Correction: [0,1) is a neighbourhood of \$\frac{1}{2}, \frac{1}{3} - more generally a nbd of any $x \in (0,1)$. It is not a nbd of 0 & it is DEFINITELY NOT a nbd of 1, 1 isn't even IN the set! Last time: $\overline{1h}^{m}4.7: \overline{1f} f:S \rightarrow \mathbb{R}$ is ch where S is non-empty & seg. compact, then f attains its max 8 min on S, i.e. $\exists S_0, S, \in S$ s.th. $f(S_0) \leqslant f(S) \leqslant f(S_0)$ seq. compact. Y se S.

In particular any ch for f: [a,b] -> IR attains it max. & min.

Pf: We'll show first that S seg. compact = $f(s) = \{f(s) \mid s \in S^3\}$ is seq. compact.

Let (y_n) be a seq. in f(s). i. $\exists sn \in S s. th$. $f(s_n) = y_n$ for $n = 1, 2, 3, \dots$ Since S is seq. compact, I subseq. (snk) of (sn) s.th. snk -> so for some soes. Since f is to on S, f(snx) -> f(so).

: the subseq (3nk) converges = 3nk to $f(s_0) \in f(S)$.

i. f(s) is seq. compact.

: f(s) is closed & bounded

inff(s) & supf(s) exist.

Since f(s) is closed, inff(s) & supf(s) belong to f(s). .. The set f(s) has a max & a min,

i.e. f affains it max & min.

if C is closed (& bounded) then inf C, sup C belong to C. (Converse is not true: [0,1) v (2,3].

to C. (Converse inf, sup but not closed).

show C closed & bounded =) sup C & C. I seg (cn) in C which converges to sup C. YneN 3 cneCs.H. sup C- 1/2 cn ≤ sup C Cn -> sup C C closed, $sup C \in C$. Thm 4.8 (Intermediate Value Thm). Suppose f: [0,67-) R is cb. Then f affairs every value between fla) & f(b). If $f(a) \leq K \leq f(b)$ or if $f(b) \leq K \leq f(a)$ then $\exists c \in [c,b]$ s.th. f(c) = K. Pf: Let's suppose that f(a) < f(b). - we can suppose this WLOG. (if f(b) & f(a) consider the $cto f^{2} - f: [0,6] \longrightarrow \mathbb{R}$). Wlog fla) < K < f(b). Let $S = \left\{x \in [a,b] \middle| f(x) < K \right\}.$ S + Ø (a & S). & S & bounded above (by b). Let so = sup S. Then a & so < b. For each $n \in \mathbb{N}$ $\exists Sn \in S$ s.th. $So - \frac{1}{h} < Sn \leqslant So$. Then (Sn) is a seg in S (hence a seg, in [9,67) which converges to so. $f(s_n) \to f(s_n) \to f(s_n). \qquad a_n \to L, b_n \to M$ which converges to so. $f(s_n) < K \quad \forall \quad n \quad (s_n \in S).$ $\lim_{n\to\infty} f(s_n) = f(s_0) \leq K$ (Preserv of Inequalities) Suppose $f(s_0) < K$. Then $s_0 \in S$. $f(s_0) < K \implies K - f(s_0) > 0$. Let $E = K - f(s_0) > 0$. Since for ch on [1,67, for ch at so. J 8>0 c.H. (i) $(s_0-s, s_0+s) \subset [a,b]$ $(a < s_0 < b)$ (ii) if s = [a,b] & 1s-sol<& then (f ch at co). $s_0-\epsilon$ $s_0+\epsilon|f(s)-f(s_0)|<\epsilon$. $S_0 + \frac{S}{2} > S_0 \quad & S_0 + \frac{S}{2} \in (S_0 - S, S_0 + S)$ $\int f(s_0 + \frac{\varepsilon}{2}) - f(s_0) / \langle \varepsilon.$ $\Rightarrow f(s_0 + \frac{\epsilon}{2}) - f(s_0) < \epsilon = K - f(s_0)$ $\rightarrow f(s_0 + \frac{\epsilon}{2}) < K$. $=) S_0 + \frac{1}{2} \in S. \quad \left(S_0 < S_0 + \frac{1}{2}\right).$ - contradiction, since so = sup S.

 $\dot{f}(s_o) = K.$

Note: we observed that if f is cb at con_1 [con_2] con_3 (see $f: \mathcal{B} \longrightarrow \mathcal{R}$ $f: \mathcal{A}$, $f: \mathcal{A}$, $f: \mathcal{A}$), if $f(x_0) < K$ then there is an open interval containing f(x) < K for all f(x) < K for all

Ex.
$$f: R \rightarrow R$$
 $f(x) = 2x+1$
 $f(x) = 2x+1$
 $f(x) = x+1$
 $f(x) = x+1$

 $S = \min \{1, \frac{\varepsilon}{1+21\times 01}\}.$

depends on Xo.

g:
$$R \rightarrow R$$
 $g(x) = x^2$.

e ch on R .

eg: Show $g \approx ch$

at $x_0 \in IR$.

let $\varepsilon > 0$.

 $|g(x) - g(x_0)|$
 $= |x^2 \times x_0^2|$
 $= |x - x_0| \cdot |x_0 + x_0|$

Let $S = min \sqrt{1}, \frac{\varepsilon}{x(1+2|x_0|)}$

if $|x - x_0| < \varepsilon$ then

 $|x - x_0| < 1 \le |x - x_0| < \frac{\varepsilon}{1+2|x_0|}$
 $\Rightarrow |x| - |x_0| < |x - x_0| < 1$
 $\Rightarrow |x| < |x - x_0| < |x - x_0| < 1$
 $\Rightarrow |x| < |x - x_0| < |x - x_$