The gradients one written in blue.

Boris Denia Soglan 1558410

gradients don't place back words. Muthernaticity

$$\frac{\partial \operatorname{ReLu}(x)}{\partial x} = \begin{cases} 1 & i \neq x > 0 \\ 0 & \text{else} \end{cases}$$

$$y = \text{RelU}(t)$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial t} \cdot \frac{\partial t}{\partial w}$$

$$\frac{\partial J}{\partial t} = 0 \quad \text{here} \quad \frac{\partial L}{\partial w} = 0$$

$$\frac{\partial L}{\partial w} \neq 0$$

hence, the neuron learns.

Question 3

a) [0.27476388, 0.2035501, 0.1507936, 0.37089244]

b) [0.01917612, 0.00230174, 0.24072742, 0.73779476]

c) [3.2188911e-02, 1.9624767e-04, 1.2700258e-02, 9.5491463e-01]

d) [1.3429911e-02, 1.6488365e-04, 6.4719976e-03, 9.7993314e-01]

Question 4

no	name	type	parameters	activations	learnables
L0	data	input		3001 x 33 x 1	
L1	conv1_1	Conv + ReLU	filters: 64 size: 200 x 1 x 1 padding: [3 3 ; 0 0] stride: [1 1]	2808 x 33 x 64	Weights: 200 x 1 x 1 x 64 Bias: 1 x 1 x 64
L2	conv1_2	Conv + ReLU	filters: 64 size: 3 x 1 x 64 padding: [1 1 ; 0 0] stride: [1 1]	2808 x 33 x 64	Weights: 3 x 1 x 64 x 64 Bias: 1 x 1 x 64
L2	pool1	Max-Pooling	size: 6 x 1 padding: [0 0 ; 0 0] stride: [6 1]	468 x 33 x 64	Weights: 0 Bias: 0
L3	conv2_1	Conv + ReLU	filters: 128 size: 3 x 1 x 64 padding: [1 1 ;0 0] stride: [1 1]	468 x 33 x 128	Weights: 3 x 1 x 64 x 128 Bias: 1 x 1 x 128
L4	conv2_2	Conv + ReLU	filters: 128 size: 3 x 1 x 128 padding: [1 1 ; 0 0] stride: [1 1]	468 x 33 x 128	Weights: 3 x 1 x 128 x 128 Bias: 1 x 1 x 128
L4	pooling2	Max-Pooling	size: 6 x 1 padding: [0 0 0 0] stride: [6 1]	78 x 33 x 128	Weights: 0 Bias: 0

L5	conv3_1	Conv + ReLU	filters: 128 size: 3 x 1 x 128 padding: [1 1; 0 0] stride: [1 1]	78 x 33 x 128	Weights: 3 x 1 x 128 x 128 Bias: 1 x 1 x 128
L6	conv3_2	Conv + ReLU	filters: 128 size: 3 x 2 x 128 padding: [1 1 ; 1 1] stride: [1 3]	78 x 12 x 128	Weights: 3 x 2 x 128 x 128 Bias: 1 x 1 x 128
L6	pool3	Max-Pooling	size: 6 x 1 padding: [0 0 0 0] stride: [6 1]	13 x 12 x 128	Weights: 0 Bias: 0
L7	fc7	FC	nodes: 256	256	Weights: 256 x 19968 Bias: 256
L8	fc8	FC	nodes: 256	256	Weights: 256 x 256 Bias: 256
L9	fc9	FC	nodes: 10	10	Weights: 10 x 256 Bias: 10
L10	prob	Soft-max	nodes: 10	10	Weights: 0 Bias: 0

Question 5

- a) Each epoch takes 155 iterations, then there must be roughly 155 * 32 = **4960** samples in the training set.
- b) The model is learning as both validation loss and validation RMSE are decreasing. Hence, it's not overfitting. However, it is learning slowly, as the validation loss decreases by a small amount with each iteration. I would experiment with larger learning rates and choose the largest learning rate that doesn't diverge the training.