Selbstorganisierende, adaptive Systeme

Übungsblatt 10

In test/isse.LectureExample finden Sie Testfälle für die Beispiele aus der Vorlesung (VL 10, Seite 39). Die Objektstruktur für dieses Beispiel wird angelegt und die entsprechenden Mechanismen zur Auswahl einer geeigneten Shift verwendet.

Beispiel: VCG vs. KuS

n=3 Agenten, m=3 Jobs, Auswahlmenge $X=\{0,1\}^{n\times m}$ Vergleichen wir die beiden Allokationen

$$x_1 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 und $x_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

- VCG: $\chi(\hat{v}) = \arg\max_{x} \sum_{i} \hat{v}_{i}(x)$: $\sum_{i} \hat{v}_{i}(x_{1}) = -23 < \sum_{i} \hat{v}_{i}(x_{2}) = -22$
- KuS: $\chi(\hat{t}) = \arg\min_{x} (\max_{i \in N} \operatorname{sp}(x, \hat{t}, i))$: wählt χ_1 , da
 - $\max_{i \in N} sp(x_1, \hat{t}, i) = 13$
 - $\max_{i \in N} sp(x_2, \hat{t}, i) = 17$

Agent	drill	insert	tighten
R_1	20	5	8
$egin{array}{c} R_1 \ R_2 \end{array}$	15	20	15
R_3	10	30	7

Entwickeln Sie testgetrieben die Auswahlfunktionen der beiden Mechanismen. Sie können davon ausgehen, dass wir Problemgrößen betrachten, die Brute-Force Suche (z.B. Tiefensuche) über X zulassen. Welche Laufzeitkomplexität zeigt ihr Suchalgorithmus?

Definition (Vickrey-Clarke-Groves (VCG) Mechanismus)

Der Vickrey-Clarke-Groves Mechanismus ist ein direkter quasilinearer Mechanismus (χ , p), mit

$$\chi(\hat{v}) = rg \max_{x} \sum_{i} \hat{v}_i(x)$$
 $p_i(\hat{v}) = \sum_{j \neq i} \hat{v}_j \left(\chi(\hat{v}_{-i}) \right) - \sum_{j \neq i} \hat{v}_j(\chi(\hat{v}))$

Definition (Clarke-Steuer)

Die Clarke-Steuer entspricht dem Gesamtnutzen, der ohne i entstehen würde

$$\sum_{j
eq i} \hat{v}_j \left(\chi(\hat{v}_{-i})
ight)$$

$$\chi(\hat{v}) = \arg\max_{x} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j} \left(\chi(\hat{v}_{-i}) \right) - \sum_{j \neq i} \hat{v}_{j} \left(\chi(\hat{v}) \right)$$

- Da der Individualnutzen $u_i(x, \mathbf{p}) = u_i(x) \mathbf{p}_i$ ist:
- Wir bekommen den Nutzen aller anderen unter unserer Teilnahme bezahlt (und unseren eigenen als direkte Utility)
- Wir bezahlen den Nutzen aller anderen unter unserer Nichtteilnahme
- Also bezahlen wir unsere sozialen Kosten

VCG:

- Summe der genannten Nutzen wird maximiert, d.h. die Option mit minimaler summierter Arbeitszeit wird gewählt.
- ➤ Greedy Ansatz: für jeden Task gibt es einen Agenten, der diesen Task am schnellsten macht → dieser Agent wird für den Task ausgewählt.
- Minimumsuche über n Agenten für m Tasks
- Laufzeit: O(n * m)

Definition (Kompensations-und Strafmechanismus (KuS))

sind direkte quasilineare Mechanismen (χ, p) , mit

$$\chi(\hat{t}) = \arg\min_{x \in \{0,1\}^{n \times m}} \left(\max_{i \in N} \operatorname{sp}(x, \hat{t}, i) \right)$$

$$p_i(\hat{t}) = h_i(\hat{t}_{-i}) - \operatorname{sp}(x, \tilde{t}, i) + \max \left\{ \operatorname{sp}(x, \tilde{t}, i), \max_{k \neq i \in N} \operatorname{sp}(x, \hat{t}, k) \right\}$$

Definition (Clarke-Steuer für KuS)

Die Clarke-Steuer entspricht der Produkionsdauer, die ohne i entstehen würde

$$h_i(\hat{t}_{-i}) = -\min_{x \in \{0,1\}^{n \times m}} \left(\max_{k \neq i \in N} \operatorname{sp}(x, \hat{t}, k) \right)$$

KuS:

- Suchen der Shift mit der geringsten MakeSpan. Dazu: generieren aller möglichen Shifts (n^m Möglichkeiten) und Minimumsuche über deren MakeSpans.
- \rightarrow Laufzeit: $O(n^m * m) = O(n^m)$

Erweitern Sie die Testfälle um die Bezahlungsfunktionen und implementieren Sie daraufhin die Bezahlungsfunktionen in den Mechanismen.

Bezahlungen bei VCG: [-20,0,-23]

Ohne Agent 0

Agent	drill	insert	tighten
R ₂	15	<u>20</u>	15
R ₃	<u>10</u>	30	7

Mit Agent 0

Agent	drill	insert	tighten
R ₁	20	<u>5</u>	8
R_2	15	20	15
R_3	<u>10</u>	30	<u>7</u>

$$p_1 = -(10 + 20 - 7) - (-(10 + 7)) = -20 = -37 - (-17) = -20$$

Bezahlungen bei KuS: [-20,0,-12]

Ohne Agent 0

Agent	drill	insert	tighten
R ₂	15	<u>20</u>	15
R ₃	<u>10</u>	30	7

Mit Agent 0

Agent	drill	insert	tighten
R ₁	20	<u>5</u>	<u>8</u>
R ₂	15	20	15
R_3	<u>10</u>	30	7

$$p_1 = -20 - (5 + 8) + max((5 + 8), 10) = -20 = -20 - 13 + max(13, 10) = -20$$

Definition (Individuelle Rationalität)

Ein Mechanismus ist individuell rational falls für alle i und v, $v_i(\chi(\mathbf{s}(v))) - p_i(\mathbf{s}(v)) \ge 0$, wobei \mathbf{s} das Equilibriumsstrategieprofil ist.

• Kein Agent verliert durch die Teilnahme

Privater Nutzen (Individualnutzen) im KuS Beispiel:

$$u_i(x, \mathbf{p}) = v_i(x) - p_i$$
 // private Utility - penalty

$$u_0 = -(5 + 8) - (-20) = -13 + 20 = 7$$
 $u_1 = 0$
 $u_2 = -10 - (-12) = 2$

Dadurch sehen wir hier die individuelle Rationalität.

Implementieren Sie ein Experimentier-Setup, in welchem Sie für folgende Parameter ein zufälliges SchedulingProblem erzeugen können:

- > n Agenten
- > m Tasks
- $> 0 < t_{min} < t_{max}$ die Schranken für die minimalen Bearbeitungszeiten $t_{i;j}$.

Zufällig werden die (minimalen) Bearbeitungszeiten t_{min} ≤ t_{max} gewählt.

Implementieren Sie einen dedizierten LyingAgent, welcher bei seinen angegeben Zeiten lügt, allerdings bei den tatsächlichen Zeiten immer zumindest die Minimalzeit benötigt. Machen Sie den Lügenmodus ausschaltbar (also als Faktor) und vergleichen Sie die Bezahlungen, die ihr Lügner bekommt, wenn er von seinen Minimalzeiten abweicht sowohl für:

- Angegebene Zeiten
- Tatsächlich eingetretene Zeiten (beachten Sie, dass diese nie kürzer als die minimalen Zeiten sein dürfen).

Führen Sie ein Experiment aus, in welchem Sie den privaten Nutzen des Lügners mit einem wahrheitsgemäßen Agenten auf Signifikanz vergleichen (T-Test). Achten Sie auf eine saubere Ausarbeitung im Sinne guter Softwaretechnik-Prinzipien (Kapselung, Wiederverwendbarkeit, Testabdeckung).

T-Test:

Idee: Zeige, dass der Mittelwert einer Population X signifikant von dem einer Population Y abweicht.

Vorgehen beim T-Test:

- 1. Aufstellen der Nullhypothese H_0 : X = Y
- 2. Führe das Experiment durch und erhebe Stichprobenstatistik.
- 3. Berechne die Wahrscheinlichkeit, dass der Unterschied in den Messungen zufällig auftritt.
 - a. Wähle ein Signifikanzniveaus **a** (typischerweise 0,05 oder 0,01).
 - b. Bestimme den p-Wert der Messdaten; Dieser sagt aus wie wahrscheinlich es ist, dass die Abweichungen in den Messdaten zufällig sind.
 - c. Gilt p < a, so kann die Nullhypothese verworfen werden \rightarrow Die aufgetretenen Abweichungen sind signifikant.

Das Experiment (ExperimentSetup.test()) zeigt, dass der private Nutzen des ehrlichen Agenten immer positiv ist → individuelle Rationalität

Führen Sie ein Experiment aus, in welchem Sie den privaten Nutzen des Lügners mit einem wahrheitsgemäßen Agenten auf Signifikanz vergleichen (T-Test).

- Nullhypothese H₀: Mittelwert des privaten Nutzen des Lügners ist gleich dem des ehrlichen Agenten.
- Da p << α kann H₀ verworfen werden, d.h. Es tritt eine signifikante Verbesserung des privaten Nutzens auf, wenn der Agent wahrheitsgemäße Angaben macht.