Relative Frequency

- $f_k(n) = \frac{N_k(n)}{n} \leftarrow$ Relative Frequency
 k is the outcome

 - $-N_k(n)$ is the number of times outcome k
- $\lim_{n \to \infty} f_k(n) = p_k \leftarrow \textbf{Statistical Regularity}$
 - $-p_k$ is the probability of event k occurring

Properties of Relative Frequencies

- 1. $f_k(n) = \frac{N_k(n)}{n}$
- $2. \ 0 \le N_k(n) \le n$
- 3. $0 \le f_k(n) \le 1 = \frac{0}{n} \le \frac{N_k(n)}{n} \le \frac{n}{n}$ 4. $\sum_{k=1}^k f_k(n) = \sum_{k=1}^k \frac{N_k(n)}{n} = \frac{\sum_{k=1}^k N_k(n)}{n} = \frac{n}{n} = 1$ 5. $\sum_{k=1}^k f_k(n) = 1$
- 6. If events A and B are disjoint and event C is "A or B", then $F_C = F_A(n) + F_B(n)$

Set Theory $\mathbf{2}$

- A set is a collection of objects, denoted by capital letters
- Denote the universal set, U; consisting of all possible objects of interest in a given setting/application
- For any set A, we say that "x is an element of A", denoted $x \in A$ if object x of the universal set U is contained in A
- We say that "x is not an element of A", denoted $x \notin A$ if object x of the universal set U is not contained in A
- We say that "A is a subset of B", denoted $A \subset B$ if every element in A also belongs to $B, x \in A \to x \in B$
- The *empty set*, \emptyset is defined as the set with no elements
 - The empty set is a subset of every set
- Sets A and B are equal if they contain the same elements. To show this:
 - 1. Enumerate the elements of each set
 - 2. Thm: $A = B \iff A \subset B \text{ AND } B \subset A$
- The union of 2 sets A, B, denoted $A \cup B$ is defined as the set of outcomes that are either in A, or in B, or both
- The intersection fo 2 sets, A, B, denoted $A \cap B$ is defined as the set of outcomes in A and B
- The 2 sets A, B are said to be disjoint or mutually exclusive if $A \cap B = \emptyset$
- The complement of a set A, denoted A^C is defined as the set of elements of U not in A $-A^C = \{x \in U | x \notin A\}$
- Relative complement or difference, denoted A-B, is the set of elements in A that are not in B
 - $-A B = A \cap B^C$
 - $-\ A^C=U-A$

Properties of Set Operations 2.1

Set Operators are:

1. Commutative, Equation (1)

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$
(1)

2. Associative, Equation (2)

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$
(2)

3. Distributive, Equation (3)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
(3)

4. Set Operations obey De Morgan's Laws, Equation (4)

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$
(4)

Additionally,

Defn 1 (Union of n Sets). The union of n sets $\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$ is the set consisting of all elements such that $x \in A_k$ for some $1 \le k \le n$.

• All sets need to be empty to make $\bigcup_{k=1}^{n} A_k = \emptyset$

Defn 2 (Intersection of n Sets). The intersection of n sets $\bigcap_{k=1}^{n} A_k = A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n$ is the set consisting of all elements such that $x \in a_k$ for all $1 \le k \le n$

• Just one set needs to be empty to make $\bigcap_{k=1}^n A_k = \emptyset$

3 Probability Theory

There are 3 main components to Probability Theory.

- 1. Set Theory
- 2. Axioms of Probability
- 3. Conditional Probability and Independence

3.1 Random Experiments

Defn 3 (Random Experiment). A random experiment is an experiment whose outcome varies in an unpredictable fashion when performed under the same conditions.

Defn 4 (Sample Space). A sample space, S of a random experiment is the set of all possible experiments.

Defn 5 (Outcome/Sample Point). An *outcome*, or *sample point* of a random experiment is a result that cannot be decomposed into other results.

Defn 6 (Event). An *event* corresponds to a subset of the sample space. We say an event occurs if and only if (iff) the outcome of the experiment is in the subset representing the event.

Defn 7 (Event Classes). An *event class* \mathcal{F} is the collection of the all the events' sets. \mathcal{F} should be closed under unions, intersections, and complements.

- For S finite, or countably infinite, then we can let \mathcal{F} be all subsets of S.
- For S uncountably infinite, instead we can let \mathcal{F} consist of the subsets that can be obtained as countable unions and intersections of some sets of \mathcal{F} .

Defn 8 (Probability Law). A probability law for a random experiment E, with sample space S, and an event class \mathcal{F} is a rule that assigns to each event $A \in \mathcal{F}$ a number P[A], called the probability of A that satisfies the axioms:

Axiom I: $0 \le P[A]$ Axiom II: P[S] = 1

Axiom III: If $A \cap B = \emptyset$, then $P[A \cup B] = P[A] + P[B]$

Axiom III': If A_1, A_2, \ldots is a sequence of events such that $A_i \cap A_j = \emptyset$ for all $i \neq j$, then $P\left[\bigcup_{k=1}^{\infty} A_k\right] = \sum_{k=1}^{\infty} P\left[A_k\right]$

3.2 Probability Law Corollaries

Axiom I: $0 \le P[A]$ Axiom II: P[S] = 1

Axiom III: If $A \cap B = \emptyset$, then $P[A \cup B] = P[A] + P[B]$

Axiom III': If A_1, A_2, \ldots is a sequence of events such that $A_i \cap A_j = \emptyset$ for all $i \neq j$, then $P[\bigcup_{k=1}^{\infty} A_k] = \sum_{k=1}^{\infty} P[A_k]$

Corollary 3.1. $P[A^C] = 1 - P[A]$

Corollary 3.2. $P[A] \le 1$

Corollary 3.3. $P[\emptyset] = 0$

Corollary 3.4. If $A_1, A_2, ..., A_n$ are pairwise mutually exclusive $(A_1 \cap A_2 \cap ... \cap A_n = \emptyset)$, then $P[\bigcup_{k=1}^n] = \sum_{k=1}^n P[A_k]$ for $n \ge 2$

Corollary 3.5. $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

Corollary 3.6. $P[A \cup B] = \sum_{j=1}^{n} P[A_j] - \sum_{j < k} P[A_j \cap A_k] + \ldots + (-1)^{n+1} P[A_1 \cap \ldots \cap A_n]$

Corollary 3.7. If $A \subset B$, then $P[A] \leq P[B]$

3.3 Conditional Probability

Defn 9 (Conditional Probability). The *conditional probability* of event A **GIVEN THAT** event B occurred is denoted P[A|B] and is defined as

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \tag{5}$$

Theorem 1 (Theorem of Total Probability). Let $B_1, B_2, ..., B_n$ be mutually exclusive events whose union equals the sample space S, i.e. $B_1, B_2, ..., B_n$ is a partition of S.

Defn 10 (Baye's Rule). Let $B_1, B_2, ..., B_n$ be a partition of sample space S.

$$P[B_j|A] = \frac{P[A \cap B_j]}{P[A]} = \frac{P[A|B_j] * P[B_j]}{\sum_{k=1}^n P[A|B_k] * P[B_k]}$$
(6)

3.4 Event Independence

Defn 11 (Independent). Two events A and B are independent if

$$P[A \cap B] = P[A] * P[B], P[A] \neq 0, P[B] \neq 0$$
(7)

- If $A \cap B = \emptyset$, the A and B are **dependent**.
- If checking for independence between more than 2 events, you must check each pair, each triple, etc. until you check the independence of each event against each other. For 3 events, A, B, C:
 - Check $P[A \cap B \cap C] = P[A] * P[B] * P[C]$
 - Also need to check:
 - 1. $P[A \cap B] = P[A] * P[B]$
 - 2. $P[B \cap C] = P[B] * P[C]$
 - 3. $P[A \cap C] = P[A] * P[C]$

4 Counting

4.1 Ordered Sampling with Replacement

Defn 12 (Permutations). The number of distinct outcomes of an experiment, where the elements being samples are replaced between each sampling.

$$\frac{n}{First} * \frac{n-1}{Second} * \frac{n-2}{Third} * \dots * \frac{n-k-1}{kth \text{ Item}} = n!$$
(8)

4.2 Ordered Sampling without Replacement

Defn 13. Choose k elements in succession without replacement from a population of n distinct objects, where $k \leq n$

$$\frac{n}{First} * \frac{n-1}{Second} * \frac{n-2}{Third} * \dots * \frac{n-k-1}{kth \text{ Item}}$$
(9)

4.3 Unordered Sampling with Replacement

4.4 Unordered Sampling without Replacement

Defn 14. The number of ways to choose k items out of n items. Said n choose k:

$$\binom{n}{k} = \frac{n * (n-1) * (n-2) * \dots * (n-k+1)}{k!} = \frac{n!}{k! (n-k)!}$$
(10)

$$\binom{n}{k} = \binom{n}{n-k} \tag{11}$$

5 Single Discrete Random Variables

Defn 15 (Random Variable). A random variable X is a function that assigns a real number $X(\zeta)$ to each outcome ζ in the sample space of the random experiment.

6 Single Continuous Random Variables

7 Multiple Random Variables

7.1 Joint Probability Mass Function

Defn 16 (Joint Probability Mass Function). The *joint probability mass function (joint PMF)* of 2 discrete random variables X, Y is defined as:

$$p_{X,Y} = P[\{X = x\} \cap \{Y = y\}] \text{ for all } x, y \in S_{X,Y}$$
 (12)

• This satisfies ALL propoerties of single random variable PMFs

7.1.1 Marginal Probability Mass Function

Defn 17 (Marginal Probability Mass Function). Given a joint PMF of discrete random variables X, Y, the Marginal Probability Mass Function (Marginal PMF) of X is defined as:

$$p_X(x_i) = P[X = x_i] \text{ for } x_i \in S_X$$
 (13)

and is calculated as:

$$p(x_i) = \sum_{y \in S_Y} p_{X,Y}(x_i, y)$$
(14)

7.2 Joint Cumulative Distribution Function

Defn 18 (Joint Cumulative Distribution Function). The *Joint Cumulative Distribution Function (Joint CDF)* of X and Y is defined as the probability of the event $\{X \le x\} \cap \{Y \le y\}$

$$F_{X,Y}(x,y) = P[\{X \le x\} \cap \{Y \le y\}] \text{ for all } (x,y) \in \mathbb{R}^2$$

= $P[\{X \le x\}, \{Y \le y\}]$ (15)

(i) $F_{X,Y}(x,y)$ is non decreasing.

$$F_{X,Y}(x_1, y_1) \le F_{X,Y}(x_2, y_2) \text{ if } x_1 \le x_2 \text{ and } y_1 \le y_2$$
 (16)

(ii)

$$\lim_{y \to -\infty} F_{X,Y}(x,y) = 0$$

$$\lim_{x \to -\infty} F_{X,Y}(x,y) = 0$$

$$\lim_{(x,y) \to (\infty,\infty)} F_{X,Y}(x,y) = 1$$
(17)

(iii) The Marginal CDFs can be obtained from the Joint CDF by removing restrictions for all but one variable.

$$F_{X}(x) = P\left[\left\{X \leq x\right\}, \left\{Y \text{ is anything}\right\}\right]$$

$$= P\left[\left\{X \leq x\right\}, \left\{-\infty \leq y \leq \infty\right\}\right]$$

$$= \lim_{y \to \infty} F_{X,Y}(x, y)$$

$$F_{Y}(y) = \lim_{x \to \infty} F_{X,Y}(x, y)$$
(18)

(iv) The Joint CDF is continuous from ∞ to $-\infty$.

$$\lim_{x \to a^{+}} F_{X,Y}(x,y) = F_{X,Y}(a,y)$$

$$\lim_{y \to b^{+}} F_{X,Y}(x,y) = F_{X,Y}(x,b)$$
(19)

(v) The probability of the "rectangle" $\{x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2\}$

$$P[\{x_1 \le X \le x_2, y_1 \le Y \le y_2\}] = P[\{X \le x_2, Y \le y_2\}] - P[\{X \le x_1, Y \le y_2\}] - P[\{X \le x_2, Y \le y_1\}] + P[\{X \le x_1, Y \le y_1\}]$$

$$= F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1) + F_{X,Y}(x_1, y_1)$$

$$(20)$$

7.2.1 Marginal Cumulative Distribution Function

Defn 19 (Marginal Cumulative Distribution Function). We obtain the Marginal Cumulative Distribution Functions (Marginal CDFs) by removing the constraint on one of the variables.

$$F_{X}(x) = P\left[\left\{X \leq x\right\}, \left\{Y \text{ is anything}\right\}\right]$$

$$= P\left[\left\{X \leq x\right\}, \left\{-\infty \leq y \leq \infty\right\}\right]$$

$$= \lim_{y \to \infty} F_{X,Y}(x, y)$$

$$F_{Y}(y) = \lim_{x \to \infty} F_{X,Y}(x, y)$$
(21)

7.3 Joint Probability Density Function