Mathematical Methods for Economic Dynamics (ECON 696)

Lecture 4: Multivariate Calculus II (Ch. 2) and Static Optimization (Ch. 3)

"Strict" Concavity/Convexity via Second Derivatives (Ch. 2.3)

Theorem: Let $f: S \to \mathbb{R}$ be a C^2 function. Then

(1) $D^2f(x)$ is positive definite for any $x \in S \iff D^2_{(r)}f(x) > 0$ for all $x \in S$ and all $r = 1, \ldots, n \Rightarrow f(\cdot)$ is strictly convex.

(2) $D^2f(x)$ is negative definite for any $x \in S \iff (-1)^r D_{(r)}^2 f(x) > 0$ for all $x \in S$ and all $r = 1, ..., n \Rightarrow f(\cdot)$ is strictly concave.

Example of Cobb-Douglas Utility Function Revisited: Define $u: \mathbb{R}^2_+ \to \mathbb{R}$ as the utility function of a consumer such that for any $x \in \mathbb{R}^2_+$, $u(x) = x_1^\alpha x_2^\beta$ where α and β are positive real numbers.

Then, $u(\cdot)$ is strictly concave if $0 < \alpha + \beta < 1$.

Concavity/Convexity via First Derivatives (Ch. 2.4)

The following result is extremely important in both static and dynamic optimization.

Theorem: Suppose that $f: S \to \mathbb{R}$ is a C^1 function. Then

(1) $f(\cdot)$ is concave in $S \Leftrightarrow$

$$f(x) - f(x^{0}) \le \nabla f(x^{0}) \cdot (x - x^{0}) = \sum_{i=1}^{n} \frac{\partial f(x^{0})}{\partial x_{i}} (x_{i} - x_{i}^{0})$$

for all $x, x^0 \in S$.

(2) $f(\cdot)$ is strictly concave \Leftrightarrow the above inequality is always strict when $x \neq x^0$.

Remark: Geometrically, this result says that the tangent at any point on the graph will lie above the graph.

Quasiconcave and Quasiconvex Functions (Ch. 2.5)

Definition: A function $f: S \to \mathbb{R}$ is **quasiconcave** if the upper level set $P_{\alpha} = \{x \in S | f(x) \geq \alpha\}$ is convex for each $\alpha \in \mathbb{R}$. We say that f is **quasiconvex** if -f is quasiconcave. So, f is quasiconvex if the lower level set $P^{\alpha} = \{x \in S | f(x) \leq \alpha\}$ is convex for each $\alpha \in \mathbb{R}$.

There are equivalent definitions of quasiconcavity.

Theorem: $f: S \to \mathbb{R}$ is quasiconcave if and only if either of the following conditions is satisfied for all $x, x' \in S$ and all $\lambda \in [0, 1]$,

(1)
$$f(\lambda x + (1 - \lambda)x') \ge \min\{f(x), f(x')\}$$

(2)
$$f(x') \ge f(x) \Rightarrow f(\lambda x + (1 - \lambda)x') \ge f(x)$$
.

Proof: We omit the proof. ■

Concavity ⇒ **Quasiconcavity**

Proposition: If $f: S \to \mathbb{R}$ is concave, then it is quasiconcave. Similarly, if $f(\cdot)$ is convex, then it is quasiconvex.

Proof: We omit the proof. ■

Quasiconcavity is preserved under positive monotone transformation

A function $F: \mathbb{R} \to \mathbb{R}$ is said to be **strictly increasing** if F(x) > F(y) whenever x > y.

Theorem: Let $f: S \to \mathbb{R}$ and let $F: D \to \mathbb{R}$ where $f(S) \subseteq D \subseteq \mathbb{R}$. If $f(\cdot)$ is quasiconcave (quasiconvex) and F is strictly increasing, then $F(f(\cdot))$ is quasiconcave (quasiconvex).

Proof: Suppose $f(\cdot)$ is quasiconcave. Using the previous theorem, we must have

$$f\left(\lambda x + (1-\lambda)x'\right) \ge \min\{f(x), f(x')\}.$$

Since $F(\cdot)$ is strictly increasing,

$$F(f(\lambda x + (1 - \lambda)x')) \ge F(\min\{f(x), f(x')\}) = \min\{F(f(x)), F(f(x'))\}.$$

It follows that $F \circ f$ is quasiconcave. The argument in the quasiconvex case is entirely similar, replacing \geq with \leq and min with max. \blacksquare

Definition: A function $f: S \to \mathbb{R}$ is **strictly quasiconcave** if

$$f(\lambda x + (1 - \lambda)x') > \min\{f(x), f(x')\}$$

for all $x, x' \in S$ with $x \neq x'$ and all $\lambda \in (0, 1)$.

The function $f(\cdot)$ is **strictly quasiconvex** if $-f(\cdot)$ is strictly quasiconcave.

The Cobb-Douglas Function

Example: Let $f(x_1, ..., x_n) = Ax_1^{a_1} \cdots x_n^{a_n}$, where $x_1, ..., x_n > 0$, A > 0, and $a_1, ..., a_n > 0$. Set $a = a_1 + \cdots + a_n$.

- $f(\cdot)$ is quasiconcave for all a_1, \ldots, a_n ;
- $f(\cdot)$ is concave for $a \leq 1$;
- $f(\cdot)$ is strictly concave for a < 1.

Characterization of Quasiconcavity via First Derivatives (Ch. 2.5)

Theorem: Let $f: S \to \mathbb{R}$ be a C^1 function. Then $f(\cdot)$ is quasiconcave on S if and only if for all $x, x^0 \in S$,

$$f(x) \ge f(x^{0}) \Rightarrow \nabla f(x^{0}) \cdot (x - x^{0}) = \sum_{i=1}^{n} \frac{\partial f(x^{0})}{\partial x_{i}} (x_{i} - x_{i}^{0}) \ge 0.$$

Proof: We skip the proof. ■

The content of the above theorem is that for any quasiconcave function $f(\cdot)$ and any pair of points x and x^0 with $f(x) \ge f(x^0)$, the gradient vector $\nabla f(x^0)$ and the vector $(x-x^0)$ must form an acute angle.

A Determinant Criterion for Quasiconcavity (Ch. 2.5)

Theorem: Let $S \subseteq \mathbb{R}^2$ be an open, convex set and $f: S \to \mathbb{R}$ be a C^2 function. Define the **bordered Hessian determinant**

$$B_2(x,y) = \begin{vmatrix} 0 & f'_1(x,y) & f'_2(x,y) \\ f'_1(x,y) & f''_{11}(x,y) & f''_{12}(x,y) \\ f'_2(x,y) & f''_{21}(x,y) & f''_{22}(x,y) \end{vmatrix}.$$

- 1. A necessary condition for f to be **quasiconcave** in S is that $B_2(x,y) > 0$ for all $(x,y) \in S$.
- 2. A sufficient condition for f to be **strictly quasiconcave** in S is that $f_1'(x,y) \neq 0$ and $B_2(x,y) > 0$ for all $(x,y) \in S$.

Proof: We omit the proof. ■

We move on to the general case. Define the bordered Hessian determinants

$$B_{r}(\mathbf{x}) = \begin{vmatrix} 0 & f'_{1}(\mathbf{x}) & \cdots & f'_{r}(\mathbf{x}) \\ f'_{1}(\mathbf{x}) & f''_{11}(\mathbf{x}) & \cdots & f''_{1r}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f'_{r}(\mathbf{x}) & f''_{r1}(\mathbf{x}) & \cdots & f''_{rr}(\mathbf{x}) \end{vmatrix}.$$

for r = 1, ..., n.

Theorem: Let $S \subseteq \mathbb{R}^n$ be an open, convex set and $f: S \to \mathbb{R}$ be a C^2 function. Then,

- 1. A necessary condition for f to be **quasiconcave** is that $(-1)^r B_r(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in S$ and all r = 1, ..., n.
- 2. A sufficient condition for f to be **strictly quasiconcave** is that $(-1)^r B_r(\mathbf{x}) > 0$ for all $\mathbf{x} \in S$ and all r = 1, ..., n.

Proof: We omit the proof. ■

Unconstrained Optimization (Ch. 3.1, 3.2)

An **optimization problem** is one where the values of a given function $f: \mathbb{R}^n \to \mathbb{R}$ are to be maximized or minimized over a given set $S \subseteq \mathbb{R}^n$.

This $f(\cdot)$ is called the **objective function** and the set S is called the **constraint set**.

Objectives of Optimization Theory

- (1) we identify a set of conditions on $f(\cdot)$ and S under which the **existence** of the solutions to optimization problem is guaranteed. This is already achieved by Weierstrass (the extreme value) theorem.
- (2) we obtain a **characterization** of the set of optimal points.

Extreme Points (Ch. 3.1)

Suppose that the point $x^* = (x_1^*, \dots, x_n^*)$ belongs to S and

$$f(x^*) \ge f(x)$$
 for all $x \in S(*)$

Then, x^* is called a (global) **maximum point** for $f(\cdot)$ in S and $f(x^*)$ is called the **maximum value**.

If the inequality (*) is strict for all $x \neq x^*$, then x^* is a **strict** maximum point for $f(\cdot)$ in S.

We can define **minimum point** and **minimum value** by reversing the inequality sign in (*).

As collective names, we use **extreme points** and **extreme values** to indicate both maxima or minima.

A Necessary Condition for Extreme Points

Theorem: Let $f(\cdot)$ be defined on a set S in \mathbb{R}^n and let $x^* = (x_1^*, \dots, x_n^*)$ be an interior point in S at which $f(\cdot)$ has partial derivatives. A necessary condition for x^* to be an extreme point for f is that x^* is a **stationary point** for $f(\cdot)$ — that is, it satisfies the equations

$$\nabla f(x) = 0 \Longleftrightarrow \frac{\partial f(x)}{\partial x_i} = 0, \text{ for } i = 1, \dots, n$$

Proof: Suppose, on the contrary, that x^* is a maximum point but not a stationary point for $f(\cdot)$. Then, there is no loss of generality to assume that there exists at least i such that $\partial f(x^*)/\partial x_i>0$. Define $x^{**}=(x_1^*,\ldots,x_i^*+\varepsilon,\ldots,x_n^*)$. Since x^* is an interior point in S, one can make sure that $x^{**}\in S$ by choosing $\varepsilon>0$ sufficiently small. Then,

$$f(x^{**}) \approx f(x^*) + \nabla f(x) \cdot (0, \dots, 0, \underbrace{\varepsilon}_i, 0, \dots, 0) > f(x^*).$$

However, this contradicts the hypothesis that x^* is a maximum point for $f(\cdot)$.

Theorem: Suppose that the function $f(\cdot)$ is defined in a convex set $S \subseteq \mathbb{R}^n$ and let x^* be an **interior** point of S. Assume that $f(\cdot)$ is C^1 in a ball around x^* .

- 1. If $f(\cdot)$ is concave in S, then x^* is a (global) maximum point for $f(\cdot)$ in S if and only if x^* is a stationary point for $f(\cdot)$.
- 2. $f(\cdot)$ is convex in S, then x^* is a (global) minimum point for $f(\cdot)$ in S if and only if x^* is a stationary point for $f(\cdot)$.

Proof: We focus on the first part of the theorem. The second part follows once we take into account that -f is concave. (\Rightarrow) This follows from the previous theorem.

(\Leftarrow) Suppose that x^* is a stationary point for $f(\cdot)$ and that $f(\cdot)$ is concave. We use the following characterization of concave functions:

Theorem: If $f: S \to \mathbb{R}$ is concave, for any $x, x' \in S$,

$$f(x') - f(x) \leq \nabla f(x) \cdot (x' - x).$$

Setting x' = x and $x = x^*$,

$$f(x) - f(x^*) \le \nabla f(x^*) \cdot (x - x^*) = 0 \ (\because \nabla f(x^*) = 0)$$

Thus, we have $f(x) \leq f(x^*)$ for any $x \in S$ as desired.

Local Extreme Points (Ch. 3.2)

 $x^* \in S$ is a **local maximum point** of $f(\cdot)$ in S if there exists an $\varepsilon > 0$ such that $f(x) \leq f(x^*)$ for all $x \in B_{\varepsilon}(x^*) \cap S$.

If x^* is the unique local maximum point for $f(\cdot)$, then it is a **strict local maximum point** for $f(\cdot)$ in S.

A (strict) local minimum point is defined in the obvious way, and the meaning of the following terms should be clear: local maximum and minimum values, local extreme points, and local extreme values.

A stationary point x^* of $f(\cdot)$ that is neither a local maximum point nor a local minimum point is called a **saddle point** of $f(\cdot)$.

Theorem (Sufficient Conditions for Local Extreme Points):

Suppose that $f(x) = f(x_1, ..., x_n)$ is defined on a set $S \subseteq \mathbb{R}^n$ and that $x^* \in S$ is an interior stationary point. Assume also that $f(\cdot)$ is C^2 in an open ball around x^* . Then,

1. $D^2f(x^*)$ is positive definite $\Rightarrow x^*$ is a local minimum point.

2. $D^2f(x^*)$ is negative definite $\Rightarrow x^*$ is a local maximum point.

The next lemma establishes a sufficient condition for saddle points.

Lemma: If x^* is an interior stationary point of $f(\cdot)$ such that $|D^2f(x^*)| \neq 0$ and $D^2f(x^*)$ is neither positive definite nor negative definite, then x^* is a saddle point.

Theorem (Necessary Conditions for Local Extreme Points):

Suppose that $f(x) = f(x_1, ..., x_n)$ is defined on a set $S \subseteq \mathbb{R}^n$, and x^* is an interior stationary point in S. Assume that f is C^2 in a ball around x^* . Then,

- 1. x^* is a local minimum point $\Rightarrow D^2 f(x^*)$ is positive semidefinite.
- 2. x^* is a local maximum point $\Rightarrow D^2 f(x^*)$ is negative semidefinite.

Constraints (Ch. 3.3, 3.4)

Equality Constraints as a Tangent Hyperplane

If the constraints do bite at an optimum x, we need to have some knowledge of what the constraint set looks like in a neighborhood of x in order to characterize the behavior of the objective function $f(\cdot)$ around x.

A set of equality constraints in \mathbb{R}^n , g(x) = 0, i.e.,

$$g^{1}(x) = 0$$

$$g^{2}(x) = 0$$

$$\vdots \qquad \vdots$$

$$g^{m}(x) = 0$$

defines a subset of \mathbb{R}^n which is best viewed as a hypersurface.

We write

$$\underbrace{Dg(x)}_{m \times n \text{ matrix}} = \begin{pmatrix} \nabla g^1(x) \\ \nabla g^2(x) \\ \vdots \\ \nabla g^m(x) \end{pmatrix} = \begin{pmatrix} \frac{\partial g^1(x)}{\partial x_1} & \frac{\partial g^1(x)}{\partial x_2} & \cdots & \frac{\partial g^1(x)}{\partial x_n} \\ \frac{\partial g^2(x)}{\partial x_1} & \frac{\partial g^2(x)}{\partial x_2} & \cdots & \frac{\partial g^2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g^m(x)}{\partial x_1} & \frac{\partial g^m(x)}{\partial x_2} & \cdots & \frac{\partial g^m(x)}{\partial x_n} \end{pmatrix}.$$

Equality Constraints: The Lagrange Problem (Ch. 3.3)

Let $S \subseteq \mathbb{R}^n$. A general maximization problem with equality constraints is of the form

$$\max_{x=(x_1,\ldots,x_n)\in S} f(x_1,\ldots,x_n) \text{ s.t. } g^j(x) = 0 \ \forall j=1,\ldots,m \ (m < n) \ (*)$$

We say $x \in S$ is **feasible** if $g^j(x) = 0$ for each $j \in \{1, ..., m\}$.

Define the Lagrangian,

$$\mathcal{L}(x,\lambda) = f(x) - \lambda_1 g^{1}(x) - \dots - \lambda_m g^{m}(x)$$

where $\lambda_1, \ldots, \lambda_m$ are called **Lagrange multipliers**.

The necessary first-order conditions for optimality are then:

$$\nabla \mathcal{L}(x,\lambda) = \nabla f(x) - \sum_{j=1}^{m} \lambda_j \nabla g^j(x) = 0$$

$$\iff \frac{\partial \mathcal{L}(x)}{\partial x_i} = \frac{\partial f(x)}{\partial x_i} - \sum_{j=1}^{m} \lambda_j \frac{\partial g^j(x)}{\partial x_i} = 0, \ \forall i = 1, \dots, n \ (**)$$

Theorem (Conditions for Extreme Points with Equality Constraints):

(Necessity) Suppose that the functions $f(\cdot)$ and $g^1(\cdot), \ldots, g^m(\cdot)$ are defined on a set S in \mathbb{R}^n and $x^* = (x_1^*, \ldots, x_n^*)$ is an interior point of S that solves the maximization problem (*). Assume further that $f(\cdot)$ and $g^1(\cdot), \ldots, g^m(\cdot)$ are C^1 in an open ball around x^* , and that rank $(Dg(x^*)) = m$. Then, there exist unique numbers $\lambda_1, \ldots, \lambda_m$ such that the first-order conditions (**) are valid.

(**Sufficiency**) Suppose that there exist numbers $\lambda_1, \ldots, \lambda_m$ and a feasible x^* which together satisfy the first-order conditions (**). Then, if the Lagrangian $\mathcal{L}(x, \lambda_1, \ldots, \lambda_m)$ is concave in x, then x^* solves the maximization problem (*).

Proof: (Necessity) We content ourselves with a heuristic argument based on the simplest formulation.

Consider

$$\max_{(x,y)\in\mathbb{R}^2} f(x,y)$$
 subject to $g(x,y)=c$.

Let (x^*, y^*) be a local maximum point of f to the above constrained optimization problem. So, we must have $g(x^*, y^*) = c$.

We consider a pair of "small" numbers $(\Delta x, \Delta y) \in \mathbb{R}^2$ such that $g(x^* + \Delta x, y^* + \Delta y) = g(x^*, y^*)$. Then, we have

$$\Delta g = g(x^* + \Delta x, y^* + \Delta y) - g(x^*, y^*)$$

$$\approx g_1(x^*, y^*) \Delta x + g_2(x^*, y^*) \Delta y = 0.$$
linear approx

Assuming that $g_1'(x^*,y^*) \neq 0$ (i.e., ${\rm rank}(Dg(x^*,y^*)) = m$), we derive

$$\Delta x = -\frac{g_2'(x^*, y^*)}{g_1'(x^*, y^*)} \Delta y. \quad (*)$$

Since (x^*, y^*) is a local maximum point to the constrained optimization problem,

$$\begin{array}{ll}
0 & \geq & f(x^* + \Delta x, y^* + \Delta y) - f(x^*, y^*) \\
& \approx & f_1'(x^*, y^*) \Delta x + f_2'(x^*, y^*) \Delta y \\
& \text{linear approx} \\
& = & \left(-\frac{f_1'(x^*, y^*)}{g_1'(x^*, y^*)} g_2'(x^*, y^*) + f_2'(x^*, y^*) \right) \Delta y. \quad (\because \quad (*))
\end{array}$$

Since Δy could be positive or negative, we must have

$$-\frac{f_1'(x^*, y^*)}{g_1'(x^*, y^*)}g_2'(x^*, y^*) + f_2'(x^*, y^*) = 0. \quad (**)$$

Define

$$\lambda^* \equiv \frac{f_1'(x^*, y^*)}{g_1'(x^*, y^*)}.$$

Then, (**) can be translated into:

$$f_{1}'(x^{*}, y^{*}) = \lambda^{*}g_{1}'(x^{*}, y^{*}),$$

 $f_{2}'(x^{*}, y^{*}) = \lambda^{*}g_{2}'(x^{*}, y^{*}).$

(**Sufficiency**) Suppose that the Lagrangian $\mathcal{L}(x,\lambda)$ is concave in x. The first-order necessary conditions imply that x^* is a stationary point of the Lagrangian. Then, by the sufficiency result for unconstrained maximization with $\mathcal{L}(x,\lambda)$ being the objective function,

$$\mathcal{L}(x^*, \lambda) = f(x^*) - \sum_{j=1}^m \lambda_j g^j(x^*) \ge f(x) - \sum_{j=1}^m \lambda_j g^j(x) = \mathcal{L}(x, \lambda) \ \forall x \in S$$

But for all feasible x, we have $g^j(x) = 0$ and of course, $g^j(x^*) = 0$ for all j = 1, ..., m. This implies that $f(x^*) \ge f(x)$ for all feasible x. Thus, x^* solves the maximization problem (*).