MATH220 DISCRETE MATHEMATICS AND CRYPTOGRAPHY

Tutorial 3

Week starting 9 March 2020

- 1. By trial and error, find a multiplicative inverse of
 - (a) $3 \mod 7$ and
 - (b) 5 mod 11.
- 2. Use Euclid's algorithm to find a multiplicative inverse of
 - (a) 21 mod 25 and
 - (b) 12 mod 29.
- **3.** Draw the multiplication table for \mathbb{Z}_{12}^* . Use this to find the inverse of each element in \mathbb{Z}_{12}^* .
- **4.** Solve each of the following congruence equations:
 - (a) $2x \equiv 1 \mod 17$, and
 - (b) $40x \equiv 777 \mod 1777$.
- **5.** Solve the system of simultaneous equations for x and y:

$$x + 2y \equiv 3 \mod 7$$

$$3x + y \equiv 2 \mod 7$$

6. In the U.S., identification numbers printed on bank cheques consist of an eight digit number $a_1 a_2 \cdots a_8$ and a check digit a_9 so that

$$7a_1 + 3a_2 + 9a_3 + 7a_4 + 3a_5 + 9a_6 + 7a_7 + 3a_8 + 9a_9 \equiv 0 \mod 10$$

Show that this method detects all single-digit errors, that is, errors where only one digit is changed.

- 7. Construct the multiplication table for \mathbb{Z}_{15}^* and answer the following:
 - (a) For each element $g \in \mathbb{Z}_{15}^*$, find g^{-1} from this table.
 - (b) For each element g, calculate the powers g, g^2, \dots, g^k stopping when $g^k = 1$. (This value of k is called the *order* of g.)

- (c) If $g^k = 1$, explain why $g^{k-1} = g^{-1}$.
- **8.** Let m be a positive integer, and let $a \in \mathbb{Z}_m^*$. Prove that a is invertible if and only if there is a positive integer k such that $a^k = 1$ in \mathbb{Z}_m .
- **9.** Let $m \geq 3$. Show that $|\mathbb{Z}_m^*|$ is even, that is, the number of invertible elements in \mathbb{Z}_m is even.

Hint. Consider the element m-1.

- **10.** Compute $3^{75} \mod 73$.
- 11. If p is a prime number and a is a positive integer, show that

$$a^{(p-1)!+1} \equiv a \bmod p.$$

12. Use Euclid's Algorithm to find 38^{-1} in \mathbb{Z}_{51} .