TRINOMIAL OR BINOMIAL: ACCELERATING AMERICAN PUT OPTION PRICE ON TREES

JIUN HONG CHAN, MARK JOSHI, ROBERT TANG, AND CHAO YANG

ABSTRACT. We investigate the pricing performance of eight trinomial trees and one binomial tree, which was found to be most effective in an earlier paper, under twenty different implementation methodologies for pricing American put options. We conclude that the binomial tree, the Tian third order moment matching tree with truncation, Richardson extrapolation and smoothing performs better than the trinomial trees.

1. Introduction

Various types of binomial and trinomial trees have been proposed in the literature for pricing financial derivatives. Since tree models are backward methods, they are effective for pricing American-type derivatives. Joshi, [11], has conducted an empirical investigation on the performance of eleven different binomial trees on American put options using twenty different combinations of acceleration techniques; he found that the best results were obtained by using the "Tian third order moment tree" (which we refer to as Tian3 binomial tree henceforth) together with truncation, smoothing and Richardson extrapolation. Here we perform a similar analysis for trinomial trees and will also compare the pricing results to the Tian3 binomial tree.

We use the same four acceleration techniques implemented by Joshi, [11]: control variate due to [5], truncation due to [1], smoothing and Richardson extrapolation due to [3]. These four techniques can be implemented independently or collectively and therefore yield 16 combinations of acceleration techniques. In addition, one can match the smoothing time when one uses Richardson extrapolation and smoothing together. This yields an extra four combinations. This means that there are a total of 20 different combinations of acceleration techniques

Date: September 1, 2008.

 $^{1991\} Mathematics\ Subject\ Classification.$ $91B24,\ 60G40,\ 60G44.$ JEL Classification: G13.

 $Key\ words\ and\ phrases.$ binomial trees, trinomial trees, Richardson extrapolation, options, rate of convergence.

one can use when pricing a derivative using trees. For detailed discussion and merits of these acceleration techniques, we refer reader to [11].

As for binomial trees, there is freedom to choose the parameters of a trinomial tree, depending upon what characteristics one wishes to emphasize. For example, one can attempt to match higher moments, or attempt to obtain smooth convergence.

We will examine 8 of these choices in this paper. This results in 160 different ways to price an American put option using trinomial trees. We use three different error measures to determine the most accurate trinomial tree, and using a Leisen-Reimer tree with a large number of steps and Richardson extrapolation as the true price.

We find that the best choice of trinomial tree depends on how one defines error, but in all cases one should use the acceleration techniques of smoothing, Richardson extrapolation and truncation. The best choices of tree parameters were the Tian fourth order moment matching tree, the Boyle tree with parameter 1.2 and the equal probability tree. (See Section 2 for the precise definitions of these trees.)

We compared their performances with the best binomial tree found in [11] which is the Tian third order moment-matching tree with smoothing, Richardson extrapolation and truncation: the binomial tree turns out to be substantially faster.

A review of trinomial trees and our eight choices of parameters are discussed in Section 2. The different ways these can be accelerated is discussed in Section 3. We present numerical results in Section 4 and conclude in Section 5.

We thank the Faculty of Economics and Commerce at the University of Melbourne for supporting this work through a faculty research grant.

2. Choices of trinomial tree parameters

We quickly review our 8 choices of trinomial trees in this section while the review for the binomial tree used in this paper could be found in [11]. A trinomial tree is characterized by the following five parameters:

- (1) the probability of an up move p_u ,
- (2) the probability of an down move p_d ,
- (3) the multiplier on the stock price for an up move u,
- (4) the multiplier on the stock price for a middle move m,
- (5) the multiplier on the stock price for a down move d.

A recombining tree is computationally more efficient so we require

$$ud = m^2, (2.1)$$

that is, an up move followed by a down move is the same as two middle moves. We therefore have four free parameters.

We work in the Black-Scholes model with the usual parameters: S(0) is the current spot price, L is the strike price of the option, r is the continuously compounding risk-free rate, σ is the volatility and T is the maturity of the option. We define the following variables

$$M = \exp(r\Delta t),\tag{2.2}$$

$$V = \exp\left(\sigma^2 \Delta t\right),\tag{2.3}$$

$$\Delta t = T/N, \tag{2.4}$$

where N is the total number of steps of a trinomial tree. For a tree to be risk-neutral, the mean and variance across each time steps must be asymptotically correct. Since we have four parameters and two constraints, this provides us with two degree of freedom in setting the trinomial trees parameters.

The first three trinomial trees that we will introduce involve moment-matching in the spot space. The Tian equal probability tree, [15], sets the up and down move probabilities to be equal to 1/3 and matches the first two moments exactly:

$$m = \frac{M(3-V)}{2},\tag{2.5}$$

$$K = \frac{M(V+3)}{4},\tag{2.6}$$

$$u = K + \sqrt{K^2 - m^2},\tag{2.7}$$

$$d = K - \sqrt{K^2 - m^2}. (2.8)$$

We shall call this the "Equal Prob" tree.

The Tian fourth order moment matching (Tian4) tree, [15], drops the equal probability constraint of the EqualProb tree and matches 4 JIUN HONG CHAN, MARK JOSHI, ROBERT TANG, AND CHAO YANG

the first four moments exactly:

$$m = MV^2, (2.9)$$

$$K = \frac{M}{2}(V^4 + V^3), \tag{2.10}$$

$$u = K + \sqrt{K^2 - m^2},\tag{2.11}$$

$$d = K - \sqrt{K^2 - m^2},\tag{2.12}$$

$$p_u = \frac{md - M(m+d) + M^2V}{(u-d)(u-m)},$$
(2.13)

$$p_d = \frac{um - M(u+m) + M^2V}{(u-d)(m-d)}. (2.14)$$

Joshi, [9], introduced an adjusted binomial tree where the tree is centered on the strike in log space. Similarly, here we introduce an adjusted trinomial tree by setting the central node on the last layer of the tree to be equal to the strike price of the option, that is, we set $m = (L/S(0))^{1/N}$, and matching the first three moments precisely. The p_u , p_d , u and d have the same expressions as the Tian4 tree except

$$K = \frac{V}{2}(MV + m) + \frac{m}{2M}(m - M). \tag{2.15}$$

The next five trees involve moment-matching in the log space. The *LogSpace* tree matches the first four moments in the log space:

$$m = e^{(r - \frac{1}{2}\sigma^2)\Delta t},\tag{2.16}$$

$$u = me^{\sqrt{3\Delta t}\sigma},\tag{2.17}$$

$$d = me^{-\sqrt{3\Delta t}\sigma},\tag{2.18}$$

$$p_u = \frac{1}{6},\tag{2.19}$$

$$p_d = \frac{1}{6}. (2.20)$$

while Boyle, [2], has chosen the parameters to be:

$$m = 1, (2.21)$$

$$u = \exp(\lambda \sigma \sqrt{\Delta t}), \tag{2.22}$$

$$d = \frac{1}{u},\tag{2.23}$$

$$p_u = \frac{md - M(m+d) + M^2V}{(u-d)(u-m)},$$
(2.24)

$$p_d = \frac{um - M(u+m) + M^2V}{(u-d)(m-d)}. (2.25)$$

Boyle suggested that the choice of value of λ should be greater than one and the best results were obtained when λ is approximately 1.20. For our investigation purpose, we set λ equal to 1.10, 1.20 and 1.30. We refer these three trinomial trees as Boyle1.1, Boyle1.2 and Boyle1.3.

Lastly, the Kamrad and Ritchken (KR), [12], tree matches the first moment and variance in the log space:

$$m = 1, (2.26)$$

$$u = \exp(v), \tag{2.27}$$

$$d = 1/u, (2.28)$$

$$v = \lambda \sigma \sqrt{\Delta t},\tag{2.29}$$

$$\mu = r - \frac{\sigma^2}{2},\tag{2.30}$$

$$\lambda = 1.22474,$$
 (2.31)

$$p_u = \frac{1}{2\lambda^2} + \frac{\mu\sqrt{\Delta t}}{2\lambda\sigma},\tag{2.32}$$

$$p_d = \frac{1}{2\lambda^2} - \frac{\mu\sqrt{\Delta t}}{2\lambda\sigma}. (2.33)$$

3. The implementation choices

The implementation choices in this paper are the same as those in [11]. We shall briefly review all choices in this section and for a more detailed description of all choices, we refer the reader to [11].

3.1. **Truncation.** At each layer (step), the trinomial tree is developed up to 6 standard deviations away from the mean in log space computed under the risk-neutral measure. For nodes at the upper and lower edge

Table 3.1. The labelling of implementation options by number.

of the truncated tree, we take the continuation value of the American put to be equal to the Black-Scholes price for the corresponding European put.

3.2. Control variates. We price both American and the corresponding European put simultaneously. If P_A and P_E are the tree price of the American and European put respectively and P_{BS} is the true price of the European put given by the Black-Scholes formula, we take the error controlled price to be

$$\hat{P}_A = P_A + P_{BS} - P_E.$$

3.3. Richardson extrapolation. If X_n is the price after n steps then we use the estimate

$$Y_n = 2X_{2n} - X_n.$$

as the price of the put option. Our motivations is that if

$$X_n = \text{TruePrice} + \frac{E}{n} + o(1/n), \tag{3.1}$$

then

$$Y_n = \text{TruePrice} + o(1/n).$$

Whilst this will not be wholly, we shall accelerate to the extent that it is true.

3.4. **Smoothing.** On the second last layer of tree, an American put within the disrectized model is a European put option, we therefore set the price of the American put on that layer to be the maximum of the intrinsic value and the Black-Scholes price.

As in [11], we also consider the extra matching choice which is relevant when doing both smoothing and extrapolation. In order to match the smoothing time for the tree with n steps, We smooth the tree with 2n steps at 2(n-1) steps rather than at 2n-1 steps

We list keys describing all the possible choices in Table 3.1.

4. Numerical results

Our numerical tests follow those in [11] which were inspired by Broadie and Dutemple in [3]. We pick the option parameters from a random distribution and assess the pricing error by using Leisen-Reimer binomial tree with 14001 steps and Richardson extrapolation as the true value.

The option parameters were selected based on the following distribution: The current spot price, S(0), has a uniform distribution between 70 and 130. Strike price, L, is equal to 100. The continuously compounding interest rate, r, is with probability 0.8, uniform between 0.0 and 0.10 and with probability 0.2 equal to 0.0. Volatility, σ , is distributed uniformly between 0.1 and 0.6. Time to maturity, T, is with probability 0.75, uniform between 0.1 and 1.00 years and, with probability 0.25, uniform between 1.0 and 5.0 years.

To test the accuracy of various trinomial trees, we use three different error measures. First we use the root-mean-squared (rms) absolute error. Next, we use the Broadie-Detemple relative error measure. This measures the relative errors but excludes cases where the true price is less than 0.5 in order to avoid distortions due to errors on small values. However, this error measure doesn't assess the accuracy of the trees in pricing deep out-of-the-money options as options with prices less than 0.5 are excluded. It is also soft on deep-in-the-money options since most of the value will be the intrinsic value which is model independent.

Finally, we adopt the Joshi modified-relative error measure given in [11]

$$\frac{\text{TreePrice} - \text{TruePrice}}{0.5 + \text{TruePrice} - \text{IntrinsicValue}}.$$

The main advantage of Joshi modified-relative error measure is that it incorporates both deep-out-of-the-money and deep-in-the-money options without distorting the test results. Hence, we expect that it might give different conclusions to the absolute error measure and the Broadie-Detemple relative error measure [11].

For each of the eight trinomial trees discussed, we run the trinomial tree to price 3000 randomly generated put options using all of the keys in Table 3.1 with the following number of steps

In addition, we also price the 3000 put options using Tian third order moments matching binomial tree ¹ (Tian3) with the same keys and number of steps. We then used linear interpolation of log time against log error to estimate the time required to find an absolute rms error of 1E-3, a Joshi modified-relative rms error of 1E-3 and a relative rms error (Broadie–Detemple) of 0.25E-4. The difference in target values expressing the fact that the Broadie–Detemple error measure is more lenient.

Tables 4.1, 4.2 and 4.3 only show the number of option evaluations per second required to obtain a given level of accuracy. We observe that smoothing combined with Richardson extrapolation and truncation are very effective methods to improve speed regardless of the choice of tree parameters or other combinations of acceleration techniques used. Overall, the fastest results are obtained, when these methods are used together (that is the key of 13). The control methodology is useful when the error is large, but when the price is accurate without it, adding it in merely slows things down. In particular, the key of 15 generally produces significantly slower results (for a given level of accuracy) than the key of 13. Also, we observed that the matching acceleration technique has negligible effect on pricing regardless of the choice of parameters, acceleration combinations, or error definition used.

Depending upon our error methodology, the most effective trinomial trees are Tian4 with key 13 (absolute), EqualProb with key 13 (Broadie–Detemple) and Boyle1.2 with key 9 (modified relative). However, when we compare these trees against the best binomial tree in [11], the Tian3 binomial tree with key 13, the Tian3 outperforms all the trinomial trees in all cases.

Without acceleration techniques, Boyle1.1 and KR trinomial always outperforms the Tian3 binomial tree under all 3 error measures while the reverse is true when the Tian3 binomial tree is used with suitable

¹The specification of the model parameters of this tree is given in [11]

6	2	_	∞	○ 1	_	247	က	9	~1	ن
									4.	1E-3
18	63	12	52	12	19	79	46	52	_	r of
17	370	181	422	162	551	516	305	381	1432	erro
16	102	34	124	29	186	169	92	106	1014	e rms
15	213	72	189	72	86	248	174	187	41	solute
14	63	12	52	12	19	80	46	52	∞	ı ab
13	371	182	425	162	553	525	307	382	1435	ith an
12	103	35	126	29	188	173	22	108	1039	nd w
11	307	83	270	84	125	357	248	268	22	s seco
10	85	16	89	16	25	103	09	29	6	suc
6	54	149	30	150	227	42	74	361	41	luatic
∞	_	28	3	28	44	5	11	75	က	eva
7	212	69	181		06		173	192	41	tion
9	65	11	51	12	17	92	47	56	∞	do J
ಬ	92	23	81	24	26	124	20	87	31	ber c
4	13	3	11	က	က	20	10	12	က	m
ဘ	301	22	255	80	110	333	• •	271	22	1. N
2	83	15	64	15	22	26	61	71	10	Е 4.
		90				40			39	'ABLI
0	_	16	3	16	20	ಬ	10	47	က	Н
key	Boyle1.2	$\operatorname{LogSpace}$	EqualProb	Adjusted	Tian4	Boyle1.1	Boyle1.3	KR	Tian3	

0.5	Tai	Tian3	KR	Boyle 1.3					$\operatorname{LogSpace}$	Boyle 1.2	key
cut-	3LE	49	55	124	62	108	98	69	104	84	0
off.	4.2.	206	273	495	304	452	424	334	441	385	Ľ
	Nun	97	109	709	741	209	126	216	177	822	2
	ıber		359	1178	1211	547	394	559	493	1291	ယ
	of optio	16	14	42	80	13	14	55	55	62	4
	tion	85	100	203	309	93	98	242	241	260	υī
	eval	74	86	537	566	163	99	167	138	614	6
	uatio	190	255	795	822	380	278	386	343	864	7
	ns a	63	86	164	67	360	207	76	286	97	∞
	secon	242	393	610	332	1029	714	363	885	429	9
	d ob	93	98	570	732	202	117	178	161	662	10
	tainak	262	344	1090	1281	556	388	512	479	1201	11
	ole wi	3166	148	543	832	825	147	1051	389	636	12
	th a r	3172	472	1094	1436	1428	470	1665	883	1210	13
	elati	71	76	413	512	153	91	135	122	482	14
	ve er:	187	242	720	828	380	270	350	328	796	15
	ror of	3145	144	522	811	815	144	1036	384	626	16
	error of 0.25E-4 with	3144	466	1066	1418	1423	466	1662	876	1199	17
	7-4 w	69	76	412	518	153	90	135	122	479	18
	ith	187	239	718	831	378	268	349	327	790	19

		231								error	
		72								tive	
17	377	187	442	160	523	588	331	379	1415	rela	
16	105	36	133	58	172	206	98	105	966	lified	
15	247	232	290	189	301	264	253	253	425	moc	
14	79	72	101	52	107	88	83	82	238	Joshi	
13	378	188	444	160	525	598	333	380	1413	ha.	
12	106	36	135	29	174	212	87	106	1016	le wit	
11	357	333	420	267	437	379	366	365	909	inab	
10	103	93	132	29	139	113	107	107	317	obta	
6	1410	614	1043	490	807	1385	1265	1228	636	econd	
∞	583	166	368	119	248	292	494	472	459	s a s	
2	261	179	301	162	247	272	265	262	306	ations	٥
9	06	20	112	42	85	96	92	06	151	evalu	rhtin
5	370	175	426	150	362	556	320	368	455	tion (iew l
4	106	33	132	26	102	198	85	105	202	opt	iona.
က	374	252	429	226	348	389	381	372	427	ber c	addit.
2	116	63	143	54	104	123	119	115	196	Num	75.
П	1327	581	1051	439	794	1371	1209	1093	884	TABLE 4.3.	Sing
0	570	158	395	103	255	009	492	420	415	TABLE 4	F.3.
key	Boyle1.2	LogSpace	EqualProb	Adjusted	Tian4	Boyle1.1	Boyle1.3	$_{ m KR}$	Tian3	TAI	Of 1

acceleration techniques. Similar to the findings in [11], this demonstrates that the accuracy without acceleration technique is a poor predictor of accuracy after acceleration.

Tables 4.4, 4.5, and 4.6 show the accuracy and speed of the Tian3 binomial and three interesting trinomial trees (which includes the most accurate of trinomial trees) for a given error definition and number of steps and Figures 1, 2 and 3 graphs these results. Agreeing with the findings from Tables 4.1, 4.2, and 4.3, we find that the keys of 13 and 17 offer the best results regardless of the choice of tree parameters.

The Tian3 binomial tree clearly outperforms any of the trinomial trees in both accuracy and speed of pricing regardless of the error definition; in particular, when 1600 steps are used in pricing, the Tian3 binomial tree prices options almost twice as fast for a given level of accuracy than the most accurate trinomial tree. Note also that truncation speeds up the pricing by four and seven times for the Tian3 binomial tree when using steps of 800 and 1600 respectively and speeds up the pricing by seven and eight times for the trinomial trees whilst having a negligible effect on accuracy. When comparing between the trinomial trees only, the most accurate tree depends on the error definition used; in the absolute measure it is the Boyle1.2 tree (with key of 13) that is most accurate whereas under both the Broadie-Detemple relative measure and Joshi modified relative measure it is the EqualProb tree.

FIGURE 1. Graphs of log root-mean-square absolute error against log time for selected cases with smoothing, truncation and extrapolation.

																		- Cu
100	peeds	1510	11119	1523	1111	1176	809	1176	809	809	1176	809	1176	1176	809	1176	809	200
100	error	1.06E-03	1.06E-03	1.08E-03	1.08E-03	2.52E-03	2.52E-03	2.56E-03	2.56E-03	2.26E-03	2.26E-03	2.28E-03	2.28E-03	2.13E-03	2.13E-03	2.15E-03	2.15E-03	110tiona r
200	speed	731	386	734	378	556	189	556	188	189	556	188	556	556	189	556	188	lorro de
200	error	4.37E-04	4.37E-04	4.38E-04	4.38E-04	1.52E-03	1.52E-03	1.53E-03	1.53E-03	1.00E-03	1.00E-03	1.01E-03	1.01E-03	1.28E-03	1.28E-03	1.29E-03	1.29E-03	in obsolute torms and number of ention avaluations nor second
400	$_{\mathrm{peed}}$	301	115	302	1111	240	53	240	53	53	240	53	240	240	53	240	53	h
400	error	1.79E-04	1.79E-04	1.78E-04	1.78E-04	6.35E-04	6.35E-04	6.35E-04	6.35E-04	4.37E-04	4.37E-04	4.39E-04	4.39E-04	5.90E-04	5.90E-04	5.93E-04	5.93E-04	T buo om
800	speed	124	31	124	30	96	13	96	13	13	96	13	96	96	13	96	13	+0+0+
800	error	7.25E-05	7.25E-05	7.25E-05	7.25E-05	1.95E-04	1.95E-04	1.95E-04	1.95E-04	1.97E-04	1.97E-04	1.97E-04	1.97E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04	in about
1600	speed	47	7	48	9	26	ဘ	26	က	က	26	က	26	26	က	26	က	
1600	error	3.22E-05	3.22E-05	3.23E-05	3.23E-05	7.51E-05	7.51E-05	7.52E-05	7.52E-05	7.97E-05	7.97E-05	7.97E-05	7.97E-05	8.44E-05	8.44E-05	8.45E-05	8.45E-05	1 A rms orror
	key	13	12	17	16	13	12	17	16	12	13	16	17	13	12	17	16	Тльг
	name	Tian3	Tian3	Tian3	Tian3	Boyle1.2	Boyle1.2	Boyle1.2	Boyle1.2	Tian4	Tian4	Tian4	Tian4	EqualProb	EqualProb	EqualProb	EqualProb	_

TABLE 4.4. rms error in absolute terms and number of option evaluations per second for 16 good cases using 3,000 evaluations.

	T_{A}	Boyle1.2	Boyle1.2	Boyle1.2	Boyle1.2	Tian4	Tian4	Tian4	Tian4	EqualProb	EqualProb	EqualProb	EqualProb	Tian3	Tian3	Tian3	Tian3	name	
1,,,,	$\Gamma_{ m ABLE}$	12	13	16	17	13	12	17	16	12	13	16	17	16	17	12	13	\ker	
oralizations now second for 16 good eases using 2 000	4.5. rms	6.50E-06	6.50E-06	6.48E-06	6.48E-06	6.31E-06	6.31E-06	6.29E-06	6.29E-06	5.78E-06	5.78E-06	5.77E-06	5.77E-06	3.11E-06	3.11E-06	3.03E-06	3.03E-06	error	1600
	error		26	သ	26	26	သ	26	သ	သ	26	သ	26	6	48	7	47	$_{\mathrm{speed}}$	1600
for 16 %	in Broadie–Detemple relative	1.54E-05	1.54E-05	1.54E-05	1.54E-05	1.62E-05	1.62E-05	1.63E-05	1.63E-05	1.29E-05	1.29E-05	1.29E-05	1.29E-05	6.95E-06	6.95E-06	6.84E-06	6.84E-06	error	800
2	ie-Det	13	96	13	96								96						800
	emple re	4.41E-05	4.41E-05	4.40E-05	4.40E-05	3.67E-05	3.67E-05	3.71E-05	3.71E-05	3.48E-05	3.48E-05	3.48E-05	3.48E-05	1.65E-05	1.65E-05	1.66E-05	1.66E-05	error	400
		53	240	53	240	240	53	240	53	53	240	53	240	111	302	115	301	$_{\mathrm{speed}}$	400
orrollingtions	terms with	1.44E-04	1.44E-04	1.45E-04	1.45E-04	8.65 E-05	8.65 E-05	8.68E-05	8.68E-05	7.45E-05	7.45E-05	7.49E-05	7.49E-05	3.86E-05	3.86E-05	3.80E-05	3.80E-05	error	200
2	th cut-	189	556	188	556	556	189	556	188	189	556	188	556	378	734	386	731	$_{\mathrm{speed}}$	200
	cut-off of 0.5	2.39E-04	2.39E-04	2.43E-04	2.43E-04	1.89E-04	1.89E-04	1.90E-04	1.90E-04	1.43E-04	1.43E-04	1.44E-04	1.44E-04	8.83E-05	8.83E-05	8.61E-05	8.61E-05	error	100
	and nun		1176	608	1176	1176	608	1176	608	608	1176	608	1176	1111	1523	1119	1510	$_{ m speed}$	100

evaluations per second for 16 good cases using 3,000 evaluations. ımber of option

																		n buo
100	speed	1510	11119	1523	11111	1176	809	1176	809	1176	809	1176	809	1176	809	1176	809	. of 0 5
600 800 800 400 400 200 200 100 100	error	1.09E-03	1.09E-03	1.10E-03	1.10E-03	1.60E-03	1.60E-03	1.61E-03	1.61E-03	1.73E-03	1.73E-03	1.75E-03	1.75E-03	2.22E-03	2.22E-03	2.23E-03	2.23E-03	nol moinh
200	speed	731	386	734	378	556	189	556	188	556	189	556	188	556	189	556	188	101+101
200	error	4.33E-04	4.33E-04	4.35E-04	4.35E-04	1.21E-03	1.21E-03	1.22E-03	1.22E-03	1.44E-03	1.44E-03	1.45E-03	1.45E-03	1.05E-03	1.05E-03	1.05E-03	1.05E-03	o with
400	$_{\mathrm{beed}}$	301	115	302	1111	240	53	240	53	240	53	240	53	240	53	240	53	7
400	error	1.70E-04	1.70E-04	1.70E-04	1.70E-04	5.87E-04	5.87E-04	5.89E-04	5.89E-04	6.47E-04	6.47E-04	6.49E-04	6.49E-04	4.98E-04	4.98E-04	5.01E-04	5.01E-04	d rolotis
800	$_{\mathrm{beed}}$	124	31	124	30	96	13	96	13	96	13	96	13	96	13	96	13	nodific.
800	error	6.70E-05	6.70E-05	6.70E-05	6.70E-05	1.28E-04	1.28E-04	1.28E-04	1.28E-04	1.58E-04	1.58E-04	1.58E-04	1.58E-04	2.33E-04	2.33E-04	2.34E-04	2.34E-04	in Lochi
1600	$_{\mathrm{beed}}$	47	7	48	9	26	က	26	က	26	က	26	က	26	က	26	က	Orror
1600	error	3.35E-05	3.35E-05	3.36E-05	3.36E-05	6.23E-05	6.23E-05	6.23E-05	6.23E-05	7.31E-05	7.31E-05	7.33E-05	7.33E-05	1.15E-04	1.15E-04	1.15E-04	1.15E-04	TABLE 1 6 rms orror
	key	13	12	17	16	13	12	17	16	13	12	17	16	13	12	17	16	DI TO
	name	Tian3	Tian3	Tian3	Tian3	EqualProb	EqualProb	EqualProb	EqualProb	Boyle1.2	Boyle1.2	Boyle1.2	Boyle1.2	Tian4	Tian4	Tian4	Tian4	É

TABLE 4.6. rms error in Joshi modified relative terms with additional weight of 0.5 and number of option evaluations per second for 16 good cases using 3,000 evaluations.

	absolute		B&D		Joshi	
	slope	constant	slope	constant	slope	constant
Tian3 key 13	-0.796	-7.092	-0.822	-9.364	-0.734	-7.340
Tian3 key 17	-0.801	-7.073	-0.823	-9.344	-0.735	-7.338
Tian4 key 17	-0.824	-5.569	-0.860	-7.936	-0.741	-5.662
Tian4 key 13	-0.831	-5.529	-0.868	-7.895	-0.747	-5.627
EqualProb key 17	-0.853	-5.452	-0.875	-8.060	-0.776	-6.128
EqualProb key 13	-0.863	-5.402	-0.886	-8.002	-0.784	-6.088
Boyle1.2 key 17	-0.867	-5.422	-0.888	-7.850	-0.702	-6.225
Boyle1.2 key 13	-0.876	-5.377	-0.899	-7.796	-0.709	-6.192

TABLE 4.7. Order of convergence as expressed as a power of time for a selected few interesting cases.

FIGURE 2. Graphs of log root-mean-square Broadie—Detemple relative error against log time for selected cases with smoothing, truncation and extrapolation.

To compute orders of convergence, we regress the log RMS error against log time taken and fitting the best straight line through the cases with 800, 1600 and 3200 steps; see Table 4.7 for selected cases. We display results for absolute errors, relative errors with modification, and the Broadie–Detemple relative errors.

Although our previous test suggests that the Tian3 binomial tree with key 13 is the best tree, table 4.7 seems to suggest otherwise as the selected trinomial trees appear to have a slightly higher orders of convergence. This may lead us to believe that if the number of time steps is large enough, eventually the trinomial trees will outperform

FIGURE 3. Graphs of log root-mean-square modified relative error against log time for selected cases with smoothing, truncation and extrapolation.

the Tian3 binomial tree. However, for "reasonable" numbers of time steps they do worse, see figures 1, 2 and 3. A naive extrapolation for the case of rms absolute error suggests that it would take 225 years for the trinomial trees to win.

5. Conclusion

In general, when pricing American puts with trees, the acceleration techniques of smoothing, Richardson extrapolation and truncation should be used to increase accuracy and speed, regardless of the choice of parameters or error definition. Amongst the trinomial trees, Boyle1.2, EqualProb, Tian4 with key 13 all perform well. However, none are as good as the Tian third moment matching binomial tree with the key of 13. We therefore believe that the use of trinomial trees does not offer any improvements to the pricing of an American put option.

References

- [1] A.D. Andicropoulos, M. Widdicks, P.W. Duck, D.P. Newton, Curtailing the range for lattice and grid methods, *Journal of Derivatives*, 55–61 (2004)
- [2] P. Boyle, Option valuation using a three-jump process, *International options* journal 3: 7 12 (1986)
- [3] M. Broadie, J. Detemple, American option valuation: new bounds, approximations, and a comparison of existing methods, *The Review of Financial Studies*, Vol. 9, No. 4: 1211–1250 (1996)

- [4] N. Chriss, Black-Scholes and beyond: Option Pricing Models, McGraw-Hill, New York (1996)
- [5] J. Hull, A. White, The use of the control variate technique in option pricing, Journal of Financial and Quantitative Analysis, 23: 237–251 (1988)
- [6] R. Jarrow, A. Rudd, Option pricing, Homewood, IL: Richard D. Irwin, (1993)
- [7] R. Jarrow, Stuart Turnbull, *Derivative Securities*, 2nd ed. Cincinnati: South-Western College Publishing (2000)
- [8] M. Joshi, The Concepts and Practice of Mathematical Finance, Cambridge University Press (2003)
- [9] M. Joshi, Achieving Smooth Convergence for The Prices of European Options In Binomial Trees, preprint (2006)
- [10] M. Joshi, Achieving Higher Order Convergence for The Prices of European Options In Binomial Trees, to appear in *Mathematical Finance*.
- [11] M. Joshi, The convergence of binomial trees for pricing the american put, preprint (2007)
- [12] B. Kamrad, P. Ritchken, Multinomial approximating models for options with k state variables, $Management\ Science$. Volume 37, Number 12: 1640 1652 (1991)
- [13] D.P. Leisen, M. Reimer, Binomial models for option valuation-examining and improving convergence, *Applied Mathematical Finance*, 3: 319–346 (1996)
- [14] M. Staunton, Efficient estimates for valuing American options, the Best of Wilmott 2, John Wiley and Sons Ltd (2005)
- [15] Y. Tian, A modified lattice approach to option pricing, *Journal of Futures Markets*, 13(5): 563–577 (1993)

CENTRE FOR ACTUARIAL STUDIES, DEPARTMENT OF ECONOMICS, UNIVERSITY OF MELBOURNE, VICTORIA 3010, AUSTRALIA

E-mail address: j.chan23@pgrad.unimelb.edu.au

E-mail address: mark@markjoshi.com

 $\begin{tabular}{ll} E-mail $address$: c.yang7@pgrad.unimelb.edu.au \\ E-mail $address$: r.tang4@pgrad.unimelb.edu.au \\ \end{tabular}$