5.3 Electrones libres en metales: modelo de Drude

- Se pretende explicar las propiedades de los metales a partir de diferentes modelos (5.3: Drude y 5.4: bandas)
- Propiedades de los metales:
 - Todos, excepto el mercurio, son sólidos a temperatura ambiente.
 - Casi los 2/3 de los elementos del Sistema Periódico son metales

5.3 Electrones libres en metales: modelo de Drude

5.3 Electrones libres en metales: modelo de Drude

- Son buenos conductores del calor y de la electricidad.
- Su conductividad eléctrica:
 - Es grande: $\sigma \sim 10^7 \, \Omega^{-1} m^{-1}$
 - Decrece con la temperatura

$$\sigma = \frac{\sigma_0}{1 + \alpha t_C}$$

□ Concentración de e⁻: no depende de T

$$n \sim 10^{28} \, \text{m}^{-3}$$

http://www.ing.udep.edu.pe/
Universidad de Piura
Facultad de Ingeniería
QUÍMICA GENERAL 1

5.3 Electrones libres en metales: modelo de Drude

- Modelo de Drude
 - Movimiento de los electrones relativamente libre, semejante al de las moléculas de un gas perfecto
 - Choques entre los electrones y con los nudos de la red cristalina
 - Velocidad en ausencia de un E:
 - Movimiento aleatorio

$$\rightarrow v_{promedio} = 0$$

 Resto de magnitudes: teoría cinética de gases (estadística de Maxwell-Boltzmann)

5.3 Electrones libres en metales: modelo de Drude

E

tiempo de

relajación

- Modelo de Drude (cont)
 - Velocidad en presencia de un E:
 - El campo eléctrico arrastra los electrones en sentido opuesto

Movimiento de arrastre resultante

Les comunica una aceleración:

$$(q = -e)$$

$$a = \frac{F}{m_q} = \frac{q \, E}{m_q}$$

Choques: velocidad constante

 $v = at = \frac{qE}{m_q}\tau = \left(\frac{q\tau}{m_q}\right)E$

velocidad

arrastre

La movilidad tiene signo:

$$\mu = \frac{q\tau}{m_e} = -\frac{e\tau}{m_e}$$

movilidad μ

$$v = \mu E$$

5.3 Electrones libres en metales: modelo de Drude

- Modelo de Drude (cont)
 - Ley de Ohm:
 - La densidad de corriente:

$$J_a = \frac{I_a}{A} = \frac{1}{A} \frac{\Delta Q}{\Delta t} =$$

TEMA 2: CIRCUITOS DE CC

2.1 Corriente eléctrica (cont)

- En un cable conductor:
 - n: número de partículas libres portadoras de carga / Vol
 - q: carga de cada partícula
 - v_d: velocidad
- En ∆t
 - □ pasa un volumen A· v_d·∆t
 - □ pasan N = $n \cdot A \cdot v_d \cdot \Delta t$ partículas
 - □ pasa una carga: $\Delta Q = q \cdot n \cdot A \cdot v_d \cdot \Delta t$
- La corriente eléctrica: $I = \frac{\Delta Q}{\Delta t} = nqAv_{d}$

Figura 25.2, Tipler 5^a Ed

5.3 Electrones libres en metales: modelo de Drude

- Modelo de Drude (cont)
 - Ley de Ohm:
 - La densidad de corriente:

$$J_a = \frac{I_a}{A} = \frac{1}{A} \frac{\Delta Q}{\Delta t} = nqv_a$$

$$= n(-e) v_a = n(-e) \mu E$$
• Como:
$$J_a = \sigma E$$

Como:

$$\sigma = n(-e)\mu$$

$$\sigma = n(-e)\mu = \frac{ne^2r}{m_e}$$
siempre +

5.3 Electrones libres en metales: modelo de Drude

- Modelo de Drude: limitaciones
 - Aciertos:
 - Independencia de la conductividad con el campo eléctrico: $\sigma = \frac{ne^2\tau}{m}$
 - Fallos:
 - Dependencia incorrecta de la conductividad con la temperatura: \(\tau\) aumenta con T
 - No predice la diferente conductividad de los materiales
 - CONSECUENCIA: hay que cambiar de modelo
 - Origen del fallo: los electrones no son partículas clásicas
 - SOLUCION: debemos aplicar la teoría cuántica

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - <u>Teoría clásica</u>: un electrón puede adquirir cualquier energía
 - <u>Teoría cuántica</u>: los electrones sólo pueden ocupar ciertos niveles de energía
 - Átomos aislados: niveles energéticos separados
 - Átomos en un sólido: los niveles energéticos cambian

¿Cómo?

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - Átomo aislado

→ red cristalina: Facultad de Ingeniería

QUÍMICA GENERAL 1 electrones

http://www.ing.udep.edu.pe/ Universidad de Piura

Teoría Pauli: máximo 2 electrones por orbital

2s

1s

1 átomo

átomo

Fundamentos Físicos de la Informática Carmen Martínez Tomás y Nuria Garro Curs 2009-2010

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - Efecto de la red cristalina:
- Teoría Pauli: máximo2 electronespor orbital

http://www.ing.udep.edu.pe/
Universidad de Piura
Facultad de Ingeniería
QUÍMICA GENERAL 1

1 átomo

Vniver§itatÿ®València

OpenCourseWare

2 átomos

Fundamentos Físicos de la Informática Carmen Martínez Tomás y Nuria Garro Curs 2009-2010

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - Efecto de la red cristalina:
- Teoría Pauli: máximo 2 electrones por orbital
- Los electrones de un sólido **SOLO** pueden ocupar ciertas BANDAS de energía.

http://www.ing.udep.edu.pe/ Universidad de Piura Facultad de Ingeniería **QUÍMICA GENERAL 1**

N átomos= N niveles = BANDA

3s

electrones

2 N electrones

6 N electrones

2s

2 N electrones

1s

2 N electrones

1 átomo

2 átomos

N átomos

1 átomo

OpenCourseWare

2 átomos

N átomos

Fundamentos Físicos de la Informática Carmen Martínez Tomás y Nuria Garro Curs 2009-2010

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - <u>Teoría de la conducción eléctrica</u>, desde el punto de vista de la teoría de bandas:
 - Para conducción eléctrica: e en movimiento ...
 - ... debe adquirir energía cinética ...
 - ... debe aumentar su energía total ...
 - ... deben haber niveles libres en banda con energía superior

Para la **CONDUCCIÓN ELÉCTRICA**, debe haber **NIVELES DE ENERGÍA LIBRES** en bandas superiores

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - Para la CONDUCCIÓN ELÉCTRICA, debe haber
 NIVELES DE ENERGÍA LIBRES en bandas superiores
 - Se denomina BANDA DE VALENCIA a la última banda de energía ocupada o semiocupada
 - Se denomina BANDA DE CONDUCCIÓN a la primera banda de energía vacía

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - Metales tipo Na:

distancias grandes = átomos aislados $3s^1$

Espaciamiento de

equilibrio

Energía de los electrones

http://www.ing.udep.edu.pe/
Universidad de Piura, Facultad de Ingeniería, QUÍMICA GENERAL 1

Distancia entre átomos

5.4 Electrones en metales: teoría de bandas

Modelo de bandas:

Metales tipo Na:

Energía de los electrones

distancias intermedias: empieza la atracción $3s^1$ Espaciamiento de Distancia entre átomos equilibrio

http://www.ing.udep.edu.pe/
Universidad de Piura, Facultad de Ingeniería, QUÍMICA GENERAL 1

5.4 Electrones en metales: teoría de bandas

- Modelo de bandas:
 - Metales tipo Na:

Energía de los electrones

http://www.ing.udep.edu.pe/
Universidad de Piura, Facultad de Ingeniería, QUÍMICA GENERAL 1

5.4 Electrones en metales: teoría de bandas

Modelo de bandas:

5.4 Electrones en metales: teoría de bandas

Modelo de bandas: Bandas ocupadas **Metales tipo Na:** Banda de conducción vacía Banda de valencia de los Los electrones disponen de niveles para ocupar Banda de valencia semiocupada Espaciamiento de Distancia entre átomos equilibrio

http://www.ing.udep.edu.pe/

http://www.ing.udep.edu.pe/

http://www.ing.udep.edu.pe/

http://www.ing.udep.edu.pe/

Material	Estructura electrónica	Conductividad (Ω ⁻¹ m ⁻¹)
Metales alcalinos		
Na	1s ² , 2s ² , 2p ⁶ , 3s ¹	2.13 x10 ⁷
K	, 3s ² , 3p ⁶ , 4s ¹	1.64 x10 ⁷
Metales alcalinotérreos		
Mg	1s ² , 2s ² , 2p ⁶ , 3 <mark>s²</mark>	2.25 x10 ⁷
Ca	, 3s ² , 3p ⁶ , 4s ²	3.16 x10 ⁷
Metales del grupo IIIA		conductores
Al	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ¹	3.77 x10 ⁷
Ga	, $3s^2$, $3p^6$, $3d^{10}$, $4s^2$, $4p^1$	0.66 x10 ⁷
Metales de transición		
Fe	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰ , 4s ²	1.00 x10 ⁷
Ni	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰ , 4s ²	1.46 x10 ⁷
Metales del grupo IB		
Cu	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰ , 4s ¹	5.98 x10 ⁷
Ag	, 4d ¹⁰ , 5 <mark>s</mark> ¹	6.80 x10 ⁷
Au	, 5d ¹⁰ , 6s ¹	4.26 x10 ⁷
Metales del grupo IV		
Sn	, 5s ² , 5p ²	0.90 x10 ⁷ conductor
Si	1s ² , 2s ² , 2p ² , 3s ² , 3p ²	5 x10-4 semiconducto
Ge	4s ² , 4p ²	2.00
C (diamante)	1s ² , 2s ² , 2p ²	> x10 ⁻¹⁶ aislante