The Electronic Properties Of Graphene: Theoretical Modelling of Doping

James McMurray

Supervisor: Dr. Shytov Quantum Systems and Nanomaterials Group University Of Exeter

11/11/2011

Outline of talk

Introduction

What is Graphene? Possible Applications of Graphene

Our Aim

Theory of Graphene

Crystal Lattice structure
The Tight Binding Model
Dirac Points
Klein Paradox
The Landauer Formula
The Missing Pi Problem
Summary

Preliminary Results

What is Graphene?

- ► Formed from Carbon atoms in a hexagonal lattice.
- First 2D crystal observed experimentally Geim and Novoselov 2004.
- Produced by the micromechanical exfoliation of graphite:
 - 1. Use sticky tape to repeatedly peel off thin layers of carbon.
 - 2. Dissolve the sticky tape in solution.
 - 3. Transfer layers to a Silicon Dioxide substrate.
 - 4. Use an optical microscope to observe interference from Graphene samples.

Figure: A diagram of the basic structure of Graphene. (Taken from http://www.chem1.com/acad/webtext/states/states.html)

Possible applications of Graphene

- Possible uses in high frequency transistors
 - But Graphene Field Effect Transistors show low on-off ratio -"off" state still has relatively high conduction compared to "on" state
 - Large energy wastage
 - Need band gap
 - Can be engineered through doping the addition of Hydrogen to produce "graphane" or fluorine to produce fluorinated graphene.

Figure: An artist's impression of graphane, Carbon atoms in blue, Hydrogen atoms in red. Taken from http://www.physorg.com/news152545648.html

The Aim of our project

- Computationally model the effect of defects in graphene
- Relevant for Hydrogenated and Fluorinated graphene
- Basic methodology:
 - 1. Compute the Hamiltonian to obtain the density of states and eigenvectors for the system using the Tight Binding Model
 - 2. Use this to calculate the transmission coefficients considering the transmission at a potential barrier
 - 3. Use these to calculate the conductance of the modelled sample using the Landauer formula
- Will also later model the effect of magnetic fields to investigate the Quantum Hall Effect in graphene (not included in this talk)

Crystal Lattice structure - Real Lattice

- ► Carbon atoms in a hexagonal lattice
- Two unique sublattices labelled A and B.
- ▶ Lattice vectors: $\mathbf{a}_{1,2} = \frac{3a}{2} \hat{\mathbf{i}} \pm \frac{\sqrt{3}a}{2} \hat{\mathbf{j}}$
- ▶ Lattice constant: $a \approx 2.461 \text{Å}$

Figure: A diagram of the real space lattice of graphene.

The Tight Binding Model - Calculating the Hamiltonian

- Assume electrons reside on lattice sites only
- Assume that electrons can only hop to nearest neighbours (can include higher nearest neighbour interactions)
- ▶ So electrons can only move from sublattice A points to sublattice B points and vice versa.
- ▶ In the Hamiltonian matrix, H_{ij} is the energy cost for hopping from position i to position j.

Figure: A diagram showing hopping possibilities from a Carbon atom in the lattice.

The Tight Binding Model (continued)

Figure: Labelling the sites 1-4.

With a nearest-neighbour hopping energy t ($t \approx 2.8eV$), the Hamiltonian is:

$$\hat{H} = \begin{pmatrix} E_0 & -t & -t & -t \\ -t & E_1 & 0 & 0 \\ -t & 0 & E_2 & 0 \\ -t & 0 & 0 & E_3 \end{pmatrix}$$
 (1)

The Tight Binding Model (continued)

▶ By considering the lattice geometry, and the sum of the wavefunctions across both sublattices, the following expression is obtained for the Time Independent Schrödinger Equation:

$$E\psi = \begin{pmatrix} 0 & -\tilde{t}(k) \\ -\tilde{t}^*(k) & 0 \end{pmatrix} \psi \tag{2}$$

where

$$t(\tilde{k}) = t\left(e^{ik_x a} + e^{\frac{-ik_x a}{2}} 2\cos\left(\frac{k_y \sqrt{3}a}{2}\right)\right)$$
(3)

► Taking the eigenvalues of the matrix yields:

$$E = \pm |\tilde{t}(k)| \tag{4}$$

Dirac Points on band structure

Figure: A diagram of the band structure of graphene. The Dirac points are where the bands converge. Taken from http://nextbigfuture.com/2011/04/nrl-researchers-take-step-toward.html

Dirac Points

- ▶ Points in reciprocal space where $|(\tilde{t}(k))| = 0$.
- ► These lie on the vertices of the first Brillouin Zone in reciprocal space.
- ▶ The unique Dirac points are K and K'.

Figure: A diagram of the first Brillouin zone of graphene in reciprocal space.

Dispersion near the Dirac points

▶ Near the Dirac points the Hamiltonian reduces to:

$$\hat{H} = \hbar v \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix}$$
 (5)

► Taking the eigenvalues of this yields:

$$E = \pm \hbar v k \tag{6}$$

- ▶ This is a linear dispersion relation, and means that the quasiparticles are massless fermions near the Dirac points they act as relativistic particles with a constant velocity $v \approx 10^6 \text{ m s}^{-1}$
- Note that since the Dirac points are points in *reciprocal* space, this relation applies for electron transport through-out the graphene sample as energy is always small compared to peak energy ($t \approx 2.8$ eV corresponds to ~30,000 K).

Showing the effective mass is zero at the Dirac points

▶ At the Dirac points we obtained the dispersion relation:

$$E = \hbar v k \tag{7}$$

From Special Relativity we know:

$$E = \sqrt{p^2 c^2 + m^2 c^4} \tag{8}$$

▶ So the dispersion relation is just the $m \rightarrow 0$ case of this.

$$\therefore E = \sqrt{p^2 c^2} = pc = \hbar kc \tag{9}$$

- ► Constant velocity is $v \approx 10^6$ m s⁻¹ instead of c (~3 × 10⁸ m s⁻¹).
- ► So effective mass is zero and relativistic effects much more apparent.

Dispersion near the Dirac points

► This means that near the Dirac points, the dispersion follows "Dirac cones":

Figure: A diagram showing Dirac Cones at the Dirac points in reciprocal space. Taken from: http://www.mpipks-dresden.mpg.de/mpi-doc/CondensedMatter//content/QuantHall.shtml

Klein Paradox

- ► The Klein Paradox results as a consequence of the massless Dirac fermion quasiparticles, and their linear dispersion.
- Unintuitive result that transmission probability increases with the height of the potential barrier, and tends to 1 as the potential tends to infinity.
- ▶ This means that the quasiparticles cannot be localised.
- We should observe this effect when calculating transmission coefficients.

Figure: A diagram showing the principle of how the transmission occurs by shifting the quasiparticle to the lower cone.

The Landauer Formula - calculating the conductance

By considering the electrons that are able to move across a potential and the density of states of graphene near the Dirac points, the following equation is obtained for the net conductance:

$$G \approx \frac{e^2}{\pi \hbar} \sum_{i} T_i \tag{10}$$

where the sum is taken across all channels (taking in to account the possibility for varying transmission amplitudes)

► So per channel the conductivity is:

$$\sigma \approx \frac{\mathsf{e}^2}{\pi \hbar} \tag{11}$$

Note that this means there is a minimum conductivity even in ideal, undoped Graphene, where there should be no scattering and no net current carriers!

The Missing Pi Problem

▶ But experimental results show the minimum conductivity to be an order of π larger:

$$\sigma_{\text{experimental}} \approx \frac{e^2}{\hbar}$$
 (12)

- ► This is known as the "Missing Pi(e) Problem"
- Problem still unsolved
- ▶ But 2007 report by Miao *et al.* in Science **317** 3150, reported that the experimental value approached the theoretical value for specific shapes small, wide graphene rectangles were closer to theory.

Summary: The interesting theory of Graphene

- Exhibits high crystal quality electrons can thousands of interatomic distances without scattering.
- Massless Dirac fermions near Dirac points show relativistic effects in ordinary conditions!
- Klein Paradox Particles tunnel through a potential barrier with a transmission coefficient which tends to 1 as the potential tends to infinity.
- Universal minimum conductivity:
 - Finite conductivity in undoped graphene at Dirac points (where there are no net charge carriers) even at low T (when there is no scattering)
 - Conductivity without charge carriers!
 - Normally materials would transition to insulators at low T
 - ▶ But in Graphene there is a suppression of localisation
- Missing Pi problem observed minimum conductivity is a multiple of pi greater than predicted by theory

Preliminary Work

- We have already started work on the project
- Program written in C
- Produce Hamiltonian eigenvectors and eigenvalues
- Produce density of states
- Already have data for the density of states plotted with a fit from an analytical approach by Dr. Shytov
- Resolution of histogram limited by the size of the modelled sample

Conclusion - What is to be done?

- Add method to normalise the density of states per unit area
- Add method for modelling defects
 - ► For vacancies this means setting the energy to occupy a point to a very large number
- Add methods to obtain transmission coefficients and conductance
- Will later consider magnetic field effects
- Some computational challenges due to the size of the considered samples
 - High memory usage if all zeros are stored as double precision floats too
- ► The Hamiltonian is sparse and so we will attempt to use sparse matrix methods

Questions?

Any questions?

- Thank you for your time!
- Thanks to my supervisor Dr. Shytov for his help and discussions.
- Thanks to my colleagues Chris Beckerleg and Will Smith for their continuing work.
- Presentation produced using LATEX and Beamer.

Supplementary slides

Supplementary slides

Why is the "impossible" possible?

- ► From the Mermin-Wagner theorem, thermal fluctuations would make 2D structures unstable at any finite temperature.
- ► This was confirmed as the melting temperature of thin films rapidly decreased with decreasing temperature¹.
- ▶ In graphene, the gentle 3D warping (~10nm) provides stability by minimising thermal vibrations.

Figure: An artist's impression of corrugated Graphene: Jannik Meyer. (Taken from http://www.nanowerk.com/)

See Geim & Novoselov, The rise of graphene, Nat. Mat. 6, 183 (2007).

Why is localisation suppressed?

- ► The suppression of localisation is a result of the relativistic effects on the quasiparticles.
- ► The quasiparticles cannot be localised due to the Zitterbewegung (jittery motion) effect.
- ▶ The Klein effect also means that the quasiparticles are transmitted through potential barriers with a probability ≈ 1 .
- ▶ This is also contributes to the suppression of localisation.

Translation to "brick wall" model for computation

Figure: Diagram showing the principle of the translation.

- ► We translate to the "brick-wall" model when considering the bonds.
- ▶ So all bonds are straight horizontal or vertical no $\sqrt{3}$ factors.
- ▶ But we must reconsider these when normalising the density of states per unit area and other considerations.

The Tight Binding Approximation derivation

► The Time Independent Schrödinger Equation (TISE) states:

$$E\psi = \hat{H}\psi \tag{13}$$

From Bloch theory we know:

$$\psi_A = \tilde{\psi}_A e^{i(\mathbf{k} \cdot \mathbf{r})}, \ \psi_B = \tilde{\psi}_B e^{i(\mathbf{k} \cdot \mathbf{r})}$$
 (14)

So from point 1, the TISE becomes:

$$E\tilde{\psi}_{A} = -\sum_{i,j} H_{ij}\psi_{j} = H_{12}\psi_{2} + H_{13}\psi_{3} + H_{14}\psi_{4} = -t(\psi_{2} + \psi_{3} + \psi_{4})$$
(15)

▶ But recall that:

$$\mathbf{k} \cdot \mathbf{r} = k_{\mathsf{x}} x + k_{\mathsf{y}} y \tag{16}$$

The Tight Binding Approximation derivation (2)

▶ So by considering the geometry of the lattice points, assuming r has its origin at point 1, the TISE becomes:

$$E\tilde{\psi}_{A} = -t \left(\tilde{\psi}_{B} \left(e^{ik_{x}a} + e^{\frac{-ik_{x}a}{2} + \frac{ik_{y}a\sqrt{3}}{2}} + e^{\frac{-ik_{x}a}{2} - \frac{ik_{y}a\sqrt{3}}{2}} \right) \right)$$

$$\tag{17}$$

Which can be written as:

$$E\tilde{\psi}_A = -t(k)\tilde{\psi}_B \tag{18}$$

► Combining this with an equation for a point on sublattice B (repeating the same steps), one obtains:

$$E\psi = \begin{pmatrix} 0 & -\tilde{t}(k) \\ -\tilde{t}^*(k) & 0 \end{pmatrix} \psi \tag{19}$$

Derivation of Hamiltonian near Dirac points

▶ From previous derivation:

$$|\tilde{t}(k)| = t \left| e^{ik_x a} + e^{\frac{-ik_x a}{2} + \frac{ik_y a\sqrt{3}}{2}} + e^{\frac{-ik_x a}{2} - \frac{ik_y a\sqrt{3}}{2}} \right|$$
$$= t \left| e^{ik_x a} + e^{\frac{-ik_x a}{2}} 2 \cos \left(\frac{k_y \sqrt{3} a}{2} \right) \right| = 0$$

Near K and K'.

▶ Dividing by $e^{ik_x a}$:

$$|\tilde{t}(k)| = t \left| 1 + e^{\frac{-i3k_x a}{2}} 2 \cos\left(\frac{k_y \sqrt{3}a}{2}\right) \right| \tag{20}$$

Using Taylor approximation near K:

$$\tilde{t}(K + \delta k) \approx \tilde{t}(K) + \delta k_x \frac{\partial \tilde{t}(k)}{\partial k_x} + \delta k_y \frac{\partial \tilde{t}(k)}{\partial k_y}$$

Derivation of Hamiltonian near Dirac points (2)

► Calculating the differentials:

$$\begin{split} \tilde{t}(K+\delta k) &\approx \tilde{t}(K) + \delta k_x \left(\frac{-3ai}{2} e^{\frac{-ik_x 3a}{2}} \cdot 2\cos\left(\frac{k_y \sqrt{3}a}{2}\right) \right) t \\ &+ \delta k_y \left(-\sqrt{3}a\sin\left(\frac{k_y a\sqrt{3}}{2}\right) e^{\frac{-ik_x 3a}{2}} \right) t \end{split}$$

Substituting for K: $\left(0, \frac{4\pi}{3\sqrt{3}a}\right)$

$$\tilde{t}(K + \delta k) \approx 0 + \delta k_x \left(\frac{3ait}{2}\right) + \delta k_y \left(\frac{-3at}{2}\right)$$
 (22)

So the Hamiltonian can be written:

$$H_{K}(k) = \frac{3at}{2} \begin{pmatrix} 0 & k_{y} - ik_{x} \\ k_{y} + ik_{x} & 0 \end{pmatrix}$$
(2)

Derivation of Hamiltonian near Dirac points (3)

• Can write this in terms of Pauli matrices σ :

$$\sigma_{\mathsf{x}} = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \; , \; \sigma_{\mathsf{y}} = \left(\begin{array}{cc} 0 & -i\\ i & 0 \end{array}\right)$$
 (24)

▶ Bust must swap k_x and k_y to make this simple (rotating the k vector):

$$k_x \to k_y \ , \ k_y \to -k_x$$
 (25)

So the Hamiltonian at K becomes:

$$H_K(k) = \frac{3at}{2} \begin{pmatrix} 0 & -k_x - ik_y \\ -k_x + ik_y & 0 \end{pmatrix}$$
 (26)

▶ Which can be written as:

$$H_K(k) = -\frac{3at}{2} \left(\vec{\sigma^*} \cdot \vec{k} \right) \tag{27}$$

Derivation of Hamiltonian near Dirac points (4)

• Similarly for K': $\left(0, \frac{-4\pi}{3\sqrt{3}a}\right)$

$$H_{K'}(k) = \frac{3at}{2} \left(\vec{\sigma} \cdot \vec{k} \right) \tag{28}$$

▶ Taking the eigenvalues of $H_K(k)$:

$$\left| \begin{array}{cc} E & \frac{3at}{2} \left(-k_x - ik_y \right) \\ \frac{3at}{2} \left(-k_x + ik_y \right) & E \end{array} \right| = 0$$
(29)

$$\therefore E^2 - \left(\frac{3at}{2}\right)^2 \left(k_x^2 - ik_x k_y + ik_x k_y + k_y^2\right)$$
 (30)

$$\therefore E^2 - \left(\frac{3at}{2}\right)^2 k^2 = 0 \therefore E = \pm \frac{3at}{2}k \tag{31}$$

Linear dispersion - can be written as $E = v\hbar k$

