CLAIMS

WHAT IS CLAIMED IS:

1	1.	An apparatus for use in a borehole for electrical imaging during rotary drilling
2		comprising:
3		(a) a resistivity sensor having a specified offset from a wall of the borehole;
4		(b) an orientation sensor making a measurement of a toolface angle of said
5		apparatus during continued rotation thereof; and
6		(c) a device for maintaining said resistivity sensor at said specified offset.
1	2.	The apparatus of claim 1 wherein said resistivity sensor comprises a galvanic
2		sensor.
3		
1	3.	The apparatus of claim 1 wherein said sensor is mounted on a pad.
2		
1	4.	The apparatus of claim 1 wherein said sensor is mounted on a rib.
2		
1	5	The apparatus of claim 1 wherein said sensor is mounted on a stabilizer.
2		
1	6.	The apparatus of claim 1 wherein said sensor further comprises
2		(i) a current electrode for conveying a measure current into said formation
3		through a conducting fluid, and

414-34391 25

4		(ii) at least one guard electrode proximate to said current electrode for
5		maintaining focusing of said measure current.
6		
1	7.	The apparatus of claim 6 wherein said at least one guard electrode focuses said
2		measure current in a direction substantially normal to said borehole wall.
3		
1	8.	The apparatus of claim 7 wherein said at least one guard electrode surrounds said
2		measure electrode and maintains a focusing of said measure current in a flushed
3		zone of said formation.
4		
1	9.	The apparatus of claim 7 wherein the at least one guard electrode comprises a
2		plurality of guard electrodes for altering a depth of investigation of said resistivity
3		sensor.
4		
1	10.	The apparatus of claim 6 wherein said at least one guard electrode comprises a
2		plurality of guard electrodes that create substantially spherical equipotential
3		surfaces spherical focusing
4		
1	11.	The apparatus of claim 1 wherein said sensor further comprises:
2		(i) a current electrode for conveying a measure current into said formation,
3		and
4		(ii) a measure electrode spaced apart from said current electrode

 -5-		the apparatus further comprising a processor for determining from a voltage of
6		said measure electrode and said measure current an indication of a resistivity of
7		said earth formation. short normal
8		
1	12.	The apparatus of claim 8 further comprising monitor electrodes to support the
2		focusing in the presence of non negligible contact impedances.
3		
1	13.	The apparatus of claim 9 further comprising monitor electrodes to support the
2		focusing in the presence of non negligible contact impedances.
3		
1	14.	The apparatus of claim 8 wherein further comprising a pad that substantially
2		circumscribes said apparatus, said pad carrying said sensor thereon
3		
1	15.	The apparatus of claim 14 further comprising monitor electrodes to support the
2		focusing in the presence of non negligible contact impedances.
3		
1	16.	The apparatus of claim 8 further comprising a controller for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	17.	The apparatus of claim 12 further comprising a controller for maintaining a
2		substantially constant power consumption by said electrodes.
3		

_1 -	-18.	The apparatus of claim 14 further comprising a controller for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	19.	The apparatus of claim 14 further comprising a controller for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	20.	The apparatus of claim 1 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	21.	The apparatus of claim 1 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	22.	The apparatus of claim 1 wherein said device comprises a stabilizer.
2		
1	23.	The apparatus of claim 1 wherein said device comprises a steerable rib.
2		
1	24.	The apparatus of claim 1 wherein said borehole is filled with a substantially
2		nonconducting fluid and wherein said resistivity sensor is capacitively coupled to
3		said earth formation.
4		
1	25.	The apparatus of claim 24 wherein said resistivity sensor makes measurements at
2		a plurality of different frequencies.

•		
1	26.	The apparatus of claim 1 wherein said borehole includes a substantially non-
2		conducting fluid therein.
3		
1	27.	The apparatus of claim 2 wherein said borehole includes a substantially non-
2		conducting fluid therein and wherein said resistivity sensor coneys a measure
3		current into said formation using capacitive coupling.
4		
1	28.	The apparatus of claim 1 wherein said resistivity sensor further comprises a
2		shielded dipole.
3		
1	29.	The apparatus of claim 26 wherein said resistivity sensor further comprises a
2		shielded dipole.
3		
1	30.	The apparatus of claim 26 wherein said resistivity sensor further comprises a
2		directionally sensitive induction logging tool.
3		
1	31.	The apparatus of claim 30 wherein said directionally sensitive induction logging
2		tool comprises a quadrupole transmitter.
3		
1	32.	The apparatus of claim 26 wherein said resistivity sensor further comprises a
2		radio frequency microwave transmitter

I	33.	The a	ıpparatu	is of claim 26 wherein said resistivity sensor comprises an induction
2		coil.		
3				
1	34	A sys	stem for	use in a borehole for determining a resistivity parameter during
2		drilli	ng of a l	borehole in an earth formation comprising:
3		(a)	a bott	tom hole assembly (BHA) including
4			(i)	a resistivity subassembly having a resistivity sensor with a
5				specified offset from a wall of the borehole;
6			(ii)	an orientation sensor on said subassembly for making a
7				measurement of a toolface angle of said subassembly during
8				continued rotation thereof; and
9			(ii)	a device for maintaining said resistivity sensor at said specified
10				offset.
11		(b)	a prod	cessor for determining said resistivity parameter from measurements
12			made	by said resistivity sensor;
13		(c)	a dev	ice for drilling said borehole; and
14		(d)	conve	eyance device for conveying said BHA into said borehole.
15				
1	35.	The s	ystem o	of claim 34 wherein said device for drilling said borehole comprises a
2		drill b	oit.	
3				

1	36.	The system of claim 34 wherein said conveyance device comprises a drill string.
2		
1	37.	The system of claim 34 wherein said processor is part of said BHA.
2		
1	38.	The system of claim 34 wherein said processor includes a memory device for
2		storing at least a subset of measurements made by said resistivity sensor.
3		
1	39.	The system of claim 34 wherein said resistivity sensor comprises a galvanic
2		sensor.
3		
1	40.	The system of claim 39 wherein said sensor further comprises
2		(i) a current electrode for conveying a measure current into said formation
3		through a conducting fluid, and
4		(ii) at least one guard electrode proximate to said current electrode for
5		maintaining focusing of said measure current.
6		
1	41.	The system of claim 40 wherein said processor maintains a substantially constant
2		power consumption by said electrodes.
3		
1	42.	The system of claim 34 wherein said orientation sensor comprises a
2		magnetometer.

 -1-	-43 -	The system of claim 34 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	44.	The system of claim 34 wherein said device comprises a stabilizer.
2		
1	45.	The system of claim 34 wherein said device comprises a steerable rib.
2		
1	46.	The system of claim 34 wherein said borehole is filled with a substantially
2		nonconducting fluid and wherein said resistivity sensor is capacitively coupled to
3		said earth formation.
4		
1	47.	The system of claim 46 wherein said resistivity sensor makes measurements at a
2		plurality of different frequencies.
3		
1	48.	The system of claim 34 wherein said borehole includes a substantially non-
2		conducting fluid therein and wherein said resistivity sensor conveys a measure
3		current into said formation using capacitive coupling.
4		
1	49.	The system of claim 34 wherein said resistivity sensor further comprises a
2		shielded dipole.
3		

1	-50	The system of claim 34 wherein said resistivity sensor further comprises a
2		directionally sensitive induction logging tool.
3		
1	51.	The system of claim 50 wherein said directionally sensitive induction logging too
2		comprises a quadrupole transmitter.
3		
1	52.	The system of claim 34 wherein said resistivity sensor further comprises a radio
2		frequency microwave transmitter
3		
1	53.	The system of claim 34 wherein said resistivity parameter comprises a resistivity
2		image of said borehole.
3		
1	54.	A method of determining a parameter of an earth formation during formation of a
2		borehole in said earth formation by a device on a bottom hole assembly (BHA),
3		the method comprising:
4		(a) maintaining a resistivity sensor on said BHA substantially at a specified
5		offset from a wall of the borehole;
6		(b) using said resistivity sensor for making measurements indicative of said
7		parameter during continue rotation of said BHA;
8		(c) using an orientation sensor on said BHA for making a measurement of a
9		toolface angle of said BHA during said continued rotation; and
10		(d) using a processor for determining from said measurements said parameter

11		
1	55.	The method of claim 54 wherein said resistivity sensor comprises a galvanic
2		sensor.
3		
1	56.	The method of claim 54 further comprising mounting said resistivity sensor on a
2		pad.
3		
1	57.	The method of claim 54 further comprising mounting said resistivity sensor on a
2		rib of said BHA.
3		
.1	58	The method of claim 54 further comprising mounting said resistivity sensor on a
2		stabilizer of said BHA.
3		
1	59.	The method of claim 54 further comprising
2		(i) using a current electrode of said resistivity sensor for conveying a measure
3		current into said formation through a conducting fluid, and
4		(ii) using at least one guard electrode proximate to said current electrode for
5		maintaining focusing of said measure current.
6		
1	60.	The method of claim 59 further comprising using said at least one guard electrode
2		for focusing said measure current in a direction substantially normal to a borehole
3		wall

•			
1	61.	The n	nethod of claim 60 wherein said at least one guard electrode surrounds said
2		meası	ure electrode and maintains a focusing of said measure current in a flushed
3		zone	of said formation.
4			
1	62.	The n	nethod of claim 59 further comprising using said at least one guard electrode
2		for cr	eating substantially spherical equipotential surfaces spherical focusing
3			
1	63.	The n	nethod of claim 54 further comprising:
2		(i)	using a current electrode of said resistivity sensor for conveying a measure
3			current into said formation,
4		(ii)	measuring a voltage of a measure electrode spaced apart from said current
5			electrode; and
6		(iii)	using said processor for determining from a voltage of said measure
7			electrode and said measure current said resistivity parameter.
8			•
1	64.	The n	nethod of claim 60 further comprising using monitor electrodes to support
2		the fo	cusing in the presence of non negligible contact impedances.
3			
1	65.	The m	nethod of claim 61 further comprising using monitor electrodes to support
2		the fo	cusing in the presence of non negligible contact impedances.
3			

 _1	-66	The method of claim 60 further comprising a carrying said sensor on a pad that
2		substantially circumscribes said apparatus.
3		•
1	67.	The method of claim 66 further comprising using monitor electrodes to support
2		the focusing in the presence of non negligible contact impedances.
3		
1	68.	The method of claim 60 further comprising using a processor for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	69.	The method of claim 64 further comprising using a processor for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	70.	The method of claim 66 further comprising using a processor for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	71.	The method of claim 67 further comprising using a processor for maintaining a
2		substantially constant power consumption by said electrodes.
3		
1	72.	The method of claim 54 wherein said orientation sensor comprises a
2		magnetometer.
2		

73. The method of claim 54 wherein said orientation sensor comprises an 2 accelerometer. 3 1 74. The method of claim 54 further comprising using a stabilizer for maintaining said 2 specified offset. 3 1 75. The method of claim 54 further comprising using a steerable rib for maintaining 2 said specified offset. 3 1 76. The method of claim 54 further comprising: 2 using said BHA in a borehole is filled with a substantially nonconducting (i) 3 fluid, and (ii) 4 capacitively coupling said resistivity sensor to said earth formation. 5 1 77. The method of claim 76 further comprising using said resistivity sensor for 2 making measurements at a plurality of different frequencies. 3 1 78. The method of claim 76 further comprising using said resistivity sensor for 2 making measurements at two frequencies. 3 1 79. The method of claim 77 further comprising using said processor for performing a 2 multi-frequency focusing of said measurements.

1	80.	The method of claim 54 wherein said borehole includes a substantially non-
2		conducting fluid therein.
3		•
1	81.	The method of claim 55 further comprising:
2		(i) using said BHA in a borehole is filled with a substantially nonconducting
3		fluid, and
4		(ii) capacitively coupling said resistivity sensor to said earth formation
5		
1	82.	The method of claim 54 wherein said resistivity sensor further comprises a
2		shielded dipole.
3		
1	83.	The method of claim 80 wherein said resistivity sensor further comprises a
2		shielded dipole.
3		
1	84.	The method of claim 80 wherein said resistivity sensor further comprises a
2		directionally sensitive induction logging tool.
3		
1	85.	The method of claim 84 wherein said directionally sensitive induction logging
2		tool comprises a quadrupole transmitter.
3		

1-	-86	The method of claim 80 wherein said resistivity sensor further comprises a radio
2		frequency microwave transmitter.
3		
1	87.	The method of claim 54 further comprising using an induction coil as said
2		resistivity sensor.
3		
1	88.	The method of claim 87 further comprising using said processor for determining
2		an inductance of said induction coil.
3		
1	89.	The method of claim 86 further comprising using said processor for determining
2		an extent of a fluid invasion of the earth formation.
3		
	90.	The method of claim 54 wherein said orientation sensor comprises a
		magnetometer