§ 3. Réunions et intersections

1. Réunion et intersection de deux ensembles

Soient X et Y deux ensembles; on appelle intersection de X et Y l'ensemble noté

XnY

et défini comme suit : la relation $z \in X \cap Y$ est équivalente à la conjonction des relations

 $z \in X$ et $z \in Y$;

autrement dit, X \(\Omega\) Y est formé des objets appartenant à la fois à X et à Y. On appelle d'autre part réunion de X et Y l'ensemble noté

XUY

et défini comme suit : la relation $z \in X \cup Y$ est équivalente à la relation

 $z \in X$ ou $z \in Y$;

autrement dit, X U Y est formé des objets appartenant soit à X, soit à Y, soit à X et à Y.

¶ Remarque 1. L'existence d'ensembles $X \cap Y$ et $X \cup Y$ possédant les propriétés indiquées est évidente intuitivement, mais ne l'est pas du tout mathématiquement. L'existence de $X \cap Y$ s'obtient à l'aide du Théorème 4 du \S 1 (qu'on applique à X et à la relation $x \in Y$). Celle de $X \cup Y$ s'obtiendrait de même si l'on savait d'avance qu'il existe un ensemble contenant à la fois X et Y (on appliquerait alors le Théorème 4 du \S 1 à cet ensemble et à la relation $z \in X$ ou $z \in Y$); mais l'existence d'un ensemble contenant à la fois X et Y est un axiome (ou résulte d'un axiome plus général servant à former la réunion d'une famille d'ensembles, cf. n^0 2), de sorte qu'il est inutile de chercher à la démontrer mathématiquement.

Il est clair qu'on a les relations

XnYcX, YcXUY;

en outre, soit Z un ensemble quelconque; pour que Z soit contenu dans X et dans Y, il faut et il suffit qu'on ait $z \in X$ et $z \in Y$ pour tout $z \in Z$, i.e. $z \in X \cap Y$, i.e. $Z \subset X \cap Y$; ainsi, $X \cap Y$ est le plus grand ensemble contenu à la fois dans X et dans Y. De même, pour que Z contienne X et Y, il faut et il suffit que Z contienne $X \cup Y$, de sorte que $X \cup Y$ est le plus petit ensemble contenant à la fois X et Y.

On dit que deux ensembles X et Y sont disjoints lorsque

$$X \cap Y = \emptyset$$

i.e. lorsque X et Y n'ont aucun élément commun.

Les règles de calcul gouvernant l'emploi des signes U et \cap sont très simples, et nous les utiliserons souvent sans référence; le lecteur établira lui-même ces règles, dont voici les principales :

$$X \cap Y = Y \cap X, \qquad X \cup Y = Y \cup X, \\ X \cap (Y \cap Z) = (X \cap Y) \cap Z, \qquad X \cup (Y \cup Z) = (X \cup Y) \cup Z, \\ X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z), \\ X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z), \\ (X - A) \cap (X - B) = X - (A \cup B) \qquad \text{si} \qquad A, B \in X.$$

2. Réunion d'une famille d'ensembles (*)

Soit $(A_i)_{i\in I}$ une famille d'ensembles (§ 2, n° 3, Remarque 4); on appelle réunion de cette famille l'ensemble A défini comme suit : la relation $x \in A$ est équivalente à la relation

il existe un $i \in I$ tel que l'on ait $x \in A_i$.

Lorsque I se compose de deux éléments seulement, notés i et j par exemple, il est clair que la réunion n'est autre que l'ensemble $A_i \cup A_j$ défini au n° précédent. Dans le cas d'un ensemble d'indices I quelconque, l'existence de la réunion est un axiome des Mathématiques, et on doit donc se borner à l'admettre. L'unicité de la réunion (i.e. le fait qu'il existe au plus un ensemble A possédant la propriété indiquée) peut par contre se démontrer, à l'aide du \S 1, Théorème 2.

Remarque 2. Quand on parle d'une famille d'ensembles $(A_i)_{i\in I}$, on ne suppose pas que les A_i soient des parties d'un même ensemble indépendant de l'indice i; mais l'existence de la réunion montre qu'en fait il en est bien ainsi (il y a même plus : compte-tenu du Théorème 4 du § 1, l'existence d'un ensemble contenant tous les A_i est équivalente à l'existence de leur réunion).

Pour désigner la réunion d'une famille d'ensembles $(A_i)_{i \in I}$, on emploie la notation

(*) En première lecture, on pourra se dispenser d'étudier ce n° et le suivant, ou les considérer comme des exercices.

bien que la notation en question fasse intervenir une lettre i (qui désigne, intuitivement, un « élément variable » de I), le résultat ne dépend évidemment pas de i, et on peut, dans la notation précédente, utiliser au lieu de la lettre i toute autre lettre non encore employée par ailleurs.

Théorème 1. Soit A la réunion d'une famille d'ensembles $(A_i)_{i\in I}$. Pour qu'un ensemble X contienne A_i quel que soit $i \in I$, il faut et il suffit que X contienne A.

Supposons que X contienne tous les A_i ; si $x \in A$, il existe un i tel que $x \in A_i$, et comme $A_i \subset X$ on a $x \in X$; donc $A \subset X$. Inversement, si X contient A, pour montrer que X contient tous les A_i il suffit d'établir que $A \supset A_i$ pour tout i, ce qui est clair.

Théorème 2 (associativité de la réunion). Soient $(A_i)_{i \in I}$ et $(I_{\lambda})_{\lambda \in A}$ deux familles d'ensembles, et supposons que

$$I = \bigcup_{\lambda \in \Lambda} I_{\lambda}$$
:

on a alors

$$\bigcup_{i\in I} A_i = \bigcup_{\lambda\in\Lambda} \left(\bigcup_{i\in I_{\lambda}} A_i\right).$$

Posons en effet

$$B_{\lambda} = \bigcup_{i \in I_{\lambda}} A_{i}$$
:

pour qu'un x appartienne à la réunion de la famille $(A_i)_{i\in I}$ il faut et il suffit qu'il existe un $i\in I$ tel que $x\in A_i$; comme I est réunion des I_{λ} , cela signifie qu'il existe un $\lambda\in\Lambda$ et un $i\in I_{\lambda}$ tels que $x\in A_i$, donc qu'il existe un $\lambda\in\Lambda$ tel que $x\in B_{\lambda}$; par suite, la réunion de la famille $(A_i)_{i\in I}$ est identique à celle de la famille $(B_{\lambda})_{\lambda\in \lambda}$, ce qui achève la démonstration.

Remarque 3. Le Théorème 2 exprime que, pour calculer une réunion. on peut en partager les termes en groupes et remplacer chaque groupe par sa réunion.

Théorème 3. Soient $f: X \to Y$ une application, et $(A_i)_{i \in I}$ une famille de parties de X. On a alors

$$f\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f(A_i).$$

Pour $y \in Y$, la relation

$$y \in \bigcup_{i \in I} f(A_i)$$

équivaut à l'existence d'un $i \in I$ tel que $y \in f(A_i)$, i.e. à l'existence d'un $i \in I$ et

d'un $x \in A$ tels que y = f(x), i.e. à l'existence d'un x vérifiant

$$y = f(x)$$
 et $x \in \bigcup_{i \in I} A_i$,

ce qui achève la démonstration.

3. Intersection d'une famille d'ensembles

On appelle intersection d'une famille non vide (*) d'ensembles $(A_i)_{i \in I}$ l'ensemble A défini comme suit : la relation $x \in A$ est équivalente à la relation

$$x \in A_i$$
 pour tout $i \in I$.

Cette intersection se désigne par la notation

$$\bigcap_{i\in I} A_i.$$

Théorème 4. Soit A l'intersection d'une famille non vide d'ensembles $(A_i)_{i \in I}$. Pour qu'un ensemble X soit contenu dans A_i il faut et il suffit qu'il soit contenu dans A_i pour tout $i \in I$.

La démonstration est analogue à celle du Théorème 1, et peut être laissée au lecteur à titre d'exercice.

Théorème 5 (associativité de l'intersection). Soient $(A_i)_{i\in I}$ et $(I_{\lambda})_{\lambda\in \Lambda}$ deux familles d'ensembles; on suppose I, Λ et les I_{λ} non vides, et que

$$I=\bigcup_{\lambda\in\Lambda}I_\lambda\ ;$$

on a alors la relation

$$\bigcap_{i\in \mathbf{I}}A_i=\bigcap_{\lambda\in\Lambda}\Big(\bigcap_{i\in\mathbf{I}_\lambda}A_i\Big).$$

La démonstration est analogue à celle du Théorème 2.

Théorème 6. Soient $f: X \to Y$ une application et $(A_i)_{i \in I}$ une famille non vide de parties de X. On a alors

$$f\left(\bigcap_{i\in I}A_i\right)\subset\bigcap_{i\in I}f\left(A_i\right);$$

si f est injective, on a

$$f\left(\bigcap_{i\in\mathbb{I}}A_{i}\right)=\bigcap_{i\in\mathbb{I}}f\left(A_{i}\right).$$

(*) Cette condition signifie que I est non vide. Si I est vide, la relation « on a $x \in A$, pour tout $i \in I$ » est vérifiée quel que soit x, et par suite ne définit pas un ensemble (sinon l'ensemble de tous les ensembles...).

Si $x \in A_i$ pour tout i, on a $f(x) \in f(A_i)$ pour tout i, ce qui prouve la première assertion du Théorème. Supposons maintenant f injective, et considérons un élément y de l'intersection des $f(A_i)$; pour tout i il existe donc un élément de A_i , soit x_i , tel que $y = f(x_i)$; mais comme f est injective, il existe un seul x tel que y = f(x), et on a donc nécessairement $x = x_i$ pour tout i; ainsi, $x \in A_i$ pour tout i, et y appartient à l'image par f de l'intersection des A_i ; on a donc

$$\bigcap f(A_i) \subset f(\bigcap A_i),$$

ce qui établit la seconde assertion du Théorème puisqu'on a de toute façon l'inclusion opposée.

Remarque 4. La seconde assertion du Théorème ci-dessus peut être en défaut si f n'est pas injective. Prenons par exemple pour Y un ensemble contenant au moins deux éléments a et b, pour X le produit $Y \times Y$, et pour f l'application pr_2 ; soient A l'ensemble des couples $(a, y), y \in Y$, et B l'ensemble des couples $(b, y), y \in Y$; on a évidemment $A \cap B = \emptyset$, donc $f(A \cap B) = \emptyset$; par contre, f(A) = f(B) = Y, de sorte que $f(A) \cap f(B)$ est non vide.

Théorème 7. Soient $f: X \to Y$ une application et $(A_i)_{i \in I}$ une famille non vide de parties de Y. On a alors

$$\bar{f}$$
 $\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}\bar{f}^1(A_i).$

En effet, pour qu'un $x \in X$ appartienne au premier membre, il faut et il suffit que f(x) appartienne à l'intersection des A_i , i.e. que $f(x) \in A_i$ pour tout i, autrement dit que $x \in f^{-1}(A_i)$ pour tout i, ou enfin que x appartienne au second membre, d'où le Théorème.

On démontrerait de même la formule

$$\overline{f}\left(\bigcup_{i\in I}A_{i}\right)=\bigcup_{i\in I}\overline{f}(A_{i}).$$

Théorème 8. Soit $(A_i)_{i\in I}$ une famille non vide de parties d'un ensemble X. On a les relations

$$X - \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X - A_i); \quad X - \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X - A_i)$$

Soit en effet $x \in X$; la relation

$$x \in X - \bigcap_{i \in I} A_i$$

équivaut à la négation de la relation

pour tout $i \in I$ on a $x \in A_i$,

donc à la relation

il existe un $i \in I$ tel que $x \notin A_i$,

donc à

il existe un $i \in I$ tel que $x \in X - A_i$,

donc à

$$x \in \bigcup_{i \in I} (X - A_i),$$

ce qui établit la première formule. La seconde s'en déduit en tenant compte de la relation X-(X-A)=A, valable pour toute partie A de X.