別証の I) について検討する。

証明したいことは n 次元の r 個のベクトルの r-ベクトルに対して $(n \ge r)$ 、強い意味で一次独立 $(|a_1,\ldots,a_r| \ne \mathbf{0})$ のとき、その一部を i 個除いたものの $(\mathbf{r}$ -i)-ベクトルも強い意味で独立である $((\mathbf{r}$ -i)-ベクトルも $\mathbf{0}$ でない) こと。(例えば、 $|a_1,\ldots,a_{r-1}| \ne \mathbf{0}$)

まず、上記のベクトル a_1, \ldots, a_r を並べた (n, r) 行列を以下のように置く。

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ a_{21} & a_{22} & \dots & a_{2r} \\ \vdots & \vdots & \dots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ir} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nr} \end{pmatrix}$$

$$(1)$$

仮定より、 \mathbf{r} -ベクトルは0 でないから、ある行番号の組み合わせ、 $\nu=(\alpha_1^{(\nu)},\alpha_2^{(\nu)},\ldots,\alpha_r^{(\nu)})$ に関して、

$$|A^{(\nu)}| = \begin{vmatrix} a_{\alpha_1^{(\nu)}1} & a_{\alpha_1^{(\nu)}2} & \dots & a_{\alpha_1^{(\nu)}r} \\ a_{\alpha_2^{(\nu)}1} & a_{\alpha_2^{(\nu)}2} & \dots & a_{\alpha_2^{(\nu)}r} \\ \vdots & \vdots & \dots & \vdots \\ a_{\alpha_r^{(\nu)}1} & a_{\alpha_r^{(\nu)}2} & \dots & a_{\alpha_r^{(\nu)}r} \end{vmatrix} \neq 0$$

$$(2)$$

この左辺は II の定理 5 の展開定理より、例えば最後の列 $(a_r$ の要素) に関して、展開でき、

$$|A^{(\nu)}| = \begin{vmatrix} a_{\alpha_1^{(\nu)}1} & a_{\alpha_1^{(\nu)}2} & \dots & a_{\alpha_1^{(\nu)}r} \\ a_{\alpha_2^{(\nu)}1} & a_{\alpha_2^{(\nu)}2} & \dots & a_{\alpha_2^{(\nu)}r} \\ \vdots & \vdots & \ddots & \vdots \\ a_{\alpha^{(\nu)}1} & a_{\alpha^{(\nu)}2} & \dots & a_{\alpha^{(\nu)}r} \end{vmatrix} = a_{\alpha_1^{(\nu)}r} \Delta_{\alpha_1^{(\nu)}r} + a_{\alpha_2^{(\nu)}r} \Delta_{\alpha_2^{(\nu)}r} + \dots + a_{\alpha_r^{(\nu)}r} \Delta_{\alpha_r^{(\nu)}r} \neq 0$$
 (3)

ここで、

$$\Delta_{\alpha_{i}^{(\nu)}r} = \begin{vmatrix} a_{\alpha_{1}^{(\nu)}1} & a_{\alpha_{1}^{(\nu)}2} & \dots & a_{\alpha_{1}^{(\nu)}(r-1)} \\ a_{\alpha_{2}^{(\nu)}1} & a_{\alpha_{2}^{(\nu)}2} & \dots & a_{\alpha_{2}^{(\nu)}(r-1)} \\ \vdots & \vdots & \dots & \vdots \\ a_{\alpha_{i-1}^{(\nu)}1} & a_{\alpha_{i-1}^{(\nu)}2} & \dots & a_{\alpha_{i-1}^{(\nu)}(r-1)} \\ a_{\alpha_{i+1}^{(\nu)}1} & a_{\alpha_{i+1}^{(\nu)}2} & \dots & a_{\alpha_{i+1}^{(\nu)}(r-1)} \\ \vdots & \vdots & \dots & \vdots \\ a_{\alpha_{r}^{(\nu)}1} & a_{\alpha_{r}^{(\nu)}2} & \dots & a_{\alpha_{r}^{(\nu)}(r-1)} \end{vmatrix}$$

$$(4)$$

この $\Delta_{\alpha_i^{(\nu)}r}$ を見てみると、 a_1,\ldots,a_{r-1} のある行の組み合わせ $\nu'=(\alpha_1^{(\nu)},\alpha_2^{(\nu)},\ldots,\alpha_{(i-1)}^{(\nu)},\alpha_{(i+1)}^{(\nu)},\ldots,\alpha_r^{(\nu)})$ に対して、符号付きで行列式をとっているので、 $\Delta_{\alpha_i^{(\nu)}r}$ は $|a_1,\ldots,a_{r-1}|$ の要素になっている。(厳密には正負の符号が異なる可能性があるが、以下の議論には影響しない。)

(3) を考えると、行列式が 0 にならない場合、ある $1 \leq p \leq r$ があって、 $\Delta_{\alpha_p^{(\nu)}r} \neq 0$ 。(そうでないと、 $|A^{(\nu)}|=0$ となってしまう。)

よって、 $|a_1,\ldots,a_{r-1}|$ のある要素は 0 でないので、 $|a_1,\ldots,a_{r-1}|\neq \mathbf{0}$

以上により、 a_1,\dots,a_{r-1},a_r が強い意味で一次独立であれば、 a_1,\dots,a_{r-1} も強い意味で独立であることが示された。ここで a_r を取り除いたが、 a_1,\dots,a_{r-1},a_r のうち任意の 1 個を除いても同じことが言える。また、これを繰り返し適用することもできるため、 a_1,\dots,a_{r-1},a_r が強い意味で一次独立であれば、その一部のベクトルも強い意味で一次独立となる。