EECS 203 Discussion 4

Proof by Cases, Intro to Sets

Upcoming Exam

- Exam 1 is on Monday, February 19th from 7:00 9:00 PM!
- If you have a time conflict, contact the course staff ASAP!
- Practice exam questions have been released on Canvas!
 - They can be found on via Files -> Practice Exams -> Exam 1

Upcoming Homework

- Homework/Groupwork 4 will be due Feb. 15th
 - Don't forget to match pages!
 - Please note as soon as you press submit you've successfully submitted by the deadline. You can still match pages with no rush without adding to your submission time.

Groupwork

- Groupwork can be done alone, but the problems tend to be more difficult, and the goal is for you to puzzle them out with others!
- Your discussion section is a great place to find a group!
- There is also a pinned Piazza thread for searching for homework groups.

Proof Methods Overview

Making a Valid Argument (Writing a Proof)

- Argument/Proof: An argument for a statement S is a sequence of statements ending with S. S is called the conclusion. An argument starts with some beginning statements you assume are true, called the premises.
- Valid Argument/Proof: An argument is valid if every statement after the premises is implied (→) by the some combination of the statements before it.
 - Whenever the premises are true, the conclusion must be true.

Today we will be discussing word-style proofs

Proof Methods

Direct Proof: Proves p → q by showing

$$p \rightarrow stuff \rightarrow q$$

• Proof by Contraposition: Proves $p \rightarrow q$ by showing

$$\neg q \rightarrow stuff \rightarrow \neg p$$

Proof by Contradiction: Proves p → q by showing

$$(p \land \neg q) \rightarrow F \rightarrow \neg (p \land \neg q) \equiv \neg p \lor q \equiv p \rightarrow q$$

• **Proof by Cases:** Proves $p \rightarrow q$ by showing

$$p \rightarrow p1 \ V \ p2 \ V \dots \ V \ pn \rightarrow q$$

Some Methods of Proving $p \rightarrow q$:

Direct Proof:

Proves $p \rightarrow q$ by showing $p \rightarrow stuff \rightarrow q$

Proof by Contraposition:

Proves $p \to q$ by showing $\neg q \to stuff \to \neg p$ (Once you show $\neg q \to \neg p$, you can immediately conclude $p \to q$ by contraposition)

Proof by Contradiction:

Assume p and $\neg q$ are true. Derive a contradiction (F), by arriving at a mathematically incorrect statement (ex: 0 = 2) or two statements that contradict each other (x = y and x \neq y). Therefore, p \rightarrow q.

$$(p \land \neg q) \rightarrow F \rightarrow \neg (p \land \neg q) \equiv \neg p \lor q \equiv p \rightarrow q$$

• Proof by Cases:

Break p into cases and show that each case implies q (in which case $p \rightarrow q$).

$$p \rightarrow p_1 \lor p_2 \lor ... \lor p_n \rightarrow q$$

Proof by Cases

Proof by Cases

Break p into cases and show that each case implies q (in which case $p \rightarrow q$).

$$p \rightarrow p_1 \lor p_2 \lor ... \lor p_n \rightarrow q$$

 $p_1 \vee p_2 \vee ... \vee p_n$ should cover all possible cases for p.

- We break our statement into all possible cases
- We show that each case leads to the conclusion we want

1. Proof by Cases/Contradiction \star

Prove that there is no rational solution to the equation $x^3 + x + 1 = 0$. **Hint:** Use the fact that 0 is an even number.

You can use the following lemmas without proving:

- Odd \times Even = Even
- $Odd \times Odd = Odd$
- Even \times Even = Even
- Odd + Even = Odd
- Odd + Odd = Even
- Even + Even = Even

2. Prime Proof *

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a natural number ≥ 2 such that p and 1 are the only factors that divide p.

3. Proving the Triangle Inequality

Prove the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

Intro to Sets

Set Terminology

- Set: A set is an unordered collection of distinct objects
- Universe: In set theory, a universe is a collection that contains all the entities one wishes to consider in a given situation.
- **Union S** ∪ **T**: The set containing the elements that are in S or T:

$$S \cup T = \{x \mid x \in S \lor x \in T\}$$

Intersection S ∩ T: The set containing the elements that are in S and T:

$$S \cap T = \{x \mid x \in S \land x \in T\}$$

• Complement \bar{A} of A: The set containing the elements that are in the universe U but not in A:

$$\bar{A} = \{x \mid x \in U \land x \notin A\}$$

• Minus S - T: The set containing the elements that are in S but not in T:

$$S - T = \{x \mid x \in S \land x \notin T\}$$

Set Terminology

• **Subset:** The set A is a subset of B if and only if every element of A is also an element of B. Denoted $A \subseteq B$. Note that A and B may be the same set.

$$A \subseteq B \text{ iff } \forall x [x \in A \rightarrow x \in B]$$

 Proper Subset: The set A is a proper subset of B if and only if A is a subset of B and A ≠ B. That is, A is a subset of B and there is at least one element of B that is not in A.

$$A \subsetneq B$$
. $A \subsetneq B$ iff $\forall x [x \in A \rightarrow x \in B] \land (A \neq B)$

- Disjoint: The sets A and B are disjoint if and only if they do not share any elements
- **Empty Set:** The empty set, denoted \emptyset or **{}**, is the unique set having no elements.

Set Terminology

 Inclusion-Exclusion Principle: The inclusion-exclusion principle states the the size of the union of two sets is equal to the sum or their sizes minus the size of their intersection:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

 Power Set: The power set of a set S is the set of all subsets of S. P(S) denotes the power set of S:

$$P(S) = \{T \mid T \subseteq S\}$$

- Cardinality: The number of elements in a set. The cardinality of a set S is denoted by |S|.
- Cartesian Product: A × B is the set of all ordered pairs of elements (a, b) where a
 ∈ A and b ∈ B:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

4. Set Exploration \star

- a) What is $|\emptyset|$?
- b) Let $A = \{1, 2, 3\}$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}$, $D = \{4, 5\}$, and $E = \{\emptyset, 5\}$.
 - i. Is $\emptyset \in A$?
 - ii. Is $\emptyset \subseteq A$?
 - iii. Is $\emptyset \in B$?
 - iv. Is $\emptyset \subseteq B$?
 - v. Is $\emptyset \in C$?
 - vi. Is $\emptyset \subseteq C$?
 - vii. What is $A \cap D$?
 - viii. What is $B \cap C$?
 - ix. What is $B \cap E$?
 - x. What is |B|, |C|, |E|?
- c) Let A and C be the sets defined above.
 - i. What is P(A)?
 - ii. What is P(C)?
 - iii. Find a formula for the size of the power set of S, |P(S)|, in terms of |S|.
 - iv. What is $C \times A$?
 - v. What is A^2 ? $(A^2 = A \times A)$
 - vi. Find a formula for the size of the Cartesian product of A and B, $|A \times B|$ in terms of |A| and |B|.

5. Double Subset Equality *

Prove the set equivalence: $A - (B \cap C) = (A - B) \cup (A - C)$

6. Subset Proofs

Let A, B, and C be sets. Prove that

- a) $(A \cap B \cap C) \subseteq (A \cap B)$
- b) $(A-B)-C\subseteq A-C$

7. Power Sets

Can you conclude that A = B if A and B are two sets with the same power set?

8. More Power Sets *

Determine whether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

9. Power Set of a Cartesian Product

Prove or disprove that if A and B are sets, then $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.