

高一新生入学分班考试 数 学 模 拟 试 题

(试题满分: 150分, 考试时间: 120分钟)

– ,	选择题(本题共12小题,	每小题4分,	共48分.	在每小题的四个选项中,	只有一个
	符合题目要求)				

	付台	
1.	下列计算: ①(-2006) ⁰ =1; ② 2m ⁻⁴ = $\frac{1}{2m^4}$; ③ $x^4+x^3=x^7$; ④(ab^2) ³ = a^3b^6 ;	
	⑤ $\sqrt{(-35)^2} = 35$, 正确的是 ()	
	A. ① B. ①②③ C. ①③④ D. ①④⑤	
2.	一次函数 $y=kx+b$ 满足 $kb>0$,且 y 随 x 的增大而减小,则此函数的图象不经过()
	A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限	
3.	一个底面半径为 5cm, 母线长为 16cm 的圆锥, 它的侧面展开图的面积是 () A. 80 π cm² B. 40 π cm² C. 80cm² D. 40cm²	
4.	以下五个图形中, 既是轴对称又是中心对称的图形共有()	

A. 1个 B. 2个 C. 3个 D. 4个

5. 在 \triangle ABC 中, \angle C=90°,AB=15, \sin A= $\frac{1}{3}$,则 BC 等于(

B. 5 C. $\frac{1}{5}$ D. $\frac{1}{45}$

6. 如图,已知 PA、PB 是⊙O 的切线,A、B 为切点,AC 是 ⊙O 的直径,∠P=40° ,则∠BAC 的大小是(A. 70° B. 40° C. 50° D. 20°

|x>a|

A. a>3 B. $a\geqslant3$ C. a<3 D. $a\leqslant3$

8. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得正面朝上 的点数为奇数的概率为()

B. $\frac{1}{3}$ C. $\frac{1}{4}$ D. $\frac{1}{2}$

9. 已知两圆的半径分别为 6cm 和 8cm,圆心距为 2cm,那么这两圆的公切线有() A. 1条 B. 2条 C. 3条 D. 4条

设 a, b, c, d 都是非零实数,则四个数: -ab, 10.

- ac, bd, cd (
 - A. 都是正数
 - C. 是两正两负

- B. 都是负数
- D. 是一正三负或一负三正
- 11. 函数 y = k(1-x) 和 $y = \frac{k}{r}$ ($k \neq 0$) 在同一平面直角坐标系中的图像可能是

B.

D.

12. 如图, \triangle ABC 和 \triangle DEF 是两个形状大小完全相同的等腰直角三角形, \angle B= \angle DEF=90°, 点 B、C、E、F 在同一直线上. 现从点 C、E 重合的位置出发,让 \triangle ABC 在直线 EF 上 向右作匀速运动,而 \triangle DEF的位置不动.设两个三角形重合部分的面积为y,运动的 距离为x. 下面表示y与x的函数关系式的图象大致是(

二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)

13. 不等式组 $\begin{cases} -2x+1 < x+4 \\ \frac{x}{2} - \frac{x-1}{3} \le 1 \end{cases}$ 的整数解为___

- 14. 分解因式 $x_1^3 2x_1^2x_2 x_1 + 2x_2 =$ ______
- 15. 如图, \triangle ABC 中, BD 平分 \angle ABC, AD \bot BD 于 D, F 为 AC 中点, AB = 5, BC = 7, 则 DF = _____

16. 已知二次函数图象过点 A(2,1)、B(4,1) 且最大值为 2,则二次函数的解析

17. 如图,已知 Rt \triangle ABC 中, \angle C= 90° ,AC= $\sqrt{2}$,BC=1,若以 C 为圆心,CB 为半径的圆交 AB 于点 P,则 AP=

落在 x 轴上的点 *B'* 处, 则直线 AM 的解析式为 _______

三、解答题(本题共有7小题,共72分)

19. (本小题满分 8 分) 化简:

$$(x^2-4)(\frac{x+2}{x^2-2x}-\frac{x-1}{x^2-4x+4})\div\frac{x-4}{x}$$

20. (本小题满分 8 分)解分式方程:

$$\frac{2x}{x+2} - \frac{3}{x-2} = 2$$

- 21. (本小题满分 8 分) 如图,在 \triangle ABC 中,D 是 AC 的中点,E 是线段 BC 延长线上一点,过点 A 作 BE 的平行线与线段 ED 的延长线交于点 F,连结 AE、CF.
 - (1) 求证: AF=CE;
 - (2) 若 AC=EF, 试判断四边形 AFCE 是什么样的四边形, 并证明你的结论.

B C E

22. (本小题满分10分)为了鼓励居民节约用水,我市某地水费按下表规定收取:

每户每月用水量	不超过 10 吨 (含 10 吨)	超过 10 吨的部分		
水费单价	1.30 元 / 吨	2.00 元 / 吨		

(1) 某用户用水量为 x 吨,需付水费为 y 元,则水费 y(元)与用水量 x(吨)之间的函数关系式是:

- (2) 若小华家四月份付水费 17 元,问他家四月份用水多少吨?
- (3) 已知某住宅小区 100 户居民五月份交水费 1682 元,且该月每户用水量均不超过 15吨(含15吨),求该月用水量不超过 10吨的居民最多可能有多少户?

- 23. (本小题满分 12 分) 如图 1, 在直角梯形 ABCD 中, AD//BC, 顶点 D, C 分别在 AM, BN 上运动(点 D 不与 A 重合, 点 C 不与 B 重合), E 是 AB 上的动点(点 E 不与 A, B 重合), 在运动过程中始终保持 DE \bot CE, 且 AD+DE=AB=a.
 - (1) 求证: △ADE∽△BEC;
 - (2) 设 AE=m,请探究: $\triangle BEC$ 的周长是否与 m 值有关,若有关请用含 m 的代数式表示 $\triangle BEC$ 的周长;若无关请说明理由. A D M A D M

- 24. (本小题满分 12 分) 已知抛物线 $y = x^2 kx + k 5$.
 - (1) 求证:不论 k 为何实数,此抛物线与 x 轴一定有两个不同的交点;
 - (2) 若此二次函数图像的对称轴为 x=1, 求它的解析式;
- (3) 在 (2) 的条件下,设抛物线的顶点为 A,抛物线与 x 轴的两个交点中右侧交点为 B,

若 P 为 x 轴上一点,且 $\triangle PAB$ 为等腰三角形,求点 P 的坐标.

- 25. (本小题满分 14 分) 如图,已知:C 是以 AB 为直径的半圆 O 上一点,CH \perp AB 于点 H,直线 AC 与过 B 点的切线相交于点 D,E 为 CH 的中点,连接 AE 并延长交 BD 于
 - 点 F, 直线 CF 交直线 AB 于点 G. (1) 求证: 点 F 是 BD 的中点;
 - (2) 求证: CG 是⊙O 的切线;
 - (3) 若 FB=FE=2, 求⊙O 的半径.

参考答案

选择题(本题共有12小题,每小题4分,共48分)

1	2	3	4	5	6	7	8	9	10	11	12
D	C	A	A	В	D	В	D	A	D	D	C

二、填空题(本题共有6小题,每小题5分,共30分)

14.
$$(x_1-2x_2)(x_1+1)(x_1-1)$$

16.
$$y = -(x-3)^2 + 2 = -x^2 + 6x - 7$$

$$17. \qquad \frac{\sqrt{3}}{3}$$

18.
$$y = -\frac{1}{2}x + 3$$

三、解答题(本题共有7小题,共72分)

19.
$$\frac{x+2}{x-2}$$
 (8分)

20.
$$x = \frac{2}{7}$$
 (8 $\%$)

21. (1)证明: 在△ADF 和△CDE 中, ∵AF // BE, ∴ ∠FAD = ∠ECD. 又∵D 是 AC 的中点, ∴AD=CD. ∵∠ADF=∠CDE, ∴ △ADF≌ △CDE. ∴ AF=CE. (4分)

(2)解: 若 AC=EF,则四边形 AFCE 是矩形.

由 (1) 知 **AF**//**CE**, ∴ 四边形 **AFCE** 是平行四边形, 又: AC=EF, : 四边形 AFCE 是矩形. (4分)

22. 解: (1) 1.3x,13+2(x-10). (4 分)

(2)设小华家四月份用水量为 x 吨. :17>1.30×10, :小华家四月份用

水量超过 10 吨,由题意得: 1.30×10+(x

-10) ×2=17, ∴2x=24, ∴x=12(吨).

即小华家四月份的用水量为12吨. (3分)

(3)设该月用水量不超过 10 吨的用户有 a 户,则超过 10 吨不超过 15 吨的用户为(100-a)户. 由题意得: $13 \text{ a} + [13+(15-10) \times 2]$ (100-a) ≥ 1682 ,

化简的: 10 a≤618, ∴a≤61.8, 故正整数 a 的最大值为 61.

即这个月用水量不超过10吨的居民最多可能有61户. (3

(1)证明: ∵∠DEC=90°, ∴∠AED+∠BEC=90°, 又∵∠AED+∠ADE=90°,

 $\therefore \angle BEC = \angle ADE$, $\overrightarrow{m} \angle A = \angle B = 90^{\circ}$,

∴△ADE∽△BEC . (6分)

(2) 结论: △BEC 的周长与 m 无关.

在△EBC中,由AE=m,AB=a,得BE=a-m,设AD=x,

因为
$$\triangle ADE$$
 \hookrightarrow $\triangle BEC$,所以 $\frac{AD}{BE} = \frac{AE}{BC} = \frac{DE}{EC}$,即: $\frac{x}{a-m} = \frac{m}{BC} = \frac{a-x}{EC}$,

解得: BC=
$$\frac{(a-m) m}{x}$$
, EC= $\frac{(a-m) (a-x)}{x}$.

所以△BEC 的周长=BE+BC+EC=

$$(a-m) + \frac{(a-m)m}{x} + \frac{(a-m)(a-x)}{x}$$

$$=(a-m)\left(1+\frac{m}{x}+\frac{a-x}{x}\right)=(a-m)\cdot\frac{a+m}{x}=\frac{a^2-m^2}{x}$$
 (1)

因为 AD=x,由已知 AD+DE=AB=a 得 DE=a-x,又 AE=m

在 Rt \triangle AED 中,由勾股定理得: $x^2+m^2=(a-x)^2$

化简整理得: a²-m²=2ax ②

把②式代入①,得△BEC 的周长=BE+BC+EC= $\frac{2ax}{x}$ =2a,

所以 \triangle BEC 的周长与 m 无关. (6分)

- 24. (1) 证明: ∵△=k²-4k+20=(k-2)²+16>0,
 - ∴不论 k 为何实数,此抛物线与 x 轴一定有两个不同的交点 . (4分)
 - (2) 解:由已知得 $\frac{k}{2}$ =1, **:**k=2, **:**所求函数的解析式为 y=x²-2x-3. (4分)

(3)(-2, 0),
$$(3-2\sqrt{5}, 0)$$
, $(3+2\sqrt{5}, 0)$, $(-1, 0)$. (4%)

25. (1)证明: \mathbf{C} CH \perp AB,DB \perp AB, \mathbf{L} AEH \hookrightarrow AFB, \triangle ACE \hookrightarrow \triangle ADF $\mathbf{L} \frac{EH}{BF} = \frac{AE}{AF} = \frac{CE}{FD}, \quad \mathbf{L} \text{HE} = \text{EC}, \quad \mathbf{L} \text{BF} = \text{FD}, \quad \mathbb{D} \text{ in } F \neq \mathbb{D} \text{ in } F \neq \mathbb{D} \text{ in } F \neq \mathbb{D}$

(2)方法一: 连结 CB、OC.

- ∵AB 是直径, ∴∠ACB=90°, ∵F 是 BD 中点,
- ∴ ∠BCF=∠CBF=90° −∠CBA=∠CAB=∠ACO,
- \therefore \angle OCF= \angle OCB+ \angle BCF= \angle OBC+ \angle ACO= 90°,
- ∴CG 是⊙O 的切线. (5 分)

方法二:可证明△OCF≌△OBF.

(3)解:由 FC=FB=FE 得: ∠FCE=∠FEC,又由已知可得 CH // DB, 所以∠AFB=∠BFG,从而可证得:FA=FG,且 AB=BG.

在 Rt△BGF 中, 由勾股定理得: BG²=FG²-BF² ②

由①、②得: FG²-4FG-12=0

解之得: $FG_1=6$, $FG_2=-2$ (舍去)

 $\therefore AB = BG = 4\sqrt{2}$

∴⊙O 半径为 2√2. (5 分)