WHAT IS CLAIMED IS:

A high weather and chemical resistant, addition-crosslinkable, epoxy-functional organopolysiloxane resin which contains at least one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}}$$
 (M units)

$$E_a R_b^1 R_c^2 SiO_{\frac{2}{2}}$$
 (D units)

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}} \qquad \text{(T units)}$$

$$SiO_{\frac{4}{2}}$$
 (Q units)

E is an epoxy-functional C₁₋₁₈ hydrocarbon group containing one or wherein 4 more oxygen atoms provided that no oxygen atom is directly bonded to a Si- atom; and 6 R^1 and R^2 are independently a $C_{1\text{-}20}$ hydrocarbon, optionally 7 interspersed with a heteroatom linking group; 8 a is an integer of 0, 1, or 2; 9 b is an integer of 0, 1, 2 or 3; 10 c is an integer of 0, 1, 2 or 3, and 11 in M units, a+b+c=3, 12 in D units, a+b+c=2, 13 in T units, a+b+c=1, 14

7 15 \ 2 2 2 0 15 \ 16 17 18

and

1

2

1

2

1

1

2

wherein the M units are present in less than about 40 mole percent; the D units are present in an amount of up to about 40 mole percent;

the molecule, on average, contains at least two E components.

- 2. The resin of claim 1 wherein the hydrocarbon group of E comprises a C_{3-12} hydrocarbon group.
- The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin has an alkoxy content of less than about 20 weight percent, based on the weight of the epoxy-functional organopolysiloxane resin.
 - 4. The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin has an epoxy equivalent weight in the range of about 150-1000.
- 5. The resin of claim 2 wherein the epoxy-functional organopolysiloxane resin has an epoxy equivalent weight in the range of about 200-3 600.
- 1 6. The resin of claim 5 wherein the epoxy-functional organopolysiloxane resin has a viscosity in the range of about 200-70,000 cps at 25°C.
 - 7. The resin of claim 6 wherein the E is glycidoxypropyl

(CH₂—CHCH₂OCH₂CH₂—)

8. The resin of claim 6 wherein the epoxy-functional organopolysiloxane resin comprises T units and the T units include structures

- selected from the group consisting of silsequioxane and polysilsesquioxane structures.
- 1 9. The resin of claim 1 wherein the resin has a molecular weight 2 between about 750 and 25,000.
- 1 10. The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin is prepared by reacting a silicone resin with a silane having at least one epoxy group per molecule.
- 1 The resin of claim 10 wherein the silane is represented by the formula:

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}

- wherein each R^5 is individually selected from the group consisting of alkyl (C_{1-12}) , aryl (C_{6-9}) , vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18} hydrocarbon group of the formula $R^6 E^1$ wherein E^1 comprises an epoxy group and R^6 comprises a C_{1-18} hydrocarbon group optionally interspersed with at least one heteroatom linking group, with the proviso that at least one R^5 comprises $R^6 E^1$.
- 1 12. The resin of claim 11 wherein the heteroatom linking group,
 2 if present, is not adjacent to the E¹ group.
- 1 13. The resin of claim 11 wherein the hydrocarbon group of the R⁶ comprises a C₃₋₁₂ hydrocarbon group.
- 1 14. The resin of claim 11 wherein the silane has a molecular weight in the range of about 100 to about 750.

1

- 15. The resin of claim 14 wherein the silane has an epoxy-functionality in the range of about 1 to about 4.
- 1 16. The resin of claim 15 wherein the silane has an alkoxy 2 functionality in the range of about 1 to about 4.
 - 17. The resin of claim 13 wherein R^6 - E^1 is glycidoxypropyl

 $(CH_2 \rightarrow CHCH_2OCH_2CH_2CH_2 -).$

- 1 18. The resin of claim 11 wherein the silane a γ 2 glycidoxypropylsilane having $C_{\chi_{12}}$ alkoxygroups.
- 1 19. The resin of claim 10 wherein the silicone has a molecular weight in the range of about 300 to about 15000.
- 1 20. The resin of claim 7 wherein the resin comprises about 70 mole percent T units and about 30 mole percent D Units.
- 1 21. The resin of claim 1 wherein the resin is a liquid and has a 2 molecular weight of about 500-5,000.
- The resin of claim 21 wherein the resin has a molecular weight of about 1,200.
- 1 23. The resin of claim 22 wherein the molecule contains at least 2 three E components.

1

- 24. An epoxy-functional organopolysiloxane coating composition
- 2 comprising:
- a hardener
- an epoxy-functional organopolysiloxane resin which contains at least
- one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}}$$
 (M units)

$$E_a R_b^1 R_c^2 SiO_{\frac{2}{2}}$$
 (D units)

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}}$$
 (T units)

\$10₄ 2

(Junits)

- 6 wherein E is an epoxy-functional Q_{1-18} hydrocarbon group containing one or more oxygen atoms, provided that no oxygen atom is directly bonded to a Si- atom; and
- R¹ and R² are independently a C₁₋₂₀ hydrocarbon, optionally interspersed with a heteroatom linking group;
- 11 a is an integer of 0, 1, or 2;
- b is an integer of 0, 1, 2 or 3;
- 13 c is an integer of 0, 1, 2 or 3; and
- in M units, a+b+c=3,
- in D units, a+b+c=2,
- in T units, a+b+c=1,
- 17 wherein the M units are present in less than about 40 mole percent;
- the D units are present in an amount of up to about 40 mole percent;

- with the proviso that the molecule, on average, contains at least two
 E components and
- 21 an acrylic resin;
- wherein the epoxy-functional organopolysiloxane resin is prepared by
- reacting a silicone resin with a silane represented by the formula:

$$\begin{cases}
R^{5} \\
R^{5} \\
Si \\
R^{5}
\end{cases}$$

- 24 wherein R⁵ are one of, or a combination of, the following groups alkyl (C₁₋₁₂), aryl
- 25 (C_{6-9}) , vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18} hydrocarbon group
- of the formula R⁶ E¹ wherein R⁶ E¹ comprises glycidoxypropyl

- with the proviso that at least one R^5 comprises $R^6 E^1$.
- 1 25. An epoxy-functional organopolysiloxane coating composition 2 comprising:
- a hardener;
- an epoxy-functional organopoly iloxane resin which contains at least
- one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}} \qquad \text{(M units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{2}{2}} \qquad \text{(D units)}$$

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}} \qquad \text{(T units)}$$

$SiO_{\frac{4}{2}}$	(Q units)
2	

		' \
6	wherein	E is an epoxy-functional C ₁₋₁₈ hydrocarbon group containing one or
7		more oxygen atoms, provided that no oxygen atom is directly bonded
8		to a Si- atom; and
9		R ¹ and R ² are independently a C ₁₋₂₀ hydrocarbon, optionally
10		interspersed with a heteroatom linking group;
11		a is an integer of 0, 1, or 2;
12		b is an integer of \emptyset , 1, 2 or 3;
13		c is an integer of 0 1, 2 or 3, preferably 0, 1, or 2; and
14		in M units, $a+b+c=3$,
15		in D units, $a + b + c = 2$,
16		in T units, $a+b+c=1$
17	wherein	the M units are present in less than about 40 mole percent;
18		the D units are present in an amount up to about 40 mole percent; and
19		with the proviso that the molecule, on average, contains at least two
20		E components; and
21		a flow additive;
22		wherein the epoxy-functional organopolysiloxane resin is prepared by
23	reacting a	silicone resin with a silane represented by the formula:
		i e e e e e e e e e e e e e e e e e e e

25 (C_{6-9}) , vinyl, glycol, alkoxy (C_{12}) , and an epoxy functional C_{1-18} hydrocarbon group

of the formula R⁶ - E¹ wherein R⁶ - E¹ comprises glycidoxypropyl

(CH₂+CHCH₂OCH₂CH₂CH₂---),

with the proviso that at least one R⁵ comprises R⁶ - E¹.