臺北區 106 學年度第二學期 指定科目第二次模擬考試

化學考科

--作答注意事項--

考試範圍:高一~高三

考試時間:80分鐘

作答方式:

•選擇題用 2B 鉛筆在「答案卡」上作答;更正時,應以 橡皮擦擦拭,切勿使用修正液(帶)。

非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上 作答;更正時,可以使用修正液(帶)。

- 未依規定畫記答案卡,致機器掃描無法辨識答案;或 未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨 認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

參考資料

說明:下列資料,可供回答問題之參考

一、元素週期表(1~36號元素)

211/17	111- F	- 1 -	_	J U 31)	עט עט	1//										- 1	
1																	2
H																	He
1.0	ļ																4.0
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12											13	14	15	16	17	18
Na	Mg											Αl	Si	Р	S	Cl	Ar
23.0	24.3											27.0	28.1	31.0	32.1	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8

- 二、理想氣體常數 $R = 0.08205 \text{ L atm K}^{-1} \text{ mol}^{-1} = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- 三、水的莫耳凝固點下降常數 $K_f = 1.86 \ \text{C} \ \text{m}^{-1}$
- 四、甲基紅變色範圍:pH值4.2~6.3,酸型為紅色,鹼型為黃色
- 五、1 大氣壓=1.013×10⁵ 帕

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(占84分)

一、單選題(占48分)

說明:第1.題至第16.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

1. 某知名紅茶冰連鎖店被驗出含超標的香豆素,生意大受影響。香豆素是一種 廣泛存在於植物中的香料物質,有類似香草精的香味,常使用作為食品、香 菸、塑膠製品及香水等的增香劑。香豆素對於肝臟、腎臟具有毒性,故有些 國家訂定攝取的安全劑量。圖 1 為香豆素及香草精之結構式,關於香豆素與 香草精的敘述,何者正確?

香豆素

香草精 圖 1

- (A)香豆素的分子式為 C₉H₈O₂
- (B)兩者皆具有酮的官能基
- (C)將香草精與多侖試劑共熱,不會生成銀鏡
- (D)香草精加入氯化鐵的酒精水溶液會呈紫色
- (E)香豆素與斐林試液共熱,會產生紅色沉澱
- 2. 下列分子中,何者鍵角最小?
 - (A) BeCl₂
- (B) SO₂
- (C) CH₄
- (D) BF₃
- (E) H₂O
- 3. 反應甲與反應乙均為單一物質的分解反應,其反應物剩餘量與時間關係如表 1 所示,試問此兩反應的級數(甲,乙)為何?

表1

時間 反應	第0秒	第10秒	第 20 秒	第30秒
甲	28 g	14 g	7 g	3.5 g
Z	28 g	24 g	20 g	16 g

- (A) (零級,零級)
- (B) (一級,零級)
- (C) (零級,一級)

- (D) (一級,二級)
- (E) (二級,一級)
- 4. 取 4.80 克金屬 M 與過量的鹽酸反應,所生成的氣體在 25 ℃、1 大氣壓下的體積為 4.90 升。 根據試卷封面所附的週期表,判斷 M 最可能為何種金屬?
 - (A) Na
- (B) A1
- (C) Mg
- (D) Fe
- (E) Ca
- 5. 某 X^{3+} 離子的基態電子組態,在 M 殼層中有 13 個電子。則 X 原子之基態電子組態中,有 多少個不成對電子?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
 - (E) 5

- 6. 近年來農委會積極推動將畜牧糞尿經由處理產生沼氣(主要成分是甲烷)來發電,有關此能源的敘述,何者正確?
 - (A)天然氣是非再生能源,所以沼氣也是非再生能源
 - (B)甲烷可作為燃料電池的原料,1莫耳甲烷反應可產生8法拉第的電量
 - (C)甲烷燃料電池發電不會產生二氧化碳,所以能減少溫室效應
 - (D)以甲烷為燃料的火力發電會造成嚴重的 PM2.5 汙染
 - (E)畜牧糞尿分解為沼氣的反應,碳原子被氧化
- 7. 關於週期表第三列元素的性質,下列敘述何者正確?
 - (A)以鈉的電負度最大
 - (B)半徑: Na+>Mg²⁺>S²⁻>Cl->Ar
 - (C)游離能:Ar>P>Mg>Al>Na
 - (D)形成的元素態物質中,以鋁之熔點最高
 - (E)鋁與硫所形成的穩定化合物之化學式為 AIS
- 8. 小明在實驗室中看到一種紅色的錯鹽晶體,老師給他 0.05 莫耳進行實驗。小明將其全部加入 100 克的水中並攪拌使之溶解,然後測定該溶液之凝固點,發現凝固點為 -3.1 ℃,試問該紅色化合物可能為下列何者?
 - (A) $[FeSCN](NO_3)_2$
- (B) $[Co(NH_3)_4Cl_2]Cl$
- (C) $K_4[Fe(CN)_6]$

- $(D) K_3[Fe(CN)_6]$
- (E) $[Cu(NH_3)_4](NO_3)_2$
- 9. 圖 2 為一多肽分子,根據其結構式判斷,此分子為幾肽?又將此分子充分水解後,可獲得 幾種不同的胺基酸?

圖 2

(A)五肽,4種

(B)四肽,4種

(C) 五肽,5種

(D)六肽,5種

(E)四肽,3種

- 10. 利用相同電流大小電解濃度均為 0.10 M 的下列水溶液,何者可在最短時間內,於指定的電極處獲得 0.01 莫耳之指定物質?
 - (A) H₂SO_{4(aq)} 的正極獲得 O₂
 - (B) CuSO_{4(aq)} 的負極獲得 Cu
 - (C) KI_(aq) 的陽極獲得 I₂
 - (D) K₂[PtCl₆]_(aq) 的陰極獲得 Pt
 - (E) AgNO_{3(aq)} 的陰極獲得 Ag

- 11. 下列哪一項不是理想溶液的特性?
 - (A)蒸氣壓遵守拉午耳定律
 - (B)溶質與溶劑分子間沒有作用力
 - (C)溶質與溶劑混合時,既不吸熱也不放熱
 - (D)溶質與溶劑混合成溶液之體積具有加成性
 - (E)若溶質與溶劑皆為液體,則混合後溶液的蒸氣壓大小必介於溶質與溶劑的飽和蒸氣壓之間
- 12. 「同重量的碳酸鈣,在固定濃度的鹽酸中產生氣泡的速率:粉末狀>塊狀」。試問下列反應中,何種現象的原理與上述相同?
 - (A)食物存放在冰箱中,比放在常温的桌上不易腐敗
 - (B)以氦氣或鈍氣充填零食包裝,延長食品的保存期限
 - (C)綠色植物利用葉綠素產生葡萄糖後,轉化成澱粉儲存
 - (D)將蔥、薑、蒜等香料切丁或切末後,再放入油鍋中爆香
 - (E)以點燃的蠟燭分別碰觸充滿氫氣與空氣的氣球,前者會爆炸並產生火球
- 13. 已知醋酸的解離常數 $K_a = 1.8 \times 10^{-5}$,欲配製 pH = 5 的緩衝溶液,應於 0.50 M $CH_3COOH_{(aq)}$ 1.0 升中,加入醋酸鈉若干克?

(A) 22.8

(B) 41.0

(C) 73.8

(D) 82.0

(E) 147.6

NH₂

H₂N

14. 如圖 3,在同溫下甲與乙皆盛有 1 升蒸餾水,水面上為 N₂ 與 O₂ 之混合氣體,已知甲容器之壓力為 1 大氣壓,其中 O₂ 的分壓為 0.5 大氣壓,乙容器之壓力為 2 大氣壓,其中 O₂ 的分壓亦為 0.5 大氣壓。氣體溶解達平衡後,測得甲容器水中溶有 0.025 克 O₂、0.010 克 N₂。則此時乙容器水中溶解之 O₂ 與 N₂ 各為若干克?(此時水的飽和蒸氣壓可忽略)

(A) $O_2:0.025$ 克, $N_2:0.010$ 克(B) $O_2:0.050$ 克, $N_2:0.020$ 克

(C) O₂: 0.025 克, N₂: 0.030 克

(D) O₂: 0.050 克, N₂: 0.060 克

(E) O₂: 0.050 克, N₂: 0.030 克

- 15. 市售染髮劑多含對苯二胺(PPD),其結構式如圖 4 所示。PPD 為無色固體,除了造成過敏外,也是致癌物之一。下列有關 PPD 的敘述,何者錯誤?
 - A) 氮的重量百分率為 25.9%
 - (B)常溫下無法使溴水褪色
 - (C) PPD 結構式中的碳與氦原子皆為 sp² 混成軌域
 - (D) PPD 在鹽酸中的溶解度大於其在純水中的溶解度
 - (E)可與己二醯氯行縮合聚合反應,生成聚醯胺

16. 實驗室有一未知的金屬,某生將此金屬表面以砂紙磨光後浸在 1.0 M 的 NaCl 溶液中,形成一個半電池(甲),將半電池(甲)與 Cu | CuSO₄(1.0 M)連接後的電池可產生 2.00 伏特的電壓。若將半電池(甲)與 Zn | ZnSO₄(1.0 M)連接,則可產生 0.90 伏特的電壓。參考各項金屬的標準還原電位如表 2 所示:

表 2

- 1	~ -					
半電池反應	標準還原電位(伏特)					
$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$	0.80					
$Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$	0.34					
$\operatorname{Sn}^{2+}_{(aq)} + 2e^{-} \rightarrow \operatorname{Sn}_{(s)}$	-0.14					
$Ni^{2+}_{(aq)} + 2e^- \rightarrow Ni_{(s)}$	-0.25					
$Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}$	-0.76					
$Al^{3+}_{(aq)} + 3e^- \rightarrow Al_{(s)}$	-1.66					
$Mg^{2+}_{(aq)} + 2e^{-} \rightarrow Mg_{(s)}$	-2.37					

推測此未知金屬最可能為何者?

- (A)鋁
- (B)錫
- (C)鎂
- (D)鎳
- (E)銀

二、多選題(占36分)

說明:第17.題至第25.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得4分; 答錯1個選項者,得2.4分;答錯2個選項者,得0.8分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

- 17. 下列哪些變化會放出能量?
 - (A) S: [Ne]3s²3p_x²3p_y²3p_z⁰ \rightarrow S: [Ne]3s²3p_x²3p_y¹3p_z¹
 - (B) $Cr : [Ar]3d^54s^1 \rightarrow Cr : [Ar]3d^44s^2$
 - (C) $Na_{(g)} + K^{+}_{(g)} \rightarrow Na^{+}_{(g)} + K_{(g)}$
 - (D) $H_2SO_{4(aq)} + Ba(OH)_{2(aq)} \rightarrow BaSO_{4(s)} + 2H_2O_{(\ell)}$
 - $(E) \ 2NO_{2(g)} \rightarrow N_2O_{4(g)}$
- 18. 下列各組變化,哪些可藉由降低 pH 值,使反應有利於向右進行?
 - (A) $H_2O_2 \rightarrow H_2O$
 - (B) $H_2O_2 \rightarrow O_2$
 - (C) $MnO_4^- \rightarrow Mn^{2+}$
 - (D) $C_2O_4^{2-} \rightarrow CO_2$
 - (E) $HSO_3^- \rightarrow SO_4^{2-}$

- 19. 有關 5 個物質: 氯化鈉、阿司匹靈、二氧化矽、四氯化碳、乙醇的敘述,下列哪些正確?
 - (A)有 2 個物質具有 π 鍵
 - (B)在 5 個物質中,以氯化鈉的熔點最高
 - (C)阿司匹靈與乙醇均具有分子間氫鍵
 - (D)對水的溶解度以乙醇最大
 - (E)四氢化碳分子間僅存在分散力
- 20. 已知酒精的正常沸點及凝固點分別為 78 $^{\circ}$ 及 -114 $^{\circ}$,又知其三相點之溫度及壓力分別 為 -123 $^{\circ}$ 及 0.00043 帕。根據上述資料,判斷下列酒精之性質哪些正確?
 - (A)其沸點隨壓力增大而上升
 - (B)其凝固點隨壓力增大而下降
 - (C)在 0.5 大氣壓、0°C 時,酒精呈現固態
 - (D)在 3 大氣壓、78 °C 時,酒精呈現氣態
 - (E)在 3 大氣壓、-114 ℃ 時,酒精呈現固態
- 21. 根據表 3 中各反應之標準反應熱,下列敘述哪些正確?

- (A)二氧化碳的標準莫耳生成熱為 394 kJ
- (B) 氫氣的熱值為 143 kJ g^{-1}
- (C)每莫耳乙烷完全燃燒需消耗 3.5 mol 氧氣
- (D)乙烷的標準莫耳燃燒熱為 -1344 kJ
- (E)乙炔的標準莫耳生成熱為 227 kJ
- 22. 下列關於有機化合物的性質與反應,哪些正確?
 - (A)電石和水反應生成的氣體,在 HgSO₄/H₂SO₄ 的催化下可與水反應得到乙醛
 - (B)常溫下,環己烯可與微鹼性過錳酸鉀溶液反應得到環己醇
 - (C) 2-甲基-3-戊醇為二級醇,會被酸性的二鉻酸鉀溶液氧化
 - (D)可用氯化亞銅的氨水溶液來分辨 1-丁炔和 2-丁炔
 - (E)葡萄糖可與多侖試劑反應產生銀鏡,果糖則否
- 23. 下列哪些反應可以產生氧氣?
 - (A)氫氧化鈣與氯化銨混合共熱
 - (B)氯酸鉀與二氧化錳混合共熱
 - (C) 氫化鈉與水反應
 - (D)亞硝酸鈉與氯化銨混合共熱
 - (E)電解氫氧化鈉水溶液

- 24. 某廠牌洗衣粉添加了過碳酸鈉(化學式 2Na₂CO₃·3H₂O₂)成分,號稱具有活氧殺菌功能,不需另外使用漂白劑也能強力洗淨。大雄要拍攝此洗衣粉的廣告影片,先將下列有色物質塗在白色衣服上,再以洗衣粉水溶液清洗,哪些能夠瞬間清除汙垢,達成潔淨無色的視覺效果?
 - (A)以碘液充當醬油
 - (B)將過錳酸鉀溶液充當紫藥水
 - (C)將碘液與澱粉混合充當藍墨水
 - (D)將甲基紅加澱粉調成濃稠狀,充當番茄醬
 - (E)將鉻酸鉀水溶液噴灑在衣物上,造成黃垢的效果
- 25. 由下列各項資訊,選項中正確的敘述有哪些?
 - (1) HF的 Ka 值為 7.2×10⁻⁴, 而 HCl 的 Ka 值極大。
 - (2) CaF_2 的 K_{sp} 值為 $4.0{\times}10^{-11}$, CaC_2O_4 的 K_{sp} 值為 $1.0{\times}10^{-9}$ 。
 - (3) $\mathrm{SiF_6}^{2-}_{(aq)} + 2\mathrm{H}_2\mathrm{O}_{(\ell)} \rightleftharpoons \mathrm{SiO}_{2(s)} + 4\mathrm{H}^{+}_{(aq)} + 6\mathrm{F}^{-}_{(aq)}$, $\mathrm{K}_c = 5.4 \times 10^{-27}$ \circ
 - (A)同為 1.0 M 的 HCl_(aq) 與 HF_(aq), 兩者的 [H⁺] 相同
 - (B)同為 1.0 M 的 NaCl(aq) 與 NaF(aq),後者的 pH 值較大
 - (C)對水的溶解度(mol/L):CaC2O4>CaF2
 - (D) $CaF_{2(s)}$ 在不同液體中的溶解度:純水 $>1.0~M~Ca(NO_3)_{2(aq)}>1.0~M~NaF_{(aq)}$
 - (E) 氫鹵酸的水溶液如 $\mathrm{HF}_{(aq)} \setminus \mathrm{HCl}_{(aq)} \setminus \mathrm{HI}_{(aq)}$ 等,應儲存在玻璃容器中,並存放恆溫通風櫃內

第貳部分:非選擇題(占16分)

- 說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明題號(一、二)與 子題號(1.、2.、……),作答時不必抄題,計算題必須寫出計算過程,最後答案應 連同單位畫線標出。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每 一子題配分標於題末。
- 一、利用元素分析法,將含碳、氫、氧的有機化合物 2.22 克完全燃燒後,產物依序通過無水 過氯酸鎂及氫氧化鈉吸收管,此兩管重量分別增加 2.70 克及 5.28 克。又取該有機化合物 0.185 克,在 127 ℃、1.0 大氣壓下,汽化後體積為 82.0 毫升。

回答下列問題:

- 1. 此化合物的分子式為何?(3分)
- 2. 又此有機化合物無法使過錳酸鉀的酸性溶液褪色,試畫出可能的結構。(4分)

二、小美利用以下的步驟測定草酸鎂之溶度積 Ksp:

步驟 1:取過量草酸鎂固體溶於水,充分攪拌,靜置過夜後再過濾,可得草酸鎂的飽和溶液。

步驟 2:以吸量管精確取出 25.0 毫升的草酸鎂飽和溶液,將其置入 250 毫升錐形瓶中,再加入 15.0 毫升的蒸餾水及 10.0 毫升 3 M 的硫酸。

步驟 3:將步驟 2 的錐形瓶置於熱水中預熱至 60 ℃ 左右。

步驟 4:以 0.005 M 的過錳酸鉀溶液滴定上述溶液,達滴定終點時用掉過錳酸鉀溶液 16.0 毫升。

回答下列問題:

- 1. 滴定終點時,呈現何種顏色?(1分)
- 2. 請寫出此滴定反應的淨離子反應式。(2分)
- 3. 草酸鎂的溶解度為何?(以體積莫耳濃度表示;3分)
- 4. 草酸鎂的溶度積(K_{sp})為何?(3分)

臺北區 106 學年度第二學期 指定科目第二次模擬考試

版權所有・翻印必究

化學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(D)	(E)	(B)	(C)	(D)	(B)	(C)	(D)	(A)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(E)	(B)	(D)	(C)	(C)	(C)	(A)	(A)(D)(E)	(A)(C)
題號	19.	20.	21.	22.	23.	24.	25.		le le la
答案	(C)(D)(E)	(A)(E)	(B)(C)(E)	(A)(C)(D)	(B)(E)	(A)(C)	(B)(D)	1	

第壹部分:選擇題

一、單選題

1. (D)

出處:基礎化學(二) 有機化合物; 選修化學(下) 有機化學

目標:理解化學資料的能力;分析、歸納、演繹及 創造的能力

內容:元素分析法;有機化合物性質

解析:(A) 分子式為 C₉H₆O₂。

(B) 香豆素為酯類;香草精為醛類。

(C) 香草精有醛基, 會有銀鏡反應。

(D) 香草精有酚 (〇〇—OH) 的官能基: 遇 FeCl₃ 呈紫色。

(E) 醛基方可與斐林試液反應,香豆素無法。 香草精則可。

2. (E)

出處:選修化學(上) 化學鍵結

目標:基本的化學規則、學說及定律;分析、歸納、 演繹及創造的能力

內容: VSEPR 比較鍵角

解析: (A) Be 為 sp 混成 ⇒ 180°

(B) S 為 sp² 混成,有 1 對孤對電子 ⇒ 鍵角略 小於 120°

(C) C 為 sp³ 混成 ⇒ 109.5°

(D) B 為 sp² 混成 ⇒ 120°

(E) O 為 sp³ 混成,有 2 對孤對電子 ⇒ 鍵角 小於 109.5°

3. (B)

出處:基礎化學(三) 化學反應速率

目標:基本的化學名詞、定義及現象;化學實驗之 觀察、記錄、分析及解釋能力

內容:零級與一級反應的特性

解析:甲:每隔 10 秒,反應物皆減為原來的一半, 半生期為定值(10 秒),故知其為一級 反應。

> 乙:等時間、等反應量,即反應速率不隨濃 度改變而異,故知其為零級反應。

4. (C)

出處:基礎化學(一) 化學反應

目標:化學計算的能力 內容:化學計量

度改變而異,故知其為零級反應。

解析: $M+nH^+ \to M^{n+} + \frac{n}{2}H_2$ $\frac{4.80}{M} \times \frac{n}{2} = \frac{4.90}{24.5} \Rightarrow \frac{M}{n} = 12$ ∴為金屬 $Mg \left(\frac{M}{n} = \frac{24}{2} = 12 \right)$

5. (D)

出處:選修化學(上) 原子構造

目標:分析、歸納、演繹及創造的能力

內容:電子組態與洪德定則

解析:M殼層為 n=3 的主殼層,有13 個電子,即

 $3s^23p^63d^5$ •

∴中性原子的電子組態為 [Ar]3d⁶4s²

6. (B

出處:基礎化學(二) 常見的化學反應、化學與化工; 選修化學(上) 氧化還原反應

目標:了解化學與生活之關係

內容:能源與環境;氧化還原反應

解析:(A) 沼氣是再生能源。

(B) <u>C</u>H₄ → <u>C</u>O₂ , 1 個 C 失 8 個電子。

-4 + 4

:.1 莫耳甲烷可產生 8 法拉第的電量

(C) $CH_4+2O_2 \rightarrow CO_2+2H_2O$ 還是會產生 CO_2

(D) 反應物與產物均為氣體,不會產生懸浮微 粒。

(E) 沼氣 (CH₄) 中, C 的氧化數為 -4 (最低), 故為還原反應。

7. (C)

出處:選修化學(上) 原子構造、化學鍵結

目標:分析、歸納、演繹及創造的能力

內容:元素的週期規律

解析:(A) Na 電負度最小, Cl 電負度最大。

(B) ₁₆S²⁻、₁₇Cl⁻、₁₈Ar 皆有 18 個電子,原子序(核電荷)愈小,半徑愈大;₁₁Na⁺、
₁₂Mg²⁺ 皆有 10 個電子,原子序(核電荷) 愈小,半徑愈大。故半徑:S²⁻>Cl⁻>Ar >Na⁺>Mg²⁺。

(C) 游離能大致上由左往右漸增,但ⅡA> ⅢA,故正確。

(D) Si 為共價網狀晶體,熔點最高。

(E) Al³⁺、S²⁻ ⇒ 化學式為 Al₂S₃

8. (D)

出處:選修化學(上) 液體與溶液; 選修化學(下) 無機化合物

目標: 化學計算的能力

內容:溶液的依數性質、配位化學

解析: $\Delta T_f = K_f \cdot C_m \cdot i$

 $3.1 = 1.86 \times \frac{0.05}{0.1} \times i \Rightarrow i \stackrel{.}{\rightleftharpoons} 3.33$

理論值:

(A) i=3; (B) i=2; (C) i=5; (D) i=4; (E) i=3。 但實際值 i 會較小,又為紅色晶體,故為(D) 赤血鹽 K₃[Fe(CN)₆]。

9. (A)

出處:選修化學(下) 化學的應用與發展

目標:分析、歸納、演繹及創造的能力;應用化學

原理解決問題的能力

內容:胺基酸與多肽

解析:

5 個胺基酸脫去 4 個水分子形成五肽,但①、 ④均為丙胺酸,故只有 4 種胺基酸。

10. (E)

出處: 選修化學(上) 氧化還原反應

目標:理解化學資料的能力;化學計算的能力

內容: 電解與法拉第電解定律

解析:(A) 正(陽)極:2H₂O→O₂+4H⁺+4e⁻(0.04 法拉第)

> (B) 負(陰) 極: Cu²⁺+2e⁻→ Cu (0.02 法 拉第)

(C) 陽(正)極:2I⁻ → I₂+2e⁻ (0.02 法拉第)

(D) 陰(負)極: Pt⁴⁺+4e⁻ → Pt (0.04 法拉第)

(E) 陰(負)極: $Ag^{+}+e^{-} \rightarrow Ag$ (0.01 法拉第) 欲獲得 0.01 莫耳指定物質,(E)所需的電量最少 (0.01 法拉第),Q=It,又電流相同,故所需的時間亦最短。

11. (B)

出處:選修化學(上) 液體與溶液

目標:基本的化學規則、學說及定律

內容:理想溶液的特性

解析:(B) 作用力不是零,而是溶質分子間、溶劑分子間、溶質與溶劑分子間的作用力相等。

12. (D)

出處:基礎化學(三) 化學反應速率

目標:了解化學與生活之關係

內容:表面積與反應速率的關係

解析:由題目敘述可知,接觸面積愈大,反應愈快, 故撰(D)。

13. (C)

出處: 選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:理解化學資料的能力

內容:酸的解離常數;緩衝溶液的配製

解析: $CH_3COOH_{(aq)} \rightleftharpoons CH_3COO^-_{(aq)} + H^+_{(aq)}$

$$pH=5 \Rightarrow [H^+]=10^{-5} M$$

$$\frac{[\text{CH}_3\text{COO}^-] \times 10^{-5}}{0.50} = 1.8 \times 10^{-5}$$

 \Rightarrow [CH₃COO $^-$]=0.90 (M)

故需 CH3COONa:

0.90x1.0x82=73.8(克)

14. (C)

出處: 選修化學(上) 液體與溶液

目標:基本的化學規則、學說及定律;化學計算的

能力

內容:亨利定律

解析:由亨利定律知,氣體的溶解度與其在液面上

的分壓成正比。

甲: $P_{O_3} = 0.5$ 大氣壓(溶 0.025 克)

 $P_{N_2} = 0.5$ 大氣壓(溶 0.010 克)

故乙: $P_{O_2} = 0.5$ 大氣壓(溶 0.025 克)

P_N=1.5 大氣壓(溶 0.030 克)

15. (C)

出處:基礎化學(一) 物質的組成;

選修化學(下) 有機化學

目標:了解化學與生活之關係;分析、歸納、演繹

及創造的能力

內容:有機化合物的性質與混成軌域

解析:(A)分子式為 C₆H₈N₂

$$W_N\% = \frac{28}{108} \times 100\%$$

 $= 25.9\%$

(B) 苯環不易與 Br₂ 行加成反應,故不褪色。

(C) N 有 1 對孤對電子,故為 sp³ 混成軌域。

(D) PPD 為弱鹼性,在酸中溶解度較大。

(E) 胺基可與醯氯行縮合聚合反應,反應如下:

16. (A)

出處: 選修化學(上) 氧化還原反應

目標:理解化學資料的能力;分析、歸納、演繹及

創造的能力

內容:還原電位與電池的電動勢

解析:某金屬離子的還原電位

=0.34-2.00

=-1.66(伏特),故為 Al

或由題表可知 E° (Al-Cu²⁺) = 1.66+0.34

=2.00 (伏特)

 E° (Al-Zn²⁺) = 1.66 – 0.76

=0.90 (伏特)

二、多選題

17. (A)(D)(E)

出處:基礎化學(一) 化學反應;

選修化學(上) 原子構造

目標:分析、歸納、演繹及創造的能力

內容:元素的週期性、電子組態與化學反應熱

解析:(A) 激發態→基態,放熱。

(B) 基態 → 激發態,吸熱。

(C) ① $Na_{(g)} \rightarrow Na_{(g)}^+ + e^- \Delta H = Na$ 的 IE

② $K_{(g)} \rightarrow K^+_{(g)} + e^ \Delta H = K$ 的 IE

①-②: △H>0 (∵IE: Na>K)②) 酸鹼中和為放熱反應。

(E) 2NO₂ → N₂O₄+熱(斷鍵為吸熱)

18. (A)(C)

出處:選修化學(上) 氧化還原反應

目標:分析、歸納、演繹及創造的能力

內容:氧化、還原半反應式

解析: (A) $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ [H⁺] ↑ ,反應利於向右。

(B) $H_2O_2 \to O_2 + 2H^+ + 2e^-$ [H^+] ↑ ,反應利於向左。

(C) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ [H^+] ↑ ,反應利於向右。

(D) C₂O₄²⁻ → 2CO₂+2e⁻, 不影響。

(E) $HSO_3^- + H_2O \rightarrow SO_4^{2^-} + 3H^+ + 2e^-$ [H⁺] ↑,反應利於向左。

19. (C)(D)(E)

出處:選修化學(上) 化學鍵結;

選修化學(下) 有機化學

目標:分析、歸納、演繹及創造的能力;了解化學

與生活之關係

內容:有機化合物的性質、化學鍵與分子間作用力

解析:(A) 只有阿司匹靈有π鍵

- (B) SiO₂ 為共價網狀物質,熔點最高。
- (C) 酸、醇均有分子間氫鍵。
- (D) 乙醇與水可以任意比例互溶。
- (E) CCl₄ 為非極性分子,分子間僅存在分散力。

20. (A)(E)

出處:選修化學(上) 液體與溶液

目標:理解化學資料的能力;了解化學與其他學科

內容:相圖

解析:酒精的相圖:

(B)凝固點隨壓力增大而上升。(C)一定不為固態。(D)液態。

21. (B)(C)(E)

出處:基礎化學(一) 化學反應、化學與能源

目標:化學計算的能力 內容:反應熱與赫斯定律

解析:(A) 由題表①知, CO_2 的標準莫耳生成熱為

 $-394 \text{ kJ} \circ$

(B) 由題表②知,2 mol H₂ 放熱 572 kJ

⇒ 熱值=
$$\frac{572}{2\times2}$$
 = 143 (kJ g⁻¹)

(C)
$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

(D) 依據題意,①
$$x2+2x\frac{3}{2}+3+4$$
可得

$$\Delta H = (-394) \times 2 + (-572) \times \frac{3}{2} + 302 + (-227) = -1571 \text{ (kJ)}$$

(E) 由題表④知, $2C+H_2 \rightarrow C_2H_2$ $\Delta H = 227$ kJ

22. (A)(C)(D)

出處: 選修化學(下) 有機化學

目標:分析、歸納、演繹及創造的能力

內容:有機化合物的性質

解析:(A)
$$CaC_2 + 2H_2O \rightarrow HC \equiv CH + Ca(OH)_2$$
 H
HC $\equiv CH + H_2O \xrightarrow{\text{催化}} CH_3C$

(C) 為二級醇,會被氧化成2-甲基-3-戊酮。

(D) 末端炔的檢驗:
 CH₃CH₂C≡CH+Cu(NH₃)₂Cl →
 CH₃CH₂C≡C−Cu+NH₄Cl+NH₃
 得 1-丁炔亞銅(紅↓)

(E) 葡萄糖、果糖均為還原醣 ⇒ 都有銀鏡反應

23. (B)(E)

出處: 選修化學(下) 無機化合物

目標:分析、歸納、演繹及創造的能力

內容:氣體的製備

解析:(A) $Ca(OH)_2 + 2NH_4C1 \xrightarrow{\triangle} 2NH_3 + CaCl_2 + 2H_2O$

(B) $2KClO_3 \xrightarrow{MnO_2} 2KCl + 3O_2$

(C) $NaH + H_2O \rightarrow H_2 + NaOH$

(D) $NaNO_2 + NH_4Cl \xrightarrow{\triangle} N_2 + NaCl + 2H_2O$

(E) 如同電解水: $2H_2O \rightarrow 2H_2 + O_2$

24. (A)(C)

出處: 選修化學(上) 氧化還原反應

目標:了解化學與生活之關係;應用化學原理解決 問題的能力

內容:氧化還原反應;酸鹼反應

解析: 2Na₂CO₃·3H₂O₂

鹼性 可作氧化劑,亦可作還原劑

(A)(C) 碘在鹼中會發生自身氧化還原: $3I_2+6OH^- \rightarrow 5I^- + IO_3^-$ (無色) $+3H_2O$

- (B) $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2$ (棕色) $+3O_2$ $+2OH^- + 2H_2O$
- (D) 甲基紅:紅色 OH → 黄色
- (E) K₂CrO₄ 在鹼中穩定,仍呈黃色。

25. (B)(D)

出處:基礎化學(二) 常見的化學反應;

基礎化學(三) 化學平衡;

選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:化學實驗之觀察、記錄、分析及解釋能力; 理解化學資料的能力;應用化學原理解決問 顯的能力

內容:水溶液的酸鹼性;溶度積與溶解度;同離子 效應

解析:(A) HCl_(aq) 為強酸,HF_(aq) 為弱酸 解離出的 H⁺ 莫耳數:HCl>HF

> (B) NaCl 為中性,弱酸鹽 NaF 為鹼性 ∴pH 值:NaCl<NaF

(C) $CaF_2 : 4s_1^3 = 4.0 \times 10^{-11}$ $\Rightarrow s_1 = \sqrt[3]{10} \times 10^{-4} (M)$ $CaC_2O_4 : s_2^2 = 1.0 \times 10^{-9}$ $\Rightarrow s_2 = \sqrt{10} \times 10^{-5} (M)$

∴溶解度: CaF₂>CaC₂O₄

(D) 同離子效應

(E) 由題意第(3)項可知, SiO₂+HF 反應的

$$K_c = \frac{1}{5.4 \times 10^{-27}}$$
(極大),故 $HF_{(aq)}$ 不可 裝在玻璃瓶中。

第貳部分: 非選擇題

 $-\cdot 1$. $C_4H_{10}O$

2. 見解析

出處:基礎化學(二) 有機化合物; 選修化學(下) 有機化學

目標: 化學實驗儀器、裝置的認識及操作; 化學計 算的能力

內容:元素分析法求化學式;有機化合物的結構與 性質

解析: 1. 可知產生 2.70 克 H₂O、5.28 克 CO₂

$$W_C = 5.28 \times \frac{12}{44} = 1.44$$
 $W_H = 2.70 \times \frac{2}{18} = 0.30$
 $W_O = 2.22 - 1.44 - 0.30 = 0.48$
 $C: H: O = \frac{1.44}{12} : \frac{0.30}{1} : \frac{0.48}{16} = 4:10:1$

⇒ 實驗式為 $C_4H_{10}O$

又 $1.0 \times 0.082 = \frac{0.185}{M} \times 0.082 \times 400$

- $\times 1.0 \times 0.082 = \frac{1.0 \times 0.082 \times 400}{M} \times 0.082 \times 400$ $\Rightarrow M = 74$
- ∴分子式為 C₄H10O
- 2. 可能為醇或醚,又無法被 KMnO₄ 氧化, 故為醚類或三級醇。

二、1. 淡紫色

- 2. $2\text{MnO}_4^{-}_{(aq)} + 5\text{C}_2\text{O}_4^{2-}_{(aq)} + 16\text{H}^{+}_{(aq)} \rightarrow 2\text{Mn}^{2+}_{(aq)} + 10\text{CO}_{2(e)} + 8\text{H}_2\text{O}_{(\ell)}$
- 3. $8 \times 10^{-3} \text{ M}$
- 4. 6.4×10^{-5}

出處:基礎化學(三) 實驗 溶度積的測定; 選修化學(上) 實驗 氧化還原滴定

目標:化學實驗之觀察、記錄、分析及解釋能力; 設計實驗以解決問題的能力;應用化學原理 解決問題的能力

內容:溶度積測定之實驗;氧化還原滴定

解析:1. MnO4 過量,呈淡紫色。

3. [C₂O₄²⁻]×25.0×10⁻³×2=0.005×16.0×10⁻³×5

⇒ [C₂O₄²⁻]=8×10⁻³ (M)
∴溶解度為 8×10⁻³ (mol/L)

4.
$$MgC_2O_{4(s)} \rightleftharpoons Mg^{2+} + C_2O_4^{2-}$$
 $-s + s + s$
 $K_{sp} = s^2 = [C_2O_4^{2-}]^2$
 $= (8 \times 10^{-3})^2$
 $= 6.4 \times 10^{-5}$

※非選擇題評分標準

- 一、1. 實驗式寫對給 1 分,分子量寫對給 1 分,分子式寫對給 1 分
 - 2. 全對才給分
- 二、1. 全對才給分
 - 2. 全對才給分
 - 3. 列式正確,僅計算錯誤給2分
 - 4. 列式正確,僅計算錯誤給2分

SATATATATA

ě.