Character Region Awareness for Text Detection

CVPR 2019

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee* Clova Al Research, NAVER Corp.

Bochan Kim

kmc2048@gmail.com

2020.04.06 Mon

Before Start..

- OCR Pipeline (with DL)

- Detection ✓
- Recognition

Results

Main Idea

Region score + Affinity Score

Main Idea

Ground Truth Label Generation (if character-level annotation exists)

- 1. Using character boxes(from annotation), generate affinity boxes
- Perspective transform 2D isotropic Gaussian map to region and affinity boxes
- 3. Map 2D Gaussian to region and affinity score

Architecture

- 1. Backbone as VGG-16
- 2. U-net shape decoding part for aggregating low-level features
- Output has two channels (region score, affinity score)

Weakly Supervised Learning

- 1. Pretrain a model (using SynthText in paper)
- 2. Crop the word in real image using word-level annotation
- 3. Predict the region score
- 4. Split the character regions using watershed algorithm
- 5. Comparing the length of predicted words, calculate confidence.

7

Objective Function (with weakly-supervised learning)

Calculating confidecne

$$s_{conf}(w) = \frac{l(w) - \min(l(w), |l(w) - l^c(w)|)}{l(w)}$$

- -l(w): length of sample word w
- $l^{c}(w)$: estimated length of sample word w

- If confidence is less than 0.5, just assume that word is evenly separated and set confidence to 0.5
- This is for learning unseen appearances of texts.

Objective Function (with weakly-supervised learning)

$$S_c(p) = \begin{cases} s_{conf}(w) & p \in R(w), \\ 1 & \text{otherwise,} \end{cases}$$
 (2)

where p denotes the pixel in the region R(w). The objective L is defined as,

$$L = \sum_{p} S_c(p) \cdot (||S_r(p) - S_r^*(p)||_2^2 + ||S_a(p) - S_a^*(p)||_2^2),$$

- R(w): bounding box region of word w
- $S_r(p)$: region score for pixel p
- $S_a(p)$: affinity score for pixel p
- When training with synthetic data, $S_c(p)$ is set to 1.
- During training real data, synthetic data is still for the exact char-level annotation (synth: real = 1:5)

Character region score maps during training

- As training is performed, model can predict characters more accurately, and the confidence scores are gradually increased as well
- The model learns the appearances of new texts, such as irregular fonts, and synthesized texts that have a different data distribution against that of the SynthText dataset.

11

Post-processing

1. For QuadBox Generation

- 1. Initialize binary map M with 0 and set 1 if $Sr(p) > \tau r$ or $Sa(p) > \tau a$
- 2. Connected Component Labeling(CCL) on M (cv2.connectedComponents)
- 3. Find a rectangle of minimum area enclosing the connected components (cv2.minAreaRect)

Post-processing

2. For Polygon Generation

Figure 7. Polygon generation for arbitrarily-shaped texts.

- 1. Blue line
- 2. Yellow line
- 3. Red line
- 4. Green dots

Experiments

1. Results on quadrilateral-type dataset

Method	IC13(DetEval)		IC15			IC17			MSRA-TD500			FPS	
	R	P	Н	R	P	Н	R	P	Н	R	P	Н	
Zhang et al. [39]	78	88	83	43	71	54	-	-	-	67	83	74	0.48
Yao et al. [37]	80.2	88.8	84.3	58.7	72.3	64.8	-	-	-	75.3	76.5	75.9	1.61
SegLink [32]	83.0	87.7	85.3	76.8	73.1	75.0	-	-	-	70	86	77	20.6
SSTD [8]	86	89	88	73	80	77	-	-	-	-	-	-	7.7
Wordsup [12]	87.5	93.3	90.3	77.0	79.3	78.2	-	-	-	-	-	-	1.9
EAST* [40]	-	-	-	78.3	83.3	80.7	-	-	-	67.4	87.3	76.1	13.2
He et al. [11]	81	92	86	80	82	81	-	-	-	70	77	74	1.1
R2CNN [13]	82.6	93.6	87.7	79.7	85.6	82.5	-	-	-	-	-	-	0.4
TextSnake [24]	-	-	-	80.4	84.9	82.6	-	-	-	73.9	83.2	78.3	1.1
TextBoxes++* [17]	86	92	89	78.5	87.8	82.9	-	-	-	-	-	-	2.3
EAA [10]	87	88	88	83	84	83	-	-	-	-	-	-	-
Mask TextSpotter [25]	88.1	94.1	91.0	81.2	85.8	83.4	-	-	-	-	-	-	4.8
PixelLink* [4]	87.5	88.6	88.1	82.0	85.5	83.7	-	-	-	73.2	83.0	77.8	3.0
RRD* [19]	86	92	89	80.0	88.0	83.8	-	-	-	73	87	79	10
Lyu et al.* [26]	84.4	92.0	88.0	79.7	89.5	84.3	70.6	74.3	72.4	76.2	87.6	81.5	5.7
FOTS [21]	-	-	87.3	82.0	88.8	85.3	57.5	79.5	66.7	-	-	-	23.9
CRAFT(ours)	93.1	97.4	95.2	84.3	89.8	86.9	68.2	80.6	73.9	78.2	88.2	82.9	8.6

Table 1. Results on quadrilateral-type datasets, such as ICDAR and MSRA-TD500. * denote the results based on multi-scale tests. Methods in *italic* are results solely from the detection of end-to-end models for a fair comparison. R, P, and H refer to recall, precision and H-mean,

Experiments

2. Results on polygon-type dataset

Method	To	otalTe	xt	CTW-1500			
	R	P	H	R	P	H	
CTD+TLOC [38]	-	-	-	69.8	77.4	73.4	
MaskSpotter [25]	55.0	69.0	61.3	_	_	_	
TextSnake [24]	74.5	82.7	78.4	85.3	67.9	75.6	
CRAFT(ours)	79.9	87.6	83.6	81.1	86.0	83.5	

Table 2. Results on polygon-type datasets, such as TotalText and CTW-1500. R, P and H refer to recall, precision and H-mean, respectively. The best score is highlighted in **bold**.

Discussions

- 1. Robustness to Scale Variance
 - Solely performed single scale experiments on all the datasets
- 2. Multi-language issue
 - Some language which is difficult to separate words into characters exists such as Bangla, Arabic
- 3. Generalization ability
 - Achieved SOTA performances on 3 different datasets without additional fine-tuning
- 4. Comparison with End-to-end methods

- Though trained only with detection GT boxes, still very comparable with other end-to-end methods

Method	IC13	IC15	IC17
Mask TextSpotter [25]	91.7	86.0	-
EAA [10]	90	87	_
FOTS [21]	92.8	89.8	70.8
CRAFT(ours)	95.2	86.9	73.9

Q & A

감사합니다.