

East West University Department of Computer Science and Engineering Course Outline Spring 2020 Semester

Course: CSE103 Structured Programming

Course Site: https://yeasirrayhanprince.github.io/teaching/cse103-spring-2020

Credits and Teaching Scheme Theory Laboratory Total Credits 3 1.5 4.5 Contact 3 Hours/Week for 13 Weeks 3 Hours/Week for 6 Hours/Week for 13 Weeks + Final Exam in the 14th 13 Weeks + Final Exam in the 14th Hours Week Week

Prerequisite

None

Instructor Information

Instructor: Yeasir Rayhan

Lecturer, Department of Computer Science and Engineering

Office: Room: AB2: 201

Tel. No.: 09666775577 (hunting) ext. 519

E-mail: yrp111@ewubd.edu

Contact: 01793167491

Class Routine and Office Hour

Day	08:30-10:00	10:10-11:40	11:50-01:20	01:30-03:00	03:10-04:40			
Sunday	CSE103(10)	CSE	103(10)	CSE106(3)				
_	AB2 205	ϵ	537	AB2 403	Office Hour			
Monday	CSE106(1)	CSE	103(12)					
	AB2 503	630						
Tuesday				Office Hour	CSE103(12)			
			Office Hour		AB1 601			
Wednesday	CSE106(1)	Office Hour						
	AB2 503							
Thursday	CSE 103(10)	Office Hour	Office Hour	CSE106(3)	CSE103(12)			
	AB2 205			AB2 504	AB1 601			

Course Objective

The purpose of this course is to introduce the students to computer programming using structured language. The students will be able to enhance their analyzing and problem-solving skills and use the same for writing programs using C language. Knowledge of this course will be needed as prerequisite knowledge for future courses such as CSE106 Discrete Mathematics, CSE110 Object

Oriented Programming, CSE207 Data Structures, CSE246 Algorithms, CSE302 Database Systems, CSE366 Artificial Intelligence, CSE405 Computer Networks and many others.

Knowledge Profile

K2: Conceptually-based mathematics, numerical analysis, statistics, and formal aspects of computer and information science

Learning Domains

Cognitive - C2: Understanding, C3: Applying Psychomotor - P2: Manipulation, P3: Precision

Affective - A2: Responding

Program Outcomes (POs)

PO1: Engineering Knowledge

Complex Engineering Problem Solution

None

Complex Engineering Activities

EP1: Depth of knowledge required EP2: Range of conflicting requirements

Course Outcomes (COs) with Mappings

After completion of this course students will be able to:

СО	CO Description	PO	Learning Domains	Knowledge Profile	Complex Engineering Problem Solving/ Engineering Activities
CO1	Understand and apply the fundamentals of programming, basics of elementary programming, and different control statements for implementing structured programs.	PO1	C2, C3	K2	
CO2	Understand and apply the different types of arrays and functions for implementing structured programs.	PO1	C2, C3	K2	
CO3	Use different data structures like pointers, structures, unions, user defined data types, and dynamic memory for implementing structured programs.	PO1	С3	K2	

	Use and apply appropriate	PO1	C2, C3	K2	
	language constructs and data		P2, P3		
	structures; perform and		A2		
CO4	demonstrate skills; and write				
	report for developing programs for				
	solving complex problems.				

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching- Learning Method	СО	Mark of Cognitive Learning Levels		CO Mar k	Exam (Mark)
Introduction to computers and programming languages, data representation in computer, flowchart construction for problem solving	Lectures, Class Discussions, Discussions Outside Class	CO1	C2 2.5	C3	2.5	Midter m Exam I (15)
Introduction to C Programming (input, output, variables, data types, operators, expressions, assignments) Conditional control statements (if,	Do	CO1	2.5	2.5	5.0	
if-else, nested if-else, switch) Loop statement (while, for and dowhile), break and continue statements	Do	CO1	2.5	2.5	5.0	
Introduction to arrays (arrays, declaring arrays, manipulating arrays)	Do	CO2	3.0	4.0	7.0	Midter m Exam
Nested loop statement	Do	CO1	2.5	3.5	6.0	II
Multidimensional array	Do	CO2	3.5	3.5	7.0	(20)
Characters and strings (various types of string manipulation)	Do	CO2	2.5	3.5	5.0	Final (20)
Introduction to functions (function definitions, function prototypes and argument, header files). Solving complex problems in modular fashion using user defined function	Do	CO2		2.5	2.5	

Course Topic	Teaching- Learning Method	СО	Mark Cogni Learn Leve	tive ing els	CO Mar k	Exam (Mark)
Introduction to recursive definition and solving problem using recursive function	Do	CO2		2.5	2.5	
Pointers (pointer variable declarations, pointer operators, passing arguments to functions by reference with pointers, pointer expressions and pointer arithmetic, arrays of pointers, and function pointers)	Do	CO3		2.5	2.5	
Structures (structure definitions and initialization, accessing structure members, structure with function and pointer)	Do	CO3		2.5	2.5	
File management (files and streams, creating a file, reading data from file, writing data to file, and updating files)	Do	CO3		2.5	2.5	
Dynamic memory allocation and linked lists	Do	CO3		2.5	2.5	

Laboratory Experiments and Assessment Scheme

Experiment	Teaching- Learning Method	СО	Mar Cogn Lear Lev	itive ning	Mark of Psychomotor Learning Levels		Mark of Affecti ve Learni ng Levels	CO Mark
			C2	C3	P2	P3	A2	
Problem solving using arithmetic operators and conditional control statements	Discussion, Report Writing, Coding and Running Program	CO4	0.5		0.5	0.5	0.5	2
Problem solving using loops	Do	CO4	0.5		0.5	0.5	0.5	2

Problem solving	Do	CO4	0.5		0.5	0.5	0.5	2
requiring array								
manipulation								
Problem solving	Do	CO4		0.5	0.5	0.5	0.5	2
requiring nested								
loop								
Lab Exam	Individual Lab Exam	CO4		1.5	0.5	0.5	0.5	3
Problem solving	Do	CO4		0.5	0.5	0.5	0.5	2
requiring multi-								
dimensional array								
Problem solving	Do	CO4		0.5	0.5	0.5	0.5	2
requiring user								
defined function								
and string								
manipulation	Do	CO4		0.5	0.5	0.5	0.5	2
Problem solving involving file	Do	CO4		0.5	0.5	0.5	0.5	2
input/output								
Problem solving	Do	CO4		0.5	0.5	0.5	0.5	2
requiring user	Do	004		0.5	0.5	0.5	0.5	2
defined data types								
Lab Exam	Individual	CO4		1.5	0.5	0.5	0.5	3
Luo Laun	Lab Exam			1.5	0.5	0.5	0.5	5
Total			1.5	5.5	5.0	5.0	5.0	22

Teaching Materials/Equipment

Text book:

Follow course site

Mini Projects:

Mini Project description will be provided later.

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
97-100	A+	4.00	73-76	C+	2.30
90-96	A	4.00	70-72	С	2.00
87-89	A-	3.70	67-69	C-	1.70
83-86	B+	3.30	63-66	D+	1.30
80-82	В	3.00	60-62	D	1.00
77-79	B-	2.70	Below 60	F	0.00

Exam Dates

Section	Term I	Term II	Final
10	6 February	12 March	16 April
12	11 February	10 March	19 April

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be NO make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor within 48hours of the exam time. Proper supporting documents in favor of the reason of missing the exam have to be presented with the application.
- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. Students caught with cheat sheets in their
 possession, whether used or not; writing on the palm of hand, back of calculators, chairs or
 nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee,

etc. would be treated as cheating in the exam hall. The only penalty for cheating is **expulsion** for several semesters as decided by the Disciplinary Committee of the university.