EA044A - Planejamento e Análise de Sistemas de Produção

10. Semestre de 2009 - Prova 2 - Prof. Vinícius A.Armentano

Questão 1

a)

$$\begin{array}{llll} \min w = & 18u_1 & +30u_2 \\ & 2u_1 & +3u_2 & \geq 5 \\ \text{Problema dual} & & u_1 & +u_2 & \geq 3 \\ & & u_1 & +2u_2 & \geq 4 \\ & & u_1 \geq 0 & u_2 \geq 0 \end{array}$$

b)

c) Solução do dual: $w=66,\ u_1=2,\ u_2=1.$ Como a primeira restrição do dual não está ativa, tem-se $x_1=0.$ Portanto, a solução ótima do primal é dada pela solução do sistema.

$$x_2 + x_3 = 18$$

 $x_2 + 2x_3 = 30$

que fornece $x_2 = 6$, $x_3 = 12$, z = 66.

Questão 2

a)

Para que o lucro de x_3 seja competitivo, $\bar{c}_3^{'}=\bar{c}_3-\delta\leq 0$, e portanto, $\delta\geq 2$. Daí, $c_3^{'}=c_3+\delta\geq c_3+2=15$.

b)

$$\mathbf{a}_{1}^{'} = \mathbf{B}^{-1}\mathbf{a}_{1} = \left[egin{array}{cc} 1 & 0 \ -4 & 1 \end{array} \right] \left[egin{array}{cc} 2 \ 5 \end{array} \right] = \left[egin{array}{cc} 2 \ -3 \end{array} \right]$$

$$\bar{c}_{1}^{'}=c_{1}^{'}-\mathbf{c_{B}B^{-1}a_{1}}=24-\begin{bmatrix}5&0\end{bmatrix}\begin{bmatrix}1&0\\-4&1\end{bmatrix}\begin{bmatrix}2\\5\end{bmatrix}=14$$

z	x_1	x_2	x_3	s_1	s_2	LD	VB
1	-14		2	5		100	z
	2	1	3	1		20	x_2
	-3		-2	-4	1	10	s_2

 x_1 entra na base e $\min\{20/2\}=10 \rightarrow x_2$ sai da base.

ſ	z	x_1	x_2	x_3	s_1	s_2	LD	VB
	1		7	24	12		240	z
		1	1/2	3/2	1/2		10	x_1
			3/2	-5/2	-5/2	1	40	s_2

c)

$$\bar{c}_{4}^{'} = c_{4}^{'} - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{4} = 20 - \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = -5$$

$$\mathbf{a}_{4}^{'} = \mathbf{B}^{-1} \mathbf{a}_{4} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ -15 \end{bmatrix}$$

z	x_1	x_2	x_3	x_4	s_1	s_2		
1	10		2	5	5		100	z
	1	1	3	5	1		20	x_2
	8		-2	-15	-4	1	10	$egin{array}{c} z \ x_2 \ s_2 \end{array}$

d)

$$\mathbf{B} = \begin{bmatrix} 1/2 & 0 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix}$$
$$\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1} = \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 20 & 0 \end{bmatrix}$$

$$\bar{c}_1 = c_1 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a}_1 = -5 - \begin{bmatrix} 20 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 12 \end{bmatrix} = -15$$

$$\bar{c}_2 = c_2 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a}_3 = 10 - \begin{bmatrix} 20 & 0 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = 0$$

$$\bar{c}_3 = 13 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = -47$$

$$\bar{c}_{s_1} = 0 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -20$$

$$\bar{c}_{s_2} = 0 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$

$$\mathbf{a}'_1 = \mathbf{B}^{-1} \mathbf{a}_1 = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$\mathbf{a}_{3}^{'} = \mathbf{B}^{-1}\mathbf{a}_{3} = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$\mathbf{a}_{s_{1}}^{'} = \mathbf{B}^{-1}\mathbf{a}_{s_{1}} = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 90 \end{bmatrix} = \begin{bmatrix} 40 \\ 50 \end{bmatrix}$$

$$\mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{b} = 400$$

z	x_1	x_2	x_3	s_1		LD	
1	15		47	20		400	z
	1	1	2	2		40 50	x_2
	8		6	6	1	50	s_2

e)

$$2x_1 + 2x_2 + 5x_3 + s_3 = 30$$

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10	0	2	5	0	0	100	z
	1	1	3	1	0	0	20	x_2
	8	0	-2	-4	1	0	10	
	0	2	5	0	0	1	30	s_3

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10	0	2	5	0	0	100	z
	1	1	3	1	0	0	100 20 10	x_2
	8	0	-2	-4	1	0	10	s_2
	2	0	-1	-2	0	1	-10	s_3

 s_3 sai da base. $\max\{-2/1,-5/2\}=-2 \rightarrow x_3$ entra na base.

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10			1		2	80	z
	1	1		-5		3	-10	$x_2 \\ s_2$
	8			0	1	-2	$ \begin{array}{r} 80 \\ -10 \\ 30 \\ 10 \end{array} $	s_2
	2		1	2		-1	10	x_3

 x_2 sai da base. $\max\{-1/5\} = -1/5 \rightarrow s_1$ entra na base.

z	x_1	x_2	x_3	s_1	s_2	s_3		VB
1	51/5	1/5				13/5	78	z
	-1/5	-1/5		1		$ \begin{array}{r} 13/5 \\ -3/5 \\ -2 \end{array} $	2	x_2
	8	0			1	-2	30	s_2
	2/5	2/5	1			1/5	6	x_3

Questão 3

a)

Canalização das variáveis, por exemplo, $250 \le x_{36} \le 300$.

Solução ótima:

$$x_{15} = 200, \ x_{17} = 100, \ x_{23} = 300, \ x_{24} = 200, \ x_{55'} = 200, \ x_{5'4} = 200, \ x_{36} = 300, \ x_{46} = 400$$