Universidade Federal de Santa Maria Programa de Pós-Graduação em Informática - PPGI

Expressões Aritméticas Tipadas e Cálculo Lambda Simplesmente Tipado

Linguagens de Programação – ELC921 Prof^a Dr^a Juliana Kaiser Vizzotto

ALUNOS: Alberto Kummer, Camila Nogueira, Daniel di Domenico, Fernando Campagnolo, José Puiati

8.1 Tipos (Expressões Aritméticas Tipadas)

- Avaliação de termos sem tipos:
 - √ Resulta em um valor (true, false ou nv [0 ou succ nv]).
 - ✓ Ou trava em algum estágio da avaliação no qual nenhuma regra de avaliação se aplica (pred false).

8.1 Tipos (Expressões Aritméticas Tipadas)

Objetivo dos tipos:

- ✓ Identificar termos com erros que irão ocasionar um travamento antes de avaliá-los.
- ✓ Tipos criados: Bool (booleans) e Nat (naturais).
- ✓ De forma estática: t : T (t possui tipo T) indica que t irá avaliar para um valor de forma correta (sem travamento) dispensando a necessidade de avaliá-lo.
- ✓ Análise conservadora: usa apenas a informação estática, não permitindo expressões como if true then 0 else false, mesmo que elas não ocasionem um travamento.

Conjunto de regras de inferência que atribuem tipos ao termos, onde t : T (o termo t tem tipo T):

```
Regras de tipos para booleans

true : Bool (T-TRUE)

false : Bool (T-FALSE)

\frac{t_1 : Bool \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (T-IF)
```

Adaptado de (Pierce, 2002).

Regras de tipos para números

0 : Nat (T-Zero)

 $\frac{\texttt{t}_1 \; : \; \texttt{Nat}}{\texttt{succ} \; \texttt{t}_1 \; : \; \texttt{Nat}} \tag{T-Succ}$

 $\frac{\mathtt{t}_1 : \mathtt{Nat}}{\mathtt{pred} \ \mathtt{t}_1 : \mathtt{Nat}} \tag{T-PRED}$

 $\frac{\texttt{t}_1 \; : \; \texttt{Nat}}{\texttt{iszero} \; \texttt{t}_1 \; : \; \texttt{Bool}} \tag{T-IsZero}$

Adaptado de (Pierce, 2002).

- Derivação de tipos:
 - √ Árvores de instâncias de tipos.
 - \checkmark Exemplo: if iszero 0 then 0 else pred 0.

Theorem (TEOREMA DA UNICIDADE DOS TIPOS)

Indica que, se um termo possui um tipo, esse tipo é único e existe apenas uma regra de inferência que deriva a sua construção.

8.3 Segurança = Progresso + Preservação

- Garantias que a avaliação de um programa bem tipado não travará.
- Dois pilares da segurança:
 - ✓ Progresso: termos bem tipados são avaliados completamente (até sua forma normal).
 - ✓ Preservação: um passo de avaliação de um termo bem tipado resulta noutro termo igualmente bem tipado.
- No decorrer do Capítulo 8.3, Pierce (2002) mostra exemplos de Progresso e Conservação, onde os termos são classificados em alguma regra de inferência (como T-TRUE, T-IF e T-SUCC) e é aplicada alguma regra de avaliação a ele (E-IFTRUE, E-IF, E-SUCC, ...).

8.3.1 Formas Canônicas

Lemma (FORMAS CANÔNICAS I)

Se v é um valor do tipo Bool então v é true ou false.

```
egin{array}{lll} t & ::= & & & valor "verdadeiro" \ & false & & valor "falso" \end{array}
```

Lemma (FORMAS CANÔNICAS II)

Se v é um valor do tipo Nat então v é um valor numérico conforme a gramática:

```
v ::= ...

nv valor numérico

nv ::=

0 valor "zero"

succ nv sucessor
```

8.2.1 Inversão da Relação de Tipos

Lemma (Inversão da Relação de Tipos)

- 1 Se true : R, então R = Bool.
- 2 Se false : R, então R = Bool.
- 3 Se if t_1 then t_2 else t_3 : R, então t_1 : Bool, t_2 : R, e t_3 : R.
- 4 Se 0: R, então R = Nat.
- 5 Se succ t_1 : R, então R = Nat e t_1 : Nat.
- 6 Se pred t_1 : R, então R = Nat e t_1 : Nat.
- 7 Se iszero t_1 : R, então R = Bool e t_1 : Nat.

Prova: Imediato a partir das Formas Canônicas.

Suponha t um termo bem tipado. Então ou t é um valor ou ele será avaliado (t \to t').

- Por indução, T-TRUE, T-FALSE e T-ZERO são casos diretos: itens 1, 4 e 2 do Lema de Relação de Tipos, respectivamente.
- T-If:

$$\label{eq:total_total_total} \begin{array}{l} t = \mbox{if } t_1 \mbox{ then } t_2 \mbox{ else } t_3 \\ t_1 \mbox{ : Bool } \qquad t_2 \mbox{ : } T \mbox{ } t_3 \mbox{ : } T \end{array}$$

- ✓ Se a guarda do if é um valor então ele será true ou false conforme as Formas Canônicas – e uma das seguintes regras serão aplicadas: E-IfTrue ou E-IfFalse.
- ✓ Senão t \rightarrow t'e aplica-se T-If:

$$\mathtt{t} = \mathtt{if} \ \mathtt{t_1} \texttt{, then } \mathtt{t_2} \ \mathtt{else} \ \mathtt{t_3}$$

Suponha t um termo bem tipado. Então ou t é um valor ou ele será avaliado (t \rightarrow t').

■ T-Succ:

$$t = succ t_1$$
 $t_1 : Nat$

- \checkmark Se t_1 for um valor, então ele é do tipo numérico (Nat) e, segundo as Formas Canônicas, avalia para 0 ou succ nv
- ✓ Senão t \rightarrow t' e aplica-se E-Succ:

$$t = succ t_1$$
'

Suponha t um termo bem tipado. Então ou t é um valor ou ele será avaliado (t \to t').

■ T-Pred:

$$\mathtt{t} = \mathtt{pred} \ \mathtt{t}_1 \qquad \ \mathtt{t}_1 \colon \ \ \mathtt{Nat}$$

- ✓ Se t_1 for um valor, então ele é do tipo numérico (Nat) e pode ser avaliado por uma das seguintes regras: E-PREDZERO ou E-PREDSUCC
- ✓ Senão t \rightarrow t' e aplica-se E-Pred

Suponha t um termo bem tipado. Então ou t é um valor ou ele será avaliado (t \rightarrow t').

■ T-IsZero:

$$t = iszero t_1$$
 t_1 : Nat

✓ Mesmas condições de T-PRED com a ressalva de que as regras aplicáveis a t são E-ISZEROZERO, E-ISZEROSUCC e E-ISZERO

8.3.3 Teorema: Preservação

Suponha t : T $\ \ e \ \ t \to t$ '. Então t' : T.

- T-True, T-False e T-Zero:

 √ t é um valor e o teorema não se aplica.
- T-If:

$$\label{eq:total_total_total} \begin{array}{l} t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \\ \\ t_1 : \text{Bool} \\ \end{array} \quad \begin{array}{l} t_2 : T \\ \end{array} \quad t_3 : T \end{array}$$

- ✓ Caso t₁ : Bool: Aplica-se E-IFTRUE ou E-IFFALSE.
- $\checkmark~$ Se t $_1$ não é um valor, t $_1~\rightarrow~$ t $_1$ ' e então aplica-se $\operatorname{E-IF}$

$$\label{eq:total_total} \begin{array}{llll} \texttt{t'} = \texttt{if} \ \texttt{t}_1 \texttt{'} \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3 \\ \texttt{t}_1 \texttt{'} : \texttt{Bool} & \texttt{t}_2 : \texttt{T} & \texttt{t}_3 : \texttt{T} \end{array}$$

8.3.3 Teorema: Preservação

■ T-Succ:

$$t = succ \ t_1 \ T = Nat \ t_1 : Nat$$

√ Só é possível avaliar via E-Succ:

$$\frac{\texttt{t}_1 \, \rightarrow \, \texttt{t}_1 \, \text{'}}{\texttt{succ} \ \texttt{t}_1 \, \rightarrow \, \texttt{succ} \ \texttt{t}_1 \texttt{1}} \ (\text{E-Succ})$$

Tipos de Funções

- Para construir um tipo que combine booleanos com primitivas do cálculo lambda é preciso adicionar uma classificação para os termos cuja avaliação resulta em uma função;
- A fim de ter certeza de que a função irá se comportar corretamente quando for chamada, precisamos manter o controle de qual o tipo de argumento que ela espera.

Tipos de Funcoes

■ Para manter esta informação, podemos utilizar um novo tipo:

$$T ::=$$

$$Bool$$

$$T \to T$$

Tipos de Funções

Exemplo:

$$Bool
ightarrow Bool$$
 $(Bool
ightarrow Bool)
ightarrow (Bool
ightarrow Bool)$

Relação de Tipos

- Para saber o tipo de uma abstração como "λx.t", precisamos calcular o que acontece quando essa abstração é aplicada a algum argumento;
- Abordagem utilizada agora: anotar a abstração com o tipo esperado para seus argumentos.
- Exemplo: " $\lambda x.t$ " será " λx : T1.t2"

Relação de Tipos

Termos podem conter abstrações aninhadas. Com isso em mente, utilizaremos Γ ⊢ t : T onde Γ é um conjunto com as variáveis livres de t e seus respectivos tipos. Sendo assim, a regra de tipo para abstrações será:

$$\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1.t_2 : T_1 \rightarrow T_2} \qquad (T - Abs)$$

Relação de Tipos

A regra para variável é:

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \qquad (T-Var)$$

■ A regra para aplicação é:

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \quad (T - App)$$

9.3.1 - Lemma [Inversion of the typing relation]

- If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- If $\Gamma \vdash \lambda x : T_1.t_2 : R$, then $R : T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T1 \vdash t_2 : R_2$.
- If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- If $\Gamma \vdash true : Bool$, then R : Bool.
- If $\Gamma \vdash false : Bool$, then R : Bool.
- If $\Gamma \vdash$ if then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : Bool$ and $t_1 \ t_2 : R$.

9.3.3 - Theorem [Uniqueness of Types]

- $lue{}$ Give a context Γ and a Term t, t must have at most one type.
- [Proof] If $\Gamma \vdash x : T$ and $\Gamma \vdash x : S$ then S = T by T-Var.

9.3.4 - Lemma [Canonical Forms]

- If v: Bool, then v is $true \mid false$.
- If $v: T_1 \to T_2$, then $v = \lambda x: T_1.t_2$.

9.3.5 - Theorem [Progress]

- If $\vdash k : T$ then either k is a value, or $k \to k'$ to some k'.
- The variable case cannot occur.
- The abstraction occur, since abstractions are values.
- The application is not so simple.
 - Case T-App: $k' = k_1 \ k_2 \mid \vdash k_1 : T_{11} \to T_{12}$ and $k_2 : T_{11}$.
 - k_1 is a term or it can make a step, in the same way k_2 .
 - If k_1 can make a step, then applies E-App1.
 - If k_1 is a value and k_2 can make a step, then applies E-App2.
 - If booth are value, then the canonical form of k_1 is $\lambda x : T_{11}.k_{12}$, and applies E-AppAbs.

9.3.6 - Lemma [Permutation]

- If $\Gamma \vdash e : T$ and Γ' is a permutation of Γ , then $\Gamma' \vdash e : T$.
- Proof: Γ ⊢ e : T

9.3.7 - Lemma [Weakening]

- If $\Gamma \vdash e : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$.
- Proof: Γ ⊢ e : T

9.3.8 - Lemma [Preservation of Types Under the Substitution][1]

- If $\Gamma, x : T' \vdash e : T$, and $\Gamma \vdash e' : T'$, then $\Gamma \vdash [x \rightarrow e']e : T$
- Proof: If $\Gamma, x : T' \vdash e : T$.
- ? Case T-Var:
 - ? t = z with $z : T \in (\Gamma, x : S)$
 - If z = x, then $[x \rightarrow s]z = s$
 - Otherwise, $[x \rightarrow s]z = z$
- ? Case T-Abs

?
$$\mathbf{t} = \lambda \ \mathbf{y} : T_2 . t_1$$

 $\mathbf{T} = T_2 \to T_1$

$$\Gamma$$
 x : **S**, **y** : $T_2 \vdash t_2 : T_1$

- $x \neq y$, and $y \notin FV(s)$.
- Permutation $\Gamma y : T_2, x : S \vdash t_1 : T_1$
- Weakening $\Gamma, y : T_2 \vdash s : S$
- By induction $\Gamma, y : T_2 \vdash [x \rightarrow s]t_1 : T_1$
- lacksquare By T-Abs $\Gamma \vdash \lambda y : T_2.[x
 ightarrow s]t_1 : T_2
 ightarrow T_1$

9.3.8 - Lemma [Preservation of Types Under the Substitution][2]

```
? Case T-App:
        ■ By induction \Gamma \vdash [x \rightarrow s]t_1 : T_2 \rightarrow T_1
            and \Gamma \vdash [x \rightarrow s]t_2 : T_2
        ■ By T-App \Gamma \vdash [x \rightarrow s]t_1[x \rightarrow s]t_2 : T
? Case T-True and T-False
        ? t = true
            t = false
            T = Bool
        [x \rightarrow s]t = (true \mid false), \Gamma \vdash [x \rightarrow s]t : T
? Case T-If
        ? t = if t_1 the t_2 else t_3
            \Gamma x : S \vdash t_1 : Bool
            \Gamma x : S \vdash t_2 : T
            \Gamma \mathbf{x} : \mathbf{S} \vdash t_3 : \mathbf{T}
        By induction we have:
            \Gamma \vdash [x \rightarrow s]t_1 : \mathsf{Bool}
            \Gamma \vdash [x \rightarrow s]t_2 : \mathsf{T}
```

 $\Gamma \vdash [x \rightarrow s]t_2 : \mathsf{T}$

9.3.9 - Theorem [Preservation]

■ If $\Gamma \vdash e : T$ and $e \rightarrow e'$, then $\Gamma e' : T$.

- Ligação entre a teoria dos tipos e a lógica.
- Série de resultados na fronteira entre a lógica matemática e a teoria da computabilidade de forma a estabelecer uma relação entre a demonstração formal de um sistema lógico e um modelo computacional.

O símbolo lógico "→"vem com regras de dois gêneros:

- Uma regra de introdução (T-Abs) que descreve como elementos do tipo podem ser criados.
- 2 Uma regra de eliminação (T-App), que descreve como os elementos do tipo podem ser usados.

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1.t_2: T_1 \rightarrow T_2}$$

$$\frac{\Gamma \vdash t_1: T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2: T_{11}}{\Gamma \vdash t_1: t_2: T_{12}}$$

- Em Lógicas construtivas a prova de uma proposição P consiste em evidencias concretas para P.
- Curry e Howard notaram que tais evidencias possuem uma relação forte com a computação.
- Ex.: A prova de uma proposição P ⊃ Q pode ser vista como um procedimento mecânico que, dada uma prova de P, pode-se construir uma prova de Q. Da mesma forma uma prova P ∧ Q consiste em uma prova de P em conjunto com uma prova de Q.

Esta observação dá origem a seguinte correspondência:

Lógica	Linguagens de Programação
Proposições	Tipos
Tipos	Tipo $P \rightarrow Q$
Proposição P ⊃ Q	Tipo P × Q
Proposição P A Q	Termo t do tipo P

Figura: Tabela

A correspondência Curry-Howard não é limitada para um sistema de um tipo particular e uma logica específica, pelo contrario pode ser estendido a uma enorme variedade de sistemas de tipos e lógicas.

Correção e Tipagem

- Anotações de tipo não desempenham qualquer papel na avaliação.
- A maioria dos compiladores para linguagens de programação em grande escala, evitam mostrar comentários em tempo de execução: eles são usados durante o typechecking (e durante a geração de código, em compiladores mais sofisticados).
- Tipos não aparecem no cálculo lambda simplesmente tipado na sua forma compilada. Os programas são convertidos para uma forma sem tipos antes de serem avaliadas.

B.C. Pierce. *Types and Programming Languages*. MIT Press, 2002. ISBN 9780262162098.