

Fully Connected Networks

$$a_i = \sum_{j \prec i} w_{i,j} z_j$$

$$z_i = f(a_i)$$

$$\mathbf{a}^{(h+1)} = \mathbf{W}^{(h)} \mathbf{z}^{(h)}$$

$$\mathbf{z}^{(h+1)} = f\left(\mathbf{a}^{(h+1)}\right)$$

$$\mathbf{z}^{(0)} = \mathbf{x}$$

2023/2024

Fully Connected Networks

- ▶ Each element is connected to the other, so we have
 - \blacktriangleright (5*4) + (5*4) + (5*4) + (5*4) + 5 connections

Fully Connected Networks

$$a_i = \sum_{j \prec i} w_{i,j} z_j$$

$$z_i = f(a_i)$$

$$\mathbf{a}^{(h+1)} = \mathbf{W}^{(h)} \mathbf{z}^{(h)}$$
 $\mathbf{z}^{(h+1)} = f\left(\mathbf{a}^{(h+1)}\right)$
 $\mathbf{z}^{(0)} = \mathbf{x}$

- ▶ Each element is connected to the other, so we have
 - \blacktriangleright (5*4) + (5*4) + (5*4) + (5*4) + 5 connections
- For a generic network with *k* layers and size d_h for each layer h, we have

$$\sum_{h=1}^{k} d_h \cdot d_{h-1}$$

Further Issues with Images

- ▶ The «flat» approach is not suited to learn
 - Spatial patterns
 - Spatial hierarchies

2023/2024

Example of patterns and hierarchies

- ▶ How to identify such patterns?
- ▶ How to generalize them?

Kernel

<i>W</i> ₇	<i>W</i> ₈	W 9
<i>W</i> ₄	<i>W</i> ₅	<i>W</i> ₆
<i>W</i> ₁	<i>W</i> ₂	W 3

Kernel

W ₇	<i>W</i> ₈	W 9
W ₄	<i>W</i> ₅	<i>W</i> ₆
W ₁	W ₂	W 3

Kernel

W ₇	<i>W</i> ₈	W 9
<i>W</i> ₄	<i>W</i> ₅	<i>W</i> ₆
<i>W</i> ₁	<i>W</i> ₂	<i>W</i> ₃

Kernel

W ₇	<i>W</i> ₈	W 9
<i>W</i> ₄	<i>W</i> ₅	<i>W</i> ₆
<i>W</i> ₁	<i>W</i> ₂	<i>W</i> ₃

Kernel

W ₇	<i>W</i> ₈	W 9
<i>W</i> ₄	<i>W</i> ₅	<i>W</i> ₆
<i>W</i> ₁	W ₂	<i>W</i> ₃

Kernel

W ₇	<i>W</i> ₈	W 9
W ₄	<i>W</i> ₅	<i>W</i> ₆
W ₁	<i>W</i> ₂	W 3

Kernel

W ₇	<i>W</i> ₈	W 9
<i>W</i> ₄	<i>W</i> ₅	<i>W</i> ₆
<i>W</i> ₁	W ₂	<i>W</i> ₃

2023/2024

Convolution

▶ What is the number of parameters?

■ Why CNNs?

- Convolution leverages four ideas:
 - Sparse interactions
 - need to store fewer parameters, computing output needs fewer operations $(O(m \times n) \text{ versus } O(k \times n))$
 - Parameter sharing
 - ▶ Same kernel is used throughout the input, so instead learning a parameter for each location, only a set of parameters is learnt
 - ▶ Equivariant representations
 - ▶ Ability to work with inputs of variable size

- The result of the convolution with a 3x3 feature maps shriks the images by 2 pixels along each dimension
- ▶ To avoid this effect, one might use padding, that is, add one external box of appropriate width and height.

2023/2024

- ▶ The center of the convolution are not necessarily contiguous
- ▶ The distance between two consecutive windows is the stride

		_		l	 l		1
]					
			1			2	
1	2						-
		_					
		-					Γ
3	4						L
		1	3			4	
							r
		•					

Multiple Filters

Kernel 8

Kernel | W₇ | W₈ | W₉ | | W₄ | W₅ | W₆ | | W₁ | W₂ | W₃ |

- ▶ We can use multiple kernels...
- ... and each kernel identifies a feature map

Convolutional Networks

▶ Neural Networks that use convolution in place of general matrix multiplication in at least one layer

Convolutional neural networks

Deep Learning and Convolution

Convolution in general

- ▶ Not just 2-D image as a running example
 - Operates on volumes
 - ▶ E.g., RGB Images would be depth 3 input

▶ Operates on 1-D vector

Example with RGB Images (1/4)

```
import tensorflow as tf
from tensorflow.keras import datasets, layers, models, optimizers
# CIFAR 10 is a set of 60K images 32x32 pixels on 3 channels
IMG CHANNELS = 3
IMG ROWS = 32
IMG COLS = 32
#constant
                           Multiclass classification
BATCH SIZE = 128
EPOCHS = 20
CLASSES = 10
VALIDATION SPLIT = 0.2
OPTIM = tf.keras.optimizers.RMSprop()
```


Example with RGB Images (2/4)

```
Number of filters
#define the convnet
                                                         Kernel size
                                                                    No padding (otherwise, use 'same')
def build(input_shape, classes):
 model = models.Sequential()
 model.add(layers.Convolution2D(32, (3, 3), activation='relu', padding='valid'
                         input shape=input shape))
 model.add(layers.MaxPooling2D(pool size=(2, 2)))
 model.add(layers.Dropout(0.25))
 model.add(layers.Flatten())
 model.add(layers.Dense(512, activation='relu'))
 model.add(layers.Dropout(0.5))
 model.add(layers.Dense(classes, activation='softmax'))
  return model
```

2023/2024

Example with RGB Images (3/4)

```
# data: shuffled and split between train and test sets
(X train, y train), (X test, y test) = datasets.cifar10.load data()
# normalize
X train, X test = X train / 255.0, X test / 255.0
# convert to categorical
# convert class vectors to binary class matrices
y train = tf.keras.utils.to categorical(y train, CLASSES)
y test = tf.keras.utils.to categorical(y test, CLASSES)
model=build((IMG ROWS, IMG COLS, IMG CHANNELS), CLASSES)
model.summary()
```

2023/2024

Example with RGB Images (4/4)

```
# use TensorBoard,
callbacks = [
  # Write TensorBoard logs to `./logs` directory
  tf.keras.callbacks.TensorBoard(log dir='./logs')
# train
model.compile(loss='categorical crossentropy', optimizer=OPTIM, metrics=['accuracy'])
model.fit(X train, y train, batch size=BATCH SIZE,
  epochs=EPOCHS, validation split=VALIDATION SPLIT,
  verbose=VERBOSE, callbacks=callbacks)
score = model.evaluate(X test, y test,
                     batch size=BATCH SIZE, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])
```