LET'S FACE IT

EMOTIONAL RECOGNITION MODEL

Georgiy Sekretaryuk, Rafael Arbex-Murut, Yeshwanth Somu

PROBLEM STATEMENT

THE CURRENT SITUATION

- Facial recognition is an active area of research...
 - But next step is *Emotion Recognition*, as this is mainly a manual process currently
- Applications:
 - Marketing & Advertising
 - Education
 - Media
 - Population Research

THE PROBLEM WE FACE

How would one predict emotions through computational methods?

PROJECT OVERVIEW

THE DATA

- This <u>Kaggle Facial Recognition Dataset</u> contains grayscale images with different facial expressions.
 - o surprise, anger, happiness, sad, neutral, fear
- Faces are more or less centered and occupy about the same amount of space in each image.
- Training Set: 28,079 (80%) // Testing set: 7,178 (20%)
- Attributes: 2304 (48 x 48 pixels)

How do we predict emotions?

OUR APPROACH

Attempt to build an FNN model first and assess performance. If performance is low, will build a Convolutional Neural Network Model (CNN).

EXPLORATORY DATA ANALYSIS

- Image data was provided in training and testing folders, with 6 subfolders containing images for each emotion.
- All the images in the subfolders were combined into two dataframes, for training and testing respectively
- Each of the datasets were normalized, for ease of modeling and visualization

OUR INITIAL OBSERVATIONS

- Unequal distribution of observations per emotion
- Some images were not of faces

ANALYZING PIXEL DIFFERENCES

We performed pixel analysis on images of different emotions to determine differences:

Emotion	Mean	St Dev
Angry	0.630	0.198
Fear	0.663	0.187
Нарру	0.656	0.178
Neutral	0.650	0.194
Sad	0.616	0.202
Surprised	0.724	0.162

Emotion	Mean	St Dev
Angry	0.546	0.222
Fear	0.559	0.217
Нарру	0.563	0.216
Neutral	0.529	0.227
Sad	0.505	0.229
Surprised	0.592	0.206

(Our reaction)

INITIAL BASELINE MODEL - FNN

THE FIRST THOUGHT...

- We decided to a train classifier for detecting emotions using logistic regression and Tensorflow.
- Created an FNN model:
 - A layer to flatten the image
 - Additional ReLu and softmax layer
 - SGD optimizer
 - Categorical cross-entropy for error

... BUT OUR FIRST ATTEMPT FAILED.

We faced some surprises.

Poor performance. The loss was high and accuracy was very low.

	loss	accuracy	val_loss	val_accuracy
0	1.746051	0.256042	1.714608	0.284300
1	1.697853	0.293103	1.660462	0.330622
2	1.658126	0.327216	1.635355	0.328147
3	1.631851	0.341796	1.606680	0.359618
4	1.615929	0.349578	1.600538	0.357496

INITIAL BASELINE MODEL - FNN

BUT ON THE BRIGHT SIDE...

• The model performed ~2x better than random guessing would

OUR NEXT MODEL - CNN

LIMITATIONS

- Pixel analysis failed to find large difference in the pixel average and standard deviations.
- Emotions are not mutually exclusive. Some images can be classified as both sad and neutral.
- This is a multi-class classification problem will need to learn separate groups of parameters.

THE NEXT APPROACH - MULTI-CLASS CLASSIFICATION

Will create a multi-layered neural network with multiple convolutional filters for image classification.

Will pool different layers with filters of different strides (using Conv3D and MaxPooling3D operators). Each filter will look for a different emotional pattern in the data.

THANK YOU!

HAPPY TO ANSWER ANY ADDITIONAL QUESTIONS