

TD 2 - Déformations planes et contraintes planes

On étudie l'équilibre d'un barrage de section triangulaire OAB dans le plan $(O, \underline{e}_1, \underline{e}_2)$ et de grande longueur 2l dans la direction \underline{e}_3 . Ce barrage est réalisé dans un matériau élastique, homogène, isotrope, de masse volumique ρ_b .

Le barrage est ancré sur le sol par son côté AB d'équation $x_1 = H$. Il retient une hauteur H d'eau sur son côté OA d'équation $x_2 = 0$. On désigne par ρ_e la masse volumique de l'eau. La surface OB (inclinée d'un angle $\alpha = \pi/4$ par rapport à l'axe (O, \underline{e}_1) est libre d'efforts. Enfin, les efforts tangentiels et le déplacement normal sont supposés nuls sur les faces $x_3 = \pm l$.

- 1. Donner les équations et conditions aux limites du problème. Justifier l'hypothèse retenue de déformations planes parallèlement au plan $(O, \underline{e}_1, \underline{e}_2)$. Rappeler les formes des champs de déplacement, déformations et contraintes associés sous cette hypothèse et formuler le problème d'élasticité plane posé.
- 2. Montrer que les composantes d'un champ de contraintes statiquement admissible pour ce problème s'expriment à l'aide d'une fonction d'Airy $\chi(x_1, x_2)$.
- 3. Etablir l'équation satisfaite par la fonction $\chi(x_1, x_2)$ pour que le champ de contrainte associé puisse être solution du problème.
- 4. Montrer qu'en prenant $\chi(x_1, x_2)$ sous la forme d'un polynôme de degré 3 en (x_1, x_2) , il est possible de déterminer un champ de contraintes statiquement admissible pour le problème.
- 5. Calculer le champ de déplacement associé. Ce déplacement est-il solution exacte du problème ?

Exercice 2: Tube en pression

On étudie l'équilibre d'un tube cylindrique creux de section circulaire, d'axe \underline{e}_3 . On désigne par r_i et r_e les rayons intérieur et extérieur du tube et par h sa hauteur. Le tube est constitué d'un matériau élastique homogène isotrope. Sa paroi interne d'équation $r = r_i$ est soumise à une pression uniforme p_i et sa paroi externe d'équation $r = r_e$ à une pression p_e . Les faces supérieure et inférieure d'équations $x_3 = h$ et $x_3 = 0$ sont libres d'efforts. Enfin les efforts volumiques sont supposés négligeables.

- 1. Ecrire les équations et conditions aux limites du problème. Quel est son type ? Ce problème admet-il une solution unique en déplacement et contraintes.
- 2. On recherche le champ de contraintes solution du problème sous la forme d'un champ de contraintes planes parallèlement au plan $(O, \underline{e}_1, \underline{e}_2)$.

Montrer que les composantes du champ de contraintes solution s'expriment à partir d'une fonction d'Airy $\chi(x_1, x_2)$.

Etablir l'équation satisfaite par χ .

- 3. Compte-tenu de la symétrie du problème, on recherche une solution sous la forme $\chi = \chi(r)$. Déterminer le tenseur des contraintes solution $\underline{\underline{\sigma}}$.
- 4. Calculer un champ de déplacement \underline{u} associé.