

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PATENTS • DESIGNS
The
Patent
Office
COPYRIGHT • TRADEMARKS

10/01 8543
G-Boo/08885

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales

NP10 8QQ

REC'D 23 AUG 2000

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 20 July 2000

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

THIS PAGE BLANK (USPTO)

05 JUL 99 E459229-5 D02884
P01/7700 0.00 - 9915487.4

The Patent Office

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

3 JUL 1999

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference

P240381/HGR/GMU

9915487.4

2. Patent application number

(The Patent Office will fill in this part)

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)Rocep Lusol Holdings Limited
Rocep Business Park
Kings Inch Road
Deanpark
RENFREW
PA4 8XYPatents ADP number (*if you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

6837694001

United Kingdom

4. Title of the invention

"A Valve for use with Apparatus for Introducing a Predetermined Dose of Additive into a Liquid"

5. Name of your agent (*if you have one*)

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent (*including the postcode*)373 Scotland Street
GLASGOW
G5 8QAPatents ADP number (*if you know it*)

1198013

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

Country

Priority application number

(*if you know it*)Date of filing
(*day / month / year*)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(*day / month / year*)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

Yes

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.
See note (d))

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	11
Claim(s)	0
<i>Murgitroyd & Company</i> Abstract	0
Drawing(s)	3

10. If you are also filing any of the following,
state how many against each item.

Priority documents	-
Translations of priority documents	-
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	-
Request for preliminary examination and search (Patents Form 9/77)	-
Request for substantive examination (Patents Form 10/77)	-
Any other documents (please specify)	-

11.

I/We request the grant of a patent on the basis of this application.

Signature *Murgitroyd & Co*
Murgitroyd & Company

Date
2 July 1999

12. Name and daytime telephone number of
person to contact in the United Kingdom

Graham Murnane
0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 A valve for use with apparatus for introducing a
2 predetermined dose of additive into a liquid

3

4 The invention relates to a single use valve which
5 allows fluid to pass from the interior of a tube to the
6 exterior, and in particular to a valve for use with a
7 container which automatically adds an additive in the
8 form of a liquid or a pourable solid to a liquid in the
9 container on opening of the container.

10

11 In a wide number of applications, such as
12 pharmaceuticals for both human and animal use,
13 agrochemicals and other more general applications it
14 may be necessary to release and mix a liquid catalyst
15 or reagent into a liquid before the liquid may be used.

16 In other applications, such as in the beverage
17 industry, it may be desirable to add a component to a
18 beverage immediately before consumption of the
19 beverage, for example to effect a colour change, or to
20 create a mixed beverage which has a limited storage
21 life in the mixed state.

22

23 British Patent Application No 9823578 discloses an
24 apparatus for introducing a component into a first
25 liquid, the apparatus comprising a first container ,

1 such as a bottle, which holds the first liquid. The
2 container has an opening closed by a releasable
3 closure. A second container or tank containing
4 pressurised propellant fluid is positioned in the neck
5 of the first container, adjacent to the opening. A dip
6 tube or conduit is attached to the tank, and has a
7 first end communicating with the tank and a second end
8 extending down into the first liquid in the first
9 container. The dip tube contains an additive which is
10 expelled from the dip tube into the first liquid by the
11 entry of the propellant fluid from the tank into the
12 conduit on release of the releasable closure.

13

14 The preferred form of dip tube is a polypropylene tube
15 of circular cross-section, typically having an internal
16 diameter of 5.8 mm. Such a tube has an internal
17 capacity of 0.26 ml for each 10 mm length, so an 80 mm
18 long tube can hold approximately 2 ml of product. The
19 tank typically has a capacity of 2 ml, and contains
20 pressurised propellant gas.

21

22 When the tank is of an impermeable material such as
23 metal, then the headspace required for the propellant
24 gas is only a proportion of the total tank volume,
25 leaving the remainder of the tank volume available for
product.

27

28 However when the tank is of a material such as plastic
29 which exhibits long term permeability, then the
30 headspace required for the propellant gas must be
31 maximised, and none of the tank volume is available for
32 product. In such cases it can be necessary to use
33 larger diameter dip tubes capable of holding more
34 product, and there is then a need for a valve
35 arrangement at the lower end of the dip tube so that
36 product does not drip into the first liquid in t'

1 first container. The use of small diameter dip tubes
2 such as capillary tubes avoids the need for valves, but
3 such small diameter dip tubes can only hold a small
4 amount of product.

5

6 There is therefore a need for a simple, inexpensive
7 valve arrangement which prevents the product in a dip
8 tube from leaking or dripping into the first liquid in
9 the first container when the dip tube and first
10 container are at the same pressure, but which allows
11 the passage of liquid or pourable solid product from
12 the dip tube into the first liquid in the first
13 container when the dip tube is pressurised by
14 introduction of the propellant fluid.

15

16 According to a first aspect of the present invention
17 there is provided a valve comprising a hollow tubular
18 member having a flattened end portion of resilient
19 plastics material, the flattened end portion comprising
20 two opposing walls held in contact with each other by
21 the resilience of the plastics material and adapted to
22 move out of contact with each other when the hollow
23 tubular member is subject to internal pressure.

24

25 Preferably the flattened end portion is formed by
26 applying heat to the tubular member. Preferably the
27 heat is sufficient to cause plastic deformation of the
28 material, but not sufficient to cause melt bonding of
29 the opposing walls.

30

31 The two opposing walls may be substantially planar.
32 Alternatively the two opposing walls may be arcuate in
33 transverse section, the outer surface of a first one of
34 the opposing walls being in contact with the inner
35 surface of the second one of the opposing walls.

36

1 The flattened end portion may comprise one or more
2 transverse folds. Alternatively the flattened end
3 portion may be curved or bent about a transverse axis.
4 The flattened end portion may be rolled about a
5 transverse axis.

6

7 Preferably the tubular member is of plastic, most
8 preferably of polypropylene. Preferably the tubular
9 member is of circular cross-section.

10

11 According to a second aspect of the present invention
12 there is provided an apparatus for introducing a
13 component into a first liquid, the apparatus
14 comprising:

15 a first container for holding the first liquid having
16 an opening closed by a releasable closure,
17 a second container located in the first container and
18 containing propellant fluid, and
19 a conduit having a first end communicating with the
20 second container and a second end communicating with
21 the first container;
22 wherein the conduit contains an additive which is
23 expelled from the conduit into the first liquid by the
24 entry of the propellant fluid into the conduit on
25 release of the releasable closure;
26 and wherein the conduit is provided at its second end
27 with a valve according to the first aspect of the
28 present invention.

29

30 Preferably the conduit comprises a plastic tube, at the
31 lower end of which is formed the tubular member.

32

33 Preferably the conduit extends below the surface of the
34 first liquid in the first container. Alternatively the
35 conduit may extend to a position close to the wall of
36 the first container above the surface of the first

1 liquid, to avoid foaming of the liquid and the creation
2 of pressure waves in the liquid. The first container
3 may be a bottle having a neck, and the conduit may
4 extend to a position adjacent to the wall of the neck.
5

6 The conduit may contain a number of additives arranged
7 at different positions along the length of the conduit.
8 The additives are preferably liquid. The additives may
9 be colouring agents, flavouring agents, fragrances,
10 pharmaceutical components, chemicals, nutrients,
11 liquids containing gases in solution etc.
12

13 Examples of apparatus in accordance with the invention
14 will now be described with reference to the
15 accompanying drawings, in which:-
16

17 Figs. 1(a) to 1(e) are cross-sectional views of a
18 first embodiment of an apparatus of the invention,
19 in which the second container is integrally formed
20 in a bottle top, showing the top before screwing
21 on, during screwing on, screwed on tight, during
22 release and fully removed respectively;
23 Fig. 2 is a cross-sectional view of the embodiment
24 of Fig. 1(a) to an enlarged scale;
25 Fig. 3 is a longitudinal cross-sectional view
26 through a first embodiment of the valve of the
27 invention in its closed state;
28 Fig. 3a is a section on line X-X through the valve
29 of Fig. 3;
30 Fig. 4 is a longitudinal cross-sectional view
31 through a second embodiment of the valve of the
32 invention in its closed state;
33 Fig. 4a is a section on line Y-Y through the valve
34 of Fig. 4; and
35 Figs. 5 to 7 are longitudinal cross-sectional
36 views through third, fourth and fifth embodiments

1 respectively of the valve of the invention in its
2 closed state.

3

4 Figs. 1(a) to 1(e) show an apparatus for automatically
5 dispensing a product from a dip tube to a bottle or
6 first container by means of pressurised propellant
7 stored in a tank or second container when the top is
8 removed from the bottle. The tank or second container
9 is integrally formed with a screw top which is then
10 screwed onto the bottle or first container, in the neck
11 of which is secured an insert which has a rupturing
12 spike and a dip tube.

13

14 Fig. 1(a) shows a bottle 150 having an insert 100
15 secured within the neck 160 of the bottle, shown in
16 more detail in Fig. 2. The screw cap 152 is shown
17 separately, before closure of the bottle 150. The cap
18 152 has an internal thread to mate with the external
19 thread on the neck 160 of the bottle. The cap has an
20 integrally moulded cylindrical portion which forms an
21 inner container 111, which is closed at the upper end
22 by a convex portion 112 of the cap 152, so as to resist
23 internal pressure in the inner container, and is open
24 at the lower end 113. A circumferential groove 114 is
25 provided externally at the lower end 113 of the inner
26 container 111.

27

28 A plastic ferrule 170 comprises an inner cylindrical
29 wall 172 forming a chamber which is open at its lower
30 end and closed by a foil seal or membrane 180 at its
31 upper end. The inner cylindrical wall 172 is connected
32 and sealed at its upper end to an outer cylindrical
33 wall 174, whose outside diameter is selected to fit
34 tightly within the inside diameter of the inner
35 container 111. At the lower end of the outer
36 cylindrical wall 174 is provided a return flange 176

1 which has a circumferential rib 178 adapted to
2 cooperate with the groove 114 on the outside wall of
3 the inner container 11. The inner wall 172 has upper
4 and lower sealing ribs 182, 183 which are adapted to
5 provide a pressure resistant seal against the outer
6 surface of the rupturing member 104.

7

8 The ferrule 170 is secured by a snap fit to the lower
9 end 113 of the inner container 111, to provide a
10 pressure resistant closure to the container. The inner
11 container is filled with liquid 115 and pressurised gas
12 116 in a conventional fashion, so that the inner
13 container is under internal pressure, causing the foil
14 seal 180 to bow outwards.

15

16 An insert 100 is secured by any suitable means within
17 the neck 160 of the bottle 150. The insert 100
18 comprises a substantially cylindrical housing 101 open
19 at the upper end and having a number of legs 190
20 projecting from the lower end. The housing is provided
21 with detent members 191 which engage with the inside of
22 the neck 160 of the bottle, so that the insert 100
23 cannot be readily removed. The upper end of the
24 housing has a lip 102 which is adapted to engage with a
25 recess 103 in the neck 160 of the bottle, to prevent
26 the insert from being pushed down inside the neck.

27

28 The legs 190 are connected at their lower end to a
29 hollow spike member 104, which has a small diameter
30 bore portion 105 at its upper end and a large diameter
31 bore portion 106 at its lower end. Between the legs
32 are apertures which allow the passage of liquid between
33 the spike member 104 and the side of the bottle when
34 the liquid is poured from the bottle. The number of
35 legs and intervening apertures may be two, three, four
36 or more as appropriate.

1 Within the wall of the small diameter bore portion 105
2 are provided a number of radial passages 108 which
3 communicate with the hollow interior of the spike 104
4 and the interior of the housing 101. Extending from
5 the bottom of the hollow rupturing member 104 is a dip
6 tube or conduit 130, surrounded by a plastic or sprung
7 steel cone washer 109 which is secured to the rupturing
8 member 104 and serves as a one-way retaining member to
9 allow the conduit 130 to be inserted up into the large
10 diameter bore 106 but to restrain it from being removed
11 in a downwards direction. The large diameter bore
12 portion 106 has an internal diameter equal to the
13 external diameter of the dip tube 130. The step
14 between the large and small diameter bore portions 105,
15 106 prevents the dip tube 30 extending into the small
16 diameter bore portion 105 and blocking the radial
17 apertures 108.

18

19 In use, the inner container 111 is filled with a liquid
20 115 and a pressurised gas 116 by means of conventional
21 technology used to fill pressurised dispenser packs,
22 commonly known as aerosol containers. Alternatively
23 the inner container 111 may be filled solely with
24 pressurised gas 116, omitting the liquid 115.

25

26 Fig. 1(b) shows the cap 152 while it is being screwed
27 on to the neck 160. On application of the closure or
28 cap 152 to the bottle 150, the inner container 111 is
29 moved downwards and the spike 104 enters the space
30 formed by the inner cylindrical wall 172 of the ferrule
31 170.

32

33 When the closure 152 is fully screwed tight on to the
34 bottle 150, the inner container 111 moves to the
35 position shown in Fig. 1(c), in which the seal member
36 154 inside the cap 152 seals tightly against the top

1 156 of the bottle neck 160. When this happens, the
2 spike 104 bursts the rupturable membrane 180 and the
3 member hollow spike extends into the inner container
4 111. In this position the liquid 115 and gas 116 are
5 prevented from escaping from the inner container 111 by
6 the ferrule 170 and spike member 104 which seal against
7 each other to prevent release of the liquid 115 and gas
8 116 from the container 111. The upper sealing rib 182
9 and lower sealing rib 183 formed inside the inner
10 cylindrical wall 172 of the ferrule 170 both seal
11 against the outer surface of the spike member 104.
12

13 The inner container 111 remains in the position shown
14 in Fig. 1(c) until a user releases the closure 152 from
15 the bottle 150. When this occurs, the inner container
16 111 moves to the position shown in Fig. 1(d). In this
17 position the upper sealing rib 182 becomes unsealed
18 from the spike member 104, but the lower sealing rib
19 183 remains in sealing contact with the outer surface
20 of the spike member, below the apertures 108. This
21 leaves an escape passage for the compressed liquid 115
22 (or gas 116), which is forced out of the container 111
23 by the pressurised gas 116 in the direction of arrows
24 184, 185, 186, between the spike member 104 and ferrule
25 170, through the radial passages 108 and into the dip
26 tube 130. The liquid 115 or gas 116 then passes
27 through the dip tube 130, expelling the concentrate or
28 additive material 131 from the dip tube 130 through the
29 valve 200, shown schematically in Figs 1 and 2, into
30 the liquid or other substance contained in the bottle
31 150. On removal of the closure 152, the inner
32 container 111 and ruptured ferrule 170 are removed from
33 the bottle 150 together, as shown in Fig. 1(e), leaving
34 the insert 100 and dip tube 130 in the bottle. The
35 insert does not impede pouring of the liquid in the
36 bottle, which can flow between the support legs 190 of

1 the insert 100.
2

3 The dip tubes 130, typically thin-walled polypropylene
4 tubes such as used in the manufacture of drinking
5 straws or similar, may be of different diameter or
6 length and may contain different predetermined doses of
7 additives.

8

9 Figs 3 to 7 show five different embodiments of the
10 valve 200 provided at the lower end of the dip tube
11 130. In all cases the material 131 is held in the dip
12 tube by the flattened end portion of the dip tube, and
13 cannot exit from the dip tube until the dip tube is
14 pressurised, causing the flattened end portion to open.
15

16 In the first embodiment of Fig. 3 the lower end of the
17 dip tube 130 is provided with a flattened, duck bill
18 shaped end portion 201. This arrangement requires a
19 significant internal pressure before the valve will
20 open, since the natural spring action of the inner wall
21 202 means it must "pop" open away from outer wall 203.
22

23 In the second embodiment of Fig. 4 the lower end of the
24 dip tube 130 is provided with a simple, planar,
25 flattened end portion 211. The heating action means
26 that the two walls 212, 213 are in equilibrium in the
27 closed position.
28

29 In the third embodiment of Fig. 5 the flattened end
30 portion 221 is folded back on itself, to provide a more
31 secure closure. A high internal pressure is required,
32 first to expand the upper portion 222 of the flattened
33 end portion 221, and then to cause the fold 223 to
34 straighten out, before the lower portion 224 can
35 expand. The heating action means that the fold 223 is
36 in equilibrium in the folded position.

1 The fourth embodiment of Fig. 6 is similar to that
2 shown in Fig. 5, except that there are three folds 232
3 provided in the flattened end portion 231. Two or four
4 or more folds may be provided if required.
5

6 In the fifth embodiment of Fig. 7 the flattened end
7 portion 241 is rolled in a coil, which unrolls upon the
8 application of internal pressure to the dip tube 130.
9

10 It is envisaged that the dip tube valve arrangement may
11 find other applications, and the invention is not be
12 limited to use of the valve with a pressurised
13 dispensing device as shown in Figs 1(a) to 1(e).
14

15 The invention can be used with fragrances, flavouring,
16 pharmaceuticals (particularly suitable because of the
17 accurate dosage obtainable), chemicals, vitamins etc.
18 The tubes can be filled precisely at a different
19 location and then inserted into the housing at the
20 point of filling the bottles. Compressed air or other
21 gas is particularly suitable as a propellant for
22 powdered or granulated solids, so that liquid does not
23 cause the solids to adhere to the side of the dip tube.
24

25 Modifications and improvements may be incorporated
26 without departing from the scope of the invention.
27
28
29

Fig. 1 (a)

Fig. 1 (b)

Fig. 1 (c)

Fig. 1 (d)

Fig. 1 (e)

Fig. 2

PG1QB00102285

Murgulvud + Co

17/7/00

THIS PAGE BLANK (USPTO)