Math101

1. oktober 2018

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Delvis integration

Integration ved substitution

► To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x

► To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x

► To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

► To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

► To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis f(g(y)) = y, og g(f(x)) = x

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$

- ▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis $f(g(y)) = y, \quad \text{og} \quad g(f(x)) = x$ for alle $x \in X$ og $y \in Y$.
- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ▶ Eksempel: f(x) = 1/x defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

Logaritmer og eksponentialfunktioner

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi ln i stedet for \log_e og hvis a = 10 skriver vi log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

► Eksempler: Udregn

$$\log_2(8)$$
, $\log_{10}(10000)$, $\log_a(1)$.

Logaritmer og eksponentialfunktioner

- Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

► Eksempler: Udregn

$$\log(50) + \log(20),$$
 $2^{2 + \log_2(5)},$ $9^{\log_3(2)}.$

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Bemærk at $tan(\theta) = \frac{sin(\theta)}{cos(\theta)}$.

θ	$\sin \theta$	$\cos \theta$	an heta
0			
$\frac{\pi}{6}$			
$\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$			
$\frac{\pi}{3}$			
$\frac{\pi}{2}$			

θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$			
$\frac{\pi}{4}$			
$\frac{\pi}{3}$			
$\frac{\pi}{2}$			

θ	$\sin\theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$			
$\frac{\pi}{4}$ $\frac{\pi}{3}$			
$\frac{\pi}{2}$			

θ	$\sin \theta$	$\cos \theta$	$\tan heta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$			
$\frac{\pi}{2}$			

θ	$\sin \theta$	$\cos \theta$	$\tan heta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$			

θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{3\pi}{2}), \qquad \sin(9\pi), \qquad \sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\sin(-\frac{5\pi}{4}).$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\sin(-\frac{5\pi}{4}).$$

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

Trigonometriske funktioner

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

Trigonometriske funktioner

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

 $\sin(-\frac{5\pi}{4}).$

Trigonometriske funktioner

- Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

- ► Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter (se skitse).

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter (se skitse).

- ► Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter (se skitse).

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ▶ Vi definerer en funktions hældning vha. sekanter (se skitse).

- ► Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter (se skitse).

- ► Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter (se skitse).

 \blacktriangleright En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ▶ Bemærk at f'(x) betegner hældningen af f i x.
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x).$$

Differentialregning Regneregler

► Vi har følgende regneregler:

f(x)	f'(x)	(x)	f'(x)	f'(x)
С	0	a^{x}	0	$a^x \ln a$
Х	1	n <i>X</i>	1	$\frac{1}{x}$
x ⁿ	nx ⁿ⁻¹	os X	nx^{n-1}	— sin <i>X</i>
e ^x	e ^x	in X	e ^x	cos X
ecx	cecx	an X	ce ^{cx}	$1 + \tan^2(x)$

► Eksempler: Differentier funktionerne $f(x) = \sqrt{x}$, $g(x) = \frac{1}{x}$, $h(x) = \ln(x^3)$.

Differentialregning Regneregler

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$
$$(f \pm g)'(x) = f'(x) \pm g'(x).$$

Eksempler: Differentier funktionerne $f(x) = 2x + 1 - \frac{1}{x}$, $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$.

Differentialregning Repetition af regneregler

Tone University

► Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
Χ	1	
x ⁿ	nx^{n-1}	
e^{x}	e ^x	
e ^{cx}	ce ^{cx}	

f(x)	f'(x)
a ^x	a ^x In a
ln X	$\frac{1}{x}$
cos X	— sin <i>X</i>
sin X	cos X
tan X	$1 + \tan^2(x)$

► Samt (cf)'(x) = cf'(x) og $(f \pm g)'(x) = f'(x) \pm g'(x)$.

Produkt-og kvotientientreglen

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

► Eksempler: Differentier funktionerne $f(x) = xe^{2x}$, $g(x) = \frac{\cos(x)}{x}$ og $h(x) = \cos(x)\sin(x)$.

Kædereglen

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

- ► Eksempler: Differentier funktionerne $f(x) = \cos(x^2)$, $g(x) = e^{x^3+3x}$ og $h(x) = \sin^2(x^2-2x+1)$.
- ► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

Ubestemte integraler

► En funktion f har stamfunktion F hvis

$$F'(x) = f(x)$$

- ▶ Hvis F er stamfunktion til f så er F(x) + c også, for alle $c \in \mathbb{R}$.
- ▶ Det ubestemte integral af f defineres til

$$\int f(x)\,dx=F(x)+c,$$

hvor F er en stamfunktion til f og $c \in \mathbb{R}$.

► Eksempler: Er e^{x^2} stamfunktion til $2xe^{x^2}$?

Regneregler for ubestemte integraler

► Vi har følgende regneregler:

f(x)	$\int f(x) dx$	f(x)	$\int f(x) dx$
С	cx + k	$\frac{1}{x}$	ln(x) + k
X	$\frac{1}{2}x^2 + k$	ln X	$x \ln(x) - x + k$
x ⁿ	$\frac{1}{n+1}X^{n+1}+k$	cos X	$x = \sin x + k$
e^{x}	$e^x + k$	sin X	$-\cos x + k$
e ^{cx}	$\frac{1}{c}e^{cx}+k$	tan A	$-\ln(\cos(x)) + k$

► Eksempler: Udregn $\int \sqrt{x} dx$ og $\int x^3 dx$.

Regneregler for ubestemte integraler

► Vi har følgende generelle regneregler

$$\int cf(x) dx = c \int f(x) dx$$
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

Eksempler: Udregn

$$\int e^{3x} + \sqrt[3]{x} + 1 \, dx,$$
$$\int \frac{1}{2x} - \cos(x) \, dx.$$

Bestemte integraler

- ► Vi vil bestemme arealer under grafer for funktioner.
- ► Arealet mellem grafen for f og x-asksen i intervallet [a, b] er givet ved

$$F(b) - F(a)$$
,

hvor F er en stamfunktion til f.

► Derfor defineres det bestemte integral af *f* i intervallet [*a*, *b*] til

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

► Eksempel: Bestem $\int_0^1 x^2 dx$.

Regneregler for bestemte integraler

► Vi har følgende generelle regneregler for bestemte integraler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

► Eksempler: Udregn

$$\int_{1}^{2} \frac{1}{2x} - 1 \, dx$$
$$\int_{0}^{4} 3x^{2} + 3e^{x} \, dx.$$

Delvis integration

► Skal man integrere produkter af funktioner anvendes delvis integration:

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)G(x) dx$$

- ▶ Det er ikke lige meget hvordan f og g vælges.
- ► Eksempler: Udregn

$$\int xe^x dx,$$

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx.$$

Integration ved substitution

For integration af sammensatte funktioner gælder at

$$\int f(g(x))g'(x) dx = F(g(x)) + c$$
$$\int_a^b f(g(x))g'(x) dx = [F(g(x))]_a^b.$$

- ► Denne regneregel kaldes integration ved substitution.
- ▶ Vi vil ofte anvende en særlig metode der retfærdiggør navnet.

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- ► Udregn $\int f(g(x))g'(x) dx$.
- ► Udregn $\int x^2 \cos(x^3) dx$.

- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ▶ Lad $u = x^3$.

Propagantian

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ► Lad $u = x^3$.
- ► Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

Propagalist Control of the Control o

► Udregn
$$\int f(g(x))g'(x) dx$$
.

▶ Lad
$$u = g(x)$$
.

▶ Udregn
$$\frac{du}{dx}$$
 og isoler dx .

► Substituer
$$g(x)$$
 og dx .

► Udregn
$$\int x^2 \cos(x^3) dx$$
.

► Lad
$$u = x^3$$
.

► Så er
$$\frac{du}{dx} = 3x^2$$
 og $dx = \frac{du}{3x^2}$.

- ▶ Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ightharpoonup Lad $u = x^3$.
- ► Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.
- ► $\frac{1}{3} \int \cos(u) \, du = \frac{1}{3} \sin(u) + c$.

- ▶ Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ightharpoonup Lad $u = x^3$.
- ► Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ► Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{a}^{b} f(g(x))g'(x) dx$. ► Udregn $\int_{-1}^{2} -xe^{x^{2}} dx$.

- ightharpoonup Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ightharpoonup Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{a}^{b} f(g(x))g'(x) dx$. ► Udregn $\int_{-1}^{2} -xe^{x^{2}} dx$.
- ightharpoonup Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ightharpoonup Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ightharpoonup Lad $u = x^2$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
 - ► Lad $u = x^2$.
 - ▶ Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

Propagunites

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ► Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ► Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.
- $\blacktriangleright \ \ \tfrac{-1}{2} \textstyle \int_1^4 e^u \, du = \tfrac{-1}{2} [e^u]_1^4 = \tfrac{e-e^4}{2}.$

Opgaveregning!

