 \pm 0.35 +$ $84.48 \pm 0.41 -$ $97.60 \pm 0.19 -$ $81.95 \pm 2.44 -$ 80.59 ± 2.96	79.21 89.67 98.40 77.02 85.00 98.17 85.42 86.00	3.11 ± 0.50 4.59 ± 0.64 27.58 ± 3.09 1.14 ± 0.06 84.68 ± 10.50 315.77 ± 10.75 1984.63 ± 519.34 3285.11 ± 2179.03	4.36 5.96 37.52 1.44 99.74 349.88 3545.93 11554.99	$\begin{array}{c} 0.01 \pm 0.00 \\ 0.01 \pm 0.00 \\ 41.44 \pm 4.48 \\ 0.87 \pm 0.01 \\ 0.03 \pm 0.01 \\ 1.27 \pm 0.11 \\ 0.16 \pm 0.12 \\ 0.31 \pm 0.29 \end{array}$	0.01 0.01 55.91 0.93 0.05 1.51 0.59 1.49

Puntos Clave

- Clasificación de imágenes.
- Programación genética convolucional (ConvGP): programación genética y aprendizaje profundo con redes neuronales convolucionales (CNN).
- 4 Conjunto de datos, autos, expresiones faciales, caras y peatones.
- ConvGP frecuentemente superó a los métodos básicos de clasificación, sin embargo, no pudo vencer a las CNN.

Estado del arte [18]

A filter based genetic algorithm and neural network technique for Image Classification

Purushottam Das

Department of Computer Sc. & Engg.

Graphic Era Deemed to be University

Dehradun, India

purushottamdas82@gmail.com

Shambhu Prasad Sah

Department of Computer Sc. & Engg.

Graphic Era Hill University

Bhimtal, India

somusuman@gmail.com

Dinesh C. Dobhal

Department of Computer Sc. & Engg.

Graphic Era Deemed to be University

Dehradun, India

dineshdobhal@gmail.com

Dikendra K. Verma
Department of ECE
Graphic Era Hill University
Bhimtal, India
dikendraverma@gmail.com

Ankur Singh Bist
Department of Computer Sc. & Engg.
Graphic Era Hill University
Bhimtal, India
ankur1990bist@gmail.com

Saurabh Pargaien

Department of ECE

Graphic Era Hill University

Bhimtal, India
saurabhpargaien@gmail.com

Estado del arte [18]

No. of features selected	Testing	Validation	Total
2	81.5	81.5	79.2
3	92.6	85.2	91.6
4	70.4	59.3	69.7
5	88.9	92.6	97.2

Data set	No. of	Selected	Classification Results		
	Features Selected	Feature Subset	Testing	Validation	Total
Wine	5	(11, 13, 7, 3, 5)	88.9	92.6	97.2

Puntos Clave

- o Clasificación de imágenes.
- Algoritmo genético basado en filtros para optimización de características y en redes neuronales.
- Precisión máxima del 97,2%, superando el rendimiento del 61,2% de un multi-SVM.

Agenda

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

- 1. Selección de la base de datos.
- 2. Preprocesamiento de las imágenes.
- 3. Protocolo experimental.

1. Selección de la base de datos.

- Imágenes de llantas a blanco y negro de 240x240x3.
- (2) categorías, inflado (1) y desinflado (0).
- 300 imágenes por categoría.

- 1. Selección de la base de datos.
- 2. Preprocesamiento de las imágenes.
- 3. Protocolo experimental.

Busqueda de Parametros 1

```
pca_f = [50, 70, 100]
estimators = [log_reg, k_n]
estimators_names = ['Regresion Logistica', 'K_nearest']
population_i = [0.1, 0.2, 0.3, 0.4]
generation_n = [20, 40,60]
```

N_Caract	70
Estimador	Regresion Logistica
Poblacion inicial	0.3
N_Generaciones	69

Busqueda de Parametros 2

Max features	5.000000
cross Prob	0.300000
Mutation_Prob	0.200000
Cross_ind_Prob	0.500000
Mutation_Ind_Prob	0.070000
Tournament_Size	5.000000

Agenda

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Resultados

Agenda

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Conclusiones

- La reducción de dimensionalidad demuestra ser una herramienta útil en aplicaciones donde se requiere disminuir la complejidad de los datos.
- Se demuestra que es posible solucionar el problema de clasificación de imágenes usando algoritmos genéticos, siempre y cuando se logre una reducción dimensional.

Conclusiones

- De la búsqueda inicial, los mejores resultados se obtuvieron usando 70 componentes principales superando aquellos modelos que tenían 100, esto se puede deber a que la información codificada por las pruebas con 100 componentes corresponde a variables que poco aportan a la clasificación del estado de las llantas, por ejemplo, tipo y color de rines.
- En la segunda búsqueda, se logra un mejor resultado aumentando el tamaño del torneo y de las probabilidades independientes mutación.

Agenda

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Repositorio de Github

URL Respositorio de Proyecto Clasificación de llantas a partir de imágenes:

https://github.com/katherinegonzalez/ClasificacionLlantas

Referencias

- [1] «Agencia Nacional de Seguridad Vial. ANSV». [En línea]. Disponible en: www.ansv.gov.co
- [2] «Fallas en las llantas, la segunda causa más frecuente de accidentes de tránsito en el país», *Revista Semana*, mar. 2022, [En línea]. Disponible en: https://www.semana.com/finanzas/consumo-inteligente/articulo/fallas-en-las-llantas-la-segunda-causa-mas-frecuente-de-accidentes-de-transito-en-el-pais/202243/
- [3] «Fallas y desgaste en las llantas entre las causas que más provocan siniestros viales en Colombia». https://www.mintransporte.gov.co/publicaciones/10748/fallas-y-desgaste-en-las-llantas-entre-las-causas-que-mas-provocan-siniestros-viales-en-colombia/ (accedido 18 de abril de 2022).
- [4] «Accident Prevention by Monitoring and Control of Vehicle Tyre Pressure using Wear & Tear and Pressure Sensor», *Int. J. Recent Technol. Eng.*, vol. 8, n.º 2, pp. 5281-5284, jul. 2019, doi: 10.35940/ijrte.B1061.078219.
- [5] O. A. Egaji, S. Chakhar, y D. Brown, «An innovative decision rule approach to tyre pressure monitoring», Expert Syst. Appl., vol. 124, pp. 252-270, jun. 2019, doi: 10.1016/j.eswa.2019.01.051.
- [6] K.-Y. Chen y C.-F. Yeh, «Preventing Tire Blowout Accidents: A Perspective on Factors Affecting Drivers' Intention to Adopt Tire Pressure Monitoring System», *Safety*, vol. 4, n.º 2, p. 16, abr. 2018, doi: 10.3390/safety4020016.
- [7] N. T. Ratrout, «Tire condition and drivers' practice in maintaining tires in Saudi Arabia», *Accid. Anal. Prev.*, vol. 37, n.º 1, pp. 201-206, ene. 2005, doi: 10.1016/j.aap.2003.03.001.

Referencias

- [8] Ministerio de transporte, «Resolución 0001349 de 2017 CALE».
- [9] Ministerio de trasporte, «Resolución 001600 de 2005 REPUBLICA DE COLOMBIA», 2005.
- [10] «USTMA Announces Tire Safety Week 2022: June 27-July 3.», Waste 360, p. N.PAG-N.PAG, feb. 2022.
- [11] «Full vs Flat Tire Images». https://kaggle.com/datasets/rhammell/full-vs-flat-tire-images (accedido 21 de marzo de 2022).
- [12] «Peajes en Colombia: ¿desde cuándo es el cobro y en cuáles aplica?», 31 de mayo de 2020. https://colombia.as.com/colombia/2020/06/01/actualidad/1590977340 706151.html (accedido 18 de abril de 2022).
- [13] «Las empresas de transporte cobran protagonismo en la actualidad Bu Ytrago». https://buytrago.es/las-empresas-de-transporte-cobran-protagonismo-en-la-actualidad/ (accedido 18 de abril de 2022).
- [14] «Vector Icons and Stickers PNG, SVG, EPS, PSD and CSS». https://www.flaticon.com/ (accedido 18 de abril de 2022).
- [15] [2] M. Chen y Z. Yao, «Classification Techniques of Neural Networks Using Improved Genetic Algorithms», en 2008 Second International Conference on Genetic and Evolutionary Computing, sep. 2008, pp. 115-119. doi: 10.1109/WGEC.2008.23.
- Z. Qiao, Q. Zhang, Y. Dong, y J.-J. Yang, «Application of SVM based on genet-ic algorithm in classification of cataract fundus images», en 2017 IEEE Interna-tional Conference on Imaging Systems and Techniques (IST), oct. 2017, pp. 1-5. doi: 10.1109/IST.2017.8261541.

Referencias

[17] B. Evans, H. Al-Sahaf, B. Xue, y M. Zhang, «Evolutionary Deep Learning: A Genetic Programming Approach to Image Classification», en 2018 IEEE Con-gress on Evolutionary Computation (CEC), jul. 2018, pp. 1-6. doi: 10.1109/CEC.2018.8477933.

P. Das, D. C. Dobhal, A. S. Bist, S. P. Sah, D. K. Verma, y S. Pargaien, «A filter based genetic algorithm and neural network technique for Image Classifica-tion», en 2020 IEEE International Conference on Advent Trends in Multidisci-plinary Research and Innovation (ICATMRI), dic. 2020, pp. 1-4. doi: 10.1109/ICATMRI51801.2020.9398498.

Gracias