Ch. 3, Sec. 4: The Chain Rule

1. Quote.

"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."

— John von Neumann.

2. Learning Objectives.

3. **Reminder.** The **composition** of the functions f and g is defined by

$$(f \circ g)(x) = f(g(x)) .$$

4. Example. Let $f(u) = \sin u$ and $g(x) = 1 + x^2$. Find $(f \circ g)(x)$, then find $(g \circ f)(x)$.

5. **Theorem. Chain Rule** If f and g are both differentiable, then the derivative of $h(x) = (f \circ g)(x) = f(g(x))$ is

$$h'(x) = f'(g(x)) \cdot g'(x) .$$

In Leibniz notation, if y=f(u) and u=g(x) are both differentiable functions, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \ .$$

6. Example. Let $f(u) = \sin u$ and $g(x) = 1 + x^2$ and let $F = f \circ g$. Find the derivative of F.

7. **Example.** Find $y' = \frac{dy}{dx}$, given $y = (2 - 5x)^3$

8. **Example.** Differentiate $y = (x + \sin x)^5 (1 + e^x)^2$

9. Example. Compute $\frac{d}{dx} \left[\left(\frac{(4x^2 - 7x + 3)^5}{x} \right)^5 \right]$

10. Example. Differentiate

$$y = \sqrt[3]{\cos(x^2 + \sin x)}$$

11. Must Know!

$$\frac{d}{dx}(a^x) = a^x \ln a \ .$$

12. Examples.

- (a) If $y_1 = (g(x))^b$, where b is a positive constant, find y'_1 .
- (b) If $y_2 = b^{g(x)}$, where b is a positive constant, find y'_2 .

13. **Example.** A pebble droppped into a lake creates an expanding circular ripple. Suppose that the radius of the circle is increasing at the rate of 2 in./s. At what rate is its area increasing when its radius is 10 in.?

14. **Example.** Suppose F(x) = f(g(h(x))). Find F'(x).

1. **Homework.** Find f'.

(a)
$$f(x) = \sqrt{2 + 5x^2}$$

$$f(x) = e^{\cos x}$$

(c)
$$f(x) = (\tan(x^2))^3$$

- 2. Homework. Let $f(x) = \sqrt{x}$ and $g(x) = \cos(x)$, and $C(x) = (f \circ g)(x)$.
 - (a) Compute the derivative of C(x) using Newtonian prime notation.
 - (b) Compute the derivative of C(x) using Leibniz notation.
- 3. **Homework.** Find an equation of the tangent line to the curve at the given point.

(a)
$$y = \sqrt{5x + 9}$$
, at $x = 10$.

(b)
$$y = \cos(x) + \cos^3(x)$$
, at $x = \pi/6$.

- 4. **Homework.** Find the 50th derivative of $y = 2^{kx}$, where k is a constant.
- 5. **Homework.** Find the 50th derivative of $y = \cos(kx)$, where k is a constant.
- 6. **Homework.** Under certain circumstances a rumor spreads according to the equation

$$p(t) = \frac{1}{1 + ae^{-kt}}$$

where p(t) is the proportion of the population that knows the rumor at time t and a and k are positive constants.

- (a) Find the rate of spread of the rumour.
- (b) Find $\lim_{t\to\infty}p(t)$, then interpret your result physically.