FMI, DL Mate, Anul I Semestrul II, 2021/2022 Logică matematică

Exerciții de seminar

1 Teoria multimilor

- 1. Să se dea exemple de x și y, astfel încât să se întâmple, pe rând:
 - (a) $x \in y$ şi $x \subseteq y$;
 - (b) $x \in y$ şi $x \not\subseteq y$;
 - (c) $x \notin y$ şi $x \subseteq y$;
 - (d) $x \notin y$ şi $x \not\subseteq y$.

Soluţie:

- (a) Luăm $x = \emptyset$, $y = {\emptyset}$.
- (b) Luăm $x = \{\emptyset\}, y = \{\{\emptyset\}\}.$
- (c) Luăm $x = \emptyset$, $y = \emptyset$.
- (d) Luăm $x = {\emptyset}, y = \emptyset$.

2. Reamintim din curs că, pentru orice F și z,

$$z \in \bigcup F \Leftrightarrow \text{există} \ x \text{ cu} \ x \in F \ \text{și} \ z \in x$$

și că, pentru orice F nevidă,

$$\bigcap F = \left\{ z \in \bigcup F \mid \text{pentru orice } x \text{ cu } x \in F, \text{ avem } z \in x \right\}.$$

Arătați că definiția de mai sus pentru intersecții arbitrare este corectă. Mai exact, arătați că pentru orice F nevidă, avem că pentru orice z,

$$z \in \bigcap F \Leftrightarrow \text{pentru orice } x \text{ cu } x \in F, \text{ avem } z \in x.$$

Unde se folosește în demonstrație faptul că F este nevidă?

Soluție: Fie F și z ca în enunț.

"⇒" Evident.

" \Leftarrow " Presupunem că z este astfel încât pentru orice x cu $x \in F$, avem $z \in x$ și vrem să arătăm că $z \in \bigcap F$.

Rămâne de arătat doar că $z \in \bigcup F$. Fiindcă F este nevidă, există $x \in F$. Avem deci $z \in x$. De aici deducem $z \in \bigcup F$.

3. Definim, pentru orice $x, y, \langle x, y \rangle := \{x, \{y\}\}$. Arătați că aceasta nu este o definiție adecvată a perechii ordonate.

Soluție: Vrem să găsim exemple de x, y, u, v astfel încât $\langle x, y \rangle = \langle u, v \rangle$, dar nu este adevărat că x = u și y = v, adică $x \neq u$ sau $y \neq v$.

Ideea este următoarea. Ne uităm la egalitatea $\{x, \{y\}\} = \{u, \{v\}\}\$ și căutăm să o satisfacem "invers", adică via $x = \{v\}$ și $u = \{y\}$. Prin urmare, u și x sunt atunci determinate de y și v, și deci este suficient să găsim y și v cu $v \neq v$. Dar noi știm două mulțimi diferite, de pildă \emptyset și $\{\emptyset\}$.

Raționăm acum riguros. Alegem $x:=\{\{\emptyset\}\},\ y:=\emptyset,\ u:=\{\emptyset\},\ v:=\{\emptyset\}.$ Se observă că $y\neq v$ (şi, mai mult, deși nu mai este nevoie, $x\neq u$). Atunci

$$\langle x, y \rangle = \{x, \{y\}\} = \{\{\{\emptyset\}\}, \{\emptyset\}\},$$

iar

$$\langle u, v \rangle = \{u, \{v\}\} = \{\{\emptyset\}, \{\{\emptyset\}\}\},\$$

 $\mathrm{deci}\ \langle x,y\rangle = \langle u,v\rangle.$

4. Arătați (folosind doar primele cinci axiome ZFC din curs) că nu există mulțimea tuturor mulțimilor singleton.

Soluție: Presupunem că ar exista și o notăm cu S.

Notăm $V := \bigcup S$. Atunci, pentru orice x, avem $x \in \{x\}$ şi $\{x\} \in S$, deci $x \in \bigcup S = V$. Ca urmare, V este mulțimea tuturor mulțimilor. Contradicție!

- 5. Fie R o relație binară. Să se arate că:
 - (a) Următoarele afirmații sunt echivalente:
 - \bullet există A și B astfel încât R este grafic între A și B;
 - pentru orice x, y, z cu $(x, y), (x, z) \in R$, avem y = z.
 - (b) Dacă A, B, C, D sunt astfel încât R este grafic atât între A și B, cât și între C și D, atunci A=C.

Soluţie:

(a) $,\Rightarrow$ " Evident.

" \Leftarrow " Cum R este relație binară, există C, B astfel încât R este relație între C și B. Notăm:

$$A:=\{a\in C\mid \text{există }b\in B\text{ cu }(a,b)\in R\}.$$

Fie $p \in R$. Atunci există $a \in C$ şi $b \in B$ cu $(a,b) = p \in R$. Deci $a \in A$ şi deci $p \in A \times B$. Prin urmare, $R \subseteq A \times B$, deci R este relație între A și B.

Demonstrăm acum că R este chiar grafic între A și B. Fie acum $a \in A$. Atunci, din definiția lui A, există $b \in B$ cu $(a,b) \in R$. Mai trebuie să arătăm că este unic. Dacă avem $z \in B$ cu $(a,z) \in R$, atunci, folosind condiția din ipoteză, b=z.

- (b) Fie $a \in A$. Cum R este grafic între A și B, există $b \in B$ cu $(a,b) \in R$. Cum $R \subseteq C \times D$, există $c \in C$ și $d \in D$ cu (a,b) = (c,d). Rezultă $a = c \in C$. Am demonstrat că $A \subseteq C$. Analog se arată $C \subseteq A$, deci avem A = C.
- 6. Fie A o mulțime. Să se arate că:
 - (a) Dacă \leq este o relație de ordine parțială pe A și dacă definim $\leq \subseteq A \times A$ ca fiind mulțimea tuturor perechilor (a,b) cu proprietatea că $a \leq b$ și $a \neq b$, atunci < este o relație de ordine strictă pe A.

(b) Dacă < este o relație de ordine strictă pe A și dacă definim $\leq \subseteq A \times A$ ca fiind mulțimea tuturor perechilor (a,b) cu proprietatea că a < b sau a = b, atunci \leq este o relație de ordine parțială pe A.

Soluţie: Fie $x, y, z \in A$.

(a) Dacă avem x < x, atunci $x \neq x$, o contradicție. Deci < este ireflexivă.

Presupunem x < y și y < z. Atunci $x \le z$. Dacă am avea x = z, atunci am avea $x \le y \le x$, deci x = y, contradicție. Deci x < z. Am arătat că < este tranzitivă.

Prin urmare, < este o relație de ordine strictă.

(b) Cum x = x, avem $x \le x$. Deci \le este reflexivă.

Presupunem prin absurd că $x \le y$ şi $y \le x$, dar $x \ne y$. Atunci x < y şi y < x, contradicție cu faptul că < este asimetrică. Deci \le este antisimetrică.

Presupunem $x \le y$ și $y \le z$. Dacă x = y, atunci clar $x \le z$. Analog pentru y = z. Rămâne cazul când x < y și y < z, iar atunci x < z, deci $x \le z$. Am arătat că \le este tranzitivă.

Prin urmare, ≤ este o relație de ordine parțială.

7. Fie $n \in \mathbb{N}$. Arătați că:

- (a) Ori n = 0, ori există $m \in \mathbb{N}$ cu $n = m^+$.
- (b) Pentru orice $m \in n, m \in \mathbb{N}$.
- (c) Avem $n = \{ m \in \mathbb{N} \mid m < n \}.$

Soluţie:

(a) Demonstrăm prin inducție după n. Pentru n=0, enunțul este trivial.

Fie n. Vrem acum să arătăm că dacă există $m \in \mathbb{N}$ cu $n = m^+$, atunci există $p \in \mathbb{N}$ cu $n^+ = p^+$. E suficient să luăm p := n.

(Deşi inducţia este trivială, am scris acest enunţ în mod explicit, fiindcă va fi folosit în exerciţiul următor.)

- (b) Demonstrăm prin inducție după n. Pentru n = 0, enunțul este trivial.
 - Presupunem adevărat că pentru orice $m \in n, m \in \mathbb{N}$ şi arătăm că pentru orice $m \in n^+, m \in \mathbb{N}$. Fie $m \in n^+ = n \cup \{n\}$. Atunci $m \in n$, deci $m \in \mathbb{N}$ din ipoteza de inducţie, sau $m = n \in \mathbb{N}$.
- (c) Incluziunea " \supseteq " este imediată. Pentru incluziunea " \subseteq ", luăm $m \in n$, iar din punctul anterior știm că $m \in \mathbb{N}$. Cum m < n este doar o reformulare a lui $m \in n$, rezultă că m aparține mulțimii din dreapta.

8. Fie $A\subseteq \mathbb{N}$ nevidă ce admite majorant. Arătați că A admite maxim.

Soluție: Fie $B := \{k \in \mathbb{N} \mid k \text{ majorant pentru } A\}$. Cum $B \neq \emptyset$, există minimul lui B (deci supremumul lui A), pe care îl notăm cu n. E suficient să arătăm că $n \in A$.

Presupunem că $n \notin A$. Atunci pentru orice $l \in A$, l < n. Cum $A \neq \emptyset$, rezultă $n \neq 0$, deci (din primul punct al exercițiului anterior) există $m \in \mathbb{N}$ cu $n = m^+$, și deci m < n. Avem că pentru orice $l \in A$, $l < m^+$, deci $l \leq m$. Prin urmare, m este majorant pentru A, contradicție cu faptul că n este cel mai mic majorant.

9. Fie X, Y mulțimi cu $X \neq \emptyset$ și $f: X \to Y$ injectivă. Să se arate că există $g: Y \to X$ cu $g \circ f = \mathrm{id}_X$.

Soluţie: Cum $X \neq \emptyset$, există $a \in X$. Definim $g: Y \to X$, pentru orice $y \in Y$, astfel: dacă există $x \in X$ (necesar unic) cu f(x) = y, punem g(y) := x, altfel punem g(y) := a.

Fie $x \in X$. Notând y := f(x), avem g(y) = x, decig(f(x)) = x. Am demonstrat că $g \circ f = \mathrm{id}_X$.

10. Arătați că o submulțime A a unei mulțimi finite B este finită.

Soluție: Demonstrăm prin inducție după numărul de elemente n al lui B.

Dacă $n=0,\,B=\emptyset$ și deci $A=\emptyset$ și are și ea 0 elemente.

Presupunem adevărat pentru un n și demonstrăm pentru n^+ . Presupunem, deci, că B are n^+ elemente, deci există o bijecție $f: n^+ \to B$. Notăm $C := B \setminus \{f(n)\}$. Atunci C are n elemente și distingem două cazuri.

Dacă $f(n) \notin A$, atunci $A \subseteq C$ și este deci finită din ipoteza de inducție.

Dacă $f(n) \in A$, atunci notând $D := A \setminus \{f(n)\} = A \cap C$ avem că $D \subseteq C$, deci este finită din ipoteza de inducție și așadar există m astfel încât D are m elemente. Rezultă că $A = D \cup \{f(n)\}$ are m^+ elemente și este deci finită.

11. Dacă f este un şir \mathbb{N} -valuat infinit, spunem că f este **finalmente constant** dacă există $k \in \mathbb{N}$ astfel încât pentru orice $m \in \mathbb{N}$, $f_{k+m} = f_k$. Arătaţi că mulţimea C a şirurilor finalmente constante este numărabilă.

Soluție: Clar, pentru orice $n \in \mathbb{N}$ putem considera șirul ce ia numai valoarea n. Prin urmare $\aleph_0 \leq |C|$.

Definim acum $\phi: C \to \mathbb{N}$, pentru orice $f \in C$, prin

$$\phi(f) := \min\{k \in \mathbb{N} \mid \text{pentru orice } m \in \mathbb{N}, f_{k+m} = f_k\}$$

si $\psi: C \to \operatorname{Seq}(\mathbb{N})$, pentru orice $f \in C$, prin

$$\psi(f) := (f_i)_{i < \phi(f)^+} = f \cap (\phi(f)^+ \times \mathbb{N}).$$

Atunci ψ este injectivă şi, cum am demonstrat la curs că $\operatorname{Seq}(\mathbb{N})$ este numărabilă, rezultă că $|C| \leq \aleph_0$, deci $|C| = \aleph_0$.

12. Arătați că mulțimea $\mathcal O$ a tuturor mulțimilor deschise ale lui $\mathbb R$ (în topologia canonică) are cardinalul

Soluție: În această soluție, vom folosi notația (a,b) și pentru pereche ordonată, și pentru interval deschis, dezambiguizându-le la fiecare folosire.

Clar, oricărui număr real r îi putem asocia intervalul deschis (r-1,r), deci avem cel puţin \mathfrak{c} deschişi. Rămâne de arătat că avem cel mult pe atât.

Definim acum $\phi: \mathcal{O} \to \mathcal{P}(\mathbb{Q} \times \mathbb{Q})$, pentru orice mulțime deschisă D, prin

$$\phi(D) := \{(a,b) \in \mathbb{Q} \times \mathbb{Q} \mid \text{intervalul } (a,b) \text{ este inclus } \text{în } D\}.$$

Demonstrăm că ϕ este injectivă, ceea ce ne încheie demonstrația, dat fiind că $|\mathcal{P}(\mathbb{Q} \times \mathbb{Q})| = \mathfrak{c}$.

Fie D, E mulțimi deschise cu $\phi(D) = \phi(E)$ și vrem D = E. Este suficient să arătăm că $D \subseteq E$, cealaltă incluziune rezultând din simetria problemei. Fie $r \in D$. Cum D este deschisă, există $\varepsilon > 0$ astfel încât intervalul $(r - \varepsilon, r + \varepsilon)$ este inclus în D. Cum $\mathbb Q$ este densă în $\mathbb R$, există $a, b \in \mathbb Q$ cu

$$r - \varepsilon < a < r < b < r + \varepsilon$$
.

Atunci intervalul (a,b) este inclus în D, deci perechea (a,b) aparține lui $\phi(D)$ și deci și lui $\phi(E)$. Prin urmare, intervalul (a,b) este inclus în E și deci, cum r aparține intervalului, avem $r \in E$. \square

13. Fie α un ordinal. Arătați că α^+ este ordinal.

Soluție: Reamintim că $\alpha^+ = \alpha \cup \{\alpha\}$.

Demonstrăm că α^+ este tranzitivă. Fie x, y cu $x \in \alpha^+$ şi $y \in x$. Vrem $y \in \alpha^+$. Vom arăta chiar $y \in \alpha$. Cum $x \in \alpha^+$, avem $x \in \alpha$ sau $x = \alpha$. Dacă $x \in \alpha$, avem $y \in \alpha$ fiindcă α este tranzitivă. Dacă $x = \alpha$, cum $y \in x$, avem $y \in \alpha$.

Demonstrăm că \in_{α^+} este ireflexivă. Fie $x \in \alpha^+$ şi vrem $x \notin x$. Dacă $x \in \alpha$, atunci nu putem avea $x \in x$ din faptul că \in_{α} este ireflexivă. Dacă $x = \alpha$, atunci $x \in x$ ar însemna $x \in \alpha$ şi putem aplica raționamentul de la primul caz.

Demonstrăm că \in_{α^+} este tranzitivă. Fie $x,\,y,\,z\in\alpha^+$ cu $x\in y$ şi $y\in z$. Vrem $x\in z$. Dacă $z\in\alpha$, atunci, din tranzitivitatea lui α , rezultă, pe rând, $y\in\alpha$ şi $x\in\alpha$. Cum \in_{α} este tranzitivă, rezultă $x\in z$. Dacă $z=\alpha$, atunci avem $x\in y$ şi $y\in\alpha$, iar cum α este tranzitivă, avem $x\in\alpha=z$.

Demonstrăm acum că \in_{α^+} este o bună ordine. Fie o mulțime nevidă $A \subseteq \alpha^+ = \alpha \cup \{\alpha\}$. Notăm $B := A \cap \alpha$. Dacă B este nevidă, există un minim al ei relativ la \in . Cum $B \subseteq \alpha$, acel minim aparține lui α , deci este mai mic și ca α . Prin urmare, el este minimul lui A în ansamblu. Dacă B este vidă, atunci avem $A = \{\alpha\}$ ce îl are pe α ca minim.

14. Fie α un ordinal. Arătați că $\alpha \not\in \alpha$.

Soluţie: Dacă am avea $\alpha \in \alpha$, atunci s-ar contrazice ireflexivitatea lui \in_{α} .

15. Fie α un ordinal și $\beta \in \alpha$. Arătați că β este ordinal.

Soluţie: Demonstrăm că β este tranzitivă. Fie u, v cu $u \in v$ şi $v \in \beta$. Vrem $u \in \beta$. Cum α este tranzitivă şi $\beta \in \alpha$, avem $v \in \alpha$, iar apoi $u \in \alpha$. Deci $u, v, \beta \in \alpha$, iar concluzia rezultă din tranzitivitatea lui \in_{α} .

Cum $\beta \in \alpha$ și α este tranzitivă, avem $\beta \subseteq \alpha$, deci \in_{β} este restricția la β (i.e. intersecția cu $\beta \times \beta$) a lui \in_{α} , deci este și ea o relație de bună ordine.

16. Fie α şi β ordinali astfel încât $\alpha \subseteq \beta$. Arătaţi că $\alpha \in \beta$.

Soluție: Cum $\beta \setminus \alpha \neq \emptyset$, există un minim al său, pe care îl notăm cu γ . Vom arăta $\gamma = \alpha$, de unde va rezulta $\alpha \in \beta$.

Pentru implicația "⊆", presupunem că există $\delta \in \gamma$ cu $\delta \notin \alpha$. Atunci, cum β este tranzitivă, avem $\delta \in \beta$, deci avem $\delta \in \beta \setminus \alpha$, ceea ce contrazice minimalitatea lui γ .

Pentru implicația " \supseteq ", presupunem că există $\delta \in \alpha$ cu $\delta \notin \gamma$. Cum $\delta, \gamma \in \beta$, avem că $\gamma \in \delta$ sau $\gamma = \delta$. Din tranzitivitatea lui α , rezultă $\gamma \in \alpha$, contrazicând faptul că $\gamma \in \beta \setminus \alpha$.

- 17. Fie $f: \mathbb{R} \to \mathbb{R}$ și $a \in \mathbb{R}$. Există două moduri de a exprima faptul că f este continuă în a:
 - pentru orice $\varepsilon > 0$ există $\delta > 0$ astfel încât pentru orice x cu $|x-a| < \delta$, avem $|f(x) f(a)| < \varepsilon$;
 - pentru orice şir $(x_n)_{n\in\mathbb{N}}$ ce are ca limită pe a, avem că şirul $(f(x_n))_{n\in\mathbb{N}}$ are ca limită pe f(a).

Folosind Axioma alegerii, arătați că ele sunt echivalente.

Observație: Se știe că echivalența nu rezultă fără Axioma alegerii, dar și că este strict mai slabă decât ea.

Soluţie: Pentru "⇒", fie $(x_n)_{n\in\mathbb{N}}$ un şir cu limita a. Vrem să arătăm că şirul $(f(x_n))_{n\in\mathbb{N}}$ are ca limită pe f(a). Fie $\varepsilon>0$. Atunci există $\delta>0$ astfel încât pentru orice x cu $|x-a|<\delta$, avem $|f(x)-f(a)|<\varepsilon$. Cum $(x_n)_{n\in\mathbb{N}}$ converge la a, avem că există N astfel încât pentru orice $n\geq N, |x_n-a|<\delta$. Aşadar, pentru orice $n\geq N, |f(x_n)-f(a)|<\varepsilon$. Am arătat că $(f(x_n))_{n\in\mathbb{N}}$ are ca limită pe f(a).

Pentru " \Leftarrow ", presupunem prin absurd că există un $\varepsilon > 0$ astfel încât pentru orice $\delta > 0$ există x cu $|x-a| < \delta$ și $|f(x) - f(a)| \ge \varepsilon$. Deci pentru orice $n \in \mathbb{N}$,

$$X_n := \left\{ x \in \mathbb{R} \mid |x - a| < \frac{1}{n+1} \text{ si } |f(x) - f(a)| \ge \varepsilon \right\} \ne \emptyset.$$

Ca urmare, putem aplica Axioma alegerii pentru familia $(X_n)_{n\in\mathbb{N}}$ și obținem un șir $(x_n)_{n\in\mathbb{N}}$ astfel încât pentru orice $n\in\mathbb{N},\ x_n\in X_n,$ i.e. $|x_n-a|<\frac{1}{n+1}$ și $|f(x_n)-f(a)|\geq \varepsilon.$ Așadar, limita lui $(x_n)_{n\in\mathbb{N}}$ este a, dar $(f(x_n))_{n\in\mathbb{N}}$ nu converge la f(a). Contradicție!

18. Fie X, Y mulțimi și $g: Y \to X$ surjectivă. Să se arate, folosind Axioma alegerii, că există $f: X \to Y$ cu $g \circ f = \mathrm{id}_X$.

Soluție: Cum g este surjectivă, avem că pentru orice $x \in X$, $g^*(\{x\})$ este nevidă, deci, aplicând Axioma alegerii pentru familia $(g^*(\{x\}))_{x \in X}$, obținem că există o familie $a = (a_x)_{x \in X}$ astfel încât pentru orice $x \in X$, $a_x \in g^*(\{x\})$, deci $a_x \in Y$ și $g(a_x) = x$.

Definim $f: X \to Y$, punând, pentru orice $x \in X$, $f(x) := a_x$. (Altfel spus, f = (X, Y, a).) Atunci, pentru orice $x \in X$, avem $g(f(x)) = g(a_x) = x$. Prin urmare, $g \circ f = \mathrm{id}_X$.

19. Demonstrați că faptul că "pentru orice X, Y mulțimi și $g:Y\to X$ surjectivă, avem că există $f:X\to Y$ cu $g\circ f=\mathrm{id}_X$ " implică Axioma alegerii.

Soluție: Fie $(D_i)_{i \in I}$ o familie de mulțimi nevide, disjuncte două câte două. Vrem să arătăm că există $(d_i)_{i \in I}$ astfel încât pentru orice $i \in I$, $d_i \in D_i$.

Notăm

$$C := \bigcup_{i \in I} D_i.$$

Fie $g: C \to I$, definită punând, pentru orice $x \in C$, g(x) ca fiind acel unic i cu $x \in D_i$. Cum g este surjectivă, există $f: I \to C$ cu $g \circ f = \mathrm{id}_I$.

Pentru orice $i \in I$, punem $d_i := f(i)$ şi atunci, cum $g(d_i) = g(f(i)) = i$, avem că $d_i \in D_i$. Aşadar, familia $(d_i)_{i \in I}$ este cea căutată.

20. Demonstrați că faptul că "pentru orice X, Y mulțimi, există o injecție de la X la Y sau există o injecție de la Y la X" implică Axioma alegerii. **Indiciu:** Folosiți ordinalul Hartogs.

Soluție: Fie A o mulțime. Atunci, fie există o injecție de la h(A) la A, fie există o injecție de la A la h(A). Primul caz contrazice definiția ordinalului Hartogs. Avem așadar că există o injecție $g: A \to h(A)$. Cum $(h(A), \in_{h(A)})$ este bine-ordonată, există o bună ordine pe imaginea lui g, imagine care este echipotentă cu A, deci există o bună ordine pe A.

Am arătat că orice mulțime este bine-ordonabilă, iar la curs am demonstrat că aceasta implică Axioma alegerii.

- 21. Fie α un ordinal. Arătaţi:
 - (a) Pentru orice $x \in V_{\alpha}, x \notin x$.
 - (b) Avem că $V_{\alpha} \in V_{\alpha^+} \setminus V_{\alpha}$. Prin urmare, $\operatorname{rg}(V_{\alpha}) = \alpha$.
 - (c) Pentru orice $\beta < \alpha, V_{\beta} \subseteq V_{\alpha}$.

Solutie:

(a) Firește, enunțul rezultă din Axioma regularității, dar este interesant de văzut că este adevărat și fără a o postula.

Demonstrăm prin inducție după α .

Dacă $\alpha=0,$ atunci, cum $V_{\alpha}=V_{0}=\emptyset,$ nu avem ce demonstra.

Presupunem că există β cu $\alpha = \beta^+$. Atunci $x \in V_{\alpha} = V_{\beta^+} = \mathcal{P}(V_{\beta})$, deci $x \subseteq V_{\beta}$. Dacă am avea $x \in x$, atunci $x \in V_{\beta}$, iar din ipoteza de inducție rezultă $x \notin x$.

Presupunem acum că α este ordinal limită. Atunci există $\gamma < \alpha$ cu $x \in V_{\gamma}$ și, din ipoteza de inducție, rezultă $x \notin x$.

(b) Avem că $V_{\alpha} \subseteq V_{\alpha}$, deci $V_{\alpha} \in \mathcal{P}(V_{\alpha}) = V_{\alpha^{+}}$, iar din primul punct avem că $V_{\alpha} \notin V_{\alpha}$.

(c) Fie $\beta < \alpha$. Ştim că $V_{\beta} \subseteq V_{\alpha}$, rămâne de arătat doar că incluziunea este strictă. Avem că $\beta^+ \leq \alpha$ (exercițiu!) și deci $V_{\beta^+} \subseteq V_{\alpha}$. Ştim, din punctul anterior, că $V_{\beta} \in V_{\beta^+} \setminus V_{\beta}$, deci $V_{\beta} \in V_{\alpha} \setminus V_{\beta}$.

- 22. Fie α un ordinal. Arătaţi:
 - (a) Avem că $\alpha \in V_{\alpha^+}$.
 - (b) Avem că $\alpha \notin V_{\alpha}$. Prin urmare, $rg(\alpha) = \alpha$.

Soluţie:

(a) Demonstrăm prin inducție completă după α . Cum $V_{\alpha^+} = \mathcal{P}(V_{\alpha})$, trebuie să demonstrăm că $\alpha \subseteq V_{\alpha}$.

Fie $\beta \in \alpha$. Atunci β este un ordinal mai mic ca α , iar din ipoteza de inducție, avem $\beta \in V_{\beta^+}$. Cum $\beta < \alpha$, avem $\beta^+ \leq \alpha$ (exercițiu!), deci $V_{\beta^+} \subseteq V_{\alpha}$, așadar $\beta \in V_{\alpha}$.

(b) Demonstrăm prin inducție după α .

Dacă $\alpha = 0$, atunci $\alpha \notin \emptyset = V_0 = V_\alpha$.

Presupunem că există β cu $\alpha = \beta^+$. Presupunem prin absurd că $\alpha \in V_{\alpha}$, i.e. $\beta^+ \in V_{\beta^+} = \mathcal{P}(V_{\beta})$, deci $\beta^+ \subseteq V_{\beta}$. Dar $\beta \in \beta^+$, deci $\beta \in V_{\beta}$, ceea ce contrazice ipoteza de inducție.

Presupunem acum că α este ordinal limită. Presupunem prin absurd că $\alpha \in V_{\alpha}$. Atunci există $\gamma < \alpha$ cu $\alpha \in V_{\gamma}$. Cum $\gamma \in \alpha$, există $\delta < \gamma$ cu $\gamma \in V_{\delta} \subseteq V_{\gamma}$, ceea ce, din nou, contrazice ipoteza de inducție.

23. Fie I o mulțime nevidă și A, B două submulțimi diferite ale sale. Arătați că există un ultrafiltru pe I care conține exact una dintre submulțimi.

Soluție: Avem $A \neq B$, deci $A \not\subseteq B$ sau $B \not\subseteq A$. Presupunem w.l.o.g. $A \not\subseteq B$, deci există $x \in A$ cu $x \notin B$.

Ştim că $[\{x\})$ este un ultrafiltru. Cum $\{x\} \subseteq A$, avem $A \in [\{x\})$, iar cum $\{x\} \subseteq I \setminus B$, avem $I \setminus B \in [\{x\})$, deci $B \notin [\{x\})$.

24. Fie I o mulțime nevidă, F un filtru pe I și $X \subseteq I$ cu $X \notin F$. Arătați că există un ultrafiltru pe I care include pe F și nu conține pe X (omite pe X).

Soluție: Cum $X \notin F$, $X \neq I$, deci $I \setminus X \neq \emptyset$.

Fie $G := F \cup \{I \setminus X\}$. Vom arăta că G are proprietatea intersecțiilor finite, de unde va rezulta că se poate prelungi la un ultrafiltru. Acel ultrafiltru va include pe F și, deoarece va conține pe $I \setminus X$, nu va putea conține pe X.

Fie $A \subseteq G$ finită nevidă şi vrem $\bigcap A \neq \emptyset$. Dacă $A \subseteq F$, suntem OK. Dacă $A \not\subseteq F$, există $B \subseteq F$ cu $A = B \cup \{I \setminus X\}$. Dacă $B = \emptyset$, atunci $A = \{I \setminus X\}$ şi din nou suntem OK. Dacă $B \neq \emptyset$, atunci $\bigcap B \in F$, şi, presupunând prin absurd că $\bigcap A = (\bigcap B) \cap (I \setminus X) = \emptyset$, obţinem $\bigcap B \subseteq X$, deci $X \in F$, ceea ce este o contradicție.

2 Logica propozițională

- 1. Fie φ , ψ , $\chi \in E(Q)$. Arătați că avem:
 - (a) $\psi \models \varphi \rightarrow \psi$;
 - (b) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$.

Soluție: Vom folosi în demonstrații următoarele: pentru orice $a \in 2$,

$$1 \rightarrow a = a,$$
 $a \rightarrow 1 = 1,$ $0 \rightarrow a = 1,$ $a \rightarrow 0 = \neg a,$ $0 \land a = a.$ $0 \land a = 0.$

(a) Fie $e:Q\to 2$ cu $e^+(\psi)=1.$ Vrem să arătăm că $e^+(\varphi\to\psi)=1.$ Dar:

$$e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1.$$

(b) Fie $e:Q\to 2$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi).$$

Observăm că

$$e^{+}(\varphi \to (\psi \to \chi)) = e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)),$$

$$e^{+}(\varphi \land \psi \to \chi) = (e^{+}(\varphi) \land e^{+}(\psi)) \to e^{+}(\chi),$$

deci trebuie arătat că

$$e^+(\varphi) \rightarrow (e^+(\psi) \rightarrow e^+(\chi)) = (e^+(\varphi) \wedge e^+(\psi)) \rightarrow e^+(\chi).$$

Avem cazurile:

i. $e^+(\varphi) = 0$. Atunci

$$\begin{array}{lcl} e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)) & = & 0 \to (e^{+}(\psi) \to e^{+}(\chi)) = 1, \\ (e^{+}(\varphi) \land e^{+}(\psi)) \to e^{+}(\chi) & = & (0 \land e^{+}(\psi)) \to e^{+}(\chi) = 0 \to e^{+}(\chi) = 1. \end{array}$$

ii. $e^+(\varphi) = 1$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = e^{+}(\psi) \rightarrow e^{+}(\chi),$$
$$(e^{+}(\varphi) \wedge e^{+}(\psi)) \rightarrow e^{+}(\chi) = (1 \wedge e^{+}(\psi)) \rightarrow e^{+}(\chi) = e^{+}(\psi) \rightarrow e^{+}(\chi).$$

2. Considerăm Q numărabilă, i.e. $Q = \{v_0, v_1, v_2, \ldots\}$. Să se găsească câte un model pentru fiecare dintre formulele:

- (a) $v_0 \to v_2$;
- (b) $v_0 \wedge v_3 \wedge \neg v_4$.

Soluţie:

(a) Fie funcția $e: Q \to 2$, definită, pentru orice $x \in Q$, prin:

$$e(x) := \begin{cases} 1, & \text{dacă } x = v_2, \\ 0, & \text{altfel.} \end{cases}$$

Atunci:

$$e^+(v_0 \to v_2) = e^+(v_0) \to e^+(v_2) = e(v_0) \to e(v_2) = 0 \to 1 = 1,$$

deci $e \models v_0 \rightarrow v_2$.

(b) Fie funcția $e:Q\to 2$, definită, pentru orice $x\in Q$, prin:

$$e(x) := \begin{cases} 0, & \text{dacă } x = v_4, \\ 1, & \text{altfel.} \end{cases}$$

Atunci:

$$e^{+}(v_{0} \wedge v_{3} \wedge \neg v_{4}) = e^{+}(v_{0}) \wedge e^{+}(v_{3}) \wedge \neg e^{+}(v_{4})$$

$$= e(v_{0}) \wedge e(v_{3}) \wedge \neg e(v_{4})$$

$$= 1 \wedge 1 \wedge \neg 0$$

$$= 1 \wedge 1 \wedge 1$$

$$= 1,$$

deci $e \models v_0 \land v_3 \land \neg v_4$.

3. Să se demonstreze că, pentru orice formulă φ , $\neg \varphi$ este nesatisfiabilă dacă și numai dacă φ este tautologie.

Solutie:

Avem:

$$\neg \varphi \text{ e nesatisfiabilă} \iff \neg \varphi \text{ nu e satisfiabilă} \\ \iff \text{ nu avem că} \neg \varphi \text{ e satisfiabilă} \\ \iff \text{ nu avem că există } e: Q \rightarrow 2 \text{ cu } e^+(\neg \varphi) = 1 \\ \iff \text{ pentru orice } e: Q \rightarrow 2, \ e^+(\neg \varphi) \neq 1 \\ \iff \text{ pentru orice } e: Q \rightarrow 2, \ e^+(\neg \varphi) = 0 \\ \iff \text{ pentru orice } e: Q \rightarrow 2, \ \neg e^+(\varphi) = 0 \\ \iff \text{ pentru orice } e: Q \rightarrow 2, \ e^+(\varphi) = 1 \\ \iff \varphi \text{ este tautologie.}$$

4. Confirmați sau infirmați:

- (a) pentru orice φ , $\psi \in E(Q)$, $\models \varphi \land \psi$ dacă şi numai dacă $\models \varphi$ şi $\models \psi$;
- (b) pentru orice $\varphi, \psi \in E(Q), \models \varphi \lor \psi$ dacă și numai dacă $\models \varphi$ sau $\models \psi$.

Soluţie:

(a) Este adevărat. Fie $\varphi, \psi \in E(Q)$. Avem:

$$\begin{split} &\models \varphi \wedge \psi &\iff \text{ pentru orice } e: Q \to 2, e^+(\varphi \wedge \psi) = 1 \\ &\iff \text{ pentru orice } e: Q \to 2, e^+(\varphi) \wedge e^+(\psi) = 1 \\ &\iff \text{ pentru orice } e: Q \to 2, e^+(\varphi) = 1 \text{ \sharp} e^+(\psi) = 1 \\ &\iff \text{ pentru orice } e: Q \to 2, e^+(\varphi) = 1 \text{ \sharp} \\ &\iff \text{ pentru orice } e: Q \to 2, e^+(\psi) = 1 \\ &\iff \models \varphi \text{ \sharp} \models \psi. \end{split}$$

(b) Nu este adevărat! Fie $v \in Q$ arbitrar. Vom lua $\varphi := v$ și $\psi := \neg v$. Luăm $e_0 : Q \to 2$ ca fiind funcția constantă 0. Atunci $e_0^+(\varphi) = e_0^+(v) = e_0(v) = 0$. Deci $e_0 \not\models \varphi$. Prin urmare, $\not\models \varphi$. Luăm $e_1: Q \to 2$ ca fiind funcția constantă 1. Atunci $e_1^+(\psi) = e_1^+(\neg v) = \neg e_1^+(v) = \neg e_1(v) = \neg 1 = 0$. Deci $e_1 \not\models \psi$. Prin urmare, $\not\models \psi$.

Fie acum $e:Q\to 2$ arbitrară. Atunci

$$e^+(\varphi \lor \psi) = e^+(v \lor \neg v) = e^+(v) \lor e^+(\neg v) = e^+(v) \lor \neg e^+(v) = e(v) \lor \neg e(v) = 1,$$

deci $e \models \varphi \lor \psi$. Prin urmare, avem că $\models \varphi \lor \psi$.

- 5. Considerăm Q numărabilă, i.e. $Q = \{v_0, v_1, v_2, \ldots\}$. Aflați mulțimea modelelor pentru fiecare dintre mulțimile de formule:
 - (a) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
 - (b) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

Solutie:

- (a) Fie $e:Q\to 2$ şi $n\in\mathbb{N}$. Atunci $e\models v_n\to v_{n+1}$ dacă şi numai dacă $e^+(v_n\to v_{n+1})=1$ dacă şi numai dacă $e^+(v_n)\to e^+(v_{n+1})=1$ dacă şi numai dacă $e(v_n)\to e(v_{n+1})=1$ dacă şi numai dacă $e(v_n)\le e(v_{n+1})$. Prin urmare,
 - $e \models \Gamma$ dacă şi numai dacă pentru orice $n \in \mathbb{N}, e \models v_n \to v_{n+1}$ dacă şi numai dacă pentru orice $n \in \mathbb{N}, e(v_n) \le e(v_{n+1})$ dacă şi numai dacă (pentru orice $v \in Q, e(v) = 0$) sau (există $k \in \mathbb{N}$ astfel încât pentru orice $i < k, e(v_i) = 0$ şi pentru orice $i \ge k, e(v_i) = 1$).

Definim $e^0: Q \to 2$ ca fiind funcția constantă 0. Definim și, pentru orice $k \in \mathbb{N}$, $e_k: Q \to 2$, punând, pentru orice $i \in \mathbb{N}$,

$$e_k(v_i) := \begin{cases} 0, & \text{dacă } i < k, \\ 1, & \text{dacă } i \ge k. \end{cases}$$

Atunci

$$Mod(\Gamma) = \{e_k \mid k \in \mathbb{N}\} \cup \{e^0\}.$$

- (b) Fie $e: Q \to 2$. Atunci
 - $e \models \Gamma$ dacă și numai dacă $e \models v_0$ și, pentru orice $n \in \{0, 1, \dots, 7\}, e \models v_n \rightarrow v_{n+1}$ dacă și numai dacă $e(v_0) = 1$ și, pentru orice $n \in \{0, 1, \dots, 7\}, e(v_n) \leq e(v_{n+1})$ dacă și numai dacă pentru orice $n \in \{0, 1, \dots, 8\}, e(v_n) = 1$.

Aşadar,

$$Mod(\Gamma) = \{e : Q \to 2 \mid \text{ pentru orice } n \in \{0, 1, \dots, 8\}, \ e(v_n) = 1\}.$$

6. Fie $f: Q \to 2$. Găsiți $\Gamma \subseteq E(Q)$ astfel încât $Mod(\Gamma) = \{f\}$.

Solutie: Luăm $\Gamma := Q^f = \{v^f \mid v \in Q\}.$

Fie $e: Q \to 2$. Avem $e \in Mod(\Gamma)$ dacă și numai dacă pentru orice $v \in Q$, $e \models v^f$ dacă și numai dacă pentru orice $v \in Q$, $e^+(v^f) = 1$. Vom arăta că ultima afirmație este echivalentă cu e = f.

Presupunem că pentru orice $v \in Q$, $e^+(v^f) = 1$. Fie $v \in Q$. Vrem e(v) = f(v). Dacă f(v) = 1, atunci $v^f = v$ și deci $e(v) = e^+(v) = e^+(v^f) = 1 = f(v)$. Dacă f(v) = 0, atunci $v^f = \neg v$ și deci

$$e(v) = e^+(v) = \neg \neg e^+(v) = \neg e^+(\neg v) = \neg e^+(v^f) = \neg 1 = 0 = f(v).$$

Invers, presupunem că e=f și vrem să arătăm că pentru orice $v\in Q,\ e^+(v^f)=1.$ Fie $v\in Q.$ Atunci $e^+(v^f)=f^+(v^f)=1.$

7. Considerăm Q numărabilă, i.e. $Q = \{v_0, v_1, v_2, \ldots\}$. Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.

Fie Γ o multime de formule ca în enunț. Dat fiind că Γ este satisfiabilă, admite un model și fie acesta e. Pe de altă parte, dat fiind că Γ este finită, există un $n \in \mathbb{N}$ cu proprietatea $\operatorname{c\check{a}} \bigcup_{\varphi \in \Gamma} Var(\varphi) \subseteq \{v_0, v_1, \dots, v_n\}.$

Fie, atunci, pentru orice $k \in \mathbb{N}$, câte o funcție $e_k : Q \to 2$, definită, pentru orice $x \in Q$, prin:

$$e_k(x) := \begin{cases} e(x), & \text{dacă } x \in \{v_0, \dots, v_n\} \\ 1, & \text{dacă } x \in \{v_{n+1}, \dots, v_{n+k}\} \\ 0, & \text{altfel.} \end{cases}$$

Atunci, pentru $k \neq l$ avem $e_k \neq e_l$. Prin urmare, $\{e_k \mid k \in \mathbb{N}\}$ este o mulţime numărabilă. Pentru orice $k \in \mathbb{N}$ şi $\varphi \in \Gamma$, avem că $e_{k|Var(\varphi)} = e_{|Var(\varphi)}$, deci $e_k^+(\varphi) = e^+(\varphi) = 1$. Aşadar, $e_k \models \varphi$.

Am obținut astfel că $\{e_k \mid k \in \mathbb{N}\} \subseteq Mod(\Gamma)$. Aşadar, $Mod(\Gamma)$ este infinită.

8. Considerăm Q numărabilă, i.e. $Q = \{v_0, v_1, v_2, \ldots\}$. Găsiți o mulțime (infinită) de formule cu proprietatea că nu există o mulțime finită de formule care să aibă exact aceleași modele.

Considerăm $\Gamma := Q$. Clar, Γ este infinită. Fie $f: Q \to 2$ funcția constantă 1. Avem că $Mod(\Gamma) = \{f\}.$

Fie acum Δ o multime finită de formule. Avem două cazuri:

- (a) Δ nu este satisfiabilă. Atunci $Mod(\Delta) = \emptyset$.
- (b) Δ este satisfiabilă. Atunci aplicăm exercițiul precedent pentru a concluziona că $Mod(\Delta)$ este infinită.

În ambele cazuri, obţinem că $Mod(\Delta) \neq Mod(\Gamma)$.

- 9. Fie $\Gamma \subseteq E(Q)$ și $\varphi, \psi \in E(Q)$. Să se arate că:
 - (a) $\{\psi, \neg\psi\} \vdash \varphi$;
 - (b) $\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$;
 - (c) $\Gamma \cup \{\neg \varphi\} \vdash \psi$ şi $\Gamma \cup \{\neg \varphi\} \vdash \neg \psi$ implică $\Gamma \vdash \varphi$;
 - (d) $\vdash \neg \neg \varphi \rightarrow \varphi$;
 - (e) $\vdash \varphi \rightarrow \neg \neg \varphi$.

Solutie:

- (a) Avem:

 - Teorema deducției.
- (b) Avem:
- (c) Avem:

```
\begin{array}{llll} (1) & \Gamma \cup \{\neg \varphi\} & \vdash \neg \psi \to (\psi \to \bot) & \text{Ex. 9b} \\ (2) & \Gamma \cup \{\neg \varphi\} & \vdash \neg \psi & \text{Ipoteză} \\ (3) & \Gamma \cup \{\neg \varphi\} & \vdash \psi \to \bot & (\text{MP}) \colon (1), \ (2) \\ (4) & \Gamma \cup \{\neg \varphi\} & \vdash \psi & \text{Ipoteză} \\ (5) & \Gamma \cup \{\neg \varphi\} & \vdash \bot & (\text{MP}) \colon (3), \ (4) \\ (6) & \Gamma & \vdash \varphi & \text{Metoda reducerii la absurd.} \end{array}
```

(d) Avem:

- (e) Avem:
 - $\begin{array}{lll} (1) & \vdash \neg \neg \neg \varphi \rightarrow \neg \varphi & \text{Ex. 9d} \\ (2) & \vdash (\neg \neg \neg \varphi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \neg \neg \varphi) & \text{(A3)} \\ (3) & \vdash \varphi \rightarrow \neg \neg \varphi & \text{(MP): (1), (2).} \end{array}$

10. Să se arate că, pentru orice $\varphi \in E(Q)$,

$$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi.$$

Soluţie: Avem:

- $\begin{array}{llll} (1) & \{ \neg \varphi \rightarrow \varphi, \neg \varphi \} & \vdash \neg \varphi \rightarrow \varphi \\ (2) & \{ \neg \varphi \rightarrow \varphi, \neg \varphi \} & \vdash \neg \varphi \\ (3) & \{ \neg \varphi \rightarrow \varphi, \neg \varphi \} & \vdash \varphi \\ (4) & \{ \neg \varphi \rightarrow \varphi \} & \vdash \varphi \\ (5) & \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi \end{array} \quad \begin{array}{lll} (\text{MP}): (1), (2) \\ \text{Ex. 9c pentru } (1), (3) \\ \text{Teorema deducției.} \end{array}$
- 11. Să se arate că, pentru orice φ , $\psi \in E(Q)$,

$$\vdash \psi \to (\neg \varphi \to \neg (\psi \to \varphi)).$$

Solutie: Avem:

12. ("Reciproca" Axiomei 3)

Să se arate că, pentru orice φ , $\psi \in E(Q)$,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

Soluţie: Avem:

3 Logica de ordinul I

- 1. Considerăm σ_{ar} și \mathcal{N} așa cum au fost ele definite în curs. Fie $x, y \in V$ cu $x \neq y$.
 - (a) Fie $t := \dot{\times} (\dot{S}x, \dot{S}\dot{S}y)$. (Îl putem scrie pe t şi ca $\dot{S}x\dot{\times}\dot{S}\dot{S}y$.) Să se calculeze $t_v^{\mathcal{N}}$, unde $v : V \to \mathbb{N}$ verifică v(x) = 3 şi v(y) = 7.
 - (b) Fie $\varphi := \dot{<}(x, \dot{S}y) \to (\dot{<}(x, y) \lor x = y)$. (Îl putem scrie pe φ și ca $x \dot{<} \dot{S}y \to (x \dot{<} y \lor x = y)$.) Să se arate că, pentru orice $v : V \to \mathbb{N}, \ \|\varphi\|_v^{\mathcal{N}} = 1$.

Soluţie:

(a) Pentru orice $v: V \to \mathbb{N}$, avem

$$\begin{array}{lcl} t_v^{\mathcal{N}} & = & N_{\dot{\boldsymbol{X}}}((\dot{S}\boldsymbol{x})_v^{\mathcal{N}}, (\dot{S}\dot{S}\boldsymbol{y})_v^{\mathcal{N}}) = (\dot{S}\boldsymbol{x})_v^{\mathcal{N}} \cdot (\dot{S}\dot{S}\boldsymbol{y})_v^{\mathcal{N}} \\ & = & N_{\dot{S}}(\boldsymbol{x}_v^{\mathcal{N}}) \cdot N_{\dot{S}}((\dot{S}\boldsymbol{y})_v^{\mathcal{N}}) = S(\boldsymbol{v}(\boldsymbol{x})) \cdot S(N_{\dot{S}}(\boldsymbol{y}_v^{\mathcal{N}})) \\ & = & S(\boldsymbol{v}(\boldsymbol{x})) \cdot S(S(\boldsymbol{v}(\boldsymbol{y}))). \end{array}$$

Prin urmare, dacă v(x) = 3 și v(y) = 7, atunci

$$t_v^{\mathcal{N}} = S(3) \cdot S(S(7)) = 4 \cdot 9 = 36.$$

(b) Pentru orice $v: V \to \mathbb{N}$, avem

$$\begin{split} \|\varphi\|_v^{\mathcal{N}} &= 1 \quad \Leftrightarrow \quad \|\dot{<}(x,\dot{S}y)\|_v^{\mathcal{N}} = 0 \text{ sau } \|\dot{<}(x,y) \vee x = y\|_v^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad \text{nu avem } N_{\dot{<}}(v(x),S(v(y))) \text{ sau avem} \\ & \|\dot{<}(x,y)\|_v^{\mathcal{N}} = 1 \text{ sau avem } \|x = y\|_v^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad \text{nu avem } v(x) < S(v(y)) \text{ sau avem } v(x) < v(y) \\ & \quad \text{sau avem } v(x) = v(y) \\ & \Leftrightarrow \quad v(x) \geq S(v(y)) \text{ sau } v(x) < v(y) \text{ sau } v(x) = v(y) \\ & \Leftrightarrow \quad v(x) \geq v(y) + 1 \text{ sau } v(x) < v(y) \text{ sau } v(x) = v(y). \end{split}$$

Prin urmare, pentru orice $v: V \to \mathbb{N}, \|\varphi\|_v^{\mathcal{N}} = 1.$

De obicei, scriem:

$$\begin{split} \|\varphi\|_v^{\mathcal{N}} &= 1 \quad \Leftrightarrow \quad \|\dot{<}(x,\dot{S}y)\|_v^{\mathcal{N}} = 0 \text{ sau } \|\dot{<}(x,y) \vee x = y\|_v^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad v(x) \geq S(v(y)) \text{ sau } v(x) < v(y) \text{ sau } v(x) = v(y) \\ & \Leftrightarrow \quad v(x) \geq v(y) + 1 \text{ sau } v(x) < v(y) \text{ sau } v(x) = v(y). \end{split}$$

2. Considerăm σ_{ar} și \mathcal{N} așa cum au fost ele definite în curs. Fie formula $\varphi := \forall x_4(x_3 < x_4 \lor x_3 = x_4)$. Să se caracterizeze acele $v : V \to \mathbb{N}$ ce au proprietatea că $\|\varphi\|_v^{\mathcal{N}} = 1$.

Soluţie: Fie $v:V\to\mathbb{N}$. Avem:

$$\begin{split} \|\varphi\|_v^{\mathcal{N}} &= 1 \quad \Leftrightarrow \quad \|\forall x_4(x_3 \dot{<} x_4 \vee x_3 = x_4)\|_v^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad \text{pentru orice } a \in \mathbb{N}, \ \|x_3 \dot{<} x_4 \vee x_3 = x_4\|_{v_{x_4 \leftarrow a}}^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad \text{pentru orice } a \in \mathbb{N}, \ \|x_3 \dot{<} x_4\|_{v_{x_4 \leftarrow a}}^{\mathcal{N}} \vee \|x_3 = x_4\|_{v_{x_4 \leftarrow a}}^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad \text{pentru orice } a \in \mathbb{N}, \ \|x_3 \dot{<} x_4\|_{v_{x_4 \leftarrow a}}^{\mathcal{N}} = 1 \text{ sau } \|x_3 = x_4\|_{v_{x_4 \leftarrow a}}^{\mathcal{N}} = 1 \\ & \Leftrightarrow \quad \text{pentru orice } a \in \mathbb{N}, \ v_{x_4 \leftarrow a}(x_3) < v_{x_4 \leftarrow a}(x_4) \text{ sau } v_{x_4 \leftarrow a}(x_3) = v_{x_4 \leftarrow a}(x_4) \\ & \Leftrightarrow \quad \text{pentru orice } a \in \mathbb{N}, \ v_{x_4 \leftarrow a}(x_3) \leq v_{x_4 \leftarrow a}(x_4) \\ & \Leftrightarrow \quad \text{pentru orice } a \in \mathbb{N}, \ v(x_3) \leq a \\ & \Leftrightarrow \quad v(x_3) = 0. \end{split}$$

3. Fie σ o signatură. Să se arate că pentru orice σ -formulă φ și orice variabile x, y cu $x \neq y$ și $FV(\varphi) \subseteq \{x,y\}$, avem $\exists y \forall x \varphi \models \forall x \exists y \varphi$. (Folosirea semnului \models are sens deoarece $\exists y \forall x \varphi$ și $\forall x \exists y \varphi$ sunt enunțuri.)

Soluţie: Fie \mathcal{A} o σ -structură cu universul A. Trebuie să arătăm că dacă $\mathcal{A} \models \exists y \forall x \varphi$, atunci $\mathcal{A} \models \forall x \exists y \varphi$.

Avem că $\mathcal{A} \models \exists y \forall x \varphi$ dacă și numai dacă există $v: V \to A$ astfel încât $\|\exists y \forall x \varphi\|_v^A = 1$ dacă și numai dacă există $v: V \to A$ astfel încât există $b \in A$ astfel încât pentru orice $a \in A$ avem $\|\varphi\|_{(v_{y\leftarrow b})_{x\leftarrow a}}^A = 1$, i.e., folosind ipoteza că $x \neq y$, $\|\varphi\|_{v_{x\leftarrow a,y\leftarrow b}}^A = 1$ (*).

Pe de altă parte, avem că $\mathcal{A} \models \forall x \exists y \varphi$ dacă și numai dacă există $v: V \to A$ astfel încât $\|\forall x \exists y \varphi\|_v^{\mathcal{A}} = 1$ dacă și numai dacă există $v: V \to A$ astfel încât pentru orice $c \in A$ există $d \in A$ astfel încât $\|\varphi\|_{(v_{x \leftarrow c})_{y \leftarrow d}}^{\mathcal{A}} = 1$, i.e., folosind ipoteza că $x \neq y$, $\|\varphi\|_{v_{x \leftarrow c, y \leftarrow d}}^{\mathcal{A}} = 1$ (**).

Ştim, deci, (*) şi vrem să arătăm (**).

Luăm în continuare în (**) același v ca în (*).

Fie acum $c \in A$. Vrem $d \in A$ astfel încât $\|\varphi\|_{v_x \leftarrow c}^{\mathcal{A}} = 1$.

Luăm d să fie b-ul din (*). Atunci, pentru orice $a \in A$ avem $\|\varphi\|_{v_{x\leftarrow a,y\leftarrow d}}^{\mathcal{A}}=1$. În particular, luând a:=c, obţinem $\|\varphi\|_{v_{x\leftarrow c,y\leftarrow d}}^{\mathcal{A}}=1$, ceea ce ne trebuia.

4. Fie x, y variabile cu $x \neq y$. Să se dea exemple de signatură σ şi de formulă φ cu $FV(\varphi) \subseteq \{x, y\}$ astfel încât $\forall x \exists y \varphi \not\models \exists y \forall x \varphi$. (Din nou, folosirea semnului \models are sens deoarece $\forall x \exists y \varphi$ şi $\exists y \forall x \varphi$ sunt enunţuri.)

Soluție: Vom considera σ_{ar} și \mathcal{N} așa cum au fost ele definite în curs. Fie $v:V\to\mathbb{N}$ arbitrară (de pildă, punem, pentru orice $z\in V,\,v(z):=7$).

Luăm $\sigma := \sigma_{ar}$ și $\varphi := x \dot{<} y$. Atunci

 $\|\forall x\exists y\varphi\|_v^{\mathcal{N}}=1 \quad \text{dacă și numai dacă} \quad \text{pentru orice } n\in\mathbb{N}, \text{ avem } \|\exists y\varphi\|_{v_{x\leftarrow n}}^{\mathcal{N}}=1 \\ \quad \text{dacă și numai dacă} \quad \text{pentru orice } n\in\mathbb{N} \text{ există } m\in\mathbb{N} \text{ astfel încât } \|\varphi\|_{v_{x\leftarrow n,y\leftarrow m}}^{\mathcal{N}}=1 \\ \quad \text{dacă și numai dacă} \quad \text{pentru orice } n\in\mathbb{N} \text{ există } m\in\mathbb{N} \text{ astfel încât } n< m,$

ceea ce este adevărat – se ia, de pildă, m := n + 1. Aşadar,

$$\mathcal{N} \models \forall x \exists y \varphi.$$

Pe de altă parte,

$$\begin{split} \|\exists y \forall x \varphi\|_v^{\mathcal{N}} &= 1 \quad \text{dacă și numai dacă} \quad \text{există } m \in \mathbb{N} \text{ astfel încât } \|\forall x \varphi\|_{v_y \leftarrow m}^{\mathcal{N}} = 1 \\ \quad \text{dacă și numai dacă} \quad \text{există } m \in \mathbb{N} \text{ astfel încât pentru orice } n \in \mathbb{N} \text{ avem } \|\varphi\|_{v_x \leftarrow n, y \leftarrow m}^{\mathcal{N}} = 1 \\ \quad \text{dacă și numai dacă} \quad \text{există } m \in \mathbb{N} \text{ astfel încât pentru orice } n \in \mathbb{N} \text{ avem } n < m, \end{split}$$

$$\mathcal{N} \not\models \exists y \forall x \varphi.$$

Am demonstrat că $\forall x \exists y \varphi \not\models \exists y \forall x \varphi$.

5. Fie σ o signatură, φ , $\psi \in F_{\sigma}$ și $x \in V \setminus FV(\varphi)$. Fie \mathcal{A} o σ -structură cu universul A și $v: V \to A$. Atunci avem

$$\|\forall x(\varphi \wedge \psi)\|_{v}^{\mathcal{A}} = \|\varphi \wedge \forall x\psi\|_{v}^{\mathcal{A}}.$$

Soluţie:

Avem:

$$\begin{split} \|\forall x(\varphi \wedge \psi)\|_v^{\mathcal{A}} &= 1 \quad \Leftrightarrow \quad \text{pentru orice } a \in A, \, \|\varphi \wedge \psi\|_{v_x \leftarrow a}^{\mathcal{A}} = 1 \\ & \Leftrightarrow \quad \text{pentru orice } a \in A, \, \|\varphi\|_{v_x \leftarrow a}^{\mathcal{A}} = 1 \, \text{si } \, \|\psi\|_{v_x \leftarrow a}^{\mathcal{A}} = 1 \\ & \Leftrightarrow \quad \text{pentru orice } a \in A, \, \|\varphi\|_v^{\mathcal{A}} = 1 \, \text{si } \, \|\psi\|_{v_x \leftarrow a}^{\mathcal{A}} = 1 \\ & \quad \quad \text{(aplicând Lema de coincidență)} \\ & \Leftrightarrow \quad \|\varphi\|_v^{\mathcal{A}} = 1 \, \text{si pentru orice } a \in A, \, \|\psi\|_{v_x \leftarrow a}^{\mathcal{A}} = 1 \\ & \Leftrightarrow \quad \|\varphi\|_v^{\mathcal{A}} = 1 \, \text{si } \|\forall x\psi\|_v^{\mathcal{A}} = 1 \\ & \Leftrightarrow \quad \|\varphi \wedge \forall x\psi\|_v^{\mathcal{A}} = 1. \end{split}$$

- 6. Considerăm σ_{ar} și \mathcal{N} așa cum au fost ele definite în curs. Să se dea exemplu de σ_{ar} -formule $\varphi_1, \varphi_2, \varphi_3$ astfel încât pentru orice $v: V \to \mathbb{N}$,
 - (a) $\|\varphi_1\|_v^{\mathcal{N}} = 1 \Leftrightarrow v(x_0)$ este par;
 - (b) $\|\varphi_2\|_v^{\mathcal{N}} = 1 \Leftrightarrow v(x_0)$ este prim;
 - (c) $\|\varphi_3\|_v^{\mathcal{N}} = 1 \Leftrightarrow v(x_0)$ este putere a lui 2 cu exponent strict pozitiv.

Solutie:

(a) Luăm

$$\varphi_1 := \exists x_1 (x_1 \dot{+} x_1 = x_0).$$

(b) Luăm

$$\varphi_2 := \dot{S}\dot{0} \dot{\prec} x_0 \land \forall x_1 ((x_1 \dot{\prec} x_0 \land \exists x_2 (x_1 \dot{\times} x_2 = x_0)) \rightarrow x_1 = \dot{S}\dot{0}).$$

(c) Luăm

$$\varphi_3 := \dot{S}\dot{0} \dot{<} x_0 \land \forall x_1((\dot{S}\dot{0} \dot{<} x_1 \land \exists x_2(x_1 \dot{\times} x_2 = x_0)) \rightarrow \exists x_2(x_1 = x_2 \dot{+} x_2)).$$

- 7. Considerăm signatura σ_r ce conține două simboluri de operație de aritate 2, notate cu \dotplus și $\dot{\times}$.
 - (a) Considerăm σ_r -structura \mathcal{R} cu universul \mathbb{R} , unde cele două simboluri sunt instanțiate cu operațiile uzuale pe numerele reale +, respectiv ·. Să se dea exemplu de σ_r -formulă ψ astfel încât pentru orice $v:V\to\mathbb{R}$,

$$\|\psi\|_{v}^{\mathcal{R}} = 1 \Leftrightarrow v(x_0) < v(x_1).$$

(b) (Exercițiu suplimentar) Considerăm σ_r -structura \mathcal{Z} cu universul \mathbb{Z} , unde cele două simboluri sunt instanțiate cu operațiile uzuale pe numerele întregi +, respectiv ·. Să se dea exemplu de σ_r -formulă χ astfel încât pentru orice $v: V \to \mathbb{Z}$,

$$\|\chi\|_{v}^{\mathcal{Z}} = 1 \Leftrightarrow v(x_0) < v(x_1).$$

Soluţie:

(a) Luăm

$$\psi := \exists x_2 (x_1 = x_0 \dot{+} x_2 \land \exists x_3 (x_2 = x_3 \dot{\times} x_3)).$$

(b) Ne bazăm pe rezultatul lui J. L. Lagrange (1770), care spune că orice număr natural se scrie ca o sumă de patru pătrate. Așadar, luăm (cu parantezările de rigoare)

$$\chi := \exists x_2 (x_1 = x_0 + x_2 \land \exists x_3 \exists x_4 \exists x_5 \exists x_6 (x_2 = x_3 \times x_3 + x_4 \times x_4 + x_5 \times x_5 + x_6 \times x_6)).$$

8. Considerăm signatura σ ce conține un singur simbol de operație, +, de aritate 2. Să se găsească un σ -enunț φ astfel încât $(\mathbb{Z},+) \models \varphi$, dar $(\mathbb{Z} \times \mathbb{Z},+) \not\models \varphi$.

Solutie:

Prima soluție: se ia φ ca fiind

$$\forall x_0 \forall x_1 ((\neg \exists x_2 (x_0 = x_2 + x_2) \land \neg \exists x_2 (x_1 = x_2 + x_2)) \rightarrow \exists x_2 (x_0 + x_1 = x_2 + x_2)),$$

ce exprimă faptul că suma a două elemente "nepare" este pară – în \mathbb{Z} , avem într-adevăr regula "impar + impar = par", dar în $\mathbb{Z} \times \mathbb{Z}$ avem contraexemplul (1,0) + (0,1) = (1,1).

A doua soluție: se ia φ ca fiind

$$\exists x_1 \forall x_0 (\exists x_2 (x_0 = x_2 + x_2) \lor \exists x_2 (x_0 = x_2 + x_2 + x_1)),$$

ce este adevărată în \mathbb{Z} , luând valoarea lui x_1 să fie 1 (orice număr este ori de forma 2k, ori de forma 2k+1), dar nu este adevărat în $\mathbb{Z} \times \mathbb{Z}$, unde relația de congruență indusă de elementele pare are patru clase, și nu două.

9. Considerăm signatura σ ce conține un singur simbol de operație, ·, de aritate 2. Fie $\mathcal{G} = (G, \cdot^{\mathcal{G}})$ un grup finit. Să se determine un enunț $\varphi_{\mathcal{G}}$ astfel încât pentru orice grup $\mathcal{H} = (H, \cdot^{\mathcal{H}})$ avem că $\mathcal{H} \models \varphi_{\mathcal{G}}$ dacă și numai dacă \mathcal{H} este izomorf cu \mathcal{G} .

Soluție: Dat fiind că G este mulțime finită, există $n \in \mathbb{N}$ și $h: n^+ \to G$ o bijecție. Luăm enunțul φ_G ca fiind

$$\exists x_0 \dots \exists x_n \left(\bigwedge_{\substack{i,j \in n^+ \\ i \neq j}} \neg (x_i = x_j) \land \forall x_{n^+} \left(\bigvee_{i \in n^+} z = x_i \right) \land \bigwedge_{\substack{i,j \in n^+ \\ i \neq j}} x_i \cdot x_j = x_{h^{-1}(h(i) \cdot \mathcal{G}_h(j))} \right),$$

unde primii doi termeni ai conjuncției din paranteză exprimă faptul că x_0, \ldots, x_n sunt exact elementele potențialei structuri, iar ultimul termen codifică tabla grupului \mathcal{G} .

10. Considerăm signatura σ ce conține un singur simbol de relație, $\dot{<}$, de aritate 2. Fie Γ o mulțime de enunțuri ce conține axiomele de ordine strictă, totală și ce admite măcar un model infinit. Să se arate că există un model \mathcal{A} pentru Γ în care, mai mult, $(\mathbb{Q}, <)$ se scufundă, i.e. există $f: \mathbb{Q} \to A$ (necesar injectivă) cu proprietatea că pentru orice $q, r \in \mathbb{Q}, q < r$ dacă și numai dacă $f(q) \dot{<}^{A} f(r)$.

Soluție: Notăm cu σ' signatura ce extinde σ prin adăugarea unei familii de constante $\{c_q\}_{q\in\mathbb{Q}}$, câte una corespunzătoare fiecărui număr rațional. Mai departe, notăm cu Γ' mulțimea Γ la care adăugăm toate enunțurile de forma $c_q \dot{<} c_r$, cu q < r. Fie $\mathcal B$ un model infinit pentru Γ .

Arătăm că Γ' este finit satisfiabilă, deci satisfiabilă. Fie Δ o submulţime finită a lui Γ' . Există $n \in \mathbb{N}^*$ şi $q_1, \ldots, q_n \in \mathbb{Q}$ astfel încât doar constante dintre c_{q_1}, \ldots, c_{q_n} apar în Δ . Fără a restrânge generalitatea, considerăm $q_1 < \ldots < q_n$. Structura \mathcal{B} fiind infinită, admite o secvență $b_1 \dot{<}^{\mathcal{B}} \ldots \dot{<}^{\mathcal{B}} b_n$. Construim o σ' -expansiune \mathcal{B}_{Δ} a lui \mathcal{B} în felul următor: pentru orice $i \in \{1, \ldots, n\}$, punem $c_{q_i}^{\mathcal{B}} := b_i$, iar pentru orice $q \notin \{q_1, \ldots, q_n\}$, punem $c_q^{\mathcal{B}} := b_1$ (o valoare arbitrară). Atunci \mathcal{B}_{Δ} va fi model pentru Δ .

Fie \mathcal{C} un model pentru Γ' . Notăm cu \mathcal{A} σ -redusa lui \mathcal{C} . Atunci \mathcal{A} este modelul căutat pentru Γ – scufundarea f va fi dată, pentru orice $q \in \mathbb{Q}$, de

$$f(q) := c_q^{\mathcal{C}}.$$