Actividad: Feature Extraction

Carlos Enrique Lopez Jimenez A01283855

Genaro Gallardo Bórquez A01382459

Claudia Esmeralda González Castillo A01411506

Jesús Eduardo Martínez Herrera A01283785

Mario Veccio Castro Berrones A00826824

Using LBP Features to Differentiate Images by Texture

Read images that contain different textures.

```
brickWall = imread('brickwall.jpg');
rotatedBrickWall = imread('brickwallRotado.jpg');
carpet = imread('carpeta.jpg');

graybrickWall = rgb2gray(brickWall);
grayrotatedBrickWall = rgb2gray(rotatedBrickWall);
graycarpet = rgb2gray(carpet);
```

Display the images.

```
figure
imshow(brickWall)
title('Bricks')
```

Bricks

figure
imshow(rotatedBrickWall)
title('Rotated Bricks')

Rotated Bricks

figure
imshow(carpet)
title('Carpet')

Extract LBP features from the images to encode their texture information.

```
lbpBricks1 = extractLBPFeatures(graybrickWall, 'Upright', false);
lbpBricks2 = extractLBPFeatures(grayrotatedBrickWall, 'Upright', false);
lbpCarpet = extractLBPFeatures(graycarpet, 'Upright', false);
```

Gauge the similarity between the LBP features by computing the squared error between them.

```
brickVsBrick = (lbpBricks1 - lbpBricks2).^2;
brickVsCarpet = (lbpBricks1 - lbpCarpet).^2;
```

Visualize the squared error to compare bricks versus bricks and bricks versus carpet. The squared error is smaller when images have similar texture.

```
figure
```

```
bar([brickVsBrick; brickVsCarpet]','grouped')
title('Squared Error of LBP Histograms')
xlabel('LBP Histogram Bins')
legend('Bricks vs Rotated Bricks','Bricks vs Carpet')
```


Copyright 2015 The MathWorks, Inc.

Create Gray-Level Co-occurrence Matrix for Grayscale Image

Read a grayscale image into the workspace.

```
I = imread('circuit.tif');
imshow(I)
```


Calculate the gray-level co-occurrence matrix (GLCM) for the grayscale image. By default, graycomatrix calculates the GLCM based on horizontal proximity of the pixels: [0 1]. That is the pixel next to the pixel of interest on the same row. This example specifies a different offset: two rows apart on the same column.

glcm = graycomatrix(I,'Offset',[2 0]) $glcm = 8 \times 8$ 0 . . .

Copyright 2012 The MathWorks, Inc.