

ADSP Framework RCG3AHFWN0201ZDP

User's Manual

RCG3AHFWN0201ZDPE

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Rev. 2.00 Dec, 2018

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
 - Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Trademarks

- Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
- Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
- Windows and Windows Media are registered trademarks of Microsoft Corporation in the United States and other countries.
- Android is a trademark of Google Inc. Use of this trademark is subject to Google permissions.
- All other company names and product names mentioned in this manual are registered trademarks or trademarks of their respective companies.
- The registered trademark symbol (®) and trademark symbol (™) are omitted in this manual.

How to Use This Manual

1. Purpose and Target Reader

This manual is designed to provide the user with an understanding of the interface specifications of the Software product. It is intended for users designing application systems incorporating the Software product. Please refer to the related documents with this product.

Use this Software after carefully reading the precautions. The precautions are stated in the main text of each section, at the end of each section, and in the usage precaution section.

The revision history summarizes major corrections and additions to the previous version. It does not cover all the changes. For details, refer to this manual.

Restrictions on the Use of this Middleware

Any customer who wishes to use this Software must obtain a software license from Renesas Electronics.

- 3. Related Manuals
- 4. Technical Terms and Abbreviation

All trademarks and registered trademarks are the property of their respective owners.

- Table of Contents -

1.	OVE	CRVIEW	3
	1.1. 1.2.	Overview The architecture of the Software and scope of this document	3
	1.3.	Specification overview	
	1.4.	Memory specification	
	1.4.	Interrupt specification	
	1.6.	Related documents	
	1.7.		
		Type definitions	
2.	SOF	TWARE SPECIFICATION	6
	2.1.	State transition	6
	2.1.	1. Initialization Stage	7
	2.1.	2. Runtime Initialization Stage	8
	2.1.		
	2.2.	Memory structure	
	2.3.	Message structure	
	2.4.	Opcodes	
	2.5.	Structures	
	2.6.	Messages	
	-	1. XF UNREGISTER	
	2.6.	-	
	2.6.	-	
	2.6.	-	
	2.6.	-	
	2.6.	-	
	2.6.		
	2.6.		
	2.6.		
		10. XF FILL THIS BUFFER	
		11. XF FLUSH	
		12. XF PAUSE	
		13. XF RESUME	
		-	
3.	NO	ΓES	9
	3.1.	Function Call	9
	3.2.	Other notes	
	3.2.		
	3.2.	,	
	3.2.		9
	3.2.		
			_

RENESAS

_	Lict	\circ f	Fig	ures	
_	LISU	ΟI	ΓIU	iui ES	_

Figure 1-1 The software architecture	
Figure 2-1 ADSP Plugin state transition	6
Figure 2-2 Initialization Stage flow chart	7
Figure 2-3 Runtime Initialization Stage flow chart	8
Figure 2-4 Execution Stage flow chart	9
Figure 2-5 Shared buffer structure	
Figure 2-6 The structure of message buffer	
1 : - + - 	
- List of Tables	-
Table 1-1 Specification overview	4
Table 1-1 Specification overview	4
Table 1-1 Specification overview	4 4 4
Table 1-1 Specification overview	4 4 4 5
Table 1-1 Specification overview Table 1-2 Memory map Table 1-3 Interrupt specification Table 1-4 Related documents Table 1-5 Type definitions	
Table 1-1 Specification overview	
Table 1-1 Specification overview Table 1-2 Memory map Table 1-3 Interrupt specification Table 1-4 Related documents Table 1-5 Type definitions Table 2-1 Shared buffer information Table 2-2 The list of macros to configure shared buffer	
Table 1-1 Specification overview Table 1-2 Memory map Table 1-3 Interrupt specification Table 1-4 Related documents Table 1-5 Type definitions Table 2-1 Shared buffer information Table 2-2 The list of macros to configure shared buffer Table 2-3 Explanation of message structure	
Table 1-1 Specification overview Table 1-2 Memory map Table 1-3 Interrupt specification Table 1-4 Related documents Table 1-5 Type definitions Table 2-1 Shared buffer information	

ADSP Framework User's Manual

RCG3AHFWN0201ZDPE Rev. 2.00

Dec. 25, 2018

1. Overview

1.1. Overview

In this chapter, overview of ADSP Framework is explained. All expression in this manual is based on default parameters. If the software is customized from original source code, make the appropriate change according to the customization.

1.2. The architecture of the Software and scope of this document

The architecture of ADSP Framework is shown in Figure 1-1. ADSP Framework is a software which operates on ADSP and control ADSP Plugin according to messages from ADSP Interface.

Figure 1-1 The software architecture

1.3. Specification overview

Table 1-1 shows the specification overview of ADSP Framework.

Table 1-1 Specification overview

Item	Outline
DSP	HiFi2 by Cadence Design Systems, Inc.
IDE	Xtensa Xplorer 7.0.4 (RG-2016.4)
Configuration	hifi2_rcar_rg20164c
Memory map	adspfwk_r001c
Interrupt	call0 ABI
Compiler	Xtensa C and C++ Compiler (Version 12.0.4)
Endian	Little endian
OS	XOS by Cadence Design Systems, Inc.

[note1] This software adopts call0 ABI. Windowed ABI is not supported.

[note2] This software adopts XOS. XTOS is not supported. XTHAL can also be used.

1.4. Memory specification

Table 1-2 Memory specification of ADSP Framework. See 2.2 for the structure of shared buffer area.

Table 1-2 Memory map

Allocation Item		Cache type	start address	size
	I-TCM0	I	0xECE8_0000	0x0001_0000
Internal	I-TCM1	I	0xECE9_0000	0x0001_0000
memory	D-TCM0	I	0xECE7_8000	0x0000_8000
	D-TCM1	I	0xECE6_0000	0x0001_0000
	Debug area	Read Cache / Writeback Cache	0x5700_0000	0x0010_0000
External memory	Code area	Read Cache / Writeback Cache	0x5710_0000	0x0030_0000
	Shared buffer area	Read Cache / Writeback Cache	0x5740_0000	0x00C0_0000

1.5. Interrupt specification

Table 1-3 Interrupt specification shows the interrupts used by ADSP Framework.

Table 1-3 Interrupt specification

table 1 b Interrupt opecineation					
No.	type	source	direction	usage	
15	edge	IRQIN_SET[0]	CPU to ADSP	send command	
_	Level	IRQOUT_SET	ADSP to CPU	send response	
0	Level	Output FIFO 0	FIFO→ADSP	Output FIFO 0 Interrupt	
1	Level	Input FIFO 0	FIFO→ADSP	Input FIFO 0 Interrupt	
2	Level	Output FIFO 1	FIFO→ADSP	Output FIFO 1 Interrupt	
3	Level	Input FIFO 1	FIFO→ADSP	Input FIFO 1 Interrupt	
4	Level	Output FIFO 2	FIFO→ADSP	Output FIFO2 Interrupt	
5	Level	Input FIFO 2	FIFO→ADSP	Input FIFO 2 Interrupt	
8	Level	Output FIFO 3	FIFO→ADSP	Output FIFO 3 Interrupt	
9	Level	Input FIFO 3	FIFO→ADSP	Input FIFO3 Interrupt	

1.6. Related documents

Table 1-4 shows related documents and references.

Table 1-4 Related documents

No.	Name	Published by
[1]	R-Car Series, 3rd Generation User's Manual: Hardware	Renesas Electronics Corporation
[2]	Xtensa® LX4 Microprocessor Data Book	Tensilica, Inc.
[3]	Xtensa® XOS Reference Manual	Cadence Design Systems, Inc.
[4]	Xtensa® System Software Reference Manual	Cadence Design Systems, Inc.

1.7. Type definitions

Table 1-5 shows the type definitions used by ADSP Framework.

Table 1-5 Type definitions

145.6 1 5 1/16 46					
Type	Size [byte]	Description			
s8	1	signed 8bit integer	-128	to	127
s16	2	signed 16bit integer	-32768	to	32767
s32	4	signed 32bit integer	-214748364 8	to	2147483647
u8	1	unsigned 8bit integer	0	to	255
u16	2	unsigned 16bit integer	0	to	65535
u32	4	unsigned 32bit integer	0	to	4294967295

[note] The size of pointer depends on the architecture this software is used.

2. Software specification

ADSP Framework is an event-driven framework. Commands are stored in shared buffer, and their execution is triggered by interruption to ADSP Framework. When ADSP Framework notifies information, the information is stored in shared buffer and then is performed by storing information to shared buffer and ADSP Framework issues interrupt.

2.1. State transition

Figure 2-1 shows state transition of each ADSP Plugin. See 2.1.1, 2.1.2 or 2.1.3 for the flows in each stage.

Figure 2-1 ADSP Plugin state transition

2.1.1. Initialization Stage

Figure 2-2 Initialization Stage flow chart

Initialization Stage performs allocation of resources for ADSP Plugin and configures static parameters. This stage consists of the following steps.

- (1) API Handle Allocation
 - It is the start of ADSP Plugin lifecycle. It requires the size of ADSP Plugin API structure.
- Pre-Initialization
 - It is the entry point for ADSP Plugin. It initializes the API structure allocated by ADSP Framework and configures the default value.
- (3) Configuration
 - It configures the static parameters of ADSP Plugin.
- (4) Post-Initialization
 - It means the configure of the static parameters is finished. It fixes persistent area, scratch area and input buffer area. The size of each buffer can't be increased after this step.
- (5) Memory Allocation
 - ADSP Framework allocates ADSP Plugin buffer and registers it to ADSP Plugin. It is possible to exchange data with ADSP Plugin after this step.

2.1.2. Runtime Initialization Stage

Figure 2-3 Runtime Initialization Stage flow chart

Runtime Initialization Stage performs configuration of parameter which depends on input data and so on. It checks input data but never make output data.

2.1.3. Execution Stage

Figure 2-4 Execution Stage flow chart

Execution Stage performs ADSP Plugin processing. The way to process input and output data in ADSP Plugin should be determined at the beginning of this stage.

ADSP Framework usually processes input and output data successively except when a physical cause inputs or outputs data e.g. Renderer plugin and Capturer plugin.

When ADSP Framework receives notification that input data is ended (see 2.6.9), it provides all input data, output all output data, and then finishes this stage. After this stage is finished, it is necessary to shift the state to Runtime Initialization Stage to run ADSP Plugin process.

It is possible to shift the state to Runtime Initialization Stage (see 2.6.10) at any time in this stage.

2.2. Memory structure

Figure 2-5 shows the memory structure of shared buffer in ADSP Framework. Table 2-1 shows the default configuration of the shared buffer. It is possible to extend the size of control area and data area in total up to 12 MB. Table 2-2 shows the macro which defines buffer.

Figure 2-5 Shared buffer structure

Table 2-1 Shared buffer information

Table 2 1 Shared Barrer Information					
type	buffer size	number of buffers	total size	remarks	
command control area	16	256	4,096	shared buffer information	
	8	1	8	index information	
response control area	16	256	4,096	shared buffer information	
•	8	1	8	index information	
data area	ı	_	262,144	shared buffer information	

[note] There may be padding area between each area though not shown in Figure 2-5.

Table 2-2 The list of macros to configure shared buffer

macro	initial value	remarks
XF_PROXY_DATA_ADDRESS	0x57400000	The start address of shared buffer
XF_PROXY_DATA_SIZE	0xC00000	The size of shared buffer
XF_PROXY_MESSAGE_QUEUE_LENGTH	256	The number of communication control area
XF_CFG_REMOTE_IPC_POOL_SIZE	262,144	The effective size of data area

2.3. Message structure

Figure 2-6 The structure of message buffer

Table 2-3 Explanation of message structure

Member	Outline
next	This is the pointer to point to next item in the list.
id	This is the ID for internal administration. Users need not take care of it.
	This is message opcode. See 2.4 for details.
opcode	It is configured according to "opcode" parameter when xf_command in ADSP
	Interface is executed.
length	It is configured according to "length" parameter when xf_command in ADSP
length	Interface is executed.
address	It is configured according to "buffer" parameter when xf_command in ADSP
address	Interface is executed.
buffer	This is the buffer used for communication. The structure changes according to
Dullei	opcode.

2.4. Opcodes

Table 2-4 shows the opcodes provided by this software. See 2.6 for details.

Table 2-4 Opcodes

Opcodes	Outline
XF_UNREGISTER	This opcode unregisters client.
XF_REGISTER	This opcode registers client.
XF_ROUTE	This opcode connects the ports between 2 ADSP plugin.
XF_UNROUTE	This opcode disconnects the connection between the ports of 2 ADSP plugin.
XF_ALLOC	This opcode allocates shared memory buffer.
XF_FREE	This opcode deallocates the shared memory buffer.
XF_SET_PARAM	This opcode sets parameters.
XF_GET_PARAM	This opcode gets parameters.
XF_EMPTY_THIS_BUFFER	This opcode sends input buffer. It also notifies the end of file by sending buffer with 0 byte data.
XF_FILL_THIS_BUFFER	This opcode sends output buffer. It also shifts the state of ADSP Plugin to Runtime Initialization Stage by sending buffer with 0 byte data.
XF_FLUSH	This opcode clears buffers for specific port.
XF_PAUSE	This opcode pause component operation.
XF_RESUME	This opcode resumes component operation.

2 **Software** specification

2.5. Structures

Table 2-5 shows the structures to define the structure of buffer. See 2.6 for details.

Table 2-5 Structures

Name	Outline	Remarks
xf_set_param_msg_t	Structure for XF_SET_PARAM	
xf_get_param_msg_t	Structure for XF_GET_PARAM	
xf_start_msg_t	Structure for Runtime Initialization Stage	It is used for response transmit when Runtime Initialization Stage is finished.
xf_user_msg_t	Structure for user message	Used for response transmit.

2.6. Messages

Below show the expression of message specification in this chapter.

Template for this chapter:

Command code for opcode parameter of xf_command in ADSP Interface.		
Synopsis	Explanation of command code	
Buffer	Duffer structure for buffer negree of vf. semmend in ADCD Interfers	
structure	Buffer structure for buffer parameter of xf_command in ADSP Interface.	
Parameters	Explanation of each parameter in buffer structure	

2.6.1. XF_UNREGISTER

XF_UNREGISTE	XF_UNREGISTER		
Synopsis	This opcode sends XF_UNREGISTER message to ADSP Plugin. It will terminate component and used to generate error-response message for originator.		
Buffer structure	None		
Parameters	None		

2.6.2. XF_REGISTER

XF_REGISTER			
Synopsis	This opcode sends XF_REGISTER message to ADSP Plugin. It will allocate new client id and create new component along with its port specification.		
Buffer structure	void *buffer		
Parameters	buffer	ID string of component.	

2.6.3. XF_ROUTE

XF_ROUTE				
	This opcode se	nds XF_ROUTE message to ADSP Plugin.		
Synopsis	It routes outp	ut port and create message to communicate between 2 ADSP		
	plugins.			
	typedef struct	t xf_route_port_msg		
	{			
	u32 src;	u32 src;		
Buffer	er u32 dst;			
structure	u32 alloc_number;			
	u32 alloc_size;			
	u32 alloc_align;			
	} xf_route_port_msg_t;			
	src	Source port specification.		
Parameters	dst	Destination port specification.		
	_alloc_number	Number of buffers to allocate.		
	alloc_size Length of buffers to allocate.			
	alloc_align	Alignment restriction for a buffer.		

2.6.4. XF_UNROUTE

XF_UNROUTE			
Synopsis	This opcode sends XF_UNROUTE message to ADSP Plugin. It un-routes output port and destroy all memory buffers allocated between 2 ADSP plugin.		
Buffer structure	<pre>typedef struct xf_unroute_port_msg { u32 src; u32 dst; } xf_unroute_port_msg_t;</pre>		
Parameters	src	Source port specification.	
	dst	Destination port specification.	

2.6.5. XF_ALLOC

XF_ALLOC	
Synopsis	This opcode sends XF_ALLOC message to ADSP Plugin. It allocates shared memory buffer. Both CPU and ADSP can read and write in this area.
Buffer structure	None
Parameters	None

2.6.6. XF_FREE

XF_FREE	E			
Cyponeie	This opcod	This opcode sends XF_FREE message to ADSP Plugin.		
Synopsis	It will free	It will free shared memory area.		
Buffer	void *buffer			
structure	vota .parter			
Parameters	buffer	Pointer to point to the shared memory.		

2.6.7. XF_SET_PARAM

XF_SET_PARAM	М	
Synopsis	This opcode sends XF_SET_PARAM message to ADSP Plugin. It can send multiple sub-commands and parameters at a time by adding the	
Зупорыз	number of items.	
Buffer structure	'	
	<pre>typedef struct xf_set_param_msg { xf_set_param_item_t item[0]; } xf_set_param_msg_t;</pre>	
Parameters	id	Sub-command to ADSP Plugin
raiameters	value	Parameters to ADSP Plugin

2.6.8. XF_GET_PARAM

XF_GET_PARAM		
	This opcode sends XF_GET_PARAM message to ADSP Plugin.	
Synopsis	It can send / receive multiple sub-commands and parameters at a time by adding the number of ids.	
Buffer structure	<pre>adding the number of ids. typedef union xf_get_param_msg { struct { u32 id[0]; } c; struct { u32 value[0]; } r; } xf_get_param_msg_t;</pre>	
Parameters	id Sub-command to ADSP Plugin	
	value Parameters received from ADSP Plugin by callback.	

2.6.9. XF_EMPTY_THIS_BUFFER

XF_EMPTY_THIS_BUFFER		
	This opcode sends XF_EMPTY_THIS_BUFFER message to ADSP Plugin. There are 2 usages for this message.	
Synopsis	(1) It sends the data in buffer as input buffer. The size is defined by length parameter.(2) It notifies the end of data when buffer is set to NULL and length parameter in xf command is set to 0.	
Buffer structure	void *buffer;	
Parameters	buffer	Buffer to send to ADSP Plugin

2.6.10. XF_FILL_THIS_BUFFER

XF_FILL_THIS_BUFFER		
Synopsis	(1) It send parameter. (2) It shift	e sends XF_FILL_THIS_BUFFER message to ADSP Plugin. 2 usages for this message. ds the data in buffer as output buffer. The size is defined by length state of ADSP Plugin to Runtime Initialization Stage and notifies mation by callback function when length parameter in xf_command is
Buffer structure	void *buffer;	
Parameters	buffer Buffer to send to ADSP Plugin	

2.6.11. XF_FLUSH

XF_FLUSH					
Synopsis	This opcode sends XF_FLUSH message to ADSP Plugin. It is mainly used for trick-play. It deletes the buffer send by XF_EMPTY_THIS_BUFFER immediately and call callback functions of each buffer.				
	When output port of ADSP Plugin is connected to the input port of another plugin, the command propagates to other plugins successively. If output port is not connected to other plugins, it calls callback function in this message.				
Buffer structure	None				
Parameters	None				

2.6.12. XF_PAUSE

XF_PAUSE					
	This opcode sends XF_PAUSE message to ADSP Plugin.				
Synopsis	It stops consumption of input buffer and transmitting of output buffer in ADSP Plugin. While pausing, it is possible to send new input buffer and output buffer to ADSP Plugin.				
Buffer structure	None				
Parameters	None				

2.6.13. XF_RESUME

XF_RESUME					
Synopsis	This opcode sends XF_RESUME message to ADSP Plugin.				
	It resumes ADSP Plugin pause.				
Buffer	None				
structure	None				
Parameters	None				

3. Notes

This section describes the notice of developing user programs.

3.1. Function Call

User programs which call the functions in this specification should obey the calling rules of compiler.

3.2. Other notes

3.2.1. Allocation of memory

Before calling the functions in this specification, allocate necessary memory area and each structure used for the parameters of each function.

3.2.2. Out of range memory access

The functions in this specification never access out of allocated memory or related I/O.

3.2.3. Combination with other applications

Take care not to duplicate symbol names when other applications are combined with other programs.

3.2.4. Monitoring on Performance

The products embedding this Software shall observe performance of the Software periodically with Watch Dog timer or such functions in order not to damage system performance.

Rev.	Date	Description		
		Page	Summary	
1.00	Jan. 29, 2018	ı	New Create	
1.01	Jun. 28, 2018	ı	Style Modify	
2.00	Dec. 25, 2018	-	Official Release	

ADSP Framework User's Manual

Publication Date: Dec. 25, 2018 Rev. 2.00

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.

ルネサスエレクトロニクス株式会社 ^{営業お問合せ窓口} http://www.renesas.com

営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口:https://www.renesas.com/contact/		

ADSP Framework RCG3AHFWN0201ZDP

