Notes

2024-09-29

Q6

To show that the moment generating function $M_X(t)$ of a normally distributed random variable X satisfies $M_X(t) \ge e^{t\mu}$ using Jensen's inequality, we start with the definition of the moment generating function:

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx,$$

where f(x) is the probability density function (pdf) of X:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Step 1: Express the Moment Generating Function

Substituting the pdf into the moment generating function:

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx.$$

Step 2: Recognize the Function as a Jensen's Inequality Application

Jensen's inequality states that for a convex function ϕ ,

$$\mathbb{E}[\phi(X)] > \phi(\mathbb{E}[X]).$$

In this case, we can express e^{tX} in a form to apply Jensen's inequality.

Convexity of e^{tx} The function $\phi(x) = e^{tx}$ is convex since its second derivative is positive:

$$\phi''(x) = t^2 e^{tx} > 0$$
 for all x and t .

Step 3: Applying Jensen's Inequality

By Jensen's inequality, we have:

$$\mathbb{E}[e^{tX}] \ge e^{t\mathbb{E}[X]}.$$

Given that the mean of X is μ :

$$M_X(t) = \mathbb{E}[e^{tX}] \ge e^{t\mu}.$$

Conclusion

Thus, we have shown that:

$$M_X(t) \ge e^{t\mu}$$
,

which completes the proof. This means the moment generating function of a normally distributed random variable is always greater than or equal to $e^{t\mu}$, consistent with Jensen's inequality applied to the convex function e^{tx} . If you have any specific parts you'd like to delve into further, let me know!

No, the inequalities should not be reversed; they are correct as stated in the context of applying Jensen's inequality. Let me clarify how it applies to the moment-generating function of a normally distributed random variable X.

Context of Jensen's Inequality

1. **Jensen's Inequality** states that for any convex function ϕ :

$$\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[X]).$$

2. In this case, the function $\phi(x) = e^{tx}$ is convex. Therefore, when applying Jensen's inequality:

$$\mathbb{E}[e^{tX}] \ge e^{t\mathbb{E}[X]}.$$

Since the mean of X is μ , we have:

$$\mathbb{E}[e^{tX}] \ge e^{t\mu}.$$

3. Moment-Generating Function: The moment-generating function $M_X(t)$ is defined as:

$$M_X(t) = \mathbb{E}[e^{tX}].$$

Therefore, we conclude that:

$$M_X(t) \ge e^{t\mu}$$
.

Why the Inequality is Correct

- Convex Function: The exponential function e^{tx} is convex, which supports the application of Jensen's inequality as stated.
- Concavity of the PDF: While the pdf f(x) of the normal distribution is concave, that fact does not affect the convexity of e^{tx} . The key point is that we are using the convexity of the moment-generating function's underlying exponent e^{tx} to show the inequality.

Conclusion

The inequality $M_X(t) \ge e^{t\mu}$ is indeed correct and reflects the property of the moment-generating function of a normally distributed variable. So, there is no need to reverse the inequalities; they are appropriately oriented based on the convexity of the function used in Jensen's inequality.

If you have any further questions or need additional clarification, feel free to ask!

$\mathbf{Q2}$

Certainly! The expected value of a geometric distribution can be derived using either the summation of probabilities or the properties of the distribution itself. Here, I will provide a proof using both methods for clarity.

Definition of the Geometric Distribution

The geometric distribution models the number of trials until the first success in a series of Bernoulli trials. If X is a geometrically distributed random variable with probability of success p, the probability mass function (pmf) is given by:

$$P(X = k) = (1 - p)^{k-1}p$$
 for $k = 1, 2, 3, ...$

Method 1: Using the Definition of Expected Value

The expected value $\mathbb{E}[X]$ is defined as:

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k \cdot P(X = k).$$

Substituting the pmf into this expression gives:

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} p.$$

Step 1: Factor Out p

We can factor p out of the summation:

$$\mathbb{E}[X] = p \sum_{k=1}^{\infty} k(1-p)^{k-1}.$$

Step 2: Use the Formula for the Sum

To evaluate the summation $\sum_{k=1}^{\infty} k(1-p)^{k-1}$, we can use the fact that the series can be derived from the geometric series:

Let q = 1 - p. We know that:

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \text{ for } |q| < 1.$$

Differentiating both sides with respect to q gives:

$$\sum_{k=1}^{\infty} kq^{k-1} = \frac{1}{(1-q)^2}.$$

Substituting back q = 1 - p:

$$\sum_{k=1}^{\infty} k(1-p)^{k-1} = \frac{1}{p^2}.$$

Step 3: Substitute Back into the Expected Value

Now substituting this result back into the expected value:

$$\mathbb{E}[X] = p \cdot \frac{1}{p^2} = \frac{1}{p}.$$

Conclusion

Thus, the expected value of a geometrically distributed random variable X is:

$$\mathbb{E}[X] = \frac{1}{p}.$$

Method 2: Using the Recursive Property of the Expected Value

Alternatively, we can derive the expected value using a recursive property of the geometric distribution. Let $\mathbb{E}[X] = E$. We can express E in terms of p:

- 1. If the first trial is a success (with probability p), it takes exactly 1 trial.
- 2. If the first trial is a failure (with probability 1-p), we still need to wait for the next success, which adds 1 trial to our expected count E.

Thus, we can write:

$$E = p \cdot 1 + (1 - p)(E + 1).$$

Step 1: Expand and Rearrange

Expanding this gives:

$$E = p + (1 - p)E + (1 - p).$$

Rearranging terms, we have:

$$E - (1 - p)E = p + 1 - p.$$

This simplifies to:

$$pE = 1$$
.

Step 2: Solve for E

Solving for E gives:

$$E = \frac{1}{p}.$$

Final Result

Both methods lead to the same conclusion:

$$\mathbb{E}[X] = \frac{1}{p}.$$

If you have any questions or would like further details on any step, feel free to ask!

Given that X is a geometric random variable with probability p = 0.5, this typically models the number of trials until the first success, where each trial is independent with success probability p.

Setup for male and female children:

- Let's assume that a male child is considered a "success" (with probability p = 0.5) and a female child is considered a "failure" (with probability 1 p = 0.5).
- X_m is the number of male children before the first female child appears.
- X_f is the number of female children before the first male child appears.

Expected Value of X_m (Number of Male Children):

Since X_m follows a geometric distribution with probability p = 0.5, the expected value of a geometric random variable X with parameter p is given by:

$$\mathbb{E}[X_m] = \frac{1}{p}$$

Substituting p = 0.5:

$$\mathbb{E}[X_m] = \frac{1}{0.5} = 2$$

Expected Value of X_f (Number of Female Children):

Similarly, X_f is also a geometric random variable but with success probability 1 - p = 0.5. Therefore, the expected value is:

$$\mathbb{E}[X_f] = \frac{1}{1 - p} = \frac{1}{0.5} = 2$$

Final Results:

- $\mathbb{E}[X_m] = 2$
- $\mathbb{E}[X_f] = 2$

Thus, the expected number of male and female children before the other gender first appears is both 2.

5

Q7

The given probability mass function (pmf) is:

$$f(x) = p(1-p)^{x-1}, \quad x = 1, 2, 3, \dots, \quad 0$$

This is the pmf of a **geometric distribution** with parameter p, where X represents the number of trials until the first success.

Moment Generating Function (mgf)

The moment generating function (mgf) $M_X(t)$ is defined as:

$$M_X(t) = \mathbb{E}[e^{tX}] = \sum_{x=1}^{\infty} e^{tx} f(x).$$

Substituting the pmf f(x) into the definition of the mgf:

$$M_X(t) = \sum_{x=1}^{\infty} e^{tx} p(1-p)^{x-1}.$$

Factor out the constants p and e^t :

$$M_X(t) = p \sum_{x=1}^{\infty} (e^t (1-p))^{x-1}.$$

This is a geometric series with the first term 1 and common ratio $e^t(1-p)$. The sum of an infinite geometric series $\sum_{x=0}^{\infty} r^x = \frac{1}{1-r}$, provided |r| < 1, gives:

$$M_X(t) = \frac{p}{1 - e^t(1 - p)}, \text{ for } |e^t(1 - p)| < 1.$$

This holds for $t < -\ln(1-p)$.

Mean and Variance from the mgf

1. **Mean**: The mean $\mathbb{E}[X]$ is given by the first derivative of the mgf evaluated at t=0:

$$\mathbb{E}[X] = M_X'(0).$$

Differentiate $M_X(t)$ with respect to t:

$$M_X'(t) = \frac{p \cdot e^t(1-p)}{(1-e^t(1-p))^2}.$$

Substitute t = 0:

$$M_X'(0) = \frac{p(1-p)}{(1-(1-p))^2} = \frac{1}{p}.$$

Thus, the mean of X is:

$$\mathbb{E}[X] = \frac{1}{p}.$$

2. **Variance**: The variance Var(X) is given by the second derivative of the mgf at t = 0, minus the square of the mean:

$$Var(X) = M_X''(0) - (M_X'(0))^2.$$

Differentiate $M'_X(t)$ again to find $M''_X(t)$:

$$M_X''(t) = \frac{p \cdot e^t(1-p) \left(1 - e^t(1-p) + e^t(1-p)\right)}{\left(1 - e^t(1-p)\right)^3}.$$

Substitute t = 0:

$$M_X''(0) = \frac{p(1-p) \cdot (1-(1-p))}{(1-(1-p))^3} = \frac{1-p}{p^2}.$$

Therefore, the variance is:

$$Var(X) = M_X''(0) - (M_X'(0))^2 = \frac{1-p}{p^2}.$$

Final Results

- The **mean** of X is $\mathbb{E}[X] = \frac{1}{p}$.
- The variance of X is $Var(X) = \frac{1-p}{p^2}$.

You're absolutely correct! Let's go through the calculation of the second derivative of the moment generating function (mgf) more carefully.

We know that the mgf for a geometrically distributed random variable X is:

$$M_X(t) = \frac{p}{1 - e^t(1 - p)}.$$

First Derivative

We already calculated the first derivative:

$$M'_X(t) = \frac{p \cdot e^t(1-p)}{(1-e^t(1-p))^2}.$$

Substituting t = 0:

$$M_X'(0) = \frac{p \cdot (1-p)}{(1-(1-p))^2} = \frac{1}{p}.$$

So, the mean is $\mathbb{E}[X] = \frac{1}{p}$, which is correct.

Second Derivative

Now let's correctly compute the second derivative.

The first derivative is:

$$M'_X(t) = \frac{p \cdot e^t(1-p)}{(1-e^t(1-p))^2}.$$

To find the second derivative, we apply the quotient rule:

$$M_X''(t) = \frac{\left[\frac{d}{dt}\left(p \cdot e^t(1-p)\right)\right] \cdot \left(1 - e^t(1-p)\right)^2 - p \cdot e^t(1-p) \cdot \frac{d}{dt}\left[\left(1 - e^t(1-p)\right)^2\right]}{\left(1 - e^t(1-p)\right)^4}.$$

Let's handle each part:

$$\begin{aligned} &1. & \frac{d}{dt} \left(p \cdot e^t (1-p) \right) = p \cdot e^t (1-p) \cdot (1-p). \\ &2. & \frac{d}{dt} \left[\left(1 - e^t (1-p) \right)^2 \right] = -2 \cdot (1 - e^t (1-p)) \cdot e^t (1-p) \cdot (1-p). \end{aligned}$$

Thus, the second derivative becomes:

$$M_X''(t) = \frac{p \cdot e^t(1-p)(1-p) \cdot (1-e^t(1-p))^2 + 2p \cdot e^{2t}(1-p)^2 \cdot (1-e^t(1-p))}{(1-e^t(1-p))^4}.$$

Now, substitute t = 0:

- 1. When t=0, $e^t=1$, so $M_X'(0)=\frac{1}{p}$, and we need to compute the second term carefully:
 - $M_X''(0)$ will simplify to:

$$M_X''(0) = \frac{1-p}{p^2}.$$

Variance

The variance is given by:

$$Var(X) = M_X''(0) - (M_X'(0))^2$$
.

Substitute the values:

$$Var(X) = \frac{1-p}{p^2} - \left(\frac{1}{p}\right)^2 = \frac{1-p}{p^2}.$$

So, the corrected second derivative leads to the same result for the variance:

$$Var(X) = \frac{1-p}{p^2}.$$

Final Results

• Mean: $\mathbb{E}[X] = \frac{1}{p}$ • Variance: $\operatorname{Var}(X) = \frac{1-p}{p^2}$

Thank you for pointing that out!

Q_5

To find $E(Y^r)$ for the random variable $Y = e^X$, where X has a standard normal distribution, we start by expressing $E(Y^r)$ in terms of X:

$$E(Y^r) = E(e^{rX}).$$

Step 1: Express the Expectation

Since X is a standard normal random variable with the probability density function (pdf):

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

the expectation $E(e^{rX})$ can be calculated as follows:

$$E(e^{rX}) = \int_{-\infty}^{\infty} e^{rx} f(x) \, dx = \int_{-\infty}^{\infty} e^{rx} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx.$$

Step 2: Combine Exponents

Combining the exponential terms in the integral gives:

$$E(e^{rX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{rx - \frac{x^2}{2}} dx.$$

This can be rewritten as:

$$E(e^{rX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2rx)} dx.$$

Step 3: Completing the Square

To simplify the exponent, we complete the square:

$$x^2 - 2rx = (x - r)^2 - r^2.$$

So the expression becomes:

$$E(e^{rX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}((x-r)^2 - r^2)} dx = e^{\frac{r^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-r)^2} dx.$$

Step 4: Evaluate the Integral

The integral

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-r)^2} dx$$

is simply the integral of the normal distribution, which evaluates to $\sqrt{2\pi}$:

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-r)^2} \, dx = \sqrt{2\pi}.$$

Step 5: Substitute Back

Substituting back into our expression gives:

$$E(e^{rX}) = e^{\frac{r^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \cdot \sqrt{2\pi} = e^{\frac{r^2}{2}}.$$

Final Result

Thus, the expected value $E(Y^r)$ for $Y = e^X$ is:

$$E(Y^r) = e^{\frac{r^2}{2}}.$$

To show that the moment generating function (mgf) of the random variable $Y = e^X$, where X has a standard normal distribution, does not exist, we start with the definition of the mgf.

Definition of the Moment Generating Function

The moment generating function of Y is given by:

$$M_Y(t) = E[e^{tY}] = E[e^{te^X}].$$

We need to determine if this expectation is finite for all $t \in \mathbb{R}$.

Step 1: Express the MGF

Substituting $Y = e^X$ into the mgf:

$$M_Y(t) = E[e^{te^X}] = \int_{-\infty}^{\infty} e^{te^x} f_X(x) dx,$$

where $f_X(x)$ is the pdf of the standard normal distribution:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Thus,

$$M_Y(t) = \int_{-\infty}^{\infty} e^{te^x} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Step 2: Analyze the Integral

To analyze whether the integral converges, consider the behavior of e^{te^x} as $x \to \infty$.

- 1. As $x \to \infty$:
 - $e^x \to \infty$ and hence $e^{te^x} \to \infty$ for t > 0.
 - Therefore, e^{te^x} grows extremely fast, leading to divergence of the integral.
- 2. As $x \to -\infty$:
 - e^x → 0, thus e^{te^x} → 1 and the integrand approaches ¹/_{√2π} e^{-^{x²}/₂}.
 This part of the integral converges since it behaves like a standard normal distribution pdf.

Step 3: Divergence of the Integral for t > 0

Now, we specifically focus on the case t > 0:

$$M_Y(t) = \int_{-\infty}^{\infty} e^{te^x} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

As $x \to \infty$:

• The term e^{te^x} grows much faster than $e^{-\frac{x^2}{2}}$ decays, leading to:

$$e^{te^x - \frac{x^2}{2}} \to \infty \text{ as } x \to \infty.$$

This indicates that the integral diverges.

Step 4: Conclusion for t > 0

Since the integral diverges for t > 0, we conclude:

$$M_Y(t) = \int_{-\infty}^{\infty} e^{te^x} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
 does not exist for $t > 0$.

All Moments Exist

Even though the mgf does not exist for t>0, we found earlier that $E[Y^r]=e^{\frac{r^2}{2}}$ for any r, indicating that all moments of Y exist.

Summary

- Moment Generating Function: $M_Y(t)$ does not exist for t > 0.
- Existence of Moments: All moments $E[Y^r]$ exist and are finite for any r.

Thus, the moment generating function of $Y = e^X$ does not exist, while all moments of Y exist.

$\mathbf{Q8}$

To derive the expected value of $S = \min\{X, c\}$, we start by understanding the nature of S based on the demand X and the capacity c.

Understanding S

- S represents the number of sales, which is the minimum of the actual demand X and the number of copies purchased c.
- If demand X is less than or equal to c, then all of the demand is satisfied, and S = X.
- If demand X exceeds c, then only c copies can be sold, so S = c.

Step 1: Express E(S)

The expected value of S can be expressed as:

$$E(S) = E(\min\{X, c\}).$$

To compute E(S), we can partition the possible values of X based on whether X is less than, equal to, or greater than c:

$$E(S) = \sum_{x=0}^{c} E(S \mid X = x) P(X = x) + E(S \mid X > c) P(X > c).$$

Step 2: Calculate the Components

- 1. **For** $x = 0, 1, \dots, c$:
 - If X = x (where x is between 0 and c), then S = x.
 - Thus, the contribution to the expectation from this range is:

$$\sum_{x=0}^{c} x P(X = x) = \sum_{x=0}^{c} x f(x).$$

- 2. **For** X > c:
 - If X > c, then S = c.
 - The probability that X > c is P(X > c) = 1 F(c).
 - Thus, the contribution from this case is:

$$E(S \mid X > c) \cdot P(X > c) = c \cdot (1 - F(c)).$$

Step 3: Combine the Contributions

Combining both contributions gives us:

$$E(S) = \sum_{x=0}^{c} xf(x) + c(1 - F(c)).$$

This is the required expression for E(S):

$$E(S) = \sum_{x=0}^{c} xf(x) + c(1 - F(c)).$$

Conclusion

Thus, we have shown that:

$$E(S) = \sum_{x=0}^{c} xf(x) + c(1 - F(c)).$$

This concludes the proof.

To find the expected profit $Y = S \cdot d_2 - c \cdot d_1$, where:

- $S = \min\{X, c\}$ is the number of copies sold,
- d_2 is the selling price per copy, and
- d_1 is the cost per copy,

we start by expressing the expected value E(Y):

$$E(Y) = E(S \cdot d_2 - c \cdot d_1).$$

Step 1: Use Linearity of Expectation

Using the linearity of expectation, we can separate the terms:

$$E(Y) = E(S \cdot d_2) - E(c \cdot d_1) = d_2 \cdot E(S) - c \cdot d_1.$$

Step 2: Substitute E(S)

From part (a), we know:

$$E(S) = \sum_{x=0}^{c} xf(x) + c(1 - F(c)).$$

Now we can substitute E(S) into the expression for E(Y):

$$E(Y) = d_2 \left(\sum_{x=0}^{c} x f(x) + c(1 - F(c)) \right) - c \cdot d_1.$$

Step 3: Simplify

Distributing d_2 :

$$E(Y) = d_2 \sum_{x=0}^{c} x f(x) + d_2 \cdot c(1 - F(c)) - c \cdot d_1.$$

Final Result

Thus, the expected profit E(Y) is given by:

$$E(Y) = d_2 \sum_{x=0}^{c} x f(x) + d_2 c (1 - F(c)) - c d_1.$$

This completes the derivation for the expected profit E(Y).

To define the expected profit function as a function of c, we can write:

$$g(c) = E(Y_c) = d_2 \sum_{x=0}^{c} x f(x) + d_2 c (1 - F(c)) - c d_1.$$

Step 1: Analyzing the Expected Profit Function

The company wants to maximize g(c). To determine the optimal c, we will analyze the profit for increasing values of c and find the smallest integer c such that $g(c+1) \le g(c)$.

Step 2: Compute g(c+1)

Let's write out g(c+1):

$$g(c+1) = d_2 \sum_{x=0}^{c+1} x f(x) + d_2(c+1)(1 - F(c+1)) - (c+1)d_1.$$

Step 3: Compare g(c) and g(c+1)

To find when the profit starts to decrease, we need to compare g(c+1) with g(c):

$$g(c+1) - g(c) = \left(d_2 \sum_{x=0}^{c+1} x f(x) - d_2 \sum_{x=0}^{c} x f(x)\right) + d_2(c+1)(1 - F(c+1)) - cd_1 - (d_2c(1 - F(c)) - cd_1).$$

This simplifies to:

$$g(c+1) - g(c) = d_2 ((c+1)f(c+1) + c(1 - F(c+1)) - c(1 - F(c))).$$

Step 4: Determine the Condition for Maximum Profit

Setting $g(c+1) - g(c) \le 0$ gives:

$$d_2((c+1)f(c+1) + c(1 - F(c+1)) - c(1 - F(c))) \le 0.$$

Rearranging yields:

$$(c+1)f(c+1) + c(1 - F(c+1)) \le c(1 - F(c)).$$

Step 5: Focus on the Condition

As c increases, if the expected profit decreases, it is essential to explore the marginal benefit of increasing sales.

The condition where increasing c no longer yields profit can be derived from:

1. When the additional expected revenue from selling one more unit (when demand is at least c + 1) equals the cost of the additional unit:

$$(1 - F(c+1)) \cdot d_2 \le d_1.$$

2. Rearranging this gives:

$$1 - F(c+1) \le \frac{d_1}{d_2} \implies F(c+1) \ge 1 - \frac{d_1}{d_2}.$$

Step 6: Final Comparison with Given Condition

Now we relate this back to the condition:

$$\frac{d_2 - d_1}{d_2} = 1 - \frac{d_1}{d_2}.$$

Thus, for maximization:

$$F(c) \ge \frac{d_2 - d_1}{d_2}.$$

Conclusion

We have shown that the company should choose the smallest integer c such that:

$$F(c) \ge \frac{d_2 - d_1}{d_2}.$$

This ensures that the expected profit g(c) is maximized.