Sub: Compiler Construction Syntax Analysis PART 2

Compiled for: 7th Sem, CE, DDU

Compiled by: Niyati J. Buch

Ref.: Compilers: Principles, Techniques, and Tools, 2nd Edition Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman

Topics Covered

- Top Down Parsing
 - Recursive Descent Parser
 - FIRST and FOLLOW
 - Compute FIRST
 - Compute FOLLOW
 - Construction of a predictive parsing table
 - LL(1) Grammar

Top Down Parsing

- **Top-down parsing** can be viewed as the problem of **constructing a parse tree** for the input string, s**tarting from the root** and creating the nodes of the parse tree in preorder (depth-first).
- Equivalently, top-down parsing can be viewed as finding a leftmost derivation for an input string.
- At each step of a top-down parse, the key problem is that of determining the production to be applied for a nonterminal, say A.
- Once an A-production is chosen, the rest of the parsing process consists of "matching" the terminal symbols in the production body with the input string.

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \in$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \in$$

$$F \rightarrow (E) | id$$

E

$E \rightarrow TE'$ $E' \rightarrow +TE' | \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' | \epsilon$ $F \rightarrow (E) | id$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \in$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \in$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | \in$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \in$
 $F \rightarrow (E) | id$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' | \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \epsilon$
 $F \rightarrow (E) | id$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \in$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \in$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E) | id$$

- It is a general category of top down parsing.
- Here, the production rule is chosen based on input symbol.
- It may require **backtracking** to correct a wrong choice

• $S \rightarrow cAd$ $A \rightarrow ab \mid a$ Construct a parse tree top-down for the input string w = cad

• $S \rightarrow cAd$ $A \rightarrow ab \mid a$

- Construct a parse tree top-down for the input string w = cad
- Begin with a tree consisting of a single node labeled S, and the input pointer pointing to c, the first symbol of w.

S

•
$$S \rightarrow cAd$$

 $A \rightarrow ab \mid a$

- Construct a parse tree top-down for the input string w = cad
- Begin with a tree consisting of a single node labeled S, and the input pointer pointing to c, the first symbol of w. S has only one production, so we use it to expand S.
- The leftmost leaf, labeled **c**, matches the first symbol of input w, so we advance the input pointer to **a**, the second symbol of w, and consider the next leaf, labeled A.

• S
$$\rightarrow$$
 cAd
A \rightarrow ab | a

- Construct a parse tree top-down for the input string w = cad
- Begin with a tree consisting of a single node labeled S, and the input pointer pointing to c, the first symbol of w. S has only one production, so we use it to expand S.
- The leftmost leaf, labeled **c**, matches the first symbol of input w, so we advance the input pointer to **a**, the second symbol of w, and consider the next leaf, labeled A.
- Expand A using the first alternative A \rightarrow a b
- First symbol a matches

• $S \rightarrow cAd$ $A \rightarrow ab \mid a$

- Construct a parse tree top-down for the input string w = cad
- Begin with a tree consisting of a single node labeled S, and the input pointer pointing to c, the first symbol of w. S has only one production, so we use it to expand S.
- The leftmost leaf, labeled **c**, matches the first symbol of input w, so we advance the input pointer to **a**, the second symbol of w, and consider the next leaf, labeled A.
- Expand A using the first alternative A \rightarrow a b
- First symbol a matches but next symbol doesn't match. Reports failure.

•
$$S \rightarrow cAd$$

 $A \rightarrow ab \mid a$

- Construct a parse tree top-down for the input string w = cad
- Begin with a tree consisting of a single node labeled S, and the input pointer pointing to c, the first symbol of w. S has only one production, so we use it to expand S.
- The leftmost leaf, labeled **c**, matches the first symbol of input w, so we advance the input pointer to **a**, the second symbol of w, and consider the next leaf, labeled A.
- Expand A using the first alternative A \rightarrow a b
- First symbol a matches but next symbol doesn't match. Reports failure.
- Try other alternative. A \rightarrow a.
- Now the input parses.

Left-recursive grammar??

- A left-recursive grammar can cause a recursive-descent parser, even one with backtracking, to go into an infinite loop.
- That is, when we try to expand a nonterminal A, we may eventually find ourselves again trying to expand A without having consumed any input.

FIRST and FOLLOW

- The construction of both top-down and bottom-up parsers is aided by two functions, FIRST and FOLLOW, associated with a grammar G.
- During top down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- During panic-mode error recovery, sets of tokens produced by FOLLOW can be used as synchronizing tokens.

Compute FIRST

- To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ϵ can be added to any FIRST set.
- 1. If X is a terminal, then $FIRST(X) = \{X\}$.
- 2. If X is a nonterminal and $X \rightarrow Y_1 Y_2 ... Y_k$ is a production for some k>=1 then place a in FIRST(X) if for some i, a is in FIRST(Y_i) and ε is in all of FIRST(Y_1),..., FIRST(Y_{i-1}); that is, $Y_1 ... Y_{i-1} \rightarrow \varepsilon$. If ε is in FIRST(Y_j) for all j=1,2,...,k, then add ε to FIRST(X). For example, everything in FIRST(Y_1) is surely in FIRST(X). If Y_1 does not derive ε , then we add nothing more to FIRST(X), but if $Y_1 \rightarrow \varepsilon$, then we add FIRST(Y_2), and so on.
- 3. If $X \rightarrow \epsilon$ is a production, then add ϵ to FIRST(X).

• Given the production rules:

FIRST(S) =

 $S \rightarrow aABb$

FIRST(A) =

 $A \rightarrow c \mid \in$

FIRST(B) =

 $B \rightarrow d \mid \in$

• Given the production rules:

$$A \rightarrow c \mid \in$$

 $S \rightarrow aABb$

$$B \rightarrow d \mid \in$$

 $FIRST(S) = {a}$

FIRST (A) = $\{c, \in\}$

 $FIRST(B) = \{d, \in\}$

Given the production rules:

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$D \rightarrow EF$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

FIRST(S) =

FIRST(B) =

FIRST(C) =

FIRST(D) =

FIRST(E) =

FIRST(F) =

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$D \rightarrow EF$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

$$FIRST(S) = {a}$$

$$FIRST(B) = \{c\}$$

$$FIRST(C) = \{b, \in\}$$

$$FIRST(E) = \{g, \in\}$$

$$FIRST(F) = \{f, \in\}$$

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$D \rightarrow EF$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

$$FIRST(S) = {a}$$

$$FIRST(B) = \{c\}$$

$$FIRST(C) = \{b, \in\}$$

$$FIRST(D) = \{ First(E) - \in \} \cup First(F)$$

$$FIRST(E) = \{g, \in\}$$

$$FIRST(F) = \{f, \in\}$$

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$D \rightarrow EF$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

FIRST(S) = {a}
FIRST(B) = {c}
FIRST(C) = {b,
$$\in$$
}
FIRST(D) = { First(E) $- \in$ } U First(F)
= ({g, \in } - \in) U {f, \in }
= {g, f, \in }
FIRST(E) = {g, \in }
FIRST(F) = {f, \in }

• Given the production rules:

$$S \rightarrow i E t SS' \mid a$$

$$S' \rightarrow eS \mid \in$$

$$E \rightarrow b$$

FIRST(S) =

FIRST(S') =

FIRST(E) =

$$S \rightarrow i E t SS' \mid a$$

$$S' \rightarrow eS \mid \in$$

$$E \rightarrow b$$

$$FIRST(S) = \{i, a\}$$

FIRST (S') =
$$\{e, \in\}$$

$$FIRST(E) = \{b\}$$

• Given the production rules:

$$S \rightarrow A a$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

FIRST(S) =

FIRST(A) =

FIRST(B) =

FIRST(D) =

$$S \rightarrow A a$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

$$FIRST(B) = \{b, \in\}$$

$$FIRST(D) = \{d, \in\}$$

$$S \rightarrow A a$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

FIRST (A) =
$$\{FIRST(B) - \in\} \cup FIRST(D)$$

= $\{b, d, \in\}$

$$FIRST(B) = \{b, \in\}$$

$$FIRST(D) = \{d, \in\}$$

$$S \rightarrow A a$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

FIRST(S) = {FIRST(A) -
$$\in$$
} U FIRST(a)
= {b, d, a}
FIRST (A) = {FIRST(B) - \in } U FIRST(D)
= {b, d, \in }

$$FIRST(B) = \{b, \in\}$$

$$FIRST(D) = \{d, \in\}$$

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid \in$$

$$T \rightarrow FT'$$

$$F \rightarrow (E) \mid id$$

$$FIRST(T) =$$

$$FIRST(F) =$$

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid \in$$

$$T \rightarrow FT'$$

$$F \rightarrow (E) \mid id$$

$$FIRST(E) = ?????$$

$$FIRST(E') = \{+, \in\}$$

$$FIRST(T) = ?????$$

$$FIRST(T') = \{*, \in\}$$

$$FIRST(F) = \{(, id)\}$$

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid \in$$

$$T \rightarrow FT'$$

$$F \rightarrow (E) \mid id$$

$$FIRST(E) = ?????$$

$$FIRST(E') = \{+, \in\}$$

$$FIRST(T) = FIRST(F) = \{(,id)\}$$

$$FIRST(T') = \{*, \in\}$$

$$FIRST(F) = \{(, id)\}$$

$$E \rightarrow TE'$$
 $E' \rightarrow + TE' \mid \in$
 $T \rightarrow FT'$
 $T' \rightarrow * FT' \mid \in$
 $F \rightarrow (E) \mid id$

FIRST(E) = FIRST(T) =
$$\{(, id)\}$$

FIRST(E') = $\{+, \in\}$
FIRST(T) = FIRST(F) = $\{(, id)\}$
FIRST(T') = $\{*, \in\}$
FIRST(F) = $\{(, id)\}$

• Given the production rules:

$$A \rightarrow da \mid BC$$

$$B \rightarrow g \mid \in$$

$$C \rightarrow h \mid \in$$

FIRST(S) =

FIRST(A) =

FIRST(B) =

FIRST(C) =

$$A \rightarrow da \mid BC$$

$$B \rightarrow g \mid \in$$

$$C \rightarrow h \mid \in$$

```
FIRST(S) = ????
```

$$FIRST(B) = \{ g, \in \}$$

$$FIRST(C) = \{ h, \in \}$$

$$S \rightarrow ACB \mid CbB \mid Ba$$
 $A \rightarrow da \mid BC$
 $B \rightarrow g \mid \in$
 $C \rightarrow h \mid \in$

```
FIRST(S) = ????

FIRST(A) = FIRST(da) U FIRST(BC)

= \{d\} U \{FIRST(B) - \in \} U FIRST(C)

= \{d, g, h, \in \}

FIRST(B) = \{g, \in \}

FIRST(C) = \{h, \in \}
```

```
S \rightarrow ACB \mid CbB \mid Ba
A \rightarrow da \mid BC
B \rightarrow g \mid \in
C \rightarrow h \mid \in
```

```
FIRST(S) = FIRST(ACB) U FIRST(CbB) U
             FIRST(Ba)
           = \{FIRST(A) - \in\} \cup \{FIRST(C) - \in\} \cup
              FIRST(B)
              U \{FIRST(C) - \in\} U FIRST(bB)
              U \{FIRST(B) - \in\} U FIRST(a)
           = \{d, g, h\} \cup \{h\} \cup \{g, \in\}
              U {h} U {b} U {g} U {a}
           = \{d, g, h, b, a, \in\}
FIRST(A) = FIRST(da) U FIRST(BC)
             = \{d\} \cup \{FIRST(B) - \in \} \cup FIRST(C)
             = \{d, g, h, \in\}
FIRST(B) = \{ g, \in \}
FIRST(C) = \{ h, \in \}
```

$$S \rightarrow ACB \mid CbB \mid Ba$$

 $A \rightarrow da \mid BC$
 $B \rightarrow g \mid \in$
 $C \rightarrow h \mid \in$

```
FIRST(S) = \{a, b, d, g, h, \in\}

FIRST(A) = \{d, g, h, \in\}

FIRST(B) = \{g, \in\}

FIRST(C) = \{h, \in\}
```

```
FIRST(S) = FIRST(ACB) U FIRST(CbB) U
             FIRST(Ba)
           = \{FIRST(A) - \in\} \cup \{FIRST(C) - \in\} \cup
              FIRST(B)
              U \{FIRST(C) - \in\} U FIRST(bB)
              U \{FIRST(B) - \in\} U FIRST(a)
           = \{d, g, h\} \cup \{h\} \cup \{g, \in\}
              U {h} U {b} U {g} U {a}
           = \{d, g, h, b, a, \in\}
FIRST(A) = FIRST(da) U FIRST(BC)
             = \{d\} \cup \{FIRST(B) - \in \} \cup FIRST(C)
             = \{d, g, h, \in\}
FIRST(B) = \{ g, \in \}
FIRST(C) = \{ h, \in \}
```

Compute FOLLOW

- To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set.
- Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right end marker
- If there is a production A → αBβ, then everything in FIRST(β) except ∈ is in FOLLOW(B)
- 3. If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B\beta$ where FIRST(β) contains \in , then everything in FOLLOW(A) is in FOLLOW(B).

• Given the production rules:

$$S \rightarrow i E t SS' \mid a$$

$$S' \rightarrow eS \mid \in$$

$$E \rightarrow b$$

FOLLOW(S) =

FOLLOW(S') =

FOLLOW(E) =

• Given the production rules:

$$E \rightarrow b$$

FIRST(S) =
$$\{i, a\}$$

FIRST(S') = $\{e, \in\}$
FIRST(E) = $\{b\}$

FOLLOW(S) =

FOLLOW(S') =

FOLLOW(E) =

Given the production rules:

FIRST(S) =
$$\{i, a\}$$

FIRST(S') = $\{e, \in\}$
FIRST(E) = $\{b\}$

```
FOLLOW(S) = {$}
FOLLOW(S') =
FOLLOW(E) =
```

• For the start symbol S, place \$ in Follow(S).

```
S → i E t SS' | a
S' →eS | ∈
E → b
```

```
FIRST(S) = \{i, a\}
FIRST(S') = \{e, \in\}
FIRST(E) = \{b\}
```

```
FOLLOW(S) = \{\$\} U \{FIRST(S')- \in\}
FOLLOW(S') =
FOLLOW(E) = \{t\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S → i E t SS' | a
S' → eS | ∈
E → b
```

```
FIRST(S) = \{i, a\}
FIRST(S') = \{e, \in\}
FIRST(E) = \{b\}
```

```
FOLLOW(S) = \{\$\} U \{FIRST(S')- \in\}
FOLLOW(S') = \{FOLLOW(S)\}
FOLLOW(E) = \{t\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S → i E t SS' | a
S' →eS | ∈
E → b
```

```
FIRST(S) = \{i, a\}
FIRST(S') = \{e, \in\}
FIRST(E) = \{b\}
```

```
FOLLOW(S) = \{\$\} U \{FIRST(S') - \in\} = \{\$, e\}
FOLLOW(S') =\{FOLLOW(S)\} = \{\$, e\}
FOLLOW(E) = \{t\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S → i E t SS' | a
S' →eS | ∈
E → b
```

```
FIRST(S) = \{i, a\}
FIRST(S') = \{e, \in\}
FIRST(E) = \{b\}
```

```
FOLLOW(S) = {$,e}
FOLLOW(S') = {$, e}
FOLLOW(E) = {t}
```

```
FOLLOW(S) = \{\$\} U \{FIRST(S')- \in\} = \{\$,e\}
FOLLOW(S') =\{FOLLOW(S)\} = \{\$,e\}
FOLLOW(E) = \{t\}
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

• Given the production rules:

 $S \rightarrow aBDh$

 $B \rightarrow cC$

 $C \rightarrow bC / \in$

 $D \rightarrow EF$

 $E \rightarrow g / \in$

 $F \rightarrow f / \in$

FOLLOW(S) =

FOLLOW(B) =

FOLLOW(C) =

FOLLOW(D) =

FOLLOW(E) =

FOLLOW(F) =

Given the production rules:

 $S \rightarrow aBDh$

 $B \rightarrow cC$

 $C \rightarrow bC / \in$

 $D \rightarrow EF$

 $E \rightarrow g / \in$

 $F \rightarrow f / \in$

FOLLOW(S) =

FOLLOW(B) =

FOLLOW(C) =

FOLLOW(D) =

FOLLOW(E) =

FOLLOW(F) =

 $FIRST(S) = {a}$ $FIRST(B) = {c}$

 $FIRST(C) = \{b, \in\} FIRST(D) = \{g, f, \in\}$

 $FIRST(E) = \{g, \in\} FIRST(F) = \{f, \in\}$

Given the production rules:

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC / \in$$

$$D \rightarrow EF$$

$$E \rightarrow g / \in$$

$$F \rightarrow f / \in$$

$$FIRST(S) = {a}$$
 $FIRST(B) = {c}$

$$FIRST(C) = \{b, \in\} FIRST(D) = \{g, f, \in\}$$

$$FIRST(E) = \{g, \in\} FIRST(F) = \{f, \in\}$$

$$FOLLOW(S) = \{\$\}$$

 For the start symbol S, place \$ in Follow(S).

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = {a} FIRST(B) = {c}

FIRST(C) = {b, \in} FIRST(D) = {g, f, \in}

FIRST(E) = {g, \in} FIRST(F) = {f, \in}
```

```
FIRST Set
```

```
FOLLOW(S) = {$}

FOLLOW(B) = {FIRST(D) - €} U FIRST(h)

FOLLOW(C) =

FOLLOW(D) =

FOLLOW(E) =

FOLLOW(F) =
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

```
    Given the production rules:
```

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = \{a\} FIRST(B) = \{c\}
FIRST(C) = \{b, \in\} FIRST(D) = \{g, f, \in\}
FIRST(E) = \{g, \in\} FIRST(F) = \{f, \in\}
```

```
FIRST Set
```

```
FOLLOW(S) = {$}

FOLLOW(B) = {FIRST(D) - ∈} U FIRST(h)

FOLLOW(C) = FOLLOW(B)

FOLLOW(D) =

FOLLOW(E) =

FOLLOW(F) =
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = \{a\} FIRST(B) = \{c\}
FIRST(C) = \{b, \in\} FIRST(D) = \{g, f, \in\}
FIRST(E) = \{g, \in\} FIRST(F) = \{f, \in\}
```

```
FIRST Set
```

```
FOLLOW(S) = {$}

FOLLOW(B) = {FIRST(D) - ∈} U FIRST(h)

FOLLOW(C) = FOLLOW(B)

FOLLOW(D) = FIRST(h)

FOLLOW(E) =

FOLLOW(F) =
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

```
    Given the production rules:
```

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = {a} FIRST(B) = {c}

FIRST(C) = {b, \in} FIRST(D) = {g, f, \in}

FIRST(E) = {g, \in} FIRST(F) = {f, \in}
```

```
FIRST Set
```

```
FOLLOW(S) = {$}

FOLLOW(B) = {FIRST(D) - ∈} U FIRST(h)

FOLLOW(C) = FOLLOW(B)

FOLLOW(D) = FIRST(h)

FOLLOW(E) = First(F) - ∈} U Follow(D)

FOLLOW(F) =
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

```
    Given the production rules:
```

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = \{a\} FIRST(B) = \{c\}
FIRST(C) = \{b, \in\} FIRST(D) = \{g, f, \in\}
FIRST(E) = \{g, \in\} FIRST(F) = \{f, \in\}
```

```
FIRST Set
```

```
FOLLOW(S) = \{\$\}

FOLLOW(B) = \{FIRST(D) - \in\} \cup FIRST(h)

FOLLOW(C) = FOLLOW(B)

FOLLOW(D) = FIRST(h)

FOLLOW(E) = First(F) - \in\} \cup Follow(D)

FOLLOW(F) = FOLLOW(D)
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

Given the production rules:

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = \{a\} FIRST(B) = \{c\}
FIRST(C) = \{b, \in\} FIRST(D) = \{g, f, \in\}
FIRST(E) = \{g, \in\} FIRST(F) = \{f, \in\}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(B) = \{FIRST(D) - \in\} \cup FIRST(h)

= \{g, f, h\}

FOLLOW(C) = FOLLOW(B) = \{g, f, h\}

FOLLOW(D) = FIRST(h) = \{h\}

FOLLOW(E) = First(F) - \in\} \cup Follow(D)

= \{f, h\}

FOLLOW(F) = FOLLOW(D) = \{h\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) = First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S \rightarrow aBDh

B \rightarrow cC

C \rightarrow bC / \in

D \rightarrow EF

E \rightarrow g / \in

F \rightarrow f / \in
```

```
FIRST(S) = {a} FIRST(B) = {c}

FIRST(C) = {b, \in} FIRST(D) = {g, f, \in}

FIRST(E) = {g, \in} FIRST(F) = {f, \in}
```

```
FOLLOW(S) = \{\$\} FOLLOW (B) = \{g, f, h\}
FOLLOW(C) = \{g, f, h\} FOLLOW (D) = \{h\}
FOLLOW(E) = \{f, h\} FOLLOW (F) = \{h\}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(B) = \{FIRST(D) - \in\} \cup FIRST(h)

= \{g, f, h\}

FOLLOW(C) = FOLLOW(B) = \{g, f, h\}

FOLLOW(D) = FIRST(h) = \{h\}

FOLLOW(E) = First(F) - \in\} \cup Follow(D)

= \{f, h\}

FOLLOW(F) = FOLLOW(D) = \{h\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
 - For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

• Given the production rules:

FOLLOW(S) =

 $S \rightarrow aABb$

FOLLOW(A) =

 $A \rightarrow c \mid \in$

FOLLOW(B) =

 $B \rightarrow d \mid \in$

Given the production rules:

$$S \rightarrow aABb$$

$$A \rightarrow c \mid \in$$

$$B \rightarrow d \mid \in$$

$$FIRST(S) = {a}$$

FIRST (A) =
$$\{c, \in\}$$

$$FIRST(B) = \{d, \in\}$$

 $FOLLOW(S) = \{\$\}$

FOLLOW(A) =

FOLLOW(B) =

For the start symbol S, place \$ in Follow(S).

Given the production rules:

$$S \rightarrow aABb$$

 $A \rightarrow c \mid \in$
 $B \rightarrow d \mid \in$

```
FIRST(S) = \{a\}
FIRST (A) = \{c, \in\}
FIRST(B) = \{d, \in\}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = \{FIRST(B) - \in\} \cup FIRST(b)

= \{d\} \cup \{b\} = \{b, d\}

FOLLOW(B) =
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
 - For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then Follow(B) = First(β)

 If $\in \in First(\beta)$, then Follow(B) = {
 First(β) \in } \cup Follow(A)

Given the production rules:

$$S \rightarrow aABb$$

 $A \rightarrow c \mid \in$
 $B \rightarrow d \mid \in$

```
FIRST(S) = \{a\}
FIRST (A) = \{c, \in\}
FIRST(B) = \{d, \in\}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = \{FIRST(B) - \in\} \cup FIRST(b)

= \{d\} \cup \{b\} = \{b, d\}

FOLLOW(B) = FIRST(b) = \{b\}
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

$$S \rightarrow aABb$$

 $A \rightarrow c \mid \in$
 $B \rightarrow d \mid \in$

FIRST(S) =
$$\{a\}$$

FIRST (A) = $\{c, \in\}$
FIRST(B) = $\{d, \in\}$

```
FOLLOW(S) = {$}
FOLLOW(A) = {b, d}
FOLLOW(B) = {b}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = \{FIRST(B) - \in\} \cup FIRST(b)

= \{d\} \cup \{b\} = \{b, d\}

FOLLOW(B) = FIRST(b) = \{b\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

EXAMPLE 4

• Given the production rules:

 $S \rightarrow Aa$

 $A \rightarrow BD$

 $B \rightarrow b \mid \in$

 $D \rightarrow d \mid \in$

FOLLOW(S) =

FOLLOW(A) =

FOLLOW(B) =

FOLLOW(D) =

EXAMPLE 4

Given the production rules:

$$S \rightarrow Aa$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

$$FIRST(S) = \{a, b, d, \in\}$$

$$FIRST(A) = \{b, d, \in\}$$

$$FIRST(B) = \{b, \in\}$$

$$FIRST(D) = (d, \in)$$

$$FOLLOW(S) = \{\$\}$$

For the start symbol S, place \$ in Follow(S).

Given the production rules:

```
S \rightarrow Aa
A \rightarrow BD
B \rightarrow b \mid \in
D \rightarrow d \mid \in
```

```
FIRST(S) = \{a, b, d, \in\}

FIRST(A) = \{b, d, \in\}

FIRST(B) = \{b, \in\}

FIRST(D) = \{d, \in\}
```

```
FOLLOW(S) = {$}

FOLLOW(A) = FIRST(a) = {a}

FOLLOW(B) =

FOLLOW(D) =
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

Given the production rules:

$$S \rightarrow Aa$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

FIRST(S) =
$$\{a, b, d, \in\}$$

FIRST(A) = $\{b, d, \in\}$
FIRST(B) = $\{b, \in\}$
FIRST(D) = $\{d, \in\}$

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = FIRST(a) = \{a\}

FOLLOW(B) = \{FIRST(D) - \in\} U FOLLOW(A)

= \{d\} U \{a\} = \{a, d\}

FOLLOW(D) =
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) = First(β)
 If ∈ ∈ First(β), then Follow(B) = { First(β)
 ∈ } ∪ Follow(A)

Given the production rules:

$$S \rightarrow Aa$$

$$A \rightarrow BD$$

$$B \rightarrow b \mid \in$$

$$D \rightarrow d \mid \in$$

FIRST(S) =
$$\{a, b, d, \in\}$$

FIRST(A) = $\{b, d, \in\}$
FIRST(B) = $\{b, \in\}$
FIRST(D) = $\{d, \in\}$

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = FIRST(a) = \{a\}

FOLLOW(B) = \{FIRST(D) - \in\} U FOLLOW(A)

= \{d\} U \{a\} = \{a, d\}

FOLLOW(D) = FOLLOW(A) = \{a\}
```

- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{ First(\beta) - \in \} \cup Follow(A)$

```
S \rightarrow Aa
A \rightarrow BD
B \rightarrow b \mid \in D \rightarrow d \mid \in A
```

FIRST(S) =
$$\{a, b, d, \in\}$$

FIRST(A) = $\{b, d, \in\}$
FIRST(B) = $\{b, \in\}$
FIRST(D) = $\{d, \in\}$

```
FOLLOW(S) = {$}

FOLLOW(A) = {a}

FOLLOW(B) = {a, d}

FOLLOW(D) = {a}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = FIRST(a) = \{a\}

FOLLOW(B) = \{FIRST(D) - \in\} U FOLLOW(A)

= \{d\} U \{a\} = \{a, d\}

FOLLOW(D) = FOLLOW(A) = \{a\}
```

- For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) = First(β)
 If ∈ ∈ First(β), then Follow(B) = { First(β) − ∈} ∪ Follow(A)

• Given the production rules:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow SL'$$

FOLLOW(S) =

FOLLOW(L) =

FOLLOW(L') =

$$S \rightarrow (L) \mid a$$

 $L \rightarrow SL'$

```
S \rightarrow (L) \mid a

L \rightarrow SL'

L' \rightarrow ,SL' \mid \in
```

```
FIRST(S) = { ( , a }

FIRST(L) = FIRST(S) = { ( , a }

FIRST(L') = { , , ∈}
```

```
FOLLOW(S) = {$} U {FIRST(L') - ∈}

U FOLLOW(L) U FOLLOW(L')

FOLLOW(L) =

FOLLOW(L') =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S \rightarrow (L) \mid a

L \rightarrow SL'

L' \rightarrow ,SL' \mid \in
```

```
FIRST(S) = { ( , a }
FIRST(L) = FIRST(S) = { ( , a }
FIRST(L') = { , , ∈}
```

```
FOLLOW(S) = \{\$\} U \{FIRST(L') - \in\}
U FOLLOW(L) U FOLLOW(L')
FOLLOW(L) = FIRST() = \{\} \{\}
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S \rightarrow (L) \mid a

L \rightarrow SL'

L' \rightarrow ,SL' \mid \in
```

```
FIRST(S) = \{ (, a) \}
FIRST(L) = FIRST(S) = \{ (, a) \}
FIRST(L') = \{ , , \in \}
```

```
FOLLOW(S) = \{\$\} U \{FIRST(L') - \in\}

U FOLLOW(L) U FOLLOW(L')

FOLLOW(L) = FIRST() = \{\}

FOLLOW(L') = \{\}
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S \rightarrow (L) \mid a

L \rightarrow SL'

L' \rightarrow ,SL' \mid \in

FIRST(S) = \{ (, a \}

FIRST(L) = FIRST(S) = \{ (, a \}

FIRST(L') = \{ , , \in \}
```

```
FOLLOW(S) = {$} U {FIRST(L') - ∈}

U FOLLOW(L) U FOLLOW(L')

= {$} U {,} U {)} U {)}

= {$, , ,}

FOLLOW(L) = FIRST()) = {)}

FOLLOW(L') = FOLLOW(L) = {)}
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

```
S \rightarrow (L) \mid a

L \rightarrow SL'

L' \rightarrow ,SL' \mid \in

FIRST(S) = \{ (, a \}

FIRST(L) = FIRST(S) = \{ (, a \}

FIRST(L') = \{ , , \in \}
```

```
FOLLOW(S) = {$, , , )}
FOLLOW(L) = { ) }
FOLLOW(L') = { ) }
```

```
FOLLOW(S) = {$} U {FIRST(L') - ∈}

U FOLLOW(L) U FOLLOW(L')

= {$} U {,} U {)} U {)}

= {$, , ,}}

FOLLOW(L) = FIRST()) = {)}

FOLLOW(L') = FOLLOW(L) = {)}
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

• Given the production rules:

S → ACB | CbB | Ba

 $A \rightarrow da \mid BC$

 $B \rightarrow g \mid \in$

 $C \rightarrow h \mid \in$

FOLLOW(S) =

FOLLOW(A) =

FOLLOW(B) =

FOLLOW(C) =

• Given the production rules:

$$S \rightarrow ACB \mid CbB \mid Ba$$

$$A \rightarrow da \mid BC$$

$$B \rightarrow g \mid \in$$

$$C \rightarrow h \mid \in$$

$$FIRST(S) = \{a, b, d, g, h, \in\}$$

$$FIRST(A) = \{d, g, h, \in\}$$

$$FIRST(B) = \{g, \in \}$$

$$FIRST(C) = \{h, \in\}$$

FOLLOW(S) =

FOLLOW(A) =

FOLLOW(B) =

FOLLOW(C) =

Given the production rules:

$$S \rightarrow ACB \mid CbB \mid Ba$$

 $A \rightarrow da \mid BC$
 $B \rightarrow g \mid \in$
 $C \rightarrow h \mid \in$

FIRST(S) =
$$\{a, b, d, g, h, \in\}$$

FIRST(A) = $\{d, g, h, \in\}$
FIRST(B) = $\{g, \in\}$
FIRST(C) = $\{h, \in\}$

```
FOLLOW(S) = {$}
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then Follow(B) = $First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{$ $First(\beta) - \in \} \cup Follow(A)$

Given the production rules:

```
S \rightarrow ACB \mid CbB \mid Ba
A \rightarrow da \mid BC
B \rightarrow g \mid \in
C \rightarrow h \mid \in
```

```
FIRST(S) = \{a, b, d, g, h, \in\}

FIRST(A) = \{d, g, h, \in\}

FIRST(B) = \{g, \in\}

FIRST(C) = \{h, \in\}
```

```
FOLLOW(S) = {$}

FOLLOW(A) = {FIRST(C} - ∈} U {FIRST(B) - ∈}

U FOLLOW(S)

FOLLOW(B) =

FOLLOW(C) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) = First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

• Given the production rules:

```
S \rightarrow ACB \mid CbB \mid Ba
A \rightarrow da \mid BC
B \rightarrow g \mid \in
C \rightarrow h \mid \in

FIRST(S) = {a, b, d, g, h, \in}

FIRST(A) = {d, g, h, \in}

FIRST(B) = {g, \in }

FIRST(C) = {h, \in}
```

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = \{FIRST(C\} - \in\} \cup \{FIRST(B) - \in\} \cup FOLLOW(S)

U FOLLOW(S) U FIRST(a)

U \{FIRST(C) - \in\} \cup FOLLOW(A)

FOLLOW(C) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A $\rightarrow \alpha$ B, Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) = First(β)
 If ∈ ∈ First(β), then Follow(B) = { First(β) − ∈} ∪ Follow(A)

• Given the production rules:

```
S \rightarrow ACB | CbB | Ba

A \rightarrow da | BC

B \rightarrow g | \in

C \rightarrow h | \in

FIRST(S) = {a, b, d, g, h, \in}

FIRST(A) = {d, g, h, \in}

FIRST(B) = {g, \in }
```

 $FIRST(C) = \{h, \in\}$

```
FOLLOW(S) = \{\$\}

FOLLOW(A) = \{FIRST(C\} - \in\} \cup \{FIRST(B) - \in\} \cup FOLLOW(S)

FOLLOW(B) = FOLLOW(S) U FIRST(a)

U \{FIRST(C) - \in\} \cup FOLLOW(A)

FOLLOW(C) = \{FIRST(B) - \in\} \cup FOLLOW(S)

U \{FIRST(B) - \in\} \cup FOLLOW(A)
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A $\rightarrow \alpha$ B, Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) = First(β)
 If ∈ ∈ First(β), then Follow(B) = { First(β) − ∈} ∪ Follow(A)

• Given the production rules:

```
S \rightarrow ACB \mid CbB \mid Ba

A \rightarrow da \mid BC

B \rightarrow g \mid \in

C \rightarrow h \mid \in

FIRST(S) = {a, b, d, g, h, \in}

FIRST(A) = {d, g, h, \in}

FIRST(B) = {g, \in }

FIRST(C) = {h, \in}
```

FOLLOW(S) =
$$\{\$\}$$

FOLLOW(A) = $\{FIRST(C\} - \in\} \cup \{FIRST(B) - \in\} \cup FOLLOW(S)$
= $\{h\} \cup \{g\} \cup \{\$\} = \{g, h, \$\}$
FOLLOW(B) = FOLLOW(S) \(\mu\) FIRST(a)
\(\mu\) $\{FIRST(C) - \in\} \cup FOLLOW(A)$
= $\{\$\} \cup \{a\} \cup \{h\} \cup \{g, h, \$\}$
= $\{a, g, h, \$\}$
FOLLOW(C) = $\{FIRST(B) - \in\} \cup FOLLOW(S)$
\(\mu\) FIRST(bB) \(\mu\) FOLLOW(A)
= $\{g\} \cup \{\$\} \cup \{b\} \cup \{g, h, \$\}$
= $\{b, g, h, \$\}$

$$S \rightarrow ACB \mid CbB \mid Ba$$

 $A \rightarrow da \mid BC$
 $B \rightarrow g \mid \in$
 $C \rightarrow h \mid \in$

FIRST(S) =
$$\{a, b, d, g, h, \in\}$$

FIRST(A) = $\{d, g, h, \in\}$
FIRST(B) = $\{g, \in\}$
FIRST(C) = $\{h, \in\}$

```
FOLLOW(S) = {$}

FOLLOW(A) = {g, h, $}

FOLLOW(B) = {a, g, h, $}

FOLLOW(C) = {b, g, h, $}
```

• Given the production rules:

```
E \rightarrow TE'
E' \rightarrow + TE' \mid \in
T \rightarrow FT'
T' \rightarrow * FT' \mid \in
F \rightarrow (E) \mid id
```

```
FIRST(E) = FIRST(T) = \{(, id)\}

FIRST(E') = \{+, \in\}

FIRST(T) = FIRST(F) = \{(, id)\}

FIRST(T') = \{*, \in\}

FIRST(F) = \{(, id)\}
```

```
FOLLOW(E) =
FOLLOW(E') =
FOLLOW(T) =
FOLLOW(T') =
FOLLOW(F) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

• Given the production rules:

```
E \rightarrow TE'
E' \rightarrow + TE' \mid \in
T \rightarrow FT'
T' \rightarrow * FT' \mid \in
F \rightarrow (E) \mid id
```

```
FIRST(E) = FIRST(T) = \{(, id)\}

FIRST(E') = \{+, \in\}

FIRST(T) = FIRST(F) = \{(, id)\}

FIRST(T') = \{*, \in\}

FIRST(F) = \{(, id)\}
```

```
FOLLOW(E) = {$} U FIRST())

FOLLOW(E') =

FOLLOW(T) =

FOLLOW(T') =

FOLLOW(F) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

• Given the production rules:

```
E \rightarrow TE'
E' \rightarrow + TE' \mid \in
T \rightarrow FT'
T' \rightarrow * FT' \mid \in
F \rightarrow (E) \mid id
```

```
FIRST(E) = FIRST(T) = \{(, id)\}

FIRST(E') = \{+, \in\}

FIRST(T) = FIRST(F) = \{(, id)\}

FIRST(T') = \{*, \in\}

FIRST(F) = \{(, id)\}
```

```
FOLLOW(E) = {$} U FIRST()) = {$, )}
FOLLOW(E') = FOLLOW(E) ={$,)}
FOLLOW(T) =
FOLLOW(T') =
FOLLOW(F) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
- For any production rule A → αBβ,
 If ∈ ∉ First(β), then Follow(B) =
 First(β)
 If ∈ ∈ First(β), then Follow(B) = {
 First(β) − ∈} ∪ Follow(A)

• Given the production rules:

$$E \rightarrow TE'$$
 $E' \rightarrow + TE' \mid \in$
 $T \rightarrow FT'$
 $T' \rightarrow * FT' \mid \in$
 $F \rightarrow (E) \mid id$

FIRST(E) = FIRST(T) =
$$\{(, id)\}$$

FIRST(E') = $\{+, \in\}$
FIRST(T) = FIRST(F) = $\{(, id)\}$
FIRST(T') = $\{*, \in\}$
FIRST(F) = $\{(, id)\}$

```
FOLLOW(E) = \{\$\}\ U\ FIRST()) = \{\$,\ )}

FOLLOW(E') = FOLLOW(E) = \{\$,\ )}

FOLLOW(T) = \{FIRST(E') - \in\}\ U\ FOLLOW(E)

= \{+,\ ),\ \$\}

FOLLOW(T') =

FOLLOW(F) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
 - For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{ First(\beta) - \in \} \cup Follow(A)$

• Given the production rules:

$$E \rightarrow TE'$$
 $E' \rightarrow + TE' \mid \in$
 $T \rightarrow FT'$
 $T' \rightarrow * FT' \mid \in$
 $F \rightarrow (E) \mid id$

FIRST(E) = FIRST(T) =
$$\{(, id)\}$$

FIRST(E') = $\{+, \in\}$
FIRST(T) = FIRST(F) = $\{(, id)\}$
FIRST(T') = $\{*, \in\}$
FIRST(F) = $\{(, id)\}$

```
FOLLOW(E) = \{\$\} U FIRST()) = \{\$, \}

FOLLOW(E') = FOLLOW(E) = \{\$, \}

FOLLOW(T) = \{FIRST(E') - \in\} U FOLLOW(E)

= \{+, \}

FOLLOW(T') = FOLLOW(T) = \{+, \}

FOLLOW(F) =
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
 - For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{ First(\beta) - \in \} \cup Follow(A)$

• Given the production rules:

$$E \rightarrow TE'$$
 $E' \rightarrow + TE' \mid \in$
 $T \rightarrow FT'$
 $T' \rightarrow * FT' \mid \in$
 $F \rightarrow (E) \mid id$

FIRST(E) = FIRST(T) =
$$\{(, id)\}$$

FIRST(E') = $\{+, \in\}$
FIRST(T) = FIRST(F) = $\{(, id)\}$
FIRST(T') = $\{*, \in\}$
FIRST(F) = $\{(, id)\}$

```
FOLLOW(E) = \{\$\}\ U\ FIRST()\} = \{\$\}, \}

FOLLOW(E') = FOLLOW(E) = \{\$, \}\}

FOLLOW(T) = \{FIRST(E') - \in\}\ U\ FOLLOW(E)

= \{+, \}, \$\}

FOLLOW(T') = FOLLOW(T) = \{+, \}, \$\}

FOLLOW(F) = \{FIRST(T') - \in\}\ U\ FOLLOW(T)

= \{*, +, \}, \$\}
```

- For the start symbol S, place \$ in Follow(S).
- For any production rule A → αB,
 Follow(B) = Follow(A)
 - For any production rule $A \rightarrow \alpha B\beta$, If $\in \notin First(\beta)$, then $Follow(B) = First(\beta)$ If $\in \in First(\beta)$, then $Follow(B) = \{ First(\beta) - \in \} \cup Follow(A)$

$$E \rightarrow TE'$$
 $E' \rightarrow + TE' \mid \in$
 $T \rightarrow FT'$
 $T' \rightarrow * FT' \mid \in$
 $F \rightarrow (E) \mid id$

```
FIRST(E) = FIRST(T) = \{(, id)\}

FIRST(E') = \{+, \in\}

FIRST(T) = FIRST(F) = \{(, id)\}

FIRST(T') = \{*, \in\}

FIRST(F) = \{(, id)\}
```

```
FOLLOW(E) = {$, )}

FOLLOW(E') = {$,)}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {*, +, ), $}
```

Try it

• Given the production rules:

```
S → AaAb | BbBa
```

$$A \rightarrow \in$$

$$B \rightarrow \in$$

$$FIRST(S) =$$

$$FIRST(B) =$$

FOLLOW(S) =

$$A \rightarrow S$$

$$B \rightarrow S$$

$$FIRST(A) =$$

$$FIRST(B) =$$

Construction of a predictive parsing table

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production A \rightarrow α of the grammar, do the following:

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ] as well.

If, after performing the above, there is no production at all in M[A, a], then set M[A, a] to **error** (which we normally represent by an empty entry in the table).

$$S \rightarrow aABb$$
 First(S) = {a} Follow(S) = {\$}
 $A \rightarrow c \mid \in$ First(A) = {c, \in } Follow(A) = {d, b}
 $B \rightarrow d \mid \in$ First(B) = {d, \in } Follow(B) = {b}

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S					
А					
В					

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

S
$$\rightarrow$$
 aABbFirst(S) = {a}Follow(S) = {\$}A \rightarrow c | \in First(A) = {c, \in }Follow(A) = {d, b}B \rightarrow d | \in First(B) = {d, \in }Follow(B) = {b}

	Input Symbols				
Non- Terminals	a	b	С	d	\$
S	S → aABb				
А					
В					

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

$$S \rightarrow aABb$$
 First(S) = {a} Follow(S) = {\$}
 $A \rightarrow c \mid \in$ First(A) = {c, \in } Follow(A) = {d, b}
 $B \rightarrow d \mid \in$ First(B) = {d, \in } Follow(B) = {b}

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S	S →aABb				
А			A → c		
В					

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and β is in FOLLOW(A), add A \rightarrow α to M[A, β] as well.

$$S \rightarrow aABb$$
 First(S) = {a} Follow(S) = {\$}
 $A \rightarrow c \mid \in$ First(A) = {c, \in } Follow(A) = {d, b}
 $B \rightarrow d \mid \in$ First(B) = {d, \in } Follow(B) = {b}

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S	S →aABb				
А		A → ∈	A → c	A → ∈	
В					

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A $\rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and β is in FOLLOW(A), add A $\rightarrow \alpha$ to M[A, β] as well.

$$S \rightarrow aABb$$
 First(S) = {a} Follow(S) = {\$}
 $A \rightarrow c \mid \in$ First(A) = {c, \in } Follow(A) = {d, b}
 $B \rightarrow d \mid \in$ First(B) = {d, \in } Follow(B) = {b}

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S	S → aABb				
Α		A → ∈	A → c	A → ∈	
В				B → d	

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and β is in FOLLOW(A), add A \rightarrow α to M[A, β] as well.

$$S \rightarrow aABb$$
 First(S) = {a} Follow(S) = {\$}
 $A \rightarrow c \mid \in$ First(A) = {c, \in } Follow(A) = {d, b}
 $B \rightarrow d \mid \in$ First(B) = {d, \in } Follow(B) = {b}

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S	S → aABb				
А		A → ∈	A → c	A → ∈	
В		B → ∈		B → d	

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ] as well.

$$S \rightarrow aABb$$
 First(S) = {a} Follow(S) = {\$}
 $A \rightarrow c \mid \in$ First(A) = {c, \in } Follow(A) = {d, b}
 $B \rightarrow d \mid \in$ First(B) = {d, \in } Follow(B) = {b}

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S	S → aABb				
А		A → ∈	A → c	A → ∈	
В		B → ∈		$B \rightarrow d$	

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

EXAMPLE 1 : TRACE for adb\$

	Input Symbols				
Non- Terminals	а	b	С	d	\$
S	S → aABb				
Α		A → ∈	A → c	A → ∈	
В		B → ∈		B → d	

STACK	INPUT	OUTPUT
\$S	adb\$	
\$bBA <mark>a</mark>	adb\$	S → aABb
\$bBA	db\$	рор
\$bB	db\$	$A \rightarrow \in$
\$b <mark>d</mark>	db\$	$B \rightarrow d$
\$ <mark>b</mark>	<mark>b</mark> \$	рор
\$	\$	рор

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

		Input Symbols					
Non-Terminals	id	+	*	()	\$	
Е							
E'							
Т							
T'							
F							

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add A \rightarrow α to M[A, φ] as well.

E→TE'	$FIRST(E) = \{(, id\}$	FOLLOW(E) = {), \$}
E'→+TE' €	$FIRST(E') = \{+, \epsilon\}$	FOLLOW(E') = {), \$}
T→FT'	$FIRST(T) = \{(, id\}$	FOLLOW(T) = {+,), \$}
T'→*FT' €	$FIRST(T') = \{^*, \epsilon\}$	FOLLOW(T') ={+,), \$}
F→(E) id	$FIRST(F) = \{(, id)\}$	FOLLOW(F) = {*, +,), \$}

	Input Symbols					
Non-Terminals	id	+	*	()	\$
E	E→TE'			E→TE'		
E'						
Т						
T'						
F						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

	Input Symbols					
Non-Terminals	id	+	*	()	\$
Е	E→TE'			E→TE'		
E'		E'→+TE'				
Т						
T'						
F						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

		Input Symbols					
Non-Terminals	id	+	*	()	\$	
E	E→TE'			E→TE'			
E'		E'→+TE'			Ε'→ ∈	Ε'→ €	
Т							
T'							
F							

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add A \rightarrow α to M[A, φ] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

		Input Symbols					
Non-Terminals	id	+	*	()	\$	
E	E→TE'			E→TE'			
E'		E'→+TE'			Ε'→ ∈	Ε'→ ∈	
Т	T→FT'			T→FT'			
T'							
F							

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

	Input Symbols					
Non-Terminals	id	+	*	()	\$
Е	E→TE'			E→TE'		
E'		E'→+TE'			Ε'→ ∈	Ε'→ ∈
Т	T→FT'			T→FT'		
T'			T'→*FT'			
F						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

	Input Symbols					
Non-Terminals	id	+	*	()	\$
E	E→TE'			E→TE'		
E'		E'→+TE'			Ε'→ €	Ε'→ €
Т	T→FT'			T→FT'		
T'		T' → €	T'→*FT'		T' → €	T' → €
F						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \circ is in FOLLOW(A), add A \rightarrow α to M[A, \circ] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

	Input Symbols							
Non-Terminals	id	id + * ()						
E	E→TE'			E→TE'				
E'		E'→+TE'			Ε'→ €	Ε'→ €		
Т	T→FT'			T→FT'				
T'		T' → €	T'→*FT'		T' → €	T' → €		
F				F→(E)				

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

	Input Symbols							
Non-Terminals	id	id + * ()						
Е	E→TE'			E→TE'				
E'		E'→+TE'			Ε'→ €	Ε'→ €		
Т	T→FT'			T→FT'				
T'		T' → €	T'→*FT'		T' → €	T' → €		
F	$F \rightarrow id$			F→(E)				

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

E→TE' FIRST(E) = {(, id} FOLLOW(E) = {), \$} E'→+TE'|€ FIRST(E') = {+, €} FOLLOW(E') = {), \$} T→FT' FIRST(T) = {(, id} FOLLOW(T) = {+,), \$} T'→*FT'|€ FIRST(T') = {*, €} FOLLOW(T') = {+,), \$} F→(E)|id FIRST(F) = {(, id} FOLLOW(F) = {*, +,), \$}

	Input Symbols					
Non-Terminals	id	+	*	()	\$
Е	E→TE'			E→TE'		
E'		E'→+TE'			Ε'→ €	Ε'→ €
Т	T→FT'			T→FT'		
T'		T' → €	T'→*FT'		T' → €	T' → €
F	$F \rightarrow id$			F→(E)		

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

EXAMPLE 2: Trace for id + id * id\$

	Input Symbols								
Non-Terminals	id	id + * () \$							
E	E→TE'			E→TE'					
E'		E'→+TE'			Ε'→ ∈	Ε'→ €			
Т	T→FT'			T→FT'					
T'		T' → €	T'→*FT'		T' → €	T' → €			
F	$F \rightarrow id$			F→(E)					

STACK	INPUT	OUTPUT
\$E	id + id * id\$	
\$E'T	id + id * id\$	E→TE'
\$E'T'F	id + id * id\$	T→FT'
\$E'T'id	id + id * id\$	F→id
\$E'T'	+ id * id\$	
\$E'	+ id * id\$	T' → ∈
\$E'T+	+ id * id\$	E'→+TE'
\$E'T	id * id\$	
\$E'T'F	id * id\$	T→FT'
\$E'T'id	id * id\$	$F \rightarrow id$
\$E'T'	* id\$	
\$E'T'F*	* id\$	T'→*FT'
\$E'T'F	id\$	$F \rightarrow id$
\$E'T'id	id\$	
\$E'T'	\$	
\$E'	\$	T' → ∈
\$	\$	Ε'→ €

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols				
Non-Terminals	a b d \$				
S					
А					
В					
D					

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

```
S \rightarrow A a FIRST(S) = {b, d, a} FOLLOW(S) = {$}

A \rightarrow B D FIRST(A) = {b, d, \in} FOLLOW(A) = {a}

B \rightarrow b \mid \in FIRST(B) = {b, \in} FOLLOW(B) = {d, a}

D \rightarrow d \mid \in FIRST(D) = {d, \in} FOLLOW(D) = {a}
```

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
А						
В						
D						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ] as well.

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
А	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В						
D						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add φ at o M[A, φ] as well.

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
Α	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В		B → b				
D						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
А	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В	B → ∈	B → b	B → ∈			
D						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ] as well.

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
А	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В	$B \rightarrow \in$	B → b	B → ∈			
D			$D \rightarrow d$			

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
А	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В	$B \rightarrow \in$	B → b	B → ∈			
D	D → ∈		$D \rightarrow d$			

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, b]. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ] as well.

 $S \rightarrow A a$ FIRST(S) = {b, d, a} FOLLOW(S) = {\$} $A \rightarrow B D$ FIRST(A) = {b, d, \in } FOLLOW(A) = {a} $B \rightarrow b \mid \in$ FIRST(B) = {b, \in } FOLLOW(B) = {d, a} $D \rightarrow d \mid \in$ FIRST(D) = {d, \in } FOLLOW(D) = {a}

	Input Symbols					
Non-Terminals	a b d \$					
S	S → A a	S → A a	S → A a			
Α	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В	B → ∈	B → b	B → ∈			
D	D → ∈		$D \rightarrow d$			

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

EXAMPLE 3: trace of bda\$

	Input Symbols					
Non-Terminals	a b d \$					
S	$S \rightarrow A a$	S → A a	S → A a			
А	$A \rightarrow B D$	$A \rightarrow B D$	$A \rightarrow B D$			
В	$B \rightarrow \in$	B → b	B → ∈			
D	D → ∈		$D \rightarrow d$			

STACK	INPUT	OUTPUT
\$S	bda\$	
\$aA	bda\$	S → A a
\$aDB	bda\$	$A \rightarrow BD$
\$aD <mark>b</mark>	bda\$	$B \rightarrow b$
\$aD	da\$	рор
\$a <mark>d</mark>	da\$	$D \rightarrow d$
\$ <mark>a</mark>	a\$	рор
\$	\$	рор

LL(1) Grammar

- Predictive parsers, that is, recursive-descent parsers needing no backtracking, can be constructed for a class of grammars called LL(1).
- The first "L" in LL(1) stands for scanning the input from left to right, the second "L" for producing a leftmost derivation, and the "1" for using one input symbol of look-a-head at each step to make parsing action decisions.
- For every LL(1) grammar, each parsing-table entry uniquely identifies a production or signals an error.
- LL(1) grammars are not ambiguous and not left-recursive.

LL(1) Grammar

A grammar G is LL(1) if and only if whenever A $\rightarrow \alpha \mid \beta$ are two distinct productions of G, the following conditions hold:

- 1. For no terminal a do both α and β derive strings beginning with a.
- 2. At most one of α and β can derive the empty string.
- 3. If β derives then α does not derive any string beginning with a terminal in FOLLOW(A). Likewise, if α derives \in then β does not derive any string beginning with a terminal in FOLLOW(A).

The first two conditions are equivalent to the statement that FIRST(α) and FIRST(β) are disjoint sets.

The third condition is equivalent to stating that if \in is in FIRST(β), then FIRST(α) and FOLLOW(A) are disjoint sets, and likewise if \in is in FIRST(α), then FIRST(β) and FOLLOW(A) are disjoint sets.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS \mid \in FIRST(S') = {e, \in \} FOLLOW(S') = {\$, e} E \rightarrow b FIRST(E) = {b} FOLLOW(E) = {t}

	Input Symbols					
Non-Terminals	i	t	а	е	b	\$
S						
S'						
E						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS $\mid \in$ FIRST(S') = {e, \in } FOLLOW(S') = {\$, e} E \rightarrow b FIRST(E) = {b} FOLLOW(E) = {t}

	Input Symbols					
Non-Terminals	i	t	а	е	b	\$
S	S → iEtSS'					
S'						
E						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS \ | \in \text{FIRST(S')} = {e, \in \in \text{FOLLOW(S')} = {\$, e} E \rightarrow b FIRST(E) = {b} FOLLOW(E) = {t}

	Input Symbols					
Non-Terminals	i	t	а	е	b	\$
S	S → iEtSS'		S → a			
S'						
E						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and β is in FOLLOW(A), add A \rightarrow α to M[A, β] as well.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS \mid \in FIRST(S') = {e, \in } FOLLOW(S') = {\$, e} E \rightarrow b FIRST(E) = {b} FOLLOW(E) = {t}

	Input Symbols					
Non-Terminals	i	t	а	е	b	\$
S	S → iEtSS'		S → a			
S'				S' → eS		
E						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and α is in FOLLOW(A), add A α to M[A, α] as well.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS \mid \in FIRST(S') = {e, \in \} FOLLOW(S') = {\$, e} E \rightarrow b FIRST(E) = {b} FOLLOW(E) = {t}

	Input Symbols					
Non-Terminals	i	t	а	е	b	\$
S	S → iEtSS'		S → a			
S'				S' → eS S' → ∈		
				S' > ∈		S' > ∈
E						

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS \mid \in \text{FIRST(S')} = {e, \in \text{FOLLOW(S')} = {\$, e} \text{FOLLOW(S')} = {\$, e} \text{FIRST(E)} = {b} FOLLOW(E) = {t}

	Input Symbols						
Non-Terminals	i	t	а	е	b	\$	
S	S → iEtSS'		S → a				
S'				S' → eS S' → ∈			
				S' > ∈		S' > ∈	
E					E → b		

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.

$$S \rightarrow iEtSS' \mid a$$
 FIRST(S) = {i, a} FOLLOW(S) = {\$, e} S' \rightarrow eS \mid \in FIRST(S') = {e, \in \} FOLLOW(S') = {\$, e} E \rightarrow b FIRST(E) = {b} FOLLOW(E) = {t}

	Input Symbols						
Non-Terminals	i	t	а	е	b	\$	
S	S → iEtSS'		S → a				
S'				S' → eS S' → ∈			
				S' > ∈		S' → ∈	
E					E → b		

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and β is in FOLLOW(A), add A \rightarrow α to M[A, β] as well.

Ambiguous grammar.
Not LL(1).

FIRST(S) =
$$\{i, a\}$$

FIRST(S') = $\{e, \in\}$
FIRST(E) = $\{b\}$

FOLIO (S') = {\$, e}

FOLIO (S') = {\$, e}

	Input Symbols					
Non-Terminals	i	t	а	е	b	\$
S	S → iEtSS'		S → a			
S'				S' → eS		
				S' → ∈		S' → ∈
E					E → b	

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A, a].
- 2. If \in is in FIRST(α), then for each terminal b in FOLLOW(A), add A \rightarrow α to M[A, b]. If \in is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well.