

planetmath.org

Math for the people, by the people.

there exist additive functions which are not linear

 ${\bf Canonical\ name} \quad {\bf There Exist Additive Functions Which Are Not Linear}$

Date of creation 2013-03-22 16:17:50 Last modified on 2013-03-22 16:17:50

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 5

Author paolini (1187) Entry type Example Classification msc 15A04 *Example* 1. There exists a function $f: \mathbb{R} \to \mathbb{R}$ which is additive but not linear.

Proof. Let V be the infinite dimensional vector space \mathbb{R} over the field \mathbb{Q} . Since 1 and $\sqrt{2}$ are two independent vectors in V, we can extend the set $\{1, \sqrt{2}\}$ to a basis E of V (notice that here the axiom of choice is used).

Now we consider a linear function $f\colon V\to\mathbb{R}$ such that f(1)=1 while f(e)=0 for all $e\in E\setminus\{1\}$. This function is \mathbb{Q} -linear (i.e. it is additive on \mathbb{R}) but it is not \mathbb{R} -linear because $f(\sqrt{2})=0\neq\sqrt{2}f(1)$.