

CADERNO DE ATIVIDADES DE C2:

TEÓRICO E PRÁTICO

Profa Dra Tatiane da Silva Evangelista
FACULDADE DO GAMA - FGA

Sequências e Séries – 2/2019

CADERNO DE ATIVIDADES DE C2:

TEÓRICO E PRÁTICO

Sumário:

•	Sequências2
•	Séries6
•	Testes de Convergência9
•	Séries de Potências13
•	Séries:Taylor e Maclaurin17

ANOTAÇÕES: Sequências

Exercícios: Sequências

1. Qual das seguintes expressões representa o termo geral da sequência 0,3,2,5,4,...?

	() $1/n$ () $1+(-1)^n$ () $(-1)^n+n$ () $3n-3$	
2.	Faça o gráfico das seguintes sequências e o que acontece	e com seus termos?
	a) Termo geral $a_n = \frac{n}{n+1}$	
	b) Termo geral $a_n=\sqrt{n}$	
3.	O maior e o menor valor atingido pela sequencia $a_{\scriptscriptstyle n}=1$	$+(-1)^n$ são respectivamente:
	() 2e1	
	() 1e-1	
	() $2 e 0$ () $2 e - 2$	
4.	O que você entende por "sequência convergente"?	
 . 5.	Qual a diferença entre uma sequência ser "limitada" e "t	er limite"? Explique graficamente
٠.		er mines i Enbirdae Branisamente.
6.	Apenas duas das afirmações abaixo são verdadeiras. Qua	ais?
	() toda sequência monótona é convergente	
	() toda sequência convergente é limitada	
	() toda sequência limitada é monótona	
	() toda sequência monótona e limitada converge	
7.	Enumere a segunda coluna de acordo com a primeira	
	(1) sequência limitada	$(\)\ a_n \leq a_{n+1}, \forall n$
	(2) sequência crescente	$(\)\ a_{\scriptscriptstyle n} < a_{\scriptscriptstyle n+1}, \forall n$
	(3) sequência decrescente	$(\)\ a_n \geq a_{n+1}, \forall n$
	(4) sequência monótona crescente	$(\)\ a_n \le C, \forall n$

(5) sequência monótona decrescente

()
$$a_n > a_{n+1}, \forall n$$

8. Determine se a sequência converge ou diverge. Se ela convergir, encontre o limite.

a)
$$a_n = \frac{\ln n}{n}$$

b)
$$a_n = \frac{2^n}{3n}$$

c)
$$a_n = (\frac{n+1}{n-1})^n$$

d)
$$a_n = \ln(2n^2 + 1) - \ln(n^2 + 1)$$

e)
$$a_n = n - \sqrt{n^2 - n}$$

f)
$$\{\sqrt{5}, \sqrt{\sqrt{5}}, \sqrt{\sqrt{5}}, ... \}$$

$$\mathbf{g}) \ a_n = \left(\frac{n-3}{n}\right)^n$$

Resoluções dos exercícios de Sequências

1		
1		
1		
1		
ĺ		
ĺ		
ĺ		
1		
ĺ		

ANOTAÇÕES: Séries

Exercícios: Séries

- 1. O valor numérico da soma infinita 1+1/2+1/4+1/8+.... é
 - ()1
 - ()2
 - ()1/2
 - ()2/3
- 2. O termo *convergente* é usado para indicar que a série (ou soma infinita) $\sum_{n=0}^{\infty} a_n$ é, efetivamente, um número real. Dentre as séries convergentes destacamos as séries geométricas, com razão entre -1e1, as séries de encaixe (telescópicas) e as p-séries, p>1. Assinale a série *divergente*, isto é, aquela que não convergente.
 - $() \sum_{n=0}^{\infty} \frac{1}{n}$
 - $() \sum_{n=0}^{\infty} \frac{1}{n^2}$
 - $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n-1}$
 - () $\sum_{n=0}^{\infty} \frac{1}{n+n^2}$
- 3. Classifique as séries abaixo em: p-série (p), geométrica (g) e harmônica (h).
 - $() \sum_{n=0}^{\infty} \frac{1}{n+1}$
 - $(\) \sum_{n=0}^{\infty} \frac{1}{n^{p}}$
 - $() \sum_{n=0}^{\infty} \alpha r^{n-1}$
 - $() \sum_{n=0}^{\infty} \left(\frac{1}{n} \frac{1}{n+1} \right)$
- 4. A série $\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$ é convergente? Se for, calcule sua soma.
- 5. Expresse o número como uma razão de inteiros:
 - a) 0,141414...
 - b) 23,16666...
 - c) 1,07283283283...

Resoluções dos exercícios de Séries				

ANOTAÇÕES: Testes de Convergência Preenche a Tabela

	Teste	Características
1	Teste da Divergência	
2	Tasta da integral	
2	Teste da integral	
3	Teste da Comparação	
4	Teste da Comparação	
•	no limite	

5	Teste da razão	
6	Teste da raiz	
7	Teste da série	
	alternada	
8	Teste da	
	absolutamente	
	convergente	

Exercícios: Testes de Convergência

- 1. Dê dois exemplos distintos de cada Teste de Convergência de série
- 2. Em qual das séries abaixo o Teste da Divergência pode ser aplicado com sucesso?

$$() \sum_{n=1}^{\infty} \frac{n+1}{n}$$

()
$$\sum_{n=0}^{\infty} \frac{(-1)^n n}{n^2 + n^3}$$

$$() \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n-1}$$

()
$$\sum_{n=0}^{\infty} \frac{1}{n+n^2}$$

- 3. Em qual das séries do exercício precedente você teria sucesso ao aplicar o Teste da Razão?
- 4. Verdadeiro ou Falso?

() se
$$\lim_{n \to \infty} a_n = 0$$
 , então a série $\sum_{n=0}^{\infty} a_n$ é convergente

() se
$$\sum_{n=0}^{\infty}a_n$$
 é convergente então $\sum_{n=0}^{\infty} \left|a_n\right|$ também converge

Resoluções dos exercícios Testes de Convergêcia

ANOTAÇÕES: Séries de Potências

Exercícios: Séries de Potências

1. Os intervalos de convergência das séries

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(-4)^n} \quad \text{e} \quad \sum_{n=0}^{\infty} \frac{1.3.5....(2n-1)}{2.4.6....(2n)} x^{2n+1} \quad \text{são respectivamente}$$

- () (-2,2) e (-1,1)
- () (-2,4) e [-1,2)
- () (-2,2] e (-1,1]
- ()[-2,4) e[-1,2]
- 2. Usando a expansão $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, deduz-se que a soma da série $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!2^n}$
 - () e
 - () 1/e
 - () $1/\sqrt{e}$
 - () \sqrt{e}
- 3. Usando a expansão $\frac{1}{1-t} = \sum_{n=1}^{\infty} t^n$, |t| < 1, e as operações de derivação e integração pode-se obter desenvolvimento de outras funções elementares do cálculo. As séries que representam as funções $\ln(1-x)$ e $\arctan x$

$$() \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} e \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$

$$() \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1} e \sum_{n=0}^{\infty} (-1)^{2n+1} \frac{x^{2n+1}}{2n+1}$$

$$() \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n+1}}{n+1} e \sum_{n=0}^{\infty} (-1)^{2n+1} \frac{x^{2n+1}}{2n+1}$$

$$() \sum_{n=0}^{\infty} \frac{-x^{n+1}}{n+1} e \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1}$$

- 4. Desenvolva em séries de potências de x-2 as funções e^x e 1/x e determine onde as representações são válidas.
- 5. Calcule a integral indefinida $\int \frac{1}{1+x^5} dx$

6. Complete a Tabela:

Série	Raio de convergência	Intervalo	de
		Convergência	
$\sum_{n=0}^{\infty} x^n$			
$\sum_{n=0}^{\infty} n! x^n$			
~			
$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$			
$\sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n}}{2^{2n} (n!)^2}$			

Algumas séries têm soma? Justifique sua resposta.

- 7. A partir da série geométrica $\sum_1 x^{n-1} = \frac{1}{1-x}$ se $x \in]-1$, 1[dê a representação em série de potências de x da função $f(x) = \frac{x^3}{4+x^2}$, indicando a região de convergência.
- 8. Aplicando diferenciação e integração termo a termo encontre a soma da série $\sum_{1}\frac{x^{n}}{n} \text{ e a região de convergência.}$

Resoluções dos exercícios de Séries de Potências

ANOTAÇÕES: Série de Taylor e Série de Maclaurin

Exercícios: Série de Taylor e Série de Maclaurin

- 1. Encontre a série de Maclaurin para as funções: $f(x) = e^x$; g(x) = cosx; h(x) = senx.
- 2. Utilize a série de Maclaurin para obter uma representação em série de potências para as funções f(x) dadas abaixo. Esboce os gráficos de $P_1(x)$, $P_2(x)$ e $P_3(x)$ e f(x)no mesmo plano coordenado para cada f(x) dada.
- a) $f(x) = e^{3x}$
- b) $f(x) = \operatorname{sen}(2x)$
- c) $f(x) = \ln(x+3)$
- 3. Ache a série de Taylor da função f(x) em torno de x = c dados.
- a) $f(x) = \sin(2x)$ em $c = \frac{\pi}{4}$ b) $f(x) = \sec(x)$ em $c = \frac{\pi}{3}$

Resoluções dos exercícios de Séries: Taylor e Maclaurin

