ALU jednotka

MILAN HORNÍK, TOMÁŠ DUBINA BICT, VUT BRNO

ALU jednotka

Vstupy number_a a number_b slouží k nastavení čísel se kterými se budou provádět operace. Vstupem control_sig se nastavuje operace, kterou chceme provádět. Hodnoty se nastavují pomocí přepínačů.

Výstupy number_a, number_b, control_sig a alu_result slouží k binární reprezentaci hodnot, použity jsou LED diody.

Výstupy disp_digit a disp_sseg slouží k dekadickému zobrazení hodnot na 7segmentovém displeji.

Operace

Řídící signál	Funkce	Popis
0x0	Y = A + B	Součet
0x1	Y = A - B	Rozdíl
0x2	Y = A + 1	Inkrementace
0x3	Y = A - 1	Dekrementace
0x4	Y = A + B + C	Součet s přenosem
0x5	Y = A - B - C	Rozdíl s přenosem
0x6	Y = A or B	Logický součet
0x7	Y = A and B	Logický součin
0x8	Y = A xor B	Exkluzivní logický součet
0x9	Y = not A	Logická negace
0xA	Y = A >> 1	Rotace vpravo
0xB	Y = A << 1	Rotace vlevo
0xC	Y = (A + C) >> 1	Rotace vpravo s přenosem
0xD	Y = (A - C) << 1	Rotace vlevo s přenosem
0xE	Y = A'H <=> A'L	Přehození nejvyššího a nejnižšího čtvrbytu
0xF	Y = A mul B	Součin

Rozvržení

Operace

Sčítačka

Numericky sečte hodnoty na vstupech A, B a výsledek uloží do Y. Příznak přenosu je uložen do C. Vstupní příznak přenosu C je ignorován.

Odčítačka

Numericky odečte hodnotu na vstupu B od vstupu A a výsledek uloží do Y. Příznak přenosu je uložen do C. Vstupní příznak přenosu C je ignorován.

Inkrementace

Numericky inkrementuje hodnotu na vstupu A o jedničku. Příznak přenosu je uložen do C. Vstupní příznak přenosu C je ignorován.

Dekrementace

Numericky dekrementuje hodnotu na vstupu A o jedničku. Příznak přenosu je uložen do C. Vstupní příznak přenosu C je ignorován.

Sčítačka s přenosem

Numericky sečte hodnoty na vstupech A, B a výsledek uloží do Y. Příznak přenosu je uložen do C. Vstupní příznak přenosu C je přičten k výsledku Y.

Rozdíl s přenosem

substraction_with_carry_0

A_i[3:0]

B_i[3:0]

C_o

cult

substraction_with_carry_v1_0

Numericky odečte hodnotu na vstupu B od vstupu A a výsledek uloží do Y. Příznak přenosu je uložen do C. Vstupní příznak přenosu C je odečten od výsledku Y.

Logicky součet

Provede logický součet hodnot na vstupu A a B. Výsledek uloží do Y.

Logický součin

Exkluzivní logický součet

Logická negace

Provede logickou negaci hodnoty na vstupu A. Výsledek uloží do Y.

Rotace vpravo

Provede rotaci hodnoty na vstupu A o jeden bit vpravo. Výsledek uloží do Y. Nejnižší bit je uložen do C. Vstupní příznak C je ignorován.

Rotace vlevo

Provede rotaci hodnoty na vstupu A o jeden bit vlevo. Výsledek uloží do Y. Nejvyšší bit je uložen do C. Vstupní příznak C je ignorován.

Rotace vpravo s přenosem

rotate_right_with_carry_0

A_i[3:0] Y_o[3:0]

C_i C_o

rotate_right_with_carry_v1_0

Provede rotaci hodnoty na vstupu A o jeden bit vpravo. Výsledek uloží do Y. Nejnižší bit je uložen do C. Vstupní příznak C je uložen na nejvyšší pozici.

Rotace vlevo s přenosem

Přehození nejvyššího a nejnižšího čtvrtbytu

Provede vzájemné přehození bitů na vstupu A. Výsledek uloží do Y. Shodné s rotací vpravo nebo vlevo o dva bity.

Součin

Numericky vynásobí hodnotu na vstupu A s hodnotou na vstupu B. Výsledek uloží do Y. Příznak C signalizuje, že výsledek obsahuje numerickou hodnotu vyšší než 15. Na výstup Y jsou přivedeny vždy 4 nejnižší bity.

Parity a dispmux

Signalizuje lichý počet jedniček ve výsledku.

Řídí čtyřmístný sedmi-segmentový displej se společnou anodou. Segmenty displeje jsou aktivní v nule. Frekvence signálu clk musí být nejméně 10 kHz.

Odkazy

GitHub: https://github.com/tom2238/alu-computing-unit

Video: https://youtu.be/d3AlJtHENpg

Děkujeme za pozornost