Введем еще определения:

Определение 1.15. Система векторов $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$ называется ПОЛНОЙ системой, если <u>любой</u> вектор $\bar{a} \in V$ можно разложить по системе $A: \bar{a} = \lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \dots \lambda_n \bar{a}_n$.

Наконец, дадим (алгебраическое) определение базиса:

Определение 1.16. Система $E_n = \{\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n\}$ называется базисом пространства V, если она удовлетворяет двум условиям:

- 1° E_n есть линейно независимая система;
- 2° E_n есть полная система.

В последнем определении два предложения 1° и 2° иногда объединяют в одно: E_n есть МАКСИМАЛЬНАЯ линейно независимая система в V.

Если E_n – базис в V, то такое пространство также обозначают V^n : $V = V^n$.

Какая связь между «геометрическим» определением базисов E_1, E_2, E_3 в пространствах V^1, V^2, V^3 с алгебраическим определением базиса E_n в V^n ?

Теорема 1.12. Геометрическое определение базисов E_1 , E_2 , E_3 в V^1 , V^2 , V^3 совпадает с алгебраическим определением базиса E_n в V^n для случаев n = 1, 2, 3.

Доказательство. 1° E_1 , E_2 , E_3 есть полные системы в V^1, V^2, V^3 . Это следует из теорем 1.2, 1.3, 1.4 (стр. 8-9) или «объединенной» теоремы 1.5 (стр. 9).

 2° E_1 , E_2 , E_3 есть линейно независимые системы векторов, это следует теоремы 1.11 данного параграфа.

Выполнение этих двух условий и есть определение базиса с алгебраической точки зрения.

В отличие от пространств V^1, V^2, V^3 в пространстве V^n $(n \geqslant 4)$ базисы E_n геометрическим способом задать нельзя.

Определение 1.17. Число n векторов в базисе $E_n = \{\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n\}$ называют размерностью пространства и обозначают dim $V^n = n$.

Таким образом для:

 $n = 1, \dim V^1 = 1$ (прямая);

 $n = 2, \dim V^2 = 2$ (плоскость);

 $n=3, \dim V^3=3$ (пространство);

 $n \geqslant 4$, dim $V^n = n$ (наглядно-геометрического образца нет).

Именно алгебраическая точка зрения на базис позволяет сделать «переход» от геометрически ясных конфигураций пространств V^1, V^2, V^3 к пространствам больших размерностей.

Общая теория векторных пространств, как уже устоялось, будет построена в курсе АЛ-ГЕБРА. В данном курсе АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ мы рассматриваем и будем рассматривать пространства V^1, V^2, V^3 . Зачем же мы вообще упоминаем о пространствах больших размерностей? Только для того, чтобы посмотреть как здесь реализуется принцип «от простого к сложному» – переход от V^1, V^2, V^3 к пространствам V^n при n>3.

1.4 Скалярное произведение векторов

Наряду с линейными операциями (I) и (II) вводят еще третью операцию, которую называют скалярным произведением векторов. Операцию скалярного произведения будем также нумеровать римской цифрой (III). Предварительно сформулируем следующее определение:

Определение 1.18. Пусть два вектора $\bar{a}, \bar{b} \neq \bar{0}$. Под НЕ ОРИЕНТИРУЕМЫМ углом φ между векторами \bar{a} и \bar{b} называем НАИМЕНЬШИЙ угол между прямыми, проходящими через эти векторы: $\varphi = (\widehat{a}, \overline{b})$ и $0 \leqslant \varphi \leqslant \pi$. Если \bar{a} и/или \bar{b} есть нулевой вектор, то считаем, что угол НЕ определен.

Замечание 1.8. Понятие ОРИЕНТИРУЕМОГО угла будет дано ниже. Если угол НЕ ориентируемый, то это означает, что $\varphi = (\widehat{\overline{a}}, \overline{\overline{b}}) = (\widehat{\overline{b}}, \overline{\overline{a}})$ (угол между парой векторов $\overline{a}, \overline{b}$ и $\overline{b}, \overline{a}$ один и тот же).

Определение 1.19. Скалярное произведение двух векторов есть ЧИСЛО (скаляр), которое будем обозначать через (\bar{a}, \bar{b}) и которое есть:

- 1° $(\bar{a}, \bar{b}) = |\bar{a}||\bar{b}|\cos(\widehat{\bar{a}}, \bar{b}), \text{ если } \bar{a}, \bar{b} \neq \bar{0};$
- 2° $(\bar{a},\bar{b})=0$, если \bar{a} и/или \bar{b} есть $\bar{0}$.

Векторы \bar{a} и \bar{b} называем множителями скалярного произведения (\bar{a} – левый и \bar{b} – правый).

Замечание 1.9. Обозначения операции (III) (скалярного произведения) бывают разные. Кроме (\bar{a}, \bar{b}) это число обозначают также $\bar{a} \cdot \bar{b}$ или $(\bar{a}|\bar{b})$, или $\langle \bar{a}|\bar{b}\rangle$. Мы выбираем (\bar{a}, \bar{b}) и именно эта запись будет использована в дальнейшем.

Свойства операции (III) (скалярного произведения)

(III.1) Коммутативность. Сомножители можно переставлять: $(\bar{a}, \bar{b}) = (\bar{b}, \bar{a})$ (для любых векторов \bar{a}, \bar{b}).

 \mathcal{A} оказательство. Используем не ориентированность угла: так как $(\widehat{a}, \overline{b}) = (\widehat{b}, \overline{a})$, то имеем $\cos(\widehat{a}, \overline{b}) = \cos(\widehat{b}, \overline{a})$. Тогда $(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos(\widehat{a}, \overline{b}) = |\overline{b}| |\overline{a}| \cos(\widehat{b}, \overline{a}) = (\overline{b}, \overline{a})$.

(ІІІ.2) Выражение модуля (нормы) вектора через скалярное произведение:

$$|\bar{a}| = ||\bar{a}|| = \sqrt{(\bar{a}, \bar{a})}.$$

Доказательство. Следует из определения скалярного произведения: $(\bar{a}, \bar{a}) = |\bar{a}||\bar{a}||_{\cos(\widehat{a}, \bar{a})} = |\bar{a}||^2$ То оступация.

$$(\bar{a}, \bar{a}) = |\bar{a}||\bar{a}|\cos(\widehat{\bar{a}, \bar{a}}) = |\bar{a}|^2$$
. To есть $|\bar{a}| = \sqrt{(\bar{a}, \bar{a})}$.

Определение 1.20. Два (ненулевых) вектора называются *ортогональными* и обозначаются $\bar{a} \perp \bar{b}$, если угол между ними равен $\frac{\pi}{2}$.

(III.3) Критерий ортогональности (!). $\bar{a} \perp \bar{b} \Leftrightarrow (\bar{a}, \bar{b}) = 0$.

Доказательство. Следует из определения скалярного произведения.

Замечание 1.10. Обратите внимание на критерий ортогональности (!). Именно этим свойством (III.3) мы будем постоянно пользоваться в дальнейшем.

П

Определение 1.21. Базис $E_2 = \{\bar{e}_1, \bar{e}_2\}$ пространства V^2 или $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ пространства V^3 называется *ортогональным базисом*, если базисные векторы попарно ортогональны:

для V^2 : E_2 есть ортогональный базис, если $\bar{e}_1 \perp \bar{e}_2$;

для V^3 : E_3 есть ортогональный базис, если $\bar{e}_1 \perp \bar{e}_2$, $\bar{e}_1 \perp \bar{e}_3$, $\bar{e}_2 \perp \bar{e}_3$.

С использованием критерия ортогональности определению ортогонального базиса можно придать более компактную форму:

Базис E_2 или E_3 есть ортогональный базис, если $(\bar{e}_i, \bar{e}_j) = 0$ для $i \neq j$.

Следующее утверждение мы формулируем и доказываем для пространства V^3 . Для V^2 все аналогично (даже проще).

Лемма 1.1 (О координатах вектора). Пусть в V^3 базис $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ есть ортогональный базис и координаты вектора $\bar{a} \in V^3$ в этом базисе это $(\alpha_1, \alpha_2, \alpha_3)$. Тогда

$$\alpha_1 = \frac{(\bar{a}, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}, \qquad \alpha_2 = \frac{(\bar{a}, \bar{e}_2)}{(\bar{e}_2, \bar{e}_2)}, \qquad \alpha_3 = \frac{(\bar{a}, \bar{e}_3)}{(\bar{e}_3, \bar{e}_3)}.$$

Доказательство. Не сложное, но громоздкое.

<u>Позиция 1.</u> Пусть $\bar{a}=\bar{0}$. Нулевой вектор (и только он) в любом базисе имеет нулевые координаты $\alpha_1=\alpha_2=\alpha_3=0$. С другой стороны, из определения скалярного произведения следует, что $(\bar{0},\bar{e}_1)=(\bar{0},\bar{e}_2)=(\bar{0},\bar{e}_3)=0$ и получаем $\alpha_1=0=\frac{(\bar{0},\bar{e}_1)}{(\bar{e}_1,\bar{e}_1)},$ $\alpha_2=0=\frac{(\bar{0},\bar{e}_2)}{(\bar{e}_2,\bar{e}_2)}$ и $\alpha_3=0=\frac{(\bar{0},\bar{e}_3)}{(\bar{e}_3,\bar{e}_3)}$.

<u>Позиция 2.</u> Здесь $\bar{a} \neq \bar{0}$. Векторы $\bar{a}, \bar{e}_1, \bar{e}_2, \bar{e}_3$ свободны и можем считать, что они выходят из общего начала O. Пусть π_1 есть плоскость, проходящая через векторы \bar{e}_1 и $\bar{a} = \overline{OA}$ (рис. 11a).

puc. 11

Рассмотрим чертеж в плоскости π_1 (рис. 11e). Из точки A опускаем перпендикуляр на прямую, проходящую через \bar{e}_1 . Пусть A_1 есть точка пересечения этих прямых. По построению треугольник OAA_1 прямоугольный. Так как $\overline{OA_1} \parallel \bar{e}_1$, то из критерия коллинеарности векторов (стр. 7) следует, что существует α_1 такое, что $\overline{OA_1} = \alpha_1\bar{e}_1$, причем

$$\alpha_1 = \begin{cases} \frac{|OA_1|}{|\bar{e}_1|}, \text{ если } \overline{OA_1} \uparrow \uparrow \bar{e}_1 \quad (a) \\ -\frac{|OA_1|}{|\bar{e}_1|}, \text{ если } \overline{OA_1} \uparrow \downarrow \bar{e}_1 \quad (b) \end{cases}$$

Из рис. 11в следует, что

$$\begin{cases} \text{если } 0 \leqslant \varphi_1 < \frac{\pi}{2}, \text{ то } \overline{OA_1} \uparrow \uparrow \bar{e}_1 \text{ и } |OA_1| = |\bar{a}|\cos\varphi_1 \qquad (a') \\ \text{если } \frac{\pi}{2} < \varphi_1 \leqslant \pi, \text{ то } \overline{OA_1} \uparrow \downarrow \bar{e}_1 \text{ и } |OA_1| = -|\bar{a}|\cos\varphi_1 \qquad (b') \end{cases}$$

Рассмотрим здесь ряд возможностей.

Случай 1.

Пусть $0 \leqslant \varphi_1 < \frac{\pi}{2}$. Из формулы (a) имеем $\alpha_1 = \frac{|OA_1|}{|\bar{e}_1|}$ и, учитывая формулу (a'), получаем

$$\alpha_1 = \frac{|\bar{a}|\cos\varphi_1}{|\bar{e}_1|} = \frac{|\bar{a}||\bar{e}_1|\cos\varphi_1}{|\bar{e}_1|^2} = \frac{(\bar{a},\bar{e}_1)}{(\bar{e}_1,\bar{e}_1)}.$$

Случай 2.

Пусть $\frac{\pi}{2} < \varphi_1 \leqslant \pi$. Из формулы (b) имеем $\alpha_1 = -\frac{|OA_1|}{|\bar{e}_1|}$ и, учитывая (b'), получаем

$$\alpha_1 = -\frac{-|\bar{a}|\cos\varphi_1}{|\bar{e}_1|} = \frac{|\bar{a}||\bar{e}_1|\cos\varphi_1}{|\bar{e}_1|^2} = \frac{(\bar{a},\bar{e}_1)}{(\bar{e}_1,\bar{e}_1)}.$$

Случай 3.

Пусть $\varphi_1=\frac{\pi}{2}$. Тогда (см. рис. 11e) $\overline{OA_1}=\bar{0}$. Из утверждения 1.3 (стр. 7) следует, что $\bar{0}=\alpha_1\bar{e}_1$ влечет $\alpha_1=0$. С другой стороны, $(\bar{a},\bar{e}_1)=|\bar{a}||\bar{e}_1|\cos\frac{\pi}{2}=0$ и, следовательно, $\alpha_1 = 0 = \frac{(\bar{a}, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}.$

Объединяя случаи 1, 2, 3 можно утверждать, что для любого угла $0\leqslant \varphi_1\leqslant \pi$ и, следовательно, для любого вектора $\bar{a} \neq \bar{0}$ формула леммы $\alpha_1 = \frac{(\bar{a}, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}$ доказана. Учитывая позицию 1 (случай $\bar{a} = \bar{0}$) эта формула верна для любого $\bar{a} \in V^3$.

Аналогично доказываются формулы $\alpha_2 = \frac{(\bar{a}, \bar{e}_2)}{(\bar{e}_2, \bar{e}_2)}$ и $\alpha_3 = \frac{(\bar{a}, \bar{e}_3)}{(\bar{e}_3, \bar{e}_3)}$. Надо только рассматривать чертеж в плоскостях π_2 и π_3 , проходящих через векторы \bar{a}, \bar{e}_2 и \bar{a}, \bar{e}_3 , соответственно. \square

Результат леммы крайне важен для дальнейшего использования и, в частности, используется при доказательстве следующего свойства скалярного произведения. Это свойство связывает линейные операции (I) и (II) с операцией (III) (скалярное произведение) и носит название свойство дистрибутивности (билинейности) скалярного произведения.

(III.4) Дистрибутивности (билинейность). Для любых векторов $\bar{a},\bar{a}_1,\bar{a}_2,\bar{b},\bar{b}_1,\bar{b}_2\in V^3$ и чисел $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}$ справедливо $(\lambda_1\bar{a}_1+\lambda_2\bar{a}_2,\bar{b})=\lambda_1(\bar{a}_1,\bar{b})+\lambda_2(\bar{a}_2,\bar{b})$ – дистрибутивность (линейность) по левому множителю; $(\bar{a}, \mu_1 \bar{b}_1 + \mu_2 \bar{b}_2) = \mu_1(\bar{a}, \bar{b}_1) + \mu_2(\bar{a}, \bar{b}_2)$ – дистрибутивность (линейность) по правому множителю.

Доказательство. (1) Доказываем дистрибутивность по левому множителю.

- (a) Если $\bar{b} = \bar{0}$, то формула верна из определения скалярного произведения, содержащего нулевой множитель.
- (b) Пусть $\bar{b} \neq \bar{0}$. Выберем в пространстве V^3 ортогональный базис $E_3=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}$ так, чтобы $\bar{e}_1=\bar{b},$ а положение остальных векторов базиса произвольное (см. рис. 12). Согласно лемме о координатах вектора в ортогональном базисе:

$$\dfrac{(\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}$$
 – есть первая координата вектора $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2;$ $\dfrac{(\bar{a}_1, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}$ – есть первая координата вектора $\bar{a}_1;$ $\dfrac{(\bar{a}_2, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}$ – есть первая координата вектора $\bar{a}_2.$

Согласно правилу действий (I) и (II) с векторами в координатной форме (см. стр. 10) получим, что $\lambda_1 \frac{(\bar{a}_1, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)} + \lambda_2 \frac{(\bar{a}_2, \bar{e}_1)}{(\bar{e}_1, \bar{e}_1)}$ – есть первая координата вектора $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2$. Сравнивая

две формулы для первой координаты вектора
$$\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2$$
, получаем:
$$\frac{\left(\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{e}_1\right)}{\left(\bar{e}_1, \bar{e}_1\right)} = \lambda_1 \frac{\left(\bar{a}_1, \bar{e}_1\right)}{\left(\bar{e}_1, \bar{e}_1\right)} + \lambda_2 \frac{\left(\bar{a}_2, \bar{e}_1\right)}{\left(\bar{e}_1, \bar{e}_1\right)} = \frac{\lambda_1 \left(\bar{a}_1, \bar{e}_1\right) + \lambda_2 \left(\bar{a}_2, \bar{e}_1\right)}{\left(\bar{e}_1, \bar{e}_1\right)}.$$

Таким образом, $(\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}) = \lambda_1(\bar{a}_1, \bar{b}) + \lambda_2(\bar{a}_2, \bar{b})$, поскольку $\bar{e}_1 = \bar{b}$.

(2) Доказываем дистрибутивность по правому множителю. В силу коммутативности (III.1), $(\bar{a}, \mu_1 \bar{b}_1 + \mu_2 \bar{b}_2) = (\mu_1 \bar{b}_1 + \mu_2 \bar{b}_2, \bar{a})$. Теперь используем дистрибутивность по левому множителю: $(\mu_1\bar{b}_1+\mu_2\bar{b}_2,\bar{a})=\mu_1(\bar{b}_1,\bar{a})+\mu_2(\bar{b}_2,\bar{a})$. И снова коммутативность: $\mu_1(\bar{b}_1,\bar{a})+\mu_2(\bar{b}_2,\bar{a})=\mu_1(\bar{a},\bar{b}_1)+\mu_2(\bar{b}_2,\bar{a})$ $+\mu_2(\bar{a},\bar{b}_2)$. Таким образом, $(\bar{a},\mu_1\bar{b}_1+\mu_2\bar{b}_2)=\mu_1(\bar{a},\bar{b}_1)+\mu_2(\bar{a},\bar{b}_2)$.

Скалярное произведение векторов в координатной форме

Пусть в пространстве V^3 фиксирован некоторый произвольный базис $E_3=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}.$ Пусть $\bar{a}=\{\alpha_1,\alpha_2,\alpha_3\}$ и $\bar{b}=\{\beta_1,\beta_2,\beta_3\}$ — вектора, разложенные по базису E_3 :

 $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3;$ $\bar{b} = \beta_1 \bar{e}_1 + \beta_2 \bar{e}_2 + \beta_3 \bar{e}_3.$

Вычислим скалярное произведение (\bar{a}, \bar{b}) используя свойство (III.4):

$$(\bar{a}, \bar{b}) = (\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3, \beta_1 \bar{e}_1 + \beta_2 \bar{e}_2 + \beta_3 \bar{e}_3) = \alpha_1 \beta_1 (\bar{e}_1, \bar{e}_1) + \alpha_1 \beta_2 (\bar{e}_1, \bar{e}_2) + \alpha_1 \beta_3 (\bar{e}_1, \bar{e}_3) + \alpha_2 \beta_1 (\bar{e}_2, \bar{e}_1) + \alpha_2 \beta_2 (\bar{e}_2, \bar{e}_2) + \alpha_2 \beta_3 (\bar{e}_2, \bar{e}_3) + \alpha_3 \beta_1 (\bar{e}_3, \bar{e}_1) + \alpha_3 \beta_2 (\bar{e}_3, \bar{e}_2) + \alpha_3 \beta_3 (\bar{e}_3, \bar{e}_3).$$

Данное равенство есть формула, выражающая скалярное произведение векторов в координатной форме. Базис $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ фиксирован и поэтому считаем, что нам <u>известны</u> модули (нормы) базисных векторов $|e_i|$ и углы между ними $(\widehat{e_i}, \widehat{e_j})$.

Поэтому числа $g_{ij}=(e_i,e_j)=|e_i||e_j|\cos(\widehat{e_i},e_j)$ (i,j=1,2,3) считаются известными. Отметим, что в силу коммутативности скалярного произведения (III.1) $g_{ij}=g_{ji}$ и выражение скалярного произведения векторов в координатной форме может быть представлено как: $(\bar{a},\bar{b})=\alpha_1\beta_1g_{11}+\alpha_2\beta_2g_{22}+\alpha_3\beta_3g_{33}+(\alpha_1\beta_2+\alpha_2\beta_1)g_{12}+(\alpha_1\beta_3+\alpha_3\beta_1)g_{13}+(\alpha_2\beta_3+\alpha_3\beta_2)g_{32}$

Замечание 1.11. Введенные выше числа g_{ij} называют <u>структурными константами</u> скалярного произведения или компонентами метрического тензора.

Замечание 1.12. Если рассматривать пространство V^2 с базисом $E_2 = \{\bar{e}_1, \bar{e}_2\}$, то выражение скалярного произведения векторов в координатной форме очевидно будет:

$$(\bar{a}, \bar{b}) = \alpha_1 \beta_1 g_{11} + \alpha_2 \beta_2 g_{22} + (\alpha_1 \beta_2 + \alpha_2 \beta_1) g_{12}.$$

Формулы скалярного произведения в координатной форме сильно упрощаются, если рассматривать НЕ произвольный базис, а так называемый ОРТОНОРМИРОВАННЫЙ базис.

Определение 1.22. Базис $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ называется ортонормированным, если это ортогональный базис, т.е. все вектора попарно ортогональны $(e_i \perp e_j \text{ или } (e_i, e_j) = 0 \text{ при } i \neq j)$, и все вектора НОРМИРОВАНЫ к единице, т.е. единичной длины $(|e_i| = 1 \text{ или } (e_i, e_i) = 1)$.

Более кратко: E_3 есть ортонормированный базис, если $g_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$

В математике часто вводят число δ_{ij} называемое дельта Кронекера: $\delta_{ij} = \begin{cases} 1, \ i=j \\ 0, \ i \neq j \end{cases}$

Тогда (еще короче): E_3 есть ортонормированный базис, если $g_{ij} = \delta_{ij}$.

Замечание 1.13. Дельта Кронекера (или символ Кронекера) очень часто у вас будет встречаться в разных курсах математики.

Значимость ортонормированного базиса состоит в том, что в нем многие формулы и утверждения становятся более компактными и некоторые вычислительные процедуры становятся проще. Этим мы активно в дальнейшем (особенно в решении задач) будем пользоваться. Например:

- (1) Если E_3 есть ортонормированный базис и $\bar{a} = \{\alpha_1, \alpha_2, \alpha_3\}$ и $\bar{b} = \{\beta_1, \beta_2, \beta_3\}$ вектора, разложенные по базису E_3 , то $(\bar{a}, \bar{b}) = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_3$.
- (2) Если E_3 есть ортонормированный базис и $\bar{a} = \{\alpha_1, \alpha_2, \alpha_3\}$ вектор, разложенный по базису E_3 , то $|\bar{a}| = \sqrt{\alpha_1^2 + \alpha_2^2 + \alpha_3^2}$ теорема Пифагора.
 - (3) Очень важный результат!:

Теорема 1.13. Если E_3 есть ортонормированный базис и $\bar{a} = \{\alpha_1, \alpha_2, \alpha_3\}$ – вектор, разложенный по базису E_3 , то $\alpha_1 = (\bar{a}, \bar{e}_1), \ \alpha_2 = (\bar{a}, \bar{e}_2), \ \alpha_3 = (\bar{a}, \bar{e}_3).$

Доказательство. Следует из леммы о координатах вектора в ортогональном базисе и того факта, что $(\bar{e}_1, \bar{e}_1) = (\bar{e}_2, \bar{e}_2) = (\bar{e}_3, \bar{e}_3) = 1$.