Homework 2: due 17:00, 17 October 2016

For questions 1–3, we assume that $\Sigma = \{a, b\}$.

- (1) Construct the NFA for each of the following languages.
 - (a) The language L that consists of all the words in which a appears exactly once.
 - (b) The language L that consists of all the words that starts with a and ends with a.
 - (c) The language L that consists of all the words that contains aba.
 For example: aba and aaaabaaaaa are in L, since they contain aba. On the contrary, aaaaa and bbbbabbaaaaa are not in L, since they do not contain aba.
 - (d) The language L that consists of all the words that do *not* contain aa.
 - (e) The language L that consists of all the words w such that if w contains aa, then w ends with bb.
- (2) Construct the regular expression for each of the languages above.
- (3) Determine and verify which of the following languages are regular. That is, supply its regular expression or NFA, if you claim that a language is regular, and conversely, supply the proof, if you claim that a language is not regular.
 - (a) L consists of all the words in which a appears exactly 3 times.
 - (b) L consists of all the words in which a appears even number of times. For example: bbbbb is in L, since a appears zero times, and zero is even. ab is not in L, since a appears once, and one is odd.
 - (c) L consists of all the words of even length. For example: ϵ and ababaa are in L, since their lengths are 0 and 6, respectively, but a and abb are not, since their lengths are 1 and 3, respectively.
 - (d) L consists of all the words of the form a^mba^n , where m and n are positive integers such that $m \leq n$.
 - For example: aba is in L, and so is aaabaaaaa. However, aaaaba is not in L since a appears 4 times before b, but appears only once after b, and neither do aaabaa and aaba. Likewise, abbaaa and abaabaaa are not in L, since b appears more than once.
 - (e) L consists of all the words in which the number of occurrences of a is a prime number.
- (4) For a language $L \subseteq \Sigma^*$ (not necessarily regular), we define the equivalence relation \sim_L on Σ^* as follows. $u \sim_L v$, if the following holds: For every $w \in \Sigma^*$, $uw \in L$ if and only if $vw \in L$.
 - (a) Prove that \sim_L is an equivalence relation.
 - (b) Prove that if $u \sim_L v$, then either both $u, v \in L$ or both $u, v \notin L$.
 - (c) Suppose L is regular, and A is its DFA, i.e., L(A) = L. For a word w, we denote by A(w) the state of A after reading w. Or, more formally, if $w = a_1 \cdots a_n$ and $q_0 a_1 q_1 \cdots a_n q_n$ is the run of A on w, then $A(w) = q_n$.
 - Prove that if u and v are words such that A(u) = A(v), then $u \sim_L v$.

In the following, let $\#(\sim_L)$ (read: the index of \sim_L) denote the number of equivalence classes of \sim_L . Recall that since \sim_L is an equivalence relation on Σ^* , by Theorem 1.2, \sim_L partitions Σ^* . Also, note that it is possible that \sim_L has *infinitely* many equivalence classes.

- (d) Following (c), prove that if L is regular with \mathcal{A} being its DFA, then \sim_L has finitely many equivalence classes and $\#(\sim_L) \leq |Q|$, where Q is the set of states of \mathcal{A} .
- (5) (bonus point) Let L be a language over Σ , where \sim_L has finitely many equivalence classes C_1, \ldots, C_m . Using the notation in Lecture 1, we can represent each C_i as [w], for every $w \in C_i$.

In the following, we assume that $L \neq \emptyset$.

- (a) Prove that there is $i_1, \ldots, i_k \subseteq \{1, \ldots, m\}$ such that $L = C_{i_1} \cup \cdots \cup C_{i_k}$. (You can use (4.b) here.)
- (b) Consider the following DFA $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$.
 - $Q = \{p_1, \dots, p_m\}$, i.e., the number of states is precisely the number of equivalence classes in \sim_L .
 - q_0 is p_j , where j is such that $\epsilon \in C_j$.
 - $F = \{p_{i_1}, \dots, p_{i_k}\}$, where i_1, \dots, i_k are the indices in (5.a).
 - $\delta: Q \times \Sigma \to Q$ is defined as follows. For every $p_i \in Q$, for every $a \in \Sigma$, we pick an arbitrary $w \in C_i$, and define $\delta(p_i, a) = p_j$, where $[wa] = C_j$.

Prove that δ is a well-defined function, i.e., for every $w_1, w_2 \in C_i$, $[w_1 a] = [w_2 a]$. In other words, the end result p_j remains the same for whichever w we pick, as long as w is from C_i .

- (c) Let \mathcal{A} be as in (b). Prove that $L(\mathcal{A}) = L$.
- (d) [Myhill-Nerode theorem] Prove that a language L is regular if and only if \sim_L has finitely many equivalence classes.