Ta le of Contents

```
■ Take the PyTorch Docs/Tutorials survey.
```

CO Run in Google Cola

↓ Downloa Note ook

Defining a Neural Network in PyTorch

Create On: Apr 17, 2020 | Last $\,$ p $\,$ ate $\,$: Fe $\,$ 06, 2024 | Last Verifie $\,$: Nov 05, 2024

Deep learning uses artificial neural networks (mo els), which are computing systems that are compose of many layers of interconnecte units. By passing at a through these interconnecte units, a neural network is a le to learn how to approximate the computations require to transform inputs into outputs. In PyTorch, neural networks can e constructe using the torch.nn package.

Intro uction

PyTorch provi es the elegantly esigne mo ules an classes, inclu ing torch.nn, to help you create an train neural networks. An nn.Module contains layers, an a metho forward(input) that returns the output.

In this recipe, we will use torch.nn to efine a neural network inten e for the MNIST ataset.

Setu

Before we egin, we nee to install torch if it isn't alrea y availa le.

```
pip install torch
```

Ste s

- 1. Import all necessary li raries for loa ing our ata
- 2. Define an initialize the neural network
- 3. Specify how ata will pass through your mo el
- 4. [Optional] Pass ata through your mo el to test
- 1. Im ort necessary li raries for loa ing our ata

For this recipe, we will use torch an its su si iaries torch.nn an torch.nn.functional.

```
import torch
import torch.nn as nn
import torch.nn.functional as F
```

2. Define an initialize the neural network

Our network will recognize images. We will use a process uilt into PyTorch calle convolution. Convolution a s each element of an image to its local neigh ors, weighte y a kernel, or a small matrix, that helps us extract certain features (like e ge etection, sharpness, lurriness, etc.) from the input image.

There are two requirements for efining the Net class of your mo el. The first is writing an __init__ function that references nn.Module.

This function is where you efine the fully connecte layers in your neural network.

sing convolution, we will efine our mo el to take 1 input image channel, an output match our target of 10 la els representing num ers 0 through 9. This algorithm is yours to create, we will follow a stan ar MNIST algorithm.

```
class Net(nn.Module):
    def __init__(self):
     super(Net, self).__init__()
      # First 2D convolutional layer, taking in 1 input channel (image),
      # outputting 32 convolutional features, with a square kernel size of 3
      self.conv1 = nn.Conv2d(1, 32, 3, 1)
      # Second 2D convolutional layer, taking in the 32 input layers,
      # outputting 64 convolutional features, with a square kernel size of 3
      self.conv2 = nn.Conv2d(32, 64, 3, 1)
      # Designed to ensure that adjacent pixels are either all Os or all active
      # with an input probability
      self.dropout1 = nn.Dropout2d(0.25)
      self.dropout2 = nn.Dropout2d(0.5)
      # First fully connected layer
      self.fc1 = nn.Linear(9216, 128)
      # Second fully connected layer that outputs our 10 labels
      self.fc2 = nn.Linear(128, 10)
my_nn = Net()
print(my_nn)
```

We have finishe efining our neural network, now we have to efine how our ata will pass through it.

3. S ecify how ata will ass through your mo el

When you use PyTorch to uil a mo el, you ust have to efine the <u>forward</u> function, that will pass the ata into the computation graph (i.e. our neural network). This will represent our fee -forwar algorithm.

You can use any of the Tensor operations in the forward function.

```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout2d(0.25)
        self.dropout2 = nn.Dropout2d(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

# x represents our data
def forward(self, x):
```

```
x = self.conv2(x)
x = F.relu(x)
# Run max pooling over x
x = F.max_pool2d(x, 2)
# Pass data through dropout1
x = self.dropout1(x)
# Flatten x with start_dim=1
x = torch.flatten(x, 1)
# Pass data through ``fc1``
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
# Apply softmax to x
output = F.log_softmax(x, dim=1)
return output
```

4. [O tional] Pass at a through your mo el to test

To ensure we receive our esire output, let's test our mo el y passing some ran om ata through it.

```
# Equates to one random 28x28 image
random_data = torch.rand((1, 1, 28, 28))

my_nn = Net()
result = my_nn(random_data)
print (result)
```

Each num er in this resulting tensor equates to the pre iction of the la el the ran om tensor is associate to.

Congratulations! You have successfully efine a neural network in PyTorch.

Learn More

Take a look at these other recipes to continue your learning:

- What is a state_ ict in PyTorch
- Saving an loa ing mo els for inference in PyTorch

Total running time of the scrit: (0 minutes 0.000 secon s)

Previous

Rate this Tutorial riangle riangle riangle riangle riangle riangle

© Co yright 2024, PyTorch.

Built with S hinx using a theme rovi e y Rea the Docs.

//tem orarily a a link to survey

Docs	Tutorials	Resources
Access com rehensive evelo er ocumentation for PyTorch	Get in- e th tutorials for eginners an a vance evelo ers	Fin evelo ment resources an get your uestions answere
View Docs >	View Tutorials >	View Resources >

Terms | Privacy

© Co yright The Linux Foun ation. The PyTorch Foun ation is a rolect of The Linux Foun ation. For we site terms of use, tral emark olicy an other olicies a licalle to The PyTorch Foun ation lease see www.linuxfoun ation.org/ olicies/. The PyTorch Foun ation su orts the PyTorch of en source rolect, which has een estallishe as PyTorch Project a Series of LF Projects, LLC. For olicies a licalle to the PyTorch Project a Series of LF Projects, LLC, lease see <a href="https://www.lf.nc.gov/wwww.lf.nc.gov/www.lf.nc.g