PRIMITIVES USUELLES

<u>Fonction</u>	<u>Primitive</u>	<u>Domaine de validité</u>
$x \longmapsto x^n (n \in \mathbb{N})$	$x \longmapsto \frac{x^{n+1}}{n+1}$	\mathbb{R}
$x \longmapsto x^p (p \in \mathbb{Z} \setminus \{-1\})$	$x \longmapsto \frac{x^{p+1}}{p+1}$	$]-\infty,0[\text{ ou }]0,+\infty[$
$x \longmapsto x^q (q \in \mathbb{R} \setminus \{-1\})$	$x \longmapsto \frac{x^{q+1}}{q+1}$	$]0,+\infty[$
$x \longmapsto u'(x) [u(x)]^n$	$x \longmapsto \frac{1}{n+1} [u(x)]^{n+1}$	selon D_u
$x \longmapsto \frac{u'(x)}{u(x)^n}$	$x \longmapsto \frac{-1}{n-1} \frac{1}{[u(x)]^{n-1}}$	selon D_u
$x \longmapsto \frac{1}{x^2}$	$x \longmapsto \frac{-1}{x}$	$]-\infty,0[$ ou $]0,+\infty[$
$x \longmapsto \frac{u'(x)}{u(x)^2}$	$x \longmapsto \frac{-1}{u(x)}$	$\{x \in D_u \; ; \; u(x) \neq 0\}$
$x \longmapsto \frac{1}{\sqrt{x}}$	$x \longmapsto 2\sqrt{x}$	$]0,+\infty[$
$x \longmapsto \frac{u'(x)}{\sqrt{u(x)}}$	$x \longmapsto 2\sqrt{u(x)}$	$]0,+\infty[$
$x \longmapsto \frac{1}{x}$	$x \longmapsto \ln x $	$]-\infty,0[\ \ \text{ou} \ \]0,+\infty[$
$x \longmapsto \frac{u'(x)}{u(x)}$	$x \longmapsto \ln u(x) $	$\{x \in D_u \; ; \; u(x) \neq 0\}$
$x \longmapsto e^x$	$x \longmapsto e^x$	\mathbb{R}
$x \longmapsto a^x$	$x \longmapsto \frac{a^x}{\ln a}$	\mathbb{R}
$x \longmapsto u'(x) e^{u(x)}$	$x \longmapsto e^{u(x)}$	D_u
$x \longmapsto \sin x$	$x \longmapsto -\cos x$	\mathbb{R}
$x \longmapsto \cos x$	$x \longmapsto \sin x$	\mathbb{R}
$x \longmapsto \tan x$	$x \longmapsto -\ln \cos x $	$\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[+ \pi \mathbb{Z}$
$x \longmapsto \cot x$	$x \longmapsto \ln \sin x $	$]0,\pi[+\pi\mathbb{Z}$
$x \longmapsto \sin^2 x$	$x \longmapsto \frac{2x - \sin 2x}{4}$	\mathbb{R}
$x \longmapsto \cos^2 x$	$x \longmapsto \frac{2x + \sin 2x}{4}$	\mathbb{R}
$x \longmapsto \frac{1}{\sin^2 x}$	$x \longmapsto -\cot x$	$]0,\pi[+\pi\mathbb{Z}$
$x \longmapsto \frac{1}{\cos^2 x}$	$x \longmapsto \tan x$	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\ + \ \pi\mathbb{Z}$

Fonction	<u>Primitive</u>	Domaine de validité
$x \longmapsto \operatorname{sh} x$	$x \longmapsto \operatorname{ch} x$	\mathbb{R}
$x \longmapsto \operatorname{ch} x$	$x \longmapsto \operatorname{sh} x$	\mathbb{R}
$x \longmapsto \operatorname{th} x$	$x \longmapsto \ln(\operatorname{ch} x)$	\mathbb{R}
$x \longmapsto \coth x$	$x \longmapsto \ln \operatorname{sh} x $	$]-\infty,0[\ \ \text{ou}\ \]0,+\infty[$
$x \longmapsto \frac{1}{\sinh^2 x}$	$x \longmapsto -\coth x$	$]-\infty,0[\ \ \text{ou} \ \]0,+\infty[$
$x \longmapsto \frac{1}{\operatorname{ch}^2 x}$	$x \longmapsto \operatorname{th} x$	\mathbb{R}
$x \longmapsto \frac{1}{a^2 - x^2}$	$x \longmapsto \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $	$]-\infty,-a[\ \ \text{ou} \ \]-a,a[\ \ \text{ou} \ \]a,+\infty[$
$x \longmapsto \frac{1}{1+x^2}$	$x \longmapsto \arctan x$	\mathbb{R}
$x \longmapsto \frac{1}{a^2 + x^2}$	$x \longmapsto \frac{1}{a} \arctan\left(\frac{x}{a}\right)$	\mathbb{R}
$x \longmapsto \frac{1}{(x-a)^n} (n \neq 1)$	$x \longmapsto \frac{-1}{n-1} \frac{1}{(x-a)^{n-1}}$	$]a,+\infty[$
$x \longmapsto \frac{1}{x-a}$	$x \longmapsto \ln x - a $	$]-\infty,a[\ \text{ou}\]-a,a[\ \text{ou}\]a,+\infty[$
$x \longmapsto \frac{1}{\sqrt{a^2 - x^2}}$	$x \longmapsto \arcsin\left(\frac{x}{a}\right)$]-a,a[
$x \longmapsto \frac{x}{\sqrt{x^2 - 1}}$	$x \longmapsto \sqrt{x^2 - 1}$	$]-\infty,-1[$ ou $]1,+\infty[$
$x \longmapsto \frac{1}{\sqrt{a^2 + x^2}}$	$x \longmapsto \ln\left(x + \sqrt{a^2 + x^2}\right)$	\mathbb{R}
$x \longmapsto \frac{1}{\sqrt{x^2 - a^2}}$	$x \longmapsto \ln \left x + \sqrt{x^2 - a^2} \right $	$]-\infty,-a[$ ou $]a,+\infty[$

Primitives complexes Dans ce tableau, $\alpha \in \mathbb{C} \setminus \mathbb{R}$ et $p \in \mathbb{Z} \setminus \{0, -1\}$. Les fonctions complexes suivantes sont définies sur \mathbb{R} et leurs primitives sont valables sur cet intervalle.

<u>Fonction</u>	<u>Primitive</u>
$x \longmapsto e^{\alpha x}$	$x \longmapsto \frac{1}{\alpha} e^{\alpha x}$
$x \longmapsto \frac{1}{x - \alpha}$	$x \longmapsto \ln x - \alpha + i \cdot \arctan\left(\frac{x - \Re(\alpha)}{\Im(\alpha)}\right)$
$x \longmapsto (x - \alpha)^p$	$x \longmapsto \frac{1}{p+1} (x-\alpha)^{p+1}$