Wireless Protocol Validation Under Uncertainty

Jinghao Shi, Shuvendu K. Lahiri*, Ranveer Chandra*, Geoffrey Challen
University at Buffalo, NY, USA

*Microsoft Research Redmond, WA, USA

Customized Wireless Protocols Are Everywhere

Proprietary Protocol

New Functionality
By extending existing Protocol

Special Requirements

Latency

Power consumption

...

Industry Wireless Design/Implementation Flow

Protocol Designers

Microsoft, Apple, Google...

1. Design protocol using simulation

- Qualnet, NS-3,...

3. How to validate the

implementation meets the spec?

Wireless Chip Vendors

Qualcomm, MTK...

2. Low level proprietary implementation

- Proprietary implementation
- Resource limitation
- "Heisenberg" effect

Wireless Sniffer as Observer

Trace: Pkt_1 Pkt_2 Pkt_3 ...

Wireless Communication Properties

Packet loss

 $\alpha < 1$ Transmitter

Packet Success Ratio

Receiver

Physical Diversity

Two Sources of Sniffer Trace Uncertainty

Sniffer *misses* Pkt (seen by DUT).

Sniffer *overhears* Pkt (not seen by DUT).

Sniffer

DUT Trace:

Sniffer Trace:

An Example Protocol: Packet Transmission

 P_i : packet with seq num i P_i ': retransmission of P_i

False Alarms

Transmitter (DUT)

Root Cause

Sniffer and DUT may see different traces

Sniffer may either:

- Miss packets that are present in DUT's trace
- Overhear extra packet that not in DUT's trace

Can not directly use sniffer trace for validation

False alarms may occur

Key Idea

Relax the original state machine with non-deterministic transitions

- Avoid raising false alarms, while...
- Still capture true violations

Augmented Transitions

Original State Machine *S*Deterministic

Augmented State Machine S⁺ Non-Deterministic

Augmented State Machine

Original State Machine *S*Deterministic

Augmented State Machine S⁺ Non-Deterministic

Eliminating False Alarms

Augmented State Machine S^+ Non-Deterministic

Sniffer overhears *Ack*

Sniffer misses P_0

The Problem: Does S accept Tr_{DIIT} ?

Original State Machine S DUT Trace: Tr_{DUT}

Augmented State Machine S⁺ Sniffer Trace: $Tr_{sniffer}$

Relationship of Tr_{DUT} and $Tr_{sniffer}$

Sniffer can not overhear packets that are not sent by DUT

Mutation Trace

- Definition: Mutation Trace
 - A packet trace Tr' is a mutation of sniffer trace $Tr_{sniffer}$ w.r.t a DUT if for all $(t,p) \in Tr_{sniffer}/Tr'$, p.dest = DUT.
- Lemma: $Tr_{DUT} \in M(Tr_{sniffer})$ (Set of mutation traces of $Tr_{sniffer}$)

Satisfiability Theorem

$$S^+$$
 accepts $Tr_{sniffer}$ iff. $\exists \ Tr' \in M(Tr_{sniffer})$ that S accepts Tr'

- Lemma If S^+ rejects $Tr_{sniffer}$, then S rejects Tr_{DUT}
- S^+ accepts $Tr_{sniffer} \not\Rightarrow S$ accepts Tr_{DUT} .
 - Fundamental limitation of sniffer trace

Instance of (Likely) Violation

Sniffer Trace

Relaxed too much...

Pruning Heuristics

• Goal:

- Constraint augmented transitions to report true violations
- Make runtime practical
- NumMissing(d, k, l)
 - ${f \cdot}$ For device d, number of missing packets (Type-1) of and subtrace of length l must not exceed k
- GoBack(k)
 - ullet Backtrace up to k packets

Evaluation on NS-3

Evaluation Metrics

$$Precision = \frac{\{Reported \; Bugs\} \cap \{True \; Bugs\}}{\{Reported \; Bugs\}}$$

Accuracy

Higher precision, Less false positive.

$$Recall = \frac{\{Reported Bugs\} \cap \{True Bugs\}}{\{True Bugs\}}$$

Completeness

Higher recall, Less false negative.

Results

Heuristics: NumMissing(d, k, 100) (fixed l = 100), GoBack(7)

Real-World Application

- Found 3 latent bugs in the development phase of Xbox One wireless controller
- Being actively used by Xbox accessory testing team (since 08/2015)

Ongoing/Future Works

Wireless Validation Framework

Summary

- Sniffer trace uncertainty
 - Miss or overhear packets
- Augmented transition to tolerate sniffer trace uncertainty
 - Type-1 and Type-2 edges
- Satisfiability theorem and NP-hardness
 - Lemma: S^+ rejects $Tr_{sniffer} \Rightarrow S$ rejects Tr_{DUT}
- Pruning heuristics
 - NumMissing(d, k, l)
 - GoBack(k)

