# Physics-Informed Neural Networks: Navier-Stokes Equations

Olivia Bouvier Matthew Goldstein Saimouli Katragadda



# Introduction

#### What are PINNs?

- Powerful type of neural network
- Work by embedding physics into the loss function
- Often use PDEs or ODEs to represent physics

#### Why are they useful?

- Mesh-free
- Leverage known physics to get results using limited data
- Require fewer data points than traditional models
- Can handle noisy data efficiently



## **The Navier-Stokes Equation**



## **Motivation**

## Why Navier-Stokes in Bioinformatics?

- Fluid mechanics is one of the most widely applicable branches of classic continuum physics
- Can be used to model blood flow and circulation, as well as cerebrospinal fluid, air in the lungs, and other organ-level simulations
- The 2D incompressible Navier-Stokes
   Equations capture the physics of fluid motion,
   including viscosity and pressure



## Why use PINNs for Navier-Stokes?

- Classical numerical methods require the generation of high-quality meshes
- Mesh generation consumes a significant portion of the total simulation pipeline
- Mesh fine-tuning leads to steep increases in CPU time and memory usage
- PINNS avoid this by embedding the governing equations directly into the loss function
- They employ collocation points in the physical domain and penalize the PDE residuals
- Can naturally handle irregular domains, moving boundaries, and multi-physics coupling

# Methodology

#### **Overview**

• **Objective**: Learn the solution to 2D incompressible Navier–Stokes equations and simultaneously infer physical parameters

#### Approach:

- Stream function formulation  $\psi$
- Construct a physics-informed loss that includes both data and PDE residuals.
- Two-stage training: Adam + L-BFGS

## **Governing Equations**

$$\frac{\partial u}{\partial t} + \lambda_1 \left( u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \lambda_2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right),$$

$$\frac{\partial v}{\partial t} + \lambda_1 \left( u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \lambda_2 \left( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right),$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
Unknowns:  $u, v, p$  (velocities, pressure)
$$-\frac{\partial v}{\partial x} + \lambda_1 \left( u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \lambda_2 \left( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right),$$
Parameters to infer:  $\lambda_1$  (convection),  $\lambda_2$  (diffusion)

- Unknowns: u, v, p (velocities, pressure)
- $\lambda_2$  (diffusion)

Can be written as:

$$\frac{f_u = u_t + \lambda_1(uu_x + vu_y) + p_x - \lambda_2(u_{xx} + u_{yy})}{f_v = v_t + \lambda_1(uv_x + vv_y) + p_y - \lambda_2(v_{xx} + v_{yy})} = 0$$

## **Stream Function Representation**

$$u = \frac{\partial \psi}{\partial y},$$

$$v = -\frac{\partial \psi}{\partial x}.$$

- To enforce incompressibility, we represent the velocity components in terms of a scalar stream function  $\psi(x, y, t)$
- This automatically satisfies the incompressibility constraint ∇ · u = 0 (implicit)

## **PINN Architecture**

- Inputs: (x, y, t)
- Outputs:  $(\psi, p)$
- Architecture:
  - 9 hidden layers, 20 neurons
- Velocity obtained via auto-diff of  $\psi$

$$u=rac{\partial \psi}{\partial y}, \quad v=-rac{\partial \psi}{\partial x}$$

## **Loss Components**

#### **Total loss**

$$\mathcal{L} = \mathcal{L}_{data} + \mathcal{L}_{physics}$$

#### Data loss:

$$\mathcal{L}_{ ext{data}} = ext{MSE}(u_{ ext{pred}}, u_{ ext{true}}) + ext{MSE}(v_{ ext{pred}}, v_{ ext{true}})$$

#### Physics loss:

$$\mathcal{L}_{ ext{physics}} = ext{MSE}(f_u) + ext{MSE}(f_v)$$

## **Training**

Normalize all coordinates to [-1, 1] for stability

• During a forward pass, given inputs (x, y, t), the network returns predictions for  $\psi$  and p, use automatic diff.  $u = \frac{\partial \psi}{\partial u}, \quad v = -\frac{\partial \psi}{\partial x}$ 

 These are then substituted into the Navier-Stokes equations to compute residuals

## **Optimization Strategy**

- Stage 1 Adam Optimizer
- Adaptive, first-order optimizer
- Fast initial convergence
- Stage 2 Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
   Optimizer
- Quasi-Newton method
- Refines weights and physical parameters using curvature info

# **Experiments**

## **Robustness to Initialization**

- Explored how different initial values for the unknown parameters  $\lambda_1$  and  $\lambda_2$  affect the convergence, accuracy, and stability
- The PINN recovered accurate values of  $\lambda_1$  and  $\lambda_2$  from a range of initializations
- Initialization had little effect on velocity prediction accuracy (u, v)
- Could introduce large deviations in pressure and parameter errors, especially for higher  $\lambda_1$  initial values

| Init $(\lambda_1, \lambda_2)$ | eu     | ev     | $e_p$ | $e_{\lambda_1}$ | $e_{\lambda_2}$ | Loss    | Smooth |
|-------------------------------|--------|--------|-------|-----------------|-----------------|---------|--------|
| (0.0, 0.00)                   | 0.0116 | 0.0315 | 2.94  | 0.537           | 8.32            | 0.00046 | 0.0192 |
| (0.0, 0.01)                   | 0.0081 | 0.0294 | 2.25  | 0.309           | 8.10            | 0.00035 | 0.0192 |
| (0.5, 0.05)                   | 0.0078 | 0.0254 | 8.76  | 0.342           | 7.36            | 0.00027 | 0.0192 |
| (2.0, 0.02)                   | 0.0235 | 0.0704 | 2.78  | 1.466           | 15.67           | 0.00162 | 0.0193 |
| (5.0, 0.05)                   | 0.0078 | 0.0239 | 8.20  | 0.279           | 5.46            | 0.00024 | 0.0193 |



## **Robustness to Noise**

- We conducted ablation experiments by injecting additive Gaussian noise into the input data at five levels: 0.0, 0.01, 0.05, 0.1, and 0.2
- Used the tanh activation function and Adam optimizer
- PINN exhibited stable performance in velocity prediction across all noise levels, with only minor error increases
- Pressure predictions were more sensitive to noise
- The viscosity parameter was also sensitive to noise
- Training time and loss did not correlate linearly with noise level, illustrating the optimizer's robustness and the value of the two-stage training strategy

| Noise | $e_u$  | ev     | $e_p$  | $e_{\lambda_1}$ | $e_{\lambda_2}$ | Loss    | Time (s) | Smooth |
|-------|--------|--------|--------|-----------------|-----------------|---------|----------|--------|
| 0.00  | 0.0119 | 0.0317 | 3.033  | 0.496           | 8.335           | 0.00047 | 4305     | 0.0192 |
| 0.01  | 0.0177 | 0.0443 | 28.640 | 0.735           | 10.590          | 0.00079 | 4444     | 0.0192 |
| 0.05  | 0.0132 | 0.0364 | 1.448  | 0.407           | 6.954           | 0.00072 | 4945     | 0.0191 |
| 0.10  | 0.0145 | 0.0434 | 2.575  | 0.824           | 7.790           | 0.00212 | 4620     | 0.0193 |
| 0.20  | 0.0148 | 0.0388 | 2.809  | 0.519           | 4.996           | 0.00622 | 4563     | 0.0195 |

## **Activation Study**



- Tested 5 different activation functions: tanh, ReLU, sigmoid eLU, and leaky ReLU
- ReLU and leaky ReLU were the fastest as shown in the figure
- Tanh was the best option with the lowest loss and lambda errors

## **Optimizer Study**



- Tested Adam, Stochastic Gradient Descent (SGD), MSprop, and AdamW optimizers
- No noticeable difference in training time
- MSProp had the least final loss

## **Takeaways**



- Moderate initial values near expected physical ranges offer the best trade-off between stability and accuracy
- Tanh had the best results of the activation function
- MSProp was the best optimizer for our PINN

### **Future Work**

- The experiments reveal several challenges and limitations inherent to the PINN methodology
- Sensitivity to noise
- More effective activation functions led to longer computing time
- Extending this framework to larger-scale or three-dimensional flows will require addressing scalability challenges
- Physics-informed transformers might improve expressiveness and generalization to more complex or chaotic flow regimes

#### References

- 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378 (2019), 686–707.
- Jens Berg and Kaj Nyström. 2018. A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317 (2018), 28–41.
- Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris Perdikaris. 2020. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive Physics Informed Neural Networks - Navier Stokes 4D flow MRI data using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering 358 (2020), 112623.
- Justin Sirignano and Konstantinos Spiliopoulos. 2018. DGM: A deep learning algorithm for solving partial differential equations. Journal of computational physics 375 (2018), 1339–1364.

Q/A