Class 14: RNA-Seq analysis mini-project

Jiachen Fan (A17662703)

Background

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report an differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

1. Differential Expression Analysis

```
library(DESeq2)
```

Warning: package 'matrixStats' was built under R version 4.3.2

Read in the countdata and coldata that we need, and have a wee look.

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

condition SRR493366 control_sirna SRR493367 control_sirna SRR493368 control_sirna

```
SRR493371 hoxa1_kd

# Import countdata
countData = read.csv(countFile, row.names=1)
```

hoxa1_kd

 $hoxa1_kd$

SRR493369 SRR493370

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

		SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00	000186092	0	0	0	0	0	0
ENSG00	000279928	0	0	0	0	0	0
ENSG00	000279457	23	28	29	29	28	46
ENSG00	000278566	0	0	0	0	0	0
ENSG00	000273547	0	0	0	0	0	0
ENSG00	000187634	124	123	205	207	212	258

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData)!=0,]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

dds

```
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
    ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor

And run the results.

res = results(dds)
```

```
summary(res)
```

```
out of 15975 with nonzero total read count adjusted p-value < 0.1
```

```
LFC > 0 (up) : 4349, 27%

LFC < 0 (down) : 4396, 28%

outliers [1] : 0, 0%

low counts [2] : 1237, 7.7%
```

(mean count < 0)</pre>

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

Volcano Plot

Let's make a volcano plot.

```
plot(res$log2FoldChange, -log(res$padj))
```


I can improve this plot by the below code, which adds color and axis labels.

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res))

# Color red the genes with absolute fold change above 2
mycols[abs(res$log2FoldChange)>2] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- ((res$pvalue)<0.01) & (abs(res$log2FoldChange)>2)
mycols[inds] <- "blue"

plot(res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(FoldChange)"</pre>
```


Adding gene annotation

I can use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by the code below.

```
library("AnnotationDbi")
Warning: package 'AnnotationDbi' was built under R version 4.3.2
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                     "ALIAS"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                    "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                     "GO"
                                    "GOALL"
                                                    "IPI"
                                                                    "MAP"
```

```
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                    "ONTOLOGY"
                                                                 "PFAM"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                  "SYMBOL"
                                                                 "UCSCKG"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                           stat
                                                                     pvalue
                  <numeric>
                                 <numeric> <numeric> <numeric>
                                                                  <numeric>
                                 0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000279457
                  29.913579
ENSG00000187634 183.229650
                                 0.4264571 0.1402658 3.040350 2.36304e-03
```

```
ENSG00000188976 1651.188076
                                 -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961
                 209.637938
                                  0.7297556 0.1318599
                                                        5.534326 3.12428e-08
ENSG00000187583
                  47.255123
                                  0.0405765 0.2718928
                                                        0.149237 8.81366e-01
                                  0.5428105 0.5215598
                                                        1.040744 2.97994e-01
ENSG00000187642
                  11.979750
                                  2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000188290
                 108.922128
                                  0.2573837 0.1027266
                                                        2.505522 1.22271e-02
ENSG00000187608
                 350.716868
ENSG00000188157 9128.439422
                                  0.3899088 0.0467163
                                                        8.346304 7.04321e-17
ENSG00000237330
                   0.158192
                                  0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                                  symbol
                       padj
                                              entrez
                                                                        name
                  <numeric> <character> <character>
                                                                 <character>
ENSG00000279457 6.86555e-01
                                      NΑ
                                                                          NA
                                                  NA
ENSG00000187634 5.15718e-03
                                  SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                   NOC2L
                                               26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                  KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                 PLEKHN1
                                               84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                               84808 PPARGC1 and ESRR ind..
                                   PERM1
ENSG00000188290 1.30538e-24
                                    HES4
                                               57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                                9636 ISG15 ubiquitin like..
                                   ISG15
ENSG00000188157 4.21963e-16
                                    AGRN
                                              375790
                                                                       agrin
ENSG00000237330
                         NA
                                  RNF223
                                              401934 ring finger protein ...
```

Let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

2. Pathway Analysis

I can load the packages and setup the KEGG data-sets we need.

```
library(pathview)
library(gage)
```

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                            "1807"
                                  "1806"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                                            "7172"
                        "7083"
                                  "7084"
                                                     "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                            "7378"
                                                     "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
                        "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                                                "112"
                                                                          "113"
                                   "111"
                                             "11128"
                                                      "11164"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                "158"
                                                                          "159"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                "205"
                                                                          "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                             "25885"
                                                      "2618"
                                                                "26289"
                                                                          "270"
                         "272"
                                             "2977"
 [41] "271"
                "27115"
                                   "2766"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
                "2987"
                         "29922"
                                                      "30834"
                                                                "318"
                                                                          "3251"
 [49] "2986"
                                   "3000"
                                             "30833"
                "3614"
                         "3615"
                                   "3704"
                                                      "471"
                                                                "4830"
                                                                          "4831"
 [57] "353"
                                             "377841"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                      "4907"
                                                                "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                      "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                      "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                      "57804"
                                                                "58497"
                                                                          "6240"
                "64425"
[137] "6241"
                         "646625" "654364" "661"
                                                      "7498"
                                                                "8382"
                                                                          "84172"
```

```
[145] "84265"
               "84284"
                         "84618"
                                  "8622"
                                            "8654"
                                                      "87178"
                                                               "8833"
                                                                         "9060"
[153] "9061"
                         "953"
                                   "9533"
                                            "954"
                                                      "955"
                                                               "956"
                                                                         "957"
               "93034"
[161] "9583"
               "9615"
```

Make the input foldchange vector for KEGG and GO etc.

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Now, let's run the gage pathway analysis.

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.val
                                         p.geomean stat.mean
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03030 DNA replication
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                        36 9.424076e-05
hsa03013 RNA transport
                                                       144 1.375901e-03
                                      0.073840037
hsa03440 Homologous recombination
                                                       28 3.066756e-03
                                      0.121861535
hsa04114 Oocyte meiosis
                                                       102 3.784520e-03
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                        53 8.961413e-03
```

Let's try out the **pathview()** function from the pathview package to make a pathway plot with our RNA-Seq expression results shown in color.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

 $Info: \ Working \ in \ directory \ C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class$

Info: Writing image file hsa04110.pathview.png

A different PDF based output of the same data

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

```
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/18695/Desktop/BGGN213 Foundation of Bioinformatics/class
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/18695/Desktop/BGGN213 Foundation of Bioinformatics/class
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class
```

Info: Working in directory C:/Users/18695/Desktop/BGGN213 Foundation of Bioinformatics/class

Info: Writing image file hsa04142.pathview.png

Info: some node width is different from others, and hence adjusted!

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class

Info: Writing image file hsa04330.pathview.png

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

I can do the same procedure as above to plot the path view figures for the top 5 down-reguled pathways.

```
keggrespathways.down <- rownames(keggres$less)[1:5]
keggresids.down = substr(keggrespathways.down, start=1, stop=8)
keggresids.down
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"</pre>
```

```
pathview(gene.data=foldchanges, pathway.id=keggresids.down, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class

Info: Writing image file hsa04110.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/18695/Desktop/BGGN213_Foundation_of_Bioinformatics/class

Info: Writing image file hsa04114.pathview.png

3. Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
                                                         113 8.519724e-05
GO:0007156 homophilic cell adhesion
                                          0.1952430
```

```
GO:0002009 morphogenesis of an epithelium 0.1952430
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                         0.1952430
                                                         424 1.432451e-04
GO:0007610 behavior
                                          0.1968058
                                                         426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3566193
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3566193
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.843127e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.843127e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                        5.843127e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.659009e-08
                                                          142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178690e-07
                                                           84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GD:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GO:0007610 behavior
                                           3.565432 3.565432
GO:0060562 epithelial tube morphogenesis
                                          3.261376 3.261376
```

4. Reactome Analysis

GO:0035295 tube development

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

3.253665 3.253665

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

"Cell Cycle, Mitotic" has the most significan "Entities p-value" which is 5.28E-4. No.