MSO201A: PROBABILITY & STATISTICS Problem Set #12

- [1] $X_1,...,X_n$ be a random sample from $N(\mu, \sigma^2)$ distribution. Find the Cramer-Rao Lower Bounds (CRLB) on the variances of unbiased estimators of μ and σ^2 . Can you find unbiased estimators μ and σ^2 whose variances attain the respective CRLB?
- [2] $X_1,...,X_n$ is a random sample from $Gamma(\alpha,\beta)$

$$f(x \mid \alpha, \beta) = \begin{cases} \frac{1}{|\overline{\alpha}|} e^{-x/\beta} x^{\alpha - 1} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

 α is assumed to be known. Find the Fisher Information $I(\beta)$ and the CRLB on the variances of unbiased estimators of β .

- [3] $X_1,...,X_n$ be a random sample from $P(\theta), \theta \in (0,\infty)$. Find the CRLB on the variances of unbiased estimators of the following estimands: (a) $g(\theta) = \theta$, (b) $g(\theta) = \theta^2$ and (c) $g(\theta) = e^{-\theta}$.
- [4] Suppose $X_1,...,X_n$ be a random sample from $B(1,\theta),\theta\in(0,1)$. Find the CRLB on the variances of unbiased estimators of the following estimands: (a) $g(\theta) = \theta^4$ (b) $g(\theta) = \theta(1-\theta)$.
- [5] $X_1,...,X_n$ be a random sample from $U(0,\theta),\theta>0$. Show that (a) $\frac{n}{n+1}X_{(n)}$ is a consistent estimator of θ and (b) $e^{X_{(n)}}$ is consistent for e^{θ} , where $X_{(n)}=\max\left(X_1,...,X_n\right)$.
- [6] $X_1,...,X_n$ be a random sample from $U(\theta-1/2,\theta+1/2),\theta\in\Re$. Show that $X_{(1)}+1/2,\ X_{(n)}-1/2$ and $\left(X_{(1)}+X_{(n)}\right)/2$ are all consistent estimators of θ , $X_{(n)}=\max\left(X_1,...,X_n\right)$ and $X_{(1)}=\min\left(X_1,...,X_n\right)$.
- [7] $X_1,...,X_n$ be a random sample from

$$f(x) = \begin{cases} \frac{1}{2}(1+\theta x) & -1 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Where, $\theta \in (-1,1)$. Find a consistent estimator for θ .

[8] $X_1,...,X_n$ be a random sample from $P(\theta)$. Find a consistent estimator of $\theta^3 (3\sqrt{\theta} + \theta + 12)$.

[9] Let $X_1,...,X_n$ be a random sample from $Gamma(\alpha,\beta)$ with density

$$f(x) = \begin{cases} \frac{1}{|\overline{\alpha}|} e^{-x/\beta} x^{\alpha - 1} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

Where, α is a known constant and β is an unknown parameter. Show that $\sum_{i=1}^{n} X_i / n\alpha$ is a consistent estimator of β .