Text Mining

Quite different from previous data mining tasks where variables or features are numeric, categorical and well-defined. Text mining can be hard, but also exciting and extremely useful

Sample applications

- Spam filtering
- Natural Language Processing,
- Sentiment Analysis
- Basis for chat bot
- Law (previous case studies)
- Finance (market sentiments)
- Fraud and Deception detection

Numerous Data Sources:

- Tweets
- Blogs
- Books
- News Feeds

Data Mining versus Text Mining

- Both seek for novel and useful patterns
 - Both are semi-automated processes
- Difference is the nature of the data:
 - Data Mining works on structured data stored in databases
 - Text Mining works on unstructured data in Word documents, PDF files, XML files, etc.
- Text mining first, impose structure to the data, then mine the structured data

Text Mining Fundamental Concepts

Text mining Objective

A semi-automated process of extracting knowledge from unstructured data sources i.e. knowledge discovery in textual databases

Structuring a collection of text

Traditional approach: bag-of-words

New approach: natural language processing for understanding nuances of spoken words

Sentiment Analysis

A technique used to detect favorable and unfavorable opinions toward specific products and services

Text Mining Process – three steps

Establish the Corpus of Text:

Gather documents, clean, prepare for analysis

Structure using Term Document Matrix (TDM):

Select a bag of words, compute frequencies of occurrence

Mine TDM for Patterns

-Apply data mining tools like classification and cluster analysis

Text Mining Process

Step 1: Establish the corpus (corpus defined on slide 10)

- Collect all relevant unstructured data
 e.g., textual documents, XML files, emails, Web pages, short
 notes, voice recordings...
- Digitize, standardize the collection e.g., all in ASCII text files
- Place the collection in a common place
 e.g., in a flat file, or in a directory as separate files

Text Mining Process

Step 2: Create the Term-by-Document Matrix

	Term Document Matrix								
Document /	investment	Profit	happy	Success					
Terms									
Doc 1	10	4	3	4					
Doc 2	7	2	2						
Doc 3			2	6					
Doc 4	1	5	3						
Doc 5		6		2					
Doc 6	4		2						

Step 2: Create the Term-by-Document Matrix (TDM), cont.

- Should all terms be included?
 - stop words = like, a, the (check slide 10 Stop words, include words
 - Synonyms, homonyms
- Stemming
 Stemming
 What is the best representation of the indices (values in
- cells)?
 - Row counts; binary frequencies; log frequencies;
 - Inverse document frequency

Text Mining Process

Step 2: Create the Term-by-Document Matrix (TDM), cont.

- TDM is a sparse matrix. How can we reduce the dimensionality of the TDM? Ways to Reduce Dimensionality:
 - Manual a domain expert goes through it
 - Eliminate terms with very few occurrences in very few documents
 - Transform the matrix using singular value decomposition (SVD)
 - SVD is similar to principle component analysis
 - Phrase-Mining and Term-Mining

If we have 30,000 unique words we would have 30,000. HUGE matrix (so we want to reduce the dimensionality)

PCA (a dimensionality-reduction method that is often used to reduce the dimensionality of large data sets) is a technique for dimension reduction.

EX: 100 variables in a dataset, PCA to reduce the dataset into only 10 variables

Step 3: Extract patterns/knowledge

- Classification (text categorization)
- Clustering (natural groupings of text)
 - Improve search recall & precision
 - Scatter/gather
 - Query-specific clustering
- Association rules among the documents
- Trend Analysis

Now, let's be more specific on the terminology

- Document: the unit that contains the text (Books, individual tweets, one emails)
- Corpus: a collection of documents (books in a library, tweets feeds, emails received in a company)
- Stop words: relatively useless words in text mining (a, an, the, she, he, why,)
- Tokenizer: function to split the text into individual words
- Stemming / Lemmatization: utility to group similar words (e.g. wait, waiting, waited into wait)
- Bag of words: a bag of words
- N-grams: instead of consider a single word, it may be more meaningful to consider combination of words.

EX: "is a" —> this is a bi-gram (2 word combo) "this is a" —> this is a tri-gram (3 word combo)

```
N = 1 : This is a sentence unigrams: is, a, sentence
N = 2 : This is a sentence bigrams: is a, a sentence
N = 3 : This is a sentence trigrams: this is a, a sentence
```

this.

Terminology cont'd (Term Frequency (TF), Inverse Document Frequency (IDF))

Imagine you are a librarian to find the most relevant book from a search query "Book for Analytics newbie"

Term Frequency is just the frequency of a word in the document. The only thing is if a word X occurs in document A 1 time and in B 10 times, its generally not true that the word X is 10 times more relevant in B than in A. The difference is generally lesser as compared to the actual ratio. Hence we TF is defined as

$$TF = 1 + log(TF) \text{ if } TF > 0$$
$$= 0 \qquad \text{if } TF = 0$$

1 + log (# of words aka raw frequency) EX: 1 + log (80) = 2.9

	Word Frequency									
Book Number	The	Big-Data	Analytics	Tree	newbie	book	for	Girl	honest	
1	120	80	60	20	1	5	120	0	0	
2	110	0	0	100	10	20	100	40	10	
3	130	0	0	10	11	30	110	20	10	
4	100	0	0	2	20	40	100	10	100	
5	90	0	0	10	30	20	100	100	40	

	TF								
Book Number	The	Big-Data	Analytics	Tree	newbie	book	for	Girl	honest
1	3.1	2.9	2.8	2.3	1.0	1.7	3.1	0.0	0.0
2	3.0	0.0	0.0	3.0	2.0	2.3	3.0	2.6	2.0
3	3.1	0.0	0.0	2.0	2.0	2.5	3.0	2.3	2.0
4	3.0	0.0	0.0	1.3	2.3	2.6	3.0	2.0	3.0
5	3.0	0.0	0.0	2.0	2.5	2.3	3.0	3.0	2.6

TF-IDF Matrix

• <u>Inverse Document Frequency (IDF)</u> is based on the principle that <u>less frequent words</u> are generally more informative.

$$IDF = log(N/DF)$$
 where

N = number of documents

DF = number of documents that has the word

- TF-IDF Matrix is simply the multiplication of the TF and IDF
- Document 1 is the most relevant to a search query of "Book for Analytics newbie"

EX:

N = 5 (aka 5 total documents)
DF = Big-Data = 1 (appears in 1 document)

Log (N / DF) = Log (5 / 1) = 0.70

IDF	The	Big-Data	Analytics	Tree	newbie	book	for	Girl	honest
N	5	5	5	5	5	5	5	5	5
DF	5	1	1	5	5	5	5	4	4
N/DF	1	5	5	1	1	1	1	1.25	1.25
Log(N/DF)	0.00	0.70	0.70	0.00	0.00	0.00	0.00	0.10	0.10

	TF-IDF									
Book Number	The	Big-Data	Analytics	Tree	newbie	book	for	Girl	honest	
1	0.0	2.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.2	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.3	

Spam Mail Classification as NLP showcase

 SMS Spam Collection Data Set from UCI https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

- pip install nltk
- pip install wordcloud
- Pip install TextBlob

Learning by doing

Some online tutorials

https://www.analyticsvidhya.com/blog/2015/04/information-retrieval-system-explained/

https://www.analyticsvidhya.com/blog/2018/02/the-different-methods-deal-text-data-predictive-python/

https://medium.com/towards-artificial-intelligence/text-mining-in-python-steps-and-examples-78b3f8fd913b

https://towardsdatascience.com/spam-classifier-in-python-from-scratch-27a98ddd8e73

https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html