

C20-A-AA-AEI-CH-CHST-BM-TT-MET-MNG-C-CM-EC-EE-CHOT-CHPC-CHPP-PET-AMT-AMG-WD-CAI-AIM-CCB-CCN-COMMON - $\bf 102$

7002

BOARD DIPLOMA EXAMINATION, (C-20) IANUARY—2023

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMETICS-I

Time: 3 hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (

- (1) Answer all questions.
- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** Find the domain and range of the function defined by $f(x) = \frac{1}{x+2}$.
- 2. Resolve $\frac{5x+1}{(x \ 1)(x+2)}$ into partial fractions.
- 3. If $A = \begin{bmatrix} 3 & 3 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find 3B 2A.
- 4. If $\tan 2 = \frac{1}{2}$ and $\tan \beta = \frac{1}{3}$, and 0 < 1, $\beta < \frac{1}{2}$, then show that $1 + \beta = \frac{1}{2}$.
- 5. Prove that $\frac{1|\cos 2|}{\sin 2|} = \tan |$
- **6.** Find the modulus of the complex number (3+4i)(2-3i).

/7002 1

[Contd...

*

- 7.* Find the perpendicular distance of the point (3,2) from the straight line 4x + 5y + 6 = 0.
- 8. Evaluate $\lim_{x = 5} \frac{x^4 625}{x 5}$.
- **9.** Find the derivative of 3 tan $x 4(\log_e x) 7x^2$ w.r.t. x.
- **10.** If $x = a \cos \theta$ and $y = b \sin \theta$, then find $\frac{dy}{dx}$.

- **Instructions**: (1) Answer **all** questions.
 - (2) Each question carries eight marks.
- 11. (a) Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$.

(OR)

(b) Solve the following system of liner equations using Cramer's rule :

$$2x \, \mathbb{I} \, y + 3z = 9, x + y + z = 6 \text{ and } x \, \mathbb{I} \, y + z = 2$$

12. (a) Prove that
$$\frac{\sin 2 + \sin 3 + \sin 5}{\cos 2 + \cos 3 + \cos 5} = \tan 3$$

(OR)

(b) If $\sin^{1} x + \sin^{1} y + \sin^{1} z = \frac{1}{2}$, then show that

$$x^2 + y^2 + z^2 + 2xyz = 1.$$

/7002 2 [Contd...

13. (a) Solve $2\sin^2 4 = 5\cos 1$.

(OR)

- (b) In any $\triangle ABC$, show that \boxed{a} $a^3 \cos (B C) = 3abc$.
- **14.** (a) Find the equation of the circle with (1,2) and (-2,3) as the two ends of its diameter and also find its center and radius.

(OR)

- (b) Find the vertex, focus, equations of axis, latus-rectum, directrix and length of latus-rectum of the parabola $y^2 = -12x$.
- **15.** (a) Find the derivative of $\tan^{\|1\|} \frac{2x}{\|1\| x^2\|}$ w.r.t $\sin^{\|1\|} \frac{2x}{1+x^2\|}$.

(OR)

(b) If $y = (2+3x)(x+4) + \frac{x^2+1}{x^2+1}$ find $\frac{dy}{dx}$.

PART—C

 $10 \times 1 = 10$

Instructions: (1

- (1) Answer the following question.
 - (2) The question carries ten marks.
- **16.** A wire of length 50 cm is cut into two parts which are bent in the form of a square and a circle. Find the minimum value of sum of the areas so formed.

* * *

/7002