John Waczak

Date: May 14, 2018

Poles

Recall: If $f: \Omega \to \mathbb{C}$ is holomorphic and $a \in \Omega$ then there exists some R > 0 for which f can be expressed in a power series:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

for all $z \in D_R(a)$, and $D_R(a) \subseteq \Omega$. Where

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Definition: If f(z) is holomorphic and f(a) = 0, we call a a zero of f.

Theorem. Let $f: \Omega \to \mathbb{C}$ be a holomorphic function and $a \in \Omega$ be a zero of f. Then one of the following two cases occurs:

- a There exists a disc D centered at a for which $f(z) = 0 \ \forall z \in D$.
- b There exists an integer $m \ge 1$ and a holomorphic function $g: \Omega \to \mathbb{C}$ such that $f(z) = (z-a)^m g(z)$ for all $z \in \Omega$ and $g(a) \ne 0$.

Example: $f(z) = z^3 - 2z^2 + z$, a = 1.

$$f(1) = 1^{3} - 2 + 1 = 0$$

$$f(z) = z(z^{2} - 2z + 1)$$

$$= z(z - 1)^{2}$$
thus $m = 2$ $q(z) = z$

Definition In case (b) we say that m is the *multiplicity* of the zero a.

Proof. Expand f into its power series

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

where |z-a| < R with R > 0. Let $D = D_R(a)$. If $c_n = 0 \,\forall n$ then clearly case (a) holds. Otherwise we have $c_m \neq 0$ for some $m \geq 1$ and we make take m minimal with this property. We already know that $c_0 = 0$ since $f(a) = c_0$ and we are assuming that a is a zero. Thus the power series starts at m and looks like

$$f(z) = \sum_{n=m}^{\infty} c_n (z - a)^n$$

and so we can observe that

$$= (z - a)^m \left\{ c_m + c_{m+1}(z - a) + c_{m+2}(z - a)^2 + \dots \right\}$$

$$= (z - a)^m g(z)$$
where $g(z) = \sum_{k=0}^{\infty} c_{m+k}(z - a)^k$

If instead $z \neq a$, also define

$$g(z) = \frac{f(z)}{(z-a)^m} \quad (z \in \Omega \setminus \{a\})$$

This defines $g:\Omega\to\mathbb{C}$. Note: points $z\in D\setminus\{a\}$ have two definitions of g(z), but the two definitions are equal.

Example $f(z) = \sin^2(z), a = 0$

$$\sin^2(z) = \sum_{n=0}^{\infty} c_n z^n$$

$$f'(z) = 2\sin(z)\cos(z)$$

$$f''(z) = 2\cos^2(z) - 2\sin^2(z)$$

$$\Rightarrow c_0 = f(0) = 0$$

$$c_1 = f'(0) = 0$$

$$c_2 = f''(0)/2 = 1 \neq 0$$

$$\Rightarrow m = 1$$

the function

$$g(z) = \begin{cases} \frac{\sin^2(z)}{z^2} & z \neq 0\\ 1 & z = 0 \end{cases}$$

is holomorphic on \mathbb{C} and $\sin^2(z) = z^2 g(z)$.