Assignment - 1

Set Theory:

- **1.** Prove that (i) $A B = A \cap B'$ (ii) $A \cap (B C) = (A \cap B) (A \cap C)$.
- **2.** Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{4, 5, 6, 7\}$ find
 - (i) $(A \cup B) \Delta A$

- (ii) $A \Delta (A\Delta B)$
- (iii) B B

- 3. Find the following sets in set builder form.
 - i. $A = \{3, 6, 9, 12, 15\}$
 - ii. $B = \{-4, -3, -2, -1, 0, 1, 2, 3\}$
 - iii. $C = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$
 - iv. $D = \{2, 4, 6, 8, 10\}$
- 4. Convert in tabular form.
 - i. $A = \{x: x^2 3x + 2 = 0\}$
 - ii. $B = \{x: x \text{ is an integer and } 1 \le x \le 7\}$
- iii. $C = \{x: (x \ge 0) \text{ and } (x^2 \le 10), x \in Z\}$
- iv. $D = \{x: x \in R, x^2 1 = 0\}$
- **5.** $S_1 = \{1, 2, 3\}, S_2 = \{x: x^2 2x + 1 = 0\}$ and $S_3 = \{x: x^3 6x^2 + 11x 6 = 0\}$. Show that which sets are equal.
- **6.** A = $\{1, 2, 3, 4, 5\}$, B = $\{3, 4, 5, 6\}$ and C = $\{x \in Z \text{ where } x \text{ is even}\}$. Find
 - i. A B

- ii. $B \cap A$ iii. C B iv. $(A \cap B) \cup C$
- 7. Write all the subsets of sets.
 - i. $A = \{1, 2, 3\}$
- ii. $B = \{1, \{2, 3\}\}\$ iii. $C = \{\{1, 2, 3\}\}\$

Relation:

- 1. Let $A = \{2, 3, 4\}$ and $B = \{3, 4, 5\}$. List the elements of each relation R defined below and the domain and range.
 - $a \in A$ is related to $b \in B$, that is, a R b if, and only if a < b. (i)
 - (ii) $a \in A$ is related to $b \in B$, that is, a R b if a and b are both odd numbers.
- 2. Let $S = \{x, y\}$ and S^2 is the set of all words of length 2, find the elements of S^2 .
- 3. Let $A = \{2, 3, 5\}$ and $B = \{6, 8, 10\}$ and define a binary relation R from A to B as follows: For all $(x, y) \in A \times B$, $(x, y) \in R \iff \frac{x}{y} (x \text{ divides } y)$.

Write each R and R-1 as a set of ordered pairs.

- **4.** Let $R = \{(1, 1), (2, 1), (3, 2)\}$, compute R^2 .
- 5. Consider a relation R defined on $A = \{1, 2, 3\}$ whose matrix representation is given below. Determine its inverse R-1 and complement R'.

$$M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

6. Consider the following relation on {1, 2, 3, 4, 5, 6}

$$R = \{(i, j) : |i - j| = 2\}$$

Is R reflexive? Is R symmetric? Is R transitive?

7. Let R be a binary relation defined as

$$R = \{(a, b) \in R^2 : (a - b) \le 3\}$$

Determine whether R is reflexive, symmetric, antisymmetric and transitive.

- 8. Give an example of a relation which is:
 - (i) Reflexive and transitive but not symmetric.
 - (ii) Symmetric and transitive but not reflexive.
 - (iii) Reflexive and symmetric but not transitive.
 - (iv) Reflexive and transitive but neither symmetric nor antisymmetric.
- **9.** If A is a set of positive integers and a relation R is defined on A as follows: $(a,b)R(c,d) \Leftrightarrow a+d=b+c \ \forall \ a,b,c,d \in R$, then prove that R is an equivalence relation.
- 10. Let $N = \{1, 2, 3 ...\}$ and a Relation is defined in $N \times N$ as follows: (a, b) is related to (c, d) iff ad = bc, then show whether R is a equivalence relation or not.

Function:

- 1. Let $A = \{1,2,3,4,5\}$, $B = \{0,1,2,3,5,7,9,12,13\}$ and
 - i) $f_1 = \{(1,1), (2,0), (3,7), (4,9), (5,12)\}$
 - ii) $f_2 = \{(1,3), (2,3), (3,5), (4,9), (5,9)\}$
 - iii) $f_3 = \{(1,1), (2,3), (4,7), (5,12)\}$
 - iv) $f_4 = \{(1,1), (2,3), (3,5), (3,7), (4,9)\}$

Check which of the notation represents a function and write down the range of such function.

- 2. Determine the nature (type) of the functions f: $R \rightarrow R$ (one-one, onto, one-one onto etc...)
 - i) f(x) = 3x 1
 - **ii)** $f(x) = x^2$
 - iii) $f(x) = x^3$
 - **iv)** $f(x) = x^3 + 1$
 - **v)** f(x) = x+1
- 3. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. In each case, state whether the given function (if defined) is injective, surjective, bijective.
 - i) $f = \{(1,a), (2,d), (3,b)\}$
 - **ii)** $g = \{(1,a), (2,a), (3,d)\}$
 - iii) $h = \{(1,a), (1,b), (2,d), (3,c)\}$
 - iv) $j = \{(1,a), (2,b)\}$
- 4. A function defined over the set of integers as follows:

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ x + 2 & \text{if } 1 \le x < 3\\ 4x - 5 & \text{if } 3 \le x < 5 \end{cases}$$

- i) Find the domain of f
- ii) Find the range of f
- iii) State whether f is one-one or many one function.
- 5. Consider A = B = C = R and let $f: A \to B$ and $g: B \to C$ be defined by f(x) = x + 9 and $g(y) = y^2 + 3$. Find the following composite functions:

- i) (fof)(a)
- **ii)** (gog)(a)
- iii) (fog)(b)
- **iv)** (gof)(b)
- \mathbf{v}) (gof)(3)
- vi) (fog)(-3)
- **6.** Find the inverse function of the following functions $f: R \to R$ (if exists)
 - i) $f(x) = x^3$
 - ii) $f(x) = ax + b \ (a \neq 0)$
 - **iii)** $f(x) = x^2 + 1$
 - **iv)** $f(x) = x^2 + 3$
- 7. If f and g are two functions defined over the sets of real numbers such that $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in \mathbb{R}$. Show that $\cos x \neq \sin x$
- **8.** Find the domain of the real valued function $f(x) = \sqrt{81-x^2}$.
- **9.** Show that the function $f(x) = x^3$ and $g(x) = x^{1/3}$ for $x \in R$ are inverses of one another.
- **10.** Let $A = \{1,2,3,4\}$ and let $f = \{(1,3), (2,1), (3,4), (4,3)\}$ and $g = \{(1,2), (2,3), (3,1), (4,1)\}$. Find
 - i) fog
 - ii) gof
 - iii) fof
 - iv) gog