

planetmath.org

Math for the people, by the people.

purely inseparable

Canonical name PurelyInseparable
Date of creation 2013-03-22 14:49:08
Last modified on 2013-03-22 14:49:08

Owner mclase (549) Last modified by mclase (549)

Numerical id 6

Author mclase (549) Entry type Definition Classification msc 12F15 Let F be a field of characteristic p > 0 and let α be an element which is algebraic over F. Then α is said to be *purely inseparable* over F if $\alpha^{p^n} \in F$ for some $n \ge 0$.

An algebraic field extension K/F is purely inseparable if each element of K is purely inseparable over F.

Purely inseparable extensions have the following property: if K/F is purely inseparable, and A is an algebraic closure of F which contains K, then any homomorphism $K \to A$ which fixes F necessarily fixes K.

Let K/F be an arbitrary algebraic extension. Then there is an intermediate field E such that K/E is purely inseparable, and E/F is separable.

Example. Let s be an indeterminate, and let $K = \mathbb{F}_3(s)$ where \mathbb{F}_3 is the finite field with 3 elements. Let $F = \mathbb{F}_3(s^6)$. Then K/F is neither separable, nor purely inseparable. Let $E = \mathbb{F}_3(s^3)$. Then E/F is separable, and K/E is purely inseparable.