

PIVOT 2022 SPE Datathon

Kick-off Meeting

June 21, 2022

Agenda

- Welcome Silviu Livescu
- Utah FORGE John
- Problem Introduction and Data Description Andy
- Problem Description Luke
- Competition Logistics Pushpesh
 - Learning
 - Slack Channel
 - Competition

Welcome

- SPE Gulf Coast Section
- SPE Calgary, SPE Netherlands, SPE London
- Project InnerSpace
- Committee: Andy Adams, Manisha Bhardwaj, Tom Blasingame, John Boden,
 Birol Dindoruk, Promise Ekeh, Luke Frash, Amir Hossein Fallah, Yasin Hajizadeh,
 Kevin Jones, Sarath Ketineni, Keivan Khaleghi, Timur Kuru, Silviu Livescu, Adele
 Martin, Nefeli Moridis, Luca Motti, James Ng, Sean Porse, David Shackleton,
 Pushpesh Sharma, Pejman Shoeibi Omrani, Junichi Sugiura, Esteban Ugarte
 Daza

Introduction to GDR

Geothermal Data Repository (GDR)

Andy Adams – Technical Project Monitor for the Geothermal Technologies Office (GTO)

Geothermal Data Repository

- "Open, transparent, universal access to public data" – Jon Weers, NREL
- Data available to "innovate and discover new insights through data science and machine learning"

https://gdr.openei.org

GDR - Data Querying

GDR - Search

FORGE - https://gdr.openei.org/forge

Q search GDR data

Search

Direct Use

EGS

FORGE

Hydrothermal

Featured Data

tps://gdr.openei.org/abo

FORGE Main Page

Utah FORGE

The Utah FORGE (Frontier Observatory for Research in Geothermal Energy) laboratory, near Milford, Utah, comprises a large volume of hot crystalline granite between two deep directionally drilled wells at around 8000 feet depth below the surface. Utah FORGE scientists and engineers work to develop, test, and accelerate breakthroughs in enhanced geothermal system (EGS) technologies and techniques, including the initialization and continuation of fracture networks in basement rock formations.

The Utah FORGE research team is led by the University of Utah's Energy and Geoscience Institute (EGI).

Utah FORGE Data

Browse Utah FORGE Data Search Utah FORGE Data Submit Utah FORGE Data

Interactive Visualization of Utah FORGE Stimulation Data

Use the visualization below to explore the temperature and pressure (measured at the surface) during each stimulation cycle for three zones (deep, intermediate, and shallow) within the 58-32 well.

Open Hole Stimulation

Interpret data with caution: Microseismic event locations have a very high uncertainty.

FORGE - Browse FORGE Data

Utah FORGE is a dedicated underground field laboratory sponsored by DOE. The lab is located near the town of Milford in Beaver County, Utah, on the western flank of the Mineral Mountains.

View Utah FORGE Site

The Energy Department envisions Utah FORGE as a dedicated site where scientists and engineers will be able to develop, test, and accelerate breakthroughs in enhanced geothermal system technologies.

View GTO Utah FORGE Site

An extensive volume prepared by Drs. Rick Allis and Joseph Moore on the geothermal characteristics of the Roosevelt Hot Springs system and adjacent FORGE EGS Site near Milford, Utah.

View Site Characteristics Report

Utah FORGE Data

Search this table

Submissions

13414 Downloads (this year)

204.56 GB

of Utah FORGE Data

Submission ♦	id ₩	Submitted \$	Downloads Last Month ♦	Downloads This Year ♦	Resources \$	Size 🖨	Status \$	Updated Date \$
Utah FORGE Seismicity Associated with the 2019 Well 58-32	1385	06/13/2022	0	0	1	10.18 kB	Publicly accessible	06/13/2022
Utah FORGE Well 16A(78)-32 Stimulation Data (April, 2022)	1379	05/25/2022	0	0	11	288.94 MB	Publicly accessible	06/06/2022
Utah FORGE Groundwater Levels: Updated March 2022	1371	03/17/2022	0	19	1	19.81 MB	Publicly accessible	03/21/2022
Utah FORGE FSB4, FSB5, & FSB6 Shallow Seismic Well Lo	1370	03/08/2022	1	20	1	433.00 kB	Publicly accessible	03/24/2022
Utah FORGE Updated Well, Well Pad, and Seismic Station G	1358	12/14/2021	1	42	1	4.33 kB	Publicly accessible	01/06/2022
Utah FORGE Well 78B-32 Core Photos: Wet and Dry in Boxes	1342	10/22/2021	0	44	1	355.14 MB	Publicly accessible	11/08/2021
Utah FORGE Raw Microgravity Composite Data: Updated 10/	1337	10/14/2021	0	4	1	7.98 kB	Publicly accessible	10/15/2021
Utah FORGE Groundwater Levels: Updated 2021	1335	10/12/2021	0	32	1	19.24 MB	Publicly accessible	10/14/2021
Utah FORGE Well 78B-32 Daily Drilling Reports and Logs	1330	08/20/2021	0	577	21	11.89 GB	Publicly accessible	02/14/2022

60

Showing 1 to 10 of 113 entries

Utah FORGE Well 16A(78)-32 Core Photos

50.05 MB

Publicly accessible 08/12/2021

Previous 1 2 3 4 5 ... 12 Next

Show 10 ∨ entries

08/11/2021

1328

0

FORGE – Browse FORGE Data (continued)

Utah FORGE is a dedicated underground field laboratory sponsored by DOE. The lab is located near the town of Milford in Beaver County, Utah, on the western flank of the Mineral Mountains.

View Utah FORGE Site

The Energy Department envisions Utah FORGE as a dedicated site where scientists and engineers will be able to develop, test, and accelerate breakthroughs in enhanced geothermal system technologies.

View GTO Utah FORGE Site

An extensive volume prepared by Drs. Rick Allis and Joseph Moore on the geothermal characteristics of the Roosevelt Hot Springs system and adjacent FORGE EGS Site near Milford, Utah.

View Site Characteristics Report

Utah FORGE Data

113
Submissions

13414 Downloads (this year) 204.56 GB

of Utah FORGE Data

58-32 Q

Show All ∨ entries

Submission ♦	id 🕶	Submitted \$	Downloads Last Month ♦	Downloads This Year ♦	Resources \$	Size 🖨	Status \$	Updated Date \$
Utah FORGE Seismicity Associated with the 2019 Well 58-32	1385	06/13/2022	0	0	1	10.18 kB	Publicly accessible	06/13/2022
Utah FORGE: Well 58-32 (MU-ESW1) FMI Log Fracture Res	1299	04/04/2021	0	41	1	4.55 kB	Publicly accessible	04/13/2021
Utah FORGE: 58-32 Injection and Packer Performance, April	1210	03/25/2020	0	85	1	832.08 kB	Publicly accessible	04/13/2021
Utah FORGE: Well 58-32 Core Analyses	1162	07/22/2019	0	57	1	24.23 MB	Publicly accessible	03/12/2020
Utah FORGE: Well 58-32 Stimulation Data	1149	06/28/2019	0	502	16	61.50 MB	Publicly accessible	03/12/2020
Utah FORGE: Well 58-32 Stimulation Conference Paper and	1146	06/25/2019	4	106	2	1.80 MB	Publicly accessible	07/12/2021
Utah FORGE: Well 58-32 Injection Test Data	1109	12/07/2018	0	62	2	3.71 MB	Publicly accessible	03/09/2020
Utah FORGE: Milford Deep Test Well 58-32 (MU-ESW1) Pres	1101	11/21/2018	0	16	1	1.23 MB	Publicly accessible	03/12/2020
Utah FORGE: Well 58-32 Schlumberger FMI Logs DLIS and	1076	07/17/2018	0	112	3	2.40 GB	Publicly accessible	07/08/2021
Utah FORGE: Deep Well 58-32 (MU-ESW1) Core Data	1007	04/11/2018	0	87	5	6.34 GB	Publicly accessible	03/12/2020
Utah FORGE: Logs and Data from Deep Well 58-32 (MU-ES	1006	04/11/2018	0	387	9	2.32 GB	Publicly accessible	02/15/2022

Showing 1 to 11 of 11 entries (filtered from 113 total entries)

evious

ext

FORGE – Downloading Datasets

Utah FORGE: Logs and Data from Deep Well 58-32 (MU-ESW1)

Abstract

Data, logs, and graphics associated with the drilling and testing of Utah FORGE deep test well 58-32 (MU-ESW1) near Roosevelt Hot Springs.

9 Resources

		= =
Forge 58-32 Monitor Well Dipole Sonic D	Dipole sonic waveform data collected by Schlumberger from Utah FORGE Well 58-32.	Not Available
MU-ESW1 data to 7536' TD.csv <u>★</u> 12*	This is a one foot interval drilling dataset for well 58-32 that covers from 85.18 feet to 7536.25 feet in depth (which is TD). It contains information such as depth, r more	♣ Download (919 kB)
Well 58-32 Daily Drilling Reports.zip ± 511°	Zipped archive of the daily drilling reports associated with Utah FORGE deep test well 58-32 (MU-ESW1)	♣ Download (63.57 MB)
 Well 58-32 Directional Survey.zip ± 342^s 	Zipped archive containing directional survey data and graphics for Utah FORGE deep test well 58-32 (MU-ESW1) in PDF format.	≛ Download (415.88 kB)
Well 58-32 Final Mud Log.pdf ± 504°	The final mud log for Utah FORGE deep test well 58-32 (MU-ESW1) in PDF format	♣ Download (7.49 MB)
Well 58-32 Logs.zip ± 792*	Zipped dataset consisting of Schlumberger logs and derived graphics for well 58-32 (MU-ESW1) including Dipole Shear Sonic Imaging, FullBore Micro Imager, Array Inductio more	≛ Download (1.6 GB)
Well 58-32 PT Logs.zip ± 324°	Zipped archive containing pressure/temperature logs from several runs in Utah FORGE deep well 58-32 (MU-WSW1) in PDF and las files. A summary temperature and pressure more	L Download (13.39 MB)
Well 58-32 Pason Logs.zip	Zipped archive containing the Pason drilling logs from well 58-32 in CSV format from	≛ Download

Data from April, 2018 Submitted Apr 11, 2018

Contact

Energy and Geoscience Institute at the University of Utah Greg Nash

801.585.9986

Status

Publicly accessible

License @

Download All Resources
(8 files 1 75 GB)

Joe Moore

Authors

Greg Nash

Energy and Geoscience Institute at the University of Utah

Energy and Geoscience Institute at the University of Utah

Keywords

geothermal, energy, Utah FORGE, FORGE, Utah, geothermal well, test well, drilling, geothermal drilling, drilling data, well testing, well test data, FMI logs, DSI logs, gamma logs, porosity, caliper logs, daily reports, Temperature logs, pressure logs, isolation scanner, sonic logs, mud logs, directional survey, pason logs, borehole stress, PT reports, well logs, MU-ESW1, 58-32, Roosevelt Hot Springs, log, data, depp, well, caliper, EGS, well log, testing, Milford, well data, resource, characterization, Temperature, Pressure, deep well, pason data

Share

Energy and Geoscience Institute at the Universit

Questions?

Helpful Links:

- GDR https://gdr.openei.org
- Utah FORGE Project Website https://utahforge.com

For any additional questions regarding FORGE, GDR, or DOE GTO questions, please send an e-mail to: andy.adams@ee.doe.gov

Problem Description

PIVOT 2022 Datathon FORGE Performance Predictions by Well Placement

In this competition, we evaluate a hypothetical scenario where the FORGE location is an EGS production field and the first FORGE highly deviated well (16A) is the injection well. Based on the provided model results, we seek the theoretical optimum placement of the production well that maximizes the likelihood of achieving maximum netenergy and electrical-power output over a 20 year project lifespan, accounting for parasitic losses.

Data Sets that Informed Our Stochastic Simulations

Competitors are encouraged to refine the model space using a more detailed look at FORGE site data

- 1. Rassenfoss, S. (2022). Drillers vs. Granite: Hard Rock Is Losing Its Edge. Journal of Petroleum Technology.
- 2. Allis, R., Gwynn, M., Hardwick, C., Hurlbut, W., Moore, J. (2018) Thermal Characteristics of the FORGE site, Milford, Utah. GRC Transactions.
- 3. Well 16A78-32 Points Depths.csv. (2020). Geothermal Data Repository.
- Native State Modeling: Modeled Granitoid Parameters (and references therein). (2022). https://utahforge.com/laboratory/numerical-modeling/
- 5. UTAH FORGE INDUCED SEISMICITY MITIGATION PLAN, DE-EE0007080, University of Utah.
- 6. Xing, P., McLennan, J., Moore, J. (2020). In-Situ Stress Measurements at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site. Energies.
- 7. Frash, L.P. (2022). Optimized Enhanced Geothermal Development Strategies with GeoDT and Fracture Caging. 47th Workshop on Geothermal Reservoir Engineering.
- 8. 16A78-32 Summary of Daily Operations.pdf. (2021). Geothermal Data Repository.
- 9. {There is ample opportunity to refine site parameters using FORGE data or measurements from additional sources}

Introduction

Stochastic Model Workflow with GeoDT

Introduction

Well Design Variables

GeoDT Input-Output Data Structure

SUMMARY "Inputs Outputs FORGE.csv"

inputs results FORGE.txt - Notepad X File Edit Format View Help pin,size,ResDepth,ResGradient,ResRho,ResKt,ResSv,AmbTempC,AmbPres,ResE,Resv,ResG,Ks3,Ks2,s3Azn,s3AznVar,s3Dip,s3DipVar,fNum0,fDia_min0,fDia_max0,f! ^ :4.390,hpro:4.878,hpro:5.366,hpro:5.854,hpro:6.341,hpro:6.829,hpro:7.317,hpro:7.805,hpro:8.293,hpro:8.780,hpro:9.268,hpro:9.756,hpro:10.244,hpro:10.244,hpro:10.244,hpro:4.878,hpro:9.756,hpro:9.756,hpro:10.244,hpro:10.244,hpro:9.756 :7.317,dhout:7.805,dhout:8.293,dhout:8.780,dhout:9.268,dhout:9.756,dhout:10.244,dhout:10.732,dhout:11.220,dhout:11.707,dhout:12.195,dhout:12.683,dl 16.098,h0:16.585,h0:17.073,h0:17.561,h0:18.049,h0:18.537,h0:19.024,q1,m1,T1:0.000,T1:0.488,T1:0.976,T1:1.463,T1:1.951,T1:2.439,T1:2.927,T1:3.415,T1 874088231, 1.60000e + 03, 2.35663e + 03, 8.40045e + 01, 2.90375e + 03, 2.77066e + 00, 2.51699e + 03, 0.0, 1.01000e - 01, 5.82863e + 10, 2.94953e - 01, 2.25052e + 10, 4.97990e - 01, 2.90375e + 0.0000e + 0..64050e+02,3.64050 9819e+02,4.09458e+02,4.09106e+02,4.08771e+02,4.08450e+02,4.08141e+02,4.07844e+02,4.07558e+02,4.07283e+02,4.07017e+02,4.06761e+02,4.06513e+02,8.49119e+02,4.09106806301817, 1.60000e + 03, 2.35663e + 03, 8.40045e + 01, 2.90375e + 03, 2.77066e + 00, 2.51699e + 03, 0.0, 1.01000e - 01, 5.82863e + 10, 2.94953e - 01, 2.25052e + 10, 4.97990e - 01, 2.25052e + 10, 2.94953e - 10, 2.25052e + 10, 2.270e+06,9.26333e+02,2.00000e-04,9.86923e-11,9.86923e-08,4.71118e+02,2.14155e+07,6.71305e+07,4.64567e+07,4.41811e+07,1.00000e+00,3.03590e+01,3.00000 .64050e+02,3.64050 0500e + 02, 4.20030e + 02, 4.19685e + 02, 4.19290e + 02, 4.18938e + 02, 4.18589e + 02, 4.18257e + 02, 4.17935e + 02, 4.17324e + 02, 4.17034e + 02, 4.17034e + 02, 4.16754e + 02, 8.5209e + 02, 4.18589e + 02, 4.17935e + 02, 4.17936e + 02, 4.17935e + 02, 4.17936e + 02, 4.17936e135131836.1.60000 e + 03.2.35663 e + 03.8.40045 e + 01.2.90375 e + 03.2.77066 e + 00.2.51699 e + 03.0.0.1.01000 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.4.97990 e - 01.5.82863 e + 10.2.94953 e - 01.2.25052 e + 10.2.94863 e - 01.2.25052 e - 01.2.250100% Windows (CRLF)

В	С	D	E	F	G	Н		J	K	L	Р	Q	R Outputs	S	T
Variable	Parameter	Unit	Min Value	Nominal val Max	Value	Uncertainty (+)	Distribution	Source	Notes		Category	Parameter	Parameter	Unit	Notes
size	Domain size (i.e., cubic side len		Willi Value	1600	value	Oncertainty (±)	- Distribution	Native State I			Interpretation	type last	Type of freshest fracture		1 = nat frac: 2 = hydrofrac
ResDepth		m	2340		2360		Uniform	Well 16A78-3			Interpretation	Pc last	Critical pressure of freshest fracture	Pa	1 - Hat Hat, 2 - HyuroHat
	nt Geothermal gradient	K/km	83.1		87.4		Uniform	Allis, R., Gwy			Interpretation	sn last	Normal stress on freshest fracture	Pa	
ResRho	Rock density	kg/m3	2550		2950		Uniform	Native State I			Interpretation	Pcen last	Center pore pressure in freshest fracture		
ResKt	Rock thermal conductivity	W/mK	1.78		3.32		Uniform	Native State I			Interpretation	Pmax last	Max pore pressure in freshest fracture	Pa	
ResSv	Rock volumetric specific heat ca				/ResRho		Uniform	Native State I			Interpretation	dia last	Final diameter of freshest fracture	m	
	C Ambient surface temperature	C	0.74/ Neskii0	0	, neshilo		Uniform	NOAA	vioueiiiig. ivi		Efficiency	qinj	Cumulatiove injection rate	m3/s	*should be close to Qinj
AmbPres	Ambient surface pressure	MPa		0.101			Omiomi	NOAA			Efficiency	qpro	Cumulative production rate	m3/s	should be close to Qilly
CemKt	Cement thermal conductivity	W/mK		0.101			Uniform	Asadi, I., Shaf	inh D Hace		Efficiency	gleak	Boundary outflow rate	m3/s	
CemSv	Cement volumetric specific hear			2000			Uniform	Kodur, V. (201			Efficiency	qgain	Boundary inflow rate	m3/s	
	nc Electrical generator efficiency	- COVIIION		2000			- Officially	https://www.			Efficiency	recovery	Production rate / Injection rate	ratio	
LifeSpan	Project lifespan	yr		20				Vitaller, A.V.,			Efficiency	pinj	Pressure of injected fluid	MPa	
Tinj	Injection temperature	yı C	85		99			- Trailer, A.V.,	Angat, Utivit,		Efficiency	hinj	Enthalpy of injected fluid	kJ/kg	
p_whp	Power plant inlet pressure	MPa	85	1	,,,		Uniform	https://therm	onodia com		Efficiency	v5	Specific volume at injection well	m3/kg	
TimeSteps		steps		41			Omiomi	nttps://tilem	iopeuia.com	,	Intercepts	ixint	Number of fractures intercepting injector		
ra	Casing inner radius	m		0.0889			Uniform	Rassenfoss, S	(2022) Drill		Intercepts	pxint	Number of fractures intercepting injector		
rb	Casing outer radius	m		0.1016			Omiomi	Rassenfoss, S			Intercepts	hfstim	Number of stimulated hydraulic fracture:		
rc	Borehole radius	m		0.1143			-	Rassenfoss, S			Intercepts	nfstim	Number of stimulated natural fracutres	fractures	
	ef Borehole thermal convection co		,	3			Uniform	Kosky, P., Bali			Power	mpro	Production mass flow rate	kg/s	
rgh	Hazen-Williams friction coeffici		`	80			Uniform	Jeppson, R.W			Power	hpro - timeseries	Production enthalpy - time variable	kJ/kg	
PoreRho	Water density for flow analysis		920		932		Omiomi	Cooper, J.R. a			Power	Pout - timeseries	Rankine electrical power - time variable	kW	
Poremu	Water density for flow analysis Water dynamic viscosity	cP cP	920	0.2	332		-	Huber, M.L., F			Power		Extracted thermal power - time variable	kJ/s	
dT0	Initial temperature gradient	K		1			-	nuber, IVI.L., F	*Used to		Power	q0	Volume flow rate into injection well	m3/s	
dE0	Initial thermal energy withdraw			50					*Used to:		Power	m0	Mass flow rate into injection well	kg/s	
BH P	Reservoir pore pressure	MPa	calc	calc			Uniform	Native State I				T0 - timeseries	Temperature at injection well	rg/s	
BH T	Reservoir pore pressure Reservoir temperature	R R	calc	calc			Uniform	Native State I				h0 - timeseries	Enthalpy of injected fluid	kJ/kg	
ResE	Rock elastic modulus	GPa	55		62		Uniform	Native State I	_		Power	q0	Volume flow rate into production well	m3/s	
Resv	Rock Poisson's ratio	m/m	0.26		0.4		Uniform	Native State I			Power	m0	Mass flow rate into production well	kg/s	
Ks3	Minimum lateral earth pressure		0.26		0.637		Uniform	Xing, P., McLe			Power	T0 - timeseries	Temperature at production well	Kg/S K	
Ks2	Intermediate earth pressure		0.216		0.037 & >1.15k	(e2	Uniform	Xing, P., McLe			Power	h0 - timeseries	Enthalpy of produced fluid	kJ/kg	
s3Azn	Minimum stress azimuth		0.25 & >1.018 258		338	(55	Uniform				Power	no - umeseries	Entrialpy of produced fluid	KJ/Kg	
s3Azn s3Dip	Minimum stress azimutn Minimum stress dip	deg deg	-20		338		Uniform	Xing, P., McLe Xing, P., McLe							
s3DIP	Overburden stress	Pa					Uniform	Airig, P., MICLE	nnan, J., Mo s1 = Resf						
			calc calc	calc											
s2	Intermediate stress	Pa	calc	calc			Uniform Uniform		*s2 = (s1-l						
53	Minimum stress	Pa	caic 50	calc			Uniform	-	*s3 = (s1-l						
w spacing	Well spacing	m	50		1000		Unitorm								

GEOMETRY "_298143583_.vtk"

PLOT "_298143583_.png"

Introduction

GeoDT Timeseries Data Structure

Valid vs Invalid Data Analysis Approaches

Valid

- Multiparameter optimization of well geometry
- Multidimensional success metrics
- Verifiable site-parameter uncertainty reduction

Invalid

- Filtering to best scenario(s)
- Uncertainty not quantified
- Unjustified rejection of outliers

Proving the Negative: Scenario

In the subsurface, measurements are always sparse. Wells of 4" to 12" diameter are used to estimate formation rock properties 100's of ft away. Also, very few rock features (e.g., permeable faults) can be detected prior to commencement of drilling. When combined with the "K.I.S.S." design principle, this can lead designers to omit features that could exist and instead keep only the features that are known to exist. For example, if no known faults are in the area, there is a tendency to treat the area as faultless. However, the only verifiable way to prove this simplifying assumption is to prove that no faults are present. This requires proving a negative which is prohibitively expensive and difficult. In this challenge, we ask you to more closely follow the design principle of Murphy's Law: if a complication can exist, then the analysis should include this possibility. We seek the optimum placement of a production well that maximizes the probability of developing a successful enhanced geothermal system.

Introduction

Preliminary Analysis

Good to Increase
Injection rate
Production rate
Injection intervals
Production well length
Well spacing

Good to Decrease
Injection rate
Injection intervals
Bottomhole pressure
Well spacing

Its Complicated
Position (phase & toe)
Everything that is good to increase and decrease

23

Introduction

Example Output Power Objective Functions

Timeseries without Losses

$$P_{usable} = 0.13(dhout + (h_{95C} - h_{120C})mpro)$$

Cumulative without Losses

$$P_{usable} = \frac{1}{20yr} \int_{0}^{20} 0.13(dhout + (h_{95C} - h_{120C})mpro) dt$$

Timeseries with Losses

$$P_{usable} = 0.13 (dhout + (h_{95C} - h_{120C} - v5(Pinj - Pwhp))mpro)$$

<u>Notes</u>

- 1. "dhout" accounts for enthalpy-rate change from injection to production (kJ/s)
- 2. "net power" would also account for pumping losses (not shown)
- 3. "Pout" accounts for single-flash Rankine cycle net electrical power output with 100% generator efficiency, but requires higher enthalpy fluid than the binary power cycle. FORGE would likely benefit significantly from including a binary (e.g., organic Rankine) power cycle.
- 4. 0.13 (i.e., 13%) Rankine efficiency is a placeholder in the above. Actual efficiencies can be much different, depending on enthalpy and machinery specs.

Logistics

Learning

Combined repository of webinars conducted as part of past datathons.

- Introduction to Geothermal Energy
- Data Science
- Soft Skills

Networking and Team Creation

Slack channel – Datathon Central

Submit your teams by Monday June 27th, 2022, 8 AM Central

Competition

Competition Data will be released on 8 AM Central, June 27th, 2022

Submission – 5-minute video Power Point Presentation

Submission Due Midnight Central July 22nd, 2022

Questions?