# RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number: 09 941, 095

Source: 01PE

Date Processed by STIC: 11/29 2 505

# ENTERED



OIPE

RAW SEQUENCE LISTING DATE: 11/29/2005 PATENT APPLICATION: US/09/941,095 TIME: 15:58:42

Input Set : N:\Crf3\RULE60\09941095.raw
Output Set: N:\CRF4\11292005\1941095.raw

## SEQUENCE LISTING

```
1 (1) GENERAL INFORMATION:
             (i) APPLICANT: BROW, MARY ANN D.
      3
                             LYAMICHEV, VICTOR I.
                             OLIVE, DAVID M.
      4
      5
            (ii) TITLE OF INVENTION: RAPID DETECTION AND IDENTIFICATION OF
      6
                                      PATHOGENS
      7
           (iii) NUMBER OF SEQUENCES: 165
            (iv) CORRESPONDENCE ADDRESS:
      8
      9
                   (A) ADDRESSEE: MEDLEN & CARROLL
     10
                   (B) STREET: 220 MONTGOMERY STREET, SUITE 2200
     11
                   (C) CITY: SAN FRANCISCO
     12
                   (D) STATE: CALIFORNIA
     13
                   (E) COUNTRY: UNITED STATES OF AMERICA
     14
                   (F) ZIP: 94104
            (v) COMPUTER READABLE FORM:
     15
     16
                   (A) MEDIUM TYPE: Floppy disk
     17
                   (B) COMPUTER: IBM PC compatible
     18
                   (C) OPERATING SYSTEM: PC-DOS/MS-DOS
     19
                   (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
     20
            (vi) CURRENT APPLICATION DATA:
C--> 21
                   (A) APPLICATION NUMBER: US/09/941,095
C--> 22
                   (B) FILING DATE: 28-Aug-2001
W--> 27
                  (C) CLASSIFICATION:
           (vii) PRIOR APPLICATION DATA:
     24
     25
                   (A) APPLICATION NUMBER: US/09/941,193
     26
                   (B) FILING DATE: 28-Aug-2001
     28
          (viii) ATTORNEY/AGENT INFORMATION:
     29
                   (A) NAME: CARROLL, PETER G.
                  (B) REGISTRATION NUMBER: 32,837
     30
     31
                  (C) REFERENCE/DOCKET NUMBER: FORS-01756
            (ix) TELECOMMUNICATION INFORMATION:
     32
                  (A) TELEPHONE: (415) 705-8410
     33
                  (B) TELEFAX: (415) 397-8338
     35 (2) INFORMATION FOR SEQ ID NO: 1:
             (i) SEQUENCE CHARACTERISTICS:
     36
                  (A) LENGTH: 2506 base pairs
     37
     38
                  (B) TYPE: nucleic acid
                  (C) STRANDEDNESS: double
     39
                  (D) TOPOLOGY: linear
     40
            (ii) MOLECULE TYPE: DNA (genomic)
     41
     42
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
     43
             ATGAGGGGA TGCTGCCCCT CTTTGAGCCC AAGGGCCGGG TCCTCCTGGT GGACGGCCAC
```

```
44
        CACCTGGCCT ACCGCACCTT CCACGCCCTG AAGGGCCTCA CCACCAGCCG GGGGGAGCCG
                                                                               120
45
        GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTCAAGGA GGACGGGGAC
                                                                               180
46
        GCGGTGATCG TGGTCTTTGA CGCCAAGGCC CCCTCCTTCC GCCACGAGGC CTACGGGGGG
                                                                               240
        TACAAGGCGG GCCGGGCCCC CACGCCGGAG GACTTTCCCC GGCAACTCGC CCTCATCAAG
47
                                                                               300
        GAGCTGGTGG ACCTCCTGGG GCTGGCGCC CTCGAGGTCC CGGGCTACGA GGCGGACGAC
48
                                                                               360
        GTCCTGGCCA GCCTGGCCAA GAAGGCGGAA AAGGAGGGCT ACGAGGTCCG CATCCTCACC
49
                                                                               420
        GCCGACAAAG ACCTTTACCA GCTCCTTTCC GACCGCATCC ACGTCCTCCA CCCCGAGGGG
50
                                                                               480
        TACCTCATCA CCCCGGCCTG GCTTTGGGAA AAGTACGGCC TGAGGCCCGA CCAGTGGGCC
51
                                                                               540
        GACTACCGGG CCCTGACCGG GGACGAGTCC GACAACCTTC CCGGGGTCAA GGGCATCGGG
52
                                                                               600
53
        GAGAAGACGG CGAGGAAGCT TCTGGAGGAG TGGGGGGAGCC TGGAAGCCCT CCTCAAGAAC
                                                                               660
54
        CTGGACCGGC TGAAGCCCGC CATCCGGGAG AAGATCCTGG CCCACATGGA CGATCTGAAG
                                                                               720
55
        CTCTCCTGGG ACCTGCCCAA GGTGCGCACC GACCTGCCCC TGGAGGTGGA CTTCGCCAAA
                                                                               780
56
        AGGCGGGAGC CCGACCGGGA GAGGCTTAGG GCCTTTCTGG AGAGGCTTGA GTTTGGCAGC
                                                                               840
57
        CTCCTCCACG AGTTCGGCCT TCTGGAAAGC CCCAAGGCCC TGGAGGAGGC CCCCTGGCCC
                                                                               900
58
        CCGCCGGAAG GGGCCTTCGT GGGCTTTGTG CTTTCCCGCA AGGAGCCCAT GTGGGCCGAT
                                                                               960
59
        CTTCTGGCCC TGGCCGCCGC CAGGGGGGGC CGGGTCCACC GGGCCCCCGA GCCTTATAAA
60
        GCCCTCAGGG ACCTGAAGGA GGCGCGGGGG CTTCTCGCCA AAGACCTGAG CGTTCTGGCC
                                                                              1080
        CTGAGGGAAG GCCTTGGCCT CCCGCCCGGC GACGACCCCA TGCTCCTCGC CTACCTCCTG
61
                                                                              1140
        GACCCTTCCA ACACCACCC CGAGGGGGTG GCCCGGCGCT ACGGCGGGGA GTGGACGGAG
62
                                                                              1200
63
        GAGGCGGGG AGCGGGCCGC CCTTTCCGAG AGGCTCTTCG CCAACCTGTG GGGGAGGCTT
                                                                              1260
        GAGGGGGAGG AGAGGCTCCT TTGGCTTTAC CGGGAGGTGG AGAGGCCCCT TTCCGCTGTC
64
                                                                              1320
65
        CTGGCCCACA TGGAGGCCAC GGGGGTGCGC CTGGACGTGG CCTATCTCAG GGCCTTGTCC
                                                                              1380
66
        CTGGAGGTGG CCGAGGAGAT CGCCCGCCTC GAGGCCGAGG TCTTCCGCCT GGCCGGCCAC
                                                                              1440
67
        CCCTTCAACC TCAACTCCCG GGACCAGCTG GAAAGGGTCC TCTTTGACGA GCTAGGGCTT
        CCCGCCATCG GCAAGACGGA GAAGACCGGC AAGCGCTCCA CCAGCGCCGC CGTCCTGGAG
68
                                                                              1560
69
        GCCCTCCGCG AGGCCCACCC CATCGTGGAG AAGATCCTGC AGTACCGGGA GCTCACCAAG
                                                                              1620
70
        CTGAAGAGCA CCTACATTGA CCCCTTGCCG GACCTCATCC ACCCCAGGAC GGGCCGCCTC
                                                                              1680
71
        CACACCCGCT TCAACCAGAC GGCCACGGCC ACGGGCAGGC TAAGTAGCTC CGATCCCAAC
                                                                              1740
        CTCCAGAACA TCCCCGTCCG CACCCCGCTT GGGCAGAGGA TCCGCCGGGC CTTCATCGCC
72
                                                                              1800
73
        GAGGAGGGT GGCTATTGGT GGCCCTGGAC TATAGCCAGA TAGAGCTCAG GGTGCTGGCC
                                                                              1860
74
        CACCTCTCCG GCGACGAGAA CCTGATCCGG GTCTTCCAGG AGGGGCGGGA CATCCACACG
                                                                              1920
75
        GAGACCGCCA GCTGGATGTT CGGCGTCCCC CGGGAGGCCG TGGACCCCCT GATGCGCCGG
        GCGGCCAAGA CCATCAACTT CGGGGTCCTC TACGGCATGT CGGCCCACCG CCTCTCCCAG
76
                                                                              2040
        GAGCTAGCCA TCCCTTACGA GGAGGCCCAG GCCTTCATTG AGCGCTACTT TCAGAGCTTC
77
                                                                              2100
78
        CCCAAGGTGC GGGCCTGGAT TGAGAAGACC CTGGAGGAGG GCAGGAGGCG GGGGTACGTG
                                                                              2160
79
        GAGACCCTCT TCGGCCGCCG CCGCTACGTG CCAGACCTAG AGGCCCGGGT GAAGAGCGTG
                                                                              2220
80
        CGGGAGGCGG CCGAGCGCAT GGCCTTCAAC ATGCCCGTCC AGGGCACCGC CGCCGACCTC
                                                                              2280
81
        ATGAAGCTGG CTATGGTGAA GCTCTTCCCC AGGCTGGAGG AAATGGGGGC CAGGATGCTC
                                                                              2340
82
        CTTCAGGTCC ACGACGAGCT GGTCCTCGAG GCCCCAAAAG AGAGGGCGGA GGCCGTGGCC
                                                                              2400
83
        CGGCTGGCCA AGGAGGTCAT GGAGGGGGTG TATCCCCTGG CCGTGCCCCT GGAGGTGGAG
                                                                              2460
        GTGGGGATAG GGGAGGACTG GCTCTCCGCC AAGGAGTGAT ACCACC
                                                                              2506
86 (2) INFORMATION FOR SEQ ID NO: 2:
        (i) SEQUENCE CHARACTERISTICS:
87
88
             (A) LENGTH: 2496 base pairs
             (B) TYPE: nucleic acid
89
90
             (C) STRANDEDNESS: double
91
             (D) TOPOLOGY: linear
92
       (ii) MOLECULE TYPE: DNA (genomic)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
93
```

| 94  | ATGGCGATGC TTCCCCTCTT TGAGCCCAAA GGCCGCGTGC TCCTGGTGGA CGGCCACCAC | 60   |
|-----|-------------------------------------------------------------------|------|
| 95  | CTGGCCTACC GCACCTTCTT TGCCCTCAAG GGCCTCACCA CCAGCCGCGG CGAACCCGTT | 60   |
| 96  | CAGGCGGTCT ACGGCTTCGC CAAAAGCCTC CTCAAGGCCC TGAAGGAGGA CGGGGACGTG | 120  |
| 97  | GTGGTGGTGG TCTTTGACGC CAAGGCCCC TCCTTCCGCC ACGAGGCCTA CGAGGCCTAC  | 180  |
| 98  | AAGGCGGGCC GGGCCCCAC CCCGGAGGAC TTTCCCCGGC AGCTGGCCCT CATCAAGGAG  | 240  |
| 99  |                                                                   | 300  |
| 100 | TTGGTGGACC TCCTAGGCCT TGTGCGGCTG GAGGTTCCCG GCTTTGAGGC GGACGACGTG | 360  |
| 101 | CTGGCCACCC TGGCCAAGCG GGCGGAAAAG GAGGGGTACG AGGTGCGCAT CCTCACTGCC | 420  |
|     | GACCGCGACC TCTACCAGCT CCTTTCGGAG CGCATCGCCA TCCTCCACCC TGAGGGGTAC | 480  |
| 102 | CTGATCACCC CGGCGTGGCT TTACGAGAAG TACGGCCTGC GCCCGGAGCA GTGGGTGGAC | 540  |
| 103 | TACCGGGCCC TGGCGGGGA CCCCTCGGAT AACATCCCCG GGGTGAAGGG CATCGGGGAG  | 600  |
| 104 | AAGACCGCCC AGAGGCTCAT CCGCGAGTGG GGGAGCCTGG AAAACCTCTT CCAGCACCTG | 660  |
| 105 | GACCAGGTGA AGCCCTCCTT GCGGGAGAAG CTCCAGGCGG GCATGGAGGC CCTGGCCCTT | 720  |
| 106 | TCCCGGAAGC TTTCCCAGGT GCACACTGAC CTGCCCCTGG AGGTGGACTT CGGGAGGCGC | 780  |
| 107 | CGCACACCCA ACCTGGAGGG TCTGCGGGCT TTTTTGGAGC GGTTGGAGTT TGGAAGCCTC | 840  |
| 108 | CTCCACGAGT TCGGCCTCCT GGAGGGGCCG AAGGCGGCAG AGGAGGCCCC CTGGCCCCCT | 900  |
| 109 | CCGGAAGGGG CTTTTTGGG CTTTTCCTTT TCCCGTCCCG                        | 960  |
| 110 | CTGGCCCTGG CTGGGGCGTG GGAGGGGCGC CTCCATCGGG CACAAGACCC CCTTAGGGGC | 1020 |
| 111 | CTGAGGGACC TTAAGGGGGT GCGGGGAATC CTGGCCAAGG ACCTGGCGGT TTTGGCCCTG | 1080 |
| 112 | CGGGAGGCC TGGACCTCTT CCCAGAGGAC GACCCCATGC TCCTGGCCTA CCTTCTGGAC  | 1140 |
| 113 | CCCTCCAACA CCACCCCTGA GGGGGTGGCC CGGCGTTACG GGGGGGAGTG GACGGAGGAT | 1200 |
| 114 | GCGGGGGAGA GGGCCCTCCT GGCCGAGCGC CTCTTCCAGA CCCTAAAGGA GCGCCTTAAG | 1260 |
| 115 | GGAGAAGAAC GCCTGCTTTG GCTTTACGAG GAGGTGGAGA AGCCGCTTTC CCGGGTGTTG | 1320 |
| 116 | GCCCGGATGG AGGCCACGGG GGTCCGGCTG GACGTGGCCT ACCTCCAGGC CCTCTCCCTG | 1380 |
| 117 | GAGGTGGAGG CGGAGGTGCG CCAGCTGGAG GAGGAGGTCT TCCGCCTGGC CGGCCACCCC | 1440 |
| 118 | TTCAACCTCA ACTCCCGCGA CCAGCTGGAG CGGGTGCTCT TTGACGAGCT GGGCCTGCCT | 1500 |
| 119 | GCCATCGGCA AGACGGAGAA GACGGGGAAA CGCTCCACCA GCGCTGCCGT GCTGGAGGCC | 1560 |
| 120 | CTGCGAGAGG CCCACCCCAT CGTGGACCGC ATCCTGCAGT ACCGGGAGCT CACCAAGCTC | 1620 |
| 121 | AAGAACACCT ACATAGACCC CCTGCCCGCC CTGGTCCACC CCAAGACCGG CCGGCTCCAC | 1680 |
| 122 | ACCCGCTTCA ACCAGACGGC CACCGCCACG GGCAGGCTTT CCAGCTCCGA CCCCAACCTG | 1740 |
| 123 | CAGAACATCC CCGTGCGCAC CCCTCTGGGC CAGCGCATCC GCCGAGCCTT CGTGGCCGAG | 1800 |
| 124 | GAGGGCTGGG TGCTGGTGGT CTTGGACTAC AGCCAGATTG AGCTTCGGGT CCTGGCCCAC | 1860 |
| 125 | CTCTCCGGGG ACGAGAACCT GATCCGGGTC TTTCAGGAGG GGAGGGACAT CCACACCCAG | 1920 |
| 126 | ACCGCCAGCT GGATGTTCGG CGTTTCCCCC GAAGGGGTAG ACCCTCTGAT GCGCCGGGCG | 1980 |
| 127 | GCCAAGACCA TCAACTTCGG GGTGCTCTAC GGCATGTCCG CCCACCGCCT CTCCGGGGAG | 2040 |
| 128 | CTTTCCATCC CCTACGAGGA GGCGGTGGCC TTCATTGAGC GCTACTTCCA GAGCTACCCC | 2100 |
| 129 | AAGGTGCGGG CCTGGATTGA GGGGACCCTC GAGGAGGGCC GCCGGCGGGG GTATGTGGAG | 2160 |
| 130 | ACCCTCTTCG GCCGCCGGCG CTATGTGCCC GACCTCAACG CCCGGGTGAA GAGCGTGCGC | 2220 |
| 131 | GAGGCGGCGG AGCGCATGGC CTTCAACATG CCGGTCCAGG GCACCGCCGC CGACCTCATG | 2280 |
| 132 | AAGCTGGCCA TGGTGCGGCT TTTCCCCCGG CTTCAGGAAC TGGGGGCGAG GATGCTTTTG | 2340 |
| 133 | CAGGTGCACG ACGAGCTGGT CCTCGAGGCC CCCAAGGACC GGGCGGAGAG GGTAGCCGCT | 2400 |
| 134 | TTGGCCAAGG AGGTCATGGA GGGGGTCTGG CCCCTGCAGG TGCCCCTGGA GGTGGAGGTG | 2460 |
| 135 | GGCCTGGGGG AGGACTGGCT CTCCGCCAAG GAGTAG                           | 2496 |
|     | INFORMATION FOR SEQ ID NO: 3:                                     | 2470 |
| 138 | (i) SEQUENCE CHARACTERISTICS:                                     |      |
| 139 | (A) LENGTH: 2504 base pairs                                       |      |
| 140 | (B) TYPE: nucleic acid                                            |      |
| 141 | (C) STRANDEDNESS: double                                          |      |
| 142 | (D) TOPOLOGY: linear                                              |      |
| 142 | (ii) MOLECULE TYPE: DNA (genomic)                                 |      |
| 143 | (II) MODECODE TIPE: DMM (GENOMIC)                                 |      |

| 144 |                                                            | (xi) SEQUEN | CE DESCRIPT  | ION: SEO ID | NO · 3 ·   |            |            |      |  |  |  |  |
|-----|------------------------------------------------------------|-------------|--------------|-------------|------------|------------|------------|------|--|--|--|--|
| 145 |                                                            |             | TGCTTCCGCT   | ~           |            | TCCTCCTGGT | GGACGGCCAC | 60   |  |  |  |  |
| 146 |                                                            |             | ACCGCACCTT   |             |            |            |            | 120  |  |  |  |  |
| 147 |                                                            |             | TCTACGGCTT   |             |            |            |            | 180  |  |  |  |  |
| 148 |                                                            |             | TCGTGGTCTT   |             |            |            |            | 240  |  |  |  |  |
| 149 |                                                            |             | CGGGGAGGC    |             |            |            |            | 300  |  |  |  |  |
| 150 |                                                            |             | TGGACCTCCT   |             |            |            |            | 360  |  |  |  |  |
| 151 |                                                            |             | CCACCCTGGC   |             |            |            |            | 420  |  |  |  |  |
| 152 |                                                            |             | GCGACCTCTA   |             |            |            |            | 480  |  |  |  |  |
| 153 |                                                            |             | TCACCCGGA    |             |            |            |            | 540  |  |  |  |  |
| 154 |                                                            |             | GCGCCCTCGT   |             |            |            |            | 600  |  |  |  |  |
| 155 |                                                            |             | CCGCCCTCAA   |             |            |            |            | 660  |  |  |  |  |
| 156 |                                                            |             | GGGTAAAGCC   |             |            |            |            | 720  |  |  |  |  |
| 157 |                                                            |             | CCTTGGAGCT   |             |            |            |            | 780  |  |  |  |  |
| 158 |                                                            |             | GGGAGCCCGA   |             |            |            |            | 840  |  |  |  |  |
| 159 |                                                            |             | TCCACGAGTT   |             |            |            |            | 900  |  |  |  |  |
| 160 |                                                            |             | CGGAAGGGGC   |             |            |            |            | 960  |  |  |  |  |
| 161 |                                                            |             | AAGCCCTGGC   |             |            |            |            | 1020 |  |  |  |  |
| 162 |                                                            |             | TAAAGGACCT   |             |            |            |            | 1020 |  |  |  |  |
| 163 |                                                            |             | GGGAGGGGCT   |             |            |            |            | 1140 |  |  |  |  |
| 164 |                                                            |             | CCTCCAACAC   |             |            |            |            | 1200 |  |  |  |  |
| 165 |                                                            |             | CCGCCCACCG   |             |            |            |            | 1260 |  |  |  |  |
| 166 |                                                            |             | GGGAGGAGAA   |             |            |            |            | 1320 |  |  |  |  |
| 167 |                                                            |             | CCCACATGGA   |             |            |            |            | 1320 |  |  |  |  |
| 168 |                                                            |             | AGCTTGCGGA   |             |            |            |            | 1440 |  |  |  |  |
| 169 |                                                            |             | TCAACCTCAA   |             |            |            |            | 1500 |  |  |  |  |
| 170 |                                                            |             | CCTTGGGGAA   |             |            |            |            | 1560 |  |  |  |  |
| 171 |                                                            |             | TACGGGAGGC   |             |            |            |            | 1620 |  |  |  |  |
| 172 |                                                            |             | AGAACACCTA   |             |            |            |            | 1620 |  |  |  |  |
| 173 |                                                            |             | CCCGCTTCAA   |             |            |            |            | 1740 |  |  |  |  |
| 174 |                                                            |             | AGAACATCCC   |             |            |            |            | 1800 |  |  |  |  |
| 175 |                                                            |             | CGGGTTGGGC   |             |            |            |            | 1860 |  |  |  |  |
| 176 |                                                            |             | TCTCCGGGGA   |             |            |            |            | 1920 |  |  |  |  |
| 177 |                                                            |             | CCGCAAGCTG   |             |            |            |            | 1920 |  |  |  |  |
| 178 |                                                            |             | CCAAGACGGT   |             |            |            |            | 2040 |  |  |  |  |
| 179 |                                                            |             | TTGCCATCCC   |             |            |            |            | 2100 |  |  |  |  |
| 180 |                                                            |             | GGTGCGGGCC   |             |            |            |            | 2160 |  |  |  |  |
| 181 |                                                            |             | CCTCTTCGGA   |             |            |            |            | 2220 |  |  |  |  |
| 182 |                                                            |             | GGCCGCGGAG   |             |            |            |            | 2220 |  |  |  |  |
| 183 |                                                            |             | GCTCGCCATG   |             |            |            |            |      |  |  |  |  |
| 184 |                                                            |             | GGTCCACGAC   |             |            |            |            | 2340 |  |  |  |  |
| 185 |                                                            |             | GGCCAAGGAG   |             |            |            |            | 2400 |  |  |  |  |
| 186 |                                                            |             | GATGGGGGAG   |             |            |            | CCCCIGGAGG | 2460 |  |  |  |  |
| 188 | (2)                                                        |             |              |             | CCGCCAAGGG | IIAG       |            | 2504 |  |  |  |  |
| 189 | (4)                                                        |             |              |             |            |            |            |      |  |  |  |  |
| 190 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 832 amino acids |             |              |             |            |            |            |      |  |  |  |  |
| 191 |                                                            |             |              |             |            |            |            |      |  |  |  |  |
| 192 | (B) TYPE: amino acid (C) STRANDEDNESS: single              |             |              |             |            |            |            |      |  |  |  |  |
| 193 |                                                            |             |              | _           |            |            |            |      |  |  |  |  |
| 123 |                                                            | (D) 10      | OPOLOGY: lir | ıcaı        |            |            |            |      |  |  |  |  |

| 194        | (ii) | MOLE      | CULE       | TYPI | E: p:     | rote  | in   |             |      |          |          |      |       |     |     |          |          |
|------------|------|-----------|------------|------|-----------|-------|------|-------------|------|----------|----------|------|-------|-----|-----|----------|----------|
| 195        | (xi) | SEQU      | ENCE       | DES  | CRIP      | rion  | : SE | Q ID        | NO:  | 4:       |          |      |       |     |     |          |          |
| 196        |      |           |            |      |           |       |      | -           |      |          | Pro      | Lvs  | Gly   | Arq | Val | Leu      | Leu      |
| 197        |      | 1         | _          | _    |           | 5     |      |             |      |          | 10       | -    | •     | ,   |     | 15       |          |
| 198        |      | Val       | Asp        | Gly  | His       | His   | Leu  | Ala         | Tvr  | Arq      | Thr      | Phe  | His   | Ala | Leu | Lvs      | Gly      |
| 199        |      |           | -          | -    | 20        |       |      |             | 4    | 25       |          |      |       |     | 30  |          | 2        |
| 200        |      | Leu       | Thr        | Thr  | Ser       | Arq   | Gly  | Glu         | Pro  | Val      | Gln      | Ala  | Val   | Tvr | Glv | Phe      | Ala      |
| 201        |      |           |            | 35   |           | •     |      |             | 40   |          |          |      |       | 45  | -   |          |          |
| 202        |      | Lys       | Ser        | Leu  | Leu       | Lys   | Ala  | Leu         | Lvs  | Glu      | Asp      | Glv  | gsA   | Ala | Val | Ile      | Val      |
| 203        |      | _         | 50         |      |           | -     |      | 55          | •    |          | •        | •    | 60    |     |     |          |          |
| 204        |      | Val       | Phe        | Asp  | Ala       | Lys   | Ala  | Pro         | Ser  | Phe      | Arq      | His  | Glu   | Ala | Tyr | Gly      | Glv      |
| 205        |      | 65        |            |      |           |       | 70   |             |      |          | •        | 75   |       |     | -   | -        | 80       |
| 206        |      | Tyr       | Lys        | Ala  | Gly       | Arg   | Ala  | Pro         | Thr  | Pro      | Glu      | Asp  | Phe   | Pro | Arg | Gln      | Leu      |
| 207        |      |           |            |      |           | 85    |      |             |      |          | 90       | _    |       |     | _   | 95       |          |
| 208        |      | Ala       | Leu        | Ile  | Lys       | Glu   | Leu  | Val         | Asp  | Leu      | Leu      | Gly  | Leu   | Ala | Arg | Leu      | Glu      |
| 209        |      |           |            |      | 100       |       |      |             |      | 105      |          | _    |       |     | 110 |          |          |
| 210        |      | Val       | Pro        | Gly  | Tyr       | Glu   | Ala  | Asp         | Asp  | Val      | Leu      | Ala  | Ser   | Leu | Ala | Lys      | Lys      |
| 211        |      |           |            | 115  |           |       |      |             | 120  |          |          |      |       | 125 |     |          |          |
| 212        |      | Ala       | Glu        | Lys  | Glu       | Gly   | Tyr  | Glu         | Val  | Arg      | Ile      | Leu  | Thr   | Ala | Asp | Lys      | Asp      |
| 213        |      |           | 130        |      |           |       |      | 135         |      |          |          |      | 140   |     |     |          |          |
| 214        |      | Leu       | Tyr        | Gln  | Leu       | Leu   | Ser  | Asp         | Arg  | Ile      | His      | Val  | Leu   | His | Pro | Glu      | Gly      |
| 215        |      | 145       |            |      |           |       | 150  |             |      |          |          | 155  |       |     |     |          | 160      |
| 216        |      | Tyr       | Leu        | Ile  | Thr       | Pro   | Ala  | Trp         | Leu  | Trp      | Glu      | Lys  | Tyr   | Gly | Leu | Arg      | Pro      |
| 217        |      |           |            |      | _         | 165   |      |             |      |          | 170      |      |       |     |     | 175      |          |
| 218        |      | Asp       | Gln        | Trp  |           | Asp   | Tyr  | Arg         | Ala  |          | Thr      | Gly  | Asp   | Glu |     | Asp      | Asn      |
| 219        |      | _         | _          |      | 180       | _     |      |             |      | 185      |          |      |       |     | 190 |          |          |
| 220        |      | Leu       | Pro        | Gly  | Val       | Lys   | GLY  | Ile         | _    | Glu      | Lys      | Thr  | Ala   | _   | Lys | Leu      | Leu      |
| 221        |      | <b>~1</b> | <b>a</b> 1 | 195  | <b>01</b> | 0     | T    | <b>~1</b>   | 200  | <b>.</b> | <b>.</b> | •    |       | 205 |     | _        | _        |
| 222<br>223 |      | GIU       | 210        | Trp  | GIY       | ser   | Leu  |             | Ата  | Leu      | ьeu      | ьуѕ  |       | ьeu | Asp | Arg      | Leu      |
| 223        |      | Tva       |            | - דת | Tlo       | 7 ~~  | C1   | 215         | т1.  | T        | 71.      | TT-2 | 220   | 7   | 7   | <b>7</b> | <b>7</b> |
| 225        |      | 225       | PIO        | Ala  | 116       | Arg   | 230  | гур         | TIE  | ьeu      | Ald      |      | Met   | Asp | Asp | ьeu      |          |
| 226        |      | _         | Cor        | Trp  | λαν       | T 011 |      | Tara        | 1721 | 71 ~~~   | mp ~     | 235  | T 011 | Dwa | T 0 | ۵1       | 240      |
| 227        |      | пси       | Jer        | пр   | дал       | 245   | лта  | пур         | vai  | Arg      | 250      | Asp  | ьец   | PIO | neu | 255      | vai      |
| 228        |      | Asn       | Dhe        | Ala  | Lare      |       | Ara  | Glu         | Dro  | Acn      |          | Glu  | 7.20  | Lou | 7~~ |          | Dho      |
| 229        |      | пор       | 1110       | AIG  | 260       | Arg   | AI 9 | GIU         | FIO  | 265      | Arg      | GIU  | Arg   | пец | 270 | AIA      | FIIE     |
| 230        |      | Leu       | Glu        | Arg  |           | Glu   | Phe  | Glv         | Ser  |          | T.e.11   | His  | Glu   | Dhe |     | T.011    | T.011    |
| 231        |      |           |            | 275  |           | 014   |      | <b>U</b> -1 | 280  | Leu      | LCu      | 1115 | GIU   | 285 | Gry | пси      | пец      |
| 232        |      | Glu       | Ser        | Pro  | īvs       | Ala   | Len  | Glu         |      | Ala      | Pro      | Trn  | Pro   |     | Pro | Glu      | Glv      |
| 233        |      |           | 290        |      | -1-       |       |      | 295         |      |          |          |      | 300   |     |     | 014      | 017      |
| 234        |      | Ala       |            | Val  | Glv       | Phe   | Val  |             | Ser  | Ara      | Lvs      | Glu  |       | Met | Trp | Δla      | Asp      |
| 235        |      | 305       |            |      | 1         |       | 310  |             |      | 5        | -1-      | 315  |       |     |     |          | 320      |
| 236        |      |           | Leu        | Ala  | Leu       | Ala   |      | Ala         | Arq  | Glv      | Glv      |      | Val   | His | Ara | Ala      |          |
| 237        |      |           |            |      |           | 325   |      |             | J    |          | 330      |      |       |     | 3   | 335      |          |
| 238        |      | Glu       | Pro        | Tyr  | Lys       |       | Leu  | Arg         | Asp  | Leu      |          | Glu  | Ala   | Arq | Glv |          | Leu      |
| 239        | ٠    |           |            | -    | 340       |       |      | _           | •    | 345      | -        |      |       |     | 350 |          |          |
| 240        |      | Ala       | Lys        | Asp  | Leu       | Ser   | Val  | Leu         | Ala  |          | Arg      | Glu  | Gly   | Leu |     | Leu      | Pro      |
| 241        |      |           | ٠          | 355  |           |       |      |             | 360  |          | _        |      | -     | 365 | 4   |          |          |
| 242        |      | Pro       | Gly        | Asp  | Asp       | Pro   | Met  | Leu         | Leu  | Ala      | Tyr      | Leu  | Leu   | Asp | Pro | Ser      | Asn      |

Input Set : N:\Crf3\RULE60\09941095.raw
Output Set: N:\CRF4\11292005\1941095.raw

### Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:7; N Pos. 4,5,181,182,190,366,617,628,685,714,722,738,784,1022,1029
Seq#:7; N Pos. 1038,1053,1098,1105,1206,1227,1244,1251,1252,1253,1350,1380
Seq#:7; N Pos. 1497,1530,1569,1572,1641,1653,1655,1770,1812,2319,2346,2396
Seq#:8; Xaa Pos.2,63,109,186,205,209,227,228,233,240,243,244,247,260,290
Seq#:8; Xaa Pos.329,336,340,368,414,417,418,431,551,605,773,794,798,823,833

#### VERIFICATION SUMMARY

DATE: 11/29/2005 PATENT APPLICATION: US/09/941,095 TIME: 15:58:43

```
L:21 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]
L:22 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]
L:27 M:238 W: Alpha Fields not Ordered, Reordered [(C) CLASSIFICATION:] of (1)(vi)
L:722 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:0
L:728 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:48
L:734 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:96
L:744 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:176
L:746 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:192
L:748 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:208
L:750 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:224
L:752 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:240
L:754 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:256
L:758 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:288
L:762 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:320
L:764 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:336
L:766 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:352
L:772 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:400
L:774 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:416
L:790 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:544
L:796 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:592
L:818 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:768
L:820 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:784
L:824 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:816
L:826 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:832
```