Bits, Bytes, and Integers

15-213: Introduction to Computer Systems 2nd and 3rd Lectures, Sep. 3 and Sep. 8, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

- 1

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

For example, can count in binary

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimany

0	0	0000
1	1	0001
2	2	0010
	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_j = 1 \text{ if } j \in A$
 - **•** 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - **•** 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

&	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
■ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

Examples (Char data type)

- ~0x41 <<0xBE
 - ~01000001₂ <<10111110₂
- ~0x00 @0xFF
 - ~00000000₂ < 11111111₂
- 0x69 & 0x55 < 0x41
 - 01101001₂ & 01010101₂ 🕬1000001₂
- 0x69 | 0x55 🕫0x7D
 - 01101001₂ | 01010101₂ **©**011111101₂

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&** &&, ||,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 <<0x000
- !0x00 c≈0x01
- !!0x41 <<0x0x01
- 0x69 && 0x55 <<00x01
- 0x69 || 0x55 🖂0x01
- p && *p (avoids null pointer access)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Contrast: Logic Operations in C

- **Contrast to Logical Operators**
 - **&** &&, ||,!
 - View 0 as "Fall
 - Anything ponzo
 - Alway
- **Example**
 - !0x41 🖎

 - !!0x41 G

Watch out for && vs. & (and || vs. |)...

one of the more common oopsies in

10x00

C programming

- 0x69 && 0x55 C30x01
- 0x69 || 0x55 <<0x0x01
- p && *p (avoids null pointer access)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

B2U(X) =
$$\sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

■ Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Carnegie Mellon

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Bryant and O'Hallaron, Computer Systems: A PSymmer's Perspective, Third Edition 4.15213

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
 100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex Binary	
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 00000000

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:

Keep bit representations and reinterpret

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Carnegie Mellon

$\textbf{Mapping Signed} \longleftrightarrow \textbf{Unsigned}$

	_
Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
- 5
-4
-3
-2
-1

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Carnegie Mellon

Mapping Signed ↔ **Unsigned**

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight

becomes

Large positive weight

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

■ Constant ₁	Constant ₂	Relation	Evaluation		
0	0U	==	unsigned		
-1	0	<	signed		
-1	0U	>	unsigned		
2147483647	-2147483647-1	>	signed		
2147483647U	-2147483647-1	<	unsigned		
-1	-2	>	signed		
(unsigned)-1	-2	>	unsigned		
2147483647	2147483648U	<	unsigned		
2147483647	(int) 2147483648U	>	signed		
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition					

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

31

Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

- Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

$$u$$
 •••

True Sum: w+1 bits

$$u + v$$

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

Ignores carry output

■ Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum ≥ 2^w
- At most once

True Sum

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Two's Complement Addition

Operands: w bits

u · · ·

True Sum: w+1 bits

+	ν		• • •		

Discard Carry: w bits

$$TAdd_{w}(u, v)$$

■ TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

0 111...1

0 100...0

0 000...0

1 011...1

1 000...0

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Operands: w bits

- • •
- * v ···

True Product: 2^*w bits $u \cdot v$

 $UMult_{w}(u, v)$

u

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

Operands: w bits

• • •

* v

u

True Product: 2^*w bits $u \cdot v$

 $TMult_w(u, v)$

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Power-of-2 Multiply with Shift

Operation

• $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * 2^k$

True Product: w+k bits

Discard k bits: w bits

Both signed and unsigned

Operands: w bits

Examples

•
$$(u << 5) - (u << 3) == u * 24$$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary		
x	15213	15213	3B 6D	00111011 01101101		
x >> 1	7606.5	7606	1D B6	00011101 10110110		
x >> 4	950.8125	950	03 B6	00000011 10110110		
x >> 8	59.4257813	59	00 3B	00000000 00111011		

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- *Don't* use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - \bullet 0 1 \rightarrow UMax
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

■ Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Carnegie Mellon

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
long double	-	-	10/16	
pointer	4	8	8	

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

- Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Carnegie Mellon

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian		0x100	0x101	0x102	0x103		
			01	23	45	67	
Little Endian		0x100	0x101	0x102	0x103		
			67	45	23	01	

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Carnegie Mellon

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Carnegie Mellon

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Even get different results each time run program
Bryant and O'Hamaron, Computer Systems: A Programmer's Perspective, Third Edition

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Integer C Puzzles

•
$$x < 0$$

•
$$x < 0$$
 \square $((x*2) < 0)$

•
$$ux >= 0$$

•
$$x \& 7 == 7$$
 $\Box\Box (x<<30) < 0$

•
$$ux > -1$$

$$\cdot x > y$$

•
$$x > y$$
 $\Box \Box -x < -y$

•
$$x * x >= 0$$

•
$$x > 0 \&\& y > 0 \square x + y > 0$$

$$\cdot x >= 0$$

•
$$x >= 0$$
 $\Box \Box -x <= 0$

•
$$x \le 0$$
 $\Box \Box -x >= 0$

•
$$(x|-x) >> 31 == -1$$

•
$$x >> 3 == x/8$$

•
$$x & (x-1) != 0$$

Initialization

Bonus extras

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Binary Number Property

Claim

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^w$$

$$1 + \sum_{i=0}^{w-1} 2^i = 2^w$$

- w = 0:
 - $1 = 2^0$
- Assume true for w-1:

$$1 + 1 + 2 + 4 + 8 + ... + 2^{w-1} + 2^w = 2^w + 2^w = 2^{w+1}$$

$$= 2^w$$

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Malicious Usage /* Declaration of library function memcpy */

```
/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

$$0 \leq UAdd_w(u, v) \leq 2^w - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Negation: Complement & Increment

■ Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

■ Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary			
x	15213	3B 6D	00111011 01101101			
~x	-15214	C4 92	11000100 10010010			
~x+1	-15213	C4 93	11000100 10010011			
У	-15213	C4 93	11000100 10010011			

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

malloc(ele_cnt * ele_size)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
       memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

XDR Vulnerability

malloc(ele_cnt * ele_size)

What if:

• ele cnt =
$$2^{20} + 1$$

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

- Allocation = ??
- How can I make this function secure?

Compiled Multiplication Code

C Function

```
long mul12(long x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leaq (%rax,%rax,2), %rax
salq $2, %rax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Compiled Unsigned Division Code

C Function

```
unsigned long udiv8
      (unsigned long x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

Result:	RoundDown($x / 2$	(2^k)	•••		•••	
	`	, —				

	Division	Computed	Hex	Binary		
У	-15213	-15213	C4 93	11000100 10010011		
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001		
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001		
y >> 8	-59.4257813	-60	FF C4	1111111 11000100		

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} \mid \mathbf{2}^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

k

Divisor:

Biasing has no effect

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Compiled Signed Division Code

C Function

```
long idiv8(long x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testq %rax, %rax
  js L4
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

Explanation

```
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition FormsCommutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathsf{UMult}_w(u, v) \leq 2^w - 1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

Isomorphic to ring of integers mod 2^w

■ Comparison to (Mathematical) Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

15213 * 30426 == -10030 (16-bit words)

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition		
8048365:	5b	pop %ebx		
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx		
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)		

Deciphering Numbers

Value:

0x12ab

Pad to 32 bits:

0x000012ab

Split into bytes:

00 00 12 ab

Reverse:

ab 12 00 00

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition