Homework 8

Yuxin Sun

Results

1. My Own Implementation

Figure 1: MyGRU, lr=1e-3, betas=(0.85,0.9)

```
[epoch:4/4] [iter:14200] elapsed time:1630 secs loss: 0.34897
model.state_dict() saved to /home/parry/gitRepos/homeworks_ECE_60146/hw8_
Total training time: 6415 secs
Accuracy: 86.11%
```

The accuracy is 86.11%.

Figure 2: Loss

Figure 3: Confusion Matrix

2. Using nn.GRU

Figure nn.GRU(bidirectional=False)

Figure 4: nn.GRU, lr=1e-3, betas=(0.85,0.9)

[epoch:4/4] [iter:14200] elapsed time: 70 secs loss: 0.24921 model.state_dict() saved to /content/drive/MyDrive/Colab Notebooks/saved_model_Apr_19_18:49:36 Total training time: 288 secs Accuracy: 87.26%

The accuracy is 87.26%.

Figure 5: Loss

Figure 6: Confusion Matrix

3. Using nn.GRU with bidirectional=True

Figure 7: nn.GRU(bidirectional=True), lr=1e-3, betas=(0.85,0.9)

[epoch:4/4] [iter:14200] elapsed time: 77 secs loss: 0.13840 model.state_dict() saved to /content/drive/MyDrive/Colab Notebooks/saved_model_Apr_19_18:10:22 Total training time: 312 secs Accuracy: 86.70%

The accuracy is 86.70%.

Figure 8: Loss

Figure 9: Confusion Matrix

Code

MyGRU

By following equations on Prof. Kak's slides, I have:

```
class MyGRU(nn.Module):
    def __init__(self, input_size, hidden_size) -> None:
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        # bias = True
        self.Wz = nn.Linear(self.input_size, self.hidden_size)
        self.Wr = nn.Linear(self.input_size, self.hidden_size)
        self.Wh = nn.Linear(self.input_size, self.hidden_size)
        self.Uz = nn.Linear(self.hidden size, self.hidden size)
        self.Ur = nn.Linear(self.hidden_size, self.hidden_size)
        self.Uh = nn.Linear(self.hidden_size, self.hidden_size)
        self.sigm = nn.Sigmoid()
        self.tanh = nn.Tanh()
    def forward(self, x, h):
        z = self.sigm(self.Wz(x) + self.Uz(h))
        r = self.sigm(self.Wr(x) + self.Ur(h))
        ht= self.tanh(self.Wh(x) + self.Uh(h*r))
                                                           # ht means
\tilde{h}
        h_next = h + z*(ht-h)
```

```
output = h_next
return output, h_next
```

RNN

I wrap my GRU into a RNN class. It takes in all the words in a review and returns a 2D sentiment vector.

```
class RNN 1(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, *,
device="cpu"):
        super().__init__()
        self.input size = input size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.device = device
        self.gru = MyGRU(input size, hidden size)
        self.fc = nn.Linear(hidden size, output size)
        self.relu = nn.ReLU()
    def forward(self, input):
        hidden = self.init_hidden()
        for k in range(input.shape[1]):
            output, hidden = self.gru(input[0,k].unsqueeze(dim=0),
hidden)
        output = self.fc(self.relu(output))
        # there is no LogSoftMax here,
        # so we should use CrossEntropyLoss as our criterion.
        return output
    # from Prof Kak's code
    def init hidden(self):
        # hidden = weight.new(1, self.hidden_size).zero_()
        hidden = torch.zeros(1, self.hidden_size, dtype=torch.float,
device=self.device)
        return hidden
The nn.GRU is also wrapped into a RNN:
class RNN_2(nn.Module):
    def init (self, input size, hidden size, output size, *,
device="cpu", bidirectional=False):
        super().__init__()
        self.input size = input size
        self.hidden size = hidden size
        self.output size = output size
        self.device = device
        self.num layers = 1
        self.bidirectional = bidirectional
        # self.gru = MyGRU(input_size, hidden_size)
        self.gru = nn.GRU(input size, hidden size, self.num layers,
batch first=True, bidirectional=bidirectional)
        self.fc = nn.Linear(hidden_size * (2 if self.bidirectional else
1), output_size)
```

```
self.relu = nn.ReLU()

def forward(self, input):
    hidden = self.init_hidden()
    output, hidden = self.gru(input, hidden)
    hidden = hidden.reshape(1,-1)
    output = self.fc(self.relu(hidden))
    return output
```

Discussion

1. how I think the problem of vanishing gradients is mitigated with the gating mechanism?

```
h_next = h + z*(ht-h)
```

Above formula is similar to ResNet which uses original information h plus certain new information z*(ht-h) from a block. The original information can go deep into the network and shorten the effective depth of the network.

Besides, there's a simple observation that if gate z is close to zero, then the previous hidden state h will remain almost unchanged. I guess the hidden state will not change much if we feed in an irrelevant word. This behavior may also make the effective depth of RNN smaller.

2. Does using bidirectional scan make a difference?

There is no big difference in my homework.

3. performance of the three RNNs.

All these three RNNs have an accuracy around 86%. So we can say they have the same accuracy.

I found that nn.GRU runs much faster than my own implementation. There may be many optimizations in nn.GRU, or that it is just better if we feed in an entire sequence.