

Foundations of Statistical Modeling II

SMiP Core Course, Spring 2020

Edgar Erdfelder & Daniel W. Heck

Foundations of Statistical Modeling II

Multinomial Processing Tree (MPT) Modeling: Basic Methods and Recent Advances, Block 1

Edgar Erdfelder and Daniel W. Heck University of Mannheim & Phillips University Marburg

1) Basics

- 1.1) Introduction to standard MPT models
- 1.2) Examples
- 1.3) Model development
- 1.4) Formal model structure
- 1.5) Identifiability
- 1.6) Parameter estimation
- 1.7) Model assessment
- 1.8) Selected literature

1.1) Introduction to standard MPT models

- Required type of data:
- Standard multinomial models are tailored to discrete (i.e., categorical) data.
- Psychological data are typically discrete in nature (e.g., yes/no responses, correct/incorrect judgments, ratings, choices, ...).
- If not, they can be transformed into discrete data
 - Response times: Categorization into bins
 - Numerical judgments: Rank-orders of judgments
- Hence, many psychological paradigms generate frequency data that are appropriate for MPT modeling.

1.1) Introduction to standard MPT models

- Distributional assumptions:
- Standard MPT models assume that observations are sampled independently from
 - one multinomial distribution (simple multinomial model)
 - several multinomial distributions (joint multinomial model)
- This includes simple and joint binomial models as special cases.
- The frequency data structure can be univariate or multivariate.

MPT models ...

- ... provide explanations of observed frequency data in terms of basic parameters with clear-cut psychological interpretations;
- ... these parameters represent probabilities of latent psychological processes (or latent psychological states) underlying human behavior;
- ... in other words, these models measure the contributions of different psychological processes to frequencies of observable behaviors.
- In this sense, multinomial models allow for a "measurement of cognitive processes" (Riefer & Batchelder, 1988)

1.2) Examples

A very simple example:

- Paradigm:
 - Yes-No recognition test
- Two Conditions:
 - Old Items
 - New Items
- Categorical (dichotomous) dependent variable:
 - "Old" vs. "New" Judgment

Model equations:

$$p(,,\text{old"} \mid \text{old item}) = r + (1-r) \cdot g$$

Model equations:

$$p(,,old" | old item) = r + (1-r) \cdot g$$

 $p(,,old" | new item) = g$

B) Measuring storage and retrieval in long-term memory

- Empirical Paradigm:
 - Free recall of word list consisting of
 - Word pairs (e.g. "chair" und "table")
 - Singletons (e.g., ,,rose" and no other flower).
 - "Primacy—" and "Recency–Buffer".
- Two distributions of responses:
 - pairs
 - singletons

Scoring of responses

- Observation categories
 - For word pairs:
 - E1 both words recalled adjacently
 - E2 both words recalled nonadjacently
 - E3 one word recalled
 - E4 no word recalled
 - For singletons:
 - F1 Recalled
 - F2 Not recalled

Storage-Retrieval Model

(Batchelder & Riefer, 1980, 1986)

Model equations

- Word pairs:
- $p(\mathbf{E}_1) = c \cdot r$
- $p(E_2) = (1 c) \cdot u^2$
- $p(E_3) = (1 c) \cdot 2 \cdot u \cdot (1 u)$
- $p(E_4) = c \cdot (1 r) + (1 c) \cdot (1 u)^2$
- Singletons:
- $p(\mathbf{F}_1) = u$
- $p(F_2) = 1 u$

1.3) Model development

- Preliminary summary:
- Select a paradigm (e.g., a task)
- Define the conditions of the paradigm
- Define the category system for each condition
- List relevant processes/parameters
- Construct theoretically reasonable processing branches (,,trees") for each condition
- Derive corresponding model equations.
- General rules:
 - As simple as possible!!
 - Ignore unlikely events