Optimalizace investičních prostředků z hlediska výnosu fotovoltaických elektráren

Petr Kotlan

Vedoucí práce: Ing. Roman Vaibar, Ph.D., MBA

Přírodovědecká fakulta Univerzita J. E. Purkyně

Anotace

Cílem bakalářské práce je vyvinout aplikaci, která pomocí lineárního programování optimalizuje rozdělení investičních prostředků pro instalaci fotovoltaických elektráren na daných objektech. Optimalizace bude provedena na základě následujících hledisek:

- typu střechy rovná, sedlová, valbová atd.,
- spotřeby v daném místě,
- ceny energie definované odkupem dle spotových cen OTE, a.s.,
- optimalizace uložiště,
- výpočtu předpokládaného ročního výkonu dle osvitových hodin.

Osnova

- 1. Úvod
- 2. Současné modely výnosů fotovoltaických elektráren v ČR
- 3. Teoretická část
 - Přehled ekonomických pojmů
 - Základní modely matematické optimalizace
- 4. Praktická část
 - Popis aplikace
 - Případové studie
- 5. Zhodnocení výsledků
- 6. Závěr

Datové zdroje a uložiště

Zdroje

- OTE, a.s.,
- FVE DCUK API (rozhraní pro správu FVE projektů),
- srovnání spořících účtů
- ČHMÚ denní úhrn doby trvání slunečního svitu

Uložiště

- InfluxDB
- MariaDB

Vyhodnocení výnosnosti investice

Čistá současná hodnota (NPV)

$$NPV = \frac{P_1}{(1+i)} + \frac{P_2}{(1+i)^2} + \ldots + \frac{P_n}{(1+i)^n} - K$$

Vnitřní výnosové procento (IRR)

$$\frac{P_1}{(1+IRR)} + \frac{P_2}{(1+IRR)^2} + \ldots + \frac{P_n}{(1+IRR)^n} = K$$

- n = počet let
- K = kapitálový výdaj
- i = požadovaná míra výnosnosti

Matematická optimalizace

Formulace úlohy

$$\max \rightarrow z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$
$$Ax \le b$$
$$x \ge 0$$

- $x_1, x_2, \dots, x_n = \text{rozhodovací proměnné}$
- $c_1, c_2, \ldots, c_n = \text{cenov\'e koeficienty}$
- A = matice strukturních koeficientů
- b = požadavková čísla
- z = cílová funkce