Посмотрите теорию в разделе "Дополнительные материалы" этого сайта

Задания:

1. В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d_0 выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы:

n	<i>d</i> , мм	d _i – d ₀	$(d_i - d_0)^2$	Среднее <i>d</i>	Средне- квадратичная погрешность	Станд. отклонен	Абсол. погреш.	Относит. погреш.
1	14.85							
2	14.80							
3	14.79							
4	14.84							
5	14.81							

- **2.** В результате определения содержания алюминия в сплаве получены следующие значения (в % масс): *7.48, 7.49, 7.52, 7.47, 7.50*. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m₀ выбрать 7.48.
- **3.** При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.
- 4. Самостоятельно подобрать задачу, реализовать ее и оформить в лабораторной работе
- 5. В эксперименте выполнялись измерения размеров тела правильной геометрической формы (параллелепипед) с целью определения его объема. Все измерения проведены штангенциркулем с ценой деления нониуса 0,1 мм. Результаты измерений приведены в таблице

n	а,мм	<i>b</i> ,мм	h, MM
1	12,7	12,7	14,8
2	12,7	12,8	14,9
3	12,7	12,9	14,7
Среднее:	$\tilde{a} = 12,7$	$\widetilde{b} = 12.8$	$\widetilde{h} = 14.8$

1). Рассчитать погрешность прямых измерений величины b (среднее арифметическое, среднеквадратичное отклонение, случайная погрешность многократных измерений, оценить доверительный интервал однократных измерений, общая погрешность серии

измерений). Запиать полученное из эксперимента значение величины b с учетом погрешности.

- 2). Рассчитать погрешность прямых измерений величины h и величины а.
- 3). Рассчитать значения объема параллелепипеда (косвенные измерения).