1 Основные понятия теории оптимизации

Определение 1 (Окрестность). Множество $U_{\epsilon}(X)$ называется окрестностью точки $X \in \mathbb{R}^N$, если существует $\epsilon > 0$ для любых $X' \in U_{\epsilon}(X)$ справедливо неравенство

$$0 \le ||X - X'|| = ||\delta X|| = \sqrt{\sum_{i=1}^{N} (x_i - x_i')^2}$$
 (1)

$$\delta X = (x_1 - x_1', \dots, x_n - x_n') \tag{2}$$

Определение 2 (Локалный эстремум). Точка $X^* \in D$ называется точкой локального экстремума (локального минимума или максимума), если существует $U_{\epsilon}(X^*)$ такая что в которой выполняется неравенство

$$f(X^*) \le f(X)$$
 или $f(X^*) \ge f(X)$ (3)

2 Постановка задачи оптимизации

Пусть даны:

- 1. функция f(X) с областью определения $D_f, X \in D_f \subseteq \mathbb{R}^N$
- 2. множество D

Требуется найти $X^* \in D$ в которой функция достигает экстремального значения.

$$X^*: f(X^*) = \operatorname{extr}_{(X \in D_f) \cap (X \in D)} f(X) \tag{4}$$

- 1. Если $D_f = D = \mathbb{R}^N$ такая задача называется задачей на безусловный экстремум.
- 2. Если $D_f\cap D\neq\emptyset$ и $D\subset\mathbb{R}^N$ или $D_f\subset\mathbb{R}^N$ то это задача на условный экстремум
- 3. Если $D_f \cap D = \emptyset$ экстремум не существует

Обычно задается не множесто D, а система ограничений, его задающая

$$\psi_j(X) \le =, \ge 0, j = 1 \dots M \tag{5}$$

$$D = \{ X \in \mathbb{R}^N \mid \psi_j(X) \le, =, \ge 0, j = 1 \dots M \}$$
 (6)

3 Условия существования безусловного экстремума

- 1. **Необходимые условия** условия, которые вытекают из того факта, что рассматри точка есть экстремум
- 2. **Достаточные условия** условия, из которых следует, что рассматриваемая точка экстремум

Теорема 1 (Ферма одномерный случай). Пусть функция f задана на \mathbb{R} , и в некоторой точке дифференцируема. Если эта точка имеет в точке x^* локальный экстремум, то $f'(x^*) = 0$

Proof. Раздлжим в ряд Тейлора в форме Пеано

$$f(x^* + \delta x) = f(x^*) + f'(x^*)\delta x + o(\delta x) \tag{7}$$

$$f(x^* - \delta x) = f(x^*) - f'(x^*)\delta x + o(\delta x)$$
(8)

$$\begin{cases} f'(x^*)\delta x = f(x^* + \delta x) - f(x^*) \\ -f'(x^*)\delta x = f(x^* - \delta x) - f(x^*) \end{cases}$$
(9)

Теорема 2 (Необходимое услове экстремума первого порядка). Пусть функция f(X) задана на \mathbb{R}^N , $X \in \mathbb{R}^N$, дифференцирума , $f(X^*) = \text{extr}_{X \in \mathbb{R}^N} f(X)$, то $\operatorname{grad} f = 0$

Proof. Допусти, что точка X^* точка локального минимума. Для произвольной переменной x_i^* рассмотрим f как $f(x_1^*, x_2^*, \dots, x_i, \dots, x_N^*)$ может рассматриваться как в окрестности $U_\epsilon(X^*)$ как функция одной переменной с минимумом в точке x_i^* , тогда $f'_{x_i}(x_i^*) = 0$ по теореме 1

Определение 3. X стационарная точка, если $\operatorname{grad} f(X) = 0$

Точки локального экстремума нужно искать среди стационарных точек

Пример 1. Найти стационарные точки функции

$$f(X) = \sum_{i=1}^{N} a_i x_i^2 \tag{10}$$

$$f'_{x_i} = 2a_i x_i = 0 (11)$$

Такая система уравнений, имеет одно решение $X^* = (0, 0, \dots, 0)$

- $1. \ \forall a_i \geq 0 \ X^*$ точка минимума
- 2. $\forall a_i \leq 0 \; X^*$ точка максимума

Пример 2.

$$f(X) = 5x_1^2 - 6x_2^2 (12)$$

$$\begin{cases} f'_{x_1} = 10x_1 = 0\\ f'_{x_2} = -12x_2 = 0 \end{cases}$$
 (13)

Стационарная точка (0,0)

$$f(x_1, 0) = 5x^2 (14)$$

Возрастает

$$f(0, x_2) = -6x^2 (15)$$

Убывает.

 X^* – седловая точка

Теорема 3 (Необходимое условие экстремума второго порядка). *Пусть функция f* задана на \mathbb{R} , дважды непрерывно дифференцируема, тогда

1.
$$f(x^*) = \min f(x) \implies f''(x^*) \ge 0$$

2.
$$f(x^*) = \min f(x) \implies f''(x^*) \le 0$$

Proof. Разложим функцию в ряд Тейлора с остаточным членом в форме Пеано

$$f(x^* + \delta x) = f(x^*) + f'(x^*)\delta x + \frac{1}{2}f''(x^*)(\delta x)^2 + o((\delta x)^2)$$
 (16)

Так как x^* точка локального минимума (максимума)

$$f(x^* + \delta x) = f(x^*) + \frac{1}{2}f''(x^*)(\delta x)^2$$
(17)

$$\frac{1}{2}f''(x^*)(\delta x)^2 = f(x^* + \delta x) - f(x^*)$$
(18)

1.
$$f(x^*) \min \implies f(x^* + \delta x) - f(x^*) \ge 0$$

2.
$$f(x^*) \max \implies f(x^* + \delta x) - f(x^*) \le 0$$

Определение 4 (матрица Гессе).

$$H(X) = (f_{x_i x_i}'')_{ij} \tag{19}$$

Это квадратная симметричная матрица

Определение 5. Квадратная матрица называется

- 1. Положительно определенной если $Q(X) = XAX^T > 0$
- 2. Положительно полуопределенной если $Q(X) = XAX^T \geq 0$

Г

- 3. Отрицательно определенной если $Q(X) = XAX^T < 0$
- 4. Отрицательно полуопределенной если $Q(X) = XAX^T \le 0$ Для любого $X = (x_1, \dots, x_N)$

Определение 6 (Угловые (ведущие) миноры). $M_i(A)$ определители i порядка располож вдоль главной диагонали A в первых i строках и столбцах c одинаковыми ноерами

Определение 7 (Главные миноры). m_i матрицы A называют определители i порядка ,расположенные вдоль главной диагонали в i строках и столбцах, полученных при вычеркивании из A строк и столбцов c одними номерами

Определение 8 (Условия Сильвестра). 1. Матрица А положительно определенная когда все угловые миноры положительны

- 2. Матрица A является отрицательно определнной, когда $\mathrm{sgn}\,M_K(A)=(-1)^k$
- 3. Матрица A является положительно полуопределенной, когда она вырожденная u ее главные миноры ≥ 0
- 4. Матрица A является отрицательно полуопределенной, когда значение $m_k(A)$ либо равно 0 либо $\mathrm{sgn}(m_k)=(-1)^k$

Теорема 4 (Необходимое условие экстремума второго порядка). Пусть функция f задана на \mathbb{R}^N и дважды непрерывно дифференцируема в некой окрестности $U_{\epsilon}(X^*)$ если в точке X^* f имеет локальный минимум (максимум), то Вычисленная в этой точке матрица Гессе, неотрицательно (неположительно) определена

Proof. Разложим функцию в ряд тейлора в $U_{\epsilon}(X^*)$

$$f(X^* + \delta X) = f(X^*) + \operatorname{grad} f(X)\delta x + \frac{1}{2}\delta X H(X^*)\delta X^T + o(||\delta X||^2)$$
 (20)

Так как X^* точка локального экстремума

$$\frac{1}{2}\delta X H(X^*)\delta X^T = f(X^* + \delta X) - f(X^*)$$
 (21)

Теорема 5. Рассмотрим f(x) , x^* стационарная точка, в окрестности точки существует непрерывная вторая производная

Если f''(x) > (<)0 то x^* точка локального минимума (максимума)

Proof. Разложим f в $U_{\epsilon}(x^*)$ в ряд Тейлора

$$f(x^* + \delta x) = f(x^*) + f'(x^*)\delta x + \frac{1}{2}f''(x^*)(\delta x)^2 + o((\delta x)^2)$$
 (22)

Так как x^* стационарная точка

$$\frac{1}{2}f''(x^*)(\delta x)^2 = f(x^* + \delta x) - f(x^*)$$
(23)

Теорема 6 (Достаточное условие экстремума). f задана на \mathbb{R}^N и имеет стационарную точку, $\operatorname{grad} f(X^*) = 0$, в окрестности которой все вторые производные существуют и непрерывны. Если матрица Γ ессе $H(X^*)$ положительно (отрицательно) определена, то X^* локального минимума (максимума) функции f. Если $H(X^*)$ не является знако определенной, то экстремума в точке X^* нет

Proof.

$$f(X^* + \delta X) = f(X^*) + \operatorname{grad} f(X^*) * \delta X + \frac{1}{2} \delta X H(X^*) \delta X^T + o(||\delta X||^2) \tag{24}$$

$$\frac{1}{2}\delta X H(X^*)\delta X^T = f(X^* + \delta X) - f(X^*)$$
 (25)

Теорема 7 (Частный случай прошлой теоремы для N=2). $f(x_1,x_2)$ задана на \mathbb{R}^2 , $X^*=(x_1^*,x_2^*)$ стационарная точка, в которой вторые производные существуют и непрерывны

1. Если в точке X^*

$$f_{x_1}''f(X^*) * f_{x_2}''(X^*) - (f_{x_1x_2}''(X^*)) > 0$$
(26)

то при

- (a) $f_{x_1}''(X^*) > 0$, X^* точка локального минимума
- (b) $f_{x_2}''(X^*) < 0, X^*$ точка локального максиумам
- 2. Если это не выполняется то локлаьного экстремума в точке X^{*} нет

Определение 9. Для функции f определенной на \mathbb{R}^N вектор единичной длины задает направление убывания $w^{\downarrow} \in \mathbb{R}^N$ или возрастания $w^{\uparrow} \in \mathbb{R}^N$ в точке X' если при всех достаточно малых α выполяняется

$$f(X' + \alpha w^{\downarrow}) < f(X') \tag{27}$$

$$f(X' + \alpha w^{\uparrow}) > f(X') \tag{28}$$

Определение 10. Направления убывания (возрастания) функции f в точке X' образуют множество направлений убывания (возрастания)

$$W_{X'}^{\downarrow} \subseteq \mathbb{R}^N \tag{29}$$

$$W_{X'}^{\uparrow} \subseteq \mathbb{R}^N \tag{30}$$

Точка X^* является точко минимума функции f(X) если существует $U_\epsilon(X^*)$ целиком содержащаяся в $W_{X^*}^\uparrow$

Теорема 8. Пусть f(X) дифференцируема в точке $X' \in \mathbb{R}^N$

1. если вектор $\mathbf{w} \in \mathbb{R}^N$ удовлетворяет условию

$$\operatorname{grad} f(X')\mathbf{w} < (>)0 \tag{31}$$

 $mo \ \mathbf{w} \in W_{X'}^{\downarrow}(W_{X'}^{\uparrow})$

2. если $\mathbf{w}^{\uparrow(\downarrow)} \in W^{\downarrow(\uparrow)}$, то

$$\operatorname{grad} f(X')\mathbf{w}^{\downarrow(\uparrow)} \le (\ge)0 \tag{32}$$

Proof. 1.

$$f(X' + \alpha \mathbf{w}) = f(X') + \operatorname{grad} f(X')\alpha \mathbf{w} + o(\alpha)$$
(33)

$$\operatorname{grad} f X' \alpha \mathbf{w} = f(X' + \alpha \mathbf{w}) - f(X') \tag{34}$$

Эквивалентно $\mathbf{w}^{\downarrow(\uparrow)} \in W^{\downarrow(\uparrow)}$

2. Пусть $\mathbf{w}^{\downarrow(\uparrow)} \in W^{\downarrow(\uparrow)}$ то

$$f(X' + \alpha \mathbf{w}^{\downarrow(\uparrow)}) - f(X') = \operatorname{grad} f(X') \alpha \mathbf{w}^{\downarrow(\uparrow)}$$
(35)

4 Методы нелинейной оптимизации

4.1 Классическая задача условной оптимизации

Определение 11 (Формулировка задачи условной оптимизации общем виде).

$$X^*: f(X^*) = \operatorname{extr}_{X \in D} f(X) \tag{36}$$

$$D = \{ X \in \mathbb{R}^N \mid \psi_j \le (=, \ge) 0, j = 1 \dots M, X \in \mathcal{P} \}$$
 (37)

Определение 12. Вектор ${\bf v}\in \mathbb{R}^N$ задает возможное направление в точке $X\in D$ на множестве допустимых значений D , есл при всех достаточно малых $\alpha>0$, $X'=X+\alpha {\bf v}\in D$

Все возможные направления образуют в точке x функции f(X) образуют множество возможных направлений $V_X\subseteq\mathbb{R}^N$

Теорема 9. Если точка X^* локальный минимум (максимум) задачи 36, то

$$W_{X*}^{\downarrow(\uparrow)} \cap V_{X^*} = \emptyset \tag{38}$$

 $\mathit{Proof.}$ Предположим обратное тогда существует $\mathbf{r} \in W^{\downarrow (\uparrow)}$ Такой что при всех достаточно малых α

$$f(X^* + \alpha \mathbf{r}) < (>)f(X^*) \tag{39}$$

$$X^* + \alpha \mathbf{r} \in D \tag{40}$$

Следовательно X^* не является локальным минимумом (максимумом) f

Теорема 10 (Вейрштрасса). Пусть $D \subset \mathbb{R}^N$ замкнутое ограниченное множество f(X) непрерывная функция определенная на D. Тогда на D существуют точки глобального минимума и максимума функции f

Определение 13. Классическая задача оптимизации — это задача оптимизации, в которой множество допустимых значений D определяется системой функциональных равенств

$$\psi_i(X) = 0, j = 1...M, M < N$$
 (41)

$$D = \{ X \in \mathbb{R}^N \mid \psi_j(X) = 0, j = 1 \dots M \} \subset \mathbb{R}^n$$
 (42)

Подразумевается что функции f, ψ_i определены на D

$$X^*: f(X^*) = \operatorname{extr}_{X \in D} f(X) \tag{43}$$

Лемма 1. Если область допустимых значений содержит точку X' и ее окрестность $U_{\epsilon}(X')$, то

$$M < N \tag{44}$$

При этом предполагаем , что $\psi_i(X)$ дифференцируемые функции

 ${\it Proof.}\,$ разложим $\psi_j(X)$ в ряд тейлора в окрестности точки X'

$$\psi_j(X' + \delta X) = \psi_j(X') + \operatorname{grad} \psi_j(X') \cdot \delta X + o(||\delta X||) \tag{45}$$

$$\psi_i(X') = \psi_i(X' + \delta X) \tag{46}$$

Получили систему M линейных уравнений

$$\operatorname{grad} \psi_j \delta X = 0, j = 1 \dots M \tag{47}$$

$$\sum_{i=1}^{N} \frac{\partial \psi_i(X')}{\partial x_i}, j = 1 \dots M$$
(48)

1. M>N система является переопределнной либо не содержит решений, либо содердит линейно зависимые ограничения, которые могут быть отброшены

- 2. M=N система имеет тривиальное решение, либо содержит линейно зависимые ограниения
- 3. M < N система имеет бесконечно много решений, которые определяют допустимую окрестность

Лемма 2. Предположим, что область допустимых значений D содержит хотя бы одну точку $X' \in D$. Если M < N и якобиан $\mathbf{J} = (\frac{\partial \psi_j(X)}{\partial x_i})$ имеет в этой точке ранг равный M, то $U_{\epsilon}(X') \subseteq D$

Proof. Пусть $X' + \delta X \notin D$, тогда

$$\psi_j(X' + \delta X) = \operatorname{grad} \psi_j(X') \cdot \delta X + o(||\delta X||) \neq 0 \tag{49}$$

Так как M < N можно выбрать P = N - M независимых переменных, обозначим их как $Z = (z_1, \dots, z_P)$. Оставшиеся зависиимые $S = (s_1, \dots, S_M)$, X = (Z, S)

$$\Psi(X' + \delta X) = \mathbf{J}_0(X')\delta S^T + \mathbf{C}(X')\delta Z^T \neq 0$$
(50)

$$\delta X = (\delta S, \delta Z) \tag{51}$$

$$\Psi = (\psi_1, \dots, \psi_M)^T \tag{52}$$

$$\mathbf{J}_0(X') = \left(\frac{\partial \psi_j(X')}{\partial s_l}\right)_{j=1\dots M, l=1\dots M} \tag{53}$$

$$\mathbf{C}(X') = \left(\frac{\partial \psi_j(X')}{\partial z_k}\right)_{j=1...M,k=1...P}$$
(54)

Так как ранг якобиана ${\bf J}$ равен M всегда можно сделать разделение что ${\bf J}_0$ будет невырождена

$$\delta S^{T} = -\mathbf{J}^{-1}(X')\mathbf{C}(X')\delta Z^{t}$$
(55)

где $\mathbf{C}(X')$ называется матрицей управления

$$\mathbf{J}_0 \delta S^T + \mathbf{C}(X') \delta Z^T = 0 \tag{56}$$

$$\Box(X' + \delta X) = 0 \tag{57}$$

Получили что окрестность $U_{\epsilon}(X')$ допустимой точки, содержащая отличные точки от $X', X' + \delta X \in U_{\epsilon}(X') \subseteq D$

5 Метод множителей Лагранжа

Метод множителей Лагранжа сводит классическую задачу на условный экстремум к задаче на безусловный экстремум

Определение 14 (Функция Лагранжа).

$$L(\Lambda, \lambda_0, X) = \lambda_0 f(X) + \sum_{j=1}^{M} \lambda_j \psi_j(X)$$
 (58)

Данная функция является функцией N переменных X, и N+1 параметров λ

$$\frac{\partial L(\Lambda, \lambda_0, X)}{\partial x_i} = \lambda_0 \frac{\partial f(X)}{\partial x_i} + \sum_{j=1}^M \lambda_j \frac{\partial \psi_j(X)}{\partial x_i}$$
 (59)

Составим из частных производных вектор

$$\mathbf{L}_{X}' = \left(\lambda_{0} \frac{\partial f(X)}{\partial x_{i}} + \sum_{i=1}^{M} \lambda_{j} \frac{\partial \psi_{j}(X)}{\partial x_{i}}\right)_{i=1...N}$$
(60)

Частные производные по координатам λ_i

$$\frac{\partial L(\Lambda, \lambda_0, X)}{\partial \lambda_j} = \psi_j(X), j = 1 \dots M$$
(61)

Если точка X^* является точкой локального условного экстремума, то

$$\psi_i(X^*) = 0, L(\Lambda, \lambda_0, X^*) = \lambda_0 f(X^*) \tag{62}$$

L имеет безусловный локальный экстремум при $\lambda_0 \neq 0, X^* \in D$

Теорема 11 (Правило множителей Лагранжа). Пусть в $U_{\epsilon}(X^*) \subset D$

- 1. f, $\psi_i(X)$ непрерывно дифференцируемы
- 2. ранг матрицы Якоби $\mathbf{J}(X)=(rac{\partial \psi_j}{\partial x_i})_{i=1...N,j=1...M}$ равен M

Если $f(X^*)=\exp \operatorname{tr}_{X\in D} f(X)$ то существуют $\lambda_0^*\neq_0, \Lambda^*\neq 0$, что точка $(\lambda^*,1,X^*)$ является стационарной точкой задачи на езусловный экстрмум функции Лагранжа

$$\operatorname{grad} f(\Lambda^*, 1, X^*) = 0 \tag{63}$$

Proof. Пусть точка X^* точка экстремума задачи на условный. Чтоб точка была стационарной точкой функции загранжа

$$\lambda_0 \frac{\partial f(X)}{\partial x_i} + \sum_{j=1}^M \lambda_j \frac{\partial \psi_j(X)}{\partial x_i} = 0, i = 1, \dots N$$
 (64)

$$\frac{\partial L(\Lambda, \lambda_0, X)}{\partial \lambda_j} = \psi_j(X) = 0, j = 1, \dots M$$
(65)

N+M уравнений, N+M+1 переменная, если $\lambda_0\neq 0$, то можно положить его равным $\lambda_0=1$, два случая

- 1. $\lambda_0=1$, система 64 линейна относительно Λ , ранг ${\bf J}(X^*)=M$, $(X^0,1,\Lambda)$ стационарная точка
- 2. $\lambda_0 = 0$, система 64 имеет нулевое решение, строить функцию лагранжа нет смысла

$$L(\lambda, X) = f(X) \pm \sum_{j=1}^{M} \lambda_j \psi_j(X)$$
(66)

регуляная функция Лагранжа

Нам нужна будет Матрица Гессе для функции Лагранжа

$$\mathbf{H}(\Lambda, X) = \begin{pmatrix} \mathbf{0} & \mathbf{J}(X) \\ \mathbf{J}^{T}(X) & \mathbf{L}_{XX}''(\Lambda, X) \end{pmatrix}$$
(67)

$$\mathbf{L}_{XX}''(\Lambda, X) = \left(\frac{\partial L(\Lambda, X)}{\partial x_i x_j}\right)_{i=1...N, j=1...N}$$
(68)

$$\mathbf{J}(X) = \left(\frac{\partial \psi_j(X)}{\partial x_i}\right)_{j=1...M, i=1...N}$$
(69)

Теорема 12 (Необходимое условие второго порядка). *Пусть в окрестности* $U_{\epsilon}(X^*) \subset D$ точки $X \in \mathbb{R}^N$

- $1. \,\,$ функции f,ψ_j дважды непрерывно диффеенцируемы
- 2. Rank $\mathbf{J}(X^*) = M$

Пусть точка X^* точка локального минимума (максимума) классической задачи на условный экстремум тогда для любых отклонений δX от точки X^* удовлетворяющих условию

$$\operatorname{grad} \psi_j(X^*) \cdot \delta X = 0 \tag{70}$$

или

$$\mathbf{J}(X^*)\delta X^T = 0 \tag{71}$$

в стационарной точке (Λ^*, X^*) функции Лагранжа выполняется

$$\delta X \mathbf{L}_{XX}''(\Lambda^*, X^*) \delta X^T \ge (\le)0 \tag{72}$$

Proof. Разложим функцию Лагранжа в ряд Тейлора в окрестности X^* с остатком в форме Пеано

$$L(\Lambda, X) = L(\Lambda^*, X^*) + \operatorname{grad} L(\Lambda^*, X^*) (\delta \Lambda, \Delta X) + \frac{1}{2} (\delta \Lambda, \delta X) H(\Lambda^*, X^*) \begin{pmatrix} \delta \Lambda^T \\ \delta X^T \end{pmatrix} + o(||\delta \Lambda, \delta X||^2)$$

$$(73)$$

$$f(X) = f(X^*) + \frac{1}{2} (\delta \Lambda, \delta X) \begin{pmatrix} \mathbf{0} & \mathbf{J}(X^*) \\ \mathbf{J}^T(X^*) & \mathbf{L}_{XX}''(\Lambda, X) \end{pmatrix} \begin{pmatrix} \delta \Lambda^T \\ \delta X^T \end{pmatrix}$$
(74)

$$(\delta\Lambda, \delta X) \begin{pmatrix} \mathbf{0} & \mathbf{J}(X^*) \\ \mathbf{J}^T(X^*) & \mathbf{L}_{XX}''(\Lambda, X) \end{pmatrix} \begin{pmatrix} \delta\Lambda^T \\ \delta X^T \end{pmatrix} = \delta X \mathbf{L}_{XX}''(\Lambda^*, X^*) \delta X^T$$
(75)

в силу 71

$$f(X) - f(X^*) = \delta X \mathbf{L}_{XX}''(\Lambda^*, X^*) \ge (\le)0$$

$$(76)$$

Теорема 13 (Достаточное условие экстремума). Дана классическая задача оптимизаци Предположим, что в окрестности допустимой точки X^*

- 1. $f(X), \psi_i(X)$ дважды дифферринцируемы
- 2. Rank $\mathbf{J}(X^*) = M$
- 3. существуют не равные нулю (Λ^*, λ^*) такие что **grad** $L(\Lambda^*, X^*) = 0$
- 4. существуют не нулевые отклонения δX от точки X^* , удовлетворяющие условиям

$$\operatorname{grad} \psi_j(X^*) \cdot \delta X = 0 \tag{77}$$

Для которых выполняется

$$\delta X \mathbf{L}_{XX}''(\Lambda^*, X^*) \delta X^T > (<)0 \tag{78}$$

То X^* локального минимума (максимума) f(X)

Теорема 14 (Достаточное условие в терминах матрицы Гессе функции Лагранжа). Дана классическая задача оптимизации. Допустим в точке X^* , f, ψ_j дважды непрерывно дифференцируемы. Если существуют ненулевые значения множителей Лагранжа для которых (X^*, Λ^*) является стационарной точкой регулярной функции Лагранж

$$L(\Lambda, X) = f(X) + \sum_{j=1}^{M} \lambda_j^M \lambda_j \psi_j$$
 (79)

 $To X^*$ является:

1. точкой минимума f(X)

$$sgn(M_{2M+k}(\mathbf{H})) = sgn((-1)^M), k = 1...N - M$$
(80)

2. точкой максимума f(X)

$$sgn(M_{2M+k}(\mathbf{H})) = sgn((-1)^{M+1})$$
(81)

6 Интерпретация множителей Лагранжа

$$X^*: f(X^*) = \operatorname{extr}_{X \in D} f(X) \tag{82}$$

$$D = \{ X \in \mathbb{R}^N \mid \phi_j(X) = b_j \} \subset \mathbb{R}^N$$
 (83)

$$L(\Lambda, X) = f(X) - \sum_{j=1}^{M} \lambda_j (\phi_j(X) - b_j)$$
(84)

В стационарной точке (Λ^*, X^*)

$$\frac{\partial f}{\partial x_i} = \frac{\partial f(X)}{\partial x_i} - \sum_{j=1}^{M} \lambda_j \frac{\partial \phi_j}{\partial x_i}, i = 1 \dots N$$
 (85)

$$\left. \frac{\partial f}{\partial x_1} \right|_{X^*} = \sum_{j=1}^M \lambda_j \left. \frac{\partial \phi_j}{\partial x_1} \right|_{X^*} \tag{86}$$

и так далее

Допустим , что X^* является точкой условного экстремума. Предположим что величины b_j варьируются , точки экстремума, значения функицй f, ψ_j могут рассматриваться как функции параметров b_j

$$x_i^* = x_i(b_1, \dots, b_M), i = 1 \dots N$$
 (87)

$$f(X^*) = f(X^*(b_1, \dots b_M)) \tag{88}$$

$$\psi_j = \psi_j(X^*(b_1, \dots, b_M)) \tag{89}$$

$$\left. \frac{\partial f}{\partial b_k} \right|_{X^*} = \sum_{i=1}^N \left. \frac{\partial f}{\partial x_i} \right|_{X^*} \frac{dx_i}{b_k} \tag{90}$$

7 Метод Якоби

$$f(X^*) = \operatorname{extr}_{X \in D} f(X) \tag{91}$$

можно свести к задаче безусловного экстеремума, если Rank $\mathbf{J}=M$

Ограничения разложим в ряд Тейлора в окрестности $U^D_\epsilon(X)$ с остаточным членом в форме Пеано

$$\psi_j(X') = \psi_j(X + \delta X) = \psi_j(X) + \operatorname{grad} \psi_j(X) \cdot \delta X + o(|\delta X|), j = 1 \dots M \quad (92)$$

при малых δX

$$\delta\psi_j(X) = \psi_j(X') - \psi_j(X) = \operatorname{grad}\psi_j(X) \cdot \delta X, j = 1 \dots M$$
(93)

В допустимой окрестности имеем $U^D_\epsilon(X)$ имеем $\psi_j(X')=\psi_j(X)=0$ поэтому

$$\operatorname{grad} \psi_j(X) \cdot \delta X = 0 \\ j = 1 \dots M \tag{94}$$

Полученна система M линейных уравнений, относительно N отклонений δX от точки X. Выберем M зависимых переменных, обозначим их как $\delta S = (\delta s_1 \dots \delta s_M)$, оставшиеся $\delta Z = (\delta z_1, \dots, \delta z_{N-M}), \, \delta X = (\delta S, \delta Z)$

$$\operatorname{grad} \psi_j = (\operatorname{grad}_S \psi_j, \operatorname{grad}_Z \psi_j) \tag{95}$$

где

$$\operatorname{grad}_{S} \psi_{j} = \left(\frac{\partial \psi_{j}}{\partial s_{i}}\right)_{i=1\dots M} \tag{96}$$

$$\operatorname{grad}_{Z} \psi_{j} = \left(\frac{\partial \psi_{j}}{\partial z_{i}}\right)_{i=1\dots N-M} \tag{97}$$

$$\operatorname{grad} \psi_{j}(X) \cdot \delta X = (\operatorname{grad}_{S} \psi_{j}, \operatorname{grad}_{Z} \psi_{j}) \cdot (\delta S, \delta Z) = \operatorname{grad}_{S} \psi_{j} \cdot \delta S + \operatorname{grad}_{Z} \cdot \delta Z = 0$$

$$j = 1 \dots M$$
(98)

$$\mathbf{C}(X) = \begin{pmatrix} \mathbf{grad}_Z \, \psi_1 \\ \vdots \\ \mathbf{grad}_Z \, \psi_M \end{pmatrix}_{M \times (N-M)} \tag{99}$$

Матрица управления

$$\mathbf{J}_{0}(X) = \begin{pmatrix} \mathbf{grad}_{S} \, \psi_{1} \\ \vdots \\ \mathbf{grad}_{S} \, \psi_{M} \end{pmatrix}_{M \times M} \tag{100}$$

Так как ранг матрицы ${\bf J}$ равен M , то всегда можно выбрать координаты δS чтобы матрица ${\bf J}_0$ была невырожденной

$$\mathbf{J}(0)\delta S^T + \mathbf{C}(X)\delta Z^T = 0 \tag{101}$$

$$\delta S^T = -\mathbf{J}_0^{-1}(X)\mathbf{C}(X)\delta Z^T(X) \tag{102}$$

$$f(X') = f(X + \delta X) = f(X) + \operatorname{grad} f(X)\delta X + o(|\delta X|)$$
 (103)

При малых δX

$$\delta f(X) = f(X + \delta X) - f(X) = \operatorname{grad} f(X) \cdot \delta X \tag{104}$$

$$\delta f(X) = \operatorname{grad}_{S} f(X)\delta S + \operatorname{grad}_{Z} f(X)\delta Z \tag{105}$$

$$\delta f(X) = (\operatorname{grad}_{Z} f(X) - \operatorname{grad}_{S} f(X) \mathbf{J}_{0}^{-1}(X) \mathbf{C}(X)) \delta Z$$
(106)

переходим к пределу $Z \to 0$

$$\frac{\partial f(X)}{\partial Z} = \operatorname{grad}_* f(X) = \operatorname{grad}_Z f(X) - \operatorname{grad}_S f(X) \mathbf{J}_0^{-1}(X) \mathbf{C}(X) \tag{107}$$

$$\delta f(X) = \operatorname{grad}_* f(X) \cdot \delta Z \tag{108}$$

 $\mathbf{grad}_* f(X)$ приведенный (условный) градиент