成都信息工程大学考试试卷

2021——2022 学年第 1 学期

课程名称:模拟电子技术 A 使用班级	级: 电子、通信、控制工程学院 20 级
试卷形式: 开卷□闭卷√	
一、单项选择题(每题 2 分, 共 30 分)	
1、以下选项中具有"开启电压"参数的场效应管类型有()。	
A、结型管 B、增强	型 MOS 管
C、结型管和耗尽型 MOS 管 D、N 沟道场效应管	
2、理想二极管在桥式整流电路中,负载为电阻时,承受的最大反向电压是()。	
A、等于√2 U ₂	B、小于 √2 U ₂
C、大于 $\sqrt{2}$ U ₂ ,小于 2 $\sqrt{2}$ U ₂	D、大于 2√2 U ₂
3、直接耦合放大电路存在零点漂移的原因是()	
A、电阻阻值有误差 B、	晶体管参数的分散性
C、晶体管参数受温度影响 D、	电源电压不稳定
4、放大电路的电压放大倍数为80dB,相当于把输入信号放大了()倍。	
A, 80 B,	100
C, 1000 D,	10000
5、在集成电路中,采用差分放大电路的原因是()	
A、克服温漂 B、	提高输入电阻
C、稳定放大倍数 D、	减小输出电阻
6、集成运放工作在非线性区时()	
A、既存在虚短、又存在虚断 B、	、存在虚短、不存在虚断
C、不存在虚短、存在虚断 D、	、既不存在虚短、又不存在虚断

姓名

竺

密封线内

班级

近洲

7、放大电路采用负反馈后,下列说法不正确的是(

A、放大能力提高

B、非线性失真减小

C、通频带变宽

- D、放大能力降低
- 8、要得到一个由电流控制的电流源,可采用()负反馈。
- A、电流串联负反馈

B、电压并联负反馈

C、电流并联负反馈

- D、电压串联负反馈
- 9、若将积分运算电路中的反馈电容和反相端电阻位置互换,则变换成了()电路的 电路形式。
- A、微分运算

B、反相比例

C、对数运算

- D、开方运算
- 10、将标准正弦信号送入到以下()电路中,可得到与其同频同相的方波信号。
- A、同相比例

- B、过零比较
- C、迟滞电压比较(正负门限值对称) D、积分运算
- 11、要使 RC 文氏桥正弦振荡电路起振,则要求组成文氏桥振荡器的基本放大电路的放大 倍数应为()。
- $A \setminus |A| = 2$

B, |A| > 2

C, |A| > 3

- D, |A| = 3
- 12、如图 1 所示, 若参数选择正确, 该电路的输出波形为()。

A、正弦波

B、方波

C、三角波

- D、锯齿波
- 13、 非工作频率的振荡称为寄生振荡。破坏(抑制)寄生振荡的方法为()。

- B、破坏起振的相位条件
- C、同时破坏起振的振幅及相位条件 D、以上三种方法都可以
- 14、在以下几类功放电路中,导通角最小的为(
- A、A类

B、B类

C、AB 类

D、C类

15、双电源互补功放电路,当()时,其功率管的管耗达到最大。

A,
$$U_{\text{om}} = V_{\text{CC}}$$

B,
$$U_{\text{om}}=0$$

$$C \cdot U_{\text{om}} = \frac{2V_{\text{CC}}}{\pi}$$

D,
$$U_{\text{om}}=0.5V_{\text{CC}}$$

二、二极管分析与计算题(6分)

判断图 2 所示电路二极管 VD 是导通还是截止,并计算电压 U_{ab} 。设图中 VD 为理想二 极管。

图 2

三、场效应管电路分析(4分)

电路如图 3 所示,已知: $g_m=1$ ms, $V_{DD}=15$ V, $R_{GI}=1$ M Ω , $R_{G2}=1$ M Ω ,

 R_S =2KΩ, R_D =6KΩ, R_L =6KΩ。试求: A_u 、 R_i 、 R_o 的值。

继

倒

四、三极管放大电路分析(9分)

电路如图 4 所示,已知: β =100, $V_{\rm CC}$ =12V, $R_{\rm bl}$ =100K Ω , $R_{\rm b2}$ =20K Ω , $R_{\rm C}$ =6.2K Ω , $R_{\rm L}$ =6.2K Ω , $R_{\rm el}$ =200 Ω , $R_{\rm e2}$ =1K Ω , $U_{\rm BE}$ =0.66V, $r_{\rm bb}$ =200 Ω 。

- 1、画出微变等效电路;
- 2、试求: 电压放大倍数 $A_{\rm u}$ 、输入电阻 $R_{\rm i}$ 、输出电阻 $R_{\rm o}$

五、差分放大电路分析(6分)

图 5 所示差分放大电路,(a)、(b)两电路对应元器件参数相同,指出电路图(a)、(b)输入、输出端的接法,并说明两个电路的差模电压放大倍数有何关系。

六、负反馈电路分析(8分)

- 一个多级放大电路如图 6 所示, 欲在电路中引入级间反馈, 请回答下列问题:
 - (1) 若要实现负载电阻变动时,输出电压 u。不变, 且输入阻抗增大, 应引入什么反馈?
 - (2) 要实现(1)问的功能,反馈电阻 R_f 应接在图中 a、b、c、d端中的哪两端?
- (3) 在上两问的基础上,引入反馈后,若电路满足深度负反馈条件,试求该电路电压放大倍数 A_{uf} 的表达式。

线

1

矧

七、集成运算放大电路分析计算(15分)

1、理想集成运放构成的电路如图 7 所示,试回答下列问题:(10 分)

- (1) 试写出 A₁构成的运算电路名称;
- (2) 试分别计算 Uo1与 Uo的值;
- (3) 试指出 A_3 构成的运算电路名称,并求出该运算电路输入电阻 R_i 的值;
- (4) 试分别计算 U_2 与 U_{02} 的值;
- (5) 通过以上分析计算,以及上下两电路的对比,说明 A_1 构成的电路有哪些特点(从放大倍数、输入电阻、输出电阻三方面进行说明)。
- 2、理想集成运放构成的电路如图 8 所示,运放采用单电源+12V 供电,若 uo输出高电平 ——第 5 页/共 7 页——

为 12V, 低电平为 0V。试回答下列问题: (5 分)

- (1) 试指出 A 与外围元件构成的电压比较器的类型,并指明随输入电压由小变大,其输出电平的跃变方向(是由高电平跃变成低电平,还是由低电平跃变成高电平);
 - (2) 试求出该电路的上下门限电压;并分析当 $U_1=1V$ 时,输出是高电平还是低电平?

八、振荡电路的分析与计算(6分)

如图 9 所示振荡电路, 试完成:

图 9

- (1) 如该电路未能起振,应调整哪个元件? 电阻 R7及 R8的作用分别是什么?
- (2)运放 A1 所构成的文氏桥振荡电路,对正常输出的正弦波信号,其反馈网络的反馈系数为多少?
- (3) 输出信号 u₀₂ 的频率为多少? 峰-峰值为多少?

九、功率放大电路分析(6分)

在图 10 所示电路中,已知 $V_{\rm CC}$ =24V, $V_{\rm EE}$ = -24V, $R_{\rm L}$ =8 Ω , T_1 和 T_2 管的饱和压降 $\left|U_{\rm CES}\right|$ =4V。 试完成以下问题:

(1) D_1 和 D_2 的作用是什么? 该电路的电压放大倍数 A_u 约为多少?

——第 6 页/共 7 页——

答

线内

#

矧

- (2) 当输出电压的振幅 U_{om} =18V 时,输出功率 P_{ox} 、电源提供的功率 P_{DC} 及此时的效率 η 各为多少?
- (3) 在理想情况下,该电路的效率η为多少?

十、电源电路分析与计算(6分)

电路如图 11 所示,已知 T_2 的 $U_{\rm BE2}$ = 0.7V,当 $R_{\rm W}$ 调到中点时, $Ra=R_b=3k\Omega$,稳压电路输出电压 $U_{\rm O}=12{\rm V}$ 。

- (1) 试分析计算 D_z 的稳压值 U_z ;
- (2) 若变压器 U_2 =20V, 试估算电容 C 两端电压 U_1 值。

十一、工程分析计算(4分)

电路如图 12 所示,已知 R_t 为 PT100 铂电阻,其阻值 R_t 与温度 t 的关系为 R_t =100+0.39t

- (Ω) , R_3 阻值合适。请分析并回答下列问题:
- (1) 若 U_{RI} =1V, 写出 U_{OI} 与铂电阻所在环境温度 t 的关系;
- (2) 若 U_{R2} =3.78V, 试分析 LED 灯亮的条件。

