criterion performance measurements overview

want to understand this report?

isOrdered1/10000

lower bound estimate upper bound

isOrdered2/10000

OLS regression	3.85 ms	3.96 ms	4.09 ms
R ² goodness-of-fit	0.989	0.992	0.996
Mean execution time	3.54 ms	$3.62 \; \text{ms}$	3.70 ms
Standard deviation	225 µs	261 µs	304 µs

isOrdered3/10000

lower bound estimate upper bound

OLS regression 1.28 ms 1. R^2 goodness-of-fit 0.981 0. Mean execution time 1.27 ms 1. Standard deviation 101 μ s 11

1.34 ms 1.40 ms 0.986 0.992 1.31 ms 1.34 ms 112 µs 128 µs

isOrdered4/10000

lower bound estimate upper bound

OLS regression 1.51 ms R^2 goodness-of-fit 0.993 Mean execution time 1.65 ms Standard deviation 130 μs

1.53 ms 1.54 ms 0.996 0.998 1.69 ms 1.74 ms 153 µs 181 µs

isOrdered5/10000

OLS regression 195 μs 196 μs 197 μs R² goodness-of-fit 0.999 1.000 1.000 Mean execution time 195 μs 196 μs 198 μs

Standard deviation $3.15~\mu s$ $4.00~\mu s$ $5.86~\mu s$

isOrdered5 (specialized)/10000

isOrdered5 (curried)/10000

lower bound estimate upper bound

OLS regression	76.0 μs	76.2 μs	76.5 μs
R ² goodness-of-fit	1.000	1.000	1.000
Mean execution time	75.9 μs	$76.1~\mu s$	76.3 µs
Standard deviation	474 ns	669 ns	1.14 us

isOrdered5 (bounded)/10000

Standard deviation 340 ns

isOrdered6/10000

lower bound estimate upper bound

OLS regression 4.54 ms 4.56 ms 4.58 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 4.57 ms 4.59 ms 4.60 ms Standard deviation 35.9 μ s 45.0 μ s 65.9 μ s

isOrdered7/10000

isOrdered8/10000

OLS regression 2.73 ms 2.74 ms 2.75 ms

R² goodness-of-fit 1.000 1.000 1.000 Mean execution time 2.73 ms

2.74 ms 2.75 ms Standard deviation 18.8 µs **28.5 μs** 45.2 μs

isOrdered9/10000

1.72 μs 3.00 μs

isOrdered10/10000

Standard deviation $1.05 \mu s$

isOrdered11/10000

lower bound estimate upper bound

OLS regression	655 μs	658 µs	660 µs
R ² goodness-of-fit	1.000	1.000	1.000
Mean execution time	656 μs	657 µs	660 µs
Standard deviation	4.27 μs	7.14 µs	13.3 µs

isOrdered12/10000

OLS regression 96.5 μ s 97.0 μ s 97.6 μ s R² goodness-of-fit 1.000 1.000 1.000 Mean execution time 96.5 μ s 96.8 μ s 97.2 μ s Standard deviation 601 ns 1.10 μ s 1.89 μ s

isOrdered13/10000

OLS regression 154 μs 155 μs 156 μs R² goodness-of-fit 0.999 0.999 1.000 Mean execution time 155 μs 156 μs 157 μs Standard deviation 2.28 μs 2.76 μs 3.36 μs

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- *OLS regression* indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the *mean* estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- *R*² *goodness-of-fit* is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the $\underline{\text{criterion}}$ benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.