MUNIT

ECCV

2018

Multimodal Unsupervised Image-to-Image Translation

Xun Huang¹, Ming-Yu Liu², Serge Belongie¹, Jan Kautz²

Cornell University¹ NVIDIA²

Abstract. Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any examples of corresponding image pairs. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to state-of-the-art approaches further demonstrate the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at https://github.com/nvlabs/MUNIT.

Keywords: GANs, image-to-image translation, style transfer

1 Introduction

Many problems in computer vision aim at translating images from one domain to another, including super-resolution [1], colorization [2], inpainting [3], attribute transfer [4], and style transfer [5]. This cross-domain image-to-image translation setting has therefore received significant attention [6–25]. When the dataset

MUNIT

Comparison of Approaches

CycleGAN

UNIT

Shared Latent Space

MUNIT

Content & Style

Background & Goal

- Previous research limitation
 - Existing models relied on one-to-one mapping, producing only deterministic output.
- Goal
 - To generate diverse output images from a single input image.

Fig 1. Images are encoded to a shared content space and a domain-specific style space

Background & Goal

Extension of UNIT

- Deterministic mapping: The same content input always produces the exact same output.

Fig 2. Differences in shared latent space assumption

Background & Goal

Limitation of UNIT

- Fully shared latent space: The same content input always produces the exact same output.
 - → Partially shared latent space

Fig 2. Differences in shared latent space assumption

Network Architecture

Auto-encoder framework

- Separates an image into content and style and then recombines them.

AdaIN
$$(z, \gamma, \beta) = \gamma \left(\frac{z - \mu(z)}{\sigma(z)} \right) + \beta$$

Eq 1. Adaptive instance normalization (z: feature map, $\gamma \& \beta$: scaling and shifting scalars)

Fig 3. Overview of MUNIT

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

- Image reconstruction loss
 - Image reconstruction : Image → Latent → Image

(a) Within-domain reconstruction

Fig 4. Overview of image reconstruction loss

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

Image reconstruction loss

 Image cycle consistency enforces similarity to the original, stabilizing content and style extraction and ensuring decoder synthesis.

Fig 5. Image reconstruction loss

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

- Latent reconstruction loss
 - Latent reconstruction : Latent \rightarrow Image \rightarrow Latent

Fig 6. Overview of latent reconstruction loss

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

Latent reconstruction loss

$$\mathcal{L}_{\text{recon}}^{c_1} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)}[||E_2^c(G_2(c_1, s_2)) - c_1||_1]$$

$$\mathcal{L}_{\text{recon}}^{s_2} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)}[||E_2^s(G_2(c_1, s_2)) - s_2||_1]$$

Fig 8. Latent reconstruction loss

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

Gaussian prior

- To enable the generation of diverse styles
- Stability to maintain a well-formed style code space

Fig 8. Latent reconstruction loss

MUNIT

Loss Functions

Gaussian prior

Fig 8. Latent reconstruction loss

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

Relatively low-dimensional style code

- It captures simple attributes like brightness, and colors, rather than spatial information.
- It is transformed through a nonlinear MLP into a more complex representation.
 - => However, 8 channels are insufficient for complex tasks.

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

Content space cycle consistency

- Latent space cycle consistency allows geometric transformations while preserving core content.

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Loss Functions

Shared latent space without weight sharing

- The encoder disentangles content and style.
- Content-consistency loss preserves content even after style is removed.
 - → Training to align content spaces across domains

Fig 8. Latent reconstruction loss

MUNIT

Loss Functions

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Inference Mode

- Applying a style sampled from a prior distribution.

Fig 9. Applying a random style.

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Inference Mode

- Applying a style extracted from a reference image.

Fig 10. Applying a reference style.

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

Experiment Results

Fig 11. 3 random outputs from the methods.

MUNIT

Medical Artificial **I**ntelligence Laboratory At Yonsei University

Experiment Results

Medical Artificial Intelligence Laboratory At Yonsei University

MUNIT

w, w/o Reference Style Image

Random sampling

- Diverse style generation
- Risk of unrealistic styles
- Unstable
- Difficult to control

Fig 13. Comparison of methods for generating style codes.

Reference Style Extraction

- Ensures realism
- Easy to control
- Limited style diversity
- Requires reference image

MUNIT

Implications & Limitations

Implications

- Disentangling images into shared content and domain-specific style enables flexible and diverse translations.

Limitations

- Difficulty in separating sophisticated content and style.
 - => Content preservation is not perfect, causing distortions.
- Random sampling can lead to unrealistic styles, lowering realism.