#### Data Science Game 2017 finals

lebed i 3 raka

Popov N., Shapovalov N., Soboleva D., Vikulin V.

Lomonosov Moscow State University

November 18, 2017

### Overview

- About contest
- 2 Problem statement
- Simple solutions
- Data preparation and feature engineering
- Model training and evaluation
- 6 Results
- Final thoughts

#### Contest info

- 150 teams
- each team contains 4 students from same university
- 20 teams advanced to the finals in Paris

# OUR FINALISTS WINNING THEIR TICKETS TO PARIS

| 1  | Moscow State University         | RUS |
|----|---------------------------------|-----|
| 2  | Higher School of Economics      | RUS |
| 3  | Skoltech                        | RUS |
| 4  | IIMC                            | IND |
| 5  | Toulouse School of Economics    | FRA |
| 6  | USP Sao Paulo                   | BRA |
| 7  | IMT Atlantique                  | FRA |
| 8  | Stevens Institute of Technology | USA |
| 9  | University of Edinburgh         | GBR |
| 10 | University of Alfenas           | BRA |

| 12 | Ukrainian Catholic University          | UKR |
|----|----------------------------------------|-----|
| 14 | Universidad Nacional de Ingenieria     | PER |
| 15 | ENSIMAG                                | FRA |
| 16 | St Petersburg University               | RUS |
| 17 | Université Toulouse Paul Sabatier      | FRA |
| 18 | HSE NN                                 | RUS |
| 21 | UPMC                                   | FRA |
| 23 | Humboldt University                    | DEU |
| 27 | USP Sao Carlos                         | BRA |
| 33 | Barcelona Graduate School of Economics | ESP |



#### Data

Data was given from January 2012 to May 2017

| Product ID | Country ID | Date       | Date |      |
|------------|------------|------------|------|------|
| 1          | 1          | 02.12.2016 |      | 1000 |
| 2          | 1          | 03.06.2012 |      | 125  |
| 2          | 3          | 11.09.2013 |      | 911  |

Table: input data format example

About 5.5m samples 50 original columns with features About 38k unique pairs (product, country)

### Goal

The **goal** of this challenge is to predict the demand in spare parts for different countries for the next 3 months (June, July, August 2017)

| Product ID | Country ID | June 2017 | <b>July 2017</b> | August 2017 |
|------------|------------|-----------|------------------|-------------|
| 1          | 1          | 100       | 90               | 80          |
| 2          | 1          | 0         | 0                | 0           |
| 2          | 3          | 1000      | 1                | 999         |

Table: output data format example

Metric is MAE overall predictions

### Simple solutions

- predict same quantity as in last month **public:** 11.48 **private:** 12.59
- ② linear model on last 6 month public: 10.65 private: 11.68



### Data preparation

- Daily data transform to monthly data by counting statistics (sum, mean, median, std, count non zeros, etc.)
- Fill in zeros for months without purchases
- For each month generate 3 target variables
- For each target fit different model
- For validation we can use only one last month (May 2017)

# Feature engineering

- 1 last 6 month, previous year
- statistics by different time periods (3, 6, 9, 12, 24 month)
- use extra information about items
  - properties of items are not constant over time
  - some of the properties are categorical
  - we defined property as mode value over time
- In the end, we have about 300 features and 2m objects

### Computational resources

- 500\$ on Microsoft Azure
- 48 hours of usage
- GPU is not required

So we selected 4x machines with 112GB RAM and 16 vCPU

### Regression

- Simple linear regression (e.g. sklearn.linear\_model.ElasticNet)
- Tree-based methods:
  - sklearn.ensemble.RandomForestRegressor
  - xgboost.XGBRegressor
  - lightgbm.LGBMRegressor rule of thumb

10 / 20

#### Feature selection

- Build simple I<sub>1</sub>-reg linear regression for all data to obtain sparse coefficients
- Use only features with non-zero weights
- Not only eliminates some noise, but also speeds up training (especially when add categorical features)

11 / 20

#### Rocket science: non-linear transformations

- Want to minimize MAE, but conventional regressors minimize MSE
- Make some monotonic transformation of target to reshape its distribution
- Examples: np.log(1 + target), target \*\* 0.5

12 / 20

### Rocket science: time to classify

- The data is sparse (most of samples contain zero monthly demand), so try to exploit it!
- First of all, classification zero vs. non-zero demand goes
- For non-zero outcomes run regression to predict actual demand

13 / 20

#### Moar ideas

- Integer demand vs floating-point predictions: round
- For tree-based regressors build models with varying colsample and random\_state Make single model from them (simple averaging?)
- Running out of ideas? Combine your submissions!

# Some additional thoughts

- Months have different number of days in them; consider it in model
- Good competition on Kaggle with MAE-based regression: Allstate Claims Severity<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>https://www.kaggle.com/c/allstate-claims-severity

### Result-driven programming

| transfrom type | feature selection | clf | round | score |
|----------------|-------------------|-----|-------|-------|
| np.log(1+y)    | _                 | _   | _     | 9.66  |
| np.log(1+y)    | _                 | _   | +     | 9.60  |
| np.log(1+y)    | _                 | +   | +     | 9.59  |
| y ** 1/3       | ?                 | +   | +     | 9.40  |
| np.log(1+y)    | +                 | +   | +     | 9.27  |

Table: Public LB score for different models. Averaging some models with best public LB gave **9.26** Note: feature selection implies inclusion of categorical features in model, and vise versa

### Aftermath

| transfrom type | feature selection | clf | round | public LB | private LB |
|----------------|-------------------|-----|-------|-----------|------------|
| np.log(1+y)    | _                 | _   | _     | 9.66      | 10.59      |
| np.log(1+y)    | _                 | _   | +     | 9.60      | 10.53      |
| np.log(1+y)    | _                 | +   | +     | 9.59      | 10.29      |
| y ** 1/3       | ?                 | +   | +     | 9.40      | 9.97       |
| np.log(1+y)    | +                 | +   | +     | 9.27      | 10.05      |

Table: LB scores for different models. Averaging some models with best public LB gave 10.04 - top-1 Note: feature selection implies inclusion of categorical features in model, and vise versa

### **Timeline**

- Sep 29, 8 AM: start of the game
- Sep 29, 12 PM: some nontrivial submission (11.48)
- Sep 29, 5 PM: fix problem with overfit on single regression model (10.9)
- Sep 29, 7 PM: log-transform + classification + round (9.60)
- Sep 30, 12 AM: categorical features + feature selection (9.27)
- Sep 30, 2 AM 4 AM: some random nonlinear transforms (9.40)
- Sep 30, 5 AM 8 AM: colsample aggregation + averaging best models (9.26)
- Sep 30, 9 AM 10 AM: prepare small presentation for jury
- Sep 30, 12 PM: end of the game

# Special thanks to our sponsors









Questions?