

⑩日本国特許庁(JP) ⑪特許出願公開

⑫公開特許公報(A) 平3-48421

⑬Int.Cl.
H 01 L 21/302
21/205
21/31

識別記号 C 8223-5F
C 7739-5F
C 6940-5F

⑭公開 平成3年(1991)3月1日

審査請求 未請求 請求項の数 2 (全7頁)

⑮発明の名称 プラズマ処理方法

⑯特 願 平2-102536

⑰出 願 平2(1990)4月18日

優先権主張 ⑱平1(1989)4月18日 ⑲日本(JP) ⑳特願 平1-99068

⑳発明者 小 島 弘 東京都新宿区西新宿1丁目26番2号 東京エレクトロン株式会社内

⑳発明者 田 原 好 文 東京都新宿区西新宿1丁目26番2号 東京エレクトロン株式会社内

⑳発明者 新 井 泉 東京都新宿区西新宿1丁目26番2号 東京エレクトロン株式会社内

㉑出願人 東京エレクトロン株式会社 東京都新宿区西新宿1丁目26番2号

明 四 種

1. 発明の名称

プラズマ処理方法

2. 特許請求の範囲

(1) プラズマ処理容器内の載置台上に被処理体を載置し、この被処理体を粗製するためには載置台を冷却してプラズマ処理を行うにあたり。

プラズマ処理時以外の期間の少なくともプラズマ処理ガス投射期間に、上記プラズマ容器内に不活性ガスを導入することを特徴とするプラズマ処理方法。

(2) プラズマ処理容器内に導入される不活性ガスを、載置台表面に吹き付けるようにしたことを特徴とする特許請求の範囲第1項記載のプラズマ処理方法。

3. 発明の詳細な説明

(発明の目的)

(産業上の利用分野)

本発明は、プラズマ処理方法に関する。

(従来の技術)

プラズマエッティング装置のようなプラズマ処理装置は、プラズマ処理容器内に上部電極及び下部電極を対向配置している。そして、下部電極を載置台としてその上に被処理体を支持するようになっている。そして、プラズマ処理容器内にエッチングガスを導入すると共に、上部電極、下部電極間にRFパワーを印加し、エッチングガスのプラズマを誘起している。そして、このプラズマ中で生成されたラジカルによる化学的反応エッティングと、プラズマ中で生成されたイオンを電極間の電界に沿って加速した加速イオンによる物理的エッティングとによって、被処理体をエッティング処理していた。

この場合、良好なエッティング特性を確保するために、被処理体を支持する下部電極を例えば液体Baの表面によって冷却して、被処理体の温度を一定温度に保持していた。

また、プラズマエッティング処理の終了した後は、次の被処理体のプラズマ処理が開始されるまでの間に亘って、プラズマ処理容器内を真空引張する。

特開平3-48421 (2)

そして、一定の真空状態を保って次のプロセスの開始時まで待機するようにしていた。

このようなプラズマエッティング装置は、エッティングガスをプラズマ状態とする。そして、エッティングガスは分解され反応生成物（チボジション）が生成される。この場合、プラズマエッティング処理が終了した後の真空引き開始直後に、プラズマ処理容器内には真空引きによる気体の流れが生じる。そして、反応生成物はこの流れに沿って供給される。

〔発明が解決しようとする課題〕

しかしながら、プラズマ処理容器内の真空状態が一定値になると、プラズマ処理容器内の気体の流れがなくなる。この結果、生成された反応生成物は、プラズマ処理容器内に停滞した状態となる。

このプラズマ処理容器内に停滞している反応生成物は、処理容器内の冷却された部分で気化し、その部分に吸着する。特に、プラズマ処理が終了し、かつ、処理の終了した被処理体が下部電極か

ら取り除かれ後には、下部電極が上述したように液化等によって所定温度に冷却されている。このため、プラズマ処理容器内に停滞している反応生成物の多くが下部電極上の被処理体表面に付着してしまう。

このように、下部電極上に反応生成物が付着した状態で、次の被処理体をこの上に載置してプラズマエッティング処理を実施すると、次のような問題が生じる。すなわち、下部電極上に付着する反応生成物は、被処理体の載置面に凹凸を生じせる。このため、載置される被処理体とその上方に対向配置された上部電極との対向間隔が被処理体の各位置によって相違する。この結果、エッティングレートのようなエッティング特性が、被処理体の箇内で不均一になってしまふ。

また、下部電極上の反応生成物が、被処理体の表面にも付着してしまう。このため、この被処理体を次の処理工序で処理する際に、高圧気に付着した反応生成物がパーティクルの原因となり、被処理体の歩留りを低下する原因となっていた。

本発明の目的は、反応生成物が載置台の表面に付着することを確実に防止して、被処理全体に均一性の特性で所定の処理を施すことができるプラズマ処理方法を提供することにある。

また、本発明の他の目的は、反応生成物が被処理体に付着することを確実に防止して、被処理体の高歩留りで所定の処理を施すことができるプラズマ処理方法を提供することにある。

〔発明の構成〕

〔問題を解決するための手段〕

すなわち、本発明は、プラズマ処理容器内の載置台上に被処理体を載置し、該被処理体にプラズマ処理ガスによるプラズマ処理を施す工程と、前記プラズマ処理時以外の期間の少なくともプラズマ処理ガスの運転期間に當記プラズマを容器内に不活性ガスを導入する工程と、を具備するプラズマ処理方法である。

〔作用〕

本発明では、プラズマ処理時以外の少なくともプラズマ処理ガス運転期間に、プラズマ処理容

器に不活性ガスを導入している。

従って、プラズマ処理時以外の上記期間では、このプラズマ処理容器内にて不活性ガスによる流れ状態を常時確保することができる。特に、所定温度に冷却されている載置台上方にもこの不活性ガスの流れを実現することができるので、この不活性ガスの流れによって反応生成物が載置台に付着するのを防止することができる。また不活性ガスを載置台表面に吹き付けるようにすれば、この効果はさらに大きくなる。

従って、プラズマ処理に対しては、反応生成物による凹凸の少ない載置台に被処理体を載置でき、被処理体の均一性の面内均一性が向上する。また、被処理体の裏側側に反応生成物が付着することもないので、パーティクルの原因を除去でき、被処理体の歩留りを大幅に向上することができる。

しかも、不活性ガスによって反応生成物を排出しているので、次のプロセスが開始される際にその不活性ガスがたとえプラズマ処理容器内に残留していても、そのプロセスに影響を与えること

特開平3-48421(3)

がない。

(実施例)

以下、本発明方法をプラズマエッティング装置に適用した実施例について、図面を参考して説明する。

第1図は、本発明方法にて使用するプラズマエッティング装置の概略構成を示す概略図である。このプラズマエッティング装置は、背面して配置された上部電極10及び下部電極30とを有している。下部電極30上には、被エッティング材である半導体ウエハ42を載置するようになっている。そして、上部電極10及び下部電極30の間に、RF電源40によって例えば280kWのRFパワーを印加するようになっており、上部電極10に形成された多数の孔からエッティングガスを導入し、上部電極10及び下部電極30の間の領域でプラズマを生成するようになっている。このプラズマによって、ウエハ42をエッティングするようになっている。上部電極10は、フランジ状に形成された導電性の熱伝導部材11を有している。この熱伝導部材11にRF電源40

からのケーブルが接続されている。

また、熱伝導部材11内には、六が多數設けられた第1、第2の放電板14a、14bが、スペーサ16a、16bを介して既定間隔で平行に配置されている。さらに、熱伝導部材12の側面部を覆うように、複数枚18、アモルファス・カーボン電極20が積層配置されている。なお、アモルファス・カーボン20の周辺を覆うようにしてシールドリング22が受けられている。シールドリング22によって、アモルファス・カーボン電極20が、プラズマと接する口部の形状が制御されている。

下部電極30は、円板状に発展した部分の上面部分にウエハ42を載置できるようになっている。そして、収束したウエハ42の周辺部を下部電極30に固定するために、下部電極30の周囲にはリング状のクランパー部材32が配置されている。

なお、下部電極30は接地されている。また、下部電極30を既定位置に拘束するため、第2回に示すように、油封部材である液体16の循環系34が配置されている。つまり、この循環系34によって

液体16を下部電極30の裏面側に循環するようになっている。

このような上部電極10及び下部電極30を、それ平行してチャンバー内に配置することによって、平行平板型のエッティング装置が構成されている。

次に、このプラズマエッティング装置に設けられた制御系について第2図を参照して説明する。

上部電極10及び下部電極30を収容したプラズマ処理室50の下部には、排気ポート52が設けられている。排気ポート52には、圧力調節用のA. P. C(Auto Pressure Control)バルブ54、コンダクタスバルブ56、ターボ分子ポンプ(T. P. P)58及びロータリーポンプ(R. P.)60がそれぞれ接続されている。また、プラズマ処理室50に接続配管されたロードロックチャンバー62にも、バルブ64を介してロータリーポンプ(R. P.)66が接続されている。

また、ガス供給として、CO₂、N₂、O₂、又、CF₄、Ar、CH₄のエッティングガスを、プラズマ处

理室50内に上部電極10を介して導入できるようになっている。そして、各々のエッティングガス導入系70による供給流量は、マスフローコントローラ(R. F. C)72によって制御可能になっている。

また、不活性ガスとして例えばN₂を導入するN₂導入系80が設けられている。この途中にもR. F. C72が配置されている。このN₂ガスは、プロセス時以外の期間にプラズマ処理室50内に導入できるようになっている。そして、R. F. C72によつて、プロセス時のエッティングガスの供給量よりも、プロセス時以外のN₂ガスの供給量を多く(例えば200~1000SCCM)設定することにより、前述する反応生成物の排出動作を効率的に行なうようになっている。

なお、N₂ガス導入系80の一部は、エッティングガス導入系70の一部と兼用しているが、それぞれを別個に配置しても良い。

このように構成されたプラズマエッティングを用いて次のように、プラズマエッティング方法を実行する。

特開平3-48421(4)

まず、上部電極10及び下部電極30の間にRF電源40からのRFパワーを印加する。そして、エッティングガス導入系70及び上部電極10を介してプラズマ処理容器50内にエッティングガスを導入する。

これにより、上部、下部電極10、30間にプラズマを誘起させる。このプラズマ中で生成したラジカルを、ウェハ42表面に付着させて化学的反応を起こしてウェハ42のエッティングを行うと共に、プラズマ中で分離したイオンを、平行平板電極間に形成される電界によって加速してウェハ42に衝突させ、ウェハ42のエッティングを行う。

このようにして平行平板型のエッティングにより、比較的サイドエッティングを抑え、異方性エッティングを行うことが可能となる。この結果、飛沫バターンのエッティングを実現できる。

プラズマエッティング処理が終了すると、クランパー部材32を上昇させ、ウェハ42の換荷状態を監視する。次いで、下部電極30上の処理液みウェハ42をハンドラー等によって支持し、これをロードロックチャンバー52内に移送する。

応生成物が生成されてプラズマ処理容器50内に残留している。この反応生成物は、プラズマ処理容器50内の温度が最も低い箇所に付着し易くなっている。

ウェハ42が搬出された後では、プラズマ処理容器50内の温度の最も低い部分は、液体H₂Oによって冷却されている下部電極30の表面である。しかしながら、プラズマ処理容器以外の時に、プラズマ処理容器50内のN₂ガスの流れを遮らず確保している。このため、プラズマ処理容器50内に再導入している反応生成物を、このN₂ガスの流れに載せて排気ポート52より排出することができる。

しかも、下部電極30の表面と対向する上方位置からN₂ガスを導入し、下部電極30表面にN₂ガスを吹き付ける。このため、このN₂ガスの流れが、下部電極30の表面を保護する保護膜として作用する。この結果、反応生成物が下部電極30の表面に付着するのを確実に防止することができる。

なお、不活性ガスは、ウェハ載置台である下部電極30の表面に吹きつけるように形成してもよい。

そして、ロードロックチャンバー52内の新たにウェハ42を、プラズマ処理容器50内に搬送し、下部電極30上にセッティングし、次のプラズマエッティング処理を行う。

ここで、この実施例では、例えば第3回に示すようにタイムチャートを使って、RF出力によるエッティング処理(E)の停止に同期して、プラズマ処理容器以外の時(T)に、ガス供給系によってエッティングガスの供給(G)を不活性ガスであるN₂ガスの供給(H)切り替え、エッティングガスのプラズマ処理容器50内への導入を停止すると共に、H₂導入系80によりプラズマ処理容器50内へのN₂ガスを導入を行い、かつ、これを排気ポート52を介して排気するようしている。

このようにN₂ガスをプラズマ処理容器50内に導入し、かつ、排気を放ることによって、プラズマ処理容器50内にN₂ガスの流れを消却することができる。

この場合、プラズマエッティング工程ではプラズマによってエッティングガスが分解されるため、反

また、反応生成物を下部電極30表面に付着させない手段としては、プラズマ処理容器50内に、下部電極30の表面温度よりも低い箇所を確保するものでも良い。すなわち、例えばプラズマ処理容器50の壁面を冷却することで、この部分に反応生成物を付着させて、結果的に下部電極30表面に付着する反応生成物の量を少なくするようにしてもよい。

しかしながら、エッティング装置は、反応生成物が多く発生する他の付け工程と異なり、なるべくクリーンな環境でのエッティングを行うことが好ましい。つまり、この実施例の方法のようにN₂ガスによって反応生成物を排出する方が効率的である。さらに、下部電極30以外の箇所に反応生成物を付着させた場合には、プラズマ処理容器50の操作を温度が増すが、この本実施例の方では、下部電極30以外の箇所にも反応生成物を付着しないので、プラズマ処理容器50のメインテナンス管理を容易にできる。

このように本発明では、プラズマ処理容器以外の

特開平3-18421(5)

少なくともプラズマ処理ガス吸着部間に、プラズマ処理部に不活性ガスを導入している。つまり、プラズマ処理時以外の期間には、プラズマ処理部内に不活性ガスによる流れ状態を常時確保することができる。特に、所定温度に冷却されている載置台上方にも、この不活性ガスの流れを作ることができる。この不活性ガスの流れによって、反応生成物が載置台に付着するのを防止することができる。また、不活性ガスを載置台表面に吹き付けるようにすれば、この効果をさらに高めることができる。

これらの結果、プラズマ処理の際に、反応生成物による凹凸の少ない載置台に被処理体を設置することができ、被処理体表面全体での処理特性を均一なものとすることができる。また、被処理体の裏面側に反応生成物が付着するのも防止できる。このため、パーティクルの発生原因を除去して、被処理体の処理歩留りを大幅に向上することができる。

しかも、不活性ガスによって、反応生成物を常

向上できる。また、被処理体の裏面に反応生成物が付着する所以ないので、パーティクルの発生を抑制して、処理の歩留まりを向上することができる。

しかも、不活性ガスを用いているので、次のプロセスに悪影響を与えることがない。

4. 図面の簡単な説明

第1図は本発明方法の実施例を説明するためのプラズマエッティング装置の処理部内構成概略図、第2図は第1図を用いたエッティング装置の構成図、第3図は第1図及び第2図のガス供給操作を説明するための絶縁図である。

30…載置台

特許出願人 東京エレクトロン株式会社

時排出するようにしている。このため、プラズマ処理部内に残留する不活性ガスが、次のプロセスの開始の際に、悪影響を与えることはない。

なお、本発明は上記実施例に限定されるものではなく、载置台の裏面内で種々の実験実施が可能である。

また、本発明は、被処理体を設置する載置台を作成してプラズマ処理を行うプラズマエッティング以外のプラズマ処理にも同様に適用でき、例えばプラズマCVD炉でも好適なものである。

また、不活性ガスとしては、N₂以外のガスを採用できることは自明である。

【発明の効果】

以上説明したように、本発明によれば、プラズマ処理時以外の期間の少なくとも処理ガスの吸着している期間に、プラズマ処理部内に不活性ガスを導入することにより、プラズマ処理部内に反応生成物が裏面の低い部分に付着することを防止できる。

この結果、被処理体の処理特性の面内均一性が

第2図

特開平3-48421(6)

第1図

手続補正書

平成
年 月 日

適

特許庁長官印

第3図

1. 事件の表示
平成2年特許出願第102536号
2. 発明の名称
プラズマ処理方法
3. 補正をする者
事件との関係 特許出願人
住所 東京都新宿区西新宿1丁目26番2号
名称 東京エレクトロン株式会社
代表者 小高敏夫
4. 補正の対象
明細書の発明の詳細な説明の範

特開平3-48421(7)

5. 練正の内容

- (1)明細書第2頁第15行目乃至第16行目
「液体He」を「冷媒」と練正する。
- (2)明細書第3頁第18行目
「氣化」を「集合、固化」と練正する。
- (3)明細書第4頁第2行目
「液He」を「冷媒」と練正する。
- (4)明細書第8頁第19行目
「である液体He」を削除する。
- (5)明細書第9頁第1行目
「液体He」を「冷媒」と練正する。
- (6)明細書第9頁第19行目
「CCDI.」を「CCI.」と練正する。
- (7)明細書第13頁第6行目
「液体He」を「冷媒」と練正する。

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.