

Last session (2015-10-08)

- Big Data facts
- Big Data Analysis Process
- Visualisation
- Machine Learning
- Examples

Today's session

- Big Data Analysis Process
- Hands-on

Big Data Analysis Process

- Formal "old school"
 - SEMMA
 - CRISP-DM
 - Spec uploaded to frontér

- Informal data science practice
 - Ad-hoc processes
 - Case dependent
 - Microsoft's suggested process: https://azure.microsoft.com/en-us/documentation/learning-paths/machine-learning-self-quided-predictive-analytics-training/

Big Data Analysis Process – Main Steps

- Data access
- Data pre-processing / cleaning
- Data transformation / manipulation
- Feature selection
- Feature extraction
- Feature engineering
- Model choice and training
- Model evaluation and tuning
- Model deployment

Big Data Analysis Process – Data Access

Data at Rest

- Inactive & unchanging data which is stored physically in any digital form
- Historical data

Data in Motion

- Streaming data
- Video feeds
- Message feeds (e.g. Twitter)
- Sensor data

Big Data Analysis Process – Data Access

- Data analysis (through machine learning) normally requires data at rest
- Streaming analytics can offer some limited "on-the-fly" analysis but usually does not include advaced modelling

Data Pre-processing / Cleaning

- Missing data
 - Remove row
 - Replace with fixed value
 - Replace with average (median) value
 - Replace with "most probable" value

StartTime	Device	Resource	Time	volume	Unit
12.08.2015 07:16	Ladetorget Moss 181	DO1	48	7,65	kwh
11.08.2015 21:32	Ladetorget Moss 181	DO1	15	10,68	kwh
11.08.2015 20:51	Ladetorget Moss 182	DO1	9	4,19	kwh
11.08.2015 18:58	Ladetorget Moss 181	DO1	8	5,74	kwh
11.08.2015 18:39	Ladetorget Moss 182	DO1	23	12,33	kwh
11.08.2015 18:16	Ladetorget Moss 181	DO1	32	10,66	kwh
11.08.2015 18:15	Ladetorget Moss 181	DO1	1	0	kwh
11.08.2015 17:58	Ladetorget Moss 181	DO2	17	11,05	kwh
11.08.2015 17:53	Ladetorget Moss 182	DO2	31	11,96	kwh
11.08.2015 17:44	Ladetorget Moss 181	DO1	10	3,26	kwh
11.08.2015 17:32	Ladetorget Moss 182	DO1	17	12,07	kwh
11.08.2015 16:28	Ladetorget Moss 181	DO1	6	3,95	kwh
11.08.2015 16:00	Ladetorget Moss 182	DO1	9	6,48	kwh
11.08.2015 15:44	Ladetorget Moss 185	DO2	3	0	kwh
11.08.2015 15:19	Ladetorget Moss 185	DO2	25	2,74	kwh
11.08.2015 14:35	Ladetorget Moss 186	DO1	3	0	kwh
11.08.2015 14:03	Ladetorget Moss 186	DO1	33	0	kwh
11.08.2015 12:53	Ladetorget Moss 182	DO2	27	12,46	kwh
11.08.2015 11:41	Ladetorget Moss 181	DO1	8	3,46	kwh
11.08.2015 11:25	Ladetorget Moss 186	DO2	2		NaN
11.08.2015 09:55	Ladetorget Moss 184	DO1	131	14,65	kwh
11.08.2015 07:35	Ladetorget Moss 185	DO2	445	7,18	kwh
11.08.2015 07:34	Ladetorget Moss 188	DO2	455	10,62	kwh
11.08.2015 07:34	Ladetorget Moss 185	DO2	1	0	kwh
11.08.2015 07:28	Ladetorget Moss 185	DO2	2		NaN
11.08.2015 02:13	Ladetorget Moss 181	DO2	11	6,58	kwh
10.08.2015 19:12	Ladetorget Moss 181	DO2	10	6,24	kwh
10.08.2015 18:17	Ladetorget Moss 182	DO2	10	6,21	kwh
10.08.2015 17:54	Ladetorget Moss 182	DO2	2	NaN	NaN
10.08.2015 15:10	Ladetorget Moss 182	DO1	6	3,74	kwh
10.08.2015 14:54	Ladetorget Moss 182	DO1	6	3,68	kwh

DO2

20

11,16 kwh

Resource Time

Volume

Unit

StartTime

Device

10.08.2015 14:27 Ladetorget Moss 181

Data Pre-processing / Cleaning

r = 0.4

Outliers

Data Pre-processing / Cleaning

Noise

Data Transformation / Manipulation

- Filtering
 - Averaging (moving average)
 - •
- Scaling / Normalisation
- Sampling / Synchronisation
 - Down-sampling
 - Decimation
 - Up-sampling
 - Interpolation

.

Feature Engineering

- Dimensionality Reduction
 - Feature Selection
 - Embedding
- Feature Extraction
- Feature Learning

Feature Selection

- Filter methods
 - E.g. Remove highly correlated variables
- Wrapper methods
 (Search for feature subset based on performance of the chosen data analysis algorithm)
 - Forward selection
 - Add best feature until satisfied
 - Backward elimination
 - Remove worst feature until satisfied
 - Global search
 - Genetic Algorithms
 - Boruta algorithm

Correlation - limitations

© www.esmartsystems.com

13

Correlation - limitations

These cases have the same mean=7.5, variance=4.12, correlation=0.816 and regression line y=3+0.5x

Alternative correlation definitions

Dimensionality Reduction

- Linear
 - PCA Principal Component Analysis
- Non-linear
 - Manifold learning
 - ISOMAP
 - t-SNE
 - •

PCA – Principal Componen Analysis

www.esmartsystems.com

PCA – Principal Componen Analysis

original data space

Handwritten digits – A Case for dimensionality reduction

1797 8x8 images = 64 feature vector

Scatter Matrix Plot - examples

Scatter Matrix of handwritten digits dataset

Unusable!

POWERED BY VALUES

Isometric Mapping

Isomap seeks a lowerdimensional mapping which maintains geodesic distances between all points

Isomap projection of the digits (time 1.41s)

t-distributed Stochastic Neighbor Embedding

Models each highdimensional object by a two-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points

t-SNE embedding of the digits (time 15.61s)

How Google Translate Makes Signs Instantly Readable

Google Translate vs. "La Bamba"

https://www.youtube.com/watch?v=06olHmcJjS0

Feature Engineering – Feature Extraction

- Build new features from existing ones
- Learn new features

Simple Feature Extraction

Dato/tid (dato)	Temp	kWh/h	Weekday	Month	Hour	Year
2010-01-01 01:00	-6,7	15280	6	1	1	2010
2010-01-01 02:00	-7,7	15008	6	1	2	2010
2010-01-01 03:00	-7,7	14896	6	1	3	2010
2010-01-01 04:00	-7,9	14712	6	1	4	2010
2010-01-01 05:00	-8,2	14576	6	1	5	2010
2010-01-01 06:00	-8,2	14720	6	1	6	2010
2010-01-01 07:00	-8,2	14928	6	1	7	2010
2010-01-01 08:00	-7,8	15040	6	1	8	2010

More Complex Feature Extraction

https://www.youtube.com/watch?v=tmh_eAq9yp4

www.esmartsystems.com

29

Feature Learning

- Use machine learning to create features useful for machine learning
- Deep Learning

Machine Learning & Deep Neural Networks Explained

DeepDream: Inside Google's 'Daydreaming' Computers

https://www.youtube.com/watch?v=3hnWf_wdgzs

POWERED BY VALUES

Hands-on session

https://studio.azureml.net

Microsoft Azure Educator Grant Award

- Microsoft has made available 1 Microsoft Azure 12month, \$250/month Educator Pass
- 40-6 month, \$100/month Student Passes
- at no cost

• Codes can be redeemed at <u>www.microsoftazurepass.com</u>

Forskningsparken/ Oslo Science Park - Auditoriet

Torsdag November 05, 2015

MSDN Blogs > MSDN Up North > Big Data ekspertene kommer til Oslo!

Big Data ekspertene kommer til Oslo!

Hanne Wulff 13 Oct 2015 1:07 AM

Agenda for dagen:

8.30 – 9.00 Welcome; registration and coffee

9:00 – 10:00 Overview of Microsoft Analytics Platform:

Data Lake + Kona, etc

10:00 – 10:30 Q&A/Break

10:30 – 11:30 Building Big Data Applications Using Azure

HDInsight Service

11:30 - 12:30 Q&A / LUNSJ

12:30 – 13:30 Power BI overview

13:30 – 14:00 Q&A/Break

14:00 – 15:00 End-to-End Analytics Solution: Real-World

Scenario & Demo

Deltakelse er gratis – og vi spanderer mat og drikke! For påmelding kan du <u>følge linken til eventsiden</u>.

http://blogs.msdn.com/b/dpenorway/archive/2015/10/13/big-data-ekspertene-kommer-til-oslo.aspx

Demo Case – 6800 Smart Meters on Hvaler

Consumption in Hvaler 2010-2014

Consumption vs. Temperature

Consumption vs. Temperature

Home assignments

by 2015-10-22 (next Thursday)

- Experiment with Azure ML Studio
 Come with questions at the next lesson
- Explore the available Azure ML documentation
- Bring PC to next lesson (required, minimum one per group)