Wydział	Dzień		Nr zespołu
	Data		
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1.			
2.			
3.			
Prowadzący	Podpis prowadzącego		

Sprawozdanie nr 4

1. Interferencja fal

1.1. Opis ćwiczenia

Celem ćwiczenia jest pomiar długości fal elektromagnetycznych metodami interferencyjnymi. Wykorzystujemy do tego następujące przyrządy:

- interferometr Michelsona
- interferometr Fabry-Perota
- siatkę dyfrakcyjną

W eksperymentach zostały wykorzystane mikrofale oraz światło widzialne w postaci lasera o kolorze czerwonym.

1.2. Wstęp teoretyczny

Interferencja

Interferencja jest efektem nakładania się fal. W wyniku nałożenia może nastąpić wzmocnienie fali wypadkowej lub jej osłabienie. Warunkiem trwałej interferencji fal jest ich spójność, czyli korelacja faz i równość częstotliwości. W przeciwnym wypadku może dość np. do dudnienia. Fale powinny też posiadać identyczną częstość kołową w i mieć taką samą polaryzację. Natężenia nakładających się fal opisane są wzorami

$$E_1 = E_{01} sin(\omega t - kx)$$

$$E_2 = E_{02} sin(\omega t - k(x + \Delta))$$

gdzie dla fali drugiej przebywa ona dodatkową drogę Δ która powoduje różnicę w fazach pomiędzy falami.

Podczas interferencji czyli dodaniu się fal otrzymujemy następującą zależność

$$E = E_1 + E_2 = E_{01}sin(\omega t - kx) + E_{02}sin(\omega t - kx - \phi)$$

gdzie $\phi = \frac{2\pi}{\lambda}\Delta$ - opisuje zmianę fazy spowodowaną przebyciem dodatkowej drogi optycznej.

Używane przez nas detektory reagują na średnią ilość energii padającej na jednostkę powierzchni w jednostce czasu. Energia fali jest proporcjonalna do kwadratu natężenia pola elektrycznego, zależność tą możemy otrzymać z poprzedniego wzoru wynosi ona:

$$E^2 = (E_1 + E_2) = E_{01}^2 sin^2 (\omega t - kx) + E_{02}^2 sin^2 (\omega t - kx - \phi) + 2E_{01}E_{02}sin(\omega t - kx)sin(\omega t - kx - \phi)$$

Z czego po odpowiednich przekształceniach otrzymujemy

$$E^{2} = E_{01}^{2} sin^{2} (\omega t - kx) + E_{02}^{2} sin^{2} (\omega t - kx - \phi) + E_{01} E_{02} [\cos \phi - \cos[2(\omega t - kx) - \phi]]$$

Mając powyższą zależność możemy wyznaczyć wcześniej wspomnianą średnią ilość energii na jednostę powierzchni

$$I = E^2 = \frac{E_{01}}{2} \frac{E_{02}}{2} + E_{01} E_{02} \cos \phi$$

Ostatecznie otrzymując

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\phi$$

co dla przypadku przez nas badanego ${\cal I}_1 = {\cal I}_2$ sprowadza się do związku

$$I = 2I_0 + 2I_0 cos\phi$$

w zależności od kąta przesunięcia fazowego $\phi = \frac{2\pi}{\lambda} \Delta$ otrzymujemy 0 lub $4I_0$ bo $\cos \phi$ odpowiednio osiąga wartości -1 lub 1. Z powyższych rozważań wynikia ostatecznie że $\lambda = 2\frac{\Delta}{2m+1}$ dla osłabienia oraz $\lambda = \frac{\Delta}{m}$ dla wzmocnienia.

1.3. Siatka dyfrakcyjna

Rys. 8. Schemat układu pomiarowego z siatką dyfrakcyjną. O - źródło fal elektromagnetycznyc, D detektor fal elektromagnetycznych, Z - zwierciadło, K - kątomierz, R - ruchome ramię lawy konstrukcyjnej, SD - siatka dyfrakcyjna

Rysunek 1: Schemat układu pomiarowego dla siatki dyfrakcyjnej

Do przeprowadzenia eksperymentu z siatką dyfrakcyjną posłużono się układem widocznym na rysunku 1. Źródło mikrofal które znajdowało się w odległości $\frac{1}{2}$ promienia krzywizny zwierciadła wysyłało fale elektromagnetyczne które odbijały się od zwierciadła. Dzięki temu osiągaliśmy równoległe fale elektromagnetyczne. Następnie przechodziły przez szczeliny siatki dyfrakcyjnej i zgodnie z zasadą Huyghensa były one wtórnymi źródłami fal kulistych które ze sobą interferowały dając minima oraz maksima sygnału obserwowanego na woltomierzu w miejsach o odpowiednich kątach względem siatki dyfrakcyjnej w których znajdował się odbiornik fal. Na siatce dyfrakcyjnej dochodzi do powstania fal rozchodzących się kuliście jeśli różnica dróg widoczna na rysunku 2 wynosi $dsin\alpha_m = m\lambda$ wówczas dochodzi do maksymalnego wzmocnienia fali wynikowej.

Otrzymano następujące wyniki:

•

Pierwsze ćwiczenie polegało na zbadaniu relacji między napięciem a natężeniem prądu. W tym celu dokonaliśmy 10 pomiarów napięcia na rezystorze R_4 oraz 10 pomiarów natężenia prądu płynącego w obwodzie. Uzyskane wyniki zostały przedstawione w tabeli (Rysunek ??) oraz na wykresie zależności napięcia na R_4 od natężenia prądu (Tablica 1).

Rysunek 2: Schemat układu pomiarowego dla siatki dyfrakcyjnej

Lp.	α (°)
1	0
2	26
3	26
4	53
5	55

Tablica 1: Wielokrotne pomiary prądu ${\cal I}_{R_4}$ i napięcia ${\cal U}_{R_4}$ na rezystorze $R_4.$

Dla użytego woltomierza, przy zakresie Z(U), niepewność wyznaczenia napięcia wynosi:

$$u_U = \frac{1\% \cdot Z(U)}{\sqrt{3}}$$

Niepewność wyznaczenia natężenia prądu (przy użytym amperomierzu) jest zależna od odczytanej wartości i wynosi:

$$u_I = \frac{1.2\% \text{rdg} + 1 \text{dgt}}{\sqrt{3}}$$

Na podstawie pomiarów napięcia i natężenia – oraz uwzględniając błędy pomiarowe – możemy stwierdzić, że natężenie prądu rośnie wprost proporcjonalnie do napięcia. Stosunek napięcia do natężenia jest stały. Wyniki doświadczenia potwierdzają słuszność prawa Ohma.

Lp.	U(V)	Z(U) (V)	u_U (V)	I (mA)	Z(I) (mA)	$u_I \text{ (mA)}$
1	8.800	10	0.058	22.80	200	0.22
2	8.000	10	0.058	20.50	200	0.20
3	7.000	10	0.058	17.930	20	0.058
4	6.200	10	0.058	15.740	20	0.051
5	5.200	10	0.058	13.510	20	0.045
6	4.400	10	0.058	11.230	20	0.038
7	3.600	10	0.058	9.060	20	0.032
8	2.600	3	0.017	6.760	20	0.025
9	1.800	3	0.017	4.500	20	0.019
10	0.8600	1	0.0058	2.290	20	0.012

Tablica 2: Wielokrotne pomiary prądu I_{R_4} i napięcia U_{R_4} na rezystorze R_4 .

1.4. Regresja liniowa

Używając metody najmniejszych kwadratów można wyznaczyć współczynnik kierunkowy prostej y = ax + b. Ponieważ napięcie i natężenie prądu są powiązane postacią U = RI, to przyjmujemy b = 0. Zatem dopasowywana prosta będzie postaci y = ax.

Współczynnik kierunkowy szukanej prostej będzie szukaną rezystancją opornika. Ponadto, rezystancja ta będzie wyrażona wzorem:

$$R = a = \frac{\sum_{i=1}^{10} \frac{I_i U_i}{u_{U_i}^2}}{\sum_{i=1}^{10} \frac{I_i^2}{u_{U_i}^2}}$$

Z niepewnością wynoszącą:

$$u_a = \sqrt{\frac{1}{\sum_{i=1}^{10} \frac{I_i^2}{u_{U_i}^2}}}$$

W celu wyznaczenia powyższych wartości pomocna będzie tabela z pośrednimi wartościami obliczeń (Tablica 2). Zachowano w niej dodatkowe cyfry znaczące, aby uniknąć błędów numerycznych przy kolejnych obliczeniach.

rycznych przy kolejnych obliczeniach. Otrzymujemy $a = \frac{313502.546}{805575.221} \approx 0.3892 \text{ k}\Omega = 389.2 \Omega$ oraz $u_a = \sqrt{\frac{1}{805575.221}} \approx 0.0011 \text{ k}\Omega = 1.1 \Omega$. Zatem opór $R_4 = 389.2 (1.1) \Omega$.

1.5. Obliczenia wartości R_1, R_2, R_3

Wyniki pomiarów umieszczono w tablicy 3.

Niepewności napięcia oraz natężenia prądu są liczone jak wyżej.

Niepewność rezystancji wyznaczonej za pomocą wzoru $R = \frac{U}{I}$ wynosi:

$$u_R = \sqrt{(\frac{\partial R}{\partial U})^2 \cdot u_U^2 + (\frac{\partial R}{\partial I})^2 \cdot u_I^2} = \sqrt{\frac{1}{I^2} \cdot u_U + \frac{U^2}{I^2} \cdot u_I}$$

Zatem wartości R_1 , R_2 , R_3 wynoszą (zapis na trzy sposoby):

	U	u_U	I	u_I	IU	u_U^2	I^2	$\frac{I^2}{u_U^2}$	$rac{IU}{u_U^2}$
1	8.80	0.0577350	22.80	0.215698	200.64	0.00333	519.84	155953.560	60192.602
2	8.00	0.0577350	20.50	0.199763	164.00	0.00333	420.25	126076.261	49200.492
3	7.00	0.0577350	17.93	0.057533	125.51	0.00333	321.4849	96446.434	37653.377
4	6.20	0.0577350	15.74	0.051211	97.588	0.00333	247.7476	74325.023	29276.693
5	5.20	0.0577350	13.51	0.044774	70.252	0.00333	182.5201	54756.578	21075.811
6	4.40	0.0577350	11.23	0.038192	49.412	0.00333	126.1129	37834.248	14823.748
7	3.60	0.0577350	9.06	0.031928	32.616	0.00333	82.0836	24625.326	9784.898
8	2.60	0.0173205	6.76	0.025288	17.576	0.00030	45.6976	152325.333	58586.667
9	1.80	0.0173205	4.50	0.018764	8.1	0.00030	20.25	67500.000	27000.000
10	0.86	0.0057735	2.29	0.012384	1.9694	0.00003	5.2441	15732.457	5908.259
suma								805575.221	313502.546

Tablica 3: Wartości pośrednie obliczeń, które pozwalają wyznaczyć wartość współczynnika kierunkowego w zagadnieniu regresji liniowej

Rezystor	U(V)	u_U (V)	I (mA)	$u_I \text{ (mA)}$	$R(\Omega)$	$u_R (\Omega)$
R_1	2.85	0.018	55.30	0.45	51.537	0.035
R_2	4.0	0.06	38.50	0.33	103.90	0.06
R_3	4.0	0.06	38.50	0.33	103.90	0.06

Tablica 4: Wyniki pojedynczych pomiarów na rezystorach $\mathcal{R}_1,\,\mathcal{R}_2$ oraz \mathcal{R}_3

- $R_1 = 51.537 \ \Omega, \ u_{R_1} = 0.035 \ \Omega$
 - $R_2 = 103.90 \ \Omega, \ u_{R_2} = 0.06 \ \Omega$
 - $R_3 = 103.90 \ \Omega, \ u_{R_3} = 0.06 \ \Omega$
- $R_1 = 51.537(35) \Omega$
 - $R_2 = 103.90(6) \Omega$
 - $R_3 = 103.90(6) \Omega$
- $R_1 = 51.537 (0.035) \Omega$
 - $R_2 = 103.90 \, (0.06) \, \Omega$
 - $R_3 = 103.90 (0.06) \Omega$

2. Pomiary wielkości mechanicznych

2.1. Opis ćwiczenia

Celem ćwiczenia jest pomiar trzech wymiarów metalowej płytki oraz wyznaczenie jej objętości, wraz z niepewnościami.

2.2. Pomiary za pomocą suwmiarki

Przy użyciu suwmiarki dokonano dwukrotnego pomiaru długości (l_1, l_2) oraz jednokrotnego pomiaru szerokości (l_3) .

Rozdzielczość suwmiarki wynosi $\Delta x=0.02$ mm, zatem niepewność typu B wynosi: $u_B(x)=\frac{\Delta x}{\sqrt{3}}\approx 0.01154700\approx 0.012$ mm.

Uzyskane pomiary w serii wyniosły kolejno: 36.600 mm, 37.420 mm, 30.700 mm.

Zatem wartości l_1 , l_2 , l_3 wynoszą (zapis na trzy sposoby):

- $l_1 = 36.600 \text{ mm}, u_B = 0.012 \text{ mm}$
 - $l_2 = 37.420 \text{ mm}, u_B = 0.012 \text{ mm}$
 - $l_3 = 30.700 \text{ mm}, u_B = 0.012 \text{ mm}$
- $l_1 = 36.600 (12) \text{ mm}$
 - $l_2 = 37.420 \, (12) \, \text{mm}$
 - $l_3 = 30.700 (12) \text{ mm}$
- $l_1 = 36.600 (0.012) \text{ mm}$
 - $l_2 = 37.420 \, (0.012) \, \text{mm}$
 - $l_3 = 30.700 (0.012) \text{ mm}$

2.3. Pomiary za pomocą śruby mikrometrycznej

W tym ćwiczeniu, za pomocą śruby mikrometrycznej, badana była grubość metalowej płytki. Wykonane pomiary (n=60) przedstawione zostały w tablicy 4 oraz za pomocą histogramu (tablica ??).

Uwaga: pomiar wynoszący 2.97 uznajemy za blqd gruby. W tabeli ten fakt został zaznaczony poprzez skreślenie, zaś w histogramie (oraz wszelkich obliczeniach) pomiar ten został pominięty.

2.94	2.93	2.94	2.92	2.94	2.95
2.93	2.93	2.97	2.94	2.93	2.93
2.93	2.94	2.93	2.93	2.94	2.93
2.94	2.93	2.94	2.92	2.93	2.94
2.93	2.94	2.94	2.93	2.94	2.94
2.94	2.95	2.95	2.93	2.93	2.94
2.94	2.93	2.94	2.94	2.94	2.93
2.94	2.94	2.94	2.94	2.94	2.93
2.94	2.93	2.93	2.94	2.93	2.94
2.94	2.94	2.94	2.94	2.93	2.93

Tablica 5: Wyniki wielokrotnych pomiarów grubości płytki za pomocą śruby mikrometrycznej.

Oznaczmy pomiary jako x_i , $i = 1, \ldots, 59$.

Średnia wartość wszystkich pomiarów wynosi: $x=\frac{1}{59}\sum_{i=1}^{59}x_i=\frac{1}{59}\cdot173.22\approx2.935932203389.$

Odchylenie standardowe: $s_x = \sqrt{\frac{\sum_{i=1}^{59} (x_i - x)^2}{59 - 1}} \approx 0.0064643969$. Niepewność typu A: u_x (typ A) = $\frac{s_x}{\sqrt{59}} \approx 0.00084159279 \text{ mm} \approx 0.00084 \text{ mm}$.

Niepewność typu B: $u_x(\text{typ B}) = \sqrt{\frac{(\Delta x)^2}{3} + \frac{(\Delta x_e)^2}{3}} = \sqrt{\frac{(0.01)^2}{3} + \frac{(0.005)^2}{3}} \approx 0.006454972 \approx 0.006454972$ 0.00645 mm.

Niepewność całkowita: $u_x = \sqrt{(u_x(\text{typ A}))^2 + (u_x(\text{typ B}))^2} \approx 0.006504467695 \approx 0.0065 \text{ mm}.$ Ostatecznie, grubość płytki wynosi (zapis na 3 sposoby):

- $d = 2.9365 \text{ mm}, u_x = 0.0065 \text{ mm}$
- d = 2.9365 (65) mm
- d = 2.9365 (0.0065) mm

2.4. Wyznaczanie objętości płytki

Zmierzone zostały trzy wymiary metalowej płytki. Jako pierwszy wymiar (x) przyjmiemy średnią arytmetyczną dwóch pomiarów z niepewnością typu B. Oznaczmy objętość $V = x \cdot y \cdot z$, gdzie $x = 37.510 \, (0.012) \, \text{mm}, \, y = 30.700 \, (0.012) \, \text{mm}, \, z = 2.9365 \, (0.0066) \, \text{mm}.$ Zauważmy, że xoraz y są obarczone niepewnościami typu B, zaś z niepewnością typu A oraz B. W celu wyznaczenia objętości V wraz z niepewnością całkowitą, posłużymy się następującymi oznaczeniami oraz wzorami:

$$V = x \cdot y \cdot z = 37.010 \cdot 30.700 \cdot 2.9365 \text{ mm}^3 = 3336.4718555 \text{ mm}^3 \approx 3336 \text{ mm}^3$$

$$\begin{split} u_V &= \sqrt{(\frac{\partial V}{\partial x})^2 \cdot u_x^2 + (\frac{\partial V}{\partial y})^2 \cdot u_y^2 + (\frac{\partial V}{\partial z})^2 \cdot (u_z(\text{typ A}))^2 + (\frac{\partial V}{\partial z})^2 \cdot (u_z(\text{typ B}))^2} \\ &= \sqrt{(yz \cdot u_x)^2 + (xz \cdot u_y)^2 + (xy \cdot u_z(\text{typ A}))^2 + (xy \cdot u_z(\text{typ B}))^2} \\ &= \sqrt{(30.7 \cdot 2.9365 \cdot 0.012)^2 + (37.01 \cdot 2.9365 \cdot 0.012)^2 + (37.01 \cdot 30.7 \cdot 0.0009))^2 + (37.01 \cdot 30.7 \cdot 0.0065)^2} \ \text{mm}^3 \\ &\approx 58.4370490542980344 \ \text{mm}^3 \\ &\approx 58 \ \text{mm}^3 \end{split}$$

Ostatecznie, objętość płytki wynosi (zapis na 3 sposoby):

- $V = 3336 \text{ mm}^3, u_V = 58 \text{ mm}^3$
- $V = 3336 (58) \text{ mm}^3$
- $V = 3336(58) \text{ mm}^3$