Homework 3 (Due date: 10/19)

HW3.1: (20 points)

Fig. 3.1 shows a fully differential amplifier and its transfer curves. Assume Vin1 and Vin2 are differential signals, for $I_{D1}=I_{D2}=I_{SS}/2$, $V_{GS1}=V_{GS2}=V_{TH}+200\text{mV}$. ΔVin1 is a specified voltage means M1 or M2 is turned off. Please identify ΔVin1 and describe $Gm=f(\Delta\text{Vin})$. Note: *channel length modulation* and *body effect* are ignored.

Fig. 3.1

HW3.2: (30 points)

Assuming that all the transistors in the circuits of Figs. 3.2 are saturated and $\lambda \neq 0$, calculate the small-signal differential voltage gain. Please specify their positive and negative input and output nodes.

Fig. 3.2

Introduction to Analog Integrated Circuits (111), DECE, NTUST

Homework 3 (Due date: 10/19)

HW3.3 (30 points)

Table 2.1 Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
LEVEL = 1 $NSUB = 9e+14$ $TOX = 9e-9$ $MJ = 0.45$	VTO = 0.7 LD = 0.08e-6 PB = 0.9 MJSW = 0.2	GAMMA = 0.45 UO = 350 CJ = 0.56e-3 CGDO = 0.4e-9	PHI = 0.9 LAMBDA = 0.1 CJSW = 0.35e-11 JS = 1.0e-8
PMOS Model			
$\begin{aligned} \text{LEVEL} &= 1 \\ \text{NSUB} &= 5\text{e}{+}14 \\ \text{TOX} &= 9\text{e}{-}9 \\ \text{MJ} &= 0.5 \end{aligned}$	VTO = -0.8 LD = 0.09e-6 PB = 0.9 MJSW = 0.3	GAMMA = 0.4 $UO = 100$ $CJ = 0.94e-3$ $CGDO = 0.3e-9$	PHI = 0.8 LAMBDA = 0.2 CJSW = 0.32e-11 JS = 0.5e-8

$$\epsilon_{ox}\!=\epsilon_{SiO2}\!\cdot\!\epsilon_0$$
 , $\epsilon_{SiO2}\!=3.9,\,\epsilon_0=8.85^*10^{\text{-}14}$ F/cm VDD=3.3V; VSS=0V

Suppose the differential pair of Fig. 3.3 is designed with $(W/L)_{1,2}=50/0.5$, $(W/L)_{3,4}=10/0.5$, $R_1=R_2=1M\Omega$, and $I_{SS}=0.5$ mA. Also, I_{SS} is implemented with an NMOS device having $(W/L)_{SS}=50/0.5$.

- (a) What are the maximum and minimum allowable input common-mode levels if the differential swing at the input and output are small? (10 points)
- (b) For $V_{in,CM} = 1.2V$, calculate the small-signal differential voltage gain. (10 points)
- (c) Suppose M₁ and M₂ have a threshold voltage mismatch of 1mV. What is the CMRR? (10 points)

Fig. 3.3

Introduction to Analog Integrated Circuits (111), DECE, NTUST

Homework 3 (Due date: 10/19)

HW3.4: (20 points)

Consider the circuit shown in Fig. 3.4. VDD=3.3V and VSS=0.

- (a) Sketch V_{out} as V_{in1} and V_{in2} vary differentially from zero to VDD.
- (b) If $\lambda = 0$, obtain an expression for the voltage gain. What is the voltage gain if $W_{3,4} = 0.8W_{5,6}$?

Fig. 3.4