Esercizio 1.

Un'onda armonica ha ampiezza $A_0 = 2.0$ cm, vettore d'onda $k = 20\pi$ m⁻¹ e pulsazione $\omega = 100\pi$. Calcolare la velocità di propagazione c, la lunghezza d'onda λ , il periodo T, la distanza fra due punti che oscillano sfasati di $\pi/4$, la posizione e velocità dei punti di coordinate $x_1 = 12$ cm e $x_2 = 23$ cm all'istante $t_0 = 0.015$ s.

$$C = 5 \text{ m/s}$$
 $\lambda = 10 \text{ cm}$ $T = 0.025$ $\Delta x = \frac{1}{80} = 0.0125 \text{ m}$
 $\pm 0.62 \text{ cm}$ $\pm 5.98 \text{ m/s}$

Esercizio 2.

Una corda molto lunga di densità lineare $\rho_L = 2.0$ g/m è tesa da una tensione T = 5.0 N. Nel punto x = 0 un oscillatore armonico mette in vibrazione la corda con una frequenza v = 100 Hz e con una ampiezza $A_0 = 2.0$ mm. Se l'oscillatore ha lo spostamento massimo a t = 0, calcolare l'equazione di propagazione dell'onda e lo spostamento del punto $x_0 = 2.7$ m all'istante $t_0 = 5.0$ ms.

Fase initiale
$$\pi/2$$
 $C = 50 \text{ m/s}$ $\lambda = 0.50 \text{ m}$ $K = 47 \text{ m}^{-1}$ $A(x_0, t_0) = 1.6 \text{ mm}$

Esercizio 3.

Un generatore di microonde genera microonde con frequenze comprese fra 10 e 20 GHz in una cavità lunga 10 cm. Calcolare quali frequenze generano onde stazionarie e per quali di queste un antinodo viene generato nel punto medio della cavità.

$$V_1 = 1.5 \cdot 10^9 \, \text{Hz}$$
 $n = 7 \div 13 \, (\text{dispari})$

Esercizio 4.

In una corda tesa vincolata agli estremi esiste un'onda stazionaria rappresentata dall'espressione:

$$y(x,t) = 0.5 \sin 0.2x \cos 300t$$

dove le lunghezze sono date in centimetri e il tempo in secondi. Calcolare: 1) la lunghezza d'onda λ e la frequenza ν dell'onda; 2) la velocità c dell'onda; 3) La velocità massima di un punto posto su un ventre dell'onda; 4) la lunghezza L della corda sapendo che essa sta vibrando nella sua quarta armonica; 5) la velocità trasversale del punto della corda in x_1 = 1.0 cm all'istante t_1 = 9/4 s?

Esercizo 5.

Una colonna di aria (c = 343 m/s) in un tubo forma onde stazionarie alle frequenze di 390, 520 e 650 Hz e a nessuna frequenza intermedia fra esse. Determinare: se si tratta di un tubo chiuso ad entrambe o a una sola estremità; quanto lungo è il tubo; le frequenze dei tre modi se il tubo è pieno di anidride carbonica (c = 280 m/s).

2 estremitä chiuse/aperte.
$$L = 1.32 \text{ m}$$
 $V_4 = 318 \text{ Hz}$ $V_2 = 424 \text{ Hz}$ $V_3 = 530 \text{ Hz}$

Esercizio 6.

Una corda di chitarra con una densità lineare $\rho_L = 2.0$ g/m è tesa fra due supporti distanti 60 cm. La corda forma un'onda stazionaria con tre ventri alla frequenza di 420 Hz. Calcolare: a) la frequenza della quinta armonica (n = 5) della corda; b) la tensione T alla quale è sottoposta la corda;

Esercizio 7.

Un microfono che produce un suono alla frequenza costante $v_0 = 600$ Hz viene fatto girare attaccato ad una corda lunga L = 1.0 m in cerchi orizzontali a 100 giri al minuto. Calcolare la frequenza minima e massima percepita da un osservatore esterno. (Velocità del suono c = 340 m/s).

Esercizio 8.

Il valore sonoro percepita a $r_1 = 5.0$ m da una sorgente particolarmente intensa è di 100 dB. Calcolare la potenza sonora P della sorgente e a quale distanza r_2 bisogna allontanarsi per percepire un valore più tollerabile di 80 dB.

Esercizio 9.

Una sirena della polizia ha una frequenza v_+ = 550 Hz mentre si avvicina a voi, e una frequenza v_- = 450 Hz mentre si allontana. Assumendo una velocità del suono c = 343 m/s, calcolare la velocità dell'auto della polizia e la frequenza reale della sirena.

Esercizio 10.

Una sirena si muove verso un muro alla velocità di v = 20 m/s emettendo una frequenza sonora di $v_0 = 440$ Hz. Si calcoli la frequenza ricevuta di riflesso dal muro e percepita dal guidatore della sirena. Supporre per la velocità del suono c = 340 m/s.

Esercizio 11.

Due sottomarini viaggiano in rotta di collisione con le velocità $v_1 = 5.6$ m/s e $v_2 = 26.3$ m/s. Il sottomarino più lento emette un segnale sonar di frequenza $v_0 = 1030$ Hz che viaggia alla velocità c = 1500 m/s. Calcolare la frequenza ricevuta dal secondo sottomarino e la frequenza della componente riflessa ricevuta a sua volta dal primo sottomarino.