



## **Model Development Phase Template**

| Date          | 16 July 2024                                               |
|---------------|------------------------------------------------------------|
| Team ID       | xxxxxx                                                     |
| Project Title | Detection of Autistic Spectrum Disorder:<br>Classification |
| Maximum Marks | 5 Marks                                                    |

## **Model Selection Report:**

| Model                                 | Description                                                                                                                                         |                       |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Logistic<br>Regression                | A linear model used for binary classification. It calculates the probability of a sample belonging to a particular class using a logistic function. |                       |
| Support<br>Vector<br>Machine<br>(SVM) | A classification model that finds the hyperplane that best separates the classes. It can handle non-linearity using kernel functions.               |                       |
| Decision Tree                         | A tree-based model that splits the data based on feature values to make pred visualize and interpret.                                               | ictions. It's easy to |
| Random<br>Forest                      | An ensemble method that combines multiple decision trees to improve performance overfitting. Each tree is trained on a subset of the data           | rmance and reduc      |





| K-Nearest<br>Neighbors<br>(KNN) | A non-parametric method that classifies samples based on the majority label of their nearest neighbors in the feature space. |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|