Sciences Industrielles de

l'Ingénieur

Activation

Activation – Système de dépose de composants électroniques

Émilien Durif - E3A PSI 2011

Savoirs et compétences :

Construire le graphe des liaisons modélisant le système entier.

Correction

Question 2 Déterminer l'expression de $\mathcal{P}(ext \to E/R_g)$ en fonction de puissances extérieures élémentaires (on ne développera pas les calculs explicitement pour l'instant).

Correction

$$\mathscr{P}(\operatorname{ext} \to E/R_g) = \mathscr{P}(S_0 \to S_1/R_0) + \mathscr{P}(\operatorname{Moteur} \to S_1/R_0) + \mathscr{P}(S_0 \to S_3/R_0) + \mathscr{P}(\operatorname{poids} \to S_3/R_0)$$

Question 3 Calculer $\mathcal{P}(ext \to E/R_0)$ en fonction des données du problème.

Correction On a:

$$\mathscr{P}(\text{ext} \to E/R_g) = \mathscr{P}(S_0 \to S_1/R_0) + \mathscr{P}(\text{Moteur} \to S_1/R_0) + \mathscr{P}(S_0 \to S_3/R_0) + \mathscr{P}(\text{poids} \to S_3/R_0)$$

 $\bullet \mathscr{P}(S_0 \to S_1/R_0) = \{\mathscr{T}(S_0 \to S_1)\} \otimes \{\mathscr{V}(S_1/R_0)\} = \left\{ \begin{array}{c} X_{01} \cdot \overrightarrow{x_0} + Y_{01} \cdot \overrightarrow{y_0} + Z_{01} \cdot \overrightarrow{z_0} \\ L_{01} \cdot \overrightarrow{x_0} \pm C_r \cdot \overrightarrow{y_0} + N_{01} \cdot \overrightarrow{z_0} \end{array} \right\}_{O_0} \otimes \left\{ \begin{array}{c} \dot{\theta}(t) \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_{O_0} = \pm C_r \cdot \dot{\theta}(t).$

Le signe de la composante suivant $\overrightarrow{y_0}$ dépendra du sens du mouvement

- $\mathscr{P}(\text{Moteur} \to S_1/R_0) = \{\mathscr{T}(\text{Moteur} \to S_1)\} \otimes \{\mathscr{V}(S_1/R_0)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \cdot \overrightarrow{y_0} \end{array}\right\}_{-} \otimes \left\{\begin{array}{c} \dot{\theta}(t) \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{array}\right\}_{C} = C_m \cdot \dot{\theta}(t).$
- $\bullet \ \mathscr{P}(S_0 \to S_3/R_0) = \{\mathscr{T}(S_0 \to S_3)\} \otimes \{\mathscr{V}(S_3/R_0)\} = \left\{ \begin{array}{c} X_{03} \cdot \overrightarrow{x_0} \pm Y_{03} \cdot \overrightarrow{y_0} + Z_{03} \cdot \overrightarrow{z_0} \\ L_{03} \cdot \overrightarrow{x_0} + M_{03} \cdot \overrightarrow{y_0} + N_{03} \cdot \overrightarrow{z_0} \end{array} \right\}_{-} \otimes \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{y}(t) \cdot \overrightarrow{y_0} \end{array} \right\}_{-} = \pm Y_{03} \cdot \dot{y}(t).$
- $\mathscr{P}(\text{Poids} \to S_3/R_0) = \{\mathscr{T}(\text{pes} \to S_3)\} \otimes \{\mathscr{V}(S_3/R_0)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ -M_3 \cdot g \cdot \overrightarrow{z_0} \end{array}\right\}_C \otimes \left\{\begin{array}{c} \overrightarrow{0} \\ \dot{y}(t) \cdot \overrightarrow{y_0} \end{array}\right\}_C = 0.$ $\mathscr{P}(\operatorname{ext} \to E/R_0) = (C_m \pm C_r) \cdot \dot{\theta}(t) \pm Y_{03} \cdot \dot{v}(t)$

Question 4 Calculer l'ensemble des puissances des actions mutuelles dans les liaisons pour l'ensemble $E: \mathcal{P}_{int}(E)$.

- Calcul de $\mathscr{P}(S_1 \longleftrightarrow S_2) = \{\mathscr{T}(S_1 \to S_2)\} \otimes \{\mathscr{V}(S_2/S_1)\} = \left\{\begin{array}{c} X_{12} \overrightarrow{x_0} + Y_{12} \overrightarrow{y_0} + Z_{12} \overrightarrow{z_0} \\ L_{12} \overrightarrow{x_0} + M_{12} \overrightarrow{y_0} + N_{12} \overrightarrow{z_0} \end{array}\right\}_{O_0} \otimes \left\{\begin{array}{c} q_{21} \overrightarrow{y_0} \\ v_{12} \cdot \overrightarrow{y_0} \end{array}\right\}_{O_0} = 0$ $Y_{12} \cdot \nu_{12} + q_{21} \cdot M_{12}$. Or, $\begin{cases} M_{12} = -\frac{p}{2\pi} Y_{12} \\ \nu_{12} = \frac{p}{2\pi} q_{21} \end{cases}$. D'où: $\mathscr{P}(S_1 \longleftrightarrow S_2) = Y_{12} \cdot \nu_{12} + q_{21} \cdot M_{12} = \frac{p}{2\pi} \left[Y_{12} \cdot q_{21} - q_{21} \cdot Y_{12} \right] = 0$.
- Calcul de $\mathscr{P}(S_2 \longleftrightarrow S_3) = \{\mathscr{T}(S_2 \to S_3)\} \otimes \{\mathscr{V}(S_3/S_2)\} = \left\{\begin{array}{c} A \\ X_{23} \overrightarrow{x}_0 + Y_{23} \overrightarrow{y_0} \end{array}\right\} \underset{0}{\longleftrightarrow} \left\{\begin{array}{c} A \\ p_{32} \overrightarrow{x}_0 + q_{32} \overrightarrow{y}_0 + r_{32} \overrightarrow{z}_0 \end{array}\right\}_{y_{10} = \overline{z}_2}$

1

• On en déduit donc : $\mathcal{P}_{int}(E) = 0$.

Question 5 Déterminer l'énergie cinétique de l'ensemble E dans son mouvement par rapport à R_0

Correction

• Énergie cinétique de l'ensemble dans son mouvement par rapport à R_0 :

$$E_c(E/R_0) = E_c(1/R_0) + E_c(2/R_0) + E_c(3/R_0)$$

- Énergie cinétique de 1 dans son mouvement par rapport à $R_0: E_c(1/R_0) = \frac{1}{2} \{\sigma(1/R_0)\} \otimes \{\mathcal{V}(1/R_0)\} = \frac{1}{2} \{\overrightarrow{\overline{I}}_{O_0}(S_1) \cdot \dot{\theta}(t)\overrightarrow{y_0}\}_{O_0} \otimes \{\overrightarrow{\theta}(t)\overrightarrow{y_0}\}_{O_0} = \frac{1}{2} \left[\dot{\theta}^2 \overrightarrow{\overline{I}}_{O_0}(S_1) \cdot \overrightarrow{y}_0 \cdot \overrightarrow{y}_0\right] = \frac{1}{2} J_1 \cdot \dot{\theta}^2 = \frac{1}{2} (I_m + I_v) \cdot \dot{\theta}^2.$
- Énergie cinétique de 2 dans son mouvement par rapport à $R_0: E_c(2/R_0) = \frac{1}{2} \{\sigma(2/R_0)\} \otimes \{\mathcal{V}(2/R_0)\} = 0$ car l'inertie de 2 est négligeable.
- Énergie cinétique de 3 dans son mouvement par rapport à $R_0: E_c(3/R_0) = \frac{1}{2} \{\sigma(3/R_0)\} \otimes \{\mathcal{V}(3/R_0)\} = \left\{\begin{array}{c} \\ M_3 \cdot \dot{y}(t) \end{array}\right\} \xrightarrow{\hat{y}} \otimes \left\{\begin{array}{c} \\ 0 \end{array}\right\}_{\dot{y}(t): \dot{y}_0} = \frac{1}{2} M_3 \cdot \dot{y}^2(t).$
- L'énergie cinétique galiléenne de l'ensemble $E: E_c(E/R_0) = \frac{1}{2} \left[(I_m + I_v) \cdot \dot{\theta}^2(t) + M_3 \cdot \dot{y}^2(t) \right].$

Question 6 Déterminer la mobilité du système.

Correction Ici la mobilité vaut 1.

Question 7 Déterminer une relation entre les paramètres cinématiques du problème.

Correction Par une fermeture cinématique on pourrait montrer : $\dot{y}(t) = -\frac{p}{2\pi}\dot{\theta}(t)$.

Question 8 Déterminer l'inertie équivalente de E ramenée à la rotation autour de l'axe $(O_0, \overrightarrow{y_0})$ et du paramètre $\dot{\theta}(t)$.

Correction
$$E_c(E/R_0) = \frac{1}{2} \left[(I_m + I_v) \cdot \dot{\theta}^2(t) + M_3 \cdot \dot{y}^2(t) \right] = \frac{1}{2} \left[(I_m + I_v) + M_3 \cdot \left(\frac{p}{2\pi} \right)^2 \right] \cdot \dot{\theta}^2(t) \text{ d'où, } J_{eq}(E) = (I_m + I_v) + M_3 \cdot \left(\frac{p}{2\pi} \right)^2.$$

Question 9 Déterminer la masse équivalente de E ramené à la translation selon la direction $\overrightarrow{y_0}$ et du paramètre $\dot{y}(t)$.

Correction
$$E_c(E/R_0) = \frac{1}{2} \left[(I_m + I_\nu) \cdot \dot{\theta}^2(t) + M_3 \cdot \dot{y}^2(t) \right] = \frac{1}{2} \left[(I_m + I_\nu) \cdot \left(\frac{2\pi}{p} \right)^2 + M_3 \right] \cdot \dot{y}^2(t) \text{ d'où, } M_{\text{eq}}(E) = (I_m + I_\nu) \cdot \left(\frac{2\pi}{p} \right)^2 + M_3.$$

Question 10 Appliquer le théorème de l'énergie cinétique à l'ensemble E.

 $\begin{array}{ll} \textbf{Correction} & \text{En combinant les résultats des différentes questions précédentes, on obtient}: M_{\text{eq}} \cdot \dot{y}(t) \cdot \ddot{y}(t) = \\ (C_m \pm C_r) \cdot \dot{\theta}(t) \pm Y_{03} \cdot \dot{y}(t) + 0. \\ & \text{On peut postuler un sens de déplacement}: \dot{y}(t) > 0, \text{ ainsi } \dot{\theta} = -\frac{2\pi}{p} \dot{y}(t) < 0, C_r > 0, Y_{03} < 0: M_{\text{eq}} \cdot \dot{y}(t) \cdot \ddot{y}(t) = \\ \left[-(C_m + C_r) \cdot \frac{2\pi}{p} + Y_{03} \right] \cdot \dot{y}(t) \end{aligned}$

Question 11 Déterminer des équations supplémentaires issues des théorèmes généraux pour déterminer l'équation de mouvement du système permettant de relier C_m à y(t).

Correction Il faut éliminer le paramètre Y_{03} . Pour cela on peut écrire le théorème de la résultante dynamique appliqué à S_3 en projection selon $\overrightarrow{z_0}: Z_{03} - M_3 \cdot g = 0$.

Or la loi de Coulomb donne (avec $Z_{03} > 0$ et $Y_{03} < 0$): $Y_{03} = -\mu \cdot Z_{03} = -\mu \cdot M_3 \cdot g$.

Ainsi l'équation de mouvement obtenue est (en éliminant $\dot{y}(t) \neq 0$): $M_{\text{eq}} \cdot \ddot{y}(t) = -(C_m + C_r) \cdot \frac{2\pi}{p} - \mu \cdot M_3 \cdot g$

Question 12 Déterminer le couple moteur à fournir dans le cas le plus défavorable (accélération maximale).

Correction

$$C_{m} = -\frac{p}{2\pi} \left[M_{\text{eq}} \ddot{y}_{\text{max}} + M_{3} \cdot g \cdot \mu \right] - C_{r} = -\frac{p}{2\pi} M_{3} \left(\ddot{y}_{\text{max}} + g \cdot \mu \right) - (I_{m} + I_{v}) \frac{2\pi}{p} \ddot{y}_{\text{max}} - C_{r}$$

L'application numérique donne : $C_m = -3,79N \cdot m$

On cherche à déterminer en régime permanent les pertes au niveaux de la liaison hélicoïdale entre S_1 et S_2 . On considère donc les actions mécaniques de frottement nulles partout ailleurs dans le système global. On introduit alors un rendement η défini en régime permanent et donc à variation d'énergie cinétique négligeable.

Question 13 En considérant le système $E_1 = \{S_1 + S_2\}$, définir le rendement.

Correction

$$\eta = \frac{\mathscr{P}(\text{utile})}{\mathscr{P}(\text{entrée})} = \frac{\mathscr{P}(S_2 \to S_3/R_0)}{\mathscr{P}(\text{moteur} \to S_1/R_0)}$$

Question 14 On définit la puissance dissipée comme la puissance des inter-effort entre S_1 et S_2 . En appliquant un théorème de l'énergie cinétique à S_2/R_0 et S_1/R_0 en régime permanent donner l'expression des puissances dissipées dans la liaison hélicoïdale.

Correction • Expression de $\mathcal{P}(\text{dissip\'ee})$: $\mathcal{P}(\text{dissip\'ee}) = -\mathcal{P}(S_1 \longleftrightarrow S_2) = -(\mathcal{P}(S_1 \to S_2/R_0) + \mathcal{P}(S_2 \to S_1/R_0));$

- TEC appliqué à S_2/R_0 en régime permanent : $\mathcal{P}(S_1 \to S_2/R_0) = -\mathcal{P}(S_3 \to S_2/R_0)$;
- TEC appliqué à S_1/R_0 en régime permanent : $\mathscr{P}(\text{moteur} \to S_1/R_0) = -\mathscr{P}(S_2 \to S_1/R_0)$ en combinant ces équations on obtient $\mathscr{P}(\text{dissipée})$: $\mathscr{P}(\text{dissipée}) = -(-\mathscr{P}(S_3 \to S_2/R_0) \mathscr{P}(\text{moteur} \to S_1/R_0))$ $=-\mathscr{P}(S_2\to S_3/R_0)+\mathscr{P}(\text{moteur}\to S_1/R_0)=(1-\eta)\mathscr{P}(\text{moteur}\to S_1/R_0).$

On donne:

• Rendement η dans la liaison hélicoïdale : $\eta = 0.8$;

Question 15 Déterminer dans ces conditions les dissipations.

Correction $\mathscr{P}(\text{dissip\'ee}) = C_{\text{max}} \cdot \dot{\theta}_{\text{max}} \cdot (\eta - 1) = 21, 2 \times 6000 \frac{2\pi}{60} \cdot (1 - \eta) = 2664 \text{ W}$