

Utilizing AI Generated Images for Object Detection and Classification

DataFirst Fall 2023

Amy Jiang, Dongwook Kim, Harshita Dooja Poojary, Michael Kingsley, Narges Ghasemi, Nealson Setiawan **Advisor: Seon Ho Kim**

Background and Motivation

- Object detection and classification play an important role in smart-city applications as they can replace human surveillance monitoring in identifying critical situations
- However it is often hard to obtain a good training dataset when an object or scenario is rare and costly
- For example: "wounded humans in disastrous situations"
 - In such scenarios, artificially generated images can serve as a potential solution
 - Leveraging the advancements of GANs and other data generation techniques, we can create realistic images of rare events, thereby augmenting training datasets
 - Consequently, generated images may help fill the data gaps, ensuring a more comprehensive and diverse dataset for training ML models

- State-of-the-art generative AI models can create high-quality synthetic images fast
- Carefully crafted generation prompts can serve as labels, reducing workload in labelling and data cleaning process
- The idea: Augmenting existing datasets with synthetic images to improve the accuracy on humans in abnormal postures, particularly in earthquakes
- Primary focus:
 - Replicating post disaster scenarios
 - Injured survivors in debris
 - Damaged buildings
 - Detecting critical objects:
 - Humans, Buildings
 - Damage Assessment
 - Number of injured people

 - Severity of injuries Infrastructure Damage

*Sample image created using DALL-E 2

Quality of Existing Datasets

Key Observations in Existing Datasets:

- Existing datasets generalize disaster types, lacking focus on earthquakes.
- There's a significant lack of images showing individuals amid earthquake debris.
- The abundance of non-relevant images reduces the datasets' overall usefulness.
- Many photos are taken too close or includes satellite imagery, missing broader context.
- Numerous pictures are of low quality.

An enhanced, focused dataset containing images of people in the debris of earthquakes is needed to improve Al-driven response in earthquake human detection

Method

Purpose	Models/Tools Used	Observations
Generate Synthetic Images	Dalle 2, Stable Diffusion	Dalle 2: Generation time : 10 seconds Issues: Does not generate images for injured people due to content Policy.
Image Annotation	VoTT, Labellmg, CVAT	VoTT: • manual graphical annotation tool developed by microsoft • annotation data exported to JSON includes: • labels • height • coordinates, etc
Object Detection	Yolov8, FCOS,TTFNet, PAFNet	YOLO: ■ Pretrained model: □ Pretrained on COCO dataset. □ Issues: ■ Difficult to detect survivors who are laying flat on the ground of obscured by dust. ■ Struggles to detect individuals from aerial or drone perspectives. □ Solution: Finetune Model with the current dataset.
Text Generation	CLIP-Interrogator-2, pix2struct, Mini GPT-4	 CLIP-interrogator-2 pretrained on ViT-H-14 OpenCLIP model to use to create similar image in stable diffusion model 2.0 text generation time: quality = good: 44.56 s quality = poor: 17.94 s issues: depends on quality or size of image (poorer quality → faster output times) example output: a pile of debris sitting on top of a beach next to a body of water, wood pier and houses, wall, beaches, fallen columns

Example Prompts:

- "A photorealistic, high-resolution image of a city street after an earthquake with clear and detailed humans."
- "With the clarity and depth seen in National Geographic photos taken with a Nikon, showcase a city street in the aftermath of an earthquake, where every human figure lying amidst the debris is as distinct and detailed as a portrait."

Workflow

Model:

- Identifies critical objects and poses.
- **Situation awareness:**
 - Distinguishes scenarios based on the severity
- **Text Generation:**
- Creates text summary description of the image
- Could generate the keywords for the scenario.

Datasets:

- Existing Dataset: Preprocessed and filtered images with post earthquake scenarios
- Synthetic Image Generation: Using Generative AI to replicate post earthquake images using prompts.

Key Observations

Dalle 2:

Dalle 2 restricts users to create some images of injured people due to the content policy.

Pre-Trained Yolov8:

- Difficult to identify humans in the rubbles of the earthquake
- Pose estimation becomes difficult when the person is not identified

Person misclassified as bird

People not identified by Yolov8

Next Steps

- Annotate existing dataset for human detection.
- Finetune Yolov8 with existing Real image datasets to improve human detection in post earthquake scenarios. This will work as a benchmark for comparison.
- Merge the existing dataset with the images generated by AI and train Yolov8 and **compare** the model performance with the benchmark based on evaluation metrics.
- Once we confirm that training dataset augmented with synthetic images improves performance in object detection, the pose estimation, text generation on parallel.
- The detections and summary would be processed to analyze the severity of the situation.