STA 674

Regression Analysis And Design Of Experiments

Fitting Multiple Linear Regression Models – Lecture 1

- Where does it fit in?
- What is it?
- Where next?

Fitting Multiple Linear Regression Models

Example: Nuclear Power Plant Data

- We will consider a data set containing information on 32 nuclear power plants built between 1967 and 1971. The data contain three variables:
 - Response: Output in mega watts (MWatts)
 - **Predictor 1:** Cost in \$100,000 (adjusted to 1976) (Cost)
 - Predictor 2: Date of construction in years after 1900 (Date)
- Goal: Examine how output varies with cost and year of construction.

Fitting Multiple Linear Regression Models

Example: Nuclear Power Plant Data

• SLR – Output versus Cost

Parameter Estimates							
Variable DF		Parameter Estimate		t Value	Pr > t		
Intercept	1	583.00457	87.97883	6.63	<.0001		
Cost	1	0.52511	0.17919	2.93	0.0064		

Fitting Multiple Linear Regression Models

Example: Nuclear Power Plant Data

• SLR – Output versus Date

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	574.29406	2335.14259	0.25	0.8074		
Date	1	3.66107	34.04567	0.11	0.9151		

Fitting Multiple Linear Regression Models

Model

• The multiple linear regression model with K predictors is

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_K x_{Ki} + \epsilon_i$$

Notation

- y_i response observed for individual i
- $x_{1i}, x_{2i}, ..., x_{Ki}$ predictors for individual i
- β_0 intercept (for all individuals)
- β_j regression coefficient of x_j , (j = 1, ..., K)
- ϵ_i residual error for individual i

Fitting Multiple Linear Regression Models

Least squares estimation uses the values of $\beta_0, \beta_1, ..., \beta_K$, called $b_0, b_1, ..., b_K$, which minimize the sum of the squared errors:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

over all possible values of $b_0, b_1, ..., b_K$.

Why?

- 1. Least squares estimates are unique.
- 2. Least squares estimates can be computed by hand.
- 3. Least squares estimates are optimal (if the assumptions are satisfied).

Fitting Multiple Linear Regression Models

Example: Nuclear Power Plant Data

MLR – Output versus Cost and Date

```
/* Multiple linear regression model */;
TITLE "3. Mwatts vs Cost and Date";

PROC REG DATA=NUCLEAR;
    MODEL mwatts=cost date / CLB;
RUN;
```

Parameter Estimates									
Variable	DF	Parameter Estimate			Pr > t	95% Confidence Limits			
Intercept	1	5920.53408	2382.75823	2.48	0.0190	1047.24632	10794		
Cost	1	0.81578	0.21243	3.84	0.0006	0.38131	1.25025		
Date	1	-79.78403	35.59545	-2.24	0.0328	-152.58490	-6.98316		

Fitting Multiple Linear Regression Models

Example: Nuclear Power Plant Data

- SLR Output versus Cost
- SLR Output versus Date
- MLR Output versus Cost and Date

For each passing year, we predict the average output DECREASES by ~80 Mw while holding Cost (predictor) constant

We estimate output increases by 0.8 Mw per \$100K increase in cost for a given year (holding other variable...ie, Cost)

		Paramete	r Estimates			
Variable DF		Parameter Estimate		t Value	Pr > t	
Intercept	1	583.00457	87.97883	6.63	<.0001	
Cost	1	0.52511	0.17919	2.93	0.0064	

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t			
Intercept	1	574.29406	2335.14259	0.25	0.8074			
Date	1	3.66107	34.04567	0.11	0.9151			

Parameter Estimates										
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits				
Intercept	1	5920.53408	2382.75823	2.48	0.0190	1047.24632	10794			
Cost	1	0.81578	0.21243	3.84	0.0006	0.38131	1.25025			
Date	1	-79.78403	35.59545	-2.24	0.0328	-152.58490	-6.98316			

Fitting Multiple Linear Regression Models

Interpreting Parameter Estimates

- The parameter β_j measures the change in y per unit change in x_j after adjusting for the other predictors in the model.
- By this we mean that β_j represents the average change in y per unit change in x_i while all of other predictors remain the same.
- The value b_j is simply the estimate of this parameter. It is the average change in y that one would expect to see per unit increase in x_j if all other predictors stay fixed.

Fitting Multiple Linear Regression Models

Example: Nuclear Power Plant Data

Exercise:

- Provide an interpretation of the least squares estimates for the multiple regression model of output vs cost and date of construction.
- Can you explain why date of construction is a significant predictor in the multiple linear regression model, but not in the simple linear regression model?

Cost versus Date

