MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 14 de mayo de 2020.

Dimensión y Caras

1. P1

Un vertex cover (VC) de G = (V, E) es un conjunto de vértices $W \subseteq V$ talque para cada $e \in E$ tiene al menos un extremo en W. Sea $P_{vc}(G) = conv\{\chi^W : Wes\ VC\ de\ G\} \subseteq \mathbb{R}^V$. Es fácil ver que:

$$P_{vc}(G) \subseteq Q(G) := \{ x \in \mathbb{R}^V : x_u + x_v \ge 1, \forall (u, v) \in E, 0 \le x_v \le 1, \forall v \in V \}$$

a) Pruebe que P_{vc} es de dimensión completa.

Solución: Primero notar que P_{vc} se puede escribir de la siguiente forma:

$$P_{vc} = conv(\{x \in \{0,1\}^V : x_u + x_v \ge 1, \forall (u,v) \in E\})$$

Sea $I = act(P_{vc})$, demostrar que P_{vc} tiene dimensión completa es equivalente a demostrar que $rango(A_I) = 0$, para que eso ocurra se debe cumplir $I = \emptyset$. A continuación demostraremos que si existe un $x \in P_{vc}$ con ninguna restricción activa entonces P_{vc} tiene rango completo.

Consideremos la siguiente colección de puntos $\{x^1,\ldots,x^V\}\subseteq\{0,1\}^V$, con $x_v^i=1$ si $i\neq v$ y $x_v^i=0$ si i=v, notar que x^i es un VC ya que si existe un arco (i,j) o (k,i) con $k,j\in V\setminus\{i\}$ se tiene que $x_i^i+x_j^i\geq 1$ y $x_k^i+x_i^i\geq 1$ ya que $x_j^i=x_k^i=1$. Sea $\bar{x}=\sum_{i=1}^V\lambda_ix^i$, con $\sum_{i=1}^V\lambda_i=1$, $\lambda>0$, como \bar{x} es una combinación convexa de VCs, entonces pertencece a P_{vc} , luego se tiene que $\bar{x}_v=\sum_{i\in V\setminus v}\lambda_i\in (0,1)$, además se tiene que $\forall (u,v)\in E$:

$$\bar{x}_u + \bar{x}_v = \sum_{i \in V \setminus \{u\}} \lambda_i + \sum_{i \in V \setminus \{v\}} \lambda_i = \sum_{i \in V} \lambda_i + \sum_{i \in V \setminus \{u,v\}} \lambda_i = 1 + \epsilon, \epsilon > 0$$

Se concluye que $act(\bar{x}) = \emptyset \implies P_{vc}$ tiene rango completo.

b) Pruebe que las desigualdades $x_v \leq 1$ inducen facetas.

Solución:

Para probar que una restricción induce una faceta debemos probar que es irredundante. Sea j la desigualdad $x_j \leq 1$ con $j \in V$, por demostrar que $\exists \bar{x} \in P_{vc}$ tal que $act(\bar{x}) = act(P_{vc}) \cup \{j\} = \{j\}$.

Consideremos la siguiente colección de puntos $\{x^1,\ldots,x^V\}\setminus x^j\subseteq\{0,1\}^V$ con $x^i_v=1$ si $i\neq v$ y $x^i_v=0$ si i=v, sea $\bar{x}=\sum_{i\in V\setminus\{j\}}\lambda_ix^i$, con $\sum_{v\in V\setminus\{j\}}\lambda_i=1$, $\lambda>0$, se tiene que $\bar{x}_v=\sum_{i\in V\setminus\{v,j\}}\lambda_i\in(0,1)\ \forall v\in V\setminus\{j\}$ y $\bar{x}_j=\sum_{i\in V\setminus\{j\}}\lambda_i=1$, por tanto, se tiene que \bar{x} tiene activa j, además se tiene que $\forall (u,v)\in E$ con $u\neq j$ y $v\neq j$:

$$\bar{x}_u + \bar{x}_v = \sum_{i \in V \setminus \{u, j\}} \lambda_i + \sum_{i \in V \setminus \{v, j\}} \lambda_i = \sum_{i \in V \setminus \{j\}} \lambda_i + \sum_{i \in V \setminus \{u, v, j\}} \lambda_i = 1 + \epsilon, \epsilon > 0$$

Y para el caso u = j o v = j:

$$\bar{x}_u + \bar{x}_v = \sum_{i \in V \setminus \{j\}} \lambda_i + \sum_{i \in V \setminus \{v,j\}} \lambda_i = 1 + \sum_{i \in V \setminus \{v,j\}} \lambda_i = 1 + \epsilon, \epsilon > 0$$

Se concluye que $act(\bar{x}) = \{j\}$ y j es irredudante, por tanto, induce faceta en P_{vc} .

c) Pruebe que si existe un ciclo $\{(u,v),(v,w),(w,u)\}\subseteq E$ de largo 3, entonces, la desigualdad $x_u+x_v+x_w\geq 2$ es válida y la desigualdad $x_u+x_v\geq 1$ no induce faceta.

Solución:

Sea j la restricción $x_u + x_v = 1$ y sea $F_j = \{x \in P_{vc} | x_u + x_v = 1\}$ la cara que induce esa restricción, la dimensión de esta cara es $dim(F_j) = dim(P) - rango(A_{act(F_j)})$, se debe tener que $j \subseteq act(F_j)$ y además $rango(A_{act(F_j)}) \ge 2$ para que no sea faceta, eso siginifica que j debe activar alguna otra restricción y esta debe ser linealmente independiente. Además, basta probar que j no genera faceta en Q para demostrar que no genera faceta en P_{vc} , esto se debe a que $P \subseteq Q$ y que toda desigualdad de Q es valida para P, teniéndose la siguiente relación:

$$F_j(P_{vc}) \subseteq F_j(Q) \Leftrightarrow dim(F_j(P_{vc})) \leq dim(F_j(Q))$$

El ciclo de largo 3 implica lo siguiente:

$$x_u + x_v \ge 1 \tag{1}$$

$$x_v + x_w \ge 1 \tag{2}$$

$$x_w + x_u \ge 1 \tag{3}$$

Por (1) $x_u = 1$ o $x_v = 1$, si $x_u = 1$ se tiene por (2) que $x_v = 1$ o $x_w = 1$, por otro lado, si $x_v = 1$ se tiene por (3) que $x_w = 1$ o $x_u = 1$, se concluye que $x_u + x_v + x_w \ge 2$ es una desigualdad valida. Luego si $x_u + x_v = 1$ se tiene que $x_w = 1$, además son l.i., puesto que $1_{u,v}^T 1_w = 0$, donde $1_I \in \{0,1\}^V$ es una indicatriz que toma valor 1 en toda posición $i \in I$.

2. P2

Sea $a \in \mathbb{R}^n_{++}$ y $b \in \mathbb{R}_{++}$ tal que $\sum_{i=1}^n a_i > b$. Consideremos el polítopo de Knapsack:

$$K_n = conv(\{x \in \{0,1\}^n : a^T x \le b\})$$

Y el polítopo de Knapsack Fraccionario:

$$K\text{-}Fr_n = \{x \in [0,1]^n : a^T x \le b\}$$

a) Contraste K_n con K- Fr_n . $K_n = K$ - Fr_n ? E tiene alguna inclusión?

Solución:

Se tiene que todo $x \in \{0,1\}^n$ que satisface $a^Tx \leq b$ pertenece a $[0,1]^n$ y por tanto a K- Fr_n , además el conjunto de puntos que satisface esto es finito (es a lo más 2^n) y como K_Fr_n es un poliedro cualquier combinación convexa finita de sus puntos está contenida, se concluye que $K_n \subseteq K$ - Fr_n . La contrarecíproca no siempre es cierta, sea $I = \{i \in [n] : a_i > b\}$, luego se tiene que todo $\bar{x} \in \{x \in \{0,1\}^n : a^Tx \leq b\}$ cumple que $\bar{x}_I = 0$ y toda combinación convexa de estos puntos también, por tanto, basta probar que existe un $\bar{x} \in K$ - Fr_n tal que $\bar{x}_i \neq 0$ para algún $i \in I$, en efecto, basta tomar $x_i = b/\sum_{i=1}^n a_i \in (0,1)$, solo queda validar que satisface la restricción de capacidad, se tiene que $a^T\bar{x} = \sum_{i=1}^n a_i b/\sum_{i=1}^n a_i = b \leq b$, se concluye que $\bar{x} \in K$ - Fr_n .

b) Calcula la dimensión de K- Fr_n y de K_n . De la parte anterior

Solución

Vamos a probar que K- Fr_n tiene rango completo (dimensión n), similarmente a la parte anterior tomando $\bar{x} = (b-\epsilon)/\sum_{i=1}^n a_i$ con $\epsilon > 0$ suficientemente pequeño tal que $b-\epsilon > 0$, el cual existe debido a que por enunciado sabemos que b > 0, luego se tiene que $\bar{x} \in (0,1)^n$ y que $a^T\bar{x} = b-\epsilon < b$, como se tiene un punto que pertenece a K- Fr_n que no tiene ninguna restricción activa se tiene que act(K- $Fr_n) = \emptyset$, luego dim(K- $Fr_n) = n - rango(A_{act(K$ - $Fr_n)}) = n$.

Sea $I = \{i \in [n] : a_i > b\}$ y sea k la restricción de capacidad, sea $J = [m] \setminus I$, para todo $j \in J$ se tiene que $a_j \leq b$, sea $Q = \{x^1, \ldots, x^J\} = \{x \in \{0, 1\}^n : \sum_{j \in J} x_j = 1, x_I = 0\}$, notar que $Q \subseteq K_n$ ya que $a^T x^j = a_j \leq b \ \forall j \in J$. Sea $\bar{x} = \sum_{j \in J} \lambda_j x^j$ con $\sum_{j \in J} \lambda_j = 1$, $\lambda > 0$, notar que $\bar{x}_j = \lambda_j \in (0, 1) \ \forall j \in J$ y que $a^T \bar{x} = \sum_{j \in J} a_j \lambda_j \leq b$, la desigualdad anterior es activa solo si $a_j = b \ \forall j \in J$. Se concluye que $act(K_n) = I$ si existe $j \in J$ tal que $a_j < b$ si no se tiene que $act(K_n) = I \cup \{k\}$, notar que para todo $i \in I$ son de la forma $e_i^T x_i = 0$, como son vectores unitarios y por tanto ortogonales se tiene que $rango(A_I) = |I|$, además las restricciones $I \cup \{k\}$ también son todas l.i. ya que a > 0 y $a \in I$ (a menos que $a \in I$), como la dimensión de $a \in I$ 0 y $a \in I$ 1, $a \in I$ 2, se tiene que la dimensión de $a \in I$ 3.

c) Encuentre las facetas de K- Fr_n .

Sea $I = \{i \in [m] : a_i >= b\}$ y sea $J = [m] \setminus I$, las restricciones $x_i = 1 \ \forall i \in I$ no inducen facetas, ya que si $a_i > b$ se tiene que la cara que genera esa restricción es el vacío y si $a_i = b$ se tiene que $x_j = 0 \ \forall j \in [m] \setminus \{i\}$, esto implica que $rango(A_{act(F_i)}) = n$ y la cara que genera es de dimensión 0 (un vertice), para el caso $x_j = 1$ con $j \in J$ induce una faceta si existe un x tal que $x_i \in (0,1)$ para todo $i \in I \setminus \{j\}$ y que satisface la restricción de capacidad de forma irrestricta, en efecto, tomemos x tal que $x_i = (b - (a_j + \epsilon)) \sum_{i \in I \setminus \{j\}} a_i \in (0,1) \ \forall i \in [m] \setminus \{j\}$, con $\epsilon > 0$ suficientemente pequeño, además se tiene que x cumple $a^T x = a_j + b - (a_j + \epsilon) = b - \epsilon < b$, se concluye que $F_j = \{x \in K - F_{rn} : x_j = 1\}$ es faceta para todo $j \in J$.

En el caso de las restricciones $x_j = 0$ con $j \in [m]$ basta tomar un x con $x_j = 1$ y $x_i = (b - \epsilon) / \sum_{i \in I \setminus \{j\}} a_i \in (0, 1)$ con $\epsilon > 0$ suficientemente pequeño, luego se tiene que $a^T x = b - \epsilon < b$, se concluye que $F_j = \{x \in K - F_{rn} : x_j = 0\}$

es faceta para todo $j \in [m]$.

Sea j la restricción $a^Tx=b$, esta restricción induce faceta si existe un $x\in(0,1)^n$ que activa esa restricción, en efecto, basta tomar $x_i=b/\sum_{i=1}^n a_i\in(0,1)$, luego se tiene que $a^Tx=\sum_{i=1}^n a_i(b/\sum_{i=1}^n a_i)=b$, se concluye que $F_j=\{x\in K\text{-}F_{rn}:a^Tx=b\}$ es faceta.