CIS 471/571 (Fall 2020): Introduction Artificial Intelligence

Lecture 2: Uninformed Search WeChat: cstutorcs

Thanh H. Nguyen

Most slides are by Pieter Abbeel, Dan Klein, Luke Zettlemoyer, John DeNero, Stuart Russell, Andrew Moore, or Daniel Lowd Source: http://ai.berkeley.edu/home.html

Announcement

- •Project 1
 - Deadline: Oct 13th, 2020

Assignment Project Exam Help

- Written Assignmenthtps://tutorcs.com
 - Will be posted today WeChat: cstutorcs
 - Deadline: Oct 10th, 2020

Thanh H. Nguyen 9/30/20

Today

Agents that Plan Ahead

Search Problems

Uninformed Search WeChat: cstutorcs

- Depth-First Search
- Breadth-First Search
- Uniform-Cost Search

Thanh H. Nguyen

Rational Agents

• An **agent** is an entity that *perceives* and *acts*.

• A rational agent selectement project Exam Help maximize its utility function.

• Characteristics of the percepts, tutorcs.com environment, and action space dictate techniques for selecting rational actions.

Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 Assignment Project Exam Help
 Do not consider future consequences of their actions

 - Consider how the world https://tutorcs.com
- Can a reflex agent be rational Chat: cstutorcs

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Goal-based Agents

- Goal-based agents:
 - Plan ahead
 - Ask "what if" Assignment Project Exam
 - Decisions based on (hypothesized) consequences of actions type://tutorcs.com
 - Must have a model of how that world evolves in response to actions
 - Act on how the world WOULD BE

Video of Demo Mastermind

Search Problem

- A search problem consists of:
 - A state space

Assignment: Project Exam: Help

https://tutorcs.com

• A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Example: Romania

- State space:
 - Cities
- Successor function:
 - Go to adj city with cost
 - = dist
- Start state:
 - Arad
- Goal test:
 - Is state == Bucharest?
- Solution?

What is in State Space

The world state includes every last detail of the environment

WeChat: cstutorcs

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space Size

Search Problem: Eat all of the food

Pacman positions: 10 x 12 nment Project Exam Help

Pacman facing: up, down, hetbs://ghtorcs.com

Food Count: 30

Ghost positions: 12

- How many
- World states? 120*(230)*(122)*4
- States for pathing? 120
- States for eat-all-dots? 120*(230)

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 Assignment Project Exam Help
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only com one)

WeChat: cstutorcs

- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

• State space graph: A mathematical representation of a search problem

Nodes are (abstracted) world configurations
 Arcs represent successors (action results)

• The goal test is a set of goal nodes (maybe only com) one)

WeChat: cstutorcs

• In a state space graph, each state occurs only once!

• We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

Search Trees

- A search tree:
 - A "what if" tree of plans and their outcomes
 - The start state is the root node
 - Children correspond to successors
 - Nodes show states, but correspond to PLANS that achieve those states
 - For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

State Space Graph

Each NODE in in the search tree

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutores

We construct both on demand – and we construct as little as possible.

Thanh H. Nguyen 9/30/20

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

https://tutorcs.com

WeChat: cstutorcs

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

WeChat: cstutorcs

•Search:

- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

- Tree Search
 - Initialize the *root node* of the search tree with the *start* state Assignment Project Exam Help
 - While there are unexpanded leaf nodes (fringe):
 - Choose a leafthbae tytores com
 - If the node contains a goal state: return the corresponding solution
 - Else: expand the node and add its children to the tree
- Important ideas:
 - Fringe
 - Expansion
- Strategy: which fringe nodes to explore?

Example: Tree Search


```
s \rightarrow d

s \rightarrow d

s \rightarrow e

s \rightarrow d \rightarrow b

s \rightarrow d \rightarrow c

s \rightarrow d \rightarrow e

s \rightarrow d \rightarrow e \rightarrow r

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c
```

Depth-First Search (DFS)

Depth-First Search (DFS)

Strategy: expand a deepest node first

Implementation: Fringe

is a LIFO stack

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths

1 node b nodes

b² nodes

b^m nodes

- Number of nodes in entire tree?
 - $1 + b + b^2 + \dots b^m = O(b^m)$

DFS Properties

- What nodes DFS expand?
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time O(signment Project Exam Help)
- How much space does the fringettake tutorcs.com
 - Only has siblings on path to root, so O(bm)

WeChat: cstutorcs

- Is it complete?
 - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

BFS Properties

• What nodes does BFS expand?

Processes all nodes above shallowest solution

Let depth of shallowest solution be s

• Search takes time O(bs) Assignment Project Exam Help

• How much space does the fringe take. https://tutorcs.com

• O(b^{s+1})

WeChat: cstutorcs

• Is it complete?

• s must be finite if a solution exists, so yes!

• Is it optimal?

• Only if costs are all 1 (more on costs later)

DFS vs BFS

• When will BFS outperform DFS?

Assignment Project Exam Help

https://tutorcs.com

• When will DFS outperform PFS?

Iterative Deepening

- Idea: get DFS's space advantage with
 BFS's time / shallow-solution
 advantages
 Assignment Project Exam Help
 - Run a DFS with depth limit 1://If no solution...
 - Run a DFS with depth limit@hdf:nostutorcs solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

