北京化工大学 2017—2018 年第二学期

《计算方法》期末考试试卷

班级:		学号:			姓名:		分数:			
	题号	_		三	四	五.	六	七	总分	
	得分									
→ ,	一、填空题(每空4分,共24分)									
1.	将 3.14	2 作为π	的近似值	,它有()位有效数	数字。			
2.	已知 $f(1) = 0, f(-1) = -3, f(2) = 4$,则 $f(x)$ 的拉格朗日插值多项式为(),									
	计算 $f(0)$ 插值近似值为()。									
3.	Cotes 公式具有()阶代数精度。									
4.	设函数 $f(x)$ 可微,则求方程 $f(x) = 0$ 的根的牛顿迭代公式是()。									
5.	如果线性方程组的系数矩阵 A 为对称矩阵,可以通过()分解将矩阵分									
	解为 $A=LL^T$ 形式。									
	L、选择题(每空 4 分, 共 24 分)									
1.										
	A. 模型误差、观测误差、方法误差、舍入误差;									
	B. 模型误差、测量误差、方法误差、截断误差;									
	C. 模型误差、实验误差、方法误差、截断误差;									
	D. 模型误差、建模误差、截断误差、舍入误差。									
2.	由下列	数表	ı	ı	1	1	ı		ı	
		x	0	0.5	1	1.5	2	2.5		
		f(x)	-2	-1.75	-1	0.25	2	4.25		
	所确定的插值多项式的次数是()。									
	A. 2次 B. 3次 C. 4次 D. 5次									
3.	()可实	现将较低	精确度结	吉果通过 加	加权累加	获得较高	精度的结	洁果。	

A. 迭代法 B. 校正法 C. 松弛法 D. 分解法

用数值求积公式中的n点 Gauss 公式的代数精度为(

A. 2n+1 B. 2n-1

C. 2n

D. n+1

5. 关于线性方程组 $\begin{cases} 8x_1+3x_2=13\\ 2x_1+9x_2=-5 \end{cases}$,分别使用 Jacob 和 Gauss-Seidel 迭代方法,

关于两者的收敛性,说法正确的是()。

A. Jacob 迭代法收敛,Gauss-Seidel 迭代法收敛:

B. Jacob 迭代法收敛, Gauss-Seidel 迭代法发散;

C. Jacob 迭代法发散, Gauss-Seidel 迭代法收敛:

D. Jacob 迭代法发散, Gauss-Seidel 迭代法发散;

已知矩阵 $A = \begin{pmatrix} 0.6 & -0.5 \\ 0.1 & 0.3 \end{pmatrix}$,则 $\|A\|_1 \|A\|_\infty$ 分别是(

A. 0.7 和 0.4; B. 0.8 和 0.4; C. 0.8 和 1.1; D. 0.7 和 1.1

三、[10分] Simpson公式具有几次代数精度,并进行证明。

四、[10分]用Newton迭代法求解方程 $x^3-2x-5=0$ 在2.0 附近的实根(要求迭代2次, 结果保留到小数点后第三位)。

五、[10分]对下面线性方程组,用高斯-塞德尔迭代法写出其迭代格式并判断是否收 敛。

$$\begin{cases} x_1 + 0.4x_2 + 0.4x_3 = 1 \\ 0.4x_1 + x_2 + 0.8x_3 = 2 \\ 0.4x_1 + 0.8x_2 + x_3 = 3 \end{cases}$$

六、[10分]已知初值问题, $\begin{cases} y' = 6 - 3y, & 0 < x \le 0.4 \\ y(0) = 3 \end{cases}$,取步长h = 0.1,

用改进的 Euler 方法求上述初值问题的数值解。

七、[12分]编程实现解线性方程组的Dolittle算法。