Chapter 17

17.1 <u>Shelby tube *A*</u>:

Eq. (17.6):
$$A_R(\%) = \frac{D_o^2 - D_i^2}{D_i^2} (100) = \frac{(76.2)^2 - (73)^2}{(73)^2} \times 100 = 8.96\% \le 10\%$$

Samples can be considered undisturbed. Suitable for grain size distribution, Atterberg limits, consolidation and unconfined compression tests.

Shelby tube *B*:

Eq. (17.6):
$$A_R(\%) = \frac{D_o^2 - D_i^2}{D_i^2} (100) = \frac{(3.5)^2 - (3.375)^2}{(3.375)^2} \times 100 = 7.54\% \le 10\%$$

Samples can be considered undisturbed. Suitable for grain size distribution, Atterberg limits, consolidation and unconfined compression tests.

Split spoon sampler:

Eq. (17.6):
$$A_R(\%) = \frac{D_o^2 - D_i^2}{D_i^2} (100) = \frac{(50.8)^2 - (35)^2}{(35)^2} \times 100 = 110\% \ge 10\%$$

Samples can be considered as highly disturbed. Suitable for grain size distribution and Atterberg limits tests, but not for consolidation and unconfined compression tests.

17.2

Depth (m)	σ_0' (kN/m ²)	$C_N = \left[\frac{\sigma_0'}{p_a}\right]^{-0.5}$	N_{60}	$(N_1)_{60} = C_N N_{60}$
2	34	1.71	7	≈12
4	68	1.21	10	≈12
6	102	0.99	11	≈11
8	136	0.857	14	≈12
10	170	0.767	9	≈7

17.3
$$\phi' = \tan^{-1} \left[\frac{N_{60}}{12.2 + 20.3 \left(\frac{\sigma'_o}{p_a} \right)} \right]; \ p_a \approx 100 \text{ kN/m}^2$$

Depth	σ_o'	p_o	N_{60}	φ' (deg)
(m)	(kN/m^2)	(kN/m^2)		[Eq. (17.20)]
2	34	100	7	20.1
4	68	100	10	21.0
6	102	100	11	18.48
8	136	100	14	19.37
10	170	100	9	10.9

Average $\phi' \approx 18^{\circ}$

17.4 Eq. (17.18):
$$D_r$$
 (%) =
$$\frac{N_{60} \left(0.23 + \frac{0.06}{D_{50}}\right)^{1.7}}{9} \left(\frac{98}{\sigma'_o}\right)^{0.5}$$
 (100)

Given $\gamma = 15.7 \text{ kN/m}^3$. The following table can now be prepared.

Depth z (m)	$\sigma_o' = \gamma z$ (kN/m^2)	D ₅₀ (mm)	N_{60}	D_r (%)
1.5	23.55	0.3	9	99.5 ≈ 100
3.0	47.1	0.3	10	$74.2 \approx 74$
4.5	70.65	0.3	14	$71.7 \approx 72$
6.0	94.2	0.3	18	$70.4\approx70$
7.5	117.75	0.3	20	66.4 ≈ 66

17.5
$$(N_1)_{60} = C_N N_{60} = \left(\frac{\sigma_0'}{p_a}\right)^{-0.5} N_{60} ; \quad \phi' = 27.1 + 0.3(N_1)_{60} - 0.00054(N_1)_{60}^2$$

Depth (m)	σ'_o (kN/m ²)	N_{60}	C_N	$(N_1)_{60}$	φ' (deg)
1.5	$1.5 \times 18 = 27$	8	1.924	15.4 ≈ 15	31.4
3	$3 \times 18 = 54$	9	1.36	12.24 ≈ 12	30.6
4.5	$4.5 \times 18 = 81$	11	1.11	12.2 ≈ 12	30.6
6		12	0.99	11.89 ≈ 12	30.6
7.5	101.7 + 1.5(18.8 - 9.8) = 115.2	15	0.931	13.96 ≈ 14	31.2
9	115.2 + 1.5(18.8 - 9.8) = 128.7	17	0.881	14.97 ≈ 15	31.4

Average $\phi' \approx 31^{\circ}$

17.6 a. The properties should be averaged over a distance of 2*B* or 4 m below the footing, i.e. up to a depth of 5.5 m.

Therefore, design
$$N_{60} = (8 + 9 + 11) / 3 = 9.33 \approx 9$$

and design
$$\phi'$$
 (deg) = $(31.4 + 30.6 + 30.6) / 3 = 30.8$

b.
$$F_d = 1 + 0.33 \left(\frac{D_f}{B} \right) = 1 + (0.33) \left(\frac{1.5}{2} \right) = 1.247$$

$$q_{\text{net}} = \frac{N_{60}}{0.08} \left(\frac{B + 0.3}{B}\right)^2 F_d \left(\frac{S_e}{25}\right) = \frac{9}{0.08} \left(\frac{2 + 0.3}{2}\right)^2 (1.247) \left(\frac{25}{25}\right) = 185.53 \text{ kN/m}^2$$

$$Q_{\text{net}} = q_{\text{net}} \times B^2 = 185.53 \times 4 = 742 \text{ kN}$$

17.7 Eq. (17.39):
$$\frac{\left(\frac{q_c}{p_a}\right)}{N_{60}} = 7.64 D_{50}^{0.26}$$
. Use $p_a \approx 100 \text{ kN/m}^2$.

Depth (m)	N_{60}	D_{50} (mm)	$q_c (kN/m^2)$
1.5	8	0.28	4,390
3	9	0.28	4,938
4.5	11	0.28	6,036
6	12	0.28	6,585
7.5	15	0.28	8,231
9	17	0.28	9,328

17.8 Eq. (17.33): $E_s = 3q_c$

Using q_c from Problem 17.7:

Depth (m)	$q_c (\mathrm{kN/m}^2)$	$E_s (kN/m^2)$
1.5	4,390	13,170
3	4,938	14,814
4.5	6,036	18,108
6	6,585	19,755
7.5	8,231	24,693
9	9,328	27,984

17.9 Eq. (17.35):
$$c_u = \frac{q_c - \sigma_c}{N_k}$$
; $N_k \approx 18.3$

$$c_u = \frac{26000 - (22)(118)}{18.3} = 1278.9 \,\text{lb/ft}^2$$

17.10 From Eq. (17.43):

Recovery ratio,
$$R = \left(\frac{4.5}{8}\right)(100) = 56.25\%$$