#### 1

## OXIDACIÓN REDUCIÓN

## • Estequiometría redox

- 1. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga:
  - a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular.
  - b) Calcula o volume de ácido nítrico consumido.

Datos:  $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ .

(A.B.A.U. extr. 19)

Rta.: a)  $2 \text{ Br}^-(\text{aq}) + 2 \text{ NO}_3^-(\text{aq}) + 4 \text{ H}^+(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ H}_2\text{O}(\text{l});$  $2 \text{ NaBr}(\text{aq}) + 4 \text{ HNO}_3(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O}(\text{l});$  b)  $V = 126 \text{ cm}^3 \text{ HNO}_3$ 

Datos Cifras significativas: 3

Masa de bromuro de sodio m(NaBr) = 100 g Disolución de ácido nítrico: densidade  $\rho = 1{,}39 \text{ g/cm}^3$  riqueza  $r = 70{,}0 \%$ 

Masa molar do bromuro de sodio M(NaBr) = 103 g/molMasa molar do ácido nítrico  $M(HNO_3) = 63,0 \text{ g/mol}$ 

Incógnitas

Volume de disolución de HNO₃ que reacciona

V

#### Solución:

a) Escríbense as semirreaccións iónicas son:

Oxidación:  $2 \text{ Br}^- - 2 \text{ e}^- \rightarrow \text{Br}_2$ 

Redución:  $(NO_3)^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$ 

Obtense a ecuación iónica axustada multiplicando a segunda semirreacción por 2 e sumando:

$$2 Br^{-} + 2 (NO_3)^{-} + 4 H^{+} \rightarrow Br_2 + 2 NO_2 + 2 H_2O$$

Para obter a ecuación global, súmase a cada lado 2 Na<sup>+</sup> e 2 (NO<sub>3</sub>)<sup>-</sup>, e combínanse os ións para formar os compostos:

$$2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \longrightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

b) Calcúlase a cantidade de bromuro de sodio que hai en 100 g:

$$n=100$$
 g NaBr  $\frac{1 \text{ mol NaBr}}{103 \text{ g NaBr}} = 0,972 \text{ mol NaBr}$ 

Calcúlase a cantidade de ácido nítrico necesaria para reaccionar con esa cantidade de bromuro de sodio, mirando a ecuación axustada da reacción:

$$n'=0,972 \text{ mol NaBr} \frac{4 \text{ mol HNO}_3}{2 \text{ mol NaBr}} = 1,94 \text{ mol HNO}_3$$

Calcúlase o volume de disolución ácido nítrico do 70 % e densidade 1,39 g/cm³ que contén esa cantidade:

$$V=1,94 \text{ mol HNO}_3 = \frac{63,0 \text{ g HNO}_3}{1 \text{ mol HNO}_3} = \frac{100 \text{ g D HNO}_3}{70,0 \text{ g HNO}_3} = \frac{1 \text{ cm}^3 \text{ D HNO}_3}{1,39 \text{ g D HNO}_3} = 126 \text{ cm}^3 \text{ D HNO}_3$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «♠» (maiúsculas) mentres fai clic na cela:

Reaccións redox

do capítulo:

Oxidación redución Redox Reaccións redox

Se hai datos, bórreos. (Prema no botón Borrar datos e pulse a opción Aceptar).

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

| DATOS     |                  |            |                  |                 |                   |        |
|-----------|------------------|------------|------------------|-----------------|-------------------|--------|
|           | I                | Produtos   |                  |                 |                   |        |
| NaBr      | HNO <sub>3</sub> |            | $Br_2$           | NO <sub>2</sub> | NaNO <sub>3</sub> | $H_2O$ |
|           |                  |            |                  |                 |                   |        |
| Calcular: | volume           | disolución | HNO <sub>3</sub> | $[HNO_3] =$     | 70                | % masa |
|           |                  |            |                  | Densidade       | 1,39              | g/cm³  |

nece

| 100 g NaBr | esarios | para reaccionar | con |      |  |  |
|------------|---------|-----------------|-----|------|--|--|
|            | 100     | g               |     | NaBr |  |  |

Poderá ver:

| R E S U L T A D O S                                                                                                        |                   |                                     |                       |                   |                     |                      |
|----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------|-------------------|---------------------|----------------------|
|                                                                                                                            |                   |                                     |                       |                   | Cifras significativ | vas: 3               |
| Axuste ión-e                                                                                                               | electrón          |                                     |                       |                   |                     |                      |
| Oxidación                                                                                                                  | 2 Br <sup>-</sup> |                                     | - 2 e <sup>-</sup> →  | $\mathrm{Br}_{2}$ |                     | ×1                   |
| Redución                                                                                                                   | $(NO_3)^-$        | + 2 H <sup>+</sup>                  | $+ e^{-} \rightarrow$ | $NO_2$            | $+ H_2O$            | ×2                   |
|                                                                                                                            | 2 Br <sup>-</sup> | + 2 (NO <sub>3</sub> ) <sup>-</sup> | + 4 H <sup>+</sup> →  | Br <sub>2</sub>   | + 2 NO <sub>2</sub> | + 2 H <sub>2</sub> O |
| Ecuación axustada:                                                                                                         |                   |                                     |                       |                   |                     |                      |
| $2 \text{ NaBr} + 4 \text{ HNO}_3 \longrightarrow \text{Br}_2 + 2 \text{ NO}_2 + 2 \text{ NaNO}_3 + 2 \text{ H}_2\text{O}$ |                   |                                     |                       |                   |                     |                      |
|                                                                                                                            |                   |                                     |                       |                   |                     |                      |
| n(NaBr) =                                                                                                                  |                   | 0,972 mol                           |                       | n(H               | $INO_3$ ) = 1       | ,94 mol              |
|                                                                                                                            |                   |                                     |                       | V(H               | $INO_3$ ) =         | 126 cm³ (D)          |
|                                                                                                                            |                   |                                     |                       |                   |                     |                      |

#### Electrólise

- Durante a electrólise do cloruro de magnesio fundido:
  - a) Cantos gramos de Mg prodúcense cando pasan 8,80·10<sup>3</sup> culombios a través da célula?
  - b) Canto tempo tárdase en depositar 0,500 gramos de Mg cunha corrente de 25,0 amperios?
  - c) Cantos litros de cloro obteranse no punto (b) a unha presión de 1,23 atm e a unha temperatura de 27 °C.
  - d) Escribe os procesos electrolíticos que ocorren no ánodo e no cátodo.

(P.A.U. set. 00)

**Rta.:** a) 
$$m = 1,11$$
 g de Mg; b)  $t = 159$  s; c)  $V = 0,412$  dm<sup>3</sup>; d) ánodo:  $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$ ; cátodo:  $\text{Mg}^{2+} + 2 \text{ e}^- \rightarrow \text{Mg}$ .

| Datos                                              | Cifras significativas: 3                              |
|----------------------------------------------------|-------------------------------------------------------|
| Carga eléctrica que atravesa a célula (apdo. a)    | $Q = 8,80 \cdot 10^3 \text{ C}$                       |
| Masa de magnesio depositada (apdo. b)              | $m(\mathrm{Mg}) = 0,500~\mathrm{g}$                   |
| Intensidade que atravesa a célula (apdo. b)        | I = 25,0  A                                           |
| Gas cloro: presión                                 | p = 1,23  atm                                         |
| temperatura                                        | $T = 27  ^{\circ}\text{C} = 300  \text{K}$            |
| Constante dos gases ideais                         | $R=0.082~\rm atm\cdot dm^3\cdot K^{-1}\cdot mol^{-1}$ |
| Masa atómica do magnesio                           | M(Mg) = 24.3  g/mol                                   |
| Incógnitas                                         |                                                       |
| Masa de magnesio denositada cando nasan 8 80.103 C | $m(M\alpha)$                                          |

Masa de magnesio depositada cando pasan 8,80·10³ C

m(Mg)Tempo que se tarda en depositar 0,500 g de magnesio t

#### Incógnitas

Volume de gas cloro desprendido

V

#### Outros símbolos

Cantidade de sustancia (número de moles)

n

### Solución:

a) Calcúlase a cantidade de electróns equivalente á carga de 8,80×10<sup>3</sup> C:

$$n(e)=8,80\cdot10^{3} \text{ C} \frac{1 \text{ mol e}}{9,65\cdot10^{4} \text{ C}}=0,912 \text{ mol e}$$

A reacción no cátodo é:

$$Mg^{2+} + 2 e^{-} \longrightarrow Mg$$

Se calcula a masa de magnesio depositada, mirando a ecuación axustada da reacción:

$$m(Mg) = 0.0912 \text{ mol e } \frac{1 \text{ mol Mg}}{2 \text{ mol e}} \frac{24.3 \text{ g Mg}}{1.00 \text{ mol Mg}} = 1.11 \text{ g Mg}$$

b) Calcúlase a cantidade de magnesio que hai en 0,500 g

$$n(Mg)=0,500 \text{ g Mg} \frac{1,00 \text{ mol Mg}}{24,3 \text{ g Mg}}=0,0206 \text{ mol Mg}$$

Calcúlase a cantidade de electróns necesaria para que se deposite todo o magnesio, mirando a ecuación axustada da reacción:

$$n(e)=0,0206 \text{ mol Mg} \frac{2 \text{ mol e}}{1 \text{ mol Mg}}=0,0412 \text{ mol e}$$

Calcúlase a carga eléctrica equivalente:

$$Q = 0.041$$
 2mol  $e \cdot \frac{9.65 \cdot 10^4 \text{ C}}{1 \text{ mol } e} = 3.98 \cdot 10^3 \text{ C}$ 

Calcúlase o tempo coa expresión da intensidade:

$$I = \frac{Q}{t}$$
  $\Rightarrow t = \frac{Q}{I} = \frac{3.98 \cdot 10^3 \text{ C}}{25 \text{ A}} = 159 \text{ s}$ 

c) A reacción de electrólise é:

$$MgCl_2 \rightarrow Mg(s) + Cl_2(g)$$

Calcúlase a cantidade de cloro, mirando a ecuación axustada da reacción:

$$n(Cl_2) = n(Mg) = 0.0206 \text{ mol } Cl_2$$

Calcúlase o volume de cloro, medido a 1,23 atm e 27 °C, supoñendo comportamento ideal para o gas:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{0,0206 \text{ mol Cl}_2 \cdot 0,0820 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K}}{1,23 \text{ atm}} = 0,412 \text{ dm}^3 = 412 \text{ cm}^3 \text{ Cl}_2$$

d) A reacción no ánodo é a de oxidación:

$$2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$$

A reacción no cátodo é a de redución:

$$Mg^{2+} + 2 e^{-} \rightarrow Mg$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla « 🌣 » (maiúsculas) mentres fai clic na cela:

## Electrólise

do capítulo:

Oxidación redución Electrólise Electrólise

Se hai datos, bórreos. (Prema no botón Borrar datos e pulse a opción Aceptar).

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.



Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López.

Procurouse seguir as <u>recomendacións</u> do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 14/03/24

# Sumario

| OVID     | ACION DED | TICION     |
|----------|-----------|------------|
| () X II) | ACION RED | 10.1C.1C)N |

| AIDACION REDUCION                                                                                                                                                                                                                                                                                                                    |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Estequiometría redox                                                                                                                                                                                                                                                                                                                 | . 1 |
| <ol> <li>1. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga:</li> <li>a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular</li> </ol> |     |
| b) Calcula o volume de ácido nítrico consumido                                                                                                                                                                                                                                                                                       |     |
| Electrólise                                                                                                                                                                                                                                                                                                                          | . 2 |
| 1. Durante a electrólise do cloruro de magnesio fundido:                                                                                                                                                                                                                                                                             | 2   |
| a) Cantos gramos de Mg prodúcense cando pasan 8,80·10³ culombios a través da célula?b) Canto tempo tárdase en depositar 0,500 gramos de Mg cunha corrente de 25,0 amperios?                                                                                                                                                          |     |
| c) Cantos litros de cloro obteranse no punto (b) a unha presión de 1,23 atm e a unha temperatura de 27 °C                                                                                                                                                                                                                            |     |
| d). Escribe os procesos electrolíticos que ocorren no ánodo e no cátodo                                                                                                                                                                                                                                                              |     |