DEPARTAMENT D'ENGINYERIA ELECTRÒNICA

CISE-III

Examen final, 18 de gener de 2008

Notes provisionals: Dimecres 23 gener, 13 h fins Dijous 24 gener, 17h Al·legacions: Notes revisades: Divendres 25 gener, 13h

Professors: Albert Poveda, Eva Vidal, Juan M. López (coord.),

Informacions addicionals:

- Duració: 3 hores.
- Resoleu cada problema en fulls separats (respostes clares i ordenades).
- Lliurament de respostes: ordeneu els fulls. Doblegueu-los.
- [Notes provisionals i notes revisades: C4-soterrani S -1]. Al·legacions: Secret. Acad. ETSETB

Problema 1 (20 %)

Donat l'oscil·lador de la figura i considerant els A.O. ideals, es demana:

- Fluxograma i guany de llaç T(s)
- Tipus de realimentació i lloc geomètric de les arrels aproximat, R₁C₁>R₂C₂ b)
- Condició i frequència de oscil·lació c)

Problema 2 (20 %)

Donat el circuit de la figura, es demana:

- $H_1(s) = \frac{v_o}{v_i v_x}$, $H_2(s) = \frac{v_x}{v_o}$
- Guany de llaç T(s) i $A(s) = \frac{v_o}{v_i}$ b)
- Diagrama de Bode de A(s) i T(s) en amplitud i fase, si $g_{m1}=g_{m2}=10^{-4}$ A/V; $R_1=R_2=100 \Omega$, **c**) C=1 nF. És el circuit estable?

Problema 3 (30 %)

a) Calculeu la tensió d'error a la sortida del circuit de la figura 1 produïda por la tensió d'"offset" de l'amplificador operacional.

Per reduir aquest tipus d'error es proposa el circuit de la figura 2, que funciona de la següent manera:

- Quan els commutadors estan a la posició "A", es carrega el condensador C amb la tensió necessària per reduir posteriorment l' "offset".
- Quan els commutadors estan en la posició "B", el circuit funciona com una etapa inversora amb "offset" compensat parcialment.

Per comprovar aquest funcionament es demana:

- **b)** Calculeu la tensió d'error V_o produïda per les tensions d'"offset" (V_{OS1} i V_{OS2}) dels dos amplificadors operacionals (considereu la resta de les seves característiques ideals) quan els commutadors estan a la posició "A".
- c) Calculeu la tensió d'error en V_o produïda per les tensions d'"offset" dels dos amplificadors operacionals quan els commutadors estan a la posició "B" i el condensador està carregat al valor de la tensió d'error a V_o obtinguda a l'apartat b). Compareu el valor obtingut amb el de l'apartat a).
- d) Menyspreant l'efecte de la tensió d'"offset" dels amplificadors operacionals, es posa a l'entrada de l'etapa inversora de guany –100 un senyal quadrat de 0 a 0.3 V de pic a pic i freqüència 10 kHz. Dibuixeu el senyal a l'entrada i el senyal distorsionat a la sortida de l'etapa inversora considerant que el "Slew-Rate" de l'amplificador operacional és de 0.5 V/μs i que les seves tensions de saturació de sortida són de ±10 V.

Problema 4 (30 %)

El circuit de la figura és un generador de senyal controlat per tensió. La frequència del senyal de sortida V_{OUT} depèn del valor de la tensió d'entrada V_{IN} que es pot considerar constant.

- a) Calculeu l'expressió del senyal V_X en funció de l'entrada V_{IN} quan l'interruptor S_1 està obert i quan està tancat.
- b) Determineu l'expressió de la tensió $V_C(t)$ suposant V_X constant.
- c) Dibuixeu la característica $V_{OUT} = f(V_C)$ (considereu $V_{CEsat} = 0$ V).
- d) Tenint en compte que l'interruptor S_1 està tancat quan V_{OUT} està a nivell alt, i obert en cas contrari, dibuixeu els senyals $V_C(t)$ i $V_{OUT}(t)$ considerant un valor del senyal d'entrada V_{IN} constant i positiu, el condensador inicialment descarregat i el senyal V_{OUT} inicialment a nivell alt. Marqueu clarament a la gràfica els valors màxim i mínim dels senyals i els instants de temps significatius.
- e) Determineu l'expressió de la frequència del senyal de sortida V_{OUT} en funció de l'entrada V_{IN} i la resta de paràmetres del circuit.

Problema 1

$$a(s) = \frac{-R_2 G_4 S}{(A + \frac{S}{N_{B2G}}) \left(A + \frac{S}{N_{B2G}}\right)}$$

K<0 -> Realimentario positiva

Condition
$$\frac{C_2}{C_4} + \frac{R_4}{R_2} = \frac{R_4}{R_3}$$

Prostema 2

a)
$$H_1(s) = \frac{V_0}{V_0 - V_X} = \frac{q_{m1}}{CS}$$
 $H_2(s) = \frac{V_X}{V_0} = q_{m2} R_2$

TCS 1=
$$\frac{M^2}{c}$$

Problema 3

Publima 4

- a) Si osert' vx=vi Si tancat vx=-vi
- b) ve(t) = -Vx t + de | Vec
- 4)

d) vour=2/4/3 -> si tancat' -> vx=-vi -> vz= Vit + cte
vour=0 -> si obert' -> vx= vi -> vz= -vit + cte
RC

1) T=TA+TB = 3 VICERCI = 3VI 4VICERCI