| دورة العام 2010 العادية | امتحانات الشهادة الثانوية العامة<br>فرع : العلوم العامة | وزارة التربية والتعليم العالي<br>المديرية العامة للتربية<br>دائرة الامتحانات |
|-------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| الاسم:<br>الرقم:        | مسابقة في مادة الكيمياء<br>المدة: ساعتان                |                                                                              |

Cette épreuve est constituée de trois exercices. Elle comporte quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé. Traiter les trois exercices suivants:

# Premier exercice (6 points) Identification de composés organiques

Le but de cet exercice est d'identifier certains composés organiques disponibles au laboratoire.

## 1- Formules et familles chimiques

On dispose, au laboratoire, de cinq flacons non étiquetés, contenant chacun un des composés donnés dans le tableau suivant :

| Propan-1-ol | 2- méthylpropan-2-ol | Acide propanoïque | Propanal | Propanone |
|-------------|----------------------|-------------------|----------|-----------|
|             |                      |                   |          |           |

Pour chacun des composés cités ci-haut :

- 1.1- Écrire la formule semi-développée.
- 1.2- Indiquer la famille chimique correspondante.

## 2- Identification de ces composés

Soit A, B, C, D et E les cinq composés chimiques indiqués ci-haut. Dans le but de les identifier, on réalise successivement des tests chimiques dont les résultats sont notés dans le tableau suivant:

|         | Premier test       | Deuxième test                    | Troisième test |  |
|---------|--------------------|----------------------------------|----------------|--|
| Composé | NaHSO <sub>3</sub> | Solution acidifiée de dichromate | Papier pH      |  |
|         | Na115O3            | de potassium (couleur orange)    |                |  |
| A       | précipité blanc    | le milieu devient vert           | non réalisé    |  |
| В       | précipité blanc    | le milieu reste orange           | non réalisé    |  |
| С       | Pas de précipité   | le milieu devient vert           | non réalisé    |  |
| D       | Pas de précipité   | le milieu reste orange           | pH acide       |  |
| Е       | Pas de précipité   | le milieu reste orange           | pH neutre      |  |

- 2.1- Identifier, en se basant sur le premier et le deuxième test, les composés A et B.
- 2.2- Identifier les trois autres composés C, D et E.

#### 3- Quelques réactions chimiques

- 3.1- On fait réagir l'acide propanoïque avec le propan-1-ol :
- 3.1.1- Écrire l'équation de cette réaction. Nommer le composé organique obtenu.
- 3.1.2- Donner deux caractéristiques de cette réaction.

- 3.2- Écrire l'équation de la réaction permettant de passer de la propanone au propan-2-ol.
- 3.3- On chauffe l'acide propanoïque en présence d'un agent de déshydratation, P<sub>2</sub>O<sub>5</sub>. Écrire l'équation de cette réaction.

# **Deuxième exercice (7 points) Acide fort – base forte**

Dans cet exercice, on va étudier un mélange d'une solution d'éthanolate de sodium et d'une solution d'acide chlorhydrique en présence d'un indicateur coloré convenable.

#### Donnée:

- L'éthanolate de sodium, C<sub>2</sub>H<sub>5</sub>ONa, est un composé ionique très soluble dans l'eau ;
- L'ion éthanolate C₂H₅O ¯ est une base forte qui réagit avec l'eau selon une réaction totale dont l'équation est :

$$C_2H_5O^- + H_2O \rightarrow C_2H_5OH + OH^-$$

• Un indicateur coloré est un acide faible.Sa formule est notée HInd et celle de sa base conjuguée notée Ind -;

| Indicateur          | Couleur acide | Couleur dans la | Couleur      | pK <sub>a</sub> (HInd/Ind <sup>-</sup> ) |
|---------------------|---------------|-----------------|--------------|------------------------------------------|
|                     |               | zone de virage  | basique      |                                          |
| Hélianthine         | Rouge         | orange          | Jaune        | 3,7                                      |
| Bleu de bromothymol | Jaune         | vert            | Bleu         | 7,0                                      |
| Phénolphtaléine     | Incolore      | rose            | rose violacé | 9,4                                      |

- Matériel mis à disposition :
- burette graduée : 50 mL
- béchers : 100 et 250 mL
- pH-mètre et son électrode combinée
- pipettes jaugées : 10 et 20 mL
- fioles jaugées : 100 et 250 mL
- agitateur magnétique et son turbulent ;
- Cette étude est réalisée à 25°C;
- On néglige les ions H<sub>3</sub>O<sup>+</sup> et HO<sup>-</sup> provenant de l'autoprotolyse de l'eau.

#### 1- Identification d'un indicateur coloré

On dispose d'un flacon contenant une solution aqueuse d'un indicateur coloré. L'étiquette de ce flacon porte la seule indication  $C = 6.4.10^{-4}$  mol.L<sup>-1</sup>.

On mesure le pH d'un échantillon de cette solution. On trouve la valeur 5,1.

- 1.1- Écrire l'équation de la réaction entre HInd et l'eau.
- 1.2- Déterminer les concentrations des espèces chimiques présentes dans cette solution.
- 1.3- Déduire le pK<sub>a</sub> du couple HInd/Ind -. Identifier cet indicateur.

#### 2- Dosage d'une solution d'éthanolate de sodium

On ajoute, progressivement, une solution d'acide chlorhydrique  $(H_3O^+ + Cl^-)$  de concentration  $C_a = 0,010 \text{ mol.L}^{-1}$  dans un bécher contenant un volume  $V_b = 20,0 \text{ mL}$  d'une solution d'éthanolate de sodium de concentration  $C_b$  et quelques gouttes de la solution d'indicateur déjà identifié. Le volume ajouté pour atteindre l'équivalence est  $V_E = 16 \text{ mL}$ .

- 2.1- Choisir, de la donnée, le matériel utilisé pour réaliser ce dosage.
- 2.2- Préciser le changement de couleur observé à l'équivalence.
- 2.3- Écrire l'équation de la réaction de dosage.
- 2.4- Montrer que la concentration  $C_b$  est égale à  $8.10^{-3}$  mol. $L^{-1}$ .
- 2.5- Le pH de la solution obtenue à l'équivalence est égal à 7. Justifier ce résultat à partir des espèces chimiques présentes dans cette solution.
- 2.6- Déterminer le pH de la solution obtenue pour un volume d'acide ajouté V<sub>a</sub> = 30 mL.

# Troisième exercice (7 points) Autocatalyse

Le but de cet exercice est l'étude de la cinétique de la réaction entre l'acide oxalique  $H_2C_2O_4$  et l'ion permanganate  $MnO_4^-$  en présence de l'ion  $Mn^{2+}$  comme catalyseur, en milieu acide. L'équation de la réaction est :

$$2 \text{ MnO}_{4}^{-} + 6 \text{ H}^{+} + 5 \text{ H}_{2}\text{C}_{2}\text{O}_{4} \rightarrow 10 \text{ CO}_{2} + 2 \text{ Mn}^{2+} + 8 \text{ H}_{2}\text{O}$$

#### Donnée:

- Le nitrate de manganèse, Mn(NO<sub>3</sub>)<sub>2</sub>, est un composé ionique qui se dissout totalement dans l'eau.

## 1- Étude expérimentale

Dans un bécher de 250 mL:

- on verse un volume  $V_1 = 100$  mL d'une solution acidifiée de permanganate de potassium de concentration  $C_1 = 0.01$  mol.L<sup>-1</sup>.
- on ajoute 0,4 mmol de nitrate de manganèse solide. (On suppose que le volume de la solution ne varie pas lors de la dissolution de ce solide).
- à l'instant t = 0, on ajoute un volume  $V_2 = 100$  mL d'une solution d'acide oxalique de concentration  $C_2 = 0.1$  mol. $L^{-1}$ .

Par une méthode appropriée, on détermine la concentration des ions permanganate [MnO<sub>4</sub>] à différentes dates t.Les résultats sont donnés dans le tableau suivant :

| t (min)                   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|---------------------------|------|------|------|------|------|------|------|------|
| $[MnO_4]$ $(mmol.L^{-1})$ | 3,25 | 2,10 | 1,37 | 0,87 | 0,57 | 0,37 | 0,22 | 0,15 |

- 1.1- Montrer que l'acide oxalique est en excès.
- 1.2- Déterminer la concentration initiale des ions permanganate [MnO<sub>4</sub><sup>-</sup>] dans le mélange réactionnel.
- 1.3- Tracer, sur un papier millimétré, la courbe  $[MnO_4] = f(t)$  dans l'intervalle de temps [0-8 min].
  - Prendre les échelles suivantes : 2 cm pour 1 min en abscisses et 1 cm pour 0,5 mmol.L<sup>-1</sup> en ordonnées.
- 1.4- Déterminer la vitesse de disparition des ions permanganate à la date t = 4 min. Déduire la vitesse de la réaction à cet instant.
- 1.5- Déterminer le temps de demi-réaction.

# 2- Variation de la concentration des ions Mn<sup>2+</sup> en fonction du temps

2.1- Établir la relation, entre la concentration des ions Mn<sup>2+</sup> à un instant t, [Mn<sup>2+</sup>], et celle des ions MnO<sub>4</sub> au même instant t, [MnO<sub>4</sub>], qui a permis de dresser le tableau suivant:

| t (min)                                      | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|----------------------------------------------|------|------|------|------|------|------|------|------|
| $[MnO_4]$ $(mmol.L^{-1})$                    | 3,25 | 2,10 | 1,37 | 0,87 | 0,57 | 0,37 | 0,22 | 0,15 |
| $[\mathrm{Mn}^{2+}]$ (mmol.L <sup>-1</sup> ) | 3,75 | 4,90 | 5,63 | 6,13 | 6,43 | 6,63 | 6,78 | 6,85 |

- 2.2- Tracer, sur le même graphe de la question 1.3, en prenant les mêmes échelles, la courbe  $[Mn^{2+}] = g(t)$  dans l'intervalle de temps [0 8 min].
- 2.3- Déterminer, graphiquement, la concentration des ions [Mn<sup>2+</sup>] à la date  $t = t_{1/2}$ .

## 3- Étude expérimentale en absence du nitrate de manganèse

On répète la même expérience de l'étude réalisée dans la partie 1 sans ajouter le nitrate de manganèse. La courbe de variation de la concentration des ions permanganate en fonction du temps est la suivante :



- 3.1 Déduire, de ce graphe, le temps de demi-réaction.
- 3.2 Comparer la valeur obtenue à celle trouvée dans la question (1.5). Interpreter le résultat.