Matemática Discreta

CLASE N°4

En esta clase se desarrollarán los siguientes temas:

- Relación de orden- diagrama de Hasse- Elementos notables. Orden producto.

Para todas las clases contamos con la ayuda del sitio de la cátedra http://discretaunlam.net.ar donde encontrarás videos, ejercicios, explicaciones, autoevaluaciones de todos los temas de Matemática Discreta.

Relación de orden

Cualquier ejemplo en el que ordenemos elementos se tratará casi seguro de una relación de orden. El orden de los números reales o el alfabético de las letras lo son.

En las relaciones de orden se suele utilizar el símbolo $\underline{\alpha}$. Es decir, que en lugar de escribir **1R2** pondremos **1** $\underline{\alpha}$ **2** indicando la relación (orden) entre dichos elementos.

Definición:

Se llama relación de orden sobre un conjunto A a cualquier relación $\underline{\alpha}$ entre sus elementos que verifica las siguientes tres propiedades:

- **1.** Reflexiva: para cualquier $a \in A \rightarrow a \underline{\alpha}$ a .Se lee a <u>precede a</u> a
- **2. Antisimétrica**: si a $\underline{\alpha}$ b y b $\underline{\alpha}$ a entonces a = b. Se lee si a <u>precede a</u> b y b <u>precede a</u> a entonces a es igual a b
- **3. Transitiva**: si a $\underline{\alpha}$ b y b $\underline{\alpha}$ c, entonces a $\underline{\alpha}$ c. Se lee si a <u>precede a</u> b y b <u>precede a</u> c entonces a <u>precede a</u> c

El par (A, $\underline{\alpha}$), formado por un conjunto A no vacío y una relación de orden $\underline{\alpha}$ definida sobre él, se llama conjunto ordenado.

Algunos conjuntos ordenados son:

- El conjunto de partes de A con la relación inclusión $(P(A), \subseteq)$
- El conjunto de los números naturales con la relación es divisor de (N, |)
- El conjunto de los números naturales con la relación es menor que (N, ≤)

 El conjunto de los divisores positivos de n con la relación es divisor de (Dn, |)

En el conjunto ordenado (A, $\underline{\alpha}$), dos elementos a, b \in A se dicen comparables si a $\underline{\alpha}$ b o b $\underline{\alpha}$ a. Es decir (a, b) \in $\underline{\alpha}$ o (b, a) \in $\underline{\alpha}$.

En el conjunto ordenado (N, |) los elementos 3 y 6 son comparables ya que el 3 divide exactamente a 6, mientras que 3 y 7 no son comparables ya que 3 no divide exactamente a 7 y 7 no divide exactamente a 3.

> Ejercicio resuelto:

<u>1.</u> En el conjunto ($A = \{1, 2, 4, 5, 6\}$, |) ¿qué elementos son comparables con 4? ¿Y con 1? ¿Hay algún elemento que sea comparable con todos los demás?

Solución

Con el 4 son comparables el 1, el 2 y el 4 ya que 1|4; 2|4 y 4|4 Con el 1 son comparables todos ya que 1 es divisor del 1, 2, 4, 5,6

Cuando en el conjunto ordenado $(A,\underline{\alpha})$ dos elementos cualesquiera son siempre comparables, se dice que $\underline{\alpha}$ es un **orden total**. En caso contrario se dice que $\underline{\alpha}$ es un **orden parcial**.

Por ejemplo $(P(A), \subseteq)$ con $A=\{1,2\}$ es un orden parcial ya que $\{1\}$ no está incluido en $\{2\}$ y $\{2\}$ no está incluido en $\{1\}$.Por lo tanto no son comparables.

Dado un conjunto A diremos que está ordenado si en él hay definida una relación de orden. Dicho conjunto estará parcial o totalmente ordenado según que la relación definida sea parcial o total.

Relación de orden amplio

Una relación es de orden amplio s es <u>reflexiva</u>, <u>antisimétrica</u> y <u>transitiva</u>.

Por ejemplo: la inclusión de conjuntos \subseteq es una relación de orden amplio en el conjunto de partes P(A).

Relación de orden estricto

Una relación es de orden estricto si es **Arreflexiva**, **Asimétrica** y **Transitiva**.

Por ejemplo: la relación "menor que", <, es una relación de orden estricto en N.

Relación de orden parcial

Una relación de orden es parcial, si algunos elementos del conjunto no son comparables entre sí.

Por ejemplo: la inclusión de conjuntos ⊆ en el conjunto de partes P(A) es un orden parcial

Relación de orden total

Una relación es de orden total si todos los elementos del conjunto son comparables siendo su diagrama de Hasse lineal. Es decir,

$$\forall$$
 a, b \in A: a $\underline{\alpha}$ b \vee b $\underline{\alpha}$ a

Por ejemplo: la relación "menor o igual que", ≤, es una relación de orden total.

Conjunto bien ordenado

Un conjunto está bien ordenado por una relación de orden, si y solo si está totalmente ordenado, y además todo subconjunto no vacío tiene primer elemento.

Diagrama de Hasse

Consiste en la simplificación del dígrafo que representa la relación de orden $\underline{\alpha}$

Para obtener el diagrama de Hasse:

- Se eliminan las aristas que pueden ser deducidas de otras por transitividad;
- Se eliminan los lazos (se sabe que todos los posibles lazos están, por reflexividad)
- Se ubican los vértices de modo que todas las flechas vayan hacia arriba, y se eliminan las flechas

SUGERENCIA ANTES DE AVANZAR:

Mirá el video "Diagrama de Hasse de una relación binaria de orden" en el sitio de la cátedra http://discretaunlam.net.ar sección Apuntes-Conjuntos ordenados.

Ejemplos:

1) Diagrama de Hasse del conjunto ordenado (P(A), \subseteq) con $A = \{1,2\}$

2) Diagrama de Hasse del conjunto ordenado (P(A), \subseteq) con A= $\{x,y,z\}$:

Para tener en cuenta

Sea n, un número entero positivo, en general si $n = p_1^{k_1}.p_2^{k_2}....p_i^{k_i}$, con los p_i distintos números primos, se llama d(n) a la cantidad de divisores positivos de n, la cual se obtiene de la siguiente manera:

$$d(n)=(k_1+1)(k_2+1)...(k_i+1)$$

3) Diagrama de Hasse del conjunto ordenado (D (30), |)
Para saber la cantidad de divisores positivos de 30, lo factoreamos:

$$30 = 5^{1}.3^{1}.2^{1}.1$$

La cantidad de divisores positivos de 30 = (1 + 1). (1 + 1). (1 + 1) = 2.2.2= 8

4) Diagrama de Hasse para el conjunto ordenado (D₁₈, |)

Factoreamos $18 = 3^2.2^1.1$

Por lo tanto, la cantidad de divisores positivos de 18 = (1 + 2). (1 + 1) = 3.2 = 6

> Ejercicio resuelto

- 1.1 Probar que (A, \leq) está ordenado
- 1.2 Realizar el diagrama de Hasse
- 1.3 ¿Está totalmente ordenado? ¿Es un buen orden?

1.1. Para probar que (A, ≤) está ordenado hay que verificar las propiedades: reflexiva; antisimétrica y transitiva.

<u>Solución</u>

$$\alpha$$
 es reflexiva ya que $\forall x \in A : x \leq x \Rightarrow (x, x) \in \underline{\alpha}$
 α es antisimétrica ya que $\forall x, y \in A : (x, y) \in \alpha \land (y, x) \in \alpha \Rightarrow x \leq y \land y \leq x \Rightarrow x = y$

$$\alpha$$
 es transitiva ya que $\forall x; y; z : (x, y) \in R \land (y, z) \in R \Rightarrow x \le y \land y \le z \Rightarrow x \le z \Rightarrow (x, z) \in R$

Por lo tanto (A, \leq) es un conjunto ordenado

1.2. Diagrama de Hasse

1.3. Es un orden total ya que 0 ≤ 2 ≤ 5≤ 10 ≤ 11≤15Es bien ordenado porque todo subconjunto no vacío tiene primer elemento

ORDEN PRODUCTO

Si $(A, \underline{\alpha_1})$ y $(B, \underline{\alpha_2})$ son dos conjuntos ordenados, en el conjunto producto $A \times B$ se puede definir un orden de la siguiente manera:

$$\big(a_{_{1}},b_{_{1}}\big)\underline{\alpha}\big(a_{_{2}},b_{_{2}}\big) \Leftrightarrow \ a_{_{1}}\underline{\alpha_{_{1}}}a_{_{2}} \ y \ b_{_{1}}\underline{\alpha_{_{2}}}b_{_{2}}$$

Ejemplo:

 $(\{0,1\}, \leq)$ conjunto ordenado

({1,2,3,6}, |) conjunto ordenado

En el conjunto producto A \times B = $\{(0;1),(0;2),(0;3),(0;6),(1;1),(1;2),(1;3),(1;6)\}$ se define un orden de la siguiente manera: $(a_1,b_1) \underline{\alpha} (a_2,b_2) \leftrightarrow a_1 \leq a_2$ y $b_1 | b_2$ cuyo diagrama de Hasse es el siguiente

Elementos característicos de un conjunto ordenado

Sea $(A, \underline{\alpha})$ un conjunto ordenado.

 Un elemento x de A es maximal de A si no hay en A elemento alguno distinto de él que sea estrictamente posterior a él. Es decir, ningún elemento de A, lo sigue.

 $x \in A$ es elemento maximal si no existe $a \in A$, $a \neq x$, tal que $x \underline{\alpha}$ a.

 Un elemento y de A es minimal de A si no hay en A elemento alguno distinto de él que sea estrictamente anterior a él. Es decir, ningún elemento de A, lo precede.

 $y \in A$ es elemento minimal si no existe $a \in A$, $a \neq y$, tal que a $\underline{\alpha}$ y.

 M es último elemento o máximo de A si M sigue a todos los elementos de A.

 $M \in A$ es máximo de A si a $\underline{\alpha}$ M para todo a $\in A$. Si existe es único

• m es primer elemento o mínimo de A si m **precede a todos** los elementos de A.

 $m \in A$ es mínimo de A si $m \underline{\alpha}$ a para todo $a \in A$. Si existe es único.

SUGERENCIA ANTES DE AVANZAR:

Mirá el video "*Máximos,mínimos,maximales y minimales*" en el sitio de la cátedra http://discretaunlam.net.ar sección Apuntes-Conjuntos ordenados.

Cotas superiores, cotas inferiores, ínfimo y supremo

Sea $(A, \underline{\alpha})$ un conjunto ordenado y un subconjunto de A no vacío $\emptyset \neq B \subset A$.

C ∈ A es cota superior de B si C sigue a todos los elementos de
 B.

 $C \in A$ es cota superior de B si b α C para todo b \in B.

- S ∈ A es supremo de B si es el primer elemento del conjunto de cotas superiores
- $s \in A$ es supremo de B, si s es cota superior y para cualquier otra cota superior c se cumple que s $\underline{\alpha}$ c. Si existe, es único
 - c ∈ A es cota inferior de B si c precede a todos los elementos de B.

 $c \in A$ es cota inferior de B si $c \underline{\alpha}$ b para todo $b \in B$.

• $i \in A$ es ínfimo de B si es el último elemento del conjunto de cotas inferiores

 $i \in A$ es ínfimo de B si es cota inferior y para cualquier otra cota inferior c se cumple que c $\underline{\alpha}$ i.Si existe es único

Observaciones

- ✓ Se dice que B está acotado si tiene cotas superiores e inferiores.
- ✓ Si el supremo pertenece al subconjunto B es el máximo de B.
- ✓ Si el ínfimo pertenece al subconjunto B es el mínimo de B.

Mirá el video "Cotas inferiores y superiores de una relación de orden" " en el sitio de la cátedra http://discretaunlam.net.ar sección Apuntes-Conjuntos ordenados.

Eiemplo:

Maximales de $A = \{1, 4\}$

Para $B = \{5, 6, 3\}$

Minimales de A = $\{0, 9\}$ Cotas superiores = $\{3,1\}$; supremo=3

Máximo de A: No existe Cotas inferiores = $\{0\}$; ínfimo=0

Mínimo de A: No existe

Para $B = \{5,6\}$

Cotas superiores = $\{2, 3, 1\}$; no existe supremo

Cotas inferiores = {0}; ínfimo=0

> Ejercicios resueltos

1. Sea D = $\{1, 2, 3, 4, 5, 6, 7, 8\}$ ordenado como sigue

- 1.1. Hallar los elementos maximales y minimales; ¿Hay máximo? ¿Hay mínimo?
- 1.2. Enumerar los subconjuntos de 3 elementos que estén bien ordenados
- 1.3. Considerar el subconjunto B= {4, 5,6} y hallar cotas superiores e inferiores de B. ¿Hay supremo para B? ¿Hay ínfimo para B?

<u>Solución</u>

- 1.1. Maximales = {1,2}; Minimales = {8,6}; No tiene máximo ni mínimo
- 1.2. $A_1 = \{8,7,5\}$; $A_2 = \{7,5,3\}$; $A_3 = \{5,3,2\}$; $A_4 = \{5,3,1\}$; $A_5 = \{6,5,3\}$, $A_6 = \{6,4,2\}$
- 1.3. Cotas inferiores de B = {6}; Cotas superiores de B = {3,2,1}Ínfimo = 6; supremo = 3
- $\underline{2}$ En A = {a, b, c, d, e, f, g} ordenado como sigue:

- 2.1. Hallar maximales; minimales; primer elemento; último elemento;
- 2.2. Considerar $B = \{c, d, e\}$ y hallar cotas superiores e inferiores, ínfimo, mínimo, supremo, máximo de B

Solución

2.1. Maximales = $\{a, b\}$;

Minimales= {f, g};

No tiene primer elemento ni último elemento por tener más de un minimal y más de un maximal.

2.2. Cotas inferiores = $\{f\}$

Cotas superiores de $B = \{c, a, b\}$

Ínfimo = f

Supremo = c

3. En A= {1,2,3,4,5,6,7,8,9,10} ordenado de la siguiente manera: (Este diagrama de Hasse, está construido de forma creciente de abajo hacia arriba)

a) Hallar todos los elementos característicos.

b) Completar la tabla:

SUBCONJUNTO	COTA INFERIOR	COTA SUPERIOR	ÍNFIMO	SUPREMO
{1,2}				
{4,6,9}				
{4,8}				
{3,4,5,6}				
{2.10}				

Solución:

Minimales: {1, 2,10}

Maximales: {5, 8,10}

No tiene máximo ni mínimo.

b)

SUBCONJUNTO	COTA INFERIOR	COTA SUPERIOR	INFIMO	SUPREMO
{1,2}	No existe	{3,4,5,6,8}	No existe	3
{4,6,9}	{2}	No existe	2	No existe
{4,8}	{1,2,3}	No existe	3	No existe
{3,4,5,6}	{1,2,3}	{5}	3	5
{2.10}	No existe	No existe	No existe	No existe

Para finalizar con esta primera parte de conjuntos ordenados te proponemos que ingreses al sitio de la cátedra "https://discretaunlam.net.ar" para leer y hacer las actividades por clase (AxC) correspondientes al tema "Conjuntos ordenados" que te proponemos en la plataforma.

Luego comienza a hacer los ejercicios de Conjuntos ordenados hasta red de la guía de ejercicios para el primer parcial. Y finaliza haciendo la autoevaluación "relación de orden"

Tené en cuenta que todas las actividades que realices forman parte del seguimiento académico que hará tu tutor.

-AxC

-Autoevaluación

Actividad Relación de orden

Relación de Orden