ECE231 Digital Logic Design

Analog to Digital Conversion

Dov Kruger
Department of Electrical and Computer Engineering
Rutgers

Adapted from Brian Ackland's slides. Some images from wikimedia, and Electronics Tutorials

The Real World of Analog

- A microprocessor deals exclusively with digital data
 - finite precision storage of information (bits)
- The world is analog
- Convert from binary to analog voltage
 - Digital to Analog (DAC)
- Convert from analog to digital
 - Analog to Digital (A/D or ADC)

Fundamentals: Op Amp

We won't cover operational amplifiers, but you should at least know what they are

- Multiple transistors to create an amplifier
- Very high input impedance (resistance)
- Very high amplification (~ 10⁶) called Gain (G)
 V_{out} = G(V⁺ V⁻)
- Not very repeatable
- Two "identical" op-amps may differ by +/- 50k gain

Op-Amps Used for...

Building Amplifiers

- Analogy: Furnace in a heating system
- Furnace does not maintain exact temp
- We create a feedback loop
- Furnace turns on when it's too cold, off when it's too hot

Building Comparators (compare two voltages)

Inverting Amplifier

The inverting Amplifier uses two resistors to create a feedback loop

$$V_{out} = GV_{in}$$
 $G = -R_f/R_{in}$

Non-Inverting Amplifier

The non-inverting Amplifier does not negate but amplifies noise

$$V_{out} = GV_{in}, G=(R_1/R_2+1)$$

Comparator

When v_{ref} is higher than V_{in} $V_{out} = V_{cc}$ When v_{ref} is lower than V_{in} $V_{out} = -V_{EE}$ For digital applications, $V_{EE} = 0$, V_{cc} is our reference voltage

Digital to Analog Converter (DAC)

A DAC converts binary to an analog voltage This diagram shows a conceptual view

R/2R Ladder

Circuit to encode 4 bits to analog using two resistor values

D/A Used for...

Analog audio sound Old fashioned video

Analog to Digital (A/D) Conversion

- A microcontroller in an embedded application takes inputs from real-world sensors
 - some of these are already digital (e.g. switches, keyboard, mouse)
 - many are analog (e.g. pressure, temperature, light intensity, microphone, airflow, engine speed, oxygen level)
- Analog-to-Digital converter (A/D) transforms analog signal into digital representation usable by microprocessor

Simplest A/D: 1 bit

With 1 bit, there are only 2 levels

Analog to Digital Conversion

 An A/D converter samples an analog signal at regular intervals and generates a digital code which is its best (closest) approximation to the analog value at that instant

- Analog signal: continuous in time and value
- Digital signal: quantized in time and value

A/D Transfer Function

- An n-bit A/D converter has 2ⁿ possible output codes
- Input voltage range typically defined by two reference voltages
 V_{RL} and V_{RH}

$$V_{in} = V_{RL} + \frac{(V_{RH} - V_{RL}).k}{2^n - 1} \pm Q_{err}$$

A/D Characteristics

Resolution

- often quoted in terms of # bits (e.g. 12-bit converter)
- analog resolution is $(V_{RH} V_{RL})/2^n$

Flash (Parallel) A/D Converter

- Resistor ladder generates
 2ⁿ reference voltages
- 2ⁿ comparators simultaneously compare input with each reference
- Comparator output k is high if Vin > ref_k
- Conversion logic generates code indicating greatest value of k for which comparator output is high
- · Very high speed
- Expensive in area & power
- Limited to ~ 8-bits

Single Slope A/D Converter

- Compares input to linear ramp to generate a pulse width proportional to V_{in}
- Pulse used to gate clock to high speed digital counter
- Simple hardware popular in low speed applications
- High resolution possible
- Performance limited by:

$$f_{ck} = f_{samp} \times 2^n$$

e.g. for f_{samp} = 1 MHz, a 12-bit converter requires f_{ck} = 4 GHz 17

Counter Ramp A/D Converter

- Variant on single-slope converter
- Ramp is generated by counter driving a D/A converter
- When D/A output ramp crosses V_{in}, counter value is captured in n-bit latch
- Does not require precision analog ramp generation
- Precision limited by linearity of D/A

Sigma Delta (Oversampling) A/D Converter

- Sigma-delta modulator consists of summer, integrator, clocked comparator and a 1-bit DAC
- Modulator runs at many times (e.g. 16x 1000x) the required sampling frequency to produce very high speed 1-bit waveform
- Digital filter coverts this to much slower n-bit digital output
- Since 1-bit DAC is perfectly linear, can produce very high resolution (up to 24-bit)
- Sampling frequency is limited by need to over-sample

Successive Approximation A/D Converter

Guesses and then corrects digital code in SAR one bit at a time

- Initially sets all bits in SAR to '0'
- Then starting with MSB, for each bit:
 - set bit to '1' and convert output of SAR to analog value with D/A
 - compare output of D/A to input voltage
 - if D/A is larger, set this bit back to '0' and go on to next (lesser sig.) bit
 - if input is larger, retain '1' for this bit and go on to next bit

Successive Approximation Process

- SAR gives a good tradeoff between speed and precision
- One of most popular A/D techniques in embedded systems
- Used in HCS12

Signal Conditioning

- Signal Conditioning is process of matching transducer output to input characteristics of A/D
 - Need to match in voltage and time (frequency)

Shift & Scale Circuit

• From previous example, if R $_1$ = R $_3$ = 10kΩ, R $_2$ = 20kΩ, V $_{\rm OFF}$ = -1V: $V_{OUT}=(2\times V_{IN})+2$

Nyquist Frequency

• If f_s is the sampling frequency, $f_s/2$ is known as Nyquist frequency

Aliasing

- Even if desired signal does not contain components > Nyquist, there may be high frequency noise components which must be removed
- Signal conditioning circuits frequently include a sharp low-pass filter to take out any signal components > Nyquist

A/D Conversion on Arduino Due

- Basic Arduino has 6 A/D channels, 10-bit about 7700hz
- The Due has
 - 12 bit accuracy (1 part in 4096)
 - 1MHz sample rate
 - 16 input channels
 - The basic Arduino can be run faster than rated A/D conversion less accurately.

How do Instruments Work?

How does a thermometer work? How would a computer "Read" this?

Designing Circuits to Measure

Since A/D typically measures voltage
Turn any physical quantity into voltage
Typical devices change resistance not voltage

- Photoresistor
- Photodiode
- Phototransistor
- Thermistor

Difference Between Photodiode & Phototransistor

Typical Semiconductor Sensor

Increased energy (heat/light) moves electrons into the conduction band

Decreases Resistance

Therefore, negative coefficient for resistance

Example: Thermistor NTC (Negative Thermal

Coefficient)

How to Convert Variable Resistance to Voltage

The variable resistance is not measurable by A/D converter

Create a voltage divider with one fixed and one variable resistor

The variable resistor is the sensor

Example: NTC Thermistor

Let's look at a spec sheet:

https://github.com/RU-ECE/ECE231-DigitalLogicDesign/blob/main/specsheets/NTCM-10K-B3380.pdf

What is the resistance at room temp?

What is the resistance at 100°C?

What is the resistance at -50°C?

What is the relationship between temp and resistance?

Relationship of Voltage to Resistance

When designing a voltage divider, the fixed resistor can be on top or bottom

Ex. Thermistor

$$@25^{\circ}C R=5k\Omega$$

@100°C R =
$$500$$
Ω

$$@25^{\circ}CA =$$

$$@100^{\circ}CA =$$

What is the Range of Numbers A/D?

Suppose we have a 10-bit A/D Converter (Arduino)

- @100°C A = .454V A/D reads: ~93
 - We are only using from 93.. 511
 - More than half the range (and accuracy) is wasted

Sensitivity of Voltage Dividers

- If the fixed resistor is too big or small the sensor is less sensitive
- Optimally, the two resistors are equal
- Unfortunately, if one resistance varies, they cannot be equal all the time
- Pick the fixed resistor to have a value in the middle of the varying one

Example: Fixed Resistor too Small

Example: Fixed Resistor too Big

Solving the Range Problem?

Can we use the whole range of the A/D converter?

We need to be able to define V_{ref}

Now:

$$V_{ref} = 2.5V$$

@ 25° C A = 2.5V A/D reads: 1023

@100°C A = .454V A/D reads: \sim 93

5V

Calibration

Designing a circuit to measure something is relatively easy

What's hard is making it accurate

Problems

- 1. Nonlinear nature of electronics
- 2. The usual environmental effects
 - a. What affects the performance of the resistors, thermistor, op-amps in the A/D converter?
- 3. Tolerance of the components
- 4. Stability of the components over time
- 5. Measuring reality
 - a. This is called metrology
 - b. In order to create an instrument, we need to calibrate with a known value

How would you Calibrate a Thermometer?

Thermistor

Resistors

Arduino (with 10-bit A/D converter)

Display? (you can just use your laptop)

Other Types of Sensors

Not all sensors are voltage dividers!

Example: Thermocouple

A thermocouple is two dissimilar metals connected at two points

If one point is at temperature T₁ and the other at T₂ a voltage difference is generated

Voltage is small (µV) not a good generator of electricity! Using waste heat to generate electricity would be

awesome

ThermoelectricGenerator (TEG) currently 7% efficient

Thermocouple Circuit

To create a sensor for a thermocouple we need Amplifier (because voltage is tiny)
Capacitors (to absorb noise)

https://www.analog.com/en/resources/analog-dialogue/articles/measuring-temp-using-thermocouples.html

Thermocouple Doesn't Measure Temperature!

Take a look at the previous slide. The thermocouple ISN'T MEASURING THE TEMPERATURE

What is it measuring?

Calibration is Hard!

Establish ground truth
Build a thermistor probe you can dunk into liquid
What temperatures do we know?

0°C = freezing point of water – or is it?

100°C = boiling point of water – or is it?

How could you design a test rig to calibrate your thermistor circuit?