Алгоритмы и структуры данных

2024 — 2025

Содержание

1 Медленные сортировки				
	1.1	Устойчивость сортировки		
	1.2	Варианты сортировок		
2	Быс	трые сортировки		
	2.1	Оценка времени снизу		
	2.2	Сортировка слиянием		
	2.3	Подсчет количества инверсий		
	2.4	Сортировка кучей (HeapSort)		
	2.5	Быстрая сортировка		
	2.6	Задача о поиске k-ой статистики		
	2.7	Сортировка подсчетом		
	2.8	Сортировка по разрядам		
3	Дин	амическое программирование - 1		
	3.1	Примеры задач		
	3.2	Инструменты		
	3.3	Способы восстановления сертификата		
	3.4	Задача о поиске наибольшей общей подпоследовательности в строках (строим таблицу)		
	3.5	Поиск кратчайшего представления числа		
4	Дин	амическое программирование - 2		
	4.1	Задача о обеде в столовой		
		4.1.1 Условие:		
		4.1.2 Решение:		
	4.2	Задача о покупке ткани		
		4.2.1 Условие:		
		4.2.2 Решение:		
	43			

1 Медленные сортировки

1.1 Устойчивость сортировки

Сохранение порядка равных элементов

1.2 Варианты сортировок

Название	Сложность	Память	Присваивания	Устойчивость
Сортировка пузырьком	$O(n^2)$	O(1)	$O(n^2)$	1
Сортировка выбором	$O(n^2)$	O(1)	O(n)	0
Сортировка вставкой	$O(n^2)$	O(1)	$O(n^2)$	1

2 Быстрые сортировки

2.1 Оценка времени снизу

Исходя из принципа количества информации, с помощью бинарных вопросов можно угадать обратную перестановку не быстрее, чем за $O(n \log n) \sim O(n!)$

2.2 Сортировка слиянием

Название	Сложность	Память	Присваивания	Устойчивость
Сортировка слиянием	$O(n \log n)$	O(n)	$O(n \log n)$	1

- 1. Функция merge(seq1, seq2)
- 2. Вызываем рекурсивно, разделяя массив пополам, вплоть до очевидного случая
- 3. Когда мы проваливаемся на самый низкий уровень сравнения, то потребляется $\log n$
- 4. У рекурсивных вызовов большая константа

2.3 Подсчет количества инверсий

- 1. Сортируем массив
- 2. Считаем разницу в индексах и однозначно определяем количесвто инверсий с этим элементом

2.4 Сортировка кучей (HeapSort)

Название	Сложность	Память	Присваивания	Устойчивость
Быстрая сортировка	$O(n \log n)$	$O(\log n)$	_	0

2.5 Быстрая сортировка

Название	Сложность	Память	Присваивания	Устойчивость
Быстрая сортировка	$O(n \log n)$	$O(\log n)$	_	0

- 1. Выбираем случайный элемент
- 2. Разбиваем массив на 3 части
 - (a) меньше x
 - (b) больше x
 - (c) равно x
- 3. Рекурсивно вызываем функцию в меньшей части, а в основной, в случае задачи оптимизации памяти, продолжаем работать в том же вызове функции
- 4. Худший случай $O(n^2)$

2.6 Задача о поиске k-ой статистики

Название	Сложность	Память	Присваивания
Задача	O(n)	O(1)	_

- 1. Запускаем partision
- 2. Получаем 2 части, выбираем нужную
- 3. Работаем в одном вызове функции

2.7 Сортировка подсчетом

Название	Сложность	Память	Присваивания	Устойчивость
Сортировка подсчетом	O(n+k)	O(k)	_	0/1

- 1. Находим минимальный и максимальный элемент (k возможных значений)
- 2. Создаем, содержащий все возможные элементы

2.8 Сортировка по разрядам

Название	Сложность	Память	Присваивания	Устойчивость
Сортировка по разрядам	$O((n+k)\cdot p)$	O(k)	_	1

- 1. Применяем устойчивую версию сортировки подсчетом для каждого p разряда (которые состоят из k штук)
- 2. Очень сложно писать

3 Динамическое программирование - 1

3.1 Примеры задач

- 1. Задача о ступеньках (в том числе с запрещенными ступеньками)
- 2. Задача о поиске n го числа фиббоначи
- 3. Задача о минимизации затрат
- 4. Задача о столбац и сварщике (нельзя выпиливать 2 столба подряд)
- 5. Задача о наибольшей возрастающей подпоследовательности
- 6. Задача о поиске наибольшей общей подпоследовательности в строках
- 7. Поиск кратчайшего представления числа

3.2 Инструменты

- 1. Добавление фиктивных элементов
- 2. Внедрение матриц при вычислении реккурентно-заданных последовательностей
- 3. Придумывать смысл формулы

3.3 Способы восстановления сертификата

- 1. В динамике определяем нужный вариант проходя в обратную сторону
- 2. Используем дополнительную память

3.4 Задача о поиске наибольшей общей подпоследовательности в строках (строим таблицу)

Строим таблицу, где каждая ячейка отображает длину подстроки на данный момент

3.5 Поиск кратчайшего представления числа

Находим оптимальную по длине запись слагаемого k < n и представляем как сумму или произведение

4 Динамическое программирование - 2

4.1 Задача о обеде в столовой

4.1.1 Условие:

- 1. Поесть можно либо за деньги, либо за купон, который выдается за дорогой обед
- 2. Нужно минимизировать затраты

4.1.2 Решение:

- 1. Ввод дополнительного параметра, строим таблицу вместо строки
- 2. dp[i][j] количесвто купонов в i день с сегодняшней ценой обеда j

$$dp[i][j]=\min \left\{egin{array}{ll} dp[i-1][j+1] \ \\ dp[i-1][j-1]+a_i & ext{если } a_i\geqslant 1000 \ \\ dp[i-1][j]+a_i & ext{иначе} \end{array}
ight\}$$

4.2 Задача о покупке ткани

4.2.1 Условие:

- 1. T требуемый размер ткани, N количество магазинов
- 2. a_i цена, b_i оптовый барьер
- 3. c_i оптовая цена, d_i всего метров

4.2.2 Решение:

- 1. Пишем функцию f, которая возвращает минимальные затраты на покупку x метров ткани
- 2. Решить для 2-х магазинов
- 3. Решить для (1, 2) го и 3 го магазина
- 4. Продолжить для следующих
- 5. dp[i][j] затраты, первая группа магазинов i, второй магазин j

$$dp[i][j] = \min_{0,...,j} \left\{ dp[i-1][k] + f(i,j-k) \right\}$$

4.3 Задача о елках

4.3.1 Условие:

- 1. N, T количество елок и клу
- 2. w_i, e_i отбрасываемая тень i ой елки
- 3. Елку нельзя сажать, если на нее отбрасывается тень
- 4. Максимизировать количество елок

4.3.2 Решение:

1. dp[i][j] - минимальная тень на восток (последний посаженный сорт), где последняя занятая клетка -i, j - количество елок