江南大学本科生考试试卷

(2016-2017 年 第二 学期)

2017-7-7

课程编号: 201411021 课程名称: 概率论与数理统计(B 卷)

一、选择题(每小题3分,共15分)

- 1. 某运动员投篮的命中率为 $\frac{4}{5}$,则投篮 3 次中至少投中 1 次的概率为_

- (A) $\frac{4}{5}$ (B) $\frac{1}{125}$ (C) $\frac{64}{125}$ (D) $\frac{124}{125}$
- 2. 设随机变量 X 服从参数为1的指数分布, F(x) 为 X 的分布函数,则

订

- (B) $2e^{-2}$
- (C) $1 e^{-2}$
- 3. 设随机变量 X 与 Y 独立同分布,且 $P\{X = -1\} = P\{X = 1\} = \frac{1}{2}$,则以下选项正确

(A) X = Y

(B) $P\{X = Y\} = 0$

(C) $P\{X = Y\} = \frac{1}{2}$

- (D) $P\{X = Y\} = 1$
- |4. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 其中 σ^2 已知, μ 为 未知参数, 记 \bar{X} 为样本均值, S^2 为样本方差, 则 μ 的置信度为 $1-\alpha$ 的置信区间
- (A) $\left(\overline{X} \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right)$ (B) $\left(\overline{X} \frac{S}{\sqrt{n}} z_{\frac{\alpha}{2}}, \overline{X} + \frac{S}{\sqrt{n}} z_{\frac{\alpha}{2}}\right)$
- (C) $\left(\overline{X} \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$ (D) $\left(\overline{X} \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$
- 5. 对正态总体的数学期望 μ 进行区间估计, 得 μ 的置信度为95%的置信区间为 (9.5,10.5), 若在显著性水平 0.05 下对 μ 进行假设检验 $H_0: \mu = 9, H_1: \mu \neq 9$, 则下 列结论中正确的是 .

第1页 共8页

(A) 必接受 H。

- (B) 必拒绝 H₀
- (C) 可能接受 H_0 , 也可能拒绝 H_0
- (D) 不接受 H_0 , 也不拒绝 H_0

二、填空题(每小题 2 分, 共 20 分)

- 1. 设随机事件 A,B 互不相容,且 P(A)=0.2, $P(A \cup B)=0.8$,则 $P(B) = _{___}.$
- 2. 在区间[0,1]中随机地取两个实数,则两数之和大于 $\frac{1}{2}$ 的概率为______.
- 3. 某城市男女性人数之比为3:2、假设5%的男性为色盲,2.5%的女性为色盲, 在该城市随机地选1人发现是色盲,则此人是男性的概率为
- 4. 若随机变量(X,Y)的联合分布函数为 $F(x,y) = \frac{1}{\pi^2} (\frac{\pi}{2} + \arctan x) (\frac{\pi}{2} + \arctan y)$,

则(X,Y)的联合概率密度函数f(x,y)=

- | 5. 设随机变量(X,Y)服从二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,其中 $\sigma_1^2 = \sigma_2^2 = 4$, $\rho = 0.5$, $\square \text{cov}(2X + Y, X - Y) =$
- 6. 设随机变量 X 与 Y 相互独立且都服从区间 [0,2] 上的均匀分布, 随机变量
- 7. 设随机变量 X 的期望为 5, 方差为 2, 则根据契比雪夫不等式有 $P\{|X-5| \ge 4\} \le$ ______.
- 8. 已知一批产品的废品率为0.1,设随机变量X表示抽取的100件产品中的废品 件数,则根据中心极限定理有 $P\{7 < X < 13\} =$ ______.
- $|(\Box \Box \Box \Phi(1))| = 0.8413$, $\Phi(3) = 0.9987$, 其中 $\Phi(x)$ 为标准正态分布的分布函数)
- 9. 设 *X*₁, *X*₂, ···, *X*₃ 为 来 自 标 准 正 态 总 体 *N*(0,1) 的 简 单 随 机 样 本 , 若 $k(\sum_{i=1}^{3} X_{i}^{2}) / (\sum_{i=1}^{9} X_{i}^{2})$ 服从 F(3,6) 分布,则常数 k =______.
- 10. 设 X_1, X_2, \dots, X_n 是来自正态总体N(1,2) 的简单随机样本, \bar{X} 为样本均值, 则 $D(\overline{X}) =$.

更多考试真题 请扫码获取

1. 设连续型随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} Ax^2, & 0 < x < 3 \\ 0, & \text{其他.} \end{cases}$$

- (1) 求常数 A;
- (2) 求概率 $P{X < 2}$;
- (3) 求条件概率 $P\{X < 2 \mid X > 1\}$.
- 2. 设二维随机变量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} \frac{1}{4\pi}, & x^2 + y^2 \le 4, \\ 0, &$$
其他。

- (1) 求 (X,Y) 的边缘概率密度函数 $f_{Y}(x)$:
- (2) 在X = x的条件下, 求Y的条件概率密度函数 $f_{Y|X}(y|x)$
- (3) 求概率 $P\{X^2 + Y^2 < 1\}$.
- 3. 设二维随机变量(X,Y) 的分布律为

Y	-1	0	1
0	$\frac{1}{6}$	а	$\frac{1}{18}$
1	3 <i>a</i>	$\frac{2}{9}$	а

- (1) 求常数a和X,Y的边缘分布律;
- (2) 求 E(X) 和 D(X);
- (3) 判断 X,Y 是否相关、是否独立?

4. 设随机变量 X 与 Y 相互独立、且 X 的概率密度函数为

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{ 其他,} \end{cases}$$

Y的概率分布为 $P{Y=0} = P{Y=2} = \frac{1}{2}$.

- (1) 求E(X);
- (2) 求D(2X+3);
- (3) 求Z = X + Y的概率密度函数.

5. 设总体 X 的概率分布为 $P\{X=k\} = \frac{\lambda^k e^{-\lambda}}{k!} (k=0,1,2,\cdots)$,其中参数 $\lambda(\lambda>0)$ 未知, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本.

- (1) 求参数 λ 的矩估计量 Â;
- (2) 求参数 λ 的极大似然估计量 λ̂;
- (3) 判断 â和 â 是否为无偏估计量

某企业生产某种商品,设每年市场对该商品的需求量为随机变量 X (单位: 吨), 且 X 在区间[2,4]上服从均匀分布, 已知卖出 1 吨商品可获利 3 万元, 若滞 销则每吨商品需支付保养费1万元,且往年没有该商品存货,问该企业每年应生 产多少商品才能使利润的期望达到最大?

五、证明题(5分)

设随机变量 X 的分布函数 F(x) 为严格单调上升的连续函数, 随机变量 |Y = F(X), 证明: Y 服从[0,1]上的均匀分布.

订

线