Praca kontrolna nr 1

- **22.1.** Narysować wykres funkcji $y = 4 + 2|x| x^2$. Na podstawie tego wykresu określić liczbę rozwiązań równania $4 + 2|x| x^2 = p$ w zależności od parametru rzeczywistego p.
- **22.2.** Pompa napełniająca pusty basen w pierwszej minucie pracy miała wydajność $0.2 \,\mathrm{m}^3/\mathrm{s}$, a w każdej kolejnej minucie jej wydajność zwiększano o $0.01 \,\mathrm{m}^3/\mathrm{s}$. Połowa basenu została napełniona po 2n minutach, a cały basen po kolejnych n minutach, gdzie n jest liczbą naturalną. Wyznaczyć czas napełniania basenu oraz jego pojemność.
- **22.3.** Stożek ścięty jest opisany na kuli o promieniu r=2 cm. Objętość kuli stanowi 25% objętości stożka. Wyznaczyć średnice podstaw i długość tworzącej tego stożka.
- **22.4.** W trójkącie ABC dane są promień okręgu opisanego R, kat $\angle A=\alpha$ oraz $|AB|=\frac{8}{5}R$. Obliczyć pole tego trójkąta.
- 22.5. Rozwiązać nierówność

$$(\sqrt{x})^{\log_8 x} \ge \sqrt[3]{16x}.$$

- **22.6.** W czworokącie ABCD odcinki AB i BD są prostopadłe, |AD|=2|AB|=a oraz $\overrightarrow{AC}=\frac{5}{3}$ $\overrightarrow{AB}+\frac{1}{3}$ \overrightarrow{AD} . Wyznaczyć cosinus kąta $\angle BCD=\alpha$ oraz obwód czworokąta ABCD. Sporządzić rysunek.
- 22.7. Rozwiazać równanie

$$\frac{1}{\sin x} + \frac{1}{\cos x} = \sqrt{8}.$$

22.8. Wyznaczyć równanie prostej stycznej do wykresu funkcji $y = \frac{1}{x^2}$ w punkcie $P(x_0, y_0), x_0 > 0$, takim, żeby odcinek tej stycznej zawarty w pierwszej ćwiartce układu współrzędnych był najkrótszy. Rozwiązanie zilustrować odpowiednim wykresem.