Efficient code generation for weakly ordered architectures

Reinoud Elhorst, Mark Batty, David Chisnall {re302,mjb220,dc552} @ cam.ac.uk

Example: message passing

```
{flag,data,x}=0;
```

```
Thread0: Thread1:
data=1; while(!flag){}
flag=1; x=data;
```

Example: message passing

```
{flag,data,x}=0;
```


Programmer's mental model (C99)

Simplified modern architecture

Simplified modern architecture

Compiler instruction reordering

Synchronisation: Barriers and fences

Barriers give us the guarantees we want....
....however: performance

- DEC Alpha
 - Very weakly ordered, huge variety of barriers
- x86
 - Store buffer, compiler may reorder, mfence
- ARMv7
 - Relatively weak, dmb

Memory models: language support

- C89: inline asm (usually via macros)
- GCC 4.7 : __sync_* (portable)
- C11/C++11: stdatomic.h (performance)
 - o clang 3.1: __c11_atomic_*
 - LLVM 3.1: IR C11 memory model inspired instructions
 - Atomic read/modify/write
 - Compare and exchange
 - Atomic qualifiers on load / store

C11_Atomic(int) x variable access:

- Relaxed [atomic_add(&x, 1, relaxed);]
- Acquire/release [atomic_load(x, acquire);]
- Sequentially consistent [..., seq_cst);]
- Implicitly seq cst [x+=3;]
- Safe racy accesses
 T0: x=5; T1: x=3;
- Guaranteed atomic updates
 x++;
- Reasoning about them still hard

C11 → hardware

C11	X86	ARM
load_relaxed	mov	ldr
store_release	mov	dmb; str
store_seq_cst	lock xchg	dmb; str; dmb
cas_strong	lock cmpxchg	loop(ldrex strex)
atomic_add	lock add	loop(ldrex; add ; strex)

Example: seqlock

- Lockless data-structure
- Used in Linux, Xen, FreeBSD
- Guaranteed to read variables together that were written together
- Three identical implementations, except for memory order

Seqlock

```
_Atomic(int) x1, x2, lock;
```

```
void write(int v1, int v2) {
   static int lock_l = 0;
   store(lock, ++lock_l);
   store(x1, v1);
   store(x2, v2);
   store(lock, ++lock_l);
}
```

```
void read(int *v1, int *v2) {
   int lv1, lv2, lock_l;
   while (true) {
      lock_l = load(lock);
      if (lock_l & 1) continue;
      lv1 = load(x1);
      lv2 = load(x2);
      if (lock_l == load(lock)) {
        *v1 = lv1;
        *v2 = lv2;
      return;
}}
```

Seqlock

_Atomic(int) x1, x2, lock;

```
void write(int v1, int v2) {
   static int lock_l = 0;
   store(lock, ++lock_l);
   store(x1, v1);
   store(x2, v2);
   store(lock, ++lock_l);
}
```

```
void read(int *v1, int *v2) {
  int lv1, lv2, lock l;
 while (true) {
    lock_1 = load(lock);
    if (lock 1 & 1) continue;
    1v1 = load(x1);
    1v2 = load(x2);
    if (lock l == load(lock)) {
      *v1 = 1v1;
      *v2 = 1v2;
      return;
}}}
```

Seglock

```
_Atomic(int) x1, x2, lock;
```

```
void write(int v1, int v2) {
  static int lock_l = 0;
  store(lock, ++lock_l);
  store(x1, v1);
  store(x2, v2);
  store(lock, ++lock_l);
}
```

```
void read(int *v1, int *v2) {
   int lv1, lv2, lock_l;
   while (true) {
      lock_l = load(lock);
      if (lock_l & 1) continue;
      lv1 = load(x1);
      lv2 = load(x2);
      if (lock_l == load(lock)) {
        *v1 = lv1;
        *v2 = lv2;
      return;
}}
```

Seglock

```
_Atomic(int) x1, x2, lock;
```

```
void write(int v1, int v2) {
   static int lock_l = 0;
   store(lock, ++lock_l);
   store(x1, v1);
   store(x2, v2);
   store(lock, ++lock_l);
}
```

```
void read(int *v1, int *v2) {
  int lv1, lv2, lock 1;
  while (true) {
    lock_1 = load(lock);
    if (lock_l & 1) continue;
    lv1 = load(x1);
    1v2 = load(x2);
    if (lock_l == load(lock)) {
      *v1 = 1v1;
      *v2 = 1v2;
      return;
}}}
```

Benchmark

- 2 threads
- loop the write() 1E9 times
- loop the read() until write is done

ODROID-U2

Exynos 1.7 GHz quad-core Cortex-A9 (ARMv7) 1MB Shared L2 cache

Implement with three memory orders

Implicit

```
#define load(x) (x)
#define store(x,y) (x=y)
```

Sequential consistency

```
#define load(x) atomic_load_explicit(&x, seq_cst);
#define store(x,y) atomic_store_explicit(&x, y, seq_cst);
```

Acquire / release

```
#define load(x) atomic_load_explicit(&x, acquire);
#define store(x,y) atomic_store_explicit(&x, y, release);
```


ARM assembly

dmb ish	barrier	
ldr / str	load / store	
add / sub	ALU operators	
cmp	compare	
bne	branch not equal	
r12	registry	
[r1]	pointed to by register	
#1	literal	

$C11 \rightarrow hardware$

C11	X86	ARM
load_relaxed	mov	ldr
store_release	mov	dmb; str
store_seq_cst	lock xchg	dmb; str; dmb
cas_strong	lock cmpxchg	loop(ldrex strex)
atomic_add	lock add	<pre>loop(ldrex; add ; strex)</pre>

Seq. cst.

.LBB0 1:

```
dmb
         ish
        r4, r1, #1
sub
        r4, [r2]
str
add
        r0, r0, #1
dmb
         ish
         r0, r3
cmp
         ish
dmb
        r0, [r12]
str
        ish
dmb
dmb
         ish
        r0, [lr]
str
dmb
        ish
dmb
         ish
        r1, [r2]
str
add
         r1, r1, #2
        ish
dmb
```

bne .LBB0 1

Acquire release

```
for (i=0; i<1E9; i++)
.LBB0 1:
 dmb
          ish
          r4, r1, #1
 sub
 str
                       store(lock, ++1 lock);
          r4, [r2]
 add
          r0, r0, #1
          ish
 dmb
                        store(x1, i);
          r0, [r12]
 str
          ish
 dmb
                        store(x2, i);
 str
          r0, [lr]
 dmb
          ish
                        store(lock, ++1_lock);
          r1, [r2]
 str
 add
          r1, r1, #2
 cmp
          r0, r3
```

.LBB0 1

bne

Optimise the seq cst version

dmb is a memory barrier

 ARM memory model: two dmbs in a row does not increase synchronization

Pass 1: Remove adjacent barriers

Pass 1: Remove non-adjacent barriers

Pass 2: Move DMB out of Basic Block

Optimised Seq.cst

Acquire release

```
.LBB0_1:
                      .LBB0 1:
 dmb
        ish
                        dmb
                              ish
 sub r4, r1, #1
                        sub
                              r4, r1, #1
 str r4, [r2]
                              r4, [r2]
                        str
 add r0, r0, #1
                        add
                              r0, r0, #1
 dmb
       ish
                        dmb
                              ish
 cmp r0, r3
                              r0, [r12]
 str r0, [r12]
                        str
 dmb
                        dmb
                              ish
        ish
 str r0, [lr]
                              r0, [lr]
                        str
 dmb
        ish
                        dmb
                              ish
 str r1, [r2]
                        str
                              r1, [r2]
                        add
 add
        r1, r1, #2
                              r1, r1, #2
                              r0, r3
                        cmp
 bne .LBB0 1
                        bne
                              .LBB0 1
 dmb
        ish
```

Next steps

- Can we take these optimisations further?
- Can we use the C11 semantics to improve optimisations?
- Is the LLVM IR expressive enough to facilitate all optimisations?

Can we take these optimisations further?

- Pass 2: Move DMB out of Basic Block
 - Consider the call graph
 - Do tests to see if it actually becomes faster

- Similar optimisations for other architectures
 - Mips (sync)

Can we use the C11 semantics to improve optimisations?

 Can we come up with better moving rules if we know where the barriers came from?

- OpenMP
 - Atomic variables local to parallel loops

Is the LLVM IR expressive enough to facilitate all optimisations?

Atomic read-modify-write

```
    implicit
        _Atomic(int) a; a *= b;
    explicit
        expected = current.load();
        do {
            desired = do_something(expected);
        } while (!compare_swap_weak(current, expected, desired));
```

LLVM IR only has strong **cmpxchg**, which *itself* generates a loop on ARM / MIPS

Thank you

Paper available on EuroLLVM site

Seqlock code & paper: https://github.com/reinhrst/ARMBarriers

Instruction-mappings: https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Reinoud Elhorst, Mark Batty, David Chisnall {re302,mjb220,dc552} @ cam.ac.uk

Seqlock as a benchmark

```
void writer() {
  int i, lock_l = 0;
  for (i=0; i<1E9; i++) {
    store(lock, ++lock_l);
    store(x1, i);
    store(x2, i);
    store(lock, ++lock_l);
  }
}</pre>
```

```
void reader() {
  int i, v1, v2, lock_1;
 while (v2 < 1E9) {
    while (true) {
      lock 1 = load(lock);
      if (lock_l & 1) continue;
      v1 = load(x1);
      v2 = load(x2);
      if (lock_l == load(lock)) {
        break;
    }}
    assert(v1==v2);
    short sleep();
}}
```

Seqlock -O0 implicit/explicit seq cst

```
for.body:
    %1 = load i32* %local_lock, align 4
    %inc = add nsw i32 %1, 1
    store i32 %inc, i32* %local_lock, align 4

    store atomic i32 %inc, i32* @lock seq_cst, align 4
    %2 = load i32* %i, align 4

    store atomic i32 %2, i32* @x1 seq_cst, align 4
    %3 = load i32* %i, align 4

    store atomic i32 %3, i32* @x2 seq_cst, align 4
    %4 = load i32* %local_lock, align 4
    %inc2 = add nsw i32 %4, 1
    store i32 %inc2, i32* %local_lock, align 4

    store atomic i32 %inc2, i32* @lock seq_cst, align 4
    store atomic i32 %inc2, i32* @lock seq_cst, align 4
    br label %for.inc
```

```
for.body:
       %1 = load i32* %local lock, align 4
      %inc = add nsw i32 %1, 1
       store i32 %inc, i32* %local_lock, align 4
       store i32 %inc, i32* %.atomictmp
       %2 = load i32* %.atomictmp, align 4
       store atomic i32 %2, i32* @lock seq_cst, align 4
      %3 = load i32* \%i, align 4
       store i32 %3, i32* %.atomictmp2
       %4 = load i32* %.atomictmp2, align 4
       store atomic i32 %4, i32* @x1 seq cst, align 4
       %5 = load i32* %i, align 4
       store i32 %5, i32* %.atomictmp3
       %6 = load i32* %.atomictmp3, align 4
       store atomic i32 %6, i32* @x2 seq cst, align 4
       %7 = load i32* %local lock, align 4
       % = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 
       store i32 %inc5, i32* %local lock, align 4
        store i32 %inc5, i32* %.atomictmp4
       %8 = load i32* %.atomictmp4, align 4
       store atomic i32 %8, i32* @lock seg cst, align 4
       br label %for.inc
```

Influence of read sleeptime

weak cmpxchg: C11

```
void mul(_Atomic(int)*a, int b)
{
    *a *= b;
}
```

weak cmpxchg: IR

weak cmpxchg: x86

```
LBB0_1:
      movl %ecx, %edx
       imull %esi, %edx
      movl %ecx, %eax
       lock
       cmpxchgl
                    %edx, (%rdi)
       cmpl %ecx, %eax
      movl
             %eax, %ecx
       jne
              LBB0 1
```

weak cmpxchg: ARM

```
.LBB0_1:
        dmb
                ish
                r2, 1r
        cmp
               {1r}
        popeq
        bxeq
                lr
.LBB0_2:
                lr, r2
        mov
        dmb
                ish
        mul
                r12, lr, r1
.LBB0_3:
               r2, [r0]
        ldrex
                r2, 1r
        cmp
                .LBB0 1
        bne
@ BB#4:
        strex r3, r12, [r0]
                r3, #0
        cmp
        bne
                .LBB0_3
                .LBB0 1
        b
```

weak cmpxchg: ARM (as it should be)

```
dmb
               ish
.retry:
       ldrex r2, [r0]
       mul
               r12, lr, r1
               r3, r12, [r0]
       strex
               r3, #0
       cmp
       bne
                .retry
       dmb
               ish
```

Weak cmpxchg: MIPS64

```
# %entry
# BB#0:
        daddiu $sp, $sp, -16
                $fp, 8($sp)
                                  # 8-byte Folded Spill
        sd
                 $fp, $sp
        move
                $3, $zero, 0
        addiu
$BB0_1:
                                  # %entry
                                  # =>This Inner Loop
                $2, 0($4)
        11
        bne
                $2, $3, $BB0 3
        nop
# BB#2:
                                          # %entry
                                              in Loop:
                $6, $zero, 0
        addiu
                $6, 0($4)
        sc
                $6, $BB0 1
        beqz
        nop
$BB0 3:
                                          # %entry
        sync 0
$BB0 4:
                                          # %atomic op
                                          # =>This Loop
                                                Child
Loop BB0 5 Depth 2
                 $3, $2
        move
        mul
                $6, $3, $5
        sync 0
$BB0 5:
                                          # %atomic op
                                      Parent Loop BB0 4
                $2, 0($4)
        11
                $2, $3, $BB0 7
        bne
        nop
```

```
# BB#6:
                                          # %atomic op
                                              in Loop:
                  $7, $6
        move
                $7, 0($4)
        SC
                $7, $BB0 5
        beqz
        nop
$BB0 7:
                                          # %atomic op
                                   in Loop: Header=BB0 4
        sync 0
                $2, $3, $BB0 4
        bne
        nop
                                     # %atomic cont
# BB#8:
                  $sp, $fp
        move
        ld
                $fp, 8($sp)
                                  # 8-byte Folded Reload
        jr
                 $ra
                $sp, $sp, 16
        daddiu
```

Weak cmpxchg MIPS64 as it should be

```
# Ensure all other loads / stores are globally visible retry:

11 $t4, $a0  # Load the current value of the atomic int mult $t4, $a1  # Multiply by the other argument mflo $t4  # Get the result sc $t4, $a0  # Try to write it back atomically bnez $t4, entry  # If we failed, try the whole thing again sync 0  # branch delay slot - ensure segest behaviour here
```