

ARITMÉTICA MODULAR

ALAN REYES-FIGUEROA CRIPTOGRAFÍA Y CIFRADO DE INFORMACIÓN (AULA 14) 23.SEPTIEMBRE.2021

Algoritmo de Euclides

Algoritmo: (de Euclides para calcular el MDC). *Inputs*: $a, b \in \mathbb{N}$ números naturales. *Outputs*: (a, b) el máximo divisor común de a y b.

```
int gcd(a, b):
    if (a == 0):
        return b
    else:
        return gcd(b% a, a).
```

Algoritmo de Euclides

```
Algoritmo: (Extendido de Euclides para calcular el (a, b) = xa + yb).
Inputs: a, b \in \mathbb{N} números naturales.
Outputs: d = (a, b) el máximo divisor común de a y b,
        x, y = enteros tales que (a, b) = xa + yb.
int gcdExtended(a, b):
    if (a == 0):
        x = 0
         V = 1
        return b, x, v
    else:
        d, x1, v1 = gcdExtended(b% a, a)
        x = v1 - (b/a)*x1
         V = X1
         return d. x. v
```

Inversos Módulo *n*

Recordemos que los elementos de U(n) son los elementos invertibles módulo n, esto es, aquellos que satisfacen (a, n) = 1.

Ejemplo: ¿Cuál es el inverso de 2 módulo n? (n, 2) = 1.

Respuesta: $\frac{n+1}{2}$. Basta ver que

$$2 \cdot \frac{n+1}{2} = \frac{2n+2}{2} = n+1 \equiv 1 \pmod{n}$$
.

Pregunta: ¿Cómo calcular inversos módulo *n*? Usamos la propiedad de Bezout:

$$(a, n) = 1 \implies \text{existen } x, y \in \mathbb{Z} \text{ con } ax + ny = 1$$

 $ax \equiv 1 \pmod{n}$.

Así, x es el inverso de a módulo n.

Podemos entonces usar el algoritmo extendido de Euclides para calcular este inverso x

Inversos Módulo *n*

```
Algoritmo: (Inversos módulo n). Inputs: a, n \in \mathbb{N} números naturales, \operatorname{con} n > 1 y (a, n) = 1. Outputs: a^{-1} el inverso de a módulo n. int inverseMod(a, n): Compute d, x, y = \operatorname{gcdExtended}(a, n), if (d == 1): return x % n else: return Error or display "not invertible".
```

Definición

Diremos que los números enteros b_1, b_2, \ldots, b_k forman un **sistema completo de invertibles** módulo n si

$$\{\bar{b}_1,\bar{b}_2,\ldots,\bar{b}_k\}=(\mathbb{Z}/n\mathbb{Z})^*=U(n).$$

En otras palabras, b_1, b_2, \ldots, b_k forman un sistema completo de invertibles, si todas las clases de congruencia invertibles, módulo n, están representadas en los b_i . Equivalente, eso ocurre si y sólo si los b_i satisfacen $(b_i, n) = 1$, $\forall i$, y $b_i \equiv b_j \pmod{n} \Rightarrow i = j$.

El conjunto $\{k \in \mathbb{Z} : 1 \le k \le n, (k, n) = 1\}$ se llama el sistema de invertibles **canónico** módulo n.

Estamos interesados en saber la cardinalidad de U(n).

Definición

La función $\varphi: \mathbb{Z}^+ \to \mathbb{Z}$, dada por $\varphi(n) = |U(n)|$, se llama **función** φ **de Euler**.

Alternativamente, podemos definir a la función de Euler como

$$\varphi(n) = \#\{k: 1 \le k \le n: (k,n) = 1\}.$$

Ejemplos:

Algunas propiedades de la función φ :

- 1. $\varphi(1) = \varphi(2) = 1$.
- 2. Para n > 2, se tiene que $1 < \varphi(n) < n \pmod{1}$ (1 y n-1 son primos relativos con n).
- 3. Si p es primo, entonces $\varphi(p) = p 1$.
- **4.** Si *p* es primo, entonces $\varphi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$.
- 5. Si $m, n \in \mathbb{Z}^+$ tales que (m, n) = 1, entonces $\varphi(mn) = \varphi(m)\varphi(n)$.

A partir de las propiedades 3, 4, y 5, tenemos un método sistemático para hallar $\varphi(n)$ para cualquier $n \in \mathbb{N}$. Si $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ es la factoración en primos de n. Como $(p_i^{k_i}, p_i^{k_j}) = 1$ para $i \neq j$, entonces

$$\varphi(n) = \prod_{i=1}^{r} \varphi(p_i^{k_i}) = \prod_{i=1}^{r} p_i^{k_i-1}(p_i-1) = \prod_{i=1}^{r} p^{k_i} \left(\frac{p_i-1}{p_i}\right) = n \prod_{i=1}^{r} \left(1-\frac{1}{p_i}\right).$$

Ejemplo: Hallar $\varphi(372)$. Como $372 = 2^2 \cdot 3 \cdot 31$, entonces

$$\varphi(372) = \varphi(2^2) \cdot \varphi(3) \cdot \varphi(31) = 2(1) \cdot 2 \cdot 30 = 120.$$

Teorema (Teorema de Euler-Fermat)

Sean $a, n \in \mathbb{Z}$, n > 1 dos enteros tales que (a, n) = 1. Entonces

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

<u>Prueba</u>: Observe que si $r_1, r_2, \ldots, r_{\varphi(n)}$ es un sistema completo de invertibles módulo n, y si (a, n) = 1, entonces también $ar_1, ar_2, \ldots, ar_{\varphi(n)}$ es un sistema completo de invertibles módulo n. De hecho, tenemos que $(ar_i, n) = 1$, y si $ar_i \equiv ar_j \pmod{n}$, entonces podemos cancelar a para obtener $r_i \equiv r_i \pmod{n}$. Luego $r_i = r_i$, y portanto i = j.

En consecuencia, cada ar_i debe ser congruente con algún r_i , y

$$\prod_{i=1}^{\varphi(n)} ar_i \equiv \prod_{i=1}^{\varphi(n)} r_i \pmod{n} \implies a^{\varphi(n)} \prod_{i=1}^{\varphi(n)} r_i \equiv \prod_{i=1}^{\varphi(n)} r_i \pmod{n}.$$

Como los r_i son invertibles módulo n, también el producto $\prod_i r_i$ es invertible. Simplificanto este factor, resulta $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Teorema (Pequeño Teorema de Fermat)

Sean $a \in \mathbb{Z}$, y p un número primo. Entonces

$$a^p \equiv a \pmod{p}$$
.

<u>Prueba</u>: Si $p \mid a$, el resultado es inmediato, pues $a^p \equiv 0^p \equiv 0 \equiv a \pmod{p}$. En el caso $p \nmid a$, entonces (a, p) = 1. Como $\varphi(p) = p - 1$, del Teorema de Euler-Fermat, tenemos que $a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^p \equiv a \pmod{p}$.

Ejemplos:

- n=5, a=3. Tenemos $\varphi(n)=\varphi(5)=5-1=4$. Luego $3^{\varphi(5)}=3^4=81\equiv 1\pmod 5.$
- n= 12, a= 7. Tenemos $\varphi(n)=\varphi($ 12 $)=\varphi($ 3 $)\varphi($ 4)= 4. Luego $7^{\varphi($ 12 $)}=7^{4}=$ 2401 \equiv 1 (mod 12).

Tests de primalidad: Otro uso del teorema de Euler-Fermat es como herramienta para probar la primalidad de un determinado entero *n*.

En este caso aplicamos el Pequeño Teorema de Fermat. Si pudiera demostrarse que la congruencia $a^n \equiv a \pmod{n}$ no se cumple para alguna elección de a, entonces n debe ser necesariamente compuesto.

Como ejemplo, veamos n=117. El cálculo se mantiene bajo control si seleccionando un entero pequeño para a, digamos, a=2.

Como $2^7 \equiv 128 \equiv 11 \pmod{117}$, resulta

$$2^{117} \equiv 2^{7(16)+5} \equiv (2^7)^{16} \cdot 2^5 \equiv 11^{16} \cdot 2^5 \equiv (121)^8 \cdot 2^5 \equiv 4^8 \cdot 2^5 \equiv 2^{21} \pmod{117}.$$

Pero $2^{21} \equiv (2^7)^3 \equiv 11^3 \pmod{117}$, lo que conduce a

$$2^{117} \equiv 2^{21} \equiv 11^3 \equiv (11)^2 \cdot 11 \equiv 4 \cdot 11 \equiv 44 \not\equiv 1 \pmod{117}.$$

Esto muestra que 117 no es primo. De hecho, 117 = $3^2 \cdot 13$.

El Recíproco de Teorema de Fermat, no vale, esto es, si $a^{n-1} \equiv 1 \pmod{n}$, para algún entero a, no necesariamente n es primo.

Para ver esto, precisamos del siguiente lema:

Lema

Si p y q son primos distintos, y $a^p \equiv a \pmod{q}$, $a^q \equiv a \pmod{p}$, entonces $a^{pq} \equiv a \pmod{pq}$.

<u>Prueba</u>: Del Pequeño Teorema de Fermat, tenemos que $(a^q)^p \equiv a^q \pmod{p}$. Además, por hipótesis $a^q \equiv a \pmod{p}$. Combinando estas congruencias, se tiene $a^{pq} \equiv a \pmod{p}$. Análogamente, se muestra que $a^{pq} \equiv a \pmod{q}$.

Esto muestra que $p \mid a^{pq} - a$ y $q \mid a^{pq} - a$. Como p y q son primos distintos, entonces $pq \mid a^{pq} - a$, de modo que $a^{pq} \equiv a \pmod{pq}$.

Ejemplo: Vamos a mostrar que $2^{340} \equiv \pmod{341}$.

Observe que 2¹⁰ \equiv 1024 \equiv 31 \cdot 33 + 1. Por lo tanto, $2^{11} \equiv 2 \cdot 2^{10} \equiv 2 \cdot 1 \equiv 2 \pmod{31},$

$$2^{31} = 2 \cdot (2^{10})^3 \equiv 2 \cdot (1)^3 \equiv 2 \pmod{11}.$$

Explotando el lema, $2^{341} \equiv 2^{11\cdot 31} \equiv 2 \pmod{341}$, de modo que al cancelar un factor 2, obtenemos $2^{340} \equiv 1 \pmod{341}$, y el recíproco del Teorema de Fermat es falso.

Los matemáticos chinos hace 25 siglos afirmaban que n es primo si y sólo si $n \mid 2^n - 2$ (de hecho, este criterio evale para $n \le 340$). Nuestro ejemplo de n = 341 es el contraejemplo (descubierto en 1819).

La situación en la que $n \mid 2^n - 2$, sin n ser primo, ocurre con suficiente frecuencia. Un entero compuesto n se llama **pseudoprimo** siempre que $n \mid 2^n - 2$. Hay infinitos pseudoprimos, por ejemplo: 341, 561, 645 y 1105.

Definición

De manera más general, un entero compuesto n para el cual $a^n \equiv a \pmod{n}$ se llama un **pseudoprimo** en la base a. (Cuando a=2, simplemente se dice que n es un pseudoprimo).

Ejemplo: 91 es el menor pseudoprimo para la base 3, mientras que 217 es el menor pseudoprimo en la base 5.

Observaciones:

- Se ha demostrado (1903) que hay infinitos pseudoprimos para cualquier base dada.
- Estos "primos impostores" son mucho más raros que los verdaderos primos. De hecho, hay sólo 247 pseudoprimos menores de un millón, en comparación con 78,498 primos.
- El primer ejemplo de un pseudoprimo par, a saber, el número 161,038 = $2 \cdot 73 \cdot 1103$ fue encontrado en 1950.

El **test de primalidad de Fermat** es un algoritmo probabilístico que hace uso del Pequeño Teorema de Fermat.

Resulta que el recíproco de este teorema suele (con alta probabilidad) ser verdad: si p es compuesto, entonces a^{p-1} es poco probable que sea congruente con 1 (mod p) para un valor arbitrario de a. Sin embargo, los pseudoprimos fallan este test.

<u>Idea</u>: Tome $a \in \mathbb{Z}$, (a, n) = 1 al azar. Si $a^{n-1} \equiv 1 \pmod{n}$, entonces n tiene alta probabilidad de ser primo.

Observe que si a=1, la congruencia $a^{n-1}\equiv a\pmod n$ es trivial. También la congruencia $a^{n-1}\equiv a\pmod n$ se satisface de forma trivial si a=n-1, y n es impar. Por esta razón, usualmente se elige un candidato 1< a< n-1.

Cualquier a que satisface $a^{n-1} \equiv a \pmod{n}$ cuando n es compuesto se llama un **mentiroso de Fermat** (Fermat liar). En este caso n es un pseudoprimo para la base a. Si elegimos a tal que $a^{n-1} \not\equiv a \pmod{n}$, a se llama un **testigo de Fermat** (Fermat witness) para la no primalidad de n.

Algoritmo: (Test de Primalidad de Fermat)

Inputs: $n \in \mathbb{Z}^+$, n > 3, un entero a testar su primalidad, k número de réplicas del test. Output: o si n es compuesto, en caso contrario responde, primo con alta probabilidad. For $i = 1, 2, \ldots, k$:

Pick a randomly in the range [2, n-2]. If $a^{n-1} \not\equiv 1 \pmod{n}$: then return o. return probably prime.

El Test de Fermat es muy simple, sin embargo tiene fallas.

Existen números compuestos n que son pseudoprimos para cada base a; es decir, $a^{n-1} \equiv 1 \pmod{n}$, para todos los enteros a con (a, n) = 1. Estos números se conocen como **números de** CARMICHAEL (descubiertos en 1910).

El menor de estos números excepcionales es $561 = 3 \cdot 11 \cdot 17$. Carmichael indicó otros tres: $1105 = 5 \cdot 13 \cdot 17$, $2821 = 7 \cdot 13 \cdot 31$ y $15841 = 7 \cdot 31 \cdot 73$. Dos años más tarde presentó 11 adicionales.

Para ver que $561 = 3 \cdot 11 \cdot 17$ es un número de Carmichael, un pseudoprimo absoluto, observe que (a, 561) = 1 prodcuce

$$(a,3) = 1, \quad (a,11) = 1, \quad (a,17) = 1.$$

Aplicando el Teorema de Euler-Fermat, obtenemos las congruencias

$$a^2 \equiv 1 \pmod{3}, \quad a^{10} \equiv 1 \pmod{11}, \quad a^{16} \equiv 1 \pmod{17},$$

que a su vez producen

$$a^{560} \equiv (a^2)^{280} \equiv (1)^{280} \equiv 1 \pmod{3},$$
 $a^{560} \equiv (a^{10})^{56} \equiv (1)^{56} \equiv 1 \pmod{11},$
 $a^{560} \equiv (a^{16})^{35} \equiv (1)^{35} \equiv 1 \pmod{17}.$

Siendo 3, 11 y 17 primos, esto da lugar a la congruencia $a^{560} \equiv 1 \pmod{561}$, siempre que (a,561) = 1. Así, 561 es un número de Carmichael.