Results

Notes:

- Some of this is already in or was based on the blogpost/interface code. Hit show to see code. I switch between R and Python
- Some of this won't make it to the paper. You can probably skip preprocessing unless you want to check certain things, example: did we make sure to remove judgments based on X condition If you want to clarify/comment anything do so at https://github.com/sm11197/sm11197.github. io/blob/main/analysis/debate-0923.Rmd) or message me elsewhere

Preprocessing

Importing, filtering, and adding columns

We have 3 sets of data from the interface:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
pd.options.mode.chained_assignment = None # default='warn'
# Load summaries that can be downloaded from the interface
debates = pd.read_csv("/Users/bila/git/for-debate/debate/save/official/summaries/debates.csv", keep_def
sessions = pd.read_csv("/Users/bila/git/for-debate/debate/save/official/summaries/sessions.csv", keep_d
turns = pd.read csv("/Users/bila/git/for-debate/debate/save/official/summaries/turns.csv", keep default
print(f' {debates.shape} - Debates') ;print(f'{sessions.shape} - Sessions, which has multiple rows (of
## (632, 29) - Debates
## (1863, 46) - Sessions, which has multiple rows (of participants) for each debate
## (6220, 16) - and Turns, which has multiple rows (of participant turns) for each debate
# Only include debates within a given period
debates["Start time"] = pd.to_datetime(debates["Start time"], unit="ms")
debates ["End time"] = pd.to_datetime(debates ["End time"], unit="ms")
debates["Last modified time"] = pd.to_datetime(debates["Last modified time"], unit="ms")
debates = debates[
    (debates["Start time"] > pd.to_datetime("10/02/23", format="%d/%m/%y")) &
    (debates["End time"] < pd.to_datetime("01/09/23", format="%d/%m/%y"))
### for filtering to when we had AI debates: 16/07/23
# Filter sessions & turns to only the selected debates
sessions = sessions.merge(debates[["Room name"]], how="inner", on="Room name")
turns = turns.merge(debates[["Room name"]], how="inner", on="Room name")
print(f'We have {len(debates)} debates when filtering out the initial pilots last fall')
```

```
## We have 583 debates when filtering out the initial pilots last fall
```

```
# Secondary analysis: Question Difficulty
# Create new columns with bin labels
debates['Untimed annotator context bins'] = pd.cut(debates['Untimed annotator context'].round(), bins=[
debates['Speed annotator accuracy bins'] = pd.cut(debates['Speed annotator accuracy'], bins=[-0.999, 0.
## respectively, those speed annotator accuracies probably mean 0 right, 1 right, 2 right
debates['Final_Accuracy'] = debates['Final probability correct'] > 0.5
print(f'Average accuracy per context required by question:\n{debates.groupby("Untimed annotator context
## Average accuracy per context required by question:
                                   Proportion_True Total_Count
## Untimed annotator context bins
## 1
                                          0.781250
                                                             64
## 2
                                          0.711382
                                                            246
## 3
                                          0.702857
                                                            175
## 4
                                          0.632653
                                                             98
## <string>:2: FutureWarning: The default of observed=False is deprecated and will be changed to True in
print(f'Average accuracy per difficulty based on speed annotator accuracy:\n{debates.groupby("Speed ann
## Average accuracy per difficulty based on speed annotator accuracy:
                                  Proportion_True Total_Count
## Speed annotator accuracy bins
## 0
                                         0.728682
                                                           129
## 0.2
                                         0.697509
                                                           281
## 0.4
                                         0.694118
                                                           170
## Hm, this seems less likely to be a good indicator of question difficulty
## <string>:2: FutureWarning: The default of observed=False is deprecated and will be changed to True in
# Determine settings for each row
def setups(row):
    if 'GPT-4' in (row['Honest debater'], row['Dishonest debater']):
        if row['Is single debater']:
            return "AI Consultancy " + ("Honest" if row['Has honest debater'] else "Dishonest")
        else:
           return "AI Debate"
        if row['Is single debater']:
            return "Human Consultancy " + ("Honest" if row['Has honest debater'] else "Dishonest")
        else:
           return "Human Debate"
debates['Setting'] = debates.apply(setups, axis=1)
# Agregate settings - the 4 that we normally talk about:
debates['Final_Setting'] = debates['Setting'].str.replace(' Honest', '').str.replace(' Dishonest', '')
```

Merging, filtering for judgments

```
# Merge sessions with debates, so we have each judge's final probability correct and the debate's metad
source = sessions.merge(
                 debates[["Room name", "Debater A", "Debater B", "Honest debater", "Dishonest debater",
                                    "Is single debater", 'Has honest debater',
                                    "Final_Setting", "Setting",
                                    "Question", "Article ID",
                                    "Speed annotator accuracy bins", "Untimed annotator context bins",
                                    "Speed annotator accuracy", "Untimed annotator context", "Is offline",
                                    'End time', 'Last modified time']],
                how="left",
                on="Room name",
print(f'After merging debates with sessions, we have the following participant counts for those debates
## After merging debates with sessions, we have the following participant counts for those debates:
## Role
## Judge
                                          549
## Debater B
                                          487
## Debater A
                                          458
## Offline Judge
                                          223
## Name: count, dtype: int64
#[source['Is over'] == True] to check for completed online/offline debates
# Filter out incomplete judgments
judgments = source[source['Final probability correct'].notnull()]
print(f'After filtering to judges that have finalized their judgment, we have the following judgments p
## After filtering to judges that have finalized their judgment, we have the following judgments per ro
## Role
## Judge
                                          508
## Offline Judge
                                          214
## Name: count, dtype: int64
## for a total of 722 judgments.
judgments['Final_Accuracy'] = judgments['Final probability correct'] > 0.5
print(f'Of those judgments, we have this much for each setting (not consolidating honest - dishonest - di
## Of those judgments, we have this much for each setting (not consolidating honest - dishonest consult
## Setting
## Human Debate
                                                                        413
## AI Debate
                                                                          92
## Human Consultancy Dishonest
                                                                          68
## AI Consultancy Honest
                                                                          56
## Human Consultancy Honest
                                                                          53
## AI Consultancy Dishonest
                                                                          40
## Name: count, dtype: int64
```

```
print(f'Of those judgments, we have this much for each setting (aggregated):\n{judgments.groupby("Final
## Of those judgments, we have this much for each setting (aggregated):
                      Proportion_True Total_Count
##
## Final_Setting
                             0.802083
## AI Consultancy
                                                96
## AI Debate
                             0.782609
                                                92
## Human Consultancy
                             0.719008
                                               121
## Human Debate
                             0.876513
                                               413
# Remove judges who see the story more than once
judgments['base_room_name'] = judgments['Room name'].str.extract('(.*)\d+$', expand=False).fillna(judgm
judgments = judgments.sort_values(by=['base_room_name', 'End time']).groupby(['Participant', 'base_room_
print(f'1. We then filter to judgments where the judge has only seen a story once, and now we have this
## 1. We then filter to judgments where the judge has only seen a story once, and now we have this much
                      Proportion_True Total_Count
## Final_Setting
## AI Consultancy
                             0.802083
                                                96
## AI Debate
                             0.782609
                                                92
## Human Consultancy
                                               121
                             0.719008
## Human Debate
                             0.867374
                                               377
# Filter to online judges only
judgments_online = judgments[judgments["Role"] == "Judge"]
print(f'2. We\'ll make a copy of the online judgments only leaving us with the following judgments:\n{j
## 2. We'll make a copy of the online judgments only leaving us with the following judgments:
                      Proportion_True Total_Count
##
## Final_Setting
## AI Consultancy
                             0.797872
                                                94
## AI Debate
                             0.791209
                                                91
## Human Consultancy
                             0.709091
                                               110
## Human Debate
                             0.861538
                                               195
judgments_online = judgments_online[judgments_online['Untimed annotator context bins'].isin(['2', '3',
print(f'3. We then filter to judgments which require more than a sentence or two, and now we have this
## 3. We then filter to judgments which require more than a sentence or two, and now we have this much
##
                      Proportion_True Total_Count
## Final Setting
## AI Consultancy
                             0.806452
                                                93
## AI Debate
                             0.781609
                                                87
## Human Consultancy
                             0.700935
                                               107
## Human Debate
                             0.838710
                                               155
pd.set_option('display.max_columns', None)
total_counts_for_setting = judgments_online.groupby('Final_Setting').size()
```

```
result = judgments_online.groupby(["Final_Setting", "Untimed annotator context bins"]).agg(
    Proportion_True=pd.NamedAgg(column='Final_Accuracy', aggfunc=lambda x: x.mean()),
    Context_Count=pd.NamedAgg(column='Final_Accuracy', aggfunc='size'),
    Proportion_Context=pd.NamedAgg(column='Final_Setting', aggfunc=lambda x: len(x) / total_counts_for_
)
## <string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in
print(f'Are the difficult questions equally enough distributed amongst settings?:\n{result}')
## Are the difficult questions equally enough distributed amongst settings?:
                                                       Proportion_True \
## Final_Setting
                      Untimed annotator context bins
## AI Consultancy
                                                                    NaN
                      1
                      2
                                                               0.823529
##
##
                      3
                                                               0.826087
                                                               0.736842
##
                      4
## AI Debate
                      1
                                                                    NaN
##
                      2
                                                               0.777778
                                                               0.772727
##
##
                                                               0.800000
## Human Consultancy 1
                                                                    NaN
                      2
                                                               0.634146
##
##
                      3
                                                               0.708333
                                                               0.833333
##
                      4
## Human Debate
                      1
                                                                    NaN
##
                                                               0.890411
##
                      3
                                                               0.816667
##
                      4
                                                               0.727273
##
                                                        Context_Count \
                      Untimed annotator context bins
## Final_Setting
## AI Consultancy
                                                                    0
##
                      2
                                                                   51
##
                      3
                                                                   23
##
                      4
                                                                   19
## AI Debate
                      1
                                                                    0
                      2
                                                                   45
##
##
                      3
                                                                   22
##
                      4
                                                                   20
## Human Consultancy 1
                                                                    0
                      2
##
                                                                   41
##
                      3
                                                                   48
##
                      4
                                                                   18
                                                                    0
## Human Debate
                      1
##
                                                                   73
                      3
##
                                                                   60
##
                      4
                                                                   22
##
##
                                                       Proportion_Context
## Final_Setting
                      Untimed annotator context bins
## AI Consultancy
                                                                       NaN
                                                                  0.548387
##
                      2
```

```
##
                       3
                                                                      0.247312
                                                                      0.204301
##
                       4
## AI Debate
                                                                           NaN
##
                       2
                                                                      0.517241
##
                       3
                                                                      0.252874
                                                                      0.229885
##
                       4
## Human Consultancy 1
                                                                           NaN
##
                                                                      0.383178
##
                       3
                                                                      0.448598
##
                       4
                                                                      0.168224
## Human Debate
                       1
                                                                           NaN
                       2
                                                                      0.470968
##
##
                       3
                                                                      0.387097
##
                       4
                                                                      0.141935
pd.reset_option('display.max_columns')
```

So question difficulty isn't perfectly balanced... but consultancies have a different relationship with question difficulty anyway? **need a second opinion**

Trying to balance the data

- 1. Balancing honest & dishonest consultancies
- 2. Question weights

Balancing honest & dishonest consultancies

```
def balance_consultancies(df, sample_setting, random_state):
    Sample distinct questions, then use common questions, ensure equal counts.
    consult_df = df[df['Setting'].str.contains(sample_setting, na=False)]
   honest_df = consult_df[consult_df['Setting'].str.contains('Honest')]
   dishonest_df = consult_df[consult_df['Setting'].str.contains('Dishonest')]
    sample_column_name = f'{sample_setting} Sample'
   df[sample_column_name] = False
    # Separate into distinct and common questions
    # First, let's extract the combinations of 'Article ID' and 'Question' for both honest and dishones
   honest_combinations = set(honest_df[['Article ID', 'Question']].itertuples(index=False, name=None))
    dishonest_combinations = set(dishonest_df[['Article ID', 'Question']].itertuples(index=False, name=
    # Identifying the common and distinct combinations
    common_combinations = honest_combinations.intersection(dishonest_combinations)
    distinct_honest_combinations = honest_combinations - common_combinations
    distinct_dishonest_combinations = dishonest_combinations - common_combinations
    # Filtering the original dataframes based on these combinations to get distinct and common datafram
    common_honest_df = honest_df[honest_df.set_index(['Article ID', 'Question']).index.isin(common_comb
    common_dishonest_df = dishonest_df[dishonest_df.set_index(['Article ID', 'Question']).index.isin(continue)
    distinct_honest_df = honest_df[honest_df.set_index(['Article ID', 'Question']).index.isin(distinct_')
   distinct_dishonest_df = dishonest_df[dishonest_df.set_index(['Article ID', 'Question']).index.isin(
    def extract_correct_index(sample_df):
        if isinstance(sample_df.index, pd.MultiIndex):
```

```
return sample_df.index.get_level_values(2)
       else:
           return sample_df.index
    # Get distinct consultancies
    sample_size = min(len(distinct_honest_df.groupby(['Question', 'Article ID'])), len(distinct_dishone
   honest_sample = distinct_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1, x.sample))
   dishonest_sample = distinct_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.samp
   df.loc[extract_correct_index(honest_sample), sample_column_name] = True
   df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
    # Drop sampled questions from distinct dataframes
   honest_remove_distinct = set(honest_sample[['Article ID', 'Question']].itertuples(index=False, name
   dishonest_remove_distinct = set(dishonest_sample[['Article ID', 'Question']].itertuples(index=False
   distinct_honest_df = distinct_honest_df[~distinct_honest_df.set_index(['Article ID', 'Question']).i.
   distinct_dishonest_df = distinct_dishonest_df("article ID", 'Ques')
   honest_distinct_remaining = len(distinct_honest_df.groupby(['Question', 'Article ID']))
   dishonest_distinct_remaining = len(distinct_dishonest_df.groupby(['Question', 'Article ID']))
    # Sample from remaining distinct questions, using common questions for the other (bigger count) set
   if honest_distinct_remaining > dishonest_distinct_remaining:
       sample_size = min(honest_distinct_remaining, len(common_dishonest_df.groupby(['Question', 'Arti
       honest_sample = distinct_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample
       dishonest_sample = common_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sa
       df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
       df.loc[extract_correct_index(honest_sample), sample_column_name] = True
       dishonest_remove_common = set(dishonest_sample[['Article ID', 'Question']].itertuples(index=Fal
       common dishonest df = common dishonest df[~common dishonest df.set index(['Article ID', 'Questi
       common honest df = common honest df[~common honest df.set index(['Article ID', 'Question']).ind
   else:
       sample_size = min(dishonest_distinct_remaining, len(common_honest_df.groupby(['Question', 'Arti
       honest_sample = common_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1
       dishonest_sample = distinct_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.
       df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
       df.loc[extract_correct_index(honest_sample), sample_column_name] = True
       honest_remove_common = set(honest_sample[['Article ID', 'Question']].itertuples(index=False, na
       common_dishonest_df = common_dishonest_df.set_index(['Article ID', 'Questi
        common_honest_df = common_honest_df[~common_honest_df.set_index(['Article ID', 'Question']).ind
    # Remaining independent samples from common_honest_df
   if len(common_honest_df) or len(common_dishonest_df) > 0:
       sample_size = min(len(common_honest_df.groupby(['Question', 'Article ID'])), len(common_dishone
       honest_sample = common_honest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1
       dishonest_sample = common_dishonest_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sa
       df.loc[extract_correct_index(honest_sample), sample_column_name] = True
       df.loc[extract_correct_index(dishonest_sample), sample_column_name] = True
   return df
# Run the sampling to balance the consultancies
judgments_online = balance_consultancies(judgments_online, 'Human Consultancy', random_state = 123)
judgments_online = balance_consultancies(judgments_online, 'AI Consultancy', random_state = 123)
# Create one sample column for easier indexing, create mask
#sample_columns = [col for col in judgments_online.columns if 'Sample' in col]
#judgments_online['Sample'] = judgments_online[sample_columns].any(axis=1)
\#consultancy\_balanced = (\neg judgments\_online['Setting'].str.contains('Consultancy', case=False, na=False)
```

```
#from statsmodels.stats.proportion import proportions_ztest
def run_experiment(judgments_online):
   judgments_online['Sample'] = False
   judgments_online = balance_consultancies(judgments_online, 'Human Consultancy')
   judgments_online = balance_consultancies(judgments_online, 'AI Consultancy')
   sample_columns = [col for col in judgments_online.columns if 'Sample' in col]
   judgments_online['Sample'] = judgments_online[sample_columns].any(axis=1)
   consultancy_balanced = (~judgments_online['Setting'].str.contains('Consultancy', case=False, na=Fal
   result = judgments_online[consultancy_balanced].groupby(["Final_Setting"])["Final_Accuracy"].agg(Pr
   return result
# Number of iterations
#num_iterations = 1000
# Store results from each iteration
\#results = []
\#p\_vals = []
# Run the experiment multiple times
#for _ in range(num_iterations):
    result = run_experiment(judgments_online.copy()) # Use a copy to ensure original data remains unc
    results.append(result)
#
   # Run the proportions test
#
  group_human_debate = result.loc['Human Debate']
#
#
    group_human_consultancy = result.loc['Human Consultancy']
   count = [group\_human\_debate.Proportion\_True * group\_human\_debate.Total\_Count, group\_human\_consulta]
  nobs = [group_human_debate.Total_Count, group_human_consultancy.Total_Count]
  z_stat, p_val = proportions_ztest(count, nobs)
    p_vals.append(p_val)
# Calculate the average of the results
#average_result = pd.concat(results).groupby(level=0).mean()
#print(f'\nAverage accuracy after {num_iterations} iterations:\n{average_result}')
#print(f'pval mean: {np.mean(p_vals)}')
```

Balance debates

```
def balance_debates(df, sample_setting, random_state):
    debates_df = df[df['Setting'].str.contains(sample_setting, na=False)]
    sample_column_name = f'{sample_setting} Sample'
    df[sample_column_name] = False
    def extract_correct_index(sample_df):
        if isinstance(sample_df.index, pd.MultiIndex):
            return sample_df.index.get_level_values(2)
        else:
            return sample_df.index
```

```
# Get distinct consultancies
    sample_size = len(debates_df.groupby(['Question', 'Article ID']))
    sample_debates = debates_df.groupby(['Question', 'Article ID']).apply(lambda x: x.sample(1, random_
    df.loc[extract_correct_index(sample_debates), sample_column_name] = True
    return df
# Run the sampling to balance the consultancies
judgments_online = balance_debates(judgments_online, 'Human Debate', random_state = 123)
judgments_online = balance_debates(judgments_online, 'AI Debate', random_state = 123)
# Create one sample column for easier indexing, create mask
sample_columns = [col for col in judgments_online.columns if 'Sample' in col]
consultancy_sample_columns = [col for col in judgments_online.columns if 'Consultancy Sample' in col]
judgments_online['Sample'] = judgments_online[sample_columns].any(axis=1)
judgments_online['Consultancy Sample'] = judgments_online[sample_columns].any(axis=1)
consultancy_balanced = (~judgments_online['Setting'].str.contains('Consultancy', case=False, na=False))
print(f'Accuracy after balancing consultancies:\n{judgments_online.groupby(["Final_Setting"])["Sample"]
## Accuracy after balancing consultancies:
## Final_Setting
                      Sample
## AI Consultancy
                      True
                                 76
                      False
##
                                 17
## AI Debate
                      True
                                 75
                      False
                                 12
##
## Human Consultancy True
                                 82
                      False
                                 25
## Human Debate
                      True
                                107
                      False
                                 48
## Name: count, dtype: int64
```

Question weights

```
def question_weights(data, columns, weight_column_name, consultancy_sample=None, debate_sample=None):
    # O. Make a copy of the original data for weight calculations
    working_data = data.copy()
    # 0.1. Custom filtering based on the 'Setting' column
    consultancy_condition = working_data['Setting'].str.contains('Consultancy', case=False, na=False)
    debate_condition = ~consultancy_condition
    if consultancy_sample is not None:
        consultancy_condition &= (working_data['Sample'] == consultancy_sample)
    if debate_sample is not None: # uncomment if we want to sample debates
        debate_condition &= (working_data['Sample'] == debate_sample)
    combined_mask = consultancy_condition | debate_condition
    working_data = working_data[combined_mask]
    # 1. Calculate the frequency of each question in the dataset
   question frequency = working data.groupby(columns).size()
    # 2. Invert the frequency to get the weight for each question
   question_weights = 1 / question_frequency
    # 3. Normalize the weights
```

```
#question_weights = question_weights / question_weights.sum() * len(question_weights)
    # 4. Assign the calculated weights to the original data and fill missing values with O
    data.loc[combined_mask, weight_column_name] = data[combined_mask].set_index(columns).index.map(ques
    data[weight_column_name].fillna(0, inplace=True)
    return data
judgments_online = question_weights(
    data=judgments online,
    columns=['Article ID', 'Question'],
    weight column name='initial question weights'
)
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question', 'Final_Setting'],
    weight_column_name='initial_question_weights_grouped_setting'
)
def print_weight_summary_by_setting(df, weight_column, consultancy_sample=None):
    consultancy_condition = df['Setting'].str.contains('Consultancy', case=False, na=False)
    if consultancy_sample is not None:
        consultancy_condition &= (df['Sample'] == consultancy_sample)
   for setting in df['Setting'].unique():
       total_weight = df[df['Setting'] == setting][weight_column].sum()
       print(f"Total {weight_column} for {setting}: {total_weight:.2f}")
   print("\n")
print('Unsampled (initial) weights, by group setting')
## Unsampled (initial) weights, by group setting
print_weight_summary_by_setting(judgments_online, 'initial_question_weights_grouped_setting')
## Total initial_question_weights_grouped_setting for AI Consultancy Dishonest: 32.50
## Total initial_question_weights_grouped_setting for Human Debate: 107.00
## Total initial_question_weights_grouped_setting for AI Debate: 75.00
## Total initial_question_weights_grouped_setting for Human Consultancy Dishonest: 34.67
## Total initial_question_weights_grouped_setting for Human Consultancy Honest: 26.33
## Total initial_question_weights_grouped_setting for AI Consultancy Honest: 49.50
# Recalculate weights for balanced consultancies, all debates
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question'],
    weight_column_name='sampled_consultancies_all_debates_weights',
    consultancy_sample=True
)
judgments_online = question_weights(
    data=judgments online,
    columns=['Article ID', 'Question', 'Final_Setting'],
    weight column name='sampled consultancies all debates weights grouped setting',
    consultancy sample=True
```

```
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question', 'Setting'],
    weight_column_name='sampled_consultancies_all_debates_weights_setting',
    consultancy_sample=True
print('Consultancy balanced weights, by no/yes group setting')
## Consultancy balanced weights, by no/yes group setting
print_weight_summary_by_setting(judgments_online[consultancy_balanced], 'sampled_consultancies_all_deba
## Total sampled_consultancies_all_debates_weights for AI Consultancy Dishonest: 28.07
## Total sampled_consultancies_all_debates_weights for Human Debate: 82.48
## Total sampled_consultancies_all_debates_weights for AI Debate: 66.52
## Total sampled_consultancies_all_debates_weights for Human Consultancy Honest: 16.52
## Total sampled consultancies all debates weights for Human Consultancy Dishonest: 16.00
## Total sampled_consultancies_all_debates_weights for AI Consultancy Honest: 36.42
print_weight_summary_by_setting(judgments_online[consultancy_balanced], 'sampled_consultancies_all_deba
## Total sampled_consultancies_all_debates_weights_grouped_setting for AI Consultancy Dishonest: 38.00
## Total sampled_consultancies_all_debates_weights_grouped_setting for Human Debate: 107.00
## Total sampled_consultancies_all_debates_weights_grouped_setting for AI Debate: 75.00
## Total sampled_consultancies_all_debates_weights_grouped_setting for Human Consultancy Honest: 30.50
## Total sampled_consultancies_all_debates_weights_grouped_setting for Human Consultancy Dishonest: 30.
## Total sampled_consultancies_all_debates_weights_grouped_setting for AI Consultancy Honest: 38.00
print_weight_summary_by_setting(judgments_online[consultancy_balanced], 'sampled_consultancies_all_deba
## Total sampled_consultancies_all_debates_weights_setting for AI Consultancy Dishonest: 38.00
## Total sampled_consultancies_all_debates_weights_setting for Human Debate: 107.00
## Total sampled_consultancies_all_debates_weights_setting for AI Debate: 75.00
## Total sampled_consultancies_all_debates_weights_setting for Human Consultancy Honest: 41.00
## Total sampled_consultancies_all_debates_weights_setting for Human Consultancy Dishonest: 41.00
## Total sampled_consultancies_all_debates_weights_setting for AI Consultancy Honest: 38.00
judgments_online = question_weights(
    data=judgments_online,
    columns=['Article ID', 'Question', 'Final_Setting'],
    weight_column_name='sampled_consultancies_debates_weights_grouped_setting',
    consultancy_sample=True,
    debate_sample=True
judgments_online = question_weights(
   data=judgments_online,
    columns=['Article ID', 'Question'],
   weight_column_name='sampled_consultancies_debates_weights',
    consultancy sample=True,
    debate sample=True
```

Note: we are not balancing between settings, and some of the counts of the debate settings are on the same questions

Load into R environment

##

1

8

32

```
set.seed(123)
judgments <- py$judgments</pre>
judgments_online <- py$judgments_online</pre>
# Convert the Accuracy column to a factor for better plotting
judgments_online$Final_Accuracy_char <- as.logical.factor(as.character(judgments_online$Final_Accuracy)
judgments_online$Participant <- as.factor(judgments_online$Participant)
judgments_online$Setting <- as.factor(judgments_online$Setting)</pre>
subset_dishonest <- judgments_online[judgments_online$`Human Consultancy Sample` == TRUE & judgments_on
subset_honest <- judgments_online[judgments_online$`Human Consultancy Sample` == TRUE & judgments_onlin
table(subset_dishonest$sampled_consultancies_all_debates_weights_grouped_setting, subset_dishonest$Fina
##
##
                      FALSE TRUE
                              11
##
            0.5
                                          10
            1
                                7
                                          13
table(subset_honest$sampled_consultancies_all_debates_weights_grouped_setting, subset_honest$Final_Accu
##
##
                      FALSE TRUE
##
            0.5
                                5
                                          16
##
            1
                                           19
table(subset dishonest$sampled consultancies all debates weights grouped setting)
##
## 0.5
                   1
## 21 20
table(subset_honest$sampled_consultancies_all_debates_weights_grouped_setting)
##
## 0.5
                     1
## 21 20
subset_human_consultancies <- judgments_online[judgments_online$ Human Consultancy Sample == TRUE & ju
table(subset_human_consultancies$sampled_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies$sampled_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies$sampled_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies$sampled_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies$sampled_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_weights_grouped_setting, subset_human_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_buman_consultancies_all_debates_bum
##
                      FALSE TRUE
##
##
            0.5
                              16
                                          26
```

```
table(judgments_online$Final_Setting, judgments_online$sampled_consultancies_all_debates_weights_groupe
##
##
                       0 0.5 1
##
    AI Consultancy
                      17 0 76
##
    AI Debate
                       0 24 63
##
    Human Consultancy 25 42 40
##
    Human Debate
                       0 96 59
table(judgments_online$Final_Setting, judgments_online$sampled_consultancies_debates_weights)
##
##
                       0 0.2 0.25 0.333333333333333 0.5 1
##
                                                 4 1 61
    AI Consultancy
                      17
                         1
##
    AI Debate
                          1
                                9
                                                 3 1 61
                      12
                                                32 32 7
##
    Human Consultancy 25 2
                               9
```

15 20 62

Results

##

Accuracy

Difference in proportions

Human Debate 48 1

9

```
acc_diff_test <- function(design, Setting){</pre>
  print(design)
  freq_table <- svytable(~Final_Setting+Final_Accuracy, design)</pre>
  chisq_result <- svychisq(~Final_Setting+Final_Accuracy, design, statistic = "Chisq")</pre>
  print(chisq_result)
  pairwise_result <- pairwise.prop.test(freq_table, p.adjust.method="none", alternative="two.sided")</pre>
  print(pairwise_result)
  freq_table <- cbind(freq_table, Accuracy = (freq_table[,2] / (freq_table[,1]+freq_table[,2]))*100)</pre>
  print(freq_table)
print("Really raw")
## [1] "Really raw"
acc_diff_test(svydesign(ids = ~1, data = judgments))
## Warning in svydesign.default(ids = ~1, data = judgments): No weights or
## probabilities supplied, assuming equal probability
## Independent Sampling design (with replacement)
## print(design)
##
## Pearson's X^2: Rao & Scott adjustment
```

```
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 15.218, df = 3, p-value = 0.001657
##
##
   Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.88133
                                    0.36922
## Human Consultancy 0.20924
## Human Debate
                                    0.05977
                                              0.00026
                     0.14538
##
## P value adjustment method: none
                     FALSE TRUE Accuracy
## AI Consultancy
                             77 80.20833
                       19
## AI Debate
                        20
                             72 78.26087
## Human Consultancy
                       34 87 71.90083
## Human Debate
                        50 327 86.73740
print("Raw")
## [1] "Raw"
acc_diff_test(svydesign(ids = ~1, data = judgments_online))
## Warning in svydesign.default(ids = ~1, data = judgments_online): No weights or
## probabilities supplied, assuming equal probability
## Independent Sampling design (with replacement)
## print(design)
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 7.4336, df = 3, p-value = 0.05973
##
##
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.820
## Human Consultancy 0.120
                                    0.269
## Human Debate
                     0.634
                                    0.352
                                              0.012
##
## P value adjustment method: none
##
                     FALSE TRUE Accuracy
## AI Consultancy
                        18
                             75 80.64516
## AI Debate
                       19
                             68 78.16092
## Human Consultancy
                       32 75 70.09346
## Human Debate
                        25 130 83.87097
```

```
print("Balanced consultancies")
## [1] "Balanced consultancies"
acc_diff_test(svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE | !grepl
## Warning in svydesign.default(ids = ~1, data = subset(judgments_online,
## 'Consultancy Sample' == : No weights or probabilities supplied, assuming equal
## probability
## Independent Sampling design (with replacement)
## print(design)
##
##
  Pearson's X^2: Rao & Scott adjustment
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 5.9826, df = 3, p-value = 0.1132
##
##
## Pairwise comparisons using Pairwise comparison of proportions
## data: freq_table
##
                     AI Consultancy AI Debate Human Consultancy
##
## AI Debate
                     0.729
## Human Consultancy 0.159
                                    0.352
## Human Debate
                     0.803
                                    0.352
                                              0.027
##
## P value adjustment method: none
                     FALSE TRUE Accuracy
## AI Consultancy
                             62 81.57895
                        14
## AI Debate
                        19
                             68 78.16092
                        24 58 70.73171
## Human Consultancy
## Human Debate
                        25 130 83.87097
print("Balanced consultancies, question weights (grouped settings)")
## [1] "Balanced consultancies, question weights (grouped settings)"
acc_diff_test(svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE | !grepl
## Independent Sampling design (with replacement)
## print(design)
##
## Pearson's X^2: Rao & Scott adjustment
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 3.7897, df = 3, p-value = 0.3186
##
##
```

```
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.89
## Human Consultancy 0.37
                                    0.58
## Human Debate
                     0.74
                                    0.47
                                              0.13
##
## P value adjustment method: none
                    FALSE TRUE Accuracy
## AI Consultancy
                     14.0 62.0 81.57895
## AI Debate
                      15.5 59.5 79.33333
## Human Consultancy 16.0 45.0 73.77049
## Human Debate
                      16.5 90.5 84.57944
acc diff test(svydesign(ids = ~1, data = subset(judgments online, `Consultancy Sample` == TRUE | !grepl
## Independent Sampling design (with replacement)
## print(design)
##
  Pearson's X^2: Rao & Scott adjustment
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 7.6386, df = 3, p-value = 0.09546
##
##
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
                     1.000
## AI Debate
## Human Consultancy 0.409
                                    0.446
## Human Debate
                     0.335
                                    0.286
                                              0.059
## P value adjustment method: none
                         FALSE
                                   TRUE Accuracy
## AI Consultancy
                     13.200000 51.28333 79.52959
## AI Debate
                     14.016667 52.50000 78.92759
## Human Consultancy 9.866667 22.65000 69.65659
## Human Debate
                     10.850000 71.63333 86.84583
print("Balanced consultancies sampled debates, question weights (grouped settings)")
## [1] "Balanced consultancies sampled debates, question weights (grouped settings)"
acc_diff_test(svydesign(ids = ~1, data = subset(judgments_online, `Sample` == TRUE), weights = ~sampled
## Independent Sampling design (with replacement)
## print(design)
##
```

```
## Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 3.4707, df = 3, p-value = 0.3286
##
## Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                     AI Consultancy AI Debate Human Consultancy
                     0.97
## AI Debate
                                    0.51
## Human Consultancy 0.37
## Human Debate
                                    0.49
                     0.67
                                              0.11
## P value adjustment method: none
##
                    FALSE TRUE Accuracy
## AI Consultancy
                       14
                             62 81.57895
## AI Debate
                            60 80.00000
                        15
## Human Consultancy
                        16
                           45 73.77049
## Human Debate
                        16 91 85.04673
acc_diff_test(svydesign(ids = ~1, data = judgments_online, weights = ~sampled_consultancies_debates_wei
## Independent Sampling design (with replacement)
## print(design)
##
  Pearson's X^2: Rao & Scott adjustment
##
##
## data: svychisq(~Final_Setting + Final_Accuracy, design, statistic = "Chisq")
## X-squared = 4.5119, df = 3, p-value = 0.3283
##
##
## Pairwise comparisons using Pairwise comparison of proportions
## data: freq_table
                     AI Consultancy AI Debate Human Consultancy
##
## AI Debate
                                    0.51
## Human Consultancy 0.37
## Human Debate
                     0.67
                                    0.49
                                              0.11
##
## P value adjustment method: none
                    FALSE TRUE Accuracy
## AI Consultancy
                        14
                            62 81.57895
## AI Debate
                        15
                             60 80.00000
## Human Consultancy
                        16
                             45 73.77049
## Human Debate
                        16
                             91 85.04673
design = svydesign(ids = ~1, data = subset(judgments_online, `Human Consultancy Sample` == TRUE | !grep
acc_diff_test(design)
```

Independent Sampling design (with replacement)

```
## svydesign(ids = ~1, data = subset(judgments_online, 'Human Consultancy Sample' ==
##
       TRUE | !grepl("Consultancy", Final_Setting) & !grepl("AI",
       Final_Setting)), weights = ~sampled_consultancies_all_debates_weights_grouped_setting)
##
##
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: svychisq(~Final Setting + Final Accuracy, design, statistic = "Chisq")
## X-squared = 4.104, df = 1, p-value = 0.05155
##
##
  Pairwise comparisons using Pairwise comparison of proportions
##
## data: freq_table
##
##
                Human Consultancy
## Human Debate 0.13
##
## P value adjustment method: none
                     FALSE TRUE Accuracy
## Human Consultancy 16.0 45.0 73.77049
## Human Debate
                      16.5 90.5 84.57944
final_table <- svytable(~Final_Setting+Final_Accuracy,</pre>
                        design = svydesign(ids = ~1,
                                            data = subset(judgments_online, `Consultancy Sample` == TRUE
                                            weights = ~sampled_consultancies_all_debates_weights_grouped
final_table
                      Final_Accuracy
##
## Final_Setting
                       FALSE TRUE
     AI Consultancy
                        14.0 62.0
##
##
     AI Debate
                        15.5 59.5
##
    Human Consultancy 16.0 45.0
##
    Human Debate
                        16.5 90.5
# Add accuracy
final_table <- cbind(final_table, Accuracy = (final_table[,2] / (final_table[,1]+final_table[,2]))*100)
# Calculate the difference in accuracy for each row compared to "Human Debate"
difference_with_debate <- final_table[,"Accuracy"] - final_table["Human Debate", "Accuracy"]</pre>
# Bind the difference column to the final_table
final_table <- cbind(final_table, difference_with_debate)</pre>
# Loop through each setting
ci_lowers <- c()</pre>
ci_uppers <- c()</pre>
p_values <- c()</pre>
# Loop through each setting
for (setting in rownames(final_table)) {
  # Use prop.test to compare the setting's accuracy with "Human Debate"
 results <- prop.test(c(final_table["Human Debate", "TRUE"], final_table[setting, "TRUE"]), c((final_t
  # Extract the confidence interval and store it as a string in the format "lower - upper"
  ci_lower <- results$conf.int[1] * 100 # Multiply by 100 to convert to percentage</pre>
```

```
ci_upper <- results$conf.int[2] * 100 # Multiply by 100 to convert to percentage</pre>
  ci_lowers <- c(ci_lowers, ci_lower)</pre>
  ci_uppers <- c(ci_uppers, ci_upper)</pre>
 p_values <- c(p_values, results$p.value)</pre>
final_table <- cbind(final_table, ci_lowers, ci_uppers, p_values)</pre>
final_table
##
                      FALSE TRUE Accuracy difference_with_debate ci_lowers
                       14.0 62.0 81.57895
                                                         -3.000492 -9.205452
## AI Consultancy
## AI Debate
                       15.5 59.5 79.33333
                                                         -5.246106 -7.324725
## Human Consultancy 16.0 45.0 73.77049
                                                        -10.808947 -3.465654
## Human Debate
                       16.5 90.5 84.57944
                                                          0.000000 -9.677288
##
                      ci_uppers p_values
## AI Consultancy
                      15.206436 0.7372949
## AI Debate
                      17.816936 0.4731832
## Human Consultancy 25.083549 0.1329563
## Human Debate
                       9.677288 1.0000000
# Display the updated table using knitr::kable
knitr::kable(final table, booktab = TRUE, digits = c(rep(1,6),3),
             col.names = c("# Incorrect (weighted)", "# Correct (weighted)", "Accuracy", "Difference",
                                                                   95% CI
                                                                                 95% CI
                 # Incorrect
                                  # Correct
                                                                                             p-
                  (weighted)
                                 (weighted)
                                             AccuracyDifference Lower Limit
                                                                             Upper Limit
                                                                                           value
ΑI
                       14.0
                                       62.0
                                               81.6
                                                        -3.0
                                                                      -9.2
                                                                                    15.2
                                                                                           0.737
Consultancy
AI Debate
                                       59.5
                                               79.3
                                                        -5.2
                                                                      -7.3
                                                                                           0.473
                        15.5
                                                                                    17.8
Human
                       16.0
                                       45.0
                                               73.8
                                                       -10.8
                                                                      -3.5
                                                                                    25.1
                                                                                           0.133
Consultancy
Human
                       16.5
                                       90.5
                                               84.6
                                                         0.0
                                                                      -9.7
                                                                                     9.7
                                                                                          1.000
Debate
human only <- subset(judgments online, `Human Consultancy Sample` == TRUE | !grep1("Consultancy", Final
human_only$Setting <- droplevels(human_only$Setting)</pre>
table(human_only$Setting)
##
## Human Consultancy Dishonest
                                    Human Consultancy Honest
##
                              41
                                                            41
##
                   Human Debate
##
                            155
final table <- svytable(~Setting+Final Accuracy,</pre>
                         design = svydesign(ids = ~1,
                                             data = human only,
                                              weights = ~sampled_consultancies_all_debates_weights_setting
final_table
```

```
##
                                 Final_Accuracy
## Setting
                                  FALSE TRUE
##
    Human Consultancy Dishonest 18.0 23.0
##
    Human Consultancy Honest
                                   6.0 35.0
##
    Human Debate
                                   16.5 90.5
# Add accuracy
final_table <- cbind(final_table, Accuracy = (final_table[,2] / (final_table[,1]+final_table[,2]))*100)
# Calculate the difference in accuracy for each row compared to "Human Debate"
difference_with_debate <- final_table[,"Accuracy"] - final_table["Human Debate", "Accuracy"]</pre>
# Bind the difference column to the final table
final table <- cbind(final table, difference with debate)</pre>
# Loop through each setting
ci_lowers <- c()</pre>
ci_uppers <- c()</pre>
p_values <- c()</pre>
# Loop through each setting
for (setting in rownames(final_table)) {
  # Use prop.test to compare the setting's accuracy with "Human Debate"
  results <- prop.test(c(final_table["Human Debate", "TRUE"], final_table[setting, "TRUE"]), c((final_t
  # Extract the confidence interval and store it as a string in the format "lower - upper"
  ci_lower <- results$conf.int[1] * 100 # Multiply by 100 to convert to percentage</pre>
  ci_upper <- results$conf.int[2] * 100 # Multiply by 100 to convert to percentage
  ci_lowers <- c(ci_lowers, ci_lower)</pre>
  ci_uppers <- c(ci_uppers, ci_upper)</pre>
 p_values <- c(p_values, results$p.value)</pre>
final_table <- cbind(final_table, ci_lowers, ci_uppers, p_values)</pre>
final_table
##
                               FALSE TRUE Accuracy difference_with_debate
## Human Consultancy Dishonest 18.0 23.0 56.09756
                                                               -28.4818783
                                6.0 35.0 85.36585
## Human Consultancy Honest
                                                                  0.7864144
## Human Debate
                                16.5 90.5 84.57944
                                                                  0.0000000
                                ci_lowers ci_uppers
##
                                                         p_values
## Human Consultancy Dishonest 10.134444 46.829313 0.0005598759
## Human Consultancy Honest -14.374115 12.801286 1.0000000000
                                -9.677288 9.677288 1.0000000000
## Human Debate
# Display the updated table using knitr::kable
knitr::kable(final_table, booktab = TRUE, digits = c(rep(1,6),3),
             col.names = c("# Incorrect (weighted)", "# Correct (weighted)", "Accuracy", "Difference",
```

					95% CI	95% CI	
	# Incorrect	# Correct			Lower	Upper	p-
	(weighted)	(weighted)	AccuracyDifference		Limit	Limit	value
Human	18.0	23.0	56.1	-28.5	10.1	46.8	0.001
Consultancy							
Dishonest							

	# Incorrect (weighted)	# Correct (weighted)	Accurac	Difference	95% CI Lower Limit	95% CI Upper Limit	p- value
Human Consultancy Honest	6.0	35.0	85.4	0.8	-14.4	12.8	1.000
Human Debate	16.5	90.5	84.6	0.0	-9.7	9.7	1.000

```
prop_table <- svytable(~Final_Setting+Final_Accuracy, design = svydesign(ids = ~1, data = subset(judgme
#prop_table <- svytable(~Final_Setting+Final_Accuracy, design = svytesign(ids = ~1, data = subset(judgm</pre>
prop_table
##
                      Final_Accuracy
## Final_Setting
                           FALSE
                                      TRUE
    Human Consultancy 9.866667 22.650000
##
##
     Human Debate
                       10.850000 71.633333
print(prop.test(c(prop_table["Human Consultancy", "TRUE"], prop_table["Human Debate", "TRUE"]), c(prop_tabl
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(prop_table["Human Consultancy", "TRUE"], prop_table["Human Debate", "TRUE"]) out of c(prop_
## X-squared = 3.5746, df = 1, p-value = 0.05867
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.36737199 0.02358717
## sample estimates:
##
      prop 1
               prop 2
## 0.6965659 0.8684583
judgments_online fpc <- judgments_online Final probability correct
judgments_online %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = fpc)) +
```

labs(y = "fpc", x = "Setting")+

theme_minimal()


```
consultancy_design <- svydesign(ids = ~1, data = subset(judgments_online, `Consultancy Sample` == TRUE</pre>
human_consultancy_design <- svydesign(ids = ~1, data = subset(judgments_online, `Human Consultancy Samp
svyranktest(fpc~Final_Setting, human_consultancy_design)
##
## Design-based KruskalWallis test
## data: fpc ~ Final_Setting
## t = 2.4508, df = 235, p-value = 0.01499
\#\# alternative hypothesis: true difference in mean rank score is not equal to 0
## sample estimates:
## difference in mean rank score
##
                       0.0969166
judgments_online %>% group_by(Final_Setting) %>% summarise(fpcmed = median(fpc),
                                                            fpcmean = mean(fpc))
## # A tibble: 4 x 3
     Final_Setting
                       fpcmed fpcmean
```

```
## <chr>
                       <dbl> <dbl>
## 1 AI Consultancy
                      0.96 0.764
## 2 AI Debate
                        0.99 0.754
## 3 Human Consultancy 0.87 0.672
## 4 Human Debate
                        0.95 0.792
svyranktest(fpc~Final_Setting, consultancy_design, test = "median")
##
## Design-based median test
## data: fpc ~ Final_Setting
## df = 3, Chisq = 13.969, p-value = 0.003272
svyranktest(fpc~Final_Setting, consultancy_design, test = "wilcoxon")
##
## Design-based KruskalWallis test
## data: fpc ~ Final_Setting
## df = 3, Chisq = 12.446, p-value = 0.006514
svyranktest(fpc~Final_Setting, consultancy_design, test = "vanderWaerden")
## Design-based vanderWaerden test
## data: fpc ~ Final_Setting
## df = 3, Chisq = 9.8037, p-value = 0.02133
weighted_mannwhitney(fpc ~ Final_Setting + sampled_consultancies_all_debates_weights_grouped_setting, j
## Warning in summary.glm(glm.object): observations with zero weight not used for
## calculating dispersion
## # Weighted Kruskal-Wallis test
##
##
    comparison of fpc by Final_Setting
    Chisq=3.00 df=12 p-value=0.006
data(efc)
str(efc)
## 'data.frame':
                   908 obs. of 26 variables:
## $ c12hour : num 16 148 70 168 168 16 161 110 28 40 ...
   ..- attr(*, "label")= chr "average number of hours of care per week"
## $ e15relat: num 2 2 1 1 2 2 1 4 2 2 ...
   ..- attr(*, "label") = chr "relationship to elder"
    ..- attr(*, "labels")= Named num [1:8] 1 2 3 4 5 6 7 8
```

```
... -- attr(*, "names")= chr [1:8] "spouse/partner" "child" "sibling" "daughter or son -in-law" ...
   $ e16sex : num 2 2 2 2 2 2 1 2 2 2 ...
     ..- attr(*, "label")= chr "elder's gender"
     ..- attr(*, "labels")= Named num [1:2] 1 2
##
##
     ....- attr(*, "names")= chr [1:2] "male" "female"
   $ e17age : num 83 88 82 67 84 85 74 87 79 83 ...
##
    ..- attr(*, "label")= chr "elder' age"
##
    $ e42dep : num 3 3 3 4 4 4 4 4 4 4 ...
##
     ..- attr(*, "label")= chr "elder's dependency"
##
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
     ... - attr(*, "names")= chr [1:4] "independent" "slightly dependent" "moderately dependent" "seve
   $ c82cop1 : num 3 3 2 4 3 2 4 3 3 3 ...
##
    ..- attr(*, "label")= chr "do you feel you cope well as caregiver?"
     ..- attr(*, "labels") = Named num [1:4] 1 2 3 4
##
     ... - attr(*, "names")= chr [1:4] "never" "sometimes" "often" "always"
##
##
    $ c83cop2 : num 2 3 2 1 2 2 2 2 2 2 ...
     ..- attr(*, "label")= chr "do you find caregiving too demanding?"
##
##
     ..- attr(*, "labels") = Named num [1:4] 1 2 3 4
     ... - attr(*, "names")= chr [1:4] "Never" "Sometimes" "Often" "Always"
##
   $ c84cop3 : num 2 3 1 3 1 3 4 2 3 1 ...
     ..- attr(*, "label") = chr "does caregiving cause difficulties in your relationship with your friend
##
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
     ... - attr(*, "names")= chr [1:4] "Never" "Sometimes" "Often" "Always"
##
   $ c85cop4 : num 2 3 4 1 2 3 1 1 2 2 ...
##
     ..- attr(*, "label")= chr "does caregiving have negative effect on your physical health?"
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
     ....- attr(*, "names")= chr [1:4] "Never" "Sometimes" "Often" "Always"
##
   $ c86cop5 : num 1 4 1 1 2 3 1 1 2 1 ...
     ..- attr(*, "label")= chr "does caregiving cause difficulties in your relationship with your famil
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
    ....- attr(*, "names")= chr [1:4] "Never" "Sometimes" "Often" "Always"
##
   $ c87cop6 : num 1 1 1 1 2 2 2 1 1 1 ...
##
     ..- attr(*, "label")= chr "does caregiving cause financial difficulties?"
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
##
     ... - attr(*, "names") = chr [1:4] "Never" "Sometimes" "Often" "Always"
##
   $ c88cop7 : num 2 3 1 1 1 2 4 2 3 1 ...
     ..- attr(*, "label")= chr "do you feel trapped in your role as caregiver?"
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
##
    ....- attr(*, "names")= chr [1:4] "Never" "Sometimes" "Often" "Always"
##
   $ c89cop8 : num 3 2 4 2 4 1 1 3 1 1 ...
##
     ..- attr(*, "label")= chr "do you feel supported by friends/neighbours?"
     ..- attr(*, "labels")= Named num [1:4] 1 2 3 4
##
     ....- attr(*, "names")= chr [1:4] "never" "sometimes" "often" "always"
   $ c90cop9 : num 3 2 3 4 4 1 4 3 3 3 ...
     ..- attr(*, "label")= chr "do you feel caregiving worthwhile?"
     ..- attr(*, "labels") = Named num [1:4] 1 2 3 4
##
##
    ...- attr(*, "names")= chr [1:4] "never" "sometimes" "often" "always"
   $ c160age : num 56 54 80 69 47 56 61 67 59 49 ...
     ..- attr(*, "label")= chr "carer' age"
##
   $ c161sex : num 2 2 1 1 2 1 2 2 2 2 ...
    ..- attr(*, "label")= chr "carer's gender"
##
    ..- attr(*, "labels")= Named num [1:2] 1 2
     ....- attr(*, "names")= chr [1:2] "Male" "Female"
   $ c172code: num 2 2 1 2 2 2 2 2 NA 2 ...
```

```
..- attr(*, "label")= chr "carer's level of education"
    ..- attr(*, "labels")= Named num [1:3] 1 2 3
##
    ... - attr(*, "names") = chr [1:3] "low level of education" "intermediate level of education" "hig
## $ c175empl: num 1 1 0 0 0 1 0 0 0 0 ...
##
     ..- attr(*, "label") = chr "are you currently employed?"
     ..- attr(*, "labels") = Named num [1:2] 0 1
##
    ...- attr(*, "names")= chr [1:2] "no" "yes"
   $ barthtot: num 75 75 35 0 25 60 5 35 15 0 ...
##
##
    ..- attr(*, "label")= chr "Total score BARTHEL INDEX"
   $ neg_c_7 : num 12 20 11 10 12 19 15 11 15 10 ...
    ..- attr(*, "label") = chr "Negative impact with 7 items"
## $ pos_v_4 : num 12 11 13 15 15 9 13 14 13 13 ...
    ..- attr(*, "label")= chr "Positive value with 4 items"
## $ quol_5 : num 14 10 7 12 19 8 20 20 8 15 ...
##
   ..- attr(*, "label")= chr "Quality of life 5 items"
##
   $ resttotn: num 0 4 0 2 2 1 0 0 0 1 ...
##
    ..- attr(*, "label")= chr "Job restrictions"
  $ tot sc e: num 4 0 1 0 1 3 0 1 2 1 ...
    ..- attr(*, "label")= chr "Services for elderly"
##
## $ n4pstu : num 0 0 2 3 2 2 3 1 3 3 ...
##
    ..- attr(*, "label")= chr "Care level"
    ..- attr(*, "labels")= Named chr [1:5] "0" "1" "2" "3" ...
    ...- attr(*, "names")= chr [1:5] "No Care Level" "Care Level 1" "Care Level 2" "Care Level 3" ...
##
   $ nur_pst : num    NA  NA  2  3  2  2  3  1  3  3  ...
    ..- attr(*, "label")= chr "Care level"
     ..- attr(*, "labels")= Named chr [1:3] "1" "2" "3"
##
     ... - attr(*, "names")= chr [1:3] "Care Level 1" "Care Level 2" "Care Level 3/3+"
efc$weight <- abs(rnorm(nrow(efc), 1, .3))</pre>
weighted_mannwhitney(c12hour ~ c161sex + weight, efc)
##
## # Weighted Mann-Whitney-U test
##
     comparison of c12hour by c161sex
##
     Chisq=2.47 df=899 p-value=0.014
##
weighted_mannwhitney(fpc ~ Final_Setting + sampled_consultancies_all_debates_weights_grouped_setting, j
## Warning in summary.glm(glm.object): observations with zero weight not used for
## calculating dispersion
## # Weighted Kruskal-Wallis test
##
##
     comparison of fpc by Final_Setting
     Chisq=3.00 df=12 p-value=0.006
wilcox.test(efc$c12hour,efc$c161sex)
```

##

```
## Wilcoxon rank sum test with continuity correction
##
## data: efc$c12hour and efc$c161sex
## W = 812702, p-value < 0.00000000000000022
\#\# alternative hypothesis: true location shift is not equal to 0
judgments_online$fpcw <- judgments_online$fpc *judgments_online$sampled_consultancies_all_debates_weigh
wilcox.test(fpcw~Final_Setting, subset(judgments_online, `Human Consultancy Sample` == TRUE | !grepl("C
##
##
   Wilcoxon rank sum test with continuity correction
## data: fpcw by Final_Setting
## W = 5837, p-value = 0.3003
\#\# alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -0.09001393 0.01492054
## sample estimates:
## difference in location
              -0.01505394
Logistic regression
\#judgments_online\$Final_Setting <- relevel(judgments_online\$Final_Setting, ref = "Human Debate")
model1 <- glm(Final_Accuracy ~ relevel(factor(Final_Setting), 'Human Debate'), family = 'binomial', dat</pre>
summary(model1)
##
## Call:
## glm(formula = Final_Accuracy ~ relevel(factor(Final_Setting),
       "Human Debate"), family = "binomial", data = judgments_online)
##
## Coefficients:
                                                                    Estimate
## (Intercept)
                                                                      1.6487
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                     -0.2215
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                     -0.3736
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                     -0.7969
##
                                                                    Std. Error
## (Intercept)
                                                                        0.2184
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                        0.3414
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                        0.3392
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                        0.3038
##
                                                                    z value
## (Intercept)
                                                                      7.549
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                     -0.649
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                     -1.102
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy -2.623
```

(Intercept)

Pr(>|z|)

0.000000000000438

```
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                               0.51644
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                               0.27067
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                               0.00871
##
## (Intercept)
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
## relevel(factor(Final_Setting), "Human Debate")AI Debate
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 457.45 on 441 degrees of freedom
## Residual deviance: 450.23 on 438 degrees of freedom
## AIC: 458.23
## Number of Fisher Scoring iterations: 4
table(model1$fitted.values > 0.5)
##
## TRUE
## 442
table(judgments_online$Final_Accuracy)
## FALSE TRUE
##
     94
           348
model2 <- glm(Final_Accuracy ~ relevel(factor(Participant), 'Aliyaah Toussaint') + relevel(factor(Final_
summary(model2)
## Call:
## glm(formula = Final_Accuracy ~ relevel(factor(Participant), "Aliyaah Toussaint") +
       relevel(factor(Final_Setting), "Human Debate"), family = "binomial",
##
       data = judgments_online)
##
## Coefficients:
##
                                                                          Estimate
                                                                           2.19432
## (Intercept)
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                          -0.79600
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                          -0.89691
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                          -0.43887
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                         -17.76039
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                          -0.24841
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                         -0.55820
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                          -0.16347
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                          -0.08063
```

```
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                          13.37175
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                          13.37175
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                          -1.27803
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                          -0.96379
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                          -0.17942
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                          -0.01031
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                           0.17177
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                          -1.13135
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                          -1.16733
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                          -0.40256
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                          -0.27193
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                          -0.42241
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                          -0.74485
##
                                                                        Std. Error
## (Intercept)
                                                                           0.49853
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                           0.63661
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                           0.53893
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                           0.77471
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                        1455.39762
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                           1.17957
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                           0.66085
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                           0.64365
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                           0.75783
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                        1029.12159
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                        1029.12159
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                           0.97393
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                           0.58143
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                           0.90289
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                           0.56587
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                           0.67879
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                           0.50759
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                           0.63420
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                           1.18962
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                           0.39222
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                           0.39204
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           0.36432
##
                                                                        z value
## (Intercept)
                                                                          4.402
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                         -1.250
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                         -1.664
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                         -0.566
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                         -0.012
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                         -0.211
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                         -0.845
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                         -0.254
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                         -0.106
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                          0.013
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                          0.013
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                         -1.312
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                         -1.658
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                         -0.199
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                         -0.018
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                          0.253
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                         -2.229
```

```
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                         -1.841
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                         -0.338
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                         -0.693
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                         -1.077
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                         -2.045
##
                                                                        Pr(>|z|)
                                                                        0.0000107
## (Intercept)
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
                                                                           0.2112
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
                                                                           0.0961
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
                                                                           0.5711
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
                                                                           0.9903
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
                                                                           0.8332
## relevel(factor(Participant), "Aliyaah Toussaint") Jackson Petty
                                                                           0.3983
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
                                                                           0.7995
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
                                                                           0.9153
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
                                                                           0.9896
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
                                                                           0.9896
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
                                                                           0.1894
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
                                                                           0.0974
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
                                                                           0.8425
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
                                                                           0.9855
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
                                                                           0.8002
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
                                                                           0.0258
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
                                                                           0.0657
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
                                                                           0.7351
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                           0.4881
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                           0.2813
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           0.0409
##
## (Intercept)
                                                                        ***
## relevel(factor(Participant), "Aliyaah Toussaint")Adelle Fernando
## relevel(factor(Participant), "Aliyaah Toussaint")Anuj Jain
## relevel(factor(Participant), "Aliyaah Toussaint")David Rein
## relevel(factor(Participant), "Aliyaah Toussaint")Emmanuel Makinde
## relevel(factor(Participant), "Aliyaah Toussaint")Ethan Rosen
## relevel(factor(Participant), "Aliyaah Toussaint")Jackson Petty
## relevel(factor(Participant), "Aliyaah Toussaint")Jessica Li
## relevel(factor(Participant), "Aliyaah Toussaint")Julian Michael
## relevel(factor(Participant), "Aliyaah Toussaint")Julien Dirani
## relevel(factor(Participant), "Aliyaah Toussaint")Max Layden
## relevel(factor(Participant), "Aliyaah Toussaint")Noor Mirza-Rashid
## relevel(factor(Participant), "Aliyaah Toussaint")Reeya Kansra
## relevel(factor(Participant), "Aliyaah Toussaint")Salsabila Mahdi
## relevel(factor(Participant), "Aliyaah Toussaint")Sam Jin
## relevel(factor(Participant), "Aliyaah Toussaint")Sean Wang
## relevel(factor(Participant), "Aliyaah Toussaint")Shlomo Kofman
## relevel(factor(Participant), "Aliyaah Toussaint")Shreeram Modi
## relevel(factor(Participant), "Aliyaah Toussaint")Vishakh Padmakumar
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
## relevel(factor(Final_Setting), "Human Debate")AI Debate
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 457.45 on 441 degrees of freedom
##
## Residual deviance: 429.05 on 420 degrees of freedom
## AIC: 473.05
##
## Number of Fisher Scoring iterations: 14
LMER
random.intercept.model = lmer(`Final probability correct` ~ (1 | Final_Setting),
                             data = judgments, REML = TRUE)
judgments$random.intercept.preds = predict(random.intercept.model)
summary(random.intercept.model)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 'Final probability correct' ~ (1 | Final_Setting)
##
      Data: judgments
## REML criterion at convergence: 364
## Scaled residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -2.5652 -0.2013 0.5015 0.5654 0.9255
##
## Random effects:
## Groups
                             Variance Std.Dev.
            Name
## Final_Setting (Intercept) 0.00272 0.05215
## Residual
                             0.09799 0.31304
## Number of obs: 686, groups: Final_Setting, 4
##
## Fixed effects:
##
              Estimate Std. Error
                                       df t value Pr(>|t|)
## (Intercept) 0.75723
                          0.02948 3.33321
                                            25.68 0.00006 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
ranef(random.intercept.model)
## $Final_Setting
##
                      (Intercept)
## AI Consultancy
                     0.002319435
## AI Debate
                    -0.001131440
## Human Consultancy -0.056960042
## Human Debate
                     0.055772047
```

with conditional variances for "Final_Setting"

```
ranova(random.intercept.model)
## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## 'Final probability correct' ~ (1 | Final_Setting)
                      npar logLik
                                      AIC
                                             LRT Df Pr(>Chisq)
## <none>
                         3 -182.00 370.00
                         2 -187.23 378.46 10.456 1
## (1 | Final_Setting)
                                                    0.001222 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
random.intercept.model = lmer(`Final probability correct` ~ (1 | Participant) + (1 | Final_Setting),
                             data = judgments, REML = TRUE)
judgments$random.intercept.preds = predict(random.intercept.model)
summary(random.intercept.model)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 'Final probability correct' ~ (1 | Participant) + (1 | Final_Setting)
     Data: judgments
##
##
## REML criterion at convergence: 357.9
## Scaled residuals:
      Min
              1Q Median
                               3Q
                                      Max
## -2.7461 -0.1555 0.4368 0.5996 1.1083
##
## Random effects:
## Groups
                 Name
                             Variance Std.Dev.
## Participant (Intercept) 0.002215 0.04707
## Final_Setting (Intercept) 0.002718 0.05213
## Residual
                             0.095721 0.30939
## Number of obs: 686, groups: Participant, 19; Final_Setting, 4
##
## Fixed effects:
              Estimate Std. Error
                                       df t value
                                                    Pr(>|t|)
                          0.03211 4.44845 23.52 0.00000772 ***
## (Intercept) 0.75549
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
ranef(random.intercept.model)
## $Participant
##
                       (Intercept)
                     -0.0231887667
## Adelle Fernando
## Aliyaah Toussaint 0.0445495902
## Anuj Jain
                     -0.0460548530
## David Rein
                     0.0107246587
## Emmanuel Makinde -0.0115704647
```

-0.0171199427

Ethan Rosen

```
## Jackson Petty
                   -0.0051104119
## Jessica Li
                     -0.0047621455
## Julian Michael
                     0.0348708056
## Julien Dirani
                    -0.0008138972
## Max Layden
                     -0.0038287458
## Noor Mirza-Rashid -0.0117445230
## Reeya Kansra
                -0.0261229696
## Salsabila Mahdi 0.0321800144
## Sam Jin
                     0.0480694982
## Sean Wang
                     0.0477306783
## Shlomo Kofman
                    -0.0519667486
## Shreeram Modi
                      0.0020512016
## Vishakh Padmakumar -0.0178929784
##
## $Final_Setting
##
                      (Intercept)
## AI Consultancy
                     0.0012586597
## AI Debate
                    -0.0009034629
## Human Consultancy -0.0564188188
## Human Debate
                     0.0560636219
##
## with conditional variances for "Participant" "Final_Setting"
```

ranova(random.intercept.model)

```
## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## 'Final probability correct' ~ (1 | Participant) + (1 | Final_Setting)
                      npar logLik
                                   AIC
                                           LRT Df Pr(>Chisq)
##
## <none>
                         4 -178.95 365.9
## (1 | Participant)
                         3 -182.00 370.0 6.0957 1
                                                    0.013551 *
## (1 | Final_Setting)
                      3 -183.65 373.3 9.4004 1
                                                    0.002169 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

BRMS

```
#brm1 <- brm(data = judgments_online,
# formula = as.numeric(Final_Accuracy) | trials(2) ~ 1 + (1 | Final_Setting),
# family = binomial("identity"),
# iter = 2000, warmup = 1000, chains = 4, cores = 4,
# control = list(adapt_delta = .975, max_treedepth = 20),
# seed = 190831)
#plot(brm1)</pre>
```

Efficiency

Quotes %, caveats

```
characters = turns.merge(
        debates[["Room name", "Question", "Story length",
                 "Untimed annotator context", "Untimed annotator context bins",
                 "Setting", "Final_Setting", "Final_Accuracy",
                 "Is offline"]],
       how="left",
        on="Room name",
    )
# Filtering for specific roles
characters = characters[characters['Role (honest/dishonest)'].isin(['Honest debater', 'Dishonest debate
# Extracting the spans
def extract spans(span str):
    """Extract numerical spans from the given string."""
    if pd.isna(span_str):
        return []
    spans = re.findall(r' << (\d+) - (\d+) >> ', span_str)
    return [(int(start), int(end)) for start, end in spans]
# Merging overlapping spans
def merge_overlapping_spans(span_str):
    if not isinstance(span_str, str):
        return span_str
    spans = extract_spans(span_str)
    if not spans:
       return span_str
   spans.sort(key=lambda x: x[0])
   merged = [spans[0]]
   for current in spans:
       previous = merged[-1]
        if current[0] <= previous[1]:</pre>
            upper_bound = max(previous[1], current[1])
            merged[-1] = (previous[0], upper_bound)
        else:
            merged.append(current)
   return ' '.join(f'<<{start}-{end}>>' for start, end in merged)
# Aggregating function to concatenate quote spans
def custom_join(series):
    return ' '.join(filter(lambda x: isinstance(x, str), series))
# Identify questions with more than one setting and filter out the characters dataframe
questions_with_multi_settings = characters.groupby("Question").filter(lambda x: len(x["Setting"].unique
filtered_characters = characters[characters["Question"].isin(questions_with_multi_settings)]
# Aggregating data
```

```
aggregates = {
    'Quote length': 'sum',
    'Story length': 'mean',
    'Num previous judging rounds': 'max',
    'Participant quote span': custom_join
# Grouping by 'Room name' and aggregating
characters_agg_by_room = filtered_characters.groupby('Room name').agg(aggregates).reset_index()
# Merging the aggregated results with the original data to reintroduce the desired columns
characters_agg = characters_agg_by_room.merge(
   filtered_characters[['Room name', 'Setting', 'Final_Setting', 'Question', 'Untimed annotator contex
    on='Room name'
# Merge overlapping spans after the aggregation
characters_agg["merged_quote_spans"] = characters_agg["Participant quote span"].apply(merge_overlapping
# Functions to compute and compare spans across settings
def extract_numbers_from_span(span_str):
    spans = extract_spans(span_str)
   numbers = set()
   for start, end in spans:
        numbers.update(range(int(start), int(end)+1))
def quote_length(span_str):
  spans = extract_spans(span_str)
  numbers = set()
  for start, end in spans:
   numbers.update(range(int(start), int(end)))
  return numbers
characters_agg["quote_length"] = characters_agg["Participant quote span"].apply(lambda row: len(quote_l
\#characters\_agg["merged\_quote\_length"] = characters\_agg["Participant quote span"].apply(lambda row: length")
#print(characters_agg["merged_quote_length"][1])
\#print((characters\_agg["merged\_quote\_length"] == characters\_agg["quote\_length"]).value\_counts())
#print((characters_agg['quote_length'].fillna(0)/characters_agg['Story length'].fillna(0)).describe())
def convert_to_span_format(numbers):
    sorted_numbers = sorted(list(numbers))
    spans = []
    if sorted_numbers:
       start = sorted_numbers[0]
        end = sorted_numbers[0]
        for num in sorted_numbers[1:]:
            if num == end + 1:
                end = num
            else:
                spans.append((start, end))
                start = end = num
```

```
spans.append((start, end))
    return ' '.join(f'<<{start}-{end}>>' for start, end in spans)
def compute_span_differences(dataframe):
    differences = {}
    for question, group in dataframe.groupby("Question"):
        settings = group["Setting"].unique()
        if len(settings) > 1:
            for i in range(len(settings)):
                for j in range(i+1, len(settings)):
                    setting_1 = settings[i]
                    setting_2 = settings[j]
                    room_1 = group[group["Setting"] == setting_1]["Room name"].values[0]
                    room_2 = group[group["Setting"] == setting_2]["Room name"].values[0]
                    acc_1 = group[group["Setting"] == setting_1]["Final_Accuracy"].values[0]
                    acc_2 = group[group["Setting"] == setting_2]["Final_Accuracy"].values[0]
                    span_str_1 = group[group["Setting"] == setting_1]["merged_quote_spans"].values[0]
                    span_str_2 = group[group["Setting"] == setting_2]["merged_quote_spans"].values[0]
                    numbers_1 = extract_numbers_from_span(span_str_1)
                    numbers_2 = extract_numbers_from_span(span_str_2)
                    diff_1 = numbers_1 - numbers_2
                    diff_2 = numbers_2 - numbers_1
                    key = (question, setting_1, room_1, acc_1, setting_2, room_2, acc_2)
                    value = (convert_to_span_format(diff_1), convert_to_span_format(diff_2))
                    differences[key] = value
   return differences
span_differences_all = compute_span_differences(characters_agg)
#print(span_differences_all.keys())
#for span in span_differences_all[('Why were Jorgenson and Ganti not put to death?', 'Human Consultancy
# print(len(quote_length(span)))
split_span_differences_with_room = []
# Iterate over the span differences
for (question, setting_1, room_1, acc_1, setting_2, room_2, acc_2), (diff_1, diff_2) in span_difference
    split_span_differences_with_room.append((question, setting_1, room_1, acc_1, setting_2, room_2, acc
    split_span_differences_with_room.append((question, setting_2, room_2, acc_2, setting_1, room_1, acc
# Convert the list to a DataFrame
split_span_df = pd.DataFrame(split_span_differences_with_room, columns=['Question', 'Setting 1', 'Room
split_span_df["Span Difference Count"] = split_span_df["Span Difference"].apply(lambda x: len(quote_len
split_span_df["Settings"] = split_span_df["Setting 1"] + " - " + split_span_df["Setting 2"]
# Group by the new 'Settings' column and compute aggregated counts and average of 'Span Difference Coun
grouped_data = split_span_df.groupby("Settings").agg(
    Count=('Span Difference Count', 'size'),
    Average_Span_Difference=('Span Difference Count', 'mean')
).reset_index()
grouped_data
```

```
##
                                                            Count
                                                                    Average_Span_Difference
                                                  Settings
## 0
        AI Consultancy Dishonest - AI Consultancy Honest
                                                                12
                                                                                 137.416667
## 1
                     AI Consultancy Dishonest - AI Debate
                                                                12
                                                                                 141.500000
       AI Consultancy Dishonest - Human Consultancy D...
##
  2
                                                                12
                                                                                 169.833333
##
  3
       AI Consultancy Dishonest - Human Consultancy H...
                                                                13
                                                                                  96.384615
  4
                 AI Consultancy Dishonest - Human Debate
##
                                                                13
                                                                                 129.153846
## 5
        AI Consultancy Honest - AI Consultancy Dishonest
                                                                12
                                                                                 202.916667
                        AI Consultancy Honest - AI Debate
## 6
                                                                12
                                                                                 189.750000
##
   7
       AI Consultancy Honest - Human Consultancy Dish...
                                                                12
                                                                                 211.333333
        AI Consultancy Honest - Human Consultancy Honest
## 8
                                                                12
                                                                                 177.416667
## 9
                     AI Consultancy Honest - Human Debate
                                                                12
                                                                                 197.833333
                     AI Debate - AI Consultancy Dishonest
## 10
                                                                12
                                                                                  85.083333
                        AI Debate - AI Consultancy Honest
## 11
                                                                12
                                                                                  65.500000
## 12
                 AI Debate - Human Consultancy Dishonest
                                                                12
                                                                                  94.500000
## 13
                     AI Debate - Human Consultancy Honest
                                                                12
                                                                                  78.000000
## 14
                                 AI Debate - Human Debate
                                                                16
                                                                                  88.062500
## 15
       Human Consultancy Dishonest - AI Consultancy D...
                                                                12
                                                                                 340.166667
       Human Consultancy Dishonest - AI Consultancy H...
                                                                12
                                                                                 315.000000
## 17
                 Human Consultancy Dishonest - AI Debate
                                                                12
                                                                                 404.750000
## 18
       Human Consultancy Dishonest - Human Consultanc...
                                                                38
                                                                                 334.815789
## 19
              Human Consultancy Dishonest - Human Debate
                                                                46
                                                                                 300.847826
## 20
       Human Consultancy Honest - AI Consultancy Dish...
                                                                                 280.692308
                                                                13
        Human Consultancy Honest - AI Consultancy Honest
## 21
                                                                12
                                                                                 293.333333
                     Human Consultancy Honest - AI Debate
## 22
                                                                12
                                                                                 299.083333
## 23
       Human Consultancy Honest - Human Consultancy D...
                                                                38
                                                                                 272.763158
## 24
                 Human Consultancy Honest - Human Debate
                                                                42
                                                                                 255.380952
## 25
                 Human Debate - AI Consultancy Dishonest
                                                                13
                                                                                 179.153846
                     Human Debate - AI Consultancy Honest
## 26
                                                                12
                                                                                 201.250000
## 27
                                 Human Debate - AI Debate
                                                                16
                                                                                 188.625000
## 28
              Human Debate - Human Consultancy Dishonest
                                                                46
                                                                                 163.956522
## 29
                 Human Debate - Human Consultancy Honest
                                                                42
                                                                                 147.880952
filtered df = split span df[
    (split span df["Setting 1"] == "Human Debate") &
    ((split_span_df["Setting 2"] == "Human Consultancy Honest") | (split_span_df["Setting 2"] == "Human
print(filtered_df.groupby(['Setting 2','Acc_1','Acc_2'])['Span Difference Count'].describe())
                                                                                         25%
                                                                                                50%
##
                                              count
                                                                         std
                                                                                min
                                                                                                        75%
                                                           mean
                                Acc_1 Acc_2
## Setting 2
   Human Consultancy Dishonest False False
                                                5.0
                                                     187.200000
                                                                   90.698401
                                                                               92.0
                                                                                      131.00
                                                                                              145.0
                                                                                                     275.00
##
                                      True
                                                8.0
                                                     149.625000
                                                                  100.637876
                                                                               39.0
                                                                                       42.75
                                                                                              156.5
                                                                                                     236.25
                                                                                              128.0
##
                                      False
                                               16.0
                                                     148.687500
                                                                   81.308236
                                                                               47.0
                                                                                       89.75
                                                                                                     182.00
                                True
                                               17.0
                                                     178.235294
                                                                               57.0
                                                                                       92.00
                                                                                              161.0
                                                                                                     233.00
##
                                      True
                                                                  115.183294
                                                                                              149.0
   Human Consultancy Honest
                                False False
                                                4.0
                                                     144.750000
                                                                  134.321443
                                                                               14.0
                                                                                       36.50
                                                                                                     257.25
                                                                               30.0
                                                                                               83.0
##
                                      True
                                               12.0
                                                     122.416667
                                                                   95.625651
                                                                                       55.50
                                                                                                     164.75
##
                                      False
                                                4.0
                                                     197.000000
                                                                   63.050245
                                                                              120.0
                                                                                      170.25
                                                                                              197.5
                                                                                                     224.25
                                True
##
                                                     153.409091
                                                                                              130.0
                                                                                                     195.00
                                      True
                                               22.0
                                                                   94.780277
                                                                               30.0
                                                                                       75.00
# Calculate the IQR and bounds for each group in 'Setting 2'
grouped = filtered_df.groupby('Setting 2')['Span Difference Count']
```

```
Q1 = grouped.quantile(0.25)
Q3 = grouped.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Filter out the outliers based on the computed bounds
filtered_no_outliers = filtered_df[
    (filtered_df['Setting 2'].map(lower_bound) <= filtered_df['Span Difference Count']) &
    (filtered_df['Setting 2'].map(upper_bound) >= filtered_df['Span Difference Count'])
]
filtered_no_outliers
##
                                                                                                   Setti:
                                                 Question
## 0
        By the end of the passage. what can we underst...
                                                                    Human Debate - Human Consultancy Hon-
## 2
        By the end of the passage. what can we underst...
                                                                Human Debate - Human Consultancy Dishon
## 30
       Did the questions Tremaine needed answers to g... ...
                                                                    Human Debate - Human Consultancy Hon-
                                                                Human Debate - Human Consultancy Dishon
## 32
        Did the questions Tremaine needed answers to g... ...
## 60
        From the information the story provides, do yo...
                                                                    Human Debate - Human Consultancy Hon-
## ..
## 510
       Why was the main character daydreaming about b...
                                                                Human Debate - Human Consultancy Dishon
## 514
                  Why was the murderer trying to kill Bo?
                                                                    Human Debate - Human Consultancy Hon-
## 516
                  Why was the murderer trying to kill Bo?
                                                                Human Debate - Human Consultancy Dishon
## 544
           Why were Jorgenson and Ganti not put to death?
                                                                 Human Debate - Human Consultancy Dishon
## 546
                                                                    Human Debate - Human Consultancy Hon-
           Why were Jorgenson and Ganti not put to death?
##
## [87 rows x 10 columns]
print(filtered_no_outliers.groupby(['Setting 2','Acc_1','Acc_2'])['Span Difference Count'].describe())
##
                                            count
                                                                       std
                                                                              min
                                                                                      25%
                                                                                             50%
                                                                                                     75%
                                                         mean
## Setting 2
                               Acc_1 Acc_2
## Human Consultancy Dishonest False False
                                              5.0 187.200000
                                                                 90.698401
                                                                             92.0
                                                                                   131.00 145.0
                                                                                                  275.00
##
                                              8.0 149.625000 100.637876
                                                                             39.0
                                                                                    42.75 156.5
                                                                                                  236.25
                                     True
##
                               True False
                                             16.0
                                                   148.687500
                                                                81.308236
                                                                             47.0
                                                                                    89.75 128.0
                                                                                                  182.00
##
                                     True
                                             16.0 156.500000
                                                                74.733304
                                                                             57.0
                                                                                    91.25 143.0
                                                                                                  220.25
## Human Consultancy Honest
                               False False
                                              4.0 144.750000 134.321443
                                                                             14.0
                                                                                    36.50 149.0
                                                                                                  257.25
                                                                             30.0
                                                                                    55.50
##
                                     True
                                             12.0 122.416667
                                                                95.625651
                                                                                           83.0 164.75
##
                                              4.0 197.000000
                                                                           120.0
                                                                                   170.25 197.5
                               True False
                                                                 63.050245
                                                                                                  224.25
##
                                             22.0 153.409091
                                                                             30.0
                                     True
                                                                 94.780277
                                                                                    75.00 130.0 195.00
characters<- py$characters_agg
span_difference_debate_consultancies <- py $filtered_df
ggplot(span_difference_debate_consultancies) +
  geom_boxplot(aes(x = `Setting 2`, y = `Span Difference Count`))
```



```
filtered_outliers <- characters %>%
  group_by(Final_Setting) %>%
  mutate(Q1 = quantile(quote_length, 0.25),
        Q3 = quantile(quote_length, 0.75),
        IQR = Q3 - Q1,
        lower_bound = Q1 - 1.5 * IQR,
        upper_bound = Q3 + 1.5 * IQR)

ggplot(characters) +
  geom_boxplot(aes(x = Final_Setting, y = `Quote length`)) +
  labs(y = "Total Quote Length (characters)")+
  theme_minimal()
```



```
filtered <- characters %>%
  group_by(Final_Setting) %>%
  mutate(Q1 = quantile(quote_length, 0.25),
        Q3 = quantile(quote_length, 0.75),
        IQR = Q3 - Q1,
        lower_bound = Q1 - 1.5 * IQR,
        upper_bound = Q3 + 1.5 * IQR) %>%
  filter(quote_length > 0 & quote_length < 750) %>%
  select(-Q1, -Q3, -IQR, -lower_bound, -upper_bound)
filtered %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = quote_length)) +
  labs(y = "Total Quote Length in a Debate/Consultancy (unique tokens)", x = "Setting")+
  theme_minimal()
```



```
characters %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = quote_length)) +
  labs(y = "Total Quote Length in a Debate/Consultancy (unique tokens)", x = "Setting")+
  theme_minimal()
```


pairwise.t.test(filtered\$quote_length, filtered\$Final_Setting)

296

181

3 Human Consultancy

4 Human Debate

```
##
   Pairwise comparisons using t tests with pooled SD
##
## data: filtered$quote_length and filtered$Final_Setting
##
##
                     AI Consultancy AI Debate
                                                    Human Consultancy
## AI Debate
                     0.04290
## Human Consultancy 0.00017
                                    0.00000000018 -
                                    0.00443
                                                    0.00000019213
## Human Debate
                     0.80222
##
## P value adjustment method: holm
filtered %>% group_by(Final_Setting) %>% summarise(avground = median(quote_length))
## # A tibble: 4 x 2
     Final_Setting
##
                       avground
     <chr>
                          <dbl>
## 1 AI Consultancy
                           160
## 2 AI Debate
                           118.
```

```
characters %>% group_by(Final_Setting) %>% summarise(avground = median(quote_length))
```

```
characters <- characters %>%
  group_by(`Room name`,) %>%
  mutate(`Max judge rounds by room` = max(`Num previous judging rounds`, na.rm = TRUE)) %>%
  ungroup()
ggplot(characters) +
  geom_boxplot(aes(x = Final_Setting, y = `Max judge rounds by room`)) +
  labs(y = 'Max Judging Rounds') +
  theme_minimal()
```


pairwise.t.test(characters\$`Max judge rounds by room`, characters\$Final_Setting)

```
##
## Pairwise comparisons using t tests with pooled SD
##
```

```
## data: characters$'Max judge rounds by room' and characters$Final_Setting
##
##
                     AI Consultancy AI Debate Human Consultancy
## AI Debate
                     0.137
                                     0.914
## Human Consultancy 0.055
                                               0.0000020
## Human Debate
                     0.0000003
                                     0.002
## P value adjustment method: holm
filtered <- characters %>%
  group by (Final Setting) %>%
  mutate(Q1 = quantile(`Max judge rounds by room`, 0.25),
         Q3 = quantile(`Max judge rounds by room`, 0.75),
         IQR = Q3 - Q1,
         lower_bound = Q1 - 1.5 * IQR,
         upper_bound = Q3 + 1.5 * IQR) %>%
  filter(`Max judge rounds by room` >= lower_bound & `Max judge rounds by room` <= upper_bound) %>%
  select(-Q1, -Q3, -IQR, -lower_bound, -upper_bound)
filtered %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = `Max judge rounds by room`), outlier.shape = NA) +
  labs(y = "Rounds", x = "Setting")+
  theme_minimal()
   10.0
    7.5
Rounds
    5.0
    2.5
                                   Al Debate
              Al Consultancy
                                                   Human Consultancy
                                                                         Human Debate
```

Setting

```
characters %>%
  ggplot() +
  geom_boxplot(aes(x = Final_Setting, y = `Max judge rounds by room`)) +
  labs(y = "Rounds", x = "Setting")+
  theme_minimal()
```


pairwise.t.test(filtered\$quote_length, filtered\$Final_Setting)

```
##
   Pairwise comparisons using t tests with pooled SD
##
## data: filtered$quote_length and filtered$Final_Setting
##
##
                     AI Consultancy
                                      AI Debate
                                                       Human Consultancy
                     0.192
## AI Debate
## Human Consultancy 0.00000150627713 0.00000000000097 -
## Human Debate
                     0.560
                                      0.018
                                                       0.0000000003675
##
## P value adjustment method: holm
filtered ">" group_by(Final_Setting) ">" summarise(avground = mean(`Max judge rounds by room`))
## # A tibble: 4 x 2
   Final_Setting
                       avground
```

Length of debates, stratified

```
per_turn = turns.merge(
        debates [["Room name", "Honest debater", "Dishonest debater", "Question", "Article ID",
                 "Speed annotator accuracy", "Untimed annotator context", "Untimed annotator context bins
        how="left",
        on="Room name",
    )
print(per_turn.groupby('Final_Setting')['Num previous judging rounds'].mean())
## Final_Setting
## AI Consultancy
                        4.173252
## AI Debate
                        2.986231
## Human Consultancy
                        2.759310
## Human Debate
                        1.475072
## Name: Num previous judging rounds, dtype: float64
# Calculate the IQR and bounds for each group in 'Setting 2'
grouped = per_turn.groupby('Setting')['Num previous judging rounds']
Q1 = grouped.quantile(0.25)
Q3 = grouped.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Filter out the outliers based on the computed bounds
filtered_no_outliers = per_turn[
    (per_turn['Setting'].map(lower_bound) <= per_turn['Num previous judging rounds']) &
    (per_turn['Setting'].map(upper_bound) >= per_turn['Num previous judging rounds'])
٦
filtered_no_outliers
```

```
##
                            Room name Room start time ...
                                                                                Setting Final Accura
## 0
                                                            Human Consultancy Dishonest
                            ambition-8
                                         1686950589862 ...
                                                                                                 Tr
## 1
                            ambition-8
                                       1686950589862 ...
                                                            Human Consultancy Dishonest
                                                                                                 Tr
## 2
                           ambition-8 1686950589862 ...
                                                            Human Consultancy Dishonest
                                                                                                 Tr
## 3
                            ambition-8 1686950589862 ... Human Consultancy Dishonest
                                                                                                 Tr
                            ambition-8
## 4
                                         1686950589862
                                                            Human Consultancy Dishonest
                                                                                                 Tr
## ...
## 6013
                         break-a-leg-3
                                         1682110823449 ...
                                                                           Human Debate
                                                                                                 Tr
## 6014
                         break-a-leg-3
                                         1682110823449 ...
                                                                           Human Debate
                                                                                                 Tr
```

```
## 6015 the-absurdity-of-family-love-2
                                           1689876267578
                                                                  Human Consultancy Honest
                                                                                                      Tr
## 6016 the-absurdity-of-family-love-2
                                           1689876267578 ...
                                                                  Human Consultancy Honest
                                                                                                     Tr
## 6017 the-absurdity-of-family-love-2
                                                                  Human Consultancy Honest
                                           1689876267578 ...
                                                                                                     Tr
##
## [5875 rows x 27 columns]
for setting in filtered_no_outliers['Setting'].unique():
  per_turn_setting = filtered_no_outliers[filtered_no_outliers['Setting'] == setting]
  print(setting)
  # Calculate the maximum 'Num previous judging rounds' for each combination of 'Room name' and 'Partic
  per_turn_setting['Max judge rounds by room'] = per_turn_setting.groupby(['Room name', 'Participant'])
  ## Just based on the number of rounds
  for i in range(1, per_turn_setting['Max judge rounds by room'].max() + 1):
      max_rounds = per_turn_setting[(per_turn_setting['Max judge rounds by room'] == i) & (per_turn_set
     print(len(max rounds))
      # Group by 'Num previous judging rounds' and calculate the mean of 'Probability correct'
      average_pc_per_round = max_rounds.groupby('Num previous judging rounds')['Probability correct'].m
      # Create a new DataFrame with 'Num previous judging rounds' and 'Average pc per round'
      probability_correct_round = pd.DataFrame({'Num previous judging rounds': average_pc_per_round.ind
                                                'Average pc per round': average_pc_per_round.values})
      # Plotting the data with label for the line
     plt.plot(probability_correct_round['Num previous judging rounds'], probability_correct_round['Ave
  plt.title(f"Probability Correct for Setting: {setting}")
  plt.xlabel('Num previous judging rounds')
  plt.ylabel('Average pc per round')
  plt.legend()
  plt.show()
```


Probability Correct for Setting: Human Consultancy Honest


```
strat <- py$per_turn</pre>
strat <- strat %>%
  group_by(`Room name`, Participant) %>%
 mutate(`Max judge rounds by room` = max(`Num previous judging rounds`, na.rm = TRUE)) %>%
 ungroup()
strat <- strat %>%
  mutate(`Max judge rounds bin` = cut(`Max judge rounds by room`,
                                      breaks = seq(0, max(`Max judge rounds by room`, na.rm = TRUE) + 3
                                      labels = FALSE,
                                      include.lowest = TRUE,
                                      right = FALSE))
# Plot using ggplot2
strat %>%
  group_by(Setting, `Num previous judging rounds`, `Max judge rounds bin`) %>%
  summarize(
    `Average Probability Correct` = mean(`Probability correct`, na.rm = TRUE),
   n = n(),
   se = sqrt(`Average Probability Correct` * (1 - `Average Probability Correct`) / n)
  ) %>%
  mutate(
   lower_ci = `Average Probability Correct` - 1.96 * se,
   upper_ci = `Average Probability Correct` + 1.96 * se
  ggplot(aes(x = `Num previous judging rounds`, y = `Average Probability Correct`, col = as.factor(`Max
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = as.factor(`Max judge rounds bin`), group = a
```

```
labs(title = "Average Probability Correct Each Round, \nstratified by Max Round Binned",
    x = "Round",
    y = "Average Intermediate Probability Correct") +
geom_line() +
facet_wrap(~Setting) +
theme_bw() +
theme(legend.position = "none")
```

'summarise()' has grouped output by 'Setting', 'Num previous judging rounds'. You can override using ## argument.

Average Probability Correct Each Round, stratified by Max Round Binned

'summarise()' has grouped output by 'Setting', 'Num previous judging rounds'. You can override using

argument.

Warning: Removed 10 rows containing missing values ('geom_line()').

Average Probability Correct by Percentage of Completion

Time (offline judging..?)

1236.792144

1.169167

1.836600

5.664767

std

min

25%

50%

```
## 75%
              13.967783
## max
           4369.697933
## Name: Offline judging time, dtype: float64
## Only 13...
# Filter out rows with NaT values
valid_judging_time = judgments["Offline judging time"].dropna()
# Calculate summary statistics
summary_stats = valid_judging_time.describe()
print(summary_stats)
## count
            203.000000
## mean
            255.826710
## std
           1372.208730
## min
              0.667467
## 25%
               2.867950
## 50%
              5.176250
## 75%
             10.295583
          14202.493917
## max
## Name: Offline judging time, dtype: float64
# Filter judgments with offline judging time above 65 minutes
filtered_judgments = judgments[(judgments["Offline judging time"] < 65) & (judgments["Untimed annotator
# Print filtered judgments
# print("Filtered judgments with offline judging time above 65 minutes:")
print(filtered_judgments['Offline judging time'].describe())
## count
         193.000000
## mean
            8.013787
## std
             9.410150
## min
            0.667467
## 25%
              2.850450
             5.107450
## 50%
## 75%
              8.716300
             64.173267
## max
## Name: Offline judging time, dtype: float64
# Create the histogram
plt.hist(filtered_judgments['Offline judging time'], bins=10)
# Set labels and title
plt.xlabel("Offline Judging Time (minutes)")
plt.ylabel("Frequency")
plt.title("Histogram of Offline Judging Time")
# Display the histogram
plt.show()
```

Histogram of Offline Judging Time


```
aggregates = {
    'Final probability correct': 'mean',
    'Untimed annotator context': 'mean'
}
filtered_judgments = filtered_judgments.groupby('Offline judging time').agg(aggregates).reset_index()
```

Analysis

Question Difficulty

confounder rounds, quotes

```
judgments["Number of judge continues bins"] = pd.cut(
    judgments["Number of judge continues"],
    bins=[0, 3, 6, 9, float('inf')], # bin edges
    labels=['1-3', '4-6', '7-9', '10+'], # labels for the resulting bins
    right=True # includes the right edge of the bin
)
aggregated_df = judgments.groupby(["Setting", "Number of judge continues bins"])["Final_Accuracy"].agg(
    Proportion_True=lambda x: x.mean(),
    Total_Count="size"
).reset_index()
```

<string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in

\

```
pd.set_option('display.max_columns', None)
print(aggregated_df)
```

##		Setting Number of judge continues bi	ns
##	0		-3
##	1	· ·	-6
##	2	AI Consultancy Dishonest 7	-9
##	3	AI Consultancy Dishonest	0+
##	4	AI Consultancy Honest	-3
##	5	AI Consultancy Honest 4	-6
##	6	AI Consultancy Honest 7	-9
##	7	AI Consultancy Honest	0+
##	8	AI Debate 1	-3
##	9	AI Debate 4	-6
##	10	AI Debate 7	-9
##	11		0+
##		3	-3
##		3	-6
##		3	-9
##		,	0+
##		ÿ	-3
##		3	-6
##		· ·	-9
##		3	0+
##			-3
##			-6
##			-9
##	23	Human Debate	0+
##		Proportion True Total Count	
##	0	Proportion_True Total_Count 0.962963 27	
##		0.833333 6	
##		1.000000 2	
##		0.400000 5	
##		0.740741 27	
##		0.777778 18	
##		1.000000 3	
##		0.625000 8	
##	8	0.843137 51	
##	9	0.740741 27	
##	10	0.700000 10	
##	11	0.500000 4	
##	12	0.483871 31	
##	13	0.655172 29	
##	14	0.833333 6	
##	15	0.500000 2	
##	16	0.928571 28	
##	17	0.833333 18	
##	18	1.000000 5	
##	19	0.500000 2	
##	20	0.871069 318	
##	21	0.859649 57	

```
## 22
              1.000000
## 23
                                   0
                   NaN
pd.reset_option('display.max_columns')
total_counts_for_setting = judgments.groupby('Final_Setting').size()
result = judgments.groupby(["Final_Setting", "Untimed annotator context bins", "Number of judge continu
    Proportion_True=pd.NamedAgg(column='Final_Accuracy', aggfunc=lambda x: x.mean()),
    Context_Count=pd.NamedAgg(column='Final_Accuracy', aggfunc='size'),
    Proportion_Context=pd.NamedAgg(column='Final_Setting', aggfunc=lambda x: len(x) / total_counts_for_
).reset index()
## <string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in
print(f'Is it number of rounds (meaning more evidence) that confounds the consultancy accuracy?:\n{resu
## Is it number of rounds (meaning more evidence) that confounds the consultancy accuracy?:
##
       Final_Setting Untimed annotator context bins
                                                      ... Context_Count Proportion_Context
## 0
       AI Consultancy
                                                    1
                                                                        0
                                                                                          NaN
      AI Consultancy
                                                                                     0.010417
## 1
                                                                       1
## 2
      AI Consultancy
                                                                       Λ
                                                                                          NaN
                                                    1
                                                       . . .
## 3
      AI Consultancy
                                                    1 ...
                                                                       0
                                                                                          NaN
## 4
      AI Consultancy
                                                    2
                                                                       28
                                                                                     0.291667
## ..
                                                       . . .
                                                                      . . .
                                                  . . .
                                                                                          . . .
## 59
        Human Debate
                                                                       0
                                                    3 ...
                                                                                          NaN
                                                    4 ...
                                                                                     0.076923
## 60
        Human Debate
                                                                      29
         Human Debate
                                                                       7
                                                                                     0.018568
## 61
## 62
         Human Debate
                                                                       0
                                                                                          NaN
                                                       . . .
         Human Debate
## 63
                                                                        0
                                                                                          NaN
##
## [64 rows x 6 columns]
judgments$`Untimed annotator context bins` <- as.factor(judgments$`Untimed annotator context bins`)</pre>
bootstrap_mean <- function(data, indices) {</pre>
 return(mean(data[indices], na.rm = TRUE))
}
judgments_online %>%
  group_by(`Untimed annotator context bins`, Final_Setting) %>%
  do({
   boot_result <- boot(data = .$Final_Accuracy, statistic = bootstrap_mean, R = 1000)
      mean_accuracy = mean(boot_result$t, na.rm = TRUE),
      lower_ci = quantile(boot_result$t, 0.025),
      upper_ci = quantile(boot_result$t, 0.975)
   )
  }) %>%
  ggplot(aes(x = `Untimed annotator context bins`, y = mean_accuracy, color = Final_Setting, group = Fi
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = Final_Setting, color = NULL), alpha = 0.25)
  labs(y = "Average Final Accuracy", x = "Untimed Annotator Context") +
```

```
theme_minimal() +
facet_wrap(~ Final_Setting)
```


Judge Skill

Judge "Experience"

```
judgments_online %>%
  group_by(Final_Setting, Participant) %>%
  arrange(`End time`) %>%
  mutate(count=row_number()) %>%
  group_by(Final_Setting, count) %>%
  do({
   boot_result <- boot(data = .$Final_Accuracy, statistic = bootstrap_mean, R = 1000)</pre>
   data.frame(
      mean_accuracy = mean(boot_result$t, na.rm = TRUE),
      lower_ci = quantile(boot_result$t, 0.025, na.rm = TRUE),
      upper_ci = quantile(boot_result$t, 0.975, na.rm = TRUE)
   )
  }) %>%
  ggplot(aes(x = count, y = mean_accuracy, color = Final_Setting, group = Final_Setting)) +
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = Final_Setting, color = NULL), alpha = 0.25)
```

```
labs(y = "Average Final Accuracy", x = "Judging Counts") +
theme_minimal() +
facet_wrap(~ Final_Setting)
```



```
subset(judgments_online, judgments_online['Setting'] == 'Human Debate') %>%
  group_by(`Untimed annotator context bins`, Participant) %>%
  arrange(`End time`) %>%
  mutate(count=row_number()) %>%
  group_by(`Untimed annotator context bins`, count) %>%
  do({
   boot_result <- boot(data = .$Final_Accuracy, statistic = bootstrap_mean, R = 1000)</pre>
   data.frame(
     mean_accuracy = mean(boot_result$t, na.rm = TRUE),
     lower_ci = quantile(boot_result$t, 0.025, na.rm = TRUE),
      upper_ci = quantile(boot_result$t, 0.975, na.rm = TRUE)
   )
  }) %>%
  ggplot(aes(x = count, y = mean_accuracy, color = `Untimed annotator context bins`, group = `Untimed a
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci, fill = `Untimed annotator context bins`, color = NU
  labs(y = "Average Final Accuracy", x = "Judging Counts") +
  theme minimal() +
  facet_wrap(~ `Untimed annotator context bins`)
```


Calibration

S: (1) debaters didnt learn calibration -> calibration over time? S: (2) dishonest debater tricks

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.calibration import calibration_curve
def calibration_plot(df, setting_name, ax=None):
    df['outcome'] = pd.Series(df['Final probability correct'] > 0.5, dtype=int)
   df['confidence'] = df['Final probability correct'].apply(lambda x: x if x > 0.5 else 1 - x)
    df['bins'] = pd.cut(df['confidence'], [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99])
    # Group by bins and calculate the mean outcome
   df_grouped = df.groupby('bins')['outcome'].mean().reset_index()
    # Compute standard error in each bin
    std_error = df.groupby('bins')['outcome'].apply(lambda x: x.std() / np.sqrt(len(x)) if len(x) > 1 e
    df_grouped['std_error'] = df['bins'].cat.categories.map(std_error)
    if ax is None:
       plt.rcParams.update({'font.size': 16})
       fig, ax = plt.subplots(figsize=(8, 6))
    # Plot the calibration curve with error bars
    ax.plot(df_grouped['bins'].apply(lambda x: x.mid), df_grouped['outcome'], marker='o', linewidth=2,
    ax.errorbar(df_grouped['bins'].apply(lambda x: x.mid), df_grouped['outcome'], yerr=df_grouped['std_
    ax.set_xlabel('Final judge probability')
```

```
ax.set_title(f'Judge calibration for {setting_name}')
    ax.plot([0.5, 1], [0.5, 1], linestyle='--', color='gray', label='Perfect Calibration')
    ax.grid(True)
   ax.legend()
    # Calculate ECE
   actual_labels = df['outcome'].values
   predicted probs = df['Final probability correct'].values
   prob_true, prob_pred = calibration_curve(actual_labels, predicted_probs, n_bins=10)
   ece = np.mean(np.abs(prob_pred - prob_true) * (prob_true.size / len(actual_labels)))
    # Print ECE
   print(f"Expected Calibration Error (ECE) for {setting_name}: {ece:.4f}")
   plt.show()
   plt.rcParams.update({'font.size': plt.rcParamsDefault['font.size']})
# Loop through each unique setting and create a calibration plot
for setting in judgments_online['Final_Setting'].unique():
    setting_df = judgments_online[judgments['Final_Setting'] == setting].copy()
    calibration_plot(setting_df, setting)
## Expected Calibration Error (ECE) for AI Consultancy: 0.0213
## Expected Calibration Error (ECE) for Human Debate: 0.0152
## Expected Calibration Error (ECE) for AI Debate: 0.0268
## Expected Calibration Error (ECE) for Human Consultancy: 0.0220
```

<string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

<string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

<string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

<string>:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

<string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True is ## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True is

<string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True is ## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True is

<string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True is ## <string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True is

<string>:7: FutureWarning: The default of observed=False is deprecated and will be changed to True is
<string>:9: FutureWarning: The default of observed=False is deprecated and will be changed to True is

ax.set_ylabel('Accuracy')

Judge Involvement

Judge Mistakes

Debater Skill

```
## [1] "Participant"
## [2] "base_room_name"
## [3] "Room name"
## [4] "Room start time"
## [5] "Role"
## [6] "Is turn"
## [7] "Is over"
## [8] "Number of judge continues"
```

```
## [9] "Final probability correct"
## [10] "Offline judging start time"
## [11] "Offline judging end time"
## [12] "other"
## [13] "factual informativeness (comparative).1"
## [14] "factual informativeness (comparative).2"
## [15] "facts versus semantics (single)"
## [16] "factual accuracy (single)"
## [17] "clarity.1"
## [18] "clarity.2"
## [19] "factual accuracy.1"
## [20] "factual accuracy.2"
## [21] "judge reasoning"
## [22] "reason for outcome"
## [23] "protocol"
## [24] "evidence use.1"
## [25] "evidence use.2"
## [26] "evidence in story.1"
## [27] "evidence in story.2"
## [28] "other factors"
## [29] "judge adaptation (single)"
## [30] "evidence in debate.1"
## [31] "evidence in debate.2"
## [32] "interface"
## [33] "evidence in debate (single)"
## [34] "facts versus semantics.1"
## [35] "facts versus semantics.2"
## [36] "clash.1"
## [37] "clash.2"
## [38] "identity guesses.Judge"
## [39] "identity guesses.Debater A"
## [40] "identity guesses.Debater B"
## [41] "judge adaptation.1"
## [42] "judge adaptation.2"
## [43] "subjective correctness"
## [44] "evidence use (single)"
## [45] "factual informativeness (total)"
## [46] "judge strategies"
## [47] "clarity (single)"
## [48] "Debater A"
## [49] "Debater B"
## [50] "Honest debater"
## [51] "Dishonest debater"
       "Is single debater"
## [52]
## [53] "Has honest debater"
## [54] "Final_Setting"
## [55]
       "Setting"
## [56] "Question"
## [57] "Article ID"
## [58] "Speed annotator accuracy bins"
## [59]
       "Untimed annotator context bins"
## [60] "Speed annotator accuracy"
## [61] "Untimed annotator context"
## [62] "Is offline"
```

```
## [63] "End time"
## [64] "Last modified time"
## [65] "Final Accuracy"
## [66] "random.intercept.preds"
dishonest <- judgments[!is.na(judgments$`Dishonest debater`), ]</pre>
model3 <- glm(Final_Accuracy ~ relevel(factor(`Dishonest debater`), 'Shlomo Kofman') + relevel(factor(F
summary(model3)
##
## Call:
## glm(formula = Final_Accuracy ~ relevel(factor('Dishonest debater'),
       "Shlomo Kofman") + relevel(factor(Final_Setting), "Human Debate"),
       family = "binomial", data = judgments[!is.na(judgments$'Dishonest debater'),
##
##
           ])
##
## Coefficients: (1 not defined because of singularities)
                                                                              Estimate
## (Intercept)
                                                                               0.52739
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                               0.95584
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                               2.41514
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                               1.47707
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                               1.41852
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                               17.03868
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                               1.45361
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                               0.75355
## relevel(factor('Dishonest debater'), "Shlomo Kofman") Jackson Petty
                                                                               2.08187
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                               0.53268
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                               2.41705
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                               1.55205
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                              17.03868
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                              -0.05738
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                               1.44916
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                               1.47874
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                               1.30012
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                               1.43988
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                               1.45605
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
                                                                              17.03868
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                               0.66498
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                    NΑ
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                              -1.33091
##
                                                                            Std. Error
## (Intercept)
                                                                               0.66115
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                               0.73718
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                               1.23691
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                               0.84884
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                               0.90447
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                            2797.44202
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                               0.84947
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                               0.70782
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jackson Petty
                                                                               0.98698
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                               0.74081
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                               1.22055
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                               1.24985
```

```
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                            3956.18038
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                               0.87300
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                               0.90748
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                               0.79085
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                               0.93690
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                               0.75579
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                               0.75586
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar 863.30958
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                               0.54080
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                    NA
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                               0.32388
                                                                            z value
## (Intercept)
                                                                              0.798
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                              1.297
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                              1.953
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                              1.740
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                              1.568
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                              0.006
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                              1.711
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                              1.065
## relevel(factor('Dishonest debater'), "Shlomo Kofman") Jackson Petty
                                                                              2.109
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                              0.719
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                              1.980
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                              1.242
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                              0.004
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                             -0.066
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                              1.597
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                              1.870
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                              1.388
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                              1.905
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                              1.926
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
                                                                              0.020
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                              1.230
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                 NA
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                             -4.109
                                                                             Pr(>|z|)
## (Intercept)
                                                                               0.4251
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
                                                                               0.1948
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
                                                                               0.0509
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
                                                                               0.0818
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
                                                                               0.1168
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
                                                                               0.9951
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
                                                                               0.0870
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
                                                                               0.2871
## relevel(factor('Dishonest debater'), "Shlomo Kofman") Jackson Petty
                                                                               0.0349
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
                                                                               0.4721
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
                                                                               0.0477
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
                                                                               0.2143
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
                                                                               0.9966
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
                                                                               0.9476
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
                                                                               0.1103
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
                                                                               0.0615
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
                                                                               0.1652
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
                                                                               0.0568
```

```
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
                                                                              0.0541
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
                                                                              0.9843
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
                                                                              0.2188
## relevel(factor(Final_Setting), "Human Debate")AI Debate
                                                                                  NΑ
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           0.0000397
##
## (Intercept)
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Adelle Fernando
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Aliyaah Toussaint
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Anuj Jain
## relevel(factor('Dishonest debater'), "Shlomo Kofman")David Rein
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Emmanuel Makinde
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Ethan Rosen
## relevel(factor('Dishonest debater'), "Shlomo Kofman")GPT-4
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jackson Petty
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Jessica Li
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julian Michael
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Julien Dirani
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Max Layden
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Noor Mirza-Rashid
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Reeya Kansra
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Salsabila Mahdi
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sam Jin
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Sean Wang
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Shreeram Modi
## relevel(factor('Dishonest debater'), "Shlomo Kofman")Vishakh Padmakumar
## relevel(factor(Final_Setting), "Human Debate")AI Consultancy
## relevel(factor(Final_Setting), "Human Debate")AI Debate
## relevel(factor(Final_Setting), "Human Debate")Human Consultancy
                                                                           ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 541.37 on 576 degrees of freedom
## Residual deviance: 487.85 on 555 degrees of freedom
## AIC: 531.85
## Number of Fisher Scoring iterations: 16
result <- judgments_online %>%
  group_by(`Dishonest debater`) %>%
  summarize(
    Win_Rate = sum(Final_Accuracy == "FALSE") / n()
  ) %>%
  ungroup() %>%
  arrange(desc(Win_Rate))
result
## # A tibble: 20 x 2
##
      'Dishonest debater' Win_Rate
                             <dbl>
## 1 Shlomo Kofman
                            0.545
```

```
## 2 Salsabila Mahdi
                            0.357
## 3 Jessica Li
                            0.353
## 4 Noor Mirza-Rashid
                            0.333
## 5 Adelle Fernando
                            0.296
## 6 Sean Wang
                            0.28
## 7 Reeya Kansra
                            0.273
## 8 Sam Jin
                            0.25
## 9 Shreeram Modi
                            0.24
## 10 GPT-4
                            0.192
## 11 <NA>
                            0.184
## 12 Anuj Jain
                            0.143
## 13 Julian Michael
                            0.125
## 14 Aliyaah Toussaint
                            0.111
## 15 Ethan Rosen
                            0.0909
## 16 Jackson Petty
                            0.0769
## 17 David Rein
## 18 Julien Dirani
                            0
## 19 Max Layden
## 20 Vishakh Padmakumar
result1 <- judgments_online %>%
  group_by(`Honest debater`) %>%
  summarize(
    Win_Rate = sum(Final_Accuracy == "TRUE") / n()
  ) %>%
  ungroup() %>%
  arrange(desc(Win_Rate))
result1
## # A tibble: 20 x 2
##
      'Honest debater'
                         Win_Rate
##
      <chr>
                            <dbl>
## 1 Julian Michael
## 2 Julien Dirani
                            1
## 3 Noor Mirza-Rashid
## 4 Sean Wang
                            0.96
## 5 Jessica Li
                            0.923
## 6 Salsabila Mahdi
                            0.917
## 7 Adelle Fernando
                            0.905
## 8 Reeya Kansra
                            0.9
```

9 Vishakh Padmakumar

10 Shlomo Kofman

13 Shreeram Modi

17 Jackson Petty

19 Aliyaah Toussaint

20 Emmanuel Makinde

11 Anuj Jain

12 David Rein

14 Ethan Rosen

15 GPT-4

18 Sam Jin

16 <NA>

0.857

0.833

0.8

0.8

0.8

0.786

0.775

0.680

0.667

0.667

0.625

```
# Filter for high win rate debaters
high_win_rate_debaters <- result1 %>%
  filter(Win Rate > 0.90) # Set the threshold for high win rate
# Filter original data for debates with 'Debate' in Final_Setting
filtered_data <- judgments_online %>%
  filter(grepl("Debate", Final_Setting))
# Find cases where high win rate debaters lost
cases_high_win_rate_lost <- filtered_data %>%
  filter(`Honest debater` %in% high_win_rate_debaters$`Honest debater` & Final_Accuracy != "TRUE")
cases_high_win_rate_lost
##
       Participant
                             base_room_name
                                                            Room name
## 146
         Anuj Jain
                             survival-type-
                                                      survival-type-5
## 214 Ethan Rosen the-great-nebraska-sea- the-great-nebraska-sea-0
## 289 Jessica Li
                                        rx-
       Room start time Role Is turn Is over Number of judge continues
## 146
         1681159356736 Judge
                                FALSE
                                         TRUE
                                                                       2
## 214
         1683321454611 Judge
                                FALSE
                                         TRUE
                                                                       2
## 289
         1683298141840 Judge
                                FALSE
                                         TRUE
       Final probability correct Offline judging start time
## 146
                             0.33
                                                          NaN
## 214
                             0.01
                                                          NaN
## 289
                             0.01
                                                          NaN
       Offline judging end time other factual informativeness (comparative).1
## 146
                             NaN <NA>
## 214
                                  <NA>
                                                                               1
                             NaN
## 289
                             NaN
                                  <NA>
       factual informativeness (comparative).2 facts versus semantics (single)
## 146
                                               4
## 214
                                              1
                                                                             NaN
                                              2
## 289
                                                                             NaN
       factual accuracy (single) clarity.1 clarity.2 factual accuracy.1
## 146
                              NaN
                                          3
                                                     3
## 214
                                          2
                                                     2
                              NaN
                                                                      NaN
## 289
                              NaN
                                          4
                                                     1
                                                                      NaN
       factual accuracy.2 judge reasoning
## 146
                      {\tt NaN}
## 214
                                         1
                      NaN
## 289
                      NaN
##
                                                                                            reason for out
## 214 I thought "like" was over-technical compared to what these questions typically ask for. I was wr
## 289
                                    B's last arg was literally 2 sentences, and A's ev was very convinci
       protocol evidence use.1 evidence use.2 evidence in story.1
## 146
           <NA>
                            NaN
                                           NaN
                                                                NaN
## 214
           <NA>
                            NaN
                                           NaN
                                                                NaN
## 289
           <NA>
                            NaN
                                           NaN
       evidence in story.2 other factors judge adaptation (single)
                                     <NA>
## 146
                       NaN
                                                                 NaN
## 214
                       NaN
                                     <NA>
                                                                 NaN
```

```
## 289
                       {\tt NaN}
                                     <NA>
                                                                 NaN
       evidence in debate.1 evidence in debate.2 interface
## 146
                           2
## 214
                           3
                                                2
                                                        <NA>
## 289
                           4
       evidence in debate (single) facts versus semantics.1
## 146
## 214
                                NaN
## 289
                                NaN
##
       facts versus semantics.2 clash.1 clash.2 identity guesses.Judge
## 146
                               3
                                       3
                                               3
                               3
                                                                    <NA>
## 214
                                       4
                                               4
## 289
                               3
                                               2
                                       4
                                                                     <NA>
       identity guesses. Debater A identity guesses. Debater B judge adaptation. 1
## 146
                              <NA>
                                                          <NA>
## 214
                              <NA>
                                                          <NA>
                                                                                 4
## 289
                              <NA>
                                                          <NA>
                                                                                 4
       judge adaptation. 2 subjective correctness evidence use (single)
## 146
                        3
                                                                     NaN
                                              NaN
                         3
## 214
                                              NaN
                                                                     NaN
## 289
                        2
                                              NaN
       factual informativeness (total) judge strategies clarity (single)
## 146
                                      3
                                                     <NA>
## 214
                                                     <NA>
## 289
                                      3
                                                     <NA>
                                                                       NaN
             Debater A
                              Debater B Honest debater Dishonest debater
## 146 Adelle Fernando
                            Ethan Rosen Adelle Fernando
                                                               Ethan Rosen
## 214 Salsabila Mahdi
                              Sean Wang
                                              Sean Wang
                                                           Salsabila Mahdi
          Reeya Kansra Adelle Fernando Adelle Fernando
                                                              Reeya Kansra
       Is single debater Has honest debater Final_Setting
                                                                 Setting
## 146
                   FALSE
                                        TRUE Human Debate Human Debate
## 214
                   FALSE
                                        TRUE Human Debate Human Debate
## 289
                   FALSE
                                        TRUE Human Debate Human Debate
## 146 How did the planet of Niobe compare to others that Earth was exploring?
                                                   How is this article written?
         What were the specialties of the Red and Green Doctors, respectively?
##
       Article ID Speed annotator accuracy bins Untimed annotator context bins
## 146
            51395
## 214
            50893
                                             0.2
                                                                                3
## 289
            60412
                                             0.2
                                                                                3
       Speed annotator accuracy Untimed annotator context Is offline
                      0.1666667
## 146
                                                  2.750000
                                                                 FALSE
## 214
                      0.2000000
                                                  3.333333
                                                                 FALSE
                      0.2000000
                                                  2.800000
##
                  End time Last modified time Final_Accuracy
## 146 2023-04-17 17:12:59 2023-04-28 12:29:25
                                                          FALSE
## 214 2023-05-08 17:14:28 2023-06-22 15:20:58
                                                          FALSE
  289 2023-06-22 15:18:02 2023-06-22 15:18:02
                                                         FALSE
       Human Consultancy Sample AI Consultancy Sample Human Debate Sample
## 146
                           FALSE
                                                 FALSE
                                                                      FALSE
## 214
                          FALSE
                                                 FALSE
                                                                       TRUE
## 289
                          FALSE
                                                 FALSE
                                                                       TRUE
       AI Debate Sample Sample Consultancy Sample initial_question_weights
```

```
## 146
                  FALSE FALSE
                                             FALSE
                                                                  0.5000000
## 214
                  FALSE
                          TRUE
                                              TRUF.
                                                                  0.2000000
## 289
                  FALSE
                          TRUE
                                              TRUE
                                                                  0.3333333
       initial_question_weights_grouped_setting
## 146
## 214
                                             0.5
## 289
##
       sampled_consultancies_all_debates_weights
## 146
                                        0.5000000
## 214
                                        0.2500000
## 289
                                        0.3333333
##
       sampled_consultancies_all_debates_weights_grouped_setting
## 146
## 214
                                                              0.5
## 289
                                                              0.5
       sampled_consultancies_all_debates_weights_setting
## 146
                                                      0.5
## 214
                                                      0.5
## 289
                                                      0.5
       sampled_consultancies_debates_weights_grouped_setting
## 146
## 214
## 289
       sampled_consultancies_debates_weights Final_Accuracy_char fpc fpcw
                                                               NA 0.33 0.165
## 146
                                    0.0000000
## 214
                                    0.3333333
                                                               NA 0.01 0.005
## 289
                                    0.5000000
                                                               NA 0.01 0.005
# Filter for high win rate debaters
high_win_rate_debaters <- result %>%
 filter(Win_Rate > 0.20) # Set the threshold for high win rate
# Filter original data for debates with 'Debate' in Final_Setting
filtered_data <- judgments_online %>%
  filter(grepl("Debate", Final_Setting))
# Find cases where high win rate debaters lost
cases high win rate lost <- filtered data %>%
 filter(`Dishonest debater` %in% high_win_rate_debaters$`Dishonest debater` & Final_Accuracy != "FALSE
cases_high_win_rate_lost
##
              Participant
                                               base_room_name
## 21
          Adelle Fernando
                                                    monopoly-
## 43
          Adelle Fernando
                                             tollivers-orbit-
## 78
        Aliyaah Toussaint
                                                          rx-
## 81
        Aliyaah Toussaint
                                         stranger-from-space-
## 91
        Aliyaah Toussaint
                                the-long-remembered-thunder-
        Aliyaah Toussaint
## 94
                             the-princess-and-the-physicist-
```

the-starsent-knaves-

out-of-the-iron-womb-

the-air-of-castor-oil-

planet-of-dread-

cosmic-yoyo-

99

113

136

140

149

Aliyaah Toussaint

Anuj Jain

Anuj Jain

Anuj Jain

Anuj Jain

```
## 177
               David Rein
                                                      monopoly-
                                      peggy-finds-the-theatre-
## 179
               David Rein
## 185
               David Rein
                                           stalemate-in-space-
## 186
               David Rein
                                          stranger-from-space-
## 191
               David Rein
                                       the-great-nebraska-sea-
## 202
              Ethan Rosen
                                                   cosmic-yoyo-
## 211
              Ethan Rosen
                                          stranger-from-space-
## 215
              Ethan Rosen
                                          the-man-who-was-six-
## 216
               Ethan Rosen
                                            the-monster-maker-
## 219
            Jackson Petty atom-mystery-young-atom-detective-
## 236
            Jackson Petty
                                                      muck-man-
## 240
            Jackson Petty
## 241
            Jackson Petty
                                             silence-isdeadly-
## 254
            Jackson Petty
                              the-princess-and-the-physicist-
## 270
                Jessica Li
                                              doctor-universe-
## 276
                Jessica Li
                                         how-to-make-friends-1
## 290
                Jessica Li
                                             silence-isdeadly-
## 306
                Jessica Li
                              the-princess-and-the-physicist-
## 324
           Julian Michael
                                                     monopoly-
## 331
           Julian Michael
                                          stranger-from-space-
## 332
           Julian Michael
                                                survival-type-
## 338
           Julian Michael
                                            the-monster-maker-
## 342
           Julian Michael
                                  the-spicy-sound-of-success-
## 348
            Julien Dirani
                                          manners-and-customs-
## 356
        Noor Mirza-Rashid
                                              doctor-universe-
## 366
        Noor Mirza-Rashid
                                                        volpla-
## 378
             Reeya Kansra
                                          how-to-make-friends-
## 387
             Reeya Kansra
                                                     muck-man-
## 401
                                            the-monster-maker-
             Reeya Kansra
## 411
          Salsabila Mahdi
                                                   break-a-leg-
## 414
          Salsabila Mahdi
                                                   cosmic-yoyo-
## 421
          Salsabila Mahdi
                                          manners-and-customs-
## 424
          Salsabila Mahdi
                                                      muck-man-
## 425
          Salsabila Mahdi
                                              planet-of-dread-
## 429
          Salsabila Mahdi
                                             silence-isdeadly-
## 431
          Salsabila Mahdi
                                          stranger-from-space-
## 433
          Salsabila Mahdi
                                           the-happy-castaway-
## 436
          Salsabila Mahdi
                                         the-reluctant-heroes-
## 439
          Salsabila Mahdi
                                          the-starsent-knaves-
## 448
                   Sam Jin
                                           coming-of-the-gods-
## 510
                   Sam Jin
                                        venus-is-a-mans-world-
## 533
                 Sean Wang
                                          lost-in-translation-
## 538
                                      peggy-finds-the-theatre-
                 Sean Wang
## 544
                                                survival-type-
                 Sean Wang
## 550
                                                  the-cool-war-
                 Sean Wang
## 561
                 Sean Wang
                                                        volpla-
## 598
            Shlomo Kofman
                                         out-of-the-iron-womb-
## 602
            Shlomo Kofman
                                           pied-piper-of-mars-
## 606
            Shlomo Kofman
                                                            rx-
## 626
            Shlomo Kofman
                                              the-starbusters-
## 637
            Shreeram Modi
                                                   cosmic-yoyo-
## 641
            Shreeram Modi
                                                in-the-garden-
## 647
            Shreeram Modi
                                      peggy-finds-the-theatre-
## 648
            Shreeram Modi
                                     phone-me-in-central-park-
```

```
## 658
            Shreeram Modi
                                          the-man-who-was-six-
## 677 Vishakh Padmakumar
                                           stalemate-in-space-
## 679 Vishakh Padmakumar
                                        the-air-of-castor-oil-
   680 Vishakh Padmakumar
                                    the-desert-and-the-stars-
   683 Vishakh Padmakumar
                                            the-monster-maker-
##
                                  Room name Room start time Role Is turn Is over
## 21
                                               1680552464768 Judge
                                                                      FALSE
                                                                                TRUE
                                 monopoly-1
## 43
                                                                                TRUE
                          tollivers-orbit-1
                                               1681765942714 Judge
                                                                      FALSE
## 78
                                        rx-3
                                               1683298141840 Judge
                                                                      FALSE
                                                                                TRUE
## 81
                      stranger-from-space-0
                                                                                TRUE
                                               1683298716462 Judge
                                                                      FALSE
## 91
             the-long-remembered-thunder-1
                                               1689876270711 Judge
                                                                      FALSE
                                                                                TRUE
## 94
                                                                                TRUE
          the-princess-and-the-physicist-4
                                               1682112300045 Judge
                                                                      FALSE
## 99
                      the-starsent-knaves-2
                                               1688757372245 Judge
                                                                      FALSE
                                                                                TRUE
## 113
                                               1681159027164 Judge
                                                                                TRUE
                              cosmic-yoyo-0
                                                                      FALSE
## 136
                     out-of-the-iron-womb-0
                                               1689876275997 Judge
                                                                      FALSE
                                                                                TRUE
## 140
                          planet-of-dread-2
                                               1680829456935 Judge
                                                                      FALSE
                                                                                TRUE
## 149
                    the-air-of-castor-oil-5
                                                                                TRUE
                                               1680552962919 Judge
                                                                      FALSE
## 177
                                 monopoly-2
                                               1680552464768 Judge
                                                                      FALSE
                                                                                TRUE
## 179
                                                                      FALSE
                                                                                TRUE
                 peggy-finds-the-theatre-4
                                               1682110072206 Judge
## 185
                       stalemate-in-space-0
                                               1677532762430 Judge
                                                                      FALSE
                                                                                TRUE
## 186
                      stranger-from-space-4
                                               1683298716462 Judge
                                                                      FALSE
                                                                                TRUE
## 191
                   the-great-nebraska-sea-1
                                               1683321454611 Judge
                                                                      FALSE
                                                                                TRUE
## 202
                                                                      FALSE
                                                                                TRUE
                              cosmic-yoyo-3
                                               1681159027164 Judge
## 211
                      stranger-from-space-5
                                               1683298716462 Judge
                                                                      FALSE
                                                                                TRUE
## 215
                                                                                TRUE
                      the-man-who-was-six-1
                                               1676313105423 Judge
                                                                      FALSE
## 216
                        the-monster-maker-4
                                               1681159292566 Judge
                                                                      FALSE
                                                                                TRUE
## 219
       atom-mystery-young-atom-detective-0
                                               1689949095893 Judge
                                                                      FALSE
                                                                                TRUE
## 236
                                                                                TRUE
                                 muck-man-5
                                               1687546720669 Judge
                                                                      FALSE
## 240
                                                                                TRUE
                                                                      FALSE
                                        rx-4
                                               1683298141840 Judge
## 241
                                                                                TRUE
                         silence-isdeadly-3
                                               1688157095546 Judge
                                                                      FALSE
## 254
                                                                                TRUE
          the-princess-and-the-physicist-0
                                               1682112300045 Judge
                                                                      FALSE
## 270
                          doctor-universe-0
                                               1680206097221 Judge
                                                                      FALSE
                                                                                TRUE
## 276
                                                                                TRUE
                     how-to-make-friends-11
                                               1681724583153 Judge
                                                                      FALSE
## 290
                                                                                TRUE
                         silence-isdeadly-2
                                               1688157095546 Judge
                                                                      FALSE
## 306
          the-princess-and-the-physicist-2
                                               1682112300045 Judge
                                                                      FALSE
                                                                                TRUE
## 324
                                                                                TRUE
                                 monopoly-0
                                               1680552464768 Judge
                                                                      FALSE
## 331
                      stranger-from-space-1
                                               1683298716462 Judge
                                                                      FALSE
                                                                                TRUE
## 332
                            survival-type-4
                                               1681159356736 Judge
                                                                      FALSE
                                                                                TRUE
## 338
                        the-monster-maker-3
                                               1681159292566 Judge
                                                                      FALSE
                                                                                TRUE
## 342
              the-spicy-sound-of-success-4
                                               1679607458871 Judge
                                                                                TRUE
                                                                      FALSE
## 348
                      manners-and-customs-1
                                               1676043334730 Judge
                                                                                TRUE
                                                                      FALSE
## 356
                          doctor-universe-5
                                               1680206097221 Judge
                                                                      FALSE
                                                                                TRUE
## 366
                                                                                TRUE
                                   volpla-2
                                               1680205817615 Judge
                                                                      FALSE
## 378
                      how-to-make-friends-0
                                                                                TRUE
                                               1681724583153 Judge
                                                                      FALSE
## 387
                                 muck-man-7
                                                                                TRUE
                                               1687546765239 Judge
                                                                      FALSE
## 401
                                                                                TRUE
                        the-monster-maker-1
                                               1681159292566 Judge
                                                                      FALSE
## 411
                                                                                TRUE
                              break-a-leg-5
                                               1682110823449 Judge
                                                                      FALSE
## 414
                              cosmic-yoyo-2
                                                                                TRUE
                                               1681159027164 Judge
                                                                      FALSE
## 421
                      manners-and-customs-0
                                               1676043281654 Judge
                                                                      FALSE
                                                                                TRUE
## 424
                                                                                TRUE
                                 muck-man-4
                                               1687546720669 Judge
                                                                      FALSE
## 425
                          planet-of-dread-1
                                                                      FALSE
                                                                                TRUE
                                               1680829456935 Judge
## 429
                                                                                TRUE
                         silence-isdeadly-6
                                               1688157095546 Judge
                                                                      FALSE
                                                                      FALSE
## 431
                      stranger-from-space-2
                                               1683298716462 Judge
                                                                                TRUE
## 433
                       the-happy-castaway-2
                                               1679606564549 Judge
                                                                      FALSE
                                                                                TRUE
```

```
## 436
                                                                                 TRUE
                     the-reluctant-heroes-2
                                                1682965111772 Judge
                                                                       FALSE
                                                1688757372245 Judge
## 439
                      the-starsent-knaves-0
                                                                       FALSE
                                                                                 TRUE.
## 448
                                                1689020073883 Judge
                       coming-of-the-gods-2
                                                                       FALSE
                                                                                 TRUE
## 510
                    venus-is-a-mans-world-0
                                                                       FALSE
                                                                                 TRUE
                                                1691058680973 Judge
## 533
                      lost-in-translation-3
                                                1678404069200 Judge
                                                                       FALSE
                                                                                 TRUE
## 538
                  peggy-finds-the-theatre-0
                                                1682090000149 Judge
                                                                       FALSE
                                                                                 TRUE
## 544
                            survival-type-0
                                                1681159356736 Judge
                                                                       FALSE
                                                                                 TRUE
                                                1689949097911 Judge
## 550
                             the-cool-war-0
                                                                       FALSE
                                                                                 TRUE
## 561
                                    volpla-3
                                                1680205817615 Judge
                                                                       FALSE
                                                                                 TRUE
## 598
                     out-of-the-iron-womb-1
                                                                                 TRUE
                                                1689876275999 Judge
                                                                       FALSE
                       pied-piper-of-mars-8
                                                1689278492513 Judge
## 602
                                                                       FALSE
                                                                                 TRUE
## 606
                                                                                 TRUE
                                                1683298141840 Judge
                                                                       FALSE
                                        rx-5
## 626
                                                                                 TRUE
                          the-starbusters-3
                                                1689371609880 Judge
                                                                       FALSE
## 637
                                                1681159027164 Judge
                                                                       FALSE
                                                                                 TRUE
                               cosmic-yoyo-1
## 641
                            in-the-garden-6
                                                1680206043370 Judge
                                                                       FALSE
                                                                                 TRUE
## 647
                  peggy-finds-the-theatre-2
                                                1682090000149 Judge
                                                                       FALSE
                                                                                 TRUE
## 648
                 phone-me-in-central-park-5
                                                1678684819928 Judge
                                                                       FALSE
                                                                                 TRUE
## 658
                      the-man-who-was-six-5
                                                1676645924826 Judge
                                                                       FALSE
                                                                                 TRUE
## 677
                       stalemate-in-space-2
                                                1677792427135 Judge
                                                                       FALSE
                                                                                 TRUE
## 679
                    the-air-of-castor-oil-4
                                                1680552962919 Judge
                                                                       FALSE
                                                                                 TRUE
## 680
                 the-desert-and-the-stars-2
                                                1677792315334 Judge
                                                                       FALSE
                                                                                 TRUE
## 683
                        the-monster-maker-5
                                                1681159292566 Judge
                                                                       FALSE
                                                                                 TRUE
##
       Number of judge continues Final probability correct
## 21
                                 4
                                                         0.70
## 43
                                 2
                                                         0.90
## 78
                                 1
                                                         0.99
## 81
                                 4
                                                         0.99
## 91
                                 3
                                                         0.98
## 94
                                                         0.99
                                 4
## 99
                                                         0.85
                                                         0.99
## 113
                                 4
## 136
                                 4
                                                         0.99
## 140
                                 2
                                                         0.99
## 149
                                 3
                                                         0.85
                                 3
## 177
                                                         0.85
## 179
                                 4
                                                         0.90
## 185
                                 2
                                                         0.99
## 186
                                 4
                                                         0.95
                                 3
## 191
                                                         0.95
## 202
                                 2
                                                         0.90
## 211
                                 2
                                                         0.95
                                 2
## 215
                                                         0.80
## 216
                                 2
                                                         0.99
## 219
                                 6
                                                         0.80
## 236
                                 7
                                                         0.99
## 240
                                 3
                                                         0.90
## 241
                                 3
                                                         0.99
## 254
                                 4
                                                         0.95
## 270
                                 2
                                                         0.70
## 276
                                 2
                                                         0.99
## 290
                                 1
                                                         0.99
                                 2
## 306
                                                         0.99
## 324
                                 3
                                                         0.99
## 331
                                 2
                                                         0.99
```

	332				2				0.99
	338				3				0.99
	342				4				0.99
	348				3				0.85
	356				4				0.85
	366				3				0.95
	378				3				0.98
	387				4				0.88
	401				2				0.96
	411				2				0.99
	414				2				0.99
	421				3				0.99
	424				3				0.99
	425				3				0.99
	429				4				0.99
	431				2				0.99
	433				3				0.99
	436				4				0.99
	439				6				0.95
	448				3				0.99
	510				3				0.99
	533				2				0.98
	538				2				0.90
	544				1				0.98
	550				3				0.99
	561				2				0.95
	598				1				0.94
	602				4				0.91
	606				4				0.86
	626				3				0.97
	637				4				0.95
	641				2				0.99
	647				1				0.99
	648				2				0.99
	658				3				0.99
	677				3				0.80
	679				2				0.75
	680				3				0.75
	683	0447:		-4	5	0441 :			0.80
##	01	UIIIIne	juaging	start		UIIIIne	judging	ena	
##					NaN NaN				NaN
##					NaN NaN				NaN
	78 81				NaN NaN				NaN NaN
	91				NaN				NaN
##	91 94								nan NaN
##	94 99				NaN NaN				nan NaN
##	99 113				NaN NaN				NaN NaN
##	136				NaN				NaN NaN
##	140								
##	140				NaN NaN				NaN NaN
##	177				NaN NaN				NaN NaN
##	177				NaN				NaN
##	185				NaN				NaN

##	186	NaN	NaN
##	191	NaN	NaN
##	202	NaN	NaN
##	211	NaN	NaN
##	215	NaN	NaN
##	216	NaN	NaN
##	219	NaN	NaN
##	236	NaN	NaN
##	240	NaN	NaN
##	241	NaN	NaN
##	254	NaN	NaN
##	270	NaN	NaN
##	276	NaN	NaN
##	290	NaN	NaN
##	306	NaN	NaN
##	324	NaN	NaN
##	331	NaN	NaN
##	332	NaN	NaN
##	338	NaN	NaN
##	342	NaN	NaN
##	348		
		NaN NaN	NaN NaN
##	356	NaN Nan	NaN Nan
##	366	NaN	NaN
##	378	NaN	NaN
##	387	NaN	NaN
	401	NaN	NaN
##	411	NaN	NaN
##	414	NaN	NaN
##	421	NaN	NaN
##	424	NaN	NaN
##	425	NaN	NaN
##	429	NaN	NaN
##	431	NaN	NaN
##	433	NaN	NaN
##	436	NaN	NaN
##	439	NaN	NaN
##	448	NaN	NaN
##	510	NaN	NaN
##	533	NaN	NaN
##	538	NaN	NaN
##	544	NaN	NaN
##	550	NaN	NaN
##	561	NaN	NaN
##	598	NaN	NaN
##	602	NaN	NaN
##	606	NaN	NaN
##	626	NaN	NaN
##	637	NaN	NaN
##	641	NaN	NaN
##	647	NaN	NaN
##	648	1682713008576	1682713141741
##	658	NaN	NaN
##	677	NaN	NaN
##	679	NaN	NaN
11 TT	0.0	IA CTIA	II all

	680				NaN				NaN						
	683				NaN				NaN	1					
##	0.4													C	ther
##															<na></na>
##															<na></na>
##	78 01														<na></na>
##															<na></na>
	94														<na></na>
##															<na></na>
	113														<na></na>
	136														<na></na>
	140														<na></na>
##	149														<na></na>
##	177														<na></na>
	179														<na></na>
	185														<na></na>
	186														<na></na>
	191														<na></na>
	202														<na></na>
	211215														<na></na>
	216													1.	nope. <na></na>
	219														<na></na>
	236														<na></na>
	240														<na></na>
##	241														<na></na>
##	254														<na></na>
	270														<na></na>
	276														<na></na>
	290														<na></na>
	306														<na></na>
	324														<na></na>
	331	Mawha T	could	hawa	decided	gooner	AWAN	hu+	firet	round	ie	a lot	t o	ďΩ	<na></na>
	338	maybe i	Coura	nave	decided	sooner,	even.	Dut	IIISU	Toulia	15	a 100	UU	go	<na></na>
	342														<na></na>
	348														<na></na>
	356														<na></na>
##	366														<na></na>
##	378														<na></na>
	387														<na></na>
	401														<na></na>
	411														<na></na>
	414														<na></na>
	421														<na></na>
	424 425														<na></na>
	429														<na></na>
	431														<na></na>
	433														<na></na>
	436														<na></na>
##	439														<na></na>
##	448														<na></na>

##	510		<na></na>
##	533		<na></na>
##	538		<na></na>
##	544		<na></na>
##	550		<na></na>
##	561		<na></na>
##	598		<na></na>
##	602		<na></na>
	606		<na></na>
	626		<na></na>
	637		<na></na>
	641		<na></na>
##	647		<na></na>
	648		<na></na>
	658		<na></na>
	677		<na></na>
	679		<na></na>
	680		<na></na>
	683		<na></na>
##		factual informativeness (comparative).1	
##	21	2	
##		2	
##		3	
##		3	
##		1	
##		4	
##		1	
	113	2	
	136	4	
	140	4	
	149	1	
	177	3	
	179	NaN	
	185	2	
	186	1	
	191	1	
	202	3	
	211	4	
	215	3	
	216	2	
	219	3	
	236	3	
	240	3	
	241	4	
	254	3	
	270	2	
	276	2	
	290	2	
	306	1	
	324	2	
	331	2	
	332	1	
	338	1	
	342	3	
		•	

```
## 348
                                                 4
## 356
                                                 2
## 366
                                                 1
## 378
                                                 4
                                                 3
## 387
                                                 4
## 401
## 411
                                                 3
## 414
                                                 3
## 421
                                                 1
                                                 3
## 424
## 425
                                                 2
## 429
                                                 3
                                                 3
## 431
## 433
                                                 3
## 436
                                                 3
## 439
                                                 3
## 448
                                               NaN
## 510
                                               NaN
## 533
                                                 3
## 538
                                                 4
## 544
                                                 2
                                                 3
## 550
## 561
                                                 3
## 598
                                                 4
                                                 2
## 602
## 606
                                                 2
                                                 2
## 626
## 637
                                                 3
## 641
                                                 3
## 647
                                                 3
## 648
                                                 1
## 658
                                                 2
## 677
                                                 2
## 679
                                                 2
                                                 2
## 680
## 683
                                                 0
       factual informativeness (comparative).2 facts versus semantics (single)
##
## 21
                                                 2
                                                                                  NaN
## 43
                                                 2
                                                                                  NaN
## 78
                                                 4
                                                                                  NaN
                                                 3
## 81
                                                                                  NaN
                                                 3
## 91
                                                                                  NaN
## 94
                                                 2
                                                                                  NaN
## 99
                                                 3
                                                                                  NaN
                                                 2
## 113
                                                                                  NaN
## 136
                                                 3
                                                                                  NaN
## 140
                                                 3
                                                                                  NaN
## 149
                                                 3
                                                                                  NaN
## 177
                                                 3
                                                                                  NaN
## 179
                                               NaN
                                                                                  NaN
## 185
                                                 2
                                                                                  NaN
## 186
                                                 1
                                                                                  {\tt NaN}
## 191
                                                 1
                                                                                  NaN
## 202
                                                 4
                                                                                  NaN
```

ш	011					0			NT - NT
	211					2			NaN
	215					2			NaN
	216					2			NaN
	219					3			NaN
	236					3			NaN
##	240					3			NaN
##	241					4			NaN
##	254					3			NaN
##	270					3			NaN
	276					3			NaN
	290					4			NaN
	306					0			NaN
	324					4			NaN
	331					3			NaN
	332					4			NaN
	338					4			NaN
	342								
						4			NaN
	348					4			NaN
	356					1			NaN
	366					2			NaN
	378					4			NaN
	387					4			NaN
	401					4			NaN
	411					3			NaN
##	414					3			NaN
##	421					3			NaN
##	424					3			NaN
##	425					2			NaN
##	429					2			NaN
	431					3			NaN
	433					3			NaN
	436					3			NaN
	439					3			NaN
	448					NaN			NaN
	510					NaN			NaN
	533					2			NaN
	538					4			
									NaN NaN
	544					2			
	550					3			NaN
	561					3			NaN
	598					2			NaN
	602					2			NaN
	606					3			NaN
	626					4			NaN
	637					3			NaN
	641					1			NaN
##	647					3			NaN
##	648					3			NaN
##	658					3			NaN
	677					2			NaN
	679					2			NaN
	680					1			NaN
	683					3			NaN
##	200	factual	accuracy	(single)	clarity 1		factual	accuracy.1	11.011
ir m'		Lacoual	accuracy	(5111510)	514110y.1	01u110y.2	Lactual	accuracy.1	

##		NaN	1	1	NaN
##	43	NaN	2	3	NaN
##	78	NaN	3	4	NaN
##	81	NaN	3	3	NaN
##	91	NaN	1	3	NaN
##	94	NaN	2	4	NaN
##	99	NaN	1	3	NaN
##	113	NaN	2	2	NaN
##	136	NaN	4	3	NaN
##	140	NaN	3	3	NaN
##	149	NaN	1	2	NaN
##	177	NaN	2	2	NaN
##	179	NaN	NaN	NaN	NaN
##	185	NaN	3	4	NaN
##	186	NaN	3	3	NaN
##	191	NaN	2	2	NaN
##	202	NaN	4	4	NaN
##	211	NaN	4	1	NaN
	215	NaN	4	4	NaN
##	216	NaN	4	4	NaN
##	219	NaN	3	3	NaN
##	236	NaN	2	3	NaN
##	240	NaN	3	3	NaN
##	241	NaN	4	4	NaN
##	254	NaN	3	2	NaN
##	270	NaN	4	4	NaN
##	276	NaN	3	4	NaN
##	290	NaN	3	4	NaN
##	306	NaN	1	0	NaN
##	324	NaN	0	3	NaN
##	331	NaN	3	4	NaN
##	332	NaN	3	4	NaN
##	338	NaN	1	4	NaN
##	342	NaN	1	2	NaN
##	348	NaN	4	4	NaN
##	356	NaN	1	1	NaN
##	366	NaN	2	2	NaN
##	378	NaN	4	4	NaN
##	387	NaN	4	4	NaN
##	401	NaN	4	4	NaN
##	411	NaN	3	3	NaN
##	414	NaN	3	3	NaN
##	421	NaN	2	3	NaN
##	424	NaN	3	3	NaN
##	425	NaN	3	3	NaN
##	429	NaN	3	3	NaN
##	431	NaN	3	3	NaN
##	433	NaN	3	3	NaN
##	436	NaN	3	3	NaN
##	439	NaN	3	3	NaN
##	448	NaN	NaN	NaN	NaN
	510	NaN	NaN	NaN	NaN
	533	NaN	2	3	NaN
	538	NaN	4	4	NaN

##	544		NaN	4	1 4]	NaN
##	550		NaN	4	1 4	1	NaN
##	561		NaN	3	3]	NaN
##	598		NaN	:	L 4]	NaN
##	602		NaN	3	3 2]	NaN
##	606		NaN	2	2 3]	NaN
##	626		NaN	-	1 4	1	NaN
##	637		NaN		2 2	1	NaN
##	641		NaN	2	2 1	1	NaN
##	647		NaN	3	3]	NaN
##	648		NaN	4	2 3	1	NaN
##	658		NaN	2	2 2]	NaN
##	677		NaN	3	3 2	1	NaN
##	679		NaN	3	3 2	1	NaN
##	680		NaN	3	3 1		NaN
##	683		NaN	(NaN
##		factual accuracy.2		reasoning			
##	21	NaN	3 0	3			
##		NaN		3			
##		NaN		4			
##		NaN		3			
##		NaN		4			
##		NaN		4			
##		NaN		4			
	113	NaN		2			
	136	NaN		4			
	140	NaN		4			
	149	NaN		4			
	177	NaN		3			
	179	NaN		NaN			
	185	NaN		4			
	186	NaN		4			
	191	NaN		4			
	202	NaN		4			
	211	NaN		4			
	215	NaN		4			
	216	NaN		4			
	219	NaN		3			
	236	NaN		4			
	240	NaN		4			
	241	NaN		4			
	254	NaN		3			
	270	NaN		4			
	276	NaN		4			
	290	NaN		4			
	306	NaN		4			
	324	NaN		4			
	331	NaN		4			
	332	NaN		4			
	338	NaN		4			
	342	NaN		4			
	348	NaN		4			
	356	NaN		4			
	366	NaN		3			
##	500	Man		3			

## 378	NaN	4
## 387	NaN	4
## 401	NaN	4
## 411	NaN	3
## 414	NaN	3
## 421	NaN	NaN
## 424	NaN	3
## 425	NaN	3
## 429	NaN	3
## 431	NaN	3
## 433	NaN	3
## 436	NaN	4
## 439	NaN	3
## 448	NaN	NaN
## 510	NaN	NaN
## 533	NaN	3
## 538	NaN	4
## 544	NaN	4
## 550	NaN	4
## 561	NaN	4
## 598	NaN	4
## 602	NaN	3
## 606	NaN	4
## 626	NaN	4
## 637	NaN	3
## 641	NaN	3
## 647	NaN	3
## 648 ## 658	NaN NaN	3 2
## 658 ## 677	NaN NaN	3
## 679	NaN	2
## 680	NaN	4
## 683	NaN	3
## 003	Ivaiv	3
## 21		
## 43		
## 78		
## 81		
## 91		
## 94		
## 99		
## 113		
## 136		
## 140		
## 149		
## 177		
## 179		
## 185		
## 186		
## 191		
## 202		
## 211		
## 215		

216

```
## 219
## 236
## 240
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
## 356
## 366
## 378
                                     I think I continued the debate for an extra round just to see if any
## 387
## 401
                                                                                          Accidentally voted
## 411
## 414
## 421
## 424
## 425
## 429
## 431
## 433
## 436
## 439
## 448
## 510
## 533
## 538
## 544
## 550
## 561
## 598
## 602
## 606
## 626
## 637
## 641
## 647
## 648
## 658
## 677
## 679
## 683 I think the factor which convinces me is that the evidence presented seems compelling that the m
##
       protocol evidence use.1 evidence use.2 evidence in story.1
## 21
            <NA>
                             {\tt NaN}
                                             {\tt NaN}
## 43
            <NA>
                             NaN
                                             NaN
                                                                  NaN
## 78
            <NA>
                             NaN
                                             \mathtt{NaN}
                                                                  NaN
```

##	81	<na></na>	NaN	NaN	NaN
##	91	<na></na>	NaN	NaN	NaN
##	94	<na></na>	NaN	NaN	NaN
##	99	<na></na>	NaN	NaN	NaN
##	113	<na></na>	NaN	NaN	NaN
##	136	<na></na>	NaN	NaN	NaN
##	140	<na></na>	NaN	NaN	NaN
##	149	<na></na>	NaN	NaN	NaN
##	177	<na></na>	NaN	NaN	NaN
##	179	<na></na>	NaN	NaN	NaN
##	185	<na></na>	NaN	NaN	NaN
##	186	<na></na>	NaN	NaN	NaN
##	191	<na></na>	NaN	NaN	NaN
##	202	<na></na>	NaN	NaN	NaN
##	211	<na></na>	NaN	NaN	NaN
##	215	nope.	NaN	NaN	NaN
##	216	<na></na>	NaN	NaN	NaN
##	219	<na></na>	NaN	NaN	NaN
##	236	<na></na>	NaN	NaN	NaN
##	240	<na></na>	NaN	NaN	NaN
##	241	<na></na>	NaN	NaN	NaN
##	254	<na></na>	NaN	NaN	NaN
##	270	<na></na>	NaN	NaN	NaN
##	276	<na></na>	NaN	NaN	NaN
##	290	<na></na>	NaN	NaN	NaN
##	306	<na></na>	NaN	NaN	NaN
##	324	<na></na>	NaN	NaN	NaN
##	331	<na></na>	NaN	NaN	NaN
##	332	<na></na>	NaN	NaN	NaN
##	338	<na></na>	NaN	NaN	NaN
##	342	<na></na>	NaN	NaN	NaN
##	348	<na></na>	NaN	NaN	NaN
##	356	<na></na>	NaN	NaN	NaN
##	366	<na></na>	NaN	NaN	NaN
##	378	<na></na>	NaN	NaN	NaN
##	387	<na></na>	NaN	NaN	NaN
	401	<na></na>	NaN	NaN	NaN
	411	<na></na>	NaN	NaN	NaN
	414	<na></na>	NaN	NaN	NaN Nan
	421	<na></na>	NaN	NaN	NaN Nan
	424	<na></na>	NaN	NaN	NaN
	425	<na></na>	NaN	NaN NaN	NaN
	429	<na></na>	NaN	NaN	NaN
	431	<na></na>	NaN	NaN NaN	NaN NaN
	433	<na></na>	NaN	NaN	NaN NaN
	436 439	<na></na>	NaN NaN	NaN NaN	NaN NaN
	439 448	<na></na>	NaN NaN	NaN NaN	NaN NaN
		<na></na>	NaN NaN	NaN NaN	NaN NaN
	510	<na></na>	NaN	NaN NaN	NaN NaN
	533	<na></na>	NaN	NaN NaN	NaN NaN
	538	<na></na>	NaN NaN	NaN NaN	NaN NaN
	544 550	<na></na>	NaN NaN	NaN NaN	NaN NaN
	561	<na></na>	NaN NaN	NaN NaN	NaN
##	501	<na></na>	NaN	NaN	IValV

шш	F00	<117.4.5		NT - NT	NI - NI	NT - NT
	598 602	<na></na>		NaN NaN	NaN NaN	NaN NaN
	606					
		<na></na>		NaN	NaN	NaN
	626	<na></na>		NaN NaN	NaN NaN	NaN
	637			NaN NaN	NaN NaN	NaN
	641	<na></na>		NaN NaN	NaN NaN	NaN
	647	<na></na>		NaN N-N	NaN NaN	NaN N-N
	648	<na></na>		NaN N-N	NaN NaN	NaN N-N
	658	<na></na>		NaN	NaN	NaN
	677	<na></na>		NaN N-N	NaN NaN	NaN
	679	<na></na>		NaN NaN	NaN NaN	NaN
	680	<na></na>		NaN NaN	NaN NaN	NaN
	683	<na></na>	in atom: 0	NaN	NaN	NaN
##	01	evidence	in story.2			
	21		NaN NaN			
	43		NaN NaN			
	78		NaN NaN			
	81		NaN			
##	91 94		NaN NaN			
	94 99		NaN NaN			
	113		NaN NaN			
	136		NaN NaN			
	140		NaN NaN			
			NaN NaN			
	149		NaN NaN			
	177 179		NaN NaN			
	185		NaN			
	186		NaN			
	191		NaN			
	202		NaN			
	211		NaN			
	215		NaN			
	216		NaN			
	219		NaN			
	236		NaN			
	240		NaN			
	241		NaN			
	254		NaN			
	270		NaN			
	276		NaN			
	290		NaN			
	306		NaN			
	324		NaN			
	331		NaN			
	332		NaN			
	338		NaN			
	342		NaN			
	348		NaN			
	356		NaN			
	366		NaN			
	378		NaN			
	387		NaN			
	401		NaN			
ii TT	101		Ivalv			

##	411	NaN
##	414	${\tt NaN}$
##	421	${\tt NaN}$
##	424	${\tt NaN}$
##	425	${\tt NaN}$
##	429	${\tt NaN}$
##	431	${\tt NaN}$
##	433	${\tt NaN}$
	436	NaN
##	439	NaN
##	448	NaN
##	510	NaN
##	533	NaN
##	538	NaN
##	544	NaN
##	550	${\tt NaN}$
##	561	${\tt NaN}$
##	598	${\tt NaN}$
##	602	NaN
##	606	NaN
##	626	NaN
##	637	NaN
##	641	NaN
##	647	NaN
##	648	NaN
##	658	${\tt NaN}$
##	677	NaN
##	679	NaN
##	680	NaN
##	683	NaN
##		
##	21	
##	43	
##	78	
##	81	
##	91	
##	94	
##	99	
##		
	113	
##	113 136	
	113 136 140	
##	113 136 140 149	
## ##	113 136 140 149 177	
## ## ## ##	113 136 140 149 177 179	
## ## ## ## ##	113 136 140 149 177 179 185	
## ## ## ## ##	113 136 140 149 177 179 185 186	
## ## ## ## ## ##	113 136 140 149 177 179 185 186 191	
## ## ## ## ## ##	113 136 140 149 177 179 185 186 191	
## ## ## ## ## ##	113 136 140 149 177 179 185 186 191 202 211	
## ## ## ## ## ## ##	113 136 140 149 177 179 185 186 191 202 211	
## ## ## ## ## ## ##	113 136 140 149 177 179 185 186 191 202 211 215 216	
## ## ## ## ## ## ##	113 136 140 149 177 179 185 186 191 202 211	

240

```
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
## 356
## 366
## 378
## 387
## 401
## 411
## 414
## 421
## 424
## 425
## 429
## 431
## 433
## 436
## 439
## 448
## 510
## 533
## 538
## 544
## 550
## 561
## 598
## 602
## 606
## 626
## 637
## 641
## 647
## 648
## 658
## 679 I definitely dropped the ball here and got back to judging the debate after a few weeks. I think
## 680
                                                        I sensed towards the end that the dishonest debate
## 683
##
       judge adaptation (single) evidence in debate.1 evidence in debate.2
## 21
                                                                              2
                              NaN
                                                       2
## 43
                               NaN
                                                       2
                                                                             3
## 78
                                                                             4
                              {\tt NaN}
                                                       1
                                                                             3
## 81
                              {\tt NaN}
                                                       3
                                                                             3
## 91
                              NaN
                                                       2
## 94
                                                                             3
                              NaN
                                                       1
```

##	99	NaN	1	4
	113	NaN	2	2
	136	NaN	4	3
	140	NaN	4	3
	149	NaN	2	3
	177	NaN	3	2
	179	NaN	NaN	NaN
##	185	NaN	0	3
##	186	NaN	3	2
##	191	NaN	2	3
	202	NaN	3	4
	211	NaN	4	0
##	215	NaN	4	1
	216	NaN	0	4
	219	NaN	3	2
	236	NaN	2	4
	240	NaN	4	2
	241	NaN	2	4
	254	NaN	3	2
	270	NaN	2	4
	276	NaN	2	4
	290	NaN	2	4
	306	NaN	2	0
	324	NaN	0	3
	331	NaN	1	4
	332	NaN	0	3
	338	NaN N-N	0	3
	342	NaN N-N	3	4
	348	NaN	2	4
	356 366	NaN	2	1 3
	378	NaN NaN	4	4
	387	NaN	2	4
	401	NaN	4	4
	411	NaN	3	3
	414	NaN	3	2
	421	NaN	1	3
	424	NaN	2	3
	425	NaN	3	3
	429	NaN	3	3
	431	NaN	4	3
	433	NaN	3	2
	436	NaN	3	3
	439	NaN	2	3
	448	NaN	NaN	NaN
##	510	NaN	NaN	NaN
	533	NaN	3	1
	538	NaN	1	4
##	544	NaN	0	3
##	550	NaN	4	3
##	561	NaN	2	4
##	598	NaN	4	2
	602	NaN	2	2
##	606	NaN	1	4

	626	NaN		1	4
	637	NaN		2	2
##	641	NaN		3	1
##	647	NaN		1	3
##	648	NaN		2	4
##	658	NaN		2	2
##	677	NaN		4	1
##	679	NaN		3	1
	680	NaN		3	1
	683	NaN		4	2
##					interface
##	21				<na></na>
##					<na></na>
##					<na></na>
##					<na></na>
##					<na></na>
##					<na></na>
##					<na></na>
	113				<na></na>
	136				<na></na>
	140				<na></na>
	149				<na></na>
	177				<na></na>
	179			1 1 . 7	<na></na>
		accidentally	entered the	probabilities	
	186				<na></na>
	191				<na></na>
	202				<na></na>
	211				<na></na>
	215			The interface	_
	216				<na></na>
	219				<na></na>
	236				<na></na>
	240				<na></na>
	241				<na></na>
	254				<na></na>
##	270				<na></na>
##	276				<na></na>
	290				<na></na>
##	306				<na></na>
##	324				<na></na>
##	331				<na></na>
##	332				<na></na>
##	338				<na></na>
##	342				<na></na>
##	348				<na></na>
##	356				<na></na>
	366				<na></na>
	378				<na></na>
	387				<na></na>
	401				<na></na>
	411				<na></na>
	414				<na></na>
	421				<na></na>
					211117

```
## 424
                                                                             <NA>
## 425
                                                                             <NA>
## 429
                                                                             <NA>
## 431
                                                                             <NA>
## 433
                                                                             <NA>
## 436
                                                                             <NA>
## 439
                                                                             <NA>
## 448
                                                                             <NA>
## 510
                                                                             <NA>
## 533
                                                                             <NA>
## 538
                                                                             <NA>
## 544
                                                                             <NA>
## 550
                                                                             <NA>
## 561
                                                                             <NA>
## 598
                                                                             <NA>
## 602
                                                                             <NA>
## 606
                                                                             <NA>
## 626
                                                                             <NA>
## 637
                                                                             <NA>
## 641
                                                                             <NA>
## 647
                                                                             <NA>
## 648
                                                                             <NA>
                                                                             <NA>
## 658
## 677 Quote limits seemed to hamper both debaters? Unclear if they agree
## 679
                                                                             <NA>
## 680
                                                                             <NA>
## 683
                                                                             <NA>
##
       evidence in debate (single) facts versus semantics.1
## 21
                                                                 3
                                  NaN
## 43
                                  NaN
                                                                 3
## 78
                                                                 2
                                  NaN
## 81
                                  NaN
                                                                 1
## 91
                                  NaN
                                                                 3
## 94
                                                                 2
                                  {\tt NaN}
                                                                 2
## 99
                                  NaN
## 113
                                                                 2
                                  NaN
## 136
                                  NaN
                                                                 4
## 140
                                  {\tt NaN}
                                                                 1
## 149
                                                                 3
                                  NaN
## 177
                                  {\tt NaN}
                                                                 1
## 179
                                  NaN
                                                              NaN
## 185
                                                                 2
                                  NaN
## 186
                                  NaN
                                                                 2
## 191
                                  NaN
                                                                 3
## 202
                                  NaN
                                                                 0
## 211
                                                                 0
                                  NaN
## 215
                                  NaN
                                                                 0
## 216
                                  NaN
                                                                 0
## 219
                                                                 2
                                  NaN
## 236
                                  NaN
                                                                 1
## 240
                                  NaN
                                                                 1
## 241
                                  {\tt NaN}
                                                                 0
## 254
                                  NaN
                                                                 1
## 270
                                  NaN
                                                                 2
```

##	276				NaN				2	
##	290				NaN				3	
##	306				NaN				4	
	324				NaN				0	
	331				NaN				0	
	332				NaN				0	
	338				NaN				0	
	342				NaN				0	
	348				NaN				3	
##	356				NaN				1	
##	366				NaN				2	
##	378				NaN				3	
	387				NaN				4	
	401				NaN				1	
	411				NaN				3	
	414									
					NaN N-N				1	
	421				NaN				1	
	424				NaN				1	
	425				NaN				2	
	429				NaN				1	
##	431				NaN				1	
##	433				NaN				1	
##	436				NaN				2	
##	439				NaN				2	
##	448				NaN			N	IaN	
	510				NaN				IaN	
	533				NaN				2	
	538				NaN				3	
	544				NaN				3	
	550								2	
					NaN N-N					
	561				NaN				2	
	598				NaN				2	
	602				NaN				2	
	606				NaN				2	
	626				NaN				0	
##	637				NaN				1	
##	641				NaN				1	
##	647				NaN				3	
##	648				NaN				2	
##	658				NaN				3	
	677				NaN				1	
	679				NaN				2	
	680				NaN				2	
	683				NaN				1	
	003	foota	********	aamantiaa		1	alaah O	idon+i+		Tandono
##	0.4	Tacts	versus	semantics.				identity	guesses	_
##					3	1	2			<na></na>
	43				2	2	2			<na></na>
	78				1	1	4			<na></na>
##					1	3	3			<na></na>
##	91				1	0	3			<na></na>
##	94				1	1	4			<na></na>
##	99				3	1	3			<na></na>
##	113				2	2	2			<na></na>
	136				3	4	3			<na></na>
						_	•			

	140	3	3	2	<na></na>
	149	1	2	2	<na></na>
	177	3	2	2	<na></na>
	179	NaN	NaN	NaN	<na></na>
	185	1	2	3	<na></na>
	186	1	4	2	<na></na>
	191	3	3	3	<na></na>
	202 211	0	3	4 1	<na></na>
	215	4 1	4 3	2	<na></na>
	216	0	0	4	<na></na>
	219	2	3	2	<na></na>
	236	1	3	3	<na></na>
	240	1	4	3	<na></na>
	241	0	3	4	<na></na>
	254	3	3	2	<na></na>
	270	0	2	2	<na></na>
	276	0	2	4	<na></na>
	290	0	1	2	<na></na>
	306	3	1	0	<na></na>
##	324	0	1	4	<na></na>
##	331	0	1	4	<na></na>
##	332	0	0	4	<na></na>
##	338	0	0	4	<na></na>
##	342	0	2	4	<na></na>
	348	1	4	4	<na></na>
	356	2	1	1	<na></na>
	366	1	2	3	<na></na>
	378	0	4	4	<na></na>
	387	4	4	4	<na></na>
	401	0	4	4	<na></na>
	411	2	3	3	<na></na>
	414	2	3	3	<na></na>
	421	1	2	3	<na></na>
	424	1	3	3	<na></na>
	425	2	3	3	<na></na>
	429	1	3	2	<na></na>
	431 433	2 1	3 3	2 3	<na> <na></na></na>
	436	2	3	3	<na></na>
	439	1	2	2	<na></na>
	448	NaN	NaN	NaN	<na></na>
	510	NaN	NaN	NaN	<na></na>
	533	1	3	3	<na></na>
	538	3	4	2	<na></na>
	544	0	0	0	<na></na>
	550	1	4	2	<na></na>
	561	0	4	4	<na></na>
	598	1	2	2	<na></na>
	602	2	3	3	<na></na>
	606	2	3	2	<na></na>
	626	0	0	4	<na></na>
##	637	3	3	3	<na></na>
##	641	3	2	0	<na></na>

```
## 647
                                 2
                                           2
                                                    3
                                                                          <NA>
                                                    4
                                                                          <NA>
## 648
                                 1
                                           2
## 658
                                 3
                                                    3
                                                                          <NA>
                                           1
## 677
                                 3
                                           4
                                                    2
                                                                          <NA>
                                 3
                                                    2
## 679
                                           3
                                                                           <NA>
## 680
                                 3
                                           4
                                                    2
                                                                          <NA>
## 683
                                 3
                                           1
                                                    3
                                                                          <NA>
##
       identity guesses.Debater A identity guesses.Debater B judge adaptation.1
## 21
                                <NA>
                                                               <NA>
## 43
                                <NA>
                                                               <NA>
                                                                                        2
## 78
                                <NA>
                                                               <NA>
                                                                                        2
## 81
                                <NA>
                                                               <NA>
                                                                                        3
## 91
                                <NA>
                                                               <NA>
                                                                                        2
## 94
                                <NA>
                                                               <NA>
                                                                                        1
## 99
                                <NA>
                                                               <NA>
                                                                                        0
                                                                                        2
## 113
                                <NA>
                                                               <NA>
## 136
                                <NA>
                                                               <NA>
                                                                                        4
## 140
                                                                                        3
                                <NA>
                                                               <NA>
## 149
                   Emmanuel Makinde
                                                               <NA>
                                                                                        1
## 177
                                <NA>
                                                               <NA>
                                                                                        1
## 179
                                <NA>
                                                               <NA>
                                                                                     NaN
## 185
                                <NA>
                                                               <NA>
                                                                                        2
## 186
                                <NA>
                                                               <NA>
                                                                                        2
## 191
                                <NA>
                                                               <NA>
                                                                                        4
## 202
                                <NA>
                                                                                        2
                                                               <NA>
## 211
                                <NA>
                                                               <NA>
                                                                                        4
## 215
                                <NA>
                                                               <NA>
                                                                                        4
## 216
                                <NA>
                                                               <NA>
                                                                                        2
                                                                                        3
## 219
                                <NA>
                                                               <NA>
## 236
                                <NA>
                                                               <NA>
                                                                                        3
## 240
                                <NA>
                                                               <NA>
                                                                                        4
## 241
                                <NA>
                                                               <NA>
                                                                                        2
## 254
                                <NA>
                                                               <NA>
                                                                                        3
                                                                                        3
## 270
                                <NA>
                                                               <NA>
                                                                                        2
## 276
                                <NA>
                                                               <NA>
                                                                                        2
## 290
                                <NA>
                                                               <NA>
## 306
                                <NA>
                                                               <NA>
                                                                                        1
## 324
                       Reeya Kansra
                                                         Sean Wang
                                                                                        2
## 331
                       Reeya Kansra
                                                         Sean Wang
                                                                                        0
## 332
                                                               <NA>
                                                                                        4
                                <NA>
## 338
                                <NA>
                                                               <NA>
                                                                                        0
## 342
                                <NA>
                                                                                        2
                                                               <NA>
## 348
                                <NA>
                                                               <NA>
                                                                                        3
## 356
                                <NA>
                                                               <NA>
                                                                                        2
## 366
                                <NA>
                                                               <NA>
                                                                                        3
                                                   Adelle Fernando
## 378
                          Jessica Li
                                                                                        4
## 387
                      Julien Dirani
                                                       Ethan Rosen
                                                                                        4
## 401
                   Emmanuel Makinde
                                                   Adelle Fernando
                                                                                        4
                                                                                        3
## 411
                                <NA>
                                                               <NA>
                                                                                        2
## 414
                                <NA>
                                                               <NA>
                                                                                        3
## 421
                                <NA>
                                                               <NA>
## 424
                                                                                        3
                      Shlomo Kofman
                                                           Sam Jin
## 425
                          Jessica Li
                                                                                        3
                                                         Anuj Jain
## 429
                          Jessica Li
                                                    Shreeram Modi
                                                                                        3
```

	404	-11	A	2
	431	<n< th=""><th></th><th></th></n<>		
	433	<n< th=""><th></th><th></th></n<>		
	436	<n< th=""><th></th><th></th></n<>		
	439	Sean Wa	· ·	
	448	<n< th=""><th></th><th></th></n<>		
	510	<n< th=""><th></th><th></th></n<>		
	533	<n< th=""><th></th><th></th></n<>		
	538	<n< th=""><th></th><th></th></n<>		
	544	<n< th=""><th></th><th></th></n<>		
	550	<n< th=""><th></th><th></th></n<>		
	561	<n< th=""><th></th><th></th></n<>		
	598	<n< th=""><th></th><th></th></n<>		
	602	<n< th=""><th></th><th></th></n<>		
	606	<n< th=""><th></th><th></th></n<>		
	626	<n< th=""><th></th><th></th></n<>		
	637	<n< th=""><th></th><th></th></n<>		
	641	<n< th=""><th></th><th></th></n<>		
	647	<n< th=""><th></th><th></th></n<>		
	648	<n< th=""><th></th><th></th></n<>		
	658	<n< th=""><th></th><th></th></n<>		
	677	<n< th=""><th></th><th></th></n<>		
	679	<n< th=""><th></th><th></th></n<>		
	680	<n< th=""><th></th><th></th></n<>		
	683	<n< th=""><th></th><th></th></n<>		
##	0.1		ctive correctness evidence us	_
##		1 3	NaN NaN	NaN
##	43 78	4	NaN NaN	NaN NaN
##		3	nan NaN	NaN
##		3	NaN	NaN
	94	4	NaN	NaN
##		4	NaN	NaN
	113	2	NaN	NaN
	136	3	NaN	NaN
	140	2	NaN	NaN
	149	2	NaN	NaN
	177	1	NaN	NaN
	179	NaN	NaN	NaN
	185	2	NaN	NaN
	186	2	NaN	NaN
	191	4	NaN	NaN
	202	4	NaN	NaN
	211	1	NaN	NaN
	215	4	NaN	NaN
	216	4	NaN	NaN
	219	2	NaN	NaN
	236	4	NaN	NaN
	240	2	NaN	NaN
	241	4	NaN	NaN
	254	1	NaN	NaN
	270	4	NaN	NaN
	276	4	NaN	NaN
	290	2	NaN	NaN
	306	0	NaN	NaN

##	324	4		NaN	NaN
##	331	4		NaN	NaN
	332	4		NaN	NaN
	338	4		NaN	NaN
	342	3		NaN	NaN
	348	3		NaN	NaN
##	356	2		NaN	NaN
	366	3		NaN	NaN
	378	4		NaN	NaN
	387	4		NaN	NaN
	401	4		NaN	NaN
	411	3		NaN	NaN
	414	3		NaN	NaN
	421	4		NaN	NaN
	424	3		NaN	NaN
	425	3		NaN	NaN
	429	2		NaN	NaN
	431	3		NaN	NaN
	433	2		NaN	NaN
	436	3		NaN	NaN
	439	3		NaN	NaN
	448	NaN		NaN	NaN
	510	NaN		NaN	NaN
	533	3		NaN	NaN
	538	4		NaN	NaN
	544	2		NaN	NaN
	550	3		NaN	NaN
	561	3		NaN	NaN
	598	2		NaN	NaN
##	602	3		NaN	NaN
##	606	3		NaN	NaN
##	626	4		NaN	NaN
##	637	3		NaN NaN	NaN N-N
##	641	1		NaN NaN	NaN N-N
	647 648	2 4		NaN NaN	NaN
	658	3			NaN NaN
	677	1		NaN NaN	NaN NaN
	679	0		NaN	NaN NaN
	680	2		NaN	NaN NaN
	683	3		NaN	NaN
##	003	factual informativeness	(+o+al)	IValv	Ivaiv
##	21	ractual informativeness	1		
##			2		
##			3		
##			3		
##			3		
##			3		
##			3		
	113		2		
	136		4		
	140		3		
	149		3		
	177		1		

##	179	NaN
##	185	1
##	186	1
##	191	1
##	202	4
##	211	3
##	215	2
##	216	0
##	219	3
##	236	4
##	240	4
##	241	4
##	254	3
##	270	3
##	276	4
##	290	3
##	306	0
##	324	4
##	331	3
##	332	4
##	338	3
##	342	3
##	348	3
##	356	2
##	366	2
##	378	4
##	387	4
##	401	4
##	411	3
##	414	3
##	421	3
##	424	3
##	425	3
##	429	3
##	431	3
##	433	3
##	436	4
##	439	3
##	448	NaN
##	510	NaN
##	533	3
##	538	4
##	544	0
##	550	3
##	561	4
##	598	4
##	602	3
##	606	3
##	626	4
##	637	3
##	641	2
##	647	3
##	648	3
##	658	3

```
## 677
                                      1
## 679
                                      2
                                      3
## 680
## 683
                                      3
## 21
## 43
## 78
## 81
## 91
## 94
## 99
## 113
## 136
## 140
## 149
## 177
## 179
## 185
                          I said this to debater A: Are there any other resources mentioned, or context
## 186
## 191
## 202
## 211
## 215
## 216
## 219
## 236
## 240
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
## 356
## 366
## 378
## 387
## 401
## 411
## 414
## 421
## 424
## 425
## 429
## 431
## 433
## 436
```

```
## 439
## 448
## 510
## 533
## 538
## 544
## 550
## 561
## 598
## 602
## 606
## 626
## 637
## 641
## 647
  658 Yes. I indicated particular pieces of evidence that both were missing and that would help me gre
## 679
## 680
##
   683
##
                                   Debater A
                                                        Debater B
                                                                       Honest debater
       clarity (single)
                                 Ethan Rosen
## 21
                                                                          Ethan Rosen
                     NaN
                                                        Sean Wang
##
  43
                                                     Ethan Rosen
                                                                          Ethan Rosen
                     NaN
                                  Jessica Li
## 78
                     NaN
                                Reeya Kansra
                                                  Julian Michael
                                                                       Julian Michael
## 81
                     NaN
                               Shreeram Modi
                                                        Sean Wang
                                                                        Shreeram Modi
## 91
                     NaN
                               Shlomo Kofman
                                                        Sean Wang
                                                                            Sean Wang
  94
##
                     NaN
                                   Sean Wang
                                                        Anuj Jain
                                                                            Anuj Jain
## 99
                     NaN
                             Adelle Fernando
                                                   Shreeram Modi
                                                                        Shreeram Modi
## 113
                     NaN
                          Noor Mirza-Rashid
                                                        Sean Wang
                                                                    Noor Mirza-Rashid
## 136
                     NaN
                               Shreeram Modi
                                                 Adelle Fernando
                                                                        Shreeram Modi
## 140
                     NaN
                                Reeya Kansra
                                                       Jessica Li
                                                                         Reeya Kansra
## 149
                     NaN
                             Salsabila Mahdi
                                                       Jessica Li
                                                                           Jessica Li
## 177
                     NaN
                                 Ethan Rosen
                                                                          Ethan Rosen
                                                     Reeya Kansra
## 179
                     NaN
                                Reeya Kansra
                                                   Jackson Petty
                                                                        Jackson Petty
## 185
                     NaN
                               Shreeram Modi
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 186
                     NaN
                               Shreeram Modi
                                                 Adelle Fernando
                                                                        Shreeram Modi
## 191
                     NaN
                                   Sean Wang
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
## 202
                     NaN
                             Adelle Fernando
                                                        Sean Wang
                                                                            Sean Wang
## 211
                     NaN
                                   Sean Wang
                                                   Shreeram Modi
                                                                            Sean Wang
## 215
                                  David Rein
                                                                           David Rein
                     NaN
                                                        Sean Wang
## 216
                          Noor Mirza-Rashid
                                                   Shreeram Modi
                                                                        Shreeram Modi
                     \mathtt{NaN}
## 219
                     NaN
                                   Anuj Jain
                                                          Sam Jin
                                                                            Anuj Jain
## 236
                     NaN
                                     Sam Jin
                                                   Shlomo Kofman
                                                                        Shlomo Kofman
## 240
                             Adelle Fernando
                     NaN
                                                     Reeya Kansra
                                                                      Adelle Fernando
## 241
                     NaN
                                     Sam Jin
                                                        Anuj Jain
                                                                            Anuj Jain
## 254
                     NaN
                                   Anuj Jain
                                                     Reeya Kansra
                                                                            Anuj Jain
## 270
                     NaN
                                Reeya Kansra
                                                        Anuj Jain
                                                                            Anuj Jain
## 276
                     NaN
                             Adelle Fernando
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 290
                     NaN
                             Adelle Fernando
                                                          Sam Jin
                                                                              Sam Jin
## 306
                     NaN
                                                        Sean Wang
                                   Anuj Jain
                                                                            Anuj Jain
## 324
                     NaN
                                Reeya Kansra
                                                        Sean Wang
                                                                            Sean Wang
## 331
                     NaN
                               Shreeram Modi
                                                        Sean Wang
                                                                            Sean Wang
## 332
                     NaN
                             Adelle Fernando
                                                     Ethan Rosen
                                                                          Ethan Rosen
```

```
## 338
                     NaN
                               Shreeram Modi
                                                       Anuj Jain
                                                                            Anuj Jain
## 342
                     NaN
                                  Jessica Li
                                                       Anuj Jain
                                                                            Anuj Jain
## 348
                     NaN
                                   Sean Wang
                                                       Jessica Li
                                                                           Jessica Li
## 356
                     NaN
                                Reeya Kansra
                                                   Shreeram Modi
                                                                         Reeya Kansra
  366
                     NaN
                               Shreeram Modi
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
## 378
                     NaN
                             Salsabila Mahdi
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 387
                                                   Shlomo Kofman
                                                                        Shlomo Kofman
                     NaN
                                     Sam Jin
## 401
                                               Noor Mirza-Rashid
                                                                            Anuj Jain
                     NaN
                                   Anuj Jain
## 411
                     NaN
                                   Sean Wang
                                                        Anuj Jain
                                                                            Anuj Jain
## 414
                     NaN
                                                                      Adelle Fernando
                                   Sean Wang
                                                 Adelle Fernando
## 421
                     NaN
                               Shreeram Modi
                                                  Julian Michael
                                                                       Julian Michael
## 424
                                                                              Sam Jin
                     NaN
                               Shlomo Kofman
                                                          Sam Jin
  425
##
                     NaN
                                  Jessica Li
                                                   Shreeram Modi
                                                                           Jessica Li
## 429
                     NaN
                                     Sam Jin
                                                 Adelle Fernando
                                                                              Sam Jin
## 431
                               Shreeram Modi
                                                 Adelle Fernando
                                                                        Shreeram Modi
                     NaN
## 433
                           Aliyaah Toussaint
                                                 Adelle Fernando
                                                                   Aliyaah Toussaint
## 436
                         Vishakh Padmakumar
                                                   Shreeram Modi Vishakh Padmakumar
                     NaN
## 439
                     NaN
                                     Sam Jin
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 448
                     NaN
                             Adelle Fernando
                                                       Jessica Li
                                                                      Adelle Fernando
## 510
                     NaN
                                   Anuj Jain
                                                   Shlomo Kofman
                                                                            Anuj Jain
## 533
                     NaN
                               Shreeram Modi
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
## 538
                     NaN
                             Salsabila Mahdi
                                              Vishakh Padmakumar
                                                                  Vishakh Padmakumar
## 544
                     NaN
                             Adelle Fernando
                                                   Jackson Petty
                                                                        Jackson Petty
## 550
                     NaN
                                  Jessica Li
                                                                           Jessica Li
                                                   Shlomo Kofman
## 561
                     NaN
                               Shreeram Modi
                                               Aliyaah Toussaint
                                                                   Aliyaah Toussaint
## 598
                     NaN
                               Shreeram Modi
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 602
                     NaN
                                  Jessica Li
                                                       Sean Wang
                                                                           Jessica Li
   606
                     NaN
                             Adelle Fernando
                                                    Reeya Kansra
                                                                         Reeya Kansra
## 626
                     NaN
                                     Sam Jin
                                                 Adelle Fernando
                                                                      Adelle Fernando
## 637
                     NaN
                                   Sean Wang
                                                 Adelle Fernando
                                                                            Sean Wang
## 641
                     NaN
                                  David Rein
                                                       Jessica Li
                                                                           David Rein
## 647
                     NaN
                             Salsabila Mahdi Vishakh Padmakumar Vishakh Padmakumar
## 648
                     NaN
                                   Sean Wang
                                                     Ethan Rosen
                                                                          Ethan Rosen
## 658
                     NaN
                                                  Julian Michael
                                                                       Julian Michael
                                   Sean Wang
##
  677
                     NaN
                              Julian Michael
                                                       Jessica Li
                                                                       Julian Michael
##
  679
                     NaN
                                                 Salsabila Mahdi
                                                                      Salsabila Mahdi
                                  Jessica Li
## 680
                     NaN
                              Julian Michael
                                                 Salsabila Mahdi
                                                                       Julian Michael
##
  683
                     NaN
                                                   Shreeram Modi
                                                                            Anuj Jain
                                   Anuj Jain
##
       Dishonest debater Is single debater Has honest debater Final_Setting
## 21
               Sean Wang
                                       FALSE
                                                                   Human Debate
                                                             TRUF.
##
  43
               Jessica Li
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 78
            Reeya Kansra
                                       FALSE
                                                             TRUE.
                                                                   Human Debate
  81
                                                             TRUE
                                                                   Human Debate
##
                Sean Wang
                                       FALSE
## 91
                                                             TRUE
                                                                   Human Debate
           Shlomo Kofman
                                       FALSE
## 94
                                                             TRUE
                                                                   Human Debate
                Sean Wang
                                       FALSE
## 99
                                                             TRUE
                                                                   Human Debate
         Adelle Fernando
                                       FALSE
## 113
                Sean Wang
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 136
                                                             TRUE
                                                                   Human Debate
         Adelle Fernando
                                       FALSE
## 140
               Jessica Li
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 149
                                                             TRUE
         Salsabila Mahdi
                                       FALSE
                                                                   Human Debate
## 177
                                       FALSE
                                                             TRUE
                                                                   Human Debate
            Reeya Kansra
## 179
                                                             TRUE
                                                                   Human Debate
            Reeya Kansra
                                       FALSE
## 185
           Shreeram Modi
                                       FALSE
                                                             TRUE
                                                                   Human Debate
## 186
                                                                   Human Debate
         Adelle Fernando
                                       FALSE
                                                             TRUE
```

	191	Sean Wang	FALSE TRUE Human Deb	ate
##	202	Adelle Fernando	FALSE TRUE Human Deb	ate
	211	Shreeram Modi	FALSE TRUE Human Deb	
##	215	Sean Wang	FALSE TRUE Human Deb	
		Noor Mirza-Rashid	FALSE TRUE Human Deb	
##	219	Sam Jin	FALSE TRUE Human Deb	
	236	Sam Jin	FALSE TRUE Human Deb	
	240	Reeya Kansra	FALSE TRUE Human Deb	ate
	241	Sam Jin	FALSE TRUE Human Deb	
	254	Reeya Kansra	FALSE TRUE Human Deb	
	270	Reeya Kansra	FALSE TRUE Human Deb	
	276	Adelle Fernando	FALSE TRUE Human Deb	
##	290	Adelle Fernando	FALSE TRUE Human Deb	
##	306	Sean Wang	FALSE TRUE Human Deb	
##	324	Reeya Kansra	FALSE TRUE Human Deb	
	331	Shreeram Modi	FALSE TRUE Human Deb	
	332	Adelle Fernando	FALSE TRUE Human Deb	
	338	Shreeram Modi	FALSE TRUE Human Deb	
	342	Jessica Li	FALSE TRUE Human Deb	ate
	348	Sean Wang	FALSE TRUE Human Deb	ate
##	356	Shreeram Modi	FALSE TRUE Human Deb	ate
##	366	Shreeram Modi	FALSE TRUE Human Deb	ate
	378	Salsabila Mahdi	FALSE TRUE Human Deb	ate
##	387	Sam Jin	FALSE TRUE Human Deb	ate
		Noor Mirza-Rashid	FALSE TRUE Human Deb	ate
##	411	Sean Wang	FALSE TRUE Human Deb	ate
##	414	Sean Wang	FALSE TRUE Human Deb	ate
	421	Shreeram Modi	FALSE TRUE Human Deb	ate
##	424	Shlomo Kofman	FALSE TRUE Human Deb	ate
	425	Shreeram Modi	FALSE TRUE Human Deb	
	429	Adelle Fernando	FALSE TRUE Human Deb	ate
##	431	Adelle Fernando	FALSE TRUE Human Deb	ate
##	433	Adelle Fernando	FALSE TRUE Human Deb	
##	436	Shreeram Modi	FALSE TRUE Human Deb	ate
	439	Sam Jin	FALSE TRUE Human Deb	ate
	448	Jessica Li	FALSE TRUE Human Deb	ate
	510	Shlomo Kofman	FALSE TRUE Human Deb	
	533	Shreeram Modi	FALSE TRUE Human Deb	
	538	Salsabila Mahdi	FALSE TRUE Human Deb	
	544	Adelle Fernando	FALSE TRUE Human Deb	
	550	Shlomo Kofman	FALSE TRUE Human Deb	
	561	Shreeram Modi	FALSE TRUE Human Deb	
	598	Shreeram Modi	FALSE TRUE Human Deb	
	602	Sean Wang	FALSE TRUE Human Deb	
	606	Adelle Fernando	FALSE TRUE Human Deb	
	626	Sam Jin	FALSE TRUE Human Deb	
	637	Adelle Fernando	FALSE TRUE Human Deb	
	641	Jessica Li	FALSE TRUE Human Deb	
	647	Salsabila Mahdi	FALSE TRUE Human Deb	
	648	Sean Wang	FALSE TRUE Human Deb	
	658	Sean Wang	FALSE TRUE Human Deb	
	677	Jessica Li	FALSE TRUE Human Deb	
	679	Jessica Li	FALSE TRUE Human Deb	
##	680	Salsabila Mahdi	FALSE TRUE Human Deb	ate

##	683	Shreeram	Modi	FALSE	TRUE	Human Debate
##		Setting				
##	21	Human Debate				
##	43	Human Debate				
##	78	Human Debate				
##	81	Human Debate				
##	91	Human Debate				
##	94	Human Debate				
##	99	Human Debate				
##	113	Human Debate				
##	136	Human Debate				
##	140	Human Debate				
##	149	Human Debate				
##	177	Human Debate				
##	179	Human Debate				
##	185	Human Debate				
##	186	Human Debate				
##	191	Human Debate				
##	202	Human Debate				
##	211	Human Debate				
##	215	Human Debate				
##	216	Human Debate				
##	219	Human Debate				
##	236	Human Debate				
##	240	Human Debate				
##	241	Human Debate				
##	254	Human Debate				
##	270	Human Debate				
##	276	Human Debate				
##	290	Human Debate				
##	306	Human Debate				
##	324	Human Debate				
##	331	Human Debate				
##	332	Human Debate				
##	338	Human Debate				
##	342	Human Debate				
##	348	Human Debate				
##	356	Human Debate				
##	366	Human Debate				
##	378	Human Debate				
##	387	Human Debate				
##	401	Human Debate				
##	411	Human Debate				
##	414	Human Debate				
##	421	Human Debate				
##	424	Human Debate				
##	425	Human Debate				
##	429	Human Debate				
##	431	Human Debate				
##	433	Human Debate				
##	436	Human Debate				
##	439	Human Debate				
##	448	Human Debate				
##	510	Human Debate				

```
## 533 Human Debate
## 538 Human Debate
## 544 Human Debate
## 550 Human Debate
## 561 Human Debate
## 598 Human Debate
## 602 Human Debate
## 606 Human Debate
## 626 Human Debate
## 637 Human Debate
## 641 Human Debate
## 647 Human Debate
## 648 Human Debate
## 658 Human Debate
## 677 Human Debate
## 679 Human Debate
## 680 Human Debate
## 683 Human Debate
##
## 21
## 43
## 78
## 81
## 91
## 94
## 99
## 113
## 136
## 140
## 149
## 177
## 179
## 185
## 186
## 191
## 202
## 211
## 215
## 216
## 219
## 236
## 240
## 241
## 254
## 270
## 276
## 290
## 306
## 324
## 331
## 332
## 338
## 342
## 348
```

Which i Whic How did Eart Why does Koroby Did the questions Tremain Why did the physicist a What was the bl What is 1 Why wa Why was the main character daydream Generally, which of the following b Which of these sets of d What was the Why do Bob and Quezy h Why was Dr. Crander so What is not a type techn What best describes how the overall tone changed f What would best describe Asa's Why did the Earth Who are the four to blame What did Zen think of the plan the r Why is Grannie Annie so concerned abo How many compan Who are the four to blame What was the population of Which i Why does Koroby

How did the planet of Niobe compare to

Which best describes the relat

What is the

What is the relationship between

```
## 356
                                                                                                    Why is
## 366
                                                                                      What does the narrat
## 378
## 387
                                                                               What happens to a changeling
## 401
                                                      What makes the protagonists become less concerned a
## 411
                                                            Why was the approach that Charlie took to eng
## 414
                                                                                    Why do Bob and Quezy h
## 421
                                                                                                 Why is Jor
## 424
                                                                           What would best describe Asa's
## 425
## 429
                                                                             What is Androka's motivation
## 431
                                 Which of the following is not a reason why Koroby is impressed by the s
## 433 Johnathan doesn't tell the Interstellar Cosmography Society about the twenty-seven women who are
## 436
                                                                                           How many people
## 439
                                                                                            What was the bl
## 448
## 510
                                                                  What was the relationship like between
## 533
                                                                          Why did Korvin have to word his
## 538
                                                                                    How would you describe
## 544
## 550
                                                                                              Why did Pashk
## 561
                                                                                      What does the narrat
## 598
                                                                                                     Why wa
## 602
                                                 What would be the main reason Mr. Ranson wants to find the
## 606
                                                                                        Why did the Earth
## 626
                                                                                                  How did H
## 637
                                                                                                  What is 1
## 641
                                                                      What is likely to happen to the crew
## 647
## 648
                                                                 What is the true explanation for Charles
## 658
                                      If Dan and Erica had been seen together before the accident, what
## 677
                                                                  Of the following situations, what was the
## 679
                                                                       Why was the main character daydream
## 680
                                                                                      What is the style of
## 683
                                                                                  What is not a type techn
       Article ID Speed annotator accuracy bins Untimed annotator context bins
##
## 21
            61499
## 43
            61053
                                                0
                                                                                4
## 78
            60412
                                                0
                                                                                2
                                              0.2
                                                                                3
## 81
            62314
## 91
                                              0.2
            52844
                                                                                4
## 94
            51126
                                              0.2
                                                                                2
## 99
            52855
                                              0.2
                                                                                3
## 113
            63527
                                                                                3
                                                0
                                              0.2
## 136
            63633
                                                                                4
## 140
                                              0.4
                                                                                2
            43046
## 149
            51688
                                              0.2
                                                                                2
                                                                                3
## 177
            61499
                                              0.2
## 179
            55933
                                              0.4
                                                                                3
                                                                                2
## 185
            63862
                                              0.2
## 186
                                                                                3
            62314
                                              0.2
## 191
            50893
                                             0.2
                                                                                3
## 202
            63527
                                             0.2
                                                                                2
```

0.2

3

211

62314

##	215	51295	0.4	3
##	216	62569	0.4	3
##	219	53269	0.2	4
##	236	61467	0.4	2
##	240	60412	0.2	3
##	241	61481	0.2	3
	254	51126	0	2
	270	63109	0.2	2
	276	50818	0.2	3
	290	61481	0.2	3
##	306	51126	0.2	2
##	324	61499	0	4
	331	62314	0.2	3
	332	51395	0.2	3
	338	62569	0.2	3
	342	51351	0.2	3
	348	61430	0	2
	356	63109	0.2	3
	366	51201	0	3
	378	50818	0.4	4
	387	61467	0.4	2
	401	62569	0	2
##	411	51320	0.2	2
	414	63527	0.2	2
	421	61430	0.4	2
	424	61467	0.4	2
##	425	43046	0.4	3
##	429	61481	0	3
##	431	62314	0.2	2
##	433	63401	0.2	2
##	436	51483	0.2	2
##	439	52855	0.2	3
##	448	63523	0.2	3
##	510	51150	0.2	3
##	533	30029	0.4	2
##	538	55933	0	4
##	544	51395	0.2	2
##	550	51256	0.4	3
	561	51201	0	3
	598	63633	0.2	4
	602	62085	0.2	2
	606	60412	0.2	3
	626	63855	0	2
	637	63527	0	3
	641	61007	0.2	2
	647	55933	0.2	2
	648	63631	0.2	3
	658	51295	0.4	4
	677	63862	0.4	3
	679	51688	0.2	2
	680	61285	0.4	2
	683	62569	0.4	3
##		=	Untimed annotator context Is	
##	Z I	0.0000000	3.666667	FALSE

##	43	0.000000	3.666667	FALSE
##	78	0.000000	2.000000	FALSE
##	81	0.2000000	3.000000	FALSE
##	91	0.2000000	4.000000	FALSE
##		0.2000000	1.800000	FALSE
##		0.2000000	2.600000	FALSE
	113	0.0000000	3.000000	FALSE
	136	0.2000000	4.000000	FALSE
	140	0.4000000	1.600000	FALSE
	149	0.2000000	2.333333	FALSE
##	177	0.2000000	3.333333	FALSE
##	179	0.4000000	3.333333	FALSE
##	185	0.2000000	2.000000	FALSE
##	186	0.2000000	2.600000	FALSE
##	191	0.2000000	3.333333	FALSE
	202	0.2000000	1.666667	FALSE
	211	0.2000000	2.600000	FALSE
				FALSE
	215	0.400000	3.000000	
	216	0.4000000	3.000000	FALSE
	219	0.2000000	3.666667	FALSE
##	236	0.4000000	2.333333	FALSE
##	240	0.2000000	2.600000	FALSE
##	241	0.2000000	3.333333	FALSE
##	254	0.000000	2.200000	FALSE
##	270	0.2000000	1.666667	FALSE
##	276	0.2000000	3.400000	FALSE
##	290	0.2000000	3.333333	FALSE
##	306	0.2000000	2.200000	FALSE
##	324	0.000000	3.666667	FALSE
	331	0.2000000	3.000000	FALSE
	332	0.1666667	2.750000	FALSE
	338	0.2000000	3.000000	FALSE
	342	0.1666667	2.800000	FALSE
	348	0.000000	1.600000	FALSE
	356	0.2000000	2.666667	FALSE
	366	0.0000000	2.600000	FALSE
	378	0.4000000	3.600000	FALSE
##	387	0.400000	2.000000	FALSE
##	401	0.000000	2.000000	FALSE
##	411	0.1666667	2.400000	FALSE
##	414	0.2000000	1.666667	FALSE
##	421	0.4000000	2.200000	FALSE
##	424	0.4000000	2.333333	FALSE
##	425	0.4000000	3.200000	FALSE
##	429	0.000000	3.333333	FALSE
	431	0.2000000	2.200000	FALSE
	433	0.2000000	2.200000	FALSE
	436	0.2000000	2.200000	FALSE
	439	0.2000000	2.600000	
				FALSE
	448	0.2000000	3.400000	FALSE
	510	0.2000000	3.000000	FALSE
	533	0.400000	1.800000	FALSE
	538	0.0000000	4.000000	FALSE
##	544	0.2000000	2.250000	FALSE

```
## 550
                      0.400000
                                                  3.000000
                                                                 FALSE
## 561
                      0.0000000
                                                  2.600000
                                                                FALSE
## 598
                      0.2000000
                                                  4.000000
                                                                FALSE
## 602
                                                                 FALSE
                      0.2000000
                                                  2.333333
##
  606
                      0.2000000
                                                  2.600000
                                                                 FALSE
## 626
                      0.0000000
                                                  2.000000
                                                                FALSE
## 637
                      0.0000000
                                                  3.000000
                                                                 FALSE
## 641
                      0.2000000
                                                  1.666667
                                                                FALSE
## 647
                      0.2000000
                                                  2.000000
                                                                 FALSE
## 648
                      0.2000000
                                                  2.666667
                                                                 FALSE
## 658
                      0.400000
                                                  3.666667
                                                                 FALSE
## 677
                      0.4000000
                                                  3.400000
                                                                 FALSE
##
  679
                      0.2000000
                                                  2.333333
                                                                 FALSE
## 680
                      0.4000000
                                                  2.000000
                                                                 FALSE
## 683
                      0.400000
                                                  3.000000
                                                                 FALSE
##
                  End time Last modified time Final_Accuracy
##
       2023-04-10 16:16:41 2023-04-28 11:30:24
                                                          TRUE
  21
       2023-05-21 14:03:16 2023-05-26 10:54:34
                                                          TRUE
       2023-05-19 15:40:18 2023-05-19 16:20:39
                                                          TRUE
##
  78
##
       2023-06-22 17:38:01 2023-06-23 11:56:33
                                                          TRUE
##
  91
       2023-07-27 16:36:48 2023-07-27 16:36:48
                                                          TRUF.
       2023-06-29 18:36:11 2023-06-29 18:41:52
                                                          TRUE
       2023-07-13 17:57:20 2023-07-31 15:39:55
## 99
                                                          TRUE
  113 2023-04-21 16:43:34 2023-04-21 16:48:05
                                                          TRUE
## 136 2023-07-24 15:45:08 2023-07-24 15:45:08
                                                          TRUE
  140 2023-04-17 16:40:55 2023-06-12 16:25:09
                                                          TRUE
## 149 2023-04-10 17:33:21 2023-04-12 17:18:09
                                                          TRUE
## 177 2023-04-18 15:05:57 2023-04-28 10:25:57
                                                          TRUE
## 179 2023-07-20 15:41:51 2023-07-20 15:41:51
                                                          TRUE
## 185 2023-02-27 17:02:34 2023-04-28 16:44:08
                                                          TRUE
## 186 2023-05-12 16:09:16 2023-05-12 16:09:16
                                                          TRUE
  191 2023-05-09 16:15:12 2023-05-19 16:52:53
                                                          TRUE
  202 2023-04-14 18:04:29 2023-04-29 18:16:46
                                                          TRUE
## 211 2023-05-12 16:15:12 2023-05-18 11:38:29
                                                          TRUE
## 215 2023-02-13 16:41:56 2023-02-13 16:41:56
                                                          TRUE
## 216 2023-04-14 16:31:19 2023-05-01 16:31:54
                                                          TRUF.
## 219 2023-07-28 15:39:59 2023-07-28 15:39:59
                                                          TRUE
## 236 2023-06-26 17:15:36 2023-06-26 17:15:36
                                                          TRUF.
## 240 2023-06-16 16:50:59 2023-06-23 23:14:19
                                                          TRUF.
## 241 2023-07-17 16:33:07 2023-07-17 16:33:07
                                                          TRUE
  254 2023-07-17 15:04:00 2023-07-17 15:04:00
                                                          TRUE
## 270 2023-04-14 17:10:57 2023-04-28 16:50:44
                                                          TRUE
  276 2023-05-15 16:10:35 2023-05-15 16:10:35
                                                          TRUE
  290 2023-07-06 15:47:04 2023-07-06 15:47:04
                                                          TRUE
  306 2023-06-29 17:10:29 2023-07-17 18:30:49
                                                          TRUE
## 324 2023-05-01 17:55:02 2023-05-11 16:49:22
                                                          TRUE
  331 2023-05-05 11:55:03 2023-05-11 15:50:12
                                                          TRUE
  332 2023-04-15 06:30:53 2023-04-29 17:56:08
                                                          TRUE
  338 2023-06-22 18:58:39 2023-06-22 18:58:39
                                                          TRUE
## 342 2023-06-26 15:43:46 2023-06-26 15:57:14
                                                          TRUE
  348 2023-02-24 11:44:11 2023-04-28 16:45:16
                                                          TRUE
## 356 2023-04-21 16:49:20 2023-04-21 16:49:20
                                                          TRUE
## 366 2023-05-12 10:15:53 2023-05-12 10:15:53
                                                          TRUE
## 378 2023-05-12 11:42:59 2023-06-12 16:33:57
                                                          TRUE
```

```
## 401 2023-04-21 16:27:51 2023-04-21 16:27:51
                                                           TRUE.
## 411 2023-04-28 13:51:32 2023-05-12 10:49:32
                                                           TRUE
## 414 2023-04-14 16:42:51 2023-06-12 16:48:26
                                                           TRUE
## 421 2023-02-17 11:51:02 2023-05-15 17:10:36
                                                           TRUE
## 424 2023-06-26 18:59:34 2023-06-26 18:59:34
                                                           TRUE
## 425 2023-04-14 17:20:04 2023-04-28 10:10:59
                                                           TRUE
## 429 2023-07-06 17:58:47 2023-07-06 17:58:47
                                                           TRUE
## 431 2023-05-12 11:47:45 2023-06-12 16:01:09
                                                           TRUE
## 433 2023-04-07 16:34:58 2023-04-07 16:34:58
                                                           TRUE
  436 2023-05-11 14:57:46 2023-05-11 14:57:46
                                                           TRUE
## 439 2023-07-13 13:02:18 2023-07-13 13:02:18
                                                           TRUE
  448 2023-07-14 16:51:09 2023-07-14 16:51:09
                                                           TRUE
## 510 2023-08-04 16:36:03 2023-08-04 16:36:03
                                                           TRUE
## 533 2023-03-10 11:53:42 2023-04-13 16:46:04
                                                           TRUE
## 538 2023-04-28 10:13:44 2023-06-12 16:24:31
                                                           TRUE
## 544 2023-04-17 17:06:13 2023-04-18 13:42:45
                                                           TRUE
## 550 2023-08-03 16:36:15 2023-08-03 16:36:15
                                                           TRUE
## 561 2023-04-17 17:45:31 2023-04-29 22:45:31
                                                           TRUE
## 598 2023-07-24 17:40:02 2023-07-24 17:40:02
                                                           TRUE
  602 2023-07-17 19:39:59 2023-07-17 19:39:59
                                                           TRUE
  606 2023-07-07 18:12:21 2023-07-07 21:30:24
                                                           TRUE
## 626 2023-07-17 19:00:09 2023-07-17 19:00:09
                                                           TRUE
  637 2023-04-17 18:48:16 2023-04-18 14:26:39
                                                           TRUE
## 641 2023-05-12 10:16:04 2023-05-12 10:16:04
                                                           TRUE
  647 2023-04-24 17:33:24 2023-05-24 16:28:55
                                                           TRUE
## 648 2023-03-20 17:06:51 2023-04-28 16:39:55
                                                           TRUE
  658 2023-02-22 17:30:45 2023-02-22 17:30:45
                                                           TRUE
  677 2023-03-07 21:04:25 2023-04-28 17:01:26
                                                           TRUE
  679 2023-06-22 21:37:32 2023-06-22 21:37:32
                                                           TRUE
## 680 2023-03-07 17:00:26 2023-04-28 17:38:19
                                                           TRUE
  683 2023-04-21 11:01:01 2023-06-12 16:05:11
                                                           TRUE
##
       Human Consultancy Sample AI Consultancy Sample Human Debate Sample
## 21
                          FALSE
                                                 FALSE
                                                                      FALSE
## 43
                           FALSE
                                                 FALSE
                                                                      FALSE
## 78
                          FALSE
                                                 FALSE
                                                                      FALSE
## 81
                          FALSE
                                                 FALSE
                                                                      FALSE
## 91
                          FALSE
                                                                       TRUE
                                                 FALSE
## 94
                          FALSE
                                                                      FALSE
                                                 FALSE
## 99
                          FALSE
                                                 FALSE
                                                                      FALSE
## 113
                          FALSE
                                                 FALSE
                                                                      FALSE
## 136
                          FALSE
                                                                      FALSE
                                                 FALSE
## 140
                          FALSE
                                                 FALSE
                                                                       TRUE
## 149
                          FALSE
                                                 FALSE
                                                                      FALSE
## 177
                          FALSE
                                                 FALSE
                                                                      FALSE
## 179
                          FALSE
                                                 FALSE
                                                                      FALSE
## 185
                          FALSE
                                                 FALSE
                                                                       TRUE
## 186
                          FALSE
                                                 FALSE
                                                                      FALSE
## 191
                          FALSE
                                                 FALSE
                                                                      FALSE
## 202
                          FALSE
                                                 FALSE
                                                                      FALSE
## 211
                          FALSE
                                                                       TRUE
                                                 FALSE
## 215
                          FALSE
                                                 FALSE
                                                                       TRUE
## 216
                          FALSE
                                                 FALSE
                                                                      FALSE
## 219
                          FALSE
                                                 FALSE
                                                                       TRUE
```

TRUE

387 2023-07-07 17:37:10 2023-07-07 17:37:10

##	236				FALSE		FALSE	FALSE
##	240				FALSE		FALSE	FALSE
##	241				FALSE		FALSE	FALSE
##	254				FALSE		FALSE	FALSE
##	270				FALSE		FALSE	TRUE
##	276				FALSE		FALSE	TRUE
##	290				FALSE		FALSE	TRUE
##	306				FALSE		FALSE	FALSE
##	324				FALSE		FALSE	TRUE
##	331				FALSE		FALSE	TRUE
##	332				FALSE		FALSE	TRUE
##	338				FALSE		FALSE	TRUE
##	342				FALSE		FALSE	FALSE
##	348				FALSE		FALSE	TRUE
##	356				FALSE		FALSE	TRUE
##	366				FALSE		FALSE	FALSE
##	378				FALSE		FALSE	TRUE
##	387				FALSE		FALSE	FALSE
##	401				FALSE		FALSE	FALSE
##	411				FALSE		FALSE	FALSE
##	414				FALSE		FALSE	TRUE
##	421				FALSE		FALSE	TRUE
	424				FALSE		FALSE	TRUE
	425				FALSE		FALSE	TRUE
	429				FALSE		FALSE	FALSE
	431				FALSE		FALSE	TRUE
	433				FALSE		FALSE	TRUE
	436				FALSE		FALSE	TRUE
	439				FALSE		FALSE	TRUE
	448				FALSE		FALSE	TRUE
	510				FALSE		FALSE	TRUE
	533				FALSE		FALSE	TRUE
	538				FALSE		FALSE	TRUE
	544				FALSE		FALSE	TRUE
	550				FALSE		FALSE	TRUE
	561				FALSE		FALSE	TRUE
	598				FALSE		FALSE	TRUE
	602				FALSE		FALSE	TRUE
	606				FALSE		FALSE	TRUE
	626				FALSE		FALSE	TRUE
	637				FALSE		FALSE	TRUE
	641				FALSE		FALSE	TRUE
	647				FALSE		FALSE	TRUE
	648				FALSE		FALSE	TRUE
	658				FALSE		FALSE	TRUE
	677				FALSE		FALSE	TRUE
	679				FALSE		FALSE	TRUE
	680				FALSE		FALSE	TRUE
	683				FALSE		FALSE	TRUE
##		ΑТ	Debate	Sample				_question_weights
##			202000	FALSE	FALSE	y	FALSE	0.5000000
##				FALSE	FALSE		FALSE	0.500000
##				FALSE	FALSE		FALSE	0.5000000
##				FALSE	FALSE		FALSE FALSE	0.2500000
ππ	01			LYPOR	LAUDE		I VINT	0.2300000

## 91	FALSE	TRUE	TRUE	0.1666667
## 94	FALSE	FALSE	FALSE	0.5000000
## 99	FALSE	FALSE	FALSE	0.2500000
## 113	FALSE	FALSE	FALSE	0.3333333
## 136	FALSE	FALSE	FALSE	0.1428571
## 140	FALSE	TRUE	TRUE	1.0000000
## 149	FALSE	FALSE	FALSE	0.2500000
## 177	FALSE	FALSE	FALSE	0.5000000
## 179	FALSE	FALSE	FALSE	0.5000000
## 185	FALSE	TRUE	TRUE	1.0000000
## 186	FALSE	FALSE	FALSE	0.5000000
## 191	FALSE	FALSE	FALSE	0.2000000
## 202	FALSE	FALSE	FALSE	0.5000000
## 211	FALSE	TRUE	TRUE	0.5000000
## 215	FALSE	TRUE	TRUE	1.0000000
## 216	FALSE	FALSE	FALSE	0.5000000
## 219	FALSE	TRUE	TRUE	0.1666667
## 236	FALSE	FALSE	FALSE	0.5000000
## 240	FALSE	FALSE	FALSE	0.5000000
## 241	FALSE	FALSE	FALSE	0.2500000
## 254	FALSE	FALSE	FALSE	0.5000000
## 270	FALSE	TRUE	TRUE	1.0000000
## 276	FALSE	TRUE	TRUE	0.5000000
## 290	FALSE	TRUE	TRUE	0.2500000
## 306	FALSE	FALSE	FALSE	0.5000000
## 324	FALSE	TRUE	TRUE	0.5000000
## 331	FALSE	TRUE	TRUE	0.2500000
## 332	FALSE	TRUE	TRUE	0.5000000
## 338	FALSE	TRUE	TRUE	0.5000000
## 342	FALSE	FALSE	FALSE	0.5000000
## 348	FALSE	TRUE	TRUE	1.0000000
## 356	FALSE	TRUE	TRUE	0.3333333
## 366 ## 370	FALSE	FALSE	FALSE	0.2500000
## 378	FALSE	TRUE	TRUE	0.3333333
## 387 ## 401	FALSE	FALSE	FALSE	0.5000000
## 401 ## 411	FALSE FALSE	FALSE	FALSE	0.2500000 0.5000000
## 414		FALSE	FALSE	
## 421	FALSE FALSE	TRUE TRUE	TRUE TRUE	0.5000000 1.0000000
## 424	FALSE	TRUE	TRUE	0.5000000
## 425	FALSE	TRUE	TRUE	0.3333333
## 429	FALSE	FALSE	FALSE	0.2000000
## 431	FALSE	TRUE	TRUE	1.0000000
## 433	FALSE	TRUE	TRUE	0.3333333
## 436	FALSE	TRUE	TRUE	1.0000000
## 439	FALSE	TRUE	TRUE	0.2500000
## 448	FALSE	TRUE	TRUE	0.2000000
## 510	FALSE	TRUE	TRUE	0.1666667
## 533	FALSE	TRUE	TRUE	0.5000000
## 538	FALSE	TRUE	TRUE	0.5000000
## 544	FALSE	TRUE	TRUE	1.0000000
## 550	FALSE	TRUE	TRUE	0.2500000
## 561	FALSE	TRUE	TRUE	0.2500000
## 598	FALSE	TRUE	TRUE	0.1428571

```
## 602
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.5000000
## 606
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.5000000
## 626
                   FALSE
                            TRUE
                                                                       0.2500000
                                                 TRUE
## 637
                   FALSE
                                                 TRUE
                                                                       0.3333333
                            TRUE
## 641
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.3333333
## 647
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.5000000
## 648
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.2000000
## 658
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.3333333
## 677
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.3333333
## 679
                   FALSE
                            TRUE
                                                 TRUE
                                                                       0.2500000
## 680
                   FALSE
                            TRUE
                                                 TRUE
                                                                       1.000000
## 683
                                                 TRUE
                                                                       0.5000000
                   FALSE
                            TRUE
##
       initial_question_weights_grouped_setting
## 21
                                                0.5
## 43
                                                0.5
## 78
                                                0.5
## 81
                                                0.5
## 91
                                                1.0
## 94
                                                0.5
## 99
                                                0.5
## 113
                                                0.5
## 136
                                                0.5
## 140
                                                1.0
## 149
                                                0.5
## 177
                                                0.5
## 179
                                                0.5
## 185
                                                1.0
## 186
                                                0.5
## 191
                                                0.5
## 202
                                                0.5
## 211
                                                0.5
## 215
                                                1.0
## 216
                                                0.5
## 219
                                                1.0
## 236
                                                0.5
## 240
                                                0.5
## 241
                                                0.5
## 254
                                                0.5
## 270
                                                1.0
## 276
                                                0.5
## 290
                                                0.5
## 306
                                                0.5
## 324
                                                0.5
## 331
                                                0.5
## 332
                                                0.5
## 338
                                                0.5
## 342
                                                0.5
## 348
                                                1.0
## 356
                                                1.0
## 366
                                                0.5
## 378
                                                0.5
## 387
                                                0.5
## 401
                                                0.5
## 411
                                                0.5
```

```
## 414
                                                0.5
## 421
                                                1.0
## 424
                                                0.5
## 425
                                                0.5
## 429
                                                0.5
## 431
                                                1.0
## 433
                                                1.0
## 436
                                                1.0
## 439
                                                0.5
## 448
                                                1.0
## 510
                                                1.0
## 533
                                                1.0
## 538
                                                0.5
## 544
                                                1.0
## 550
                                                1.0
## 561
                                                0.5
## 598
                                                0.5
## 602
                                                1.0
## 606
                                                0.5
## 626
                                                0.5
## 637
                                                0.5
## 641
                                                0.5
## 647
                                                0.5
## 648
                                                0.5
## 658
                                                1.0
## 677
                                                1.0
## 679
                                                0.5
## 680
                                                1.0
## 683
                                                0.5
##
       {\tt sampled\_consultancies\_all\_debates\_weights}
## 21
                                          0.5000000
## 43
                                          0.5000000
## 78
                                          0.5000000
## 81
                                          0.3333333
## 91
                                          0.2000000
## 94
                                          0.5000000
## 99
                                          0.2500000
## 113
                                          0.3333333
## 136
                                          0.1666667
## 140
                                          1.0000000
## 149
                                          0.2500000
## 177
                                          0.5000000
## 179
                                          0.5000000
## 185
                                          1.0000000
## 186
                                          0.5000000
## 191
                                          0.2500000
## 202
                                          0.5000000
## 211
                                          0.5000000
## 215
                                          1.0000000
## 216
                                          0.5000000
## 219
                                          0.2000000
## 236
                                          0.5000000
## 240
                                          0.5000000
## 241
                                          0.2500000
```

```
## 254
                                         0.5000000
## 270
                                         1.0000000
## 276
                                         0.5000000
## 290
                                         0.2500000
## 306
                                         0.5000000
## 324
                                         0.5000000
## 331
                                         0.3333333
## 332
                                         0.5000000
## 338
                                         0.5000000
## 342
                                         0.5000000
## 348
                                         1.0000000
## 356
                                         0.5000000
##
  366
                                         0.3333333
## 378
                                         0.3333333
## 387
                                         0.5000000
## 401
                                         0.2500000
## 411
                                         0.5000000
## 414
                                         0.5000000
## 421
                                         1.0000000
## 424
                                         0.5000000
## 425
                                         0.3333333
## 429
                                         0.3333333
## 431
                                         1.0000000
## 433
                                         0.5000000
## 436
                                         1.0000000
## 439
                                         0.2500000
## 448
                                         0.3333333
## 510
                                         0.2000000
## 533
                                         0.5000000
## 538
                                         0.5000000
## 544
                                         1.0000000
## 550
                                         0.2500000
## 561
                                         0.3333333
## 598
                                         0.1666667
## 602
                                         0.5000000
## 606
                                         0.5000000
## 626
                                         0.2500000
## 637
                                         0.3333333
## 641
                                         0.3333333
## 647
                                         0.5000000
## 648
                                         0.2500000
## 658
                                         0.5000000
## 677
                                         0.5000000
## 679
                                         0.2500000
## 680
                                         1.0000000
## 683
                                         0.5000000
##
       sampled_consultancies_all_debates_weights_grouped_setting
## 21
                                                                0.5
## 43
                                                                0.5
## 78
                                                                0.5
## 81
                                                                0.5
## 91
                                                                1.0
## 94
                                                                0.5
## 99
                                                                0.5
```

##	113	0.5
##	136	0.5
##	140	1.0
##	149	0.5
##	177	0.5
##	179	0.5
##	185	1.0
##	186	0.5
##	191	0.5
##	202	0.5
##	211	0.5
##	215	1.0
	216	0.5
	219	1.0
	236	0.5
	240	0.5
	241	0.5
	254	0.5
	270	1.0
	276	0.5
	290	0.5
	306	0.5
	324	0.5
	331 332	0.5 0.5
	338	0.5
	342	0.5
	348	1.0
	356	1.0
	366	0.5
	378	0.5
	387	0.5
##	401	0.5
##	411	0.5
##	414	0.5
##	421	1.0
##	424	0.5
	425	0.5
	429	0.5
	431	1.0
	433	1.0
	436	1.0
	439	0.5
	448	1.0
	510	1.0
	: 533 : 538	1.0
	538	0.5 1.0
	550	1.0
	561	0.5
	598	0.5
	602	1.0
	606	0.5
	626	0.5

```
## 637
                                                                  0.5
## 641
                                                                  0.5
## 647
                                                                  0.5
## 648
                                                                  0.5
## 658
                                                                  1.0
## 677
                                                                  1.0
## 679
                                                                  0.5
## 680
                                                                  1.0
## 683
                                                                  0.5
##
       {\tt sampled\_consultancies\_all\_debates\_weights\_setting}
## 21
## 43
                                                         0.5
## 78
                                                         0.5
## 81
                                                         0.5
## 91
                                                         1.0
## 94
                                                         0.5
## 99
                                                         0.5
## 113
                                                         0.5
## 136
                                                         0.5
## 140
                                                         1.0
## 149
                                                         0.5
## 177
                                                         0.5
## 179
                                                         0.5
## 185
                                                         1.0
## 186
                                                         0.5
## 191
                                                         0.5
## 202
                                                         0.5
## 211
                                                         0.5
## 215
                                                         1.0
## 216
                                                         0.5
## 219
                                                         1.0
## 236
                                                         0.5
## 240
                                                         0.5
## 241
                                                         0.5
## 254
                                                         0.5
## 270
                                                         1.0
## 276
                                                         0.5
## 290
                                                         0.5
## 306
                                                         0.5
## 324
                                                         0.5
## 331
                                                         0.5
## 332
                                                         0.5
## 338
                                                         0.5
## 342
                                                         0.5
## 348
                                                         1.0
## 356
                                                         1.0
## 366
                                                         0.5
## 378
                                                         0.5
## 387
                                                         0.5
## 401
                                                         0.5
## 411
                                                         0.5
## 414
                                                         0.5
## 421
                                                         1.0
## 424
                                                         0.5
```

```
## 425
                                                          0.5
## 429
                                                          0.5
## 431
                                                          1.0
## 433
                                                          1.0
## 436
                                                          1.0
## 439
                                                          0.5
## 448
                                                          1.0
## 510
                                                          1.0
## 533
                                                          1.0
## 538
                                                          0.5
## 544
                                                          1.0
## 550
                                                          1.0
## 561
                                                          0.5
## 598
                                                          0.5
## 602
                                                          1.0
## 606
                                                          0.5
## 626
                                                          0.5
## 637
                                                          0.5
## 641
                                                          0.5
## 647
                                                          0.5
## 648
                                                          0.5
## 658
                                                          1.0
## 677
                                                          1.0
## 679
                                                          0.5
## 680
                                                          1.0
## 683
##
       {\tt sampled\_consultancies\_debates\_weights\_grouped\_setting}
## 21
## 43
                                                                0
## 78
                                                                0
## 81
                                                                0
## 91
                                                                1
## 94
                                                                0
## 99
                                                                0
## 113
                                                                0
## 136
                                                                0
## 140
                                                                1
## 149
                                                                0
## 177
                                                                0
## 179
                                                                0
## 185
                                                                1
## 186
                                                                0
## 191
                                                                0
## 202
                                                                0
## 211
                                                                1
## 215
                                                                1
## 216
                                                                0
## 219
                                                                1
## 236
                                                                0
## 240
                                                                0
## 241
                                                                0
## 254
                                                                0
## 270
                                                                1
## 276
```

```
## 290
                                                               1
## 306
                                                               0
## 324
                                                               1
## 331
                                                               1
## 332
                                                               1
## 338
                                                               1
## 342
                                                               0
## 348
                                                               1
## 356
                                                               1
## 366
                                                               0
## 378
                                                               1
## 387
                                                               0
## 401
                                                               0
## 411
                                                               0
## 414
                                                               1
## 421
                                                               1
## 424
                                                               1
## 425
                                                               1
## 429
                                                               0
## 431
                                                               1
## 433
                                                               1
## 436
                                                               1
## 439
                                                               1
## 448
                                                               1
## 510
                                                               1
## 533
                                                               1
## 538
                                                               1
## 544
                                                               1
## 550
                                                               1
## 561
                                                               1
## 598
                                                               1
## 602
                                                               1
## 606
                                                               1
## 626
                                                               1
## 637
                                                               1
## 641
                                                               1
## 647
                                                               1
## 648
                                                               1
## 658
                                                               1
## 677
                                                               1
## 679
                                                               1
## 680
                                                               1
## 683
                                                               1
##
       sampled_consultancies_debates_weights Final_Accuracy_char fpc fpcw
## 21
                                     0.000000
                                                                  NA 0.70 0.350
## 43
                                     0.000000
                                                                  NA 0.90 0.450
## 78
                                     0.000000
                                                                  NA 0.99 0.495
## 81
                                     0.000000
                                                                  NA 0.99 0.495
## 91
                                     0.2500000
                                                                  NA 0.98 0.980
## 94
                                     0.000000
                                                                  NA 0.99 0.495
## 99
                                     0.000000
                                                                  NA 0.85 0.425
## 113
                                     0.000000
                                                                  NA 0.99 0.495
## 136
                                     0.0000000
                                                                  NA 0.99 0.495
## 140
                                     1.0000000
                                                                  NA 0.99 0.990
```

	4.40	0.0000000	3.T.A	۰ ۵۰	0 405
	149	0.0000000			0.425
	177	0.000000			0.425
##	179	0.0000000	ΝA	0.90	0.450
##	185	1.0000000	ΝA	0.99	0.990
##	186	0.000000	NA	0.95	0.475
##	191	0.000000	NA	0.95	0.475
##	202	0.000000	NA	0.90	0.450
##	211	1.0000000	NΑ	0.95	0.475
	215	1.0000000			0.800
	216	0.0000000			0.495
	219	0.2500000			0.800
	236	0.000000			
					0.495
	240	0.0000000			0.450
	241	0.000000			0.495
	254	0.000000			0.475
##	270	1.0000000	ΝA	0.70	0.700
##	276	1.0000000	ΝA	0.99	0.495
##	290	0.3333333	NA	0.99	0.495
##	306	0.000000	NA	0.99	0.495
##	324	1.0000000	NA	0.99	0.495
##	331	0.5000000	NA	0.99	0.495
	332	1.0000000	NA	0.99	0.495
	338	1.0000000			0.495
	342	0.0000000			0.495
	348	1.0000000			0.850
	356	0.5000000			0.850
	366	0.000000			0.475
	378	0.5000000			0.490
	387	0.000000			0.440
##	401	0.000000	ΝA	0.96	0.480
##	411	0.000000	NA	0.99	0.495
##	414	1.0000000	NA	0.99	0.495
##	421	1.0000000	NA	0.99	0.990
##	424	1.0000000	NA	0.99	0.495
##	425	0.5000000	NA	0.99	0.495
	429	0.000000	NA	0.99	0.495
	431	1.0000000			0.990
	433	0.5000000			0.990
	436	1.0000000			0.990
	439	0.3333333			0.475
	448	0.3333333			0.990
	510	0.2500000			0.990
	533	0.5000000			0.980
	538	1.0000000			0.450
	544	1.0000000			0.980
##	550	0.2500000	NA	0.99	0.990
##	561	0.5000000	NA	0.95	0.475
##	598	0.2500000	NA	0.94	0.470
##	602	0.5000000	NA	0.91	0.910
	606	1.0000000			0.430
	626	0.3333333			0.485
	637	0.5000000			0.475
	641	0.5000000			0.495
	647				0.495
##	U±1	1.0000000	ИИ	0.99	0.495

```
## 648
                                  0.3333333
                                                             NA 0.99 0.495
## 658
                                  0.5000000
                                                             NA 0.99 0.990
## 677
                                  0.5000000
                                                             NA 0.80 0.800
## 679
                                                             NA 0.75 0.375
                                  0.3333333
## 680
                                  1.0000000
                                                             NA 0.75 0.750
## 683
                                  1.0000000
                                                             NA 0.80 0.400
# Fit the random intercept model and only remove missing values for 'Dishonest debater'
random_intercept_model <- lmer(`Final probability correct` ~ (1|`Dishonest debater`),</pre>
                               data = dishonest,
                               REML = TRUE)
# Summary of the model
summary(random_intercept_model)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 'Final probability correct' ~ (1 | 'Dishonest debater')
     Data: dishonest
## REML criterion at convergence: 302.1
## Scaled residuals:
      Min 1Q Median
                               3Q
                                      Max
## -2.5213 -0.1985 0.5027 0.6588 0.8225
## Random effects:
## Groups
                     Name
                                 Variance Std.Dev.
## Dishonest debater (Intercept) 0.001765 0.04201
                                 0.096628 0.31085
## Number of obs: 577, groups: Dishonest debater, 20
##
## Fixed effects:
              Estimate Std. Error
                                       df t value
                                                        Pr(>|t|)
                          0.01719 7.54926 45.58 0.00000000172 ***
## (Intercept) 0.78325
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
dishonest$random.intercept.preds = predict(random_intercept_model)
plot(dishonest$random.intercept.preds, dishonest$`Final probability correct`)
```


Debater "Experience", ratings - how many wins?

AI vs Humans

Old vs New

##

##

FALSE

TRUE

possibly unnessary

Finally, these are how many we get correct in each setting

```
judgments_online <- py$judgments_online</pre>
table(judgments_online$Final_Accuracy, judgments_online$Final_Setting)
##
##
           AI Consultancy AI Debate Human Consultancy Human Debate
##
     FALSE
                        18
                                   19
                                                      32
                                                                   25
     TRUE
                        75
                                   68
                                                      75
                                                                   130
##
table(judgments_online$Final_Accuracy, judgments_online$Setting)
##
##
           AI Consultancy Dishonest AI Consultancy Honest AI Debate
```

33

13

42

68

```
##
## Human Consultancy Dishonest Human Consultancy Honest Human Debate
## FALSE 26 6 25
## TRUE 33 42 130
```

```
ggplot(judgments_online, aes(x = Final_Setting, fill = Final_Accuracy)) +
  geom_bar(position = "fill") +
  scale_fill_manual(values = c("TRUE" = "green", "FALSE" = "red")) +
  labs(title = "Judgments by Setting, overall", x = "Setting", y = "Proportion", fill = "Final_Accuracy
  theme_minimal() +
  theme(axis.text.x = element_text())
```

Judgments by Setting, overall

Sneak peak of accuracy differences between judges, but we won't get to that again until models

