ECE 417/598: Line fitting using null space

Vikas Dhiman.

March 11, 2022

Find the line I such that it is the "closest line" passing through u_1, \ldots, u_4 .

$$U = \frac{1}{2}$$

We want to solve for I such that

$$UI = 0$$

Singular Value Decomposition (SVD)

 $\lambda_i = \sigma_i^2$

$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\sigma_i}$$

 $A^{\top}A\mathbf{v}_{i}=\lambda_{i}\mathbf{v}_{i}$

$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix}$$

pt xw-xmg)=0

A=US VT

Find the line I such that it is the "closest line" passing through $u_1,\dots,u_4.$

https://github.com/wecacuee/ECE417-Mobile-Robots/tree/master/docs/slides/03-09-svd-null-space

$$A =$$

We want to solve for ${\bf I}$ such that

$$UI = 0$$

Examples of Homography

Computing Homography

To solve for It we need 2 equations each point cornespondence >> 2 equation

Computing Homography

Solving for Homography derivation

Direct Linear Transformation (DLT) algorithm

Objective

Given $n \geq 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix H such that $\mathbf{x}_i' = \mathrm{H}\mathbf{x}_i$.

Algorithm

- (i) For each correspondence x_i ↔ x'_i compute the matrix A_i from (4.1). Only the first two rows need be used in general.
- (ii) Assemble the $n \ 2 \times 9$ matrices A_i into a single $2n \times 9$ matrix A.
- (iii) Obtain the SVD of A (section A4.4(p585)). The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if A = UDV^T with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V.
- (iv) The matrix H is determined from \mathbf{h} as in (4.2).

2D homography

Given a set of points $\mathbf{x}_i \in \mathbb{P}^2$ and a corresponding set of points $\mathbf{x}_i' \in \mathbb{P}^2$, compute the projective transformation that takes each \mathbf{x}_i to \mathbf{x}_i' . In a practical situation, the points \mathbf{x}_i and \mathbf{x}_i' are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

3D to 2D camera projection matrix estimation

Given a set of points X_i in 3D space, and a set of corresponding points x_i in an image, find the 3D to 2D projective P mapping that maps X_i to $x_i = PX_i$.