

		Lista	1)3	
					_

Nota	Visto do Professor		

Curso:	Bacharelado em Ciências da Computação	Data:	11 / 05 / 2017
Disciplina:	Processamento Digital de Imagens		
Professora:	Emília Alves Nogueira		
Aluno(a):		Matrícula:	
Dicas			

- Comando para leitura de imagem: im = imread('imagem.tif');
- Comando para escrita de imagem: imwrite(im, 'red.jpg');
- Para mostrar a imagem que acabou de ser lida: imshow(im)
- Comando para mudar de pasta: chdir('caminho\da\nova\pasta');
- Criando uma função: Vide pg. 82 do livro 'An Introduction to Matlab' K. Ahlersten
- 1) Aplique as seguinte transformações lineares na imagem f: "lena_gray.bmp". Coloque as imagens f e g na mesma janela.

a)
$$g = c * f + b$$

b)
$$g = c * log_2(f + 1)$$

a)
$$g = c * exp(f + 1)$$

Teste diferentes valores para c e b

- 2) Dada as imagens "cena1.png" e "cena2.png", calcule
 - a) a diferença entre elas
- 3) Converta a imagem "lena_cor.bmp" para tons de cinza utilizando as seguintes equações:

$$C = (R + G + B) / 3$$

Em seguida, compare a imagem convertida com a imagem "lena_gray.bmp" através da diferença entre elas.

- 4) Utilizando as imagens "forma1.png" e "forma2.png", implemente os seguintes operadores lógicos
 - a) Operador E
 - b) Operador OU
 - c) Operador XOR
 - d) Negação