LINEAR INDEPENDENCE II

Recall the notion of redundancy

 $u_1, u_2, ..., u_k$ are vectors taken from \mathbb{R}^n .

If u_k is a linear combination of $u_1, u_2, ..., u_{k-1}$, then

$$span\{u_1, u_2, ..., u_{k-1}\} = span\{u_1, u_2, ..., u_{k-1}, u_k\}$$

We say that u_k is redundant in the span of $\{u_1, u_2, ..., u_{k-1}, u_k\}$.

Let $S = \{u_1, u_2, ..., u_k\}$ be a set of vectors in \mathbb{R}^n , where $k \ge 2$.

1) S is linearly dependent if and only if at least one $u_i \in S$ can be written as a linear combination of the other vectors in S, that is,

$$\mathbf{u}_{i} = a_{1}\mathbf{u}_{1} + a_{2}\mathbf{u}_{2} + \dots + a_{i-1}\mathbf{u}_{i-1} + a_{i+1}\mathbf{u}_{i+1} + \dots + a_{k}\mathbf{u}_{k}$$

for some $a_1,...,a_{i-1},a_{i+1},...,a_k \in \mathbb{R}$.

So,

$$span\{u_1,...,u_{i-1},u_i,u_{i+1},...u_k\} = span\{u_1,...,u_{i-1},u_{i+1},...u_k\}$$

Let $S = \{u_1, u_2, ..., u_k\}$ be a set of vectors in \mathbb{R}^n , where $k \ge 2$.

2) S is linearly independent if and only if no vector in S can be written as a linear combination of the other vectors in S.

Remark

So a set of vectors is <u>linearly dependent</u> if and only if there exists at least one 'redundant' vector in the set.

A set of vectors is <u>linearly independent</u> if and only if there is no 'redundant' vector in the set.

Example

$$S = \{(1,0),(0,4),(2,4)\}$$
. Is S a linearly independent set?
No, since $(2,4) = 2(1,0) + 1(0,4)$.

- $S = \{(-1,0,0),(0,3,0),(0,0,7)\}$. Is S a linearly independent set? Yes, since
 - (-1,0,0) is not a linear combination of (0,3,0) and (0,0,7)
 - $(0 \boxed{3} 0)$ is not a linear combination of $(-1, \boxed{0} 0)$ and $(0, \boxed{0}, 7)$
 - (0,0,7) is not a linear combination of (-1,0,0) and (0,3,0)

Let $S = \{u_1, u_2, ..., u_{\overline{k}}\}$ be a set of vectors in \mathbb{R}^n .

If k > n, then S is linearly dependent.

Proof:

Let
$$u_1 = (u_{11}, u_{12}, ..., u_{1n})$$
 $u_2 = (u_{21}, u_{22}, ..., u_{2n})$
... $u_k = (u_{k1}, u_{k2}, ..., u_{kn})$

Vector equation: $c_1 u_1 + c_2 u_2 + ... + c_k u_k = 0$

$$c_1(u_{11}, u_{12}, ..., u_{1n}) + c_2(u_{21}, u_{22}, ..., u_{2n}) + ... + c_k(u_{k1}, u_{k2}, ..., u_{kn})$$

= $(0, 0, ..., 0)$

If k > n, then S is linearly dependent.

Proof:

$$c_1(u_{11}, u_{12}, ..., u_{1n}) + c_2(u_{21}, u_{22}, ..., u_{2n}) + ... + c_k(u_{k1}, u_{k2}, ..., u_{kn})$$

$$= (0, 0, ..., 0)$$

Linear system:

One unknown for each vector | k

component

One equation for each component
$$\begin{cases} c_1u_{11} + c_2u_{21} + \dots + c_ku_{k1} = 0 \\ c_1u_{12} + c_2u_{22} + \dots + c_ku_{k2} = 0 \\ \vdots & \vdots & \vdots & \vdots \\ c_1u_{1n} + c_2u_{2n} + \dots + c_ku_{kn} = 0 \end{cases}$$

If k > n, then S is linearly dependent.

Proof:

$$c_1(u_{11}, u_{12}, ..., u_{1n}) + c_2(u_{21}, u_{22}, ..., u_{2n}) + ... + c_k(u_{k1}, u_{k2}, ..., u_{kn})$$

= $(0, 0, ..., 0)$ $k > n \implies$ more columns than rows

⇒non pivot columns at row-echelon form

If k > n, then S is linearly dependent.

Proof:

Linear system has non trivial solutions.

$$\begin{cases} c_{1}u_{11} + c_{2}u_{21} + \dots + c_{k}u_{k1} = 0 \\ c_{1}u_{12} + c_{2}u_{22} + \dots + c_{k}u_{k2} = 0 \\ \vdots & \vdots & \vdots & \vdots \\ c_{1}u_{1n} + c_{2}u_{2n} + \dots + c_{k}u_{kn} = 0 \end{cases}$$

Vector equation has non trivial solutions.

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$

Example

- 1) A set of three or more vectors in \mathbb{R}^2 is always linearly dependent.
- 2) A set of four or more vectors in \mathbb{R}^3 is always linearly dependent.

Summary

- 1) Linear independence and redundancy.
- 2) "Guaranteed" linear dependence.