NGS Data Types and Formats

Dr Luria Founou

Head of Research, CEDBCAM-RI Advisory Member, WHO FERG Honorary Senior Lecturer, UKZN

Learning outcomes

- 1. Describe what files are generated during the various steps of the analysis pipeline
- 2. Recognize the structure and information contained in the different file formats
- 3. Extract specific information from the different files
- 4. Summarize NGS file formats generated from QC to variant calling

Agenda

Overview of NGS data analysis

Single-end Reads vs Paired-end Reads

Raw Sequence data

Non-human readable formats

Human readable formats

Take home messages

Overview of NGS Data analysis

Overview of NGS Data analysis

Single (SR) vs Paired-end (PE) reads

Single-End Reads (SR)

- Sequencing determines the DNA sequence of just one end of each DNA fragment.
- Random

Paired-end Reads

- Sequencing yields both ends of each DNA fragment.
 - More expensive
 - ☐ Increase mappability for repetitive regions
 - ☐ Easier identification of SNPs and Indels
 - Increase precision

Forward read

File format for defining genomic regions

- Various file formats exist to store information about the location of transcription start sites, exons, introns etc.
- All formats agree on having
 - Header
 - Features
 - Sequence
- □ Nature of the information contained in each row can vary strongly between the formats

Overview of NGS Data analysis

Raw Sequence Data

Raw Sequence Data

FASTQ format

- Text-based file derived from FASTA format
- Original Sanger standard from capillary sequence data
- Sequence description, sequence and associated per base quality score

Example of a fastq file

Raw Sequence Data

- □ PHRED quality scores encoded as ASCII printable characters (ASCII 33-126)
- Encodes the probability of a call being an error
- Other raw sequence data
 - fastq.gz files
 - fastq.ora files
 - bcl2fastq Conversion: NextSeq, HiSeq, NovaSeq 6000
 - Basecall file format: PacBio & ONT

Reminder: SANGER SEQUENCING

FATSQ file is a file containing:

- Reads sequences
- a Quality score associated to each Read

Human Readable formats

Overview of NGS Data analysis

FASTA

- Text-based format for DNA, RNA or Amino Acid data
- Structure
 - Description line or header always start with ">"
 - Lines of sequence data typically 50 to 8 date=20221108
 - May be upper or lower case.
- **FASTA Extensions**
 - .fa or .fasta: generic Fasta
 - .fna:FASTA nucleic acid
 - .ffn: FASTA nucleotide of gene regions
 - .faa: FASTA amino acid
 - .frn: FASTA non-coding RNA

>contig00001 len=304256 cov=17.6 corr=0 origname=Contig_206_17.5601 sw=shovill-skesa/1.0.4

TTTTCAACTTCTGATGGATGCGAGTGATTGAACTCATACATTAATGTTTTCCCACGAAGT CTTTTTCAGGTAAGCCTTCGCACATATCGGTAAATAGATTGCCTGCTTTTATTTTTCT GTCATCGACATGTTCATTTTTAACATTCCGTCCTGATAAGTTGGTCGGATAAGGCGCTCG CGCCGTATCCGACATTAATTTCTTAAGCGACTTCATTCACCTGGCGACGCAGCAGGGAAA GTGGGCCGGGGCCGCTAAGCGTGAACACGGAAATTAAGGTGAAGCCCAGCGCCACCAGAC ACATAAAAACCATCGCCAGTTGCTTAAAGAAGCAGAACAGACCAGATAAATCGTCGCTG AAAAACGCACTTCAAACTGGCTGGTAATATTTTAAAGCAGCCCACCAGCAGGAACGGTA CTTCAAACATATGCAGCGTTTTCAGAATAACCACTTCCAGTGCTGAGGTAGCGAACGATG AGCCAATAATACGTACTGACATAATAGTGCCAGCCAGCAGCAGGGCGTTTTTCCCACCGA TGCGATTAATGATCAGTGGCGCAAAAAACATAATCGAGGCGTTAAGTAATTCGCCCATTG TCGTTACGTAGCCAAATACCCGCGTACCCTGTTCACCGGTAGCAAAGAACGAAGTAAAGA AATTAGCAAACTGTTGGTCAAAAACATCGTAGGTGCAGGAAACGCCAATAACATACAGTG ACAAAAACCACAGTTTTGGCTGTCTGAACAGTTCCAGCGCCAGCTTAAGGCTAAATGCCG AATGGTTGGCACCTACCGCATTGGCAACCGTGGCAGAAGAGGGCGCATCCGTTTTGGCGA TATTGATGGTGAACATGATGCCGACAATCGAGGCACACAGCGCCCAGCCAACACACCAG ACATCCGCGCGCGACCAAATTCGAAATTACTGCGACGGCTGACTTTCTCGATAAATGCCT CTACTGCTGGCGCACCGGCGTTAAAACAAAAGCCTAGATAAATACCACCAACAATCGATC CTACTAAAATGTTGTATTGTAACAGTGGCCCGAAGATAAAAATAAAGAACGGCGCAAACA TCACTAACATGCCGGTAATAATCCACAGCAGGTATTTGCGCAGCCCGAGTTTGTCAGAAA GCAGACCAAACAGCGGTTGGAATAATAGCGAGAACAGAGAAATAGCGGCAAAAATAATAC CCGTATCACTTTTGCTGATATGGTTGATGTCATGTAGCCAAATCGGGAAAAACGGGAAGT AGGCTCCCATGATAAAAAAGTAAAAGAAAAAGAATAAACCGAACATCCAAAAGTTTGTGT TTTTTAAATAGTACATAATGGATTTCCTTACGCAAAATACGGGCAGACATGGCCTGCCCG GTTATTATTTTTGACACCAGAGCAACTGGTAATGGTAGCTACCGGCGCTAAGCTGGA ATTCCGCCGACACTGACGGGCTCCAGGAGTCGTCGCCACCAATCCCCATATGGAAACCGT

NGS Data TVLCGATATTCAGCCATGTGCCTTCTTCCGCGTGCAGCAGATGGCGATGGCTGGTTTCCATCA

Annotation file output - GFF

- ☐ General Feature Format: 9 required fields
- ☐ The first three fields form the basic name, start, end tuple that allows for the identification of the location in respect to the reference genome
- Fields must be separated by a single TAB (/), but no white space.
- All but the final field in each feature line must contain a value; missing values should be denoted with a '.'
- ☐ GFF2 and GFF3 are similar but not compatible

```
# GFF-version 2
                     5506900 5506996 . + . Transcript B0273.1
      curated exon
   curated exon 5506026 5506382 . + .
                                            Transcript B0273.1
                                            Transcript B0273.1
   curated exon
                     5506558 5506660 . + .
# GFF-version 3
                     1500 . + . ID=exon00001
ctg123 . exon
               1300
ctg123 . exon
                1050
                     1500
                           . + . ID = exon 00002
                           . + . ID = exon00003
ctg123
                3000
                     3902
          exon
```

Annotation file output - GTF

- Gene Transfer Format (GTF) based on the GFF and sometimes referred to as GFF2.5
- ☐ Contrary to GFF files, the **TYPE VALUE** pairs of GTF files are **separated**by one space and must end with a semi-colon
- ☐ GFF and GTF files can contain various types of annotations

```
# GTF example
chr1 HAVANA gene 11869 14412 . + . gene_id "ENSG00000223972.4";
transcript_id "ENSG00000223972.4"; gene_type "pseudogene"; gene_status "
KNOWN"; gene_name "DDX11L1"; transcript_type "pseudogene"; transcript_status
"KNOWN"; transcript_name "DDX11L1"; level 2; havana_gene "
OTTHUMG00000000961.2";
chr1 HAVANA transcript 11869 14409 . + . gene_id "ENSG00000223972.4";
transcript_id "ENST00000456328.2"; gene_type "pseudogene"; gene_status "
KNOWN"; gene_name "DDX11L1"; transcript_type "processed_transcript";
transcript_status "KNOWN"; transcript_name "DDX11L1-002"; level 2; tag "
basic"; havana_gene "OTTHUMG00000000961.2"; havana_transcript "
OTTHUMT00000362751.1";
```

Annotation file output – Genbank

- GenBank or .gbk allows the storage of annotation information for sequence in addition to a DNA/protein sequence itself
- Consists of an annotation section and a sequence section.
- ☐ The start of the annotation section is marked by a line beginning with the word "LOCUS"
- ☐ The start of the sequence section is marked by a line beginning with the word "ORIGIN" and the end of the section is marked by a line with only "//".
- Check example https://www.ncbi.nlm.nih.gov/nuccore/MH814718.1

Genome Browsers

- **BED**(**B**rowser **E**xtensible **D**ata) file:
 - ☐ A tab-delimited text file describes genomic intervals (reads, peaks, genes, etc)
 - 0-based
 - ☐ Essential columns : chromosome start stop
 - Specific descriptions of file formats: https://genome.ucsc.edu/FAQ/FAQformat.html

bed fo	rmat file	of align	ed sequenc	ing re	ads :				
			Read identifie	er		Alignment sco	re		
Chromosome start End			Name		Scor		ore	e Strand	
chr1	92	153	NS50032	22:23:l	HOUMOAGXX	:1:22305:206	503:1636	5	
	0	+							
chr1	205	264	NS50032	22:23:H	HOUMOAGXX	:3:22506:403	37:7916		
	23	+							
bed fo	ormat file	e of TF b	inding sites	(peak	(s) :				
		Pe	ak identifier	Peak :	significance sco	re			
Chrom	osome sta	art End	Name		Score				
Chr1	30069	70 3007	LOO chip_TF:	1_1	120				
chr1	30150	00 3015	120 chip_TF:		100				
Chr1	40070	04 4007	L45 chip_TF	$1_3^{ m NGS\ Date}$	LTypes and Forma O	ts			

Genome Browsers

- BedGraph/Wiggle file format:
 - Used to represent quantitative information across genomic regions.
 - e.g. read depth from ChIP-seq experiments.
 - chr1 3000095 3000131 1
 - chr1 3003970 3004006 2
 - chr1 3006970 3007004 2
 - Visualization using genome browser

(https://genome.ucsc.edu/

- bigWig file format (most widely used for data visualization)
 - indexed binary format
 - only the portions of the files needed to display a particular region are transferred

Not Human Readable formats

Overview of NGS Data analysis

Sequence alignment

- Basic aim of genomics studies :
 - What are the elements in the sample?
 - How abundant are the elements in the sample?
- Purpose: To relate sequencing reads to existing knowledge
 - Existing knowledge: reference genome; gene structures etc.
- ☐ A common technique for mapping reads to features is alignment
- Multiple alignmers

Alignment output - SAM

- ☐ Input QC'd FASTQ (Tool BWA)
- □Output of read alignment and mapping → Sequence Alignment Map (SAM) file
- ☐Standardised method for storing all information relevant to how reads aligns to a reference genome
- □SAM files are rather big when dealing with large NGS datasets

Alignment output - SAM

- SAM (Sequence Alignment/Map format) file:
 - □ a tab-delimited text file that contains aligned sequence data information (human readable)
 - □11 compulsory fields: mapping position, mapping quality, segment sequence...
 - ☐ The optional header section followed by the alignment section where each line corresponds to one sequenced read.
 - Detailed description of SAM file format:
 - http://samtools.sourceforge.net/SAM1.pdf
 - □ https://chagall.med.cornell.edu/RNASEQcourse/Intro 28 Mseq.pdf

VN: @HD SN: @SQ LN: (theoretically) optional HEADER SECTION @RG SM: ID: general information about the file @PG ID: @CO 5 6 8 10 11 >11 QNAME FLAG RNAME POS MAPQ CIGAR RNEXT PNEXT TLEN SEQ QUAL OPT <TAG>:<TYPE>:<VALUE> Paired read? M (mis)match AS Unmapped? insertion ALIGNMENT Mapped to rev. D deletion NH strand? SECTION N skipped NM 1st in pair? Н S soft clipped 1 line per locus 2nd in pair? H hard clipped Failed QC? padding POS MAPQ SEQ OPT QNAME FLAG RNAME CIGAR RNEXT **PNEXT** TLEN QUAL POS MAPQ CIGAR RNEXT SEQ QNAME FLAG RNAME **PNEXT** TLEN QUAL OPT QNAME FLAG RNAME POS MAPQ CIGAR RNEXT PNEXT TLEN SEQ QUAL OPT QNAME FLAG RNAME POS MAPO CIGAR RNEXT **PNEXT** TLEN SEQ QUAL

Alignment output - SAM

NS500322:23	B:H0UM0AG	XX:1:22305:20	0603:1636	0	chr1	93	0	61M	*	0	0
	CCCTGTAG	TTAAAATTGA	CTAAGTATTG	GAAGGGGCCTA	TAGACCTT	GAGTATTCTCA	AGG				
	<aaaafaf< td=""><td>FF7FFFFFFF</td><td>F.FFFAFFFFFF</td><td>FFFFFFFF.F.F)I</td><td>FFFFFFFF<f< td=""><td>AFFFFF</td><td>XT:A:R</td><td>NM:i:0</td><td>X0:i:2</td><td>X1:i:0</td><td></td></f<></td></aaaafaf<>	FF7FFFFFFF	F.FFFAFFFFFF	FFFFFFFF.F.F)I	FFFFFFFF <f< td=""><td>AFFFFF</td><td>XT:A:R</td><td>NM:i:0</td><td>X0:i:2</td><td>X1:i:0</td><td></td></f<>	AFFFFF	XT:A:R	NM:i:0	X0:i:2	X1:i:0	
	XM:i:0	XO:i:0	XG:i:0	MD:Z:61	XA:Z:chr	7,-92852201,63	1M,0;				
NS500322:23	B:H0UM0AG	XX:1:13301:1	368:13300	0	chr1	265	37	58M	*	0	0
	AGTTATTT	ATTGGCCCTT	CAATTTTCATT	TTTATAACCTA	CTATTACCT	TGCAAAAAA					
	7AAAAFFF	FFFFFFFFFF	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFF< <ffffff< td=""><td>FFFFFFFF</td><td>FFFFF</td><td>XT:A:U</td><td>NM:i:0</td><td>X0:i:1</td><td>X1:i:0</td><td></td></ffffff<>	FFFFFFFF	FFFFF	XT:A:U	NM:i:0	X0:i:1	X1:i:0	
	XM:i:0	XO:i:0	XG:i:0	MD:Z:58							
ERR458493	.552967	16	chrl	140	255	12		M61232N3	87M2S *	0	0
	CCACTCGT	TCACCAGGG	CCGGCGGGCT	GATCACTTTATO	CGTGCATCT	TGGC					
	BB?HHJJIG	HHIIGIIIIIIGI	וווווווווווווווווווווווווווווווווווווו	JHHHHFFDDD	A1+B		NH:i:1	HI:i:1	AS:i:41	nM:i:2	

CIGAR string

compact representation of sequence alignment:

- M alignment match or mismatch
- = sequence match
- X sequence mismatch
- I insertion to the reference
- D deletion from the reference
- **S** soft clipping (clipped sequences present in SEQ)
- H hard clipping (clipped sequences NOT present in SEQ)
- N skipped region from the reference
- P padding (silent deletion from padded reference)

CGTACGTACTGT	Ref:	ACGTACGTA	Ref:	CTCAGTC
CGTACTG <mark>A</mark>	Read:	ACGTACGTACGTA	Read:	CGCA-TG
4 4D 5M	Cigar:	4M 4I 5M	Cigar:	₩GŞţDq ta Type

Alignment output file - BAM

- **BAM** file:
 - □Compressed binary version of SAM file (NOT human readable)
 - ⇒ size reduction of around 5-10 fold, and BAM files can be processed much more quickly by NGS tools.
 - ☐ Can be visualized after converting to SAM file
 - ☐ Tools to convert SAM to BAM and process BAMs
 - Samtools
 - Picard
 - htslib
 - Galaxy
 - .bai file: index file for the corresponding bam file

Alignment output - CRAM

- ■BAM files are still relatively large ~1.5 2 bytes per base pair
- Computer disk capacity is falling behind storage requirements for sequencing data
- CRAM is a reference-based compression technique
- Some quality information lost but in a controlled manner
- □Used in most production pipelines now and results in up to 40% reduction in disk space usage

Overview of NGS Data analysis

Variant calling

□ Is there a variant (SNP, indel or structural variant) at a particular position?

■Based on per-base evidence provided for all the reads that have mapped to a particular position in the sequence

Useful to aggregate the evidence from all reads that relate to a

particular base in the sequence

Variant calling output (VCF)

- ☐ Input for variant callers is a QC'd BAM file
- ■Variant callers → Variant Calling Format (VCF)
- Standardised format for representing variant calls
- ☐ Format for SNPs, indels, structural variants and CNVs

Variant calling output (VCF)

- ☐General structure
 - ☐ Header rows (start ##), followed by tab-separated columns with the actual data.
 - ☐ The first 8 columns are mandatory
 - ☐ The **FORMAT** column defines the format of subsequent columns
 - Sample level information follows the FORMAT column
 - ☐ The header rows = Meta-information rows, describe the coding used in each field via a series of tags.
 - ☐ More description https://samtools.github.io/hts-specs/VCFv4.2.pdf

```
##fileformat=VCFv4.2
                                                                                          VCF structure
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                         QUAL FILTER INFO
                                                                                       FORMAT
                                                                                                    NA00001
                                                                                                                   NA00002
                                                                                                                                   NA00003
       14370 rs6054257 G
                                        29 PASS
                                                     NS=3;DP=14;AF=0.5;DB;H2
                                                                                       GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:
       17330
                                                     NS=3; DP=11; AF=0.017
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                  0/0:41:3
                                             q10
       1110696 rs6040355 A
                                             PASS
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                                                                                                                  2/2:35:4
                                                     NS=3; DP=13; AA=T
                                                                                        GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1230237 .
                                             PASS
       1234567 microsat1 GTC
                                G,GTCT 50
                                             PASS
                                                     NS=3; DP=9; AA=G
                                                                                       GT:GQ:DP
                                                                                                   0/1:35:4
                                                                                                                   0/2:17:2
                                                                                                                                  1/1:40:3
```

Take home messages

Human readable formats

- .fasta: text-based format containing DNA, RNA or protein sequence
- **.gbk**: file containing both sequence and annotation information
- .bed : tab delimitated files representing genomic regions

Not human readable

- .fastq: raw sequencing reads (sequences and sequencing qualities)
- **.sam** : aligned reads
- .bam : binary and compressed version of sam files
- .cram: binary and compressed version of bam files

All files are easily convertible

Genome Browser formats

- Bedgraph/wiggle: read density across genomic positions
- ☐ **Bigwig**: binary version of wiggle files

Thank you

Dr Luria Leslie Founou luriafounou@gmail.com www.cedbcam.com

Creative Commons

This work is licensed under a <u>Creative Commons</u>

<u>Attribution-Share Alike Licence (CC BY-SA 4.0).</u>

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

