Aufgabe 1: Grundwissen

- (a) Geben Sie zwei verschiedene Möglichkeiten der formalen Verifikation an.
 - 1. Möglichkeit: formale Verifikation mittels *vollständiger Induktion* (eignet sich bei *rekursiven* Programmen).
 - 2. Möglichkeit: formale Verifikation mittels *wp-Kalkül* oder *Hoare-Kalkül* (eignet sich bei *iterativen* Programmen).
- (b) Erläutern Sie den Unterschied von partieller und totaler Korrektheit.
 - partielle Korrektheit:

Das Programm verhält sich spezifikationsgemäß, falls es terminiert.

- totale Korrektheit:

Das Programm verhält sich spezifikationsgemäß und es *terminiert immer*.

(c) Gegeben sei die Anweisungssequenz *A*. Sei *P* die Vorbedingung und *Q* die Nachbedingung dieser Sequenz. Erläutern Sie, wie man die (partielle) Korrektheit dieses Programmes nachweisen kann.

Vorgehen	Horare-Kalkül	wp-Kalkül
Wenn die Vorbedingung P	${P}A{Q}$	$P \Rightarrow wp(A, Q)$
zutrifft, gilt nach der		_
Ausführung der		
Anweisungssequenz A die		
Nachbedingung Q.		

(d) Gegeben sei nun folgendes Programm:

```
1 A_1
2 while(b):
3 A_2
```

wobei A_1 , A_2 , A_3 Anweisungssequenzen sind. Sei P die Vorbedingung und Q die Nachbedingung des Programms. Die Schleifeninvariante der while-Schleife wird mit I bezeichnet. Erläutern Sie, wie man die (partielle) Korrektheit dieses Programmes nachweisen kann.

Vorgehen	Horare-Kalkül	wp-Kalkül
Die Invariante <i>I</i> gilt vor	$\{P\}A_1\{I\}$	$P \Rightarrow wp(A_1, I)$
Schleifeneintritt.		
I ist invariant, d. h. I gilt	${I \wedge b}A_2{I}$	$I \wedge b \Rightarrow wp(A_2, I)$
nach jedem		
Schleifendurchlauf.		
Die Nachbedingung Q	$\{I \wedge \neg b\}A_3\{Q\}$	$I \wedge \neg b \Rightarrow \operatorname{wp}(A_3, I)$
wird erfüllt.		• • • • • • • • • • • • • • • • • • • •

(e) Beschreiben Sie, welche Vorraussetzungen eine Terminierungsfunktion erfüllen muss, damit die totale Korrektheit gezeigt werden kann.

Mit einer Terminierungsfunktion ${\cal T}$ kann bewiesen werden, dass eine Wiederholung terminiert. Sie ist eine Funktion, die

- ganzzahlig,
- nach unten beschränkt (die Schleifenbedingung ist false , wenn T=0) und
- streng monoton fallend (jede Ausführung der Wiederholung verringert ihren Wert)
 ist.

Im Hoare-Kalkül muss $\{I \land b \land (T=n)\}A\{T< n\}$ gezeigt werden, im wp-Kalkül $I\Rightarrow T\geq 0$. a

 $^{{\}it ^{\it a}} https://osg.informatik.tu-chemnitz.de/lehre/aup/aup-07-AlgorithmenEntwurf-script_de.pdf$