Matrix Derivative矩阵求导

LittleSasuke (关注)

♥ 0.197 2018.04.06 00:53:38 字数 594 阅读 10.165

Welcome To My Blog

学习机器学习算法时总碰见矩阵求导,现学习一波,主要总结下

注意:这里只涉及实数的求导,研究通信的人可能接触的往往是负数求导

矩阵可以写成列向量(column vectors)或行向量(row vectors)的形式,这两种不同的形式把矩阵求导分成了 两种不同的情况

求导类型

Types of Matrix Derivatives

Types	Scalar	Vector	Matrix
Scalar	$\frac{\partial y}{\partial x}$	$rac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
Vector $\frac{\partial y}{\partial \mathbf{x}}$		$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	
Matrix	$rac{\partial y}{\partial \mathbf{X}}$		

1.jpg	

表格列举了六种不同的矩阵求导类型,粗体代表向量或者矩阵(其实标量和向量也可以看作矩阵). 表格中还有三个空格没写出,实际上也是存在,但暂时先不讨论,因为这三种情况的求导结果大部分都是高 于二阶的张量(tensor)形式,与常见的二维矩阵形式不同.

布局约定Layout conventions

机器学习中,以线性回归为例,每个输入都有多个属性,在表示属性时可以采用列向量或者行向量的形式,这 两种形式会造成求导结果形式的不同.

注意是形式上的不同,因为本质上形式的不同不会影响求导结果,只不过将结果按照不同的方式组织起来,

方便进一步运算

布局决定(Layout conventions)就是为了将不同形式的求导分类.分为两种布局:分子布局(numerator layout)和分母布局(denominator layout)

通俗解释,现规定**向量或者矩阵**分为原始形式和转置形式两种,比如在线性回归中我们把列向量作为属性值的原始形式,其转置形式就是行向量

- 对于分子布局(numerator layout),求导结果中分子保持原始形式,分母为转置形式
- 对于分母布局(denominator layout),求导结果中分子为转置形式,分母保持原始形式 下图展示各种类型求导与两种布局之间的关系

	Scalar y		Vector y (size m)		Matrix Y (size m×n)	
	Notation	Туре	Notation	Туре	Notation	Туре
Scalar <i>x</i>	$\frac{\partial y}{\partial x}$	scalar	$\frac{\partial \mathbf{y}}{\partial x}$	(numerator layout) size- <i>m</i> column vector (denominator layout) size- <i>m</i> row vector	$\frac{\partial \mathbf{Y}}{\partial x}$	(numerator layout) m×n matrix
Vector x (size <i>n</i>)	$\frac{\partial y}{\partial \mathbf{x}}$	(numerator layout) size- <i>n</i> row vector (denominator layout) size- <i>n</i> column vector	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	(numerator layout) $m \times n$ matrix (denominator layout) $n \times m$ matrix	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$	
Matrix X (size $p \times q$)	$\frac{\partial y}{\partial \mathbf{X}}$	(numerator layout) $q \times p$ matrix (denominator layout) $p \times q$ matrix	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$		$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$	

2.png

numerator layout

将上述表格中的分子布局单独拿出来,求导结果如下

$$egin{aligned} rac{\partial y}{\partial \mathbf{x}} &= \left[rac{\partial y}{\partial x_1} rac{\partial y}{\partial x_2} \cdots rac{\partial y}{\partial x_n}
ight]. \ rac{\partial \mathbf{y}}{\partial x} &= \left[egin{aligned} rac{\partial y_1}{\partial x} \ rac{\partial y_2}{\partial x} \ rac{\partial y_m}{\partial x} \end{array}
ight]. \ rac{\partial \mathbf{y}}{\partial \mathbf{x}} &= \left[egin{aligned} rac{\partial y_1}{\partial x_1} & rac{\partial y_1}{\partial x_2} & \cdots & rac{\partial y_1}{\partial x_n} \ rac{\partial y_2}{\partial x_1} & rac{\partial y_2}{\partial x_2} & \cdots & rac{\partial y_2}{\partial x_n} \ rac{\partial y_2}{\partial x_n} & rac{\partial y_2}{\partial x_n} & \cdots & rac{\partial y_2}{\partial x_n} \end{aligned}
ight]. \ .$$

下面的两种定义只在分子布局中有意义

$$egin{aligned} rac{\partial \mathbf{Y}}{\partial x} &= egin{bmatrix} rac{\partial y_{11}}{\partial x} & rac{\partial y_{12}}{\partial x} & \cdots & rac{\partial y_{1n}}{\partial x} \ rac{\partial y_{21}}{\partial x} & rac{\partial y_{22}}{\partial x} & \cdots & rac{\partial y_{2n}}{\partial x} \ dots & dots & \ddots & dots \ rac{\partial y_{m1}}{\partial x} & rac{\partial y_{m2}}{\partial x} & \cdots & rac{\partial y_{mn}}{\partial x} \end{bmatrix}. \ d\mathbf{X} = egin{bmatrix} dx_{11} & dx_{12} & \cdots & dx_{1n} \ dx_{21} & dx_{22} & \cdots & dx_{2n} \ dots & dots & \ddots & dots \ dx_{m1} & dx_{m2} & \cdots & dx_{mn} \end{bmatrix}. \end{aligned}$$

denominator layout

将上述表格中的分母布局单独拿出来,求导结果如下

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial x} \cdots \frac{\partial y_m}{\partial x} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1q}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2q}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{p_1}} & \frac{\partial y}{\partial x_{p_2}} & \cdots & \frac{\partial y}{\partial x_{p_q}} \end{bmatrix}.$$

常见求导结果

现给出常见的求导结果,推导相关公式时可以查表 求导有链式法则(Chain Rule),但是矩阵乘积不满足交换律,所以链式法则对于matrix-by-scalar derivatives 和scalar-by-matrix derivatives这两种情况不适用 下面贴出三种求导结果

Vector-by-vector

之所以先展示vector-by-vector的表格,是因为所有适用于vector-by-vector求导的操作也直接适用于 vector-by-scalar or scalar-by-vector这两种情况

		Niverandan lavave	Denominator	
Condition	Expression	Numerator layout,	lavout. i.e. by v ^T	

6.png

Scalar-by-vector

Condition	Expression	Numerator layout, i.e. by x ^T ; result is row vector	Denominator layout, i.e. by x; result is column vector	
a is not a function of x	$rac{\partial a}{\partial \mathbf{x}} =$	0 [™] [4] 0 [4]		
a is not a function of \mathbf{x} , $u = u(\mathbf{x})$	$rac{\partial au}{\partial \mathbf{x}}=$	$a\frac{\partial u}{\partial \mathbf{x}}$		
$u = u(\mathbf{x}), \ v = v(\mathbf{x})$	$rac{\partial \mathbf{x}}{\partial \mathbf{x}} =$	$\frac{\partial u}{\partial \mathbf{x}}$	$+\frac{\partial v}{\partial \mathbf{x}}$	
$u = u(\mathbf{x}), \ v = v(\mathbf{x})$	$\frac{\partial uv}{\partial \mathbf{x}} =$	$urac{\partial v}{\partial \mathbf{x}} + vrac{\partial u}{\partial \mathbf{x}}$		
$u = u(\mathbf{x})$	$rac{\partial g(u)}{\partial \mathbf{x}} =$	$rac{\partial g(u)}{\partial u} rac{\partial u}{\partial \mathbf{x}}$		
$u = u(\mathbf{x})$	$\frac{\partial f(g(u))}{\partial \mathbf{x}} =$	$rac{\partial f(g)}{\partial g} rac{\partial g(u)}{\partial u} rac{\partial u}{\partial \mathbf{x}}$		
u = u(x), v = v(x)	$\frac{\partial (\mathbf{u} \cdot \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^\top \mathbf{v}}{\partial \mathbf{x}} =$	$\begin{aligned} \mathbf{u}^{\top} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ \bullet \text{ assumes numerator layout of } \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \end{aligned}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\mathbf{u}$ • assumes denominator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	
$\mathbf{u} = \mathbf{u}(\mathbf{x}), \mathbf{v} = \mathbf{v}(\mathbf{x}),$ A is not a function of x	$\frac{\partial (\mathbf{u} \cdot \mathbf{A} \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^{\top} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}} =$	$\begin{split} \mathbf{u}^{\top} \mathbf{A} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^{\top} \mathbf{A}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ \bullet \text{ assumes numerator layout of } \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \end{split}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^{\top} \mathbf{u}$ • assumes denominator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	
	$rac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T} =$		H , the Hessian matrix ^[5]	

7.png

a is not a function of x	$\frac{\partial (\mathbf{a} \cdot \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x} \cdot \mathbf{a})}{\partial \mathbf{x}} =$ $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} =$	\mathbf{a}^{\top}	a
--	---	---------------------	---

8.png

Vector-by-scalar

Condition	Expression	Numerator layout, i.e. by y, result is column vector	Denominator layout, i.e. by y ^T , result is row vector	
a is not a function of <i>x</i>	$rac{\partial \mathbf{a}}{\partial x} =$	0 ^[4]		
a is not a function of x , $u = u(x)$	$\frac{\partial a \mathbf{u}}{\partial x} =$	$a\frac{\partial \mathbf{u}}{\partial x}$		
A is not a function of x_i u = u(x)	$\frac{\partial \mathbf{A}\mathbf{u}}{\partial x} =$	$\mathbf{A} rac{\partial \mathbf{u}}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial x} \mathbf{A}^\top$	
u = u(x)	$\frac{\partial \mathbf{u}^\top}{\partial x} =$	$\left(rac{\partial \mathbf{u}}{\partial x} ight)^{\! op}$		
$\mathbf{u} = \mathbf{u}(x), \mathbf{v} = \mathbf{v}(x)$	$rac{\partial ({f u}+{f v})}{\partial x}=$	$rac{\partial \mathbf{u}}{\partial x} + rac{\partial \mathbf{v}}{\partial x}$		
$\mathbf{u} = \mathbf{u}(x), \mathbf{v} = \mathbf{v}(x)$	$\frac{\partial (\mathbf{u}^{\top} \times \mathbf{v})}{\partial x} =$	$\left(rac{\partial \mathbf{u}}{\partial x} ight)^ op imes \mathbf{v} + \mathbf{u}^ op imes rac{\partial \mathbf{v}}{\partial x} \left rac{\partial \mathbf{u}}{\partial x} imes \mathbf{v} + \mathbf{u}^ op imes \left(rac{\partial \mathbf{v}}{\partial x} ight)^ op imes \mathbf{v} ight.$		
u = u(x)	$rac{\partial \mathbf{g}(\mathbf{u})}{\partial x} =$	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial x} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$	
	O.L		matrix layout; see below.	
$\mathbf{u} = \mathbf{u}(x)$	$\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{r}} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial x} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$	
	ox	Assumes consistent matrix layout; see below.		
U = U(x), v = v(x)	$rac{\partial ({f U} imes {f v})}{\partial x} =$	$rac{\partial \mathbf{U}}{\partial x} imes \mathbf{v} + \mathbf{U} imes rac{\partial \mathbf{v}}{\partial x}$	$\mathbf{v}^{\top} \times \left(\frac{\partial \mathbf{U}}{\partial x}\right)^{\top} + \frac{\partial \mathbf{v}}{\partial x} \times \mathbf{U}^{\top}$	

9.png

参考:

Matrix calculus

