Estimation sous incertitudes

Incertitudes dans un code déterministe

 $m{U}$ est maintenant une variable aléatoire (densité $\pi(m{u})$) $m{y}^{
m obs}$ a été générée avec $m{u}_{
m ref}$, échantillon de $m{U}$

- M(k) devient M(k, u) (u est une entrée du modèle)
- Fonction coût: $J(\mathbf{k}, \mathbf{u}) = \frac{1}{2} ||M(\mathbf{k}, \mathbf{u}) \mathbf{y}^{\text{obs}}||^2 + \text{Régul}$

Estimateur robuste?

On veut pouvoir trouver une valeur $\hat{\pmb{k}}$, tel que $M(\hat{\pmb{k}}, \pmb{U})$ soit relativement semblable à $\pmb{y}^{\rm obs}$

Idéalement, $M(\hat{k},\cdot)$

- reste assez performant pour fournir des prédictions acceptables
- ullet ne varie pas trop avec $oldsymbol{U}$

Approche variationnelle ou Bayésienne ?

- Variationnelle: Variable aléatoire indexée par k:
 k → J(k, U),
 Extrema des moments ? E[J(K, U)|K = k]...
- Bayésienne: $e^{-J(k,u)} \propto p(y^{\text{obs}}|k,u)$ = Vraisemblance Inférence bayésienne, marginalisation, Estimation bayésienne

Mais

- Estimer efficacement moments ?
- Quelle connaissance de *U* ?
- Gérer le coût de calcul du modèle