

QUANTITATIVE INVESTMENT MANAGEMENT

LECTURE 5

Arbitrage Free Pricing

J P Singh

Department of Management Studies

RISK & ARBITRAGE: RECAP

- Risk: If an asset has an uncertain future value, then the apprehension created due to the possibility of the asset failing to take a targeted value is called risk.
- Arbitrage: The process of generating profits due to difference in the prices of two assets with identical risk-return characteristics is called arbitrage.

TYPES OF ARBITRAGE OPPORTUNITIES

- There are two types of arbitrage opportunities:
- Value additivity (when the value of whole differs from the sum of the values of parts) and
- Dominance (when one asset trades at a lower price than another asset with identical characteristics).

VALUE ADDITIVITY

 If the principle of value additivity does not hold, arbitrage profits can be earned by stripping or reconstitution.

EXAMPLE OF VALUE ADDITIVITY

- A five-year, 5% Treasury bond should be worth the same as a portfolio of its coupon and principal strips.
- Reconstitution: If the portfolio of strips is trading for less than an intact bond, one can purchase the strips, combine them (reconstituting), and sell them as a bond.
- Stripping: Similarly, if the bond is worth less than its component parts, one could purchase the bond, break it into a portfolio of strips (stripping), and sell those components.

EXAMPLE

BOND	t=0	t=T
X	99	100
Υ	990	1010

Securities X and Y are identical in every other respect.

Construct a portfolio of a long position in one Y bond and a short position in 10 X bonds.

Cost of setting up this portfolio at t=0 is NIL.

Payoff at maturity at t=T is 10.

Thus, we earn a riskless profit.

DOMINANCE

- Dominance occurs when the payoff from one security
- exceeds that of the other at maturity
- while they are priced equally.

EXAMPLE

	t=0	t=T
ASSET X	100	110
ASSET Y	100	120

Construct a portfolio of a long position in one Y bond and a short position in 1 X bond.

Cost of setting up this portfolio at t=0 is NIL.

Payoff at maturity at t=T is 10.

Thus, we earn a riskless profit.

ARBITRAGE FREE VALUATION OF SECURITIES

- Arbitrage-free valuation methods value securities such that no market participant can earn an arbitrage profit in a trade involving that security.
- As mentioned earlier, an arbitrage transaction involves no initial cash outlay but a positive riskless profit (cash flow) at some point in the future.

ARBITRAGE FREE PRICING OF FORWARDS

- We start with the simplest case:
- No income from the underlying during life of forward;
- No carrying cost of underlying during this period;
- No transaction costs & market frictions (bid-ask spread, lending-borrowing spread, commissions etc.).

	t=0	t=T			
BORROW	+S ₀	-S _o exp(rT)			
BUY STOCK	-S ₀	0			
SHORT FORWARD	0	F _o			
TOTAL	0	F_0 - S_0 exp(rT)			
$F_0 = S_0 exp(rT)$					

FORWARD PRICING...

A D B C

- AB: Buy one unit of underlying in spot market for S₀.
- BC: Carry the asset for delivery against forward obligation at t=T.
- CD: Deliver the asset S and receive F₀ units of M at t=T under the short forward contract.
- DA: Adjust the borrowings S_0 against the present value of the forward proceeds F_0 exp(-rT).
- Net cash flow: F_0 exp (-rT)- S_0 =0 or F_0 = S_0 exp (rT) for no arbitrage.

PUT CALL PARITY FOR EUROPEAN OPTIONS

	t=0	t=T			
PORTFOLIO		S _T <k< td=""><td>S_T>K</td></k<>	S _T >K		
SELL CALL	C	0	-(S _T -K)		
BUY STOCK	-S ₀	S _T	S _T		
BUY PUT	-р	(K-S _T)	0		
TOTAL	c-S ₀ -p	K	K		
BORROWPV(K)=Ke ^{-rT}	Ke ^{-rT}	-K	-K		
$c-S_0-p+Ke^{(-rT)}=0$					

BOND VALUATION

DEFINITION OF A BOND

- A bond is a legally binding agreement between a borrower (bond issuer) and a lender (bondholder):
- The agreement specifies
- · the principal amount of the loan.
- the size and timing of the cash flows:
- in dollar terms (fixed-rate borrowing) OR
- as a formula (adjustable-rate borrowing)

SOME TERMINOLOGY

- Maturity/term to maturity
- Face value
- Coupon rate, frequency
- Premium/discount on redemption
- Premium/par/discount bonds

MATURITY/TERM TO MATURITY

- The maturity date of a bond is the date on which the principal is to be repaid.
- Once a bond has been issued, the time remaining until maturity is referred to as the term to maturity or tenor of a bond.

FACE/ PAR VALUE

- The face value of a bond is the amount that is specified as such in the contract of issue.
- The amount of redemption proceeds as well as the coupon interest are determined by reference to face value. Though, they may not equal the face value.
- The face value is also referred to as the par value, of the bond.

REDEMPTION AT PAR/PREMIUM DISCOUNT

- In case of bonds redeemable at par, the face value coincides with maturity value, redemption value, or principal value of the bond.
- If a bond is redeemable above par value, it is said to be redeemable at a premium.
- If a bond is redeemable below par value, it is said to be redeemable at a discount.

BOND QUOTATIONS

- Bonds can have a face value of any amount, and their prices are quoted as a percentage of par.
- A bond with a par value of \$1,000 quoted at 98 is selling for \$980.

BOND PRICES & PAR VALUES

- A bond that is selling for more than its par value is said to be trading at a premium to par.
- A bond that is selling at less than its par value is said to be trading at a discount to par.
- A bond that is selling for exactly its par value is said to be trading at par.

COUPON RATES & FREQUENCY

- The coupon rate on a bond is the annual percentage of its par value that will be paid to bondholders.
- Some bonds make coupon interest payments annually, while others make semiannual, quarterly, or monthly payments.

EXAMPLE

• A \$1,000 par value semiannual-pay bond with a 5% coupon would pay 2.5% of \$1,000, or \$25, every six months.

