

## REMARKS/ARGUMENTS

Claims 44-47 and 49-51 remain pending in this application. In this submission, Applicants present additional references in support of Applicants' arguments presented in their Responses of November 9, 2005 and April 20, 2006, which are incorporated herewith in its entirety. Applicants note that some of the references listed in the enclosed Information Disclosure Statement are provided in the form of full-text articles, while others are provided as abstracts. Applicants submit that the full-text articles are provided solely because they are available, and that Applicants do not intend to make any distinction among the references, or to indicate that some references in the IDS are more pertinent or material than others.

Applicants respectfully traverse the present rejections.

### Claim Rejections – 35 U.S.C. §101/112, First Paragraph

Claims 44-47 and 49-51 stand rejected under 35 U.S.C. §101 because, allegedly, “the claimed invention is not supported by either a specific and substantial asserted utility or a well-established utility.”

Claims 44-47 and 49-51 stand further rejected under 35 U.S.C. §112, first paragraph, since allegedly “the claimed invention is not supported by either a specific and substantial asserted utility or a well-established utility, one skilled in the art clearly would not know how to use the claimed invention.”

### Arguments

Applicants maintain that the specification, as filed, provides sufficient disclosure to establish a specific, substantial and credible utility for the PRO343 polypeptide of SEQ ID NO:263 and that the increase in gene amplification for the DNA encoding PRO343 is sufficient to confer patentable utility to the instantly claimed PRO343 polypeptides.

As discussed previously, it is not a legal requirement to establish a “necessary” correlation between an increase in gene copy number and protein expression levels or to find evidence that protein levels can be accurately predicted from gene amplification data. Instead, as discussed before, the evidentiary standard to be used throughout *ex parte* examination of a patent application is a preponderance of the totality of the evidence under consideration. Accordingly, the question is rather if it is more likely than not that a person of ordinary skill in the pertinent art would recognize such a positive correlation between gene amplification levels and protein levels.

Applicants respectfully submit that when the proper evidentiary standard is applied, a correlation must be acknowledged.

Applicants maintain that, for the reasons provided in the previous responses, that a correlation between gene (DNA) amplification and elevated protein levels exists, in general and November 9, 2005) Dr. Polakis states that “it remains a central dogma in molecular biology that increased mRNA levels are predictive of corresponding increased levels of the encoded protein.” Applicants emphasize that the opinions expressed in the Polakis Declaration, including the quoted statement, are all based on his own factual findings.

Applicants further presented a second Declaration by Dr. Polakis (Polakis II) with evidentiary data in Exhibit B (response of April 20, 2006). Exhibit B of the Declaration identifies 28 gene transcripts out of 31 gene transcripts (*i.e.*, greater than 90%) that showed good correlation between tumor mRNA and tumor protein levels. As Dr. Polakis’ Declaration (Polakis II) says “[a]s such, in the cases where we have been able to quantitatively measure both (i) mRNA and (ii) protein levels in both (i) tumor tissue and (ii) normal tissue, we have observed that in the vast majority of cases, there is a very strong correlation between increases in mRNA expression and increases in the level of protein encoded by that mRNA.” Accordingly, Dr. Polakis provides facts to enable the Examiner to draw independent conclusions regarding protein data.

Applicants further enclose a Declaration by Dr. Randy Scott. Dr. Scott was a co-founder of Incyte Pharmaceuticals, Inc., the world’s first genomic information business, and is currently the Chairman and Chief Executive Officer of Genomic Health, Inc., a life science company located in Redwood City, California, which provides individualized information on the likelihood of disease recurrence and response to certain types of therapy using gene expression profiling. Based on his more than 15 years of personal experience with the DNA microarray technique and its various uses in the diagnostic and therapeutic fields, and his familiarity with the relevant art, Dr. Scott unequivocally confirms that, as a general rule, there is a good correlation between mRNA and protein levels in a particular tissue. As stated in paragraph 10 of the Scott Declaration:

“One reason for the success and wide-spread use of the DNA microarray technique, which has led to the emergence of a new industry, is that generally there is a good correlation between mRNA levels determined by microarray analysis and expression

levels of the translated protein. Although there are some exceptions on an individual gene basis, it has been a consensus in the scientific community that elevated mRNA levels are good predictors of increased abundance of the corresponding translated proteins in a particular tissue. Therefore, diagnostic markers and drug candidates can be readily and efficiently screened and identified using this technique, without the need to directly measure individual protein expression levels." (emphasis added).

The conclusions of the Polakis I and II, and the Scott Declarations are further supported by the teachings within Molecular Biology of the Cell, a leading textbook in the field (Bruce Alberts, *et al.*, Molecular Biology of the Cell (3<sup>rd</sup> ed. 1994) (herein after Cell 3<sup>rd</sup>) and (4<sup>th</sup> ed. 2002) (excerpts attached as Exhibit 1). Figure 9-2 of Cell 3<sup>rd</sup> shows the steps at which eukaryotic gene expression can be controlled. The first step depicted is transcriptional control. Cell 3<sup>rd</sup> provides that "[f]or most genes transcriptional controls are paramount. This makes sense because, of all the possible control points illustrated in Figure 9-2, only transcriptional control ensures that no superfluous intermediates are synthesized." Cell 3<sup>rd</sup> at 403 (emphasis added). In addition, the text states that "Although controls on the initiation of gene transcription are the predominant form of regulation for most genes, other controls can act later in the pathway from RNA to protein to modulate the amount of gene product that is made." Cell 3<sup>rd</sup> at 453 (emphasis added). Thus, as established in Cell 3<sup>rd</sup>, the predominant mechanism for regulating the amount of protein produced is by regulating transcription initiation.

In Cell 4<sup>th</sup>, Figure 6-3 on page 302 illustrates the basic principle that there is a correlation between increased gene expression and increased protein expression. The accompanying text states that "a cell can change (or regulate) the expression of each of its genes according to the needs of the moment – *most obviously by controlling the production of its mRNA.*" Cell 4<sup>th</sup> at 302 (Emphasis added). Similarly, Figure 6-90 on page 364 of Cell 4<sup>th</sup> illustrates the path from gene to protein. The accompanying text states that while potentially each step can be regulated by the cell, "the initiation of transcription is the most common point for a cell to regulate the expression of each of its genes." Cell 4<sup>th</sup> at 364 (emphasis added). This point is repeated on page 379, where the authors state that of all the possible points for regulating

protein expression, “[f]or most genes transcriptional controls are paramount.” Cell 4<sup>th</sup> at 379 (Emphasis added).

Further support for Applicants’ position can be found in the textbook, Genes VI, (Benjamin Lewin, Genes VI (1997)) (copy enclosed under Exhibit 1) which states “having acknowledged that control of gene expression can occur at multiple stages, and that production of RNA cannot inevitably be equated with production of protein, it is clear that the overwhelming majority of regulatory events occur at the initiation of transcription.” Genes VI at 847-848 (Emphasis added).

Additional support is also found in Zhigang *et al.*, World Journal of Surgical Oncology 2:13, 2004 (copy enclosed in Exhibit 1). Zhigang studied the expression of prostate stem cell antigen (PSCA) protein and mRNA to validate it as a potential molecular target for diagnosis and treatment of human prostate cancer. The data showed “a high degree of correlation between PSCA protein and mRNA expression” *Zhigang* at 4. Of the samples tested, 81 out of 87 showed a high degree of correlation between mRNA expression and protein expression. The authors conclude that “it is demonstrated that PSCA protein and mRNA overexpressed in human prostate cancer, and that the increased protein level of PSCA was resulted from the upregulated transcription of its mRNA.” *Zhigang* at 6. Even though the correlation between mRNA expression and protein expression occurred in 93% of the samples tested, not 100%, the authors state that “PSCA may be a promising molecular marker for the clinical prognosis of human Pca and a valuable target for diagnosis and therapy of this tumor.” *Id.* at 7

Further, Meric *et al.*, Molecular Cancer Therapeutics, Vol. 1, 971-979 (2002) (a copy enclosed in Exhibit 1) states the following:

The fundamental principle of molecular therapeutics in cancer is to exploit the differences in gene expression between cancer cells and normal cells...[M]ost efforts have concentrated on identifying differences in gene expression at the level of mRNA, which can be attributable to either DNA amplification or to differences in transcription. Meric *et al.* at 971 (Emphasis added).

Those of skill in the art would not be focusing on differences in gene expression between cancer cells and normal cells if there were no correlation between gene expression and protein expression.

Together, the Declarations of Dr. Polakis and Dr. Scott, the accompanying references, and the excerpts and references provided above all establish that the accepted understanding in

the art is that there is a reasonable correlation between changes in gene expression and the level of the encoded protein.

In addition to the supporting references previously submitted, Applicants submit herewith further references as additional support for their assertion that, changes in DNA levels generally lead to corresponding changes in the level of the encoded polypeptide.

For example, in a comprehensive study by Orntoft *et al.* (*Mol. Cell. Proteomics*. 2002; 1(1):37-45) (copy enclosed as Exhibit 2), the authors examined gene amplification, mRNA expression level, and protein expression in pairs of non-invasive and invasive human bladder tumors. *Id.* at Abstract. The authors examined 40 well resolved abundant known proteins, and found that “[i]n general there was a highly significant correlation ( $p<0.005$ ) between mRNA and protein alterations. Only one gene showed disagreement between transcript alteration and protein alteration.” *Id.* at 42, col. 2. The alternations in mRNA and protein included both increases and decreases. *Id.* at 43, Table II. Clearly, a correlation in 39 of 40 genes examined supports Applicants’ assertion that changes in mRNA level generally lead to corresponding changes in protein level.

In a study by Wang *et al.* (*Urol. Res.* 2000; 28(5):308-15) (abstract attached as Exhibit 3) the authors report that down-regulation of E-cadherin protein has been shown in various human tumors. *Id.* at Abstract. In the reported study, the authors examined the expression of cadherins and associated catenins at the mRNA level in paired tumor and nonneoplastic primary prostate cultures. They report that “[s]ix of seven cases of neoplastic cultures showed moderately-to-markedly decreased levels of E-cadherin and P-cadherin mRNA. Similar losses of alpha-catenin and beta-catenin mRNA were also observed.” *Id.* As Applicants’ assertion would predict, the authors state that the mRNA measures showed “good correlation” with the results from protein measures. The authors conclude by stating that “this paper presents a coordinated down-regulation in the expression of E-cadherin and associated catenins at the mRNA and protein level in most of the cases studied.” *Id.*

In a more recent study by Munaut *et al.* (*Int. J. Cancer*. 2003; 106(6):848-55) (abstract attached as Exhibit 4) the authors report that vascular endothelial growth factor (VEGF) is expressed in 64-95% of glioblastomas (GBMs), and that VEGF receptors (VEGFR-1, its soluble form sVEGFR-1, VEGFR-2 and neuropilin-1) are expressed predominantly by endothelial cells.

*Id.* at Abstract. The authors explain that infiltrating tumor cells and newly-formed capillaries progress through the extracellular matrix by local proteolysis involving matrix metalloproteinases (MMPs). In the present study, the authors “used quantitative RT-PCR, Western blot, gelatin zymography and immunohistochemistry to study the expression of VEGF, VEGFR-1, VEGFR-2, sVEGFR-1, neuropilin-1, MT1-MMP, MMP-2, MMP-9 and TIMP-2 in 20 human GBMs and 5 normal brains. The expression of these MMPs was markedly increased in most GBMs with excellent correlation between mRNA and protein levels.” *Id.* Thus, the results support Applicants’ assertion that changes in mRNA level lead to corresponding changes in protein level.

In another recent study, Hui *et al.* (*Leuk. Lymphoma*. 2003; 44(8):1385-94 (abstract attached as Exhibit 5) used real-time quantitative PCR and immunohistochemistry to evaluate cyclin D1 mRNA and protein expression levels in mantle cell lymphoma (MCL). *Id.* at Abstract. The authors report that seven of nine cases of possible MCL showed overexpression of cyclin D1 mRNA, while two cases showed no cyclin D1 mRNA increase. *Id.* Similarly, “[s]ix of the seven cyclin D1 mRNA overexpressing cases showed increased cyclin D1 protein on tissue array immunohistochemistry; one was technically suboptimal.” *Id.* The authors conclude that the study “demonstrates good correlation and comparability between measure of cyclin D1 mRNA ... and cyclin D1 protein.” *Id.* Thus, this reference supports Applicants’ assertion.

In a recent study by Khal *et al.* (*Int. J. Biochem. Cell Biol.* 2005; 37(10):2196-206) (abstract attached as Exhibit 6) the authors report that atrophy of skeletal muscle is common in patients with cancer and results in increased morbidity and mortality. *Id.* at Abstract. To further understand the underlying mechanism, the authors studied the expression of the ubiquitin-proteasome pathway in cancer patient muscle using a competitive RT-PCR to measure expression of mRNA for proteasome subunits C2 and C5, while protein expression was determined by western blotting. “Overall, both C2 and C5 gene expression was increased by about three-fold in skeletal muscle of cachectic cancer patients (average weight loss 14.5+/- 2.5%), compared with that in patients without weight loss, with or without cancer. ... There was a good correlation between expression of proteosome 20S alpha subunits, detected by western blotting, and C2 and C5 mRNA, showing that increased gene expression resulted in increased protein synthesis.” These findings support Applicants’ assertion that changes in mRNA level lead to changes in protein level.

Maruyama *et al.* (Am. J. Patho. 1999; 155(3):815-22) (abstract attached as Exhibit 7) investigated the expression of three Id proteins (Id-1, Id-2 and Id-3) in normal pancreas, in pancreatic cancer and in chronic pancreatitis (CP). The authors report that pancreatic cancer cell lines frequently coexpressed all three Ids, "exhibiting good correlation between Id mRNA and protein levels." *Id.* at Abstract. In addition, the authors teach that all three Id mRNA levels were expressed at high levels in pancreatic cancer samples compared to normal or CP samples. At the protein level, Id-1 and Id-2 staining was faint in normal tissue, while Id-3 ranged from weak to strong. In contrast, in the cancer tissues "many of the cancer cells exhibited abundant Id-1, Id-2, and Id-3 immunoreactivity," and Id-1 and Id-2 protein was increased significantly in the cancer cells by comparison to the respective controls, mirroring the overexpression at the mRNA level. Thus, the authors report that in both cell lines and tissue samples, increased mRNA levels leads to an increase in protein overexpression, supporting Applicants' assertion.

Support for Applicants' assertion is also found in an article by Caberlotto *et al.* (Neurosci. Lett. 1999; 256(3):191-4) (abstract attached as Exhibit 8). In a previous study, the authors investigated alterations of neuropeptide Y (NPY) mRNA expression in the Flinders Sensitive Line rats (FSL), an animal model of depression. *Id.* at Abstract. The authors reported that in the current study, that NPY-like immunoreactivity (NPY-LI) was decreased in the hippocampal CA region, and increased in the arcuate nucleus, and that fluoxetine treatment elevated NPY-LI in the arcuate and anterior cingulate cortex. The authors state that "[t]he results demonstrate a good correlation between NPY peptide and mRNA expression." Thus, increases and decreases in mRNA levels were reflected in corresponding changes in protein level.

Misrachi and Shemesh (Biol. Reprod. 1999; 61(3):776-84) (abstract attached as Exhibit 9) investigated their hypothesis that FSH regulates the bovine cervical prostaglandin E(2) (PGE(2)) synthesis that is known to be associated with cervical relaxation and opening at the time of estrus. *Id.* at Abstract. Cervical tissue from pre-estrous/estrous, luteal, and postovulatory cows were examined for the presence of bovine (b) FSH receptor (R) and its corresponding mRNA. The authors report that bFSHR mRNA in the cervix was maximal during pre-estrus/estrus, and that the level of FSHR protein was significantly higher in pre-estrous/estrous cervix than in other cervical tissues. *Id.* The authors state that "[t]here was a good correlation between the 75-kDa protein expression and its corresponding transcript of 2.55 kb throughout the estrous cycle as described by Northern blot analysis as well as RT-PCR." *Id.*

Thus, changes in the level of mRNA for bFSHR led to corresponding changes in FSHR protein levels, a result which supports Applicants' assertion.

In a study by Stein *et al.* (J. Urol. 2000; 164(3 Pt 2):1026-30) (abstract attached as Exhibit 10), the authors studied the role of the regulation of calcium ion homeostasis in smooth muscle contractility. *Id.* at Abstract. The authors investigated the correlation between sarcoplasmic endoplasmic reticulum, calcium, magnesium, adenosine triphosphatase (SERCA) protein and gene expression, and the contractile properties in the same bladder. Partial bladder outlet obstructions were created in adult New Zealand white rabbits, which were divided into control, sham operated and obstructed groups. Stein *et al.* report that “[t]he relative intensities of signals for the Western [protein] and Northern [mRNA] blots demonstrated a strong correlation between protein and gene expression. ... The loss of SERCA protein expression is mediated by down-regulation in gene expression in the same bladder.” *Id.* This report supports Applicants' assertion that changes in mRNA level, e.g., a decrease, lead to a corresponding change in the level of the encoded protein, e.g., a decrease.

In an article by Gou and Xie (Zhonghua Jie He He Hu Xi Za Zhi. 2002; 25(6):337-40) (abstract attached as Exhibit 11) the authors investigated the expression of macrophage migration inhibitory factor (MIF) in human acute respiratory distress syndrome(ARDS) by examining the expression of MIF mRNA and protein in lung or colon tissue in ARDS and normal persons. *Id.* at Abstract. The authors report “undetectable or weak MIF mRNA and protein expression in normal lung or colons. In contrast, there was marked upregulation of MIF mRNA and protein expression in the ARDS lung or colons.” *Id.* This is consistent with Applicants' assertion that a change in mRNA for a particular gene, e.g., an increase, generally leads to a corresponding change in the level of protein expression, e.g., an increase.

These studies are representative of numerous published studies which support Applicants' assertion that changes in mRNA level generally lead to corresponding changes in the level of the expressed protein. Applicants submit herewith an addition 70 references (abstracts attached as Exhibit 12) which support Applicants' assertion.

In addition to these supporting references, Applicants also submit herewith additional references which offer support of Applicants' asserted utility.

For example, in an article by Futcher *et al.* (Mol. Cell Biol. 1999; 19(11):7357-68) (abstract attached as Exhibit 13) the authors conducted a study of mRNA and protein expression

in yeast. Futcher *et al.* report “a good correlation between protein abundance, mRNA abundance, and codon bias.” *Id.* at Abstract.

In a study which is more closely related to Applicants’ asserted utility, Godbout *et al.* (*J. Biol. Chem.* 1998; 273(33)21161-8) (abstract attached as Exhibit 14) studied the DEAD box gene, DDX1, in retinoblastoma and neuroblastoma tumor cell lines. The authors report that “there is a good correlation with DDX1 gene copy number, DDX1 transcript levels, and DDX1 protein levels in all cell lines studied.” *Id.* Thus, in these cancer cell lines, DDX1 mRNA and protein levels are correlated.

Similarly, in an article by Papotti *et al.* (*Virchows Arch.* 2002; 440(5):461-75) (abstract attached as Exhibit 15) the authors examined the expression of three somatostatin receptors (SSTR) at the mRNA and protein level in forty-six tumors. *Id.* at Abstract. The authors report a “good correlation between RT-PCR [mRNA level] and IHC [protein level] data on SSTR types 2, 3, and 5.” *Id.*

Van der Wilt *et al.* (*Eur. J. Cancer.* 2003; 39(5):691-7) (abstract attached as Exhibit 16) studied deoxycytidine kinase (dCK) in seven cell lines, sixteen acute myeloid leukemia samples, ten human liver samples, and eleven human liver metastases of colorectal cancer origin. *Id.* at Abstract. The authors report that “enzyme activity and protein expression levels of dCK in cell lines were closely related to the mRNA expression levels” and that there was a “good correlation between the different dCK measurements in malignant cells and tumors.” *Id.*

Grenback *et al.* (*Regul. Pept.* 2004; 117(2):127-39) (abstract attached as Exhibit 17) studied the level of galanin in human pituitary adenomas using a specific radioimmunoassay. *Id.* at Abstract. The authors report that “[i]n the tumors analyzed with *in situ* hybridization there was a good correlation between galanin peptide levels and galanin mRNA expression.” *Id.*

Similarly, Shen *et al.* (*Blood.* 2004; 104(9):2936-9) (abstract attached as Exhibit 18) examined the level of B-cell lymphoma 2 (BCL2) protein expression in germinal center (GC) B-cells and diffuse large B-cell lymphoma (DLBCL). *Id.* at Abstract. The authors report that “GC cells had low expression commensurate with the low protein expression level” and that in DLBCL the level of BCL2 mRNA and protein expression showed “in general, a good correlation.” *Id.*

Likewise, in an article by Fu *et al.* (*Blood* 2005; 106(13):4315-21) (abstract attached as Exhibit 19) the authors report that six mantle cell lymphomas studied “expressed either cyclin

D2 (2 cases) or cyclin D3 (4 cases). ” *Id.* at Abstract. “There was a good correlation between cyclin D protein expression and the corresponding mRNA expression levels by gene expression analysis.” *Id.*

These examples are only a few of the many references Applicants could cite in rebuttal to the PTO’s arguments. Applicants submit herewith 26 additional references (abstracts attached as Exhibit 20) which also support Applicants’ assertion in that they report a correlation between the level of mRNA and corresponding protein, contrary to the assertion of the PTO that mRNA and protein levels are not correlated.

In summary, Applicants submit herewith a total of 148 references, in addition to the declarations and references already of record, to support Applicants’ asserted utility. These references support the assertion that in general, a change in DNA levels for a particular gene leads to a corresponding change in the protein levels. As Applicants have previously acknowledged, the correlation between changes in DNA levels and protein levels is not exact, and there are exceptions (*see, e.g.*, abstracts attached as Exhibit 21). However, Applicants remind the PTO that the asserted utility does not have to be established to a statistical certainty, or beyond a reasonable doubt. *See M.P.E.P. at § 2107.02, part VII (2004).* Therefore, the fact that there are exceptions to the correlation between changes in DNA and changes in protein does not provide a proper basis for rejecting Applicants’ asserted utility. Applicants submit that considering the evidence as a whole, with the overwhelming majority of the evidence supporting Applicants’ asserted utility, a person of skill in the art would conclude that Applicants’ asserted utility is “more likely than not true.” *Id.*

Therefore, Applicants request that the Examiner reconsider this rejection and maintain that they have demonstrated utility for the PRO343 polypeptide. Applicants add that the gene amplification data clearly supports a role for PRO343 as a lung or colon tumor marker. Accordingly, the present 35 U.S.C. §101 and §112, first paragraph utility rejections should be withdrawn.

## CONCLUSION

For the reasons given above, Applicants submit that present specification clearly describes, details and provides a patentable utility for the claimed invention. Moreover, it is

respectfully submitted that based upon this disclosed patentable utility, the present specification clearly teaches "how to use" the presently claimed polypeptide. As such, Applicants respectfully request reconsideration and reversal of the outstanding rejection of Claims 44-47 and 49-51.

The present application is believed to be in *prima facie* condition for allowance, and an early action to that effect is respectfully solicited.

Please charge any fees, including fees for extension of time or other fees, or credit any overpayment to Deposit Account No. 08-1641 referencing Attorney's Docket No.39780-1618P2C48.

Respectfully submitted,

Date: August 15, 2006

  
Ginger R. Dreger  
Reg. No. 33,055

**HELLER EHRMAN LLP**  
275 Middlefield Road  
Menlo Park, California 94025-3506  
Telephone: (650) 324-7000  
Facsimile: (650) 324-0638

SV 2222376 v1  
8/14/06 10:47 AM (39780.1618)