Juros Compostos

Conceitos Fundamentais no Contexto Bancário

O que são Juros Compostos?

- Definição Prática: Sistema de juros utilizado em operações bancárias onde os juros são incorporados ao capital a cada período
- Aplicação Bancária: Presente em empréstimos, financiamentos e investimentos
- Importância: Principal regime de juros utilizado em produtos bancários

Elementos Essenciais nas Operações Bancárias

- 1. Capital (C)
 - Valor do empréstimo solicitado pelo cliente
 - Valor inicial aplicado em investimentos
 - Valor financiado em operações de crédito
- 2. Taxa de Juros (i)
 - Taxa cobrada em empréstimos bancários
 - Rentabilidade oferecida em investimentos
 - Sempre expressa no formato efetivo
- 3. Tempo (n)
 - Prazo da operação bancária
 - Período de capitalização
 - Alinhado com a política do banco

Fórmulas Fundamentais

Montante

```
M = C \times (1 + i)^n
```

Onde: - M = Montante - C = Capital - i = Taxa de juros (decimal) - n = Número de períodos

Juros

$$J = M - C$$

 $J = C \times [(1 + i)^n - 1]$

Taxa Efetiva

$$i = (M/C)^{(1/n)} - 1$$

Aplicações Práticas no Dia a Dia Bancário

Situações Comuns

- 1. Empréstimo Pessoal Exemplo: Cliente solicita R\$ 5.000,00
 - Taxa: 2,5% a.m.Prazo: 12 meses
 - Montante devido: R\$ 6.789,68
- 2. CDB Bancário Exemplo: Cliente investe R\$ 10.000,00
 - Taxa: 110% do CDI (considerando CDI = 12% a.a.)
 - Prazo: 2 anos
 - Rendimento bruto: R\$ 2.543,20

Dicas para Questões Cesgranrio

- 1. Atenção às unidades de tempo e taxa
- 2. Verificar se é pré ou pós-fixado
- 3. Observar tributação em investimentos
- 4. Considerar custos administrativos

Características Importantes

Vantagens

- Realismo
 - Reflete reinvestimento
 - Usado no mercado
 - Mais preciso
- Aplicabilidade
 - Longo prazo
 - Investimentos
 - Financiamentos

Desvantagens

- Complexidade
 - Cálculos mais difíceis
 - Necessita calculadora financeira
 - Exponenciação

Taxas de Juros

Tipos

- 1. Nominal
 - Taxa declarada
 - Sem considerar períodos
 - Referência anual

2. Efetiva

- Taxa real
- Considera capitalização
- Por período

Conversão

• Taxa Efetiva Mensal para Anual

$$(1 + i_m)^12 - 1$$

• Taxa Efetiva Anual para Mensal

$$(1 + i_a)^(1/12) - 1$$

Dicas Práticas

- 1. Cálculos
 - Use calculadora financeira
 - Confira unidades
 - Verifique taxas
 - Confirme períodos
- 2. Análise
 - Compare alternativas
 - Verifique taxa efetiva
 - Considere prazo total
 - Avalie custos

Calculadora Financeira

Teclas Principais

- PV: Valor Presente
- FV: Valor Futuro
- i: Taxa de juros
- n: Número de períodos
- PMT: Pagamento

Configurações

- Modo END/BEGIN
- Períodos por ano
- Casas decimais
- Convenção de dias

Pontos para Memorizar

- 1. Juros sobre juros
- 2. Crescimento exponencial

- 3. Fórmula básica: $M = C(1+i)^n$
- 4. Usado em longo prazo
- 5. Necessita calculadora financeira

Exercícios Modelo Cesgranrio

1. (Cesgranrio - Exemplo) Um cliente aplica R\$ 1.000,00 em um CDB que rende 8% a.a. Após 2 anos, quanto terá de rendimento bruto?

Resolução:

- $M = 1000 \times (1 + 0.08)^2$
- $M = 1000 \times 1{,}1664$
- M = 1.166,40
- Rendimento = 166,40
- 2. (Cesgranrio Exemplo) Em um financiamento de R\$ 50.000,00, a taxa é de 1,5% a.m. Qual o montante devido a pós 6 meses?

Resolução de Problemas

Passo a Passo

- 1. Identifique os dados
- 2. Padronize períodos
- 3. Converta taxas
- 4. Use calculadora adequadamente
- 5. Interprete resultados