

Softness and Compliance in Human-Symbiotic Robots

Alexander Schmitz Waseda University

Robotics in Waseda University

1973: WABOT-1

First Humanoid Robot in the World

1984 : WABOT-2
Piano playing Robot

1992 : Humanoid Project

1997: Hadaly-2

1997: WABIAN Biped Robot

1999 : Wendy Human Symbiotic Robot

Robotics in Waseda University

2000: Humanoid Institute 2001: WABOT-HOUSE Laboratory

> 2004: WABOT-HOUSE Structured environment

Surgical Robot

ROBITA

2005: WABIAN-II **Biped Robot**

2007: TWENDY-ONE

Human Symbiotic Robot

Conversation Robot

Robots in Waseda

WABOT-1 (1973)

WABOT-2 (1984)

Haday-2 (1997)

WABIAN (1997)

1973 WABOT-1

Waseda University
Bio-engineering Research Group
Ichiro Kato, Katsuhiko Shirai, etc.

1964 Bullet Train (210 Km/h)

1969 Apollo 11 (Moon Landing)

Robots in Waseda

WABIAN-II (2005)

Robots in Waseda

Structured Environment

WABOT-HOUSE Project (2001-2011)

Requirements of Human-Symbiotic Robots

■ Co-existence with Human

- Low Risk (Safety)
- Physical Interaction
- Communication

■ Task Executability

- Dexterity
- Force Controllability
- Mobility
- Intelligence

Low Risk

Mechanical Impedance Adjuster

Vary the effective length of the compliant element

Rotational Version

Adaptive Grasping and Following to Human Motion

TWENDY-ONE Arm

Silicone Rubber with Tactile Force Sensors

Shock Absorbing Gel with Tactile Force Sensors

DOF:7

Passivity: Shoulder, Elbow

Length: 555 mm Weight: 14.2 kg

Torsion Bar (GUMMETAL)

Absolute Rotary Encoder

TWENDY-ONE Hand

241 distributed tactile sensors

Design of Fingertip

Human Mimetic Finger Tip

Finger Tip Orientation and Contact Area

Design of Fingertip

Mechanics of Manipulation

Egg Cooking

Dexterous Manipulation

Cooking Assistance

Human Assist

Human Assist

Tactile Object Recognition Team

Learning Method	Deep Learning	Shallow ANN			
Recognition Rate	88.1	67.6			
Comparison	of Recognition Rate for	Each Object			

Object	0		旋鹿の		The Australian State of the Sta	Symakling 1	Cocalita			
Shallow ANN (%)	16.4	70.2	69.8	68.8	62.3	78.5	28.7	90.6	5.12	56.5
Deep Learning (%)	83.1	99.8	99.2	98.8	85.3	88.8	69.6	91.7	63.7	87.6

Deep Learning (%)	83.1	99.8	99.2	98.8	85.3	88.8	69.6	91.7	63.7	87.6
Object	100 PM		773-t							
Shallow ANN (%)	48.8	95.71	89.8	58.8	19.9	95.5	96.97	99.65	99.6	99.2
Deep Learning (%)	93.1	92.6	97.5	76.9	70.6	92.8	100	97.6	74.8	97.8

Robust In-Hand Manipulation of Variously Sized and Shaped Objects

Satoshi FUNABASHI, Alexander SCHMITZ, Takashi SATO, Sophon SOMLOR and Shigeki SUGANO Waseda University, Japan

- TWENDY-ONE's hand: 13 motors, springs,
 6-axis F/T in fingertips, soft and sensitive skin
- Learning from demonstration
- Untrained/unknown object shape and posture
- Object size from initial grasping posture
- More stable with sensors
- More robust than interpolation control
- With deep learning less supervised learning necessary

Soft Actuation for Industry

 Most indust We want: Compliance sensors No intrin Precise Time dela Fast springs (SEA) • Instrinsic s Used a lc Safe But rarely compromised position control

Our approach

- Controllable impedance
- Backdrivable
- Separated force and position control

Importance of skin

- Furthermore, soft cover is crucial against impact forces
- Sensitive skin would add another layer of safety
- Current sensors: too big, mostly only 1-axis force

Soft. 3-axis measurements.

Physically small.

Digital output. Easy to produce.

Thanks For listening