Median Sensitivity Proofs

March 22, 2020

Definition 1. The sample median of a database $X = (x_1, ..., x_n)$ is given by

$$f(X) = \frac{\tilde{x}_l + \tilde{x}_u}{2}$$

where $l = \lfloor \frac{n+1}{2} \rfloor$ and $u = \lceil \frac{n+1}{2} \rceil$ and $\tilde{X} = (\tilde{x}_1, \dots, \tilde{x}_n)$ is the sorted version of X.

1 Neighboring Definition: Change One

1.1 ℓ_1 -sensitivity

Theorem 1. Let the database X have elements bounded above by M and below by m. Then the ℓ_1 -global sensitivity in the change-one model of the median is

$$\Delta f(\cdot) = \begin{cases} \frac{M-m}{2}, & \text{if } n \equiv 0 \pmod{2} \\ M-m & \text{if } n \equiv 1 \pmod{2} \end{cases}$$

Proof. First consider the case where n is such that $n \equiv 0 \pmod{2}$. Then our worst-case scenario is that exactly half of the data elements in X are m and the other half are M. In this case, $f(X) = \frac{m+M}{2}$.

Now consider an X' which is identical to X but with one additional element with value M. Then we have that f(X') = M. Because we are looking at our worst-case pairing of X, X', we know that

$$\Delta f(\cdot) = \max_{X,X'} |f(X') - f(X)| = |M - \frac{m+M}{2}| = \frac{M-m}{2}.$$

Now consider the case where n is such that $n \equiv 1 \pmod{2}$. Then our worst-case scenario is that $\frac{n-1}{2}$ of the elements of X are m, $\frac{n-1}{2}$ of the elements of X are M, and the remaining

¹The result holds if it is switched from M to m.

element of X is m (WLOG). In this setting, f(X) = m. Let X' be identical to x but with one element switched from m to M. Then f(X') = M and we have that

$$\Delta f(\cdot) = \max_{X,X'} |f(X') - f(X)| = |M - m|.$$

1.2 ℓ_2 -sensitivity

Theorem 2. Let the database X have elements bounded above by M and below by m. Then the global ℓ_2 -sensitivity in the change-one model of the median is

$$\Delta f(\cdot) = \begin{cases} \left(\frac{M-m}{2}\right)^2, & \text{if } n \equiv 0 \pmod{2} \\ (M-m)^2 & \text{if } n \equiv 1 \pmod{2} \end{cases}$$

Proof. The logic follows exactly from the proof of the ℓ_1 sensitivity, just with the norm in the last line of each statement switched from 1 to 2.

2 NEIGHBORING DEFINITION: ADD/DROP ONE

2.1 ℓ_1 -sensitivity

Theorem 3. Let the database X have elements bounded above by M and below by m. Then the global ℓ_1 -sensitivity in the add/drop-one model of the median is

$$\Delta f(\cdot) = \frac{M - m}{2}.$$

Proof. First consider the case where n is such that $n \equiv 0 \pmod{2}$. Then our worst-case scenario is that exactly half of the data elements in X are m and the other half are M. In this case, $f(X) = \frac{m+M}{2}$.

Now consider an X' which is identical to X but with a single additional element M. Then f(X') = M. Note that if instead X' was identical to X with a single element *removed*, the worst case is that a single m is removed and again f(X') = M. In either case,

$$|f(X') - f(X)| = |M - \frac{M - m}{2}| = \frac{M - m}{2}.$$

Now consider the case where n is such that $n \equiv 1 \pmod{2}$. Then our worst-case scenario is that $\frac{n-1}{2}$ of the elements of X are m, and $\frac{n+1}{2}$ of the elements of X are M (WLOG). In this setting, f(X) = M. Let X' be identical to x but with one element m added. Then $f(X') = \frac{M-m}{2}$. Note that if instead X' was identical to X with a single element removed, the worst case is that a single M is removed and again $f(X') = \frac{M-m}{2}$ (WLOG). In either case,

$$|f(X) - f(X')| = |M - \frac{M-m}{2}| = \frac{M-m}{2}.$$

So, in general,

$$\Delta f(\cdot) = \max_{X,X'} \left| f(X') - f(X) \right| = \frac{M - m}{2}.$$

²The results holds if the point added/removed is switched from M to m.

2.2 ℓ_2 -sensitivity

Theorem 4. Let the database X have elements bounded above by M and below by m. Then the global ℓ_2 -sensitivity in the add/drop-one model of the median is

$$\Delta f(\cdot) = \left(\frac{M-m}{2}\right)^2.$$

Proof. The logic follows exactly from the proof of the ℓ_1 sensitivity, just with the norm switched from 1 to 2.