

CLAIMS

What is claimed is:

1. A method of treating a bacterial infection
5 of a mammal, comprising administering to a mammal suffering
from a bacterial infection an amount of a compound active
against a bacterial gene selected from the group consisting
of the genes corresponding to SEQ ID NO. 1-105 sufficient to
inhibit the growth of bacteria involved in said infection.

10

2. The method of claim 1, wherein said bacteri-
al infection involves a bacterial strain expressing a gene
selected from the group consisting of the genes corre-
sponding to SEQ ID NO. 1-105 or a homologous gene.

15

3. The method of claim 2, wherein said gene
corresponds to SEQ ID NO. 60 and wherein said compound has
the structure:

20

wherein
R, R¹, R², and R³ are independently H, alkyl (C₁-C₅), or
halogen;

R⁴ is H, alkyl (C₁-C₅), halogen, SH, or S-alkyl (C₁-C₃);

R⁵ is H, alkyl (C¹-C⁵), or aryl (C₆-C₁₀);

R⁶ is CH₂NH₂, alkyl (C₁-C₄), 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, or aryl (C₆-C₁₀);

or

R⁵ and R⁶ together are -C(R⁷)=C(R⁸)-C(R⁹)=C(R¹⁰)-, -N=C(R⁸)-C(R⁹)=C(R¹⁰)-, -C(R⁷)=N-C(R⁹)=C(R¹⁰)-, -C(R⁷)=C(R⁸)-N=C(R¹⁰)-, or -C(R⁷)=C(R⁸)-C(R⁹)=N-;

wherein R⁷, R⁸, R⁹, and R¹⁰ are independently H, alkyl (C₁-C₅), halogen, fluoroalkyl (C₁-C₅);

or

R⁷ and R⁸ together are -CH=CH-CH=CH-.

4. A method of treating a bacterial infection in a mammal comprising administering to said mammal an amount of an antibacterial agent effective to reduce said infection,

wherein said antibacterial agent specifically inhibits a biochemical pathway requiring the expression product of a gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105, and

wherein inhibition of said biochemical pathway inhibits the growth of said bacterium *in vivo*.

25

5. A method of inhibiting the growth of a pathogenic bacterium comprising contacting said bacterium with an antibacterial agent which specifically inhibits a

biochemical pathway requiring the expression product of a gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105,

wherein inhibition of said biochemical pathway
5 inhibits the growth of said bacterium.

6. The method of claim 5, wherein said gene corresponds to SEQ ID NO. 60 and wherein said compound has the structure:

10

wherein

R, R¹, R², and R³ are independently H, alkyl (C₁-C₅), or halogen;

R⁴ is H, alkyl (C₁-C₅), halogen, SH, or S-alkyl (C₁-C₃);

R⁵ is H, alkyl (C¹-C⁵), or aryl (C₆-C₁₀);

R⁶ is CH₂NH₂, alkyl (C₁-C₄), 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, or aryl (C₆-C₁₀);

20 or

R⁵ and R⁶ together are -C(R⁷)=C(R⁸)-C(R⁹)=C(R¹⁰)-, -N=C(R⁸)-C(R⁹)=C(R¹⁰)-, -C(R⁷)=N-C(R⁹)=C(R¹⁰)-, -C(R⁷)=C(R⁸)-N=C(R¹⁰)-, or -C(R⁷)=C(R⁸)-C(R⁹)=N-;

wherein R⁷, R⁸, R⁹, and R¹⁰ are independently H, alkyl (C₁-C₅), halogen, fluoroalkyl (C₁-C₅); or
R⁷ and R⁸ together are -CH=CH-CH=CH-.

5

7. The method of claim 4 or 5 wherein said antibacterial agent inhibits the activity of an expression product of a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105.

10

8. A method of prophylactic treatment of a mammal, comprising administering to a mammal at risk of a bacterial infection a compound active against a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105.

9. The method of claim 8, wherein said gene corresponds to SEQ ID NO. 60 and wherein said compound has the structure:

20

wherein

R, R¹, R², and R³ are independently H, alkyl (C₁-C₅), or halogen;

R⁴ is H, alkyl (C₁-C₅), halogen, SH, or S-alkyl (C₁-C₃);

R⁵ is H, alkyl (C¹-C⁵), or aryl (C₆-C₁₀);

5 R⁶ is CH₂NH₂, alkyl (C₁-C₄), 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, or aryl (C₆-C₁₀);

or

R⁵ and R⁶ together are -C(R⁷)=C(R⁸)-C(R⁹)=C(R¹⁰)-, -N=C(R⁸)-

10 C(R⁹)=C(R¹⁰)-, -C(R⁷)=N-C(R⁹)=C(R¹⁰)-, -C(R⁷)=C(R⁸)-N=C(R¹⁰)-, or -C(R⁷)=C(R⁸)-C(R⁹)=N-;

wherein R⁷, R⁸, R⁹, and R¹⁰ are independently H, alkyl (C₁-C₅), halogen, fluoroalkyl (C₁-C₅);

or

15 R⁷ and R⁸ together are -CH=CH-CH=CH-.

10. A method of screening for an antibacterial agent,

comprising determining whether a test compound is
20 active against a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105.

11.. A method of claim 10, comprising the steps of:

25 a. providing a bacterial strain having a mutant form of a gene selected from a group consisting of the genes corresponding to SEQ ID NO. 1-105, or a gene homologous

thereto, wherein said mutant form of the gene confers a growth conditional phenotype;

b. providing comparison bacteria of a bacterial strain having a normal form of said gene;

5 b. contacting bacteria of said bacterial strains with a test compound in semi-permissive growth conditions;

c. determining whether the growth of said bacteria having said mutant form of a gene is reduced in the presence of said test compound compared to the growth of said 10 comparison bacteria.

12. A method of screening for an antibacterial agent, comprising the steps of:

15 a) contacting a cell expressing a polypeptide encoded by a gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105 with a test compound; and

b) determining whether the amount or level of activity of said polypeptide is altered;

20 wherein an alteration in said amount or level of activity of said polypeptide is indicative of a useful antibacterial agent.

13. A method of screening for an antibacterial agent, comprising the steps of:

25 a) contacting a polypeptide or a biologically active fragment thereof with a test compound, wherein said polypeptide is encoded by a gene selected from a group

consisting of the genes corresponding to SEQ ID NO. 1-105;
and

b) determining whether said test compound binds to
said polypeptide or said fragment;

5 wherein binding of said test compound to said
polypeptide or said fragment is indicative of a useful
antibacterial agent.

14. A method for evaluating an agent active on a
10 gene selected from a group consisting of the genes
corresponding to SEQ ID NO. 1-105, comprising the steps of:

a) contacting a sample containing an expression
product of said gene with said agent; and

15 b) determining the amount or level of activity of
said expression product in said sample.

15. A method of diagnosing the presence of a
bacterial strain having a gene selected from the group
consisting of the genes corresponding to SEQ ID NO. 1-105,
20 comprising probing with an oligonucleotide at least 15
nucleotides in length which specifically hybridizes to a
nucleotide sequence which is the same as or complementary to
a portion of the sequence of a bacterial gene selected from
the group consisting of the genes corresponding to SEQ ID
25 NO. 1-105.

16. A method of diagnosing the presence of a
bacterial strain, comprising specifically detecting the

presence of the transcriptional or translational product of a gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105.

7 11. A pharmaceutical composition comprising a
5 pharmaceutically acceptable carrier and a compound active on a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105.

10 18. The pharmaceutical composition of claim 17,
wherein said bacterial gene corresponds to SEQ ID NO. 60 and
wherein said compound has the structure:

15 wherein

R, R¹, R², and R³ are independently H, alkyl (C₁-C₅), or halogen;

R⁴ is H, alkyl (C₁-C₅), halogen, SH, or S-alkyl (C₁-C₃);

R⁵ is H, alkyl (C¹-C⁵), or aryl (C₆-C₁₀);

20 R⁶ is CH₂NH₂, alkyl (C₁-C₄), 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, or aryl (C₆-C₁₀);

or

R⁵ and R⁶ together are -C(R⁷)=C(R⁸)-C(R⁹)=C(R¹⁰)-, -N=C(R⁸)-C(R⁹)=C(R¹⁰)-, -C(R⁷)=N-C(R⁹)=C(R¹⁰)-, -C(R⁷)=C(R⁸)-N=C(R¹⁰)-, or -C(R⁷)=C(R⁸)-C(R⁹)=N-;

wherein R⁷, R⁸, R⁹, and R¹⁰ are independently H,
5 alkyl (C₁-C₅), halogen, fluoroalkyl (C₁-C₅);

or

R⁷ and R⁸ together are -CH=CH-CH=CH-.

19. A method for making an antibacterial agent,
10 comprising the steps of:

a. screening for an agent active on one of the genes
corresponding to SEQ ID NO. 1-105 by

providing a bacterial strain having a mutant form
of a gene selected from a group consisting of the genes
15 corresponding to SEQ ID NO. 1-105, or a gene homologous
thereto, wherein said mutant form of the gene confers a
growth conditional phenotype,

providing comparison bacteria of a bacterial
strain having a normal form of said gene,

20 contacting bacteria of said bacterial strains
with a test compound in semi-permissive growth conditions,
and

determining whether the growth of said bacteria
having said mutant form of a gene is reduced in the presence
25 of said test compound compared to the growth of said
comparison bacteria; and

b. synthesizing said agent in an amount sufficient to provide said agent in a therapeutically effective amount to a patient.

5 20. A novel compound having antibacterial activity, wherein said antibacterial activity is against a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105 or a product thereof.

10

21. A purified bacterial strain expressing a mutated gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105,

wherein said mutated gene confers a growth conditional
15 phenotype.

22. A recombinant bacterial cell containing an artificially inserted DNA construct comprising a DNA sequence which is the same as or complementary to a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-3, 8, 11-20, 31-48, 59-
20 68, 71, 76-87, 92-97, and 100-105.

23. A recombinant cell containing an artificial-
25 ly inserted DNA construct comprising a DNA sequence which is the same as or complementary to a portion at least 15 nucleotides in length, of a bacterial gene selected from the

group consisting of the genes corresponding to SEQ ID NO. 1-3, 8, 11-20, 31-48, 59-68, 71, 76-87, 92-97, and 100-105.

24. An oligonucleotide probe at least 15 nucleotides in length which specifically hybridizes to a nucleotide sequence which is the same as or complementary to a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-3, 8, 11-20, 31-48, 59-68, 71, 76-87, 92-97, and 100-105.

10

25. An isolated or purified DNA sequence at least 15 nucleotides in length, comprising a nucleotide base sequence which is the same as or complementary to a portion of the base sequence of a bacterial gene corresponding to SEQ ID NO. 1-3, 8, 11-20, 31-48, 59-68, 71, 76-87, 92-97, and 100-105.

26. A DNA sequence of claim 25, the base sequence of which is the same as or complementary to the base sequence of the coding region of a bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-3, 8, 11-20, 31-48, 59-68, 71, 76-87, 92-97, and 100-105.

25 27. An isolated or purified DNA sequence, the base sequence of which is the same as or complementary to a bacterial gene which is homologous to a bacterial gene

selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105,

wherein the function of the expression product of said homologous gene is the same as the function of the product 5 of said gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105.

28. An isolated or purified DNA sequence, the base sequence of which is the same as the base sequence of a 10 mutated bacterial gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-105,

wherein expression of said DNA sequence or of said mutated bacterial gene confers a growth conditional phenotype in the absence of expression of a gene which 15 complements said mutation.

29. A purified, enriched, or isolated polypeptide encoded by a gene selected from the group consisting of the genes corresponding to SEQ ID NO. 1-3, 8, 20 11-20, 31-48, 59-68, 71, 76-87, 92-97, and 100-105.

30. The polypeptide of claim 29, wherein said polypeptide is expressed from a recombinant gene.