# CSE141L Lab 3 Caching Optimizations Worksheet1

| Name:    | Student ID:  |
|----------|--------------|
| Number . | Ottadent ID: |

### Instructions

- Complete this worksheet while reading/working through the lab write up. The worksheet doesn't make sense without the lab.
- The point values are listed for each question. Altering the size of the cells will cost you 1 point. The write up portion of the lab is 30% of your total point for the lab as shown in the lab's README.md

#### Cache and dataset characteristics

P1 (4pt) Find out the dimensions (number of data elements) of the following tensors/vectors used ir fc\_layer\_t::activate for the cifar100 dataset and fill the following table

| Tensor/Vector    | Number of Data Elements |
|------------------|-------------------------|
| in               |                         |
| out              |                         |
| weights          |                         |
| activation_input |                         |

P2 (4pt) Calculate the size (in Bytes) of the following tensors/vectors used  $infc_{layer_t::activate}$  for the cifar100 dataset and fill the following table

| Tensor/Vector    | Size in Bytes |
|------------------|---------------|
| in               |               |
| out              |               |
| weights          |               |
| activation_input |               |

P3 (4pt) How much of each of these data structures used infc\_layer\_t::activate() will fit in the L1 and L2 cache (Note The cache size for our machine is L1-dCache: 32kb, L1-lcache: 32kb, L2: 256kb, L3: 8Mb)?

| tensor           | % that'll fit in L1 | % that'll fit in L2 |
|------------------|---------------------|---------------------|
| in               |                     |                     |
| out              |                     |                     |
| weights          |                     |                     |
| activation_input |                     |                     |

## Understanding Tensor\_t

P1 (1pt) How many elements are there in foo?

P2 (1pt) What's the linear index of element (1,1,1,1)?

P3 (1pt) How far apart are elements that differ by 1 in each dimension?

| dim. | distance in<br>bytes | distance in linear<br>index |
|------|----------------------|-----------------------------|
| х    |                      |                             |
| у    |                      |                             |
| Z    |                      |                             |
| b    |                      |                             |

### Tier 1: Reordering and Tiling loops in fc\_layer\_t::activate

P1(a) (3pt) Fill out the following table. Report the Misses per Instruction by using the performance counters (there should be a column for "MPI" in the reported data when running with L1/2/3.cfg)

| Cache-Level | Miss rate -<br>Base | Miss rate - loop<br>reordering | Miss rate -<br>Tiling |
|-------------|---------------------|--------------------------------|-----------------------|
| L1          |                     |                                |                       |
| L2          |                     |                                |                       |
| L3          |                     |                                |                       |

P1(b) (1pt) Were there any differences in the miss rate observed using the performance counters and moneta? What could contribute to the differences? (A brief answer is fine)

| Your answer here |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |

P2 (4pt) Change the order of loops from b i n to b n i in fc\_layer\_t::activate and report the speedup.

Speedup after loop reordering : \_\_\_\_\_

P3 (4pt) Block the loop n in fc\_layer\_t::activate with the tile sizes 1, 2, 4, 8, 16 and fill out the table below.

| Dataset  | Step size | Blocked implementation time | Speedup vs step size == 1 |
|----------|-----------|-----------------------------|---------------------------|
| cifar100 | 1         |                             |                           |
| cifar100 | 2         |                             |                           |
| cifar100 | 4         |                             |                           |
| cifar100 | 8         |                             |                           |
| cifar100 | 16        |                             |                           |

P4 (4pt) In a single line graph, plot the speed up against the different block sizes for blocking the loop n in fc\_layer\_t::activate. Block size is the independent vairable.

| Your graph here                                                                                                                                       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| P5 (4pt) Consider the blocksize which gave maximum speedup in the previous question P4 and fill out the following table  1. Base implementation time: | sthey |
| memory access pattern with loop order b-i-n                                                                                                           |       |
| memory access pattern with loop order b-n-i                                                                                                           |       |

