

各种码的基本特性总结

n+1 bit	合法表示范围	最大的数	最小的数	真值0的表示
带符号整数:原码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,111111 = -(2 ⁿ -1)	[+0]原= 0 ,000000 [-0]原= 1 ,000000
带符号整数:反码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -(2 ⁿ -1)	$[+0]_{\overline{\mathbb{D}}} = 0,000000$ $[-0]_{\overline{\mathbb{D}}} = 1,111111$
带符号整数: <mark>补码</mark>	$-2^n \le x \le 2^n - 1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -2 ⁿ	[0] _补 = 0 ,000000 真值0只有一种补码
无符号整数	$0 \le x \le 2^{n+1} - 1$	$ \begin{array}{r} 1111111 \\ = 2^{n+1}-1 \end{array} $	0000000 = 0	0000000

原码和反码的合法表示范围完全相同,都有两种方法表示真值0补码的合法表示范围比原码多一个负数,只有一种方法表示真值0

常见考点:两个数A和B进行某种运算后,是否发生溢出?——手算做题可以带入十进制验证,是否超出合法范围

王道考研/CSKAOYAN.COM

3

@王道论坛

@王道计算机考研备考 @王道咸鱼老师-计算机考研 @王道楼楼老师-计算机考研

@王道计算机考研

知乎

※ 微信视频号

@王道计算机考研

@王道计算机考研

@王道在线

4