Formalization, Mechanization and Automation of Gödel's Proof of God's Existence

Christoph Benzmüller and Bruno Woltzenlogel Paleo

November 1, 2013

$$\underbrace{\frac{\text{Axiom 3}}{P(G)}}_{\text{$P(G)$}} \underbrace{\begin{array}{c} \text{Theorem 1} \\ \forall \varphi. [P(\varphi) \to \Diamond \exists x. \varphi(x)] \\ \hline P(G) \to \Diamond \exists x. G(x) \\ \\ \Diamond \exists x. G(x) \\ \end{array}}_{\text{$P(G)$}} \forall_E$$

SPIEGEL ONLINE WISSENSCHAFT

olitik | Wirtschaft | Panorama | Sport | Kultur | Netzwelt | Wissenschaft | Gesundheit | einestages | Karriere | Uni | Schule | Reise | Aut

Contribution to Minimum to the Manager of Mathematics formed one Most Citats Mathematics benefitions Cottonburgs

Formel von Kurt Gödel: Mathematiker bestätigen Gottesbeweis

Von Tobias Hürter

Nat door (all das Jali 1907). Del Patrimietori met annell docessames jalizatimenti y generii

Ein Wesen existiert, das alle positiven Eigenschaften in sich vereint. Das bewies der legendäre Mathematiker Kurt Gödel mit einem komplizierten Formelgebilde. Zwei Wissenschaftler haben diesen Gottesbeweis nun überprüft – und für gültig befunden.

Montag, 09.09.2013 - 12:03 Uhr

Drucken | Versenden | Merken

Jetzt sind die letzten Zweifel ausgeräumt: Gott existiert tatsächlich. Ein Computer hat es mit kalter Logik bewiesen - das MacBook des Computerwissenschaftlers Christoph Benzmüller von der Freien Universität Berlin.

Germany

- Telepolis & Heise
- Spiegel Online
- FAZ
- Die Welt
- Berliner Morgenpost
- Hamburger Abendpost

- . . .

Austria

- myscience.at
- Wiener Zeitung
- ORF
- . . .

Italy

- Repubblica
- Today.it
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
- . . .

International

- Spiegel International
- Yahoo Finance
- CNET
- United Press Intl.

- . . .

Def: Ontological Argument/Proof

- * deductive argument
- * for the existence of god
- * starting from premises, which are justified by pure reasoning, i.e. they do not depend on observation in the world.

Existence of God: different types of arguments/proofs

posteriori (use experience/observation in the world) — teleological — cosmological — moral
 priori (based on pure reasoning, independent) - ontological argument - definitional - modal
other a priori arguments

Def: Ontological Argument/Proof

- * deductive argument
- * for the existence of god
- * starting from premises, which are justified by pure reasoning, i.e. they do not depend on observation in the world.

Existence of God: different types of arguments/proofs

 a posteriori (use experience/observation in the world teleological cosmological moral

 a priori (based on pure reasoning, independent)
— ontological argument
definitional
modal

— other a priori arguments

Wohl eine jede Philosophie kreist um den ontologischen Gottesbeweis

(Adorno, Th. W.: Negative Dialektik. Frankfurt a. M. 1966, p.378)

Rich history on ontological arguments (pros and cons)

Anselm's notion of God:

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning:

"(Necessarily) God exists."

Rich history on ontological arguments (pros and cons)

Anselm's notion of God:

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning:

"(Necessarily) God exists."

Different Interests in Ontological Arguments:

- Philosophical: Boundaries of Metaphysics & Epistemology
 - We talk about a metaphysical concept (God),
 - but we want to draw a conclusion for the real world.
 - Necessary Existence (NE): metaphysical NE vs. logical NE vs. modal NE
- Theistic: Successful argument should convince atheists.
- Our: Can computers (theorem provers) be used
 - to formalize the definitions and axioms?
 - to verify the arguments step-by-step?
 - to fully automate (sub-)arguments?

"Computer-assisted Theoretical Philosophy"

Main challenge: No theorem provers for *Higher-order Modal Logic*

Our idea: Exploit an embedding in Higher-order Classical Logic

[BenzmüllerPaulson, Logica Universalis, 2013]

What we did (rough outline for remaining presentation!):

A: pen and paper: detailed natural deduction proof

B: formalization: axioms, defs, thms in TPTP THF

C: consistency: automatic verification with Nітріск

D: proof automation: theorems provers Leo-II and Satallax

E: step-by-step verification: proof assistant Coo

F: automation & verification: proof assistant Isabelle

Did we get new results?

Yes — let's discuss later!

Gödel's Manuscript

ToDo: Show Goedel's Manuscript

Proof Overview

T3:

Natural Deduction Calculus

$$\frac{A}{A} \frac{B}{B} \qquad \qquad \frac{A}{A} \frac{n}{B}$$

$$\frac{A \vee B \stackrel{\cdot}{C} \stackrel{\cdot}{C}}{C} \vee_{E} \qquad \frac{A}{A} \frac{B}{A \wedge B} \wedge_{I} \qquad \frac{B}{A \to B} \to_{I}^{n}$$

$$\frac{A}{A \vee B} \vee_{I_{1}} \qquad \frac{A \wedge B}{A} \wedge_{E_{1}} \qquad \frac{B}{A \to B} \to_{I}$$

$$\frac{B}{A \vee B} \vee_{I_{2}} \qquad \frac{A \wedge B}{B} \wedge_{E_{2}} \qquad \frac{A}{B} \stackrel{\cdot}{A} \to_{B} \to_{E}$$

$$\frac{A[\alpha]}{\forall x.A[x]} \forall_{I} \qquad \frac{\forall x.A[x]}{A[t]} \forall_{E} \qquad \frac{A[t]}{\exists x.A[x]} \exists_{I} \qquad \frac{\exists x.A[x]}{A[\beta]} \exists_{E}$$

$$\neg A \equiv A \to \bot$$

Natural Deduction Proofs T1 and C1

$$\frac{A2}{\frac{\forall \varphi. \forall \psi. [[P(\varphi) \land \Box \forall x. [\varphi(x) \rightarrow \psi(x)]) \rightarrow P(\psi)]}{\Psi. [(P(\varphi) \land \Box \forall x. [\rho(x) \rightarrow \psi(x)]) \rightarrow P(\psi)]}}{\frac{(P(\varphi) \land \Box \forall x. [\rho(x) \rightarrow \neg \rho(x)]) \rightarrow P(\neg \rho)}{(P(\varphi) \land \Box \forall x. [\rho(x) \rightarrow \neg \rho(x)]) \rightarrow P(\neg \rho)}} \forall_E \frac{\mathbf{A1a}}{\frac{\neg \varphi. [P(\neg \varphi) \rightarrow \neg P(\varphi)]}{P(\neg \varphi) \rightarrow \neg P(\varphi)]}}}{\frac{(P(\varphi) \land \Box \forall x. [\neg \rho(x)]) \rightarrow P(\neg \rho)}{P(\neg \rho) \rightarrow \neg P(\varphi)}} \forall_E \frac{\mathbf{A1a}}{\frac{\neg \varphi. [P(\neg \varphi) \rightarrow \neg P(\varphi)]}{P(\neg \varphi) \rightarrow \neg P(\varphi)]}} \forall_E \frac{[P(\varphi) \land \Box \forall x. [\neg \rho(x)]) \rightarrow \neg P(\varphi)}{\frac{\neg \varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]}{\forall \varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]}} \forall_E \frac{\mathbf{A3}}{\frac{\neg \varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]}{\varphi \exists x. G(x)}} \forall_E \frac{\neg \mathbf{A1a}}{P(\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_E \frac{\neg P(\varphi)}{\varphi. [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)]} \forall_$$

Natural Deduction Proofs Part of T2

Embedding, Application of THF Provers

todo

- Goal: verification of the natural deduction proof
 - Step-by-step formalization
 - Almost no automation (intentionally!)
- Interesting facts to note:
 - Embedding is transparent to the user
 - Embedding gives labeled calculus for free

Isabelle Proof

todo

Criticisms No Neutral Properties

Summary of Results

Conclusion

todo

