

P Leaderboard

All Contests > Week of Code 24 > Happy Ladybugs

Happy Ladybugs

Problem

Submissions

Leaderboard

Discussions

Happy Ladybugs is a board game having the following properties:

- The board is represented by a string, b, of length n. The i^{th} character of the string, b_i , denotes the i^{th} cell of the board.
 - If b_i is an underscore (i.e., $_$), it means the i^{th} cell of the board is empty.
 - If b_i is an uppercase English alphabetic letter (i.e., A through Z), it means the i^{th} cell contains a ladybug of color b_i .
 - String **b** will not contain any other characters.
- A ladybug is happy only when its left or right adjacent cell (i.e., b_{i+1}) is occupied by another ladybug having the same color.
- In a single move, you can move a ladybug from its current position to any empty cell.

Given the values of n and b for g games of Happy Ladybugs, determine if it's possible to make all the ladybugs happy. For each game, print YES on a new line if all the ladybugs can be made happy through some number of moves; otherwise, print NO to indicate that no number of moves will result in all the ladybugs being happy.

Input Format

The first line contains an integer, g, denoting the number of games. The $2 \cdot g$ subsequent lines describes a Happy Ladybugs game in the following format:

- 1. The first line contains an integer, **n**, denoting the number of cells on the board.
- 2. The second line contains a string, \boldsymbol{b} , describing the \boldsymbol{n} cells of the board.

Constraints

- $1 \le g \le 100$
- $1 \le n \le 100$
- It is guaranteed that string **b** consists of underscores and uppercase English alphabetic letters (i.e., _ and A through Z).

Output Format

For each game, print YES on a new line if it is possible to make all the ladybugs happy; otherwise, print NO.

Sample Input

6 B_RRBR

Sample Output

YES NO YES

YES

Explanation

The first three games of Happy Ladybugs are explained below:

1. Initial board:

Now all the ladybugs are happy, so we print YES on a new line.

- 2. There is no way to make the ladybug having color Y happy, so we print NO on a new line.
- 3. There are no unhappy ladybugs, so we print YES on a new line.

```
f in

Contest ends in 4 days

Submissions: 4333

Max Score: 27

Difficulty: Easy

Rate This Challenge:

☆☆☆☆☆
```

```
Current Buffer (saved locally, editable) ? • •
                                                                                     Python 3
 1
   #!/bin/python3
 2
3
   import sys
4
 5
   Q = int(input().strip())
6
7 v for a0 in range(Q):
8
        n = int(input().strip())
9
        b = input().strip()
10
```

10/	/12/2016	Happy Ladybugs Week of Code 24 Question Contests HackerRank		
			Line: 1 Col: 1	
	<u>♣</u> <u>Upload Code as File</u>	☐ Test against custom input	Run Code Submit Code	

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature