USED CARS EXPLORATORY DATA ANALYSIS

SUBMITTED BY:

Adithyan J R Sreechand S Malavika S Hariprasad P

INTRODUCTION

Problem Definition:

- There is a huge demand for used cars in the Indian Market today
- Cars4 U is a budding tech start-up that aims to find foot holes in the business trend of selling pre-owned cars in the market.

Objective:

- Explore the dataset and extract insights using Exploratory Data Analysis(EDA).
- ➤ Perform Univariate ,Bivariate ,Multistate Analysis
- ➤ Key Meaningful observation on individual variables and relationship between the variables.

Data Background

- > The data is based on the sales of used cars and their various attributes manufactured in the past 20 years.
- ➤ https://www.kaggle.com/datasets/sukhmanibedi/cars4u

DATA COLLECTION

<u>Import Necessary libraries:</u>

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # to ignore warnings import warnings warnings.filterwarnings('ignore')

Read dataset from file using pandas.rea d_csv()

data=pd.read_csv(r"C:\Users\91940\Downloa
ds\used_cars_data.csv")
print(data)

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Price
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN	1.75
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN	12.50
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.50
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN	6.00
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN	17.74
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	First	20.54 kmpl	1598 CC	103.6 bhp	5.0	NaN	NaN
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	First	17.21 kmpl	1197 CC	103.6 bhp	5.0	NaN	NaN
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	First	23.08 kmpl	1461 CC	63.1 bhp	5.0	NaN	NaN
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	Third	17.2 kmpl	1197 CC	103.6 bhp	5.0	NaN	NaN
7252	7252	Mercedes-Benz E-Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	First	10.0 kmpl	2148 CC	170 bhp	5.0	NaN	NaN

7253 rows × 14 columns

DATA INFORMATION

Variables	Description					
S.NO.	Number of data					
Name	Name of the car which includes Brand name an d Model name					
Location	Location in which car is being sold or available f or purchase in cities					
Year	Manufacturing year of the car					
Kilometers_driv en	Total kilometers driven in the car by the previous owner in KM					
Fuel_type	The type of fuel used by the car (Petrol, Diesel, CNG, LPG, Electric)					
Transmission	The type of transmission used by the car (Automatic, Manual)					

Variables	Description				
Owner	Type of Ownership (First,Second,Third,Fourth)				
Mileage	Standard mileage used by the car company(in kmpl)				
Engine	The displacement volume of the engine in CC				
Power	Max. power of the engine in bhp				
Seats	Number of seats in the car				
New_Price	Price of new car of the same model in INR lakhs				
Price	Price of the used car (INR lakhs)				

Number of rows: 7253 Number of Columns: 14

Basic Column information print(data.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):
 # Column
                     Non-Null Count Dtype
                      -----
                     7253 non-null int64
    S.No.
                     7253 non-null
                                    object
    Location
                     7253 non-null
                                    object
                     7253 non-null int64
    Year
    Kilometers Driven
                     7253 non-null int64
    Fuel Type
                     7253 non-null object
                     7253 non-null
    Transmission
                                    object
                     7253 non-null
                                    object
    Owner Type
                                    object
    Mileage
                     7251 non-null
    Engine
                     7207 non-null
                                    object
 10 Power
                     7207 non-null
                                    object
 11 Seats
                     7200 non-null float64
 12 New Price
                     1006 non-null
                                    object
13 Price
                     6019 non-null
                                    float64
dtypes: float64(2), int64(3), object(9)
memory usage: 793.4+ KB
```

 Number of unique values in each column print(data.nunique())

S.No.	7253	
Name	2041	
	2041	
Location	11	
Year	23	
Kilometers_Driven	3660	
Fuel_Type	5	
Transmission	2	
Owner_Type	4	
Mileage	450	
Engine	150	
Power	386	
Seats	9	
New_Price	625	
Price	1373	
dtype: int64		

DATA REDUCTION

Variables to be dropped.

- Serial Number does not have any predictive power.
- New_price has 86 % of Null values.

data=data.drop(['S.No.'],axis=1)

data=data.drop(['New_Price'],axis=1)

New data information:

print(data.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 12 columns):
                        Non-Null Count Dtype
    Column
                        7253 non-null
                                        object
    Name
    Location
                        7253 non-null
                                        object
                                        int64
     Year
                        7253 non-null
    Kilometers Driven
                       7253 non-null
                                        int64
    Fuel Type
                        7253 non-null
                                        object
    Transmission
                        7253 non-null
                                        object
                                        object
    Owner Type
                        7253 non-null
    Mileage
                                        object
                        7251 non-null
                                        object
    Engine
                        7207 non-null
                        7207 non-null
                                        object
     Power
    Seats
                        7200 non-null
                                        float64
    Price
                        6019 non-null
                                        float64
dtypes: float64(2), int64(2), object(8)
memory usage: 680.1+ KB
None
```

DATA CLEANING

 Number of NAN values in each column print(data.isnull().sum())

S.No.	0
Name	0
Location	0
Year	0
Kilometers_Driven	0
Fuel_Type	0
Transmission	0
Owner_Type	0
Mileage	2
Engine	46
Power	46
Seats	53
New_Price	6247
Price	1234
dtype: int64	

Removing the nan values: data.dropna() data.isnull().sum() Out[6]: S.No. Name Location Year Kilometers_Driven Fuel_Type Transmission Owner_Type Mileage Engine Power Seats New Price Price dtype: int64

DATA CONVERTING

Variables Mileage, Engine and Power which affects the price of the cars are in "object" datatype. For analysis it is converted to "float64".

```
7 Mileage 7251 non-null object
8 Engine 7207 non-null object
9 Power 7207 non-null object
```

```
def clean_and_convert(column):
    return pd.to    numeric(column.str.extract('(\d+\.?\d*)')[0], errors='coerce')
```

```
data['Mileage'] = clean_and_convert(data['Mileage'])
data['Engine'] = clean_and_convert(data['Engine'])
data['Power'] = clean_and_convert(data['Power'])
```

```
data['Mileage']=data['Mileage'].astype(float)
data['Engine'] = data['Engine'].astype(float)
data['Power'] = data['Power'].astype(float)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 12 columns):
     Column
                        Non-Null Count
                                        Dtype
                                        object
                        7253 non-null
     Name
     Location
                        7253 non-null
                                        object
                        7253 non-null
                                        int64
     Year
     Kilometers Driven
                       7253 non-null
                                        int64
     Fuel Type
                        7253 non-null
                                        object
    Transmission
                        7253 non-null
                                        object
    Owner Type
                        7253 non-null
                                        object
                                        float64
    Mileage
                        7251 non-null
     Engine
                        7207 non-null
                                        float64
     Power
                        7078 non-null
                                        float64
                        7200 non-null
                                        float64
    Seats
 11 Price
                        6019 non-null
                                        float64
dtypes: float64(5), int64(2), object(5)
memory usage: 680.1+ KB
None
```

FEATURE HANDLING

New Features:-

- Age- Since age of the car is a contributing factor.
- Name column is splitted into two features Brand and Model.

from datetime import date

date.today().year

data['Car_Age']=date.today().year-data['Year']

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7253 entries, 0 to 7252 Data columns (total 15 columns): Column Non-Null Count Dtype 7253 non-null object Name Location 7253 non-null object 7253 non-null int64 Year Kilometers Driven 7253 non-null int64 Fuel Type 7253 non-null object Transmission 7253 non-null object 7253 non-null object Owner Type 7251 non-null Mileage float64 float64 Engine 7207 non-null Power 7078 non-null float64 float64 Seats 7200 non-null Price 6019 non-null float64 12 Car Age 7253 non-null int64 Brand 7253 non-null object 13 14 Model 7252 non-null object dtypes: float64(5), int64(3), object(7) memory usage: 850.1+ KB

Brand Feature has unique values:

print(data.Brand.unique())

Name: Brand, Length: 7253, dtype: object['Maruti' 'Hyundai' 'Honda' 'Audi' 'Nissan' 'Toyota' 'Volkswagen' '
Tata''Land' 'Mitsubishi' 'Renault' 'Mercedes-Benz' 'BMW' 'Mahindra' 'Ford' 'Porsche' 'Datsun' 'Jaguar' 'Volvo'
'Chevrolet' 'Skoda' 'Mini' 'Fiat' 'Jeep' 'Smart' 'Ambassador' 'Isuzu' 'ISUZU' 'Force' 'Bentley' 'Lamborghini' 'Hindustan'
'OpelCorsa']

Brand name 'Isuzu' and 'ISUZU' are same and they need to be in the uniform order. 'Mini' and 'Land' needs to be replaces to 'Mini Cooper' and 'Land Rover' respectively.

search_for=['IZUSU','Izusu','Mini','Land']
print(data[data.Brand.str.contains('|'.join(search_for))].head(5))
data["Brand"].replace({"ISUZU": "Isuzu", "Mini": "Mini Cooper","Land Rover"}, inplace=True)
print(data.Brand.unique())

```
['Maruti' 'Hyundai' 'Honda' 'Audi' 'Nissan' 'Toyota' 'Volkswagen' 'Tata' 'Land Rover' 'Mitsubishi' 'Renault' 'Mercedes-Benz' 'BMW' 'Mahindra' 'Ford' 'Porsche' 'Datsun' 'Jaguar' 'Volvo' 'Chevrolet' 'Skoda' 'Mini Cooper' 'Fiat' 'Jeep' 'Smart' 'Ambassador' 'Isuzu' 'Force' 'Bentley' 'Lamborghini' 'Hindustan' 'OpelCorsa']
```

EDA ANALYSIS

EDA refers to the method of studying and exploring record datasets to indentify

- > General patterns in the data.
- > Locate outliers
- > Identify relationship between variables.

Types of EDA analysis:

- > Statistical Analysis
- Univariate Analysis
- ➤ Bivariate Analysis
- > Multivariate Analysis

> STATISTICAL SUMMARY

EDA utilizes precise records to recognize the important tendency, variability, and distribution of variables.

Measures like mean, standard deviation, range, and percentiles are usually used.

Data Description of numerical features data.describe().T

- Year ranges from 1996 to 2019 and has a high range which shows both old model and new model cars are included.
- Kilometers driven has a avg of 58k km that differs highly from max value 6500000km which shows evidence of an outlier.
- Outliers are present in Engine ,Power and in Price.

	count	mean	std	min	25%	50%	75%	max
Year	7253.0	2013.365366	3.254421	1996.00	2011.00	2014.00	2016.00	2019.00
Kilometers_Driven	7253.0	58699.063146	84427.720583	171.00	34000.00	53416.00	73000.00	6500000.00
Mileage	7251.0	18.141580	4.562197	0.00	15.17	18.16	21.10	33.54
Engine	7207.0	1616.573470	595.285137	72.00	1198.00	1493.00	1968.00	5998.00
Power	7078.0	112.765214	53.493553	34.20	75.00	94.00	138.10	616.00
Seats	7200.0	5.279722	0.811660	0.00	5.00	5.00	5.00	10.00
Price	6019.0	9.479468	11.187917	0.44	3.50	5.64	9.95	160.00
Car_Age	7253.0	10.634634	3.254421	5.00	8.00	10.00	13.00	28.00

Univariate Analysis

- Univariate analysis specializes analyzing character variables inside the records set.
- It involves summarizing and visualizing a unmarried variable at a time to understand its distribution, relevant tendency, unfold, and different applicable records.
- **Histogram** is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a set of continuous data. This allows the inspection of the data for its underlying distribution (e.g. normal distribution), outliers, skewness, etc.
- A **Box Plot** is also known as Whisker plot is created to display the summary of the set of data values having properties like minimum, first quartile, median, third quartile and maximum.
- Box Plot is majorly used for viewing the direction of the outliers for features.

Distribution of Year in which car was manufactured and outlier analysis of Year.

- Skew=-0.84
- Negatively skewed
- Outliers present below 2005

Figure below shows the frequency distribution of Kilometers_driven by the cars in the inventory and outliers in the Kilometers_Driven feature.

- Skew=61.58
- Have incredibly high range
- Kilometers_driven should be converted to kilometers_driven_log for standardizing
- Major outlier which should be eliminated is 65000000 for BMW X5 xDrive 30d M Sport

Figure shows the frequency distribution of Mileage and outliers present in the Mileage in the box plot

- Skew—0.44
- 81 rows which has value equal to 0 due to data entry error (-ve skewed).
- 18 rows whose mileage is >30 (+ve skewed).

Figure below shows the frequency distribution of Engine of cars available and direction of the outlier in feature Engine

- Skew-1.41
- Outliers are present for engine greater than 3000(65 rows).
- Furthest range of outlier present consists of 6 rows for engine power greater than 5000.

Figure below shows the frequency distribution of power of the cars and outliers in the feature Power

- Skew -1.96
- Outliers ranges from 200bhp to 600bhp
- Max range of outliers that is to be removed consists of 5 rows which is grater than 500bhp.

Figure shows the frequency distribution of Age of car and boxplot which indicates where outliers are present in Car_Age Feature

- Skew-3.34
- Outliers are present in 20 lakhs INR to 160 lakh INR.
- Max range of outliers present >100 lakh INR is for Jaguar, Land Rover, Lamborgini.

Frequency Distribution of categorical columns:

- •Mumbai has the highest number of cars available for purchase, followed by Hyderabad and Coimbatore
- •~53% of cars have fuel type as Diesel this shows diesel cars provide higher performance
- •~72% of cars have manual transmission
- •~82 % of cars are First owned cars.

 This shows most of the buyers prefer to purchase first-owner cars

UNIVARIATE ANALYSIS cont..Observations of Categorical Columns:

- \sim 20% of cars belong to the brand Maruti followed by 19% of cars belonging to Hyundai
- WagonR ranks first among all models which are available for purchase

Figure below show pie plot of percentage distribution of Brand

BIVARIATE ANALYSIS

- <u>Bivariate</u> evaluation involves exploring the connection between variables. It enables find associations, correlations, and dependencies between pairs of variables.
- <u>Bivariate Analysis</u> helps to understand how variables are related to each other and the relationship between dependent and independent variables present in the dataset.
- Continous values can be plotted with Pair plots and Scatter plots are widely been used.
- Bar plots can be used to show relationship between categorical features and continuous.

Analysis of Price with Engine grouped by transmission.

Analysis of Price with Engine grouped by Fuel_Type.

- •The price of cars is high in Coimbatore and less price in Kolkata and Jaipur.
- •Automatic cars have more price than manual cars.
- •Diesel and Electric cars have almost the same price, which is maximum, and LPG cars have the lowest price
- •First-owner cars are higher in price, followed by a second
- •The third owner's price is lesser than the Fourth and above

- •Lamborghini brand is the highest in price
- •Gallardocoupe Model is the highest in price
- •2 Seater has the highest price followed by 7 Seater
- •The latest model cars are high in price

Affect of manufacture year on price of the car

Observation - When manufacture year rises price of the car also increases

Relation between Kilometers_driven and year

Observations

- Year and Kilometers_driven have negative correlation.
- Latest model cars have less usage before being sold.

MULTIVARIATE ANALYSIS

- Multivariate analysis extends bivariate evaluation to encompass greater than two variables.
- It ambitions to apprehend the complex interactions and dependencies among more than one variables in a records set.
- Here correlation heatmap is used. A **correlation heatmap** is a graphical tool that displays the correlation between multiple variables as a color-coded matrix. It's like a color chart that shows us how closely related different variables are.
- In a correlation heatmap, each variable is represented by a row and a column, and the cells show the correlation between them.

MULTIVARIATE ANALYSIS cont...

Figure below shows the Correlation HeatMap between all numerical features.

From the Heat map, we can infer the following:

- ☐ The engine has a strong positive correlation to Power 0.86
- ☐ Price has a positive correlation to Engine 0.69 as well Power 0.77
- ☐ Mileage has correlated to Engine, Power, and Price negatively
- ☐ Price is moderately positive in correlation to year.
- ☐ Kilometer driven has a negative correlation to year not much impact on the price
- ☐ Car age has a negative correlation with Price
- ☐ Car Age is positively correlated to Kilometers-Driven as the Age of the car increases; then the kilometer will also increase of car has a negative correlation with Mileage this makes sense

CONCLUSION

- •The price of the 2-seat cars is higher than other cars.
- •The price of the car decreases as the Age of the car increases.
- •Customers prefer to purchase the First owner rather than the Second or Third.
- •Automatic Transmission is expensive than Manual.
- •Price of the Car increase with higher CC(size).