```
In []: # Import Libraries
    import pandas as pd, numpy as np, matplotlib.pyplot as plt, seaborn as sns
    %matplotlib inline

In []: # Read the csv files from my local directory
    file = "Sales Data.csv"
    df = pd.read_csv(file)

In []: # Few the first 10 rows
    df.head(10)
```

Out[]:		Unnamed: 0	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour
	0	0	295665	Macbook Pro Laptop	1	1700.00	2019-12- 30 00:01:00	136 Church St, New York City, NY 10001	12	1700.00	New York City	0
	1	1	295666	LG Washing Machine	1	600.00	2019-12- 29 07:03:00	562 2nd St, New York City, NY 10001	12	600.00	New York City	7
	2	2	295667	USB-C Charging Cable	1	11.95	2019-12- 12 18:21:00	277 Main St, New York City, NY 10001	12	11.95	New York City	18
	3	3	295668	27in FHD Monitor	1	149.99	2019-12- 22 15:13:00	410 6th St, San Francisco, CA 94016	12	149.99	San Francisco	15
	4	4	295669	USB-C Charging Cable	1	11.95	2019-12- 18 12:38:00	43 Hill St, Atlanta, GA 30301	12	11.95	Atlanta	12
	5	5	295670	AA Batteries (4- pack)	1	3.84	2019-12- 31 22:58:00	200 Jefferson St, New York City, NY 10001	12	3.84	New York City	22
	6	6	295671	USB-C Charging Cable	1	11.95	2019-12- 16 15:10:00	928 12th St, Portland, OR 97035	12	11.95	Portland	15
	7	7	295672	USB-C Charging Cable	2	11.95	2019-12- 13 09:29:00	813 Hickory St, Dallas, TX 75001	12	23.90	Dallas	9
	8	8	295673	Bose SoundSport Headphones	1	99.99	2019-12- 15 23:26:00	718 Wilson St, Dallas, TX 75001	12	99.99	Dallas	23
	9	9	295674	AAA Batteries (4-pack)	4	2.99	2019-12- 28 11:51:00	77 7th St, Dallas, TX 75001	12	11.96	Dallas	11

Data Cleaning and Wrangling

In []: # The number of rows and columns in the dataset df.shape

Out[]: (185950, 11)

In []: # Statistical analysis of numericial columns in the dataset
 df.describe()

Out[]:		Unnamed: 0	Order ID	Quantity Ordered	Price Each	Month	Sales	Hour
	count	185950.000000	185950.000000	185950.000000	185950.000000	185950.000000	185950.000000	185950.000000
	mean	8340.388475	230417.569379	1.124383	184.399735	7.059140	185.490917	14.413305
	std	5450.554093	51512.737110	0.442793	332.731330	3.502996	332.919771	5.423416
	min	0.000000	141234.000000	1.000000	2.990000	1.000000	2.990000	0.000000
	25%	3894.000000	185831.250000	1.000000	11.950000	4.000000	11.950000	11.000000
	50%	7786.000000	230367.500000	1.000000	14.950000	7.000000	14.950000	15.000000
	75%	11872.000000	275035.750000	1.000000	150.000000	10.000000	150.000000	19.000000
	max	25116.000000	319670.000000	9.000000	1700.000000	12.000000	3400.000000	23.000000

In []: # The data type of each column in the dataset
 df.dtypes

```
Out[]: Unnamed: 0
                              int64
        Order ID
                              int64
         Product
                             object
        Quantity Ordered
                              int64
         Price Each
                            float64
        Order Date
                             object
         Purchase Address
                             object
        Month
                              int64
        Sales
                            float64
        City
                             object
        Hour
                              int64
        dtype: object
In [ ]: # Get further info on each column and count non-null values
        df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 185950 entries, 0 to 185949
       Data columns (total 11 columns):
           Column
                             Non-Null Count
                                              Dtype
                             -----
           Unnamed: 0
                             185950 non-null int64
           Order ID
                             185950 non-null int64
           Product
                             185950 non-null object
           Quantity Ordered 185950 non-null int64
           Price Each
                             185950 non-null float64
           Order Date
                             185950 non-null object
           Purchase Address 185950 non-null object
        7
           Month
                             185950 non-null int64
            Sales
                             185950 non-null float64
            City
                             185950 non-null object
        10 Hour
                             185950 non-null int64
       dtypes: float64(2), int64(5), object(4)
       memory usage: 15.6+ MB
In [ ]: # Check if there is a null value in the entire dataset
        df.isna().values.any()
Out[]: False
In [ ]: # Check for the number of non value
```

```
df.isna().sum()
Out[]: Unnamed: 0
                            0
        Order ID
         Product
        Quantity Ordered
         Price Each
        Order Date
         Purchase Address
        Month
         Sales
                            0
        City
        Hour
         dtype: int64
In [ ]: # List out all Columns in the dataset
        df.columns
Out[]: Index(['Unnamed: 0', 'Order ID', 'Product', 'Quantity Ordered', 'Price Each',
                'Order Date', 'Purchase Address', 'Month', 'Sales', 'City', 'Hour'],
               dtype='object')
In [ ]: # Drop the column 'Unnamed: 0'
        df = df.drop(columns=['Unnamed: 0'])
        df.columns
Out[]: Index(['Order ID', 'Product', 'Quantity Ordered', 'Price Each', 'Order Date',
                'Purchase Address', 'Month', 'Sales', 'City', 'Hour'],
               dtype='object')
In [ ]: # Split the Order Date into two columns
        df[['Order Date', 'Order Time']] = df['Order Date'].str.split(' ', expand=True)
        df[['Order Date', 'Order Time']].head()
```

```
Out[]:
           Order Date Order Time
        0 2019-12-30
                         00:01:00
        1 2019-12-29
                         07:03:00
        2 2019-12-12
                         18:21:00
         3 2019-12-22
                          15:13:00
         4 2019-12-18
                         12:38:00
In [ ]: # strip off :00 from the Order Time
        df['Order Time'] = df['Order Time'].str.rstrip(":00")
        df['Order Time'].head()
Out[ ]: 0
             00:01
         1
            07:03
         2
            18:21
            15:13
             12:38
        Name: Order Time, dtype: object
In [ ]: # replace 00:01 to 01:00
        for row in df.index:
            if df.loc[row, 'Order Time'] == '00:01':
                df.loc[row, 'Order Time'] = '01:00'
        df['Order Time'].head()
Out[]: 0
             01:00
            07:03
         1
            18:21
         2
         3
            15:13
             12:38
         Name: Order Time, dtype: object
In [ ]: # Convert the order time column to datetime type
        df['Order Date'] = pd.to_datetime(df['Order Date'])
        df['Order Date'] = df['Order Date']
        df['Order Date'].head()
```

Out[]:		Order ID	Order Date	Order Time	Product	Quantity Ordered	Price Each	Sales	Purchase Address	City
	0	295665	2019- 12-30	01:00	Macbook Pro Laptop	1	1700.00	1700.00	136 Church St, New York City, NY 10001	New York City
	1	295666	2019- 12-29	07:03	LG Washing Machine	1	600.00	600.00	562 2nd St, New York City, NY 10001	New York City
	2	295667	2019- 12-12	18:21	USB-C Charging Cable	1	11.95	11.95	277 Main St, New York City, NY 10001	New York City
	3	295668	2019- 12-22	15:13	27in FHD Monitor	1	149.99	149.99	410 6th St, San Francisco, CA 94016	San Francisco
	4	295669	2019- 12-18	12:38	USB-C Charging Cable	1	11.95	11.95	43 Hill St, Atlanta, GA 30301	Atlanta
	5	295670	2019- 12-31	22:58	AA Batteries (4-pack)	1	3.84	3.84	200 Jefferson St, New York City, NY 10001	New York City
	6	295671	2019- 12-16	15:1	USB-C Charging Cable	1	11.95	11.95	928 12th St, Portland, OR 97035	Portland
	7	295672	2019- 12-13	09:29	USB-C Charging Cable	2	11.95	23.90	813 Hickory St, Dallas, TX 75001	Dallas
	8	295673	2019- 12-15	23:26	Bose SoundSport Headphones	1	99.99	99.99	718 Wilson St, Dallas, TX 75001	Dallas
	9	295674	2019- 12-28	11:51	AAA Batteries (4- pack)	4	2.99	11.96	77 7th St, Dallas, TX 75001	Dallas

Exploratory Data Analysis

Here are some case studies for you to consider.

How many unique goods did the business sell overall?

```
In [ ]: total_product_sold = df_new['Product'].nunique()
    print(f"The number of distinctive products sold by the company is {total_product_sold}")
```

The number of distinctive products sold by the company is 19

List all the standout items the business sells.

```
In [ ]: product_list = df_new['Product'].drop_duplicates().reset_index(drop=True)
        product_list.index+=1
        product_list
Out[ ]: 1
                       Macbook Pro Laptop
                      LG Washing Machine
         2
                     USB-C Charging Cable
         3
                         27in FHD Monitor
         4
         5
                    AA Batteries (4-pack)
         6
               Bose SoundSport Headphones
                   AAA Batteries (4-pack)
         7
         8
                          ThinkPad Laptop
                Lightning Charging Cable
         9
         10
                             Google Phone
         11
                         Wired Headphones
                 Apple Airpods Headphones
         12
         13
                          Vareebadd Phone
         14
                                   iPhone
         15
                             20in Monitor
         16
                   34in Ultrawide Monitor
         17
                            Flatscreen TV
         18
                   27in 4K Gaming Monitor
         19
                                 LG Dryer
         Name: Product, dtype: object
        How much does each product cost?
        price_of_each_product = df_new[['Product', 'Price Each']].sort_values('Price Each', ascending=False)\
                                                                   .drop_duplicates()\
                                                                   .reset_index(drop=True)
        price_of_each_product.columns = ['Product', 'Price']
        price_of_each_product.index +=1
        price_of_each_product
```

Out[

]:		Product	Price
	1	Macbook Pro Laptop	1700.00
	2	ThinkPad Laptop	999.99
	3	iPhone	700.00
	4	Google Phone	600.00
	5	LG Dryer	600.00
	6	LG Washing Machine	600.00
	7	Vareebadd Phone	400.00
	8	27in 4K Gaming Monitor	389.99
	9	34in Ultrawide Monitor	379.99
	10	Flatscreen TV	300.00
	11	Apple Airpods Headphones	150.00
	12	27in FHD Monitor	149.99
	13	20in Monitor	109.99
	14	Bose SoundSport Headphones	99.99
	15	Lightning Charging Cable	14.95
	16	Wired Headphones	11.99
	17	USB-C Charging Cable	11.95
	18	AA Batteries (4-pack)	3.84
	19	AAA Batteries (4-pack)	2.99

How many of each product did the business sell in total?

Out[]:		Product	Total Qty Ordered
	1	AAA Batteries (4-pack)	31017
	2	AA Batteries (4-pack)	27635
	3	USB-C Charging Cable	23975
	4	Lightning Charging Cable	23217
	5	Wired Headphones	20557
	6	Apple Airpods Headphones	15661
	7	Bose SoundSport Headphones	13457
	8	27in FHD Monitor	7550
	9	iPhone	6849
	10	27in 4K Gaming Monitor	6244
	11	34in Ultrawide Monitor	6199
	12	Google Phone	5532
	13	Flatscreen TV	4819
	14	Macbook Pro Laptop	4728
	15	ThinkPad Laptop	4130
	16	20in Monitor	4129
	17	Vareebadd Phone	2068
	18	LG Washing Machine	666
	19	LG Dryer	646

What was the total amount of merchandise sold?

```
In [ ]: total_qty = df_new['Quantity Ordered'].sum()
print(f'The total quantity ordered for all product is ${total_qty}')
```

The total quantity ordered for all product is \$209079

What percentage of each product's overall sales?

```
In [ ]: total_qty_sales = df_new.groupby(['Product','Price Each'])[['Quantity Ordered','Sales']].sum()
    total_qty_sales.columns=['Total Qty Ord', 'Total Sales']
    total_qty_sales.sort_values('Total Sales',ascending=False)
```

Out[]:

Total Qty Ord Total Sales

Product	Price Each		
Macbook Pro Laptop	1700.00	4728	8037600.00
iPhone	700.00	6849	4794300.00
ThinkPad Laptop	999.99	4130	4129958.70
Google Phone	600.00	5532	3319200.00
27in 4K Gaming Monitor	389.99	6244	2435097.56
34in Ultrawide Monitor	379.99	6199	2355558.01
Apple Airpods Headphones	150.00	15661	2349150.00
Flatscreen TV	300.00	4819	1445700.00
Bose SoundSport Headphones	99.99	13457	1345565.43
27in FHD Monitor	149.99	7550	1132424.50
Vareebadd Phone	400.00	2068	827200.00
20in Monitor	109.99	4129	454148.71
LG Washing Machine	600.00	666	399600.00
LG Dryer	600.00	646	387600.00
Lightning Charging Cable	14.95	23217	347094.15
USB-C Charging Cable	11.95	23975	286501.25
Wired Headphones	11.99	20557	246478.43
AA Batteries (4-pack)	3.84	27635	106118.40
AAA Batteries (4-pack)	2.99	31017	92740.83

In []: total_qty_sales['Percentage Sales'] = round((total_qty_sales['Total Sales'] / total_qty_sales['Total Sales'].sum()) '

In []: total_qty_sales.sort_values('Percentage Sales',ascending=False)

Out[]: Total Qty Ord Total Sales Percentage Sales

Product	Price Each			
Macbook Pro Laptop	1700.00	4728	8037600.00	23.30
iPhone	700.00	6849	4794300.00	13.90
ThinkPad Laptop	999.99	4130	4129958.70	11.97
Google Phone	600.00	5532	3319200.00	9.62
27in 4K Gaming Monitor	389.99	6244	2435097.56	7.06
34in Ultrawide Monitor	379.99	6199	2355558.01	6.83
Apple Airpods Headphones	150.00	15661	2349150.00	6.81
Flatscreen TV	300.00	4819	1445700.00	4.19
Bose SoundSport Headphones	99.99	13457	1345565.43	3.90
27in FHD Monitor	149.99	7550	1132424.50	3.28
Vareebadd Phone	400.00	2068	827200.00	2.40
20in Monitor	109.99	4129	454148.71	1.32
LG Washing Machine	600.00	666	399600.00	1.16
LG Dryer	600.00	646	387600.00	1.12
Lightning Charging Cable	14.95	23217	347094.15	1.01
USB-C Charging Cable	11.95	23975	286501.25	0.83
Wired Headphones	11.99	20557	246478.43	0.71
AA Batteries (4-pack)	3.84	27635	106118.40	0.31
AAA Batteries (4-pack)	2.99	31017	92740.83	0.27

How much money was generated in total sales of all products?

```
In [ ]: total_sales = df_new['Sales'].sum()
        print(f'The total sales amount for all product is ${total_sales}')
       The total sales amount for all product is $34492035.97
        How many cities did the corporation sell its products in total?
In [ ]: df_new['City'].nunique()
Out[]: 9
        List every city where sales were made.
In [ ]: cities_list = []
        for city in df_new['City'].unique():
            cities_list.append(city)
        cities_list = pd.Series(cities_list)
         cities list.index+=1
        cities_list.name = "List of Cities Sales where made by the Company"
         cities list
Out[ ]: 1
              New York City
              San Francisco
         3
                    Atlanta
         4
                   Portland
         5
                     Dallas
         6
                Los Angeles
         7
                     Boston
         8
                     Austin
                    Seattle
         Name: List of Cities Sales where made by the Company, dtype: object
        Which city generated the most revenue?
In [ ]: top_city_sales = df_new.groupby('City')['Sales'].sum()\
                                 .reset index()\
                                 .sort values('Sales',ascending=False)\
                                 .reset_index(drop=True)\
```

```
.head(1)
         top_city_sales.index += 1
         top_city_sales
Out[]:
                    City
                              Sales
         1 San Francisco 8262203.91
         What are the top three and least popular items in the city?
In [ ]: top3_product_top_city_sales = df_new.query("City == 'San Francisco'")\
                                               .groupby(['Product'])[['Quantity Ordered', 'Sales']].sum()\
                                               .reset_index()\
                                               .sort_values('Sales',ascending=False)\
                                               .reset_index(drop=True)
         top3_product_top_city_sales.index += 1
         top3_product_top_city_sales.head(3)
Out[ ]:
                      Product Quantity Ordered
                                                      Sales
         1 Macbook Pro Laptop
                                           1136 1931200.00
         2
                        iPhone
                                           1661 1162700.00
         3
               ThinkPad Laptop
                                                  962990.37
                                            963
In [ ]: # The least popular goods in that City
         top3_product_top_city_sales.tail(1)
Out[ ]:
                        Product Quantity Ordered
                                                      Sales
         19 AAA Batteries (4-pack)
                                             7408 22149.92
         Which city generated the least revenue?
In [ ]: low_city_sales = df_new.groupby('City')['Sales'].sum()\
                                  .reset_index()\
```

```
.sort_values('Sales')\
                                  .reset_index(drop=True)\
                                  .head(1)
         low_city_sales.index += 1
         low_city_sales
Out[]:
              City
                        Sales
         1 Austin 1819581.75
         What were the top three and the least popular goods in that city?
In [ ]: top_product_low_city_sales = df_new.query("City == 'Austin'")\
                                               .groupby(['Product'])['Sales'].sum()\
                                               .reset_index()\
                                               .sort_values('Sales',ascending=False)\
                                               .reset_index(drop=True)
         top_product_low_city_sales.index += 1
         top_product_low_city_sales.head(3)
Out[]:
                      Product
                                  Sales
         1 Macbook Pro Laptop 426700.0
         2
                        iPhone 263900.0
         3
               ThinkPad Laptop 209997.9
In [ ]: # The least popular goods in that City
         top_product_low_city_sales.tail(1)
Out[]:
                         Product
                                    Sales
         19 AAA Batteries (4-pack) 4987.32
```

Opinion: Examine and analyze the product that, based on sales, you believe to be the most lucrative.

```
In [ ]: plt.style.use('ggplot')
In [ ]: top3_product_sales = df_new.groupby('Product')['Sales'].sum().reset_index().sort_values('Sales',ascending=False).rese
In [ ]: plt.figure(figsize=(5,5))
    top3_product_sales.set_index('Product').plot(kind='barh')
    plt.title("Top 3 Product Sales")
    plt.xlabel("Sales in Millions")
    plt.show()
```

<Figure size 500x500 with 0 Axes>

Macbook Pro Laptop Analysis

Out[]

```
In [ ]: mac = df_new[df_new['Product'] == 'Macbook Pro Laptop'].groupby('City')[['Quantity Ordered','Sales']].sum().reset_inc
In [ ]: mac = mac.sort_values('Sales', ascending=False).reset_index(drop=True)
    mac.index += 1
    mac
```

	City	Quantity Ordered	Sales
1	San Francisco	1136	1931200.0
2	Los Angeles	751	1276700.0
3	New York City	657	1116900.0
4	Boston	479	814300.0
5	Dallas	382	649400.0
6	Atlanta	379	644300.0
7	Seattle	356	605200.0
8	Portland	337	572900.0
9	Austin	251	426700.0

```
In []: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 5))

# First subplot (Quantity Ordered)
ax1.plot(mac['City'], mac['Quantity Ordered'], marker='o', color='red')
ax1.set_xlabel('Cities')
ax1.set_ylabel('Total Qty Ordered')
ax1.set_title('Quantity Ordered')

# Second subplot (Sales)
ax2.plot(mac['City'], mac['Sales'], marker='o', color='green')
ax2.set_xlabel('Cities')
ax2.set_ylabel('Sales')
ax2.set_title('Sales')
# Adjust Layout for better spacing
plt.tight_layout()
```

```
# Show the subplots
         plt.show()
                                     Quantity Ordered
                                                                                                           Sales
                                                                           2.0 -166
                                                                            1.8
                                                                            1.6
       Total Qty Ordered
                                                                            1.4
                                                                           2ales
                                                                            1.0
                                                                            0.8
          400
                                                                            0.4
           San Francisco Los Angeles New York City
                                                              Portland
                                                                              San Francisco Los Angeles New York City
                                         Cities
                                                                                                           Cities
In [ ]: mac2 = df_new[df_new['Product'] == 'Macbook Pro Laptop'].groupby('Order Date')['Sales'].sum()
         mac2.head(10)
Out[]: Order Date
          2019-01-01
                         15300.0
          2019-01-02
                         15300.0
          2019-01-03
                          6800.0
          2019-01-04
                         17000.0
          2019-01-05
                          6800.0
          2019-01-06
                          8500.0
          2019-01-07
                         10200.0
          2019-01-08
                         18700.0
                         11900.0
          2019-01-09
          2019-01-10
                          5100.0
         Name: Sales, dtype: float64
         quarters = {'First Quarter Profit Distribution 2019':('2019-01-01','2019-03-31', 'blue'),
In [ ]:
                       'Second Quarter Profit Distribution 2019':('2019-04-01','2019-06-30', 'red'),
                       'Third Quarter Profit Distribution 2019':('2019-07-01','2019-09-30', 'orange'),
                       'Fourth Quarter Profit Distribution 2019':('2019-10-01','2019-12-31', 'purple')
In [ ]: for quarter, date in quarters.items():
              start, stop, color = date
```

```
plt.figure(figsize=(20,7))
mac2.plot(color=color)
plt.xlim(start, stop)
plt.title(quarter)
plt.ylabel('Sales')
plt.xlabel('Order Date')
plt.show()
```


Third Quarter Profit Distribution 2019

Total Sales Per Quarter

Out[]:		Quarters	Average Sales
	0	First Quarter	1511300.0
	1	Second Quarter	2167500.0
	2	Third Quarter	1623500.0
	3	Fourth Quarter	2733600.0

Average Sales Quarterly

Out[]: Quarters Average Sales

0	First Quarter	16793.0
1	Second Quarter	23819.0
2	Third Quarter	17647.0
3	Fourth Quarter	29714.0

```
In [ ]: average_sale.set_index('Quarters').plot(kind='barh')
    plt.title("Average Amount Sales of Macbook Pro Laptop")
    plt.xlabel("Sales")
    plt.show()
```

