Titanic Challenge *

Qzer - 2022

* Amine, Carlo, Davide, Enrico, Federico, Giulio

Il Titanic

Il **Titanic** è stato un transatlantico britannico naufragato nelle prime ore del 15 aprile 1912, durante il suo viaggio inaugurale, a causa della collisione con un iceberg.

Qualche numero

I passeggeri del Titanic erano teoricamente 2224, di cui:

- 324 in prima classe;
- 284 in seconda;
- 709 in terza;
- 906 membri dell'equipaggio

Morti

Stando ai numeri ufficiali, nel disastro persero la vita ben 1502, **67,54%**

Challenge

Costruire un modello predittivo che risponda alla domanda: "che tipo di persone avevano maggiori probabilità di sopravvivere?"

La **Titanic Challenge** è un esempio classico di problema di classificazione che viene spesso utilizzato per mostrare come funzionano le reti neurali

Rete neurale

Dati

In questa competizione avremo accesso a due set di dati simili che includono informazioni sui passeggeri come:

- nome;
- età;
- genere;
- classe socio-economica;
- ecc.

Train.csv

Train.csv conterrà i dettagli di un sottoinsieme dei passeggeri a bordo (891 per l'esattezza) e, soprattutto, conterrà l'informazione relativa al loro destino

```
training_set = pd.read_csv('/kaggle/input/titanic/train.csv')
training_set.info()
RangeIndex: 891 entries, 0 to 890
                 891 non-null
                                 int64
    PassengerId
0
    Survived
                 891 non-null
                                 int64
    Pclass
                 891 non-null
                                 int64
                 891 non-null
                                 object
3
    Name
    Sex
                 891 non-null
                                 object
4
                 714 non-null
                                 float64
 5
    Age
    SibSp
                 891 non-null
                                 int64
 6
    Parch
                 891 non-null
                                 int64
    Ticket
                 891 non-null
                                 object
8
                                 float64
 9
    Fare
                 891 non-null
    Cabin
                 204 non-null
                                 object
10
11
    Embarked
                 889 non-null
                                 object
```

Test.csv

Il file test.csv contiene informazioni su altri 418 passeggeri, non rivelando la loro sorte.

Il compito della challenge è, utilizzando i dati del file train.csv, prevedere se questi 418 passeggeri a bordo sopravviveranno

```
testing_set = pd.read_csv('/kaggle/input/titanic/test.csv')
testing_set.info()
RangeIndex: 418 entries, 0 to 417
    PassengerId
                418 non-null
                                int64
0
    Pclass
                 418 non-null
                                int64
                                object
                 418 non-null
    Name
3
                 418 non-null
                                object
    Sex
                                float64
    Age
                 332 non-null
4
    SibSp
                 418 non-null
                                int64
 5
    Parch
                 418 non-null
                                int64
 6
    Ticket
                 418 non-null
                                object
                 417 non-null
                                float64
    Fare
8
                 91 non-null
 9
    Cabin
                                object
    Embarked
                 418 non-null
                                object
10
```

Data selection

Alcune colonne non sono utili per raggiungere il nostro obiettivo. Il primo passo consiste quindi nel **selezionare le colonne** coi dati che, ipoteticamente, possono avere un'influenza sulla sopravvivenza di un passeggero

```
clean_training_set = training_set[["Pclass", "Sex", "Age", "Parch", "SibSp", "Embarked", "Survived"]]
```

Queste le colonne trattenute dal file train.csv

```
RangeIndex: 891 entries, 0 to 890
   Pclass 891 non-null
                          int64
                          object
    Sex 891 non-null
    Age 714 non-null float64
3
   Parch 891 non-null
                         int64
    SibSp 891 non-null
                          int64
4
    Embarked
5
            889 non-null
                          object
    Survived
            891 non-null
                          int64
```

Correlazioni

Classe di viaggio

Sesso

Età

Matrimonio

Luogo d'imbarco

Normalizzazione

PassengerId		Pclass	Sex	Age	Parch	SibSp	Embarked
0	892	3	0	34.5	0	0	Q
1	893	3	1	47.0	0	1	S
2	894	2	0	62.0	0	0	Q
3	895	3	0	27.0	0	0	S
4	896	3	1	22.0	1	1	S
413	1305	3	0	NaN	0	0	S
414	1306	1	1	39.0	0	0	С
415	1307	3	0	38.5	0	0	S
416	1308	3	0	NaN	0	0	S
417	1309	3	0	NaN	1	1	С

Normalizzare il DataSet

Convertire i maschi nel valore 0 e le femmine nel valore 1

Sostituire i valori **NaN** della colonna Age con **l'età media**, ossia 30 anni

Nella colonna **Embarked** sostituire coi numeri **0**, **1** e **2** le lettere **C**(herbourg), **Q**(ueenstown) e **S**(outhampton):

```
# Transforms from numbers to strings
df["Embarked"]=df.Embarked.map({"C":0,"Q":1, "S":2})
```

Normalizzare il DataSet

Dividere la colonna Age in Child, Adult e Elderly

```
child_list = df['Age'].apply(lambda x: 1 if x < 18 else 0)
df.insert(4, "Child", child_list, True)

adult_list = df['Age'].apply(lambda x: 1 if x >= 18 and x < 50 else 0)
df.insert(5, "Adult", adult_list, True)

elderly_list = df['Age'].apply(lambda x: 1 if x > 50 else 0)
df.insert(6, "Elderly", elderly_list, True)
```

DataSet Normalizzato

Passeng	erId	Pclass	Sex	Child	Adult	Elderly	Parch	SibSp	Embarked
0	892	3	0	0	1	0	0	0	1
1	893	3	1	0	1	0	0	1	2
2	894	2	0	0	0	1	0	0	1
3	895	3	0	0	1	0	0	0	2
4	896	3	1	0	1	0	1	1	2
413	1305	3	0	0	1	0	0	0	2
414	1306	1	1	0	1	0	0	0	0
415	1307	3	0	0	1	0	0	0	2
416	1308	3	0	0	1	0	0	0	2
417	1309	3	0	Θ	1	0	1	1	0

Algoritmo

Multi-layer Perceptron classifier (MLP)

L'algoritmo **MLP** è un metodo per addestrare le reti neurali multistrato. Consiste nel modificare i pesi delle connessioni tra i neuroni della rete neurale in modo da ridurre l'errore tra l'output della rete neurale e l'output desiderato. L'algoritmo viene ripetuto finché l'errore non raggiunge un livello accettabile.

L'accuratezza dell'algoritmo è del 77.04

Github

Per maggiori informazioni

<u>TitanicKaggle</u>

Tecnologie utilizzate

- VSCode
- Git
- Markdown, Marp e CSS3
- Python
- Pandas
- Jupyter Notebook

Bibliografia

<u>Titanic - Wikipedia</u> <u>Passeggeri del Titanic - Wikipedia</u> <u>Titanic Challenge - Kaggle</u> Qzer - 2022

License CC BY-SA 4.0

Grazie