0.1 中国剩余定理

定理 0.1 (中国剩余定理)

设 \mathbb{F} 是一个域, $m_1,m_2,\cdots,m_n\in\mathbb{F}[x]$ 且两两互素, 则对任何 $a_1,a_2,\cdots,a_n\in\mathbb{F}[x]$, 存在 $f\in\mathbb{F}[x]$ 使得 $f(x)\equiv a_i(x)\pmod{m_i(x)}, i=1,2,\cdots,n,$

即存在 $k_i \in \mathbb{F}[x]$ 使得

$$f(x) = k_i(x)m_i(x) + a_i(x), i = 1, 2, \dots, n.$$

笔记 本定理是抽象代数或者初等数论中的经典定理,可以无脑直接使用,和整数版本的证明也完全一致. 注 若

$$f_1(x), f_2(x) \equiv a_i(x) \pmod{m_i(x)}, i = 1, 2, \dots, n,$$

我们有

$$f_1(x) - f_2(x) \equiv 0 \pmod{m_i(x)}, i = 1, 2, \dots, n,$$

这等价于

$$f_1 - f_2 \equiv 0 \pmod{\left(\prod_{i=1}^n m_i\right)}.$$

即全部解为

$$\left\{ f_1(x) + k(x) \cdot \prod_{i=1}^n m_i(x) : k \in \mathbb{F}[x] \right\}.$$

其中 $f_1(x)$ 是任意一个特定解.

证明 设

$$\varphi_i(x) = m_1(x)m_2(x)\cdots m_{i-1}(x)m_{i+1}(x)\cdots m_n(x), i = 1, 2, \cdots, n.$$

对每一个 $i \in \{1, 2, \dots, n\}$, 我们有 φ_i 和 m_i 互素, 因此由裴蜀等式知存在 $u_i, v_i \in \mathbb{F}[x]$ 使得

$$\varphi_i(x)u_i(x)+m_i(x)v_i(x)=1.$$

考虑

$$f(x) = \sum_{j=1}^{n} a_j(x)\varphi_j(x)u_j(x) \in \mathbb{F}[x],$$

我们有

$$\begin{split} f(x) - a_i(x) &= a_i(x) \left[\varphi_i(x) u_i(x) - 1 \right] + \sum_{\substack{1 \leqslant j \leqslant n, \\ j \neq i}} a_j(x) \varphi_j(x) u_j(x) \\ &= -a_i(x) v_i(x) m_i(x) + \sum_{\substack{1 \leqslant j \leqslant n, \\ j \neq i}} a_j(x) \varphi_j(x) u_j(x). \end{split}$$

现在 m_i 是上式右边每一项的因子,从而

$$m_i|(f-a_i), i=1, 2, \cdots, n,$$

即

$$f(x) \equiv a_i(x) \pmod{m_i(x)}, i = 1, 2, \dots, n.$$

例题 0.1 求次数最小的 f 使得

$$\begin{cases} f(x) \equiv 6 \pmod{x+1} \\ f(x) \equiv 3x \pmod{x^2 + x + 1} \\ f(x) \equiv (x-1)^2 \pmod{2x^3 + 1} \end{cases}$$

注 直接用中国剩余定理是难算的. 我们应该具体问题具体分析.

注 由中国剩余定理的注可知, 原方程的全部解为

$$f_1(x) + k(x)(x+1)(x^2+x+1)(2x^3+1)$$
,

其中 $f_1(x)$ 为任一特解, $k(x) \in \mathbb{C}[x]$. 因为 $\deg \left[(x+1)(x^2+x+1)(2x^3+1) \right] = 6$,所以当 $\deg f_1(x) \geq 6$ 时,可以取合适的 k(x),使得 $f_1(x) + k(x)(x+1)\left(x^2+x+1\right)\left(2x^3+1\right)$ 中高于 6 次项全部消去. 故原方程组的最小次解必定小于等于 5 次.

证明 因为

$$\deg \left[(x+1)(x^2+x+1)(2x^3+1) \right] = 6,$$

我们设

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5.$$

不妨在 \mathbb{Q} 上考虑, 因为如果还有一个 $g \in \mathbb{C}[x]$ 使得 $\deg g \leq 5$ 为解, 则 g-f 有一个六次因子, 即只能有 f=g. 条件第一个同余式等价于

$$f(-1) = 6 \Leftrightarrow a_0 - a_1 + a_2 - a_3 + a_4 - a_5 = 6.$$

对第二个同余式,等价于若 $x^2+x+1=0$ 则 f(x)-3x=0. 注意到若 $x^2+x+1=0$ 则

$$x^3 - 1 = (x - 1)(x^2 + x + 1) = 0 \Rightarrow x^3 = 1$$
.

我们有

$$f(x) - 3x = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 - 3x$$

$$= a_0 + a_3 + (a_1 + a_4 - 3)x + (a_2 + a_5)x^2$$

$$= a_0 + a_3 + (a_1 + a_4 - 3)x + (a_2 + a_5)(-x - 1)$$

$$= a_0 + a_3 - a_2 - a_5 + (a_1 + a_4 - a_2 - a_5 - 3)x,$$

即容易验证等价于

$$a_0 + a_3 - a_2 - a_5 = 0$$
, $a_1 + a_4 - a_2 - a_5 = 3$.

对第三个同余式,等价于若 $2x^3+1=0$ 则 $f(x)-x^2+2x-1=0$. 现在若 $2x^3+1=0$ 则

$$f(x) - x^2 + 2x - 1 = \left(a_2 - \frac{1}{2}a_5 - 1\right)x^2 + \left(a_1 - \frac{1}{2}a_4 + 2\right)x + \left(a_0 - \frac{1}{2}a_3 - 1\right),$$

即容易验证等价于

$$a_2 - \frac{1}{2}a_5 = 1$$
, $a_1 - \frac{1}{2}a_4 = -2$, $a_0 - \frac{1}{2}a_3 = 1$.

解线性方程组得

$$f(x) = 4x^4 + x^2 + 1$$
.

这就完成了计算.