Lecture 5

Reference Populations

Identify **origins** of individuals each with a **single** ancestry

Approaches: Based on Hardy-Weinberg genotype proportions

Reference Populations (known or unknown)

Identify **ancestry proportions** for individuals with **admixed** ancestry

Approaches: Structure (MCMC, Bayesian)
Or ADMIXTURE (quadratic programming)

Genetic Structure of Human Populations

Noah A. Rosenberg, 1* Jonathan K. Pritchard, 2 James L. Weber, 3
Howard M. Cann, 4 Kenneth K. Kidd, 5 Lev A. Zhivotovsky, 6
Marcus W. Feldman 7

Fig. 1. Estimated population structure. Each individual is represented by a thin vertical line, which is partitioned into K colored segments that represent the individual's estimated membership fractions in K clusters. Black lines separate individuals of different populations. Populations are labeled below the figure, with their regional affiliations above it. Ten *structure* runs at each

K produced nearly identical individual membership coefficients, having pairwise similarity coefficients above 0.97, with the exceptions of comparisons involving four runs at K=3 that separated East Asia instead of Eurasia, and one run at K=6 that separated Karitiana instead of Kalash. The figure shown for a given K is based on the highest probability run at that K.

Reference Populations

Identify origins of **chromosomal segments** in individuals of **admixed** ancestry

Approaches: Based on Hidden Markov Models

Local ancestry

Principal components analysis

Example

Section 2.3.4 of notes

(Simulated data, N=50 individuals, L=1000 SNPs)

Relatedness matrix R

 i^{th} and j^{th} entry =average over loci (I) of $(X_{li}-\overline{X_l})(X_{lj}-\overline{X_l})$ Where X_l is mean freq. of the l^{th} locus.

Modified from slide by Gavin Band

Principal components analysis Example

(Simulated data, 50 individuals, 1000 SNPs)
Principal components

Principal components analysis Example

(Simulated data, 50 individuals, 1000 SNPs)

Principal Component Analysis of Europeans

