SSD

1 Spacecraft System Design

Mission concept:

- subject (what for)
- $\bullet\,$ orbit and constellation
- payload, bus
- ullet launch element
- ground element
- mission operations
- command, communication, control

2 Space Dynamics/Kepler Orbits

Typical coordinate systems:

- spacecraft-fixed
 - Mittelpunkt des Satelliten = Ursprung
 - nadir = z-Achse, nominale Geschwindigkeit = x-Achse
 - gut, um Position und Orientierung der Satelliteninstrumente festzustellen
- earth-fixed
 - Mittelpunkt der Erde = Ursprung
 - durch greenwich meridian = x-Achse
 - Geolocation, Satellitenbewegung
- roll, pitch and yaw-coordinates
- celestial coordinates
 - Mittelpunkt der Erde = Ursprung
 - Richtung Frühlingspunkt = x-Achse
 - Orbitanalyse, Astronomie

Keplergesetze

- 1. der Orbit eines jeden Planeten ist eine Ellipse, wobei die Sonne in einem der Fixpunkte liegt
- 2. die Verbindungslinie zwischen Sonne und Planet überstreicht in gleichen Zeiten gleiche Flächen
- 3. die Quadrate der Umlaufzeiten sind proportional zu den Kuben der großen Halbachsen

Ellipsendinge

- a . . . große Halbachse
- ε , e... Exzentrizität, "Abplattung" der Ellipse (ε =0: Kreis, ε =1: Parabel, $0 < \varepsilon < 1$: Ellipse)

Begriffe:

- Periapsis: Punkt der Ellipse, der am nähesten an dem Zentralkörper liegt (bei Sonne: Perihel, bei Erde: Perigäum)
- Apoapsis: Punkt der Ellipse, der am weitesten entfernt vom Zentralkörper liegt (bei Sonne: Apohel, bei Erde: Apogäum)
- Distanz zu Periapsis $r_p = a(1 \varepsilon)$, Distanz zu Apoapsis $r_a = a(1 + \varepsilon)$

6 Bahnelemente:

Lieblingsformel

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$

Change of the right ascension of the ascending node

$$\Delta\Omega = -\frac{3\pi J_2 R_E^2}{a^2 (1 - \varepsilon^2)^2} cos(i)$$

Change of the argument of perigee

$$\Delta \omega = \frac{3\pi J_2 R_E^2}{2a^2 (1 - \varepsilon^2)^2} (4 - 5sin^2(i))$$

Orbits

1. Highly Elliptical Orbit HEO

- große Halbachse a
- Exzentrizität ε
- inclination i
- right ascension of the ascending node Ω
- argument of perigee ω
- \bullet true anomaly ν
 - hohe Exzentrizität
 - große Halbachsen
 - dadurch lange Kontakdauer zum Satelliten
 - \bullet Werte für Perigäum: 200 bis 15.000 km
 - \bullet Werte für Apogäum: 50.000 bis 140.000 km
 - für Forschung (z.B. Weltraumteleskope), Telekommunikation, Militär
 - Beispiel: Molniya-Orbit (feste Inklination von 63,4°, Periodendauer von einem halben Sterntag (23h56m4s))

2. Sun-Synchronous Orbit

- Höhe und Inklination werden so kombiniert, dass ein Satellite aus Sicht der Sonne immer auf dem selben Orbit ist
- Höhe: 600-800 km

• Inklination: leicht retrograd ($\approx 98^{\circ}$)

• Umlaufdauer: 96-100min

3. Geostationary Orbit GEO

• kreisförmiger Orbit

Höhe: 35.786kmUmlaufdauer: 24h

• Wettersatelliten, Kommunikationssatelliten, Fernsehsatelliten

Subsatellite Point = intersection of the line between satellite and earth center with the earth's surface Hohmann Transfer

• Calculate a transfer between two circular orbits with radius r_A to r_B . The velocity at pericenter of the transfer ellipse:

$$v_P^2 = 2\mu \left(\frac{1}{r_A} - \frac{1}{r_A + r_B}\right) = 2\mu \frac{r_B}{r_A(r_A + r_B)}$$

• The required Δv_A to inject from the transfer orbit:

$$\Delta v_A = v_P - v_A = \sqrt{\frac{\mu}{r_A}} \left(\sqrt{\frac{2r_B}{r_A + r_B}} - 1 \right)$$

• The required Δv to inject from the transfer orbit into orbit with r_B :

$$\Delta v_B = v_B - v_{\text{apo}} = \sqrt{\frac{\mu}{r_B}} \left(1 - \sqrt{\frac{2r_A}{r_A + r_B}} \right)$$

where v_B is the circular velocity at r_B .

• The Hohmann transfer is the most energy-efficient transfer between two circular orbits.

$$\Delta v_{\text{total}} = \Delta v_A + \Delta v_B = \sqrt{\mu} \left[\sqrt{\left(\frac{2}{r_A} - \frac{2}{r_A + r_B}\right)} - \sqrt{\frac{1}{r_A}} + \sqrt{\frac{2}{r_B} - \frac{2}{r_A + r_B}} - \sqrt{\frac{1}{r_B}} \right]$$

5

3 Mission Analyses

Earth-Synchronous Orbit

- the ground track repeats after a specific period of time
- Earth's rotation rate is the sidereal rotation period = sidereal day $\tau_{\scriptscriptstyle E}$
- τ_E is varying with time $\tau_E = 86164.10555 + 0.15 \cdot C$ [s] where C is the centuries since year 2000
- as the Earth rotates eastward, the satellite is thus moving relative to the surface in westward direction by

$$\Delta\Phi_r = 2\pi \frac{T}{\tau_{\scriptscriptstyle E}} \; [{\rm rad/rev}]$$

- second effect influencing the shift of the subsatellite point is the rotation of the satellite's orbit plane $\Delta\Omega$
- as $\Delta\Omega$ is positive in eastward direction, these two effects are combined to the total angular shift $\Delta\Phi$ at subsequent equator passages

$$\Delta \Phi = \Delta \Phi_r - \Delta \Omega \text{ [rad/rev]}$$

• to be Earth-Synchronous:

$$n\Delta\Phi = m \cdot 2\pi$$

Sun-Synchronous Orbit

- die Erde braucht $\tau_S = 3.155815 \cdot 10^7 s$, um einmal um die Sonne zu kreisen
- bei einem sonnensynchronen Orbit muss der Winkel zwischen Sonnenrichtung und Orbitebene konstant bleiben
- \bullet also muss sich die Ebene pro Tag um einen Winkel θ drehen

$$\theta = 2\pi \frac{\tau_{\rm E}}{\tau_{\rm s}} \, \left[{\rm rad/day} \right] = 2\pi \frac{\tau_{\rm E}}{\tau_{\rm s}} \frac{T}{\tau_{\rm E}} \, \left[{\rm rad/rev} \right]$$

Earth- and Sun-Synchronous Orbit

•

$$\Delta\Omega = \theta \Rightarrow T\left(\frac{1}{\tau_{\rm E}} - \frac{1}{\tau_{\rm S}}\right) = \frac{m}{n}$$

• angular shift between two subsequent orbits

$$\Delta \Phi = \Delta \Phi_r - \Delta \Omega = 2\pi T \left(\frac{1}{\tau_{\scriptscriptstyle E}} - \frac{1}{\tau_{\scriptscriptstyle S}}\right) \text{ [rad/rev]}$$

worst case between subsequent orbits $\Delta \Phi \cdot R_E$.

Eclipse periods angle between Earth-Sun vector and normal vector to orbit plane: $\sin \beta = \vec{s} \cdot \vec{n}$ Earth central angular radius at entry into eclipse: $\beta^* = \sin^{-1} \left(\frac{R_E}{h + R_E} \right)$

Angular arc of orbit in shadow: $2\cos^{-1}\left(\frac{\cos\beta^*}{\cos\beta}\right)$ Ground Contact and Coverage Analyses altitude h, visible horizon characterized by angles ρ and λ_0 : $\rho + \lambda_0 = 90^{\circ}$

$$R_E = (R_E + h)\cos \lambda_0$$
$$= (R_E + h)\sin \rho$$

observe Λ_t, Θ_t (long,lat) from known orbit position of satellite, characterized by subsatellite point Λ_s, Θ_s . characteristic paramters:

6

- nadir angle η
- earth central angle λ
- spacecraft elevation angle ε

calculate nadir angle η :

$$\tan \eta = \frac{\frac{R_E}{R_E + h} \sin \lambda}{1 - \frac{R_E}{R_E + h} \cos \lambda}$$
$$\lambda + n + \varepsilon = 90^{\circ}$$

 $\lambda_{\rm max}$: maximum earth central angle \Rightarrow swath width $2\lambda_{\rm max}$ perpendicular to groundtrack on surface. Time in view $T_{\rm view}$ for circular orbit with period T:

$$T_{\text{view}} = \frac{T}{180^{\circ}} \cos^{-1} \left(\frac{\cos \lambda_{\text{max}}}{\cos \lambda} \right)$$

ground station contact periods

- $\sin \eta_{\max} = \cos \varepsilon_{\min} \frac{R_E}{R_E + h}$
- $\lambda_{\rm max} = 90^{\circ} \varepsilon_{\rm min} \eta_{\rm max}$
- max range satellite \leftrightarrow groundstation: $D_{\max}=R_E\frac{\sin\lambda_{\max}}{\sin\eta_{\max}}$
- total time in view: $T_{\text{view}} = \frac{T}{180^{\circ}} \cos^{-1} \left(\frac{\cos \lambda_{\text{max}}}{\cos \lambda_{\text{min}}} \right)$
- contact only possible, if station-orbit angle < central angle of contact cone

4 Distributed Satellite Systems

- constellation: similar trajectories without relative position control.
- formation: closed-loop onboard control for topology in the group.
- swarm: similar vehicles cooperating without fixed positions, selfdetermined.
- cluster: heterogenous system of vehicles for joint objective.

requirements on distributed satellite systems: coordination of

- orbits at different altitudes
- optimal control strategies for position/attitude of components
- activities for heterogenous sensors
- information flow and storage

Walker Delta Pattern Constellation

i: t/p/f

- i: inclination
- t: total # satellites
- p: # equally shaped orbit planes
- f: relative phase difference between satellites in adjacent planes

Example: Galileo is 56° : 27/3/1 with circular orbits (h=23222km), nine satellites always in view, one spare satellite in each plane. **earth surface converage** $s=\frac{t}{p}$ number of satellites equally spaced in plane with angular distance $\Delta v=\frac{360^{\circ}}{s}$. There are two cases:

- $\Delta v < 2 \cdot \lambda_{\rm max} \Rightarrow$ area of continuous coverage exists ("street of coverage")
- $\Delta v > 2 \cdot \lambda_{\text{max}} \Rightarrow \text{no street of coverage}$

Street-width: $\cos \lambda_{\text{street}} = \frac{\cos \lambda_{\text{max}}}{\cos \frac{\Delta v}{2}}$

formation flying arcitectures and dynamics

- virtual structure: treated as single structure
- behavioral strategies: distributed control approach, following nature.
- leader-follower: divided into leaders and followers. followers track designated leaders with prescribed offset. absolute/relative control architecture.

communication in low-earth orbit distributed satellite systems

- comm and tele-operation infrastructure is key element for distributed systems
- transfer position and observation data for formation flying
- amount of data increases with swarm size
- analyse pre-processing procedures, intersatellite links and ground station links

conclusion on distributed satellite systems

- research field due to paradigm shift from one large spacecraft to several smaller crafts
- higher fault tolerance and robustness
- swarms are scaleable
- gun launches into orbit
- comination of big and small spacecrafts
- swarms for survailance and earth observation
- LEO \rightarrow high spatial resolution
- higher temporal resolution is provided by constellations with several satellites in the same orbit

Mechanics 5

mechanical system engineering

- mechanical specs: requirements on satellite, components and equipment
- verification plan: "how to prove satellite complies specs?" test, simulations, similarity
- test plan: test flow, model philosophy (QM/FM↔PFM)
- design loads: simplified load cases for components & equipment

requirements on satellite structures

- external shape
- mass, center of gravity
- resonance frequency thermo-elastic distortion
- interfaces
- environment (vacuum, debris, etc.)
- margin of safety

random vibration loads

- white noise: range 20 2000Hz, max levels at 80 300Hz
- mainly acoustic excitation under fairing
- depends on location, orientation, mass
- equivalent design loads: 3 times root mean square (3 sigma value)

shock events

- launcher-induced: stage separation, fairing
- S/C release: clampband, discrete pyro devices
- appendage release: protechnic/deployment shock

structural engineering - fundamentals

- hooke's law: $\sigma = E \cdot \varepsilon$
- strain def: $\varepsilon = \frac{\Delta L}{L}$
- normal stress in rod: $\sigma = \frac{F}{A}$
- bending stress in beam: $\sigma = \frac{M}{W}$
- thermo-elastic strain: $\varepsilon = CTE \cdot \Delta T$

Margin of safety:

$$MOS = \left(\frac{S_a}{S_e \cdot FOS} - 1\right) \cdot 100 \stackrel{!}{\geq} 0, 0 \quad [\%]$$

- S_a allowable stress S_e applied stress FOS Factor of safety safety factors:
 - material safety factors on yield
 - modelling safety factors covering analysis uncertainties
 - specific factors, e.g. for bonded connections

6 Thermal Engineering

7 Rocket Propulsion

8 TT&C

9 Power Generation

10 Power System

11 Thermal Testing

12	Spacecraft	Operations
----	------------	-------------------