Weapon Engagement Zone Maximum Launch Range Estimation Using a Deep Neural Network

Joao P. A. Dantas

Andre N. Costa

Diego Geraldo

Marcos R. O. A. Maximo

Takashi Yoneyama

INTRODUCTION

- Simulation environment: level of fidelity
- Critical part: modeling missiles
- Deciding launching a missile
- Weapon Engagement Zone (WEZ)

WEAPON ENGAGEMENT ZONE

LITERATURE REVIEW

- Yoon et al, 2010: Lauch Acceptability Region
- Alkaher and Moshaiov, 2015: Dynamic Lauch Zone
- Portrey et al, 2005: factors regarding shooter and target
- Birkmire, 2011: WEZ determination
- Farlik et al, 2017 and Li et al, 2020: mathematical approaches

OBJECTIVES

- Autonomous agents
- Construtive Simulations
- Simulated launches in variate conditions
- Machine Learning Algorithm
- Deep Neural Network

MISSILE MODEL

- 5 DOF
- FOX 3
- Perfect proportional navigation
- Loft maneuver

MISSILE MODEL

EXPERIMENTAL DESIGN

Parameter	Variable	Min	Max	Unit
Shooter altitude	alt_sht	1,000	45,000	feet
Shooter velocity	vel_sht	400	600	knots
Shooter pitch	pit_sht	-45	45	degrees
Target altitude	alt_tgt	1,000	45,000	feet
Target velocity	vel_tgt	400	600	knots
Target heading	hdg_tgt	-180	180	degrees
Target off-boresight	rgt_tgt	-60	60	degrees
	Plane lo			tch

SIMULATIONS SAMPLING

- Latin Hypercube Sampling
- 50,000 construtive simulations
- 2 Intel Xeon Silver 4210R CPUs
 - 2.40GHz
 - 128 GB RAM
- 7 hours

DEEP NEURAL NETWORK

DATA ANALYSIS

	$\operatorname{alt_sht}$	vel_sht	$\operatorname{pit_sht}$	${ m alt_tgt}$	vel_tgt	$hdg_{-}tgt$	rgt_tgt	max_range
	(ft)	(kt)	(deg)	(ft)	(kt)	(deg)	(deg)	(NM)
mean	23,000.00	500.00	0.00	23,000.00	500.00	0.00	0.00	12.38
std	12,701.83	57.74	25.98	12,701.83	57.74	103.92	34.64	9.37
min	1,000.22	400.00	-45.00	1,000.82	400.00	-180.00	-60.00	0.08
25%	12,000.34	450.00	-22.50	12,000.32	450.00	-90.00	-30.00	5.55
50%	22,999.96	500.00	0.00	22,999.99	500.00	0.00	0.00	9.14
75%	33,999.75	550.00	22.50	33,999.76	550.00	90.00	30.00	16.64
max	44,999.38	600.00	45.00	44,999.42	600.00	179.99	60.00	40.87

CORRELATION

MODEL RESULTS

	MAE (NM)	${ m MSE}~({ m NM}^2)$	RMSE (NM)	R^2
1º Fold	0.54	1.06	1.03	0.99
$2^{\underline{\mathbf{o}}}$ Fold	0.62	1.22	1.10	0.99
$3^{\underline{\mathbf{o}}}$ Fold	0.71	1.39	1.18	0.98
4º Fold	0.52	1.08	1.04	0.99
5º Fold	0.57	1.34	1.16	0.98
mean	0.59	1.22	1.10	0.99
std	0.08	0.15	0.07	0.01

MODEL REPRESENTATION

CONCLUSIONS

- No discretizing concerning off-boresight angle
- 50,000 vs 222,000,000
- DNN vs Several ANNs with one hidden layer
- 5-fold cross validation
- Feature engineering: sine and cosine

FUTURE WORK

- Improvement in the DNN architecture
- Results compared with other supervised learning techniques
- More advanced missile models

ACKNOWLEDGMENTS

- Finep (Reference n° 2824/20)
- CNPq National Research Council of Brazil (grant 303134/2-18-0)

