ANALISIS NUMERICO

TRABAJO PRACTICO:

APROXIMACION POR MÍNIMOS CUADRADOS

Objetivos:

- Reconocer el modelo matemático correspondiente a una aproximación (discreta o continua) por mínimos cuadrados involucrado en un problema de aplicación.
- Determinar el error cometido al aproximar una función por mínimos cuadrados.
- Resolver problemas básicos de aproximación por mínimos cuadrados.

Primera parte:

Problema 1.- Considere el espacio vectorial $C_{[-1,1]}$ (IR). Determine la mejor aproximación a la función f si f (x) = sen (x) en el sentido de los mínimos cuadrados, en los siguientes casos:

- a) Por una función del Subespacio S de los polinomios de grado menor o igual a 2.
- b) Por una función del Subespacio S del cual se conoce una base:

B
$$\{f_1, f_2, f_3\}$$
 tal que $f_1(x) = x$, $f_2(x) = x^3$ y $f_3(x) = x^5$

- c) Calcule el error del método en ambos casos y analice los méritos de esta aproximación en el intervalo dado.
- d) Grafique o bien, reproduzca algunos valores para confirmar su análisis anterior.

Problema 2.- Determine la recta y la parábola que mejor aproxime, por el método de los mínimos cuadrados, a la función f (x) = $x \cdot e^{-x}$, continua en el intervalo [0, 1], considerando el siguiente producto escalar: $\langle h, g \rangle = \int_0^1 h(x) \ g(x) \ e^x \ dx$.

Calcule el error del método en ambos casos. Verifique la calidad de la aproximación en algunos valores (cinco). Analice los méritos de la aproximación obtenida.

Problema 3.- Considere la integral
$$v = \int_0^1 e^{-x^2} dx$$

Es sabido que la función $f(x) = e^{-x^2}$ no tiene primitivas que puedan expresarse como combinación sencilla de funciones elementales. Para aproximar el valor de la integral, es posible construir una aproximación a la función.

- a) Determine la parábola que mejor la represente a la función en el intervalo dado.
- b) Obtenga la aproximación discretizando la función respecto de los puntos dados con una parábola también en este caso:

$$x_0 = 0$$
, $x_1 = 0.5$, $x_2 = 1$

- c) Evalúe la magnitud del error de aproximación para ambas funciones.
- d) Calcule la integral para la función f dada y para cada una de las aproximaciones obtenidas. Concluya.

Problema 4.- Se desea predecir aproximadamente el valor de y para x = 1.30 y para x = 2.00 si se sabe que los valores de la siguiente tabla se obtuvieron experimentalmente pero responden a una ecuación $y = c_0 \ln x + c_1 e^{-x}$. Calcule el error del método.

Х	1.00	1.20	1.40	1.60	1.80
У	0.2420	0.1942	0.1497	0.1109	0.079

Problema 5.- Un instrumento arroja los siguientes datos:

Х	0.0000	0.4000	0.8000	1.2000	1.6000	2.0000
У	3.1437	4.4169	6.0203	8.6512	11.0078	16.2161

Y se sabe que responden a una ecuación de la forma: $f(x) = a. e^{b.x}$

Determine la curva que mejor ajuste a los valores dados. Analice los méritos de la aproximación obtenida reproduciendo los valores de la tabla. Concluya.

Problema 6.- Un modelo no lineal importante es el llamado "Ecuación de Promedio de Crecimiento de Saturación". Esta ecuación es particularmente útil en la caracterización de crecimientos poblacionales bajo condiciones limitantes y está dada por la ecuación:

$$y = \alpha \frac{x}{\beta + x}$$

Determine la ecuación de la curva que mejor aproxima a los valores contenidos en la tabla.

x (seg)	1.00	3.00	5.00	10.00	15.00	21.00
y (habit. *10 ⁶)	0.89	1.32	1.46	1.59	1.64	1.66

Segunda Parte: Trabajo en laboratorio

Para resolver siguientes problemas, vamos a usar planilla Excel, aunque también necesitaremos un poco de trabajo manual.

Problema 1. Para cortar planchas metálicas de diferentes espesores se utiliza un soplete de oxiacetileno. La tabla que a continuación se muestra expresa el tiempo t necesario para cortar una pulgada de planchas de distintos espesores e:

e (pulgadas)	1	2	3	4	5
t (min)	0.046	0.059	0.072	0.084	0.100

Encuentre la ecuación del tiempo: f* (e) que mejor aproxima, según el criterio de los mínimos cuadrados, a los valores de la tabla , utilizando como base del Subespacio F

B = { f1 , f2 , f3 } tal que f1 (x) = 1 , f2 (x) = x , f3 (x) = 2 x^2 - 1 (Los polinomios de Chebyshev) , y estime con dicha expresión el tiempo que se requiere para cortar una pulgada de la plancha de 2,5 pulgadas de espesor.

Problema 2.- La ecuación $e^{k1} \cdot \frac{P}{A^{K2}} = 1$ establece una relación entre el peso P (en kg) de una persona con la altura A (en metros), alcanzada por la persona cuando está sentada.

P (Kg)	20	40	50	70	85
A (m)	0.620	0.770	0.830	0.920	0.980

- a) Determine la ecuación que relaciona estas variables para la población en estudio.
- b) Si dos personas de esa población miden sentadas medio metro y un metro respectivamente, ¿cuáles son sus respectivos pesos?

Problema 3.- Un circuito electrónico produce una variación de la amplitud y de la fase de la corriente, al realizar mediciones en el laboratorio se obtuvieron los siguientes datos empíricos:

$$t_0 = 0$$
 $t_1 = 0,001$ $t_2 = 0,002$ $t_3 = 0,003$ $t_4 = 0,004$ $I_0 = 1,730$ $I_1 = 1,960$ $I_2 = 1,990$ $I_3 = 1,830$ $I_4 = 1,490$

Donde t se mide en segundos e i en amperes.

Determine la amplitud A0 y el ángulo de desfasaje θ , sabiendo que la frecuencia w es de 50 ciclos/s, y la onda de corriente responde a una ecuación del tipo:

$$I = A_0$$
. sen ($\theta + 2\pi$. wt)

Problema 4.- Un proyectil disparado mediante una batería antiaérea sigue una trayectoria del tipo: $h(x) = 100 \log (x + 1) + \alpha_1 \cdot x^{\alpha 2}$, donde x es la distancia horizontal respecto del punto de disparo, en metros, y h(x) es la altura del misil, también en metros. Se conocen las siguientes posiciones del misil:

x _k (m)	0	100	200	500	700	1.500	2.000
h(x_k) (m)	0	430	487	554	575	615	625

Si el proyectil impacta a un bombardero que sobrevuela un objeto que se encuentra a 2.500 m del punto de disparo ¿A qué altura volaba el avión?