

Assignment 3: CS220

Sequence Detector and 3-bit Odd Parity Bit Generator Using FSM

Abhishek Pardhi, Aayush Kumar, Jahnavi Kairamkonda 200026, 200008, 200482

B.Tech students apardhi20@iitk.ac.in, akgarg20@iitk.ac.in, kjahnavi20@iitk.ac.in

Indian Institute of Technology Kanpur

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING February 17, 2022

Contents

1	Seq	uence Detector	1
	1.1	Description	1
	1.2	State Diagram	1
	1.3	State Table	2
	1.4	Excitation Table	2
	1.5	K-map	2
	1.6	Circuit Diagram	3
2	3-bi	it Odd Parity Bit Generator	4
	2.1	Description	4
	2.2	State Diagram	4
	2.3	State Table	5
	2.4	Excitation Table	5
	2.5	K-map	5
		т-шар	_

1 Sequence Detector

1.1 Description

The sequence detector is made using Mealy FSM Machine. Sequence to be detected is 1010. We've used four states to build the state machine: IDLE(2'b00), b(2'b10), c(2'b01) and d(2'b11). To make the sequence detector overlapping we took care of the transitions involved in making the state diagram. For the circuit, we've used two D Flip-Flops $\mathbf{D_x}$ and $\mathbf{D_y}$ to store the current state \mathbf{XY} ($X = D_x \& Y = D_y$).

1.2 State Diagram

Figure 1: State diagram of sequence detector

1.3 State Table

PS	NS, O/P		
	x_1		
	0	1	
00	(00,0)	(10,0)	
01	(00,0)	(11,0)	
10	(01,0)	(10,0)	
11	(01,1)	(10,0)	

Table 1: State table

1.4 Excitation Table

P.S.	P.S.	I/P	N.S.	N.S.	FF's	FF's	O/P
X	Y		X'	Y'	D_x	D_Y	
0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	0	0
0	1	1	1	1	1	1	0
\parallel 1	0	0	0	1	0	1	0
\parallel 1	0	1	1	0	1	0	0
\parallel 1	1	0	0	1	0	1	1
\parallel 1	1	1	1	0	1	0	0

Table 2: Excitation table

1.5 K-map

Figure 2: *K-maps*

$$\Rightarrow D_x = I$$

$$\Rightarrow D_y = I'XY' + IX'Y + I'XY = I'X + IX'Y$$

$$\Rightarrow Z = I'XY$$

1.6 Circuit Diagram

Figure 3: Circuit diagram of sequence detector

2 3-bit Odd Parity Bit Generator

2.1 Description

The odd parity bit generator was made using *Moore FSM Machine*. We've used three states to build the state machine: IDLE(2'b00), a(2'b01) and b(2'b10). For the circuit, we've used one D Flip-Flop D_x to store the current state X ($X = D_x$). The state machine starts at the state IDLE and then goes to the state a if input is 1 or goes to b if input is 0 else it stays in state IDLE if input is a white space. After going to state a or b the state machine stays at the same state if the input is 0 or goes to the other state(from a to b or vice versa) else goes to state IDLE if the input is a white space. Since this is a Moore machine, it will give an output of 1 when it is in state b(2'b10) otherwise will give 0 as output in other states.

2.2 State Diagram

Figure 4: State diagram of odd parity bit generator

2.3 State Table

PS	NS, O/P		
	x_1		
	0	1	
0	(0,0)	(1,1)	
$\parallel 1 \parallel$	(1,1)	(0,0)	

Table 3: State table

2.4 Excitation Table

P.S.	I/P	N.S.	FF's	O/P
X		X'	D_x	(at P.S.)
0	0	0	0	0
0	1	1	1	0
0	0	0	0	0
0	1 1	1	1	0

Table 4: Excitation table

2.5 K-map

Figure 5: *K-maps*

$$\Rightarrow D_x = I'X + IX' = I \oplus X$$
$$\Rightarrow Z = X$$

2.6 Circuit Diagram

Figure 6: Circuit diagram of odd parity bit generator