THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALL

ST3188 ZB

BSc DEGREES AND GRADUATE DIPLOMAS IN ECONOMICS, MANAGEMENT, FINANCE AND THE SOCIAL SCIENCES, THE DIPLOMA IN ECONOMICS AND SOCIAL SCIENCES AND THE CERTIFICATE IN EDUCATION IN SOCIAL SCIENCES

Statistical Methods for Market Research

Tuesday 7 May 2019 : 14:30 - 16:30

Time allowed: 2 hours

DO NOT TURN OVER UNTIL TOLD TO BEGIN

This paper contains two sections. **Section A** is compulsory and contains one question. **Section B** contains three questions.

Answer THE question in Section A and TWO questions from Section B.

Section A carries 40 marks and **Section B** carries 60 marks. All questions in **Section B** will be given equal weight (30 marks).

The coursework mark (worth 30% of the final mark) will be combined with the examination mark (worth 70%) to give the overall percentage for the module.

A calculator may be used when answering questions on this paper and it must comply in all respects with the specification given with your Admission Notice. The make and type of machine must be clearly stated on the front cover of the answer book.

[Calculator]

© University of London 2019

SECTION A: Compulsory

(a) A government is considering the need for additional airport capacity due
to projections of increased demand for air travel in the years ahead. The
government is deciding how the expected demand can be met in the long term.
Short-listed options for increasing airport capacity include expansion of one
of two existing airports, A or B. The decision to expand either site involves
numerous trade-offs.

You have been asked to devise an appropriate sampling scheme of airport A and airport B users (passengers as well as non-passengers, such as staff and local residents to the airport) to research their views of expanding one or other site. Explain how each of the following sampling methods could be applied to the overall sampling strategy for this study. Make sure you describe the merits and limitations of each as well as how each would be applied in practice.

- i. Convenience sampling.
- ii. Quota sampling.
- iii. Stratified sampling.
- iv. Cluster sampling.

(20 marks)

- (b) Suppose we are interested in estimating the proportion of a population using a simple random sample of size n.
 - i. State a suitable estimator of the population proportion as well as its sampling distribution. State clearly any assumptions which you make.
 - ii. Explain statistically how to determine the minimum sample size necessary to estimate a population proportion to within e units.
 - iii. Define the terms 'incidence rate' and 'completion rate'.
 - iv. Explain how you would adjust the statistically-determined sample size, n, in light of incidence and completion rates.

(20 marks)

SECTION B: Answer two questions. Each question carries equal weight.

2. (a) A grocery store chain surveyed a set of customers concerning their purchasing habits. Given the survey results and how much each customer spent in the previous month, the store wants to see if gender, denoted as gender, (categorised as 'male' and 'female') and usage of coupons, denoted as usecoup, (categorised as 'no', 'from newspaper', 'from mailings' and 'from both') are related to the amount they spend in a month.

Analyse the selected SPSS output in Figure 1 (spread over the next two pages) and discuss what conclusions can be drawn from the data. In your analysis, be sure to address at least the following:

- Determine the strength of the joint effect of the factors.
- Test the significance of the variables individually and the interaction between them and interpret the results.
- State any other three potential factors or covariates which you think might affect monthly spending in the grocery store chain, justifying your choice.

(20 marks)

- (b) i. What are the major decisions involved in constructing an itemised rating scale?
 - ii. How many scale categories should be used in an itemised rating scale? Briefly explain your answer.
 - iii. Construct a simple example of a question with an itemised rating scale.

(10 marks)

Figure 1

Descriptive Statistics

Dependent Variable: Amount spent

Use coupons	Gender	Mean	Std. Deviation	N
	Male	410.1245	75.71493	49
No	Female	340.7190	84.25149	52
	Total	374.3910	87.10401	101
	Male	391.9883	57.55010	47
From newspaper	Female	338.2806	84.69003	35
	Total	369.0643	74.87278	82
	Male	453.5324	93.20937	54
From mailings	Female	396.2361	94.03784	46
	Total	427.1761	97.43944	100
	Male	474.1714	125.37160	35
From both	Female	391.4142	94.99714	33
	Total	434.0099	118.41767	68
	Male	430.3043	93.47877	185
Total	Female	365.6671	92.64058	166
	Total	399.7352	98.40821	351

Tests of Between-Subjects Effects

Dependent Variable: Amount spent

Source	Sum of Squares	df	Mean Square	F	Sig.
usecoup	56382853.167	4	14095713.292	1780.785	.000
gender	367388.346	1	367388.346	46.414	.000
usecoup * gender	9877.335	3	3292.445	.416	.742
Error	2714999.592	343	7915.451		
Total	59475118.440	351			

a. R Squared = .954 (Adjusted R Squared = .953)

Figure 1 (continued)

- 3. (a) A loan officer at a bank wants to be able to identify characteristics which are indicative of people who are likely to default on loans, and the officer wants to use these characteristics to identify good and bad credit risks.
 - Records of 700 existing loan customers were analysed using discriminant analysis in an attempt to develop a predictive model for the credit risk of new customers. Each of these 700 customers had either previously defaulted on at least one loan or they had not.

The following information is also available about each of the 700 customers:

- Age in years.
- Years with current employer.
- Years at current address.
- Household income in thousands.
- Debt to income ratio $(\times 100)$.
- Credit card debt in thousands.
- Other debt in thousands.

Analyse the selected SPSS output in Figure 2 (spread over the next two pages) and discuss what conclusions can be drawn from the data.

In your analysis, be sure to address at least the following:

- State the theoretical and estimated discriminant analysis models.
- Comment on the relative importance of the predictor variables.
- Discuss how the loan officer should assess the default risk of a new customer. Comment on how accurate any such assessment might be.

(20 marks)

- (b) i. What is non-response bias and why is it problematic?
 - ii. Identify three ways to improve response rates, explaining how these could be effective.
 - iii. Discuss three techniques to adjust for non-response.

(10 marks)

Figure 2

Eigenvalues

Function				Canonical
	Eigenvalue	% of Variance	Cumulative %	Correlation
1	.404 ^a	100.0	100.0	.536

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
_ 1	.712	235.447	7	.000

Standardized Canonical Discriminant

Function Coefficients

	Function
	1
Age in years	.122
Years with current employer	829
Years at current address	310
Household income in	.215
thousands	
Debt to income ratio (x100)	.603
Credit card debt in	.564
thousands	
Other debt in thousands	178

Structure Matrix

	Function
	1
Debt to income ratio (x100)	.666
Years with current employer	464
Credit card debt in	.397
thousands	
Years at current address	262
Other debt in thousands	.232
Age in years	219
Household income in	112
thousands	

Figure 2 (continued)

Canonical Discriminant Function

Coefficients

	Function
	1
Age in years	.015
Years with current employer	130
Years at current address	046
Household income in	.006
thousands	
Debt to income ratio (x100)	.096
Credit card debt in	.275
thousands	
Other debt in thousands	055
(Constant)	576

Unstandardized coefficients

Functions at Group Centroids

Previously defaulted	Function
	1
No	377
Yes	1.066

Unstandardized canonical discriminant functions evaluated at group means

Classification Results

	_	Previously defaulted	Predicted Grou	ıp Membership	
			No	Yes	Total
Original	Count	No	393	124	517
		_ Yes	44	139	183
	%	No	76.0	24.0	100.0
		_ Yes	24.0	76.0	100.0
Cross-validated ^a	Count	No	391	126	517
		Yes	47	136	183
	%	No	75.6	24.4	100.0
		Yes	25.7	74.3	100.0

- 4. (a) An industry analyst would like to predict car sales from a set of predictors. However, many of the predictors are correlated, and the analyst fears that this might adversely affect her results. The analyst uses factor analysis to focus the analysis on a manageable subset of the predictors. Observed variables used in the factor analysis were the following car characteristics:
 - Price in thousands (price).
 - 4-year resale value (resale).
 - Engine size (engine_s).
 - Horsepower (horsepow).
 - Width (width).
 - Length (length).
 - Fuel capacity (fuel_cap).
 - Fuel efficiency (mpg).

Figure 3 (spread over the next two pages) presents selected SPSS output from a factor analysis with principal components extraction, using the varimax rotation procedure.

In your analysis, be sure to address at least the following:

- Explain how you determine the number of factors and interpret the extracted factors.
- Explain qualitatively how the fit of the factor analysis model should be examined.
- Briefly discuss the relative merits of using 'hard' variables (such as these) versus 'soft' variables (such as attitudinal variables) in factor analysis.

(20 marks)

- (b) i. Discuss the similarity and difference between cluster analysis and discriminant analysis.
 - ii. What are some of the uses of cluster analysis in marketing?
 - iii. What is involved in the interpretation of clusters?

(10 marks)

Figure 3

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.792
Bartlett's Test of Sphericity	Bartlett's Test of Sphericity Approx. Chi-Square	
	df	28
	Sig.	.000

Component	Initial Eigenvalues		
	Total	% of Variance	Cumulative %
1	4.905	61.310	61.310
2	1.694	21.181	82.491
3	.610	7.625	90.117
4	.332	4.148	94.264
5	.232	2.906	97.170
6	.136	1.699	98.870
7	.061	.765	99.635
8	.029	.365	100.000

Rotated Component Matrix^a

	Component	
	1	2
Price in thousands	.177	.959
4-year resale value	.026	.968
Engine size	.677	.607
Horsepower	.435	.838
Width	.890	.140
Length	.861	020
Fuel capacity	.806	.274
Fuel efficiency	737	412

Figure 3 (continued)

END OF PAPER