

Problem 01

Shortest Path and Maximum Flow

E211 – Operations Planning II

SCHOOL OF ENGINEERING

Module Coverage: E211 Topic Tree

Shortest Path Problem

 The shortest path problem is to find the shortest distance / minimum cost / shortest time between an origin and various destination points.

For example

- Finding the best route to go from one town to another on a road map through a number of intermediate towns.
- ➤ In this case, the nodes represent towns and the arcs represent segments of road and are weighted with the distance/time needed to travel that segment.

Dijkstra's Algorithm for Shortest Path Problem

- Step 1 Put the origin into the solution set
- Step 2 Identify the arcs originating from the origin and put the terminating node of the shortest arc into the solution set

 Step 3 - Identify the arcs originating from the nodes in the solution set and select the node closest to the origin to join the solution set

 Step 4 - Repeat step 3 until all nodes have joined the solution set

Network	Description	Solution Set	Arcs	Total Dist
A 30 D 7 25 12 31 E O 15 12 C	Problem: To find the shortest path from O to all other nodes. Numbers on arc can represent i.Distance between nodes ii.Time taken to travel between nodes iii.Cost to travel between nodes			
25 0 13 C	Origin O is added into solution set. Nodes A, B and C are directly connected to O. Arc OC is the shortest arc from O, add node C into the solution set, shortest distance from O to C is 13.	0	$\begin{array}{c} O \rightarrow A \\ O \rightarrow B \\ O \rightarrow C \end{array}$	25 15 13

Network	Description	Solution Set	Arcs	Total Dist
25 0 15 B 12 12	Nodes A and B are directly connected to O; node B is directly connected to C. Through arc CB, the total distance from O to B is 25 (= 13 + 12) Arc OB is the shortest arc from O, add node B into the solution set, shortest distance from O to B is 15.	O C (13)	$\begin{array}{c} O \rightarrow A \\ O \rightarrow B \\ C \rightarrow B \end{array}$	25 15 25
A D 25 B 32 13 C 12	Node A is directly connected to O; node D is directly connected to B. Through arc BD, the total distance from O to D is 47 (= 15 + 32) Arc OA is the shortest arc from O, add node A into the solution set, shortest distance from O to A is 25.	O C (13) B (15)	$\begin{array}{c} O \to A \\ B \to D \end{array}$	25 47

Network	Description	Solution Set	Arcs	Total Dist
25 A 30 D 25 B 32 31 E	Nodes D and E are directly connected to A; node D is directly connected to B. The total distance from O to D through A is 55 (=25+30); from O to E through A is 56 (=25+31); from O to D through B is 47 (=15+32). Node D (having the shortest total distance of 47) is added to the solution set.	O C (13) B (15) A (25)	$A \rightarrow D$ $A \rightarrow E$ $B \rightarrow D$	55 56 47
25 A 30 T D 32 7 31 E 15 15 12 13	Node E is directly connected to A; node E is directly connected to D. Node E (having the shortest total distance of 54 based on the route of O→ B→ D→ E) is lastly added to the solution set.	O C (13) B (15) A (25) D (47) E (54)	$A \rightarrow E$ $D \rightarrow E$	56 54

Full solution is obtained when all nodes are added into the solution set. The optimal routes are shown by the bold red arcs

From node O to	Route	Total Dist
Node A	$O \rightarrow A$	25
Node B	$O \rightarrow B$	15
Node C	$O \rightarrow C$	13
Node D	$O \to B \to D$	47
Node E	$O \rightarrow B \rightarrow D \rightarrow E$	54

Variations of Shortest Path Problem 🐷

- Other variations of shortest path problem
 - To find the shortest path (the path with the minimum distance) from the origin to one destination only.
 - To find the shortest paths from every node to every other node in the network.

Maximum Flow Problem

- The maximum flow problem is to maximize the amount of flow of items from an origin to a destination when the arcs of the network have limited flow capacities.
- Examples of Maximum Flow Problems include flow of water, gas, or oil through a network of pipelines; the flow of traffic through a road network or the flow of products through a production line system.

Busy planning a route...

Maximum Flow Problem

- All flow through a directed and connected network originates at one node, called the source, and terminates at one other node, called the sink.
- All the remaining nodes are transshipment nodes
- Flow through an arc is allowed only in the direction indicated by the arrowhead, where the maximum amount of flow is given by the capacity of that arc.

Ford-Fulkerson's Algorithm for Maximum Flow Problem

- Step 1 Change each directed arc in the original network into an undirected arc.
 Arc capacity in the original direction remains the same; arc capacity in the opposite direction is set to be zero.
- Step 2 Choose one path through the network from origin to destination.
- Step 3 Determine the maximum flow that can pass through the path (maximum flow is the minimum of all the flow capacities of the arcs along the path)
- Step 4 Adjust the capacities of the arcs along the path by subtracting the maximum flow determined in step 3
- Step 5 Adjust the capacities of the arcs in the opposite direction by adding the maximum flow
- Step 6 Repeat steps 2 to 5 until there are no more paths with available flow

Network	Description	
A 8 E 7 C 6	Problem: Find the maximum flow of items from the origin, O, to the destination, D, based on the limited capacities as shown by the number along the arcs.	
0 A 8 0 E 4	Start by splitting the arc capacities for either direction of flow on the arc.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B E Max. flow from A to E is 8, and from E to A is 0	

Network	Description
2 d d d d d d d d d d d d d d d d d d d	 - Path O → A → E → D is arbitrarily chosen. - Maximum flow that can pass through this path is 4, which is the min {6, 8, 4} - Subtract 4 from each of the arc capacities on path towards D - Add 4 to the arc capacities in the opposite direction
0 2 0 4 4 B 1 4 4 D 8	 Choose another path, O → B → D Maximum flow along this path is 4 Adjust arc capacities accordingly Total units that can be shipped through network is 8

Network	Description
0 ² 0 4 4 B 0 5 5 D 9	 Choose another path, O → C → B → D Maximum flow along this path is 1 Adjust arc capacities accordingly Total units that can be shipped through network is 9
0 2 4 4 B 0 5 5 D 15 T T T T T T T T T T T T T T T T T T	 Choose another path, O → C → D Maximum flow along this path is 6 Adjust arc capacities accordingly Total units that can be shipped through network is 15

P01 Suggested Solution

Problem Discussion

- The product delivery routes can be represented as a network model.
- The eight cities are represented by nodes.
- The delivery routes are represented by arcs.
- Minimum cost delivery route from Melbourne to each destination can be found by solving it as a shortest path problem using the Dijkstra's Algorithm.

В

Melbourne to each of the other cities is shown by the bold red arcs.

FromMelbourne to	Route	Total
	Route	Cost
Adelaide	$M \rightarrow A$	50
Sydney	$M \rightarrow S$	34
Brisbane	$M \rightarrow S \rightarrow B$	97
Perth	$M \rightarrow A \rightarrow P$	145
Alice Spring	$M \rightarrow A \rightarrow AS$	143
Cairns	$M \rightarrow S \rightarrow C$	151
Darwin	$M \rightarrow A \rightarrow AS \rightarrow D$	215

To determine the maximum flow of products (in number of containers) from Melbourne to Darwin and the delivery of products on each route, we can model it as a Maximum Flow Problem and solve it using the Ford-Fulkerson's Algorithm.

Assumptions:

- Cost of delivery on each route is not considered here.
- Products are only delivered from Melbourne to Darwin.

Solution Step 1

Route	Flow Quantity
Total	

Conclusion

 The cheapest product delivery routes from Melbourne to each of the other 7 cities can be found by solving it as a Shortest Path Problem.

 The maximum flow of products from Melbourne to Darwin and the planning of delivery on each route can be determined by solving it as a Maximum Flow Problem.

Learning Objectives

- Apply Dijkstra's Algorithm to solve Shortest Path (can be shortest distance / minimum cost / shortest time between an origin and various destination points) problem.
- Apply Ford-Fulkerson's Algorithm to solve Maximum Flow (maximize the amount of flow of items from an origin to a destination when the arcs of the network have limited flow capacities) problem.

Overview of E211 Operations Planning II Module

