M74LS32P

QUADRUPLE 2-INPUT POSITIVE OR GATES

DESCRIPTION

The M74LS32P is a semiconductor integrated circuit containing 4 dual-input positive OR and negative AND gates.

FEATURES

- High breakdown input voltage (V₁ ≥ 15V)
- Low power dissipation (Pd = 20mW typical)
- High speed (tpd = 7ns typical)
- · Low output impedance
- Wide operating temperature range (T_a = -20 ~ +75°C)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

The use of Schottky TTL technology has enabled the achievement of input high breakdown voltage, high speed, low power dissipation, and high fan-out.

When either or both of the inputs A and B is/are high, output Y is high, and when both A and B are low, Y is low.

FUNCTION TABLE

Α	8	Υ
L	L	L
н	L	н
L	н	H
н	Н	н

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit	
Vcc	Supply voltage		-0.5~+7	V	
VI	Input voltage		-0.5~+15	V	
Vo	Output voltage	High-level state	-0.5~ V _{CC}	V	
Topr	Operating free-air ambient temperature range		−20~+75	ဗ	
Tstg	Storage temperature range		-65-+150	ొ	

QUADRUPLE 2-INPUT POSITIVE OR GATES

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 - +75$ °C, unless otherwise noted)

	_			Unit		
Symbol	Paramete	Parameter		Тур	Max	Ont
Vcc	Supply voltage		4.75	5	5.25	V
юн	High-level output current	V _{0H} ≥2.7V	0		-400	μА
loL	Low-level output current $ V_{0L} \le 0.4V $ $V_{0L} \le 0.5V $	V _{OL} ≦0.4V	0		4	mA
		0		8	mA	

ELECTRICAL CHARACTERISTICS (Ta = -20 ~ + 75°C, unless otherwise noted)

Symbol	Parameter			Limits			
		lest	Test conditions		Тур*	Max	Unit
VIH	High-level input voltage			2			٧
VIL	Low-level input voltage					0.8	V
VIC	Input clamp voltage	V _{CC} =4.75V.1 _{IC} =			-1.5	V	
V _{OH}	High-level output voltage	$V_{CC} = 4.75V$, $V_{I} = 2V$ $I_{OH} = -400\mu A$		2.7	3.4		٧
		V _{CC} = 4.75 V	I _{OL} = 4mA		0.25	0.4	V
VoL	Low-level output voltage	V ₁ =0.8V	I _{OL} = 8mA		0.35	0.5	V
	I _{IH} High-level input current	V _{CC} =5.25V, V _I =	2.7V			20	μА
ΉΗ		V _{CC} =5.25V, V _I =	V _{CC} = 5 , 25V , V _I = 10V			0.1	mA
I _{IL}	Low-level input current	V _{CC} =5.25V, V _I =0.4V				-0.4	mA
los	Short-circuit output current (Note 1)	V _{CC} = 5.25V, V _O = 0V		- 20		- 100	mA
toch	Supply current, all outputs high	V _{CC} =5.25V, V _I =4.5V			3.1	6.2	mA
Iccl	Supply current, all outputs low	V _{CC} =5.25V . V _I =0V			4.9	9.8	mA

^{* :} All typical values are at $V_{CC} = 5V$, $Ta = 25^{\circ}C$.

Note 1: All measurements should be done quickly, and not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS (V_{CC}=5V, Ta = 25°C, unless otherwise noted)

Symbol Parameter	Percenter	Test conditions	Limits			Unit
	raiantetei		Min	Тур	Max	Onit
telh	Low-to-high-level output propagation time	С _L = 15 pF (Note 2)		7	22	ns
tphL	High-to-low-level output propagation time			7	22	ns

Note 2: Measurement circuit

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = 3 $V_{P,P}$, Z_0 = 50 Ω
- (2) C_L includes probe and jig capacitance.

TIMING DIAGRAM (Reference level = 1.3V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

