QTM 100 Formula Sheet

Mean:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
; Standard deviation: $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$;

Boxplot whiskers: $Q_1 - 1.5IQR$, $Q_3 + 1.5IQR$;

Complement rule: $P(A^c) = 1 - P(A)$; General addition rule: P(A or B) = P(A) + P(B) - P(A and B);

Multiplication rule: $P(A \text{ and } B) = P(A) \times P(B)$; Conditional probability rule: $P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$;

Binomial probability: $P(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, x = 0, 1, 2, ..., n$

Binomial distribution mean: $\mu = np$; Binomial distribution standard deviation: $\sigma = \sqrt{np(1-p)}$;

Sampling distributions standard deviations: $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}; \qquad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

Confidence interval for proportion: $\hat{p} \pm z_{\alpha} \times se$; Standard error in CI for proportion: $se_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

z-score of sample proportion: $z = \frac{\hat{p} - p_0}{se_0}$; Standard error for HT for p_0 : $se_0 = \sqrt{\frac{p_0(1 - p_0)}{n}}$

CI for difference of two proportions: $(\hat{p}_1 - \hat{p}_2) \pm z_\alpha \times se;$ $se = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}};$

Two-sample z test: $z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{se_0}$; $se_0 = \sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}$; $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$;

Chi squared: $\chi^2 = \sum \frac{(\text{observed-expected})^2}{\text{expected}};$ expected $= \frac{\text{row} \times \text{column}}{\text{total}};$ $df = (r-1) \times (c-1);$

Confidence interval for mean: $\bar{x} \pm t_{\alpha} \times se$; t-score: $t = \frac{\bar{x} - \mu}{se_{\bar{x}}}$;

Standard error in CI for mean: $se_{\bar{x}} = \frac{s}{\sqrt{n}}$; Degrees of freedom in t distribution: df = n - 1

CI for difference of two means: $\bar{x}_1 - \bar{x}_2 \pm t_\alpha \times se$; Two-sample t test: $t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{se}$;

Unequal variance: $se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$; $df = \min\{n_1 - 1, n_2 - 1\}$

Equal variance: $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}};$ $se = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}};$ $df = n_1 + n_2 - 2;$

ANOVA: $F = \frac{MS_{group}}{MS_{error}}$; Between-group variability: $MS_{group} = \frac{SS_{group}}{df1}$; df1 = g - 1;

Within-group variability: $MS_{error} = \frac{SS_{error}}{df2}$; df2 = N - g

Regression line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$; Slope: $\hat{\beta}_1 = r \frac{s_y}{s_x}$; residual $= y - \hat{y}$; $s = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$;

Regression slope test statistic: $t = \frac{\hat{\beta}_1 - 0}{se_{\hat{\beta}_1}}$; CI for regression line slope: $\hat{\beta}_1 \pm t_\alpha \times se_{\hat{\beta}_1}$; df = n - 2;

 $r^2 = \frac{SS_{regression}}{SS_{total}};$