第 1 页 共 4 页 ZQKCHO

ZQKCHO 中国化学奥林匹克(初赛)模拟试题(二)参考答案

第1题(14分)

1-1	II、I、III (1分,有错不得分)
1-2	④③②① (2分,每错一处扣 0.5分)
1-3	④③②① (2分,每错一处扣 0.5分)
1-4	高岭土: Al ₂ Si ₂ O ₅ (OH) ₄ (2分)
	$2KAlSi_3O_8 + 2H_2CO_3 + 9H_2O == Al_2Si_2O_5(OH)_4 + 4H_4SiO_4 + 2K^+ + 2HCO_3^- $ (2 $\%$,
	将 H ₂ CO ₃ 表示为 CO ₂ 与 H ₂ O 亦可)
1-5	(浅) 绿色 (1分); $2Fe_2O_3 == 4FeO + O_2$ (1分, 若用其他物种表示, 只要表
	明 Fe ³⁺ 到 Fe ²⁺ 的转化,也可得分)
1-6	硬度变大 (1分)
	理由:将该玻璃浸入熔融硝酸钾后,玻璃中的 Na+将与 K+发生交换,而 K+的离子
	半径更大,占据 Na+的位置后,在硅酸盐骨架结构中填充比 Na+紧密,使得材料的
	硬度增加 (2分, "Na ⁺ 与 K ⁺ 离子交换"1分, "K ⁺ 半径大, 填充紧密"1分)

第2题(8分)

舟 4 虺	(87)
2-1	②④ (2分,漏选或错选每处扣1分,扣完为止)
2-2	在生鸡蛋清未变性的蛋白质中,由于生物在合成处理时对其空间结构进行了处理,
	暴露在蛋白质外部的主要是氨基、羧基等亲水性残基,故蛋白质亲水性较强,可溶
	于水;加热后蛋白质空间结构改变,使得蛋白质的氨基酸残基分布更加随机化,大
	量疏水性残疾也暴露在外,变得难溶于水 (2分,须答出"加热使残基分布随机
	化""使疏水性残基暴露",意对即可)
2-3	植物油: O ₂ (1分)
	万能胶水: H ₂ O (2分)
2-4	OH OH OH OH OH OH OH OH OH OH

第3题(10分)

3-1	BeAl ₂ O ₄ (1分)
3-2	Al: 八面体空隙 50%; Be: 四面体空隙 12.5% (2分)
3-3	x = 0.567 1.580 Å对应③,1.631 Å对应①② (3分)
3-4	$3.699 g/cm^3 (2 分)$
3-5	由题意, Cr 离子吸收黄光, 选 b (2 分)

第4题(9分)

4-1	B: HgO C: HgI2 G: Hg2NCl·H2C	(每个1分, 共3分)
-----	------------------------------	-------------

第 2 页 共 4 页 ZQKCHO

4-2-1	4HgS + 4CaO = 4Hg + 3CaS + CaSO4 (2 %)
4-2-2	$2CuSO_4 + K_2HgI_4 + SO_2 + 2H_2O = Cu_2HgI_4 + K_2SO_4 + 2H_2SO_4 (2 \%)$
4-2-3	$3Hg + 3AsF_5 = [Hg_3][AsF_6]_2 + AsF_3$ (2 $\%$)

第5题(7分)

5-1	平均体积 V = 37.65mL (1分); ω(Cu) = 46.80% (1分)
5-2	将 CuI 转化为 CuSCN,减少 CuI 对 I ₂ 的吸附,减小测定误差 (1 分)
5-3	ω(Cu2(OH)2(CO3)) = 74.93% (2 $%$)
	ω(Cu3(OH)2(CO3)2) = 6.75% (2 $%$)

第6题(9分)

6-1	合理;诱导效应随间隔原子数增加迅速减小,故较远处的基团分布对于参与缩合的
	羧基、羟基影响较小,可认为各聚合度分子缩合的平衡常数不变 (2分)
6-2-1	c = 0.33 (2分)
6-2-2	聚合度: 3 (2分); 是 (1分,仅判断而无计算或推理不得分)
6-2-3	1.0×10 ⁻⁴ ~1.8×10 ⁻⁴ (2分)

第7题(11分)

第 3 页 共 4 页 ZQKCHO

第8题(10分)

8-1	①: $K_1 < K_2$; ②: $K_1 < K_2$; ③: $K_1 < K_2$; ④: $K_1 > K_2$ (每个 1 分)
8-2	芳环上的电子可以离域到羧基上,对羧基起到共轭给电子作用,减弱羧酸酸性;以
	苯甲酸为判断基准,对位的甲基具有给电子效应,使得芳环上电子云密度增大,对
	羧基的共轭给电子作用更强,酸性进一步减弱;然而,邻位的甲基与羧基间存在空
	间斥力,使羧基与芳环不能共平面,减弱了芳环对羧基的共轭给电子效应,使酸性
	有所增强 (2分, "对位甲基给电子"1分, "因邻位斥力不共平面"1分)
8-3	不合理;苯环对羧基为共轭给电子作用,无法通过共轭效应分散负电荷 (1分,
	仅判断无理由不得分)
	合理解释: 甲基通过σ键诱导给电子的能力显著强于苯基, 使乙酸酸性弱于苯甲酸
	(1分)
8-4	OH
	HOOOH
	HO OH
	HŌ (1分); HO HŌ (1分)

第9题(8分)

第 4 页 共 4 页 ZQKCHO

第10题(14分)

10-1

MeO

MeO

Ph

H

COOMe

MeO

A:
$$H_3C$$

CH₃

第1、2、6、7、8、9、10 题及版面设计 Copyright © 2021 星外之神 wszqkzqk@qq.com 第3、4、5 题 Copyright © 2021 Bywj 962551762@qq.com ZQKCHO Copyright © 2021 星外之神 wszqkzqk@qq.com 网站: https://wszqkzqk.github.io