MA319 — 偏微分方程

Assignment 11

Instructor: 许德良

Author: 刘逸灏 (515370910207)

— SJTU (Fall 2019)

习题 3.3/2

证明格林函数的对称性: $G(M_1, M_2) = G(M_2, M_1)$.

设区域 Ω 的边界为 Γ , $K_1 = B(M_1, r)$, Γ_1 为 K_1 的边界, $K_2 = B(M_2, r)$, Γ_2 为 K_2 的边界, $u = G(M, M_2)$, $v = G(M, M_2)$, 根据格林函数的性质 1, 2 可知

$$\Delta u = \Delta v = 0$$
, $M \neq M_1$, $M \neq M_2$,

$$u = v = 0$$
. $M \in \Gamma$.

根据格林第二公式可得

$$\iiint_{\Omega-K_1-K_2} (u\Delta v - v\Delta u) d\Omega = \iint_{\Gamma+\Gamma_1+\Gamma_2} \left(u\frac{\partial v}{\partial \mathbf{n}} - v\frac{\partial u}{\partial \mathbf{n}} \right) dS.$$

在 $\Omega - K_1 - K_2$ 中满足 $\Delta u = \Delta v = 0$, 在 Γ 中满足 u = v = 0, 故

$$\iint\limits_{\Gamma_1+\Gamma_2} \left(u \frac{\partial v}{\partial \mathbf{n}} - v \frac{\partial u}{\partial \mathbf{n}}\right) dS = \iint\limits_{\Gamma_1+\Gamma_2} \left[G(M,M_1) \frac{\partial G(M,M_2)}{\partial \mathbf{n}} - G(M,M_2) \frac{\partial G(M,M_1)}{\partial \mathbf{n}} \right] dS = 0.$$

$$\left| \iint\limits_{\Gamma_1} G(M, M_1) \frac{\partial G(M, M_2)}{\partial \mathbf{n}} dS \right| \leqslant \sup\limits_{\Gamma_1} |G(M, M_1)| \sup\limits_{\Gamma_1} \left| \frac{\partial G(M, M_2)}{\partial \mathbf{n}} \right| \iint\limits_{\Gamma_1} dS.$$

当 $r \to 0$ 时,根据格林函数的性质 3 可知 $G(M, M_1) < \frac{1}{4\pi r}$,且由 $G(M, M_2)$ 在 Γ_1 上调和可知 $\frac{\partial G(M, M_2)}{\partial \mathbf{n}}$ 有界,故

$$\lim_{r\to 0} \left| \iint\limits_{\Gamma_1} G(M, M_1) \frac{\partial G(M, M_2)}{\partial \mathbf{n}} dS \right| \leqslant \lim_{r\to 0} \left(C \cdot \frac{1}{4\pi r} \cdot 4\pi r^2 \right) = \lim_{r\to 0} Cr = 0.$$

$$\iint_{\Gamma_1} G(M, M_2) \frac{\partial G(M, M_1)}{\partial \mathbf{n}} dS = \iint_{\Gamma_1} G(M, M_2) \left[\frac{\partial}{\partial \mathbf{n}} \frac{1}{4\pi r_{M_1 M}} - \frac{\partial g(M, M_1)}{\partial \mathbf{n}} \right] dS.$$

当 $r \to 0$ 时,由 $g(M, M_1)$ 在 Γ_1 上调和可知 $\frac{\partial g(M, M_1)}{\partial \mathbf{n}}$ 有界,故

$$\lim_{r\to 0} \left| \iint \frac{\partial g(M, M_1)}{\partial \mathbf{n}} dS \right| \leqslant \lim_{r\to 0} \left(\sup_{\Gamma_1} \left| \frac{\partial g(M, M_2)}{\partial \mathbf{n}} \right| \iint_{\Gamma_1} dS \right) = \lim_{r\to 0} (C \cdot 4\pi r^2) = 0,$$

$$\iint\limits_{\Gamma_1} \frac{\partial}{\partial \mathbf{n}} \frac{1}{4\pi r_{M_1 M}} dS = \frac{1}{4\pi r^2} \cdot 4\pi r^2 = 1,$$

$$\lim\limits_{r \to 0} \iint\limits_{\Gamma_1} G(M, M_2) \frac{\partial G(M, M_1)}{\partial \mathbf{n}} dS = G(M_1, M_2) \lim\limits_{r \to 0} \iint\limits_{\Gamma_1} \frac{\partial G(M, M_1)}{\partial \mathbf{n}} dS = G(M_1, M_2).$$

综上并根据对称性可得,

$$\iint\limits_{\Gamma_1} \left[G(M, M_1) \frac{\partial G(M, M_2)}{\partial \mathbf{n}} - G(M, M_2) \frac{\partial G(M, M_1)}{\partial \mathbf{n}} \right] dS = -G(M_1, M_2),$$

$$\iint\limits_{\Gamma_2} \left[G(M, M_1) \frac{\partial G(M, M_2)}{\partial \mathbf{n}} - G(M, M_2) \frac{\partial G(M, M_1)}{\partial \mathbf{n}} \right] dS = G(M_2, M_1).$$

故

$$G(M_1, M_2) = G(M_2, M_1).$$

习题 3.3/5

求半圆区域上狄利克雷问题的格林函数

圆的格林函数为

$$G(M,M_0) = \frac{1}{2\pi} \left(\ln \frac{1}{r_{M_0M}} - \ln \frac{R}{\rho_0} \frac{1}{r_{M_1M}} \right) = -\frac{1}{4\pi} \ln R^2 \frac{\rho_0^2 + \rho^2 - 2\rho_0 \rho \cos(\theta - \theta_0)}{R^4 + \rho_0 \rho^2 - 2R^2 \rho_1 \rho \cos(\theta - \theta_0)},$$

其中 R 为圆的半径, $\rho=r_{OM}$, $\rho_0=r_{OM_1}$, θ 为 OM 的幅角, θ_0 为 OM_0 的幅角. 现只需取镜像点 M_0' , 使得 $\rho_0'=\rho_0$, $\theta_0'=-\theta_0$, 即可得半圆的格林函数为

$$G(M, M_0) - G(M, M_0') = \frac{1}{4\pi} \left[\ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta + \theta_0)}{R^4 + \rho_0\rho^2 - 2R^2\rho_1\rho\cos(\theta + \theta_0)} - \ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta - \theta_0)}{R^4 + \rho_0\rho^2 - 2R^2\rho_1\rho\cos(\theta - \theta_0)} \right].$$

习题 3.3/9

试求一函数 u, 使其在半径为 a 的圆内部是调和的, 而且在圆周 C 上取下列的值:

- (1) $u|_C = A\cos\varphi$,
- (2) $u|_{\mathcal{C}} = A + B \sin \varphi$.

其中 A, B 都是常数

(1)

根据习题 3.1/5 可知 $Cr\cos\varphi$ 为调和函数, 代入边界条件可得

$$u = \frac{A}{a}r\cos\varphi$$
.

(1)

根据习题 3.1/5 可知 $C_1 + C_2 r \sin \varphi$ 为调和函数, 代入边界条件可得

$$u = A + \frac{B}{a}r\sin\varphi.$$

习题 3.3/10

试用静电源像法导出二维调和方程在半平面上的狄利克雷问题:

$$\Delta u = u_{xx} + u_{yy} = 0, \quad y > 0,$$

$$u|_{y=0}=f(x)$$

的解.

平面的格林函数为

$$G(M, M_0) = \frac{1}{2\pi} \ln \frac{1}{r_{M_0M}} = \frac{1}{4\pi} \ln \frac{1}{(x - x_0)^2 + (y - y_0^2)},$$

其中 M 的坐标为 (x, y), M_0 的坐标为 (x_0, y_0) .

现只需取镜像点 M_0' . 使得 $x_0'=x_0$. $y_0'=-y_0$. 即可得半平面的格林函数为

$$G(M, M_0) - G(M, M'_0) = \frac{1}{4\pi} \ln \frac{(x - x_0)^2 + (y + y_0)^2}{(x - x_0)^2 + (y - y_0)^2}.$$

对于半平面 y>0 来讲,直线 y=0 的外法线方向是与 y 轴相反的方向,即 $\frac{\partial}{\partial \mathbf{n}}=-\frac{\partial}{\partial y}$. 此外,对于半平面的情形,只要对调和函数 u(x,y) 加上在无穷远处的条件:

$$u(M) = O\left(\ln \frac{1}{r_{OM}}\right), \quad \frac{\partial u}{\partial \mathbf{n}} = O\left(\frac{1}{r_{OM}}\right) \quad (r_{OM} \to \infty),$$

则仍可证明该公式成立:

$$u(M_0) = -\frac{1}{2\pi} \int_{\Gamma} \left[u(M) \frac{\partial}{\partial \mathbf{n}} \left(\ln \frac{1}{r_{M_0 M}} \right) - \ln \frac{1}{r_{M_0 M}} \frac{\partial u(M)}{\partial \mathbf{n}} \right] dS_M.$$

故狄利克雷方程的求解式也成立

$$u(x_0, y_0) = -\int_{\Gamma} f(x) \frac{\partial G(M, M_0)}{\partial \mathbf{n}} dS_M$$

$$= \int_{-\infty}^{\infty} f(x) \frac{\partial}{\partial y} \frac{1}{4\pi} \ln \frac{(x - x_0)^2 + (y + y_0)^2}{(x - x_0)^2 + (y - y_0)^2} \Big|_{y=0} dx$$

$$= \frac{y_0}{\pi} \int_{-\infty}^{\infty} f(x) \frac{(x - x_0^2) - y^2 + y_0^2}{[(x - x_0)^2 + (y + y_0)^2][(x - x_0)^2 + (y - y_0)^2]} \Big|_{y=0} dx$$

$$= \frac{y_0}{\pi} \int_{-\infty}^{\infty} \frac{f(x)}{(x - x_0)^2 + y_0^2} dx.$$

习题 3.3/14

证明处处满足平均值公式的连续函数一定是调和函数。

设连续函数 u 在 Ω 内处处满足平均值公式, 设 $K=B(M_0,r)\subseteq\Omega$, 其边界为 Γ , 则在 K 内可以有狄利克雷问题

$$\Delta v = 0$$
, $v|_{\Gamma} = u|_{\Gamma}$.

易知 v 有唯一解, 且 v 是 K 内的调和函数, 故 u-v 在 K 内处处满足平均值公式, 也成立极值原理. 由于 $(u-v)|_{\Gamma}=0$, u-v 在 K 内的最大值和最小值都为 0, 故 u=v. 由 v 是调和函数和 M_0 的任意性可知 u 是调和函数.

例题

(1)

求区域 $\Omega = \{x^2 + y^2 \leq 1, x \geq 0, y \geq 0\}$ 的格林函数

由习题 3.3/5 可知上半单位圆的格林函数为

$$G(M,M_0) = rac{1}{4\pi} \left[\ln rac{
ho_0^2 +
ho^2 - 2
ho_0
ho\cos(heta + heta_0)}{1 +
ho_0
ho^2 - 2
ho_1
ho\cos(heta + heta_0)} - \ln rac{
ho_0^2 +
ho^2 - 2
ho_0
ho\cos(heta - heta_0)}{1 +
ho_0
ho^2 - 2
ho_1
ho\cos(heta - heta_0)}
ight],$$

其中 $\rho = r_{OM}$, $\rho_0 = r_{OM_1}$, θ 为 OM 的幅角, θ_0 为 OM_0 的幅角.

现只需取镜像点 M_0' , 使得 $ho_0'=
ho_0$, $heta_0'=\pi- heta_0$, 即可得右上四分之一单位圆的格林函数为

$$\begin{split} G(M,M_0) - G(M,M_0') &= \frac{1}{4\pi} \left[\ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta + \theta_0)}{1 + \rho_0\rho^2 - 2\rho_1\rho\cos(\theta + \theta_0)} - \ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta - \theta_0)}{1 + \rho_0\rho^2 - 2\rho_1\rho\cos(\theta - \theta_0)} \right] \\ &- \frac{1}{4\pi} \left[\ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta + \pi - \theta_0)}{1 + \rho_0\rho^2 - 2\rho_1\rho\cos(\theta + \pi - \theta_0)} - \ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta - \pi + \theta_0)}{1 + \rho_0\rho^2 - 2\rho_1\rho\cos(\theta - \pi + \theta_0)} \right] \\ &= \frac{1}{4\pi} \left[\ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta + \theta_0)}{1 + \rho_0\rho^2 - 2\rho_1\rho\cos(\theta + \theta_0)} - \ln \frac{\rho_0^2 + \rho^2 - 2\rho_0\rho\cos(\theta - \theta_0)}{1 + \rho_0\rho^2 - 2\rho_1\rho\cos(\theta - \theta_0)} \right. \\ &- \ln \frac{\rho_0^2 + \rho^2 + 2\rho_0\rho\cos(\theta - \theta_0)}{1 + \rho_0\rho^2 + 2\rho_1\rho\cos(\theta - \theta_0)} + \ln \frac{\rho_0^2 + \rho^2 + 2\rho_0\rho\cos(\theta + \theta_0)}{1 + \rho_0\rho^2 + 2\rho_1\rho\cos(\theta + \theta_0)} \right]. \end{split}$$

(2)

$$\begin{cases} \Delta_2 u = 0, \quad 0 \leqslant r \leqslant R, \quad 0 < \theta \leqslant 2\pi \\ u|_{r=R} = \cos^2 \theta + 1. \end{cases}$$

$$\cos^2\theta + 1 = \frac{1}{2}\cos 2\theta + \frac{3}{2}$$

根据习题 3.1/5 可知 $C_1 + C_2 r^2 \cos 2\theta$ 为调和函数, 代入边界条件可得

$$u=\frac{3}{2}+\frac{1}{2R^2}r^2\cos 2\theta.$$

4