

Universidad Nacional de Asunción

FACULTAD POLITÉCNICA

Table of Data and Results

Key information to understand the problems process and results included in "Ubicación de casilleros para comercio electrónico. Un enfoque multiobjetivo" research.

Autores:

Benjamín Barán

Lucas Guerrero

1 Datos

1.1 Para el caso n=20

Tabla 1: Información de los barrios utilizados para el caso n=20.

N°	Acrónimo	Localidad
1	$ m B ilde{N}$	Bañado
2	OB	Obrero
3	PS	Pettirossi
4	RO	Republicano
5	SV	San Vicente
6	GD	Gral. Díaz
7	SR	San Roque
8	CT	Catedral
9	EN	Encarnación
10	DF	Dr. Francia
11	RB	Ricardo Brugada
12	ТВ	Tacumbú
13	MC	Mburicaó
14	SJ	Sajonia
15	LM	Las Mercedes
16	CN	Ciudad Nueva
17	PZ	Pinozá
18	RP	Roberto L. Petit
19	BC	Bernardino Caballero
20	ML	Mcal. López

Tabla 2: Datos estimados de los clientes potenciales para el caso n=20

Localidad	EP	F	$K=EP\cdot F$
1	8.374	0.29	2.428
2	19.823	0.76	15.065
3	11.380	0.15	1.707
4	8.429	0.54	4.552
5	15.412	0.78	12.021
6	6.068	0.81	4.915
7	6.355	0.49	3.114
8	3.673	0.43	1.579
9	4.928	0.87	4.287
10	10.925	0.62	6.774
11	10.455	0.84	8.782
12	13.366	0.29	3.876
13	7.691	0.2	1.538
14	14.873	0.66	9.816
15	4.827	0.92	4.441
16	8.584	0.23	1.974
17	6.621	0.84	5.562
18	20.201	0.62	12.525
19	8.128	0.47	3.820
20	5.025	0.95	4.774
Σ	195.138		113.550

	\vdash																			\neg
ML	0.3	0.45	0.82	0.63	0.75	0.62	0.74	0.26	0.26	0.55	0.82	0.17	0.35	0.5	9.0	0.1	0.13	0.16	0.51	Н
$^{\mathrm{BC}}$	0.35	0.72	0.73	0.46	0.3	0.62	0.07	0.38	0.28	0.25	0.23	0.65	0.36	0.78	8.0	0.39	0.46	0.0	Н	0.04
RP	0.45	0.51	0.07	0.36	0.75	0.37	0.27	0.36	0.37	0.34	0.35	0.42	0.82	0.57	0.72	0.42	0.11	П	0.33	8.0
ΡZ	0.87	0.07	0.7	0.21	0.49	0.43	0.73	0.47	0.11	0.79	0.4	0.51	0.56	0.25	0.07	0.76	П	0.08	0.25	0.03
CN	0.26	0.06	0.64	0.32	0.27	0.69	0.89	0.24	0.13	0.89	0.16	0.73	0.64	0.36	0.57	П	0.4	0.07	0.31	0.51
Γ M	0.1	0.61	0.61	0.15	0.16	0.77	0.27	0.85	0.15	0.44	0.44	0.89	0.76	0.49	П	0.75	0.15	0.78	0.64	0.14
SJ	0.67	0.32	0.18	0.65	0.19	0.51	0.61	0.37	0.73	0.48	0.64	0.34	0.29	Η	0.05	0.84	0.7	0.29	0.11	0.42
MC	0.73	0.37	0.36	0.14	0.14	0.36	0.59	0.11	0.71	0.53	0.11	0.44	П	90.0	0.42	0.84	0.22	0.54	0.64	0.82
TB	0.61	0.25	98.0	0.56	0.03	0.59	0.1	0.09	0.2	0.13	0.77	П	0.24	0.48	0.39	0.21	0.52	0.33	0.2	69.0
RB	0.3	0.41	0.31	0.14	0.03	8.0	0.5	0.64	0.11	0.23	1	0.13	0.31	0.48	0.11	0.88	0.57	0.13	90.0	0.68
DF	9.0	0.03	0.28	0.17	0.59	0.19	0.48	0.05	0.62	П	0.31	0.12	0.33	0.09	0.5	0.11	0.17	0.27	0.84	0.41
EN	0.55	99.0	0.12	0.14	0.45	0.52	0.68	0.49	Η	0.58	0.2	0.41	0.69	0.22	0.14	0.41	0.15	0.23	0.02	0.54
CT	0.5	0.27	0.86	0.64	0.34	0.03	0.18	П	0.45	0.86	0.45	0.62	0.14	0.5	0.82	0.82	0.18	99.0	0.01	0.39
$_{ m SR}$	0.64	0.3	0.22	9.0	0.49	0.42	П	0.75	0.14	0.44	0.03	0.36	0.73	0.75	0.71	0.04	0.28	0.43	0.5	0.44
GD	0.04	0.64	0.38	0.7	0.16	П	0.71	0.84	0.29	0.43	0.0	0.65	0.4	0.64	0.88	0.62	0.38	0.4	0.64	0.28
SV	0.65	0.26	0.65	0.11	П	0.72	0.03	0.35	0.45	0.54	0.84	0.7	0.23	0.89	0.04	0.84	0.07	0.44	0.35	99.0
RO	0.87	0.4	0.09	П	0.46	0.76	0.43	8.0	0.42	0.47	0.09	0.32	0.46	0.02	0.73	0.47	89.0	0.65	0.1	99.0
PS	0.15	89.0	Н	0.1	0.12	0.87	0.34	0.03	0.54	0.22	0.04	0.64	0.46	0.65	0.22	0.56	0.42	0.62	0.34	0.18
OB	0.38	\vdash	0.46	0.2	0.79	0.53	0.64	0.28	0.01	0.29	0.76	0.22	0.47	0.26	0.39	0.34	0.79	0.49	0.61	0.79
$B\tilde{N}$	Т	0.88	0.89	0.1	0.18	0.42	0.07	0.86	0.87	0.85	89.0	0.37	0.52	0.57	0.16	0.04	0.42	0.63	0.88	0.7
	ВÑ	OB	PS	RO	SV	GD	$_{ m SR}$	CT	EN	DF	RB	TB	MC	SJ	$_{ m LM}$	CN	PZ	RP	BC	ML L

Figura 1: Matriz MC para el caso n=20.

2 Resultados

2.1 Numéricos

Tabla 3: Conjunto Pareto y frente Pareto correspondiente a la segunda instancia del problema n=20.

N°	Ω	Colocar CP en	f_1	f_2	f_3	f_4
1	01001100010001100101	[OB, SV, GD, DF, SJ, LM, RP, ML]	7200	5.36x10^-06	1.42x10^-05	8354
2	01011110011100100100	[OB, RO, SV, GD, SR, DF, RB, TB, LM, RP]	8500	5.22x10^-06	1.31x10^-05	6748
3	01011110110100100101	[OB, RO, SV, GD, SR, EN, DF, TB, LM, RP, ML]	9200	5.17x10^-06	1.30x10^-05	5121
4	01011100110100100101	[OB, RO, SV, GD, EN, DF, TB, LM, RP, ML]	8500	5.23x10^-06	1.36x10^-05	5930
5	01011100011100100100	[OB, RO, SV, GD, DF, RB, TB, LM, RP]	7800	5.29x10^-06	1.37x10^-05	7651
6	01011110110000100101	[OB, RO, SV, GD, SR, EN, DF, LM, RP, ML]	8500	5.24x10^-06	1.37x10^-05	5615
7	01011110011000100101	[OB, RO, SV, GD, SR, DF, RB, LM, RP, ML]	8600	5.20x10^-06	1.29x10^-05	6287
8	01011110011000100100	[OB, RO, SV, GD, SR, DF, RB, LM, RP]	7800	5.31x10^-06	1.38x10^-05	7532
9	01011110110100100100	[OB, RO, SV, GD, SR, EN, DF, TB, LM, RP]	8400	5.26x10^-06	1.39x10^-05	6076
10	01001110011000100101	[OB, SV, GD, SR, DF, RB, LM, RP, ML]	7700	5.34x10^-06	1.38x10^-05	8187
11	01011110010000101101	[OB, RO, SV, GD, SR, DF, LM, PZ, RP, ML]	8500	5.24x10^-06	1.35x10^-05	6077
12	01011110010100101101	[OB, RO, SV, GD, SR, DF, TB, LM, PZ, RP, ML]	9200	5.17x10^-06	1.28x10^-05	5582
13	01011100010100101101	[OB, RO, SV, GD, DF, TB, LM, PZ, RP, ML]	8500	5.23x10^-06	1.34x10^-05	6392
14	01011100011101100100	[OB, RO, SV, GD, DF, RB, TB, SJ, LM, RP]	9800	5.08x10^-06	1.20x10^-05	6099
15	01011110011001100100	[OB, RO, SV, GD, SR, DF, RB, SJ, LM, RP]	9800	5.10x10^-06	1.21x10^-05	5981
16	01011100011001100101	[OB, RO, SV, GD, DF, RB, SJ, LM, RP, ML]	9900	5.05x10^-06	1.19x10^-05	5546
17	01011100011001100100	[OB, RO, SV, GD, DF, RB, SJ, LM, RP]	9100	5.16x10^-06	1.26x10^-05	6884
18	110111110010000100101	[BÑ, OB, RO, SV, GD, SR, DF, LM, RP, ML]	8600	5.28x10^-06	1.41x10^-05	5569
19	01011110010100100101	[OB, RO, SV, GD, SR, DF, TB, LM, RP, ML]	7500	5.29x10^-06	1.38x10^-05	6750
20	01011110010101100100	[OB, RO, SV, GD, SR, DF, TB, SJ, LM, RP]	8700	5.18x10^-06	1.29x10^-05	6153
21	01011110010001100100	[OB, RO, SV, GD, SR, DF, SJ, LM, RP]	8000	5.27x10^-06	1.36x10^-05	6938
22	01011100010001100101	[OB, RO, SV, GD, DF, SJ, LM, RP, ML]	8100	5.22x10^-06	1.33x10^-05	6503
23	01011110010101100101	[OB, RO, SV, GD, SR, DF, TB, SJ, LM, RP, ML]	9500	5.08x10^-06	1.22x10^-05	5199
24	01001100011001100101	[OB, SV, GD, DF, RB, SJ, LM, RP, ML]	9000	5.18x10^-06	1.26x10^-05	7397
25	01001100011101100101	[OB, SV, GD, DF, RB, TB, SJ, LM, RP, ML]	9700	5.11x10^-06	1.20x10^-05	6902
26	01011100010101100100	[OB, RO, SV, GD, DF, TB, SJ, LM, RP]	8000	5.24x10^-06	1.35x10^-05	7056
27	01011100010001100100	[OB, RO, SV, GD, DF, SJ, LM, RP]	7300	5.34x10^-06	1.42x10^-05	7841
28	01001110011001100101	[OB, SV, GD, SR, DF, RB, SJ, LM, RP, ML]	9700	5.12x10^-06	1.21x10^-05	6587
29	01011100010101100101	[OB, RO, SV, GD, DF, TB, SJ, LM, RP, ML]	8800	5.14x10^-06	1.26x10^-05	6008
30	01011110010001100101	[OB, RO, SV, GD, SR, DF, SJ, LM, RP, ML]	8800	5.16x10^-06	1.28x10^-05	5693
31	01001100010101100101	[OB, SV, GD, DF, TB, SJ, LM, RP, ML]	7900	5.28x10^-06	1.34x10^-05	7859
32	01011100011000100101	[OB, RO, SV, GD, DF, RB, LM, RP, ML]	7900	5.26x10^-06	1.35x10^-05	7097
33	01011110011100100101	[OB, RO, SV, GD, SR, DF, RB, TB, LM, RP, ML]	9300	5.12x10^-06	1.23x10^-05	5793
34	01011100011100100101	[OB, RO, SV, GD, DF, RB, TB, LM, RP, ML]	8600	5.19x10^-06	1.28x10^-05	6602
35	01001100011100100101	[OB, SV, GD, DF, RB, TB, LM, RP, ML]	7700	5.32x10^-06	1.36x10^-05	8502
36	01001110011100100101	[OB, SV, GD, SR, DF, RB, TB, LM, RP, ML]	8400	5.26x10^-06	1.31x10^-05	7692
37	01011110010110100101	[OB, RO, SV, GD, SR, DF, TB, MC, LM, RP, ML]	8400	5.26x10^-06	1.35x10^-05	6087

Tabla 4: Progreso del algoritmo NSGA-II teniendo en cuenta las 10 ejecuciones sobre la segunda instancia del problema n=20.

	Ge	Generación 1	Gen	Generación 10	Gene	Generación 100	Gene	Generación 500	Gene	Generación 1000	Gene	Generación 1500
Ejecución	Tiempo(s)	N° de soluciones										
1	06.0	1	18.04	11	215.48	23	1080.58	33	2179.77	35	2179.77	35
2	0.72	1	28.09	~	289.53	30	1315.25	35	2609.07	35	3818.21	35
3	0.75	2	19.42	13	216.12	24	1144.07	35	2181.65	37	3198.47	37
4	0.92	П	25.54	7	278.30	23	1279.88	32	2444.73	36	3566.76	36
2	29.0	2	17.68	10	241.08	24	1158.16	31	2217.62	34	3265.99	34
9	0.75	4	26.57	10	251.41	18	1246.56	26	2519.13	30	3704.72	33
7	29.0	1	16.27	6	195.76	18	1067.33	25	2263.28	35	3006098	36
∞	0.91		19.66	10	224.45	27	1222.12	33	2769.09	33	3899.61	35
6	99.0	2	16.29	9	196.61	30	1069.09	33	2151.72	35	3390.24	35
10	89.0		33.98	13	426.08	23	1604.76	29	2765.86	32	4290.11	35
Promedio	0.763	1.6	22.154	9.7	253.48	24	1218.78	31.2	2410.19	34.2	3492.29	35.1
Desv est (σ)	0.1	0.92	5.70	2.19	64.89	3.95	153.79	3.31	232.10	1.94	533.26	1.04

2.2 Gráficos

Figura 2: Solución 16 de la Tabla XI representada en el mapa de Asunción. Los puntos rojos representan la instalación de CP, mientras que los puntos verdes, ausencia de CP en las respectivas localidades.

3 Algoritmos

3.1 Exhaustivo

Algoritmo 1 Búsqueda exhaustiva

```
1: procedure
          leer \rightarrow n
 2:
          dominatedSet = \emptyset
 3:
          paretoSet = \emptyset
 4:
          for i = 1 \ to \ 2^n - 2 \ do
 5:
               for j = i + 1 \ to \ 2^n - 1 \ do
 6:
                    if i \succ j then
 7:
                          dominatedSet \cup \{j\}
 8:
                    else if j > i then
 9:
                          dominatedSet \cup \{i\}
10:
          for i = 1 \ to \ 2^n - 1 \ do
11:
               if i \notin dominatedSet then
12:
          \begin{array}{c} \stackrel{\scriptstyle paretoSet}{paretoSet} \cup \{i\} \\ \mathbf{return} \ paretoSet \end{array}
13:
```