Package 'ClickClust'

December 3, 2023

Version 1.1.6 **Date** 2023-12-02

Title Model-Based Clustering of Categorical Sequences

Depends R (>= $3.0.0$)
LazyLoad yes
LazyData no
Description Clustering categorical sequences by means of finite mixtures with Markov model components is the main utility of ClickClust. The package also allows detecting blocks of equivalent states by forward and backward state selection procedures.
License GPL (>= 2)
Author Volodymyr Melnykov [aut, cre], Rouben Rostamian [ctb, cph] (memory allocation in c)
Maintainer Volodymyr Melnykov <vmelnykov@ua.edu></vmelnykov@ua.edu>
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-12-03 05:50:02 UTC
R topics documented:
ClickClust-package
В3
C 4
click.backward
click.EM
click.forward
click.plot
click.predict
click.read
Click Sim

 click.var
 18

 msnbc323
 20

 print.object
 21

 synth
 22

2 ClickClust-package

Index 24

ClickClust-package Model-based clustering of categorical sequences

Description

The package runs finite mixture modeling and model-based clustering for categorical sequences

Details

Function 'click.EM' runs the EM algorithm for finite mixture models with Markov model components.

Author(s)

Volodymyr Melnykov

Maintainer: Volodymyr Melnykov <vmelnykov@cba.ua.edu>

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

B3

```
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2

# DATA SIMULATION

A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)

# EM ALGORITHM

click.EM(X = C$X, K = 2)</pre>
```

В3

Dataset: result of backward state selection

Description

These data demonstrate the result of the backward state selection procedure obtained for the dataset "C".

Usage

```
data(utilityB3)
```

Details

Results of the backward state selection procedure assuming three components are provided for the dataset "C".

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45. Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

```
help(C, package = "ClickClust")
```

4 *C*

Examples

```
data(utilityB3)

dev.new(width = 11, height = 11)
click.plot(X = C$X, id = B3$id, colors = c("lightyellow", "red", "darkred"), col.levels = 10)
```

С

Dataset: simulated dataset

Description

This dataset is used to run the backward state selection procedure (results in "B3").

Usage

```
data(utilityB3)
```

Details

Original dataset used to illustrate the utility of backward selection.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

help(B3)

```
data(utilityB3)

dev.new(width = 11, height = 11)
click.plot(X = C$X, id = B3$id, colors = c("lightyellow", "red", "darkred"), col.levels = 10)
```

click.backward 5

click.backward	Backward search for equivalent states	
----------------	---------------------------------------	--

Description

Runs backward search to detect blocks of equivalent states.

Usage

```
click.backward(X, K, eps = 1e-10, r = 100, iter = 5, bic = TRUE,
    min.gamma = 1e-3, scale.const = 1.0, silent = FALSE)
```

Arguments

Χ	dataset array (p x p x n)
K	number of mixture components
eps	tolerance level
r	number of restarts for initialization
iter	number of iterations for each short EM run
bic	flag indicating whether BIC or AIC is used
min.gamma	lower bound for transition probabilities
scale.const	scaling constant for avoiding numerical issues
silent	output control

Details

Runs backward search to detect blocks of equivalent states. States i and j are called equivalent if their behavior expressed in terms of transition probabilities is identical, i.e., the probabilities of leaving i and j to visit another state h are the same as well as the probabilities of coming to i and j from another state h are the same; this condition should hold for all mixture components. Notation: p - number of states, n - sample size, K - number of mixture components, d - number of equivalence blocks.

Value

Z	matrix of posterior probabilities (n x K)
alpha	vector of mixing proportions (length K)
gamma	array of transition probabilities (d x d x K)
states	detected equivalence blocks (length p)
logl	log likelihood value
BIC	Bayesian Information Criterion
AIC	Akaike Information Criterion
id	classification vector (length n)

6 click.backward

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

forward.search, click.EM

```
set.seed(123)
n.seq <- 50
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
                0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
B <- click.read(A$S)</pre>
# BACKWARD SEARCH
click.backward(X = B$X, K = 2)
```

click.EM 7

click.EM EM algorithm for mixtures of Markov models	
---	--

Description

Runs the EM algorithm for finite mixture models with Markov model components.

Usage

```
click.EM(X, y = NULL, K, eps = 1e-10, r = 100, iter = 5, min.beta = 1e-3,
    min.gamma = 1e-3, scale.const = 1)
```

Arguments

Χ	dataset array (p x p x n)
У	vector of initial states (length n)
K	number of mixture components
eps	tolerance level
r	number of restarts for initialization
iter	number of iterations for each short EM run
min.beta	lower bound for initial state probabilities
min.gamma	lower bound for transition probabilities
scale.const	scaling constant for avoiding numerical issues

Details

Runs the EM algorithm for finite mixture models with first order Markov model components. The function returns estimated mixing proportions 'alpha' and transition probability matrices 'gamma'. If initial states 'y' are not provided, initial state probabilities 'beta' are not estimated and assumed to be equal to 1/p. In this case, the total number of estimated parameters is given by M = K - 1 + K * p * (p - 1). Otherwise, initial state probabilities 'beta' are also estimated and the total number of parameters is M = K - 1 + K * (p - 1) + K * p * (p - 1). Notation: p - number of states, n - sample size, K - number of mixture components, d - number of equivalence blocks.

Value

Z	matrix of posterior probabilities (n x K)
id	classification vector (length n)
alpha	vector of mixing proportions (length K)
beta	matrix of initial state probabilities (K x p)
gamma	array of transition probabilities (p x p x K)
logl	log likelihood value
BIC	Bayesian Information Criterion

8 click.EM

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.plot, click.forward, click.backward

```
set.seed(123)
n.seq <- 50
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
                0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] \leftarrow TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)</pre>
# EM ALGORITHM (without initial state probabilities)
N2 \leftarrow click.EM(X = C$X, K = 2)
N2$BIC
```

click.forward 9

```
# EM ALGORITHM (with initial state probabilities) 
 M2 \leftarrow click.EM(X = C$X, y = C$y, K = 2) 
 M2\$BIC
```

click.forward

Forward search for equivalent states

Description

Runs forward search to detect blocks of equivalent states.

Usage

```
click.forward(X, K, eps = 1e-10, r = 100, iter = 5, bic = TRUE,
    min.gamma = 1e-3, scale.const = 1.0, silent = FALSE)
```

Arguments

Χ	dataset array (p x p x n)
K	number of mixture components
eps	tolerance level
r	number of restarts for initialization
iter	number of iterations for each short EM run
bic	flag indicating whether BIC or AIC is used
min.gamma	lower bound for transition probabilities
scale.const	scaling constant for avoiding numerical issues
silent	output control

Details

Runs forward search to detect blocks of equivalent states. States i and j are called equivalent if their behavior expressed in terms of transition probabilities is identical, i.e., the probabilities of leaving i and j to visit another state h are the same as well as the probabilities of coming to i and j from another state h are the same; this condition should hold for all mixture components. Notation: p-number of states, n- sample size, K- number of mixture components, d- number of equivalence blocks.

10 click.forward

Value

z	matrix of posterior probabilities (n x K)
alpha	vector of mixing proportions (length K)
gamma	array of transition probabilities (d x d x K)
states	detected equivalence blocks (length p)
logl	log likelihood value
BIC	Bayesian Information Criterion
AIC	Akaike Information Criterion
id	classification vector (length n)

Author(s)

Melnykov, V.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

backward.search, click.EM

click.plot 11

```
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2

# DATA SIMULATION

A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)

# FORWARD SEARCH
click.forward(X = C$X, K = 2)</pre>
```

click.plot

Plot of the obtained clustering solution

Description

Constructs a click-plot for the clustering solution.

Usage

```
click.plot(X, y = NULL, file = NULL, id, states = NULL, marg = 1,
  font.cex = 2, font.col = "black", cell.cex = 1, cell.lwd = 1.3,
  cell.col = "black", sep.lwd = 1.3, sep.col = "black",
  obs.lwd = NULL, colors = c("lightcyan", "pink", "darkred"),
  col.levels = 8, legend = TRUE, leg.cex = 1.3, top.srt = 0,
  frame = TRUE)
```

Arguments

Χ	dataset array (p x p x n)
У	vector of initial states (length n)
file	name of the output pdf-file
id	classification vector (length n)
states	vector of state labels (length p)
marg	plot margin value (for the left and top)
font.cex	magnification of labels
font.col	color of labels
cell.cex	magnification of cells
cell.lwd	width of cell frames

12 click.plot

cell.col	color of cell frames
sep.lwd	width of separator lines
sep.col	color of separator lines
obs.lwd	width of observation lines
colors	edge colors for interpolation
col.levels	number of colors obtained by interpolation
legend	legend of color hues
leg.cex	magnification of legend labels
top.srt	rotation of state names in the top
frame	frame around the plot

Details

Constructs a click-plot for the provided clustering solution. Click-plot is a graphical display representing relative transition frequencies for the partitioning specified via the parameter 'id'. If the parameter 'file' is specified, the constructed plot will be saved in the pdf-file with the name 'file'. If the width of observation lines 'obs.lwd' is not specified, median colors will be used for all cell segments.

Author(s)

Melnykov, V.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.EM

```
set.seed(123)
n.seq <- 200

p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)

TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,</pre>
```

click.predict 13

```
0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)</pre>
# EM ALGORITHM
M2 \leftarrow click.EM(X = C$X, y = C$y, K = 2)
# CONSTRUCT CLICK-PLOT
click.plot(X = C$X, y = C$y, file = NULL, id = M2$id)
```

click.predict

Prediction of future state visits

Description

Calculates the transition probability matrix associated with the M-step transition.

Usage

```
click.predict(M = 1, gamma, pr = NULL)
```

Arguments

M number of transition steps (M = 1 by default)
gamma array of transition probabilities (p x p x K)
pr vector of probabilities associated with components (length K)

14 click.predict

Details

Returns a transition probability matrix associated with the M-step transition. If the vector pr is not specified, all components are assumed equally likely.

Author(s)

Melnykov, V.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.EM

```
set.seed(123)
n.seq <- 200
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
                0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
```

click.read 15

```
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)

# EM ALGORITHM

M2 <- click.EM(X = C$X, y = C$y, K = 2)

# Assuming component probabilities given by mixing proportions, predict the next state click.predict(M = 1, gamma = M2$gamma, pr = M2$alpha)

# For the last location in the first sequence, predict the three-step transition # location, given corresponding posterior probabilities

click.predict(M = 3, gamma = M2$gamma, pr = M2$z[1,])[A$S[[1]][length(A$S[[1]])],]</pre>
```

click.read

Reading sequences of visited states

Description

Prepares sequences of visited states for running the EM algorithm.

Usage

```
click.read(S)
```

Arguments

S

list of numeric sequences

Details

Prepares sequences of visited states for running the EM algorithm by means of the click.EM() function.

Value

```
X dataset array (p x p x n) (p - # of states, n - # of sequences)
```

y vector of initial states (length n)

Author(s)

Melnykov, V.

16 click.read

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.sim, click.EM

```
set.seed(123)
n.seq <- 20
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
                0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)</pre>
C$X
C$y
```

click.sim 17

|--|

Description

Simulates sequences of visited states.

Usage

```
click.sim(n, int = c(5, 100), alpha, beta = NULL, gamma)
```

Arguments

n	number of sequences
int	interval defining the lower and upper bounds for the length of sequences
alpha	vector of mixing proportions (length K)
beta	matrix of initial state probabilities (K x p)
gamma	array of K p x p transition probability matrices (p x p x K)

Details

Simulates 'n' sequences of visited states according to the following mixture model parameters: 'alpha' - mixing proportions, 'beta' - initial state probabilities, 'gamma' - transition probability matrices. If the matrix 'beta' is not provided, all initial states are assumed to be equal to 1 / p.

Value

S	list of simulated sequences
id	true classification of simulated sequences

Author(s)

Melnykov, V.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.read, click.EM

18 click.var

Examples

```
# SPECIFY MODEL PARAMETERS
set.seed(123)
n.seq <- 20
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP1 <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
                0.20, 0.20, 0.20, 0.20, 0.20,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.15, 0.10, 0.20, 0.20, 0.35,
                0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP2 <- matrix(c(0.15, 0.15, 0.20, 0.20, 0.30,
                0.20, 0.10, 0.30, 0.30, 0.10,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.25, 0.20, 0.15, 0.15, 0.25,
                0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
```

click.var

Variance-covariance matrix estimation

Description

Estimates the variance-covariance matrix for model parameter estimates.

Usage

```
click.var(X, y = NULL, alpha, beta = NULL, gamma, z)
```

click.var 19

Arguments

Χ	dataset array (p x p x n)
У	vector of initial states (length n)
alpha	vector of mixing proportions (length K)
beta	matrix of initial state probabilities (K x p)
gamma	array of transition probabilities (p x p x K)
z	matrix of posterior probabilities (n x K)

Details

Returns an estimated variance-covariance matrix for model parameter estimates.

Author(s)

Melnykov, V.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.EM

20 msnbc323

```
0.10, 0.30, 0.20, 0.20, 0.20), byrow = TRUE, ncol = p)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- TP1
TP[,,2] <- TP2
# DATA SIMULATION
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)</pre>
# EM ALGORITHM
M2 \leftarrow click.EM(X = C$X, y = C$y, K = 2)
# VARIANCE ESTIMATION
V \leftarrow click.var(X = C$X, y = C$y, alpha = M2$alpha, beta = M2$beta,
                gamma = M2\$gamma, z = M2\$z)
# 95% confidence intervals for all model parameters
Estimate <- c(M2$alpha[-K], as.vector(t(M2$beta[,-p])),</pre>
               as.vector(apply(M2$gamma[,-p,], 3, t)))
Lower <- Estimate - qnorm(0.975) * sqrt(diag(V))</pre>
Upper <- Estimate + qnorm(0.975) * sqrt(diag(V))</pre>
cbind(Estimate, Lower, Upper)
```

msnbc323 Dataset: msnbc323

Description

A portion of the msnbc dataset containing 323 clickstream sequences. This version of the original dataset (David Heckerman) was used in Melnykov (2014).

There are 17 states representing the following categories:

- 1: frontpage
- 2: news
- 3: tech
- 4: local
- 5: opinion
- 6: on-air
- 7: misc

print.object 21

- 8: weather
- 9: msn-news
- 10: health
- 11: living
- 12: business
- 13: msn-sports
- 14: sports
- 15: summary
- 16: bbs
- 17: travel

Usage

data(msnbc323)

Format

List of 323 numeric vectors representing categorical sequences.

Source

Melnykov, V. (2014)

References

Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S. (2003) Model-based clustering and visualization of navigation patterns on a web site, Data Mining and Knowledge Discovery, 399-424.

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

synth

print.object

Functions for Printing or Summarizing Objects

Description

EM and search classes for printing and summarizing objects.

22 synth

Usage

```
## $3 method for class 'EM'
print(x, ...)
## $3 method for class 'EM'
summary(object, ...)
## $3 method for class 'search'
print(x, ...)
## $3 method for class 'search'
summary(object, ...)
```

Arguments

```
x an object with the 'EM' (or 'search') class attributes.
object an object with the 'EM' (or 'search') class attributes.
... other possible options.
```

Details

Some useful functions for printing and summarizing results.

Author(s)

Melnykov, V.

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.EM.

synth

Illustrative dataset: sequences of five states

Description

The data represents the synthetic dataset used as an illustrative example in the Journal of Statistical Software paper discussing the use of the package.

There are 5 states denoted as A, B, C, D, and E. Categorical sequences have lengths varying from 10 to 50.

synth 23

Usage

```
data(synth)
```

Format

\$data contains a vector of 250 strings representing categorical sequences; \$id is the original classification vector.

Source

```
Melnykov, V. (2015)
```

References

Melnykov, V. (2016) Model-Based Biclustering of Clickstream Data, Computational Statistics and Data Analysis, 93, 31-45.

Melnykov, V. (2016) ClickClust: An R Package for Model-Based Clustering of Categorical Sequences, Journal of Statistical Software, 74, 1-34.

See Also

click.read

```
data(synth)
head(synth$data)
# FUNCTION THAT REPLACES CHARACTER STATES WITH NUMERIC VALUES
repl.levs <- function(x, ch.lev){</pre>
for (j in 1:length(ch.lev)) x \leftarrow gsub(ch.levs[j], j, x)
return(x)
}
# DETECT ALL STATES IN THE DATASET
d <- paste(synth$data, collapse = " ")</pre>
d <- strsplit(d, " ")[[1]]</pre>
ch.levs <- levels(as.factor(d))</pre>
# CONVERT DATA TO THE FORM USED BY click.read()
S <- strsplit(synth$data, " ")</pre>
S <- sapply(S, repl.levs, ch.levs)</pre>
S <- sapply(S, as.numeric)</pre>
head(S)
```

Index

· EM alaawidhaa	-1:-l. C
* EM algorithm	click.forward,
click.backward, 5	click.plot, 11
click.EM, 7	click.predict,
click.forward,9	click.read, 15
click.plot, 11	click.sim, 17
click.predict, 13	click.var, 18
click.read, 15	ClickClust-pac
click.sim, 17	b-222 20
click.var, 18	msnbc323, 20
* Markov model	<pre>print.EM(print</pre>
click.backward,5	print.object, 2
click.EM, 7	print.search (p
click.forward,9	print. Sear Cir (p
click.plot, 11	summary.EM(pri
click.predict, 13	summary.search
click.read, 15	synth, 22
click.sim, 17	3y11cm, 22
click.var, 18	
* backward search	
click.backward,5	
* click-plot	
click.EM, 7	
click.plot, 11	
* dataset	
B3, 3	
c, 4	
msnbc323, 20	
synth, 22	
* forward search	
click.forward, 9	
* prediction	
click.predict, 13	
* variance estimation	
click.var, 18	
0110K. YOU , 10	
B3, 3	
C, 4	
click.backward, 5	
click.EM, 7	
CIICK.LFI, /	