第2回空戦 AI チャレンジ 問題設定及び初期行動判断モデルに関する説明資料

目次

1	空対空目視外戦闘環境の基準モデルの定義	3
	1.1 空対空目視外戦闘の定義	3
	1.2 戦闘空間の定義	3
	1.2.1 シミュレーション及び行動判断の周期	3
	1.2.2 戦域の定義	
	1.2.3 各陣営の編成	
	1.2.4 戦闘のルール 1.3 戦闘機・無人機のモデル	
	1.3 戦闘機・無人機のモブル	
	1.3.1 連動・飛行制御モケル	
	1.3.3 ネットワークによる情報共有	
	1.3.4 人間による介入の模擬	
	1.3.5 武装モデル 1.3.6 戦闘機・無人機に関する観測可能な情報	
	1.3.7 戦闘機・無人機に関する制御情報	
	1.4 誘導弾のモデル	12
	1.4.1 運動・飛行制御モデル	
	1.4.2 最大飛翔時間及び命中判定	
	1.4.3 センサモデル 1.4.4 誘導弾に関する観測可能な情報	
	1.5 航跡及び運動状態の表現	
	1.5.1 3 次元航跡の表現	
	1.5.2 2 次元航跡の表現	
	1.5.3 運動状態の表現	
	1.6 地球モデル	14
	1.7 基準パラメータ	15
2	初期行動判断モデル	18
	2.1 航跡に対する付帯情報	18
	2.2 目標選択	19
	2.3 行動の種類	20
	2.4 (s1)通常時の行動	20
	2.5 (a1)射撃	
	2.6 (s2)離脱	
	2.7 (s3)回避	23
		/ ٦

23
24
24
24

1 空対空目視外戦闘環境の基準モデルの定義

1.1 空対空目視外戦闘の定義

本文書において空対空目視外戦闘とは、複数の戦闘機及び無人機が複数の誘導弾を搭載し、十分遠方から強力なセンサにより相手を探知・追尾し、戦闘機及び無人機の速度に比べて十分高速な長射程の誘導弾を射撃することにより行われる戦闘を指すものとする。基準とする戦闘の場面設定は、各陣営(名称を「Blue」及び「Red」とする。)が東西に一定距離離れた各々の防衛ライン上を初期位置として、相手の防衛ラインの突破又は撃墜を目指す対称戦とする。また、決着が着かないことを避けるために制限時間を設けることとし、時間切れの際には残存数や進出度合い等に基づく得点計算によって優勢勝ちの判定を行うものとする。なお、同点による引き分けを生じさせることは妨げない。

1.2 戦闘空間の定義

1.2.1 シミュレーション及び行動判断の周期

シミュレーション時刻の最小単位をtickとし、あらゆる処理の周期を整数値で管理する。基準モデルにおいては、1[tick]の時間は $dt_{base}=0.05\text{s}$ とし、戦闘機・無人機の運動のみ1[tick]ごとに計算し、センサ等のその他の諸元更新は2[tick]ごとに行い、行動判断モデルが0penAI Gym インターフェースの外側で行動判断を行う周期 n_{agent} は20[tick](= 1[Hz])とする。ただし、各行動判断モデルが直前の行動判断結果に基づいて任意の状態量や制御入力等の値を1[tick]ごとに計算することは妨げない。

1.2.2 戦域の定義

戦域の座標系(以下「基準座標系」という。)は、NED(North-East-Down)の直交座標系とし、地球の曲率を無視するものとする。また、地球の自転等の影響は無視し、慣性座標系として扱うものとする。なお、地表面をz=0とし、x-y方向の原点を戦域の中心とする。

1.2.3 各陣営の編成

基準とする設定において、各陣営の編成は以下の通りとする。

- (1) 各陣営の機数は4機とする。
- (2) 各陣営は誘導弾数やレーダ探知距離等の異なる"Large"と"Small"の 2 種類の機体を 2 機ずつ有しているものとする。例えば、"Large"の誘導弾数を 0 としたものを"Small"とすることが考えられる。
- (3) "Large"と"Small"は相手側からは区別できないものとする。
- (4) 後述の全滅判定対象機は"Large"及び"Small"、突破判定対象機は"Large"のみとする。

1.2.4 戦闘のルール

- (1) 中心から東西に $D_{line}[m]$ 離れて引かれた南北方向の二本の直線を各陣営の防衛ラインとする。
- (2) 南北方向は中心から $D_{out}[m]$ までを戦域とする。
- (3) 戦闘の終了条件は以下の通りとし、終了時の得点が高い陣営を勝者とする。同点の場合は引き分けとする。
 - (a) いずれかの陣営の全滅判定対象機が全滅(被撃墜または墜落)し、かつ以後の撃墜の可能性が 消滅したとき
 - (b) 戦闘開始からt_{Min}[s]が経過した以降において、両陣営の全機が各々の防衛ラインより後方まで 下がったとき
 - (c) 制限時間 $t_{Max}[s]$ が経過したとき
 - (d) いずれかの陣営の得点が p_{Disg} 以下となったとき
- (4) 同時に複数の終了条件が満たされた場合は、以下の優先度で一つだけが成立したものとみなす。 高 (a) > (d) > (b) > (c) 低
- (5) 各陣営の得点の計算方法は以下の通りとする。
 - (a) 相手を撃墜した数 1 機につき、その機体種別 m_f に応じて $p_{Hit}(m_f)$ 点を加算する。(撃墜された側には増減なし)
 - (b) 突破判定対象機が防衛ラインを突破したとき、突破した側の陣営に p_{Break} 点を加算する。
 - (c) 終了条件(a)を満たしたとき、未突破の陣営に「そこから突破して更に帰還可能な」突破判定対象機が存在している場合、 p_{Break} 点を加算する。

- (d) ペナルティとして、各機体が以下の条件を満たしたときにその所属陣営に減点を与える。
 - ・ 全滅判定対象機が墜落(地面に激突等)したとき、その機体種別 m_f に応じて $p_{Crash}(m_f)$ 点を減算する。
 - ・ 各 tick において南北方向の場外に出ていたとき、1[s]、1[km]につき p_{out} 点を減算する。
- (6) 終了時には、各機の残燃料に基づき、以下の要領で帰還可否を判定し、帰還不可となった機体は 墜落として扱い、(5)(d)のペナルティの対象とする。
 - (a) 防衛ラインまでの進出、防衛ラインからの帰投は各々全燃料の25%を消費するものとする。
 - (b) 終了時の残燃料が所要量を上回っていれば帰還可、下回っていれば帰還不可とする。
 - (c) 帰還するための所要量は、

全燃料の 25% + 1.1 × 「終了時の位置から最適巡航で自陣防衛ラインへの到達に必要な量」とする。

- (d) 残燃料を考慮した行動判断を可能にするために、行動判断モデルは最適巡航時の単位距離あたりの消費燃料量と現時点の残燃料を観測してよいものとする。なお、最適巡航となる高度及び速度は基準モデルにおいて約9,000[m],250[m/s]程度であり、そこから大きく外れない領域で飛行すれば余剰燃料(残燃料 所要量)を回復させることも可能であるため、自発的に帰還行動をとるメリットも存在する。
- (7) 各機体の初期状態は、以下の通りとする。
 - (a) 東西方向の位置については、自陣営の防衛ライン上とする。
 - (b) 南北方向の位置については、戦域中心から南北に $\pm D_{init}$ [km]以内でランダムとする。
 - (c) 高度については、 h_{init} [m]とする。
 - (d) 速度については、 $V_{init}[m/s]$ とする。
- (e) 針路については、東側スタートの陣営は真西、西側スタートの陣営は真東に水平とする。 なお、学習を行う際は上記の初期条件については毎回ある程度の幅を持たせたランダムな値となる ように設定することを推奨する。

1.3 戦闘機・無人機のモデル

1.3.1 運動・飛行制御モデル

1.3.1.1 運動モデル

戦闘機・無人機の運動は6自由度モデルを用いて、以下の通り表現する。

- (1) 燃料の消費や誘導弾の発射による質量変化は無視し、機体の質量mは一定とする。
- (2) 姿勢の表現にはクォータニオンを用いる。機体座標系成分で表示されたベクトル v_b に対して左からqをかけることで慣性座標系成分で表示されたベクトル v_i を得られるようなqを用いるものとする。
- (3) 機体の姿勢制御はエレベータ、エルロン、ラダーを用いて行うものとし、それぞれの挙動は [Stevens 15]に従って目標値に対する 1 次遅れ系で表現されるものとする。つまり、各々の現在の操舵角を δ_e , δ_a , δ_r 、操舵角の上限値を C_e , C_a , C_r 、 ± 1 の範囲で正規化した目標値を u_e , u_a , u_r 、遅れ時定数を τ_e , τ_a , τ_r として、これらの状態方程式は

$$\frac{d}{dt} \begin{pmatrix} \delta_e \\ \delta_a \\ \delta_r \end{pmatrix} = \begin{pmatrix} (u_e C_e - \delta_e)/\tau_e \\ (u_a C_a - \delta_a)/\tau_a \\ (u_r C_r - \delta_r)/\tau_r \end{pmatrix}$$

のように表される。また、操舵角及び操舵角の時間微分はともにそれぞれの上限値によりクリッピングされるものとする。

(4) エンジンモデルは、[Stevens 15]に示される F-100 エンジン相当の性能を有するモデルとする。 当該モデルは高度hとマッハ数Mを変数とする 3 種のテーブルデータ (IDLE, MILITARY, MAX AB)を用いて対応する推力を計算するものである。ただし、[Stevens 15]のテーブルデータは超音速域に対応していないため、[Krus 19]に示される超音速域の MAX AB 推力値を用いて拡張している。エンジンの状態量としては現在のパワーP([Stevens 15]における THRUST 関数の引数となる P0W に相当)を採用する。制御入力については、[Stevens 15]においてはスロットル操作量となっているが、本基準モデルにお

いては目標パワー $p_{cmd} \in [0,1]$ とする。ただし、機体全体の飛行制御モデルを考える上では、制御則の構築を簡単にするために、dP/dtが入力について 1 次関数で表されるアフィン系を構成するように、 p_{cmd} と相互に変換可能な仮想的な入力 $u_P \in [0,1]$ を採用している。なお、推力だけでなく、エンジンが持つ角運動量 L_e についても [Stevens 15]に示されるモデルと同様に機体座標系x軸方向成分のみを持つ定数としてモデル化する。また、燃料消費は [AFCEC 13] に記載されている IDLE, MILITARY, MAX AB それぞれの条件における F-100 エンジンの燃料流量を用いて線形補間することで表現するものとする。

(5) 機体に働く空気力及びモーメントは以下の通りモデル化する。なお、不適切な操舵によって失速を生じさせた場合等、通常の飛行で想定される迎角、横滑り角の範囲外に出てしまった場合、空力係数が正しく計算できないため、その機体は墜落したものとみなし以後の計算を打ち切るものとする。

(a) 空気力(造波抵抗を除く)

造波抵抗を除く空気力に関する空力係数は[Stevens 15]に示される F-16 相当のテーブルデータ又は [Morelli 98]に示される多項式モデルを用いるものとする。これらに示される空力係数を用いると、空気力 F_{A_b} 及びモーメント N_{A_b} は、

$$F_{A_{b}} = \begin{pmatrix} C_{F_{x}} \\ C_{F_{y}} \\ C_{F_{z}} \end{pmatrix} \frac{\rho |\boldsymbol{v}_{i}|^{2}}{2} S = \begin{pmatrix} C_{x}(\alpha, \delta_{e}) + C_{x_{q}}(\alpha) \frac{\bar{c}\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{y}}{2|\boldsymbol{v}_{i}|} \\ C_{y}(\beta, \delta_{a}, \delta_{r}) + C_{y_{p}}(\alpha) \frac{b\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{x}}{2|\boldsymbol{v}_{i}|} + C_{y_{r}}(\alpha) \frac{b\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{z}}{2|\boldsymbol{v}_{i}|} \\ C_{z}(\alpha, \beta, \delta_{e}) + C_{z_{q}}(\alpha) \frac{\bar{c}\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{y}}{2|\boldsymbol{v}_{i}|} \end{pmatrix} \frac{\rho |\boldsymbol{v}_{i}|^{2}}{2} S$$

$$K_{A_{b}} = \begin{pmatrix} C_{l}(\alpha, \beta) + C_{l\delta_{a}}(\alpha, \beta)\delta_{a} + C_{l\delta_{r}}(\alpha, \beta)\delta_{r} + C_{l_{p}}(\alpha) \frac{b\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{x}}{2|\boldsymbol{v}_{i}|} + C_{l_{r}}(\alpha) \frac{b\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{z}}{2|\boldsymbol{v}_{i}|} \\ C_{m}(\alpha, \delta_{e}) + C_{m_{q}}(\alpha) \frac{\bar{c}\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{y}}{2|\boldsymbol{v}_{i}|} + C_{F_{z}}(x_{cg,R} - x_{cg}) \\ C_{n}(\alpha, \beta) + C_{n\delta_{a}}(\alpha, \beta)\delta_{a} + C_{n\delta_{r}}(\alpha, \beta)\delta_{r} + C_{n_{p}}(\alpha) \frac{b\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{x}}{2|\boldsymbol{v}_{i}|} + C_{n_{r}}(\alpha) \frac{b\boldsymbol{\omega}_{i}^{T}\boldsymbol{e}_{z}}{2|\boldsymbol{v}_{i}|} - C_{F_{y}}(x_{cg,R} - x_{cg}) \frac{\bar{c}}{b} \end{pmatrix}$$

のように計算できる。ただし、 e_x , e_y , e_z は機体座標系の各軸の基底ベクトル、 v_i は速度ベクトル(基準座標系)、 ω_i は機体角速度ベクトル(基準座標系)、 α は迎角、 β は横滑り角、Sは主翼面積、 \bar{c} は平均空力翼弦、bは主翼スパンを、 $x_{cg,R}$ は基準重心位置(コード長位置で表現)を、 x_{cg} は実際の重心位である。

(b) 造波抵抗

前項の空気力は亜音速を対象とした値であるため、本基準モデルでは[Hendrick 08]に示される造波抵抗の項を付加することで超音速域に拡張する。

$$C_{Dw}(M) = f_M C_{Dw0} \frac{k_{dw}}{(((M - k_{dwm})^2 - 1)^2 + k_{dw}^4)^{\frac{1}{4}}} \ , \ f_M = \frac{1}{1 + e^{-8\frac{M - (1 - \delta M/2)}{\delta M}}}$$

として、

$$\mathbf{F}_{DW_b} = \begin{pmatrix} -C_{DW} \\ 0 \\ 0 \end{pmatrix} \frac{\rho |\mathbf{v}_i|^2}{2} S$$

となる。ここで、 C_{Dw0} , k_{dwm} , k_{dw} , δM の4個の値がパラメータとなるが、これらは $F_{A_b}+F_{DW_b}$ の抵抗成分が[Webb 77]に示される各マッハ数における実際の抵抗値に近づくように数点ほどサンプリングしてカーブフィッティングした値を用いるものとする。

(6) 前項までの定式化を踏まえ、機体運動に関する状態量 $oldsymbol{x}$ 及び制御入力 $oldsymbol{u}$ をそれぞれ

 $m{x} = (m{r_i^T} \quad m{v_i^T} \quad q \quad m{\omega_i^T} \quad \delta_e \quad \delta_a \quad \delta_r \quad P)^T$, $m{u} = (u_e \quad u_a \quad u_r \quad u_P)^T$ として、機体の状態方程式は

$$\frac{dx}{dt} = f(x) + G(x)u$$

のようなアフィン系として表現できる。 ここで、 r_i は基準座標系における機体位置、 F_i は機体に働く外 力(基準座標系)、N_bは機体に働く外力モーメント(機体座標系)である。

1.3.1.2 飛行制御モデル

(1) 飛行制御則本体の概要

前項までのモデル化により、本戦闘機・無人機モデルの運動を表す状態方程式は状態量 17 次元、制 御入力4次元のアフィン系として表現された。本基準モデルにおいては簡易的な飛行制御モデルとし て、Dynamic Inversionによる線形化とLQR(線形2次レギュレータ)による最適制御を組み合わせた制 御則を提供する。本文書では制御系構築の概要を述べる。詳細な数式や実装はソースコード (SixDoFFighter.cpp)を参照されたい。

まず Dynamic Inversion の概要について解説する。状態量 $x \in \mathbb{R}^N$ 及び制御入力 $u \in \mathbb{R}^M$ を持つ以下の アフィン系システム

$$\frac{dx}{dt} = f(x) + G(x)u\,, \qquad f\colon \mathbb{R}^N \to \mathbb{R}^N, G\colon \mathbb{R}^N \to \mathbb{R}^{N\times M}$$
 について、あるスカラー制御量 $y = h(x)$ を制御することを考える。制御量の時間微分は、

$$\frac{d}{dt}y = \frac{\partial h(x)}{\partial x}(f(x) + G(x)u) = L_f h(x) + L_G h(x) \cdot u$$

$$L_f h(x) = \frac{\partial h}{\partial x} f$$
, $L_G h(x) = \frac{\partial h}{\partial x} G$

を用いて表される。この時間微分がuに依存する場合 $(L_{G}h \neq 0$ の場合、)yがuによって制御可能である ことを意味するが、1階微分の範囲においては $L_{G}h = \mathbf{0}$ となることも多い。そのような場合には、uの 係数が0でなくなるまで複数回時間微分を行うこととなる。そのために必要な微分階数rを相対次数と いい、yのr階微分はr-1階までuの係数が0であることを踏まえると、

$$\left(\frac{d}{dt}\right)^r y = L_f^r h + L_G L_f^{r-1} h \cdot \boldsymbol{u}$$

となる。このとき、ある擬似入力vにより

$$\boldsymbol{u} = \left(L_G L_f^{r-1} h\right)^{-1} \left(\boldsymbol{v} - L_f^r h\right)$$

と置き換えることで、

$$\left(\frac{d}{dt}\right)^r y = v$$

と線形化されるため、適切なvを与えることで様々な制御特性が実現できる。この一連の線形化を Dynamic Inversion と呼ぶ。

Dynamic Inversion は制御量が多変数である場合も同様の要領で制御量の各成分について線形化を行 うことで適用できる。つまり、k次元の制御量の各成分がそれぞれ

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_k \end{pmatrix}, \mathbf{h}(\mathbf{x}) = \begin{pmatrix} h_1(\mathbf{x}) \\ \vdots \\ h_k(\mathbf{x}) \end{pmatrix}, \mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix}, \left(\frac{d}{dt}\right)^{r_k} y_k = v_k$$

のように線形化されたとすると、

$$L_F = \begin{pmatrix} L_f^{r_1} h_1 \\ \vdots \\ L_f^{r_k} h_k \end{pmatrix}, L_{\tilde{G}} = \begin{pmatrix} L_G L_f^{r_1 - 1} \boldsymbol{h_1} \\ \vdots \\ L_G L_f^{r_k - 1} \boldsymbol{h_k} \end{pmatrix}$$

のように成分ごと並べ、

$$\boldsymbol{u} = L_{\tilde{G}} \left(L_{\tilde{G}} L_{\tilde{G}}^T \right)^{-1} (\boldsymbol{v} - L_F)$$

とすることで制御入力が得られる。

次に、上記線形化とLQRの連接の概要について解説する。制御量の各成分の目標値を $y_{k,tat}$ 、各成分 を評価するスケールをc_kとして、

$$\mathbf{z}_{k} = \begin{pmatrix} 1 \\ \vdots \\ \left(\frac{d}{dt}\right)^{r_{k}-1} \end{pmatrix} c_{k} (y_{k} - y_{k,tgt}), A_{k} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, B_{k} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

とすると、これらを

$$\mathbf{z} = \begin{pmatrix} \mathbf{z_1} \\ \vdots \\ \mathbf{z_k} \end{pmatrix}, A = \begin{pmatrix} A_1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & A_k \end{pmatrix}, B = \begin{pmatrix} B_1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & B_k \end{pmatrix}$$

のように並べることで、

$$\frac{d}{dt}\mathbf{z} = A\mathbf{z} + B\mathbf{v}$$

となり、評価関数

$$J = \int_0^\infty (\mathbf{z}^T Q \mathbf{z} + \mathbf{v}^T R \mathbf{v}) dt$$

を最小化する最適化手法である LQR が適用可能な形となる。 c_k,Q,R は全体としての制御特性を決定す るパラメータであり、適切な値を設定すべきものである。この系について有本=ポッターの解法によ り最適ゲインを求めると、

$$H = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix}$$

 $H = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix}$ の固有ベクトルのうち固有値の実部が負のものを行ベクトルとして縦に並べた

$$V = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$$

 $V=inom{U_1}{U_2}$ から $P=U_2U_1^{-1}$, $m v=-R^{-1}B^TPm z$ として最適な擬似入力m vを得ることができる。

本基準モデルにおいては、表 1.3-1に示す変数及びそれらの積分誤差を制御量として組み合わせ ることが可能であり、目標値に対して正負片側の偏差のみ制御対象とすることや、偏差を一定の値域 でクランプして用いることが可能となっている。

表 1.3-1 使用可能な制御量の一覧

分類	名称	記号	次元	相対次数
加減速	速度(スカラー)	$V = v_i $	1	2
	加速度(スカラー)	$a = \frac{dV}{dt}$	1	1
	推力	T = T(P)	1	1
	エンジンパワー	P	1	1
	機体座標系角速度	ω_b	3	2
旋回	z 軸荷重倍数([Heidlauf 18]による) ※l _c はコックピットと機体重心の距離	$N_z = \frac{-F_{A_{b,z}} - l_c \cdot (\boldsymbol{\omega_b})_y}{mq} - 1$	1	1
	ロール角速度([Heidlauf 18]による)	$p_s = \frac{v_i}{ v_i } \cdot \omega_i$	1	2
	横方向荷重([Heidlauf 18]による)	$N_y + r = \frac{F_{b,y} + l_c \cdot (\boldsymbol{\omega_b})_z}{mg}$	1	1
	迎角リミッタ	α	1	2

(2) 行動判断モデルからの制御目標値の与え方

前項の飛行制御則はあくまで局所的な速度・姿勢制御に関するものであり、目標経路等による制御のためにはもう一段階外側の制御則が必要であったり、安定的な飛行を行うためにはいわゆる正則化にあたる制御量を設定する必要があったりと、直接使用するには難がある。そのため、本基準モデルでは、行動判断モデル側からの制御目標値の与え方を以下の3種類用意している。

(a) 行きたい方向や飛びたい速度等により指示する場合・・・「fromDirAndVel」モード

このモードでは、進行方向に関する目標値と加減速に関する目標値を指定することになる。方向に関する指示は基準座標系における目標進行方向 d_{dst} 又は目標旋回率 $(\frac{d}{dt}\frac{v_i}{|v_i|})_{dst}$ で指定する。ただし、上下方向についてピッチ角でなく高度で指定したい場合は、 d_{dst} に加えて目標高度 h_{dst} を指定することにより、目標高度への到達に必要な目標ピッチ角が

$$\theta_{dst} = \min \left(\theta_{max}, \max \left(\theta_{min}, \sin^{-1} \left(\frac{1}{V} \left(K_{alt,P}(h - h_{dst}) + K_{alt,D} \frac{dh}{dt} \right) \right) \right) \right)$$

となるように d_{dst} が補正される。

加減速に関する指示は目標速度 V_{dst} 、目標加速度 a_{dst} 、目標推力 T_{dst} 、目標エンジンパワー P_{dst} のいずれかで指定する。方向に関する指示は簡易的な現在の進行方向と目標進行方向の差を参照した PD 制御によって $N_z, p_s, N_y + r$ に関する目標値に変換されて使用され、加減速に関する指示はそれぞれ表 1.3-1 に対応する制御量が存在するためそのまま使用される。また、飛行の安定化のために、角速度を 0 に近づける制御要素と迎角を一定範囲内に抑えようとする制御要素が自動的に付加される。

(b) 人間の操縦入力に近い制御目標値で指示する場合・・・「fromManualInput」モード

このモードでは、人間がスティック、ラダーペダル、スロットルを用いて 3 軸の姿勢制御と加減速を行うことに相当する値を制御目標値として指定することになる。3 軸の姿勢制御は表 1. 3-1 における N_z , p_s , N_y + r を指定する。加減速については目標加速度 a_{dst} 又は目標エンジンパワー P_{dst} を指定する。なお、行動判断モデル側から与える値は、 P_{dst} については値域が[0,1] となるように、それ以外については値域が[-1,1] となるように正規化したものとする。また、飛行の安定化のために、角速度を 0 に近づける制御要素と迎角を一定範囲内に抑えようとする制御要素が自動的に付加される。

(c) 操舵量を直接指示する場合・・・「direct」モード

このモードは1.3.1.2項(1)の制御則を使用せず独自の制御則を使用したい場合を想定したモードであり、姿勢制御については u_e,u_a,u_r を与え、加減速についてはTフィン化した u_P ではなく u_e の直接与えることとしている。

参考文献:

[AFCEC 13] Air Force Civil Engineer Center. "Air Emission Guide for Air Force Mobile Sources." Air Force Civil Engineer Center, 2013.

[Heidlauf 18] Heidlauf, P., et al. "Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers." ARCH18. 5th International Workshop on Applied Verification of Continuous and Hybrid Systems, 2018.

[Hendrick 08] Hendrick, P., Bourdiaudhy, K., and Herbiet, J. F. "A Flight Thrust Deck for the F100 Turbofan of the F-16 Aircraft." 26th Congress of International Council of the Aeronautical Sciences (ICAS), 2008.

[Krus 19] Krus, Petter, and Abdallah, Alvaro. "Modelling of Transonic and Supersonic Aerodynamics for Conceptual Design and Flight Simulation." Proceedings of the 10th Aerospace Technology Congress, 2019.

[Morelli 98] Morelli, E. A. "Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics." Proceedings of the 1998 American Control Conference, 1998.

[Stevens 15] Stevens, Brian L., et al. "Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems." John Wiley & Sons, 2015.

[Webb 77] Webb, T. S., Kent, D. R., and Webb, J. B. "Correlation of F-16 aerodynamics and performance predictions with early flight test results." Agard Conference Proceedings. N 242, 1977.

1.3.2 センサモデル

戦闘機・無人機の搭載センサは相手側の戦闘機・無人機を探知するレーダと、相手側の誘導弾を探知する MWS の 2 種類とする。

1.3.2.1 相手側戦闘機・無人機の探知 (レーダ)

相手側戦闘機・無人機の探知については、機体正面から偏角 $\theta_{FOR,radar}$ 以内の範囲で基準探知距離を $L_{ref,radar}$ 、目標のRCS スケールを σ としたとき、自機との距離Lが $L \leq L_{ref,radar} \cdot \sigma^{1/4}$ 以内の目標について、その真の三次元位置及び速度を遅延・欠損なく観測できるものとする。また、誤警報及び誤相関の発生は考慮しない。

1.3.2.2 相手側誘導弾の探知 (MWS)

相手側誘導弾の探知については、1.4.3項で定める誘導弾センサが起動し、かつ自機を捕捉している状態のものに限り、その誘導弾の自機からみた真の方向を遅延・欠損なく観測できるものとする。

1.3.3 ネットワークによる情報共有

味方の機体の諸元は、全て真の諸元を遅延・欠損なく共有できるものとする。

相手側の戦闘機・無人機及び誘導弾の諸元は、自陣営のいずれかの機体がセンサで捉えている場合に、同等の情報を遅延・欠損なく取得できるものとする。このとき、複数の機体が同一の目標を探知できている場合は、それらの探知情報を算術平均により合成して扱うものとする。

1.3.4 人間による介入の模擬

行動判断モデルの行動判断に対する人間による介入の模擬として、行動判断モデルが射撃行動を出力した際に、一定時間の判断遅延を経て射撃行動の承認が行われるような介入モデルを導入する。

介入モデルは、行動判断モデルから射撃行動の出力を認知するたび、その射撃対象と出力時刻の組を最大 C_h 組記憶する。記憶組数が上限に達している状態で認知した場合は無視する。また、記憶してから $\Delta t_{h,delay}$ 秒経過した組について、射撃行動を承認し、戦闘機・無人機モデルに射撃コマンドを送信し、記憶から消去する。また、行動判断モデルからごく短時間で複数の射撃行動を出力されたとしても反応できないことを模擬するため、最後に射撃行動の出力を認知、記憶した時点から $\Delta t_{h,cooldown}$ 経過するまでは新たな射撃行動の出力を認知できないものとする。

1.3.5 武装モデル

戦闘機・無人機モデルは1.4 項に示す誘導弾を1機あたり N_{msl} 発搭載しているものとし、1.3.4 項に示す人間介入モデルから射撃コマンドが送信された場合直ちに誘導弾の発射処理を行うものとする。

1.3.6 戦闘機・無人機に関する観測可能な情報

本基準モデルにおいて、行動判断モデルが観測してよい情報(observables)は次の通りとなる。

表 1.3-2 戦闘機・無人機に関する観測可能な情報(json として表現)(1/2)

キー名(インデントは	本文中	型	概要
階層を表す)	の記号		
isAlive		bool	生存中か否か
spec		object	性能に関する値(戦闘中不変)
dynamics		object	運動性能に関する値 ※該当なし
propulsion		object	推進系(エンジン)の性能に関する値
fuelCapacity		double	燃料タンクの容量[kg]
optCruiseFuel		double	最適な(燃料消費が最小な)巡航高度・速度で
FlowRatePer			水平飛行した際の単位距離あたりの燃料消費
Distance			量[kg/m]
weapon		object	武装に関する値
numMs1s	N_{msl}	unsigned int	初期誘導弾数
stealth		object	被探知性能に関する値
rcsScale	σ	double	RCS スケール(無次元量として扱う)
sensor		object	センサに関する値
radar		object	レーダに関する値
Lref	$L_{ref,radar}$	double	基準探知距離[m]
thetaFOR	$ heta_{FOR,radar}$	double	探知可能覆域[rad]
mws	2 2 2 3 7 2 2 2 2 2 2	object	MWS に関する値 ※該当なし
motion		object	現在の運動状態に関する値。後述する
			MotionState クラスの json 表現である。
propulsion		object	推進系(エンジン)の現在の状態量
fuelRemaining		double	残燃料[kg]
sensor		object	現在の探知状況に関する値
radar		object	自機レーダの探知状況に関する値
track		array(object)	自機レーダが探知した3次元航跡のリスト。
			各要素は後述する Track3D クラスの json 表現
			である。
track		array(object)	編隊内で共有し統合されたレーダ航跡のリス
			ト。各要素は後述する Track3D クラスの json
			表現である。
trackSource		array(array(st	編隊内で共有し統合された3次元航跡それぞ
		ring))	れの、統合元となった機体名のリストのリス
			۲.
mws		object	自機 MWS の探知状況に関する値
track		array(object)	自機 MWS が探知した2次元航跡のリスト。
			各要素は後述する Track2D クラスの json 表現
			である。

表 1.3-2 戦闘機・無人機に関する観測可能な情報(json として表現)(2/2)

キー名(インデントは	本文中	型	概要
階層を表す)	の記号		
weapon		object	現在の武装状況に関する値
remMsls		unsigned int	現在の残弾数
nextMsl		unsigned int	次に射撃する誘導弾の ID
launchable		bool	現在射撃可能な状態か否か。残弾数が0でな
			く、かつ人間介入モデルの記憶容量が上限に達
			していない場合に可となる。
missiles		array(object)	各誘導弾に関する observables の配列。その内
			訳は後述する誘導弾モデルに記載のとおり。
shared		object	味方機の observables。自身を含む各機の名称を
			キーとして各機の observable の一部を格納。含
			まれないものは以下の3要素である。
			・/shared 以下全て
			•/sensor/track
			•/sensor/trackSource

1.3.7 戦闘機・無人機に関する制御情報

本基準モデル全体として、行動判断モデルから受け取る制御情報コマンドは次の通りとなる。なお、motion について「dst \bigcirc 」となっているものは「fromDirAndVel」モードにおいて使用するもの、そうでないものは「fromManualInput」モード又は「direct」モードで使用するものである。

表 1.3-3 戦闘機・無人機に関する行動判断モデルからの制御情報(json として表現)

キー名(インデン	本文中	型	概要
トは階層を表す)	の記号		
motion		object	運動に関する値
roll	u_a	double	エルロンの目標操舵量([-1,1]で正規化。負側が左旋
			回)
	p_s		ロール角速度の目標値([-1,1]で正規化。負側が左旋
			回)
pitch	u_e	double	エレベータの目標操舵量([-1,1]で正規化。負側が下
			降)
	N_z		z 軸荷重倍数の目標値([-1,1]で正規化。負側が下降)
yaw	u_r	double	ラダーの目標操舵量([-1,1]で正規化。負側が左旋回)
	$N_y + r$		横方向荷重倍数の目標値([-1,1]で正規化。負側が左
			旋回)
accel	a_{dst}	double	目標加速度([-1,1]で正規化。負側が減速)
throttle	P_{dst}	double	目標エンジンパワー
dstDir	d_{dst}	array(double)	目標進行方向(単位ベクトル)
dstAlt	h_{dst}	double	目標高度[m]
dstTurnRate	$(\frac{d}{dt}\frac{v_i}{ v_i })_{dst}$	array(double)	目標旋回率[rad/s]
	$dt v_i ^{dst}$		
dstV	V_{dsy}	double	目標速度[m/s]
dstAccel	a_{dst}	double	目標加速度[m/s²](負側が減速)
dstThrust	T_{dst}	double	目標推力[N]
dstThrottle	P_{dst}	double	目標エンジンパワー
weapon		object	射撃に関する値
launch	_	bool	射撃するか否か
target	_	object	射撃する対象の3次元航跡の json 表現

1.4 誘導弾のモデル

1.4.1 運動・飛行制御モデル

誘導弾の性能については、[Ekker 94]及び[Redmon 80]に記載されている AMRAAM 相当の値を用いるものとする。

1.4.1.1 空気カモデル

誘導弾に働く空気力は[Ekker 94]に記載されているモデルを用いるが以下の2点の改変を加える。

- (1) 全て MKS 単位系 (角度は rad) を用いるものとする。
- (2) 遷音速域 $(M = 0.95 \sim 1.2)$ について一部の関数が適用対象外となるが、モデルを簡略化するために、亜音速域または超音速域の計算方法をそのまま準用して計算するものとする。

1.4.1.2 推力モデル

誘導弾の推力モデルは、射撃後に燃焼時間 t_{burn} が経過するまでの間は一定の推力 T_{msl} を発生し、それ以降の推力は 0 とする単純なモデルとする。また、燃焼による誘導弾の質量変化は無視する。 t_{burn} 及び T_{msl} の値は[Ekker 94]及び[Redmon 80]に基づき、推進剤の比推力 I_{sp} と、参照高度 h_{boost} における最高到達マッハ数 M_{boost} から求めたものを用いる。

1.4.1.3 運動モデル

誘導弾の運動は以下の通り簡略化したものを用いる。

- (1) 誘導弾の姿勢(座標系)は、戦闘機・無人機モデルと同様に、弾体軸固定座標系をy軸まわりに 回転させて速度ベクトルの方向がx軸に一致するようにした座標系を指すものとする。姿勢表現は戦闘 機・無人機モデルと同様とする。
- (2) 誘導弾の姿勢運動について、x軸周りの回転は無視する。また、y,z軸周りの回転は直ちに所要の姿勢をとれるものとして扱う。
- (3) (2)により、迎角 α と舵角 δ を直接制御入力として扱うものとする。ただし、1.4.1.1項の空気力モデルにおいて α と δ により生じるピッチングモーメントが0に釣り合うことを制約条件とする。

1.4.1.4 飛行制御モデル

誘導弾の飛行制御は、目標の航跡情報(位置及び速度)に基づき、ゲインGの単純な比例航法により計算した必要角速度を実現するために必要な横力を生じさせる α と δ の組を計算することによって行うものとする。また、横方向加速度には上限 $G_{limit\ msl}$ を設ける。

参考文献:

[Ekker 94] Ekker, David A. Missile Design Toolbox. Diss. Monterey, California. Naval Postgraduate School, 1994.

[Redmon 80] Redmon, Danny Ray. Tactical Missile Conceptual Design. Naval Postgraduate School Monterey CA, 1980.

1.4.2 最大飛翔時間及び命中判定

誘導弾の有効飛翔時間は $t_{M,max}$ 秒間とし、その時間内に自陣営以外のいずれかの戦闘機・無人機との距離が d_{hit} 以下となった場合には起爆するものとし、その時点で命中半径内に存在している全ての自陣営以外の戦闘機・無人機に対し撃墜判定を与えるものとする。また、燃焼終了後に飛翔速度が $V_{M,min}$ を下回った場合は、飛翔時間が残っていたとしても当該誘導弾を無効化するものとする。

1.4.3 センサモデル

誘導弾自身の諸元は真の値を遅延・欠損なく取得できるものとする。目標機の航跡情報は発射母機 が保持している場合は発射母機と同一の情報を遅延・欠損なく取得できるものとする。

自身の保持している目標情報との距離が d_{MS} 以内となった場合、シーカを起動するものとし、以後は 発射母機からの航跡供給の有無によらず、目標が自身の覆域内(正面から偏角 $heta_{FOR.seeker}$ 以内の範 囲)に存在し、かつ目標の推定方向を中心とした視野内(偏角 $\theta_{FOV,seeker}$ 以内の範囲)に存在している 場合に目標の航跡を必ず遅延・欠損なく取得できるものとする。探知誤差については、1.3.2.1項 と同じ要領で加えるものとする。また、覆域の計算においては簡略化のために迎角の影響は無視し、 その中心が常に進行方向と一致するものとする。

発射母機とシーカのいずれも目標を探知できていない場合は、目標が等速直線運動をしていると仮 定して外挿を行い、誘導を継続するものとする。

1.4.4 誘導弾に関する観測可能な情報

本基準モデルにおいて、行動判断モデルが観測してよい情報(observables)は次の通りとする。

耒	$1 \ 4 - 1$	誘導弾に関す	る観測可能な情報	#(ison ≻	して表現)
---	-------------	--------	----------	----------	-------

キー名	本文中	型	概要
	の記号		
isAlive		bool	生存中か否か
hasLaunched		bool	発射済みか否か
launchedT		double	発射時刻。未発射の場合は-1
mode		string	目標の追尾状況であり、以下の3種類のいずれか。 "guided"・・・母機から供給された航跡を使用 "self"・・・自身のセンサで捉えた航跡を使用 "memory"・・・メモリトラックにより外挿中
target		object	目標の3次元航跡。後述するTrack3Dクラスのjson 表現である。
motion		object	現在の運動状態に関する値。後述する MotionState クラスの json 表現である。

1.5 航跡及び運動状態の表現

1.5.1 3 次元航跡の表現

本シミュレータにおいて3次元航跡を表すTrack3Dクラスは、慣性系での位置、速度及び生成時刻 を保持するものとして扱う。また、航跡は必ずそれがどの Asset を指したものかを示す情報を付加 し、誤相関は発生しないものとして扱う。3次元航跡をjson化した際の表現は次の通りとする。

表 1.5-1 Track3D クラスの json 表現

瓶田 刑 キー名 木文山

7 4	平义中	2	似安
	の記号		
truth		str	この3次元航跡が指す対象のAsset を特定するUUID(バー
			ジョン 4)を表す文字列。
time		array(double)	この航跡を生成した時刻
pos		array(double)	位置ベクトル(慣性系)
vel		array(double)	速度ベクトル(慣性系)
buffer		array(object)	この3次元航跡と同一の対象を指すものとして外部から
			追加された3次元航跡のリスト。merge 関数によって平均
			値をとる際に用いられる。

1.5.2 2 次元航跡の表現

本シミュレータにおいて 2 次元航跡を表す Track2D クラスは、慣性系での観測点の位置、観測点から見た目標の方向及び角速度並びに生成時刻を保持するものとして扱う。また、航跡は必ずそれがどの Asset を指したものかを示す情報を付加し、誤相関は発生しないものとして扱う。 2 次元航跡を json 化した際の表現は次の通りとする。

キー名	本文中	型	概要
	の記号		
truth		str	この2次元航跡が指す対象のAsset を特定するUUID(バー
			ジョン 4) を表す文字列。
time		array(double)	この航跡を生成した時刻
dir		array(double)	方向ベクトル(慣性系)
origin		array(double)	観測者の位置ベクトル(慣性系)
omega		array(double)	角速度ベクトル(慣性系)
buffer		array(object)	この2次元航跡と同一の対象を指すものとして外部から
			追加された2次元航跡のリスト。merge 関数によって平均
			値をとる際に用いられる。

表 1.5-2 Track2D クラスの json 表現

1.5.3 運動状態の表現

本シミュレータにおいて一般的な運動状態はMotionState クラスにより表現するものとし、位置、速度、姿勢、角速度及び生成時刻を保持するものとして扱う。また、姿勢に関する追加情報として、方位角、ピッチ角の情報と、方位角をそのままにx-y平面を水平面と一致させた座標系の情報を付加するものとする。

また、基本的な observables として得られるものは慣性系における値とし、内部の状態量として使用するものは親 Asset の座標系における値とする。運動状態を json 化した際の表現は次の通りとする。

キー名	本文中	型	概要
	の記号		
pos		array(double)	位置ベクトル
ve1		array(double)	速度ベクトル
omega		array(double)	角速度ベクトル
q		array(double)	現在の姿勢。クォータニオンを実部⇒虚部の
			順に並べた4次元ベクトルとして記述。
qh		array(double)	現在の方位を x 軸正方向として $x-y$ 平面を水
			平にとった座標系。クォータニオンを実部⇒
			虚部の順に並べた4次元ベクトルとして記
			述。
az		double	現在の方位角(真北を0として東側を正)
el		double	現在のピッチ角(下向きを正)
time		double	この MotionState を生成した時刻

表 1.5-3 MotionState クラスの json 表現

1.6 地球モデル

本シミュレータにおいて、地形については模擬せず、地球の曲率も無視する。また、重力場は重力加速度 $g=9.8[\text{m/s}^2]$ の一様場とする。大気については ISO 2533:1975 で定められている標準大気モデルを用いるものとする。

1.7 基準パラメータ

前項までで定義した空対空目視外戦闘環境の設定パラメータ及び基準値の一覧は表 1.7-1から表 1.7-3に示す通りである。

表 1.7-1 戦闘のルールに関する基準パラメータ

実装クラス	本文書中 の記号	基準シミュレータ における変数名	意味	意味		単位
SimulationManager	dt_{base}	baseTimeStep	シミュレーション時刻の最小単位	(=1tick)	0.05	S
SimulationManager	n_{agent}	agentInterval	行動判断モデルの行動判断の周期		20	tick
Ruler	t_{Max}	maxTime	最大戦闘時間		2400	S
	t_{Min}	minTime	最小打ち切り時間		300	S
	D_{line}	dLine	戦域中心から防衛ラインまでの距	離	100000	m
	D_{out}	d0ut	戦域中心から戦域の南北端までの	距離	75000	m
	H_{limit}	hLim	戦域の高度上限(実質的には使用していない)		20000	m
	_	westSider	西側からスタートする陣営の名称		"Red"	_
	_	eastSider	東側からスタートする陣営の名称		"Blue"	_
R4BVRRuler01	p_{Disq}	pDisq	減点過剰により失格とする点数		-10	_
	p_{Break}	pBreak	相手の防衛ラインを突破したときに得る得点		1.0	_
			相手を 1 機撃墜するごとに得る	"Large"の場合	0.5	
	p_{Hit}	pHit	得点	"Small"の場合	0. 25	1 –
		C l-	自陣営の機体が 1 機墜落するご	"Large"の場合	1.0	
	p_{Crash}	pCrash	とに失う得点	"Small"の場合	0.5	_
	p_{Out}	p0ut	南北方向の戦域逸脱度合いに応じた減点量		0.01	$(km \cdot s)^{-1}$
D: 14	D_{init}		各機の南北方向の初期位置(中央からの距離)		20000	m
Fighter	h_{init}		各機の初期高度		10000	m
(instanceConfig として指定)	V_{init}] _	各機の初期速度		300	m/s
こして1日化)	_		各機の針路方位(真北を0とし東位	則を正)	270/90	deg

表 1.7-2 戦闘機・無人機モデルに関する基準パラメータ(1/2)

実装クラス	本文書中 の記号	基準シミュレータ における変数名	意味		基準値	単位
	σ	rcsScale	RCS スケール		1	_
Fighter	N_{msl}	numMsls	搭載誘導弾数	"Large"の場合 "Small"の場合	10	_
	_	fuelCapacity	燃料タンクの容量(Ru 費量 25%の徴収前)	ıler による進出時消	12,000	lbs
	C_h	capacity	人間介入モデルの記憶 力の組数	意可能な射撃行動出	1	組
Fighter:: HumanIntervention	$\Delta t_{h,delay}$	delay	人間介入モデルの射! 遅延時間	撃行動の承認までの	3	S
	$\Delta t_{h,cooldown}$	cooldown	人間介入モデルの射! きる間隔	撃行動出力を認知で	0. 999	S
	m	m	質量		20,500	lbs
	S	S	主翼面積	主翼面積		ft ²
	L_e	Le	エンジン角運動量		160	slug/ft ²
	b	b	主翼スパン		30	ft
	\bar{c}	mac	主翼平均空力翼弦		11.32	ft
	$x_{cg,R}$	XcgR	基準重心位置		0.35	
	x_{cg}	Xcg	重心位置		0.35	
	I_b	Ι	機体座標系慣性テン	ソル	省略	
SixDoFFighter	_	deLimit	エレベータ舵角上限		25	deg
SixDorrighter	_	daLimit	エルロン舵角上限		21	deg
	_	drLimit	ラダー舵角上限		30	deg
	_	deMaxRate	エレベータ舵角変化	率の上限	60	deg/s
	_	daMaxRate	エルロン舵角変化率の	エルロン舵角変化率の上限		deg/s
	_	drMaxRate	ラダー舵角変化率の.	上限	120	deg/s
	$ au_e$	deTimeConstant	エレベータ舵角の遅	れ時定数	0.0495	S
	τ_a	daTimeConstant	エルロン舵角の遅れ	時定数	0.0495	S
	$ au_r$	drTimeConstant	ラダー舵角の遅れ時気	定数	0.0495	S
	$C_{Dw0}, k_{dwm}, k_{dw}, \delta M$	cdwTable	造波抵抗のパラメー	タ	省略	

表 1.7-2 戦闘機・無人機モデルに関する基準パラメータ(2/2)

実装クラス	本文書中 の記号	基準シミュレータ における変数名	意味	基準値	単位
	$K_{alt,P}$	pGain	目標高度から目標ピッチ角を計算する際の比例ゲイン	-0.3	
AltitudeKeeper	$K_{alt,D}$	dGain	目標高度から目標ピッチ角を計算する際の微分ゲイン	-0.1	
AI tI tudekeepei	$ heta_{min}$	minPitch	目標ピッチ角の下限	-0.524	deg
	θ_{max}	maxPitch	目標ピッチ角の上限	0.524	deg
	$\begin{array}{c} c_{x_q}(\alpha) \\ c_{y_r}(\alpha) \\ c_{y_p}(\alpha) \\ c_{z_q}(\alpha) \\ c_{l_r}(\alpha) \\ c_{l_p}(\alpha) \\ c_{m_q}(\alpha) \\ c_{n_r}(\alpha) \\ c_{n_p}(\alpha) \end{array}$	dampTable	角速度に関する安定微係数を集めたテーブル	省略	
	$c_x(\alpha, \delta_e)$	cxTable	$c_x(\alpha, \delta_e)$ のテーブル	省略	
	_	czTable	$c_z(\alpha,\beta,\delta_e)$ のうち、 α に依存する項のテーブル	省略	
	$c_l(\alpha,\beta)$	clTable	$c_l(\alpha,\beta)$ のテーブル	省略	
	$c_m(\alpha, \delta_e)$	cmTable	$c_m(\alpha, \delta_e)$ のテーブル	省略	
StevensFighter	$c_n(\alpha,\beta)$	cnTable	$c_n(\alpha,\beta)$ のテーブル	省略	
	$c_{l_{\delta_a}}(\alpha,\beta)$	dldaTable	$c_{l\delta_a}(\alpha,\beta)$ のテーブル	省略	
	$c_{l_{\delta_r}}(\alpha,\beta)$	dldrTable	$c_{l_{\delta_{\alpha}}}(\alpha, \beta)$ のテーブル	省略	
			$c_{l_{\delta_r}}(\alpha, \beta)$ \mathcal{O}_r		
	$c_{n_{\delta_a}}(\alpha,\beta)$	dndaTable		省略	
	$c_{n_{\delta_r}}(\alpha,\beta)$	dndrTable	$c_{n_{\delta_r}}(\alpha,\beta)$ のテーブル	省略	
	_	alphaTable	テーブルデータのαに関する参照点	省略	
	_	betaSymTable	テーブルデータの β に関する参照点	省略	
	_	betaAsymTable	テーブルデータのβに関する参照点	省略	
	_	deTable	テーブルデータの δ_e に関する参照点	省略	
	_	dCydB	$c_y(eta, \delta_a, \delta_r)$ のうち、 eta に依存する項のテーブル	省略	
	_	dCydda	$c_y(eta, \delta_a, \delta_r)$ のうち、 δ_a に依存する項のテーブル	省略	
	_	dCyddr	$c_y(eta, \delta_a, \delta_r)$ のうち、 δ_r に依存する項のテーブル	省略	
	_	dCzdde	$c_z(lpha,eta,\delta_e)$ のうち、 δ_e に依存する項のテーブル	省略	
MorelliFighter	_	aeroC	[Morelli 98]で示される多項式係数の list を式名を キーとして格納した dict	省略	
	_	considerFuel	燃料消費を考慮するか否か	true	
		fuelFlowRateMin	IDLE 時 $(p_{cmd} = 0)$ の燃料流量	1006	lbs
		fuelFlowRateMil	MILITARY 時 $(p_{cmd}=0.5)$ のン燃料流量	8888	lbs
		fuelFlowRateMax	MAX AB 時 $(p_{cmd}=1)$ の燃料流量	40123	lbs
Ci. 1 Pi la .	_	tHalf	目標パワーが MILITARY($p_{cmd} = 0.5$)となるスロットルレバー位置(現モデルは不使用)	0.77	
SimpleFighter	_	tminTable	IDLE 時 $(p_{cmd}=0)$ の推力テーブル	省略	
JetEngine	_	tmilTable	MILITARY 時 $(p_{cmd} = 0.5)$ の推力テーブル	省略	
	_	tmaxTable	MAX AB 時 $(p_{cmd}=1)$ の推力テーブル	省略	
	_	alts	推力テーブルの高度軸の参照点	省略	
	_	machs	IDLE, MILITARY 時の推力テーブルのマッハ数軸の参照 点	省略	
	_	machsEx	MAX AB 時の推力テーブルのマッハ数軸の参照点	省略	
	_	positiveNzLimit	N_z の目標値の正側上限	9	G
	_	negativeNzLimit	N_z の目標値の負側上限	3. 5	G
	_	maxNyrCmd	$N_{\rm v}+r$ の目標値の上限	2	G
	_	maxPsCmd	p_s の目標値の上限	2	rad/s
	k_a	kNzCmdP	N_z の目標値に関する比例ゲイン	10	, 3
SixDoFFighter::	k_n	kNzCmdD	N_z の目標値に関する微分ゲイン	-5	
FlightController	k_{θ}	kNyrCmdP	$N_{v} + r$ の目標値に関する比例ゲイン	30	
9	k_{ω}	kNyrCmdD	$N_{v} + r$ の目標値に関する微分ゲイン	-5	
	k_{α}	kPsCmdP	p _c の目標値に関する比例ゲイン	0. 25	
	k_{ϵ}	kPsCmdD	p_s の目標値に関する微分ゲイン	-5	
	ν _ε	modelConfig.at(Dynamic Inversion+LQRで制御対象とする量に関する	省略	
	_	"commandParser")	パラメータ	шин	
AircraftRadar	$L_{ref,radar}$	"commandParser") Lref	パラメータ レーダの基準探知距離	100,000	m

表 1.7-3 誘導弾モデルに関する基準パラメータ

中华之二	本文書中	基準シミュレータ	** n.t.	+ 3# 1+)\\\ / L ₄
実装クラス	の記号	における変数名	意味	基準値	単位
	_	mass	質量	339	lbs
	$\lambda_{ heta}$	tMax	最大飛翔時間	150	S
	d_{hit}	hitD	命中判定距離	300	m
	I_{sp}	Isp	比推力	260	S
	G_{boost}	boostMaxG	推力計算に用いる加速度	30	G
	M_{boost}	boostMaxM	推力計算に用いる到達マッハ数	4	
	h_{boost}	boostAlt	推力計算に用いる飛翔高度	10000	ft
	_	length	全長	12	ft
	_	lcg	重心位置(先端から)	6. 5553	ft
	_	diameter	直径	0.6	ft
Missile	_	lengthN	ノーズの長さ	1.2	ft
	_	thicknessRatio	翼厚比	0.04	
	_	spanW	主翼スパン	2. 5817	m
	_	spanT	尾翼スパン	1. 2950	m
	_	locationW	主翼位置(先端から)	5. 5767	m
	_	areaW	主翼面積	2. 3798	m ²
	_	areaT	尾翼面積	0. 5988	m ²
	_	maxA	迎角上限	30	deg
	_	maxD	舵角上限	30	deg
	$G_{limit,msl}$	maxLoadG	横方向 G 制限	30	G
	$V_{M,min}$	minV	飛翔下限速度	150	m/s
PropNav	G	gain	比例航法ゲイン	15	
	$L_{ref,seeker}$	Lref	誘導弾搭載センサの基準探知距離	10,000	m
MissileSensor	$ heta_{FOR,seeker}$	thetaFOR	誘導弾搭載センサの覆域	60	deg
	$ heta_{FOV,seeker}$	thetaFOV	誘導弾搭載センサの視野角	15	deg

2 初期行動判断モデル

本シミュレータは簡易なルールベースによる初期行動判断モデルを R4InitialFighterAgent01 クラスとして提供している。本項ではその行動判断要領及び設定パラメータを示す。

2.1 航跡に対する付帯情報

初期行動判断モデルでは、自編隊センサから得ていた航跡情報をそのまま用いるのではなく、以下の情報を付帯情報として付与して行動判断を行う。設定パラメータは表 2.1-1の通りである。

- (1) センサが失探した瞬間に何もできなくならないように、失探後も更に t_{memory} 秒間メモリトラックによって航跡を保持する。
- (2) 以下の2種類の射程を計算する。彼我ともに同じ性能と仮定し、彼我ともに直ちに水平飛行に移行して等速直線運動を行った場合の射程である。
 - (a) R_{head}···目標が直ちに自機を正面に向けて飛んだ場合の最大射程。
 - (b) R_{tail} ・・・・目標が直ちに自機に背を向けて飛んだ場合の最大射程。

図 2.1-1 各射程の概念図

- (3) 目標に対する各機のセンシング状況を以下の3種類に分類する。
 - (a) OUTSIDE···基準探知距離、基準探知角範囲の外に存在する場合。
- (b) INSIDE・・・基準探知距離から L_{limit} [m]、以上内側かつ覆域端から θ_{limit} [deg]以上内側に存在する場合であって、自身が回避中でも離脱中でもない場合。
 - (c) LIMIT···OUTSIDE と INSIDE の中間に存在する場合。

図 2.1-2 センシング状況の分類

(4) 自編隊のどの機体によって探知された航跡なのかを識別するため、航跡供給元の機体名の情報を保持する。

表 2 1-1 航跡の付帯情報を特徴づける。	パラマータ	歩べけるパラ

変数名	意味	本文中 の記号	基準値	単位
tMaxMemory	独自メモリトラックの秒数。	t_{memory}	10	S
sensorInRangeLimit	センシング状況を INSIDE と判定するための距離。 センサの基準探知距離 $L_{ref,radar}$ からどれだけ内側かという形式で指定する。	L_{margin}	10,000	m
sensorInCoverageLimit	センシング状況を INSIDE と判定するための角度。 覆域端からどれだけ内側かという形式で指定する。	θ_{margin}	5	deg

また、これらの付帯情報を付加した航跡を json 化する際には 1.5 項の情報に加えて下表の値が追加される。

キー名	本文中	型	概要
	の記号		
idx		int	対応する元の航跡のリストインデックス
distance		double	自機との距離
myRHead	R_{head}	double	自機からこの航跡へ射撃する際の R_{head}
myRTail	R_{head}	double	自機からこの航跡へ射撃する際のR _{tail}
hisRHead	R_{tail}	double	この目標から自機へ射撃する際のR _{head}
hisRTail	R_{tail}	double	この目標から自機へ射撃する際のR _{tail}
inOurSensor		string	自編隊によるセンシング状況
			INSIDE・・・少なくとも1機によるセンシング状況が INSIDE
			OUTSIDE・・・全ての機体によるセンシング状況が OUTSIDE
			LIMIT・・・上記以外
inMySensor		string	自機によるセンシング状況。 2.1項(3)の通り。
numTracker		unsigned int	この目標を探知できている機体の数
numTrackerLimit		unsigned int	この目標をLIMIT の状態で探知している機体の数
trackers		array(string)	この目標を探知できている機体名のリスト
limitTrackers		array(string)	この目標をLIMIT の状態で探知している機体の数
nonLimitTrackers		array(string)	この目標を INSIDE の状態で探知している機体の数
state		string	この目標の更新状況。
			TRACK・・・少なくとも 1 機が探知しており、その情報で更新中
			MEMORY・・・メモリトラックによる外挿中
			LOST・・・メモリトラックの継続時間上限に達した
memoryStartTime		double	メモリトラックを開始した時刻

表 2.1-2 航跡の付帯情報の json 表現

2.2 目標選択

本基準モデルは最低限の味方との連携を実現するために、行動の対象を主目標と副目標に分けて考える。主目標は接近や射撃等の対象であり、各機1機のみを選ぶ。副目標はなるべく探知できるように心がける対象であり、味方の主目標と、誘導弾が飛翔中の目標を指すものとする。主目標の選択要領は以下の通りとし、設定パラメータは表 2. 2-1 の通りとする。

- (1) 主目標の候補は、自編隊センサで得ている全航跡と、メモリトラック中の副目標とする。
- (2) 対象が自陣に十分近いか、敵陣側扇形範囲内に対象を捉えている味方がいない、のいずれかを満たす候補が存在した場合、その候補を突破阻止対象として扱い、主目標が未割当の味方のうちその候補に最も近い味方の主目標として割り当てる。
- (3) 突破阻止対象を割り当てられなかった機体はそれぞれ自身から距離が最も近い候補を主目標として選択する。

図 2.2-1 突破阻止対象の判定(a…距離による判定、b…角度による判定)

表 2.2-1 目標選択を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
dPrioritizedAimLeaker	相手を Leaker と判定する、自陣からの距離。Ruler の D_{line} に対する比で表す。	_	0.1	_
thetaPrioritizedAimLeaker	相手を Leaker と判定する、扇形範囲の中心角。	-	45	deg

2.3 行動の種類

初期行動判断モデルは、表 2.3-1の5種類の8 state 間を遷移しながら行動を決定していく。これらの8 state に離散的なイベントである射撃を加えた8 6 種類の状態の遷移が本基準モデルの基本的な振る舞いであり、その概要を図示すると図 2.3-1 のようになる。

	1	
変数 state の値	本書での表現	概要
ADVANCE	前進	敵陣側へまっすぐ前進する。副目標を捉えるために少し方位をずらすこともある。
APPROACH_TARGET	接近	主目標の存在する方位に向かって進む。副目標を捉えるために少し方位をずらすこともある。
KEEP_SENSING	横行	主目標を覆域端に捉えるように飛行する。副目標を捉えるために少し方位をずらすこともある。
RTB	後退	燃料が足りなくなりそうな場合に自陣側へ後退しようと試みる。
WITHDRAW	離脱	トリガーとなった彼機から離れるように離脱する。
EVADE	回避	検知した誘導弾に背を向けてダイブし、回避を試みる。

表 2.3-1 初期行動判断モデルの状態

図 2.3-1 基本となる状態遷移

2.4 (s1)通常時の行動

回避や離脱を行っていない「(s1)通常時」の行動については、以下のフローに従って選択するものとする。

- (1) 「後退」でないときに余剰燃料が一定値未満になった場合、必ず「後退」とする。
- (2) 「後退」しているときに余剰燃料が一定値以上になった場合、(3)~(7)に従って「後退」以外の行動を選択するものとする。
- (3) 見えている彼機が存在しない、自身が彼防衛ラインに近い、自身から見て彼防衛ライン側扇形範囲内に彼機が存在しない、のいずれかを満たす場合、必ず「前進」とする。
- (4) 自身の主目標が突破阻止対象であるとき、必ず「接近」とする。

- (5) 自身の主目標を味方が余裕をもって捉えているとき、確率で「前進」「接近」「横行」から選択する。
- (6) 自身の主目標を味方が余裕をもって捉えてはおらず、自身でも余裕をもって捉えていないとき、必ず「接近」とする。
- (7) 自身の主目標を味方が余裕をもって捉えてはおらず、自身は余裕をもって捉えているとき、確率で「接近」「横行」から選択する。

上記のうち(3)~(7)のフローを図示すると図 2.4-1のようになり、設定可能なパラメータは表 2.4-1の通りである。

図 2.4-1 通常時の行動選択フロー

表 2.4-1 通常時の行動を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
RTBEnterMargin	「後退」を開始する余剰燃料量	$L_{fmargin1}$	50,000	m
RTBExitMargin	「後退」を終了する余剰燃料量	$L_{fmargin2}$	100, 000	m
thetaKeepSensing	横行時に目標を収めようとする、覆域端からの角度。	θ_{keep}	10	deg
dPrioritizedAdvance	前進を優先する、敵陣からの距離。RulerのdLineに対する比で表す。	r_{adv}	0.1	_
thetaPrioritizedAdvance	前進を優先する、扇形範囲の中心角。	θ_{adv}	45	deg
pAdvanceAlly	条件(3)において「前進」を選ぶ重み。	$p_{Ally,Adv}$	60	
pApproachAlly	条件(3)において「接近」を選ぶ重み。	$p_{Ally,App}$	30	
pKeepSensingAlly	条件(3)において「横行」を選ぶ重み。	$p_{Ally,Keep}$	10	
pApproachMySelf	条件(5)において「接近」を選ぶ重み。	$p_{Self,App}$	30	
pKeepSensingMySelf	条件(5)において「横行」を選ぶ重み。	$p_{Self,Keep}$	70	

2.5 (a1)射撃

初期行動判断モデルは、自機が射撃可能な状態(弾切れでなく、人間介入モデルに射撃出力を処理する余力があること)であるときに(1) \sim (3) の射撃条件を全て満たす航跡がある場合に、射撃を試みるものとする。

- (1) その航跡との距離を、 R_{tail} を0、 R_{head} を1として線形変換した値rがr < k_{shoot} 以下であること。
- (2) その航跡を自編隊のうち1機以上が余裕をもって捉えていること。
- (3) 自身がその航跡に対して射撃した誘導弾のうち飛翔中のものがN_{simul}発以下であること。

射撃条件を満たした航跡が複数存在した場合は、条件(1)におけるrが最も小さい航跡を射撃対象として選択する。各射撃条件のイメージは図 2.5-1の通りであり、設定パラメータは表 2.5-1の通りである。

図 2.5-1 各射撃条件のイメージ

表 2.5-1 射撃を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
kShoot	その航跡が射程内であると判定する閾値	k _{shoot}	0. 45	
nMs1Simul	1 航跡に対する同時射撃数の上限	N_{simul}	1	

2.6 (s2)離脱

初期行動判断モデルは、自身が保持している全ての航跡を対象とし、彼側の R_{tail} を0、 R_{head} を1として線形変換した値rがr < k_{break} 以下となった航跡が一つでも存在した場合、その航跡に背を向けられる方位に向けて離脱を行うものとする。複数の航跡が条件を満たしていた場合は、それらの間隔が最も広く空いている方位に向けて離脱を行うものとする。離脱の終了は、離脱条件を満たす航跡が存在しない状態が $t_{withdraw}$ 秒継続したときとする。

図 2.6-1 離脱条件のイメージ

表 2.6-1 離脱を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
kBreak	その航跡からの射程内であると判定する閾値	k_{break}	0. 25	
tWithdraw	離脱条件を満たさなくってから離脱を終了するまでの待機時間	$t_{withdraw}$	50	S

2.7 (s3)回避

初期行動判断モデルは、自機の MWS が誘導弾を検知している場合、最優先で回避を試みるものとする。回避は検知した弾と反対の方位に降下角度 $\theta_{evasion}$ 、下限高度 $h_{evasion}$ で全速力で降下することで行うものとし、複数の弾を検知している場合は検知リストの先頭にあるものを対象として回避する。

表 2.7-1 回避を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
thetaEvasion	回避時の降下角度	$\theta_{evasion}$	45	deg
hEvasion	回避時の下限高度	$h_{evasion}$	2000	m

2.8 針路の補正

初期行動判断モデルは、以上のロジックに従い行動を選択し、進行方向を計算するが、その他に以下の三つの要素を考慮して進行方向の補正を行うものとする。

(1) 副目標の追尾

本来の針路から θ_{extra} 以内の変更によって自身が捉えられる副目標が増える場合、捉えられる副目標が最大となるように針路を補正するものとする。

(2) 高度維持

回避中でないときは一定高度を維持しようと試みるものとする。後退時以外は、 $\pm \theta_{stable}$ 以内のピッチ角で高度を h_{normal} に、後退時は $\pm \theta_{RTB}$ 以内のピッチ角で高度を h_{RTB} に維持しようと試みるものとする。

(3) 場外の防止

南北方向の場外に出てしまうことを防ぐため、以下の三つの観点で補正を行うものとする。

- (a) 南北方向の場外から内側に $d_{limit,dir}$ の位置より外側にいるとき、判定ラインを超過した距離に応じた補正量で外側への進行を制限する。
- (b) 北方向の場外から内側に $d_{limit,keep}$ の位置より外側で横行機動を開始するときは、候補となる二つの進行方向のうち、戦域中心に近づく方を選択するものとする。
- (c) 南北方向の場外から内側に $d_{limit,turn}$ の位置より外側にいるとき、目標針路への旋回は場外側に向かないような旋回軸で実施するものとする。

各針路補正のイメージは図 2.8-1に示す通りであり、設定パラメータは表 2.8-1の通りである。

図 2.8-1 各針路補正のイメージ

表 2.8-1 針路補正を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
thetaModForSensing	副目標を追加で捉えるための補正角度の上限	θ_{extra}	10	deg
thetaStable	後退時以外の高度維持のピッチ角制限	θ_{stable}	15	deg
hNormal	後退時以外の高度維持の目標高度	h_{normal}	10,000	m
RTBPitchLimit	後退時の高度維持のピッチ角制限	$ heta_{RTB}$	10	deg
RTBAltitude	後退時の高度維持の目標高度	h_{RTB}	9,000	m
dOutLimit	場外防止のために進行方向を直接補正する判定ラインの場外からの距離	$d_{limit,dir}$	10,000	m
dOutLimitKeepSensing	場外防止のために横行機動の方向を制限する判定ラインの場外からの距離	$d_{limit,dir}$	20,000	m
dOutLimitTurnAcis	場外防止のために旋回軸を制限する判定ラインの場外からの距離	$d_{limit,dir}$	10,000	m

2.9 目標進行方向及び目標速度の計算方法

戦闘機・無人機モデルに対する制御出力は以下の要領で計算するものとする。なお、飛行制御モデルは1.3.1.4項(2)の方向・速度指示モデルを使用するものとする。

2.9.1 方向指示

方向指示は、目標進行方向 d_d を与える 1.3.1.2 項(2)(a)の方式を採用するが、前項までの各行動に応じて水平方向成分 d_{dh} とピッチ角 θ_{dv} (下向き正)を独立に計算し、

$$\boldsymbol{d_d} = \boldsymbol{d_{d,h}} \cos \theta_{d,v} + \left(0.0, \sin \theta_{d,v}\right)^T$$

とする。ただし、 $d_{d,h}$ が現在の針路から 45° 以上離れている場合、戦闘機・無人機への制御出力としては同じ方向に 45° 回転させた方位を $d_{d,h}$ として用いるものとする。

2.9.2 速度指示

速度指示は、通常時(後退時を除く)は $T_{nominal}$ 、回避中は $Max\ AB(=1.0)$ としてスロットルで指定するものとする。後退時は目標速度 $V_d=V_{RTB}$ で指定するものとする。また、飛行速度が制限値 V_{min} を下回った場合は $V_{recovery}$ 以上に回復するまでの間、通常時・回避中を問わず目標速度 $V_d=V_{recovery,dst}$ として指定するものとする。速度指示に関する設定パラメータは表 2.9-1の通りである。

表 2.9-1 速度指示を特徴づけるパラメータ

変数名	意味	本文中 の記号	基準値	単位
nominalThrottle	通常時のスロットル	$T_{nominal}$	0. 475	
minimumV	速度回復を優先しはじめる速度	V_{min}	200	m/s
minimumRecoveryV	速度回復を終了する速度	$V_{recovery}$	220	m/s
minimumRecoveryDstV	速度回復中の目標速度	$V_{recovery,dst}$	250	m/s
RTBVelocity	後退時の目標速度	V_{RTB}	250	m/s