

ICNT8725 Capacitive Touch IC Specifications For Phone

ICNT8725

Model No : ICNT8725

Document Version: V0.2

Release Date : 2016/04/01

Index

1, Description4	-
2、Typical Application4	-
3、Functional Description5	2
3.1、Block Diagram5	-
3.2、Serial Interface(I ² C)	-
4、Electrical Specifications7	-
4.1、Absolute Maximum Ratings7	-
4.2、DC Electrical Characteristics8	-
4.3、AC Electrical Characteristics8	-
4.4、Circuit diagram9	-
5、PIN DESCRIPTION	-
6、Package Outline12	-
7、Important Notice13	_

Features

- ♦ Mutual capacitive technology
- ♦ Support Glass/Film DITO and SITO, OGS
- ♦ Support Single-Layer Multi-Touch Glass & Film ITO sensor
- ♦ Support I²Cinterfaces to communicate with host processor
- ♦ Built-in MCU and DSP, 4KB of data SRAM
- ♦ True multi-touch with up to 10 points
- ♦ 3 operating modes
 - Active
 - Gesture
 - Hibernate
- ♦ Support I²C wake and GPIO wake
- ♦ Operating voltage 2.8 to 3.3V
- ♦ Supports 1.8V/3.3Vdigital IOVCC
- ♦ I²C interface (up to 400kbps)
- ♦ User-Programmable scan sequences
- ♦ Programmable capacitance resolution
- ♦ Large dynamic range of ADC
- ♦ Insensitive to environment variations and touch variations
- ♦ Auto calibration
- ♦ Auto Frequency-Hopping

Version: 0.1 2015-12

1. Description

ICNT8725 is the low power, general purpose capacitive controller with a built-in 32bit MCU, the high performance ADC and digital filters. By using the mutual capacitance technique, ICNT8725 support true multi-touch capability. The ICNT8725 have user-friendly input functions, which can be applied on many portable devices, especially for tablets.

2. Typical Application

ICNT8725 accommodates a wide range of applications with a multi-touch sensing device.

- ➤ Mobile phones, smart phones
- Portable MP3 and MP4 media players
- Digital cameras
- ➤ Game consoles
- Navigation systems
- Information kiosks
- > Keyboard, keypad, mouse, remote control
- ➤ House appliances
- ➤ Home entertainment devices

ICNT8725 support 4.5"~7.0" touch panel, users may find out their target IC from the specs listed as follows.

Model Name	Char	nnels	Package			Touch Panel Size
woder Name	TX	RX	Туре	Pin	Size	Touch Fanel Size
IONITOZOE	10		OEN	40		4.5" ~ 5.5"(Phone)
ICNT8725	18	12	QFN	40	5*5	6.0" ~ 7.0"(Tablets)

3, Functional Description

3.1 Block Diagram

ICNT8725 can be divided into the following functional blocks:

- Touch Panel Interface
 The channel signal is converted by ADC to the digital signal
- Data Memory
 Touch panel data buffer
- MCU
 32-bit MCU core with 4KBdata SRAM
- Watch Dog TimerTo guarantee the robustness of the chip
- Voltage Regulator
 To generate voltage for internal module from the input VDDA supply
- External Interface
 - ➤ I²C: interface for system control and data transfer
 - ➤ INT/WAKE: interrupt signal to inform the host processor that touch data is ready or wakeup request for the host to change ICNT8725 from hibernate to active mode
 - > /RST: external signal to reset the chip, active low

3.2. Serial Interface $\overline{(I^2C)}$

The I2C operation is the single byte mode. Under single byte mode, MCU will enter interrupt service routine by every byte transaction.

Figure 3-1 I²C Signal Description

Figure 3-2 I²C single byte write operation

Figure 3-2above illustrates the single byte write transaction scenario. The I^2C start / stop interrupt occurs at the start and stop stage to notify MCU the protocol status. And there will be a write interrupt to notify MCU after I^2C master writes each byte to slave. Before MCU read RXDAT, the SCL will be held automatically.

Figure 3-3 I²C single byte read operation

Figure 3-3above illustrates the single byte read transaction scenario. The I^2C start / stop interrupt occurs at the start and stop stage to notify MCU the protocol status. And there will be a read interrupt to notify MCU before I^2C master fetches expected data from slave. Before MCU writes TXDAT, the SCL will be held automatically. The last NAK before stop will not trigger read interrupt.

Parameter	Description	Min	Max	Unit
F_{SCL}	SCL clock frequency		400	kHz
T_{LOW}	Low period of SCL clock	1.3		μs
T_{HIGH}	High period of SCL clock	0.6		μs
T_{SU_STA}	Set-up time for a repeated start	0.6		μs
T _{HD_STA}	Hold time (repeated) start condition.	0.6		μs
T_{SU_DAT}	Data set-up time	0.1		μs
T_{HD_DAT}	Data hold time	0.6	0.9	μs
T_R	Rise time of SDA and SCL		300	ns
T_{F}	Fall time of SDA and SCL		300	ns
T _{SU_STO}	Set-up time for stop condition	0.6		μs
$T_{ m BUF}$	Bus free time between a stop and start	1.3		μs

Table 3-1 AC Characteristics of the I²C interface

4. Electrical Specifications

4.1. Absolute Maximum Ratings

Parameter	Description	Min	Тур	Max	Unit	Notes
T_{A}	Ambient temperature	-40		85	${\mathbb C}$	Recommend
	with power applied	1				-25°C~85°C
T_{STG}	Storage temperature	-55		150	$^{\circ}$	
VDDA - VSSA	Power Supply Voltage	-0.3		3.3	V	
ESD	Electrostatic discharge	2			kV	НВМ
LSD	voltage of whole chip	2			K V	1111111

Notes

^{1.}If used beyond the absolute maximum ratings, ICNT8725 may be permanently damaged. It is strongly recommended that the device be used within the electrical characteristics in normal operations. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

^{2.}Make sure VDDA(high)≥VSSA (low)

4.2, DC Electrical Characteristics

Parameter	Description	Min	Тур	Max	Unit
V_{IL}	Digital input low voltage	-0.3		0.3*IOVCC	V
V _{IH}	Digital input high voltage	0.7*IOVCC		IOVCC	V
V _{OL}	Digital low output voltage			0.3*IOVCC	V
V _{OH}	Digital high output voltage	0.7*IOVCC			V
${ m I}_{ m IL}$	Input leakage		1		nA
I_{ACT}	Active mode current		8.8		mA
I_{GES}	Gesture mode current		580		μΑ
I_{HIB}	Hibernate mode current		110		μА
C_{IN}	Capacitive load on pins as input	0.5	1.7	5	pF
C_{OUT}	Capacitive load on pins as	0.5	1.7	5	pF
COUT	output				
Cc	Capacitor of note			4	pF

4.3, AC Electrical Characteristics

AC characteristics of oscillators

Parameter	Description	Min	Тур	Max	Unit
F _{OSC1}	Frequency of oscillator1		30		MHz

AC characteristics of interface

Parameter	Description	Min	Тур	Max	Unit
F_{TX}	Frequency of TX acceptable clock	30		500	kHz

4.4、Circuit diagram

ICNT8725

ICNT8725 I²C Interface

5. PIN DESCRIPTION

Pin Name	Pin Num	Туре	Description
RX12	1	I	Receiver input pins
VDDA	2	PWR	Analog power supply
TX18	3	О	Transmit output pin
TX17	4	О	Transmit output pin
TX16	5	О	Transmit output pin
TX15	6	О	Transmit output pin
TX14	7	О	Transmit output pin
TX13	8	О	Transmit output pin
TX12	9	О	Transmit output pin
TX11	10	О	Transmit output pin
VSS	11	PWR	Analog ground
1V8_OUT	12	О	1.8V voltage
SDA	13	I/O	I ² C data input and output
SCL	14	I	I ² C clock input
IOVCC	15	PWR	IO power supply
INTERNATZE	16	1/0	External interrupt to the host or
INT/WAKE	16	I/O	Wakeup request from the host
/RST	17	I	External Reset, active low
NC	18		Not connected
TX1	19	О	Transmit output pin
TX2	20	О	Transmit output pin
TX3	21	О	Transmit output pin
TX4	22	О	Transmit output pin
TX5	23	О	Transmit output pin
TX6	24	О	Transmit output pin
TX7	25	О	Transmit output pin
TX8	26	О	Transmit output pin
TX9	27	О	Transmit output pin
TX10	28	0	Transmit output pin
VSSA	29	PWR	Analog ground
RX1	30	I	Receiver input pins
RX2	31	I	Receiver input pins
RX3	32	I	Receiver input pins

RX4	33	Ι	Receiver input pins
RX5	34	I	Receiver input pins
RX6	35	I	Receiver input pins
RX7	36	I	Receiver input pins
RX8	37	I	Receiver input pins
RX9	38	I	Receiver input pins
RX10	39	I	Receiver input pins
RX11	40	I	Receiver input pins

6. Package Outline

QFN-5x5-40L

Cumbal	Dime	ension ir	mm	Dime	ension in	inch
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.500	0.600	0.700	0.020	0.024	0.027
A1	0.000	0.020	0.050	0.000	0.001	0.002
А3	0.	.152 RE	F.	0.006 REF.		
b	0.150	0.200	0.250	0.006	0.008	0.010
D	4.924	5.000	5.076	0.194	0.197	0.200
Е	4.924	5.000	5.076	0.194	0.197	0.200
D2	3.30	3.40	3.50	0.130	0.134	0.138
E2	3.30	3.40	3.50	0.130	0.134	0.138
е	C	0.40 TYP. 0.016 TYP.			Р.	
L	0.35	0.40	0.45	0.014	0.016	0.018
k	0.20			0.008		

Version: 0.1 2015-12

7. Important Notice

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright © 2015, Chipone Technology (Beijing) Co., Ltd.

Revision History

Version	Revisions	Date	Modified by
0.1	1. First draft.	2015-12-25	
0.2	1.Update the QFN-5X5-40L package	2016-04-01	
	dimension.		

- 14 -