	Paper / Subject Code: 32622 / Thermal Enginnering Semv (CScheme) R-2019 Max. Marks: 80	2
9	Paper / Subject Code: 32622 / Therman	~
TE	Semv (CScheme) R-2019 Max. Marks.	
11 2022	Time: 3 hours	
. (
Note: 1	. Assume suitable data if necessary	
2	2. Figures to the right indicate full marks	
3	3. Question No. 1 is compulsory	
4	d. Solve any three out of the remaining five questions	5
		5
Q1.	Solve any four Derive an expression for the critical radius of insulation for the sphere. State Fourier and Biot numbers? Also explain the significance of these numbers. Explain each regime	5
A	Derive an expression for the critical radius of insulation to	
В	Solve any four Derive an expression for the critical radius of insulation for the sphere. State Fourier and Biot numbers? Also explain the significance of these numbers. Draw a boiling curve and identify the different boiling regimes. Explain each regime in brief.	5
C	Draw a boiling curve and identity the different so	5
D	State and explain Fick's Law of diffusion.	5
E	Explain the valve timing diagram for four-stroke SI engines.	, ~
F	Explain EURO and BHARAT norms.	
		10
Q2. A	A Cylindrical tank of 1.0 m diameter and 5 m total length has hemispherical ends. It contains liquid oxygen, which has a boiling point and heat of vaporization of -180 °C and 210 kJ/kg, respectively. It is required to insulate the tank so as to reduce the boil-	
	contains liquid oxygen, which has a boiling point and heat of vaporization of and 210 kJ/kg, respectively. It is required to insulate the tank so as to reduce the boil-off rate of oxygen in a steady state to 14 kg/h. Determine the thermal conductivity of	
	and 210 kJ/kg, respectively. It is required to insulate the tank so as to reduce the off rate of oxygen in a steady state to 14 kg/h. Determine the thermal conductivity of the insulating material if its maximum thickness is limited to 70 mm. Assume room	
	off rate of oxygen in a steady state to 14 kg/h. Determine the thermal conduction the insulating material if its maximum thickness is limited to 70 mm. Assume room temperature outside the insulation as 25 °C.	
	temperature outside the insulation as 25 °C.	10
В	During the trial of a single-cylinder, four-stroke oil engine, the following	
	results were obtained.	
	Cylinder diameter 20 cm.	
	Stroke 40 cm	
	Mean effective pressure 6 bar Torque 407 Nm	
	Torque 407 Nm Speed 250 rpm	
	Oil consumption 4 kg/h	
	Caloriffic value of fuel 43 MJ/kg	
	Cooling water flow rate 4.5 kg/min	
	Air used per kg of fuel 30 kg	
	Rise in cooling water temperature 45 °C	
	Temperature of exhaust gases 420 °C	
	Room Temperature 20 °C	
4	Mean specific heat of exhaust gas 1kJ/kg K	
	Specific heat of water 4.18 kJ/kg K	
	Find the IP, BP and draw up a heat balance sheet for the test in kJ/h.	
	Find the IP, BP and draw up a near balance shows to the	
02		
Q3.	Discuss the electrical analogy of combined heat conduction and convection in two-	5
A	layer composite wall.	
	10.1	
В	A steel ball 50 mm in diameter and at 900 °C is placed in a still atmosphere of 30 °C.	5
Ъ	Calculate the initial rate of cooling of the ball in °C per min.	
Ç	Explain with neat sketch stages of combustion of the CI engine.	10
-		

working of Parking

Paper / Subject Code: 32622 / Thermal Enginnering

10

(A steel rod ($k = 32 \text{ W/m}^{\circ}\text{C}$), 12 mm in diameter and 60 mm long, with an insulated and is to be used as a spine. It is exposed to surroundings with a temperature of 60°C	10
	A steel rod (k = 32 W/m°C), 12 mm in diameter and 60 mm long, with an instance of 60°C end, is to be used as a spine. It is exposed to surroundings with a temperature of 60°C and a heat transfer coefficient of 55 W/m²°C. The temperature at the base of fin is	
	95°C. Determine:	
	Co. The Grand Chairman	
	(i) The temperature at the edge of the spine. (ii) The temperature at the edge of the spine.	
	(iii) The heat dissipation.	5
E	State and explain kirchoff's law. With suitable example/ values prove that during the load test of an engine, increases in the load increases the mechanical efficiency of the engine.	5
C	With suitable example/ values prove that during the regime. in the load increases the mechanical efficiency of the engine.	
Q5	atom 18 liseu to here	10
A	A counter-flow double pipe heat exchanger dating the heat exchanger at 180 C and water at the rate of 10500 kg/h. The steam enters the heat exchanger at 180 C and 80°C,	
	W/m C, calculate the heat transfer the	
	fluid flows were parallel?	10
В	A 4-stroke motorcycle petrol engine cylinder consists of 15 hollow fins. If the outside	10
	and inside diameters of each fill are 200 him tarbaria air temperature is 25°C,	V. "
	fin surface temperature is 4/3 C, and the woter-cycle is running at a	
	calculate the heat transfer rate from the fins When the motor eyest as speed of 60 km/h. The fin may be idealised as a single horizontal flat plate of the	
	00000 0000	
	Assume characteristic length is 0.9 times the outside diameter.	
	$\overline{Nu} = 0.036(Re)^{0.8} (Pr)^{0.33}$	
	$\overline{Nu} = 0.54(Gr.Pr)^{0.25}$	
	The thermophysical properties of air at 250 °C are	
	$k = 4.266 \times 10^{-2} \text{ W/m} ^{\circ}\text{C}, v = 40.61 \times 10^{-6} \text{ m}^2/\text{s}, \text{Pr} = 0.677$	
Q 6.	The state of the battery ignition system.	5
Α	Explain with a neat sketch working of the battery ignition system.	
В	Explain the Fouling of Heat Exchangers.	5
С	Calculate the heat transfer from a 60W incandescent bulb at 115°C to ambient air at	5
	25°C. Assume the bulb is a sphere of 50 mm in diameter. Also, find the percentage of	
	power lost by free convection.	
	The correlation is given by: $Nu = 0.60 (Gr.Pr)^{1/4}$	
	The thermophysical properties of air at 70 °C are	
	$k = 2.964 \times 10^{-2} \text{ W/m} ^{\circ}\text{C}$, $v = 20.02 \times 10^{-6} \text{ m}^2/\text{s} \cdot \text{Pr} = 0.694$	
D	Write down the general heat conduction equation in cartesian coordinates. State the	5
	assumptions and get the Fourier, Poisson's and Laplace equations from it.	