1.2 Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid (b - c)$.

Proof. Let $a, b, c \in \mathbb{Z}$ be given such that $a \mid b$ and $a \mid c$. We may choose $k, m \in \mathbb{Z}$ such that b = ka and c = ma. Subtracting, we find

$$b - c = ka - ma$$
$$= a(k - m).$$

By CPI, we may choose $f \in \mathbb{Z}$ such that k-m=f. Therefore, b-c=fa, and by definition, $a \mid (b-c)$.