

Master in Computer Vision Barcelona

Project Module 4 Coordination Video Surveillance for Road Traffic Monitoring J. Ruiz-Hidalgo / X. Giró

j.ruiz@upc.edu / xavier.giro@upc.edu

Project Schedule

Assignments: Week 2

- Background estimation
 - Model the background pixels of a video sequence using a simple statistical model to classify the background / foreground
 - Single Gaussian per pixel
 - Adaptive / Non-adaptive

The statistical model will be used to preliminary classify foreground

 Comparison with more complex models (Stauffer and Grimson)

Assignments: Tasks

- Mandatory:
 - Task 1: Gaussian distribution
 - Task 2 & 3: Evaluate results
 - Task 4: Recursive Gaussian modeling
 - Task 5: Evaluate and compare to non-recursive
- Optional:
 - Task 6: Compare with S&G
 - Task 7: Color sequences

Sequences

- HIGHWAY
 - frames 1050 to 1350
 - baseline category
- FALL
 - frames 1460 to 1560
 - dynamic background category
- TRAFFIC
 - frames 950 to 1050
 - camera jitter category

Reminder: metrics

The groundtruth images contain 5 labels namely

- 0 : Static
- 50 : Hard shadow
- 85 : Outside region of interest
- 170 : Unknown motion (usually around moving objects, due to semi-transparency and motion blur)
- **255** : Motion

We will use:

- Background: 0, 50
- Foreground: 255
- Unknown (not evaluated): 85, 170

- 1 Gaussian function to model each background pixel
 - First 50% of the test sequence to model the background
 - Mean and variance of pixels

Second 50% to segment the foreground

```
for all pixels i do

if |I_i - \mu_i| \ge \alpha \cdot (\sigma_i + 2) then

pixel \to Foreground

else

pixel \to Background

end if

end for
```


- Evaluate Task 1
 - True Positive, True Negative, False Positive, False Negative, Precision, Recall, F1-score vs alpha

- Evaluate Task 1
- Precision vs Recall curve
- Area Under the Curve (AUC)

- Adaptive modeling
 - First 50% frames for training
 - Second 50% left background adapts

if pixel
$$i \in \text{Background then}$$

$$\mu_i = \rho \cdot I_i + (1 - \rho) \cdot \mu_i$$

$$\sigma_i^2 = \rho \cdot (I_i - \mu_i)^2 + (1 - \rho) \cdot \sigma_i^2$$
end if

- Best value of α , p to maximize F1-score
 - Two methods:
 - Obtain best α non-recursive and then obtain p for the recursive cases
 - Optimize them together

- Compare both the adaptive and non-adaptive version and evaluate them for all 3 sequences proposed
 - F1-score

Optional tasks 6

- Compare with Stauffer and Grimson
 - Implementation in Matlab Computer Vision Toolbox (preferred) or provided (StGm.zip)
 - Select the best number of Gaussians (3 to 6)
 - Evaluate precision vs recall to comment which method (single Gaussian programmed by you or S&G) performs better
 - Evaluate the sequences than benefit more of the multiple Gaussians and try to explain why

Optional tasks 7

- Update your implementation to support color sequences
 - Decide color space? RGB vs YUV?
 - Number of Gaussians needed?

Deliverables

- 1 slides per tasks
- Matlab code used for the week assignment

- 14th January
 - Upload to UAB virtual campus presentation + code

Scoring rubric

Grade	Common meaning	Successfully completed tasks
Α	Excellent	All mandatory and two optional tasks
В	Very good	All mandatory and one optional task
С	Average	All mandatory tasks
D	Difficulties	All mandatory tasks but one
F	Fail	All mandatory tasks but two or less

