Definably Discrete Complete Expansions of Ordered Fields

Jafar S. Eivazloo and Rahim Moshtaghnazm

Department of Mathematics, University of Tabriz,

P.O.Box: 51666-17766, Tabriz, Iran.

eivazloo@tabrizu.ac.ir, R_moshtagnazm@tabrizu.ac.ir

Abstract

Let $\mathcal{M} = (M, <, +, \cdot, 0, 1, \dots)$ be a first order expansion of an ordered field. We say that \mathcal{M} is definably discrete complete if every definable discrete subset of M has a least upper bound element in $M \cup \{\infty\}$. These expansions in which every unary definable subset is discrete or has interior, are definably (Dedekind) complete. Type complete (locally o-minimal) structures have been studied in [3], [1], and [2]. If \mathcal{M} is definably complete and type complete, then every definable subset of M is discrete or has interior (see [2]). Here, we prove the converse of this result: If \mathcal{M} is definably discrete complete and every definable subset of M is discrete or has interior, then \mathcal{M} is type complete.

MSC 2000: Primary 03C60, 03C64; Secondary 12J15.

Keywords: Definably Complete, Definably Discrete Complete, Type Complete, Locally o-Minimal.

References

- [1] A. Fornasiero, Locally o-minimal structures with locally o-minimal open core, Ann. Pure Appl. Logic 164 (2013) 211-229.
- [2] H. Schoutens, o-Minimalism, J. Symbolic Logic 79 (2014) 335-409.
- [3] C. Toffalori and K. Vozoris, Notes on local o-minimality, Math. Log. Q. 55 (2009) 617-632.