Formal Methods (形式化方法)

Lecture 14. Reasoning about Specifications

智能与计算学部 章衡

2021年上学期

Features of Z notation

• By using Z notations one can define the specification precisely, which could reduce the misunderstandings in requirement analyses largely

Features of Z notation

- By using Z notations one can define the specification precisely, which could reduce the misunderstandings in requirement analyses largely
- The formal semantics of Z provides a way to reason about the specification

Features of Z notation

- By using Z notations one can define the specification precisely, which could reduce the misunderstandings in requirement analyses largely
- The formal semantics of Z provides a way to reason about the specification

What can be done by reasoning

• How to assure the specification admitting a desired property?

Features of Z notation

- By using Z notations one can define the specification precisely, which could reduce the misunderstandings in requirement analyses largely
- The formal semantics of Z provides a way to reason about the specification

What can be done by reasoning

- How to assure the specification admitting a desired property?
- How to know whether a program meets the requirements stated in the specification?

Outline

- Introduction by Example
- Rigorous Proofs
- Reasoning about Specifications

Basic type:

[Person]

Basic type:

[Person]

• Global variable:

 $Max : \mathbb{N}$

Basic type:

[Person]

• Global variable:

 $Max : \mathbb{N}$

• State space schema:

Basic type:

[Person]

• Global variable:

 $Max : \mathbb{N}$

• State space schema:

Basic type:

[Person]

• Global variable:

 $Max : \mathbb{N}$

• State space schema:

$$_{\text{HoClub}} _{\text{Loc}}$$
s: \mathbb{P} Person
$$\#s \leqslant \text{Max}$$

 Δ HoClub $\stackrel{\frown}{=}$ HoClub \wedge HoClub'

 Ξ HoClub | s' = s

EnterClub

 Δ HoClub

p?: Person

#s < Max

 $p? \notin s$ $s' = s \cup \{p?\}$

EnterClub

 Δ HoClub

p?: Person

$$\#s < Max$$

$$p? \not \in s$$

$$s' = s \cup \{p?\}$$

LeaveClub_

 Δ HoClub

p?: Person

$$p?\in s$$

$$s' = s \setminus \{p?\}$$

 $EnterClub \ _{9}^{o} \ LeaveClub \vDash \#s < Max \wedge s' = s$

$$EnterClub \ _{9}^{o} \ LeaveClub \vDash \#s < Max \wedge s' = s$$

Alpha $\widehat{=}$ EnterClub $_9^{\circ}$ LeaveClub


```
EnterClub _{9}^{\circ} LeaveClub \vDash \#s < Max \land s' = s
```

Alpha $\widehat{=}$ EnterClub $_9^{\rm o}$ LeaveClub

```
Alpha.
s, s' : \mathbb{P} \text{ Person}
p?: Person
∃s+ : P Person •
         (\#s \leqslant Max \land
          \#s^+ \leqslant Max \land
          \#s' \leqslant Max \land
          \#s < Max \land
          p? ∉ s ∧
          s^+ = s \cup \{p?\} \land
          p? \in s^+ \wedge
          s' = s^+ \setminus \{p?\})
```

If x does not occur in φ , then $\exists\, x: X \bullet (\varphi \wedge \psi) \equiv \varphi \wedge \exists\, x: X \bullet \psi$

If x does not occur in φ , then $\exists\, x: X \bullet (\varphi \wedge \psi) \equiv \varphi \wedge \exists\, x: X \bullet \psi$

 $\mathsf{Alpha} \vDash \mathsf{Alpha}_1$

If x does not occur in φ , then $\exists x : X \bullet (\varphi \land \psi) \equiv \varphi \land \exists x : X \bullet \psi$

Alpha ⊨ Alpha₁

```
Alpha _____
s, s' : \mathbb{P} \text{ Person}
p?: Person
∃s+ · P Person •
         (\#s \leqslant Max \land
          \#s^+ \leqslant Max \land
          \#s' \leqslant Max \land
          \#s < Max \land
          p? ∉ s ∧
          s^+ = s \cup \{p?\} \land
          p? \in s^+ \land
          s' = s^+ \setminus \{p?\}
```


If x does not occur in φ , then $\exists x : X \bullet (\varphi \land \psi) \equiv \varphi \land \exists x : X \bullet \psi$

$Alpha \models Alpha_1$

```
Alpha _____
s, s' : \mathbb{P} \text{ Person}
p?: Person
∃s+ · P Person •
         (\#s \leqslant Max \land
          \#s^+ \leqslant Max \land
          \#s' \leqslant Max \land
          \#s < Max \land
          p? ∉ s ∧
          s^+ = s \cup \{p?\} \land
          p? \in s^+ \land
          s' = s^+ \setminus \{p?\}
```

```
Alpha<sub>1</sub> _____
s, s' : \mathbb{P} \text{ Person}
p?: Person
#s 

Max
\#s' \leqslant Max
#s < Max
p? ∉ s
∃s+ : P Person •
        \#s^+ \leq Max \wedge
        s^+ = s \cup \{p?\} \land
        p? \in s^+ \land
        s' = s^+ \setminus \{p?\})
```


$$Alpha \vDash Alpha_1 \vDash Alpha_2$$

$$Alpha \models Alpha_1 \models Alpha_2$$

```
_Alpha<sub>1</sub> _____
s, s' : \mathbb{P} \text{ Person}
p?: Person
\#s \leqslant Max
\#s' \leq Max
\#s < Max
p? ∉ s
∃s+ : P Person •
           \#s^+ \leqslant Max \land
           s^+ = s \cup \{p?\} \land
           p? \in s^+ \land
           s' = s^+ \setminus \{p?\}
```


$$Alpha \models Alpha_1 \models Alpha_2$$

```
_Alpha<sub>1</sub> _____
s, s' : \mathbb{P} \text{ Person}
p?: Person
\#s \leq Max
\#s' \leq Max
#s < Max
p? ∉ s
∃s+ : P Person •
           \#s^+ \leqslant Max \land
           s^+ = s \cup \{p?\} \land
           p? \in s^+ \land
           s' = s^+ \setminus \{p?\}
```

```
Alpha<sub>2</sub>
s, s' : \mathbb{P} \text{ Person}
p? : \text{ Person}
\#s \leqslant \text{Max}
\#s' \leqslant \text{Max}
\#s < \text{Max}
p? \notin s
\#(s \cup \{p?\}) \leqslant \text{Max}
p? \in (s \cup \{p?\})
s' = (s \cup \{p?\}) \setminus \{p?\})
```

From $p? \not \in s,$ we know that $(s \cup \{p?\}) \setminus \{p?\} = s.$ Consequently,

From
$$p? \notin s$$
, we know that $(s \cup \{p?\}) \setminus \{p?\} = s$. Consequently,
$$Alpha \models Alpha_1 \models Alpha_2 \models Alpha_3 \models \#s < Max \land s' = s$$


```
From p? \not\in s, we know that (s \cup \{p?\}) \setminus \{p?\} = s. Consequently, Alpha \models Alpha_1 \models Alpha_2 \models Alpha_3 \models \#s < Max \land s' = s
```

```
Alpha_2
s, s' : \mathbb{P} \text{ Person}
p?: Person
\#s \leqslant Max
\#s' \leq Max
\#s < Max
p? ∉ s
\#(s \cup \{p?\}) \leq Max
p? \in (s \cup \{p?\})
s' = (s \cup \{p?\}) \setminus \{p?\}
```



```
From p? \not\in s, we know that (s \cup \{p?\}) \setminus \{p?\} = s. Consequently, Alpha \models Alpha_1 \models Alpha_2 \models Alpha_3 \models \#s < Max \land s' = s
```

```
Alpha_2
s, s' : \mathbb{P} \operatorname{Person}
p?: Person
\#s \leqslant Max
\#s' \leq Max
#s < Max
p? ∉ s
\#(s \cup \{p?\}) \leq Max
p? \in (s \cup \{p?\})
s' = (s \cup \{p?\}) \setminus \{p?\}
```

```
Alpha<sub>3</sub>
s, s' : \mathbb{P} \operatorname{Person}
p? : \operatorname{Person}
\#s \leqslant \operatorname{Max}
\#s' \leqslant \operatorname{Max}
\#s < \operatorname{Max}
p? \notin s
\#(s \cup \{p?\}) \leqslant \operatorname{Max}
p? \in (s \cup \{p?\})
s' = s
```

Outline

- Introduction by Example
- 2 Rigorous Proofs
- Reasoning about Specifications

 Formal proofs provide a procedure of rewriting to obtain theorems from inference rules

- Formal proofs provide a procedure of rewriting to obtain theorems from inference rules
- The correctness of such proofs is easily checkable

- Formal proofs provide a procedure of rewriting to obtain theorems from inference rules
- The correctness of such proofs is easily checkable
- However, it is hard to construct a formal proof, and the proof maybe tediously long

- Formal proofs provide a procedure of rewriting to obtain theorems from inference rules
- The correctness of such proofs is easily checkable
- However, it is hard to construct a formal proof, and the proof maybe tediously long
- In many cases, mathematicians try to find a weaker form of formal proofs, called rigorous proofs

- Formal proofs provide a procedure of rewriting to obtain theorems from inference rules
- The correctness of such proofs is easily checkable
- However, it is hard to construct a formal proof, and the proof maybe tediously long
- In many cases, mathematicians try to find a weaker form of formal proofs, called rigorous proofs
- They believe that every rigorous proof can be converted into a formal proof

- Formal proofs provide a procedure of rewriting to obtain theorems from inference rules
- The correctness of such proofs is easily checkable
- However, it is hard to construct a formal proof, and the proof maybe tediously long
- In many cases, mathematicians try to find a weaker form of formal proofs, called rigorous proofs
- They believe that every rigorous proof can be converted into a formal proof
- In a rigorous proof, one is allowed to use the properties in set theory and number theory, as well as the method of induction

Method of induction

Definition (Mathematical induction, 数学归纳法)

To prove "for every natural number n it holds that P(n)", it suffices to prove both of the following:

- P(0) holds;

Definition (Structural induction, 结构归纳法)

To prove "for every sequence s : seq X it holds that P(s)", it suffices to prove both of the following:

- $P(\langle \rangle)$ holds;
- $\forall x : X; s : \operatorname{seq} X \bullet (P(s) \Rightarrow P(\langle x \rangle \cap s)).$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$

Example

Please prove that, for all sequences $s, t, u : \operatorname{seq} X$, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$.

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case:

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case:
$$\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$$
.

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case:
$$\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$$
.

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

$$(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u.$$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

Inductive step: Assume as inductive hypothesis that $s \cap (t \cap u) = (s \cap t) \cap u$. We need to prove

 $(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u$. Note that

$$(\langle x \rangle \, {}^{\frown} \, s) \, {}^{\frown} \, (t \, {}^{\frown} \, u)$$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

Inductive step: Assume as inductive hypothesis that s $\ \ (t \cap u) = (s \cap t) \cap u$. We need to prove

 $(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u$. Note that

$$(\langle x \rangle \, {}^{\smallfrown} \, s) \, {}^{\smallfrown} \, (t \, {}^{\smallfrown} \, u) \quad = \langle x \rangle \, {}^{\smallfrown} \, (s \, {}^{\smallfrown} \, (t \, {}^{\smallfrown} \, u))$$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

$$(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u$$
. Note that

$$(\langle x \rangle \cap s) \cap (t \cap u) = \langle x \rangle \cap (s \cap (t \cap u))$$
$$= \langle x \rangle \cap ((s \cap t) \cap u)$$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u.$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

$$(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u$$
. Note that

$$\begin{split} (\langle x \rangle ^\smallfrown s) ^\smallfrown (t ^\smallfrown u) & = \langle x \rangle ^\smallfrown (s ^\smallfrown (t ^\smallfrown u)) \\ & = \langle x \rangle ^\smallfrown ((s ^\smallfrown t) ^\smallfrown u) \end{split}$$

$$= (\langle x \rangle \ ^{\smallfrown} (s \ ^{\smallfrown} t)) \ ^{\smallfrown} u$$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u.$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

$$(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u$$
. Note that

$$\begin{split} (\langle x \rangle ^\smallfrown s) ^\smallfrown (t ^\smallfrown u) &= \langle x \rangle ^\smallfrown (s ^\smallfrown (t ^\smallfrown u)) \\ &= \langle x \rangle ^\smallfrown ((s ^\smallfrown t) ^\smallfrown u) \\ &= (\langle x \rangle ^\smallfrown (s ^\smallfrown t)) ^\smallfrown u \\ &= ((\langle x \rangle ^\smallfrown s) ^\smallfrown t) ^\smallfrown u, \end{split}$$

Example

Please prove that, for all sequences s, t, u : seq X, we have

$$s \cap (t \cap u) = (s \cap t) \cap u$$
.

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s$ and $(\langle x \rangle \cap s) \cap t = \langle x \rangle \cap (s \cap t)$. Next we prove the property by an induction on s.

Base case: $\langle \rangle \cap (t \cap u) = t \cap u = (\langle \rangle \cap t) \cap u$.

Inductive step: Assume as inductive hypothesis that $s \cap (t \cap u) = (s \cap t) \cap u$. We need to prove

$$(\langle x \rangle \cap s) \cap (t \cap u) = ((\langle x \rangle \cap s) \cap t) \cap u$$
. Note that

$$\begin{split} (\langle x \rangle ^\smallfrown s) ^\smallfrown (t ^\smallfrown u) & = \langle x \rangle ^\smallfrown (s ^\smallfrown (t ^\smallfrown u)) \\ & = \langle x \rangle ^\smallfrown ((s ^\smallfrown t) ^\smallfrown u) \\ & = (\langle x \rangle ^\smallfrown (s ^\smallfrown t)) ^\smallfrown u \\ & = ((\langle x \rangle ^\smallfrown s) ^\smallfrown t) ^\smallfrown u, \end{split}$$

which completes the proof.

Example

Please prove that, for all sequences $s, t : \operatorname{seq} X$, we have

$$rev(s \mathbin{^\frown} t) = (rev \, t) \mathbin{^\frown} (rev \, s)$$

Example

Please prove that, for all sequences $s, t : \operatorname{seq} X$, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle\rangle \cap s = s = s \cap \langle\rangle$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Example

Please prove that, for all sequences $s, t : \operatorname{seq} X$, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case:

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

Example

Please prove that, for all sequences $s, t : \operatorname{seq} X$, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

Inductive step: Assume as inductive hypothesis that $rev(s \cap t) = (rev t) \cap (rev s)$.

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

$$rev((\langle x \rangle \cap s) \cap t)$$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

$$rev((\langle x \rangle ^{\frown} s) ^{\frown} t) \quad = \quad rev(\langle x \rangle ^{\frown} (s ^{\frown} t))$$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

$$rev((\langle x \rangle \cap s) \cap t) = rev(\langle x \rangle \cap (s \cap t))$$

$$= rev(s \cap t) \cap \langle x \rangle$$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

$$\begin{array}{rcl} \operatorname{rev}((\langle x \rangle \, {}^{\smallfrown} \, s) \, {}^{\smallfrown} \, t) & = & \operatorname{rev}(\langle x \rangle \, {}^{\smallfrown} \, (s \, {}^{\smallfrown} \, t)) \\ \\ & = & \operatorname{rev}(s \, {}^{\smallfrown} \, t) \, {}^{\smallfrown} \, \langle x \rangle \\ \\ & = & \left((\operatorname{rev} \, t) \, {}^{\smallfrown} \, (\operatorname{rev} \, s) \right) \, {}^{\smallfrown} \, \langle x \rangle \end{array}$$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

$$\begin{array}{lll} \operatorname{rev}((\langle x \rangle \, \widehat{\ } \, s) \, \widehat{\ } \, t) & = & \operatorname{rev}(\langle x \rangle \, \widehat{\ } \, (s \, \widehat{\ } \, t)) \\ \\ & = & \operatorname{rev}(s \, \widehat{\ } \, t) \, \widehat{\ } \, \langle x \rangle \\ \\ & = & \left((\operatorname{rev} t) \, \widehat{\ } \, (\operatorname{rev} s) \right) \, \widehat{\ } \, \langle x \rangle \\ \\ & = & \left(\operatorname{rev} t \right) \, \widehat{\ } \, ((\operatorname{rev} s) \, \widehat{\ } \, \langle x \rangle) \end{array}$$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

$$\begin{array}{rcl} \operatorname{rev}((\langle x \rangle \, {}^{\smallfrown} \, s) \, {}^{\smallfrown} \, t) & = & \operatorname{rev}(\langle x \rangle \, {}^{\smallfrown} \, (s \, {}^{\smallfrown} \, t)) \\ \\ & = & \operatorname{rev}(s \, {}^{\smallfrown} \, t) \, {}^{\backsim} \, \langle x \rangle \\ \\ & = & \left((\operatorname{rev} \, t) \, {}^{\backsim} \, (\operatorname{rev} \, s) \, {}^{\backsim} \, \langle x \rangle \right) \\ \\ & = & \left(\operatorname{rev} \, t \right) \, {}^{\backsim} \, \operatorname{rev}(\langle x \rangle \, {}^{\backsim} \, s), \end{array}$$

Example

Please prove that, for all sequences s, t : seq X, we have

$$rev(s \cap t) = (rev t) \cap (rev s)$$

Proof.

By definition, it is easy to see that $\langle \rangle \cap s = s = s \cap \langle \rangle$ and $rev(\langle x \rangle \cap t) = (rev \, t) \cap \langle x \rangle$. Next we prove the desired property by an induction on s.

Base case: $rev(\langle \rangle \cap t) = rev t = (rev t) \cap \langle \rangle = (rev t) \cap rev \langle \rangle$.

Inductive step: Assume as inductive hypothesis that $rev(s \cap t) = (rev t) \cap (rev s)$. We need to prove that $rev((\langle x \rangle \cap s) \cap t) = (rev t) \cap rev(\langle x \rangle \cap s)$. Note that

$$\begin{array}{rcl} \operatorname{rev}((\langle x \rangle \, {}^{\smallfrown} \, s) \, {}^{\smallfrown} \, t) & = & \operatorname{rev}(\langle x \rangle \, {}^{\smallfrown} \, (s \, {}^{\smallfrown} \, t)) \\ & = & \operatorname{rev}(s \, {}^{\smallfrown} \, t) \, {}^{\smallfrown} \langle x \rangle \\ & = & \left((\operatorname{rev} \, t) \, {}^{\smallfrown} \, (\operatorname{rev} \, s) \, {}^{\smallfrown} \langle x \rangle \right) \\ & = & \left(\operatorname{rev} \, t \right) \, {}^{\smallfrown} \, \operatorname{rev}(\langle x \rangle \, {}^{\backsim} \, s), \end{array}$$

which completes the proof.

Exercise

Prove the following by induction: for every sequence s, we have that $rev(rev\,s)=s.$

Outline

- Introduction by Example
- Rigorous Proofs
- Reasoning about Specifications

Basic types:

[Person, ID]

Basic types:

[Person, ID]

• State space schema:

Basic types:

[Person, ID]

• State space schema:

Basic types:

[Person, ID]

State space schema:

FID \longrightarrow Person banned : \mathbb{P} ID \longrightarrow banned \subseteq dom members

 $_FID'$ $_$ members': ID \rightarrowtail Person
banned': \mathbb{P} ID

banned' \subseteq dom members'

• $\Delta FID \cong FID \wedge FID'$

Basic types:

[Person, ID]

State space schema:

 $\begin{array}{c} -\text{FID'} \\ \text{members'} : \text{ID} & \rightarrow \text{Person} \\ \text{banned'} : \mathbb{P} \text{ID} \\ \\ \text{banned'} \subseteq \text{dom members'} \end{array}$

• Δ FID $\stackrel{\triangle}{=}$ FID \wedge FID' Ξ FID $\stackrel{\triangle}{=}$ Δ FID | members' = members \wedge banned' = banned

The initialization theorem (初始化定理)

Operational schemas: Initialization

```
InitFID

FID'

members' = \emptyset

banned' = \emptyset
```


The initialization theorem (初始化定理)

Operational schemas: Initialization

```
InitFID

FID'

members' = \emptyset
banned' = \emptyset
```

• The initialization theorem: $\models \exists FID' \bullet InitFID$

The initialization theorem (初始化定理)

Operational schemas: Initialization

```
InitFID
FID'
members' = \emptyset
banned' = \emptyset
```

• The initialization theorem: $\models \exists FID' \bullet InitFID$

The above is an abbreviation of the following theorem:

```
\models \exists \, members' : Person \rightarrowtail ID; banned' : \mathbb{P} \, ID \bullet
(banned' \subset dom \, members' \land members' = \emptyset \land banned' = \emptyset)
```


$$\models \exists \, members' : \, Person \, \rightarrowtail \, ID; \, banned' : \, \mathbb{P} \, ID \, \bullet \\ (banned' \subseteq dom \, members' \wedge members' = \emptyset \wedge banned' = \emptyset)$$
 (1)

$$\vdash \exists \, members' : Person \rightarrowtail ID; banned' : \mathbb{P} \, ID \bullet$$

$$(banned' \subseteq dom \, members' \land members' = \emptyset \land banned' = \emptyset)$$
(1)

1-point rule (bidirection)

$$\frac{\sum \models \exists \, x : S \bullet (\varphi \land x = t)}{\sum \models t \in S \land \varphi[t/x]} \quad \text{[1-point]} \quad < x \text{ does not occur in } t >$$

$$\vdash \exists \, members' : Person \rightarrowtail ID; banned' : \mathbb{P} \, ID \bullet$$

$$(banned' \subseteq dom \, members' \land members' = \emptyset \land banned' = \emptyset)$$
(1)

1-point rule (bidirection)

$$\frac{\Sigma \vDash \exists x : S \bullet (\varphi \land x = t)}{\Sigma \vDash t \in S \land \varphi[t/x]}$$
 [1-point]

• By applying the above rule, (1) can be simplified as

$$\models \emptyset \in \operatorname{Person} \rightarrowtail \operatorname{ID} \wedge \emptyset \in \mathbb{P} \operatorname{ID} \wedge \emptyset \subseteq \operatorname{dom} \emptyset \tag{2}$$

$$\vdash \exists \, \text{members}' : \text{Person} \rightarrowtail \text{ID}; \text{banned}' : \mathbb{P} \, \text{ID} \bullet$$

$$(\text{banned}' \subseteq \text{dom members}' \land \text{members}' = \emptyset \land \text{banned}' = \emptyset)$$

$$(1)$$

1-point rule (bidirection)

$$\frac{\Sigma \vDash \exists x : S \bullet (\varphi \land x = t)}{\Sigma \vDash t \in S \land \varphi[t/x]}$$
 [1-point]

• By applying the above rule, (1) can be simplified as

$$\models \emptyset \in \text{Person} \rightarrowtail \text{ID} \land \emptyset \in \mathbb{P} \text{ID} \land \emptyset \subseteq \text{dom} \emptyset \tag{2}$$

• To prove this, it is equivalent to prove all of the following:

$$\begin{split} &\models \emptyset \in \operatorname{Person} \rightarrowtail \operatorname{ID}, \\ &\models \emptyset \in \mathbb{P} \operatorname{ID}, \\ &\models \emptyset \subseteq \operatorname{dom} \emptyset. \end{split}$$


```
AddMember \DeltaFID applicant? : Person id! : ID applicant? \not\in ran members id! \not\in dom members members' = members \cup {id! \mapsto applicant?} banned' = banned
```



```
AddMember \triangleFID applicant? : Person id! : ID applicant? \not\in ran members id! \not\in dom members members' = members \cup {id! \mapsto applicant?} banned' = banned
```

• We need to know when the operation can be executed.


```
AddMember \DeltaFID applicant? : Person id! : ID applicant? \not\in ran members id! \not\in dom members members' = members \cup {id! \mapsto applicant?} banned' = banned
```

- We need to know when the operation can be executed.
- If such a condition is not true, we need to report an error.


```
PreAddMember

FID

applicant?: Person

∃ FID'; id!: ID •

(applicant? ∉ ran members ∧

id! ∉ dom members ∧

members' = members ∪ {id! → applicant?} ∧

banned' = banned)
```



```
PreAddMember

FID

applicant?: Person

∃ FID'; id!: ID •

(applicant? ∉ ran members ∧

id! ∉ dom members ∧

members' = members ∪ {id! → applicant?} ∧

banned' = banned)
```

• Unfolding the predicate of the above schema, we have

```
\label{eq:definition} \begin{split} \exists \ members' : ID &\mapsto Person; banned' : \mathbb{P} \ ID; id! : ID \bullet \\ (banned' \subseteq dom \ members' \land applicant? \not\in ran \ members \land \\ id! \not\in dom \ members \land members' = members \cup \left\{id! \mapsto applicant?\right\} \land \\ banned' = banned) \end{split}
```

Most often used rules for precondition simplification

$$\frac{\Sigma \vDash \exists \ x : S \bullet (\varphi \land x = t)}{\Sigma \vDash t \in S \land \varphi[t/x]} \quad \text{[1-point]} \quad \text{\leq x does not occur in t}$$

$$\frac{\Sigma \vDash \varphi \land \psi}{\Sigma \vDash \varphi} \quad [\land] \quad \langle \Sigma, \varphi \vDash \psi \rangle$$

$$\frac{\Sigma \vDash \varphi}{\sum \vDash \varphi'} \quad [=] \quad \langle \Sigma \vDash \mathsf{t}_1 = \mathsf{t}_2 \text{ and } \varphi' \text{ is obtained from } \varphi \text{ by substituting } \mathsf{t}_2 \text{ for some occurrence of } \mathsf{t}_1 \rangle$$

Most often used rules for precondition simplification

$$\frac{\Sigma \vDash \exists \ x : S \bullet (\varphi \land x = t)}{\Sigma \vDash t \in S \land \varphi[t/x]} \quad [1\text{-point}] \quad \text{\leq x does not occur in t}$$

$$\frac{\Sigma \vDash \varphi \land \psi}{\Sigma \vDash \varphi} \quad [\land] \quad \langle \Sigma, \varphi \vDash \psi \rangle$$

$$\frac{\Sigma \vDash \varphi}{\sum \vDash \varphi'} \quad [=] \quad \langle \Sigma \vDash \mathsf{t}_1 = \mathsf{t}_2 \text{ and } \varphi' \text{ is obtained from } \varphi \text{ by substituting } \mathsf{t}_2 \text{ for some occurrence of } \mathsf{t}_1 \rangle$$


```
\exists \, members' : ID \mapsto Person; \, banned' : \mathbb{P} \, ID; \, id! : ID \bullet
(banned' \subseteq dom \, members' \wedge applicant? \not\in ran \, members \wedge
id! \not\in dom \, members \wedge members' = members \cup \{id! \mapsto applicant?\} \wedge
banned' = banned)
(3)
```


banned $\in \mathbb{P} \operatorname{ID}$)

Simplification of precondition

```
\exists \ members' : ID \rightarrowtail Person; banned' : \mathbb{P} ID; id! : ID \bullet \\ (banned' \subseteq dom \ members' \land applicant? \not\in ran \ members \land \\ id! \not\in dom \ members \land members' = members \cup \{id! \mapsto applicant?\} \land \\ banned' = banned)
By applying 1-point rule for variable banned', (3) can be simplified as \exists \ members' : ID \rightarrowtail Person; id! : ID \bullet \\ (banned \subseteq dom \ members' \land applicant? \not\in ran \ members \land  (4)
```


 $id! \notin dom members \land members' = members \cup \{id! \mapsto applicant?\} \land$

```
\exists \, members' : ID \rightarrowtail Person; banned' : \mathbb{P} \, ID; id! : ID \bullet
(banned' \subseteq dom \, members' \land applicant? \not\in ran \, members \land
id! \not\in dom \, members \land members' = members \cup \{id! \mapsto applicant?\} \land
banned' = banned)
(3)
```

By applying 1-point rule for variable banned', (3) can be simplified as

```
\exists \ members' : ID \rightarrowtail Person; id! : ID \bullet \\ (banned \subseteq dom \ members' \land applicant? \not\in ran \ members \land \\ id! \not\in dom \ members \land members' = members \cup \{id! \mapsto applicant?\} \land \\ banned \in \mathbb{P} ID)
(4)
```

By applying 1-point rule for variable members', (4) can be simplified as

```
\exists \, id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not \in ran \, members \land \\ id! \not \in dom \, members \land members \cup \{id! \mapsto applicant?\} \in ID \rightarrowtail Person \land \\ banned \in \mathbb{P} \, ID)
```

```
\exists \, id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members \land members \cup \{id! \mapsto applicant?\} \in ID \mapsto Person \land  (6) banned \in \mathbb{P} \, ID)
```



```
\exists \, id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members \land members \cup \{id! \mapsto applicant?\} \in ID \rightarrowtail Person \land  (6) banned \in \mathbb{P} \, ID)
```

lacktriangle By the declaration banned : $\Bbb P$ ID we know banned $\in \Bbb P$ ID. Consequently, (6) can be equivalently rewritten as

```
\exists \, id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members \land members \cup \{id! \mapsto applicant?\} \in ID \rightarrowtail Person)  (7)
```



```
\exists \operatorname{id}! : \operatorname{ID} \bullet (\operatorname{banned} \subseteq \operatorname{dom}(\operatorname{members} \cup \{\operatorname{id}! \mapsto \operatorname{applicant?}\}) \land \operatorname{applicant?} \not\in \operatorname{ran} \operatorname{members} \land \\ \operatorname{id}! \not\in \operatorname{dom} \operatorname{members} \land \operatorname{members} \cup \{\operatorname{id}! \mapsto \operatorname{applicant?}\} \in \operatorname{ID} \rightarrowtail \operatorname{Person} \land  (6) \operatorname{banned} \in \mathbb{P}\operatorname{ID})
```

lack By the declaration banned : $\Bbb P$ ID we know banned $\in \Bbb P$ ID. Consequently, (6) can be equivalently rewritten as

```
\exists id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \notin ran members \land id! \notin dom members \land members \cup \{id! \mapsto applicant?\} \in ID \mapsto Person) 
(7)
```

• By members : ID →→ Person; id! : ID; applicant? : Person and id! ∉ dom members, we have that members ∪ {id! → applicant?} ∈ ID → Person. By applicant? ∉ ran members, we obtain that members ∪ {id! → applicant?} ∈ ID →→ Person. Thus, (7) can be simplified as

```
\exists \operatorname{id}! : \operatorname{ID} \bullet (\operatorname{banned} \subseteq \operatorname{dom}(\operatorname{members} \cup \{\operatorname{id}! \mapsto \operatorname{applicant?}\}) \land \operatorname{applicant?} \not \in \operatorname{ran} \operatorname{members} \land (\operatorname{id}! \not \in \operatorname{dom} \operatorname{members})
```

```
\exists \ id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \ members \land \\ id! \not\in dom \ members)  (9)
```


$$\exists \, id! : \mathrm{ID} \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members)$$
 (9)

● By properties $dom(A \cup B) = dom A \cup dom B$ and $dom\{id! \mapsto applicant?\} = \{id!\}$, we conclude that $dom(members \cup \{id! \mapsto applicant?\} = (dom members) \cup \{id!\}$. Thus, (9) can be simplified as

$$\exists id! : ID \bullet (banned \subseteq (dom \, members) \cup \{id!\} \land applicant? \not\in ran \, members \land id! \not\in dom \, members)$$
 (10)

$$\exists id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members)$$

$$(9)$$

● By properties $dom(A \cup B) = dom A \cup dom B$ and $dom\{id! \mapsto applicant?\} = \{id!\}$, we conclude that $dom(members \cup \{id! \mapsto applicant?\} = (dom members) \cup \{id!\}$. Thus, (9) can be simplified as

$$\exists id! : ID \bullet (banned \subseteq (dom \, members) \cup \{id!\} \land applicant? \not\in ran \, members \land id! \not\in dom \, members)$$
 (10)

lacktriangle By the definition of FID we know that banned \subseteq dom members. Thus, (10) can be simplified as

 $\exists id! : ID \bullet (applicant? \not\in ran members \land id! \not\in dom members)$

$$\exists id! : ID \bullet (banned \subseteq dom(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members)$$

$$(9)$$

● By properties $dom(A \cup B) = dom A \cup dom B$ and $dom\{id! \mapsto applicant?\} = \{id!\}$, we conclude that $dom(members \cup \{id! \mapsto applicant?\} = (dom members) \cup \{id!\}$. Thus, (9) can be simplified as

$$\exists \, id! : ID \bullet (banned \subseteq (dom \, members) \cup \{id!\} \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members)$$
 (10)

lacktriangle By the definition of FID we know that banned \subseteq dom members. Thus, (10) can be simplified as

$$\exists id! : ID \bullet (applicant? \not\in ran members \land id! \not\in dom members)$$
 (11)

 \equiv applicant? $\not\in \operatorname{ran}$ members $\wedge \exists \operatorname{id}! : \operatorname{ID} \bullet \operatorname{id}! \not\in \operatorname{dom}$ members

$$\exists \, id! : \mathrm{ID} \bullet (banned \subseteq \mathrm{dom}(members \cup \{id! \mapsto applicant?\}) \land applicant? \not\in ran \, members \land \\ id! \not\in \mathrm{dom} \, members)$$
 (9)

● By properties $dom(A \cup B) = dom A \cup dom B$ and $dom\{id! \mapsto applicant?\} = \{id!\}$, we conclude that $dom(members \cup \{id! \mapsto applicant?\} = (dom members) \cup \{id!\}$. Thus, (9) can be simplified as

$$\exists \, id! : ID \bullet (banned \subseteq (dom \, members) \cup \{id!\} \land applicant? \not\in ran \, members \land \\ id! \not\in dom \, members)$$
 (10)

lacktriangle By the definition of FID we know that banned \subseteq dom members. Thus, (10) can be simplified as

$$\exists id! : ID \bullet (applicant? \not\in ran members \land id! \not\in dom members)$$
 (11)

- \exists applicant? $\not\in$ ran members \land \exists id! : ID id! $\not\in$ dom members
- \equiv applicant? $\not\in$ ran members \land dom members \neq ID

(12)

Simplified precondition schema PreAddMember

