Wires Down -- Vegetation

Injuries/Fatalities

3 contacts as a result of a vegetation related wire down

Fire Ignitions

- less than 10 acres but the possibility of a catastrophic fire Number of events is decreasing. Typical event involves exists:
- Southern California: 2008 Witch Creek, Guejito and Rice fires (SDG&E) and Malibu Canyon Fire (SCE) 0
 - PG&E: 2008 Whiskey Fire 7,783 acres (Tehama county)
- The risk of catastrophic wild fire will be addressed as part the enterprise risk management assessment
- and will include a recommendation to review reclose relay System Protection will have a separate risk assessment settings in UWF/OWF/SBWF areas

Property Damage

4 property damage events due to vegetation related wire

Fires by Size 2007 to 2012 **OH Primary Conductor**

Number	338	o	က	~	0	351
Fire Size	≤ 10 acres	10 to 100 acres	100 to 1,000 acres	1,000 to 10,000 acres	> 10,000 acres	Total

1 acre ≈ 1 football filed

0

ুমুনু Wire Down -- Equipment Failure

The system average of wire down events due to equipment failure is 0.77 per 100 miles

East Bay, San Francisco, Peninsula, Central Coast and Sacramento have values > 150% of the system average. Except for Sacramento, all the divisions have corrosion areas. Doc# 2021-2

Wire-Down per 100 Miles of OH Conductor (2012 - 2013 Equip Failure Related)

Wire size, type and location are attributes

səlim 001 rəd day Entered: 05/ Page 2 15/19 15:59:18 4-A<mark>tchB</mark>-12

Equipment Related Wire Down - Attributes

Conductor Size

Small wire (< 1/0) wire down rate is 9% higher than the system average (0.84 vs. 0.77)

Conductor Type

 The performance of <u>copper</u> conductor is significantly worse than the system value (1.15 vs. 0.77)

The performance of conductors in <u>corrosion</u> zones is worse than non-corrosion zones Figure 2016 And Action 2016 An

4 ACSR is estimated to be 13 times higher in corrosion zone 6 Cu is estimated to be 2.5 times higher in corrosion zone

The following divisions have corrosion zones

Peninsula Humboldt Central Coast Sonoma

Los Padres North Bay San Francisco

East Bay

Mission

Six of these divisions have wire down rates greater than the system average

0

Attributes That Potentially Increase the Consequences of a Wire Down Event

- Urban Population Areas (using GIS definition of 1,000 people/square mi) O
- Corrosion Areas
- Major roadways and waterways 0

Estimated Amounts of Small Wire Sizes by Attribute

Attribute	# 6 Cu	# 4 Cu	Other Small Copper Conductors	Sub Total Copper	4 ACSR	4 ACSR 2 ACSR	Sub Total ACSR	Total Small Conductor
Vild Fire Area	310	104	29	481	549	86	647	1,128
Urban Population Area	7,738	1,931	099	10,329	8,409	276	8,685	19,104
Sorrosion Area	2,341	586	218	3,145	683	16	669	3,844

Wire down events where conductor remains energized is another attribute that potentially increases the consequences of wire down events

Increases the consequences of wire down events

Increases the conductor data varies considerably between divisions. Improved data collection is needed

Number of in-line connectors also influences likelihood of failure

0 Doc# 2021-2 4-A<mark>tchB</mark>-14

Current Control Mitigations -- Intact Contact

Vegetation Management

- Routine trimming & removal (~ 1.3 million units/year)
- 99.5 % compliance with regulatory requirements
- Work at historic outage locations

0

0

Pilot analyzing failure characteristics of otherwise healthy trees in wildfire areas

Design, Construction and Operating Requirements

- Clearance requirements
- Warning signs

Overhead Line Maintenance Program

Visual patrols and inspections that can potentially identify issues such as excessive sag, inadequate clearances, vegetation problems, etc.

Public Awareness Programs

- Wire Down awareness
- Tree Trimmers awareness
- Need awareness program for specific third parties such as painters, roofers, cable, crane operators

The Source Control Mitigations -- Wire Down Contact

Vegetation Management (see prior page)

Public Awareness Programs

Wire Down awareness

Tree Trimmers awareness

Design, Construction and Operating Requirements

Bulletins addressing the use of 6 Cu and automatic splices

Expanding corrosion area boundaries

Review of minimum wire sizes

Review of splices per span and application of shunt

OH Conductor Replacement Program

Replaced 96 miles in 2013. 2014 plan is to replace 187 circuit miles (capacity and reliability programs)

Infrared and Splice Inventory Program

Assessed 10,000 miles in 2013. 2014 plan to infrared and inventory splices on another 10,000 miles.

System Protection

2012 review concluded that PG&E's practices reflect what is currently considered good practice in the

Line Maintenance Program

identify issues such as excessive sag, inadequate Visual patrols and inspections that can potentially clearances, vegetation problems, etc.

911 Response

Processes and metrics to respond in a timely manner to emergency situations

Filed: 05/15/19

Current Controls Assessment - Amber

Workers)	pact Culture Type Preventive (administrative)	Third-Party	Equipment	Vegetation	Work Procedure Error	Animal
Vegetation Management Frequency Line Maintenance Program Frequency				-		
Design, Construction and Operating Procedures Both Conductor Replacement Program Frequency	Preventive (administrative)					
Infrared Inspection /Splice Inventory Frequency	ncy Preventive					
Site Investigation (wire down, vegetation, work procedure) System Protection (separate risk evaluation) Impact	ncy Preventive ct Detective					
911 Response Impact	ct Preventive					

4-Atch16-17

Recommendations - New Risk Mitigations

.: Work Recommended	Risk Driver Affected	Addresses Impact/ Frequency	Proposed Action Owner	Timing	Comments
Expand public safety outreach program to (1) focus on specific third parties such as painters, repers, cable, crane operators beyond veg; (2) expanded metrics and reporting to ensure effective	3 rd party	Frequency & Impact		Complete plan by Q2 2014	Coordinate with External Communications and Customer Care. Lower the risk of accidental contact with distribution conductors
on historical wire down locations	Vegetation	Frequency		Complete Evaluation and Finalize Plan by Q2 2014	Final GRC decision will specify vegetation balancing account amount
Revise STAR Tool to assign additional risk to small and copper wires and locations with higher failure rates	Equipment	Frequency		Complete by Q2 2014	Address high consequence locations such as freeway crossing, from a impact potential, to better prioritize replacement or upgrades
Age areas, urban areas and high corrosion areas.	Equipment Failure	Frequency		Plan: Q2 2014 Implement: Q3 2014	

Recommendations - New Risk Mitigations

%00% Swork Recommended	Risk Driver Affected	Addresses Impact/ Frequency	Proposed Action Owner	Timing	Comments
Electric distribution standards to issue guidelines for threshold limit on maximum number offin-line connectors on existing lines as well as criteria/driver for naminating OH wire for	Equipment Failure	Frequency		Complete Q1, 2014	Guidance on the allowable number of splices in new spans already exists.
Previsit existing postaribution protection postaribution protection postaribution protection postaribution application of new technology options to reduce likelihood of a down primary wire remaining effectized. Prepare a report summarizing the findings and	Third Party	Frequency & Impact		Complete Q2, 2014	

"amber". Upon implementation of proposed incremental controls and continuation of existing controls, we anticipate the future residual risk will continue to be "amber." Rior to executing new recommendations, we find the current residual risk of ED OH Conductor is

Risk Scenarios – Current Residual Risk

Íypical result of an asset failure:

🕱 service interruption to approximately 350 customers for approximately two hours (excluding major event gays) and does not result in an electric contact or fire ignition.

Extreme result of an asset failure

conductor failure or tree contact causing:

(a) A relatively small (<1000 acres) fire in a densely populated area (e.g., Oakland Hills) resulting in

Risk Evaluation Tool (7x7) scoring of scenarios:

	Risk	Frequency			Impac	Impact Level*		
	Scenario	Level*	Safety	Environmental Compliance	Compliance	Reliability	Reliability Reputational	Financial
igubi	Typical	7	~	~	_	8	1	Т
Res	Extreme	က	9	9	2	4	9	2

*Definitions of ranking levels are based on the enterprise risk management 7x7 matrix v5.

Current

Targeting locations using likelihood and consequence factors

GIS Overlay of:

- Corrosion Zones
- Urban population
- density UWF/ OWF/ SBWF

Filed: 05/15/19 4-A(thB-21 19-30088 Doc# 2021-2 Entered: 05/15/19 15:59:18 Page 11

- Conductor age data in CEDSA is inaccurate the significant increase in conductor amounts is a result of a technology system conversion in the late 1980's where the year installed field became mandatory and 1988, 1989 and 1990 was entered for many previously-blank line section records Using distribution pole age we can estimate that:
- 25% of OH conductor is over 50 years old
 - 50% of OH conductor is 40 years old
 - 75% of OH is over 27 years old

There is no age data for splices/connectors.

Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 12 19-30088 Doc# 2021-2

4-A(chis)-22

Asset Performance

□ Basic cause – which identifies leading risk drivers
 □ Asset type – which is potentially useful in understanding performance from a conductor vs. connector/splice perspective

Systained Outages by Basic Cause -- 2008 to 2012 (excluding major event days)

	Rasic Cause	2008	2009	2010	2011	2012	Total	5 Year Avg	% of Total
	√ <mark>è</mark> getation	2,266	2,226	2,236	2,083	2,412	11,223	2,245	41%
	Equipment Failure	2,505	2,155	2,037	1,956	2,133	10,786	2,157	39%
	Т h ird-party	208	496	503	220	989	2,663	533	10%
	A <mark>n</mark> imal	367	403	463	633	652	2,518	504	%6
4-	င <mark>ှင</mark> ်ကpany Initiated	47	42	40	22	09	244	49	1%
ΔΨ	<mark>ប</mark> ុអាសwn cause	43	43	99	51	34	227	45	1%
:17	्रा <mark>श्</mark> रीय	5,736	5,365	5,335	5,348	5,877	27,661	5,532	100%

Sustained Outages by Asset Type -- 2008 to 2012 (excluding major event days)

enter OH Asset Type	2008	2009	2010	2011	2012	Total	5 Year Avg	% of Total
Sonductor, Overhead	4,646	4,359	4,412	4,466	4,830	22,713	4,543	82%
Sonnector or splice	320	340	345	358	450	1,843	698	%2
2 <mark>7</mark> Jumper	724	623	266	217	289	3,049	019	11%
်ပ္ PG's, Kearneys	16	13	12	7	8	26	11	%0
CT Total	5,736	5,365	5,335	5,348	5,877	27,661	5,532	100%

leading risk drivers are:

Vegetation (41%) Equipment Failure (39%) Third-party (10%)

Animal (9%)

data recording practices consider the connector performance and PG&E's splice/connector data inaccurate. Personnel familiar with splice & Improved data in this area is necessary.

9:18

Page 13

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 5 GAS OPERATIONS

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 5 **GAS OPERATIONS**

TABLE OF CONTENTS

A.	Inti	rodu	ctior	າ	5-1
В.	Ge	nera	al Pr	ocesses	5-1
	1.	Org	gani	zational Structure	5-1
	2.			rise and Operational Risk Management and Integrated ng Processes	5-3
	3.	Ris	k-Ba	ased Prioritization Methodologies	5-4
		a.	DI	MP	5-5
			1)	Know the PG&E System	5-6
			2)	Identify Threats	5-7
			3)	Evaluate and Rank Risks	5-8
			4)	Implement Measures to Address Risks	5-12
			5)	Measure Performance, Monitor Results and Evaluate Effectiveness	5-13
			6)	Conduct Complete Program Evaluations and Make Improvements	5-13
			7)	Report Results	5-13
		b.	Pro	ogram-Specific Prioritization Methodologies	5-13
	4.	Ga	s Op	perations Integrated Planning Process	5-14
		a.	Se	ssion D and Risk Register	5-14
		b.	Se	ssion 1 and Risk Informed Budget Allocation	5-16
		C.	Se	ssion 2 and a Risk-Informed, Executable Work Plan	5-16
C.	Are	eas o	of Fo	ocus and Improvement	5-17

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 5 GAS OPERATIONS

A. Introduction

 This chapter describes how Pacific Gas and Electric Company's (PG&E) Gas Operations organization is using the Enterprise and Operational Risk Management (EORM) Standard, its Integrity Management program, and other tools to manage gas system risks.

B. General Processes

1. Organizational Structure

Within Gas Operations, risk management is owned by the Risk Register, Asset Knowledge and Integrity Management, and Investment Planning departments.

- The Risk Register team is responsible for overseeing risk management activities driven by the EORM Program. This includes maintenance of Gas Operations' Risk Register and implementation of the Session D process.
- The Asset Knowledge and Integrity Management (AK&IM) Department is responsible for overseeing PG&E's Transmission Integrity Management Program (TIMP), Distribution Integrity Management Program (DIMP), and Facility Integrity Management Program (FIMP). These programs are driven by federal requirements 1 and involve risk management programs that are focused on asset-related threats and risks. The Senior Director of AK&IM is also accountable for the asset management planning processes within Gas Operations 2 and oversees the development of asset management plans for each of Gas

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 16

TIMP is driven by Title 49 of the Code of Federal Regulations – Transportation (49 CFR) 192 Subpart O. DIMP is driven by 49 CFR 192 Subpart P. FIMP is a new concept that has been discussed as part of the Pipeline and Hazardous Materials Safety Administration's (PHMSA) proposed rulemaking related to the Integrity Verification Process.

Gas Operations' asset management activities are executed in line with the PAS-55/ISO-55001 Asset Management standard.

- Operations' asset families. Asset families and asset management plans are described in more detail below.
- The Investment Planning team is responsible for overseeing Gas
 Operations' implementation of the Risk Informed Budget Allocation
 (RIBA) process described in Chapter 2.

In mid-2012, PG&E introduced a new paradigm into Gas Operations. PG&E divided its assets into families and designated an individual—the Asset Family Owner (AFO)—for each asset family who is accountable for managing the health of those assets.

PG&E has identified eight asset families within Gas Operations. These are outlined in Figure 5-1 below.

FIGURE 5-1
PACIFIC GAS AND ELECTRIC COMPANY
GAS OPERATIONS ASSET FAMILIES

Risks are identified and included in the Gas Operations Risk Register based on the asset family structure, and investment decisions are made

within and across asset families aligned with the investment planning, budgeting, and rate case frameworks.

In addition, Gas Operations implemented a new risk and asset management process and strengthened senior leadership oversight through its Risk and Compliance Committee (RCC). The RCC is chaired by the Executive Vice President, who appoints representatives from Gas Operations to participate on the committee. RCC members have a broad understanding of the business, its processes, and associated risks. The RCC meets monthly to review current risk-related topics and approve items such as risk assessments, risk mitigation measures and changes to the Risk Register.

2. Enterprise and Operational Risk Management and Integrated Planning Processes

As described in Chapter 2, PG&E's EORM Program allows PG&E to manage assets and risks at both an enterprise and operational level. The enterprise risks are those that could threaten the viability of PG&E and typically span multiple lines of business (LOBs). Operational risks arise from assets, people, processes and technologies within specific LOBs, such as Gas Operations. By assessing and managing risks from both points of view, PG&E can better manage the interdependencies and drive for consistency among LOBs.

Gas Operations has adopted a risk management process that provides a repeatable and consistent method to identify, assess, rank and mitigate risk. This risk management process is fully integrated into PG&E's Integrated Planning Process to ensure risk informs the chosen strategies, which in turn drives the allocation of resources. Gas Operations has been advancing its risk management methodology over the last three years, and continues to (i) increase the rigor and documentation of the risk management process; (ii) use more data; (iii) expand the scope of risks assessed as part of the process; and (iv) improve consistency of risk scoring across Gas Operations.

The three phases of Gas Operations' risk management and planning process—(1) Identify threats and assess risks by Asset Family; (2) Develop proposed mitigation programs within Asset Families; and (3) Develop

- executable Investment Plan—are aligned with the PG&E's Integrated
- 2 Planning Process. The three phases are depicted in Figure 5-2.

FIGURE 5-2 PACIFIC GAS AND ELECTRIC COMPANY RISK MANAGEMENT PROCESS AND PLANNING

(1) Distribution Mains and Services are two distinct Asset Families

3

5

6

7

8

Additional information on PG&E's Integrated Planning Process can be found in Chapters 1, 2 and 3.

3. Risk-Based Prioritization Methodologies

To support decision making in the Integrated Planning Process, Gas Operations uses several methodologies to prioritize programs and projects. Some examples of these approaches are outlined in this section.

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 19

a. DIMP

1

2

3

4

5

6

7

8

10

11

12

Federal regulations³ require Gas Operators to develop an approach to ensure the integrity of its distribution system. PG&E's overarching DIMP framework is outlined in Figure 5-3 below:

FIGURE 5-3
PACIFIC GAS AND ELECTRIC COMPANY
DIMP CONTINUOUS IMPROVEMENT CYCLE

Consistent with other gas operators within California, PG&E uses a leak-based risk model to assess the risk of distribution pipelines.

This model considers five years of historical leak data to identify geographical areas with elevated risk. A negative trend of leak repairs for a geographic area for each threat helps identify where additional mitigation may be applied.

The California Public Utilities Commission (CPUC) oversees DIMP and periodically performs audits in accordance with State and Federal

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 20

⁴⁹ CFR, Part 192-Transportation of Natural and Other Gas by Pipeline: Minimum Federal Standards, Subpart P – Gas Distribution Pipeline Integrity Management.

Guidelines.⁴ Some of the topics addressed in the audits include a review of how operators identify threats, perform risk evaluation, and identify mitigation.⁵

Each of the seven steps in PG&E's DIMP cycle is summarized below.

1) Know the PG&E System

System knowledge is the core foundation of DIMP and improves the overall safety and reliability of the distribution pipeline system. At the beginning of each DIMP cycle, the DIMP Mitigation and DIMP Risk teams review the data sources. Consideration is given to information gained from design records, operations, and maintenance as well as knowledge gained from the DIMP Steering Committee, which is comprised of members of the DIMP team and is supplemented with subject matter experts (SME) in each of the DIMP threat categories.

PG&E's DIMP Risk team uses the data, outlined in Figure 5-4, to provide a comprehensive dataset for risk evaluation. As shown in Figure 5-4, a majority of the data used is entered into SAP.⁶
This data is entered by field personnel conducting leak surveys, excavation activities, or other field activities along the pipeline. PG&E uses 20 attribute data fields for its risk analysis.

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 21

^{4 49} CFR 190.203 authorizes PHMSA to perform inspections. General Order 112-E refers to CFR 190 and PHMSA relegates its authority to the CPUC to oversee operators.

PHMSA Form 24 (192.1005-192.1011) Gas Distribution System DIMP Implementation Inspection, July 7, 2014, Rev 0.

⁶ SAP is PG&E's system of record for asset registry and work management.

FIGURE 5-4 PACIFIC GAS AND ELECTRIC COMPANY PRIMARY AND SECONDARY DATA SOURCES FOR RISK ATTRIBUTES

Attribute	Primary Data Source	Secondary Data Source
Leak Number	SAP	n/a
Division	SAP	Pathfinder GIS
District	SAP	Pathfinder GIS
City	SAP	Pathfinder GIS
Line Use	SAP	Plat sheet
Leak grade	SAP	n/a
Reported Leak Cause	SAP	n/a
Leak Source	SAP	n/a
Material of Leaking Component	SAP (Pipe Data)	SAP (Inspection)
Pressure	SAP	SynerGEE
Diameter	SAP (Pipe)	SAP (Inspection)
Surface Over Pipe	SAP (Inspection)	SAP (Surface Over Read Location)
Repair Date	SAP	n/a
Proximity to Areas of Public Assembly	SAP	GIS Public Assembly Data
Employee and Other Injury	RiskMaster	SAP
Employee and Other Fatality	RiskMaster	SAP
Damage Cost	RiskMaster	SAP
Wall to Wall Paving	SAP	n/a
Injury/Fatality Metric	PHMSA	n/a
Injury/Fatality Ratio	PHMSA	n/a

Other data fields extracted from SAP are reviewed and help in determining appropriate mitigation activities.

2) Identify Threats

PG&E uses leak data and SME input for threat identification and risk evaluation. The DIMP Risk team reviews the collected dataset and assigns one of eight threat categories (identified in 49 CFR Part 192, Subpart P) to each leak. The DIMP Risk team then applies sub threats, which identify risk drivers and determines if accelerated actions are needed to mitigate risk.

Additionally, PG&E monitors potential threats. These threats are identified by data sources independent from leak repair

(Figure 5-5). This includes reviewing internal, industry and government data sources to generate a potential threat list which is annually reviewed and evaluated for risk. The identified potential threat list, its validity and any action required is reviewed and approved by the DIMP Steering Committee.

FIGURE 5-5
PACIFIC GAS AND ELECTRIC COMPANY
SOURCE DATA FOR MONITORING POTENTIAL THREATS

Database	Monitoring Interval
PHMSA Bulletins	Annually
National Transportation Safety Board Accident Reports	Quarterly
DIMP Field Review	As Performed
Material Problem Reports	Quarterly
Gas Corrective Action Plan Reporting	Quarterly
Potential Threat Log	Annually

3) Evaluate and Rank Risks

The risk assessment for the gas distribution system is informed from its leak history. In the assessment, each leak receives a score based on its Likelihood of Failure (LoF) and Consequence of Failure (CoF). The LoF for each leak is equal to 1 since the failure has already occurred. The CoF portion of the risk model is based on the following components: Impact on Life; Consequence Potential; Leak Magnitude; and Injury/Fatality statistics. Figure 5-6 outlines the variables considered in each of these components. The variables of each component are identified and the relative severity of a variable's points determines the contribution to the consequence of a leak.

FIGURE 5-6 PACIFIC GAS AND ELECTRIC COMPANY RISK EVALUATION CONSEQUENCE FACTORS AND EQUATION

Wall to Wall Paving	 Pipeline 	 Injury Fatality
Surface Proximity	Pressure • Pipeline Diameter • Leak Grade	Metric Injury Fatality Ratio
		Proximity • Pipeline Diameter

As shown in the equation below, the total consequence associated with each threat is the sum of the applicable leak consequence scores.

$$RT = \sum_{i=1}^{n} LoFi \ X \ COFi$$

Where:

1

2

4 5

6

7

8

9

10 11

12

13 14

15

16

RT = Total risk per threat

N = Number of leak events

LoFi = Likelihood of each recorded leak event (equal to 1)

CoFi = Consequence of each leak event

The risk scores from this equation are aggregated by geographical area to develop a relative risk ranking of all threats and geographical areas.

Following the calculation of the risk scores, the DIMP Risk team analyzes risk at the appropriate level of aggregation for each threat. Excavation is a threat that varies at a local level, and therefore must be managed and mitigated at the local level. Because of this, PG&E separates out excavation threats from this analysis, and reviews this risk at the city level. Figures 5-7 and 5-8 below show the risk analysis done for excavation at the city level, and the analysis done for all other threats at the district (subset of a PG&E division) level. Values to the right of the vertical lines represent high risk, and the values within the two lines define medium risk areas.

FIGURE 5-7 PACIFIC GAS AND ELECTRIC COMPANY RISK FOR EXCAVATION – CITY LEVEL

FIGURE 5-8 PACIFIC GAS AND ELECTRIC COMPANY RISK FOR ALL CAUSES EXCEPT EXCAVATION – DISTRICT LEVEL

The DIMP Risk team uses standard deviations to define distribution bands in determining geographic areas of low, medium, or high risk for each of the two risk analyses shown in Figures 5-7 and 5-8.

System performance is identified based on a 5-year linear trend of leak repairs for the same geographic area for each threat. The leak data gathered (as summarized in Figure 5-4) is reviewed for

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 26

this analysis. Good performance is indicated by a decreasing 5-year linear trend. Fair performance is indicated by a flat (slope equals zero) 5-year linear trend. Poor performance is indicated by an increasing 5-year linear trend.

The combination of risk scores and system performance, outlined below, determine if a Root Cause Analysis (RCA) is needed. RCAs help determine the appropriate mitigation activities for each threat. PG&E performs RCAs in cases as shown in Figure 5-9.

FIGURE 5-9 PACIFIC GAS AND ELECTRIC COMPANY NEED FOR ROOT CAUSE ANALYSIS DETERMINATION

			Performance	
		Good	Fair	Poor
	Low	Review Next DIMP	Review Next DIMP	Review Next DIMP
		Cycle	Cycle	Cycle
Risk	Medium	Review Next DIMP	Review Next DIMP	Perform RCA
~		Cycle	Cycle	Perioriii NCA
	High	Review Next DIMP	Perform RCA	Perform RCA
		Cycle	Perioriii RCA	Perioriii RCA

4) Implement Measures to Address Risks

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

The DIMP Mitigation team considers all current and applicable mitigation measures. During this review the DIMP Mitigation team will identify new mitigation measures or changes to the program that will reduce risk.⁷ If existing programs and activities do not adequately address the risk, the team will work to develop a new program or project to mitigate the risk. Program specific mitigation actions such as the Aldyl-A Replacement program and the Gas Pipeline Replacement Program are reviewed to ensure work is prioritized accordingly. These programs and projects are included in the Session 1 and Session 2 processes to be prioritized and funded accordingly.

Filed: 05/15/19 Case: 19-30088 Doc# 2021-2 Entered: 05/15/19 15:59:18 Page 27

Order Instituting Rulemaking 15-01-008, issued March 18, 2015, provides criteria for replacement and repair based on leak grade. The process for determining mitigation may change as additional clarity is provided through the rulemaking.

5) Measure Performance, Monitor Results and Evaluate Effectiveness

In accordance with the program evaluation requirements, ⁸ PG&E performs reviews and evaluations annually. The review includes refreshing leak data to incorporate new risks into the risk management process. The process described above is applied to the refreshed data, and included in the risk prioritization of the gas distribution system. Additionally, the DIMP Risk team evaluates existing algorithms and statistical methodologies used to derive the overall risk score.

6) Conduct Complete Program Evaluations and Make Improvements

PG&E performs reviews and evaluations of its threat identification, risk analysis, and mitigation performance on a periodic basis. PG&E also participates in internal quality assurance audits as well as external audits performed by regulatory agencies to ensure the program is meeting legal requirements.

7) Report Results

PG&E communicates the status of its reviews to key internal stakeholders on an annual basis. Additionally PG&E completes the following PHMSA forms: PHMSA F 7100.1-1 (Annual Report Form)⁹ and PHMSA F 7100.1-2 (Mechanical Fitting Failure Report Form).

b. Program-Specific Prioritization Methodologies

For most risk-based programs, it is necessary to have a prioritization methodology that allows for risk ranking at the granular asset level to allow for implementation of the program over multiple years while maximizing risk reduction in the short term. Each program has either a

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 28

⁴⁹ CFR, Part 192-Transportation of Natural and Other Gas by Pipeline: Minimum Federal Standards, Subpart P – Gas Distribution Pipeline Integrity Management, 192.1007(f).

⁹ PG&E provides a copy of PHMSA F 7100.1-1 to the CPUC with a report outlining the major mitigation programs and accomplishments of the program during the previous year.

relative risk calculation methodology including components related to likelihood of failure and consequence of failure, or a decision tree methodology that prioritizes projects into tranches of equivalent risk.

Below are some of the risk mitigation programs included in the Integrated Planning Process:

- Aldyl-A Replacement Program replacement of Aldyl-A pipe based on vintage, material properties, leak history, and other factors.
- Gas Pipeline Replacement Program replacement of cast iron and pre-1940 steel based on leak history, vintage, material properties, corrosion potential, and other factors.
- <u>High-Pressure Regulator (HPR) Replacement Program</u> –
 replacement of HPRs based on vintage, material properties, and
 other factors.

4. Gas Operations Integrated Planning Process

Gas Operations follows the PG&E Integrated Planning process for identifying risks, developing mitigation programs, and prioritizing work to address risks. The details of Gas Operations' approach to this process are outlined below.

a. Session D and Risk Register

Each AFO with the assistance of SMEs, is responsible for identifying the risks associated with their asset family and scoring each risk based on system knowledge, available data, and SME knowledge. The categorization and evaluation of threats and risks are driven by industry-adopted integrity management principles, ¹⁰ PG&E's obligation to serve—both in terms of ensuring reliable delivery of natural gas and increasing capacity to meet demand—as well as risks posed by an inadequate response to and recovery from emergencies.

As stated above, PG&E has strengthened and advanced its risk management methodology. By implementing the process improvements noted below, PG&E has been able to effectively identify and score risks within Gas Operations:

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 29

¹⁰ For transmission assets, threats follow American Society of Mechanical Engineers B31.8S. For distribution assets, threats follow 49 CFR 192 Subpart P.

 Greater Utilization and Integration of Data: Gas Operations has increased visibility into potential risks by integrating Corrective Action Plan (CAP) and process hazard analysis data into the risk identification and scoring processes.

- <u>Increased Rigor and Documentation</u>: SME input is used for identification and validation of risks. Additionally, SME review and sign-off is required for each asset family's risk register.
- Expanded Scope of Risk Assessment: Risks that fall outside the
 asset families' risk registers, such as Gas System Operations and
 Employee Qualification risks, are identified, scored, and calibrated
 against asset risks and are included in the Risk Register for
 Gas Operations.
- <u>External Review</u>: PG&E has leveraged the use of third-party industry experts to validate Gas Operations' risk methodology and scoring.
- <u>Calibration of Risk</u>: This is achieved through the consistent application and calibration of risk categories and the risk scoring across Gas Operations risks.

After identifying and scoring the risks, AFOs meet with the Gas Operations' Risk Register team to calibrate and validate ranking of each threat. The AFOs document this ranking in a Risk Register (Attachment A), which is updated and refined as additional information is obtained and evaluated. Gas Operations communicates its top risks (based on the Risk Register scoring) to PG&E leadership in Session D of the Integrated Planning Process. Each risk is evaluated to determine if existing mitigations are effectively managing the risk. During this step, the AFOs also identify any interdependencies with other LOBs to effectively manage the risk. As described below, to the extent that additional mitigations are necessary, asset management plans and work plans are built out in order to mitigate or reduce the risks.

In addition to the Session D effort, risk is also tracked within Gas Operations during monthly RCC meetings described above. At these meetings, AFOs highlight progress made on key risks and the status of those risks. Furthermore, all Gas Operations risks included in the Risk

Register are stored in the Enterprise Compliance Tracking System for further updates, review and reporting.

b. Session 1 and Risk Informed Budget Allocation

Based on the risks identified and scored during Session D, AFOs then analyze and develop the proposed scope and pace of mitigation programs. Each of the mitigation programs is designed to address the identified threats and risks within the asset families to reduce those risks. The AFOs submit the list of mitigation programs to the Investment Planning team for further assessment and prioritization using the RIBA process.

The RIBA risk scores are then used to develop the 5-year strategic investment plan for Gas Operations, which is submitted for consideration at the enterprise level as part of Session 1. Additional details about RIBA can be found in Chapter 3.

c. Session 2 and a Risk-Informed, Executable Work Plan

In Session 2, individual projects are identified within the programs identified in Session 1 and the RIBA framework is applied to assist in developing an executable plan and scope of work for the following year. The investment plan developed in Session 2 includes refinement and additional details to inform execution plans. After the total portfolio of proposed projects has been prioritized using a risk score, Investment Planning applies additional factors such as constraints to the total portfolio to ensure the work can be accomplished effectively. Constraints include, for instance, resource constraints such as availability of trained and qualified personnel, execution constraints such as the time necessary to obtain required permits, and system constraints such as the ability to deliver gas to customers while performing the total portfolio of work.

Investment Planning then works with the AFOs to finalize the proposed investment plan based on the risks and constraints identified. This process requires discussion and rationalization among mitigation programs across asset families.

C. Areas of Focus and Improvement

Gas Operations is exploring opportunities within its risk management processes to develop a more structured optimization model that can enhance prioritization based on risk, resource, budget, and system constraints as part of the integrated planning process. Gas Operations will also continue to improve asset data quality including integration of asset health condition assessments for more informed risk assessments. Additionally, data gathered from root cause analyses, CAP, quality assurance/quality control, monitoring of compliance activities, and audit findings will help drive more informed risk processes.

In addition, in 2013, PG&E began working on the Pathfinder Program which will establish a single database for gas distribution asset information. Pathfinder will provide a "system of record" for all gas distribution asset data to facilitate risk assessments required for DIMP and will provide the foundation for a new unified Geographic Information System (GIS)/SAP model for storing gas distribution asset data. Additionally, the DIMP team will be using Riskfinder, which is a set of tools that helps automate the gathering of additional data streams. Another tool embedded in Riskfinder is the Uptime tool, which performs GIS-based risk analysis. This data will be used by the DIMP team to drive risk decisions and identify appropriate mitigations.

The DIMP team will also be expanding their review to regulator stations and meter sets. Regulator stations can potentially impact the integrity of downstream assets. This provides additional data that the DIMP Team will use to identify threats, assign a risk scoring, and develop mitigation work.

By leveraging technology and developing more consistent risk methodologies for diverse assets, programs will be prioritized based on risk across the system by making an asset-to-asset comparison rather than prioritization occurring within individual programs. This change in methodology will allow PG&E to ensure the highest risk assets, regardless of asset type, are replaced first, thus maximizing risk reduction.

PG&E plans on additional benchmarking within and outside the industry to validate and enhance its risk management framework and process. PG&E will also continue to seek external review from industry experts and academic research teams to help its risk management process validation and improvement journey.

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 5 ATTACHMENT A GAS OPERATIONS RISK REGISTER

Gas Operations Risk Register (1/5)

	0088	Risk Name	Current Residual Risk Score	#	Risk Name
	D	GO – Cybersecurity	811	j	DMS39 - Excav
J ()	0C	TRA4 - Catastrophic Pipeline Failure - Manufacturing	0	21	Non At-Fault
., _	× 2	_	807	22	TRA11 - Incorre
-02	202	TRA1 - Catastrophic Pipeline Failure - External	807	23	TRA9 – Stress (
	21	\rightarrow	5	24	Gas Compliance
_	2	TRA8 – Catastrophic Pipeline Failure – Internal Corrosion	807	25	MC14 – Welding Station
	Fil	TRA3 – Catastrophic Pipeline Failure – Welding/		26	MC10 - Incorrec
Ju	മ ed	Fabrication Related - Pre-1962 Construction with Land	908	27	MC4 - Incorrect
5	. c	Movement		28	MC6 – Incorrect
-A	ဖ)5/	STO16 – Internal Corrosion and/or Erosion – Pipeline	804	59	STO17 – Extern
tcb	15/ (15/	DMS45 – Incorrect Operations – Cross Bore in Urban Area	617	30	MC3 – Incorrect
<u>2</u>	α /1 ς	CD10 Third Darty/Mechanical Damage Mandalism	506	3	MC13 – Welding
-1		_	0000	32	STO20 - Manufa
_	် E	Crzz – wegitei rejatew.Outside rotoes – Seistilic (Manned)	596	33	STO12 - Erosio
	 pt	-		34	STO15 - Erosio
	ere		591	35	STO18 - Fatigu
Ju	h	+		36	DMS42 - Incorre
	÷0!		579	37	TRA16 – Equipr
J, 1	5/1 5/1	MC32 – Weather Related/Outside Forces – Seismic	573	œ	MC18 - Equipm
. J, I.	<u>ဗ</u> 15/1	MC15 – Equipment Related – LoC Complex/ Simple Station	573	39	Simple Station MC36 – Equipm
, 1	1 4 7	MC1 – Incorrect Operations – LoC LP Distribution	551	40	MC19 – Equipm
	512	CP12 – Manufacturing Defects	551	4	DMS8 – Incorre
-	9 59	\vdash	551		Area
	7		551	42	CP1 – External/I
_	<u>8</u>		548	43	CP2 – External (
	6		548	44	CP10 – Internal
age	age	GSO1 – Failure to Meet Core Customer Demand for Design Standard Abnormal Peak Day (APD)	537	46	CP18 – Stress C DMS5 – Materia
5 -7	34	-			

	Risk Name	Current Residual Risk Score
	DMS39 – Excavation Damage, Third Party – Rupture Non At-Fault	406
l' l	TRA11 – Incorrect Operations – Over Pressurization	348
l' I	TRA9 – Stress Corrosion Cracking	326
	Gas Compliance Performance Risk	316
	MC14 – Welding/Fabrication – Overpressure Complex Station	313
	MC10 – Incorrect Operation – Terminal/Large Complex	313
	MC4 - Incorrect Operations - Complex Stations	313
	MC6 - Incorrect Operations - Backbone (PLS) Stations	313
	STO17 – External Corrosion – Pipeline	313
	MC3 - Incorrect Operations - LoC Simple Stations	312
	MC13 – Welding/Fabrication – LoC Simple Station	312
	STO20 – Manufacturing – Pipeline	312
	STO12 – Erosion – Meters	311
	STO15 – Erosion – Valves	311
	STO18 – Fatigue – All Segments	311
	DMS42 - Incorrect Operations - Employee Qualifications	311
	TRA16 – Equipment Related – Over-Pressure Event	311
	MC18 – Equipment Related – LoC Complex/ Simple Station	311
	MC36 – Equipment Related – Terminal/Large Complex	311
	MC19 – Equipment Related – Backbone (PLS) Stations	311
	DMS8 – Incorrect Operations – Cross Bore in Suburban Area	310
	CP1 – External/Internal Corrosion	310
	CP2 – External Corrosion – Under Pipe Insulation	310
	CP10 – Internal Corrosion and Erosion	310
	CP18 – Stress Cracking Corrosion	310
1	DMS5 - Material or Weld - Plastic (System Safety)	310

Gas Operations Risk Register (2/5)

3				
0088	Risk Name	Current Residual # Risk Score	: Risk Name	Current Residual Risk Score
D(TRA6 – Third Party/Mechanical Damage	310 7	70 CCE11 – Natural Forces (Flood)	234
0C7	STO3 – Construction by 1st and 2nd Party – Reservoir	310 71	1 LNG15 – Third-Party Damage – NGV Tank Rupture	234
6 ₄ 2	STO30 – 1st, 2nd, 3rd Party – All Segments	310	DMS54 – Other Outside Forces – Inaccessible	606
ပ္တ 0 2	CP5 – Manufacturing Defects – Pipe Quality	310	Equipment	202
<u></u>	STO19 – Third Party Damage – Pipeline	310	73 CCE33 – Other Outside Force – Inaccessibility to System	202
2 [°]	_	308	\rightarrow	191
20	\rightarrow		75 STO29 – Third Party Damage – All Segments	184
<u>1</u> 23		308	DMS10 – Incorrect Operations – Regulator	787
9 <mark>9</mark>	DMS14 – Natural Forces	245	\dashv	5
<u>5</u> 5	CCE29 – Material	237	7 MC30 – 3rd Party/Mechanical Damage – Vandalism	183
9 <u>5</u> 7	CCE30 – Material Traceability	237	78 STO23 – Weather and Outside Force – McDonald Island	181
15/1 (c b2	DMS53 – Incorrect Operations (Workmanship Traceability)	235	79 CP21 – Weather Related/Outside Forces – Seismic (Unmanned)	181
9 -2	GSO3 – Risk of Using Manual Operations	235	80 MC33 – BTU Heating Value	176
69	-	235 81		175
nte		235	\rightarrow	
er	-		\rightarrow	175
ed		235	83 DMS52 – Material Traceability	175
. 0	\rightarrow		84 MC30.1 – 3rd Party/Mechanical Damage – Vehicular	175
6 262	DMS15 – External Corrosion – Unprotected Steel Pipe	234	\rightarrow	
15 15		234	\rightarrow	174
<u>/1</u>	\rightarrow	<u> </u>	\dashv	1/4
9	CCE20 - Equipment - Indoor Meter Sets	234 87	7 MC2 – Incorrect Operations – LoC HP Distribution	174
15 15		234	88 DMS37 – Overbuilds	174
5	Facilities		Role CP29 – Equipment Related – Hinkley Non-Retrofit	727
99:1	DMS4 - Internal Corrosion	234	Compressor Reciprocating Engine	† -
8.		234	\dashv	174
5	\rightarrow	91	1 MC21 – Equipment Related – LoS LP Distribution	174
oage	CCE7 – Equipment or Other Outside Force – End of Life Failure	234	92 CCE5 – Material or Weld – Inadequate Customer Regulator Design	173
69 9 3	DMS22 – Material and Weld – Composite Risers	234 9	93 STO13 – Incorrect Operations – Valves	158
}[

Gas Operations Risk Register (3/5)

# 0088	Risk Name	Current Residual Risk Score	#	Risk Name	Current Residual Risk Score
D00	TRA19 – Mechanical Damage – Electric Substation Damage	144	116	STO25 – Equipment – Storage Field Facilities	95
# 62	+-	144	-	LNG12 – Third-Party Damage – Fueling Station Drive	3 i
202		143	118	Away	74
1-2	(P50) TRA26 – Equipment Related – Component Failure	5 6	119	LNG24.1 – Equipment – LNG Vaporizer Outage (Reliability)	72
6	(Drips, Fittings)	130	120	GSO9 - Scheduling Risk	89
86 Fi	STO5 - Corrosion - Well Casing	114	121	CP15 – Records Management (P50)	89
66 20	STO31 – Stress Corrosion Cracking – Pipeline	108	,	TRA20 – Weather Related and Outside Forces –	Q.
100	STO10 – Incorrect Operations – Wells	107	771	Tree Damage	28
5/ 5- A	STO11 – Erosion – Wells	107	103	TRA10 – Weather-Related Outside Force –	28
25/1 15/1 1 cb2	TRA14 – Mechanical Damage – First and Second Party Damage	103	3 5	Water Crossings and Exposed Pipe CP24 – Hinkley Station Non-Retrofitted Compressor	3 2
€ 6 3 4-3		103	47	Outage Due to Any Cause	ဂ ဂ
En 40F	LNG24.0 – Equipment – LNG Vaporizer Operations Failure (Safety)	103	125	CP25 – Delevan Station Compressor Outage Due to Any Cause	53
tere	LNG17.0 – Third-Party Damage – LNG Tanker Parked (Safety)	102	126	CP32 – Santa Rosa Station Compressor Outage Due to Any Cause	53
d:	LNG16 - Third-Party Damage - LNG Tanker	0,000	127	CCE13 – Natural Forces (Seismic)	20
<u>0</u> 5	_	701	128	CCE32 – Other Outside Force – Spatial Clearance	45
/1 /1	MC29 - Internal Corrosion	98	129	CP9 – Equipment Related – Air Emission Regulation	44
80 5/3	MC28 – Stress Cracking Corrosion	98	130	STO20.1 – Manufacturing – Pipeline	43
6 109	STO22 – Weather and Outside Force – LM and PC	98	131	LNG31 – Insufficient Portable Equipment	42
₽ 15:5	MC12 – Welding/Fabrication – Overpressure Event (System Safety)	86	132	CCE4 – Other Outside Force – Third Party Damage – Construction and Redevelopment	41
<u>5</u> :	MC17 – Equipment Related (System Safety)	98	133	STO27 – Incorrect Operations – Storage Field Facilities	39
2115 8117		98	134	TRA25 – Equipment Related – Inoperable Valves	38
113	MC22 - Equipment Related - LoS HP Distribution	98	125	DMS47 - Other Outside Forces - Tree Root Damage to	37
1 17	FRA23 – Third Party/Mechanical Damage – Vandalism	97	2	Plastic Pipe	5
36e 17		97	136	STO16.1 – Internal Corrosion and/or Erosion – Pipeline	8 8
<u>; -8</u>	Incident		13/	CCE26 – Equipment Failure – Meter/Regulator	33

Gas Operations Risk Register (4/5)

J	3				
0000	# 0088	Risk Name	Current Residual Risk Score	#	Risk Name
200	D0C:	LNG30 – Incorrect Operations – Station Documentation Safety	32	158	CP26 – Tion Any Cause (
20	ይ ታጋር # ን ር	LNG32.0 – Equipment – Station Compressor and Component (Safety)	32	159	CP27 – Burr Cause (Syst
	21-7 0 140	LNG19.0 – Third-Party Damage – CNG Tube Trailer Parked (Safety)	32	160	CP28 – Gert Cause
	141	\rightarrow	31	161	CP31 – Beth
1101	= <u>ile</u>	LNG27 – Third-Party Damage – ORCA LNG Safety Parked	31		Any Cause CP33 – Topo
5-4	4. D 2	LNG32.1 – Eqpmt – Combined Sta Compr and Component (Reliability)	30	163	Cause CCE28 – Ott
otcb2	/15/1 (15/1	GSO2 – Failure to meet Non-Core CWD Design Standard	30	164	LNG22 – Inc Bottle Safety
\ -4	0145	DMS44 - Excavation Damage - Unlocatable Stubs	30	165	GSO6 - Mar
1	146	LNG28 – LNG Commodity Shortfall	30	166	GSO8 - Der
	T147	STO14 – Equipment – Valves	30	167	LNG19.1 - T
	0 148	MC23 - Equipment Related - LoS Simple Station	29	2	Parked (Reli
. 01	1 49	MC26 – Manufacturing Related Defects	28	168	MC24 - Equ
	150	STO2 – Construction by 3rd Party – Reservoir	28	169	MC27 - Equ
00	1215	LNG29 – CNG Commodity Shortfall (Reliability)	28	170	MC35 - Equ
, 1	<u>1</u> 52	STO31.1 – Stress Corrosion Cracking – Pipeline	28	171	STO30.1 - 1
<i>51</i> ± 5	5/1º	CP4 – Weather Related/Outside Forces – Flooding (System Safety)	25	172	STO24 – We
, <u> </u>	1 2	10	36	173	(P50)
,.0	<u></u> 5 5:5	_	67	174	CP30 - Inco
J.1	<mark>5</mark> :1		25	175	CP17 - Equi
	8 7 7 8	NG30 1 Incorrect Station One	25	176	UMS41 - Inc (D50)
	3 [_	3	177	STO33 - Dis
ug	29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		24	7 7	STO34 – Inte
,	IE.			ρ -	dono III

#	Risk Name	Current Residual Risk Score
158	CP26 – Tionesta Station Compressor Outage Due to Any Cause (System Safety)	24
159	CP27 – Burney Station Compressor Outage Due to Any Cause (System Safety)	24
160	CP28 – Gerber Station Compressor Outage Due to Any Cause	24
161	CP31 – Bethany Station Compressor Outage Due to Any Cause	24
162	CP33 – Topock Station Compressor Outage Due to Any Cause	24
163	CCE28 – Other Outside Force – Grounding	24
164	LNG22 – Incorrect Operations – CNG Quick Change Bottle Safety	24
165	GSO6 – Market Liquidity Risk	23
166	GSO8 – Demand Risk	23
167	LNG19.1 – Third-Party Damage – CNG Tube Trailer Parked (Reliability)	23
168	MC24 - Equipment Related - LoS Complex Station	22
169	MC27 – Equipment Related – Terminal/Large Complex	22
170	MC35 – Equipment Related – Backbone (PLS) Stations	22
171	STO30.1 – 1st, 2nd, 3rd Party – All Segments	22
172	STO24 – Weather and Outside Forces – McDonald Island	20
173	DMS2 – Excavation Damage Third Party, No Rupture (P50)	19
174	CP30 – Incorrect Operations	18
175	CP17 - Equipment Related - Deferred maintenance	18
176	DMS41 – Incorrect Operations – Fusion Joints (P50)	18
177	STO33 - Disposal Well - Gill Ranch	17
178	STO34 – Internal/External Corrosion – Disposal – Well – Gill Ranch	17

As of April 14, 2015

Gas Operations Risk Register (5/5)

	3				
	# 0088	Risk Name	Current Residual Risk Score	#	Risk Name
	D(179	STO17.1 – External Corrosion – Pipeline	17	203	TRA7 - Third Party/Mechanical
	<u>8</u> 9€# 2	GSO4 – Loss of Supply from Interconnected Pipelines and Third Party Storage	41	204	MC11 – Incorrect Operations – L Station
	Σ <mark>0</mark> 2	DMS12 - Material or Weld - Mechanical Fittings	14	205	LNG13 - Third-Party Damage -
	21-2	CP23.1 – Kettleman Station Outage Due to Power Outage	14	206	LNG20 – Third-Party Damage – Transpo Incident
	Fil	LNG17.1 – Third-Party Damage – LNG Tanker Parked (Reliability)	13	207	DMS17 – Atmospheric Corrosion CCE3 – Other Outside Force – \(\)
	00 184	DMS3 – External Corrosion on Steel Piping	12	209	TRA15 - Internal Corrosion (P50
5	185	DMS49 – Material or Weld – Isolation Valve Failure	11	210	DMS6 – Material or Weld – T-Ca
-)5/ 180	GSO5 – Portfolio Management Risk	7	211	TRA5 - Manufacturing Related [
#C#	187	STO5.1 - Corrosion - Well Casing	7	2,7	LNG21 - Third-Party Damage -
) <u>[</u> 4		STO1- Third Party Damage - Reservoir	10	7 7	Collision (Safety)
-5	6 189	LNG14 – Third-Party Damage – Fuel Theft	10	213	STO35 – Outside Forces (Geolo
	190	DMS25 – Material and Weld – Curb Valves	10	777	GSO10 - Risk of Multiple Clears
	191 191	CCE23 – Natural Forces – Settlement of Soil	10	<u>†</u>	System
	ere 192	DMS11 – Incorrect Operations – Regulator (Semi-High or High Pressure)	10	215	GSO11 – Inadequate Visibility in Flows on the Networks
	d: 0	MC20 - Equipment Related - LoS Complex/Simple	10	216	GSO12 - Gas Control Operator
	<u>5</u> /	Station	2	217	GSO13 - SCADA Outage
	1 <u>5</u> /1	CCE16 – Other Outside Force – Inoperable or Inaccessible Service Valve	6	218	GSO14 – Physical Security – Ga GSO15 – GOC System Failure E
	6 195	DMS7 – Natural Forces – Cast Iron Material	8	617	Coordination and Response
	961 <mark>1</mark>	GSO7 – Price Risk	8	220	MC8.1 - Incorrect Operations (S
	197 نن	DMS48 – Internal Corrosion – Mainline Drips	7	221	MC10.1 - Incorrect Operations (
	9:1 9:1	CCE21 – Other Outside Force – Fire	7		
	0 0199	CCE1 – Incorrect Operations	7		
	200	MC8 - Incorrect Operation - Terminal/Large Complex	9		
	5 <mark>2</mark> 04	MC5 - Incorrect Operations - Backbone (PLS) Stations	9		
	9 205	TRA2 – External Corrosion (P50)	9		
	!				

	Risk Name	Residual Risk Score
씸	TRA7 – Third Party/Mechanical Damage (P50)	9
MC:	MC11 – Incorrect Operations – LoS Complex/Simple Station	വ
Ž	LNG13 – Third-Party Damage – Dispenser Vandalism	4
Ta Iz	LNG20 – Third-Party Damage – CNG Bottle TrIr Transpo Incident	4
Ě	DMS17 – Atmospheric Corrosion	က
2	CCE3 – Other Outside Force – Vandalism	3
<u> </u> ₩	TRA15 – Internal Corrosion (P50)	3
Ĭ	DMS6 – Material or Weld – T-Caps	2
TR/	TRA5 – Manufacturing Related Defects (P50)	2
LNG Sol	LNG21 – Third-Party Damage – CNG Bottle TrIr Parked Collision (Safety)	_
STC	STO35 – Outside Forces (Geological) – Reservoir	1
GSC	GSO10 – Risk of Multiple Clearances in the Same Gas System	0
GS(Flov	GSO11 – Inadequate Visibility into the Pressures and Flows on the Networks	0
GS	GSO12 - Gas Control Operator Error	0
GS(GSO13 – SCADA Outage	0
GS(GSO14 - Physical Security - Gas Control Center Attack	0
GS(Coo	GSO15 – GOC System Failure Effecting Field Coordination and Response	0
ğ	MC8.1 – Incorrect Operations (System Safety)	0
Š	MC10.1 – Incorrect Operations (System Safety)	0

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 6 RISK LEXICON

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 39

of 52

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 6 RISK LEXICON

 This chapter provides a Risk Lexicon (Attachment A) that was developed in collaboration with the other utilities participating in this proceeding. The Lexicon includes terms that are used in risk management activities. Pacific Gas and Electric Company (PG&E) views this Lexicon as a potentially valuable tool that can assist in facilitating the discussion of risk and risk management.

PG&E's opinion is that this Lexicon should be viewed as a living document that can be added to and modified over time. To this end, PG&E proposes that this Lexicon, and other terms as well, be made the subject of a workshop in this Safety Model Assessment Proceeding. PG&E also proposes that the Commission publish the Lexicon in a manner that provides for easy public access and use, and that it be updated periodically.

Finally, there are two caveats that PG&E wishes to identify. First, it is not always possible or practical to agree on only one definition for a term. The same term is sometimes used somewhat differently in different companies or even within the same company. Thus, it may be advisable in some circumstances to publish more than one definition for a term. Second, the Commission should not mandate the use of a particular definition or consider any penalties for the "misuse" of a term. Rather these definitions should only be viewed as a tool with educational value that over time will promote a common language about risk management.

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 40

of 52

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 6 ATTACHMENT A RISK LEXICON

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 41 of 52

CHAPTER 6 ATTACHMENT A RISK LEXICON

Overview

Based on the Refined Straw Proposal's recommendations, PG&E, SCE, and Sempra have developed a set of core key risk terms and definitions to be used "for defining, acquiring, and disseminating risked-based information," known as the Risk Lexicon. The Risk Lexicon consists of a common set of terms and definitions to allow for ease of communicating the risk-management activities described in this filing. In addition to this set of core terms, each of the utilities may have additional risk terms and definitions to describe their specific processes. As with the other tools, we expect the Risk Lexicon to evolve as the ERM programs mature.

To develop the Risk Lexicon, PG&E, SCE, and Sempra looked first to the terms and definitions in the ISO 31000 and DHS Risk Lexicon terminology documents. The defined terms were further validated amongst a broader list of external sources common in the risk community to ensure consistency. Below is the defined list of key terms developed for the Risk Lexicon.

Terms	Definitions
Alternatives Analysis	Evaluation of different alternatives available to mitigate risk
Control	Currently established measure that is modifying risk
Current Residual Risk	Risk remaining after current controls
Enterprise Risk Management	Comprehensive approach to risk management that engages organizational systems and processes together to improve the quality of decision making for managing risks in order for an organization to be able to achieve its objectives

¹ Refined Straw Proposal, p. 10.

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 42

Terms	Definitions
Event	Occurrence or change of a particular set of circumstances
Frequency	Number of events generally defined per unit of time
Impact (or Consequence)	Result of an event, incident, or occurrence affecting objectives
Mitigation	Measure or activity taken prior to the occurrence of an event, designed to reduce impact and/or frequency of an event
Planned Residual Risk (or Forecasted Residual Risk)	Risk remaining after implementation of proposed mitigations
Risk	Potential for an event that can impact company's ability to achieve its objectives
Risk-based Decision Making	Determination of a course of action predicated primarily on the assessment of risk and the expected impact of that course of action on that risk
Risk-informed Decision Making	Determination of a course of action predicated on the assessment of risk, the expected impact of that course of action on that risk, as well as other relevant factors
Risk Assessment Process	Overall process of risk identification, risk analysis and risk evaluation
Risk Driver (or Risk Trigger)	Factor(s) that could cause risk to occur
Risk Response Plan (or Mitigation Plan)	Collection of Mitigations
Risk Score	Numerical representation of a quantitative and/or qualitative risk evaluation methodology
Risk Taxonomy	A structure used to classify different types of risks across the company at multiple levels of aggregation

Case: 19-30088 Doc# 2021-2 Filed: <u>05/15/19</u> Entered: 05/15/19 15:59:18 Page 43 of 52

PACIFIC GAS AND ELECTRIC COMPANY APPENDIX A STATEMENTS OF QUALIFICATIONS

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 44 of 52

PACIFIC GAS AND ELECTRIC COMPANY STATEMENT OF QUALIFICATIONS OF ERIC BACK

1

2

3	Q 1	Please state your name and business address.
4	A 1	My name is Eric Back, and my business address is Pacific Gas and Electric
5		Company, 245 Market Street, San Francisco, California.
6	Q 2	Briefly describe your responsibilities at Pacific Gas and Electric Company
7		(PG&E).
8	A 2	I am the director of the Compliance & Risk Management organization within
9		Electric Operations.
10	Q 3	Please summarize your educational and professional background.
11	A 3	I am the director for Risk Management, Compliance, and Vegetation
12		Management in Electric Operations. I joined PG&E in 2008 and worked in
13		the Utility Performance Improvement group focusing on electric transmission
14		and substation facilities and processes. Since then, I have been a
15		substation maintenance superintendent and a director in Transmission
16		Operations. Prior to joining PG&E, I worked in management and operations
17		consulting. I am a registered professional engineer in the state of California.
18		I have a bachelor of science degree in mechanical engineering from
19		University of California, Davis, a master of science degree in mechanical
20		engineering from Colorado State University and a master in business
21		administration degree from the London Business School.
22	Q 4	What is the purpose of your testimony?
23	A 4	I am sponsoring Chapter 4, "Electric Operations and Nuclear Power
24		Generation," with the exception of Sections B.2. and C.2., in PG&E's S-MAP
25		proceeding. Sections B.2. and C.2. relate to the risk processes and
26		programs at PG&E's nuclear facilities and are sponsored by Cary D. Harbor
27	Q 5	Does this conclude your statement of qualifications?
28	A 5	Yes it does

Case: 19-30088 Doc# 2021-2 Filed: 05/1**5**61.9 of 52 Entered: 05/15/19 15:59:18 Page 45

PACIFIC GAS AND ELECTRIC COMPANY STATEMENT OF QUALIFICATIONS OF CHRISTINE C. CHAPMAN

1

2

3	Q 1	Please state your name and business address.
4	A 1	My name is Christine C. Chapman, and my business address is Pacific Gas
5		and Electric Company, 6111 Bollinger Canyon Road, San Ramon,
6		California.
7	Q 2	Briefly describe your responsibilities at Pacific Gas and Electric Company
8		(PG&E).
9	A 2	As senior director of Asset Knowledge and Integrity Management, within
10		Gas Operations, I am responsible for the leadership and oversight of an
11		organization focused on assessing the integrity of the transmission,
12		distribution, and facilities assets utilizing traceable, verifiable, and complete
13		asset knowledge and technological tools. I am also responsible for the
14		development of a strategic integrity management plan for the entirety of
15		these assets. In addition, I oversee Gas Operations' Research and
16		Development Program.
17	Q 3	Please summarize your educational and professional background.
18	A 3	I received a bachelor of science degree in mechanical engineering from
19		University of California, Berkeley and a master's degree in business
20		administration from UC Berkeley, Haas School of Business. I am also a
21		registered professional mechanical engineer in the state of California.
22		I started with PG&E in 2001 as a summer intern in the gas distribution
23		organization and after graduating from UC Berkeley began a full-time
24		position as a gas engineer. Since then, I have held a variety of positions
25		with increasing levels of responsibility in the Gas Engineering and
26		Operations organization, mainly focused on gas distribution functions.
27		In 2008, I transitioned to PG&E's Human Resources Department where
28		I held various leadership roles. I returned to Gas Operations in
29		January 2012 as the director of Distribution Integrity Management. In
30		November 2013, I transitioned to the director of Transmission Integrity
31		Management, and in May 2014, I was promoted to the senior director of
32		Asset Knowledge and Integrity Management.

Case: 19-30088 Doc# 2021-2 Filed: 05/45/491 Entered: 05/15/19 15:59:18 Page 46 of 52

- Q 4 What is the purpose of your testimony? 1
- I am sponsoring Chapter 5, "Gas Operations," in PG&E's S-MAP A 4 2
- proceeding. 3
- Q 5 Does this conclude your statement of qualifications? 4
- A 5 Yes, it does. 5

Case: 19-30088 Doc# 2021-2 Filed: 05/45/4:92 Entered: 05/15/19 15:59:18 Page 47 of 52

PACIFIC GAS AND ELECTRIC COMPANY 1 STATEMENT OF QUALIFICATIONS OF CARY D. HARBOR 2

3	Q 1	Please state your name and business address.
4	A 1	My name is Cary D. Harbor, and my business address is Pacific Gas and
5		Electric Company, Diablo Canyon Power Plant.
6	Q 2	Briefly describe your responsibilities at Pacific Gas and Electric Company
7		(PG&E).
8	A 2	I am the director of Compliance, Alliance and Risk for the Diablo Canyon
9		Power Plant; in this capacity I am responsible for company compliance and
10		risk program oversight, matrixed organizations including business finance
11		and supply chain, and the PG&E management council representative to the
12		STARS LLC.
13	Q 3	Please summarize your educational and professional background.
14	A 3	I received a bachelor of science degree in nuclear engineering from
15		University of California, Santa Barbara, California, in 1989. I joined PG&E in
16		1989 as a power production engineer in the Engineering Department.
17		I have since held positions as the supervisor of Regulatory Services,
18		operations shift foreman/manager (senior reactor operator licensed by the
19		Nuclear Regulatory Commission), performance improvement manager,
20		quality verification director, and the Maintenance and Construction Services
21		director. Most recently I became the director of Compliance, Alliance and
22		Risk in 2012.
23	Q 4	What is the purpose of your testimony?
24	A 4	I am sponsoring Sections B.2. and C.2. of Chapter 4, "Electric Operations
25		and Nuclear Power Generation," in PG&E's S-MAP proceeding.
26	Q 5	Does this conclude your statement of qualifications?
27	A 5	Yes, it does.

PACIFIC GAS AND ELECTRIC COMPANY STATEMENT OF QUALIFICATIONS OF JANAIZE MARKLAND

3	Q 1	Please state your name and business address.
4	A 1	My name is Janaize Markland, and my business address is Pacific Gas and
5		Electric Company, 111 Stony Circle, Santa Rosa, California.
6	Q 2	Briefly describe your responsibilities at Pacific Gas and Electric Company
7		(PG&E).
8	A 2	I am the director of PG&E's Enterprise and Operational Risk and Insurance
9		Department. My department is responsible for overseeing PG&E's
10		Enterprise and Operational Risk Management (EORM) Program and for
11		procuring insurance to transfer PG&E's residual financial risks that could
12		result from catastrophic property or casualty losses.
13	Q 3	Please summarize your educational and professional background.
14	A 3	I earned a bachelor of science degree in chemistry from the University of
15		British Columbia and a master of science degree in Environmental
16		Management from Royal Roads University in Victoria, British Columbia.
17		I am a member of the Enterprise Risk Management Utilities Roundtable
18		and serve as chair of the Edison Electric Institute Enterprise Risk
19		Management Task Force Steering Committee.
20		Prior to my career in the EORM and Insurance Department, I held a
21		variety of roles at PG&E, including manager of Compliance and Ethics and
22		positions in the Safety and Shared Services organization, where I provided
23		direct environmental compliance support to PG&E's operating units. Before
24		joining PG&E, I worked at BC TEL, a telephone utility based in Burnaby,
25		British Columbia, and its successor company, Alberta-based TELUS
26		Corporation, where I developed an environmental program governing the
27		newly merged companies.
28	Q 4	What is the purpose of your testimony?
29	A 4	I am sponsoring the following testimony in PG&E's S-MAP proceeding:
30		 Chapter 2, "Companywide Models and Approaches for Assessing Risk."
31		Chapter 6, "Risk Lexicon."
32	Q 5	Does this conclude your statement of qualifications?
22	۸ 5	Vos. it doos

PACIFIC GAS AND ELECTRIC COMPANY STATEMENT OF QUALIFICATIONS OF JAMIE L. MARTIN

3 Q 1 Please state your name and business address.

1

2

10

11

12 13

14

15

- 4 A 1 My name is Jamie L. Martin, and my business address is Pacific Gas and Electric Company, 77 Beale Street, San Francisco, California.
- 6 Q 2 Briefly describe your responsibilities at Pacific Gas and Electric Company 7 (PG&E).
- 8 A 2 I currently hold the position of director of Economic and Project Analysis. In this capacity, I supervise:
 - Financial analysis and economic evaluations concerning a range of investment matters.
 - The Risk Informed Budget Allocation process as part of the Company's Integrated Planning Process.
 - Business case guidance and reviews of major capital project proposals.
 I report to the Vice President, Finance, of PG&E.
- 16 Q 3 Please summarize your educational and professional background.
- A 3 17 I graduated from the University of San Francisco, in 2004, with a bachelor of science degree in finance. I joined PG&E in 2007 as a senior business 18 analyst in the Finance organization, specifically in Project Finance. I have 19 20 since held a succession of positions in the finance organization. In 2009, I was promoted to supervisor in the Gas & Electric Transmission and 21 Distribution Business Finance organization, responsible for operational 22 23 financial planning, budgeting and forecasting. In 2010, I was promoted to manager in the Power Generation Business Finance organization, where 24 I was responsible for managing a team that supported operational financial 25 planning, budgeting and forecasting. In 2012, I completed a 6-month 26 27 rotation as manager of Investor Relations, where I was responsible for 28 communication with the investment community and prepared senior leadership for quarterly earnings calls and expectations for future 29 performance. In late 2012, I became manager of the Financial Forecasting 30 & Reporting team, where I was responsible for enterprise-level earnings 31 forecasts, year-over-year and long-term budgets and forecasts, functional 32

- area income statement analysis and board of director financial materials.

 I assumed my current position in March 2014.

 What is the purpose of your testimony?
- 4 A 4 I am sponsoring Chapter 3, "Companywide Models and Approaches to Risk Informed Budget Allocation," in PG&E's S-MAP proceeding.
- 6 Q 5 Does this conclude your statement of qualifications?
- 7 A 5 Yes, it does.

Case: 19-30088 Doc# 2021-2 Filed: 05/15/19 Entered: 05/15/19 15:59:18 Page 51

PACIFIC GAS AND ELECTRIC COMPANY STATEMENT OF QUALIFICATIONS OF SHELLY J. SHARP

1

2

3	Q 1	Please state your name and business address.
4	A 1	My name is Shelly J. Sharp, and my business address is Pacific Gas and
5		Electric Company, 77 Beale, San Francisco, California.
6	Q 2	Briefly describe your responsibilities at Pacific Gas and Electric Company
7		(PG&E).
8	A 2	I am currently the senior director, General Rate Case and Regulatory
9		Support. My responsibilities include overseeing the development of General
10		Rate Cases (GRC) as well as various other applications before the
11		California Public Utilities Commission, ensuring compliance with items from
12		prior GRCs, and directing the efforts of PG&E's regulatory support functions.
13	Q 3	Please summarize your educational and professional background.
14	A 3	I graduated with a bachelor of science degree in business administration/
15		finance from California State University, Sacramento, in 1984. In 1985,
16		I graduated from Golden Gate University in San Francisco, with a master's
17		degree in business administration/finance.
18		I joined PG&E in 1985. From 1985 until 1997, I held various analyst and
19		supervisory positions within the regulatory area including: regulatory affairs
20		analyst, rates analyst, resource analyst, supervisor – Gas Rates, and
21		manager – Electric Rates. In 1997, I took over as the director of the Rates
22		Department, responsible for both gas and electric revenue allocation and
23		rate design. In 2003, I became the director of Billing, Revenue and
24		Records. In 2007, I became the senior director of Service and Sales in the
25		Customer Care organization. In February 2008, I became the senior
26		director of Customer Field Service within the Customer Care organization.
27	Q 4	What is the purpose of your testimony?
28	A 4	I am sponsoring Chapter 1, "Overview and Summary," in PG&E's S-MAP
29		proceeding.
30	Q 5	Does this conclude your statement of qualifications?
31	A 5	Yes, it does.

Case: 19-30088 Doc# 2021-2 Filed: 05/35/49 Entered: 05/15/19 15:59:18 Page 52 of 52