	Name: Nikita kumawi						
	Roll: 19	Oate :					
	Section: CST SPL-1.	(A) Page :					
		Tutorial-45					
	(01007)						
M I	N.C.e	BFS					
61.	DFS						
		-> Uses Queu data					
->	uses stack as a	excustere for fraing					
	data spenieture for	tere shortest bath.					
	finding a path.						
	· ·	-> stands for Breadth					
	stands for outth	first search					
	first seaven.						
	There is concept	> There is no concept					
7	of law toursking	of backtracking.					
	of back topacking	V					
	Regulses less memory.	-> Regulres more					
<u> </u>	pagages acres	memory.					
		n					
7	children are visited	> thre, 33 blings are					
	before the siblings.	visited before the					
	- 1	Uslaven.					
	Applications of BFS: In UPS navigation system to find the resignbowing places.						
\rightarrow	In UPS navigation	system to find the					
	neighbowing places.	<i>(</i>					
->	Search engines cre	when are used BFS					
	to build in out						
→	used to broadcast	some packets in netwos-					
	wing.						
\rightarrow	Wing. Used in Ford-Rulk find maximum, flow	win algorithm to					
	find maximum, flow	In a network,					

Applications of DFS.

Performing DFS on wnwighted graph,

it will create minimum spanning tree

for all pair shoutet path true. We can detect yells in a graph. Topological sort can be done using DFS. •> components of a graph. DFS was stack as a data structure <u>ba.</u> because to remember to get the next ventex to stant a search, when a dead and occurs in any iteration. BFS uses dume as a class strending because, BFS searches for nodes leveludse, 9.00, it seavelus the mades worst their distance from the most (or source). spaule of f, Sparse: - A graph is sold to be the number of edges is much less teran the Q3. possible number of edges. Dense: - A graph is said to be dense if, the number of edges is

Or If every pair of ventiles is lonneted by one edge.

For spanse graph, Adjacency Det is preferrable influentation of graph and it is also the most widely used.

The Adjacency Materix representation is used.

By following the kelow steeps, we can find a cycle in BFS: compate number of incoming edges for each vertex present in the graph and INHalize the count of visited modes as O.

- Pick all the vertices with in-degree as 0 and add them into a guero. Э.
- Peyform Dequeue, then :-- Inviement count of visited modes by 1.

 - Develose in degree by 1

 - If In-degree of a neighbruing modes is reduced to zero, enqueue.

3,

Repeat step 3 until the guene is empty.
If count of visited nodes is not equal to the number of nodes in the greek 5.

nas cycle, otherwise not.

Disgoint set: - pautitioning the Individuals into different sets according to the groups in which they foul. 950

Disgoint data spuneture maintains condition of disjoint sets and each set is superiented by its superiented by its superiented three which is one of its members.

Three operations: Final)

union ()

union by Rank.

vold Union (Int x; Int y) s

Int xset = find (x);

If (xset == yset)

Surveyor;

If (rank[xset] < rank (yset]) s

parent (xset] = yset;

else If (rank [xset]) rank (yset])

parent (yset] = xset; Example

parent [yset] = xset;

else &

parent (yset] = xset;

rank (xset] = rank (xset] +1;

P	Date	and the same of th
(A)	Page	
		The second second

	To bollow I and I amile I	Stack 3.	
-	1,2		
3.	Topological Sort [1) [True]	2	
•		<u> </u>	
3,	Tapological sort (2) [True]	0	
	Tapological sort (3) [True]		
		,	
	Topological sort (1), visited[] = False		
	= Falle		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Tapological sost (4) [True]		
4.			
	Topological sort (0), [falle]		
	topological sort (1), [False]		
5.	Topological Sort (5) [True]		
	Topological sort (2) [False]		
	Topological Sort (0) [false]		,
	(Jang, 2-1)		
	Hener, 5-4-2-3-1-0	Any,	
*	Applying DF3		

Max Heap. 9100 Min Heap -> In a max-tual, In a min-heap, the the maximum Key element minimum key element present at the scoot. present at the root. alrending proofly. It was the according \leftarrow priorty. The smallest element > In this, the largest has priority. element has prosity. > The largest element 1s the first to be papped from the heap. The smallest element -> 33 the first to be popped from the