

Introduction

- Registration is a crucial step in MRI preprocessing
 - Preprocessing pipeline's success is often highly dependent on registration.
- Registration has a low success rate with abnormal brains (Atrophy or space-occupying lesions)
 - Tools often developed and tested on young healthy subjects
- Expert rating of registration quality is long
- Method focused on quality control of T1 weighted MRI scans with real data
 - Comparison with a method using artificially generated data
 - Aim to minimize false positive rate

Datasets

TRAIN / VALIDATION / TEST GENERALIZATION TEST Alzheimer's Disease Neuroimaging International Progressive Multiple Sclerosis Alliance (IPMSA) Initiative (ADNI) Parkinson Progression Marker Initiative (PPMI) Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) Human Connectome Project (HCP)

Registration Technics

- Different registrations applied
 - MRITOTAL (two versions)
 - BestLinReg
 - Revised BestLinReg (two versions)
 - Elastix
 - ANTS
- Manual QC from previous study
- 54,458 Pass (84.5%) / 10,018 Fail (15.5%)

Models

- Simple set of 3 images (with references)
 - Axial
 - Sagittal
 - Coronal
- Standard ResNET as a feature extractor
 - Model with 18, 34, 50, 101, 152 layers
 - Collapsed Input layer to accept grayscale images
 - Removed the last layers
 - Processed each image individually and concat outputs for final layers
- Two tasks: Classification or distance estimation

Into The Unclear

SILVER STANDARD

- Average of all transformations that passed manual QC for a subject
- Compute the distance between silver standard and individual transform for labelisation

SYNTHETIC DATASET

- Create a synthetic dataset for distance estimation
- Threshold distance to determine Pass / Fail labels
- Not clear how samples where generated

Data Augmentations

CLASSIFIER

- Downsample Z by random factor (1-3)
 - Simulate thick slices
- Randomly crop top or bottom 20%
 - Simulate restricted FOV
- Random rotation on x, y, and z of [-0.1,0.1] degrees
 - Simulate small imperfections of registration parameters
- Random flip along x (left-right)
- Generate 5 for 1 => 322,460 samples

DISTANCE ESTIMATION

- Only use samples where manual QC was passed
- Generated random transformations with uniform distribution of distances from the "silver standard"
- Random flips along x
- Random cropping in z direction
- Generate 65,257 samples

Training

- 8 fold cross validation
- Validation and testing set had 50/50 pass/fail
- Preliminary experiment noticed overfitting after 10 epochs
- Create a set of 1200 images (50/50 ratio) from IPMSA to test generalization capacity

Results

- QCResNet18 : TNR of 0,85 and AUC of 0,952
- DistResNet152 : AUC of 0,9356
- Achieve better performance with real data (compared to synthetic)
- QCResNet18 on IPMSA:

ACC	TPR	TNR	AUC
96.1%	96.7%	95.5%	98.7%

Discussion

- Some failed classification case are limit cases
- The performance of the model was comparable with intra rater variability (test-retest accuracy of 93%)
- All methods had better performance in TNR when using references