

PHYSICS Chapter 6

Verano
SM
CORRIENTE ELÉCTRICA

VELOCIDAD DE LA CORRIENTE ELÉCTRICA

Corriente

Todo flujo de los portadores de cargas se denomina corriente eléctrica. En los metales dichos portadores son electrones.

Intensidad de corriente eléctrica

la cantidad de carga eléctrica que circula por una sección recta de un conductor en un determinado tiempo

$$I = \frac{q}{\Delta t}$$

RECORDANDO:

$$I = \frac{n \cdot |q_{e^-}|}{t}$$

Resistencia eléctrica

Entendamos como resistencia a la "oposición", ¿pero oposición a quién? ,a la corriente eléctrica que circula por un determinado cuerpo. tomando en cuenta sus dimensiones y naturaleza del material.

- L: longitud del conductor (m)
- > A: área de la sección transversal (m²)
- \triangleright p: coeficiente de resistividad eléctrica ($\Omega \cdot m$)

REPRESENTACIÓN DE UN RESISTOR ELECTRICA R

Ley de Ohm

El voltaje o diferencia de potencial entre los extremos de un conductor eléctrico es igual al producto de la intensidad de corriente eléctrica que circula por él y la resistencia eléctrica que ofrece el material.

Donde:

I : intensidad de corriente (A) V_{ab} : diferencia de potencial (V) R : resistencia eléctrica (Ω)

La corriente eléctrica circula de mayor potencial a menor potencial (Va > Vb)

1. Si en 5 minutos pasa una cantidad de carga de 3600 C atravesando la sección recta de un conductor, determine la intensidad de corriente eléctrica.

- A) 5 A B) 6 A
- C) 8 A

- D) 12 A
- E) 16 A

RESOLUCIÓN

$$I = \frac{q}{\Delta t}$$

Datos:

$$q = 3600C$$

$$\Delta t = 5min = 300s$$

Reemplazando:

$$I = \frac{3600C}{300s}$$

$$I = 12A$$

Si por la sección recta de un conductor pasan 5 × 10^{10} electrones en un intervalo de 2 × $10^{-2}s$, determine la intensidad de Corriente eléctrica de dicho conductor.

- Α) 0,1 μΑ Β) 0,2 μΑ
- C) 0,3 µA
- D) $0.4 \, \mu A$ E) $0.5 \, \mu A$

RESOLUCIÓN

i corriente

Datos:

$$n = 5.10^{10}$$

 $t = 2.10^{-2}s$
 $|q_{e^{-}}| = 1.6 \cdot 10^{-19}C$

Sabemos:

$$I = \frac{n \cdot |q_{e^{-}}|}{t}$$

Reemplazando:

$$I = \frac{5.10^{10} \cdot 1.6 \cdot 10^{-19}}{2.10^{-2}}$$

$$I = \frac{8.10^{-9} \cdot 10^{2}}{2} = 4.10^{-7} A$$

$$I = 0.4.10^{-6} A$$

$$I = 0.4 \mu A$$

3. La gráfica muestra cómo varía la intensidad de corriente que circula por un conductor en función al tiempo. Determine la cantidad de electrones que atraviesan al conductor entre t = 2 s y t = 6 s.

- A) 10^{17}

- D) 4×10^{17}

RESOLUCIÓN

Sabemos:

$$Q = \pm n. |q_{e^-}|$$

$$48.10^{-3} = n.1,6.10^{-19}$$

$$48.10^{-3} = n.16.10^{-20}$$

$$n = \frac{48.10^{-3}}{16.10^{-20}}$$

$$n = 4.10^{17}$$

- conductor de cierto material presenta na resistividad eléctrica de $1,72 \cdot 10^{-9} \Omega. m$ Determine la resistencia eléctrica en dicho conductor si tiene una longitud de 4km y su sección recta es de $2 mm^{2}$.
 - A) $3,44~\Omega$
- B) 2,44 Ω
- C) $5,44~\Omega$
- D) $6,44 \Omega$ E) $6,38 \Omega$

OBS:

$$4km = 4000m = 4.10^3 m$$

$$2mm^2 = 2.10^{-6}m^2$$

RESOLUCIÓN

Sahemos:

Unidad: ohm (Ω)

Ley de Poulliet

- L: longitud del conductor (m)
- A: área de la sección transversal (m²)
- ρ : coeficiente de resistividad eléctrica ($\Omega \cdot m$)

Reemplazando:

$$R = 1,72 \cdot 10^{-9} \Omega. \, m \cdot \frac{4.10^{3} m}{2.10^{-6} m^{2}}$$

$$R = 1.72 \cdot 2 \cdot \frac{10^{-6}}{10^{-6}} \Omega.$$

$$R=3,44 \Omega$$
.

01

A un alambre de resistencia 4 Ω se le triplica su longitud y su sección recta se le hace mitad. ¿Cuál es su nueva resistencia?

- A) 6Ω B) 8Ω C) 12Ω
- D) 15Ω E) 24Ω

RESOLUCIÓN

Sabemos:

$$R = \rho \frac{L}{A}$$

Inicio:

$$ho \left(\begin{array}{c} L \\ A \end{array} \right)$$

$$R = \rho \frac{L}{A} = 4\Omega$$

Final:

$$R_{x} = \rho \frac{3L}{\frac{A}{2}} \longrightarrow R_{x} = 6\rho \frac{L}{A} \frac{4\Omega}{A}$$

$$R_x = 24\Omega$$

01

6. Si el conductor A presenta una resistencia eléctrica de 10Ω , determine la resistencia que presenta el conductor B.

- Α) 10 Ω
- B) 15 Ω
- C) 16Ω

- D) 18 Ω
- E) 20 Ω

RESOLUCIÓN

Sabemos:

$$R = \rho \frac{L}{A}$$

Para el conductor "A":

$$R_A = \rho \frac{L}{A} = 10\Omega$$

Para el conductor "B":

$$R_B = 2\rho \frac{1.5L}{2A} \longrightarrow R_B = 1.5 \rho \frac{L}{A} \frac{10\Omega}{A}$$

$$R_B = 15 \Omega$$

un material desconocido se le evalúan sus propiedades eléctricas sometiéndolo a una diferencia de potencial variable V_0 , obteniéndose los datos que se muestran. Determine el valor de la resistencia eléctrica, en Ω , del conductor cuando por este circula una corriente de 8 A.

$V_0(V)$	3,81	6,09	10,59	12,15
I(A)	1,27	2,03	3,53	4,05

- A) 2Ω
- B) 3 Ω

C) 5Ω

D) 7Ω

E) 9 Ω

RESOLUCIÓN

Tabulando:

$$tg\alpha = \frac{V_0}{I} = cte$$

$$\frac{V_0}{I} = \frac{3,81V}{1,27A} = \frac{6,09V}{2,03A} = \frac{10,59V}{3,53A} = \frac{12,15V}{4,05A} = 3\Omega = cte$$

De la Ley de Ohm:

$$V_0 = I \cdot R$$

$$V_0 = I \cdot R \qquad \xrightarrow{Despejando} \qquad R = \frac{V_0}{I} = 3\Omega = cte$$

Siendo un mismo material, la resistencia se mantiene constante para diferentes valores de la corriente eléctrica.

 $R = 3\Omega$

8. Se muestra una porción de un circuito más complejo. Determine la intensidad de corriente I si la diferencia de potencial entre M y N es de 27 V.

- A) 3 A
 - B) 12 A
- C) 9 A

- D) 15 A E) 24 A

RESOLUCIÓN

01

De la Ley de ohm.

 \succ Tramo MN: $V_{MN} = I_1 \cdot R_1$

$$27V = I_1 \cdot 3\Omega$$

$$I_1 = 9A$$

> Para una conexión en paralelo se cumple

$$V_{MN} = V_{PQ} = 27V$$

> Tramo PQ: $V_{PO} = I_2 \cdot R_2$

$$27V = I_2 \cdot 9\Omega$$

$$I_2 = 3A$$

 \triangleright Se cumple: $I = I_1 + I_2 \longrightarrow I = 9A + 3A$

$$I = 12A$$

9. Si por el resistor de 2Ω circula una corriente de 4 A, determine la diferencia de potencial entre P y Q.

A) 8 V

B) 12 V

C) 20 V

D) 40 V

E) 50 V

RESOLUCIÓN

En una conexión en serie se cumple:

$$I = I_1 = I_2 = 4A$$

$$\triangleright V_{PQ} = V_{PM} + V_{MN} + V_{NQ} \qquad (\alpha)$$

De la Ley de ohm: $V_{AR} = I \cdot R$

$$V_{PM} = 4A \cdot 3\Omega = 12V$$

$$V_{MN} = 4A \cdot 2\Omega = 8V$$

$$V_{NQ} = 4A \cdot 5\Omega = 20V \qquad V_{PQ} = 40V$$

De Reemplazando en (α) :

$$V_{PQ} = 12V + 8V + 20V$$

$$V_{PQ} = 40V$$

Si por el resistor de 2Ω circula una intensidad de corriente de 5 A, determine la diferencia de potencial entre M y N.

A) 21 V

B) 31 V

C) 10 V

D) 15 V

E) 6 V

RESOLUCIÓN

De la Ley de ohm.

> Tramo AB:

$$V_{AB} = I \cdot R_1$$

$$V_{AB} = 5A \cdot 2\Omega$$

$$V_{AB} = 10V$$

 Para una conexión en paralelo se cumple

$$V_{AB} = V_{CD} = 10V$$

> Tramo CD:

$$V_{CD} = I_1 \cdot R$$

$$10V = I_1 \cdot 5\Omega$$

$$I_1 = 2A$$

De la Ley de nodos.

$$I_2 = I + I_1$$

$$I_2 = 5A + 2A$$

$$I_2 = 7A$$

> Tramo MN:

$$V_{MN} = I \cdot R_1$$

$$V_{MN} = 7A \cdot 3\Omega$$

$$V_{MN} = 21V$$