FEUILLE D'EXERCICES N°8

EXERCICE 1. Etudier les courbes paramétrées suivantes : déterminer à la main l'intervalle d'étude et les symétries; étudier les limites, branches infinies, variations et points doubles avec Maple (si possible). Vérifier vos résultats en traçant la courbe et ses asymptotes sur un même graphique (charger la librairie *plots* et utiliser sa commande *display*).

1.
$$\begin{cases} x(t) = \sin 2t \\ y(t) = \cos 2t \end{cases}$$
2.
$$\begin{cases} x(t) = \cos t \\ y(t) = (1 + \cos t) \sin t \end{cases}$$
3.
$$\begin{cases} x(t) = t/\ln t \\ y(t) = t^2/(t-1) \end{cases}$$
4.
$$\begin{cases} x(t) = \cos(t) \\ y(t) = \cos(3t/5) \end{cases}$$
5.
$$\begin{cases} x(t) = t^2 + 2/t \\ y(t) = t + 1/t \end{cases}$$
6.
$$\begin{cases} x(t) = 2t + t^2 \\ y(t) = 2t - 1/t^2 \end{cases}$$

EXERCICE 2. Tracer la courbe paramétrée définie par $x(t) = t^3 - 4t$, $y(t) = 2t^2 - 3$ et calculer l'angle formé par les tangentes au point double.

EXERCICE 3. Tracer la courbe paramétrée \mathcal{C} définie par $x(t) = t^2$, $y(t) = t^3$. Déterminer le lieu des points du plan d'où l'on peut mener (au moins) deux tangentes à \mathcal{C} orthogonales et le tracer. On appelle ce lieu la courbe orthoptique de \mathcal{C} .

EXERCICE 4. On considère l'astroïde définie par $x(t) = a \cos^3 t$, $y(t) = a \sin^3 t$. Tracer la courbe sur sa période minimale pour a = 1. Animer la courbe en faisant varier a entre dans un intervalle au choix (librairie *plots*, commande *animate*).

EXERCICE 5. Etude de la courbe polaire définie par $\rho = \sin(3\theta/2)$.

- 1) Calculer à la main la période de la courbe et la tracer sur cette période.
- 2) Déterminer à la main les symétries de la courbe. Qu'en déduisez-vous sur l'intervalle d'étude? Tracer la courbe sur l'intervalle minimal.