Lycée Poincaré — Nancy

Récolte 2001

L'équipe des professeurs de mathématiques en CPGE remercie les taupins suivants (plus ceux qui sont restés anonymes), qui ont participé aux récoltes d'exercices :

 MP^* Côme Berbain — Nicolas Bertrand — Lynne Bouchy — Benoît Claudon — Mélanie **Durupt** — François **Klein** — Cyril **Lathuiliere** — Daniel **Malivoir** — Émilie Mange — Maryline Mertz — Clotaire Michel — M. Pagelot — Carine Simon — Théophane **Weber** — Antoine **Zimmermann**; MP Sabrina **Boulogne** — Nicolas **Deblais** — Alexandre **Fuffa** — Benjamin **Gérard** — Laurent Gillet — Jérôme Grandemange — Fabien Guenzi — Fanny Jacquemin — Jérémie Mercier — Olivier Masson — Soazig Parouty — Olivier Spet — Virginie Tihay; PC^* Aurélie **Barbier** — Florence **Darbour** — Antoine **Fourriere** — Nadège **Herment** — Guillaume **Lepesqueux** — Alexa **Leroux** — Lucie **Malosse** — Philippe **Sellenet**; PC Chloé Ahrweiller — Émilie Braun — Virginie Casarotto — Cédric Chopat — Véronique **Collet** — Julien **Dupont** — Cécile **Huet** — Maud **Jacquot** — Serge **Lacoste** — Vincent **Meugnot** — Kilian **Pfaab** — Claire **Popovici** — Anne-Catherine **Probst** — Loïc **Rondot** — Cécile **Royal** — Marie **Sauvadet** — Virginie **Sibille** — Jennifer **Simonet** — Sylvain **Tabone** — Nicolas **Verdon** — Hélène **Vogel** — Pierre **Willaume**.

Symbole	$\operatorname{signification}$		
0	une matrice nulle		
	somme directe orthogonale		
•	norme linéaire sur $\mathscr{L}_c(\mathrm{E})$		
$\langle\cdot \cdot angle$	produit scalaire		
$\chi_{\mathrm{A}}, \chi_{f}$	polynôme caractéristique de A, de f		
$\mathfrak{A}_n(\mathbb{K})$	ensemble des matrices antisymétriques		
$\mathcal{B}(a \; ; \; r)$	boule ouverte de centre a de rayon r		
$\overline{\mathcal{B}}(a \; ; \; r)$	boule fermée de centre a de rayon r		
DSE	développement en série entière		
$\mathscr{L}(\mathrm{E})$	e.v. des endomorphismes de E		
$\mathscr{L}_c(\mathrm{E})$	s.e.v. des endomorphismes continus de E		
$\mathfrak{M}_n(\mathbb{K})$	ensemble des matrices carrées d'ordre n sur \mathbb{K}		
$\mathfrak{P}(\mathrm{E})$	ensemble des parties de E		

Les 354 exercices récoltés (sans compter les doublons) se répartissent ainsi :

Sujet	$N^{\underline{\mathrm{bre}}}$	Sujet	$N^{\underline{\mathrm{bre}}}$
Arithmétique	3	Séries entières	22
Algèbre générale	15	Séries de Fourier	5
Algèbre linéaire	32	Intégrale	15
Réduction d'endomorphismes	43	Intégrale paramétrée	16
Algèbre bilinéaire	45	Équations différentielles	20
Suites	10	Géométrie	19
Espaces vectoriels normés	18	Calcul différentiel	8
Fonctions	15	Intégrales multiples	5
Séries numériques	26	Divers	5
Suites et séries de fonctions	32		

Arithmétique

♦ ARI.1 — TPE-MP 2001 (réc. M. Mertz)

Démontrer qu'il existe un nombre infini de nombres premiers congrus à -1 modulo 4.

♦ ARI.2 — TPE-MP 2001 (réc. C. Berbain)

Résoudre $x^2 - \overline{3}x + k = 0$ dans $\mathbb{Z}/17\mathbb{Z}$, où $k \in \mathbb{Z}/17\mathbb{Z}$.

♦ ARI.3 — CCP-MP 2001

Résoudre dans \mathbb{Z} l'équation : $y^2 = x(x+1)(x+2)(x+8)$.

ALGÈBRE GÉNÉRALE

♦ ALG.1 — X-ESPCI-PC 2001 (réc. G. Lepesqueux)

Simplifier
$$\prod_{k=0}^{n-1} \sin\left(x + \frac{k\pi}{n}\right)$$
.

$$igspace$$
 ALG.2 — Mines-MP 2001 (réc. C. Michel) Calculer $\prod_{k=1}^{n-1} \left(1-\mathrm{e}^{2\mathrm{i}k\pi/n}\right)^{-1}$.

♦ ALG.3 — Centrale–MP 2001

On se place dans $\mathbb{C}_3[X]$. Soit $n \in \mathbb{Z}^*$.

L'assertion
$$\exists \alpha \in \mathbb{R}, \quad \forall P \in \mathbb{C}_3[X], \quad |P(1)| \leqslant \alpha \sum_{k=1}^4 |P(k \cdot n)|$$
 est-elle vérifiée?

♦ ALG.4 — CCP-PC 2001 (réc. G. Lepesqueux)

Calcul de
$$\sum_{k=0}^{n} (k+1)C_n^k$$
 et de $\sum_{k=0}^{n} (-1)^k (k+1)C_n^k$.

♦ ALG.5 — TPE-MP 2001 (réc. A. Fuffa)

On pose, pour tout
$$n, p \in \mathbb{N} : S_{n,p} = \sum_{k=0}^{n} C_n^k (-1)^k k^p$$
.

- i) Calculer $S_{n,0}$ et $S_{n,1}$.
- ii) Calculer $S_{n,p}$ pour $p \in [0, n]$. On pourra introduire $t \longmapsto (1 e^t)^n$.

Algèbre

♦ ALG.6 — Centrale–MP 2001 (vis. Appel)

On pose $\mathscr{A} \stackrel{\text{def}}{=} \{ M \in \mathfrak{M}_n(\mathbb{Z}) ; \exists p \in \mathbb{N}, M^p = I_n \}.$

- i) Dans cette question, on considère le cas n=2. On pose $A=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Le groupe multiplicatif engendré par A et B est-il inclus dans A?
- ii) Montrer qu'il existe un nombre fini de polynômes $P \in \mathbb{Z}[X]$ tels que : P est unitaire; • $\deg P = n$; • toutes les racines de P sont de module 1.
- iii) Montrer qu'il existe $p \in \mathbb{N}$ tel que, pour tout $M \in \mathcal{A}$, $M^p = I_n$.
- iv) Montrer que tout sous-groupe multiplicatif de \mathscr{A} est fini.

- 4

INDICATION: Soit G un tel sous-groupe, on pose $p = \dim \operatorname{Vect}(G)$, et on note (A_1, \ldots, A_p) une base de $\operatorname{Vect}(G)$. On pose ensuite $T : G \longrightarrow \mathbb{C}^p$, $M \longmapsto (\operatorname{\mathbf{tr}}(A_1M), \ldots, \operatorname{\mathbf{tr}}(A_pM))$; montrer que T est injective. \diamond

♦ ALG.7 — TPE-MP 2001

Soit (G, \star) un groupe. On pose $\Gamma \stackrel{\text{def}}{=} \{ \alpha \in G : \forall x \in G, \ \alpha \star x = x \star \alpha \}$. Montrer que Γ est un sous-groupe de G.

Polynômes

♦ ALG.8 — ENS Lyon–PC 2001 (réc. L. Malosse)

Soient P, Q $\in \mathbb{R}[X]$. On note $x_1 < x_2 < \cdots < x_p$ les racines de P' et $y_1 < y_2 < \cdots < y_q$ celles de Q'. Montrer qu'il y équivalence entre les énoncés :

- (a) il existe un \mathscr{C}^1 -difféomorphisme $f: \mathbb{R} \longrightarrow \mathbb{R}$ croissant tel que $P \circ f = Q$;
- (b) p = q et $\operatorname{mult}(x_i; P') = \operatorname{mult}(y_i; Q')$ pour tout $i \in [1, p]$.

♦ ALG.9 — Centrale-MP 2001 (réc. D. Malivoir)

On pose $F = \{ P \in \mathbb{R}[X] : \forall x \in \mathbb{R}, P(x) \ge 0 \}.$

- i) Montrer que F est stable par addition et multiplication. Si $P \in F$, que peut-on dire du degré de P?
- ii) Montrer que tout polynôme $P \in F$ peut s'écrire sous la forme de deux polynômes au carré. (On pourra commencer par une étude dans le cas où deg P = 2.)
- iii) (Avec Maple) Exemple de décomposition en carrés d'un polynôme de degré 4 à quatre racines complexes.

♦ ALG.10 — Centrale-Supélec-MP 2001 (réc. A. Zimmermann)

Montrer que l'ensemble des polynômes unitaires de degré n à coefficients entiers et à racines de module 1 est fini. (Cf. exercice ALG.6.)

♦ ALG.11 — Centrale-Supélec-MP 2001 (réc. A. Zimmermann)

Soit $F = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ un polynôme, et soit α une racine de ce polynôme. Montrer que $|\alpha| \leqslant 2 \max_{k \in [\![0,n]\!]} |a_{n-k}|^{1/k}$.

♦ ALG.12 — ENSAI-MP 2001 (réc. S. Parouty)

Donner une CNS sur $p, q, r \in \mathbb{C}$ pour que les trois racines du polynôme $X^3 + pX^2 + qX + r$ forment un triangle équilatéral.

♦ ALG.13 — INT-MP 2001 (réc. N. Deblais)

Montrer que pour tout $n \ge 2$ et tout $P \in \mathbb{R}_{n-1}[X]$, $P(X+n) = \sum_{k=1}^{n} C_n^k (-1)^{k+1} P(X+n-k)$.

♦ ALG.14 — CCP-PC 2001 (réc. N. Verdon)

Soit $P \in \mathbb{R}_3[X]$ un polynôme divisible par (X - 1) et par (X - 2). De plus, le reste de la division euclidienne de P par $X^2 + 1$ vaut 1. Déterminer P.

♦ ALG.15 — CCP-MP 2001

Soit $P \in \mathbb{Z}[X]$. On suppose qu'il existe $Q, R \in \mathbb{Q}[X]$ tels que $P = Q \cdot R$ et P, Q, R sont unitaires. Montrer que $Q, R \in \mathbb{Z}[X]$.

ز

Algèbre linéaire

Espaces vectoriels

♦ AL.1 — ENS Ulm-MP 2001 (réc. C. Lathuiliere)

Soit $M \in \mathfrak{M}_n(\mathbb{R})$. On pose $F_M = \{B \in \mathfrak{M}_n(\mathbb{R}) ; MB = BM\}$. Montrer que dim $F_M \geqslant n$.

♦ AL.2 — ENSAE-MP 2001

Soit E un \mathbb{R} -e.v. Soit $(F_i)_{i\in [\![1,p]\!]}$ une famille de sous-espaces vectoriels stricts de E.

Montrer que $\bigcup_{i=1}^{p} F_i \neq E$.

♦ AL.3 — Mines-MP 2001 (réc. L. Gillet)

On note $\mathscr{A} \stackrel{\text{def}}{=} \{ M \in \mathfrak{M}_{2n}(\mathbb{K}) ; {}^tMJ + JM = 0 \}$, où $J = \begin{pmatrix} \mathbb{O} & I_n \\ -I_n & \mathbb{O} \end{pmatrix}$. Montrer que \mathscr{A} est un espace vectoriel. Calculer sa dimension.

♦ AL.4 — Mines- 2001

On pose $J = (J_{\alpha\beta})_{\alpha\beta} \in \mathfrak{M}_3(\mathbb{C})$ avec $J_{\alpha\beta} = j^{\alpha+\beta-1}$. Déterminer la dimension de

$$\{A \in \mathfrak{M}_3(\mathbb{C}) ; AJ = JA\}.$$

♦ AL.5 — Mines-MP 2001 (réc. L. Bouchy)

On pose
$$A(x) = \begin{pmatrix} e^x & 0 \\ 2 \operatorname{sh} x & e^{-x} \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$. On pose $G = \{A(x) + yB \; ; \; (x,y) \in \mathbb{R}^2\}$.

- i) Montrer que G est un groupe.
- ii) Montrer que G est un sous-espace vectoriel de dimension 2 d'un espace de dimension 3.

Applications linéaires

♦ AL.6 — Mines-MP 2001 (réc. A. Fuffa)

On pose
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
. On note $E = \{aI_3 + bA + cA^2 ; (a, b, c) \in \mathbb{R}^3\}$.

- i) Montrer que E est une algèbre.
- ii) Justifier que $\exp(xA)$ peut s'écrire sous la forme $f(x)I_3 + g(x)A + h(x)A^2$.
- iii)Trouver un système différentiel vérifié par f,g,h, en déduire f,g,h.

INDICATION: On remarquera que $\frac{\mathrm{d} \exp(x \mathbf{A})}{\mathrm{d} x} = \mathbf{A} \cdot \exp(x \mathbf{A})$.

♦ AL.7 — Mines–MP 2001 (réc. M. Mertz)

Soient E et F deux K-e.v. de dimension finie. Soient $u, v \in \mathcal{L}(E, F)$. Démontrer l'équivalence suivante :

$$rg(u+v) = rg u + rg v \iff \begin{cases} Im u \cap Im v = \{0\} \\ et \dim E = \dim Ker u + \dim Ker v. \end{cases}$$

♦ AL.8 — Mines-MP 2001 (réc. C. Berbain)

Pour tout $a \in \mathbb{R}$, on pose $f_a : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto |x - a|$. Montrer que la famille $(f_a)_{a \in \mathbb{R}}$ est libre.

♦ AL.9 — Mines–MP 2000

Soit E un \mathbb{R} -e.v. de dimension 3n. Soit $f \in \mathscr{L}(E)$ tel que $f^3 + f = 0$ et $\operatorname{rg} f = 2n$. Montrer que la matrice représentative de f est semblable à $\begin{pmatrix} \mathbb{O} & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \mathrm{I}_n \\ \mathbb{O} & -\mathrm{I}_n & \mathbb{O} \end{pmatrix}$.

♦ AL.10 — TPE-MP 2001 (réc. N. Bertrand)

Soit E un K-e.v. de dimension 3, et $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$, $f^3 = 0$. Trouver tous les endomorphismes de E qui commutent avec f.

♦ AL.11 — TPE-MP 2001

Soit E un espace vectoriel de dimension finie. Montrer qu'un endomorphisme qui commute avec tous les autres est une homothétie.

Peut-on généraliser à E de dimension infinie?

♦ AL.12 — CCP–MP 2001 (réc. M. Mertz)

Soit E un \mathbb{K} -e.v. de dimension finie, et soient u et v deux endomorphismes de E. Montrer l'équivalence :

$$(\operatorname{Im} u \subset \operatorname{Im} v) \iff (\exists w \in \mathscr{L}(E), u = v \circ w).$$

♦ AL.13 — CCP-PC 2001 (réc. C. Royal)

Soit E un espace vectoriel de dimension n $(n \ge 1)$. Soit u un endomorphisme de E tel que $\operatorname{Ker} u = \operatorname{Im} u$.

- i) Montrer que dim E = 2p avec $p \in \mathbb{N}^*$.
- ii) Montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de u est de la forme $\mathrm{mat}_{\mathcal{B}}\,u = \begin{pmatrix} \mathbb{O} & \mathrm{I}_p \\ \mathbb{O} & \mathbb{O} \end{pmatrix}$.

♦ AL.14 — CCP-PC 2001 (réc. N. Herment)

Soit E un espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ tel que dim Ker $u \leq 1$. Montrer que $\operatorname{rg}(u^k) \geqslant n - k$ pour tout $k \in [1, n]$.

Matrices

♦ AL.15 — X-MP 2001 (réc. M. Pagelot)

- i) Soit $M \in \mathfrak{M}_n(\mathbb{Z})$. Donner une CNS pour que M soit inversible dans $\mathfrak{M}_n(\mathbb{Z})$.
- ii) Montrer que $\{k \in \mathbb{N}^* ; \exists M \in \mathfrak{M}_3(\mathbb{Z}), (\det M = 1) \land (\forall p \in [1, k], M^p \neq I_3) \land (M^k = I_3) \}$ est fini.
- iii) Généraliser à $\mathfrak{M}_n(\mathbb{Z})$.

♦ AL.16 — Mines-PC 2001 (réc. G. Lepesqueux)

Soit $(a, b, c) \in \mathbb{R}^{*3}_+$. On pose $A = \begin{pmatrix} a & b \\ c & a \end{pmatrix}$, et on note $A^n = \begin{pmatrix} \alpha(n) & \beta(n) \\ \gamma(n) & \delta(n) \end{pmatrix}$. Existence et calcul de $\lim_{\infty} \alpha/\gamma$ et de $\lim_{\infty} \beta/\delta$. Applications en physique?

♦ AL.17 — Mines-MP 2001 (réc. C. Lathuiliere)

Montrer que
$$\begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}$$
 est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 1

♦ AL.18 — TPE-MP 2001

On pose $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & 4 & -12 \\ 1 & 2 & 5 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$ à partir de A^2 , A et I_3 .

♦ AL.19 — TPE-MP 2001 (réc. L. Gillet)

On pose $A = \begin{pmatrix} 3 & 1 & -\frac{5}{4} \\ -\frac{1}{2} & \frac{1}{2} & \frac{3}{8} \\ 2 & 2 & -\frac{1}{2} \end{pmatrix}$. Calculer A^n en fonction de A^2 , A et I.

♦ AL.20 — CCP-PC 2000 (réc. É. Braun)

Calculer l'inverse de la matrice $A = (a_{ij})_{ij}$ avec $a_{ii} = 1$ pour tout $i \in [1, n]$ et $a_{i,i+1} = -a$ pour tout $i \in [1, n-1]$.

♦ AL.21 — CCP-PC 2001 (réc. M. Jacquot)

Soit $A = (a_{ij})_{ij} \in \mathfrak{M}_n(\mathbb{C})$ telle que sup $|a_{ij}| < 1/n$. Montrer que $A + I_n$ est inversible.

♦ AL.22 — INT-MP 2001

On pose $A = (a_{ij})_{i,j} \in \mathfrak{M}_n(\mathbb{R})$ avec $a_{ij} = 1 + \delta_{ij}$. Calculer A^p pour tout $p \in \mathbb{N}$.

Projecteurs

♦ AL.23 — TPE-MP-PC 2001

Soit p un projecteur de E, et soit $g \in \mathcal{L}(E)$. Montrer que $p \circ g = g \circ p$ si et seulement si g laisse stable Ker p et Im p.

♦ AL.24 — CCP-MP 2001 (réc. N. Deblais)

Montrer l'équivalence
$$\begin{cases} f \circ g = g, \\ g \circ f = f \end{cases} \iff \begin{cases} f, \ g \ \text{projecteurs}, \\ \operatorname{Im} f = \operatorname{Im} g \end{cases}$$

Formes linéaires

♦ AL.25 — Centrale–MP 2001 (réc. F. Guenzi)

Soient a, b, c trois réels distincts. On définit sur $\mathbb{R}[X]$ les formes $\phi_1 : P \longmapsto P(a), \phi_2 : P \longmapsto P(b), \phi_3 : P \longmapsto P(c)$ et $\phi_4 : P \longmapsto \int_a^b P(t) dt$.

- i) Montrer que, dans $\mathbb{R}_n[X]^*$ $(n \ge 2)$, la famille (ϕ_1, ϕ_2, ϕ_3) est libre.
- ii) On pose n=3. Montrer qu'il existe une unique triplet $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $\phi_4 = \lambda \phi_1 + \mu \phi_2 + \nu \phi_3$.
- iii) Que peut-on dire de

$$\mathbf{H}_n \stackrel{\text{def}}{=} \left\{ \mathbf{P} \in \mathbb{R}_n[\mathbf{X}] ; \ \phi_4(\mathbf{P}) = \lambda \phi_1(\mathbf{P}) + \mu \phi_2(\mathbf{P}) + \nu \phi_3(\mathbf{P}) \right\} ?$$

♦ AL.26 — Mines-MP 2001 (vis. Appel)

Soit $(b_0, \ldots, b_n) \in \mathbb{R}^{n+1}$, et notons, pour $i = 0, \ldots, n$, u_i la forme linéaire définie par u_i : $P \longmapsto P(b_i)$. Montrer que la famille (u_0, \ldots, u_n) est libre si et seulement si les b_i sont distincts deux à deux.

♦ AL.27 — CCP-PC 2001 (réc. A.-C. Probst)

Montrer qu'il existe n nombres réels a_1, \ldots, a_n , que l'on déterminera, tels que, pour tout polynôme P de degré inférieur ou égal à n-1, on a : $P(X) = \sum_{k=1}^{n} a_k P(X+k)$.

REDUCTION D ENDOMOR INSME.

Déterminants

♦ AL.28 — Centrale–MP 2000

Soit $C \in \mathfrak{M}_n(\mathbb{C})$ une matrice vérifiant : $\forall X \in \mathfrak{M}_n(\mathbb{C})$, dét(C + X) = dét X. Montrer que C = 0.

♦ AL.29 — ICNA-PC 2001 (réc. V. Sibille)

Soient x < y < z trois réels. Déterminer le signe de $\Delta = \begin{vmatrix} 1 & x & e^x \\ 1 & y & e^y \\ 1 & z & e^z \end{vmatrix}$.

♦ AL.30 — CCP–PC 2001 (réc. S. Tabone)

Discuter et résoudre le système $\begin{cases} x + y + (1+a)z = 2(1+a), \\ (1+a)x - (1+a)y + z = 0, \\ 2x + 2ay + 3z = 2(1+a). \end{cases}$

♦ AL.31 — CCP-MP 2001 (réc. A. Fuffa, D. Malivoir)

Soient A, B $\in \mathfrak{M}_n(\mathbb{R})$. On pose $\Delta = \begin{vmatrix} A & B \\ -B & A \end{vmatrix}$. Montrer que $\Delta \geqslant 0$.

♦ AL.32 — CCP-PC 2001 (réc. A. Leroux)

Soit $M \in \mathfrak{M}_3(\mathbb{R})$. Alors dét M peut s'écrire sous la forme de la somme de 6 termes, chacun étant constitué du produit de trois coefficients. Montrer que, quelle que soit la répartition des signes des coefficients, au moins un des six termes est négatif.

RÉDUCTION D'ENDOMORPHISMES

♦ RED.1 — ENS Cachan-MP 2001

Soit $F \in \mathfrak{M}_n(\mathbb{C})$ une matrice dont la diagonale est nulle. Soit $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ et soit $\lambda \in \operatorname{Sp}(F + D)$.

- i) Montrer qu'il existe $i \in [1, n]$ tel que $|\lambda \lambda_i| \leq \sum_{j=1}^n |F_{ij}|$.
- ii) Soit $X \in GL_n(\mathbb{C})$, on pose $A = XDX^{-1}$. Prouver qu'il existe $k \in [1, n]$, ne dépendant que de X,, tel que

$$\forall E \in \mathfrak{M}_n(\mathbb{C}), \quad \forall \lambda \in \operatorname{Sp}(A + E), \quad \exists \mu \in \operatorname{Sp}(A), \quad |\lambda - \mu| \leqslant k \|E\|.$$

♦ RED.2 — X-ESPCI-PC 2001 (réc. L. Malosse)

- i) Soit $f \in \mathcal{L}(\mathbb{C}^n)$ tel que $f^n = 0$. Trouver tous les sous-espaces vectoriels $\mathcal{E} \subset \mathbb{C}^n$ tels que $f(\mathcal{E}) = \mathcal{E}$.
- ii) Soient $f_1, \ldots, f_n \in \mathcal{L}(\mathbb{C}^n)$ nilpotents et commutant entre eux. Montrer que $f_1 \circ f_2 \circ \cdots \circ f_n = 0$.

♦ RED.3 — X-MP 2001 (réc. C. Lathuiliere)

Soit E un \mathbb{K} -e.v. de dimension n, avec \mathbb{K} un corps. Soit $f \in \mathcal{L}(E)$. Montrer que f est diagonalisable si et seulement si tout sous-espace vectoriel de E admet un supplémentaire stable par f.

♦ RED.4 — Mines-PC 2001 (réc. Ph. Sellenet)

Soit $(a_1, \ldots, a_n) \in \mathbb{C}^n$, et posons $A = \text{AntiDiag}(a_1, \ldots, a_n)$. Donner une CNS de diagonalisabilité de A.

♦ RED.5 — Mines-MP 2000

Résoudre, dans $\mathfrak{M}_3(\mathbb{R})$ l'équation $X^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 4 \end{pmatrix}$.

♦ RED.6 — Mines-MP 2001 (réc. T. Weber)

Soit E un espace vectoriel et G un sous-groupe fini de $\mathscr{G}(E)$. On note $p = \frac{1}{|G|} \sum_{g \in G} g$. Montrer que p est un projecteur. Trouver $\operatorname{Im} p$ (on montrera que c'est $\{x \in E : \forall g \in G, g(x) = x\}$) et en déduire $\operatorname{tr} p$.

Application : soit E un K-e.v. de dimension finie. On pose
$$A = \begin{pmatrix} 0 & 1 & & \\ \vdots & \ddots & \ddots & \\ 0 & & \ddots & 1 \\ 1 & 0 & \cdots & 0 \end{pmatrix}$$
 et on

note u l'endomorphisme associé à A. Vérifier que $\langle A \rangle$ est fini. Calculer A^k pour tout $k \in \mathbb{N}$. Sans calculer $\det(A - X \operatorname{Id})$, déterminer les polynômes caractéristique et minimal de A. Si $\mathbb{K} = \mathbb{C}$, A est-elle diagonalisable? Et si $\mathbb{K} = \mathbb{R}$?

♦ RED.7 — Mines-MP 2001 (réc. M. Durupt)

Soient $u \in \mathcal{L}(\mathbb{R}^n)$ et F un sous-espace vectoriel de \mathbb{R}^n , stable par u. On appelle v l'endomorphisme induit par u sur F.

- i) Montrer que si u est diagonalisable, alors v est diagonalisable.
- ii) Montrer que le polynôme caractéristique de v divise celui de u.

♦ RED.8 — Mines–MP 2001 (réc. M. Durupt)

Déterminer l'ensemble des matrices qui commutent avec toutes les matrices de rang 1.

♦ RED.9 — Mines-PC 2001 (réc. A. Barbier)

Soient E un espace vectoriel de dimension n, et p un projecteur de rang $r \in [1, n-1]$. On pose $\Phi : \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$, $u \longmapsto p \circ u + u \circ p$. Trouver les valeurs propres de Φ et la dimension des sous-espaces propres.

♦ RED.10 — Centrale– 2001

Pour tout
$$n \in \mathbb{N}$$
, $n \geqslant 4$, on pose $M_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & 1 & \\ \vdots & & \mathbb{O} \\ 1 \end{pmatrix} \in \mathfrak{M}_n(\mathbb{R}).$

- i) Montrer que 0 est valeur propre et donner son ordre de multiplicité.
- ii) $\forall n \in \mathbb{N}, n \geqslant 4$, on définit $(a_n, b_n, c_n) \in \mathbb{R}^3$ par : $a_n \leqslant b_n \leqslant c_n$ et a_n, b_n et c_n sont les trois valeurs propres non nulles de M_n . Montrer que a_n, b_n et c_n sont solutions de $x^2 x 1 \frac{1}{x-1} = n-2$.
- iii) Donner un équivalent de a_n et c_n lorsque $[n \to \infty]$. Montrer que $(b_n)_{n \in \mathbb{N}}$ admet une limite en $+\infty$ et la calculer.

♦ RED.11 — Centrale–MP 2001 (réc. A. Fuffa)

On pose
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et $M(r) = A + rB$ pour tout $r \in \mathbb{R}$.

i) Soit $L \in \mathfrak{M}_3(\mathbb{C})$, et soient $\lambda_1, \lambda_2, \lambda_3$ ses valeurs propres. Montrer que si $|\lambda_i| < 1$ pour i = 1, 2, 3, alors la suite $(L^n)_{n \in \mathbb{N}}$ tend vers 0.

ii) Montrer que la suite $(M(r)^n)_{n\in\mathbb{N}}$ tend vers 0.

♦ RED.12 — Centrale-MP 2001 (réc. M. Durupt)

Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Donner une CNS pour que $\begin{pmatrix} \mathbb{O} & A \\ I_n & \mathbb{O} \end{pmatrix}$ soit diagonalisable.

♦ RED.13 — Centrale-Supélec-PC 2001 (réc. A. Fourriere)

Soient A, B, C, D quatre matrices de $\mathfrak{M}_n(\mathbb{C})$.

- i) On suppose A inversible. Calculer $\begin{pmatrix} A^{-1} & \mathbb{O} \\ -B & -A \end{pmatrix} \begin{pmatrix} A & C \\ B & D \end{pmatrix}$. On suppose que A et B commutent; montrer que dét $\begin{pmatrix} A & C \\ B & D \end{pmatrix} = \text{dét}(AD BC)$.
- ii) Étendre ce résultat au cas où A n'est pas inversible.
- iii) On note $\chi_{\rm M}$ le polynôme caractéristique de M. Calculer $\chi_{\rm B}$ en fonction de $\chi_{\rm A}$ dans les cas suivants :

(a)
$$B = \begin{pmatrix} \mathbb{O} & I_n \\ A & \mathbb{O} \end{pmatrix}$$
 (b) $B = \begin{pmatrix} I_n & I_n \\ A & I_n \end{pmatrix}$ (c) $B = \begin{pmatrix} A & 2A \\ 2A & 3A \end{pmatrix}$

et, en fonction de
$$a,b\in\mathbb{C}$$
, dans le cas $\mathbf{B}=\begin{pmatrix} a^2 & ab & ab & b^2\\ ab & a^2 & b^2 & ab\\ ab & b^2 & a^2 & ab\\ b^2 & ab & ab & a^2 \end{pmatrix}.$

♦ RED.14 — Centrale-Supélec-PC 2001 (réc. A. Fourriere)

Soit $(a_1, \ldots, a_n) \in (\mathbb{C}^*)^n$. Diagonaliser, si c'est possible, la matrice $A = (a_i/a_j)_{i,j} \in \mathfrak{M}_n(\mathbb{C})$.

♦ RED.15 — Centrale-MP 2000

Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme possédant n valeurs propres distinctes. Montrer que le commutant de u est l'ensemble des polynômes en u.

On note A =
$$\begin{pmatrix} 0 & 2 & 3 & \cdots & n-1 & n \\ 1 & 0 & 3 & \cdots & n-1 & n \\ 1 & 2 & 0 & \cdots & n-1 & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 2 & 3 & \cdots & 0 & n \\ 1 & 2 & 3 & \cdots & n-1 & n \end{pmatrix} .$$

- i) Montrer que les valeurs propres de A sont réelles et vérifient $\sum_{k=1}^{n} \frac{k}{\lambda + k} = 1$.
- ii) Calculer la somme et le produit des valeurs propres, ainsi que la somme des carrés des valeurs propres.
- iii) On note R_n la plus grande des valeurs propres. Montrer que $R_n \sim Cn^2$, où C est une constante à déterminer.

♦ RED.17 — Centrale–MP 2001

On pose
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 7 & 0 \end{pmatrix}$$
 et $E = \mathfrak{M}_3(\mathbb{R})$.

- i) On définit $f: E \longrightarrow E$, $X \longmapsto AX$. Écrire la matrice de f, calculer son polynôme caractéristique, déterminer ses éléments propres.
- ii) Même question avec $g: X \longrightarrow XA$.
- iii) Même question avec h = f + g.

♦ RED.18 — Centrale-PC 2001 (réc. Ph. Sellenet)

Soient A, B $\in \mathfrak{M}_n(\mathbb{R})$ et F $\in \mathscr{L}(\mathfrak{M}_n(\mathbb{R}))$ défini par : F(M) = M + $\operatorname{tr}(AM)B$ pour tout M $\in \mathfrak{M}_n(\mathbb{R})$.

- i) Trouver A et B pour que F = Id.
- ii) Dans le cas général, déterminer tr F.
- iii) Donner une CNS de diagonalisabilité de F.
- iv) Reconnaître F quand il est diagonalisable.

♦ RED.19 — **ICNA-PC** 2001 (réc. C. Merio)

On pose
$$A(x) = \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ x & 0 & 1 \end{pmatrix}$$
 et $M(x) = \begin{pmatrix} x & 1 & x \\ 0 & 0 & -1 \\ 1 & 0 & x \end{pmatrix}$ pour $x \in \mathbb{R}$.

- i) Les matrices A(x) et M(x) sont-elles inversibles? Si oui, calculer l'inverse de A(x).
- ii) Démontrer que l'application $f: \mathbb{R} \longrightarrow \mathfrak{M}_3(\mathbb{R}), x \longmapsto \mathrm{A}(x)$ est un morphisme de groupe.
- iii) Diagonalisabilité de A(x)?
- iv) Calculer $A^n(x)$ pour tout $n \in \mathbb{N}^*$.

♦ RED.20 — TPE-MP 2001 (réc. F. Klein)

Diagonaliser A =
$$\begin{pmatrix} a & a & a & b \\ a & a & b & a \\ a & b & a & a \\ b & a & a & a \end{pmatrix}.$$

♦ RED.21 — CCP-MP 2001 (réc. F. Jacquemin)

On pose
$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & -1 & & \\ \vdots & & \ddots & \\ 1 & & & -1 \end{pmatrix}$$
. Montrer que A est inversible. Donner son inverse.

♦ RED.22 — **CCP-MP 2001** (réc. **O. Masson**)

On pose, pour tout $P \in \mathbb{R}_n[X] : f(P) = XP - \frac{1}{n}(X^2 - 1)P'$.

- i) Vérifier que $P \in \mathcal{L}(\mathbb{R}_n[X])$.
- ii) Trouver les valeurs propres et les vecteurs propres de f.
- iii) f est-elle diagonalisable?

♦ RED.23 — INT-MP 2001 (réc. O. Spet)

E est un \mathbb{K} -e.v. de dimension finie, u et v des endomorphismes diagonalisables qui commutent. Montrer que u et v sont diagonalisables dans la même base.

♦ RED.24 — CCP-MP 2001 (réc. O. Spet, N. Bertrand)

On pose
$$A_n = \begin{pmatrix} 2 & -1 & & \mathbb{O} \\ -1 & \ddots & \ddots & & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}$$
 d'ordre n .

- i) Calculer le déterminant de A_n .
- ii) Trouver les conditions sur n pour que 1 (resp. 2, resp. 3) soit valeur propre de A_n .
- iii) Trouver les valeurs propres de A₅. Espace propre associé à la valeur propre 1?

♦ RED.25 — **CCP-PC** 2001 (réc. C. Huet)

Soient $\alpha_0, \ldots, \alpha_{n-1}$ des réels. Déterminer le polynôme caractéristique de A et les sous-espaces propres, avec $A = (a_{ij})_{ij}$ et $a_{1j} = -\alpha_{n-j}$, $a_{ij} = 1$ pour i - j = 1 et $a_{ij} = 0$ sinon.

♦ RED.26 — CCP–PC 2001 (réc. L. Malosse)

Montrer qu'il n'existe pas de matrice $A \in \mathfrak{M}_3(\mathbb{R})$ telle que $A^2 + I = 0$.

♦ RED.27 — TPE-MP 2001 (réc. C. Michel)

On pose A =
$$\begin{pmatrix} 0 & 1 & 0 & 3 \\ -3 & 0 & 4 & 0 \\ 0 & 1 & 0 & 2 \\ -1 & 0 & 1 & 0 \end{pmatrix} .$$

- i) Calculer son polynôme caractéristique. Est-elle diagonalisable?
- ii) Quel est son polynôme minimal? En déduire une autre étude de la diagonalisabilité de A?
- *iii)* Montrer que $\mathbb{R}^4 = \text{Ker}(I A)^2 \oplus \text{Ker}(I + A)^2$

iv) Montrer que A est semblable à B =
$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
. Calculer Aⁿ.

♦ RED.28 — CCP-PC 2001 (réc. C. Ahrweiller)

Soit $f \in \mathcal{L}(\mathbb{C}^n)$. Soit $b \in \mathbb{C}$ tel que $(f - b \operatorname{Id})^3 = 0$. On suppose que f n'est pas une homothétie.

- i) Montrer que f n'est pas diagonalisable.
- ii) Soit $P \in \mathbb{C}[X]$. Montrer l'équivalence

$$(P(f) \in GL(\mathbb{C}^n)) \iff (P(b) \neq 0).$$

♦ RED.29 — CCP- 2001

On définit récursivement la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1,\ u_1=2$ et, pour tout $n\in\mathbb{N},\ u_{n+2}=\frac{1}{2}(u_n+u_{n+1})$. Calculer explicitement u_n pour tout $n\in\mathbb{N}$. Déterminer $\lim_{n\to\infty}u_n$.

♦ RED.30 — **CCP-PC 2000** (réc. L. Rondot)

La fonction $f: \mathfrak{M}_4(\mathbb{R}) \longrightarrow \mathfrak{M}_4(\mathbb{R}), \quad X \longmapsto {}^tX - X$ est-elle diagonalisable? Déterminer les sous-espaces propres.

♦ RED.31 — **TPE**–**MP** 2001 (réc. A. Fuffa)

Soit $n \in \mathbb{N}^*$ et soient A, B $\in \mathfrak{M}_n(\mathbb{R})$. Montrer l'équivalence

$$\chi_{\Lambda}(B) \in GL_n(\mathbb{R}) \iff \operatorname{Sp} A \cap \operatorname{Sp} B = \emptyset.$$

♦ RED.32 — **TPE**-**MP** 2001 (réc. A. Fuffa)

Soit $n \in \mathbb{N}^*$. Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Montrer que $\operatorname{d\acute{e}t}(\exp A) = \exp(\operatorname{tr} A)$.

♦ RED.33 — CCP-MP 2001 (réc. S. Boulogne)

Soient A, B $\in \mathfrak{M}_2(\mathbb{R})$ deux matrices diagonalisables, on note A = $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ et B = $\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}. \text{ On pose } \widetilde{A} \stackrel{\text{def}}{=} \begin{pmatrix} a_{11} \operatorname{Id}_2 & a_{12} \operatorname{Id}_2 \\ a_{21} \operatorname{Id}_2 & a_{22} \operatorname{Id}_2 \end{pmatrix} \text{ et } \widetilde{B} \stackrel{\text{def}}{=} \begin{pmatrix} B & \mathbb{O} \\ \mathbb{O} & B \end{pmatrix}, \text{ definies par blocs.}$

- i) Montrer que si $t(x_1, x_2)$ est un vecteur propre de A, alors $U_1 \stackrel{\text{def}}{=} t(x_1, 0, x_2, 0)$ et $U_2 \stackrel{\text{def}}{=}$ $t(0, x_1, 0, x_2)$ sont des vecteurs propres de \widetilde{A} . Montrer que si $t(x_1', x_2')$ est vecteur propre de B, alors $V_1 \stackrel{\text{def}}{=} {}^t(x_1', x_2', 0, 0)$ et $V_2 \stackrel{\text{def}}{=} {}^t(0, 0, x_1', x_2')$ sont des vecteurs propres de \widetilde{B} .
- ii) Exprimer $\widetilde{A}V_1$ et $\widetilde{A}V_2$ en fonction de V_1 et V_2 . On pose $W_2 \stackrel{\text{def}}{=} x_1V_1 + x_21V_2$. Montrer que W_1 est vecteur propre commun à \widetilde{A} et \widetilde{B} . Trouver trois autres vecteurs propres communs à A et B formant une base de \mathbb{R}^4 .
- iii) Montrer que $\mathbf{M} \stackrel{\text{def}}{=} \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} \end{pmatrix}$ est diagonalisable.

♦ RED.34 — TPE-MP 2001 (réc. F. Guenzi)

On pose M = antiDiag $(1,\ldots,1) \in \mathfrak{M}_{2p+1}(\mathbb{R})$. Montrer que M est diagonalisable. Calculer ses valeurs et vecteurs propres. Diagonaliser M.

On pose $A = \begin{pmatrix} a & c & & \mathbb{O} \\ b & \ddots & \ddots & \\ & \ddots & \ddots & c \end{pmatrix}$. Est-elle diagonalisable? Déterminer ses éléments propres.

♦ RED.36 — CCP–MP 2001 (réc. S. Parouty)

Soit $A \in \mathfrak{M}_2(\mathbb{C})$ ayant deux valeurs propres distinctes λ_1 et λ_2 . Montrer que A^n peut s'écrire sous la forme $A^n = \lambda_1 M_1 + \lambda_2 M_2$ (on explicitera M_1 et M_2).

♦ RED.37 — CCP- 2001

Soient $a, b \in \mathbb{R}$, $a \neq b$. Trouver l'ensemble S des points M(x, y, z) tels que la matrice A =

$$\begin{pmatrix} a & x & y & z \\ 0 & b & z & -y \\ 0 & 0 & a & x \\ 0 & 0 & 0 & b \end{pmatrix}$$
 soit diagonalisable.

♦ RED.38 — CCP-PC 2001 (réc. J. Dupont)

Pour tout $a \in \mathbb{R}$, on note $A_a = \begin{pmatrix} 4-a & 1 & -1 \\ -6 & -1-a & 2 \\ 2 & 1 & 1-a \end{pmatrix}$ et $B_a = \begin{pmatrix} 1-a & 1 & 0 \\ 0 & 1-a & 0 \\ 0 & 0 & 2-a \end{pmatrix}$.

Montrer que A_a et B_a sont semblables pour tout $a \in \mathbb{R}$.

♦ RED.39 — CCP-PC 2001 (réc. V. Casarotto) Calculer la limite de $A_n = \begin{pmatrix} 1 & -\alpha/n \\ \alpha/n & 1 \end{pmatrix}^n$.

♦ RED.40 — **TPE**–**MP** 2001 (réc. M. Durupt)

Pour tout $a \in \mathbb{R} \setminus \pi\mathbb{Z}$, on pose $A(a) = \begin{pmatrix} 0 & \sin a & \sin 2a \\ \sin a & 0 & \sin 2a \\ \sin 2a & \sin a & 0 \end{pmatrix}$. Trouver une CNS sur a pour que A(a) soit diagonalisable.

♦ RED.41 — CCP-MP 2001

Soient $a, b, c, d \in \mathbb{C}$, avec $a^2 + b^2 \neq 0$. On pose $\mathbf{M} = \begin{pmatrix} a & b & c & d \\ b & a & -d & -c \\ -c & d & a & b \\ -d & c & -b & a \end{pmatrix}$.

- i) Calculer $M \cdot {}^{t}M$, dét M et montrer que rg $M \in \{2, 4\}$.
- ii) On pose $\omega^2=b^2+c^2+d^2$, on suppose $\omega^2\neq 0$. Calculer le spectre de M et montrer que M est diagonalisable.

♦ RED.42 — CCP–MP 2001 (réc. J. Mercier)

On note A = $\begin{pmatrix} -4 & 4 & -4 \\ -4 & 4 & 4 \\ -8 & 8 & 0 \end{pmatrix}$. Déterminer ses éléments propres. Trouver toutes les matrices

 $B \in \mathfrak{M}_3(\mathbb{C})$ telles que $B^3 = A$.

♦ RED.43 — CCP-MP 2000

On pose $A = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & 2 & \ddots & & \vdots \\ \vdots & \ddots & 3 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \cdots & \cdots & 1 & n \end{pmatrix}$. Montrer que les valeurs propres de A sont dans]0,1[,

τ.

Algèbre bilinéaire

♦ BIL.1 — ENS Cachan–MP 2001 (réc. C. Lathuiliere)

Soit E un espace vectoriel euclidien. Soit V : E $\longrightarrow \mathbb{R}^+$ convexe continue, et $z \in E$. On définit, pour $\lambda \geqslant 0$ la fonction $f_{\lambda} : E \longrightarrow \mathbb{R}^+$, $x \longmapsto ||x - z||^2 + \lambda V(x)$. Montrer que f_{λ} admet un unique minimum local.

♦ BIL.2 — ENS Cachan–MP 2001 (réc. B. Claudon)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$. On note (P) la propriété :

(P)
$$\forall d, n \in \mathbb{N}^*, \quad \forall x_1, \dots, x_n \in \mathbb{R}^d, \quad \left(f(\|x_i - x_j\|^2) \right)_{1 \le i, j \le n} \in S_n^+.$$

(La norme sur \mathbb{R}^d est la norme euclidienne canonique.) On suppose que f vérifie (P).

- i) Montrer que $\sum_{i,j} f(\|x_i x_j\|^2) \geqslant 0$.
- ii) En déduire que $\forall x \in \mathbb{R}^+, f(x) \geq 0$.
- *iii*) Soit h > 0. On pose $g: \mathbb{R}^+ \longrightarrow \mathbb{R}$, $t \longmapsto f(t) f(t+h)$. Montrer que g vérifie (P).

♦ BIL.3 — X-MP 2001 (réc. C. Lathuiliere)

Soit ϕ une forme bilinéaire symétrique sur $\mathbb{R}^n \times \mathbb{R}^n$. Soit $a \in \mathbb{R}^n$ tel que $\phi(a, a) \neq 0$. On note $A = \langle a \rangle$.

- i) On pose B = $\{y \in \mathbb{R}^n : \phi(y, a) = 0\}$. Montrer que $\mathbb{R}^n = A \oplus B$.
- ii) On pose $G = \{u \in \mathcal{L}(\mathbb{R}^n) : \forall x, y \in \mathbb{R}^n, \ \phi(u(x), u(y)) = \phi(x, y)\}$. On définit l'endomorphisme u_0 par $u_0(x) = x$ si $x \in A$ et $u_0(x) = -x$ si $x \in B$. Montrer que $u_0 \in G$.
- iii) On pose $G^* = \{v \in \mathcal{L}(\mathbb{R}^n) ; u_0 \circ v = v \circ u_0\}$. Montrer que, si $v \in G^*$ et $\phi(a, a) \neq 0$, alors il existe $\lambda_a \in \mathbb{R}$ tel que $v(a) = \lambda_a a$.
- iv) Soient $b, c \in \mathbb{R}$ tels que $\phi(b, b) \neq 0$ et $\phi(c, c) \neq 0$. Comparer λ_b et λ_c .
- v) Montrer l'existence de $\lambda \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}^n$, $\phi(x, x) \neq 0 \Longrightarrow v(x) = \lambda x$.
- vi) Montrer que, pour tout $x \in \mathbb{R}^n$, $v(x) = \lambda x$.

♦ BIL.4 — X-MP 2001 (réc. B. Claudon)

Soit $A \in \mathfrak{M}_n(\mathbb{R})$.

- i) Montrer qu'il existe U, V $\in O_n(\mathbb{R})$ tels que ${}^tUAV = D$ avec D diagonale à coefficients positifs. On pose alors $D = \operatorname{diag}(\mu_1, \ldots, \mu_r, 0, \ldots, 0)$ avec $r = \operatorname{rg} A$ et $\mu_i > 0$.
- ii) On pose $\Delta = \operatorname{diag}(\mu_1^{-1}, \dots, \mu_r^{-1}, 0, \dots, 0)$ et $A' = V\Delta^t U$, et M = AA', N = A'A. Identifier M et N.
- iii) En notant $U = (U_1 | \dots | U_n)$ et $V = (V_1 | \dots | V_n)$, montrer que $\operatorname{Im} A = \operatorname{Vect}(U_1, \dots, U_r)$ et $\operatorname{Im}^t A = \operatorname{Vect}(V_1, \dots, V_r)$.
- iv) Calculer AA'A et A'AA'. Pouvait-on s'y attendre?

♦ BIL.5 — X-MP 2001 (réc. B. Claudon)

Soit \mathscr{H} un espace de Hilbert, et G un sous-espace vectoriel de \mathscr{H} tel que $\overline{G} = \mathscr{H}$. Soit $u: G \longrightarrow \mathscr{H}$ linéaire, continue, et telle que $||u - \operatorname{Id}_G|| < 1$.

i) Montrer que u admet un prolongement $v: \mathcal{H} \longrightarrow \mathcal{H}$ avec $v \in \mathcal{L}_c(\mathcal{H}) \cap \mathcal{G}l(\mathcal{H})$.

- ii) Soit $(e_n)_{n\in\mathbb{N}^*}$ une famille orthonormée complète, c'est-à-dire que $\overline{\mathrm{Vect}\{e_n\;;\;n\in\mathbb{N}^*\}}=\mathcal{H}$, et soit $(f_n)_{n\in\mathbb{N}^*}$ une famille de vecteurs de \mathcal{H} telle que $\sum_{n=1}^{\infty}\|e_n-f_n\|^2<1$. Montrer que $(f_n)_{n\in\mathbb{N}^*}$ est une famille complète.
- iii) Montrer que 1 est la meilleure constante.
- iv) On montrera le lemme suivant : soit $(e_n)_{n \in \mathbb{N}^*} \in \mathscr{H}^{\mathbb{N}}$, alors $\operatorname{Vect}(e_1) + \overline{\operatorname{Vect}(e_k \; ; \; k \geqslant 2)} = \overline{\operatorname{Vect}(e_k \; ; \; k \geqslant 1)}$.

♦ BIL.6 — S^t Cyr-MP 2001 (réc. O. Masson)

On munit \mathbb{R}^p du produit scalaire usuel, noté « · ». Si $A \in \mathfrak{P}(\mathbb{R}^p)$, on note $A^o \stackrel{\text{def}}{=} \{x \in \mathbb{R}^p : \forall y \in A, x \cdot y \leq 1\}$.

- i) Notons B l'image de A par l'homothétie de rapport λ . Que peut-on dire de B^o?
- ii) Trouver A^o dans les différents cas : A est le disque de centre 0 et de rayon 1 ; A est le carré de centre 0 et de côté 2 ; A est un parallélogramme.

♦ BIL.7 — CCP-MP 2001 (réc. L. Gillet)

Soit E un espace vectoriel euclidien, et soit $v \in \mathcal{L}(E)$ tel que $\langle x | v(x) \rangle = 0 \quad \forall x \in E$. Montrer que $\operatorname{Ker} v = (\operatorname{Im} v)^{\perp}$.

♦ BIL.8 — CCP-MP 2001 (réc. C. Michel)

Soit E un espace vectoriel euclidien. Soit $p \in \mathbb{N}^*$ et (x_1, \ldots, x_p) une famille de E telle que

$$\forall (i,j) \in [1,p]^2, \quad i \neq j \Longrightarrow \langle x_i | x_j \rangle < 0. \text{ Soit } (\alpha_1,\ldots,\alpha_{p-1}) \in \mathbb{R}^{p-1} \text{ tel que } \sum_{i=1}^{p-1} \alpha_i x_i = 0.$$

- i) Montrer que si I = $\{i \in [1, p-1] : \alpha_i > 0\}$ n'est pas vide, alors $\sum_{i \in I} \alpha_i x_i = 0$. (Question bizarre; montrer plutôt que si I n'est pas vide on aboutit à une contradiction. NdW)
- ii) En déduire que la famille (x_1, \ldots, x_{p-1}) est libre.

♦ BIL.9 — Centrale–MP 2001 (réc. C. Michel)

Enoncé bizarre!

Soit $A \in GL_n(\mathbb{R})$. Montrer que A^tA est symétrique définie positive. En déduire qu'il existe une matrice réelle symétrique définie positive, et Q une matrice orthogonale, telles que A = SQ.

Qu'en est-il si $A \in \mathfrak{M}_n(\mathbb{R})$ et dét A = 0?

Soient S et S' deux matrices réelles définies positives telles que $S'^2 = S^2$. Montrer que S = S'. Conclusion?

♦ BIL.10 — CCP-PC 2001 (réc. C. Ahrweiller)

On note f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base canonique est $A = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & -1 \end{pmatrix}$. Montrer que f est une isométrie dont on précisera les caractéristiques.

♦ BIL.11 — TPE-PC 2001 (réc. Ph. Sellenet)

Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Montrer que $|\operatorname{tr} A| \leq \sqrt{n \operatorname{tr} A \cdot {}^t A}$.

♦ BIL.12 — Centrale-MP 2001 (réc. J. Grandemenge)

Soit E un espace vectoriel euclidien. Soit p un projecteur. On note $\|\cdot\|$ la norme subordonnée à la norme euclidienne.

- i) Montrer que p est autoadjoint si et seulement si $||p|| \in \{0, 1\}$.
- ii) Soit A et B deux sous-espaces vectoriels de E; p_A (resp. p_B) désignant le projecteur autoadjoint d'image A (resp. B), montrer que $||p_A p_B|| \le 1$. Que dire de dim A et dim B lorsque $||p_A p_B|| < 1$?

♦ BIL.13 — CCP-PC 2001 (réc. L. Rondot)

Déterminer $\inf_{a,b \in \mathbb{R}} \int_0^{\pi} (\sin x - ax - bx^2)^2 dx$.

♦ BIL.14 — TPE-MP 2001 (réc. A. Fuffa)

Soient $(p,q) \in (\mathbb{R}^*)^2$ et $A \in \mathfrak{M}_{pq}(\mathbb{R})$. Montrer que $\operatorname{rg} A = \operatorname{rg}({}^t AA)$.

♦ BIL.15 — INT-MP 2001 (réc. M. Mertz)

Soit E un e.v. euclidien de dimension n. Soit $(a_1, \ldots, a_p) \in E^p$. On considère $f : E \longrightarrow E$, $f \longmapsto \sum_{i=1}^p \langle t | a_i \rangle a_i$. Trouver une condition nécessaire et suffisante sur la famille (a_1, \ldots, a_p) pour que f soit bijective.

♦ BIL.16 — Centrale–MP 2001 (réc. L. Bouchy)

Quel est le nombre maximal d'éléments d'une famille de vecteurs obtusangle dans un espace de dimension n?

♦ BIL.17 — Centrale-MP 2001 (réc. C. Berbain)

Soit A une matrice nilpotente, telle que ${}^{t}A \cdot A = A \cdot {}^{t}A$. Montrer que A = 0.

Familles orthonormées

♦ BIL.18 — Centrale–MP 2001 (réc. T. Weber)

On pose $E = \mathscr{C}^0([0, +\infty[, \mathbb{R}) \text{ et pour tout } P, Q \in E, \text{ on pose } \langle P|Q \rangle = \int_0^{+\infty} P(t) Q(t) e^{-2t} dt$ lorsque c'est défini.

- i) Montrer qu'il s'agit d'un produit scalaire. (Sur la restriction ad-hoc de \to j'imagine, NdW.)
- ii) On pose $L_n = \frac{1}{n!} \frac{d^n}{dx^n} (x^n e^{-x}) e^x$. Vérifier que la famille $(L_n)_{n \in \mathbb{N}}$ est une famille de polynômes orthonormaux, et que c'est la transformée de la famille $(X^n)_{n \in \mathbb{N}}$ par le procédé de Gram-Schmidt.
- iii) Pour tout $\alpha > 0$, on pose $f_{\alpha} : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto e^{-\alpha x}$. Calculer $||f_{\alpha}||^2$, $\langle f_{\alpha} | \mathcal{L}_n \rangle$ et $\sum_{n=0}^{\infty} \langle f_{\alpha} | \mathcal{L}_n \rangle^2$. Commentaire et interprétation?

♦ BIL.19 — Centrale–MP 2001 (réc. C. Lathuiliere)

On définit sur $\mathbb{R}[X]$ l'application $\phi: (P, Q) \longmapsto \phi(P, Q) = \int_0^{+\infty} P(t) Q(t) e^{-t} dt$.

- i) Montrer que ϕ est un produit scalaire.
- ii) Montrer qu'il existe des polynômes P_0, \ldots, P_n orthogonaux entre eux, unitaires et tels que, pour tout $k \in [0, n]$, deg $P_k = k$.

- iii) Montrer que P_k admet exactement k racines, qu'elles sont simples et strictement positives.
- iv) Montrer qu'il existe un minimum global de $\psi(a,b,c) \stackrel{\text{def}}{=} \int_0^{+\infty} (1+at+bt^2+ct^3)^2 e^{-t} dt$. Déterminer l'unique triplet où il est atteint.

♦ BIL.20 (Polynômes de Tchebychef) — Centrale-PC 2001 (réc. C. Royal)

On munit $\mathbb{R}[X]$ du produit scalaire ϕ défini par

$$\forall P, Q \in \mathbb{R}[X], \qquad \phi(P, Q) = \int_a^b P(t) Q(t) w(t) dt,$$

où $-\infty \leqslant a < b \leqslant +\infty$, et où $w \in \mathscr{C}(]a,b[,\mathbb{R})$ est telle que, pour tout $n \in \mathbb{N}$, la fonction $t \longmapsto t^n w(t)$ est intégrable.

- i) Montrer qu'il existe une unique base orthonormée $(P_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ vérifiant : deg $P_k = k$ pour tout $k \in \mathbb{N}$ et le coefficient dominant de P_k est positif.
- ii) On pose a=-1, b=1 et $w(t)=\frac{1}{\sqrt{1-t^2}}$. Montrer que : $\forall n\in\mathbb{N},\ \mathrm{P}_n=\frac{\alpha_n}{2^{n-1}}\cos(n\operatorname{Arc}\cos t)$.
- iii) Déterminer les zéros de P_n .
- iv) Soit \mathscr{U} l'ensemble des polynômes de $\mathbb{R}_n[X]$ de degré égal à n et de coefficient dominant égal à 1. Montrer que $\inf_{P \in \mathscr{U}} \int_a^b \frac{P^2(t)}{\sqrt{1-t^2}} dt$ est atteinte pour $P = P_n$.

♦ BIL.21 — Centrale–MP 2001 (réc. F. Klein)

On pose $E = \mathbb{R}_3[X]$ et $F = \mathbb{R}_1[X]$.

i) Montrer que pour tout $(\alpha, \beta) \in \mathbb{R}^2$, $\alpha < \beta$, il existe un unique couple $(A, B) \in \mathbb{R}^2$ tel que

$$\forall P \in F, \qquad \int_0^{+\infty} P(t) dt = AP(\alpha) + BP(\beta).$$

- ii) Montrer qu'il existe α, β tels que l'égalité précédente soit vraie pour tout $P \in E$.
- iii) Montrer qu'il existe $Q \in \mathbb{R}[X]$ de degré 4 tel que :

$$\forall P \in E, \qquad \int_0^{+\infty} P(t) Q(t) e^{-t} dt = 0.$$

iv) Montrer que les racines de Q sont réelles et positives.

♦ BIL.22 — CCP-PC 2001 (réc. A. Barbier)

On note F l'espace vectoriel des fonction continues de $\mathbb R$ dans $\mathbb R$.

- i) Montrer que l'application $(f,g) \longmapsto \int_{-1}^{1} f(t) g(t) dt$ est un produit scalaire.
- ii) Déterminer une base orthonormée de $\mathbb{R}_3[X]$.
- *iii*) Quelle est la projection de $x \mapsto |x|$ sur cette base?

Adjoint

♦ BIL.23 — S^t Cyr–MP 2001 (réc. O. Masson)

Soit E un espace vectoriel hermitien. Soit $u \in \mathcal{L}(E)$.

i) Que peut-on dire des valeurs propres de $u^* \circ u$?

ii) Soit λ une valeur propre de u. Montrer que $\alpha \leq |\lambda|^2 \leq \beta$, où α est la plus petite des valeurs propres de $u^* \circ u$ et β la plus grande.

♦ BIL.24 — TPE-MP 2001 (réc. D. Malivoir)

Soit E un espace vectoriel euclidien, $u \in \mathcal{L}(E)$, et soit $y \in E$. On considère l'application $f: E \longrightarrow \mathbb{R}, \quad x \longmapsto ||y - u(x)||$. Montrer l'équivalence

$$f$$
 est minimale en $c \Longleftrightarrow u^* \circ u(c) = u^*(y)$.

♦ BIL.25 — TPE-MP 2001 (réc. M. Mertz)

Pour tout $A, B \in \mathfrak{M}_n(\mathbb{R})$, on définit $\langle A | B \rangle \stackrel{\text{déf}}{=} \mathbf{tr}(^t A \cdot B)$.

- i) Montrer que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur $\mathfrak{M}_n(\mathbb{R})$.
- ii) En notant $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathfrak{M}_n(\mathbb{R})$, déterminer l'orthogonale de $S_n(\mathbb{R})$ pour ce produit scalaire.
- iii) Soient A, B $\in \mathfrak{M}_n(\mathbb{R})$. On définit, pour tout M $\in \mathfrak{M}_n(\mathbb{R})$: F(M) = AM MB. Déterminer l'adjoint de F.

♦ BIL.26 — Mines-MP 2001 (réc. B. Gérard)

Soit E un espace vectoriel euclidien et u un endomorphisme autoadjoint de trace nulle. Montrer qu'il existe une base orthonormée dans laquelle la matrice représentative de u est à diagonale nulle.

♦ BIL.27 — CCP–MP 2001 (réc. M. Durupt)

Soit E un espace vectoriel euclidien et $f \in \mathcal{L}(E)$ tel que $f \circ f^* = f^* \circ f$ et $f^2 + \mathrm{Id}_E = 0$.

- i) Montrer que f est un endomorphisme orthogonal.
- ii) Soit $g \in \mathcal{L}(E)$ tel que $g \circ g^* = g^* \circ g$. On suppose qu'il existe $a, b \in \mathbb{R}^*$ tels que $(g a \operatorname{Id}_E)^2 + b^2 \operatorname{Id}_E = 0$. Montrer qu'il existe des sous-espaces vectoriels (V_1, \ldots, V_r) stables par g et munis de bases \mathcal{B}_i tels que $\operatorname{mat}_{\mathcal{B}_i} g|_{V_i} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ pour tout $i \in [1, r]$. Calculer dét g et g^{-1} s'il existe.

Endomorphismes orthogonaux

♦ BIL.28 — X-MP 2001 (réc. C. Lathuiliere)

On définit la relation sur les matrices : $A \leq B$ lorsque B - A est positive. Soit $(A_n)_{n \in \mathbb{N}}$ une suite de matrices symétriques positives telles que $A_{n+1} \leq A_n$ pour tout $n \in \mathbb{N}$. Montrer que la suite $(A_n)_{n \in \mathbb{N}}$ converge vers une matrice symétrique positive.

♦ BIL.29 — Centrale-MP 2001 (réc. C. Berbain)

Soit \mathcal{B} une base orthonormée d'un espace vectoriel euclidien, et $f \in \mathcal{L}(E)$ tel que $\operatorname{mat}_{\mathcal{B}} f = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Montrer que f est le produit de deux transformations simples que l'on précisera entièrement.

♦ BIL.30 — TPE-MP 2001 (réc. F. Guenzi)

On note $\mathfrak{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques d'ordre n à coefficients réels. Soit I un intervalle de \mathbb{R} et A une application matricielle A : $I \longrightarrow \mathfrak{A}_n(\mathbb{R}), \quad t \longmapsto A(t)$. On considère une application $X: I \longrightarrow \mathfrak{M}_n(\mathbb{R}), \quad t \longmapsto X(t)$ vérifiant l'équation différentielle $X' = A \cdot X$. On suppose qu'il existe $t_0 \in I$ tel que $X(t_0) \in SO_n(\mathbb{R})$. Montrer que : $\forall t \in I$, $X(t) \in SO_n(\mathbb{R})$.

♦ BIL.31 — Mines-MP 2001 (réc. C. Berbain)

Soit $A \in S_n^+(\mathbb{R})$ et $U \in O_n(\mathbb{R})$. Montrer que : $\mathbf{tr}(AU) \leq \mathbf{tr} A$.

♦ BIL.32 — CCP–PC 2001 (réc. K. Pfaab)

Donner la matrice, dans la base canonique de \mathbb{R}^3 , de la projection orthogonale sur le plan d'équation (P) : x-y-2z=0.

♦ BIL.33 — Centrale–MP 2001

(Avec Maple.) Montrer que $A = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix}$ est une isométrie négative de \mathbb{R}^3 si et seulement

si a, b, c sont racines de $P(x) = x^3 + x^2 = p$ avec $p \in \left[0, \frac{4}{27}\right]$. Étudier en détail le cas $p = \frac{2}{27}$.

♦ BIL.34 — CCP-PC 2001 (réc. S. Lacoste)

Soit A une matrice carrée d'ordre n. On suppose que A est orthogonale. Prouver (en utilisant l'inégalité de Cauchy-Schwarz par exemple) que $\left|\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}\right| \leq n$.

♦ BIL.35 — TPE-MP 2001 (réc. N. Deblais)

On pose A = $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. Diagonaliser A. Réduire la forme bilinéaire $q(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz$.

♦ BIL.36 — TPE-MP 2001 (réc. D. Malivoir)

Soient E un espace vectoriel euclidien, et p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si $||p(x)|| \le ||x||$ pour tout $x \in E$.

♦ BIL.37 — CCP/Mines-PC 2001 (réc. A. Fourriere)

Soit E un espace vectoriel euclidien. Soit $f \in \mathcal{L}(E)$ telle que :

$$\forall (x,y) \in E^2, \quad \langle x|y\rangle = 0 \Longrightarrow \langle f(x)|f(y)\rangle = 0.$$

Montrer qu'il existe $\alpha \geqslant 0$ tel que, pour tout $x \in E$, $||f(x)|| = \alpha ||x||$. (Aux Mines seulement:) Montrer qu'il existe $\alpha \in \mathbb{R}^+$ et $g \in O(E)$ tel que $f = \alpha g$.

Formes quadratiques

♦ BIL.38 — ENSAM-PT 2001 (réc. A. Simon)

On note q la forme quadratique sur \mathbb{R}^3 définie par $q(x, y, z) = -x^2 - y^2 - z^2 + 2xy + 2yz + 2xz$, et on note ϕ sa forme bilinéaire associée. Trouver une base orthonormée pour ϕ .

♦ BIL.39 — Centrale–MP 2001

On pose q(x, y, z) = 2xy + 2xz + 6yz.

- i) Signature de q?
- ii) Trouver une base orthogonale pour q.
- iii) Trouver le sup et l'inf de q sur la sphère euclidienne $\mathscr{S} \stackrel{\text{def}}{=} \{(x,y,z) \in \mathbb{R}^3 \; ; \; x^2 + y^2 + z^2 = 1\}.$

iv) Quelle est la nature de l'ensemble défini par q(x, y, z) = 1?

♦ BIL.40 — Centrale-MP 2001

On note \mathbf{Q}_a et \mathbf{Q}_b les deux formes quadratiques sur \mathbb{R}^2 définies par

$$\forall X = (x, y) \in \mathbb{R}^2, \quad Q_a(X) = 2x^2 - 2xy + 2y^2, \quad Q_b(X) = -x^2 + 2xy.$$

- i) Les formes Q_a et Q_b sont-elles définies positives?
- ii) Trouver une base orthonormée de \mathbb{R}^2 pour l'une de ces formes quadratiques. Décomposer l'autre dans cette base.
- iii) Expliquer pourquoi il est possible de trouver une base orthonormée pour les deux formes. Trouver une telle base.

♦ BIL.41 — Centrale–MP 2001

On pose $d(x, y, z) = 3x^2 - 2xz + 3z^2 + y^2$ et $n(x, y, z) = 3x^2 - xz + y^2$.

- i) Rang et signature de n et d?
- ii) Montrer qu'il existe une base dans laquelle n et d sont diagonales.
- iii) Trouver (sous forme matricielle) toutes les bases telles que cette propriété soit vraie.
- iv) On pose $F(x, y, z) = \frac{n(x, y, z)}{d(x, y, z)}$. Quelles sont les valeurs prises par F?

♦ BIL.42 — ENSAE-MP 2001 (réc. L. Bouchy)

On définit en dimension n la forme multilinéaire symétrique $f(x_1, \ldots, x_n) = \sum_{i,j} \min(i,j) x_i x_j$. Signature de f?

♦ BIL.43 — INT-MP 2001 (réc. A. Zimmermann)

Soit E un espace vectoriel euclidien de dimension n, et $u \in \mathcal{L}(E)$ un endomorphisme symétrique. Pour tout $x \in E$, on pose $Q(x) = \langle u(x) | x \rangle$.

△ Question de cours : que représente Q?

Montrer qu'il y équivalence entre les énoncés :

- (a) $\mathbf{tr} u = 0$;
- (b) il existe une base orthonormée (e_1, \ldots, e_n) telle que $\langle u(e_i) | e_i \rangle = 0$ pour tout $i \in [1, n]$.

♦ BIL.44 — ENSAE-MP 2001 (réc. C. Simon)

Dans \mathbb{R}^n , on pose $\phi(x_1, \dots, x_n) = \sum_{i < j} x_i x_j$. Trouver le rang et la signature de ϕ , ainsi qu'une base orthogonale pour ϕ .

♦ BIL.45 — TPE-MP 2000

Soit E un espace préhilbertien de dimension n. Soit (e_1, \ldots, e_{n+1}) une famille vérifiant $\langle e_i | e_j \rangle < 0$ pour tout $i \neq j$. On suppose que $\mathcal{B} = (e_1, \ldots, e_n)$ est une base. Montrer que les coordonnées de e_{n+1} dans \mathcal{B} sont strictement négatives.

SUITES

♦ SUI.1 — X-ESPCI-PC 2001 (réc. A. Fourriere)

Étude de la suite $(u_n)_{n\in\mathbb{N}}$ définie par u_0 et $u_{n+1}=au_n^3+bu_n+c$ avec $(a,b,c)\in\mathbb{R}^{*+}\times\mathbb{R}^+\times\mathbb{R}$ tels que a + b + c = 1 et 3a + b > 1.

♦ SUI.2 — ICNA-PC 2001 (réc. V. Sibille)

Étudier la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par : $\forall n\in\mathbb{N}^*,\ u_n=\sum_{i=1}^n\frac{1}{\sqrt{n^2+k}}$.

♦ SUI.3 — CCP-MP 2001 (réc. D. Malivoir)

On pose, pour tout $n \in \mathbb{N}$, $P_n \stackrel{\text{def}}{=} X^{2n+1} - X^{n+1} - 1$.

- i) Montrer que, pour tout $n\in\mathbb{N}^*,$ \mathbf{P}_n possède une unique racine réelle. On note u_n cette
- *ii)* Étudier les suites $(u_n)_{n\in\mathbb{N}^*}$, $(u_n^n)_{n\in\mathbb{N}^*}$ et $(nu_{n-1})_{n\geqslant 2}$.

♦ SUI.4 — TPE-MP 2001 (réc. F. Guenzi)

Pour tout $n \in \mathbb{N}^*$, on définit a_n par $\frac{\tan a_n}{a_n} = -\frac{1}{n}$. Existence, limite et DL en 1/n de a_n ?

♦ SUI.5 — ENSEA-PC 2001 (réc. K. Pfaab)

On définit $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $u_{n+1}=\sin u_n$.

- i) Quelle est la limite de $(u_n)_{n\in\mathbb{N}}$?
- *ii)* Calculer $\lim_{n\to\infty} \left(\frac{1}{u_{n+1}^2} \frac{1}{u^2}\right)$.
- iii) Donner un équivalent de $1/u_n^2$ en $+\infty$.

♦ SUI.6 — TPE-MP 2001 (réc. N. Deblais)

Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in]0,1[$ et $u_{n+1}=\int_0^1(t-u_n)\,\mathrm{d}t.$

♦ SUI.7 — TPE-MP 2001 (réc. N. Deblais)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soient $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ deux sous-suites de $(u_n)_{n\in\mathbb{N}}$ qui convergent. Est-il suffisant que $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ réalisent une partition de $(u_n)_{n\in\mathbb{N}}$ pour que cette dernière converge? Sinon, contre-exemple.

♦ SUI.8 — Centrale-Supélec-PC 2001 (réc. A. Fourriere)

Donner un équivalent de $u_n = \frac{1}{n\sqrt{n}} \sum_{i=1}^n \mathbb{E}\left(\sqrt{k}\right)$, où E désigne la partie entière.

♦ SUI.9 — CCP-PC 2001 (réc. J. Simonet) Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par u_0 et $u_{n+1} = \frac{x_n^2}{(1+x_n)^4}$.

♦ SUI.10 — Centrale-Supélec-MP 2001 (réc. A. Zimmermann)

Soit $n \in \mathbb{N}$, $n \geqslant 2$.

- i) Montrer que l'équation $x^n = x + n$ admet une unique solution sur \mathbb{R}^{*+} , notée x_n .
- ii) Montrer que $(x_n)_{n\in\mathbb{N}}$ converge, et trouver sa limite ℓ .
- *iii)* Trouver un équivalent de $(x_n \ell)_n$.

ESPACES VECTORIELS NORMÉS

♦ EVN.1 — ENS Lyon–MP 2001 (vis. Appel)

U étant un ouvert de \mathbb{R}^n contenant la boule fermée $\overline{\mathcal{B}}(0 ; \mathbb{R})$, et $f : \mathbb{U} \longrightarrow \mathbb{R}$ étant de classe \mathscr{C}^1 , on pose $\alpha : [0,\mathbb{R}] \longrightarrow \mathbb{R}$, $r \longmapsto \sup_{\|x\| \leqslant r} f(x)$. Montrer que α est lipshitzienne, et déterminer la meilleure constante k telle que α soit k-lipshitzienne.

♦ EVN.2 — ENS Lyon-MP 2001 (réc. B. Claudon, C. Lathuiliere, M. Pagelot)

Soit R > 0 et U un ouvert de \mathbb{R}^p tel que $\overline{\mathcal{B}}(0; R) \subset U$, et soit $f: U \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 . Pour tout $r \in [0, R]$, on pose $\alpha(r) = \sup_{\|x\| \le r} f(x)$.

- i) Montrer que α est lipshitzienne sur [0, R].
- ii) Soit $r \in [0, \mathbb{R}]$ et soit $(r_n)_{n \in \mathbb{N}}$ une suite qui tend, en décroissant strictement, vers r. On suppose que $\frac{\alpha(r_n) - \alpha(r)}{r_n - r} \xrightarrow[n \to \infty]{} \ell$. Montrer que $\ell \geqslant \inf_{\|x\| \leqslant r} \|\mathrm{d} f_x\|$.
- iii) Variante (C. Lathuiliere, M. Pagelot) : si $r_n > r$ pour tout $n \in \mathbb{N}$, alors les valeurs d'adhérence de $\frac{\alpha(r_n) \alpha(r)}{r_n r}$ sont toutes supérieures à $\inf_{\|x\| \leqslant r} \|\mathrm{d} f_x\|$

♦ EVN.3 — ENS Lyon–MP 2001

Soit $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ continue.

- i) Soit $c \in \mathbb{R}$ tel que $F^{-1}(\{c\})$ soit un singleton. Caractériser c.
- ii) On suppose qu'il existe $c \in \mathbb{R}$ tel que $F^{-1}(\{c\})$ est compact. Montrer que F admet un extremum.
- iii) Supposons que, pour tout $c \in \mathbb{R}$, $F^{-1}(\{c\})$ est compact. Montrer que F(x) admet une limite quand $[|x| \to \infty]$.
- iv) Qu'en est-il pour $F : \mathbb{R} \longrightarrow \mathbb{R}$?

♦ EVN.4 — ENS Cachan-MP 2001

On pose $E = \mathscr{C}^0([0,1],\mathbb{R})$. Soit $\sigma \in \mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$. On note $F \stackrel{\text{def}}{=} \{x \longmapsto \sigma(\omega x + \theta) ; \omega, \theta \in \mathbb{R}\}$. Montrer que $\overline{F} = E$ si et seulement si σ n'est pas un polynôme.

♦ EVN.5 — ICNA-PC 2001 (réc. S. Lacoste)

 $(E, \|\cdot\|)$ est un e.v.n. On note $\mathscr{L}(E)$ l'ensemble des endomorphismes de E et $\mathscr{L}_c(E)$ celui des endomorphismes continus de E.

i) Montrer que $u \in \mathcal{L}(E)$ est continu si et seulement si il existe $M \geqslant 0$ tel que

$$M = \sup_{\|x\|=1} \|u(x)\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}.$$

- ii) Montrer que $\|\cdot\|$: $\mathscr{L}_c(E) \longrightarrow \mathbb{R}$, $u \longmapsto \sup_{\|x\|=1} \|u(x)\|$ est une norme.
- *iii)* On suppose que $(E, \|\cdot\|)$ est complet. Montrer que $(\mathscr{L}_c(E), \|\cdot\|)$ est complet.

♦ EVN.6 — CCP-PC 2001 (réc. V. Meugniot)

Soit $A \in \mathfrak{M}_n(\mathbb{R})$. Étudier la convergence de la série $\sum A^n$. On notera $||A|| = \sup_{i,j} |a_{ij}|$.

♦ EVN.7 — Centrale-MP 2001 (réc. C. Michel)

Soit K un compact inclus dans un espace vectoriel normé. Soit $f: K \longrightarrow K$ une application faiblement contractante, c'est-à-dire telle que $\forall x, y \in K, \quad x \neq y \Longrightarrow |f(x) - f(y)| < |x - y|$.

- i) Montrer que f admet un unique point fixe a.
- ii) Soit $u_0 \in K$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_{n+1} = f(u_n) \quad \forall n \in \mathbb{N}$. Montrer que $(u_n)_{n \in \mathbb{N}}$ converge vers a.
- iii) Montrer que $\sin |_{[0,\pi]}$ est faiblement contractante. Conclusion?
- iv) Montrer que $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto \sqrt{x^2 + 1}$ est faiblement contractante. Est-ce que, pour tout $u_0 \in \mathbb{R}$, la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_{n+1} = f(u_n)$ converge? Conclusion?

♦ EVN.8 — Mines-MP 2001

On pose $E \stackrel{\text{def}}{=} \{ f \in \mathscr{C}^2([0,1], \mathbb{R}) : f(0) = f'(0) = 0 \}$. Pour $f \in E$, on pose $N(f) = \sup_{x \in [0,1]} |f(x) + 2f'(x) + f''(x)|$.

- i) Montrer que N est une norme sur E.
- ii) On pose $\phi: \to \mathbb{R}$, $f \mapsto f(1)$. Montrer que ϕ est continue.
- iii) Calculer sa norme linéaire $\|\phi\|$.

♦ EVN.9 — Mines-MP 2001 (vis. Appel)

On pose $E = \mathscr{C}([0,1], \mathbb{R})$ muni de la norme du sup, et u l'endomorphisme de E qui à $f \in E$ associe la fonction $g: x \longmapsto f\left(\frac{x}{2}\right) + f\left(\frac{1+x}{2}\right)$.

- i) Montrer que $u \in \mathscr{L}_c(E)$ (c'est-à-dire que u est continue). Calculer ||u||.
- ii) Quelles sont les fonctions propres associées à la valeur propre ||u|| de u?

♦ EVN.10 — ENSAE-MP 2001 (vis. Appel)

Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Montrer que $E \stackrel{\text{def}}{=} \{P^{-1}AP ; P \in GL_n(\mathbb{C})\}$ est fermée si et seulement si A est diagonalisable.

INDICATION: Commencer par montrer que: A non diagonalisable \Longrightarrow E non fermé. (Traiter d'abord le cas A nilpotente, puis le cas général.) Puis démontrer la réciproque. \diamond

♦ EVN.11 — Centrale–MP 2001

On pose $E = \mathscr{C}([0,1], \mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$.

- $i) \ \, \text{On pose } \phi: \to \to E, \quad f \longmapsto \exp \circ f. \,\, \text{L'application } \phi \text{ est-elle continue}\,?$
- ii) On considère $F = \mathscr{C}^1([0,1],\mathbb{R})$ et $N(f) = \sqrt{f(0)^2 + \int_0^1 f'^2}$. Montrer que N est une norme. Comparer N et $\|\cdot\|_{\infty}$.

♦ EVN.12 — TPE-MP 2001

Soient E, F deux espaces vectoriels normés. Soit $f: E \longrightarrow F$ telle que $\forall x, y \in E$, f(x+y) = f(x) + f(y). On suppose que f est bornée sur la boule unité. Montrer que f est linéaire et continue.

♦ EVN.13 — TPE-MP 2001 (réc. F. Guenzi)

On pose $\mathcal{E} = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} ; (|u_n|)_{n \in \mathbb{N}} \text{ born\'ee} \}$. On pose $||u||_{\infty} = \sup_{n \in \mathbb{N}} u_n$ et $\mathcal{N}(u) = \sum_{n \in \mathbb{N}} \left| \frac{u_n}{4^n} \right|$.

i) Les normes $\|\cdot\|_{\infty}$ et N sont-elles équivalentes?

10110110N5 **23**

- ii) Complétude de (E, N)?
- iii) Compacité de (E, N) et de $(E, ||\cdot||_{\infty})$?
- iv) Les boules unité sont-elles compactes?

♦ EVN.14 — Mines-MP 2001

On munit $\mathbb{R}_3[X]$ de la norme $\|P\| = \sum_{k=0}^3 |P(k)|$. On pose $f: P(X) \mapsto P(X+2)$. Calculer $\|f\|$.

♦ EVN.15 — Centrale–MP 2001

Soit U un ouvert convexe. Soit $F \in \mathcal{C}^1(U, \mathbb{R})$ une application convexe.

- i) Montrer que, pour tout $M, M_0 \in U^2$, on a $F(M) \geqslant F(M_0) + dF_{M_0}(\mathbf{M_0M})$.
- ii) Montrer que $dF_M = 0 \Longrightarrow F(M)$ est un minimum local.
- iii) On pose E = {M \in U ; dF_M = 0}. Montrer que E est fermé convexe.
- iv) On pose $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $M = (x, y) \longmapsto ||\mathbf{OM}|| + ax + by$, où $a, b \in \mathbb{R}$. Trouver les minimums absolus de F.

♦ EVN.16 — Centrale-Supélec-PC 2001 (réc. A. Leroux)

On note E l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{C} telles que $\lim_{-\infty} f = \lim_{+\infty} f = 0$. On note F l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{C} à **support borné**, c'est-à-dire telles que : il existe $A \ge 0$ tel que pour tout $x \in \mathbb{R}$, $|x| \ge A \Longrightarrow f(x) = 0$.

- i) Montrer que E et F sont deux espaces vectoriels.
- ii) On définit N : E $\longrightarrow \mathbb{R}$, $f \longmapsto \sup_{x \in \mathbb{R}} |f(x)|$. Montrer que N définit une norme sur E.

♦ EVN.17 — CCP-MP 2001 (réc. A. Zimmermann)

Pour tout $A = (A_{ij})_{ij} \in \mathfrak{M}_n(\mathbb{R})$, on pose $||A|| = \sup_{i,j} |a_{ij}|$.

- i) Montrer que $\|\cdot\|$ est une norme.
- ii) Montrer qu'il existe $k \in \mathbb{N}^*$ tel que, pour tout $A, B \in \mathfrak{M}_n(\mathbb{R})$, $||AB|| \leq k ||A|| \cdot ||B||$, et trouver le plus petit $k \in \mathbb{N}$ vérifiant cette propriété.

♦ EVN.18 — Mines-MP 2001 (réc. C. Simon)

On pose $T : \mathbb{R}[X] \longrightarrow \mathbb{R}$, $P \longmapsto P(a)$ où $a \in \mathbb{R}$. Étudier la continuité de T.

FONCTIONS

♦ FON.1 — ENS Ulm-MP 2001 (réc. B. Claudon)

Soit $f \in \mathscr{C}_{2\pi}$.

- i) On suppose $\int_0^{2\pi} f = 0$. Montrer que f a au moins deux zéros avec changement de signe dans $[0, 2\pi]$.
- ii) On suppose $\int_0^{2\pi} f = \int_0^{2\pi} f(t) \cos t \, dt = \int_0^{2\pi} f(t) \sin t \, dt = 0$. Montrer que f a au moins quatre zéros avec changement de signe dans $[0, 2\pi]$.
- iii) Généralisation : on suppose $\int_0^{2\pi} f = \int_0^{2\pi} f(t) \cos kt \, dt = \int_0^{2\pi} f(t) \sin kt \, dt = 0$ pour tout $k \in [1, n]$. Montrer que f a au moins 2n + 2 zéros avec changement de signe.

♦ FON.2 — Mines-MP 2001 (réc. O. Spet)

Soit f la fonction définie sur \mathbb{R} par f(0) = 0 et $f(x) = (\exp(x^2) - 1)/x$ si $x \neq 0$.

ronon

i) Montrer que f admet une fonction réciproque g sur \mathbb{R} .

ii) Calculer le développement limité de g à l'ordre 5 au voisinage de 0.

♦ FON.3 — CCP–PC 2001 (réc. C. Huet)

Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables vérifiant : $\forall x \in \mathbb{R}, f'(x) = xf(-x)$.

♦ FON.4 — ENSAE-MP 2001

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $k \in]0, 1[$ tels que pour tout $x \in \mathbb{R}, |f'(x)| \leq k$. On considère la fonction $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, (x,y) \longmapsto (x+f(y),y+f(x))$. Montrer que g est une bijection.

♦ FON.5 — ENSAE-MP 2001

Trouver toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ continues vérifiant

$$\forall x \in \mathbb{R}, \quad f(x) = 1 - \int_0^1 (u+x)f(u-x) \, \mathrm{d}u.$$

♦ FON.6 — CCP-MP 2001 (réc. M. Mertz)

- i) Soit $f \in \mathscr{C}^0([a,b],\mathbb{R})$ telle que $f([a,b]) \subset [a,b]$. Montrer qu'il existe $c \in [a,b]$ tel que f(x) = c.
- ii) Soit $f \in \mathcal{C}^0([0,1], \mathbb{R})$ tel que f(0) = f(1). Montrer qu'il existe $c \in [0,1/2]$ tel que f(x) = f(c+1/2).
- iii) Un mobile se déplace à vitesse variable et parcourt une distance d pendant une unité de temps. Montrer qu'il existe un intervalle d'une demi-unité de temps pendant lequel il parcourt la distance d/2.

♦ FON.7 — TPE-MP 2001 (réc. B. Gérard)

On considère l'équation $\tan x = \frac{x^2 + x + 1}{x + 1}$. Trouver un DL à l'ordre 2 de la *n*-ième racine réelle positive.

♦ FON.8 — CCP–PC 2001 (réc. K. Pfaab)

Développement limité à l'ordre 2 en 0 de $f(x) = \frac{1}{\ln \cos x} + \frac{2}{\sin^2 x}$.

♦ FON.9 — Centrale-Supélec-PC 2001 (réc. A. Fourriere)

Soit $f \in \mathscr{C}^2([a,b],\mathbb{R})$ telle que, pour tout $x \in [a,b]$, f(x)f''(x) = 0. On note $Z(f) = \{x \in [a,b]; f(x) = 0\}$ l'ensemble des zéros de f.

- i) Montrer, en étudiant la fonction ff', que Z(f) est réduit à l'ensemble vide, ou bien est un intervalle fermé inclus dans [a, b].
- ii) Montrer que f est une fonction affine.

♦ FON.10 — Centrale-Supélec-PC 2001 (réc. A. Fourriere)

Équivalent en x_0 de $f: x \longmapsto \frac{\tan x - \tan x_0}{x - x_0} - \frac{1}{\cos^2 x}$.

♦ FON.11 — ENSAE-MP 2001 (réc. C. Simon)

Trouver les fonctions $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$ vérfiant f(x+y) + f(x-y) = f(x) f(y).

♦ FON.12 — CCP-PC 2001 (réc. M. Sauvadet)

i) Calculer $\tan \pi/12$.

ii) On considère 13 nombres réels deux à deux distincts $x_1 < x_2 < \cdots < x_{13}$. Montrer qu'il existe $i \in [\![1,12]\!]$ tel que $0 < \frac{x_{i+1} - x_i}{1 + x_{i+1} \cdot x_i} < 2 - \sqrt{3}$.

♦ FON.13 — Mines-MP 2000

Chercher toutes les fonctions continues vérifiant $\int_0^x f(t) dt = 1 - f(x)$ pour tout $x \in \mathbb{R}$.

♦ FON.14 — ENS ULC-MP 2001 (réc. M. Pagelot)

Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On suppose qu'il existe $g : \mathbb{R}^+ \longrightarrow \mathbb{R}$ véirifiant : $\forall x \in \mathbb{R}, \quad f(x) = g(x^2)$. La fonction g est-elle \mathscr{C}^{∞} ?

♦ FON.15 — CCP-PC 2001 (réc. F. Darbour)

Calculer
$$\lim_{x \to +\infty} \left[\frac{\operatorname{Arc} \tan(1+x)}{\operatorname{Arc} \tan x} \right]^{x^2}$$
.

SÉRIES NUMÉRIQUES

Convergence

♦ SRN.1 — X-MP 2001 (réc. M. Pagelot)

Montrer que si $(v_n)_{n\in\mathbb{N}}$ est à termes >0, si $u_n\sim v_n$ et si $\sum v_n$ diverge, alors $\sum u_n\sim \sum v_n$.

♦ SRN.2 — CCP-PC 2000 (réc. É. Braun)

Nature de la série $\sum u_n$ avec $u_n = \frac{\cos \ln n}{\sqrt{n}}$?

♦ SRN.3 — CCP-MP 2001 (réc. L. Gillet)

Nature de la série de terme général $u_n = \int_0^{\pi/2} \sin^n x \, \mathrm{d}x$?

♦ SRN.4 — Mines-MP 2001 (réc. L. Gillet)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ continue et décroissante. Quelle est la nature de la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} f(x) \sin x \, dx$?

♦ SRN.5 — CCP-PC 2001 (réc. C. Ahrweiller)

On pose $u_n = \sum_{k=1}^n \frac{\ln k}{k} - \frac{1}{2} (\ln n)^2$ et $v_n = u_{n+1} - u_n$. Quelle est la nature de la série $\sum v_n$? La suite $(u_n)_{n \in \mathbb{N}^*}$ est-elle convergente?

♦ SRN.6 — Centrale– 2001

Étudier la nature de la série $\sum_{n=1}^{\infty} \frac{\sin(\ln n)}{n}$ (convergence et convergence absolue).

♦ SRN.7 — ENSAI–MP 2001 (réc. S. Parouty)

Convergence de la série $\sum \ln \left(1 + \frac{(-1)^n}{n}\right)$.

♦ SRN.8 — CCP-PC 2001 (réc. P. Willaume)

Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \left(\frac{\ln(n+1)}{\ln n}\right)^n$. En posant $\ell \stackrel{\text{def}}{=} \lim_{n\to\infty} u_n$, étudier la convergence de la série $\sum (u_n - \ell)$.

♦ SRN.9 — INT-MP 2001 (réc. M. Mertz)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle à valeurs strictement positives. Soit $\phi:\mathbb{N}\longrightarrow\mathbb{R}^*$ une application. On suppose qu'il existe $a \in \mathbb{R}^{*+}$ et $n_0 \in \mathbb{N}$ tels que, pour tout $n \geqslant n_0, \frac{u_n}{u_{n+1}} - \phi(n) > a$. Montrer que $\sum u_n$ converge.

♦ SRN.10 — Mines–MP 2001 (réc. T. Weber)

Soit $(\alpha, \beta) \in \mathbb{R}^{*+} \times \mathbb{R}$. Étudier la convergence de $\sum \frac{\ln(1 + \alpha^n n^2)}{n^{\beta}}$.

♦ SRN.11 — Centrale-MP 2001 (réc. T. Weber)

Convergence de la série $\sum \frac{|\sin n|}{n^{\alpha}}$ pour $\alpha \in \mathbb{R}$. Convergence de la série $\sum \frac{\left|\sin n^{\beta}\right|}{n^{\alpha}}$ pour $\alpha, \beta \in \mathbb{R}$.

♦ SRN.12 — Centrale-MP 2001 (réc. N. Bertrand)

Nature des séries de terme général $u_n = \sin\left[2\pi n^2\left(\sqrt{1+\frac{1}{n}}-1\right)\right]$ et $v_n = \cos\left[\pi n^2\left(\sqrt{1+\frac{2}{n}}-1\right)\right]$

♦ SRN.13 — Centrale–MP 2001 (réc. L. Bouchy)

Nature de la série de termes général $u_n = \frac{x}{n} \prod \ln \left(1 + \frac{x}{k}\right)$ en fonction de x? Même question pour $v_n = \operatorname{Arc}\cos\left(\frac{\sqrt{3}}{2} + \frac{(-1)^n}{n}\right) - \frac{\pi}{6}$.

♦ SRN.14 — Mines-PC 2001 (réc. A. Fourriere)

Nature de la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n + (-1)^n}}$?

♦ SRN.15 — CCP-MP 2001 (réc. A. Zimmermann)

Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par : pour tout $N\in\mathbb{N}^*$, $u_N=\sum_{n=0}^{\infty}\frac{(-1)^n}{n+(-1)^n\ln n}$.

♦ SRN.16 — Centrale-Supélec-MP 2001 (réc. A. Zimmermann)

On pose $u_n = \left(\frac{\ln(n+1)}{\ln n}\right)^n - 1$. Étudier les séries $\sum u_n$ et $\sum (-1)^n u_n$.

♦ SRN.17 — Centrale-MP 2000 Nature de la série $u_n = \ln \tan \left(\sum_{k=0}^n \frac{(-1)^k}{2k+1} \right)$. (Cf. exercice SRE.22.)

Calcul de sommes

♦ SRN.18 — ENS ULC-MP 2001 (réc. C. Lathuiliere, Anon.)

Soit $F \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$. Calculer $\lim_{n \to \infty} \prod_{i=1}^n \left(1 + \frac{1}{n} F\left(\frac{k}{n}\right)\right)$.

♦ SRN.19 — CCP-MP 2001 (réc. B. Gérard)

Convergence et calcul de $\sum_{n=0}^{\infty} (-1)^n \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$.

♦ SRN.20 — CCP-PC 2001 (réc. C. Royal)

On pose $u_n = \prod_{n=1}^n \cos\left(\frac{k\pi}{2^n}\right)$. Calculer u_n , en déduire $\lim_{n\to\infty} u_n$.

♦ SRN.21 — TPE-PC 2001 (réc. Ph. Sellenet)

Étudier la suite $s_n = \frac{1}{2 \cdot \ln 2} + \dots + \frac{1}{n \cdot \ln n} - \ln(\ln n)$.

♦ SRN.22 — CCP-PC 2001 (réc. L. Rondot)

Déterminer un équivalent de $\sum_{k=1}^{n} k^{\gamma}$ pour $[n \to \infty]$.

♦ SRN.23 — Centrale-MP 2001 (réc. D. Malivoir)

On pose $u_n: x \mapsto x^n - \mathrm{E}(x^n)$ pour tout $x \in \mathbb{R}^+$ et tout $n \in \mathbb{N}$. On note $v_n(x) = u_n(x)$ si $0 \le u_n(x) \le 1/2$ et $v_n(x) = 1 - u_n(x)$ sinon. Enfin, on pose

$$P \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^+ ; \sum u_n(x) \text{ converge} \right\} \qquad \text{et} \quad T \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^+ ; \sum v_n(x) \text{ converge} \right\}.$$

- i) Montrer que $\mathbb{N} \subset P \subset T$.
- ii) On pose $x = a + \sqrt{b}$, avec $a, b \in \mathbb{N}^*$, $\sqrt{b} \notin \mathbb{Q}$ et $\left| a \sqrt{b} \right| \leqslant 1$. Discuter l'appartenance de x à P ou T.
- iii) On pose $x = 1 + \sqrt{2}$. Calculer $\sum_{n=0}^{\infty} v_n(x)$. Même question avec $x = 2 + \sqrt{2}$.

♦ SRN.24 — TPE-MP 2001 (réc. D. Malivoir)

Existence et calcul de $\sum_{n=2}^{\infty} \ln \left(\cos \frac{\pi}{2^n} \right)$.

♦ SRN.25 — CCP-PC 2001 (réc. A. Leroux)

On considère la série de terme général $u_n = \frac{(-1)^{n+1}}{n^2 - 2^2}$ pour $n \ge 3$. La série converge-t-elle? Si oui, en calculer la somme.

♦ SRN.26 — TPE-MP 2000

Nature et somme de la série de terme général $u_n = \operatorname{Arc} \tan \left(\frac{1}{1+n+n^2} \right)$.

SUITES ET SÉRIES DE FONCTIONS

Suites de fonctions

♦ SFN.1 — Centrale-MP 2001 (réc. C. Simon)

Étudier la convergence de la suite $(I_n)_{n\in\mathbb{N}}$ avec $I_n = \int_0^1 \frac{t^n}{\sqrt{1-t^3}} dt$.

♦ SFN.2 — CCP–MP 2001 (réc. C. Simon)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de polynômes convergeant uniformément vers f sur \mathbb{R} . Montrer que f est un polynôme.

♦ SFN.3 — TPE-MP 2001 (réc. D. Malivoir)

On considère, sur \mathbb{R}^{*+} , la suite de fonction $f_n(x) = (1 + x/n)^{-n} x^{-1/n}$.

- i) Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment inclus dans $]0,+\infty[$.
- ii) On pose $a_n = \int_0^{+\infty} f_n(x) dx$. Étudier la suite $(a_n)_{n \in \mathbb{N}}$.
- iii) Retrouver le résultat précédent en utilisant le théorème de convergence dominée.

♦ SFN.4 — TPE-MP 2001 (réc. F. Guenzi)

On pose $f_n: t \mapsto t^n \sin t$ sur $[0, \pi]$. Convergence de la suite $(f_n)_{n \in \mathbb{N}}$? On pose $I_n = \int_0^{\pi} t^n \sin t \, dt$. Monotonie et convergence de $(I_n)_{n \in \mathbb{N}}$?

INDICATION : Utiliser des DSE, Taylor-intégral; f_n est un reste de série. \diamond

♦ SFN.5 — **TPE-MP 2001** (réc. C. Berbain)

Soit $m \in \mathbb{N}^*$. Soit $(P_n)_{n \in \mathbb{N}}$ une suite de polynômes de $\mathbb{R}_m[X]$, convergeant simplement vers une fonction f. En utilisant l'interpolation de Lagrange sur (m+1) distincts de [a, b], montrer que f est un polynôme dont le degré est inférieur ou égal à m, et que la convergence est uniforme.

♦ SFN.6 — CCP-PC 2001 (réc. J. Dupont)

Étudier la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie sur [0,1] par $f_n(x)=n^2x(1-nx)$ si $x\in[0,1/n]$ et $f_n(x)=0$ si $x\in[1/n,1]$. Quel est le domaine de définition? Y a-t-il convergence simple, normale? Sur quel ensemble peut-on trouver convergence uniforme?

♦ SFN.7 — TPE-MP 2001 (réc. N. Bertrand)

Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$ telle que f(1) = 0. On définit la suite $(f_n)_{n \in \mathbb{N}}$ par $f_n(x) = x^n f(x)$ pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers 0.

♦ SFN.8 — TPE-MP 2001

On pose $f_n(x) = \frac{nx \sin x}{1 + n^{\alpha}x^{\alpha}}$.

- i) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément.
- ii) En déduire que la suite $(a_n)_{n\in\mathbb{N}}$ avec $a_n=\int_0^1 f_n$ admet une limite.
- iii) En utilisant le théorème de convergence dominée, redémontrer le résultat précédent.
- iv) Si $\alpha \leq 1$, donner directement la limite de $(a_n)_{n \in \mathbb{N}}$.

♦ SFN.9 — TPE-MP 2001 (réc. M. Durupt)

On définit la suite $(P_n)_{n\in\mathbb{N}}$ de polynômes par $P_0=1$ et $P_{n+1}=P_n+X-P_n^2$.

- i) Montrer que : $\forall x \in \mathbb{R}^+, \forall n \in \mathbb{N}, P_{n+1}(x) \sqrt{x} = (P_n(x) \sqrt{x})(1 P_n(x) \sqrt{x}).$
- ii) Exprimer de même $P_{n+1}(x) + \sqrt{x}$ en fonction de $P_n(x) + \sqrt{x}$.
- iii) Montrer que pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}, \sqrt{x} \leqslant P_{n+1}(x) \leqslant P_n(x) \leqslant 1$.
- iv) Montrer que $(P_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1] vers $f:[0,1]\longrightarrow\mathbb{R},\quad x\longmapsto\sqrt{x}$.
- v) Donner le sens de variation de $x \longmapsto P_n(x) \sqrt{x}$ et celui de $x \longmapsto P_n(x) + \sqrt{x}$ sur [0,1].
- vi) Montrer que $(P_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

♦ SFN.10 — CCP-PC 2001 (réc. M. Sauvadet)

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 \frac{x^n}{\sqrt{1+x^n}} dx$. En effectuant un changement de variable, donner un équivalent de $(I_n)_{n \in \mathbb{N}}$.

♦ SFN.11 — TPE-MP 2001

On pose $f_n(x) = \int_0^1 \left(1 - \frac{t}{n}\right)^n t^x dt$. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge vers $f(x) = \int_0^{+\infty} t^x e^{-t} dt$.

Montrer que
$$f(x) = \lim_{n \to \infty} \frac{n! \ n^{1+x}}{(1+x)(2+x)\cdots(n+x)}$$
.

♦ SFN.12 — CCP–PC 2001 (réc. N. Herment)

On pose, pour tout entier $n \in \mathbb{N}$ et pour tout $x \in [0, +\infty[: f_n(x) = \frac{\ln(1 + x/n)}{x(1 + x^2)}]$.

- i) Discuter l'intégrabilité de f_n sur $[0, +\infty[$.
- ii) On pose $u_n = n \int_0^{+\infty} f_n(x) dx$. Étudier la convergence de la suite $(u_n)_{n \in \mathbb{N}}$ et sa limite.

Séries de fonctions

♦ SFN.13 — X-ESPCI-PC 2001 (réc. G. Lepesqueux)

On pose $f(t) = \sum_{n=1}^{\infty} \frac{nt^n}{1-t^n}$, pour $t \in \mathbb{C}$. Ensemble de définition? Propriété de f?

♦ SFN.14 — ICNA-PC 2001 (réc. C. Merio)

Nature de la série $\sum \int_0^{+\infty} \frac{1}{(ne^{-x}x + x^2)^n} dx?$

♦ SFN.15 — Centrale-PC 2001 (réc. C. Royal)

On pose $f_n: x \mapsto (-1)^n e^{-nx}/n$. Étudier les différents modes de convergence de $\sum f_n$ sur \mathbb{R}^+ .

♦ SFN.16 — Mines–MP 2001 (réc. O. Spet)

Convergence et somme de $\sum f_n$ avec $f_n(x) = nx^2 e^{-nx}$ sur \mathbb{R}^+ .

♦ SFN.17 — CCP-PC 2001 (réc. M. Jacquot)

Étudier la convergence simple, normale et uniforme de la série de fonctions de terme général $u_n(x) = x^2 e^{-x\sqrt{n}}$.

♦ SFN.18 — CCP–MP 2001 (réc. C. Michel)

On pose $f: x \mapsto \sum_{n=1}^{\infty} n^{-x}$ et $g: x \mapsto \sum_{n=1}^{\infty} (-1)^{n-1} n^{-x}$. Déterminer leurs ensembles de définition, montrer leur continuité sur ces ensembles. Étudier leur comportement à l'infini.

♦ SFN.19 — Centrale- 2001

On pose
$$f(x) = \sum_{p=1}^{\infty} \frac{1}{(p+x)^2}$$
.

- i) Domaine de définition de f?
- ii) Donner un équivalent de f en $+\infty$.
- iii) Donner un deuxième terme dans le développement de f.

♦ SFN.20 — Mines–MP 2001 (vis. Appel)

On pose
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} (1-x)^n + \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{x-1}{x}\right)^n$$
.

- i) Domaine d'existence? Continuité de f?
- ii) Dérivabilité de f?
- iii) En utilisant $\phi: u \longmapsto \sum_{n\geqslant 1} \frac{u^n}{n^2}$, décomposer f en fonctions élémentaires.

♦ SFN.21 — ENSAI-MP 2001 (vis. Appel)

On pose $f_n(x) = e^{-x} \sum_{k=0}^{n} \frac{x^k}{k!}$ sur \mathbb{R}^+ . Étudier la convergence simple et uniforme.

♦ SFN.22 — Mines–MP 2001 (réc. A. Fuffa)

On pose $u_n(t) = t^{n-1} \cos nt$ pour tout $n \in \mathbb{N}^*$ et tout $t \in]0, 2\pi[$.

$$i$$
) Étudier la série $t \longmapsto \sum_{n=1}^{\infty} u_n(t)$.

ii) Calculer les sommes partielles $(S_n)_{n\in\mathbb{N}}$ de cette série.

iii) Calculer
$$\lim_{n\to\infty} \int_0^1 S_n(t) dt$$
.

$$iv$$
) En déduire $\sum_{n\geq 1} \frac{\cos nt}{n}$.

♦ SFN.23 — CCP-MP 2001 (réc. S. Boulogne)

On considère la série de terme général $x \mapsto \frac{x^2 \cos nx}{n^2 + r^2}$.

- i) Étudier la convergence absolue.
- ii) Étudier la convergence uniforme sur [-a, a], pour a > 0.
- iii) Calculer la somme de la série.

♦ SFN.24 — CCP–MP 2001 (réc. S. Parouty)

On pose $u_n(x) = \cos(nx)/n$ e $v_n(x) = \sin(nx)/n$. Domaine de convergence simple et uniforme de chaque série ? Continuité de $\sum u_n$ sur \mathbb{R}^* ?

♦ SFN.25 — Mines–MP 2001 (réc. M. Mertz)

Déterminer, si elle existe, $\lim_{n\to\infty} \int_{0}^{1} \frac{e^{t} \sin nt}{t} dt$.

♦ SFN.26 — TPE-MP 2001 (réc. M. Mertz)

Justifier l'existence de $\int_0^{+\infty} \frac{x}{e^x - 1} dx$ et de $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Comparer ces réels.

♦ SFN.27 — Mines-MP 2001 (réc. B. Gérard)

Montrer que $\sum_{i=1}^{\infty} \frac{a}{a^2 + n^2} = \int_{0}^{+\infty} \frac{\sin ax}{e^x - 1}$ pour tout $a \in \mathbb{R}$.

♦ SFN.28 — TPE-MP 2001 (réc. B. Gérard)

Existence, continuité, dérivabilité et graphe de $x \longmapsto \sum_{n=1}^{\infty} \frac{x^2}{x^4 + n^4}$.

♦ SFN.29 — Centrale–MP 2001

Calculer
$$\lim_{\alpha \to 0^+} \alpha \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}$$
 et $\lim_{\alpha \to +\infty} \alpha \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}$.

♦ SFN.30 — CCP-PC 2001 (réc. A. Fourriere)

Montrer l'existence de la suite $(\lambda_n)_{n\in\mathbb{N}^*}$ telle que $\forall x\in]0,\pi[$, ch $x=\sum_{i=1}^{\infty}\lambda_n\sin(nx)$.

Étudier la convergence de la série $\sum \lambda_n \sin(nx)$ sur \mathbb{R} .

♦ SFN.31 — INT-MP 2001 (réc. A. Zimmermann)

On pose $f_n: x \longmapsto e^{-n^2x}$ et on note f la somme de la série $f = \sum_{n=1}^{\infty} f_n$.

- i) Quel est le domaine de définition de f?
- ii) Montrer que $\lim_{x\to 0} f(x) = +\infty$, et trouver un équivalent de f en 0.

♦ SFN.32 — Mines-MP 2001 (réc. A. Zimmermann)

Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite strictement croissante à valeurs dans \mathbb{R}^{+*} .

Montrer que:

$$\int_0^{+\infty} \sum_{n=0}^{\infty} (-1)^n e^{-\lambda_n t} dt = \sum_{n=0}^{\infty} \frac{(-1)^n}{\lambda_n}.$$

SÉRIES ENTIÈRES

Rayon de convergence

♦ SRE.1 — X-ESPCI-PC 2001 (réc. L. Malosse)

Soit $P \in \mathbb{C}[X]$, $P \neq 0$. On note R le rayon de convergence de la série entière $\sum a_n z^n$. Quel est le rayon de convergence de $\sum a_n P(n) z^n$?

♦ SRE.2 — CCP-MP 2001 (réc. O. Spet, N. Bertrand)

Rayon de convergence de la série entière de terme général $u_n(x) = \left(\frac{\pi}{2} - \operatorname{Arc} \sin \frac{n-1}{n}\right) x^n$.

♦ SRE.3 — CCP-MP 2001 (réc. J. Grandemenge)

Déterminer le rayon de convergence de la série $\sum_{n=1}^{\infty} (-1)^n \frac{C_{2n}^n}{2n-1} x^n$. Que se passe-t-il en -1/4et 1/4?

♦ SRE.4 — CCP-MP 2001 (réc. F. Guenzi) Soit $(a_n)_{n\in\mathbb{N}}$ une suite telle que $\frac{a_{2n+1}}{a_{2n}} \xrightarrow[n\to\infty]{} \ell_1$ et $\frac{a_{2n+2}}{a_{2n+1}} \xrightarrow[n\to\infty]{} \ell_2$. Quel est le rayon de

♦ SRE.5 — CCP-PC 2001 (réc. V. Casarotto)
Calculer le rayon de convergence de $\sum \frac{n}{1 \cdot 3 \cdot 5 \cdots (2n+1)} x^{2n+1}$.

♦ SRE.6 — CCP-PC 2001 (réc. F. Darbour)

Donner la rayon de convergence de la série de terme général $a_n x^n/n^2$, où a_n représente la n-ième décimale de π .

Étude d'une série entière

♦ SRE.7 — ENS Cachan–MP 2001 (vis. Appel)

On considère une suite $(u_n)_{n\in\mathbb{N}}$ de fonctions, convergeant uniformément vers une fonction usur [0,1]. On suppose que, pour tout $n \in \mathbb{N}$, l'application u_n s'écrit sous la forme d'une série entière $u_n: x \longmapsto \sum_{k=0}^{\infty} a_k^{(n)} x^k$.

Montrer que pour tout $k \in \mathbb{N}$, la suite $(a_k^{(n)})_{n \in \mathbb{N}}$ admet une limite a_k lorsque $[n \to \infty]$. Montrer de plus que $u: x \longmapsto \sum_{k=0}^{\infty} a_k x^k$.

♦ SRE.8 — CCP–MP 2001 (réc. F. Klein)

Étudier la série entière $\sum_{n\geqslant 1} a_n x^n$, avec $a_n = \sin(1/\sqrt{n})$. Montrer que $\lim_{x\to 1^-} (1-x) \sum_{n\geq 1} a_n x^n = 0$.

♦ SRE.9 — CCP-MP 2001 (réc. O. Masson)

On pose, pour tout $n \in \mathbb{N}$: $a_n = \text{Card}\{(u, v) \in \mathbb{N}^2 ; 2u + 3v = n\}$.

- i) Montrer que la série $\sum a_n z^n$ s'obtient en effectuant le produit de deux séries simples.
- ii) En déduire a_n .

♦ SRE.10 — S^t Cyr–MP 2001 (réc. O. Masson)

Étude de la série $\sum u_n$, avec $u_n = \frac{x^n + \sin n}{3^n} y^n$, pour $(x, y) \in (\mathbb{R}^+)^2$.

♦ SRE.11 — **CCP**–**MP** 2001 (réc. V. Tihay)

Les matrices
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ sont-elles simultanément trigonalisables?

♦ SRE.12 — TPE-MP 2001 (réc. A. Fuffa)

Étude de la série entière $z \longmapsto \sum_{n \in \mathbb{N}} z^{n!}$.

♦ SRE.13 — CCP-MP 2001 (réc. A. Fuffa)

On pose $u_n(x) = \frac{(-1)^n x^{2n+1}}{(2n+1)(2n-1)}$ pour tout $n \in \mathbb{N}$ et pour $x \in \mathbb{R}$.

- i) Trouver le rayon de convergence de la série $\sum u_n$ et le domaine de convergence.
- ii) Montrer que la somme de cette série est continue sur [0, 1].
- iii) Calculer cette somme, et en déduire $\sum_{n=0}^{\infty} \frac{(-1)^n}{4n^2 1}.$

♦ SRE.14 — Centrale–MP 2001

Soit $n \in \mathbb{N}^*$. Pour tout $p \in [\![0,n]\!]$, on note \mathscr{N}_n^p le nombre de permutations de $[\![0,n]\!]$ laissant p éléments fixes.

- i) Donner une relation entre \mathcal{N}_n^p et \mathcal{N}_{n-p}^0 .
- ii) On pose $f(x) = \sum_{n=0}^{\infty} \frac{\mathscr{N}_n^0}{n!} x^n$. Montrer que f est définie sur]-1,1[. Calculer f(x).
- iii) En déduire \mathscr{N}_n^p .
- iv) Soit $p \in \mathbb{N}$. Calculer les limites de $\left(\frac{\mathcal{N}_n^p}{n!}\right)_{n\geqslant p}$ (on séparera les cas $p\neq 0$ et p=0). Comment interpréter le fait que $\frac{\mathcal{N}_n^0}{n!}\xrightarrow[n\to\infty]{}\frac{1}{e}\approx 0,36$?
- v) Déterminer les rayons respectifs \mathbb{R} et \mathbb{R}_{α} des séries entières $\sum_{n=0}^{\infty} \frac{\mathscr{N}_{n}^{p}}{n!} x^{n}$ et $\sum_{n=0}^{\infty} \left(\frac{\mathscr{N}_{n}^{p}}{n!}\right)^{\alpha} x^{n}$ avec $\alpha \in \mathbb{R}$.

♦ SRE.15 — CCP-MP 2001

Domaine de convergence de $\sum x^{n^2}$? Trouver un équivalent en $[x \to 1^-]$.

♦ SRE.16 — INT-MP 2001 (réc. N. Deblais)

On pose $a_0 = 1$ et pour tout $n \in \mathbb{N}$, $a_{n+1} = \sum_{k=0}^{n} C_n^k a_k a_{n-k}$. On pose ensuite $S(x) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k$.

Calculer S et donner son rayon de convergence

INDICATION: On pourra montrer que $\forall n \in \mathbb{N}, a_n/n! \leq 1/2^n$.

♦ SRE.17 — CCP-MP 2001 (réc. M. Durupt)

i) Calcul
$$a_n = \int_0^1 t^n (1-t)^n dt$$
 pour tout $n \in \mathbb{N}$.

- ii) Quel est le rayon de convergence de $\sum a_n x^n$?
- iii) Calculer la somme de cette série entière.

♦ SRE.18 — ENSAE-MP 2001 (réc. L. Bouchy)

Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ telle que $a_n=o(1/n)$ $[n\to\infty]$. On pose $f(x)=\sum a_nx^n$ et on suppose qu'il existe $\ell \in \mathbb{R}$ tel que $\lim_{x \to 1^-} f(x) = \ell$. Montrer que $\sum a_n$ converge et que $\sum_{x=0}^{\infty} a_n = \ell$.

Développement en série entière

♦ SRE.19 — TPE-MP 2001 (réc. F. Klein, Anon.)

[Également CCP PC-2000] Trouver le DSE de $f(x) = \int_0^x e^{t^2 - x^2} dx$.

♦ SRE.20 — TPE-MP 2001 (réc. L. Gillet)

DSE de $f(x) = \sqrt{1 - 2x \cos \theta + x^2}$. Discuter suivant les valeurs de θ .

♦ SRE.21 — CCP-MP 2001 (réc. J. Mercier)
Donner un DSE de $f(x) = \frac{1}{x} \int_0^x \frac{\arctan t}{t} \ln\left(\frac{x}{t}\right) dt$ pour 0 < |x| < 1 et f(0) = 0.

♦ SRE.22 — Centrale–MP 2000

i) Montrer que
$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
.

ii) Nature de la série de terme général
$$u_n = \ln \tan \left(\sum_{k=0}^n \frac{(-1)^k}{2k+1} \right)$$
?

SÉRIES DE FOURIER

♦ FOU.1 — **CCP**–**MP** 2001 (réc. V. Tihay)

Soit f la fonction 2π -périodiques définie sur $[0,2\pi]$ par $f(x)=x^2$. Développer f en série de Fourier. En déduire $\sum_{n=0}^{\infty} 1/n^2$ et $\sum_{n=0}^{\infty} (\sin nx)/n$.

FOU.2 — TPE-MP 2001 (réc. M. N

On pose $A = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ et $B = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$. On note f la fonction 2M-périodique définie par : $\forall t \in [-M, M], f(t) = t^2$

i) Déterminer la série de Fourier de f.

- ii) Quel est le mode de convergence de cette série. Quelle est sa limite?
- *iii)* Calculer A. En déduire $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- iv) Calculer B à 10^{-3} près.

♦ FOU.3 — TPE-MP 2001 (réc. M. Durupt)

On définit une fonction f impaire, 2π -périodique, égale à 1 sur $]0,\pi[$, avec $f(0)=f(\pi)=0$.

- i) Développer f en série de Fourier.
- ii) Calculer $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.
- iii) Calculer $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ et $\sum_{n=0}^{\infty} \frac{1}{n^2}$.

♦ FOU.4 — CCP-PC 2001 (réc. M. Sauvadet)

On considère la fonction f, 2π -périodique, définie par $f(x) = \frac{\mathrm{i}x}{e^{\mathrm{i}x-1}}$ pour $0 < |x| < \pi$. Trouver une condition nécessaire et suffisante sur f(0) et $f(\pi)$ pour que f soit développable en série de Fourier sur \mathbb{R} .

♦ FOU.5 — CCP-MP 2000

Soit a un réel strictement positif. On pose $I_n = \int_0^{+\infty} \frac{\sin(2n+1)x}{\sin x} e^{-ax} dx$.

- i) Que vaut $\lim_{n\to\infty} I_n$?
- ii) Exprimer $(\sin(2n+1)x)/\sin x$ sous forme d'exponentielle complexe.
- iii) Donner le développement en série de Fourier de la fonction définie par $x \longmapsto \mathrm{e}^{-ax}$ sur $[0, 2\pi]$ et de période 2π .

Intégrale

♦ INT.1 — X-ESPCI-PC 2001 (réc. L. Malosse)

(Pour combler 5 min.) Étude de $\int_{-x}^{1} \frac{\ln(1-x)}{x} dx$.

♦ INT.2 — X-ESPCI-PC 2001 (réc. A. Fourriere) Que dire de l'intégrabilité de $f_x: t \longmapsto \frac{\cos 2\pi xt}{t \ln t}$ sur $]2, +\infty[$ en fonction de x?

Que dire de la convergence de la série de terme général $u_n(x) = \frac{\cos(2\pi nx)}{n \ln n}$?

♦ INT.3 — CCP-PC 2001 (réc. S. Tabone)

Soit
$$f \in \mathcal{C}([0,1],\mathbb{R})$$
. On pose $v_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$ et $w_n = n \left[\int_0^1 f(t) dt - v_n\right]$.

Montrer que
$$\lim_{n \to \infty} w_n = \frac{1}{2} [f(1) - f(0)].$$

INDICATION: On utilisera
$$\int_0^1 f(t) dt = \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} f(t) dt$$
.

♦ INT.4 — CCP-PC 2001 (réc. L. Malosse)

Existence et calcul de $I = \int_1^{+\infty} \left(\frac{1}{x} - \operatorname{Arc} \sin \frac{1}{x}\right) dx$.

♦ INT.5 — TPE-MP 2001 (réc. C. Michel)

Soit $a \in \mathbb{R}^*$. Calculer $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+\mathrm{i}ax)}$.

♦ INT.6 — CCP-PC 2001 (réc. G. Lepesqueux)

Existence et calcul de $\int_0^{\pi} \frac{\mathrm{d}t}{a + \cos t}$.

♦ INT.7 — CCP- 2001

Convergence et calcul de $I = \int_0^{+\infty} \frac{x - \operatorname{Arc} \tan x}{x(x^2 + 1) \operatorname{Arc} \tan x} dx$.

♦ INT.8 — Centrale-PC 2001 (réc. Ph. Sellenet)

Soit $f:[a,b] \longrightarrow \mathbb{R}^{*+}$ continue, et $M = \max_{[a,b]} f$.

- i) Montrer que $\forall \varepsilon > 0$, $\exists \eta > 0$, $\int_a^b f^n \leqslant 2\eta (M \varepsilon)^n$.
- ii) En déduire la limite de $\left(\int_a^b f^n\right)^{1/n}$.

♦ INT.9 — Centrale–MP 2001 (vis. Appel)

Soit $\phi \in \mathscr{C}(\mathbb{R}, \mathbb{C})$ une fonction T-périodique (T > 0). On pose $M(\phi) = \frac{1}{T} \int_0^T \phi(t) dt$. Soit $f \in \mathscr{C}^1(\mathbb{R}, \mathbb{C})$, tel que $f, f' \in L^1(\mathbb{R})$. Sous réserve d'existence, on pose $\lambda = \lim_{x \to \infty} \int_{-\infty}^{+\infty} f(t) \phi(xt) dt$.

- i) On suppose $M(\phi) = 0$. Montrer que $\lambda = 0$.
- ii) On suppose $M(\phi)$ quelconque. Déterminer λ .

♦ INT.10 — CCP-PC 2001 (réc. C. Chopat)

Étude de la fonction $x \mapsto \int_{xa}^{x^{\beta}} \frac{\mathrm{d}t}{\ln t}$. Calculer sa limite quand $[x \to 1]$.

Même question avec $x \longmapsto \int_{x^{\alpha}}^{x^{\beta}} \frac{\mathrm{d}t}{t \ln t}$.

♦ INT.11 — TPE-MP 2001

On pose $f(x) = \int_0^{+\infty} \frac{t - E(t)}{t(t+x)} dt$. Montrer que f existe sur \mathbb{R}^{*+} et calculer f.

♦ INT.12 — Centrale-MP 2001 (réc. C. Berbain)

Existence et calcul de $\int_0^1 \frac{x-1}{\ln x} dx$.

♦ INT.13 — Centrale-MP 2001 (réc. M. Durupt)

Soit $f:[0,1] \longrightarrow \mathbb{R}^{*+}$ une application continue. On pose $A = \int_0^1 f(t) dt$.

- i) Montrer que pour tout $n \in \mathbb{N}^*$, il existe une subdivision $\sigma_n = (0 = x_0 < x_1 \cdots < x_n = x_n < x_n$
 - 1) de [0,1] telle que pour tout $k \in [1,n]$, $\int_{x_{k-1}}^{x^k} f(t) dt = \frac{A}{n}$.
- ii) Étudier le comportement de $\delta(\sigma_n) = \max_k (x_k x_{k-1})$ (diamètre de la subdivision).

)

EGITALE TAITAMET TEE

iii) Soit $g:[0,1] \longrightarrow \mathbb{R}$ continue. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \frac{1}{n} \sum_{k=0}^n g(x_k)$. Étudier la convergence de $(S_n)_{n \in \mathbb{N}}$.

♦ INT.14 — Centrale-Supélec-PC 2001 (réc. A. Leroux)

Trouver une primitive de $x \longmapsto \frac{\sin 2x}{\cos 3x}$.

♦ INT.15 — Centrale-MP 2001 (réc. C. Simon)

Calculer la limite de la suite $(S_n)_{n \in \mathbb{N}^*}$ définie par $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k(k-n)}}$.

INTÉGRALE PARAMÉTRÉE

♦ IP.1 — X-MP 2001 (réc. C. Lathuiliere)

On pose
$$F(x) = \int_0^{+\infty} \frac{e^{-|x+u^2|}}{1+u^2} du$$
.

- i) Montrer que F est définie et continue sur \mathbb{R} .
- ii) Montrer que F est intégrable sur \mathbb{R} .
- iii) Montrer que $\int_0^{+\infty} F(x) dx = 2\pi$.

♦ IP.2 — INT-MP 2001 (réc. O. Spet)

Intégrabilité et calcul de $\int_0^1 x^{k-1} \ln x \, dx$ avec $k \in \mathbb{N}, k \geqslant 1$.

♦ IP.3 — CCP-PC-MP 2001 (réc. H. Vogel, Anon.)

On définit, lorsqu'elles existent, $f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$ et $g(x) = \int_0^x e^{-t^2} dt$.

- i) Montrer que f et g sont bien définies sur \mathbb{R} .
- ii) Montrer que $f + g^2 = C^{\underline{\text{te}}}$
- *iii)* En déduire $\int_0^{+\infty} e^{-t^2} dt$.

♦ IP.4 — Mines-MP 2001 (réc. L. Gillet)

On pose $f(x) = \int_0^{+\infty} (\ln t) e^{-tx} dt$. Domaine de définition? Continuité? La fonction f estelle \mathscr{C}^1 ? Trouver une équation différentielle vérifiée par f. En déduire f. À partir de l'expression initiale, trouver $\lim_{t\to 0} f$.

♦ IP.5 — Mines-PC 2001 (réc. G. Lepesqueux)

On pose $f(x) = \int_0^{\pi} \cos(x \sin t) dt$. Nombre d'annulations de $f \sin [\pi/2, \pi]$?

♦ IP.6 — Centrale–MP 2001 (réc. A. Fuffa)

On pose $\phi(x) = \int_0^1 \frac{\ln t}{t+x} dt$.

- i) Montrer que ϕ est définie pour x>0.
- ii) Continuité et dérivabilité de ϕ ?
- iii) Calculer $\phi(1)$. On rappelle que $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.
- iv) On pose $f: x \longmapsto \phi(x) + \phi(1/x)$. Calculer f'. En déduire f.

INDICATION: Pour la question ii, effectuer le changement de variable t = ux. \diamond

♦ IP.7 — Centrale-MP 2001 (réc. C. Lathuiliere)

On pose
$$f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$$
 et $g(x) = \int_0^{+\infty} \frac{\sin t}{x+t} dt$.

- i) Montrer que f et g sont de classe \mathscr{C}^2 sur $]0, +\infty[$.
- ii) Montrer que f et g vérifient y'' + y = 1/x.
- iii) Montrer que f et g sont continues en 0.

iv) En déduire que
$$\int_0^{+\infty} \frac{\sin u}{u} du = \frac{\pi}{2}$$
.

♦ IP.8 — Centrale-MP 2001 (réc. F. Guenzi)

On pose
$$f(x) = \int_0^{\pi/2} \sin^x t \, dt$$
.

- i) Domaine de définition, continuité, dérivabilité de f?
- ii) On pose $\phi(x) = xf(x)f(x-1)$. Montrer que ϕ est 1-périodique.
- iii) Montrer que $x \mapsto \phi(x)/x$ est décroissante.
- iv) Montre que ϕ est constante.
- v) Équivalent de f en -1^+ et en $+\infty$.

♦ IP.9 — Mines-MP 2001 (réc. Anon., A. Fourriere)

On définit
$$f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$$
 et on pose $k = \int_0^{+\infty} e^{-x^2} dx$.

- i) Montrer que f est continue sur \mathbb{R}^+ et de classe \mathscr{C}^1 sur \mathbb{R}^{*+} .
- ii) On pose $h(x) = ke^x \int_x^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$. Montrer que f = h.
- iii) Calculer k.

♦ IP.10 — ENSEA-PC 2001 (réc. K. Pfaab)

Soient
$$a, b \in \mathbb{R}$$
, $0 < a < b$. On pose $f(x) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt} \cos xt}{t} dt$.

- i) Montrer que f est de classe \mathscr{C}^1 sur un domaine à préciser.
- ii) Calculer f'(x) pour x > 0. Calculer f'(0).
- iii) Calculer f.

♦ IP.11 — Centrale-MP 2001 (réc. N. Bertrand)

Exprimer $f(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt$ à l'aide des fonctions usuelles.

♦ IP.12 — INT-MP 2001

On pose $f(x) = \int_0^{\pi} \cos(x \sin t) dt$. Montrer que f est DSE. Montrer que f ne s'annule qu'une seule fois sur $[\pi/2, \pi]$?

♦ IP.13 — IIE–MP 2001 (réc. N. Deblais)

On pose
$$I(a) = \int_0^1 \frac{dt}{t^3 + a^3}$$
 et $J(a) = \int_1^{+\infty} \frac{dt}{t^3 + a^3}$. Domaines de définition, équivalents et limites en 0 et $+\infty$ de I et J.

♦ IP.14 — Mines-MP 2001 (réc. A. Zimmermann)

On definit $f: x \longmapsto \int_0^1 \frac{e^{-xt}}{1+t^2} dt$.

- i) Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- ii) Trouver une équation différentielle vérifiée par f.
- iii) Montrer que, pour tout $x \in \mathbb{R}$, $f(x) = \int_0^x g(t) \cos(x-t) dt + \frac{\pi}{4} \cos x + \frac{\ln 2}{2} \sin x$, où g est une fonction que l'on déterminera.

♦ IP.15 — Mines-PC 2001 (réc. A. Barbier)

On pose $I(a) = \int_0^{+\infty} \frac{e^{-t} - e^{-at}}{t} dt$. Domaine de définition et valeur de I(a)?

♦ IP.16 — Centrale-MP 2001 (réc. C. Simon)

On pose $f(x) = \int_0^{+\infty} e^{-t^2 - x^2/t^2} dt$. Montrer que f est dérivable sur $\mathbb R$ et en déduire une expression de f.

ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES

♦ EDO.1 — ENS ULC-MP 2001 (vis. Appel)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^{+*}$ telle que, pour tout $x \ge 2$, f(x) = 1. Si $\alpha \in \mathbb{R}$, on note u l'unique solution, sur \mathbb{R}^+ , de l'équation différentielle $u'' = \alpha f u$, et vérifiant u(0) = 0, u'(0) = 1.

- i) Quel est le nombre de zéros de u?
- *ii)* On note x_1 le premier zéro de u strictement positif. Que vaut $\lim_{\alpha \to 0^+} x_1$?
- iii) Équivalent de x_1 ?

♦ EDO.2 — ENS ULC-MP 2001 (réc. B. Claudon)

Montrer qu'il existe une unique solution $u \in \mathscr{C}^1(\mathbb{R}, \mathbb{R}^3)$ vérifiant (on note $u = (u_1, u_2, u_3)$):

$$\begin{cases} u' + u \wedge u' = -u \wedge (u_3 e_3) \\ u_0 = \mathbf{U}_0 \quad \text{avec } \|\mathbf{U}_0\| = 1 \end{cases} \quad \text{et} \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

INDICATION: u est de norme constante. \diamond

Trouver une équation vérifiée par u_3 ; en déduire

$$\langle \mathbf{U}_0 | e_3 \rangle > 0 \Longrightarrow \forall t \in \mathbb{R}, \quad \langle u(t) | e_3 \rangle > 0, \quad u_3 > 0.$$

Quelle est la limite de u en $[t \to \infty]$?

♦ EDO.3 — CCP–PC 2001 (réc. A.-C. Probst)

Résoudre l'équation différentielle $y'' - 2y' + y = x \operatorname{ch} x - x^2$.

♦ EDO.4 — Centrale-PC 2001 (réc. C. Royal)

Intégrer l'équation différentielle $xy'' - y' + 4x^3y = 0$. Solutions développables en séries entières?

♦ EDO.5 — CCP-PC 2001 (réc. V. Meugniot)

Soit y_n la fonction définie par $y_n'' + n^2 y_n = e^{-nx}$ avec $y_n'(0) = 0$ et $y_n(0) = 0$.

- i) Déterminer y_n .
- ii) Tracer le graphe de y_n .
- iii) Étudier la série $\sum y_n$.

♦ EDO.6 — TPE-MP 2001 (réc. L. Gillet)

Résoudre (x+2y)y'+y+2x=0. Montrer que les solutions sont représentées par des arcs de coniques dont on précisera la nature.

♦ EDO.7 — Mines–MP 2001 (réc. C. Michel)

Résoudre le système différentiel

$$\begin{cases} x' = \frac{tx}{1+t^2} + \frac{y}{1+t^2} - \frac{3t}{1+t^2}, \\ y' = \frac{ty}{1+t^2} - \frac{x}{1+t^2} + \frac{2t^2-1}{1+t^2}. \end{cases}$$

♦ EDO.8 — ENSAM-PT 2001 (réc. A. Simon)

(Avec Maple) On considère l'équation différentielle : $x(1+x^2)y' + (1-x^2)y = 1-3x^2$. Trouver les solutions sur R. Tracer quelques courbes intégrales. Existe-t-il une solution continue sur R? Montrer que toutes les tangentes aux courbes intégrales à l'abscisse 2 ont un point d'intersection commun.

♦ EDO.9 — Centrale-MP 2001 (réc. J. Grandemenge)

Soit f continue et intégrable sur \mathbb{R} .

- i) Montrer qu'il existe une unique solution F bornée à l'équation y' y + f = 0.
- ii) Étudier le comportement de F en $+\infty$ et en $-\infty$.
- iii) Montrer que F est intégrable sur \mathbb{R} et comparer $\int_0^{+\infty} F(x) dx$ et $\int_0^{+\infty} f(t) dt$.
- iv) Les propriétés précédentes sont-elles vraies en remplaçant l'hypothèse « f intégrable sur \mathbb{R} » par l'existence de la limite $\lim_{\substack{x \to +\infty \\ y \to -\infty}} \int_y^x f(t) dt$?

♦ EDO.11 — TPE-MP 2001 (réc. A. Fuffa)

Trouver l'ensemble des fonction $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ vérifiant $\forall x \in \mathbb{R}, f''(x) + f(-x) = 0$.

♦ EDO.12 — CCP-PC 2001 (réc. C. Popovici)

Trouver les solutions développables en série entière de $x^2y'' + xu' + (x^2 - n^2)y = 0$, avec $n \in \mathbb{N}$. Quel est le rayon de convergence de ces séries?

♦ EDO.13 — CCP–PC 2001 (réc. N. Verdon)

Résoudre $4xy'' - 2y' + 9x^2y = 0$ en cherchant une solution DSE.

Résoudre X' =
$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
 X + $\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$.

♦ EDO.15 — Mines-MP 2001 (réc. C. Berbain)

On considère l'équation différentielle $2y'' = e^y$.

- i) On suppose y(0) = 0 et y'(0) = 1. Trouver la solution maximale.
- ii) On suppose y(0) = y'(0) = 0. Montrer que la solution maximale est paire. La déterminer.

♦ EDO.16 — TPE-MP 2001 (réc. N. Bertrand)

On considère (E) $(1-x^2)y'-xy=1$.

- i) Trouver la solution DSE de (E) telle que f(0) = 0.
- ii) Exprimer cette solution à l'aide des fonctions usuelles.

♦ EDO.17 — TPE-MP 2001

Résoudre (y+2x)y+(2x+y)y'=0.

♦ EDO.18 — CCP-PC 2001 (réc. S. Lacoste)

On considère l'équation y' - 2xy + 1 = 0.

- i) Démontrer qu'il existe une solution telle que f(0) = 0.
- ii) Donner f sous la forme d'une intégrale.
- iii) Développer f en série entière.

♦ EDO.19 — Mines-MP 2001 (réc. L. Bouchy)

Résoudre $y'' + \lambda y = \sum a_n \cos nx$ en fonction de $\lambda \in \mathbb{R}$. (On effectuera des hypothèses sur la série $\sum a_n \cos nx$.)

♦ EDO.20 — CCP-PC 2001 (réc. A. Barbier)

Résoudre les équations différentielles suivantes : $xy' + y = (\ln x)/x^3$, $y' \cos x + y \sin x = \tan x$, et $y'' - 2y' + y = \sinh x$.

GÉOMÉTRIE

♦ GÉO.1 — **CCP**–**PC** 2001 (vis. S. Tabone)

Réduire la conique \mathscr{C} : $2x^2 + 2xy + 2y^2 + 2x + 2y - 1 = 0$.

♦ GÉO.2 — CCP-PC 2001

On définit l'arc paramétré $\Gamma \left\{ egin{aligned} x(t) = rac{1}{t} + \ln(2+t), \\ y(t) = t + rac{1}{t} \end{aligned}
ight.$ Étudier et tracer Γ . Points station-

naires? Points d'inflexion? Branches infinies?

♦ GÉO.3 — **CCP**–**MP** 2001 (réc. F. Klein)

Étudier la courbe $\rho = 1/\sin(\theta/\sqrt{2})$.

♦ GÉO.4 — CCP-PC 2001 (réc. V. Collet)

On considère la transformation qui à un point M du plan associe le point I(M) tel que : O, M et I(M) sont alignés, et $\overline{OM} \cdot \overline{OI(M)} = k \in \mathbb{R}^*$. Que décrit I(M) lorsque M décrit une droite? un cercle passant pas 0? Un cercle quelconque? Une ellipse?

♦ GÉO.5 — CCP–PC 2001 (réc. H. Vogel)

Étude de la courbe $\rho = 1 + \cos \theta$. Vecteur dérivé? Tangentes?

4.

♦ GÉO.6 — **CCP-PT 2001** (réc. A. Simon)

On considère l'arc Γ paramétré par $\alpha(t) = (\cos 2t, \sqrt{2}\sin 2t, \cos 2t)$ pour $t \in [0, \pi/2]$.

- i) Calculer le vecteur tangent, paramétrer normalement Γ , calculer la longueur totale ℓ de l'arc.
- ii) Trouver le repère de Frenet (T, N, B), calculer la courbure et la torsion.
- iii) Trouver le plan osculateur en $s = \ell/4$.
- iv) On pose p(a, 0, -a). Calculer la distance de p à la droite tangente à s(t).

♦ GÉO.7 — Centrale– 2001

Étudier la courbe paramétrée Γ : $\begin{cases} x(\lambda) = (\lambda + 1)e^{1/\lambda} \\ y(\lambda) = (\lambda - 1)e^{-1/\lambda} \end{cases}$

♦ GÉO.8 — CCP-MP 2001 (réc. J. Grandemenge)

Trouver la perpendiculaire commune Δ aux droites D : $\begin{cases} x = 3z + 1, \\ y = 2z - 1, \end{cases}$ et D' : $\begin{cases} y = x - 2, \\ z = 1. \end{cases}$

Déterminer $I \stackrel{\text{def}}{=} \Delta \cap D$, et $I' \stackrel{\text{def}}{=} \Delta \cap D'$. Calculer la distance d(I; I'). Aurait-on pu déterminer cette distance autrement?

♦ GÉO.9 — TPE-MP 2001 (réc. D. Malivoir)

Étudier dans \mathbb{R}^3 la nappe d'équation xy + yz + zx = 0.

♦ GÉO.10 — Mines-MP 2001 (réc. C. Lathuiliere, Anon.)

Soit (A, B, C) un triangle rectangle en A. Soit [AH] la hauteur issue de A. Calculer AH² en fonction de AB et BC.

Soit \mathscr{E} une ellipse. Soit [MP] une corde de l'ellipse vue sous un angle de $\pi/2$ depuis le centre O de \mathscr{E} . Montrer que le point H, projeté orthogonal de O sur (MP), appartient à un cercle dont on précisera le centre et le rayon.

♦ GÉO.11 — Mines–MP 2001 (réc. F. Guenzi)

Soit p > 0. On note \mathscr{P} la parabole d'équation $y^2 = 2px$. Soit $M_0 \in \mathscr{P}$. On définit la suite $(M_n)_{n \in \mathbb{N}}$ en notant M_{n+1} l'intersection de \mathscr{P} et de la normale à \mathscr{P} en M_n . On note $M_n = (x_n, y_n)$. Nature de la série $\sum y_n$?

♦ GÉO.12 — Mines-MP 2001 (réc. F. Guenzi)

On considère quatre plans \mathscr{P}_i : $a_i x + b_i y + c_i z + d_i = 0$ (i = 1, ..., 4). Montrer que

$$\left\{ \begin{array}{l} \text{les plans sont concourants ou} \\ \text{parallèles à une même droite} \end{array} \right\} \Longleftrightarrow \left| \begin{array}{l} a_1 & b_1 & c_1 & d_1 \\ \vdots & \vdots & \vdots & \vdots \\ a_4 & b_4 & c_4 & d_4 \end{array} \right|.$$

♦ GÉO.13 — **TPE**–**MP** 2001 (réc. **B. Gérard**)

Trouver le lieu des centres de courbure de la courbe \mathscr{C} : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

♦ GÉO.14 — Centrale_MP 2001 (réc. T. Weber)

On note $\mathscr{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Soit \mathscr{E} un cercle dont le centre est sur l'axe $\mathscr{O}x$ et passant par (a,0). On note $e = \mathscr{E} \cap \Delta_{y=y_0}$ et $c = \mathscr{E} \cap \Delta_{y=y_0}$ pour y_0 assez petit, et x_e l'abscisse de e, x_c l'abscisse de c.

- i) Trouver un équivalent de $x_x x_e \quad [y_0 \to 0]$.
- ii) Trouver le cercle donnant l'équivalent d'ordre maximal. Interprétation géométrique?

♦ GÉO.15 — CCP-MP 2001

Étudier la courbe $\rho = \frac{\cos 2\theta}{\cos \theta}$. Tracer son graphe. Calcul de l'aire entre l'asymptote et la courbe.

♦ GÉO.16 — TPE-MP 2001 (réc. N. Deblais)

On note $\mathscr S$ la surface engendrée par les points M définis par $x=\operatorname{sh} u,\ y=\operatorname{sh} v$ et z=u+v, pour (u,v) parcourant $\mathbb R^2$. Montrer que tout point de $\mathscr S$ est régulier et calculer le plan tangent en un point $\mathrm M\in\mathscr S$.

♦ GÉO.17 — Centrale-MP 2001 (réc. M. Durupt)

Soit \mathscr{P} une parabole de sommet O, M_0 un point intérieur à \mathscr{P} et P_1 , P_2 et P_3 trois points. Montrer que si les normales issues de P_1 , P_2 et P_3 se coupent en M_0 , alors O, P_1 , P_2 et P_3 sont cocycliques.

♦ GÉO.18 — **TPE**–**MP** 2001 (réc. M. Durupt)

Soit A, B, C, D quatre points du plan, non alignés trois à trois, et d'affixes respectives dans un repère orthonormé choisi a, b, c et d. On dira que A, B, C, D forment un **schmilblick** si et seulement si $\frac{a-c}{b-c} \cdot \frac{b-d}{a-d} = 1$.

- i) Montrer que cette définition ne dépend pas du repère orthonormé choisi.
- ii) Soit J le milieu de [C, D]. On peut supposer J = O. Montrer que les demi-droites [JA) et [Jb) sont symétriques par rapport à (CD).

♦ GÉO.19 — Centrale-Supélec-PC 2001 (réc. A. Leroux)

On munit \mathbb{R}^3 d'un repère orthonormé $(O, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$. On note $D: \left\{ \begin{array}{l} x=1 \\ y=z \end{array} \right.$ et $\Delta: \left\{ \begin{array}{l} x=1 \\ y=-z \end{array} \right.$.

- i) Trouver D_{θ} (resp. Δ_{θ}), image par la rotation d'angle θ autour de k de D (resp. Δ).
- ii) Soit $\mathscr S$ d'équation $x^2+y^2-z^2-1=0$. Montrer que, pour tout $\theta\in\mathbb R$, D_θ et Δ_θ sont contenues dans $\mathscr S$.
- iii) Donner l'équation du plan tangent P à $\mathscr S$ en $\mathrm M_0(x_0,y_0,z_0)$.
- $\mathit{iv})$ Montrer que $P \cap \mathscr{S}$ est réduit à l'intersection de deux droites.

CALCUL DIFFÉRENTIEL

♦ DIF.1 — ENS Lyon–MP 2001 (réc. T. Weber)

- i) Soit $(a_1, \ldots, a_n) \in \mathbb{R}^n$. Calculer $\max \sum a_i x_i$ avec la contrainte $\sum_{i=1}^n x_i^2 = 1$.
- ii) Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 telle que pour tout $x \in \mathbb{R}^n$, $\|df_x\| \geqslant 1$. Montrer qu'il existe $X: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de classe \mathscr{C}^1 telle que pour tout $x \in \mathbb{R}^n$, $df_x(X(x)) \geqslant 1$.
- iii) Soit r > 0. Montrer que $\sup_{\|x\| \leqslant r} f(x) \inf_{\|x\| \leqslant r} \geqslant 2r$.

On pose
$$f(x,y) = \begin{cases} \frac{x \sin y - y \sin x}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

- i) Continuité de f?
- ii) Existence des dérivées partielles?
- iii) f est-elle de classe \mathscr{C}^1 ?

♦ DIF.3 — CCP–PC 2001 (réc. V. Collet)

On considère la fonction
$$f:(x,y)\longmapsto \begin{cases} 0 & \text{si } x=y=0,\\ \frac{xy^2}{x^2+y^6} & \text{sinon.} \end{cases}$$

- i) Étudier la continuité en (0,0) de f. Continuité de $x\longmapsto f(x,y)$ et de $y\longmapsto f(x,y)$?
- ii) Calcul de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$.
- iii) Calcul de $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et de $\frac{\partial^2 f}{\partial y \partial x}(0,0)$. Conclusion?

♦ DIF.4 — Mines–MP 2001 (réc. C. Lathuiliere)

On pose $f(x,y)=(y-x)^3+6xy, \Delta=\left\{(x,y)\; ;\; -1\leqslant x\leqslant y\leqslant 1\right\}$. Montrer qu'il existe un minimum global et un maximum global de f sur Δ . Les calculer.

♦ DIF.5 — CCP-PC 2001 (réc. P. Willaume)

Extrema globaux et locaux de $f(x,y) = -(x-1)^2 - (x-e^y)^2$

♦ DIF.6 — Centrale-MP 2001 (réc. C. Berbain)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$. On définit $\phi: (\mathbb{R}^*)^3 \longrightarrow \mathbb{R}$, $(x, y, z) \longmapsto f\left(\frac{x^2 + y^2}{z^2}\right)$. Déterminer les fonctions f telles que $\Delta \phi = 0$.

♦ DIF.7 — TPE-MP 2001 (réc. C. Berbain)

On pose $U \stackrel{\text{def}}{=} \{(x, y) \in \mathbb{R}^2 ; x < y\}.$

- i) Résoudre sur U : $x \frac{\partial f}{\partial x}(x,y) y \frac{\partial f}{\partial y}(x,y) = x^2 y^2$. On utilisera un changement de variable u = x + y et v = xy.
- *ii)* Montrer que la fonction suivante est solution :

$$f: \mathbf{U} \longrightarrow \mathbb{R} \qquad (x,y) \longmapsto \begin{cases} \frac{1}{2}(x+y)^2 & \text{si } xy < 0, \\ \frac{1}{2}(x+y)^2 + x^2y^2 & \text{si } xy \geqslant 0 \text{ et } x+y < 0, \\ \frac{1}{2}(x+y)^2 - x^2y^2 & \text{si } xy \geqslant 0 \text{ et } x+y > 0. \end{cases}$$

♦ DIF.8 — Mines-MP 2001 (réc. M. Durupt)

- i) Soient U un ouvert de \mathbb{R} , $f: \mathbb{U} \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 et $x_0 \in \mathbb{U}$. On suppose que f admet un extremum local en x_0 . Montrer que $f'(x_0) = 0$.
- ii) Généraliser ce résultat aux fonctions de classe \mathscr{C}^1 définies sur un ouvert de \mathbb{R}^2 à valeurs dans \mathbb{R} et le démontrer.
- $\begin{array}{l} iii) \ \ \text{On pose} \ \Omega = \left\{ (x,y) \in \mathbb{R}^2 \ ; \ x^2 + y^2 = 1 \right\} \ \text{et} \ f : \ \Omega \longrightarrow \mathbb{R}, \quad (x,y) \longmapsto \left| \sin(x + \mathrm{i}y) \right|^2. \\ \text{ Étudier les extrema de } f. \end{array}$

INTÉGRALES MULTIPLES

♦ IM.1 — CCP-MP 2001

- i) Rappeler la formule de Taylor avec reste intégral à l'ordre k, entre 0 et 1.
- ii) À l'aide de cette formule, calculer $\int_0^1 t^p (1-t)^q dt$, avec $p, q \in \mathbb{N}$.
- $\begin{array}{ll} iii) \ \ {\rm Soient} \ p,q,r\in \mathbb{N}, \ {\rm calculer} \ \iint_{\mathscr{S}} x^p y^q (1-x-y)^r \, {\rm d}x \, {\rm d}y, \\ \\ {\rm où} \ & \mathscr{D} \stackrel{\rm def}{=} \{(x,y)\in \mathbb{R}^2 \ ; \ x>0, \ y>0, x+y<1\}. \end{array}$

♦ IM.2 — CCP-MP 2001 (réc. F. Jacquemin)

Calculer
$$\mathbf{I} = \iint_{\mathscr{D}} (x^2 - y^2) \, \mathrm{d}x \, \mathrm{d}y$$
 où $\mathscr{D} \stackrel{\text{def}}{=} \left\{ (x, y) \in \mathbb{R}^2 \; ; \; \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}.$

♦ IM.3 — TPE-MP 2001 (réc. C. Berbain)

On pose
$$E = \mathscr{C}^0([a, b], \mathbb{R}^{*+})$$
 et $I : E \longrightarrow \mathbb{R}, \quad f \longmapsto \left(\int_a^b f(t) dt\right) \cdot \left(\int_a^b \frac{dt}{f(t)}\right)$.

- i) Montrer que $\forall f \in E, I(f) \geqslant (b-a)^2$. Étudier l'égalité.
- ii) Montrer que $I(E) = [(b-a)^2, +\infty[$.

♦ IM.4 — CCP-MP 2001 (réc. N. Deblais)

On pose
$$f(x,y)=x^2+y^2$$
. Calculer $\iint_{\mathscr{D}_k} f(x,y) \, \mathrm{d} x \, \mathrm{d} y$, où l'on a posé

$$\mathcal{D}_1 = \left\{ (x, y) \in \mathbb{R}^2 \; ; \; x^2 - 2ax + y^2 \leqslant 0 \right\} \quad \text{et} \quad \mathcal{D}_2 = \left\{ (x, y) \in \mathbb{R}^2 \; ; \; y \geqslant 0, \quad \begin{array}{l} x^2 + y^2 - 2x \leqslant 0 \\ x^2 + y^2 - 2y \geqslant 0 \end{array} \right\}.$$

♦ IM.5 — CCP-MP 2001 (réc. A. Zimmermann)

Soit
$$r > 0$$
; On pose $\mathscr{D} = \left\{ (x, y) \in \mathbb{R}^2 ; 0 < x < \frac{1}{2} \text{ et } 0 < y < r \right\}.$

Calculer

$$\iint_{\mathscr{Q}} x \cos xy \cos^2 rx \, \mathrm{d}x \, \mathrm{d}y.$$

DIVERS

♦ DIV.1 — ENS Ulm-MP 2001

- i) Donner une CNS simple pour que, dans le plan, deux cercles se rencontrent.
- ii) Existe-t-il une partition de \mathbb{R}^2 en cercles non triviaux?
- iii) Montrer qu'il existe une partition de \mathbb{R}^3 en cercles.

DIVERS 47

INDICATION: On construira une famille $(\mathscr{C}_i)_i$ de cercles disjoints telle que toute sphère non réduite à un point, de centre $\bigcup_i \mathscr{C}_i$ en exactement deux points. \diamond

♦ DIV.2 — ENS ULC-MP 2001 (réc. T. Weber)

Soit $f \in \mathscr{C}^0([0,1], \mathbb{R})$.

i) Montrer qu'il existe une unique fonction u telle que u'' = f et u(0) = u(1) = 0.

$$ii) \text{ On pose } \mathbf{A}_n = n^2 \begin{pmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix} \in \mathfrak{M}_{n-1}(\mathbb{R}) \text{ et } \mathbf{F}_n = \begin{pmatrix} f\left(\frac{1}{n}\right) \\ \vdots \\ f\left(\frac{n-1}{n}\right) \end{pmatrix}. \text{ Montrer qu'il}$$

existe un unique $U_n \in \mathfrak{M}_{n-1,1}(\mathbb{R})$ tel que $A_n U_n = F_n$.

iii) On définit la fonction v_n par $v_n(0) = v_n(1) = 0$, $v_n(k/n) = U_n^k$ et v_n affine entre ces points. Montrer que $v_n \xrightarrow{\text{C.v.u.}} u$.

♦ DIV.3 — ENSAI-MP 2001 (réc. S. Parouty)

Montrer, au moyen d'un argument simple, que sin n'est pas une fonction polynôme.

♦ DIV.4 — X-MP 2001 (réc. M. Pagelot)

Soit C un convexe polygonal fermé de \mathbb{R}^2 . Pour tout isométrie positive A, on dit que (C, A) est un **pavage** si et seulement si :

$$i) \ \forall a, b \in A, \quad (a \neq b) \Longrightarrow a(C) \cap b(C) = \varnothing;$$

$$ii) \bigcup_{a \in A} a(C) = \mathbb{R}^2.$$

Trouver une condition sur C pour qu'il existe une isométrie positive A telle que (A, C) soit un pavage.

♦ DIV.5 — ENS Ulm-MP 2001 (réc. M. Pagelot)

Sur un cube unité, étudier le nombre de chemins de longueur donnée n d'un sommet à un autre (formule, équivalent quand $[n \to \infty]$).

Table des sujets

\mathbf{ARI}	Arithmétique
ALG	Algèbre générale
	$Alg\`ebre$
	$Polyn\^omes$
\mathbf{AL}	Algèbre linéaire
	Espaces vectoriels
	$Applications\ lin\'eaires$
	Matrices
	Projecteurs
	Formes linéaires
	$D\'eterminants$
RED	Réduction d'endomorphismes
\mathbf{BIL}	Algèbre bilinéaire
	$\stackrel{-}{\it Familles}$ orthonormées
	Adjoint
	$Endomorphismes\ orthogonaux$
	Formes quadratiques
SUI	Suites
EVN	Espaces vectoriels normés
FON	Fonctions
SRN	Séries numériques
	Convergence
	Calcul de sommes
SFN	Suites et séries de fonctions
	$Suites\ de\ fonctions$
	Séries de fonctions
\mathbf{SRE}	Séries entières
	Rayon de convergence
	Étude d'une série entière
	Développement en série entière
FOU	Séries de Fourier
INT	Intégrale
IP	Intégrale paramétrée
EDO	Équations différentielles ordinaires
GÉO	Géométrie
DIF	Calcul différentiel
IM	Intégrales multiples
DIV	Divers 46