Сегментация изображений

Костенко Дмитрий

Москва, 2013

Определение

Сегментация — это процесс разделения цифрового изображения на несколько сегментов (множеств пикселей).

Проще говоря

Это процесс, в результате которого мы определим какие пиксели из данного множества относятся к красной машине, а какие к синей.

Трудности

Сложный фон

Трудности

Перекрытие объектов

Типы сегментаций

Бинаризация

Бинаризация с нижним (или верхним) порогом является наиболее простой операцией, в которой используется только одно значение порога:

$$f'(m,n) = \left\{ egin{array}{ll} 0 & & ext{если } f(m,n) > ext{t} \ 1 & & ext{если } f(m,n) \leqslant ext{t} \end{array}
ight.$$

Бинаризация

- ▶ Бинаризации с нижним порогом
- ▶ Бинаризации с верхним порогом
- Бинаризация с двойным ограничением
- Неполная пороговая обработка
- Многоуровневое пороговое преобразование

Метод использует гистограмму распределения значений яркости пикселей растрового изображения. Строится гистограмма по значениям $p_i=n_i/N$ где

N – это общее кол-во пикселей на изображении,

 n_i – это кол-во пикселей с уровнем яркости і.

Диапазон яркостей делится на два класса с помощью порогового значения уровня яркости k.

k — целое значение от 0 до L.

Каждому классу соответствуют относительные частоты ω_1 ω_2 :

$$\omega_0(k) = \sum_{i=1}^k p_i$$
 $\sum_{i=k+1}^L p_i = 1 - \omega_0(k)$
 $\mu_0(k) = \sum_{i=1}^k \frac{ip_i}{\omega_0}$
 $\mu_1(k) = \sum_{i=1}^L \frac{ip_i}{\omega_1}$

Далее вычисляется максимальное значение оценки качества разделения изображения на две части:

$$\sigma_{\omega}^2(t) = \omega_1(t)\sigma_1^2 + \omega_2(t)\sigma_2^2$$

где ω_i — это вероятности двух классов, разделенных порогом t σ_2^i - дисперсия этих классов.

- Вычислить гистограмму и вероятность для каждого уровня интенсивности.
- ▶ Вычислить начальные значения для $\omega_i(0)$ и $\mu_i(0)$.
- Для каждого значения порога от t = 1 .. до максимальной интенсивности:
 - ▶ Обновляем ω_i и μ_i
 - ▶ Вычисляем $\sigma_b^2(t)$
 - **Е**Сли $\sigma_b(t)$ больше, чем имеющееся, то запоминаем σ_b и значение порога t.
- lacktriangle Искомый порог соответствует максимуму $\sigma_b^2(t)$

Пример использования

Локализация штрих-кода на изображении

Пример использования

Взять изображение как разницу горизонтальной и вертикальной производной. Далее применить усредняющий фильтр.

Пример использования

Результат метода Оцу

Достоинства

- Простота реализации.
- Метод хорошо адаптируется к различного рода изображения, выбирая наиболее оптимальный порог.
- ▶ Быстрое время выполнения. Требуется O(N) операций, где N — количество пикселей в изображении.
- Метод не имеет никаких параметров, просто берете и применяете его. В MatLab это функция graythresh() без аргументов.

Недостатки

 Сама по себе пороговая бинаризация чувствительна к неравномерной яркости изображения.

Решением такой проблемы может быть введение локальных порогов, вместо одного глобального.