(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年9 月20 日 (20.09.2001)

PCT

(10) 国際公開番号 WO 01/68613 A1

(51) 国際特許分類⁷: **C07D 239/36**, 239/47, 403/04, 405/04, 413/04, A01N 43/54

(21) 国際出願番号:

PCT/JP01/02158

(22) 国際出願日:

2001年3月19日(19.03.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-76493 2000年3月17日(17.03.2000) JP 特願2000-357541

2000年11月24日 (24.11.2000) JP

- (71) 出願人 (米国を除く全ての指定国について): 日産化 学工業株式会社 (NISSAN CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒101-0054 東京都千代田区神田錦町3 丁目7番地1 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 工藤佳宏 (KUDO, Yoshihiro) [JP/JP]. 勝又 章 (KATSUMATA,

Akira) [JP/JP]. 前田兼成 (MAEDA, Kazushige) [JP/JP]. 秋山茂明 (AKIYAMA, Shigeaki) [JP/JP]. 八尾坂学 (YAOSAKA, Manabu) [JP/JP]. 森本勝之 (MORI-MOTO, Katsushi) [JP/JP]; 〒274-8507 千葉県船橋市坪井町722番地1日産化学工業株式会社中央研究所内 Chiba (JP). 中平国光 (NAKAHIRA, Kunimitsu) [JP/JP]. 大木 亨 (OHKI, Tooru) [JP/JP]. 濱田暢之 (HAMADA, Nobuyuki) [JP/JP]. 矢野哲彦 (YANO, Tetsuhiko) [JP/JP]. 野口順子 (NOGUCHI, Junko) [JP/JP]. 渡辺重臣 (WATANABE, Shigeomi) [JP/JP]; 〒349-0218 埼玉県南埼玉郡白岡町大字白岡1470日産化学工業株式会社生物科学研究所内 Saitama (JP).

- (74) 代理人: 泉名謙治, 外(SENMYO, Kenji et al.); 〒 101-0042 東京都千代田区神田東松下町38番地 鳥本 鋼業ビル Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,

/続葉有/

(54) Title: PYRIMIDINONE DERIVATIVES AND HERBICIDES

(54) 発明の名称: ピリミジノン誘導体及び除草剤

$$\begin{array}{c|c}
Y & Z^2 & Q \\
Ra & X & Z^1 & (1)
\end{array}$$

$$R^{1}$$
 R^{3} (i) R^{1} R^{5} R^{8} (ii)

(57) Abstract: Compounds of the general formula (I) or salts thereof; and pesticides and herbicides, containing the compounds as the active ingredient wherein Ra is hydrogen, cyano, or the like; X is hydrogen, C₁₋₄ alkyl, or the like; Y is O or S; Z¹ and Z² are each independently N or CRb, wherein Rb is hydrogen, halogeno, or the like, with the proviso that when Z¹ is N, Z² is CRa, while when Z¹ is CRa, Z² is N; and Q is a group of the general formula (i), (ii), (iii), (iv) or the like [wherein R¹ and R² are each independently hydrogen or halogeno; R³ is hydrogen, halogeno, or the like; R⁴ is hydrogen, halogeno, or the like; R6 and R7 are each independently hydrogen, halogeno, or the like; and R8 and R9 are each independently hydrogen, halogeno, C₁₋₈ alkyl, or the like].

WO 01/68613 A1

RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

添付公開書類: — 国際調査報告書

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

新規除草剤の提供。 式(I):

$$\begin{array}{c}
Y \longrightarrow Z^2 \longrightarrow Q \\
Ra \longrightarrow X
\end{array}$$

〔式中、Raは水素原子、シアノ基等を表し、Xは水素原子、C $_1$ -C $_1$ アルキル基等を表し、YはOまたはSを表し、 $_2$ 及び $_2$ はそれぞれ独立してNまたはCRbを表し、Rbは水素原子、ハロゲン原子等を表し、但し $_2$ がNを表すときは $_3$ はCRaを表し、 $_4$ でRbを表し、Qは

等を表し、

R¹及びR²はそれぞれ独立しては水素原子またはハロゲン原子を表し、

R³は水素原子、ハロゲン原子等を表し、

R¹は水素原子、ハロゲン原子等を表し、

R⁵は水素原子、ハロゲン原子等を表し、

R⁶及びR⁷はそれぞれ独立して水素原子、ハロゲン原子等を表し、

R %及びR %はそれぞれ独立して水素原子、 C_1-C_8 アルキル基等を表す。〕で示される化合物及びこれらの塩、ならびに該化合物を有効成分として含む農薬及び除草剤。

明細書

ピリミジノン誘導体及び除草剤

技術分野

本発明は新規なピリミジノン誘導体及びそれを有効成分として含有する除草剤・に関するものである。

技術背景

ピリミジノン環の特定の位置に、置換フェニル基が結合した本願発明の化合物 群が除草作用を示すことは従来全く知られていない。

発明の開示

本発明者らは新規なピリミジノン誘導体の除草作用について鋭意検討した結果、下記式で示される化合物が優れた除草作用を有することを見い出し本発明を完成するに至った。すなわち、本発明は〔1〕~〔6〕に関する。

[1]式(1):

$$\begin{array}{c} Y \longrightarrow Z^2 \longrightarrow Q \\ Ra \longrightarrow X \end{array}$$

[式中、Q-は式(2):

を表し、

Raは水素原子、シアノ基、 C_1-C_4 アルキル基、シアノ C_1-C_4 アルキル基、 C_1-C_4 アルコキシ C_1-C_4 アルキル基、 C_1-C_4 アルキルチオ C_1-C_4 アルキル基、 C_1-C_4 アルキルスルホニル基、 (C_1-C_4 アルキル) カルボニル基または (C_1-C_4 アルコキシ) カルボニル基を表し、

Xは水素原子、 C_1-C_4 アルキル基、 C_1-C_4 ハロアルキル基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルキルチオ基、 C_1-C_4 アルキルスルホニル基、アミノ基、 C_1-C_4 アルキルアミノ基、または(C_1-C_4 アルキル) $_2$ アミノ基を表し、

Yは酸素原子または硫黄原子を表し、

Z 'およびZ 'はそれぞれ独立して窒素原子またはCRb を表し、但し、Z 'が 窒素原子を表すときはZ 'はCRb を表し、Z 'がCRb を表すときはZ 'は窒素原子を表し、

R b は水素原子、ハロゲン原子、C₁-C₄アルコキシ基、C₁-C₄ハロアルコキシ基またはシアノ基を表し、

R'およびR²はそれぞれ独立しては水素原子またはハロゲン原子を表し、

R³は水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、メルカプト基、アミノ基、ホルミル基、カルボキシル基、シアノメチル基、C1-C4アルコキシカルボニル基、スルファモイル基、チオカルバモイル基、カルバモイル基、C1-C4アルキル基、C1-C4アルキル基、C1-C4アルキル基、C1-C4アルキル基、C1-C4アルキル基、C1-C4アルキルスルホニル基、C1-C4アルコキシE1-C4アルキル基、C1-C4アルコキシC1-C4アルコキシC1-C4アルコキシC1-C4アルコキシC1-C4アルコキシC1-C4アルコキシC1-C4アルコキシC1-C4アルカルボニル基、C1-C4アルキルアミノ基、C1-C4アルキル)2アミノ基、置換フェニル基、C1-C4アルキル)2アミノ基、置換フェニル基、置換フェニルカルボニル基、置換フェニルカルボニル基、置換フェニルカルボニル本、置換フェニルカルボニルスルホニル基、置換フェニルーL-O、置換フェニルーL-NH、置換フェニルーL-SまたはC1-C4アルキルOC(O)-L-Oを表し、

R*は水素原子、ハロゲン原子、ホルミルアミノ基、シアノ基、クロロスルホニル基、ニトロ基、ヒドラジノ基、置換フェニル基、1,3ージオキソラン-2ーイル基、1,3ージオキサン-2ーイル基、C1-C8アルキル基、C2-C8アルキニル基、C1-C8アルキニル基、C1-C8ハロアルキル基、C3-C8ハロゲノシクロアルキル基、C2-C8ハロアルケニル基、C2-C8ハロアルケニル基、C2-C8ハロアルケニル基、C2-C8ハロアルケニル基、C1-C6ハロアルキル)カルボニル基、(C1-C6ハロアルキル)カルボニル基、R30O、R30-L-O、R30C(O)-L-O、5ートリフルオロメチル-3ークロロ-2ーピリジルオキシ基、5ートリフルオロメチル-2ーピリジルオキシ基、2ーピリジルオキシ基、4ーピリジルオキシ基、5ークロロ-2ーピリジルオキシ基、6ートリフルオロメチル-2ーピリジルオキシ基、3ートリフルオロメチル-2ーピリジルオキシ

オキシ基、R³⁰S、R³⁰NH、R³¹OC(O)、R³¹R³²NC(O)、R³³SO $_{2}$ N H C (O) , R $_{3}$ O C (O) $_{-}$ L , R $_{3}$ R $_{3}$ P C (O) $_{-}$ L , R $_{3}$ O C (O) (O) -L - NH, $R^{31}R^{32}NC$ (O) -L - NH, $R^{30}C$ (O) -L - NH, $R^{31}OC$ (O) -L-S, $R^{31}OC$ (O) -L-S (O), $R^{31}OC$ (O) -L $-SO_2$, $R^{31}R^{32}NC$ (O) -L-S, $R^{30}C$ (O) -L-S, $R^{34}SO_2NH$ $(R^{34}SO_2)_2N$, $R^{34}SO_2(R^{35})$ N, $R^{36}OC(O)$ NH, $R^{36}OC($ O) (R^{35}) N, R^{31} OC (O) $-L-(R^{35})$ N, $R^{31}R^{32}$ NC (O) -L-(R³5) N、置換フェニル (R³5) N、R³0R³5N、R³6CONH、R³6C (O) (R^{35}) N, $R^{37}ON = CH$, $(C_1 - C_4 T \mu \exists + \flat)$ $_2P$ (O) -L, R^{30} O-L, R³⁰S-L, R³⁰NH-L, R³¹R³²N-L, R³⁰S (O) -L, R³⁰ SO₂-L, NC-L, R³⁰CO₂-L, R³⁰C (O) -L, R³¹R³²N-L-O ノリド-2-イル) C₁-C₄アルキル基、R³⁸-O-N=C(R³⁷)-L-O、 R^{3}, OC (O) $C_1 - C_4 T N + V V - O - C$ (= NOR 3) - L, R^{3} C (= N $OR^{38}) - L - O, R^{30} - O - L - O, R^{39}O - C (= NOR^{38}) - L, R^{39}O$ -C (= NOR³⁸) -L -O, R³⁹O -C (= NOR³⁸) -L -S, R³⁹O -C $(= N O R^{38})$, $R^{31}R^{32}NC$ $(= N O R^{38})$ - L, $R^{39}O-C$ $(= N N R^{31}R$ 32) - L、 (C,-C4アルキル) 3Si-L-O、 (C,-C4アルキル) 3Si-L-O-CH2-Oまたは置換されていてもよい5~6員のヘテロ環を表し、

 R^5 は水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、アミノ基、カルボキシル基、メルカプト基、 C_1-C_4 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 C_1-C_4 アルコキシ基、 C_1-C_4 ハロアルキル基、 C_2-C_8 アルケニルオキシ基、 C_2-C_8 アルキニルオキシ基、 C_3-C_8 アルキニルオキシ基、 C_3-C_8 アルキニルオキシ基、 C_4 のコープロペニル基を表し、

 R^6 および R^7 はそれぞれ独立して水素原子、ハロゲン原子、 C_1-C_6 アルキル基、シアノ基または C_1-C_6 ハロアルキル基を表し、

 R^{s} および R^{s} はそれぞれ独立して水素原子、 $C_{1}-C_{8}$ アルキル基、 $C_{2}-C_{8}$ アルケニル基、 $C_{2}-C_{8}$ アルキニル基、 $C_{1}-C_{8}$ ハロアルキル基、 $C_{2}-C_{8}$ ハロア

ルケニル基、 C_2-C_8 ハロアルキニル基、(C_1-C_6 アルキル)カルボニル基、(C_1-C_6 ハロアルキル)カルボニル基、ホルミル基、ベンゾイル基、フェナシル基、 C_3-C_8 シクロアルキル C_1-C_4 アルキル基、 C_1-C_6 アルコキシ C_1-C_6 アルコキシ基、(C_1-C_6 アルコキシ)カルボニル基、 C_1-C_6 アルキルスルホニル基、NC-L、R³¹OC(O)-L、R³¹R³²NC(O)-L、R³⁹OC(=NOR³⁸)-L、R³¹R³²NC(=OR³⁸)-L、R³¹OC(O)-L-O、R³¹R³²NC(=NOR³⁸)-L-O、R³¹R³²NC(=NOR³⁸)-L-O、R³¹R³²NC(=OR³⁸)-L-O表表し

R¹⁰は水素原子、ハロゲン原子、C₁-C₆アルキル基、(C₁-C₄アルコキシ)カルボニル基または(C₁-C₄アルキル)カルボニル基を表し、

 R^{11} は水素原子、ホルミル基、カルボキシル基、ヒドロキシメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 $(C_1-C_6$ アルキル) カルボニル基、 C_1-C_4 アルコキシ C_1-C_4 アルキル基、 C_1-C_4 アルキルチオ C_1-C_4 アルキル基、 C_1-C_4 アルキルスルホニル C_1-C_4 アルキル基、 $(C_1-C_4$ アルコキシ) カルボニル基、 $(C_1-C_4$ アルキル) アミノカルボニル基、 $(C_1-C_4$ アルキル-CH (OH)、 C_2-C_4 アルケニル-CH (OH)、 C_3-C_8 シクロアルキル-CH (OH) または $(C_3-C_8$ シクロアルキル) カルボニル基を表し、

 R^{12} は水素原子、ハロゲン原子、アミノ基、 C_1-C_6 アルキル基、 C_1-C_6 ハロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルコキシ(C_1-C_4)アルキル基を表し、

R¹³は水素原子、C₁-C6アルキル基または置換フェニル基を表し、

R¹¹およびR¹⁵はそれぞれ独立して水素原子またはCı-C6アルキル基を表し

R16は水素原子またはC1-C6アルキル基を表し、

 R^{17} 、 R^{18} 、 R^{19} および R^{20} はそれぞれ独立して水素原子または C_1-C_6 アルキル基を表し、

 R^{21} は水素原子、 C_1-C_6 アルキル基、(C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルコキシ)カルボニル基

、C₁-C₆アルキルスルホニル基、C₁-C₆ハロアルキルスルホニル基またはC₁-C₄アルコキシC₁-C₄アルキル基を表し、

 R^{22} は水素原子、 C_1-C_6 アルキル基、 C_1-C_4 ハロアルキル基、ヒドロキシ C_1-C_4 アルキル基または C_1-C_4 アルコキシ C_1-C_4 アルキル基を表し、

 R^{28} は水素原子、ハロゲン原子、 C_1-C_6 アルキル基、ニトロ基、アミノ基、シアノ基、ホルミル基、(C_1-C_6 アルキル)カルボニル基、(C_1-C_4 ハロアルキル)カルボニル基、カルボキシル基、(C_1-C_4 アルコキシ)カルボニル基、ヒドロキシ C_1-C_4 アルキル基、 C_1-C_4 アルキルスルホニル基、 $R^{38}ON=C$ Hまたは $R^{38}ON=C$ (C_1-C_4 アルキル)を表し

R³ºは水素原子、C1-C8アルキル基、C3-C8シクロアルキル基、C2-C8 アルケニル基、C₂-Cεアルキニル基、C₃-CεシクロアルキルC₁-C₄アルキ ル基、C1-C8ハロアルキル基、C2-C8ハロアルケニル基、C2-C8ハロアル キニル基、4-ブタノリド-2-イル基、5-ペンタノリド-2-イル基、6-ヘキサノリド-2-イル基、 (C₁-C₄アルコキシ) カルポニル基、 (C₁-C₄ アルキル)2アミノカルボニル基、C3-C3シクロアルケニル基、C1-C4アル コキシC1-C4アルコキシC1-C4アルキル基、(テトラヒドロフラン-2-イ ル) C1-C4アルキル基、(2, 2-ジメチル-1, 3-ジオキソラン-4-イ ル) メチル基、 (C1-C4アルコキシC1-C4アルキル) 2C1-C4アルキル基 、 (テトラヒドロピラン-2-イル) C1-C1アルキル基、 (フラン-2-イル)C₁-C₄アルキル基、C₂-C₈アルケニルオキシC₁-C₄アルキル基、C₂-CsアルキニルオキシCiーCiアルキル基、CiーCiハロアルコキシCiーCiア ルキル基、置換フェニルオキシC₁-C₄アルキル基、C₁-C₄ハロアルコキシC 」- C 4 アルコキシ C 1 - C 4 アルキル基、置換フェニル C 2 - C 8 アルキニル基、置 換フェニルC2-C3アルケニル基、シアノC1-C4アルキル基、C1-C4アルコ キシCı-Cィアルキル基、Cı-CィアルキルチオCı-Cィアルキル基、ベンジル オキシメチル基、テトラヒドロピラン-2-イル基、オキシラニル基、オキシラ ニルメチル基、テトラヒドロフランー2ーイル基、(CューCsアルキル)カルボ ニル基、シアノC2-C8アルケニル基、(C1-C4ハロアルキル)カルボニル基

、置換フェニル基、(テトラヒドロフラン-3-イル)C₁-C₄アルキル基、(3-メチルオキセタン-3-イル)C₁-C₄アルキル基、(2-ピロリドン-1-イル)C₁-C₄アルキル基、(C₂-C₈アルケニル)カルボニル基、(C₁-C₄アルコキシC₁-C₄アルキル)カルボニル基、テトラヒドロフラン-3-イル基、C₁-C₈アルキルスルホニル基、C₁-C₈ハロアルキルスルホニル基、(C₁-C₄アルキル)カルボニルオキシC₁-C₄アルキル基、(C₁-C₄ハロアルコキシ)カルボニル基、(置換されていてもよい5から6員へテロ環)C₁-C₄アルキル基、テトラヒドロピラン-3-イル基、テトラヒドロピラン-4-イル基、(テトラヒドロピラン-3-イル基、ナトラヒドロピラン-4-イルを表し、

R³¹は水素原子、C¹ーC®アルキル基、C²ーC®アルケニル基、C²ーC®アルキニル基、C³ーC®シクロアルキル基、C³ーC®シクロアルキルC¹ーC⁴アルキル基、C¹ーC6ハロアルキル基、C¹ーC⁴アルコキシC¹ーC⁴アルキル基、オキセタン-3ーイル基、C¹ーC⁴アルキルアミノ基、(C¹ーC⁴アルキル)² アミノ基、C¹ーC⁴アルキリデンイミノ基、置換されていてもよいフェニル基、ベンジル基、(C²ーC®アルケニル)オキシカルボニルC¹ーC⁴アルキル基、(C²ーC®アルキニル)オキシカルボニルC¹ーC⁴アルキル基、(C²ーC®アルキニル)オキシカルボニルC¹ーC⁴アルキル基、(C¹ーC⁴アルコキシ)カルボニルC¹ーC⁴アルキル基、(Fトラヒドロフラン-2ーイル)C¹ーC⁴アルキル基、(C¹ーC⁴アルキル基、置換されていてもよい5から6員ヘテロ環、C²ーC⑥ハロアルケニル基またはC¹ーC⁴アルキルチオC¹ーC⁴アルキル基を表し、

 R^{32} は水素原子、 C_1-C_8 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 C_3-C_6 シクロアルキル基または C_1-C_6 ハロアルキル基を表し、但し、 R^{31} と R^{32} は結合している窒素原子とともに C_1-C_4 アルキル基で置換されていても良い 3 から 8 員のヘテロ環を表していてもよく、そのときのヘテロ環の構成要素は炭素、酸素、硫黄および窒素原子から任意に選択され、

R³³はCı-Cィアルキル基またはCı-Cィハロアルキル基を表し、

R³4はC1-C8アルキル基、C1-C4ハロアルキル基、C3-C8シクロアルキ

ル基、C₂-C₈アルケニル基、C₂-C₈アルキニル基、ペンジル基またはフェニル基を表し、

 R^{35} は C_1-C_8 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 C_1-C_4 ハロアルキル基、 C_2-C_8 ハロアルケニル基、 C_2-C_8 ハロアルキニル基、シアノ C_1-C_4 アルキル基、 C_1-C_4 アルコキシ C_1-C_4 アルコキシ)カルボニル基、(C_1-C_4 アルコキシ)カルボニル区、1- C_4 アルコキシ)カルボニル区、 C_1-C_6 アルキル基、ホルミル基、(C_1-C_6 アルキル)カルボニル基、(C_1-C_6 アルキル)カルボニル基を表し、

R³⁶はC₁-C₆アルキル基、C₂-C₈アルケニル基、C₂-C₈アルキニル基、C₁-C₄ハロアルキル基、置換フェニル基または置換フェニルC₁-C₆アルキル基を表し、

 R^{37} は C_1-C_6 アルキル基または(C_1-C_3 アルコキシ)カルボニル C_1-C_6 アルキル基を表し、

R³⁸は水素原子、C₁-C₆アルキル基、C₂-C₈アルケニル基、C₂-C₈アルキニル基、C₃-C₈シクロアルキル基またはペンジル基を表し、

R³⁹はC₁-C₈アルキル基、C₂-C₈アルケニル基、C₂-C₈アルキニル基、(C₁-C₆アルキル) カルボニル基、(C₁-C₆アルコキシ) カルボニル基、C₁-C₆アルキルスルホニル基または(C₁-C₄アルコキシ) ₂P(O) を表し、

Lは飽和あるいは不飽和の分岐していてもよく、ハロゲン原子、シアノ基または(C₁-C₄アルコキシ)カルボニル基によって置換されていてもよいC₁-C₄のアルキレン鎖を表し、

置換フェニルはハロゲン原子、シアノ基、ニトロ基、アミノ基、カルボキシル基、ヒドロキシ基、 C_1-C_4 アルキル基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルファルコキシ基、 C_1-C_4 アルカルボニル基、 (C_1-C_4 アルキル)カルボニル基、 (C_1-C_4 アルコキシ)カルボニル区 C_1-C_4 アルコキシ)カルボニル区 C_1-C_4 アルコキシ基、 (C_1-C_4 アルコキシ基、 (C_1-C_4 アルコキシ)カルボニル基、 (C_1-C_4 アルコキシ (C_1-C_4 アルコキシ (C_1-C_4 アルコキシ (C_1-C_4 アルコキシ)カルボニル区 C_1-C_4 アルコキシ 基、 (C_1-C_4 アルコキシ)カルボニル C_1-C_4 アルコキシ 基、 (C_1-C_4 アルカナシ)カルボニル C_1-C_4 アルカキシ と C_1-C_4 アルカナシ と C_1-C_4 アルカトラ と C_1-C_4 アルカキシ と C_1-C_4 アル

- C₄アルキニルオキシC₁- C₄アルコキシ)カルボニルC₁- C₄アルコキシ基 または(C₁- C₄ハロアルコキシC₁- C₄アルコキシ)カルボニルC₁- C₄アル コキシ基によって任意に置換されていてもよいフェニル基を表し、

置換されていてもよい 5 から 6 員へテロ環はハロゲン原子、シアノ基、ニトロ基、アミノ基、カルボキシル基、ヒドロキシ基、 C_1-C_4 アルキル基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルキルスルホニル基、 $(C_1-C_4$ アルキル)カルボニル基、 $(C_1-C_4$ アルコキシ)カルボニル $(C_1-C_4$ アルキルオキシ基、OCH (CH_3) CO_2 H、OCH $(CO_2$ Hまたは $(C_1-C_4$ アルコキシ)カルボニル基によって任意に置換されていてもよい $(C_1$ 0 の $(C_1$ 1 の $(C_1$ 2 の $(C_1$ 3 の $(C_1$ 4 の $(C_1$ 4 の $(C_1$ 5 の $(C_1$ 6 の $(C_1$ 7 の $(C_1$ 2 の $(C_1$ 2 の $(C_1$ 2 の $(C_1$

但し、これらの化合物に光学活性体、ジアステレオマー、幾何異性体が存在する場合は、それぞれの混合物および単離された異性体の双方を包含する。〕で示されるピリミジノン誘導体およびその塩。

[2] RaがC₁-C₄アルキル基、C₁-C₄ハロアルキル基またはC₁-C₄アルキルスルホニル基を表し、

Xが水素原子、C1-C1アルキル基またはアミノ基を表し、

- Yが酸素原子を表し、
- 2 'が窒素原子を表し、
- Z²がCRbを表し、
- Rbがハロゲン原子を表し、
- R¹が水素原子またはフッ素原子を表し、
- R°が水素原子を表す〔1〕記載のピリミジノン誘導体およびその塩。
- [3] Xがメチル基を表す [2] 記載のピリミジノン誘導体およびその塩。
- [4] RaがCHF2またはCF3を表す〔2〕記載のピリミジノン誘導体および その塩。
- [5] [1] ~ [4] 記載のピリミジノン誘導体およびその塩を有効成分として 含有する農薬。
- [6] [1] ~ [4] 記載のピリミジノン誘導体およびその塩を有効成分として 含有する除草剤。

発明を実施するための最良の形態

本発明化合物及び本発明化合物の合成中間体の置換基 R a 、 R b 、 X 、 Y 、 R ¹、 R ²、 R ³、 R ⁴、 R ⁵、 R ⁶、 R ⁷、 R ⁸、 R ⁹、 R ¹⁰、 R ¹¹、 R ¹²、 R ¹³、 R ¹⁴、 R ¹⁵、 R ¹⁶、 R ¹⁷、 R ¹⁸、 R ¹⁹、 R ²⁰、 R ²¹、 R ²²及び R ²³を具体的に列記する。但し、記号はそれぞれ以下の意味を表す。

Me:メチル、Et:エチル、Pr:ノルマルプロピル、iso-Pr:イソプロピル、cyclo-Pr:シクロプロピル、Bu:ノルマルブチル、sec-Bu:セカンダリーブチル、iso-Bu:イソブチル、tert-Bu:ターシャリープチル、cyclo-Bu:シクロプチル、Pen:ノルマルペンチル、cyclo-Pen:シクロペンチル、iso-Pen:イソペンチル基neo-Pen:ネオペンチル基cyclo-Hex:シクロヘキシル、tert-Pen:ターシャリーペンチル、Hex:ノルマルヘキシル、Hep:ノルマルヘプチル、Oct:ノルマルオクチル、Ph:フェニル基

〔置換基Raの具体例〕

CF₂H、CF₃、Me、Et、Pr、iso-Pr、SO₂Me、CN、CH₂O Me、CH₂SMe、CH₂CNまたはCH₂CF₃

〔置換基Rbの具体例〕

H、F、Cl、Br、I、CN、OMe、OCF2HまたはOCF3

〔置換基Xの具体例〕

H、Me、Et、Pr、iso-Pr、CF2H、NH2、OMe、OEt、OPr、O(iso-Pr)、OCF2H、OCF3、SMe、SEt、SPr、S(iso-Pr)、SO2Me、SO2Et、SO2Pr、SO2(iso-Pr)、NHMe、NHEt、NHPr、NH(iso-Pr)、NMe2、NEt2、NPr2またはN(iso-Pr)2

「置換基Yの具体例〕

OまたはS

[置換基R¹及びR²の具体例]

H、F、C1、BrまたはI

〔置換基R³の具体例〕

H, F, Cl, Br, I, $C \equiv N$, C(S) NH_2 , C(O) NH_2 , $C \equiv CS$ i Me_3 , $C \equiv CH$, $CH = CH_2$, Me, Et, Pr, iso-Pr, OMe, OEt, SO2NH2, OCH2CO2Me, OCH2CO2Et, OCH2CH2CO2 Et、CF3、CF3CF2、C1CF2、HCF2、CF3O、NO2、HCF2O、 C1CH2、BrCH2、SMe、SO2Me、OH、SH、NH2、CHO、CO 2H, CO2Me, CO2Et, CO2Pr, CO2 (iso-Pr), CO2Bu, CO₂ (tert-Bu), CH₂C \equiv N, NHMe, NMe₂, OCH₂OMe, OCH₂Ph, OCH₂ (4-Cl-Ph), OCH₂ (4-Me-Ph), OC H_2 (4 - B r - P h), O C H_2 (4 - C l - 2 - (O C H M e C O 2 M e) -Ph), OCH2 (4-Me-2- (OCHMeCO2Me)-Ph), OCH2 $(4-C1-2-(OCHMeCO_2Et)-Ph)$, $OCH_2(4-Me-2-$ (OCHMeCO₂Et) - Ph) 、NHCH₂Ph、NHCH₂ (4-Cl-P h) 、NHCH2 (4-Me-Ph)、NHCH2 (4-Br-Ph)、NHCH 2 (4-C1-2- (OCHMeCO2Me)-Ph), NHCH2 (4-Me-2 - (OCHMeCO₂Me) - Ph) 、 SCH₂Ph、 SCH₂ (4-Cl-P h) $SCH_2(4-Me-Ph)$ $SCH_2(4-Br-Ph)$ $SCH_2(4$ -Cl-2-(OCHMeCO₂Me)-Ph), SCH₂(4-Me-2-(OCHMe-2)CHMeCO₂Me) - Ph), OCH₂CO₂Pr, OCH₂CO₂ (tert-Bu)、NHCH2CO2Me、NHCH2CO2Et、SCO2MeまたはSCO2 Εt

〔置換基R¹の具体例〕

H, F, Cl, Br, I, CHO, CO₂H, C (O) NH₂, SO₂Cl, C (O) Me, SH, OH, NH₂, NO₂, CN, Ph, Me, Et, Pr, iso

-Pr, Bu, sec-Bu, iso-Bu, tert-Bu, Pen, neo

-Pen, tert-Pen, cyclo-Pr, cyclo-Bu, cycl

o-Pen, cyclo-Hex, CH₂CH=CH₂, CH (Me) CH=CH

2, CH₂C=CH, CH (Me) C=CH, OMe, OEt, O (iso-Pr)

), OPr, OBu, O (sec-Bu), O (tert-Bu), O (cyclo-Pr), O (cyclo-Pr)

o-Hex), O (neo-Pen), O (tert-Pen), O Pen, O Hex, OHep, OOct, OCH2Ph, OPh, O(4-Cl-Ph), O(3-C1-Ph), O(2-C1-Ph), O(4-Me-Ph), O(3-Me-Ph), O (2-Me-Ph), O (4-MeO-Ph), O (3-Me-Ph)e O - P h) , O (2 - M e O - P h) , O C H 2 C H = C H 2, O C H 2 C H =C H M e 、 O C H M e C H = C H 2 、 O C M e 2 C H = C H 2 、 O C H 2 C \equiv C H . $OCHMeC \equiv CH$, $OCMe_2C \equiv CH$, $OCH_2CH = CClH$, OCH_2C C 1 = C H 2, O C H M e C H 2 C H = C H 2, O C H M e C H 2 C \equiv C H, C H 2 CH2OMe, OCH2CH2OEt, OCH2CH2OPr, OCH2OMe, OC H₂OEt, OCH₂OCH₂Ph, OCH₂O (cyclo-Pen), OCH₂ O(cyclo-Bu), OCH2O(cyclo-Pr), OCH2O(ter t-Bu), OCH2O (iso-Bu), OCH2O (sec-Bu), OCH 2 O P r 、 O C H 2 O (i s o - P r) 、 O C H 2 O B u 、 O C H 2 C H 2 C H 2 O M e, OCH2CH2CH2CH2OMe, OCH2OCH2CH2SiMe3, OCH (Me) OMe 、O- (テトラヒドロピラン-2-イル) 、O- (テトラヒドロピラン-3-イル)、〇- (テトラヒドロピラン-4-イル)、〇- (テトラヒド ロフラン-2-イル)、〇-(テトラヒドロフラン-3-イル)、〇-オキシラ =ν、OCH₂ (cyclo-Pr)、OCH₂ (cyclo-Bu)、OCH₂ (cyclo-Pen), OCH2 (cyclo-Hex), OCH2 (1, 5-ジメチルピラゾール-1-イル)、〇-(2,3-エポキシプロピル)、〇〇H $_2$ C M e = C H $_2$, O C H $_2$ O C H $_2$ C H $_2$ O M e , O C H $_2$ C H $_2$ C \equiv C H , O C H $_2$ (テトラヒドロフランー2ーイル)、OCH2(2, 2ージメチルー1, 3ージオキソランー4ーイル)、OCH (CH2OEt) 2、OCH2 (テトラヒドロピ)、OCH2(テトラヒドロフラン-3-イル)、OCH2(3-メチルオキセタ $\nu - 3 - 4 \nu$), OCHMe (cyclo-Pr), OCH2CH2OCH=CH $_2$, $OCH_2C \equiv CMe$, $OCH_2CH_2CH=CH_2$, $OCH_2CH_2C \equiv CMe$, OCH₂CH₂CH₂C \equiv CH, OCH₂CH₂CM = CH₂, OCH₂CH₂CH₂ $CH = CH_2$, OCH_2CH_2SMe , OCH_2CH_2OC (O) Me, OCH_2CH

2 (モルホリン-1-イル)、OCH2CH2(ピロリジン-1-イル)、OCH2 CH2(2-ピロリドン-1-イル)、O-(2-シクロヘキセン-1-イル) OCH2CH2OCH2CH2Cl, OCH2CH2OCH2CH=CH2, OCH2 CH2OPh, OCHEtC = CH, OCHPrC = CH, OCH (iso-B u) $C \equiv CH$, $OCHPhC \equiv CH$, $OCHBuC \equiv CH$, OCH (iso-P r) $C \equiv C H$, O C H (C H M e P r) $C \equiv C H$, $O C H_2 C \equiv C P h$, $O C H_2$ $C \equiv C C H_2 O M_e$, $O C H M_e C \equiv C E t$, $O C H_2 C H = C (M_e)_2$, O C $H_2CHMeCH=CH_2$, $OCH_2CH_2OCH_2C\equiv CH$, $OCHEtCH_2OCH_2C$ H₂CH=CH₂, OCHMeCH₂OEt, OCHMeCH₂OPr, OCHMe $C H_2 O C H_2 C H = C H_2$, $O C H M e C H_2 O C H_2 C H = C H M e$, O C H (C H 2 C 1) C H 2 O (i s o - P r) , O C H (C H 2 C 1) C H 2 O C H 2 C H = CH₂, OCHMeCH₂OCH₂CH=CHCl, OCHMeCH₂OCHCl CH=CH₂、OCHMeCH₂OCH₂CH₂OMe、OCHBrCH₂OEt、 OCH (CH2OCH2CH=CH2) 2, OCHEtCH2CH2OEt, O (1-メチルピロリジンー3ーイル)、OCH2C \equiv CCH2C1、OCH2CH2O(2 -C1-Ph), OCH2CH2OCH2CH2OMe, OCHEtCH2OMe, OCH (CH2F) 2, OCH2CH2OCH2CH2OCH2CH2C1, OCH2C HMeOPh, OCHMeCH2OCMe3, OCHMeCH2OMe, OCH2C H₂CH₂OEt, OCHEtCH=CH₂, OCH₂CH₂CH₂Cl, OCHMe CH₂OPh, OCHMeCH=CH₂, OCHMeCH=CHMe, OCH (C $H = C H_2$) 2, $O C H_2 C H C l C H_2 C l$, $O C H_2 C H_2 C H_2 B r$, O C H (CH2Cl) 2, OCH (CH2Br) 2, OCHMeCH2Cl, OCH2CH2F 、OCH2CHF2、OCH2CF3、OCH (CF3) 2、OCH2CH2CN、OC H2CH2Br, OCH2CH2CO2Me, OCH2CH2CO2Et, OCHPhC O2Me, OCHPhCO2Et, OCH2CH2NMe2, OCH2CH2SO2Me OCH2CH2CH2SMe, OCH2CH2CH2S (O) Me, OCH2CH2C H2SO2Me、OCH2C(O) Me、OCH2CH2(オキシラニル)、O-(エポキシプロピル)、OCH2CN、OCHMeCN、OC(O) Me、OC(

O) Et, OC (O) Pr, OC (O) (iso-Pr), OC (O) CH = CMe2、OC(O)CH2C1、OC(O)CH2CCl3、OC(O)(モルホリ ンー1ーイル)、OC(O)CH2OMe、OCO2Me、OCO2Et、OCO2 Pr, OCO2 i so-Pr, OCO2Ph, OC (O) NH2, OC (O) NM e_2 , OC (O) NE t_2 , OC (O) NP r_2 , OC H_2 CM $e = CH_2$, O (i so-Pen), SMe, SEt, S (iso-Pr), SPr, SBu, S (sec-Bu), S(iso-Bu), S(cyclo-Pen), S(cyclo-Pen)lo-Pr), S (cyclo-Hex), S (neo-Pen), S (ter t-Pen) 、 SPen 、 SHex 、 SHep 、 SOct 、 $SCH_2CH=CH_2$ 、 S C H M e C H = C H $_2$ 、 S C M e $_2$ C H = C H $_2$ 、 S C H $_2$ C \equiv C H 、 S C H M $e C \equiv C H$, $S C M e ₂ C \equiv C H$, S C H ₂ C H = C C I H, S C H ₂ C C I = CH2, SCH2CF3, SCH2CH2OMe, SCH2CH2OEt, SCH2OMe SCH2OEt, SCH2 (cyclo-Pr), SCH2CN, NHMe, N HEt, NH (iso-Pr), NHPr, NHBu, NH (sec-Bu), NH (iso-Bu), NH (cyclo-Pen), NH (cyclo-Pr), NH (cyclo-Hex), NH (neo-Pen), NH (tert-Pen), NHPen, NHHex, NHHep, NHOct, NHCH2CH = C H $_2$ 、 N H C H M e C H = C H $_2$ 、 N H C M e $_2$ C H = C H $_2$ 、 N H C H $_2$ C \equiv CH, $NHCHMeC \equiv CH$, $NHCMe_2C \equiv CH$, $NHCH_2CH = CC1H$ NHCH2CC1=CH2、NHCH2CF3、NHCH2CH2OMe、NHCH 2CH2OEt, NHCH2OMe, NHCH2OEt, NHCH2 (cyclo-Pr), NHCH2CN, CO2Me, CO2Et, CO2 (iso-Pr), CO 2Pr, CO2 (cyclo-Pr), CO2Bu, CO2 (sec-Bu), CO $_{2}$ (iso-Bu), CO₂ (tert-Bu), CO₂ (cyclo-Bu), CO₂Pen, CO₂ (cyclo-Pen), CO₂Pen, CO₂ (neo-P en), CO2 (tert-Pen), CO2Hex, CO2 (cyclo-He x), CO₂Hep, CO₂Oct, CO₂CH₂CH=CH₂, CO₂CHMeCH = C H $_2$, C O $_2$ C M e $_2$ C H = C H $_2$, C O $_2$ C H $_2$ C \equiv C H $_3$ C O $_2$ C H M e C \equiv C H 、 C O $_2$ C M e $_2$ C \equiv C H 、 C O $_2$ C M e $_2$ C O $_2$ C H $_2$ C H = C H $_2$ 、 C O $_2$ C M

 $e_2CO_2CHMeCH=CH_2$, $CO_2CMe_2CO_2CMe_2CH=CH_2$, CO_2 $CMe_2CO_2CH_2C \equiv CH$, $CO_2CMe_2CO_2CHMeC \equiv CH$, CO_2CM $e_2CO_2CMe_2C\equiv CH$, $CO_2CMe_2CO_2CH_2CH_2C\equiv CH$, CO_2CM $e_2CO_2CH_2CH_2CH_2CH_2CCO_2CMe_2CO_2CH_2CH_2CH_2CCO_2$ CH2OMe, CO2CH2OEt, CONMe2, CONEt2, CO2CH2CO2 Me, CO2CH2CO2Et, CO2CH2CO2Pr, CH2CHClCO2Me, CH2CMeClCO2Me、CH2CHClCO2Et、CH2CMeClCO2E t, CH2CHBrCO2Me, CH2CHClSO2Ph, CH2CHClSO2M e, CH2CHClC(O) Me, CH2CHClCO2H, CH2CHClCO2 (iso-Pr), CH₂CHClCO₂ (cyclo-Hex), CH₂CHC lCO₂ (tert-Bu), CH₂CHClCO₂ (iso-Bu), CH₂CH C 1 C O 2 B u 、 C H 2 C H C 1 C O 2 (s e c - B u) 、 C H 2 C H C 1 C O 2 P r、CH2CHC1CO2CH2(テトラヒドロフラン-2-イル)、CH2CHC 1C(O)(モルホリン-1-イル)、CH2CHCIC(O)NH2、CH2C MeClC(O) NH₂, CH₂CMeClC(O) NMe₂, CH₂CHClCO 2CH (CF3) 2, CH2CHC1CO2CH2CF3, CH2CHC1CO2CH2C H₂OMe, CH₂CHClCONHOMe, CH₂CHClC(O)NHMe, CH2CHC1C (O) NHEt, CH2CHC1C (O) NH (iso-Pr) 、CH2CHClC(O)NH(iso-Bu)、CH2CHClC(O)NH(sec-Bu), CH2CHC1C(O) NH (tert-Bu), CH2CHC lC (O) NH (cyclo-Pr), CH2CHClC (O) NH (cycl o-Hex), CH_2CHClC (O) $NHCH_2C \equiv CH$, CH_2CHClC (O) NHCH2CH2OMe, CH2CHClC (O) NHCH2CH2NMe2, C H2CHClC (O) NHCH2CO2Et, CH2CHClC (O) NHCH (i so-Pr) CO₂Me, CH₂CHClC (O) NHNMe₂, CH₂CHClC (O) NH (モルホリン-1ーイル)、CH2CHC1C(O) NHPh、CH2 CHCIC (O) NH (チアゾールー2ーイル)、CH2CHCIC (O) NH (5-メチルイソオキサゾール-3-イル)、CH2CHCIC(O)NHCH2 Ph, CH2CHClC (O) NMe2, CH2CHBrC (O) NMe2, CH2

CHClC (O) NMeBu, CH2CHClC (O) NMe (iso-Bu) 、CH2CHClC (O) NMeOMe、CH2CHClC (O) NEt2、CH2 CHClC (O) NEtPr、CH2CHClC (O) NEt (iso-Pr) CH2CHClC (O) NEtBu, CH2CHClC (O) NEt (tert -Bu), CH2CHClC(O) N (i so-Pr) 2, CH2CHClC(O) NPr (sec-Bu), CH_2CHClC (O) N ($CH_2CH=CH_2$) 2, CH2CHC1C (O) N (CH2CH2C1) 2, CH2CHC1C (O) N (i so-Pr) (cyclo-Hex), CH₂CHClC (O) N (CH₂CH= CH_2) (cyclo-Hex), CH_2CHClC (O) N ($CH_2CH=CH_2$) (cyclo-Pen), CH2CHClC (O) NMePh, CH2CHCl C (O) NMe (ピリジン-2-イル)、CH2CHC1C (O) N (ピロリジ ン-1-イル)、CH2CHC1C(O)N(チオモルホリン-1-イル)、C H₂CHClC(O) N(4-メチルピペラジン-1-イル)、CH₂CHClC (O) N (cyclo-Hex) Ph, CH2CHClC (O) NMeCH2CO 2Et, CH2CHClC (=NOMe) OCH2CO2Me, OCH2CMe (= NOMe), OCH₂CH (=NOMe), CH₂CHClCO₂CH₂CH=CH H, $CH_2CHC_1CO_2CHM_eC\equiv CH$, $CH_2CHC_1CO_2CH_2$ (c y c lo-Pr), CH2CHClCO2CH2CHClCH2Cl, CH2CHClC O 2 C H 2 C H = C M e C 1 、 C H 2 C H C 1 C O 2 C H 2 C H 2 S M e 、 C H 2 C H C 1 C O 2 C H 2 C O 2 E t 、 C H 2 C H C 1 C N 、 C H 2 C C 1 2 C N 、 C H 2 C H 2 CO2Me, CH2CH2C (O) NMe2, CH2CH2CH2CO2Me, CH2C O₂Me、CH₂CHMeCO₂Me、CH₂(2-クロロブタノリド-2-イル) 、 $CH = CHCO_2Me$ 、 $CH = CHCO_2Et$ 、 OCH_2CO_2Me 、 OCH_2C O 2 E t 、 O C H 2 C O 2 C H 2 C F 3 、 O C H 2 C O 2 P r 、 O C H 2 C O 2 B u 、 C HFCO₂Me, OCHFCO₂Et, OCHFCO₂Pr, OCHFCO₂Bu, OCHFCO2Ph、CHClCO2Me、OCHClCO2Et、OCHClC O₂Pr, OCClFCO₂Bu, CHBrCO₂Me, OCHBrCO₂Et, O CHBrCO₂Pr、OCHBrCO₂Bu、OCF₂CO₂Me、OCF₂CO₂E

t, OCF2CO2Pr, OCF2CO2Bu, OCCl2CO2Me, OCCl2C O2Pen, OCH2CO2 (tert-Bu), OCH2CO2Ph, OCH2CO 2Pen, OCH2CO2Hex, OCH2CO2 (cyclo-Pen), OCH2 CO2 (iso-Pr), OCH2CO2CH2Ph, OCHMeCO2Me, OC HMeCO₂Et, OCHMeCO₂Pr, OCHMeCO₂ (iso-Pr), OCHMeCO₂Pen、OCHMeCO₂ (cyclo-Pen)、O-(4-プタノリド-2-イル)、O-(5-ペンタノリド-2-イル)、O-(6-ヘ キサノリド-2-イル)、OCH (CO2Me) 2、OCH (CO2Et) 2、OC H (CO₂Pr)₂, OCH (CN) CO₂Me, OCH (CN) CO₂Et, OC Me_2CO_2Me , $OCMe_2CO_2Et$, $OCMe_2CO_2CH_2CH=CH_2$, $OCMe_2CO_2CH_2CH=CH_2$ M e $_2$ C O $_2$ C H $_2$ C \equiv C H $_3$ O C H M e C O $_2$ C H $_2$ C H = C H $_2$ $_3$ O C H M e C O $_2$ C H $_2$ C \equiv C H $_2$ O C H $_2$ C (O) N M e $_2$ O C H $_2$ C (O) N E t $_2$ O C H $_2$ $C(O)(\pm \nu \pm \nu - 1 - 4\nu)$, $OCH_2C(O)NMe(CH_2C \equiv CH)$ CH₂C (O) (ピロリジン-1-イル)、OCH₂C (O) (ピペリジン-1-イル)、OCH2C(O) Me、OCH2C(O) Et、OCH2C(O) Pr、 OCH₂C (O) CH₂OM_e, OCH₂C (O) (4-Cl-Ph), OCH₂C (O) (4 - B r - P h), OCH_2C (O) (3 - C l - P h), OCH_2C (O) (3 - Br - Ph), OCH_2C (O) (2 - Cl - Ph), OCH_2C (O) (2-Br-Ph), OCH2C (O) Ph, OCH2CH2C (O) Ph, O CH₂ (4-Cl-Ph), OCH₂ (3-Cl-Ph), OCH₂ (2-Cl-Ph), OCH₂ (4-CF₃-Ph), OCH₂ (3-CF₃-Ph), OCH₂ $(2 - CF_3 - Ph)$, $OCH_2(4 - F - Ph)$, $OCH_2(3 - F - Ph)$, OCH₂ (2-F-Ph), OCH₂ (4-Me-Ph), OCH₂ (3-Me-Ph) 、OCH₂ (2-Me-Ph) 、OCH₂ (4-MeO-Ph) 、OCH₂ (3 - MeO - Ph), OCH₂ (2 - MeO - Ph), OSO₂Me, OSO₂CF3、SCH2CO2Me、SCH2CO2Et、SCH2CO2Pr、SCH2CO 2Bu, SCH2CO2Pen, SCH2CO2Hex, SCH2CO2 (cyclo -Pen), SCH_2CO_2 (iso-Pr), $SCH_2CO_2CH_2Ph$, SCH

MeCO₂Me、SCHMeCO₂Et、SCHMeCO₂Pr、SCHMeCO₂ (iso-Pr), SCHMeCO₂Pen, SCHMeCO₂ (cyclo-P en) 、SOCH2CO2Me、SOCH2CO2Et、SO2CH2CO2Me、S O $_2$ C H $_2$ C O $_2$ E $_t$ 、 N H C H $_2$ C O $_2$ M e 、 N H C H $_2$ C O $_2$ E $_t$ 、 N H C H $_2$ C O 2Pr, NHCH2CO2Bu, NHCH2CO2Pen, NHCH2CO2Hex, $NHCH_2CO_2$ (cyclo-Pen), $NHCH_2CO_2$ (iso-Pr), NHCH2CO2CH2Ph, NHCHMeCO2Me, NHCHMeCO2Et, N HCHMeCO₂Pr、NHCHMeCO₂ (iso-Pr), NHCHMeCO $_{2}$ Pen, NHCHMeCO $_{2}$ (cyclo-Pen), NHCO $_{2}$ Me, NHC O2Et, NHCO2Pr, NHCO2 (iso-Pr), NHCO2Bu, NHC O₂ (cyclo-Pr), NHCO₂ (cyclo-Pen), NHCO₂ (i s o - B u) 、 N H C O $_2$ (s e c - B u) 、 N H C O $_2$ (t e r t - B u) 、 N HCO2CH2CH=CHCH3、NHCO2CH2CH=CH2、NHCO2CH2C = C H 、 N H C O 2 P h 、 N H C O 2 C H 2 P h 、 N H C O 2 C H 2 (2 − M e − P h) 、 NHCO₂CH₂ (3-Me-Ph) 、 NHCO₂CH₂ (4-Me-Ph) , NHCO₂CH₂ (4-Et-Ph), NHCO₂CH₂ (2-MeO-Ph), $N H C O_2 C H_2 (3 - M e O - P h)$, $N H C O_2 C H_2 (4 - M e O - P h)$, NHCO2CH2 (4-C1-Ph), NHCO2CH2 (4-F-Ph), NHC O₂CH₂ (4-CF₃-Ph), NHCO₂CH₂ (2-F-Ph), NHCO₂C H_2 (3-F-Ph), $NHCO_2CH_2$ (3-Cl-Ph), $NHCO_2CH_2$ ($2 - C \ 1 - P \ h$) 、 $N \ H \ C \ O \ _2 \ C \ H \ _2 \ (4 - C \ F \ _3 \ O - P \ h$) 、 $N \ H \ S \ O \ _2 \ M \ e$ 、 NHSO₂Et, NHSO₂Pr, NHSO₂ (iso-Pr), NHSO₂Bu, N HSO2CH2Ph, NHSO2CHCl2, NHSO2CH2Cl, NHSO2CH2 CH2Cl, NHSO2CH2CH2CH2Cl, NHSO2CH2CF3, NHSO2 Ph, N (SO₂Et) CO₂Et, N (CH₂OMe) SO₂Et, N (CH₂C $H = C H_2$) SO_2Et , $N(CH_2C \equiv CH)$ SO_2Et , $NMeSO_2Me$, N(SO₂Me)₂, N (SO₂CH₂Cl)₂, N (SO₂Et)₂, N (SO₂Pr) 2、NEtSO2Et, NMeSO2Et, NEtSO2Et, N (Pr) SO2E t, N (C (O) Me) SO₂Et, N (CH₂OMe) SO₂Me, N (CH₂O

Et) SO_2Me , $N(CH_2CH=CH_2)SO_2Me$, $N(CH_2C\equiv CH)S$ O₂Me, CONHSO₂Me, CONHSO₂Et, CONHSO₂CF₃, 1, 3-ジオキソラン-2-イル、1,3-ジオキサン-2-イル、4-(EtOC (O) CH₂CH₂O) - PhO, 4 - (MeOC (O) CH₂CH₂O) - PhO HCHO, NHC (O) CF3, NHC (O) Et, NHC (O) Me, NHC OPr, N (CH₂C \equiv CH) COMe, N (CH₂CH = CH₂) CO₂Me, N $M \in CO_2CH_2$ (4 - $M \in Ph$), N ($CH_2C \equiv CH$) CO_2Et , N (CH2CN) CO2Me, N (C (O) (tert-Bu)) SO2Me, N (C (O) (tert-Bu)) SO₂Et, N (C (O) (2-MeO-Ph)) SO₂ Me, N (C (O) (3-MeO-Ph)) SO₂Me, N (C (O) (4-Me)eO-Ph) SO₂Me, N (C (O) (2-MeO-Ph)) SO₂Et, N (C (O) (3 - M e O - P h)) SO₂Et, N (C (O) (4 - M e O - P)h)) SO_2Et , $N(C(O)(4-Me-Ph))SO_2Me$, N(C(O)(4 - Me - Ph)) SO_2Et , N(C(O)(4 - Cl - Ph)) SO_2Me 、N (C (O) (4-C1-Ph)) SO2Et、CO2(オキセタン-3-イル), N (CHO) CH2CO2Me, N (CHO) CH2CO2Et, N (CHO) CH2CO2Pen、N (CHO) CHMeCO2Me、N (CHO) CHMeC O₂Et, N(C(O) Me) CH₂CO₂Me, N(C(O) Me) CH₂CO₂ Et, N(C(O) Me) CH2CO2Pen, N(C(O) Me) CHMeCO 2Me, N (C (O) Me) CHMeCO2Et, N (CH2CN) SO2Me, N (SO₂Me) CH₂CO₂Me, N (SO₂Me) CH₂CO₂Et, N (SO₂E t) CH2CO2Me, N (SO2Et) CH2CO2Et, CF3, CF2H, CH2 Cl, CH2Br, CHBr2, CH2OH, CHBrEt, CH2CHClCH2 C1, CH (OH) CH = CH₂, CH (OH) C \equiv CH, CH₂CHClOC (O) Me, CH (CO₂Me) ₂, CH (CO₂Et) ₂, CH (CN) CO₂Me CH (CN) CO2Et, CH2CN, CH2CH2CN, CH=CHCN, CM e 2 C N 、 C H 2 N M e 2 、 C H 2 N E t 2 、 C H 2 N P r 2 、 C H 2 S M e 、 C H 2 S Et, CH_2SPr , $CH_2SCH_2C\equiv CH$, $CH_2SCH_2CH=CH_2$, CH_2

SO₂Me, CH₂SO₂Et, CH₂OCH₂CH=CH₂, CH₂OMe, CH₂O Et, CH_2OPr , CH_2O (iso-Pr), $CH_2OCH_2C \equiv CH$, C (O) E t , C (O) P r , C (O) (i s o - P r) , C H = N (O M e) , C H = N (OEt), CH = N (OPr), CH = N (OCH2CO2Et), C (O) NHMe, C (O) NHEt, C (O) NHPr, CH=CClCO $_2$ Me, $CH = CClCO_2Et$, CH_2CHClP (O) (OMe) 2, CH_2CHClP (O) (OEt) 2, NHC (O) CF3, OCH2SMe, OCF3, OCF2H 、OCH2CH2C1、OCH2CH2CH2C1、OCH2CH2CH2F、OCH (O- (ピリジン-4-イル) 、O- (5-C F_3-3- C 1-ピリジン-2-イ ν)、O - (5 - C F $_3-$ ピリジン- 2 - イル)、O C H $_2$ (4 - M e - 2 - (M e O C (O) C H M e O) - P h) , O C H $_2$ (4 - C l - 2 - (M e O C (O) CHMeO) - Ph)、5-トリフルオロメチル-3-クロロー2-ピリジル オキシ、5-トリフルオロメチルー2-ピリジルオキシ、2-ピリミジニルオキ シ、2-ピリジルオキシ、4-ピリジルオキシ、5-クロロー2-ピリジルオキ シ、6-トリフルオロメチル-2-ピリジルオキシ、3-トリフルオロメチルー 2 - ピリジルオキシ、OCH2(4 - (MeOCH2O) - Ph)、OCH2(4 - (MeOCH2OC (O) CHMeO) - Ph) 、OCH2 (4 - (EtOCH 2OC (O) CHMeO) - Ph), OCH2 (4 - (MeOCH2CH2OC (O) C H M e O) - P h) 、 O C H 2 (4 - (E t O C H 2 C H 2 O C (O) C H M eO) -Ph), OCH2 (4- (CH2=CHCH2OCH2CH2OC (O) C HMeO) - Ph), OCH2 (4 - (EtOCH2CH2CH2OC (O) CHM eO) - Ph), OCH2 (4- (MeOCH2CHMeOC (O) CHMeO) -Ph), OCH2 (4- (FCH2CH2OCH2OC (O) CHMeO) -Ph) $OCH_2(4-(HC \equiv CCH_2OCH_2OC(O)CHMeO)-Ph)$ CH₂CHClC (= NOMe) OMe, CH₂CHClC (= NOMe) OEt , CH_2CHC_1C (= NOMe) OCH2OMe, CH_2CHC_1C (= NOM e) OC (O) Me, CH2CHCIC (=NOMe) OC (O) Et, CH2C HClC (= NOMe) OC (O) NMe₂, <math>CH₂CHClC (= NOMe) O

SO2Me、CH2CHClC(=NOMe) OP(O)(OEt)2、CH2CHClC(=NNMe2)O(iso-ClC(=NNMe2)OMe、CH2CHClC(=NNMe2)O(iso-Pr)、CH2CHClC(=NNMe2)OCH2CO2Me、CH2CHClC(=NNMe2)OCH2CO2Me、CH2CHClC(=NNMe2)OC(O)Me、CH2CHClC(=NSO2Me)OMe、CH2CHClC(=NSO2Me)OMe、CH2CHClC(=NOMe)OMe、C(=NOMe)OMe、C(=NOMe)OCH2CO2Me、C(=NOMe)OC(O)Me、C(=NOMe)OC(O)Et、C(=NOMe)OC(O)Me、C(=NOMe)OC(O)Et、C(=NOMe)OC(O)NMe2、C(=NOMe)OSO2Me、C(=NOMe)OP(O)(OEt)2、C(=NOCH2CH2CH2SiMe3)OMe、C(=NOCH2CH2SiMe3)OMe、C(=NOCH2CH2SiMe3)OMe、C(=NOCH2CH2SiMe3)OMe、C(=NOMe)OMe、C(=NOMe)NMe2、2-ピリジル、3-クロロー5ートリフルオロメチルー2ーピリジル、フランー2ーイル、チオフェンー2ーイル、5ークロロチオフェンー2ーイル、4ーメチルー1、3ーオキサゾールー2ーイル、CH(CH2Cl)CH2CH2CH=CH2またはCH2CHClC(O)NMe(iso-Pr)

[置換基 R 5 の 具体例]

H、F、C1、Br、I、OH、NO2、NH2、CO2H、SH、Me、Et、Pr、iso-Pr、CF3、CF2C1、CF2H、CH2CH2C1、CH2C1、OMe、OEt、OPr、O(iso-Pr)、CH2CMe=CH2、CH2C1、CH2C1、OMe、OEt、OPr、O(iso-Pr)、CH2CMe=CH2、CH2CH2CH2CH3、OCHMeC=CH3、OCH2C=CH、OCHMeC=CH、OCH2C=CH、OCHMeC=CH、OCH2C=CH、OCHMeC=CH、OCHEtC=CH、OCHEtC=CH、OCHMeC=CH、OCHEtC=CMe、OCHEtC=CMe、OCHEtC=CMe、OCHEtC=CMe、OCHEtC=CMe、OCHEtC=CMe、OCHEtC=CH、OCHPrC=CH3、OCHMeC=CEt、OCHEtC=CEt、OCHPrC=CEt、2、3-エポキシ-2-メチルプロビル基または2-メチル-2-プロペニル基

[置換基R 6およびR 7の具体例]

H、F、Me、Et、CNまたはCF3

「置換基R®およびR®の具体例〕

H, Me, Et, Pr, iso-Pr, Bu, sec-Bu, iso-Bu, C $H_2CH=CH_2$, $CH_2C\equiv CH$, $CH_2C\equiv N$, CH_2CH_2F , CH_2CH_2CI 、CH2CH2CH2F、CO2Me、CO2Et、CO2Pr、CO2(tert-Bu), SO₂Me, SO₂Et, SO₂Pr, CH₂OMe, CH₂OEt, CH₂ $\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{I}\,\texttt{,}\,\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{F}\,\texttt{,}\,\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{C}\,\texttt{I}\,\texttt{=}\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{,}\,\,\texttt{C}\,\texttt{H}\,\texttt{2}\,\texttt{C}\,\texttt{B}\,\texttt{r}$ = C H $_2$, C H M e C \equiv C H , C H M e C = C H $_2$, O M e , O E t , O P r , C H (Me) $C \equiv N$, $C H_2 C O_2 Me$, $C H_2 C O_2 Et$, $C H_2 C O_2$ (i so - P r) 、CH2CONH2、CH2CONHMe、CH2CONMe2、CHMeCO2 Me、CHMeCO₂Et、CHMeCO₂ (iso-Pr)、CHMeCONH 2, CHMeCONHMe, CHMeCONMe2, CH2C (= NOMe) OM e 、 C H $_2$ C (= N O M e) O C H $_2$ C O $_2$ M e 、 C H $_2$ C (= N N M e $_2$) O M e , C H M e C (= N O M e) O M e , C H M e C (= N O M e) O C H $_2$ C O $_2$ M e 、 C H M e C (= N N M e $_2$) O M e 、 O C H $_2$ C O $_2$ M e 、 O C H $_2$ C O $_2$ E t 、 O C H 2 C O 2 (i s o - P r) 、 O C H 2 C O N H 2、 O C H 2 C O N H M e 、 OCH2CONMe2、OCHMeCO2Me、OCHMeCO2Et、OCHMe CO2 (iso-Pr), OCHMeCONH2, OCHMeCONHMe, OC $HMeCONMe_2$, OCH_2C (= NOMe) OMe, OCH_2C (= NOMe) O C H $_2$ C O $_2$ M e $_4$ O C H $_2$ C (= N N M e $_2$) O M e $_4$ O C H M e C (= N O Me) OMe, OCHMeC (= NOMe) OCH2CO2Me, OCHMeC (= N N M e $_2$) O M e $_3$ O C H $_2$ C H = C H $_2$ O C H $_2$ C \equiv C H $_3$ O C H $_2$ C \equiv N CH2、OCHMeC≡CHまたはOCHMeC≡N

〔置換基R¹⁰の具体例〕

H、C1、Br、F、I、Me、Et、Pr、iso-Pr、Bu、sec-Bu、iso-Bu、tert-Bu、Pen、neo-Pen、tert-Pen、CO₂Me、CO₂Et、CO₂Pr、CO₂(iso-Pr)、C(O) Me、C(O) Et、C(O) Pr、C(O) (iso-Pr)、C(O) Bu、C(O) (sec-Bu)、C(O) (iso-Bu)、C(O) (tert-Bu) またはC(O) (cyclo-Pr)

〔置換基R¹¹の具体例〕

[置換基 R 12の具体例]

H、F、Cl、Br、I、NH2、Me、Et、Pr、iso-Pr、Bu、sec-Bu、iso-Bu、tert-Bu、Pen、neo-Pen、tert-Pen、OMe、OEt、OPr、O(iso-Pr)、OBu、O(sec-Bu)、O(iso-Bu)、O(neo-Pen)、O(tert-Pen)、OPen、OHex、SMe、SEt、SPr、S(iso-Pr)、SBu、S(sec-Bu)、S(iso-Bu)、S(neo-Pen)、S(tert-Pen)、SPen、SHex、CH2OMe、CH2OEt、CH2CH2OMe、CH2OEt、CH2CH2OMe、CH2OEt、CH2CH2OMe、CH2OEt、CH2CH2OMe、CH2OEt、CH2CH2OMe、CH2OEt、CH2CH2OMe、CH2OEt、CH2CH2OMe、CH2CH2OMe

〔置換基R¹³の具体例〕

H, Me, Et, Pr, iso-Pr, Bu, sec-Bu, iso-Bu, tert-Bu, Pen, neo-Pen, tert-Pen, Ph, 2-F-Ph, 3-F-Ph, 4-F-Ph, 2-Cl-Ph, 3-Cl-Ph, 4-Cl-Ph, 2-Me-Ph, 3-Me-Ph, 4-Me-Ph, 2-MeO-Ph, 3-MeO-Ph, 4-MeO-Ph

「置換基R11およびR15の具体例〕

H、F、Cl、Br、I、NH2、Me、Et、Pr、iso-Pr、Bu、sec-Bu、iso-Bu、tert-Bu、Pen、neo-Penまたはtert-Pen

[置換基R16の具体例]

H、Me、Et、Pr、iso-Pr、Bu、sec-Bu、iso-Bu、t ert-Bu、Pen、neo-Penまたはtert-Pen

[置換基R¹⁷、R¹⁸、R¹⁹およびR²⁰の具体例]

H、Me、Et、Pr、iso-Pr、Bu、sec-Bu、iso-Bu、tert-Bu、Pen、neo-Penまたはtert-Pen

〔置換基R²¹の具体例〕

H、Me、Et、Pr、iso-Pr、C (O) CF3、C (O) Me、CO2Me、CO2Et、SO2Me、SO2CF3またはCH2OMe

[置換基R²²の具体例]

H、Me、Et、Pr、iso-Pr、cyclo-Pr、CH2Br、CH2O MeまたはCH2OH

〔置換基R²³の具体例〕

H、Me、Et、Pr、CHO、C (O) Me、C (O) Et、C (O) Pr、C (O) CH2C1、C (O) CH2Br、C (O) CF3、CO2H、CO2Me、CO2Et、CN、CH=NOH、CH=NOMe、C (Me) = NOMe、C1、Br、NO2、NH2、CH2OH、SMeまたはSO2Me

本発明化合物は反応式1ないし反応式8に示す方法により製造できる。 [反応式1]

〔式中、Q-及びXは前記と同様の意味を表し、Hal¹及びHal²は各々独立してハロゲン原子を表し、R¹ºはCı-C₄アルキル基を表す。〕

反応式1の工程1はベンゾイル酢酸類(2)とアミジン類またはその塩(3) を塩基存在下、反応させた後、酸処理することにより、本発明化合物の一部であ るピリミジノン誘導体(1a-1)を製造する工程である。

(3) は (2) に対して通常 1 ~ 1 0 0 倍モル、好ましくは 1 ~ 1 0 倍モル使用する。

塩基としては、水素化ナトリウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム及びテトラメチルグアニジン等があげられる。塩基は (2) に対して通常 1~10倍モル、好ましくは 1~10倍モル使用する。

本反応は無溶媒でも進行するが、必要に応じて溶媒を使用できる。溶媒は反応に不活性なものであれば特に制限はないが、例えば、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、1, 2-ジメトキシエタン、メタノール、エタノール、イソプロパノール及びトルエン等があげられる。

反応温度は通常−90~200℃、好ましくは0~120℃である。

反応時間は通常 0.05時間から 100時間、好ましくは 0.5~10時間で

ある。

反応終了後、溶媒を留去し、残渣に水を加え、酸処理後、固体をろ取することにより目的物を単離できる。酸処理に使用される酸としては塩酸、硫酸、燐酸及び酢酸があげられる。

工程 2 はピリミジノン誘導体(1 a - 1)を塩基存在下、クロロジフルオロメタンあるいはブロモジフルオロ酢酸エチルと反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 2)を製造する工程である。

クロロジフルオロメタンあるいはプロモジフルオロ酢酸エチルは(1 a - 1) に対して通常1~100倍モル、好ましくは1~10倍モル使用する。

塩基としては、水素化ナトリウム、水素化リチウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム及び水酸化カリウム等があげられる。塩基は(1 a - 1) に対して通常1~10倍モル、好ましくは1~10倍モル使用する。

本反応は無溶媒でも進行するが、必要に応じて溶媒を使用できる。溶媒は反応に不活性なものであれば特に制限はないが、例えば、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン及び1, 2ージメトキシエタン等があげられる。

反応温度は通常−90~200℃、好ましくは0~120℃である。

反応時間は通常 0.05時間から 100時間、好ましくは 0.5~10時間である。

工程3はピリミジノン誘導体(1 a - 2)をハロゲン化剤と反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 3)を製造する工程である。

本反応に使用されるハロゲン化剤としては、塩素、臭素、フッ素、ヨウ素、塩化スルフリル、 tert ーブチルハイポクロライト、N ークロロコハク酸イミド、N ープロモコハク酸イミド及びN ーヨードコハク酸イミド等があげられる。ハロゲン化剤は(1a -2)に対して通常 1 -1 0 0 倍モル使用する。

本反応は必要に応じて触媒を加えることができる。使用される触媒としては塩

化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅及びフッ化第二 銅等があげられる。

本反応は無溶媒でも進行するが、必要に応じて溶媒を使用できる。溶媒は反応 に不活性なものであれば特に制限はないが、例えば、クロロホルム、ジクロロメ タン、メタノール、エタノール及びアセトニトリル等があげられる。

反応温度は通常−90~200℃、好ましくは0~120℃である。

反応時間は通常 0.05時間から 100時間、好ましくは 0.5~10時間である。

[反応式2]

〔式中、Q-、X、Ra及びHal²は前記と同様の意味を表し、Hal³はハロゲン原子、C₁-C₄アルキルスルホニルオキシ、C₁-C₄ハロアルキルスルホニルオキシ基または置換フェニルスルホニルオキシ基を表す。〕

反応式 2 の工程 4 はピリミジノン誘導体(1 a - 1)を塩基存在下、求電子試薬 (4) と反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 4)を製造する工程である。

(4) は (1 a - 1) に対して通常1~100倍モル、好ましくは1~10倍 モル使用する。

塩基としては、水素化ナトリウム、水素化リチウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム及び水酸化カリウム等があげられる。塩基は(1 a. -1) に対して通常1~10倍モル、好ましくは1~10倍モル使用する。

本反応は無溶媒でも進行するが、必要に応じて溶媒を使用できる。溶媒は反応 に不活性なものであれば特に制限はないが、例えば、N, N-ジメチルホルムア

 ${\tt ミド}$ 、 ${\tt N}$, ${\tt N}$ - ${\tt ジメチルアセトアミド、<math>{\tt ジメチルスルホキシド、テトラヒドロフラン、<math>{\tt ジオキサン及び1}$, ${\tt 2}$ - ${\tt ジメトキシエタン等があげられる}$ 。

反応温度は通常−90~200℃、好ましくは0~120℃である。

反応時間は通常 0.05時間から 100時間、好ましくは 0.5~10時間である。

工程 5 はピリミジノン誘導体(1 a - 4)をハロゲン化剤と反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 5)を製造する工程である。本反応は反応式 1 の工程 3 と同様にして実施できる。

[反応式3]

[式中、Q-、X、Ra、Hal²及びHal³は前記と同様の意味を表す。]

反応式3の工程6はピリミジノン誘導体(1 a - 1)をハロゲン化剤と反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 6)を製造する工程である。本反応は反応式1の工程3と同様にして実施できる。

工程 7 はピリミジノン誘導体(1 a - 6)を塩基存在下、クロロジフルオロメタンあるいはプロモジフルオロ酢酸エチルと反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 3)を製造する工程である。本反応は反応式1の工程2と同様にして実施できる。

工程 8 はピリミジノン誘導体(1 a - 6)を塩基存在下、求電子試薬(4)と 反応させることにより本発明化合物の一部であるピリミジノン誘導体(1 a - 5)を製造する工程である。本反応は反応式 2 の工程 4 と同様にして実施できる。

〔反応式4〕

[式中、X、Ra及びHal'は前記と同様の意味を表す。]

反応式4はベンゾイル酢酸類 (2) とアミジン類またはその塩 (5) を塩基または酸存在下、反応させることにより、本発明化合物の一部であるピリミジノン誘導体 (1a-4) を製造する方法を示す。

(5) は (2) に対して通常 $1\sim 1$ 0 0 倍モル、好ましくは $1\sim 1$ 0 倍モル使用する。

本反応に使用される塩基としては、水素化ナトリウム、水素化リチウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム及びテトラメチルグアニジン等があげられ、酸としては、pートルエンスルホン酸、酢酸、プロピオン酸、トリフルオロ酢酸、塩酸、硫酸、燐酸、メタンスルホン酸及びトリフルオロメタンスルホン酸等があげられる。塩基または酸は(2)に対して通常1~100倍モル、好ましくは1~10倍モル使用する。

本反応は無溶媒でも進行するが、必要に応じて溶媒を使用できる。溶媒は反応に不活性なものであれば特に制限はないが、例えば、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、1,2ージメトキシエタン、メタノール、エタノール、イソプロパノール、ペンゼン、トルエン、キシレン、アセトニトリル及びクロロホルム等があげられる。

反応温度は通常−90~200℃、好ましくは0~120℃である。

反応時間は通常 0.05時間から 100時間、好ましくは 0.5~10時間である。

[反応式5]

[式中、Q-、X、Y、Rb及びR4°は前記と同様の意味を表す。]

反応式 5 はアシルイミデート類(6)とアセトアミド類(7)を反応させることにより、本発明化合物の一部であるピリミジノン誘導体(1 a - 7)を製造する方法を示す。本反応は、J. Chem. Soc., Perkin Trans. 1,2447(1984)に記載されている方法に準じて実施できる。

[反応式6]

[式中、Q-、X、Y、Ra、Rb及びHal³は前記と同様の意味を表す。] 反応式6の工程9はピリミジノン誘導体(1a-7)を塩基存在下、クロロジフルオロメタンあるいはプロモジフルオロ酢酸エチルと反応させることにより本発明化合物の一部であるピリミジノン誘導体(1a-8)を製造する工程である。本反応は反応式1の工程2と同様にして実施できる。

工程10はピリミジノン誘導体(1a-7)を塩基存在下、求電子試薬(4) と反応させることにより本発明化合物の一部であるピリミジノン誘導体(1a-9)を製造する工程である。本反応は反応式2の工程4と同様にして実施できる

〔反応式7〕

$$X \longrightarrow Q$$
 または $X \longrightarrow Q$ $Y \longrightarrow Q$

[式中、Q-、X及びYは前記と同様の意味を表し、R⁴¹はN,N-ジメチルアミノ、C₁-C₄アルコキシ基またはC₁-C₄アルキルチオ基を表す。]

反応式 7 は β - ジケトン類(8)またはビニルケトン類(9)と尿素類(1 0)を塩基または酸存在下、反応させることにより、本発明化合物の一部であるピリミジノン誘導体(1 b - 1)を製造する方法を示す。

(10) は (8) または (9) に対して通常 1~100倍モル、好ましくは 1~10倍モル使用する。

本反応に使用される塩基としては、水素化ナトリウム、水素化リチウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム及びテトラメチルグアニジン等があげられ、酸としては、pートルエンスルホン酸、酢酸、プロピオン酸、トリフルオロ酢酸、塩酸、硫酸、燐酸、メタンスルホン酸及びトリフルオロメタンスルホン酸等があげられる。塩基または酸は(8)または(9)に対して通常1~100倍モル、好ましくは1~10倍モル使用する。

本反応は無溶媒でも進行するが、必要に応じて溶媒を使用できる。溶媒は反応に不活性なものであれば特に制限はないが、例えば、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、1,2ージメトキシエタン、メタノール、エタノール、イソプロパノール、ベンゼン、トルエン、キシレン、アセトニトリル及びクロロホルム等があげられる。

反応温度は通常−90~200℃、好ましくは0~120℃である。

反応時間は通常 0.05時間から 100時間、好ましくは 0.5~10時間である。

〔反応式8〕

[式中、Q-、X、Y、Ra及びHal³は前記と同様の意味を表す。]

反応式8の工程11はピリミジノン誘導体(1b-1)を塩基存在下、クロロジフルオロメタンあるいはプロモジフルオロ酢酸エチルと反応させることにより本発明化合物の一部であるピリミジノン誘導体(1b-2)を製造する工程である。本反応は反応式1の工程2と同様にして実施できる。

工程12はピリミジノン誘導体(1b-1)を塩基存在下、求電子試薬(4)と反応させることにより本発明化合物の一部であるピリミジノン誘導体(1b-3)を製造する工程である。本反応は反応式2の工程4と同様にして実施できる

以下に本発明化合物の合成例を実施例及び参考例として具体的に述べるが、本 発明はこれらによって限定されるものではない。

〔実施例1〕

(1) 2. 4 - ジフルオロベンゾイル酢酸エチルの合成

マロン酸エチルカリウム(5 6.5g)のアセトニトリル(5 0 0 m 1)懸濁液に、10 $^{\circ}$ に冷却しながらトリエチルアミン(3 2 g)と塩化マグネシウム(3 8.0g)を加え、室温で5時間撹拌した。氷冷下、2,4 - ジフルオロベンゾイルクロライド(2 8.6g)をゆっくり滴下した。室温で一晩撹拌後、溶媒留去し、トルエン(2 0 0 m 1)を加え、氷冷下、6 規定塩酸(2 0 0 m 1)を加えた。有機層を3 規定塩酸及び水で順次洗浄後、無水硫酸ナトリウムで乾燥、溶媒留去し、目的物 2 1.5 g を得た。油状物質。

(2) 4-(2, 4-ジフルオロフェニル)-2-メチルピリミジン-6-オン (本発明化合物 No. 10)の合成

〔実施例2〕

1-ジフルオロメチルー4-(2, 4-ジフルオロフェニル) -2-メチルピリミジン-6-オン (本発明化合物 No. 11) の合成

4-(2,4-ジフルオロフェニル)-2-メチルピリミジン<math>-6-オン(10.0g)のN, N-ジメチルホルムアミド(100ml)溶液に、プロモジフ

ルオロ酢酸エチル(28.0g)、1,2-ジメトキシエタン(100ml)と水素化リチウム(0.90g)を加え、0.5時間加熱環流した。減圧下、溶媒留去し、残渣に氷水を加え、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(溶離液;ヘキサン/酢酸エチル=9/1)で精製し、目的物2.60gを得た。融点91-92 。

また、副生成物として、6-ジフルオロメトキシー4-(2 , 4-ジフルオロフェニル)-2-メチルピリミジン2 . 5 g を得た。融点6 0-6 1 \mathbb{C} 。

〔実施例3〕

(1) 5 - クロロー1 - ジフルオロメチルー4 - (2, 4 - ジフルオロフェニル) - 2 - メチルピリミジンー6 - オンの合成

1ージフルオロメチルー4ー(2、4ージフルオロフェニル)ー2ーメチルピリミジンー6ーオン(2.5g)のメタノール(25ml)とクロロホルム(25ml)混合溶液に、塩化第二銅(0.20g)を加え、10℃に冷却しながら、tertープチルハイポクロライト(2.0g)をゆっくり滴下した。室温で1時間撹拌後、6%亜硫酸水素ナトリウム水溶液(50ml)を加え、0.5時間激しく撹拌した。クロロホルムで抽出し、有機層を水洗後、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;ヘキサン/酢酸エチル=9/1)で精製し、目的物2.2gを得た。油状物質。

(2) 5ークロロー1ージフルオロメチルー4ー(2, 4ージフルオロー5ーニトロフェニル)ー2ーメチルピリミジンー6ーオンの合成

$$\begin{array}{c|c}
C_1 & F \\
\hline
N_0_2 \\
F_2HC & Me
\end{array}$$

5-クロロー1-ジフルオロメチルー4-(2,4-ジフルオロフェニル)ー 2-メチルピリミジンー6-オン(2.0g) の濃硫酸(20m1) 溶液に、水冷下、硝酸(60%,d=1.38,1.0g) をゆっくり滴下し、1時間撹拌した。反応液を氷水(200m1) に注ぎ、析出した固体をろ取、水洗、乾燥し、目的物 2.1g を得た。油状物質。

(3) 5-クロロ-4-(7-フルオロ-3-オキソー2H-1, 4-ベンゾオキサジン-6-イル)-1-ジフルオロメチルー2-メチルピリミジンー<math>6-オンの合成

5-クロロー1ージフルオロメチルー4ー(2, 4ージフルオロー5ーニトロフェニル)ー2ーメチルピリミジンー6ーオン(2. 0g)とグリコール酸エチル(1. 2g)のテトラヒドロフラン(50ml)溶液に、氷冷下、60%水素化ナトリウム(0. 35g)を加えた。室温で3時間撹拌後、水(300ml)を加え、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣に鉄粉(2. 0g、酢酸(10ml)、酢酸エチル(10ml)と水(30ml)を加え、3時間加熱還流した。水(50ml)と酢酸エチル(100ml)を加え、不溶物をろ別した。ろ液の有機層を分離し、水及び炭酸水素ナトリウム飽和水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をイソプロピルエーテルで再結晶し、目的物1.1gを得た。無色固体。

(4) 5-クロロ-4-(7-フルオロ-3-オキソ-4-プロバルギル-2H

-1, 4-ベンゾオキサジン-6-イル)-1-ジフルオロメチル-2-メチル ピリミジン-6-オン (本発明化合物 No. 61) の合成

5-クロロー4ー(7-フルオロー3-オキソー2 Hー1, 4-ベンゾオキサジンー6-イル)ー1-ジフルオロメチルー2-メチルピリミジンー6-オン(1.0g)のアセトニトリル(50m1)溶液に、プロパルギルブロミド(1.0g)と炭酸カリウム(0.6g)を加え、3時間加熱還流した。減圧下、溶媒留去し、残渣に水100m1を加え、酢酸エチルで抽出した。得られた有機層を水洗、無水硫酸マグネシウムで乾燥、溶媒留去し、残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=3/7)で精製し、目的物0.45gを得た。融点197-199℃

〔実施例4〕

(1) 4-(5-アミノー4-クロロー2-フルオロフェニル)-5-クロロー 1-ジフルオロメチルー2-メチルピリミジンー6-オンの合成

5ークロロー4ー(4ークロロー2ーフルオロー5ーニトロフェニル)ー1ージフルオロメチルー2ーメチルピリミジンー6ーオン(3.0g)の酢酸エチル(10ml)溶液に、鉄粉(2.5g)、酢酸(10ml)と水(30ml)を加え、3時間加熱還流した。水(50ml)と酢酸エチル(100ml)を加え、不溶物をろ別した。ろ液の有機層を分離し、水及び炭酸水素ナトリウム飽和水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた固体をイソプロピルエーテルで再結晶し、目的物 2.4gを得た。樹脂状物質。

(2) 5-クロロー4- (4-クロロー2-フルオロー5-メタンスルホニルア ミノフェニル) -1-ジフルオロメチルー2-メチルピリミジンー6-オン(本 発明化合物No. 4)の合成

4-(5-r = 2)-4-2 ロロー2ーフルオロフェニル)ー5ークロロー1ージフルオロメチルー2ーメチルピリミジンー6ーオン(0.70g)の塩化メチレン(3 m 1)溶液に、氷冷下、メタンスルホニルクロライド 0.28gとピリジン 0.3 g を加えた。室温で3日間撹拌後、水を加え、酢酸エチルで抽出した。有機層を1規定塩酸、水及び炭酸水素ナトリウム飽和水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥させた。溶媒留去して得られた残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=1/1)で精製し、目的物 0.3 5 g を得た。融点 170-172 \mathbb{C} 。

〔実施例5〕

(1) 5-クロロー4-(4-クロロー2-フルオロー5-ヨードフェニル)ー1-ジフルオロメチルー2-メチルピリミジンー6-オン(本発明化合物No.29)の合成

$$\begin{array}{c|c}
C_1 & C_1 \\
C_1 & C_$$

4-(5-アミノー4-クロロー2-フルオロフェニル) -5-クロロー1-ジフルオロメチルー2-メチルピリミジン-6-オン(2.0g) のアセトン(10ml) 溶液に12規定塩酸(2ml)、水(15ml) 及びヨウ化カリウム(2.0g) を加え、氷冷下、亜硝酸ナトリウム(0.80g) の水(2ml)溶液を滴下した。室温で0.5時間撹拌後、反応混合物を氷水(200ml) 及

びジエチルエーテル(100ml)の混合液中に注いだ。激しく撹拌しながら亜硫酸水素ナトリウムをヨウ素の色が消えるまで加えた。エーテル層を分離し、水洗、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル/ヘキサン=1/9)で精製し、目的物1.9gを得た。融点101—102℃。

(2) 5-クロロー 4-(4-クロロー 5-シアノー 2-フルオロフェニル)ー 1-ジフルオロメチルー 2-メチルピリミジンー 6-オン(本発明化合物 $\mathbb N$ o . 3 0)の合成

$$CF_2H \xrightarrow{CI} F \xrightarrow{CI} CN$$

(3) 2-クロロー5- (5-クロロー1-ジフルオロメチルー2-メチルピリミジン-6-オン-4-イル)-4-フルオロ安息香酸の合成

$$O \longrightarrow CI \longrightarrow CI$$
 CO_2H
 $CF_2H \longrightarrow N$
 Me

5 ークロロー4 ー (4 ークロロー5 ーシアノー2 ーフルオロフェニル) ー1 ー

ジフルオロメチルー2ーメチルピリミジンー6ーオン(1.0g)を49%硫酸(10ml)に加え、0.5時間加熱還流した。反応混合物を氷水(200ml)に注ぎ、酢酸エチルで抽出した。有機層を水洗、無水硫酸マグネシウムで乾燥、溶媒留去し、得られた残渣をジエチルエーテルで洗浄し、目的物0.10gを得た。無色固体。

(4) 5-クロロー4-(4-クロロー2-フルオロー5-メトキシカルポニルフェニル) -1-ジフルオロメチルー2-メチルピリミジンー6-オン(本発明化合物No. 7)の合成

$$CF_2H$$
 CI
 CI
 CO_2Me
 CF_2H

2- 2- 2- 2- 2- 3-

〔実施例6〕

(1) 3 - (4 - クロロフェニル) - 1 - ジメチルアミノプロペン-3 - オンの合成

4- 4- 4- 4- 4- 4- 4- 4- 5- 5- 5- 1-

(2) 4- (4-クロロフェニル) ピリミジン-2-オンの合成

3-(4-00007x=1)-1-3y チルアミノプロペン-3-3-オン(5.0 g) の1, 2-3yトキシエタン(50 m l) 溶液に、尿素(3.6 g) とナトリウムメトキシド(2.6 g) を加え、12時間加熱環流した。減圧下、溶媒留去し、水(200 m l) を加え、酸性になるまで12規定塩酸を加えた。析出した固体をろ取し、水及びジエチルエーテルで順次洗浄し、目的物 2.0 g を得た。無色固体。

(3) 4- (4-クロロフェニル) -1-ジフルオロメチルピリミジン-2-オン (本発明化合物 No. 64) の合成

 $4-(4-\rho \Box \Box \Box z = \lambda)$ ピリミジン-2-オン(2.0g)のN,N-ジメチルホルムアミド(20m1)溶液に、ブロモジフルオロ酢酸エチル(3.0g)、炭酸カリウム(1.5g)と炭酸セシウム(0.50g)を加え、100で2時間撹拌した。反応混合物を氷水(300m1)に注ぎ、酢酸エチルで抽出した。有機層を水洗、無水硫酸マグネシウムで乾燥、溶媒留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル/ヘキサン=2/8)で精製し、目的物0.60gを得た。融点164-166℃。

また、副生物として 0.80g の 4-(4-クロロフェニル) - 2-ジフルオロメトキシピリミジンを得た。融点 <math>112-114 \mathbb{C}

〔実施例7〕

(1) 2-アミノー4-(4-クロロフェニル) ピリミジンー6-オンの合成

4-クロロベンゾイル酢酸エチル(20.0g)とグアニジン塩酸塩(12.6g)のエタノール(400ml)懸濁液に、氷冷下、ナトリウムメトキシド(11.9g)を加えた後、6時間還流した。溶媒留去後、残渣に氷水(400ml)を加え、酸性になるまで6規定塩酸を加えた。得られた固体をろ取、ジエチルエーテルで洗浄、乾燥し、目的物16.0gを得た。無色固体。

(2) 2-アミノー 4-(4-クロロフェニル)-1-ジフルオロメチルピリミジン<math>-6-オン (本発明化合物 No. 5) の合成

$$O \longrightarrow N \longrightarrow N$$
 $F_2HC^{-N} \longrightarrow N$
 NH_2

2-アミノー4-(4-クロロフェニル)ピリミジンー6ーオン(10.0g)のN,Nージメチルホルムアミド(30m1)溶液に、ブロモジフルオロ酢酸エチル(27.5g)、1,2ージメトキシエタン(30m1)、水素化リチウム(0.50g)を加え、ゆっくり加熱した。約80℃にて発泡がはじまった。発泡終了後、0.5時間還流した。減圧下、溶媒留去し、残渣に氷水を加え、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル/ヘキサン=2/7)で精製し、目的物3.50gを得た。融点136-138℃。

(3) 2-アミノー5-クロロー4- (4-クロロフェニル) -1-ジフルオロメチルピリミジン-6-オン (本発明化合物 No. 6) の合成

$$CI$$
 CI
 C
 F_2HC^{-N}
 N
 N
 N

[実施例8]

5 ークロロー4 ー (4 ークロロフェニル) ー 1 ージフルオロメチルー 2 ーメチルチオピリミジンー 6 ーオン (本発明化合物 No. 23) の合成

ジメチルジスルフィド (30g) に2ーアミノー5ークロロー4ー (4ークロロフェニル) ー1ージフルオロメチルピリミジンー6ーオン (0.80g) と亜硝酸 t ertープチル (0.32g) を加え、80℃にて1.5時間撹拌した。ジメチルジスルフィドを留去して得られた残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=2/8)で精製し、目的物 0.35gを得た。融点 107-109℃。

〔実施例9〕

(1) 4-(4-クロロフェニル) ピリミジン-6-オンの合成

PCT/JP01/02158 WO 01/68613

4-クロロベンゾイル酢酸エチル (10g) とホルムアミジン塩酸塩 (5.4 g) のエタノール (250ml) 懸濁液に、氷冷下、ナトリウムメトキシド (6 . 0 g) を加え、8時間還流した。溶媒留去後、残渣に氷水(250 ml) を加 え、酸性になるまで6規定塩酸を加えた。得られた固体をろ取、ジエチルエーテ ルで洗浄、乾燥し、目的物 5.5 gを得た。無色固体。

(2) 4- (4-クロロフェニル) -1-ジフルオロメチルピリミジン-6-オ ンの合成

 $4 - (4 - \rho \, \Box \, \Box \, \Box \, \Box \, \Box \, \Box)$ $\Box \, \Box \, \Box \, \Box \, \Box \, \Box \, \Box$ $\Box \, \Box \, \Box \, \Box \, \Box$ $\Box \, \Box \, \Box \, \Box$ $\Box \, \Box \, \Box \, \Box$ メチルホルムアミド (20m1)溶液に、プロモジフルオロ酢酸エチル (15g)、1,2-ジメトキシエタン(20m1)、水素化リチウム(0.29g)を 加え、ゆっくり加熱した。約80℃にて発泡がはじまった。発泡終了後、1時間 還流した。減圧下、溶媒留去し、残渣に氷水を加え、ジエチルエーテルで抽出し た。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。残渣をシ リカゲルカラムクロマトグラフィー(溶離液;酢酸エチル/ヘキサン=2/8) で精製し、目的物 1. 6 gを得た。無色固体。

(3) 5-クロロー4-(4-クロロフェニル)-1-ジフルオロメチルピリミ ジンー6-オン (本発明化合物 No. 18) の合成

4- (4-クロロフェニル) -1-ジフルオロメチルピリミジン-6-オン (1.5g) のクロロホルム (70ml) 溶液に、氷冷下、tertープチルハイ ポクロライト(0.95g)を加えた。室温で2時間撹拌後、溶媒留去し、得ら れた残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=2/8)

で精製し、目的物 0. 8 0 gを得た。融点 5 9 − 6 1 ℃。

[実施例10]

(1) 4- (4-クロロフェニル) -5-シアノ-2-メチルピリミジン-6-オンの合成

メチルNーアセチルー4ークロロベンズイミデート(10g)のメタノール(200ml)溶液に、シアノ酢酸アミド(4.0g)とナトリウムメトキシド(2.6g)を加え、3時間還流した。溶媒留去後、残渣に水(100ml)とジイソプロピルエーテル(50ml)を加え抽出し、得られた水層に、酸性になるまで6規定塩酸を加えた。析出した固体をろ取、ジエチルエーテルで洗浄、乾燥し、目的物 2.2gを得た。無色固体。

(2) 4-(4- クロロフェニル) 5-シアノー1-ジフルオロメチルー2-メチルピリミジン-6-オン(本発明化合物<math>No.34)の合成

$$CN$$
 F_2HC
 N
 Me

 $4-(4-\rho \Box \Box \Box z = z - v) - 5 - v = z - z + v = z - z - v + v = z - z - v + v = z - z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v + v = z - v =$

[実施例11]

(1) 5-クロロー4- (4-クロロフェニル) -2-メチルピリミジン-6-オンの合成

4-(4-0)ロロフェニル)-2-メチルピリミジン-6-オン(10g)の 酢酸(100m1)溶液にN-0ロロコハク酸イミド(6.6g)を加え、120℃にて、0.5時間撹拌した。減圧下、溶媒留去後、残渣を酢酸エチルに溶解 し、水洗、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をシリカ ゲルカラムクロマトグラフィー(溶離液;酢酸エチル)で精製し、目的物 7.0gを得た。無色固体。

(2) 5-クロロー4- (4-クロロフェニル) -2-メチルー1-メチルチオメチルピリミジン-6-オン (本発明化合物 No. 26) の合成

5-クロロー4- (4-クロロフェニル) -2-メチルピリミジン-6-オン (0.50g) の1,2-ジメトキシエタン (20m1) 溶液にクロロメチルメチルスルフィド (0.28g) を加え、氷冷下、水素化リチウム (0.02g) を加えた。室温で3時間撹拌後、溶媒留去し、残渣に水を加え、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=2/8)で精製し、目的物 0.22g を得た。融点 105-107 \mathbb{C} 。

〔実施例12〕

(1) 5-クロロー4-(2-フルオロー4-メトキシー5-ニトロフェニル)

- 2 - メチルピリミジン - 6 - オンの合成

5-クロロー1-ジフルオロメチルー4ー(2,4-ジフルオロー5ーニトロフェニル)-2-メチルピリミジン-6-オン(0.51g)のテトラヒドロフラン(4 m l)溶液に、ナトリウムメトキシド(0.23g)を加え、室温で12時間撹拌した。水(30 m l)を加え、酢酸エチルにて抽出した。有機層を水及び塩化ナトリウム飽和水溶液にて順次洗浄、無水硫酸マグネシウムで乾燥、溶媒留去し、粗製の目的物 0.42gを得た。

黄色固体。

(2) 5-クロロー1-ジフルオロメチルー4-(2-フルオロー4-メトキシー5-ニトロフェニル)-2-メチルピリミジン-6-オンの合成

5-クロロー4-(2-フルオロー4-メトキシー5-ニトロフェニル)-2
ーメチルビリミジンー6ーオン(0.42g)のN,Nージメチルホルムアミド(3 m l)溶液に、プロモジフルオロ酢酸エチル(1.1g)、1,2ージメトキシエタン(3 m l)、水素化リチウム(0.04g)を加え、100℃にて4分間撹拌した。減圧下、溶媒留去し、残渣に水(10 m l)を加え、ジエチルエーテルで抽出した。有機層を3規定塩酸、水及び塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸マグネシウムで乾燥、溶媒留去した。残渣をジイソプロピルエーテルで洗浄、乾燥し、目的物0.16gを得た。油状物質。

(3) 5-クロロー1-ジフルオロメチル-4-(2-フルオロー4-ヒドロキシ-5-ニトロフェニル) -2-メチルピリミジン-6-オンの合成

(4) 5-クロロー1-ジフルオロメチルー4-(5-アミノー2-フルオロー4-ヒドロキシフェニル)-2-メチルピリミジン-6-オンの合成

$$\begin{array}{c|c} & & & \\ & & & \\$$

酢酸エチル(2m1)、酢酸(1m1)と水(2m1)の混合液に、鉄粉(0.086g)を加え、還流しながら、5-クロロ-1-ジフルオロメチルー4-(2-フルオロー4-ヒドロキシー<math>5-ニトロフェニル)-2-メチルピリミジン-6-オン(0.13g)の酢酸エチル(2m1)溶液を滴下した。滴下終了後、さらに0.75時間還流した。不溶物をろ別後、ろ液を酢酸エチルにて抽出した。有機層を水洗、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をn-ヘキサンで洗浄、乾燥し、目的物0.10gを得た。樹脂状物質。

(5) 5 - クロロー1 - ジフルオロメチルー4 - (6 - フルオロベンゾオキサゾロン-5-イル) - 2 - メチルピリミジン-6-オンの合成

$$C_1$$
 C_1
 C_1

5-クロロー1-ジフルオロメチルー4-(5-アミノー2-フルオロー4-ヒドロキシフェニル)-2-メチルピリミジンー6-オン(0.10g)のアセトニトリル(2ml)溶液に、N,N'-ジスクシンイミジルカーボネート(0.12g)を加え、室温で1時間撹拌した。水(20ml)を加え、酢酸エチルにて抽出した。有機層を水及び塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸マグネシウムで乾燥、溶媒留去し、目的物0.11gを得た。無色固体。

(6) 5 - クロロー 1 - ジフルオロメチルー 4 - (6 - フルオロー 3 - プロパル ギルベンゾオキサゾロン - 5 - イル) - 2 - メチルピリミジン - 6 - オン (本発 明化合物 No. 62) の合成

〔実施例13〕

(1) 4- (4-プロモー2-フルオロー5-メトキシフェニル) -2-メチル ピリミジン-6-オン (本発明化合物 No. 50) の合成

(2) 4-(4-ブロモー2-フルオロー5-メトキシフェニル) -5-クロロー2-メチルピリミジンー6-オンの合成

 $4-(4-70\pi-2-2-7)$ ルオロー 5-メトキシフェニル) -2-メチルピリミジンー 6-オン(1 4 . 0 g)の酢酸(2 0 0 m 1)溶液にN-クロロコハク酸イミド(6 . 6 0 g)を加え、1 2 0 C にて、0 . 5 時間撹拌した。減圧下、溶媒留去後、残渣を酢酸エチルに溶解し、水洗、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル)で精製し、目的物 1 4 . 5 g を得た。無色固体。

(3) 4-(4-プロモー2-フルオロー5-メトキシフェニル)-5-クロロー1-ジフルオロメチルー2-メチルピリミジンー6-オン(本発明化合物No.51)の合成

(4) 4-(4-ブロモー2-フルオロー5-ヒドロキシフェニル)-5-クロロー1-ジフルオロメチルー2-メチルピリミジンー6-オンの合成

$$O$$
 CI
 OH
 OH
 OH
 OH

4- (4-プロモー2-フルオロー5-メトキシフェニル) - 5-クロロー1
ージフルオロメチルー2ーメチルピリミジンー6ーオン (5.0g) の塩化メチレン (100ml) 溶液に、0℃にて三臭化ホウ素 (11g) を加え、室温で18時間撹拌した。反応液を氷水 (200ml) に加え、クロロホルムにて抽出した。有機層を水洗、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をジイソプロピルエーテルで洗浄、乾燥し、目的物3.3gを得た。無色固体。(5) 4- (4-プロモー2-フルオロー5-イソプロポキシフェニル) - 5-クロロー1-ジフルオロメチルー2-メチルピリミジンー6-オンの合成

4-(4-ブロモー2-フルオロー5-ヒドロキシフェニル)-5-クロロー1-ジフルオロメチルー2-メチルピリミジンー6-オン(3.3g)のアセトニトリル(50ml)溶液に、ヨウ化イソプロピル(3.6g)と無水炭酸カリウム(1.8g)を加え、2時間還流した。溶媒留去後、水(100ml)を加え、ジエチルエーテルにて抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去した。残渣をジエチルエーテルに溶解し、短いアルミナカラムを通過させた後、溶媒留去した。得られた残渣をジイソプロピルエーテルで再結晶し、目的物2.8gを得た。無職個体。

(6) 4- (4-シアノ-2-フルオロ-5-イソプロポキシフェニル) -5-クロロ-1-ジフルオロメチル-2-メチルピリミジン-6-オン (本発明化合物No.53) の合成

$$\begin{array}{c|c}
CI & CN \\
\hline
CN & CN \\
\hline
N & N
\end{array}$$

$$F_2HC & Me$$

 $4-(4-70\pi-2-7)$ ルオロー5ーイソプロポキシフェニル)-5ークロロー1ージフルオロメチルー2ーメチルピリミジンー6ーオン(2.0g)のNーメチルー2ーピロリドン(25ml)溶液に、シアン化第一銅(0.84g)とヨウ化第一銅(0.20g)を加え、窒素置換した後、155℃にて4時間撹拌した。0℃まで冷却後、6規定塩酸(5ml)を加え、0.25時間撹拌した。反応混合物を酢酸エチル(100ml)と水(100ml)の混合液にあけ、不溶物をろ別した。ろ液の有機層を分離し、塩化ナトリウム飽和水溶液で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去した。残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=2/8)で精製し、目的物 0.70g を得た。

樹脂状物質。

[実施例14]

(1) 5-クロロー4-(4-シアノー2-フルオロー5ーヒドロキシフェニル・) -1-ジフルオロメチルー2-メチルピリミジンー6-オンの合成

 $4-(4-\nu)$ アノー2ーフルオロー5ーイソプロポキシフェニル)ー5ークロロー1ージフルオロメチルー2ーメチルピリミジンー6ーオン(0. 70g)の塩化メチレン(30m1)溶液に、0 \mathbb{C} にて三臭化ホウ素(1. 4g)を加え、室温で18時間撹拌した。反応液を氷水(30m1)に加え、クロロホルムにて抽出した。有機層を水洗、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をジェチルエーテルで洗浄、乾燥し、目的物0. 5gを得た。無色固体。(2) $5-クロロー4-(4-\nu)$ アノー2-フルオロー5-(1-メチルプロパルギルオキシ)フェニル)-1-ジフルオロメチルー2-メチルピリミジンー6ーオン(本発明化合物No. 52)の合成

5-クロロー4-(4-シアノー2-フルオロー5-ヒドロキシフェニル)ー1-ジフルオロメチルー2-メチルピリミジンー6ーオン(0.40g)のアセトニトリル(30ml)溶液に、1-メチルプロパルギルメチルスルホネート(0.36g)、無水炭酸カリウム(0.25g)とヨウ化カリウム(0.06g)を加え、3時間還流した。溶媒留去後、水(30ml)を加え、酢酸エチルにて抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去した。得られた残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=3/

7) で精製し、目的物 0.35 gを得た。樹脂状物質。

[実施例15]

(1) 5-クロロー4-(2, 5-ジフルオロー4-ニトロフェニル) -2-メ チルピリミジン-6-オンの合成

5-クロロー4-(2,5-ジフルオロフェニル)-2-メチルピリミジンー6-オン(10g)の濃硫酸(40ml)溶液に、氷冷下、発煙硝酸(d=1.52、8ml)をゆっくり滴下し、室温で12時間撹拌した。反応液を氷水(300ml)に注ぎ、酢酸エチルにて抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去した。得られた残渣をジエチルエーテルで洗浄、乾燥し、目的物7.5gを得た。黄色固体。

(2) 5 - クロロー4 - (2 - フルオロー4 - ニトロー5 - プロパルギルアミノフェニル) - 2 - メチルビリミジンー6 - オンの合成

5-クロロー4-(2,5-ジフルオロー4-ニトロフェニル)-2-メチルピリミジン-6-オン(3.0g)のテトラヒドロフラン(30ml)溶液にプロパルギルアミン(1.1g)とトリエチルアミン(3.0g)を加え、室温で12時間撹拌した。溶媒留去後、水(50ml)と濃塩酸(3ml)を加え、酢酸エチルにて抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去し、粗製の目的物3.1gを得た。黄色固体。

(3) 4 - (4 - アミノー2 - フルオロー5 - プロパルギルアミノフェニル) -5 - クロロー2 - メチルピリミジン-6 - オンの合成

5-クロロー4-(2-フルオロー4-ニトロー5ープロパルギルアミノフェニル)-2-メチルピリミジンー6-オン(1.2g)の酢酸エチル(15ml)溶液に酢酸(2ml)、水(20ml)と鉄粉(0.80g)を加え、3時間還流した。不溶物をろ別後、ろ液を酢酸エチルにて抽出した。有機層を水及び塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸マグネシウムで乾燥、溶媒留去し、粗製の目的物1.2gを得た。樹脂状物質。

(4) 5 - クロロー4 - (5 - フルオロー1 - プロパルギルー2 - トリフルオロメチルベンゾイミダゾールー6 - イル) - 2 - メチルピリミジンー6 - オンの合成

4-(4-r) = 1/2 - 2-r)ルオロー 5-r ロロー 2-x チルピリミジンー 6-x ン(1.0g)をトリフルオロ酢酸(1.0g)をトリフルオロ酢酸(1.0g)に溶かし、2 時間還流した。溶媒留去して得られた残渣に水(2.0m)を加え、ジエチルエーテルにて抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去した。残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン= 4/6)で精製し、目的物 0.60gを得た。樹脂状物質。

(5) 5 - クロロー 1 - ジフルオロメチルー 4 - (5 - フルオロー 1 - プロパル ギルー 2 - トリフルオロメチルベンゾイミダゾールー 6 - イル) - 2 - メチルピ リミジン-6-オン(本発明化合物 No. 63)の合成

$$F_2HC$$
 N
 N
 CF_3
 N
 N

5-2000-4-(5-7ルオロ-1-プロパルギル-2-トリフルオロメチルベンゾイミダゾール-6-イル) -2-メチルピリミジン-6-オン(0.60g)のN, N-ジメチルホルムアミド(5 m 1)溶液に、プロモジフルオロ酢酸エチル(0.95g)、1,2-ジメトキシエタン(5 m 1)、水素化リチウム(0.02g)を加え、ゆっくり加熱した。80℃付近での発泡がおさまった後、さらに0.25時間還流した。減圧下、溶媒留去し、残渣に氷水(20 m 1)を加え、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。残渣をシリカゲル分取薄層板(展開溶媒;酢酸エチル/ヘキサン=2/8)で精製し、目的物 0.20gを得た。樹脂状物質。

また、副生成物として、5-クロロー6-ジフルオロメトキシー4-(5-フルオロ-1-プロパルギル-2-トリフルオロメチルベンゾイミダゾール-6-イル)-2-メチルピリミジン0.19gを得た。油状物質。

[実施例16]

(1) 5-クロロー4-(2-フルオロー5-(4-メトキシフェノキシ)ー4-ニトロフェニル)-2-メチルピリミジン-6-オンの合成

 $5-\rho$ ロロー4ー(2, $5-\Im$ フルオロー4ーニトロフェニル)-2-メチルピリミジン-6-オン(5. 0 g)と4-メトキシフェノール(4. 8 g)のN, N- \Im ジメチルホルムアミド(50 ml)溶液に、0 \Im にて60%水素化ナトリウム(0. 94 g)を加え、室温で12時間撹拌した。反応混合物を水(200 ml)にあけ、酢酸エチルで抽出した。有機層を水洗し、無水硫酸マグネシウム

で乾燥後、溶媒留去した。残渣をジエチルエーテルで洗浄、乾燥し、目的物3.2gを得た。黄色固体。

(2) 4-(4-アミノー2-フルオロー5-(4-メトキシフェノキシ)フェニル)-5-クロロー2-メチルピリミジン-6-オンの合成

5-クロロー4-(2-フルオロー5-(4-メトキシフェノキシ)-4-ニトロフェニル)-2-メチルピリミジン-6-オン(3.2g)の酢酸エチル(30ml)溶液に酢酸(5ml)、水(50ml)と鉄粉(3.0g)を加え、3時間還流した。不溶物をろ別後、ろ液を酢酸エチルにて抽出した。有機層を水及び塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をジエチルエーテルで洗浄後、乾燥し、目的物2.5gを得た。淡黄色固体。

(3) 5ークロロー4ー(2ーフルオロー4ーヨードー5ー(4ーメトキシフェ ノキシ)フェニル)ー2ーメチルピリミジンー6ーオンの合成

4-(4-アミノ-2-フルオロ-5-(4-メトキシフェノキシ)フェニル)-5-クロロ-2-メチルピリミジン-6-オン(2.5g)のアセトン(20ml)溶液に12規定塩酸(8ml)、水(10ml)及びヨウ化カリウム(2.0g)を加え、氷冷下、亜硝酸ナトリウム(1.1g)の水(4ml)溶液を滴下した。室温で0.5時間撹拌後、反応混合物を氷水(50ml)及びジエチルエーテル(50ml)の混合液中に注いだ。激しく撹拌しながら亜硫酸水素ナトリウムをヨウ素の色が消えるまで加えた。エーテル層を分離し、水洗、無水

硫酸マグネシウムで乾燥、溶媒留去した。得られた残渣をジイソプロピルエーテルで洗浄、乾燥して目的物 2.1 gを得た。無色固体。

(4) 5-クロロー1ージフルオロメチルー4ー(2-フルオロー4ーヨードー5-(4-メトキシフェノキシ)フェニル)-2-メチルピリミジンー6ーオンの合成

$$\begin{array}{c|c}
C & F \\
O & N \\
F_2HC & Me
\end{array}$$

(5) 5-クロロ-4-(4-シアノ-2-フルオロ-5-(4-メトキシフェノキシ) フェニル) -1-ジフルオロメチル-2-メチルピリミジン-6-オン (本発明化合物 No. 60) の合成

5-クロロー1-ジフルオロメチルー4-(2-フルオロー4-ヨードー5-(4-メトキシフェノキシ)フェニル)-2-メチルピリミジンー6-オン (1.6g)のN-メチルー2-ピロリドン(20m1)溶液に、シアン化第一銅(

〔実施例17〕

(1) 5-クロロー1-ジフルオロメチルー4-(2, 5-ジフルオロー4-ニトロフェニル) -2-メチルピリミジン-6-オンの合成

$$\begin{array}{c|c}
CI & & & & & & \\
& & & & & & \\
F_2HC & & & & & \\
& & & & & & \\
Me
\end{array}$$

5-クロロー1-ジフルオロメチルー4ー(2,5-ジフルオロフェニル)ー2-メチルピリミジン-6-オン(3.0g)の濃硫酸(20m1)溶液に、水冷下、発煙硝酸(d=1.52、2m1)をゆっくり滴下し、室温で12時間撹拌した。反応液を氷水(100m1)に注ぎ、ジエチルエーテルにて抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル/ヘキサン=2/8)で精製し、目的物2.2gを得た。淡黄色固体。

(2) 5-クロロー1-ジフルオロメチルー4ー(2-フルオロー4ーニトロー5-プロパルギルアミノフェニル)-2-メチルピリミジンー6-オン(本発明化合物No. 54)の合成

5-クロロー1-ジフルオロメチルー4ー(2,5-ジフルオロー4ーニトロフェニル)-2-メチルピリミジン-6ーオン(2.0g)のテトラヒドロフラン(30ml)溶液にプロパルギルアミン(0.63g)とトリエチルアミン(1.2g)を加え、室温で12時間撹拌した。溶媒留去後、水(50ml)を加え、酢酸エチルで抽出した。有機層を水洗、無水硫酸マグネシウムにて乾燥後、溶媒留去した。得られた残渣をジエチルエーテルに溶解し、短いシリカゲルカラムを通し、溶媒留去し、目的物1.6gを得た。樹脂状物質。

〔実施例18〕

3- (5- (5-クロロ-1-ジフルオロメチル-2-メチル-6-オキソヒドロピリミジン-4-イル)-2-クロロ-4-フルオロフェニル)-2-クロロプロピオン酸メチル(本発明化合物No.65)の合成

アクリル酸メチル(1.1g)のアセトニトリル(20ml)溶液に亜硝酸ターシャリープチル(0.96g)と塩化第二銅(0.91g)を加え、0℃にて、4-(5-アミノー4ークロロー2ーフルオロフェニル)-5ークロロー1ージフルオロメチルー2ーメチルピリミジンー6ーオン(2.1g)のアセトニトリル(10ml)溶液を滴下した。室温で40分間撹拌後、溶媒留去した。得られた残渣に3規定塩酸(50ml)を加え、酢酸エチルで抽出した。有機層を3規定塩酸、水および塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸マグネシウムにて乾燥、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;酢酸エチル/ヘキサン=1/5)で精製し、目的物0.64gを得た。油状物質。

[実施例19]

3- (5- (5-)クロロ-1-ジフルオロメチル-2-メチル-6-オキソヒドロピリミジン-4-イル)-2-クロロ-4-フルオロフェニルチオ)酢酸メ

チル (本発明化合物 No. 70) の合成

 $4-(5-r \le J-4-f)$ ロロー2ーフルオロフェニル)ー5-fロロー1ージフルオロメチルー2ーメチルピリミジンー6-fン(1.2g)に3.5%塩酸(1.0m1)を加え、5.0%にて0.5時間撹拌した。室温まで冷却後、アセトン(1.0m1)、水(1.0m1)、水(1.0m1)とチオグリコール酸メチル(1.0m1)を加え、1.0%にて、亜硝酸ナトリウム(1.0m1)を加え、1.0%にて、亜硝酸ナトリウム(1.0m1)を加え、1.0%にて、亜硝酸ナトリウム(1.0m1)を加え、1.0%にて、亜硝酸ナトリウム(1.0m1)を加え、1.0%にて、1.0%に、1.0%に、1.0%にて、1.0%に、1.

[実施例20]

(1) (4-クロロ-2-フルオロ-5-メトキシベンゾイル) 酢酸エチルの合成

原料に4-クロロ-2-フルオロ-5-メトキシベンゾイルクロリド(21. 9g)を使用し、実施例1の(1)と同様にして目的物18. 5gを得た。融点63-64 \mathbb{C} 。

(2) 4 - (4 - クロロー2 - フルオロー5 - メトキシフェニル) - 2 - メチル ピリミジンー6 - オンの合成

原料に(4-クロロー2-フルオロー5-メトキシベンゾイル)酢酸エチル(13.8g)を使用し、実施例1の(2)と同様にして目的物9.38gを得た。無色固体。

(3) 5-クロロー4-(4-クロロー2-フルオロー5ーメトキシフェニル)-2-メチルピリミジンー6-オンの合成

4-(4-0)ロロー2ーフルオロー5ーメトキシフェニル)ー2ーメチルピリミジンー6ーオン(5.00g)の酢酸(170m1)溶液にN-0ロロコハク酸イミド(2.70g)を加え、120℃にて、1時間撹拌した。反応液を室温まで冷却後、水(300m1)にあけ、00 ロロホルムで抽出した。有機層を水、炭酸水素ナトリウム飽和水溶液、塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸ナトリウムにて乾燥、溶媒留去して目的物 00 3 2 gを得た。融点 00 8 2 6 4 00。

(4) 5-クロロー4-(4-クロロー2-フルオロー5-メトキシフェニル) -1-ジフルオロメトキシ-2-メチルピリミジンー6-オン(本発明化合物 N o. 40) の合成

 $5- \rho$ ロロー $4-(4- \rho$ ロロー $2- \gamma$ ルオロー $5- \gamma$ トキシフェニル) -2 ーメチルピリミジンー $6- \gamma$ (5.32g) のN, Nージメチルホルムアミド (50m1) 溶液に、プロモジフルオロ酢酸エチル(35.6g)、 $1,2- \gamma$ メトキシエタン(50m1)と水素化リチウム(1.39g) を加え、撹拌しながら100 にて5 分間加熱した。室温まで冷却後、水(500m1)にあけ、ジエチルエーテルで抽出した。有機層を水および塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸マグネシウムで乾燥、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(溶離液;ヘキサン/酢酸エチル=4/1)で精製し、目的物 1.25g を得た。融点 130-131 。

[実施例21]

(1) 5-クロロー4-(4-クロロー2-フルオロー5-ヒドロキシフェニル) -1-ジフルオロメトキシー2-メチルピリミジンー6-オン(本発明化合物 No. 73)の合成

5-クロロ-4-(4-クロロ-2-フルオロ-5-メトキシフェニル)-1
-ジフルオロメトキシ-2-メチルピリミジン-6-オン(0.30g)の塩化メチレン(10ml)溶液に、0℃にて三臭化ホウ素(0.51g)を加えた。 室温にて1.5時間撹拌後、水(20ml)を加え、クロロホルムにて抽出した。有機層を水洗、無水硫酸ナトリウムで乾燥後、溶媒留去し、目的物0.30gを得た。油状物質。

(2) 5-クロロー4- (4-クロロー2-フルオロー5-プロパルギルオキシフェニル) -1-ジフルオロメトキシー2-メチルピリミジンー6-オン(本発明化合物No. 41)の合成

5-クロロー4-(4-クロロー2-フルオロー5-ヒドロキシフェニル)ー1-ジフルオロメトキシー2-メチルピリミジンー6-オン(0. 13g)のアセトニトリル(10m1)溶液に無水炭酸カリウム(0. 065g)とプロパルギルブロミド(0. 052g)を加え、1時間還流した。室温まで冷却後、水(20m1)を加え、ジエチルエーテルにて抽出した。有機層を水および塩化ナトリウム飽和水溶液で順次洗浄後、無水硫酸ナトリウムで乾燥、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;ヘキサン/酢酸エチル=3/1)で精製して目的物0. 84gを得た。融点124-125℃。(3)2-(5-(5-クロロー1-ジフルオロメチルー2-メチルー6-オキソヒドロピリミジン-4-イル)-2-クロロー4-フルオロフェノキシ)プロ

パンニトリル(本発明化合物 N o . 9 4)の合成

5-クロロー4- (4-クロロー2-フルオロー5-ヒドロキシフェニル) ー 1-ジフルオロメトキシー2-メチルピリミジン-6-オン (0.20g) のテトラヒドロフラン (2.5 m 1) 溶液にトリフェニルホスフィン (0.39g) 、ラクトニトリル (0.11g) とアゾジカルボン酸ジエチル (0.26g) を加えた。室温で18時間撹拌後、溶媒留去し、得られた残渣をシリカゲル分取薄

層板 (展開溶媒;酢酸エチル/ヘキサン= 1/2) で精製し、目的物 0.16g を得た。融点 133-134 \mathbb{C} 。

前記実施例に準じて合成した本発明化合物の構造式と物性を前記実施例を含め 第1表ないし第3表に示す。但し表中の記号は前記と同様の意味を表し、Q1、 Q2及びQ3は以下の意味を表す。

No.	Ra	Rb		R¹	R³	R ⁴	物性値(融点、℃)
1	CHF 2	Н	Me	Н	Cl	Н	126-128
2	CHF 2	C1	Мe	Н	Cl	Н	97-99
3	CHF 2	Cl	Мe	F	Cl	Н	樹脂状物質
4	CHF 2	· C1	Me	F	Cl	NHSO₂Me	170-172
5	CHF 2	Н	NH 2	Н	Cl	Н	136-138
6	CHF 2	Cl	NH 2	н	Cl	Н	171-173
7	CHF 2	C1	Me	F	C 1	CO ₂ Me	油状物質
8	Н	Н	Me	F	CI	H	>280 (分解)
9	CHF 2	Н	Мe	F	Cl	Н	95-96
10	Н	Н	Me	F	F	Н	>250(分解)
11	CHF 2	Н	Ме	F	F	Н	91-92

WC	WO 01/68613 PCT/JP01/02158								
12	CHF 2	C1	Мe	F	C1	NHCH ₂ C≡CH	150-152		
13	Me	Н	Me	Н	Cl	Н	152-154		
14	Me	Cl	Мe	Н	C1	Н	215-217		
15	iso-Pr	Cl	Мe	Н	Cl	Н	91-93		
16	MeOCH ₂	Cl	Мe	Н	C1	Н	104-106		
17	MeOCH ₂	Н	Мe	Н	CI	Н	92-94		
18	CHF 2	C1	Н	Н	Cl	Н	59-61		
19	CHF 2	Cl	Me	H	Cl	Н	85-87		
20	Н	Cl	Me	Н	Ci	Н	294-296		
21	Н	H	Мe	F	Br	Н	>270(分解)		
22	CHF 2	Н	Мe	F	Br	Н	107-108		
23	CHF 2	C1	MeS	H	CI	Н	107-109		
24	CHF 2	Cl	Мe	F	Br	Н	油状物質		
25	$CH \equiv CCH_2$	Cl	Me	Н	Cl	Н	133–135		
26	MeSCH ₂	Cl	Me	Н	Cl	Н	105-107		
27	MeSO ₂ CH ₂	Cl	Мe	Н	Cl	Н	224-226		
, 28	MeOCO	Cl	Мe	Н	Cl	Н	125-127		
29	CHF 2	Cl	Me	F	Cl	I	101-102		
30	CHF 2	Cl	Мe	F	Cl	CN	124-125		
31	CHF 2	C1	Мe	F	Br	NH 2	54-55		
32	CHF 2	C1	Мe	F	Br	NHS02Et	149-151		
33	CHF 2	Cl	Me	F	CN	N(C(0)(tert-Bu))SO ₂ Et	64-65		
34	CHF 2	CN	Мe	Н	Cl	Н	154-156		
35	CHF 2	C1	Мe	F	CN	NHS02Et	169-170		
36	CF ₂ CH ₂	Cl.	Мe	H	Cl	Н	123-125		
37	CH ₂ F(CH ₂)	2 Cl	Мe	Н	Cl	Н	114-116		
38	CHF 2	Cl	Мe	F	C1	N(S0 ₂ CH ₂ C1) ₂	187-188		
39	CHF 2	Cl	Мe	F	CI	NHSO 2 CH 2 C I	172–173		
40	CHF 2	Cl	Мe	F	Cl	OMe	130-131		

WO 0	WO 01/68613 PCT/JP01/02158								
41	CHF 2	C 1	Мe	F	Cl	OCH ₂ C≡CH	124-125		
42	CHF 2	Cl	Мe	F	Cl	OCH 20Me	121-122		
43	CHF 2	C 1	Мe	F	Cl	OCH 2CO 2Me	98-99		
44	CHF 2	C 1	Мe	F	Cl	OCH ₂ C(0)Me	128-129		
45	CHF 2	C 1	Мe	F	Cl	$OCH_2CMe(=NOMe)$	104-106		
46	CHF 2	CI	Мe	F	Cl	OCH2CO2Et	93-94		
47	CHF 2	C1	Мe	F	NO 2	$OCH_2C \equiv CH$	油状物質		
48	CHF 2	CH≡ CCH 2	O Me	F	NO 2	F	油状物質		
49	CHF 2	C 1	Мe	F	Cl	CO ₂ (iso-Pr)	油状物質		
50	Н	Н	Мe	F	Br	OMe	297-300		
51	CHF 2	C 1	Мe	F	Br	OMe	116-117		
52	CHF 2	C 1	Мe	F	CN	$OCHMeC \equiv CH$	樹脂状物質		
53	CHF 2	C1	Мe	F	CN	O(iso-Pr)	樹脂状物質		
54	CHF 2	C 1	Мe	F	NO 2	NHCH₂C = CH	樹脂状物質		
55	CHF 2	CI	Мe	F	CN	$OCH_2C \equiv CH$	樹脂状物質		
56	CHF 2	C1	Мe	F	CN	OCH₂OMe	樹脂状物質		
57	CHF 2	C1	Мe	F	CN	O(cyclo-Pen)	樹脂状物質		
58	CHF 2	C1	Мe	F	CN	OCH 2 CO 2 E t	127-129		
59	CHF 2	C1	Me	F	CN	$OCMe_2C \equiv CH$	133–135		
60	CHF 2	C1	Мe	F	CN	0(4-MeO-Ph)	146-148		
65	CHF 2	C1	Мe	F	C1	CH2CHC1CO2Me	油状物質		
66	CHF 2	C1	Мe	F	Cl	CH2CHC1COMe	油状物質		
67	CHF 2	C1	Me	F	Cl	CH2CHC1CO2Et	油状物質		
68	CHF 2	C 1	Мe	F	C1	CH2CHC1SO2Ph	63-65		
69	CHF 2	C 1	Мe	F	Cl	CH ₂ CHC1C(0)NMe ₂	57-59		
70	CHF 2	C1	Мe	F	C1	SCH 2 CO 2 Me	126-128		
71*	CHF 2	C1	Мe	F	Cl	CH=CClCO ₂ Et	油状物質		
72	CHF 2	Cl	Мe	F	C1	CH 2 CHC 1 CN	76-78		
73	CHF 2	C1	Мe	F	Cl	ОН	油状物質		

wo	01/68613						PCT/JP01/02158
74	CHF 2	Cl	Ме	F	Cl	CH ₂ CMeClCO ₂ Me	油状物質
75	CHF 2	Cl	Мe	F	C1	CH2CHBrCO2Me	34-36
76	CHF 2	C1	Me	F	Cl	CH2CHC1CH2C1	油状物質
77	CHF 2	Cl	Мe	F	Cl	CH2CHClOC(0)Me	. 35–37
78	CHF 2	Cl	Мe	F	Cl	OCH 2 CH=CH 2	108-109
79	CHF ₂	CI	Me	F	Cl	OPr	91-92
80	CHF 2	C1	Мe	F	Cl	OCH 2 Ph	油状物質
81	CHF 2	C1	Мe	F	C 1	OCH ₂ (4-CF ₃ -Ph)	油状物質
82	CHF 2	C1	Мe	F	CI	CH2CHC1CO2H	138-140
83	CHF 2	Cl	Мe	F	Cl	CH2CH2CO2Me	油状物質
84	CHF 2	Cl	Мe	F	Cl	CH2CHClCO2(iso-Pr)	油状物質
85	CHF 2	C1	Me	F	Cl	OCH 2 CH 2 CH=CH 2	油状物質
86	CHF 2	C1	Мe	F	Cl	OCH 2 CH=CHMe	90-91
87	CHF 2	Cl	Me	F	Cl	OC(0)CH=CMe ₂	127-129
88	CHF 2	C1	Me	F	Cl	OC(0)Me	105–107
89	CHF 2	C1	Мe	F	Cl	OC(0)CH2Cl	油状物質
90	CHF 2	C1	Мe	F	CI	OC(0)CH2OMe	油状物質
91	CHF 2	C1	Мe	F	Cl	OCH 2 CH 2 OCH=CH 2	101-102
92	CHF 2	C1	Мe	F	Cl	OCH 2 CH 2 C ≡ CH	100-102
93	CHF 2	C 1	Мe	F	C1	OCH 2 CN	油状物質
94	CHF 2	C1	Мe	F	C1	OCHMeCN	油状物質
95	CHF 2	Cl	Мe	F	Cl	O (2, 3-エホ°キシフ°ロヒ°ル)	144-146
96	CHF 2	C1	Мe	F	Cl	OEt	113-115
97	CHF 2	C1	Me	F	C1	OCH ₂ (cyclo-Pen)	油状物質
98	CHF 2	Cl	Me	F	C 1	OCH ₂ (cyclo-Bu)	油状物質
99	CHF 2	Cl	Me	F	Cl	OCH2(テトラヒト*ロフラン-3-イル)	油状物質
100	CHF ₂	Cl	Me	F	Cl	OCH (CH ₂ F) ₂	99-101
101	CHF 2	Cl	Me	F	Cl	OCH 2 (3-メチルオキセタン-3-イル)	油状物質
102	CHF 2	C1	Мe	F	Cl	OCH ₂ (cyclo-Pr)	油状物質

WO 01/68613						PCT/	JP01/02158
103	CHF 2	Cl	Мe	F	Cl	OCH 2 CH 2 F	132-133
104	CHF ₂	C1	Мe	F	Cl	OCH 2 CHF 2	油状物質
105	CHF 2	Cl	Me	F	C1	O(sec-Bu)	油状物質
106	CHF 2	C1	Me	F	C1	OCHMe(cyclo-Pr)	油状物質
107	CHF 2	C 1	Me	F	Cl	CH2CHC1CO2Bu	油状物質
108	CHF 2	Cl	Me	F	Cl	CH2CHC1CO2(iso-Bu)	油状物質
109	CHF 2	C1	Мe	F	Cl	CH2CHC1CO2(tert-Bu)	油状物質
110	CHF 2	Cl	Мe	F	Cl	CH2CHC1CO2(cyclo-Hex)	油状物質
111	CHF 2	C1	Мe	F	Cl	CH2CHC1CO2CH2CH2OMe	油状物質
112	CHF 2	C1	Me	F	Cl	CH 2 CHC 1 CO 2 CH 2 CF 3	油状物質
113	CHF 2	Cl	Мe	F	Cl	CH2CHC1CO2CH(CF3)2	油状物質
114	CHF 2	C1	Мe	F	Cl	CH ₂ CHC 1 C (0) NH ₂	164-166
115	CHF ₂	C 1	Мe	F	Cl	CH ₂ CMeClC(0)NMe ₂	油状物質
116	CHF 2	C1	Мe	F	Cl	CH2CHC1C(0)(モルホリン−1−イル)	64-66
117	CHF 2	C 1	Me ·	F	Cl	CH2CHC1CO2CH2(テトラヒト*ロフラン-2-イル)	油状物質
118	CHF 2	C1	Мe	F	Cl	OCH ₂ CH ₂ OC(0)Me	油状物質
119	CHF 2	C1	Мe	F	C1	OCH 2 CH 2 (モルホリン-1-イル)	油状物質
120	CHF 2	C1	Me	F	Cl	OCHMeCH=CH ₂	油状物質
121	CHF 2	Cl	Me	F	Cl	O(cyclo-Pen)	油状物質
122	CHF 2	C1	Me	F	C 1	0S0₂Me	185–187
123	CHF 2	C 1	Мe	F	Cl	OCH 2 (2, 2-シ*メチル-1, 3-シ*オキソラン-4-イル)	油状物質
124	CHF 2	C1	Мe	F	C1	OCHMeCH₂OMe	油状物質
125	CHF 2	Cl	Me	F	Cl	OCHMeCH₂C≡CH	油状物質
126	CHF 2	C1	Me	F	C1	OCH 2 CH 2 (ピロリジソー1ーイル)	油状物質
127	CHF 2	C1	Мe	F	Cl	OCH 2 CH 2 OPr	114-115
128	CHF 2	C1	Мe	F	Cl	OCH 2 (テトラヒト*ロフラン-2-イル)	油状物質
129	CHF 2	C1	Мe	F	Cl	CH ₂ CHClP(0)(0Et) ₂	油状物質
130	CHF 2	C1	Me	F	C 1	CH2CHC1CO2Pr	油状物質
131	CHF 2	Cl	Мe	F	Cl	CH ₂ (2-5pp7* \$191* -2-4w)	油状物質

WO 01	1/68613						PCT/JP01/02158
132	CHF 2	Cl	Мe	F	Cl	CH2CCl2CN	油状物質
133	CHF 2	CI	Мe	F	Cl	CH2CHC1SO2Me	油状物質
134	CHF ₂	C1	Мe	F	Cl	CH2CHBrC(0)NMe2	油状物質
135	CHF ₂	C1	Мe	F	Cl	CH2CHC1C(0)NHMe	54-56
136	CHF 2	Cl	Me	F	Cl	OCHMeCH 2 CH=CH 2	油状物質
137	CHF 2	C1	Мe	F	Cl	OCH 2 (テトラヒト*ロフラン-3-イル)	油状物質
138	CHF 2	C1	Мe	F	Cl	OC(0)NMe2	150-152
139	CHF 2	C1	Мe	F	C1	OCHMeCO ₂ Me	油状物質
140**	CHF 2	C1	Мe	F	Cl	OCHMeCO ₂ Me	油状物質
141**	*CHF2	C1	Me	F	CI	OCHMeCO₂Me	油状物質
142	CHF 2	C1	Мe	F	Cl	OCH2CH2(2-ピロリドン-1-イル)	油状物質
143	CHF 2	C1	Мe	F	Cl	OCH 2 CH 2 C l	85-87
144	CHF 2	Cl	Мe	F	Cl	0 (4-プタノリド-2-イル)	油状物質
145	CHF 2	C1	Мe	F	Cl	CH2CHC1C(0)NHOMe	68-71
146	CHF 2	Cl	Мe	F	Cl	CH ₂ CH ₂ C(0)NMe ₂	油状物質
147	CHF 2	C1	Мe	F	C1	OC(0)Et	107-108
148	CHF 2	Cl	Мe	F	Cl	OC(0)CH2CCl3	145-146
149	CHF 2	Cl	Мe	F	Cl	CH2CHC1C(0)NHEt	148-150
150	CHF 2	Cl	Мe	F	C1	CH2CHC1C(0)NH(iso-Pr)	157-159
151	CHF 2	C1	Мe	F	C1	CH2CHC1C(0)NH(iso-Bu)	93-95
152	CHF 2	Cl	Мe	F	Cl	CH2CHC1C(0)NH(sec-Bu)	105-107
153	CHF 2	C1	Мe	F	Cl	CH2CHClC(0)NH(tert-Bu)	65-67
154	CHF 2	C1	Me	F	Cl	CH2CHC1C(0)NH(cyclo-Pr)	179-181
155	CHF 2	C1	Мe	F	C1	CH2CHC1C(0)NH(cyclo-Hex)	92-95
156	CHF 2	C1	Мe	F	Cl	$CH_2CHClC(0)NHCH_2C \equiv CH$	52-54
157	CHF 2	C1	Мe	F	Cl	CH2CHC1C(0)NHCH2CH2OMe	45-47
158	CHF 2	C1	Мe	F	C 1	CH2CHC1C(0)NHCH2CH2NMe2	148-152
159	CHF 2	Cl	Me	F	Cl	CH2CHC1C(0)NHCH2CO2Et	63-65
160	CHF 2	Cl	Мe	F	C1	CH2CHC1C(0)NHCH(iso-Pr)CO2M	e 47-50

WO 01/68613						PCT/	JP01/02158
161	CHF 2	C 1	Мe	F	Cl	CH2CHC1C(0)NHNMe2	168-171
162	CHF 2	C1	Мe	F	Cl	CH 2 CHC 1 C (O) NH (モルホリン−1−イル)	107-109
163	CHF 2	C1	Мe	F	C 1	CH2CHC1C(0)NHPh	53-55
164	CHF 2	Cl	Мe	F	Cl	CH 2 CHC 1 C (0) NH (チアソ [*] ール-2-イル)	58-60
165	CHF 2	C1	Мe	F	Ci	CH 2 CHC 1 C (0) NH (5-メチルイソオキサソ*ール−3-イ	n) 78-81
166	CHF 2	C 1	Me	F	Cl	CH2CHClC(0)NHCH2Ph	108-110
167	CHF 2	Cl	Me	F	Cl	CH2CHClC(0)NMeBu	43-45
168	CHF 2	Cl	Me	F	Cl	CH2CHC1C(0)NMe(iso-Bu)	48-51
169	CHF 2	Cl	Мe	F	Cl	CH2CHCIC(0)NMeOMe	油状物質
170	CHF 2	CI	Ме	F	C1	CH2CHC1C(0)NEt2	41-43
171	CHF 2	C1	Мe	F	Cl	CH2CHC1C(0)NEtPr	油状物質
172	CHF 2	Cl	Me	F	Cl	CH2CHC1C(0)NEt(iso-Pr)	35-37
173	CHF 2	Cl	Мe	F	Cl	CH2CHC1C(0)NEtBu	油状物質
174	CHF 2	Cl	Me	F	Cl	CH2CHC1C(0)NEt(tert-Bu)	油状物質
175	CHF 2	Cl	Me	F	Cl	CH2CHC1C(0)N(iso-Pr)2	37-39
176	CHF 2	Cl	Me	F	Cl	CH2CHC1C(0)NPr(sec-Bu)	油状物質
177	CHF 2	C1	Мe	F	Cl	$CH_2CHC_1C(0)N(CH_2CH=CH_2)_2$	油状物質
178	CHF 2	Cl	Мe	F	Cl	CH2CHC1C(0)N(iso-Pr)(cyclo-Hex)	油状物質
179	CHF 2	CI	Me I	₹ (Cl CF	H ₂ CHC1C(0)N(CH ₂ CH=CH ₂)(cyclo-Hex)	油状物質
180	CHF 2	Cl	Me I	₹ (C1 CF	H ₂ CHC1C(0)N(CH ₂ CH=CH ₂)(cyclo-Pen)	油状物質
181	CHF 2	C1	Me	F	Cl	CH2CHC1C(0)NMePh	油状物質
182	CHF 2	C1	Мe	F	Cl	CH₂CHC1C(0)NMe(ピリジン-2-イル)	70-72
183	CHF 2	Cl	Me	F	Cl	CH₂CHC1C(0)N(ピロリジン-1-イル)	60-62
184	CHF 2	Cl	Мe	F	C 1	CH ₂ CHClC(=NOMe)OCH ₂ CO ₂ Me	油状物質
185	CHF 2	CI	Ме	F	Cl	CH2CHC1CO2(sec-Bu)	油状物質
186	CHF 2	_ C1	Ме	F	Cl	CH2CHC1CO2CH2CH=CH2	油状物質
187	CHF 2	C1	Мe	F	Cl	CH2CHC1CO2CHMeCH=CH2	油状物質
188	CHF 2	C1	Me	F	Cl	$CH_2CHC_1CO_2CH_2C \equiv CH$	油状物質
189	CHF 2	C1	Мe	F	Cl	$CH_2CHClCO_2CHMeC = CH$	油状物質

WO 01/68613					P	CT/JP01/02158	
190	CHF 2	C1	Me	F	C 1	CH2CHC1CO2CH2(cyclo-Pr)	油状物質
191	CHF 2	Cl	Мe	F	Cl	CH2CHC1CO2CH2CHC1CH2C1	油状物質
192	CHF 2	Cl	Me	F	Cl	CH2CHC1CO2CH2CH=CMeC1	油状物質
193	CHF 2	Cl	Мe	F	Cl	CH2CHC1CO2CH2CH2SMe	油状物質
194	CHF 2	Cl	Мe	F	Cl	OCONH ₂	166-170
195	CHF ₂	C1	Me	F	Cl	OCO (モルホリン-1-イル)	油状物質
196	CHF 2	C 1	Мe	F	Cl	0 CH 2 CC l = CH 2	86-88
197	CHF 2	C1	Мe	F	Cl	OCHEtC = CH	油状物質
198	CHF 2	C1	Me	F	Cl	$OCHPrC \equiv CH$	油状物質
199	CHF 2	C1	Мe	F	Cl	$OCH(iso-Bu)C \equiv CH$	油状物質
200	CHF 2	Cl	Мe	F	Cl	CH2CHC1C(0)NMeCH2CO2Et	32-34
201	CHF 2	C1	Мe	F	C1	CH2CHC1C(0)N(cyclo-Hex)Ph	58-60
202	CHF 2	C1	Me	F	Cl	CH2CHC1C(0)N(4-メチルヒ°へ°ラシ ⁺ ン-1-	IN) 164-167
203	CHF 2	C 1	Мe	F	Cl	CH₂CHC1C(O)N(チオモルホリン-1-イル)	50-53
204	CHF 2	Ci	Мe	F	Cl	0S0 2 CF 3	93-94
205	CHF 2	CI	Ме	F	Cl	OCH2(1,5-ジメチルピラゾ-ル-1-イル)	199-201
206	CHF 2	Cl	Мe	F	C1	OCHFCO ₂ Et	油状物質
207	CHF 2	C1	Мe	F	C1	OCH2CH2Br	油状物質
208	CHF 2	C1	Мe	F	C1	OCH 2 CH 2 CN	114-116
209	CHF 2	C 1	Мe	F	Cl	OCH 2 CF 3	88-90
210	CHF 2	Cl	Мe	F	Cl	OCF2CO2Et	油状物質
211	CHF 2	Cl	Me	F	Cl	CH2CHClCO2CH2CO2Et	油状物質
212	CHF 2	C1	Мe	F	Cl	CH2CHC1C(0)N(CH2CH2C1)2	油状物質
213	CHF 2	Cl	Мe	F	Cl	OCH ₂ (4-MeOCH ₂ O-Ph)	油状物質
214	CHF 2	Cl	Me	F	C 1	CH2CHC1C(=NOMe)OMe	油状物質
215	CHF 2	Cl	Мe	F	Cl	CH ₂ CHMeCO ₂ Me	油状物質
216	CHF 2	Cl	Мe	F	C1	$OCH_2C \equiv CCH_2C1$	146-148
217	CHF 2	C1	Мe	F	CI	0 (1-メチルヒ゜ロリシ゛ソー3-イル)	151-153
218	CHF 2	C1	Мe	F	Cl	OCH ₂ C(0)NEt ₂	134-136

01/68613	PCT/JP01/02158
CHF ₂ Cl Me F Cl OCH ₂ C(0)(と゜ロリシ゛ン-1-イル)	157-159
CHF ₂ Cl Me F Cl OCH ₂ C(O)(モルホリン-1-イル)	185-187
CHF ₂ C1 Me F C1 OCH ₂ C(0) NMe(CH ₂ C \equiv CH)	油状物質
CHF ₂ C1 Me F C1 OCH ₂ C(0) NMe (CH ₂ CH=CH ₂)	113-115
CHF ₂ Cl Me F Cl OCH ₂ CO ₂ CH ₂ CF ₃	126-128
CHF ₂ Cl Me F Cl CH ₂ CHCl(=NOMe)OC(0)Me	43-45
CHF ₂ Cl Me F Cl OCH ₂ C(0)NHMe	166-168
CHF ₂ Cl Me F Cl OCH ₂ C(0)NMe ₂	122-125
CHF ₂ Cl Me F Cl OCH(CH ₂ Cl)CH ₂ OCH ₂ CH=CH ₂	油状物質
CHF ₂ Cl Me F CN CH ₂ CHC1CO ₂ Me	油状物質
CHF ₂ Cl Me F Br CH ₂ CHClCO ₂ Me	油状物質
CHF ₂ Cl Me F Cl CH ₂ CHClC(0)NMe(iso-Pr)	45-47
CHF ₂ Cl Me F Cl Me	油状物質
CHF ₂ Cl Me F Cl CH ₂ CHClC(=NOMe)OCH ₂ OMe	油状物質
CHF_2 Cl Me F Cl $OCH(iso-Bu)C \equiv CH$	油状物質
CHF ₂ Cl Me F Cl OCH ₂ OCH ₂ CH ₂ SiMe ₃	油状物質
CHF ₂ Cl Me F Cl CH ₂ OMe	84-86
CHF_2 $C1$ Me F $C1$ $OCHBuC \equiv CH$	油状物質

^{*)} E体と Z 体の混合物。**) S体。***) R体。

〔第2表〕

No.	Ra	Rb	X	Q-	物性値(融点、℃)
61	CHF ₂	C1	Me	Q1	197-199
62	CHF ₂	C1	Me	Q2	160-161
63	CHF ₂	C1	Me	Q3	樹脂状物質

[第3表]

No.	Ra	Rb	X	R¹	R³	R ⁴	物性値(融点、℃)		
64.	CHF2	Н	H	Н	Cl	Н	164-166		
ے شریق ہے جو جو ایک ایک ایک ایک جو بہتا ہے۔ ایک									

次に、本発明に含まれる化合物の例を、前記実施例で合成した化合物を含め、 第4表~第6表に示すが、本発明はこれらによって限定されるものではない。 [第4表]

$$CF_{2}H$$

$$CF_{2}H$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{4}$$

$$CF_{5}$$

$$CF_{5$$

$$CF_{2}H \xrightarrow{N} Me$$

$$CF_{2}H \xrightarrow{N} Me$$

$$CF_{3} \xrightarrow{N} H$$

$$CF_{3} \xrightarrow{N} H$$

$$CF_{4} \xrightarrow{N} H$$

$$CF_{2}H \xrightarrow{N} Me$$

$$CF_{3} \xrightarrow{N} H$$

$$CF_{4} \xrightarrow{N} H$$

$$CF_{5} \xrightarrow{N} H$$

PCT/JP01/02158

$$CI$$
 CF_2H
 NH_2
 CF_3
 Me
 CF_2H
 NH_2
 CF_3
 NH_2
 NH_2
 CF_3
 NH_2
 NH_2
 OF_3
 OF_3

$$CIF F F O F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F F O F$$

$$CI = Br$$

$$CI = CI$$

$$CI =$$

VO 01/68613

$$CI F CN R^{4}$$

$$H N N N CF_{3} CN$$

$$CI F CN R^{4}$$

$$CF_{2}H N N R^{2}$$

$$CF_{3} CN CN R^{4}$$

$$CF_{3} CN CN R^{4}$$

$$CF_{3} CN CN R^{4}$$

$$\begin{array}{c|c}
CI & & CN \\
CF_2H & & N \\
\end{array}$$

$$CF_2H$$
 CF_3
 CN
 CN
 CN

$$\begin{array}{c|c}
CI & CN \\
CF_3 & N & N \\
NH_2 & ,
\end{array}$$

$$\begin{array}{c|c}
C & F & C & N \\
O & & & & R^4 \\
H & & & & NH_2
\end{array}$$

$$CF_2H \xrightarrow{N} N N$$

$$Me$$

$$\begin{array}{c|c}
CI & CN \\
CF_3 & N & N
\end{array}$$

$$\begin{array}{c|c}
CI & CN \\
CF_3 & N & R^4
\end{array}$$

$$CF_{2}H$$

$$CF_{2}H$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{4}$$

$$CF_{5}$$

$$CF_{5}$$

$$CF_{6}$$

$$CF_{7}$$

$$CF_{7$$

$$CF_{2}H$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{2}H$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{5}$$

$$CF_{5}$$

$$CF_{5}$$

$$CF_{5}$$

$$CF_{6}$$

$$CF_{7}$$

$$CF_{1}$$

$$CF_{2}$$

$$CF_{3}$$

$$CF_{4}$$

$$CF_{5}$$

$$CF_{5}$$

$$CF_{5}$$

$$CF_{6}$$

$$CF_{7}$$

PCT/JP01/02158

$$CI \longrightarrow R^4$$

$$CF_2H \longrightarrow NH_2$$

$$CF_3 \longrightarrow Me$$

$$CF_2H \longrightarrow NH_2$$

$$CF_2H \longrightarrow NH_2$$

$$CF_3 \longrightarrow NH_2$$

$$\begin{array}{c|c}
O & H & CI \\
\hline
CF_2H & N & N \\
Me
\end{array}$$

$$\begin{array}{c|c}
O & & & Br \\
\hline
O & & & & R^4
\end{array}$$

$$C F_2 H & & & Me$$

$$O \xrightarrow{H} R^4$$

$$CF_2H \xrightarrow{N} Me$$

$$O \longrightarrow \mathbb{R}^4$$
 $CF_2H \longrightarrow \mathbb{N}$
 Me

$$\begin{array}{c|c}
C & F & C \\
C & F_2 & F \\
C & F_2 & F \\
M & e
\end{array}$$

$$CF_2H$$
 N
 N
 N
 N
 Me

$$\begin{array}{c|c}
C & & & Br \\
C & & & & R^4 \\
C & & & & Me
\end{array}$$

$$\begin{array}{c|c}
C & F & C & N \\
C & F_2 & H & N & N \\
M & e & & M \\
\end{array}$$

$$\begin{array}{c|c}
C & F \\
C & F_2 & F
\end{array}$$

$$\begin{array}{c|c}
C & F \\
M & e
\end{array}$$

$$\begin{array}{c|c}
CN & Br \\
CF_2H & N & N \\
Me
\end{array}$$

$$O \longrightarrow R^4$$
 $CF_2H \longrightarrow N$
 Me

$$0 \underset{M \text{ e}}{ \downarrow } \underset{R^4}{ \downarrow }$$

$$O \longrightarrow F$$
 $CF_2H \longrightarrow N$
 Me

$$\begin{array}{c|c}
C & F & F & C \\
C & F_2 & H & N & N \\
M & M & M & M
\end{array}$$

$$CF_2H$$
 N
 Me
 R^4

$$\begin{array}{c|c}
 & F \\
 & F \\$$

$$\begin{array}{c|c}
C & F & F & C & N \\
C & F_2 & H & N & N \\
M & M & M & M
\end{array}$$

$$CF_2H \xrightarrow{R^4} Me$$

$$O \downarrow F$$
 $CF_2H^{-N} \downarrow N$
 Me

$$\begin{array}{c|c}
 & F \\
 & G \\$$

$$O \longrightarrow \mathbb{R}^4$$
 $CF_2H \longrightarrow \mathbb{N}$
 Me

$$\begin{array}{c|c}
C & & C \\
C & & C \\
C & & M \\
\end{array}$$

$$\begin{array}{c|c}
C & F & C \\
C & F_2 & H & M \\
\end{array}$$

$$O \longrightarrow N \longrightarrow R^4$$
 $CF_2H \longrightarrow Me$

$$CI \longrightarrow CI$$

$$CF_2H \longrightarrow CI$$

$$Me$$

$$\begin{array}{c|c}
O & N & F \\
C F_2 H & N & C I
\end{array}$$
Me

$$\begin{array}{c|c} O & & & & & Br \\ \hline O & & & & & & R^4 \\ CF_2H & & & & & & \\ Me & & & & & \\ \end{array}$$

$$O \longrightarrow N \longrightarrow R^4$$
 $CF_2H^{-N} \longrightarrow CI$
 Me

R 4

H, F, C1, Br, I, CHO, CO2H, C (O) NH2, SO2C1, C (O) Me, SH, OH, NH2, NO2, CN, Ph, Me, Et, Pr, iso -Pr, Bu, sec-Bu, iso-Bu, tert-Bu, Pen, neo -Pen、tert-Pen、cyclo-Pr、cyclo-Bu、cycl o-Pen, cyclo-Hex, $CH_2CH=CH_2$, CH (Me) CH=CH $_{2}$, $CH_{2}C\equiv CH$, CH (Me) $C\equiv CH$, OMe, OEt, O (iso-Pr), OPr, OBu, O(sec-Bu), O(tert-Bu), O(iso-Bu), O (cyclo-Pen), O (cyclo-Pr), O (cycl o-Hex), O (neo-Pen), O (tert-Pen), OPen, O Hex, OHep, OOct, OCH2Ph, OPh, O(4-C1-Ph), O(3-C1-Ph), O(2-C1-Ph), O(4-Me-Ph), O(3-Me-Ph), O (2-Me-Ph), O (4-MeO-Ph), O (3-Me-Ph)e O - P h), O (2 - M e O - P h), O C H 2 C H = C H 2, O C H 2 C H =C H M e 、 O C H M e C H = C H 2、 O C M e 2 C H = C H 2、 O C H 2 C \equiv C H , O C H M e C \equiv C H \downarrow O C M e $_2$ C \equiv C H \downarrow O C H $_2$ C H = C C 1 H \downarrow O C H $_2$ C $C l = C H_2$, $O C H M e C H_2 C H = C H_2$, $O C H M e C H_2 C \equiv C H$, $C H_2$ CH2OMe, OCH2CH2OEt, OCH2CH2OPr, OCH2OMe, OC H₂OEt, OCH₂OCH₂Ph, OCH₂O (cyclo-Pen), OCH₂ O (cyclo-Bu), OCH2O (cyclo-Pr), OCH2O (ter t-Bu), OCH_2O (iso-Bu), OCH_2O (sec-Bu), OCH2 O P r 、 O C H 2 O (i s o - P r) 、 O C H 2 O B u 、 O C H 2 C H 2 C H 2 O M e, OCH2CH2CH2CH2OMe, OCH2OCH2CH2SiMe3, OCH (Me) OMe, O-(テトラヒドロピラン-2-イル), O-(テトラヒドロピラン-3-イル)、〇-(テトラヒドロピラン-4-イル)、〇-(テトラヒド ロフラン-2-イル)、〇- (テトラヒドロフラン-3-イル)、〇-オキシラ ニル、OCH2(cyclo-Pr)、OCH2(cyclo-Bu)、OCH2

(cyclo-Pen), OCH2 (cyclo-Hex), OCH2 (1, 5-ジメチルピラゾールー1ーイル)、〇一(2,3-エポキシプロピル)、〇〇H $_2$ C M e = C H $_2$ 、 O C H $_2$ O C H $_2$ C $(テトラヒドロフラン-2-イル)、OCH<math>_2$ (2, 2ージメチルー1, 3ージ オキソランー4ーイル)、OCH(CH2OEt)2、OCH2(テトラヒドロピ ラン-2-イル)、OCH₂(フラン-2-イル)、OCH₂(フラン-3-イル)、OCH2(テトラヒドロフラン-3-イル)、OCH2(3-メチルオキセタ ν – 3 – 4 ν) 、 O C H M e (c y c l o – P r) 、 O C H $_2$ C H $_2$ O C H = C H $_2$, O C H $_2$ C \equiv C M e , O C H $_2$ C E C M e , OCH₂CH₂CH₂C = CH₂OCH₂CH₂CH₂CM = CH₂COCH₂CH₂CH₂ $CH = CH_2$, OCH_2CH_2SMe , OCH_2CH_2OC (O) Me, OCH_2CH 2 (モルホリン-1-イル)、OCH2CH2(ピロリジン-1-イル)、OCH2 CH_{2} (2-ピロリドン-1-イル)、O-(2-シクロヘキセン-1-イル) , O C H 2 C H 2 O C H 2 C H 2 C I , O C H 2 C H 2 O C H 2 C H = C H 2, O C H 2 CH2OPh, OCHEtC = CH, OCHPrC = CH, OCH (iso-B u) $C \equiv CH$, $OCHPhC \equiv CH$, $OCHBuC \equiv CH$, OCH (is o-Pr) $C \equiv C H$, O C H (C H M e P r) $C \equiv C H$, $O C H_2 C \equiv C P h$, $O C H_2$ $C \equiv C C H_2 O M e$, $O C H M e C \equiv C E t$, $O C H_2 C H = C (M e) ₂, <math>O C$ $H_2CHMeCH=CH_2$, $OCH_2CH_2OCH_2C\equiv CH$, $OCHEtCH_2OC$ $H_2CH=CH_2$, $OCHMeCH_2OEt$, $OCHMeCH_2OPr$, OCHMe $C H_2 O C H_2 C H = C H_2$, $O C H M e C H_2 O C H_2 C H = C H M e$, O C H (CH2Cl) CH2O (iso-Pr), OCH (CH2Cl) CH2OCH2CH = C H₂, O C H M e C H₂O C H₂C H = C H C 1, O C H M e C H₂O C H C 1 $CH = CH_2$, $OCHMeCH_2OCH_2CH_2OMe$, $OCHBrCH_2OEt$, OCH (CH₂OCH₂CH=CH₂) $_2$, OCHEtCH₂CH₂OEt, O (1-メチルピロリジン-3-4ル)、OCH2C \equiv CCH2C1、OCH2CH2O(2 - C 1 - P h $) 、 O C H <math>_2$ C H $_2$ O C H $_2$ C H $_2$ O M $_2$ C H $_3$ O M $_4$ C H $_4$ O M $_4$ C H $_5$ O M $_5$ O M $_4$ C H $_5$ O M $_5$ OCH (CH2F) 2、OCH2CH2OCH2CH2OCH2CH2C1、OCH2C HMeOPh、OCHMeCH2OCMe3、OCHMeCH2OMe、OCH2C

H₂CH₂OEt, OCHEtCH=CH₂, OCH₂CH₂CH₂Cl, OCHMe CH2OPh, OCHMeCH=CH2, OCHMeCH=CHMe, OCH (C $H = C H_2$) 2, $O C H_2 C H C l C H_2 C l$, $O C H_2 C H_2 C H_2 B r$, O C H (C H 2 C 1) 2 , O C H (C H 2 B r) 2 , O C H M e C H 2 C 1 , O C H 2 C H 2 F OCH2CHF2, OCH2CF3, OCH (CF3) 2, OCH2CH2CN, OC H2CH2Br, OCH2CH2CO2Me, OCH2CH2CO2Et, OCHPhC O₂Me, OCHPhCO₂Et, OCH₂CH₂NMe₂, OCH₂CH₂SO₂Me 、OCH2CH2CH2SMe、OCH2CH2CH2S (O) Me、OCH2CH2C H2SO2Me、OCH2C(O) Me、OCH2CH2(オキシラニル)、O-(エポキシプロピル)、OCH2CN、OCHMeCN、OC(O)Me、OC(O) Et, OC (O) Pr, OC (O) (iso-Pr), OC (O) CH = CMe2、OC(O) CH2C1、OC(O) CH2CC13、OC(O) (モルホリ ンー1ーイル)、OC(O)CH2OMe、OCO2Me、OCO2Et、OCO2 Pr, OCO2 i so-Pr, OCO2Ph, OC (O) NH2, OC (O) NM e_2 , OC (O) NE t_2 , OC (O) NP r_2 , OCH₂CM $e = CH_2$, O (i so-Pen), SMe, SEt, S (iso-Pr), SPr, SBu, S (sec-Bu), S(iso-Bu), S(cyclo-Pen), S(cyclo-Pr), S(cyclo-Hex), S(neo-Pen), S(tert-Pen), SPen, SHex, SHep, SOct, SCH₂CH=CH₂ 、 S C H M e C H = C H $_2$ 、 S C M e $_2$ C H = C H $_2$ 、 S C H $_2$ C \equiv C H 、 S C H M $e C \equiv C H$, $S C M e ₂ C <math>\equiv C H$, S C H ₂ C H = C C I H, S C H ₂ C C I = CH $_2$ 、 S C H $_2$ C F $_3$ 、 S C H $_2$ C H $_2$ O M e 、 S C H $_2$ C H $_2$ O E t 、 S C H $_2$ O M e 、SCH2OEt、SCH2(cyclo-Pr)、SCH2CN、NHMe、N HEt, NH (iso-Pr), NHPr, NHBu, NH (sec-Bu), NH (iso-Bu), NH (cyclo-Pen), NH (cyclo-Pr) 、 NH (cyclo-Hex) 、 NH (neo-Pen) 、 NH (tert-Pen), NHPen, NHHex, NHHep, NHOct, NHCH2CH = $C H_2$, $N H C H M e C H = <math>C H_2$, $N H C M e_2 C H = C H_2$, $N H C H_2 C \equiv$

CH, NHCHMeC = CH, NHCMe2C = CH, NHCH2CH = CCIH NHCH2CC1=CH2、NHCH2CF3、NHCH2CH2OMe、NHCH 2CH2OEt, NHCH2OMe, NHCH2OEt, NHCH2 (cyclo-Pr), NHCH2CN, CO2Me, CO2Et, CO2 (iso-Pr), CO 2Pr, CO₂ (cyclo-Pr), CO₂Bu, CO₂ (sec-Bu), CO $_{2}$ (iso-Bu), CO₂ (tert-Bu), CO₂ (cyclo-Bu), CO2Pen, CO2 (cyclo-Pen), CO2Pen, CO2 (neo-P en), CO2 (tert-Pen), CO2Hex, CO2 (cyclo-He x) CO2Hep, CO2Oct, CO2CH2CH=CH2, CO2CHMeCH = C H $_2$, C O $_2$ C M e $_2$ C H = C H $_2$, C O $_2$ C H $_2$ C \equiv C H $_3$ C O $_2$ C H M e C \equiv C H 、 C O $_2$ C M e $_2$ C \equiv C H 、 C O $_2$ C M e $_2$ C O $_2$ C H $_2$ C H = C H $_2$ 、 C O $_2$ C M $e_2 C O_2 C H M e C H = C H_2$, $C O_2 C M e_2 C O_2 C M e_2 C H = C H_2$, $C O_2$ $CMe_2CO_2CH_2C\equiv CH$, $CO_2CMe_2CO_2CHMeC\equiv CH$, CO_2CM $e_2 C O_2 C M e_2 C \equiv C H$, $C O_2 C M e_2 C O_2 C H_2 C H_2 C \equiv C H$, $C O_2 C M$ $e_2CO_2CH_2CH_2CH_2CH_2CH_2CCO_2CMe_2CO_2CH_2CH_2CH_2CCO_2$ CH2OMe, CO2CH2OEt, CONMe2, CONEt2, CO2CH2CO2 Me、CO2CH2CO2Et、CO2CH2CO2Pr、CH2CHClCO2Me、 CH2CMeClCO2Me、CH2CHClCO2Et、CH2CMeClCO2E t 、 C H 2 C H B r C O 2 M e 、 C H 2 C H C I S O 2 P h 、 C H 2 C H C I S O 2 M e、CH2CHClC(O) Me、CH2CHClCO2H、CH2CHClCO2 (iso-Pr), CH2CHClCO2 (cyclo-Hex), CH2CHC $1CO_2$ (tert-Bu), $CH_2CHC1CO_2$ (iso-Bu), CH_2CH ClCO₂Bu、CH₂CHClCO₂ (sec-Bu)、CH₂CHClCO₂P r、CH2CHC1CO2CH2(テトラヒドロフランー2ーイル)、CH2CHC 1C(O)(モルホリン-1-イル)、CH2CHC1C(O)NH2、CH2C MeClC(O) NH2, CH2CMeClC(O) NMe2, CH2CHClCO 2CH (CF3) 2, CH2CHClCO2CH2CF3, CH2CHClCO2CH2C H₂OMe, CH₂CHClCONHOMe, CH₂CHClC(O)NHMe, CH2CHC1C (O) NHEt, CH2CHC1C (O) NH (iso-Pr)

、CH2CHClC(O)NH(iso-Bu)、CH2CHClC(O)NH(sec-Bu), CH2CHClC(O) NH (tert-Bu), CH2CHC 1C (O) NH (c·y clo-Pr), CH2CHClC (O) NH (cycl o-Hex), CH_2CHClC (O) $NHCH_2C\equiv CH$, CH_2CHClC (O) NHCH2CH2OMe, CH2CHC1C (O) NHCH2CH2NMe2, C H2CHC1C (O) NHCH2CO2Et, CH2CHC1C (O) NHCH (i so-Pr) CO2Me, CH2CHClC (O) NHNMe2, CH2CHClC (O) NH (モルホリン-1-イル)、CH2CHCIC(O) NHPh、CH2 CHC1C (O) NH (チアゾール-2-イル)、CH2CHC1C (O) NH (5-メチルイソオキサゾール-3-イル)、CH2CHClC(O)NHCH2 Ph, CH2CHClC (O) NMe2, CH2CHBrC (O) NMe2, CH2 CHClC (O) NMeBu, CH2CHClC (O) NMe (iso-Bu) CH2CHClC (O) NMeOMe, CH2CHClC (O) NEt2, CH2 CHClC (O) NEtPr, CH2CHClC (O) NEt (iso-Pr) CH2CHClC (O) NEtBu, CH2CHClC (O) NEt (tert -Bu), CH2CHClC (O) N (iso-Pr) 2, CH2CHClC (O) NPr (sec-Bu), CH_2CHClC (O) N ($CH_2CH=CH_2$) 2, CH2CHC1C (O) N (CH2CH2C1) 2, CH2CHC1C (O) N (i so-Pr) (cyclo-Hex), CH_2CHClC (O) N (CH_2CH CH_2) (cyclo-Hex), CH_2CHClC (O) N ($CH_2CH=CH_2$) (cyclo-Pen), CH2CHClC (O) NMePh, CH2CHCl C (O) NMe (ピリジン-2-イル)、CH2CHCIC (O) N (ピロリジ ン-1-イル)、CH2CHCIC(O)N(チオモルホリン-1-イル)、C H₂CHClC(O)N(4-メチルピペラジン-1-イル)、CH₂CHClC (O) N (cyclo-Hex) Ph, CH2CHClC (O) NMeCH2CO $_{2}$ E $_{t}$ 、 $_{C}$ H $_{2}$ C H C $_{1}$ C (= N O M e) O C H $_{2}$ C O $_{2}$ M e 、 O C H $_{2}$ C M e (= NOMe) , OCH_2CH (= NOMe) , $CH_2CHClCO_2CH_2CH=CH$ $_2$, $_C$ $_H$ $_2$ $_C$ $_H$ $_C$ $_C$ $_C$ $_C$ $_C$ $_H$ $_C$ H, $CH_2CHC_1CO_2CHMeC \equiv CH$, $CH_2CHC_1CO_2CH_2$ (c y c

lo-Pr), CH2CHClCO2CH2CHClCH2Cl, CH2CHClC O 2 C H 2 C H = C M e C l 、 C H 2 C H C l C O 2 C H 2 C H 2 S M e 、 C H 2 C H C 1 C O 2 C H 2 C O 2 E t 、 C H 2 C H C 1 C N 、 C H 2 C C 1 2 C N 、 C H 2 C H 2 CO2Me, CH2CH2C (O) NMe2, CH2CH2CH2CO2Me, CH2C O₂Me、CH₂CHMeCO₂Me、CH₂ (2-クロロブタノリド-2-イル) 、 C H = C H C O $_2$ M e 、 C H = C H C O $_2$ E t 、 O C H $_2$ C O $_2$ M e 、 O C H $_2$ C O 2 E t , O C H 2 C O 2 C H 2 C F 3 , O C H 2 C O 2 P r , O C H 2 C O 2 B u , C HFCO2Me, OCHFCO2Et, OCHFCO2Pr, OCHFCO2Bu, OCHFCO2Ph、CHClCO2Me、OCHClCO2Et、OCHClC O2Pr, OCClFCO2Bu, CHBrCO2Me, OCHBrCO2Et, O CHBrCO₂Pr, OCHBrCO₂Bu, OCF₂CO₂Me, OCF₂CO₂E t, OCF2CO2Pr, OCF2CO2Bu, OCCl2CO2Me, OCCl2C O₂Pen, OCH₂CO₂ (tert-Bu), OCH₂CO₂Ph, OCH₂CO 2Pen, OCH2CO2Hex, OCH2CO2 (cyclo-Pen), OCH2 CO2 (iso-Pr), OCH2CO2CH2Ph, OCHMeCO2Me, OC HMeCO₂Et,OCHMeCO₂Pr,OCHMeCO₂(iso-Pr), OCHMeCO₂Pen、OCHMeCO₂ (cyclo-Pen)、O-(4-ブタノリド-2-イル)、O-(5-ペンタノリド-2-イル)、O-(6-ヘ キサノリド-2-イル)、OCH (CO2Me) 2、OCH (CO2Et) 2、OC H (CO₂Pr)₂, OCH (CN) CO₂Me, OCH (CN) CO₂Et, OC Me₂CO₂Me, OCMe₂CO₂Et, OCMe₂CO₂CH₂CH=CH₂, OC M e $_2$ C O $_2$ C H $_2$ C \equiv C H $_3$ O C H M e C O $_2$ C H $_2$ C H = C H $_2$ $_3$ O C H M e C O $_2$ C $_2$ C $_2$ C $_3$ C $_4$ C (O) NM $_2$ C (O) NE $_4$ C (O) NE $_2$ C (O) C (O) $(\pm \nu \pm \nu - 1 - 4\nu)$, OCH_2C (O) NMe $(CH_2C \equiv CH)$ OCH_2C (O) NMe (CH₂CH=CH₂) OCH_2C (O) NHMe OCH_2 CH₂C (O) (ピロリジン-1-イル)、OCH₂C (O) (ピペリジン-1-イル)、OCH2C(O)Me、OCH2C(O)Et、OCH2C(O)Pr、 OCH₂C (O) CH₂OMe, OCH₂C (O) (4-CI-Ph), OCH₂C (O) (4 - B r - P h), OCH_2C (O) (3 - Cl - P h), OCH_2C (

O) (3 - B r - P h), OCH_2C (O) (2 - C l - P h), OCH_2C (O) (2-Br-Ph), OCH2C (O) Ph, OCH2CH2C (O) Ph, O CH₂ (4-C₁-P_h), OCH₂ (3-C₁-P_h), OCH₂ (2-C₁-Ph), OCH₂ (4-CF₃-Ph), OCH₂ (3-CF₃-Ph), OCH₂ $(2-CF_3-Ph)$, $OCH_2(4-F-Ph)$, $OCH_2(3-F-Ph)$, OCH₂ (2-F-Ph), OCH₂ (4-Me-Ph), OCH₂ (3-Me-Ph), OCH2 (2-Me-Ph), OCH2 (4-MeO-Ph), OCH2 (3 - MeO-Ph), OCH2 (2 - MeO-Ph), OSO2Me, OSO2 CF3、SCH2CO2Me、SCH2CO2Et、SCH2CO2Pr、SCH2CO 2Bu, SCH2CO2Pen, SCH2CO2Hex, SCH2CO2 (cyclo - Pen), SCH2CO2 (iso-Pr), SCH2CO2CH2Ph, SCH MeCO₂Me、SCHMeCO₂Et、SCHMeCO₂Pr、SCHMeCO₂ (iso-Pr), SCHMeCO2Pen, SCHMeCO2 (cyclo-P en) SOCH2CO2Me, SOCH2CO2Et, SO2CH2CO2Me, S O2CH2CO2Et、NHCH2CO2Me、NHCH2CO2Et、NHCH2CO 2Pr、NHCH2CO2Bu、NHCH2CO2Pen、NHCH2CO2Hex、 NHCH2CO2 (cyclo-Pen), NHCH2CO2 (iso-Pr), N HCH2CO2CH2Ph、NHCHMeCO2Me、NHCHMeCO2Et、N HCHMeCO2Pr、NHCHMeCO2 (iso-Pr)、NHCHMeCO 2Pen、NHCHMeCO2 (cyclo-Pen)、NHCO2Me、NHC O_2E_t , $NHCO_2P_r$, $NHCO_2$ (is $o-P_r$), $NHCO_2B_u$, NHCO₂ (cyclo-Pr), NHCO₂ (cyclo-Pen), NHCO₂ (i so-Bu), NHCO2 (sec-Bu), NHCO2 (tert-Bu), N HCO2CH2CH=CHCH3, NHCO2CH2CH=CH2, NHCO2CH2C \equiv CH, NHCO₂Ph, NHCO₂CH₂Ph, NHCO₂CH₂ (2-Me-P h) , NHCO₂CH₂ (3-Me-Ph) , NHCO₂CH₂ (4-Me-Ph) NHCO2CH2 (4-Et-Ph), NHCO2CH2 (2-MeO-Ph), NHCO₂CH₂ (3-MeO-Ph), NHCO₂CH₂ (4-MeO-Ph), NHCO₂CH₂(4-Cl-Ph), NHCO₂CH₂(4-F-Ph), NHC

O2CH2 (4-CF3-Ph) 、NHCO2CH2 (2-F-Ph) 、NHCO2C H₂ (3-F-Ph), NHCO₂CH₂ (3-Cl-Ph), NHCO₂CH₂ (2-C1-Ph), NHCO2CH2 (4-CF3O-Ph), NHSO2Me, N HSO₂Et, NHSO₂Pr, NHSO₂ (iso-Pr), NHSO₂Bu, N HSO₂CH₂Ph, NHSO₂CHCl₂, NHSO₂CH₂Cl, NHSO₂CH₂ CH2C1, NHSO2CH2CH2CH2C1, NHSO2CH2CF3, NHSO2 Ph, N (SO₂Et) CO₂Et, N (CH₂OMe) SO₂Et, N (CH₂C $H = C H_2$) $S O_2 E t$, $N (C H_2 C \equiv C H) S O_2 E t$, $N M e S O_2 M e$, N(SO₂Me)₂, N (SO₂CH₂Cl)₂, N (SO₂Et)₂, N (SO₂Pr) 2, NEtSO2Et, NMeSO2Et, NEtSO2Et, N (Pr) SO2E t, N (C (O) Me) SO₂Et, N (CH₂OMe) SO₂Me, N (CH₂O E t) S O $_2$ M e 、 N (C H $_2$ C H = C H $_2$) S O $_2$ M e 、 N (C H $_2$ C \equiv C H) S O2Me, CONHSO2Me, CONHSO2Et, CONHSO2CF3, 1, 3-ジオキソラン-2-イル、1, 3-ジオキサン-2-イル、<math>4-(E t O C(O) CH₂CH₂O) - PhO, 4 - (MeOC (O) CH₂CH₂O) - PhO , NMeCO₂Me, N (CH₂C \equiv CH) CO₂Me, NMeC (O) Me, N HCHO, NHC (O) CF3, NHC (O) Et, NHC (O) Me, NHC OPr, N (CH₂C \equiv CH) COMe, N (CH₂CH = CH₂) CO₂Me, N 2CN) CO2Me, N (C (O) (tert-Bu)) SO2Me, N (C (O) (tert-Bu)) SO₂Et、N (C (O) (2-MeO-Ph)) SO₂ Me, N (C (O) (3-MeO-Ph)) SO_2Me , N (C (O) (4-M) eO-Ph)) SO_2Me , N (C (O) (2-MeO-Ph)) SO_2Et , N(C (O) (3 - M e O - P h)) SO₂Et, N (C (O) (4 - M e O - P)h)) SO₂Et, N(C(O)(4-Me-Ph)) SO₂Me, N(C(O) (4-Me-Ph)) SO₂Et, N (C (O) (4-Cl-Ph)) SO₂Me 、N (C (O) (4-C1-Ph)) SO2Et、CO2(オキセタン-3-イル) 、N (CHO) CH2CO2Me、N (CHO) CH2CO2Et、N (CHO) CH2CO2Pen、N (CHO) CHMeCO2Me、N (CHO) CHMeC

O₂Et, N(C(O) Me) CH₂CO₂Me, N(C(O) Me) CH₂CO₂ Et, N (C (O) Me) CH2CO2Pen, N (C (O) Me) CHMeCO 2Me, N (C (O) Me) CHMeCO2Et, N (CH2CN) SO2Me, N (SO₂Me) CH₂CO₂Me, N (SO₂Me) CH₂CO₂Et, N (SO₂E t) CH2CO2Me, N (SO2Et) CH2CO2Et, CF3, CF2H, CH2 Cl, CH2Br, CHBr2, CH2OH, CHBrEt, CH2CHClCH2 C1, CH (OH) CH = CH₂, CH (OH) C \equiv CH, CH₂CHClOC (O) Me, CH (CO₂Me) ₂, CH (CO₂Et) ₂, CH (CN) CO₂Me CH (CN) CO2Et, CH2CN, CH2CH2CN, CH=CHCN, CM e 2 C N 、 C H 2 N M e 2 、 C H 2 N E t 2 、 C H 2 N P r 2 、 C H 2 S M e 、 C H 2 S Et, CH_2SP_r , $CH_2SCH_2C \equiv CH$, $CH_2SCH_2CH = CH_2$, CH_2 SO₂Me, CH₂SO₂Et, CH₂OCH₂CH=CH₂, CH₂OMe, CH₂O Et, CH_2OPr , CH_2O (iso-Pr), $CH_2OCH_2C \equiv CH$, C (O) Et, C (O) Pr, C (O) (iso-Pr), CH=N (OMe), CH= N (OEt), CH=N (OPr), CH=N (OCH₂CO₂Et), C (O) NHMe, C (O) NHEt, C (O) NHPr, $CH = CClCO_2Me$, $CH = CC \cdot CO_2Et$, $CH_2CHC \cdot P(O)(OMe)_2$, $CH_2CHC \cdot P(O)$ (O) (OEt) 2、NHC (O) CF3、OCH2SMe、OCF3、OCF2H OCH2CH2C1, OCH2CH2CH2C1, OCH2CH2CH2F, OCH (O- (ピリジン-4-イル)、O- (5-CF $_{3}$ -3-C1-ピリジン-2-イ ル)、 $O-(5-CF_3-ピリジン-2-イル)$ 、 $OCH_2(4-Me-2-(Me-2))$ e O C (O) C H M e O) - P h), O C H₂ (4 - C l - 2 - (M e O C (O) CHMeO) - Ph)、5-トリフルオロメチル-3-クロロ-2-ピリジル オキシ、5-トリフルオロメチルー2-ピリジルオキシ、2-ピリミジニルオキ シ、2-ピリジルオキシ、4-ピリジルオキシ、5-クロロ-2-ピリジルオキ シ、6-トリフルオロメチル-2-ピリジルオキシ、3-トリフルオロメチルー 2 - ピリジルオキシ、OCH2(4 - (MeOCH2O) - Ph)、OCH2(4 - (MeOCH₂OC (O) CHMeO) - Ph), OCH₂ (4 - (EtOCH

 $_{2}$ O C (O) C H M e O) - P h) 、 O C H $_{2}$ (4 - (M e O C H $_{2}$ C H $_{2}$ O C (O) C H M e O) - P h) 、 O C H 2 (4 - (E t O C H 2 C H 2 O C (O) C H M e O) - Ph), OCH2 (4- (CH2=CHCH2OCH2CH2OC (O) C HMeO) - Ph), OCH2 (4 - (EtOCH2CH2CH2OC (O) CHM eO) - Ph), OCH2 (4 - (MeOCH2CHMeOC (O) CHMeO) -Ph), OCH2 (4- (FCH2CH2OCH2OC (O) CHMeO)-Ph) , OCH_2 (4 - ($HC \equiv CCH_2OCH_2OC$ (O) CHMeO) - Ph) , $C H_2 C H C l C (= NOMe) OMe, C H_2 C H C l C (= NOMe) OE t$, C H $_2$ C H C 1 C (= N O M e) O C H $_2$ O M e , C H $_2$ C H C 1 C (= N O M e) OC (O) Me, CH_2CHClC (= NOMe) OC (O) Et, CH_2C HClC (= NOMe) OC (O) NMe_2 , CH_2CHClC (= NOMe) O SO_2Me , CH_2CHCIC (= NOMe) OP (O) (OEt) 2, CH_2CH ClC (= NNMe₂) OMe, CH₂CHClC (= NNMe₂) O (iso-Pr) 、 CH₂CHClC (= NNMe₂) OCH₂CO₂Me、CH₂CHClC $(= N N M e_2) O C (O) M e C H_2 C H C 1 C (= N S O_2 M e) O M e C H_$ CH_2CHC_1C (= NOMe) NMe_2 , C (= NOMe) OMe, C (= NOMe) O (iso-Pr), C (= NOMe) OCH2CO2Me, C (= NOM e) OC (O) Me, C (= NOMe) OC (O) Et, C (= NOMe) OC (O) NMe_2 , C = NOMe) OSO_2Me , C = NOMe) OP(O)OE t) $_2$, C (= NOCH $_2$ = CHCH $_2$) OMe, C (= NOCH $_2$ CH $_2$ S i Me_3) ОМе、 C (= NO (テトラヒドロピラン-2-4 ν)) ОМе、 C (= $NNMe_2$) OMe, C (= NSO_2Me) OMe, C (= NOMe) NMe₂ 、2-ピリジル、3-クロロ-5-トリフルオロメチル-2-ピリジル、フラン -2-イル、チオフェン-2-イル、5-クロロチオフェン-2-イル、4-メ チル-1, 3-オキサゾール-2-イル、CH (CH2Cl) CH2OCH2CH = CH2 tttCH2CHClC(O) NMe(iso-Pr)

[第5表]

- 101 -

R 8

H, Me, Et, Pr, iso-Pr, Bu, sec-Bu, iso-Bu, C $H_2CH=CH_2$, $CH_2C\equiv CH$, $CH_2C\equiv N$, CH_2CH_2F , CH_2CH_2CI 、CH2CH2CH2F、CO2Me、CO2Et、CO2Pr、CO2(tert-Bu), SO₂Me, SO₂Et, SO₂Pr, CH₂OMe, CH₂OEt, CH₂ C H 2 C H 2 C I 、 C H 2 C H 2 C H 2 C H 2 F 、 C H 2 C C I = C H 2 、 C H 2 C B r $= C H_2$, $C H M e C \equiv C H$, $C H M e C = C H_2$, O M e, O E t, O P r, CH (Me) $C \equiv N$, $C H_2 C O_2 M e$, $C H_2 C O_2 E t$, $C H_2 C O_2$ (i so - P r) 、CH2CONH2、CH2CONHMe、CH2CONMe2、CHMeCO2 Me, CHMeCO₂Et, CHMeCO₂ (iso-Pr), CHMeCONH $_{2}$, C H M e C O N H M e , C H M e C O N M e $_{2}$, C H $_{2}$ C (= N O M e) O M e, CH₂C (= NOMe) OCH₂CO₂Me, CH₂C (= NNMe₂) OMe , C H M e C (= N O M e) O M e, C H M e C (= N O M e) O C H $_2$ C O $_2$ M e 、 C H M e C (= N N M e $_2$) O M e 、 O C H $_2$ C O $_2$ M e 、 O C H $_2$ C O $_2$ E t 、OCH2CO2 (iso-Pr)、OCH2CONH2、OCH2CONHMe、 O C H $_2$ C O N M e $_2$ 、 O C H M e C O $_2$ M e 、 O C H M e C O $_2$ E t 、 O C H M e CO2 (iso-Pr), OCHMeCONH2, OCHMeCONHMe, OC HMeCONMe2, OCH2C (=NOMe) OMe, OCH2C (=NOMe) O C H $_2$ C O $_2$ M e $_4$ O C H $_2$ C (= N N M e $_2$) O M e $_4$ O C H M e C (= N O Me) OMe, OCHMeC (= NOMe) OCH2CO2Me, OCHMeC (= N N M e $_2$) O M e $_3$ O C H $_2$ C H = C H $_2$ O C H $_2$ C \equiv C H $_3$ O C H $_2$ C \equiv N 、OCH2CH2F、OCH2CH2F、OCH2OCH3、OCHMeCH= CH_2 , $OCHMeC \equiv CH$ \sharp $theorem CHMeC \equiv N$

^{· 〔}第6表〕

R b	R a	X
к нинининининининининининининининининин	R HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	H N H 2 E i CF 3 C M C M e 2 H S O 2 M e 2 P C M C M e 2 H M H 2 E i CF M e 2 H M e 2 H C M e 2 H C M e 3 H M e 2 H C M e 3 H M e 2 H C M e 3 H M e 2 H C M e 3 H M e 2 H C M e 3 H M e 2 H C M e 3 H M e 2 H C M e 3 H M e 2 H C M e 3 H C M e 4 H C M e 4 H C M e 5 H C M e 5 H C M e 6 H C M e 6 H C M e 6 H C M e 7 H C M e 6 H C M e 7 H C M e 7 H C M e 8 H C M e 9 H C M e
H H	C F 2 H C F 2 H	OMe OCF2H.

Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	C C C C C C C C C C C C C C C C C C C	SMe SO2Me NHMe NHMe NHH2 Et iso-Pr CF3 OMe OCF2H SMe SO2Me NHMe NHMe NMe2 H
H H H H H H H H	M e S O 2 M e S O 3	NH2 Et iso-Pr CF3 OMe OCF2H SMe SO2Me NHMe NHMe NMe2 H Me
H H H H H H H H H	M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C C C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C	NH ₂ Et iso-Pr CF ₃ OMe OCF ₂ H SMe SO ₂ Me NHMe NMe ₂ H Me
H H H H H H H H H	C N C N C N C N C N C N C N C N C N C N	NH ₂ CN iso-Pr CF ₃ OMe OCF ₂ H SMe SO ₂ Me NHMe NHMe NMe ₂ H Me
H H H H H	C H 2 O M e C H 2 O M e	NH2 Et iso-Pr CF3 OMe

терининининининининининининининининининин	

```
CH2OMe
C H<sub>2</sub>O M e
C H<sub>2</sub>O M e
CH2OMe
CH_2OMe
CH2SMe
CH<sub>2</sub>SMe
C H 2 S M e
C H 2 S M e
C H 2 S M e
C H 2 S M e
Η
 Η
 Η
 Η
 Мe
 Ме
 Ме
 Ме
 Ме
```

```
OCF<sub>2</sub>H
SMe
SO<sub>2</sub>Me
NHMe
NMe2
Η
Ме
NH 2
Εt
i s o - P r
C F 3
Ŏ M e
OCF_2H
S M e
S O 2M e
NHMe
NMe2
Η
Ме
NH 2
Εt
i s o - P r
CF3
OMe
OCF2H
SMe
SO2Me
NHMe
NMe_2
Η
Ме
NH 2
Εt
iso-Pr
CF3
OMe
OCF2H
SMe
SO<sub>2</sub>Me
NHMe
NMe_2
Η
NH2
Εt
 i s o - P r
 СFз
OMe
 OCF_2H
 S M e
 SO<sub>2</sub>M e
 NHMe
 NM e 2
 Η
Ме
 NH_2
 Εt
i s o - P r
C F 3
```

Мe

<u>ኯ</u> ኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯ
F
<u>F</u>
F.
r T
r r
r r
E.
E.
Ŧ
F
F
F
F
F
F
F
H.
T T
T T
H.
म
F
F
F
F
F
F.
r T
T.
म
F
F
F
F
F
F
F.
יז
r r
Ŧ
Ŧ
F
F
\mathbf{F}
F
טייייייייייייייייייייייייייייייייייי
F
F.
T T
T.
म
F
F

```
Ме
Ме
Ме
Ме
Ме
MEEEEEEEEEEEi
```

```
ОМе
 OCF2H
SMe
 SO<sub>2</sub>Me
NHMe
NMe<sub>2</sub>
 Η
Me
NH2
Et
iso-Pr
CF3
OMe
OCF2H
  OCF2H
SMe
SO2Me
NHMe
NMe2
H
Me
NH2
F+
   Εt
  E t
i s o - P r
C F 3
O M e
O C F 2 H
S M e
S O 2 M e
N H M e
N M e 2
H
N H 2
E t
i s o - P r
    iso-Pr
CF<sub>3</sub>
OMe
OCF<sub>2</sub>H
   SMe
SO<sub>2</sub>Me
NHMe
NMe<sub>2</sub>
H
    NH 2
     Εt
    Etiso-Pr
CF3
OMe
OCF2H
SMe
SO2Me
NHMe
NMe2
H
     NH<sub>2</sub>
Et
      i s o - P r
```

314141414141414141414141414141414141414
F
F
E.
T T
r F
Ŧ
F
F
F
F
r
T T
F
F
F
\mathbf{F}
F
F.
T T
F
F
F
F
F.
T T
F
F
F
F
T T
H.
F
F
F
F
r T
т Я
F
F
F
F
F F
F F
F
F
F
F
F
F F
F
7.

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	M M M M M M M M M
e e e e e e e e e e e e e n'innananananananananananananananananana	eeeeeeeee
25555500000000000000000000000000000000	SSSSSSSSOOO
000000000000000000000000000000000000000	0000000
$^{\circ}$ COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 l	
M M M	
eeee	

```
CF<sub>3</sub>
OMe
OCF<sub>2</sub>H
 SMe
SO<sub>2</sub>Me
NHMe
NMe<sub>2</sub>
NMe2
H
Me
NH2
CN
iso-Pr
CF3
OMe
OCF2H
SMe
SO2Me
NHMe
NHMe
   NM e 2
  Η
 H
M e
N H 2
E t
i s o - P r
C F 3
O M e
O C F 2 H
S M e
S O 2 M e
N H M e
N M e 2
H
  NMe2
H
Me
NH2
Et
iso-Pr
CF3
OMe
OCF2H
SMe
SO2Me
NHMe
NHMe
    NMe 2
    H
M e
    NH2
```

++++++++++++++++++++++++++++++++++++++	C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 C N	Et i Pr constant Con
C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	H H H H H H H H M e M e M e M e M e	E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H M e N H 2 E t
C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	M e M e M e M e M e M e M e M e M e E t E t E t E t E t	i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H M e N H 2 E t i s o - P r
C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	M e M e E t E t E t E t E t E t E t E t E t E t	CF3 OMe OCF2H SMe SO2Me NHMe NMe2

C	rrrrrrrrrrriisssssssssssssssssssssssss	Me NH2 Et OPr CF3 CF3 CCF3 CCF2 CCMCF2 CCMC CCMC CCMC CCMC CCMC CC
C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	C F 3 C F 3 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2	N M e 2 H M e M e N H 2 E t i s o — P r C F 3 O M e O C F 2 H S M e S O 2 M e
C 1 C 1 C 1 C 1 C 1 C 1 C 1	M e S O 2 M e S O 2 M e O 2 C	N H M e N M e 2 H M e N H 2 E t i s o — P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N H M e
C 1 C 1 C 1 C 1 C 1 C 1	C N C N C N C N C N C N C N	H Me NH ² CN iso-Pr CF ₃ OMe

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	C 1 C 1 C 1
e e e e e e e e e e e e e e e e e e e	C N C N C N
P P P P P P P P P P P P P P P P P P P	OCF2H SMe SO2Me NHMe

	•	
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	THE PROPERTY OF THE PROPERTY O

B r C F 3 E t B r C F 3 i s o - B r C F 3 C F 3 B r C F 3 O C F 2 B r C F 3 S M e B r C F 3 S O 2 M B r C F 3 N H M e B r M e S O 2 M e B r M e S O 2 N H 2 B r M e S O 2 N H 2	H e e
Br MeSO2 Br MeSO3 Br	lee? - Pr 2H lee 2 - Pr 2H lee 2 - Pr
Br CH2OMe NMe Br CH2SMe H	-

Ī
1

```
C H 2 S M e
Η
 Н
 Η
 Η
 Η
 Η
 Η
 Η
 Η
 H
 H
 Ме
 Ме
 Ме
 Ме
 Ме
 Мe
 Ме
 Ме
 Ме
 Ме
```

```
Ме
ΝΗ₂
Εt
iso-Pr
CF<sub>3</sub>
OMe
OCF2H
SMe
SO2Me
NHMe
NMe2
Η
Ме
NH2
Εt
i s o - P r
C F 3
O M e
 OCF2H
 SM e
 SO<sub>2</sub>Me
NHMe
NMe<sub>2</sub>
 Н
М е
 NH2
 Εt
 i s o - P r
C F 3
 ОМе
 OCF<sub>2</sub>H
 S M e
 SO<sub>2</sub>M e
NHM e
 NMe 2
 Η
 Ме
 N H _2
 Εt
 iso-Pr
CF3
OMe
OCF2H
  S M e
 SO<sub>2</sub>M e
NHM e
  NMe 2
  Η
  Ме
  ΝΗ2
  E t
  i s o - P r
C F 3
  ОМе
  OCF<sub>2</sub>H
  SMe
  SO<sub>2</sub>Me
  NHMe
```

Мe

I I I I Ι

Ī

```
Ме
Εt
Εt
EEEEEEEEEEE
M e S O 2
M e S O 2
M e S O 2
 MeSO<sub>2</sub>
 MeSO2
 MeSO_2
 MeSO<sub>2</sub>
MeSO<sub>2</sub>
```

```
NMe2
Ме
NH 2
Εt
i s o - P r
C F 3
OMe
OCF2H
SMe
SO<sub>2</sub>Me
NHMe
NMe2
H
Ме
N H _2
Εt
iso-Pr
CF<sub>3</sub>
OMe
OCF<sub>2</sub>H
 S M e
 SO_2Me
NHMe
 NM e 2
Н
М е
 NH_2
 Εt
 iso-Pr
CF<sub>3</sub>
OMe
 OCF2H
SMe
SO<sub>2</sub>Me
NHMe
NMe<sub>2</sub>
H
 NH<sub>2</sub>
Et
 iso-Pr
CF<sub>3</sub>
OMe
OCF<sub>2</sub>H
 SMe
SO<sub>2</sub>Me
NHMe
NMe<sub>2</sub>
 H
M e
 NH 2
 Εt
 i so - Pr
CF<sub>3</sub>
OMe
OCF<sub>2</sub>H
SMe
```

I I I I I I I I I I I I I I I I I I I	M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C	SO2Me NHMe NMe2 H Me. NH2 Et iso-Pr CF3 OMe OCF2H
	M e O 2 C M e O 2 C M e O 2 C M e O 2 C C N C N C N C N C N C N C N C N C N	S M e S O 2 M e N H M e N M e 2 H M e N H 2 C N i s o — P r C F 3 O M e O C F 2 H
I I I I I I I I I I	C N C N C N C N C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e	S M e S O 2 M e N H M e N M e 2 H M e N H 2 E t i s o — P r C F 3 O M e O C F 2 H
I I I I I I	C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e	S M e S O 2 M e N H M e N M e 2 H M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H
I I I I I I I I I I I I I I I I	C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e C H 2 S O 2 M e	S M e S O 2 M e N H M e N M e 2 H M e N H 2 E t i s o - P r C F 3 O M e

I I I I I I I I I I I I I I I I I I I	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	OSSONMe r P P P P P P P P P P P P P P P P P P
		M e

M e O O M e O	i i i i i i i i i i i i i i i i i i i	COOCSSNNM e 2 P P P P P P P P P P P P P P P P P P
M e O	MeO ₂ C	H
M e O	MeO ₂ C	M e
M e O	MeO ₂ C	N H 2
M e O	MeO ₂ C	E t

M e O M e O	C N C N C N C N C N C N C N C N C N C N	CiCNOCKE Pr COME PR CO
M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O	C H 2 S O 2 M e C H 2 C N	H Me NH2 Et iso-Pr CF3 OMe OCF2H SMe SO2Me NHMe NHMe
M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O M e O C F 2 H O	C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N C H 2 C N	M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H

C F 2 H O C F 2 H O	H H H H H H H	M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H
C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O	M e M e M e M e M e M e M e M e M e M e	M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H
C F 2 H O C F 2 H O	E t E t E t E t E t E t E t E t E t E t	M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H
C F 2 H O C F 2 H O	i s o - P r i s o - P r c s o - P r	M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2 H
C F 2 H O C F 2 H O	C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H	Me NH ² Et iso-Pr CF ³ OMe OCF ² H SMe SO ² Me NHMe

C F 2 H O C F 2 H O C F 2 H O C F 2 H O	C F 2 H C F 3 C F 3 C F 3	NMe ² H Me NH ² Et
C F 2 H O C F 2 H O	C F 3 C F 3 C F 3 C F 3 C F 3 C F 3 C F 3	i s o P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N M e 2
C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O	M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2 M e S O 2	H M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e
C F 2 H O C F 2 H O	M e S O 2 M e S O 2 M e S O 2 M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C M e O 2 C	N H M e N M e 2 H M e N H 2 E t i s o - P r C F 3 O M e O C F 2 H
C F 2 H O C F 2 H O	M e O 2 C M e O 2 C M e O 2 C M e O 2 C C N C N C N C N C N C N C N C N C N C	S M e S O 2 M e N H M e N M e 2 H M e N H 2 C N i s o — P r C F 3 O M e
C F 2 H O C F 2 H O	C N C N C N C N C N C H 2 O M e C H 2 O M e C H 2 O M e C H 2 O M e	OCF2H SMe SO2Me NHMe NM e2 H Me NH2 Et iso-Pr
C F 2 H O C F 2 H O C F 2 H O C F 2 H O C F 2 H O	C H 2 O M e C H 2 O M e	CF ₃ OMe OCF ₂ H SMe

C H 2 O M e C H 2 O M e C H 2 O M e C H 2 S M e C H 2 S M e C H 2 S M e C H 2 S M e C C H 2 S M e C C H 2 S M e C C C C C C C C C C C C C C C C C C C	SONME NM e P P P P P P P P P P P P P
	e e e e e e e e e e e e e e e e e e e

C N i so-Pr SO2Me C N i so-Pr NHMe C N i so-Pr NMe2 C N CF2H H C N CF2H NH2 C N CF2H i so-Pr C N CF2H CF3 C N CF2H OMe C N CF2H OCF2H C N CF2H SMe C N CF2H SO2Me C N CF2H NHMe C N CF2H NHMe C N CF2H NHMe		M e M e M e M e E t E t E t E t E t E E t E E T E T	SMe SO2Me NHMe NHMe NHMe H Me T T T T T T T T T T T T T T T T T T
(N) P. F	C N C N C N C N C N C N C N C N C N C N	i s o - P r i s o - P r i s o - P r C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H C F 2 H	S O 2 M e N H M e N M e 2 H N H 2 E t i s o - P r C F 3 O M e O C F 2 H S M e S O 2 M e N H M e N H M e H M e

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	0 2 M e S O 2 M e S O 0 2 M e S O 0 2 M e S O 0 2 M e S O 0 2 C C C C C C C C C C C C C C C C C C C	H 2 H 2 H 2 H 2 H 2 P 3 M 4 P 5 M 5 M 5 M 6 M 6 M 7 P 7 H 7 C 7 C 8 C 8 C 8 C 8 C 8 C 8 C

本発明化合物のあるものは畑地、非耕地用除草剤として、土壌処理、茎葉処理 のいずれの処理方法に於いても、イヌホウズキ(Solanum nigrum)、チョウセン アサガオ (Datura stramonium)等に代表されるナス科 (Solanaceae) 雑草、イチ ビ (Abutilon theophrasti)、アメリカキンゴジカ (Sida spinosa) 等に代表さ れるアオイ科 (Malvaceae)雑草、マルバアサガオ (Ipomoea purpurea) 等のアサ ガオ類 (Ipomoea spps.)やヒルガオ類 (Calystegia spps.) 等に代表されるヒル ガオ科 (Convolvulaceae) 雑草、イヌビユ (Amaranthus lividus) 、アオビユ (Amaranthus retroflexus) 等に代表されるヒユ科 (Amaranthaceae)雑草、オナモ ミ (Xanthium pensylvanicum) 、ブタクサ (Ambrosia artemisiaefolia) 、ヒマ ワリ (Helianthus annuus)、ハキダメギク (Galinsoga ciliata)、セイヨウトゲ アザミ (Cirsium arvense)、ノボロギク (Senecio vulgaris) 、ヒメジョン (Er igeron annus) 等に代表されるキク科 (Compositae) 雑草、イヌガラシ (Roripp a indica) 、ノハラガラシ (Sinapis arvensis) 、ナズナ (Capsella Bursapast oris) 等に代表されるアブラナ科 (Cruciferae) 雑草、イヌタデ (Polygonum Bl umei)、ソバカズラ (Polygonum convolvulus)等に代表されるタデ科 (Polygona ceae) 雑草、スペリヒユ (Portulaca oleracea) 等に代表されるスペリヒユ科 (Portulacaceae)雑草、シロザ (Chenopodium album)、コアカザ (Chenopodium fi cifolium)、ホウキギ (Kochia scoparia)等に代表されるアカザ科 (Chenopodia

ceae) 雑草、ハコベ (Stellaria media)等に代表されるナデシコ科 (Caryophyll aceae)雑草、オオイヌノフグリ (Veronica persica) 等に代表されるゴマノハグ サ科 (Scrophulariaceae) 雑草、ツユクサ (Commelina communis) 等に代表され るツユクサ科 (Commelinaceae)雑草、ホトケノザ (Lamium amplexicaule)、ヒメ オドリコソウ (Lamium purpureum) 等に代表されるシソ科 (Labiatae) 雑草、コ ニシキソウ (Euphorbia supina)、オオニシキソウ (Euphorbia maculata) 等に 代表されるトウダイグサ科 (Euphorbiaceae)雑草、ヤエムグラ (Galium spurium)、アカネ (Rubia akane)等に代表されるアカネ科 (Rubiaceae)雑草、スミレ (Viola mandshurica)等に代表されるスミレ科 (Violaceae)雑草、アメリカツノク サネム (Sesbania exaltata)、エビスグサ (Cassia obtusifolia) 等に代表され るマメ科 (Leguminosae)雑草等の広葉雑草 (Broad-leaved weeds) 、野生ソルガ ム (Sorgham bicolor)、オオクサキビ (Panicum dichotomiflorum)、ジョンソン グラス (Sorghum halepense)、イヌビエ (Echinochloa crus-galli var. crus-g alli) 、ヒメイヌビエ (Echinochloa crus-galli var. praticola)、栽培ビエ (Echinochloa utilis)、メヒシバ(Digitaria adscendens)、カラスムギ(Aven afatua) 、オヒシバ (Eleusine indica)、エノコログサ (Setaria viridis)、ス ズメノテッポウ (Alopecurus aegualis)等に代表されるイネ科雑草 (Graminaceo us weeds) 、ハマスゲ (Cyperus rotundus, Cyperus esculentus) 等に代表され るカヤツリグサ科雑草 (Cyperaceous weeds)等の各種畑地雑草 (Cropland weeds)に低薬量で高い殺草力を有する。

又、水田用除草剤として湛水下の土壌処理及び茎葉処理のいずれの処理方法に 於いても、ヘラオモダカ(Alisma canaliculatum)、オモダカ(Sagittaria tri folia)、ウリカワ(Sagittaria pygmaea)等に代表されるオモダカ科(Alismata ceae)雑草、タマガヤツリ(Cyperus difformis)、ミズガヤツリ(Cyperus sero tinus)、ホタルイ(Scirpus juncoides)、クログワイ(Eleocharis kuroguwai) 等に代表されるカヤツリグサ科(Cyperaceae)雑草、アゼナ(Lindernia pyxida ria)等に代表されるゴマノハグサ科(Scrothulariaceae)雑草、コナギ(Monoc horia vaginalis)等に代表されるミズアオイ科(Potenderiaceae)雑草、ヒル ムシロ(Potamogeton distinctus)等に代表されるヒルムシロ科(Potamogetona

ceae) 雑草、キカシグサ (Rotala indica)等に代表されるミソハギ科 (Lythrace ae) 雑草、タイヌビエ (Echinochloa oryzicola)、ヒメタイヌビエ (Echinochloa crus-galli var. formosensis)、イヌビエ (Echinochloa crus-galli var. crus-galli) 雑草等、各種、水田雑草 (Paddy weeds)に低薬量で高い殺草力を有する。

さらに本発明化合物のあるものは、重要作物であるイネ、コムギ、オオムギ、 ソルゴー、落花生、トウモロコシ、大豆、棉、ビート等に対して高い安全性を有 する。

本発明化合物は必要に応じて製剤または散布時に他種の除草剤、各種殺虫剤、 殺菌剤、植物生長調節剤または共力剤などと混合施用しても良い。

特に、他の除草剤と混合施用することにより、施用薬量の減少による低コスト化、混合薬剤の相乗作用による殺草スペクトラムの拡大や、より高い殺草効果が期待できる。この際、同時に複数の公知除草剤との組み合わせも可能である。

本発明化合物と混合使用するのに好ましい除草剤としては、例えば、ピラゾス ルフロンエチル (pyrazosulfuron-ethyl/一般名) 、ベンスルフロンメチル (be nsulfuron-methyl/一般名)、シノスルフロン(cinosulfuron/一般名)、イマ ゾスルフロン(imazosulfuron/一般名)、アジムスルフロン(azimsulfuron/ 一般名)、ハロスルフロンメチル(halosulfuron-methyl/一般名)、プレチラ クロール (pretilachlor/一般名)、エスプロカルブ (esprocarb/一般名)、 ピラゾレート(pyrazolate/一般名)、ピラゾキシフェン(pyrazoxyfen/一般 名)、ベンゾフェナップ(benzofenap/一般名)、ダイムロン(daimuron/一般 名)、ブロモブチド (bromobutide/一般名)、ナプロアニリド (naproanilide /一般名)、クロメプロップ (clomeprop/一般名)、CNP (一般名)、クロ メトキシニル (chlomethoxynil/一般名)、ビフェノックス (bifenox/一般名)、オキサジアゾン (oxadiazon/一般名)、オキサジアルギル (一般名)、カ フェンストロール(cafenstrole/一般名)、オキサジクロメホン(oxaziclomef one/一般名)、インダノファン(indanofan/一般名)、ペントキサゾン(pent oxazone/一般名)、ピリミノバックメチル(pyriminobac-methyl/一般名)、 シハロホップブチル (cyhalofop-butyl/一般名)、フェントラザミド (fentraz

amide/一般名)、メフェナセット(mefenacet/一般名)、ブタクロール(buta chlor/一般名)、ブテナクロール(butenachlor/一般名)、ジチオピル(dith iopyl/一般名)、ベンフレセート(benfuresate/一般名)、ピリプチカルブ(pyributicarb/一般名)、ベンチオカーブ(benthiocarb/一般名)、ジメピベレート(dimepiperate/一般名)、モリネート(molinate/一般名)、ブタミフォス(butamifos/一般名)、キンクロラック(quinclorac/一般名)、シンメスリン(cinmethylin/一般名)、シメトリン(simetryn/一般名)、ベンスリド(bensulide/一般名)、ジメタメトリン(dimethametryn/一般名)、MCPA、MCPB、エトベンズアニド(etobenzanid)、クミルロン(cumyluron/一般名)、テニルクロール(thenylchlor/一般名)、エトキシスルフロン(ethoxysulfuron/一般名)、キノクラミン(quinoclamine/一般名)、ベンゾピシクロン(benzobicyclon/一般名)、ピリフタリド(pyriftalid/一般名),ピスピリバック(bispyribac)、HSA-961(試験名)、アニロホス(anilofos/一般名)及びOK-701(試験名)等があげられる。

本発明化合物を使用するにあたっては、通常適当な固体担体または液体担体と混合し、更に所望により界面活性剤、浸透剤、展着剤、増粘剤、凍結防止剤、結合剤、固結防止剤、崩壊剤、消泡剤、防腐剤及び分解防止剤等を添加して、液剤、乳剤、水和剤、水溶剤、顆粒水和剤、顆粒水溶剤、懸濁剤、乳濁剤、サスポエマルジョン、マイクロエマルジョン、粉剤、粒剤及びゲル剤等任意の剤型の製剤にて実用に供することが出来る。また、省力化及び安全性向上の観点から、上記任意の剤型の製剤を水溶性包装体に封入して供することも出来る。なお必要に応じて、製剤または散布時に複数の他の除草剤、殺虫剤、殺菌剤、植物生長調整剤、肥料等と混合使用することも可能である。

固体担体としては、例えば石英、カオリナイト、パイロフィライト、セリサイト、タルク、ペントナイト、酸性白土、アタパルジャイト、ゼオライト及び珪藻 土等の天然鉱物質類、炭酸カルシウム、硫酸アンモニウム、硫酸ナトリウム及び 塩化カリウム等の無機塩類、合成珪酸ならびに合成珪酸塩が挙げられる。

液体担体としては、例えばエチレングリコール、プロピレングリコール及びイソプロパノール等のアルコール類、キシレン、アルキルベンゼン及びアルキルナ

フタレン等の芳香族炭化水素類、ブチルセロソルブ等のエーテル類、シクロヘキサノン等のケトン類、γーブチロラクトン等のエステル類、Nーメチルピロリドン、Nーオクチルピロリドン等の酸アミド類、大豆油、ナタネ油、綿実油及びヒマシ油等の植物油ならびに水が挙げられる。

これら固体及び液体担体は、単独で用いても2種以上を併用してもよい。

界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレン脂肪酸エステル、ソルピタン脂肪酸エステル及びポリオキシエチレンルピタン脂肪酸エステル等のノニオン性界面活性剤、アルキル硫酸塩、アルキルペンゼンスルホン酸塩、リグニンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸のホルマリン縮合物の塩、アルキルナフタレンスルホン酸のホルマリン縮合物の塩、ポリオキシエチレンアルキルアリールエーテル硫酸及び燐酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸及び燐酸塩、ポリオキシエチレンスルホン酸塩、ポリカルボン酸塩及びポリスチレンスルホン酸塩等のアニオン性界面活性剤、アルキルアミン塩及びアルキル4級アンモニウム塩等のカチオン性界面活性剤ならびにアミノ酸型及びベタイン型等の両性界面活性剤が挙げられる。

これら界面活性剤の含有量は、特に限定されるものではないが、本発明の製剤 100重量部に対し、通常0.05~20重量部の範囲が望ましい。また、これ ら界面活性剤は、単独で用いても2種以上を併用してもよい。

次に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は 、これらのみに限定されるものではない。なお、以下の配合例において「部」は 重量部を意味する。

[水和剤]

本発明化合物 0.1~80部

固体担体 5~98.9部

界面活性剤 1~10部

その他 0~5部

その他として、例えば固結防止剤、分解防止剤等があげれらる。

[乳 剤]

本発明化合物

0.1~30部

液体担体

45~95部

界面活性剤

4. 9~15部

その他

0~10部

その他として、例えば展着剤、分解防止剤等が挙げられる。

[懸濁剤]

本発明化合物

0.1~70部

液体担体

15~98.89部

界面活性剤

1~12部

その他

0.01~30部

その他として、例えば凍結防止剤、増粘剤等が挙げられる。

[顆粒水和剤]

本発明化合物

0.1~90部

固体担体

0~98.9部

界面活性剤

1~20部

その他

0~10部

その他として、例えば結合剤、分解防止剤等が挙げられる。

〔液 剤〕

本発明化合物

0.01~70部

液体担体

20~99.99部

その他

0~10部

その他として、例えば凍結防止剤、展着剤等が挙げられる。

〔粒 剤〕

本発明化合物

0.01~80部

固体担体

10~99.99部

その他

0~10部

その他として、例えば結合剤、分解防止剤等が挙げられる。

[粉 剤]

本発明化合物 0.01~30部

固体担体 65~99.99部

その他 0~5部

その他として、例えばドリフト防止剤、分解防止剤等が挙げられる。

製剤例

次に具体的に本発明化合物を有効成分とする農薬製剤例を示すがこれらのみに 限定されるものではない。なお、以下の配合例において「部」は重量部を意味す る。

[配合例1] 水和剤

本発明化合物 No. 1 20部

パイロフィライト 76部

ソルポール5039 2部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業 (株) 商品名)

カープレックス#80D 2部

(合成含水珪酸:塩野義製薬(株)商品名) 以上を均一に混合粉砕して水和剤とする。

[配合例2]乳 剤

本発明化合物 No. 1 5部

キシレン 75部

N-メチルピロリドン 15部

ソルポール2680 5部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業 (株) 商品名)

以上を均一に混合して乳剤とする。

[配合例3] 懸濁剤 (フロアブル剤)

本発明化合物 N o . 1

25部

アグリゾール S - 7 1 0

10部

(非イオン性界面活性剤:花王(株)商品名)

ルノックス1000C

0.5部

(アニオン性界面活性剤:東邦化学工業(株)商品名)

キサンタンガム

0.2部

水

64.3部

以上を均一に混合した後、湿式粉砕して懸濁剤とする。

[配合例4] 顆粒水和剤 (ドライフロアブル剤)

本発明化合物 N o . 1

7 5 部

ハイテノールNE-15

5 部

(アニオン性界面活性剤:第一工業製薬(株)商品名)

バニレックスN

10部

(アニオン性界面活性剤:日本製紙(株)商品名)

カープレックス#80D

10部

(合成含水珪酸: 塩野義製薬(株) 商品名)

以上を均一に混合粉砕した後、少量の水を加えて撹拌混合し、押出式造粒機で 造粒し、乾燥して顆粒水和剤とする。

. 〔配合例 5 〕粒 剤

本発明化合物 N o . 1

- 5 部

ベントナイト

50部

タルク

4 5 部

以上を均一に混合粉砕した後、少量の水を加えて撹拌混合し、押出式造粒機で造粒し、乾燥して粒剤とする。

〔配合例6〕粉 剤

本発明化合物 N o . 1

3 部

カープレックス#80D

0.5部

(合成含水珪酸:塩野義製薬(株)商品名)

カオリナイト

9 5 部

リン酸ジイソプロピル

1.5部

以上を均一に混合粉砕して粉剤とする。

次に、本発明化合物の除草剤としての有用性を以下の試験例において具体的に 説明する。

[試験例1] 湛水条件における雑草発生前処理による除草効果試験

33.3 c m²のスチロールカップ中に沖積土壌を入れた後、水を入れて混和し水深4 cmの湛水条件とした。ノビエ、ホタルイ、コナギのそれぞれの種子を上記のポットに混播した後、2.5 葉期のイネ苗を移植した。ポットを25~30℃の温室内に置いて植物を育成し、播種後1日目に水面へ所定の薬量になるように、配合例1に準じて調整した本発明化合物の水和剤を水で希釈して処理した。処理後3週間目に、イネ及び各種雑草に対する除草効果の調査を行った。0は影響なし、5 は完全枯死を示す5 段階評価である。結果を第7表に示す。

「試験例2] 湛水条件における雑草生育期処理による除草効果試験

33.3 c m²のスチロールカップ中に沖積土壌を入れた後、水を入れて混和し水深4 cmの湛水条件とした。ノビエの種子を上記のポットに混播した。ポットを25~30℃の温室内に置いて植物を育成し、ノビエ、ホタルイ、コナギが1~2葉期に達したとき、水面へ所定の薬量になるように、配合例1に準じて調整した本発明化合物の水和剤を水で希釈して処理した。処理後3週間目に、各種雑草に対する除草効果を試験例1の判定基準に従って調査を行った。結果を第8表に示す。

[試験例3] 土壌処理による除草効果試験

縦21cm、横13cm、深さ7cmのプラスチック製箱に殺菌した洪積土壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブタクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモロコシ、ダイズ、ワタ、コムギ、ビートの種子をそれぞれスポット状に播種し、約1.5cm覆土した後、有効成分量が所定の割合となるように土壌表面へ小型スプレーで均一に散布した。散布の際の薬液は、前記配合例1に準じて適宜調整された水和剤を水で希釈して用い、これを全面に散布した。薬液散布3週間後に植物に対す

る除草効果を試験例1の判定基準に従って調査を行った。結果を第9表に示す。 [試験例4] 茎葉処理による除草効果試験

縦21cm、横13cm、深さ7cmのプラスチック製箱に殺菌した洪積土壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブタクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモロコシ、ダイズ、ワタ、コムギ、ビートの種子をそれぞれスポット状に播種し、約1.5 cm覆土した後、25~30℃の温室において植物を14日間育成し、有効成分量が所定の割合となるように茎葉部へ小型スプレーで均一に散布した。散布の際の薬液は、前記配合例1に準じて適宜調整された水和剤を水で希釈して用い、これを全面に散布した。薬液散布3週間後に植物に対する除草効果を試験例1の判定基準に従って調査を行った。結果を第10表に示す。

なお、各表中の記号は次の意味を示す。

A (ノビエ) 、B (ホタルイ) 、C (コナギ) 、D (メヒシバ) 、E (エノコログサ) 、F (カラスムギ) 、G (ブラックグラス) 、H (イチビ) 、I (ブタクサ) 、I (アオゲイトウ) 、I (シロザ) 、I (イヌタデ) 、I (オオイヌノフグリ) 、I (ハコペ) 、I (移植イネ) 、I (トウモロコシ) 、I (グイズ) 、I (ワタ) 、I (ロムギ) 、I (ビート)

[第7表]

化合物 No.	処理薬量 g/a	A	В	С	а		
						,	
1	10	1	1	2	0		
2	10	5	5	5	2		
3	2.52	5	5	5	2		
4	2.52	5	5	5	4		
5	10	3	1	4	1		
6	10	4	5	5	1		

7	2.52	5	5	5	5
12	2.52	5	5	5	5
14	10	2	2	1	0
15	10	3	4	5	1
16	10	4	4	5	0
18	10	2	2	5	0
19	10	5	4	5	1
22	20	5	5	5	2
23	10	0	2	2	0
24	2.52	5	5	5	4
25	10	2	2	1	0
26	10	3	1	5	1
27	10	2	2	2	0
29	2.52	5	5	5	2
30	2.52	5	4	5	2
31	2.52	4	3	5	1
32	2.52	5	5	5	2
33	2.52	4	5	5	2
35	2.2	4	4	5	2
36	10	2	5	4	0
37	10	4	5	5	. 1
38	20	5	5	5	-
39	2.52	5	5	5	2
40	2.52	5	5	5	4
41	2.52	5	5	5	5
42	2.52	5	5	5	4
43	2.52	5	5	5	4
44	2.52	5	5	5	. 4
45	2.52	5	5	5	1

WO 01/68613	PCT/JP01/02158

46	2.52	5	5	5	5
47	2.52	3	0	5	1
49	2.52	5	5	5	2
51	2.52	5	5	5	4
52	2.52	5	5	5	3
53	2.52	5	4	5	3
54	2.52	5	5	5	1
55	2.52	5	5	5	5
56	2.52	5	5	5	3
57	2.52	5	5	5	3
58	2.52	5	5	5	3
59	2.52	5	5	5	3
60	2.52	4	3	5	0
61	2.52	5	5	5	5
62	2.52	5	4	5	2
63	2.52	5	5	5	1
65	2.52	4	_	5	5
66	2.52	5	5	5	3
67	2.52	4	5	5	3
68	2.52	5	-	5	2
69	2.52	5	-	5	4
70	2.52	5	_	5	4
71	2.52	5	5	5	3
72	2.52	5	5	5	2
74	2.52	5	-	5	4
75	2.52	0	-	5	1
76	2.52	5	5	5	2
77	2.52	5	5	5	3
78	2.52	5	5	5	5

79	2.52	5	5	5	4
80	2.52	5	4	5	2
81	2.52	4	2	5	1
82	2.52	2	2	5	0
83	2.52	4	2	5	2
84	2.52	3	4	5	2
85	2.52	5	5	5	3
86	2.52	5	5	5	4
87	2.52	5	3	5	2
88	2.52	4	3	5	4
89	2.52	4	3	5	3
90	2.52	4	1	5	4
91	2.52	5	5	5	4
92	2.52	5	5	5	4
93	2.52	5	5	5	5
94	2.52	5	5	5	5
95	2.52	5	4	5	4
96	2.52	5	5	5	5
97	2.52	5	4	5	5
98	2.52	5	4	5	5
99	2.52	5	5	5	3
100	2.52	5	5	5	5
101	2.52	5	5	5	4
102	2.52	5	4	5	2
103	2.52	5	5	5	3
104	2.52	5	5	5	5
105	2.52	5	5	5	2
106	2.52	5	4	5	3
107	2.52	3	2	5	1

WO 01/68613	PCT/JP01/02158

108	2.52	2	2	5	1
109	2.52	4	2	5	1
110	2.52	4	3	5	2
111	2.52	0	1	5	1
112	2.52	2	1	5	2
113	2.52	2	2	5	2
114	2.52	4	3	5	3
115	2.52	5	3	5	2
116	2.52	5	4	5	3
117	2.52	0	1	5	1
118	2.52	5	5	5	3
119	2.52	5	4	5	`2
120	2.52	5	5	5	5
121	2.52	5	5	5	2
122	2.52	5	4	5	4
123	2.52	5	4	5	5
124	2.52	5	4	5	5
125	0.64	5	5	5	2
126	0.64	0	0	2	0
127	0.64	5	4	5	3
128	0.64	5	4	5	2
129	0.64	4	3	5	1
130	0.64	2	1	5	1
131	0.64	0	0	3	1
132	0.64	5	4	5	2
133	0.64	4	3	5	1
134	0.64	5	2	5	1
135	0.64	5	3	5	2
136	0.64	5	3	5	2

137	0.64	5	4	5	2
138	0.64	3	1	5	0
139	0.64	5	4	5	3
140	0.64	4	5	5	3
141	0.64	5	4	5	2
142	0.64	3	2	5	1
143	0.64	5	5	5	2
144	0.64	3	1	5	1
145	0.64	2	0	5	1
146	0.64	5	1	5	2
147	0.64	2	0	5	1
148	0.64	0	0	5	0
149	0.64	5	2	5	2
150	0.64	5	2	5	1
151	0.64	5	2	5	1
152	0.64	5	3	5	1
153	0.64	5	3	5	2
154	0.64	4	1	5	1
· 155	0.64	5	3	5	1
156	0.64	5	1	5	1
157	0.64	5	2	5	2
159	0.64	4	3	5	2
160	0.64	3	2	5	2
161	0.64	0	0	5	0
162	0.64	1	1	5	0
163	0.64	4	2	5	1
164	0.64	4	2	5	1
165	0.64	5	5	5	1
166	0.64	5	5	5	1

WO 01	/68613				
167	0.64	5	2	5	1
168	0.64	5	3	5	0
169	0.64	5	3	5	1
170	0.64	5	3	5	1
171	0.64	5	5	5	1
172	0.64	5	3	5	0
173	0.64	5	3	5	1
174	0.64	5	3	5	1
175	0.64	5	3	5	1
176	0.64	4	2	5	0
177	0.64	4	2	5	1
178	0.64	3	2	5	0
179	0.64	4	2	5	0
180	0.64	4	2	5	1
181	0.64	3	2	5	1
182	0.64	0	1	5	1
183	0.64	5	2	5	1
184	0.64	4	3	5	2
185	0.64	3	1	5	1
186	0.64	2	1	5	1
187	0.64	3	2	5	2
188	0.64	0	0	5	1
189	0.64	2	1	5	1
190	0.64	2	2	5	1
191	0.64	0	0	5	0
192	0.64	0	0	5	0
193	0.64	0	0	5	1
194	0.64	2	1	5	1

195 0.64 2 2 5 0

196	0.64	5	5	5	2	
197	0.64	5	4	5	3	
198	0.64	5	5	5	2	
199	0.64	5	5	5	2	
200	0.64	5	5	5	2	
201	0.64	1	0	1	0	
230	0.64	2	1	5	0	
202	2.52	4	2	5	1	
203	2.52	5	3	5	2	
204	2.52	5	5	5	2	
205	2.52	4	2	5	1	
206	2.52	5	5	5	3	

〔第8表〕

化合物 No.	処理薬量 g/a	A	В	С		
1	10	2	1	2	 	
2	10	. 5	4	4		
3	2.52	5	5	5		
4	2.52	5	5	5		
5	10	2	1	2		
6	10	2	2	2		
7	2.52	5	5	5		
12	2.52	5	5	5		
14	10	1	2	1		
15	10	3	3	3		
16	10	4	3	3		

WO 01/68613	PCT/JP01/02158

18	10	2	2	3
19	10	5	2	3
22	20	5	3	3
23	10	0	0	1
24	2.52	5	4	5
25	10	1	1	0
26	10	1	1	0
27	10	2	2	1
29	2.52	3	2	3
30	2.52	4	3	4
31	2.52	0	1	3
32	2.52	5	4	4
33	2.52	4	3	4
35	2.2	5	4	4
36	10	1	1	2
37	10	2	2	3
38	20	5	5	5
39	2.52	4	4	5
40	2.52	5	4	5
41	2.52	5	5	5
42	2.52	5	5	5
43	2.52	5	5	5
44	2.52	5	4	5
45	2.52	5	4	5
46	2.52	5	5	5
47	2.52	5	3	3
49	2.52	5	4	4
51	2.52	5	4	4
52	2.52	5	4	5

WO 01	1/68613				PC 1/JP01/02158
~ ~	0.50	_	_	-	

53	2.52	5	5	5
54	2.52	4	2	3
55	2.52	5	5	5
56	2.52	5	5	5
57	2.52	5	4	5
58	2.52	5	5	5
59	2.52	5	4	5
60	2.52	1	0	0
61	2.52	5	5	5
62	2.52	5	3	4
63	2.52	5	3	3
65	2.52	4	5	5
66	2.52	4	-	5
67	2.52	5	-	5
68	2.52	3	4	5
69	2.52	5	4	5
70	2.52	_. 5	-	5
71	2.52	4	4	5
72	2.52	5	2	5
74	2.52	3	2	4
75	2.52	1	1	3
76	2.52	4	2	3
77	2.52	4	2	3
78	2.52	5	3	5
79	2.52	5	3	5
80	2.52	3	1	3
82	2.52	0	2	5
83	2.52	3	1	5
84	2.52	2	1	5

85	2.52	5	2	4
86	2.52	5	2	4
87	2.52	2	1	2
88	2.52	2	0	3
89	2.52	2	1	3
90	2.52	1	0	1
91	2.52	5	3	3
92	2.52	5	2	4
93	2.52	5	4	4
94	2.52	5	4	5
95	2.52	4	1	2
96	2.52	5	3	4
97	2.52	3	1	1
98	2.52	4	2	3
99	2.52	4	2	2
100	2.52	5	2	4
101	2.52	5	2	3
102	2.52	3	2	3
103	2.52	5	3	4
104	2.52	5	3	4
105	2.52	5	2	4
106	2.52	5	2	3
107	2.52	2	1	5
108	2.52	2	2	5
109	2.52	1	1	5
110	2.52	2	2	5
111	2.52	1	0	4
112	2.52	2	1	3
113	2.52	2	0	3

WO 01/6	8613				PCT/JP01/02158
114	2 52	5	2	2	

2.52	5	2	2
2.52	4	1	2
2.52	5	2	3
2.52	0	1	4
. 2.52	5	2	2
2.52	2	2	2
2.52	5	2	4
2.52	4	2	4
2.52	5	1	2
2.52	4	2	3
2.52	5	2	2
0.64	4	2	2
0.64	3	2	3
0.64	5	2	2
0.64	0	0	5
0.64	1	1	1
0.64	3	0	2
0.64	1	0	0
0.64	4	1	2
0.64	1	1	2
0.64	5	2	2
0.64	2	1	2
0.64	4	2	5
0.64	5	2	3
0.64	3	1	3
0.64	2	1	0
0.64	4	2	2
0.64	1	0	1
0.64	0	0	2
	2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.64 0.64	2.52 4 2.52 5 2.52 5 2.52 5 2.52 5 2.52 5 2.52 5 2.52 5 2.52 5 0.64 4 0.64 3 0.64 0 0.64 1 0.64 1 0.64 1 0.64 1 0.64 2 0.64 2 0.64 3 0.64 3 0.64 4 0.64 3 0.64 4 0.64 2 0.64 4 0.64 4 0.64 4 0.64 4 0.64 4 0.64 1 0.64 1 0.64 1 0.64 1 0.64 1 0.64 1 0.64 1 <td< td=""><td>2.52 4 1 2.52 5 2 2.52 0 1 2.52 5 2 2.52 2 2 2.52 5 2 2.52 4 2 2.52 5 2 2.52 5 2 0.64 4 2 0.64 3 2 0.64 5 2 0.64 1 0 0.64 1 0 0.64 1 0 0.64 1 0 0.64 1 0 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1</td></td<>	2.52 4 1 2.52 5 2 2.52 0 1 2.52 5 2 2.52 2 2 2.52 5 2 2.52 4 2 2.52 5 2 2.52 5 2 0.64 4 2 0.64 3 2 0.64 5 2 0.64 1 0 0.64 1 0 0.64 1 0 0.64 1 0 0.64 1 0 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1 0.64 2 1

WO 01/68613	PCT/JP01/02158

146	0.64	4	1	2
148	0.64	0	0	2
149	0.64	5	1	1
150	0.64	4	0	1
151	0.64	1	0	0
152	0.64	2	1	0
154	0.64	4	1	2
156	0.64	5	2	2
157	0.64	4	2	2
159	0.64	1	0	2
160	0.64	0	0	2
164	0.64	1	0	2
165	0.64	1	0	2
. 166	0.64	2	0	1
167	0.64	1	0	3
168	0.64	1	0	0
169	0.64	3	1	1
170	0.64	3	1	2
171	0.64	0	0	2
172	0.64	0	0	1
173	0.64	0	0	1
174	0.64	0	0	2
175	0.64	0	0	1
178	0.64	0	0	2
179	0.64	0	0	1
182	0.64	0	0	1
183	0.64	2	0	1
184	0.64	3	1	4
185	0.64	1	1	4

WO 01/	/68613			
186	0.64	0	1	5
187	0.64	0	2	5
188	0.64	1	0	4
189	0.64	0	1	3
190	0.64	1	1	5
191	0.64	0	0	5
192	0.64	0	1	3
193	0.64	0	0	5
194	0.64	1	0	4
195	0.64	2	0	2
196	0.64	4	2	5
197	0.64	5	2	5
198	0.64	5	2	4
199	0.64	5	1	5
200	0.64	0	0	3
202	2.52			
203	2.52			
204	2.52			
205	2.52			
206	2.52			
202	2.52	0	1	1
203	2.52	1	2	2
204	2.52	5	3	5
205	2.52	2	0	0
206	2.52	5	3	5

〔第 9 表〕

化合物 薬量

No.	g/a	D	E	F	G	Н	Ι	J	K	L	M	N	b		:	d 	е	f 	
1	6.3	3	2	0	0	0	0	0	2	0	0) (0	0	0	0	0	
2	6.3	5	5	3	4	1	4	5	5	5	5	C)	1	0	-	4	0	
3	6.3	5	5	4	4	5	3	5	5	5	5	.]	. :	3	1	2	4	5	
4	6.3	5	5	3	3	5	5	5	5	5	5	. 5	5	4	1	5	3	5	
6	6.3	0	0	1	2	0	0	1	0	0	5	()	0	0	0	0	1	
7	6.3	5	5	5	5	5	5	5	5	5	5	, ;	5	5	4	1	5	5	
12	6.3	5	4	5	5	3	2	5	5	5	5	5 5	5	3	1	2	3	5	
15	25	4	4	0	0	4	4	4	5	4	C) ()	1	0	-	0	5	
16	25	5	4	0	0	3	-	5	5	5	. 5	, ;	3	0	0	-	0	5	
17	25	4	2	0	0	0	0	4	5	5	. 4	1	1	0	0	-	0	0	
18	25	3	3	0	0	0	0	-	-	-	. 1	L '	1	0	-	0	0	1	
19	25	5	5	5	5	5	5	5	5	5	5 5	5	0	4	1	-	4	5	
20	25	-	3	0	0	2	-	-	-	-	- ()	3	3	1	-	0	0	
22	50	5	5	4	5	5	2	5	5	. 5	5 !	5	0	5	2		4	5	
24	6.3	5	5	5	5	5	5	5	5		5 -	-	2	3	-	-	4	5	
25	25	1	1	0	0	2	-	4	-		5 !	5	1	0	0	-	0	1	
26	25	5	3	1	0	5	1	5	5		5 !	5	3	1	2	-	0		
27	25	5	3	0	0	5	-	- 5	5	; ;	5	5	2	1	2	-	. 0	3	
28	25	0	0	0	2	1		. 4	-				1	1	0	-	C		
29	6.3	5	5	4	4	. 1							1	0	0	_	3		
30	6.3	5	5	5									4	1	0	-	4		
31	6.3	2											0	0	0	-			
32	6.3	4	. 5	5 4	4								5	4	2	_			
33	6.3	4										5	5	5	1	-	. 4		
35	5.5	4				1 5						5	5	4	2	4			
36	25	4											0	0	0	0		2 5	
37	25	ţ	5 4	1 1	3	3 5	5 5	5 5	5 -	_	5	5	0	0	2	0) 2	2 5	i

WO 01/6	68613																PCT/JP01/02158
39	6.3	3	4	0	3	5	5	5		5	5	5	3	1	4	0	5
40	6.3	5	5	5	5	5	5	5	-	5	5	5	5	4	-	5	5
41	6.3	5	5	5	5	5	5	5	-	5	5	5	5	2	-	5	5
42	6.3	5	5	5	5	5	4	5	-	5	5	5	5	3	-	5	5
43	6.3	5	5	.4	4	5	5	5	_	5	5	3	3	1	-	3	5
44	6.3	5	5	5	4	5	3	5	_	5	5	5	4	4	-	4	5
45	6.3	5	5	5	4	4	4	5	-	5	5	2	2	2	-	2	4
46	6.3	3	2	2	3	5	5	5	-	5	5	0	0	1	_	3	5
47	6.3	5	5	4	2	5	5	5	-	5	5	5	4	2	3	3	5
48	6.3	3	2	0	0	5	3	5	-	4	4	1	0	2	0	0	4
49	6.3	5	5	-	4	4	4	5	-	5	5	4	0	0	0	4	5
50	50	4	1	2	3	0	0	4	-	0	5	2	0	1	0	3	5
51	6.3	5	5	4	4	5	-	5	-	5	5	4	5	2	0	4	5
52	6.3	5	5	5	5	5	5	5	-	5	5	5	4	4	2	4	5
53	6.3	5	5	4	4	5	5	5	-	5	5	5	5	3	2	4	5
54	6.3	5	4	3	4	5	4	5	-	5	5	5	3	0	0	4	5

5 5 5 4 3 4 5 6.3 5 5 5 5 5 5 - 5 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 0. 6.3 4 1 0 0 0 0 0 6.3

69	6.3	5	5	0	0	5	4	5	5	5	4	1	1	0	0	0	0
70	6.3	4	4	0	2	3	5	5	5	5	5	1	2	0	0	1	5
71	6.3	5	2	1	0	5	4	5	3	3	5	4	0	0	0	0	5
72	6.3	5	3	4	2	2	2	5	5	-	5	4	0	1	0	1	5
74	6.3	4	3	0	2	5	3	5	5	-	5	3	-	-	-	1	5
75	6.3	0	0	1	0	4	4	5	5	-	5	0	0	0	0	0	5
76	6.3	5	4	3	2	1	0	5	5	5	5	1	0	0	0	0	2
77	6.3	4	0	1	1	0	4	5	5	5	5	0	2	0	0	1	5
78	6.3	5	5	4	2	5	2	5	5	5	5	4	4	0	2	4	4
79	6.3	5	3	3	0	2	0	5	5	5	5	2	2	0	0	2	2
80	6.3	5	5	0	1	2	0	0	4	0	5	1	0	0	0	2	1
81	6.3	0	0	1	0	0	0	4	0	0	4	0	0	0	0	1	1
82	6.3	0	0	1	0	5	5	5	5	5	5	4	0	0	0	1	5
83	6.3	5	4	3	3	5	5	5	5	5	5	4	0	0	0	3	5
84	6.3	1	2	0	4	5	5	5	5	5	5	4	1	0	2	1	5
85	6.3	5	-	4	4	3	0	5	5	5	5	3	2	0	1	4	5
86	6.3	5	_	4	5	2	0	5	5	5	5	3	0	0	0	4	5
87	6.3	3	-	3	4	0	0	5	4	5	5	0	0	0	0	1	2
88	6.3	3	-	1	3	2	0	5	5	4	2	1	0	0	0	2	3
89	6.3	3	-	3	1	0	0	5	5	2	4	0	0	0	0	1	1
90	6.3	3	-	1	2	0	0	5	5	5	3	1	0	0	0	1	5
91	6.3	5	-	1	2	3	4	5	5	5	5	4	2	0	0	0	5
92	6.3	5	-	4	4	3	0	5	5	5	5	3	0	0	1	2	5
93	6.3	5	-	5	3	5	4	5	5	5	5	5	0	0	1	3	5
94	6.3	5	-	5	5	5	3	5	5	5	5	5	3	2	2	3	5
95	6.3	4	-	1	1	0	0	5	4	0	5	0	0	0	0	0	5
96	6.3	5	-	5	5	5	3	5	5	5	5	4	4	2	0	5	5
97	6.3	5	-	3	3	0	0	5	0	4	5	1	0	0	0	1	1
98	6.3	5	_	3	1	2	2	5	4	5	5	2	0	0	0	1	5

99	6.3	5	-	4	3	5	1	5	5	5	5	5	0	0	0	1	5
100	6.3	5	_	5	4	5	4	5	5	5	5	5	2	2	1	3	5
101	6.3	5	_	3	2	5	5	5	5	5	5	5	4	0	2	3	5
102	1.6	5	-	3	2	2	0	5	5	5	5	3	3	0	0	4	5
103	6.3	5	-	4	5	5	3	5	5	5	5	4	3	2	0	3	5
104	6.3	5	-	5	5	5	5	5	5	5	5	5	5	1	0	5	5
105	6.3	5	-	3	5	5	4	5	5	5	5	3	3	0	0	4	4
106	6.3	5	-	5	5	5	2	5	5	5	5	2	4	0	0	5	4
107	6.3	2	_	1	1	5	5	5	5	5	5	4	2	0	0	1	5
108	6.3	5	_	3	3	5	5	5	5	5	5	3	0	0	0	3	0
109	6.3	5	-	4	3	5	5	5	5	5	5	1	0	0	0	1	5
110	6.3	5	-	4	3	5	5	5	5	5	5	2	1	0	0	1	5
111	6.3	0	-	1	2	5	5	5	5	3	5	5	0	0	0	1	5
112	6.3	0	- ·	1	1	5	5	5	5	5	5	4	0	0	1	1	5
113	6.3	5	-	4	4	5	5	5	5	5	5	4	0	0	0	4	5
114	6.3	5	-	3	4	5	5	5	5	5	5	5	3	0	0	2	5
115	6.3	5	-	2	1	5	0	5	5	5	5	5	1	0	0	1	5
116	6.3	5	-	4	5	5	5	5	5	5	5	5	2	0	0	4	5
117	6.3	0	-	2	0	5	5	5	5	5	5	5	0	0	0	1	5
118	6.3	5	-	3	4	5	5	5	5	5	5	5	2	0	0	2	5
119	6.3	5	-	1	3	5	0	5	4	0	5	2	0	0	0	3	5
120	6.3	5	-	5	5	5	5	5	5	5	5	5	5	3	2	5	5
121	6.3	5	-	4	4	4	4	5	4	5	5	3	1	0	0	4	2
122	6.3	5	-	3	3	5	4	5	5	5	5	3	3	2	0	4	5
123	6.3	5	-	4	2	5	4	5	5	5	5	3	4	1	0	. 3	5
124	6.3	5	-	4	5	5	4	5	5	5	5	5	4	3	0	4	5
125	1.6	5	_	3	2	3	0	5	5	5	5	3	2	0	0	3	5
126	1.6	0	_	1	1	0	0	0	0	0	2	0				0	0
127	1.6	5	_	3	3	5	0	5	5	5	5	3	0	0	0	4	5

1.6

1.6

0 1 0 0 5 5 5 5 0 0 0

3 3

5 0 5 5 5

0 1

0 2 5

5 4

157	1.6	5	-	3	2	5	3	5	5	5	5	3	4	2	0	3	5
158	1.6	0	-	0	0	0	0	0	0	0	1	0	0	0	0	0	0
159	1.6	0	_	0	1	3	4	5	4	4	5	2	0	0	0	1	4
160	1.6	4	-	3	3	5	5	5	5	5	5	4	0	0	0	1	5
161	1.6	4	-	0	0	5	5	5	5	5	5	2	1	0	0	1	5
162	1.6	4	_	0	0	5	4	5	5	5	5	3	2	0	0	1	5
163	1.6	2	-	0	2	3	0	5	4	4	5	0	0	0	0	1	5
164	1.6	0	0	1	0	2	0	5	4	0	5	0	0	0	0	0	4
165	1.6	0	0	1	0	2	0	3	4	0	5	0	0	0	0	0	3
166 ·	1.6	4	3	0	0	2	0	4	5	5	5	0	0	0	0	0	3
167	1.6	5	2	1	1	1	0	3	4	4	5	0	0	0	0	0	4
168	1.6	4	2	1	1	0	0	4	5	5	3	0	0	0	0	1	4
169	1.6	4	4	1	2	5	0	5	4	5	5	0	0	0	0	1	3
170	1.6	4	4	1	1	3	0	5	5	5	5	0	1	0	0	1	5
171	1.6	5	3	1	1	1	0	5	5	5	4	0	2	0	0	2	3
172	1.6	3	3	1	1	3	0	5	5	4	4	0	0	0	0	0	2
173	1.6	5	3	1	0	0	0	5	4	5	4	0	0	0	0	1	2
174	1.6	3	2	1	0	0	0	5	5	0	3	0	0	0	0	1	3
175	1.6	-	2	0	0	0	0	4	5	3	2	0	0	0	0	0	3
176	1.6	0	0	1	0	0	0	4	4	0	0	0	0	0	0	0 .	. 1
177	1.6	4	2	0	0	0	0	4	4	4	5	0	0	-	0	1	2
178	1.6	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0
179	1.6	0	0	0	2	0	0	0	0	0	3	0	0	0	0	0	3
180	1.6	0	0	1	0	0	0	0	2	0	3	0	0	0	0	0	1
181	1.6	2	0	3	0	0	0	3	3	0	2	0	0	0	0	1	3
182	1.6	0	0	0	0	0	0	0	-	0	4	0	0	0	0	0	0
183	1.6	5	4	1	1	4	0	4	5	5	5	3	0	0	0	1	5
184	1.6	5	4	-	1	5	0	5	5	5	5	2	0	0	0	1	5
185	1.6	0	0	0	0	5	4	5	5	3	5	0	2	0	0	0	4

WO 01/															PCT/JP01/02158		
186	1.6	0	0	0	0	2	0	5	5	0	5	0	0	0	0	0	5
187	1.6	3	0	-	1	5	4	5	5	2	5	0	0	0	0	1	5
188	1.6	0	0	1	0	5	3	5	5	0	2	0	0	0	0	0	5
189	1.6	0	0	0	0	2	3	0	4	0	5	0	0	0	0	1	5
190	1.6	0	0	0	1	5	2	4	5	3	5	0	0	0	0	. 1	1
191	1.6	0	0	1	0	0	0	3	5	0	5	0	0	0	0	0	4
192	1.6	0	0	0	0	0	0	0	4	0	5	0	0	0	0	0	4
193	1.6	0	0	0	1	2	4	5	5	3	5	0	0	0	0	0	5
194	1.6	3	4	0	0	0	0	3	4	3	0	0	0	0	0	0	0
195	1.6	4	4	1	0	0	0	5	5	0	5	0	0	0	0	0	0
196	1.6	5	4	4	3	2	0	5	5	5	5	0	0	0	0	1	3
197	1.6	5	5	4	3	3	0	5	5	5	5	3	1	0	0	1	4
198	1.6	5	5	1	1	2	3	5	5	5	5	3	0	0	0	0	2
199	1.6	5	4	1	1	2	0	5	5	5	5	2	0	0	0	0	3
200	1.6	5	4	4	1	5	0	5	5	5	5	3	0	0	0	1	5
230	1.6	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	1
202	6.3	0	0	0	0	3	3	5	5	0	5	0	0	0	0	0	3
203	6.3	4	0	2	3	4	5	5	5	5	5	1	0	0	0	2	5
204	6.3	5	5	4	4	4	3	5	5	5	4	0.		0	0	3	5
205	6.3	5	3	1	2	2	0	4	5	5	5	0	1	0	0	1	5
206	6.3	4	5	4	3	5	4	5	5	5	5	0	0	0	0	3	5

-	-	_		`
1445	- 1	71	表	- 1
〔第	1	0	28)

化合物 No.		D	E	F	G	Н	I	J 	K	L ——	M 	N	b	c	d	e	f	· —- —	 _
1	6.3	3		1	0	3	0	4	2	0	3	0	1	1	1	0	1		
2	6.3	5	5	4	5	5	3	5	5	5	5	4	4	4	4	4			

3	6.3	5	5	5	5	5	5	5	5	5	5	5	4	4	5	2	5
4	6.3	5	5	5	4	5	5	5	5	5	5	5	4	5	5	2	5
6	6.3	1	1	1	1	5	1	5	4	5	5	4	2	3	-	-	5
7	6.3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
12	6.3	5	5	5	5	5	5	5	5	5	5	5	4	5	5	4	5
13	6.3	1	1	0	1	4	1	3	4	5	2	1	1	2	1	0	4
14	6.3	1	1	0	0	2	0	2	2	2	3	0	1	2	0	0	1
15	25	4	4	1	1	5	-	5	5	4	5	0	2	4	4	1	5
16	25	5	4	2	2	5	3	5	5	5	5	1	2	4	5	1	5
17	25	1	1	1	1	4	3	5	5	5	5	2	0	2	4	2	1
18	25	2	1	1	1	2	1	5	-	5	4	5	1	2	2	1	3
19	25	5	5	5	5	5	3	5	5	5	5	3	5	4	4	5	5
22	50	5	4	5	5	5	2	5	5	5	-	0	5	4	-	5	5
23	6.3	0	0	2	0	-	-	-	-	-	2	1	0	1	-	0	2
24	6.3	5	5	5	5	5	-	5	5	5	5	4	3	4	-	4	5
25	25	2	2	2	1	4	1	5	4	5	-	2	0	2	-	1	2
26	25	4	3	2	1	5	-	- 5	5	5	-	1	3	2	-	0	5
27	25	4	3	0	0	3	2	4	3	4	5	0	2	2	-	0	4
28	25	2	2	2	1	3	4	4	4	4	2	2	1	2	-	1	0
29	6.3	4	4	4	5	5	5	5	-	5	5	4	2	2	-	5	5
30	6.3	5	5	5	5	5	5	5	-	5	5	4	5	4	-	5	5
31	6.3	2	1	2	2	3	5	5	-	5	5	5	1	3	-	2	5
32	6.3	4	5	5	5	5	5	5	-	5	5	5	4	4	-	4	5
33	6.3	4	5	4	4	5	5	5	-	5	5	5	4	3	-	4	5
35	5.5	3	5	5	5	5	5	5	-	5	5	5	4	3	5	5	5
36	25	2	2	1	2	4	4	4	-	4	5	2	1	3	2	2	2
37	25	5	4	0	5	5	5	5	-	5	5	1	2	4	3	2	5
39	6.3	4	4	4	3	5	5	5	-	5	5	5	5	4	5	3	5
40	6.3	5	5	5	5	5	5	5	-	5	5	5	5	5	-	5	5

41	6.3	5	5	5	5	5	5	5	-	5	5	5	5	5	-	5	5
42	6.3	5	5	5	5	5	5	5	_	5	5	5	5	5	-	5	5
43	6.3	5	5	5	4	5	5	5	-	5	5	5	5	5	-	4	5
44	6.3	5	5	5	5	5	5	5	-	5	5	4	5	5	-	5	5
45	6.3	5	5	5	4	5	5	5	-	5	4	4	4	3	-	3	5
46	6.3	5	5	4	3	5	5	5	-	5	5	5	4	3	-	4	5
47	6.3	5	5	3	2	5	5	5	-	5	5	5	4	5	5	3	5
48	6.3	1	1	5	2	5	1	5	-	5	5	3	2	2	4	2	5
49	6.3	5	5	5	5	5	5	5	~	5	5	5	5	5	5	5	5
50	50	3	1	1	3	0	0	5	-	2	5	2	0	0	2	1	4
51	6.3	5	5	5	5	5	4	5	-	5	5	4	5	4	5	4	5
52	6.3	5	5	4	5	5	5	5	-	5	5	5	5	5	5	4	5
53	6.3	5	5	5	5	5	5	5	-	5	5	5	5	4	5	5	5
54	6.3	4	4	5	3	5	5	5	-	5	5	5	3	4	5	3	5
55	6.3	5	5	5	5	5	5	5	-	5	5	5	5	5	5	5	5
56	6.3	5	5	5	5	5	5	5	-	5	5	5	5	5	5	5	5
57	6.3	5	5	5	5	5	5	5	-	5	5	3	0	5	5	4	5
58	6.3	5	5	5	3	5	5	5	-	5	5	4	5	5	5	-	5
59	6.3	5	5	5	5	5	5	5	-	5	-	-	5	5	5	5	-
60	6.3	3	1	4	2	2	0	2	-	2	4	3	2	1	3	3	4
61	6.3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
62	6.3	5	5	5	5	5	5	5	-	5	5	5	5	5	-	5	5
63	6.3	5	5	4	4	5	2	5	-	5	5	5	4	4	5	3	5
64	25	2	2	1	2	2	1	5	5	5	-	0	2	1	1	0	2
65	6.3	5	5	4	2	5	5	5	5	5	5	5	4	5	5	4	5
66	6.3	5	5	5	3	5	5	5	5	5	4	2	3	4	5	4	5
67	6.3	5	5	5	3	5	5	5	5	5	5	4	3	4	5	3	5
68	6.3	5	4	4	3	4	3	5	5	5	4	3	. 3	3	4	3	5
69	6.3	5	5	4	3	5	5	5	5	5	4	3	4	5	5	3	5

70	6.3	5	5	5	3	5	5	5	5	5	5	4	4	5	5	4	5
71	6.3	5	5	5	3	5	5	5	5	5	5	3	5	5	5	4	5
72	6.3	5	5	4	3	5	5	5	5	5	5	4	4	4	5	4	5
74	6.3	5	5	5	2	5	5	5	5	5	5	4	5	3	5	3	5
75	6.3	4	5	4	2	5	5	5	5	5	5	3	2	3	5	3	5
76	6.3	5	5	4	4	5	4	5	5	5	5	4	4	3	4	3	5
77	6.3	5	5	4	3	5	4	5	5	5	5	4	3	3	5	3	5
78	6.3	5	5	5	3	-5'	5	5	5	5	5	5	4	4	5	4	5
79	6.3	5	5	4	3	4	4	5	5	5	5	5	4	4	5	4	5
80	6.3	4	3	4	3	5	5	5	5	5	5	4	5	3	5	4	4
81	6.3	0	0	4	2	5	2	5	5	5	5	3	2	2	3	2	3
82	6.3	2	2	4	2	5	5	5	5	5	5	5	3	4	5	4	5
83	6.3	5	3	4	2	5	5	5	5	5	5	5	5	5	5	4	5
84	6.3	3	4	4	2	5	5	5	5	5	5	4	5	5	5	3	5
85	6.3	5	5	5	5	5	3	5	5	5	5	5	5	4	5	5	5
86	6.3	5	5	5	5	4	4	5	5	5	5	5	5	4	4	5	5
87	6.3	3	4	5	3	5	0	5	5	5	5	4	4	2	4	4	5
88	6.3	4	5	5	3	5	0	5	5	4	5	4	2	4	5	4	5
89	6.3	3	5	5	4	5	0	5	4	5	5	4	3	3	4	3	5
90	6.3	4	5	5	4	3	0	5	5	5	5	4	4	3	4	3	5
91	6.3	5	4	5	3	5	4	5	5	5	5	4	2	4	5	4	5
92	6.3	5	5	5	4	5	3	5	5	5	5	5	4	3	5	5	5
93	6.3	5	4	5	4	5	5	5	5	5	5	5	5	4	5	5	5
94	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	4	5
95	6.3	5	4	5	3	5	5	5	5	5	5	4	3	3	5	4	5
96	6.3	5	5	5	5	5	5	5	5	5	5	5	4	4	5	5	5
97	6.3	5	5	5	3	5	4	5	5	5	5	5	5	3	5	4	5
98	6.3	5	5	5	3	5	4	5	5	5	5	4	3	4	5	4	5
99	6.3	5	5	5	3	5	5	5	4	· 5	5	· 5	4	4	5	5	5

WO 01/68613 PCT/JP01/02158 5 5 5 5 5 6.3 6.3

5 4 5 3

5 5 5 5 5 4

3 5

5 3

1.6

																		_	_	
129	1.6	4	0	2	2	5	5	5	5	4	5	4	ļ	4	4	5			5	
130	1.6	2	3	4	2	3	5	5	5	4	5	5	5	4	4	5			5	
131	1.6	4	3	2	2	5	3	5	5	4	5	4	1	2	4	4	,	3	5	
132	1.6	3	2	3	2	4	5	5	5	5	5	4	4	4	4	5		3	5	
133	1.6	4	5	3	3	5	3	5	5	5	5	•	4	3	3	5		3	5	
134	1.6	4	3	2	2	5	5	5	5	4	5		3	5	3	5		2	5	
135	1.6	5	5	3	3	5	5	5	5	5	5	ı	5	5	4	5	•	4	5	
136	1.6	5	4	3	3	5	4	5	5	4	5	•	4	4	3	5	5	2	5	
137	1.6	5	5	4	3	5	5	5	5	5	5	; ,	4	5	4	5	5	3	5	
138	1.6	5	3	2	3	5	0	5	5	5	Ę	5	3	3	2	4	ļ	3	5	
139	1.6	5	5.	4	3	5	5	5	5	5		5	5	5	5	ţ	5	3	5	
140	1.6	5	5	5	4	5	5	5	5	5	. !	5	5	5	5		5	5	5	
141	1.6	5	4	4	3	5	5	5	5	5	. !	5	4	4	3	!	5	3	5	
142	1.6	4	3	2	2	5	4	5	5	4	+	5	4	5	4	•	4	3	5	
143	1.6	4	4	2	4	5	5	5	5	5	5	5	4	5	4		5	2	5	
144	1.6	0	2	2	2	5	2	5	5	. 4	1	5	4	2	2		2	2	4	
145	1.6	3	3	3	2	5	5	5	5	. 4	1	5	4	4	3		5	2	5	
146	1.6	5	5	3	4	5	5	5	5	, !	5	5	5	5	4		5	3	5	
147	1.6	3	4	3	2	5	0	5	. 4		4	4	3	2			2	3	5	
148	1.6	2	3	2	3	5	0	5	, 4		5	4	2	2			3	3	4	
149	1.6	5	5	3	2	5	5	5	5 5		5	5	5	5			5	3	5	
150	1.6	5	5 5	5 3	3 2	2 5	4	. 5	5 !	5	5	5	4	4			5	3	5	
151	1.6	4	1 4	1 3	3 2	2 5	5 4		5 !	5	5	5	5	4		4	5	3		
152	1.6	3	3 2	2 3	3 2	2 5	5 4		õ	5	5	5	4			3	4	3		
153	1.6	4	4 3	3 2	2 2	2 5	5 4	ļ į	5	5	5	5	4			4	4	2		
154	1.6	4	4 5	5 3	3 :	3 5	5 5	5 !	5	5	5	5	4			2	3	4		
155	1.6		2 (0 :	2 :	2 :	5 !	5	5	5	4	5	2			2	4	2		5
156	1.6		4	5	3	3 !	5 !	5	5	5	5	5	5			3	5	3		5
157	1.6		5	4	4	3	5	5	5	5	5	5	4		5	4	5	3	3 :	5

158	1.6	0	0	0	1	3	1	4	3	2	4	1	2	2	2	2	5
159	1.6	3	2	3	3	5	5	5	5	4	5	4	5	4	5	4	5
160	1.6	5	3	3	3	5	5	5	5	4	5	5	5	4	5	4	5
161	1.6	2	2	3	2	5	5	5	5	5	5	4	5	4	5	3	5
162	1.6	2	0	2	2	5	5	5	5	5	5	5	5	3	5	3	5
163	1.6	0	0	1	2	5	5	5	5	5	5	2	2	3	3	2	5
164	1.6	0	0	3	3	5	5	5	5	4	5	4	2	2	5	2	5
165	1.6	0	0	3	3	5	5	5	5	4	5	4	3	2	5	3	5
166	1.6	3	1	2	2	5	3	5	5	4	5	4	2	2	4	2	5
167	1.6	3	2	4	3	5	5	5	5	5	5	4	3	2	5	3	5
168	1.6	3	2	3	3	5	1	5	5	4	5	4	2	2	4	2	5
169	1.6	0	4	4	3	5	3	5	5	5	5	5	4	2	5	4	5
170	1.6	3	4	4	3	5	3	5	5	5	5	5	2	2	4	4	5
171	1.6	0	0	4	3	5	4	5	5	5	5	4	2	1	4	3	5
172	1.6	4	2	4	3	5	3	5	5	4	5	4	3	1	5	3	5
173	1.6	3	3	4	3	5	3	5	5	5	5	4	2	2	4	4	5
174	1.6	3	0	3	3	5	4	5	5	4	5	4	2	1	5	3	5
175	1.6	3	0	4	3	5	4	5	5	5	5	3	2	-	5	3	5
176	1.6	3	0	3	3	5	4	5	5	4	5	3	2	2	5	3	5
177	1.6	3	0	3	3	5	3	5	5	4	5	3	3	2	4	4	5
178	1.6	0	0	3	2	5	5	5	5	3	5	3	3	1	5	2	5
179	1.6	0	2	3	3	5	4	5	5	4	5	3	2	2	4	2	5
180	1.6	0	0	3	3	5	4	5	5	5	5	3	2	2	4	2	5
181	1.6	0	0	2	3	5	4	5	5	4	5	4	3	2	4	3	5
182	1.6	0	0	3	3	5	4	5	5	4	5	3	3	1	4	3	5
183	1.6	3	3	4	4	5	4	5	5	5	5	4	3	2	5	4	5
184	1.6	5	3	4	4	5	5	5	5	4	5	5	2	3	5	5	5
185	1.6	0	0	4	3	5	5	5	5	3	5	4	5	1	5	4	5
186	1.6	0	0	4	3	5	5	5	5	4	5	5	5	2	5	3	5

187	1.6	0	0	4	3	5	5	5	5	4	5	5	5	2	5	4	5
188	1.6	0	0	4	4	5	5	5	5	5	5	4	4	3	5	3	5
189	1.6	0	0	5	3	5	5	5	5	4	5	5	2	3	5	4	5
190	1.6	0	0	4	4	5	5	5	5	4	5	4	2	2	5	4	5
191	1.6	0	0	3	3	5	5	5	5	4	5	4	4	2	5	3	5
192	1.6	0	0	3	3	5	4	5	5	4	5	4	4	2	5	3	5
193	1.6	0	0	4	3	5	5	5	5	4	5	4	4	3	5	3	5
194	1.6	2	4	3	3	2	1	5	4	5	5	3	2	2	4	3	5
195	1.6	0	3	3	3	5	2	5	5	5	5	3	2	2	4	4	5
196	1.6	5	3	4	5	5	4	5	5	5	5	4	4	2	5	4	5
197	1.6	5	3	4	4	5	4	5	· 5	5	5	5	2	3	5	4	5
198	1.6	5	3	4	4	5	4	5	5	5	5	5	2	2	5	3	5
199	1.6	4	3	5	4	5	4	5	5	5	5	5	3	3	5	5	5
200	1.6	5	3	4	4	4	4	5	5	5	5	5	5	3	5	5	5
201	1.6	0	0	1	2	3	2	4	2	2	5	2	1	1	2	1	5
230	1.6	0	0	1	2	3	0	5	4	3	4	2	1	3	2	2	4
202	1.6	1	5	3	3	5	5	5	5	4	5	4	2	2	5	2	5
203	1.6	1	5	4	4	5	5	5	5	5	5	4	3	4	5	4	5
204	1.6	3	5	4	4	5	3	5	5	5	5	4	3	3	4	4	5
205	1.6	3	5	3	2	4	0	5	4	4	5	1	4	2	3	3	2
206	1.6	4	4	4	4	5	5	5	5	5	5	4	4	4	5	4	5

請求の範囲

1. 式(1):

$$Y Z^2 Q$$

Ra
 X

〔式中、Q-は式(2):

を表し、

Raは水素原子、シアノ基、C1-C4アルキル基、シアノC1-C4アルキル基 、C1-C4アルコキシC1-C4アルキル基、C1-C4アルキルチオC1-C4アル

キル基、C₁-C₄ハロアルキル基、C₁-C₄アルキルスルホニル基、(C₁-C₄アルキル) カルボニル基または(C₁-C₄アルコキシ) カルボニル基を表し、

Xは水素原子、 C_1-C_4 アルキル基、 C_1-C_4 ハロアルキル基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルキルチオ基、 C_1-C_4 アルキルスルホニル基、アミノ基、 C_1-C_4 アルキルアミノ基、または(C_1-C_4 アルキル) $_2$ アミノ基を表し、

Yは酸素原子または硫黄原子を表し、

 Z^1 および Z^2 はそれぞれ独立して窒素原子またはCRbを表し、但し、 Z^1 が 窒素原子を表すときは Z^2 はCRbを表し、 Z^1 がCRbを表すときは Z^2 は窒素 原子を表し、

Rbは水素原子、ハロゲン原子、C₁-C₄アルコキシ基、C₁-C₄ハロアルコキシ基またはシアノ基を表し、

R¹およびR²はそれぞれ独立しては水素原子またはハロゲン原子を表し、

R³は水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、メルカプト基、アミノ基、ホルミル基、カルボキシル基、シアノメチル基、C₁-C₄アルコキシカルボニル基、スルファモイル基、チオカルバモイル基、カルバモイル基、C₁-C₄アルキル基、C₁-C₄アルキル基、C₁-C₄アルコキシ基、C₁-C₄アルキル基、C₁-C₄アルキルスルホニル基、C₁-C₄アルコキシC₁-C₄アルキルスルホニル基、C₁-C₄アルコキシC₁-C₄アルキル基、C₁-C₄アルコキシC₁-C₄アルコキシC₁-C₄アルコキシC₁-C₄アルコキシB、C₂-C₈アルケニル基、トリメチルシリルエチニル基、C₁-C₄アルキルアミノ基、(C₁-C₄アルキル)2アミノ基、置換フェニル基、置換フェニルカルボニル基、置換フェニルカルボニルオキシ基、置換フェニルメチル基、置換フェニルスルホニル基、置換フェニルーL-O、置換フェニル-L-NH、置換フェニルーL-SまたはC₁-C₄アルキルOC(O)-L-Oを表し、

R'は水素原子、ハロゲン原子、ホルミルアミノ基、シアノ基、クロロスルホニル基、ニトロ基、ヒドラジノ基、置換フェニル基、1,3ージオキソラン-2ーイル基、1,3ージオキサン-2ーイル基、C₁-C₈アルキル基、C₃-C₈シクロアルキル基、C₂-C₈アルケニル基、C₂-C₈アルキニル基、C₁-C₈ハロ

アルキル基、C3-Csハロゲノシクロアルキル基、C2-Csハロアルケニル基、 C2-C8ハロアルキニル基、 (C1-C6アルキル) カルボニル基、 (C1-C6ハ ロアルキル) カルボニル基、R³°O、R³°-L-O、R³°C(O)-L-O、5 ートリフルオロメチルー3ークロロー2ーピリジルオキシ基、5ートリフルオロ メチルー2ーピリジルオキシ基、2ーピリミジニルオキシ基、2ーピリジルオキ シ基、4-ピリジルオキシ基、5-クロロ-2-ピリジルオキシ基、6-トリフ ルオロメチルー2ーピリジルオキシ基、3ートリフルオロメチルー2ーピリジル オキシ基、R³⁰S、R³⁰NH、R³¹OC(O)、R³¹R³²NC(O)、R³³SO $_{2}$ N H C (O) 、 $_{2}$ R $_{3}$ O C (O) $_{1}$ L 、 $_{2}$ R $_{3}$ R $_{2}$ N C (O) $_{2}$ L 、 $_{3}$ R $_{3}$ C (O) (O) -L-NH, $R^{31}R^{32}NC$ (O) -L-NH, $R^{30}C$ (O) -L-NH, $R^{31}OC(O) - L - S, R^{31}OC(O) - L - S(O), R^{31}OC(O) - L$ $-SO_2$, $R^{31}R^{32}NC$ (O) -L-S, $R^{30}C$ (O) -L-S, $R^{34}SO_2NH$ $(R^{34}SO_2)_2N$, $R^{34}SO_2(R^{35})$ N, $R^{36}OC(O)$ NH, $R^{36}OC($ O) (R^{35}) N, R^{31} OC (O) -L - (R^{35}) N, R^{31} R 32 NC (O) -L -(R³⁵) N、置換フェニル (R³⁵) N、R³⁰R³⁵N、R³⁶C ONH、R³⁶C (O) $(R^{35}) N \times R^{37}ON = CH \times (C_1 - C_4 T \mu J + b) _2 P (O) - L \times R^{30}$ O-L , $R^{30}S-L$, $R^{30}NH-L$, $R^{31}R^{32}N-L$, $R^{30}S$ (O) -L , R^{30} SO_2-L , NC-L, $R^{30}CO_2-L$, $R^{30}C$ (O) -L, $R^{31}R^{32}N-L-O$ 、R³¹R³²NCO₂、(R³⁸O) R³¹NC(O) - L、(2-クロロー4-ブタ ノリド-2-イル) C1-C4アルキル基、R38-O-N=C(R37)-L-O、 $R^{31}OC(0)C_1-C_4 \gamma \nu + \nu \nu - O-C(=NOR^{38})-L, R^{30}C(=NOR^{38})$ $OR^{38}) - L - O, R^{30} - O - L - O, R^{39}O - C (= NOR^{38}) - L, R^{39}O$ -C (= NOR³⁸) -L - O, R³⁹O - C (= NOR³⁸) -L - S, R³⁹O - C $(= N O R^{38})$, $R^{31}R^{32}NC$ $(= N O R^{38})$ - L, $R^{39}O-C$ $(= N N R^{31}R$ 32) -L、(C,-C,アルキル) 3Si-L-O、(C,-C,アルキル) 3Si-L−〇−CH2−〇または置換されていてもよい5~6員のヘテロ環を表し、

R⁵は水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、アミノ基、カルボキシル基、メルカプト基、C₁-C₄アルキル基、C₂-C₈アルケニル基、C₂-

 C_8 アルキニル基、 C_1 - C_4 アルコキシ基、 C_1 - C_4 ハロアルキル基、 C_2 - C_8 アルケニルオキシ基、 C_2 - C_8 アルキニルオキシ基、 C_3 - C_4 アルオーシー C_4 アルプロピル基または C_4 - C_6 アルキニルオキシ基、 C_5 - C_6 アルプロピル基または C_6 - C_6 アルプロピル基または C_6 - C_6 アルプロピル基を表し、

R⁶およびR⁷はそれぞれ独立して水素原子、ハロゲン原子、C₁-C₆アルキル基、シアノ基またはC₁-C₆ハロアルキル基を表し、

 R^8 および R^9 はそれぞれ独立して水素原子、 C_1-C_8 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 C_1-C_8 ハロアルキル基、 C_2-C_8 ハロアルキニル基、 C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルキル)カルボニル基、 C_1-C_6 アルコキン C_1-C_4 アルキル基、 C_1-C_4 アルコキン C_1-C_4 アルキル基、 C_1-C_6 アルコキン基、 (C_1-C_6 アルコキン)カルボニル基、 C_1-C_6 アルキルスルホニル基、 C_1-C_6 アルコキシ) カルボニル基、 C_1-C_6 アルキルスルホニル基、 C_1-C_6 アルコキシ) カルボニル基、 C_1-C_6 アルコキシ) カルボニル基、 C_1-C_6 アルコキシ C_1-C_6 アルコトル C_1-C_6 アルコキシ C_1-C_6 アルコトル C_1-C_6 アルコキシ C_1-C_6 アルコトル C_1-C_6 アル C_1-C_6 アルコトル C_1-C_6 アルコトル C_1-C_6 アルコトル C_1-C_6 アル C_1-C_6 アルコトル C_1-C_6 アルコトル C_1-C_6 アル C_1-C_6 アル C_1-C_6 アル C_1-

R¹⁰は水素原子、ハロゲン原子、C₁-C₆アルキル基、(C₁-C₄アルコキシ) カルボニル基または(C₁-C₄アルキル)カルボニル基を表し、

R ''は水素原子、ホルミル基、カルボキシル基、ヒドロキシメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 $(C_1-C_6$ アルキル基、 $(C_1-C_6$ アルキル)カルボニル基、 C_1-C_4 アルコキシ C_1-C_4 アルキル基、 C_1-C_4 アルキルチオ C_1-C_4 アルキルスルホニル C_1-C_4 アルキル基、 $(C_1-C_4$ アルコキシ)カルボニル基、 $(C_1-C_4$ アルキル)アミノカルボニル基、 $(C_1-C_4$ アルキル-CH (OH)、 C_2-C_4 アルケニル-CH (OH)、 C_3-C_8 シクロアルキル-CH (OH) または $(C_3-C_8$ シクロアルキル) カルボニル基を表し、

 R^{12} は水素原子、ハロゲン原子、アミノ基、 C_1-C_6 アルキル基、 C_1-C_6 ハロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルコキシ(C_1-C_4)アルキル基を表し、

R¹³は水素原子、C₁-C₆アルキル基または置換フェニル基を表し、

R¹¹およびR¹⁵はそれぞれ独立して水素原子またはC₁-C6アルキル基を表し

R¹6は水素原子またはC₁-C6アルキル基を表し、

 R^{17} 、 R^{18} 、 R^{19} および R^{20} はそれぞれ独立して水素原子または C_1-C_6 アルキル基を表し、

R²¹は水素原子、C₁-C₆アルキル基、(C₁-C₆アルキル)カルボニル基、 (C₁-C₆ハロアルキル)カルボニル基、(C₁-C₆アルコキシ)カルボニル基 、C₁-C₆アルキルスルホニル基、C₁-C₆ハロアルキルスルホニル基またはC₁-C₄アルコキシC₁-C₄アルキル基を表し、

 R^{22} は水素原子、 C_1-C_6 アルキル基、 C_1-C_4 ハロアルキル基、ヒドロキシ C_1-C_4 アルキル基または C_1-C_4 アルコキシ C_1-C_4 アルキル基を表し、

 R^{23} は水素原子、ハロゲン原子、 C_1-C_6 アルキル基、ニトロ基、アミノ基、シアノ基、ホルミル基、(C_1-C_6 アルキル)カルボニル基、(C_1-C_4 ハロアルキル)カルボニル基、カルボキシル基、(C_1-C_4 アルコキシ)カルボニル基、ヒドロキシ C_1-C_4 アルキル基、 C_1-C_4 アルキルチオ基、 C_1-C_4 アルキルスルホニル基、 $R^{38}ON=C$ (C_1-C_4 アルキル)を表し

R³oは水素原子、C1-C8アルキル基、C3-C8シクロアルキル基、C2-C8アルケニル基、C2-C8アルキニル基、C3-C8シクロアルキルC1-C4アルキル基、C1-C8ハロアルキル基、C2-C8ハロアルケニル基、C2-C8ハロアルキル基、C2-C8ハロアルキール基、C2-C8ハロアルキール基、C2-C8ハロアルキニル基、4-ブタノリド-2-イル基、5-ペンタノリド-2-イル基、6-ヘキサノリド-2-イル基、(C1-C4アルコキシ)カルボニル基、(C1-C4アルコキシ)カルボニル基、C3-C8シクロアルケニル基、C1-C4アルコキシC1-C4アルコキシC1-C4アルコキシC1-C4アルキル基、(テトラヒドロフラン-2-イル)C1-C4アルキル基、(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチル基、(C1-C4アルコキシC1-C4アルキル)2C1-C4アルキル基、(テトラヒドロピラン-2-イル)C1-C4アルキル基、(フラン-2-イル)C1-C4アルキル基、C2-C8アルケニルオキシC1-C4アルキル基、C2-C8アルキニルオキシC1-C4アルキル基、C1-C4ハロアルコキシC1-C4ア

ルキル基、置換フェニルオキシC」-C4アルキル基、C1-C4ハロアルコキシC 1-C4アルコキシC1-C4アルキル基、置換フェニルC2-C8アルキニル基、置 換フェニルC2-C8アルケニル基、シアノC1-C4アルキル基、C1-C4アルコ キシCı-C4アルキル基、Cı-C4アルキルチオCı-C4アルキル基、ベンジル オキシメチル基、テトラヒドロピラン-2-イル基、オキシラニル基、オキシラ ニルメチル基、テトラヒドロフランー2ーイル基、(CıーCsアルキル)カルボ ニル基、シアノC2-C8アルケニル基、(C1-C4ハロアルキル)カルボニル基 、置換フェニル基、 (テトラヒドロフラン-3-イル) C1-C4アルキル基、 (3-メチルオキセタン-3-イル) C₁-C₄アルキル基、(2-ピロリドン-1 - イル) C₁- C₄アルキル基、 (C₂- C₃アルケニル) カルボニル基、 (C₁-C4アルコキシC1-C4アルキル) カルボニル基、テトラヒドロフラン-3-イ ル基、C1-C8アルキルスルホニル基、C1-C8ハロアルキルスルホニル基、(С1-С4アルキル) カルボニルオキシС1-С4アルキル基、 (С1-С4ハロアル コキシ)カルボニル基、(置換されていてもよい5から6員へテロ環)C1-C4 アルキル基、テトラヒドロピランー3ーイル基、テトラヒドロピランー4ーイル 基、 (テトラヒドロピランー3ーイル) C1-C1アルキル基、 (テトラヒドロピ ラン-4-イル) C1-C4アルキル基または1-メチルピロリジン-3-イル基 を表し、

R³¹は水素原子、C₁-C®アルキル基、C₂-C®アルケニル基、C₂-C®アルキニル基、C₃-C®シクロアルキル基、C₃-C®シクロアルキルC₁-C₄アルキル基、オキセタン-3-イル基、C₁-C₄アルキルアミノ基、(C₁-C₄アルキル)₂ アミノ基、C₁-C₄アルキリデンイミノ基、置換されていてもよいフェニル基、ペンジル基、(C₂-C®アルケニル)オキシカルボニルC₁-C₄アルキル基、(C₂-C®アルキニル)オキシカルボニルC₁-C₄アルキル基、(C₂-C®アルキニル)カルボニルC₁-C₄アルキル基、(C₂-C®アルキルル)カルボニルC₁-C₄アルキル基、(C₂-C®アルキルル)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル基、(C₁-C₄アルキル基、(C₁-C₄アルキル基、)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル基、)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル基、)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル基、)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル基、)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル基、)カルボニルC₁-C₄アルキル基、(C₁-C₄アルキル)シアミノC₁-C₄アルキル基、置換されていてもよい5から6員へテロ環、C₂-C®ハロアルケニル基またはC₁-C₄アルキルチオC₁-C₄アルキル基を表し、

R³²は水素原子、C₁-C。アルキル基、C₂-C。アルケニル基、C₂-C。アルケニル基、C₂-C。アルキニル基、C₃-C。シクロアルキル基またはC₁-C。ハロアルキル基を表し、但し、R³¹とR³²は結合している窒素原子とともにC₁-C₄アルキル基で置換されていても良い3から8員のヘテロ環を表していてもよく、そのときのヘテロ環の構成要素は炭素、酸素、硫黄および窒素原子から任意に選択され、

R³³はCı-C,アルキル基またはCı-C,ハロアルキル基を表し、

 R^{34} は C_1 - C_8 アルキル基、 C_1 - C_4 ハロアルキル基、 C_3 - C_8 シクロアルキル基、 C_2 - C_8 アルケニル基、 C_2 - C_8 アルキニル基、ベンジル基またはフェニル基を表し、

 R^{35} は C_1-C_8 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 C_1-C_4 ハロアルキル基、 C_2-C_8 ハロアルケニル基、 C_2-C_8 ハロアルキニル基、 C_1-C_4 アルコキン C_1-C_4 アルコキン C_1-C_4 アルコキシ)カルボニル基、 (C_1-C_4 アルコキシ)カルボニル C_1-C_4 アルコキシ)カルボニル C_1-C_4 アルキル基、ホルミル基、 (C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルキル)カルボニル基、 (C_1-C_6 アルキル)カルボニル基を表し、

R³⁶はC₁-C₆アルキル基、C₂-C₈アルケニル基、C₂-C₈アルキニル基、C₁-C₄ハロアルキル基、置換フェニル基または置換フェニルC₁-C₆アルキル基を表し、

R³7はC;-C6アルキル基または(Ci-C3アルコキシ)カルボニルCi-C6アルキル基を表し、

 R^{38} は水素原子、 C_1-C_6 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 C_3-C_8 シクロアルキル基またはベンジル基を表し、

 R^{39} は C_1-C_8 アルキル基、 C_2-C_8 アルケニル基、 C_2-C_8 アルキニル基、 (C_1-C_6 アルキル) カルボニル基、 (C_1-C_6 アルコキシ) カルボニル基、 C_1-C_6 アルキルスルホニル基または (C_1-C_4 アルコキシ) $_2$ P (O) を表し、

Lは飽和あるいは不飽和の分岐していてもよく、ハロゲン原子、シアノ基または(C」-C₁アルコキシ)カルボニル基によって置換されていてもよいC」-C6のアルキレン鎖を表し、

置換フェニルはハロゲン原子、シアノ基、ニトロ基、アミノ基、カルボキシル

基、ヒドロキシ基、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4ハロアルコキシ基、C1-C4アルキルスルホニル基、(C1-C4アルキル)カルボニル基、(C1-C4アルコキシ)カルボニルC1-C4アルコキシ)カルボニル区1-C4アルコキシ)カルボニルを、(C1-C4アルコキシ)カルボニルを、(C1-C4アルコキシ)カルボニルを、C1-C4アルコキシ(C1-C4アルコキシ)カルボニルを、C1-C4アルコキシ)カルボニルを、(C1-C4アルコキシ)カルボニルC1-C4アルコキシ基、(C1-C4アルカキシC1-C4アルコキシ)カルボニルC1-C4アルコキシ基、(C1-C4アルケニルオキシC1-C4アルコキシ)カルボニルC1-C4アルコキシ基または(C1-C4アルコキシー)カルボニルC1-C4アルコキシ基または(C1-C4ハロアルコキシC1-C4アルコキシ)カルボニルC1-C4アルコキシ基または(C1-C4ハロアルコキシC1-C4アルコキシ)カルボニルC1-C4アルコキシ基または(C1-C4ハロアルコキシC1-C4アルコキシ)カルボニルC1-C4アルコキシ基を表し、

置換されていてもよい5から6員へテロ環はハロゲン原子、シアノ基、ニトロ基、アミノ基、カルボキシル基、ヒドロキシ基、 C_1-C_4 アルキル基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルキルスルホニル基、 (C_1-C_4 アルキル) カルボニル基、 (C_1-C_4 アルコキシ) カルボニル C_1-C_4 アルキルオキシ基、OCH (C_1) CO2H、OCH 2CO2Hまたは (C_1-C_4 アルコキシ) カルボニル基によって任意に置換されていてもよい5から6員へテロ環を表し、

但し、これらの化合物に光学活性体、ジアステレオマー、幾何異性体が存在する場合は、それぞれの混合物および単離された異性体の双方を包含する。〕で示されるピリミジノン誘導体およびその塩。

2. RaがC₁-C₄アルキル基、C₁-C₄ハロアルキル基またはC₁-C₄アルキルスルホニル基を表し、

Xが水素原子、C1-C4アルキル基またはアミノ基を表し、

- Yが酸素原子を表し、
- 21が窒素原子を表し、
- 2°がCRbを表し、
- Rbがハロゲン原子を表し、
- R¹が水素原子またはフッ素原子を表し、
- R²が水素原子を表す請求項1記載のピリミジノン誘導体およびその塩。

3. Xがメチル基を表す請求項2記載のピリミジノン誘導体およびその塩。

- 4. RaがCHF₂またはCF₃を表す請求項2記載のピリミジノン誘導体および その塩。
- 5. 請求項1記載のピリミジノン誘導体およびその塩を有効成分として含有する農薬。
- 6. 請求項1記載のピリミジノン誘導体およびその塩を有効成分として含有する除草剤。

INTERNATIONAL SEARCH REPORT

International application No.

A. CLASS Int.	IFICATION OF SUBJECT MATTER C1 ⁷ C07D239/36, C07D239/47, C07D4	03/04, C07D405/04, C07D41	3/04, A01N43/54				
According to	International Patent Classification (IPC) or to both nati	ional classification and IPC					
	SEARCHED						
Minimum do Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D239/36, C07D239/47, C07D403/04, C07D405/04, C07D413/04, A01N43/54						
	ion searched other than minimum documentation to the						
Electronic d CA (S	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), REGISTRY(STN), WPIDS(STN)						
G DOGT	ACTIVITY CONTOURNED TO BE DELEVANT		· · · · · · · · · · · · · · · · · · ·				
	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app		Relevant to claim No.				
X	Beck, James R.; Babbitt, George Synthesis of 2-[(1-aryl-1H-1,2,4-triazol-3-y related derivatives,J. Heterocyc 1467-70, compound [9]	ethyl l)oxy]propionates and					
х	Breuker, Koos; Van der Plas, He SN(ANRORC) mechanism in the Ch 4-phenylpyrimidine, J. Org. C 4677-80, compound 3	ichibabin amination of	1				
х	JP, 05-124924, A (Sansho Seiyak 21 May, 1993 (21.05.93), compounds 1-10 (Family: none)	u Co., Ltd.),	1				
P,X	WO, 01/10843, A (Mitsubishi Che 15 February, 2001 (15.02.01)	emical Corporation), (Family: none)	1				
P,X	JP, 2000-264888, A (Zaidan Ho Kenkyusho), 26 September, 2000 (26.09.00), working example (Family: none		1				
Further	or documents are listed in the continuation of Box C.	See patent family annex.					
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "E" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention combined with one or more other such documents; such combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed i							
16	actual completion of the international search April, 2001 (16.04.01)	Date of mailing of the international sear 24 April, 2001 (24.0					
Name and I	nailing address of the ISA/ anese Patent Office	Authorized officer					
Facsimile N	٠	Telephone No.					

International application No.

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	Vroegop, S. M.; Chapman, D. L.; Decker, D. E.; Galinet, L. A.; Brideau, R. J.; Ready, K. A.; Dunn, C. J.; Buxser, S. E. Pharmacokinetic properties, induction of interferon, and efficacy if selected 5-halo-6-phenyl pyrimidinones, bropirimine analogues, in a model of severe experimental autoimmune encephalomyelitis, Int. J. Immunopharmacol. (1999), 21(10), 647-662; page 650, table	1
x	Abdel-Megid, Mohamed Synthesis of pyrimido[4,5~d]pyrimidinethione derivatives as biocidal agents, Heterocycl. Commun. (1998), 4(3), 235-243	1
X	WO, 98/25596, A (Pharmacia & Upjohn Co.), 18 June 1998 (18.06.98) & EP, 948331, A	1
x	Attaby, Fawzy A.; Eldin, Sanaa M.; Hanafi, Eman A. Z. Reactions of pyrimidinonethione derivatives: synthesis of 2-hydrazinopyrimidin-4-one, pyrimido[1,2-a] -1,2,4-triazine, triazolo-[1,2-a] pyrimidine, 2-(1-pyrazolo)pyrimidine and 2-arylhydrazonopyrimidine derivatives, Arch, Pharmacal Res. (1997), 20(06), 620-628	. 1
X	JP, 09-241161, A (Nippon Shinyaku Co., Ltd.), 16 September, 1997 (16.09.97), reference examples 1, 4 (Family: none)	1
x	Naghipur, G. A.; Saharia, G. S.; Sharma, D. P.; Sharma, H. R. Studies in heterocyclic compounds. Part XLV. 4-Methyl-6-aryl-5-(arylazo/N-substituted p-sulfamoylbenzenazo)pyrimidin-2-ols, J. Inst. Chem. (India) (1996), 68(2), 37-40	1
x	Krylova, L. F.; Shamovskaya, G. I.; Golovin, A. V.; Nogina, N. I., ortho-Palladated complexes containing isomeric 2-and 6-phenyl-4-pyrimidinones, Zh. Neorg. Khim. (1996), 41(3), 402-410; page 410, left column	1
x	WO, 94/06777, A (Zeneca Ltd.), 31 March, 1994 (31.03.94), working example IA & EP, 660827, A	1
X	Ram, Vishnu J., Chemotherapeutic agents: XVIII. Synthesis of .pideficient pyrimidines and fused pyrimidines as leishmanicidal agents, Arch. Pharm. (Weinheim, Ger.) (1990), 323 (11), 895-9, compounds 2, 3	1,2
X	Ram, Vishnu Ji, Chemotherapeutic agents. XII. Synthesis of pyrimidines and fused pyrimidines as leishmanicides and herbicides, J. Prakt. Chem. (1989), 331(6), 893-905	1-6
х	El-Sharabsy, Salwa A.; Abdel Gawad, Soad M.; Hussain, Sohair M., Reactions with substituted acrylonitriles: a novel synthesis of polysubstituted pyrimidines, J. Prakt. Chem. (1989), 331(2), 207-11, compounds 5a-h	1

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	JP, 63-30473, A (Zeria Shinyaku Kogyo K.K.), 09 February, 1988 (09.02.88), Claims; working example (Family: none)	1
x	Li, L. H.; DeKoning T. F.; Nicholas, J. A; Kramer, G. D.; Wilson, D.; Wallace, T.L.; Collins, M. J., Jr. Effect of mouse hepatitis virus infection on combination therapy of P388 leukemia with cyclophosphamide and pyrimidinones, Lab. Anim. Sci. (1987), 37(1), 41-4, compounds ABPP, ABMFPP, AIMFPP	1
X	Sidky, Younan A.; Borden, Ernest C.; Wierenga, Wendell; Bryan, Geroge T., Inhibitory effects of interferon-inducing pyrimidinones on the growth of transplantable mouse bladder tumors., Cancer Res. (1986), 46(8), 3798-802, Fig. I	1
х	Skulnick, Harvey I.; Weed, Shaldon D.; Eidson, Emerson E.; Renis, Harold E.; Stringfellow, Dale A.; Wierenga, Wendell Pyrimidinones. 1. 2-Amino-5-halo-6-aryl-4(3H)-pyrimidinones. Interferon-inducing antiviral agents, J. Med. Chem. (1985), 28(12), 1864-9	1
x	JP, 56-154464, A (Efu Bii Shii Ltd.), 30 November, 1981 (30.11.81), example 56 & US, 4414221, A	1
x	JP, 55-127378, A (Upjohn Co.), 02 October, 1980 (02.10.80), Claims; working example & US, 4507302, A	1
X.	Mass spectra of 2-thioxopyrimidine derivatives, Kishi, Hiroshi; Kambe, Satoshi, Shitsuryo Bunseki (1979), 27(2), 83-95; page 84, lower left side	1
х	Wynalda, M. A.; Fitzpatrick, F. A. High-performance liquid chromatographic determination of 5-halopyrimidinone interferon inducers, Anal. Chem. (1980), 52(12), 1931-4	1
x	US, 3829422, A (SANDOZ), 13 August, 1974 (13.08.74), examples 1, 4, 9 & US, 3663698, A	1,2
x	JP, 04-49279, A (Nihon Bayer Agrochem. K.K.), 18 February, 1992 (18.02.92), Claims; working example 18 (Family: none)	1-6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/02158

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
 Claims Nos.: 1-6 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: See extra sheet.
<u> </u>
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
The compounds of the invention do not have any novel common basic skeleton in their chemical structures.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
[.
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/02158

Continuation of Box No.I-2 of continuation of first sheet(1)

A group of inventions of claims 1-4 and the inventions of claims 5 and 6 relate to compounds of the general formula (I), pesticides containing the same as the active ingredient, or the like. However, the smallest compounds represented by the general formula (I), which correspond to the case wherein Ra=Rb=X=H and Q=Ph ($R^1=R^2=R^3=R^4=R5=H$), are publicly known, because they are disclosed in

- J. Heterocycl. Chem. (1988), 25(5), 1467-70;
- J. Org. Chem. (1979), 44(25), 4677-80; and
- JP, 05-124924, A.

Accordingly, the compounds of the general formula (I) do not have any novel common basic skeleton in their structures, so that one invention cannot be grasped from each of the above claims carrying the compounds.

On the other hand, many specific examples of the above compounds are disclosed in the description; still, these examples correspond to only a small part of an extremely wide range of compounds included among those described above.

Therefore, the above claims and the description fail to comply with the prescribed requirements to such an extent that a meaningful search could not be carried out.

In this international search report, search was made in the sight of the disclosure of the description, with the non-fused phenyl groups defined as to Q being limited to those having ring-substituent halogen atoms.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int cl⁷ C07D239/36, C07D239/47, C07D403/04, C07D405/04, C07D413/04, A01N43/54

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int cl' C07D239/36, C07D239/47, C07D403/04, C07D405/04, C 07D413/04, A01N43/54

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

C. 関連すると認められる文献

引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 Beck, James R.; Babbitt, George E.; Lynch, Michael P. Synthe	関連する 請求の範囲の番号 1
Beck, James R.; Babbitt, George E.; Lynch, Michael P. Synthe	1
sis of ethyl 2-[(1-aryl-1H-1, 2, 4-triazol-3-yl)oxy]propionate s and related derivatives, J. Heterocycl. Chem. (1988), 25 (5), 1467-70, 化合物 [9]	
Breuker, Koos; Van der Plas, Henk C., Occurrence of an SN(A NRORC) mechanism in the Chichibabin amination of 4-phenylpyr imidine, J. Org. Chem. (1979), 44(25), 4677-80, 化合物 3	1
]	s and related derivatives, J. Heterocycl. Chem. (1988), 25 (5), 1467-70, 化合物 [9] Breuker, Koos; Van der Plas, Henk C., Occurrence of an SN(A NRORC) mechanism in the Chichibabin amination of 4-phenylpyr

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

16.04.01

国際調査報告の発送日

24.04.01

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 内藤 伸一 4C 8615

電話番号 03-3581-1101 内線 3492

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP, 05-124924, A (三省製薬株式会社) 21.5月. 1993 (21.05.93), 化合物1-10 (ファミリーなし)	1
P, X	WO, 01/10843, A (三菱化学株式会社) 15.2月.2 001 (15.02.01) (ファミリーなし)	1
P, X	JP, 2000-264888, A (財団法人相模中央化学研究所) 26.9月.2000 (26.09.00), 実施例、 (ファミリーなし)	
X	Vroegop, S. M.; Chapman, D. L.; Decker, D. E.; Galinet, L. A.; Brideau, R. J.; Ready, K. A.; Dunn, C. J.; Buxser, S. E. Pharmacokinetic properties, induction of interferon, and efficacy of selected 5-halo-6-phenyl pyrimidinones, bropirimine analogues, in a model of severe experimental autoimmune encephalomyelitis, Int. J. Immunopharmacol. (1999), 21(10), 647-662, p650の表	
X	Abdel-Megid, MohamedSynthesis of pyrimido[4,5-d]pyrimidineth ione derivatives as biocidal agents, Heterocycl. Commun. (1998), 4(3), 235-243	1
х	WO, 98/25596, A (Pharmacia & Upjohn Co.) 18. 6 月. 1998 (18. 06. 98) & EP, 948331, A	1
х	Attaby, Fawzy A.; Eldin, Sanaa M.; Hanafi, Eman A. Z. Reactions of pyrimidinonethione derivatives: synthesis of 2 -hydrazinopyrimidin-4-one, pyrimido[1,2-a]-1,2,4-triazine,triazolo-[1,2-a]pyrimidine, 2-(1-pyrazolo)pyrimidine and 2-ary lhydrazonopyrimidine derivatives, Arch. Pharmacal Res. (1997), 20(6), 620-628	1
X	JP, 09-241161, A (日本新薬株式会社) 16.9月. 1997 (16.09.97), 参考例1, 4 (ファミリーなし)	1
х	Naghipur, G. A.; Saharia, G. S.; Sharma, D. P.; Sharma, H. R. Studies in heterocyclic compounds. Part XLV. 4-Methyl-6-a ryl-5-(arylazo/N-substituted p-sulfamoylbenzenazo)pyrimidin-2-ols, J. Inst. Chem. (India) (1996), 68(2), 37-40	. 1
x	Krylova, L. F.; Shamovskaya, G. I.; Golovin, A. V.; Nogina, N. I., ortho-Palladated complexes containing isomeric 2- and 6-phenyl-4-pyrimidinones, Zh. Neorg. Khim. (1996), 41(3), 402-410、p410左欄	1 .

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO, 94/06777, A (ZENECA Ltd.) 31. 3月. 1994 (31. 03. 94) 実施例 I A & EP, 660827, A	1.
X	Ram, Vishnu J., Chemotherapeutic agents. XVIII. Synthesis of .pideficient pyrimidines and fused pyrimidines as leis hmanicidal agents, Arch. Pharm. (Weinheim, Ger.) (1990), 323 (11), 895-9, 化合物 2, 3	1, 2
X	Ram, Vishnu Ji, Chemotherapeutic agents. XII. Synthesis of pyrimidines and fused pyrimidines as leishmanicides and herbicides, J. Prakt. Chem. (1989), 331(6), 893-905	1 — 6
X	El-Sharabsy, Salwa A.; Abdel Gawad, Soad M.; Hussain, Sohair M., Reactions with substituted acrylonitriles: a novel synthesis of polysubstituted pyrimidines, J. Prakt. Chem. (1989), 331(2), 207-11, 化合物 5 a — h	1
Х	JP, 63-30473, A (ゼリア新薬工業株式会社) 9.2 月.1988(09.02.88) 特許請求の範囲、実施例(ファミリーなし)	1
X	Li, L. H.; DeKoning, T. F.; Nicholas, J. A.; Kramer, G. D.; Wilson, D.; Wallace, T. L.; Collins, M. J., Jr. Effect of mouse hepatitis virus infection on combination th erapy of P388.leukemia with cyclophosphamide and pyrimidinon es, Lab. Anim. Sci. (1987), 37(1), 41-4, 化合物ABPP, ABMFPP, AIMFPP	1
X	Sidky, Younan A.; Borden, Ernest C.; Wierenga, Wendell; Bryan, George T., Inhibitory effects of interferon-inducing pyrimidinones on the growth of transplantable mouse bladder tumors., Cancer Res. (1986), 46(8), 3798-802, Fig. I	1
x	Skulnick, Harvey I.; Weed, Sheldon D.; Eidson, Emerson E.; Renis, Harold E.; Stringfellow, Dale A.; Wierenga, Wendell P yrimidinones. 1. 2-Amino-5-halo-6-aryl-4(3H)-pyrimidinone s. Interferon-inducing antiviral agents, J. Med. Chem. (198 5), 28(12), 1864-9	1
X	JP, 56-154464, A (エフ・ビ-・シー) 30. 11月. 19 81 (30. 11. 81) 例56 & US, 4414221, A	1
X	JP, 55-127378, A (アップジョン) 2. 10月. 19 80 (02. 10. 80), 特許請求の範囲、実施例 & US, 4507302, A	1

国際調査報告

カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲が X Mass spectra of 2-thioxopyrimidine derivatives, Kishi, Hiro shi; Kambe, Satoshi, Shitsuryo Bunseki (1979), 27(2), 83-9 5, 84頁左下 X Wynalda, M. A.; Fitzpatrick, F. A. High-performance liquid c hromatographic determination of 5-halopyrimidinone interfero n inducers, Anal. Chem. (1980), 52(12), 1931-4	 C_(続き).	関連すると認められる文献	
X Mass spectra of 2-thioxopyrimidine derivatives, Kishi, Hiro shi; Kambe, Satoshi, Shitsuryo Bunseki (1979), 27(2), 83-9 5, 84頁左下 X Wynalda, M. A.; Fitzpatrick, F. A. High-performance liquid c hromatographic determination of 5-halopyrimidinone interfero n inducers, Anal. Chem. (1980), 52(12), 1931-4 X US, 3829422, A (SANDOZ) 13. 8月. 1974(1 3. 08. 74) 実施例1, 4, 9 & US, 3663698, A X JP, 04-49279, A (日本バイエルアグロケム株式会社) 1-6 18. 2月. 1992(18. 02. 92) 特許請求の範囲、実施		引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
hromatographic determination of 5-halopyrimidinone interfero n inducers, Anal. Chem. (1980), 52(12), 1931-4 X US, 3829422, A (SANDOZ) 13. 8月. 1974 (1 3. 08. 74) 実施例1, 4, 9 & US, 3663698, A X JP, 04-49279, A (日本バイエルアグロケム株式会社) 1-6 18. 2月. 1992 (18. 02. 92) 特許請求の範囲、実施		Mass spectra of 2-thioxopyrimidine derivatives, Kishi, Hiroshi; Kambe, Satoshi, Shitsuryo Bunseki (1979), 27(2), 83-9	
3. 08. 74) 実施例1, 4, 9 & US, 3663698, A X JP, 04-49279, A (日本バイエルアグロケム株式会社) 18. 2月. 1992 (18. 02. 92) 特許請求の範囲、実施	X	hromatographic determination of 5-halopyrimidinone interfero	1
18.2月.1992 (18.02.92) 特許請求の範囲、実施	Х	3.08.74) 実施例1,4,9 & US,3663698,	1, 2
	Х	18.2月.1992(18.02.92)特許請求の範囲、実施	1-6
	· 		
	1		
	,		

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 成しなか	等3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1.	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. X	請求の範囲 $1-6$ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
	別紙参照
. \Box	
3.	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に立	はべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
_1	
オ なV	、願発明化合物は、その化学構造において、新規な基本骨格が共通しているものとはいえ 、 。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. X	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 🗌	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
_	されている発明に係る次の請求の範囲について作成した。
追加調査	至手数料の異議の申立てに関する注意] 追加調査手数料の納付と共に出願人から異議申立てがあった。
Ī	追加調査手数料の納付と共に出願人から異議申立てがなかった。

第 I 欄の 2. について

請求の範囲1-4及び同5, 6に係る発明は、一般式(I) で表される化合物又はそれを有効成分とする農薬等の発明であるが、同化合物における最小の化合物である、Ra=Rb=X=HかつQ=Ph(R1=R2=R3=R4=R5=H)である化合物が、

- J. Heterocycl. Chem. (1988), 25(5), 1467-70
- J. Org. Chem. (1979), 44(25), 4677-80

JP, 05-124924, A

により公知であるから、同化合物は、その化学構造において、新規な基本骨格が共通して有しているものではない。してみれば、このような化合物を記載する上記請求の範囲各項からは、一の発明を明確に把握することができない。

一方、明細書には、上記化合物の具体例が多数開示されているが、それでも、上記化合物に包含される著しく広範な化合物のごく一部のものであるといわざるを得ない。

したがって、上記請求の範囲及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない。

なお、この国際調査報告では、明細書の記載内容に照らし、一般式 (I) で表される化合物において、Qが、他の環と縮合していないフェニル環であるときは、該フェニル環上にハロゲンが置換している場合のものについて、調査を行った。