2.2 Поняття алгебраїчної структури. Найпростіші алгебраїчні структури

2.2.1 Поняття алгебраїчної структури

Алгебраїчною структурою < S, O > називається множина разом із заданими операціями, визначеними і замкненими на цій множині.

Ця множина називається *носієм алгебраїчної структури*.

Приклад. Алгебраїчна структура з операцією додавання на множині N натуральних чисел позначається < N, +>.

Приклад. Множина $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$ разом із звичайною операцією додавання (+) не буде алгебраїчною структурою, оскільки результат виконання операції може не належати множині Z_7 , наприклад, 6+3=9, $9 \notin Z_7$. Але $\langle Z_7, \oplus_7 \rangle$ є алгебраїчною структурою, оскільки область значень операції \oplus_7 лежить у Z_7 .

Відношення між алгебраїчними структурами

Структура S = A', $\oplus > \epsilon$ **підструктурою** алгебраїчної структури S = A, $\oplus >$, якщо:

- 1. $A' \subseteq A$
- 2. \oplus ' і \oplus операції одного порядку і звуження операції \oplus на підмножині A' співпадає з операцією \oplus ' (наприклад, для бінарних операцій $a \oplus b = a \oplus$ ' b для всіх $a, b \in A$ ').

Найбільшою підструктурою структури S ϵ сама структура S. У деяких випадках інших підструктур може не бути.

Приклад. Нехай E — множина парних натуральних чисел, тоді $\langle E, + \rangle$ буде підструктурою структури $\langle N, + \rangle$, де N — множина натуральних чисел.

2.2.2 Найпростіші алгебраїчні структури

Структури з однією операцією

Півгрупою називається алгебраїчна структура з множиною-носієм A і бінарною операцією $\otimes: A^2 \to A$, яка задовольняє властивості асоціативності:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z;$$
 $x, y, z \in A.$

Приклад. При обробці рядків символів використовується операція конкатенації $\alpha \cdot \beta = \alpha \beta$. Візьмемо рядки: «пар», «о», «воз». Застосувавши операції конкатенації, одержуємо такі рядки:

 $\langle\langle \text{пар}\rangle\rangle \bullet \langle\langle \text{о}\rangle\rangle = \langle\langle \text{паро}\rangle\rangle \bullet \langle\langle \text{воз}\rangle\rangle = \langle\langle \text{паровоз}\rangle\rangle.$

Очевидно, що ця операція асоціативна, оскільки

 $(((\pi a p) \circ ((\circ)) \circ (B \circ 3)) = (\pi a p) \circ ((\circ) \circ (B \circ 3)) = (\pi a p \circ B \circ 3) .$

Отже, $<\!\!A^+\!\!$, $\bullet\!\!> \epsilon$ півгрупою, де $A^+\!\!$ — множина різних рядків, що складаються з букв українського алфавіту.

Моноїдом називають алгебраїчну структуру з множиною-носієм M і бінарною операцією $\otimes: M^2 \to M$ такою, що

1. ⊗ асоціативна:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$
, для всіх $x, y, z \in M$.

2. Існує e ∈ M — одиниця відносно ⊗:

$$e \otimes x = x = x \otimes e$$
 для всіх $x \in M$.

Таким чином, моноїд — це півгрупа з одиницею.

Приклад. Якщо позначимо через A^* множину довільних рядків, що складаються з букв українського алфавіту і порожнього рядку ε =«», то одержимо структуру $< A^*$, •>, яка ε моноїдом з одиничним елементом ε .

Групою називають множину G з бінарною операцією \otimes , що замкнена в G, такою, що

1. ⊗ асоціативна:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$
, для всіх $x, y, z \in G$.

2. Існує e ∈ G — одиниця відносно ⊗:

$$e \otimes x = x = x \otimes e$$
 для всіх $x \in G$.

3. Кожному елементу $x \in G$ відповідає обернений елемент $x' \in G$ відносно \otimes : $x' \otimes x = x \otimes x' = e$ для всіх $x \in G$.

Часто до слів «група» і «моноїд» приписують термін «комутативний». Це означає, що операція у розглянутій структурі задовольняє властивість комутативності, тобто $y \otimes x = x \otimes y$ для всіх $x, y \in M$ або G.

Комутативна група називається абелевою групою.

Приклади. 1. Групою є множина дійсних чисел разом з операцією додавання: $\langle R, + \rangle$, підгрупою цієї групи є $\langle Z, + \rangle$, де Z — множина цілих чисел.

Структура $\langle K, + \rangle$, де K — множина цілих чисел, що кратні $k, k \in N$, є підгрупою групи $\langle Z, + \rangle$. Для цих груп одиницею є 0, обернений елемент утворюється за допомогою застосування унарної операції зміни знака «-». Наведені групи є абелевими групами, оскільки додавання комутативне.

- 2. Структура < N, +>, де N- множина натуральних чисел, не ϵ групою, оскільки не існу ϵ обернених елементів і одиниці. Насправді, < N, +> півгрупа.
- 3. Структури $\langle R, * \rangle$ і $\langle N, * \rangle$ не є групами, а є моноїдами. Одиничним елементом для операції множення є 1. Обернені елементи існують на множині дійсних чисел R для всіх елементів, крім 0: не існує 0^{-1} , такого, що $0 * 0^{-1} = 1$.

Таким чином, операція множення задає групу на множині дійсних чисел, крім нуля $\langle R \backslash \{0\}, * \rangle$.

Додатна підмножина множини дійсних чисел з операцією множення $\langle R_+, * \rangle$ теж є групою – підгрупою групи $\langle R \setminus \{0\}, * \rangle$.

Множення комутативне, отже, ці групи ε абелевими.

4. Позначимо $M_n(R)$ множину всіх квадратних матриць порядку n з елементами з множини дійсних чисел.

Структура $< M_n(R)$, +> — комутативний моноїд з одиницею — нульовою матрицею.

Структура $< M_n(R)$, *> — некомутативний моноїд з одиницею — одиничною матрицею.

5. Структура $\langle Z_n, \otimes_n \rangle$ — група з одиницею 0 і оберненим елементом $x' = n - x; \langle Z_n, \otimes_n \rangle$ — моноїд з одиницею 1.

Твердження 1. Нехай \otimes — операція на множині A й існує одиниця e відносно \otimes , тоді *одиничний елемент єдиний*.

Твердження 2. Нехай \otimes — асоціативна операція на множині A і e — одиниця відносно \otimes . Тоді, якщо $x \in A$ і x має обернений елемент, то *обернений* елемент єдиний відносно \otimes .

Структури з двома операціями

Розглянемо алгебраїчні структури з двома бінарними операціями \otimes і \oplus . Операцію \otimes називають множенням, а операцію \oplus — додаванням. Для \otimes одиничний елемент позначається 1, а обернений до елемента x відносно \otimes записується у вигляді x^{-1} . Для \oplus одиничний елемент позначається 0, а обернений до елемента x відносно \oplus записується у вигляді -x. Зрозуміло, що для різних структур ці операції визначаються по-різному, хоча часто називаються однаково.

Кільцем <R, $\{ \otimes, \oplus \} >$ називається множина R з визначеними на ній бінарними операціями \otimes і \oplus :

1. ⊕ асоціативна:

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$
, для всіх $x, y, z \in R$.

2. ⊕ комутативна:

$$x \oplus y = y \oplus x$$
 для всіх $x, y \in R$.

3. \oplus має одиницю, яка називається нулем і позначається 0:

$$0 \oplus x = x$$
 для всіх $x \in R$.

4. Існує обернений елемент відносно \oplus для кожного $x \in R$:

$$(-x) \oplus x = x \oplus (-x) = 0$$
 для всіх $x \in R$.

5. ⊗ асоціативна:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$
 для всіх $x, y, z \in R$.

6. ⊗ дистрибутивна відносно ⊕ зліва і справа:

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z),$$

 $(x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$ для всіх $x, y, z \in R$.

Будемо вважати, що *кільце комутативне*, якщо множення \otimes комутативне і є *кільцем з одиницею*, якщо існує одиниця відносно множення. Кільце з одиницею називається *алгеброю*. Зазвичай її позначають символом 1.

Легко показати, що в кільці $< R, \oplus, \otimes >$ для будь-яких $a, b \in R$ виконуються співвідношення

$$0 \otimes a = a \otimes 0 = 0,$$

 $a \otimes (-b) = (-a) \otimes b = -(a \otimes b),$
 $(-a) \otimes (-b) = a \otimes b.$

В кільці $\langle R, \oplus, \otimes \rangle$ фактично присутня некомутативна бінарна операція віднімання Θ , визначена за правилом $a \Theta b = a \oplus (-b)$. Вона ϵ правою оберненою відносно додавання в тому розумінні, що $(a \oplus b) \Theta b = a$. Дійсно,

$$(a \oplus b) \ominus b = (a \oplus b) \oplus (-b) = a \oplus b \oplus (-b) = a \oplus 0 = a.$$

Поле <R, \oplus , \otimes > — це комутативне кільце з одиницею 1 (що відрізняється від 0), в якому кожний елемент a (що відрізняється від 0) обернений за множенням.

Структуру < R, *, +> називають *полем дійсних чисел*.