

planetmath.org

Math for the people, by the people.

\sim is an equivalence relation

Canonical name simIsAnEquivalenceRelation

Date of creation 2013-03-22 16:13:16 Last modified on 2013-03-22 16:13:16 Owner Wkbj79 (1863)

Last modified by Wkbj79 (1863)

Numerical id 9

Author Wkbj79 (1863)

Entry type Result Classification msc 26A12 Note that \sim as defined in the entry Landau notation is an equivalence relation on the set of all functions from \mathbb{R}^+ to \mathbb{R}^+ . This set of functions will be denoted in this entry as F.

http://planetmath.org/ReflexiveReflexive: For any $f \in F$, $\lim_{x \to \infty} \frac{f(x)}{f(x)} = 1$, and $f \sim f$.

Symmetric: If $f, g \in F$ with $f \sim g$, then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$. Thus:

$$\lim_{x \to \infty} \frac{g(x)}{f(x)} = \lim_{x \to \infty} \frac{1}{\left(\frac{f(x)}{g(x)}\right)}$$
$$= \frac{1}{1}$$
$$= 1$$

Therefore, $g \sim f$.

$$\label{eq:http://planetmath.org/Transitive3} \begin{split} &\text{http://planetmath.org/Transitive3} \ Transitive: \ \ \text{If} \ \ f,g,h \ \in \ F \ \ \text{with} \\ &f \sim g \ \text{and} \ g \sim h, \ \text{then} \ \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \ \text{and} \ \lim_{x \to \infty} \frac{g(x)}{h(x)} = 1. \ \ \text{Thus:} \end{split}$$

$$\lim_{x \to \infty} \frac{f(x)}{h(x)} = \lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \cdot \frac{g(x)}{h(x)} \right)$$
$$= 1 \cdot 1$$
$$= 1$$

Therefore, $f \sim h$.