DS 3000 – Dataset

Project Topic Idea: <How NBA Players perform relative to their contracts.>

Of the project ideas you submitted in the previous deliverable, select the one you want to work on throughout this project. In making your decision, please refer to the feedback you have on the previous deliverable. If all ideas were found plausible, feel free to select the one that you liked the best **as a team**. You will be working on this project idea during the remainder of the semester.

Complete this section based on the previous deliverable. After deciding on your topic idea, simply copy and paste same information from the Topic Proposals document here.

1. Problem Statement

- ✓ Describe the problem you would like to tackle.
 - We would like to understand how players in the NBA are performing relative to their contract and find the contract that the player is actually worth.
- ✓ What is the topic of your project?
 - o NBA players' performance relative to their salary, and what they are actually worth.
- ✓ What do you want to learn about it?
 - o What players are outperforming their contract values, and what players are getting overpaid for their performance.

2. Significance of the Problem

- ✓ Why is it important to tackle this problem in your project?
 - o In the NBA, especially with a salary cap, it is important to utilize the money that you give to players wisely. In order to win the championship, teams must not give out large contracts to players that do not actually deserve it. You must have players that perform at or above their contract value, in order to be successful in the league.
- ✓ In what ways could the insights from this project be useful?
 - o It could help NBA GM's and players' agents understand what the player is worth, when negotiating contracts. As well as, show teams what players should be traded, as they are not performing up to the value of their contract.

3. Dataset(s)

- ✓ When searching for potential datasets, you can refer to the Datasets folder on Canvas to search potential dataset repositories. This has been available on Canvas since the early weeks of the semester.
- ✓ Describe where you obtained your data. Provide a link to the original source.
 - o The data was obtained in two locations. Most of it came from basketball-reference.com and we also got data from Celtics Hub (who got their data from various places). The links were:
 - https://www.celticshub.com/2017/12/07/nba-player-salaries-1991-2017/
 - https://www.basketball-reference.com/leagues/NBA 2013 advanced.html
 - https://www.basketball-reference.com/leagues/NBA_2014_advanced.html
 - https://www.basketball-reference.com/leagues/NBA 2015 advanced.html
 - https://www.basketball-reference.com/leagues/NBA_2013_per_game.html
 - https://www.basketball-reference.com/leagues/NBA_2014_per_game.html
 - https://www.basketball-reference.com/leagues/NBA_2015_per_game.html

- https://www.basketball-reference.com/contracts/salary-cap-history.html
- ✓ This should be the dataset(s) you are using and should correspond to the attached dataset.

Dataset File

Download or scrape your data from the source you identified above. Save your dataset as a CSV file. The first row of the file should contain variable names.

Your dataset should have at least 1000 rows, corresponding to samples/records, and 10 columns, corresponding to features and target variables. This is the bare minimum. The more, the better!

Describe your variables below (add more rows if necessary):

Variable name	Description	Feature/
in file		Outcome
Pos	Position	Feature
Age	Player Age	Feature
G	Games Played	Feature
Gs	Games Started	Feature
MP	Minutes Played	Feature
FG	Field Goals Per Game	Feature
FGA	Field Goals Attempted Per Game	Feature
3P	Three Points Made Per Game	Feature
3PA	Three Points Attempted Per Game	Feature
2P	Two Points Made Per Game	Feature
2PA	Two Points Attempted Per Game	Feature
FT	Free Throws Made Per Game	Feature
FTA	Free Throws Attempted Per Game	Feature
ORB	Offensive Rebounds Per Game	Feature
DRB	Defensive Rebounds Per Game	Feature
TRB	Total Rebounds Per Game	Feature
AST	Assists Per Game	Feature
STL	Steals Per Game	Feature
BLK	Blocks Per Game	Feature
TOV	Turnovers Per Game	Feature
PF	Personal Fouls Per Game	Feature
PTS	Points Per Game	Feature
PER	Player Efficiency Rating	Feature
TS%	True Shooting %	Feature
3Par	Three Point Attempt Rate	Feature
FTr	Free Throw Rate	Feature
ORB%	Offensive Rebound %	Feature
DRB%	Defensive Rebound %	Feature
TRB%	Total Rebound %	Feature
AST%	Assist %	Feature
STL%	Steal %	Feature
BLK%	Block %	Feature
TOV%	Turnover %	Feature
USG%	Usage %	Feature
OWS	Offensive Win Shares	Feature
DWS	Defensive Win Shares	Feature
WS	Win Shares (Total)	Feature
OBPM	Offensive Box Plus/Minus	Feature
DBPM	Defensive Box Plus/Minus	Feature
BPM	Box Plus/Minus	Feature
VORP	Value Over Replacement Player	Feature
Year	Year which Season occurred	Feature

UID	Unique User ID	Feature
Salary	Amount earned by player	Feature
Cap%	% of team's salary capacity space	Outcome
In the		
Feature/Outcome		
column, indicate		
whether the		
variable is a		
feature or		
outcome variable.		
You need to have		
at least one		
outcome variable,		
with several		
feature variables.		

Based on what we discussed regarding machine learning (Week 07 Day 02), does your dataset include a set of feature variables and one outcome variable that you can use for a supervised machine learning task? Please explain. You need to meet this requirement and show us you understand that you are required to use a predictive model in your project.

Yes, our dataset does include a set of feature variables and one outcome variable that we can use for supervised learning. Since a player's stats correlates to how much money they make, their stats will likely allow a machine learning algorithm to classify players that it has not seen in training.

Further info on submitting the dataset:

Submit a CSV file, or multiple files, containing your data. If the dataset is too large, you can upload it to Github or any other online repository, and provide a public link.

If you have scraped your data, you should also submit a Jupyter Notebook containing your Python code used to scrape the data. Please be reasonable and comment your code out whenever it makes sense to do so.