Graduate Algebra, Midterm Exam Practice Sheet

1.	Give an example of a ring R and an ideal $I \triangleleft R$ such that I is prime, but not maximal, and not principal
2.	Give an example of a group G with and a normal subgroup N , such that G cannot be written as a semidirect product of H and N for any subgroup $H < G$.
3.	Let F be a field, and consider the rings $F[x]$ of polynomials and $F[[x]]$ of power series. Let $S \subset F[x]$ be the multiplicative set consisting of those polynomials with a nonzero constant term. (a) Show that the inclusion $F[x] \to F[[x]]$ extends to a homomorphism $F[x][S^{-1}] \to F[[x]]$.
	(b) Show that $F[[x]]$ is a PID.
4.	Let G be a group of order 30, and suppose G has exactly 15 Sylow subgroups of order 2. Show that G must be isomorphic to a dihedral group $\langle \sigma, \tau \mid \sigma^{15} = 1, \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$.
5.	Let $X \subset \mathbb{R}$ be a collection of disjoint closed intervals, and let R be the ring of continuous functions from X to \mathbb{R} . Recall that an element $e \in R$ is called idempotent if $e^2 = e$. Show that the only idempotents in R are 0 and 1 if and only if X is connected.
6.	Let R be a commutative ring. Recall that an element $x \in R$ is nilpotent if $x^n = 0$ for some $n > 0$. Show that the set of nilpotent element of R form an ideal of R .
7.	Show that if G is a group with $G/Z(G)$ cyclic, then G is Abelian.
8.	Show that every group of order 45 is Abelian.
9.	Show that in a group of order 600, the normalizer of a 5-Sylow subgroup must be a nontrivial normal sugroup.