Mathematical Foundations-III

		Compulsory Question	
1.	(a)	Differentiate sin ³ w.r.t. cos ³ x.	2
	(b)	At what points on the curve $x^2 + y^2 - 2x - 4y + 1 = 0$	
		the tangent is parallel to x-axis?	2
	(c)	State Taylor's theorem with Largrange's form of remain	nder
		after n terms.	2
		$\mathbf{r}^{b} - \mathbf{h}^{\mathbf{x}}$	
	(d)	Evaluate $\lim_{x \to b} \frac{x^b - b^x}{x^x - b^b}$.	.2
	(e)	How we can obtain asymptotes parallel to x-axis and	d y-
		axis for a given equation of a curve?	2
ė.	(f)	Prove that the curvature of a circle at any point on it is constant	and
		is equal to the reciprocal of the radius of the circle.	2
	(g)	Define Node.	. 2
	(h)	What is the shape of parabola $y^2 = -4ax$? Write its axis	and
		coordinates of focus.	2
		$\mathbf{p}_{\mathbf{r}}(\mathbf{r}) = \mathbf{d}\mathbf{r}$	
	(i)	Prove that for the curve $P = f(r)$, $P = r \cdot \frac{dr}{dp}$	
		SECTION-A	
2.	(a)	If $y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}$,	9
		prove that $(2y-1)\frac{dy}{dx} = \frac{1}{x}$	
	(h)	If $e^x + e^y = e^{x+y}$, prove that $\frac{dy}{dx} = -e^{y-x}$.	9
3.		= $(\sin^{-1} x)^2$, prove that	
	(a)	$(1-x^2)$ $y_2 - xy_1 - 2 = 0.4$	
	(b)	$(1-x^2)y_{x+2} - (2n+1)xy_{x+1} - n^2y_x = 0.$	5.
		Deduce that $\lim_{n \to \infty} \frac{Y_{n+2}}{x_n} = n^2$ and find $y_n(0)$.	
	(c)	Deduce that "" and find v ₋ (0).	

SECTION-B

		DECITOI-D
4.	(a)	Find the point on the curve $y = be^{-xla}$ at which the tangent
		makes an angle $\tan^{-1} \left(\frac{-b}{a} \right)$ with x-axis.
	(b)	Find the angle of intersection of the curves.
		$\pi = a\cos\theta \text{ and } r = a(1-\cos\theta)$
	(-)	If $f(x) = x^3 + 2x^2 - 5x + 11$, find the value of $f(\frac{9}{10})$ with the
5.	(a)	$III(x)=x^2+2x^2-3x+11$, find the value of $I(10)$ with the
		help of Taylor's series for f (x+h).
	(b)	State and prove Maclaurin's theorem with Lagranges form
OV.		of remainder after n terms. 9 SECTION-C
6.	(a)	Find all the asymptotes of the curve
0.	(a)	$(y-x)^2 - x(y-x) - 2 = 0$
	(b)	Show that the four asymptotes of the curve
		$xy(x^2-y^2) + 25y^2 + 9x^2 - 144 = 0$
		cut it again in eight points on an ellipse whose eccentricity
		is $\frac{4}{1}$.
7.	(a)	Find the points of inflexion of the curve $y = (x-2)^6 (x-3)^5$.
	(b)	Find the position and the nature of the double points on the
		curve. 9
	1	SECTION-D
8.	(a)	If p_1 and p_2 are the radii of curvature at the extremities of
		a focal chord of a parabola whose semilatus-rectum is e ,
	(h)	prove that $(p_1)^{-2/3} + (p_2)^{-2/3} = (e)^{-2/3}$. 9 If c_x , c_y be the chord of curvature parallel to co-ordinate
	(b)	(r)
		axes at any point of the curve $y = c \cosh\left(\frac{x}{c}\right)$; prove that
		$4c^{2}\left(c_{x}^{2}+c_{y}^{2}\right)=c_{y}^{4}.$
9.	(a)	Trace the curve $r = a(1+\cos\theta)$.
	(b)	Trace the curve $x = t^2$, $y = t - \frac{1}{2}t^3$