Solutions to Quiz 20 Practice Problems Math 2580 Spring 2016

Sean Fitzpatrick

March 31st, 2016

- 1. Use Green's Theorem to evaluate the given line integral. Assume the orientation of the curve is positive, unless otherwise indicated.
 - (a) $\int_C x^2 y^2 dx + 4xy^3 dy$, where C is the triangle with vertices (0,0), (1,3), and (0,3).

The curve C bounds the triangular region D described by $3x \leq y \leq 1$, for $0 \leq x \leq 1$, so by Green's Theorem we have

$$\int_C x^2 y^2 dx + 4xy^3 dy = \iint_D \left(\frac{\partial 4xy^3}{\partial x} - \frac{\partial x^2 y^2}{\partial y} \right) dA = \int_0^1 \int_{3x}^1 (4y^3 - 2x^2 y) dy dx$$
$$= \int_0^1 (1 - x^2 - 72x^4) dx = 1 - \frac{1}{3} - \frac{72}{5}.$$

(b) $\int_C xe^{-2x} dx + (x^4 + 2x^2y^2) dy$, where C is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Here, our region is described best in polar coordinates as $1 \le r \le 2$, with $0 \le \theta \le 2\pi$. We have

$$\frac{\partial x^4 + 2x^2y^2}{\partial x} - \frac{\partial xe^{-2x}}{\partial y} = 4x^3 + 4xy^2 = 4x(x^2 + y^2) = 4r^3\cos\theta$$

in polar coordinates. Thus, by Green's Theorem we have

$$\int_C xe^{-2x} dx + (x^4 + 2x^2y^2) dy = \int_0^{2\pi} \int_1^2 4r^4 \cos\theta dr d\theta = 0.$$

Note: the fact that this integral is zero tells us that the integral around the circle $x^2+y^2=1$ is equal to the integral around the circle $x^2+y^2=4$, since C consists of two circles, with positive orientation for the outer circle, and negative orientation for the inner circle.

(c) $\int_C y^3 dx - x^3 dy$, where C is the circle $x^2 + y^2 = 4$.

We have $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -3x^2 - 3y^2 = -3r^2$, and C bounds the region given in polar coordinates by $0 \le r \le 2$, with $0 \le \theta \le 2\pi$. Thus, we have

$$\int_C y^3 dx - x^3 dy = \int_0^{2\pi} \int_0^2 (-3r^2) r dr d\theta = -\frac{3\pi}{2}.$$

(d) $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = \langle y^2 \cos x, x^2 + 2y \sin x \rangle$ and C is the trianglular path from (0,0) to (2,6) to (2,0), and back to (0,0).

First, we note that the given path is the negatively-oriented boundary of the region given by $0 \le x \le 2$, $0 \le y \le 3x$, so we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = -\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = -\int_{0}^{2} \int_{0}^{3x} (2x) \, dy \, dx = -\int_{0}^{2} 6x^{2} \, dx = -16.$$

- 2. Find a normal vector to the given parameterized surface at the given point:
 - (a) x = 2u, $y = u^2 + v$, $z = v^2$, at the point (0, 1, 1).

With $\mathbf{r}(u,v) = \langle 2u, u^2 + v, v^2 \rangle$, we have $\mathbf{r}_u(u,v) = \langle 2, 2u, 0 \rangle$ and $\mathbf{r}_v(u,v) = \langle 0, 1, 2v \rangle$. At the point (0,1,1) we have 2u = 0, so u = 0, and comparing y-coordinates, $0^2 + v = 1$, which gives v = 1 (and we can check that $1^1 = 1$ works for the z-coordinate).

Since $\mathbf{r}_u(0,1) = \langle 2,0,0 \rangle$ and $\mathbf{r}_v(u,v) = \langle 0,1,2 \rangle$, we have

$$\mathbf{N}(0,1) = \mathbf{r}_u(0,1) \times \mathbf{r}_v(0,1) = \langle 2, 0, 0 \rangle \times \langle 0, 1, 2 \rangle = \langle 0, -4, 2 \rangle.$$

(b) $x = u^2 - v^2$, y = u + v, $z = u^2 + 4v$, at the point $(-\frac{1}{4}, \frac{1}{2}, 2)$.

We have $\mathbf{r}(u,v) = \langle u^2 - v^2, u + v, u^2 + 4v \rangle$, so $\mathbf{r}_u(u,v) = \langle 2u, 1, 2u \rangle$ and $\mathbf{r}_v(u,v) = \langle -2v, 1, 4 \rangle$. We now need to determine the values of u and v that correspond to the point (-1/4, 1/2, 2). It's possible to guess the answer, but if you want to proceed systematically, note that if we take the difference of the z and x coordinates, we have

$$(u^2 + 4v) - (u^2 - v^2) = v^2 + 4v = 2 - \left(-\frac{1}{4}\right) = \frac{9}{4},$$

so $v^2 + 4v - \frac{9}{4} = (v - \frac{1}{2})(v + \frac{9}{2}) = 0$, giving either $v = \frac{1}{2}$ or $v = -\frac{9}{2}$. The first solution works in all three coordinates if we take u = 0, and you can check that v = 9/2 does not lead to consistent values for u in all three coordinates. Thus u = 0 and v = 1/2, giving us

$$\mathbf{r}_{u}(0,1/2) = 0, 1, 0 \rangle, \mathbf{r}_{v}(0,1/2) = \langle -1, 1, 4 \rangle, \mathbf{N}(0,1/2) = \langle 4, 0, 1 \rangle.$$