PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-094791

(43)Date of publication of application: 09.04.1999

(51)Int.CI.

GO1N 27/327 GO1N 27/30

(21)Application number: 09-267814

(71)Applicant: NOK CORP

(22)Date of filing:

12.09.1997

PROBLEM TO BE SOLVED: To facilitate a production

(72)Inventor: GOTO MASAO

(54) BIOSENSOR

(57)Abstract:

process and to reduce production cost in a biosensor wherein an acting electrode having oxidoreductase immobilized thereon and the opposed electrode thereof are arranged so as to take an opposed structure.

SOLUTION: In a biosensor wherein an acting electrode and the lead part thereof as well as an opposed electrode and the lead part thereof are respectively formed on two substrates and oxidoreductase is immobilized on the acting electrode, rising parts 6, 7 are provided to both side parts of the substrates excepting part corresponding to the lead part and used to bond both substrates. By this constitution, the acting electrode 2 and the opposed electrode 3 take an opposed structure and a space is formed between the

LEGAL STATUS

respective lead parts.

[Date of request for examination]

05.09.2001

[Date of sending the examiner's decision of

02.12.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

G01N 27/327

27/30

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-94791

(43)公開日 平成11年(1999)4月9日

(51) Int.Cl. 6

識別記号

FI

G01N 27/30

353F

353R

3 5 3 Z

審査請求 未請求 請求項の数7 FD (全 5 頁)

(21)出廣番号

特顯平9-267814

(71)出願人 000004385

エヌオーケー株式会社

東京都港区芝大門1丁目12番15号

(22)出顧日

平成9年(1997)9月12日

(72)発明者 後藤 正男

神奈川県藤沢市辻堂新町4-3-1 エヌ

オーケー株式会社内

(74)代理人 弁理士 吉田 俊夫

(54) 【発明の名称】 バイオセンサ

(57)【要約】

【課題】 酸化還元酵素を固定化した作用極とその対極 とを対面構造をとるように配置したバイオセンサにおい て、製作工程を容易化し、その製作コストを低減せしめ たものを提供する。

【解決手段】 2枚の基板上に作用極とそのリード部お よび対極とそのリード部をそれぞれ形成させ、作用極上 に酸化還元酵素を固定化せしめたバイオセンサにおい て、リード部対応部分を除く基板両側部に立上り部を設 け、この立上り部を用いて両基板を接着させることによ り、作用極と対極とが対面構造をとると共に、各リード 部間に空間を形成せしめるように構成したバイオセン サ。

【特許請求の範囲】

 \odot

【請求項1】 2枚の基板上に作用極とそのリード部お よび対極とそのリード部をそれぞれ形成させ、作用極上 に酸化還元酵素を固定化せしめたバイオセンサにおい て、リード部対応部分を除く基板両側部に立上り部を設 け、この立上り部を用いて両基板を接着させることによ り、作用極と対極とが対面構造をとると共に、各リード 部間に空間を形成せしめるように構成したバイオセン

【請求項2】 作用極部分の基板両側部に立上り部が設 10 けられた請求項1記載のバイオセンサ。

【請求項3】 対極部分の基板両側部に立上り部が設け られた請求項1記載のパイオセンサ。

【請求項4】 作用極および対極部分の基板両側部に立 上り部が設けられた請求項1記載のバイオセンサ。

【請求項5】 酸化還元酵素が電子伝達体との混合物層 として形成された請求項1記載のバイオセンサ。

【請求項6】 対極上にも酸化還元酵素が固定化された 請求項1記載のバイオセンサ。

ド部とが設けられた請求項1記載のバイオセンサ。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、酸化還元酵素を電 極上に固定化したバイオセンサに関する。更に詳しく は、酸化還元酵素を電極上に固定化し、作用極と対極と を対面構造をとるように配置したパイオセンサに関す る。

[0002]

定化せしめた従来のグルコースパイオセンサにあって は、作用極以外に対極あるいは対極と参照極とが平面状 基板の同一面上に配置されている。このような電極配置 のグルコースバイオセンサにおいて、測定サンブルを電 極に接触させるには2つの方法がとられている。

[0003]その第1の方法は、直接測定サンブルを電 極上に滴下する方法であるが、この方法ではサンプリン グから滴下迄手間と時間を要するという問題がある。そ の第2の方法は、電極基板の上に溝を有するスペーサを 配置し、その上に更に空気孔を設けたカバーを配置した 40 構造のものを用いるという方法である。との方法では、 測定サンプルが直接電極上に導かれるため手間や時間が とられないという利点がある反面、空気孔の設置を必要 とするなど、素子製作において煩雑な工程を必要とする という欠点を有している。

[0004]

【発明が解決しようとする課題】そこで、本出願人は先 に、グルコースオキシダーゼを電極上に固定化せしめた グルコースパイオセンサであって、製作および測定が容 易であり、従って使い捨てグルコースバイオセンサとし 50 ン、銀、金等のペーストを用いるスクリーン印刷法ある

て好適なものとして、作用極および対極とを対面構造を とるように配置し、より具体的には作用極を配置した基 板と対極を配置した基板との間にスペーサを介在させる ことにより対面構造をとるように配置したものを提案し ている(特願平8-175585号)。

【0005】しかしながら、作用極-対極間の対面構造 を実現するために、これらの電極を配置した基板の間に スペーサを介在させることは、製作工程が煩雑になるば かりではなく、コストアップにもつながるという問題が みられた。

【0006】本発明の目的は、酸化湿元酵素を固定化し た作用極とその対極とを対面構造をとるように配置した バイオセンサにおいて、製作工程を容易化し、その製作 コストを低減せしめたものを提供することにある。 [0007]

【課題を解決するための手段】かかる本発明の目的は、 2枚の基板上に作用極とそのリード部および対極とその リード部をそれぞれ形成させ、作用極上に酸化還元酵素 を固定化せしめたバイオセンサにおいて、リード部対応 【請求項7】 一方の基板上に、更に参照極とそのリー 20 部分を除く基板両側部に立上り部を設け、この立上り部 を用いて両基板を接着させることにより、作用極と対極 とが対面構造をとると共に、各リード部間に空間を形成 せしめるように構成したバイオセンサによって達成され

[8000]

【発明の実施の形態】図1は、本発明に係るパイオセン サの一態様を示す斜視図である。一方の基板1には、作 用極2およびそのリード部3を含めた電極が一体として設 けられており、電極の作用極2およびリード部3を除く部 【従来の技術】グルコースオキシダーゼを作用極上に固 30 分には、熱硬化性ポリエステル樹脂等からなる絶縁膜4 が被覆されている。作用極2部分には、酸化還元酵素5が 固定化されている。

> 【0009】かかる基板のリード部対応部分を除く部分 の基板両側部に立上り部6,7を設け、このような立上り 部を設けていない対極側基板8と接着させることによ り、作用極と対極とが対面構造をとるようにすると共 に、各リード部間に空間9を形成させて、コネクタとの 接続を容易ならしめる。また、対極側基板には、対極お よびそのリード部を含めた電極が一体として設けられて おり、絶縁膜も同様に被覆され、対極部分には必要に応 じて酸化還元酵素が固定化されている。

> 【0010】更に、基板両側部に設けられる立上り部 は、作用極を設けた基板側だけ、対極を設けた基板側あ るいはこれら両基板側に設けることができる。

【0011】基板としては、ポリエチレンテレフタレー トによって代表されるプラスチック、生分解性プラスチ ック、ガラス、セラミックス、紙等の絶縁性基板であっ て、フィルム、シートまたは板状のものが用いられる。 作用極、対極およびこれらのリード部の形成は、カーボ

いはカーボン箔、パラジウム箔を用いる箔付け法などに よって行われ、これらは不織布などによって研磨処理さ れた上で用いられることが好ましい。更に、必要に応じ て作用極側あるいは対極側の基板上に参照極を配置する こともでき、参照極の形成は、スクリーン印刷法、蒸着 法、スパッタリング法などによって一旦銀電極を形成さ せた後、それを塩化銀化する方法などによって行われ

【0012】固定化せしめる酸化還元酵素としては、グ ルコースオキシダーゼ乳酸オキシダーゼ、アルコールオ 10 キシダーゼ、ビルビル酸オキシダーゼ、グルコースデヒ ドロゲナーゼ、アルコールデヒドロゲナーゼ、ビルビル 酸デヒドロゲナーゼ等があり、これらによってグルコー ス、乳酸、アルコール、ビルビン酸、抗原等の有機物 質、塩素イオン、ナトリウムイオン、カリウムイオン、 水素イオン、溶存酸素等の電解質や無機物質の濃度測定 が可能であるが、最も一般的に用いられるグルコースオ キシダーゼによるグルコース濃度の測定法について、以 下では塗布乾燥法(吸着法)を例にして説明することとす る。なお、塗布乾燥法以外に、共有結合法、イオン結合 20 法、架橋法などが、グルコースオキシダーゼの固定化方 法として用いられる。

【0013】グルコースオキシダーゼは、一般には作用 極上に固定化せしめるが、グルコースオキシダーゼは測 定サンブルである水溶液中に溶解され、作用極上で反応 するようになるため、作用極周辺、対極またはその周辺 などに固定化させていてもよい。

【0014】グルコースオキシダーゼの電極への固定 化、好ましくは作用極上への固定化は、以下に列挙され る如く、グルコースオキシダーゼ単体としてばかりでは 30 なく、電子伝達体(メディエータ)およびアルブミンの少 なくとも一種を添加した混合物層としても形成される。

- (1)グルコースオキシダーゼ層
- (2)グルコースオキシダーゼ-電子伝達体混合物層
- (3)グルコースオキシダーゼ-アルブミン混合物層
- (4)グルコースオキシダーゼ-電子伝達体-アルブミン混 合物層

【0015】グルコースオキシダーゼ層(1)の形成は、 グルコースオキシダーゼ(GOD)を、例えば165800単位/q のCODの場合その約1~50mg、好ましくは約5~30mgを蒸 留水またはクエン酸緩衝液(約0.05~0.2M濃度)1 mlに溶 解させ、その溶液(COD溶液)約0.5~10μ1、好ましくは 約1~3μ1を滴下法、スピンコート法などによって滴下 し、室温で乾燥させて、膜厚約1~200μm、好ましくは 約50~150μmの層を形成させることにより行われる。

[0016] 混合物層(2)~(4)の場合にも、この場合と 同様の形成方法が行われ、ただしCOD水溶液中に更に次 の各成分が添加された溶液が用いられる。

混合物層(2)の場合:フェリシアン化カリウム、バラベ

ン化カリウムにあっては約1~100mg、好ましくは約30~ 60mgを、パラベンゾキノンにあっては約1~200mg、好ま しくは約50~150mgを更に添加した溶液を使用 混合物層(3)の場合:牛血清アルブミンを約1~100mg、 好ましくは約5~30mgを更に添加した溶液を使用 混合物層(4)の場合:混合物層(2)の形成に用いられた量 の電子伝達体および混合物層(3)の形成に用いられた量 の牛血清アルブミンを更に添加した溶液を使用

【0017】添加された電子伝達体は下記の如く作用 し、またアルブミンやクエン酸緩衝液の添加は、測定液 (グルコース水溶液)のpt変化に対して出力誤差を抑制 し、バラツキのより少ない測定結果を与える。また、ノ ニオン系界面活性剤を電極付近に塗布することにより、 測定液の吸引、それに引続く混合層の溶解に寄与し、測 定精度を向上させるという効果も得られる。

【0018】グルコースがGOOの作用により酵素の存在 下で酸化されてグルコノラクトンを生成させ、そのとき 発生するHO。を作用極上で酸化し、その際の酸化電流値 を測定することにより、グルコース濃度を間接的に求め る方法は周知である。しかしながら、測定液が水で希釈 されない原液サンブルの場合には、酸化反応が溶存酸素 濃度に律速されるため、グルコース濃度が約100mg/d]程 度迄しか直線検量範囲を示さない。

【0019】そとで、溶液中濃度が有限である酸素の代 わりに、電子伝達体がCODと共に用いられる。メディエ ータがフェリシアン化カリウムK, Fe(CN)。の場合、この 反応は次のように進行する。

グルコン酸 + 2H⁺ + 2Fe(CN)。

この際発生したフェロシアンイオンは、作用極で酸化さ れて酸化電流を生ずる。

 $2Fe(CN)_{\epsilon} \longrightarrow 2Fe(CN)_{\epsilon} + 2e^{-\frac{1}{2}}$

【0020】また、メディエータとしてフェリシアン化 カリウムの代わりにパラベンゾキノンを用いた場合に は、COO存在下でのグルコースとパラベンゾキノンとの 反応でヒドロキノンが生成し、この際生成したヒドロキ ノンは作用極で酸化され、酸化電流を生ずるのでその値 40 が測定される。

ヒドロキノン → パラベンゾキノン + 2H + 2e 【0021】一方、対極上には、特に何も固定化しなぐ とも使用し得るが、アルブミンおよび電子伝達体の少な くとも一種からなる混合物層を形成させて用いてもよ い。この場合には、作用極上のみに混合物層を設けた場 合にみられる測定液による混合物層の溶解、拡散に生じ 勝ちな傾きがみられなくなる利点があり、測定精度も上 昇する。

【0022】なお、固定化せしめたGODへの測定サンプ ンゾキノン等が電子伝達体として用いられ、フェリシア 50 ル液の接触を円滑に行わしめるために、作用極上、対極

上、作用極周辺、対極周辺、作用極上およびその周辺、 対極上およびその周辺などに、ノニオン系界面活性剤を 塗布したり、不織布、口紙等の含浸促進剤を間隙を利用 して挟着させるなどの手段を適用することも可能であ る。

[0023]グルコース濃度の測定は、このようにして作製されたグルコースバイオセンサの両電極間に形成される空間に、所定濃度のグルコース水溶液約0.1~10μlを吸引して電極と接触させ、約1~120秒間程度反応させた後、そこに約0.05~1.5V、好ましくは約0.4~1.1Wの電圧を印加し、印加0.5~50秒後の電流値を測定するボテンシャルステップクロノアンペロメトリー法によって行われる。測定には、ボテンショガルバノスタットおよびファンクションジェネレータが用いられる。

[0024]

【発明の効果】酸化遠元酵素を固定化した作用極とその対極とを、これらの各電極を内側に設けた各基板を基板立上り部を介して接着させることにより、対面構造をとるように配置した本発明のバイオセンサは、製作が容易であり、またその製作コストも低減される。

[0025]

[実施例]次に、実施例について本発明を説明する。 【0026】実施例1

(1)ポリエチレンテレフタレート製基板2枚を用意し、そこにカーボン製フィルム電極を貼付け、次いでこのような電極の各電極部およびそれらのリード部を除く部分に、熱硬化性ポリエステル樹脂製絶縁膜を被覆した。その一方の基板には、高さ200μmの立上り部がリード部対応部分を除く部分に設けられており、その立上り部を利用して2枚の基板が接着され、作用極と対極とを対面構造とすると共に、各リード間に空間を形成させた。

【0027】その一方のカーボン製電極上には、水1m1 にグルコースオキシダーゼ(165800U/g)10mgおよびフェリシアン化カリウム48mgよりなる混合液(ドーブ液)を1.5μ1滴下して室温条件下で乾燥させたグルコースオキシダーゼ-フェリシアン化カリウム混合物層が予め形成されており、それを作用極とした。

【0029】(3)上記(1)の立上り部形成基板同志を接着させ(立上り部合計高さ400μm)、バイオセンサが作製された。との場合において、両方の電極上に混合物層が形成されている。

[0030] これらのグルコースパイオセンサに、濃度 250ma/dlのグルコース水溶液(pH5.0)1μ1を吸引させ、2

○秒間静置した後、作用極-対極間に0.9vの電圧を印加し、印加10秒後の電流値を10回測定した。測定には、ボテンショガルバノスタット(北斗電工製HA-501)およびファンクションジェネレータ(同社製HB-104)が用いられた。その測定値からCv値(平均値に対する標準偏差の割合)を算出すると、それぞれ(1)3.5% (2)3.1% (3)3.0%という値が得られた。なお、センサは、一試料毎に使い捨てとした。また、グルコース濃度を種々変更して測定を行ったところ、0~1000mg/d1の範囲内で直線性が得られた。

【0031】実施例2

実施例1の(1)で、pHを7.0公調整したグルコース水溶液を用い、またドーブ液中にアルブミン10mgを添加したものが用いられた。CV値は、3.8%であった。

【0032】実施例3

実施例1の(1)で、pHを7.0に調整したグルコース水溶液を用い、またドーブ液として水の代りに0.1Mクエン酸緩 衝液(pH5.0)を用いて調製されたものが用いられた。CV 値は、3.7%であった。

20 【0033】実施例4

実施例1の(1)で、pHを7.0に調整したグルコース水溶液を用い、またドープ液中にアルブミン10mgを添加すると共に、水の代りに0.1Mクエン酸級衝液(pH5.0)を用いて調製されたものが用いられた。CV値は、3.6%であった。 【0034】実施例5

実施例4で、ドーブ液中に更にノニオン系界面活性剤(UC C社製品トリトンX-100)を0.5重量%の濃度で添加したものが用いられた。CV値は、3.5%であった。

【0035】実施例6

30 実施例1の(1)で、界面活性剤(トリトンX-100)の0.5重量 %水溶液を作用極の周辺に塗布し、乾燥させたものが用 いられた。CV値は、3.4%であった。

[0036]なお、実施例2~6の各グルコースバイオセンサについても、グルコース濃度0~1000mg/dlの範囲内で直線性が得られた。

【図面の簡単な説明】

【図1】本発明に係るパイオセンサの一態様の斜視図である。

【符号の説明】

- 1 作用極側基板
- 2 作用極
- 3 作用極側リード部
- 4 絶縁膜
- 5 酸化還元酵素
- 6,7 立上り部
- 8 対極側基板
- 9 空間

[図1]

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第1区分 【発行日】平成14年2月28日(2002.2.28)

【公開番号】特開平11-94791

【公開日】平成11年4月9日(1999.4.9)

【年通号数】公開特許公報11-948

[出願番号]特願平9-267814

【国際特許分類第7版】

GO1N 27/327

27/30

(FI)

GO1N 27/30 353 F

Z

353 R

353 Z

【手続補正書】

【提出日】平成13年9月5日(2001.9.5)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容】

【0012】固定化せしめる酸化還元酵素としては、グルコースオキシダーゼ、乳酸オキシダーゼ、アルコールオキシダーゼ、ビルビル酸オキシダーゼ、グルコースデヒドロゲナーゼ、アルコールデヒドロゲナーゼ、ビルビ

ル酸デヒドロゲナーゼ等があり、とれらによってグルコース、乳酸、アルコール、ビルビル酸、抗原等の有機物質、塩素イオン、ナトリウムイオン、カリウムイオン、水素イオン、溶存酸素等の電解質や無機物質の濃度測定が可能であるが、最も一般的に用いられるグルコースオキシダーゼによるグルコース濃度の測定法について、以下では塗布乾燥法(吸着法)を例にして説明することとする。なお、塗布乾燥法以外に、共有結合法、イオン結合法、架橋法などが、グルコースオキシダーゼの固定化方法として用いられる。