Box #____ Math 65 Section 1 Homework 4 18 May 2018

Collaborators:

Poole 6.6 #2 Find the matrix $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ of the linear transformation $T: V \to W$ with respect to the bases \mathcal{B} and \mathcal{C} of V and W, respectively. Verify Theorem 2.26 for the vector \mathbf{v} by computing $T(\vec{v})$ directly and using the theorem.

 $T: \mathcal{P}_1 \to \mathcal{P}_1$ defined by T(a + bx) = b - ax, $\mathcal{B} = \{1 + x, 1 - x\}$, $\mathcal{C} = \{1, x\}$, $\mathbf{v} = p(x) = 4 + 2x$.

1

Poole 6.6 #4 Find the matrix $[T]_{\mathcal{C}\leftarrow\mathcal{B}}$ of the linear transformation $T:V\to W$ with respect to the bases \mathcal{B} and \mathcal{C} of V and W, respectively. Verify Theorem 2.26 for the vector \mathbf{v} by computing $T(\vec{v})$ directly and using the theorem.

 $T: \mathcal{P}_2 \to \mathcal{P}_2$ defined by T(p(x)) = p(x+2), $\mathcal{B} = \{1, x+2, (x+2)^2\}$, $\mathcal{C} = \{1, x, x^2\}$, $\mathbf{v} = p(x) = a + bx + cx^2$.

Poole 6.6 #12 Find the matrix $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ of the linear transformation $T: V \to W$ with respect to the bases \mathcal{B} and \mathcal{C} of V and W, respectively. Verify Theorem 2.26 for the vector \mathbf{v} by computing $T(\vec{v})$ directly and using the theorem.

$$T: M_{22} \to M_{22}$$
 defined by $T(A) = A - A^T$, $\mathcal{B} = \mathcal{C} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$, $\mathbf{v} = A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Poole 6.6 #14 Consider the subspace W of \mathcal{D} , given by $W = \text{span}(e^{2x}, e^{-2x})$.

- (a) Show that the differential operator *D* maps *W* into itself.
- (b) Find the matrix of D with respect to $\mathcal{B} = \{e^{2x}, e^{-2x}\}$.
- (c) Compute the derivative of $f(x) = e^{2x} 3e^{-2x}$ indirectly, using Theorem 6.26, and verify that it agrees with f'(x) as computed directly.

Poole 6.6 #18 $T: U \to V$ and $S: V \to W$ are linear transformation and \mathcal{B} , \mathcal{C} , and \mathcal{D} are bases for U, V, and W, respectively. Compute $[S \circ T]_{\mathcal{D} \leftarrow \mathcal{B}}$ in two ways:

- (a) By finding $S \circ T$ directly and then computing its matrix
- (b) by finding the matrices of *S* and *T* separately and using Theorem 6.27.

 $T: \mathcal{P}_1 \to \mathcal{P}_2$ defined by T(p(x)) = p(x+1), $S: \mathcal{P}_2 \to \mathcal{P}_2$ defined by S(p(x)) = p(x+1), $\mathcal{B} = \{1, x\}$, $\mathcal{C} = \mathcal{D} = \{1, x, x^2\}$.

Poole 6.6 #22 Determine whether the linear transformation T is invertible by considering its matrix with respect to the standard bases. If T is invertible, use Theorem 6.28 and the method of Example 6.82 to find T^{-1} .

$$T: \mathcal{P}_2 \to \mathcal{P}_2$$
 defined by $T(p(x)) = p'(x)$.

Poole 6.6 #32 a linear transformation $T: V \to V$ is given. If possible, find a basis \mathcal{C} for V such that the matrix $[T]_{\mathcal{C}}$ of T with respect to C is diagonal.

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a-b \\ a+b \end{bmatrix}$.

Poole 6.6 #34 a linear transformation $T: V \to V$ is given. If possible, find a basis \mathcal{C} for V such that the matrix $[T]_{\mathcal{C}}$ of T with respect to C is diagonal.

$$T: \mathcal{P}_2 \to \mathcal{P}_2$$
 defined by $T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a-b \\ a+b \end{bmatrix}$.