Status of Shortspine Thornyhead (Sebastolobus alascanus) along the US West coast in 2023

by
Joshua A. Zahner¹
Madison Heller-Shipley¹
Sabrina Beyer¹
Adam L. Hayes¹
Pierre-Yves Hernvann²
Andrea N. Odell³
Haley Oleynik⁴
Jane Y. Sullivan⁵
Matthieu Veron⁶

¹School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195

²Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

³University of California Davis, One Shields Avenue, Davis, California 95616
 ⁴Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall,
 Vancouver, British Columbia Canada V6T 1Z4

⁵ Alaska Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 17109 Point Lena Loop Road, Juneau, Alaska 99801

⁶Alaska Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 7600 Sand Point Way N.E., Seattle, Washington 98115

 $\ensuremath{^{\odot}}$ Pacific Fishery Management Council, 2023

Correct citation for this publication:

Zahner. J.A, M.A. Heller-Shipley, S. Beyer, A.L. Hayes, P-Y. Hernvann, A.N. Odell, H. Oleynik, J.Y. Sullivan, M. Veron. 2023. Status of Shortspine Thornyhead (*Sebastolobus alascanus*) along the US West coast in 2023. Pacific Fishery Management Council, Portland, Oregon. 53 p.

Contents

\mathbf{E}_{2}			nmary					j
	Stoc	k						. i
	Cato	ches						. i
	Data	a and as	ssessment					. ii
	Stoc	k bioma	ass and dynamics					iii
	Recr	uitmen	t					. iv
	Expl	loitatior	n status					. v
	Ecos	system o	considerations					viii
	Refe	rence p	${ m oints}$					viii
	Man	agemen	t performance					ix
	Unre	esolved	problems and major uncertainties					. х
	Deci	sion tab	ole and projections					. х
	Scien	ntific un	ncertainty					. х
	Rese	earch an	d data needs					. xi
1		oducti						1
	1.1		Information					
	1.2		Structure					
	1.3		istory					
	1.4		etem Considerations					
	1.5		ical and Current Fishery Information					
	1.6		ary of Management History and Performance					
	1.7	Foreign	n Fisheries		 •	•	•	. 5
2	Dat	9						5
_	2.1		y-Dependent Data					
	2.1	2.1.1	Catch History					
		2.1.2	Discards and retention					
		2.1.2 $2.1.3$	Fishery Length Compositions					
		2.1.4	Age Compositions					
	2.2		y-Independent Data					
	2.2	2.2.1	AFSC/NWFSC West Coast Triennial Shelf Survey					
		2.2.1 $2.2.2$	AFSC and NWFSC Slope Surveys					
		2.2.3	NWFSC West Coast Groundfish Bottom Trawl Survey					
		2.2.4	Survey Stratification					
		2.2.4 $2.2.5$	Design-based Indices of Abundance					
		2.2.6	Geostatistical Model-based Indices of Abundance					
		2.2.7	Length Composition Data					
		2.2.1	Frequency of Occurrence and Survey Information					
	2.3		ical Data					
	۷.3	2.3.1	Natural Mortality					
		2.3.1 $2.3.2$	Maturation and Fecundity					
		2.3.2 $2.3.3$						
		2.3.3 $2.3.4$	Length-Weight Relationship					
		۷.ئ.4	Growth (Length-at-Age)					. 14

2023 iii

		2.3.5 Ageing Precision and Bias	15
	2.4	Environmental and Ecosystem Data	16
	2.5	Changes in data from the 2013 assessment	16
3	\mathbf{Ass}	essment Model	16
	3.1	Summary of Previous Assessments and Reviews	16
		3.1.1 History of Modeling Approaches (not required for an update assessment)	16
		3.1.2 Most Recent STAR Panel and SSC Recommendations (not required	
		for an update assessment)	17
		3.1.3 Response to Groundfish Subcommittee Requests (not required in draft)	
	3.2	Model Structure and Assumptions	17
		3.2.1 Model Changes from the Last Assessment (not required for an update	
		assessment)	17
		3.2.2 Modeling Platform and Structure	17
		3.2.3 Model Parameters	18
		3.2.4 Key Assumptions and Structural Choices	20
	3.3	Base Model Results	20
	0.0	3.3.1 Parameter Estimates	20
		3.3.2 Fits to the Data	20
		3.3.3 Population Trajectory	22
		3.3.4 Reference Points	22
	3.4	Model Diagnostics	23
		3.4.1 Convergence	23
		3.4.2 Sensitivity Analyses	23
		3.4.3 Retrospective Analysis	23
		3.4.4 Likelihood Profiles	23
		3.4.5 Unresolved Problems and Major Uncertainties	23
4		nagement	2 3
	4.1	Reference Points	23
	4.2	Unresolved Problems and Major Uncertainties	23
	4.3	Harvest Projections and Decision Tables	23
	4.4	Evaluation of Scientific Uncertainty	23
	4.5	Research and Data Needs	23
5	Ack	cnowledgments	23
6	Ref	erences	24
7	Tab	oles	2 8
3	Fig	ures	42
Q.	Dat	a figures	42

iv

Executive summary

Stock

This assessment applies to Shortspine thornyhead (Sebastolobus alascanus) off of the west coast of the United States from the U.S.-Canada border to the U.S.-Mexico border using data through 2023. Shortspine thornyheads are modeled in this assessment as a single stock. They have been reported as deep as 1,524 m, and this assessment applies to their full depth range although survey and fishery data are only available down to 1,280 m.

Catches

Landings of shortspine are estimated to have risen to a peak of 4,815 mt in 1989, followed by a sharp decline during a period of trip limits and other management measures imposed in the 1990s. Since the institution of separate trip limits for shortspine and longspine thornyheads, the fishery had more moderate removals of between 1,000 and 2,000 mt per year from 1995 through 1998. Landings fell below 1,000 mt per year from 1999 through 2006, then rose to 1,531 in 2009 and have declined since that time. Recreational fishery landings of thornyheads were negligible, so only commercial landings were included in the model.

Commercial landings are dominantly bottom trawl caught, and non-trawl landings include all other gear types, the majority of which is longline. For this assessment, trawl landings were divided into North (the waters off Washington and Oregon) and South (the waters off California) fleets, and non-trawl landings represent one, coastwide fleet. Discard rates (landings divided by total catch) for shortspine have been estimated as high as 43% per year, but are more frequently below 20%. Discard rates in the trawl fleets, available from the West Coast Groundfish Observer Program (WCGOP), declined from 2003–2011 and have since increased from 2012-present, when the catch shares system began.

Table i: Recent landings by fleet, total landings summed across fleets, and the total mortality including discards.

Year	North Trawl	South Trawl	Non-Trawl	Total Landings	Total Dead
2013	547.98	294.83	166.40	1,009.21	1,085.62
2014	433.12	254.05	147.81	834.98	900.66
2015	503.14	244.29	131.30	878.73	945.40
2016	577.19	185.73	168.94	931.86	1,012.75
2017	606.86	158.30	223.82	988.97	1,085.60
2018	525.04	105.07	184.48	814.60	895.39
2019	402.95	127.94	143.48	674.37	736.82
2020	248.47	87.99	85.17	421.64	458.87
2021	226.00	73.39	78.74	378.13	411.62
2022	261.16	97.61	66.22	424.98	456.65

Figure i: Estimated landing history for shortspine thornyhead.

Data and assessment

The most recent assessment for shortspine thornyhead was conducted in 2012 (Taylor and Stephens 2013). Stock status was determined to be above the target biomass and catches did not attain the full management limits so reassessment of thornyheads has not been a higher priority. This assessment used Stock Synthesis (Methot and Wetzel 2013) Version 3.30.21, used in many other recent west coast assessments.

Data were divided into three fishery fleets: North trawl (the waters off Washington and Oregon), South trawl (the waters off California), and coastwide non-trawl, and three survey fleets: the Alaska Fishery Science Center (AFSC) Triennial Shelf Survey from 1980-2003, which was divided into early (pre-1995) and late period (post-1995) to account for a change in depth-sampling, and the West Coast Groundfish Bottom Trawl Survey (WCGBTS), 2004-2022.

Most data used in the 2012 assessment were newly pulled and processed for this assessment, including length compositions from all fishing and survey fleets, indices of abundance derived from new geostatistical analyses, discard rates from both a 1980s observer study (Pikitch et al., 1988) and the current WCGOP, historical catch data from Washington, Oregon, and California, and all reported catches from 1981-2022. The only data taken from the previous assessment without reanalysis were discard rates from the Enhanced Data Collection Project (EDCP) study in the 1990s.

New maturity analyses of samples collected in the WCGBTS in 2011, 2013, 2014, 2016 and 2018 were available for this assessment (M. Head, pers. comm.). The larger number and

better spatial coverage of these samples allowed the use of statistical modeling to better understand the spatial variation in the proportion of female spawning. This assessment also assumes a new fecundity relationship, in which fecundity increases with body size. New growth curves were estimated, using data from Butler (1995), which were similar to the curves assumed in the 2005 and 2013 assessments. In the previous assessment, a Beverton-Holt stock recruitment relationship was assumed and steepness was fixed at 0.60. This assessment fixed steepness at 0.72, as recommended by Thorson et al. (2019). Natural mortality was also slightly updated from the 2013 assessment to be fixed at 0.04.

This assessment estimated 180 parameters. The log of the unfished equilibrium recruitment, log(R0), controls the scale of the population and annual deviations around the stock-recruit curve (135 parameters) allow for more uncertainty in the population trajectory. In addition, 43 selectivity and retention parameters for the three fishery fleets and three surveys allowed for estimation of annual length compositions and discards rates. Two catchability parameters were analytically computed from the data, and one additional parameter, representing additional variability in the early Triennial survey, was directly estimated by the model.

Stock biomass and dynamics

Unfished equilibrium spawning output (B0) is estimated to be 20.332 trillion eggs, with a 95% confidence interval of 16.338-24.327 trillion eggs. The B0 estimate here is not comparable to previous assessment as the integration of new fecundity and maturity assumptions have changed the output units from traditional biomass to spawned eggs. Spawning biomass is estimated to have remained stable until the early-1970s before beginning to decline near linearly through the present day. The estimated spawning output in 2023 is 8.372 trillion eggs, which represents a stock status or "depletion" (represented as spawning biomass in 2023, 82023, divided by 80) of 41.4% (Figure XX). The depletion in 2013 was estimated to be 43.6%, a large decrease from what was estimated in 2013 ($\sim75\%$).

Table ii: Spawning output (millions of eggs) and fraction unfished with associated 95% confidence intervals (CI) from the base model.

Year	Spawning Output	Spawning Output 95% CI	Fraction Unfished	Fraction Unfished 95% CI
2013	8,875	5,904-11,845	0.4	0.4 – 0.5
2014	8,767	$5,\!807-\!11,\!727$	0.4	0.4 – 0.5
2015	8,679	$5{,}728-11{,}630$	0.4	0.3 – 0.5
2016	8,593	$5,\!650 -\!11,\!536$	0.4	0.3 – 0.5
2017	8,508	$5,\!572 - \!11,\!445$	0.4	0.3 – 0.5
2018	8,423	$5,\!492 -\!11,\!355$	0.4	0.3 – 0.5
2019	8,358	$5,\!431 11,\!286$	0.4	0.3 – 0.5
2020	8,311	$5,\!386 -\!11,\!236$	0.4	0.3 – 0.5
2021	8,291	$5,\!366 \!\!-\!\!11,\!215$	0.4	0.3 – 0.5
2022	8,280	$5,\!355 -\!11,\!205$	0.4	0.3 – 0.5

Table ii: Spawning output (millions of eggs) and fraction unfished with associated 95% confidence intervals (CI) from the base model. *(continued)*

Year	Spawning Output	Spawning Output 95% CI	Fraction Unfished	Fraction Unfished 95% CI
2023	8,273	5,346-11,201	0.4	0.3-0.5

Figure ii: Estimated spawning output trajectory for shortspine thornyhead.

Recruitment

This assessment assumed a Beverton-Holt stock recruitment relationship. Steepness (the fraction of expected equilibrium recruitment associated with 20% of equilibrium spawning biomass) was fixed at 0.7, slightly higher than what was assumed in previous assessments (h=0.60). The scale of the population is largely determined by the log of unfished recruitment (R0), which was estimated to be 9.354. This results in an unfished recruitment of 11,550,000 recruits (9,281,000–13,820,000). Recruitment deviations were estimated for the years 1901 through 2022, and ranged from -0.5 to 1.5 on the log scale. Estimated recruitments do not show high variability, and the uncertainty in each estimate is greater than the variability between estimates.

Table iii: Estimated recent trend in recruitment and recruitment deviations and the 95% confidence intervals (CI) from the base model.

Year	Recruitment	95% CI	RecDevs	RecDev 95% CI
2013	6,024	2,469-14,698	-0.439	-1.352-0.474
2014	5,962	$2,\!446 - \!14,\!532$	-0.447	-1.358 - 0.465
2015	5,954	$2,\!438 - \!14,\!542$	-0.446	-1.360 - 0.468
2016	6,057	$2,\!465 - \!14,\!886$	-0.427	-1.349 - 0.495
2017	5,836	$2,\!385 - \!14,\!279$	-0.462	-1.379 - 0.454
2018	5,745	2,346-14,069	-0.476	-1.393 - 0.442
2019	8,863	$3,\!557-22,\!086$	-0.064	-1.003 - 0.874
2020	9,536	3,760-24,183	-0.013	-0.973 - 0.946
2021	10,335	3,984-26,811	0.044	-0.943 - 1.032
2022	10,118	3,924-26,090	0.000	-0.980 - 0.980
2023	10,117	3,924-26,086	0.000	-0.980 - 0.980

Figure iii: Estimated recruitment timeseries.

Exploitation status

The summary harvest rate (total catch divided by age-1 and older biomass) closely follows the landings trajectory. The harvest rates are estimated to have never exceeded 5% and

have remained below 2% in the past decade. Expressing exploitation rates in terms of spawning potential ratio (SPR) indicates that the exploitation consistently exceeded the SPR50% reference point from 1980-2018. However, the stock status is estimated to have never fallen below the B40% management target, though the uncertainty interval around the 2023 estimate does encapsulate the B40% target.

Table iv: Estimated recent trend in the $(1-SPR)/(1-SPR\ 50\%)$ where SPR is the spawning potential ratio the exploitation rate, and the 95% intervals.

Year	(1-SPR)/(1- SPR 50%)	95% CI	Exploitation Rate	95% CI
2013	1.25	1.03 – 1.47	0.0124	0.0084 – 0.0165
2014	1.12	0.90 – 1.34	0.0103	0.0069 – 0.0137
2015	1.15	0.92 – 1.37	0.0109	0.0073 – 0.0145
2016	1.19	0.96 – 1.42	0.0117	0.0078 – 0.0155
2017	1.23	1.00 – 1.46	0.0125	0.0083 – 0.0167
2018	1.09	0.86 – 1.32	0.0103	0.0069 – 0.0138
2019	0.95	0.73 – 1.17	0.0085	0.0056 – 0.0114
2020	0.66	0.48 – 0.84	0.0053	0.0035 – 0.0071
2021	0.59	0.43 – 0.76	0.0047	0.0031 – 0.0063
2022	0.64	0.47 – 0.81	0.0052	0.0034 – 0.0070

Figure iv: Estimated relative spawning output trajectory for shortspine thornyhead.

Figure v: Summary F rate.

Figure vi: Estimated spawning potential ratio.

Figure vii: Phase diagram.

Ecosystem considerations

Replace text with a summary of reviewed environmental and ecosystem factors that appear to be correlated with stock dynamics. These may include variability in they physical environment, habitat, competitors, prey, or predators that directly or indirectly affects the stock's status, vital rates (growth, survival, productivity/recruitment) or range and distribution. Note which, if any, ecosystem factors are used in the assessment and how (e.g., as background information, in data preparations, as data inputs, in decisions about model structure).

Reference points

Reference points were calculated using the estimated catch distribution in the final year of the model (2023). In general, the population is on the boundary between "precautionary" (B/B0 = 0.40) and "healthy" (B.B0 > 0.40) status relative to the reference points (Figure XX). Sustainable total yield (landings plus discards) was estimated at 1,060 mt when using an SPR50% reference harvest rate and ranged from 870–1,250 mt based on estimates of uncertainty (Table XX). The spawning output equivalent to 40% of the unfished spawning output (B40%) was 8.273 trillion eggs. The most recent catches (landings plus discards) have been lower than the estimated long-term yields calculated using an SPR50% reference point, but not as low as the lower bound of the 95% uncertainty interval. However, this is due to the fishery not fully attaining the full ACL. The OFL and ABC values over the past 6 years have been approximately 3100 mt and 2,500 mt, respectively.

Include Table of estimated reference points for ssb, SPR, exploitation rate, and yield based on SSB proxy for MSY, SPR proxy for MSY, and estimated MSY values.

Table v: Summary of reference points and management quantities, including estimates of the 95% intervals.

Variable of Interest	Estimate	95% CI
Unfished Spawning Output	20,332	16,338-24,327
Unfished Age 1+ Biomass (mt)	196,023	157,510-234,536
Unfished Recruitment (R0)	11,550	$9,\!281 -\!13,\!820$
Spawning Output (2023)	8,273	5,346-11,201
Fraction Unfished (2023)	0.41	0.33 – 0.49
Reference Points Based SB40%		
Proxy Spawning Output SB40%	8,133	6,535 - 9,731
SPR Resulting in SB40%	0.458	0.458 – 0.458
Exploitation Rate Resulting in SB40%	0.012	0.011 – 0.012
Yield with SPR Based On SB40% (mt)	1,060	869 - 1,251
Reference Points Based on SPR Proxy for MSY		
Proxy Spawning Output (SPR50)	9,071	$7,\!289 - 10,\!854$
SPR50	0.500	-
Exploitation Rate Corresponding to SPR50	0.010	0.010 – 0.011
Yield with SPR50 at SB SPR (mt)	1,013	831 - 1,195
Reference Points Based on Estimated MSY Values	3	
Spawning Output at MSY (SB MSY)	5,651	4,548 - 6,755
SPR MSY	0.348	0.345 – 0.351
Exploitation Rate Corresponding to SPR MSY	0.017	0.016 – 0.017
MSY (mt)	1,121	919 – 1,323

Management performance

Catches for shortspine thornyheads have not fully attained the catch limits in recent years. ACLs have hovered around 2500 mt since 2013, while total mortality has never exceeded 1085 mt, and is often smaller than even that. The fishery for shortspine thornyhead may be limited more by the ACLs on sablefish with which they co-occur and by the challenging economics of deep sea fishing, than by the management measures currently in place.

Table vi: Recent trend in the overfishing limits (OFLs), the acceptable biological catches (ABCs), the annual catch limits (ACLs), the total landings, and total mortality (mt).

Year	OFL	ABC	ACL	Landings	Total Mortality
2013	2333	2230	1937	1,009.21	1,085.62
2014	2310	2208	1918	834.98	900.66

Table vi: Recent trend in the overfishing limits (OFLs), the acceptable biological catches (ABCs), the annual catch limits (ACLs), the total landings, and total mortality (mt). (continued)

Year	OFL	ABC	ACL	Landings	Total Mortality
2015	3203	2668	2668	878.73	945.40
2016	3169	2640	2639	931.86	1,012.75
2017	3144	2619	2619	988.97	1,085.60
2018	3116	2596	2596	814.60	895.39
2019	3089	2573	2573	674.37	736.82
2020	3063	2551	2552	421.64	458.87
2021	3211	2183	2184	378.13	411.62
2022	3194	2130	2130	424.98	456.65

Unresolved problems and major uncertainties

Major uncertainties in the model are centered around uncertainty in biological processes including growth, maturity, and mortality. The absence of reliable ageing methods for Shortspine thornyhead, particularly, makes it difficult to estimate growth and natural mortality. Sensitivities demonstrated that changes to the growth curve have large effects on the estimated stock status. Likelihood profiles over natural mortality demonstrate the model to be quite sensitive to its assumed value. There is insufficient information in the data to estimate mortality directly, constraining us to use meta-analyses or other mortality estimators, which frequently make use of aging information that is unavailable, and again, highly uncertain for shortspine thornyhead. Due to imperfect seasonal and spatial coverage of histological data for shortspine thornyhead, there is significant uncertainty about the shape of the species' maturity curve, though the model appears to be largely insensitive to variations in maturity.

This model fails to fully capture the observed increase in abundance seen in the WCGBTS index time series in 2021 and 2022. The model also fails to fully capture the peak of the length compositions for the Northern Trawl fleet, underestimating the number of mid-sized fish that the fleet takes (Figure XX). This underestimation appears to be consistent, particularly in the last 10 years (Figure XX), implying a possible recent change in selectivity.

Decision table and projections

Replace text with projected yields (OFL, ABC, and ACL), spawning biomass, and stock depletion levels for each year. OFL calculations should be based on the assumption that future catches equal ABCs and not OFLs.

Scientific uncertainty

Replace text with the sigma value and the basis for its calculation.

Figure viii: Estimated yield curve with reference points.

Research and data needs

Research and data needs for future assessments include the following:

- 1. Research into ageing methods and availability of reliable age data would be valuable for future stock assessments. Otoliths have been collected in good quantities from the NWFSC survey, but there is currently no validated ageing method for Shortspine thornyhead.
- 2. More investigation into maturity of Shortspine thornyhead is necessary to understand the patterns in maturity observed in WCGBTS samples.
- 3. Information on possible migration of Shortspine thornyheads would be valuable for understanding stock dynamics. Analysis of trace elements and stable isotopes in shortspine otoliths may provide valuable information on the extent of potential migrations. Possible connections between migration and maturity could likewise be explored.
- 4. A greater understanding of the connection between thornyheads and bottom type could be used to refine the indices of abundance. Thornyheads are very well sampled in trawlable habitat, but the extrapolation of density to a survey stratum could be improved by accounting for the proportion of different bottom types within a stratum and the relative density of thornyheads within each bottom type.
- 5. Additional investigation into spatial stock structure could be valuable for determining whether future assessments should develop a spatial assessment model, or if shortspine thornyhead should be assessed at distinct spatial scales in the future.

1 Introduction

1.1 Basic Information

This assessment reports the status of shortspine thornyhead (Sebastolobus alascanus) off the US West coast using data through xxxx.

Shortspine Thornyhead (Sebastolobus alascanus) are found in the waters off the West Coast of the United States from northern Baja California to the Bering Sea at depths of 20 meters to over 1,500 meters. The majority of the spawning biomass occurs in the oxygen minimum zone between 600 and 1,400 meters. The distribution of the smallest shortspine thornyhead suggests that they tend to settle at around 100–400 meters and are believed to have ontogenetic migration down the slope, although large individuals are found across the depth range. Higher densities (kg/ha) of shortspine thornyhead occur in shallower areas (under 500 meters) off Oregon and Washington, whereas in California, they occur in deeper areas (above x meters; Figure 1).

Despite variation in density across the coast, shortspine thornyheads are present in almost all trawlable areas below 500 meters. They are caught in 91% of trawl survey hauls deeper than 500 m and XX% of commercial bottom trawl hauls deeper than 500m. Camera-tows show that thornyheads are spaced randomly across the sea floor, indicating a lack of schooling and territoriality (Wakefield 1990; Du Preez and Tunnicliffe 2011).

1.2 Stock Structure

NOTE: This section was added.

Genetic studies of stock structure show few genetic differences among shortspine thornyhead along the Pacific coast, and thus do not suggest separate stocks Stepien (1995). Stepien (1995) suggested that there may be a separate population of shortspine thornyhead in the isolated area around Cortes Bank off San Diego, California. Stepien (1995) also pointed out that juvenile dispersion might be limited in the area where the Alaska and California currents split, which occurs towards the northern boundary of the assessment area, near 48° N.

Stepien et al. (2000), using a more discerning genetic material (mtDNA), found evidence of a pattern of genetic divergence in shortspine thornyhead corresponding to geographic distance. However, this study, which included samples collected from southern California to Alaska, did not identify a clear difference between stocks even at the extremes of the range. No such pattern was seen in longspine thornyhead, which suggests that the shorter pelagic stage (\sim 1 yr vs. \sim 2 yrs) of shortspine thornyhead may contribute to an increased genetic separation with distance.

Dorval et al. (2022) applied otolith microchemistry to immature fish to redefine population structure of shortspine thornyhead on the west coast. Their results indicate that the

population of immature shortspines belongs to two distinct groups distributed north and south of Cape Mendocino.

1.3 Life History

Shortspine Thornyheads along the West Coast spawn pelagic, gelatinous floating egg masses between December and May (Wakefield 1990; Erickson and Pikitch 1993; Pearson and Gunderson 2003). Cooper et al. (2005) and Pearson and Gunderson (2003) found no evidence for batch spawning in this species on the West Coast, but more recent histological examination of ovaries suggest that some shortspine thornyhead can be batch spawners with two to three batches developing simultaneously (Melissa Head, Northwest Fisheries Science Center (NWFSC), pers. comm.). Juveniles settle at around 1 year of age (22- 27 mm in length), likely in the range of 100-200 m (Vetter and Lynn 1997), and migrate down the slope with age and size, although large individuals are found across the depth range.

Shortspine Thornyhead are notoriously challenging to age, and a recent age validation study using 14C bomb radiocarbon was inconclusive (Kastelle et al. 2020). However, best available data suggests that the shortspine thornyhead life span may exceed 100 y (Butler 1995; Kline 1996). Estimates of natural mortality for shortspine thornyhead range from 0.013 (Pearson and Gunderson 2003) to 0.07 (Kline 1996). However, Pearson and Gunderson's estimate is based upon a regression model, using the gonadosomatic index as a proxy. Butler (1995) estimated M to be 0.05 based upon a maximum lifespan of 100 years for shortspine thornyhead. Butler (1995) also suggested that M may be lower for older, larger shortspine thornyhead residing in the oxygen minimum zone due to lack of predators. All estimates of M for thornyheads are highly uncertain.

Shortspine Thornyhead grow very slowly and may continue growing throughout their lives, reaching maximum lengths of over 70 cm. Females grow to larger sizes than males. Maturity in females has been estimated as occurring near 18 cm, with fish transitioning from immature to mature within a relatively narrow range of sizes between 15 and 20 cm Pearson and Gunderson (2003). However, more recent histological data collected in the NWFSC West Coast Groundfish Bottom Trawl Survey (WCGBTS) and analyzed using current best practices suggests that functional maturation, which accounts for abortive maturation and skip spawning, occurs over a broader spectrum of sizes between 10 and 55 cm (length-at-50% maturity, L50 =31.4; personal communication, Melissa Head, NWFSC, pers. comm.).

1.4 Ecosystem Considerations

Shortspine Thornyheads have historically been caught alongside longspine thornyheads in a dover sole, thornyhead, and trawl-caught sablefish complex (DTS). Other groundfishes that frequently co-occur in deep waters include a complex of slope rockfishes, Rex sole, longnose skate, roughtail skate, Pacific grenadier, giant grenadier, and Pacific flatnose. Non-groundfish species such as Pacific hagfish and a diverse complex of eelpouts also co-occur with shortspine thornyhead.

Shortspine Thornyheads typically occur in shallower water than the shallowest longspine

thornyheads, and migrate to deeper water as they age. The majority of spawning shortspine thornyheads occur between 600 and 1,400 meters, where longspine thornyheads are most abundant (Jacobson and Vetter 1996; Bradburn et al. 2011). When shortspine thornyheads have reached a depth where they overlap with longspine thornyheads, they are typically larger than the largest longspine thornyheads.

Species distribution models developed by Liu et al. (in press) suggest that expected environmental changes over the next decades will lead to a decline in shortspine and increase in longspine abundance. Shortspine Thornyheads are also projected to shift offshore, into deeper waters, potentially decreasing their availability in fisheries. To date, shortspine thornyheads have been observed by cameras below the 1280 meter limit of the current fishery and survey, but their distribution, abundance, and ecosystem interactions in these deep waters are relatively unknown. Thornyheads spawn gelatinous masses of eggs which float to the surface, which may represent a significant portion of the upward movement of organic carbon from the deep ocean (Wakefield 1990).

Shortspine Thornyhead diet composition, as derived from stomach content collection in the 1980s and 1990s, varied by year (Bizzarro et al. 2023). In some years their diet consisted primarily of invertebrate species including pandalid shrimp, pink shrimp, and Tanner crab, while in others their stomach content was dominated by finfish species such as Pacific cod and Pacific Hake. As prey themselves, shortspine thornyheads were only found in the stomachs of other species in two years, 1991 and 1992 as recorded in the CA Current Trophic Database (CCTD), where shortspine thornyhead occurred in sablefish, Pacific hake, and other shortspine thornyhead stomachs (Bizzarro et al. 2023).

1.5 Historical and Current Fishery Information

Thornyhead harvest has experienced fluctuations over time due to increased depth range of the fisheries, variable markets, and changes in fisheries management. In the early 1900's, landings were minimal because there were few markets for thornyheads and relatively little trawling at depths where the majority of thornyheads occur. Beginning in the 1930s, thornyhead landings increased as they were landed as incidental catch in the California sablefish fishery. The first significant market for thornyheads began in northern California in the early 1960s, when larger (30-35 cm) thornyhead were sold as "ocean catfish." By the early 1980s, the minimum marketable size decreased to 25 cm, and in the late 1980s a market for small thornyheads (~20 cm) developed due to the depletion of a related species (Sebastolobus machrochir) off the coast of Japan. The fishery moved into deeper waters with the demand for smaller thornyheads and began catching more longspine thornyheads. This is reflected in the changes in proportion of shortspine to total thornyheads through time, which decreased from around 90% in 1981 to 40% in 1994 Figure 2.

Landings of shortspine thornyheads off the coast of California peaked around 3,500 mt in 1989, and have exceeded those from further north in most years (Figure 3). In the northern area off of Oregon and Washington, the fishery grew in the early 1980s, with landings peaking in 1991 at around 2200 mt.

Non-trawl landings of shortspine thornyheads were relatively low prior to the mid-1990s, at which point non-trawl landings, dominantly longline, in California began to increase steadily from less than 5 mt in 1994 to 237 mt in 2011. The increase in non-trawl landings was driven by the development of live-fish markets for thornyheads and the fact that ex-vessel prices associated with the non-trawl landings are much higher than those for the trawl fishery.

Nominal prices for line-caught shortspine thornyhead increased steadily from \$0.69/lb in 1993 to \$3.81/lb in 2008, and have remained near or above that level since. Citation?

Trawl prices, on the other hand, changed from \$0.46/lb to \$0.72/lb in the same period, although, when Japanese demand was strong they were between \$0.80 and \$1.06/lb. In contrast, non-trawl landings of shortspine in Washington and Oregon have remained below the estimated peak of 54 mt in 1991.

The foreign fishery off of the West Coast is estimated to have caught approximately 7,400 mt of shortspine thornyhead during the 11 year period from 1966-1976 (Rogers 2003), which is on the order of the estimate of domestic catch (~8,600 mt) during that same period.

Management measures have contributed to a decline in coastwide landings from an estimated peak of 4,815 mt in 1989 to between 1,000 and 2,000 mt per year from 1995 through 1998. Landings fell below 1,000 mt per year from 1999 through 2006, then rose to 1,531 in 2009 and have declined since (Table X).

In 2011, the west coast trawl fishery was rationalized, with the introduction of the Individual Fishing Quota (IFQ) Program. In order to provide more flexibility for fishers on the west coast, NOAA Fisheries implemented the West Coast Groundfish Trawl Fishery Catch Share Program, which allows for the division of catch allocated to the trawl fishery into shares controlled by individuals or cooperatives (West Coast Regional Office n.d.). All vessels that participate in the IFQ program are required to have 100% observer coverage at all times the vessels are at sea.(West Coast Regional Office n.d.)

1.6 Summary of Management History and Performance

Beginning in 1989, both thornyhead species were managed as part of a DTS. In 1991, the Pacific Fishery Management Council (PFMC) adopted separate Acceptable Biological Catch (ABC) levels for thornyheads and catch limits were imposed on the thornyhead complex. harvest guideline (HG) were instituted in 1992 along with an increase in the minimum mesh size for bottom trawl fisheries. In 1995 separate landing limits were placed on shortspine and longspine thornyheads and trip limits became more restrictive. Trip limits (predominantly 2-month limits on cumulative vessel landings) have often been adjusted during the year since 1995 in order to not exceed the HG or optimum yield (OY). At first, the HG for shortspine thornyhead was set higher than the ABC (1,500 vs. 1,000 mt in 1995-1997) in order to allow a greater catch of longspine thornyhead, which was considered relatively undepleted. In 1999 the OY was set at less than 1,000 mt and remained close to that level through 2006. As a

result of the 2005 shortspine assessment, catch limits increased to about 2,000 mt per year and have remained near that level to the present.

Since early 2011, trawl harvest of each thornyhead species has been managed under the PFMC's catch share, or individual fishing quota (IFQ), program. Whereas the trip limits previously used to limit harvest restricted only the amount of fish each vessel could land, individual vessels fishing under the catch-share program are now held accountable for all of the quota-share species they catch.

Landings of shortspine thornyhead have been below the catch limits since 1999. The estimated total catch, including discards, has likewise remained below the limit during this period.

1.7 Foreign Fisheries

The Alaska Fisheries Science Center (AFSC) conducts assessments of thornyheads as a mixed stock complex, including shortspine and longspine thornyheads. Results of the 2022 Alaska Thornyhead complex assessment suggest that thornyheads are not being subjected to overfishing (Echave et al. 2022).

2 Data

Data comprise the foundational components of stock assessment models. The decision to include or exclude particular data sources in an assessment model depends on many factors. These factors often include, but are not limited to, the way in which data were collected (e.g., measurement method and consistency); the spatial and temporal coverage of the data; the quantity of data available per desired sampling unit; the representativeness of the data to inform the modeled processes of importance; timing of when the data were provided; limitations imposed by the Terms of Reference; and the presence of an avenue for the inclusion of the data in the assessment model. Attributes associated with a data source can change through time, as can the applicability of the data source when different modeling approaches are explored (e.g., stock structure or time-varying processes). Therefore, the specific data sources included or excluded from this assessment should not necessarily constrain the selection of data sources applicable to future stock assessments for shortspine thornyhead. Even if a data source is not directly used in the stock assessment they can provide valuable insights into biology, fishery behavior, or localized dynamics.

Data from a wide range of programs were available for possible inclusion in the current assessment model. Descriptions of each data source included in the model (Figure 4) and sources that were explored but not included in the base model are provided below. Data that were excluded from the base model were explicitly explored during the development of this stock assessment or have not changed since their past exploration in a previous shortspine thornyhead stock assessment. In some cases, the inclusion of excluded data sources were explored through sensitivity analyses.

2.1 Fishery-Dependent Data

2.1.1 Catch History

Pacific Fisheries Information Network (PacFIN) data from 1981-present was used to estimate landings in the North (Oregon and Washington) and South (California) by gear type (Trawl and Non-Trawl) (Figure 3) All landings reported for the shortspine thornyhead and nominal shortspine thornyhead categories were considered shortspine thornyhead, whereas landings categorized as unidentified thornyheads were split between longspine thornyhead and shortspine thornyhead by the ratio of identified longspine and shortspine landings for each year-state-gear combination. The values of this ratio for each state and gear-type from 1981-2023 are shown in Figure 2.

Catches prior to 1981 are based on historical reconstructions provided by the respective states and a reconstruction of foreign fleet catch. Oregon landings for 1892-1986 are provided by ODFW and outlined in Karnowski et al. (2014) shortspine thornyhead landings are not present in the PacFIN data for Oregon for the years 1981-1986 and the state reconstruction is used for this period instead. Washington landings for 1954-1980 are provided by WDFW. Landings prior to the beginning of this data are assumed to be zero. California landings are provided by CDFW and SWFSC, and consist of California commercial data for 1969-1980, and a catch reconstruction documented by Ralston et al. (2010) for 1934-1968. As in the two previous assessments, catch data from Rogers (2003) is used to account for catches by foreign fleets during the years 1966-1976. Foreign catch in the Monterey and Eureka International North Pacific Fishery Commission (INPFC) areas is attributed to the Southern Trawl fleet, while foreign catch in Columbia and Vancouver areas is attributed to the Northern Trawl fleet, as was the case in the 2013 assessment.

For historical catches prior to 1981, all shortspine thornyhead, nominal shortspine, and unidentified thornyhead landings in the state catch reconstructions are considered shortspine thornyhead. Neither California reconstructions prior to 1978, nor the Karnowski et al. (2014) reconstruction for Oregon, distinguish between shortspine and longspine thornyhead species. It is possible that assigning all thornyhead landings to shortspine overestimates shortspine landings, however, the overwhelming majority of thornyhead landings were shortspine until the late 1980s when vessels began to move into deeper waters and a distinct fishery targeting longspine thornyhead developed (Hamel 2005; Karnowski et al. 2014).

This treatment of unassigned thornyhead landings differs from the 2005 and 2013 assessments. The 2005 assessment did not have access to the historical reconstructions used here, and instead imputed shortspine landings as 30% of annual sablefish landings for the years 1901-1961. The 2013 assessment used the same imputed values as the 2005 assessment, but also conducted a sensitivity analysis in which all unassigned thornyheads in historical catch were considered shortspine thornyhead. Stock abundance estimates were found to be largely insensitive to which reconstructions were used (Taylor and Stephens 2013). The imputed historical values used for the 2005 and 2013 assessments will continue to be included as a sensitivity analysis here. Landings after 1961 remain very similar to the landings used in the 2013 assessment (Figure 3).

2.1.2 Discards and retention

Predicted discards were based on estimated retention and selectivity for each fleet and are shown in Figure 5. Discards were informed by four data sources covering three different periods. Data sets included, 1) Pikitch et al. (1988) Discard and Mesh Studies, used to estimate both discard rates and length composition of the northern trawl fleet between 1985 and 1987 (J. R. Wallace, pers. comm.), 2) the TEST Enhanced Data Collection Project (EDCP) covering 1995-1999, which only informed discard rates of the northern trawl fleet, 3) the West Coast Groundfish Observer Program (WCGOP), which provided discard rates, length composition, and individual average weight for years between 2002 and 2021 for all fleets, and 4) the Groundfish Expanded Mortality Multi-Year (GEMM) data set, covering the same period and completing the WCGOP with catch-share participation information and estimates of discard survival rates.

While the estimates from the first two data sets were directly integrated into the model, fleet discard rates after 2011 were available separately for catch-share and non-catch-share programs. Final fleet-specific discard rates were thus computed as the average WCGOP discard rate weighted by the relative proportion of total landings belonging to the catch-share and non-catch-share, respectively. (Figure 6). Regardless of the type of data, all estimates derived from these data sets had associated uncertainty accounting for the variability observed within the sample of hauls and fishing trips of each fleet. WCGOP-derived discard rates are an exception as, after the catch share program was initiated in 2011, 100% of hauls from catch share fleets were observed., while non-catch share vessels were only partially covered (cite).

The discard data sources were the same as those used in the 2013 assessment. The main improvements are the increased representativity of all 4 fleets (11 more years) and more accurate estimates of discard rates from EDCPthat were not ready at the time of the previous assessment. Last, some errors in the previous assessment were corrected regarding the weight units considered for the average individual weight (WCGOP provides weight as pounds and not as kg).

2.1.3 Fishery Length Compositions

Commercial fishery length-composition data were obtained from PacFIN for 1978-2023. Due to variations in sampling effort and because the number of fish sampled by port samplers is not proportional to the amount of landed catch in each trip, the observed length data were expanded using the following algorithm using the PacFIN.Utilities package in R:

- 1. Length data were acquired at the trip level by sex, year and state.
- 2. The raw numbers in each trip were scaled by a per-trip expansion factor calculated by dividing the total weight of trip landings by the total weight of the species sampled.
- 3. A per-year, per-state expansion factor was computed by dividing the total weight of state landings by the total weight of the species sampled for length in the state.
- 4. The per-trip expanded numbers were multiplied by the per-state expansion factor and summed to provide the coast-wide length-frequency distributions by year.

Only randomly collected samples were used. The sample sizes associated with the length compositions from the fishing fleets are shown in Table X (landings) and Table X (discards). Length samples from the Trawl North fleet in 1980, 1994, and 1995 showed a very different pattern than the surrounding years. The effective sample sizes for these years were substantially lower than other years (Neff < 15), so the observed differences are likely due to non-representative sampling.

Input sample sizes {N_{input}} for fishery length frequency distributions by year were calculated as a function of the number of trips and number of fish via the Stewart Method (Stewart, pers.com):

$$\begin{split} N_{input} &= N_{trips} + 0.138 N_{fish} & \text{when } \frac{N_{fish}}{N_{trips}} < 44 \\ N_{input} &= 7.06 N_{trips} & \text{when } \frac{N_{fish}}{N_{trips}} \ge 44 \end{split}$$

The method is based on analysis of the input and model-derived effective sample sizes from west coast groundfish stock assessments. A piece-wise linear regression was used to estimate the increase in effective sample size per sample based on fish-per-sample and the maximum effective sample size for large numbers of individual fish.

All length data from commercial fisheries included in the model with sexes combined. This avoids the possibility of bias due to difficulty in sex determination of thornyheads.

2.1.4 Age Compositions

No age composition data was used for this assessment because thornyheads have proven very difficult to age (P. MacDonald, pers. comm.). Even in directed studies such as those done by Kline (1996) and Butler (1995), there are large inter-reader differences, and a second reading by the same ager can produce a markedly different result. Kline (1996) reported only about 60% of the multiple reads were within 5 years of each other, and inter-reader differences were as large as 24 years for a sample of 50 otoliths. No production ageing of thornyheads is undertaken at this time for the west coast, although shortspine thornyhead otoliths are routinely collected in the NWFSC trawl survey.

2.2 Fishery-Independent Data

Four trawl surveys have been conducted on the U.S. west coast over the past four decades.

2.2.1 AFSC/NWFSC West Coast Triennial Shelf Survey

The AFSC conducted a triennial groundfish trawl survey (the "triennial" survey) on the continental shelf from 1977 to 2001, although the 1977 survey had incomplete coverage and is not believed to be comparable to the later years. A final survey was conducted in 2004 by the NWFSC using the same survey design. In 1995, the timing of the survey shifted so that instead of occurring between mid-July and late September, it was conducted from early

June through mid-August. The years 1980–1992 had a maximum depth of 366 m, while from 1995 onward, the maximum depth was extended to 500 m. The shallow limit of the survey was 55 m in all years, but for purposes of computing indices, only tows deeper than 100 m were used as shortspine thornyhead are rarely seen at shallower depths. The triennial survey consists of 9 data points, from surveys operating every third year from 1980–2004.

For some species, the shift in timing between the 1992 and 1995 surveys would be expected to influence their catchability, availability, or distribution. However, thornyheads are believed to be sedentary enough that the change in timing would not be as influential. On the other hand, the increase in depth is expected to significantly increase the range of shortspine thornyhead habitat covered by the survey. In the 2013 assessment, the triennial survey was split into two-time series, separated by the 366 m depth contour, in order to preserve a time series of maximum length while eliminating the influence of the increased depth range. The first time series, "AFSC Triennial Shelf Survey 1," consists of 9 data points spanning the range 1980–2004 and covering the depths 100–366 m. The second, "AFSC Triennial Shelf Survey 2," consists of 4 data points spanning 1995–2004 and covering depths 366–500 m. This second time series is recognized as providing little information about stock status due to the limited number of points and depth range, but there was no compelling reason to exclude it from the assessment. However, in contrast to the 2013 assessment, this assessment will treat the triennial survey as a single time series for constructing the geostatistical model-based indices, and will use a different set of latitudinal and depth-based strata for survey length compositions.

2.2.2 AFSC and NWFSC Slope Surveys

Starting in the late 1990s, two slope surveys were conducted on the west coast. The AFSC Slope Survey (AFSC Slope Survey) was conducted during the years 1997 and 1999–2001 using the research vessel Miller Freeman. The NWFSC Slope Survey (NWFSC Slope Survey) was conducted from 1998–2002, and was conducted cooperatively using commercial fishing vessels. The AFSC Slope Survey was a source of valuable information on the depth distribution and overlap of shortspine and longspine thornyheads in the 1980s, but these early years had a very limited latitudinal range and will not be included. This survey also had a different net and larger roller gear than the NWFSC Slope Survey.

2.2.3 NWFSC West Coast Groundfish Bottom Trawl Survey

In 2003, the design of the NWFSC Slope Survey was modified, and the survey was expanded to cover the shelf and slope between 50 m and 1280 m. This combination shelf-slope survey, "NWFSC Combo Survey," more recently known as the WCGBTS, has been conducted every year from 2003 to present with consistent design (note that the survey was not conducted in 2020 due to ongoing concerns about COVID-19). Data for the years 2003–2021 were available for this assessment. The WCGBTS represents the largest number of survey observations, the largest depth range, and the most consistent groundfish sampling program in the history of west coast fisheries. Continuing this time series in a consistent manner is vital for improving estimates of current stock status and detecting any future changes in size distribution or abundance of west coast groundfish.

2.2.4 Survey Stratification

Data from these four (nominally five for design-based indices) fishery-independent surveys were considered for use in this assessment (Figure 7) to estimate abundance. Two distinct survey abundance estimation methods were considered: design-based and geostatistical model-based indices. The 2013 assessment utilized delta-GLMMs following the methods of Thorson and Ward (2013), but these methods are no longer considered best practice within the field and were not considered in this assessment.

The five surveys were stratified based on depth and latitude, similar to how they were in 2013 (Table X; Figure X-Map, should we include?). The AFSC/NWFSC West Coast Triennial Shelf Survey (Triennial Survey) was divided into two distinct survey time series, split on the year 1995. The early-Triennial time series (1981-1992) was further stratified into four strata: north and south of 42 ° N, and shallower and deeper than 200m. The late-Triennial time series (1995-2004) was also further stratified into four strata: north and south of 40 ° N, and shallower and deeper than 200m. The AFSC Slope Survey was split into two coast-wide strata: shallow and deeper than 550m. The NWFSC Slope Survey was divided into 6 strata, with breaks dividing southern, central, and northern strata at 40.5° N and 43° N, each of which was further divided with a break at 550 m. The WCGBTS was divided into 7 strata, with two southern strata below 34.5° N, one covering 183–550 m and the other covering 550-1280 m. Two central strata, between 34.5° N and 40.5° N, had the same depth ranges. The latitudinal divide around 34.5° N is associated with changes in sampling intensity. North of 40.5° N, three strata were used, covering the ranges 100–183 m, 183–550 m, and the other covering 550–1280 m. The depth breaks at 183 m and 550 m are also associated with changes in the sampling intensity of the survey and are recommended to be used. South of 40.5° N, there are very few shortspine thornyhead shallower than 183 m, so no shallow stratum was used in these latitudes. The 2013 stratification was reused for the design-based indices as there was not sufficient evidence to support modifying the existing strata.

2.2.5 Design-based Indices of Abundance

Design-based indices of abundance were derived for all surveys. Note that for these indices of abundance, the Triennial Survey was split into two independent time series, separated by the year 1995. The construction of design-based indices mirrors a weighted average approach. For each survey year, an average CPUE is calculated across all tows within a stratum and expanded by area to determine the total estimated biomass. These values are then summed across all strata within the survey to create a time series of design-based indices of abundance. Design-based indices were computed using the official nwfscSurvey R package.

2.2.6 Geostatistical Model-based Indices of Abundance

Model-based indices of abundance for all surveys were derived using geostatistical models. Thorson et al. (2015) developed using the R package sdmTMB Anderson et al. (2022). This approach utilizes geostatistical GLMMs with spatially and spatiotemporally correlated random effects, which can account for variables that cause correlations in the data across space and time. For this reason, the Triennial Survey survey can be, and was, treated as a

single time series rather than split into two timeseries based on the introduction of additional sampling at greater depths. For the Triennial Survey and WCGBTS surveys, geostatistical models included spatial and spatiotemporal random effects and depth and depth squared as a scaled covariate. Geostatistical models for the NWFSC Slope Survey and AFSC Slope Survey were not run with depth.

Abundance indices were obtained for models using both gamma and log-normal error structures. There is limited agreement on how best to go about model selection for these types of geostatistical models, and both error structures were tested as sensitivity analyses alongside the simple design-based indices described above. The abundance indices derived from the gamma model were most similar to the design-based indices for the Triennial and WCGBT surveys and were thus used for the base model (indices derived from the log-normal model displayed a similar trend to the gamma model-based indices, and the design-based indices, but were consistently larger in scale).

2.2.7 Length Composition Data

Length-composition data were available for each year of each survey. In each haul, there is a set number of random samples regardless of the amount of catch, decoupling the sample and catch size. Therefore, the length compositions were calculated using an expansion factor to account for differences in the amount of catch that samples represent. An expansion factor (calculated as weight of caught fish divided by weight of fish sampled) is calculated for each haul, multiplied by the number of fish in each size bin, and then summed across hauls. This algorithm is repeated for each spatial stratum. Length composition data were compiled into XX length bins, ranging from XX to XX cm. Year-specific length frequency distributions generated for each survey are shown in Figure 8).

2.2.8 Frequency of Occurrence and Survey Information

The frequency of occurrence of shortspine and longspine thornyheads in trawl surveys remains extremely high. 91% of the tows in the WCGBTS below 500 m have at least one shortspine thornyhead in the catch (and 96% for longspine thornyhead), similar to the 2013 assessment. The number of survey hauls and shortspine thornyheads sampled available for this assessment is described in Table~X.

2.3 Biological Data

2.3.1 Natural Mortality

THIS WILL BE UPDATED

Butler (1995) estimated the lifespan of shortspine thornyhead to exceed 100 years and suggested that M was likely less than 0.05. M may decrease with age as shortspine migrate ontogenetically down the slope to the oxygen minimum zone, which is largely devoid of predators for fish of their body size. The 2005 assessment fixed the natural mortality parameter at 0.05, while the 2013 assessment used a prior on natural mortality developed

based on a maximum age of 100 years. The prior had a mean of 0.0505 and a standard deviation on a log scale of 0.5361 (Hamel, pers. comm.). For the base case, natural mortality was fixed at the mean of this prior distribution. This assessment uses an updated prior on M by Owen S. Hamel (2022), where the median of M is:

$$\frac{5.40}{Age_{max}}\tag{1}$$

This assessment assumed the same maximum age of 100 as in the previous assessments, with an updated prior of 0.054 (median value) and log-space standard deviation = 0.31 (Owen S. Hamel 2022). The 2023 assessment will explore estimating M and fixing M at the prior mean.

2.3.2 Maturation and Fecundity

2.3.2.1 Maturity Pearson and Gunderson (2003) estimated length at 50% maturity to be 18.2 cm on the West coast, with most females maturing between 17 and 19 cm. This was represented in the 2005 and 2013 assessments by the logistic function,

$$M(L) = (1 + e^{-2.3(L - 18.2)}) - 1 (2)$$

where L is the length in cm.

The 2013 assessment considered new (at the time) maturity information from ovaries collected for maturity analysis on the 2011 and 2012 WCGBTS. Histological analysis of those samples (M. Head, pers. comm.) indicated puzzling patterns of spawning by female size and by latitude, with a higher fraction of fish spawning in the north than in the south and a higher fraction of spawning fish in the 20-30cm than in the 30-40cm range. However, due to the complexity of these observed patterns and the known ontogenetic migrations of shortspine, samples collected in 2011 and 2013 were not considered adequate for estimation of a new representative maturity curve for the entire shortspine thornyhead population in 2013. Nonetheless, such a maturity curve was considered in a sensitivity analysis. On the basis of the sensitivity analysis, the 2013 assessment suggested that the slow but steady rate of growth for TEST shortspine thornyheads, with growth still occurring at age 100, reduces the importance of assumptions about maturity because older individuals have significantly higher spawning output due to their much larger size, regardless of the fraction spawning.

New maturity analyses of samples collected on the WCGBTS in 2011, 2013, 2014, 2016 and 2018 were available for the 2023 assessment (M. Head, pers. comm.). The larger number (N=397) and better spatial coverage of these samples allowed the use of statistical modeling to better understand the spatial variation in the proportion of female spawning.

In the 2013 assessment, the exploration of maturity analyses from the WCGBTS samples highlighted maturity gradients along latitude and depth. To assess a potential relationship

between fish location and the shape of the maturity curve, a general linear model (GLM) was designed for estimating maturity curve parameters while integrating latitude and depth as covariates. This GLM consists of a logistic regression in which the functional maturity of samples, modeled with a Bernoulli distribution, is expressed as a linear combination of fish length, latitude, squared latitude, depth and squared depth of collection. Once fitted, the GLM was used to predict the response of the probability of being mature along the range of individual shortspine length considered in the model. For the 2023 assessment, this model prediction was made while setting the latitude and depth at the values of the center of gravity (using number of fish as weighing factor) of the population of shortspine thornyhead sampled during the WCGBTS to develop a single curve for the coastwide population assessment. Thus, this response of functional maturity to length was considered the mean maturity curve of the west coast shortspine thornyhead population. The parameters of the maturity curve L50 and k were arithmetically derived from this response to fish length. The new maturity curve is expressed as follows:

$$M(L) = (1 + e^{-2.3(L - 31.42)})^{-1}$$
(3)

Figure 11 shows the fit of the maturity curve of the model per class of depth and latitude.

A sensitivity analysis will assess the impact of this change in the maturity curve on the model estimates by considering the newly estimated parameters, the Pearson and Gunderson's relationship from the 2013, and one intermediate option (Figure 12).

2.3.2.2 Fecundity The previous assessments assumed spawning biomass was equivalent to spawning output. The 2023 assessment will explore using fecundity-at-length parameters reported in Cooper et al. (2005), where fecundity was modeled as a power function of length. Cooper et al. (2005) estimated the fecundity of 54 females collected from the West Coast and Alaska. The study found no difference in the length-fecundity relationship by region and pooled the samples. The fecundity-at-length parameters in that study were:

$$F = 0.0544L_{3.978} \tag{4}$$

where F is fecundity in the number of eggs per female and L is length in cm. Fecundity information from Cooper et al. (2005) suggests that fecundity increases at a faster rate with length than body weight with length. This means larger females are likely to have greater relative fecundity compared to small females (i.e., large females produce more eggs per kg of body weight). This assessment will explore modeling a fecundity-at-length relationship using the fecundity parameters from Cooper et al. (2005) and scaling the fecundity intercept by one million in SS3 to report fecundity in billions of eggs.

Uncertainty remains in the spawning strategy of shortspine thornyhead. Cooper et al. (2005) and Pearson and Gunderson (2003) found no evidence for batch spawning in this species (i.e., a determinate, total spawning strategy). However, updated histology information suggests a possibility of batch spawning in this species (Melissa Head, NWFSC, pers. comm.). Batch

spawning could influence the fecundity-at-length relationship if not properly accounted for and should be a focus of future research. The histology analysis also found evidence of parasites in the ovaries and atresia (degrading eggs), which could influence fecundity (Melissa Head, NWFSC, pers. comm.).

2.3.3 Length-Weight Relationship

Fisheries-independent length and weight specimen data are available from the AFSC Slope Survey (1997, 1999-2001; N=7,623) and the WCGBTS (2003-2021, excluding 2020; N=20,142). The WCGBTS data were used to estimate the length-weight relationship because it has the largest sample size and covers the greatest spatiotemporal resolution. The allometric function models weight (W) as an exponential function of length (L), where:

$$W = \alpha L^{\beta} \tag{5}$$

This function can be linearized by taking the natural logarithm of both sides. The predicted weight-at-length values were bias-corrected using a multiplier of 2 / 2. Length-weight was estimated for both sexes in R using the lm() function (R Core Team 2021).

The resulting allometric parameters for 2023 (females: $\alpha = 6.49\text{e-}6$, $\beta = 3.18$; males: $\alpha = 6.71\text{e-}6$, $\beta = 3.17$) were similar to the 2013 assessment values, which estimated a single length-weight relationship for males and females combined using WCGBTS data through 2012 (sexes combined: $\alpha = 4.77\text{e-}6$, $\beta = 3.26$). The β value was higher in the 2013 assessment, indicating a slightly higher weight-at-length for longer fish. We found no temporal trend in the available data and were unable to account for these small differences in results. The available data suggest that length-weight is highly conserved in shortspine thornyhead; therefore, no sensitivity analysis was conducted for this set of parameters in the 2023 assessment.

2.3.4 Growth (Length-at-Age)

No validated ageing methodology currently exists for shortspine thornyhead; therefore, this species is not aged by the NWFSC or Southwest Fisheries Science Center (SWFSC) and length-at-age data are limited for this stock assessment. Two research age datasets exist for shortspine thornyhead in the West Coast region: (1) Kline (1996) includes 319 unsexed fish collected from Monterey Bay in central California in 1991, and (2) Butler (1995) includes 1,023 sexed fish collected in the waters off northern California and Oregon in 1978-1988 and 1990. The Kline specimens were aged by one age reader, and lengths were reported as total lengths, whereas the Butler specimens were aged independently by two separate age readers, and lengths are reported in fork length. The Butler data age data presented in this assessment are the mean ages between the two age readers.

The length-at-age curve developed in the 2005 stock assessment and used again in 2013 was based on a Schnute parameterization of the Von-Bertalanffy growth function fit to the Kline data. The resulting parameter estimates for this growth function were as follows: growth

rate k was 0.018 for both males and females length at age-2 was 7 cm for both males and females, and length at age-100 was 67.5 cm for males and 75 cm for females based on the assumption that the asymptotic length for males should be 90% of the asymptotic length for females (Hamel 2005). The data and associated analysis from 2005 were lost; however, the original Kline and Butler datasets were obtained for use in this assessment (Donna Kline, pers. comm., March 2023). Using these newly obtained data, we could not reproduce the parameters used in the 2005 assessment.

Because the Butler data were sex-specific, had a higher sample size, were aged by two readers instead of one, and were collected from a larger geographic area and over more years compared to the Kline data, we determined that Butler was the preferred dataset to estimate the length-at-age relationship for the 2023 stock assessment. We fit sex-specific Schnute growth functions to the Butler data:

$$\hat{L}_a = L_{a_1} + \frac{(L_{a_2} - L_{a_1})(1 - exp(-k(a_2 - a_1)))}{(1 - exp(-k(a_2 - a_1)))} \tag{6}$$

where: L_{a_1} and L_{a_2} are the lengths at reference ages a_1 and a_2 where $a_1=1; a_2=100$ and k is the growth rate. Growth curve estimation was conducted in R using the optim() function (R Core Team 2021). Errors were assumed to be lognormally distributed and predicted length-at-age was bias-corrected using a multiplier of $\frac{\sigma_2}{2}$.

Shortspine Thornyhead are slow-growing fish that appear to continue to grow throughout their lifespan (i.e., the growth curve does not asymptote). The new growth curves estimated using the Bulter dataset exhibited similar trends to those assumed in the 2005 and 2013 assessments (Figure 9; Table X-LAA-1)). The male curves were almost identical, with the 2005/2013 curve exhibiting slightly lower length-at-age at young ages and slightly higher length-at-age at older ages. The 2005/2013 female curve was defined by a higher growth rate, leading to the higher length-at-age in the intermediate age range.

Two alternative sensitivity analyses were developed for the 2023 assessment. During the exploratory data analysis phase, we found that specimens collected in the Kline study exhibited higher size-at-age when compared to the Butler specimens (Figure 10). It is unknown if these differences should be attributed to spatial differences in growth between central California and northern California/Oregon, bias among age readers, or discrepancies between the total and fork length measurements (Donna Kline, pers. comm., March 2023). In order to account for this alternative growth pattern, we increased the lengths at ages 2 and 100 by 25% in the upper sensitivity analysis (Figure 10). The lower sensitivity analysis was defined by decreasing the lengths at ages 2 and 100 by 10% from the base model.

2.3.5 Ageing Precision and Bias

REPEAT WITH CLARITY

2.4 Environmental and Ecosystem Data

No ecological or environmental information was used in this assessment.

2.5 Changes in data from the 2013 assessment

Most of the data used in the previous assessment has been newly extracted and processed, including length compositions from each fishing fleet and survey, indices of abundance derived from new geostatistical models of survey data, discard rates from both the 1980s Pikitch study and the current WCGOP, and the time series of catch from 1900-2023.

New data or uses of data for this assessment include the geostatistical model-based indices of abundance for the four fisheries independent surveys, the histological maturity samples from the WCGBTS survey, and the historical state catch reconstructions. Previous assessments have treated the AFSC Triennial Shelf Survey as two separate indices of abundance separated by the 366m depth contour, but the transition to using geostatistical model-based indices have rendered this separation unnecessary by implicitly accounting for changes in depth sampling within the model. State-level historical reconstructions also replace previous analyses that imputed historical shortspine thornyhead catch as a fixed proportion of sablefish catch.

3 Assessment Model

3.1 Summary of Previous Assessments and Reviews

3.1.1 History of Modeling Approaches (not required for an update assessment)

Shortspine Thornyhead was first assessed in 1990 by Jacobson (1990) and Jacobson (1991), and subsequently by Ianelli et al. (1994), Rogers et al. (1998), and Piner and Methot (2001). What would now be called a data-moderate assessment was conducted in 2005 Hamel (2005) using Stock Synthesis (SS2). More recently, shortspine thornyhead were assessed by Taylor and Stephens (2013) using SS3. The 2013 model retained many of the assumptions made by Hamel (2005) including a four fisheries fleet structure, sex-specific growth, and no fecundity relationship. A catch-only projection was conducted in 2019 (Taylor 2019).

- 3.1.2 Most Recent STAR Panel and SSC Recommendations (not required for an update assessment)
- 3.1.3 Response to Groundfish Subcommittee Requests (not required in draft)
- 3.2 Model Structure and Assumptions

3.2.1 Model Changes from the Last Assessment (not required for an update assessment)

The most notable changes from the previous assessment, conducted in 2013, include significant modifications to the fleet and survey structure, and major changes to the maturity and fecundity relationships that underlie the model's biological assumptions.

The 2013 assessment consisted of four fisheries fleets, and used information from four (nominally five) scientific surveys, while the new assessment uses a condensed structure consisting of just three fisheries fleets and only two (nominally three) surveys (see 3.2.2 for more details).

This assessment assumes a new fecundity relationship, in which fecundity increases with body size, as well as a new maturity relationship, in which fish mature at much larger sizes and thus older ages, than were assumed in the 2013 assessment. Further details on the fecundity and maturity relationships can be found in **Section 2.3.2**. A sensitivity analysis was performed to determine the effect of different maturity assumptions on the final model output (**Figure XX**).

3.2.2 Modeling Platform and Structure

This new assessment, including all exploratory models, profiles, and related analyses, was performed using Stock Synthesis Version 3.30.21 [Methot and Wetzel (2013); Methot et al. (2020)). The majority of analyses were performed using multiple recent versions of R (R Core Team 2021), and relied heavily on the 'r4ss' R package (Taylor et al. 2021) among others. The assessment model was developed and tested across multiple operating systems, including recent versions of Windows and macOS.

Commercial fisheries landings were divided into three distinct fisheries fleets: a northern trawl fleet (hereinafter referred to as North Trawl) operating off the coasts of Oregon and Washington, a southern trawl fleet (hereinafter referred to as South Trawl) operating off the coast of California, and a coastwide non-trawl fleet (hereinafter referred to as Non-trawl).

Data from two fisheries-independent scientific surveys were used in this model: the AFSC Slope Survey from 1980-2003, and the more recent WCGBTS from 2004-2022. The triennial survey was further divided into an early (pre-1995) and late period (post-1995) survey to account for the change in depth-sampling that occurred during the 1995 season. These two periods for the triennial survey were treated as separate surveys in the model.

3.2.3 Model Parameters

There are 180 estimated parameters in this assessment. The log of unfished recruitment, log(R0), controls the overall scale of the population, while annual deviations in recruitment about the assumed stock-recruit relationship (135 parameters) allow for additional uncertainty in the population trajectory. Selectivity and retention parameters (43 parameters) for three fisheries fleets and three scientific surveys allow for estimation of annual length compositions and discards rates. Two catchability parameters are analytically computed from the data, and one additional parameter, representing additional variability in the early Triennial survey, is directly estimated by the model.

3.2.3.1 Growth, Maturity, Fecundity, Mortality, and Recruitment Growth, maturity, and fecundity parameters were fixed at values determined by external analyses (see 2.3 for more information). Due to a lack of aging data, growth could not be modeled internally by the assessment, though, like in the 2005 and 2013 models, there is no systematic misfit to the data suggesting that the externally derived growth curves were misspecified. Sensitivity analyses were performed to determine the overall effect of different assumptions regarding growth or maturity (**Figure XX**, **Figure XX**).

For this assessment, natural mortality was fixed at a value of 0.04. A likelihood profile exploring alternative natural mortality parameters was also conducted (**Figure XX**). When naturaly mortality was estimated in the model, the value was **XX**, which was close to the fixed value of 0.04. This marks a change from the 2013 assessment, where natural mortality was fixed at 0.0505 and a standard deviation on a log scale of 0.5361 (Taylor and Stephens 2013)

As in the previous shortspine thornyhead assessment, a Beverton-Holt stock recruitment relationship was assumed. Unlike the 2013 assessment, where steepness was fixed at a value of 0.60, this assessment fixed steepness at 0.72, as recommended by Thorson et al. (2019). A likelihood profile exploring alternative steepness parameters was conducted and the model results were found to be largely insensitive to the assumed value (**Figure XX**).

The overall scale of the population is estimated through the log of the initial recruitment parameter (R0). Recruitment deviations were additionally estimated for the years 1901-2022. Recruitment bias adjustments were phased in beginning in 1950, and were adjusted by a factor of **0.75** in the years 1982-2022 (Taylor and Methot 2013). The R parameter which controls the variability in recruitment deviations was fixed at 0.5 as in the previous assessment. Past assessments performed likelihood profiles over R, finding the model results to be relatively insensitive to its value, and thus further profiles over the parameter were not conducted here.

3.2.3.2 Selectivity and Retention Gear selectivity parameters used in this assessment were specified as a function of size with the additional assumption that age 0 fish were not selected, regardless of their size. Separate size-based selectivity curves were fit to each fishery fleet and survey.

The selectivity curves for all fisheries and surveys were allowed to be dome-shaped and modeled with double-normal selectivity. The double-normal selectivity curve was used in a configuration that has six parameters, including: (1) peak, the length at which selectivity is first fully selected, (2) width of the selectivity plateau, (3) width of the ascending part of the curve, (4) width of the descending part of the curve, (5) starting selectivity, and (6) final selectivity. Parameters 5 and 6 were not estimated and fixed at 0.0. The 2013 model allowed for all selectivity parameters to be estimated, regardless of whether one or more were estimated to be on the parameter bound. This model fixed parameter 2 (the plateau width) to the value of -15 for the North Trawl and Non-trawl fleets to alleviate it hitting the lower parameter bound. Though exploratory models run with the plateau width on its lower bound still converged, fixing the parameter had negligible impact on the fits to the length composition data for those fleets. Sex-specific selectivity curves were fit to the WCGBTS length composition data.

Retention curves are defined as a logistic function of size. These are controlled by four parameters: (1) inflection, (2) slope, (3) asymptotic retention, and (4) male offset to inflection. Male offset to retention was fixed at 0 (i.e. no male offset was applied). The parameters for inflection and asymptotic retention were modeled as time-varying quantities via use of time blocks, as was done in the 2013 assessment. Therefore, both North Trawl and South Trawl fleets were broken into three periods: (1) 1901–2006, (2) 2007–2010, (3) 2011–2022. The first break was based on observation of a strong reduction in discard rates for both North and South Trawl in this year, while the later break was associated with the beginning of the IFQ program.

Alternative retention blocking schemes were investigated as part of a sensitivity analysis. Notably, a sequence of four-year blocks beginning in 2007 was investigated in order to better fit noticeably lower discards rates in the mid 2010s. Additionally, a short, 2-year, timeblock for the years **2021** and **2022** was also attempted, as discard rates were noticeably higher in those years than in previous. [...]

3.2.3.3 Catchability Catchability coefficients (q) were calculated for each of the two survey abundance time series. Unlike in the 2013 model, which estimated catchability for each survey, this model computes catchability analytically for each survey using the Stock Synthesis "floatQ" option (Methot et al. 2020).

This model depends on the assumptions that thornyheads are long-lived, slow-growing, and relatively sedentary groundfish. They are assumed to represent a single stock within the area considered for this assessment. If the assumptions about growth, natural mortality, or stock structure turn out to be far from the true life history and ecology of shortspine thornyheads, this assessment will be highly inaccurate.

3.2.4 Key Assumptions and Structural Choices

3.3 Base Model Results

3.3.1 Parameter Estimates

A complete set of parameter estimates are available in **Table XX**.

3.3.1.1 Recruitment The model estimated 135 annual recruitment deviations (1901-2034) as well as the log of unfished recruitment LN(R0). Unfished recruitment was estimated to be ~11,000,000 annual age-0 recruits (LN(R0) = 9.34) while annual log deviations were generally estimated between -0.5 and 0.5 (**Figure XX**; **Table XX**). Deviations in 2003 and 2007 were estimated to be substantially larger than other years. As in the 2013 assessment, uncertainty in the scale of annual deviations was substantially larger than the variation between the deviations. Recruitment bias adjustments were performed following the advice of Methot et al. (2011).

3.3.1.2 Selectivity and Retention Selectivity curves for all three fisheries fleets and the three scientific surveys were estimated as dome-shaped.

The early- and late-period Triennial survey possessed the highest degree of dome-shape, with peak selectivity occurring at relatively small length ($\sim\!26$ cm, and $\sim\!22$ cm respectively), before quickly declining. This shape is consistent with the design of the survey which focused its sampling on the relatively shallow shelf, where younger, smaller, shortspine thornyhead live before migrating to deeper waters as they age and mature. There was little difference in the estimated selectivity curves between male and female fish. Meanwhile, the WCGBTS was estimated to have a wide plateau (beginning at $\sim\!30$ cm) over which the species is fully selected for, including the lengths over which the species spends the bulk of its lifespan. This indicates that the WCGBTS is sampling a large proportion of the stock, and that annual length composition data from the survey is likely a good representation of the true distribution of lengths in the population.

The North Trawl fleet was estimated to have a dome-shaped curve with a small plateau around 28 cm in length, and a long tail that spanned nearly the entire range of observed lengths. The South Trawl fleet was estimated to have a very large selectivity plateau (beginning at ~30cm, ranging from 30-55cm, with very steep ascending and descending limbs. Finally the Non-Trawl fleet was estimated to have a relatively small plateau beginning at a much higher length than any other fleet or survey (~45 cm). This fits with the assumption that the hook and line gear that is primarily used by the Non-Trawl fleet would not select small shortspine thornyhead.

3.3.2 Fits to the Data

3.3.2.1 Abundance Indices The base model reasonably fit the available index data with the exception of the most recent two years of the WCGBTS. The fit to the Triennial survey was relatively flat across the entire timeseries (1980-2004; **Figure XX**). An extra

parameter was used to estimate additional variance beyond that estimated by the geostatistical model for this survey. The model fit to the WCGBTS indices appropriately captured the lack of trend in the early and middle portions of the timeseries, but struggled to accurately capture the recent increase in abundance displayed by the indices (**Figure XX**). The model fit for this survey fails to fall within the estimated confidence interval for the 2021 and 2022 indices. This could be, in part, due to the lack of index data from 2020 (surveys were not conducted due to the ongoing COVID-19 pandemic), which may have helped the model more accurately capture the increase.

3.3.2.2 Fishery Discard Rates The model reasonably fit the discard rates for all three fisheries fleets. The three timeblocks, carried over and extended where necessary from the 2013 model, allowed for the declining trend in discards for the North Trawl fleet to be adequately captured, however, there is a period from 2015-2018 where discards rates for the North Trawl fleet are exceptionally low, that the model fails to fully capture (Figure XX). Discards rates in the Southern Trawl fleet are well fit 2006-2014, before and after which the model systematically underestimates the observed discards rates (Figure XX). The discard rates for the coastwide Non-Trawl fleet are exceptionally well fit by the model, and there is no evidence that time blocking is necessary for this fleet (Figure XX).

3.3.2.3 Fishery Length Compositions The base model fit the fishery and discard length compositions reasonably well in aggregate (Figure XX), though there was significant annual variability in the quality fit, often due to difference in effective sample sizes. The Southern Trawl and Non-Trawl fleets were exceptionally well fit by the model, while the model fit to the length compositions from the Northern Trawl fleet underestimated the scale of the peak of the distribution. This type of misfit was similarly observed in the model fits on an annual basis, with all years 2018-2022 displaying a similar underestimation of either the location or scale of the peak of the distribution (Figure XX). The exact causes of this under-estimation remain unknown at this time, but could be due to subtle changes in selectivity or availability. The effect of including time-varying selectivity was assessed in a sensitivity analysis (see 3.4.4.2 for details).

Trawl discards length compositions were well fit by the model in both the north and south regions, while the model struggled to adequately fit discard compositions from the Non-Trawl fleet (**Figure XX**). The Non-Trawl discards were of a larger size and were generally more dispersed than the discard compositions in the two trawl fleets, a feature the model did pick up on, but the model fitted a wide plateau rather than narrow peak to these composition data. This is likely due to the wide variability in annual length compositions seen in this fleet, as well as the wide spatial coverage.

3.3.2.4 Survey Length Compositions Like the fishery derived length compositions, survey-derived length compositions were reasonably well fit in aggregate by the base model, though there was considerable annual variability in the quality of the model fit (**Figure XX**). The early-period Triennial survey length composition data for both sexes were exceptionally well fit by the model. Length compositions from the late-period Triennial survey were slightly less well fit, with the model under-estimating the location of the peak for both sexes. For the

WCGBTS length compositions, the male, female, and unsexed location of the compositional peaks were well estimated, though the overall scales were slightly underestimated. Pearson residuals did not demonstrate any obvious trends that would indicate systematic misfits to the data (**Figure XX**); as such, time varying selectivity was not included in the base model.

3.3.2.5 Mean Body Weight Mean body weight of discarded fish was well fit in the two trawl fleets, and no major trends were observed in either the data of the model estimates. Mean discard weight in the Non-Trawl fleet was observed to have increased in the last ten years, but this trend was not captured by the model. The model, instead, fit a declining trend in discard weight to the Non-Trawl fleet data. The reason for this disparity between the observed data and the model fit is unclear.

3.3.3 Population Trajectory

Unfished equilibrium spawning output (B0) is estimated to be 20,262 eggs, with a 95% confidence interval of 16,291–24,232 eggs. The B0 estimate is not directly comparable to estimates made in previous assessments, which assumed no fecundity relationship, and thus calculated B0 in terms of biomass rather than egg production. Spawning biomass is estimated to have remained stable until the mid-1960s and then declined in the 1970s to about 80% in the mid-1980s, followed by a slower decline under the lower catch levels in the 2000s (**Table XX**, **Figure XX**). While the spawning output of the stock has declined near linearly since 1975, total biomass has stabilized in recent decades around ~85,000 mt. The estimated spawning output in 2023 is **8,204 eggs**, which represents a stock status or "depletion" of 40% (**Figure XX**). The depletion estimated for 2013 is 43.5%, which is significantly lower than the 74.2% estimated for 2013 in the previous assessment.

Twelve-year projections predict that the population is unlikely to experience a large increase in spawning output or spawning biomass in the near future, if the full annual catch limit (ACL) is taken each year (**Figure XX**).

3.3.4 Reference Points

Reference points were calculated using the estimated catch distribution in the final year of the model (2023). In general, the population is on the boundary between "precautionary" (B/B0 = 0.40) and "healthy" status relative to the reference points (Figure XX). Sustainable total yield (landings plus discards) was estimated at 1,060 mt when using an SPR50% reference harvest rate and ranged from 870–1,250 mt based on estimates of uncertainty (Table XX). The spawning output equivalent to 40% of the unfished spawning output (B40%) was **8,105 eggs**.

The most recent catches (landings plus discards) have been lower than the estimated long-term yields calculated using an SPR50% reference point, but not as low as the lower bound of the 95% uncertainty interval. However, this is due to the fishery not fully attaining the full ACL. The overfishing limit (OFL) and ACL values over the past 6 years have been approximately 2,400 mt and 2,000 mt, respectively.

Both of those values are higher than the OFL and ACL values predicted in short-term forecasts, which are around **853 mt and 420 mt** respectively for 2023–2024 (**Table XX**). This is reflected in the timeseries of low harvest rates (**Figure XX**), low 1-SPR values (**Figure XX**), and the phase plot showing the history of being above the target biomass and below the target fishing intensity reference points (**Figure XX**).

3.4 Model Diagnostics

Describe all diagnostics

- 3.4.1 Convergence
- 3.4.2 Sensitivity Analyses
- 3.4.3 Retrospective Analysis
- 3.4.4 Likelihood Profiles
- 3.4.5 Unresolved Problems and Major Uncertainties

4 Management

- 4.1 Reference Points
- 4.2 Unresolved Problems and Major Uncertainties
- 4.3 Harvest Projections and Decision Tables
- 4.4 Evaluation of Scientific Uncertainty
- 4.5 Research and Data Needs

5 Acknowledgments

Here are all the mad props!

6 References

- Anderson, S.C., Ward, E.J., English, P.A., and Barnett, L.A.K. 2022. sdmTMB: An r package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. bioRxiv. Cold Spring Harbor Laboratory. doi:10.1101/2022.03.24.485545.
- Bizzarro, J., Dewitt, L., Wells, B., Curtis, A., Santora, J., and Field, J. 2023. California current trophic database (CCTD). Marine Data Archive; NOAA Southwest Fisheries Science Center: United States.
- Bradburn, M.J., Keller, A.A., and Horness, B.H. 2011. The 2003 to 2008 US West Coast bottom trawl surveys of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, length, and age composition. US Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service.
- Butler, C.K., J. L. 1995. Age determination of shortspine thornyhead, sebastolobus alascanus, using otolith sections and 210Pb: 226Ra ratio. Admin. Rep. No. LJ-95-12. National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, Calif.
- Cooper, D.W., Pearson, K.E., and Gunderson, D.R. 2005. Fecundity of shortspine thornyhead (sebastolobus alascanus) and longspine thornyhead (s. Altivelis) (scorpaenidae) from the northeastern pacific ocean, determined by stereological and gravimetric techniques*. Available from http://hdl.handle.net/1834/26245.
- Dorval, E., Methot, R., Taylor, I., and Piner, K. 2022. Otolith chemistry indicates age and region of settlement of immature shortspine thornyhead sebastolobus alascanus in the eastern pacific ocean. Mar. Ecol. Prog. Ser. 693: 157–175. doi:10.3354/meps14092.
- Du Preez, C., and Tunnicliffe, V. 2011. Shortspine thornyhead and rockfish (scorpaenidae) distribution in response to substratum, biogenic structures and trawling. Mar. Ecol. Prog. Ser. 425: 217–231. doi:10.3354/meps09005.
- Echave, K., Siwicke, K.A., Sullivan, J., Ferris, B., and Hulson, P.F. 2022. Assessment of the thornyhead stock complex in the gulf of alaska.
- Erickson, D.L., and Pikitch, E.K. 1993. A histological description of shortspine thornyhead, sebastolobus alascanus, ovaries: Structures associated with the production of gelatinous egg masses. Environmental Biology of Fishes **36**(3): 273–282. doi:10.1007/BF00001723.
- Hamel, O.S. 2005. Status and future prospects for the shortspine thornyhead resource in waters off washington, oregon, and california as assessed in 2005. Northwest Fisheries Science Center, US Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service.

- Ianelli, J.N., Lauth, R., and Jacobson, L.D. 1994. Status of the thornyhead (sebastelobus sp.) Resource in 1994. National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, WA,; Southwest Fisheries Science Center, La Jolla, CA.
- Jacobson, L.D. 1990. Thornyheads—stock assessment for 1990. National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA.
- Jacobson, L.D. 1991. Thornyheads—stock assessment for 1991. National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA.
- Jacobson, L.D., and Vetter, R.D. 1996. Bathymetric demography and niche separation of thornyhead rockfish: Sebastolobus alascanus and sebastolobus altivelis. **53**.
- Karnowski, M., Gertseva, V.V., and Stephens, A. 2014. Historical Reconstruction of Oregon's Commercial Fisheries Landings. Oregon Department of Fish; Wildlife, Salem, OR.
- Kastelle, C., Helser, T., TenBrink, T., Hutchinson, C., Goetz, B., Gburski, C., and Benson, I. 2020. Age validation of four rockfishes (genera sebastes and sebastolobus) with bomb-produced radiocarbon. Mar. Freshwater Res. **71**(10): 1355–1366. Available from https://doi.org/10.1071/MF19280.
- Kline, D.E. 1996. Radiochemical age verification for two deep-sea rockfishes, sebastolobus altivelis and s. alascanus. San Jose State University.
- Liu, O., Ward, S., and Anderson, S. in pressin press. Species redistribution creates unequal outcomes for multispecies fisheries under projected climate change, PREPRINT (version 1).
- Methot, R.D., 1953-, Wetzel, C.R., Taylor, I.G., 1974-, and Doering, K. 2020. Stock synthesis user manual: Version 3.30.15. doi:10.25923/5wpn-qt71.
- Methot, R.D., Taylor, I.G., and Chen, Y. 2011. Adjusting for bias due to variability of estimated recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic Sciences **68**(10): 1744–1760. doi:10.1139/f2011-092.
- Methot, R.D., and Wetzel, C.R. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research **142**: 86–99. doi:10.1016/j.fishres.2012.10.012.
- Owen S. Hamel, J.M.C. 2022. Development and considerations for application of a longevity-based prior for the natural mortality rate. Fisheries Research **256**: 106477. doi:10.1016/j.fishres.2022.106477.

- Pearson, K.E., and Gunderson, D.R. 2003. Reproductive biology and ecology of shortspine thornyhead rockfish, sebastolobus alascanus, and longspine thornyhead rockfish, s. Altivelis, from the northeastern pacific ocean. Environmental Biology of Fishes 67(2): 117–136. doi:10.1023/A:1025623426858.
- Pikitch, E.K., Erickson, D.L., and Wallace, J.R. 1988. An evaluation of the effectiveness of trip limits as a management tool. Northwest; Alaska Fisheries Center, National Marine Fisheries Service NWAFC Processed Report. Available from https://www.afsc.noaa.gov/Publications/ProcRpt/PR1988-27.pdf [accessed 28 February 2017].
- Piner, K., and Methot, R. 2001. Stock status of shortspine thornyhead off the pacific west coast of the united states 2001. National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA.
- R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.
- Ralston, S., Pearson, D.E., Field, J.C., and Key, M. 2010. Documentation of the California catch reconstruction project. US Department of Commerce, National Oceanic; Atmospheric Administration, National Marine.
- Rogers, B.R., Builder, T.L., Crone, P.R., Brodziak, J., Methot, R.D., and Conser, R.J. 1998. Status of the shortspine thornyhead (sebastolobus alascanus) resource in 1998. National Marine Fisheries Service, Northwest Fisheries Science Center, Newport, OR,; Alaska Fisheries Science Center, Seattle, WA.
- Rogers, J.B. 2003. Species allocation of *Sebastes* and *sebastolobus* species caught by foreign countries off Washington, Oregon, and California, U.S.A. In 1965-1976. Unpublished document.
- Siebenaller, J.F. 1978. Genetic variability in deep-sea fishes of the genus sebastolobus (scorpaenidae). *In Marine Organisms: Genetics, Ecology, and Evolution. Edited by B. Battaglia and J. Beardmore. Plenum Press, New York. pp. 95–122.*
- Stepien, C.A. 1995. Population genetic divergence and geographic patterns from DNA sequences: Examples from marine and freshwater fishes. American Fisheries Society Symposium. pp. 263–287.
- Stepien, C.A., Dillon, A.K., and Patterson, A.K. 2000. Population genetics, phylogeography, and systematics of the thornyhead rockfishes (sebastolobus) along the deep continental slopes of the north pacific ocean. Canadian Journal of Fisheries and Aquatic Sciences 57(8): 1701–1717. doi:10.1139/f00-095.
- Taylor, I.G. 2019. A 2019 catch-only projection from the 2013 stock assessment of shortspine thornyhead. National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA.

- Taylor, I.G., Doering, K.L., Johnson, K.F., Wetzel, C.R., and Stewart, I.J. 2021. Beyond visualizing catch-at-age models: Lessons learned from the r4ss package about software to support stock assessments. Fisheries Research 239: 105924. Available from https://doi.org/10.1016/j.fishres.2021.105924.
- Taylor, I.G., and Methot, R.D. 2013. Hiding or dead? A computationally efficient model of selective fisheries mortality. Fisheries Research 142: 75–85. doi:https://doi.org/10.1016/ j.fishres.2012.08.021.
- Taylor, I.G., and Stephens, A. 2013. Stock assessment of shortspine thornyhead in 2013. Portland: Pacific Fishery Management Council.
- Thorson, J.T., Dorn, M.W., and Hamel, O.S. 2019. Steepness for West Coast rockfishes: Results from a twelve-year experiment in iterative regional meta-analysis. Fisheries Research. doi:10.1016/j.fishres.2018.03.014.
- Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science **72**(5): 1297–1310. doi:10.1093/icesjms/fsu243.
- Thorson, J.T., and Ward, E.J. 2013. Accounting for space–time interactions in index standardization models. Fisheries Research 147: 426–433. doi:https://doi.org/10.1016/j.fishres.2013.03.012.
- Vetter, R.D., and Lynn, E.A. 1997. Bathymetric demography, enzyme activity patterns, and bioenergetics of deep-living scorpaenid fishes (genera sebastes and sebastolobus): Paradigms revisited. Mar Ecol Prog Ser 155: 173–188. Available from https://www.int-res.com/abstracts/meps/v155/p173-188/.
- Wakefield, W.W., II. 1990. Patterns in the distribution of demersal fishes on the upper continental slope off central california with studies on the role of ontogenetic vertical migration in particle flux. PhD thesis, University of California, San Diego, United States California. Available from https://www.proquest.com/dissertations-theses/patterns-distribution-demersal-fishes-on-upper/docview/303821089/se-2?accountid=14784.
- West Coast Regional Office. (n.d.). West coast groundfish trawl catch share program. NOAA. Available from https://www.fisheries.noaa.gov/west-coast/sustainable-fisheries/west-coast-groundfish-trawl-catch-share-program.

7 Tables

Executive Summary

Table 1: Recent landings by fleet, total landings summed across fleets, and the total mortality including discards.

Year	North Trawl	South Trawl	Non-Trawl	Total Landings	Total Dead
2013	547.98	294.83	166.40	1,009.21	1,085.62
2014	433.12	254.05	147.81	834.98	900.66
2015	503.14	244.29	131.30	878.73	945.40
2016	577.19	185.73	168.94	931.86	1,012.75
2017	606.86	158.30	223.82	988.97	1,085.60
2018	525.04	105.07	184.48	814.60	895.39
2019	402.95	127.94	143.48	674.37	736.82
2020	248.47	87.99	85.17	421.64	458.87
2021	226.00	73.39	78.74	378.13	411.62
2022	261.16	97.61	66.22	424.98	456.65

Table 2: Spawning output (millions of eggs) and fraction unfished with associated 95% confidence intervals (CI) from the base model.

Year	Spawning Output	Spawning Output 95% CI	Fraction Unfished	Fraction Unfished 95% CI
2013	8,875	5,904-11,845	0.4	0.4-0.5
2014	8,767	$5,\!807-\!11,\!727$	0.4	0.4 – 0.5
2015	8,679	5,728-11,630	0.4	0.3 – 0.5
2016	8,593	$5,\!650 -\!11,\!536$	0.4	0.3 – 0.5
2017	8,508	$5,\!572 - \!11,\!445$	0.4	0.3 – 0.5
2018	8,423	$5,\!492 -\!11,\!355$	0.4	0.3 – 0.5
2019	8,358	$5,\!431 -\!11,\!286$	0.4	0.3 – 0.5
2020	8,311	$5,\!386 -\!11,\!236$	0.4	0.3 – 0.5
2021	8,291	$5,\!366-\!11,\!215$	0.4	0.3 – 0.5
2022	8,280	$5,\!355 \!\!-\!\!11,\!205$	0.4	0.3 – 0.5
2023	8,273	$5,\!346 \!\!-\!\!11,\!201$	0.4	0.3 – 0.5

Table 3: Estimated recent trend in recruitment and recruitment deviations and the 95% confidence intervals (CI) from the base model.

Year	Recruitment	95% CI	RecDevs	RecDev 95% CI
2013	6,024	2,469-14,698	-0.439	-1.352-0.474
2014	5,962	$2,\!446 - \!14,\!532$	-0.447	-1.358 - 0.465
2015	5,954	$2,\!438 - \!14,\!542$	-0.446	-1.360 - 0.468
2016	6,057	$2,\!465 -\!14,\!886$	-0.427	-1.349 - 0.495
2017	5,836	$2,\!385 14,\!279$	-0.462	-1.379 - 0.454
2018	5,745	2,346-14,069	-0.476	-1.393 - 0.442
2019	8,863	$3,\!557-\!22,\!086$	-0.064	-1.003 - 0.874
2020	$9,\!536$	3,760-24,183	-0.013	-0.973 - 0.946
2021	10,335	3,984-26,811	0.044	-0.943 - 1.032
2022	10,118	3,924-26,090	0.000	-0.980 - 0.980
2023	10,117	3,924-26,086	0.000	-0.980 - 0.980

Table 4: Estimated recent trend in the (1-SPR)/(1-SPR~50%) where SPR is the spawning potential ratio the exploitation rate, and the 95% intervals.

Year	(1-SPR)/(1- SPR 50%)	95% CI	Exploitation Rate	95% CI
2013	1.25	1.03-1.47	0.0124	0.0084-0.0165
2014	1.12	0.90 – 1.34	0.0103	0.0069 – 0.0137
2015	1.15	0.92 – 1.37	0.0109	0.0073 – 0.0145
2016	1.19	0.96 – 1.42	0.0117	0.0078 – 0.0155
2017	1.23	1.00 - 1.46	0.0125	0.0083 – 0.0167
2018	1.09	0.86 – 1.32	0.0103	0.0069 – 0.0138
2019	0.95	0.73 – 1.17	0.0085	0.0056 – 0.0114
2020	0.66	0.48 – 0.84	0.0053	0.0035 – 0.0071
2021	0.59	0.43 – 0.76	0.0047	0.0031 – 0.0063
2022	0.64	0.47 – 0.81	0.0052	0.0034 – 0.0070

Table 5: Summary of reference points and management quantities, including estimates of the 95% intervals.

Variable of Interest	Estimate	95% CI
Unfished Spawning Output	20,332	16,338-24,327
Unfished Age 1+ Biomass (mt)	196,023	157,510-234,536
Unfished Recruitment (R0)	11,550	$9,\!281 13,\!820$
Spawning Output (2023)	8,273	5,346-11,201
Fraction Unfished (2023)	0.41	0.33 – 0.49
Reference Points Based SB40%		
Proxy Spawning Output SB40%	8,133	6,535 - 9,731
SPR Resulting in SB40%	0.458	0.458 – 0.458
Exploitation Rate Resulting in SB40%	0.012	0.011 – 0.012
Yield with SPR Based On SB40% (mt)	1,060	869 - 1,251
Reference Points Based on SPR Proxy for MSY		
Proxy Spawning Output (SPR50)	9,071	$7,\!289 - 10,\!854$
SPR50	0.500	-
Exploitation Rate Corresponding to SPR50	0.010	0.010 – 0.011
Yield with SPR50 at SB SPR (mt)	1,013	831 - 1,195
Reference Points Based on Estimated MSY Values	S	
Spawning Output at MSY (SB MSY)	5,651	4,548 - 6,755
SPR MSY	0.348	0.345 – 0.351
Exploitation Rate Corresponding to SPR MSY	0.017	0.016 – 0.017
MSY (mt)	1,121	919 - 1,323

Table 6: Recent trend in the overfishing limits (OFLs), the acceptable biological catches (ABCs), the annual catch limits (ACLs), the total landings, and total mortality (mt).

Year	OFL	ABC	ACL	Landings	Total Mortality
2013	2333	2230	1937	1,009.21	1,085.62
2014	2310	2208	1918	834.98	900.66
2015	3203	2668	2668	878.73	945.40
2016	3169	2640	2639	931.86	1,012.75
2017	3144	2619	2619	988.97	1,085.60
2018	3116	2596	2596	814.60	895.39
2019	3089	2573	2573	674.37	736.82
2020	3063	2551	2552	421.64	458.87
2021	3211	2183	2184	378.13	411.62
2022	3194	2130	2130	424.98	456.65

 $\textbf{Table 7:} \ \ \text{Projections of potential OFLs (mt), ABCs (mt), estimated spawning output, and fraction unfished.}$

Year	Predicted OFL (mt)	ABC (mt)	Age 1 Biomass (mt)	Spawning Output	Fraction Unfished
2023	856.34	420.00	88,366.00	8,273.34	0.41
2024	872.85	420.00	88,980.60	8,275.64	0.41
2025	888.93	776.93	89,609.70	8,284.28	0.41
2026	899.90	778.42	89,881.20	8,273.27	0.41
2027	910.21	780.05	$90,\!156.60$	8,267.04	0.41
2028	919.89	780.99	$90,\!434.90$	8,265.16	0.41
2029	929.00	781.29	90,716.20	8,267.24	0.41
2030	937.62	781.04	$91,\!000.70$	8,272.85	0.41
2031	945.82	781.25	$91,\!288.50$	8,281.59	0.41
2032	953.66	780.10	$91,\!578.90$	8,292.98	0.41
2033	961.20	778.58	$91,\!873.20$	8,306.70	0.41
2034	968.48	777.69	$92,\!171.70$	8,322.42	0.41

Table 8: Summary of recent estimates and managment quantities.

Quantity	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
OFL	2333	2310	3203	3169	3144	3116	3089	3063	3211	3194	3177
ACL	1937	1918	2668	2639	2619	2596	2573	2552	2184	2130	2078
Total Catch	1009.206	834.979	878.73	931.86	988.973	814.596	674.365	421.6353	378.128	424.9815	NA
Total Dead	1085.616	900.664	945.402	1012.752	1085.599	895.395	736.818	458.8692	411.6166	456.6489	NA
$(1-SPR)/(1-SPR_50\%)$	1.25	1.12	1.15	1.19	1.23	1.09	0.95	0.66	0.59	0.64	NA
Exploitation Rate	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	NA
Age 1+ Biomass (mt)	87,353	87,044	86,961	86,861	86,715	86,513	$86,\!520$	86,711	87,220	87,805	195,973
Spawning Output	8,875	8,767	8,679	8,593	8,508	8,423	8,358	8,311	8,291	8,280	8,273
Lower Interval	5,904	5,807	5,728	5,650	$5,\!572$	5,492	5,431	$5,\!386$	$5,\!366$	$5,\!355$	5,346
Upper Interval	11,845	11,727	11,630	$11,\!536$	11,445	$11,\!355$	11,286	$11,\!236$	11,215	11,205	11,201
Recruits	6,024	5,962	5,954	6,057	5,836	5,745	8,863	9,536	10,335	10,118	10,117
Lower Interval	2,469	2,446	2,438	2,465	2,385	2,346	$3,\!557$	3,760	3,984	3,924	3,924
Upper Interval	14,698	14,532	14,542	14,886	14,279	14,069	22,086	24,183	26,811	26,090	26,086
Fraction Unfished	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Interval	0.4 – 0.5	0.4 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5	0.3 – 0.5

Table 9: Landings (mt) by fleet for all years, total landings (mt), and total mortality (mt) summed by year.

Year	North Trawl	South Trawl	Non-Trawl	Total Landings	Total Dead
				Landings	
1901	0.00	0.00	0.09	0.09	0.11
1902	0.00	0.00	0.11	0.11	0.14
1903	0.00	0.00	0.13	0.13	0.16
1904	0.00	0.00	0.15	0.15	0.19
1905	0.00	0.00	0.17	0.17	0.21
1906	0.00	0.00	0.19	0.19	0.24
1907	0.00	0.00	0.21	0.21	0.27
1908	0.00	0.00	0.23	0.23	0.29
1909	0.00	0.00	0.26	0.26	0.32
1910	0.00	0.00	0.28	0.28	0.34
1911	0.00	0.00	0.30	0.30	0.37
1912	0.00	0.00	0.32	0.32	0.39
1913	0.00	0.00	0.34	0.34	0.42
1914	0.00	0.00	0.36	0.36	0.44
1915	0.00	0.00	0.38	0.38	0.47
1916	0.00	0.00	0.40	0.40	0.49
1917	0.00	0.00	0.42	0.42	0.52
1918	0.00	0.00	0.44	0.44	0.54
1919	0.00	0.00	0.46	0.46	0.57
1920	0.00	0.00	0.48	0.48	0.60
1921	0.00	0.00	0.50	0.50	0.62
1922	0.00	0.00	0.52	0.52	0.65
1923	0.00	0.00	0.54	0.54	0.67
1924	0.00	0.00	0.56	0.56	0.70
1925	0.00	0.00	0.58	0.58	0.72
1926	0.00	0.00	0.60	0.60	0.75
1927	0.00	0.00	0.63	0.63	0.78
1928	0.00	0.00	1.05	1.05	1.29
1929	0.00	0.00	1.66	1.66	2.05
1930	0.00	0.00	1.39	1.39	1.72
1931	0.00	0.00	1.13	1.13	1.40
1932	0.00	0.00	0.42	0.42	0.52
1933	0.00	0.00	0.62	0.62	0.77
1934	0.00	4.57	0.71	5.28	5.62
1935	0.00	6.33	0.67	6.99	7.40
1936	0.00	2.70	1.45	4.15	4.60
1937	0.01	5.42	1.44	6.87	7.42
1938	0.00	5.62	1.34	6.96	7.49
1939	0.01	5.81	0.42	6.24	6.56

Table 9: Landings (mt) by fleet for all years, total landings (mt), and total mortality (mt) summed by year. (continued)

Year	North	South	Non-Trawl	Total	Total Dead
	Trawl	Trawl		Landings	
1940	0.19	0.95	1.60	2.74	3.17
1941	0.29	1.96	2.65	4.90	5.64
1942	0.69	1.03	3.77	5.49	6.51
1943	3.06	1.43	10.17	14.66	17.50
1944	5.34	0.21	1.82	7.38	8.48
1945	5.34	0.99	0.68	7.01	7.87
1946	4.07	0.61	0.99	5.68	6.44
1947	4.75	0.04	0.72	5.51	6.27
1948	13.38	0.02	1.02	14.42	16.34
1949	13.52	0.02	0.34	13.88	15.67
1950	6.93	0.01	0.82	7.75	8.83
1951	11.16	0.00	0.59	11.76	13.32
1952	13.85	0.00	0.28	14.13	15.97
1953	2.63	2.96	0.24	5.83	6.35
1954	112.45	0.00	0.38	112.83	127.54
1955	62.93	4.99	0.28	68.20	76.69
1956	133.04	6.82	0.48	140.34	158.20
1957	63.88	0.00	0.49	64.37	72.91
1958	27.80	9.51	0.14	37.45	41.55
1959	28.81	32.26	0.24	61.31	66.53
1960	31.09	149.61	0.10	180.80	191.23
1961	28.55	56.76	0.38	85.68	91.92
1962	22.47	113.69	0.45	136.60	144.43
1963	7.77	223.17	0.27	231.21	241.60
1964	25.19	173.49	0.78	199.45	210.08
1965	31.75	307.58	0.13	339.46	356.18
1966	623.08	542.10	0.13	$1,\!165.31$	$1,\!265.97$
1967	375.82	867.40	0.34	$1,\!243.57$	1,325.03
1968	207.45	$1,\!834.26$	0.26	2,041.97	$2,\!139.58$
1969	215.73	430.43	0.95	647.10	689.99
1970	179.79	599.25	0.26	779.30	823.42
1971	347.53	607.82	0.08	955.43	1,018.56
1972	390.43	$1,\!380.65$	0.11	1,771.19	$1,\!866.34$
1973	704.17	2,321.09	0.44	3,025.70	3,188.41
1974	219.17	1,146.08	1.32	$1,\!366.58$	$1,\!431.72$
1975	399.30	1,872.54	0.53	$2,\!272.37$	$2,\!381.61$
1976	103.83	1,824.32	0.51	1,928.66	2,002.99
1977	112.56	$1,\!472.13$	9.21	1,593.90	$1,\!658.75$
1978	176.33	1,013.53	2.96	$1,\!192.82$	1,247.39
1979	65.96	1,715.69	6.56	1,788.21	1,855.78

Table 9: Landings (mt) by fleet for all years, total landings (mt), and total mortality (mt) summed by year. (continued)

3.7	3.T +1	Q :1	N		m + 1.5 °
Year	North	South	Non-Trawl	Total	Total Dead
	Trawl	Trawl		Landings	
1980	179.97	1,204.88	2.25	1,387.10	1,449.25
1981	132.48	1,608.49	2.74	1,743.71	1,815.68
1982	293.65	1,654.79	2.71	1,951.15	2,044.80
1983	480.91	1,416.64	2.76	1,900.30	2,009.74
1984	1,039.29	1,841.97	1.18	2,882.44	3,078.65
1985	956.35	2,397.97	6.00	$3,\!360.32$	$3,\!575.65$
1986	613.11	2,331.52	7.98	2,952.62	$3,\!129.25$
1987	638.84	1,322.44	22.19	1,983.47	$2,\!131.22$
1988	877.45	1,965.85	24.92	$2,\!868.22$	3,084.11
1989	$1,\!655.55$	$3,\!123.78$	35.74	$4,\!815.07$	$5,\!208.77$
1990	2,092.81	1,911.73	31.36	4,035.90	$4,\!451.92$
1991	$2,\!416.99$	995.94	53.54	$3,\!466.47$	3,907.34
1992	1,782.91	$1,\!455.11$	61.25	$3,\!299.27$	3,677.11
1993	2,010.20	1,571.84	26.59	$3,\!608.63$	4,034.78
1994	2,083.16	1,182.92	21.00	$3,\!287.08$	3,716.96
1995	953.79	929.27	57.01	1,940.08	$2,\!176.77$
1996	810.14	699.59	100.09	$1,\!609.82$	1,824.69
1997	689.59	654.17	62.74	$1,\!406.50$	1,592.89
1998	582.09	593.35	62.18	$1,\!237.62$	1,404.29
1999	373.90	309.07	64.39	747.36	858.57
2000	340.72	421.91	66.59	829.22	944.10
2001	276.61	197.49	57.98	532.08	618.30
2002	288.51	364.76	114.25	767.53	883.27
2003	346.05	302.40	166.56	815.01	953.33
2004	328.55	286.59	139.49	754.62	882.55
2005	292.59	214.11	149.69	656.39	774.51
2006	334.06	210.53	159.17	703.77	833.84
2007	626.03	222.56	158.80	1,007.39	$1,\!102.25$
2008	972.95	259.94	196.97	$1,\!429.86$	1,563.90
2009	1,022.69	308.38	200.62	$1,\!531.70$	1,673.25
2010	834.86	284.22	228.36	$1,\!347.44$	1,481.92
2011	483.47	232.99	260.52	976.98	1,069.97
2012	455.93	263.59	192.07	911.59	987.50
2013	547.98	294.83	166.40	1,009.21	1,085.62
2014	433.12	254.05	147.81	834.98	900.66
2015	503.14	244.29	131.30	878.73	945.40
2016	577.19	185.73	168.94	931.86	1,012.75
2017	606.86	158.30	223.82	988.97	1,085.60
2018	525.04	105.07	184.48	814.60	895.39
2019	402.95	127.94	143.48	674.37	736.82

Table 9: Landings (mt) by fleet for all years, total landings (mt), and total mortality (mt) summed by year. (continued)

Year	North Trawl	South Trawl	Non-Trawl	Total Landings	Total Dead
2020	248.47	87.99	85.17	421.64	458.87
2021	226.00	73.39	78.74	378.13	411.62
2022	261.16	97.61	66.22	424.98	456.65

Table 10: Time series of population estimates from the base model.

Year	Total	Spawn-	Total	Frac-	Age 0	Total	(1-	Ex-
	Biomass	ing	Biomass	tion	Re-	Mortal-	SPR)/(1-	ploita-
	(mt)	Output	(mt)	Un-	cruits	ity	SPR	tion
				fished			50%)	Rate
1901	196,035	20,332	196,023	100.0	11,286	0.11	0.00	0.00
1902	196,033	20,332	196,020	100.0	11,260	0.14	0.00	0.00
1903	196,029	20,332	196,016	100.0	11,227	0.16	0.00	0.00
1904	196,024	20,332	196,011	100.0	11,187	0.19	0.00	0.00
1905	196,017	20,332	196,005	100.0	11,147	0.21	0.00	0.00
1906	196,009	20,332	$195,\!996$	100.0	11,113	0.24	0.00	0.00
1907	195,998	20,332	$195,\!986$	100.0	11,081	0.27	0.00	0.00
1908	195,985	20,332	$195,\!973$	100.0	11,040	0.29	0.00	0.00
1909	195,970	20,332	$195,\!958$	100.0	11,001	0.32	0.00	0.00
1910	$195,\!951$	20,332	195,939	100.0	10,955	0.34	0.00	0.00
1911	195,930	20,332	$195,\!917$	100.0	10,919	0.37	0.00	0.00
1912	195,904	20,332	$195,\!892$	100.0	10,909	0.39	0.00	0.00
1913	$195,\!876$	20,332	195,864	100.0	10,909	0.42	0.00	0.00
1914	$195,\!843$	20,331	195,831	100.0	10,862	0.44	0.00	0.00
1915	$195,\!806$	20,331	195,794	100.0	10,810	0.47	0.00	0.00
1916	195,765	$20,\!330$	195,753	100.0	10,784	0.49	0.00	0.00
1917	195,719	20,330	195,707	100.0	10,764	0.52	0.00	0.00
1918	$195,\!669$	20,329	$195,\!657$	100.0	10,745	0.54	0.00	0.00
1919	$195,\!613$	$20,\!328$	$195,\!601$	100.0	10,718	0.57	0.00	0.00
1920	$195,\!552$	20,327	$195,\!541$	100.0	10,700	0.60	0.00	0.00
1921	$195,\!486$	20,325	$195,\!475$	100.0	10,679	0.62	0.00	0.00
1922	$195,\!415$	20,324	$195,\!403$	100.0	10,667	0.65	0.00	0.00
1923	$195,\!338$	20,322	$195,\!326$	99.9	10,665	0.67	0.00	0.00
1924	$195,\!256$	$20,\!320$	195,244	99.9	10,660	0.70	0.00	0.00
1925	$195,\!168$	20,317	$195,\!156$	99.9	10,661	0.72	0.00	0.00
1926	$195,\!074$	20,314	$195,\!062$	99.9	10,668	0.75	0.00	0.00
1927	194,975	20,311	$194,\!963$	99.9	10,681	0.78	0.00	0.00
1928	$194,\!871$	20,308	$194,\!859$	99.9	10,702	1.29	0.00	0.00

Table 10: Time series of population estimates from the base model. (continued)

Year	Total	Spawn-	Total	Frac-	Age 0	Total	(1-	Ex-
	Biomass	ing	Biomass	tion	Re-	Mortal-	SPR)/(1-	ploita-
	(mt)	Output	(mt)	Un-	cruits	ity	SPR	tion
	,	-	,	fished		v	50%)	Rate
1929	194,761	20,304	194,749	99.9	10,732	2.05	0.00	0.00
1930	194,645	20,299	194,633	99.8	10,770	1.72	0.00	0.00
1931	194,525	20,294	194,513	99.8	10,819	1.40	0.00	0.00
1932	194,400	20,288	194,388	99.8	10,878	0.52	0.00	0.00
1933	194,273	20,282	194,261	99.8	10,949	0.77	0.00	0.00
1934	194,142	20,276	194,130	99.7	11,031	5.62	0.00	0.00
1935	194,003	20,268	193,990	99.7	11,124	7.40	0.01	0.00
1936	193,859	20,260	193,847	99.6	11,228	4.60	0.00	0.00
1937	193,717	20,252	193,705	99.6	11,340	7.42	0.01	0.00
1938	$193,\!571$	20,242	193,559	99.6	11,458	7.49	0.01	0.00
1939	$193,\!425$	20,232	193,413	99.5	$11,\!578$	6.56	0.00	0.00
1940	193,281	20,222	193,268	99.5	11,693	3.17	0.00	0.00
1941	193,142	20,212	193,129	99.4	11,796	5.64	0.00	0.00
1942	193,003	20,200	192,990	99.4	11,878	6.51	0.00	0.00
1943	192,866	20,188	192,853	99.3	11,928	17.50	0.01	0.00
1944	192,722	20,175	192,709	99.2	11,936	8.48	0.01	0.00
1945	$192,\!591$	20,162	$192,\!578$	99.2	11,892	7.87	0.01	0.00
1946	$192,\!466$	20,149	$192,\!453$	99.1	11,789	6.44	0.00	0.00
1947	192,348	20,135	$192,\!335$	99.0	$11,\!624$	6.27	0.00	0.00
1948	$192,\!234$	20,122	192,221	99.0	11,400	16.34	0.01	0.00
1949	192,113	$20,\!106$	$192,\!101$	98.9	$11,\!124$	15.67	0.01	0.00
1950	191,997	20,091	191,985	98.8	10,805	8.83	0.01	0.00
1951	191,889	20,077	191,878	98.7	$10,\!427$	13.32	0.01	0.00
1952	191,779	20,061	191,768	98.7	10,036	15.97	0.01	0.00
1953	$191,\!664$	20,046	$191,\!654$	98.6	9,643	6.35	0.00	0.00
1954	$191,\!558$	20,031	$191,\!548$	98.5	$9,\!259$	127.54	0.11	0.00
1955	$191,\!319$	20,006	191,309	98.4	8,891	76.69	0.07	0.00
1956	191,127	19,986	191,118	98.3	8,548	158.20	0.14	0.00
1957	190,840	19,958	190,831	98.2	$8,\!235$	72.91	0.06	0.00
1958	190,634	19,938	190,625	98.1	7,957	41.55	0.04	0.00
1959	190,449	19,920	190,441	98.0	7,719	66.53	0.06	0.00
1960	190,225	19,901	$190,\!217$	97.9	$7,\!524$	191.23	0.15	0.00
1961	189,853	$19,\!870$	$189,\!845$	97.7	$7,\!380$	91.92	0.07	0.00
1962	$189,\!570$	19,849	$189,\!562$	97.6	7,293	144.43	0.11	0.00
1963	189,213	19,823	$189,\!205$	97.5	$7,\!270$	241.60	0.18	0.00
1964	188,734	19,788	188,726	97.3	7,320	210.08	0.16	0.00
1965	188,269	19,756	188,260	97.2	$7,\!448$	356.18	0.26	0.00
1966	187,627	19,710	187,619	96.9	7,658	1265.97	0.82	0.01
1967	185,993	$19,\!584$	185,984	96.3	7,945	1325.03	0.83	0.01

Table 10: Time series of population estimates from the base model. (continued)

Year	Total	Spawn-	Total	Frac-	Age 0	Total	(1-	Ex-
	Biomass	ing	Biomass	tion	Re-	Mortal-	SPR)/(1-	ploita-
	(mt)	Output	(mt)	Un-	cruits	ity	SPR	tion
	()	1	()	fished		v	50%)	Rate
1968	184,271	19,449	184,262	95.7	8,302	2139.58	1.13	0.01
1969	184,271 $181,659$	19,237	181,650	94.6	8,713	689.99	0.51	0.01
1970	181,003 $180,573$	19,257 $19,154$	180,563	94.2	9,172	823.42	0.51	0.00
1971	179,330	19,057	179,319	93.7	9,664	1018.56	0.50	0.00
1971 1972	177,866	18,941	177,855	93.2	10,172	1866.34	1.08	0.01
1973	175,487	18,745	175,476	92.2	10,640	3188.41	1.46	0.01
1974	171,686	18,425	171,674	90.6	10,968	1431.72	0.93	0.02
1975	169,754	18,259	169,742	89.8	11,071	2381.61	1.28	0.01
1976	166,807	18,003	166,795	88.5	10,910	2002.99	1.16	0.01
1977	164,266	17,776	164,254	87.4	10,589	1658.75	1.05	0.01
1978	162,097	17,578	162,086	86.5	10,266	1247.39	0.88	0.01
1979	160,376	17,415	160,365	85.7	10,081	1855.78	1.14	0.01
1980	158,012	17,193	158,001	84.6	10,100	1449.25	1.00	0.01
1981	156,095	17,005	156,084	83.6	10,290	1815.68	1.16	0.01
1982	153,801	16,781	153,790	82.5	10,486	2044.80	1.26	0.01
1983	151,280	16,534	151,268	81.3	10,566	2009.74	1.28	0.01
1984	148,816	16,288	148,805	80.1	10,513	3078.65	1.58	0.02
1985	145,227	15,941	145,215	78.4	10,418	3575.65	1.67	0.02
1986	141,121	15,543	141,110	76.4	10,340	3129.25	1.61	0.02
1987	137,513	15,183	137,502	74.7	10,353	2131.22	1.41	0.02
1988	135,000	14,914	134,989	73.4	10,553	3084.11	1.64	0.02
1989	131,494	14,556	131,482	71.6	10,798	5208.77	1.87	0.04
1990	125,735	14,000	125,723	68.9	10,945	4451.92	1.85	0.04
1991	120,810	13,513	120,799	66.5	10,529	3907.34	1.84	0.03
1992	116,490	13,077	116,479	64.3	10,018	3677.11	1.82	0.03
1993	112,431	12,657	112,420	62.3	9,681	4034.78	1.87	0.04
1994	108,009	12,205	107,999	60.0	8,899	3716.96	1.86	0.03
1995	103,948	11,782	103,938	57.9	8,778	2176.77	1.64	0.02
1996	101,552	11,498	101,544	56.5	6,632	1824.69	1.55	0.02
1997	99,563	11,248	$99,\!555$	55.3	7,224	1592.89	1.48	0.02
1998	97,847	11,022	97,839	54.2	7,653	1404.29	1.40	0.01
1999	96,366	10,817	96,356	53.2	9,260	858.57	1.07	0.01
2000	95,510	10,664	95,497	52.4	11,621	944.10	1.14	0.01
2001	94,612	10,507	$94,\!597$	51.7	13,999	618.30	0.86	0.01
2002	94,120	10,383	94,108	51.1	11,515	883.27	1.09	0.01
2003	$93,\!426$	10,240	93,391	50.4	$32,\!115$	953.33	1.15	0.01
2004	92,710	10,097	92,697	49.7	11,038	882.55	1.10	0.01
2005	92,210	9,964	$92,\!196$	49.0	12,291	774.51	1.01	0.01
2006	$91,\!827$	9,845	$91,\!813$	48.4	12,616	833.84	1.06	0.01

Table 10: Time series of population estimates from the base model. (continued)

Year	Total Biomass (mt)	Spawn- ing Output	Total Biomass (mt)	Fraction Unfished	Age 0 Re- cruits	Total Mortal- ity	(1- SPR)/(1- SPR 50%)	Ex- ploita- tion Rate
2007	91,421	9,726	91,407	47.8	12,325	1102.25	1.26	0.01
2008	90,816	9,591	90,777	47.2	34,678	1563.90	1.50	0.02
2009	89,785	9,424	89,774	46.3	10,066	1673.25	1.54	0.02
2010	88,786	9,251	88,776	45.5	8,768	1481.92	1.47	0.02
2011	87,968	9,098	87,960	44.7	8,002	1069.97	1.25	0.01
2012	87,599	8,980	87,592	44.2	6,687	987.50	1.19	0.01
2013	87,359	8,875	87,353	43.6	6,024	1085.62	1.25	0.01
2014	87,051	8,767	87,044	43.1	5,962	900.66	1.12	0.01
2015	86,968	8,679	86,961	42.7	5,954	945.40	1.15	0.01
2016	86,867	8,593	86,861	42.3	6,057	1012.75	1.19	0.01
2017	86,722	8,508	86,715	41.8	5,836	1085.60	1.23	0.01
2018	86,519	8,423	86,513	41.4	5,745	895.40	1.09	0.01
2019	86,530	8,358	86,520	41.1	8,863	736.82	0.95	0.01
2020	86,721	8,311	86,711	40.9	9,536	458.87	0.66	0.01
2021	87,231	8,291	87,220	40.8	10,335	411.62	0.59	0.00
2022	87,816	8,280	87,805	40.7	10,118	456.65	0.64	0.01
2023	88,377	8,273	88,366	40.7	10,117	420.00	0.58	0.00
2024	88,992	8,276	88,981	40.7	10,117	420.00	0.58	0.00
2025	89,621	8,284	89,610	40.7	10,120	776.93	0.91	0.01
2026	89,892	8,273	89,881	40.7	10,117	778.42	0.90	0.01
2027	90,168	8,267	$90,\!157$	40.7	10,115	780.05	0.90	0.01
2028	$90,\!446$	8,265	$90,\!435$	40.6	10,115	780.99	0.89	0.01
2029	90,727	8,267	90,716	40.7	10,115	781.29	0.89	0.01
2030	91,012	8,273	91,001	40.7	10,117	781.04	0.88	0.01
2031	$91,\!300$	8,282	$91,\!288$	40.7	10,119	781.25	0.88	0.01
2032	$91,\!590$	8,293	$91,\!579$	40.8	10,122	780.10	0.87	0.01
2033	91,884	8,307	$91,\!873$	40.9	$10,\!125$	778.57	0.86	0.01
2034	$92,\!183$	8,322	$92,\!172$	40.9	$10,\!129$	777.69	0.86	0.01

Table 11: Likelihood components by source.

Source	Likelihood Component
TOTAL	536.6430000
Catch	0.0000000
Equil catch	0.0000000
Survey	-48.5980000

Table 11: Likelihood components by source. (continued)

Source	Likelihood
	Component
Discard	406.1260000
Mean body wt	-79.6714000
Length comp	270.3960000
Recruitment	-13.1937000
InitEQ Regime	0.0000000
Forecast Recruitment	0.0125207
Parm priors	1.5716500
Parm devs	0.0000000
F Ballpark	0.0000000
F Ballpark(info only) 1999 estF tgtF	0.0148413
Crash Pen	0.0000000
- (, , , , , , , , , , , , , , , , , ,	

- 8 Figures
- 9 Data figures

Figure 1: Biomass of shortspine thornyhead found in the NWFSC West Coast Groundfish Bottom Trawl Survey annual survey (2003-2022) coastwide.

Figure 2: Unidentified thornyhead catches (mt) and the proportion identified as shortspines, calculated as the ratio of shortspine thornyhead catches to combined longspine and shortspine catches.

Figure 3: Estimated landing history for shortspine thornyhead.

Figure 4: Summary of data sources used in the base model.

Figure 5: Predicted discards based estimated retention and selectivity for each fleet.

Figure 6: Discard rates from the WCGOP data set with catch share and non-catch share considerations from the GEMM dataset.

Figure 7: Summary of survey data sources used in the base model.

Figure 8: Survey length composition data.

Figure 9: Growth curve comparison. .

Figure 10: Growth curve sensitivities.

Figure 11: Fit of the maturity curves per size and depth classes. Classes are designed for visual check of the model predictions only since the model assumes continuous and not categorical response to these variables.

Figure 12: Maturity curves considered in the present assessment (Head (2023)) and alternative versions considered in the sensitivity analysis.