# Unscented Kalman Filter Project



### **Rubric:**

https://review.udacity.com/#!/rubrics/783/view

## **CTRV Model:**

**Helpful Equations** 

$$x = egin{bmatrix} p_x \ p_y \ v \ \dot{\psi} \end{bmatrix}$$

11/23/2017

If  $\dot{\psi}_k$  is not zero

$$\mathsf{State} = x_{k+1} = x_k + \begin{bmatrix} \frac{v_k}{\dot{\psi}_k} (sin(\psi_k + \dot{\psi}_k \Delta t) - sin(\psi_k)) \\ \frac{v_k}{\dot{\psi}_k} (-cos(\psi_k + \dot{\psi}_k \Delta t) + cos(\psi_k)) \\ 0 \\ \dot{\psi}_k \Delta t \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} (\Delta t)^2 cos(\psi_k) \nu_a, k \\ \frac{1}{2} (\Delta t)^2 sin(\psi_k) \nu_a, k \\ \Delta t \nu_a, k \\ \frac{1}{2} (\Delta t)^2 \nu \ddot{\psi}, k \\ \Delta t \nu \ddot{\psi}, k \end{bmatrix}$$

If  $\dot{\psi}_k$  is zero

$$\mathsf{State} = x_{k+1} = x_k + \begin{bmatrix} v_k cos(\psi_k) \Delta t \\ v_k sin(\psi_k) \Delta t \\ 0 \\ \dot{\psi}_k \Delta t \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} (\Delta t)^2 cos(\psi_k) \nu_a, k \\ \frac{1}{2} (\Delta t)^2 sin(\psi_k) \nu_a, k \\ \Delta t \nu_a, k \\ \frac{1}{2} (\Delta t)^2 \nu \ddot{\psi}, k \\ \Delta t \nu \ddot{\psi}, k \end{bmatrix}$$

# **Generating Sigma Points:**

### **Helpful Equations**

$$Xk|k = [Xk|k \qquad X_{k|k} + \sqrt{(\lambda + nx)Pk|k} \qquad X_{k|k} - \sqrt{(\lambda + nx)Pk|k}]$$

remember that  $X_{k|k}$  is the first column of the Sigma matrix.

$$X_{k|k} + \sqrt{(\lambda + nx)Pk|k}$$
 is the second through  $n_k + 1$  column.

$$X_{k|k} - \sqrt{(\lambda + nx)Pk|k}$$
 is the  $n_k + 2$  column through  $2n_k + 1$  column.

# **UKF Augmentation:**

Augmented Covariance Matrix = 
$$Pa, k|k = egin{bmatrix} Pk|k0 & 0 \ 0 & Q \end{bmatrix}$$

### **Predict Mean and Covariance:**

### Weights

$$w_i = rac{\lambda}{\lambda + n_a}, i = 1$$

$$w_i=rac{1}{2(\lambda+n_a)}, i=2...n_\sigma$$

### **Predicted Mean**

$$x_{k+1|k} = \sum_{i=1}^{n_{\sigma}} w_{i} X_{k+1|k,i}$$

### **Predicted Covariance**

$$P_{k+1|k} = \sum_{i=1}^{n_{\sigma}} wi(Xk+1|k,i-x_{k+1|k})(Xk+1|k,i-xk+1|k)^T$$

### **Predict Radar Measurements:**

#### **State Vector**

$$x_{k+1|k} = egin{bmatrix} p_x \ p_y \ v \ \psi \ \dot{\psi} \end{bmatrix}$$

#### Measurement Vector

$$z_{k+1|k} = egin{bmatrix} 
ho \ arphi \ \dot{
ho} \end{bmatrix}$$

#### Measurement Model

$$z_{k+1|k} = h(xk+1) + wk + 1$$

$$ho = \sqrt{p_x^2 + p_y^2}$$

$$arphi = arctan(rac{p_y}{p_x})$$

$$\dot{
ho} = rac{p_x cos(\psi)v + p_y sin(\psi)v}{\sqrt{p_x^2 + p_y^2}}$$

#### **Predicted Measurement Mean**

$$z_{k+1|k} = \sum_{i=1}^{n_{\sigma}} w_i Z_{k+1|k,i}$$

#### **Predicted Covariance**

$$S_{k+1|k} = \sum_{i=1}^{n_{\sigma}} wi(Zk+1|k,i-z_{k+1|k})(Zk+1|k,i-zk+1|k)^T + R$$

$$R = E(w_k \cdot wk^T) = egin{bmatrix} \sigma
ho^2 & 0 & 0 \ 0 & \sigmaarphi^2 & 0 \ 0 & 0 & \sigma\dot
ho^2 \end{bmatrix}$$

# **UKF Update:**

11/23/2017 Dropbox Paper

### **Cross-correlation Matrix**

$$T_{k+1|k} = \sum_{i=1}^{n_{\sigma}} w_i (X_{k+1|k,i} - x_{k+1|k}) \ (Z_{k+1|k,i} - z_{k+1|k})^T$$

# Kalman gain K

$$K_{k+1|k} = T_{k+1|k} S_{k+1|k}^{-1}$$

# **Update State**

$$x_{k+1|k+1} = x_{k+1|k} + K_{k+1|k}(z_{k+1} - z_{k+1|k})$$

# **Covariance Matrix Update**

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1|k} S_{k+1|k} K_{k+1|k}^T$$

# **Parameter Consistency:**

Process model Process noise Process noise covariance  $x_{k+1} = f(x_k, \nu_k) \qquad \nu_k = \begin{bmatrix} \nu_{a,k} \\ \nu_{\ddot{\psi},k} \end{bmatrix} \qquad Q = \begin{bmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_{\ddot{\psi}}^2 \end{bmatrix}$  Measurement Measurement model Radar measurement noise noise covariance  $z_{k+1} = h(x_{k+1}) + \omega_{k+1} \quad \omega_k = \begin{bmatrix} \omega_{\rho,k} \\ \omega_{\varphi,k} \\ \omega_{\dot{\varphi},k} \end{bmatrix} \qquad R = \begin{bmatrix} \sigma_\rho^2 & 0 & 0 \\ 0 & \sigma_\varphi^2 & 0 \\ 0 & 0 & \sigma_{\dot{\varphi}}^2 \end{bmatrix}$ 

# Normalized Innovation Squared (NIS)

$$\varepsilon = (z_{k+1} - z_{k+1|k})^T \cdot S_{k+1|k}^{-1} \cdot (z_{k+1} - z_{k+1|k})$$

| $\varepsilon \sim \chi^2$ |                    |                    |                    |                    |
|---------------------------|--------------------|--------------------|--------------------|--------------------|
| df                        | X <sup>2</sup> 950 | X <sup>2</sup> 900 | X <sup>2</sup> 100 | X <sup>2</sup> 050 |
| 1                         | 0.004              | 0.016              | 2.706              | 3.841              |
| 2                         | 0.103              | 0.211              | 4.605              | 5.991              |
| 3                         | 0.352              | 0.584              | 6.251              | 7.815              |
| 4                         | 0.711              | 1.064              | 7.779              | 9.488              |
| 5                         | 1.145              | 1.610              | 9.236              | 11.070             |