25-th Indian Mathematical Olympiad 2010

First Day

- 1. Let Γ be the circumcircle of $\triangle ABC$. Let M be a point in the bisector of $\angle A$ that is inside $\triangle ABC$. Denote by A_1 , B_1 , and C_1 the intersection points of AM, BM, and CM with Γ , respectively. Prove that PO||BC.
- 2. Find all natural numbers n > 1 such that n^2 does not divide (n-2)!.
- 3. Find all non-zero real numbers *x*, *y*, *z* such that the following system of equations is satisfied:

$$(x^2 + xy + y^2)(y^2 + yz + z^2)(z^2 + zx + x^2) = xyz$$

$$(x^4 + x^2y^2 + y^4)(y^4 + y^2z^2 + z^4)(z^4 + z^2x^2 + x^4) = x^3y^3z^3.$$

Second Day

- 4. How many 6-tuples $(a_1, a_2, a_3, a_4, a_5, a_6)$ all of which elements are from $\{1, 2, 3, 4\}$ satisfy the following condition: All of $a_j^2 a_j a_{j+1} + a_{j+1}^2$ for $j = 1, \ldots, 6$ are mutually equal?
- 5. Let ABC be an acute-angled triangle with altitude AK. Let H be its orthocenter and O its circumcenter. Assume that $\triangle KOH$ is acute-angled and that P is its circumcenter. Let Q be the reflection of P with respect to HO. Prove that Q lies on the line joining the midpoints of AB and AC.
- 6. Define a sequence $(a_n)_{n\geq 0}$ by $a_0=0$, $a_1=1$, and:

$$a_n = 2a_{n-1} + a_{n-2}$$

for $n \ge 2$.

- (a) Prove that $2a_m$ divides $a_{m+j} + (-1)^j a_{m-j}$ for all m > 0 and $j \in \{0, 1, 2, ..., m\}$.
- (b) If $2^k \mid n$ for some natural numbers n and k, prove that $2^k \mid a_n$.

