λ , Verhältnis von elektrischer Ladung ΔQ auf dem Drahtelement Δs am Ort \vec{r} zu der Länge des Drahtelements. Das Längenelement Δs wird soweit verkleinert, bis die Ladungsverteilung darauf als gleichmäßig verteilt angesehen werden kann:

$$\lambda\left(\vec{r}\right) = \lim_{\Delta s \to 0} \frac{\Delta Q}{\Delta s} = \frac{dQ}{ds}$$

 σ , Verhältnis von elektrischer Ladung ΔQ auf der Fläche ΔA am Ort \vec{r} zu der Größe der Fläche. Dabei wird ΔA so weit verkleinert, bis die Ladung darauf als gleichmäßig verteilt angesehen werden kann:

$$\sigma\left(\vec{r}\right) = \lim_{\Delta A \to 0} \frac{\Delta Q}{\Delta A} = \frac{dQ}{dA}$$

Kennzeichnet die Bewegung von elektrisch geladenen Teilchen in leitenden Medien. Kann Erwärmung von Materie, elektrochemische Vorgänge sowie Magnetisierung bewirken. Mittlere Raum-, Flächen und Linienladungsdichte:

$$\bar{\rho} = \frac{Q}{V} = \frac{1}{V} \int_{V} \rho(\vec{r}) dV$$

$$\bar{\sigma} = \frac{Q}{A} = \frac{1}{A} \int_{A} \sigma(\vec{r}) dA$$

$$\bar{\lambda} = \frac{Q}{s} = \frac{1}{s} \int_{s} \lambda(\vec{r}) ds$$

Die Stromstärke I hat den Wert 1 A, wenn zwei im Abstand r=1m parallel angeordnete, geradlinige, unendlich lange Leiter mit vernachlässigbar kleinem Drahtquerschnitt, die vom gleichen zeitlich unveränderlichen Strom I durchflossen werden, je 1m Leiterlänge die Kraft $2 \cdot 10^{-7}$ N aufeinander ausüben.

I, die durch eine Querschnittsfläche A pro Zeitintervall Δt fließende Ladungsmenge ΔQ . Verändert sich I während Δt , so verkleinert man Δt bis I als konstant angenommen werden kann:

$$I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$

Stromrichtung und Stromstärke ändern sich zeitlich periodisch.

Stromrichtung und Stromstärke sind zeitlich konstant. Die während eines Zeitintervalls Δt durch eine Querschnittsfläche fließende Ladungsmenge ΔQ ist proportional Δt :

$$I = \frac{\Delta Q}{\Delta t} = \text{const.}$$