Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	01-11-2023
Project Name	Deep Learning Model for Eye Disease prediction
Maximum Marks	20 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule.

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Project setup & Infrastructure	USN-1	Set up the development environment with the required tools and frameworks to predict the eye disease.		High	Varsha
Sprint-1	development environment	USN-2	Gather a diverse dataset of images containing different types of eye diseases for training the deep learning model.		High	Varsha
Sprint-2	Data collection	USN-3	Preprocess the collected dataset by resizing images, normalizing pixel values, and splitting it into training and validation sets.		High	Sushma
Sprint-2	data preprocessing	USN-4	Explore and evaluate different deep learning architectures (e.g., CNNs, Transfer learning) to select the most suitable model for garbage classification.	3	High	Sushma
Sprint-3	model development	USN-5	train the selected deep learning model using the preprocessed dataset and monitor its performance on the validation set.	4	High	Vivek
Sprint-3	Training	USN-6	implement data augmentation techniques (e.g., rotation, flipping) to improve the model's robustness and accuracy.	6	medium	Vivek
Sprint-4	model deployment & Integration	USN-7	deploy the trained deep learning model as an API or web service to make it accessible for common people. integrate the model's API into a user-friendly web interface for users to upload images and get the accurate results.	S		Vivek
Sprint-5	Testing & quality assurance	USN-8	conduct thorough testing of the model and web interface to identify and report any issues or bugs. fine-tune the model hyperparameters and optimize its performance based on user feedback and testing results.	1	medium	Roopesh

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	3	3 Days	25 oct 2023	27 oct 2023	10	27 oct 2023
Sprint-2	5	3 Days	27 oct 2023	01 Nov 2023		
Sprint-3	10	5 Days	01 Nov 2023	05 Nov 2023		
Sprint-4	1	7 Days	05 Nov 2023	12 Nov 2023		
Sprint-5	1	7 Days	13 Nov 2023	18 Nov 2023		

Velocity:

Imagine we have a 29-days sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

AV = 29/20 = 1.45

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/https://www.atlassian.com/agile/tutorials/burndown-charts

Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-software

https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts

Burndown Chart:

Board section.

We have completed sprint 1, 2 and 3. So we can see the remaining tasks on board.

Backlog section

Timeline

