

4-BIT ARITHMETIC LOGIC UNIT

The SN54/74LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic, operations on two variables and a variety of arithmetic operations.

- Provides 16 Arithmetic Operations Add, Subtract, Compare, Double, Plus Twelve Other Arithmetic Operations
- Provides all 16 Logic Operations of Two Variables Exclusive OR, Compare, AND, NAND, OR, NOR, Plus Ten other Logic Operations
- Full Lookahead for High Speed Arithmetic Operation on Long Words
- Input Clamp Diodes

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES

LOADING (Note a)

		HIGH	LOW
$A_0 - A_3, B_0 - B_3$	Operand (Active LOW) Inputs	1.5 U.L.	0.75 U.L.
$S_0 - S_3$	Function — Select Inputs	2.0 U.L.	1.0 U.L.
M	Mode Control Input	0.5 U.L.	0.25 U.L.
<u>C</u> n _	Carry Input	2.5 U.L.	1.25 U.L.
F_0-F_3	Function (Active LOW) Outputs	10 U.L.	5 (2.5) U.L.
$\underline{A} = B$	Comparator Output	Open Collector	5 (2.5) U.L.
G	Carry Generator (Active LOW)	10 U.L.	10 U.L.
_	Output		
P	Carry Propagate (Active LOW)	10 U.L.	5 U.L.
	Output		
C _{n+4}	Carry Output	10 U.L.	5 (2.5) U.L.

NOTES

a. 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.

b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS181

4-BIT ARITHMETIC LOGIC UNIT

LOW POWER SCHOTTKY

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The SN54/74LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select Inputs ($S_0 \ldots S_3$) and the Mode Control Input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

When the Mode Control Input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control Input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the Cn+4 output, or for carry lookahead between packages using the signals P (Carry Propagate) and G (Carry Generate), P and G are not affected by carry in. When speed requirements are not stringent, the LS181 can be used in a simple ripple carry mode by connecting the Carry Output (C_{n+4}) signal to the Carry Input (Cn) of the next unit. For high speed operation the LS181 is used in conjunction with the 9342 or 93S42 carry lookahead circuit. One carry lookahead package is required for each group of the four LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.

The A = B output from the LS181 goes HIGH when all four F outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The A = B output is open collector and can be wired-AND with other A = B outputs to give a comparison for more then four bits. The A = B signal can also be used with the C_{n+4} signal to indicate A>B and A<B.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated, the LS181 can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

FUNCTION TABLE

М	MODE SELECT INPUTS		СТ		VE LOW INPUTS & OUTPUTS	ACTIVE HIGH INPUTS & OUTPUTS		
S ₃	S ₂	s ₁	s ₀	LOGIC (M = H)	ARITHMETIC** (M = L) (C _n = L)	LOGIC (M = H)	ARITHMETIC** (M = L) (C _n = H)	
L	L	L	L	A	A minus 1	A	Α	
L	L	L	Н	AB	AB minus 1	A + B	A + B	
L	L	Н	L	A + B	AB minus 1	AB	A + B	
L	L	Н	Н	Logical 1 minus 1		Logical 0 n	ninus 1	
L	Н	L	L	<u>A</u> + B	A plus (A + B)_	<u>A</u> B	A plus AB	
L	Н	L	Н	В	AB plus (A + B)	В	(A + B) plus AB	
L	Н	Н	L	A ⊕ <u>B</u>	A minus B minus 1	A⊕B	A minus B minus 1	
L	Н	Н	Н	<u>A</u> + B	A + B	AB	AB minus 1	
Н	L	L	L	AB	A plus (A + B)	<u>A + B</u>	A plus AB	
Н	L	L	Н	$A \oplus B$	A_plus B	A⊕B	A plus B	
Н	L	Н	L	В	AB plus (A + B)	B	(A + B) plus AB	
Н	L	Н	Н	A + B	A + B	AB	AB minus 1	
Н	Н	L	L	Logical 0 A	A plus A*	Logical 1 A	plus A*	
Н	Н	L	Н	AB	A <u>B</u> plus A	A + B	(A + <u>B</u>) plus A	
Н	Н	Н	L	AB	AB plus A	A + B	(A + B) Plus A	
Н	Н	Н	Н	Α	Α	A	A minus 1	

L = LOW Voltage Level

LOGIC SYMBOLS

ACTIVE LOW OPERANDS

ACTIVE HIGH OPERANDS

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
I _{ОН}	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA
Vон	Output Voltage — High (A = B only)	54, 74			5.5	V

H = HIGH Voltage Level

^{*}Each bit is shifted to the next more significant position

^{**}Arithmetic operations expressed in 2s complement notation

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	V _{II} Input LOW Voltage				0.7	V		t LOW Voltage for
* IL	Input 2011 Voltago	74			0.8		All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	: –18 mA
VOH	Output HIGH Voltage	54	2.5	3.5		V		= MAX, V _{IN} = V _{IH}
VOН	Output Thorr voltage	74	2.7	3.5		V	or V _{IL} per Truth T	able
	Output LOW Voltage	54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$	
	Except G and P	74		0.35	0.5	V	$I_{OL} = 8.0 \text{ mA}$	V _{CC} = V _{CC} MIN,
VOL	Output G	54, 74			0.7	V	I _{OL} = 16 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
	Output P	54 74			0.6 0.5	V	I _{OL} = 8.0 mA	per trutti table
IOH	Output HIGH Current 54, 74				100	μΑ	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$ or V_{IL} per Truth Table	
lιн	Input HIGH Current Mod <u>e</u> Inp <u>ut</u> Any A or B Input Any S Input C _n Input				20 60 80 100	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V
	Mod <u>e</u> Inp <u>ut</u> Any A or B Input Any S Input C _n Input				0.1 0.3 0.4 0.5	mA	V _{CC} = MAX, V _{IN}	= 7.0 V
I _{IL}	Input LOW Current Mod <u>e</u> Inp <u>ut</u> Any A or B Input Any S Input C _n Input				-0.4 -1.2 -1.6 -2.0	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 2))	-20		-100	mA	V _{CC} = MAX	
	Power Supply Current	54			32			
loo	See Note 1A	74			34	mA	V _{CC} = MAX	
ICC	Sac Note 1D	See Note 4D 54			35] ""^	VCC = IVIAX	
	See Note 15	See Note 1B 74			37			

Note 1.

With outputs open, $\ensuremath{\text{I}_{CC}}$ is measured for the following conditions:

Note 2: Not more than one output should be shorted at a time, nor for more than 1 second.

A. S0 through S3, M, and A inputs are at 4.5 V, all other inputs are grounded.

B. S0 through S3 and M are at 4.5 V, all other inputs are grounded.

AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V, Pin 12 = GND, CL = 15 pF)

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
^t PLH ^t PHL	Propagation Delay, (C _n to C _{n+4})		18 13	27 20	ns	M = 0 V, (Sum or Diff Mode) See Fig. 4 and Tables I and II		
^t PLH ^t PHL	(C _n to F Outputs)		17 13	26 20	ns	M = 0 V, (Sum Mode) See Fig. 4 and Table I		
^t PLH ^t PHL	(A or B Inputs to G Output)		19 15	29 23	ns	$M = S_1 = S_2 = 0 \text{ V}, S_0 = S_3 = 4.5 \text{ V}$ (Sum Mode) See Fig. 4 and Table I		
^t PLH ^t PHL	(A or B Inputs to G Output)		21 21	32 32	ns	$M = S_0 = S_3 = 0 \text{ V}, S_1 = S_2 = 4.5 \text{ V}$ (Diff Mode) See Fig. 5 and Table II		
^t PLH ^t PHL	(A or B Inputs to P Output)		20 20	30 30	ns	$M = S_1 = S_2 = 0 \text{ V}, S_0 = S_3 = 4.5 \text{ V}$ (Sum Mode) See Fig. 4 and Table I		
^t PLH ^t PHL	(A or B Inputs to P Output)		20 22	30 33	ns	$M = S_0 = S_3 = 0 \text{ V}, S_1 = S_2 = 4.5 \text{ V}$ (Diff Mode) See Fig. 5 and Table II		
^t PLH ^t PHL	(A _X or B _X Inputs to F _X Output)		21 13	32 20	ns	$M = S_1 = S_2 = 0 \text{ V}, S_0 = S_3 = 4.5 \text{ V}$ (Sum Mode) See Fig. 4 and Table I		
^t PLH ^t PHL	(A _X or B _X Inputs to F _X Output)		21 21	32 32	ns	$M = S_0 = S_3 = 0 \text{ V}, S_1 = S_2 = 4.5 \text{ V}$ (Diff Mode) See Fig. 5 and Table II		
^t PLH ^t PHL	(A _X or B _X Inputs to F _{XH} Outputs)			38 26	ns	$M = S_1 = S_2 = 0 \text{ V}, S_0 = S_3 = 4.5 \text{ V}$ (Sum Mode) See Fig. 4 and Table I		
^t PLH ^t PHL	(A _X or B _X Inputs to F _{XH} Outputs)			38 38	ns	$M = S_0 = S_3 = 0 \text{ V}, S_1 = S_2 = 4.5 \text{ V}$ (Diff Mode) See Fig. 5 and Table II		
^t PLH ^t PHL	(A or B Inputs to F Outputs)		22 26	33 38	ns	M = 4.5 V (Logic Mode) See Fig. 4 and Table III		
^t PLH ^t PHL	(A or B Inputs to C _{n+4} Output)		25 25	38 38	ns	$M = 0 \text{ V}, S_0 = S_3 = 4.5 \text{ V}, S_1 = S_2 = 0 \text{ V}$ (Sum Mode) See Fig. 6 and Table I		
^t PLH ^t PHL	— (A or B Inputs to C _{n+4} Output)		27 27	41 41	ns	$M = 0 \text{ V}, S_0 = S_3 = 0 \text{ V}, S_1 = S_2 = 4.5 \text{ V}$ (Diff Mode)		
^t PLH ^t PHL	(A or B Inputs to A = B Output)		33 41	50 62	ns	$\begin{array}{l} \text{M} = \text{S}_0 = \text{S}_3 = 0 \text{ V}, \text{S}_1 = \text{S}_2 = 4.5 \text{ V} \\ \text{R}_L = 2.0 \text{ k}\Omega \\ \text{(Diff Mode) See Fig. 5 and Table II} \end{array}$		

AC WAVEFORMS

SUM MODE TEST TABLE I

FUNCTION INPUTS: $S_0 = S_3 = 4.5 \text{ V}, S_1 = S_2 = M = 0 \text{ V}$

			3101 e ₀ = e ₃ = 1e	, - 1 - 2 -		
	Input	Other Sam	Input e Bit	Other Da	Output	
Parameter	Under		Apply GND	Apply 4.5 V	Apply GND	Under Test
^t PLH ^t PHL	A _I	B _l	None	R <u>e</u> main <u>ing</u> A and B	C _n	F _I
^t PLH ^t PHL	B _l	- A _I	None	R <u>e</u> main <u>ing</u> A and B	C _n	F _I
^t PLH ^t PHL	A _I	B _l	None	C _n	R <u>e</u> main <u>ing</u> A and B	- F _{l+1}
^t PLH ^t PHL	_ B _l	- A _I	None	C _n	R <u>e</u> main <u>ing</u> A and B	- F _{I+1}
^t PLH ^t PHL	Ā	_ B	None	None	Rema <u>in</u> ing A and B, C _n	– P
^t PLH ^t PHL	_ B	Ā	None	None	<u>R</u> ema <u>in</u> ing A and B, C _n	– P
^t PLH ^t PHL	Ā	None	_ B	Rem <u>ai</u> ning B	Re <u>m</u> aining A, C _n	G
^t PLH ^t PHL	_ B	None	Ā	Rem <u>ai</u> ning B	Re <u>m</u> aining A, C _n	- G
[†] PLH [†] PHL	Ā	None	_ B	Rem <u>ai</u> ning B	Re <u>m</u> aining A, C _n	C _{n+4}
[†] PLH [†] PHL	_ B	None	Ā	Rem <u>ai</u> ning B	Re <u>m</u> aining A, C _n	C _{n+4}
^t PLH ^t PHL	C _n	None	None	A <u>l</u> l A	<u>Al</u> l B	Any F or C _{n+4}

DIFF MODE TEST TABLE II

FUNCTION INPUTS: $S_1 = S_2 = 4.5 \text{ V}, S_0 = S_3 = M = 0 \text{ V}$

	Input	Other Sam		Other Da	Output	
Parameter	Under Test	Apply 4.5 V	Apply GND	Apply 4.5 V	Apply GND	Under Test
^t PLH ^t PHL	Ā	None	_ B	Rem <u>a</u> ining A	Remaining B, C _n	F _I
^t PLH ^t PHL	_ В	Ā	None	Rem <u>a</u> ining A	Remaining B, C _n	F _I
tPLH tPHL	A _I	None	B _l	Re <u>m</u> aining B, C _n	Rem <u>a</u> ining A	F _{I+1}
tPLH tPHL	B _l	- A _l	None	Re <u>m</u> aining B, C _n	Rem <u>a</u> ining A	F _{I+1}
t _{PLH} t _{PHL}	Ā	None	B	None	Rema <u>in</u> ing A and B, C _n	_ P
t _{PLH} t _{PHL}	_ B	Ā	None	None	Rema <u>in</u> ing A and B, C _n	P
tPLH tPHL	Ā	_ B	None	None	_Rema <u>in</u> ing A and B _I , C _n	- G
^t PLH ^t PHL	В	None	Ā	None	<u>R</u> ema <u>in</u> ing A and B, C _n	- G
tPLH tPHL	Ā	None	B	Rem <u>a</u> ining A	Re <u>m</u> aining B, C _n	A = B
^t PLH ^t PHL	В	Ā	None	Rem <u>a</u> ining A	Re <u>m</u> aining B, C _n	A = B
^t PLH ^t PHL	Ā	_ B	None	None	<u>R</u> ema <u>in</u> ing A and B, C _n	c _{n+4}
^t PLH ^t PHL	— В	None	Ā	None	<u>R</u> ema <u>in</u> ing A and B, C _n	C _{n+4}
^t PLH ^t PHL	C _n	None	None	_ All _ A and B	None	C _{n+4}

LOGIC MODE TEST TABLE III

	Input	Other Input Same Bit		Other Data Inputs		Output	
Parameter	Under Test	Apply 4.5 V	Apply GND	Apply 4.5 V	Apply GND	Under Test	Function Inputs
^t PLH ^t PHL	Ā	None	_ B	None	<u>R</u> ema <u>in</u> ing A and B, C _n	Any F	$S_1 = S_2 = M = 4.5 \text{ V}$ $S_0 = S_3 = 0 \text{ V}$
^t PLH ^t PHL	_ B	None	Ā	None	<u>R</u> ema <u>in</u> ing A and B, C _n	Any F	$S_1 = S_2 = M = 4.5 \text{ V}$ $S_0 = S_3 = 0 \text{ V}$