```
In [1]: # Importing the necessary libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
In [2]: # converting data into dataframe
         loantap = pd.read_csv("logistic_regression.csv")
In [3]: # making an copy of the dataset
         df = loantap.copy()
         Identification of variables
In [4]: # Top 5 rows of the dataframe
         df.head()
Out[4]:
             loan_amnt
                         term int_rate installment grade sub_grade
                                                                     emp_title emp_length hor
                           36
          0
               10000.0
                                 11.44
                                           329.48
                                                     В
                                                               В4
                                                                     Marketing
                                                                                 10+ years
                       months
                           36
                                                                        Credit
          1
                8000.0
                                 11.99
                                           265.68
                                                     В
                                                               В5
                                                                                   4 years
                       months
                                                                       analyst
                           36
          2
               15600.0
                                 10.49
                                           506.97
                                                     В
                                                               B3
                                                                     Statistician
                                                                                  < 1 year
                       months
                                                                         Client
                           36
          3
                7200.0
                                  6.49
                                           220.65
                                                     Α
                                                               A2
                                                                                   6 years
                       months
                                                                      Advocate
```

Destiny

Inc.

9 years

C5 Management

5 rows × 27 columns

24375.0

months

17.27

609.33

С

In [5]: df.shape

Out[5]: (396030, 27)

In [6]: # data info df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 396030 entries, 0 to 396029 Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype				
	1	206020					
0	loan_amnt	396030 non-null	float64				
1	term	396030 non-null	object				
2	int_rate	396030 non-null	float64				
3	installment	396030 non-null	float64				
4	grade	396030 non-null	object				
5	sub_grade	396030 non-null	object				
6	emp_title	373103 non-null	object				
7	emp_length	377729 non-null	object				
8	home_ownership	396030 non-null	object				
9	annual_inc	396030 non-null	float64				
10	verification_status	396030 non-null	object				
11	issue_d	396030 non-null	object				
12	loan_status	396030 non-null	object				
13	purpose	396030 non-null	object				
14	title	394274 non-null	object				
15	dti	396030 non-null	float64				
16	earliest_cr_line	396030 non-null	object				
17	open_acc	396030 non-null	float64				
18	pub_rec	396030 non-null	float64				
19	revol_bal	396030 non-null	float64				
20	revol_util	395754 non-null	float64				
21	total_acc	396030 non-null	float64				
22	<pre>initial_list_status</pre>	396030 non-null	object				
23	application_type	396030 non-null	object				
24	mort_acc	358235 non-null	float64				
25	<pre>pub_rec_bankruptcies</pre>	395495 non-null	float64				
26	address	396030 non-null	object				
dtypes: float64(12), object(15)							
memory usage: 81.6+ MB							
5							

In [7]: # Checking of null values df.isna().sum()

	()	
Out[7]:	loan_amnt	0
	term	0
	int_rate	0
	installment	0
	grade	0
	sub_grade	0
	emp_title	22927
	emp_length	18301
	home_ownership	0
	annual_inc	0
	verification_status	0
	issue_d	0
	loan_status	0
	purpose	0
	title	1756
	dti	0
	earliest_cr_line	0
	open_acc	0
	pub_rec	0
	revol_bal	0
	revol_util	276
	total_acc	0
	initial_list_status	0
	application_type	0
	mort_acc	37795
	<pre>pub_rec_bankruptcies</pre>	535
	address	0
	dtype: int64	

In [8]: # Percentage of null values in each columns df.isna().sum()/len(df)*100

Out[8]: loan_amnt 0.000000 term 0.000000 int_rate 0.000000 installment 0.000000 grade 0.000000 sub_grade 0.000000 emp title 5.789208 emp_length 4.621115 home_ownership 0.000000 annual_inc 0.000000 verification_status 0.000000 issue_d 0.000000 loan_status 0.000000 purpose 0.000000 title 0.443401 dti 0.000000 earliest_cr_line 0.000000 open_acc 0.000000 pub_rec 0.000000 revol_bal 0.000000 revol_util 0.069692 total_acc 0.000000 initial_list_status 0.000000 application_type 0.000000 9.543469 mort_acc pub_rec_bankruptcies 0.135091 address 0.000000 dtype: float64

Analysing the basic metrics

In [9]: df.describe(include='all').transpose()

Out[9]:

	count	unique	top	freq	mean	St
loan_amnt	396030.0	NaN	NaN	NaN	14113.888089	8357.44134
term	396030	2	36 months	302005	NaN	Na
int_rate	396030.0	NaN	NaN	NaN	13.6394	4.47215
installment	396030.0	NaN	NaN	NaN	431.849698	250.7277
grade	396030	7	В	116018	NaN	Na
sub_grade	396030	35	В3	26655	NaN	Na
emp_title	373103	173105	Teacher	4389	NaN	Na
emp_length	377729	11	10+ years	126041	NaN	Na
home_ownership	396030	6	MORTGAGE	198348	NaN	Na
annual_inc	396030.0	NaN	NaN	NaN	74203.175798	61637.62115
verification_status	396030	3	Verified	139563	NaN	Na
issue_d	396030	115	Oct-2014	14846	NaN	Na
loan_status	396030	2	Fully Paid	318357	NaN	Na
purpose	396030	14	debt_consolidation	234507	NaN	Na
title	394274	48816	Debt consolidation	152472	NaN	Na
dti	396030.0	NaN	NaN	NaN	17.379514	18.01909
earliest_cr_line	396030	684	Oct-2000	3017	NaN	Na
open_acc	396030.0	NaN	NaN	NaN	11.311153	5.13764
pub_rec	396030.0	NaN	NaN	NaN	0.178191	0.53067
revol_bal	396030.0	NaN	NaN	NaN	15844.539853	20591.83610
revol_util	395754.0	NaN	NaN	NaN	53.791749	24.45219
total_acc	396030.0	NaN	NaN	NaN	25.414744	11.88699
initial_list_status	396030	2	f	238066	NaN	Na
application_type	396030	3	INDIVIDUAL	395319	NaN	Na
mort_acc	358235.0	NaN	NaN	NaN	1.813991	2.1479
pub_rec_bankruptcies	395495.0	NaN	NaN	NaN	0.121648	0.35617
address	396030	393700	USCGC Smith\r\nFPO AE 70466	8	NaN	Na
4						

Insights

Outliers: The significant differences between mean & median in key attributes like loan amount and revolving balance indicate potential outliers.

Loan Duration Preference: A preference for 36-month loan terms among borrowers suggests a balance between manageable installments.

Home Ownership Trends: The prevalence of applicants with mortgaged homes suggests financial stability or a need for substantial, property-secured loans.

Successful Loan Repayment: Most loans being fully paid off reflects positively on borrowers' financial commitment, indicating effective lending criteria.

Debt Consolidation Dominance: The primary use of loans for debt consolidation highlights a common strategy to manage or reduce high-interest debt.

Individual Damessare. The productioner of individual applicants assessed that personal

In [11]: for i in n_columns: plt.figure(figsize=(12,5)) plt.title("Distribution of {}".format(i)) sns.histplot(df[i]/df[i].max(), kde=True,color="#29B6F6", bins=40) plt.show()

In [12]: c_columns = ['home_ownership', 'verification_status', 'loan_status', 'appli

```
In [13]: custom_palette = sns.color_palette("Set1", 8)

for i in c_columns:
    plt.figure(figsize=(10, 4))
    sns.set(style="dark")
    plt.title(f'Distribution of {i}')
    sns.countplot(data=df, x=i, palette=custom_palette)
    plt.xticks(rotation=45)
    plt.show()
```


Bivariate Analysis

```
In [14]: plt.figure(figsize=(15,20))
    plt.subplot(2,2,1)
    sns.countplot(x='term',data=df,hue='loan_status')
    plt.subplot(2,2,2)
    sns.countplot(x='home_ownership',data=df,hue='loan_status')
    plt.subplot(2,2,3)
    sns.countplot(x='verification_status',data=df,hue='loan_status')
    plt.subplot(2,2,4)
    g=sns.countplot(x='purpose',data=df,hue='loan_status')
    g.set_xticklabels(g.get_xticklabels(),rotation=90)
    plt.show()
```



```
In [15]: plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
grade = sorted(loantap.grade.unique().tolist())
sns.countplot(x='grade', data=df, hue='loan_status', order=grade)

plt.subplot(2, 2, 2)
sub_grade = sorted(loantap.sub_grade.unique().tolist())
g = sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade', set_xticklabels(g.get_xticklabels(), rotation=90)

plt.show()
```


Insights

Loan Terms: The most popular loan term is 36 months, with a high completion rate.

Loan Types: Mortgages and rental loans are the most common loan types. Debt consolidation loans are also frequently used.

Creditworthiness: Borrowers with a credit grade of "B" and a subgrade of "B3" tend to have the highest repayment rates.

Occupations: Managers and teachers are the professions with the highest loan approval rates

Repayment: Individuals employed for over 10 years demonstrate a strong track record of loan repayment.

Correlation Analysis

In [17]: plt.figure(figsize=(18,10))
 sns.heatmap(df.corr(numeric_only=True), cmap = 'YlorBr', annot = True)
 plt.show()

In [18]: df.corr(numeric_only=True)

Out[18]:

	loan_amnt	int_rate	installment	annual_inc	dti	open_acc	p
loan_amnt	1.000000	0.168921	0.953929	0.336887	0.016636	0.198556	-0.
int_rate	0.168921	1.000000	0.162758	-0.056771	0.079038	0.011649	0.
installment	0.953929	0.162758	1.000000	0.330381	0.015786	0.188973	-0.
annual_inc	0.336887	-0.056771	0.330381	1.000000	-0.081685	0.136150	-0.
dti	0.016636	0.079038	0.015786	-0.081685	1.000000	0.136181	-0.
open_acc	0.198556	0.011649	0.188973	0.136150	0.136181	1.000000	-0.
pub_rec	-0.077779	0.060986	-0.067892	-0.013720	-0.017639	-0.018392	1.
revol_bal	0.328320	-0.011280	0.316455	0.299773	0.063571	0.221192	-0.
revol_util	0.099911	0.293659	0.123915	0.027871	0.088375	-0.131420	- 0.
total_acc	0.223886	-0.036404	0.202430	0.193023	0.102128	0.680728	0.
mort_acc	0.222315	-0.082583	0.193694	0.236320	-0.025439	0.109205	0
pub_rec_bankruptcies	-0.106539	0.057450	-0.098628	-0.050162	-0.014558	-0.027732	0.

Insights:

- Positive correlation with annual income (annual_inc) Higher income allows for larger loan applications.
- Weak positive correlation with installment amount (installment) Makes sense as larger loans will typically have higher installments.
- Weak positive correlation with total accounts (total_acc) and mortgage accounts (mort_acc) - Borrowers with more established credit lines may be eligible for higher loan amounts.
- Weak negative correlation with annual income (annual_inc) Generally, borrowers with higher income qualify for lower interest rates.
- Weak positive correlation with total accounts (total_acc) and mortgage accounts (mort_acc) - People with a higher income may tend to have more credit accounts.
- Positive correlation between revolving balance (revol_bal) and credit line utilization (revol_util) - This indicates that people with higher credit balances also tend to have a higher utilization ratio.
- Weak positive correlation between number of open accounts (open_acc) and total accounts (total_acc) - As expected, people with more open accounts tend to have more total accounts.

Data Preprocessing using Feautre Engineering

```
In [19]: def pub rec(number):
             if number == 0.0:
                  return 0
             else:
                  return 1
         def mort acc(number):
             if number == 0.0:
                  return 0
             elif number >= 1.0:
                  return 1
             else:
                  return number
         def pub rec bankruptcies(number):
             if number == 0.0:
                  return 0
             elif number >= 1.0:
                  return 1
             else:
                  return number
```

```
In [20]: df['pub_rec']=df.pub_rec.apply(pub_rec)

df['mort_acc']=df.mort_acc.apply(mort_acc)

df['pub_rec_bankruptcies']=df.pub_rec_bankruptcies.apply(pub_rec_bankruptcies)
```

```
In [21]: plt.figure(figsize=(12,30))
           plt.subplot(4,2,1)
           sns.countplot(x='pub_rec',data=df,hue='loan_status')
           plt.subplot(4,2,2)
           sns.countplot(x='initial_list_status',data=df,hue='loan_status')
           plt.subplot(4,2,3)
           sns.countplot(x='mort_acc',data=df,hue='loan_status')
           plt.subplot(4,2,4)
           sns.countplot(x='pub_rec_bankruptcies',data=df,hue='loan_status')
           plt.show()
                                                            200000
                                                loan_status
                                                                     loan_status
                                                Fully Paid
                                                                    Fully Paid
              250000
                                                Charged Off
                                                                    Charged Off
                                                             175000
                                                             150000
              200000
                                                             125000
              150000
                                                            100000
                                                             75000
              100000
                                                             50000
               50000
                                                             25000
                  0
                             0
                                                                                initial list status
                                    pub rec
                       loan_status
                                                                                              loan_status
              175000
                       Fully Paid
                                                                                            Fully Paid
                       Charged Off
                                                                                              Charged Off
                                                            250000
              150000
                                                            200000
              125000
              100000
                                                             150000
               75000
                                                             100000
               50000
                                                             50000
               25000
```

Most the loan disbursed to the people who do not hold bankrupties record have successfully paid loan

0.0

1.0

pub_rec_bankruptcies

1.0

mort_acc

0

0.0

Duplicate checks

```
In [22]: df.duplicated().sum()
Out[22]: 0
```

```
Missing values
In [23]: df.isnull().sum()
Out[23]: loan_amnt
                                       0
                                       0
         term
         int rate
                                       0
                                       0
         installment
         grade
                                       0
         sub_grade
                                       0
                                  22927
         emp_title
         emp_length
                                  18301
         home_ownership
                                      0
         annual_inc
                                       0
                                      0
         verification_status
                                       0
         issue_d
                                       0
         loan_status
                                       0
         purpose
                                   1756
         title
         dti
                                       0
         earliest_cr_line
                                       0
                                       0
         open_acc
         pub_rec
                                       0
         revol_bal
                                       0
         revol util
                                    276
         total acc
                                       0
         initial_list_status
                                       0
                                      0
         application_type
         mort_acc
                                  37795
         pub_rec_bankruptcies
                                    535
                                       0
         address
         dtype: int64
In [24]: | numeric columns = df.select dtypes(include=['float64', 'int64'])
         total_acc_avg = numeric_columns.groupby('total_acc')['mort_acc'].mean()
         def fill_mort_acc(total_acc, mort_acc):
              if np.isnan(mort_acc):
                  return total_acc_avg[total_acc].round()
              else:
                  return mort_acc
         df['mort_acc'] = df.apply(lambda x: fill_mort_acc(x['total_acc'], x['mort_acc'])
```

```
In [25]: df.isnull().sum()
Out[25]: loan_amnt
                                       0
                                       0
          term
                                       0
          int_rate
                                       0
          installment
                                       0
          grade
          sub_grade
                                       0
                                   22927
          emp_title
          emp_length
                                   18301
          home_ownership
                                       0
          annual_inc
                                       0
          verification_status
                                       0
                                       0
          issue_d
                                       0
          loan_status
          purpose
                                       0
                                    1756
          title
         dti
                                       0
                                       0
          earliest_cr_line
                                       0
          open_acc
          pub_rec
                                       0
                                       0
          revol_bal
          revol_util
                                     276
          total_acc
                                       0
          initial_list_status
                                       0
          application_type
                                       0
         mort_acc
                                       0
          pub_rec_bankruptcies
                                     535
          address
                                       0
          dtype: int64
In [26]: # droping remaining null values
         df.dropna(inplace=True)
         df.shape
```

Out[26]: (370621, 27)

Outlier Detection

```
In [27]: def box_plot(col):
    if col in df.columns:
        plt.figure(figsize=(8, 5))
        sns.boxplot(x=df[col],color="#29B6F6")
        plt.title('Boxplot for {}'.format(col))
        plt.show()
    else:
        print(f"Column '{col}' not found in the DataFrame.")

for col in n_columns:
    box_plot(col)
```

Boxplot for loan_amnt

Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for dti

Boxplot for open_acc

Boxplot for pub_rec

Boxplot for revol_bal

Boxplot for revol_util

Boxplot for total_acc

Boxplot for mort_acc

Boxplot for pub_rec_bankruptcies


```
In [28]: # Outlier treatment

for col in n_columns:
    if col in df.columns:
        mean = df[col].mean()
        std = df[col].std()
        upper_limit = mean + 3 * std
        lower_limit = mean - 3 * std
        df = df[(df[col] < upper_limit)) & (df[col] > lower_limit)]
```

```
In [29]: def box_plot(col):
    if col in df.columns:
        plt.figure(figsize=(8, 5))
        sns.boxplot(x=df[col],color="#29B6F6")
        plt.title('Boxplot for {}'.format(col))
        plt.show()
    else:
        print(f"Column '{col}' not found in the DataFrame.")

for col in n_columns:
    box_plot(col)
```

Boxplot for loan_amnt

Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for dti

Boxplot for open_acc

Boxplot for pub_rec

Boxplot for revol_bal

Boxplot for revol_util

Boxplot for total_acc

Boxplot for mort_acc

Boxplot for pub_rec_bankruptcies

```
0.0 0.2 0.4 0.6 0.8 1.0 pub_rec_bankruptcies
```

```
In [30]: term_values = {' 36 months': 36, ' 60 months': 60}

df['term'] = df['term'].map(term_values)

df['loan_status'] = df['loan_status'].map({'Fully Paid': 0, 'Charged Off': 1 list_status = {'w': 0, 'f': 1}

df['initial_list_status'] = df['initial_list_status'].map(list_status)

df['zip_code'] = df['address'].apply(lambda x: x[-5:])

df['zip_code'].value_counts(normalize=True) * 100
```

```
Out[30]: zip_code
         70466
                  14.375337
         30723
                  14.289710
         22690
                  14.272299
         48052
                  14.127019
         00813
                  11.605591
         29597
                  11.548792
         05113
                  11.519108
         93700
                   2.768605
                   2.762896
         11650
         86630
                   2.730643
         Name: proportion, dtype: float64
```

```
In [31]: # Dropping of unnecessary columns
    unnecessary_columns=['issue_d', 'emp_title', 'title', 'sub_grade','address']
    df.drop(unnecessary_columns,axis=1, inplace=True)
```

One hot encoding

Model Building

```
In [34]: # Importing stats libraries
         from sklearn.linear_model import LogisticRegression
         from sklearn import metrics
         from sklearn.metrics import confusion matrix
         from sklearn.metrics import classification report
         from sklearn.metrics import roc auc score
         from sklearn.metrics import roc curve
         from sklearn.metrics import precision_recall_curve
         from sklearn.model_selection import train_test_split, KFold, cross_val_score
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.metrics import (
             accuracy_score, confusion_matrix, classification_report,
             roc_auc_score, roc_curve, auc,
             ConfusionMatrixDisplay, RocCurveDisplay
         from statsmodels.stats.outliers influence import variance inflation factor
In [35]: | scaler = MinMaxScaler()
         X train = scaler.fit transform(X train)
         X_test = scaler.transform(X_test)
```

```
In [36]: logreg=LogisticRegression(max_iter=1000)
         logreg.fit(X_train,y_train)
Out[36]:
                                       i ? (https://scikit-
                 LogisticRegression
                                            arn.org/1.4/modules/generated/sklearn.linear_model.
          LogisticRegression(max_iter=1000)
In [37]: y_pred = logreg.predict(X_test)
         print('Accuracy of Logistic Regression Classifier on test set: {:.3f}'.form
         Accuracy of Logistic Regression Classifier on test set: 0.891
In [38]: print(classification_report(y_test,y_pred))
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.89
                                       0.99
                                                  0.94
                                                           84915
                     1
                             0.94
                                       0.46
                                                  0.62
                                                           20193
                                                  0.89
                                                          105108
              accuracy
                                       0.73
                                                  0.78
                                                          105108
             macro avg
                             0.91
         weighted avg
                             0.90
                                       0.89
                                                  0.88
                                                          105108
```


ROC Curve -

An ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters:

- · True Positive Rate
- · False Positive Rate

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

• TPR=(TP)/(TP+FN)

False Positive Rate (FPR) is defined as follows:

• FPR=(FP)/(FP+TN)

A BOOK TO THE THE THE THE THE THE THE THE

AUC (Area under the ROC Curve) -

AUC stands for "Area under the ROC Curve." That is, AUC measures the entire twodimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1).

AUC provides an aggregate measure of performance across all possible classification thresholds. One way of interpreting AUC is as the probability that the model ranks a random positive example more highly than a random negative example. For example, given the following examples, which are arranged from left to right in ascending order of logistic regression predictions:

Insights:

- ROC-AUC curve is grossing the area near about 0.73 which indicates that model is performing well.
- There is still room for some model improvement
- By collecting more data, using a more complex model, or tuning the hyperparameters, it is possible to improve the model's performance.

Precision-Recall Curve

Insights

- Precision score is highest at 0.55 threshold. High precision value indicates that model is
 positevly predicating the charged off loan status which helps business to take more
 stable decision.
- Recall score is higher on smaller threshold but after 0.55 the recall value is constant.
 Model is correctly classifying the actual predicated values as instances.

Actional Insights and Recommendations

- 1. 80% of the customers have paid the loan fully.
- 2. 20% of the customers are the defaulters.
- 3. The organization can the trained model to make prediction for whether a person will likely to pay the loan amount or he will be a defaulter.
- 4. Model achieves the 94% f1-score for the negative class (Fully Paid).
- 5. Model achieves the 62% f1-score for the positive class (Charged off).
- 6. Cross Validation accuracy and testing accuracy is almost same which infers model is performing the decent job. We can trust this model for unseen data
- 7. By collecting more data, using a more complex model, or tuning the hyperparameters, it is possible to improve the model's performance.
- 8. ROC AUC curve area of 0.73, the model is correctly classifying about 73% of the instances. This is a good performance, but there is still room for improvement.
- 9. The precision-recall curve allows us to see how the precision and recall trade-off as we vary the threshold. A higher threshold will result in higher precision, but lower recall, and vice versa. The ideal point on the curve is the one that best meets the needs of the specific application.
- 10. After balancing the dataset, there is significant change observed in the precion and recall score for both of the classes.
- 11. Accuracy of Logistic Regression Classifier on test set: 0.891 which is decent and not by chance