第9章 c: 多元复合函数的求导法则

数学系 梁卓滨

2019-2020 学年 II

Outline

设有二元函数 z = f(u, v)

设有二元函数 z = f(u, v)

•
$$\psi u = \varphi(t), \ v = \psi(t), \ \bigcup z = f(\varphi(t), \psi(t))$$

问
$$\frac{dz}{dt}$$
 =?

设有二元函数 z = f(u, v)

• $\psi u = \varphi(t), \ v = \psi(t), \ \bigcup z = f(\varphi(t), \psi(t))$

问
$$\frac{dz}{dt}$$
 =?

设有二元函数 z = f(u, v)

• $\psi u = \varphi(t), \ v = \psi(t), \ \bigcup z = f(\varphi(t), \psi(t))$

问
$$\frac{dz}{dt} = ?$$

•
$$\mathfrak{P}(x, y)$$
, $v = \psi(x, y)$, $\mathfrak{P}(x, y)$, $\mathfrak{P}(x, y)$

问
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ =?

设有二元函数 z = f(u, v)

• $\mathfrak{P}(u)$ • $\mathfrak{$

问
$$\frac{dz}{dt} = ?$$

问
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial v}$ =?

设有二元函数 z = f(u, v)

• $\mathfrak{P}(u) = \varphi(t)$, $v = \psi(t)$, $\mathfrak{P}(z) = f(\varphi(t), \psi(t))$

$$z = v$$

问
$$\frac{dz}{dt} = ?$$

• $\psi u = \varphi(x, y), \ v = \psi(x, y), \ \emptyset \ z = f(\varphi(x, y), \psi(x, y))$

问
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ =?

设有二元函数 z = f(u, v)

• $\mathfrak{P}(u) = \varphi(t)$, $v = \psi(t)$, $\mathfrak{P}(z) = f(\varphi(t), \psi(t))$

$$z = v$$

问
$$\frac{dz}{dt} = ?$$

$$z \stackrel{u \longrightarrow x}{\searrow_{v \longrightarrow y}}$$

问
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ =?

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全

$$\frac{dz}{dt} =$$

公式 设 z = f(u, v), $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt}$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
=

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_u \cdot (e^{-t})'_t +$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$
$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$
$$= v \cdot$$

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \\ &= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t \\ &= v \cdot (-e^{-t}) + \end{aligned}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$
$$= v \cdot (-e^{-t}) + u \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv =$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

解法二

 $z = uv = e^{-t} \cdot \sin t$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) =$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t +$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$
$$= (-e^{-t}) \cdot \sin t + e^{-t} \cdot \cos t$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$
$$= (-e^{-t}) \cdot \sin t + e^{-t} \cdot \cos t = e^{-t}(\cos t - \sin t)_t$$

例 设 $z = \frac{y}{x}$,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$.

$$\frac{dz}{dt} =$$

$$\frac{dz}{dt} =$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} =$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_{x}'$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t +$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$
$$= -\frac{y}{x^2}.$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{y}{x^2} \cdot$$

$$Z \xrightarrow{\frac{\partial Z}{\partial X}} X \xrightarrow{\frac{\partial X}{\partial t}} Y \xrightarrow{\frac{\partial Y}{\partial t}} Y$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot (-2e^{2t}) =$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^t +$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = \left(\frac{y}{x}\right)_{x}' \cdot \left(e^{t}\right)_{t}' + \left(\frac{y}{x}\right)_{y}' \cdot \left(1 - e^{2t}\right)_{t}'$$

$$= -\frac{y}{x^{2}} \cdot e^{t} + \frac{1}{x} \cdot \left(-2e^{2t}\right) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^{t} + \frac{1}{e^{t}} \cdot \left(-2e^{2t}\right)$$

$$= -\frac{1 - e^{2t}}{e^{2t}} \cdot e^{t} + \frac{1}{e^{t}} \cdot \left(-2e^{2t}\right)$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_{x} \cdot (e^{t})'_{t} + (\frac{y}{x})'_{y} \cdot (1 - e^{2t})'_{t}$$

$$= -\frac{y}{x^{2}} \cdot e^{t} + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^{t} + \frac{1}{e^{t}} \cdot (-2e^{2t})$$

$$= -e^{-t} - e^{t}$$

公式 设
$$z = f(u, v, w)$$
, $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数

$$\frac{dz}{dt} =$$

$$\frac{dz}{dt} =$$

$$\frac{dz}{dt} =$$

$$\frac{dz}{dt} =$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \quad \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} + \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$$

公式 设 z = f(u, v), $u = \varphi(x, y)$, $v = \psi(x, y)$,

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} =$$
 , $\frac{\partial z}{\partial y} =$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial x} =$$

$$, \quad \frac{\partial Z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial x} =$$

$$, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} -$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
=

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_{u} \cdot$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{\partial x} = (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + \frac{\partial z}{$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$=$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y +$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$=$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y +$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u}.$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{v} +$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{v} + (e^{2u} \sin v)'_{v} \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_y$$

$$= 2e^{2u} \sin v \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_y$$

$$= 2e^{2u} \sin v \cdot x^3 + e^{2u} \cos v \cdot x^3 + e^{2u} \sin v \cdot x^3 + e^{$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_y$$

$$= 2e^{2u} \sin v \cdot x^3 + e^{2u} \cos v \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot x^{3} + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot x^{3}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot x^{3} + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2y$$

公式 设 z = f(x, y, u), u = u(x, y),

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

$$\frac{\partial z}{\partial x} =$$
 , $\frac{\partial z}{\partial y} =$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数
$$z = f(x, y, u(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数
$$z = f(x, y, u(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} +$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}$$

z = f(x, y, u(x, y))

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_X = z_u \cdot u_X + z_v \cdot v_x,$$

$$z_y = z_u \cdot u_y + z_v \cdot v_y,$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_X = z_u \cdot u_X + z_v \cdot v_X,$$

$$z_y = z_u \cdot u_y + z_v \cdot v_y,$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{vv} =$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_X = z_u \cdot u_X + z_v \cdot v_x,$$

$$z_y = z_u \cdot u_y + z_v \cdot v_y,$$

$$z_{xx}=(z_x)_x'$$

$$z_{xy} =$$

$$z_{vv} =$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_{x} = z_{u} \cdot u_{x} + z_{v} \cdot v_{x},$$

$$z_{y} = z_{u} \cdot u_{y} + z_{v} \cdot v_{y},$$

$$z_{xx} = (z_{x})'_{v} = (z_{u} \cdot u_{x} + z_{v} \cdot v_{x})'_{v}$$

$$z_{xy} =$$

$$z_{vv} =$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_X = Z_u \cdot u_X + Z_v \cdot v_X,$$

$$Z_Y = Z_u \cdot u_Y + Z_v \cdot v_Y,$$

$$Z_{XX} = (Z_X)_X' = (Z_u \cdot u_X + Z_v \cdot v_X)_X'$$

$$= (Z_u)_X' \cdot u_X + Z_u \cdot u_{XX} + (Z_v)_X' \cdot v_X + Z_v \cdot v_{XX}$$

$$z_{xy} =$$

$$z_{vv} =$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{V} \cdot V_{X},$$

$$Z_{Y} = Z_{u} \cdot u_{Y} + Z_{V} \cdot V_{Y},$$

$$Z_{XX} = (Z_{X})'_{X} = (Z_{u} \cdot u_{X} + Z_{V} \cdot V_{X})'_{X}$$

$$= (Z_{u})'_{X} \cdot u_{X} + Z_{u} \cdot u_{XX} + (Z_{V})'_{X} \cdot V_{X} + Z_{V} \cdot V_{XX}$$

$$= ()\cdot u_X + z_u \cdot u_{XX} + ()\cdot v_X + z_v \cdot v_{XX}$$

 $z_{xy} =$

$$Z_{VV} =$$

 $Z_{\rm Y} = Z_{\rm II} \cdot U_{\rm Y} + Z_{\rm Y} \cdot V_{\rm Y}$

 $z_{V} = z_{u} \cdot u_{V} + z_{V} \cdot V_{V}$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$z_{xx} = (z_x)'_x = (z_u \cdot u_x + z_v \cdot v_x)'_x$$

$$= (z_u)'_x \cdot u_x + z_u \cdot u_{xx} + (z_v)'_x \cdot v_x + z_v \cdot v_{xx}$$

$$= (z_{uu} \cdot u_x + z_{uv} \cdot v_x) \cdot u_x + z_u \cdot u_{xx} + ($$

$$) \cdot v_x + z_v \cdot v_{xx}$$

图 整角大

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{V} \cdot V_{X},$$

$$Z_{Y} = Z_{u} \cdot u_{Y} + Z_{V} \cdot V_{Y},$$

$$Z_{XX} = (Z_{X})'_{X} = (Z_{u} \cdot u_{X} + Z_{V} \cdot V_{X})'_{X}$$

$$= (Z_{u})'_{X} \cdot u_{X} + Z_{u} \cdot u_{XX} + (Z_{V})'_{X} \cdot V_{X} + Z_{V} \cdot V_{XX}$$

$$= (Z_{uu} \cdot u_{X} + Z_{uV} \cdot V_{X}) \cdot u_{X} + Z_{u} \cdot u_{XX} + (Z_{vu} \cdot u_{X} + Z_{vv} \cdot V_{X}) \cdot V_{X} + Z_{V} \cdot V_{XX}$$

$$z_{xv} =$$

 $z_{vv} =$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$\begin{aligned}
 z_{X} &= z_{u} \cdot u_{X} + z_{V} \cdot V_{X}, \\
 z_{Y} &= z_{u} \cdot u_{Y} + z_{V} \cdot V_{Y}, \\
 z_{XX} &= (z_{X})'_{X} = (z_{u} \cdot u_{X} + z_{V} \cdot V_{X})'_{X} \\
 &= (z_{u})'_{X} \cdot u_{X} + z_{u} \cdot u_{XX} + (z_{V})'_{X} \cdot V_{X} + z_{V} \cdot V_{XX} \\
 &= (z_{uu} \cdot u_{X} + z_{uv} \cdot V_{X}) \cdot u_{X} + z_{u} \cdot u_{XX} + (z_{vu} \cdot u_{X} + z_{vv} \cdot V_{X}) \cdot V_{X} + z_{V} \cdot V_{XX} \\
 &= z_{uu} u_{X}^{2} + 2z_{uv} u_{X} V_{X} + z_{vv} V_{X}^{2} + z_{u} u_{XX} + z_{v} V_{XX} \\
 &z_{XV} =
 \end{aligned}$$

鱼 医南大

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{V} \cdot V_{X},$$

$$Z_{Y} = Z_{u} \cdot u_{Y} + Z_{V} \cdot V_{Y},$$

$$Z_{XX} = (Z_{X})'_{X} = (Z_{u} \cdot u_{X} + Z_{V} \cdot V_{X})'_{X}$$

$$= (Z_{u})'_{X} \cdot u_{X} + Z_{u} \cdot u_{XX} + (Z_{V})'_{X} \cdot V_{X} + Z_{V} \cdot V_{XX}$$

$$= (Z_{uu} \cdot u_{X} + Z_{uv} \cdot V_{X}) \cdot u_{X} + Z_{u} \cdot u_{XX} + (Z_{vu} \cdot u_{X} + Z_{vv} \cdot V_{X}) \cdot V_{X} + Z_{V} \cdot V_{XX}$$

$$= Z_{uu} u_{X}^{2} + 2Z_{uv} u_{X} V_{X} + Z_{vv} V_{X}^{2} + Z_{u} u_{XX} + Z_{v} V_{XX}$$

$$Z_{XV} = ?$$

国际大型

 $z_{vv} = ?$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_X = Z_u \cdot u_X + Z_v \cdot V_X,$$

$$Z_Y = Z_u \cdot u_Y + Z_v \cdot V_Y,$$

$$Z_{XX} = Z_{uu}u_X^2 + 2Z_{uv}u_Xv_X + Z_{vv}v_X^2 + Z_uu_{xx} + Z_vv_{xx}$$

$$Z_{xy} =$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_{x} = z_{u} \cdot u_{x} + z_{v} \cdot v_{x},$$

$$z_{y} = z_{u} \cdot u_{y} + z_{v} \cdot v_{y},$$

$$z_{xx} = z_{uu}u_{x}^{2} + 2z_{uv}u_{x}v_{x} + z_{vv}v_{x}^{2} + z_{u}u_{xx} + z_{v}v_{xx}$$

$$z_{xy} = (z_{x})'_{y}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_{x} = z_{u} \cdot u_{x} + z_{v} \cdot v_{x},$$

$$z_{y} = z_{u} \cdot u_{y} + z_{v} \cdot v_{y},$$

$$z_{xx} = z_{uu}u_{x}^{2} + 2z_{uv}u_{x}v_{x} + z_{vv}v_{x}^{2} + z_{u}u_{xx} + z_{v}v_{xx}$$

$$z_{xy} = (z_{x})'_{y} = (z_{u} \cdot u_{x} + z_{v} \cdot v_{x})'_{y}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot V_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot V_{y},$$

$$Z_{xx} = Z_{uu}u_{x}^{2} + 2Z_{uv}u_{x}v_{x} + Z_{vv}v_{x}^{2} + Z_{u}u_{xx} + Z_{v}v_{xx}$$

$$Z_{xy} = (Z_{x})'_{y} = (Z_{u} \cdot u_{x} + Z_{v} \cdot v_{x})'_{y}$$

$$= (Z_{u})'_{v} \cdot u_{x} + Z_{u} \cdot u_{xy} + (Z_{v})'_{v} \cdot v_{x} + Z_{v} \cdot v_{xy}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot V_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot V_{y},$$

$$Z_{XX} = Z_{uu}u_{x}^{2} + 2Z_{uv}u_{x}v_{x} + Z_{vv}v_{x}^{2} + Z_{u}u_{xx} + Z_{v}v_{xx}$$

$$Z_{Xy} = (Z_{x})'_{y} = (Z_{u} \cdot u_{x} + Z_{v} \cdot v_{x})'_{y}$$

$$= (Z_{u})'_{y} \cdot u_{x} + Z_{u} \cdot u_{xy} + (Z_{v})'_{y} \cdot v_{x} + Z_{v} \cdot v_{xy}$$

$$= () \cdot u_{x} + Z_{u} \cdot u_{xy} + ($$

 $z_{yy} = ?$

 $)\cdot V_X + Z_V \cdot V_{XV}$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot V_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot V_{y},$$

$$Z_{XX} = Z_{uu}u_{X}^{2} + 2Z_{uv}u_{X}v_{X} + Z_{vv}v_{X}^{2} + Z_{u}u_{XX} + Z_{v}v_{XX}$$

$$Z_{Xy} = (Z_{X})'_{y} = (Z_{u} \cdot u_{X} + Z_{v} \cdot v_{X})'_{y}$$

$$= (Z_{u})'_{y} \cdot u_{X} + Z_{u} \cdot u_{xy} + (Z_{v})'_{y} \cdot v_{X} + Z_{v} \cdot v_{xy}$$

$$= (Z_{uu} \cdot u_{y} + Z_{uv} \cdot v_{y}) \cdot u_{X} + Z_{u} \cdot u_{xy} + ($$

整め大学
 MANN USHVERSETY

 $)\cdot V_X + Z_V \cdot V_{XV}$

 $Z_{\rm X} = Z_{\rm II} \cdot u_{\rm X} + Z_{\rm V} \cdot V_{\rm X}$

 $z_{V} = z_{u} \cdot u_{V} + z_{V} \cdot V_{V}$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$z_{xx} = z_{uu}u_{x}^{2} + 2z_{uv}u_{x}v_{x} + z_{vv}v_{x}^{2} + z_{u}u_{xx} + z_{v}v_{xx}$$

$$z_{xy} = (z_{x})'_{y} = (z_{u} \cdot u_{x} + z_{v} \cdot v_{x})'_{y}$$

$$= (z_{u})'_{y} \cdot u_{x} + z_{u} \cdot u_{xy} + (z_{v})'_{y} \cdot v_{x} + z_{v} \cdot v_{xy}$$

$$= (z_{uu} \cdot u_{y} + z_{uv} \cdot v_{y}) \cdot u_{x} + z_{u} \cdot u_{xy} + (z_{vu} \cdot u_{y} + z_{vv} \cdot v_{y}) \cdot v_{x} + z_{v} \cdot v_{xy}$$

 $z_{yy} = ?$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_{X} = Z_{U} \cdot U_{X} + Z_{V} \cdot V_{X},$$

$$Z_{Y} = Z_{U} \cdot U_{Y} + Z_{V} \cdot V_{Y},$$

$$Z_{XX} = Z_{UU}U_{X}^{2} + 2Z_{UV}U_{X}V_{X} + Z_{VV}V_{X}^{2} + Z_{U}U_{XX} + Z_{V}V_{XX}$$

$$Z_{XY} = (Z_{X})_{Y}' = (Z_{U} \cdot U_{X} + Z_{V} \cdot V_{X})_{Y}'$$

$$= (Z_{U})_{Y}' \cdot U_{X} + Z_{U} \cdot U_{XY} + (Z_{V})_{Y}' \cdot V_{X} + Z_{V} \cdot V_{XY}$$

$$= (Z_{UU} \cdot U_{Y} + Z_{UV} \cdot V_{Y}) \cdot U_{X} + Z_{U} \cdot U_{XY} + (Z_{VU} \cdot U_{Y} + Z_{VV} \cdot V_{Y}) \cdot V_{X} + Z_{V} \cdot V_{XY}$$

$$= Z_{UU}U_{X}U_{Y} + Z_{UV}(U_{X}V_{Y} + U_{Y}V_{X}) + Z_{VV}V_{X}V_{Y} + Z_{U}U_{XY} + Z_{V}V_{XY}$$

$$Z_{VV} = ?$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_{x} = z_{u} \cdot u_{x} + z_{v} \cdot v_{x},$$

$$z_{y} = z_{u} \cdot u_{y} + z_{v} \cdot v_{y},$$

$$z_{xx} = z_{uu}u_{x}^{2} + 2z_{uv}u_{x}v_{x} + z_{vv}v_{x}^{2} + z_{u}u_{xx} + z_{v}v_{xx}$$

$$z_{xy} = z_{uu}u_{x}u_{y} + z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + z_{vv}v_{x}v_{y} + z_{u}u_{xy} + z_{v}v_{xy}$$

$$z_{yy} =$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$\begin{aligned} z_{X} &= z_{u} \cdot u_{X} + z_{v} \cdot v_{X}, \\ z_{y} &= z_{u} \cdot u_{y} + z_{v} \cdot v_{y}, \\ z_{XX} &= z_{uu} u_{X}^{2} + 2z_{uv} u_{X} v_{X} + z_{vv} v_{X}^{2} + z_{u} u_{XX} + z_{v} v_{XX} \\ z_{XY} &= z_{uu} u_{X} u_{y} + z_{uv} (u_{X} v_{y} + u_{y} v_{X}) + z_{vv} v_{X} v_{y} + z_{u} u_{XY} + z_{v} v_{XY} \\ z_{yy} &= (z_{y})_{y}^{\prime} \end{aligned}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_{x} = z_{u} \cdot u_{x} + z_{v} \cdot v_{x},$$

$$z_{y} = z_{u} \cdot u_{y} + z_{v} \cdot v_{y},$$

$$z_{xx} = z_{uu}u_{x}^{2} + 2z_{uv}u_{x}v_{x} + z_{vv}v_{x}^{2} + z_{u}u_{xx} + z_{v}v_{xx}$$

$$z_{xy} = z_{uu}u_{x}u_{y} + z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + z_{vv}v_{x}v_{y} + z_{u}u_{xy} + z_{v}v_{xy}$$

$$z_{yy} = (z_{y})'_{y} = (z_{u} \cdot u_{y} + z_{v} \cdot v_{y})'_{y}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$z_{x} = z_{u} \cdot u_{x} + z_{v} \cdot v_{x},$$

$$z_{y} = z_{u} \cdot u_{y} + z_{v} \cdot v_{y},$$

$$z_{xx} = z_{uu}u_{x}^{2} + 2z_{uv}u_{x}v_{x} + z_{vv}v_{x}^{2} + z_{u}u_{xx} + z_{v}v_{xx}$$

$$z_{xy} = z_{uu}u_{x}u_{y} + z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + z_{vv}v_{x}v_{y} + z_{u}u_{xy} + z_{v}v_{xy}$$

$$z_{yy} = (z_{y})'_{y} = (z_{u} \cdot u_{y} + z_{v} \cdot v_{y})'_{y}$$

$$= (z_{u})'_{v} \cdot u_{y} + z_{u} \cdot u_{yy} + (z_{v})'_{v} \cdot v_{y} + z_{v} \cdot v_{yy}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot V_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot V_{y},$$

$$Z_{XX} = Z_{uu}u_{x}^{2} + 2Z_{uv}u_{x}v_{x} + Z_{vv}v_{x}^{2} + Z_{u}u_{xx} + Z_{v}v_{xx}$$

$$Z_{Xy} = Z_{uu}u_{x}u_{y} + Z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + Z_{vv}v_{x}v_{y} + Z_{u}u_{xy} + Z_{v}v_{xy}$$

$$Z_{yy} = (Z_{y})'_{y} = (Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y})'_{y}$$

$$= (Z_{u})'_{y} \cdot u_{y} + Z_{u} \cdot u_{yy} + (Z_{v})'_{y} \cdot v_{y} + Z_{v} \cdot v_{yy}$$

$$= (V_{v})'_{y} + V_{v} \cdot v_{yy} + (V_{v})'_{y} \cdot v_{y} + V_{v} \cdot v_{yy}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot v_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y},$$

$$Z_{xx} = Z_{uu}u_{x}^{2} + 2Z_{uv}u_{x}v_{x} + Z_{vv}v_{x}^{2} + Z_{u}u_{xx} + Z_{v}v_{xx}$$

$$Z_{xy} = Z_{uu}u_{x}u_{y} + Z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + Z_{vv}v_{x}v_{y} + Z_{u}u_{xy} + Z_{v}v_{xy}$$

$$Z_{yy} = (Z_{y})'_{y} = (Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y})'_{y}$$

$$= (Z_{u})'_{y} \cdot u_{y} + Z_{u} \cdot u_{yy} + (Z_{v})'_{y} \cdot v_{y} + Z_{v} \cdot v_{yy}$$

$$= (Z_{uu} \cdot u_{y} + Z_{uv} \cdot v_{y}) \cdot u_{y} + Z_{u} \cdot u_{yy} + ($$

$$) \cdot v_{y} + z_{v} \cdot v_{yy}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot v_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y},$$

$$Z_{xx} = Z_{uu}u_{x}^{2} + 2Z_{uv}u_{x}v_{x} + Z_{vv}v_{x}^{2} + Z_{u}u_{xx} + Z_{v}v_{xx}$$

$$Z_{xy} = Z_{uu}u_{x}u_{y} + Z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + Z_{vv}v_{x}v_{y} + Z_{u}u_{xy} + Z_{v}v_{xy}$$

$$Z_{yy} = (Z_{y})'_{y} = (Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y})'_{y}$$

$$= (Z_{u})'_{y} \cdot u_{y} + Z_{u} \cdot u_{yy} + (Z_{v})'_{y} \cdot v_{y} + Z_{v} \cdot v_{yy}$$

$$= (Z_{uu} \cdot u_{y} + Z_{uv} \cdot v_{y}) \cdot u_{y} + Z_{u} \cdot u_{yy} + (Z_{vu} \cdot u_{y} + Z_{vv} \cdot v_{y}) \cdot v_{y} + Z_{v} \cdot v_{yy}$$

公式 设
$$z = f(u, v)$$
, $u = u(x, y)$, $v = v(x, y)$, 则复合函数
$$z = f(u(x, y), v(x, y))$$

的偏导数是:

$$Z_{X} = Z_{u} \cdot u_{X} + Z_{v} \cdot v_{X},$$

$$Z_{y} = Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y},$$

$$Z_{xx} = Z_{uu}u_{x}^{2} + 2Z_{uv}u_{x}v_{x} + Z_{vv}v_{x}^{2} + Z_{u}u_{xx} + Z_{v}v_{xx}$$

$$Z_{xy} = Z_{uu}u_{x}u_{y} + Z_{uv}(u_{x}v_{y} + u_{y}v_{x}) + Z_{vv}v_{x}v_{y} + Z_{u}u_{xy} + Z_{v}v_{xy}$$

$$Z_{yy} = (Z_{y})'_{y} = (Z_{u} \cdot u_{y} + Z_{v} \cdot v_{y})'_{y}$$

$$= (Z_{u})'_{y} \cdot u_{y} + Z_{u} \cdot u_{yy} + (Z_{v})'_{y} \cdot v_{y} + Z_{v} \cdot v_{yy}$$

$$= (Z_{uu} \cdot u_{y} + Z_{uv} \cdot v_{y}) \cdot u_{y} + Z_{u} \cdot u_{yy} + (Z_{vu} \cdot u_{y} + Z_{vv} \cdot v_{y}) \cdot v_{y} + Z_{v} \cdot v_{yy}$$

 $= z_{uu}u_{v}^{2} + 2z_{uv}u_{y}v_{y} + z_{vv}v_{v}^{2} + z_{u}u_{yy} + z_{v}v_{yy}$

解设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

例 设
$$z = f(xy^2, x^2y)$$
,求 $\frac{\partial^2 z}{\partial x \partial y}$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial Z}{\partial X} =$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x'$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

$$\mathbf{H}$$
 设 $z = f(u, v), u = xy^2, v = x^2y, 则$

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$
$$= \left(y^2 \right)_v' \cdot f_u + y^2 \cdot \left(f_u \right)_v' +$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$
$$= \left(y^2 \right)'_y \cdot f_u + y^2 \cdot \left(f_u \right)'_y + \left(2xy \right)'_y \cdot f_v + 2xy \cdot \left(f_v \right)'_y$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial Z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2 f_u + 2xy f_v$$

$$\frac{\partial^2 Z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial Z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$

$$= (y^{2})'_{y} \cdot f_{u} + y^{2} \cdot (f_{u})'_{y} + (2xy)'_{y} \cdot f_{v} + 2xy \cdot (f_{v})'_{y}$$

$$= 2yf_{u} + y^{2} \cdot () + 2xf_{v} + 2xy \cdot ()$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial Z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2 f_u + 2xy f_v$$

$$\frac{\partial^2 Z}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial Z}{\partial x} \right) = \frac{\partial}{\partial x} \left(y^2 f_u + 2xy f_v \right)$$

$$\frac{\partial^2 Z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial Z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$

$$= (y^2)'_y \cdot f_u + y^2 \cdot (f_u)'_y + (2xy)'_y \cdot f_v + 2xy \cdot (f_v)'_y$$

$$= 2y f_u + y^2 \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y) + 2x f_v + 2xy \cdot ($$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$

$$= (y^2)'_y \cdot f_u + y^2 \cdot (f_u)'_y + (2xy)'_y \cdot f_v + 2xy \cdot (f_v)'_y$$

$$= 2y f_u + y^2 \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y) + 2x f_v + 2xy \cdot (f_{vu} \cdot u_y + f_{vv} \cdot v_y)$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)'_x + f_v \cdot (x^2y)'_x = y^2 f_u + 2xy f_v$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^{2} f_{u} + 2xy f_{v} \right)
= (y^{2})'_{y} \cdot f_{u} + y^{2} \cdot (f_{u})'_{y} + (2xy)'_{y} \cdot f_{v} + 2xy \cdot (f_{v})'_{y}
= 2y f_{u} + y^{2} \cdot (f_{uu} \cdot u_{y} + f_{uv} \cdot v_{y}) + 2x f_{v} + 2xy \cdot (f_{vu} \cdot u_{y} + f_{vv} \cdot v_{y})
= 2y f_{u} + y^{2} \cdot (2xy f_{uu} + x^{2} f_{uv}) + 2x f_{v} + 2xy \cdot ($$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^{2} f_{u} + 2xy f_{v} \right)
= (y^{2})'_{y} \cdot f_{u} + y^{2} \cdot (f_{u})'_{y} + (2xy)'_{y} \cdot f_{v} + 2xy \cdot (f_{v})'_{y}
= 2y f_{u} + y^{2} \cdot (f_{uu} \cdot u_{y} + f_{uv} \cdot v_{y}) + 2x f_{v} + 2xy \cdot (f_{vu} \cdot u_{y} + f_{vv} \cdot v_{y})
= 2y f_{u} + y^{2} \cdot (2xy f_{uu} + x^{2} f_{uv}) + 2x f_{v} + 2xy \cdot (2xy f_{vu} + x^{2} f_{vv})$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^{2} f_{u} + 2xy f_{v} \right)$$

$$= (y^{2})'_{y} \cdot f_{u} + y^{2} \cdot (f_{u})'_{y} + (2xy)'_{y} \cdot f_{v} + 2xy \cdot (f_{v})'_{y}$$

$$= 2y f_{u} + y^{2} \cdot (f_{uu} \cdot u_{y} + f_{uv} \cdot v_{y}) + 2x f_{v} + 2xy \cdot (f_{vu} \cdot u_{y} + f_{vv} \cdot v_{y})$$

$$= 2y f_{u} + y^{2} \cdot (2xy f_{uu} + x^{2} f_{uv}) + 2x f_{v} + 2xy \cdot (2xy f_{vu} + x^{2} f_{vv})$$

$$= 2y f_{u} + 2x f_{v} + 2xy^{3} f_{uu} + x^{2} y^{2} f_{uv} + 4x^{2} y^{2} f_{vu} + 2x^{3} y f_{vv}$$

解 设
$$z = f(u, v)$$
, $u = xy^2$, $v = x^2y$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$

$$= (y^2)'_y \cdot f_u + y^2 \cdot (f_u)'_y + (2xy)'_y \cdot f_v + 2xy \cdot (f_v)'_y$$

$$= 2y f_u + y^2 \cdot (f_{uu} \cdot u_v + f_{uv} \cdot v_v) + 2x f_v + 2xy \cdot (f_{vu} \cdot u_v + f_{vv} \cdot v_v)$$

$$= 2yf_u + y^2 \cdot (2xyf_{uu} + x^2f_{uv}) + 2xf_v + 2xy \cdot (2xyf_{vu} + x^2f_{vv})$$

$$= 2yf_u + y^2 \cdot (2xyf_{uu} + x^2f_{uv}) + 2xf_v + 2xy \cdot (2xyf_{vu} + x^2f_{vv})$$

$$= 2yf_u + 2xf_v + 2xy^3f_{uu} + x^2y^2f_{uv} + 4x^2y^2f_{vu} + 2x^3yf_{vv}$$

$$= 2yf_u + 2xf_v + 2xy^3f_{uu} + 5x^2y^2f_{uv} + 2x^3yf_{vv}$$

例 设 $z = f(xy^2, x^2y)$,求 $\frac{\partial^2 z}{\partial x \partial y}$ 解 设 z = f(u, v), $u = xy^2$, $v = x^2y$,则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x = f_u \cdot (xy^2)_x' + f_v \cdot (x^2y)_x' = y^2f_u + 2xyf_v$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(y^2 f_u + 2xy f_v \right)$$
$$= (y^2)'_y \cdot f_u + y^2 \cdot (f_u)'_y + (2xy)'_y \cdot f_v + 2xy \cdot (f_v)'_y$$

$$= 2yf_u + y^2 \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y) + 2xf_v + 2xy \cdot (f_{vu} \cdot u_y + f_{vv} \cdot v_y)$$

$$= 2yf_u + y^2 \cdot (2xyf_{uu} + x^2f_{uv}) + 2xf_v + 2xy \cdot (2xyf_{vu} + x^2f_{vv})$$

$$= 2yf_u + 2xf_v + 2xy^3f_{uu} + x^2y^2f_{uv} + 4x^2y^2f_{vu} + 2x^3yf_{vv}$$

 $= 2yf_u + 2xf_v + 2xy^3f_{uu} + 5x^2y^2f_{uv} + 2x^3yf_{vv}$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则

$$\mathbf{H}$$
 设 $z = f(u, v, w)$, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则

$$\frac{\partial Z}{\partial X}$$
:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

$$\mathbf{H}$$
 设 $z = f(u, v, w)$, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$=\cos x\cdot f_u+e^{x+y}f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) =$$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

解 设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$
$$= \cos x \cdot (f_u)'_y +$$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$
$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

$$= \cos x \cdot ()$$

$$+ e^{x+y} f_w + e^{x+y} \cdot ($$

解 设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

$$= \cos x \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y + f_{uw} \cdot w_y)$$

$$+ e^{x+y} f_w + e^{x+y} \cdot ($$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

$$= \cos x \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y + f_{uw} \cdot w_y)$$

$$+ e^{x+y} f_w + e^{x+y} \cdot (f_{wu} \cdot u_y + f_{wv} \cdot v_y + f_{ww} \cdot w_y)$$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$
$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

$$= \cos x \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y + f_{uw} \cdot w_y)$$

$$+ e^{x+y} f_w + e^{x+y} \cdot (f_{wu} \cdot u_y + f_{wv} \cdot v_y + f_{ww} \cdot w_y)$$

$$= \cos x \cdot ($$

$$+ e^{x+y} f_w + e^{x+y} \cdot ($$

解设
$$z = f(u, v, w), u = \sin x, v = \cos y, w = e^{x+y}, 则$$

$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

$$= \cos x \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y + f_{uw} \cdot w_y)$$

$$+ e^{x+y} f_w + e^{x+y} \cdot (f_{wu} \cdot u_y + f_{wv} \cdot v_y + f_{ww} \cdot w_y)$$

$$= \cos x \cdot (-\sin y \cdot f_{uv} + e^{x+y} f_{uw})$$

$$+ e^{x+y} f_w + e^{x+y} \cdot ($$

解设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_u + e^{x+y} f_w \right)$$

$$= \cos x \cdot (f_u)'_y + (e^{x+y})'_y \cdot f_w + e^{x+y} \cdot (f_w)'_y$$

$$= \cos x \cdot (f_{uu} \cdot u_y + f_{uv} \cdot v_y + f_{uw} \cdot w_y)$$

$$+ e^{x+y} f_w + e^{x+y} \cdot (f_{wu} \cdot u_y + f_{wv} \cdot v_y + f_{ww} \cdot w_y)$$

$$= \cos x \cdot (-\sin y \cdot f_{uv} + e^{x+y} f_{uw})$$

$$+ e^{x+y} f_w + e^{x+y} \cdot (-\sin y \cdot f_{wv} + e^{x+y} f_{ww})$$

解 设
$$z = f(u, v, w)$$
, $u = \sin x$, $v = \cos y$, $w = e^{x+y}$, 则
$$\frac{\partial z}{\partial x} = f_u \cdot u_x + f_v \cdot v_x + f_w \cdot w_x = f_u \cdot (\sin x)_x' + f_v \cdot 0 + f_w \cdot (e^{x+y})_x'$$

$$= \cos x \cdot f_u + e^{x+y} f_w$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(\cos x \cdot f_{u} + e^{x+y} f_{w} \right)$$

$$= \cos x \cdot (f_{u})'_{y} + (e^{x+y})'_{y} \cdot f_{w} + e^{x+y} \cdot (f_{w})'_{y}$$

$$= \cos x \cdot (f_{uu} \cdot u_{y} + f_{uv} \cdot v_{y} + f_{uw} \cdot w_{y})$$

$$+ e^{x+y} f_{w} + e^{x+y} \cdot (f_{wu} \cdot u_{y} + f_{wv} \cdot v_{y} + f_{ww} \cdot w_{y})$$

$$= \cos x \cdot (-\sin y \cdot f_{uv} + e^{x+y} f_{uw})$$

$$+ e^{x+y} f_{w} + e^{x+y} \cdot (-\sin y \cdot f_{wv} + e^{x+y} f_{ww})$$

$$= e^{x+y} f_{w} - \cos x \sin y \cdot f_{uv} + \cos x e^{x+y} f_{uw} - \sin y e^{x+y} f_{wv} + e^{2x+2y} f_{ww}$$