Análisis de presencias con procesos de puntos

Particularidades

Gerardo Martín

2022-06-29

Intensidad

Intensidad de puntos

· Variable de respuesta en procesos de puntos

$$\lambda(x) = y$$

- $\lambda=$ Número promedio de puntos/unidad espacial (píxel)

Intensidad de puntos

Supuestos

¿Qué son los supuestos?

- Postulados, premisas, cosas/hechos que se dan por sentados
 Todos hacemos suposiciones y casi todas estan mal (Einstein)
 - · Identificar bajo qué condiciones podemos estar equivocadxs

Tipos de supuestos

 $\textbf{Estadísticos} \text{ - Supuestos} \rightarrow \textbf{Errores potenciales} \rightarrow \textbf{Soluciones}$ potenciales

 ${\bf Biológicos} \mbox{ - Supuestos estadísticos} \mbox{ } \rightarrow \mbox{ Problema de estudio} \mbox{ } \rightarrow \mbox{ Interpretaciones}$

Supuestos estadísticos

- · Variable analizada / Modelo estadístico
- · Significado de los resultados
- \cdot MPPs o diferentes supuestos estadísticos
 - · Distribución estadística de presencias
 - · Independencia
 - Sesgo observacional

Supuestos estadísticos - Ejemplos

Media aritmética

· Valor más probable en distribución normal

Supuestos estadísticos - Ejemplos

Supuestos de MPPs

- · Intensidad de puntos promedio $(\lambda(u))$ tiene distribución Poisson
- · Los puntos son independientes
- \cdot $\lambda(u)$ es log-lineal

Dependencia espacial

Autocorrelación

Puntos se repelen ightarrow Puntos son independientes ightarrow Puntos se atraen

Autocorrelación

Moran-*I* > 1

Autocorrelación

Moran- $I \approx 0$

Número de vecinos

- \cdot Verificar, medir supuesto o Proponer soluciones
- · Pruebas estadísticas
 - K Ripley
 - · L Besag

Causas de la autocorrelación

Autocorrelación - causas

Τú

Autocorrelación - causas

Los bichos

Autocorrelación - corrección

· Combinar geoestadística con regresión:

$$\log \lambda(u) = \alpha + \beta_1 x_1 + \dots + \gamma(s) + \varepsilon$$

- x_i son las covariables ambientales (afectan media de λ)
 - \cdot γ es el efecto del espacio (Lo que x no explica)

Modelos para diferentes procesos de puntos

- · Puntos se repelen Modelos de interacción
- · Puntos aleatorios Modelos Poisson
- · Puntos moderadamente agregados Modelos de interacción
- · Puntos altamente agregados Modelos log-Cox Gaussianos, Clúster

Todos implementados en spatstat