

Cognitive Neuroscience for Al Developers

Structure and Function of the Nervous System: Neurons and Glia

SENSORY → THE BRAIN → BEHAVIOR

But what have all these brains in common?

CELLS.

A neuron

Neuron types

Motor neuron of spinal cord

Purkinje cell of cerebellum

How do we transport information?

https://www.nanotec.com/eu/en/products/283-connection-cables

08.05.2024

Electrical vs chemical coupling

Chemical connection: Delay, Any sign Very nice modifiable

08.05.2024

The connection between two neurons

Α

Mathematically simplifying a neuron

A theoretical neuron

The McCulloch-Pitts neuron

Logical operations with the McCulloch-Pitts neuron

Logical operations with the McCulloch-Pitts neuron

McCulloch Pitts Neuron (assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge \Theta$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < \Theta$$

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} \frac{\mathbf{w_i} * x_i}{\mathbf{w_i} * x_i} \ge \Theta$$
$$= 0 \quad if \sum_{i=0}^{n} \frac{\mathbf{w_i} * x_i}{\mathbf{w_i} * x_i} < \mathbf{\Theta}$$

The XOR affair

The XOR affair in Perceptrons (1969)

ROSENBLATT died in a boat accident in 1971

. . . .

Saltatory conduction

08.05.2024

25

Microglia

- 10-15% of cells in the brain
- Resident macrophage cells:
 first and main active immune defense in CNS
- Scavenger for plaques and debris
- 3 forms: Ameboid, Ramified/Quiescent, Active

Astrocytes

The tripartite synapse

Building ANNs w/ glial support

Fig. 2 Subdivision carried out on the basis of the papers selected according to the method in which the studies included the artificial astrocyte: a Classical feed-forward ANN, b MLPs with integrated astrocytes, c Multilayer Perceptron and Self-Organizing Maps or SONG-NETs and d Artificial Neuro-Glial Networks

Takeaways:

- Sometimes harder to train (no Gradient Descent possible, parameters using Genetic Algorithms)
- Inclusion of astrocytes avoided local minima and greater complexity (Ikuta et al., 2010/2011/2012, Gergel and Farkas 2018)
- Robustness to noise
- Depending on implementation:
 Faster to execute

lons and ion channels

$$V_m = V_{in} - V_{out}$$

	Concentration in	Concentration in	
Species of ion	cytoplasm (mM)	extracellular fluid (mM)	
K ⁺	400	20	
Na ⁺	50	440	
Cl-	52	560	
A- (organic anions)	385	none	

¹The membrane potential at which there is no net flux of the ion species across the cell membrane.

Reaching equilibrium: The Nernst Equation

$$E_{\rm x} = \frac{RT}{zF} \ln \frac{[{\rm X}]_{\rm o}}{[{\rm X}]_{\rm i}}$$
, Nernst Equation

$$E_{\rm x} = \frac{58\,\mathrm{mV}}{\mathrm{z}} \log \frac{\mathrm{[X]}_{\mathrm{o}}}{\mathrm{[X]}_{\mathrm{i}}}.$$

$$E_{\rm k} = \frac{58\,{\rm mV}}{1}\log\frac{[20]}{[400]} = -75\,{\rm mV}.$$

Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹ (mV)
K ⁺	400	20	-75
Na ⁺	50	440	+55
Cl-	52	560	-60
A- (organic anions)	385	none	none

¹The membrane potential at which there is no net flux of the ion species across the cell membrane.

Biology explained as electrical circuit

$$I_{\text{Na}} + I_{\text{K}} = 0.$$

$$V_{\rm m} = \frac{(E_{\rm Na} \times g_{\rm Na}) + (E_{\rm K} \times g_{\rm K})}{g_{\rm Na} + g_{\rm K}}$$

The Hodgkin-Huxley model

$$I_{\rm K} = g_{\rm K}(V_{\rm m} - E_{\rm K})$$

Kirchhoff's law: conservation of electrical charge

Hodgkin and Huxley found three dynamic variables: n, m and h

$$I = C_m rac{{
m d} V_m}{{
m d} t} + ar{g}_{
m K} n^4 (V_m - V_K) + ar{g}_{
m Na} m^3 h (V_m - V_{Na}) + ar{g}_l (V_m - V_l),$$

Solving the unknown

$$egin{aligned} rac{dn}{dt} &= lpha_n(V_m)(1-n) - eta_n(V_m)n \ & rac{dm}{dt} &= lpha_m(V_m)(1-m) - eta_m(V_m)m \ & rac{dh}{dt} &= lpha_h(V_m)(1-h) - eta_h(V_m)h \end{aligned}$$

$$egin{aligned} lpha_n(V_m) &= rac{0.01(10 + V_m)}{\exp\left(rac{10 + V_m}{10}
ight) - 1} & lpha_m(V_m) &= rac{0.1(25 + V_m)}{\exp\left(rac{25 + V_m}{10}
ight) - 1} & lpha_h(V_m) &= 0.07 \exp\left(rac{V_m}{20}
ight) \ eta_n(V_m) &= 0.125 \exp\left(rac{V_m}{80}
ight) & eta_m(V_m) &= 4 \exp\left(rac{V_m}{18}
ight) & eta_h(V_m) &= rac{1}{\exp\left(rac{30 + V_m}{10}
ight) + 1} \end{aligned}$$

Plugging it in Python

Steps:

- 1) Pre-define variables
- 2) Iterate over time
 - 1) Solve alpha, beta
 - 2) Solve partial differential equation using Euler's method
 - 3) Calculate conductances
 - 4) Calculate current
 - 5) Calculate membrane voltage
- 3) Plot result

$$lpha_n(V_m) = rac{0.01(10+V_m)}{\exp\left(rac{10+V_m}{10}
ight)-1} \qquad lpha_m(V_m) = rac{0.1(25+V_m)}{\exp\left(rac{25+V_m}{10}
ight)-1} \qquad lpha_h(V_m) = 0.07\exp\left(rac{V_m}{20}
ight) \ eta_n(V_m) = 0.125\exp\left(rac{V_m}{80}
ight) \qquad eta_m(V_m) = 4\exp\left(rac{V_m}{18}
ight) \qquad eta_h(V_m) = rac{1}{\exp\left(rac{30+V_m}{10}
ight)+1}$$

$$egin{aligned} rac{dn}{dt} &= lpha_n(V_m)(1-n) - eta_n(V_m)n \ &rac{dm}{dt} &= lpha_m(V_m)(1-m) - eta_m(V_m)m \ &rac{dh}{dt} &= lpha_h(V_m)(1-h) - eta_h(V_m)h \end{aligned}$$

$$ar{g}_{
m K} n^4 (V_m - V_K) + ar{g}_{
m Na} m^3 h (V_m - V_{Na}) + ar{g}_l (V_m - V_l),$$

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = -\sum_{\mathrm{ion}} I_{\mathrm{ion}} + I(t).$$

(code will be on StudOn that you can play with)

Changing the injected current

08.05.2024

Hodgkin-Huxley "drawbacks"

Already for this easy task we need to estimate 20 parameters

ARE WE ABLE TO SIMPLIFY THIS?

08.05.2024

Integrate-and-Fire-Models

$$C_{\rm m} \frac{dV}{dt} = \frac{V_{\rm rest} - V}{R_{\rm m}} + I$$

Simplifications:

- Linear membrane current and membrane potential relationship
- Fires action potentials through a threshold-crossing rule

Retains:

- 1) Membrane capacitance
- 2) Membrane resistance
- 3) Temporal dependence

08.05.2024

Integrate-and-Fire-Models

$$C_{\rm m} \frac{dV}{dt} = \frac{V_{\rm rest} - V}{R_{\rm m}} + I \qquad \cdot R$$

$$\tau_m = RC$$

$$\tau_m \frac{\mathrm{d}V}{\mathrm{d}t} = (V_{rest} - V) + R_m I(t)$$

External input, e.g. via synapse

Simulation

Steps:

- Define constants
- Define input signals
- 3) Perform simulation
 - 1) Reset neuron to Vm if AP was elicited
 - 2) Integrate signal
- Plot results

```
# Constants
     tau = 10 # ms
      Vm = -65 \# mV
      theta = -55 \# mV
      V = -65 \# mV
      # Input strength
      RI = 100 \# mV
      # Simulate for 40 s, time step 0.1
  11 dt = 0.1
19 # Set input at given ts
20 inputs = [10, 20, 22, 24, 26, 26.5, 28, 29, 29.4]
21 durations = [.2, .2, .2, .2, .2, .2, .2, .2, .2]
23 # Construct signal
24 input_signal = np.zeros_like(ts)
26 for i,d in zip(inputs, durations):
       input signal [(ts >= i) & (ts <= i+d)] = RI
 # Check if action potential is elicited
 s = V > theta
 if s:
      V = Vm
V = V - dt/tau * ((V - Vm) - RI)
```

$$V = V-dt/tau * ((V - Vm) - RI_)$$

Simulation

Steps:

- 1) Define constants
- 2) Define input signals
- 3) Perform simulation
 - Reset neuron to Vm if AP was elicited
 - 2) Integrate signal
- 4) Plot results

Temporal integration

Constant input current

08.05.2024

Constant input current

Constant input current

Why is this important?

Spiking Neural Networks

Ways of training SNNs

- Binarization of ANNs: Conventional DNNs are trained with binary activations, but maintain their synchronous mode of information processing.
- Conversion from ANNs: Conventional DNNs are trained with backpropagation, and then all analog neurons are converted into spiking ones.
- Training of constrained networks: Before conversion, conventional DNN training methods are used together with constraints that model the properties of the spiking neuron models.
- Supervised learning with spikes: Directly training SNNs using variations of error backpropagation.
- Local learning rules at synapses, such as STDP (Bi and Poo, 1998; Song et al., 2000), are used for more biologically realistic training.

Pfeiffer and Pfeil. 2018

Neural coding

Park et al., 2020 Gollisch, 2008

Neuromorphic hardware

Table 1: Capacity of some recent neuromorphic systems [18].

	ODIN	$\mu \mathbf{Brain}$	\mathbf{DYNAPs}	${\bf BrainScaleS}$	${\bf SpiNNaker}$	Neurogrid	Loihi	TrueNorth
	[19]	[20]	[21]	[22]	[23]	[24]	[25]	[26]
# Neurons/core	256	336	256	512	36K	65K	130K	1M
# Synapses/core	64K	38K	16K	128K	2.8M	8M	130M	256M
# Cores/chip	1	1	1	1	144	128	128	4096
# Chips/board	1	1	4	352	56	16	768	4096
# Neurons	256	336	1K	4M	2.5B	1M	100M	4B
# Synapses	256	336	65K	1B	200B	16B	100B	1T