

Outline

- Recap camera calibration
- Epipolar Geometry

Oriented and Translated Camera

Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

How to calibrate the camera?

How do we calibrate a camera?

Method 1 – homogeneous linear system

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Solve for m's entries using linear least squares

 m_{34}

For project 3, we want the camera center

Estimate of camera center

Oriented and Translated Camera

Recovering the camera center

Estimate of camera center

Epipolar Geometry and Stereo Vision

Chapter 7.2 in Szeliski

- Epipolar geometry
 - Relates cameras from two positions

Depth from Stereo

 Goal: recover depth by finding image coordinate x' that corresponds to x

Depth from Stereo

- Goal: recover depth by finding image coordinate x' that corresponds to x
- Sub-Problems
 - 1. Calibration: How do we recover the relation of the cameras (if not already known)?
 - 2. Correspondence: How do we search for the matching point x'?

Correspondence Problem

- We have two images taken from cameras with different intrinsic and extrinsic parameters
- How do we match a point in the first image to a point in the second? How can we constrain our search?

Where do we need to search?

Key idea: Epipolar constraint

Key idea: Epipolar constraint

Potential matches for *x* have to lie on the corresponding line *l*'.

Potential matches for *x'* have to lie on the corresponding line *l*.

Wouldn't it be nice to know where matches can live? To constrain our 2d search to 1d.

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar geometry: notation

- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- Epipolar Plane plane containing baseline (1D family)

Epipolar geometry: notation

- Baseline line connecting the two camera centers
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- Epipolar Plane plane containing baseline (1D family)
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

What would the epipolar lines look like if the camera moves directly forward?

Example: Forward motion

Epipole has same coordinates in both images.

Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint: Calibrated case

$$\hat{x} = K^{-1}x = X$$

$$\hat{x}' = K'^{-1}x' = X'$$

$$\hat{x} \cdot [t \times (R\hat{x}')] = 0$$

(because \hat{x} , $R\hat{x}'$, and t are co-planar)

Essential matrix

Essential Matrix

(Longuet-Higgins, 1981)

The Fundamental Matrix

Without knowing K and K', we can define a similar relation using *unknown* normalized coordinates

$$\hat{x}^T E \hat{x}' = 0$$

$$\hat{x} = K^{-1} x$$

$$\hat{x}' = K'^{-1} x'$$
with $F = K^{-T} E K'^{-1}$

Fundamental Matrix (Faugeras and Luong, 1992)

Properties of the Fundamental matrix

- F x' = 0 is the epipolar line associated with x'
- $F^Tx = 0$ is the epipolar line associated with x
- Fe' = 0 and $F^{T}e = 0$
- F is singular (rank two): det(F)=0
- F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

Estimating the Fundamental Matrix

- 8-point algorithm
 - Least squares solution using SVD on equations from 8 pairs of correspondences
 - Enforce det(F)=0 constraint using SVD on F
- 7-point algorithm
 - Use least squares to solve for null space (two vectors) using SVD and 7 pairs of correspondences
 - Solve for linear combination of null space vectors that satisfies det(F)=0
- Minimize reprojection error
 - Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations

$$\mathbf{x}^T F \mathbf{x}' = 0$$

$$uu'f_{11} + uv'f_{12} + uf_{13} + vu'f_{21} + vv'f_{22} + vf_{23} + u'f_{31} + v'f_{32} + f_{33} = 0$$

$$\mathbf{A}\boldsymbol{f} = \begin{bmatrix} u_{1}u_{1}' & u_{1}v_{1}' & u_{1} & v_{1}u_{1}' & v_{1}v_{1}' & v_{1} & u_{1}' & v_{1}' & 1\\ \vdots & \vdots\\ u_{n}u_{v}' & u_{n}v_{n}' & u_{n} & v_{n}u_{n}' & v_{n}v_{n}' & v_{n} & u_{n}' & v_{n}' & 1 \end{bmatrix} \begin{bmatrix} f_{11}\\ f_{12}\\ f_{13}\\ f_{21}\\ \vdots\\ f_{33} \end{bmatrix} = \mathbf{0}$$

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve f from Af=0 using SVD

Matlab:

```
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';
```

Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve f from Af=0 using SVD

Matlab:

```
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';
```

2. Resolve det(F) = 0 constraint using SVD

Matlab:

```
[U, S, V] = svd(F);

S(3,3) = 0;

F = U*S*V';
```

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve **f** from A**f=0** using SVD
- 2. Resolve det(F) = 0 constraint by SVD

Notes:

- Use RANSAC to deal with outliers (sample 8 points)
 - How to test for outliers?

Problem with eight-point algorithm

$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03		6196.73	302975.59	405.71	15.27	
4094.40	131033.03	1/0.2/	0190.73	304973.39	403.71	13.47	740.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

$$\begin{vmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32}
\end{vmatrix} = -1$$

Poor numerical conditioning

Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units:
 if *T* and *T'* are the normalizing transformations in the
 two images, than the fundamental matrix in original
 coordinates is *T'^T F T*

VLFeat's 800 most confident matches among 10,000+ local features.

Epipolar lines

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix

