Product Price Predictor (PPP):

Tree-based Regression Model for Optimal XOXPurchase

Group 4 Members (in presenting order):

Fei Han

Chengkun Xing

Mingyue Zheng

Lili Chen

Mingjie Tang

How do we build the PPP model?

1. Problem Define

About us

We are an agency helping our customers purchase XoX from various makers.

Goal

To estimate the price of a XoX before we recommend it to our customers

Business service

Provide business insights to explain the predicted price to our customers

Machine Learning service

To build a machine learning model to accurately predict the price for a future purchase

2. Exploratory Data Analysis (Data Mining)

- Scatter plot: difficult to find the trend and pattern in data
- "Statistical data binning": statistics along both x and y axes
- Capture the trend and pattern among high-data-density bins

- Relationship between price and weight is quasi-linear/ quadratic
- Cost and weight show a similar trend with price and weight

Product Level

- Price and cost are weakly correlated with ingredient
- Weight is independent of ingredient
- Ordinal numbers in ingredient data have no correlation with year

- Price shows a correlation with economic cycle (yearly inflation and economic crisis)
- Price of current year is correlated with those of past years
- Cost and weight are almost independent of purchase year

- Price and cost show a strong correlation with the season (high in spring and fall, low in summer and winter)
- Weight is independent of purchase month

Median

2500

1000

500

Weight 1500

Median

Median

200000

100000

50000

50000

150

250000

100000

50000

9 200000 150000

- Price and cost are almost independent of purchase day
- Weight is independent of purchase day

- Most of transactions occurs on Thursday and Tuesdays
 On Thursday and Tuesdays, prices are different
 - Weight is independent of purchase weekday

- Price varies a lot in different month.
- · Directly used as categorical feature.

T 1 T 1

- Price variability in Product Type and Levels.
- Number of categories is not too big.
- Create *one-hot dummy* features.

Get rid of collinearity

High collinearity between depth, width, height.

Combine height, width and depth into a single feature: volume.

High collinearity between weight and volume.

O4 Drop volume and just keep weight.

eg: IN732054,IN732059 2 Ingredient Number

Ingredient Number

- More numbers of ingredients, higher price.
- Price drops when the number of ingredients is larger than 13, but the count is also very small.

Year

- Price increases a little with the year.
- · May not work in Tree model.

4. Model Selection afterformance

4. Model Selection and formance

5. Hyperparameter Tuning & Feature Importance

Cross_Validatidv1ethodGridSearchCV

Hyperparameters tuning results for

Random Forest: (r2_score)

max_depth =11, min_samples_leaf=3, min_samples_split=2, n_estimators=500

5. Hyperparameter Tuning & Feature Importance

- Random Forest (R2=0.52) vs. linear regression (R2=0.46) benchmark
- Key features: Cost, Weight, Ingredient Number, Product Type, Month, Year
- Higher cost, weight and ingredient number -> higher price
- Cheaper prices in June, July, Dec., Nov., and Jan.

5. Business Impact

- What is the Benchmark?
- Linear regression model with cost as only input
- Linear model tends to have high bias and it is suitable candidate for Benchmark.
- How to qualify the ML model improvement?

True Price

Measures how far off are the price predictions

5. Business Impact

Comparison between Benchmark and Tree Model

50% Residual Percentage

- Benchmark 154 accurate predictions
- Random Forest 175 accurate predictions
- Random Forest Produces 21 more accurate predictions (Performance Index PI)

Quantify Model Performance

Random Forest Outperformance Chart Peak PI Peak PI Solution of the state of the

• Random Forest Model has its peak Performance Index (PI) when residual % is 44%.

Residue %

- Tree model produces 25 more accurate price predictions.
- Approximately 18% increase from Benchmark.

5. Business Impact

