Adversarial Perturbations

Become invisible to Al

Examples of adversarial perturbations

Table of contents

Ol Class perturbation

Perturbing the class of an image using deepfool variations.

O2 Universal perturbation

Perturbing the class of multiple images with the same noise.

Pertunation

Real time

Pertunation

detection of objects in a

sequence of images (video)

Class perturbation

Perturbing the class of an image using deepfool variations.

Class perturbation - Deepfool

Deepfool is a method that uses gradient and prediction logits of an image when passed in a machine learning model and adds the needed transformation to change its class.

- General Deepfool
 - Closest class
 - Target class
- Region Deepfool
 - Closest class
 - Target class

Class perturbation - General Deepfool

Algorithm 1 DeepFool: multi-class case

Require: Image x, classifier f.

Ensure: Perturbation \hat{r} .

- 1: Initialize $x_0 \leftarrow x, i \leftarrow 0$.
- 2: **while** $\hat{k}(x_i) = \hat{k}(x_0)$ **do**
- 3: **for** $k \neq \hat{k}(x_0)$ **do**
- 4: $w_k' \leftarrow \nabla f_k(x_i) \nabla f_{\hat{k}(x_0)}(x_i)$
- 5: $f'_k \leftarrow f_k(x_i) f_{\hat{k}(x_0)}(x_i)$
- 6: end for
- 7: $\hat{l} \leftarrow \arg\min_{k \neq \hat{k}(x_0)} \frac{|f'_k|}{\|w'_k\|_2}$
- 8: $r_i \leftarrow \frac{|f_{\hat{l}}'|}{\|w_{\hat{l}}'\|_2^2} w_{\hat{l}}'$
- $9: \quad x_{i+1} \leftarrow x_i + r_i$
- 10: $i \leftarrow i + 1$
- 11: end while
- 12: **return** $\hat{r} \leftarrow \sum_{i} r_i$

Flamingo

Assault rifle

Class perturbation - Region Deepfool

Algorithm 2 DeepFool: multi-class case

Require: Image x, classifier f, mask M.

Ensure: Perturbation \hat{r} .

- 1: Initialize $x_0 \leftarrow x$, $i \leftarrow 0$.
- 2: **while** $\hat{k}(x_i) = \hat{k}(x_0)$ **do**
- 3: for $k \neq \hat{k}(x_0)$ do
- 4: $w'_k \leftarrow M(i) \cdot \left(\nabla f_k(x_i) \nabla f_{\hat{k}(x_0)}(x_i)\right)$
- 5: $f'_k \leftarrow f_k(x_i) f_{\hat{k}(x_0)}(x_i)$
- 6: end for
- 7: $\hat{l} \leftarrow \arg\min_{k \neq \hat{k}(x_0)} \frac{|f'_k|}{\|w'_k\|_2}$
- 8: $r_i \leftarrow \frac{|f_{\hat{l}}'|}{\|w_i'\|_2^2} w_{\hat{l}}'$
- $9: \quad x_{i+1} \leftarrow x_i + r_i$
- 10: $i \leftarrow i + 1$
- 11: end while
- 12: **return** $\hat{r} \leftarrow \sum_{i} r_i$

Oxcart (plane)

Assault rifle

Class perturbation - Evaluation

Note: The variations of methods do not change the confusion matrices but it changes the mean norm of the perturbations.

Dataset: CIFAR-10

Universal perturbation

Perturbing the class of multiple images with the same noise.

Universal

- Instead of perturbing one image in particular, we are looking to create a universal perturbation for all the images.
- As this perturbation is based on a (model, dataset) pair, we will then compare it on different architectures in order to assess its generalization and effectiveness.

Algorithm

Algorithm 1 Computation of universal perturbations.

- 1: **input:** Data points X, classifier \hat{k} , desired ℓ_p norm of the perturbation ξ , desired accuracy on perturbed samples δ .
- 2: **output:** Universal perturbation vector v.
- 3: Initialize $v \leftarrow 0$.
- 4: while $Err(X_n) \leq 1 \delta$ do
- for each datapoint $x_i \in X$ do
- if $\hat{k}(x_i + v) = \hat{k}(x_i)$ then 6:
 - Compute the *minimal* perturbation that sends $x_i + v$ to the decision boundary:

$$\Delta v_i \leftarrow \arg\min_{x} \|r\|_2 \text{ s.t. } \hat{k}(x_i + v + r) \neq \hat{k}(x_i).$$
 <- Deepfool

Update the perturbation: 8:

$$v \leftarrow \mathcal{P}_{p,\xi}(v + \Delta v_i).$$

<- Projection

- end if 9: end for
- 11: end while

Example

Generalization

Dataset: STL-10: (3, 96, 96) x 5 000 [10 classes]

Network \ Perturbation	ResNet-18	VGG-11	MobileNet-V2	Random
ResNet-18	76.4%	26.7%	27.1%	19.0%
VGG-11	43.4%	73.6%	15.3%	12.5%
MobileNet-V2	53.3%	56.6%	57.4%	22.9%

- Universal perturbations are most effective on the model they are crafted for
- ResNet-18 has the best results and seems to be the most generalizable
- The efficiency of the algorithm compared with random noise is clearly visible

Fooling rate as a function of xi

- Quickly reach
 a plateau, whatever
 the norm used or the
 model considered
- It is impossible to fool 100% of the dataset without completely destroying the images

Perturbing the class and detection of objects in a sequence of images (video)

Image from the paper "Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors"

YOLO detection

YOLOV3

Environmental impact

Name (118 visualized)		User	Emissions (gCO2e)	GPU (Wh)	CPU (Wh)	Energy (Wh)	RAM (Wh)
Name: plot_comparaison	3	notthestallion	0.0015864	0.010805	0.013555	0.02831	0.0039491
● ▶ Name: plot_diff	3	notthestallion	0.00095841	0.0066414	0.0081013	0.017103	0.0023599
● Name: deepfool_specific	25	notthestallion	0.0023868	0.025453	0.013272	0.042591	0.0038661
Name: local_deepfool	25	notthestallion	0.0096839	0.11135	0.047592	0.17281	0.013868
■ Name: deepfool	62	notthestallion	0.0055044	0.063125	0.02718	0.098224	0.0079193

Environmental impact

- France, Nouvelle-Aquitaine
- OS: Linux 6.12
- CPU: Intel Xeon 1270
- GPU: RTX 3060

		<u>S</u>	t	a	r	nd	a	r	d	u	S	e
--	--	----------	---	---	---	----	---	---	---	---	---	---

- Duration: 3s
- Energy consumed: 2.8e-5 kWh
- Emission: 1.5e-8 kg.CO2eq

x 2000

Deepfool

- Duration: 10s
- Energy consumed: 1.7e-4 kWh
- Emission: 9e-8 kg.CO2eq

x 400

= 2.9e-1 kg.CO2eq = 5.71e-2 km in car

Universal (ResNet-18/STL-10):

- Duration: 4m 33s
- Energy consumed: 1e-2 kWh
- Emission: 5.8 x 10⁻³ kg.CO2eq

x 50

