Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (currently amended) A system for transmitting an optical signal to a
2	plurality of receivers comprising:
3	an optical transmitter for transmitting the optical signal, wherein the optical signal
4	includes a plurality of sections corresponding to is allocated in a number of time slots, each
5	section corresponding to a receiver in the plurality of receivers;
6	a time-dividing device for time-dividing the optical signal received from the
7	optical transmitter,
8	wherein the optical signal is time-divided for a-different receivers receiver by
9	bending the signal at different angles with the time-dividing device at the different time slot slots
10	corresponding to the different receivers, wherein each receiver so the receiver can receive
11	receives the section corresponding to the receiver bent optical signal, wherein the section of the
12	bent optical signal includes information just for the receiver.
1	2. (original) The system of claim 1, further comprising an end device,
2	wherein the bent optical signal is transmitted to the end device from the receiver.
1	3. (original) The system of claim 1, wherein the optical transmitter
2	comprises a laser.
. 1	4. (original) The system of claim 1, wherein the optical transmitter
2	comprises a microwave source.
1	5. (original) The system of claim 1, wherein the optical transmitter
2	comprises a radio frequency source.
~	comprises a radio requesto y source.

1	6. (original) The system of claim 1, wherein the time-dividing device
2	comprises a catadioptric device.
1	7. (original) The system of claim 1, wherein the time-dividing device
2	comprises a rotating mirror.
1	8. (original) The system of claim 1, wherein the time-dividing device
2	comprises an optical switching device.
1	9. (currently amended) A system for time-dividing an optical signal for a
2	plurality of receivers comprising:
3	an optical transmitter for transmitting the optical signal, wherein the optical signal
	includes a plurality of sections corresponding to is allocated in a number of time slots, each
4	
5	section corresponding to a receiver in the plurality of receivers;
6	a catadioptric device for time-dividing the optical signal received from the optical
7	transmitter,
8	wherein the optical signal is time divided for a different receivers receiver by
9	bending the signal at an different anglesangle with the catadioptric device at the different time
10	slot slots corresponding to the different receivers, wherein each receiver so the receiver can
11	receive receivers the section corresponding to the receiver bent optical signal, wherein the
12	section of the bent optical signal includes information just for the receiver.
1	10. (original) The system of claim 9, further comprising an end device,
2	wherein the bent optical signal is transmitted to the end device from the receiver.
1	11. (original) The system of claim 9, wherein the catadioptric device is a
2	reflective device.
1	12. (original) The system of claim 9, wherein the catadioptric device is a
2	refractive device.

1	13. (original) The system of claim 9, wherein the optical transmitter
2	comprises a laser.
1	14. (original) The system of claim 9, wherein the optical transmitter
2	comprises a microwave source.
1	15. (original) The system of claim 9, wherein the optical transmitter
2	comprises a radio frequency source.
1	16. (currently amended) A method for time dividing an optical signal for a
2	plurality of receivers, the optical signal including a plurality of time slotssections corresponding
3	to the plurality of receivers, the method comprising:
4	transmitting the optical signal;
5	bending the optical signal at a plurality of angles at the a plurality of time slots,
6	wherein sections of the optical signal correspond to different receivers, wherein the optical signal
7	is bent at an different angles at different time slots angle so a receiver receivers corresponding to
8	the section the time slot can receive the section signal, wherein the section of the bent optical
9	signal includes information just for the receiver.
10	17. (original) The method of claim 16, further comprising transmitting the
11	bent optical signal to an end receiver.
1	18. (original) The method of claim 16, wherein bending the optical signal
2	comprises reflecting the optical signal.
1	19. (original) The method of claim 16, wherein bending the optical signal
2	comprises refracting the optical signal.
ا	
1	20. (currently amended) A method for time-dividing an optical signal for a
2	plurality of receivers, the optical signal including a plurality of time slots sections corresponding
3	to the plurality of receivers, the method comprising:

Appl. No. 10/020,310 Amdt. dated May 12, 2005 Reply to Office Action of February 25, 2005

4	transmitting the optical signal;
5	time-dividing the optical signal at the a plurality of time slots, wherein sections of
6	the optical signal correspond to different receivers, wherein the optical signal is bent at different
7	angles at different time slots so a receiver receivers corresponding to the section time slot can
8	receive the signal section, wherein the bent optical signal includes information just for the
9 '	receiver.
1	21. (original) The method of claim 20, further comprising transmitting the
2	bent optical signal to an end receiver.
1	22. (original) The method of claim 20, wherein bending the optical signal
2	comprises reflecting the optical signal.
1	23. (original) The method of claim 20, wherein bending the optical signal
2	comprises refracting the optical signal.
1	24. (new) The system of claim 1, wherein the section of the bent optical
2	signal received includes substantially all of the optical signal transmitted from the optical
3	transmitter.
1	25. (new) The system of claim 9, wherein the section of the bent optical
2	signal received includes substantially all of the full optical signal transmitted from the optical
3	transmitter.
1	26. (new) The method of claim 16, wherein the section of the bent optical
2	signal received includes substantially all of the full optical signal transmitted.
3	27. (new) The method of claim 20, wherein the section of the bent optical
4	signal received includes substantially all of the full optical signal transmitted.