7.1 Basic Definitions and Examples

Unless otherwise specified, R is a ring with 1.

2) If u is a unit in R, then so is -u.

Proof: Since u is a unit, there exists $u^{-1} \in R$ where $uu^{-1} = 1$, but $uu^{-1} = (-u)(-u^{-1}) = 1$, showing that -u is also a unit.

- 5) (a) and (d) are rings. (b) fails closure, since (1/12) + (1/4) = (1/3), and (c) lacks additive inverses.
- 7) Let Z(R) denote the center of R. Then Z(R) is a subring of R. Additionally, if R is a division ring, then Z(R) is a field.

Proof: For all $a \in R$, we have $1 \cdot a = a = a \cdot 1$, thus $1 \in Z(R)$. Now let $r, s \in Z(R)$, then

$$a(r+s) = ar + as = ra + sa = (r+s)a,$$

showing that $r + s \in Z(R)$. We also have that

$$a(-r) = -(ar) = -(ra) = (-r)a,$$

so $-r \in Z(R)$. Finally,

$$a(rs) = (ar)s = (ra)s = r(as) = r(sa) = (rs)a,$$

thus $rs \in Z(R)$, and Z(R) is a subring of R.

If R is a division ring, then every non-zero element of R, and thus every non-zero element of Z(R) is a unit. Additionally, if $r \in Z(R)$, then for all $a \in R$, we have

$$r^{-1}a = r^{-1}(ar)r^{-1} = r^{-1}(ra)r^{-1} = ar^{-1},$$

thus $r^{-1} \in Z(R)$, showing that Z(R) is also a division ring. Finally, since Z(R) is commutative, it is a field.

11) Let R be an integral domain and fix $x \in R$. If $x^2 = 1$, then $x = \pm 1$.

Proof: Suppose $x^2 = 1$, then $x^2 - 1 = (x+1)(x-1) = 0$. Since R is an integral domain, one of (x+1) and (x-1) must be 0, implying that x must be 1 or -1.

15) All boolean rings are commutative.

Proof: Let R be a boolean ring and fix $a, b \in R$. We have that

$$aabb = a^2b^2 = ab = (ab)^2 = abab,$$

and cancelling on both sides obtains ab = ba.

21) Fix an arbitrary set X, and denote $\mathcal{P}(X)$ as its powerset. Also, for $A, B \in \mathcal{P}(X)$, define the operations + and \times as

$$A + B = A \Delta B = (A \setminus B) \cup (B \setminus A)$$
 and $A \times B = A \cap B$.

Then $\mathcal{P}(X)$ forms a commutative boolean ring with 1 under these operations.

Proof: It is clear that $\mathcal{P}(X)$ is closed under both operations. For any $A \in \mathcal{P}(X)$, we have $A \Delta \varnothing = A$, so \varnothing serves as our additive identity. Additionally, $A \Delta A = \varnothing$, so each element is its own additive inverse. It is left as an exercise for the reader that symmetric differences are associative. Thus, $\mathcal{P}(X)$ forms an additive group under +.

We have that $A \cap X = A$ for all A, thus X serves as our multiplicative identity. We also have that intersections distribute across symmetric differences, showing that $\mathcal{P}(X)$ forms a ring. Finally, we have that $A \cap A = A$ and $A \cap B = B \cap A$ for all A and B, so the ring is boolean and commutative.

7.2 Polynomial Rings, Matrix Rings, and Group Rings

1) Let $p(x) = 2x^3 - 3x^2 + 4x - 5$ and $q(x) = 7x^3 + 33x - 4$ be polynomials. If the coefficients exist in \mathbb{Z} , then we have

$$p(x) + q(x) = 9x^3 - 3x^2 + 37x - 9,$$

$$p(x)q(x) = 14x^6 - 21x^5 + 94x^4 - 142x^3 - 20x^2 - 181x + 20$$

In $\mathbb{Z}/2\mathbb{Z}$, we have

$$p(x) + q(x) = x^3 + x^2 + x + 1,$$

 $p(x)q(x) = x^5 + x.$

In $\mathbb{Z}/3\mathbb{Z}$, we have

$$p(x) + q(x) = x,$$

$$p(x)q(x) = 2x^{6} + x^{4} + x^{3} + x + 2$$

7.3 Ring Homomorphisms and Quotient Rings

4) -

- 6) $\phi: M_2(\mathbb{Z}) \to \mathbb{Z}$ defined as the projection of the 1,1-th entry is not a homomorphism since the 1,1-th entry of the product of two matrices is not necessarily equal the product of the respective components.
- $\phi: M_2(\mathbb{Z}) \to \mathbb{Z}$ defined as the trace of the matrix is not a homomorphism since the trace of the product of two matrices contains all entries of both matrices rather than just the diagonal entries.
- $\phi: M_2(\mathbb{Z}) \to \mathbb{Z}$ defined as the determinant of the matrix is not a homomorphism the determinant of a sum is not necessarily equal to the sum of the determinants.

Lemma 1: If I and J are ideals in R, then $I \times J$ is an ideal in $R \times R$.

Proof: Let
$$(a,b) \in R \times R$$
 and $(i,j) \in I \times J$, then $ai \in I$ and $bj \in J$, thus $(a,b) \cdot (i,j) = (ai,bj) \in I \times J$.

8) For (b) and (c), we can represent them as $2\mathbb{Z} \times 2\mathbb{Z}$ and $2\mathbb{Z} \times \{0\}$ respectively, and thus by **Lemma 1** they are ideals.

For (a) and (d), if m and n are distinct in \mathbb{Z} , then $(m,n)\cdot(a,a)$ and $(m,n)\cdot(a,-a)$ are not in their respective sets, and thus they are not ideals.