Algoritmuselmélet NP-teljes problémák

Katona Gyula Y.

Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

1 / 25

Karp-redukció

Mikor nem lényegesen nehezebb egy X probléma egy Y problémánál? Ha Y felhasználásával meg lehet oldani X-et is.

 \implies X visszavezethető a Y problémára.

Definíció

Legyen X és Y két eldöntési probléma. Az X Karp-redukciója (polinomiális visszavezetése) az Y problémára egy olyan polinom időben számolható f függvény, amely X minden lehetséges bemenetét úgy, hogy

$$x \in X \Leftrightarrow f(x) \in Y$$
.

Jelölés: $X \prec Y$, ha X-nek van Karp-redukciója Y-re.

Ha tehát van algoritmusunk Y eldöntésére $\Longrightarrow x \in X$ -re kiszámítjuk f(x)-et, eldöntjük $f(x) \in Y$? \Longrightarrow tudjuk, hogy $x \in X$ igaz-e. $\sqrt{}$

Ha tudnánk, hogy X nehéz, és tudjuk, hogy $X \prec Y$

 \implies Y is nehéz lenne.

Ha Y könnyű, és X nem lényegesen nehezebb nála, akkor X is könnyű.

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

Irányított Hamilton-kör probléma (IH)

Tétel

 $IH \prec H$.

Bizonyítás.

G = (V, E) egy irányított gráf $\rightarrow G' = (V', E')$ irányítatlan gráf hogy G' gyorsan megépíthető és

G-ben \exists irányított Hamilton-kör \leftrightarrow G'-ben \exists irányítatlan Hamilton-kör.

$$V' = \{v_{be}, v_*, v_{ki} \mid v \in V\},$$

$$E' = \{(v_{be}, v_*), (v_*, v_{ki}) \mid v \in V\} \cup \{(u_{ki}, v_{be}) \mid u \to v \in E\}.$$

 $v(G) = n, e(G) = e \implies v(G') = 3n, e(G') = 2n + e \implies O(n + e)$ lépésben megkapható.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle

3 / 25

Bizonyítás.

G-beli F irányított Hamilton-körének megfelel G' egy F' Hamilton-köre.

Az F egy $u \rightarrow v$ éle \longrightarrow az F'-ben az $u_* - u_{ki} - v_{be} - v_*$ út.

Ezért $G \in IH \implies G' \in H$

Ha G'-ben van egy $F'\subseteq E'$ Hamilton-kör \Longrightarrow egy u_* -ból indulva egy u_{ki} felé lépjünk először

 \implies csak $u_* - u_{ki} - v_{be} - v_*$ alakú lehet utána \implies ez az út megfelel G-ben egy u -> v élnek. Ezt tovább folytatva Hamilton-kört kapunk G-ben.

Ezért $G' \in H \implies G \in IH$.

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

A Karp-redukció tulajdonságai

Tétel

- 1. Ha $X \prec Y$ és $Y \in \mathbb{P}$, akkor $X \in \mathbb{P}$.
- 2. Ha $X \prec Y$ és $Y \in NP$ akkor $X \in NP$.
- 3. Ha $X \prec Y$, akkor $\overline{X} \prec \overline{Y}$
- 4. Ha $X \prec Y$ és $Y \in \text{coNP}$, akkor $X \in \text{coNP}$.
- 5. Ha $X \prec Y$ és $Y \in NP \cap coNP$, akkor $X \in NP \cap coNP$.
- 6. Ha $X \prec Y$ és $Y \prec Z$, akkor $X \prec Z$.

Bizonyítás.

Legyen f az X Karp-redukciója Y-re, ahol f c_1 n^k időben számolható. x egy bemenet, melyről szeretnénk eldönteni, hogy $x \in X$ teljesül-e, n az x hossza.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle

5 / 25

Bizonyítás.

1.: Kiszámítjuk f(x)-et \to időigénye $\leq c_1 n^k \Longrightarrow |f(x)| \leq c_1 n^k$. Y felismerő algoritmusával $c_2|f(x)|^l$ időben eldöntjük, hogy $f(x) \in Y$ igaz-e.

```
ightarrow időigénye \le c_2(c_1n^k)^l
x \in X \Leftrightarrow f(x) \in Y \implies \ddot{o}sszidő O(n^{kl}) \sqrt{n^{kl}}
```

2.: Az $f(x) \in Y$ tény egy t tanúja jó $x \in X$ tanújának is, és az Y-hoz tartozó T tanúsító algoritmus egy kis módosítással jó lesz az X tanúsító algoritmusának is.

 \mathcal{T}' az (x,t) bemenetre először kiszámítja f(x)-et, majd az (f(x),t) párra alkalmazza \mathcal{T} -t.

Ha az eredmény IGEN, akkor legyen \mathcal{T}' eredménye is IGEN, különben pedig NEM.

$$|t| = O(|f(x)|^c) \implies |t| = O(n^{kc})$$
 \mathcal{T}' lépésszáma, ha \mathcal{T} lépésszáma $O((|y| + |t|)^l)$:
 $O(n^k) + O((|f(x)| + |t|)^l) = O(n^k) + O(|f(x)|^{cl}) = O(n^{kcl}).$

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

Bizonyítás.

3.: X-nek egy Karp-redukciója Y-ra egyben egy Karp-redukció \overline{X} -ről \overline{Y} -re, hiszen $x \in X \iff f(x) \in Y$ ugyanaz, mint $x \notin X \iff f(x) \notin Y$ 4.: \iff 2..3.

5.: **←** 2.,4.

6.: Legyen f az $X \prec Y$ függvénye, ami $O(n^k)$ időben számolható és g az $Y \prec Z$ függvénye, ami $O(n^l)$ időben számolható. Az $X \prec Z$ függvénye g(f(x)) lesz, ami $O((n^k)^l) = O(n^{kl})$ időben számolható.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle

7 / 25

NP-teljes problémák

Definíció

Az X eldöntési probléma NP-nehéz, ha tetszőleges (azaz minden) $X' \in NP$ probléma esetén létezik $X' \prec X$ Karp-redukció. Az X eldöntési probléma NP-teljes, ha $X \in NP$ és X NP-nehéz.

Egy NP-teljes probléma tehát legalább olyan nehéz, mint bármely más NP-beli probléma.

Ha egy ilyen problémáról kiderülne, hogy P-beli (coNP-beli), akkor ugyanez igaz lenne minden NP-beli problémára.

Van-e NP-teljes probléma?

Boole-formulák

Definíció

Az $f: \{0,1\}^n \to \{0,1\}$ függvényeket n-változós Boole-függvényeknek vagy Boole-formuláknak hívjuk.

Tétel

Minden Boole-függvény felírható az $x_1, ..., x_n$ Boole-változók, az \land, \lor, \neg logikai műveletek és zárójelek segítségével.

Pl. Boole-formula:

$$\Phi = (x_1 \vee \neg x_2 \vee x_5) \wedge ((\neg x_3 \vee x_2 \vee (x_6 \wedge x_1)) \wedge \neg (x_5 \vee x_6))$$

Katona Gyula Y. (BME SZIT)

Algoritmuselméle

9 / 25

Boole-formulák

Definíció

Egy Boole-formula kielégíthető, ha lehet úgy értékeket adni a változóinak, hogy a függvény értéke 1 legyen.

PI. $\Phi(x_1, x_2) = (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$ kielégíthető, mert ha $x_1 = 1$ és $x_2 = 0$, akkor $\Phi(x_1, x_2) = 1$

De pl. $(x_1 \land \neg x_1)$ nyilván nem kielégíthető.

Van-e NP-teljes probléma?

Definíció

SAT probléma:

Bemenet: Φ Boole-fomula Kérdés: Kielégíthető-e Φ?

Tétel (S. A. Cook, L. Levin, 1971)

A SAT probléma NP-teljes.

Bizonyítás elég bonyolult.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle¹

11 / 25

További NP-teljes feladatok

Tétel

Ha az X probléma NP-teljes, $Y \in NP$ és $X \prec Y$, akkor Y is NP-teljes.

Bizonyítás.

Láttuk, hogy a Karp-redukció tranzitív.

- \implies Ha $X \prec Y$ és $Z \prec X$ teljesül $\forall Z \in NP$ problémára.
- \Longrightarrow $Z \prec Y$ teljesül $\forall Z \in NP$ problémára.
- $\implies Y \in NP$ -nehéz.

Mivel $Y \in NP$ is $\implies Y \in NP$ -teljes.

Nem kell már minden NP-beli problémát az Y-ra redukálni; elég ezt megtenni egyetlen NP-teljes X problémával.

A 3-SZÍN probléma

Tétel

A 3szín probléma NP-teljes.

Bizonyítás.

Már láttuk, hogy \in NP, belátható, hogy $\mathsf{SAT} \prec \mathsf{3SZÍN}$.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle¹

13 / 25

Maximális méretű független pontrendszer gráfokban

MAXFTLEN

Bemenet: G gráf, $k \in \mathbb{Z}^+$.

Kérdés: Van-e G-nek k elemű független csúcshalmaza?

Tétel

A MAXFTLN nyelv NP-teljes.

Bizonyítás.

 $\mathsf{MAXFTLEN} \in \mathsf{NP}$: $tanú\ egy\ k$ -elemű $S \subseteq V(G)$ független

csúcshalmaz. $\sqrt{\ }$

Megadunk egy $3szin \prec maxftlen Karp-redukciót: G \rightarrow (G', k')$

 $G \in 3$ SZÍN \Leftrightarrow $(G', k') \in MAXFTLEN$

Bizonyítás.

G' megadása: Vegyük G három másolatát ($G^{(1)}$, $G^{(2)}$, $G^{(3)}$), minden csúcs három példányát összekötjük.

Ha G színezhető 3 színnel $\implies G'$ is \implies

a piros pontok halmaza G'-ben független és |V(G)| van belőlük. $\sqrt{}$ Ha G'-ben van |V(G)| független, akkor legyen S egy ilyen ponthalmaz G'-ben.

- \implies Minden G-beli x pontnak pontosan 1 példányát tartalmazza S.
- \implies Az x pont legyen sárga / piros / zöld, ha ez a példány $G^{(1)}$ -ben / $G^{(2)}$ -ben / $G^{(3)}$ -ban van. \implies ez jó színezés G-ben. \checkmark

Katona Gyula Y. (BME SZIT)

Algoritmuselmele

15 / 25

Maximális méretű klikk

MAXKLIKK

Bemenet: G gráf, $k \in \mathbb{Z}^+$.

Kérdés: Van-e G-ben k pontú teljes részgráf (k-klikk)?

Tétel

A MAXKLIKK nyelv NP-teljes.

Bizonyítás.

MAXKLIKK \in NP: tanú egy k-elemű $S \subseteq V(G)$ teljes részgráf. $\sqrt{}$ Megadunk egy MAXFTLEN \prec MAXKLIKK Karp-redukciót: $f(G,k) = (\overline{G},k)$ (független ponthalmaz a komplementerben teljes gráf). $\sqrt{}$

Részgráf izomorfia probléma

RÉSZGÁFIZO

Bemenet: *G*, *H* gráfok.

Kérdés: Van-e G-ben H-val izomorf részgáf?

Tétel

A RÉSZGÁFIZO nyelv NP-teljes.

Bizonyítás.

RÉSZGÁFIZO \in NP: tanú egy részgáf és annak izomorfiája H-val. $\sqrt{}$ Megadunk egy MAXKLIKK \prec RÉSZGÁFIZO Karp-redukciót: $f(G,k)=(G,K_k)$. $\sqrt{}$

Ha X NP-nehéz és Y általánosítása X-nek, akkor Y is NP-nehéz. \implies RÉSZGÁFIZO speciális esete a MAXKLIKK-nek \implies NP-nehéz.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle

17 / 25

Hamilton-kör probléma

Tétel

A H nyelv NP-teljes.

Bizonyítás.

Már láttuk, hogy $H \in NP$. $\sqrt{}$ Belátható, hogy $SAT \prec H$. (bonyolult)

Hamilton-út probléma

Tétel

Az H-ÚT nyelv NP-teljes.

Bizonyítás.

 $H-\dot{U}T \in NP$, mert egy Hamilton-út tanú. $\sqrt{}$ Belátjuk, hogy $H \prec H-\dot{U}T$.

G-ben akkor és csak akkor van Hamilton-kör, ha f(G)-ben van Hamilton-út.

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

19 / 25

A Hátizsák feladat

Hátizsák feladat:

Adottak tárgyak $s_1, \ldots, s_m > 0$ súlyai, ezek $v_1, \ldots, v_m > 0$ értékei, valamint a b megengedett maximális összsúly.

Tegyük fel, hogy az s_i , v_i , b számok egészek.

A feladat az, hogy találjunk egy olyan $I \subseteq \{1,..,m\}$ részhalmazt, melyre $\sum_{i \in I} s_i \le b$, és ugyanakkor $\sum_{i \in I} v_i$ a lehető legnagyobb.

 \Longrightarrow

HÁT

Bemenet: $s_1, ..., s_m; v_1, ..., v_m; b; k$.

Kérdés: Van-e olyan $I \subseteq \{1, ..., m\}$ melyre $\sum_{i \in I} s_i \le b$

és $\sum_{i∈I} v_i ≥ k$?

Lemma

 $\mathsf{H}\mathsf{\acute{A}T}\in\mathsf{NP}$

Vegyük azt a speciális esetet, amikor $s_i = v_i$ és b = k. \Longrightarrow

A Részhalmaz összeg probléma

RH

Bemenet: $(s_1, \ldots, s_m; b)$.

Kérdés: Van-e olyan $I \subseteq \{1, ..., m\}$ melyre $\sum_{i \in I} s_i = b$?

Tétel

Az RH nyelv NP-teljes.

Bizonyítás.

 $RH \in NP. \ \sqrt{\ }$

Belátható, hogy SAT ≺ RH.

Speciális eset: Partíció feladat: ahol $b = \frac{1}{2} \sum s_i$.

PARTÍCIÓ

Bemenet: (s_1, \ldots, s_m) .

Kérdés: Van-e olyan $I \subseteq \{1, ..., m\}$ melyre

 $\sum_{i\in I} s_i = \frac{1}{2} \sum_{i=1}^m s_i$?

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

21 / 25

A Partíció probléma

Tétel

A PARTÍCIÓ probléma NP-teljes.

Bizonyítás.

Partíció ∈ NP. $\sqrt{}$

Belátjuk, hogy RH *≺Partíció*, pedig RH általánosabb!

Vegyük az RH egy $x = (s_1, \ldots, s_m; b)$ inputját.

 \Longrightarrow Feltehető, hogy $b \le s = \sum_{i=1}^m s_i$.

$$f(x) = (s_1, \ldots, s_m, s+1-b, b+1).$$

A számok összege 2s+2, az utolsó két szám nem lehet egy partíció ugyanazon osztályában, mert az összegük túl nagy: $s+2>\frac{1}{2}(2s+2)$.

RH-nak megoldása az $R \subset \{s_1,...,s_m\}$ számhalmaz \Leftrightarrow a megoldáshoz vegyük hozzá (s+1-b)-t \Leftrightarrow PARTÍCIÓ-nak megoldása az

 $R \cup \{s+1-b\}$ számhalmaz.

A háromdimenziós házasítás

Párosítási feladat általánosítása: Legyenek U_1, U_2, U_3 azonos méretű véges halmazok $\Longrightarrow |U_i| = t$.

Adott még $U_1 \times U_2 \times U_3$ valamely S részhalmaza $\Longrightarrow (u_1, u_2, u_3)$ alakú hármasok.

Kiválasztható-e S-ből egy háromdimenziós házasítás?

 \implies olyan t-elemű $S' \subseteq S$ részhalmaz, mely minden U_i -beli pontot lefed. (Mivel t-elemű, mindent csak egyszer fedhet le.)

3-DH: olyan U_1, U_2, U_3 ; $S \subseteq U_1 \times U_2 \times U_3$ rendszerek, melyeknél S-ből kiválasztható egy háromdimenziós házasítás.

Katona Gyula Y. (BME SZIT)

Algoritmuselmélet

23 / 25

A háromdimenziós házasítás

Tétel

A 3-DH feladat NP-teljes.

Bizonyítás.

 $3-DH \in NP \quad \sqrt{\ }$ $\exists \ 3-SAT \prec 3-DH$

X3C

Pontos fedés hármasokkal: adott egy U véges halmaz, és U háromelemű részhalmazainak egy $\mathcal{F} = \{X_1, X_2, \dots, X_k\}$ családja. Eldöntendő, hogy az \mathcal{F} -ből kiválaszthatók-e páronként diszjunkt halmazok, melyek együttesen lefedik U-t. Jelölje X3C azokat az (U, \mathcal{F}) párokat, melyekre igen.

Tétel

Az X3C nyelv NP-teljes.

Bizonyítás.

X3C ∈ NP teljesül: tanú egy pontos fedés.

Megmutatjuk, hogy 3-DH ≺ X3C.

X3C általánosabb probléma, mint 3-DH. Ha van algoritmus az általánosra, akkor azzal a speciális is megoldható. $\sqrt{}$

Ha L NP-nehéz és L' általánosítása L-nek, akkor L' is NP-nehéz.

Katona Gyula Y. (BME SZIT)

Algoritmuselméle

25 / 25