Hash-basierte Dateien

Hashing

- Hash-Verfahren ermöglichen es, die Adresse eines Datensatzes basierend auf dem Wert eines Feldes zu finden
- Idee: Verwendung einer Hashfunktion, die den Wert eines Suchschlüssels in einen Bereich von Behälternummern abbildet, um die Seite mit dem Datensatz zu finden
- Im idealen Fall: die Hashfunktion berechnet direkt die Adresse des Datensatzes

 $h:\{S_1,S_2,...,S_n\} \rightarrow A$, $h(S_i) = Adresse des i-ten Datensatzes$

- Solche Funktionen sind schwer zu finden:
 - Alle möglichen Suchschlüsselwerte müssen von Anfang an bekannt sein
 - Für große Dateien ist es unmöglich die Bijektivität zu erhalten

Hashing – Behälter (buckets)

- Lösung: Kollisionen sind erlaubt
 - $h(S_i) = h(S_i)$, $i \neq j$, h Hash-Funktion

- Gilt für zwei Schlüssel S_1 und S_2 , dass $h(S_1) = h(S_2)$ ist, nennt man S_1 und S_2 synonym
- Formell ist eine Hashfunktion eine Abbildung h: S → B, wobei S eine Schlüsselmenge und B eine Nummerierung der n Behälter ist
- Normalerweise ist die Anzahl der möglichen Elemente in der Schlüsselmenge viel größer als die Anzahl der Behälter (|S|>|B|)
- → die Hashfunktion ist nicht injektiv, sollte aber die Elemente von S gleichmäßig auf B verteilen

Probleme die bei Hashing vorkommen

- Verteilungsproblem nachdem wir den Hashing Algorithmus ausgewählt haben, haben wir keine Kontrolle über die Verteilung der Daten in dem Speicherplatz
- Clustering Problem wenn die Datensätze nicht gleichmäßig verteilt werden (zu viele Datensätze in einem Behälter und sehr wenige in anderen)
- Überlaufproblem wenn die Behälter nicht groß genug sind, dann kann ein Überlauf auftreten

Hashfunktion

- Voraussetzungen für eine gute Hashfunktion:
 - Schnelle Auswertung
 - Minimiert die Anzahl der Kollisionen (verteilt die Datensätze gleichmäßig in den Behälter)
- Nehmen wir an, dass wir Datensätze in 41 Behälter verteilen wollen Die Wahrscheinlichkeit:
 - den 1sten Datensatz in einem leeren Behälter zu verteilen = 41/41
 - den 2ten Datensatz in einem leeren Behälter zu verteilen = 40/41
 - den 3ten Datensatz in einem leeren Behälter zu verteilen = 39/41

....

- die ersten 8 Datensätze in unterschiedliche Behälter zu verteilen =
- (41/41)*(40/41)*(39/41)*(38/41)*...*(34/41) = 0.482 < 50%

Wahl einer Hashfunktion

- Methoden, die benutzt werden um eine Hashfunktion zu definieren:
 - Divisionsverfahren
 - Mittquadratmethode
 - Multiplikative Methode
 - usw.
- Typische Hashfunktionen berücksichtigen die Bit-Darstellung des Suchschlüssels, um den Hashwert zu berechnen
- z.B. Für ein String Suchschlüssel, kann man die binären Darstellungen aller Charakter addieren und die Summe wählt man als Parameter für die Hashfunktion

Wahl einer Hashfunktion

Divisionsverfahren

- h(k) = k mod N, wobei N die Anzahl der Behälter ist
- Wählt man N = 2^d, so werden letztendlich die letzten d Bits von k als Hashwert betrachtet
- Am günstigsten wählt man eine Primzahl für N (die nicht nahe einer Zweierpotenz liegt), um eine gute Streuung zu gewährleisten (beeinflusst alle Bits)

Mittquadratmethode

 Berechne den Quadrat des Suchschlüsselwertes und wähle ein paar Ziffern aus der Mitte des Quadrats

Wahl einer Hashfunktion

- Multiplikative Methode
 - 1. Der Schlüsselwert k wird mit einer Zahl A multipliziert
 - 2. Der ganzteilige Anteil des Ergebnisses aus Schritt 1 wird abgeschnitten → das Ergebnis wird in das Intervall [0,1] abgebildet
 - 3. Das Ergebnis von Schritt 2 wird mit der Anzahl der Behälter m multipliziert und nach unten abgerundet
 - Es gilt:

$$h(k) = [m*(k*A mod 1)] = [m*(k*A - [k*A])]$$

• Eine gute Wahl: $A = (\sqrt{5} - 1)/2 = 0.61803...$ oder $A = (3 - \sqrt{5})/2 = 0.38196...$

Hashfunktion - Beispiel

- Suchschlüsselwert 'Toyota'
 - Wir nehmen die ersten zwei Charakter 'To' und berechnen die alphabetische Position \Rightarrow 20 15
- Hashfunktionen:
 - Divisions verfahren mit N = $97 \rightarrow 2015 \mod 97 = 75$
 - Mittquadratmethode: **2015**² = 40**60**225 → nehme zwei mittleren Ziffern
 - Multiplikative Methode: [99*(**2015***0.61803 mod 1)] = 32
- Warum benutzen wir nicht direkt 2015 als Hashwert?
 - 4 Ziffern → 10000 mögliche Werte → die Tabelle mit den Hashwerten würde ziemlich leer sein
 - In dem obigen Bsp. brauchen wir 100 Hashwerte → es kann ein Überlauf auftreten

Strategien zur Kollisionbehandlung / Überlaufbehandlung

- Mittels **offener Adressierung** im Kollisionsfall nach fester Regel alternativen freien Platz in Hashtabelle suchen
- Mittels verketteter Listen jeder Behälter entält Zeiger auf Überlaufliste
- Mittels einer zweiten Hashfunktion (Double Hashing) man wendet die zweite Hashfunktion auf das Ergebnis des ersten, um eine neue Adresse zu bekommen
- Zeiger anstatt Datensätze speichern → in der Hash Adresse speichert man:
 - Alle Zeiger zu synonymen Datensätze Behälter von Adressen
 - Zeiger zu dem ersten Datensatz (der dann ein Zeiger zu der nächsten enthält, usw.) verkettete Listen von Adressen

Statisches Hashing

• Ein Behälter besteht aus einer Primärseite und ggf. ein oder mehreren Überlaufseiten

• Die Anzahl der Primärseiten ist von Anfang an fest und die Seiten sind sequentiell auf der Festplatte gespeichert (und nie freigegeben)

Gegeben N Behälter, die von 0 bis N-1 numeriert sind, so wird k dem

Behälter h(k) mod N zugewiesen

Statisches Hashing mit unabhängigen Listen

- Alle synonyme Datensätze werden in einer verketteten Liste gespeichert
- Die Hashdatei enthält eine Liste von N Datensätze; jeder Datensatz ist Kopf einer Liste von Synonymen
- Die Reihenfolge der synonymen Datensätze in der Hashdatei kann folgende sein:
 - Die Reihenfolge der Einfügungen
 - Steigende Reihenfolge der Suchschlüsselwerte
 - Absteigende Reihenfolge der Suchfrequenz

k	$h(k) = k \mod 7$
11	4
2	2
44	2
4 15	4
15	1

Statisches Hashing mit verzahnten Listen

- Keine Überlaufseiten
- Einfügen eines Datensatzes mit Schlüsselwert k:
 - Falls der Slot an der Adresse h(k) frei ist, dann speichere den Datensatz
 - Falls der Slot nicht frei ist, dann:
 - Suche von unten nach oben den ersten freien Slot und speiche ¹ den Datensatz
 - Füge den Slot am Ende der Liste die den Slot h(k) enthält
- Beispiel

k	$h(k) = k \mod 13$
16	3
23	10
23 36	10
25	12
19	6
32	6
29	3
49	10
22	9

Statisches Hashing mit verzahnten Listen

- Löschen eines Datensatzes mit Schlüsselwert k:
 - Falls der Slot an der Adresse h(k) frei ist → Fehlermeldung
 - Falls der Slot nicht frei ist, dann:
 - 1. Finde und lösche den Datensatz (mit Hilfe der Zeiger)
 - 2. Suche, mit Hilfe der Zeiger, ein Datensatz r mit $h(k_r) = h(k)$
 - Wenn es einen solchen Datensatz gibt, dann verschiebe es in den aktuellen Slot
 - 3. Wiederhole Schritt 2 für den neuen leeren Slot oder Kopiere den Zeiger des leeren Slots in den davorstehenden Slot in der Liste (wenn es einen gibt)

Statisches Hashing mit verzahnten Listen

• Beispiel: lösche den Datensatz mit Schlüsselwert 23

k	$h(k) = k \mod 13$
16	3
23	10
36	10
25	12
19	6
32	6
29	3
49	10
22	9

- Die Hashdatei enthält nur Dateneinträge (keine Zeiger zu weiteren Seiten)
- Für kollidierende Schlüssel wird ein freier Eintrag in der Tabelle gesucht
- Sondierungsreihenfolge bestimmt für jeden Schlüssel, in welcher Reihenfolge alle Hashtabelleneinträge auf einen freien Platz durchsucht werden
- z.B. Lineares Sondieren : h(k), h(k)+1, h(k)+2, ..., N-1, 0, ..., h(k)-1

- Einfügen eines Datensatzes mit Schlüsselwert k:
 - Falls der Slot an der Adresse h(k) frei ist, dann speichere den Datensatz
 - Falls der Slot nicht frei ist, dann suche einen freien Slot an die Adressen: h(k)+1, h(k)+2, ..., N-1, 0, ..., h(k)-1
- Gut für 75% Belegung
- Beispiel:

k	$h(k) = k \mod 13$
5	5
21	8
21 24	11
22	9
22 23	10
34	8
35	9

- Löschen eines Datensatzes mit Schlüsselwert k:
 - Problem: Löscht man z.B. h_0 aus der Folge h_0 , h_1 , h_{2_0} so kann h_2 nicht mehr gefunden werden
 - Lösungen:
 - A. Ersetze den zu löschender Eintrag durch einen "Wächter" (special code character).

Alle Operationen werden dann angepasst: die Suche schaut über den Wächter hinweg, so als ob dort ein gültiger Wert steht. Bei einer Einfüge-Operation kann der Wächter durch einen Neueintrag ersetzt werden.

- B. Lösche den Datensatz und verschiebe die anderen Datensätze.
 - Seien i, j und p Adressen, so dass:
 - i ist die Adresse des Datensatzes den wir löschen wollen
 - Zwischen i und j gibt es keine freien Slots
 - $h(k_j) = h(k_p) \rightarrow der$ Datensatz an der Adresse j sollte an die Adresse p gespeichert werden

i > j

• Es gibt folgende Fälle:

$$i < j$$

$$i
$$j \le p \le N-1 \quad \to \text{ verschiebe Datensatz}$$

$$\text{von der Adresse j zu der Adresse i}$$$$

 $0 \le p \le i$ \rightarrow verschiebe Datensatz

von der Adresse j zu der Adresse i

$$j$$
 $0
 $j
 $j
 $j$$$$

Statisches Hashing - Zusammenfassung

- Hashfunktion verteilt die Datensätze über N Behälter (Anzahl steht fest)
- Statisches Hashing ist für eine reale Datenbank nicht effizient → eine einmal angelegte Hast-Tabelle kann nicht effizient vergrößert werden
- Wenn viele Einfügeoperationen erwartet werden, gibt es zwei Möglichkeiten:
 - Von vornherein viel Platz für die Tabelle reserviert → viel freier Platz umsonst, da die Primärseiten nie freigegeben werden
 - Es enstehen im Laufe der Zeit immer längere Überlaufketten → können nur durch Änderung der Hashfunktion und aufwendige Reorganisation der Tabelle beseitigt werden
- Lösung des Problems: dynamisches Hashing, erweiterbares Hashing und lineares Hashing

- Problem: Die Behälter (Primärseiten) sind voll
- Lösung: Die Datei wird reorganisiert und die Anzahl von Behälter verdoppelt
 - Lesen und Schreiben aller Seite ist aber teuer
 - Idee:
 - Benutze ein Verzeichnis von Behälter
 - Müsste ein neuer Datensatz in einen bereits vollen Behälter eingetragen werden, so wird er aufgeteilt → keine Änderungen nötig bei den anderen Behältern und keine Überlaufseite nötig
 - Das Verzeichnis von Behälter ist viel kleiner als die ganze Datei → die Verdoppelung ist viel billiger

- Wichtig ist wie die Hashfunktion angepasst wird
- Der Wert h(x) wird binär dargestellt und nur ein Präfix dieser binären Darstellung berücksichtigt
 - h(x) = pd, wobei pd die Binärdarstellung ist, in zwei eingeteilt
- d gibt die Position des Behälters im Verzeichnis an (p wird zurzeit nicht benutzt)
- Die Größe von d wird die **globale Tiefe t** genannt
- Die **lokale Tiefe t'** eines Behälters gibt an, wieviele Bits des Schlüssels für diesen Behälter tatsächlich verwendet werden

- Wenn ein Behälter voll ist und aufgeteilt werden muss, dann erfolgt die Aufteilung anhand eines weiteren Bits des bisher unbenutzten Teils p
- Ist die globale Tiefe nicht ausreichend, um den Verweis auf den neuen Behälter eintragen zu können, muss das Verzeichnis verdoppelt werden
- Eine Verdoppelung des Verzeichnisses erfolgt also, wenn nach einer Aufteilung eines Behälters die lokale Tiefe größer als die globale Tiefe ist

Erweiterbares Hashing - Beispiel

 Um den Behälter für x zu finden, berücksichtige die letzten t Bits aus h(x)

• t = t' = 2

• $h(k) = 5 = 101b \rightarrow in dem Behälter$ verweist von 01

• Füge k ein: h(k) = 20 = 10100b → Behälter 00

Erweiterbares Hashing - Beispiel

- Beim Einfügen von h(k) = 20 = 10100b :
 - Die letzten 2 Bits 00 sagen uns, dass k im Behälter A oder A2 gehört
 - Die letzten 3 Bits sagen uns in welchen der zwei Behälter es gehört
- Globale Tiefe t die Anzahl der Bits, die gebraucht werden um den Behälter zu lokalisieren → vor dem Einfügen t = 2, nach dem Einfügen t = 3
- Lokale Tiefe t' eines Behälters die Anzahl der Bits tatsächlich benutzt → in dem Beispiel t' = 2 oder t' = 3
- Da nach dem Einfügen t' > t ist → Verdoppelung des Verzeichnisses

Erweiterbares Hashing - Beispiel

• Füge k ein: $h(k) = 20 = 10100b \rightarrow Behälter 00 \rightarrow Verzeichnis verdoppeln$

- Wenn das Verzeichnis im Hauptspeicher passt, dann kann man eine Gleichheitsanfrage mit einem Festplattenzugriff beantworten, da es keine Überlaufseiten gibt
- Ansonsten muss die jeweilige Verzeichnisseite vom Speicher geladen werden, und es sind dann insgesamt zwei Seitenzugriffe erforderlich
- Viele Datensätze mit demselben Hashwert können Probleme verursachen
- Werden Daten gelöscht, ist es möglich Behälter wieder zu verschmelzen oder sogar das Verzeichnis zu halbieren
- Im Vergleich zum statischen Hashing → speicherplatzsparender (passt sich dem Speicherplatzbedarf dynamisch an)

Dynamisches Hashing

- Die Idee ist die gleiche wie beim erweiterbares Hashing, aber es wird eine andere Art von Verzeichnisstruktur benutzt
 - Verzeichnisstruktur beim erweiterbares Hashing → ein Array mit 2^d
 Behälter, wobei d die globale Tiefe ist
 - Verzeichnisstruktur beim dynamisches Hashing → Verzeichnisbaum

Dynamisches Hashing

Lineares Hashing

- Idee: erlaubt einer Hash-Datei, ohne Verwendung einer Verzeichnisstruktur dynamisch zu wachsen und zu schrumpfen
- Dieses Schema benutzt eine Familie von Hashfunktionen h₀, h₁, ...
- \bullet Der Wertebereich einer Funktion h_{i+1} ist doppelt so groß wie der Wertebereich der Vorgängerfunktion h_i
- ightarrow falls h_i einen Indexeintrag auf einen von N Behälter abbildet, so bildet h_{i+1} den Eintrag auf einen von 2N Behälter ab
- Überlaufseiten werden benutzt
- Gewährt eine gewisse Flexibilität bei der Entscheidung, wann ein Behälter geteilt wird
- Der Übergang von einer Hashfunktion h_i zu h_{i+1} entspricht der Verdoppelung des Verzeichnisses beim erweiterbaren Hashing

• Größe der Behälter: 4

• Level: 0

Nächstes Behälter zu verdoppeln: 0

• Füge folgende Werte ein: 37 = 100101

h _o				
00	32 (100000)	44 (101100)	36 (100100)	
01	9 (1001)	25 (11001)	5 (0101)	
10	14 (1110)	18 (10010)	10 (1010)	30 (11110)
11	31 (11111)	35 (100011)	7 (0111)	11 (1011)

• Größe der Behälter: 4

• Level: 0

Nächstes Behälter zu verdoppeln: 0

• Füge folgende Werte ein: 37 = 100101, 43 = 101011

h _o				
00	32 (100000)	44 (101100)	36 (100100)	
01	9	25	5	37
	(1001)	(11001)	(0101)	(100101)
10	14	18	10	30
	(1110)	(10010)	(1010)	(11110)
11	31	35	7	11
	(11111)	(100011)	(0111)	(1011)

43 (101011)

• Größe der Behälter: 4

• Level: 0

Nächstes Behälter zu verdoppeln: 1

• Füge folgende Werte ein: 29 = 11101

h ₁	h _o					
000	00	32 (100000)				
	01	9 (1001)	25 (11001)	5 (0101)	37 (100101)	
	10	14 (1110)	18 (10010)	10 (1010)	30 (11110)	
	11	31 (11111)	35 (100011)	7 (0111)	11 (1011)	43 (101011)
100	00	44 (101100)	36 (100100)			

• Größe der Behälter: 4

• Level: 0

Nächstes Behälter zu verdoppeln: 2

h_1	h _o					
000	00	32 (100000)				
001	01	9 (1001)	25 (11001)			
	10	14 (1110)	18 (10010)	10 (1010)	30 (11110)	
	11	31 (11111)	35 (100011)	7 (0111)	11 (1011)	43 (101011)
100	00	44 (101100)	36 (100100)			
101	01	5 (0101)	37 (100101)	29 (11101)		

Hash-basierte Indexe

- Vorteile:
 - "Unschlagbar", wenn es um Gleichheitsanfragen geht SELECT * FROM R WHERE A = k
 - Schneller Zugriff auf Daten wenn man bestimmte Informationen schon kennt (Suchschlüsselwert)
 - Weitere Anfrageoperationen, die eine Menge von Gleichheitsprüfungen durchführen, profitieren von Hash-Indexe

Hash-basierte Indexe

Nachteile:

- Es kann nur ein Hashindex geben auf einem Suchschlüssel (man muss eine Hash-Methode auswählen)
- Die sequentielle Reihenfolge der Datensätze im Speicherplatz hat keine Bedeutung
- Es können Blöcke von leeren Slots in einer Datei geben → ungleichformige Ladezeit
- Keine Unterstützung bei Bereichsanfragen
- Keine Unterstützung bei Anfragen wo man den Wert eines anderen Feldes außer dem Suchschlüssel kennt
- Nicht empfohlen, wenn sich die Suchschlüsselwerte oft ändern

SQL Indexe - Beispiel

 Für Hash-Index Beispiele siehe <u>https://www.mssqltips.com/sqlservertip/3099/understanding-sql-server-memoryoptimized-tables-hash-indexes/</u>