10.403247

USAELRDL Technical Report 2330

NTROLLED VARIATION OF DIFFUSED PHOSPHOROUS CONCENTRATION FOR SILICON PNP TRANSISTORS

Armand P. LaRocque
Nicholas O. Korolkoff

403 479

February 1963

UNITED STATES ARMY
ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
FORT MONMOUTH, N.J.

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY FORT MONMOUTH, NEW JERSEY

February 1963

USAELRDL Technical Report 2330 has been prepared under the supervision of the Director, Electronic Components Department, and is published for the information and guidance of all concerned. Suggestions or criticisms relative to the form, contents, purpose, or use of this publication should be referred to the Commanding Officer, U. S. Army Electronics Research and Development Laboratory, Fort Monmouth, New Jersey, Attn: Chief, Semiconductor and Microelectronics Branch, Solid State and Frequency Control Division.

J. M. KIMBROUGH, JR. Colonel, Signal Corps Commanding

OFFICIAL:
HOWARD W. KILLAM
Major, SigC
Adjutant

DISTRIBUTION: Special

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM ASTIA.

THIS REPORT HAS BEEN RELEASED TO THE OFFICE OF TECHNICAL SERVICES, U. S. DEPARTMENT OF COMMERCE, WASHINGTON 25, D.C., FOR SALE TO THE GENERAL PUBLIC.

CONTROLLED VARIATION OF DIFFUSED PHOSPHOROUS CONCENTRATION FOR SILICON PNP TRANSISTORS

Armand P. LaRocque Nicholas O. Korolkoff

DA TASK NR. 3A99-21-003-01-13

ABSTRACT

A method for diffusing phosphorous into silicon in order to achieve various surface concentrations has been developed. This method utilizes the phosphorous source temperature as a means of controlling the surface concentration over a range of 1×10^{17} to 5×10^{19} atoms per cc. Experiments were conducted over a source temperature range of 140° C to 240° C during a predeposition stage, at constant time and wafer temperature, followed by redistribution at constant time and temperature.

The predeposition source temperature is shown to affect the initial sheet resistance, ultimate sheet resistance and phosphorous concentration without materially affecting the junction depth.

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY

FORT MONMOUTH, NEW JERSEY

CONTENTS

ABSTRACT	Page i
INTRODUCTION	1
THEORETICAL DISCUSSION	1
EXPERIMENTAL PROCEDURE	
Diffusion of Test Wafers	2
Diffusion of Device Wafers	3
RESULTS	
Discussion of Diffusion Data	14
Discussion of Device Electrical Test Data	4.
CONCLUSIONS	4
ACKNOWLEDGMENT	5
REFERENCES	5
FIGURES	
1. Diffusion Furnace	6
2. Sheet Resistance Dependence on Source Temperature	7
3. Dopant Concentration as a Function of Sheet Resistance	8
4. Dopant Concentration Dependency on Source Temperature	9
5. Diode Reverse Breakdown	10
6. Transistor Current Gain	10
TABLE	
1. Experimental Data Compilation	11

CONTROLLED VARIATION OF DIFFUSED PHOSPHOROUS CONCENTRATION FOR SILICON PNP TRANSISTORS

INTRODUCTION

In the design and development of solid state devices it is imperative that the device fabrication capability include processes for diffusing both donor and acceptor atoms over a wide range of dopant concentrations. A process for achieving control of one of the acceptor atoms (boron) has already been reported from these laboratories. 1

The objective of the experiments described in this report was the development of a process which would permit controlled variation in the concentration of a donor atom. Phosphorous was chosen because of its favorable diffusion coefficient, 2 because the vapor pressure of a suitable source, phosphorous pentoxide, permitted its use over a satisfactory temperature range, and because the diffusion of phosphorous can be inhibited by the use of silicon dioxide layers on the silicon surface; a consideration important in the formation of localized diffused junctions in solid state devices.

THEORETICAL DISCUSSION

Fick's Second Law gives the relationship of diffusant concentration,c, diffusion time, t, and diffusion distance, x, as follows:

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \tag{1}$$

D is the diffusion coefficient in cm²/sec and is constant at a given temperature with which c, t and x are concerned.

The diffusion coefficient, D, varies with temperature as follows:

$$D = D_0 \exp \left(-\Delta H/RT\right) \tag{2}$$

where

D₀ = diffusion constant in cm^2/sec $\triangle H$ = diffusion activation energy in calories

R = gas constant in cal/degree

T = absolute temperature.

The value of D for phosphorous has been reported by Fuller and Ditzenberger as 10.5 exp - (85,000/RT) over a temperature range of 1000°C to 1400°C.2 Tannenbaum has shown that the diffusion coefficient at a constant temperature is constant up to concentrations of diffusant atoms of about 1020 cm-3 and increases rapidly at higher concentrations. 3 The phosphorous concentrations obtained in these experiments are all below this maximum so the diffusion coefficient can be assumed to have been constant.

There are three major distribution functions governing the inward diffusion of impurities into a solid:

1. Error function distribution:
$$N_x = N_s \operatorname{erfc}\left(\frac{x}{2(Dt)1/2}\right)$$
 (3)

2. Gaussian distribution:
$$N_x = N_s \exp\left(\frac{-x^2}{4 \text{ Dt}}\right)$$
 (4)

3. Exponential distribution:
$$N_x = N_S \exp\left(\frac{-vx}{D}\right)$$
 (5)

where

 $N_x = \text{impurity concentration at junction in atoms/cc}$ $N_s = \text{impurity concentration on the surface in atoms/cc}$

x = junction depth in centimeters
D = diffusion coefficient in cm²/sec

t = time in seconds

v = surface recession rate in cm/sec.

The form of actual impurity distributions can be calculated from the differential equation subject to certain initial conditions and certain boundary conditions. The initial conditions are specified by the spatial dependence of the impurity concentration at time zero, while the boundary conditions specify conditions for the concentration or the flow of impurities at certain points or planes. A great variety of diffused distributions is obtainable by the inward diffusion of impurities from the surface. For this, the impurities have to be introduced from some external phase which determines the concentration of the impurities in the solid. Smits has described various surface phases such as the alloy source, reaction phase, vapor source two temperature systems, and a prediffusion phase.

It is the prediffusion phase which is most pertinent to the process under consideration. Under this technique the surface concentration can be controlled by the temperature of the source material and the carrier gas composition. The prediffusion (or predeposition) step.carried out at a relatively low temperature during these experiments, produced thin layers with high surface concentrations. It should be noted that in these experiments the resulting thin layers had sheet resistance values inversely related to the source temperature, as would be expected. Upon completion of the redistribution, or main diffusion, the deeper diffused layers had sheet resistance values directly related to the initial sheet resistance values. These relationships will be given in detail in a later section of this report. When the final layer thickness is deep compared to the thickness obtained in the predeposition, as was the case in these experiments, the impurity concentration essentially follows a Gaussian distribution, as given by Eq.(4).

EXPERIMENTAL PROCEDURE

Diffusion of Test Wafers

The method developed for controlling the variation of phosphorous

concentration in silicon was essentially a two-step procedure, namely a predeposition followed by a redistribution. The experimental diffusion system used for the predeposition step was similar to that reported by Frosch and Derick and is shown in Fig. 1. It was essentially a long quartz tube enclosed in two separately controlled heating chambers. The source was placed within the lower temperature chamber while the silicon wafers were placed in the high temperature zone. Prior to the predeposition step, the silicon wafers, which were one Ω -cm p-type grown in the <ll>>plane, were cleaned according to a schedule previously reported from these laboratories. The predeposition was carried out by heating a phosphorous pentoxide source at the desired temperature. Three grams of the source material were placed in a quartz boat, the temperature of which was constantly monitored by a thermocouple. Every effort was made to prevent absorption of atmosphoric moisture by the source material. Pure oxygen gas, which was dried in a series of liquid nitrogen traps and a Linde Molecular Sieve, was passed over the source at a rate of 1000 cc/min. The liquid nitrogen level was maintained low enough to minimize condensation of the oxygen. Upon insertion of the source boat, both the source and the furnace were allowed to stabilize for ten minutes before insertion of the wafer-holding boat into the higher temperature chamber from the other tube end. This avoided deposition of any initial high concentration burst of source material upon the wafers. Upon insertion of the wafers, the system was allowed to proceed at the desired temperatures for one hour.

Following removal of the silicon wafers, the silico-phosphorous glass surface film was removed by dissolution in hot acqua regia for five minutes followed by a rinse in hot, high resistivity water and a five minute rinse in hot sulfuric acid with another hot water rinse. Finally, the wafers were soaked in concentrated hydrofluoric acid, rinsed in hot water and blotted on lint-free paper. The wafers were then heated at 1200°C for one hour in an atmosphere of wet oxygen obtained by passing oxygen through high resistivity water held at 90°C. The diffused surface sheet resistance values were obtained by four-point probe measurements, and the junction depths were determined in the conventional manner of angle lapping, staining, and microscopic measurement.

Diffusion of Device Wafers

In addition to the aforementioned diffusions, this technique was used to prepare N-P planar diodes and the base region in planar P-N-P transistors. In order to effect localized junction regions, the wafers were exidized to provide a mask against the phosphorous and windows formed in the desired location and pattern by photolithography. These processes, together with all other processes used to fabricate P-N-P transistors, have already been reported in detail. In the case of phosphorous diffused diodes and base regions the wafers were cleaned, after the predeposition, in aqua regia and sulfuric acid, as given above, and were then partially etched in five percent hydrofluoric acid solution for 6-8 minutes in order to remove the rasking oxide down to approximately 1000 Å. This eliminated the danger of there remaining any phosphorous source in the oxide in between the desired localized diffused regions.

RESULTS

Discussion of Diffusion Data

The test data, relating the predeposition source temperature and the resulting diffused film sheet resistance with the final sheet resistance, junction depth, and phosphorous concentration obtained following redistribution, are given in Table I. The dependence of the prediffused layer sheet resistance on the source temperature is shown in Fig.2. The relationship between the predeposited layer sheet resistance, an indication of dopant atomic concentration, and the ultimate diffused layer dopant concentration is given in Fig.3. The final relationship, namely that of the diffused dopant concentration with the source temperature during the predeposition step, is shown in Fig.4.

Examination of the data in Fig.2 discloses the anomalous sheet resistance values obtained at the lower source temperatures. This is believed due to the extreme difficulty in measuring such high sheet resistances over large wafer areas. The curve is therefore discontinuous to indicate the considered lack of reliable experimental data. That portion of the curve in Fig.3 which is concerned with the aforementioned anomalous values is also discontinuous.

Discussion of Device Electrical Test Data

The reverse breakdown characteristic of a typical diode, formed by diffusing at 1200°C for two hours following a predeposition at 700°C with a source temperature of 170°C, is shown in Fig.5. It is interesting to note that the breakdown voltage was 88 volts, an exceptionally high value for a diode formed in 1 ohm-cm p-type silicon. This is believed due to the extremely shallow diffusion gradient formed when a junction is formed at approximately 4.5 microns with a surface concentration of 10¹⁷ atoms per cc. This shallow gradient causes the formation of a compensated region immediately inside the junction so that the silicon is rendered effectively a high resistivity material.

The dc current gain, Beta, of a high frequency PNP planar transistor formed with a phosphorous base diffusion is shown in Fig.6. The collector current and step selector values were chosen to represent a Beta of 50 per division, so it can be seen that this transistor has a Beta value of approximately 85. The F_T value, namely the frequency at which the grounded emitter current gain becomes unity, was 425 MCS.

CONCLUSIONS

From an examination of the experimental data, it can be concluded that the phosphorous concentration of a diffused region in silicon can be varied over a range of about 4×10^{17} to 4×10^{19} atoms per cc. by a controlled variation of the phosphorous source temperature over a range of 185 to 215°C.

Thermally grown silicon dioxide is an effective mask against

phosphorous diffusion. This diffusion technique, together with this masking characteristic and photoresist, should permit the formation of diffused resistors over a wide range of values for use in solid state integrated circuits.

ACKNOWLEDGMENT

Grateful acknowledgment is made to W. Pharo and M. Palmateer for the silicon material preparation, to A. Rogel for the vacuum contact metallization, to V. Rible for the photoresist processing and to R. Jackson for helpful suggestions during the diffusion work.

REFERENCES

- 1. Kesperis, J. S. and Yatsko, R. S., "Diffusion of Boron into Silicon," USASRDL Technical Report 2157, October 1960.
- 2. Fuller, C. S. and Ditzenberger, J. A., "Diffusion of Donor and Acceptor Elements in Silicon," Journal of Applied Physics, Vol. 27, pp. 544-553, May 1956.
- 3. Tannenbaum, E., "Detailed Analysis of Thin Phosphorous Diffused Layers in P-type Silicon," Solid State Electronics, Vol.2, pp. 123-132, March 1961.
- 4. Smits, F. M., "Proceedings of the I.R.E.," Vol.46, pp.1049-1061, June 1958.
- 5. Frosch, C. J. and Derick, L., "Surface Protection and Selective Masking during Diffusion in Silicon," Journal Electrochemical Society, Vol. 104, pp. 547-552, September 1957.
- 6. LaRocque, A. P., Yatsko, R. S., Roger, A., Jackson, R. and Rible, V., "Processes for Fabricating a Planar P-N-P Silicon Transistor," IRE Transactions on Component Parts, Vol. CP-9, No.3, pp.96-101, September 1962.

DIFFUSION FURNACE

FIG. 5
Abscissa: 10v/div
Ordinate: .01 ma/div
DIODE REVERSE EREAKDOWN

FIG. 6
Abscissa: 2v/div
Ordinate: .5 ma/div
Selector: .01 ma/step

TRANSISTOR CURRENT GAIN

TABLE I

(Tir	EPOSITION ne = 1 hr. fer temp. = 700°C)		REDISTRIBUTION (Time = 1 hr. Wafer Temp.=	= 1200°C)
T source, °C	R _{Sheet} , ohms per square	R _{Sheet} , ohms per square	Junction (Depth, microns	Concentration Atoms per cc.
140 140 170 170 170 170	1075 1050 850 875 845 855	190 220 115 120 100 110	3.0 2.8 3.1 3.0 3.1 3.1	9 x 10 ¹⁶ 1 x 10 ¹⁷ 1 2 2 2
185 185 185 185 185 185	450 475 525 490 475	63 80 75 76 78	2.9 3.0 2.8 2.9 3.1	4 3.5 4 3.5 4
185 185 190 190 190	465 500 490 490 450 445	74 80 75 70 68 67	2.9 3.0 3.0 2.8 2.8 2.8	4 3.5 4 6 5 5
196 196 196 205 205	360 350 370 335 29 0	52 48 50 4.8 4.6	3.0 2.9 2.8 2.8 2.7	1 x 10 ¹⁸ 1 2.5 x 10 ¹⁹ 3
205 205 215 215	320 305 220 225	4.6 4.5 3.3 3.4	2.7 2.8 2.9 2.8	3 4 4

DISTRIBUTION

	COPIES
Commanding General U. S. Army Electronics Command ATTN: AMSEL-AD Fort Monmouth, New Jersey	3
Office of the Assistant Secretary of Defense (Research and Engineering) ATTN: Technical Library Room 3E1065, The Pentagon Washington 25, D.C.	. 1
Chief of Research and Development Department of the Army Washington 25, D.C.	2
Chief, United States Army Security Agency ATTN: ACofS, G4 (Technical Library) Arlington Hall Station Arlington 12, Virginia	1
Commanding Officer U. S. Army Electronics Research & Development Activity ATTN: Technical Library Fort Huachuca, Arizona	1
Commanding Officer U. S. Army Electronics Research & Development Activity ATIN: SELWS-AJ White Sands, New Mexico	1
Commanding Officer U. S. Army Electronics Research Unit P. O. Box 205 Mountain View, California	`1
Commanding Officer U. S. Army Electronics Materiel Support Agency ATTN: SELMS-ADJ Fort Monmouth, New Jersey	1
Commanding General U. S. Army Satellite Communications Agency ATTN: Technical Documents Center Fort Monmouth, New Jersey	1
Director U. S. Army Engineer Research & Development Laboratories ATTN: Technical Documents Center Fort Belvoir, Virginia 12	1

DISTRIBUTION (Cont) COPIES Commanding Officer 1 U. S. Army Chemical Warfare Laboratories ATTN: Technical Library, Building 330 Army Chemical Center, Maryland Commanding Officer 1 Harry Diamond Laboratories ATTN: Library, Building 92, Room 211 Washington 25, D.C. Headquarters, United States Air Force 2 ATTN: AFCIN Washington 25, D.C. Rome Air Development Center ATIN: RAALD Griffiss Air Force Base New York Headquarters 1 Ground Electronics Engineering Installation Agency ATTN: ROZMEL Griffiss Air Force Base, New York 2 Commanding General U. S. Army Materiel Command ATTN: R&D Directorate Washington 25, D.C. 1 Aeronautical Systems Division ATTN: ASAPEL Wright-Patterson Air Force Base, Ohio U. S. Air Force Security Service 1 ATIN: ESD San Antonio, Texas Headquarters Strategic Air Command ATTN: DOCE Offutt Air Force Base, Nebraska 1 Headquarters Research & Technology Division ATIN: RIH Bolling Air Force Base Washington 25, D.C.

DISTRIBUTION (Cont) COPIES Air Proving Ground Center 1 ATTN: PGAPI Eglin Air Force Base, Florida Air Force Cambridge Research Laboratories 2 ATTN: CRXL-R L. G. Hanscom Field Bedford, Massachusetts Headquarters 2 Electronic Systems Division ATIN: ESAT L. G. Hanscom Field Bedford, Massachusetts AFSC Scientific/Technical Liaison Office 1 U. S. Naval Air Development Center Johnsville, Pa. Chief of Naval Research 1 ATTN: Code 427 Department of the Navy Washington 25, D.C. Bureau of Ships Technical Library 1 ATTN: Code 312 Main Navy Building, Room 1528 Washington 25, D.C. Chief, Bureau of Ships 1 ATTN: Code 454 Department of the Navy Washington 25, D.C. Chief, Bureau of Ships ATTN: code 686B 1 Department of the Navy Washington 25, D.C. Director 1 U. S. Naval Research Laboratory ATTN: Code 2027 Washington 25, D.C. Commanding Officer & Director 1

U. S. Navy Electronics Laboratory

ATTN: Library

San Diego 52, California

DISTRIBUTION (Cont) COPIES Commander U. S. Naval Ordnance Laboratory 1 White Oak Silver Spring 19, Maryland Commander 20 Armed Services Technical Information Agency ATTN: TISIA Arlington Hall Station Arlington 12, Virginia 1 USAFLRDL Liaison Officer U. S. Army Tank-Automotive Center Detroit Arsenal Center Line, Michigan USAELRDL Liaison Officer 1 Naval Research Laboratory ATIN: Code 1071 Washington 25, D.C. USAELRDL Liaison Officer 1 Massachusetts Institute of Technology Building 26, Room 131 77 Massachusetts Avenue Cambridge 39, Massachusetts USAELRDL Liaison Office 1 Aeronautical Systems Division ATTN: ASDL-9 Wright-Patterson Air Force Base Ohio U. S. Army Research Liaison Office ŀ Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts USAELRDL Liaison Officer 1 Rome Air Development Center ATTN: RAOL Griffiss Air Force Base, New York 1 Chief Scientist U. S. Army Electronics Command Attn: AMSEL-SC

Fort Monmouth, N. J.

DISTRIBUTION LIST (Cont)

	COPIES
USAFMSA Liaison Engineer USASCAJ APO 343	1
San Francisco, California	
Technical Director, SELRA/CS Hdq - USAELRDL	1
USAELRDA-White Sands Liaison Office SELRA/LNW, USAELRDL	1
AFSC Scientific/Technical Liaison Office SELRA/LNA, USAELRDL	1
Corps of Engineers Liaison Office SELRA/INE, USAELRDL	1
Marine Corps Liaison Office SELRA/INR, USAELRDL	1
USACDC Liaison Office SELRA/LNF, USAELRDL	2
Commanding Officer U.S. Army Security Agency Processing Center Deal Area, Bldg. 5001	1.
Mr. A. H. Young Semiconductor Group Code 68LALA Bureau of Ships Department of the Navy	1
Washington 25, D.C.	
Chief, Technical Information Division, Hq, USAFLRDL	6
USAFIRDL Technical Documents Center, SFIRA/ADT, Hexagon	1
Director, Electronic Components Dept., USAELRDL	1
Director, Solid State & Frequency Control Div., EC Dept	1.
Deputy Director, Solid State & Frequency Control Div., EC Dept	1
Chief, Technical Staff, Solid State & Frequency Control Div	5
Chief, Piezoelectric Crystal & Circuitry Br, Solid State & Frequency Control Div	5

DISTRIBUTION LIST (Cont)

	COPIES
Chief, Semiconductor & Microelectronics Br, Solid State & Frequency Control Div.	25
Chief, Microwave & Quantum Electronics Br, Solid State & Frequency Control Div.	5

File Unit Nr. 1, Rm 3D-116, Hexagon

UNCLASSIFIED	1. Diffusion, Phosphorous into Silicon 2. Technology, Silicon Transis or 3. Microelectronics, Phosphorous Diffusion for LaRocque, Armand P. Korolkoff, Nicholas O. II. Army Electronics Research & Development Laboratory, For Monnouth, N. J. III. DA Task 3A99-21-003-01	UNCLASSIFIED	UNCLASSIFIED 1. Diffusion, Phosphorous into	6 6 6 E E	UNCLASSIFIED
ADbiv	Amy Electronics Research and Development Laboratory, Fort Monnouth, N. J. CONTROLLED VARIATION OF DIFFUSED PERFORM PRAILINGS TONCENTRATION FOR SILICON PROPERTION OF STATE OF SILICON PROPERTION FOR SANDERS SA	sphorous concentration witho	AD Div	Laboratory, Fort Mommoth, N. J. CONTROLLED VARLATION FOR DIFFUSED PHOSPHOROUS CONCENTRATION FOR SILICON PHOSPHOROUS CONCENTRATION FOR SILICON PROPRIOLS. O. Kroolkoff, February 1985, 11 Nichilas. O. Kroolkoff, February 1985, 11 Report 2330) (DA Task 3A99-21-003-01) Report 2330) (DA Task 3A99-21-003-01) A method for diffusing phosphorous into silicon in order to achieve various surface concentrations has been developed. This method dilizes the phosphorous source temperature as a means of controlling the sur- face concentration over a range of 1x 1017 to 5 x 1019 atoms per cc. Experiments were conducted over a source temperature range of 140° C to 240° C during a prede- position stage, at constant time and wafer temperature,	The predeposition source temperature is shown to affect the initial sheet resistance, ultimate sheet resistance and phosphorous concentration without materially affecting the junction depth.
_		1			
UNCLASSIFIED	Diffusion, Phosphorous into Silicon Technology, Silicon Transistor Microelectronics, Phosphorous Diffusion for Korolue, Armand P. Korolloff, Nicholas O. Army Electronics Research & Development, Laboratory, Fort Monmouth, N. J. Fort Monmouth, N. J. Da Task 3499-21-003-01	UNCLASSIFIED	UNCLASSIFIED	2. Technology, Silicon 3. Microelectronics, Phosphorous Diffusion for 1. LaRocque, Armand P. Korolkoff, Nicholas O. 1. Army Electronics Research & Development Laboratory, Fort Monmouth, N. J. III. DA Task 3A99-21-003-01.	UNCLASSIFTED