In [4]: import pandas as pd from sklearn import datasets df = datasets.load_iris() df {'data': array([[5.1, 3.5, 1.4, 0.2], [4.9, 3., 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2], [5., 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3],[5., 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2], [4.8, 3.4, 1.6, 0.2], [4.8, 3., 1.4, 0.1], [4.3, 3., 1.1, 0.1], [5.8, 4., 1.2, 0.2], [5.7, 4.4, 1.5, 0.4], [5.4, 3.9, 1.3, 0.4], [5.1, 3.5, 1.4, 0.3], [5.7, 3.8, 1.7, 0.3], [5.1, 3.8, 1.5, 0.3], [5.4, 3.4, 1.7, 0.2], [5.1, 3.7, 1.5, 0.4], [4.6, 3.6, 1., 0.2], [5.1, 3.3, 1.7, 0.5], [4.8, 3.4, 1.9, 0.2], [5., 3., 1.6, 0.2], [5., 3.4, 1.6, 0.4], [5.2, 3.5, 1.5, 0.2], [5.2, 3.4, 1.4, 0.2], [4.7, 3.2, 1.6, 0.2], [4.8, 3.1, 1.6, 0.2], [5.4, 3.4, 1.5, 0.4], [5.2, 4.1, 1.5, 0.1], [5.5, 4.2, 1.4, 0.2], [4.9, 3.1, 1.5, 0.2], [5., 3.2, 1.2, 0.2], [5.5, 3.5, 1.3, 0.2], [4.9, 3.6, 1.4, 0.1], [4.4, 3., 1.3, 0.2], [5.1, 3.4, 1.5, 0.2], [5., 3.5, 1.3, 0.3], [4.5, 2.3, 1.3, 0.3], [4.4, 3.2, 1.3, 0.2], [5., 3.5, 1.6, 0.6], [5.1, 3.8, 1.9, 0.4], [4.8, 3., 1.4, 0.3], [5.1, 3.8, 1.6, 0.2], [4.6, 3.2, 1.4, 0.2], [5.3, 3.7, 1.5, 0.2], [5., 3.3, 1.4, 0.2], [7., 3.2, 4.7, 1.4], [6.4, 3.2, 4.5, 1.5],[6.9, 3.1, 4.9, 1.5],[5.5, 2.3, 4., 1.3], [6.5, 2.8, 4.6, 1.5], [5.7, 2.8, 4.5, 1.3], [6.3, 3.3, 4.7, 1.6], [4.9, 2.4, 3.3, 1.], [6.6, 2.9, 4.6, 1.3], [5.2, 2.7, 3.9, 1.4], [5., 2., 3.5, 1.], [5.9, 3., 4.2, 1.5], [6., 2.2, 4., 1.], [6.1, 2.9, 4.7, 1.4], [5.6, 2.9, 3.6, 1.3], [6.7, 3.1, 4.4, 1.4], [5.6, 3., 4.5, 1.5], [5.8, 2.7, 4.1, 1.], [6.2, 2.2, 4.5, 1.5],[5.6, 2.5, 3.9, 1.1], [5.9, 3.2, 4.8, 1.8], [6.1, 2.8, 4., 1.3],[6.3, 2.5, 4.9, 1.5], [6.1, 2.8, 4.7, 1.2],

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 'frame': None, 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'), 'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n-----\n\n**Data Set Characteristics:**\n\n :Number of Instances: 150 (50 in each of three classes)\n :Number of Attributes: 4 numeric, predictive attribute s and the class\n :Attribute Information:\n - sepal length in cm\n - petal length in cm\n - petal width in cm\n - class:\n - Iris-Setosa\n - Iris-Virginica\n - Iris-Versicolour\n Min Max Mean SD Class Correlation\n :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature. Fisher\'s paper is a classic in th e field and\nis referenced frequently to this day. (See Duda & Hart, for example.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from t he other 2; the\nlatter are NOT linearly separable from each other.\n\n. topic:: References\n\n - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and Classification Rule for Recognition in Partially Exposed\n Int elligence, Vol. PAMI-2, No. 1, 67-71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64. Cheeseman et a l"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...', 'feature names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'filename': 'C:\\Users\\acer\\anaconda3\\lib\\site-packages\\sklearn\\datasets\\data\\iris.csv'}

[5., 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [5., 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2],

from sklearn.feature selection import SelectKBest, chi2, f classif

selected_feature = SelectKBest(f_classif, k=4)
selected feature.fit transform(features, labels)

[4.9, 3., 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2],

[4.8, 3.4, 1.6, 0.2], [4.8, 3., 1.4, 0.1],[4.3, 3., 1.1, 0.1], [5.8, 4., 1.2, 0.2], [5.7, 4.4, 1.5, 0.4], [5.4, 3.9, 1.3, 0.4], [5.1, 3.5, 1.4, 0.3], [5.7, 3.8, 1.7, 0.3], [5.1, 3.8, 1.5, 0.3], [5.4, 3.4, 1.7, 0.2], [5.1, 3.7, 1.5, 0.4], [4.6, 3.6, 1., 0.2],[5.1, 3.3, 1.7, 0.5], [4.8, 3.4, 1.9, 0.2], [5., 3., 1.6, 0.2], [5., 3.4, 1.6, 0.4], [5.2, 3.5, 1.5, 0.2], [5.2, 3.4, 1.4, 0.2], [4.7, 3.2, 1.6, 0.2], [4.8, 3.1, 1.6, 0.2], [5.4, 3.4, 1.5, 0.4], [5.2, 4.1, 1.5, 0.1], [5.5, 4.2, 1.4, 0.2], [4.9, 3.1, 1.5, 0.2], [5., 3.2, 1.2, 0.2], [5.5, 3.5, 1.3, 0.2], [4.9, 3.6, 1.4, 0.1], [4.4, 3., 1.3, 0.2],[5.1, 3.4, 1.5, 0.2], [5., 3.5, 1.3, 0.3], [4.5, 2.3, 1.3, 0.3], [4.4, 3.2, 1.3, 0.2],[5., 3.5, 1.6, 0.6], [5.1, 3.8, 1.9, 0.4], [4.8, 3., 1.4, 0.3],[5.1, 3.8, 1.6, 0.2], [4.6, 3.2, 1.4, 0.2], [5.3, 3.7, 1.5, 0.2], [5., 3.3, 1.4, 0.2], [7., 3.2, 4.7, 1.4],[6.4, 3.2, 4.5, 1.5],[6.9, 3.1, 4.9, 1.5], [5.5, 2.3, 4., 1.3], [6.5, 2.8, 4.6, 1.5],[5.7, 2.8, 4.5, 1.3], [6.3, 3.3, 4.7, 1.6],

In [6]:

In [13]:

features = df.data
labels = df.target

Out[13]: array([[5.1, 3.5, 1.4, 0.2],

[6.4, 2.9, 4.3, 1.3], [6.6, 3., 4.4, 1.4], [6.8, 2.8, 4.8, 1.4], [6.7, 3., 5., 1.7], [6., 2.9, 4.5, 1.5], [5.7, 2.6, 3.5, 1.], [5.5, 2.4, 3.8, 1.1], [5.5, 2.4, 3.7, 1.], [5.8, 2.7, 3.9, 1.2], [6., 2.7, 5.1, 1.6], [5.4, 3., 4.5, 1.5], [6., 3.4, 4.5, 1.6],[6.7, 3.1, 4.7, 1.5], [6.3, 2.3, 4.4, 1.3], [5.6, 3., 4.1, 1.3], [5.5, 2.5, 4., 1.3], [5.5, 2.6, 4.4, 1.2], [6.1, 3., 4.6, 1.4],[5.8, 2.6, 4., 1.2], [5., 2.3, 3.3, 1.], [5.6, 2.7, 4.2, 1.3], [5.7, 3., 4.2, 1.2], [5.7, 2.9, 4.2, 1.3], [6.2, 2.9, 4.3, 1.3], [5.1, 2.5, 3., 1.1], [5.7, 2.8, 4.1, 1.3], [6.3, 3.3, 6., 2.5],[5.8, 2.7, 5.1, 1.9], [7.1, 3., 5.9, 2.1],[6.3, 2.9, 5.6, 1.8], [6.5, 3., 5.8, 2.2],[7.6, 3., 6.6, 2.1], [4.9, 2.5, 4.5, 1.7], [7.3, 2.9, 6.3, 1.8], [6.7, 2.5, 5.8, 1.8], [7.2, 3.6, 6.1, 2.5], [6.5, 3.2, 5.1, 2.], [6.4, 2.7, 5.3, 1.9], [6.8, 3., 5.5, 2.1], [5.7, 2.5, 5., 2.], [5.8, 2.8, 5.1, 2.4], [6.4, 3.2, 5.3, 2.3],[6.5, 3., 5.5, 1.8],[7.7, 3.8, 6.7, 2.2], [7.7, 2.6, 6.9, 2.3], [6., 2.2, 5., 1.5],[6.9, 3.2, 5.7, 2.3], [5.6, 2.8, 4.9, 2.], [7.7, 2.8, 6.7, 2.], [6.3, 2.7, 4.9, 1.8], [6.7, 3.3, 5.7, 2.1], [7.2, 3.2, 6., 1.8], [6.2, 2.8, 4.8, 1.8], [6.1, 3., 4.9, 1.8], [6.4, 2.8, 5.6, 2.1], [7.2, 3., 5.8, 1.6], [7.4, 2.8, 6.1, 1.9], [7.9, 3.8, 6.4, 2.], [6.4, 2.8, 5.6, 2.2],[6.3, 2.8, 5.1, 1.5],[6.1, 2.6, 5.6, 1.4], [7.7, 3., 6.1, 2.3], [6.3, 3.4, 5.6, 2.4], [6.4, 3.1, 5.5, 1.8], [6., 3., 4.8, 1.8], [6.9, 3.1, 5.4, 2.1], [6.7, 3.1, 5.6, 2.4], [6.9, 3.1, 5.1, 2.3], [5.8, 2.7, 5.1, 1.9], [6.8, 3.2, 5.9, 2.3], [6.7, 3.3, 5.7, 2.5], [6.7, 3., 5.2, 2.3], [6.3, 2.5, 5. , 1.9], [6.5, 3., 5.2, 2.],[6.2, 3.4, 5.4, 2.3], [5.9, 3., 5.1, 1.8]]),

[4.9, 2.4, 3.3, 1.],[6.6, 2.9, 4.6, 1.3], [5.2, 2.7, 3.9, 1.4], [5., 2., 3.5, 1.], [5.9, 3., 4.2, 1.5], [6., 2.2, 4., 1.], [6.1, 2.9, 4.7, 1.4], [5.6, 2.9, 3.6, 1.3], [6.7, 3.1, 4.4, 1.4], [5.6, 3., 4.5, 1.5], [5.8, 2.7, 4.1, 1.], [6.2, 2.2, 4.5, 1.5], [5.6, 2.5, 3.9, 1.1], [5.9, 3.2, 4.8, 1.8], [6.1, 2.8, 4., 1.3],[6.3, 2.5, 4.9, 1.5], [6.1, 2.8, 4.7, 1.2],[6.4, 2.9, 4.3, 1.3],[6.6, 3., 4.4, 1.4], [6.8, 2.8, 4.8, 1.4], [6.7, 3., 5., 1.7],[6., 2.9, 4.5, 1.5],[5.7, 2.6, 3.5, 1.], [5.5, 2.4, 3.8, 1.1], [5.5, 2.4, 3.7, 1.], [5.8, 2.7, 3.9, 1.2], [6., 2.7, 5.1, 1.6], [5.4, 3., 4.5, 1.5],[6., 3.4, 4.5, 1.6],[6.7, 3.1, 4.7, 1.5],[6.3, 2.3, 4.4, 1.3], [5.6, 3., 4.1, 1.3], [5.5, 2.5, 4., 1.3], [5.5, 2.6, 4.4, 1.2], [6.1, 3., 4.6, 1.4],[5.8, 2.6, 4., 1.2], [5., 2.3, 3.3, 1.], [5.6, 2.7, 4.2, 1.3], [5.7, 3., 4.2, 1.2], [5.7, 2.9, 4.2, 1.3], [6.2, 2.9, 4.3, 1.3], [5.1, 2.5, 3., 1.1], [5.7, 2.8, 4.1, 1.3], [6.3, 3.3, 6., 2.5], [5.8, 2.7, 5.1, 1.9], [7.1, 3., 5.9, 2.1], [6.3, 2.9, 5.6, 1.8], [6.5, 3., 5.8, 2.2], [7.6, 3., 6.6, 2.1], [4.9, 2.5, 4.5, 1.7], [7.3, 2.9, 6.3, 1.8], [6.7, 2.5, 5.8, 1.8], [7.2, 3.6, 6.1, 2.5], [6.5, 3.2, 5.1, 2.], [6.4, 2.7, 5.3, 1.9], [6.8, 3., 5.5, 2.1], [5.7, 2.5, 5., 2.], [5.8, 2.8, 5.1, 2.4], [6.4, 3.2, 5.3, 2.3], [6.5, 3., 5.5, 1.8], [7.7, 3.8, 6.7, 2.2], [7.7, 2.6, 6.9, 2.3], [6., 2.2, 5., 1.5],[6.9, 3.2, 5.7, 2.3], [5.6, 2.8, 4.9, 2.], [7.7, 2.8, 6.7, 2.], [6.3, 2.7, 4.9, 1.8], [6.7, 3.3, 5.7, 2.1], [7.2, 3.2, 6., 1.8], [6.2, 2.8, 4.8, 1.8], [6.1, 3., 4.9, 1.8], [6.4, 2.8, 5.6, 2.1], [7.2, 3., 5.8, 1.6], [7.4, 2.8, 6.1, 1.9], [7.9, 3.8, 6.4, 2.], [6.4, 2.8, 5.6, 2.2], [6.3, 2.8, 5.1, 1.5], [6.1, 2.6, 5.6, 1.4], [7.7, 3., 6.1, 2.3], [6.3, 3.4, 5.6, 2.4], [6.4, 3.1, 5.5, 1.8], [6., 3., 4.8, 1.8], [6.9, 3.1, 5.4, 2.1], [6.7, 3.1, 5.6, 2.4], [6.9, 3.1, 5.1, 2.3], [5.8, 2.7, 5.1, 1.9], [6.8, 3.2, 5.9, 2.3], [6.7, 3.3, 5.7, 2.5], [6.7, 3., 5.2, 2.3], [6.3, 2.5, 5. , 1.9], [6.5, 3., 5.2, 2.], [6.2, 3.4, 5.4, 2.3], [5.9, 3., 5.1, 1.8]]) In []: