5. Active Loads and IC MOS Amplifiers

Sedra & Smith Sec. 7 (MOS portion)

(S&S 5th Ed: Sec. 6 MOS portion & ignore frequency response)

Progress towards an IC relevant amplifier

- Resistors and capacitors take a lot of space on ICs:
 - Minimize (i.e., very few) R & C and small sizes (e.g., nF or smaller)

- Get rid of coupling capacitors by direct coupling between stages (makes biasing design complicated)
- $\circ v_i$ and v_o include DC bias components

- o Replace Rs with a current source
- Still need to get rid of C_s
- O What to do about R_D?

Biasing in ICs

- Resistors take too much space on the chip. So, source degeneration with R_S is NOT implemented in ICs.
- Recall that the goal of a good bias is to ensure I_D and V_{DS} would not change (e.g., due to temperature variation). One can force I_D to be constant using a current source.

Current Mirrors or Current Steering Circuits are used as current sources for biasing ICs

Identical MOS: Same μC_{ox} and V_t

Qref is <u>always</u> in saturation since

$$\begin{aligned} V_{DS,ref} &= V_{GS,ref} > V_{GS,ref} - V_t \\ & > V_{GS,ref} = V_{GS1} = V_{GS} \\ & > V_{OV,ref} = V_{OV1} = V_{OV} \end{aligned}$$

$$\gt V_{GS,ref} = V_{GS1} = V_{GS}$$

$$\triangleright V_{OV.ref} = V_{OV1} = V_{OV}$$

$$I_{ref} = I_{D,ref} = 0.5 \mu_n C_{ox} \left(\frac{W}{L}\right)_{ref} V_{OV}^2$$

$$I_1 = I_{D1} = 0.5 \mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{OV}^2$$

$$\frac{I_1}{I_{ref}} = \frac{\left(W/L\right)_1}{\left(W/L\right)_{ref}}$$

Circuit works as long as Q1 is in

saturation:
$$V_{DS1} > V_{OV} = V_{GS} - V_t$$

An implementation of a Current Mirror

Identical MOS: Same $\,\mu C_{ox}\,$ and $V_{t}\,$

The above 2 equations uniquely set Qref Bias point ($I_{D.ref}$ and $V_{GS.ref} = V_{DS.ref}$)

- ightharpoonup Current mirror: $\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$
- Since $I_1 =$ constant regardless of voltage, this is a current source!
- Note: Circuit works as long as Q1 is in saturation.

Examples of Current Steering circuits

Current steering circuit can bias several transistors

$$\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$$

$$\frac{I_1}{I_{ref}} = \frac{\left(W/L\right)_1}{\left(W/L\right)_{ref}} \qquad \frac{I_2}{I_{ref}} = \frac{\left(W/L\right)_2}{\left(W/L\right)_{ref}}$$

A PMOS current mirror

$$\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$$

An implementation of current steering circuit to bias several transistors in an IC

Exercise: Compute I_4/I_{ref}

Current steering circuits are not "ideal" current sources!

If we do NOT ignored Channel width modulation:

$$v_{DS,ref} = v_{GS,ref} = v_{GS} \Rightarrow Q_{ref} \text{ in saturation}$$

$$i_{D,ref} = \frac{1}{2} \mu_n C_{ox} (W/L)_{ref} (v_{GS} - V_t)^2 (1 + \lambda \underline{v_{GS}})$$

$$i_{D,ref} = I_{ref} \Rightarrow \text{ uniquely sets } v_{GS}$$

$$i_1 = i_{D1} = \frac{1}{2} \mu_n C_{ox} (W/L)_1 (v_{GS} - V_t)^2 (1 + \lambda \underline{v_{DS1}})$$

$$\frac{i_1}{I_{ref}} = \frac{\left(W/L\right)_1}{\left(W/L\right)_{ref}} \times \frac{\left(1 + \lambda v_{DS1}\right)}{\left(1 + \lambda v_{GS}\right)}$$

Channel width modulation is important in the signal response.

Ignoring channel width modulation

Keeping channel width modulation

$$i_{D1} = I_{ref} \times \frac{\left(W/L\right)_1}{\left(W/L\right)_{ref}}$$

$$i_{D1} = I_{ref} \times \frac{\left(W/L\right)_{1}}{\left(W/L\right)_{ref}} \qquad i_{D1} = I_{ref} \times \frac{\left(W/L\right)_{1}}{\left(W/L\right)_{ref}} \times \frac{\left(1 + \lambda v_{DS1}\right)}{\left(1 + \lambda V_{GS}\right)}$$

Bias (
$$v_{ds1}$$
=0):

$$I_{D1} = I_{ref} \times \frac{(W/L)_1}{(W/L)_{ref}}$$

$$I_{D1} = I_{ref} \times \frac{\left(W/L\right)_{1}}{\left(W/L\right)_{ref}} \qquad I_{D1} = I_{ref} \times \frac{\left(W/L\right)_{1}}{\left(W/L\right)_{ref}} \times \frac{\left(1 + \lambda V_{DS1}\right)}{\left(1 + \lambda V_{GS}\right)}$$

One <u>can usually</u> ignore channel width modulation in <u>biasing calculations</u> because λ is small (See Exercise 3 of the Problem Set)

Signal ($v_{ds1}\neq 0$):

$$i_{d1} = 0$$
 (open circuit)

$$i_{d1} = 0$$
 (open circuit) $i_{d1} = f(v_{ds1})$ (an element)

One <u>cannot</u> ignore channel width modulation in signal response (We need to find the small signal model).

Small signal Model of Current Mirrors: Using Elementary R Forms

Small signal Model of Current Mirrors: Using MOS SSM Model

Ideal current source

Real Circuit

Small Signal Model

KCL at Dref: $g_{m,ref}v_{gs}$ flows in $r_{o,ref}$

$$v_{D,ref} = v_{gs} = -g_{m,ref} v_{gs} r_{o,ref} \implies (1 + g_{m,ref} r_{o,ref}) v_{gs} = 0 \implies v_{gs} = 0$$

$$v_{gs} = 0 \implies g_{m1}v_{gs}$$
 current source is an open circuit

 $\overline{R} = r_{o1}$

But what happens if we replace I_{ref} ideal current source with "practical" elements?

Practical Circuit

Small Signal Model

KCL at Dref: $g_{m,ref}v_{gs}$ flows in $(r_{o,ref} \parallel R_D)$

$$v_{D,ref} = v_{gs} = -g_{m,ref} v_{gs} r_{o,ref} \implies [1 + g_{m,ref} (r_{o,ref} || R_D)] v_{gs} = 0 \implies v_{gs} = 0$$

 $v_{gs} = 0 \implies g_{m1}v_{gs}$ current source is open circuit

 $\overline{R} = r_{o1}$

Summary of MOS Current Steering Circuit

Summary of MOS Current Steering Circuit

It is sufficient to only consider Q1 in circuit calculations

"Intuitive" Model

PMOS Version:

NMOS Version:

Biasing a CS Stage: Can we place a current mirror in the source circuit?

- Placing a current mirror in the source circuit will not Work!
- O A large R (r_{o2}) in the source circuit reduces the gain by about $g_{m1} \ r_{o2}$

$$A_{v} = -\frac{g_{m1}R'_{L}}{1 + R'_{L}/r_{o1}}$$
 versus $A_{v} = -\frac{g_{m1}R'_{L}}{1 + g_{m1}r_{o2} + R'_{L}/r_{o1}}$

We need to Bias a CS Stage by placing a current mirror in the drain circuit!

$$A_{v} = -g_{m1}(r_{o1} || r_{o2})$$

- Current mirror sets I_D = I
- However, a precise bias voltage should be applied to the gate of Q1 (corresponding to the I_D set by the current source)
 - o Several ways to do this

Important Point

- Bias is the state of the system with no signal.
 - \circ We set v_i = 0 (or v_{sig} = 0) to find the bias values
- In directly-coupled amplifier (see Problem Set 4, Exercise 6), a combination of bias voltage and input signal is applied to the amplifier.
- For example, in the circuit shown , a combination of signal (v_i) and a bias voltage (V_{G1}) is applied to the gate of Q1.
- As we are mostly interested in the signal response, the convention is NOT to show the bias voltage at the input on the circuit.
 - o A bias voltage of (V_{G1}) is implied!
 - You should NOT connect G1 to the ground (i.e., setting $v_i = 0$) to find the bias point.

Bias point of CS amp with current mirror

- Ignore Channel Width Modulation,
 - \circ Fast and relatively accurate method to find bias point, $\,g_{m1}\,$, $\,r_{o1}\,$ and $\,r_{o2}\,$
 - \circ Cannot find V_{DS1} and V_{DS2}

Q2:
$$V_{SG2} = V_{DD} - V_{G}$$
 $V_{OV2} = V_{SG2} - |V_{tp}|$ $I_{D2} = 0.5 \mu_{p} C_{ox} \left(\frac{W}{L}\right)_{2} V_{ov2}^{2}$

Q1:
$$I_{D1} = I_{D2}$$

$$I_{D1} = 0.5 \mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{ov1}^2 = I_{D2}$$

$$V_{OV1} = \left(\frac{\mu_p C_{ox} (W/L)_2}{\mu_n C_{ox} (W/L)_1}\right)^{1/2} V_{OV2}$$

Bias point of CS amp with current mirror

- Include Channel Width Modulation,
 - Lengthy Analysis (see Exercise 3 of Problem set)
 - \circ Gives V_{DS1} and V_{DS2}
 - We can gain insight with load-line analysis

Bias point of CS amp with current mirror

Biasing CS amp with current mirror allows a very large R_D without increasing V_{DD}

$$A_{v} = -g_{m1}(r_{o1} || R_{D}) = -g_{m1}(r_{o1} || r_{o2})$$

Basic gain cell (CS configuration) in ICs

NMOS Version:

PMOS Version:

Biasing a Source Follower in ICs

- **Common-Drain (Source Follower) stages are biased with** current mirror in the source circuit (as above)
 A bias voltage is applied to the gate of Q1 (not shown)!

Common Gate Amplifiers in ICs

Discrete CG Amp

CG Amp with Active Load (Stand-alone)

Signal circuit

(See Exercise 5 of Problem set)

CG Amp with Active Load (e.g. Cascode Amp.)

(See Lecture Set 6)

CS and CD MOS amplifiers with active load (Summary)

Implementation of CS and Follower configurations on IC

Implementation of **CS** and Follower configurations on IC

