Kernel-based methods

26 Mar 2023

Table of contents

Kernel-based methods	
Kernel smoothers	
Separating hyperplanes	
support vector machines for the non-separable case	•
Gaussian processes	٩

Kernel-based methods

- depend only on some distance function induced between pairs of points
- kernel function k
 - classification: $\hat{y}_i(\mathbf{x}') = textrm sign \sum w_i y_i k(\mathbf{x}_i, \mathbf{x}_i')$ regression: (the same but without the sign()!)
- low-rank approximations of k()

Kernel smoothers

- kernel density estimation
- Nadaraya-Watson kernel regession

Separating hyperplanes

- ESL section 4.5
- Regress $\mathbf{y} \in \{-1, 1\}$ on \mathbf{x} : solve for $\mathbf{X}\beta = 0$ (write as $\beta_0 + \beta^{\mathsf{T}}\mathbf{x} = 0$, i.e. separate intercept)
- (equivalent to linear discriminant analysis)
- Rosenblatt's algorithm
 - $-(\mathbf{X}\boldsymbol{\beta})/||\boldsymbol{\beta}||$ is the signed distance to the separating plane
 - minimize $\sum i \in My_i(\mathbf{X}\beta)$ (sum of misclassified distances)
 - gradient = $-\sum (y_i x_i)$
 - stochastic gradient descent* (pointwise): adjust β by $\rho \mathbf{y}_i X_i$ at each step
- elegant but not practical (non-unique, slow, nonconvergent if not separable)
- \bullet \rightarrow penalized version in a larger basis space
- $\operatorname{argmin}(\beta)\frac{1}{2}||\beta||^2$ subject to $y_i(\mathbf{X}\beta)\geq 1$
- "standard" convex optimization problem

FIGURE 4.16. The same data as in Figure 4.14. The shaded region delineates the maximum margin separating the two classes. There are three support points indicated, which lie on the boundary of the margin, and the optimal separating hyperplane (blue line) bisects the slab. Included in the figure is the boundary found using logistic regression (red line), which is very close to the optimal separating hyperplane (see Section 12.3.3).

support vector machines for the non-separable case

- ESL chapter 12
- •

Gaussian processes