

Machine Learning: Neural Networks

CSE 415: Introduction to Artificial Intelligence University of Washington Winter, 2018

© S. Tanimoto and University of Washington, 2018

1

The Biological Neuron

The human brain contains approximately 10¹¹ neurons. *Activation process*:

Inputs are transmitted electrochemically across the input synapses Input potentials are summed.

If the sum reaches a threshold, a pulse moves down the axon. (The neuron has "fired".)

The pulse is distributed at the axonal arborization to the input synapses of other neurons.

After firing, there is a refractory period of inactivity.

Univ. of Wash.

Learning: Neural Nets

Le Learning

Outline

- · History of neural networks research
- The Perceptron
- Examples
- Training algorithm
- Fundamental training theorem

Univ. of Wash.

Learning: Neural Nets

2

History of Neural Networks Research

1943 McCulloch & Pitts model of neuron.

$$n_i(t+1) = \Theta \ (\Sigma_j \ w_{ij} \ n_j(t) - \mu_i), \qquad \Theta(x) = \ 1 \ if \ x \ge 0;$$

0, otherwise.

1962 Frank Rosenblatt's book gives a training algorithm for finding the weights \mathbf{w}_{ij} from examples.

Principles of neurodynamics: Perceptrons and the theory of brain mechanisms

1969 Marvin Minsky and Seymour Papert publish *Perceptrons*, and prove that 1-layer perceptrons are incapable of computing image connectedness.

1974-89, 1982: Associated content-addressable memory.

Backpropagation: Werbos 1974, Parker 1985, Rumelhart, Hinton, & Williams 1986.

Univ. of Wash.

Learning: Neural Nets

Perceptron Training Sets

Let $X = X^+ \cup X^-$ be the set of training examples.

 $S_X = \langle X_1, X_2, ..., X_k, ... \rangle$ is a *training sequence* on X, provided:

- (1) Each X_k is a member of X, and
- (2) Each element of X occurs infinitely often in S_x .

An element e occurs infinitely often in a sequence

$$z = \langle z_1, z_2, \dots \rangle$$

provided that for any nonzero integer i, there exists a nonnegative integer j such that there is an occurrence of e in

$$z_i,\,z_{i+1},\,\ldots\,,\,z_j.$$

Univ. of Wash.

Learning: Neural Nets

9

Perceptron Limitations

Perceptron training always converges if the training data $X^{\scriptscriptstyle +}$ and $X^{\scriptscriptstyle -}$ are linearly separable sets.

The boolean function XOR (exclusive or) is not linearly separable. (Its positive and negative instances cannot be separated by a line or hyperplane.) It cannot be computed by a single-layer perceptron. It cannot be learned by a single-layer perceptron.

 $X^+ = \{ (0, 1), (1, 0) \}$

 $X^{-} = \{ (0, 0), (1, 1) \}$

 $X = X^+ U X^-$

Univ. of Wash.

Learning: Neural Nets

11

Perceptron Training Algorithm

Let $X = X^+ \cup X^-$ be the set of training examples. and let $S_X = \langle X_1, X_2, ..., X_k, ... \rangle$ be a training sequence on X.

Let w_k be the weight vector at step k, and let θ_k be the threshold at step k.

Choose w_0 and θ_0 arbitrarily. For example, $w_0 = (0, 0, ..., 0), \theta_0 = 1$.

Each each step k, k = 0, 1, 2, ...

Classify X_k using W_k .

If X_k is correctly classified, take $W_{k+1} = W_k$.

If X_k is in X^- but misclassified, take $W_{k+1} = W_k - C_k X_k$ and $\theta_{k+1} = \theta_k + C_k$

If X_k is in X^+ but misclassified, take $W_{k+1} = W_k + C_k X_k$ and $\theta_{k+1} = \theta_k - C_k$

The sequence c_k should be chosen according to the data. Overly large constant values can lead to oscillation during training. Values that are too small will increase training time. However, $c_k = c_0/k$ will work for any positive c_0 .

Univ. of Wash

Learning: Neural Nets

10

Two-Layer Perceptrons

Univ. of Wash.

Learning: Neural Nets

12

Two-Layer Perceptrons (cont.)

Two-Layer perceptrons are computationally powerful.

However: they are not trainable with a method such as the perceptron training algorithm, because the threshold units in the middle level "block" updating information; there is no way to know what the correct updates to first-level weights should be.

Univ. of Wash.

Learning: Neural Nets

13