Modify the LP

1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.

- 1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.
- 2. Introduce a **slack variable** $s_i \ge 0$ for each ' \le ' constraint.

- 1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant
- 2. Introduce a **slack variable** $s_i \ge 0$ for each ' \le ' constraint.
- 3. Introduce a **surplus variable** $s_j \ge 0$ and an **artificial variable** $\bar{x}_i \ge 0$ for each '>' constraint.

- 1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant
- 2. Introduce a **slack variable** $s_i \ge 0$ for each ' \le ' constraint.
- 3. Introduce a **surplus variable** $s_j \ge 0$ and an **artificial variable** $\bar{x}_i \ge 0$ for each '>' constraint.
- 4. Introduce an **artificial variable** $\bar{x}_j \ge 0$ in each '=' constraint.

- 1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant
- 2. Introduce a **slack variable** $s_i \ge 0$ for each ' \le ' constraint.
- 3. Introduce a **surplus variable** $s_j \ge 0$ and an **artificial variable** $\bar{x}_i \ge 0$ for each '>' constraint.
- 4. Introduce an **artificial variable** $\bar{x}_j \ge 0$ in each '=' constraint.
- 5. For each artificial variable \bar{x}_i , add a **penalty term** ' $-M\bar{x}_i$ ' to the objective function. Use the same constant M for all the artificial variables. (In numerical software, use a very large number for M.)

Example (Big M in Action)

Maximize $P = 2x_1 + x_2$ subject to

$$x_1 + x_2 \le 10$$

$$-x_1+x_2\geq 2$$

with $x_1, x_2 \geq 0$.

Example (Big M in Action)

Maximize $P = 2x_1 + x_2$ subject to

$$x_1 + x_2 \le 10$$

$$-x_1+x_2\geq 2$$

with $x_1, x_2 \ge 0$.

The Big M Simplex Tableau

Eq	Z	x_1	x_2	s_1	s_2	\bar{x}_1	b
(0)	1	-2	-1	0	0	М	0
(1)		1					
(2)	0	-1	1	0	-1	1	2

The "Big M" Method: Exercise

Exercise (O-Jay)

O-Jay is a mixture of orange juice and orange soda. We need to restrict the amount of sugar to 4gm/bottle and maintain at least 20mg/bottle of vitamin C. What is the least cost mixture?

Let:

- x_1 = number of ounces of orange soda in a bottle of O-Jay
- x_2 = number of ounces of orange juice in a bottle of O-Jay

The LP is:

Minimize
$$z = 2x_1 + 3x_2$$
 subject to

$$0.5x_1 + 0.25x_2 \le 4$$
 (sugar constraint)
 $x_1 + 3x_2 \ge 20$ (Vitamin C constraint)
 $x_1 + x_2 = 10$ (10 oz in per bottle)

with
$$x_1, x_2 \ge 0$$

Summary		

Summary

1. If the problem is "minimize Z," change to "maximize (-Z)."

- 1. If the problem is "minimize Z," change to "maximize (-Z)."
- 2. Add a slack variable s_i to change ' \leq ' to '='.

- 1. If the problem is "minimize Z," change to "maximize (-Z)."
- 2. Add a slack variable s_i to change ' \leq ' to '='.
- 3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ' \geq ' to '='.

- 1. If the problem is "minimize Z," change to "maximize (-Z)."
- 2. Add a slack variable s_i to change ' \leq ' to '='.
- 3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ' \geq ' to '='.
- 4. Add an artificial variable \bar{x}_k to each '=' constraint.

- 1. If the problem is "minimize Z," change to "maximize (-Z)."
- 2. Add a slack variable s_i to change ' \leq ' to '='.
- 3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ' \geq ' to '='.
- 4. Add an artificial variable \bar{x}_k to each '=' constraint.
- 5. Add ' $-M\bar{x}_j$ ' to the objective function for each artificial variable \bar{x}_j .

- 1. If the problem is "minimize Z," change to "maximize (-Z)."
- 2. Add a slack variable s_i to change '<' to '='.
- 3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ' \geq ' to '='.
- 4. Add an artificial variable \bar{x}_k to each '=' constraint.
- 5. Add ' $-M\bar{x}_j$ ' to the objective function for each artificial variable \bar{x}_j .
- 6. Use a row operation with each artificial variable row to eliminate M from the objective function in \bar{x}_i columns.¹

¹Just operate on Row (0), the objective function, to reduce arithmetic.

- 1. If the problem is "minimize Z," change to "maximize (-Z)."
- 2. Add a slack variable s_i to change '<' to '='.
- 3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ' \geq ' to '='.
- 4. Add an artificial variable \bar{x}_k to each '=' constraint.
- 5. Add ' $-M\bar{x}_j$ ' to the objective function for each artificial variable \bar{x}_j .
- 6. Use a row operation with each artificial variable row to eliminate M from the objective function in \bar{x}_i columns.¹
- 7. Run the simplex algorithm.

¹Just operate on Row (0), the objective function, to reduce arithmetic.

```
Example (Big "Big M") Z = 2x_1 + 5x_2 + 3x_3 subject to x_1 + 2x_2 - x_3 \le 7 -x_1 + x_2 - 2x_3 \le -5 x_1 + 4x_2 + 3x_3 \ge 1 2x_1 - x_2 + 4x_3 = 6 with x_1, x_2, x_3 \ge 0.
```

Example (Big "Big M")

Maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to

$$x_1 + 2x_2 - x_3 \le 7$$

$$-x_1 + x_2 - 2x_3 \le -5$$

$$x_1 + 4x_2 + 3x_3 \ge 1$$

$$2x_1 - x_2 + 4x_3 = 6$$

with $x_1, x_2, x_3 \ge 0$.

Variables

There are:

Example (Big "Big M")

Maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to

$$x_1 + 2x_2 - x_3 \le 7$$

$$-x_1 + x_2 - 2x_3 \le -5$$

$$x_1 + 4x_2 + 3x_3 \ge 1$$

$$2x_1 - x_2 + 4x_3 = 6$$

with $x_1, x_2, x_3 \ge 0$.

Variables

There are:

• 3 decision variables x_i

Example (Big "Big M")

Maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to

$$x_1 + 2x_2 - x_3 \le 7$$

$$-x_1 + x_2 - 2x_3 \le -5$$

$$x_1 + 4x_2 + 3x_3 \ge 1$$

$$2x_1 - x_2 + 4x_3 = 6$$

with $x_1, x_2, x_3 \ge 0$.

Variables

There are:

- 3 decision variables x_i
- 1 slack variable s₁

Example (Big "Big M")

Maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to

$$x_1 + 2x_2 - x_3 \le 7$$

$$-x_1 + x_2 - 2x_3 \le -5$$

$$x_1 + 4x_2 + 3x_3 \ge 1$$

$$2x_1 - x_2 + 4x_3 = 6$$

with

$$x_1, x_2, x_3 \geq 0.$$

Variables

There are:

- 3 decision variables x_i
- 1 slack variable s₁

• 2 surplus variables s_j

Example (Big "Big M")

Maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to

$$x_1 + 2x_2 - x_3 \le 7$$

$$-x_1 + x_2 - 2x_3 \le -5$$

$$x_1 + 4x_2 + 3x_3 \ge 1$$

$$2x_1 - x_2 + 4x_3 = 6$$

with $x_1, x_2, x_3 \ge 0$.

Variables

There are:

- 3 decision variables x_i
- 1 slack variable s₁

- 2 surplus variables s_i
- 3 artifical variables \bar{x}_i

Initial Artificial Problem Tableau

BV	Eq	Z	x_1	x_2	<i>x</i> ₃	s_1	s_2	<i>s</i> ₃	\bar{x}_1	\bar{x}_2	\bar{x}_3	b
	(0)	1	-2	-5	-3	0	0	0	M	M	M	0
s_1	(1)	0	1	2	-1	1	0	0	0	0	0	7
\bar{x}_1	(2)	0	1	-1	2	0	-1	0	1	0	0	5
\bar{x}_2	(3)	0	1	4	3	0	0	-1	0	1	0	1
\bar{x}_3	(4)	0	2	-1	4	0	0	0	0	0	1	6

Initial Artificial Problem Tableau

							s_2					
	(0)	1	-2	-5	-3	0	0	0	M	M	M	0
s_1	(1)	0	1	2	-1	1	0 -1	0	0	0	0	7
\bar{x}_1	(2)	0	1	-1	2	0	-1	0	1	0	0	5
\bar{x}_2	(3)	0	1	4	3	0	0	-1	0	1	0	1
\bar{x}_3	(4)	0	2	-1	4	0	0	0	0	0	1	6

Beginning Simplex Tableau												
Eq	x_1 x_2 x_3 s_1 s_2 s_3 \bar{x}_1 \bar{x}_2 \bar{x}_3									b		
(0)	-2 - 4M	-5 - 2M	-3 - 9M	0	M	M	0	0	0	-12M		
(1)	1	2	-1	1	0	0	0	0	0	7		
(2)	1	-1	2	0	-1	0	1	0	0	5		
(3)	1	4	3	0	0	-1	0	1	0	1		
(4)	2	-1	4	0	0	0	0	0	1	6		

► Use Maple