Travaux Dirigés de Géométrie Fiche n° 3

2015-2016

1ère année-S1

EXERCICE 1

Dans $\mathbb{R}^3 \ \vec{u} = (2,2,1), \vec{v} = (1,1,-1), \vec{w} = (0,1,1) \text{ et } \vec{U} = \left(-3,\frac{2}{3},1\right), \vec{V} = \left(3,-\frac{1}{3},2\right), \vec{W} = (27,-1,36).$ 1. Les vecteurs \vec{u} et \vec{v} sont-ils colinéaires? Les vecteurs \vec{u} , \vec{v} et \vec{w} sont-ils coplanaires?

- **2.** \vec{U} et \vec{V} sont-ils colinéaires? \vec{U}, \vec{V} et \vec{W} sont-ils coplanaires?
- **3.** Calculer $\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w})$ et $(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w}$.
- **4.** Peut-on exprimer $\vec{C} = (7, 8, 9)$ comme Combinaison Linéaire de $\vec{A} = (1, 2, 3)$ et $\vec{B} = (4, 5, 6)$.

EXERCICE 2

L'espace \mathbb{R}^3 est rapporté à un repère $(O, \vec{i}, \vec{j}, \vec{k})$.

- **1.** On considère le point U = (-1, 2, -3) et les vecteurs $\vec{a} = (-2, 5, 1), \vec{b} = (3, 1, -4)$.
- 1.1. Donner une équation cartésienne du plan \mathcal{A} passant par U et dirigé par \vec{a} et \vec{b} .
- **1.2.** Donner une représentation paramétrique du plan \mathcal{B} d'équation cartésienne 21x + 5y + 17z = 240.
- 1.3. Donner les positions relatives et l'intersection de \mathcal{A} et \mathcal{B} .
- **2.** On considère le point V = (7,5,4) et le vecteur $\vec{c} = (1,2,3)$.
- **2.1.** Donner une représentation paramétrique de la droite \mathcal{C} passant par V et dirigée par \vec{c} .
- **2.2.** Donner les positions relatives et l'intersection de \mathcal{B} et \mathcal{C} .
- **2.3.** Déterminer les positions relatives et l'intersection de \mathcal{C} et de la droite (UV).
- 3. Soit \mathcal{R} le plan d'équation cartésienne x+y+z=0.
- **3.1.** Donner les positions relatives et l'intersection de \mathcal{B} et \mathcal{R} . On note $\mathcal{D} = \mathcal{B} \cap \mathcal{R}$.
- **3.2.** Donner les positions relatives et l'intersection de \mathcal{C} et \mathcal{D} .

EXERCICE 3

Dans l'espace \mathbb{R}^3 , on note (x, y, z) les coordonnées dans le repère ou la base canonique.

- 1. A = (0, 1, -1), B = (2, -5, 8), C = (1, 1, -1) sont-ils alignés? Donner une représentation paramétrique pour la droite (AB) puis pour le plan (ABC). Montrer que $\mathcal{D} = \{(2x-2, 5-2x, -7+3x), x \in \mathbb{R}\}$, est une droite du plan (ABC). Le point D = (4, -2, 7) appartient-il à ce plan?
- **2.** A = (1,0,2), B = (2,1,3/2), C = (3,2,1), D = (-1,3,2), E = (-1,-7,4), sont-ils coplanaires?
- 3. Déterminer le plan \mathcal{P} contenant les droites $\mathcal{D} = \begin{cases} x = 2 3t \\ y = 2 3t \\ z = 3 t \end{cases}$ $t \in \mathbb{R}$ et $\mathcal{D}' = \begin{cases} x = 4 + 3r \\ y = -2 r \\ z = 6r \end{cases}$
- 4. Donner une équation cartésienne du plan \mathcal{P} passant par A=(3,-2,5) et parallèle au plan \mathcal{Q} d'équation cartésienne Q: 2x + y - 3z + 7 = 0.
- 5. Donner une équation cartésienne du plan \mathcal{P} passant par les points A=(1,1,1) et B=(2,1,0) et tel que la droite \mathcal{D} $\begin{cases} x+2y+z=2\\ x+y-z+3=0 \end{cases}$ soit parallèle à \mathcal{P} . **6.** Examiner les positions relatives des sous-ensembles \mathcal{A} et \mathcal{B} de \mathbb{R}^3 donnés par

6. Examiner les positions relatives des sous-ensembles
$$\mathcal{A}$$
 et \mathcal{B} de \mathbb{R}^3 donnés par 6.1. $\mathcal{A} = \begin{cases} x = 1 - 2t \\ y = 1 + t \\ z = 1 - t \end{cases}$ et $\mathcal{B} = \begin{cases} x = 3 + 2u \\ y = -1 - 5u \\ z = 3u \end{cases}$ $u \in \mathbb{R}$ 6.2. $\mathcal{A} = \begin{cases} x = 1 - 2k \\ y = 2 + 3k \\ z = 1 - k \end{cases}$ et $\mathcal{B} = \begin{cases} x = 2 + u + 4t \\ y = 4u + 5t \\ z = 3 - 2u - 5t \end{cases}$ 6.3. $\mathcal{A} : 2x - y + z - 1 = 0$ et $\mathcal{B} : x + y = 2z + 2$ 6.4. $\mathcal{A} = \begin{cases} x = 1 + 2t \\ y = s + t \\ z = t + 3s \end{cases}$ et $\mathcal{B} = (AB)$ où $\mathcal{A} = (-1, 2, -3)$ et $\mathcal{B} = (3, 2, -1)$. $\mathcal{B} = (3, 2, -1)$ $\mathcal{B} = (3, 2, -1)$ $\mathcal{B} = (3, 2, -1)$ $\mathcal{B} = (3, 2, -1)$ et $\mathcal{B} =$

6.3.
$$A: 2x - y + z - 1 = 0$$
 et $B: x + y = 2z + 2$

6.4.
$$A = \begin{cases} x = 1 + 2t \\ y = s + t \\ z = t + 3s \end{cases}$$
 et $B = (AB)$ où $A = (-1, 2, -3)$ et $B = (3, 2, -1)$.

6.5.
$$A = \begin{cases} x = 2p - q \\ y = 3 - p + 2q \\ z = 1 + 4p - 3q \end{cases} (p, q) \in \mathbb{R}^2 \text{ et } \mathcal{B} : 5x - 2y - 3z = 11.$$

EXERCICE 4 Dans l'espace euclidien
$$\mathbb{R}^3$$
 on considère le plan \mathcal{P} et les deux droites \mathcal{D} et \mathcal{D}' donnés par :
$$\mathcal{P}: x-2y+3z=-1, \qquad \mathcal{D}: \left\{ \begin{array}{ll} x=1-2u \\ y=-1+4u & u\in\mathbb{R}, \quad \text{et} \quad \mathcal{D}': \left\{ \begin{array}{ll} x=7-3t \\ y=-1+9t & t\in\mathbb{R}. \\ z=5+7t \end{array} \right. \right.$$

- 1. Donner deux vecteurs directeurs, un vecteur normal et un point du plan $\mathcal P$
- **2.** Le plan \mathcal{P} et la droite \mathcal{D} sont-ils perpendiculaires?
- **3.** Le plan \mathcal{P} et la droite \mathcal{D}' sont-ils parallèles?

EXERCICE 5

Dans l'espace euclidien \mathbb{R}^3 on considère les deux plans \mathcal{P} et \mathcal{Q} donnés par leur équation cartésienne $\mathcal{P}: x - y + z - 2 = 0 \text{ et } \mathcal{Q}: x + 2y - z + 1 = 0.$

- 1. Montrer que ces deux plans sont sécants en une droite \mathcal{D} .
- 2. Donner une représentation paramétrique de la droite \mathcal{D} .

Soit Δ la droite passant par A=(2,4,3) et dirigée par $\vec{u}=(-1,-3,2)$. On considère aussi le point B = (1, 1, 1).

- 3. Donner une représentation paramétrique de Δ et montrer que $B \notin \Delta$.
- 4. Donner un équation cartésienne du plan \mathcal{R} passant par B et contenant la droite Δ .
- **5.** Calculer la distance du point B au plan Q.
- 6. Donner une représentation paramétrique de la droite \mathcal{E} passant par B et perpendiculaire au plan \mathcal{Q} .
- 7. Donner les coordonnées du point K projeté orthogonal de B sur le plan Q. Calculer la distance BK.

On considère le point C = (9, -3, 3).

- 8. Donner les coordonnées du milieu I du segment [B, C].
- **9.** Donner une équation cartésienne du plan \mathcal{S} médiateur du segment [B, C].
- 10. Donner une équation cartésienne du plan \mathcal{T} passant par C et orthogonal à Δ .
- 11. Donner les coordonnées du point L intersection de \mathcal{T} et de Δ .
- 12. Calculer la distance CL et la norme $\|\vec{u}\|$. Donner les coordonnées du produit vectoriel $\vec{u} \wedge \overrightarrow{CA}$.
- **13.** Vérifier que l'on a $\frac{\|\vec{u} \wedge \overrightarrow{CA}\|}{\|\vec{u}\|} = CL$.

EXERCICE 6

Dans l'espace \mathbb{R}^3 , on note (x,y,z) les coordonnées dans le repère ou la base canonique et on considère les quatre points $A = \left(1,0,\frac{3}{2}\right), B = \left(0,1,\frac{3}{2}\right), C = \left(0,0,-\frac{1}{2}\right)$ et D = (4,3,0).

- 1. Donner une représentation paramétrique et une équation cartésienne du plan (ABC).
- **2.** Donner les composantes d'un vecteur orthogonal au plan (ABC).
- **3.** Donner une équation cartésienne du plan passant par A et de vecteur normal $\vec{n} = (1, -1, 2)$.
- 4. Donner une représentation paramétrique de la droite (AD).
- **5.** Montrer que les quatre points A, B, C et D ne sont pas coplanaires.
- **6.** Montrer que le plan (ABC) et la droite (AD) sont perpendiculaires.
- 7. Donner une équation cartésienne du plan passant par B et perpendiculaire aux plans $\mathcal{P}: x-2y+z-1=0$ et Q: y - 2z + 1 = 0.
- 8. Donner une représentation paramétrique de la droite passant par C et perpendiculaire au plan \mathcal{P} .
- **9.** Calculer la distance de C au plan \mathcal{P} .

EXERCICE 7

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de \mathbb{R}^3 .

- **1.** Montrer que $(\vec{u} \cdot \vec{v})^2 + ||\vec{u} \wedge \vec{v}||^2 = ||\vec{u}||^2 \cdot ||\vec{v}||^2$
- **2.** Montrer que $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = -(\vec{u} \cdot \vec{v})\vec{w} + (\vec{u} \cdot \vec{w})\vec{v}$.
- **3.** En déduire que $\vec{u} \wedge (\vec{v} \wedge w) + \vec{v} \wedge (\vec{w} \wedge \vec{u}) + \vec{w} \wedge (\vec{u} \wedge \vec{v}) = \vec{0}$.