Managing Projects

3

PowerPoint presentation to accompany
Heizer and Render
Operations Management, Global Edition, Eleventh Edition
Principles of Operations Management, Global Edition, Ninth Edition

PowerPoint slides by Jeff Heyl

Outline

- ► Global Company Profile: Bechtel Group
- ► The Importance of Project Management
- Project Planning
- Project Scheduling
- Project Controlling

Outline - Continued

- Project Management Techniques: PERT and CPM
- Determining the Project Schedule
- Variability in Activity Times
- Cost-Time Trade-offs and Project Crashing

Outline - Continued

- A Critique of PERT and CPM
- Using Microsoft Project to Manage Projects

Learning Objectives

When you complete this chapter you should be able to:

- 1. Use a Gantt chart for scheduling
- 2. Draw AOA and AON networks
- Complete forward and backward passes for a project
- 4. Determine a critical path

Learning Objectives

When you complete this chapter you should be able to:

- 5. Calculate the variance of activity times
- 6. Crash a project

Bechtel Projects

- Constructing 30 high-security data centers worldwide for Equinix, Inc. (\$1.2 billion)
- Building and running a rail line between London and the Channel Tunnel (\$4.6 billion)
- Developing an oil pipeline from the Caspian Sea region to Russia (\$850 million)
- Expanding the Dubai Airport in the UAE (\$600 million), and the Miami Airport in Florida (\$2 billion)

Bechtel Projects

- Building liquid natural gas plants in Yemen (\$2 billion) and in Trinidad, West Indies (\$1 billion)
- Building a new subway for Athens, Greece (\$2.6 billion)
- Constructing a natural gas pipeline in Thailand (\$700 million)
- Building 30 plants for iMotors.com, a company that sells refurbished autos online (\$300 million)
- Building a highway to link the north and south of Croatia (\$303 million)

Importance of Project Management

- Bechtel Project Management
 - International workforce, construction professionals, cooks, medical personnel, security
 - Strategic value of time-based competition
 - Quality mandate for continual improvement

Project Characteristics

- Single unit
- Many related activities
- Difficult production planning and inventory control
- General purpose equipment
- High labor skills

Examples of Projects

Building Construction

Research Project

Management of Projects

- 1. Planning goal setting, defining the project, team organization
- Scheduling relate people, money, and supplies to specific activities and activities to each other
- Controlling monitor resources, costs, quality, and budgets; revise plans and shift resources to meet time and cost demands

Project Management Activities

Planning

Objectives

Resources

Work breakdown structure

Organization

Scheduling

Project activities

Start & end times

Network

Controlling

Monitor, compare, revise, action

Figure 3.1

Figure 3.1

Figure 3.1

Project Scheduling,

Time/cost estimates **Budgets Engineering diagrams** Cash flow charts **Material availability details**

CPM/PERT Gantt charts Milestone charts Cash flow schedules

Sequence activiti

Budgets Delayed activities report Slack activities report

© 2014 Pearson Education 3 - 18

osts, quality

Project Planning

- Establishing objectives
- Defining project
- Creating work breakdown structure
- Determining resources
- Forming organization

Project Organization

- Often temporary structure
- Uses specialists from entire company
- Headed by project manager
 - Coordinates activities
 - Monitors schedule and costs
- Permanent structure called 'matrix organization'

Project Organization Works Best When

- Work can be defined with a specific goal and deadline
- The job is unique or somewhat unfamiliar to the existing organization
- 3. The work contains complex interrelated tasks requiring specialized skills
- 4. The project is temporary but critical to the organization
- The project cuts across organizational lines

A Sample Project Organization

Figure 3.2

Matrix Organization

	Marketing	Operations	Engineering	Finance
Project 1				
Project 2				
Project 3				
Project 4				

The Role of the Project Manager

Highly visible Responsible for making sure that:

- All necessary activities are finished in order and on time
- 2. The project comes in within budget
- 3. The project meets quality goals
- 4. The people assigned to the project receive motivation, direction, and information

The Role of the Project Manager

Highly visible Responsible for

- 1. All necessary a and on time
- 2. The project cou
- 3. The project me

Project managers should be:

- Good coaches
- Good communicators
- Able to organize activities from a variety of disciplines

4. The people assigned to the project receive motivation, direction, and information

Ethical Issues

- Project managers face many ethical decisions on a daily basis
- The Project Management Institute has established an ethical code to deal with problems such as:
 - 1. Offers of gifts from contractors
 - 2. Pressure to alter status reports to mask delays
 - 3. False reports for charges of time and expenses
 - 4. Pressure to compromise quality to meet schedules

Work Breakdown Structure

Level

- 1. Project
 - 2. Major tasks in the project
 - 3. Subtasks in the major tasks
 - Activities (or "work packages") to be completed

Work Breakdown Structure

Project Scheduling Techniques

- 1. Ensure that all activities are planned for
- Their order of performance is accounted for
- The activity time estimates are recorded

4. The overall project time is developed

Purposes of Project Scheduling

- 1. Shows the relationship of each activity to others and to the whole project
- 2. Identifies the precedence relationships among activities
- Encourages the setting of realistic time and cost estimates for each activity
- 4. Helps make better use of people, money, and material resources by identifying critical bottlenecks in the project

Project Management Techniques

- Gantt chart
- Critical Path Method (CPM)
- Program Evaluation and Review Technique (PERT)

A Simple Gantt Chart

Service For a Delta Jet

Figure 3.4

Project Controlling

- Close monitoring of resources, costs, quality, budgets
- Feedback enables revising the project plan and shift resources
- Computerized tools produce extensive reports

Project Management Software

- There are several popular packages for managing projects
 - Primavera
 - MacProject
 - MindView
 - HP Project
 - Fast Track
 - Microsoft Project

Project Control Reports

- Detailed cost breakdowns for each task
- Total program labor curves
- Cost distribution tables
- Functional cost and hour summaries
- Raw materials and expenditure forecasts
- Variance reports
- Time analysis reports
- Work status reports

PERT and CPM

- Network techniques
- Developed in 1950s
 - CPM by DuPont for chemical plants (1957)
 - PERT by Booz, Allen & Hamilton with the U.S. Navy, for Polaris missile (1958)
- Consider precedence relationships and interdependencies
- Each uses a different estimate of activity times

Six Steps PERT & CPM

- Define the project and prepare the work breakdown structure
- 2. Develop relationships among the activities decide which activities must precede and which must follow others
- Draw the network connecting all of the activities

Six Steps PERT & CPM

- Assign time and/or cost estimates to each activity
- Compute the longest time path through the network – this is called the critical path
- Use the network to help plan, schedule, monitor, and control the project

Questions PERT & CPM Can Answer

- 1. When will the entire project be completed?
- 2. What are the critical activities or tasks in the project?
- 3. Which are the noncritical activities?
- 4. What is the probability the project will be completed by a specific date?

Questions PERT & CPM Can Answer

- 5. Is the project on schedule, behind schedule, or ahead of schedule?
- 6. Is the money spent equal to, less than, or greater than the budget?
- 7. Are there enough resources available to finish the project on time?
- 8. If the project must be finished in a shorter time, what is the way to accomplish this at least cost?

A Comparison of AON and AOA Network Conventions

Activity on Activity Activity on Arrow (AOA) Node (AON) Meaning A comes before B, which comes before C A and B must both (b) be completed before C can start B and C cannot begin until A is (c)completed © 2014 Pearson Educ

A Comparison of AON and AOA Network Conventions

Activity on Node (AON)

Activity Meaning

Activity on Arrow (AOA)

C and D cannot begin until both A and B are completed

C cannot begin until both A and B are completed D cannot begin until B is completed A dummy activity is introduced in AOA

A Comparison of AON and AOA Network Conventions

Activity on Node (AON)

Activity Meaning

Activity on Arrow (AOA)

B and C cannot begin until A is completed D cannot begin until both B and C are completed A dummy activity is again introduced in AOA

AON Example

Table 3.1 Milwaukee Paper Manufacturing's Activities and Predecessors

ACTIVITY	DESCRIPTION	IMMEDIATE PREDECESSORS		
А	Build internal components			
В	Modify roof and floor			
С	Construct collection stack	Α		
D	Pour concrete and install frame	A, B		
Е	Build high-temperature burner	С		
F	Install pollution control system	С		
G	Install air pollution device	D, E		
Н	Inspect and test	F, G		

AON Network for Milwaukee Paper

Figure 3.5

AON Network for Milwaukee Paper

Activity A Precedes Activity C

Activities A and B Precede Activity D

Figure 3.6

AON Network for Milwaukee Paper

© 2014 Pearson Education 3 - 48

Relationships

AOA Network for Milwaukee Paper

Perform a Critical Path Analysis

- The critical path is the longest path through the network
- The critical path is the shortest time in which the project can be completed
- Any delay in critical path activities delays the project
- Critical path activities have no slack time

Table 3.2	Time Estimates for Milwaukee Paper Manufacturing					
ACTIVITY	DESCRIPTION	TIME (WEEKS)				
Α	Build internal components	2				
В	Modify roof and floor	3				
С	Construct collection stack	2				
D	Pour concrete and install frame	4				
E	Build high-temperature burner	4				
F	Install pollution control system	3				
G	Install air pollution device	5				
Н	Inspect and test	2				
	Total time (weeks)	25				

Perform a Critical Path Analysis

- Earliest start (ES) = earliest time at which an activity can start, assuming all predecessors have been completed
- Earliest finish (EF) = earliest time at which an activity can be finished
 - Latest start (LS) = latest time at which an activity can start so as to not delay the completion time of the entire project
 - Latest finish (LF) = latest time by which an activity has to be finished so as to not delay the completion time of the entire project

Activity Format

Figure 3.9

Forward Pass

Begin at starting event and work forward

Earliest Start Time Rule:

- If an activity has only a single immediate predecessor, its ES equals the EF of the predecessor
- If an activity has multiple immediate predecessors, its ES is the maximum of all the EF values of its predecessors

ES = Max {EF of all immediate predecessors}

Forward Pass

Begin at starting event and work forward

Earliest Finish Time Rule:

The earliest finish time (EF) of an activity is the sum of its earliest start time (ES) and its activity time

EF = ES + Activity time

Figure 3.10

Backward Pass

Begin with the last event and work backwards

Latest Finish Time Rule:

- If an activity is an immediate predecessor for just a single activity, its LF equals the LS of the activity that immediately follows it
- If an activity is an immediate predecessor to more than one activity, its LF is the minimum of all LS values of all activities that immediately follow it

LF = Min {LS of all immediate following activities}

Backward Pass

Begin with the last event and work backwards

Latest Start Time Rule:

The latest start time (LS) of an activity is the difference of its latest finish time (LF) and its activity time

LS = LF - Activity time

LS/LF Times for Milwaukee Paper

LS/LF Times for Milwaukee Paper

LS/LF Times for Milwaukee Paper

Computing Slack Time

After computing the ES, EF, LS, and LF times for all activities, compute the slack or free time for each activity

Slack is the length of time an activity can be delayed without delaying the entire project

Slack = LS - ES or Slack = LF - EF

Computing Slack Time

TABLE 3.3	Milwaukee Paper's Schedule and Slack Times						
ACTIVIT Y	EARLIEST START ES	EARLIES T FINISH EF	LATEST START LS	LATEST FINISH LF	SLACK LS – ES	ON CRITICAL PATH	
А	0	2	0	2	0	Yes	
В	0	3	1	4	1	No	
С	2	4	2	4	0	Yes	
D	3	7	4	8	1	No	
E	4	8	4	8	0	Yes	
F	4	7	10	13	6	No	
G	8	13	8	13	0	Yes	
Н	13	15	13	15	0	Yes	

Critical Path for Milwaukee Paper

ES – EF Gantt Chart for Milwaukee Paper

LS – LF Gantt Chart for Milwaukee Paper

- CPM assumes we know a fixed time estimate for each activity and there is no variability in activity times
- PERT uses a probability distribution for activity times to allow for variability

- Three time estimates are required
 - Optimistic time (a) if everything goes according to plan
 - Pessimistic time (b) assuming very unfavorable conditions
 - Most likely time (m) most realistic estimate

Estimate follows beta distribution

Expected time:

$$t = (a + 4m + b)/6$$

Variance of times:

$$V = [(b - a)/6]^2$$

Estimate follows beta distribution

Computing Variance

TABLE 3.4 Time Estimates (in weeks) for Milwaukee Paper's Project									
ACTIVITY	OPTIMISTIC a	MOST LIKELY m	PESSIMISTIC b	EXPECTED TIME t = (a + 4m + b)/6	VARIANCE [(<i>b</i> – <i>a</i>)/6] ²				
А	1	2	3	2	.11				
В	2	3	4	3	.11				
С	1	2	3	2	.11				
D	2	4	6	4	.44				
E	1	4	7	4	1.00				
F	1	2	9	3	1.78				
G	3	4	11	5	1.78				
Н	1	2	3	2	.11				

Project variance is computed by summing the variances of critical activities

 σ_p^2 = Project variance

= \sum (variances of activities on critical path)

Project variance is computed by

Project variance

$$\sigma_p^2 = .11 + .11 + 1.00 + 1.78 + .11 = 3.11$$

Project standard deviation

$$\sigma_{p} = \sqrt{\text{Project variance}}$$

$$= \sqrt{3.11} = 1.76 \text{ weeks}$$

PERT makes two more assumptions:

- Total project completion times follow a normal probability distribution
- Activity times are statistically independent

What is the probability this project can be completed on or before the 16 week deadline?

$$Z = \begin{bmatrix} Due - Expected date \\ date of completion \end{bmatrix} / \sigma_p$$

= (16 weeks - 15 weeks)/1.76

= 0.57

Where Z is the number of standard deviations the due date or target date lies from the mean or expected date

Probability of Project

Where Z is the number of standard deviations the due date or target date lies from the mean or expected date

Determining Project Completion Time

Variability of Completion Time for Noncritical Paths

- Variability of times for activities on noncritical paths must be considered when finding the probability of finishing in a specified time
- Variation in noncritical activity may cause change in critical path

What Project Management Has Provided So Far

- The project's expected completion time is 15 weeks
- 2. There is a 71.57% chance the equipment will be in place by the 16 week deadline
- 3. Five activities (A, C, E, G, and H) are on the critical path
- 4. Three activities (B, D, F) are not on the critical path and have slack time
- 5. A detailed schedule is available

Cost-Time Trade-Offs and Project Crashing

It is not uncommon to face the following situations:

- The project is behind schedule
- The completion time has been moved forward

Shortening the duration of the project is called project crashing

Factors to Consider When Crashing a Project

- The amount by which an activity is crashed is, in fact, permissible
- Taken together, the shortened activity durations will enable us to finish the project by the due date
- The total cost of crashing is as small as possible

Steps in Project Crashing

 Compute the crash cost per time period. If crash costs are linear over time:

2. Using current activity times, find the critical path and identify the critical activities

Steps in Project Crashing

3. If there is only one critical path, then select the activity on this critical path that (a) can still be crashed, and (b) has the smallest crash cost per period. If there is more than one critical path, then select one activity from each critical path such that (a) each selected activity can still be crashed, and (b) the total crash cost of all selected activities is the smallest. Note that the same activity may be common to more than one critical path.

Steps in Project Crashing

4. Update all activity times. If the desired due date has been reached, stop. If not, return to Step 2.

Crashing The Project

TABLE 3.5		Normal and Crash Data for Milwaukee Paper Manufacturing								
	TIME (WEEKS)		/EEKS)	COST (\$)		CRASH COST	CRITICAL			
ACTIVITY	NC	ORMAL	CRASH	NORMAL	CRASH	PER WEEK (\$)	PATH?			
А		2	1	22,000	22,750	750	Yes			
В		3	1	30,000	34,000	2,000	No			
С		2	1	26,000	27,000	1,000	Yes			
D		4	3	48,000	49,000	1,000	No			
E		4	2	56,000	58,000	1,000	Yes			
F		3	2	30,000	30,500	500	No			
G		5	2	80,000	84,500	1,500	Yes			
Н		2	1	16,000	19,000	3,000	Yes			

Crash and Normal Times and Costs for Activity B

Critical Path and Slack Times for Milwaukee Paper

Advantages of PERT/CPM

- Especially useful when scheduling and controlling large projects
- 2. Straightforward concept and not mathematically complex
- 3. Graphical networks help highlight relationships among project activities
- Critical path and slack time analyses help pinpoint activities that need to be closely watched

Advantages of PERT/CPM

- 5. Project documentation and graphics point out who is responsible for various activities
- 6. Applicable to a wide variety of projects
- Useful in monitoring not only schedules but costs as well

Limitations of PERT/CPM

- Project activities have to be clearly defined, independent, and stable in their relationships
- Precedence relationships must be specified and networked together
- 3. Time estimates tend to be subjective and are subject to fudging by managers
- There is an inherent danger of too much emphasis being placed on the longest, or critical, path

Using Microsoft Project

Program 3.1

Using Microsoft Project

Using Microsoft Project

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.