

WHAT IS CLAIMED IS:

- 1 1. A method of segmenting video input characterized by a time series
2 of video frames of observable pixel data, comprising:
 - 3 maintaining one or more pixel-level historical models of spatially local
4 pixel observations;
 - 5 segmenting pixels into two or more labeled groups based at least in part
6 upon comparison of pixel-level video input with the one or more pixel-level
7 historical models; and
 - 8 updating the one or more pixel-level historical models based at least in part
9 upon one or more feedback maps identifying pixels respectively segmented into
10 the one or more labeled groups in conformity with a spatially non-local
11 segmentation model.
- 1 2. The method of claim 1, wherein a history of pixel observations at
2 each pixel is modeled by a mixture of Gaussian distributions.
- 1 3. The method of claim 1, wherein pixels are segmented into a
2 background group and a foreground group.
- 1 4. The method of claim 1, wherein a feedback map identifies pixels
2 segmented correctly according to a spatially non-local segmentation model.
- 1 5. The method of claim 4, wherein the spatially non-local segmentation
2 model defines spatially non-local observation characteristics of pixels belonging to
3 one of the labeled groups.
- 1 6. The method of claim 4, wherein a pixel-level historical model is not
2 updated at pixels identified as being correctly segmented.
- 1 7. The method of claim 1, wherein a feedback map identifies pixels
2 segmented incorrectly according to a spatially non-local segmentation model.
- 1 8. The method of claim 7, wherein the spatially non-local segmentation
2 model defines spatially non-local observation characteristics of pixels that should
3 have been excluded from one of the labeled groups.

1 9. The method of claim 7, wherein a pixel-level historical model is
2 updated at pixels identified as being incorrectly segmented.

1 10. The method of claim 9, wherein updating the pixel-level historical
2 model at pixels identified as being incorrectly segmented comprises maintaining a
3 per-pixel inclusion error model of pixel observations associated with occurrences
4 of incorrect segmentation labeling.

1 11. The method of claim 10, wherein components of the per-pixel
2 inclusion error model corresponding to individual pixels include respective
3 mixtures of Gaussian distributions.

1 12. The method of claim 11, wherein updating a pixel-level historical
2 model comprises merging a per-pixel historical model and a per-pixel inclusion
3 error model.

1 13. The method of claim 1, further comprising generating the feedback
2 maps based at least in part upon analysis of spatially non-local video frame
3 features.

1 14. The method of claim 13, wherein the feedback maps are generated
2 based at least in part upon one or more of an image region analysis, a frame-wide
3 image statistics analysis, or an analysis of the object or event content of the video
4 frames.

1 15. The method of claim 14, wherein one or more of the feedback maps
2 are generated based at least in part upon depth information or stereo disparity
3 information, or both.

1 16. The method of claim 1, further comprising generating one or more
2 confidence maps associating pixels with respective measures of segmentation
3 accuracy.

1 17. The method of claim 16, further comprising merging multiple
2 confidence maps to produce a merged confidence map.

1 18. The method of claim 17, wherein the measures of segmentation
2 accuracy are real numbers, and the step of merging multiple confidence maps
3 comprises adding the multiple segmentation accuracy measures respectively
4 associated with each pixel.

1 19. The method of claim 17, further comprising thresholding the merged
2 confidence map to produce one or more feedback maps.

1 20. The method of claim 16, wherein each of the confidence maps is
2 generated based at least in part upon one or more of an image region analysis, a
3 frame-wide image statistics analysis, or an analysis of the object or event content
4 of the video frames.

1 21. The method of claim 20, wherein a pixel-level historical model
2 includes a mixture of Gaussian distributions of pixel observations.

1 22. The method of claim 1, wherein one or more pixel-level historical
2 models incorporate per pixel depth information or stereo disparity information, or
3 both.

1 23. The method of claim 1, wherein pixels are segmented based at least
2 in part upon depth information or stereo disparity information, or both.

1 24. The method of claim 1, wherein one or more feedback maps are
2 generated by one or more of a person detector and tracker module, a rapid
3 illumination change detector module, a camera gain change detector module, or a
4 sudden camera motion detector module.

1 25. A system for segmenting video input characterized by a time series
2 of video frames of observable pixel data, comprising one or more processing
3 modules operable to:

4 maintain one or more pixel-level historical models of spatially local pixel
5 observations;

6 segment pixels into two or more labeled groups based at least in part upon
7 comparison of pixel-level video input with the one or more pixel-level historical
8 models; and

9 update the one or more pixel-level historical models based at least in part
10 upon one or more feedback maps identifying pixels respectively segmented into
11 the one or more labeled groups in conformity with a spatially non-local
12 segmentation model.

1 26. The system of claim 25, wherein a history of pixel observations at
2 each pixel is modeled by a mixture of Gaussian distributions.

1 27. The system of claim 25, wherein pixels are segmented into a
2 background group and a foreground group.

1 28. The system of claim 25, wherein a feedback map identifies pixels
2 segmented correctly according to a spatially non-local segmentation model.

1 29. The system of claim 28, wherein the spatially non-local
2 segmentation model defines spatially non-local observation characteristics of
3 pixels belonging to one of the labeled groups.

1 30. The system of claim 28, wherein a pixel-level historical model is not
2 updated at pixels identified as being correctly segmented.

1 31. The system of claim 25, wherein a feedback map identifies pixels
2 segmented incorrectly according to a spatially non-local segmentation model.

1 32. The system of claim 31, wherein the spatially non-local
2 segmentation model defines spatially non-local observation characteristics of
3 pixels that should have been excluded from one of the labeled groups.

1 33. The system of claim 31, wherein a pixel-level historical model is
2 updated at pixels identified as being incorrectly segmented.

1 34. The system of claim 33, wherein the pixel-level historical model is
2 updated at pixels identified as being incorrectly segmented by maintaining a per-
3 pixel inclusion error model of pixel observations associated with occurrences of
4 incorrect segmentation.

1 35. The system of claim 34, wherein components of the per-pixel
2 inclusion error model corresponding to individual pixels includes respective
3 mixtures of Gaussian distributions.

1 36. The system of claim 35, wherein a pixel-level historical model is
2 updated by merging a per-pixel historical model and a per-pixel inclusion error
3 model.

1 37. The system of claim 25, wherein one or more of the processing
2 modules are operable to generate feedback maps based at least in part upon an
3 analysis of spatially non-local video frame features.

1 38. The system of claim 37, wherein the feedback maps are generated
2 based at least in part upon one or more of an image region analysis, a frame-wide
3 image statistics analysis, or an analysis of the object or event content of the video
4 frames.

1 39. The system of claim 25, wherein one or more of the processing
2 modules are operable to generate one or more confidence maps associating pixels
3 with respective measures of segmentation accuracy.

1 40. The system of claim 39, wherein one or more of the processing
2 modules are operable to merge multiple confidence maps to produce a merged
3 confidence map.

1 41. The system of claim 40, wherein the measures of segmentation
2 accuracy are real numbers, and multiple confidence maps are merged by adding
3 the multiple segmentation accuracy measures respectively associated with each
4 pixel.

1 42. The system of claim 40, wherein one or more of the processing
2 modules are operable to threshold the merged confidence map to produce one or
3 more feedback maps.

1 43. The system of claim 39, wherein each of the confidence maps is
2 generated based at least in part upon one or more of an image region analysis, a

3 frame-wide image statistics analysis, or an analysis of the object or event content
4 of the video frames.

1 44. The system of claim 43, wherein a pixel-level historical model
2 includes a mixture of Gaussian distributions of pixel observations.

1 45. A computer program for segmenting video input characterized by a
2 time series of video frames of observable pixel data, the computer program
3 residing on a computer-readable medium and comprising computer-readable
4 instructions for causing a computer to:

5 maintain one or more pixel-level historical models of spatially local pixel
6 observations;

7 segment pixels into two or more labeled groups based at least in part upon
8 comparison of pixel-level video input with the one or more pixel-level historical
9 models; and

10 update the one or more pixel-level historical models based at least in part
11 upon feedback maps identifying pixels respectively segmented into the one or
12 more labeled groups in conformity with a spatially non-local segmentation model.