HW11 Note: 本次答案中提到的"习题课"均为11.26习题课. Page 1 11. Sol. (1)原式= [*smt*dt, 故f(x)=smx*·(x*)=2xsmx*. (2) f'(x)=- 1+X2+cus'x $(3) f'(x) = 2xe^{-x^2} - e^{-x^2}$ (4) iz g(x)=([sm([smt'dt) dy), \(\tau(x) = \text{sm}(\frac{x}{cmt'}dt). \(\text{M}) \) $f(x) = sm[g(x)], g(x) = \int_{0}^{x} \varphi(y) dy \cdot \exists f(x) = cos[g(x)] \cdot g'(x) =$ Cos[g(xi). P(x) = cos([x sm (] smt'dt)dy). sm([x sint'dt). 12. Sol. (1) 1+ sm (smt) 在 too,+ co) 上排版, 且在境,至) 1为大于O. 故(知) =0 f(x)= for (1+sin(smt)) dt在10,+20)上10大于0;而在1-20,0)上10小于0. $f(x) = o(x) = 0. \quad \text{if the left} = \frac{1}{[f'(x)]_{x=0}} = \frac{1}{[t+cm(cmx)]_{x=0}} = \frac{1}{[t+cm$ (2) 与(1) 的分析类似,可得 yo= fv6)=0 ⇔ Xo=1. 因此(f^{*}/6)= $[f(x)]|_{x=1} = \frac{1}{(e^{-x^2})|_{x=1}} = e.$ 13. Sol. F(x)= (xf(t)dt = x (ft)dt, 故(f(x)= (xf(t)dt + xf(x).# 14. 习题课已讲[e.g.6)

● (2) Note. 根据提示, 此	处不能直接使用积分中值定理, 黄否则可能
	情畅;亦即可能有多n→1.为此,我们进行
●分段讨论、(Ref: 《学习》	明的 (1916度控制) 音字 >> Page 171, e.g 14213))
● ∀冬 ∈ (0,1), 由于在119,11」	$E O \leq \frac{x^n}{1+x} \leq I \text{th} O \leq \int_{0+1}^{1} \frac{x^n}{1+x} dx \leq \int_{1-x}^{1} 1 dx = \frac{1}{x}$
● 添加(0,1-2]上, O ≤ xn	$\frac{1}{x} \leq (1-\xi)^n, \text{ then } \int_0^{1-2\xi} \frac{1}{x^n} dx \leq (1-\xi)^{n+1}.$
由于 0<1-3<1, 故(1-8	8) ⁿ⁺ →0,由夹追准则每日lim ∫1-8 xn dx=0.
	₹ 9. 3 N(8) GN s.t. n> NA + 1-8 xn dx < 9.
◆ 数当 N > N 时 O ≤ ∫ x n 1+x c	$dx = \int_{0}^{1-8} \frac{x^{n}}{1+x} dx + \int_{1-8}^{1} \frac{x^{n}}{1+x} dx < 9 + 9 = 29$
$ \Rightarrow \lim_{n\to\infty} \int_{-\infty}^{\infty} \frac{x^n}{1+n} dx = 0, $	另面 70 $\int_{0}^{1} \frac{x^{n}}{1+x} dx \leq \int_{0}^{1} x^{n} dx$ (4)
	$g_n \in (n, n+a)$ s.t. $\int_n^{n+a} \frac{\sin x}{x} dx = a \frac{\sin g_n}{g_n}$
	teine Thm, $\lim_{n\to\infty}\int_{n}^{n+a} \frac{\sin x}{x} dx = a \lim_{n\to\infty} \frac{\sin x}{x}$
n→w⇒/++m	
有限, iJz于反面. ② Sol. f(x+T) = f(x). 今	U=X+T换元即维张
● 22. Sol. (1) 参考习题课e	
	1元 ×ナ g(x)- ln 1+x g(x)+ g(-x)= ln(-x + ln 1+x =) 可直接使用。
● ⇒gix>是奇函数、故fix)gi	$(x) \xrightarrow{\frac{1}{n}} (Ex20) \int_{-\infty}^{\infty} \cos x \ln \frac{1+x}{1-x} dx = 0$

(11)(12)均可直接利用Wallis公式(是火公式) rage 5 $= 2 \int_{0}^{\frac{\pi}{2}} \sin^{4}\theta (1-\sin^{2}\theta) d\theta = 2 \left[\int_{0}^{\frac{\pi}{2}} \sin^{4}\theta d\theta \right] =$ $2 \cdot (\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{7}{2} - \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{7}{2}) = 2 \cdot \frac{1}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{7}{2} = \frac{7}{16}$ (12) 原式=4- 子· 3· 1· 元= 57. 23. Sol. 引班: finec(a,b], 例 | fix)dx = fif(a+b-x)dx; $\int_{a}^{b} f(x) dx = \int_{-\infty}^{\frac{a+b}{2}} \left[f(x) + f(a+b-x) \right] dx. (Ref, \ll 3) = 3 = 9.64$ Pf: (=x=a+b-t, N)] [b fix) dx = [f(a+b-t)d(a+b-t)= [f(a+b-t)dt 今 F(X)=f(x)+f(atb-X). M) F(a+b-X)=F(X)=> F(X) -> F(X) -> X= a+b 为对称 轴; 再由于 $\int_a^b f(x) dx = \frac{1}{2} \int_a^b [f(x) + f(a+b-x)] dx$, 故 $\int_a^b f(x) dx = \int_a^{a+b} [f(x) + f(a+b-x)] dx$ 493/4, $\sqrt{\pi} \times f(smx) dx = \sqrt{2} \times f(smx) + (\pi - x) f(smx)$ fiath-x) dx. $= \int_{0}^{\frac{\pi}{2}} \left[x f(x) + \pi f(x) - x f(x) \right] dx = \pi \int_{0}^{\frac{\pi}{2}} f(x) dx$ $|E| = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2}x} dx = \pi \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{2 - \sin^{2}x} dx = \pi \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos^{2}x} dx = \pi \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 +$ $\pi \int_{0}^{1} \frac{dt}{1+t^{2}} = \frac{\pi^{2}}{4}$ #

Ex 5.3
1.501.

OIDE Ex 4.1 3(2),
$$\int |\vec{x}^2 + 1| \, dx = \frac{1}{2} \ln(|\vec{x}^2 + 1| + x) + \frac{x|\vec{x}^2 + 1}{2} + C$$
.

Ex 由公式 $S = \int_{a}^{b} \sqrt{1+if(x)}^2 \, dx$, $a = \int_{-a}^{a} \sqrt{1+4x^2} \, dx = 2$.

$$\int_{a}^{a} \sqrt{1+4x^2} \, dx = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1| + x) + x|\vec{x}^2 + 1 \right]^{\frac{2a}{a}} = \frac{1}{2} \left[\ln(|\vec{x}^2 + 1|$$

$$S_{3} = \int_{0}^{2\pi} \sqrt{\alpha^{2}\theta^{2} + \alpha^{2}} d\theta = \alpha \int_{0}^{2\pi} \sqrt{\theta^{2} + 1} d\theta = \frac{\alpha}{2} \cdot \left[\ln \left(\sqrt{4\pi^{2} + 1} + 2\pi \right) \right]$$

$$+ 2\pi \cdot \sqrt{4\pi^{2}+1} \right] \cdot y=e^{x}$$

$$5 \times S_3 = \int_0^1 (e^x - e^{-x}) dx = \int_0^1$$

$$(e^{x})|_{0}^{1} - (e^{-x})|_{1}^{0} = e + e^{-1} - 2.$$

Page 7

$$V_3 = \pi \int_0^{2\pi} (1-\cos t)^2 \cdot (1-\cos t) dt = \pi \cdot \left(\int_0^{2\pi} dt - 3 \int_0^{2\pi} \cot t dt + \frac{1}{2\pi} \right)$$

$$3\int_{0}^{2\pi} \cos^{2}t \, dt - \int_{0}^{2\pi} \cos^{3}t \, dt = \pi \cdot (2\pi - 0 + 3\pi - 0) = 5\pi^{2}$$

旋转体 故
$$V=\int_{R-h}^{R}\pi y^2dx=\pi\int_{R-h}^{R}(R^2-x^2)dx$$

$$= \pi R^2 h - \frac{\pi}{3} (x^3) \Big|_{(R-h)}^{R} = \pi R^2 h - \frac{\pi}{3} (3R^2 h - 3Rh^2 + h^3) = \pi Rh^2 - \frac{\pi}{3} h^3$$

$$2\pi\int_{0}^{\pi} \alpha(1+\cos\theta) \cdot \sin\theta \cdot \sqrt{\alpha'(1+\cos\theta)^{2} \cdot \alpha' \sin^{2}\theta} d\theta = 2\pi\int_{0}^{\pi} \alpha' (1+\cos\theta) \sin\theta$$

$$\sqrt{2+2\cos\theta} d\theta = 2\sqrt{2}\pi\alpha^2 \int_{\pi}^{\infty} (1+\cos\theta) \sqrt{1+\cos\theta} d(\cos\theta) \xrightarrow{\cos\theta=t} 2\sqrt{2}\pi\alpha^2.$$

$$\int_{-1}^{1} (1+t)^{\frac{3}{2}} dt = \frac{4\sqrt{2}}{5} \pi \alpha^{2} \left[(1+t)^{\frac{5}{2}} \right]_{-1}^{1} = \frac{32}{5} \pi \alpha^{2}.$$

Ex 5 Sol. (1) 由积化和差公式, sinmx-cosnx= = [sin(m+n)x+Page 8 sin(m-n)x], 故2T别Sinmx-cosnx的期, 因也 sinmx-cosnxdx
= J-T SIMMX· COSMXdX. 又由于 Y=smmx 是奇函数, Y=cosmx是偶函数,
thy= sinmx·cornx 足奇函数⇒原式=0.
(2) 行胆(i) 证明, $sinmx \cdot smnx = \frac{1}{2} [cos(m-n)x - cos(m+n)x]$,以
$ = \prod_{n \in \mathbb{N}} \left[\left[1 - \cos 2\pi x \right] = \Pi - \frac{1}{2} \cdot \left(\frac{\sin 2\pi x}{2\pi} \right) \right]^{\pi} = \Pi; $
同理可得 $\int_{-\pi}^{2\pi} \cos mx \cdot \cos nx dx = \int_{-\pi}^{\pi} \left[\cos (m-n)x + \cos (m+n)x \right] dx$.
老m=n,则原式= Ti+ = (sm2mx) = = Ti; 若m+n,则原式=
$\frac{1}{2} \left\{ \left[\frac{\sin(m-n)x}{m-n} \right] \right _{-\pi}^{\pi} + \left[\frac{\sin(m+n)x}{m+n} \right]_{-\pi}^{\pi} \right\} = 0.$
$3\frac{1}{5} + \int_{0}^{2\pi} sinmx \cdot sinnx dx = \int_{0}^{2\pi} cosmx \cdot cosnx dx = \int_{0}^{\pi} \pi, m=n$
18. Sol. 121.21, leet 32, Page3~5.

3. 分部积分法

(1) 思想.

 $\int u dv = uv - \int v du$,这个方法主要适用于求 $\int u dv$ 比较困难,而 $\int v du$ 比较容易的情形.

(2) 方法.

①u,v 的选取原则.

反 对 幂 指 三 (指)

相对位置在左边的官选作 u,用来求导;相对位置在右边的宜选作 v,用来积分.即

- a. 被积函数为 $P_n(x)e^{kx}$, $P_n(x)\sin ax$, $P_n(x)\cos ax$ 等形式时, 一般来说选取 $u=P_n(x)$;
- b. 被积函数为 $e^{ax} \sin bx$, $e^{ax} \cos bx$ 等形式时, u 可以取其中两因子中的任意一个;
- c. 被积函数为 $P_n(x) \ln x$, $P_n(x) \arcsin x$, $P_n(x) \arctan x$ 等形式时, 一般分别选取

$$u = \ln x, u = \arcsin x, u = \arctan x.$$

② 推广公式(表格法).

$$\int uv^{(n+1)} dx = uv^{(n)} - u'v^{(n-1)} + u''v^{(n-2)} - \dots + (-1)^n u^{(n)} v + (-1)^{n+1} \int u^{(n+1)} v dx.$$

140 d. 给抽象医数___根状数目决定U,V.

 $\int u^{(n)} v' dx = u^{(n)} v - \int u^{(n+1)} v dx.$

联立以上式子,并保留第一个和最后一个积分,便可得到分部积分法的推广公式:

$$\int uv^{(n+1)} dx = uv^{(n)} - u'v^{(n-1)} + u''v^{(n-2)} - \dots + (-1)^n u^{(n)} v + (-1)^{n+1} \int u^{(n+1)} v dx.$$

事实上,可写成如下表格

计算方法: 以 u 作起点左上、右下错位相乘,各项符号"+""—"相间,最后一项为 $(-1)^{n+1} \int u^{(n+1)} v dx$.

对于 $\int P_n(x)e^{bx} dx, \int P_n(x)\sin ax dx, \int P_n(x)\cos bx dx$

三种积分,其中 $P_n(x)$ 是 x 的 n(n 为正整数) 次多项式,令 $u = P_n(x)$,则 $u^{(n+1)} = 0$,于 是积分便可顺利算出.

是积分便可顺利算出。
b. 对于 $\int e^{ax}$ smbx dx 就 $\int e^{ax}$ cost x dx 同记), 比如,求不定积分 $\int (x^3 + 2x + 6)e^{2x} dx$. 则 以非子两次即可(以无论是 e^{ax} 是公本分为)

$x^3 + 2x + 6$	$3x^2 + 2$	6x	6	0
e ^{2x} (+)	$\frac{1}{2}e^{2x}$	$\frac{1}{4}e^{2x}$	$\frac{1}{8}e^{2x}$	$ abla rac{1}{16} e^{2x}$

利用上述表格,可得

原式=
$$(x^3 + 2x + 6) \left(\frac{1}{2}e^{2x}\right) - (3x^2 + 2)\left(\frac{1}{4}e^{2x}\right) +$$

$$6x\left(\frac{1}{8}e^{2x}\right) - 6\left(\frac{1}{16}e^{2x}\right) + \int 0 \cdot \left(\frac{1}{16}e^{2x}\right) dx$$

$$= \left(\frac{1}{2}x^3 - \frac{3}{4}x^2 + \frac{7}{4}x + \frac{17}{8}\right)e^{2x} + C.$$