NeurlPS 2018 Dec. 2–8, 2018

Legendre Decomposition for Tensors

Mahito Sugiyama (National Institute of Informatics, JST PRESTO)
Hiroyuki Nakahara (RIKEN CBS)

Koji Tsuda (The University of Tokyo, NIMS, RIKEN AIP)

Information Geometry

Information Geometry

Experimental Results on MNIST

Summary

- We present Legendre decomposition for tensors
 - The solution always uniquely exists and minimizes the KL divergence
 - Dually flat manifold in information geometry is used
 - Parameters θ and constraints η are connected via Legendre transformation

Summary

- We present Legendre decomposition for tensors
 - The solution always uniquely exists and minimizes the KL divergence
 - Dually flat manifold in information geometry is used
 - Parameters θ and constraints η are connected via Legendre transformation

