Name_	
Class_	
Date	

The H-R Diagram

Written by Paul McCudden, Colorado Mountain College – pmccudden@coloradomtn.edu

A star is a delicately balanced ball of gas, fighting between two impulses: **gravity**, which wants to squeeze the gas all down to a single point, and **radiation pressure**, which wants to blast all the gas out to infinity. These two opposite forces balance out in a process called **Hydrostatic Equilibrium**, and keep the gas in a stable, fairly constant-sized sphere. The radiation itself is due to the fusion of protons in the star's core – a process that produces huge amounts of energy.

In class we've examined the most important properties of stars: their temperatures, colors and brightnesses. Now let's see if we can find some relationships between these stellar properties. We know that hotter stars are brighter, as described by the **Stefan-Boltzmann Law,** and we know that the hotter stars are also bluer, as described by **Wien's Law**.

The H-R diagram is a way of displaying an important relationship between a star's **Absolute Magnitude** (or **Luminosity**), and its **Spectral Type** (or **temperature**). Remember, Absolute Magnitude is how bright a star would appear to be, *if* it were 10 parsecs away. Luminosity is how much total energy a star gives off every second.

As we studied in a previous exercise, Spectral Type is a system of classifying stars by temperature, from hottest (type O) to coldest (type M). Each letter in the Spectral Type list (O, B, A, F, G, K, and M) is further subdivided into 10 steps, numbered 0 through 9, to make finer distinctions between stars. So a B4 star is slightly hotter than a B6 star, etc.

The two astronomers who figured out that there was a very interesting relationship between **Luminosity** (or absolute magnitude) and **Temperature** (or Spectral Type) when you plotted them on a graph together were Ejnar Hertzsprung and Henry Russell. Their graph or diagram was a profound insight that has helped astronomers organize their thinking about stars since it was created in the 1930's.

Ejnar Hertzsprung

Henry Russell

PART A

On the next page, in **Table 1**, is a list of some of the *brightest* stars in the sky, and also some of the *nearest* stars in the sky. Some of these names should be familiar to you, as stars you may have seen in the sky personally. Many of these names, however, will be unfamiliar. The reason for this will become clear. We need to fill in the **Spectral Type** for each star. To do this, we'll need to search for each star in *Stellarium* using its **Hipparcos Catalog Number**. The **Hipparcos Catalog** is a standard reference list of about 100,000 stars in the sky. Every star you can see with the naked eye, and many thousands that you can't see, were all carefully

organized in the Hipparcos Catalog in the 1980's and 90's by the Hipparcos spacecraft, which was built by a group of European scientists. *Stellarium* uses the data from the Hipparcos catalog to identify stars in the sky.

Using the given Hipparcos catalog numbers in **Table 1** below, **search** for and select each star in the list below by opening the **search** window (**CTRL-F** or the **F3** button) and typing the letters **HP** and then the Hipparcos catalog number, and then pressing **Enter** to select and center the star and display the **information** on the star. In the information that appears on screen, the star's **Absolute Magnitude** is listed on one of the first few lines of information, and its **Spectral Type** is listed near the bottom of the list. Use this information to fill in the blanks in Table 1 below. Keep only the **first UPPER CASE letter and the subsequent number** in the Spectral Type listing – ignore any Roman Numerals or letters after the numbers (we'll discuss what those mean in a later assignment).

Table 1

	Nearby Stars				Bright Stars				
#	Star name	Hipparcos Catalog Number	Spectral Type	Absolute Magnitude	#	Star name	Hipparcos Catalog Number	Spectral Type	Absolute Magnitude
1	Proxima	70890			26	Sirius A	32349		
2	Alpha Centauri A	71683			27	Canopus	30438		
3	Alpha Centauri B	71681			28	Rigel Kentaurus	71683		
4	Barnard's Star	87937			29	Arcturus	69673		
5	Kapteyn's Star	24186			30	Vega	91262		
6	Lalande 21185	54035			31	Capella	24608		
7	Sirius A	32349			32	Rigel	24436		
8	BD+68 946	86162			33	Procyon	37279		
9	Wolf 1061	80824			34	Achernar	7588		
10	Kruger 60 A	110893			35	Betelgeuse	27989		
11	Ross 154	92403			36	Hadar	68702		
12	Van Maanen 2	3829			37	Acrux	60718		
13	Epsilon Eridani	16537			38	Altair	97649		
14	Ross 128	57548			39	Aldebaran	21421		
15	Luyten's Star	36208			40	Antares	80763		
16	Epsilon Indi	108870			41	Spica	65474		
17	61 Cygni A	104214			42	Pollux	37826		
18	61 Cygni B	104217			43	Fomalhaut	113368		
19	Procyon A	37279			44	Mimosa	62434		
20	Lacaille 8760	105090			45	Deneb	102098		
21	Groombridge 34	1475			46	Regulus	49669		
22	Lacaille 9352	114046			47	Adhara	33579		
23	Tau Ceti	8102			48	Castor	36850		
24	Ross 614 A	30920			49	Gacrux	61084		

Nearby Stars				Bright Stars				
25 Luyten 725-32	5643			50	Shaula	85927		

Do you see why the stars in the left column (the nearby stars) are mostly unknown to you? Compare their absolute magnitudes to the stars in the right column (the bright stars).

• Wh	y are the nearb	y stars mostly	unknown?	
------	-----------------	----------------	----------	--

PART B

Let's make a graph of **Absolute Magnitude** vs. **Spectral Type** for these stars. This graph is called an **H-R Diagram**. Using the blank graph paper below, plot each star's **Absolute Magnitude** on the y-axis (the vertical axis) and its **Spectral Type** on the x-axis (the horizontal axis). Each star will be a dot somewhere on this graph. Pay careful attention to the SIGN of the Absolute Magnitude – minus signs are important and shouldn't be ignored!

Notice that one star is already plotted: the Sun! The Sun is a Spectral Type **G2** star, with an Absolute Magnitude of **4.7** (of course its *apparent* magnitude, as discussed in class, is -26!). Following this example, plot the rest of the stars on the graph, **putting the number of each star next to its dot**.

Now let's answer some questions about our completed H-R Diagram...

- In what part of the diagram are most of the <u>nearby</u> stars plotted: choose one: **upper left, lower left, upper right or lower right?**
- In what part of the diagram are most of the <u>bright</u> stars plotted? Again, choose one: **upper left, lower left, upper right or lower right**?

•	Name the <u>brightest</u> star you plotted
•	Name the <u>dimmest</u> star you plotted
•	Can you find a star on your diagram that is both <u>bright</u> and <u>cold</u> ? What is its name?
•	What part of the diagram is it located in?
•	Can you find a star on your diagram that is both hot and dim? What is its name?
•	What part of the diagram is it located in?
•	Are stars with a larger mass generally hotter or colder ? (Remember, stars are heated by fusion in their core, which is caused by the intense squeezing pressure of gravity)
•	Compare the star Vega to our Sun. Is it more or less massive than the Sun? Why?
•	How about Epsilon Eridani? Is it more or less massive than the Sun? Why?
	The part of the H-R diagram where most of the stars are plotted is called the Main Sequence . The example is on the Main Sequence. This part of the curve is where stars in the prime of their life are as they fuse Hydrogen into Helium in their cores.
Lightly	draw a curve through the Main Sequence on your diagram.
•	Suppose I told you I found a Main Sequence star that was type A5. Using your diagram, what should its absolute magnitude be?
•	What about a type K3 star?
•	What about a type M5?
•	Are more stars on the Main Sequence or off it?
•	List the stars that are <u>not</u> on the Main Sequence
•	In which two parts of the H-R diagram are the <u>non-Main Sequence</u> stars located?

• What term do we use to refer to stars in the <u>upper right</u> section of the H-R diagram?
These stars are <i>brighter</i> than Main Sequence stars of the <i>same temperature</i> . In your own words, explain why
What term do we use to refer to stars in the <u>lower left</u> section of the H-R diagram?
These stars are <i>dimmer</i> than Main Sequence stars of the <i>same temperature</i> . In your own words, explain why
Suppose a friend pointed at a bright blue star in the sky and asked if it was on the Main Sequence. What would you say? Why?
Suppose that same friend pointed to a bright red star in the sky and asked if it was on the Main Sequence. What would you say? Why?
The H-R diagram is an incredibly useful tool and a brilliant insight into stars. A star's position on the diagram tells us a LOT about that star. The H-R diagram is a great example of how scientists use graphs to organize data and provide crucial visual insights into how things are connected to each other – in the case of the H-R Diagram, how a star's Luminosity and Temperature are related.
Write a conclusion that explains what you learned in this assignment.

