$12a_{0375} (K12a_{0375})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4u^{42} + u^{41} + \dots + 4b - 4, \ 2u^{42} - u^{41} + \dots + 4a - 2, \ u^{43} - 2u^{42} + \dots + 2u^2 - 2 \rangle \\ I_2^u &= \langle 2u^5a - 2u^5 - a^2u^2 - 8u^3a + 2u^2a + 8u^3 + 2a^2 + 8au - 2u^2 + b - 4a - 8u + 4, \\ & 2u^5a^2 - u^5a - 6u^3a^2 + u^5 + 2a^2u^2 + 6u^3a + a^3 + 4a^2u - u^2a - 4u^3 - 4a^2 - 8au + u^2 + 5a + 4u - 3, \\ & u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle \\ I_3^u &= \langle b + u - 1, \ 2a - u, \ u^2 - 2 \rangle \\ I_1^v &= \langle a, \ b + 1, \ v - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 64 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -4u^{42} + u^{41} + \dots + 4b - 4, \ 2u^{42} - u^{41} + \dots + 4a - 2, \ u^{43} - 2u^{42} + \dots + 2u^2 - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{42} + \frac{1}{4}u^{41} + \dots - \frac{1}{2}u + \frac{1}{2} \\ u^{42} - \frac{1}{4}u^{41} + \dots + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{42} - \frac{23}{2}u^{40} + \dots + u^{2} + \frac{3}{2} \\ -u^{42} + \frac{1}{4}u^{41} + \dots - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{42} + \frac{21}{2}u^{40} + \dots - u - \frac{1}{2} \\ u^{42} - 22u^{40} + \dots + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{42} - 22u^{40} + \dots + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ -u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} - 4u^{7} + 3u^{5} + 2u^{3} + u \\ -u^{11} + 5u^{9} - 8u^{7} + 5u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{32} - \frac{17}{4}u^{30} + \dots - \frac{3}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{32} + 4u^{30} + \dots - \frac{1}{2}u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^{42} 46u^{40} + \cdots 2u + 8$

Crossings	u-Polynomials at each crossing
c_1	$u^{43} + 22u^{42} + \dots + 9u + 1$
c_{2}, c_{5}	$u^{43} + 2u^{42} + \dots + u - 1$
c_3, c_4, c_9 c_{10}	$u^{43} + 2u^{42} + \dots - 2u^2 + 2$
c_6, c_7, c_{12}	$u^{43} - 2u^{42} + \dots - 11u - 1$
c_{8}, c_{11}	$u^{43} + 6u^{42} + \dots + 160u + 16$

Crossings	Riley Polynomials at each crossing
c_1	$y^{43} + 2y^{42} + \dots + 53y - 1$
c_2, c_5	$y^{43} - 22y^{42} + \dots + 9y - 1$
c_3, c_4, c_9 c_{10}	$y^{43} - 46y^{42} + \dots + 8y - 4$
c_6, c_7, c_{12}	$y^{43} - 38y^{42} + \dots + 89y - 1$
c_8, c_{11}	$y^{43} + 30y^{42} + \dots + 26112y - 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.591746 + 0.636717I		
a = -1.23572 - 1.63525I	-1.84282 + 10.94570I	6.30092 - 8.93673I
b = -0.100756 + 0.318643I		
u = 0.591746 - 0.636717I		
a = -1.23572 + 1.63525I	-1.84282 - 10.94570I	6.30092 + 8.93673I
b = -0.100756 - 0.318643I		
u = -0.765729 + 0.373369I		
a = -0.32757 + 1.59857I	5.12970 - 5.35425I	12.2003 + 7.7214I
b = 0.134514 - 0.340307I		
u = -0.765729 - 0.373369I		
a = -0.32757 - 1.59857I	5.12970 + 5.35425I	12.2003 - 7.7214I
b = 0.134514 + 0.340307I		
u = 0.826606 + 0.202990I		
a = 0.511476 + 0.581636I	6.06160 + 0.79364I	14.9061 - 0.8864I
b = 0.430064 + 0.050748I		
u = 0.826606 - 0.202990I		
a = 0.511476 - 0.581636I	6.06160 - 0.79364I	14.9061 + 0.8864I
b = 0.430064 - 0.050748I		
u = -0.546701 + 0.616087I		
a = -1.33752 + 1.76286I	-6.30176 - 6.51240I	1.84350 + 6.82731I
b = -0.098208 - 0.285427I		
u = -0.546701 - 0.616087I		
a = -1.33752 - 1.76286I	-6.30176 + 6.51240I	1.84350 - 6.82731I
b = -0.098208 + 0.285427I		
u = -0.582396 + 0.579810I		
a = 0.659858 - 0.192915I	1.26998 - 5.99398I	9.54778 + 6.06507I
b = 0.279952 - 0.384491I		
u = -0.582396 - 0.579810I		
a = 0.659858 + 0.192915I	1.26998 + 5.99398I	9.54778 - 6.06507I
b = 0.279952 + 0.384491I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.403178 + 0.680325I		
a = 0.873527 + 0.218379I	-2.40444 - 6.51462I	5.07632 + 3.55431I
b = -0.795082 - 0.902473I		
u = 0.403178 - 0.680325I		
a = 0.873527 - 0.218379I	-2.40444 + 6.51462I	5.07632 - 3.55431I
b = -0.795082 + 0.902473I		
u = -0.443849 + 0.633747I		
a = 0.902439 - 0.228432I	-6.60622 + 2.27578I	0.698054 - 0.385736I
b = -0.888609 + 0.891580I		
u = -0.443849 - 0.633747I		
a = 0.902439 + 0.228432I	-6.60622 - 2.27578I	0.698054 + 0.385736I
b = -0.888609 - 0.891580I		
u = -0.377654 + 0.599705I		
a = 0.738904 - 0.108280I	0.67597 + 1.96643I	8.14582 + 0.08681I
b = 0.103319 - 0.421977I		
u = -0.377654 - 0.599705I		
a = 0.738904 + 0.108280I	0.67597 - 1.96643I	8.14582 - 0.08681I
b = 0.103319 + 0.421977I		
u = 1.34352		
a = -0.457746	6.42503	14.7720
b = 1.25945		
u = 0.596066 + 0.273723I		
a = 0.15234 - 2.25587I	-0.17994 + 3.15116I	7.13825 - 9.28828I
b = 0.108473 + 0.195176I		
u = 0.596066 - 0.273723I		
a = 0.15234 + 2.25587I	-0.17994 - 3.15116I	7.13825 + 9.28828I
b = 0.108473 - 0.195176I		
u = -0.084134 + 0.604122I		
a = 0.845349 - 0.074679I	2.98218 + 1.98828I	8.33137 - 3.20557I
b = -0.465947 + 0.534008I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.084134 - 0.604122I		
a = 0.845349 + 0.074679I	2.98218 - 1.98828I	8.33137 + 3.20557I
b = -0.465947 - 0.534008I		
u = -1.43197		
a = 0.0229961	3.32572	0
b = 1.00111		
u = -1.43137 + 0.20558I		
a = 0.132330 - 0.142499I	3.46742 + 3.34369I	0
b = 0.955154 - 0.077955I		
u = -1.43137 - 0.20558I		
a = 0.132330 + 0.142499I	3.46742 - 3.34369I	0
b = 0.955154 + 0.077955I		
u = 1.47158 + 0.11058I		
a = -0.881376 - 0.770659I	6.53226 + 0.41130I	0
b = 1.53453 + 1.36753I		
u = 1.47158 - 0.11058I		
a = -0.881376 + 0.770659I	6.53226 - 0.41130I	0
b = 1.53453 - 1.36753I		
u = 1.47924 + 0.17979I		
a = 0.131246 + 0.108669I	-0.365210 + 0.609893I	0
b = 0.986913 + 0.072464I		
u = 1.47924 - 0.17979I		
a = 0.131246 - 0.108669I	-0.365210 - 0.609893I	0
b = 0.986913 - 0.072464I		
u = -0.463968		
a = 1.94534	0.736315	13.7490
b = 0.138255		
u = 1.53818 + 0.18818I		
a = 0.21264 + 2.03609I	0.59349 + 9.42918I	0
b = -0.50972 - 4.35591I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.53818 - 0.18818I		
a = 0.21264 - 2.03609I	0.59349 - 9.42918I	0
b = -0.50972 + 4.35591I		
u = -1.55142 + 0.05723I		
a = -0.80889 - 2.01985I	7.05051 - 4.24670I	0
b = 1.44195 + 4.18487I		
u = -1.55142 - 0.05723I		
a = -0.80889 + 2.01985I	7.05051 + 4.24670I	0
b = 1.44195 - 4.18487I		
u = 1.55532 + 0.17621I		
a = -0.711365 - 0.950566I	8.38956 + 8.75469I	0
b = 0.99205 + 1.76418I		
u = 1.55532 - 0.17621I		
a = -0.711365 + 0.950566I	8.38956 - 8.75469I	0
b = 0.99205 - 1.76418I		
u = -1.55776 + 0.19984I		
a = 0.19109 - 1.91237I	5.2865 - 14.0160I	0
b = -0.48048 + 4.13035I		
u = -1.55776 - 0.19984I		
a = 0.19109 + 1.91237I	5.2865 + 14.0160I	0
b = -0.48048 - 4.13035I		
u = 0.155892 + 0.389253I		
a = 0.939590 + 0.061625I	-1.51738 - 0.78597I	-1.81615 + 1.01522I
b = -0.782027 - 0.295786I		
u = 0.155892 - 0.389253I		
a = 0.939590 - 0.061625I	-1.51738 + 0.78597I	-1.81615 - 1.01522I
b = -0.782027 + 0.295786I		
u = -1.60026 + 0.04435I		
a = -0.79147 + 1.29002I	14.2395 - 1.6305I	0
b = 1.26150 - 2.64623I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.60026 - 0.04435I		
a = -0.79147 - 1.29002I	14.2395 + 1.6305I	0
b = 1.26150 + 2.64623I		
u = 1.59968 + 0.08511I		
a = -0.45217 + 1.80198I	13.1581 + 6.9538I	0
b = 0.69300 - 3.81498I		
u = 1.59968 - 0.08511I		
a = -0.45217 - 1.80198I	13.1581 - 6.9538I	0
b = 0.69300 + 3.81498I		

II.
$$I_2^u = \langle 2u^5a - 2u^5 + \dots - 4a + 4, \ 2u^5a^2 - u^5a + \dots + 5a - 3, \ u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{5}a + 2u^{5} + \dots + 4a - 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{5}a + 2u^{5} + \dots + 5a - 4 \\ 2u^{5}a - 2u^{5} + \dots - 4a + 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5}a^{2} - 2u^{5}a + \dots - a^{2} + a \\ u^{5}a^{2} - 2u^{5}a + \dots + 6a - 6 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ -u^{5} + u^{4} + 2u^{3} - 3u^{2} + u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4}a^{2} + u^{4}a - 2a^{2}u^{2} - 3u^{2}a + 2u^{2} + 3a - 2 \\ 2u^{5}a - 2u^{5} + \dots - 6a + 6 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 8u + 10$

Crossings	u-Polynomials at each crossing
c_1	$u^{18} + 12u^{17} + \dots + 5u + 1$
$c_2, c_5, c_6 \\ c_7, c_{12}$	$u^{18} - 6u^{16} + \dots + u - 1$
c_3, c_4, c_9 c_{10}	$(u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)^3$
c_8, c_{11}	$(u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1)^3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{18} - 12y^{17} + \dots - 17y + 1$
c_2, c_5, c_6 c_7, c_{12}	$y^{18} - 12y^{17} + \dots - 5y + 1$
c_3, c_4, c_9 c_{10}	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)^3$
c_{8}, c_{11}	$(y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.493180 + 0.575288I		
a = 0.941013 + 0.239784I	-2.96024 + 1.97241I	4.57572 - 3.68478I
b = -1.009960 - 0.876429I		
u = 0.493180 + 0.575288I		
a = 0.703854 + 0.163676I	-2.96024 + 1.97241I	4.57572 - 3.68478I
b = 0.204229 + 0.389849I		
u = 0.493180 + 0.575288I		
a = -1.46493 - 2.00338I	-2.96024 + 1.97241I	4.57572 - 3.68478I
b = -0.086351 + 0.244114I		
u = 0.493180 - 0.575288I		
a = 0.941013 - 0.239784I	-2.96024 - 1.97241I	4.57572 + 3.68478I
b = -1.009960 + 0.876429I		
u = 0.493180 - 0.575288I		
a = 0.703854 - 0.163676I	-2.96024 - 1.97241I	4.57572 + 3.68478I
b = 0.204229 - 0.389849I		
u = 0.493180 - 0.575288I		
a = -1.46493 + 2.00338I	-2.96024 - 1.97241I	4.57572 + 3.68478I
b = -0.086351 - 0.244114I		
u = -0.483672		
a = 1.12121	0.738851	13.4170
b = -1.42631		
u = -0.483672		
a = 1.85982 + 0.59462I	0.738851	13.4170
b = 0.146924 - 0.011821I		
u = -0.483672		
a = 1.85982 - 0.59462I	0.738851	13.4170
b = 0.146924 + 0.011821I		
u = -1.52087 + 0.16310I		
a = -0.751848 + 0.903227I	3.69558 - 4.59213I	8.58114 + 3.20482I
b = 1.13095 - 1.63417I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.52087 + 0.16310I		
a = 0.137996 - 0.084846I	3.69558 - 4.59213I	8.58114 + 3.20482I
b = 1.011050 - 0.070016I		
u = -1.52087 + 0.16310I		
a = 0.15868 - 2.23953I	3.69558 - 4.59213I	8.58114 + 3.20482I
b = -0.39625 + 4.72775I		
u = -1.52087 - 0.16310I		
a = -0.751848 - 0.903227I	3.69558 + 4.59213I	8.58114 - 3.20482I
b = 1.13095 + 1.63417I		
u = -1.52087 - 0.16310I		
a = 0.137996 + 0.084846I	3.69558 + 4.59213I	8.58114 - 3.20482I
b = 1.011050 + 0.070016I		
u = -1.52087 - 0.16310I		
a = 0.15868 + 2.23953I	3.69558 + 4.59213I	8.58114 - 3.20482I
b = -0.39625 - 4.72775I		
u = 1.53904		
a = 0.110457	7.66009	12.2690
b = 1.03249		
u = 1.53904		
a = -1.20042 + 1.54308I	7.66009	12.2690
b = 2.19632 - 3.14900I		
u = 1.53904		
a = -1.20042 - 1.54308I	7.66009	12.2690
b = 2.19632 + 3.14900I		

III.
$$I_3^u = \langle b+u-1, \ 2a-u, \ u^2-2 \rangle$$

a) Are colorings
$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} \frac{1}{2}u \\ -u+1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} \frac{1}{2}u+1 \\ -u-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} \frac{1}{2}u+1 \\ -u-1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -\frac{1}{2}u+1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7	$(u-1)^2$
c_2, c_{12}	$(u+1)^2$
c_3, c_4, c_9 c_{10}	u^2-2
c_{8}, c_{11}	u^2

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	$(y-1)^2$
c_3, c_4, c_9 c_{10}	$(y-2)^2$
c_8, c_{11}	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = 0.707107	4.93480	8.00000
b = -0.414214		
u = -1.41421		
a = -0.707107	4.93480	8.00000
b = 2.41421		

IV.
$$I_1^v = \langle a, b+1, v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	u-1
$c_3, c_4, c_8 \\ c_9, c_{10}, c_{11}$	u
c_5, c_6, c_7	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	y-1
$c_3, c_4, c_8 \\ c_9, c_{10}, c_{11}$	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{18} + 12u^{17} + \dots + 5u + 1)(u^{43} + 22u^{42} + \dots + 9u + 1)$
c_2	$(u-1)(u+1)^{2}(u^{18}-6u^{16}+\cdots+u-1)(u^{43}+2u^{42}+\cdots+u-1)$
c_3, c_4, c_9 c_{10}	$u(u^2-2)(u^6-u^5+\cdots+u-1)^3(u^{43}+2u^{42}+\cdots-2u^2+2)$
c_5	$((u-1)^2)(u+1)(u^{18}-6u^{16}+\cdots+u-1)(u^{43}+2u^{42}+\cdots+u-1)$
c_6, c_7	$((u-1)^2)(u+1)(u^{18}-6u^{16}+\cdots+u-1)(u^{43}-2u^{42}+\cdots-11u-1)$
c_{8}, c_{11}	$u^{3}(u^{6} + u^{5} + \dots + u - 1)^{3}(u^{43} + 6u^{42} + \dots + 160u + 16)$
c_{12}	$(u-1)(u+1)^{2}(u^{18}-6u^{16}+\cdots+u-1)(u^{43}-2u^{42}+\cdots-11u-1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{18} - 12y^{17} + \dots - 17y + 1)(y^{43} + 2y^{42} + \dots + 53y - 1)$
c_2, c_5	$((y-1)^3)(y^{18} - 12y^{17} + \dots - 5y + 1)(y^{43} - 22y^{42} + \dots + 9y - 1)$
$c_3, c_4, c_9 \ c_{10}$	$y(y-2)^{2}(y^{6}-7y^{5}+17y^{4}-16y^{3}+6y^{2}-5y+1)^{3}$ $\cdot (y^{43}-46y^{42}+\cdots+8y-4)$
c_6, c_7, c_{12}	$((y-1)^3)(y^{18} - 12y^{17} + \dots - 5y + 1)(y^{43} - 38y^{42} + \dots + 89y - 1)$
c_8, c_{11}	$y^{3}(y^{6} + 5y^{5} + 9y^{4} + 4y^{3} - 6y^{2} - 5y + 1)^{3}$ $\cdot (y^{43} + 30y^{42} + \dots + 26112y - 256)$