MASOO Geometric Joundations of Data Analysin Geometry: Concerns distance l'distance preserving transformations. Statistics: largely concerns interences about a population based on samples from the population.

(probability: concorns interences about a sauple based on knowledge of the population, Data Analysis: Concerns the discovery and communication of meaningful patterns in data unlike statistics, analyses where there is no assumed nall hypothosis it often favours visualization to communicate insight.

1. Least Squares Fitting Consider a company that manufactures a spore part once per month in lots which vary in size according to demand.

Production	Lot	Man-hours
run	Sise oc:	4:
-1	30	73
-2	20	50
-3	60	128
-4	80	170
/5	40	87
6	50	108
~ 7	60	135
~8	30	69
~ q	70	14-3
10	60	132

The fitted line is represended y = bo + b, x where bo, b, are chosen to be "best" in the following sense: they should maining Q = \(\left(y: - (bo+ b, x:) \right)^2 where n 210, xi, y; are giosen in above table. Q = Q(bo, b,) is a function and by minum we want - 2 \(\frac{2}{12} \left(\gi - (bo+hxi) \right) =0 Al da = - 2 £ (y - (bo+b,xi)) xi =0

(+) are called the normal equations The can be rewritten as $\begin{cases} n b_0 + b_1 \leq 3i = \leq 4i \\ b_0 \leq 3i + b_1 \leq xi^2 = \leq 3i \leq 4i \end{cases}$ Two equations in two unknowns The solution is: bo = 10.0 6, 22.0 and the ditted die is y= 10+2x so we 'estimate' that tho mean number of view hours in creases by two hours der each unit, in crease in let Size.

Matrix Notation

$$Y = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ y_n \end{pmatrix} \qquad X = \begin{pmatrix} 1 & x_1 \\ 1 & 362 \\ \vdots \\ 1 & x_n \end{pmatrix} \qquad B = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}$$

Hence

$$\mathbb{B} = (x^t x)^{-1} x^t Y$$