

18. РАДИОЛИЗ ВОДНЫХ РАСТВОРОВ ИОДИСТОГО МЕТИЛА

Т.И. ГОРБОВИЦКАЯ, Ю. Е. ТИЛИКС, В.П. ТИТАЕВ

Латвийский Университет, Рига, Латвия

radchem@polaron.kfi.lu.lv

Соединения радиоактивного йода являются наиболее опасным компонентом возможного выброса радионуклидов в окружающую среду в ходе тяжелой аварии на атомных электростанциях. Особое место среди них занимает метилиодид как самая летучая химнческая форма йода. С целью поиска условий снижения уровня метилиодида в водном бассейне контайнмента АЭС при аварии в данной работе исследован у-радиолиз 10⁻⁵ – 10⁻² М водных растворов СН₃1 при 273К в интервале рН 6 - 13 и в присутствии в качестве акцепторов радикальных продуктов радиолиза воды метанола и ионов нитрата.

Показано, что основными йодсодержащими продуктами радиолиза (ПР) являются иодид-ион и молекулярный йод. Изменение pH от 6 до 13 не влияет на радиационнохимический выход разложения CH_3I , но приводит к увеличению доли иодид-иона в ПР. При pH > 9 I является практически единственным иодсодержащим ПР. Максимальный выход разложения, достигаемый при концентрации $CH_3I \sim 10^{-2}$ М, равен 6.5 ± 0.6 молекул на 100 эВ. Результаты указывают на то, что радиационнохимическое разложение CH_3I происходит как за счет гидратированных электронов и атомов H, так и за счет радикалов ОН и анионрадикалов ОТ. Константа скорости реакции ОТ с CH_3I при pH=13, найденная из полученных данных, равна $(3 \pm 1) \cdot 10^9$ л·М $^{-1}$ с $^{-1}$.

Кроме радиационнохимических реакций важную роль в распределении химических форм йода в ПР играют реакции гидролиза йода, а также реакции НОІ (ІО) с радиолитической перекисью водорода, переводящис І₂ в І [1]. Стабилизация ПР преимущественно в форме иодида при рН 9 – 13 предотвращает обратную реакцию, поэтому наличие щелочной среды является оптимальным условием для эффективного радиационнохимического разложения метилиодида в водных растворах.

Литература

1. Горбовицкая Т.И. и др. Атомная энергия, 1993, 74, 5, 425