

UNIVERSIDADE FEDERAL DE MATO GROSSO CAMPUS UNIVERSITÁRIO DO ARAGUAIA

Instituto de Ciências Exatas e da Terra Curso de Bacharelado em Ciência da Computação

Disciplina: Estrutura de Dados II Professor: Ivairton M. Santos

Trabalho 5 – Grafos II Aplicação de busca em largura e em profundidade

Considere o seguinte problema:

Temos uma matriz de 3 x 3 e devemos colocar em cada posição uma letra do alfabeto de tal maneira que todas as linhas e colunas formem uma palavra que existe em português. Eis um exemplo de solução para esse problema:

$$\begin{bmatrix} p & u & s \\ o & v & o \\ s & a & l \end{bmatrix}$$

Suponha que uma posição sem letra é representada pela constante vazio (\emptyset) e que existe uma base limitada com o conjunto de palavras possíveis, com 3 letras, que podem ser utilizadas:

palavra([a,l,o])	palavra([p,u,s])	palavra([l,u,a])
palavra([o,l,a])	palavra([s,a,l])	palavra([v,a,o])
palavra([o,v,o])	palavra([p,o,s])	palavra([v,o,a])
palavra([s,o,l])	palavra([u,v,a])	palavra([v,o,s])
palavra([a,m,o])	palavra([m,a,l])	palavra([a,n,a])
palavra([m,a,o])	palavra([m,a,u])	palavra([n,a,u])
palavra([u,s,a])	palavra([a,s,a])	

Considere agora as duas seguintes maneiras de representar um estado no espaço de busca:

Primeira abordagem: Representamos um estado utilizando uma matriz. Por exemplo, o estado

intermediário ilustrado como:
$$\begin{bmatrix} p & u & s \\ o & \oslash & \oslash \\ \oslash & \oslash & \varnothing \end{bmatrix}$$
 teria a representação ilustrada como :
$$\begin{bmatrix} [p, u, s], [o, \varnothing, \varnothing], [\varnothing, \varnothing, \varnothing] \end{bmatrix}$$

Segunda abordagem: Utilizamos uma lista de 9 elementos, onde cada posição na lista

corresponde a uma ordem sequencial, como: $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ O estado inicial, apresentado na

abordagem anterior, seria representado como:

[p, u, s, o,
$$\emptyset$$
, \emptyset , \emptyset , \emptyset , \emptyset]

Faça:

- (a) Represente todas as possibilidades de palavras por meio de um grafo.
- (b) Faça uma função, que a partir do grafo, e por meio de uma <u>busca em largura</u> ou <u>em profundidade</u> (faça uma função para cada tipo de busca) gere uma solução para o problema.
- (c) Implemente uma função que verifique se a solução gerada é válida.
- (d) Identifique as vantagens/desvantagens na utilização das duas abordagens de representação das soluções.
- (e) Qual das duas estratégias de busca (largura/profundidade) apresentou melhor desempenho na geração das soluções? PS: Considere também uma análise em relação ao espaço de busca (quantidade de combinações possíveis x o número de combinações testado).

Dica:

Faça a geração de soluções a partir de uma palavra de entrada/inicial.