How to determine whether $\sum_{n=1}^{\infty} a_n$ converges or diverges.

Throughout, let f be a function satisfying $f(n) = a_n$.

Question 1: Can my series converge?

Answer: Does $\lim_{n\to\infty} a_n$ exist and does $\lim_{n\to\infty} a_n = 0$?

- If no: You're done; $\sum_{n=1}^{\infty} a_n$ diverges.
- o If yes: Your series may converge. Go to Question 2.

Question 2: Does my series have negative terms?

- If no: You have a positive series. Go to Question 3.
- \circ If yes: Go to **Question 5**.

Question 3: Is my series a geometric series or a *p*-series?

- o If yes: Use the info you know about **geometric series** and/or **p-series** and you're done.
- If no: Go to **Question 4**.

Question 4: If I squint at my series, does it kinda-sorta look like a geometric series or a p-series?

- o If yes, use either the comparison test or the limit comparison test.
- \circ If no:
 - Does my series have factorials and/or $(constant)^n$?
 - \implies Use the Ratio Test!
 - Does a_n have the form $a_n = (b_n)^n$ (a whole function to the nth power)?
 - \implies Use the Root Test!
 - Does it look like I can find $\int_{1}^{\infty} f(x) dx$?
 - \implies (Try to) Use the Integral Test! (f must be continuous, positive, and decreasing!)
 - If none of the ratio, root, or integral tests seem appropriate:
 - ⇒ Ask whatever higher power you believe in for an intervention. (If you don't have a higher power, ask a friend to borrow theirs.)
 - \implies Try looking at $\sum_{n=1}^{\infty} |a_n|$ directly by going back at **Question 3**.

Question 5: Is my series alternating? (i.e., is $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$ where $\{b_n\}$ has all positive terms?)

- o If yes: (Try to) Use the **Alternating Series Test!** (b_n must be decreasing and $\lim_{n\to\infty}b_n=0$ must hold)
- \circ If no:
 - Does my series have factorials and/or (constant) n ?
 - \implies Use the Ratio Test!
 - Does a_n have the form $a_n = (b_n)^n$ (a whole function to the nth power)?
 - \implies Use the Root Test!
 - If neither the ratio nor root test seems applicable:
 - ⇒ See Question 4 about borrowing higher powers, etc.
 - \implies Try looking at $\sum_{n=1}^{\infty} |a_n|$ directly by going back at **Question 3**.