Introduction:

Logic circuit for digital system may be:

- ➤ Combinational Logic
- ➤ Sequential Logic

Combinational logic

- Output at any times depends only on present combination of input.
- Combinational circuit does not need any memory.
- Combinational circuits are faster in operation than sequential circuits.

Block diagram

Design procedure:

The design steps for combinational logic are:

- Question is given to you.
- Find the number of i/p and o/p.
- Draw the truth table.
- Simplify the o/p using K-map. Simplification is done for o/p only.
- Draw the logic diagram.

- ✓ Half adder is a combinational logic circuit with two inputs and two outputs.
- ✓ It is a basic building block for addition of two single bit numbers.

Truth Table for Half Adder

Input		Output		
Α	В	Sum (S)	Carry (C)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

K-map for Sum Output:

$$S = \overline{A}B + A\overline{B}$$

$$S = A \oplus B$$

K-map for Carry Output:

$$C = AB$$

Logic Diagram:

Logic Diagram using Basic Gates:

✓ Full adder is a combinational logic circuit with three inputs and two outputs.

Truth Table

	Inputs		0	utputs
Α	В	Cin	Sum (S)	Carry (C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-map for Sum Output:

$$S = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC}$$

$$S = \overline{ABC} + ABC + \overline{ABC} + A\overline{BC}$$

$$S = C(\overline{AB} + AB) + \overline{C}(\overline{AB} + A\overline{B})$$

$$Let \quad \overline{AB} + A\overline{B} = X$$

$$\therefore S = C(\overline{X}) + \overline{C}(X)$$

$$S = C \oplus X$$

$$Let \quad X = A \oplus B$$

$$\therefore S = C \oplus A \oplus B$$

K-map for Carry Output:

$$C = AB + BC + AC$$

Logic Diagram:

Full Adder using Half Adders

Draw the full adder circuit using two half adders.

Logic diagram of a full-adder using two half-adders.

The block diagram of a full-adder using two half-adders is:

Block diagram of a full-adder using two half-adders.

- ✓ Half subtractor is a combinational logic circuit with two inputs and two outputs.
- ✓ It is a basic building block for subtraction of two single bit numbers.

Truth Table

Input		Output		
Α	В	Difference (D)	Borrow (B)	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

K-map for Difference Output:

$$D = \overline{A}B + A\overline{B}$$

$$D = A \oplus B$$

K-map for Borrow Output:

$$B = \overline{A}B$$

Logic Diagram:

Logic Diagram using Basic Gates:

✓ Full subtractor is a combinational logic circuit with three inputs and two outputs.

Truth Table

	Inputs		C	Outputs
Α	В	Bin (C)	Difference (D)	Borrow (B0)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-map for Difference Output:

$$D = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC}$$

$$D = \overline{ABC} + ABC + \overline{ABC} + A\overline{BC}$$

$$D = C(\overline{AB} + AB) + \overline{C}(\overline{AB} + A\overline{B})$$

$$Let \quad \overline{AB} + A\overline{B} = X$$

$$\therefore D = C(\overline{X}) + \overline{C}(X)$$

$$D = C \oplus X$$

$$Let \quad X = A \oplus B$$

 $\cdot \cdot \cdot D = C \oplus A \oplus B$

K-map for Borrow Output:

$$B_0 = \overline{A}B + BC + \overline{A}C$$

Logic Diagram:

Full Subtractor using Half Subtractor

Draw a full subtractor circuit using two half subtractors.

The circuit diagram is as:

Logic diagram of a full-subtractor.

Block Diagram:

Truth Table:

Gray Inputs				Binary Outputs		
G ₁	G ₀	B ₃	B ₂	B ₁	B ₀	
0	0	0	0	0	0	
0	1	0	0	0	1	
1	0	0	0	1	1	
1	1	0	0	1	0	
0	0	0	1	1	0	
0	1	0	1	1	1	
1	0	0	1	0	1	
1	1	0	1	0	O Prakash k	
	G ₁ 0 0 1 0 0 1	G ₁ G ₀ 0 0 1 1 1 0 0 0 1 1 1 0	G ₁ G ₀ B ₃ 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	Gray I	nputs		Bi	nary C	Outputs	5
G ₃	G ₂	G_1	G_0	B ₃	B ₂	B ₁	B ₀
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1 anal,NCIT	1	1	1	1	0	0 29	0
	1 1 1 1 1	G ₃ G ₂ 1 0 1 0 1 0 1 1 1 1 1 1	1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

K-map for B₀:

$$B_{0} = \overline{G_{3}}\overline{G_{2}}\overline{G_{1}}G_{0} + \overline{G_{3}}\overline{G_{2}}G_{1}\overline{G_{0}} + \overline{G_{3}}G_{2}\overline{G_{1}}\overline{G_{0}} + \overline{G_{3}}G_{2}G_{1}G_{0}$$

$$+ G_{3}\overline{G_{2}}\overline{G_{1}}G_{0} + G_{3}\overline{G_{2}}G_{1}G_{0} + G_{3}G_{2}\overline{G_{1}}G_{0} + G_{3}G_{2}G_{1}\overline{G_{0}}$$

$$B_0 = G_3 \oplus G_2 \oplus G_1 \oplus G_0$$

K-map for B₁:

$$B_1 = \overline{G_3}\overline{G_2}G_1 + \overline{G_3}G_2\overline{G_1} + G_3G_2G_1 + G_3\overline{G_2}\overline{G_1}$$

$$B_1 = G_3 \oplus G_2 \oplus G_1$$

K-map for B₂:

$$B_2 = \overline{G_3}G_2 + G_3\overline{G_2}$$

$$B_1 = G_3 \oplus G_2$$

K-map for B₃:

$$B_3 = G_3$$

33

Logic Diagram:

Design of Binary to Gray Code Converter

Block Diagram:

Design of Binary to Gray Code Converter

Truth Table:

Binary Inputs				Gray Outputs				В	
B ₃	B ₂	B ₁	B ₀	G ₃	G ₂	G ₁	G ₀		B ₃
0	0	0	0	0	0	0	0		1
0	0	0	1	0	0	0	1	_	1
0	0	1	0	0	0	1	1	-	1
0	0	1	1	0	0	1	0	-	1
0	1	0	0	0	1	1	0		1
0	1	0	1	0	1	1	1		1
0	1	1	0	0	1	0	1		1
0 1	1/12 / 202	0 1	1	0	1	0	0 Prakash k	hæ	ın <mark>a</mark> l,NCIT

Binary Inputs						
B ₃	B ₂	B ₁	B ₀			
1	0	0	0			

1	B ₀	
)	0	

 G_3

Gray Outputs

 $\mathsf{G_1}$

 G_0

 G_2

K-map for G_0 :

$$G_0 = \overline{B_1}B_0 + B_1\overline{B_0}$$

$$\therefore G_0 = B_0 \oplus B_1$$

K-map for G_1 :

$$G_1 = \overline{B_2}B_1 + B_2\overline{B_1}$$

38

$$\therefore G_1 = B_2 \oplus B_1$$

K-map for G₂:

$$G_2 = \overline{B_3}B_2 + B_3\overline{B_2}$$

39

$$\therefore G_2 = B_3 \oplus B_2$$

K-map for G_3 :

$$G_3 = B_3$$

Logic Diagram:

Design of a 4-bit BCD to XS-3 code converter:

4-bit BCD-to-XS-3 code converter.

42

The o/p functions and logic diagram is as:

The minimal expressions are

$$X_4 = B_4 + B_3B_2 + B_3B_1$$

$$X_3 = B_3\overline{B}_2\overline{B}_1 + \overline{B}_3B_1 + \overline{B}_3B_2$$

$$X_2 = \overline{B}_2\overline{B}_1 + B_2B_1$$

$$X_1 = \overline{B}_1$$

Draw the logic diagram yourself.

Design of a BCD to gray code converter:

	BCD code					Gray	code	
B ₃	B ₂	B ₁	B ₀		G ₃	G ₂	G,	G ₀
0	0	0	0		0	0	0	0
0	0	0	1		0	0	0	1
0	0	1	0		0	0	1	1
0	0	1	1		0	0	1	0
0	1	0	0		0	1	1	0
0	1	0	1		0	1	1	1
0	1	1	0		0	1	0	1
0	1	1	1		0	1	0	0
1	0	0	0		1	1	0	0
1	0	0	1		1	1	0	1

(a) BCD-to-Gray code conversion table

(b) Logic diagram

BCD-to-Gray code converter.

Using K-map,

 $G_0 = \overline{B}_1B_0 + B_1 \cdot \overline{B}_0 = B_1 \oplus B_0$

Design of a Combinational circuit to produce the 2's complement of a 4-bit binary number:

Input				Output			
Α	В	C	D	E	F	G	H
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1 -	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

(a) Conversion table

Conversion table and K-maps for the circuit

 Simplify the o/p and draw the logic diagram yourself.

Parity method for error detection and correction:

- Parity bit is an extra bit included with a binary message to make the number of 1's either odd or even.
- The message including the parity bit, is transmitted and checked at the receiving end for errors.
- An error is detected if the checked parity does not correspond to the one transmitted.
- The circuit that generates the parity bit in the transmitter is called a parity generator, the circuit that checks the parity in the receiver is called a parity checker.

Design a circuit for parity generator for 3 bit message with even and odd parity:

X	у	z	Odd Parity bit generated(p)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Simplify the parity using k map and design the circuit.

Design a circuit for odd parity check:

	Four-bits	Parity-error check		
x	y	z	P	C
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Simplify the k map for output and draw the logic daigram.

	Four-bits	Parity-error check		
			P	C C
x	У	Z		
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1