

6

Data
Communication:
Delivering
Information
Anywhere and
Anytime

# Learning Objectives (1 of 2)

- Describe major applications of a data communication system
- Explain the major components of a data communication system
- Describe the major types of processing configurations
- Explain the three types of networks
- Describe the main network topologies

# **Learning Objectives (2 of 2)**

- Explain important networking concepts, such as bandwidth, routing, routers, and the client/server model
- Describe wireless and mobile technologies and networks
- Discuss the importance of wireless security and the techniques used
- Summarize the convergence phenomenon and its applications for business and personal use

#### **Data Communication**

- Electronic transfer of data from one location to another
  - Enables an information system to deliver information
  - Improves the flexibility of data collection and transmission
  - Basis of virtual organizations
  - Provides e-collaboration

# Why Managers Need to Know about Data Communication (1 of 3)

- Enhances decision makers' efficiency and effectiveness
- Enables organizations to use e-mail and electronic file transfer to improve efficiency and productivity

# Why Managers Need to Know about Data Communication (2 of 3)

- Effects of data communication technologies
  - Online training for employees can be provided via virtual classrooms
  - Internet searches for information keep employees up to date
  - The Internet and data communication systems facilitate lifelong learning

# Why Managers Need to Know about Data Communication (3 of 3)

- Boundaries between work and personal life are less clear-cut as data communication is more available in both homes and businesses
- Web and video conferencing are easier

# Basic Concepts of a Data Communication System (1 of 2)

#### Bandwidth

 Amount of data that can be transferred from one point to another in a certain time period

#### Attenuation

 Loss of power in a signal as it travels from the sending device to the receiving device

#### Broadband

 Multiple pieces of data are sent simultaneously to increase the transmission rate

# Basic Concepts of a Data Communication System (2 of 2)

#### Narrowband

 Voice-grade transmission channel capable of transmitting a maximum of 56,000 bps, so only a limited amount of information can be transferred

#### Protocols

- Rules that govern data communication
  - Error detection, message length, and transmission speed

## Sender and Receiver Devices (1 of 4)

- Input/output device, or thin client
  - Used only for sending or receiving information
  - No processing power
- Smart terminal
  - Performs certain processing tasks but is not a full-featured computer

# Sender and Receiver Devices (2 of 4)

- Intelligent terminal, workstation, or personal computer
  - Performs certain processing tasks without the main computer's support
- Netbook computer
  - Low-cost, diskless computer used to connect to the Internet or a LAN
  - Runs software off servers and saves data to servers

# Sender and Receiver Devices (3 of 4)

- Minicomputers, mainframes, and supercomputers
  - Process data and send it to other devices
  - Receive data that has been processed elsewhere, process it, and then transmit it to other devices
- Smartphones mobile phones, MP3 players, and PDAs
  - Advanced capabilities, with a built-in keyboard or an external USB keyboard

# Sender and Receiver Devices (4 of 4)

- Video game console
  - Receives instructions from a game player and produces a video display signal on a television screen or monitor

### Modems (1 of 2)

- Devices that connect a user to the Internet
  - Short for modulator-demodulator
  - Not required for all Internet connections

### Modems (2 of 2)

- Dial-up
  - Analog modem is necessary to convert a computer's digital signals to analog signals
- Digital subscriber line (DSL)
  - High-speed service that uses ordinary phone lines
- Cable modems
  - Use the same cable that connects to TVs for Internet connections

#### **Communication Media**

- Connect sender and receiver devices
  - Can be conducted (wired or guided) or radiated (wireless)
  - Can be a point-to-point or a multipoint system

#### **Exhibit**

### 6.1 Types of Communication Media



Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

## **Processing Configurations**

- Data communication systems can be used in several different configurations
  - Depending on users' needs, types of applications, and responsiveness of the system
- During the past 60 years, three types of process configurations have emerged
  - · Centralized, decentralized, and distributed

# Centralized Processing (1 of 2)

- Processing is done at one central computer
  - Used in early days of computer technology
    - Data-processing personnel were in short supply
    - Hardware and software were expensive

# **Centralized Processing (2 of 2)**

- Advantage
  - Ability to exercise tight control on system operations and applications
- Disadvantage
  - Lack of responsiveness to users' needs

# **Decentralized Processing**

- Each user, department, or division has its own computer for performing processing tasks
  - Advantage
    - Responsive to users
  - Disadvantages
    - Lack of coordination among organizational units
    - High cost of having many systems
    - Duplication of efforts

### Distributed Processing (1 of 2)

- Maintains centralized control and decentralized operations
  - Some advantages
    - Accessing unused processing power
    - Computer power can be added or removed
    - Distance and location are not limiting
    - More compatible with growth
    - Fault tolerance is improved
    - Resources can be shared to reduce costs

## Distributed Processing (2 of 2)

- Disadvantages
  - More security and privacy challenges
  - Incompatibility between various pieces of equipment
  - Managing the network is challenging

# Open Systems Interconnection Model (1 of 2)

- Seven-layer architecture for defining how data is transmitted from computer to computer in a network
  - Standardizes interactions between network computers exchanging information
- Layers in the architecture
  - Application: serves as the window through which applications access network services
  - Presentation: formats message packets

# Open Systems Interconnection Model (2 of 2)

- Session: establishes a communication session between computers
- Transport: generates the receiver's address and ensures the integrity of messages
- Network: routes messages
- Data link: oversees the establishment and control of the communication link
- Physical: defines the physical medium used for communication

## Types of Networks (1 of 2)

- Network Interface Card (NIC)
  - Hardware component that enables computers to communicate over a network
  - Known as an adapter card
  - Operates at the OSI model's Physical and Data Link

# Types of Networks (2 of 2)

- Local area network (LAN)
  - Connects workstations and peripheral devices that are in close proximity
- Wide area network (WAN)
  - Spans several cities, states, or countries and is owned by different parties
- Metropolitan area network (MAN)
  - Designed to handle data communication for multiple organizations in a city and nearby cities as well

#### Exhibit 6.3 A Local Area Network



#### **Exhibit**

#### 6.4 A Wide Area Network



#### **Exhibit**

### 6.5 A Metropolitan Area Network



### **Network Topologies**

- Represent a network's physical layout, including the arrangement of computers and cables
- Common topologies
  - Star
  - Ring
  - Bus
  - Hierarchical
  - Mesh

## Star Topology (1 of 2)

- Consists of a central computer and a series of nodes
  - Advantages
    - Cable layouts are easy to modify
    - Centralized control makes detecting problems easier
    - Nodes can be added to the network easily
    - Effective at handling short bursts of traffic

## Star Topology (2 of 2)

- Disadvantages
  - If the central host fails, the entire network becomes inoperable
  - Increases cost as many cables are required

# **Ring Topology**

- No host computer is required; each computer manages its own connectivity
  - Each node is connected to two other nodes: upstream and downstream neighbors
  - Transmission is in one direction
  - Needs less cable than star topology
  - Diagnosing problems and modifying the network are difficult

### **Bus Topology (1 of 2)**

- Connects nodes along a network segment
  - Ends of the cable are not connected
  - Terminator: hardware device used at each end of the cable to absorb the signal

# Bus Topology (2 of 2)

- Advantages
  - Easy to extend and reliable
  - Wiring layout is simple and uses the least amount of cable of any topology; keeps costs down
  - Best for handling steady traffic
- Disadvantages
  - Fault diagnosis is difficult
  - Bus cable can be a bottleneck when network traffic is heavy

## **Hierarchical Topology (1 of 3)**

- Combines computers with different processing strengths in different organizational levels
- Used by traditional mainframe networks
  - Mainframe computer is at the top
  - Front-end processors (FEPs) are at the second level

## Hierarchical Topology (2 of 3)

- Controllers and multiplexers are at the third level
  - Controller: hardware and software device that controls data transfer from a computer to a peripheral device
  - Multiplexer: hardware device that allows several nodes to share one communication channel
- Terminals and workstations are at the bottom level

## Hierarchical Topology (3 of 3)

- Advantage
  - Offers a greater deal of network control and lower cost than star topology
- Disadvantages
  - Network expansion may pose a problem
  - Traffic congestion at the root and higherlevel nodes

## **Mesh Topology**

- Every node is connected to every other node
  - Known as plex or interconnected
- Advantage
  - Highly reliable
- Disadvantage
  - Expensive and difficult to maintain and expand

## **Major Networking Concepts**

- Important networking concepts
  - Protocols
  - · TCP/IP
  - Routing
  - Routers
  - Client/server model

#### **Protocols**

- Agreed-on methods and rules that electronic devices use to exchange information
  - Deal with hardware connections, control data transmission, and file transfers
  - Specify the format of message packets sent between computers

# Transmission Control Protocol/Internet Protocol (1 of 2)

- Industry-standard suite of communication protocols that enables interoperability
  - Allows the linking of devices running on many different platforms
    - Transmission Control Protocol (TCP)
      - Operates at the OSI model's Transport layer
      - Establishes a link between hosts
      - Ensures message integrity and sequences and acknowledges packet delivery
      - Regulates data flow

# Transmission Control Protocol/Internet Protocol (2 of 2)

- Internet Protocol (IP): operates at the OSI model's Network layer
  - Responsible for packet forwarding
  - Divided into network address and node address

## Routing (1 of 2)

#### Packet

- Collection of binary digits sent from computer to computer over a network
  - Includes message data and control characters for formatting and transmitting
- Routing
  - Process of deciding which path data takes
  - Determined by the type of network and the software used to transmit data

## Routing (2 of 2)

- Routing table: generated automatically by software
  - Determines the best possible route for a packet
- Decision about selecting a route to follow on a network
  - Centralized routing: one node is in charge of selecting the path for all packets
  - Distributed routing: relies on each node to calculate its own best possible route

## Routers (1 of 2)

- Network connection device containing software that connects network systems and controls their traffic flow
  - Choose the best path for packets based on distance or cost
  - Prevent network jams that delay packet delivery
  - Handle packets of different sizes

## Routers (2 of 2)

#### Static router

 Requires the network routing manager to give it information about which addresses are on which network

## Dynamic router

- Can build tables that identify addresses on each network
- Used more often now, particularly on the Internet

## Client/Server Model (1 of 2)

- Software runs on the local computer and communicates with the remote server to request information or services
  - Server: remote computer on the network that provides information or services in response to client requests
  - Advantage: scalability (i.e., ability to grow)

## Client/Server Model (2 of 2)

- Levels of logic
  - Presentation: how data is returned to the client
  - Application: software processing requests for users
  - Data management: data management and storage operations

### **Two-Tier Architecture**

- Client communicates directly with the server
  - Effective in small workgroups
- Advantages
  - Application development speed, simplicity, and power
- Drawback
  - Changes in application logic require modifications of clients, resulting in upgrade and modification costs

#### **Exhibit**

## 6.7 A Two-Tier Client/Server Architecture



#### **N-Tier Architectures**

- Attempt to balance the workload between client and server
  - Remove application processing from client and server and place it on a middle-tier
    - Example: three-tier architecture
  - Advantage
    - Improved network performance
  - Drawbacks
    - Consist of more network traffic
    - Testing software is difficult

#### **Exhibit**

#### 6.8 An N-Tier Architecture



#### **Exhibit**

#### 6.9 A Three-Tier Architecture



Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

## Wireless and Mobile Networks (1 of 2)

- Wireless network
  - Uses wireless instead of wired technology
- Mobile network
  - Network operating on a radio frequency (RF)
    - Consists of radio cells, each served by a fixed transmitter, known as a cell site or base station

## Wireless and Mobile Networks (2 of 2)

- Advantages
  - Mobility, flexibility, and ease of installation
  - Low cost
- Disadvantages
  - Limited throughput and range
  - In-building penetration problems
  - Vulnerability to frequency noise
  - Security

## Wireless Technologies

- Wireless LANs
  - Alternative to wired LANs
  - Characterized by having one owner and covering a limited area
- Wireless WANs
  - Cover a broader area than WLANs

## **Mobile Networks (1 of 2)**

- Consist of a three-part architecture
  - Base stations
  - Mobile telephone switching offices (MTSOs)
  - Subscribers
- Technologies developed to improve efficiency and quality
  - Time Division Multiple Access (TDMA)
    - Increases efficiency by 300 percent; allows carrying three calls on one channel

## **Mobile Networks (2 of 2)**

- Code Division Multiple Access (CDMA)
  - Transmits multiple encoded messages over a wide frequency and then decodes them at the receiving end

#### **Exhibit**

## 6.11 Mobile Network Architecture



## **Wireless Security**

- Techniques for improving security
  - SSID (Service Set Identifier)
  - WEP (Wired Equivalent Privacy)
  - EAP (Extensible Authentication Protocol)
  - WPA (Wi-Fi Protected Access)
  - WPA2 or 802.11i

## Convergence of Voice, Video, and Data (1 of 2)

- Convergence
  - Integrating voice, video, and data so that multimedia information can be used for decision making
  - Possible because of a combination of:
    - Technological innovation
    - Changes in market structure
    - Regulatory reform

# Convergence of Voice, Video, and Data (2 of 2)

- Applications of convergence
  - E-commerce
  - Increased availability of entertainment options
  - Increased availability and affordability of video and computer conferencing
  - Consumer products and services

## Summary (1 of 2)

- Data communication systems improve the flexibility of data collection and transmission
- Communication media, or channels, connect sender and receiver devices
- OSI standardizes interactions between network computers exchanging information

## Summary (2 of 2)

- The three major types of networks are local area networks, wide area networks, and metropolitan area networks
- Network topology represents a network's physical layout
- Wireless and mobile networks have the advantages of mobility, flexibility, ease of installation, and low cost

