Initiation au logiciel QGIS 3 Partie 5

Cyril Bernard (cyril.bernard@cefe.cnrs.fr)

CEFE - CNRS (UMR 5175)

Montpellier 2020

Sommaire de la 3^{ème} partie

- 1. Généralités sur les formats raster
- 2. Traitements sur les fichiers raster avec QGIS

Formation QGIS

GÉNÉRALITÉS SUR LES FORMATS RASTER

Rappel: les formats de fichier raster

- Les formats de raster gérés dans QGIS sont les formats gérés par GDAL : https://gdal.org/drivers/raster/index.html
 - GDAL version 3 dans QGIS 3.10
- Le format GeoTIFF (short name: GTiff, extension .tif) est le plus universel. C'est un conteneur dans lequel les données peuvent être organisées de manière très diverses
 - Sans compression, ou avec compression (différents algorithmes : LZW, Packbits, Deflate, JPEG)
 - En savoir plus: https://kokoalberti.com/articles/geotiff-compression-optimization-guide/
- Le format Arc/Info **ASCII Grid** (short name: AAIGrid, extension .asc) peut être ouvert dans un éditeur de texte. C'est un format d'échange compatible avec de nombreux logiciels.
- Le format ERDAS JPEG2000 (short name: JP2ECW, extension .jp2)
 est très utilisé pour les orthophotos et les images satellites
 - Exemples: IGN BD ORTHO, IGN SCAN25, dalles Sentinel-2 Copernicus

Les formats **GeoTIFF** et **JPEG2000** peuvent contenir plusieurs bandes (par exemple 4 canaux R, G, B, NIR dans une image satellite). Alors que le format **ASCII Grid** ne contient qu'1 seule bande.

Rappel : le géoréférencement des données raster

- L'entête du fichier contient des infos de géoréférencement
 - Coordonnée du coin en bas à gauche (lower left corner)
 - Taille du pixel en unités terrain
- Exemple du format ESRI ASCII grid

Rappel: types numériques

- Les rasters sont des grilles de valeurs numériques
- Chaque pixel est codé sur 1 octet, ou 2, ou 4, ou 8
 - Pour les nombres **entiers** : *Byte, Int16, UInt16, Int32, UInt32*
 - Pour les nombres **décimaux** : généralement *Float32*, ou *Float64* si besoin
 - Pour les **booléens**, FALSE / TRUE sont codés comme des entiers 0 / 1 (*Byte*)

GDAL Type	C++ type name	Bytes	Range of Values
Byte	char	1	0 to 255
Int16	short	2	-32,768 to 32,767
UInt16	unsigned short	2	0 to 65,535
Int32	int	4	-2,147,483,648 to 2,147,483,647
UInt32	unsigned int	4	0 to 4,294,967,295
Float32	float	4	3.4E +/- 38 (7 digits)
Float64	double	8	1.7E +/- 308 (15 digits)

Rappel: informations complémentaires

- Dans un raster, une valeur numérique est choisie pour représenter « l'absence de données » :
 c'est la NoData value qui est généralement affichée en transparent
 - Exemple : dans la BD ALTI IGN, -9999 = absence de données
- Certains formats de fichier peuvent contenir des statistiques pré-calculées
 - Exemple: valeur min, max, moyenne pour chaque bande
 - Les stats sont généralement calculées sur initiative du créateur/utilisateur
- Certains formats permettent l'enregistrement de pyramides raster (images pré-calculées à différentes échelles pour accélérer l'affichage)
 - Les pyramides sont généralement calculées sur initiative de l'utilisateur

Copyright ESRI

Formation QGIS

TRAITEMENTS RASTER

Le menu Raster Les utilitaires GDAL

- Tous les outils (ou presque) du menu
 Raster font appel aux utilitaires GDAL
 - Voir https://gdal.org/programs/index.html pour connaître toutes les options disponibles
- Ces outils se trouvent également dans la boîte à outil de traitement : GDAL

Les utilitaires GDAL peuvent être lancés depuis l'invite de commandes **OSGEO4W Shell**, ou le terminal sous Linux.

Pour l'utilisation en ligne de commande, voir l'aide en ligne :

https://gdal.org/programs/index.html

```
---

○ OSGeo4W

F:\DATA_SIG>cd OcSOL
F:\DATA_SIG\OcsOL>gdalinfo ..\IGN\BDALTI25\DEPT34.asc
Driver: AAIGrid/Arc/Info ASCII Grid
Files: ...\IGN\BDALTI25\DEPT34.asc
Size is 5401, 3481
Coordinate System is
Origin = (661987.500000000000000,6321012.500000000000000)
Pixel Size = (25.00000000000000.-25.0000000000000000
Corner Coordinates:
loper Left
               661987.500, 6321012.500>
               661987.500, 6233987.500>
ower Left
               797012.500, 6321012.500>
Upper Right
               797012.500, 6233987.500>
Lower Right
               729500.000, 6277500.000>
Band 1 Block=5401x1 Type=İnt32, ColorInterp=Undefined
L_34_POLY_2006\V1_1_0C$OL_34_POLY_2006.shp V1_1_0C$OL_34_2006.tif
0...10...20...30...40...50...60...70...80...90...100 - done.
F:\DATA_SIG\OcSOL>
```

Outils GDAL les plus utilisés : commandes, et équivalent dans QGIS

- gdalinfo = Information raster
 - Tout savoir sur un raster (résolution, étendue, SRS)
- gdal_translate = Convertir
 - Convertir un raster d'un format à un autre (exemple : .asc en .tif)
 - Extraire une partie du raster
- gdalwarp = Projection (warp)
 - Convertir dans un autre système de coordonnées
 - Géoréférencer à partir d'une liste de GCPs
- gdal_rasterize = Rastérisation
 - Rastériser un shapefile

Analyses en mode raster

- La calculatrice Raster : outil puissant, mais exigeant pour la préparation des données !
- La calculatrice permet de combiner différents rasters, ou les bandes d'1 même raster
- Opérateurs booléens (0/1), ou opérateurs arithmétiques

		_	•	·c
M	IN		T	ΙŤ

1	
1	
2	
3	
4	
6	

OCSOL.tif

MNT.tif > 85 ET OCSOL.tif=311

F	F	F	F	F	F
v	F	F	F	F	F
v	v	F	F	F	F
v	v	F	F	F	F
v	v	F	F	F	F
V	v	F	F	F	F

Analyses en mode raster

- Les rasters en entrée doivent avoir la même résolution (horizontale et verticale)
- Les rasters en entrée doivent être alignés (étendue du raster : xmin, ymin, xmax, ymax)

Remarque : dans le logiciel Grass 7, on définit 1 fois une région (étendue + résolution) qui est ensuite appliqué à tous les outils. Dans QGIS, il faut redéfinir la région à chaque fois.

MNT.tif **OCSOL.tif** MNT.tif > 85 ET OCSOL.tif=311 ymax F F F F F F xmax xmin F F F F F F ymin

La calculatrice Raster

- Menu Raster / Calculatrice raster
- Désignation des couches : "couche@nbande" (numéro de bande, 1 par défaut)
- Opérateurs arithmétiques, logiques, comparaison, fonctions trigo...
- Résultat du calcul dans un nouveau fichier
 - Format par défaut GeoTIFF, type Float32

Exemples d'expressions dans la calculatrice raster

* Calculer valeur NDVI pour IMG, une image Landsat avec Bande4=Rouge et Bande5=ProchelR

$$(IMG@5 - IMG@4) / (IMG@5 + IMG@4)$$

> Les pixels dans le raster en sortie auront une valeur comprise entre -1 et 1

* Rechercher les pixels orientés entre 135° (SE) et 225° (SW) dans **Expo**, un raster avec l'orientation du terrain

> Les pixels dans le raster en sortie auront une valeur de 0 (faux) ou 1 (vrai)

Aligner des rasters

- Permet d'obtenir des rasters homogènes
 - Même SCR, même résolution, même alignement des pixels et même étendue
- Indiquer la liste des couches à aligner (y compris la couche de référence)
- Pour chaque raster à transformer, préciser
 la méthode de reéchantillonnage
- Indiquer la couche de référence

Aligner des rasters avec gdalwarp

- Les paramètres de la commande sont les suivants :
 - -of GTiff = format sortie
 - -ot Float32 = type numérique flottant en sortie (vs ot Int16 pour entier)
 - -s srs EPSG:xxxx = SCR en entrée
 - -t_srs EPSG:xxxx = SCR en sortie
 - -te xmin ymin xmax ymax = étendue en sortie (bords du raster)
 - -tr xres yres = résolution sortie
 - -r bilinear = réechantillonage bilinéaire
 - fichier entrée
 - puis fichier sortie

Exemple: re-échantillonner un fichier SRTM WGS84 (1 arc-seconde) en Lambert 93 (25 m)

```
C:\rep > gdalwarp -of GTiff -ot Float32 -
s_srs EPSG:4326 -t_srs EPSG:2154 -te 661987.5
6233987.5 797012.5 6321012.5 -tr 25 25 -r
bilinear "D:\GIS_DATA\SRTM\N43E003.hgt"
"D:\GIS_DATA\SRTM\N43E003 L93.tif"
```


Rastérisation

- Entrée : un shapefile (point, polyligne, polygone) avec un champ numérique
- Sortie : un nouveau raster ou un raster existant dans lequel sera « gravé » les entités du shapefile
 - Les valeurs du champ d'attribut seront gravées dans le raster

Exemple d'utilisation de gdal_rasterize

D:\DATA_SIG > gdal_rasterize -a NIV3_06 -a_nodata -9999 -init -9999 -a_srs EPSG:2154 -te 661987.5 6233987.5 797012.5 6321012.5 -tr 25 25 -ot Int16 D:\DATA_SIG\OCSOL_34.shp OcSOL_34.tif

```
F:\DATA_SIG>cd OcSOL
F:\DATA_SIG\OcSOL>gdalinfo ..\IGN\BDALTI25\DEPT34.asc
Driver: AAIGrid/Arc/Info ASCII Grid
Files: ..\IGN\BDALTI25\DEPT34.asc
Size is 5401, 3481
Goordinate System is ''
Origin = (661987.50000000000000,6321012.500000000000000)
Pixel Size = <25.000000000000000.-25.0000000000000000
Corner Coordinates:
Upper Left
                661987.500, 6321012.500>
Lower Left
                661987.500, 6233987.500>
Upper Right (
Lower Right (
                797012.500, 6321012.500>
                797012.500. 6233987.500>
                729500.000, 6277500.000)
Band 1 Block=5401×1 Type=Int32, ColorInterp=Undefined
  NoData Value = -9999
F:\DATA_SIG\OcSOL}gdal_rasterize -a NIV3_06 -a_nodata -9999 -init -9999 -a_srs E
PSG:2154 -te 661987.5 6233987.5 797012.5 6321012.5 -tr 25 25 -ot Int16 V1_1_0CSO
L_34_POLY_2006\V1_1_OC$OL_34_POLY_2006.shp V1_1_OC$OL_34_2006.tif
0...10...20...30...40...50...60...70...80...90...100 - done.
F:\DATA_SIG\OcSOL>
```


Outils MNT: pente, orientation, ombrage

- Calcul de pente, orientation, création d'un raster d'ombrage
- Menu Raster / Analyse / Pente... =
 gdaldem slope
 - Exposition... = gdaldem aspect
 - Ombrage... = gdaldem hillshade

Créer des isolignes à partir d'un raster

Menu Raster / Extraction / Contour... = gdal_contour

- Entrée :
 - Fichier raster avec altitudes, ou autre variable
 - Paramètre Intervalle entre les courbes= équidistance

- Sortie :
 - Fichier vecteur, avec l'altitude dans un champ ELEV

Créer des isolignes à partir d'un raster

- Menu Raster / Extraction / Contour... = gdal_contour
- Entrée :
 - Fichier raster avec altitudes, ou autre variable
 - Intervalle entre les courbes = équidistance
 - Fichier vecteur en sortie et nom du champ qui

Raster de distance

- Exemple : un raster où chaque pixel porterait la distance du cours d'eau le plus proche ?
- Menu Raster / Analyse / Proximité = gdal_proximity

Croiser les données vecteur et raster ?

- Extension PointSamplingTool : extraire la valeur d'un raster à un point donné
 - voir http://plugins.qgis.org/plugins/pointsamplingtool/
- Outil **Analyse raster / Statistiques de zone** : permet de calculer la somme, la moyenne des pixels pour chaque polygone d'une couche vectorielle.

Autres « fournisseurs de traitement »

 La boîte à outils de traitement donne accès à la très large palette d'outils des logiciels GRASS GIS 7, et de SAGA GIS

https://grass.osgeo.org/

Nombreuses fonctionnalités orientées « analyse » et « métier » (équivalent de Spatial Analyst dans ArcGIS). Exemples : interpolation par krigeage, calculer densité de points simple, ou par kernel density, délimitation bassin versant, calculer le chemin de moindre coût.

http://www.saga-gis.org/en/index.html

Il arrive que les mêmes fonctionnalités se retrouvent 2 ou 3 fois : dans GDAL, dans GRASS et dans SAGA. Exemples : analyse MNT (pente, exposition, ombrage)

Utilisation des outils Grass dans la boîte à outils QGIS

- Vérifier et le cas échéant configurer le chemin d'accès dans *Traitements / Options* puis « Fournisseur de traitements » et « Commandes GRASS GIS 7 »
- Ces outils importent la donnée dans une BD Grass temporaire, exécutent une commande Grass puis exportent le résultat en GeoTiff
- Remarque : il existe aussi la barre d'outils Grass7 pour les BD Grass permanentes

Exemple d'outil raster Grass 7 : r.neighbors

- Principe de la fenêtre mobile : pour chaque pixel, calcule une valeur en fonction des pixels voisins
- Définir un voisinage forme: carré ou circulaire + taille: toujours impaire, ou bien possibilité d'utiliser une matrice de poids
- Définir une fonction
 (sum, average, mode, diversity, min, max ...)

https://grass.osgeo.org/grass78/manuals/r.neighbors.html

