International Islamic University Chittagong

Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE

Final Exam, Spring 2022

Course Code: ME-2301

Course Title: Fundamental of Mechanical Engineering

Time: 2 hours 30 minutes

Full Marks: 50

- (i) The figures in the right-hand margin indicate full marks
- (ii) Course Outcomes and Bloom's Levels are mentioned in additional Columns

	Course Outcomes (COs) of the Questions					
CO1	Provide current knowledge, ideas, and the conceptual framework of Mechanical engineering.					
CO2	Demonstrate proficiency in solving basic mechanical Engine design problems.					
CO3	Design of basic Mechanical Engine for application-specific troubleshooting, identifying problems, and providing solutions for the sustainable development of the society.					

Bloom's Levels of the Questions								
Letter Symbols	R	U.	App	An	E	С		
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create		

Part A [Answer the questions from the followings]

1.	a)	Mention the advantages of Nuclear Power over its drawbacks.	CO3	U	5
1.	b)	Draw a schematic diagram of a Boiler Plant. Write down the advantage of an Economizer?	C03	Ap, R	5
2.	a)	Characterize the following terms:	CO2	An	5
		I. System. ii. Zeroth Law of Thermodynamics. iii. Equilibrium of State. iv. Applications of Thermodynamics.			
2.	b)	Design a graphical presentation of the system, boundary, and surroundings and classify the system on the boundary.	CO2	An	5
		Or,			
2.	a)	Renewable energy differs from nonrenewable energy-Explain statement according to its properties.	CO2	C .	5
2.	b)	A stationary mass of gas is compressed without friction from an initial state of 0.5m^3 and 0.105MPa to a final state of 0.25m^3 and 0.105MPa , the pressure remaining constant during the process. There is a transfer of 46.1 KJ of heat from the gas. Determine the internal energy change of the gas? $Q_{1-2} = U_2 - U_1 + W_{1-2}, \ W_{1-2} = P(V_2 - V_1)$	CO2	E	5
		Part B [Answer the questions from the followings]			
3.	a)	Identify the main components of the I.C Engine with a Diagram.	CO3	An	5
3.	b)	Petrol Engine is a four-stroke Cycle SI engine- Justify it.	CO3	E	5
4.	a)	Define: i) Humidity. ii) Wet bulb temperature.	CO2	Un	4
		iii) Dew point temperature. iv) Relative humidity.			

7 kg of air at 35°C dry bulb temperature and 50% relative humidity is mixed CO2 E with 4 kg of air at 15°C dry bulb temperature and 15°C dew point temperature. Calculate specific humidity and the dry bulb temperature of the Describe units of refrigerant. Compare a Heat Engine, Refrigeration, and CO₃ R, An 5 5. Heat Pump. 3000 kg of fruits are supplied to cold storage at 240 C. The cold storage is CO₃ E 5 5. maintained at -60 C and the fruits get cooled to the storage temperature in 14 hours. The latent heat of freezing is 105 KJ/Kg and the specific heat of fruit is 1.25. Estimate the refrigeration Capacity of the plant. Write down the factors which affect Air Conditioning. CO₃ 5 Ap 5. a) 5. b) A theater of 1200 seating capacity is to be air-conditioned for summer CO3 E 5 conditions with the following data: 5

Outdoor Conditions 300C DBT and 55% RH

Required Conditions 200C DBT and 60% RH

Amount of air supplied 0.25 m3/min/person

Find the sensible heat, latent heat removed from the air per minute, And sensible heat factor for the system.

International Islamic University Chittagong

Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE

Semester End Exam, Spring 2023

Course Code: ME-2301

mixture.

Course Title: Fundamental of Mechanical Engineering

Time: 2 hours 30 minutes

Full Marks: 50

(i) The figures in the right-hand margin indicate full marks

(ii) Course Outcomes and Bloom's Levels are mentioned in additional Columns

		Con	rse Outcome	s (COs) of the	Ouestion	ne ·			$\overline{}$
	CO	Provide current knowledge	e, ideas, and	the conceptual	framewo	rk of Mech	anical eng	ineerin	
	CO	2 Demonstrate proficiency	in solving bas	ic mechanical	Engine de	esign probl	ems	meering	<u>5·</u>
	СО	Design of basic Machan	nical Engine	for application	n-specific	troublesh	ooting, ide	entifyin	g
			Bloom's Lev	els of the Que	estions				_
		Letter Symbols	C1	C2	C3	C4	C5	C6	\dashv
		Meaning	Remember		Apply	Analyze	Evaluate	Creat	e
				rom the followi	ngs]				
1.	a)	Is Nuclear power plant suit to nuclear power's advantage	able for Deve es and drawh	eloping Count	ries? Justi	ify accordi	ng CO3	C5	
1.	b)		Benson Bo	iler and label	the parts	. Explain	its CO2	C2	
2.	a)	Characterize the following t i. System. ii. Zeroth Law o Applications of Thermodyn	f Thermodyna	amics. iii. Ec	quilibrium	of State.	CO2	C4	
2.	b)		system and 2	500 J of work of the system	is done by	y the system	m. CO3	C3	
			OR						
2.	a)	Point out the following term i) Black surface ii) Radia iv) Fourier's law of heat con	tion heat trai	nsfer. iii) Cor	nvection h	neat transfe	CO2	C2	
2.	b)	The roof of an electrically thick, and is made of a flat = 0.8 W/m°C. The temperate one night are measured to be hours. Determine (a) the rat the cost of that heat loss \$0.08/kWh	heated home layer of concurres of the inrue 15°C and 4 e of heat loss	rete whose the her and the out I°C, respective through the r	ermal concermal concernation surface ely, for a proof that n	luctivity is es of the roo period of 1	k of (0	C5	. 5
		[Answer all t	Part E	3 from the follo	wingsl				
3.	a)	Define: i) Humidity. ii) We iv) Relative humidity.	et bulb tempe	erature. iii) De	ew point t			C2	5
3.	b)	7 kg of air at 40°C dry bulb with 4 kg of air at 15°C temperature. Calculate speci	dry bulb	temperature a	ive humid and 15°C	ity is mixe dew poir	ed CO3	C3	5

temperature. Calculate specific humidity and the dry bulb temperature of the

	3. a)	by the state of th	CO3	C4	5
3	B. b)		CO3	C5	5
		DBT of 20°C and 54% R.H. The outside air is at a DBT of 30°C and 60%			
		R.H. Determine the mass of water drained and the capacity of the cooling	,		
		coils. Assume the air conditioning plant first to dehumidify and then tool the			
		air.			
4	. a)	Define COP, hence show that;	CO3	C1/	1
		COP of the heat pump = COP of refrigerant $+ 1$		C4	4
4	. b)	of a carrier eyere operates between 500K and 255K.	CO ₃	C5	5
		Determine the COP. When it is operated as			
		i). A Refrigerator ii). A Heat Pump iii). Heat Engine			
5	. a)	Write a short note on:	CO ₃	C2	5
		i). Piston & Piston Ring ii). Connecting Road iii). Engine Block.			
5	. b)	Define Stroke. Explain the four-stroke Cycle Petrol Engine with the	CO ₃	C1/	1
		necessary diagram.		C4	4

		lamic University Chittagong trical and Electronic Engineering	5			
Final E	Examination Spring-2020	Program: B.Sc. Engg. (EEE)				
Course	e Code: ME-2301	Course Title: Fundamental of Mechan	echanical Engineering			
Time:	5 hours (Writing 4 hours 30 minutes	Full Marks: 50 (Written 30 + Viva/Viv	va-Quiz-	-20)		
+ 30 m	ninutes submission time)					
ſAns	wer each of the questions (1-5) from the	e followings; Figures in the right margin	indicate	full mark	κs.1	
[1 1115	(2 c) mon on the questions (2 c) mon in	SET-A		10711 1110011		
1(a).	Why cop of AC is more than refr conducting refrigerator or AC.	igerator? Is a higher COP better for	CO1	R,An	03	
1(b).	Illustrate the application of thermodyn		CO2	U	02	
1(c).	Deduce relation between thermodynamic	mic process & cycle.	CO2	An	01	
2()			004			
2(a).	Why boiler blow-down is required?	. 10 4 1 1 4 2	CO2	An	02	
2(b).	"Boiler mountings and accessories are prime need for the boiler operation" analyze it.		CO1	An	02	
2(c).	c). Point out the main difference of fire tube and water tube boiler.		CO1	An	02	
3(a).			CO2	An	01	
3(b).	, , , , , , , , , , , , , , , , , , ,		CO3	C	03	
3(c).	Draw the schematic diagram of Hg-w	ater Binary Vapor cycle.	CO1	Ap	02	
4(a).	What is TOR? Draw the block diag absorption refrigeration cycle.	gram of vapor compression and vapor	CO2	R,Ap	03	
4(b).	A refrigeration system has got temp	perature of 200°C and -100°C for the espectively. Find its COP. If compressor capacity in ton.	CO3	Ap	03	
5(a).	How convection process is occurred? are there?	How many types of convection process	CO2	An,R	02	
5(b).				Ap	03	
5(c).	Can air conditioning facilitates contril	oute in spreading coronavirus?	CO1	R	01	
_						
6.	Viva/Viva-Quiz: The time of viva/ classroom.	viva-quiz will be declared in google	CO4	R	20	

	International Islamic University Chittagong Department of Electrical and Electronic Engineering						
Final E	Examination Spring-2020	Program: B.Sc. Engg. (EEE)					
Course	e Code: ME-2301	Course Title: Fundamental of Mechan	hanical Engineering				
Time:	5 hours (Writing 4 hours 30 minutes	Full Marks: 50 (Written 30 + Viva/Viv	va-Quiz-	20)			
+ 30 m	ninutes submission time)						
[Ans	wer each of the questions (1-5) from the	e followings; Figures in the right margin	indicate	full marl	ζs.1		
[7 IIIS	were each of the questions (1 c) from the	SET-B	marcute	1411 111411	.x.o.j		
1(a).	Complete the relationship of system, s		CO1	Ap	02		
1(b).	Illustrate the application of thermodyr	namics.	CO2	Û	02		
1(c).	Deduce relation between thermodynar	mic process & cycle.	CO2	An	02		
2(a).	Why boiler blow-down is required?		CO2	An	02		
2(b).	How can advanced nuclear energy sy goal of reducing carbon emissions?	stems research help the world reach its	CO3	An	02		
2(c).		ety, rules, and procedures when dealing	CO3	U	02		
	with nuclear energy?						
3(a).	(a). How can one get the optimum bleeding point in a steam turbine for regeneration?		CO2	An	02		
3(b).			CO3	С	02		
3(c).	Draw the schematic diagram of Hg-wa	ater Binary Vapor cycle.	CO1	Ap	02		
4(a).	Develop a relation of refrigeration and		CO2	C	03		
4(b).		perature of 200°C and -100°C for the	CO3	Ap	03		
	-	espectively. Find its COP. If compressor					
	work is 4.5 Kw, find the refrigeration	capacity in ton.					
5(a).	Define thermal conductivity? What conductivity?	are the factors affecting the thermal	CO2	An,R	02		
5(b).				Ap	03		
5(c).	Can air conditioning facilitates contrib	oute in spreading coronavirus?	CO1	R	01		
6.	Viva/Viva-Quiz: The time of viva/classroom.	viva-quiz will be declared in google	CO4	R	20		

		lamic University Chittagong trical and Electronic Engineering	3		
Final E	Examination Spring-2020	Program: B.Sc. Engg. (EEE)			
Course	e Code: ME-2301	Course Title: Fundamental of Mechan	echanical Engineering		
Time:	5 hours (Writing 4 hours 30 minutes	Full Marks: 50 (Written 30 + Viva/Viv	va-Quiz-	20)	
+ 30 m	ninutes submission time)				
[Ans	wer each of the questions (1-5) from the	e followings; Figures in the right margin	indicate	full marl	κs.]
	-	SET-C			
1(a).	Explain the following terms: Isolated s and give example where ever possible	system, Open system and Closed system e.	CO1	Ap	02
1(b).	How important are the following: safe with nuclear energy?	ety, rules, and procedures when dealing	CO2	U	02
1(c).	Deduce relation between thermodynamics	mic process & cycle.	CO2	An	02
			004		0.0
2(a).	Why boiler blow-down is required?	are an analysis of the second discounts for	CO2	An	02
2(b).	goal of reducing carbon emissions?	stems research help the world reach its	CO3	An	02
2(c).	Demonstrate the advantage and disadv	vantage of renewable energy.	CO3	U	02
3(a).	a). How can one get the optimum bleeding point in a steam turbine for regeneration?		CO2	An	01
3(b).			CO3	С	03
3(c).	Draw the schematic diagram of Hg-w	ater Binary Vapor cycle.	CO1	Ap	02
4(a).	Develop a relation of refrigeration and	heat pump with block diagram.	CO2	C	03
4(b).		perature of 50° C and -20° C for the	CO3	Ap	03
	compressor and the evaporator sides re	espectively. Find its COP. If compressor n capacity in ton.[X=Last digit of your		•	
5(a).	_	emperature control, refrigeration has industry' Explain it on your own view.	CO2	An,R	02
5(b).		ne is .6x m long, .8x m wide, and 0.25 m	CO3	Ap	03
	thick, and is made of a flat layer of co	oncrete whose thermal conductivity is k			
	0.8 W/m°C The temperatures of the i	inner and the outer surfaces of the roof			
	one night are measured to be 25°C ar	nd 0°C, respectively, for a period of 10			
	hours. [X=Last digit of your matric II				
	Determine:				
	(a) The rate of heat loss through the ro	oof that night and			
	(b) The cost of that heat loss to the l \$0.2/kWh.	home owner if the cost of electricity is			

5(c).	Can air conditioning facilitates contribute in spreading coronavirus?		R	01
6.	Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in google	CO4	R	20
	classroom.			

		nmic University Chittagong rical and Electronic Engineering			
Final E	Examination Spring-2020	Program: B.Sc. Engg. (EEE)			
Course	Code: ME-2301	Course Title: Fundamental of Mechani	Mechanical Engineering		
Time:	5 hours (Writing 4 hours 30 minutes	Full Marks: 50 (Written 30 + Viva/Viva	a-Quiz-2	20)	
	inutes submission time)	· ·			
[Ans	wer each of the questions (1-5) from the	followings; Figures in the right margin in	dicate fu	11 mark	s 1
[TIIIS	wer each of the questions (1 b) from the	SET-D	arcate ra	II IIIGIN	<u>.</u>
1(a).	Deduce relation between thermodynam		CO2	An	02
1(b).	State the third law of thermodynamics.	<u> </u>	CO2	R,C	02
1(c).		nnsfer and thermodynamics in practical	CO1	Ē	02
2(a).	For adjustable load how can we draw a	cogeneration process?	CO2	An	02
2(a). 2(b).	Discuss the function of Safety, Stop, an		CO2	U	02
2(c).	Briefly explain the boiler mounting and		CO3	$\frac{c}{C}$	02
_(0)					
3(a).). Is nuclear power plant safe for our environment? Why should we be concerned about health issues from nuclear or coal plants that are far from my home?		CO3	C	02
3(b).			CO2	С	02
3(c).	Do we really need nuclear in order to d	eal with global warming?	CO1	R	02
4(a).	How can one get the entimum bleeding	point in a steam turbine for regeneration?	CO2	R	02
4(b).		perature of 200°C and -100°C for the	CO ₂	An	02
		espectively. Find its COP. If compressor		144	02
4(c).	Difference between the refrigeration an		CO1	An	02
			815		
	What are the basic units of mechanical		CO2	R	01
5(b).	_	e is .3x m long, .2x m wide, and 0.25 m	CO3	C	03
	_	crete whose thermal conductivity is k 0.8			
	_	r and the outer surfaces of the roof one			
	_	0°C, respectively, for a period of 10			
	hours.[X=last digit of your matric ID]				
	Determine:				
	(a) The rate of heat loss through the roo	_			
	\$0.2/kWh.	nome owner if the cost of electricity is			
5(c).	Can air conditioning facilitates contribu		CO2	R	02
6.	Viva/Viva-Quiz: The time of viva/v classroom.	viva-quiz will be declared in google	CO4	R	20