

" N-til register : Stores N tils, N is the width

-Common williams: 8,16,32

"Storing data into register, Looding

& Opposite of Storing : Reading

* Basic register loads on every clack cycle
How extend to only load on certain cycles?

- Register with Parallel Load -

-) Add 1x1 mux to front of each flip-flop

a Register's look input selects mux input to pass

-load = 10: existing flip flop value: load =1: new input value

block symbol

Shift Register -> (Division)

· Shif right

-move each bit one Fosition right

- rightmost bits dropped

- assume Oshifted into leftmost bit

() to four right shifts on 1001 showing value after each shift

A: 1001 (original)

0100

0010

1000

0000

· J Implementation: Connect Phip-flop output to next flip-flop is input

Multifunction Registers with Separate Control HALF Inputs

* To apply the	se prioritie	s we need		14	shr	shl	Operation
combinational				0	0	0	Maintain present value
Truth table	for combin	ational circuit,		0	0	1	Shift left
Inputs	Outruts	Operation		0	1	0	Shift right
ld shr shl	51 50			0	1	1	Shift right - Shr has priority over shi
0 0 0	0 0	Mointain value		1	0	0	Parallel load
0 0 4	1 1	Shift left		1	0	1	Parallel load - ld has priority
0 1 0	110	Shift cisht		1	1	0	Parallel lood - 18 has priority
0 1 1	1/1/0/	Shift right		1	1	1	Parallel load-ld has Priority
1 0 0	01	Parallel load			si	s0)	Operation
1 0 1	0 1				0	0	Maintain present value
1 1 0	0 1	Parallel load	\		0	1	Parallel load
1 1 1	0 1	Parallel load	1		1	0	Shiff right
51 = 121 * sho	('* shi tld'* 1 x shi tld	l r shr 4 shl¹t ld1	t shrtsh		4	Δ	shift left

4

- Register Design Example-

- Desired register operations
- load, shift left, sychronous clear, sychronous set
- want unique control input for each operation

Step1: Determine mux size:

5 operations: above, plus maintain preserve value (don't forget this one!)

-> Use 8x1 mux

Step 2: Create mux operation table

				Step3: Comect mox throws
52	sl	s 0	Operation	To from
0	0	0	Maintain present value	7 0 \ 10 Ou-T
0	0	1	Parallel load	52 1 1 1 1 1 1 1 1
0	1	Ð	Shift left	→ <u>51</u> 7 6 5 4 3 2 10
0	1	1	Sychronous clear	30
1	0	0	Sychronous set	D
1		1	Maintain present value	la l
1	1	0	Naintain Present value	
1	1	1	Maintain present value	V (3.n

Step 4: Map control lines

Inputs clr set 1d shl	0utputs 62 s1 50	Operation
		Maintain present value Shift left Parallel load Set to all 1s Clear to all 0s

50 = clr'+set '+ld '+shl +clr 50 = clr'+set '+ld '+shl +clr

Adders

two N-bit binary numbers

-2 bit adder: adds two 2-bit numbers outputs 3-bit regult.

01+11=100 (1+3=4)

=> Alternative adder design: mimic how people do addition by hard.

A: 1111

-) Create component for each column

B; 0110 10101 A:1-0:8

on carry in b a cl aci co S Half Adder

Full adders

Half æder:

Step 1: Capture the function

Step 24: Create equation

tep 1: Carron	
Inputs)	Outputs
a b	co 5
0 0 0 1 1 0 1 1	00000

- full adder: adds 3 bits generates sum and comy.

Step 1: Copture the function

	neuts		Outputs
9	Ь	31	Co S
0	0	D	0 0
0	0	1	0 1
0	1	0	0
0	1	1	1 0
7	0	0	0 🕡
4	0	1	(<u>1</u>) 0
ţ	1	0	(<u>(1)</u> 0
1	1	1	(<u>(</u>)()

Step1A: Create equations:

co = 0'bc + 0b'c + abc'+abc

co = 0'bc +abe + abc' +abe +abe' +abe

co = bc(a'ta) +ac(b'+b) + ab(c'tc)

Step 2B: Implement as circuit

Carry Ripple Adder

There half adder and full adders, we can built adder that adds like we would by hand, called a carry-ripple adder.

-4 bit adder shown; Adds two Li-bit numbers, generates 5-bit outful.

nor ementer

· Adds 1 to spout A

- * N-bit equality comparator, Outputs 1 if two N-bit numbers are equal
 - -4 bit equality comparator with inputs A and B
 - = 03 must equal 63,02-62,01=61,00=60
 - -Two bits are equal if both I or both 0
 - -eq = (0363 +03'63')* (0262 +02'62')*(0161+01'61')*(0060+0060')
 - . Note that function inside Ravanthesis is XNOR
 - -eq = (a3 xNOR b3) + (a1 xNOR b2) + (a1 XNOR b1) + (a0 xNOR b0)

Magastute Companyor

* No bit magnitude comparator

Thus Notif instals A and B. consults whether A7G. A=B or ALB

A= 1011 B= 1001

0 11 0 01 Equal
0 11 00 1 Equal
1001 Not Equal

Each stage:

-out.gt = in-gt + (in-eq * a + b)

-out-lt = in-lt + (in-eq + a * b)

- out- eq = in-eq + (a XNOR b)

Adder / Subtractor

· Adder/suttractor: control input determines whether add or subtract - Can use 2x1 muz - sub input passes either B or inverted B

- Arithmetic Logic Unit-

· ALU: Component that can perform various arithmetic Codd subtract, increment etc.) and logic (AND, OA etc.) operations based on control inputs Without Using ALU

NPUIS X 4 Z	Deerotions	Sample Outputs if A= 00001111 B= 0000101	A B
00000111	S=A+B S=A+I S=A S=AANDB S=AORB S=AXORB S=AXORB	00001010	8 8 8 8 8 8 8 8 8 8

CamScanner ile tarandı

- Sa Att Jost take a to ia, k to ib, and set an a 000 EUX . Wast
- Want S. A.B Parsa to ia, b' to be and set con ! . MB - 001
- Want 8: Att pass a to ia , set ib = 0 , ont set cin = 1 210 × 24x
- · xyx: Oll Want SEA pass a to id, set ibed and set cit = 0
- What si A ADB ised in: 046, 500, and cinco
- · Others likewise
- above create logic for io(x,4,2,0,6) and ib(x,4,2,0,6) for · Based on each about and create legic for ein (x14,2)

Barrel Brifters

- . A shifter that can shift by any amount -4bit barrel left snift can shift left by Dili2.3 Positions.
- · More elegant desing
 - Chain three shifters: 412 and 1

Counters and Times

- · N-bit op counter: N-bit register that can increment to its own value on each clock excle
 - -0000,0001,0010,0011,..., 1110,1111,0000.
- · Internal Design
 - Acquister incrementer, and N-mout AND gate to detect terminal insul.

UP/ Down Counter

- · Can count either up or down
 - Includes both incrementer and decrementer
 - -Use dir input to select, uio 2x1 mux; dir =0 means up

Counter with Load

Counter with Families land

(3)

" Useful to ormate pulses of momentic

· Ex: Polse every 9 clock eyeles.

-Use 4 bit down counter with revalled

-Set Parallel look rout to &

-Use terminal count to relead

· When count reaches 0, next aucle

-UJhy load if and not 9 Because 0 is included in court sequence

. 8.7.6.5, 4.3.2.1 ,0 9 9 counts

Register Files

MXN register file: Efficient design for one at a time write/read of many registers - Consider 16 32-bit registers

Lx32 reg-file

5-213 even a number 12 good can not use shift and division 6-3 edd a [number 12]

4 HLS.M. Johannth, FS.M.

Study Questions

1. Implement a 3-bit ALV for the following operations.

51	so	Operation
0	0	X ORY
0	0	Y GNA X Y+ x
1	1	y'

Answer:

2. Design a 4 bit up counter which counts beginning from a lead input and signals when a counting round finishes before starting a next round.

2

3. Use RTL design process to create an alarm system that sets a single-bit output alarm to 1 when the average temperature of four consecutive samples meets or exceeds a user defined thresold value. A 32-bit unsigned input cr indicates the current temperature and a 32-bit unsigned input WT indicates the warning thresold. A single-bit input clr when I disables alarm and the sampling process. Start by capturing the desired behaviour as an HLSM, and then convert to a controller/datapath.

Step1 - Capture o HLSM.

Inputs , CT, WT (32 bits); clr (bit)

Outputs: alarm (bit)

Local Registers: tmp0, tmp1, tmp2, tmp3, aug (32 bits) cir'(aug>= wit) Alarm Or de alarm = 101 alaim = 111 chi Init Sample alaim = '0' tmpo = CT Alarm Off 1mp= 0 tmp1 = 1mp0 clr " (aug >= WT) d'arm = '0' +mpl = 0 tmp2= tmp1 tmp 2=0 +mp3 = +mp2 +m=3=0 aug = ctmp0 ttmp1 aug=0

Step DC - Derive controller's FSM

Dotruts: alam, ale all, ld

Action

51 50

(a) Inflement a 4-bit register with the functionality specified in the foll-table. A is the content value of the register, and B is the loaded value.

Dutput

				The state of the s
	0	0	Load	B
	0	1	Leep current value	A
	-	0	16 (Bra) Tout 8/2	11(B)M) 012 ; else 8 # 2
		1	14 (B(A/2) load	It (B < A/2) B; else A
	į	ı	else veep	
			correst value	
		7		园 四一
ĺ		1=	[[(771
1	So -	2		10)
ĺ		-	34	100
1			(+)	
1				
			} .	100 01 10 11 7
			Sı -	100 01 10 11
			S ₁	
			Ì	
				RegA
				2
			1	