Deformations of space curves lying on a del Pezzo surface

Hirokazu Nasu

Tokai University

June 12, 2025 2025 Algebraic Geometry Conference in Jeonju Hanok Village

Today's slide

Plan of Talk

- Mumford's pathology (Motivation)
- Hilbert scheme of Fano 3-folds
- Obstructions to deforming space curves lying on a del Pezzo surface (Kleppe-Ellia conjecture and its generalization, cf. arXiv:2501.15788)

- 1 Mumford's example
- .3 A generalization

§1 Mumford's example (Motivation)

- §1.2 Murphy's law
- §1.3 A generalizati

Hilbert scheme

We work over a field $k = \overline{k}$ of char k = 0.

 $X \subset \mathbb{P}^n$: a closed subscheme.

 $O_X(1)$: a very ample line bundle on X.

 $C \subset X$: a closed subscheme with Hilbert polynomial P(C) = P.

Theorem 1 (Grothendieck'60)

There exists a projective scheme $\operatorname{Hilb}_P X$ (called the Hilbert scheme of X), parametrizing all closed subschemes C' of X with (the same) Hilbert polynomial P.

Let $\mathbf{Hilb}\ X := \bigsqcup_{P} \mathbf{Hilb}_{P}\ X$ (full Hilbert scheme) and let $\mathbf{Hilb}^{sc}\ X$ denote the open and closed subscheme

 $Hilb^{sc} X := \{smooth connected curves <math>C \subset X\} \subset Hilb X.$

Today we consider $\mathbf{Hilb}^{sc} X$ of a smooth Fano manifold X from the viewpoint of Mumford's example.

Infinitesimal property of Hilbert schemes

- The tangent space of Hilb X at [C] is isomorphic to $H^0(C, N_{C/X})$.
- $C \subset X$: a locally complete intersection \Longrightarrow every obstruction to deforming C in X is contained in $H^1(C, N_{C/X})$ ($\subset \operatorname{Ext}^1(I_C, O_C)$) and

$$\underbrace{h^0(C,N_{C/X})-h^1(C,N_{C/X})}_{\text{exp.dim.}(=\chi(N_{C/X})\text{ if }C\text{ is a curve})} \leq \dim_{[C]} \text{Hilb }X \leq \underbrace{h^0(C,N_{C/X})}_{\text{tangential dimension}}.$$

- We say $C \subset X$ is unobstructed if Hilb X is nonsingular at [C].
- $H^1(C, N_{C/X}) = 0 \Longrightarrow C$ is unobstructed. The converse is not true (e.g. c.i. curves $C \subset \mathbb{P}^3$ may have large $H^1(N_{C/\mathbb{P}^3})$ but unobstructed.).

Purpose 2

Determine $\dim_{[C]} \operatorname{Hilb} X$ at a singular point [C] of $\operatorname{Hilb} X$.

- §1.1 Mumford's example §1.2 Murphy's law
 - 3 A generalization

Mumford's example (pathology)

Example 1 (Mumford'62)

 $\mathbf{Hilb}^{sc} \mathbb{P}^3$ contains a generically non-reduced irreducible component W whose general member C satisfies

- C is contained in a smooth cubic surface $S \subset \mathbb{P}^3$.
- There exists a line E on S such that C belongs to a complete linear system $\Lambda := |-4K_S + 2E| (\simeq \mathbb{P}^{37})$ on S.
- **3** dim W = 56, $h^0(C, N_{C/\mathbb{P}^3}) = 57$, and C is of degree 14 and genus 24.

Smooth cubic and Blow-up of \mathbb{P}^2

Curves on a smooth cubic (Mumford's ex.)

Example 1 (Mumford'62)

 $\mathbf{Hilb}^{sc} \mathbb{P}^3$ contains a generically non-reduced irreducible component Wwhose general member C satisfies

- C is contained in a smooth cubic surface $S \subset \mathbb{P}^3$.
- There exists a line a line E on S such that C belongs to a linear system $\Lambda := 1 - 4K_S + 2E_1 \simeq \mathbb{P}^{37}$ on S.
- **3** dim W = 56, $h^0(C, N_{C/\mathbb{P}^3}) = 57$, and C is of degree 14 and genus 24.
 - The above example appeared in a paper "Further pathologies in algebraic geometry".
 - Here C and \mathbb{P}^3 are geometrically innocent-looking (a pathology).
- Later many non-reduced components of $Hilb^{sc} \mathbb{P}^3$ were found by e.g. Gruson-Peskine'82, Kleppe'87, Ellia'87, Fløystad'93, N'05, Kleppe-Ottem'15, etc. and also those of $Hilb^{sc} \mathbb{P}^n$ (n > 3) have been more recently found by Choi-Iliev-Kim'22,23.

Murphy's law in AG

Moreover, to the question: "How bad can the deformation space of an object be?", R. Vakil has answered:

Law 3 (Murphy's law in AG)

Unless there is some a priori reason otherwise, the deformation space may be as bad as possible

Theorem 4 (Vakil'06)

The following moduli spaces satisfy Murphy's law,i.e., they have every singularity type of finite type over $\mathbb{Z}!$:

- the Hilbert scheme of smooth connected curves $C \subset \mathbb{P}^r$ $(r \geq 4)$
- the versal deformation spaces of smooth n-folds X (with very ample K_X , $n \ge 2$)
- the Hilbert scheme of smooth surfaces $S \subset \mathbb{P}^r$ $(r \geq 4)$
- ...

A generalization of Mumford's example (with Mukai)

We have found that in Mumford's example, (-1)-curves $E \simeq \mathbb{P}^1$ (on smooth cubics) play an important role.

Theorem 5 (Mukai-N'09, char $k \geq 0$)

Let *X* be a smooth projective 3-fold satisfying the following:

- there exists a smooth rational curve E on X s.t. $N_{E/X}$ is globally generated, and
- 1 there exists a smooth surface S s.t. $E \subset S \subset X$, $E^2 = -1$ on S, and $H^1(S, N_{S/X}) = p_{\sigma}(S) = 0.$

Then the Hilbert scheme Hilbse X has infinitely many generically non-reduced components (GNRC).

Remark 6

- 1 In Mumford's ex., $X = \mathbb{P}^3$, S is a smooth cubic, E is a line.
- Many uniruled 3-folds X satisfy the assumption of the theorem.

The idea of the proof

- Let $\varepsilon: S \to F$ be the contraction of the (-1)-curve E and $\Delta \ge 0$ a sufficiently general divisor on F. We consider a linear system $|\varepsilon^*\Delta K_X|_S + 2E|$ on S and its general member C (i.e. a smooth curve on S).
- ullet We consider an irreducible component $oldsymbol{W}_{C,S}$ of the Hilbert-flag scheme

$$\operatorname{HF} X = \left\{ (C', S') \mid \text{ two closed subschemes of } X \text{ s.t. } C' \subset S' \right\}$$
 passing through the point $[(C, S)]$, and let $W_{C,S}$ be it image in $\operatorname{Hilb}^{sc} X$.

• For every general $C \in W_{C,S}$, there exists a first order infinitesimal deformation \tilde{C} of C in X not contained in any \tilde{S} of S in X. We prove its obstruction $ob(\tilde{C})$ is nonzero (which will be explained later).

§2 Hilbert schemes of Fano 3-folds

Hilbert scheme of Fano 3-folds

- A Fano manifold is a smooth projective variety X with ample $-K_X$.
- The index r of a Fano manifold X is the maximal integer r such that $-K_X \sim rH$ with some $H \in \operatorname{Pic} X$.

Let X be a smooth Fano 3-fold of index r.

- $X \simeq \mathbb{P}^3$ if r = 4 and $X \simeq \mathbb{Q}^3 \subset \mathbb{P}^4$ if r = 3, and X is called del Pezzo if r = 2, and prime if r = 1 and $\rho = 1$.
- If we restrict X with $\rho = 1$, then there exist 17 deformation equivalence classes of X (Fujita, Iskovskih'77,'78):

r	4	3	2	1
the number of cls.	1	1	5	10
variety / cls.	\mathbb{P}^3	$Q^3 \subset \mathbb{P}^4$	del Pezzo	prime Fano

Table: the number of deformation equivalence classes of X

Applying Theorem 5, we obtain

Example 2 (N'10)

If r > 1 (and of any $\rho(X)$), then $Hilb^{sc} X$ contains a a generically non-reduced component W satisfying:

- every general member C of W is contained in a smooth del Pezzo surface S ($\sim -\frac{r-1}{r}K_X$), and
- ② there exists a (good) line E on S and $C \sim -K_X|_S + 2E$ in $\operatorname{Pic} S$.

Here

- A curve $E \subset X$ is a line $\stackrel{\text{def}}{\Longleftrightarrow} E \simeq \mathbb{P}^1$ and $-\frac{1}{r}K_X.E = 1$.
- A line $E \subset X$ is good $\stackrel{\text{def}}{\Longleftrightarrow} N_{E/X} \simeq O_E^{\oplus 2}$ (for r=2,3).
- dim W = 56, 42 and $(-K_X)^3/2 + 4$ for r = 4, 3, 2, respectively.

Hilbert scheme of prime Fano 3-folds (r = 1)

If X is prime (r=1), then there exists NO del Pezzo surface $S \subset X$. However, we can make use of K3 surfaces $S \subset X$ and (-2)-curves $E \simeq \mathbb{P}^1$ on S instead of (-1)-curves.

Theorem 7 (N'19)

Let X be a prime Fano 3-fold of genus $g := (-K_X)^3/2 + 1$. Then $Hilb^{sc} X$ contains a generically non-reduced component W with the following properties:

- Every general member C of W is contained in a K3 surface S $(\sim -K_X)$.
- ② There exists a good conic $E \simeq \mathbb{P}^1$ on S such that $C \sim -2K_X|_S + 2E$.
- **3** dim W = 5g + 1, $h^0(C, N_{C/X}) = 5g + 2$, and C is of degree 4g and genus 4g + 1.

Here a conic E on X is called good if $N_{E/X} \simeq O_E^{\oplus 2}$.

Another generalization of Mumford's example

Corollary 8

If X is a smooth Fano 3-fold and $\rho(X) = 1$, then $\operatorname{Hilb}^{sc} X$ contains a generically non-reduced component.

3-fold X	surface S	$[C] \in \operatorname{Pic} S$	E	
\mathbb{P}^3				Mumford['62]
$Q^3 \subset \mathbb{P}^4$	del Pezzo	$-K_X _S + 2E$	line	Mukai-N['09]
del Pezzo				Mukai-N['09], N['10]
prime Fano	К3	$-2K_X _S + 2E$	conic	N['19]

Table: Generically non-reduced component of Mumford type

Enriques surface and half pencil

Definition 9

A smooth projective surface S is called Enriques if $H^i(S, O_S) = 0$ for i = 1, 2 and $2K_S \sim 0$.

Remark 10

Let S be an Enriques surface. Then

- **1** $S \simeq X/\varepsilon$ for some K3 surface X and a fixed-free involution ε .
- ② *S* admits an elliptic fibration $\varphi: S \longrightarrow \mathbb{P}^1$, which has two double fibers $\varphi^{-1}(0) = 2E$ and $\varphi^{-1}(\infty) = 2E'$.

Definition 11

Such effective divisors E and E' are called a half pencil on S.

Elliptic fibration on Enriques surface

Enriques-Fano 3-folds

Definition 12

An Enriques-Fano 3-fold (EF3, for short) is a projective 3-fold $X \subset \mathbb{P}^N$ containing an Enriques surface S as a hyperplane section, and such that X is not a cone over S.

Remark 13

Every EF3 X has isolated sings (Conte-Murre'85). X has only cyc. quot. term. sings if and only if $X \simeq Y/\theta$ for a smooth Fano Y and an involution θ on Y (classified by Bayle'94 and Sano'95).

Example 3 (EF3 of g = 9)

Let $Y \subset \mathbb{P}^5$ be a smooth complete intersection of 2 quadrics

$$q_i(x_0, x_1, x_2) + q'_i(x_3, x_4, x_5) = 0 \quad (i = 1, 2),$$
 (\heartsuit)

where x_0, \ldots, x_5 are coordinates of \mathbb{P}^5 . Consider the involution on Y

$$\theta:(x_0,x_1,x_2,x_3,x_4,x_5)\longmapsto(x_0,x_1,x_2,-x_3,-x_4,-x_5).$$

Then $X := Y/\theta$ is an EF3. In fact, Y contains a smooth K3 on which θ acts freely.

Theorem 14 (N'21)

Let X be an Enriques-Fano 3-fold, S an Enriques surface in X. The $\mathbf{Hilb}^{sc}\ X$ contains a generically non-reduced component if there exists a half pencil E on S such that

- $(-K_X.E)_X \ge 2$, and
- ② $H^1(E, N_{E/X}(E)) = 0$, where $N_{E/X}(E) := N_{E/X} \otimes_E N_{E/S}$,

Generalization of Mumford's example

We have obtained the following non-reduced components so far:

3-fold X	surface S	$[C] \in \operatorname{Pic} S$	\boldsymbol{E}	
\mathbb{P}^3		_		Mumford['62]
$Q^3 \subset \mathbb{P}^4$	del Pezzo	$-K_X _S + 2E$	line	Mukai-N['09]
del Pezzo				Mukai-N['09], N['10]
\mathbb{P}^3 or $X_4 \subset \mathbb{P}^4$		_	elliptic curve	N['17]
prime Fano	<i>K</i> 3	$-2K_X _S + 2E$	conic	N['19]
Enriques-Fano	Enriques	$-K_X _S + 2E$	half pencil	N['21]

Table: Generically non-reduced component of Mumford type

Question 15

(non-reduced comp. of **Hilb** X) $\overset{\text{relation?}}{\longleftrightarrow}$ (\mathbb{P}^1 or elliptic curves on X)

§3 Obstructions to deforming space curves lying on a del Pezzo surface

Primary obstructions

Let X be a projective scheme over k, C a loc. c. i. closed subscheme of X, and $k[\varepsilon] := k[t]/(t^2)$ (the ring of dual numbers).

- A first order (infinitesimal) deformation of C is a deformation \tilde{C} ($\subset X \times \operatorname{Spec} k[\varepsilon]$) of C in X over $k[\varepsilon]$.
- \tilde{C} naturally corresponds to $\alpha \in H^0(C, N_{C/X}) (\simeq \operatorname{Hom}(I_C, O_C))$.
- There is an element $\operatorname{ob}(\alpha)$ in $H^1(C, N_{C/X})$ (called the primary obstruction of α) such that

$$\operatorname{ob}(\alpha) = 0 \iff \tilde{C}$$
 is liftable to some $\tilde{\tilde{C}}$ over $k[t]/(t^3)$.

• $ob(\alpha)$ can be expressed as a cup product, and

$$ob(\alpha) = \alpha \cup e \cup \alpha$$
 in $Ext^1(I_C, O_C)$

where
$$e := [0 \rightarrow I_C \rightarrow O_X \rightarrow O_C \rightarrow 0].$$

ob(α) ≠ 0 for some α implies that Hilb X is singular at [C] by infinitesimal lifting property of smoothness.

Obstructedness Criterion (with Mukai)

[Mukai-N'09] gave a sufficient condition for $ob(\alpha) \neq 0$ when dim X = 3. Let C be an irreducible curve on a 3-fold X.

Assumption 1

- there exists an intermediate surface $C \subset S \subset X$ s.t. $C \hookrightarrow S$ and $S \hookrightarrow X$ are regular embeddings.
- there exists an irreducible curve $E \neq C$ on S s.t. $[O_S \hookrightarrow O_S(E)] \otimes O_S(mE)$ induces the injection

$$H^1(S, O_S(m\mathbf{E})) \hookrightarrow H^1(S, O_S((m+1)\mathbf{E}))$$

for all m > 0. (e.g. $E = (-1) - \mathbb{P}^1$ on S)

Obstructedness Criterion (Continued)

Let $\alpha \in H^0(N_{C/X})$ be a first order deformation of C in X and $\operatorname{ob}(\alpha) \in H^1(N_{C/X})$ its primary obstruction. We consider the "exterior" components

$$\pi_{C/S}(\alpha) := H^0(\pi_{C/S})(\alpha), \qquad \operatorname{ob}_S(\alpha) := H^1(\pi_{C/S})(\operatorname{ob}(\alpha)).$$

by the projection

$$\pi_{C/S}:N_{C/X}\to N_{S/X}|_{C}.$$

Assumption 2

• Suppose $\pi_{C/S}(\alpha)$ lifts to a global section β of $N_{S/X}(E)$.

$$H^0(N_{S/X}) \subset H^0(N_{S/X}(\underline{E})) \ni E$$

$$\alpha \in H^0(N_{C/X}) \xrightarrow{\pi_{C/S}} H^0(N_{S/X}|_C) \subset H^0(N_{S/X}(\underline{E})|_C)$$

Here β is called an infinitesimal deformation with pole:

Obstructedness Criterion (Continued)

Theorem 16 (Mukai-N'09)

 $ob_S(\alpha)$ is nonzero if

- ② Let $\beta|_E$ be the principal part of β along E. Then $\beta|_E \cup k_E \neq 0$ in $H^1(E, O_E(2E))$, where

$$\mathbf{k}_{E} := [0 \longrightarrow N_{E/S} \longrightarrow N_{E/X} \xrightarrow{\pi_{E/S}} N_{S/X} \Big|_{E} \longrightarrow 0]$$

$$\in \operatorname{Ext}_{E}^{1}(N_{S/X} \Big|_{E}, N_{E/S}).$$

① the restriction map $H^0(S, \Delta) \to H^0(E, \Delta|_E)$ is surjective,

Remark 17

In [Mukai-N'09], this criterion was applied to the proof of Thm. 5. We obtained the generically non-reduced components explained in §2 by this criterion.

Stable degeneration

Toward a generalization into higher dimensions, we study the deformations of space curves lying on a del Pezzo surface of degree. Let

$$C \subset S \subset X$$

be a flag of algebraic varieties.

Definition 18

We say $C \subset X$ is stably degnerate (or stably contained in S), if every small deformation C' of C in X is contained in a deformation S' of S in X.

If there exists a component $W_{C,S}$ of $\operatorname{HF} X$ passing through (C,S) such that the first projection

$$pr_1: W_{C,S} \to \text{Hilb } X, \qquad (C',S') \mapsto [C']$$

is locally surjective at $[C] \in Hilb X$, then $C \subset X$ is stably degenerate.

Kleppe-Ellia conjecture

Conjecture (Kleppe'87, modified by Ellia'87)

Let $C \subset S_3 \subset \mathbb{P}^3$ be a smooth connected curve of degree d and genus g lying on a smooth cubic surface $S_3 \subset \mathbb{P}^3$. Then C is stably degenerate if

- \bigcirc *g* ≥ 3*d* − 18,
- ② C is linearly normal, i.e. $H^1(I_C(1)) = 0$,
- 0 d > 9 and C is general in $[C] \in \operatorname{Pic} S_3$.

Remark 19

- the first two assumptions are necessary for the conclusion.
- 2 The conjecture is known to be true if
 - C is 3-normal, i.e. $H^1(I_C(3)) = 0$ (Kleppe'87),
 - C is not 3-normal and g >> d (Kleppe'87 and Ellia'87), or
 - C is 2-normal, i.e. $H^1(I_C(2)) = 0$ (N'23)

Generalized Kleppe-Ellia conjecture

Conjecture (generalized K-E conj.)

Let $C \subset S_n \subset \mathbb{P}^n$ be a smooth connected curve lying on a smooth del Pezzo surface $S_n \subset \mathbb{P}^n$ of degree $n \geq 3$. Then C is stably degenerate if

- ② C is linearly normal,
- **3** deg(C) > 9 for n = 3 and deg(C) > 2n for n ≥ 4, and C is general in $[C] ∈ Pic S_n$.

Remark 20

The first assumption is equivalent to that

$$\dim_{(C,S)} \operatorname{HF} \mathbb{P}^n = \chi(N_{(C,S)/\mathbb{P}^n}) \ge \chi(N_{C/\mathbb{P}^n}) = (\text{exp.dim.of Hilb } X \text{ at } [C]),$$

where
$$N_{(C,S)/X} := N_{C/X} \times_{N_{S/X}|_C} N_{S/X}$$
.

Application

Proposition 21

If the generalized K-E conjecture is true, then

$$\dim_{[C]} \operatorname{Hilb} \mathbb{P}^n = d + g + n^2 + 9 \ (= \dim_{(C,S)} \operatorname{HF} \mathbb{P}^n).$$

Thus we can determine the dimension of **Hilb** \mathbb{P}^n at (even singular) point [C].

We focus on the case n=4, i.e. $S\simeq S_4$ is a smooth complete intersection $S_{2,2}$ in \mathbb{P}^4 . We say $C\subset \mathbb{P}^4$ is 2-normal if $H^1(I_C(2))=0$, and 2-nonspecial if $H^1(O_C(2))=0$.

Theorem A

Let $C \subset \mathbb{P}^4$ be a smooth connected curve of degree d > 8 and genus g contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$. Then

- Such curves C are parametrised by a finite union of locally closed irreducible subsets $W \subset \operatorname{Hilb}^{sc} \mathbb{P}^4$ of the same dimension d+g+25.
- ② If C is 2-normal, then the closure \overline{W} of W in $Hilb^{sc} \mathbb{P}^4$ is a genericaly smooth component of $Hilb^{sc} \mathbb{P}^4$.
- If C is 2-nonspecial, then $\mathbf{Hilb}^{sc} \mathbb{P}^4$ is smooth along W and \overline{W} is a (proper) closed subset of $\mathbf{Hilb}^{sc} \mathbb{P}^4$ of codimension $2h^1(I_C(2))$.

Theorem A (continued)

Theorem A (continued)

1 C is 2-normal (resp. 2-nonspecial) if (d, g) belongs to the region [I] (resp. [IV] except the 6 pairs corresponding to \circ).

Theorem B (Obstructedness)

We expect that if $(d, g) \in [II]$ and C is not 2-normal, then \overline{W} corresponds to a generically non-reduced component of $\mathbf{Hilb}^{sc} \mathbb{P}^4$.

Theorem B

Let W be a maximal irreducible family of smooth connected curve $C \subset \mathbb{P}^4$ of degree d and genus g contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$. If d > 8, $g \ge 2d - 12$ and $h^1(\mathcal{I}_C(2)) = 1$ (then $(d, g) \in [II]$), then

- \bullet every general member C of W is stably degenerate and obstructed,
- ② \overline{W} is a component of $(\mathbf{Hilb}^{sc} \, \mathbb{P}^4)_{\mathbf{red}}$, and
- **1 Hilb**^{sc} \mathbb{P}^4 is generically non-reduced along \overline{W} .

Corollary 22

Generalized K-E conjecture holds to be true, if n = 4 and $h^1(I_C(2)) = 1$.

Analogy of Mumford's example

Example 4

 $\mathbf{Hilb}^{sc} \mathbb{P}^4$ contains a generically non-reduced irreducible component Wwhose general member C satisfies

- C is contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$,
- there exists a line E on S such that C belongs to a complete linear system $\Lambda := |-3K_S + 2E| (\simeq \mathbb{P}^{29})$ on S, and
- **3** dim W = 55, $h^0(C, N_{C/\mathbb{P}^4}) = 57$, and C is of degree 14 and genus 16.

Curves on $S_{2,2} \subset \mathbb{P}^4$ (analogy of Mumford's ex.)

Sketch of Proof of Thm. B

Let $C \subset S_{2,2} \subset \mathbb{P}^4$ be a smooth connected curve of degree d > 8 and genus g lying on a smooth complete intersection $S_{2,2}$ in \mathbb{P}^4 .

- $S = S_{2,2}$ s.t $C \subset S \subset \mathbb{P}^4$ is uniquely determined by d > 8.
- Since $H^i(N_{C/S}) = H^i(N_{S/\mathbb{P}^4}) = 0$ for i > 0, it follows from an exact sequence

$$0 \longrightarrow N_{C/S} \longrightarrow N_{(C,S)/\mathbb{P}^4} \stackrel{\pi_2}{\longrightarrow} N_{S/\mathbb{P}^4} \longrightarrow 0$$

that $H^i(N_{(C,S)/\mathbb{P}^4}) = 0$ for i > 0, which implies $HF \mathbb{P}^4$ is nonsingular and of expected dimension at (C,S).

There exists another exact sequence

$$0 \longrightarrow N_{S/\mathbb{P}^4}(-C) \longrightarrow N_{(C,S)/\mathbb{P}^4} \stackrel{\pi_1}{\longrightarrow} N_{C/\mathbb{P}^4} \longrightarrow 0,$$

where π_1 induces the tangent map p_1 of $pr_1: \operatorname{HF} \mathbb{P}^4 \to \operatorname{Hilb} \mathbb{P}^4$ at (C,S) and we obtain

$$H^0(N_{(C,S)/\mathbb{P}^4}) \xrightarrow{p_1} H^0(N_{C/\mathbb{P}^4}) \longrightarrow \underbrace{H^1(N_{S/\mathbb{P}^4}(-C))}_{\cong H^1(I_{C}(2))^{\oplus 2}} \longrightarrow 0.$$

Sketch of Proof of Thm. B

• Suppose now that $g \ge 2d - 12$ and $h^1(I_C(2)) = 1$. Then dim coker $p_1 = 2$ and there exists a line E on S such that

$$|C + 2K_S| = |C + 2K_S - E| + E$$
. (Zariski decomp.)

• We note $N_{S/\mathbb{P}^4} \simeq O_S(-2K_S)^{\oplus 2}$ and

$$H^1(N_{S/\mathbb{P}^4}(E-C)) = H^1(-L^{\oplus 2}) = 0,$$

because $L := C + 2K_S - E$ is nef and big (by $g \ge 2d - 12$).

- For every $\alpha \in H^0(N_{C/\mathbb{P}^4}) \setminus \operatorname{im} p_1$, its exterior component $\pi_{C/S}(\alpha)$ in $H^0(N_{S/\mathbb{P}^4}|_C)$ lifts to a global section β of $N_{S/\mathbb{P}^4}(E)$ (after admitting a pole along E).
- Applying a "modification" of the obstructedness criterion to the infinitesimal deformation β with poles, we obtain $ob(\alpha) \neq 0$. This implies

$$\dim_{[C]} \operatorname{Hilb}^{sc} \mathbb{P}^4 = \dim_{(C,S)} \operatorname{HF} \mathbb{P}^4 = d + g + 25,$$

and thereby *C* is obstructed and stably degenerate.

П

$S_{2,2}$ -maximal families of curves in \mathbb{P}^4

Let $C \subset S \subset X$ be a flag of algebraic varieties. We say an irreducible closed subset W of $\mathbf{Hilb}^{sc} X$ is S-maximal if there exists an irreducible component $W_{C,S}$ of $\mathbf{HF}^{sc} X$ (:= $pr_1^{-1}(\mathbf{Hilb}^{sc} X)$) passing through (C,S) and $pr_1(W_{C,S}) = W$.

If d > 8, then there exists a natural 1-to-1 correspondence between the set of $S_{2,2}$ -maximal families in $\operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^4$ and the set of 6-tuples of integer $(a;b_1,\ldots,b_5)$ satisfying

$$a > b_1 \ge \dots \ge b_5 \ge 0$$
 and $a \ge b_1 + b_2 + b_3$ (1)

and

$$d = 3a - \sum_{i=1}^{5} b_i \quad \text{and} \quad g = \frac{(a-1)(a-2)}{2} - \sum_{i=1}^{5} \frac{b_i(b_i-1)}{2}, \quad (2)$$

by coordinates in $\operatorname{Pic} S_{2,2} \simeq \mathbb{Z}^6$, i.e.,

$$[C] = a[\varepsilon^* O_{\mathbb{P}^2}(1)] - \sum_{i=1}^5 b_i \mathbf{e}_i \longleftrightarrow (a; b_1, \dots, b_5).$$

Theorem C (Criterion)

Theorem C

Let $W := W(a; b_1, \dots, b_5) \subset \operatorname{Hilb}_{d, \sigma}^{sc} \mathbb{P}^4$ be the $S_{2,2}$ -maximal family of smooth connected curves of degree d and genus g in \mathbb{P}^4 corresponding to $(a; b_1, \ldots, b_5)$. Suppose that d > 10 and $g \ge 2d - 12$. Then

- If $b_5 \ge 2$, then W is an irreducible component of Hilb $_{d,g}^{sc}$ \mathbb{P}^4 and $\operatorname{Hilb}_{d,\sigma}^{sc} \mathbb{P}^4$ is generically smooth along W.
- If $b_5 = 1$ and $b_4 \ge 2$, then W is an irreducible component of $(\operatorname{Hilb}_{d,\sigma}^{sc} \mathbb{P}^4)_{\operatorname{red}}$ and $\operatorname{Hilb}_{d,\sigma}^{sc} \mathbb{P}^4$ is generically non-reduced along W.
- If $b_5 = 0$, then W is not an irreducible component of $(\operatorname{Hilb}_{d,a}^{sc} \mathbb{P}^4)_{\operatorname{red}}$, i.e., there exists an irreducible component of $V \supseteq W$.

Examples

Table: $S_{2,2}$ -maximal families in $\mathbf{Hilb}^{sc}_{d,g}\,\mathbb{P}^4$

(d,g)	$(a; b_1, b_2, b_3, b_4, b_5)$	$W(a; b_1, b_2, b_3, b_4, b_5)$
(14, 16)	(8; 2, 2, 2, 2, 2)	gen. smooth component
(14, 16)	(9;4,3,2,2,2)	gen. smooth component
(14, 16)	(9;3,3,3,3,1)	gen. non-reduced component
(15, 18)	(9; 4, 2, 2, 2, 2)	gen. smooth component
(15, 18)	(9; 3, 3, 3, 2, 1)	gen. non-reduced component
:	:	:
(18, 24)	(9; 2, 2, 2, 2, 1)	gen. non-reduced component
(18, 24)	(10; 4, 3, 3, 1, 1)	$unknown (h^1(I_C(2)) = 2)$
(18, 24)	(10; 3, 3, 3, 3, 0)	non-component $(h^1(I_C(2)) = 3)$
(18, 24)	(11; 6, 3, 2, 2, 2)	gen. smooth component
:	:	:

References

D. Mumford.

Further pathologies in algebraic geometry.

S. Mukai and H. Nasu.

Obstructions to deforming curves on a 3-fold, I: A generalization of Mumford's example and an application to Hom schemes.

J. Algebraic Geom., 18(4):691-709, 2009.

H. Nasu.

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold,

Annales de L'Institut Fourier, 60(2010), no. 4, 1289–1316.

H. Nasu.

Obstructions to deforming curves on a 3-fold, III: Deformations of curves lying on a K3 surface. Internat. J. Math., 28(13):1750099, 30, 2017.

H. Nasu.

Obstructions to deforming curves on a prime Fano 3-fold,

Mathematische Nachrichten, 292(2019), no. 8, 1777–1790.

H. Nasu.

Obstructions to deforming curves on an Enriques-Fano 3-fold.

J. Pure Appl. Algebra, 225(9):106677, 15, 2021.