Controladores Fuzzy EXEMPLOS

Estrutura de um controlador Fuzzy

Pêndulo Invertido

OBJETIVO: Manter o equilíbrio vertical do pêndulo controlando-se a velocidade da plataforma

Pêndulo Invertido: Conjuntos Fuzzy e Funções de Pertinência

ângulo θ

Velocidade angular $d\theta/dt$

Velocidade da plataforma dx/dt (saída de controle)

Pêndulo Invertido: Regras para Manter o Equilíbrio Vertical

Matriz de Inferência Fuzzy

				Ângulo θ		
	dx/dt	NΗ	NL	Z	PL	PH
	NΗ			NΗ		
$d\theta/dt$	NL			NL	Z	
	Z	NH	NL	Z	PL	PH
	PL		Z	PL		
	PH			PH		

Pêndulo Invertido: Exemplo – "fuzzificação"

ângulo θ

Velocidade angular $d\theta/dt$

Pêndulo Invertido: Exemplo – Inferência

Disparo de quatro regras:

1- SE ângulo é zero E velocidade angular é zero ENTÃO velocidade é zero

2- SE ângulo é zero E velocidade é neg_low

Pêndulo Invertido: Exemplo – Inferência (cont.)

3- SE ângulo é pos_low E velocidade angular é zero ENTÃO velocidade é pos_low

4- SE ângulo é pos_low E velocidade angular é neg_low ENTÃO velocidade é zero

Pêndulo Invertido: Exemplo – "Defuzzificação"

Agregação resultante das regras

"Defuzzificação" pelo centro de área:

Velocidade da plataforma

EXEMPLO DE APLICAÇÃO

Motor Brushless

BDCM

UTILIZANDO AS FERRAMENTAS DE LÓGICA FUZZY DO MATLAB E DO SIMULINK

CONTROLE DE NÍVEL DE UM TANQUE

Modelo do Tanque

Controlador Fuzzy Utilizado

Definindo as propriedades do Sistema de Inferência *Fuzzy*

Definindo os Conjuntos *Fuzzy* da Entrada

Definindo os Conjuntos *Fuzzy* da Saída

Editando as Regras do Controlador

Função Entrada → Saída

Diagrama de Inferência Fuzzy

Resultados

Modificando o Conjunto Fuzzy de Saída

Função Entrada -> Saída

Diagrama de Inferência Fuzzy

Resultados

Comparando as Respostas Obtidas

