Materials Chemistry III Day 3

Summary of Day 2 1. Instantaneous E=hv Micro-ammeter (Current flow **Threshold frequency** measurement) 3. emitted electrons α (intensity) electron Voltameter /_ (Pot. Difference **Measurement)** Vacuum chamber Photoelectric current $v_3 > v_2 > v_1$ Saturation current $-V_{03}$ $-V_{02}$ $-V_{01}$ Collector plate -----Photocurrent 4 - Retarding potential potential (Anode potential) High intensity Low intensity $-\Delta V_{\rm s}$ Potential difference

Einstein considered that light wave to be considered in nature with each photon carrying an energy, E=hv

Energy of the photon is sufficient to drive an electron out with kinetic energy

Compton effect (A.H. Compton; 1922)

- When a mono-chromatic beam of 'X-rays' of wavelength (λ) is scattered by a light element (Carbon), it is observed that the scattered X-Rays have maximum intensities at two wavelengths.
- One maximum occurs at the same wavelength λ as the incident beam and other maximum occurs at a slightly higher wavelength (λ ').
- Compton's shift: $\Delta \lambda = \lambda \lambda'$ (dependent on angle of scattering)

Explanation: Incident photons possess momentum

Postulates:

- 1) A beam of monochromatic radiation consists of energy hv, travelling in the direction of the beam with speed of light.
- 2) Scattering by X-ray is by atom is a result of elastic collision between photon and atomic electron.

Derivation: Wont be done in class!

How X-Rays are generated?

'Be' is used as window for exit of X-rays
Pb is used as protector glass as X-rays get absorbed.

☐ Incoming e knocks off an electron from inner electronic sub-shells of the target atom.

☐ Incoming e knocks off an electron from inner electronic sub-shells of the target atom.

☐ This vacancy created in this process is filled by an electron residing in the higher electronic sub-shell

X-ray with definite λ is emitted

The emission of X-ray takes place $\approx 10^{-4}$ sec later

Duane- Hunt Law Maximum frequency of X-ray that can be produced

$$h \times v_{x-ray} = V \times e = hc/\lambda_{x-ray}$$

where e = electronic charge;

$$\lambda_{x-rav} = 1239.8/V$$

(Here, V is in volt and λ_{x-ray} in A^{o})

For
$$V = 10 \text{ ky}$$

 $\lambda_0 \approx 1 \text{ A}^{\circ}$

L3: Objective

- 1) Dual nature of light (de Broglie's equation)
 - 2) Origin of Scanning Electron Microscope
 - 3) Heisenberg's Uncertainty Principle
 - 4) Heisenberg's Microscope
- 5) Significance of Heisenberg's Uncertainty Principle
- 6) Concept of a chemical bonding: Electrons as Wave

Wave-particle duality

A similar diffraction pattern is seen from polycrystalline aluminum, regardless of whether it is made with electrons or x-rays.

Wave-particle duality

- The concept of Photo Electric effect can now be well understood by viewing light as a particle.
- However diffraction and interference can be understood only by viewing light as wave and not as wave-packet.

Hence it seems light has a dual nature.

- The situation is contradictory. The contradiction was explained by de Broglie.
- The main aspect of de Broglie's hypothesis is to find out a relationship between wave and particle nature.

de Broglie's equation

Wave nature of light is characterized by frequency

Diffraction and Interference

Photo-electric effect

Only applicable to sub-atomic word No significance in real world!!

Calculate de Broglie wavelength of a ball of 140 gm, moving with 40 meter/seconds.

Ans: $1.2 \times 10^{-34} \,\mathrm{m} \rightarrow \mathrm{undetectable}$ and no practical consequences

Calculate wavelength of electron, travelling with 1% speed of light.

Ans: 2.43×10^{-10} m=243 pm \rightarrow In the dimension of X-rays

Calculation of de Broglie's wavelength for (eliminating velocity term):

- ✓ free particle (potential energy=0 but $KE = (1/2)mv^2$)
- **✓** bound particle (Total energy [E]=KE [(1/2)mv²]+PE [P]
- ✓ charged particle accelerated with a potential difference V

A similar diffraction pattern is seen from polycrystalline aluminum, regardless of whether radiation is made with electrons or x-rays.

Electrons shows similar diffraction pattern like X-Rays (aluminum foil diffraction pattern)

Consider an electron is passed through a tube with voltage V_1 with a velocity vThen, $eV_1 = (1/2)mv^2$ $\mathbf{v} = \sqrt{(2e\mathbf{V}_1/m)}$ $\lambda = h/mv$ $\lambda = h/m\sqrt{(2eV_1/m)}$ $\lambda = h/\sqrt{(2eV_1m)}$ $\lambda \alpha 1 / \sqrt{V_1}$

Particle	Mass/kg	$Velocity/m \cdot s^{-1}$	Wavelength/pm
Electron accelerated through 100 V	9.11×10^{-31}	5.9×10^{6}	120
Flectron accelerated through 10,000 V	9.29×10^{-31}	5.9×10^{7}	12
α particle ejected from radium	6.68×10^{-27}	1.5×10^{7}	6.6×10^{-3}
22-caliber rifle bullet	1.9×10^{-3}	3.2×10^{2}	1.1×10^{-21}
Golf ball	0.045	30	4.9×10^{-22}
Baseball	0.140	25	1.9 × 10 ⁻²²

Relativistic Correction

Remember that when an electron is accelerated through a high potential difference (V_i) , then the mass of electron will change as the velocity increases and approaches close to velocity of light. Hence, we need to consider relativistic mass of electrons.

Relativistic momentum:

$$p = mv = \frac{m_0 v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\mathbf{m} = \frac{m_0}{\sqrt{1 - \frac{v^2}{C^2}}}$$

m= relativistic mass $\mathbf{m} = \frac{m_0}{\sqrt{1 - \frac{v^2}{C^2}}}$ $\mathbf{m}_0 = \text{rest mass}$ V = velocity $\mathbf{c} = \text{velocity of light}$

Scanning Electron Microscope Electron-Mater interaction

Electron mater interaction

Electron be discussed later

Electron Microscope

What is the context for the discussion of SEM?

Particle size
$$< 100 \text{ nm}$$
 Nanoparticles
$$1 \text{ nm} = 10^{-9} \text{ m}$$

• Nanoscale materials are defined as a set of materials where <u>at least one dimension is less than ~100 nm.</u> A nanometer is one millionth of a millimeter - approximately 100,000 times smaller than the diameter of a human hair.

The term 'nano' originated from the Greek 'nanos' means 'dwarf'.

Relativistic Correction

"Relativistic Correction for kinetic energy"

• Kinetic energy = eV=
$$(m-m_0)C^2$$
 [m_0 =rest mass of electron] $m=m_0+eV/C^2$
$$m=m_0(1+eV/m_0C^2)$$
 Or, $\sqrt{m}=\sqrt{m_0}(1+eV/m_0C^2)^{1/2}$ (1) $\lambda=h/\sqrt{(2eVm)}=h/\sqrt{(2eVm_0)}\times (1+eV/m_0C^2)^{-1/2}$ $\lambda=12.27/\sqrt{V}\times (1+eV/m_0C^2)^{-1/2}$

SEM is carried out at lower kV (30 kV)
TEM is carried out at 120-200 kV

Big vs Small

HV 300kV Direct Mag: 50000x

How will you measure the Size?

Answer:

1) Scanning Electron Microscope

Classification of Nanomaterials

OD spheres/clusters

Metal based (Au, Pt, Ag) Oxide based: TiO₂, ZnO, Al₂O₃

1D nanowires/rods

ZnO nano rods Carbon nanotubes

2D nanosheets

Graphene Clay (aluminosilicates)

3D framework

Interconnected Metal organic framework

List of some different carbon materials along with their likely benefits to light-matter interactions

C-type	Structure	
CNTs*, [∆]	1D tubular	
Graphene/ Reduced Graphene Oxide*, ^A	2D sheet like	
Graphene QD*	2D sheet (small graphene fragments, <20 nm)	
Fullerenes*, ^A C, C 60, 70	0D Hollow sphere	

Quantum confinement

Particle in 1D Box?

Colloidal CdSe quantum dots dispersed in hexane

Scanning Electron Microscope

A. Source/electron gun (LaB₆)

B. Focusing system (Magnetic or Electrostatic Lens)

C. Detection (Electron multiplier tube)

Electron Microscope Electron Mater Interaction

Interactions Between an Incident Electron Beam & Target Material

Secondary Electron Emission

Back Scattered Electrons

Characteristic X-Ray

Auger Electron Emission

Heisenberg's Uncertainty Principle

It states that product of uncertainty in determining the position and momentum of a particle is approximately equal to a number in the order of $h/2\pi$.

$$\Delta X \times \Delta P \ge h/2\pi (1.055 \times 10^{-34} \text{ Js})$$

Heisenberg's Uncertainty Principle

If we wish to locate any particle within a distance ΔX , then we automatically introduce an uncertainty in momentum.

$$\Delta X \times \Delta P \ge h/4\pi$$

Similarly:

 $\Delta t \times \Delta E \ge h/4\pi$

• If we want to locate an electron within ΔX , using a light having wavelength λ , then λ must be equal to ΔX , so that it interacts with the electron.

However, when the Photon will interact with the electron and transfer its momentum (<u>as photon is a particle with momentum mv</u>) and we can't determine momentum accurately. If we reduce λ further, the momentum of the light will increase further and will be transferred to the electron.

Likewise, if we want to calculate P (mv) accurately, we have to reduce velocity (v) of the light.

Then ' λ will increase' and will cause uncertainty in position, as it will pass the electron without any interaction.

