Keystone Bootloader

Keystone ROM Boot Loader

- Code to transfer application code from memory or host to high speed internal memory
- Boot loader code is burned in the DSP ROM (Non-modifiable)
- Base address for the Boot Code is 0x20B00000
- Boot Loader is broadly divided into two types
 - Memory boot where application is stored in a slow external memory
 - Host Boot where the boot is driven by a host device connected through fast transport.
- Seven different types of boot modes are supported

ROM Boot Modes

Supported Boot Modes

- I2C Boot
 - Master Boot (from I2C EEPROM)
 - Master-Broadcast Boot(Master Boot followed by broadcast to slave cores)
 - Passive Boot (external I2C host)
- SPI Boot (from SPI flash)
- SRIO Boot(from external host connected through SRIO)

- Ethernet Boot (boot from external host connected through Ethernet)
- PCIe Boot (boot from external host connected through PCIe)
- HyperLink Boot (boot from external host connected through HyperLink)
- EMIF16 NOR Boot(boot from NOR Flash)
 - Device Manual will detail supported types.

Boot Mode Configuration Pins

- Boot mode and configurations are chosen using bootstrap pins on the device.
 - Pins are latched and stored in13 bits of the DEVSTAT register during POR.
- The configuration format for these 13 bits are shown in the table:

	Boot Mode Pins								
12	12 11 10 9 8 7 6 5 4 3 2 1 0								
P	PLL Mult Device Configuration Boot Device								
I2C/SP	I2C/SPI Ext Dev Cfg								

- Boot Device [2:0] is dedicated for selecting the boot mode
- Device Configuration [9:3] is used to specify the boot mode specific configurations.
- PLL Multi [12:10] are used for PLL selection. In case of I2C/SPI boot mode, it is used for extended device configuration. (PLL is bypassed for these two boot modes)

Device Startup from Power on Reset (POR)

- Boot Startup procedure executed only once during:
 - Power On
 - Hard Reset
 - Soft Reset
- Bootstrap pins are only latched during Power On Reset (POR)
- Default boot parameter table is chosen based on the selected boot mode
- Boot strap pin configuration parameters are updated in the boot parameter table
- At completion, the ROM code branches to the main boot function, using the table to configure boot operation
 - The boot table can be modified and Boot can be re-executed after startup is complete by branching to the boot run function. (Typical Case: Secondary Boot Loader – I2C loads custom parameter table)

Device Startup from Hard/Soft reset

- For hard and soft resets the Boot code must determine the hibernation state.
 - Hibernation is the process of shutting down unused CorePacs and IP blocks to save power consumption of the overall system.
- Saving all relevant configurations and register values is the application's responsibility based on the selected hibernation mode.
 - Hibernation1 Values stored in MSMC SRAM.
 - Hibernation2 Values stored in DDR3.
- The Application is also responsible for setting the appropriate hibernation mode in the PWRSTATECTL register.
- The Application will also set the branch address in the PWRSTATECTL register.

Hibernation Explained

- Hibernation 1
 - The application needs to ensure that the chip control register is set correctly to avoid MSMC reset.
- Hibernation 2
 - MSMC is reinitialized to default values.
- For both modes, the Application is responsible for shutdown of all desired IP blocks
- A hard or soft reset can be configured to bring a hibernating device out of hibernation
 - After the reset, the boot loader code checks the PWRSTATECTL register to identify the hibernation mode and branch address.
 - Subsequent Actions
 - Peripherals and Corepacs are powered
 - The awakened device branches to the application code which utilizes the values stored in MSMC or DDR3 prior to hibernation

PLL Configuration

The boot code sets the PLL multiplier based on the core frequency set in the EFUSE register.

Boot Input PLL Clock Select Freq [2:0] (MHz)		Core = MHz	800	Core =	1000	Core =	1200	Core =	: 1400	Core = 1	1250	Core = 1 MHz	500
[2.0]	(101112)	Clkr	Clkf	Clkr	Clkr	Clkr	Clkf	Clkr	Clkf	Clkr	Clkf	Clkr	Clkf
0	50.00	0	31	0	0	0	47	0	55	0	49	0	59
1	66.67	0	23	0	0	0	35	0	41	1	74	0	44
2	80.00	0	19	0	0	0	29	0	34	3	124	1	74
3	100.00	0	15	0	0	0	23	0	27	0	24	0	29
4	156.25	24	255	4	24	24	383	24	447	0	15	4	95
5	250.00	4	31	0	4	4	47	4	55	0	9	0	11
6	312.50	24	127	4	24	24	191	24	223	0	7	4	47
7	122.88	47	624	28	13	13	624	13	318	2	60	4	121

Boot Device

Boot Device Selection Values

	Boot Mode Pins: Boot Device Values					
Value	Boot Device					
0	Sleep / EMIF16 ¹					
1	Serial Rapid I/O					
2	Ethernet (SGMII) (PA driven from core clk)					
3	Ethernet (SGMII) (PA driver from PA clk)					
4	PCIe					
5	I2C					
6	SPI					
7	HyperLink					

^{1.} See the device-specific data manual for information.

• For interfaces supporting more than one mode of operation, the configuration bits are used to establish the necessary settings

Boot Configuration – EMIF16 Mode

- EMIF16 mode is used to boot from the NOR flash.
- The boot loader configures the EMIF16 and then sets the boot complete bit corresponding to corePac0 in the boot complete register and then branches to EMIF16 CS2 data memory at 0x70000000.
- No Memory is reserved by the boot loader.

	Sleep / EMIF16 Configuration Bit Fields							
9	8	7	6	5	4	3		
Rese	Reserved Wait Enable Sub-Mode SR Index							

Sleep / EMIF16 Configuration Bit Field Description							
Bit Field	Value	Value Description					
Sub-Mode	0b00	Sleep Boot					
0b01 EMIF16 boot							
	0b10-0b11	Reserved					
Wait Enable	0b0	Wait enable disabled (EMIF16 sub mode)					
	0b1	Wait enable enabled (EMIF16 sub mode)					

Boot Configuration – Ethernet

• Ethernet(SGMII) boot configuration sets SERDES clock and device ID.

	Ethernet (SGMII) Device Configuration Bit fields							
9	9 8 7 6 5 4 3							
SERDES C	SERDES Clock Mult Ext connection Dev ID Dev ID (SR ID)							

Ethernet (SGMII) Configura	Ethernet (SGMII) Configuration Bit fields description							
Bit field	Value	Description						
Ext connection	0	Mac to Mac connection, master with auto negotiation						
	1	Mac to Mac connection, slave, and Mac to Phy						
	2	Mac to Mac, forced link						
	3	Mac to fiber connection						
Device ID	0-7	This value is used in the device ID field of the Ethernet ready frame. Bits 1:0 are use for the SR ID.						
SERDES Clock Mult The output frequency of	0	x8 for input clock of 156.25 MHz						
the PLL must be 1.25 GBs.	1	x5 for input clock of 250 MHz						
	2	x4 for input clock of 312.5 MHz						
	3	Reserved						

Boot Configuration – Serial RapidIO

SRIO boot configuration sets the Clock, Lane configuration, and mode

Rapid I/O Device Configuration Bit Fields								
9	9 8 7 6 5 4 3							
Lane Setup Data Rate Ref Clock SR ID								

	SRIC	Configuration Bit Field Descriptions					
Bit Field	Value	Description					
SR ID	0-3	Smart Reflex ID					
Ref Clock	0	Reference Clock = 156.25 MHz					
1 Reference Clock = 250 MHz							
	2	Reference Clock = 312.5 MHz					
Data Rate	0	Data Rate = 1.25 GBs					
	1	Data Rate = 2.5 GBs					
	2	Data Rate = 3.125 GBs					
	3	Data Rate = 5.0 GBs					
Lane Setup	0	Port Configured as 4 ports each 1 lane wide (4 -1x ports)					
	1	Port Configured as 2 ports 2 lanes wide (2 – 2x ports)					

Boot Configuration12C Master Mode

- In master mode the I2C Device Configuration uses 7 bits of device configuration instead of 5 bits used in passive mode.
- In this mode device will make the initial read of the I2C EEPROM while the PLL is in bypass.
- The initial boot parameter table will contain the desired clock multiplier which will be setup prior to any subsequent reads.

	I2C Master Mode Device Configuration Bit Fields								
12	12 11 10 9 8 7 6 5 4 3								
Rsvd	Speed	Address	Rsvd	Mode (0)		P	arameter Ind	ex	

	I2C Master Mode Device Configuration Field Descriptions					
Bit Field	Value	Description				
Mode 0 Master Mode						
1 Passive Mode						
Address	0	Boot From I2C EEPROM at I2C bus address 0x50				
	1	Boot From I2C EEPROM at I2C bus address 0x51				
Speed	0	I2C data rate set to approximately 20 kHz				
	1	I2C fast mode. Data rate set to approximately 400 kHz (will not exceed)				
Parameter Index	0-31	Identifies the index of the configuration table initially read from the I2C EEPROM				

Boot Configuration 12C Passive Mode

- In passive mode the I2C Device Configuration uses 5 bits of device configuration instead of 7 used in master mode.
- In passive mode the device does not drive the clock, but simply acks data received on the specified address.

	I2C Passive Mode Device Configuration Bit Fields								
9	9 8 7 6 5 4 3								
Rsvd (Must be 1)	Mode (1)	R	eceive I2C Addres	S	Rs	vd			

I2C Passive Mode Device Configuration Field Descriptions					
Bit Field	Value	Value Description			
Mode	0	Master Mode			
	1	Passive Mode			
Address	0-7	The I2C Bus address the device will listen to for data			

Boot Configuration – SPI Mode

Similar to I2C, the bootloader reads either a boot parameter table or boot config table that is at the address specified by the first boot parameter table and executes it directly.

	SPI Device Configuration Bit Fields								
12	11	10	9	8	7	6	5	4	3
	Mode (clk Pol/Phase)		Addr Width	Chip	select		Parame	ter Table	

SPI Device Configuration Field Descriptions						
Bit Field	Value	Description				
Mode	0	Data is output on the rising edge of SPICLK. Input data is latched on the falling edge.				
	1	Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK.				
	2	Data is output on the falling edge of SPICLK. Input data is latched on the rising edge.				
3		Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK.				
4,5 pin	0	4 pin mode used				
1		5 pin mode used				
Addr Width 0		16 bit address values are used				
	1	24 bit address values are used				
Chip Select	0-3	The chip select field value				
Parameter Table Index	0-3	Specifies which parameter table is loaded				
SR Index	0-3	Smart Reflex Index				

Boot Configuration – PCI Express

• In PCIe mode, the host configures memory and loads all the sections directly to the memory.

PCI Device Configuration Bit Fields						
9	8	8 7 6 5 4 3				
Rsvd BAR Config SR ID						ID

PCI Device Configuration Bit Fields				
Bit Field	Value	Description		
SR ID	0-3	Smart Reflex ID		
Bar Config	0-0xf	See Next Slide		

Boot Configuration – PCI Express

	BAR Config / PCIe Window Sizes							
			32 bit Address Translation				64 bit Address Translation	
BAR cfg	BAR0	BAR1	BAR2	BAR3	BAR4	BAR5	BAR1/2	BAR3/4
0b0000	PCIe MMRs	32	32	32	32	Clone of		
0b0001		16	16	32	64	BAR4		
0b0010		16	32	32	64			
0b0011		32	32	32	64			
0b0100		16	16	64	64			
0b0101		16	32	64	64			
0b0110		32	32	64	64			
0b0111		32	32	64	128			
0b1000		64	64	128	256			
0b1001		4	128	128	128			
0b1010		4	128	128	256			
0b1011		4	128	256	256			
0b1100							256	256
0b1101							512	512
0b1110							1024	1024
0b1111							2048	2048

Boot Configuration HyperLink Mode

- HyperLink boot mode boots the DSP through the ultra short range HyperLink.
- The host loads the boot image directly through the link and then generates the interrupt to wake the DSP.

MCM Boot Device Configuration						
9	8	8 7 6 5 4 3				
Reserved	Data	Rate	Ref (Clock	SR Ir	ndex

MCM Boot Device Configuration Field Descriptions					
Bit Field	Value	Description			
SR Index	0-3	Smart Reflex Index			
Ref Clock	0	156.25 MHz			
	1	250 MHz			
	2	312.5 MHz			
Data Rate	0	1.25 GBs			
	1	3.125 GBs			
	2	6.25 GBs			
	3	12.5 GBs			

Booting Multiple Cores

- During the boot process, the boot loader code is loaded into the L2 of corePacO from the ROM.
- The high 0xD23F bytes of this L2 is reserved for the boot code. User should not overwrite this area.
- All the other CorePacs are executing IDLE.
- User should load the image into the L2 of CorePacs they want to boot up.
- Before setting the boot complete register, the user should also set the start address of the code in the respective BOOT MAGIC ADDRESS of the CorePac L2.
- Finally, the user image should also write the IPC interrupt register to bring the required corePacs out of IDLE.

Secondary Bootload Option

Second Stage Boot Load Process

Q: What if more boot parameters are needed than can be specified in the boot pins?

A:Other parameter values can be updated through I2B boot mode

- In this case, the I2C boot will start with a I2C boot parameter table which will in turn load a custom updated parameter table for a specific boot mode.
- Once the default parameter table is updated, the boot code executes using the updated boot parameter structure, using the same process as the primary boot mode.

Second Stage Boot Load Specifics

- The EEPROM image loaded will have two boot parameter tables
- The First one will be an I2C boot parameter table, setting the core clock and also the address of the next block.
- The next block will have the desired boot mode specific boot parameter table with the user desired values.
- After loading this image into the EEPROM, the boot mode in the boot strap is set for I2C master boot.
- After POR, the I2C boot code is executed as a first stage boot load, which will update the default boot parameter table and re-enter the boot code, executing the boot code utilizing the user specific parameters.