Introduzione ai Circuiti Digitali

Sistemi analogici o digitali?

- I sistemi digitali possono immagazzinare, trasmettere e ricevere i dati in maniera più efficiente
- Però possono solo assegnare <u>valori discreti</u> a ciascun punto della mia serie di dati

Com'è rappresentata l'informazione in un circuito digitale?

HIGH --Rising or Falling or Falling

• Passaggio tra i livelli LOW e HIGH

(a) Positive-going pulse

leading edge

 Impulso positivo: passa da LOW a HIGH, e successivamente di nuovo a I OW

trailing edge

Forme d'onda digitali

 Impulso negativo: passa da HIGH a LOW, e successivamente di nuovo a HIGH

Cifre binarie e livelli logici

- L'elettronica digitale è basata su circuiti con <u>due stati</u> rappresentati da livelli di tensione ALTO (HIGH) e BASSO (LOW)
- Corrispondono alle cifre binarie 0 e 1

In realtà...

Gli impulsi dei circuiti reali non sono come quelli ideali, ma sono caratterizzati da tempo di salita (rise time), tempo di discesa (fall time), ampiezza (amplitude), etc.

Forme d'onda periodiche

Le forme d'onda periodiche sono composte da impulsi che si ripetono ad intervalli prefissati (periodi). La <u>frequenza è il numero di periodi per secondo (</u>si misura in Hertz).

$$f = \frac{1}{T} \qquad T = \frac{1}{f}$$

Esempio: il clock di un qualsiasi circuito digitale (es processori)

Esempio

Qual è il periodo di un'onda con frequenza f=3.2 GHz?

$$T = \frac{1}{f} = \frac{1}{3.2 \text{ GHz}} = 313 \text{ ps} = 313 \cdot 10^{-12} \text{s}$$

Definizioni

- Oltre alla frequenza e al periodo (T), le forme d'onda periodiche impulsive sono caratterizzate da ampiezza (A), dimensione dell'impulso (t_W) e duty cycle, ovvero il rapporto tra t_W e T
- rappresenta la percentuale del periodo in cui l'impulso è alto

Duty cycle

Se il periodo è 2s e il t_w è 0.2s, qual è il duty cycle?

Duty cycle= 0.2 / 2 = 0.1 (10%)

Timing diagrams

Mostrano le relazioni esistenti tra due o più forme d'onda

Trasmissione parallela: bus indirizzi, dati, controllo

	CPU	Memoria	I/O
Bus Indirizzi Bus Dati Bus Controllo			

Trasmissione seriale: USB

USB: Universal Serial Bus

4 Pin fino al 2.0, 2 di alimentazione e 2 di trasmissione (480 Mbit/s)

11 Pin dal 3.0 (5 Gbit/s 3.0, 10Gbit/s 3.1)

(comprende i pin del 2.0 + canali separati per ricezione e trasmissione)

24 Pin nell'USB C (2 coppie di trasmissione, 2 di ricezione, maggiore potenza sui pin di alimentazione, velocità fino a 20Gbit/s)

Esempi di circuiti combinatori e sequenziali

Nota

- In questo contesto vedremo soltanto <u>alcuni</u> <u>esempi</u> di circuiti combinatori realizzati combinando porte logiche
- Successivamente, studieremo come tali circuiti possano essere effettivamente realizzati e ottimizzati

Domanda

Cosa notate di diverso tra il contatore e gli altri circuiti analizzati finora?

Circuiti combinatori...

- Negli altri circuiti analizzati, l'output dipendeva solo degli input
 - Tali circuiti sono denominati circuiti combinatori
- Nel caso del contatore, l'input riceve degli impulsi, ma l'output prodotto (conteggio) non dipende solo dal fatto che esso ha ricevuto un impulso
- Altrimenti per ogni impulso avremmo sempre lo stesso output
- Da cosa dipende quindi l'output?

Circuiti sequenziali

L'output dipende:

- Dal fatto che il circuito ha ricevuto un impulso in ingresso
- Dal conteggio parziale precedente, es. se il contatore era arrivato a 4, al prossimo impulso produrrà il valore 5

Circuiti sequenziali

In altri termini, per questo tipo di circuiti:

- L'output dipende dall'<u>ingresso</u> e dallo <u>stato</u> corrente
- Un input oltre a produrre un <u>output</u>, può portare il contatore in uno <u>stato diverso (stato successivo)</u>

Registri di shift

- · Guidati da impulsi del clock
- Ad ogni impulso, un bit dell'ingresso viene "shiftato" (spostato) nel registro $\,$

Esempio

Circuito montato su breadboard

Packaging dei circuiti

Veduta di taglio di un DIP (Dual-In-line Pins) chip

Semplici da montare, utili per realizzare semplici circuiti o per esperimenti in laboratorio

Breadboard

DIP vs. SOIC DIP chips surface mount chips Pin 1 Dual in-line package Small outline IC (SOIC) Small outline integrated circuit: occupa 30-50% in meno di area

Analizzatore logico

- · Lo userete in corsi di elettronica e misura
- Si possono anche usare simulatori software

Diversi Packaging

Circuiti a logica programmabile

Nei circuiti visti finora la <u>logica era predefinita</u> mediante l'uso di determinate porte logiche e relative interconnessioni...

Circuiti a logica programmabile

- I circuiti a logica programmabile Programmable Logic Devices (PLDs) consentono di essere programmati
- Ovvero, possiamo realizzare una funzione d'uscita attivando o disattivando connessioni esistenti tra porte logiche

Logica Booleana

Porta NOT (inverter)

Input	Output
A	X
LOW (0) HIGH (1)	HIGH (1) LOW(0)

Quando l'input è LOW, l'output è HIGH Quando l'input è HIGH, l'output è LOW

Notazione usata nelle espressioni: Overbar

X = A

Porta NOT (inverter)

Esempio di forme d'onda X

Uso di inverter paralleli per calcolare il complemento a

Porta AND

Produce un output HIGH quando tutti gli input sono HIGH, altrimenti l'output è LOW

Inp	outs	Output
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Notazione: punto (.) tra le variabili poste in AND (può essere omesso)

 $X = A \cdot B$ equivale a scrivere X = AB.

AND: applicazioni

Utile per realizzare maschere selettive su stringhe di bit Dato un numero binario, supponiamo di volerne utilizzare solo una parte dei relativi bit

Come potremmo procedere?

Porta AND

Forma d'onda

Applicazione

- La maschera di bit controlla l'accensione di 8 lampade, 4 in cucina e 4 in sala
- Voglio momentaneamente disabilitare le lampade della sala

10100011

Bit Masking: esempio

Supponiamo di voler selezionare solo i 4 bit meno significativi:

Numero 10100011

Maschera 00001111

Risultato 00000011

Porta OR

Esempio di forma d'onda:

Porta OR

Produce un output HIGH se almeno un input è HIGH. Produce LOW se tutti gli input sono LOW

Inp	outs	Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Notazione: segno (+) tra le variabili.

X = A + B.

OR: Applicazioni

- È possibile usare l'OR per settare a 1 alcuni bit di un numero binario
- I caratteri sugli elaboratori sono codificati utilizzando attualmente una codifica chiamata Unicode
- Un pre-esistente subset di unicode (ASCII) con codici da 0 a 127 include lettere, numeri, caratteri speciali e di controllo
- I codici ASCII delle lettere maiuscole partono da 65, quelli delle minuscole da 97

Codici ASCII Dec Hx Oct Char Dec Hx Oct Html Chr Dec Hx Oct Html Chr Dec Hx Oct Html Chr 32 20 040 6#32; Space 64 40 100 6#64; 8 96 60 140 6#96; 33 21 041 6#33; 65 41 101 6#65; A 97 61 141 6#97; a 0 0 000 NIII. (mull) 32 20 040 sp 33 21 041 ! ! 34 22 042 " " 35 23 043 # # 1 001 SOH (start of heading) 2 002 STX (start of text) 66 42 102 4#66; B 98 62 142 4#98; b 67 43 103 4#67; C 99 63 143 4#99; c 3 3 003 ETX (end of text) 36 24 044 6#36; \$ 37 25 045 6#37; \$ 68 44 104 6#68; D 100 64 144 6#100; d 69 45 105 6#69; E 101 65 145 6#101; e 4 4 004 EOT (end of transmission) 5 5 005 ENO (enquiry) 6 006 ACK (acknowledge) 38 26 046 4#38; 70 46 106 6#70; F 102 66 146 6#102; f 71 47 107 6#71; G 103 67 147 6#103; G 7 007 BEL (bell) 39 27 047 4#39: 40 28 050 6#40; 72 48 110 6#72; H 104 68 150 6#104; h 8 8 010 BS (backspace) 9 9 011 TAB (horizontal tab) 41 29 051 6#41; 1 10 A 012 LF (NL line feed, new line) 42 2A 052 6#42; 73 49 111 6#73; I 105 69 151 6#105; i 74 44 112 6#74; J 106 6A 152 6#106; j 43 2B 053 4#43; + 75 4B 113 6#75; K 107 6B 153 6#107; k 11 B 013 VT (vertical tab) 12 C 014 FF (NP form feed, new page) 44 2C 054 6#44; 76 4C 114 6#76; L 108 6C 154 6#108; 1 77 4D 115 6#77; M 109 6D 155 6#109; m 45 2D 055 6#45; 13 D 015 CR (carriage return) 14 E 016 SO (shift out) 46 2E 056 4#46; 78 4E 116 4#78; N 110 6E 156 4#110; n 79 4F 117 4#79; 0 111 6F 157 4#111; 0 15 F 017 ST (shift in) 47 2F 057 4#47: 16 10 020 DLE (data link escape) 48 30 060 4#48; 0 80 50 120 6#80; P 112 70 160 6#112; P 17 11 021 DC1 (device control 1) 18 12 022 DC2 (device control 2) 49 31 061 6#49; 1 50 32 062 6#50; 2 81 51 121 6#81; Q 113 71 161 6#113; Q 82 52 122 6#82; R 114 72 162 6#114; r 83 53 123 6#83; S 115 73 163 6#115; S 84 54 124 6#84; T 116 74 164 6#116; t 19 13 023 DC3 (device control 3) 51 33 063 4#51; 3 52 34 064 6#52: 4 20 14 024 DC4 (device control 4) 85 55 125 4#85; U 117 75 165 4#117; u 21 15 025 NAK (negative acknowledge) 53 35 065 4#53; 5 22 16 026 SYN (synchronous idle) 23 17 027 ETB (end of trans. block) 54 36 066 6#54: 6 86 56 126 4#86; V 118 76 166 4#118; V 87 57 127 4#87; W 119 77 167 4#119; W 55 37 067 4#55; 7 24 18 030 CAN (cancel) 56 38 070 4#56; 8 88 58 130 4#88; X 120 78 170 4#120; X 25 19 031 EM (end of medium) 57 39 071 4#57: 9 89 59 131 4#89; Y 121 79 171 4#121; V 26 1A 032 SUB (substitute) 58 3A 072 4#58; 90 5A 132 6#90; Z 122 7A 172 6#122; 3 27 1B 033 ESC (escape) 59 3B 073 6#59; ; 91 5B 133 6#91; [92 5C 134 6#92; \ 123 7B 173 6#123; 124 7C 174 6#124; 60 3C 074 4#60; < 28 1C 034 FS (file separator) 29 1D 035 GS (group separator) 61 3D 075 4#61; = 93 5D 135 6#93;] 125 7D 175 6#125;) 94 5E 136 6#94; ^ 126 7E 176 6#126; ~ 195 5F 137 6#95; _ 127 7F 177 6#127; DEL 30 IE 036 RS (record separator) 62 3F 076 4#62:> 63 3F 077 4#63; ? 31 1F 037 US (unit separator)

Codici ASCII									
Dec	Нх	Oct	Html	Chr	Dec	: Нх	Oct	Html Cr	<u>ır</u>
64	40	100	«#64;	. 0	96	60	140	`	`
65	41	101	A	A	97	61	141	a#97;	a
66	42	102	«#66;	В	98	62	142	b	b
67	43	103	%#67 ;	С	99	63	143	c	С
68	44	104	D	D	100	64	144	d	ď
69	45	105	4#69;	E	101	65	145	a#101;	e
70	46	106	4#70;	F	102	66	146	6#102;	f

Codici ASCII Dec Bin Bin Hex Char Dec Bin Hex Char Dec Bin Hex Char Dec Bin Hex Ch 0000 0000 000 [NUL] 32 0010 0000 20 space 64 0100 0000 40 8 Hex Char Dec Bin 96 0110 0000 60 0000 0001 01 [SOH] 33 0010 0001 21 ! 65 0100 0001 41 A 0000 0010 02 [STX] 34 0010 0010 22 " 66 0100 0010 42 B 98 0110 0010 62 ъ 0000 0011 03 [ETX] 35 0010 0011 23 # 67 0100 0011 43 C 99 0110 0011 63 c 0000 0110 03 [EIX] 35 0010 0011 23 E 68 0100 0100 44 D 100 0110 0100 64 d 0000 0101 05 [ENQ] 37 0010 0101 25 % 69 0100 0101 45 E 101 0110 0101 65 e 0000 0110 06 [ACK] 38 0010 0110 26 & 0000 0111 07 [BEL] 39 0010 0111 27 70 0100 0110 46 F 71 0100 0111 47 G 102 0110 0110 66 f 103 0110 0111 67 g 0000 1000 08 [BS] 40 0010 1000 28 (72 0100 1000 48 H 104 0110 1000 68 73 0100 1000 49 I 74 0100 1010 4A J 75 0100 1011 4B K 0000 1001 09 [TAB] 41 0010 1001 29) 105 0110 1001 69 i 10 0000 1010 OA [LF] 42 0010 1010 2A * 106 0110 1010 6A 3 11 0000 1011 0B [VT] 43 0010 1011 2B + 107 0110 1011 6B k 76 0100 1011 4B K 76 0100 1100 4C L 77 0100 1101 4D M 78 0100 1110 4E N 12 0000 1100 OC [FF] 44 0010 1100 2C , 108 0110 1100 6C 1 13 0000 1101 0D [CR] 45 0010 1101 2D -109 0110 1101 6D m 14 0000 1110 OR [SO] 46 0010 1110 2R 110 0110 1110 6E n 15 0000 1111 OF [SI] 47 0010 1111 2F / 79 0100 1111 4F 0 111 0110 1111 6F o 80 0101 0000 50 P 81 0101 0001 51 Q 16 0001 0000 10 [DLE] 48 0011 0000 30 0 112 0111 0000 70 p 17 0001 0001 11 [DC1] 49 0011 0001 31 1 18 0001 0010 12 [DC2] 50 0011 0010 32 2 113 0111 0001 71 q 82 0101 0010 52 R 114 0111 0010 72 r 19 0001 0011 13 [DC3] 51 0011 0011 33 3 83 0101 0011 53 S 84 0101 0100 54 T 85 0101 0101 55 U 86 0101 0110 56 V 20 0001 0100 14 [DC4] 52 0011 0100 34 4 21 0001 0101 15 [NAK] 53 0011 0101 35 5 116 0111 0100 74 t 117 0111 0101 75 11 22 0001 0110 16 [SYN] 54 0011 0110 36 6 118 0111 0110 76 v 87 0101 0111 57 W 88 0101 1000 58 X 89 0101 1001 59 Y 23 0001 0111 17 [ETB] 55 0011 0111 37 7 119 0111 0111 77 w 24 0001 1000 18 [CAN] 56 0011 1000 38 8 120 0111 1000 78 × 25 00011001 19 [EM] 57 00111001 39 9 121 0111 1001 79 V 90 0101 1010 5A Z 91 0101 1011 5B [26 0001 1010 1A [SUB] 58 0011 1010 3A : 122 0111 1010 7A 27 0001 1011 1B [ESC] 59 0011 1011 3B ; 123 0111 1011 7B 28 0001 1100 1C [FS] 60 0011 1100 3C < 92 0101 1100 5c \ 124 0111 1100 7C 29 0001 1101 1D [GS] 61 0011 1101 3D = 93 0101 1101 5D] 125 0111 1101 7D } 30 00011110 1E [RS] 62 00111110 3E > 94 0101 1110 5E ^ 95 0101 1111 5F 126 0111 1110 7E 31 0001 1111 1F [US] 63 0011 1111 3F ? 127 0111 1111 7F [DRL]

D	ec	Bin	Нех	Char	Dec	Bin	Hex	Char
6	4	0100 0000	0 40	0	96	0110 0000	60	` _
6	5	0100 000	1 41	A	97	0110 0001	61	a
6	6	0100 0010	0 42	В	98	0110 0010	62	b
6	7	0100 0013	1 43	С	99	0110 0011	63	C
6	8	0100 010	0 44	D	100	0110 0100	64	d
6	9	0100 010	1 45	E	101	0110 0101	65	е
7	0	0100 0110	0 46	F	102	0110 0110	66	f
7	1	0100 011	1 47	G	103	0110 0111	67	g
7	2	0100 1000	0 48	H	104	0110 1000	68	h
7	3	0100 100	1 49	I	105	0110 1001	69	i

Maschera "lower-case"

Lettera minuscola = lettera maiuscola **OR** 20Hex = 100000 in binario = 32 in decimale

A 01000001

Maschera 00100000

a 01100001

Porta NAND

Forma d'onda d'esempio:

Porta NAND

Produce LOW quando tutti gli input sono HIGH.

Produce HIGH se almeno un input e LOW

Inputs	Output
A B	X
0 0	1
0 1	1
1 0	1
1 1	0

Notazione: combinazione di AND e NOT (punto + overbar)

 $X = \overline{A.B}$ (Alternativa: $X = \overline{AB}$)

Vantaggi Porta NAND

- <u>Efficiente</u> implementazione dal punto di vista fisico, perché realizzo circuiti integrati composti dallo stesso tipo di componente
- Porta universale: posso realizzare altre porte usando la porta NAND ? COME??

Porta NOT realizzata con NAND

Esercizio: Provate a realizzare le porte AND, OR usando solo porte NAND

Porta OR usando NAND

Porta AND usando NAND

Porta NOR

$$A \longrightarrow A \longrightarrow X$$
 $B \longrightarrow A \longrightarrow X$

Produce un output LOW se almeno un input è HIGH. Produce HIGH se tutti gli input sono LOW.

Inputs	Output
A B	X
0 0	1
0 1	0
1 0	0
1 1	0

Notazione: combinazione di OR (+) e NOT (overbar)

$$X = A + B$$
.

Porta NOR

Forme d'onda d'esempio:

Porta NOR come componente universale

In maniera simile alla NAND, anche la porta NOR può essere usata come componente universale

Esercizio: realizzare porte NOT, AND, OR usando soltanto porte NOR

Porta XOR

Produce HIGH soltanto quando gli input assumono valori opposti (uno LOW e l'altro HIGH)

Inputs	Output
A B	X
0 0	0
0 1	1
1 0	1
1 1	0

Notazioni: X = A⊕B

Porta XOR

Forme d'onda d'esempio:

Notare che l'output è HIGH solo quando un solo input è HIGH

Porta XNOR

$$A \longrightarrow X$$
 $A \longrightarrow = 1$ X

Produce un output HIGH soltanto quando il livello di A e B è lo stesso (entrambi LOW o entrambi HIGH)

Iı	nputs	Output
A	B	X
0	0	1
0	1	0
1	0	0
_1	1	1

Notazione: $X = \overline{AB} + AB$ Alternativa: $X = A \bigcirc B$

Circuiti disponibili sul mercato

Porta XNOR

Forma d'onda d'esempio:

Utile per confrontare valori...

Circuiti disponibili sul mercato

74xx08 AND gate
74xx32 OR gate
74xx04 NOT gate
74xx00 NAND gate
74xx02 NOR gate
74xx86 XOR gate

Data sheet

Forniscono informazioni su:

- · Funzione logica
- Tabella di verità
- Pin-out
- · Caratteristiche elettriche
- Caratteristiche temporali (il tempo di risposta di un circuito non è istantaneo)
- · Packaging

Esempio

Disegnare il circuito relativo all'espressione:

$$F = B'C + AB$$

Quindi realizzarlo utilizzando chip disponibili

Progettazione Logica

