Estática y Dinámica

Cinemática

$$\vec{r} = x \,\hat{\imath} + y \,\hat{\jmath} + z \,\hat{k}$$

$\vec{r} = x \,\hat{\imath} + y \,\hat{\jmath} + z \,\hat{k}$

Velocidad

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dx}{dt} \hat{k}$$

$$\vec{v} = v_x \,\hat{\imath} + v_y \,\hat{\jmath} + v_z \,\hat{k}$$

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$\vec{r} = x \,\hat{\imath} + y \,\hat{\jmath} + z \,\hat{k}$$

$$\vec{v} = v_x \,\hat{\imath} + v_y \,\hat{\jmath} + v_z \,\hat{k}$$

Aceleración

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k}$$

$$\vec{a} = \frac{d^2x}{dt^2} \,\hat{i} + \frac{d^2y}{dt^2} \hat{j} + \frac{d^2z}{dt^2} \hat{k}$$

$$\vec{a} = a_x \,\hat{\imath} + a_y \,\hat{\jmath} + a_z \,\hat{k}$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Base en $\mathbb{R}^2\left\{\hat{\boldsymbol{\rho}},\hat{\boldsymbol{\theta}}\right\}$

De la figura

$$\vec{r} = \rho \hat{\rho}$$

Base en $\mathbb{R}^2\left\{\hat{\boldsymbol{\rho}},\hat{\boldsymbol{\theta}}\right\}$

$$\vec{r} = \rho \hat{\rho}$$

$$\vec{v} = \dot{\rho} \hat{\rho} + \rho \dot{\theta} \hat{\theta}$$

Base en $\mathbb{R}^2\left\{\hat{\boldsymbol{\rho}},\hat{\boldsymbol{\theta}}\right\}$

$$\vec{r} = \rho \hat{\rho}$$

$$\vec{v} = \dot{\rho} \hat{\rho} + \rho \dot{\theta} \hat{\theta}$$

$$\vec{a} = (\ddot{\rho} - \rho \dot{\theta}^2)\hat{\rho} + (2\dot{\rho}\dot{\theta} + \rho \ddot{\theta})\hat{\theta}$$

Ejemplo: Movimiento Circular Uniforme

Mov. Circular uniforme

¿Hacia donde apunta la aceleración?

Ejemplo: Movimiento Circular Uniforme

¿Cuál es el diagrama de fuerzas correcto?

Base en \mathbb{R}^3 $\{\hat{\rho}, \hat{\theta}, \hat{z}\}$

De la figura

$$\vec{r} = \rho \hat{\rho} + z \hat{k}$$

$$\vec{r} = \rho \hat{\rho} + z \hat{k}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{\rho}\hat{\rho} + \rho\dot{\theta}\hat{\theta} + \dot{z}\hat{k}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = (\ddot{\rho} - \rho\dot{\theta}^2)\hat{\rho} + (2\dot{\rho}\dot{\theta} + \rho\ddot{\theta})\hat{\theta} + \ddot{z}\hat{k}$$

Ejemplo

Encontrar la posición, velocidad y aceleración de una partícula que se mueve con rapidez constante v_0 a lo largo de una hélice. Considere que el paso de la hélice es b.

El tornillo motorizado parte del reposo y recibe una velocidad rotacional que aumenta uniformemente con el tiempo t según $\theta = kt$, donde k es una constante. Determinar las expresiones de la velocidad v y la aceleración a del centro de la bola A cuando el tornillo haya girado una vuelta completa. El paso del tornillo (avance por vuelta) es L.

