Lecture Notes in Analysis on Manifolds

Joel Sleeba

Last Updated: August 24, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. Shrihari Sridharan*. All the typos and errors are of mine. The pictures that make here will be hand drawn and I will appreciate it if someone who is knowledgeable in Tikz will help me digitizing my rough hand-drawn pictures.

Contents

§ 1	Lecture 1 — 10th August 2022 — Review of Real Analysis	2
	§1.1 Metric Spaces	2
	§1.2 Norms	2
	§1.3 Continuous Functions and properties	3
	\$1.4 Metric topology	3
	§1.5 Compact Sets	3
	\$1.6 Connected Sets	4

§1 Lecture 1 — 10th August 2022 — Review of Real Analysis

§1.1 Metric Spaces

Definition §1.1.1 (Metric Space). A set X along with a function $d: X \times X \to \mathbb{R}^+$ is called a metric space if d satisfies the following properties

- 1. $d(x, y) = 0 \iff x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, z) + d(z, y)$ where $x, y, z \in Z$

Suppose (X, d) is a metric space and $Y \subset X$, Then (Y, d) is also a metric space

Definition §1.1.2 (Open Ball). We define $B_d(x_0,\epsilon)$, the open ball of radius ϵ about $x_0 \in X$ as

$$B_d(x_0,\epsilon) = \{x \in X | d(x,x_0) < \epsilon\}$$

Moreover if the metric d is known we'll write $B_{\epsilon}(x)$ instead of $B_{d}(x,\epsilon)$

Definition §1.1.3 (Open Set). Let (X, d) be a metric space. Then a subset $U \subset X$ is open if for all $x \in U$ there exists an $\epsilon > 0$ such that $B_d(x, \epsilon) \subset U$

Fact §1.1.4. For $x_1, x_2 \in X$ if $B_{\epsilon_1}(x_1) \subset B_{\epsilon_2}(x_2)$, then $d(x_1, x_2) \leq \epsilon$

Fact §1.1.5. Let $A_1 \subset B_{\epsilon_1}(x)$ and $A_2 \subset B_{\epsilon_2}(x)$, then $A_1 \cup A_2 \subset B_{max(\epsilon_1,\epsilon_2)}(x)$

Fact §1.1.6. Let $\{U_{\alpha} \mid \alpha \in I\}$ be a collection of open sets in X. Then $\cup_{\alpha} U_{\alpha}$ is open

Fact §1.1.7. Let (X, d) be a metric space and let $Y \subset X$. Let A be open about $d \mid_Y$, the restriction of d to Y. Then there exist an open set U in X such that $A = U \cap Y$

Fact \$1.1.8. *Finite intersection of open sets is open*

Fact §1.1.9. $A \subset X$ is closed $\iff A^c$ is open

§1.2 Norms

We'll define and work mainly with 2 different norms in \mathbb{R}^n . Euclidean norm and Supremum norm

Definition §1.2.1 (Euclidean Norm). Let $x = (x_1, x_2, ... x_n) \in \mathbb{R}^n$, then we define the euclidean norm of x, denoted by ||x||, to be

$$||x|| = \sqrt{\sum_{i=1}^{n} (x_i^2)}$$

Definition §1.2.2 (Supremum Norm). Let $x = (x_1, x_2, \dots x_n) \in \mathbb{R}^n$, then we define the supremum norm of x, denoted by |x|, to be

$$|x| = \max\{x_i \mid 1 \le i \le n\}$$

Fact §1.2.3. *The norms we defined above will satisfy*

$$|x - y| \le ||x - y|| \le \sqrt{n}|x - y|$$

Fact §1.2.4. Given any norm $\|\cdot\|$ in X, it induces a metric in X defined as $d(x, y) = \|x - y\|$. This metric is called the metric induced by the norm $\|\cdot\|$

Fact §1.2.5. A subset $U \subset \mathbb{R}^n$ is open about euclidean metric iff it is open about the supremum metric

§1.3 Continuous Functions and properties

Definition §1.3.1 (Function continuous at a point). Let (X, d_X) and (Y, d_Y) be metric spaces. Then a function $f: X \to Y$ is continuous at a point $x_0 \in X$ if for all $\epsilon > 0$ there exist a $\delta > 0$ such that $d_X(x, x_0) < \delta \implies d_Y(y, y_0) < \epsilon$

Definition §1.3.2 (Function continuous on X). We say f is continuous on X if f is continuous at x for all $x \in X$

Definition §1.3.3 (Topological Definition of continuity). $f: X \to Y$ is continuous iff given any open ball $U \in Y$, $f^{-1}(U)$ is open in X

§1.4 Metric topology

Definition §1.4.1 (Limit Point). Let (X, d) be a metric space. x_0 is a limit point of $Y \subset X$ if for all $\epsilon > 0$, $B_{\epsilon}(x_0) \cap Y$ is an infinite set

Definition §1.4.2 (Closure of a set). If $A \subset X$, then the closure of A, \bar{A} is defined as the union of A with the limit points of A

Definition §1.4.3 (Interior of a Set). If $A \subset X$, then the interior of A, Int(A) is defined as $(\bar{A}^c)^c$

Definition §1.4.4 (Exterior of a set). If $A \subset X$, then the exterior of A, Ext(A) is defined as the interior of A^c

Definition §1.4.5 (Boundary of a set). If $A \subset X$, then the boundary of A is defined as $X \setminus (Int(A) \cup Ext(A))$

Fact \S 1.4.6.The interior of A, Int(A) is an open set

§1.5 Compact Sets

Definition §1.5.1 (Cover of a set). A collection $\{U_{\alpha} \subset X \mid \alpha \in I\}$ is a cover of A if $A \subset \bigcup_{\alpha \in I} U_{\alpha}$

Theorem §1.5.2 (Heine Borel Theorem). $A \subset \mathbb{R}^n$ is compact iff every open cover of A has a finite subcover

Fact §1.5.3. Let $(X, d_X), (Y, d_Y)$ be metric spaces and $f: X \to Y$ be continuous. If $A \subset X$ is compact then f(A) is also compact.

Fact §1.5.4. Let $f: X \to \mathbb{R}$ be a continuous function and $A \subset X$ be compact. Then f attains a maximum in A

Fact §1.5.5. *Let* $f: X \to Y$ *be continuous and* $A \subset X$ *be compact. Then* f *is uniformly continuous on* A

§1.6 Connected Sets

Definition §1.6.1 (Connected metric space). A metric space *X* is said to be connected if *X* cannot be written as a disjoint union of 2 open sets

Fact §1.6.2. Let $f: X \to Y$ be a continuous function. Then, if X is a connected space, f(X) is also connected in Y

Fact §1.6.3. Let $f: X \to \mathbb{R}$ be a continuous function and X be connected. If $a, b \in f(X)$ then for all $r \in \mathbb{R}$ such that a < r < b, $r \in f(X)$

Prove all the statements given as facts. This requires only an exposure to real analysis