CSCI 305 Assignment 5

(Solo) Isaac Boaz

December 8, 2023

- 1. Recreating the code in Python and running for all $x \in [1,10]$ shows us that x could be 3, 4, 5, 6, 7, 8, 9. We execute 3 swaps for $x \in [3, 7]$, and 4 swaps for $x \in \{8, 9\}$.
- 2. Let's first re-create the heap visually.

We can visually see that the parent of the 2* node is 7, so it definitely needs to be > 7. Keeping in mind one swap would put the new value as the child of 15, having another swap would require it to be > 15. Thus, we should do 4. Change 2 to 16.

3. Assuming h(x) uniformly distriutes amongst m slots, the likelihood of any element being inserted into any specific slot is $\frac{1}{m}$. With n distinct keys, we get

$$\frac{n}{m}$$
 expected collisions

1. Since X represents the number of comparisons, all possible values of X means [1,4]. Let's make a table for each possible $x \in X$.

\boldsymbol{x}	P(x)	$x \cdot P(x)$
1	1/10	0.1
2	2/10	0.4
3	4/10	1.2
4	3/10	1.2

- 2. Summing up all the values in the last column, we get E[X] = 2.9.
- 3. Calculating Pr(K) just involves us seeing which unique values from [1,30] are in the tree. Seeing as there are no duplicates, we know there are 10 values in the tree, and thus there is a $\frac{10}{30} = \frac{1}{3}$ chance of any value (from [1,30]) being in the tree. Thus, $Pr(K) = \frac{1}{3} \to Pr(\overline{K}) = 1 - Pr(K) = \frac{2}{3} \to Pr(K) + Pr(\overline{K}) = 1$.

Thus,
$$Pr(K) = \frac{1}{3} \rightarrow Pr(\overline{K}) = 1 - Pr(K) = \frac{2}{3} \rightarrow Pr(K) + Pr(\overline{K}) = 1$$

4. No. X is number of comparisons required to find a node ... from the set of nodes in the tree Whereas Y is the case that the key is quered uniformly from $\{1, 2, \ldots, n\}$ 30\}. Since K is given, that is simply rephrasing "what is the probability that we do ycomparisons given y is in the tree", which is the same as X. ie Pr(Y = y|K) = Pr(X).

	Value	Comparisons	Comparison this table to an expected value						
•	2	4	20	3		y	Pr(y)	$y \cdot Pr(y)$	
	4	3	21	3	table:	3	13/20	1.95	•
	5	3	22	3		4	7/20	1.4	
	6	3	23	3				•	
5.	8	4	25	3					
	10	4	26	3					
	11	4	26	3					
	13	4	28	3					
	15	4	29	3					
	16	4	30	3					

6.
$$E[Y|\overline{K}] = 3.35$$

$$\begin{split} E[Y] &= E[Y = y|K]Pr(K) + E[Y = y|\overline{K}]Pr(\overline{K}) \\ &= 2.9 \cdot \frac{1}{3} + 3.35 \cdot \frac{2}{3} \\ &= 3.2 \end{split}$$