In [1]:

```
#Import All neccessary Libraries
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
#Load data & using pandas function Convert it into DataFrame.
df=pd.read_csv('used_device_data.csv')
df
```

Out[2]:

	device_brand	os	screen_size	4g	5g	rear_camera_mp	front_camera_mp	inter
0	Honor	Android	14.50	yes	no	13.0	5.0	
1	Honor	Android	17.30	yes	yes	13.0	16.0	
2	Honor	Android	16.69	yes	yes	13.0	8.0	
3	Honor	Android	25.50	yes	yes	13.0	8.0	
4	Honor	Android	15.32	yes	no	13.0	8.0	
3449	Asus	Android	15.34	yes	no	NaN	8.0	
3450	Asus	Android	15.24	yes	no	13.0	8.0	
3451	Alcatel	Android	15.80	yes	no	13.0	5.0	
3452	Alcatel	Android	15.80	yes	no	13.0	5.0	
3453	Alcatel	Android	12.83	yes	no	13.0	5.0	

3454 rows × 15 columns

In [3]:

```
#Head return top rows of a dataframe(by default returns first five rows).

df.head()
```

Out[3]:

	device_brand	os	screen_size	4g	5g	rear_camera_mp	front_camera_mp	internal_
0	Honor	Android	14.50	yes	no	13.0	5.0	
1	Honor	Android	17.30	yes	yes	13.0	16.0	
2	Honor	Android	16.69	yes	yes	13.0	8.0	
3	Honor	Android	25.50	yes	yes	13.0	8.0	
4	Honor	Android	15.32	yes	no	13.0	8.0	
4								•

In [4]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3454 entries, 0 to 3453
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	device_brand	3454 non-null	object
1	os	3454 non-null	object
2	screen_size	3454 non-null	float64
3	4g	3454 non-null	object
4	5g	3454 non-null	object
5	rear_camera_mp	3275 non-null	float64
6	front_camera_mp	3452 non-null	float64
7	internal_memory	3450 non-null	float64
8	ram	3450 non-null	float64
9	battery	3448 non-null	float64
10	weight	3447 non-null	float64
11	release_year	3454 non-null	int64
12	days_used	3454 non-null	int64
13	<pre>normalized_used_price</pre>	3454 non-null	float64
14	normalized_new_price	3454 non-null	float64

dtypes: float64(9), int64(2), object(4)

memory usage: 404.9+ KB

#As we can see in the output, the summary includes list of all columns with their data types and the number of non-null values in each column. we also have the value of rangeindex provided for the index axis.

In [5]:

```
#returns the number of missing values in the dataset.
df.isnull().sum()
```

Out[5]:

device_brand	0
os	0
screen_size	0
4g	0
5g	0
rear_camera_mp	179
front_camera_mp	2
internal_memory	4
ram	4
battery	6
weight	7
release_year	0
days_used	0
normalized_used_price	0
normalized_new_price	0
dtype: int64	

```
In [6]:
```

```
df['rear_camera_mp'].value_counts()
Out[6]:
13.00
         1035
8.00
          755
5.00
          546
12.00
          189
2.00
          171
16.00
          154
3.15
          122
0.30
           69
10.50
           30
1.30
           26
           19
23.00
21.00
           19
20.70
           16
20.00
           13
14.50
           13
12.20
           12
4.00
           10
            9
12.30
19.00
            8
            7
8.10
            6
13.10
10.00
            6
24.00
            5
            5
3.00
            4
12.50
            4
48.00
            4
6.50
6.70
            4
             2
21.20
21.50
            1
            1
1.20
16.30
            1
22.60
             1
18.00
            1
12.60
            1
20.10
            1
41.00
            1
20.20
            1
1.00
            1
0.08
             1
22.50
            1
Name: rear_camera_mp, dtype: int64
# rear_camera_mp column has 5% of null values so replace it with mean
In [7]:
df['rear_camera_mp']=df['rear_camera_mp'].fillna(df['rear_camera_mp'].mean())
```

In [8]:

```
df['front_camera_mp'].value_counts()
```

```
Out[8]:
5.00
         791
8.00
         549
2.00
         538
0.30
         492
16.00
         298
1.30
         148
32.00
          94
13.00
          90
20.00
           67
1.20
          43
0.00
           39
2.10
           37
1.00
           34
1.60
           31
24.00
           30
25.00
           28
12.00
           21
7.00
           21
4.00
           20
1.90
           12
2.20
           11
10.00
           10
5.10
           9
           7
3.00
14.50
            5
```

9.00 14.00 3 3 3.70 2 0.65 2 18.00 1.25 2 2 10.50

1.10

5

4

1 16.30 0.90 1 3.50 1

1.80 1

Name: front_camera_mp, dtype: int64

In [9]:

```
df['internal_memory'].value_counts()
Out[9]:
16.00
           1283
32.00
           1083
64.00
            509
128.00
            372
256.00
             86
512.00
             44
0.06
             18
0.10
             17
8.00
             12
             10
4.00
1024.00
              8
              4
0.50
               2
0.20
              1
24.00
0.01
Name: internal_memory, dtype: int64
In [10]:
df['ram'].value_counts()
Out[10]:
4.00
         2815
6.00
          154
8.00
          130
2.00
           90
           83
0.25
```

```
      4.00
      2815

      6.00
      154

      8.00
      130

      2.00
      90

      0.25
      83

      3.00
      81

      1.00
      34

      12.00
      18

      0.02
      18

      0.03
      17

      0.50
      9

      1.50
      1
```

Name: ram, dtype: int64

```
In [11]:
```

```
df['battery'].value_counts()
Out[11]:
4000.0
          341
3000.0
          314
2000.0
          244
2500.0
          137
2100.0
          121
6180.0
            1
4180.0
            1
2180.0
            1
            1
2880.0
3110.0
Name: battery, Length: 324, dtype: int64
In [12]:
df['weight'].value_counts()
Out[12]:
150.0
         112
140.0
          86
160.0
          80
155.0
          68
145.0
          68
157.5
           1
372.0
           1
340.2
319.8
           1
240.0
           1
Name: weight, Length: 555, dtype: int64
#It contains 2.25% null values so drop only null values at last after Cleanning the
```

data.

In [13]:

```
#Plot Heatmap to find out Null Values of DataFrame.
sns.heatmap(df.isnull())
```

Out[13]:

<AxesSubplot:>

In [14]:

```
#drop all remaining null values.
df.dropna(inplace=True)
df.shape
```

Out[14]:

(3432, 15)

In [15]:

```
#Plot Heatmap to verfiy our data is clean or not.
sns.heatmap(df.isnull())
```

Out[15]:

<AxesSubplot:>

In [16]:

df.describe()

Out[16]:

	screen_size	rear_camera_mp	front_camera_mp	internal_memory	ram	I
count	3432.000000	3432.000000	3432.000000	3432.000000	3432.000000	3432.0
mean	13.733686	9.475512	6.582197	54.742672	4.042107	3139.0
std	3.788795	4.675254	6.979159	85.151126	1.360061	1298.8
min	5.080000	0.080000	0.000000	0.010000	0.020000	500.0
25%	12.700000	5.000000	2.000000	16.000000	4.000000	2100.0
50%	12.830000	9.460208	5.000000	32.000000	4.000000	3000.0
75%	15.370000	13.000000	8.000000	64.000000	4.000000	4000.0
max	30.710000	48.000000	32.000000	1024.000000	12.000000	9720.0
4						•

The describe() method returns description of the data in the DataFrame. If the DataFrame contains numerical data, the description contains these information for each column: count - The number of notempty values. mean - The average (mean) value. std - The standard deviation. min - the minimum value. 25% - The 25% percentile. 50% - The 50% percentile. 75% - The 75% percentile*. max - the maximum value.

In [17]:

```
sns.countplot(data=df,x='release_year')
```

Out[17]:

<AxesSubplot:xlabel='release_year', ylabel='count'>

In [18]:

```
sns.countplot(data=df,x='release_year',hue='5g')
```

Out[18]:

<AxesSubplot:xlabel='release_year', ylabel='count'>

In [19]:

```
plt.figure(figsize=(20,15))
sns.countplot(data=df,x='rear_camera_mp')
```

Out[19]:

<AxesSubplot:xlabel='rear_camera_mp', ylabel='count'>

In [20]:

```
plt.figure(figsize=(20,15))
sns.countplot(data=df,x='device_brand')
```

Out[20]:

<AxesSubplot:xlabel='device_brand', ylabel='count'>

In [21]:

sns.pairplot(df)

Out[21]:

<seaborn.axisgrid.PairGrid at 0x298bcbb5550>


```
In [22]:
```

```
#split the data into Numerical column.
numcol=[]
for i in df.dtypes.index:
    if df.dtypes[i]!='object':
        numcol.append(i)
numcol
```

Out[22]:

```
['screen_size',
  'rear_camera_mp',
  'front_camera_mp',
  'internal_memory',
  'ram',
  'battery',
  'weight',
  'release_year',
  'days_used',
  'normalized_used_price',
  'normalized_new_price']
```

In [23]:

```
#split the data into Categorical column.
catcol=[]
for i in df.dtypes.index:
    if df.dtypes[i]=='object':
        catcol.append(i)
catcol
```

Out[23]:

```
['device_brand', 'os', '4g', '5g']
```

In [24]:

```
#Plot Boxplot to find out the outliers from numerical column.
plt.figure(figsize=(12,12),facecolor="yellow")
plotn=1
for column in numcol:
    if plotn<=12:
        ax=plt.subplot(6,2,plotn)
        sns.boxplot(df[column])
        plt.xlabel(column,fontsize=14)
        plotn+=1
plt.tight_layout()</pre>
```


#WE have outliers in every column except release_year and days_used.

In [25]:

```
#Plot Distplot to find out the skewness from numerical column.
plt.figure(figsize=(12,12),facecolor="pink")
plotn=1
for column in numcol:
    if plotn<=12:
        ax=plt.subplot(6,2,plotn)
        sns.distplot(df[column])
        plt.xlabel(column,fontsize=14)
        plotn+=1
plt.tight_layout()</pre>
```


In [26]:

df.corr()

Out[26]:

	screen_size	rear_camera_mp	front_camera_mp	internal_memory	
screen_size	1.000000	0.142265	0.268826	0.069643	0.2
rear_camera_mp	0.142265	1.000000	0.394166	0.017098	0.1
front_camera_mp	0.268826	0.394166	1.000000	0.295499	۷.4
internal_memory	0.069643	0.017098	0.295499	1.000000	0.
ram	0.268412	0.224868	0.476884	0.122101	1.0
battery	0.812583	0.237760	0.367514	0.116743	0.1
weight	0.829406	-0.090850	-0.006835	0.014358	0.0
release_year	0.371304	0.333410	0.693887	0.235697	0.0
days_used	-0.296507	-0.137093	-0.554687	-0.242514	-0.1
normalized_used_price	0.609638	0.563671	0.608389	0.189858	0.
normalized_new_price	0.454568	0.518002	0.474022	0.194935	0.
4					•

In [27]:

```
#Find out the correlation of Features and Target using Heatmap.
plt.figure(figsize=(20,15))
sns.heatmap(df.corr(),annot=True)
```

Out[27]:

<AxesSubplot:>

In [28]:

```
#Remove outliers using Z score method.
f=df[['screen_size','rear_camera_mp','front_camera_mp','internal_memory','ram','battery'
```

In [29]:

```
from scipy.stats import zscore
z=abs(zscore(f))
Z
```

Out[29]:

	screen_size	rear_camera_mp	front_camera_mp	internal_memory	ram	battery				
0	0.202287	0.753970	0.226736	0.108732	0.766332	0.091659				
1	0.941416	0.753970	1.349615	0.860447	2.910510	0.893941				
2	0.780392	0.753970	0.203178	0.860447	2.910510	0.816941				
3	3.106008	0.753970	0.203178	0.108732	1.439773	3.165443				
4	0.418747	0.753970	0.203178	0.108732	0.766332	1.432942				
3449	0.424026	0.003274	0.203178	0.108732	1.439773	1.432942				
3450	0.397629	0.753970	0.203178	0.860447	2.910510	0.662941				
3451	0.545454	0.753970	0.226736	0.267125	0.766332	0.662941				
3452	0.545454	0.753970	0.226736	0.267125	1.501701	0.662941				
3453	0.238550	0.753970	0.226736	0.455053	1.501701	0.662941				
3432 ı	3432 rows × 9 columns									

In [30]:

```
newdf=df[(z<3).all(axis=1)]</pre>
newdf
```

Out[30]:

	device_brand	os	screen_size	4g	5g	rear_camera_mp	front_camera_mp	inter		
0	Honor	Android	14.50	yes	no	13.000000	5.0			
1	Honor	Android	17.30	yes	yes	13.000000	16.0			
2	Honor	Android	16.69	yes	yes	13.000000	8.0			
4	Honor	Android	15.32	yes	no	13.000000	8.0			
5	Honor	Android	16.23	yes	no	13.000000	8.0			
3449	Asus	Android	15.34	yes	no	9.460208	8.0			
3450	Asus	Android	15.24	yes	no	13.000000	8.0			
3451	Alcatel	Android	15.80	yes	no	13.000000	5.0			
3452	Alcatel	Android	15.80	yes	no	13.000000	5.0			
3453	Alcatel	Android	12.83	yes	no	13.000000	5.0			
3088 r	3088 rows × 15 columns									

```
In [31]:
```

```
print(df.shape)
print(newdf.shape)
```

(3432, 15) (3088, 15)

In [32]:

```
data_loss=((3432-3088)/3432)*100
data_loss
```

Out[32]:

10.023310023310025

In [33]:

```
newdf.skew()
```

Out[33]:

```
screen_size
                          0.127369
                          0.084966
rear_camera_mp
front_camera_mp
                          1.285625
internal_memory
                          2.716251
ram
                          0.373662
                          0.456749
battery
weight
                          2.181577
release_year
                          0.362529
days_used
                         -0.380988
normalized_used_price
                         -0.279443
normalized_new_price
                          0.116453
dtype: float64
```

In [34]:

```
s=['rear_camera_mp','front_camera_mp','internal_memory','ram','battery','weight','releas
from sklearn.preprocessing import PowerTransformer
scaler=PowerTransformer(method='yeo-johnson')
newdf[s]=scaler.fit_transform(newdf[s].values)
```

In [35]:

```
newdf.skew()
```

Out[35]:

```
screen_size
                         0.127369
rear_camera_mp
                         -0.087572
front_camera_mp
                         -0.019026
internal_memory
                         0.011406
ram
                         0.591933
                         -0.021101
battery
weight
                         -0.096302
release_year
                         0.000000
days_used
                        -0.179790
normalized_used_price
                        -0.279443
normalized_new_price
                         0.116453
dtype: float64
```

In [36]:

```
from sklearn.preprocessing import OrdinalEncoder
oe = OrdinalEncoder()
newdf[catcol] = oe.fit_transform(newdf[catcol])
```

In [37]:

```
newdf.skew()
```

Out[37]:

device_brand	-0.374403
os	4.965037
screen_size	0.127369
4g	-0.798079
5g	5.469142
rear_camera_mp	-0.087572
front_camera_mp	-0.019026
internal_memory	0.011406
ram	0.591933
battery	-0.021101
weight	-0.096302
release_year	0.000000
days_used	-0.179790
normalized_used_price	-0.279443
normalized_new_price	0.116453
dtype: float64	

In [38]:

```
x = newdf.drop('normalized_used_price', axis = 1)# this is removing the normalized_used_
# features are always refered as x.
#2D dataframe
x
```

Out[38]:

	device_brand	os	screen_size	4g	5g	rear_camera_mp	front_camera_mp	internal_n	
0	10.0	0.0	14.50	1.0	0.0	0.777923	0.170707	0.	
1	10.0	0.0	17.30	1.0	1.0	0.777923	1.483681	1.	
2	10.0	0.0	16.69	1.0	1.0	0.777923	0.669479	1.	
4	10.0	0.0	15.32	1.0	0.0	0.777923	0.669479	0.	
5	10.0	0.0	16.23	1.0	0.0	0.777923	0.669479	0.	
3449	3.0	0.0	15.34	1.0	0.0	0.000054	0.669479	0.	
3450	3.0	0.0	15.24	1.0	0.0	0.777923	0.669479	1.	
3451	1.0	0.0	15.80	1.0	0.0	0.777923	0.170707	0.	
3452	1.0	0.0	15.80	1.0	0.0	0.777923	0.170707	0.	
3453	1.0	0.0	12.83	1.0	0.0	0.777923	0.170707	-0.	
3088 rows × 14 columns									

In [39]:

```
# y contains only the target.
#1D series
y = newdf['normalized_used_price']
y
```

Out[39]:

```
0
        4.307572
1
        5.162097
2
        5.111084
4
        4.389995
5
        4.413889
          . . .
        4.492337
3449
        5.037732
3450
3451
        4.357350
3452
        4.349762
        4.132122
3453
Name: normalized_used_price, Length: 3088, dtype: float64
```

In [40]:

```
#Split the Data For Training And Testing
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=1)
```

In [41]:

```
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression, Lasso,Ridge
from sklearn.ensemble import GradientBoostingRegressor
import xgboost as xgb
from sklearn.metrics import classification_report
from sklearn.model_selection import cross_val_score
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
```

Linear Regression

In [42]:

```
#Apply Linear Regression()
lr=LinearRegression()
lr.fit(xtrain,ytrain)

#Prediction
ypred=lr.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=lr.score(xtrain,ytrain)
test=lr.score(xtest,ytest)
print(f"Training score :{train}\nTesting score: {test}")
```

MAE:0.17606835727761533 MSE:0.04893606331692776 RMSE:0.22121497082459804 r2_score:0.7991405789981689

Training score :0.8134870410723317 Testing score: 0.7991405789981689

In [43]:

```
# Checking Cross Validation Score for Linear Regression
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(lr,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

79.9140578998169

Cross validation Score: 79.36788713704901

R2 Score - Cross Validation score is 0.5461707627678862

Regularization

In [44]:

```
#Lasso Regressor
l1=Lasso()
l1.fit(xtrain,ytrain)

#Prediction
ypred=l1.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=l1.score(xtrain,ytrain)
test=l1.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.3870015381330674 MSE:0.2438550440278183 RMSE:0.4938168122166542

r2_score:-0.0009097510477604764

Training score:0.0

Testing score: -0.0009097510477604764

In [45]:

```
# Checking Cross Validation Score for Lasso Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(l1,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

-0.09097510477604764

```
Cross validation Score: -5.451601247326372

R2 Score - Cross Validation score is 5.360626142550324
```

In [46]:

```
#Ridge Regressor
12=Ridge()
12.fit(xtrain,ytrain)

#Prediction
ypred=12.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=12.score(xtrain,ytrain)
test=12.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.17600840939396137 MSE:0.04891164844201754 RMSE:0.2211597803444775 r2_score:0.7992407905253311 Training score:0.8134860327485417 Testing score:0.7992407905253311

In [47]:

```
# Checking Cross Validation Score for Ridge Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(12,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

79.92407905253312

Cross validation Score: 79.37301511837045

R2 Score - Cross Validation score is 0.55106393416267

Knn Regressor

In [48]:

```
#knn
from sklearn.neighbors import KNeighborsRegressor
knn=KNeighborsRegressor()
knn.fit(xtrain,ytrain)

#Prediction
ypred=knn.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=knn.score(xtrain,ytrain)
test=knn.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.20665601473311757 MSE:0.07266591467219231 RMSE:0.26956616010210244 r2_score:0.7017407499026154 Training score:0.8250202327277942 Testing score:0.7017407499026154

In [49]:

```
# Checking Cross Validation Score for knn Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(knn,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

70.17407499026153

Cross validation Score: 59.13962116759439

R2 Score - Cross Validation score is 11.034453822667139

Decision Tree Regressor

In [50]:

```
#Decision Tree
from sklearn.tree import DecisionTreeRegressor
dt=DecisionTreeRegressor()
dt.fit(xtrain,ytrain)

#Prediction
ypred=dt.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=dt.score(xtrain,ytrain)
test=dt.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.23570132316073358 MSE:0.09494615865465011 RMSE:0.308133345574039 r2_score:0.610290874232948 Training score:1.0

Testing score: 0.610290874232948

In [51]:

```
# Checking Cross Validation Score for decision tree Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(dt,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

61.029087423294804

```
Cross validation Score: 60.116867087257866
```

R2 Score - Cross Validation score is 0.9122203360369383

Random Forest Regressor

In [52]:

```
#Random Forest
rfr=RandomForestRegressor()
rfr.fit(xtrain,ytrain)

#Prediction
ypred=rfr.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=rfr.score(xtrain,ytrain)
test=rfr.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.17846702697456301 MSE:0.049379224403056185 RMSE:0.22221436587911275 r2_score:0.7973216121026543 Training score:0.9735690262710986 Testing score:0.7973216121026543

In [53]:

```
# Checking Cross Validation Score for random forest Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(rfr,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

79.73216121026543

Cross validation Score: 78.7405962793212

R2 Score - Cross Validation score is 0.9915649309442358

AdaBoosting Regressor

In [54]:

```
#AdaBoosting
from sklearn.ensemble import AdaBoostRegressor
abr=AdaBoostRegressor()
abr.fit(xtrain,ytrain)

#Prediction
ypred=abr.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=abr.score(xtrain,ytrain)
test=abr.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.2045077348119704 MSE:0.06215120493125723 RMSE:0.24930143387324757 r2_score:0.7448986659141381 Training score:0.7827377822956223 Testing score:0.7448986659141381

In [55]:

```
# Checking Cross Validation Score for AdaBoosting Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(abr,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

74.48986659141381

Cross validation Score: 75.67422931929163

R2 Score - Cross Validation score is -1.1843627278778115

Gadient Boosting Regressor

In [56]:

```
#Gradient Boosting
gbr=GradientBoostingRegressor()
gbr.fit(xtrain,ytrain)

#Prediction
ypred=gbr.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=gbr.score(xtrain,ytrain)
test=gbr.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.17441616406788849 MSE:0.04762685727835556 RMSE:0.21823578367984375 r2_score:0.8045142512769676 Training score:0.8699746330057013 Testing score:0.8045142512769676

In [57]:

```
# Checking Cross Validation Score for Gradient Boosting Regressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(gbr,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

80.45142512769677

Cross validation Score: 79.01721747040335

R2 Score - Cross Validation score is 1.4342076572934133

Extreme Gradient Boosting Regressor (XGB)

In [58]:

```
#XGB Boosting
from xgboost import XGBRegressor
xgb=XGBRegressor(verbosity=0)
xgb.fit(xtrain,ytrain)

#Prediction
ypred=xgb.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=xgb.score(xtrain,ytrain)
test=xgb.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.18420100663852668 MSE:0.05535864656506207 RMSE:0.23528418256453634 r2_score:0.7727789089921129 Training score:0.9842098878348459 Testing score:0.7727789089921129

In [59]:

```
# Checking Cross Validation Score for XGBRegressor
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(xgb,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

77.27789089921129

Cross validation Score: 76.35211720309663

R2 Score - Cross Validation score is 0.9257736961146605

Support Vector Machine Regressor

In [60]:

```
#Hard Margin
from sklearn.svm import SVR
svr1 = SVR(kernel = 'rbf')
svr1.fit(xtrain,ytrain)

#Prediction
ypred=svr1.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=svr1.score(xtrain,ytrain)
test=svr1.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.17395877462744258 MSE:0.04877383477267223 RMSE:0.2208479901938712 r2_score:0.7998064505305418 Training score:0.8176508574581984 Testing score:0.7998064505305418

In [61]:

```
# Checking Cross Validation Score for SVM Regressor (hard margin)
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(svr1,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

79.98064505305418

Cross validation Score: 79.28024384972754

R2 Score - Cross Validation score is 0.7004012033266349

In [62]:

```
# soft margin
svr2=SVR(kernel="rbf",C=0.5)
svr2.fit(xtrain,ytrain)

#Prediction
ypred=svr2.predict(xtest)

#Metric Evaluation
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse)
r2=r2_score(ytest,ypred)
print(f"MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nr2_score:{r2}")

train=svr2.score(xtrain,ytrain)
test=svr2.score(xtest,ytest)
print(f"Training score:{train}\nTesting score:{test}")
```

MAE:0.17521169303380527 MSE:0.050092306552559744 RMSE:0.22381310630202098 r2_score:0.7943947467610672 Training score:0.8075161158162047 Testing score:0.7943947467610672

In [63]:

```
# Checking Cross Validation Score for SVM Regressor(soft margin)
ac=r2_score(ytest,ypred)*100
print(ac)
cv_score=(cross_val_score(svr2,x,y,cv=5).mean())*100
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

79.43947467610673

Cross validation Score: 78.20564151153626

R2 Score - Cross Validation score is 1.2338331645704699

In [64]:

```
model_list=['Linear Regressor','Lasso Regressor','Ridge Regressor','Knn Regressor','Deci
```

In [65]:

accuracyscore=[79.914,-0.09,79.92,70.17,59.03,79.66,75.503,80.44,77.27,79.098,79.43]

In [66]:

crossvalidationscore=[79.367,-5.45,79.37,59.13,60.41,78.93,76.004,79.02,76.35,79.28,78.2

In [67]:

```
a=pd.DataFrame({})
a["Regressor Type"]=model_list
a["Accuracy score"]=accuracyscore
a["Cross validation Score"]=crossvalidationscore
a
```

Out[67]:

Regressor Type	Accuracy score	Cross validation Score
Linear Regressor	79.914	79.367
Lasso Regressor	-0.090	-5.450
Ridge Regressor	79.920	79.370
Knn Regressor	70.170	59.130
Decision Tree Regressor	59.030	60.410
Random Forest Regressor	79.660	78.930
AdaBoosting Regressor	75.503	76.004
Gradient Boosting Regressor	80.440	79.020
Extreme Gradient Boosting Regressor	77.270	76.350
SVM Regressor(hard margin)	79.098	79.280
SVM Regressor(soft margin)	79.430	78.200
	Linear Regressor Lasso Regressor Ridge Regressor Knn Regressor Decision Tree Regressor Random Forest Regressor AdaBoosting Regressor Gradient Boosting Regressor Extreme Gradient Boosting Regressor SVM Regressor(hard margin)	Lasso Regressor -0.090 Ridge Regressor 79.920 Knn Regressor 70.170 Decision Tree Regressor 59.030 Random Forest Regressor 79.660 AdaBoosting Regressor 75.503 Gradient Boosting Regressor 80.440 Extreme Gradient Boosting Regressor 77.270 SVM Regressor(hard margin) 79.098

In [68]:

```
a['Difference']=(a['Accuracy score']-a['Cross validation Score'])
a
```

Out[68]:

	Regressor Type	Accuracy score	Cross validation Score	Difference
0	Linear Regressor	79.914	79.367	0.547
1	Lasso Regressor	-0.090	-5.450	5.360
2	Ridge Regressor	79.920	79.370	0.550
3	Knn Regressor	70.170	59.130	11.040
4	Decision Tree Regressor	59.030	60.410	-1.380
5	Random Forest Regressor	79.660	78.930	0.730
6	AdaBoosting Regressor	75.503	76.004	-0.501
7	Gradient Boosting Regressor	80.440	79.020	1.420
8	Extreme Gradient Boosting Regressor	77.270	76.350	0.920
9	SVM Regressor(hard margin)	79.098	79.280	-0.182
10	SVM Regressor(soft margin)	79.430	78.200	1.230

In [69]:

```
# hyper-parameter tunning
from sklearn.feature_selection import RFE
from sklearn.model_selection import GridSearchCV
```

In [70]:

Fitting 5 folds for each of 18 candidates, totalling 90 fits

Out[70]:

In [71]:

```
model_cv.best_score_
```

Out[71]:

0.8107448577334846

In [72]:

```
ypred = model cv.predict(xtest)
print(ypred)
4.33646934 4.43080067 4.22397626 4.8299597 4.87837148 4.61089386
 4.15739697 4.16453975 4.26380169 4.32083145 4.72023989 3.78194115
4.33186637 4.8813912 4.57595505 4.80814941 4.54183083 4.61047407
 4.49040426 4.56500001 4.62977043 4.30415201 5.13361269 4.45807888
 4.91801583 4.58661632 4.70711661 3.27582974 4.35067335 4.4717652
 4.11079461 4.68828108 4.65896452 4.49934051 4.2169892 4.53063014
 4.4441093 4.44998675 4.28310815 4.00845636 4.53205432 4.25470081
 3.93144754 4.84472166 4.61688953 4.69566183 4.94624343 4.68785499
 4.5489413 4.5694514 3.97030931 4.45526137 3.99823985 4.20440963
 4.43922047 4.32061578 3.69064252 4.54561676 3.7075824 4.17434996
 4.59362501 4.31709768 3.62408825 5.07847937 4.37666894 3.48786428
 4.53252018 3.777184
                      3.76305612 3.75962439 4.61819102 4.85086298
 4.91850041 4.75641435 3.90248587 4.06520091 3.94795948 4.39770707
 3.79279637 4.81381602 2.86622832 3.90652346 5.13299565 4.71725803
 3.46687453 4.18707109 4.44028955 3.77348902 3.43059268 3.72200367
 4.76386133 3.68772765 4.10877325 4.8921652 4.8838708 4.36136382
 3.95877159 4.52716988 4.95329695 4.65703325 3.99547217 4.115383
 3.86822313 4.47106612 4.00479218 4.55292234 4.71190215 4.6053454
 4.07302105 5.33162588 5.25856516 3.66903594 4.58879912 4.41874907
In [73]:
from sklearn.metrics import accuracy_score
print(r2 score(ytest, ypred), ": is the accuracy score")
0.8002827159635503 : is the accuracy score
In [74]:
```

```
from sklearn.model_selection import cross_val_score
ac=r2_score(ytest,ypred)
print(ac)
cv_score=(cross_val_score(model_cv,x,y,cv=5).mean())
print("\n Cross validation Score:",cv score)
#Difference of R2 score minus CV score
difference=ac-cv score
print("\n R2 Score - Cross Validation score is", difference)
```

0.8002827159635503

```
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Fitting 5 folds for each of 18 candidates, totalling 90 fits
```

Cross validation Score: 0.7914116268305903

R2 Score - Cross Validation score is 0.008871089132959975