Math 42 Differential Geometry Winter 2002 Assignment 2 Due Friday, January 18, 2001

- 1. Chapter 4: 4.1, 4.3, 4.9, 4.12
- 2. Recall or observe for the first time the following definition.

Definition 1. A group is a set G along with a binary operation $\cdot: G \times G \to G$ such that

- (a) There exists a unique element $e \in G$ such that $e \cdot g = g \cdot e = g$ for any $g \in G$. The element e is known as the identity element.
- (b) For any $g \in G$ there exists an element g^{-1} such that $g \cdot g^{-1} = g^{-1} \cdot g = e$. The element g^{-1} is known as the **inverse of** g.
- (c) For any $a, b, c \in G$ we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

We sometimes denote the group along wth its binary operation as (G, \cdot) .

Examples of groups include $(\mathbb{R}, +)$ and (\mathbb{R}_+, \cdot) , where $\mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\}$ and \cdot denotes multiplication.

Now let $SL_2(\mathbb{R}) = \{A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} : x_1, \dots, x_4 \in \mathbb{R}, \det(A) = 1\}$. First, show that $SL_2(\mathbb{R})$ is a group under matrix multiplication, then do problem 4.15. The space $SL_2(\mathbb{R})$ is an example of what's called a **Lie group**.

- 3. 4.16 (Note: The tangent space you calculated in this problem is an example of a Lie algebra. For $SL_2(\mathbb{R})$ the Lie algebra is denoted by $\mathfrak{sl}_2(\mathbb{R})$.)
- 4. Chapter 5: 5.1, 5.2, 5.9 & 5.10