Equivalent kernels and their moments

Michal Kolesár 2019-04-13

This package also computes equivalent kernels for local linear regression and their moments. For orders r = 1, 2 (local linear and local quadratic), selected moments and equivalent kernels are computed analytically for the uniform, triangular and Epanechnikov kernels. Higher-order moments, and moments for other kernels with bounded support normalized to [-1, 1] are computed numerically.

The uniform, triangular and Epanechnikov kernels are defined as

$$k_{\rm U}(u) = \frac{1}{2}I(|u| < 1), \qquad k_{\rm T}(u) = (1 - |u|)I(|u| < 1), \qquad k_{\rm E}(u) = \frac{3}{4}(1 - u^2)I(|u| < 1).$$

We compute the following moments

$$\mu_j(k) = \int_{\mathcal{X}} u^j k(u) \, du, \qquad \nu_j(k) = \int_{\mathcal{X}} u^j k^2(u) \, du, \qquad \pi_j(k) = \int_{\mathcal{X}} |u^j k^2(u)| \, du,$$

where \mathcal{X} is [0,1] for boundary regression, and [-1,1] for interior regression, and k is a kernel of equivalent kernel.

Equivalent kernels

Define $M_r(k) = \int_{\mathcal{X}} p_r(u) p_r(u)' k(u) du$, where $p_r(u) = (1, u, \dots, u^r)$, so that $(M_r(k))_{i,j} = \mu_{i+j-2}(k)$. Then for local polynomial regression of order r using a kernel k, the equivalent kernel is given by

$$k^* : u \mapsto e_1' M_r(k)^{-1} p(u) k(u), \qquad u \in \mathcal{X}$$

where e_1 is a vector of zeros with 1 in the first position. This assumes that the parameter of interest is the value of the regression function f at a point, which we assume throughout. For r = 0, the equivalent kernel is the same as the original kernel, except it is normalized so that it integrates to one over \mathcal{X} , $\int_{\mathcal{X}} k = 1$.

For the three kernels and boundary regression of order r = 0, 1, 2, the equivalent kernels are the following functions with domain [0, 1]

Kernel	Order 0	Order 1	Order 2
U	1	(4-6u)	$3(3 - 12u + 10u^2)$
${ m T}$	2(1-u)	6(1-2u)(1-u)	$12(1-5u+5u^2)(1-u)$
E	$\frac{3}{2}(1-u^2)$	$\frac{12}{19}(8-15u)(1-u^2)$	$\frac{5}{8}(17 - 80u + 77u^2)(1 - u^2)$

For interior regression, the equivalent kernels are the following functions with domain [-1, 1] (orders 0 and 1 are the same)

Kernel	Order 0 or 1	Order 2
U	$\frac{1}{2}$	$\frac{1}{8}(9-15u^2)$
Τ	(1 - u)	$\frac{6}{7}(2-5u^2)(1- u)$
E	$\frac{3}{4}(1-u^2)$	$\begin{array}{l} \frac{1}{8}(9 - 15u^2) \\ \frac{6}{7}(2 - 5u^2)(1 - u) \\ \frac{15}{32}(3 - 7u^2)(1 - u^2) \end{array}$

The equivalent kernels can be computed with the function ${\tt EqKern}$, which returns the equivalent kernel function

```
library("RDHonest")
EqKern("uniform", boundary = TRUE, order = 2)(0.5)
# Equivalent call
EqKern(function(u) u <= 1, boundary = TRUE, order = 2)(0.5)</pre>
```

Kernel Moments

The package stores analytically-computed low-order moments for the uniform, triangular, and Epanechnikov kernels for fast access in the dataframe kernC. The moments for boundary kernels are as follows:

Kernel	Ord	$\operatorname{er}\mu_0$	μ_1	μ_2	μ_3	μ_4	ν_0	ν_1	ν_2	ν_3	ν_4
U	0	1	1/2	1/2	1/4	1 5	1	$\frac{1}{2}$	1/2	1/4	1 5
${ m T}$	0	1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{10}$	$\frac{1}{15}$	$\frac{4}{3}$	$\frac{1}{3}$	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{4^{3}}{105}$
\mathbf{E}	0	1	$\frac{3}{8}$	$\frac{\underline{Y}}{5}$	$\frac{1}{8}$	$\frac{3}{35}$	$\frac{6}{5}$	$\frac{3}{8}$	$\frac{6}{35}$	$\frac{3}{32}$	2
U	1	1	0	$-\frac{1}{6}$	$-\frac{1}{5}$	$-\frac{1}{5}$	4	1	$\frac{8}{15}$	2 5	$\frac{\overline{35}}{\underline{15}}$
${ m T}$	1	1	0	$-\frac{1}{10}$	$-\frac{1}{10}$	$-\frac{3}{35}$ $-\frac{141}{1}$	$\frac{24}{5}$	1775 1775	$\frac{\frac{6}{35}}{2976}$	$\frac{\frac{3}{35}}{324}$	$\frac{\frac{2}{35}}{12352}$
E	1	1	0	$-\frac{11}{95}$	$-\frac{16}{133}$	$-\frac{141}{1330}$	$\frac{56832}{12635}$	$\frac{1770}{2527}$	$\frac{2976}{12635}$	$\frac{\frac{324}{2527}}{\frac{81}{81}}$	$\frac{12352}{138985}$
U	2	1	0	0	$\frac{1}{20}$	$\frac{3}{35}$	$\frac{9}{72}$	<u>3</u>	$\frac{\overline{12635}}{\underline{27}}$	$\frac{81}{140}$	$\frac{17}{35}$
T	2	1	0	0	$\frac{\frac{1}{35}}{\frac{15}{448}}$	$\frac{\frac{3}{70}}{\frac{13}{252}}$	$\frac{12}{7}$ 9895	$\frac{6}{7}$	325	$2825^{\frac{\frac{4}{35}}}$	$16795^{\frac{4}{35}}$
\mathbf{E}	2	1	U	0	$\frac{10}{448}$	$\frac{10}{252}$	$\frac{3636}{1008}$	$\frac{1100}{4032}$	$\frac{020}{1008}$	$\frac{2626}{16128}$	$\frac{10135}{144144}$

For interior regression (recall order 0 and 1 give the same kernel)

Kernel	Order	μ_0	μ_2	μ_4	ν_0	ν_2	ν_4
U	0	1	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{1}{2}$	$\frac{1}{6}$	10
${ m T}$	0	1	$\frac{1}{6}$	$\frac{1}{15}$	$\frac{\overline{2}}{3}$	$\frac{1}{15}$	$\frac{\frac{10}{2}}{\frac{105}{105}}$
E	0	1	$\frac{1}{5}$	$\frac{\overline{15}}{\frac{3}{35}}$	<u>3</u> 5	$\frac{\overline{15}}{\frac{3}{35}}$	$-\frac{\frac{1}{35}}{23}$
U	2	1	0	$-\frac{3}{35}$	$\frac{\frac{9}{8}}{456}$	$-\frac{9}{56}$ 106	$-\frac{23}{280}$
E E	2	1	0	$\frac{490}{1}$	$\frac{343}{5}$	$\frac{1715}{25}$	18865 85
			- 0	21	4	308	4004

We also store absolute moments. At the boundary:

Kernel	Order	π_0	π_1	π_2	π_3	π_4
U	0	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	1 5
${ m T}$	0	1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{2^{4}}{10}$	$\frac{1}{15}$
\mathbf{E}	0	1	3/8	<u>3</u> 5	$\frac{1}{8}$	
U	1	$\frac{5}{3}$	$\frac{16}{27}$	$\frac{59}{162}$	$\frac{113}{405}$	$\frac{35}{3545}$
${ m T}$	1	$\frac{3}{2}$	$-\frac{3}{8}$	$\frac{3}{16}$	$\frac{1}{8}$	$\frac{\frac{3}{32}}{1792724653}$
\mathbf{E}	1	$\frac{10048\overline{3}}{6412\overline{5}}$	$\frac{702464}{1603125}$	$\frac{16520549}{72140625}$	$\frac{235792912}{1514953125}$	$\frac{1792724653}{15149531250}$
U	2	$1 + 12\frac{\sqrt{6}}{5^2}$	$\frac{36\sqrt{6}}{5^3}$	$\frac{558\sqrt{6}}{5^5}$	$\frac{1782\sqrt{6}}{5^6} + 1/20$	0.268931
T	2	$1 + \frac{2}{\sqrt{5}}$	$\frac{24\sqrt{5}}{5^3}$	$\frac{12\sqrt{5}}{5^3}$	$\frac{218\sqrt{5}}{4375} + 1/35$	0.102656
E	2	2.0051585	0.50792888	0.26617935	0.17770885	0.1321148

In the interior:

Kernel	Order	π_0	π_1	π_2	π_3	π_4
U	0	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	15
${ m T}$	0	1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{10}$	$\frac{1}{15}$
E	0	1	3/8	$\frac{1}{5}$	$\frac{1}{8}$	$\frac{15}{3}$ $\frac{3}{35}$
U	2	1	0.4875	0.27885480	0.1975	0.157419807
${ m T}$	2	1	0.31155912	0.13986945	0.08443054	0.060140887
\mathbf{E}	2	1	0.36033164	0.17177502	0.10671010	0.077066194

Finally, in the column kernC\$pMSE, the package stores the optimal constant for pointwise MSE optimal bandwidth (see Fan and Gijbels, page 67):

$$\left(\frac{(p+1)!^2\nu_0}{2(p+1)\mu_{p+1}^2}\right)^{\frac{1}{2p+3}},$$

where p is the order of local polynomial.

For other kernels, the moments can be computed using the KernMoment function:

```
## mu_1, should be 0
KernMoment(function(u) 4-6*u, moment = 1, boundary = TRUE, type = "raw")

## [1] -5.551115e-17

## nu_1, should be 0
KernMoment(function(u) 4-6*u, moment = 1, boundary = TRUE, type = "raw2")

## [1] 1

## pi_1, should be 16/27
KernMoment(function(u) 4-6*u, moment = 1, boundary = TRUE, type = "absolute")
```

[1] 0.5925926