Binary Search TreesLecture 21

Menu

- Maps
- Search lists
- Binary search trees
- Tree traversal
 - Preorder
 - Inorder
 - Postorder
- Balanced Search Trees
 - AVL Trees

Tables (Maps)

- indexed container
- Associate information with a key
 - key is often a character string
 - info is any information
- E.g. a phone book
 - key is the name of a person or business
 - info is their phone number & address
- Typical Operations on Tables
 void insert(string key, Object o);
 object lookup(string key);
 void remove(string key);
- Alternative implementations include
 - Search Lists
 - Binary Search Trees
 - Hash Tables

Search Lists

- a linked list with key, info, and next
- O(N) in average for insert, lookup, and remove

Binary Search Tree

Binary Search Tree Definitions

- A binary search tree is a binary tree where each node has a key
- The key in the left child (if exists) of a node is less than the key in the parent
- The key in the right child (if exists) of a node is greater than the key in the parent
- The left & right subtrees of the root are again binary search trees

Binary Search Trees (BST)

- similar to a linked list, but two next pointers
- we call them *left* and *right*
- for each node n, with key k
 - n->left contains only nodes with keys < k
 - n->right contains only nodes with keys > k
- O(log N) in average for insert, lookup, and remove

Worst Cases

- operations can degenerate to O(N) worst case!
- degenerates to a linked list
 - when keys are inserted in ascending order
 - all keys are to the right
 - when keys are inserted in descending order
 - all keys are to the left
- ideal is mid first, then successive middles, etc.
- random order also works fairly well

Degenerated Tree

Binary Tree Traversal

- inOrder
- preOrder
- postOrder

inOrder traversal: recursive

- traverse the left subtree inOrder
- process (display) the value in the node
- traverse the right subtree inOrder

BETH, CINDI, DAVE, DAVID, DAWN, GINA, MIKE, PAT, SUE

Exercise: inorder traversal of the binary expression tree for 4 * 5 - 3

inorder traversal of the binary expression tree for 4 * 5 - 3

4 * 5 - 3

Exercise: inorder traversal of the binary expression tree for (12-3)*2

inorder traversal of the binary expression tree for (12-3)*2

12 - 3*2

preOrder traversal: recursive

- process (display) the value in the node
- traverse the left subtree preOrder
- traverse the right subtree preOrder

Exercise: preorder traversal of the binary expression tree for 4 * 5 - 3

preorder traversal of the binary expression tree for 4 * 5 - 3

-*453

Ex: How would you draw the subtree for (4-5)*3 to be evaluated correctly in preorder?

EX: How would you draw the subtree for (4-5)*3 to be evaluated correctly in preorder?

- Correct evaluation in preorder should be:
 * 4 5 3
- Corresponding tree:

postOrder traversal: recursive

- traverse the left subtree postOrder
- traverse the right subtree postOrder
- process (display) the value in the node

Exercise: postorder traversal of the binary expression tree for 4 * 5 - 3

postorder traversal of the binary expression tree for 4 * 5 - 3

45*3-

Ex: How do you construct the binary tree for 4-5*3 to be evaluated correctly in postorder?

Breadth-First traversal

all previous traversals are Depth-First traversals

- visit all the nodes at depth 0, then depth 1, etc.
- may use a queue to traverse across levels

Breadth-First traversal

• ?

Balanced Search Trees

- use rotations to ensure tree is always 'full'
- prevents degenerative cases mentioned above
- truely O(log N) worst case for insert, lookup, remove
- insertion/removal takes more time
- but lookup is faster
- trickier to code correctly

Simple rotation *rotate_Left(X,Z)*

AVL Trees (Adelson-Velskii and Landis)

- An AVL Tree is a form of binary search tree
- Unlike a binary search tree, the worst case scenario for a search is O(log n).
- AVL data structure achieves this property by placing restrictions on the difference in height between the sub-trees of a given node - height balanced to within 1
- and re-balancing the tree if it violates these restrictions.

AVL Tree Balance Requirements

- A node is only allowed to possess one of three possible states:
- Left-High (balance factor -1)
 The left-sub tree is one level taller than the right-sub tree
- Balanced (balance factor 0)
 The left and right sub-trees both have the same heights
- Right-High (balance factor +1)
 The right sub-tree is one level taller than the left-sub tree
- If the balance of a node becomes -2 or +2 it will require rebalancing.
- This is achieved by performing a rotation about this node
- Rotation does not break the existing properties for a search tree

AVL tree with balance factors

AVL Tree Rotations

AVL Rotation - RR

Tree is Balanced

Insertion Order: 3, 2, 1

Tree is Imbalanced

AVL Rotation - RR

AVL Rotation - LL

Insertion Order: 1,2,3

Tree is Imbalanced

AVL Rotation - LL

AVL Rotation - RL

AVL Rotation - LR

AVL Tree Insertion

- AVL requires two passes for insertion:
- one pass down tree (to determine insertion)
- one pass back up to update heights and rebalance

AVL Tree Insertion

 Animation showing the insertion of several elements into an AVL tree. It includes left, right, left-right and right-left rotations.

AVL Time complexity in big O notation

Algorithm	Average	Worst case
Search	$O(\log n)$	$O(\log n)$
Insert	$O(\log n)$	$O(\log n)$
Delete	$O(\log n)$	$O(\log n)$
Space	O(<i>n</i>)	O(<i>n</i>)

Summary

- Maps
- Search lists
- Binary search trees
- Tree traversal
 - Preorder
 - Inorder
 - Postorder
- Balanced Search Trees
 - AVL Trees

Readings

- [Mar07] Read 4.2, 4.3, 4.4, 4.8, 9.6
- [Mar13] Read 4.2, 4.3, 4.4, 4.8