

Departamento de Matemática da Universidade de Aveiro

Matemática Discreta 2020/2021 - UC 47166 (1ºAno/2ºSem)

Teste T3 Turma TP6 - Exemplo de Resolução

22/06/2021

Nome: NMec: Curso:

(5.0) 1. Resolva a seguinte relação de recorrência, justificando todos os passos:

$$a_n = 4a_{n-2} + 2^n$$
, $n \ge 2$, $a_0 = 2$, $a_1 = 1$.

Resolução: A equação de recorrência dada é linear não homogénea, com solução geral

$$a_n = a_n^{(h)} + a_n^{(p)},$$

onde $a_n^{(h)}$ corresponde à solução da parte homogénea, $a_n-4a_{n-2}=0$, e $a_n^{(p)}$ é a solução particular associada a

$$a_n - 4a_{n-2} = f(n), \quad \text{com} \quad f(n) = 2^n \ .$$
 (1)

Da parte homogénea resulta a equação característica:

$$x^{2} - 4 = 0 \Leftrightarrow (x - 2)(x + 2) = 0 \Leftrightarrow x = \pm 2$$

pelo que, 2 é raiz característica de multiplicidade m=1 e -2 é raiz característica de multiplicidade m=1. Assim,

$$a_n^{(h)} = C_1 2^n + C_2 (-2)^n$$
,

onde C_1 e C_2 são constantes a determinar.

Como $f(n) = 2^n$ é da forma cq^n com c = 1 e $q = 2 \in \mathbb{Q} \setminus \{1\}$ tem-se

$$a_n^{(p)} = An^m q^n = An2^n ,$$

uma vez que q=2 é raiz característica com multiplicidade m=1.

Substituindo $a_n^{(p)}$ em (1), determina-se a constante A, vindo

$$An2^{n} - 4A(n-2)2^{n-2} = 2^{n} \Leftrightarrow An2^{n} - A(n-2)2^{n} = 2^{n} \Leftrightarrow An - A(n-2) = 1 \Leftrightarrow A = 1/2$$
.

Assim,

$$a_n = C_1 2^n + C_2 (-2)^n + \frac{1}{2} n 2^n$$
,

e, atendendo às condições iniciais, $a_0 = 2$ e $a_1 = 1$, podem calcular-se as constantes C_1 e C_2 :

$$\begin{cases} a_0 = 2 \\ a_1 = 1 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_2 = 2 \\ 2C_1 - 2C_2 + 1 = 1 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_2 = 2 \\ C_1 = C_2 \end{cases} \Leftrightarrow \begin{cases} C_1 = 1 \\ C_2 = 1 \end{cases}$$

Logo,

$$a_n = 2^n + (-2)^n + n2^{n-1}$$
, $n \ge 0$.

Formulário:
$$\sum_{n=0}^{\infty} \alpha^n x^n = \frac{1}{1-\alpha x} , \qquad \sum_{n=0}^{\infty} \binom{n+m-1}{n} \alpha^n x^n = \frac{1}{(1-\alpha x)^m} .$$

(2.5) 2. Determine a sucessão
$$(b_n)_{n\geq 0}$$
 associada à função geradora $\mathcal{B}(x) = \frac{x}{(1+2x)(1-x)}$.

Resolução: Temos que
$$\mathcal{B}(x) = \frac{x}{(1+2x)(1-x)} = \frac{A}{1+2x} + \frac{B}{1-x}$$
, onde

$$A = \frac{x}{(1-x)} \Big]_{x=-1/2} = -\frac{1}{3} e B = \frac{x}{(1+2x)} \Big]_{x=1} = \frac{1}{3}.$$

Logo
$$\mathcal{B}(x) = -\frac{1}{3} \times \frac{1}{1+2x} + \frac{1}{3} \times \frac{1}{1-x} = -\frac{1}{3} \sum_{n=0}^{\infty} (-2x)^n + \frac{1}{3} \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} \frac{1}{3} (-(-2)^n + 1) x^n.$$

Assim,
$$b_n = \frac{1}{3} (1 - (-2)^n), n \ge 0.$$

(2.5) 3. Considere o problema de determinar o número de maneiras de distribuir n melões por 4 caixas, de modo que uma caixa fique com, pelo menos, 2 melões, outra com, no máximo, 4 melões, não havendo restrições nas restantes, para $n \ge 2$. Mostre que, a solução do problema pode ser obtida a partir da função geradora:

$$\mathcal{F}(x) = \frac{x^2 - x^7}{(1 - x)^4} \ .$$

Resolução: A solução do problema é dada pelo coeficiente do termo x^n , no desenvolvimento em série de potências de x, da função geradora $\mathcal{F}(x)$ que é o produto das seguintes funções geradoras:

• "uma caixa com, pelo menos, 2 melões" :

$$\mathcal{F}_1(x) = x^2 + x^3 + x^4 + \dots = x^2(1 + x + x^2 + \dots) = x^2 \sum_{n=0}^{\infty} x^n = x^2 \times \frac{1}{1-x};$$

• "uma caixa com, no máximo, 4 melões" :

$$\mathcal{F}_2(x) = 1 + x + x^2 + x^3 + x^4 = \sum_{k=0}^4 x^k = \frac{1 - x^5}{1 - x};$$

• "uma caixa sem restrições" :

$$\mathcal{F}_3(x) = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x};$$

• "uma caixa sem restrições" :

$$\mathcal{F}_4(x) = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

Assim, $\mathcal{F}(x) = \mathcal{F}_1(x)\mathcal{F}_2(x)\mathcal{F}_3(x)\mathcal{F}_4(x) = \frac{x^2}{1-x}\frac{1-x^5}{1-x}\frac{1}{1-x}\frac{1}{1-x} = \frac{x^2-x^7}{(1-x)^4}$, como queriamos mostrar.

4. Considere os grafos $G_i = (V(G_i), E(G_i))$, para i = 1, 2, ..., 13, representados na figura seguinte:

(3.5) 4.(a) Indique dois grafos não isomorfos da mesma ordem. Justifique, devidamente, a sua resposta.

Resolução: Por exemplo, os grafos G_{11} e G_{12} são da mesma ordem, porque $|V(G_{11})| = |V(G_{12})| = 7$ e não são isomorfos, porque a sequência dos graus dos vértices de G_{11} , (1, 1, 1, 2, 2, 2, 3), é diferente da sequência dos graus dos vértices de G_{12} , (1, 1, 1, 1, 2, 2, 3) e os isomorfismos preservam os graus dos vértices.

Outros exemplos de pares de grafos da mesma ordem não isomorfos são: (G_5, G_7) , (G_6, G_7) , (G_{11}, G_{13}) e (G_{12}, G_{13}) .

(1.5) 4.(b) Numere os vértices do grafo representado por G_{11} e escreva a matriz de adjacência desse grafo.

Resolução:

5. Considere o grafo G = (V(G), E(G)), com $V(G) = \{1, 2, 3, 4, 5, 6\}$, definido pela matriz de custos:

$$W = \begin{pmatrix} 0 & 2 & 3 & 4 & \infty & 6 \\ 2 & 0 & 6 & \infty & \infty & 12 \\ 3 & 6 & 0 & \infty & \infty & \infty \\ 4 & \infty & \infty & 0 & 20 & 24 \\ \infty & \infty & \infty & 20 & 0 & 30 \\ 6 & 12 & \infty & 24 & 30 & 0 \end{pmatrix}.$$

(1.5) 5.(a) Represente o grafo G com indicação do custo associado em cada uma das arestas.

Resolução: O grafo G com os custos nas arestas é

(3.5) 5.(b) Aplicando o algoritmo de Dijkstra, determine o caminho de custo mínimo entre os vértices 2 e 5 do grafo G representado na alínea anterior, indicando também qual é esse custo.

Resolução: Aplicamos o algoritmo de Dijkstra, começando pelo vértice z=2 e parando quando o vértice z=5 se torna definitivo:

It	eração	1	2	3	4	5	6	z
	0	$(\infty, -)$	(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	2
	1	(2, 2)	×	(6,2)	$(\infty, -)$	$(\infty, -)$	(12, 2)	1
	2	×	×	(5,1)	(6,1)	$(\infty, -)$	(8,1)	3
	3	×	×	×	(6,1)	$(\infty, -)$	(8,1)	4
	4	×	×	×	×	(26, 4)	(8, 1)	6
	5	×	×	×	×	$({f 26},{f 4})$	×	5

Concluímos que o caminho de custo mínimo entre os vértices 2 e 5 é P=2,1,4,5 com custo 26.