MATH1034OL1 Pre-Calculus Mathematics Notes from Sections 5.2, 5.3 (Friday)

Elijah Renner

July 26, 2024

Contents

Fraction Exponents

1 Compound Interest and the Natural Base	-
2 Logarithms	2

5

1 Compound Interest and the Natural Base

For an initial amount P, interest rate r, compounding rate per time period t, and time periods elapsed t, we define the final amount A as

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

If the compounding is continuous, meaning it's calculate infinitely many times in a given compounding period, the base is $e \approx 2.718$. Let's derive e:

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^{1 \cdot n}$$

Hence, to calculate the new amount given an initial amount P after t time periods with interest rate r, we use $A = Pe^{rt}$

For P = 1000, t = 3, and r = 13%: $A = 1000e^{0.13 \cdot 3} \approx 1,476.98$

2 Logarithms

Figure 1: Credit: https://www.cuemath.com/log-formulas/

In plain language: the value of a logarithm is the power the base must be raised to in order to get the argument.

Logarithms are also the inverses of exponential functions. This means that for $f(x) = b^x$, $f^{-1}(x) = \log_b x$. Given this property, we know that a an exponential function and its corresponding inverse logarithmic function will reflect over the line y = x:

Figure 2: Credit: https://byjus.com/maths/exponential-and-logarithmic-functions/

Here are the rules to find the inverse of a logarithmic or exponential function:

Figure 3: Credit: https://slideplayer.com/slide/12938368/

Figure 4: Credit: https://slideplayer.com/slide/12938368/

We didn't discuss logarithmic graphs in class, but here are some important properties to understand:

Figure 5: Credit: https://goodsifyet.shop/product_details/7113278.html

There exists an asymptote at x = h because logarithmic functions may not have an argument less than 0. Similarly, they also may not have a negative base.

There are some rules for logarithms, too:

Rule of Logarithms

Rule Name	Property
Log of 1	log _b 1 = 0
Log of the same number as base	log _b b = 1
Product Rule	$\log_b(mn) = \log_b m + \log_b n$
Quotient Rule	$\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n$
Power Rule	$\log_b m^n = n \log_b m$
Change of Base Rule	$log_ab = \frac{log_cb}{log_ca}$ (OR) $log_ab \cdot log_ca = log_cb$
Equality Rule	$\log_b a = \log_b c \Rightarrow a = c$
Number Raised to Log	$p_{log}P_X = X$
Other Rules	$\log_{b^n} a^m = \frac{m}{n} \log_b a$
	$-\log_{b} a = \log_{b} \frac{1}{a}$
	(OR) = log ₁ a

Figure 6: Credit: https://www.cuemath.com/algebra/log-rules/

3 Fraction Exponents

$$x^{\frac{a}{b}} = \sqrt[b]{x^a} = \left(\sqrt[b]{x}\right)^a$$