Non-perturbative QCD aspects of elastic hadronic scatterings*

Mateus Broilo da Rocha

Federal University of Rio Grande do Sul

Doctor qualifying exam

Supervisor: Prof. Dr. Emerson Gustavo de Souza Luna

*This research was supported by CNPq grant 141496/2015-0.

- Mini-introduction
 - Experimental data
 - Quick inspection on kinematics
 - Eikonal formalism
- Regge-Gribov based model
 - Regge theory
 - Phenomenology
 - Results so far
- QCD-inspired model
 - Quantum Chromodynamics
 - QIM formalism
 - Results so far
- Perspectives

Introduction 3

Introduction

- The study of hadron-hadron total cross-sections has been a subject of intense theoretical and experimental interest
- ► The recent measurements of pp elastic, inelastic and total cross-sections at the LHC by the TOTEM Collaboration
- ⇒ have enhanced the interest in the subject
- ⇒ have become a pivotal source of information for selecting models and theoretical methods
- At present QCD-inspired formalism is one of the main theoretical approaches used to describe the observed increase of σ^{hh}_{tot}
- However, the recent LHC data provides a unique constraint on the soft Pomeron parameters

Total cross-section data for pp (\bullet) and $\bar{p}p$ (\circ) scattering.

Total cross-section data for pp (\bullet) and $\bar{p}p$ (\circ) scattering.

Ratio of the real to imaginary part of the forward scattering amplitude.

Ratio of the real to imaginary part of the forward scattering amplitude.

Experimental data

Collaboration	Reference	\sqrt{s} (TeV)	σ_{tot} (mb)
ТОТЕМ	EPL96 (2011) 21002	7	98.30 ± 2.80
	EPL101 (2013) 21002	7	98.58 ± 2.23
	EPL101 (2013) 21004	7	99.10 ± 4.30
	EPL101 (2013) 21004	7	98.00 ± 2.50
	PRL111 (2013) 012001	8	101.70 ± 2.90
	EPJ C76 (2016) 661	8	102.90 ± 2.30
	EPJ C76 (2016) 661	8	103.00 ± 2.30
Collaboration	Reference	\sqrt{s} (TeV)	ρ
TOTEM	EPL101 (2013) 21002	7	0.145 ± 0.091
TOTEM	EPJ C76 (2016) 661	8	$\textbf{0.120} \pm \textbf{0.030}$

Elastic pp differential cross-section.

Elastic pp differential cross-section at $\sqrt{s} = 7$ TeV.

Elastic pp differential cross-section at $\sqrt{s} = 7$ TeV.

Elastic pp differential cross-section at $\sqrt{s} = 7$ TeV.

Elastic pp differential cross-section at $\sqrt{s} = 7$ TeV.

Quick inspection on kinematics

Collisions lead to scatterings

$$1+2 \rightarrow 3+4+5+...$$

Two-body exclusive process

$$1+2 \rightarrow 3+4$$
 (s-channel)

Mandelstam invariants

$$s = (P_1 + P_2)^2 = (P_3 + P_4)^2$$

$$t = (P_1 - P_3)^2 = (P_2 - P_4)^2$$

$$u = (P_1 - P_4)^2 = (P_2 - P_3)^2$$

constrained to

$$s+t+u=\sum_{i=1}^4 m_i^2$$

Quick inspection on kinematics

► In the crossed channel (time-reversed)

$$1 + \bar{3} \rightarrow \bar{2} + 4$$
 (t-channel)

By crossing-symmetry

$$F_{1+2\to 3+4}(s,t,u) = F_{1+\bar{3}\to \bar{2}+4}(t,s,u)$$

Quick inspection on kinematics

 Elastic scattering: the incident particles corresponds exactly to those ones in the final state.

$$1 + 2 \rightarrow 1' + 2'$$

- Simplest kinematic processes → theoretical description is extremely difficult.
- ► Elastic pp and p̄p scattering

$$s$$
 - channel : $p + p \rightarrow p + p$

$$t$$
 - channel : $\bar{p} + p \rightarrow \bar{p} + p$

Eikonal formalism

Partial-wave approximation

$$f(\mathbf{k}, \mathbf{k}') = f(k, \theta) = \sum_{\ell=0}^{\infty} (2\ell+1) a_{\ell}(k) P_{\ell}(\cos \theta)$$

By taking the high-energy limit

$$f(s,t) = ik \int_0^\infty db \, b \, J_0(b\sqrt{-t}) \underbrace{\left[1 - e^{i\chi(s,b)}\right]}_{\equiv \Gamma(s,b)}$$

Unitarity condition

$$\Gamma(s, b) = \operatorname{Re}\Gamma(s, b) + i\operatorname{Im}\Gamma(s, b)$$

$$2\text{Re}\,\Gamma(s,b) = |\Gamma(s,b)|^2 + (1-e^{-2\chi_I})$$

Eikonal formalism

► Total cross-section

$$\sigma_{tot}(s) = 2\pi \int_0^\infty db \, b \, 2 \operatorname{Re}\Gamma(s, b)$$

$$= 4\pi \int_0^\infty db \, b \, [1 - e^{-\chi_I} \cos \chi_R] = \sigma_{el} + \sigma_{in}$$

Elastic differential cross-section

$$\frac{d\sigma}{dt}(s,t) = \pi \left| i \int_0^\infty db \, b \, J_0(b\sqrt{-t}) \left[1 - e^{i\chi(s,b)} \right] \right|^2$$

ho-parameter

$$\rho(s) = \frac{\text{Re}\left\{i \int_{0}^{\infty} db \, b \, [1 - e^{i\chi(s,b)}]\right\}}{\text{Im}\left\{i \int_{0}^{\infty} db \, b \, [1 - e^{i\chi(s,b)}]\right\}} = \frac{\int_{0}^{\infty} db \, b \, e^{-\chi_{I}} \sin \chi_{R}}{\int_{0}^{\infty} db \, b \, \left(1 - e^{-\chi_{I}} \cos \chi_{R}\right)}$$

Regge theory

Regge theory: Basics

- ▶ The Regge pole idea \rightarrow strong interaction is described by the exchange of Regge trajectories
- Each pole corresponds to singularities in the partial-wave amplitude

$$\ell = \alpha(t)$$

- $-\alpha(t)$ stands for the Regge trajectory
- At high-energy

$$A(s,t) \underset{s \to \infty}{\sim} s^{\alpha(t)}$$

- Asymptotically the Pomeron dominates at high energies, whereas the secondary Reggeons are responsible for the low-energy region
- Fundamental result:

Regge theory: Basics

- ► The Regge pole idea → strong interaction is described by the exchange of Regge trajectories
- Each pole corresponds to singularities in the partial-wave amplitude

$$\ell = \alpha(t)$$

- $-\alpha(t)$ stands for the Regge trajectory
- ► At high-energy

$$A(s,t) \underset{s \to \infty}{\sim} s^{\alpha(t)}$$

- Asymptotically the Pomeron dominates at high energies, whereas the secondary Reggeons are responsible for the low-energy region
- Fundamental result: the <u>leading complex angular momentum singularity</u> of the partial-wave amplitude in a given channel, determines the <u>asymptotic behaviour</u> of the scattering amplitude in the crossed channels

Regge theory: Basics

- ► The Regge pole idea → strong interaction is described by the exchange of Regge trajectories
- Each pole corresponds to singularities in the partial-wave amplitude

$$\ell = \alpha(t)$$

- $-\alpha(t)$ stands for the Regge trajectory
- ► At high-energy

$$A(s,t) \underset{s \to \infty}{\sim} s^{\alpha(t)}$$

Asymptotically the Pomeron dominates at high energies, whereas the secondary Reggeons are responsible for the low-energy region

Regge pole

► Fundamental result: the leading complex angular momentum singularity of the partial-wave amplitude in a given channel, determines the asymptotic behaviour of the scattering amplitude in the crossed channels

Simple Regge-Gribov based model. Contribution from each Reggeon amplitude at the Born-level, respectively.

Regge theory: Regge poles → **Long story short**

- The scattering amplitude is written as the Watson-Sommerfeld transform of the partial-wave series
 - The dominant contribution in the case of t-channel exchange

$$A(s,t) \underset{s\to\infty}{\simeq} \sum_{\xi=\pm 1} \sum_{i_{\xi}} -\gamma_{i_{\xi}}(t) \frac{1+\xi e^{-i\pi\alpha_{i_{\xi}}(t)}}{\sin\pi\alpha_{i_{\xi}}(t)} s^{\alpha_{i_{\xi}}(t)}$$

- $-\alpha_{i_{\varepsilon}}$ defines the location of the *i*-th pole \rightarrow each Reggeon contribution
- $-\gamma_{i_{\xi}}(t)$ stands for the residue function and *phenomenologically* is related to the vertex coupling hadron-Reggeon
- ▶ Leading pole \rightarrow Pomeron $\xi = +1$

$$A(s,t) \underset{s \to \infty}{\sim} -\gamma_i(t) \frac{1 + \xi e^{-i\pi\alpha(t)}}{\sin \pi\alpha(t)} s^{\alpha(t)}$$

- New quantum number, the signature $\xi = \pm 1$
 - Then $A_{\ell}(t)$ can be analytically continued to complex ℓ -values by means of the Watson-Sommerfeld transform

- Returning to the task in hand (description of pp and pp scatterings)... But beforehand:
 - diffractive processes are described by Regge theory
 - high-energy behaviour of the scattering amplitude \rightarrow described by singularities of the amplitude in the complex angular momentum plane
- As it was previously mentioned

$$A(s,t) \propto s^{\alpha(t)}$$

$$A(s,t) = \sum_{i} \gamma_{i}(t) \eta_{i}(t) s^{\alpha_{i}(t)}$$

- where $\eta_i(t) = -\frac{1+\xi e^{-i\pi\alpha_i(t)}}{\sin(\pi\alpha_i(t))}$ is the signature factor
- Straightforward

- Returning to the task in hand (description of pp and pp scatterings)... But beforehand:
 - diffractive processes are described by Regge theory
 - high-energy behaviour of the scattering amplitude \rightarrow described by singularities of the amplitude in the complex angular momentum plane
- As it was previously mentioned

$$A(s,t) \propto s^{\alpha(t)}$$

$$A(s,t) = \sum_{i} \gamma_i(t) \eta_i(t) s^{\alpha_i(t)}$$
 (as it was also mentioned)

- where $\eta_i(t) = -\frac{1+\xi e^{-i\pi\alpha_i(t)}}{\sin(\pi\alpha_i(t))}$ is the signature factor
- Straightforward

- Returning to the task in hand (description of pp and pp scatterings)... But beforehand:
 - diffractive processes are described by Regge theory
 - high-energy behaviour of the scattering amplitude \rightarrow described by singularities of the amplitude in the complex angular momentum plane
- As it was previously mentioned

$$A(s,t) \propto s^{\alpha(t)}$$

$$A(s,t) = \sum_{i} \gamma_i(t) \eta_i(t) s^{\alpha_i(t)}$$
 (as it was also mentioned)

- where $\eta_i(t)=-rac{1+\xi e^{-i\pilpha_i(t)}}{\sin(\pilpha_i(t))}$ is the signature factor
- Straightforward

$$\eta(t) = \underbrace{-\frac{e^{-i\pi\alpha_i(t)/2}}{\sin\left(\frac{\pi}{2}\alpha_i(t)\right)}}_{\mathcal{E}=+1}$$

- Returning to the task in hand (description of pp and pp scatterings)... But beforehand:
 - diffractive processes are described by Regge theory
 - high-energy behaviour of the scattering amplitude \rightarrow described by singularities of the amplitude in the complex angular momentum plane
- As it was previously mentioned

$$A(s,t) \propto s^{\alpha(t)}$$

$$A(s,t) = \sum_i \gamma_i(t) \eta_i(t) s^{lpha_i(t)}$$
 (as it was also mentioned)

- where $\eta_i(t)=-rac{1+\xi e^{-i\pilpha_i(t)}}{\sin(\pilpha_i(t))}$ is the signature factor
- Straightforward

$$\eta(t) = \underbrace{-\frac{e^{-i\pi\alpha_i(t)/2}}{\sin\left(\frac{\pi}{2}\alpha_i(t)\right)}}_{\xi = +1} \quad \text{and} \quad \eta(t) = \underbrace{-i\frac{e^{-i\pi\alpha_i(t)/2}}{\cos\left(\frac{\pi}{2}\alpha_i(t)\right)}}_{\xi = -1}$$

The scattering amplitude is decomposed into three terms

$$A_B(s,t) = A_P(s,t) + A_+(s,t) + \tau A_-(s,t)$$

where au flips sign when going from $pp\left(au=-1
ight)$ to $ar{p}p\left(au=+1
ight)$

- leading singularity:
 - $-A_{\mathbb{P}}(s,t) \rightarrow \text{single Pomeron exchange, } \xi = +1$
- secondary Reggeons:
 - $-A_{+(-)}(s,t) \rightarrow$ exchange of the Reggeons with $\xi = +1(-1)$, namely a_2 and f_2 (ω and ρ)
- ► For single Regge exchange

$$A_i(s,t) = \beta_i^2(t)\eta_i(t) \left(\frac{s}{s_0}\right)^{\alpha_i(t)}$$

– where $\gamma_i(t) = \beta_i^2(t)$ is the elastic proton-Reggeon vertex, $\alpha_i(t)$ is the Regge pole trajectory, with $i = \mathbb{P}, +, -$

► Asymptotic form of the signatures at the very **low-**t **region**

► Asymptotic form of the signatures at the very **low**-t **region**

$$\eta_i(t) = \underbrace{-e^{-i\pi\alpha_i(t)/2}}_{\xi=+1}$$

Asymptotic form of the signatures at the very **low-**t **region**

$$\eta_i(t) = \underbrace{-e^{-i\pi\alpha_i(t)/2}}_{\xi=+1} \quad \text{and} \quad \eta_i(t) = \underbrace{ie^{-i\pi\alpha_i(t)/2}}_{\xi=-1}$$

► Asymptotic form of the signatures at the very **low**-t **region**

$$\eta_i(t) = \underbrace{-e^{-i\pi\alpha_i(t)/2}}_{\xi=+1} \quad \text{and} \quad \eta_i(t) = \underbrace{ie^{-i\pi\alpha_i(t)/2}}_{\xi=-1}$$

▶ do not affect the Pomeron parameters ϵ and α_P' , but simply introduces the vertex transformations

$$\begin{split} \beta_{\mathbb{P}}^2(t) &\to \sin\left(\frac{\pi}{2}\alpha_{\mathbb{P}}(t)\right)\beta_{\mathbb{P}}^2(t), \\ \beta_+^2(t) &\to \sin\left(\frac{\pi}{2}\alpha_+(t)\right)\beta_+^2(t), \\ \beta_-^2(t) &\to -\cos\left(\frac{\pi}{2}\alpha_-(t)\right)\beta_-^2(t). \end{split}$$

By means of these simplified form of the Regge signatures:

▶ Pomeron contribution, $\xi = +1$

$$A_{\mathbb{P}}(s,t) = -eta_{\mathbb{P}}^2(t)\cos\left(rac{\pi}{2}lpha_{\mathbb{P}}(t)
ight)\left(rac{s}{s_0}
ight)^{lpha_{\mathbb{P}}(t)}+ieta_{\mathbb{P}}^2(t)\sin\left(rac{\pi}{2}lpha_{\mathbb{P}}(t)
ight)\left(rac{s}{s_0}
ight)^{lpha_{\mathbb{P}}(t)}$$

▶ Reggeons with $\xi = +1$

$$A_{+}(s,t) = -\beta_{+}^{2}(t)\cos\left(\frac{\pi}{2}\alpha_{+}(t)\right)\left(\frac{s}{s_{0}}\right)^{\alpha_{+}(t)} + i\beta_{+}^{2}(t)\sin\left(\frac{\pi}{2}\alpha_{+}(t)\right)\left(\frac{s}{s_{0}}\right)^{\alpha_{+}(t)}$$

• Reggeons with $\xi = -1$

$$A_{-}(s,t) = \beta_{-}^{2}(t)\sin\left(\frac{\pi}{2}\alpha_{-}(t)\right)\left(\frac{s}{s_{0}}\right)^{\alpha_{-}(t)} + i\beta_{-}^{2}(t)\cos\left(\frac{\pi}{2}\alpha_{-}(t)\right)\left(\frac{s}{s_{0}}\right)^{\alpha_{-}(t)}$$

Secondary Reggeons exchange

 Positive-signature are taken to have an exponential form for the proton-Reggeon vertex

$$\beta_{+}(t) = \beta_{+}(0) \exp(r_{+}t/2)$$

- lie on an exchange-degenerate linear trajectory

$$\alpha_+(t) = 1 - \eta_+ + \alpha'_+ t$$

Similarly, for the case of the exchange-degenerate negative-signature

$$\beta_{-}(t) = \beta_{-}(0) \exp(r_{-}t/2)$$

$$\alpha_{-}(t) = 1 - \eta_{-} + \alpha'_{-}t$$

Pomeron exchange

it will be investigated two different types of:

proton-Pomeron vertex, (one of which being a power-like form):

$$eta_{\mathbb{P}}(t)=eta_{\mathbb{P}}(0) ext{exp}(r_{\mathbb{P}}t/2) \quad ext{and} \quad eta_{\mathbb{P}}(t)=rac{eta_{\mathbb{P}}(0)}{(1-t/a_1)(1-t/a_2)}$$

trajectories, (one of which being non-linear):

$$\alpha_{\mathbb{P}}(t) = \alpha_{\mathbb{P}}(0) + \alpha'_{+}t \quad \text{and} \quad \alpha_{\mathbb{P}}(t) = \alpha_{\mathbb{P}}(0) + \alpha'_{\mathbb{P}}t - \frac{\beta_{\pi}^{2}m_{\pi}^{2}}{32\pi^{3}} h\left(\frac{4m_{\pi}^{2}}{|t|}\right)$$
$$h(x) = \frac{4}{x}F_{\pi}^{2}(t)\left[2x - (1+x)^{3/2}\ln\left(\frac{\sqrt{1+x}+1}{\sqrt{1+x}-1}\right) + \ln\left(\frac{m^{2}}{m_{\pi}^{2}}\right)\right]$$

- non-linear term \rightarrow nearest t-channel singularity (two-pion loop)
- $-m_\pi=139.6$ MeV and $F_\pi(t)=eta_\pi/(1-t/a_1)$ stands for the pion-Pomeron vertex

$$-\beta_{\pi}/\beta_{\mathbb{P}}=2/3$$

Phenomenology: Born-level analysis

- BI model:
 - it was adopted an exponential form for the proton-Pomeron vertex and for the secondary Reggeons
 - it was used a *linear trajectory* for the Pomeron
- ▶ BII model:
 - exponential form for the proton-Pomeron vertex and for the secondary Reggeons
 - non-linear trajectory for the Pomeron
- BIII model:
 - power-like form for the proton-Pomeron vertex and exponential form for the secondary Reggeons
 - non-linear trajectory for the Pomeron
- ▶ BIV(=BI+ \mathbb{PP}) model (double-Pomeron exchange):
 - power-like form for the proton-Pomeron vertex and for the secondary Reggeons
 - non-linear trajectory for the Pomeron

Phenomenology: Born-level analysis

Double-Pomeron exchange

- multi-Pomeron exchanges tame the asymptotic rise of cross-section \rightarrow enters, phenomenologically, to ensure unitarity
 - ightharpoons PP contribution is negative, at $s o\infty$ as $A_{\mathbb{PP}}(s,t)\sim -s^{lpha_{\mathbb{PP}}(t)}/\ln s$
 - is flatter in t than the single-Pomeron exchange

$$\alpha_{\mathbb{PP}}(t) = 1 + 2\epsilon + \frac{1}{2} \, \alpha'_{\mathbb{P}} t$$

it was added the phenomenological term to the amplitude

$$A_{\mathbb{PP}}(s,t) = -eta_{\mathbb{PP}}^2(t) \, \eta_{\mathbb{PP}}(t) rac{s}{s_0}^{lpha_{\mathbb{PP}}(t)} \left[\ln \left(-i \, rac{s}{s_0}
ight)
ight]^{-1}$$

– where
$$\eta_{\mathbb{PP}}(t) = -e^{-i\pi\alpha_{\mathbb{PP}}(t)/2}$$
, $\beta_{\mathbb{PP}} = \exp(r_{\mathbb{P}}t/4)$ and $\ln(-ix) = \ln(x) - i\pi/2$

Phenomenology: Physical observables

Total cross-section

$$\sigma_{tot}(s) = \frac{4\pi}{s} \operatorname{Im} A(s, t = 0)$$
$$= Xs^{\epsilon} + Y_{+}s^{-\eta_{+}} + \tau Y_{-}s^{-\eta_{-}}$$

– where $A(s,t)=A_B(s,t)$ and X and Y_{\pm} represents the imaginary part of the forward scattering amplitude

Elastic differential cross-section

$$\frac{d\sigma}{d|t|}(s,t) = \frac{\pi}{s^2} \left| \operatorname{Im} A(s,t) \right|^2$$

▶ Ratio of the real to imaginary part of the forward scattering amplitude

$$\rho(s) = \frac{\operatorname{Re} A(s, t = 0)}{\operatorname{Im} A(s, t = 0)}$$

Results so far

	Born-level amplitudes				
	BI BII BIII		BIII	$BI + \mathbb{PP}$	
ϵ	$0.0945{\pm}0.0035$	$0.0945{\pm}0.0033$	$0.0958 {\pm} 0.0039$	$0.0945{\pm}0.0038$	
$lpha_{\mathbb{P}}'$ [GeV $^{-2}$]	$0.2502{\pm}0.0085$	$0.2495{\pm}0.0085$	$0.3788 {\pm} 0.0088$	$0.4469 {\pm} 0.0094$	
$eta_{\mathbb{P}}(0) \; [GeV^{-1}]$	$1.949 {\pm} 0.057$	$1.948 {\pm} 0.052$	$1.935{\pm}0.062$	$1.950 {\pm} 0.060$	
$r_{\mathbb{P}} \ [GeV^{-2}]$	5.5 [fixed]	5.5 [fixed]	-	5.5 [fixed]	
η_+	$0.329 {\pm} 0.055$	$0.329 {\pm} 0.049$	$0.323{\pm}0.059$	$0.329 {\pm} 0.057$	
eta_+ (0) [GeV $^{-1}$]	$3.67{\pm}0.41$	$3.66 {\pm} 0.37$	$3.64{\pm}0.44$	$3.67 {\pm} 0.43$	
η	$0.527{\pm}0.084$	$0.527{\pm}0.080$	$0.526{\pm}0.090$	$0.527{\pm}0.089$	
β (0) [GeV $^{-1}$]	$2.89 {\pm} 0.51$	$2.89 {\pm} 0.49$	$2.89 {\pm} 0.54$	$2.89{\pm}0.54$	
a_1 [GeV 2]	-	$m_{ ho}^2$ [fixed]	$m_{ ho}^2$ [fixed]	-	
a_2 [GeV ²]	-	-	$7.5 {\pm} 3.9$	-	
$eta_{\mathbb{PP}}(0)$	-	-	-	$0.085 {\pm} 0.022$	
χ^2/dof	0.79	0.79	0.79	0.79	
free parameters	7	7	8	8	

BI, BII and BI+ \mathbb{PP} (continuous curve) and BIII (dashed line).

ightharpoonup Breakdown of unitarity can be avoided ightharpoonup the exchange series

$$\mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$$

- ▶ It is not entirely understood how to carry out a full computation of them
- ▶ Pomeron contribution → single-exchange in the Born-level amplitude

ightharpoonup Breakdown of unitarity can be avoided ightharpoonup the exchange series

$$\mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$$

- It is not entirely understood how to carry out a full computation of them
- ▶ Pomeron contribution → single-exchange in the Born-level amplitude
- Relation one-to-one?

Breakdown of unitarity can be avoided \rightarrow the exchange series

$$\mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$$

- It is not entirely understood how to carry out a full computation of them
- Pomeron contribution → single-exchange in the Born-level amplitude
- Relation one-to-one?

$$1 - \sum_{n=0}^{\infty} \frac{(i\chi)^n}{n!} = -i\chi + \chi^2 + i\chi^3 + \dots \leftrightarrow \mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$$

▶ Breakdown of unitarity can be avoided → the exchange series

$$\mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$$

- It is not entirely understood how to carry out a full computation of them
- Pomeron contribution → single-exchange in the Born-level amplitude
- Relation one-to-one?

$$1 - \sum_{n=0}^{\infty} \frac{(i\chi)^n}{n!} = -i\chi + \chi^2 + i\chi^3 + \dots \leftrightarrow \mathbb{P} + \mathbb{PP} + \mathbb{PPP} + \dots$$

This is not absolutely true → but it is a phenomenological way to give some meaning to eikonal unitarisation

$$A_B(s,t) = s \int_0^\infty db \, b \, J_0(b\sqrt{-t}) \, \chi(s,b)$$

- at first order

- eikonalisation is an effective procedure to take into account some properties of high-energy s-channel unitarity
- inverting the Fourier transform

$$\chi(s,b) = \frac{1}{s} \int_0^\infty d\sqrt{-t} \sqrt{-t} J_0(b\sqrt{-t}) A_B(s,t)$$

- the first term in the <u>eikonal series</u> is related to the <u>single-exchange</u> Born-level amplitude
- ▶ the "full eikonalised" amplitude

$$A_{eik}(s,t) = is \int_0^\infty db \, b \, J_0(b\sqrt{-t}) \left[1 - \mathrm{e}^{i\chi(s,b)}
ight]$$

- where $\chi(s,b) = \chi_R(s,b) + i\chi_I(s,b)$

- eikonalisation is an effective procedure to take into account some properties of high-energy s-channel unitarity
- inverting the Fourier transform

$$\chi(s,b) = \frac{1}{s} \int_0^\infty d\sqrt{-t} \sqrt{-t} J_0(b\sqrt{-t}) A_B(s,t)$$

- the first term in the <u>eikonal series</u> is related to the <u>single-exchange</u> Born-level amplitude
- the "full eikonalised" amplitude

$$A_{eik}(s,t) = is \int_0^\infty db \, b \, J_0(b\sqrt{-t}) \left[1 - e^{i\chi(s,b)}\right]$$

- where $\chi(s,b) = \chi_{R}(s,b) + i\chi_{L}(s,b)$
- this is ""'a way to take into account"" the whole multiple-Pomeron exchange

Results so far

	Single-channel eikonalised amplitudes			
	EI	EII	EIII	
ϵ	0.1103±0.0020	0.1091±0.0094	0.1213±0.0052	
$lpha_{\mathbb{P}}'$ [GeV $^{-2}$]	$0.2484{\pm}0.0010$	$0.266 \!\pm\! 0.012$	$0.1375 {\pm} 0.0057$	
$eta_{\mathbb{P}}(0) \; [GeV^{-1}]$	$2.066{\pm}0.012$	$2.090 {\pm} 0.17$	$1.917{\pm}0.084$	
$r_{\mathbb{P}} \; [GeV^{-2}]$	$2.899 {\pm} 0.011$	$2.56 {\pm} 0.96$	-	
η_+	$0.3563 {\pm} 0.0051$	$0.360 \!\pm\! 0.060$	$0.322 {\pm} 0.054$	
$eta_+(0)~[GeV^{-1}]$	4.870 ± 0.056	$4.94{\pm}0.72$	$4.56 {\pm} 0.49$	
η	$0.5509 {\pm} 0.0027$	$0.552 {\pm} 0.088$	$0.544 {\pm} 0.087$	
β (0) [GeV $^{-1}$]	3.760 ± 0.022	3.78 ± 0.70	$3.65{\pm}0.66$	
a_1 [GeV ²]	-	m_{ρ}^2 [fixed]	m_{ρ}^2 [fixed]	
a_2 [GeV ²]	-	-	$0.369\ \pm0.012$	
χ^2/dof	1.11	1.09	0.80	
free parameters	8	8	8	

El and Ell (continuous curve) and Elll (dashed line).

Double-channel eikonal analysis

- ▶ Diffractive proton excitation in intermediate states
- ightharpoonup two-channel eikonal approach ightharpoonup by means of the Good-Walker formalism
 - convenient way to incorporate $p \to N^*$ diffractive dissociation

$$\beta_{p} \to \begin{pmatrix} \beta_{p}(p \to p) & \beta_{p}(p \to N^{*}) \\ \beta_{p}(N^{*} \to p) & \beta_{p}(N^{*} \to N^{*}) \end{pmatrix} \simeq \beta(p \to p) \begin{pmatrix} 1 & \gamma \\ \gamma & 1 \end{pmatrix}$$

Pomeron couplings

$$\beta_{\mathbb{P},k}(t) = (1 \pm \gamma)\beta_{\mathbb{P}}(t)$$

- where $1\pm\gamma$ stands for the eigenvalues of the two-channel vertex, with $\gamma\simeq 0.55$
- \to associated with excitations into particular channels with $\sigma_{SD}^{lowM} \simeq$ 2 mb at $\sqrt{s}=31~\text{GeV}$
- each amplitude has two vertices

$$A_{eik}(s,t) = \textit{is} \int_{0}^{\infty} b \, db \, J_{0}(bq) \left[1 - \frac{1}{4} \, e^{\textit{i}(1+\gamma)^{2}\chi(s,b)} - \frac{1}{2} \, e^{\textit{i}(1+\gamma^{2})\chi(s,b)} - \frac{1}{4} \, e^{\textit{i}(1-\gamma)^{2}\chi(s,b)} \right]$$

Results so far

	Two-channel eikonalised amplitudes			
	DI	DII	DIII	
ϵ	0.1383±0.0038	0.1393±0.0014	0.1472±0.0044	
$lpha_{\mathbb{P}}'$ [GeV $^{-2}$]	$0.0909{\pm}0.00020$	$0.0703 \!\pm\! 0.00075$	$0.0447 {\pm} 0.00048$	
$eta_{\mathbb{P}}(0) \; [GeV^{-1}]$	$1.948 {\pm} 0.027$	1.919 ± 0.26	$1.896 \!\pm\! 0.011$	
$r_{\mathbb{P}} \ [GeV^{-2}]$	$4.42{\pm}0.16$	$4.787{\pm}0.033$	-	
η_+	$0.3314 {\pm} 0.0072$	$0.3284{\pm}0.0055$	$0.3287{\pm}0.0057$	
eta_+ (0) [GeV $^{-1}$]	5.261 ± 0.099	$5.218 {\pm} 0.039$	$5.314{\pm}0.014$	
η	$0.5487 {\pm} 0.0037$	$0.5475 {\pm} 0.0011$	$0.5547{\pm}0.0022$	
β (0) [GeV $^{-1}$]	$4.15{\pm}0.50$	$4.122{\pm}0.025$	$4.165{\pm}0.094$	
a_1 [GeV ²]	-	m_{ρ}^2 [fixed]	m_{ρ}^2 [fixed]	
a_2 [GeV ²]	-	-	$0.383 {\pm} 0.010$	
χ^2/dof	1.42	1.42	0.85	
free parameters	8	8	8	

DIII (continuous curve).

Results so far

	BIII model		EIII model		DIII model	
\sqrt{s} [TeV]	σ_{tot} [mb]	ρ	σ_{tot} [mb]	ρ	σ_{tot} [mb]	ρ
7.0	98.9±3.9	0.150±0.006	98.4±3.9	0.135±0.005	96.1±3.8	0.135±0.005
8.0	$101.5 {\pm} 7.2$	$0.150 {\pm} 0.011$	100.7 ± 7.2	$0.134{\pm}0.010$	$98.4 {\pm} 7.0$	$0.135{\pm}0.010$
13.0	111.3 ± 10.2	$0.151 {\pm} 0.014$	$109.3 {\pm} 10.0$	$0.130 {\pm} 0.012$	$106.3 {\pm} 9.7$	$0.135{\pm}0.012$
14.0	$112.9\!\pm\!10.7$	$0.151 {\pm} 0.014$	$110.6 \!\pm\! 10.5$	$0.130 {\pm} 0.012$	107.7±10.3	$0.135{\pm}0.013$
57.0	$148{\pm}18$	$0.151 {\pm} 0.019$	$138{\pm}17$	$0.120 {\pm} 0.015$	$133{\pm}17$	$0.135{\pm}0.017$
95.0	163±23	0.151 ± 0.021	149±21	0.116 ± 0.016	144±20	$0.135 {\pm} 0.019$

Table: Predictions for the forward scattering quantities σ_{tot}^{pp} and ρ^{pp} using different Regge-Gribov based models.

(a) BI, BII and BI+ \mathbb{PP} (continuous) and BIII (dashed); (b) EI and EII (continuous) and EIII (dashed); and (c) only DIII. (d) comparison results among BIII (continuous), EIII (dashed) and DIII (dotted).

Quantum Chromodynamics

QCD: Basics

- lacktriangle Describes the strong interactions among quarks (ψ_q) and gluons (\mathcal{G}_μ^A)
- ▶ invariant properties of the symmetry group $SU(N_c)$, $N_c = 3$

$$[\lambda^A, \lambda^B] = if^{ABC}\lambda^C$$

Lagrangian

$$\mathcal{L}_{QCD} = -rac{1}{4}F_{\mu
u}^{A}(x)F_{A}^{\mu
u}(x) + \sum_{q}ar{\psi}_{q}^{r}(x)(i\not{D}-m)_{rs}\psi_{q}^{s}(x) + \mathcal{L}_{gauge-fixing} + \mathcal{L}_{ghost}$$

- where

$$F_{\mu
u}^{A}=\partial_{\mu}G_{
u}^{A}-\partial_{
u}G_{\mu}^{A}-g_{s}f^{ABC}G_{\mu}^{B}G_{
u}^{C}$$

- $-f_{ABE}f_{ECD} + f_{CBE}f_{AED} + f_{DBE}f_{ACE} = 0$
- g_s is the strong coupling

QCD: Basics

- ▶ Describes the strong interactions among quarks (ψ_q) and gluons (G_u^A)
- invariant properties of the symmetry group $SU(N_c)$, $N_c = 3$

$$[\lambda^A, \lambda^B] = if^{ABC}\lambda^C$$

Lagrangian

$$\mathcal{L}_{QCD} = -rac{1}{4}F_{\mu
u}^{A}(x)F_{A}^{\mu
u}(x) + \sum_{q}ar{\psi}_{q}^{r}(x)(i\not{\!D}-m)_{rs}\psi_{q}^{s}(x) + \mathcal{L}_{gauge-fixing} + \mathcal{L}_{ghost}$$

– where

$$F_{\mu\nu}^A=\partial_\mu G_
u^A-\partial_
u G_
u^A-g_s f^{ABC}G_
u^BG_
u^C$$

- $f_{ABE}f_{ECD} + f_{CBE}f_{AED} + f_{DBE}f_{ACE} = 0$
- $-g_s$ is the strong coupling
- Properties:
 - ⇒ Confinement
 - ⇒ Asymptotic freedom

QCD: Basics

- ▶ Describes the strong interactions among quarks (ψ_q) and gluons (G_u^A)
- invariant properties of the symmetry group $SU(N_c)$, $N_c = 3$

$$[\lambda^A, \lambda^B] = if^{ABC}\lambda^C$$

Lagrangian

$$\mathcal{L}_{QCD} = -rac{1}{4}F_{\mu
u}^{A}(x)F_{A}^{\mu
u}(x) + \sum_{q}ar{\psi}_{q}^{r}(x)(i\not{\!D}-m)_{rs}\psi_{q}^{s}(x) + \mathcal{L}_{gauge-fixing} + \mathcal{L}_{ghost}$$

- where $F_{\mu\nu}^A=\partial_\mu G_\nu^A-\partial_\nu G_\mu^A-g_s f^{ABC}G_\mu^BG_\nu^C$

- $-f_{ABE}f_{ECD}+f_{CBE}f_{AED}+f_{DBE}f_{ACE}=0$
- $-g_s$ is the strong coupling
- Properties:
 - ⇒ Confinement
 - ⇒ Asymptotic freedom

QCD: Effective coupling

• Once it is known $\beta(\alpha_s)$

$$\frac{d\alpha_{s}(\tau)}{d\tau} = \beta(\alpha_{s}(\tau)) = Q^{2} \frac{d\alpha_{s}(Q^{2})}{dQ^{2}} = -b_{0}\alpha_{s}^{2}(Q^{2}) \left(1 + \frac{b_{1}}{b_{0}}\alpha_{s}(Q^{2}) + \frac{b_{2}}{b_{0}}\alpha_{s}^{2}(Q^{2}) + \dots\right)$$

- Usually is used LO and NLO terms → expansion (only b₀ and b₁ are considered)

$$\alpha_s^{LO}(Q^2) = \frac{4\pi}{\beta_0 \ln\left(\frac{Q^2}{\Lambda^2}\right)}$$

$$\alpha_s^{NLO}(Q^2) = \frac{4\pi}{\beta_0 \ln\left(\frac{Q^2}{\Lambda^2}\right)} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\ln\ln\left(\frac{Q^2}{\Lambda^2}\right)}{\ln\left(\frac{Q^2}{\Lambda^2}\right)}\right]$$

 $\beta_0 = b_0/4\pi \ e \ \beta_1 = b_1/16\pi^2$

QCD: Deep inelastic scattering

Kinematical variables

 \triangleright Centre-of-mass $\gamma^* N$ energy squared

$$W^2 = (P+q)^2 \ge m_p^2$$

Virtuality

$$Q^{2} \equiv -q^{2} = (k - k')^{2} > 0$$

▶ Bjorken variable, $0 \le x \le 1$

$$x = \frac{Q^2}{2p \cdot q} = \frac{Q^2}{Q^2 + W^2 - m_p^2}$$

► Inelasticity, 0 < y < 1

$$y = \frac{\nu}{F} = \frac{W^2 + Q^2 - m_p^2}{s - m_p^2}$$

QCD: Parton density

Parton model $\mathcal{O}(\alpha_{em})$

$$F_2 = 2xF_1 = x\sum_i e_i^2 f_i(x)$$

QCD: Parton density

Parton model $\mathcal{O}(\alpha_{em})$

$$F_2 = 2xF_1 = x\sum_i e_i^2 f_i(x)$$

QCD correction $\mathcal{O}(\alpha_s)$

$$F_2(x, Q^2) = \sum_{i=q,\bar{q},g} e_i^2 x f_i(\xi, \mu^2) C^i(z, Q^2, \mu^2)$$

QCD: Parton density

Parton model $\mathcal{O}(\alpha_{em})$

$$F_2 = 2xF_1 = x\sum_i e_i^2 f_i(x)$$

QCD correction $\mathcal{O}(\alpha_s)$

$$F_2(x, Q^2) = \sum_{i=q,\bar{q},g} e_i^2 x f_i(\xi, \mu^2) C^i(z, Q^2, \mu^2)$$

► DGLAP evolution

$$\frac{\partial \mathcal{U}(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \, \begin{pmatrix} P_{qq}(z,Q^2) & 2N_f P_{qg}(z,Q^2) \\ P_{gq}(z,Q^2) & P_{gg}(z,Q^2) \end{pmatrix} \begin{pmatrix} f_q(x,Q^2) \\ f_g(x,Q^2) \end{pmatrix}$$

Parton model

Distribution functions

► General hadronic collision $A + B \rightarrow C + D$

$$\sigma_{AB o CD} = \sum_{a,b} \int_{x_a}^1 d\xi_a \int_{x_b}^1 d\xi_b \, \hat{\sigma}_{ab}(\xi_a p_A, \xi_b p_B) f_{a/A}(\xi_a) f_{b/B}(\xi_b)$$

- There are many dedicated collaborations which aim to determine the behaviour of the distribution functions
- ► Here we are using the distributions CTEQ6L, CTEQ6L1 e MSTW2008

CTEQ6
$$\Rightarrow xf(x, Q_0) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+e^{A_4} x)^{A_5}$$

$$\mathsf{MSTW} \ \Rightarrow x f_i(x, Q_0^2) = A_i x^{-\lambda_i} (1-x)^{\eta_i} (1+\epsilon_i \sqrt{x} + \gamma_i x)$$

QIM formalism

- Describes some hadronic processes in the interplay between perturbative and non-perturbative region
- the scattering amplitude is written by means of the eikonal formalism

$$\chi(s,b) = \chi_{soft}(s,b) + \chi_{sH}(s,b)$$

- $\Rightarrow \chi(s,b) = \chi_R(s,b) + i\chi_I(s,b)$ is the (complex) eikonal function
 - we assume that $\chi(s,b)$ for pp and $\bar{p}p$ scatterings are additive with respect to the soft and semi-hard (SH) parton interactions:

$$\chi_{pp}^{\bar{p}p}(s,b) = \chi^{+}(s,b) \pm \chi^{-}(s,b)$$

• increase of $\sigma_{tot}(s)$ is directly associated with parton-parton SH scatterings

QIM formalism: The revised DGM

– it follows from the QCD parton model that $\chi_{s_H}(s,b)$ factorises as

$$\operatorname{Re} \chi_{\boldsymbol{s}\boldsymbol{H}}(s,b) = \frac{1}{2} W_{\boldsymbol{s}\boldsymbol{H}}(s,b) \sigma_{\boldsymbol{Q}\boldsymbol{C}\boldsymbol{D}}(s)$$

- $W_{SH}(b)$ is an overlap density for the partons at impact parameter space b:
- $\triangleright \sigma_{QCD}(s)$ is the usual QCD cross-section:

$$\sigma_{QCD}(s) = \sum_{ij} \frac{1}{1 + \delta_{ij}} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int_{Q_{min}^{2}}^{\hat{s}/2} d|\hat{t}| \frac{d\hat{\sigma}_{ij}}{d|\hat{t}|} (\hat{s}, \hat{t}) f_{i/A}(x_{1}, |\hat{t}|) f_{j/B}(x_{2}, |\hat{t}|) \Theta\left(\frac{\hat{s}}{2} - |\hat{t}|\right)$$
where $|\hat{t}| \equiv Q^{2}$ e $i, i = a, \bar{a}, g$

however, the eikonal function

$$\chi^{+}(s,b) = \chi^{+}_{soft}(s,b) + \chi^{+}_{SH}(s,b)$$

$$\chi^{-}(s,b) = \chi^{-}_{s}(s,b) + \chi^{-}_{SH}(s,b) \simeq \chi^{-}_{s}(s,b)$$

QIM formalism: The revised DGM

▶ The imaginary part of $\chi_{SH}(s,b)$ can be obtained by means of the integral dispersion relation:

$$\operatorname{Im} \chi^{+}(s,b) = -\frac{2s}{\pi} \mathcal{P} \int_{0}^{\infty} ds' \, \frac{\operatorname{Re} \chi^{+}(s',b)}{s'^{2} - s^{2}}$$

▶ in this way

$$\operatorname{Im} \chi_{\mathbf{SH}}(s,b) = -\frac{1}{2\pi} \int_0^\infty ds' \ln \left(\frac{s'+s}{|s'-s|} \right) \left[\sigma_{\mathbf{QCD}}(s') \frac{dW_{\mathbf{SH}}(s',b)}{ds'} \right]$$

$$- \frac{1}{2\pi} \int_0^\infty ds' \ln \left(\frac{s'+s}{|s'-s|} \right) \left[W_{\mathbf{SH}}(s',b) \frac{d\sigma_{\mathbf{QCD}}(s')}{ds'} \right]$$

$$= h + h_2$$

QIM formalism: The revised DGM

- The soft eikonal is needed only to describe the lower-energy forward data
- the main contribution to the asymptotic behaviour of the hadronic total cross-section comes from the partonic SH collisions
- ⇒ It is enough to build an instrumental parametrization for the soft eikonal:

$$\chi_{\text{soft}}^{+}(s,b) = \frac{1}{2} W_{\text{soft}}^{+}(b; \mu_{\text{soft}}^{+}) \left[A' + \frac{B'}{(s/s_{0})^{\gamma}} e^{i\pi\gamma/2} - iC' \ln\left(\frac{s}{s_{0}}\right) - i\frac{\pi}{2} \right]$$

► The odd term, that accounts for the difference between pp and pp, channels and vanishes at high energy

$$\chi_{\text{soft}}^{-}(s,b) = \frac{1}{2} W_{\text{soft}}^{-}(b;\mu_{\text{soft}}^{-}) D' \frac{e^{-i\pi/4}}{\sqrt{s/s_0}}$$

QIM formalism: The overlap density

▶ Are written in terms of form factors:

$$W(b) = \int d^2b' \, \rho_A(|\mathbf{b} - \mathbf{b}'|) \, \rho_B(b')$$
$$= \frac{1}{2\pi} \int_0^\infty dk_\perp \, k_\perp \, J_0(k_\perp b) \, G_A(k_\perp) \, G_B(k_\perp)$$

- $-\rho(b)$ is the parton density
- In terms of the form factor it is simply written as:

$$\rho(b) = \frac{1}{(2\pi)^2} \int d^2k_{\perp} G(k_{\perp}) e^{i\mathbf{k}_{\perp} \cdot \mathbf{b}}$$

Simplest hypothesis: $W_{SH} = W_{soft}$. This prescription is not however true in QCD parton model.

QIM formalism: Energy-dependent form factors

Most probable: a model which quarks and gluons has distinct spatial distributions

QIM formalism: Energy-dependent form factors

- Most probable: a model which quarks and gluons has distinct spatial distributions
- ▶ The soft overlap densities $W_{soft}^-(b)$ and $W_{soft}^+(b)$ comes from the dipole approximation to the form factors $G_A(k_\perp)$ and $G_B(k_\perp)$
- thus, using a dipole form factor

$$G_{dip}(k_{\perp};\mu) = \left(\frac{\mu^2}{k_{\perp}^2 + \mu^2}\right)^2$$

one gets

$$W_{soft}^{\pm}(b; \mu_{soft}^{\pm}) = \frac{1}{2\pi} \int_{0}^{\infty} dk_{\perp} \, k_{\perp} \, J_{0}(k_{\perp}b) \, G_{dip}^{2}(k_{\perp}; \mu_{soft}^{\pm})$$
$$= \frac{(\mu_{soft}^{\pm})^{2}}{96\pi} (\mu_{soft}^{\pm}b)^{3} K_{3}(\mu_{soft}^{\pm}b)$$

QIM formalism: Energy-dependent form factors

- For $W_{\rm sh}(b)$ we consider the possibility of a "broadening" of the spatial distribution of the gluons
- ⇒ our assumption suggests an increase of the average gluon radius when √s increases
- \Rightarrow can be properly implemented using two Ansätze for $W_{sH}(b)$:

$$G_{\mathbf{sH}}^{(m)}(s,k_{\perp};\nu_{\mathbf{sH}}) = \frac{\nu_{\mathbf{sH}}^2}{k_{\perp}^2 + \nu_{\mathbf{sH}}^2} \ \Rightarrow \ W_{\mathbf{sH}}^{(m)}(s,b;\nu_{\mathbf{sH}}) = \frac{\nu_{\mathbf{sH}}^2}{4\pi}(\nu_{\mathbf{sH}}b)K_1(\nu_{\mathbf{sH}}b)$$

$$G_{\rm SH}^{(d)}(s,k_{\perp};\nu_{\rm SH}) = \left(\frac{\nu_{\rm SH}^2}{k_{\perp}^2 + \nu_{\rm SH}^2}\right)^2 \ \, \Rightarrow \ \, W_{\rm SH}^{(d)}(s,b;\nu_{\rm SH}) = \frac{\nu_{\rm SH}^2}{96\pi}(\nu_{\rm SH}b)^3 K_3(\nu_{\rm SH}b)$$

- where $\nu_{sH} = \nu_1 - \nu_2 \ln(s/s_0)$

The δ -function removes the integration over ds'; thus, the second integral can be expressed as

$$\begin{split} I_{2}(s,b) &= -\frac{1}{2\pi} \int_{0}^{\infty} ds' \ln \left(\frac{s'+s}{|s'-s|} \right) W_{\text{SH}}(s',b) \frac{d\sigma_{\text{QCD}}(s')}{ds'} \\ &= -\frac{1}{2\pi} \sum_{ij} \frac{1}{1+\delta_{ij}} W_{\text{SH}} \left(\frac{2|\hat{r}|}{x_{1}x_{2}},b \right) \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int_{\mathcal{Q}_{\text{min}}^{2}}^{\infty} d|\hat{r}| \frac{d\hat{\sigma}_{ij}}{d|\hat{r}|} (\hat{s},\hat{r}) \\ &\times f_{i/A}(x_{1},|\hat{r}|) f_{j/B}(x_{2},|\hat{r}|) \ln \left(\frac{\hat{s}/2+|\hat{r}|}{\hat{s}/2-|\hat{r}|} \right) \end{split}$$

The energy-dependent form factor $W_{\rm SH}(s,b)$ can have a monopole or a dipole form, namely, $W_{\rm SH}^{(m)}(s,b;\nu_{\rm SH})$ or $W_{\rm SH}^{(d)}(s,b;\nu_{\rm SH})$ [see Eqs. (17) and (18)]. In the case of a monopole form, the first integral on the right side of (26) can be rewritten as

$$\begin{split} I_{1}^{(m)}(s,b) &= -\frac{1}{2\pi} \int_{0}^{\infty} ds' \ln \left(\frac{s'+s}{|s'-s|} \right) \sigma_{\text{QCD}}(s') \frac{dW_{\text{SH}}^{(m)}(s',b;\nu_{\text{SH}})}{ds'} \\ &= -\frac{b}{8\pi^{2}} \sum_{ij} \frac{1}{1+\delta_{ij}} \int_{0}^{\infty} \frac{ds'}{s'} \ln \left(\frac{s'+s}{|s'-s|} \right) \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int_{Q_{\min}^{2}}^{\infty} d|\hat{\boldsymbol{\gamma}}| \frac{d\hat{\sigma}_{ij}}{d|\hat{\boldsymbol{r}}|} (\hat{\boldsymbol{s}}',\hat{\boldsymbol{t}}) \\ &\times f_{i/A}(x_{1},|\hat{\boldsymbol{r}}|) f_{j/B}(x_{2},|\hat{\boldsymbol{r}}|) [b\nu_{2}\nu_{\text{SH}}^{3}K_{0}(\nu_{\text{SH}}b) - 2\nu_{2}\nu_{\text{SH}}^{2}K_{1}(\nu_{\text{SH}}b)] \Theta\left(\frac{\hat{\boldsymbol{s}}'}{2} - |\hat{\boldsymbol{r}}| \right); \end{split}$$

in the case of a dipole we get

$$\begin{split} I_{1}^{(d)}(s,b) &= -\frac{1}{2\pi} \int_{0}^{\infty} ds' \ln\left(\frac{s'+s}{|s'-s|}\right) \sigma_{\text{QCD}}(s') \frac{dW_{\text{SH}}^{(d)}(s',b;\nu_{\text{SH}})}{ds'} \\ &= -\frac{b^{3}}{192\pi^{2}} \sum_{ij} \frac{1}{1+\delta_{ij}} \int_{0}^{\infty} \frac{ds'}{s'} \ln\left(\frac{s'+s}{|s'-s|}\right) \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int_{Q_{\min}^{2}}^{\infty} d|\hat{\imath}| \frac{d\hat{\sigma}_{ij}}{d|\hat{\imath}|} (\hat{s}',\hat{\imath}) \end{split}$$

$$\times f_{i/A}(x_1,|\hat{i}|)f_{j/B}(x_2,|\hat{i}|)[b\nu_2\nu_{\rm SH}^5K_2(\nu_{\rm SH}b)-2\nu_2\nu_{\rm SH}^4K_3(\nu_{\rm SH}b)]\Theta\left(\frac{\hat{s}'}{2}-|\hat{i}|\right).$$

QIM formalism: Infrared mass scale and the role of gluons

- ▶ The gluon distribution becomes asymptotically large at $x \to 0$
- in order to obtain $\chi_{SH}(s,b)$ we select parton-parton scattering processes containing at least one gluon in the initial state:

```
gg 	o gg (gluon-gluon scattering) qg 	o qg (quark-gluon scattering) \bar qg 	o \bar qg (quark-gluon scattering) gg 	o \bar qq (gluon fusion into a quark pair)
```

- ⇒ plagued by infrared divergences
- ⇒ have to be regularised by means of some cutoff procedure
- ▶ one natural regulator for these infrared divergences → evidence that QCD develops an effective momentum-dependent mass for the gluons
 - this dynamical gluon mass mechanism introduces a natural scale
- \Rightarrow intrinsically linked to an infrared-finite QCD effective charge $\bar{\alpha}_s(Q^2)$

QIM formalism: Infrared mass scale and the role of gluons

- The freezing of the QCD coupling at low energies suggests non-perturbative effects
- a link to dynamical mass generation for gluons → were obtained by Cornwall in order to derive a gauge invariant Schwinger-Dyson equation for the gluon propagador

$$\bar{\alpha}_s = \bar{\alpha}_s(Q^2) = \frac{4\pi}{\beta_0 \ln\left[\left(Q^2 + 4M_g^2(Q^2)\right)/\Lambda^2\right]}$$

$$M_g^2 = M_g^2(Q^2) = m_g^2 \left[\frac{\ln\left(\frac{Q^2 + 4m_g^2}{\Lambda^2}\right)}{\ln\left(\frac{4m_g^2}{\Lambda^2}\right)} \right]^{-12/11}$$

- $\Rightarrow m_g = 500 \pm 200 \text{ MeV}$
- ▶ Perturbative regime is recovered

$$ar{lpha}_s(Q^2\gg \Lambda^2)\sim rac{4\pi}{eta_0\ln\left(rac{Q^2}{\Lambda^2}
ight)}=lpha_s^{pQCD}(Q^2)$$

QIM formalism: Infrared mass scale and the role of gluons

Bearing in mind DGM mechanism, the parton-parton cross-sections to calculate $\sigma_{QCD}(s)$ are given by

$$\frac{d\hat{\sigma}}{d\hat{t}}(gg \to gg) = \frac{9\pi\bar{\alpha}_s^2}{2\hat{s}^2} \left(3 - \frac{\hat{t}\hat{u}}{\hat{s}^2} - \frac{\hat{s}\hat{u}}{\hat{t}^2} - \frac{\hat{t}\hat{s}}{\hat{u}^2}\right)$$
$$\frac{d\hat{\sigma}}{d\hat{t}}(qg \to qg) = \frac{\pi\bar{\alpha}_s^2}{\hat{s}^2} \left(\hat{s}^2 + \hat{u}^2\right) \left(\frac{1}{\hat{t}^2} - \frac{4}{9\hat{s}\hat{u}}\right)$$

$$\frac{d\hat{\sigma}}{d\hat{t}}(gg \to \bar{q}q) = \frac{3\pi\bar{\alpha}_s^2}{8\hat{s}^2} \left(\hat{t}^2 + \hat{u}^2\right) \left(\frac{4}{9\hat{t}\hat{u}} - \frac{1}{\hat{s}^2}\right)$$

- \Rightarrow at large enough Q^2 these expressions reproduce their pQCD counterparts
- for gluon-gluon process: $\hat{s} + \hat{t} + \hat{u} = 4M_g^2(Q^2)$, whilst for quark-gluon and gluon fusion: $\hat{s} + \hat{t} + \hat{u} = 2M_g^2(Q^2) + 2M_q^2(Q^2)$

$$M_q^2(Q^2) = {m_q^2 \over Q^2 + m_q^2} \; \Rightarrow \; {
m rapidly \; decreases \; with \; increasing \; } Q$$

Results so far: Monopole

	CTEQ6L	CTEQ6L1	MSTW	
ν_1 [GeV]	$\boldsymbol{1.712 \pm 0.541}$	$\boldsymbol{1.980 \pm 0.745}$	$\textbf{1.524} \pm \textbf{0.769}$	
ν_2 [GeV]	$(3.376\pm1.314)\times10^{-2}$	$(5.151\pm1.627)\times10^{-2}$	$(9.536\pm8.688)\times10^{-3}$	
$A' [GeV^{-1}]$	125.3 ± 14.7	$\textbf{107.3} \pm \textbf{9.0}$	107.2 ± 13.6	
$B' \; [GeV^{-1}]$	42.96 ± 24.91	28.73 ± 14.78	$\textbf{30.54} \pm \textbf{16.20}$	
C' [GeV $^{-1}$]	$\boldsymbol{1.982 \pm 0.682}$	$\boldsymbol{1.217 \pm 0.402}$	1.186 ± 0.466	
γ	0.757 ± 0.189	0.698 ± 0.212	$\textbf{0.644} \pm \textbf{0.250}$	
μ_{soft}^+ [GeV]	0.777 ± 0.176	0.407 ± 0.266	$\textbf{0.475} \pm \textbf{0.300}$	
$D' [GeV^{-1}]$	23.78 ± 1.97	21.37 ± 2.67	21.92 ± 2.83	
χ^2/dof	1.060	1.063	1.049	

Total cross-section for pp (\bullet) and $\bar{p}p$ (\circ) .

 ${\it Ratio~of~the~real~to~imaginary~part~of~the~forward~scattering~amplitude~for~pp.}$

Results so far: Dipole

	CTEQ6L	CTEQ6L1	MSTW
ν_1 [GeV]	2.355 ± 0.620	2.770 ± 0.865	2.267 ± 0.845
ν_2 [GeV]	$(5.110\pm4.203)\times10^{-2}$	$(7.860\pm5.444)\times10^{-2}$	$(3.106\pm2.920)\times10^{-2}$
$A' \; [GeV^{-1}]$	128.9 ± 13.9	108.9 ± 8.6	108.5 ± 11.5
B' [GeV $^{-1}$]	46.73 ± 26.13	30.19 ± 15.78	31.63 ± 16.16
C' [GeV $^{-1}$]	2.103 ± 0.669	$\boldsymbol{1.260 \pm 0.437}$	$\boldsymbol{1.230 \pm 0.467}$
γ	0.780 ± 0.170	$\boldsymbol{0.719 \pm 0.200}$	$\textbf{0.660} \pm \textbf{0.227}$
$\mu_{\it soft}^+$ [GeV]	$\textbf{0.821} \pm \textbf{0.150}$	$\textbf{0.457} \pm \textbf{0.209}$	$\textbf{0.506} \pm \textbf{0.236}$
D' [GeV $^{-1}$]	23.96 ± 1.92	21.73 ± 2.26	22.14 ± 2.38
χ^2/dof	1.064	1.062	1.047

Total cross-section for pp (\bullet) and $\bar{p}p$ (\circ) .

 ${\it Ratio~of~the~real~to~imaginary~part~of~the~forward~scattering~amplitude~for~pp.}$

	\sqrt{s} [TeV]	σ_{tot} [mb]		ρ	
		monopole	dipole	monopole	dipole
CTEQ6L	8.0	$100.9^{+8.6}_{-7.3}$	$101.0^{+8.6}_{-7.3}$	$0.115^{+0.009}_{-0.008}$	$0.106^{+0.009}_{-0.007}$
	13.0	$111.5^{+9.7}_{-8.4}$	$111.7^{+9.7}_{-8.4}$	$0.110^{+0.010}_{-0.008}$	$0.101^{+0.009}_{-0.008}$
	14.0	$113.2^{+9.9}_{-8.6}$	$113.5^{+9.9}_{-8.6}$	$0.110^{+0.010}_{-0.008}$	$0.100^{+0.009}_{-0.008}$
	57.0	$152.5^{+15.4}_{-14.7}$	$154.1^{+15.6}_{-14.9}$	$0.097^{+0.010}_{-0.010}$	$0.088^{+0.009}_{-0.009}$
	95.0	$170.3^{+17.2}_{-16.5}$	$172.9^{+17.5}_{-16.8}$	$0.092^{+0.010}_{-0.010}$	$0.083^{+0.009}_{-0.009}$
CTEQ6L1	8.0	$101.1^{+8.6}_{-7.3}$	$101.2^{+8.6}_{-7.3}$	$0.134^{+0.012}_{-0.009}$	$0.124^{+0.011}_{-0.009}$
	13.0	$112.4^{+9.8}_{-8.5}$	$112.9^{+9.8}_{-8.5}$	$0.131^{+0.012}_{-0.010}$	$0.120^{+0.011}_{-0.009}$
	14.0	$114.2^{+10.0}_{-8.7}$	$114.9^{+10.0}_{-8.7}$	$0.130^{+0.012}_{-0.010}$	$0.119^{+0.011}_{-0.009}$
	57.0	$159.3^{+16.1}_{-15.4}$	$163.7^{+16.5}_{-15.8}$	$0.117^{+0.012}_{-0.012}$	$0.106^{+0.011}_{-0.011}$
	95.0	$181.5^{+18.3}_{-17.6}$	$188.9^{+19.0}_{-18.4}$	$0.112^{+0.012}_{-0.012}$	$0.101^{+0.011}_{-0.011} \\$
MSTW	8.0	$101.3_{-7.3}^{+8.6}$	$101.3_{-7.3}^{+8.7}$	$0.142^{+0.013}_{-0.010}$	$0.131^{+0.012}_{-0.009}$
	13.0	$113.3^{+9.9}_{-8.5}$	$113.6^{+9.9}_{-8.5}$	$0.139^{+0.012}_{-0.011}$	$0.128^{+0.011}_{-0.010}$
	14.0	$115.4^{+10.1}_{-8.7}$	$115.7^{+10.1}_{-8.8}$	$0.139^{+0.013}_{-0.011}$	$0.128^{+0.012}_{-0.010}$
	57.0	$162.1^{+16.4}_{-15.6}$	$164.7^{+16.6}_{-15.9}$	$0.127^{+0.013}_{-0.013}$	$0.116^{+0.012}_{-0.011}$
	95.0	$183.0^{+18.5}_{-17.8}$	$187.3^{+18.9}_{-18.2}$	$0.123^{+0.013}_{-0.013}$	$0.112^{+0.012}_{-0.012}$

Table: Predictions for the forward scattering quantities $\sigma^{pp,\bar{p}p}_{tot}$ and $\rho^{pp,\bar{p}p}$.

TOTEM, AUGER and Telescope Array (TA) results compared with theoretical expectations obtained using CTEQ6L (solid curve), CTEQ6L1 (dashed curve) and MSTW (dotted curve) parton distribution functions.

- The signature factor
 - "the complete expression" for the signature $\eta(t)$
 - within the attempt to cover the whole t-domain

Perspectives: On RG-inspired model

The signature factor

- "the complete expression" for the signature $\eta(t)$
- within the attempt to cover the whole t-domain

Derivative dispersion relations

- to neglect the real part of the Born-level amplitude
- to properly find its correct analytical form by means of a DDR

$$Re A_B(s, t) := DDR [Im A_B(s, t)]$$

Perspectives: On RG-inspired model

The signature factor

- "the complete expression" for the signature $\eta(t)$
- within the attempt to cover the whole t-domain

Derivative dispersion relations

- to neglect the real part of the Born-level amplitude
- to properly find its correct analytical form by means of a DDR

$$\operatorname{Re} A_B(s,t) := \operatorname{DDR} [\operatorname{Im} A_B(s,t)]$$

- ► High-energy ATLAS data (not mentioned in the text)
 - to study the constraints imposed by ATLAS in the region of high energies

- The functional form of the DGM
 - log- and power-like behaviour
 - <u>different</u> infrared mass scale m_g

- The functional form of the DGM
 - log- and power-like behaviour
 - different infrared mass scale mg
- Prescription
 - to use the *original* DGM prescription

$$\Gamma(s,b) = \left(1 - \mathrm{e}^{-\chi(s,b)}
ight)
ightarrow \left(1 - \mathrm{e}^{i\chi(s,b)}
ight)$$

- The functional form of the DGM
 - log- and power-like behaviour
 - <u>different</u> infrared mass scale m_g
- Prescription
 - to use the *original* DGM prescription

$$\Gamma(s,b) = \left(1 - \mathrm{e}^{-\chi(s,b)}
ight)
ightarrow \left(1 - \mathrm{e}^{i\chi(s,b)}
ight)$$

- Derivative dispersion relations
 - it is difficult to implement IDR

Perspectives: On QCD-inspired model

- The functional form of the DGM
 - log- and power-like behaviour
 - <u>different</u> infrared mass scale m_g
- Prescription
 - to use the *original DGM prescription*

$$\Gamma(s,b) = \left(1 - e^{-\chi(s,b)}\right)
ightarrow \left(1 - e^{i\chi(s,b)}\right)$$

- Derivative dispersion relations
 - it is difficult to implement IDR
- ► Energy dependence
 - double-log-like
 - root-log-like
 - the original log-like

Experimental data

- The functional form of the DGM
 - log- and power-like behaviour
 - different infrared mass scale m_g
- Prescription
 - to use the original DGM prescription

$$\Gamma(s,b) = \left(1 - \mathrm{e}^{-\chi(s,b)}
ight)
ightarrow \left(1 - \mathrm{e}^{i\chi(s,b)}
ight)$$

- Derivative dispersion relations
 - it is difficult to implement IDR
- ► Energy dependence
 - double-log-like
 - root-log-like
 - the original log-like

- Experimental data
- Form factors (not mentioned in the text)

Articles published in scientific journals

- C.A.S. Bahia, M. Broilo and E.G.S. Luna, Nonperturbative QCD effects in forward scattering at the LHC, Phys.Rev.D92 (2015) no.7 074039. DOI: 10.1103/PhysRevD.92.074039.
- C.A.S. Bahia, M. Broilo and E.G.S. Luna, Energy-dependent dipole form factor in a QCD-inspired model, J.Phys.Conf.Ser. 706 (2016) no.5 052006.
 - DOI: 10.1088/1742-6596/706/5/052006.
- C.A.S. Bahia, M. Broilo and E.G.S. Luna, Regge phenomenology at LHC energies, Int.J.Mod.Phys. Conf.Ser. vol.45 (2017) 1760064.
 DOI: 10.1142/S2010194517600643.
- 4. M. Broilo and E.G.S. Luna, The soft Pomeron and the LHC data, (to be submitted to Physical Review D)

Back up

Mini-introduction 67

Eikonal formalism

 If, however, the profile function is written according to Durand & Pi prescription

$$\Gamma(s,b) = 1 - e^{-\chi(s,b)}$$

Total cross-section

$$\sigma_{\rm tot}(s) = 4\pi \int_0^\infty db \, b \left[1 - {\rm e}^{-\chi_{R}} \cos \chi_{I}\right] = \sigma_{\rm el} + \sigma_{\rm in}$$

ρ-parameter

$$\rho(s) = -\frac{\int_0^\infty db \, b \, e^{-\chi_R} \sin \chi_I}{\int_0^\infty db \, b \, \left(1 - e^{-\chi_R} \cos \chi_I\right)}$$

Regge theory: Convergence domain

- The continuation to complex angular momenta naturally emerges
- At first glance

$$A(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1)\,A_\ell(t)P_\ell(z)$$

- gives the *t*-channel correct scattering representation
- physical *t*-channel domain: $t \ge 4m^2$ and $-1 \le z \le 1$
- but cannot be used in the limit of high energies as the crossing symmetric amplitude
- ▶ The poles are in the $A_{\ell}(t)$, but the energy-dependence appears in the $P_{\ell}(z)$
- Asymptotically at $s \to \infty$ the series diverges

Regge theory: Convergence domain

▶ In the case of real values of ℓ

$$\lim_{\ell\to\infty} P_{\ell}(\cos\vartheta) = \mathcal{O}(e^{\ell|\operatorname{Im}\vartheta|})$$

▶ partial-wave series converges only if $A_{\ell}(t) e^{\ell |\operatorname{Im} \vartheta|} \leq 1$

$$\lim_{\ell o \infty} A_\ell(t) \sim e^{-\ell \eta(t)}$$

- the convergence domain for the partial-wave amplitude for $|\operatorname{Im} \vartheta| \leq \eta(t)$
- Converge in a domain slightly larger than the physical one, however cannot be continued to regions where s becomes arbitrarily large

Regge theory: Convergence domain

▶ In the case of purely imaginary values of ℓ

$$\lim_{\ell \to i\infty} P_{\ell}(\cos \vartheta) = \mathcal{O}(e^{|\ell||\operatorname{Re} \vartheta|})$$

lacktriangle partial-wave series converges only if $A_\ell(t)\,e^{|\ell||{\sf Re}\,\vartheta|}\leq 1$

$$\lim_{\ell o i\infty} A_{|\ell|}(t) \sim e^{-|\ell|\delta(t)}$$

- the convergence domain for the partial-wave amplitude for $|\mathsf{Re}\,artheta| \leq \delta(t)$
- ▶ It has an *open domain*, and therefore *s* can become asymptotically large

By applying the Regge theory into relativistic scattering - by means of the Froissart-Gribov projection:

$$A_{\ell}(t) = \frac{1}{\pi} \int_{z_{0}}^{+\infty} dz_{t} D_{s}(s(z_{t}, t), t) Q_{\ell}(z_{t}) + \frac{1}{\pi} \int_{-z_{0}}^{-\infty} dz_{t} D_{u}(u(z_{t}, t), t) Q_{\ell}(z_{t})$$

The scattering amplitude is written as the Watson-Sommerfeld transform of the partial-wave series:

$$A(z_{t},t) = - \pi \sum_{\xi=\pm 1} \sum_{i_{\xi}} \frac{1 + \xi e^{-i\pi\ell}}{2} \gamma_{i_{\xi}}(t) (2\alpha_{i_{\xi}}(t) + 1) \frac{P_{\alpha_{i_{\xi}}}(-z_{t})}{\sin \pi \alpha_{i_{\xi}}(t)} + \frac{i}{2} \sum_{\xi=\pm 1} \int_{c-i\infty}^{c+i\infty} d\ell \frac{1 + \xi e^{-i\pi\ell}}{2} (2\ell + 1) A(\ell, t) \frac{P_{\ell}(-z_{t})}{\sin \pi \ell} d\ell$$

▶ Leading pole \rightarrow **Pomeron** $\xi = +1$

$$A(s,t) \underset{s \to \infty}{\sim} -\gamma_i(t) \frac{1 + \xi e^{-i\pi\alpha(t)}}{\sin \pi\alpha(t)} s^{\alpha(t)}$$

- New quantum number, the signature $\xi = \pm 1$
 - Then $A_{\ell}(t)$ can be analytically continued to complex ℓ -values by means of the Watson-Sommerfeld transform
- ▶ The dominant contribution in the case of *t*-channel exchange

$$A(s,t) \underset{s \to \infty}{\sim} \sum_{\xi=\pm 1} \sum_{i_{\xi}} -\gamma_{i_{\xi}}(t) \frac{1+\xi e^{-i\pi\alpha_{i_{\xi}}(t)}}{\sin\pi\alpha_{i_{\xi}}(t)} s^{\alpha_{i_{\xi}}(t)}$$

- $-\alpha_{i_{\xi}}$ defines the location of the *i*-th pole \rightarrow each Reggeon contribution $-\gamma_{i_{\xi}}(t)$ stands for the residue function and *phenomenologically* is related to the vertex coupling hadron-Reggeon
- Fundamental result:

of the Watson-Sommerfeld transform

- New quantum number, the signature $\xi=\pm 1$ - Then $A_\ell(t)$ can be analytically continued to complex ℓ -values by means
- ▶ The dominant contribution in the case of *t*-channel exchange

$$A(s,t) \underset{s \to \infty}{\sim} \sum_{\xi=\pm 1} \sum_{i_{\xi}} -\gamma_{i_{\xi}}(t) \frac{1+\xi e^{-i\pi\alpha_{i_{\xi}}(t)}}{\sin\pi\alpha_{i_{\xi}}(t)} s^{\alpha_{i_{\xi}}(t)}$$

- $-\alpha_{i_{\xi}}$ defines the location of the *i*-th pole \rightarrow each Reggeon contribution $-\gamma_{i_{\xi}}(t)$ stands for the residue function and *phenomenologically* is related to the vertex coupling hadron-Reggeon
- ► Fundamental result: the <u>leading complex angular momentum singularity</u> of the partial-wave amplitude in a given channel, determines the <u>asymptotic behaviour</u> of the scattering amplitude in the crossed channels

- New quantum number, the signature $\xi = \pm 1$
 - Then $A_{\ell}(t)$ can be analytically continued to complex ℓ -values by means of the Watson-Sommerfeld transform
- ▶ The dominant contribution in the case of t-channel exchange

$$A(s,t) \underset{s \to \infty}{\sim} \sum_{\xi=\pm 1} \sum_{i_{\xi}} -\gamma_{i_{\xi}}(t) \frac{1+\xi e^{-i\pi\alpha_{i_{\xi}}(t)}}{\sin\pi\alpha_{i_{\xi}}(t)} s^{\alpha_{i_{\xi}}(t)}$$

- $-\alpha_{i_s}$ defines the location of the *i*-th pole \rightarrow each Reggeon contribution $-\gamma_{i_{\varepsilon}}(t)$ stands for the residue function and phenomenologically is related to the vertex coupling hadron-Reggeon
- Regge pole

 Fundamental result: the leading complex angular momentum singularity of the partial-wave amplitude in a given channel, determines the asymptotic behaviour of the scattering amplitude in the crossed channels

Almost the whole story

By applying the Regge theory into relativistic scattering
 by means of the Froissart-Gribov projection:

$$A_{\ell}(t) = \frac{1}{\pi} \int_{z_0}^{+\infty} dz_t \, D_s(s(z_t, t), t) \, Q_{\ell}(z_t) + \frac{1}{\pi} \int_{-z_0}^{-\infty} dz_t \, D_u(u(z_t, t), t) \, Q_{\ell}(z_t)$$

The scattering amplitude is written as the Watson-Sommerfeld transform of the partial-wave series:

$$A(z_{t},t) = - \pi \sum_{\xi=\pm 1} \sum_{i_{\xi}} \frac{1 + \xi e^{-i\pi\ell}}{2} \gamma_{i_{\xi}}(t) (2\alpha_{i_{\xi}}(t) + 1) \frac{P_{\alpha_{i_{\xi}}}(-z_{t})}{\sin \pi \alpha_{i_{\xi}}(t)} + \frac{i}{2} \sum_{\xi=\pm 1} \int_{c-i\infty}^{c+i\infty} d\ell \frac{1 + \xi e^{-i\pi\ell}}{2} (2\ell + 1) A(\ell, t) \frac{P_{\ell}(-z_{t})}{\sin \pi \ell} d\ell$$

Fundamental result:

Almost the whole story

By applying the Regge theory into relativistic scattering
 by means of the Froissart-Gribov projection:

$$A_{\ell}(t) = \frac{1}{\pi} \int_{z_0}^{+\infty} dz_t \, D_s(s(z_t, t), t) \, Q_{\ell}(z_t) + \frac{1}{\pi} \int_{-z_0}^{-\infty} dz_t \, D_u(u(z_t, t), t) \, Q_{\ell}(z_t)$$

The scattering amplitude is written as the Watson-Sommerfeld transform of the partial-wave series:

$$A(z_{t},t) = - \pi \sum_{\xi=\pm 1} \sum_{i_{\xi}} \frac{1 + \xi e^{-i\pi\ell}}{2} \gamma_{i_{\xi}}(t) (2\alpha_{i_{\xi}}(t) + 1) \frac{P_{\alpha_{i_{\xi}}}(-z_{t})}{\sin \pi \alpha_{i_{\xi}}(t)} + \frac{i}{2} \sum_{\xi=\pm 1} \int_{c-i\infty}^{c+i\infty} d\ell \frac{1 + \xi e^{-i\pi\ell}}{2} (2\ell + 1) A(\ell, t) \frac{P_{\ell}(-z_{t})}{\sin \pi \ell} d\ell$$

► Fundamental result: the leading complex angular momentum singularity of the partial-wave amplitude in a given channel, determines the asymptotic behaviour of the scattering amplitude in the crossed channels

Almost the whole story

By applying the Regge theory into relativistic scattering - by means of the Froissart-Gribov projection:

$$A_{\ell}(t) = \frac{1}{\pi} \int_{z_{0}}^{+\infty} dz_{t} D_{s}(s(z_{t}, t), t) Q_{\ell}(z_{t}) + \frac{1}{\pi} \int_{-z_{0}}^{-\infty} dz_{t} D_{u}(u(z_{t}, t), t) Q_{\ell}(z_{t})$$

The scattering amplitude is written as the Watson-Sommerfeld transform of the partial-wave series:

$$A(z_{t}, t) = - \pi \sum_{\xi = \pm 1} \sum_{i_{\xi}} \frac{1 + \xi e^{-i\pi\ell}}{2} \gamma_{i_{\xi}}(t) (2\alpha_{i_{\xi}}(t) + 1) \frac{P_{\alpha_{i_{\xi}}}(-z_{t})}{\sin \pi \alpha_{i_{\xi}}(t)} + \frac{i}{2} \sum_{\xi = \pm 1} \int_{c-i\infty}^{c+i\infty} d\ell \frac{1 + \xi e^{-i\pi\ell}}{2} (2\ell + 1) A(\ell, t) \frac{P_{\ell}(-z_{t})}{\sin \pi \ell} d\ell$$

Regge pole
Fundamental result: the leading complex angular momentum singularity of the partial-wave amplitude in a given channel, determines the asymptotic behaviour of the scattering amplitude in the crossed channels

Phenomenology: Physical observables

(BI)
$$\sigma_{tot}^{pp,\bar{p}p} = 18.382 \, s^{0.0945} + 57.298 \, s^{-0.329} \mp 30.097 \, s^{-0.527}$$

(BII) $\sigma_{tot}^{pp,\bar{p}p} = 18.364 \, s^{0.0945} + 56.986 \, s^{-0.329} \mp 30.097 \, s^{-0.527}$
(BIII) $\sigma_{tot}^{pp,\bar{p}p} = 18.114 \, s^{0.0958} + 56.664 \, s^{-0.323} \mp 30.053 \, s^{-0.526}$
(BI+PP) $\sigma_{tot}^{pp,\bar{p}p} = 18.401 \, s^{0.0945} + 57.298 \, s^{-0.329} \mp 30.097 \, s^{-0.527} - 3.381 \times 10^{-2} \, s^{1.189} \, \mathrm{Im} \left[\frac{i}{\ln s - i \, \frac{\pi}{2}} \right]$

QCD: Effective coupling

- Processes contributing to the appearance of divergences
- ▶ field rescaling → redefinition of physical quantities (renormalisation)

$$g_s \rightarrow \alpha_s(\mu) = \frac{g_s^2}{4\pi}$$

renormalisation group equation:

$$\left(-\frac{\partial}{\partial \tau} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s}\right) \mathcal{R}(\mathbf{e}^{\tau}, \alpha_s) = 0$$

 $-\mathcal{R}(e^{\tau}, \alpha_s) = \mathcal{R}(1, \alpha_s(\tau)) = \alpha_s(\tau)$ is solution with boundary condition $\alpha_s(\tau = 0) = \alpha_s(\mu^2) = \alpha_s$

$$\tau = \int_{\alpha_s(0)}^{\alpha_s(\tau^2)} \frac{d\alpha'}{\beta(\alpha')} , \quad \frac{d\alpha_s(\tau)}{d\tau} = \beta(\alpha_s(\tau)) , \quad \frac{d\alpha_s(\tau)}{d\alpha_s} = \frac{\beta(\alpha_s(\tau))}{\beta(\alpha_s)}$$

 \triangleright scale-dependence is in α_s

QIM formalism

- In this approach the energy dependence of the $\sigma_{tot}(s)$ is obtained from the QCD using an eikonal formulation
- More specifically: behaviour of the forward observables $\sigma_{tot}(s)$ and $\rho(s)$ derived from the QCD parton model
- ⇒ standard QCD cross-sections for elementary parton-parton processes
- ⇒ updated sets of quark and gluon distribution functions
- ⇒ physically-motivated cutoffs which restrict the parton-level processes to semi-hard (SH) ones
- ► SH processes arise from hard scatterings of partons carrying very small fractions of the momenta of their parent hadrons
- \Rightarrow appearance of jets with $E_T \ll \sqrt{s}$

QIM formalism

- In this picture the scattering of hadrons is an incoherent summation over all possible constituent scattering
- \Rightarrow increase of $\sigma_{tot}(s)$ is directly associated with parton-parton semi-hard scatterings
- \Rightarrow The high-energy dependence of $\sigma_{tot}(s)$ driven mainly by processes involving the gluon contribution
- The nonperturbative character of the QCD is also manifest at the elementary level...
- ⇒ At high energies the soft and the semi-hard components of the scattering amplitude are closely related

QIM formalism

- ▶ Task of describing $\sigma_{tot}(s)$ and $\rho(s)$ bringing up information about the infrared properties of QCD
- ⇒ can be properly addressed by considering the possibility that the nonperturbative dynamics of QCD generate an effective gluon mass
- ⇒ The dynamical gluon mass is intrinsically related to an infrared finite strong coupling constant
- ⇒ its existence is strongly supported by recent QCD lattice simulations as well as by phenomenological results
- Note that this backgorund in mind, our main purpose is to explore the nonperturbative dynamics of QCD in order to describe the total cross-section and the ρ -parameter.

QIM formalism: The dynamical gluon mass model

▶ In the eikonal representation:

$$\sigma_{tot}(s) = 4\pi \int_{\mathbf{0}}^{\infty} b \, db \left[1 - e^{-\chi_{\mathbf{R}}(s,b)} \cos \chi_{\mathbf{I}}(s,b) \right]$$

$$\sigma_{inel}(s) = \sigma_{tot}(s) - \sigma_{el}(s) = 2\pi \int_{0}^{\infty} b \, db \left[1 - e^{-2\chi_{R}(s,b)}\right]$$

$$\rho(s) = \frac{-\int_0^\infty b \, db \, e^{-\chi_{\mathcal{R}}(s,b)} \sin \chi_I(s,b)}{\int_0^\infty b \, db \left[1 - e^{-\chi_{\mathcal{R}}(s,b)} \cos \chi_I(s,b)\right]}$$

 $-\chi(s,b) = \chi_R(s,b) + i\chi_I(s,b)$ is the (complex) eikonal function

Results so far

- ▶ We carried out a global fit to high-energy forward pp and $\bar{p}p$ scattering data above $\sqrt{s} = 10$ GeV
- ⇒ we have included the recent data at LHC from the TOTEM Collaboration
- \Rightarrow we used a χ^2 fitting procedure as our statistical indicator, assuming an interval $\chi^2 \chi^2_{min}$, in the case of normal errors, to the projection of the χ^2 hypersurface containing 90% of probability
- ⇒ we have investigated the effects of some updated sets of parton distributions on the high-energy cross-sections, namely CTEQ6L, CTEQ6L1 and MSTW

The $\chi^2/{\rm dof}$ as a function of the cutoff Q_{min} for the monopole (\circ) and the dipole (\bullet) semi-hard form factor.

Results: Partial conclusions on QIM

- The model introduces a natural IR cutoff
- ▶ The dynamical gluon mass M_g and the strong coupling $\bar{\alpha}_s$ are physically well motivated
- Recent lattice QCD simulations → clear evidence for the dynamical generation of a gluon mass
- The frozen coupling ᾱs provides an useful phenomenological tool to the study of processes where a purely perturbative QCD method is inadequate
- ► The main contribution is that with our model we were able to study in details the $\sigma_{tot}(s)$ and $\rho(s)$.