Machine Learning

(機器學習)

Lecture 07: Combatting Overfitting

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 07: Combatting Overfitting

- What is Overfitting?
- The Role of Noise and Data Size
- Deterministic Noise
- Dealing with Overfitting
- Regularized Hypothesis Set
- Weight Decay Regularization
- Regularization and VC Theory
- General Regularizers

Bad Generalization

- regression for $x \in \mathbb{R}$ with N = 5 examples
- target f(x) = 2nd order polynomial
- label $y_n = f(x_n) + \text{very small noise}$
- linear regression in Z-space +
 Φ = 4th order polynomial
- unique solution passing all examples $\Rightarrow E_{in}(g) = 0$
- E_{out}(g) huge

bad generalization: low E_{in} , high E_{out}

Bad Generalization and Overfitting

- take $d_{VC} = 1126$ for learning: bad generalization — $(E_{out} - E_{in})$ large
- switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1126$: **overfitting**

$$-E_{in} \downarrow$$
, $E_{out} ↑$

- switch from d_{VC} = d^{*}_{VC} to d_{VC} = 1: underfitting
 - $-E_{\rm in}\uparrow$, $E_{\rm out}\uparrow$

bad generalization: low E_{in} , high E_{out} ; overfitting: lower E_{in} , higher E_{out}

Cause of Overfitting: A Driving Analogy

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition

next: how does **noise** & **data size** affect overfitting?

Questions?

Case Study (1/2)

overfitting from best $g_2 \in \mathcal{H}_2$ to best $g_{10} \in \mathcal{H}_{10}$?

Case Study (2/2)

10-th order target function

	$g_2 \in \mathcal{H}_2$	$g_{10}\in\mathcal{H}_{10}$
-E _{in}	0.050	0.034
E_{out}	0.127	9.00

50-th order target function noiselessly

	$g_2 \in \mathcal{H}_2$	$g_{10}\in\mathcal{H}_{10}$
-E _{in}	0.029	0.00001
E_{out}	0.120	7680

overfitting from g_2 to g_{10} ? both yes!

Irony of Two Learners

- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick $g_2 \in \mathcal{H}_2$
- when both **know that target** = 10th
 - -R 'gives up' ability to fit

but *R* wins in *E*_{out} a lot! philosophy: concession for advantage? :-)

The Role of Noise and Data Size

Learning Curves Revisited

- \mathcal{H}_{10} : lower E_{out} when $N \to \infty$, but much larger generalization error for small N
- gray area: O overfits! $(\overline{E_{in}} \downarrow, \overline{E_{out}} \uparrow)$

R always wins in $\overline{E_{out}}$ if N small!

The 'No Noise' Case

- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick $g_2 \in \mathcal{H}_2$
- when both know that there is no noise —R still wins

is there really **no noise?**'target complexity' acts like noise

Questions?

A Detailed Experiment

$$y = f(x) + \epsilon$$

$$\sim Gaussian\left(\sum_{q=0}^{Q_f} \alpha_q x^q, \sigma^2\right)$$

- Gaussian iid noise ϵ with level σ^2
- some 'uniform' distribution on f(x) with complexity level Q_f
- data size N

goal: 'overfit level' for different (N, σ^2) and (N, Q_f) ?

The Overfit Measure

- $g_2 \in \mathcal{H}_2$
- $g_{10} \in \mathcal{H}_{10}$
- $E_{in}(g_{10}) \le E_{in}(g_2)$ for sure

overfit measure $E_{\text{out}}(g_{10}) - E_{\text{out}}(g_2)$

The Results

Impact of Noise and Data Size

four reasons of serious overfitting:

```
data size N ↓ overfit ↑
stochastic noise ↑ overfit ↑
deterministic noise ↑ overfit ↑
excessive power ↑ overfit ↑
```

15/41

overfitting 'easily' happens

Deterministic Noise

- if f ∉ H: something of f cannot be captured by H
- deterministic noise : difference between best $h^* \in \mathcal{H}$ and f
- acts like 'stochastic noise'—not new to CS: pseudo-random generator
- difference to stochastic noise:
 - depends on H
 - fixed for a given x

philosophy: when teaching a kid, perhaps better not to use examples from a complicated target function? :-)

Questions?

Driving Analogy Revisited

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition
start from simple model	drive slowly
data cleaning/pruning	use more accurate road information
data hinting	exploit more road information
regularization	put the brakes
validation	monitor the dashboard

all very **practical** techniques to combat overfitting

Data Cleaning/Pruning

- if 'detect' the outlier 5 at the top by
 - too close to other o, or too far from other x
 - wrong by current classifier
 - . . .
- possible action 1: correct the label (data cleaning)
- possible action 2: remove the example (data pruning)

possibly helps, but effect varies

Data Hinting

- slightly shifted/rotated digits carry the same meaning
- possible action: add virtual examples by shifting/rotating the given digits (data hinting, data augmentation)

possibly helps, but watch out

—virtual example not $\stackrel{iid}{\sim} P(x, y)!$

Regularization: The Magic of 'Brake'

• idea: 'step back' from \mathcal{H}_{10} to \mathcal{H}_{2}

name history: function approximation for ill-posed problems

how to step back?

Questions?

Stepping Back as Constraint

Q-th order polynomial transform for $x \in \mathbb{R}$:

$$\Phi_Q(x) = (1, x, x^2, \dots, x^Q)$$

+ linear regression, denote $\tilde{\mathbf{w}}$ by \mathbf{w}

hypothesis **w** in \mathcal{H}_{10} : $w_0 + w_1 x + w_2 x^2 + w_3 x^3 + ... + w_{10} x^{10}$

hypothesis **w** in \mathcal{H}_2 : $w_0 + w_1 x + w_2 x^2$

that is, $\mathcal{H}_2 = \mathcal{H}_{10}$ AND 'constraint that $w_3 = w_4 = \ldots = w_{10} = 0$ '

step back = constraint

Regression with Constraint

$$\mathcal{H}_{10} \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1}
ight\}$$

regression with \mathcal{H}_{10} :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{in}(\mathbf{w})$$

$$\mathcal{H}_2 \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right.$$
 while $w_3 = w_4 = \ldots = w_{10} = 0$

regression with \mathcal{H}_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} \quad E_{in}(\mathbf{w})$$
s.t.
$$\mathbf{w}_3 = \mathbf{w}_4 = \ldots = \mathbf{w}_{10} = \mathbf{0}$$

step back = constrained optimization of E_{in}

why don't you just use $\mathbf{w} \in \mathbb{R}^{2+1}$? :-)

Regression with Looser Constraint

$$\mathcal{H}_2 \ \equiv \ \left\{ \begin{matrix} w \in \mathbb{R}^{10+1} \\ \\ while \ \textit{$w_3 = \ldots = w_{10} = 0$} \end{matrix} \right\}$$

regression with \mathcal{H}_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} \quad E_{in}(\mathbf{w})$$

s.t.
$$w_3 = \ldots = w_{10} = 0$$

$$\mathcal{H}_2' \equiv \left\{ oldsymbol{w} \in \mathbb{R}^{10+1}
ight.$$
 while ≥ 8 of $w_q = 0
ight\}$ regression with \mathcal{H}_2' : $\min_{oldsymbol{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(oldsymbol{w})$

s.t. $\sum_{n=0}^{\infty} \llbracket w_q \neq 0 \rrbracket \leq 3$

• more flexible than
$$\mathcal{H}_2$$
: $\mathcal{H}_2 \subset \mathcal{H}_2'$

• less risky than
$$\mathcal{H}_{10}$$
: $\mathcal{H}_2' \subset \mathcal{H}_{10}$

bad news for sparse hypothesis set \mathcal{H}'_2 :

NP-hard to solve :-(

Regression with Softer Constraint

$$\mathcal{H}_2' \ \equiv \ \left\{ oldsymbol{w} \in \mathbb{R}^{10+1}
ight.$$
 while ≥ 8 of $w_q = 0
ight\}$

regression with \mathcal{H}'_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\mathsf{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3$$

$$\mathcal{H}(C) \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right\}$$
while $\|\mathbf{w}\|^2 \leq C$

regression with $\mathcal{H}(C)$:

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\mathsf{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} w_q^2 \leq C$$

- H(C): overlaps but not exactly the same as H₂'
- soft and smooth structure over $C \ge 0$: $\mathcal{H}(0) \subset \mathcal{H}(1.126) \subset \ldots \subset \mathcal{H}(1126) \subset \ldots \subset \mathcal{H}(\infty) = \mathcal{H}_{10}$

regularized hypothesis \mathbf{w}_{REG} :
optimal solution from
regularized hypothesis set $\mathcal{H}(C)$

Questions?

Matrix Form of Regularized Regression Problem

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} \quad E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \underbrace{\sum_{n=1}^{N} (\mathbf{w}^T \mathbf{z}_n - y_n)^2}_{(Z\mathbf{w} - \mathbf{y})^T (Z\mathbf{w} - \mathbf{y})}$$

$$\text{s.t.} \quad \sum_{q=0}^{Q} w_q^2 \le C$$

- $\sum_{n \dots} = (\mathbf{Z}\mathbf{w} \mathbf{y})^T (\mathbf{Z}\mathbf{w} \mathbf{y}), \text{ remember? :-)}$
- $\mathbf{w}^T \mathbf{w} \leq \mathbf{C}$: feasible \mathbf{w} within a radius- $\sqrt{\mathbf{C}}$ hypersphere

how to solve constrained optimization problem?

The Lagrange Multiplier

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} \quad \boldsymbol{E}_{in}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^T (\mathbf{Z}\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq \boldsymbol{C}$$

- decreasing direction: -∇E_{in}(w),
 remember? :-)
- normal vector of $\mathbf{w}^T \mathbf{w} = C$: \mathbf{w}
- if -∇E_{in}(w) and w not parallel: can decrease E_{in}(w) without violating the constraint
- at optimal solution w_{REG},
 -∇E_{in}(w_{REG}) ∝ w_{REG}

want: find Lagrange multiplier $\lambda > 0$ and \mathbf{w}_{REG} such that $\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

$$\frac{2}{N} \left(\mathbf{Z}^T \mathbf{Z} \mathbf{w}_{\text{REG}} - \mathbf{Z}^T \mathbf{y} \right) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

optimal solution:

$$\mathbf{w}_{\text{REG}} \leftarrow (\mathbf{Z}^T \mathbf{Z} + \frac{\lambda}{\lambda} \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{y}$$

-called ridge regression in Statistics

minimizing unconstrained E_{aug} effectively minimizes some C-constrained E_{in}

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

equivalent to minimizing

$$\underbrace{E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \quad \mathbf{w}^T \mathbf{w}}_{\text{augmented error } E_{\text{aug}}(\mathbf{w})}$$

regularization with augmented error instead of constrained E_{in}

$$\mathbf{w}_{\mathsf{REG}} \leftarrow \underset{\mathbf{w}}{\mathsf{argmin}} \ E_{\mathsf{aug}}(\mathbf{w}) \ \mathsf{for given} \ \lambda > 0 \ \mathsf{or} \ \lambda = 0$$

minimizing unconstrained E_{aug} effectively minimizes some C-constrained E_{in}

The Results

philosophy: a little regularization goes a long way!

call ' $+\frac{\lambda}{N}\mathbf{w}^{T}\mathbf{w}$ ' weight-decay regularization:

larger ∕

 \iff prefer shorter ${\bf w}$

 \iff effectively smaller C

-go with 'any' transform + linear model

Questions?

Regularization and VC Theory

Regularization by Constrained-Minimizing E_{in}

 $\min_{\mathbf{w}} E_{in}(\mathbf{w}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq C$

VC Guarantee of Constrained-Minimizing *E*in

$$E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \Omega(\mathcal{H}(C))$$

Regularization by Minimizing E_{aug}

$$\min_{\mathbf{w}} \textit{E}_{\text{aug}}(\mathbf{w}) = \textit{E}_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

minimizing E_{aug} : indirectly getting VC guarantee without confining to $\mathcal{H}(C)$

Another View of Augmented Error

Augmented Error

$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^T \mathbf{w}$$

VC Bound

$$E_{\text{out}}(\mathbf{w}) \leq \underline{E}_{\text{in}}(\mathbf{w}) + \underline{\Omega}(\mathcal{H})$$

- regularizer w^Tw
 complexity of a single hypothesis
 - generalization price $\Omega(\mathcal{H})$: complexity of a hypothesis set
- if $\frac{\lambda}{N}\Omega(\mathbf{w})$ 'represents' $\Omega(\mathcal{H})$ well, E_{aug} is a better proxy of E_{out} than E_{in}

minimizing E_{aug} :

(heuristically) operating with the better proxy; (technically) enjoying flexibility of whole \mathcal{H}

Effective VC Dimension

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\tilde{\alpha}+1}} E_{aug}(\boldsymbol{w}) = \underline{E}_{in}(\boldsymbol{w}) + \frac{\lambda}{N} \Omega(\boldsymbol{w})$$

- model complexity? $d_{VC}(\mathcal{H}) = \tilde{d} + 1$, because $\{\mathbf{w}\}$ 'all considered' during minimization
- $\{\mathbf{w}\}$ 'actually needed': $\mathcal{H}(C)$, with some C equivalent to λ
- $d_{VC}(\mathcal{H}(C))$: effective VC dimension $d_{EFF}(\mathcal{H}, \underbrace{\mathcal{A}}_{\min E_{auo}})$

explanation of regularization: $d_{\text{VC}}(\mathcal{H})$ large, while $d_{\text{EFF}}(\mathcal{H}, \mathcal{A})$ small if \mathcal{A} regularized

Questions?

General Regularizers $\Omega(\mathbf{w})$

want: constraint in the 'direction' of target function

- target-dependent: some properties of target, if known
 - symmetry regularizer: $\sum [q]$ is odd w_q^2
- plausible: direction towards smoother or simpler stochastic/deterministic noise both non-smooth
 - sparsity (L1) regularizer: $\sum |w_q|$ (next slide)
- friendly: easy to optimize
 - weight-decay (L2) regularizer: $\sum w_q^2$
- bad? :-): no worries, guard by λ

augmented error = error \widehat{err} + regularizer Ω regularizer: target-dependent, plausible, or friendly

L2 and L1 Regularizer

L2 Regularizer

$$\Omega(\mathbf{w}) = \sum\nolimits_{q=0}^{Q} w_q^2 = \|\mathbf{w}\|_2^2$$

- convex, differentiable everywhere
- easy to optimize

L1 Regularizer

$$\Omega(\mathbf{w}) = \sum\nolimits_{q=0}^{Q} |w_q| = \|\mathbf{w}\|_1$$

- convex, not differentiable everywhere
- sparsity in solution

L1 useful if needing sparse solution

The Optimal λ

- more noise ←⇒ more regularization needed —more bumpy road ←⇒ putting brakes more
- noise unknown—important to make proper choices

how to choose? stay tuned for the next lecture! :-)

Questions?

Lecture 06

Lecture 06: Beyond Basic Linear Models

2 How Can Machines Learn Better?

Lecture 07: Combatting Overfitting

- What is Overfitting?
 lower E_{in} but higher E_{out}
- The Role of Noise and Data Size overfitting 'easily' happens!
- Deterministic Noise
 what H cannot capture acts like noise
- Dealing with Overfitting data cleaning/pruning/hinting & regularization
- Regularized Hypothesis Set original H + constraint
- Weight Decay Regularization add ^{\(\lambda\)} w^Tw in E_{aug}
- Regularization and VC Theory regularization decreases d_{EFF}
- General Regularizers target-dependent, [plausible], or [friendly]
- next: choosing from the so-many models/parameters