CURS 3

Serii de numere reale. Serii cu termeni pozitivi

A. Arusoaie

e-mail: andreea.arusoaie@info.uaic.ro

Web: http://profs.info.uaic.ro/~andreea.arusoaie/math.html

Facultatea de Informatică, Universitatea "Alexandru Ioan Cuza" din Iasi

11 Octombrie, 2021

Structura cursului

- 🚺 Serii de numere reale
 - Definiții. Proprietăti
 - Exemple
 - Condiția necesară de convergență
 - Criteriul lui Cauchy de convergență
 - Operații cu serii
- Serii cu termeni din pozitivi
 - Criterii de comparație
 - Criteriul de condensare al lui Cauchy
 - Criteriul radacinii al lui Cauchy
 - Criteriul lui Kummer
 - Criteriul raportului al lui D'Alembert
 - Criteriul lui Raabe-Duhamel
 - Criteriul lui Bertrand
 - Criteriul lui Gauss

Structura cursului

- 🚺 Serii de numere reale
 - Definiții. Proprietăti
 - Exemple
 - Condiția necesară de convergență
 - Criteriul lui Cauchy de convergență
 - Operații cu serii
- Serii cu termeni din pozitivi
 - Criterii de comparație
 - Criteriul de condensare al lui Cauchy
 - Criteriul radacinii al lui Cauchy
 - Criteriul lui Kummer
 - Criteriul raportului al lui D'Alembert
 - Criteriul lui Raabe-Duhamel
 - Criteriul lui Bertrand
 - Criteriul lui Gauss

Problemă:

John se antrenează pentru un maraton; totusi, are un plan de lucru destul de neobisnuit. În prima zi de antrenament, aleargă o milă. A doua zi, acesta aleargă 1/2 dintr-o milă, iar a treia zi inca 1/4 de milă. În următoarele zile acesta aleargă jumătatea distanței parcurse în ziua precedentă.

Presupunând că John se antrenează o veșnicie, câte mile va alerga în total?

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = ?$$

Răspuns: 2 mile

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = ?$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = ?$$

Luăm suma primilor n termeni:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = \frac{1}{2} \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$$

Ce se întâmplă când $n \to \infty$?

Seria:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \lim_{n \to \infty} \frac{1}{2} \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 1$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1 + 1$$

Matematică, Anul I

A Arusopie

FII (UAIC, Iași) 7/35

Definiție

Numim serie de numere reale, cuplul format din şirurile $(x_n)_{n\in\mathbb{N}^*}$ şi $(S_n)_{n\in\mathbb{N}^*}$, unde

- $(x_n)_{n\in\mathbb{N}^*}$ este un șir de numere reale
- $lackbrack (S_n)_{n\in\mathbb N^*}$ se numește șirul sumelor parțiale atașat seriei, cu

$$S_n = x_1 + x_2 + \ldots + x_n, \forall n \in \mathbb{N}^*,$$

Notație:

$$((x_n),(S_n))_{n\in\mathbb{N}^*} \stackrel{not}{=} \sum_{n\in\mathbb{N}^*} x_n \stackrel{not}{=} \sum_{n\geq 1} x_n \stackrel{not}{=} \sum_{n=1}^{\infty} x_n.$$

Terminologie:

- ▶ termenul $x_n, n \in \mathbb{N}^*$ se numeşte **termen general al seriei**;
- ▶ termenul $S_n, n \in \mathbb{N}^*$ se numește suma parțială de rang n a seriei.

FII (UAIC, Iasi)

▶ Dacă $(S_n)_{n \in \mathbb{N}^*}$ este convergent, atunci seria $\sum_{n=1}^{\infty} x_n$ este *convergentă*;

Notăm:
$$\sum_{n=1}^{\infty} x_n(C);$$

▶ Dacă $(S_n)_{n \in \mathbb{N}^*}$ este divergent, atunci seria $\sum_{n=1}^{\infty} x_n$ este divergentă;

Notăm
$$\sum_{n=1}^{\infty} x_n(D)$$
;

 $lackbox{ Dacă } \lim_{n o \infty} S_n = S \in \overline{\mathbb{R}}$, atunci numim S - $suma \ seriei$ $\sum_{n=1} x_n$ și scriem

$$S = \sum_{n=1}^{\infty} x_n.$$

Definiție

Pentru $p \in \mathbb{N}$, numim **restul de ordin** p al seriei $\sum_{n=1}^{\infty} x_n$, seria $\sum_{n=p+1}^{\infty} x_n \stackrel{not}{=} R_p$.

Teoremă

 $\sum\limits_{n=1}^{\infty}x_n$ este convergentă dacă și numai dacă $\forall p\in\mathbb{N}$, seria R_p este convergentă.

Dacă seria $\sum_{n=1}^{\infty} x_n$ este convergentă, atunci $\lim_{p \to \infty} R_p = 0$.

Exemple

1. Seria geometrică de parametru $q \in \mathbb{R}$: $\sum_{n=0}^{\infty} q^n$.

Şirul sumelor parțiale atașat seriei are termenul general

$$S_n = 1 + q + q^2 + \ldots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q}, & q \neq 1 \\ n + 1, & q = 1 \end{cases}, \forall n \in \mathbb{N}.$$

Aşadar, avem că:

- $\qquad \sum_{n=0}^{\infty} q^n(C) \text{, pentru } q \in (-1,1);$
- $\sum_{n=0} q^n(D), \ \text{pentru} \ q \in \mathbb{R} \setminus (-1,1).$
- $\hat{\text{ In plus, avem }} \sum_{n=0}^{\infty} q^n = \left\{ \begin{array}{l} \frac{1}{1-q}, q \in (-1,1); \\ +\infty, q \geq 1; \end{array} \right.$

Dacă q=-1, seria $\sum_{n=0}^{\infty} (-1)^n = 1-1+1-1+\ldots$ se numește *seria lui*

Grandi, și este divergentă.

Exemple

2. Seria $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$ este divergentă.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 12/35

Exemple

3. Seria $\sum_{n=2}^{\infty} \frac{n - \sqrt{n^2 - 1}}{\sqrt{n^2 - n}}$ este convergentă.

Matematică, Anul I A. Arusoaie

Condiția necesară de convergență

Teoremă

Dacă
$$\sum_{n=1}^{\infty} x_n$$
 este convergentă, atunci $\lim_{n \to \infty} x_n = 0$.

Observații:

- ▶ Dacă șirul $(x_n)_{n \in \mathbb{N}^*}$ nu converge la 0, atunci seria $\sum_{n=1}^{\infty} x_n$ este divergentă.
- $ightharpoonup \lim_{n \to \infty} x_n = 0$ nu implică neapărat convergența seriei $\sum_{n=1}^{\infty} x_n!$

Criteriul lui Cauchy de convergență

Teoremă (Criteriul lui Cauchy)

Seria $\sum_{n=1}^{\infty} x_n$ este convergentă dacă și numai dacă

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^*, \forall n \ge n_{\varepsilon}, \forall p \in \mathbb{N}^* : |x_{n+1} + x_{n+2} + \ldots + x_{n+p}| < \varepsilon.$$

Teorema

Seria $\sum_{n=1}^{\infty} x_n$ este divergentă dacă și numai dacă

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}^*, \exists k_n \ge n, \exists p_n \in \mathbb{N}^* : |x_{k_n+1} + x_{k_n+2} + \ldots + x_{k_n+p_n}| \ge \varepsilon.$$

15/35

Matematică, Anul I A. Arusoaie FII (UAIC, Iași)

Exemplu. Seria armonică

Seria armonică $\sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă.

Arătăm că șirul sumelor parțiale $(S_n)_{n\in\mathbb{N}^*}$ nu este șir Cauchy.

Fie $n, p \in \mathbb{N}^*$. Atunci avem

$$|S_{n+p} - S_n| = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+p} > \frac{p}{n+p}, \forall n, p \in \mathbb{N}^*.$$

Aşadar, pentru $arepsilon=rac{1}{2}>0$, $n\in\mathbb{N}^*$, există $k_n:=n, p_n:=n\in\mathbb{N}^*$ astfel încât

$$\left|\frac{1}{k_n+1}+\ldots+\frac{1}{k_n+p_n}\right| \ge \frac{p_n}{k_n+p_n} = \frac{1}{2} = \varepsilon.$$

Prin urmare, seria armonică este divergentă.

Matematică, Anul I A. Arusoaie

 $^{^1 \}text{Se numește asa întrucât } x_n \text{ verifică relația: } \frac{2}{x_n} = \frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}, \forall \, n \in \mathbb{N}^*, n \geq 2, \text{ adică } x_n \text{ este media armonică a numerelor } x_{n-1} \text{ și } x_{n+1}.$

Operații cu serii

Fie $\lambda \in \mathbb{R}^*$ și $\sum_{n=1}^\infty x_n$, $\sum_{n=1}^\infty y_n$ două serii de numere reale.

- Seria $\sum_{n=1}^{\infty} (x_n + y_n)$ se numește *suma* seriilor $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$;
- Seria $\sum_{n=1}^{\infty} (\lambda x_n)$ se numește *produsul* seriei $\sum_{n=1}^{\infty} x_n$ cu scalarul $\lambda \in \mathbb{R}$.

Operații cu serii

Teoremă

 $\text{Fie }\lambda\in\mathbb{R}^*\text{ \sharp i }\sum_{n=1}^\infty x_n,\, \sum_{n=1}^\infty y_n \text{ două serii convergente, cu }S:=\sum_{n=1}^\infty x_n \text{ \sharp i }T:=\sum_{n=1}^\infty y_n.$

- i) Dacă $x_n \leq y_n, \forall n \in \mathbb{N}^*$, atunci $S \leq T$;
- ii) Seria $\sum_{n=1}^{\infty} (x_n + y_n)$ este convergentă și $\sum_{n=1}^{\infty} (x_n + y_n) = S + T$.
- iii) Seria $\sum_{n=1}^{\infty} (\lambda x_n)$ este convergentă și $\sum_{n=1}^{\infty} (\lambda x_n) = \lambda S$.
- **Observație:** Dacă $\sum_{n=1}^{\infty} x_n(D)$ și $\sum_{n=1}^{\infty} y_n(D)$, este posibil ca $\sum_{n=1}^{\infty} (x_n + y_n)(C)$;
- $\text{Spre exemplu } \sum_{n=1}^{\infty} (-1)^n(D) \text{ si } \sum_{n=1}^{\infty} (-1)^{n+1}(D) \text{, dar } \sum_{n=1}^{\infty} [(-1)^n + (-1)^{n+1}](C).$

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 18/35

Teoremă

Dacă asociem termenii unei serii convergente în grupuri finite, păstrând ordinea termenilor, obținem tot o serie convergentă, cu aceeași sumă.

Observație:

Uneori, asocierea termenilor unei serii divergente definesc o serie convergentă.

Spre exemplu, dacă asociem doi câte doi termenii seriei lui Grandi $\sum_{n=1}^{\infty} (-1)^n$, care este divergentă, obținem seria

$$(-1+1)+(-1+1)+\ldots+(-1+1)+\ldots$$

care este convergentă, având suma 0.

Structura cursului

- 🚺 Serii de numere reale
 - Definiții. Proprietăti
 - Exemple
 - Condiția necesară de convergență
 - Criteriul lui Cauchy de convergență
 - Operații cu serii
- Serii cu termeni din pozitivi
 - Criterii de comparație
 - Criteriul de condensare al lui Cauchy
 - Criteriul radacinii al lui Cauchy
 - Criteriul lui Kummer
 - Criteriul raportului al lui D'Alembert
 - Criteriul lui Raabe-Duhamel
 - Criteriul lui Bertrand
 - Criteriul lui Gauss

Serii cu termeni din pozitivi

Spunem că o serie $\sum_{n=1}^{\infty} x_n$ are **termeni pozitivi** dacă $x_n \geq 0, \forall n \in \mathbb{N}^*.$

Cum $x_n \ge 0, \forall n \in \mathbb{N}^*$, este clar că și șirul sumelor parțiale $(S_n)_{n \in \mathbb{N}^*}$ este crescător. Așadar, are loc:

Propoziție

Seria cu termeni pozitivi $\sum_{n=1} x_n$ este convergentă dacă și numai dacă șirul sumelor sale parțiale, $(S_n)_{n\in\mathbb{N}^*}$, este majorat.

Criteriul I de comparație - CCI

În cele ce urmează, vom prezenta unele criterii de convergență și de divergență pentru serii cu termeni pozitivi.

Teoremă - CCI

Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$, astfel încât $x_n \leq y_n$, $\forall n \in \mathbb{N}^*$.

- i) Dacă $\sum_{n=1}^{\infty} y_n$ (C), atunci $\sum_{n=1}^{\infty} x_n$ (C);
- ii) Dacă $\sum_{n=1}^{\infty} x_n$ (D), atunci $\sum_{n=1}^{\infty} y_n$ (D).

Exemple:

- 1. Seria $\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}, \alpha<1$ este divergentă.
- 2. Seria $\sum_{n=1}^{\infty} \frac{1}{n^2}$ este convergentă.

22 / 35

Matematică, Anul I A. Arusoaie FII (UAIC, Iași)

Criteriul II de comparație - CCII

Teoremă - CCII

Fie seriile $\displaystyle\sum_{n=1}^{\infty} x_n$ și $\displaystyle\sum_{n=1}^{\infty} y_n$, cu $x_n>0, y_n>0$ și

$$\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}, \, \forall \, n \in \mathbb{N}^*.$$

- i) Dacă $\sum_{n=1}^{\infty} y_n(C)$, atunci $\sum_{n=1}^{\infty} x_n(C)$;
- ii) Dacă $\sum_{n=1}^{\infty} x_n(D)$, atunci $\sum_{n=1}^{\infty} y_n(D)$.

Exemple: Să se studieze natura $\sum_{n=1}^{\infty} \frac{1}{4n+1}$.

FII (UAIC, Iasi)

23 / 35

Matematică, Anul I A. Arusoaie

Criteriul de comparație cu limită - CCIII

Teoremă - CCIII

$$\text{Fie} \sum_{n=1}^{\infty} x_n \text{ si } \sum_{n=1}^{\infty} y_n \text{, cu } y_n > 0, n \in \mathbb{N}^*. \text{ Dacă există } \lim_{n \to \infty} \frac{x_n}{y_n} = \ell \in \overline{\mathbb{R}}_+ \text{, atunci:}$$

- i) dacă $\ell \in (0, +\infty)$, atunci seriile $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$ au aceeași natură;
- ii) pentru $\ell = 0$, avem
 - a) dacă $\sum_{n=1}^{\infty} y_n(C)$ atunci $\sum_{n=1}^{\infty} x_n(C)$;
 - b) dacă $\sum_{n=1}^{\infty} x_n(D)$, atunci $\sum_{n=1}^{\infty} y_n(D)$;
- iii) pentru $\ell = +\infty$, avem
 - a) dacă $\sum_{n=1}^{\infty} x_n(C)$, atunci $\sum_{n=1}^{\infty} y_n(C)$;
 - b) dacă $\sum_{n=1}^{\infty} y_n(D)$, atunci $\sum_{n=1}^{\infty} x_n(D)$.

Exemple:

- 1. Seria $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ este divergentă.
- 2. Seria $\sum_{n=1}^{\infty} \frac{n+3}{2n^4+1}$ este convergentă.

Criteriul de condensare al lui Cauchy

Teoremă

Fie $(x_n)_{n\in\mathbb{N}^*}$ un şir descrescător de numere pozitive.

Atunci seria $\sum x_n$ are aceeași natură cu seria $\sum 2^n x_{2^n}$.

Exemplu. Seria armonică generalizată

Seria $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$ se numește *serie armonică generalizată*.

- Aplicând criteriul condensării, obținem că natura seriei $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ este aceeași cu
 - a seriei $\sum_{n=1}^\infty 2^n \left(\frac{1}{2^n}\right)^\alpha = \sum_{n=1}^\infty \frac{1}{2^{(\alpha-1)n}}$, care nu este altceva decât o serie geometrică cu rația $\frac{1}{2\alpha-1}$.
- Aceasta converge dacă $\frac{1}{2\alpha-1} < 1$, adică pentru $\alpha > 1$ și divergentă în rest.
- Aşadar,

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}(C), \text{ dacă } \alpha > 1;$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}(D), \text{ dacă } \alpha \leq 1.$$

Criteriul rădăcinii - al lui Cauchy

Teoremă

Fie $\sum_{n=1}^{\infty} x_n$ o serie cu termeni pozitivi. Dacă există $\ell = \lim_{n \to \infty} \sqrt[n]{x_n} \in [0, \infty]$, atunci:

- i) dacă $\ell < 1$, seria $\sum_{n=1}^{\infty} x_n$ este convergentă;
- ii) dacă $\ell > 1$, seria $\sum_{n=1}^{\infty} x_n$ este divergentă;
- iii) dacă $\ell=1$, nu putem spune nimic despre natura seriei $\sum_{n=1}^\infty x_n$.

Exemplu: Seria
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - \sqrt{n+1})^n$$
 este convergentă.

←ロト ←団ト ← 豆 ト ← 豆 ・ 夕 へ ○

Matematică, Anul I A. Arusoaie

Criteriul lui Kummer

Teoremă

Fie seria
$$\sum_{n=1}^{\infty} x_n$$
, cu $x_n > 0$, $\forall n \in \mathbb{N}^*$ și fie $(a_n)_{n \in \mathbb{N}^*} \subset \mathbb{R}_+^*$.

Dacă există
$$\lim_{n \to \infty} \left(a_n \frac{x_n}{x_{n+1}} - a_{n+1} \right) = \ell \in \overline{\mathbb{R}}$$
 atunci:

- i) când $\ell > 0$, seria $\sum_{n=1}^{\infty} x_n$ (C);
- ii) dacă $\ell < 0$ și $\sum_{n=1}^{\infty} \frac{1}{a_n} \ (D)$, atunci $\sum_{n=1}^{\infty} x_n \ (D)$.
- iii) dacă $\ell=0$ nu putem spune nimic despre natura seriei $\sum_{n=1}^{\infty}x_n$.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 29/35

Criteriul raportului - al lui D'Alembert

▶ dacă luăm în criteriul lui Kummer, $a_n=1, n\in \mathbb{N}^*,$ obținem următorul rezultat:

Teoremă

Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0$, $\forall n \in N^*$. Dacă există limita

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell \in [0, \infty]$$

atunci:

- i) dacă $\ell < 1$, atunci $\sum_{\substack{n=1 \ \infty}}^{\infty} x_n$ (C);
- ii) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} x_n (D)$;
- iii) dacă $\ell=1$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty}x_n$.

Criteriul lui Raabe-Duhamel

▶ dacă luăm în criteriul lui Kummer, $a_n = n, n \in \mathbb{N}^*$, obținem următorul rezultat:

Teoremă

Fie seria $\sum_{n=1}^{\infty} x_n$, $\operatorname{cu} x_n > 0$, $\forall \, n \in N^*$, astfel încât există

$$\lim_{n \to \infty} \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) \right] = \rho.$$

- i) Dacă $\rho > 1$, atunci $\sum_{\substack{n=1 \ \infty}}^{\infty} x_n$ (C);
- ii) Dacă $\rho < 1$, atunci $\sum_{n=1}^{\infty} x_n$ (D);
- iii) Dacă $\rho = 1$, nu putem stabili natura seriei.

- 4 ロ ト 4 回 ト 4 重 ト 4 重 ト 9 Q G

31/35

Matematică, Anul I A. Arusoaie

Criteriul lui Bertrand

▶ dacă luăm în criteriul lui Kummer, $a_n = n \ln n$, $\forall n \in \mathbb{N}^*$, atunci obținem:

Teoremă

Fie seria cu termeni pozitivi $\sum_{n=1} x_n$, cu $x_n > 0$, $\forall \, n \in N^*$. Presupunem că există

$$\lim_{n\to\infty}\left(\frac{x_n}{x_{n+1}}n\ln n-(n+1)\ln (n+1)\right)=\mu\in\overline{\mathbb{R}}.$$

- i) Dacă $\mu > 0$, atunci $\sum_{n=1}^{\infty} x_n$ (C);
- ii) Dacă $\mu < 0$, atunci $\sum_{n=1}^{\infty} x_n$ (D);
- iii) Dacă $\mu=0$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty}x_n$.

32/35

Matematică, Anul I A. Arusoaie FII (UAIC, Iași)

Criteriul lui Gauss

Teoremă

Fie $\sum_{n=1}^\infty x_n$ o serie cu $x_n>0$, $\forall\,n\in\mathbb{N}^*$. Presupunem că există $\alpha,\beta\in\mathbb{R},\gamma\in\mathbb{R}_+^*$ și $(y_n)_{n\in\mathbb{N}^*}$ un șir mărginit astfel încât

$$\frac{x_n}{x_{n+1}} = \alpha + \frac{\beta}{n} + \frac{y_n}{n^{1+\gamma}}, \forall n \in \mathbb{N}^*.$$

- i) dacă $\alpha > 1$, atunci $\sum_{n=1}^{\infty} x_n$ (C);
- ii) dacă $\alpha < 1$, atunci $\sum_{n=1}^{\infty} x_n$ (D);
- iii) dacă $\alpha = 1$ și $\beta > 1$, atunci $\sum_{n=1}^{\infty} x_n$ (C);
- iv) dacă $\alpha = 1$ și $\beta \leq 1$, atunci $\sum_{n=1}^{\infty} x_n$ (D).

Exercițiu: Să se studieze natura seriilor:

1.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{3 \cdot 5 \cdot \ldots \cdot (3n-1)};$$

2.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2 \cdot 2^{2n}};$$

Matematică, Anul I

Bibliografie

- A. Precupanu, *Bazele analizei Matematice*, Editura Universității "Al. I. Cuza", Iași, 1993.
 - F.L. Ţiplea, *Introducere în teoria mulțimilor*, Editura Universității "Al. I. Cuza", Iasi, 1998.
- M. Postolache, *Analiză matematică (teorie și aplicații)*, Editura Fair Partners, București, 2011.
- G. Bergman, An Invitation to General Algebra and Universal Constructions, Henry Helson, 15 the Crescent, Berkeley CA, 94708 1998, **398**, pp. 45. (http://math.berkeley.edu/~gbergman/245/)
- G. O'Regan, Mathematics in Computing, Springer Verlag, London, 2013.