Probability Theory

Brian Cervantes Alvarez

Chapter 1.1 Exercises

- **1.1.1.** Let $\Omega = \mathbb{R}$, \mathcal{F} be all subsets so that A or A^c is countable, P(A) = 0 in the first case and = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.
- **1.1.2.** Recall the definition of S_d from Example 1.1.5. Show that $\sigma(S_d) = \mathcal{R}^d$, the Borel subsets of \mathbb{R}^d .
- **1.1.3.** A σ -field \mathcal{F} is said to be *countably generated* if there is a countable collection $C \subset \mathcal{F}$ so that $\sigma(C) = \mathcal{F}$. Show that \mathbb{R}^d is countably generated.

1.1.4.

- (i) Show that if $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$ are σ -algebras, then $\cup_i \mathcal{F}_i$ is an algebra.
- (ii) Give an example to show that $\cup_i \mathcal{F}_i$ need not be a $\sigma\text{-algebra}.$
- **1.1.5.** A set $A \subset \{1, 2, ...\}$ is said to have asymptotic density θ if

$$\lim_{n\to\infty}\frac{|A\cap\{1,2,\dots,n\}|}{n}=\theta.$$

Let \mathcal{A} be the collection of sets for which the asymptotic density exists. Is \mathcal{A} a σ -algebra? An algebra?

Chapter 1.2 Exercises

- **1.2.1.** Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.
- **1.2.2.** Let χ have the standard normal distribution. Use Theorem 1.2.6 to get upper and lower bounds on $P(\chi \ge 4)$.
- 1.2.3. Show that a distribution function has at most countably many discontinuities.
- **1.2.4.** Show that if $F(x) = P(X \le x)$ is continuous, then Y = F(X) has a uniform distribution on (0,1), that is, if $y \in [0,1]$, $P(Y \le y) = y$.
- **1.2.5.** Suppose X has continuous density f, $P(\alpha \le X \le \beta) = 1$ and g is a function that is strictly increasing and differentiable on (α, β) . Then g(X) has density $\frac{f(g^{-1}(y))}{g'(g^{-1}(y))}$ for $y \in (g(\alpha), g(\beta))$ and 0 otherwise. When g(x) = ax + b with a > 0, $g^{-1}(y) = \frac{y-b}{a}$, so the answer is $\frac{1}{a}f\left(\frac{y-b}{a}\right)$.
- **1.2.6.** Suppose X has a normal distribution. Use the previous exercise to compute the density of $\exp(X)$. (The answer is called the *lognormal distribution*.)

1.2.7.

- (i) Suppose X has a density function f. Compute the distribution function of X^2 and then differentiate to find its density function.
- (ii) Work out the answer when X has a standard normal distribution to find the density of the chi-square distribution.

Chapter 1.3 Exercises

1.3.1. Show that if \mathcal{A} generates \mathcal{S} , then $X^{-1}(\mathcal{A}) \equiv \{\{X \in A\} : A \in \mathcal{A}\}\$ generates $\sigma(X) = \{\{X \in B\} : B \in \mathcal{S}\}.$

1.3.2. Prove Theorem 1.3.6 when n=2 by checking $\{X_1+X_2\leq x\}\in\mathcal{F}$.

1.3.3. Show that if f is continuous and $X_n \to X$ almost surely then $f(X_n) \to f(X)$ almost surely.

1.3.4.

- (i) Show that a continuous function from $\mathbb{R}^d \to \mathbb{R}$ is a measurable map from $(\mathbb{R}^d, \mathcal{R}^d)$ to $(\mathbb{R}, \mathcal{R})$.
- (ii) Show that \mathcal{R}^d is the smallest σ -field that makes all the continuous functions measurable.
- **1.3.5.** A function f is said to be *lower semicontinuous* or l.s.c. if

$$\liminf_{y \to x} f(y) \ge f(x)$$

and upper semicontinuous (u.s.c.) if -f is l.s.c. Show that f is l.s.c. if and only if $\{x: f(x) \leq a\}$ is closed for each $a \in \mathbb{R}$ and conclude that semicontinuous functions are measurable.

1.3.6. Let $f: \mathbb{R}^d \to \mathbb{R}$ be an arbitrary function and let $f^\delta(x) = \sup\{f(y): |y-x| < \delta\}$ and $f_\delta(x) = \inf\{f(y): |y-x| < \delta\}$ where $|z| = (z_1^2 + \dots + z_d^2)^{1/2}$. Show that f^δ is l.s.c. and f_δ is u.s.c. Let $f^0 = \lim_{\delta \to 0} f^\delta$, $f_0 = \lim_{\delta \to 0} f_\delta$, and conclude that the set of points at which f is discontinuous is $\{f^0 \neq f_0\}$ and that $\{f^0 \neq f_0\}$ is measurable.

1.3.7. A function $\varphi:\Omega\to\mathbb{R}$ is said to be simple if

$$\varphi(\omega) = \sum_{m=1}^{n} c_m 1_{A_m}(\omega).$$

Chapter 1.4 Exercises

- **1.4.1.** Show that if $f \ge 0$ and $\int f d\mu = 0$ then f = 0 a.e.
- **1.4.2.** Let $f \ge 0$ and $E_{n,m} = \{x : \frac{m}{2^n} \le f(x) < \frac{m+1}{2^n}\}$. As $n \to \infty$,

$$\sum_{m=1}^{\infty} \frac{m}{2^n} \mu(E_{n,m}) \uparrow \int f \, d\mu.$$

- **1.4.3.** Let g be an integrable function on \mathbb{R} and $\epsilon > 0$.
 - (i) Use the definition of the integral to conclude there is a simple function $\varphi = \sum_k b_k 1_{A_k}$ with $\int |g \varphi| dx < \epsilon$.
 - (ii) Use Exercise A.2.1 to approximate the ${\cal A}_k$ by finite unions of intervals to get a step function

$$q = \sum_{j=1}^{k} c_j 1_{(a_{j-1}, a_j)}.$$

with $a_0 < a_1 < \dots < a_k$, so that $\int |\varphi - q| dx < \epsilon$. (iii) Round the corners of q to get a continuous function r so that $\int |q - r| dx < \epsilon$.

(iii) To make a continuous function, replace each $c_j 1_{(a_{j-1},a_j)}$ by a function that is 0 on $(a_{j-1},a_j)^c$, c_j on $[a_{j-1}+\delta,a_j-\delta]$, and linear otherwise. If the δ_j are small enough and we let $r(x)=\sum_{k=j}^k r_j(x)$, then

$$\int |q(x)-r(x)|\,d\mu = \sum_{j=1}^k \delta_j c_j < \epsilon.$$

1.4.4. Prove the Riemann-Lebesgue lemma. If g is integrable then

$$\lim_{n \to \infty} \int g(x) \cos(nx) \, dx = 0.$$

4

Hint: If q is a step function, this is easy. Now use the previous exercise.

Chapter 1.5 Exercises

1.5.1. Let $||f||_{\infty} = \inf\{M : \mu(\{x : |f(x)| > M\}) = 0\}$. Prove that

$$\int |fg|d\mu \le ||f||_1 ||g||_{\infty}.$$

1.5.2. Show that if μ is a probability measure then

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

- **1.5.3.** Minkowski's inequality.
 - (i) Suppose $p \in (1, \infty)$. The inequality $||f + g||_p \le 2^p (||f||_p^p + ||g||_p^p)$ shows that if $||f||_p$ and $||g||_p$ are $<\infty$ then $||f + g||_p < \infty$. Apply Hölder's inequality to $|f|^{p-1}$ and $|g||f + g|^{p-1}$ to show $||f + g||_p \le ||f||_p + ||g||_p$.
 - (ii) Show that the last result remains true when p=1 or $p=\infty$.
- **1.5.4.** If f is integrable and E_m are disjoint sets with union E then

$$\sum_{m=0}^{\infty} \int_{E_m} f d\mu = \int_{E} f d\mu.$$

So if $f \ge 0$, then $\nu(E) = \int_E f d\mu$ defines a measure.

- **1.5.5.** If $g_n \uparrow g$ and $\int g_1^- d\mu < \infty$ then $\int g_n d\mu \uparrow \int g d\mu$.
- **1.5.6.** If $g_m \ge 0$ then $\int \sum_{m=0}^{\infty} g_m d\mu = \sum_{m=0}^{\infty} \int g_m d\mu$.
- **1.5.7.** Let $f \geq 0$. (i) Show that $\int f \wedge n d\mu \uparrow \int f d\mu$ as $n \to \infty$. (ii) Use (i) to conclude that if g is integrable and $\epsilon > 0$ then we can pick $\delta > 0$ so that $\mu(A) < \delta$ implies $\int_A |g| d\mu < \epsilon$.
- **1.5.8.** Show that if f is integrable on [a, b], $g(x) = \int_{[a, x]} f(y) dy$ is continuous on (a, b).
- **1.5.9.** Show that if f has $||f||_p = (\int |f|^p d\mu)^{1/p} < \infty$, then there are simple functions φ_n so that $||\varphi_n f||_p \to 0$.
- **1.5.10.** Show that if $\sum_n \int |f_n| d\mu < \infty$ then $\int \sum_n f_n d\mu = \sum_n \int f_n d\mu$.