Treść zadania, Opracowanie

Program

Dostępna pamięć: 128 MB.

OI, etap II, dzień pierwszy, 11.02.2015

Pustynia

Droga z Bajtadu do Bajtary wiedzie przez piaski Wielkiej Pustyni Bajtockiej. Jest to męcząca wędrówka, zwłaszcza że na całej trasie znajduje się tylko s studni. Widząc, że gospodarka Bajtocji zależy w dużej mierze od dostępności szlaków komunikacyjnych, władca Bajtocji postanowił wykopać nowe studnie na tej trasie. Odległość z Bajtadu do Bajtary wynosi n + 1 bajtomił i w każdym punkcie w odległości całkowitej liczby bajtomił od Bajtadu znajduje się lub może znajdować się studnia. Im głębiej jest położona woda w danym miejscu, tym trudniejsze i bardziej kosztowne jest wykopanie w tym miejscu nowej studni.

Władca zlecił zatem zbadanie sytuacji nadwornemu geologowi Bajtazarowi. Bajtazar dysponuje m pomiarami wykonanymi za pomocą sieci satelitarnej. Niestety, informacje dostarczone przez satelity nie dają wprost informacji na temat glębokości wody. Każdy pomiar wykonany jest na spójnym fragmencie trasy i wskazuje jedynie, że w pewnych punktach na tym fragmencie woda znajduje się glębiej niż w pozostałych. Dodatkowo wiadomo, że woda w każdym punkcie leży na całkowitej glębokości od 1 do 10⁹ bajtometrów.

Pomóż Bajtazarowi i wyznacz, jak może wyglądać rzeczywista glębokość wody w każdym punkcie trasy. Może sie okazać, że dane satelitarne są sprzeczne.

Wejście

Pierwszy wiersz standardowego wejścia zawiera trzy liczby całkowite n, s i m $(1 \le s \le n \le 100\ 000,\ 1 \le m \le 200\ 000)$ pooddzielane pojedynczymi odstępami, opisujące odległość między miastami, liczbę studni na trasie oraz liczbę pomiarów satelitarnych.

Kolejne s wierszy opisuje studnie: i-ty z nich zawiera dwie liczby całkowite p_i i d_i $(1 \le p_i \le n, 1 \le d_i \le 1 000 000 000)$, oznaczające, że i-ta studnia znajduje się w odległości p_i bajtomil od Bajtadu i ma glębokość d_i bajtometrów (tzn. w punkcie, w którym znajduje się studnia, woda jest na glębokości d_i bajtometrów). Studnie podane są w kolejności rosnących wartości p_i .

Kolejne m wierszy opisuje wykonane pomiary satelitarne: i-ty z nich zawiera trzy liczby całkowite l_i, r_i i k_i $(1 \le l_i < r_i \le n, 1 \le k_i \le r_i - l_i)$, po których następuje ciąg k_i liczb całkowitych $x_1, x_2, \ldots, x_{k_i}$ $(l_i \le x_1 < x_2 < \ldots < x_{k_i} \le r_i)$. Oznacza to pomiar na odcinku od l_i do r_i (włącznie), w wyniku którego ustalono, że woda w punktach x_1, \ldots, x_{k_i} znajduje się ściśle głębiej niż woda w pozostałych punktach z tego odcinka. Suma wszystkich wartości k_i nie przekracza 200 000.

W testach wartych łącznie 60% punktów zachodzą dodatkowe warunki $n,m \leq 1000$. W testach wartych łącznie 30% punktów zachodzi dodatkowy warunek, że suma wszystkich wartości k_i nie przekracza 1000.

Wyjście

Jeśli nie istnieje układ głębokości zgodny z wykonanymi pomiarami, pierwszy wiersz standardowego wyjścia powinien zawierać jedno słowo NIE. W przeciwnym wypadku w pierwszym wierszu

102 Pustynia

wyjścia powinno znaleźć się słowo TAK, natomiast drugi wiersz powinien zawierać ciąg n liczb całkowitych z przedziału od 1 do 1 000 000 000 oznaczający glębokości wody w kolejnych punktach na trasie (idąc od Bajtadu). Jeśli istnieje więcej niż jedno poprawne rozwiązanie, Twój program powinien wypisać dowolne z nich.

Przykład

Dla danych wejściowych: jednym z poprawnych wyników jest: 5 2 2 TAK 2 7 6 7 1000000000 6 3 5 3 1 4 2 2 3 4 5 1 4 Dla danych wejściowych: poprawnym wynikiem jest: 3 2 1 NIE 2 3 3 5 1 3 1 2 Również dla danych wejściowych: poprawnym wynikiem jest: 2 1 1 NIE 1 1000000000 1 2 1 2

Testy "ocen":

locen: $n = 100\ 000$, pomiary wskazują, że woda w punkcie i jest glębiej niż we wszystkich wcześniejszych punktach trasy (dla i = 2, ..., n);

20cen: $n = 100\ 000$, z jednego pomiaru wynika, że woda w punktach o numerach parzystych jest glębiej niż w punktach o numerach nieparzystych.

Rozwiązanie

Naszym zadaniem jest konstrukcja pewnego ciągu liczb całkowitych a_1, \ldots, a_n (czasami w skrócie będziemy go nazywać a). Liczbę a_i definiujemy jako głębokość studni położonej w odległości i bajtomil od Bajtadu. Szukany ciąg musi spełniać następujące warunki:

- (1) $1 \leqslant a_i \leqslant 10^9 \text{ dla } i = 1, \dots, n,$
- (2) dla $i \in \mathcal{F}_0$, gdzie $\mathcal{F}_0 \subseteq \{1, \dots, n\}$, a_i jest ustalone i dane na wejściu,
- (3) dla każdego spośród m danych na wejściu ograniczeń postaci (l, r, x_1, \ldots, x_k) , gdzie $l \leq x_1 < \ldots < x_k \leq r$, każda z liczb a_{x_1}, \ldots, a_{x_k} jest ostro większa niż dowolne a_j , takie że $j \in \{l, \ldots, r\} \setminus \{x_1, \ldots, x_k\}$.

Może się także okazać, że podane warunki są sprzeczne – nasz program ma wtedy wypisać na wyjście słowo NIE.

Reprezentacja ciągu i ograniczeń

Naszą strategią będzie iteracyjne upraszczanie ograniczeń nałożonych na nasz ciąg, aż dotrzemy do ograniczeń, które jednocześnie są trywialne do sprawdzenia i pozwalają łatwo znaleźć przykładowe rozwiązanie. Mówiąc ściślej, będziemy utrzymywać:

- ograniczenia górne c_1, \ldots, c_n , oznaczające, że szukany ciąg powinien spełniać $1 \leq a_i \leq c_i$ dla $i = 1, \ldots, n$. Początkowo ustawiamy $c_i := 10^9$.
- Zbiór \mathcal{F} zawierający indeksy $i \in \{1, ..., n\}$, dla których a_i jest już określone. Początkowo mamy $\mathcal{F} = \mathcal{F}_0$.
- Ważony graf skierowany G=(V,E) o wierzchołkach $V=\{v_1,\ldots,v_n\}$, reprezentujący nierówności pomiędzy elementami ciągu a. Krawędź od v_i do v_j o wadze d w takim grafie oznacza, że $a_i \geqslant a_j + d$.

Początkowy graf G konstruujemy na podstawie danych ograniczeń typu (3). Dla każdego ograniczenia postaci (l, r, x_1, \ldots, x_k) i każdej pary (a_i, a_j) takiej, że $i \in \{x_1, \ldots, x_k\}$ i $j \in [l, r] \setminus \{x_1, \ldots, x_k\}$, tworzymy krawędź od v_i do v_j o wadze 1.

Upraszczanie ograniczeń

Dopóki będzie to możliwe, będziemy stosować jedną z dwóch reguł upraszczających ograniczenia. Intuicyjnie, chcemy zastępować ograniczenia wynikające z grafu G takimi, które wyrażone są za pomocą ograniczeń górnych c_i i zbioru \mathcal{F} . Każda z tych reguł ma następujące własności.

- (1) Jeżeli istnieje ciąg spełniający ograniczenia przed zastosowaniem reguły, to istnieje też ciąg spełniający ograniczenia uproszczone.
- (2) Każdy ciąg spełniający ograniczenia po zastosowaniu reguły spełnia również ograniczenia przed zastosowaniem reguły.

Reguła 1. Jeśli istnieje takie i, że $i \notin \mathcal{F}$ i w G nie ma krawędzi wchodzącej do v_i , to dodajemy i do \mathcal{F} i ustawiamy $a_i := c_i$.

Musimy pokazać, że jeśli istnieje ciąg a spełniający ograniczenia przed zastosowaniem reguły, to istnieje też ciąg spełniający uproszczone ograniczenia. Istotnie, jako że a spełnia ograniczenia przed zastosowaniem reguły, to $1 \le a_i \le c_i$. Ponieważ do v_i nie wchodzi w G żadna krawędź, nie mamy ograniczeń typu $a_j \ge a_i + d$. Być może istnieją ograniczenia postaci $a_i \ge a_j + d$, ale każde z nich jest tym bardziej spełnione, jeśli wartość a_i zwiększymy do wartości c_i . To pokazuje własność (1) dla tej reguły.

Zauważmy, że ograniczenia przed zastosowaniem reguły są podzbiorem ograniczeń po jej zastosowaniu. Stąd łatwo wynika własność (2).

Reguła 2. Jeśli istnieje takie i, że $i \in \mathcal{F}$ i istnieje krawędź $(v_i, v_j) \in E$ o wadze d, to przypisujemy $c_j := \min(c_j, a_i - d)$. Ponadto, usuwamy z E krawędź (v_i, v_j) .

104 Pustynia

Dla dowolnego ciągu a, ograniczenia $a_j \leq c_j$ i $a_i \geq a_j + d$ są równoważne ograniczeniu $a_j \leq \min(c_j, a_i - d)$. To dowodzi jednocześnie obu własności (1) i (2).

Zastanówmy się teraz, w jakiej sytuacji nie jesteśmy w stanie zastosować żadnej z reguł upraszczających. Dzieje się tak dokładnie wtedy, gdy do każdego v_i , $i \notin \mathcal{F}$, wchodzi co najmniej jedna krawędź (w przeciwnym razie można by zastosować regułę 1), a dla każdego $j \in \mathcal{F}$, z v_j nie wychodzi w G żadna krawędź (w przeciwnym razie można by zastosować regułę 2). Każda krawędź w grafie G musi mieć zatem początek w v_j takim, że $j \notin \mathcal{F}$.

Może się zdarzyć, że $\mathcal{F} = \{1, \ldots, n\}$. Wtedy w grafie G nie ma ani jednej krawędzi. Własności (1) i (2) stosowanych reguł gwarantują, że jeżeli $1 \leq a_i \leq c_i$ dla każdego i, to a_1, \ldots, a_n spełnia oryginalne ograniczenia. W przeciwnym wypadku, na mocy własności (1), mamy pewność, że rozwiązanie nie istnieje.

Jeśli natomiast $\mathcal{F} \neq \{1,\ldots,n\}$, to po usunięciu z grafu wierzchołków $\{v_i: i \in \mathcal{F}\}$ dostajemy niepusty graf skierowany, w którym do każdego wierzchołka wchodzi przynajmniej jedna krawędź. Łatwo pokazać, że w takim grafie musi istnieć cykl, na przykład $w_1 \to \ldots \to w_p \to w_1$, gdzie p>1. Ponieważ każda krawędź w G ma wagę 1, cykl taki odpowiada p nierównościom: $w_i \geqslant w_{i+1}+1$ dla każdego $i=1,2,\ldots,p-1$ i $w_p\geqslant w_1+1$. Dodając stronami wszystkie te nierówności, otrzymujemy $w_1+\ldots+w_p\geqslant w_1+\ldots+w_p+p$, nierówność w oczywisty sposób nieprawdziwą. Zatem na mocy własności (1), w tym przypadku ograniczenia są sprzeczne.

Implementacja

Aby efektywnie zaimplementować stosowanie reguł, oprócz ograniczeń c_i , zbioru \mathcal{F} i grafu G, utrzymujemy kolejki Q_j , dla j=1,2, zawierające indeksy i, dla których można zastosować regułę j. Po zastosowaniu reguły 1, usuwamy indeks i z kolejki Q_1 i wstawiamy go do Q_2 , o ile z v_i wychodzi aktualnie co najmniej jedna krawędź. Po zastosowaniu reguły 2, indeks i usuwamy z kolejki Q_2 tylko wtedy, gdy krawędź (v_i, v_j) była jedyną krawędzią wychodzącą z v_i . Dodatkowo jeśli w wyniku usunięcia tej krawędzi v_j staje się wierzchołkiem, do którego nie wchodzi żadna krawędź, wstawiamy j do Q_1 , jeśli $j \notin \mathcal{F}$.

Każdy indeks jest wstawiany co najwyżej raz do Q_1 i co najwyżej raz do Q_2 . Dodatkowo, reguła 2 jest stosowana dla każdego indeksu i w kolejce Q_2 co najwyżej tyle razy, ile początkowo krawędzi wychodzi z v_i . Stąd, na kolejce Q_1 wykonujemy O(n) = O(|V|) operacji, a na kolejce Q_2 wykonujemy O(|E|) operacji. Nasz algorytm działa zatem w czasie O(|V| + |E|).

Aby ostatecznie obliczyć złożoność tego rozwiązania, musimy oszacować liczbę krawędzi w grafie G przed pierwszym uproszczeniem ograniczeń. Każde wejściowe ograniczenie postaci (l,r,x_1,\ldots,x_k) tworzy $(r-l+1-k)\cdot k\leqslant nk$ krawędzi. Oznaczmy przez S sumę liczb k we wszystkich ograniczeniach. Wówczas złożoność czasowa tego algorytmu szacuje się przez $O(n\cdot S)$. Zauważmy, że w grafie mogą znajdować się krawędzie wielokrotne. Takie rozwiązanie było oceniane na zawodach na ok. 30% punktów. Przykładowa implementacja znajduje się w pliku puss5.cpp.

Zmniejszanie rozmiaru grafu

Rozważmy g-te ograniczenie postaci (l,r,x_1,\ldots,x_k) . Zauważmy, że dla każdego ciągu a spełniającego to ograniczenie, istnieje liczba a_g^* taka, że $a_{x_i} \geqslant a_g^* + 1$ dla $i=1,\ldots,k$ i jednocześnie $a_g^* \geqslant a_j$ dla każdego $j \in [l,r] \setminus \{x_1,\ldots,x_k\}$. Nic nie stoi zatem na przeszkodzie, żeby rozszerzyć poszukiwany ciąg a_1,\ldots,a_n o dodatkowe m pomocniczych liczb a_1^*,\ldots,a_m^* , które nasz algorytm będzie próbował wyznaczyć, a następnie zignoruje je przy wypisywaniu wyniku.

Przypomnijmy, że algorytm upraszczający ograniczenia działał w czasie proporcjonalnym do rozmiaru grafu G. Dodatkowe elementy ciągu pozwolą nam na zmniejszenie rozmiaru początkowego grafu G, ale nie wpłyną na sam algorytm upraszczający.

Nasz nowy graf G ma większy zbiór wierzchołków $V = \{v_1, \ldots, v_n, v_1^*, \ldots, v_m^*\}$. Podobnie jak poprzednio, ważone i skierowane krawędzie pomiędzy wierzchołkami odpowiadają nierównościom pomiędzy elementami $a_1, \ldots, a_n, a_1^*, \ldots, a_m^*$. Aby zakodować g-te ograniczenie postaci (l, r, x_1, \ldots, x_k) , do grafu dodajemy krawędzie (v_{x_i}, v_g^*) dla $i = 1, \ldots, k$, każdą o wadze 1. Dodatkowo, dla każdego $j \in [l, r] \setminus \{x_1, \ldots, x_k\}$, dodajemy do grafu krawędź (v_q^*, v_j) o wadze 0.

Inaczej niż poprzednio, tym razem w grafie G mamy dwie możliwe wagi na krawędziach – 0 i 1. Aby zastosować algorytm upraszczający ograniczenia, należy się upewnić, że dowolny cykl w takim grafie wciąż prowadzi do sprzeczności. Tak istotnie jest: w dowolnym cyklu w G na zmianę występują wierzchołki odpowiadające liczbom a_i i te odpowiadające liczbom a_j^* . Stąd, co druga krawędź na cyklu ma wagę 1, a więc każdy cykl ma dodatnią wagę. Na mocy analogicznego jak uprzednio argumentu otrzymujemy sprzeczność.

Aby oszacować złożoność tego rozwiązania, musimy obliczyć rozmiar grafu G. Mamy n+m wierzchołków. Dla każdego z m ograniczeń typu (l,r,x_1,\ldots,x_k) two-rzymy $k+(r-l+1-k)=r-l+1\leqslant n$ krawędzi. Stąd, sumaryczna liczba krawędzi szacuje się przez nm i złożonością czasową całego rozwiązania jest O(nm). Takie rozwiązanie otrzymywało na zawodach około 60% punktów. Program puss4. cpp realizuje ten pomysł.

Rozwiązanie wzorcowe

W rozwiązaniu wzorcowym postępujemy podobnie jak poprzednio: zmniejszamy rozmiar grafu G, wprowadzając pomocnicze wyrazy ciągu, które, odpowiednio zdefiniowane, pozwolą nam na zmniejszenie liczby krawędzi potrzebnych do zakodowania wszystkich ograniczeń.

W poprzednim rozwiązaniu, rozważając g-te ograniczenie (l, r, x_1, \ldots, x_k) , do G dodawaliśmy r-l+1-k ograniczeń postaci (v_g^*, v_j) . Liczba r-l+1 mogła być jednak duża, rzędu $\Theta(n)$. Spróbujmy uporać się z tym problemem. Zauważmy, że zbiór $[l, r] \setminus \{x_1, \ldots, x_k\}$ jest tak naprawdę sumą k+1 (być może pustych) przedziałów: $[l, x_1-1], [x_1+1, x_2-1], \ldots, [x_{k-1}+1, x_k-1], [x_k+1, r]$. Gdybyśmy dla każdego przedziału [x, y] (gdzie $1 \le x \le y \le n$) mieli dodatkowy element ciągu $a_{[x,y]}$ taki, że $a_{[x,y]} \ge a_z$ dla każdego $z = x, \ldots, y$, to dla g-tego ograniczenia wystarczyłoby nam tylko k dodatkowych krawędzi w G. Niestety, wprowadzenie elementów $a_{[x,y]}$ dla każdego możliwego przedziału [x,y] wiązałoby się z dodatkowymi krawędziami w grafie:

106 Pustynia

moglibyśmy na przykład zakodować za pomocą krawędzi ograniczenia $a_{[x,y]} \geqslant a_z$ dla każdych $1 \leqslant x \leqslant z \leqslant y \leqslant n$, otrzymując w ten sposób $O(n^3)$ dodatkowych krawędzi. Moglibyśmy również postąpić odrobinę sprytniej i brać pod uwagę tylko ograniczenia postaci $a_{[x,y]} \geqslant a_{[x+1,y]}$ i $a_{[x,y]} \geqslant a_{[x,y-1]}$ dla każdych x < y, generując w ten sposób tylko $O(n^2)$ nowych krawędzi. Ponieważ n może być dość duże, takie rozwiązanie nie jest jednak wystarczające do uzyskania kompletu punktów.

Nie rezygnujemy jednak z pomysłu użycia elementów ciągu ograniczających z góry pewne spójne grupy elementów oryginalnego ciągu. Skorzystamy z pomysłu powtarzającego się wielokrotnie w zadaniach olimpijskich: użyjemy tak zwanych przedziałów bazowych. Przypomnijmy pokrótce, czym są przedziały bazowe. Dla liczby naturalnej B, zbiór P_B przedziałów bazowych definiujemy jako najmniejszy zbiór taki, że:

- przedział $[1, 2^B]$ należy do P_B ,
- jeśli przedział [a,b] należy do P_B i a< b, to przedziały [a,s] i [s+1,b], gdzie $s=\lfloor\frac{a+b}{2}\rfloor$, także należą do P_B .

Przykładowo, jeśli B=2, to do zbioru przedziałów bazowych P_B należą przedziały [1,4],[1,2],[3,4],[1,1],[2,2],[3,3] i [4,4].

Do zbioru P_B należy dokładnie $2^{B+1}-1$ przedziałów bazowych. Każdy przedział [x,y], gdzie $x \leq y$ i $x,y \in \{1,\ldots,2^B\}$, można rozbić na O(B) parami rozłącznych przedziałów bazowych, które pokrywają wszystkie elementy całkowite zawarte w [x,y]. Co więcej, rozbicie to można obliczyć w czasie O(B). Przedziały bazowe łączy się z konstrukcją drzewa przedziałowego, o którym można przeczytać np. w opracowaniu zadania Logistyka w tej książeczce i w zawartych tam odnośnikach.

Powróćmy teraz do naszego rozwiązania. Niech B będzie najmniejszą liczbą naturalną taką, że $n \leqslant 2^B$. Mamy $n > 2^{B-1}$, a więc zbiór przedziałów bazowych P_B zawiera O(n) przedziałów. Wiemy też, że każdy przedział [x,y], gdzie $1 \le x \le y \le n$, można rozbić na $O(\log n)$ przedziałów z P_B . Dodajemy do konstruowanego ciągu $a_1, \ldots, a_n, a_1^*, \ldots, a_m^*$ jeszcze co najwyżej $2^B - 1 = O(n)$ elementów: dla każdego przedziału bazowego $[p,q] \subseteq [1,n]$, gdzie p < q, mamy element $a_{[p,q]}$ taki, że $a_{[p,q]} \geqslant a_z$ dla każdego $z \in [p,q]$. Będziemy też używali zapisu $a_{[p,p]}$ do oznaczenia elementu a_p . Dla każdego dodanego elementu mamy także w grafie G odpowiadający mu wierzchołek $v_{[p,q]}$. Aby zakodować za pomocą grafu ograniczenia postaci $a_{[p,q]} \geqslant a_z$ dla każdego $z \in [p,q]$, dodajemy do G krawędzie $(v_{[p,q]},v_{[p,s]})$ i $(v_{[p,q]},v_{[s+1,q]})$, gdzie $s=\lfloor \frac{p+q}{2} \rfloor$ – obie o wadze 0. Definicja przedziałów bazowych gwarantuje, że [p, s] i [s + 1, q] także należą do P_B i zawierają się w [1,n]. Przez indukcję po długości przedziału bazowego można łatwo udowodnić, że dla $z \in [p,q]$ istnieje w grafie G skierowana ścieżka od $v_{[p,q]}$ do v_z o wadze 0. Stąd, ograniczenia zakodowane w grafie implikują, że $a_{[p,q]}\geqslant a_z$. W ten sposób dodajemy do grafu co najwyżej $2|P_B| = O(n)$ wierzchołków i O(n)krawędzi.

Pozostaje ustalić, jak zakodować g-te ograniczenie (l,r,x_1,\ldots,x_k) za pomocą krawędzi grafu. Podobnie jak poprzednio, mamy w G krawędzie (v_{x_i},v_g^*) o wadze 1. Każdy niepusty przedział I spośród $[l,x_1-1],[x_1+1,x_2-1],\ldots,[x_{k-1}+1,x_k-1],[x_k+1,r]$ rozbijamy na $O(\log n)$ przedziałów bazowych I_1',I_2',\ldots,I_h' , a następnie dla każdego $j=1,\ldots,h$ dodajemy do grafu krawędź $(v_g^*,v_{I_j'})$ o wadze 0. Ponieważ $I=I_1'\cup\ldots\cup I_h'$, krawędzie te będą implikować nierówność $a_g^*\geqslant a_j$ dla każdego $j\in[l,r]\setminus\{x_1,\ldots,x_k\}$. Ostatecznie, w związku z tym ograniczeniem do G dodajemy $O(k\log n)$ krawędzi.

Graf G ma zatem O(n+m) wierzchołków i $O(S\log n)$ krawędzi. Stosując ponownie algorytm upraszczający ograniczenia, otrzymujemy rozwiązanie wzorcowe o złożoności czasowej $O(n+S\log n)$. Implementacja tego rozwiązania znajduje się w pliku pus3.cpp.

Testy

Przygotowano 10 grup testów. Większość testów z odpowiedzią TAK była generowana w dwóch niezależnych fazach:

- 1. Wybór przykładowego ciągu spełniającego warunki i wybór zbioru \mathcal{F}_0 . Ciągi były generowane za pomocą kilku procedur o różnych stopniach losowości.
- 2. Wybór ograniczeń spełnionych dla ustalonego ciągu. Dwie przykładowe metody wyboru ograniczeń to metoda losowa i wybór dla każdego i maksymalnego przedziału, dla którego a_i jest maksymalnym elementem tego przedziału.

W testach z odpowiedzią NIE, generowany był graf G z cyklem, który następnie był zamieniany na wejściowe ograniczenia, bądź wymuszane było, aby niektóre elementy a_i dla $i \notin \mathcal{F}_0$ musiały pochodzić spoza przedziału $[1, 10^9]$.