IMO.SHL.2014.N6: Ar $a_1 < a_2 < \cdots < a_n$ apzīmējam naturālus skaitļus, kas ir savstarpēji pirmskaitļi. Turklāt a_1 ir pirmskaitlis un $a_1 \ge n+2$. Reālās taisnes nogrieznī $I = [0, a_1 a_2 \cdots a_n]$ nokrāsojam sarkanus visus veselos skaitļus, kas dalās ar vismaz vienu no skaitļiem a_1, \ldots, a_n . Sarkanie punkti sadala nogriezni I mazākos nogriežņos. Pierādīt, ka šo nogriežņu garumu kvadrātu summa dalās ar a_1 .

Pierādījums.

Apzīmējam reizinājumu $A = a_1 \cdot \ldots \cdot a_n$. Intervāla X garumu apzīmējam ar |X|.

Ar S apzīmējam visus intervālus $[x,y] \subseteq [0,A], x < y$, kam abi galapunkti bija sarkani.

Ar \mathcal{T} apzīmējam visus tos intervālus ar veseliem galapunktiem, kam $[x,y]\subseteq [0,A]$ un kuru iekšpusē nav neviena sarkanā punkta. (Šo intervālu skaitu un garumus būs vieglāk novērtēt nekā tos, kurus mums vajag - no kopas \mathcal{S} .

Mums jāpamato, ka summa $\sum_{X \in \mathcal{S}} |X|^2$ dalās ar p. Piekārtosim katram intervālam $Y \in \mathcal{T}$ svaru

w(|Y|), kas atkarīgs tikai no tā garuma:

$$w(|Y|) = \begin{cases} 1, & \text{ja } |Y| = 1\\ 2, & \text{ja } |Y| \ge 2 \end{cases}$$

Apskatīsim jebkuru intervālu $X \in \mathcal{S}$; un tos intervālus no \mathcal{T} , kuri tajā ietilpst. Intervāls X saturēs vienu intervālu $Y \in \mathcal{T}$ garumā |X|, divus intervālus garumā |X| - 1, utt., visbeidzot |X| intervālus no \mathcal{T} garumā 1. Visu šo apakšintervālu svaru summa:

$$\sum_{Y \subseteq X} w(|Y|) = (1 + 2 + \dots + (|X| - 1)) \cdot 2 + |X| \cdot 1 = |X|^{2}.$$

Tā kā intervāli no \mathcal{S} nepārklājas, katrs intervāls $Y \in \mathcal{T}$ pieder tieši vienam no tiem. Lai atrastu visu intervālu $X \in \mathcal{S}$ kvadrātu summu $|X|^2$, tai vietā saskaitīsim svarus intervāliem $Y \in \mathcal{T}$.

Katram iespējamam garumam $d=1,\ldots,a_1$, noskaidrosim, cik ir intervālu no \mathcal{T} garumā tieši d. Tātad - cik ir tādu veselu $x\in[0;A-1]$ vērtību, kam [x,x+d] nesatur nevienu sarkanu punktu? Šai nolūkā dalām x ar visiem skaitļiem a_1,a_2,\ldots,a_n un iegūstam atlikumus r_1,r_2,\ldots,r_n . Pēc ķīniešu atlikumu teorēmas, katram x šis komplekts ar atlikumiem (r_1,\ldots,r_n) būs cits (un arī katram atlikumu komplektam atbilst noteikts $x\in[0;A)$).

Bez sarkanajiem punktiem būs tie nogriežņi [x; x+d], kuriem $r_i+d \leq a_i$ (katram $i=1,\ldots,n$). Pēc reizināšanas likuma, šādu atlikumu būs

$$f(d) = (a_1 + 1 - d) \cdot (a_2 + 1 - d) \cdot \dots \cdot (a_n + 1 - d).$$

Izmantojot apzīmējumu f(d), varam izteikt tālāk:

$$\sum_{X \in \mathcal{S}} |X|^2 = \sum_{Y \in \mathcal{T}} w(|Y|) = 2 \sum_{d=1}^{a_1} f(d) - f(1).$$

Viegli redzēt, ka $f(1) = a_1 a_2 \dots a_n$ dalās ar a_1 . Savukārt summa $\sum f(d)$ ir n-tās pakāpes polinoms attiecībā pret mainīgo d. Tā kā summēšana notiek pa visām a_1 kongruences klasēm (no 1 līdz a_1 ieskaitot), tad varam pamatot, ka tā dalās ar a_1 , izmantojot sekojošo Lemmu. Tātad arī $\sum |X|^2$ dalās ar a_1 .

Lemma. Ja p ir pirmskaitlis, F(x) ir polinoms ar veseliem koeficientiem, kura pakāpe nepārsniedz p-2, tad $\sum_{x=1}^{p} F(x)$ dalās ar p.

Pierādijums. Pietiek pamatot šo rezultātu visiem $F(x)=x^k$, kur $k\leq p-2$. Pierāda pēc indukcijas. Ja k=0, tad summa ir vienāda ar p - tātad dalās ar p.

Izvēlamies $k \leq p-2$ un pieņemam, ka visām mazākām pakāpēm lemma ir spēkā. Tad

$$0 \equiv p^{k+1} = \sum_{x=1}^{p} \left(x^{k+1} - (x-1)^{k+1} \right) \equiv (k+1) \sum_{x=1}^{p} x^k \pmod{p}$$

Tā kā 0 < k+1 < p, tad ar (k+1) var noīsināt un iegūt $0 \equiv \sum_{x=1}^p x^k \pmod{p}$. \square

IMO.SHL.2014.N7: Dots naturāls skaitlis $c \geq 1$. Definējam naturālu skaitļu virkni ar vienādībām $a_1 = c$ un

$$a_{n+1} = a_n^3 - 4c \cdot a_n^2 + 5c^2 \cdot a_n + c$$

visiem $n \ge 1$. Pierādīt, ka jebkuram naturālam $n \ge 2$ eksistē pirmskaitlis p, ar kuru dalās a_n , bet nedalās neviens no skaitļiem a_1, \ldots, a_{n-1} .

 $Pier\bar{a}d\bar{i}jums$. Definējam $x_0 = 0$ un $x_n = a_n/c$ visiem $n \ge 1$. Tad jaunā virkne (x_n) izpilda šādu rekurentu sakarību:

$$x_{n+1} = c^2 \left(x_n^3 - 4x_n^2 + 5x_n \right) + 1$$

visiem veseliem $n \geq 0$. Šī sakarība parāda arī, ka visi virknes locekļi ir naturāli skaitļi (piemēram, $x_1 = 1$ un $x_2 = 2c^2 + 1$). No šīs sakarības var arī pamatot, ka virkne ir stingri augoša $(x_{n+1} > x_n)$ - piemēram, iznesot pirms iekavām x_n un atdalot pilno kvadrātu.

Pirmie locekļi (x_1, x_2) ir savstarpēji pirmskaitļi. Vēlamies pamatot, ka arī lielākiem $n \ (n \ge 2)$ eksistēs pirmskaitlis p, kas ir x_n dalītājs, bet nedala nevienu no skaitļiem x_1, \ldots, x_{n-1} . Šajā nolūkā pamatosim trīs apgalvojumus.

Apgalvojums 1: Ja $i \equiv j \pmod{m}$ izpildās kaut kādiem $i, j \geq 0$ un $m \geq 1$, tad izpildās arī $x_i \equiv x_j \pmod{x_m}$.

Pierādijums. Pamatosim, ka x_i un x_{i+m} dod vienādus atlikumus, dalot ar x_m . (T.i. apskatām gadījumu, kad j-i=m. Gadījumi, kad $j-i=2m,3m,\ldots$ iegūstami, izejot atlikumu ciklu divas, trīs vai vairāk reizes.)

Indukcijas bāze i = 0: Tad jebkuram fiksētam m būs spēkā $x_0 \equiv x_m \pmod{x_m}$, jo $x_0 = 0$.

Induktīvā pāreja: $i \to i+1$. Pieņemsim, ka $x_{i+m} \equiv x_i \pmod{m}$ kādam i. Tad rekursīvā sakarība, kas izsaka x_{i+m+1} no x_{i+m} un i_{i+1} no x_i parāda, ka arī x_{i+m+1} un x_{i+1} ir kongruenti pēc x_m moduļa. \square

Apgalvojums 2. Ja veseli skaitļi $i, j \geq 2$ un $m \geq 1$ apmierina sakarību $i \equiv j \pmod{m}$, tad ir spēkā arī $x_i \equiv x_j \pmod{x_m^2}$.

 $Pierād\bar{i}jums$. Pietiek parādīt, ka $x_{i+m} \equiv x_i \pmod{x_m^2}$ visiem veseliem $i \geq 2$ un $m \geq 1$. Indukcijas pāreja var izmantot rekurento sakarību, kas x_{n+1} izsaka ar x_n , bet šoreiz indukcijas bāze (i=2) ir grūtāka.

Apzīmējam $L = 5c^2$. Tad pēc x_n rekurentās sakarības būs arī $x_{m+1} \equiv Lx_m + 1 \pmod{x_m^2}$. Un tātad:

$$x_{m+1}^3 - 4x_{m+1}^2 + 5x_{m+1} \equiv (Lx_m + 1)^3 - 4(Lx_m + 1)^2 + 5(Lx_m + 1) \equiv 2 \pmod{x_m^2}$$
.

No šejienes savukārt seko, ka $x_{m+2} \equiv 2c^2 + 1 \equiv x_2 \pmod{x_m^2}$. \square

Apgalvojums 3. Katram veselam skaitlim $n \geq 2$, ir sp'ek'a $x_n > x_1 \cdot x_2 \cdot \ldots \cdot x_{n-2}$.

 $Pier\bar{a}d\bar{\imath}jums.$ Pēc indukcijas pan. Gadījumi n=2 un n=3ir vienkārši. Pieņemsim, ka apgalvojums spēkā kādam $n\geq 3.$ Tad

$$x_{n+1} > x_n^3 - 4x_n^2 + 5x_n > 7x_n^2 - 4x_n^2 > x_n^2 > x_n x_{n-1},$$

kas kopā ar indukcijas hipotēzi dod vajadzīgo apgalvojumu. □

Visbeidzot - pēc Apgalvojuma 3, atradīsies pirmskaitlis p, kura kāpinātājs x_n sadalījumā pirmreizinātājos ir augstāks nekā tā kāpinātājs reizinājumā $x_1 \cdot x_2 \cdot \ldots \cdot x_{n-2}$. Pamatosim, ka šis pirmskaitlis nevar dalīt nevienu skaitli x_1, \ldots, x_{n-1} .

No pretējā - pieņemsim, ka k ir mazākais koeficients, kam x_k dalās ar p. Tā kā x_{n-1} un x_n ir savstarpēji pirmskaitļi un $x_1 = 1$, tad šis minimālais koeficients izpilda $2 \le k \le n-2$. Izsakām n = qk + r (dalījums ar atlikumu). Pēc Apgalvojuma 1 ir jāizpildās $x_n \equiv x_r \pmod{x_k}$, tātad p dala arī x_r . Tā kā k bija minimālais, ir jābūt r = 0 (t.i. n dalās ar k).

Pēc Apgalvojuma 2 secinām, ka $x_n \equiv x_k \pmod{x_k^2}$. Apzīmējam $\alpha = \nu_p(x_k)$ - skaitļa x_k p-valuācija. Tātad x_k^2 un arī x_n dalās ar $p^{\alpha+1}$. Iegūta pretruna, jo x_n bija jādalās ar augstāku pirmskaitļa p pakāpi nekā jebkuram x_k (k < n). \square

IMO.SHL.2018.N6: Dota $f:\{1,2,3,\ldots\}\to\{2,3,\ldots\}$, funkcija, kas apmierina sakarību $f(m+n)\mid f(m)+f(n)$ (f(m+n) ir f(m)+f(n) dalītājs) visiem naturālu skaitļu pāriem m,n. Pierādīt, ka eksistē naturāls skaitlis c>1, kurš ir visu f vērtību dalītājs. Atrisinājums.

Katram naturālam m apzīmēsim ar S_m visu to argumentu n kopu, kam f(n) dalās ar m. **Lemma.** Ja S_m ir bezgalīga, tad $S_m = \{d, 2d, 3d, \ldots\}$, t.i. satur tieši skaitļa d daudzkārtņus. $Pierād\bar{i}jums$. Apzīmējam $d = \min S_m$; skaitlis m ir f(d) dalītājs. Ja $n \in S_m$ un n > d, tad

$$m | f(n)$$
 un $f(n) | f(n-d) + f(d),$

tātad m dala arī f(n-d) un $n-d \in S_m$. Pēc indukcijas arī $n-2d, n-3d, \ldots \in S_m$. Tā kā m bija mazākais S_m elements, tad nevar rasties pozitīvs atlikums $r \in (0;d)$ (ja no n atņem pietiekami daudzus d). Tāpēc n dalās ar d bez atlikuma. \square

Apgalvojums 1. Ja funkcija f ir ierobežota (t.i. tās vērtības nepārsniedz kādu fiksētu naturālu skaitli), tad visas šīs vērtības dalās ar vienu un to pašu pirmskaitli.

 $Pierād\bar{\imath}jums$. Ir tikai galīgs skaits pirmskaitļu, kuri dala kaut vienu f(n) vērtību. Starp tiem varētu būt tādi pirmskaitļi ("sarkanie"), kuri ir f(n) dalītāji galīgi daudziem argumentiem n (un visi citi - "zilie", kuri ir f(n) dalītāji bezgalīgi daudziem n).

- 1. Apzīmēsim ar N tik lielu naturālu skaitli, lai tas pārsniegtu visus tos n_i , kam $f(n_i)$ dalās ar kādu "sarkanu" pirmskaitli.
- 2. Katram no "zilajiem" pirmskaitļiem p_1, \ldots, p_k eksistēs tāds d_1, \ldots, d_k , ka S_{p_i} satur tieši visus d_i daudzkārtņus.

Konstruējam jaunu skaitli:

$$n^* = N \cdot d_1 \cdot d_2 \cdot \ldots \cdot d_k + 1.$$

Visi $f(n^*)$ dalītāji ir zilie pirmskaitļi, jo $n^* > N$. Ar p_i apzīmēsim kādu zilo pirmskaitli, kas ir $f(n^*)$ dalītājs. Tad $n^* \in S_{p_i}$ un tātad d_i ir n^* dalītājs (jo ir spēkā Lemma).

Bet tanī pašā laikā n^* dod atlikumu 1, dalot ar d_i , tātad $d_i = 1$. Tas nozīmē, ka S_{p_i} satur visus naturālos skaitļus un tātad p_i dala visas f(n) vērtības. \square

Apgalvojums 2. Ja funkcija f ir neierobežota, tad f(1) = a ir jebkuras vērtības f(n) dalītājs. $Pier\bar{a}d\bar{\imath}jums$. Tā kā $1 \in S_a$, tad saskaņā ar lemmu pietiek pamatot, ka S_a ir bezgalīga.

Sauksim naturālu skaitli q par "lokālu maksimumu", ja f(q) ir lielāks nekā jebkura no iepriekšējām vērtībām $(f(1),\ldots,f(q-1))$. Tā kā f ir neierobežota, šādu lokālo maksimumu būs bezgalīgi daudz. Apzīmēsim visu šo maksimumu virkni ar $1=q_1< q_2<\ldots$, un $h_k=f(q_k)$. katram no maksimumiem q_i un katram $k< q_i$ izpildās $f(q_i)\mid f(k)+f(q_i-k)< 2f(q_i)$, tātad

$$f(k) + f(q_i - k) = f(q_i) = h_i.$$

Pēc Dirihlē principa, starp skaitļiem h_1, h_2, \ldots ir bezgalīgi daudzi, kas kongruenti pēc a moduļa. Šo apakšvirkni apzīmējam ar $h_{k_0} \equiv h_{k_1} \equiv \ldots \pmod{a}$. Tad

$$f(q_{k_i} - q_{k_0}) = f(q_{k_i}) - f(p_{k_0}) = h_{k_i} - h_{k_0}$$

t.i. $q_{k_i} - q_{k_0}$ pieder S_a .

Tādēļ kopā S_a ir bezgalīgi daudz elementu un f(1)=a ir jebkura f(n) dalītājs. \square

IMO.SHL.2018.N7: Dots vesels skaitlis $n \geq 2018$ un $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ ir pa pāriem dažādi naturāli skaitļi, kas nepārsniedz 5n. Pieņemsim, ka virkne

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}$$

veido aritmētisku progresiju. Pierādīt, ka visi virknes locekļi ir savā starpā vienādi. *Atrisinājums:*

Pieņemsim no pretējā, ka $\frac{a_1}{b_1}, \ldots$ ir aritmētiska progresija un tās diference ir $\Delta = \frac{c}{d} > 0$, kas izteikta kā nesaīsināma daļa.

Atradīsim, cik daudzi no saucējiem b_i dalās ar d. Šai nolūkā katram $i \in [1; n]$ un katram skaitļa d pirmreizinātājam p teiksim, ka indekss i ir p-savāds, ja b_i dalās ar zemāku pirmskaitļa p pakāpi nekā d, t.i. $\nu_p(b_i) < \nu_p(d)$ (kur $\nu_p(x)$ apzīmē skaitļa x p-valuāciju - kāpinātāju pie p, kur x sadalīts pirmreizinātājos).

Apgalvojums 1. Katram pirmskaitlim p, visi p-savādie indeksi atšķiras par p daudzkārtni (t.i. viņi visi pieder kaut kādai aritmētiskai progresijai ar difierenci p).

Pierādijums: Pieņemsim no pretējā, ka i un j abi ir p-savādi (un nedalās ar p^{α} , kur d satur pirmreizinātāju p precīzi pakāpē α), turklāt i-j nedalās ar p. Šajā gadījumā arī daļu $\frac{a_i}{b_i}$ un $\frac{a_j}{b_j}$ mazākais kopsaucējs nedalās ar p^{α} . Tas nav iespējams, jo šo daļu starpība ir $(i-j)\Delta = \frac{(i-j)c}{d}$ – nesaīsināma daļa, kuras saucējs dalās ar p^{α} . Pretruna. \square

Apgalvojums 2. Skaitlim d nav pirmreizinātāju, kas pārsniedz 5.

Pierādijums: Pieņemsim, ka d dalās ar pirmskaitli $p \geq 7$. No indeksiem 1, 2, ..., n ne vairāk kā $\left\lceil \frac{n}{p} \right\rceil < \frac{n}{p} + 1$ ir p-savādi. Tātad p dala visus pārējos no skaitļiem $b_1, ..., b_n$, kuru pavisam ir $n - \left(\frac{n}{p} + 1 \right)$. Tā kā viņi visi ir dažādi, lielākais no tiem ir vismaz

$$\left(\frac{p-1}{p} \cdot n - 1\right)p = pn - n - p = (p-1)(n-1) \ge 6(n-1) > 5n,$$

kas ir pretrunā ar nosacījumu. □

Apgalvojums 3. Starp jebkuriem 30 pēc kārtas sekojošiem daļu saucējiem $b_{k+1}, b_{k+2}, \dots, b_{k+30}$ vismaz 8 ir tādi, kas dalās ar d.

Pierādījums: Ir pavisam $\varphi(30)=8$ (Eilera funkcija) dažādi atlikumi, dalot ar 30, kuri nepieder tām aritmētiskajām progresijām ar diferencēm 2, 3 vai 5, kas varētu būt 2-savādas, 3-savādas vai 5-savādas. (Tie indeksi, kuri nav savādi, satur pirmreizinātājus 2, 3, 5 vismaz tādā pašā pakāpē kā d - tātad attiecīgie b_i dalās ar d.)

Apgalvojums 4. $|\Delta| < \frac{20}{n-2}$ un tātad saucējs d daļskaitlī $\Delta = c/d$ ir lielāks par apgriezto lielumu $\frac{n-2}{20}$.

Pierādījums. Starp visām daļām $\frac{a_i}{b_i}$ aplūkosim tikai tās daļas, kurām saucēji $b_i \geq n/2$. Tādu daļu ir vismaz n-n/2=n/2, katrs saucējs ir vismaz n/2, bet attiecīgās daļas skaitītājs ir $a_i \leq 5n$. Neviena šāda attiecība $\frac{a_i}{b_i}$ nepārsniedz $\frac{5n}{n/2}=10$. Tātad visas šīs daļas (izņemot izmestās ar ļoti maziem saucējiem) izpilda $\frac{a_i}{b_i} \in (0;10]$

Aritmētiskās progresijas diference Δ nevar pārsniegt $\frac{10}{n/2-1} = \frac{20}{n-2}$, jo citādi n/2 reizes pa šo diferenci paejot uz priekšu, progresija "izlīstu" no intervāla (0; 10]. \square

Secinājums. Skaitlis $\Delta = c/d$ nevar būt pozitīvs.

Pierādijums. Ir vismaz $\lfloor n/30 \rfloor \cdot 8$ dažādi b_i , kuri (pēc Apgalvojuma 3) dalās ar d. Tātad vislielākais no tiem ir vismaz

$$\left(\left\lfloor \frac{n}{30}\right\rfloor \cdot 8\right) \cdot d = \left(\frac{n}{30} - 1\right) \cdot 8 \cdot \frac{n-2}{20} > 5n,$$

ja n vietā ievieto $n \geq 2018$, jo $\frac{n-2}{20}$ ir lielāks par 100. Pretruna, jo $(\forall i)(b_i < 5n)$. \square