

ALGEBRA Volume 7 y 8

Asesoría Bimestral

HELICO PRACTICE

Asesoría Bimestral

PROBLEMA 1 Calcule el Conjunto solución. de

$$|x+5|\leq |3x-1|$$

Resolución

$$|x| \le |y| \Leftrightarrow x^2 \le y^2$$

$$(x+5)^2 \le (3x-1)^2$$

Diferencia de cuadrados

$$(a^2 - b^2) = (a + b)(a - b)$$

$$0 \le (3x-1)^2-(x+5)^2$$

$$0 \le (3x - 1 + x + 5)(3x - 1 - x - 5)$$

$$0 \le (4x+4)(2x-6)$$

$$0 \le 4(x+1)2(x-3)$$

$$\frac{0}{8} \leq \frac{8}{8}(x+1)(x-3)$$

Puntos Críticos: -1 y 3

Piden: C.S.

C.S. = $< -\infty : -1] \cup [3 + \infty >$

Indique la suma de los valores de x en:

$$||x + 5| + 3| = 12$$

Resolución

$$\frac{\text{Propiedad de Valor Absoluto}}{|\mathbf{x}| = \mathbf{a} \Leftrightarrow \mathbf{x} = \mathbf{a} \lor \mathbf{x} = -\mathbf{a}}$$

$$||x - 5| + 3| = 12$$

$$|x-5|+3=12 \quad \forall \quad |x-5|+3=-12$$

$$|x-5| = 9$$
 $|x-5| = -15$

$$|x - 5| = 9$$

$$X-5 = 9$$
 V $X-5 = -9$

$$x_1 = 14$$
 V $x_2 = -4$

Suma de los valores de x

$$x_1 + x_2 = 14 - 4 = 10$$

Rpta:10

Dada la función

$$M = \{(3; m-n), (5, ; m+2n); (4,7); (5,9)\} y$$

$$H(3) = 6. Calcule : m + n$$

Resolución Como M es función:

$$(5, m+2n)=(5,9)$$

$$m + 2n = 9 ... (1)$$

Del dato: H(3) = 6

$$m - n = 6 ... (2)$$

LUEGO de (1)y (2)

$$m+2n=9$$

$$m-n=6$$
(-)

$$3n = 3$$

 $n = 1 \land de(2) m = 7$

Piden:
$$m + n$$
:

RPTA: 7+1=8

Sea la función Inyectiva

$$R = \{(5;3), (2;0); (8,1); (a-5,0); (3b-7,1); (5,7)\}$$

Calcule $3a-b$

Resolución

Si R es inyectiva se tiene:

$$(2;0) = (a-5;0) por ser inyectiva$$

(8; 1) = (3b - 7; 1) por ser inyectiva

piden
$$3a - b$$

■
$$3a - b = 3(7) - 5$$

$$a - 5 = 2$$

$$\rightarrow$$
 $a = 7$

$$8 = 3b - 7$$

$$15 = 3b$$

$$\rightarrow$$
 b=5

Rpta;

21-5=16

PROBLEMA 5 Grafique la función $F(x) = x^2 + 8x + 24$ Halle el vértice de la parábola y el rango

+8

Resolución En la función

$$F(X) = X^2 + 8X + 24$$
$$F(X) = X^2 + 8X + 16 + 8$$

$$VERTICE: X+4=0$$

$$X = -4$$
 $\wedge y = 8$

Calculando el rango:

Calculando
$$(X+4)^2 \ge 0$$

$$(X+4)^2+8 \geq 8$$

$$F(x) \geq 8$$

REDUZCA:
$$\log_8 \left[\sqrt{\log_4 (\sqrt{\log_2 4})} \right]$$

RESOLUCIÓN

$$\log_{a^n} b^m = \frac{m}{n} \log_a b$$

$$\sqrt{\log_2 4} = \sqrt{\log_2 2^2} = \sqrt{2(\log_2 2)} = \sqrt{2}$$

REMPLAZANDO

$$\sqrt{\log_4(\sqrt{2})}$$

$$\sqrt{\log_2^{2^{1/2}}}$$

 \log_8

$$\sqrt{\frac{1}{4}\log_2 2}$$

$$\log_8 \sqrt{\frac{1}{4}}$$

$$log_{2^3}\frac{1}{2}$$

$$log_{2^3}2^{-1}$$

POR LA PROPIEDAD

$$\frac{-1}{3} \left(\log_3 3 \right)^{=1}$$

RPTA=
$$-\frac{1}{3}$$

PROBLEMA 7 Cuál de las siguientes funciones son inyectivas:

$$I) \qquad f(x) = \sqrt{x-2} + 3$$

II)
$$G(x)=(x+1)^2+5$$

Resolución

De I

f es inyectiva

<u>Teorema</u>: Una función f es inyectiva si cualquier <u>RECTA</u> <u>HORIZONTAL</u> corta a su gráfica a lo más en un punto

V=(2;3)

$$V = (-1,3)$$

Intersección con el eje y

$$x = 0$$
 $y = (x + 1)^2 + 3$
 $y = 1 + 3 = 4$

= 15

PROBLEMA 8

Se tiene la función $H(X)=\langle$

$$\begin{cases}
-x + 5; & x < -6 \dots (1) \\
8; & -6 \le x < 6 \dots (2) \\
4x - 1; & x \ge 6 \dots (3)
\end{cases}$$

Calcule
$$T = H(8) - 4H(1) + H(-10)$$

Resolución

• De(3):
$$x \ge 6$$

$$H(x) = 4x - 1$$

$$H(8) = 4(8) - 1$$

■ De (2):

$$-6 \le x < 6$$

$$H(1)=8$$

•
$$De(1): x < -6$$

$$H(X) = -x + 5$$

$$H(-10) = -(-10) + 5$$

$$T = H(8) - 4H(1) + H(-10)$$

= 31

Remplazando
$$\Rightarrow$$
 T= 31 - 4(8) + 15

$$T = 31 - 32 + 15$$

Rpta
$$T = 14$$

PROBLEMA 9 Halle el valor de x en la ecuación siguiente:

$$3 + \log_x(x - 1)^2 + \log_x\left(\frac{1}{x^2}\right) = \log_x x^3$$

Resolución Recordar $\log a^{x^n} = n \log_a x$

$$3' + \log_X(x - 1)^2 + \log_X\left(\frac{1}{x^2}\right) = 3\log_X x$$

$$\log_a(M.N) = \log_a M + \log_a N$$

Por definición de logaritmo

$$\left(\frac{(x-1)^2}{x^2}\right) = 1$$

$$x^2 - 2x + 1 = x^2$$

$$1 = 2x$$

Rpta:
$$x = \frac{1}{2}$$

Si R es una función lineal que cumple los siguientes valores de la tabla

X	8	2
y	19	7

Si el valor de R $\left(\frac{1}{2}\right)$ y R (0) nos da el marcador final de un partido de futbol Perú –Paraguay respectivamente, ¿Cuál fue el marcador?

RESOLUCIÓN R(X)= ax+b...función lineal

Del recuadro

•
$$R(8) = 8 a + b$$

 $19 = 8a + b \dots (\alpha)$

•
$$R(2) = 2 a + b$$

 $7 = 2a + b \dots (\beta)$

De
$$\alpha y \beta$$
: 19 = 8a + b
$$7 = 2a + b$$
12 = 6a

De la resta ;
$$a=2$$
 \land $b=3$

Remplazando en
$$R(x)$$
; $a = 6 \land b = 3$

Piden: •
$$R(0) + 2 = 2(0) + 3 = 3$$

•
$$R\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 3 = 4$$

Rpta: PERÚ =4 Y PARAGUAY= 3