# **MLDS HW4 Report**

組別:我才是真的Baseline

組員: f03942038鍾佳豪 / r05942102王冠驊 / d05921018林家慶 / d05921027張鈞閔

#### **Environment**

OS: Ubuntu 14.04.5 LTS CPU: Intel i7-5930K

GPU: GeForce GTX 1080, GeForce GTX TITAN X Libraries: tensorflow, numpy, pandas, argparse

# Data Preprocessing

我們所考慮的訓練資料集包括 Cornell Movie-Dialogs Corpus、OpenSubtitles 以及 Twitter\_en。前兩個資料集都包含大量的電影台詞,OpenSubtitles 的資料量比 Cornell Movie-Dialogs Corpus 大上許多。 Twitter\_en 則是 Marsan-Ma/ChatCorpus 從 Twitter 上所蒐集的資料集。此外,Twitter\_en 內的句子比較口語化,不如電影台詞來的正式。最終,我們只選用了 OpenSubtitles,因為其資料夠多、句型又比較正式,較適合用來訓練 chatbot。

我們將資料集中相鄰的每兩個句子(或台詞)分別當成訓練模型的 Input Sequence 及 Output Sequence。為了加快訓練的速度,我們利用 maxLength 這個參數限制我們所取用的句子長度,並且利用 vocabularySize 這個參數限制最終我們所建立的字詞字典的大小。我們在在字詞字典中加入 <pad>, <go>, <eos> 以及 <unknown>,其中 <pad>用於補齊不同台詞間的長度差異、 <go> 與 <eos> 分別代表一句台詞的開始與結束,而 <unknown> 則用於取代不存在字詞字典的字詞。

#### Model

### A. Seq2Seq Model

我們實作的 Seq2Seq Model 是參照 A Neural Conversational Model [1] 所提出的想法,其基本架構如下:



其中,Context 為使用者的問題(Input Sequence),Reply 則是機器的回答(Output Sequence)。模型包含了一個 Encoder 以及一個 Decoder,Encoder 會讀入 Input Sequence、Decoder 則負責解出 Output Sequence。Encoder 跟 Decoder 都有 Embedding Layer 將文字轉成 Word Vector。Decoder 有 Project Layer 將 Output Vector 轉回文字。詳細的設定如下:

Encoder: 3-layer GRU with 256 hidden units、 Decoder: 3-layer GRU with 256 hidden units、 Word Embedding size: 256、 Object Function: Sampled Softmax、 Optimizer: Gradient Descent Algorithm (learning rate = 0.5)、 Max Gradient Norm: 5、 Vocabulary Size: 100000、 Batch Size: 64。

我們亦參照 [2-4]所提出的方法來改善 Seq2Seq Model ,其中包括:Attention Mechanism [2]、Bidirectional Encoder for First Layer [3]、Residual Connections [3]、Scheduled Sampling [4]。我們會在實驗中探討這些方法帶來的改善。

# B. Reinforcement Learning

根據 Deep Reinforcement Learning for Dialogue Generation [5] 的觀察,若單純使用 Seq2Seq Model 訓練一個 Chatbot,會發現模型常常產生"I don't know"這種較為安全的回答,使得與 Chatbot 的對話較為枯燥乏味。因此,我們使用Reinforcement Learning來改善這個問題。我們依照 Jiwei Li [5] 以及 Marsan-Ma [6] 的作法進行 Reinforcement Learning。

我們所考慮的 Reward 包括:r1 = Ease of answering: 所生成的句子不能是常出現的句子,r2 = Information Flow: 連續生成的句子必須要有變化,r3 = Semantic Coherence: 連續生成的句子必須要有語意上的一致性。依照[5]的設定,加權為Reward= 0.25\*r1+0.25\*r2+0.5\*r3。

# **Experiments**

**Exp1:** 比較 Seq2Seq Model 加上 Attention Mechanism、Bidirectional Encoder for First Layer 及 Residual Connections 的結果。Training steps: 60000。

|                           | Seq2Seq + Attention<br>(Proposed by [2]) | Seq2Seq + Attention +<br>Bidirectional encoder +<br>Residual connections<br>(Proposed by [3]) |
|---------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|
| Training Perplexity       | 9.57                                     | 9.13                                                                                          |
| Testing Perplexity        | 9.55                                     | 10.45                                                                                         |
| Hi                        | what is you doing?                       | hi , you are a good man                                                                       |
| Bonjour.                  | what?                                    | hello , you .                                                                                 |
| How are you?              | what is you doing?                       | how are you ?                                                                                 |
| My name is Etienne.       | what is you doing?                       | you know it 's a good idea .                                                                  |
| What is your name?        | what is you doing?                       | you ' re a man .                                                                              |
| How old are you ?         | what?                                    | 00.                                                                                           |
| Are you conscious?        | no.                                      | yes .                                                                                         |
| Where do you want to go?  | here.                                    | you ' re in the right place .                                                                 |
| Where are you ?           | it's a good time .                       | you ' re in here .                                                                            |
| I'm going to kill you!    | get up!                                  | you ' re going to kill me !                                                                   |
| What is your best memory? | it's a good idea .                       | you know it 's a good idea .                                                                  |
| How much is two plus two? | 0.                                       | 000.                                                                                          |
| Do you have a girlfriend? | no.                                      | yes .                                                                                         |
| Goodbye!                  | goodbye .                                | goodbye!                                                                                      |
| Good night.               | good night .                             | good night .                                                                                  |

<sup>\*</sup> Testing Perplexity 為所有 Buckets 的平均值。

在訓練的過程中,我們發現第二個模型收斂的比較快。訓練到一定的次數後,兩個模型的 Perplexity 都收斂到差不多的數值,Training 及 Testing Perplexity 都在9~11之中跳動。

從實際的回答上,我們可以看到第一個模型似乎還沒有學好;而第二個模型所產生的回答較為理想。可見加入 Bidirectional Encoder 來處理雙向的資訊、以及加入Residual Connections 有助於 Chatbot 模型的訓練。此外, Perplexity 似乎不太能真正反映 Chatbot 的好壞。我們也可以看到模型生成的回答都偏短、安全。

**Exp2:** 利用 Scheduled Sampling 將實驗一中的模型都再訓練 10000 Steps。在每個 Step,有 3/4 的機率會將 Decoder 生成的 Output 當成下個時間點的 Decoder Input ;有 1/4 的機率會將正確的 Target Input 當成 Decoder 的 Input。

|                           | Seq2Seq + Attention<br>(Proposed by [2]) | Seq2Seq + Attention +<br>Bidirectional encoder +<br>Residual connections<br>(Proposed by [3]) |
|---------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|
| Training Perplexity       | 14.78                                    | 14.30                                                                                         |
| Testing Perplexity        | 10.77                                    | 10.53                                                                                         |
| Hi                        | what you                                 | you'you                                                                                       |
| Bonjour.                  | what.                                    | you.                                                                                          |
| How are you?              | what you                                 | you'                                                                                          |
| My name is Etienne.       | you're.                                  | you is                                                                                        |
| What is your name?        | what you                                 | you .                                                                                         |
| How old are you ?         | what you                                 | you'                                                                                          |
| Are you conscious?        | what you                                 | you'                                                                                          |
| Where do you want to go?  | you ' re not .                           | you .                                                                                         |
| Where are you ?           | what you                                 | you'                                                                                          |
| I'm going to kill you!    | you ' re not                             | you!                                                                                          |
| What is your best memory? | what.                                    | you'                                                                                          |
| How much is two plus two? | what you                                 | three is four .                                                                               |
| Do you have a girlfriend? | yes.                                     | you.                                                                                          |
| Goodbye!                  | what you                                 | you!                                                                                          |
| Good night.               | good night .                             | good night .                                                                                  |

我們可以看到我們實作的 Scheduled Sampling 會導致模型學壞。原因可能是因為我們是在"每個 Step" 來決定是否要使用 Decoder 生成的 Output 當成下個時間點的 Decoder Input。也就是說,整個 Batch 都是用同一種方式訓練。因此,我們的模型反而會逐漸、且不管上下文,都只生成一些常出現的字詞或標點符號,如"what"、"you"。論文[4]中所提出的 Scheduled Sampling 應該是要在每生成一個字的時候都隨機選擇一次。

**Exp3:** 利用 Reinforcement Learning 調整實驗一的兩個模型。考慮 100 個句子,計算 Reward,並更新模型。

|                     | Seq2Seq + Attention<br>(Proposed by [2])               | Seq2Seq + Attention +<br>Bidirectional encoder +<br>Residual connections<br>(Proposed by [3]) |
|---------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Hi                  | is you , on what on<br>on on . on                      | you you                                                                                       |
| Bonjour.            | is . you , my                                          | you , . , you                                                                                 |
| How are you?        | is , m m m m m m m<br>m m m m m m                      | you you in                                                                                    |
| My name is Etienne. | you you m . you you .<br>that that that . that<br>this | i,                                                                                            |
| What is your name ? | ssyou.you.you                                          | she . , you you                                                                               |

|                          | you this .                                               |               |
|--------------------------|----------------------------------------------------------|---------------|
| How old are you ?        | what on . on this .                                      | you you in    |
|                          | this                                                     |               |
| Are you conscious?       | is . you you , this '<br>this . this                     | you you s you |
| Where do you want to go? | you you on on . what what what what us us . us us this . | i in          |

我們實作的 Reinforcement Learning 也讓模型學壞。可能的原因為 1) 我們只使用單一的 Model 進行 Reinforcement Learning,並未像論文[5]讓兩個 Model 互相對話,2) 考慮的句子太少,Learning Rate 又設定的太大,導致模型更新太快而壞掉,3) Reward 設計或實作得不好,導致模型沒有朝正確的方向更新。

#### **Conclusion**

經過實驗的測試,我們認為 Seq2seq Model + Attention + Bidirectional Encoder for First Layer + Residual Connections 是表現最好的模型。然而,單純利用 Seq2seq Model 的 Chatbot 所生成的回答真的是偏短、安全,這也許是 overfitting 的 結果。我們也認為 Perplexity 似乎不太能真的反映 Chatbot 的好壞,真正的評估還是要經過人的判定。也因此,Reinforcement Learning 是一個方法可以考慮人的感知,以改善 Seq2seq Model 用於 Chatbot 的效能。

我們也發現 Scheduled Sampling 必須是要在每生成一個字的時候,都隨機選擇一次才可能會有效果。對於 Reinforcement Learning,在我們的實作上沒有帶來改善,尚須進一步修正。

## Reference

- [1] Oriol Vinyals and Quoc Le, "A Neural Conversational Model," arXiv:1506.05869.
- [2] Dzmitry Bahdanau et al., "Neural Machine Translation by Jointly Learning to Align and Translate," arXiv:1409.0473.
- [3] Yonghui Wu et al., "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation," arXiv:1609.08144.
- [4] Samy Bengio et al., "Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks," arXiv:1506.03099.
- [5] Jiwei Li et al, "Deep Reinforcement Learning for Dialogue Generation," arXiv:1606.01541.
- [6] Marsan-Ma's github: https://github.com/Marsan-Ma/tf\_chatbot\_seq2seq\_antilm

## **Team Division**

| f03942038 鍾佳豪 | Model implementation (Bidirectional encoder、Residual connections、Scheduled sampling、Reinforcement learning); Experiment; Report |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
| г05942102 王冠驊 | Model implementation (Seq2Seq model、Attention<br>Mechanism ); Experiment; Report                                                |
| d05921027 張鈞閔 | Data Processing; Experiment                                                                                                     |
| d05921018 林家慶 | Data Processing; Experiment                                                                                                     |