Séquence 2

Optique : : comment caractériser et exploiter un signal lumineux ?

TP #2

<u>Problématique</u>: vérifier expérimentalement la réfraction d'un rayon lumineux

1. **Légender** le document à l'aide des éléments suivants : rayon incident, rayon réfracté, rayon réfléchi, angle d'incidence i_1 , angle de réflexion r, angle de réfraction i_2 , normale

A l'aide de l'application sur *PhetColorado.edu*:
Aller dans Intro et en utilisant le rapporteur et le capteur d'intensité (vert),

compléter le tableau suivant pour différentes valeurs de i.

Angle d'incidence i	Angle réfléchi r	Intensité (en %)
10°		
20°		
50°		
60°		

3. Quelle relation mathématique pouvez-vous écrire entre i et r

4. Que remarquez-vous sur l'intensité du rayon lumineux réfléchi?

5. A l'aide du matériel à votre disposition, réaliser le montage ci-dessous et **compléter** le tableau de mesures suivant en faisant varier l'angle d'incidence.

î ₁ (angle d'incidence)	0	10	20	30	40	50	60
î ₂ (angle de réfraction)							

La loi de Snell -Descartes sur la réfraction permet de prévoir la déviation d'un rayon lumineux réfracté.

$$n_1 \sin i_1 = n_2 \sin i_2$$

6. Compléter le tableau suivant : arrondir à 0,1

\hat{l}_1 (angle d'incidence)	0	10	20	30	40	50	60
î ₂ (angle de réfraction)							

sin î ₁				
sin î ₂				
$n_1 \times \sin \hat{i}_1$				
$n_2 \times \sin \hat{i}_2$				

 $n_{1 (air)} = 1 / n_{2 (eau)} = 1,33$

7. En déduire si la loi de Snell-Descartes sur la réfraction est vérifiée

8. Expliquer pourquoi le phoque paraît « coupé » sur la photo.

.....