Machine Learning

Lecture 2 - Linear Regression, Training & Loss

Dr SHI Lei

- Definition
- Lifecycle
- Types of ML Systems
- Key Terminologies

Definition

"A computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E."

- Tom Mitchell, 1997

It could be used as a design tool to help us think clearly about what data to collect (E), what decisions the software needs to make (T) and how we will evaluate its results (P).

7 steps in Machine Learning Lifecycle

Training / Learning

Using data to answer questions

Key Machine Learning Terminology

- Example: a particular instance of data, x
 - Label: the variable to predict (y)
 - Features: input variables describing data $(\{x_1, x_2, x_3, ..., x_n\})$ or vector X)
 - Labelled example has {features, label}: (x, y) to train the model
 - Unlabelled example has {feature, ?}: (x,?) to predict on new data
- Model maps examples to predict labels: \hat{y} defined by internal parameters, which are learned
 - Training creating or learning the model.
 - Inference applying the trained model to unlabelled examples.

Today

- Linear Regression
- Training & Loss

Linear Regression

Linear Regression

A method for finding the straight line or hyperplane that best fits a set of points.

$$y = b + w_1 x_1 \qquad \hat{y} = b + w_1 x_1$$

- \hat{y} the predicted label (a desired output).
- **b** the bias (the y-intercept), sometimes referred to as w_0 .
- \mathbf{w}_1 the weight of feature 1 (slope).
- x_1 a feature (a known input).

To infer (predict) the exam mark \hat{y} for a new coursework mark value x_1 , just substitute the x_1 value into this model.

$$\hat{y} = b + w_1 x_1$$

$$\hat{y} = b + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots$$

Is this a good line?

Loss

How do we define Loss?

Training & Loss

Training a model: learning (determining) good values for all weights and the bias from labelled examples.

Loss: the penalty for a bad prediction.

Empirical Risk Minimisation: the process of examining many examples and attempting to find a model that minimise loss.

Goal of training: to find a set of weights and biases that have <u>low loss</u>, on average, across all examples.

Squared loss (L₂ Loss)

= the square of the difference between the label and the prediction

= $(observation - prediction(x))^2$

$$= (y - \hat{y})^2$$

Mean square error (MSE)

$$MSE = \frac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^{2}$$

- (x, y) is an example where
 - x is the set of features used by the model to make predictions.
 - y is the example's label
- prediction(x) is a function of the weights & bias in combination with the set of features x.
- D is a dataset containing many labelled examples (x, y) pairs.
- N is the number of examples in D.

Reducing Loss

Reducing Loss

- Hyperparameters are the configuration settings used to tune how the model is trained.
- Derivative of $(y-\hat{y})^2$ with respect to the weights and biases tells us how loss changes for a given example
 - Simple to compute and convex
- So we repeatedly take small steps in the direction that minimises loss
 - We call these Gradient Steps (but they are really negative Gradient Steps)
 - This strategy is called Gradient Descent

Block Diagram of Gradient Descent: an iterative approach

Weight Initialisation

- For convex problem, weights can start anywhere (say, all Os)
 - Convex: think of a bowl shape
 - Just one minimum

- Non-convex: think of an egg crate
- More than one minimum
- Strong dependency on initial values

Efficiency of Reducing Loss

- Could compute gradient over entire dataset on each step, but this turns out to be unnecessary
- Computing gradient on small data examples works well
 - On every step, get a new random sample
- Stochastic Gradient Descent: one example at a time
- Mini-Batch Gradient Descent: batches of 10 1000
 - Loss & gradients are averaged over the batch

$$\hat{y} = b + w_1 x_1$$

What initial values should we set for b and w_1 ?

- Starting values aren't important.
- Could choose pick random values, but we'll just take the following trivial values instead:

$$b = 0$$
$$w_1 = 0$$

$$\hat{y} = b + w_1 x_1$$

$$b = 0$$
$$w_1 = 0$$

$$\hat{y} = 0 + 0 \times x_1$$

$$x_1 = 10$$

$$\hat{y} = 0 + 0 \times 10$$
$$= 0$$

Loss Function

- \hat{y} : the model's prediction for features x
- y: the correct label corresponding to features x.

- Examines the value of loss function
- Generates new values for b and w_1

$$\hat{y} = b + w_1 x_1$$

Regression problems yield convex loss vs weight plots

Compute parameter updates

Gradient Descent

too small

too large

Just about right (the **Goldilocks** learning rate)

value of weight w_i

Just about right (the **Goldilocks** learning rate)

 The ideal learning rate in onedimension is

$$\frac{1}{f(x)^n}$$

(the inverse of the 2^{nd} derivative of f(x) at x).

The ideal learning rate for 2 or more dimensions is the inverse of the **Hessian** (matrix of second partial derivatives).

Summary

Today

- Linear Regression
- Training & Loss
 - Training (an iterative approach)
 - Reducing Loss
 - Gradient Descent
 - Learning Rate

Homework

- Optimising learning rate (Goldilocks and Hessian)?
- Chapter 4 sections 1 & 2 reading & programming exercises

Next Lecture

Generalisation, Training & Test Set, Representation