

Instituto de Capacitación y Asesoría en Informática de la Escuela de Informática

Programación en Python Básico

Ing Luis Diego Gamboa Chaverri, Mag

Agenda del día

- Librería Pandas
- Sitio oficial: https://pandas.pydata.org/pandas-docs/stable/index.html
- Recuerde ver el Pandas_Cheat_Sheet.pdf en los recursos

Qué es Pandas

- Pandas es una biblioteca de software escrita como extensión de NumPy para manipulación y análisis de datos para el lenguaje de programación Python.
- Ofrece estructuras de datos y operaciones para manipular tablas numéricas y series temporales
- Bajo la <u>licencia BSD.</u>
- El nombre deriva del término "datos de panel", término de econometría que designa datos que combinan una dimensión temporal con otra dimensión transversal.

*Tomado de wikipedia

UNIVERSIDAD

NACIONAL

Cómo Importarlo?

- from pandas import DataFrame, read_csv
- import pandas as pd

Creación de Dataframe

Dataframe

- Un Dataframe es una estructura de datos bidimensional, es decir, los datos se alinean de forma tabular en filas y columnas
- Sus principales características son :
 - Las columnas pueden ser de diferentes tipos.
 - Tamaño: mutable
 - Ejes etiquetados (filas y columnas)
 - Puede realizar operaciones aritméticas en filas y columnas

Dataframe

- Contructor
 - pandas.DataFrame(data, index, columns, dtype, copy)
 - Ver https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

Parámetro	Descripción	
Data	Los datos toman varias formas como ndarray, series, mapas, listas, diccionarios, constantes y también otro DataFrame.	
Index	Para las etiquetas de fila, el índice que se utilizará para el dataframe resultante es np.arange . Si no se pasa nada el valor predeterminado es np.arange (n), que es el tamaño de los datos .	
Columns	Para las etiquetas de columna, la sintaxis predeterminada es - np.arange (n). Esto sólo es cierto si no se pasa ningún índice.	
Dtype	Tipo de cada columna	
Сору	Este comando se usa para copiar datos. El valor predeterminado es False	

Dataframes

- Como estructuras de entrada para crear los dataframe's se pueden usar
 - Lists
 - Diccionarios
 - Series
 - Numpy ndarrays
 - Otros DataFrames

Ejemplo: Dataframe vacío

```
from pandas import DataFrame , read_csv
import pandas as pd

df = pd.DataFrame()
print(df)

Empty DataFrame
Columns: []
Index: []
```


Dataframe: a partir de una lista

```
#dataframe a partir de una lista
data = [1,2,3,4,5]
df = pd.DataFrame(data)
print(df)

0
0 1
1 2
2 3
3 4
4 5
```


Dataframe: a partir de una lista

```
data = [['Juan',10],['Paco',12],['Luis',13]]
df = pd.DataFrame(data,columns=['Nombre','Años'])
print(df)

Nombre Años
0 Juan 10
1 Paco 12
2 Luis 13
```

*Observe: si el índice no es incluído por defecto este es range(n), donde **n** es el tamaño del arreglo

Dataframe: a partir de una lista

```
data = [['Juan',10],['Paco',12],['Luis',13]]
df = pd.DataFrame(data,columns=['Nombre','Años'],dtype=float)
print(df)

Nombre Años
0 Juan 10.0
1 Paco 12.0
2 Luis 13.0
```

* Observe el cambio de tipo aplicado


```
data = {'Nombre':['Tom', 'Jack', 'Steve', 'Ricky'], 'Años':[28,34,29,42]}
df = pd.DataFrame(data, index=['rank1', 'rank2', 'rank3', 'rank4'])
print(df)

Nombre Años
rank1 Tom 28
rank2 Jack 34
rank3 Steve 29
rank4 Ricky 42
```


Dataframe: usando lista de diccionarios

Observe el NaN que se agregó. Que es?

Dataframe: usando lista de diccionarios

Dataframe: usando diccionarios e indices de Instituto de Capac columna

Dataframe: usando diccionario y series

Manipulación de Dataframe

Cargar desde una fuente externa

 Por medio Pandas podemos extraer los de datos fuentes tales como: archivos de texto, csv, Excel entre otros

```
import matplotlib.pyplot as plt
import pandas as pd
color_table = pd.io.parsers.read_table("C:\\Util\\UNA\\Python\\Semana6\\resourses\\Colors.txt")
print(color table)
      import pandas as pd
      titanic = pd.io.parsers.read_csv("C:\\Util\\UNA\\Python\\Semana6\\resourses\\Titanic.csv")
2
       print(titanic)
             Unname
                      import pandas as pd
                      xls = pd.ExcelFile("C:\\Util\\UNA\\Python\\Semana6\\resourses\\Values.xls")
                      trig values = xls.parse('Sheet1', index col=None, na values=['NA'], skiprows=[0])
                      print(trig values)
                           138.550574
                                                     -0.749540
                                                                  -0.883153
                                        0.661959
                           305.535745
                                         -0.813753
                                                       0.581211
                                                                    -1.400100
      1304
                           280.518695
                                         -0.983195
                                                       0.182556
                                                                    -5.385709
      1305
                           216.363795
                                         -0.592910
                                                       -0.805269
                                                                     0.736289
      1306
                            36.389247
                                          0.593268
                                                       0.805005
                                                                     0.736974
      1307
                            31.474311
                                          0.522116
                                                        0.852874
                                                                     0.612184
      1308
                                                                    -0.721234
                           324.199562
                                         -0.584964
                                                       0.811059
       [1309 rows x
                           187.948172
                                         -0.138277
                                                       -0.990394
                                                                     0.139619
                           270.678249
                                         -0.999930
                                                       0.011837
                                                                   -84.472139
                           270.779159
                                         -0.999908
                                                       0.013598
                                                                   -73.530885
                           200.213513
                                         -0.345520
                                                                     0.368196
                                                       -0.938412
                      [71 rows x 4 columns]
```


Obtener los tipos de datos

```
# verifica el tipo de las columnas
color table.dtypes
      object
Color
        int64
Value
dtype: object
                    # verifica el tipo de una columna en especial
                    color table.Value.dtype
                    dtype('int64')
```


Cabeza y Cola

	Color	Value
0	Red	1
1	Orange	2
2	Yellow	3
3	Green	4
4	Blue	5
5	Purple	6
6	Black	7
7	White	8

```
: color_table.head(2)
       Color Value
                           B
        Red
     Orange
  color_table.tail(2)
      Color Value
      Black
     White
```


Columnas, valores e índices

```
color_table.columns
Index(['Color', 'Value'], dtype='object')
```

```
color_table.index
RangeIndex(start=0, stop=8, step=1)
```


Descripción de datos

```
color_table['Value'].max()
8

color_table['Value'].min()
1
```


Agregar una Columna

Borrar Columna


```
# otra forma es mediante el uso de drop , el cual permite eliminar varias columnas
# por medio del nombre:
df.drop(['Col1', 'Col3'], axis='columns', inplace=True)
# por medio de número de columna (los índices de columna comienzan en cero)
df.drop(df.columns[[0, 2]], axis='columns')
```


Agregar filas

```
# agregar una fila
color_table = pd.DataFrame([['Brown',9]], columns=["Color", "Value"]).append(color_table, ignore_index=True)
print(color_table)

Color Value
0 Brown 9
1 Red 1
2 Orange 2
3 Yellow 3
4 Green 4
5 Blue 5
6 Purple 6
7 Black 7
8 White 8
```


Acceso a datos del Dataframe

 El acceso se realiza por medio del uso del índice o nombre de la columnas

Instituto de Capacitación y Asesoría en Informática de la Escuela de Informática

icai@una.cr

www.icai.ac.cr

