Aufgabe	3.1	3.2	3.3	Z3.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 3

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 3.1 (Regularität von Maßen)

5 Punkte

Sei X ein metrischer Raum und sei $\mu \colon \mathscr{B}(X) \longrightarrow [0, \infty]$ ein σ -endliches Maß. Zeigen Sie, dass μ ein reguläres Maß ist, das heißt, dass für alle $A \in \mathscr{B}(X)$ gilt

$$\mu(A) = \sup\{\mu(K) : K \subset A, K \text{ abgeschlossen}\} = \inf\{\mu(U) : A \subset U, U \text{ offen}\}.$$
 (1.1)

Hinweis: Der Fall für endliche Maße ist im Skript unter Proposition 2.19 behandelt und Sie dürfen die Aussage für endliche Maße auch ohne Beweis benutzen.

Aufgabe 3.2 (Hausdorff-Dimension)

5 Punkte

Zu $s \geq 0$ bezeichne \mathscr{H}^s das Hausdorff–Maß aus Aufgabe 2.2. Zu $A \subset \mathbb{R}$ definieren wir die Hausdorff–Dimension von A durch

$$\dim(A) := \inf\{s \ge 0 : \mathcal{H}^s(A) = 0\}. \tag{2.1}$$

- a) Zeigen Sie, dass $\mathcal{H}^s = 0$ für s > 1.
- b) Sei $A \subset \mathbb{R}$. Zeigen Sie: Falls ein $s^* \geq 0$ existiert, so dass $\mathscr{H}^{s^*}(A) < \infty$, dann ist $\mathscr{H}^s(A) = 0$ für alle $s > s^*$.
- c) Sei $A \subset \mathbb{R}$. Zeigen Sie: Falls ein $s^* > 0$ existiert, so dass $\mathscr{H}^{s^*}(A) > 0$, dann ist $\mathscr{H}^s(A) = \infty$ für alle $s < s^*$.
- d) Sei $A \subset \mathbb{R}$ höchstens abzählbar. Bestimmen Sie dim(A).
- e) Sei $\Omega \subset \mathbb{R}$ nicht-leer und offen. Bestimmen Sie dim (Ω) .

Aufgabe 3.3 (Lebesgue-, aber nicht Borel-messbare Menge)

5 Punkte

Sei $f_k : [0,1] \longrightarrow [0,1]$ definiert durch

$$f_0(x) \coloneqq x, \qquad f_{k+1}(x) \coloneqq \begin{cases} \frac{1}{2} f_k(3x) & \text{für alle } x \in [0, \frac{1}{3}), \\ \frac{1}{2} & \text{für alle } x \in [\frac{1}{3}, \frac{2}{3}], \\ \frac{1}{2} (1 + f_k(3x - 2)) & \text{für alle } x \in (\frac{2}{3}, 1]. \end{cases}$$
(3.1)

a) Zeigen Sie mittels Fallunterscheidung

$$\max_{x \in [0,1]} |f_{k+1}(x) - f_k(x)| \le \frac{1}{2} \max_{x \in [0,1]} |f_k(x) - f_{k-1}(x)| \qquad \text{für alle } k \in \mathbb{N}.$$
 (3.2)

b) Zeigen Sie, dass die Folge f_k gleichmäßig gegen eine stetige und monoton steigende Funktion $f: [0,1] \longrightarrow [0,1]$ konvergiert.

Wir definieren nun $g \colon [0,1] \longrightarrow [0,1]$ durch

$$g(y) := \inf\{x \in [0,1] : f(x) = y\}$$
 für alle $y \in [0,1],$ (3.3)

wobei $f: [0,1] \longrightarrow [0,1]$ den Grenzwert aus b) bezeichnet.

Abgabe bis spätestens 26.11.2020, 18:00 Uhr in Moodle.

- c) Zeigen Sie, dass $f \circ g = \text{id}$ und folgern Sie hieraus, dass g injektiv ist.
- d) Zeigen Sie, dass g eine Borel-messbare Funktion ist, und dass $g([0,1]) \subset \mathcal{C}$, wobei \mathcal{C} die Cantormenge aus Lemma 2.20 bezeichnet.
- e) Sei $V \subset [0,1]$ eine nicht Lebesgue-messbare Menge. Zeigen Sie, dass g(V) Lebesgue-, aber nicht Borel-messbar ist.

Zusatzufgabe 3.1 (Messbarkeitskriterium für Erzeugendensystem) **3 Punkte** Seien (X, \mathscr{E}) und (Y, \mathscr{F}) zwei messbare Räume und sei $\mathscr{A} \subset \mathscr{F}$ mit $\sigma(\mathscr{A}) = \mathscr{F}$. Zeigen Sie, dass eine Funktion $f \colon X \longrightarrow Y$ genau dann $(\mathscr{E}, \mathscr{F})$ messbar ist, wenn $f^{-1}(\mathscr{A}) \subset \mathscr{E}$.