PARSHVANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Assignment operator (\leftarrow)

Now we will see what is assignment operator in relation algebra.

Suppose you wish to assign result of an expression into a relation R. How would you denote it?

For such work, we use assignment operator (\leftarrow) .

Notation of Assignment Operator

Relational Variable \leftarrow Expression.

or,

 $R \leftarrow E$.

Where.

R is relation,

r stands for relation variable.

E is Expression whose result we wish to assign to relation variable R.

The result of the expression to the right hand side of \leftarrow is assigned to relation variable on the left side of \leftarrow . The

relation variable may be used in subsequent expressions.

 $R1 \leftarrow \pi name(Customer)$

 $R2 \leftarrow \pi name(Employee)$

R = R1 - R2

Aggregate Function:

The aggregate functions are follows –

- max()
- min()
- sum()
- average()
- count()

It is very useful to apply a function to a collection of values to generate a single result "Most common aggregate functions:

- Sum: sums the values in the collection
- Avg: computes average of values in the collection

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

- Count: counts number of elements in the collection
- Min: returns minimum value in the collection
- Max: returns maximum value in the collection

Aggregate functions work on multisets, not sets

A value can appear in the input multiple times

Count():

Count(*): Returns total number of records .i.e 6.

Count(salary): Return number of Non Null values over the column salary. i.e 5.

Count(Distinct Salary): Return number of distinct Non Null values over the column salary .i.e 4

Sum():

sum(salary): Sum all Non Null values of Column salary i.e., 310

sum(Distinct salary): Sum of all distinct Non-Null values i.e., 250.

Avg():

Avg(salary) = Sum(salary) / count(salary) = 310/5

Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary) = 250/4

Min():

Min(salary): Minimum value in the salary column except NULL i.e., 40.

Max(salary): Maximum value in the salary i.e., 80.

"Find the total amount owed to the credit company."

 $G_{sum(balance)}(credit_acct)$

4275

cred_id	limit	balance
C-273	2500	150
C-291	750	600
C-304	15000	3500
C-313	300	25

credit acct

"Find the maximum available credit of any account."

 $G_{\max(\text{available_credit})}(\Pi_{(\text{limit-balance})} \text{ as available_credit}(\text{credit_acct}))$

11500

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Generalized Projection:

• Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{F_1,F_2},\ldots,F_n(E)$$

- E is any relational-algebra expression
- Each of $F_1, F_2, ..., F_n$ are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation *credit_info(customer_name, limit, credit_balance)*, find how much more each person can spend:

 $\prod_{customer_name, \ limit-credit_balance} (credit_info)$