Remote Sensing of Cloud Top Heights using the Research Scanning Polarimeter

Kenneth Sinclair, Bastiaan van Diedenhoven, Brian Cairns, John Yorks, Andrzej Wasilewski

Advances in Atmospheric Aerosol and Cloud Characterization II AGU Fall Meeting

December 17th, 2015

Acknowledgements

- Support for this work is provided by NASA grant #NNX15AD44G (ROSES ACCDAM).
- Facilities and equipment provided in part by NASA GISS.

 Natural Sciences and Engineering Research Council of Canada (NSERC)

 Columbia University's Department of Earth and Environmental

Motivation

CFMIP

- Cloud top height (CTH) is critical for the Research Scanning Polarimeter (RSP) when studying:
 - cloud thermodynamic phase
 - particle size distributions
 - asymmetry parameter
- Interested in exploring the RSP's ability to sense multiple cloud layers
- Models indicate that cloud height increases in a warming climate result in a positive cloud-height feedback
- Global-scale observations of CTH changes have yielded uncertain results

CMIP3

Introduction

Research Scanning Polarimeter

- Prototype for Aerosol Polarimetry Sensor on the Glory satellite (2011)
- Along track scanning 152 viewing angles per scene (±60°)
- 14 mrad field of view (~280 m on ground from 20 km alt.)
- Polarimetric and full intensity measurements in the visible and shortwave infrared over 9 bands:
 - 410, 470, 555, 670, 864, 960, 1593, 1880, 2263 nm for aerosols and clouds
 - 1880 nm for high-altitude measurements

Measurements

- RSP: using 2 channels: 1880 nm & 670 nm
- Cloud Physics Lidar (CPL)
 - 30 m vertical resolution
 - Accurate up to an optical depth of ~3.0
 - Data products used: cloud top height, cloud bottom he extinction, layer classif (aerosol, cloud, PBL)
- Data used in this analysis was collected over 9 days during the NASA SEAC⁴RS experiment
 - August 6th, 21st and September

 2000 Attn A Attn VI Sth TY 6th, 18th and 22nd 2013

Photo credits (top): Carla Thomas

RSP CTH Retrieval Method

- Uses the concept of parallax.
- Distance from a stationary object is related to the displacement when observed from different viewing angles
- Accurate knowledge of the geometry of the instrument and position of the aircraft is essential for stereo reconstruction

RSP Measurements

- Take a set of consecutive measurements
- Calculate the correlation between this set and equa sized sets at other viewing angles

Time

- Take a set of consecutive measurements
- Calculate the correlation between this set and equa sized sets at other viewing angles
- Calculate the same correlator aggregated offsets range from 0-20 km

- Take a set of consecutive measurements
- Calculate the correlation between this set and equa sized sets at other viewing angles
- Calculate the same correlator aggregated offsets range from 0-20 km

- Take a set of consecutive measurements
- Calculate the correlation between this set and equa sized sets at other viewing angles
- Calculate the same correlator aggregated offsets range from 0-20 km

- Take a set of consecutive measurements
- Calculate the correlation between this set and equa sized sets at other viewing angles
- Calculate the same correlator aggregated offsets range

RSP Measurements

1880 nm channel

670 nm channel

Dual channel

Differences and Cloud Height

Differences and Cloud Optical Thickness

Correlation for 1st and 2nd peaks

1880 nm band

- Correlation cutoff: 0.0, 0.35, 0.60
- 5-17 km
- 1st peak median error: 0.43 km
- 2nd peak median error: 1.71 km
- 3rd peak median error:
 2.49 km

670 nm band

- Correlation cutoff: 0.0, 0.45, 0.60
- 1-13 km
- 1st peak median error: 0.57 km
- 2nd peak median error:
 2.16 km
- 3rd peak median error:
 3.02 km

Dual band

- Correlation cutoff: 0.0, 0.25, 0.60
- 1-15 km
- 1st peak median error: 0.45 km
- 2nd peak median error: 1.67 km
- 3rd peak median error:
 2.66 km

Summary

- Possible to use the RSP to retrieve multilayered cloud scenes
- Method works well for optically thin clouds (<0.05)
- The 1880 nm, 670 nm and dual bands consistently retrieve primary layer heights
- The dual band method is the most robust at determining multilayered scenes

Future Work

- Study the effect of using less angular measurements and degrading the spatial resolution
- Determine the magnitude of the effect of the object changing shape or position during the overpass (~3 minutes)

Thresholds

	1880 nm	670 nm	Dual
Cloud Top or Middle	Middle	Middle	Middle
Minimum COT	0.0	0.0	0.0
Minimum cloud height	5.0 km	1.0 km	1.0 km
Maximum cloud height	17.0 km	13.0 km	15.0 km
1 st Peak Minimum Static Correlation	0.00	0.00	0.00
2 nd Peak Minimum Static Correlation	0.35	0.45	0.25
3 rd Peak Minimum Static Correlation	0.50	0.60	0.60

Performance

			1880 nm band	670 nm band	Dual Band
1	1 st	Median Error [km]	0.43	0.57	0.45
		Np	105467	107476	116319
2	2 nd	Median Error [km]	1.71	2.16	1.67
		Np	74170	75310	85530
3	3 rd	Median Error [km]	2.49	3.02	2.66
Jn		Np	40307	30805	47562

Extra

Cloud Top vs Cloud Middle

		1880 n	m band	670 nr	n band	Dual	Band
		CPL	CPL	CPL	CPL	CPL	CPL
		Cloud	Cloud	Cloud	Cloud	Cloud	Cloud
		Top	Middle	Top	Middle	Top	Middle
1 st	Median Error [km]	0.52	0.47	0.63	0.58	0.53	0.48
	Mean Error [km]	1.07	1.00	1.67	1.52	1.19	1.08
	Np	87447	87447	76262	76262	86223	86223
	Std. Dev.	2.03	1.91	2.91	2.83	2.28	2.18
	Corr. Coeff.	0.86	0.86	0.79	0.79	0.85	0.86
2 nd	Median Error [km]	1.26	1.27	1.57	1.52	1.22	1.19
	Mean Error [km]	1.94	1.90	2.50	2.37	2.21	2.11
	Np	36176	36176	34755	34755	43145	43145
	Std. Dev.	2.88	2.77	3.44	3.34	3.35	3.26
	Corr. Coeff.	0.71	0.72	0.66	0.67	0.69	0.69
3 rd	Median Error [km]	2.11	2.10	2.39	2.28	2.06	1.98
	Mean Error [km]	2.71	2.63	3.14	2.92	2.86	2.69
	Np	15939	15939	14049	14049	18012	18012
	Std. Dev.	3.65	3.52	3.71	3.59	3.70	3.57
	Corr. Coeff.	0.56	0.57	0.54	0.55	0.58	0.59

Number of Cloud Layers

Table 1: 1880 nm band RSP cloud scene fractions compared with CPL

DCD Cooper	Evention	Corresponding CPL Layers					
RSP Scenes	RSP Scenes Fraction	0	1	2	3	4	5
1 layer	0.32	0.1	0.46	0.27	0.12	0.04	0.01
2 layer	0.30	0.06	0.41	0.30	0.15	0.05	0.02
3 layer	0.37	0.05	0.40	0.31	0.16	0.07	0.02

Table 2: 670 nm band RSP cloud scene fractions compared with CPL

RSP Scenes	Fraction	Corresponding CPL Layers						
RSF Scelles	Fraction	0	1	2	3	4	5	
1 layer	0.37	0.11	0.48	0.25	0.11	0.04	0.01	
2 layer	0.36	0.10	0.44	0.27	0.13	0.04	0.01	
3 layer	0.27	0.04	0.41	0.31	0.15	0.04	0.01	

Table 3: Dual band RSP cloud scene fractions compared with CPL

RSP Scenes	Exaction		ers				
RSP Scelles	Fraction	0	1	2	3	4	5
1 layer	0.31	0.12	0.53	0.23	0.08	0.03	0.01
2 layer	0.31	0.09	0.43	0.28	0.13	0.05	0.01
3 layer	0.38	0.05	0.40	0.31	0.16	0.07	0.02

