Congratulations! You passed! Go to next item Grade received 97.50% To pass 80% or higher **Key Concepts on Deep Neural Networks** Latest Submission Grade 97.5% 1. We use the "cache" in our implementation of forward and backward propagation to pass useful values to the next 1/1 point layer in the forward propagation. True/False? False O True **⊘** Correct Correct. The "cache" is used in our implementation to store values computed during forward propagation to be used in backward propagation. 2. Which of the following are "parameters" of a neural network? (Check all that apply.) 1/1 point $lacksquare b^{[l]}$ the bias vector. **⊘** Correct Correct. The weight matrices and the bias vectors are the parameters of the network. $igwedge W^[l]$ the weight matrices. **⊘** Correct Correct. The weight matrices and the bias vectors are the parameters of the network. **3.** Which of the following is more likely related to the early layers of a deep neural network? 1/1 point **⊘** Correct Yes. The early layer of a neural network usually computes simple features such as edges and lines. **4.** We can not use vectorization to calculate $da^{[l]}$ in backpropagation, we must use a for loop over all the examples. 1/1 point True/False? O True False Correct. We can use vectorization in backpropagation to calculate $dA^{[l]}$ for each layer. This computation is done over all the training examples. **5.** Assume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x n, 4, 3, 2, 1]$. So layer 1 1/1 point has four hidden units, layer 2 has 3 hidden units, and so on. Which of the following for-loops will allow you to initialize the parameters for the model? • for i in range(len(layer_dims)-1): parameter['W' + str(i+1)] = np.random.randn(layer_dims[i+1], layer_dims[i]) * 0.01 parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01 for i in range(len(layer_dims)): parameter['W' + str(i+1)] = np.random.randn(layer_dims[i+1], layer_dims[i]) * 0.01 parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01 0 for i in range(1, len(layer_dims)/2): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01 for i in range(len(layer_dims)-1): parameter['W' + str(i+1)] = np.random.randn(layer_dims[i], layer_dims[i+1]) * 0.01 parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01 **⊘** Correct Yes. This iterates over 0, 1, 2, 3 and assigns to $W^{[l]}$ the shape $(n^{[l]}, n^{[l-1]})$. 6. Consider the following neural network: 1/1 point How many layers does this network have? The number of layers L is 2. The number of layers L is 6 The number of layers L is 4. The number of layers L is 5. **⊘** Correct Yes. The number of layers is the number of hidden layers + 1. **7.** During forward propagation, for the value of $A^{[l]}$ the value is used of $Z^{[l]}$ with the activation function $g^{[l]}$. During 1/1 point backward propagation we calculate $dA^{[l]}$ from $Z^{[l]}.$ False O True **⊘** Correct Correct. During backward propagation we are interested in computing $dW^{[l]}$ and $db^{[l]}$. For that we use $g^{\prime L}, dZ^{[l]}, Z^{[l]}$, and $W^{[l]}$. 8. For any mathematical function you can compute with an L-layered deep neural network with N hidden units there 1/1 point is a shallow neural network that requires only $\log N$ units, but it is very difficult to train. False O True **⊘** Correct Correct. On the contrary, some mathematical functions can be computed using an L-layered neural network and a given number of hidden units; but using a shallow neural network the number of necessary hidden units grows exponentially. **9.** Consider the following 2 hidden layer neural network: 0.75 / 1 point $x_2^{(i)}$ $-\hat{y}^{(i)}$ Which of the following statements are True? (Check all that apply). $igsqcup b^{[2]}$ will have shape (3, 1) $lacksquare b^{[2]}$ will have shape (1, 1) No. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $lacksquare b^{[1]}$ will have shape (4, 1) **⊘** Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $\ \ \ \ \ \ b^{[1]}$ will have shape (3, 1) $lacksquare W^{[1]}$ will have shape (4, 4) Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $ightharpoons W^{[2]}$ will have shape (3, 4) **⊘** Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. ${f \hspace{-1.5cm} \hspace{-1.5cm} \hspace{-1.5cm} \hspace{-1.5cm} \hspace{-1.5cm} \hspace{-1.5cm} \hspace{-1.5cm} \hspace{-1.5cm} W^{[3]}}$ will have shape (1, 3) **⊘** Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$ **10.** In the general case if we are training with m examples what is the shape of $A^{[l]}$? 1/1 point \bigcirc $(n^{[l]}, m)$ $\bigcirc \ (m,n^{[l+1]})$ $\bigcirc \ (n^{[l+1]},m)$ $\bigcap (m, n^{[l]})$ **⊘** Correct Yes. The number of rows in $A^{[1]}$ corresponds to the number of units in the l-th layer.