1 Finite Elements

Symbol	Definition	Dimensions	Units	Meaning
1	$1 = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}^T$	d	1	All ones vector
S	$\mathbf{S} = egin{pmatrix} \mathbf{I} & -1 \end{pmatrix}'$	$d \times (d+1)$	1	Scatter matrix
\mathbf{X}_m	$\begin{pmatrix} X_1 & X_2 & X_3 & X_4 \end{pmatrix}_m$	$d \times (d+1)$	m	Material space element node positions
X	$\begin{pmatrix} X_1 & X_2 & X_3 & X_4 \end{pmatrix}$	$d \times (d+1)$	m	World space element node positions
\mathbf{D}_m	$\mathbf{D}_m = \mathbf{X}_m \mathbf{S}^T$	$d \times d$	m	Material space relative node positions
\mathbf{D}_s	$\mathbf{D}_s = \mathbf{X}\mathbf{S}^T$	$d \times d$	m	World space relative node positions
\mathbf{F}	$\mathbf{F} = \mathbf{D}_s \mathbf{D}_m^{-1}$	$d \times d$	1	Deformation gradient
J	$J = \det(\mathbf{F})$	scalar	1	Jacobian
I_1	$I_1 = \operatorname{tr}(\mathbf{F}\mathbf{F}^T)$	scalar	1	First invariant
V	$V = \frac{1}{d!} \det(\mathbf{D}_m)$	scalar	m^d	Material space element volume
N	$\mathbf{N} = V \mathbf{D}_m^{-T}$	$d \times d$	m^{d-1}	Material space area weighted normals
ψ	-	scalar	$kg m^{2-d}s^{-1}$	Energy density
ϕ	$\phi = V\psi$	scalar	kgm^2s^{-1}	Potential energy of element
f	$\mathbf{f} = -rac{\partial \phi}{\partial \mathbf{X}}$	$d \times (d+1)$	$kgms^{-1}$	Force on element nodes
P	$\mathbf{f} = -\mathbf{P} \mathbf{N} \mathbf{S}^T$	$d \times d$	$kgm^{2-d}s^{-1}$	First Piola-Kirchoff stress

Consider that a small position change $\delta \mathbf{X}$ is made. Then

$$\begin{array}{rcl} 0 & = & \mathbf{f}: \delta \mathbf{X} + \delta \phi \\ & = & \mathrm{tr}(\mathbf{f}\delta \mathbf{X}^T) + \delta \phi \\ & = & \mathrm{tr}(-\mathbf{P}\mathbf{N}\mathbf{S}^T\delta \mathbf{X}^T) + V\delta \psi \\ & = & -V\mathrm{tr}(\mathbf{P}\mathbf{D}_m^{-T}\mathbf{S}^T\delta \mathbf{X}^T) + V\delta \psi \\ \delta \psi & = & \mathrm{tr}(\mathbf{P}\mathbf{D}_m^{-T}\mathbf{S}^T\delta \mathbf{X}^T) \\ & = & \mathrm{tr}(\mathbf{P}\delta(\mathbf{D}_m^{-T}\mathbf{S}^T\mathbf{X}^T)) \\ & = & \mathrm{tr}(\mathbf{P}\delta(\mathbf{D}_m^{-T}\mathbf{D}_s^T)) \\ & = & \mathrm{tr}(\mathbf{P}\delta \mathbf{F}^T) \\ & = & \mathbf{P}: \delta \mathbf{F} \\ \mathbf{P} & = & \frac{\partial \psi}{\partial \mathbf{F}} \end{array}$$

2 Potential Energy for Neo Hookean

Let $\psi = \frac{\mu}{2}(I_1 - d) - \mu \ln J + \frac{\lambda}{2} \ln^2 J$.

$$\frac{\partial J}{\partial \mathbf{F}} = \frac{\partial}{\partial \mathbf{F}} \det(\mathbf{F}) = \det(\mathbf{F}) \mathbf{F}^{-1} = J \mathbf{F}^{-1}$$

$$\frac{\partial I_1}{\partial \mathbf{F}} = \frac{\partial}{\partial \mathbf{F}} \operatorname{tr}(\mathbf{F} \mathbf{F}^T) = 2 \mathbf{F}$$

$$\frac{\partial}{\partial \mathbf{F}} = \frac{\partial}{\partial \mathbf{F}} \ln J = \mathbf{F}^{-1}$$

$$\mathbf{P} = \frac{\partial \psi}{\partial \mathbf{X}} = \frac{\partial}{\partial \mathbf{X}} \left(\frac{\mu}{2} (I_1 - d) - \mu \ln J + \frac{\lambda}{2} \ln^2 J \right)$$

$$= \frac{\mu}{2} \frac{\partial I_1}{\partial \mathbf{X}} - \mu \frac{\partial}{\partial \mathbf{F}} \ln J + \lambda \ln J \frac{\partial}{\partial \mathbf{F}} \ln J$$

$$= \mu (\mathbf{F} - \mathbf{F}^{-1}) + \lambda \ln J \mathbf{F}^{-1}$$