1. Problem definition

Given a number $n\in\mathbb{N}$, find the minimal number $k\in\mathbb{N}$ such that there are n sets $A_1,...,A_n$ containing numbers in [k], i.e $A_i\subseteq\{1,...,k\}$ satisfying:

$$|A_i \cap A_j| = |i-j|$$
 for all $1 \leq i < j \leq n$

For example, for n = 4, the answer would be k = 5, with which we could pick the 4 sets as:

$A_1 = \{1, 2, 3, 4\}$							
	or a more visual alternative:	A1:	1	2	3	4	
$A_2=\{1,5\}$		A2:	1				5
$A_3 = \{1, 2\}$		Аз:	1	2			
		A4:	1		3	4	5
$A_4 = \{1, 3, 4, 5\}$							