MMAN2300

Engineering Mechanics 2

Part A: Week 7

Plane kinetics of rigid bodies: Equations of motion

(Chapter 6 Meriam & Kraige)

Kinetic analysis is the study of the forces and moments acting on a rigid body and the resulting motion produced.

Equations of motion for a rigid body

Consider a rigid body which is acted upon by a number of forces.

G =Centre of mass

In general, the resultant force on the body, ΣF , will not act through G.

If $\Sigma F \neq 0$, the result will be a linear acceleration a_G of the centre of mass and an angular acceleration α of the rigid body.

Planar equations of motion

 $\Sigma F = ma$, where a is the acceleration of the centre of mass

 $\Sigma M = I\alpha$, where α is the angular acceleration of the body

Example 1

A cord is wrapped around a homogeneous disk of radius r = 0.5 m and mass m = 15 kg. If the cord is pulled upward with a force T of magnitude 180 N, Determine:

- (a) the acceleration of the centre of the disk,
- (b) the angular acceleration of the disk,
- (c) the acceleration of the cord.

Example 2

The pulley has a moment of inertia of its centre of mass of 0.2144 kgm^2 , and a radius of 521 mm. If the cable does not slip on the pulley surface, and the pulley bearing is frictionless, find the angular acceleration α of the pulley.

Example 3

For the slider-crank mechanism below, calculate the forces on the slider pin C and the crank B.

 $\omega_{AB} = 2000 \text{ rpm CW}$ G is the centre of mass of link BCMass of slider = 5 kg Mass of link BC = 12 kg Radius of gyration (k) of BC = 160 mm ($I_G = mk^2$)