

### Trabalho Prático

### 1. Objetivo

O objetivo desse trabalho é permitir que os alunos apliquem os conceitos assimilados na disciplina em um trabalho prático de implementação. A ideia é desenvolver um dos algoritmos em uma das máquinas/gramáticas vistas na disciplina em um programa de computador.

### 2. Descrição

Implementar um programa que recebe um Autômato Finito Não Determinístico com transições  $\lambda$  (AFN $\lambda$ ) e o converte em uma Expressão Regular (ER). Para obter uma expressão regular a partir de um AFN $\lambda$   $M = (E, \Sigma, \delta, I, F)$ :

- 1. Obter um AFN $\lambda$   $M' = (E \cup \{i, f\}, \Sigma, \delta', i, f)$  a partir do AFN $\lambda$  M, onde i,  $f \notin E$ :
  - a.  $\delta'(i, \lambda) = e, \forall e \in I$
  - b.  $\delta'(e, \lambda) = f, \forall e \in F$
  - c.  $\delta'(e, a) = \delta(e, a)$
- 2. Obter diagrama ER a partir de M' substituindo transições de e para e' sob  $s_1, s_2, ..., s_n$  por uma số transição de e para e' sob  $s_1 + s_2 + ... + s_n$
- 3. Eliminar um a um os estados do diagrama ER com exceção de *i* e *f*:
  - a. Simular todas as passagem por e para cada par  $[e_1, e_2]$  tais que há transição de  $e_2$  para e e e para  $e_1$  ( $e_1 \neq e$  e  $e_2 \neq e$ )



b. Se havia transição de  $e_1$  para  $e_2$  sob s, substituir por transição de  $e_1$  para  $e_2$  sob  $s + r_1r_2*r_3$ 

### 2.1. Exemplo

Considere o seguinte AFNλ:



Seguindo o algoritmo listado acima para transformar o AFNλ em ER:



1. Adicionar apenas um estado inicial e final, indicados em laranja:



2. Substituir todas as transições de e para e' por conjunções em ER, indicados em marrom:



- 3. Remover os estados na ordem 1, 3 e 2:
  - a. Remover o estado 1, indicado em vermelho:



 Remover o estado 3 com suas transições, indicado pelas cores azul e verde:



c. Remover o estado 2, indicado pela cor magenta:





## 3. Instruções

O programa deve receber uma especificação de um AFN $\lambda$   $M = (E, \Sigma, \delta, I,$ F) e a lista de estados R na ordem que devem ser removidos no formato ISON conforme a seguinte especificação:

```
{ "af": [ [e, ∀e ∈ E], [a, ∀a ∈ Σ], [ [e,a,e'], δ(e, a) = e'], [i, ∀i ∈ I], [f, ∀f ∈ F] ],
 "r": [r, \forall r \in R]
```

O exemplo da seção anterior com a remoção dos estados na ordem 1, 3 e 2 pode ser definida da seguinte forma, onde # indica o símbolo λ:

```
{ "af": [
```

Para uma determinada especificação com a ordem de eliminação dos estados só existe uma expressão regular válida se considerar as seguintes regras:

| Tipo            | Regras                                                                                                                                  | Exemplos                                    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| -               | Somente um símbolos ou λ se mantém                                                                                                      | a<br>λ                                      |
| Conjunção       | Termos em conjunção devem sempre ser envoltos por parênteses (externamente)                                                             | (a+b)<br>(a+b+c)                            |
|                 | $\lambda$ não deve ser ignorado em conjunções; a conjunção de múltiplos $\lambda$ gera $\lambda$ ; $\lambda$ deve sempre ser o primeiro | (λ+ <i>a</i> )<br>(λ+ <i>b</i> + <i>c</i> ) |
| Composição      | Termos em composição não devem ser envoltos por parênteses; λ deve ser ignorado, exceto se resultar no próprio λ                        | ab<br>abc<br>a(b+c)                         |
| Fecho de Kleene | Se for um símbolo: símbolo seguido de asterisco                                                                                         | a*<br>b*                                    |
|                 | Se for uma conjunção: conjunção (já entre parênteses) seguido de asterisco                                                              | (a+b)*<br>(a+b+c)*                          |
|                 | Se for uma composição: composição entre parênteses seguido de asterisco                                                                 | $(ab)^*  (a(b+c))^*$                        |



O programa deve receber o arquivo de entrada de acordo com a especificação em linha de comando e exibir a expressão regular na tela. Repare que a expressão regular não possui espaços.

\$ ./af2er
Usar: verificador [AFN]
\$ ./af2er teste.afn
(a\*+c\*(a+d))(b+c\*(a+d))\*

Mais alguns exemplos de AFNλ cuja a única expressão regular é dada conforme a seguir:

| <b>ΑΓΝ</b> λ                                         | Ordem          | Expressão Regular            |
|------------------------------------------------------|----------------|------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1, 2, 3 e 4    | (a*b+ab*)c*                  |
| A 0 B 0 0 1                                          | A, C, D, E e B | 0(0+10+110+1111*0)*1111*     |
| a a c c b                                            | 1 e 2          | (a*+(#+a*a)(c+ba*a)*(#+ba*)) |

# 4. Avaliação

O trabalho deve ser feito em grupo de até dois alunos, sendo esse limite superior estrito. O trabalho será avaliado em 10 pontos, onde essa nota será multiplicada por um fator entre 0.0 e 1.0 para compor a nota de cada aluno individualmente. Esse fator poderá estar condicionado a apresentações presenciais a critério do professor.

Trabalhos copiados, parcialmente ou integralmente, serão avaliados com nota **ZERO** do valor da prática, sem direito a contestação. Você é responsável pela segurança de seu código, não podendo alegar que outro grupo o utilizou sem o seu consentimento.

#### 5. Submissão

O trabalho deverá ser submetido até as 23:55 do dia 25/05/2017 (terçafeira) via sistema acadêmico (Moodle) em pasta específica. Não serão aceitos, em hipótese alguma, trabalhos enviados por e-mail ou por qualquer outra fonte.