KMITOČTOVÁ ZÁVISLOST STŘÍDAVÝCH VOLTMETRŮ

Jakub Dvořák

29.9.2020

1 Úkol měření

- a) V rozsahu kmitočtů 70 Hz až 300 kHz (přibližně v logaritmickém měřítku, tj. pro kmitočty 70, 200, 500 Hz, 1, 3, 10, 20, 50, 100, 200, 300 kHz) změřte kmitočtovou závislost předložených číslicových voltmetrů a nízkofrekvenčního elektronického voltmetru. Za kmitočtově nezávislý považujte v tomto frekvenčním rozsahu číslicový voltmetr HP 34401A. Měření proved te na příslušných rozsazích voltmetrů při hodnotách napětí a) 1 V, b) 7 V. Zapojení přístrojů je na schématu ??.
- b) Změřené závislosti vyneste do grafů a teoreticky zdůvodněte.

2 Schéma zapojení

Schéma 1: Zapojení pro měření [?]

3 Seznam použitých přístrojů

- Frekvenční generátor
- Ruční multimetr MY64
- Ruční multimetr Summit 45
- Stolní multimetr HP 34401 A
- Ručičkový multimetr TVT-321

4 Teoretický úvod

Multimetry jsou základem většiny elektrických měření. Při měření střídavého napětí se způsob jejich měření ale liší. U levnějších přístrojů multimetr střídavý signál usměrní precizním usměrňovačem s operačními zesilovači, aby bylo možné kompenzovat úbytek napětí na diodách. Pro zobrazení *RMS*

neboli *střední kvadratické* hodnoty změřenou hodnotu vynásobí koeficientem 1,11. Tento koeficient nicméně platí pouze pro sinusový signál.

U dražších multimetrů se používá tzv. *true RMS converter*, což je dedikovaný obvod, jehož výstup odpovídá *RMS* hodnotě vstupu. Příkladem může být IC AD636 od firmy Analog Devices [?].

Pro naše měření jsme použili frekvenční generátor generující sinusový průběh. Velikost *střední kvadratické* hodnoty byla na zdroji přesně nastavena podle stolního multimetru HP 34401 A. Ostatní multimetry byly zapojeny paralelně podle schématu ??.

První měření proběhlo s počátečním $U_{RMS} = 1$ V. Pro druhé měření pak $U_{RMS} = 7$ V. Kmitočty byly nastaveny podle zadání, jak je popsáno v kapitole ??. Při každém kroku frekvence počkáme na ustálení hodnot zobrazovaných multimetrem a hodnoty odečteme a zapíšeme.

5 Zpracování naměřených hodnot

Naměřená data jsou zobrazena níže v tabulkách ?? a ?? a jím odpovídajícím grafům.

MY64 $\frac{U}{V}$	HP 34401 A $\frac{U}{V}$	Summit 45 $\frac{U}{V}$	TVT-321 $\frac{U}{V}$	Frekvence $\frac{f}{Hz}$
0,9870	0,9820	0,9740	0,9700	70
0,9900	0,9840	0,9760	0,9750	200
0,9880	0,9810	0,9690	0,9700	500
0,9890	0,9810	0,9550	0,9700	1 000
0,9870	0,9810	0,8610	0,9700	3 000
0,9550	0,9780	0,4800	0,9620	10 000
0,8960	0,9775	0,2400	0,9600	20 000
0,6990	0,9710	0,0310	0,9600	50 000
0,2700	0,9538	0,0020	0,9200	100 000
0,0030	0,9810	0,0000	0,8790	200 000
0,0030	0,8400	0,0000	0,8200	300 000

Tabulka 1: Naměřená data - první měření

6 Zpracování naměřených dat

Jak je na první pohled vidět z grafů ?? a ??, tak stejné multimetry se chovaly různě v závislosti na vstupním napětí. Takovéto chování může mít dva důvody. Prvním je frekvenční charakteristika *RMS převodníku*. Tabulkové závislosti různých vstupních napětí na frekvenci u *RMS převodníku* AD636 jsou znázorněny v grafu ??. Pro vyšší hodnoty vstupního napětí se v oblasti $3 \cdot 10^4 - 3 \cdot 10^6$ Hz objevuje zvýšení výstupního napětí a až poté následný pokles. Při našem měření se oblast zesílení výstupního napětí objevila mezi frekvencemi $10^4 - 10^5$ Hz. Druhým důvodem může být použití

Graf 1: Hodnoty z prvního měření

Graf 2: Hodnoty z druhého měření

MY64 $\frac{U}{V}$	HP 34401 A $\frac{U}{V}$	Summit 45 $\frac{U}{V}$	TVT-321 $\frac{U}{V}$	Frekvence $\frac{f}{Hz}$
7,04	7,0014	6,89	6,9	70
7,05	7,0209	6,91	6,9	200
7,04	7,0159	6,90	7,0	500
7,05	7,0209	6,88	7,0	1 000
7,21	7,0101	6,80	7,0	3 000
9,28	6,9876	6,54	7,0	10 000
14,02	6,9818	2,03	7,2	20 000
18,40	6,9285	0,92	7,4	50 000
21,90	6,8136	0,50	7,4	100 000
4,90	6,4430	0,08	7,1	200 000
0,03	5,9160	0,01	6,7	300 000

Tabulka 2: Naměřená data - druhé měření

přesného usměrňovače a kondenzátoru paralelně s předřadným odporem. Kondenzátor se zpravidla používá pro zvýšení frekvenčního rozsahu, ale občas dojde k jeho překompenzování a výsledné napětí se zvýší.

Multimetr MY64 má podle datasheetu psaný frekvenční rozsah pro měření AC napětí od 40 Hz do 400 Hz a to s přesností $\pm (0, 8 \% \text{ of rdg} + 3 \text{ dgt})$. Tedy psaný frekvenční rozsah platí. Pro multimetr Summit 45 je psaný frekvenční rozsah pro měření AC napětí od 45 Hz do 450 Hz a přesnost je stejná jako u MY64 [?]. Naměřené hodnoty odpovídají tabulkové přesnosti.

Graf 3: Závislost různých výstupních napětí na frekvenci [?]

7 Závěrečné vyhodnocení

Změřili jsme frekvenční závislost ručičkových i číslicových multimetrů. Díky frekvenčním rozsahům multimetrů jsme mohli konstatovat, který z ručních multimetrů je kvalitnější. Také jsme naměřili zajímavé chování jednoho z multimetrů a to vyšší zobrazené napětí v určitém frekvenčním intervalu.

Nepřesnost multimetrů ve vyšších frekvencích je způsobena pravděpodobně parazitní kapacitou. Od skutečné hodnoty se nejvíce odchýlil multimetr Summit 45 a poté MY64 a to kolem frekvence 3 kHz. Stolní multimetr HP 34401 A a ručičkový multimetr TVT-321 se začaly odchylovat až kolem frekvence 50 kHz.

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

- [1] Návod k laboratorní úloze
- [2] https://www.analog.com/media/en/technical-documentation/data-sheets/AD636.pdf
- [3] https://moodle.fel.cvut.cz/pluginfile.php/267148/mod_resource/content/1/Devices%20Data%20Sheets.pdf