

Online Participatory Budgeting How to collectively make quick decisions on funding projects?

Matthieu Hervouin 1 , Jan Maly 2 ¹ Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016 Paris, France ² DBAI, TU Wien, Vienna, Austria

¹ matthieu.hervouin@dauphine.psl.eu, ² jan.maly@tuwien.ac.at

A possible application: CO2 emission quota

- A lab/ company wants to respect a CO2 quota
- Collective decision on which projects to fund
- Projects are presented online (not all together) Representatives vote on funding current project
- Example with 3 representatives and 4 projects

Recap					
project	1	2	3	emissions (T)	
	No	Yes	Yes	15	
мати	Yes	No	Yes	6	
ACEAN	No	Yes	Yes	9	
LOCEAN	Yes	No	No	3	

Majority and threshold rules

Majority = Threshold of 50% (accepted if more votes than the threshold) Several drawbacks

- incomplete policy (quota of 18T)
- unfair to minorities (quota of 21T)
- not optimal (quota of 9T)

Proportionality through priceability

We can divide the budget among the voters and

- (C1) Agents contribute only to projects they approve on
- (C2) Agents contribute only to projects in π
- (C3) Agents don't pay more than b
- (C4) Projects in π receive enough contribution to be funded
- (C5) No group supporting a project p is left with more than c(p)

Priceability: examples

Budget of 18T \implies personal budgets of 6T is priceable

An algorithm for priceability (DO et al., 2022) When a project is affordable by its supporters, it is selected and its price is divided between supporters.

One	big o	draw	back	ζ:
project	1	2	3	price
	0	0	0	15
	0	4.5	4.5	9
	4.5	0	1.5	6
OCEAN	0	0	0	3

One big drawback.				
project	1	2	3	price
	0	0	0	15
	0	4.5	4.5	9
AOCEAN	4.5	0	1.5	6
	0	0	0	3

Strenghtening Priceability

Efficient (E) priceability: priceability+ every contribution function satisfying (C1) to (C4) satisfies (C5) New algorithm: When project p appears, if $\pi \cup \{p\}$ is priceable, p is selected and we use this price system. We use capacity scaling algorithm, complexity $O(np^2\log(b))$, see Ahuja and Orlin (1995)

Fair share and priceability

Local Fair Share \simeq Priceability but costs are divided equally among voters

budget b = 6T

Justified Representation

Cohesiveness: For $S \subseteq N, Q \subseteq P$ if $\frac{|S|}{n} \ge \frac{c(Q)}{b}$ and $\forall i \in S, Q \subseteq A_i$ Proportionality: S is Q-cohesive, $\operatorname{sat}_S(\pi) \geq \operatorname{sat}_S(Q)$. Satisfaction Function: mapping from $\mathcal{P}(P)$ to \mathbb{R} Different variations

- Perfect Justified Representation: $\operatorname{sat}_S(\pi) = \min_{\alpha} \operatorname{sat}(A_i \cap \pi)$ Not always possible
- Extended Justified Representation: $\operatorname{sat}_S(\pi) = \max_{i \in S} \operatorname{sat}(A_i \cap \pi)$
- Proportional Justified Representation: $\operatorname{sat}_S(\pi) = \operatorname{sat}(\bigcup_{i \in S} A_i \cap \pi)$ $b/\tau_b(\log_2(b/\tau_b) + 1) = b = \lfloor b/\gamma_b H(b/\gamma_b) \rfloor$ $b = 1000 \implies \gamma_b \simeq \tau_b = 8$

 α -Cohesiveness: For $S\subseteq N, Q\subseteq P$ if $\frac{|S|}{n}\geq \alpha \frac{c(Q)}{b}$ and $\forall i \in S, Q \subseteq A_i$

Proportionality: S is α -Q-cohesive, it deserves $\operatorname{sat}_S(\pi) \geq \operatorname{sat}_S(Q)$ of the budget.

sat^{card} JR[sat^{card}] γ_b -PJR[sat^{card}] γ_b -EJR[sat^{card}] sat^{cost} 2-JR[sat^{cost}] 2-PJR[sat^{cost}] τ_b -EJR[sat^{cost}]	JR	PJR	EJR
	sat^{card} JR[sat^{card}] sat^{cost} 2-JR[sat^{cost}]	γ_b -PJR[sat^{card}] 2-PJR[sat^{cost}]	γ_b -EJR[sat^{card}] $ au_b$ -EJR[sat^{cost}]

$$b/\tau_b(\log_2(b/\tau_b) + 1) = b = \lfloor b/\gamma_b H(b/\gamma_b) \rfloor$$

$$b = 1000 \implies \gamma_b \simeq \tau_b = 8$$

Ongoing: Experiments, measuring voter's satisfaction and fairness

We used pabulib (STOLICKI; SZUFA; TALMON, 2020) and pabutools (FALISZEWSKI et al., 2023) Several measures:

- Average voter satisfaction
- Gini index of voter's satisfaction $(0 \implies perfect equality)$
- Distance to fair Share

Figure 1 – Gini Index for MES(offline) and the Greedy Budgeting rule, for Amsterdam districts

Figure 2 – Average voter satisfaction for MES(offline) and the Greedy Budgeting rule, for Amsterdam districts

References

- ACOSTA, R. K.; ALGABA, E.; SÁNCHEZ-SORIANO, J. Multi-issue bankruptcy problems with crossed claims. Annals of Operations Research, Springer, p. 1–24, 2022.
- AHUJA, R. K.; ORLIN, J. B. A capacity scaling algorithm for the constrained maximum flow problem. Networks, Wiley Online Library, v. 25, n. 2, p. 89-98, 1995.
- CARDI, P.; GOURVÈS, L.; LESCA, J. Worst-case bounds for spending a common budget. In: AAMAS 2021: 20th International Conference on Autonomous Agents and
- Multiagent Systems. [S.l.: s.n.], 2021. DO, V. et al. Online approval committee elections. arXiv preprint arXiv:2202.06830, 2022.
- DURO, J. A.; GIMÉNEZ-GÓMEZ, J.-M.; VILELLA, C. The allocation of CO2 emissions as a claims problem. Energy Economics, Elsevier, v. 86, p. 104652, 2020.
- FALISZEWSKI, P. et al. Participatory budgeting: data, tools, and analysis. arXiv preprint arXiv:2305.11035, 2023.
- STOLICKI, D.; SZUFA, S.; TALMON, N. Pabulib: A participatory budgeting library. arXiv
- preprint arXiv:2012.06539, 2020 ZHOU, P.; WANG, M. Carbon dioxide emissions allocation: A review. **Ecological economics**,
- Elsevier, v. 125, p. 47-59, 2016.

Real Application for LAMSADE: quota or tax for CO2 emissions?

Decision under discussion in CL

Problem is different, several possible models

- Fair Allocation (CARDI; GOURVÈS; LESCA, 2021)
- Bankruptcy problem (ACOSTA; ALGABA; SÁNCHEZ-SORIANO, 2022; DURO; GIMÉNEZ-GÓMEZ; VILELLA, 2020; ZHOU; WANG, 2016)
- Next: Online claims problem ?

Classical notions: proportionality, maximin, envy-freeness, fair-share

A porposition of a CO2 emissions tax system

Idea presented By Olivier Cailloux and Hugo Giblert in AG

Tax projects according to CO2 emissions

The tax should have some properties:

- Exceptions: Junior researchers should pay less than seniors
- Convexity: the more you pollute the more the lax increases
- Delays: One's history should vanish with time

Delays: One's history should vanish with the
$$l_a^b = \sum_{i=0}^a c_i \lambda^{t_b-t_i}, \tau(v_n) = r(\alpha^{l_n^{t_n}} - \alpha^{l_{n-1}^{t_n}}).$$

For senior researchers:

• $\lambda = \frac{\sqrt{2}}{2}$ (half-life 2 years)

For junior researchers: • $\lambda = \frac{1}{2}$ (half-life 1 year)