2020 Digital IC Design

Homework 5: Image Edge Detect System

1 Introduction

索伯算子(Sobel operator)是圖像處理中的算子之一,有時又稱為索伯-費德曼算子或索貝濾波器,在影像處理及電腦視覺領域中常被用來做邊緣檢測。在技術上,它是一離散性差分算子,用來運算圖像亮度函數的梯度之近似值。在圖像的任何一點使用此算子,索伯算子的運算將會產生對應的梯度向量或是其範數。概念上,索伯算子就是一個小且是整數的濾波器對整張影像在水平及垂直方向上做捲積,因此它所需的運算資源相對較少,另一方面,對於影像中的頻率變化較高的地方,它所得的梯度之近似值也比較粗糙。此次作業請實作一圖像邊緣偵測系統,利用 Gx 和 Gy 對圖像進行捲積得出 sobelX 圖像及 sobelY 圖像相加除以二得出 sobelCombine 的圖像。

2 Design Specifications

2.1 Block overview

圖一、系統方塊圖

2.2 I/O Interface

Name	I/O	Width	Description
------	-----	-------	-------------

	1	1	
clk	I	1	系統時脈訊號。本系統為同步於時脈正緣之
			同步設計
reset	I	1	高位準"非"同步(active high asynchronous)之
			系統重置信號
ready	I	1	灰階圖像準備完成指示訊號。當訊號為 High
			時,表示灰階 圖像準備完成,此時 SOBEL
			才可以開始向 testfixture 發送 輸入灰階圖
			像資料索取位址。
busy	О	1	系統忙碌指示訊號。當 SOBEL 接收到 ready
			訊號為 High,且 SOBEL 準備開始動作時,
			需將此訊號設為 High,表示準備開始進行輸
			入灰階圖像資料索取;待所有運算處理完成
			且輸出結果寫回 testfixture 後,需再將訊號
			設為 Low 表示 動作結束。
iaddr	О	17	輸入灰階圖像位址訊號。指示欲索取哪個灰
			階圖像像素 (pixel)資料的位址。
idata	I	8	輸入灰階圖像像素資料訊號,由 8bits 整數
			組成,為無號數。testfixture 將 iaddr 所指示
			的位址之像素資料用此訊號送給 SOBEL。
crd	О	1	SOBEL 運算輸出記憶體讀取致能訊號。當時
			脈正緣觸發 時,若此訊號為 High,表示要
			進行讀取動作。testfixture 會將 caddr_rd 位址
			指示之資料讀取到 cdata_rd 上。
cdata_rd	I	8	CONV 運算結果記憶體讀取訊號,由 8 bits
			整數(MSB)組成,為無號數。testfixture 將記
			憶體資料傳送至 SOBEL 電路。
caddr_rd	О	16	SOBEL 運算結果記憶體讀取位址。
			SOBEL 電路各層的運算 結果利用此訊號
			指示將要 <mark>讀取</mark> testfixture 中所內建輸出結果
			之記憶體的哪個位址。
cwr	О	1	SOBEL 運算輸出記憶體寫入致能訊號。當時
			脈正緣觸發時,若此訊號為 High,表示要進
			行寫入動作。testfixture 會將 cdata_wr 內容
			寫到 caddr_wr 所指示之位址。
cdata_wr	О	8	SOBEL 運算結果記憶體寫出訊號,由 8bits
			整數(MSB)組成,為無號數。SOBEL 電路的
			運算結果利用此訊號輸出至 testfixture。
caddr_wr	О	16	SOBEL運算結果記憶體寫入位址。SOBEL電

			路的運算 結果利用此訊號指示將要寫入到 testfixture 中所內建輸出結果之記憶體的哪
			個位址。
csel	О	2	SOBLE 運算處理結果寫入/讀取記憶體選擇
			訊號。此訊號指示目前寫入/讀取資料為
			SOBEL 電路中哪一個的運算結果。說明如下:
			2'b00:表示沒有選擇記憶體。
			2'b01: 寫入/讀取 Sobel X 結果。
			2'b10: 寫入/讀取 Sobel Y 結果。
			2'b11:寫入/讀取 Sobel combine 結果。

2.3 Function Description

The data in tb is zero padding image data.

圖二、電路流程圖

本系統的輸入圖片大小為 256x256,存放於 testfixture 的記憶體中,灰 階圖像各 pixels 與其記憶體的對應方式如下圖 4.說明。動作時序上, SOBEL 電路 需利用 iaddr 發 送 欲 索 取 圖 像 資 料 的 位 址 到 testfixture(如圖 3. t1 時間點), testfixture 在每個時脈負緣後會將 iaddr 所指示位址之 pixel 資料利用 idata 送入 SOBEL 電路(如圖三. t2 時間點)。

圖三、灰階圖像資料記憶體時序圖

圖四、輸入灰階圖像及其記憶體對應方式

本系統已經將 zero_padding 後的資料存於記憶體中,請利用 $Gx \times Gy$ 分別作捲積,得出 Sobel X 及 Sobel Y 的圖,在做 Sobel 運算時,若值超過 255 就將其設定為 255,若小於 0 就將其值設定為 0,得出 Sobel X 及 Sobel Y 的圖後,利用(sobel X+ sobel Y)/2 然後四捨五入的方式得到 Sobel combine,當結束運算,請將 busy 訊號拉為 0,之後會開始驗證答案是否正確。

$$\mathbf{G_x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \quad \mathbf{G_y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

本系統的記憶體存取方式,各層輸出資料記憶體 L0_MEM0、 L0_MEM1、L0_MEM2 皆為 RAM model 且控制方式及時序皆相同, 都可進行寫入及讀取動作。採用不同的 csel 設定值啟動各層輸出相對 應的記憶體,使用 cwr 作為寫入致能訊號,crd 作為讀取致能訊號。 讀取時,使用 caddr_rd 為記憶體位址,cdata_rd 作為讀取資料訊號。 動作時序如下圖 5. 說明,當時脈正緣觸發時若 crd 為 High,則會在 觸發後立刻將 caddr_rd 所指示位址的資料讀 取到 cdata_rd 上(如圖 5tl 時間點)。 寫入時,使用 caddr_wr 為記憶體位址,cdata_wr 作為 寫入資料訊號。動作時序如下圖 6. 說明,當時時脈正緣觸發時若 cwr 為 High,則會將這時 cdata_wr 的資料寫入到 caddr_wr 所指 示位址 上(如圖 6. tl 時間點)。

請將 SobelX 的資料存入記憶體 L0_MEM0 (2'b01), SobelY 的資料存入記憶體 L0_MEM1 (2'b10), Sobel Combine 的資料存入記憶體 L0 MEM2 (2'b11)。

圖五、輸出資料記憶體 LO_MEMO、LO_MEM1、LO_MEM2 讀取動作時序圖

圖六、輸出資料記憶體 LO_MEMO、LO_MEM1、LO_MEM2 寫入動作時序圖

3 Scoring

3.1 Functional Part

電路功能通過 pre-sim,

[15%] C 等級:testfixture 通過 SobelX 輸出資料比對

[15%] B 等級:完成 C 等級下, testfixture 通過 SobelY 資料比對

[10%] A 等級:完成 B 等級下, testfixture 通過 Sobel combine 資料比

對

請在報告中註明完成之等級

3.2 Gate Level Part

完成 Quartus 合成(Device: Cyclone II EP2C70F896C8)及 post-sim ,合成時請加入.sdc 檔。

[15%] C 等級:testfixture 通過 SobelX 輸出資料比對

[15%] B 等級:完成 C 等級下, testfixture 通過 SobelY 資料比對

[10%] A 等級:完成 B 等級下, testfixture 通過 Sobel combine 資料比

對

請在報告中註明完成之等級

```
# START!!! Simulation Start ....

# Sobel X is correct!

# Sobel Y is correct!

# Sobel combine is correct!

# Congratulations! Sobel X data have been generated successfully! The result is PASS!!

# Congratulations! Sobel Y data have been generated successfully! The result is PASS!!

# Congratulations! Sobel ombine data have been generated successfully! The result is PASS!!

# Congratulations! Sobel combine data have been generated successfully! The result is PASS!!

# ** Note: # Finish : H:/DIC homework new/testfixture_fix.v(198)

# Time: #585020 ns Iteration: 0 Instance: /testfixture
```

3.3 Performance Part

[20%] 完成 3.2 之要求並記錄合成後的 logic element 數量,以及模擬時能通過的最小 cycle 與模擬時間。評分標準為

(Total logic elements + total memory bit + 9*embedded multiplier 9-bit element)×(longest gate-level simulation time in ns)

越低越好

```
Flow Summary
                                        Successful - Thu Apr 16 12:46:05 2020
   Flow Status
                                        10.0 Build 262 08/18/2010 SP 1 SJ Full Version
   Quartus II Version
   Revision Name
                                        SOBEL
  ··· Top-level Entity Name
                                        SOBEL
   Family
                                        Cyclone II
  ··· Device
                                        EP2C70F896C8
  ···· Timing Models
                                        Final
  ··· Met timing requirements
                                        Yes
☐ Total logic elements
                                        455 / 68,416 ( < 1 %)
       Total combinational functions
                                       447 / 68,416 ( < 1 % )
      ··· Dedicated logic registers
                                        178 / 68,416 ( < 1 % )
   Total registers
                                        178
   Total pins
                                        80 / 622 (13 %)
   Total virtual pins
  ··· Total memory bits
                                        0 / 1,152,000 (0 %)
                                        0/300(0%)
   Embedded Multiplier 9-bit elements
   Total PLLs
                                        0/4(0%)
```

4 Submission

You should classify your files into three directories and compressed to .zip format. The naming rule is HW5 studentID name.zip.

	RTL category	
*.V	All of your Verilog RTL code	

	Gate-Level category
*.vo	Gate-Level netlist generated by Quartus
*.sdo	SDF timing information generated by Quartus
	Documentary category
*.pdf	The report file of your design (in pdf).

4.1 Report file

Please follow the spec of report. You are asked to describe how the circuit is designed as detailed as possible, and the summary results and minimum CYCLE in post-sim are necessary.

4.2 Please submit your .zip file to folder HW5 in the moodle.

Deadline: 2020-06-23 23:55

5 If you have any problem, please contact by the TA by email:

f74044088@gs.ncku.edu.tw 倪祺婷 weiting84610@gmail.com 陳威廷