2 Types of Encryption Algorithms

Symmetric - encryption and decryption keys are the same Asymmetric - (aka public key) - participants have a

public key and a private key

Passive Adversary

Observes and records but does not alter information

Active Adversary

Interacts with ongoing transmissions, by injecting data or altering them or starts new interactions with legitimate parties

Generic Encryption Notation

Alice encrypts a message using $E_k(m)=c$

Bob decrypts the message using $m=D_{k'}(c)$

Exhaustive Key Search

Upon intercepting a ciphertext c, is to go through all keys k from the keyspace K, parameterizing D with each k sequentially, computing each D k(c) and looking for some meaningful result

Known Plaintext Attack

- . Passive
- . An adversary tries to recover plaintext (or the key), given access to the ciphertext alone

Ciphertext only attack

- Passive
- Given access to some ciphertext and its corresponding plaintext adversaries try to recover unknown plaintext
- adversaries try to recover unknown plaintext or the key from further plaintext

Chosen Plaintext Attack

- Active
- Allow adversaries to choose some amount of plaintext and see the corresponding ciphertext. Allows advanced analysis to defeat weaker algorithms

Chosen ciphertext attack

- Active
- For a fixed key, attackers can provide ciphertext of their choosing and receive back the corresponding plaintext, try to deduce the secret key or other information sufficient to decrypt new ciphertext

One-time pad advantages:

it is considered unbreakable, as the key is as long as the original message, it is random and autogenerated, and destroyed after use

One-time pad disadvantages

The need for absolute synchronization between sender and receiver, the need for an unlimited number of keys, and the pad can only be used once

One time pads: Why they are not used

The person who is sending the message must send the pad to the receiver securely, and if you have a reliable channel to send the key you might as well skip the one-time pad, and just use that channel

What are stream ciphers

They turn a fixed-size (symmetric key) into an arbitrary length keystream unpredictable to adversaries The mapping of the next plaintext bit to ciphertext is a position varying transformation depending on the input key

When are stream ciphers suitable:

- Suitable when there is a need to encrypt plaintext one bit at a time (ie. when user-typed characters are sent to a secure site in real time)
- Use stream cipher because there is no requirements that the length of the text be a certain size

Define Encryption

Encryption transforms data (plaintext) into an unintelligible form (ciphertext)

- Is reversible

Define In-place encryption

- In storage context plaintext can be replaced by ciphertext without requiring additional memory

Define Length-Preserving

- Ciphertext consumes no more space than plaintext

What is decryption key?

Allows the recovery of plaintext, using a corresponding decryption algorithm

Main properties of block ciphers

- Block length
 - Key length
- If plaintext block has fewer bits than block length it is padded

Define Block Cipher

Processes plaintext in fixed length chunks or blocks Each block is encrypted with a fixed transformation dependent on the key

Block Ciphers: Mode of Operation

combine successive n-bit block operations such that the encryption of one block depends on the other blocks

ECB: Mode of Operation

If a given key k is used to encrypt several identical plaintext blocks m_i then identical ciphertext blocks c i result ECB does not hide such patterns. This information leak can be addressed by including random bits within a reserved field in each block but it is inefficient and awkward.

CBC Mode of Operation: Diagram

CTR Mode of Operation: Diagram

CTR Mode: How it works

- Counter Mode: Message m=m1, m2, ..., mi is encrypted to yield ciphertext c=c1, c2, ..., ci, Blocks mi.ci are n bits.
- E denotes a block cipher (encrypt operation) with block length n. CTR mode ECB encrypts an incrementing index (counter) to generate a keystream of blocks to XOR onto corresponding plaintext blocks. To reverse this process, decryption regenerates the same keystream using ECB encryption

Public Key Encryption: Alice sends a message to Bob

If Alice wants to send a message to Bob using public-key encryption, Bob's public key is used to encrypt and Bob's private key is used to decrypt

Public Key Signature Scheme: Alice sends a message to Bob

If Alice wants to send a message to Bob using a public-key signature scheme, Alice's private key is used to sign and Alice's public key is used to verify

Hybrid Encryption

- Symmetric key algorithms are typically faster than public key algorithms
- Public-key methods are more convenient for establishing shared secret keys between endpoints
- Hybrid: To send encrypted messages often between communication endpoints and k is then used in a symmetric-key algorithm for efficient "bulk encryption" of a payload message m

3 Security Properties provided by digital signatures

- Data origin authentication
 - Data Integrity
 - Non-repudiation

3 Security Properties provided by digital signatures: data origin authentication

Assurance of who originated (signed) a message or file

3 Security Properties provided by digital signatures: Data Integrity

- Assurance that the received content is the same as that originally assigned

3 Security Properties provided by digital signatures: Non-repudiation

- Strong evidence of unique origination making it hard for a party to digitally sign data and later deny having done so.

3 Properties of Cryptographic Hash Functions

- Preimage resistance
- Second preimage resistance
- Collision resistance

3 Properties of Cryptographic Hash Functions: Preimage Resistance

For all possible hash values h, given h it should be infeasible to find any m such that H(m)=h

3 Properties of Cryptographic Hash Functions: Second Preimage Resistance

given any first input m1, it should be infeasible to find any distinct 2nd input m2 such that H(m1)=H(m2)

3 Properties of Cryptographic Hash Functions: Collision Resistance

it should be infeasible to find any pair of distinct inputs m1, m2 such that H(m1)=H(m2), (When 2 distinct inputs hash to then same output value, we call it a collision)

Benefits of encrypt-then-MAC

- Provides integrity of ciphertext
 - Plaintext integrity
- If the ciphertext is malleable we do not need to worry b/c MAC will filter out invalid ciphertext
 - MAC will not provide any info on the plaintext

MAC-then-Encrypt: Problems

- No integrity on the ciphertext since we have no way of knowing until we decrypt whether it way authentic or spoofed
 - If ciphertext scheme is malleable it may be possible to alter the message to appear valid and have a valid MAC

MAC-then-Encrypt: Benefits

- Plaintext integrity
- Here the MAC cannot provide any information on the plaintext either since it is encrypted

MAC-then-encrypt Vs Encrypt-then-MAC

- Encrypt-then-MAC is generally better
- Any modifications to the ciphertext do not also have a valid MAC and can be filtered out before decryption, protecting against attacks on the implementation
 - MAC cannot be used to infer anything about the plaintext

Symmetric Encryption

 Uses the same key for both encryption and decryption

Symmetric Encryption: Encryption

- Encryption: takes plaintext and key and provides the ciphertext using substitution and permutation

Symmetric Encryption: Decryption

- Decryption: reverses the encryption process, produces the original plaintext from the key and ciphertext

Asymmetric Encryption

- uses two keys: one for encryption and the other for decryption. The two keys are paired together mathematically such that if one key encrypts a message a message the other key can decrypt.

DES (Data Encryption Standard) Key Length

The key is 64 bits (8 bytes) long. For each byte there is 1 parity bit, so the actual value of the key is 56 bits

DES (Data Encryption Standard) Encryption and Decryption

- DES contains initial and final permutation step that remaps the positions of the bits to achieve diffusion
- Between the permutation, DES performs 16 rounds of operations using 16 48-bit subkeys generated from the original 56 bit key
- For each round the input is the ciphertext from the previous round, and outputs ciphertext for the next round
- Decryption does the same process in reverse

What is AES?

- . Replacement for DES
- . block cipher
- Advanced EncryptionStandard

AES Blocklengths

- input plaintext block is 128-bits
- the key length is 128, 192, or 256 bits long
- keys considered long enough to defeat brute force attempts

Why is AES and improvement over DES

- Key lengths are longer
 - Are considered long enough to defeat brute force

AES Encryption: Step 1

Each block of plaintext that AES operates on is represented as a square matrix called state array

AES Encryption: Step 2

State array XORed with per-round key before going through multiple rounds of encryption

AES Encryption: Step 3

Each round the the algorithm perform SubBytes, ShiftRows, and MixColumns on the state array, which represent substitution and permutation

AES Encryption: Step 4

The transformed state array is XORed with the per-round key and passed as input to the next round

AES Encryption: Step 5

The final round which excludes MixColumns Operation returns the ciphertext

AES Decryption

Decryption is the same process as encryption in reverse

Public Key Signatures

Verification of Identity and Message Authenticity

To sign message m, Alice uses her signing private key s_A to create a tag $t_A = S_{s_A}(m)$ and sends (m, t_A) Bob receives the message (m', t'_A) , and uses Alice's public verification public key v_A to test whether t_A' is a matching tag for m'from Alice by computing $V_{v_A}(m',t'_A)$ This returns valid if a match is confirmed and invalid otherwise