### Exercices de colles - Fermeture géométrique

l'Ingénieur

**Sciences** 

#### Colle 01

#### Fermeture géométrique

#### Exercice 1 - Pompe à palettes \*\*

#### **B2-12** Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{AO} = e \overrightarrow{i_0}$  et  $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$ . De plus e = 10 mm et R = 20 mm. Le contact entre  $\mathbf{0}$  et  $\mathbf{2}$  en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).





**Question 1** *Tracer le graphe des liaisons.* 

**Question 2** Retracer le schéma cinématique pour  $\theta(t) = 0$  rad.

**Question 3** Retracer le schéma cinématique pour  $\theta(t) = \pi$  rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 1.

### Exercice 2 – Pompe à piston radial \*

Soit le mécanisme suivant. On a  $\overrightarrow{AO} = e \ \overrightarrow{i_0}$  et  $\overrightarrow{AB} = \lambda(t) \ \overrightarrow{i_1}$ . De plus  $e = 10 \, \text{mm}$  et  $R = 20 \, \text{mm}$ . Le contact entre  $\mathbf{0}$  et  $\mathbf{2}$  en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).





1

**Question 1** Tracer le graphe des liaisons.

**Question 2** *Exprimer*  $\lambda(t)$  *en fonction de*  $\theta(t)$ .

**Question 3** En utilisant Python, tracer  $\lambda(t)$  en fonction de  $\theta(t)$ .

**Question 4** Exprimer  $\dot{\lambda}(t)$  en fonction de  $\dot{\theta}(t)$ .

On prendra une section de piston **2** de 1 cm<sup>2</sup> et une fréquence de rotation de  $\dot{\theta}(t) = \pi \times 2 \text{ rad s}^{-1}$ .

**Question 5** Exprimer le débit instantané de la pompe.

**Question 6** En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour  $e = 10 \, \text{mm}$  et  $e = 15 \, \text{mm}$ .

**Question 7** En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour  $e = 10 \, \text{mm}$  pour une pompe à 5 pistons (5 branches 1+2).

Corrigé voir 2.

#### Exercice 3 – Pompe à palettes $\star$

#### B2-13

Soit le mécanisme suivant. On a  $\overrightarrow{AO} = e \ \overrightarrow{i_0}$  et  $\overrightarrow{AB} = \lambda(t) \ \overrightarrow{i_1}$ . De plus  $e = 10 \, \text{mm}$  et  $R = 20 \, \text{mm}$ . Le contact entre  $\mathbf{0}$  et  $\mathbf{2}$  en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).







Il est possible de mettre la loi entrée-sortie sous la forme  $\dot{\lambda}_{+}(t) = -e\,\dot{\theta}(t)\sin\theta(t) - \frac{e^2\dot{\theta}(t)\cos\theta(t)\sin\theta(t)}{\sqrt{e^2\cos^2\theta(t) - e^2 + R^2}}$  Question 2 D (voir exercice 2 – à vérifier).

**Question** 1 Donner le torseur cinématique

**Question 2** *Déterminer*  $\Gamma(B, 2/0)$ .

Corrigé voir 3.

Colle 02

#### Fermeture géométrique

### Exercice 4 - Pompe à pistons radiaux \*\* B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = e \ \overrightarrow{i_1}$  et  $\overrightarrow{BI} = R \ \overrightarrow{j_0}$ . De plus,  $e = 10 \, \text{mm}$  et  $R = 20 \, \text{mm}$ . Le contact entre  $\mathbf{1}$  et  $\mathbf{2}$  en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre  $\mathbf{0}$  et  $\mathbf{2}$ .



**Question 1** Tracer le graphe des liaisons.

**Question 2** Retracer le schéma cinématique pour  $\theta(t) = 0$  rad.

**Question 3** Retracer le schéma cinématique pour  $\theta(t) = \frac{\pi}{2}$  rad.

**Question 4** Retracer le schéma cinématique pour  $\theta(t) = -\frac{\pi}{2}$  rad.

Question 5 En déduire la course de la pièce 2.

Corrigé voir 4.

### Exercice 5 – Pompe à piston axial \*

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = e \ \overrightarrow{i_1}$  et  $\overrightarrow{BI} = R \ \overrightarrow{j_0}$  et  $\overrightarrow{AC} = \lambda(t) \ \overrightarrow{j_0}$ . De plus,  $e = 10 \, \text{mm}$  et  $R = 20 \, \text{mm}$ . Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre  $\mathbf{0}$  et  $\mathbf{2}$ .



Question 1 Tracer le graphe des liaisons.

**Question 2** *Exprimer*  $\lambda(t)$  *en fonction de*  $\theta(t)$ .

**Question 3** Exprimer  $\dot{\lambda}(t)$  en fonction de  $\dot{\theta}(t)$ .

**Question 4** On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

**Question 5** En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour  $e=10\,\mathrm{mm}$  et  $R=10\,\mathrm{mm}$  ainsi que pour  $e=20\,\mathrm{mm}$  et  $R=5\,\mathrm{mm}$ . La fréquence de rotation est  $\dot{\theta}(t)=100\,\mathrm{rad}\,\mathrm{s}^{-1}$ , la section du piston est donnée par  $S=1\,\mathrm{cm}^2$ .

#### Indications:

- 1. .
- 2.  $e \sin \theta + R \lambda(t) = 0$ .
- 3.  $\dot{\lambda}(t) = e\dot{\theta}(t)\cos\theta(t)$ .
- 4.  $q(t) = eS\dot{\theta}(t)\cos\theta(t)$ .
- 5. .

Corrigé voir 5.

#### Exercice 6 - Pompe à piston axial $\star$

B2-13

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = e \ \overrightarrow{i_1}$  et  $\overrightarrow{BI} = R \ \overrightarrow{j_0}$ . De plus,  $e = 10 \, \text{mm}$  et  $R = 20 \, \text{mm}$ . Le contact entre  $\mathbf{1}$  et  $\mathbf{2}$  en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre  $\mathbf{0}$  et  $\mathbf{2}$ .





Il est possible de mettre la loi entrée-sortie sous la forme  $\lambda(t)=e\sin\theta+R$  ou encore  $\dot{\lambda}(t)=e\dot{\theta}(t)\cos\theta(t)$  (voir exercice 5).

**Question** 1 Donner le torseur cinématique  $\{ \mathcal{V}(2/0) \}$  au point C.

**Question 2** *Déterminer*  $\overrightarrow{\Gamma(C,2/0)}$ .

Corrigé voir 6.

# Colle 03

#### Fermeture géométrique

Exercice 7 - Système bielle manivelle \*\*

**B2-12** Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = R \overrightarrow{i_1}$  et  $\overrightarrow{CB} = L \overrightarrow{i_2}$ . De plus,  $R = 10 \, \text{mm}$  et  $L = 20 \, \text{mm}$ .



**Question 1** *Tracer le graphe des liaisons.* 

**Question 2** Retracer le schéma cinématique pour  $\theta(t) = \frac{\pi}{2}$  rad.

**Question 3** Retracer le schéma cinématique pour  $\theta(t) = -\frac{\pi}{2}$  rad.

Question 4 En déduire la course de la pièce 3.

Corrigé voir 7.

#### Exercice 8 - Système bielle manivelle \*\*

C2-06

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = R \overrightarrow{i_1}$ ,  $\overrightarrow{CB} = L \overrightarrow{i_2}$  et  $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$ .



**Question 1** Tracer le graphe des liaisons.

**Question 2** *Exprimer*  $\lambda(t)$  *en fonction de*  $\theta(t)$ .

**Question 3** Exprimer  $\dot{\lambda}(t)$  en fonction de  $\dot{\theta}(t)$ .

**Question 4** En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est  $\dot{\theta}(t) = 100 \, \mathrm{rad} \, \mathrm{s}^{-1}$ , on prendra  $R = 10 \, \mathrm{mm}$  et  $L = 20 \, \mathrm{mm}$  puis  $L = 30 \, \mathrm{mm}$ .

**Question 5** En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

5.

Indications :

Corrigé voir 8.

Exercice 9 - Système bielle manivelle \*

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = R \overrightarrow{i_1}$  et  $\overrightarrow{CB} = L \overrightarrow{i_2}$ . De plus, R = 10 mm et L = 20 mm.



Il est possible de mettre la loi entrée-sortie sous la forme  $\lambda(t)=\pm\sqrt{L^2-R^2\cos^2\theta(t)}+R\sin\theta(t)$  et  $\dot{\lambda}(t)=$ 

$$\pm \left( \frac{R^2 \dot{\theta}(t) \cos \theta(t) \sin \theta(t)}{\sqrt{L^2 - R^2 \cos^2 \theta(t)}} \right) + \dot{\theta}(t) R \cos \theta(t). \text{ (à vérifier – voir exercice 8)}$$

**Question** 1 Donner le torseur cinématique  $\{ \mathcal{V}(2/0) \}$  au point B.

**Question 2** Donner le torseur cinématique  $\{ \mathcal{V}(2/0) \}$  et au point C.

**Question 3** *Déterminer*  $\Gamma(B, 2/0)$ .

**Question 4** Déterminer  $\Gamma(C, 2/0)$ .

Corrigé voir 9.

#### Colle 04

#### Fermeture géométrique

Exercice 10 – Système de transformation de mouvement  $\star\star$ 

**B2-12** Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = R \overrightarrow{i_1}$  et  $\overrightarrow{CA} = H \overrightarrow{j_0}$ . De plus,  $R = 30 \, \text{mm}$  et  $H = 40 \, \text{mm}$ .



**Question 1** Tracer le graphe des liaisons.

**Question 2** Retracer le schéma cinématique pour  $\theta(t) = \frac{\pi}{2}$  rad.

**Question 3** Retracer le schéma cinématique pour  $\theta(t) = 0$  rad.

**Question 4** Retracer le schéma cinématique pour  $\theta(t) = -\frac{\pi}{2}$  rad.

Question 5 En déduire la course de la pièce 3.

Corrigé voir 10.

#### Exercice 11 - Pompe oscillante \*

C2-06

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = R \overrightarrow{i_1}$  et  $\overrightarrow{CA} = H \overrightarrow{j_0}$ . De plus,  $R = 40 \, \text{mm}$  et  $H = 60 \, \text{mm}$ . Par ailleurs, on note  $\overrightarrow{CB} = \lambda(t) \, \overrightarrow{i_2}$ .



**Question 1** Tracer le graphe des liaisons.

**Question 2** Exprimer  $\lambda(t)$  en fonction de  $\theta(t)$ .

**Question 3** Exprimer  $\dot{\lambda}(t)$  en fonction de  $\dot{\theta}(t)$ .

**Question 4** Exprimer le débit instantané de la pompe.

**Question 5** En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre D = 10 mm.

Corrigé voir 11.

### Exercice 12 – Système de transformation de mouvement $\star$

**B2-13** Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{AB} = R \overrightarrow{i_1}$  et  $\overrightarrow{CA} = H \overrightarrow{j_0}$ . De plus,  $R = 30 \, \text{mm}$  et  $H = 40 \, \text{mm}$ .





Il est possible de mettre la loi entrée-sortie sous la forme \*\*\* (voir exercice 11).

**Question 2** Déterminer  $\Gamma(B, 3/0)$ .

**Question** 1 Donner le torseur cinématique  $\{ \mathcal{V}(3/0) \}$  au point B.

Corrigé voir 12.

## Exercices de colles - Fermeture géométrique

Industrielles de

l'Ingénieur

**Sciences** 

#### Colle 05

#### Fermeture géométrique

### Exercice 13 - Barrière Sympact \*\* B2-12

Soit le mécanisme suivant. On a  $\overrightarrow{AC} = H\overrightarrow{j_0}$  et  $\overrightarrow{CB} = R\overrightarrow{i_1}$ . De plus, H = 120 mm et R = 40 mm.





**Question** 1 Tracer le graphe des liaisons.

**Question 2** Retracer le schéma cinématique pour  $\theta(t) = \frac{\pi}{2}$  rad.

**Question 3** Retracer le schéma cinématique pour  $\theta(t) = 75$ °.

**Question 4** Dans l'hypothèse où la pièce **1** peut faire des tours complets, quelle doit être la longueur minimale de la pièce **2**.

**Question 5** Dans l'hypothèse où la pièce **2** fait 12 cm, quel sera le débattement maximal de la pièce **1**.

Corrigé voir 13.

9

### Exercice 14 - Barrière Sympact \*

Soit le mécanisme suivant. On a  $\overrightarrow{AC} = H\overrightarrow{j_0}$  et  $\overrightarrow{CB} = R\overrightarrow{i_1}$ . De plus, H = 120 mm et R = 40 mm.





#### **Question 1** Tracer le graphe des liaisons.

**Question 2** Exprimer 
$$\varphi(t)$$
 en fonction de  $\theta(t)$ .

**Question 3** *Exprimer* 
$$\dot{\varphi}(t)$$
 *en fonction de*  $\dot{\theta}(t)$ .

**Question 4** En utilisant Python, tracer  $\dot{\varphi}(t)$  en fonction de  $\dot{\theta}(t)$ . On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 14.

#### Exercice 15 - Barrière Sympact \*\*

#### B2-13

Soit le mécanisme suivant. On a  $\overrightarrow{AC} = H \overrightarrow{j_0}$  et  $\overrightarrow{CB} = R \overrightarrow{i_1}$ . De plus,  $H = 120 \, \text{mm}$  et  $R = 40 \, \text{mm}$ .





#### **Question 1** Calculer $\overrightarrow{V(B, 1/0)}$ ?

**Question 2** Calculer 
$$\overrightarrow{V(B,2/0)}$$
?

**Question 3** Justifier que 
$$\overrightarrow{V(B,2/1)} \cdot \overrightarrow{j_2} = 0$$
.

**Question 4** En déduire une relation cinématique entre les différentes grandeurs.

Corrigé voir 15.

#### Fermeture géométrique

Exercice 16 - Système 4 barres \*\*\*

B2-12 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$  avec a = 355 mm et f = 13 mm;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$  avec  $b = 280 \,\mathrm{mm}$ ;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$  avec  $c = 280 \,\mathrm{mm}$ ;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$  avec d = 89.5 mm et e = 160 mm;



**Question 1** Tracer le graphe des liaisons.

**Question 2** Retracer le schéma cinématique pour  $\theta_1(t) = 0$  rad.

**Question 3** Retracer le schéma cinématique pour  $\theta_1(t) = -\frac{\pi}{2}$  rad.

**Question 4** En déduire la course angulaire  $(\theta_4)$  de la pièce **3**.

Corrigé voir 16.

Exercice 17 - Système 4 barres \*\*

C2-06 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$  avec a = 355 mm et f = 13 mm;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$  avec  $b = 280 \,\mathrm{mm}$ ;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$  avec  $c = 280 \,\mathrm{mm}$ ;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$  avec d = 89.5 mm et e = 160 mm;



**Question 1** Tracer le graphe des liaisons.

**Question 2** *Exprimer*  $\theta_1(t)$  *en fonction de*  $\theta_4(t)$ .

**Question 3** Exprimer  $\dot{\theta}_1(t)$  en fonction de  $\dot{\theta}_4(t)$ .

**Question 4** En utilisant Python, tracer  $\dot{\theta}_1(t)$  en fonction de  $\dot{\theta}_4(t)$ . On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 17.



#### Exercice 18 - Système 4 barres $\star\star\star$

#### B2-13 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$  avec a = 355 mm et f = 13 mm;  $\overrightarrow{AB} = b\overrightarrow{x_2}$  avec b = 280 mm;  $\overrightarrow{BC} = -c\overrightarrow{x_3}$  avec c = 280 mm;  $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$  avec d = 89.5 mm et e = 160 mm;





Il est possible de mettre la loi entrée-sortie sous la forme \*\*\* (voir exercice 17). On définit le point G tel que  $\overrightarrow{OG} = L\overrightarrow{x_1}$ .

Question 1 Donner le torseur cinématique  $\{\mathcal{V}(1/0)\}$  au point G.

**Question 2** Déterminer  $\Gamma(G, 1/0)$ .

Corrigé voir 18.