The 3-Coloring Problem

- Let G = (V, E) be an undirected graph
- ▶ A 3-coloring of *G* assigns one of three colors to each vertex in *V* in such a way that no edge in *E* connects two vertices with the same color
- ► The search version of the 3-coloring problem asks us to find a 3-coloring of *G*, or determine that no such 3-coloring exists
- ► The decision version of the 3-coloring problem, denoted 3-COL, asks us to determine whether *G* admits a 3-coloring
- ► Exercise: Prove that if 3-COL is in P, then the search version of the 3-coloring problem can be solved in polynomial time

3-COL is NP-Complete

- Exercise: Describe a polynomial-time verifier for 3-COL
- We will prove that 3-SAT ≤_P 3-COL
 - Since 3-COL belongs to NP and 3-SAT is NP-complete, we conclude that 3-COL is NP-complete
- ► A significant fraction of NP-completeness proofs appearing in the literature are based on reductions from 3-SAT
 - ▶ The high-level structure of our "gadget-based" proof that $3\text{-SAT} \leq_P 3\text{-COL}$ is typical of such reductions

A "Gadget-Based" Transformation from 3-SAT to 3-COL

- ▶ Let f be a given 3-CNF formula
- We wish to transform (in polynomial time) f to a graph G = (V, E) such that f is satisfiable if and only if G is 3-colorable
- ▶ The graph *G* is based on two kinds of "gadgets"
 - ▶ A gadget for each variable *x* in *f* that determines a truth assignment for *x* from any 3-coloring of *G*
 - ► For each clause *C* in *f*, there is a gadget that enforces the requirement that at least one literal in *C* is true

Inducing a Truth Assignment from a 3-Coloring

- ► Let us refer to the three colors as TRUE (true), FALSE (false), and RED (red)
- For each variable x in f, we add two vertices x and x' to V
 - Vertex x is intended to represent the literal x
 - ▶ Vertex x' is intended to represent the literal $\neg x$
- ▶ How can we ensure that in any 3-coloring of *G*, either *x* gets color TRUE and *x'* gets color FALSE, or *x* gets color FALSE and *x'* get color TRUE?
 - Strictly speaking, this is impossible, since we can always permute the colors in any 3-coloring

Canonicalizing the Coloring

- ▶ We add three distinguished vertices called TRUE, FALSE, and RED to V, and add edges (TRUE, FALSE), (TRUE, RED), and (FALSE, RED) to E
- Any 3-coloring has to assign distinct colors to these three vertices
- ▶ Without loss of generality, we can assume that vertex TRUE is colored TRUE, vertex FALSE is colored FALSE, and vertex RED is colored RED

The Variable Gadget

- Recall that for any variable x in f, we have added vertices x and x' to V
- ▶ We wish to ensure that in any 3-coloring of *G*, either *x* gets color TRUE and *x'* gets color FALSE, or *x* gets color FALSE and *x'* get color TRUE
 - ▶ By adding edge (x, x') to E, we ensure that vertices x and x' are colored differently
 - ▶ By adding edges (x, RED) and (x', RED) to E, we ensure that neither x nor x' is colored RED

The "Core" of G

- ► Let *n* denote the number of variables in the given 3-CNF formula
- ▶ So far, we have added 2n + 3 vertices to V and 3n + 3 edges to E
- ▶ We refer to this subgraph of (the eventual) G as the core

The Clause Gadget: High-Level Plan

- For each clause C in f, we will add a "clause gadget" to G consisting of a set of vertices V_C and a set of edges E_C
 - ▶ Each edge in E_C will either have both endpoints in E_C or one endpoint in V_C and the other endpoint in the core
 - ▶ We refer to this as the isolation property of the clause gadgets
- ▶ We will design V_C and E_C so that a 3-coloring ϕ of the core can be extended to the clause gadget for C if and only if the truth assignment induced by ϕ satisfies clause C
 - Extending ϕ to the clause gadget for C means assigning colors to V_C such that u and v are assigned distinct colors for each edge (u,v) in E_C

The Clause Gadget: High-Level Plan (cont'd)

- Assume that we can design such a clause gadget
- Let σ be a satisfying truth assignment for f
 - $ightharpoonup \sigma$ corresponds to a specific 3-coloring ϕ' of the core of G
 - ϕ' can be extended to a 3-coloring ϕ that covers all of the clause gadgets (i.e., a 3-coloring of G), due to the isolation property
- ▶ Let ϕ be a 3-coloring of G
 - ϕ induces a coloring ϕ' of the core of G
 - $\blacktriangleright \ \phi'$ corresponds to a specific truth assignment σ to the variables of f
 - lacktriangle Since the 3-coloring ϕ' of the core can be extended to a 3-coloring of all the clause gadgets, σ is a satisfying assignment for f

Construction of V_C and E_C

- ▶ Let $C = \ell_1 \lor \ell_2 \lor \ell_3$ be a clause in f
- Our clause gadget is the union of three "chunks" and one "star"
- Let $V_C^{(i)}$ and $E_C^{(i)}$ denote the vertex and edge sets of chunk i for $1 \le i \le 3$
- ▶ Each set $V_C(i)$ will include a special vertex C_i
- ▶ For any chunk i, $1 \le i \le 3$, each edge in $E_C^{(i)}$ will either have both endpoints in $V_C(i)$, or will have one endpoint in $V_C(i)$ and one endpoint in the core
 - ▶ Thus, if we can extend a given 3-coloring ϕ of the core to any single chunk C_i in k_i different ways, then we can extend ϕ to $C_1 \cup C_2 \cup C_3$ in $\prod_{1 \le i \le 3} k_i$ ways

Construction of V_C and E_C (cont'd)

- lackbox We will design chunk 1 so that given any 3-coloring ϕ of the core
 - ▶ If ℓ_1 is colored FALSE in ϕ , then C_1 needs to be colored RED in any valid extension of ϕ that colors chunk 1
 - ▶ If ℓ_1 is colored TRUE in ϕ , then there are valid extensions of ϕ that color chunk 1 and color C_1 differently
- ▶ We will design chunk 2 (resp., 3) to satisfy the same properties except that when ℓ_2 (resp., ℓ_3) is colored FALSE, then C_2 has to be colored TRUE (resp., FALSE)
- Assuming that we can achieve these properties, how should we construct the final "star" component of the clause gadget for C?

Construction of the "Star" Component

- ▶ The star component consists of a vertex C_0 and the three edges (C_0, C_1) , (C_0, C_2) , and (C_0, C_3)
- Let φ be a 3-coloring of the core such that every literal in C is colored FALSE
 - ▶ The properties of the chunks ensure that C_1 , C_2 , and C_3 are assigned distinct colors in any valid extension of ϕ that colors the three chunks
 - lacktriangle Thus no valid extension of ϕ colors the entire clause gadget

Construction of the "Star" Component (cont'd)

- Let ϕ be a 3-coloring of the core such that at least one literal in C is colored True
 - ▶ The properties of the chunks ensure that some valid extension of ϕ colors the three chunks and uses at most two colors to color vertices C_1 , C_2 , and C_3
 - \blacktriangleright Thus there is a valid extension of ϕ that colors the entire clause gadget

What's Left?

► We just need to show how to construct chunks 1, 2, and 3 with the desired properties

Construction of Chunk 1

• We can set $V_C^{(1)}$ to $\{C_1\}$ and $E_C^{(1)}$ to

$$\{(\mathit{C}_1,\ell_1),(\mathit{C}_1,\mathrm{TRUE})\}$$

- ▶ If ℓ_1 is colored FALSE, then C_1 has to be colored RED
- ▶ If ℓ_1 is colored True, then C_1 can be colored Red or False

Construction of Chunk 2

lacksquare We can set $V_C^{(2)}$ to $\{C_2,C_4\}$ and $E_C^{(2)}$ to

$$\{(\textit{C}_2,\textit{C}_4),(\textit{C}_2,\mathrm{FALSE}),(\textit{C}_4,\ell_2),(\textit{C}_4,\mathrm{TRUE})\}$$

- ▶ If ℓ_2 is colored FALSE, then C_4 has to be colored RED and hence C_2 has to be colored TRUE
- ▶ If ℓ_2 is colored TRUE, then C_4 can be colored RED or FALSE and hence C_2 can be colored TRUE or RED

Construction of Chunk 3

lacksquare We can set $V_C^{(3)}$ to $\{C_3,C_5\}$ and $E_C^{(3)}$ to

$$\{(\textit{C}_{3},\textit{C}_{5}),(\textit{C}_{3},\mathrm{True}),(\textit{C}_{5},\ell_{3}),(\textit{C}_{5},\mathrm{True})\}$$

- ▶ If ℓ_3 is colored FALSE, then C_5 has to be colored RED and hence C_3 has to be colored FALSE
- ▶ If ℓ_3 is colored TRUE, then C_5 can be colored RED or FALSE and hence C_3 can be colored FALSE or RED

Some Complexity Classes beyond P

- ▶ Thus far we have discussed the classes P and NP, as well as the class of NP-complete languages
- ▶ The class co-NP is defined as the set of all languages L such that the complement of L (i.e., the set of all strings not in L) belongs to NP
- ▶ It is widely believed that $P \neq NP$ and $NP \neq co-NP$
 - ▶ If P = NP then NP = co-NP, but the converse does not necessarily hold

NP-Intermediate

- Languages that are in NP and not in P are called NP-intermediate
 - ▶ Of course, this class is empty if NP = P
- Candidate NP-intermediate languages include languages related to cryptographic problems like factoring and discrete log
- ► Another well-known candidate is graph isomorphism
 - ▶ In a recent breakthrough result, Babai presented an algorithm with running time $\exp((\log n)^{O(1)})$

The Polynomial Hierarchy

- ▶ A canonical NP-complete language is satisfiability, which asks whether $\exists x_1 \dots \exists x_n f(x_1, \dots, x_n)$ where f is a propositional formula in the variables x_1, \dots, x_n
- Likewise, a canonical co-NP-complete language is $\forall x_1 ... \forall x_n f(x_1, ..., x_n)$?
- By introducing more alternations, we get other classes
 - The class where we start with existential quantification and have k levels of quantifiers is sometimes denoted Σ_k
 - ► The class where we start with universal quantification and have k levels of quantifiers is sometimes referred to as Π_k
- ► The "polynomial hierarchy" refers to the collection of all of these classes, over all *k*

PSPACE and Beyond

- PSPACE is the class of all languages decidable in polynomial space
- ▶ A canonical complete language for PSPACE is $\exists x_1 \forall x_2 ... \forall x_{2n} f(x_1, ..., x_{2n})$
- It is an open question whether P = PSPACE
- There are many other complexity classes beyond PSPACE
 - ► For example, EXPTIME is the class of all languages that can be decided in exponential time
 - ▶ It is easy to argue that EXPTIME contains PSPACE
 - ▶ It is an open question whether EXPTIME is equal to PSPACE
 - The "time hierarchy theorem" implies that EXPTIME properly contains P