Problem 2

Ha Vu Anh

Let ℓ cut UV at W, denote U,V as the center of (IPQ),(JRS) respectively then by simple angle chasing we get $UQ \parallel VS, UP \parallel VR$ therefore $\frac{WQ}{WS} = \frac{UQ}{VS} = \frac{UP}{VR} = \frac{WP}{WR}$ therefore $WP \cdot WS = WQ \cdot WR$ therefore W lies on the radical axis of (KQR) and (KPS).

We will prove KL is indeed the radical axis of (KQR), (KPS)

Let LK cut (O) at $G \neq L$, we will prove G lies on (KQR) and similarly with (KPS). Let AI cut (O) at $X \neq A$, XL cut BC at Y. Consider an inversion about a circle at K with radius $\sqrt{KB \cdot KC}$, it sends $G \mapsto L$, $\ell \mapsto (KXY)$, $Q \mapsto Q'$, $R \mapsto R'$ then Q', R' is the intersection of (KBJ), (KIC) with (KXY) respectively. We will need to prove R', Q', L are collinear.

We have
$$XI^2 = XB^2 = XL \cdot XY$$
, therefore $\frac{LX}{LY} = \frac{XL \cdot XY}{YL \cdot XY} = \frac{XI^2}{YB \cdot YC}(*)$

By simple angle chasing we get $\triangle R'IX \sim \triangle R'CY$ and $\triangle Q'JX \sim \triangle Q'BY$ therefore $\angle XR'Y = \angle IR'C = \angle JKC = 180^{\circ} - \angle XQ'Y$ therefore XYR'Q' are cyclic.

Therefore let
$$R'Q'$$
 cut XY at L' then $\frac{L'X}{L'Y} = \frac{R'X}{R'Y} \cdot \frac{Q'X}{Q'Y} = \frac{XI}{CY} \cdot \frac{XJ}{YB} = \frac{XI^2}{YC \cdot YB}$. Combine with (*) we get $\frac{L'X}{L'Y} = \frac{LX}{LY}$ therefore $L \equiv L'$ therefore L lies on $R'Q'$.

Hence the problem is proved.