Example 2.8 Show that the following relations are equivalence relations:

- (i) R_1 is the relation on the set of integers such that aR_1b if and only if a=bor a = -b.
- (ii) R_2 is the relation on the set of integers such that aR_2b if and only if $a \equiv b$ (mod m), where m is a positive integer > 1."

 (mod m), where m is a positive integer > 1."

 (mir) R3 is the zelation on the set of seal numbers such that a R3 b 17

 and of only if ca-b) is on integer

(i) a = a or a = -a, which is true for all integers.

 \therefore R_1 is reflexive.

When a = b or a = -b, b = a or b = -a.

 \therefore R_1 is symmetric

When $a, b, c \ge 0$, a = b and b = c, if aR_1b and bR_1c

 \therefore a = c, i.e., aRc

Similarly when $a \ge 0$, $b \le 0$, $c \le 0$, we have a = -b and b = c, if aR_1b and bR_1c .

 \therefore a = -c. i.e., aR_1c .

The result is true for all positive and negative value combinations of a, b, c.

 R_1 is transitive.

Hence R_1 is an equivalence relation.

(ii) (a-a) is multiple of m

 \therefore $a \equiv a \pmod{m}$ i.e., R_2 is reflexive.

When a - b is multiple of m, b - a is also a multiple of m.

i.e. $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$

 \therefore R_2 is symmetric.

When $(a - b) = k_1 m$ and $b - c = k_2 m$, we get $a - c = (k_1 + k_2)m$ (by addition)

When $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, $a \equiv c \pmod{m}$

 R_2 is transitive.

Hence R_2 is an equivalence relation.

(iii) (a-a) is an integer. $\therefore R_3$ is reflexive.

When (a - b) is an integer, (b - a) is an integer.

 R_3 is symmetric.

When (a - b) and (b - c) are integers, clearly (a - c) is also an integer (by addition)

 R_3 is transitive.

Hence R_3 is an equivalence relation.

Example 2.9

- (i) If R is the relation on the set of ordered pairs of positive integers such that (a, b), $(c, d) \in R$ whenever ad = bc, show that R is an equivalence relation.
- (ii) if R is the relation on the set of positive integers such that $(a, b) \in R$ if and only if ab is a perfect square, show that R is an equivalence relation.
- (i) (a, b) R (a, b), since ab = ba

R is reflexive.

When (a, b) R (c, d), ad = bc i.e., cb = da

This means that (c, d) R (a, b)

R is symmetric.

When (a, b) R (c, d), ad = bc

(1)(2)

When (c, d) R(e, f), cf = de

 $(:: c \text{ and } d \text{ are } > \bigcirc)$ (1) and (2) gives af = be

Discrete Mathematics

This means that cabor (e,f)
I is disansitive. Set theory
Hence, Ris an equivalence relation,
(ii) (a, a) & R₁, since a² is a perfect square

83

 \therefore R is reflexive.

When ab is a perfect square, ba is also a perfect square.

i.e. $aRb \Rightarrow bRa$

... R is symmetric,

If,
$$a R b$$
, let $ab = x^2$

If
$$b R c$$
, let $bc = y^2$ (2)

 $(1) \times (2) \text{ gives } ab^2c = x^2y^2$

$$\therefore ac = \left(\frac{xy}{b}\right)^2 = a \text{ present square.}$$

aRc. i.e. R is transitive.

Hence R is an equivalence relation.

Example 2.10

(i) If R is the relation on the set of positive integers such that $(a, b) \in R$ if and only if $a^2 + b$ is even, prove that R is an equivalence relation.

(ii) If R is the relation on the set of integers such that $(a, b) \in R$, if and only if 3a + 4b = 7n for some integer n, prove that R is an equivalence relation.

(i) $a^2 + a = a(a + 1) = \text{even}$, since a and (a + 1) are consecutive positive integers.

$$\therefore$$
 $(a, a) \in R$

Hence R is reflexive.

When $a^2 + b$ is even, a and b must be both even or both odd.

In either case, $b^2 + a$ is even

$$\therefore$$
 $(a, b) \in R$ implies $(b, a) \in R$

Hence R is symmetric.

When a, b, c are even, $a^2 + b$ and $b^2 + c$ are even. Also $a^2 + c$ is even.

When a, b, c are odd, $a^2 + b$ and $b^2 + c$ are even. Also $a^2 + c$ is even.

Then $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ i.e., R is transitive.

R is an equivalence relation.

3a + 4a = 7a, when a is an integer.

:
$$(a, a) \in R$$
. i.e., R is reflexive.
 $3b + 4a = 7a + 7b - (3a + 4b)$

$$=7(a+b)-7n$$

= 7(a + b - n), where a + b - n is an integer

 $(b, a) \in R$ when $(a, b) \in R$.

i.e. R is symmetric.

Let (a, b) and $(b, c) \in R$.

i.e. let
$$3a + 4b = 7m$$
 (1)

and
$$3b + 4c = 7n$$

(1) and (2) gives, 3a + 4c = 7(m + n - b), where m + n - b is an integer.

$$\therefore c \in R$$

R is transitive - : Ris an equivalence selation.