Visual Computing - Lecture notes week 1

Author: Ruben SchenkDate: 03.10.2021

Contact: ruben.schenk@inf.ethz.ch

1. The Digital Image

1.1 What is an image?

Image as a 2D signal

The **signal** is a function depending on some variable with physical meaning. The **image** is a continuous function, where we either have 2 variables $\mathbf{x} \ \mathbf{y}$ which are the coordinates, or, in case of a video, three variables $\mathbf{x} \ \mathbf{y}$ and the corresponding time in the video. Usually, the value of the function is the **brightness**.

Images in Python:

```
# Load a picture into Python
import cv2
img = cv2.imread('foo.jpg')

# Display the image in Python
cv2.imshow('My image', img)
cv2.waitKey(0)

# Print the image data array
img

# Print the size of the image array and create a subimage
img.shape
subimg = img[72:92, 62:82]
```

```
# Random image in Python
import numpy as np
import cv2
t = np.random.rand(64, 64)
cv2.imshow('Random', t)
cv2.waitKey(0)
```

In summary, an **image** is a picture or pattern of a value varying in space and/or time. It is the representation of a *continuous* function to a *discrete* domain: $f : R^n \rightarrow S$.

As an example, for grayscale CCD images, n = 2 and $S = R^+$.

What is a pixel?

A pixel is not a little square!

Pixels are point measurements of a function (of the above described continuous function).

1.2 Where do images come from?

There are several things where pictures can come from:

- Digital cameras
- MRI scanners
- Computer graphics packages
- Body scanners
- Many more...

Digital cameras

Simplified, the digital camera consists of the following parts and is said to be a Charge Coupled Device (CCD):

The **sensor array** can be < 1 cm² and is an array of *photosites*. Each photosite is a bucket of electrical charge, and this charge is proportional to the incident light intensity during the exposure.

The **analog to digital conversion (ADC)** measure the charge and digitizes the result. The conversion happens line by line in that charges in each photosite move down through the sensor array.

Example:

Because each bucket has a finite capacity, if a photosite bucket is full, it can overflow to other buckets, which leads to **blooming**.

Even without any light, there will still be some current which can degrade the quality of a picture. CCD's produce thermally-generated charge, which results in a *non-zero output* even in darkness. This effect is called the **dark current**.

1.3 CMOS

CMOS sensors have the same sensor elements as CCD. Each photo sensor has its own amplifier, which results in more noise and a lower sensitivity. However, since CMOS photo sensor use standard CMOS technology, we might put other components on the chip (such as "smart pixels").

CCD vs. CMOS

CCD

- Mature technology
- Specific technology
- High production cost
- High power consumption
- Blooming
- Sequential readout

CMOS

- More recent technology
- Cheap
- · Lower power consumption
- Less sensitive
- Per pixel amplification
- Random pixel access
- On chip integration with other components

Rolling shutter

By resetting each line in the sensor line by line (the "shutter"), each line will start capturing light a little before the line below and so on. Each line in the picture is therefore a little behind in time as the line above.

1.4 Sampling in 1D

Sampling in 1D takes a function, and returns a vector whose elements are values of that function at the sample points.

Example:

Sampling solves one problem with working with continuous functions. How do we store and compute with them? A common scheme for representing continuous functions is with **samples**: we simply write down the function's values as discrete values at many sample points.

Reconstruction

Reconstruction describes the process of making samples back into a continuous function. We might do this for several reasons:

- For output where we need a realizable method
- For analysis or processing, where we need a mathematical method
- Instead of "guessing" what the function did in between sample points

Undersampling

Unsurprisingly, if we undersample some function, we loose information.

Example: If we undersample the following sin wave, it gets indistinguishable from lower frequencies:

Sample:

Reconstruction 1:

Reconstruction 2:

This effect is what we call aliasing, i.e. "Signals travelling in disguise as other frequencies".

1.5 Sampling in 2D

Sampling in 2D takes a function and returns an array. We allow the array to be infinite dimensional and to have negative as well as positive indices.

Example:

Function:

Sample:

Reconstruction

In 2D, a simple way to reconstruct a function from a sample is to use **bilinear interpolation**, which works essentially the same as linear interpolation: we calculate two lines in each direction, and then take the intersection of the two lines.

Example:

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

1.6 Nyquist Frequency

We define the **Nyquist Frequency** as half the sampling frequency of a discrete signal processing system. The concept tells us, that if the signal's maximum frequency is at most the Nyquist frequency, then we can reconstruct the signal.

1.7 Quantization

When sampling, real valued functions will get digital values, i.e. integer values. This means that **quantization** is lossy: after quantization, the original signal cannot be reconstructed anymore.

This is in contrast to sampling, as a sampled but not quantized signal can be reconstructed.

Usual quantization intervals

The following are the most widely used quantization intervals:

- Grayscale image: 8 bit = 2^8 = 256 gray values
- Color image RGB (3 channels): 8 bit/channel = 2^24 = 16.7M colors
- 12 bit or 16 bit for some sensors

1.8 Image Properties

Image resolution

Simply tells the amount of pixels our pictures has.

Geometric resolution

How many pixels per area?

Tells us how many pixels we have per a given area (e.g. how many pixels per square centimeter of picture).

Radiometric resolution

How many bits per pixel?

Tells us how much information each pixel can store.

1.9 Image Noise

A common model is the **additive Gaussian noise**, which means that we measure some signal with our processor but have some deviation/noise in our measurement:

$$I(x, y) = f(x, y) + c$$

where $c \sim N(0, \sigma^2)$. So that $p(c) = (2\pi\sigma^2)^{-1} e^{-c^2/2\sigma^2}$

One might also use the much more meaningful assumption of **Poisson noise**:

$$p(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

SNR

The signal-to-noise ration (SNR) s is an index of image quality:

$$s = \frac{F}{\sigma}, \text{ where } F = \frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} f(x,y)$$
 Often used instead: Peak Signal to Noise Ratio (PSNR) $s_{peak} = \frac{F_{max}}{\sigma}$