# Helium and thermal energy Chemistry, life, the universe & everything - Cooper & Klymkowsky Draw a picture of what you imagine solid Helium looks like.

 Draw a picture of what you imagine solid Helium looks like.



## Q2

- What is preventing the He atoms from flying apart? (why do they stick together?)
- Draw a picture of two or three He atoms showing the forces that are attracting them to each other



- What is preventing the He atoms from flying apart? (why do they stick together?)
- London dispersion forces



#### Q3

- What happens when you add thermal energy (raise the temperature) to the Helium atoms? Why?
- The kinetic energy of the molecules increases, they move faster, collide and/or vibrate with more energy.

Chemistry, life, the universe & everything - Cooper & Klymkowsky

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Q4: How to the He atoms "know" the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| The energy is transferred from other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| atoms that have collided with the walls of the container, that were directly heated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| energy molecules of molecules o |   |
| Chemistry, life, the universe & everything - Cooper & Klymkowsky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |

- Compared to Ne you think the London Dispersion forces between Xe atoms are
  - A. larger
  - B. Smaller
  - C. The same?



 Which do you think would have larger melting and/or boiling points

- A. Ne
- B. Xe
- C. Same



Chemistry, life, the universe & everything - Cooper & Klymkowsky

Helium has a melting point of 1K, and Xenon has a melting point of 161K. Was your prediction right?



# **London Dispersion Forces**

- Increase with size of particle (number of electrons)
- · Increase with surface area
- Part of a range of intermolecular forces (between particles)



Chemistry, life, the universe & everything - Cooper & Klymkowsky

# Q6

 If a container with He solid in it is heated (for example by placing the container on a heated block), the solid will melt and then evaporate.
Draw a diagram showing how the energy from the solid block is transferred to the He atoms.



Draw a graph showing how the potential energy of a two Helium atom system changes as the He atoms approach each other. Use a solid line for He. Now, using the same graph, and using a dotted line ----- show how the potential energy changes when two Xe atoms approach each other. Explain how and why the two curves differ from each other.



Chemistry, life, the universe & everything - Cooper & Klymkowsky

# A range of interactions between atoms

- van der Waals can be between atoms or molecules – (intermolecular)
- Bonds more permanent stronger harder to break.



Chemistry, life, the universe & everything - Cooper & Klymkowsky