CSCE 611 MIPS Register File

Instructor: Jason D. Bakos

RegFile32x32

- The MIPS ISA has 32 x 32-bit general-purpose registers
 - Allows for two reads and one write per cycle
 - Register 0 is always 0
 - Register 31 is written in bltzal, bgezal, and jal instructions ("link address")
 - jalr allows you to specify the link register in rd field
- Single-cycle and pipelined MIPS processors take advantage of bypassed writes:
 - When the same register is written and read at the same time, the read port should reflect the write data

RegFile32x32

- In our design, we'd also like to map register 30 to a peripheral
 - When READING from register 30, the register file will return the value from a special input called "reg30_in"
 - For our CPU: register 30 maps to the DE2 switches (when read)
 - Connect reg30_in to SW[17:0] (zero pad top 14 bits)
 - When WRITING to register 30, the register file will assign the written data to be the value assigned to a special output called "reg30_out"
 - In other words, the "reg30_out" output will always be driven to the most recent value written to register 30
 - For our CPU: register 30 maps to the value displayed on the DE2 7segment LEDs (when written)
 - Connect reg30_out to HEX7:HEX0 using decoders
 - You must maintain reg30_out as a separate register (not part of RAM)

HEX Digits

- DE2 offers:
 - Eight 7-segment LEDs
 - Signals HEX0[6:0], HEX1[6:0], ..., HEX7[6:0]
 - 18 switches
 - Signals SW[17:0]
 - 4 buttons
 - KEY[3:0]

Proposed Design

Lab 2

- Design regfile32x32 with specifications:
 - Write bypass
 - 2 asynchronous read ports, one synchronous (rising edge) write port
 - Register 0 is always 0, register 30 (write) goes to HEXs, register 30 (read) comes from SWITCHES
- Write self-checking testbench:
 - Generates clk
 - Write testvectors to test:
 - Write-then-reads on different cycles for 3 different registers
 - Write-and-read on same cycle for a 4th register
- Test on DE2 board
 - Connect readdata2 to writedata
 - Hardwire writeaddr to 30
 - Hardwire readaddr2 to 30
 - Hardwire write enable to 1

DE2 Test Design

