Министерство науки и высшего образования Российской Федерации

Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ» им. В.И. Ульянова (Ленина)

Кафедра систем автоматического управления

Реферат

по дисциплине

«Нелинейное адаптивное управление в технических системах»

Студент группы 9492

Викторов А.Д.

Преподаватель

Путов В.В.

Санкт-Петербург

2024

Содержание

1	Введение	3
2	Теорема 6.8: Адаптивная стабилизация по выходу строго пассивной системы	4
3	Теорема 6.9: Адаптивная стабилизация по выходу строго минимально-фазовой системы	5
4	Леммы 6.1 - 6.4 и Теорема 6.10: Адаптивное управление с расширенной ошибкой	6
5	Теорема 6.11: Алгоритм адаптации высокого порядка	7
6	Теорема 13: Нелинейный робастный алгоритм высокого порядка	7

1 Введение

Адаптивное управление — это метод управления динамическими системами с неизвестными или изменяющимися параметрами. Основная идея адаптивного управления заключается в том, чтобы подстраивать параметры регулятора в реальном времени, обеспечивая устойчивость и желаемые характеристики системы. В данном реферате мы рассмотрим несколько ключевых теорем и лемм, относящихся к адаптивной стабилизации и робастным алгоритмам высокого порядка.

2 Теорема 6.8: Адаптивная стабилизация по выходу строго пассивной системы

Пусть выполняются допущения 6.3 и 6.4. Тогда закон управления (6.124), (6.125) обеспечивает для объекта (6.120), (6.121) при любых $\gamma > 0$ и произвольных начальных условиях $x_0 = x(0)$, $\hat{\theta}_0 = \hat{\theta}(0)$ ограниченность x(t) и $\hat{\theta}(0)$. Если регрессор w(t) ограничен, то, дополнительно, все сигналы в замкнутой системе ограничены и $\lim_{t\to\infty} S(x(t)) = 0$. Основной вопрос, который возникает в связи с представленными результатами: насколько ограничительным является допущение 6.4? Как было показано в 2.6.3, условия (6.122), (6.123) выполняются только в том случае, если система

$$\dot{x} = f(x) + g(x)u,\tag{1}$$

$$y = h(x) \tag{2}$$

является строго пассивной. В частности, это означает, что относительная степень системы равна елиницы, а состояине равновесия x=0 автономной части уравнения (1) является ассимптотически устойчивым. Таким образом, необходимо, необходиом признать, что допущение 6.4 является крайне ограничительным и как следствие - теорема 6.8 имеет ограничечное практическое значение.

Понятие строгой пассивности

Пусть у нас есть система, описываемая входом u(t) и выходом y(t). Система называется строго пассивной, если существует положительно определенная функция Ляпунова V(x) такая, что:

$$\dot{V}(x) \le u(t)y(t) - \alpha ||y(t)||^2,$$

где $\alpha > 0$ — некоторая положительная постоянная, а $\|y(t)\|$ обозначает норму выходного сигнала.

Пример адаптивного регулятора

Для стабилизации системы по выходу можно использовать закон адаптации для корректировки параметров регулятора в реальном времени:

$$\dot{\theta} = \gamma y(t) u(t),$$

где θ — вектор адаптивных параметров, а γ — скорость адаптации.

3 Теорема 6.9: Адаптивная стабилизация по выходу строго минимально-фазовой системы

Описание теоремы: Теорема 6.9 касается минимально-фазовых систем, у которых все нули правой части передаточной функции находятся в левой полуплоскости. Такие системы можно стабилизировать только по выходу, используя адаптивный регулятор.

Минимальная фаза

Система является минимально-фазовой, если её передаточная функция G(s) имеет все нули в левой полуплоскости. Это свойство выражается через условие:

$$Re(s_i) < 0, \quad \forall i,$$

где s_i — корни числителя передаточной функции.

Адаптивный регулятор

Для минимально-фазовой системы можно использовать регулятор с обновляемыми параметрами:

$$u(t) = -ky(t),$$

где k — адаптивный параметр, который обновляется по правилу:

$$\dot{k} = \gamma y(t) \left(y_d(t) - y(t) \right),\,$$

где $y_d(t)$ — желаемое значение выходного сигнала.

4 Леммы 6.1 - 6.4 и Теорема 6.10: Адаптивное управление с расширенной ошибкой

Лемма 6.1: В этой лемме рассматривается поведение ошибки адаптации при наличии расширенной ошибки. Для системы с выходом y(t) и референтной моделью $y_r(t)$, расширенная ошибка определяется как:

$$e(t) = y(t) - y_r(t).$$

Лемма 6.2: Эта лемма доказывает, что функция Ляпунова V(x) для расширенной ошибки e(t) остаётся положительно определенной.

Лемма 6.3: Здесь рассматривается условие для сходимости параметров адаптации.

Лемма 6.4: Условие, обеспечивающее ограниченность функции Ляпунова.

Теорема 6.10

В этой теореме описывается, как можно построить адаптивный регулятор с использованием расширенной ошибки. Пусть функция Ляпунова

имеет вид:

$$V(e,\theta) = \frac{1}{2}e^2 + \frac{1}{2}\|\theta - \theta^*\|^2,$$

где θ — вектор текущих параметров, а θ^* — истинные параметры системы. Теорема утверждает, что можно построить такой закон адаптации, что $e(t) \to 0$ при $t \to \infty$.

5 Теорема 6.11: Алгоритм адаптации высокого порядка

Описание теоремы: Теорема 6.11 утверждает, что можно разработать алгоритм адаптации высокого порядка, который учитывает производные ошибок более высокого порядка для более точной стабилизации системы.

Задача стабилизации

Стабилизационный алгоритм учитывает не только текущую ошибку e(t), но и её производные:

$$u(t) = -k_1 e(t) - k_2 \dot{e}(t) - \dots - k_n e^{(n-1)}(t).$$

Адаптивное обновление параметров

Параметры k_i адаптируются на основе производных ошибок, чтобы обеспечить быструю сходимость и минимизировать ошибку управления.

6 Теорема 13: Нелинейный робастный алгоритм высокого порядка

Описание теоремы: Теорема 13 касается робастных алгоритмов адаптации, способных стабилизировать системы, даже если они подвержены

нелинейным воздействиям и возмущениям.

Робастность

Робастный алгоритм стабилизации учитывает внешние возмущения d(t) и использует нелинейные функции управления:

$$u(t) = -k_1 \operatorname{sat}(e(t)) - k_2 \operatorname{sat}(\dot{e}(t)) - \dots - k_n \operatorname{sat}(e^{(n-1)}(t)),$$

где $\operatorname{sat}(\cdot)$ — нелинейная функция насыщения, ограничивающая значения управления для повышения устойчивости системы к возмущениям.

Функция Ляпунова для робастности

Используя ограничение на сигнал ошибки, можно записать:

$$\dot{V}(x) \le -\alpha V(x) + \beta \|d(t)\|^2,$$

где α и β — положительные постоянные. Это ограничение помогает гарантировать робастность системы.

Заключение

Адаптивные и робастные алгоритмы управления позволяют стабилизировать сложные динамические системы даже при наличии неопределенности и возмущений. Применение адаптивных методов повышает устойчивость системы и её способность адаптироваться к изменениям параметров.