TFY4115 Fysikk (MTELSYS/MTTK/MTNANO)

Løsningsforslag for øving 7

Oppgave 1.

a. Krefter: G, $F_{\rm N}$ og $F_{\rm f}$. Tyngdens y-komponent $G_{\rm N} = mg\cos\theta$ nulles ut av normalkrafta $F_{\rm N}$ fra skråplanet. G's x-komponent er $G_{\rm p} = mg\sin\theta$. Nettokrafta peker derfor langs skråplanet: $\vec{F} = (mg\sin\theta - F_{\rm f})\hat{\mathbf{x}}$.

Kraftmomentet for G_N nulles mot kraftmomentet for F_N . Friksjonskrafta F_f har ingen moment om A. Derfor har kun G_D kraftmoment:

$$\vec{\tau} = \vec{R} \times \vec{G}_{\rm p} = (-\hat{\mathbf{z}}) \cdot \overbrace{R \cdot \sin \alpha}^{=b} \cdot G_{\rm p} = -\hat{\mathbf{z}} \ b \cdot mg \sin \theta \,.$$

(Vinkelen α mellom \vec{R} og $\vec{G}_{\rm p}$ og den effektive armen til $G_{\rm p}$ er lik b uansett hvor kula er plassert).

b. Når kula ruller nedover må vinkelhastigheten $\vec{\omega}$ og dermed også egenspinnet $\vec{L} = I_0 \vec{\omega}$ peke i $-\hat{\mathbf{z}}$ -retning (høyrehåndsregel). Banespinnet $\vec{R} \times m\vec{V}$ må også peke i negativ z-retning med $\vec{R} \times \vec{V} = bV$. Ved rulling er $\omega = V/b$, dermed $\vec{L} = m\vec{R} \times \vec{V} + I_0 \vec{\omega} = mbV(-\hat{\mathbf{z}}) + \frac{2}{5}mb^2 \frac{V}{b}(-\hat{\mathbf{z}}) = -\hat{\mathbf{z}} \frac{7}{5}mbV.$

c. Newtons 2. lov for rotasjon, $\vec{\tau} = d\vec{L}/dt$ gir

$$bmg\sin\theta = \frac{7}{5}mb\dot{V} = \frac{7}{5}mba$$
 \Rightarrow $a = \frac{5}{7}g\sin\theta$.

Translasjonsakselerasjonen blir mindre enn for friksjonsfri bevegelse (da er $a=g\sin\theta$) fordi en del av høydeenergien omsettes til kinetisk rotasjonsenergi og ikke bare translasjonsenergi.

Oppgave 2.

Vi har tre ukjente krefter (se figuren): N_1 , N_2 og F_f , og trenger tre likninger. Vi har to likninger fra Newton 1 i x- og y-retning

$$N_1 = (M+m)g$$
 ; $N_2 = F_f$,

og den tredje likning fra rotasjonslikevekt (Newton 1 rotasjon), der vi velger referansepunkt A = kontaktpunktet mellom stigen og underlaget. Alle kreftenes dreiemomenter er rettet langs $\pm z$ -aksen, og vi velger positiv rotasjonsretning mot klokka.

$$\tau_{z,\text{tot}} = N_2 \underbrace{L \sin \phi}_{\text{eff.arm}} - Mg \underbrace{\frac{\text{eff.arm}}{x \cos \phi}}_{\text{eff.arm}} - mg \cdot \underbrace{\frac{1}{2}L \cos \phi}_{\text{eff.arm}} = 0.$$

$$\Rightarrow N_2 = \frac{\cos \phi}{\sin \phi} \left[\frac{x}{L} M + \frac{1}{2} m \right] g.$$

Fra ovenfor er $F_{\rm f}=N_2$ og siden betingelsen for at stigen ikke skal skli er at

$$F_{\rm f} \leq \mu_{\rm s} N_1 = \mu_{\rm s} (M+m) g$$

følger kravet vi skulle vise:

$$\mu_{\mathbf{s}}(M+m)g \geq N_2 = \frac{1}{\tan \phi} \left[\frac{x}{L} M + \frac{1}{2} m \right] g$$

$$\tan \phi \geq \frac{(x/L)M + \frac{1}{2} m}{\mu_{\mathbf{s}}(M+m)}.$$

b. Med de oppgitte tallene innsatt, finner vi

$$\frac{(x/L)M + \frac{1}{2}m}{\mu_{s}(M+m)} = \frac{(9/10) \cdot 80 + \frac{1}{2} \cdot 12}{\mu_{s} \cdot 92} = \frac{0,848}{\mu_{s}}$$

$$\mu = 0,30 \implies \tan \phi \ge 1,70 \implies \phi \ge 60$$

$$\mu = 0,40 \implies \tan \phi \ge 2,12 \implies \phi \ge 65^{\circ}$$

$$\mu = 0,30 \implies \tan \phi \ge 2,83 \implies \phi \ge 71^{\circ}$$

Oppgave 3.

a.
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\frac{3\pi}{4} \text{ s}^{-1}} = \frac{8}{3} \text{ s} = \underline{2,67 \text{ s}}.$$

$$f = \frac{1}{T} = \frac{3}{8} \text{ Hz} = \underline{0,375 \text{ Hz}}.$$
 (Eller fra $f = \frac{\omega}{2\pi} = \frac{\frac{3\pi}{4} \text{ s}^{-1}}{2\pi} = \frac{3}{8} \text{ Hz.}$)

<u>b.</u>

$$x(t) = x_0 \cdot \cos(\omega t + \theta) \tag{1}$$

$$v(t) = \dot{x}(t) = -x_0 \cdot \omega \cdot \sin(\omega t + \theta)$$

$$a(t) = \dot{v}(t) = -x_0 \cdot \omega^2 \cdot \cos(\omega t + \theta)$$

$$(3)$$

$$a(t) = \dot{v}(t) = -x_0 \cdot \omega^2 \cdot \cos(\omega t + \theta) \tag{3}$$

<u>d.</u> Ifølge likn. (2) er den maksimale hastigheten

$$|v_{\text{max}}| = x_0 \omega = 0, 5 \text{ m} \cdot \frac{3\pi}{4} \text{ s}^{-1} = 1, 18 \text{ m/s}.$$

Denne oppnås når $\frac{\mathrm{d}v}{\mathrm{d}t}=0,$ dvs. når a(t)=0. Ifølge likn. (3) er dette ved

$$\cos(\omega t + \theta) = 0 \quad \Rightarrow \quad \omega t + \theta = \frac{\pi}{2} + n \cdot \pi, \qquad n = 0, 1, 2, \dots$$

Med $\theta = -\frac{\pi}{4}$ og $\omega = \frac{2\pi}{T}$ gir dette

$$\underline{t} = \frac{\frac{\pi}{2} + \frac{\pi}{4} + n \cdot \pi}{\frac{2\pi}{T}} = \underline{T} \cdot \left(\frac{3}{8} + \frac{n}{2}\right), \qquad n = 0, 1, 2, \dots$$

Ved $n=0,2,4,\ldots$, dvs. $t=\frac{3}{8}T,\,\frac{11}{8}T,\ldots$ har has tigheten minimum, og ved $n=1,3,5,\ldots$, dvs. $\underline{t=\frac{7}{8}T,\,\frac{15}{8}T,\ldots}$ har den maksimum. Jfr. grafen for v(t) ovenfor.

Oppgave 4. Svingetid som funksjon av amplituden

<u>a.</u> Scriptet kjøres med ulike inputverdier av amplituden theta0grad. Tidsinkrementet dt kan også varieres mens de andre parametrene kan holdes konstant.

Nedenfor til venstre vises resultatet med theta0grad = 30 grader, dt = 0.001, omega0 = 1,0 der blå=ikke-lineær og rød=lineær. Tabellen nedenfor til høyre viser hva programmet rapporterer for svingetida T. Svingetid fra analytisk løsning av den lineære likningen er $T = 2\pi/\omega_0 = 6,283$ s.

ampl	T/s	$T_{\rm lin}/{ m s}$	$T/T_{ m lin}$
1°	6,2830	6,2830	1,000000
2°	6,2840	6,2830	1,000159
5°	6,2860	6,2830	1,000477
10°	6,2950	6,2830	1,001910
15°	6,3100	6,2830	1,004297
20°	6,3310	6,2830	1,007640
30°	6,3930	6,2830	1,017508
60°	6,7430	6,2830	1,073213
90°	7,4160	6,2830	1,180328

<u>b.</u> Ett døgn har $60 \cdot 60 \cdot 24$ s = 86400 s, slik at f.eks. for $\theta_0 = 5^\circ$ vil klokka sinkes 86400 s·0, 000477 = 41, 2 s i forhold til svært liten amplitude. Dette er ikke akseptabelt. For $\theta_0 = 1^\circ$ vises ingen forskjell på linær og ikke-lineær løsning, men dersom vi øker til finere tidsinkrement dt vil det bli forskjell også her. For $\theta_0 = 30^\circ$ blir døgnforsinkelsen 86400 s·0, 0175 = 1487 s = 25 minutter.

 $\underline{\mathbf{c}}$. Sammenlikninger av $T(\theta_0)$ fra den numeriske løsningen og den oppgitte formelen for $T(\theta_0)$ funnet fra løsning av den ikke-lineære likningen ved rekkeutvikling:

$$T(\theta_0) = T_0 \left[1 + \left(\frac{1}{2} \right)^2 \sin^2 \frac{\theta_0}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^2 \sin^4 \frac{\theta_0}{2} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \right)^2 \sin^6 \frac{\theta_0}{2} + \dots \right]$$

$$T(5^\circ) = T_0 \left[1 + 0,000476 + 0,000001 + \dots \right] = T_0 \cdot 1,000476$$

$$T(15^\circ) = T_0 \left[1 + 0,004259 + 0,000041 + \dots \right] = T_0 \cdot 1,00430$$

Bra overenstemmelse med den numeriske løsningen.

 $\underline{\mathbf{d}}$. For $\theta_0=180^\circ$ har pendelen en ustabil likevekt på toppen. Den numeriske løsningen viser at den holder seg på toppen i atskillige sekunder, men begynner så å svinge med en riktig estimert svingetid. Dersom du øker tidsinkrementet $\mathbf{d}\mathbf{t}$ noe , vil du se at den ustabile likevekten vil fortone seg ganske annerledes. Den kan forbli i likevekt over svært lang tid, eller svinge andre vegen. For f.eks. $\theta_0=179,999^\circ$ er det ikke likevekt og svingningen blir ikke særlig avhengig av tidsinkrementet $\mathbf{d}\mathbf{t}$.

Er du spesielt interessert i en approksimativ analytisk løsning av den ikke-lineære likningen, les denne artikkelen: http://www.sbfisica.org.br/rbef/pdf/070707.pdf eller denne: http://www.pgccphy.net/ref/nonlin-pendulum.pdf.