Lecture 2 - Overview of HPC and the Cloud

DSE 512

Drew Schmidt 2022-01-27

From Last Time

• Assignment 1 due tonight

HPC

HPC

- High Performance Computing
- Usually used interchangeably with "supercomputing"
- Summit, ISAAC, ...
- The Cloud?
- Your desktop???
- Your phone?????

High Performance?

Supercomputing

Characteristics

- Big
- Parallel file system
- Multiple nodes
- High speed interconnect
- Batch programming

Non-characteristics

- Heterogeneous/homogeneous
- Big FLOPS

Summit

- 4608 Nodes
 - o 2x22-core IBM P9 CPUs
 - o 6 NVIDIA V100 GPUs
- 250 PB storage
- Mellanox interconnect
 - o 200 Gb/s InfiniBand
 - Non-blocking fat-tree
- 13 MW of power

Interactive vs Batch

```
$ python
>>> 1+1
2
>>> exit()
$
```

```
$ bsub myjob.bs
<time passes>
$ cat myjob.out
2
$
```

"AI"

Some Common Terms

- **gemm** matrix-matrix multiply
- **BLAS** Basic Linear Algebra Subprograms; matrix library
- **FLOPS** Floating Point Operations Per Second (adds and multiplies)
- LINPACK important benchmark
- TOP500 list of computers ranked by LINPACK benchmark

Some Notable Benchmarks

- **TOP500** solve Ax = b
- **Green500** LINPACK, sorted by energy efficiency ("FLOPS per watt")
- **Graph500** Graph benchmark; BFS and SSSP
- **HPCG** High Performance Conjugate Gradient; SpMV, dot product, ...

Year	Supercomputer	Peak speed (Rmax)	Location
2018	IBM Summit	122.3 PFLOPS	Oak Ridge, U.S.
2016	Sunway TaihuLight	93.01 PFLOPS	Wuxi, China
2013	NUDT Tianhe-2	33.86 PFLOPS	Guangzhou, China
2012	Cray Titan	17.59 PFLOPS	Oak Ridge, U.S.
2012	IBM Sequoia	17.17 PFLOPS	Livermore, U.S.
2011	Fujitsu K computer	10.51 PFLOPS	Kobe, Japan
2010	Tianhe-IA	2.566 PFLOPS	Tianjin, China
2009	Cray Jaguar	1.759 PFLOPS	Oak Ridge, U.S.
2008	IBM Roadrunner	1.026 PFLOPS	Los Alamos, U.S.
		1.105 PFLOPS	

MPI

- Message Passing Interface
- Distributed programming standard
- Implementations
 - o OpenMPI
 - MPICH
 - \circ MPT
 - Spectrum
- NCCL
- HPC/Data convergence

Using Video Game Hardware to Multiply Matrices

- AKA GPGPU
- Not just for video games and mining bitcoin anymore!
- Major players
 - o NVIDIA
 - o AMD
 - Intel...?!?!
- Pros:
 - Fast
 - When you give up, you can mine bitcoin Cons:
 - Hard to program
 - Expensive

DOE Jargon

- leadership really big jobs
- capability big jobs
- capacity many jobs
- Allocations
 - INCITE leadership
 - ALCC things DOE likes
 - DD small jobs the center likes

Some Resources

- https://www.hpcwire.com/
- https://insidehpc.com/
- https://twitter.com/HPC_Guru

Linear Algebra

- LA dominates scientific and data computing
- Some uses in data:
 - o PCA SVD
 - Linear Models QR
 - Covariance/correlation gemm/syrk
 - o Inverse Cholesky, LU
- 1970's: LINPACK (not that one)
- 1980's: BLAS, LAPACK
- 1990's: ScaLAPACK
- 2000's: PLASMA, MAGMA
- 2010's: DPLASMA SLATE

The LINPACK Benchmark

- Solve the system Ax = b
 - A- $n \times n$ matrix (you choose n)
 - Double precision
 - Must use LU with partial pivoting
 - lacksquare A = LU
 - lacksquare b = Ax = LUx
- $\frac{2}{3}n^3 + 2n^2$ operations
- Solution must satisfy some accuracy conditions.

Top 500 Rankings

LINPACK on my Desktop

CPU

- double
 - Best n=39000 t=200.030
 - Theoretical Peak 217GFLOPS
 - LINPACK 197.715 GFLOPS
- float
 - Best n=45000 t=156.066
 - Theoretical Peak 434GFLOPS
 - LINPACK 389.285 GFLOPS

GPU

- double n=28000 t=58.444
 GFLOPS=250.433
- float n=36000 t=4126.614 GFLOPS=4126.614

LINPACK on my Desktop

How Do We Rank?

How Do We Rank?

The Cloud

History

• 1960's: Mainframe time sharing

• 1970-80's: Dumb terminals

• 1990's: Virtualization invented

• 2006: AWS launched

• 2015: Docker created

We will discuss virtualization and Docker in depth in a later lesson.

So What Even Is The Cloud?

Someone else's computer?

Something else?

SERVICES, SERVICES!

Compute

Amazon EC2

Amazon Elastic Container Service

Amazon Elastic Container Service for Kubernetes

Amazon Elastic Container Registry

Amazon Lightsail

AWS Batch

AWS Elastic Beanstalk

AWS Fargate

AWS Lambda

AWS Serverless Application Repository

Auto Scaling

Elastic Load Balancing

VMware Cloud on AWS

Storage

Amazon Simple Storage Service (S3)

Amazon Elastic Block Storage (EBS)

Amazon Elastic File System (EFS)

Amazon Glacier

AWS Storage Gateway

AWS Snowball

AWS Snowball Edge

AWS Snowmobile

Database

Amazon Aurora

Amazon RDS

Amazon DynamoDB

Networking & Content Delivery

Amazon VPC

Amazon CloudFront

Amazon Route 53

Amazon API Gateway

AWS Direct Connect

Elastic Load Balancing

Developer Tools

AWS CodeStar

AWS CodeCommit

AWS CodeBuild

AWS CodeDeploy

AWS CodePipeline

AWS Cloud9

AWS X-Ray

AWS Tools & SDKs

Management Tools

Amazon CloudWatch

AWS CloudFormation

AWS CloudTrail

AWS Config

AWS OpsWorks

AWS Service Catalog

AWS Systems Manager

AWS Trusted Advisor

AWS Personal Health Dashboard

AWS Command Line Interface

AWS Management Console

Machine Learning

Amazon SageMaker

Amazon Comprehend

Amazon Lex

Amazon Polly

Amazon Rekognition

Amazon Machine Learning

Amazon Translate

Amazon Transcribe

AWS DeepLens

AWS Deep Learning AMIs

Apache MXNet on AWS

TensorFlow on AWS

Analytics

Amazon Athena

Amazon EMR

Amazon CloudSearch

Amazon Elasticsearch Service

Amazon Kinesis

Amazon Redshift

Amazon QuickSight

AWS Data Pipeline

AWS Glue

Security, Identity & Compliance

AWS Identity and Access Management (IAM)

Amazon Cloud Directory

Amazon Cognito

AR & VR

Amazon Sumerian

Application Integration

Amazon MO

Amazon Simple Queue Service (SQS)

Amazon Simple Notification Service (SNS)

AWS AppSync

AWS Step Functions

Customer Engagement

Amazon Connect

Amazon Pinpoint

Amazon Simple Email Service (SES)

Business Productivity

Alexa for Business

Amazon Chime

Amazon WorkDocs

Amazon WorkMail

Desktop & App Streaming

Amazon WorkSpaces

Amazon AppStream 2.0

Internet of Things

AWS IoT Core

Amazon FreeRTOS

AWS Greengrass

AWS IoT 1-Click

SERVICES, SERVICES!

- Think of a sequence of letters and numbers
- It's probably an Amazon product
- (Ungraded) Homework:
 - Find a random AWS service
 - Try to understand what it does
 - o (Bonus) No crying

In This Class

We will restrict attention to EC2 ("someone else's computer")

HPC vs The Cloud

How Are They Similar?

- Somebody else's computer
- Lots of jargon
- Entire career paths
- Can be hard to use
- Tech stacks more similar than most realize

How Are They Different?

- Privileges (user vs root)
- Salaries, job growth/potential, etc
- Academia vs Industry
- "Free" (taxes) vs you pay
- Some non-intersecting tech stacks
 - o cloud: HDFS, databases, web, ...
 - HPC: HDF5, binary files, Fortran, ...

Other Compute Models

- Your computer
- "The office quasi-cluster"
- Edge computing

Next Time

- Computing on remote systems
 - ∘ ~30 minutes lecture
 - o live tutorial component on ISAAC and/or AWS
- Assignment 1 due tonight
- No new assignments

Questions?