Pop quiz 2

Xinhao Luo

Tuesday 12th May, 2020

1 prove if r is a irrational (contraposition), then $\sqrt{risirrational}$

- 1. set p as r is irrational, q as \sqrt{r} is irrational
- 2. from $p \to q$, we can get $\neg q \to \neg p$, then the statement become: if \sqrt{r} is rational, then r is rational
- 3. since for any rational number x, x^2 is also a rational number. For $\sqrt{r^2} = r$, since \sqrt{r} is a rational number, r is also a rational number. $\neg q \to \neg p$ is true.
- 4. $p \rightarrow q$ is true

2 Prove (contradition) that for all integer $a, b, a^2 - 4b^2 \neq 2$

- 1. set a, b are all possible integers as $p, a^2 4b^2 \neq 2$ as q
- 2. to prove $p \to q$ true, we may prove the following statement is false: $p \to \neg q$
- 3. For all integers a, b, a + b and a b will also be integers. In equation (a 2b)(a + 2b) = 2 from $\neg q$, a 2b and a + 2b have to be integers as well
- 4. (1,2), (-1,-2), (2,1), (-2,-1) are possible combinations, while solution of a,b in all combinations are not integers.
- 5. Since a, b can either be an integer or an non-integer. Statement $p \to \neg q$ is false.
- 6. $p \rightarrow q$ is true