- Формирование 32-разрядного физического адреса для 4 Мбайтной страницы -

PSE=1 в CR4 устанавливает режим работы со страницами расширенного размера 4 Мбайта.

Формат указателя страниц

31	22	21	12	11		9	8	7	6	5	4	3	2	1	0
базовый адре	ec	nez	anp	Α	٧	L	G	PS	D	Α	PCD	PWT	U/S	R/W	Р
страницы		рез	срв												

PS (Page Size) – определяет размер используемых страниц. При PSE=1 в CR4.

PS=0 – страницы стандартного размера 4 кбайт.

PS=1 – страницы размером 4 Мбайт.

G – бит глобальности. Предназначен для фиксации используемых объектов памяти.

_	U		_	
CODMAT V	указателеи л	IN THEXALT BE	преобразования	аалпеса
+ Opmai	упазателей д		TIPCOOPUSODUITIN	тадреса

63	36	35	12	11	9	8	5	4	3	2 1	0	
рез	ерв	базовый а катало	-	ΑV	′L	рез	ерв	PCD	PWT	резерв	Р	

Формат указателя каталога таблиц

63	36	35	12	11 9	876	5	4	3	2	1	0
pes	верв		ый адрес лицы	AVL	000	Α	PCD	PWT	U/S	R/W	Р

Формат указателя таблиц страниц

63	3 36	35	12	11	9	8	7	6	5	4	3	2	1	0
р	езерв	1	вый адрес облицы	AV	L	G	0	D	Α	PCD	PWT	U/S	R/W	Р

Формат указателя страниц

63	36	35 12	1	1	9	8	5	4	3	2 1	0	_
резе	ерв	базовый адрес таблицы	,	ΑV	L	резе	ерв	PCD	PWT	резерв	Р	

Формат указателя таблиц страниц

63	36	35 12	11		9	8	7	6	5	4	3	2	1	0
Do	зерв	базовый адрес		V		G	PS	٦	Α	PCD	PWT	U/S	R/W	ь
1 .	эсрв	страницы	_ ^	٧	_	G	13		^	PCD	FVVI	0/3	IN/ VV	

- Средства управления страничным преобразованием адреса процессора P6 —

PG (Paging) – разрешает страничное преобразование адреса.

PSE (Page Size Extension) – разрешение страниц расширенного размера.

PAE (Page Address Extension) — разрешение расширенной разрядности адреса до 36 бит.

PGE (Page Global Enable) – разрешение использования глобальных страниц.

PG	PAE	PSE	PS	Размер страницы	Физический адрес
0	Χ	Х	Χ	_	32 разряда
1	Χ	0	Χ	4 Кбайт	32, 36 разрядов
1	Χ	Χ	0	4 Кбайт	32, 36 разрядов
1	0	1	1	4 Мбайт	32 разряда
1	1	1	1	2 Мбайт	36 разрядов

- Превращение фрагментированного пространства физической памяти в непрерывное сплошное пространство линейных адресов –

Линейное адресное пространство становится непрерывным и может описано одним сегментом, размером 368 кбайт.

- Преобразование линейного адреса в физический при использовании двухэтапного преобразования и страниц размером 4 кбайт —

- 1. Вычислить по старшим десяти разрядам линейного адреса адрес нужного элемента PDE.
 - индекс в каталоге $*2^2$ смещение в каталоге базовый адрес каталога (из CR3) + смещение в каталоге = линейный
 - адрес элемента PDE.
- 2. Считать элемент PDE в процессор. PDE хранит базовый адрес соответствующей таблицы PTE.
- 3. Вычислить по средним десяти разрядам линейного адреса адрес нужного элемента РТЕ.
 - индекс в таблице*2² смещение в таблице
 - базовый адрес таблицы (из элемента PDE) + смещение в таблице = линейный адрес элемента PTE.
- 4. Считать элемент РТЕ в процессор. РТЕ хранит базовый адрес соответствующей страницы в физической памяти.
- 5. Вычислить по младшим 12 разрядам линейного адреса адрес операнда в физической памяти.
 - Базовый адрес физической страницы (из PTE) + смещение на странице (из линейного адреса) = линейный адрес операнда в физической памяти.
- 6. Обратиться к операнду в физической памяти.

Таким образом, каждое обращение к памяти со стороны программы требует два дополнительных считывания из памяти элемента PDE и элемента PTE.

Ассоциативный КЭШ-буфер страничного преобразования (Translation Look-aside Buffer – TLB)

Современные процессоры содержат два отдельных буфера TLB:

- Буфер TLB для трансляции адресов команд, состоит из двух блоков:
 - Блок для страниц 4 Кбайт, содержит 8 наборов по 4 строки, в котором хранятся физические адреса 32 ранее выбранных страниц;
 - Блок для страниц 4 Мбайт, хранит базовые адреса двух страниц, к которым производились последние обращения при выборке команд.
- Буфер TLB для трансляции адресов операндов также содержит два блока:
 - Блок для страниц 4 Кбайт, содержит 16 наборов по 4 строки, в котором хранятся физические адреса 64 ранее выбранных страниц.
 - Блок для страниц 4 Мбайт хранит два набора по 4 строки в каждом.

Достоинства страничного преобразования адреса.

- Невидимо для прикладного программиста.
- Позволяет организовать виртуальное пространство.
- Позволяет избегать фрагментацию памяти.

Недостатки:

- Внутренняя фрагментация
- Дополнительные временные затраты при обращении к элементам PDE и PTE.