Distributing the Heat Equation

Tom Cornebize

Yassine Hamoudi

Sunday, December 7th 2014

1 Cellular automata

Question 1

Lemma 1. N^2 applications of function δ are necessary to compute X^t from X^{t-1} .

Proof. Each cell $X_{i,j}^t$ needs one application of δ to be computed from $X_{i,j}^{t-1}$. There are N^2 cells, so N^2 applications of δ are needed.

Property 2. tN^2 applications of function δ are necessary to compute X^t on $[0, N-1]^2$.

Proof. X^t is obtained after t applications of δ^{\dagger} on X^0 . Each application needs N^2 calls to δ according to lemma 1. The whole computation needs tN^2 applications of δ .

Question 2

Let p^2 be the number of processors.

For the sake of simplicity, we will suppose that p divides N. Take $n = \frac{N}{p}$.

We divide the grid into square zones of size n. Each of this zones is given to one processor, which stores the data in its own memory and performs the computation of δ for all its cells. See figure 1 for an example.

At each step of computation, each processor updates its sub-matrix cells using a temporary sub-matrix that replaces the old one once the computation step is finished. Indeed, if we update the cells "in place", we overwrite values that are still necessary to compute other cells.

The computation of δ for the cells at the edges of the zones requires communication to retrieve the current states of their neighbours in other zones.

Question 3

We assume that X^t is given as an array PREV of size $(n+2) \times (n+2)$, where $X^t_{i,j}$ is written in PREV[i][j] and where PREV[i][j] are dummy values for $i \in \{0, n+1\}$ or $j \in \{0, n+1\}$.

We also assume that the order of messages is preserved.

Let

$$\delta(PREV,i,j) = \delta \begin{pmatrix} \boxed{PREV[i-1,j-1] & PREV[i-1,j] & PREV[i-1,j+1] \\ PREV[i,j-1] & PREV[i,j] & PREV[i+1,j+1] \\ PREV[i+1,j-1] & PREV[i+1,j] & PREV[i+1,j+1] \end{pmatrix}$$

We consider functions Send_X (resp. Receive_X) for X = Up, Down, Left, Right which sends (resp. receives) to (resp. from) the corresponding processor. We suppose that this function has a time cost of 1 and a communication cost of L+b where L is the latency and b the bandwidth.

We also consider functions to send an entire row (resp. column) as one single message, to decrease the overall latency. For instance, Send_Down_Row(n,PREV) will send to the down processor the n^{th} row, whereas Send_Up_Row(0,PREV) will receive from the up processor a row, which will be stored as the 0^{th} row. We suppose that this function has a time cost of n and a communication cost of L + nb where L is

the latency, b the bandwidth, and n the size of the row/column.

Algorithm 1: Stencil algorithm on a toric 2D grid

```
Input: PREV: array[0..n+1,0..n+1] of real
Output: NEXT: array[0..n+1,0..n+1] of real
                                                                                                */
/* Columns and row
Send_Left_Column(1,PREV)
Send_Right_Column(n,PREV)
Send_Up_Row(1,PREV)
Send_Down_Row(n,PREV)
Receive_Left_Column(0,PREV)
Receive_Right_Column(n+1,PREV)
Receive_Up_Row(0,PREV)
Receive_Down_Row(n+1,PREV)
/* Corners
                                                                                                */
Send_{Up}(PREV[1][0])
Send_{Up}(PREV[1][n+1])
Send_Down(PREV[n][0])
Send_Down(PREV[n][n+1])
Receive_Up(PREV[0][0])
{\tt Receive\_Up}\left(PREV[0][n{+}1]\right)
Receive_Down (PREV[n+1][0])
Receive_Down(PREV[n+1][n+1])
/* Computation of \delta
                                                                                               */
for i=1 to n do
   for j=1 to n do
      NEXT[i][j] = \delta(PREV, i, j)
```

$$\text{Time complexity: } 8(n+1) + n^2 \mathrm{cost}(\delta) = 8(\tfrac{N}{p}+1) + \left(\tfrac{N}{p}\right)^2 \mathrm{cost}(\delta) = \mathcal{O}\left(\left(\tfrac{N}{p}\right)^2\right) \mathrm{if } \mathrm{cost}(\delta) = \mathcal{O}\left(1\right).$$

Communication complexity (one processor): $8(L + nb + L + 1) = 8(2L + \frac{N}{p}b + 1)$.

Communication complexity (all processors): $8p^2(2L + \frac{N}{p}b + 1) = 8(2p^2L + Npb + p^2)$.

Non-toric grid? Ring topology? Don't know a nice way to do this...

2 Average automata

Question 4

See the implementation in file average.c.

Question 5

Property 3. *In the case of a p-average automaton,* δ^{\dagger} *is linear.*

Proof. Let δ^{\dagger} be the global transition function of a *p-average automaton*. To prove that δ^{\dagger} is linear, it suffices to prove that the local transition function δ is linear:

$$\delta \begin{pmatrix} \boxed{a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}} = (1-p) \cdot e + p \cdot \frac{b+d+f+h}{4}$$

Let consider a real $k \in \mathbb{R}$ and two local configurations $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ and

	-	h		1	a ^l	h/	<i>a</i> !]
	и	U	ľ		l u	U	ľ	
s	d	e	f	and	d'	e'	f'	. We have
	g	h	i		g'	h'	i'	

$$\begin{split} \delta\left(k\cdot \boxed{ \begin{array}{c|c} a&b&c\\ \hline d&e&f\\ \hline g&h&i \end{array}} + \boxed{ \begin{array}{c|c} a'&b'&c'\\ \hline d'&e'&f'\\ \hline g'&h'&i' \end{array}} \right) = (1-p)\cdot (k\cdot e+e') + p\cdot \frac{(k\cdot b+b')+(k\cdot d+d')+(k\cdot f+f')+(k\cdot h+h')}{4} \\ \\ &= k\cdot \left((1-p)\cdot e+p\cdot \frac{b+d+f+h}{4}\right) + (1-p)\cdot e'+p\cdot \frac{b'+d'+f'+h'}{4} \\ \\ &= k\cdot \delta\left(\boxed{ \begin{array}{c|c} a&b&c\\ \hline d&e&f\\ \hline g&h&i \end{array}} \right) + \delta\left(\boxed{ \begin{array}{c|c} a'&b'&c'\\ \hline d'&e'&f'\\ \hline g'&h'&i' \end{array}} \right) \end{split}$$

Thus δ is linear, and δ^{\dagger} too.

Let's consider a configuration X. For $0 \le i, j \le N-1$ we define the matrix $E^{i,j}$ such that $E^{i,j}_{i,j} = 1$ and $E^{i,j}_{k,l} = 0$ otherwise. We obtain : $X = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} X_{i,j} \cdot E^{i,j}$

Since δ^{\dagger} is linear, for all t:

$$\delta^{\dagger^{t}}(X) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} X_{i,j} \cdot \delta^{\dagger^{t}}(E^{i,j})$$

Moreover:

$$\delta^{\dagger^{2t}}(X) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} X_{i,j} \cdot \delta^{\dagger^{2t}}(E^{i,j})$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} X_{i,j} \cdot \delta^{\dagger^{t}}(\delta^{\dagger^{t}}(E^{i,j}))$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} X_{i,j} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \delta^{\dagger^{t}}(E^{i,j})_{k,l} \cdot \delta^{\dagger^{t}}(E^{i,j})$$
(1)

Property 4. Equation 1 enables us to compute $\delta^{\dagger^t}(X)$ in time $O(\log(t))$ for a fixed N.

Proof. First of all, if $\delta^{\dagger^t}(E^{0,0})$ is already computed, we directly obtained by translation $\delta^{\dagger^t}(E^{i,j})$, for all i,j.

Thus, for computing $\delta^{+2t}(X)$ we only need $\delta^{+2t}(E^{0,0})$ (time taken by the other operations does not depend on t). The algorithm is:

Algorithm 2: Fast iteration on average automaton

Input: t, X

Output: $\delta^{\dagger^t}(X)$

 $R \leftarrow E^{0,0}$;

for i=1 **to** $\log(t) - 1$ **do**

Compute $R \leftarrow \delta^{\dagger^{2^i}}(E^{0,0})$ using $\delta^{\dagger^{2^{i-1}}}(E^{0,0})$ (previous value of R) and equation 1

Compute and return $\delta^{t^t}(X)$ using $E = \delta^{t^{t/2}}(E^{0,0})$ and equation 1

Let T(t) be the time needed to compute $\delta^{\dagger^t}(X)$. According to equation 1 and previous remarks, we have:

$$T(2t) = T(t) + O(1)$$
$$= O(\log(t))$$

Thus, applying the operations described in equation 1, we can compute $\delta^{\dagger^t}(X)$ in time $O(\log(t))$.

Property 5. The time complexity $T_r(t, N)$ in terms of both t and N is $T_r(t, N) = O(\log(t) \cdot N^4)$.

Proof. Recall that it takes constant time to obtain $\delta^{\dagger^t}(E^{i,j})_{k,l}$ knowing $\delta^{\dagger^t}(E^{0,0})$.

According to equation 1 and the previous algorithm, we need to compute $\delta^{t^{t/2}}(E^{0,0})$ (it takes time $T_r(t/2, N)$) and then perform the four sums described in equation 1 (it takes time $O(N^4)$). Finally, we have:

$$T_r(t,N) = O(N^4) + T_r(t/2,N)$$

Thus: $T_r(t, N) = O(\log(t) \cdot N^4)$.

Property 6. The space complexity $T_s(t, N)$ in terms of both t and N is $T_s(t, N) = O(N^2)$.

Proof. We need N^2 space to store the initial matrix.

When we compute $\delta^{\dagger^{2^i}}(E^{0,0})$ using $\delta^{\dagger^{2^{i-1}}}(E^{0,0})$, we need to use N^2 to store $\delta^{\dagger^{2^i}}$. However, the space used by $\delta^{\dagger^{2^{i-1}}}$ can be re-use to compute $\delta^{\dagger^{2^{i+1}}}$. Thus, all the computation can be done using $O(N^2)$ space. \square

Comparer au cas général

Question 6

Question 7

Question 8

See the implementation in file sparse.c.

Question 9

3 Thermal reservoirs

Question 10

Example. The following configuration X^0 is a fixed point with only one constant (in blue):

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Definition 1. We denote X^{∞} the limit of (X^t) if it exists (i.e. (X^t) converges).

Lemma 7. For each sequence (X^t) , if X^{∞} exists then it is a fixpoint.

Proof. By definition, for all position $X_{i,j}$ that is not a constant:

$$\begin{split} & \lim_{t \to \infty} \delta^{\dagger^{t}}(X)_{i,j} = X_{i,j}^{\infty} \\ &= \lim_{t \to \infty} \left((1-p) \cdot \delta^{\dagger^{t-1}}(X)_{i,j} + p \cdot \frac{\delta^{\dagger^{t-1}}(X)_{i,j+1} + \delta^{\dagger^{t-1}}(X)_{i+1,j} + \delta^{\dagger^{t-1}}(X)_{i-1,j} + \delta^{\dagger^{t-1}}(X)_{i,j-1}}{4} \right) \\ &= (1-p) \cdot \left(\lim_{t \to \infty} \delta^{\dagger^{t-1}}(X)_{i,j} \right) + p \cdot \frac{\left(\lim_{t \to \infty} \delta^{\dagger^{t-1}}(X)_{i,j+1} \right) + \left(\lim_{t \to \infty} \delta^{\dagger^{t-1}}(X)_{i+1,j} \right)}{4} \\ &+ p \cdot \frac{\left(\lim_{t \to \infty} \delta^{\dagger^{t-1}}(X)_{i-1,j} \right) + \left(\lim_{t \to \infty} \delta^{\dagger^{t-1}}(X)_{i,j-1} \right)}{4} \\ &= (1-p) \cdot X_{i,j}^{\infty} + p \cdot \frac{X_{i+1,j}^{\infty} + X_{i,j+1}^{\infty} + X_{i-1,j}^{\infty} + X_{i,j-1}^{\infty}}{4} \end{split}$$

Since $X_{i,j}^{\infty}=(1-p)\cdot X_{i,j}^{\infty}+p\cdot rac{X_{i+1,j}^{\infty}+X_{i,j+1}^{\infty}+X_{i-1,j}^{\infty}+X_{i,j-1}^{\infty}}{4}$, X^{∞} is a fixed point.

Lemma 8. If X is a fixed point then for each position $X_{i,j}$ that is not a constant we have :

$$X_{i,j} = \frac{X_{i,j+1} + X_{i+1,j} + X_{i-1,j} + X_{i,j-1}}{4}$$

Proof. If X is a fixed point then for each position $X_{i,j}$ that is not a constant:

$$X_{i,j} = (1-p) \cdot X_{i,j} + p \cdot \frac{X_{i,j+1} + X_{i+1,j} + X_{i-1,j} + X_{i,j-1}}{4}$$

If we remove $X_{i,j}$ from both side of this equality and then we simplify it by p ($p \neq 0$), we obtain the lemma.

Lemma 9. If X is configuration without any constant then for all t the sum of all values in $\delta^{t^{t+1}}$ is equal to the sum of all values in δ^{t^t} .

Proof. We directly obtain that:

$$\sum_{i,j} \delta^{t^{t+1}}(X)_{i,j} = \sum_{i,j} (1-p) \cdot \delta^{t^{t}}(X)_{i,j} + p \cdot \frac{\delta^{t^{t}}(X)_{i+1,j} + \delta^{t^{t}}(X)_{i,j+1} + \delta^{t^{t}}(X)_{i-1,j} + \delta^{t^{t}}(X)_{i,j-1}}{4}$$

$$= \sum_{i,j} \delta^{t^{t}}(X)_{i,j}$$

Property 10. Let X^0 be a configuration without any constant. If it exists, the limit of (X^t) is $\overline{X^0}$ (the average value of all cells of X^0).

Proof. Let $x^{\infty} = \lim_{t \to \infty} \delta^{t^t}(X)_{i,j}$. The fixed point X^{∞} (limit of (X^t) verifies the following equations: ... These equations are the same than in property 11. Thus, for all $i, j, X_{i,j}^{\infty} = x^{\infty}$.

However, according to lemma 9 the sum of all values do not change at any step of computation. Thus, x^{∞} must be equal to the average value of all the initial cells in X^0 .

Property 11. Let X^0 be a configuration with only one constant c. If it exists, the limit of (X^t) is c.

 \square

6

Question 11

Property 12. For a p-average automaton with constants, δ^{\dagger} can be non-linear.

Proof. Let's consider the following local configuration:

0	0	0
0	1	0
0	0	0

We assume that 1 is a constant, but 0 not. We take p = 0.5.

We have:

$$\delta \begin{pmatrix} \boxed{0} & \boxed{0} & \boxed{0} \\ \boxed{0} & \boxed{1} & \boxed{0} \\ \boxed{0} & \boxed{0} & \boxed{0} \end{pmatrix} + \begin{bmatrix} \boxed{0} & \boxed{0} & \boxed{0} \\ \boxed{0} & \boxed{1} & \boxed{0} \\ \boxed{0} & \boxed{0} & \boxed{0} \end{bmatrix} = \delta \begin{pmatrix} \boxed{0} & \boxed{0} & \boxed{0} \\ \boxed{0} & \boxed{2} & \boxed{0} \\ \boxed{0} & \boxed{0} & \boxed{0} \end{bmatrix}$$
$$= 0.5 \cdot 2 = 1$$

However:

$$\delta \begin{pmatrix} \boxed{0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}} + \delta \begin{pmatrix} \boxed{0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}} = 1 + 1 = 2$$

 δ is not linear, and so δ^{\dagger} too. This result proves that δ^{\dagger} can be non-linear for a *p-average automaton* with constants.

Question 12

Question 13

See the implementation in file constants.c.