Laboratorio de Métodos Numéricos

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Trabajo Práctico Número 2

Ohhh solo tiran π -edras...

Integrante	LU	Correo electrónico
Ciruelos Rodríguez, Gonzalo	063/14	gonzalo.ciruelos@gmail.com
Costa, Manuel José Joaquín	035/14	manuc94@hotmail.com
Gatti, Mathias Nicolás	477/14	mathigatti@gmail.com

asdf

 $key1 \quad key2 \quad key3 \quad key4$

1. Introducción teórica

Métodos Numéricos: TP2

El objetivo del presente informe es resolver un problema práctico mediante el modelado matemático del mismo. Este problema consiste en modelar páginas web y ligas deportivas con cadenas de Markov, con el objetivo de obtener rankings para ellas.

Para esto, dada una cadena de Markov, construida de una cierta manera que será formulada más adelante, se va a considerar el modelo de navegante aleatorio. En este modelo, se comienza en un nodo cualquiera del diagrama y se va navegando a través de los links. Además podemos extrapolar esta idea, originalmente diseñada para páginas web, y utilizarla en ligas deportivas.

Entonces, nuestro objetivo de alguna manera es rankear mejor aquellos nodos del diagrama de transición en los que el navegante aleatorio se encuentra más tiempo. Para ello, nuestro objetivo será encontrar un *estado estacionario*, dado que este representará cual es la probabilidad de que el navegante se encuentre en cada nodo, si lo dejaramos recorriendo el diagrama infinito tiempo.

Volviendo a las cadenas de Markov, si la matriz de transición de la cadena es P (o sea, P_{ij} es la probabilidad de pasar del estado i al j), estamos buscando algun x tal que

$$x^t P = x^t$$

O equivalentemente,

$$P^t x = x$$

Como P es una matriz de transición, sus filas son vectores de probabilidad, por lo que $0 \le P_i j \le 1$ y las filas suman 1. En consecuencia, puede probarse que el autovalor de mayor módulo es 1. [PROBARLO EN EL APENDICE, ES FACIL]

2. Desarrollo

2.1. Convenciones

2.2. Métodos numéricos usados

Como dijimos en la introducción, nuestro objetivo será, dada una matriz de transición P, encontrarle un autovector de autovalor asociado igual a 1 a su transpuesta. (Usamos la transpuesta por comodidad notacional).

$$P^t x = x$$

.

2.2.1. Método de la potencia

El método de la potencia, dada una matriz A, produce un autovalor λ y un autovector asociado a λ , v no nulo. El método es iterativo, y se puede encontrar una mejor explicación sobre él en [DB74, Cap. 5.8.1].

El método consiste en tomar un $x^{(0)}$ inicial, y luego construir una sucesión $\{x^{(k)}\}$ de la siguiente manera:

$$x^{(i)} = \frac{Ax^{(i-1)}}{||Ax^{(i-1)}||}$$

Y entonces, bajo ciertas condiciones, si se toma k lo suficientemente grande, $x^{(k)} \to \overline{x}$, tal que $A\overline{x} = \lambda \overline{x}$, λ el autovalor de mayor módulo. Por ello establecemos como criterio de parada que la diferencia entre el vector generado en una iteración y su anterior sea lo suficientemente chica.

Como probamos en 5.1.1, el autovalor de máximo módulo en este caso es 1, pero puede pasar también que $\lambda = -1$ también sea un autovalor, pero comenzando con $x^{(0)} = (\frac{1}{n}, ..., \frac{1}{n})$ inicial, nos aseguramos de que las entradas sean siempre positivas, consiguiendo así un autovector asociado a autovalor $\lambda = 1$.

2.2.2. PageRank

PageRank será un método, que, dado un grafo cuyos nodos representan páginas webs y sus aristas representan links entre las páginas web, nos permitirá modelar un navegante aleatorio utilizando una cadena de Markov. Los detalles de la construcción de la cadena y la matriz asociada pueden encontrarse en [BP98].

Proveeremos una breve explicación de como se arma la matriz de transición utilizando un vector fila de la matriz P. P_i es la i-esima fila de la matriz, y su entrada j-ésima nos dice la probabilidad que habrá de ir de la página web i a la j. A priori una buena aproximación sería

$$P_{ij} = \begin{cases} \frac{1}{n_i} & \text{si hay un link de } i \text{ a } j \\ 0 & \text{si no} \end{cases}$$

Donde n_i es la cantidad de links salientes de la página i. El primer problema, obvio, es que en general, esta matriz no es de transición, porque si una página web no tiene links salientes, la matriz va a tener toda una fila de ceros. Por eso, en este caso, se agrega una fila que vale toda $(\frac{1}{n},...,\frac{1}{n})$.

Luego, se introduce el concepto de teletransportación. La idea es que, con una cierta probabilidad 1-c, el navegante aleatorio puede saltar a cualquier página de toda la red sin importar en cual esté actualmente. Todo esto, nuevamente, esta correctamente explicado en [BP98] y [Kam+03].

En este trabajo en particular, utilizaremos una versión mejorada del algoritmo, propuesta por [Kam+03]. Este consiste en separar el único paso del método de la potencia en 3 pasos separados, de tal manera de acelerar el cómputo, aprovechandonos de que la matriz de transición (sin agregarle el factor de teletransportación) es esparsa.

2.2.3. Método GeM

Métodos Numéricos: TP2

El método GeM, propuesto en [GMA08], tiene como objetivo adaptar el algoritmo de PageRank para ligas deportivas. La idea es simple, al igual que en algoritmo original de PageRank, la idea es armar una cadena de Markov y modelar un navegante aleatorio.

En este modelo, se representa una temporada (o una fecha, o un periodo de tiempo cualquiera) como un grafo dirigido y pesado, al igual que en el modelo de PageRank. Sin embargo, en este caso, los pesos de la primera matriz no valen 0 o 1, si no que toman el valor del valor absoluto de los puntajes de cada partido.

De esta manera, si el equipo i perdió contra el equipo j por p puntos, en la primera matriz A, valdra que $A_{ij} = p$.

Luego, al igual que en PageRank, las filas de esta matriz que valgan 0 (eso significa que el equipo está invicto hasta el momento) serán completadas y además se agregará el factor de teletransportación, haciendo que todas las entradas de la matriz P sean distintas de 0.

Al igual que antes, nuestro objetivo es encontrar un autovector de autovalor 1 para P^t , y para ello utilizaremos el método de la potencia común y corriente.

2.3. Estructuración del código

2.4. Experimentación

Métodos Numéricos: TP2

3.1. PageRank y páginas web

3.2. PageRank y ligas deportivas

Métodos Numéricos: TP2

4. Conclusiones

Métodos Numéricos: TP2

5. Apéndices

Métodos Numéricos: TP2

5.1. Proposiciones

5.1.1. Proposición 1

Si $P \in \mathbb{R}^{n \times n}$ es una matriz de transición, es decir $0 \le P_{ij} \le 1$, y $\sum_j P_i j = 1 \ \forall i \in \{1,...,n\}$, entonces el mayor autovalor en módulo de P^t es 1 o -1.

Demostración Primero veamos que si λ es autovalor de P^t , entonces $|\lambda| \leq 1$.

Vale que $\rho(P^t) \leq ||P^t||$, $\rho(P^t)$ el radio espectral y ||-|| cualquier norma inducida. En particular, si tomamos la norma 1, $||P^t||_1 = 1$, pues todas las columnas suman 1, pues P es de transición. Entonces $|\lambda| \leq \rho(P^t) \leq 1$.

Ahora, como las filas de P suman 1, si multiplico $P(1,...,1)^t = (1,...,1)^t$. Entonces, como P y P^t tienen los mismos autovalores, listo.

Referencias

Métodos Numéricos: TP2

- [BF11] R. Burden y D. Faires. Numerical Analysis. Brooks/Cole, 2011.
- [BL06] Kurt Bryan y Tanya Leise. "The Linear Algebra behind Google". En: SIAM Review 48.3 (2006), págs. 569-581.
- [BP98] Sergey Brin y Lawrence Page. "The anatomy of a large-scale hypertextual Web search engine". En: Computer Networks and ISDN Systems 30.1-7 (abr. de 1998), págs. 107-117. ISSN: 01697552. DOI: 10.1016/S0169-7552(98)00110-X. URL: http://linkinghub.elsevier.com/retrieve/pii/S016975529800110X.
- [Data] http://www.cs.toronto.edu/~tsap/experiments/datasets/.
- [Datb] DataHub. http://datahub.io.
- [DB74] G. Dahlquist y A. Bjork. Numerical Methods. Prentice-Hall, 1974.
- [GMA08] Angela Y. Govan, Carl D. Meyer y Rusell Albright. "Generalizing Google's Page-Rank to Rank National Football League Teams". En: *Proceedings of SAS Global Forum 2008*. 2008.
- [GVL96] G. Golub y C. Van Loan. *Matrix Computations*. The John Hopkins University Press, 1996.
- [Kam+03] Sepandar D. Kamvar y col. "Extrapolation methods for accelerating PageRank computations". En: Proceedings of the 12th international conference on World Wide Web. WWW '03. ACM, 2003, págs. 261-270. ISBN: 1-58113-680-3. DOI: 10.1145/775152.775190. URL: http://doi.acm.org/10.1145/775152.775190.
- [Kle99] Jon M. Kleinberg. "Authoritative Sources in a Hyperlinked Environment". En: *J. ACM* 46.5 (sep. de 1999), págs. 604-632. ISSN: 0004-5411. DOI: 10.1145/324133. 324140. URL: http://doi.acm.org/10.1145/324133.324140.
- [Sna] Stanford Large Network Dataset Collection. http://snap.stanford.edu/data/#web.