Avaliação 4 – Estabilidade de Sistemas Elétricos de Potência

Discente: Evandro Fernandes Ledema

Considere que, no sistema da figura:

- → A tensão no barramento infinito é V_B = 1/0°;
- → A magnitude da tensão no barramento 1 é 1,05 pu;
- → O gerador tem uma reatância transitória X'_d em uma base de 22 kV (L-L) e a potência base trifásica é 1500 MVA.
- → Na base do gerador, sua inercia é Hgen.
- → O transformador eleva 22 kV a 345 KV e tem uma reatância de X_{tr} em sua base de 1500 MVA.
- → As duas linhas de transmissão de 345 kV são de 100 quilômetros de comprimento e cada uma tem uma reatância série de X_L em (ohm/km), sendo a resistência série e a capacitância shunt, do seu modelo, ignoradas.

Figura 1: Sistema teste antes de iniciado o curto-circuito

Considerando que acontecem três momentos, sendo estes:

1. Antes da falta

Inicialmente, o fluxo de potência trifásico do gerador ao barramento infinito é P_e e que, o sistema está em regime permanente e em equilíbrio.

2. Durante a falta

Considere que depois de um segundo, um curto-circuito trifásico com contato para terra ocorre em uma das linhas, a **m%** de distância do barramento 1. Esta perturbação ou evento acontecerá até o relé de proteção abrir os disjuntores nos extremos da linha de transmissão. O tempo que demora desde o início do curto-circuito até a abertura dos disjuntores é conhecido como tempo de eliminação da falta **TEF**.

3. Depois de isolada a falta

Considere que depois de passado o tempo de eliminação da falta **TEF**, o sistema fica com a configuração da Figura 2.

Figura 1: Sistema teste antes de iniciado o curto-circuito

Assumir que nos três momentos pode-se calcular a reatância total **Xt**, a qual é definida como a reatância entre a barra interna do gerador e a barra infinita.

Calcular:

- → A tensão interna do gerador E_P, para os três momentos, antes, durante e depois da falta.
- → A reatância total Xt_A antes da falta;
- → A tensão V_{TH} e impedância Z_{TH} de Thevenin no barramento 1, durante a falta;
- → A reatância total Xt_F durante a falta;
- → A reatância total Xt_D depois de isolada a falta.

Responder:

	Antes da Falta	Durante da Falta	Depois da Falta	
Ер	1,4647 /_ 31,6866°	5,2674 /_ 31,2004°	1,7105 /_ 52,9199°	
Xt	0,0522	0,0507	0,0611	

	Z _{TH}	V_{TH}	
Durante da Falta	0,0074	0,4152	

Dados Para a Avaliação 4

RGA							T
		X'd (pu)	Hgen (pu)	Xtr (pu)	XL (ohm/km)	Pm (MW)	m (%)
1	201521302018	0,37	3,6	0,22	0,395	1362	55
2	201521302007	0,35	3,4	0,35	0,264	1576	67
3	201621302009	0,33	2,3	0,24	0,349	1485	11
4	201421302038	0,22	2,4	0,33	0,269	1583	23
5	202011302007	0,21	3,7	0,34	0,363	1233	45
6	201411302002	0,37	4,7	0,28	0,211	1474	71
7	201611302040	0,23	3,6	0,36	0,389	1400	19
8	201611302053	0,23	4,4	0,29	0,247	1548	49
9	201521302019	0,35	2,6	0,36	0,214	1205	64
10	201621302030	0,21	2,5	0,26	0,372	1444	21
11	201511302027	0,22	3,2	0,32	0,294	1387	44
12	201521302032	0,32	4,4	0,34	0,371	1475	35
13	201621302026	0,36	3,2	0,25	0,291	1283	22
14	201221302016	0,27	3,5	0,24	0,383	1405	11
15	201421302028	0,37	3,3	0,36	0,382	1554	83
16	201521302014	0,35	3,5	0,23	0,325	1485	11
17	201511302017	0,21	3,5	0,37	0,254	1461	64
18	201211302041	0,37	2,8	0,33	0,391	1536	37
19	201521302047	0,32	3,7	0,28	0,215	1567	33
20	201621302027	0,29	4,2	0,38	0,278	1431	30
21	201721302056	0,26	2,2	0,38	0,246	1418	71

Professor: Carlos Enrique Portugal Poma