What is claimed is:

- 1 1. A method of forming capacitors having geometric deep trenches, comprising:
- providing a substrate;
- forming a pad structure on the substrate;
- forming a first hard mask layer on the substrate;
- forming a patterned second hard mask layer on the first hard mask layer to expose a first opening;
- forming a spacer layer in the first opening on the first hard mask layer to expose a second opening;
- forming a third hard mask layer to fill the second opening;
- removing the spacer layer to expose the first hard mask layer;
- etching the first hard mask, with the second hard mask

 layer and the third hard mask layer acting as

 masks, to form a third opening with a salient of

 the first hard mask layer therein;
- removing the second hard mask layer and the third hard mask layer; and
- etching the first hard mask, the salient of the first

 hard mask layer, the pad structure, and the

 substrate to form a geometric deep trench in the

 substrate.
- 2. The method as claimed in claim 1, after forming a third hard mask layer to fill the second opening, further comprising subjecting the third hard mask layer to a

- 4 flattening process to remove the third hard mask layer
- beyond the second opening.
- 1 3. The method as claimed in claim 1, wherein the
- 2 flattening process is chemical mechanical polishing.
- 1 4. The method as claimed in claim 1, wherein the
- 2 first hard mask layer is BPSG, AsSG, PSG, or BSG.
- 5. The method as claimed in claim 1, wherein the
- 2 second hard mask layer is polysilicon or doped polysilicon.
- 1 6. The method as claimed in claim 1, wherein the
- 2 third hard mask layer and the third hard mask layer are the
- 3 same material.
- 7. The method as claimed in claim 1, wherein the spacer
- 2 layer is dielectric material.
- 1 8. The method as claimed in claim 1, further
- 2 comprising conformally forming the spacer layer with LPCVD,
- 3 PECVD, HDPCVD, APCVD, or SACVD.
- 1 9. The method as claimed in claim 1, wherein the pad
- 2 structure comprises a pad oxide layer and a pad nitride
- layer, and the steps of forming the pad structure comprise:
- forming a pad oxide layer on the substrate; and
- forming a pad nitride layer on the pad oxide layer.
- 1 10. The method as claimed in claim 1, wherein the
- 2 process of forming the geometric deep trench in the
- substrate comprises:

- etching the first hard mask layer, the salient of the
 first hard mask layer, and the substrate to remove
 the salient of the first hard mask layer
 completely to form a doughnut-shaped hollow in the
- substrate; and
- etching the doughnut-shaped hollow of the substrate and
 the pad structure to form the geometric deep
 trench in the substrate.
- 1 11. The method as claimed in claim 1, wherein the 2 first hard mask layer is etched to form a residual first 3 hard mask layer simultaneously, when the salient of the

first hard mask layer is removed completely by etchimq.

- 1 12. The method as claimed in claim 1, wherein the 2 width of the second opening is in inverse ratio to the 3 thickness of the spacer layer
- 1 13. The method as claimed in claim 12, wherein the 2 width of the salient of the first hard mask layer is in 3 direct ratio to that of the second opening.
- 1 14. The method as claimed in claim 1, further 2 comprising, after forming a geometric deep trench in the 3 substrate, steps of:
- forming a buried plate in parts of the substrate of the geometric deep trench; and
- forming a collar insulating layer and at least one conductive layer in the geometric deep trench.
- 1 15. A method of forming capacitors having geometric deep trenches, comprising:

and the second s

3	providing a substrate;
	forming a pad structure on the substrate, comprising a
4	
5	pad oxide layer and a nitride layer formed on the
6	substrate sequentially;
7	forming a first hard mask layer on the substrate;
8	forming a patterned second hard mask layer on the first
9	hard mask layer to expose a first opening;
10	forming a spacer layer in the first opening on the
11	first hard mask layer to expose a second opening;
12	forming a third hard mask layer to fill the second
13	opening;
14	performing a flattening process to remove the third
15	hard mask layer beyond the second opening.
16	removing the spacer layer to expose to the first hard
17	mask layer;
18	etching the first hard mask, with the second hard mask
19	layer and the third hard mask layer acting as
20	masks, to form a third opening with a salient of
21	the first hard mask layer therein;
22	removing the second hard mask layer and the third hard
23	mask layer;
24	etching the first hard mask layer, the salient of the
25	first hard mask layer, and the substrate to remove
26	the salient of the first hard mask layer
27	completely to form a doughnut-shaped hollow in the
28	substrate; and
29	etching the doughnut-shaped hollow of the substrate and
30	the pad structure to form the geometric deep
31	trench in the substrate

- 1 16. The method as claimed in claim 15, wherein the
- flattening process is chemical mechanical polishing.
- 1 17. The method as claimed in claim 15, wherein
- formation of the pad oxide layer of the pad structure uses
- 3 thermal oxidation.
- 1 18. The method as claimed in claim 15, wherein the
- 2 first hard mask layer is BPSG, AsSG, PSG, or BSG.
- 19. The method as claimed in claim 15, wherein the
- 2 second hard mask layer is polysilicon or doped polysilicon.
- 1 20. The method as claimed in claim 15, wherein the
- third hard mask layer and the third hard mask layer are the
- 3 same material.
- 1 21. The method as claimed in claim 15, wherein the
- spacer layer is dielectric material.
- 1 22. The method as claimed in claim 15, wherein
- conformal formation of the spacer layer uses LPCVD, PECVD,
- 3 HDPCVD, APCVD, or SACVD.
- 1 23. The method as claimed in claim 15, wherein the
- 2 first hard mask layer is etched to form a residual first
- 3 hard mask layer simultaneously, when the salient of the
- 4 first hard mask layer is removed completely by etchimq.
- 1 24. The method as claimed in claim 15, further
- 2 comprising, after forming a geometric deep trench in the
- 3 substrate:

. .

forming a buried plate in parts of the substrate of the geometric deep trench; and forming a collar insulating layer and at least one conductive layer in the geometric deep trench.