Základní praktika z laserové techniky Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání, zesilování laserového záření a generace druhé harmonické

Skupina: **B – Hrnečková, Ray** Měřeno: **19. 3. 2025** Klasifikace:

1 Pracovní úkoly

1. ...

2 Vypracování

2.1 Charakteristika laseru v režimu volné generace

M337			křemenné sklo			M327		
$E_{\rm b}\left[{ m J} ight]$	E[J]	$\eta[\%]$	$E_{\rm b}\left[{ m J}\right]$	E[J]	η [%]	$E_{\mathrm{b}}\left[\mathrm{J}\right]$	E[J]	$\eta[\%]$
13,62	0,00	0,00	15,21	0,00	0,00	13,76	0,00	0,00
14,14	0,02	0,16	16,89	0,02	0,11	14,14	0,02	0,15
15,21	0,04	0,29	19,27	0,08	0,40	15,21	0,07	0,45
16,89	0,07	0,39	22,37	0,15	0,68	16,89	0,13	0,74
19,27	0,10	0,50	26,52	0,24	0,89	19,27	0,19	1,01
22,37	0,14	0,60	31,70	0,35	1,10	22,37	0,27	1,21
26,52	0,19	0,71	34,22	0,39	1,14	26,52	0,34	1,30
31,70	0,25	0,78	38,32	0,47	1,24	31,70	0,45	1,41
38,32	0,33	0,87	42,90	0,56	1,30	38,32	0,58	1,51
46,38	0,40	0,85	48,16	0,66	1,37	46,38	0,72	1,55
56,25	0,51	0,90	56,25	0,81	1,44	56,25	0,89	1,58

Tab. 1: Závislosti výstupní energie E a účinnosti η na budící energii $E_{\rm b}$ pro zrcadla M337, M327 a křemenné sklo.

Obr. 1: Závislost výstupní energie Ea účinnosti η na budící energii $E_{\rm b}$ pro zrcadlo M337.

Obr. 2: Závislost výstupní energie Ea účinnosti η na budící energii $E_{\rm b}$ pro zrcadlo M327.

Obr. 3: Závislost výstupní energie Ea účinnosti η na budící energii $E_{\rm b}$ pro zrcadlo z křemenného skla.

Obr. 4: Závislost délky impulsu $\tau_{\rm FR},$ a středního výkonu $P_{\rm str}$ na budící energii $E_{\rm b}$ pro zrcadlo M327.