Cálculo em Várias Variáveis

Funções de várias variáveis

ICT-Unifesp

- Limite
 - Conceitos topológicos

Limite

Conceitos topológicos

Definição

Seja $(a, b) \in \mathbb{R}^2$ e r > 0. Denominamos de **bola aberta** de centro (a, b) e raio r ao conjunto

$$B_r(a, b) = \{(x, y) \in \mathbb{R}^2 | ||(x, y) - (a, b)|| < r\}$$

$$||(x,y) - (a,b)|| < r \iff (x-a)^2 + (y-b)^2 < r^2$$

Definição

Seja $A \subset \mathbb{R}^2$ e seja $(a, b) \in \mathbb{R}^2$. Dizemos que (a, b) é um **ponto de acumulação** de A se toda bola aberta $B_r(a, b)$ contém pelo menos um ponto $(x, y) \in A$ tal que $(x, y) \neq (a, b)$.

Um ponto de acumulação não precisa pertencer ao conjunto A.

Quando um ponto (a, b) pertencente a A não é de acumulação, dizemos que (a, b) é um **ponto isolado** de A.

Definição

Seja $A \subset \mathbb{R}^2$ e seja $(a, b) \in A$. Dizemos que (a, b) é um **ponto isolado** de A se existe um r > 0 tal que $B_r(a, b) \cap A = \{(a, b)\}.$

Quando um ponto (a, b) **pertencente** a A não é de acumulação, dizemos que (a, b) é um **ponto isolado** de A.

Definição

Seja $A \subset \mathbb{R}^2$ e seja $(a, b) \in A$. Dizemos que (a, b) é um **ponto isolado** de A se existe um r > 0 tal que $B_r(a, b) \cap A = \{(a, b)\}.$

Noções análogas são válidas em \mathbb{R} , \mathbb{R}^3 , \mathbb{R}^n , $\forall n > 0$.

Exemplo

 $Em \mathbb{R}$, observe que I = (a, b) não tem pontos isolados. Quais são os pontos de acumulação de I?

Exemplo

Em \mathbb{R} , observe que I = (a, b) não tem pontos isolados. Quais são os pontos de acumulação de I?

Exemplo

Em \mathbb{R} , todos os pontos de \mathbb{N} são isolados; \mathbb{N} não tem pontos de acumulação.

Exemplo

Seja $A = \{(x, y) \in \mathbb{R}^2 | y < x\}$. Então

- (0,0) é ponto de acumulação de A,
- (1,1) é ponto de acumulação de A,
- (−1,2) não é ponto de acumulação de A (nem ponto isolado de A. Por quê?).