SRM UNIVERSITY

Introduction THEORY OF COMPUTATION
* any tank performed by
computer / calculation / machine
or any machine of then Learn
or any machine of then bean
abt they machine
* Cepchilium of meening, 1.
solved by mechine, Limitation of
Toc
Automate Thury computability complexity
(mathemitic) Theory Theory
(computation) time space
K Finite Automete 4
N I IIII -
ack & push down automit & Decialable langues
* * Linear bound automité * undecidable. "
tole & Julia machine
* Turing machine. Infinite top
Infinit tap

Interduction to finite Automate I without using Alam of unlack. Lock) Alam on No n 13 d 1 Z = L'a, ZJ Formal definition [Dra] Determination Finite Automati 5 typles FA = \ Q, \ Z, \ S, 90, F \ Q- Finite non empty set of states Z - Finite non empty set of inputs / input alphabet 8 - Transition function which maps UXE > Q To E q in initial state F = 4 Set of finel states

Symbol - a, b, 0, 1, g Alphabet - {a,by, pa,b,cy {0,1,... d} I Some collection of Symbol. String - requence of symbol \(\(\) (a,b, aa, bb, ab, ba.) leyth 2 no of signi is represent in 121 length 1 over alphabet com be represent by 121 Let length be d $\leq = [a, b]$ Let begth be n \(\S = \{a,b\}\) Ea, by faby fa, by ---8 X 8 X 7 X

Language => Collection .) Atrings finite infinite $\Sigma = \{a, b\}$ Li= Set of all Hrings of length 2 = [aa, ab, ba, bby La= ret of all string of leyth 3 = { aga, agb, aba, abb, baa, bab, ppd 'pppd L3 = Net of all string when each Alring start with a. = { a, aa, ab, aaa, aab, aba, abb, ... } Dower of E = E = 2 a, by lel=0

Several special specia 2 = { a, b} Set of all string, over & of length '1' 53 - 555 - 153) = 8 ,, leyth s Z'= n leyth string Z = {a, by inkink = e & y u [9,69 u ¿ aq, ab, bb, bagu. St of all possible set of all length possible over & a, by can be colled as mother of universal set

L is finite 2= { a, b } L,= d aa, ab, ba, bbg S= 9 99 L2 = { 9, 99, 900, 96, --- 3 Start with S= baba L1 = Set of String starting with a ¿ a, aa, ab, aaq, ... y Circle au Status a B) 9,5 double cird and Final State circle with amo-1/1- 42 in ~; initil stat S= aab whether H. string Prount $A \longrightarrow B \longrightarrow B \longrightarrow B$

Rejected / non accepting states:—

Deed or strap state is said to be

Rejected / non Accepting state.

Acceptance of the string

String is raid to be accepted by FA

ib we are able to reach a final start

starting from initial state upon scaning

the entire IP string.

Acceptano of Language

A FA is raid to accept a language
it all the strings in the language.

are accepted and all the strings not

in the language are rejected

 $A \xrightarrow{Q} A \xrightarrow{Q} A$ $A \xrightarrow{Q} A \xrightarrow{Q} A$ $A \xrightarrow{Q} A \xrightarrow{Q} A$

Pa) Construct the DFA which accepts set of 1dring, over of a, by such then length of string in attent d. $w \in \{a,by \mid w \mid \geq 2$ ₹ = { a, by L = { aa. bb, ab, ba, aaa, ..., bbb, ... y ret of strings al-most 2. we (a,by રૂ $|W| \leq n$ In general | N | ≥ v |W| = 2 7+1 n+ 2 n+2

Q) Condruct DFA WE {a,b} auch that Iw mod 2 = 0 (set of all even strings) L= fe, aa, ab, ba, bb, aaaa, bbbb --- J a) Iwl mod 2 = 1 (set of all odd strings) lωl ≥ 1 mod 3. we fa, by * |w| mod 3=0 $\langle \phi \rangle$ L = { E, aga, agb, bbb, agaagg } In Jenus n = 0

L= {abb, aabb, abba, aabba,

Q) $\leq = 80,13$ begins, with 101 $L = \{101, 1010, 1011, 10100, \dots 3\}$

a) z = (0,13 Sequence DI somewhere in the string.

L= { 01, 001, 010, 0101, }

Finite State System: - [State machine]

3 9t is a mathematical model of

Computation used to design both Computer

programs of requestial circuits

Finite state Automate [FSA]

The used to recognize patterns

within inputs taken from some characterisets

Scanned by CamScanner

Extended Transition Function of DFA/ Proporties

Of Transition Function (5)

Baic

& (9,E)=9

The state of the system can be changed only by an input symbol also semain in original state.

Induction

when a in the last symbol of w and a sign a string consisting of all but not the last symbol.

 (e_{1}) w=1101 x=110 9=1 $\delta(q,w)=\delta(\delta(q,x),a)$

M= ({90,91,92} fo,19,90, \$9,9, 8)
when & is given by

	Inputs	
	•	1
$\rightarrow \tau_{\circ}$	10	٦,
* 7,	7.	9,
92	92	2,

give the Aranilion diagram and entire dequence for MP Atring 1101011 using modultion method,