Введение в теорию сложности вычислений

Эдуард Алексеевич Гирш

http://logic.pdmi.ras.ru/~hirsch

СП6ГУ и ПОМИ РАН

лекция 10 декабря 2020 г.

<u>Р-</u>полнота

Теорема

Если L - P-полный, то

 $L \in L \iff P = L.$

logspace reductions

Р-полный язык:

CIRCUIT_EVAL = $\{(\text{схема } C, \text{вход } x) \mid C(x) = 1\}.$

Теорема

 $NC^1 \subseteq L \subseteq NL \subseteq NC^2$.

Теорема

$$NC^1 \subseteq L \subseteq NL \subseteq NC^2$$
.

Пусть logspace HMT M принимает $L \in \mathbf{NL}$.

- ightharpoonup Интересует достижимость в графе конфигураций M.
- ightharpoonup Для конкретной входной ленты их полиномиальное число k.

Теорема

$$NC^1 \subseteq L \subseteq NL \subseteq NC^2$$
.

Пусть logspace HMT M принимает $L \in \mathbf{NL}$.

- ightharpoonup Интересует достижимость в графе конфигураций M.
- ightharpoonup Для конкретной входной ленты их полиномиальное число k.
- ightharpoonup A матрица смежности $(k \times k)$. A
- ▶ Достаточно вычислить A^k .

Теорема

$$NC^1 \subseteq L \subseteq NL \subseteq NC^2$$
.

Пусть logspace HMT M принимает $L \in \mathbf{NL}$.

- ightharpoonup Интересует достижимость в графе конфигураций M.
- ightharpoonup Для конкретной входной ленты их полиномиальное число k.
- ightharpoonup A матрица смежности (k imes k).
- ightharpoonup Достаточно вычислить A^k .
- ightharpoonup Это $\log k$ последовательных умножений: A^2 , $(A^2)^2$, . . .
- ightharpoonup Умножение пары булевых матриц: схема глубины $O(\log k)$,

Теорема

 $NC^1 \subseteq L \subseteq NL \subseteq NC^2$.

 $x \in L \in \mathbf{NC}^1$. Строим композицию трёх logspace функций с логарифмической памятью.

- 1. Строим схему (семейство было logspace-равномерным).
- 2. Преобразуем схему в формулу (dag \rightarrow дерево):
 - ightharpoonup гейт ightharpoonup путь от выхода (битовая строка),
 - ▶ поиск в глубину логарифмическая память,
 - для возврата идём заново от корня.
- 3. Вычисляем значение формулы на входе x.
 - Снова поиск в глубину.

Ещё о Р-полноте

Теорема

Если L - P-полный, то

▶ $L \in \mathbb{NC} \iff P = \mathbb{NC}$ (всё параллелизуется);

Immerman, Szelepcsényi

Теорема

 $\mathtt{STCON} \in \mathbf{co}\text{-}\mathbf{NL}$

Immerman, Szelepcsényi

Teopeмa STCON ∈ co-NL STCON ∈ NL

► Сертифицируем отсутствие пути между вершинами *s* и *t*.

Immerman, Szelepcsényi

Теорема

 $\mathtt{STCON} \in \mathtt{co-NL}$

- ightharpoonup Сертифицируем отсутствие пути между вершинами s и t.
- ► $S_i = \{$ вершин на расстоянии $\leq i$ от $s\}$.

Immerman, Szelepcsényi

Теорема

 $STCON \in \mathbf{co} - \mathbf{NL}$

- ▶ Сертифицируем отсутствие пути между вершинами s и t.
- ► $S_i = \{$ вершин на расстоянии $\leq i$ от $s\}$.
- Сертификат принадлежности $(x \in S_i)$ путь.

Immerman, Szelepcsényi

Теорема

$\mathtt{STCON} \in \mathtt{co-NL}$

▶ Сертифицируем отсутствие пути между вершинами s и t.

- ▶ $S_i = \{$ вершин на расстоянии $\leq i$ от $s\}$.
- ightharpoonup Сертификат принадлежности $(x \in S_i)$ путь.
- ightharpoonup Сертификат непринадлежности ($x \notin S_i$):
 - ▶ $|S_i|$ (тоже надо сертифицировать!),
 - ightharpoonup все вершины S_i с сертификатами принадлежности.

$$\times_{1}$$
 \times_{2}
 \times_{3}
 \times_{3}
 \times_{3}
 \times_{3}
 \times_{4}
 \times_{5}
 \times_{6}
 \times_{6}

Immerman, Szelepcsényi

Теорема

$STCON \in \mathbf{co} - \mathbf{NL}$

- ightharpoonup Сертифицируем отсутствие пути между вершинами s и t.
- ► $S_i = \{$ вершин на расстоянии $\leq i$ от $s\}$.
- ightharpoonup Сертификат принадлежности $(x \in S_i)$ путь.
- ightharpoonup Сертификат непринадлежности ($x \notin S_i$):
 - ▶ $|S_i|$ (тоже надо сертифицировать!),
 - ightharpoonup все вершины S_i с сертификатами принадлежности.
- ightharpoonup Сертификат размера $|S_i|$:
 - ightharpoonup знаем $|S_{i-1}|$ (сертифицируем по индукции),
 - ightharpoonup перебираем все вершины u, выясняя $u \in S_i$ так:

Immerman, Szelepcsényi

Теорема

 $\mathtt{STCON} \in \mathtt{co-NL}$

- ightharpoonup Сертифицируем отсутствие пути между вершинами s и t.
- \triangleright $S_i = \{$ вершин на расстоянии $\leq i$ от $s\}$.
- ightharpoonup Сертификат принадлежности ($x \in S_i$) путь.
- Сертификат непринадлежности ($x \notin S_i$):
 - $|\vec{S}_i| |\vec{S}_i|$ (тоже надо сертифицировать!),
 - ightharpoonup все вершины S_i с сертификатами принадлежности.
- ightharpoonup Сертификат размера $|S_i|$:
 - ightharpoonup знаем $\langle S_{i-1} \rangle$ (сертифицируем по индукции),
 - ightharpoonup перебираем все вершины u, выясняя $u \in S_i$ так:
- румираем все вершины v, проверяя $(v,u)\in E$ и требуя
- сертификат принадлежности (путь) для $v \in S_{i-1}$.
- заодно подсчитываем количество правильных сертификатов, должно сойтись с $|S_{i-1}|$.

5 mg/2 > U 155:1

Immerman, Szelepcsényi

Теорема

 $STCON \in \mathbf{co} - \mathbf{NL}$

Следствие

Если $s(n) = \Omega(\log n)$, то $\mathsf{NSpace}[s(n)] = \mathsf{co-NSpace}[s(n)]$.

M SCN Nother.

SCN

PSPACE = NP SPACE

PSPACE = NP SPACE