§17. Соотношения взаимосвязи характеристик САУ между собой и передаточной функцией

Возможные соотношеня представлены в таблице.

Характери- стика	h(t)	w(t)	W(s)	$W(j\omega)$
Переходная характеристика $h(t)$	1	$\int_{0}^{t} w(t)dt$	$L^{-1}\bigg\{\frac{W(s)}{s}\bigg\}$	$F^{-1}\bigg\{\frac{W(j\omega)}{j\omega}\bigg\}$
Импульсная переходная характеристика $w(t)$	h'(t)	1	$L^{-1}\big\{\!W(s)\big\}$	$F^{-1}\{W(j\omega)\}$
Передаточ- ная функция $W(s)$	$sL\{h(t)\}$	$L\{w(t)\}$	1	$W(j\omega)\Big _{j\omega=s}$
Частотная передаточная функция $W(j\omega)$	$j\omega F\{h(t)\}$	$F\{w(t)\}$	$W(s)\big _{s=j\omega}$	1

Соотношения, приведенные на пересечении первых трех строк и столбцов следуют из определения соответствующих характеристик и свойств преобразования Лапласа. Например, из формулы $W(s) = \frac{Y(s)}{X(s)}$ при x(t) = 1(t) получаем W(s) = sH(s), где $H(s) = L\{h(t)\}$. Откуда следуют соотношения: $W(s) = L\{h(t)\}s$ и $h(t) = L^{-1}\{\frac{W(s)}{s}\}$.

Соотношения же, приведенные в последнем столбце и нижней строке следуют из определений прямого F и обратного F^{-1} преобразований Фурье -

$$F^{-1}\left\{Y(j\omega)\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(j\omega)e^{j\omega t} d\omega = y(t).$$