4. Elementární funkce

4.1. Přehled elementárních funkcí

Jde o pojem spíše historický než matematický. Vymezuje se několik *základních elementárních funkcí* a z nich se pomocí konečného počtu algebraických operací a operací skládání vytvářejí další funkce, jež nazýváme *elementární funkce*. Platí, že s každou funkcí patří do množiny elementárních funkcí vždy i funkce inverzní, pokud ovšem existuje.

Základní elementární funkce:

- funkce *konstantni* (y = c);
- funkce mocninné $(y = x^r)$ pro libovolné $r \in \mathbf{R}$, patří sem tedy i odmocniny a také např. nepřímá úměrnost);
- goniometrické funkce $(y = \sin x, \cos x, \operatorname{tg} x, \cot x)$ a funkce cyklometrické $(y = \arcsin x, \operatorname{arccos} x, \operatorname{arctg} x, \operatorname{arccotg} x)$;
- exponenciální funkce $(y = a^x, a > 0, a \ne 1)$ a funkce logaritmické $(y = \log_a x)$;
- hyperbolické funkce $(y = \sinh x, \cosh x, \tanh x, \coth x)$ a funkce hyperbolometrické $(y = \operatorname{argsh} x, \operatorname{argch} x, \operatorname{argch} x, \operatorname{argch} x)$.

Algebraické funkce je název pro elementární funkce, které vzniknou z funkcí konstantních a z funkce f(x) = x užitím operací sčítání, odčítání, násobení, dělení a odmocňování. Pokud nepoužijeme operaci odmocňování, dostaneme algebraické funkce racionální. Algebraické funkce, které nejsou racionální, nazýváme iracionální. Zvláštní případy algebraických funkcí: např. celá racionální funkce neboli funkce polynomická (algebraický polynom) a lomená racionální funkce, patří mezi nejvýznamnější funkce studované v matematice.

Elementární funkce, které nejsou algebraické, se obvykle nazývají **transcendentní**; ze základních elementárních funkcí mezi ně patří funkce exponenciální, logaritmické, goniometrické, cyklometrické, hyperbolické a hyperbolometrické, ale též mocninná funkce s iracionálním exponentem.

Elementární funkce mají velmi rozmanité vlastnosti (např. pokud jde o omezenost, monotónnost, paritu, periodičnost aj.) a proto společné vlastnosti lze formulovat jen na velmi obecné úrovni. (Uvidíme zejména, že elementární funkce jsou spojité ve všech bodech svého definičního oboru a mají derivaci ve všech vnitřních bodech svého definičního oboru. Derivací elementární funkce je opět elementární funkce. Naopak ovšem primitivní funkcí k funkci elementární nemusí být funkce elementární, o tom viz v kap.11.)

Příklady funkcí, které nejsou elementární:

Dirichletova funkce $\chi(x)$, funkce sgn x, funkce $\lfloor \rfloor$ "dolní celá část", funkce $\{\}$ "lomená část" definovaná vztahem $\{x\} = x - \lfloor x \rfloor$.

Úloha 4.1.1. Znázorněte graficky funkci $y = \{x\}$ a dokažte, že je periodická s periodou 1.

Ani absolutní hodnota není považována za elementární funkci. Elementárními funkcemi nejsou ani jiné funkce definované "po částech", jako např. funkce

$$y = \begin{cases} -x & \text{pro } x < 0 \\ x^2 & \text{pro } x \ge 0 \end{cases}.$$

(Tuto funkci bychom ovšem mohli nazvat "po částech elementární").

4.2. Algebraické funkce

Při popisu jednotlivých funkcí nebo druhů funkcí někdy použijeme i některé pojmy, které jsou obsahem až pozdějších kapitol, ale kde určitou úroveň jejich znalosti lze předpokládat, ježto jsou obsahem středoškolského učiva matematiky. Jde tedy o jakési rozšířené zopakování středoškolského učiva.

a) Mocniny s přirozeným a celým exponentem

Mocninu a^n pro $n \in \mathbf{N}$ definujeme jako součin n činitelů a. Z této definice ihned plynou vlastnosti mocnin, zejména

 $\forall a, b \in \mathbf{R}, \forall r, s \in \mathbf{N}$:

(2)
$$a^r$$
: $a^s = a^{r-s}$ (pokud $a \neq 0, r > s$), (5) $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$ (pokud $b \neq 0$),

(3)
$$(a^r)^s = a^{rs}$$
, (6) $a^r = b^r \Leftrightarrow a = b$ (pokud $a, b > 0$).

K tomu přidejme ještě vlastnosti vyjádřené nerovnostmi

(7)
$$\forall a, b > 0$$
: $a^r < b^r \iff a < b$,

$$(8) \forall a > 1, r < s \implies a^r < a^s; \forall a \in (0,1), r < s \implies a^r > a^s.$$

Chceme-li rozšířit pojem mocniny rozšířením číselného oboru exponentu, přichází nejprve exponent 0. Mají-li zůstat v platnosti výše uvedené vlastnosti (1) - (5), je třeba podle (2) definovat

$$\forall a \neq 0; a^0 = 1.$$

Vlastnost (2) pak platí pro $r \ge s$ a u všech vlastností se musíme omezit na mocniny s nenulovým základem, neboť 0^0 není definována. Vlastnosti (6) a (7) ovšem pro r = 0 neplatí.

Dalším krokem je rozšíření pojmu mocnina pro exponent, jímž je celé číslo. Klíčovou vlastností je opět (2), podle níž se definuje (položíme-li r = 0, s = k)

$$\forall a \neq 0 \ \forall k \in \mathbb{Z}; \ a^{-k} = \boxed{\frac{1}{a^k}}.$$

Vlastnost (2) pak platí již bez omezení pro $r, s \in \mathbf{Z}$ a vlastnost (7) nabude tvaru

(7')
$$\forall r > 0 \ \forall a, b > 0$$
: $a^r < b^r \Leftrightarrow a < b, \forall r < 0 \ \forall a, b > 0$: $a^r > b^r \Leftrightarrow a < b$.

b) **Odmocniny**

D: Pro každé přirozené číslo n definujeme n-tou odmocninu z nezáporného čísla a jako takové nezáporné číslo x, pro něž platí $x^n = a$. Označení: $x = \sqrt[n]{a}$.

Podle definice tedy
$$(\sqrt[n]{a})^n = a$$
, např. $(\sqrt{3})^2 = 3$.

Existence n-té odmocniny se zdá být zřejmá. Toto zdání podporují jednoduché příklady jako $\sqrt[3]{8}=2$, neboť $2^3=8$. Jestliže však vyšetřujeme méně zřetelné případy, třeba $\sqrt[3]{\pi}$, je třeba si odpovědět na otázku, zda n-tá odmocnina pro každé $a\in \mathbf{R}$, $a\geq 0$ skutečně existuje a zda je to jediné číslo.

V (o existenci a jednoznačnosti n-té odmocniny): $\forall n \in \mathbb{N}, \ \forall a \in \mathbb{R}, \ a \ge 0$ existuje právě jedno číslo $x \in \mathbb{R}, \ x \ge 0$, takové, že $x^n = a$.

Úloha 4.2.1. Zjednodušte roznásobením $U = (2\sqrt{2} - \sqrt{3})(3\sqrt{2} + 2\sqrt{3})$.

Úloha 4.2.2. Zjednodušte umocněním a usměrněním $V = (2\sqrt{3} + 3\sqrt{2})^2 / (\sqrt{3} + \sqrt{2})$.

K základním vlastnostem odmocnin patří:

V: $\forall a \in \mathbf{R}, a \geq 0, \forall m, n, r \in \mathbf{N}$:

$$(1) \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}, \qquad (2) \sqrt[nr]{a^r} = \sqrt[n]{a}.$$

$$(2) \sqrt[nr]{a^r} = \sqrt[n]{a}.$$

Důkaz:

ad (1): Pro levou a pravou stranu rovnosti platí: $L = x^m$, kde podle definice $x^n = a$; po umocnění na m-tou máme $x^{mn} = a^m$. P = y, kde podle definice je $y^n = a^m$. Je tedy $x^{mn} = y^n$ a z toho $x^m = y$, takže L = P.

ad (2):
$$L = x$$
, kde $x^{nr} = a^r$, což dává $x^n = a$. $P = y$, kde $y^n = a$. Tedy $x^n = y^n$ a z toho $x = y$, tj. $L = P$. \square

c) Mocniny s racionálním exponentem

Chceme-li rozšířit pojem mocniny na exponent racionální, vyjdeme ze základní vlastnosti n-té odmocniny z čísla a: $x^n = a$. Tedy položíme $x = a^t$ a po umocnění na n-tou je $a = x^n$ $= a^{tn}$, tedy tn = 1, t = 1/n. To vede k definici ($\forall n \in N \ \forall m \in Z \ \forall a \in \mathbb{R}, a > 0$):

$$a^{\frac{1}{n}} = \sqrt[n]{a}, \quad a^{\frac{m}{n}} = \sqrt[n]{a^m}.$$

Vlastnosti mocnin zůstávají zachovány s tím, že musíme uvážit příslušné podmínky pro *a*, *b*, *r*, *s*.

Pojem mocniny lze rozšířit na libovolné reálné exponenty, ale mocnina s iracionálním exponentem již není algebraická funkce.

D: Necht'
$$a \in \mathbb{R}$$
, $a > 0$, $q \in \mathbb{Q}'$. Pak definujeme $a^q = \sup_{r \in \mathbb{Q}, |r| < q} \{a^r\}$.

Výše uvedené vlastnosti mocnin (1) - (6), (7'), (8) platí pro libovolné reálné exponenty.

d) Polynomické funkce

Jsou dány rovnicí y = P(x), kde $P(x) = a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n$ je algebraický polynom. Pro $a_0 \neq 0$ jde o polynom a tedy i o polynomickou funkci n-tého stupně; $D(f) = \mathbf{R}$. Polynomická funkce obsahující jen liché mocniny x je lichá, pokud obsahuje jen sudé mocniny x, je sudá.

Při studiu polynomických funkcí se využívá poznatků z algebry, která se algebraickými polynomy zabývá. Zejména se využívá:

- dělení polynomů (se zbytkem),
- rozklad polynomu na součin kořenových činitelů a nerozložitelných kvadratických polyno-
- věta o rovnosti polynomů. (Jestliže dva polynomy P, Q nejvýše n-tého stupně se rovnají v n+1 bodech, pak P(x) = Q(x) na **R**, tj. oba polynomy mají tentýž stupeň a tytéž koeficienty.)

Nyní uveď me některé zvláštní případy polynomických funkcí.

Mocninná funkce $y = x^n$ (s přirozeným exponentem n).

Grafem je parabola n-tého stupně. Pro n sudé je f sudá funkce, která pro $n \ge 2$ je na intervalu $(-\infty, 0)$ klesající a na intervalu $(0,+\infty)$ rostoucí, tedy v bodě 0 má minimum, $H(f) = (0,+\infty)$, funkce je konvexní na R. Při definici inverzní funkce se za obor prostoty bere interval $(0,+\infty)$. Inverzní funkce $y = \sqrt[n]{x}$ je tedy definována na intervalu $(0,+\infty)$ a stejný je i obor hodnot.

Pro n liché je f lichá funkce, je rostoucí na \mathbf{R} , $H(f) = \mathbf{R}$. Pro $n \ge 3$ je f konkávní na $(-\infty, 0)$ a konvexní na $(0,+\infty)$, v bodě 0 má inflexi. Ježto f je bijekcí \mathbf{R} na \mathbf{R} , je inverzní funkce $y = \sqrt[n]{x}$ definována na \mathbf{R} a má týž obor hodnot. \mathbf{Z} tohoto důvodu je možné a účelné pro lichá \mathbf{R} definovat \mathbf{R} -tou odmocninu i ze záporných čísel; např. $\sqrt[3]{-8} = -2$.

Konstantní funkce

Jsou dány rovnicí y=k, kde k je konstanta; $H(f)=\{k\}$. Jsou to funkce současně neklesající i nerostoucí, sudé (y=0) je současně i lichá). V každém bodě mají neostré lokální maximum i neostré lokální minimum. Grafem každé konstantní funkce y=k v kartézské soustavě souřadnic je přímka rovnoběžná s osou x, resp. osa x (y=0). V polární soustavě souřadnic je grafem konstantní funkce $\rho=r$ (kde r>0), $\varphi\in \langle 0,2\pi\rangle$ kružnice se středem v počátku a s poloměrem r.

Lineární funkce

Jsou dány rovnicí y = kx + q, kde $k \ne 0$, q jsou reálné konstanty; $D(f) = H(f) = \mathbf{R}$. Pro k > 0 to jsou funkce rostoucí, pro k < 0 klesající, pro q = 0 jsou liché. Grafem každé lineární funkce v kartézské soustavě souřadnic je přímka, jež není rovnoběžná s osou x ani k ní kolmá. Konstanta k je *směrnicí* přímky, tj. $k = \text{tg } \varphi$, kde φ je velikost orientovaného úhlu určeného osou x a touto přímkou; zpravidla bereme $\varphi \in (-\pi/2, \pi/2)$. Parametr q znamená úsek na ose y.

Pro q=0 se lineární funkce nazývá též *přímá úměrnost*, kartézským grafem přímé úměrnosti je přímka procházející počátkem. Pro lineární funkci (zpravidla pro $q \neq 0$) se používá též název *lineární závislost*.

Grafem lineární funkce v polární soustavě souřadnic je Archimedova spirála.

Ježto lineární funkce jsou ryze monotonní, jsou i prosté. Funkce inverzní jsou opět lineární. Funkce y = a - x a funkce y = x jsou samy k sobě inverzní.

Lineární funkce je velmi důležitá v řadě problémů, v nichž se složitější průběh nějaké funkce nahrazuje (aproximuje) průběhem lineárním; např. při lineární interpolaci funkcí.

Úloha 4.2.3. Jsou dány dvě tabulkové hodnoty funkce f: f(4,75) = 0,6758, f(4,80) = 0,6803. Pomocí lineární interpolace stanovte f(4,78).

Danými dvěma body proložíme přímku, její rovnice je

$$y = 0.6758 + \frac{0.6803 - 0.6758}{4.80 - 4.75} (x - 4.75), \text{ tj. } y = 0.6758 + 0.09 (x - 4.75);$$

$$f(4,78) = 0.6758 + 0.09.0.03 = 0.6758 + 0.0027 = 0.6785.$$

Kvadratické funkce

Jsou dány rovnicí $y = ax^2 + bx + c$, kde $a \ne 0$, b, c jsou konstanty; $D(f) = \mathbf{R}$, H(f) je pro a > 0 interval typu $\langle m, +\infty \rangle$, pro a < 0 je to interval typu $(-\infty, m)$, kde m je minimum resp. maximum funkce f. Tohoto ostrého lokálního extrému nabývá funkce f v bodě $x_0 = -\frac{b}{2a}$.

Grafem každé kvadratické funkce v kartézské soustavě souřadnic je (kvadratická) parabola; pro funkci $y = ax^2$ je její vrchol v počátku soustavy souřadnic.

e) Racionální lomené funkce

Jsou to funkce dané rovnicí $y = \frac{P(x)}{Q(x)}$, kde P(x), Q(x) jsou polynomy. Je-li stupeň či-

tatele větší nebo roven stupni jmenovatele, dovedeme racionální lomenou funkci vyjádřit ve tvaru

$$y = S(x) + \frac{R(x)}{Q(x)},$$

kde S(x) je podíl a R(x) je zbytek při dělení P(x)/Q(x). Tato úprava (které se říká "snížit stupeň čitatele pod stupeň jmenovatele") se používá při integraci racionálních funkcí.

Úloha 4.2.4. Je dána funkce $y = \frac{x^3 - 5x^2 + 8x - 7}{x^2 + 3}$. Proveďte snížení stupně čitatele pod stupeň jmenovatele.

[Po provedeném dělení dostaneme $y = x - 2 + \frac{3x - 1}{x^2 + 3}$.]

Úloha 4.2.5. Je dána funkce $y = \frac{x^5 - 1}{x^2 + 1}$. Proveďte snížení stupně čitatele pod stupeň jmenovatele, aniž provedete dělení.

[V čitateli vhodné členy přičítáme a odčítáme a zlomek rozdělíme na více zlomků. Dostaneme

$$y = x^3 - x + \frac{x-1}{x^2 + 1}$$
.]

Lineární lomené funkce

Jsou to funkce s rovnicí $y = \frac{ax+b}{cx+d}$, kde a, b, c, d jsou reálné konstanty, přičemž platí

 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$; $D(f) = R - \{-d/c\}$. Jsou to funkce prosté, grafem v kartézské soustavě souřadnic

je rovnoosá hyperbola. Inverzní funkce jsou téhož typu, tj. jsou též lineární lomené. Zvláštním případem je funkce zvaná *nepřímá úměrnost* s rovnicí $y = \frac{a}{x}$, která je sama k sobě inverzní,

4.3. Goniometrické funkce a funkce cyklometrické

Pravoúhlé trojúhelníky

Podobnost trojúhelníků jako relace ekvivalence na množině všech pravoúhlých trojúhelníků, definuje rozklad této množiny na třídy. Z vlastnosti podobnosti plyne, že každá třída těchto trojúhelníků je určena jedním vnitřním ostrým úhlem a že všechny trojúhelníky z téže třídy ekvivalence se shodují v poměru odpovídajících si stran. Toho se využívá k definici goniometrických funkcí ostrého úhlu.

Tato definice pracuje zpravidla s úhly v míře stupňové.

Odsud tg
$$\alpha = \frac{\sin \alpha}{\cos \alpha}$$
, cotg $\alpha = \frac{\cos \alpha}{\sin \alpha}$.

Z ΔABC dále plyne:

 $\sin(90^{\circ} - \alpha) = \cos \alpha$, $\cos(90^{\circ} - \alpha) = \sin \alpha$, $\sin^{2}\alpha + \cos^{2}\alpha = 1$, $tg(90^{\circ} - \alpha) = \cot \alpha$. Zvláštní hodnoty

Některé zvláštní hodnoty goniometrických funkcí lze odvodit (při použití Pythagorovy věty)

– z rovnostranného trojúhelníku s výškou: $\sin 30^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$,

$$tg \ 30^{\circ} = \frac{\sqrt{3}}{3}, tg \ 60^{\circ} = \sqrt{3}.$$

(podobně pro "kofunkce" $\cos \alpha$ a $\cot \alpha$).

– ze čtverce s úhlopříčkou:
$$\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$$
, tg $45^\circ = \cot 45^\circ = 1$.

Na této úrovni se přijímá jako důsledek definice, že když α roste od 0° do 90°, tak funkce sinus roste od 0 do 1, funkce tangens roste od 0 do $+\infty$, funkce kosinus klesá od 1 k 0 a funkce kotangens klesá od $+\infty$ k 0. Rovněž pomocí názoru se na této úrovni snese rozšíření funkcí: $\sin 0^\circ = 0$, $\cos 0^\circ = 1$, $\tan 0^\circ = 0$, $\cot 0^\circ$ není definován; podobně $\sin 90^\circ = 1$, $\cos 90^\circ = 0$, $\tan 90^\circ$ není definován, $\cot 90^\circ = 0$.

Užití jednotkové kružnice k definici goniometrických funkcí

Tato definice se obyčejně spojuje již s používáním míry obloukové, přičemž přepočet mezi velikostí úhlu α v míře stupňové a velikostí *x* v míře obloukové je dán vztahy

$$x = \frac{\pi}{180} \alpha , \alpha = \frac{180}{\pi} x.$$

Definice goniometrických funkcí pomocí jednotkové kružnice přináší jeden didaktický problém. Chceme-li zachovat označení x pro velikost úhlu v míře obloukové, musíme volit jiné označení pro souřadnicové osy, např. u, v. Chceme-li však zachovat označení os x, y, musíme volit jiné označení pro velikost úhlu, např. t, tedy nemůžeme přímo definovat sin x, přestože právě tento zápis v matematické analýze nejvíce používáme.

D: Je-li O počátek pravoúhlé soustavy souřadnic, J jednotkový bod na ose x, $M(x_M, y_M)$ bod na jednotkové kružnici a t velikost orientovaného úhlu JOM, pak hodnota funkce $\cos t$ je defino-

vána jako x-ová souřadnice bodu M, cos $t = x_M$, a hodnota funkce sin t je definována jako y-ová souřadnice bodu M, sin $t = y_M$.

Vlastnosti plynoucí z definice funkcí

Z definice máme: $D(\sin) = D(\cos) = \mathbf{R}$, $H(\sin) = H(\cos) = \langle -1,1 \rangle$. Z definice plyne rovněž periodičnost obou funkcí s periodou 2π : $\forall t \in \mathbf{R} \quad \forall k \in \mathbf{Z}$; $\sin(t + 2k\pi) = \sin t$, $\cos(t + 2k\pi) = \cos t$.

Z běžných vlastností lze dále přímo z jednotkové kružnice zjistit

- znaménka funkcí v jednotlivých kvadrantech I, II, III, IV;
- hodnoty funkcí pro úhly, pro něž je bod M na některé souřadnicové ose, tj. pro úhly 0, $\pi/2$, π , $3\pi/2$, ..., zejména nulové body: $\sin t = 0 \Leftrightarrow t = k\pi \ (\forall k \in \mathbb{Z})$, $\cos t = 0 \Leftrightarrow t = (2k+1)\frac{\pi}{2}$ $(\forall k \in \mathbb{Z})$;
- paritu funkcí, tj. $\forall t \in \mathbf{R}$: $\sin(-t) = -\sin t$ (funkce sinus je lichá), $\cos(-t) = \cos t$ (funkce kosinus je sudá);
- vzorce pro změnu velikosti úhlu o π : $\forall t \in \mathbf{R}$ $\sin(t \pm \pi) = -\sin t$, $\cos(t \pm \pi) = -\cos t$;
- nerovnost: $\forall t \in (0,+\infty)$ sin t < t;
- parametrické vyjádření kružnice: $x = r \cdot \cos t$, $y = r \cdot \sin t$, $t \in (0, 2\pi)$.

Ve školské matematice se nejčastěji setkáváme s označováním velikosti úhlů řeckými písmeny α , β , ... a s mírou stupňovou, matematické analýze se ponejvíce pracuje s mírou obloukovou a s x jako označením velikosti úhlů v míře obloukové, tedy sin x, cos x, ...

Funkce tangens a kotangens

Definice funkcí tangens a kotangens vychází z funkcí sinus a kosinus.

D:
$$\forall x \neq (2k+1) \frac{\pi}{2}$$
 (tedy pro něž cos $x \neq 0$) definujeme funkci tangens: $\operatorname{tg} x = \frac{\sin x}{\cos x}$, $\forall x \neq k\pi$ (tedy pro něž $\sin x \neq 0$) definujeme funkci kotangens: $\cot x = \frac{\cos x}{\sin x}$.

Vlastnosti funkcí $tg x a \cot x$:

Funkce tangens je definována pro všechna $x \in (2k+1)\frac{\pi}{2}$, tj. na množině

$$D(\mathsf{tg}) = \mathbf{R} - \{(2k+1)\frac{\pi}{2} \; ; \, k \in \mathbf{Z}\}; \, H(\mathsf{tg}) = \mathbf{R}.$$

Funkce kotangens je definována pro všechna $x \neq k \cdot \pi$, tj. na množině $D(\cot g) = \mathbf{R} - \{k\pi; k \in \mathbf{Z}\}; H(\cot g) = \mathbf{R}$.

Z definice funkcí tangens a kotangens a z vlastností funkcí sinus a kosinus dostáváme zejména tyto základní vlastnosti:

- znaménka funkcí v jednotlivých kvadrantech I, II, III, IV;
- hodnoty funkcí pro úhly, pro něž je bod M na některé souřadnicové ose, tj. pro úhly $0, \frac{\pi}{2}$

$$\pi$$
, $\frac{3\pi}{2}$, 2π , zejména nulové body: tg $0=$ tg $\pi=0$, cotg $\frac{\pi}{2}=$ cotg $\frac{3\pi}{2}=0$;

- paritu funkci, tj. $\forall x \in D(f)$: tg(-x) = –tg x, cotg(-x) = –cotg x (funkce liché);
- periodičnost funkcí: $\forall x \in D(f)$: $\operatorname{tg}(x \pm \pi) = \operatorname{tg} x$, $\operatorname{cotg}(x \pm \pi) = \operatorname{cotg} x$.

Vzorce pro goniometrické funkce:

Postupně lze vyvodit další skupiny vzorců. Je-li g libovolná ze čtyř základních goniometrických funkcí a označíme-li velikosti úhlů α , β , ..., jak je to běžné na střední škole, jde o vzorce, kde

• $g(\alpha \pm \beta)$ vyjadřujeme pomocí g.f. úhlů α , β , např.

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta; \ \ tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \ tg\beta} \ \ (pro \ kter\'{a} \ \alpha, \ \beta \ plat\'{i}?);$$

- $g(2\alpha)$ vyjadřujeme pomocí g.f. jednoduchého úhlu α , např. $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha$, $\sin 2\alpha = 2 \sin \alpha \cos \alpha$;
- $g(\frac{\alpha}{2})$ vyjadřujeme pomocí g.f. úhlu α , např. pro $\alpha \in I$ je $\sin \frac{\alpha}{2} = \sqrt{\frac{1-\cos\alpha}{2}}$; nebo též $\sin^2\alpha = \frac{1-\cos2\alpha}{2}$, $\cos \frac{\alpha}{2} = \sqrt{\frac{1+\cos\alpha}{2}}$ tento vzorec se využívá např. při integraci goniometrických funkcí;
- $g(\alpha) \pm g(\beta)$ se vyjádří jako součin funkcí, např. $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha \beta}{2}$;
- při integraci součinu g.f. se využívá obráceného vztahu a $g(\alpha) \cdot g(\beta)$ vyjadřujeme jako součet nebo rozdíl g.f., např.:

$$\sin m\alpha \cdot \cos n\alpha = \frac{1}{2} \left[\sin(m+n) \alpha + \sin(m-n) \alpha \right];$$

• velmi užitečný je vzorec
$$\frac{1}{\cos^2 \alpha} = 1 + tg^2 \alpha$$
.

Funkce cyklometrické

Pro základní g.f. se volí obory prostoty P, přičemž obory hodnot H se nemění:

$$\sin x: P = \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle, H = \langle -1, 1 \rangle;$$

$$\cos x : P = \langle 0, \pi \rangle, H = \langle -1, 1 \rangle;$$

$$\operatorname{tg} x : P = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), H = (-\infty, +\infty) = R;$$

$$\cot x : P = (0, \pi), H = (-\infty, +\infty) = R$$

Při definici cyklometrických funkcí se vymění úloha množin P a H.

D: Goniometrické funkce uvažujme na jejich oborech prostoty. Inverzní funkcí (s definičním oborem *D*) k funkci

 $\sin x$ je funkce $\arcsin x$ (arkussinus), $D = \langle -1, 1 \rangle$; $\cos x$ je funkce $\arccos x$ (arkuskosinus), $D = \langle -1, 1 \rangle$; $\cot x$ je funkce $\arctan x$ (arkustangens), $D = (-\infty, +\infty)$; $\cot x$ je funkce $\arctan x$ (arkuskotangens), $D = (-\infty, +\infty)$.

Přitom si uvědomíme, že např. $\forall x \in \langle -1, 1 \rangle$, $\forall y \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$, znamenají zápisy $y = \arcsin x$, $x = \sin y$ přesně totéž.

Funkce arcsin x se vyskytuje v úlohách na určení definičního oboru funkcí.

Úloha 4.3.1. Určete definiční obor funkce
$$f$$
: $y = \frac{\arcsin x}{\sqrt{3x+2}}$.

[Čitatel je definován na intervalu $\langle -1, 1 \rangle$, jmenovatel na množině $x > -\frac{2}{3}$, tedy na intervalu $\left(-\frac{2}{3}, +\infty\right)$. Definiční obor D(f) je průnikem obou intervalů, tedy $D(f) = \left(-\frac{2}{3}, 1\right)$.]

Vlastnosti cyklometrických funkcí

Jelikož inverzní funkce zachovává monotónnost funkce výchozí, jsou funkce arcsin x, arctg x ve svých definičních oborech rostoucí, arccos x a arccotg x jsou klesající.

Ze vzorců pro funkce goniometrické lze odvodit odpovídající vzorce pro funkce cyklometrické, např:

Ježto
$$\cos t = \sin\left(\frac{\pi}{2} - t\right)$$
, dostaneme po dosazení $\cos t = x$, (tedy i $t = \arccos x$): $x = \sin\left(\frac{\pi}{2} - \arccos x\right) \Rightarrow \forall x \in \langle -1, 1 \rangle$: $\arcsin x + \arccos x = \frac{\pi}{2}$.

Podobně též
$$\forall x \in R$$
: arctg $x + \operatorname{arccotg} x = \frac{\pi}{2}$.

Proto se z uvedených cyklometrických funkcí používá obvykle vždy jen jedna z každé dvojice, zpravidla funkce arcsin *x* a arctg *x*.

Jestliže ve vzorci pro tg($\alpha + \beta$) položíme tg $\alpha = x$, tg $\beta = y$, tj. $\alpha = \arctan x$, $\beta = \arctan y$, dostaneme vzorec $\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}$.

4.4. Funkce exponenciální a logaritmické

Exponenciální funkce

Nechť a > 0, $a \ne 1$. Exponenciální funkce jsou definovány rovnicí $y = a^x$, $D(f) = \mathbf{R}$ (plyne to z definice mocniny pro libovolný reálný exponent, viz 4.2.c).

Hodnotu mocniny s iracionálním exponentem, tedy exponenciální funkce pro iracionální hodnotu nezávisle proměnné x) lze najít i jako limitu posloupnosti a^r , kde $r \in Q$, $r \to x$. Tak třeba 2^π je limitou posloupnosti 2^r , kde r např. tvoří posloupnost dolních desetinných aproximací čísla π : 3; 3,1; 3,14; 3,141; 3,1415; 3,14159; ... Pak 2^r dává posloupnost 8; 8,5741...; 8,8152...; 8,8213...; 8,8244...; 8,82496..., takže např. $2^\pi \approx 8,8250$.

Podobně (užitím suprema množin) bychom mohli dokázat, že každé kladné číslo je při daném základu a hodnotou nějaké mocniny, tj. $H(f) = (0, +\infty)$.

Pro a > 1 je exponenciální funkce rostoucí, jak plyne z vlastnosti mocnin 4.2 (8). Pro a < 1 je exponenciální funkce klesající. V tomto případě je (1/a) > 1, platí pro každé $x_1 < x_2$ $\left(\frac{1}{a}\right)^{x_1} < \left(\frac{1}{a}\right)^{x_2}$ a po přechodu k převráceným hodnotám máme $a^{x_1} > a^{x_2}$.

Pro $a \in (0,1)$ je tedy $a^x = b^{-x}$, kde b = 1/a > 0.

Exponenciální funkci $y = a^x$ pro $a \in (0,1)$ lze tedy nahradit exponenciální funkcí $y = b^{-x}$ pro b > 1 (která je klesající), a to vede k závěru, že v podstatě není třeba se zabývat exponenciálními funkcemi se základem a < 1.

Grafu exponenciální funkce v kartézské soustavě říkáme *exponenciála*. Všechny exponenciály procházejí bodem [0;1]. Grafem exponenciální funkce v polární soustavě souřadnic je tzv. *logaritmická spirála*.

Zvlášť důležitá je exponenciální funkce $y = e^x$ označovaná někdy též exp x.

Logaritmické funkce

Exponenciální funkce $f: y = a^x$ je pro a > 0 rostoucí (tedy i prostá) na celé množině \mathbf{R} , přičemž $H(f) = (0, +\infty)$. Existuje proto inverzní funkce $f^{-1}: x = a^y$, kterou nazýváme logaritmická funkce o základu a a kterou zapisujeme $y = \log_a x$; ta má $D(f^{-1}) = (0, +\infty)$, $H(f^{-1}) = \mathbf{R}$. Hodnotu logaritmické funkce nazýváme logaritmus; někdy pojem logaritmus používáme i pro stručné označení logaritmické funkce. Logaritmovat nějaký výraz znamená určit jeho logaritmus.

Pro matematickou analýzu je nejdůležitější logaritmická funkce o základu e, pro niž máme zvláštní označení $\ln x = \log_e x$ a název *přirozený logaritmus* (ln = logaritmus naturalis).

Z definice logaritmu plyne zejména:

(a) Zápis $x = a^y$ znamená přesně totéž jako $y = \log_a x$.

(b)
$$\forall x \in \mathbf{R}$$
: $\log a^x = x$, $\forall x > 0$: $a^{\log_a x} = x$.

(c)
$$\forall x \in \mathbf{R} : a^x = e^{x \ln a}$$
 (nebot' $a = e^{\ln a}$).

Z prostoty exponenciálních a logaritmických funkcí plyne:

(d)
$$a^K = a^L \iff K = L, A = B \ (> 0) \iff \log_a A = \log_a B.$$

V obou případech (d) získáme závěr implikace *logaritmováním* jejího předpokladu.

Dekadický logaritmus, tj. logaritmus o základu 10, měl dříve výsadní postavení při numerických výpočtech (používání tabulek dekadických logaritmů), ale s rozšířením kalkulátorů a počítačů toto postavení ztratil.

Všechny logaritmické funkce o základu a > 1 jsou rostoucí a jejich grafy procházejí bodem [1;0] na ose x.

Úloha 4.4.1. Načrtněte grafy funkcí $y = e^x$, $y = \ln x$.

Z výše uvedené vlastnosti (c) plyne, že místo exponenciálních funkcí $y = a^x$ o základu a lze uvažovat jen exponenciální funkce $y = e^{kx}$ o základu e. Podobně na sebe lze převádět logaritmy o různých základech. Převodní vztahy lze odvodit např. takto (uvažujme logaritmus přirozený a logaritmus o základu a):

Rovnost $x = a^{\log_a x}$ logaritmujeme při základu e a dostaneme $\ln x = \ln a \cdot \log_a x$.

Jestliže logaritmujeme rovnost $x = e^{\ln x}$ při základu a, dostaneme $\log_a x = \log_a e$. $\ln x$.

Z vlastností exponenciálních funkcí plynou ihned vlastnosti funkcí logaritmických:

$$\forall x_1, x_2 > 0$$
: $\log_a (x_1.x_2) = \log_a x_1 + \log_a x_2$;

$$\forall x_1, x_2 > 0$$
: $\log_a (x_1 : x_2) = \log_a x_1 - \log_a x_2$;

$$\forall x > 0 \ \forall m \in R: \log_a(x^m) = m.\log_a x$$
.

4.5. Funkce hyperbolické a hyperbolometrické

Hyperbolické funkce patří mezi elementární funkce a jsou definovány pomocí funkcí exponenciálních takto:

D: sh
$$x = \frac{1}{2} (e^x - e^{-x})$$
, ch $x = \frac{1}{2} (e^x + e^{-x})$, th $x = \frac{\sinh x}{\cosh x}$, coth $x = \frac{\cosh x}{\sinh x}$; jsou to *hyperbolický sinus*, *kosinus*, *tangens* a *kotangens*.

Z definice je vidět, že pro první tři z těchto funkcí je $D(f) = \mathbf{R}$ (pro th x to plyne z toho, že $\forall x \in \mathbb{R}$: ch x > 0). Lehce zjistíme, že funkce sh x má jediný nulový bod pro $x_0 = 0$, takže $D(\coth) = \mathbf{R} - \{0\}.$

Obory hodnot a průběh: $H(sh) = \mathbf{R}$, funkce je rostoucí; $H(ch) = \langle 1, +\infty \rangle$, funkce je klesající na $(-\infty, 0)$ a rostoucí na $(0, +\infty)$, v bodě 0 má minimum 1.

H(th) = (-1,1), funkce je rostoucí; $H(coth) = (-\infty,-1) \cup (1,+\infty)$, na intervalu $(-\infty,0)$ funkce klesá od -1 k $-\infty$, na intervalu $(0,+\infty)$ funkce klesá od $+\infty$ k 1. Pro funkce tangens i kotangens jsou přímky y = 1 a y = -1 asymptotami, asymptotou grafu funkce kotangens je též osa y.

Úlohy:

- **4.5.1.** Do jednoho obrázku znázorněte grafy funkcí $y = \operatorname{sh} x$, $y = \operatorname{ch} x$, $y = \frac{1}{2} \operatorname{e}^{x}$.
- **4.5.2.** Do jednoho obrázku znázorněte grafy funkcí y = th x, y = coth x.

Graf funkce $y = a.\text{ch} \frac{x}{a}$ v kartézské souřadnicové soustavě se nazývá řetězovka. Je to křivka, kterou vytváří řetěz (nepružná nit) volně zavěšený ve dvou bodech.

Hyperbolické funkce mají řadu vlastností velmi podobných vlastnostem funkcí goniometrických. Z definice funkcí lze odvodit např.

- (a) Funkce sh x, th x, coth x isou liché, funkce ch x je sudá.
- (b) $\forall x$: $ch^2 x sh^2 x = 1$.

- (c) $\forall x \neq 0$: th x . coth x = 1.
- (d) $\forall x_i \in R : \text{sh}(x_1 \pm x_2) = \text{sh } x_1 \text{ ch } x_2 \pm \text{ch } x_1 \text{ sh } x_2$.
- (e) $\forall x_i \in R : \text{ch}(x_1 \pm x_2) = \text{ch } x_1 \text{ ch } x_2 \mp \text{sh } x_1 \text{ sh } x_2$.

(f)
$$\forall x_i \in R$$
: $th(x_1 \pm x_2) = \frac{th x_1 \pm th x_2}{1 \pm th x_1 th x_2}$.

Hyperbolické funkce se vyskytují zejména v aplikacích a také se používají při výpočtu neurčitých integrálů pomocí hyperbolických substitucí.

Funkce sh x, th x a coth x jsou prosté, u funkce ch x vezmeme za obor prostoty interval $(0,+\infty)$. Pak lze definovat funkce inverzní (zvané *hyperbolometrické*):

- K funkci sh x je inverzní funkcí funkce argsh x (argument hyperbolického sinu), $D(f) = H(f) = \mathbf{R}$.
- K funkci ch x je inverzní funkcí funkce argch x (argument hyperbolického kosinu), $D(f) = (1, +\infty)$, $H(f) = (0, +\infty)$.
- K funkci th x je inverzní funkcí funkce argth x (argument hyperbolické tangens), D(f) = (-1;1), $H(f) = \mathbf{R}$.
- -K funkci coth x je inverzní funkcí funkce argcoth x (argument hyperbolické kotangens), $D(f) = (-\infty, -1) \cup (1, +\infty), H(f) = \mathbf{R} \{0\}.$

Ježto jsou hyperbolické funkce vyjádřeny pomocí exponenciální funkce, lze hyperbolometrické funkce vyjádřit pomocí funkce logaritmické, např.:

$$\operatorname{argsh} x = \ln\left(x + \sqrt{x^2 + 1}\right), \quad \operatorname{argth} x = \frac{1}{2}\ln\frac{1 + x}{1 - x}.$$

_ * _