iRooms - Smart Campus

Occupancy tracking using IR sensors to improve resource management

Team 6

Long Nguyen Khac, Vietnam National University, Vietnam Marcus Reyes, University of the Philippines Diliman, Philippines Wiphoothorn Sangangam, Kasetsart University, Thailand

Agenda

- Introduction and Motivation
- Problem and Solution
- Demo
- Future Work
- Q & A

Smart Campus

- Security
- Comfort
- Efficiency
- Network connectivity

Motivation

- Tackle a problem that affects a large area
- Rooms, areas that are frequently used
 - o Bathrooms, classrooms, etc.
- Areas to target
 - Security
 - o Comfort
 - o <u>Efficiency</u>
 - Network Connectivity

Problem

Lights are universal. Often they are left on even when unused.

Can we improve the current lighting system using occupancy tracking such that lights turn on and off automatically?

Goals

- Achieve a occupancy tracking system without the need of cameras
- Save energy and electricity by intelligently turning on and off lights, appliances, etc.

Additional Perks

- Incorporate other sensors that can provide other quality of life updates
 - o I.e. Automatic AC

Proposal

Use ESP32C3 and two IR sensors to implement a low cost room tracking occupancy module.

The two sensors allows us to both monitor presence and detect the direction of movement.

Overview

- Two sensors setup close to the entrance of a room
- Order of triggering will indicate direction

Order of triggering	Result
Sensor 1 -> Sensor 2	Person Entering
Sensor 2 -> Sensor 1	Person Leaving

8

- Occupancy Tracking using two IR sensors
- We use two IR sensors to perform directional tracking
- If sensor A is triggered followed by sensor B, the person is entering the room.
- If the reverse happens, the person is leaving the room.
- This will allow us to keep track of the number of persons in the room.

Entering

People inside: 0

Entering

Sensor 1 detects a person

People inside: 0

Sensor 2 detects a person

People inside: 1

Lights turn on.

Exiting

People inside: 1

Lights are on.

Sensor 2 detects a person

People inside: 1

Lights are still on.

Exiting

Sensor 1 detects a person

People inside: 0

Lights turn off.

Sensor 1 detects a person

Lights remain on.

Proof of Concept Prototype

- Two IR sensors for occupancy tracking
- A temperature and humidity sensor for potential automatic ACs
- Uploading of data to a website wifi functionality

Proof of Concept Prototype

Future Work

- Make the system more robust to noisy data
 - Optimize distance between sensors
 - Multiple people coming and going at the same time
- Implement more sensors to make use of occupancy tracking.
- Integrate into hallways to allow intelligent lighting.
- Setup for different types of entrances

Cost of Parts for the prototype

ESP32C3	\$1.95
Tracking IR x2	\$2.88
Temperature and humidity sensor	\$1.42
LED light	\$0.10
Total	\$6.35

Picture References

https://www.irasutoya.com/2016/08/blog-post 85.html stick

https://www.irasutoya.com/2016/09/blog-post 15.html sensor

https://www.irasutoya.com/2015/10/blog-post 669.html sitting

https://www.irasutoya.com/2016/02/blog-post 58.html light off

https://www.irasutoya.com/2016/02/blog-post_547.html light on

https://www.irasutoya.com/2014/02/blog-post 3568.html thermometer

https://www.irasutoya.com/2013/01/blog-post 7571.html ac

https://www.irasutoya.com/2018/10/2.html global

Material Cost References

https://www.findchips.com/search/ESP32C3 ESP32C3

https://tiki.vn/module-cam-bien-hong-ngoai-phat-hien-vat-can-p61910344.html?spid=184578620&utm_source=google&utm_medium=cpc&utm_campaign=SEA_NBR_GGL_PMA_DAP_ALL_VN_EA_UNK_UNK_C.ALL_X.18215988848_Y._V. 184578620_W.DT_A._O.UNK&gclid=CjwKCAiAp7GcBhA0EiwA9U0mtgeiB6robOO8Nrbjy_7fOqIs2sy2G7zfw6KGab98-bJ4OfbAox6NaRoCYSgOAvD_BwE_Tracking IR

https://tiki.vn/module-cam-bien-nhiet-do-do-am-dht11-p7936116.html?spid=102566675&utm_source=google&utm_medium=cpc&utm_campaign=SEA_NBR_GGL_PMA_DAP_ALL_VN_EA_UNK_UNK_C.ALL_X.18215988848_Y._V.10256_6675_W.DT_A._O.UNK&gclid=CjwKCAiAhKycBhAQEiwAgf19epSinO1HuzKpOxkmmvfe-E5KLtPV-M_5llsaMpW2Vok_JmcaTSY16AxoCmwMQAvD_BwE_Temperature and Humidity sensor_

https://shopee.vn/B%C3%B3ng-Led-10MM-F10-phi-10-ch%C3%A2n-d%C3%A0i-c%C3%A1c-m%C3%A0u-%C4%91% E1%BB%8F--xanh-l%C3%A1--xanh-d%C6%B0%C6%A1ng--v%C3%A0ng--Tr%E1%BA%AFng-i.134796651.14671169 618?gclid=CjwKCAiAhKycBhAQEiwAgf19elacfWPlbxmtxvavtHpXmccH762O4UpjKYa7tC_jdVg-RBg3CpRTJRoCKOAQAVD_BwE_LED light

Thank You! Any questions?

