Embedded Systems Design, Spring 2025 Lecture 1

Combinational Logic Design Principles

About this course

- EMB2 continuation of EMB1, stand alone course, 5 ECTS
- 8 Practice Assignments (not compulsory)
 - 8 during the semester (individual/groups of two) + 1 which is optional
 - You will get feedback on the 8 assignments: correct solutions (from your hand-ins)
- End of teaching period: A theory test for extra bonus points (10%)
- In June: written exam, 3 hours (theory + practical part)
- Structure of the course/topics may be adjusted during the semester, please follow itslearning for changes in schedule

Course schedule

- Theory + labs (check schedule in itslearning)
- Theory sessions will be on :
 - Friday (MC) /
 - Thursday noon (EL + EIB)
- Support videos and tutorials in itslearning
- Labs will either be exercises or practical implementation
 - Designated rooms + use of the e-labs (Alsion e-lab, CIE e-lab)
- The first part of the semester will focus more on theory
- The second part of the semester will focus more on practice

Contents

- Logic components
- Boolean algebra
- Latches and flip-flops
- State machines

Book: Digital Design: Principles and Practices 4th Edition, by John F. Wakerly (Author)

- Microcontroller hardware
- Peripherals / Serial communication
- Interrupts
- AD/DA conversion

Entering the digital world

- We live in an analog world
- Digital logic mapping the infinite set of real values to 0 and 1
- When talking about real circuits: 0 low, 1 high
- Noise immunity
- Buffer circuits

Physical states in various cases

Technology	0	I
Pneumatic logic	Low pressure	High pressure
Relay logic	Circuit open	Circuit closed
CMOS logic	0 - 1.5 V	3.5 - 5.0 V
TTL	0 – 0.8 V	2.0 – 5.0 V
Dynamic memory	Capacitor discharged	Capacitor charged
Erasable memory	Electrons trapped	Electrons released
Microprocessor on-chip	Fuse blown	Fuse intact
Fiber optics	Light off	Light on
Magnetic tape	Flux direction north	Flux direction south
CD	No pit	Pit
CD – R	Dye in crystalline state	Dye in noncrystalline state

Types of logic circuits

Combinational circuit: output depends on the input, operation described by a truth table.

Sequential circuit: output depends on input and previous inputs, operation described by a state table.

Basic logic functions

2-input AND gate

2-input OR gate

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOT gate truth table

Input	Output
0	1
1	0

NAND, NOR

2-input NAND gate

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Equivalent gate circuit

2-input NOR gate

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

Equivalent gate circuit

Logic families

- 1930: Bell Labs relays
- 1940: Eniac 18 000 vacuum tubes
- 1950 1960 invention of the IC
- 1960 Transistor Transistor Logic (TTL, based bipolar transistors)
- 1960 Metal-oxide semiconductor field effect (lower power consumption, slower)
- 1980 Complementary MOS (CMOS) increase in performance

CMOS Logic

Logic levels

Figure 3-6
Logic levels for typical
CMOS logic circuits.

pMOS, nMOS

nMOS

pMOS

CMOS Inverter

Figure 3-10

CMOS inverter:

- (a) circuit diagram;
- (b) functional behavior;
- (c) logic symbol.

Figure 3-11
Switch model for
CMOS inverter: (a)
LOW input; (b) HIGH
input.

Figure 3-13

CMOS 2-input NAND gate:

- (a) circuit diagram;
- (b) function table;
- (c) logic symbol.

(b)	Α	В	Q1	Q2	Q3	Q4	Z
	L	L	off	on	off	on	Н
			off				
	Н	L	on	off	off	on	Η
	Н	Н	on	off	on	off	L

Figure 3-14 Switch model for CMOS 2-input NAND gate: (a) both inputs LOW; (b) one input HIGH; (c) both inputs HIGH.

(c)

Figure 3-15

CMOS 2-input NOR gate:

- (a) circuit diagram;
- (b) function table;
- (c) logic symbol.

Figure 3-42 Propagation delays for a CMOS inverter: (a) ignoring rise and fall times; (b) measured at midpoints of transitions.

Figure 3-48 Device operation with slowly changing inputs: (a) a noisy, slowly changing input; (b) output produced by an ordinary inverter; (c) output produced by an inverter with 0.8 V of hysteresis.

Figure 3-47

A Schmitt-trigger inverter: (a) input-output transfer characteristic; (b) logic symbol.

Three state outputs

Figure 3-49 CMOS three-state buffer: (a) circuit diagram; (b) function table; (c) logic symbol.

Figure 3-50
Open-drain CMOS
NAND gate: (a) circuit
diagram; (b) function
table; (c) logic symbol.

В	Q1	Q2	Z
L	off	off	open
. Н	off	on	open
ł L	on	off	open
Н	on	on	L
	L H	L off H off	L off off H off on

Figure 3-51
Open-drain CMOS
NAND gate driving
a load.

Exercises

$$\blacksquare F = XY + X'Y'Z$$

$$\blacksquare \quad \mathbf{F} = \mathbf{X} + \mathbf{Y'} + \mathbf{X}\mathbf{Y}\mathbf{Z}$$

$$F = X'Y' + XY + Z'$$

$$F = (X + Y'Z)' + X'YZ'$$