HM1

Problem 1

Suppose $f \in C[a, b]$, that x_1 and x_2 are in [a, b].

a. Show that a number ξ exists between x_1 and x_2 with

$$f(\xi) = \frac{f(x_1) + f(x_2)}{2} = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

b. Suppose that c_1 and c_2 are positive constants. Show that a number ξ exists between x_1 and x_2 with

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

c. Give an example to show that the result in part **b** does not necessarily hold when c_1 and c_2 have opposite signs with $c_1 \neq -c_2$.

solotion

a.

if
$$f(x_1)$$
 = $f(x_2)$, so $\exists \ \xi = x_1 \ ext{or} \ \xi = x_2$ let $f(\xi) = rac{f(x_1) + f(x_2)}{2}$

if
$$f(x_1)
eq f(x_2)$$
, without loss of generality, let $f(x_2) > f(x_1)$

so
$$f(x_1)<rac{f(x_1)+f(x_2)}{2}< f(x_2)$$

according to the intermediate value theorem

$$\exists \xi \in [x_1,x_2]$$
, $f(\xi) = rac{f(x_1) + f(x_2)}{2} = rac{1}{2}f(x_1) + rac{1}{2}f(x_2)$

b.

if
$$f(x_1)=f(x_2)$$
, $\exists \xi=x_1$ or $\xi=x_2$, makes $f(\xi)=rac{c_1f(x_1)+c_2f(x_2)}{c_1+c_2}$

if
$$f(x_1) \neq f(x_2)$$
, without loss of generality, let $f(x_2) > f(x_1)$

$$\mathsf{SO}f(x_1) < rac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} < f(x_2)$$

according to the intermediate value theorem

$$\exists \xi \in [x_1,x_2]$$
, $f(\xi) = rac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}$

C.

let
$$f(x) = x, x_1 = 1, x_2 = 2, c_1 = 1, c_2 = -2,$$

so
$$\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = 3$$

there's no $\xi{\in}[1,2]$ makes $f(\xi)=3$

Problem 2

Let $f \in C[a,b]$ be a function whose derivative exists on (a,b). Suppose f is to be evaluated at x_0 in (a,b), but instead of computing the actual value $f(x_0)$, the approximate value, $\tilde{f}(x_0)$, is the actual value of f at $x_0 + \epsilon$, that is, $\tilde{f}(x_0) = f(x_0 + \epsilon)$.

- a. Use the Mean Value Theorem 1.8 to estimate the absolute error $|f(x_0) \tilde{f}(x_0)|$ and the relative error $|f(x_0) \tilde{f}(x_0)|/|f(x_0)|$, assuming $f(x_0) \neq 0$.
- **b.** If $\epsilon = 5 \times 10^{-6}$ and $x_0 = 1$, find bounds for the absolute and relative errors for
 - i. $f(x) = e^x$
 - ii. $f(x) = \sin x$
- c. Repeat part (b) with $\epsilon = (5 \times 10^{-6})x_0$ and $x_0 = 10$.

solotion

a.

According to Mean Value Theorem

$$|f(x_0)-\tilde{f}(x_0)|=f(x_0)-f(x_0+\varepsilon)=f'(\xi)\varepsilon\text{, }\xi\in(x_0,x_0+\varepsilon)$$
 when $\varepsilon\to0$, $|f'(\xi)|\to|f'(x_0)|$

so the absolute error and the relative error are

$$|f(x_0)- ilde{f}(x_0)|=f'(x_0)arepsilon \ rac{|f(x_0)- ilde{f}(x_0)|}{f(x_0)}=rac{f'(x_0)arepsilon}{f(x_0)}$$

```
b.
```

i.

From $f(x)=e^x$, we have that $f'(x)=e^x, f'(x_0)=e, \varepsilon=5 imes 10^{-6}$ so absolute error is $5e imes 10^{-6}$

relative error is $5 imes 10^{-6}$

ii.From f(x)=sinx, we have that $f'(x)=cosx, f'(x_0)=cos1, \varepsilon=5 imes10^{-6}$ so absolute error is $5cos1 imes10^{-6}$

relative error is $5cot1 \times 10^{-6}$

C.

i.

From $f(x)=e^x$, we have that $f'(x)=e^10, f'(x_0)=e, \varepsilon=5 imes10^{-5}$ so absolute error is $5e^{10} imes10^{-5}$

relative error is $5\times 10^{-5}\,$

ii.

From f(x)=sinx, we have that $f'(x)=cosx, f'(x_0)cos10e, arepsilon=5 imes10^{-5}$

so absolute error is $5cos10 \times 10^{-5}$ relative error is $5cot10 \times 10^{-5}$

Problem 3

Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

a.
$$\frac{4}{5} + \frac{1}{3}$$

b.
$$\left(\frac{1}{3} + \frac{3}{11}\right) - \frac{3}{20}$$

solution

We have

	а	b
Exact	$\frac{17}{15}$	$\frac{301}{660}$
3-digit chopping	1.13	0.445
Relative error	0.003	0.00233
3-digit rounding	1.13	0.456
Relative error	0.003	0.000133

Proble 4

Suppose that as x approaches zero,

$$F_1(x) = L_1 + O(x^{\alpha})$$
 and $F_2(x) = L_2 + O(x^{\beta})$.

Let c_1 and c_2 be nonzero constants, and define

$$F(x) = c_1 F_1(x) + c_2 F_2(x)$$
 and

$$G(x) = F_1(c_1x) + F_2(c_2x).$$

Show that if $\gamma = \min \{\alpha, \beta\}$, then as x approaches zero,

a.
$$F(x) = c_1 L_1 + c_2 L_2 + O(x^{\gamma})$$

b.
$$G(x) = L_1 + L_2 + O(x^{\gamma}).$$

solution

a.

$$F(x)=c_1F_1(x)+c_2F_2(x)=c_1L_1+c_1O(x^lpha)+c_2L_2+c_2O(x^eta)$$
 because $\gamma=min\{lpha,eta\}$ so $c_1O(x^lpha)+c_2O(x^eta)=O(x^\gamma)+o(x^\gamma)$ when $x o 0,o(x^\gamma)=0$

hence

$$F(x) = c_1 L_1 + c_2 L_2 + O(x^{\gamma})$$

b.

$$G(x)=F_1(c_1x)+F_2(c_2x)=L_1+L_2+O(c_1^lpha x^lpha)+O(c_2^eta x^eta)$$
 The same as **a.,** $O(c_1^lpha x^lpha)+O(c_2^eta x^eta)=O(x^\gamma)+o(x^\gamma)$ so

$$G(x) = L_1 + L_2 + O(x^{\gamma})$$

Problem 5

Implement the Bisection method in C or matlab and find solutions accurate to within 10^{-5} for the following problems. (List the midpoints in each iteration as well). 【请在作业中上交程序代码】

a.
$$e^x - x^2 + 3x - 2 = 0$$
 for $0 \le x \le 1$

b.
$$x \cos x - 2x^2 + 3x - 1 = 0$$
 for $0.2 \le x \le 0.3$ and $1.2 \le x \le 1.3$

solution

a.

n	a_n	b_n	p_n	f(p_n)
1	0.000000000	1.000000000	0.500000000	0.898721271
2	0.000000000	0.500000000	0.250000000	-0.028474583
3	0.250000000	0.500000000	0.375000000	0.439366415
4	0.250000000	0.375000000	0.312500000	0.206681691
5	0.250000000	0.312500000	0.281250000	0.089433196
6	0.250000000	0.281250000	0.265625000	0.030564234
7	0.250000000	0.265625000	0.257812500	0.001066368
8	0.250000000	0.257812500	0.253906250	-0.013698684
9	0.253906250	0.257812500	0.255859375	-0.006314807
10	0.255859375	0.257812500	0.256835938	-0.002623882
11	0.256835938	0.257812500	0.257324219	-0.000778673
12	0.257324219	0.257812500	0.257568359	0.000143868
13	0.257324219	0.257568359	0.257446289	-0.000317397

n	a_n	b_n	p_n	f(p_n)
14	0.257446289	0.257568359	0.257507324	-0.000086763
15	0.257507324	0.257568359	0.257537842	0.000028553
16	0.257507324	0.257537842	0.257522583	-0.000029105
17	0.257522583	0.257537842	0.257530212	-0.000000276

so x=0.257530212

b.

 $0.2 \le x \le 0.3$

n	a_n	b_n	p_n	f(p_n)
1	0.200000000	0.300000000	0.250000000	-0.132771895
2	0.250000000	0.300000000	0.275000000	-0.061583071
3	0.275000000	0.300000000	0.287500000	-0.027112719
4	0.287500000	0.300000000	0.293750000	-0.010160959
5	0.293750000	0.300000000	0.296875000	-0.001756232
6	0.296875000	0.300000000	0.298437500	0.002428306
7	0.296875000	0.298437500	0.297656250	0.000337524
8	0.296875000	0.297656250	0.297265625	-0.000708983
9	0.297265625	0.297656250	0.297460938	-0.000185637
10	0.297460938	0.297656250	0.297558594	0.000075967
11	0.297460938	0.297558594	0.297509766	-0.000054829
12	0.297509766	0.297558594	0.297534180	0.000010570
13	0.297509766	0.297534180	0.297521973	-0.000022129
14	0.297521973	0.297534180	0.297528076	-0.000005779

so x=0.297528076

$1.2 \le x \le 1.3$

n	a_n	b_n	p_n	f(p_n)
1	1.200000000	1.300000000	1.250000000	0.019152953
2	1.250000000	1.300000000	1.275000000	-0.054585352
3	1.250000000	1.275000000	1.262500000	-0.017224892
4	1.250000000	1.262500000	1.256250000	0.001086892

n	a_n	b_n	p_n	f(p_n)
5	1.256250000	1.262500000	1.259375000	-0.008038288
6	1.256250000	1.259375000	1.257812500	-0.003468020
7	1.256250000	1.257812500	1.257031250	-0.001188644
8	1.256250000	1.257031250	1.256640625	-0.000050396
9	1.256250000	1.256640625	1.256445313	0.000518368
10	1.256445313	1.256640625	1.256542969	0.000234016
11	1.256542969	1.256640625	1.256591797	0.000091818
12	1.256591797	1.256640625	1.256616211	0.000020713
13	1.256616211	1.256640625	1.256628418	-0.000014841
14	1.256616211	1.256628418	1.256622314	0.000002936

so x=1.256622314

```
fun1 = @(x) exp(x)-x^2+3*x-2;
fun2 = \omega(x) x^*\cos(x) - 2^*x^2 + 3^*x - 1;
tol = 1E-5; %
maxIt = 40; % Max iteration time
[p, flag] = bisect(fun1, 0, 1, tol, maxIt);
[p, flag] = bisect(fun2, 0.2, 0.3, tol, maxIt);
[p, flag] = bisect(fun2, 1.2, 1.3, tol, maxIt);
function [p, flag] = bisect(fun, a, b, tol, maxIt)
flag = 0; % Use a flag to tell if the output is reliable
if fun(a) * fun(b)> 0 % Check f(a) and f(b) have different
sign
   error('f(a) and f(b) must have different signs');
end
disp('Bisection Methods')
disp('-----
---')
disp('n a_n b_n p_n
f(p n)')
disp('----
---')
formatSpec = '%2d %.9f %.9f %.9f\n';
for n = 1:maxIt
    p = (a+b)/2;
   FA = fun(a);
    FP = fun(p);
    fprintf(formatSpec,[n,a,b,p,fun(p)]) % Printing output
    if abs(FP) <= 10^{(-15)} | (b-a)/2 < tol
       flag = 1;
       break;
    else
       if(FA*FP>0)
           a = p;
       else
           b = p;
```

end end end end

Problem 6

Implement the fixed-point iteration method and find solutions accurate to within 10^{-2} for the following problems. (List pn in each iteration as well). 【请在作业中上交程序代码】

a.
$$2\sin \pi x + x = 0$$
 on [1, 2], use $p_0 = 1$

b.
$$3x^2 - e^x = 0$$

solution

a.

$$x=rac{1}{\pi} imes arcsin$$
 ($rac{-1}{2} imes x$) $+2$

n	р	f(p_n)
0	1.00000000	1.833333333
1	1.833333333	1.630869246
2	1.630869246	1.696498005
3	1.696498005	1.677657062
4	1.677657062	1.683240993
5	1.683240993	1.681602013

so x = 1.683240993

b.

$$x=ln(3 imes x^2)$$

n	р	f(p_n)
0	3.000000000	3.295836866
1	3.295836866	3.483932521
2	3.483932521	3.594935670
3	3.594935670	3.657664482

n	р	f(p_n)
4	3.657664482	3.692261937
5	3.692261937	3.711090811
6	3.711090811	3.721263994
7	3.721263994	3.726739076
8	3.726739076	3.729679507

so x= 3.726739076

```
fun1 =@(x) (1/pi)*asin((-1/2)*x)+2
fun2 = @(x) log(3*x^2)
tol = 1E-2;
maxIt = 40;
[p, flag] = fixedpoint(fun1, 1, tol, maxIt);
[p, flag] = fixedpoint(fun2, 3, tol, maxIt);
function [p, flag] = fixedpoint(fun, p0, tol, maxIt)
n = 1;
flag = 0;
disp('Fixed Pointed Iteration')
disp('-----
          p f(p_n)')
disp(' n
disp('-----
formatSpec = '%2d %.9f %.9f \n';
fprintf(formatSpec, [n-1, p0, fun(p0)])
while n <= maxIt</pre>
   p = fun(p0);
   fprintf(formatSpec, [n, p, fun(p)])
   if abs(p-p0) < tol</pre>
       flag = 1;
       break;
   else
       n = n+1;
       p0 = p;
   end
end
end
```

Problem 7

Let $g \in C^1[a,b]$ and p be in (a, b) with g(p) = p and |g'(p)| > 1. Show that there exists a $\delta > 0$ such that if $0 < |p_0 - p| < \delta$, then $|p_0 - p| < |p_1 - p|$. Thus, no matter how close the initial approximation p_0 is to p, the next iterate p_1 is father away, so the fixed-point iteration does not converge if $p_0 \neq p$.

solution

$$\begin{split} |p_1-p| &= |g(p_0)-g(p)| = |p_0-p||g'(\xi)|, \ \xi \in (p_0,p) \\ \text{cause } |g'(p)| &> 1 \text{, that } \exists \delta > 0, when \ 0 < |p_0-p| < \delta, \ that |g'(\xi)| > 1 \\ \text{so } \exists \delta > 0, when \ 0 < |p_0-p| < \delta, \ that \ |p_1-p| = |p_0-p||g'(\xi)| > |p_0-p| \end{split}$$