Quiz 1

Let ho_1 and ho_2 be density matrices in the same hilbert space. The Bures distance is defined as

$$D_B(
ho_1,
ho_2)=\sqrt{2(1-Tr(\sqrt{\sqrt{
ho_1}
ho_2\sqrt{
ho_1}}))}
ho_1=inom{1}{0}inom{0}{0};
ho_2=inom{1}{2}inom{0}{0};
ho_2=inom{1}{2}inom{0}{0};
ho_2$$

Then D_B equals to

 a,a^+ are creation ans annihilation operator respectively and $\hat{n}=a^+a$ is the number operator. Then $[\hat{n},[\hat{n},[\hat{n},a]]]$ is equal to

Let $\hat{n}=(n_1,n_2,n_3)$ and $\hat{m}=(m_1,m_2,m_3)$ be two unit vectors. $\bar{\sigma}=(\sigma_1,\sigma_2,\sigma_3)$ are the pauli matrices. The commutator $[\hat{n}\cdot\bar{\sigma},\hat{m}\cdot\bar{\sigma}]$ equals to

Given the Hamiltonian $\hat{H}=\hbar\omega\sigma_x$.

 $|\Psi(t)
angle$ is the solution of the Schrodinger equation $i\hbar {d\over dt} |\Psi(t)
angle = H |\Psi(t)
angle.$

The transition probability $|\langle \Psi(t=0)|\Psi(t)
angle|^2$ is given by