IEEE MAG 3: Directed Graphs

Sunday, April 7, 2024

5:18 PM

- When the underlying communication graph is directed, the construction of doubly stochastic weight matrix A
 is quite computationally expensive.
- We will consider a consensus algorithm that uses a column-stochastic weight matrix A and combine it with a
 gradient method.

· CONSENSUS ALGORITHM: A & IR MXM G = ([M] E)

Weight matrix A is column-stochastic and compatible with graph G.

$$a_{ij} > 0$$
 and $a_{ij} > 0$ with:

 $C = A_{i1} = A_{i2}$
 $A = A_{i2} = A_{i3}$
 $A = A_{i3} = A_{i4}$
 $A = A_{i4} = A_{i4}$
 $A = A_{i5} = A_{i4}$
 $A = A_{i5} = A_{i4}$
 $A = A_{i5} = A_{i5}$
 $A = A_$

 N_{i}^{out} : neighbors of agent j directed authors a_{ij}^{out} : $N_{i}^{out} = \{i(j,i) \in E\}$

Common Chaice: aij, i eNjart U & j 3 -> all save values
equal to cardinality of Njart U & j 3

Each agent i maintains variables $xi^(k)$ and $yi^(k)$ at time k. At time (k+1), each agent j sends out $aij^*xj^(k)$ and $aij^*yj^(k)$ to all of its out-neighbors.

Then, every agent i updates by simply summing the x and y variables its received from its neighbors.

$$x_{i}^{(k+i)} = \sum_{j \in \mathcal{N}_{i}^{(k)}} u_{ij}^{(k)} a_{ij}^{(k)} x_{j}^{(k)}$$
 $y_{i}^{(k+i)} = \sum_{j \in \mathcal{N}_{i}^{(k)}} u_{ij}^{(k)} a_{ij}^{(k)} y_{j}^{(k)}$
 $y_{i}^{(k)} = \{j \mid (j,i) \in \mathcal{E}\}$
 $y_{i}^{(k)} \in \mathbb{R}, y_{i}^{(k)} = 1$

Leads to cases us as long as

 $y_{i}^{(k)} \in \mathbb{R}, y_{i}^{(k)} = 1$
 $y_{i}^{(k)} \in \mathbb{R}, y_{i}^{(k)} = 1$

Lo "Ratio Consonsus"

· DISTRIBUTED GRADIENT METHOD FOR ML:

Each agent souls aji xj(x) and aji yj(x) to out-neighbors. Then each agent updates their x and y:

$$Z_{i}^{(k+1)} = \frac{V_{i}^{(k+1)}}{Y_{i}^{(k+1)}}$$

"GRADIENT PUSH METHOD"

- Analyses:
$$\frac{X_i(k+1)}{y_i(k+1)} = 2_i(k+1) - Y_i(k) \nabla f(z_i(k+1))$$

Converges to \tilde{X}

Consensus point

Convexity of fi and appropriate alpha are important to ensure that x^{\sim} is in fact a solution to the aggregate agent learning problem of minimizing the average sum:

· If fi is convex, convergence is
$$O(\frac{\log(k)}{Jk})$$