Čtvrtá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Čtvrtá přednáška

Program

- úvod do tablo metody
- tablo důkaz
- korektnost a úplnost

Materiály

Zápisky z přednášky, Sekce 4.1-4.6 z Kapitoly 4

Kapitola 4: Metoda analytického tabla

4.1 Formální dokazovací systémy

Formální dokazovací systém

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \vdash \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům T, která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

korektnost: "co dokážu, platí"

 $T \vdash \varphi \Rightarrow T \models \varphi$

úplnost: "dokážu vše, co platí"

 $T \models \varphi \Rightarrow T \vdash \varphi$

(korektnost je nutná, úplnost ne: rychlý dokazovací systém může být praktický i když není úplný)

ukážeme si: *tablo metodu*, *hilbertovský kalkulus*, *rezoluční metodu* nutný předpoklad: jazyk musí být spočetný (potom i *T* je spočetná)

4.2 Úvod do tablo metody

Tablo metoda neformálně

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice

tablo je strom představující hledání protipříkladu (modelu $v \not\models \varphi$), když všechny větve selžou, máme důkaz (sporem)

labely: položky $\mathrm{T}\psi,\mathrm{F}\psi$ (určují, zda na dané větvi platí výrok $\psi)$

kořen $\mathbf{F}\varphi$, dále rozvíjíme redukcí položek (podle struktury výroků v nich), aby platil invariant:

Každý model, který se *shoduje* s položkou v kořeni (tj. ve kterém neplatí φ), se musí *shodovat* i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené položkami na této větvi).

je-li na větvi $\mathbf{T}\psi$ a zároveň $\mathbf{F}\psi$, potom selhala (je sporná), pokud všechny větve selhaly, je tablo sporné, je to důkaz $\mathcal{T} \vdash \varphi$

pokud nějaká větev neselhala a je dokončená (vše na ní zredukované), lze z ní zkonstruovat model, ve kterém φ neplatí