ASSIGNMENT 8

COLTON GRAINGER (MATH 6140 ALGEBRA 2)

Assignment due 2019-03-11

Notation. Let A be an $n \times n$ matrix and let F be a field containing the eigenvalues of A. Then $A \in \mathcal{M}_n(F)$.

[1, No. 12.3.3]. Given. Let $A \in \mathcal{M}_n(F)$ have eigenvalues $\lambda_1, \ldots, \lambda_n$.

To prove. For each integer $k \geq 1$, the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$.

Proof. Similar matrices have the same characteristic polynomial, and therefore the eigenvalues of A are the same as the eigenvalues of the Jordan canonical form $J = PAP^{-1}$. Now because J is a direct sum of its Jordan blocks, it suffices to prove:

If an arbitrary Jordan block J_{λ} has eigenvalue λ with multiplicity ℓ , then J_{λ}^{k} has eigenvalue λ^{k} with multiplicity ℓ .

Consider such a Jordan block J_{λ} , with eigenvalue λ of multiplicity ℓ . It is an upper triangular $\ell \times \ell$ matrix. Recall that the $\ell \times \ell$ upper triangular matrices form a subring of $\mathscr{M}_{\ell}(F)$, and that the diagonal of a product of two upper triangular matrices is the entry-wise product of the two diagonals:

$$\begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{\ell\ell} \end{pmatrix} \begin{pmatrix} b_{11} & & \\ & \ddots & \\ & & b_{\ell\ell} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & & \\ & \ddots & \\ & & a_{\ell\ell}b_{\ell\ell} \end{pmatrix}.$$

Therefore, because J^k_λ is a finite product of upper triangular matrices, each entry of along the diagonal of J^k_λ is λ^k . Moreover, the matrix $xI-J^k_\lambda$ is upper triangular, and because the determinant of an upper triangular matrix is the product of its diagonal entries, J^k_λ has characteristic polynomial $\prod_{i=1}^\ell (x-\lambda^k)$. Therefore J^k_λ has eigenvalue λ^k with multiplicity ℓ . Applying this argument to each block of the Jordan canonical form $J=PAP^{-1}$, it is apparent that $J^k=PA^kP^{-1}$ has eigenvalues $\lambda^k_1,\dots,\lambda^k_n$. \square

[1, No. 12.3.17]. Given. Let A^t be the transpose of $A \in \mathcal{M}_n(F)$.

To prove. A is similar to A^t .

Proof. Say $J = PAP^{-1}$ is the JCF of A. Because P is invertible, the transpose P^t is also invertible. Therefore A^t is similar to $J^t = (P^{-1})^t A^t P^t$. Because similarity is an equivalence relation, A is similar to A^t if and only if J is similar to J^t .

As J and J^t are block diagonal matrices, they are similar if and only if their blocks are similar up to some permutation. Thus, to show J is similar to J^t , it suffices to demonstrate that an arbitrary Jordan block J_{λ} is similar to its transpose J_{λ}^t . In particular, appealing to Theorem 12.15 and the Chinese remainder theorem, J_{λ} and J_{λ}^t are similar if they have the same single elementary divisor.

Let c(x), m(x), $c_t(x)$, and $m_t(x)$ be the characteristic and minimal polynomials for J_{λ} and J_{λ}^t respectively. We need to show

$$c(x) = m(x) = m_t(x) = c_t(x).$$

 $Date {:}\ 2019\text{-}03\text{-}11.$

1

Because J_{λ} is a Jordan block, it has a single elementary divisor. Therefore

$$(1) m(x) = c(x).$$

As the determinant of a matrix is invariant under transposition, the characteristic polynomial $c_t(x)$ of J_{λ}^t is

(2)
$$c_t(x) = \det(xI - J_\lambda^t) = \det((xI - J_\lambda)^t) = \det(xI - J_\lambda) = c(x).$$

Now suppose $m_t(x) = \sum_k a_k x^k$ is the minimal polynomial of J_{λ}^t . Then

$$\sum_{k} a_k (J_\lambda^t)^k = m_t (J_\lambda^t) = 0.$$

Because $(J_{\lambda}^t)^k = (J_{\lambda}^t)^t$, transposing each term in equation (3) implies

$$\sum_{k} a_k (J_\lambda)^k = m_t(J_\lambda) = 0.$$

Because m(x) is minimal among monic polynomials that J_{λ} satisfies, equation (4) implies

$$m(x) \mid m_t(x)$$
.

By Cayley-Hamilton, $m_t(x) \mid c_t(x)$. So by (2),

$$m_t(x) \mid c(x),$$

and this with (1) implies

$$m_t(x) \mid m(x)$$
.

Therefore, by divisibility considerations, $m(x) = m_t(x)$. (And so by degree considerations, $m_t(x) = c_t(x)$.)

We have demonstrated that J_{λ} and J_{λ} have the same elementary divisor m(x). Repeating this argument for each block of J and J^t , one may show J is similar to J^t . We conclude A is similar to A^t . \square

[1, No. 12.3.18]. Given. Suppose T is a linear transformation with characteristic polynomial $c(x) = (x-2)^2(x-3)^2$.

To exhibit. A Jordan canonical form for each possible similarity class of T.

Exhibition. There are 3 integer partitions of 3 and 2 integers partitions of 2, corresponding to the possible elementary divisors of c(x). The transformation T belongs to one of the following 6 similarity classes, represented by Jordan canonical form.

$$\begin{pmatrix} 2 & & & & \\ & 2 & & & \\ & & 2 & & \\ & & & 3 & \\ & & & & 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 & & & \\ & 2 & & & \\ & & 2 & & \\ & & & 3 & \\ & & & & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & & & \\ & 2 & 1 & & \\ & & 2 & & \\ & & & 3 & \\ & & & & 3 \end{pmatrix},$$

[1, No. 12.3.20]. Given. Let p be a prime and consider the following matrices in $\mathcal{M}_p(\mathbf{F}_p)$.

$$R = \begin{pmatrix} 0 & & & & 1 \\ 1 & 0 & & & 1 \\ & 1 & \ddots & & \\ & & \ddots & 0 & \\ & & & 1 & 0 \end{pmatrix} \quad \text{and} \quad J = \begin{pmatrix} 1 & & & & \\ 1 & 1 & & & \\ & 1 & \ddots & & \\ & & \ddots & 1 & \\ & & & 1 & 1 \end{pmatrix}$$

To prove. R and J are similar in $\mathcal{M}_p(\mathbf{F}_p)$.

Proof. Notice R is in RCF and J is in JCF, each with one block corresponding to a single invariant factor. Computing det(xI - R) and det(xI - J), we find

- R has invariant factor $x^p 1$, and
- J has invariant factor $(x-1)^p$.

Because \mathbf{F}_p is a field of characteristic p, the binomial $(x-1)^p$ in $\mathbf{F}_p[x]$ expands to

$$\sum_{k=1}^{p} \binom{p}{k} x^{p-k} (-1)^k \quad \text{with} \quad \binom{p}{k} = 0 \quad \text{for all} \quad 0 < k < p.$$

Then $x^p - 1 = (x - 1)^p$ in $\mathbf{F}_p[x]$. So R and J have the same invariant factor. Therefore R and J are similar in $\mathscr{M}_p(\mathbf{F}_p)$. \square

[1, No. 12.3.21]. Given. Let $A^2 = A$ be an idempotent $n \times n$ matrix over F.

To prove. A is diagonalizable and is similar to a matrix with only 1s and 0s along the diagonal.

Proof. The minimal polynomial m(x) divides $x^2 - x = x(x-1)$, as our hypothesis is that $A^2 - A = 0$. So m(x) is one of the following: x, x - 1, or x(x - 1). If m(x) = x, then all of the elementary divisors of A are x. In this case, A = 0 is diagonalizable. In the case that m(x) = x - 1, then all of the elementary divisors of A are x - 1, and A = I is diagonalizable. Lastly, in the case that m(x) = x(x - 1), the invariant factors are either

$$x \mid ... \mid x(x-1)$$
 or $x-1 \mid ... \mid x(x-1)$.

We deduce the elementary divisors are all either x or x-1. Thus A has a JCF consisting of n Jordan blocks, each block associated to either the eigenvalue 0 or the eigenvalue 1, with multiplicity 1. \square

[1, No. 12.3.22]. Given. Let $A \in \mathcal{M}_n(F)$ and require $A^3 = A$.

To prove. If F is any field not of characteristic 2, then it is possible that A is diagonalizable.

Proof. The minimal polynomial m(x) of A divides $x^3 - x = x(x-1)(x+1)$. Suppose the characteristic of F is not 2. Then m(x) is the product of distinct linear factors. Because m(x) has no repeated roots, by Corollary 25, A is diagonalizable.

Suppose on the other hand that F has characteristic 2. Then perhaps m(x) has $(x+1)^2$ as a factor. If so, because m(x) has repeated roots, A is not diagonalizable. \square

References

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.