

Sent to A  
July 97





FIG. 4A



FIG. 4B

FIG. 3





FIG. 8



CU MONITORS GUARD DURING PLURALITY OF SIGNATURE SEQUENCE FRAMES IN THE AUTHENTICATION INTERVAL AND PERFORMS CORRELATIONS DURING EACH GAP.

195/197

CU COUNTS THE NUMBER OF GAPS IN AUTHENTICATION INTERVAL THAT HAVE ACTIVITY AND COMPARES THAT NUMBER TO THE TOTAL NUMBER OF FRAMES IN THE AUTHENTICATION INTERVAL TO DETERMINE IF THE 50% ACTIVITY LEVEL LIMIT HAS BEEN EXCEEDED.

GREATER THAN 50% ACTIVITY

204

50% ACTIVITY DETECTED

199  
198

CU IDENTIFIES RU FROM SIGNATURE AND BROADCASTS IDENTITY SO DETERMINED.

200

RU WITH IDENTITY BROADCAST BY CU RECOGNIZES ITS IDENTITY IN BROADCAST AND ENTERS FINE TUNING MODE.

202

CU INSTRUCTS RU ON HOW TO ADJUST ITS DELAY IN ORDER TO CENTER THE CORRELATION PEAK IN THE MIDDLE OF THE GAP/GUARDBAND.

5B

CU BROADCASTS MESSAGE TO ALL RU'S INSTRUCTING ALL RU'S ATTEMPTING SYNCHRONIZATION TO EXECUTE THEIR COLLISION RESOLUTION PROTOCOLS.

206

EACH RU ATTEMPTING TO SYNCHRONIZE EXECUTES A RANDOM DECISION WHETHER TO CONTINUE ATTEMPTING TO SYNCHRONIZE OR TO STOP, WITH A 50% PROBABILITY OF EITHER OUTCOME.

208

RU'S THAT HAVE DECIDED TO CONTINUE RETRANSMIT THEIR SIGNATURE WITH THE SAME TIMING AS WAS USED ON THE LAST ITERATION

TO FIG. 7C

FIG. 7B



FIG. 70  
5C



6  
FIG. 8  
DEAD RECKONING RE-SYNC

CU CONCLUDES IT  
MUST ALTER ITS  
DELAY VECTOR TO  
ALLOW THE FARDEST  
RU'S TO SYNCHRONIZE  
TO THE SAME FRAME  
AS THE NEAREST RU'S  
AND BROADCASTS A  
MESSAGE TO ALL RU'S  
INDICATING WHEN AND  
BY HOW MUCH IT WILL  
ALTER ITS DELAY  
VECTOR

248

EACH RU RECEIVES  
BROADCAST AND  
ALTERS ITS DELAY  
VECTOR BY AMOUNT  
INSTRUCTED AT TIME  
CU ALTERS ITS DELAY  
VECTOR

250

EACH RU REINITIATES  
SYNCHRONIZATION  
PROCESS

7  
**FIG. 9**  
PRECURSOR EMBODIMENT

~~RECEIVE~~ DIGITAL MODEM BLOCK DIAGRAM



FIG. 19



FIG. 12



FIG. 13



15  
FIG. 17



11  
FIG. 18



FIG. 11



FIG. 12



FIG. 13



FIG. 20<sup>16</sup>



PREFERRED TRELLIS ENCODER

FIG. 42

17

MAPPING FOR FALL-BACK MODE - LSB'S



21  
FIG. 43



18

FIG. 21

| CODE | INPHASE | QUADRATURE |           |
|------|---------|------------|-----------|
| 0000 | 111     | 111        | = -1 -    |
| 0001 | 001     | 111        | = 1 -     |
| 0010 | 001     | 001        | = 1 +     |
| 0011 | 111     | 001        | = -1 +    |
| 0100 | 011     | 111        | = 3 -     |
| 0101 | 001     | 011        | = 1 + 3*  |
| 0110 | 101     | 001        | = -3 +    |
| 0111 | 111     | 101        | = -1 - 3* |
| 1000 | 011     | 011        | = +3 + 3* |
| 1001 | 101     | 011        | = -3 + 3* |
| 1010 | 101     | 101        | = -3 - 3* |
| 1011 | 011     | 101        | = 3 - 3*  |
| 1100 | 111     | 011        | = -1 + 3* |
| 1101 | 101     | 111        | = -3 -    |
| 1110 | 001     | 101        | = 1 - 3*  |
| 1111 | 011     | 001        | = 3 +     |

403

19

FIG. 22

INFORMATION  
VECTOR [B]  
FOR EACH  
SYMBOL

ORTHOGONAL  
CODE MATRIX

$$483 \begin{bmatrix} 0110 \\ 1111 \\ 1101 \\ 0100 \\ \vdots \end{bmatrix} \times \begin{bmatrix} C_{1,1} & C_{1,2} & \cdots & C_{1,144} \\ C_{2,1} & C_{2,2} & \cdots & C_{2,144} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

<sup>20A</sup>  
~~FIG. 23A~~

REAL PART OF INFO VECTOR [b] FOR FIRST SYMBOL

REAL PART OF RESULT VECTOR

$$405 \begin{bmatrix} +3 \\ -1 \\ -1 \\ +3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ -8 \end{bmatrix} \quad 409$$

$[b_{\text{REAL}}] \times [\text{CODE MATRIX}] = [R_{\text{REAL}}] = \text{"CHIPS OUT" ARRAY-REAL}$

<sup>20B</sup>  
~~FIG. 23B~~

| LSBs<br>$y_1\ y_0$ | PHASE | $1+jQ$  |
|--------------------|-------|---------|
| 00                 | 0     | $3-j$   |
| 01                 | 90    | $1+j3$  |
| 10                 | 180   | $-3+j$  |
| 11                 | -90   | $-1-j3$ |

| MSBs<br>$y_3\ y_2$ | PHASE<br>difference<br>(2nd-1st<br>symbol) | $1+jQ$ WHEN<br>$LSB=00$ |     | $1+jQ$ WHEN<br>$LSB=01$ |         | $1+jQ$ WHEN<br>$LSB=10$ |         | $1+jQ$ WHEN<br>$LSB=11$ |         |
|--------------------|--------------------------------------------|-------------------------|-----|-------------------------|---------|-------------------------|---------|-------------------------|---------|
|                    |                                            | 00                      | 0   | 01                      | $3-j$   | 10                      | $-3+j$  | 11                      | $-1-j3$ |
| 00                 | 00                                         | 0                       | 0   | 01                      | $3-j$   | 10                      | $-3+j$  | 11                      | $-1-j3$ |
| 01                 | 01                                         | 90                      | 90  | 01                      | $1+j3$  | 10                      | $-3+j$  | 01                      | $3-j$   |
| 10                 | 10                                         | 180                     | 180 | 10                      | $-3+j$  | 10                      | $-1-j3$ | 10                      | $1+j3$  |
| 11                 | 11                                         | -90                     | -90 | 11                      | $-1-j3$ | 11                      | $3-j$   | 11                      | $1+j3$  |

LSB & MSB FALLBACK MODE MAPPINGS

FIG. 44  
22



FIG. 24  
23

24  
FIG. 25



EMBODIMENT 1  
CARRIER RECOVERY

FIG. 35



FIG. 36

RU PERFORMS RANGING AND ACHIEVES FRAME SYNCHRONIZATION

1500

RU PERFORMS TRAINING TO SET THE COEFFICIENTS OF ITS FILTERS FOR PROPER EQUALIZATION

1502

1504 1505

IDLE ? YES

RU REQUESTS BANDWIDTH FROM CU USING ASK MOD

1506

1508

CU AWARDS BANDWIDTH IN THE FORM OF ONE OR MORE TIMESLOTS ASSIGNED TO THIS RU

1510

RU SENDS KNOWN PREAMBLE DATA IN ASSIGNED TIMESLOTS

1512  
CU DETERMINES PHASE AND AMPL. ERROR FOR THIS RU FROM PREAMBLE DATA IN ASSIGNED TS AND STORES IN MEMORY LOCATION MAPPED TO THIS RU

1514

AS PAYLOAD DATA FROM THIS RU IS RECEIVED, CU CPU LOOKS UP AND AMPLITUDE PHASE ERROR FOR THIS RU AND SENDS TO CONTROL CIRCUITRY FOR A ROTATIONAL AMPLIFIER & G2 AMPL.

1516

ROTATIONAL AMPLIFIERS CORRECTS PHASE OF INCOMING DATA TO PHASE OF MASTER CLOCK SO SAMPLING OF RECEIVED DATA POINTS OCCURS AT PROPER TIMES

FIG. 27

Digitally Encoded Digital Modem Block Diagram





29  
FIG. 26

Page 94, Line  
Remove not the

793

TO CPU 405  
VIA DMA

SEED, Tss, R1, Ru/Cu

GAIN OUT  
TO RF SECTION 750

58 756 Ru/Cu

AGC 759

COEF 763

R/TNG 755

770

C<-T

774

TO XTR

775

776

777

ORTHO.  
CODE  
DEMUX

778

COEF 822

STEERING  
CLOCK

780

COEF 822

STEERING  
CLOCK

782

784

T<sup>0</sup> RU

785

888

889

886

901

1031

CAP DETECT

886

902

114.6888

791

57.344 MHz

1350 CKSRCNT/

EXTREME

299

COAXIAL

CABLE OR

OTHER MEDIA



FIG. 34 30



FIG. 34 31

FIG. 28A 32



DATA BURST  
P DATA BURST



**FIG. 27** 33 RU / CU (LAT, HOP)  
SEND TSS B1



FIG. 28A 3  
RUTRANSMITTER





FIG. 39 35



<sup>36</sup>  
FIG. 40



<sup>37</sup>  
FIG. 41

FINE TUNING  
TO CENTER  
BARRIER CODE



FIG. 27<sup>38</sup>





FIG. 47



FIG. 48



RU RANGING

**FIG. 29**





CU RANGING & CONTENTION RESOLUTION  
 RANGING AND CONTENTION RESOLUTION  
CLOSED

FIG. 3148



CONTENTION RESOLUTION - RU  
USING BINARY STACK

FIG. 33 49  
112



**FIG. 32**



FIG. 37

50



FIG. 52

51



STATE MACHINE

FIG. 53

52

PREPARATIVE  
EQUALIZATION  
TRAINING ALGORITHM

TIME  
ALIGN-  
MENT

POWER  
ALIGNMENT

RU PICKS CODE #4 OF FIRST 8 ORTHOGONAL CODES AND TRANSMITS ANY BINARY DATA USING CODE 4 TO SPREAD AND USING BPSK MODULATION.

CU CORRELATES RECEIVED SIGNAL AGAINST EACH OF FIRST 8 ORTHOGONAL CODES

IS THE TRANSMITTED DATA FROM THE RU RECOVERED FROM THE CODE #4 CORRELATION PROCESS?

YES

SFT GAIN OF RU XMTR AMPLIFIER TO 1 AND SET GAIN OF CU RCVR G2 AMPLIFIER TO AN APPROXIMATION OF PROPER GAIN FOR CODE 4

ALLOW ADAPTIVE GAIN CONTROL CKT IN CU TO SETTLE IN ON A NEW GAIN LEVEL DURING TRAINING SEQUENCE

SEND CU GAIN SO DERIVED TO RU FOR SETTING GAIN OF RU TRANSMITTER SCALING AMPL. AND SET CU GAIN TO 1

1101  
1100

1102

NO

1106

GO BACK  
TO FINE  
TUNING  
PROCESS  
FOR RANGING  
AND CENTER  
BARKER CODE  
FROM RU

1108

1110

1112

TO FIG. 45B  
53A

53A  
53A

FIG. 45A

UPSTREAM  
EQUALIZATION

FIG. 45A

CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION.

1114

RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES.

1116

CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT(COEFFICIENT) ADJUSTMENTS.

1118

TAP WEIGHT (COEFFICIENT) ADJUSTMENTS CONTINUE UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO.

1120

AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU.

1122

RU SETS FINAL FFE & DFE COEFFICIENTS INTO PRECODE FFE/DFE FILTER IN TRANSMITTER.

1124

CU SETS COEFFICIENTS OF FFE 765 AND DFE 820 TO ONE FOR RECEPTION OF UPSTREAM PAYLOAD DATA.

1126

TO FIG. 45C

FIG. 45B  
54B  
45B  
53B

DOWNSTREAM  
EQUALIZATION

FROM FIG. 45B



*54c*  
FIG. 45C

*53c*



FIG. 4g



SIMPLE Cu SPREAD SPECTRUM RECEIVER

FIG. 50 5/6  
55

SIMPLE RU SPREAD SPECTRUM TRANSMITTER

FIG. 51  
S7  
S6



FIG. 54  
S>  
S>



SYNCHRONOUS TDMA SYSTEM

| OFFSET<br>(Chips) | 1B ASIC |        | 2A ASIC |        |
|-------------------|---------|--------|---------|--------|
|                   | RGSRH   | RGSRL  | RGSRH   | RGSRL  |
| 0                 | 0x0000  | 0x8000 | 0x0001  | 0x0000 |
| 1/2               | 0x0000  | 0xC000 | 0x0001  | 0x8000 |
| 1                 | 0x0000  | 0x4000 | 0x0000  | 0x8000 |
| -1                | 0x0001  | 0x0000 | 0x0002  | 0x0000 |

FIG. 58

## Training Algorithm



FIG. 59

## Initial 2-Step Training Algorithm



2 - STEP INITIAL EQUALIZATION TRAINING

FIG. 60

## EQ Stability Check



Note:  $Thrld_{coeff} = 7F00H$      $Thrld_{stable} = 10^{-3}$

FIG. 61

## Periodic 2-Step Training Algorithm



FIG. 62.

## RACM Correction



Note:  $Thrld_{amp} = TBD$

$Thrld_{phase} = TBD$

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63

## EQ Convergence Check



Note:  $Thrl_{converge} = 10^{-5}$

FIG. 64

## Power Alignment Flow Chart



Note: TH = 600H  
N = 12

FIG. 65



FIG. 66



Total Turn Around (TTA) in frames = Offset

FIG. 67



FIG. 68

Figure 3.1: Frame start propagation along the channel



FIG. 69

~~Figure 69~~ Control message (downstream) and function (upstream) propagation in a 3 frames TTA channel



FIG. 70

*Center of gap no.*



**Figure 3.4**: Overall view of the CU sensing windows in a "boundless ranging" algorithm

FIG. 71

6

| Chip\FR | 1 | 2 | 3 | 4 | 5 | 6 | 7 |     | 33 |
|---------|---|---|---|---|---|---|---|-----|----|
| 1       | 0 | 0 | 1 | 0 | 0 | 1 | 1 | ... | 0  |
| 2       | 1 | 0 | 0 | 1 | 1 | 1 | 1 | ... |    |
| 3       | 0 | 0 | 0 | 1 | 1 | 1 |   |     |    |
| 4       | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ... | 0  |
| 5       | 0 | 1 | 0 | 0 | 1 |   |   |     |    |
| 6       | 0 | 0 | 1 | 1 | 1 |   |   |     |    |
| 7       | 0 | 0 | 0 | 1 | 1 |   |   |     |    |
| 8       | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ... |    |

FIG. 72