Value-at-Risk Evaluation and Density Forecasting

Kevin Sheppard

Today

- Value-at-Risk
 - Model evaluation
- Density Forecasting
- Expected Shortfall

Evaluation of Value-at-Risk Models

Generalized Mincer-Zarnowitz

$$\operatorname{HIT}_{t+h} = \gamma_0 + \gamma_1 VaR_{t+h|t} + \gamma_2 \operatorname{HIT}_t + \gamma_3 \operatorname{HIT}_{t-1} + \ldots + \gamma_K \operatorname{HIT}_{t-K+1} + \eta_t$$

Bernoulli

$$I_{[r_t < q_t]} \sim \operatorname{Bernoulli}(lpha)$$

• Christoffersen's Conditional Bernoulli Test

$$\left|I_{[r_t < q_t]}
ight|r_{t-1}, q_{t-1} \sim \operatorname{Bernoulli}(lpha)$$

Logit/Probit improvement of GMZ

$$\left|I_{[r_t < q_t]}
ight|\mathcal{F}_{t-1} \sim \mathrm{Bernoulli}(lpha)$$

Weekly VaRs for S&P 500

```
In [4]: plot(weekly_vars)
```


Evaluation: GMZ Regression

• Standard GMZ

$$ext{HIT}_{t+h} = \gamma_0 + \gamma_1 VaR_{t+h|t} + \gamma_2 ext{HIT}_t + \gamma_3 ext{HIT}_{t-1} + \ldots + \gamma_K ext{HIT}_{t-K+1} + \eta_t$$

- Called Dynamic Quantile Regression or HIT Test
- $\bullet \ H_0: \gamma_j = 0 \ \forall j$

GMZ for Skew t GJR

```
In [7]: gjr_res = gmz(hits, weekly_vars, "GJR")
summary(gjr_res)
```

	coef	std err	Z	P> z	[0.025	0.975]
const	0.0133	0.010	1.305	0.192	-0.007	0.033
VaR	-0.0020	0.002	-1.240	0.215	-0.005	0.001
HIT.L1	0.0737	0.054	1.374	0.169	-0.031	0.179
HIT.L2	0.0022	0.034	0.064	0.949	-0.064	0.069
HIT.L3	0.0075	0.031	0.241	0.810	-0.054	0.069

```
In [8]: joint_test(gjr_res)
```

Out[8]:

```
        stat
        P-value

        Joint Test
        1.146883
        0.332939
```

GMZ for RiskMetrics

```
In [9]: rm_res = gmz(hits, weekly_vars, "RM")
summary(rm_res)
```

	coef	std err	Z	P> z	[0.025	0.975]
const	0.0458	0.015	3.149	0.002	0.017	0.074
VaR	-0.0082	0.002	-3.469	0.001	-0.013	-0.004
HIT.L1	0.0605	0.051	1.184	0.236	-0.040	0.161
HIT.L2	0.0926	0.057	1.637	0.102	-0.018	0.203
HIT.L3	0.0328	0.044	0.740	0.459	-0.054	0.120

```
In [10]: joint_test(rm_res)
```

Out[10]:

	stat	P-value
Joint Test	5.022963	0.000517

GMZ for WHS

```
In [11]: whs_res = gmz(hits, weekly_vars, "WHS")
summary(whs_res)
```

	coef	std err	Z	P> z	[0.025	0.975]
const	0.0325	0.011	2.930	0.003	0.011	0.054
VaR	-0.0050	0.001	-3.570	0.000	-0.008	-0.002
HIT.L1	0.0853	0.053	1.602	0.109	-0.019	0.190
HIT.L2	-0.0117	0.030	-0.392	0.695	-0.070	0.047
HIT.L3	0.0589	0.047	1.254	0.210	-0.033	0.151

```
In [12]: joint_test(whs_res)
```

Out[12]:

	stat	P-value
Joint Test	4.872636	0.000676

Evaluation: Unconditional Bernoulli Testing

• Likelihood of T exceedences

$$l(lpha; \widetilde{ ext{HIT}}_t) = \sum_{t=1}^T \widetilde{ ext{HIT}}_t \ln lpha + \left(1 - \widetilde{ ext{HIT}}_t
ight) \ln 1 - lpha$$

- HIT is the indicator for a violation
- Easy to conduct a LR test

$$LR = 2(l(\hat{lpha}; \widetilde{ ext{HIT}}) - l(lpha_0; \widetilde{ ext{HIT}})) \sim \chi_1^2$$

```
In [14]: bernoulli_lrs
```

Out[14]:

	alpha	LR	P_value
GJR	0.028945	0.651270	0.419659
RM	0.035481	4.280032	0.038563
WHS	0.033613	2.947361	0.086018

Conditional Bernoulli Test

Christoffersen's test

- Probability of a violation is independent of previous violation
- Leads to conditional Bernoulli distribution
- Has a close form expression
- ullet Key inputs all depend on pairs $I_{[r_t < q_t]}$ and $I_{[r_{t-1} < q_{t-1}]}$

```
In [16]: christoffersen_lrs
```

Out[16]:

	LR	P_value
GJR	4.000991	0.135268
RM	8.109426	0.017340
WHS	7.424546	0.024422

Evaluation: Using Logit to improve GMZ

- Same model as GMZ
- Exploit structure of exceedence to estimate using MLE
- ullet Requires ensuring conditional probability is always $\in (0,1)$
 - Logit uses logistic function $\Lambda\left(\cdot\right)$
 - Probit uses normal cdf $\Phi(\cdot)$

Logit Results for Skew $oldsymbol{t}$

- ullet Null for constant is $\Lambda^{-1}(lpha)=-3.66$
- All other coefficients are 0 under the null

```
In [18]: summary(logit_res)
```

std err z [0.025 0.975] coef P>|z| const -3.2243 0.416 -7.751 0.000 -4.040 -2.409 0.306 VaR -0.0814 0.080 -1.024 -0.237 0.074 **HIT.L1** 1.4990 0.647 2.315 0.021 0.230 2.768 **HIT.L2** 0.1203 1.110 0.108 0.914 -2.056 2.296 **HIT.L3** 0.2558 0.991 0.258 0.796 -1.686 2.198

```
In [19]: joint_logit_stat(logit_res)
```

Out[19]:

	stat	p-value
Joint Test	9.267278	0.09886662583981386

Logit Results for RiskMetrics

```
In [21]: | summary(logit_res_rm)
```

	coef	std err	Z	P> z	[0.025	0.975]
const	-2.0483	0.470	-4.358	0.000	-2.969	-1.127
VaR	-0.3565	0.110	-3.251	0.001	-0.571	-0.142
HIT.L1	1.0894	0.590	1.845	0.065	-0.068	2.246
HIT.L2	1.4879	0.544	2.738	0.006	0.423	2.553
HIT.L3	0.7529	0.658	1.144	0.253	-0.537	2.043

```
In [22]: | joint_logit_stat(logit_res_rm)
```

Out[22]:

	stat	p-value
Joint Tost	30 06/1203	2 30511308407008830-07

Density Forecasting

• Builds off of ARCH modeling

$$egin{aligned} r_{t+1} &= \mu + \epsilon_{t+1} \ \sigma_{t+1}^2 &= \omega + \gamma \epsilon_t^2 + eta \sigma_t^2 ext{ (Any ARCH Process)} \ \epsilon_{t+1} &= \sigma_{t+1} e_{t+1} \ e_{t+1} &\stackrel{iid}{\sim} g(0,1). \end{aligned}$$

- *g* is some known distribution, but not necessarily normal
- ullet Density forecast is $g(\mu,\sigma^2_{t+1|t})$
- Flexible through choice of g

Working model

- Normal and Skew t TARCH(1,1,1)
- Weekly S&P 500 Returns

Density Plots: Normal and Skew $oldsymbol{t}$

Kernel Densities

• Smoothed densities are more precise than rough estimates

$$g(e) = rac{1}{Th} \sum_{t=1}^T K\left(rac{\hat{e}_t - e}{h}
ight), \;\; \hat{e}_t = rac{y_t - \hat{\mu}_t}{\hat{\sigma}_t} = rac{\hat{\epsilon}_t}{\hat{\sigma}_t}$$

- Local average of how many \hat{e}_t there are in a small neighborhood of e
- *h* is the bandwidth
 - Key parameter
 - Bias-variance trade-off

The effect of smoothing

In [26]: kde plot() 0.200-Under 0.175-0.150-0.125-0.100-0.075-0.050-0.025-0.000 -2.5**-5.0** 0.0 2.5 5.0

Parametric vs KDE Densities

```
In [28]: compare_densities()
```


Kernel CDFs

```
In [30]:
            kernel cdfs()
            1.0 ¬
                                                                                                                              Opt
                                                                                                                            Under
            0.8-
            0.6-
            0.4-
            0.2-
            0.0-
                         −7.5
                                                        -2.5
                                                                       0.0
                                                                                                      5.0
                                                                                                                     7.5
                                        -5.0
                                                                                      2.5
```

Multi-step Density Forecasting

- Densities do not aggregate
- Analytical forecasts are challenging
- Simple solution: simulate

Simulation-based Forecasting

- Condition on final observation
- Simulate using either:
 - Assumed distribution
 - IID Bootstrap of standardized residuals

Normal Simulated Values

```
In [33]: plot_sim(normal_fcast)
```


Skew t Simulated Values

```
In [34]: plot_sim(skew_t_fcast)
```


Bootstrap Simulated Values

```
In [35]: plot_sim(bootstrap_fcast)
```


Quantile Plot

- Plot quantiles across horizon
- Simplification of fan plot

Normal

```
In [37]: plot_quantile(normal_fcast)
```


Skew t

```
In [38]: plot_quantile(skew_t_fcast)
```


Bootstrap

```
In [39]: plot_quantile(bootstrap_fcast)
```


Quantile-Quantile (QQ) Plots

• Plots the data against a hypothetical distribution

$$\hat{e}_1 < \hat{e}_2 < \ldots < \hat{e}_{N-1} < \hat{e}_N$$

- ullet N=T but used to indicate that the index is not related to time
- ullet e_n against $F^{-1}\left(rac{j}{T+1}
 ight)$

$$F^{-1}\left(rac{1}{T+1}
ight) < F^{-1}\left(rac{2}{T+1}
ight) < \ldots < F^{-1}\left(rac{T-1}{T+1}
ight) < F^{-1}\left(rac{T}{T+1}
ight)$$

ullet F^{-1} is inverse cdf of distribution being used for comparison

Normal

```
In [41]: qq_normal()
```


Skew $oldsymbol{t}$

In [43]: qq_skewt() Weekly S&P 500 Std. Resid -2

Kolmogorov-Smirnov Tests

- Formalizes QQ plots
- Key property
 - $lacksquare If x \sim F$, then $u \equiv F(x) \sim U(0,1)$
 - Test of U(0,1)
- KS tests maximum deviation from U(0,1)

$$\max_{ au} \left| rac{1}{T} \Biggl(\sum_{i=1}^{ au} I_{[u_i < rac{ au}{T}]}
ight) - rac{ au}{T}
ight|, \quad au = 1, 2, \dots, T$$

- ullet $rac{1}{T}\sum_{i=1}^{ au}I_{[u_j<rac{ au}{T}]}$ empirical percentage of u below au/T
- ullet au/T expected fraction below au/T

Normal

```
In [46]: ksplot(u)
```


Skew $oldsymbol{t}$

Kolmogorov-Smirnov Tests

```
In [49]: from scipy.stats import kstest
    from statsmodels.stats.diagnostic import kstest_fit
    e = tarch_skewt.std_resid
    params = tarch_skewt.params
    skew_t_dist = tarch_skewt.model.distribution
    u = skew_t_dist.cdf(e, params.iloc[-2:])

stat, pval = kstest(u, "uniform")
    pretty(f"The KS Stat is {stat:0.4f} and its p-val is {100*pval:0.1f}%")
```

The KS Stat is 0.0126 and its p-val is 87.9%

KS Test with Parameter Estimation Uncertainty

- Model is a complete model so can be easily simulated
- Exact KS distribution tabulated for specific model
- ullet Key idea: compute KS stat on b replications of assumed DGP and use empirical CDF

```
pee_pval = (stat < sim_stats).mean()
pretty(f"Original P-value: {100*pval:0.1f}%, Accounting for PEE: {100*pee_pval:0.1f}%")</pre>
```

Original P-value: 87.9%, Accounting for PEE: 48.9%

Simulated KS Statistics

Berkowitz's Test

- Exploits probability integral transform property $\hat{u}_t = F(y_t)$
- ullet Re-transforms the data to a standard normal $\hat{\eta}_t = \Phi^{-1}(\hat{u}_t) = \Phi^{-1}(F(y_t))$

$$\hat{u}_t \stackrel{iid}{\sim} U(0,1) \Rightarrow \hat{\eta}_t \stackrel{iid}{\sim} N(0,1)$$

Test is a likelihood ratio test using an AR(1)

$$\hat{\eta}_t = \phi_0 + \phi_1 \hat{\eta}_{t-1} + \nu_t$$

Correctly specified

$$H_0: \phi_0 = 0 \cap \phi_1 = 0 \cap \sigma^2 = \mathrm{V}[
u_t] = 1$$

Likelihood ratio

$$2\left(l(\eta_t|\hat{\phi}_0,\hat{\phi}_1,\hat{\sigma}^2) - l(\eta_t|\phi_0 = 0,\phi_1 = 0,\sigma^2 = 1)
ight) \sim \chi_3^2$$

Berkowitz Test Results

Skew t

```
In [54]: summary(ar_res)
```

	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0073	0.022	0.339	0.735	-0.035	0.050
ar.L1	-0.0738	0.021	-3.463	0.001	-0.115	-0.032
sigma2	0.9951	0.030	33.004	0.000	0.936	1.054

Berkowitz stat: 11.78, p-value: 0.8%

Berkowitz's Test with Parameter Estimation Uncertainty

- Same issues as KS test
- Solution is the same simulate the empirical CDF of the statistic

```
In [58]: berkowitz_pee_pval = (berkowitz_lr < emp_dist).mean()
    pretty(
        f"Original P-value: {100*berkowitz_pval:0.1f}%, "
        f"Accounting for PEE: {100*berkowitz_pee_pval:0.1f}%"
)</pre>
```

Original P-value: 0.8%, Accounting for PEE: 0.0%

The effect of PEE on the Berkowitz Test

In [60]: plot berkowitz() With PEE 12 No PEE 10 0.4 0.2 0.6 0.8 1.0

Next Week

- Final Classes with Tales
- Office Hours

Schedule TBD

Revision Class