Modeling Microbial Fate & Transport

CN Haas Drexel University

Outline

- Concept of Mass Balance
- Fluxes and Rates
- General Mass Balances
- Illustrative example to a simple room
- More complex situations

CN Haas, Drexel University

Concept of a Mass Balance

- A region in space (cartesian)
- Concentration within is uniform
- Principle of conservation of mass dictates:
 - Change of mass within =(things entering)–(things leaving) +/– (stuff that happens inside)
- (things entering), (things leaving)-> "Fluxes"
- (stuff that happens inside)->"Rates"
- Units-each term is amount/time. We are looking at viable organisms so units are #/time.

CN Haas, Drexel University

3

Aside

- At a finer level of detail, we would want to look at force balances on each particle and get their equations of motion (Lagrangian approach)
- For this presentation, treat particles as a continuum (Eulerian) which is a bit of a simplification

CN Haas, Drexel University

Concept of Fluxes

- Movement of stuff in and out of system
 - J: #/area/time (area is the area perpendicular to the movement)
- Most common due to bulk flow
 - v•C_{in}: flux into system due to flow
 - v•C_{out}: flux out of system due to flow
- Many other examples -->

CN Haas, Drexel University

5

Other Fluxes (1)

- Dispersion
 - Proportional to concentration gradient, induced by turbulence and mixing
- Gravitational
 - Time scale hours for micron size particles in air (longer for water). Results in effective downward velocity. Balanced by particle drag forces and buoyancy.
- Wall collisions (all surfaces)
 - Driven by convection. Can write in terms of an effective velocity (mass transfer coefficient, "deposition velocity") to the surfaces

CN Haas, Drexel University

Other Fluxes (2)

- Electrostatic
 - Charged particles in an electric field will experience a Coulomb force which results in an effective velocity
- Resuspension
 - "lifting" of particles at a surface by fluid motion near a surface.
 - This is one particular area that needs <u>a lot</u> of additional study

CN Haas, Drexel University

7

Concept of Rates

- Units generally #/volume-time (symbol r)
 - Death
 - Typically first order in viable conc, r_{death}=-k_{death}•C
 - k_{death} may be function of environment (including disinfectants)
 - (note could also have death on surfaces)
 - Collisions
 - · Causes particle growth which may affect settling
 - Typically second order
 - At the low concentrations we expect this may be minor
 - Unless a lot of intert particles are also present
 - (Growth)
 - We typically would not expect this of pathogens (but in favorable environments, e.g. food with temperature abuse) this can occur

CN Haas, Drexel University

Some mathematics

- Change of mass within =(things entering)–(things leaving)
 +/- (stuff that happens inside)
- Look at what happens during a time Δt

$$(\Delta C)(V) = QC_{in}\Delta t - QC\Delta t + \sum_{i} J_{i}A_{i}\Delta t + \sum_{j} r_{j}V\Delta t$$

Which becomes

$$\Delta C = \left(\frac{C_{in} - C}{\Theta} + \frac{\sum_{i} J_{i} A_{i}}{V} + \sum_{j} r_{j}\right) \Delta t$$

CN Haas, Drexel University

How do I evaluate this?

$$\Delta C = \left(\frac{C_{in} - C}{\Theta} + \frac{\sum_{i} J_{i} A_{i}}{V} + \sum_{j} r_{j}\right) \Delta t$$

- First I need the terms (r's, J's)
- I could start with what I know at t=0, and calculate the ΔC for a small Δt , and repeat the process (finite difference)
- Or by calculus, as ∆t->0, this becomes a differential equation which I can solve

CN Haas, Drexel University

11

An Example

- Consider a small room
 - x=5 m, y=4 m, z=2.5 m (volume=50 m³)
 - Total surface area (for deposition)=85 m²
- Airflow 0.5 airchanges/hr
 - Θ=2 hrs
- Micron sized aerosol
- Assume dieoff with T_{1/2}=1 hr
 - -> $k=-ln(.5)/1hr = 0.69 hr^{-1}$
- We will consider surface deposition as well-->

CN Haas, Drexel University

Indoor Deposition Velocity

Furnished room Fogh et al., Atmospheric Environment 31:15(2193) 1997

CN Haas, Drexel University

13

Plugging in the Numbers

$$\Delta C = \left(\frac{C_{in} - C}{\Theta} + \frac{\sum_{i} J_{i} A_{i}}{V} + \sum_{j} r_{j}\right) \Delta t$$

$$\Delta C = \left(\frac{C_{in} - C}{2} - \frac{0.54(85)C}{50} - 0.69 \cdot C\right) \Delta t$$

$$\Delta C = \left(\frac{C_{in}}{2} - 2.608 \cdot C\right) \Delta t$$

CN Haas, Drexel University

Scenario

- Pulse release into room
 - @t=0, C=0
 - @t=<0, 2hr>, C_{in}=0
 - @t=<2hr, 2.5hr>, C_{in}=100,000/m³
 - @t>2.5hr, C_{in}=0

CN Haas, Drexel University

15

So what?

- We could integrate with respect to breathing rate and activity patterns to get dose.
- Impact of mitigation and change in room characteristics.

CN Haas, Drexel University

More Complex Geometries

- What we have done is an example of a "zone" or "box" model.
 - More complex systems could be modeled with multizone models
 - Even more complex systems by direct calculation of fluid motion using computational fluid dynamics
 - Or Project I analog with Markov Chain models
- More spatially complex systems need full model of fluid flow and for particles going back to Lagrangian form to consider all forces

CN Haas. Drexel University

17

CFD (courtesy S Hoque)

Room dimensions: 2.5m x 2.5m x 2.5m

Mesh: 57x x 82y x 57z Inlet and outlet:0.07m Air velocity: 0.886m/s Particle density: 1000 kg/m³ Particle diameter: 5µm and 20µm

19 days to compute trajectories for 38s

Particles after 5s, 10s, 20s, 30s for the first case scenario

Beghein, C., Y. Jiang, and Q.Y. Chen, *Using large eddy simulation to study particle motions in a room.* Indoor air, 2005. **15**: p. 281-290