Alternating moves and ultimatum game paper Section 3 and Table 2 computations

#1: CaseMode := Sensitive

#2: InputMode := Word

Share of the first mover in game 0

#3: $\phi \in \text{Real } (0, 1)$

* t=0: game zero, A moves before B

#4: $profita_0 = \phi$

#5: $profitb_0 = 1 - \phi$

#6: $s_0 = \phi - (1 - \phi)$

#7: $s_0 = 2 \cdot \phi - 1$

* t=-1: game -1, B moves to divide the surplus

#8: $a_1 = (1 - \phi) \cdot s_0$

#9: $a_1 = (1 - \phi) \cdot (2 \cdot \phi - 1)$

#10: $b_1 = \phi \cdot s_0$

#11: $b_1 = \phi \cdot (2 \cdot \phi - 1)$

#12: profita_1 = $\phi - \phi \cdot (2 \cdot \phi - 1)$

#13: $profita_1 = 2 \cdot \phi \cdot (1 - \phi)$

#14: profitb_1 = 1 - ϕ + $\phi \cdot (2 \cdot \phi - 1)$

#15: $profitb_1 = 2 \cdot \phi - 2 \cdot \phi + 1$

#16: profita_1 + profitb_1 =
$$2 \cdot \phi \cdot (1 - \phi) + 2 \cdot \phi - 2 \cdot \phi + 1$$

#18:
$$s_1 = 2 \cdot \phi - 2 \cdot \phi + 1 - 2 \cdot \phi \cdot (1 - \phi)$$

#19:
$$s_1 = (2 \cdot \phi - 1)$$

* t=-2: game -1, A moves to divide the surplus

#20:
$$a_2 = \phi \cdot s_1$$

#21:
$$a_2 = \phi \cdot (2 \cdot \phi - 1)$$

#22:
$$b_2 = (1 - \phi) \cdot s_1$$

#23:
$$b_2 = (1 - \phi) \cdot (2 \cdot \phi - 1)$$

#25: profita_2 =
$$2 \cdot \phi \cdot (1 - \phi) + \phi \cdot (2 \cdot \phi - 1)$$

#26:
$$profita_2 = \phi \cdot (4 \cdot \phi - 6 \cdot \phi + 3)$$

2 #28: profitb_2 =
$$(2 \cdot \phi - 2 \cdot \phi + 1) - \phi \cdot (2 \cdot \phi - 1)$$

3 2 #29:
$$profitb_2 = -4 \cdot \phi + 6 \cdot \phi - 3 \cdot \phi + 1$$

Date: 3/10/2022

File: alter_2022_3_10.dfw Date: 3/10/2022 Time: 4:36:34 PM

2 3 2 #30: profita_2 + profitb_2 =
$$\phi \cdot (4 \cdot \phi - 6 \cdot \phi + 3) + (-4 \cdot \phi + 6 \cdot \phi - 3 \cdot \phi + 1)$$

2 3 2 #32:
$$s_2 = \phi \cdot (4 \cdot \phi - 6 \cdot \phi + 3) - (-4 \cdot \phi + 6 \cdot \phi - 3 \cdot \phi + 1)$$

#33:
$$s_2 = (2 \cdot \phi - 1)$$

* t=-3: game -1, B moves to divide the surplus

#34:
$$a_3 = (1 - \phi) \cdot s_2$$

#35:
$$a_3 = (1 - \phi) \cdot (2 \cdot \phi - 1)$$

#36:
$$b_3 = \phi \cdot s_2$$

#37:
$$b_3 = \phi \cdot (2 \cdot \phi - 1)$$

#38: profita_3 = profita_2 -
$$\phi \cdot s_2$$

3 2 #40:
$$profita_3 = -4 \cdot \phi \cdot (2 \cdot \phi - 4 \cdot \phi + 3 \cdot \phi - 1)$$

3 2 3 442: profitb_3 =
$$(-4 \cdot \phi + 6 \cdot \phi - 3 \cdot \phi + 1) + \phi \cdot (2 \cdot \phi - 1)$$

#43:
$$4 3 2$$
 profitb_3 = $8 \cdot \phi - 16 \cdot \phi + 12 \cdot \phi - 4 \cdot \phi + 1$

#45: profita_3 + profitb_3 = 1

#47:
$$s_3 = (2 \cdot \phi - 1)$$

Verifying some values in Figure 1 to ensure that they are consistent with the above derivations (Table 2). Set ϕ =0.8

#48:
$$s_3 = (2 \cdot 0.8 - 1)$$

#49:
$$s_3 = 0.1296$$

3 2 #50: profita_3 =
$$-4.0.8 \cdot (2.0.8 - 4.0.8 + 3.0.8 - 1)$$

$$4$$
 3 2 #52: profitb_3 = $8.0.8 - 16.0.8 + 12.0.8 - 4.0.8 + 1$

#54:
$$s_2 = (2 \cdot 0.8 - 1)$$

$$s_2 = 0.216$$

#56: profita_2 =
$$0.8 \cdot (4 \cdot 0.8 - 6 \cdot 0.8 + 3)$$

Time: 4:36:34 PM

3 2 #58: profitb_2 = -4.0.8 + 6.0.8 - 3.0.8 + 1

#59: profitb_2 = 0.392

*** discussion below Figure 2

#60: $a_1 = (1 - 0.8) \cdot (2 \cdot 0.8 - 1)$

#61: $a_1 = 0.12$

#62: $b_1 = 0.8 \cdot (2 \cdot 0.8 - 1)$

#63: $b_1 = 0.48$

#64: profita_1 = $2 \cdot 0.8 \cdot (1 - 0.8)$

#65: profita_1 = 0.32

#66: profitb_1 = $2 \cdot 0.8 - 2 \cdot 0.8 + 1$

#67: profitb_1 = 0.68

#68: $s_1 = (2 \cdot 0.8 - 1)^2$

#69: $s_1 = 0.36$