Cluster Analysis

ABMD

Abiomed

reports

```
In [1]:
          import pandas as pd
          import numpy as np
          import yfinance as yf
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.cluster import KMeans
In [2]: table=pd.read html('https://en.wikipedia.org/wiki/List of S%26P 500 companies')[6
          table.head()
Out[2]:
                                                                                   Date
                                  SEC
                                            GICS
                                                       GICS Sub-
                                                                   Headquarters
              Symbol Security
                                                                                             CIK Founded
                                                                                   first
                                filings
                                           Sector
                                                         Industry
                                                                       Location
                                                                                 added
                                                                                  1976-
                                                         Industrial
                                                                      Saint Paul,
           0
                MMM
                                                                                          66740
                                                                                                      1902
                           3M
                                reports Industrials
                                                    Conglomerates
                                                                                  08-09
                                                                      Minnesota
                          A.O.
                                                          Building
                                                                      Milwaukee,
                                                                                  2017-
                 AOS
           1
                                reports Industrials
                                                                                           91142
                                                                                                      1916
                         Smith
                                                         Products
                                                                      Wisconsin
                                                                                  07-26
                                                      Health Care
                                                                  North Chicago,
                                           Health
                                                                                  1964-
           2
                 ABT
                                reports
                                                                                            1800
                                                                                                      1888
                         Abbott
                                                                                  03-31
                                            Care
                                                       Equipment
                                                                          Illinois
                                                                   North Chicago,
                                                                                                      2013
                                           Health
                                                                                  2012-
           3
                ABBV
                                reports
                                                   Pharmaceuticals
                        AbbVie
                                                                                         1551152
                                                                                  12-31
                                            Care
                                                                          Illinois
                                                                                                    (1888)
```

```
In [4]: stock_list = table['Symbol'].to_list()
stock_list[:10]
```

Health Care

Equipment

Danvers,

Massachusetts

2018-

05-31

815094

1981

```
Out[4]: ['MMM', 'AOS', 'ABT', 'ABBV', 'ABMD', 'ACN', 'ATVI', 'ADM', 'ADBE', 'ADP']
```

Health

Care

```
In [5]: df =yf.download(stock_list, start = "2022-01-04", end = "2022-05-30")
    df.head()
```

- 2 Failed downloads:
- BF.B: No data found for this date range, symbol may be delisted
- BRK.B: No data found, symbol may be delisted

Out[5]:

	Α	AAL	AAP	AAPL	ABBV	ABC	ABMD	A
Date								
2022- 01-04	151.190002	19.020000	237.050003	179.699997	132.644516	130.535828	361.589996	134.7550
2022- 01-05	148.600006	18.680000	236.449997	174.919998	133.341309	131.668671	338.200012	134.150;
2022- 01-06	149.119995	18.570000	241.649994	172.000000	132.713211	129.631531	336.440002	134.130
2022- 01-07	145.149994	19.280001	238.089996	172.169998	132.369736	132.284775	319.279999	134.547;
2022- 01-10	145.160004	18.790001	234.130005	172.190002	133.851639	133.795242	306.799988	134.249 ₄

5 rows × 3024 columns

4

```
In [6]: # 1. Returns
          returns = round(((df['Adj Close'].iloc[-1,:] - df['Adj Close'].iloc[1,:]) / df['Adj Close'].iloc[1,:]) /
          df2 = pd.DataFrame(returns)
          df2.rename(columns = {0 : 'Returns %'}, inplace = True)
          # 2. Standard Deviation
          df2['Std'] = round(df['Adj Close'].std(), 2)
          # 3. Range (High - Low)
          df2['Range'] = round((df['High'] - df['Low']).mean(), 2)
          #resetting index
          df2.reset_index(inplace=True)
          #Renaming columns
          df2.rename(columns = {"index": "Symbol", 0 : 'Returns %'}, inplace = True)
          df2.head()
 Out[6]:
             Symbol Returns %
                                Std Range
          0
                  Α
                         -0.12
                                8.69
                                       3.95
          1
                AAL
                         -0.03
                                1.50
                                       0.85
          2
                AAP
                         -0.18 14.35
                                       6.71
          3
               AAPL
                         -0.14 10.32
                                       4.62
                          0.12 10.27
               ABBV
                                       3.38
 In [8]: # The Elbow Method — Finding the optimal number of clusters
         X = df2[['Returns %', 'Std', 'Range']].values
In [13]: # checking for null values
          df2[pd.isnull(df2).any(axis=1)]
Out[13]:
              Symbol Returns %
                                Std Range
                 BF.B
                           NaN
                                NaN
                                       NaN
           61
          70
               BRK.B
                           NaN
                                NaN
                                       NaN
          89
                 CEG
                           NaN
                                 6.7
                                       2.94
In [14]: df2 = df2.drop([df2.index[61] , df2.index[70], df2.index[89]])
          #confirming there are no null values
          df2.isnull().sum()
          #output (we are good to go)
Out[14]: Symbol
                       0
          Returns %
                       0
          Std
                       0
          Range
          dtype: int64
```

```
In [17]: from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         scaler.fit(df2[['Returns %']])
         df2['Returns %'] = scaler.transform(df2[['Returns %']])
         scaler.fit(df2[['Std']])
         df2['Std'] = scaler.transform(df2[['Std']])
         scaler.fit(df2[['Range']])
         df2['Range'] = scaler.transform(df2[['Range']])
In [22]: X = df2[['Returns %', 'Std', 'Range']].values
         sse = []
         for k in range(2, 10):
             kmeans = KMeans(n_clusters=k)
             kmeans.fit(X)
             sse.append(kmeans.inertia_)
In [24]: sse
Out[24]: [7.921087204548485,
          4.484344414999446,
          3.2547809441246023,
```

```
Out[24]: [7.921087204548485,
4.484344414999446,
3.2547809441246023,
2.5154904220033845,
1.8130988646852866,
1.514508246815069,
1.283854145943636,
1.1342873162345133]
```

```
In [27]: plt.plot(range(2,10), sse)
    plt.title('The Elbow Method')
    plt.xlabel('# of Clusters')
    plt.ylabel('Sum of Squared Errors / Inertia')
    plt.show()
```



```
In [28]: km = KMeans(n clusters = 6)
          y_predicted = km.fit_predict(X)
          y_predicted
          #add the corresponding cluster to each symbol in the dataframe
          df2['Cluster'] = y_predicted
          df2.head()
Out[28]:
              Symbol Returns %
                                           Range Cluster
                                    Std
           0
                   Α
                       0.285714 0.018043 0.022852
                                                       1
           1
                 AAL
                       0.333333 0.002067 0.003549
                                                       1
                AAP
           2
                       0.253968 0.030620 0.040037
                                                       1
           3
               AAPL
                       0.275132  0.021665  0.027024
                                                       1
               ABBV
                       0.412698 0.021554 0.019303
                                                       2
In [29]: df2['Cluster'].value_counts()
Out[29]: 1
               243
               136
          2
                 93
          4
          5
                 20
                  7
          0
          3
                  2
          Name: Cluster, dtype: int64
In [30]: df2.loc[df2['Cluster'] == 3]
Out[30]:
                Symbol Returns %
                                    Std
                                           Range Cluster
                                                       3
            34
                 AMZN
                         0.190476  0.8343  0.648568
           341
                  NVR
                         0.232804 1.0000 1.000000
                                                       3
         df2.loc[df2['Cluster'] == 0]
In [31]:
Out[31]:
                Symbol Returns %
                                      Std
                                             Range Cluster
            52
                  AZO
                         0.354497 0.233362 0.368742
                                                         0
```

#AMZN is in the N=2 cluster, while GOOGL and TSLA are in the N=4 cluster. It is possible that the stocks in these clusters truly differ from the other groups. It's possible that the other clusters aren't

0

0

0

0

0

0

BKNG

CMG

GOOG

GOOGL

MTD

TSLA

65

103

206

207

321

447

0.317460 0.398640 0.516563

0.285714 0.227718 0.344209

0.253968 0.458769 0.466999

0.253968 0.462169 0.476775

0.190476 0.265627 0.333001

0.271171

0.264550 0.223341

that different from one another.