Skript Mathe 2

18. April 2018

0.1 Satz

Jede konvergente Folge ist beschränkt.

Beweis: Sei (a_n) eine konvergente Folge mit Limes $a \in \mathbb{R}$.

Zu zeigen: $|a_n| \leq K \ \forall a \in \mathbb{N}$, für ein $K \geq 0$.

Sei $\epsilon = 1$, (a_n) konvergent.

$$\Rightarrow |a_n| = |a_n - a + a| \le \underbrace{|a_n - a| + |a|}_{\text{Dreiecksungleichung}} < 1 + |a| \ \forall n \ge N$$

Setze
$$K = max\{1 + |a|, |a_1|, |a_2|, ..., |a_{N-1}|\}$$

$$\Rightarrow |a_n| \leq K \ \forall n \in \mathbb{N} \quad \square$$

0.2 Bemerkung

Wegen 1.8: (a_n) unbeschränkt $\Rightarrow (a_n)$ divergent.

Unbeschränkte Folgen sind also immer divergent.

0.3 Beispiel: Geometrische Folge

Für
$$q \in \mathbb{R} : \lim_{n \to \infty} q^n = \begin{cases} 0, \text{falls } |q| < 1 \\ 1, \text{falls } q = 1 \end{cases}$$

Für |q| > 1 oder q = -1 ist (q^n) divergent.

Beweis:

1.) |q| < 1. Sei $\epsilon > 0$ beliebig. Dann ist

$$(q^{n} - 0) = |q|^{n} < \epsilon \Leftrightarrow n \cdot \ln |q| < \ln(e) \quad |: \ln(q) < 0$$

$$\Leftrightarrow n > \frac{\ln(\epsilon)}{\ln |q|}$$

Für
$$N > \frac{\ln(\epsilon)}{\ln |q|} : |q|^n < \epsilon \quad \forall n \ge N$$

- $2.) \ q=1. \ q^n=1 \quad \forall n \in \mathbb{N} \Rightarrow q^n \to 1$
- 3.) $|q|>1 \Rightarrow (q^n)$ unbeschränkt $\underset{1.9}{\Rightarrow} (q^n)$ divergent
- 4.) $q=-1 \Rightarrow q^n=(-1)^n$. Beweis der Divergenz später (Cauchyfolgen)

0.4Beispiel

Wegen 1.10 sind $(\frac{1}{2^n})_{n\in\mathbb{N}}$ und $((\frac{-7}{8})^n)_{n\in\mathbb{N}}$ Nullfolgen.

0.5Bemerkung: Dreiecksungleichung

Um Rechenregeln für Folgen in 1.13 beweisen zu können, braucht man folgende Version der Δ -Ungleichung:

 $||a| - |b|| \le |a - b| \quad \forall a, b \in \mathbb{R}, da:$

- $\bullet |a b + b| \le |a b| + |b|$
- $\Leftrightarrow |a| |b| \le |a b|$
- $\bullet |b a + a| \le |b a| + |a|$

$$\Leftrightarrow |b| - |a| \le |b - a|$$
$$\Rightarrow ||a| - |b|| \le |a - b|$$

Rechenregeln für Folgen

Seien $(a_n), (b_n)$ konvergente Folgen mit $\lim_{n \to \infty} (a_n) = a$ und $\lim_{n \to \infty} (b_n) = b$.

Dann gilt:

- 1.) $\lim_{n \to \infty} (a_n + b_n) = a + b$
- 2.) $\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot a \quad \forall \lambda \in \mathbb{R}$
- 3.) $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$

4.)
$$b \neq 0 \Rightarrow \bullet \exists k \in \mathbb{N} : b_n \neq 0 \ \forall n \geq k$$

$$\bullet \left(\frac{a_n}{b_n}\right)_{n \geq k} \text{ konvergiert gegen } \frac{a}{b}$$

5.)
$$\lim_{n \to \infty} |a_n| = |a|$$

Seien weiter $(d_n), (e_n)$ reelle Folgen, (d_n) ist Nullfolge

6.)
$$(e_n)$$
 beschränkt $\Rightarrow (d_n \cdot e_n)$ ist Nullfolge

7.)
$$|e_n| \le d_n \Rightarrow |e_n|$$
 ist Nullfolge

Beweis:

1.)

Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N}$$
:
$$\bullet |a_n - a| \leq \frac{\epsilon}{2} \quad \forall n \geq N_a$$

$$\bullet |b_n - b| \leq \frac{\epsilon}{2} \quad \forall n \geq N_b$$

$$\Rightarrow |a_n + b_n - (a + b)| \leq \underbrace{|a_n - a|}_{\leq \frac{\epsilon}{2}} + \underbrace{|b_n - b|}_{\leq \frac{\epsilon}{2}} < \epsilon$$

 $\forall n \ge \max\{N_a, N_b\}$

2.) • Für
$$\lambda = 0$$
 gilt auch $\lambda \cdot a_n \to 0 = \lambda \cdot a$

• Für
$$\lambda \neq 0$$
: Sei $\epsilon > 0$

$$\Rightarrow \exists N \in \mathbb{N} : |a_n - a| \le \frac{\epsilon}{|x|} \quad \forall n \ge N$$
$$\Rightarrow |\lambda a_n - \lambda a| = |\lambda| \cdot |a_n - a| < \epsilon \quad \forall n > N \checkmark$$

$$\Rightarrow |\lambda a_n - \lambda a| = |\lambda| \cdot |a_n - a| < \epsilon \quad \forall n > n$$

3.)

Satz 1.8
$$\Rightarrow$$
 (b_n) beschränkt.

$$\Rightarrow \exists k \ge 0 : |b_n| \le k \quad \forall n \in \mathbb{N}$$

$$\Rightarrow |a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)|$$

$$\le |a_n - a| \cdot k + |a| \cdot |b_n - b| \quad (*)$$

Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2k} \quad \forall n \ge N_a$$
$$|b_n - b| < \frac{\epsilon}{2|a|} \quad \forall n \ge N_b$$

$$\underset{(*)}{\Rightarrow} |a_n b_n - ab| < \frac{\epsilon}{2k} \cdot k + |a| \cdot \frac{\epsilon}{|a|} = \epsilon$$

 $\forall n \ge \max\{N_a, N_b\}$

4.) • Z.z:
$$\exists k \in \mathbb{N} : b_n \neq 0 \quad \forall n \geq k$$

Es ist $b \neq 0$ und $|b| > 0$.

$$\Rightarrow \exists l \in \mathbb{N} : \underbrace{|b_n - b|}_{\stackrel{\geq}{\underset{1.12}{\geq}} |b| - |b_n|} < \frac{|b|}{2} \quad \forall n \geq b$$

$$\Rightarrow \exists |b| - |b_n| < \frac{|b|}{2} \quad \forall n \geq k$$

$$\Rightarrow \frac{|b|}{2} < |b_n| > 0 \quad \forall n \geq k \text{ (***)}$$

$$\Rightarrow b_n \neq 0 \quad \forall n \geq k$$

• Z.z: $\left(\frac{a_n}{b_n}\right)_{n \ge k}$ hat $\frac{a}{b}$ als Limes.

Da $\frac{a_n}{b_n}=a_n\cdot\frac{1}{b_n}$, genügt es wegen 3.) zu zeigen, dass $\frac{1}{b_n}\to\frac{1}{b}$.

Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : \underline{|b_n - b| < \frac{\epsilon}{2} \cdot |b|^2}$$

$$\Rightarrow \left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b \cdot b_n} \right| \underset{(**)}{<} \frac{2}{|b|^2} \cdot |b - b_n| < \epsilon \quad \forall n \ge N$$

- 5.) mit 1.12
- 6,7.) Übung

0.7 Beispiele: Rechenregeln

a)
$$\frac{(-1)^n + 5}{n} = ((-1)^n + 5) \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} 0 \text{ wegen } 1.13/6$$

$$\bullet \frac{1}{n} \to 0$$

$$\bullet |(-1)^n + 5| \le |(-1)|^n + 5 = 6$$

$$\Rightarrow (-1)^n + 5 \text{ beschränkt}$$

b)
$$\frac{3n^2 + 1}{-n^2 + n} \to -3, \text{ denn } \lim_{n \to \infty} \frac{3n^2 + 1}{-n^2 + n} = \lim_{n \to \infty} \frac{\cancel{\mathscr{A}}(3 + \frac{1}{n^2})}{\cancel{\mathscr{A}}(-1 + \frac{1}{n})}$$

$$= \lim_{1.13/4} \frac{\lim_{n \to \infty} 3 + \frac{1}{n^2}}{\lim_{n \to \infty} 1 + \frac{1}{n}} = \frac{3}{-1} = -3$$

c) Sei $x \in \mathbb{R}$ mit |x| > 1 und $k \in \mathbb{N}_0$.