topbook_harder

Khanh Nguyen

June 2023

some harder or interesting problems in topbook2023.pdf

Common

I will put here some common definitions, propositions used in this notes.

Proposition 1 (Cover Proposition) Given a set A, for all element $x \in A$ if $x \in U_x \subseteq A$ then

$$\bigcup_{x \in A} U_x = A$$

Proof

We immediately have $\bigcup_{x\in A} U_x \subseteq A$. On the other hand, for all $x\in A$, $\{x\}\subseteq U_x$. Then

$$A = \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} U_x$$

Definition 1 (Indistinguishability and T_0 -space) Two points $a, b \in X$ are called indistinguishable if every open set in X either contains both a and b or contains none. A topological space is a T_0 -space if all pairs of points are distinguishable.

Definition 2 (T_1 -space) A topological space (X, \mathcal{T}) is said to be a T_1 -space if every singleton set $\{x\}$ for $x \in X$ is closed in (X, \mathcal{T})

Definition 3 (Hausdorff space or T_2 **-space)** A topological space (X, \mathcal{T}) is said to be a Hausdorff space or T_2 -space if given any two distinct points $a, b \in X$, there exists two disjoint open sets U, V such that $a \in U$ and $b \in V$

Definition 4 (Regular space) A topological space (X, \mathcal{T}) is said to be a regular space if for any closed subset $A \subseteq X$ and any point $b \in X \setminus A$, there exists two disjoint open sets U, V such that $A \subseteq U$ and $b \in V$

Definition 5 (T_3 -space) A topological space (X, \mathcal{T}) is said to be a T_3 -space if it is a T_1 -space and a regular space.

Definition 6 (Initial segment topology)

$$(\mathbb{N}, \{\emptyset, \mathbb{N}\} \cup \{\{1, 2, ..., n\} : n \in \mathbb{N}\})$$

Definition 7 (Final segment topology)

$$(\mathbb{N}, \{\emptyset, \mathbb{N}\} \cup \{\{n, n+1, \ldots\} : n \in \mathbb{N}\})$$

Definition 8 (Coarser Topology and Finer Topology) Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on a set X. \mathcal{T}_1 is said to be a finer topology than \mathcal{T}_2 (and \mathcal{T}_2 is a coarser topology than \mathcal{T}_1) if $\mathcal{T}_1 \supseteq \mathcal{T}_2$

Definition 9 (Totally disconnected space) A topological space (X, \mathcal{T}) is said to be a totally disconnected space if every non-empty connected subset is a singleton set.

Definition 10 (Zero dimensional space) A topological space (X, \mathcal{T}) is said to be a zero dimensional space if there is a basis for the topology consisting of clopen sets.

Definition 11 (Local homeomorphism) Let (X, \mathcal{T}) and (Y, \mathcal{T}_1) be topological spaces. A map $f: X \to Y$ is said to be a local homeomorphism if each point $x \in X$ has an open neighbourhood U such that the restriction of f to U maps U homeomorphically into an open subspace V of (Y, \mathcal{T}_1) ;

that is, if the topology induced on an open neighbourhood U by \mathcal{T} is \mathcal{T}_2 and topology induced on V = f(U) by \mathcal{T}_1 is \mathcal{T}_3 , then f is a homeomorphism of (U, \mathcal{T}_2) onto (Y, \mathcal{T}_1)

Exercise 1.1.9

Exercise 2.3.4

Let C[0,1] be the set of all continuous real-value functions on [0,1]

- Show that the collection $\mathcal{M} = \{M(f, \epsilon) : f \in C[0, 1] \land \epsilon > 0\}$ where $M(f, \epsilon) = \{g : g \in C[0, 1] \land \int_0^1 |f g| < \epsilon\}$ is a basis for a topology \mathcal{T}_1 on C[0, 1]
- Show that the collection $\mathcal{U} = \{U(f, \epsilon) : f \in C[0, 1] \land \epsilon > 0\}$ where $U(f, \epsilon) = \{g : g \in C[0, 1] \land \sup_{x \in [0, 1]} |f(x) g(x)| < \epsilon\}$ is a basis for a topology \mathcal{T}_2 on C[0, 1]
- Prove that $\mathcal{T}_1 \neq \mathcal{T}_2$

Let's generalize the first two questions a bit.

Lemma 1 Let $\mathcal{B} = \{B(f, \epsilon) : f \in C[0, 1] \land \epsilon > 0\}$ where $B(f, \epsilon) = \{g : g \in C[0, 1] \land d(f, g) < \epsilon\}$ such that d is a pseudo-metric, i.e: (1) semi-definiteness d(a, a) = 0 (2) symmetry d(a, b) = d(b, a) (3) triangle inequality $d(a, c) \leq d(a, b) + d(b, c)$.

 \mathcal{B} generates a topology \mathcal{T} on C[0,1].

Remark 1 $f \in B(f, \epsilon)$ for all $f \in C[0, 1]$ and $\epsilon > 0$

Proof of Lemma??

In order to prove \mathcal{B} generates a topology \mathcal{T} on C[0,1], we need to prove two properties (1) $C[0,1] = \bigcup_{B \in \mathcal{B}} B$ and (2) for any $B_1, B_2 \in \mathcal{B}$, for all $f \in B_1 \cap B_2$, there exists a $B_3 \in \mathcal{B}$ such that $f \in B_3 \subseteq B_1 \cap B_2$

For any $f \in C[0,1], f \in B(f,1) \in \mathcal{B}$. On the other hand, $B(f,\epsilon) \subseteq C[0,1]$ for all $f \in C[0,1]$ and $\epsilon > 0$. Hence, (1)

(2)

Let $B_1 = B(f_1, \epsilon_1)$ and $B_2 = B(f_2, \epsilon_2)$.

For any $f \in B_1 \cap B_2$, we have $d(f_1, f) < \epsilon_1$ and $d(f_2, f) < \epsilon_2$. Hence, choose a positive $\epsilon = \min\{\epsilon_1 - d(f_1, f), \epsilon_2 - d(f_2, f)\}$ and $B_3 = B(f, \epsilon)$

For any $g \in B_3$,

$$d(f_1,g) \leq d(f_1,f) + d(f,g)$$
 (triangle inequality)

$$< d(f_1,f) + \epsilon$$
 ($g \in B_3$)

$$\leq d(f_1,f) + (\epsilon_1 - d(f_1,f))$$
 (choice of ϵ)

$$= \epsilon_1$$

Similarly, $d(f_2, g) < \epsilon_2$. Therefore, $f \in B_3 \subseteq B_1 \cap B_2$, So (2)

Main proof

. Now, we apply Lemma ?? for \mathcal{M} and \mathcal{U} .

For any $x \in [0,1]$ by Triangle inequality, $|a(x)-c(x)| \leq |a(x)-b(x)| + |b(x)-c(x)|$

From the properties of *Riemann integral*,

$$\int_0^1 |a - c| \le \int_0^1 |a - b| + \int_0^1 |b - c|$$

Furthermore, the LHS is upper-bounded by the RHS, hence their supremums

$$\sup_{x \in [0,1]} |a(x) - c(x)| \le \sup_{x \in [0,1]} |a(x) - b(x)| + \sup_{x \in [0,1]} |b(x) - c(x)|$$

In the last question, it is obvious that for any n>0 there exists a function $f\in M(0,1)$ such that $\min_{x\in[0,1]}f(x)=-n$ and $\max_{x\in[0,1]}f(x)=n$. If f is in any member $U(f_2,\epsilon_2)$ of \mathcal{U} , it must be that $\epsilon>n$. So, there exists a function $g\in U(f_2,\epsilon_2)$ with $\int_0^1|0-g|=n>1$ or $U(f_2,\epsilon_2)\setminus M(0,1)\neq\varnothing$. By Proposition 2.3.4 in the book, $\mathcal{T}_1\neq\mathcal{T}_2$

Exercise 3.1.5.v

Exercise 3.2.9

Let S be a dense subset of a topological space (X, \mathcal{T}) . Prove that for every open subset U of X, $\overline{S \cap U} = \overline{U}$

Lemma 2 Let A, B be subsets of a topological space (X, \mathcal{T}) , then $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof of Lemma ??

We will prove (1) $A \cap B \subseteq \overline{A} \cap \overline{B}$ and (2) limit points of $A \cap B$ is in $\overline{A} \cap \overline{B}$ (1)

Any point in A is in \overline{A} , any point in B is in \overline{B} . Then any point in A and B is in \overline{A} and \overline{B} . Hence (1)

(2)

Let $x \in X$ be a limit point of $A \cap B$, so any open set containing x contains a point in $A \cap B$. Hence, any open set containing x contains a point in A, that implies x is a limit point of A, $x \in \overline{A}$. Similarly, $x \in \overline{B}$. Therefore, (2)

Main proof

Apply Lemma ??, $\overline{S \cap U} \subseteq \overline{U}$

Now, we will prove that $\overline{U} \subseteq \overline{S \cap U}$, i.e (1) $u \in U \implies u \in \overline{S \cap U}$ and (2) x is limit point of $U \implies x \in \overline{S \cap U}$

(1)

Let $u \in U$. For any open set O containing u,

S is dense, so u is a limit point of S. Given the open set $U \cap O$ containing u, it must also contains a point $s \in S$. Hence $s \in S \cap (U \cap O) = (S \cap U) \cap O$. Therefore, for any open set O containing u, the intersection of $S \cap U$ and O is non-empty by the construction of s. So, s is a limit point of s is s in s

(2)

Let $x \in X$ be a limit point of U. For any open set O containing x, take $u \in U \cap O$,

S is dense, so u is a limit point of S. Given the open set $U \cap O$ containing u, it must also contains a point $s \in S$. Hence $s \in S \cap (U \cap O) = (S \cap U) \cap O$. Therefore, for any open set O containing x, the intersection of $S \cap U$ and O is non-empty by the construction of s. So, s is a limit point of s in s

Exercise 3.2.11.v

Let $\mathcal{B} = \{[a,b) : a \in \mathbb{R}, b \in \mathbb{Q}, a < b\}$, \mathcal{B} is a basis for a topology \mathcal{T}_1 on \mathbb{R} , namely the *Sorgenfrey line*. Prove that the *Sorgenfrey line* does not satisfy the second axiom of countability, i.e $(\mathbb{R}, \mathcal{T}_1)$ cannot be generated by a countable number of open sets.

TODO

Proposition 3.3.3

The only clopen sets of $\mathbb R$ are $\mathbb R$ and \varnothing

Lemma 3 (Lemma 3.3.2) Let S be a subset of \mathbb{R} bounded above and let $p = \sup S$. If S is closed, then $p \in S$

Lemma 4 Let S be a non-empty subset of \mathbb{R} bounded above and let $p = \sup S$. If S is open, then $p \notin S$

Proof of Lemma??

S is open and $p \in S$, we can choose an open interval $(a,b) \subseteq S$ containing p. Hence, p < b and there exists q such that p < q < b. Contradiction to the assumption that p is the supremum of S

Main proof

. Suppose A,B are non-empty clopen sets in $\mathbb R$ such that $A\cap B=\varnothing$ and

 $A \cup B = \mathbb{R}$. Choose $a_1 \in A$ and $b_1 \in B$, without loss of generality, assume that $a_1 < b_1$.

Consider the closed set $S = A \cap [a_1, b_1]$ and its supremum $p = \sup S$ S is closed and bounded above by b_1 , by Lemma ??, $p \in S$. Furthermore, $b_1 \notin A$ implies $b_1 \notin S = A \cap [a_1, b_1]$, we have the strict inequality $p < b_1$

Now we will construct an element $t \in S$ that is greater than p then conclude the contradiction. $p \in S \subseteq A$, A is open then there exists an open interval $(a_2, a_3) \subseteq A$ such that $p \in (a_2, a_3) \subseteq A$. By the strict inequality $p < b_1$, we can choose $t \in (p, \min(a_3, b_1)) \subseteq (a_2, a_3) \subseteq A$. We also have $t \in (p, \min(a_3, b_1)) \subseteq [a_1, b_1]$. Hence, $p < t \in A \cap [a_1, b_1] = S$. Contradiction

Exercise 4.1.11

Let A, B be connected subspaces of a topological space (X, \mathcal{T}) . If $A \cap B \neq \emptyset$, prove that the subspace $A \cup B$ is connected.

Main proof

.

We will prove the statement by contradiction, first we assume that $A \cap B \neq \emptyset$ and $A \cup B$ is disconnected. Hence, we can find $P,Q \in A \cup B$ such that $P \neq \emptyset$, $Q \neq \emptyset$, $P \cup Q = A \cup B$, and $P \cap Q = \emptyset$. P,Q are corresponding to two open sets in X, namely $P = O_P \cap (A \cup B)$ and $Q = O_Q \cap (A \cup B)$.

Consider 2 pairs of sets: $(O_P \cap A, O_Q \cap A)$ and $(O_P \cap B, O_Q \cap B)$. Claim that there must be at least a pair with no empty set.

(case 1)
$$(O_P \cap A) = (O_P \cap B) = \emptyset$$

 $(O_P \cap A) \cup (O_P \cap B) = \emptyset$ implies $P = O_P \cap (A \cup B) = \emptyset$, contradiction
(case 2) $(O_P \cap A) = (O_Q \cap B) = \emptyset$.
 $O_P \cap A = \emptyset$ implies that

$$P = O_P \cap (A \cup B)$$

$$= O_P \cap (A \cup B \setminus A)$$

$$= (O_P \cap A) \cup (O_P \cap B \setminus A)$$

$$= O_P \cap B \setminus A \subseteq B \setminus A$$

 $O_Q \cap B = \emptyset$ implies that

$$\begin{split} Q &= O_Q \cap (A \cup B) \\ &= O_Q \cap (A \setminus B \cup B) \\ &= (O_Q \cap A \setminus B) \cup (O_Q \cap B) \\ &= O_Q \cap A \setminus B \subseteq A \setminus B \end{split}$$

Hence, an element $x \in A \cap B$ is not in either P or Q, contradiction Therefore, there must be at least a pair in $(O_P \cap A, O_Q \cap A)$ and $(O_P \cap B, O_Q \cap B)$ is both non-empty sets. Without loss of generality, assume that $O_P \cap A, O_Q \cap A$ are both non-empty.

$$(O_P \cap A) \cup (O_A \cap A) = (O_P \cup O_Q) \cap A$$

$$= A \qquad \text{since } A \cup B \subseteq O_P \cup O_Q$$

$$(O_P\cap A)\cap (O_A\cap A)=(O_P\cap O_Q)\cap A$$

$$=\varnothing \qquad \text{since } O_P\cap O_Q \text{ is outside of } A\cup B$$

Exercise 4.1.15

The closed interval [a, b] for $a, b \in \mathbb{R}$ is connected.

Let's recognize all the open sets and closed sets in [a,b] first. O is an open set in [a,b] if and only if $O=O_{\mathbb{R}}\cap [a,b]$ for an open set $O_{\mathbb{R}}$ in \mathbb{R} . C is a closed set in [a,b] if and only if $C=[a,b]\setminus O_{\mathbb{R}}$ for an open set $O_{\mathbb{R}}$ in \mathbb{R}

Lemma 5 If C is a closed set in [a,b], C is also a closed set in \mathbb{R} .

Proof of Lemma ??

 $\mathbb{R} \setminus C = (\mathbb{R} \setminus [a, b]) \cup O_{\mathbb{R}}$, union of two open sets in \mathbb{R}

Main proof

-

Similar to exercise 4.1.11, let prove the statement by contradiction. Let A, B be clopen sets in [a, b] such that $A \cap B = \emptyset$ and $A \cup B = [a, b]$. Choose $a_1 \in A$ and $a_2 \in B$, without loss of generality, assume the strict inequality $a < a_1 < b_1 < b$ since A, B cannot be singleton sets.

A is a closed set in \mathbb{R} , consider the closed set $S = A \cap [a_1, b_1]$ in [a, b] and its supremum $p = \sup S$ in \mathbb{R} .

S is closed and bounded above by b_1 in \mathbb{R} , by Lemma $\ref{lem:space}$, $p \in S$. Furthermore, $b_1 \notin A$ implies $b_1 \notin S = A \cap [a_1, b_1]$, we have the strict inequality $a < a_1 \le p < b_1 \le b$

Now we will construct an element $t \in S$ that is greater than p then conclude the contradiction. $p \in S \subseteq A = O_A \cap [a,b] = (O_A \cap (a,b)) \cup (O_A \cap \{a,b\})$ where O_A is an open set in \mathbb{R} . a implies <math>p in the open set $O_A \cap (a,b) \subseteq A$ in \mathbb{R} . By the strict inequality $p < b_1$, we can choose $t \in (p,\min(a_3,b_1)) \subseteq (a_2,a_3) \subseteq O_A \cap (a,b) \subseteq A$. We also have $t \in (p,\min(a_3,b_1)) \subseteq [a_1,b_1]$. Hence, $p < t \in A \cap [a_1,b_1] = S$. Contradiction

Comment: $O_A \cap (a, b)$ is the interior of $A = O_A \cap [a, b]$ in \mathbb{R}

Exercise 4.1.17.v

Let $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Define a set $C \subseteq \mathbb{R}$ to be closed if $C = A \cup T$ where A is closed in \mathbb{R} and $T \subseteq S$. The complements of these closed sets form a topology \mathcal{T} on \mathbb{R} which is Hausdorff but not regular.

Definition 12 (Hausdorff space or T_2 **-space)** A topological space (X, \mathcal{T}) is said to be Hausdorff (or T_2 -space) if given any pair of distinct points a, b in X there exist open sets A, B such that $a \in A, b \in B$, and $A \cap B = \emptyset$

Definition 13 (Regular space) A topological space (X, \mathcal{T}) is said to be regular space if any closed set A and any point $x \in X \setminus A$, there exist open sets U, V such that $x \in U$, $A \subseteq V$, and $U \cap V = \emptyset$.

Lemma 6 For any index set J and $A_j \cap B_j = \emptyset$ for all $j \in J$

$$\bigcap_{j \in J} A_j \cup B_j = \bigcup_{J_A \in \mathcal{P}(J)} \left[\left(\bigcap_{j \in J_A} A_j \right) \cap \left(\bigcap_{j \in J \backslash J_A} B_j \right) \right]$$

Proof of Lemma ??

Proof

For all $x \in X = \bigcap_{j \in J} A_j \cup B_j$, for each $j \in J$, x must be either in A_j or B_j . Let $J_A(x) = \{j : j \in J, x \in A_j\} \subseteq \mathcal{P}(J)$ be the set of indices where $x \in A_j$ and let $J_B(x) = J \setminus J_A(x)$. So that

$$x \in \left(\bigcap_{j \in J_A(x)} A_j\right) \cap \left(\bigcap_{j \in J \setminus J_A(x)} B_j\right)$$

On the other hand, $\bigcap_{j \in J_A} A_j \subseteq \bigcap_{j \in J_A} A_j \cup B_j$ and $\bigcap_{j \in J \setminus J_A} B_j \subseteq \bigcap_{j \in J \setminus J_A} A_j \cup B_j$, we have

$$\left(\bigcap_{j\in J_A(x)} A_j\right) \cap \left(\bigcap_{j\in J\setminus J_A(x)} B_j\right) \subseteq \left(\bigcap_{j\in J_A(y)} A_j \cup B_j\right) \cap \left(\bigcap_{j\in J\setminus J_A(y)} A_j \cup B_j\right)$$

$$= \bigcap_{j\in J} A_j \cup B_j$$

$$= X$$

\mathcal{T} is a topology

Take $A=\varnothing$ and $T=\varnothing$, then $C=A\cup T=\varnothing$. So $\mathbb R$ is an open set in $\mathcal T$. Take $A=\mathbb R$, then $C=A\cup T=\mathbb R$. So \varnothing is an open set in $\mathcal T$

$$\mathbb{R} \setminus C_1 \cap \mathbb{R} \setminus C_2 = \mathbb{R} \setminus (A_1 \cup T_1) \cap \mathbb{R} \setminus (A_2 \cup T_2)$$
$$= \mathbb{R} \setminus ((A_1 \cup T_1) \cup (A_2 \cup T_2))$$
$$= \mathbb{R} \setminus ((A_1 \cup A_2) \cup (T_1 \cup T_2))$$

 $A_1 \cup A_2$ is an closed set in the euclidean topology, $T_1 \cup T_2 \subseteq S$. Hence the intersection of two open sets in \mathcal{T} is an open set in \mathcal{T}

Let J be an index set, a union of open sets in $\mathcal T$ has the form

$$\bigcup_{j \in J} \mathbb{R} \setminus (A_j \cup T_j) = \mathbb{R} \setminus \bigcap_{j \in J} A_j \cup T_j$$

We need to prove that $C = \bigcap_{j \in J} A_j \cup T_j$ can be written in the form $A \cup T$ where A is a closed set in the euclidean topology and $T \subseteq S$. Invoke the lemma $\ref{eq:condition}$?

$$\bigcap_{j \in J} A_j \cup T_j = \bigcap_{j \in J} A_j \cup T_j \setminus A_j$$

$$= \bigcup_{J_A \in \mathcal{P}(J)} \left[\left(\bigcap_{j \in J_A} A_j \right) \cap \left(\bigcap_{j \in J \setminus J_A} T_j \setminus A_j \right) \right]$$

We split $\mathcal{P}(J)$ into two groups: (1) $\{J\} \in \mathcal{P}(J)$ and (2) $\mathcal{P}(J) \setminus \{J\}$.

$$\bigcap_{j \in J} A_j \cup T_j = \bigcap_{j \in J} A_j \cup \bigcup_{J_A \in \mathcal{P}(J) \setminus J} \left[\left(\bigcap_{j \in J_A} A_j \right) \cap \left(\bigcap_{j \in J \setminus J_A} T_j \setminus A_j \right) \right]$$

The set $\bigcap_{j\in J} A_j$ is a union of closed set in euclidean space hence a closed set in euclidean space.

We further have

$$\left(\bigcap_{j\in J_A} A_j\right) \cap \left(\bigcap_{j\in J\setminus J_A} T_j\setminus A_j\right) \subseteq \bigcap_{j\in J\setminus J_A} T_j\setminus A_j \subseteq S$$

for all $J_A \in \mathcal{P} \setminus J$ since $J \setminus J_A$ is non-empty. Take A and T as follows

$$A = \bigcap_{j \in J} A_j$$

$$T = \bigcup_{J_A \in \mathcal{P}(J) \setminus J} \left[\left(\bigcap_{j \in J_A} A_j \right) \cap \left(\bigcap_{j \in J \setminus J_A} T_j \setminus A_j \right) \right]$$

So, $C = A \cup T$ which is a union of a closed set in the euclidean topology and a subset of S

\mathcal{T} is Hausdorff

Any closed set in the euclidean topology is closed in \mathcal{T} by taking $T = \emptyset$ in the form of closed set in \mathcal{T} : $C = A \cup T$. Hence, any open set in the euclidean topology is open in \mathcal{T} .

Given any two point $a < b \in \mathbb{R}$, take $A = (-\infty, \frac{a+b}{2})$ and $B = (\frac{a+b}{2}, +\infty)$

\mathcal{T} is not regular

We will construct an example where it is not able to construct U, V

Suppose that \mathcal{T} is a regular space, let $A = S = \{\frac{1}{n} : n \in \mathbb{N}\}$ and x = 0. There must be an open set V that contains 0 but not S. All open sets in \mathcal{T} has the form

$$O = \mathbb{R} \setminus (A \cup T) = \mathbb{R} \setminus A \cap \mathbb{R} \setminus T$$

where A is a closed set in the euclidean topology and $T \subseteq S$.

 $0 \in \mathbb{R} \setminus A$ an open set in the euclidean topology, there must be an open interval (a,b) such that a < 0 < b, hence that interval will contain some element of S, i.e. $\{\frac{1}{n} : n \in \mathbb{N}, n > \frac{1}{b}\}$

\mathcal{T} is a topology (shorten approach)

I came across a short reasoning for the last statement ¹

 $C = \bigcap_{i \in I} A_i \cup T_i$ where each A_i is Euclidean-closed and each $T_i \subseteq S$. Let $A = \bigcap_{i \in I} A_i$; certainly A is Euclidean-closed.

If $x \in C \setminus A$, there exists A_i such that $x \notin A_i$. But $x \in C$, so $x \in A_i \cup T_i$. Therefore, $x \in T_i \subseteq S$

Exercise 4.2.8

Let (X, \mathcal{T}) be a discrete topological space. Prove that (X, \mathcal{T}) is homeomorphic to a subspace of \mathbb{R} if and only if X is countable.

TODO

Exercise 4.3

Definition 14 Let X be a unit circle in \mathbb{R}^2

$$X = \{\langle x, y \rangle : x^2 + y^2 = 1\}$$

Let Y be two disjoint circles in \mathbb{R}^2

$$Y = \{ \langle x, y \rangle : x^2 + y^2 = 1 \} \cup \{ \langle x, y \rangle : (x - 2)^2 + y^2 = 1 \}$$

Let Z be two intersecting circles in \mathbb{R}^2

$$Z = \{\langle x, y \rangle : x^2 + y^2 = 1\} \cup \{\langle x, y \rangle : (x - 3/2)^2 + y^2 = 1\}$$

Definition 15 (Sorgenfrey Line) Let $\mathcal{B} = \{[a,b) : a \in \mathbb{R}, b \in \mathbb{Q}, a < b\}$. The set generated by \mathcal{B} is a topology on \mathbb{R}

 $^{^{1} \}rm https://math.stackexchange.com/a/65558/700122$

Lemma 7 If f is a homeomorphism from (A, \mathcal{T}^A) to (B, \mathcal{T}^B) and $A_1 \subseteq A$. Let $B_1 = f(A_1)$ be the image of A_1 over f. Define $f_1 : A_1 \to B_1$ with $f_1(a) = f(a)$. f_1 is a homeomorphism from $(A_1, \mathcal{T}^A_{A_1})$ to $(B_1, \mathcal{T}^B_{B_1})$

Proof of Lemma??

 f_1 is bijective.

Any open set in A_1 has the form $O_{A_1} = A_1 \cup O_A$ where O_A is an open set in A. So $f_1(O_{A_1}) = f(O_{A_1}) = f(A_1) \cup f(O_A)$ since f is injective. Furthermore, f is an homeomorphism, $f_1(O_{A_1}) = B_1 \cup O_B$. So, $f(O_A)$ is an open set in B_1 . Similar argument for f_1^{-1}

Main proof

main proof

(3.i) $X\setminus\{\langle 1,0\rangle\}$ is homeomorphic to the open interval (0,1) by the homeomorphism $f(\langle x,y\rangle)=$ arc length 2 from $\langle 1,0\rangle\to\langle x,y\rangle$ divided by 2π

 $(3.ii) X \ncong (0,1)$

Suppose $X \cong (0,1)$ by homeomorphic f that maps $\langle 1,0 \rangle \mapsto a$, by remark 4.3.6, $(0,1) \cong X \setminus \{\langle 1,0 \rangle\} \cong (0,a) \cup (a,1)$ where (0,a) and (a,1) be non-empty. The left most is a connected and the right most not a disconnected.

 $(3.ii) [0,1] \ncong X$

Suppose $[0,1] \cong X$ by homeomorphic f that maps $0 \mapsto a$ and $1 \mapsto b$ where $a \neq b$. By remark 4.3.6, $[0,1] \cong X \implies (0,1] \cong X \setminus \{a\} \implies (0,1) \cong X \setminus \{a,b\}$. The RHS consists of two segments $a \to b$ and $b \to a$ each of which is homeomorphic to open intervals in \mathbb{R} . So, $(0,1) \cong X \setminus \{a,b\} = (a \to b) \cup (b \to a) \cong (0,1) \cup (1,2)$. The left most is a connected and the right most not a disconnected.

 $(3.iii) [0,1) \ncong X$

Suppose $[0,1) \ncong X$ by homeomorphic f that maps $1/2 \mapsto a$. By remark 4.3.6, $[0,1) \ncong X \Longrightarrow [0,1/2) \cup (1/2,1) \cong X \setminus \{a\} \cong (0,1)$. The left most is a disconnected and the right most not a connected.

(3.iv) X is not homeomorphic to any interval

Same argument in (3.iii)

(4.i) $Y \ncong X$

Y is disconnected and X is connected

(4.ii) Y is not homeomorphic to any interval

Y is disconnected and any interval is connected

(5.i) Z is not homeomorphic to any interval

Let a, b be the two intersecting points in Z, $Z \setminus \{a, b\}$ consists of 4 segments each of which is homeomorphic to open intervals in \mathbb{R} . Where f(a), f(b) split an interval into 3 intervals where f is a homeomorphism from Z to an interval.

(5.ii) Z is not homeomorphic to X

²counter-clockwise

Same argument. Where f(a), f(b) split X into 2 intervals where f is a homeomorphism from Z to X.

(5.ii) Z is not homeomorphic to Y

Same argument. Where f(a), f(b) split X into 2 or 3 intervals where f is a homeomorphism from Z to X.

(6) Sorgenfrey line \mathcal{T} is not homeomorphic to \mathbb{R} , \mathbb{R}^2 or any subspace of either of these spaces

Sorgenfrey line is disconnected by

$$\mathbb{R} = \left(\bigcup_{n=1}^{\infty} [-n, 0)\right) \cup \left(\bigcup_{n=1}^{\infty} [0, n)\right)$$

While \mathbb{R} is connected, so $\mathcal{T} \ncong \mathbb{R}$

Suppose $\mathbb{R}^2 \cong \mathcal{T}$ by $f: \mathbb{R}^2 \to \mathbb{R}$. Let $A = \{\langle x, 0 \rangle : x \in \mathbb{R}\} \subseteq \mathbb{R}^2$ be the horizontal line at y = 0. By lemma ??, $A \cong \mathcal{T}_{f(A)}$. Furthermore, $A \cong \mathbb{R}$, so $\mathbb{R} \cong \mathcal{T}_{f(A)}$.

We will now prove that f(A) is disconnected

Let $a < b < c \in f(A)$ be 3 distinct points since f(A) has at least 3 points. f(A) is disconnected by

$$f(A) = \left[f(A) \cap \left(\bigcup_{n=1}^{\infty} [-n, b) \right) \right] \cup \left[f(A) \cap \left(\bigcup_{n=1}^{\infty} [b, n) \right) \right]$$

where the left set has at least one element, namely a hence non-empty. Similarly for the right set

Exercise 4.3.7.iii

 \mathcal{T}_2 consists of \mathbb{R}, \varnothing and every interval (-r, +r) for all positive real number r. \mathcal{T}_9 consists of \mathbb{R}, \varnothing and every interval (-r, +r) and [-r, +r] for all positive real number r

Is $\mathcal{T}_2 \cong \mathcal{T}_9$? TODO

Exercise 4.3.8

Let (X, \mathcal{T}) be a topological space where X is an infinite set.

(i)* (X, \mathcal{T}) has a subspace homeomorphic to $(\mathbb{N}, \mathcal{T}_1)$ where either \mathcal{T}_1 is the indiscrete topology or $(\mathbb{N}, \mathcal{T}_1)$ is a T_0 -space

(ii)** Let (X, \mathcal{T}) be a T_1 -space. Then (X, \mathcal{T}) has a subspace homeomorphic to $(\mathbb{N}, \mathcal{T}_2)$ where \mathcal{T}_2 is either the finite-closed topology or the discrete topology

(iii) Deduce from (ii) that any infinite Hausdorff space contains an infinite discrete subspace and hence a subspace homeomorphic to \mathbb{N} with the discrete topology

- (iv)** Let (X, \mathcal{T}) be a T_0 -space which has no infinite T_1 -subspaces. Then the space (X, \mathcal{T}) has a subspace homeomorphic to $(\mathbb{N}, \mathcal{T}_3)$ where \mathcal{T}_3 an initial segment topology or a final segment topology.
- (v) Deduce from the above that every infinite topological space has a subspace homeomorphic to $(\mathbb{N}, \mathcal{T}_4)$ where \mathcal{T}_4 is the indiscrete topology, the discrete topology, the finite-closed topology, initial segment topology or the final segment topology. Further, no two of these five topology on \mathbb{N} are homeomorphic

Lemma 8 Distinguishability is preserved under subspace, i.e if A is a subspace of X, a and b are in distinguishable in X implies a and b are indistinguishable in A.

Lemma 9 Indistinguishability is an equivalent relation.

Lemma 10 Suppose $A \subseteq X$ and $|A| \ge 2$, A consists of pairwise indistinguishable points if and only if A is indiscrete

Lemma 11 T_1 -space is preserved under subspace, i.e if X is a T_1 -space then $A \subseteq X$ a subspace of X is also T_1

Lemma 12 If X is a T_1 -space but not a finite-closed topological space, X has an infinite closed proper subset A.

Lemma 13 T_2 -space (Hausdorff) is preserved under subspace, i.e if X is a T_2 -space then $A \subseteq X$ a subspace of X is also T_2

Proof of Lemma??

Proof of Lemma ??

Main proof

(i)

Suppose (X, \mathcal{T}) has no subspace homeomorphic to $(\mathbb{N}, \mathcal{T}_1)$ that is an indiscrete space. We will prove that (X, \mathcal{T}) must have a subspace homeomorphic to $(\mathbb{N}, \mathcal{T}_1)$ that is T_0 .

The premise implies that all indistinguishable subsets of X is finite, namely S_1, S_2, \ldots If number of indistinguishable subsets of X is infinite. Invoke AC, choose each $x_i \in S_i$ for all $i \in \mathbb{N}$. The set $\{x_i : i \in \mathbb{N}\}$ is T_0 since S_i are disjoint indistinguishable subsets. Otherwise, number of indistinguishable subsets of X is finite and these sets are finite imply that $X \setminus \bigcup_{i \in \mathbb{N}} S_i$ is infinite. A countably infinite subset of this set is T_0

(ii)

Let an infinite set X be a T_1 -space, suppose there is no countably infinite subset of X that is finite-closed. We will construct an infinite subset of X that is discrete.

The premise implies if A is a countably infinite subset of X then A is not finite-closed.

Induction step

Let A_1 be a countably infinite closed proper subset of X. By the premise and lemma ??, A_1 is a T_1 -space and not finite-closed.

By lemma ??, A_1 has a countably infinite closed proper subset, namely A_2 . By the premise and lemma ??, A_2 is also a T_1 -space and not finite-closed.

By induction, we can construct an infinite sequence of countably subsets

$$X \supset A_1 \supset A_2 \supset A_3 \supset \dots$$

where A_{i+1} is a countably infinite closed proper subset of A_i . We have $A_i \setminus A_{i+1} \neq \emptyset$ is open in A_i , so

$$\begin{array}{ll} A_i \setminus A_{i+1} = O_{i-1} \cap A_i & \text{where } O_{i-1} \text{ is open in } A_{i-1} \\ &= (O_{i-2} \cap A_{i-1}) \cap A_i & \text{where } O_{i-2} \text{ is open in } A_{i-2} \\ &= \dots \\ &= O \cap A_1 \cap A_2 \cap \dots \cap A_{i-1} \cap A_i & \text{where } O \text{ is open in } X \\ &= O \cap A_i \\ &= O^{(i)} \cap A_i & O^{(i)} = O \end{array}$$

We observe that, for each $i \in \mathbb{N}$, there exists an open set $O^{(i)}$ of X that contains $A_i \setminus A_{i+1}$ but does not contain A_{i+1}

Invoke AC, we choose x_i from each disjoint set $A_i \setminus A_{i+1}$ for all $i \in \mathbb{N}$. For each x_i , there exists an open set $O^{(i)}$ containing x_i and does not contain $\{x_{i+1}, x_{i+2}, ...\} \subseteq A_{i+1}$.

X is T_1 implies that every finite subset of X is closed. Therefore, $F_i = X \setminus \{x_1, x_2, ..., x_{i-1}\}$ is open. So, the open set $O^{(i)} \cap F_i$ does not contain $\{x_1, x_2, ..., x_{i-1}\}$ and $\{x_{i+1}, x_{i+2}, ...\}$. Therefore, $\{x_i\}$ is an open set on $\{x_1, x_2, ...\}$. Every singleton set is open, so $\{x_1, x_2, ...\}$ is discrete.

(iii)

Let X be an Hausdorff space and A be any infinite subspace of X. Let $a \in A$, For any other point $b \in A$, since X is Hausdorff, there exists an open set $U_b \subseteq X$ such that $a \notin U_b$ and $b \in U_b$. The open set $U^{(a)} \subseteq X$ is defined as follows

$$U^{(a)} = \bigcup_{b \in X \setminus \{a\}} U_b$$

Furthermore, $U^{(a)} \cap X = \{a\}$ implies that every singleton set in A is closed. Hence, every subset of X is a T_1 -space.

From (ii), there exists an countably infinite subset of X that is either finite-closed or discrete. Now, we will prove that every infinite subset of X is not finite-closed.

Suppose A is an infinite subset of X that is finite-closed. Let $x,y\in A$, since X is a Hausdorff space, there exist two disjoint open set $U_x,U_y\subseteq X$ such that $x\in U_x$ and $y\in U_y$. $V_x=A\cap U_x$ and $V_y=A\cap U_y$ are two non-empty open sets in the subspace A. Two disjoint open sets V_y,V_y in A must have $V_y\subseteq A\setminus V_y$. $A\setminus V_x$ is closed in A, so $A\setminus V_x$ is finite, so V_y is finite. That implies $A\setminus V_y$ is both closed and infinite, contradicts with the premise.

(iv) TODO

Exercise 4.3.9.iii

Prove that if $f:(X,\mathcal{T})\to (Y,\mathcal{T}_1)$ is a local homeomorphism, then f maps every open set of X into an open set of Y

Exercise 5.2.6

An analysis problem using topology

Lemma 14 If A is a connected subspace of (X, \mathcal{T}) and $A \subseteq B \subseteq \overline{A}$, then B is connected.

(i) Show that the subspace

$$Y = \{\langle x, y \rangle : y = \sin(1/x), 0 < x < 1\}$$

of \mathbb{R}^2 is connected

(ii) Verify that

$$\overline{Y} = Y \cup \{\langle 0, y \rangle : -1 \le y \le 1\}$$

(iii) From lemma $\ref{initial}$, \overline{Y} is connected.

Lemma 15 For two distinct points $x_1, x_2 \in \mathbb{R}$

$$|\sin(x_2) - \sin(x_1)| < |x_2 - x_1|$$

Proof of Lemma ??

Suppose that B is not connected, i.e there exists two non-empty open sets P,Q in \mathcal{T} that split B into two parts. Since A is connected, A must be in either P or Q. Let $A \in P$, Q is non-empty so there exists a limit point of A in Q, namely q. q is a limit point of A, so there is no open sets in \mathcal{T} containing x and not containing A. Contradiction

Main proof

(i)

We will use the Lemma 5.1.2 state that a mapping f from (X, \mathcal{T}) into (Y, \mathcal{T}') is continuous if for each $a \in X$ and each $U \in \mathcal{T}'$ with $f(a) \in U$, there exists a $V \in \mathcal{T}$ such that $a \in V$ and $f(V) \subseteq U$

Consider the mapping $f:(0,1]\to\mathbb{R}^2$ that maps $x\mapsto \langle x,\sin(1/x)\rangle$

For each $a \in (0,1]$, $f(a) = \langle a, \sin(1/a) \rangle$ and each open set containing f(a). Every open set U containing f(a) in \mathbb{R}^2 is a union of open squares, so there exists an open square containing f(a). Now we choose an open square O_U centered at f(a) and contained in the previous open square. Let 2ϵ be the size of O_U such that $0 < \epsilon < a$, so

$$O_U = (a - \epsilon, a + \epsilon) \times (\sin \frac{1}{a} - \epsilon, \sin \frac{1}{a} + \epsilon)$$

Now we will construct an open set $O_V \subseteq (0,1]$. Let $a > \delta > 0$, for all $x \in (a - \delta, a + \delta)$

$$\left| \sin \frac{1}{x} - \sin \frac{1}{a} \right| < \left| \frac{1}{x} - \frac{1}{a} \right|$$
 (lemma ??)
$$= \frac{|a - x|}{xa}$$
 ($a > 0$ and $x > 0$)
$$< \frac{\delta}{(a - \delta)a}$$
 ($a > 0$ and $x > 0$)
$$= \frac{1}{\left(\frac{a}{\delta} - 1\right)a}$$

We want to choose δ such that $\sin \frac{1}{x}$ stays within $(\sin \frac{1}{a} - \epsilon, \sin \frac{1}{a} + \epsilon)$, i.e

$$\left| \sin \frac{1}{x} - \sin \frac{1}{a} \right| < \epsilon$$

Let

$$\frac{1}{(\frac{a}{\delta} - 1)a} < \epsilon$$

$$(\frac{a}{\delta} - 1)a > \frac{1}{\epsilon}$$

$$\frac{a}{\delta} - 1 > \frac{1}{a\epsilon}$$

$$\frac{a}{\delta} > \frac{1}{a\epsilon} + 1$$

$$\delta < \frac{a}{\frac{1}{a\epsilon} + 1}$$

Therefore, for any $a \in (0,1]$, for any open set $U \in \mathbb{R}^2$ containing f(a), there exists an open square O_U of size 2ϵ centered at f(a) such that $O_U \subseteq U$ and $a > \epsilon > 0$. Let the open interval $V = (a - \delta, a + \delta)$ where $\delta < \frac{a}{\frac{1}{a\epsilon} + 1}$ and $\delta < \epsilon$. Then $a \in V$ and

$$f(V) \subseteq (a - \delta, a + \delta) \times (a - \epsilon, a + \epsilon) \subseteq O_U \subseteq U$$

Hence, f is continuous. Furthermore, (0,1] is connected, so Y=f((0,1]) is also connected.

(ii)

We will prove precisely that $Z=\{\langle 0,y\rangle: -1\leq y\leq 1\}$ is the set of limit points not contained in Y.

We split $\mathbb{R}^2 \setminus Y$ into several disjoint regions

$$A_{1} = \{\langle x, y \rangle : x > 1\}$$

$$A_{2} = \{\langle x, y \rangle : 0 < x\}$$

$$A_{3} = \{\langle x, y \rangle : 0 < x \le 1\} \setminus Y$$

$$A_{4} = \{\langle 0, y \rangle : 1 < y\}$$

$$A_{5} = \{\langle 0, y \rangle : y < -1\}$$

$$Z = \{\langle 0, y \rangle : -1 \le y \le 1\}$$

 A_1

For every point $\langle x, y \rangle \in A_1$, the open set $(1, x+1) \times (y-1, y+1)$ contains $\langle x, y \rangle$ but not any point in Y

 A_{ς}

For every point $\langle x, y \rangle \in A_2$, the open set $(x-1,0) \times (y-1,y+1)$ contains $\langle x, y \rangle$ but not any point in Y

 A_{Δ}

For every point $\langle x,y\rangle\in A_4$, the open set $(-1,1)\times(1,y+1)$ contains $\langle x,y\rangle$ but not any point in Y

 A_5

For every point $\langle x, y \rangle \in A_5$, the open set $(-1, 1) \times (y - 1, -1)$ contains $\langle x, y \rangle$ but not any point in Y

A

For every point $\langle x, y \rangle \in A_3$, let $x > \delta > 0$, consider $x_1 \in (x - \delta, x + \delta) \subseteq (1, 0]$. Distance between $\langle x, y \rangle$ and $\langle x_1, \sin \frac{1}{x_1} \rangle \in Y$ is r where

$$r^{2} = \left(y - \sin\frac{1}{x_{1}}\right)^{2} + (x - x_{1})^{2}$$

We will prove that r^2 is bounded below by some positive number.

$$\left| y - \sin \frac{1}{x_1} \right| \ge \left| y - \sin \frac{1}{x} \right| - \left| \sin \frac{1}{x_1} - \sin \frac{1}{x} \right| \qquad \text{(Triangle inequality)}$$

$$> \left| y - \sin \frac{1}{x} \right| - \left| \frac{1}{x_1} - \frac{1}{x} \right| \qquad \text{(lemma ??)}$$

$$= \left| y - \sin \frac{1}{x} \right| - \frac{\left| x - x_1 \right|}{x_1 x}$$

$$> \left| y - \sin \frac{1}{x} \right| - \frac{\delta}{(x - \delta)x}$$

$$= \left| y - \sin \frac{1}{x} \right| - \frac{1}{\left(\frac{x}{\delta} - 1 \right) x}$$

Choose $\delta > 0$ small enough such that $\left| y - \sin \frac{1}{x} \right| - \frac{1}{(\frac{x}{\delta} - 1)x} > 0$, i.e

$$\left| y - \sin \frac{1}{x} \right| - \frac{1}{\left(\frac{x}{\delta} - 1\right)x} > 0$$

$$\frac{1}{\left(\frac{x}{\delta} - 1\right)x} < \left| y - \sin \frac{1}{x} \right|$$

$$\frac{1}{\frac{x}{\delta} - 1} < x \left| y - \sin \frac{1}{x} \right|$$

$$\frac{x}{\delta} - 1 > \frac{1}{x \left| y - \sin \frac{1}{x} \right|}$$

$$\frac{x}{\delta} > 1 + \frac{1}{x \left| y - \sin \frac{1}{x} \right|}$$

$$\delta < \frac{x}{1 + \frac{1}{x \left| y - \sin \frac{1}{x} \right|}}$$

we will have

$$r^2 > \left(\left| y - \sin \frac{1}{x} \right| - \frac{1}{\left(\frac{x}{\delta} - 1\right)x} \right)^2 > 0$$

The open disc of radius $|y-\sin\frac{1}{x}|-\frac{1}{(\frac{x}{\delta}-1)x}$ centered at $\langle x,y\rangle$ does not contain any point in Y

Z

For every point $\langle 0,y\rangle \in Z$, any open set containing $\langle 0,y\rangle$ contains an open disc of radius r centered at $\langle 0,y\rangle$. We will prove that for all $y\in [-1,1]$ and 0< r<1, there exists a point $\langle x,y\rangle$ in Y that is contained in the open disc, i.e x< r

The set of real values t > 0 such that $\sin(t) = y$ is $T = \{\arcsin(y) + 2\pi k : k \in \mathbb{Z}\} \cap [0, \infty)$. For any number M, there exists $t \in T$ such that t > M.

Let $M = \frac{1}{r}$, there exists $t \in T$ such that $t > \frac{1}{r}$. Let $x = \frac{1}{t} < r$, $\langle x, y \rangle = \langle x, \sin \frac{1}{r} \rangle$

Therefore, every point in Z is a limit point of Y.

Hence, $\overline{Y} = Y \cup Z$ is connected.

Exercise 5.2.7

Let E be the set of all points in \mathbb{R}^2 having both coordinates rational. Prove that the space $\mathbb{R}^2 \setminus E$ is path-connected

Main proof

m p

Let $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$ be two points on $\mathbb{R}^2 \setminus E$. Without loss of generality, assume either one of these two cases occurs: (1) x_1, x_2 irrational or (2) x_1, y_2 irrational.

Case (1) Let $y \in \mathbb{R}$ irrational, f is defined as ³

$$f_1: \left[0 \to \frac{1}{3}\right] \mapsto (\langle x_1, y_1 \rangle \to \langle x_1, y \rangle) \subseteq \mathbb{R}^2 \setminus E$$

$$f_2: \left[\frac{1}{3} \to \frac{2}{3}\right] \mapsto (\langle x_1, y \rangle \to \langle x_2, y \rangle) \subseteq \mathbb{R}^2 \setminus E$$

$$f_3: \left[\frac{2}{3} \to 1\right] \mapsto (\langle x_2, y \rangle \to \langle x_2, y_2 \rangle) \subseteq \mathbb{R}^2 \setminus E$$

Case (2) f is defined as

$$f_1: \left[0 \to \frac{1}{2}\right] \mapsto (\langle x_1, y_1 \rangle \to \langle x_1, y_2 \rangle) \subseteq \mathbb{R}^2 \setminus E$$

$$f_2: \left[\frac{1}{2} \to 1\right] \mapsto (\langle x_1, y_2 \rangle \to \langle x_2, y_2 \rangle) \subseteq \mathbb{R}^2 \setminus E$$

Exercise 5.2.8

Let C be any countable subset of \mathbb{R}^2 . Prove that space $\mathbb{R}^2 \setminus C$ is path-connected.

TODO

 $^{^3}a \rightarrow b$ denotes the directed line segment from a to b

Exercise 5.2.12

Let A and B be subsets of a topological space (X, \mathcal{T}) . If A and B are both closed, and $A \cup B$ and $A \cap B$ are both connected, show that A and B are connected.

Main proof

Suppose A is disconnected, i.e there exists non-empty disjoint closed sets P,Q of A such that $P\cup Q=A$.

Since P is closed in A, $P = C_P \cap A$ where C_P is a closed set in X. Moreover, A is closed, so P is closed in X. Similarly, C is closed in X.

Since $A \cap B$ is connected, $A \cap B$ must be contained in either P or Q.

Without loss of generality, $A \cap B \subseteq Q$

We have two disjoint closed sets P and $Q \cup B$. Contradiction

Exercise 5.2.13.vii

A subset of \mathbb{R} is zero-dimensional if and only if it is totally disconnected.

Main proof

 (\Rightarrow)

Suppose a subset $X\subseteq\mathbb{R}$ is zero-dimensional but not totally disconnected, i.e there exists a connected subset $Y\subseteq X$ containing at least two elements.

Let $a, b \in Y \subseteq X$ such that a < b, let $A = (-\infty, \frac{a+b}{2})$ and $B = (\frac{a+b}{2}, \infty)$ open in \mathbb{R} , so $A \cap X$ is open in X. Since X is zero-dimensional, there exists an clopen set $U \subseteq A$ of A containing a and not containing b. $U \cap Y$ and $(A \setminus U) \cap Y$ are two open sets in Y that separate a and b. So Y is disconnected, contradiction.

Therefore, all connected subsets of X is singleton sets.

 (\Leftarrow) TODO

Exercise 5.3.15

Same as 5.2.8

Tychonoff Theorem

4

Definition 16 (Product Topology) Let $\{(X_i, \mathcal{T}_i) : i \in I\}$ be a family of topological spaces where I is an index set. The Cartesian product of the family of sets $\{X_i : i \in I\}$ is denoted by $\prod_{i \in I} X_i$ consists of the set of all functions $f : I \to \bigcup_{i \in I} X_i$ such that $f(i) = x_i \in X_i$. The product space is denoted by $\prod_{i \in I} (X_i, \mathcal{T}_i)$ on the product set $\prod_{i \in I} X_i$ with the product topology \mathcal{T} having the basis

$$\mathcal{B} = \left\{ \prod_{i \in I} O_i : O_i \in \mathcal{T}_i \text{ and } O_i = X_i \text{ for all but a finite number of } i \right\}$$

Theorem 1 (Tychonoff Theorem) Let $\{(X_i, \mathcal{T}_i) : i \in I\}$ be a family of topological spaces where I is an index set. Then $(X, \mathcal{T}) = \prod_{i \in I} (X_i, \mathcal{T}_i)$ is compact if and only if each (X_i, \mathcal{T}_i) is compact.

Definition 17 (Finite Intersection Property) Let X be a set and \mathcal{F} be a family of subsets of X. Then \mathcal{F} is said to have the finite intersection property (FIP) if for any finite number $F_1, F_2, ..., F_n$ of elements of \mathcal{F} , $\bigcap_{i=1}^n F_i \neq \emptyset$

Axiom 1 (Zorn lemma) Let (X, \leq) be a non-empty partially ordered set in which every subset which is linearly ordered has an upper bound. Then (X, \leq) has a maximal element.

Proposition 2 (Compactness) A topological space (X, \mathcal{T}) is compact if and only if every family \mathcal{F} of closed subsets of X with FIP satisfies $\bigcap_{F \in \mathcal{F}} \neq \emptyset$

Lemma 16 Let X be a set and \mathcal{F} be a family of subsets of X with FIP. Then there is a maximal family of subsets of X containing \mathcal{F} with FIP.

Proof of Lemma ??

Let Z be the collection of all families of subsets of X that have FIP. Consider the order on Z, that is, $\mathcal{F}_1 \leq \mathcal{F}_2$ if $\mathcal{F}_1 \subseteq \mathcal{F}_2$. Let Y be any linearly ordered collection of elements of Z. $\bigcup_{\mathcal{Y} \in Y} \mathcal{Y}$ contains all $\mathcal{Y} \in Y$ with FIP, so $\bigcup_{\mathcal{Y} \in Y} \mathcal{Y}$ is an upper bound of Y. By Zorn Lemma, Z has a maximal element

Main Proof

Let $\mathcal F$ be a family of closed subsets of X with FIP. We will prove that $\bigcap_{F\in\mathcal F} F\neq\varnothing.$

Let \mathcal{H} be the maximal family of subsets of X containing containing \mathcal{F} with FIP.

 $^{^4}$ present here the proof of Tychonoff Theorem that is easier to read than the original version in the book

Claim 1 Let $p_i:(X,\mathcal{T})\to (X_i,\mathcal{T}_i)$ be the projection mapping. Then,

$$\bigcap_{H\in\mathcal{H}}\overline{p_i(H)}\neq\varnothing$$

Claim 2 Since $\bigcap_{H\in\mathcal{H}} \overline{p_i(H)} \neq \emptyset$, let $x_i \in \bigcap_{H\in\mathcal{H}} \overline{p_i(H)}$, we put $x = \prod_{i\in I} x_i$. Then,

$$x\in\bigcap_{H\in\mathcal{H}}\overline{H}$$

Since \mathcal{F} is a family of closed sets, then $\mathcal{F} \subseteq \mathcal{H}$ implies $\mathcal{F} \subseteq \{\overline{H} : H \in \mathcal{H}\}$. From Claim ??, $\bigcap_{H\in\mathcal{H}}\overline{H}\neq\emptyset$ implies $\bigcap_{F\in\mathcal{F}}F\supseteq\bigcap_{H\in\mathcal{H}}\overline{H}\neq\emptyset$.

In the reverse direction, notice that the projection mapping is surjective continuous and surjective continuous preserves compactness.

Proof of Claim ??

 \mathcal{H} has FIP, then the family $\{p_i(H): H \in \mathcal{H}\}$ has FIP, so is $\{\overline{p_i(H)}: H \in \mathcal{H}\}$. $\{p_i(H): H \in \mathcal{H}\}$ is a family of closed subsets of X_i with FIP, since X_i is compact, then $\bigcap_{H\in\mathcal{H}} p_i(H) \neq \emptyset$

Proof of Claim ??

Let O be an open set containing x, then O contains a basic open set ⁵ containing x that is of the form $B = \bigcap_{i \in J} p_i^{-1}(U_i)$ where $x_i \in U_i \in \mathcal{T}_i$ and J is a finite subset of I.

For every $H \in \mathcal{H}$, $x_i \in \overline{p_i(H)}$, so $U_i \cap \overline{p_i(H)} \neq \emptyset$. That implies $p_i^{-1}(U_i) \cap H \neq \emptyset$ Ø.

Lemma 17 Let $S \subseteq X$ that intersects non-trivially every element of \mathcal{H}^7 . Then

$$S \in \mathcal{H}$$

Lemma 18 Let $\{H_1, H_2, ..., H_n\}$ be a finite subset of \mathcal{H} . Then,

$$H' = \bigcap_{i=1}^{n} H_i \in \mathcal{H}$$

By Lemma ??, $p_i^{-1}(U_i) \in \mathcal{H}$ for every $i \in I$. By Lemma ??, $B \in \mathcal{H}$. By FIP on \mathcal{H} , for every $H \in \mathcal{H}$, $B \cap H \neq \emptyset$. Hence, $O \cap H \neq \emptyset$

Therefore, x is either contained in or a limit point of every $H \in \mathcal{H}$. Hence $x \in \bigcap_{H \in \mathcal{H}} \overline{H}$

⁵the open set in the canonical basis \mathcal{B}

 $^{{}^{6}}p_{j}^{-1}(U_{j}) = U_{j} \times \prod_{i \in I \setminus X_{j}} X_{i}$ ${}^{7}H \in \mathcal{H} \implies H \cap S \neq \varnothing$

Proof of Lemma ??

Suppose $S \notin \mathcal{H}$, \mathcal{H} has FIP implies $\{S\} \cup \mathcal{H}$ has FIP. That violates the maximal assumption of \mathcal{H}

Proof of Lemma ??

Suppose $H' \notin \mathcal{H}$, \mathcal{H} has FIP implies $\{H'\} \cup \mathcal{H}$ has FIP. That violates the maximal assumption of \mathcal{H}

Next

I STOPPED THIS SERIES HERE UNTIL FURTHER NOTICE DUE TO LACK OF TIME