

QUANTUM COMPUTING WITH IBM QISKIT

WORKSHOP SESSION 2: January 21, 2023

About Me

Theshani Nuradha

PhD Student in Electrical and Computer Engineering Cornell University

Former Lecturer at ENTC and ENTC Alumni (14' Batch)

Outline

- Qiskit and IBM Quantum experience
- First circuit in Qiskit
- Quantum speedups-- Deutsch-Jozsa Algorithm
- Quantum Teleportation and Entanglement

Open-source python-based frameworks for quantum computing

https://qiskit.org/

https://pennylane.ai/

https://quantumai.google/cirq

https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/

What is Qiskit?

IBM's Quantum computer programming language

Open-source quantum computing software development framework

IBM Quantum experience

Graphically build circuits with

IBM Quantum Composer

Launch Composer

Develop quantum experiments in

IBM Quantum Lab

Launch Lab

- Simulator to debug and validate circuits
- Quantum computing resources of IBM

Name	Qubits	QV	CLOPS	Status	Total pending jobs	Processor type	Plan	Features
ibm_nairobi	7	32	2.6K	Online	18	Falcon r5.11H	open	OpenQASM 3
ibm_oslo	7	32	2.6K	Online	5	Falcon r5.11H	open	OpenQASM 3
ibmq_manila	5	32	2.8K	Online	17	Falcon r5.11L	open	OpenQASM 3
ibmq_quito	5	16	2.5K	Online	17	Falcon r4T	open	
ibmq_belem	5	16	2.5K	Online - Queue paused	24	Falcon r4T	open	
ibmq_lima	5	8	2.7K	Online - Queue paused	29	Falcon r4T	open	

 $\underline{\downarrow}$

One of the IBM quantum computers

Resources shared

- Creating an account—IBMid
- Uploading Jupyter Notebook to Quantum Lab
- How to configure API to run algorithms on real quantum devices of IBM

IBM Quantum Experience Guide

Introduction to Quantum Computing Free Workshop

Dept. of Electronic & Telecommunication Engineering, University of Moratuwa (ENTC, UoM)

Last Modified - 15/01/2023

Table of Contents

C

Creating an account on IBM Quantum Experience
IBM Quantum Experience -- Frequently asked guestions (FAQs)

Uploading Jupyter Notebooks

IBM quantum computer configuration with QISKIT

HelloWorld with Qiskit

• Let's implement our first circuit in Qiskit

Notebook: FirstCircuit.ipynb

- Hadamard gate
- CNOT gate
- Then measure the qubits
- Run the circuit in quantum simulator
- Run the circuit in IBM quantum devices

Quantum Speedups

Deutsch-Jozsa Algorithm

• Goal: Given a function $f: \{0,1\}^n \to \{0,1\}^m$, finding whether that function f is balanced or constant

Input	Output
0	1
1	0

Input	Output
0	0
1	0

Balanced

Constant

How many times that we have to access this function to determine this?

For a classical computer, we need 2 queries

Input	Output
0	1
1	0

Claim: Quantum computer needs only one query

For a classical computer, we need 3 queries

Claim: Quantum computer needs only one query

Input		Output
0	0	1
0	1	1
1	0	1
1	1	1

Let's justify the claim!

Setup

- $f: \{0,1\} \rightarrow \{0,1\}$
- How many such functions? 4!
- What are they?

Input	Output
0	0
1	0

Input	Output
0	1
1	1

Input	Output
0	0
1	1

Input	Output
0	0
1	0

How to implement these functions in a quantum computer?

Oracle Implementation

- Quantum circuits that we want to implement should be unitary and reversible.
- Let $0 \rightarrow |0\rangle$, $1 \rightarrow |1\rangle$
- $x, y \in \{0,1\}$

Is this reversible?

Oracle Implementation

Is this reversible?

Why is it reversible?

Property 1: $|y \oplus y\rangle = |0\rangle$

Property 2: $|y \oplus 0\rangle = |y\rangle$

Oracle for constant 0 function

Input	f
0	0
1	0

 q_0 —

 q_1 —

Oracle for constant 1 function

Input	f
0	1
1	1

Oracle for balanced function 1

Input	f
0	0
1	1

Oracles for balanced function 2

Input	f
0	1
1	0

Summary: Oracles for each function

Input to q_0 qubit and ancillary qubit to q_1

Input	f
0	0
1	0

Input	f
0	1
1	1

Input	f
0	0
1	1

Input	f
0	1
1	0

$$q_0$$
 —

$$q_1 = -$$

$$q_0$$
 q_1

Quantum circuit

How to decide?

If z = 0: Constant function

If z = 1: Balanced function

Back to implementation

Let's look at a Qiskit implementation of this quantum circuit now!

Notebook: Demo_Deutsch_Jozsa.ipynb

Quantum Speedups

Quantum speedups

- Deutsch-Josza algorithm for n-bit functions
 - Classically $2^{n-1} + 1$ queries to the oracle (worst case)
 - Quantum—only 1 query
- This algorithm leads to more advanced algorithms to identify interesting properties
 - Period finding--- Simon's algorithm
 - Factoring algorithm---Shor's algorithm
- Speed up provided for factoring --- Breaking down RSA encryption

Quantum Properties

No-cloning Theorem

- What is that?
 - Classical data can be copied and duplicated
 - Can't copy, duplicate quantum states
- Interesting property for security applications

Destructiveness of measurements

• Once the measurement is done, original state may "collapses"

Example:

Post-measurement state

Quantum Teleportation

Quantum Teleportation

Quantum Teleportation

- From No-Cloning theorem, quantum states can't be copied or duplicated.
- How to transmit the quantum information without destroying the superposition of quantum states?

Back to our first circuit in Qiskit

Output state of this circuit:
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

= $\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$

Back to our first circuit in Qiskit

Output state of this circuit:
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

= $\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$

Exists Correlations!

Bell states

• Bell states are entangled states

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

How to create the following Bell state

Bell measurement

Entanglement and measurement

Steps

- Alice has one qubit with state $|\psi\rangle$
- Alice and Bob share an entangled state--- Bell pair
- Alice apply a Bell measurement to his two qubits
- Then Alice send the outcomes of those measurements to Bob through a classical channel
- Bob does the correction circuit
- Now Bob has the state $|\psi\rangle$ --- Teleportation

Alice

Bob

This protocol destroys the quantum state in one location and recreates at a distant location

Quantum circuit

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

What is Bob's correction?

Measurement outcomes of Alice	00	01	10	11
Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

- Without knowing measurement outcomes, all these states are equiprobable
- Thus, can't do teleportation violating the speed of light –
 Need to send the outcomes through a classical channel

Measurement outcomes of Alice	00	01	10	11
Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

$$X|0\rangle = |1\rangle$$

 $X|1\rangle = |0\rangle$
 $Z|0\rangle = |0\rangle$
 $Z|1\rangle = -|1\rangle$

Measurement outcomes of Alice	00	01	10	11
Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

$$X|0\rangle = |1\rangle$$

$$X|1\rangle = |0\rangle$$

$$Z|0\rangle = |0\rangle$$

$$Z|1\rangle = -|1\rangle$$

 $\mathsf{Apply}\,X$

Measurement outcomes of Alice	00	01	10	11
Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

$$X|0\rangle = |1\rangle$$

$$X|1\rangle = |0\rangle$$

$$Z|0\rangle = |0\rangle$$

$$Z|1\rangle = -|1\rangle$$

 $\operatorname{\mathsf{Apply}} Z$

Measurement outcomes of Alice	00	01	10	11
Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$

$$X|1\rangle = |0\rangle$$

$$Z|0\rangle = |0\rangle$$

$$Z|1\rangle = -|1\rangle$$

Apply ZX

Quantum Teleportation circuit with Qiskit

Let's implement this quantum circuit and see how it works

Notebook: Demo_Quantum_Teleportation

Entanglement swapping

Image Source: Scott Aaronson's notes

Back to Outline

- Qiskit and IBM Quantum experience
- First circuit in Qiskit
- Quantum speedups-- Deutsch-Jozsa Algorithm
- Quantum correlations--Entanglement
- Quantum Teleportation

Questions?

Challenges in Quantum computing

• Errors

- Scalability
- Connectivity