TECHNICAL NOTES.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

No. 80.

THE DEAD WEIGHT OF THE AIRSHIP

and

THE NUMBER OF PASSENGERS THAT CAN BE CARRIED.

Ву

Colonel Crocco.

Extract from the Transactions of the Aeronautical Experimental Institute Rome, Italy, September, 1920.

TECHNICAL NOTE NO. 80.

THE DEAD WEIGHT OF THE AIRSHIP

and

THE NUMBER OF PASSENGERS THAT CAN BE CARRIED.*

By

Colonel Crocco.

Formula for Obtaining Weight of Dead Load.

In order to determine an approximate formula giving the weight of the dead load in function of the volume V of the envelope and of the maximum velocity v, we will take the relative weight of the various parts of the airships P^V , II, V, A, $T^{3.4}$, adopting a mean value of the coefficients determined.

This formula may be adopted both for semi-rigid airships with suspended nacelle and non-rigid envelope, with or without internal suspensions, and to airships with rigid longitudinal

Some years later, after the War, in a publication of the British Air Ministry, there appeared similar calculations showing the advisability of increasing the cubature of airships, without setting any limit to such increase. Wishing therefore to find a complete and practical solution of the problem by means of strict numerical calculations, we confided such calculations to Signor Primo Cellini, who from the very first, has made the computations for our airships. The result shows that there is an OPTI-MUM value of the ratio between the useful load and the total load at about 270,000 cubic meters, and that practically the increase of cubature beyond this limit and even up to it, hardly compensates for the greater commercial risk incurred by the concentration of tornage.

Extract from the Transactions of the Aeronautical Experimental Institute, Rome, Italy, (September, 1920).

^{*} In 1913, comparing the effect of increase of dimensions in airplanes and airships, I demonstrated in a lecture given at the Congress of Civil Engineers, Rome ("The Catastrophe of the L.2 and the Future of Airships," Annals of the Society of Italian Engineers and Architects, No.5, March 1, 1914) that there was a fairly approximate limit of gain for the airplane, and that though such a limit was a little more extended for the airship it nevertheless existed.

beam, with power units on external supports or in nacelles, and with non-rigid envelopes, with or without internal bracing cables.

Weight of the envelope. - The envelope consists of various parts:

lst. Subber on the outer reinforced part (about 0.200 kg. per square meter); its weight is proportional to the surface, $(V^{2/3})$.

2nd. Fabric of the outer reinforced part; its weight is proportional to the surface $(V^{2/3})$ and to the tension, which increases according to the pressure $(V^{1/3})$ and the diameter $(V^{1/3})$. Therefore the weight of the fabric increases as

$$V^{2/3}$$
 $V^{1/3}$ $V^{1/3}$ = $V^{4/3}$

3rd. The inside portion of the reinforced part (internal bracing cables) proportional to the Volume V.

4th. The diaphragms and butts proportional to their number n, and to the surface $(V^{2/3})$.

5th. Interior ballonet on beam, tubes, etc., proportional to the surface area $(V^{2/3})$.

N.B. For all the envelopes enumerated below, the volume of the ballonet = 0.5 of the envelope.

Airships Vo		Volume	: : : :		Rubber reinforced part	outer	Fabric reinforced part
	: :	cu.m.	:	Weight kg.	:Coefficients :	Weight kg.	:Coefficients :
MA	:	12100	:	705	: 1.34 V ^{2/3}	: 303	: 0.00290 V 1/3
: A	:	18000	:	975	: : 1.41 V ^{2/3}	1060	0.00226 V 4/3
Т ^{З 4}	:	36000	:	1550	1.42 V ^{2/3}	: 2700	: 0.00227 V 4/3
Mean Co	ef:	ficient			: 1.39 V ^{2/3}	•	: 0.00227 V 1/3

Airships	: , b	ternal racing ables.	:	liaphragms and Butts	:	Inner Ballonet on beam, tubes, etc.
	Weight	:Coeffici- : ents	:Weight	:Coefficients	:	Weight:
	kg.	:	kg.	:	:	kg.
м ^A	: 160	: 0.0132 V	: 300	:0.114 n V ^{2/3}	:	600 :1.14 V ^{2/2}
A	: 2 2 0	0.0161 V	: 830	:0.112 n V ^{2/3}	:	770 1.12 V ^{2/2}
T 34	585	. c.0162 V		:0.120 n V ^{2/3}	:	890 :0.90 V ^{2/3}
Ifean Coef	fficien	t 0.0152 V	:	:0.115 n V ^{2/3}	:	:1.09 V ^{2/3}

When the volume of the ballonet = 0.5 that of the envelope, the mean weight of the envelope is given by:

1.59
$$V^{2/3}$$
 + 0.00227 $V^{4/3}$ + 0.0152 V + 0.115 $n V^{2/3}$ + 1.09 $V^{2/3}$ = = 0.0152 V + (0.115 n + 2.48) $V^{2/3}$ + 0.00227 $V^{4/3}$

Weight of Gas and Air Valves and their Controls. - This weight is proportional to the volume V of the envelope, and from the mean value taken for the various airships it comes out at:

0.01 V

Weight of the reinforced armature. - By reinforced armature we mean the whole of the parts which help in bearing the load given by

Volume - Weight of envelope and valves

or, the longitudinal beam, the nacelle suspensions with their brackets, the longitudinal girder, the reinforced sides of the nacelle and their suspension cables. The stresses in the beams of the armature are due partly to the bending moment and partly to shear, caused by the load carried: Volume-Weight of envelope and valves = V - I. The bending moment produces in the beam stresses proportional to the load (V - I) and to the length of the bays $(V^{1/3})$ and inversely proportional to the height of the armature $(V^{1/3})$: that is, in all, proportional to

$$(V - I) \frac{V^{1/3}}{V^{1/3}} = V - I.$$

Shearing stresses are produced:

lst. In the beams and their diagonals proportional to the load, the bay, and the height, as for bending moments, therefore proportional to V-I.

2nd. In the struts proportional to the load V - I.

Therefore the stresses, and with them the weight of the re-

inforced armature (longitudinal beam, suspensions, the reinforced part of the bow and nacelle suspensions, the reinforced part of the longitudinal girder, the reinforced sides of the nacelle and their suspension tubes) are proportional to the remainder of the load:

Volume-Weight of envelope and valves = V - I.

	Airships							
	M(heavy)	T ³⁴	. v					
Volume cu.m.	12000	36000	: : 14650					
Envelope and valves kg.	2690	7350	3575					
V - I	9310	28650	: 11075					
Reinforced Armature "	1210	3750	: 1460					
Coefficient:	e. 130 (V-	-I) 0.131(V-I)	: 0.132(V-I)					

Mean Coefficient = $0.131 \times (V - I)$

which may also be written:

0.131
$$\{V - [0.01 V + 0.0152 V (0.115 n + 2.48)V^{2/3} + 0.00237 V^{4/3}]\}$$

= 0.131 [0.9743 V - (0.115 n + 2.48)V^{2/3} - 0.00227 V^{4/3}]= $\frac{1}{2}$
= 0.1277 V - (0.01506 n + 0.325) $V^{2/3}$ - 0.0002975 $V^{4/3}$

Weight of the Stiffened Part of the Bow. - The weight of this is proportional to the bending moments which it has to support. These moments depend on the length of the stiffened part proportional to $V^{1/3}$, to the pressure of the wind on the surface, and

to the square of the velocity, that is, to $v^2V^{2/3}$.

From this it follows that the bending moments, and therefore the weight of the stiffened part, are proportional to

$$V_{1/3}$$
 A_s $A_{5/3}$ = A_s A_s

N.3. - While in the airships P, M, A, and V, the stiffened part is separate from the beam and therefore resists alone the external pressure, leaning on the envelope, in the airship T the stiff ened part is incorporated with the beam on which it leans for resisting external pressure. In the T³⁴ the weight indicated, 600 kg, is that of the cupola alone, as we cannot determine the weight of the beam which bears the resistance together with the stiffened part: the coefficient determined will therefore be less than the true one, and is not reckoned in determining the mean coefficient.

The state of the s	: A	irships.	
	PA	ΗΛ	: v
Volume cu. m.	5000	13100	: 15000
Speed km/h	86	76	: : 82
Weight of stiffend part of bow k		130	180
Coefficient	0.0000232 v ² V	: :0.0000225 v² V	: :0.0000230 v ² V

	Airshi	pe
	A	T ³⁴
Volume ou.m.	18000	36000
Speed km/h	83	120
Weight of stiffened part of bow	215	600
Coefficient	0.0000225 v ² V	0.0000150 v ² V
	.	:

Mean coefficient for P^{∇} , M^{A} , V, A:

0.00002273 $v^{2}V$ (v = speed in m/sec.)

Weight of empennage. The rotating couples of the empennage are proportional to the volume V and are equal to the product of the forces and their distance from the baricenter of the envelope. As the distances are proportional to $V^{1/3}$, the forces and consequently the surfaces of the empennage, and also the weight of the empennage, are proportional to:

$$\frac{\Lambda_{1/3}}{\Lambda} = \Lambda_{5/3}$$

N.B.- In order to deduce a coefficient, we must abstract from the lower reinforced keel the weight of the part considered as being incorporated with the reinforced armature. The rest of the weight of the empennage we add to the weight of the upper, lateral keels. In the weight of the rudders is included only the weight of the planes and frames.

	Airships								
	Pv	. w _V	: A	Т 34					
Volume cu.r.	5,000	: 12,100	: 18,000	36,000					
Weight of keels kg.	: 85	146	171	400					
Coefficient	:0.29 V ^{2/3}	:0.28 V ^{2/3}	.0.25 V ^{2/3}	0.37 V ^{2/3}					
Weight of rudders kg.	: :: 185	: : 340	460	600					
Coefficient	: :0.63 V ^{2/3}	:0.65 V ^{2/3}	0.67 V ^{2/3}	0.55 V ^{2/3}					

Mean coefficient of keels = $0.30 \text{ V}^{2/3}$ " rudders = $0.62 \text{ V}^{2/3}$ <u>Weight of Engine Sets.</u> In the engine sets, or power plant, are included: engines, radiators, tubes, water, oil, controls, propeller and longerons. Since head resistance varies according to the square of the speed and area $(v^2V^{2/3})$ and power according to $v \tau^2 V^{2/3} = v^3 V^{2/3}$, the weight of the power plant will vary according to:

rs Asia

	Airsh	ips.
	${ m P}_{ m A}$	With wooder nacelle
Volume ou.m.	5,000	12,100
Speed lm/h	86	83
Power H.P.	420	630
Weight of plant kg.	780	1170
Coefficient	0.000189 v ³ V ^{2/3}	0.000176 v ³ V ^{2/3}

:	Aîrs	hips
:	A	[™] 34
Volume	18,000	: 36,000
Speedkm/h	86	120
Power H.P.	1050	3700
Weight of plant kg.	1950	4960
Coefficient	0.000200 v3 V2/s	: 0.000133 v3 V2/3

As the airships $P^{\overline{v}}$, M, and A, have suspended nacelles and

are similar in type, we may deduce from them the mean coefficient for their type:

C.000188 v^3 $V^{2/3}$ (v = speed per m/sec.)

while the T³⁴, a rigid type in which only the engine set juts out, is therefore more penetrating than the preceding and has a smaller coefficient:

0.000123 $v^3 V^{2/3}$ (v = speed per m/sec.)

If, instead, we vish to have a coefficient in function of HP only, and given that all the above-named airships have light engines (about 1 kg. per HP) with wooden propellers in direct transmission, the weight of the power plant will be about:

1,900 kg. per HP.

Weight of Supports of Power Plant. - By supports we nean: transversal bridges, external supports, engine nacelles and the part relating to the power plant only in mixed nacelles. The mean for the foregoing airships in function of HP gives

0.350 kg. per HP

<u>Feight of the Pilot's Cabin</u>. - This may be taken as about proportional to the volume:

0.013 V

Weight of the Mooring Cables and Holding Devices. - This may also be taken as proportional to the volume:

0.01 V

Total Weight of Dead Load. - From the sum of the foregoing coefficients we have the following formula, which gives approximately the total weight of the dead load in kg.:

$$P = (0.1759 + 0.00002275 v^{2})V + (0.09994 n + 3.075)V^{2/3} + 0.0019725 V^{4/3} + (number HP)2.150$$

N.B.— As we said at the beginning, such formulas are meant to be taken as approximations, for we cannot say definitely that, with increase of cubature, the weight of the various parts of the dead load will increase exactly according to the coefficients given. In the development of the details of each project various problems may arise, the solution of which may cause increase or decrease of the weight calculated by the formula. However, the values obtained by the formula are always good for a preliminary study.

Weight of Dead Load for Various Cubatures.

In order to determine the weight of the dead load* for various cubatures, we will suppose that we have a profile of envelope with an aspect ratio of about 1/6, 10 diaphragms, and a maximum speed of 120 km/h. For the whole airship we will assume that the head resistance expressed in kg. is equal to:

$$R = 0.008 S v^2$$

where v = speed per m/sec. and S the cross section in equare meters at the point of greatest diameter. This section may be taken as

$S = 0.318 \text{ V}^{2/6}$

^{*} This determination is much influenced by the characteristics of the airship (maximum speed, coefficient of resistance, etc.). For the present, we shall confine ourselves to the study of a type having average characteristics.

and we therefore have:

$$R = 0.00302 V^{2/3} v^2$$

The useful power in kilogrammeters will be:

$$L = 0.00302 \, V^{2/3} \, v^3$$

and the motive power in HP for a propeller efficiency = 0.7 will be:

$$HP = 0.0000576 V^{2/3} V^3$$

With a maximum velocity of 120 km/h., the motive power in HI for the various cubatures will be:

Y/ - 7	Po	wer in HP		:	Power in HP			
Volume	: Total	Total : Per cu. m.: Volume		:	Total	Per cu.m.		
50,000	: 2,900	: 0.0580 ::	250,000		8,470	: 0.0338		
100,000	4,600	: 0.0460 ::	300,000	:	9,570	: 0.0319		
150,000	6,020	0.0401	350,000	:	10,600	0.0303		
200,000	7,300	0.0365	400,000	:	11,570	0.0289		

and the weight of the dead load will be as follows:

Total and Unit Weight (per cubic meter) of the Envelope and Its Parts.

10 Diaphragms. Volume of Ballonet = 0.5 that of the envelope.

				Outer		a Branda a		Intern		Suspension
	Out	er Rul	ber		cing)	:	(reinforcing)			
Volume	Tota	:	Init	Total	:	Unit	:	Total	:	Unit kg
cu.m.	kg.	:	kg. :	kg.	<u> </u>	kg.	<u>:</u>	kg.		<u> </u>
50,000 100,000 150,000 200,000 250,000 300,000 400,000	1,890 3,000 3,930 4,768 5,520 6,248 6,910 7,568) : 0. 5 : 0. 6 : 0. 7 : 0.	0378 : 0300 : 0262 : 0238 : 0281 : 0208 : 0197 : 0189 :	4,200 10,600 18,120 26,620 35,780 45,750 56,100 67,200		0.0840 0.1060 0.1208 0.1331 0.1432 0.1525 0.1603 0.1680		760 1,520 2,280 3,040 3,800 4,560 5,320 6,080	* * * * * * * * * * * * * * * * * * *	0.0152 0.0153 0.0152 0.0152 0.0153 0.0153 0.0153
•	Diag	hragma Butta		Internal Ballo on Beam Tubes, etc			:	Tota	1 :	Veight
	Total	: [Init :	Total	:	Unit	:	Total	:	Unit
	kg.	: :	kg,	kg.	: :	kg.	<u>:</u>	kg.	· - <u>:</u>	kg.
50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000	1,565 2,485 3,250 3,940 4,565 5,165 5,716	5 : 0. 0 : 0. 5 : 0. 5 : 0.	0318 : 0248 : 0217 : 0197 : 0183 : 0172 : 0163 : 0157 :	1,465 2,355 3,080 3,735 4,330 4,000 5,420 5,930		0.0297 0.0235 0.0205 0.0186 0.0173 0.0163 0.0155 0.0148	• • • • • • • • • • • • • • • • • • • •	9,900 19,960 30,660 42,100 53,995 66,620 79,465 93,035		0.1980 0.1996 0.2043 0.2105 0.2160 0.2230 0.2270 0.2326

Total and Unit Weight (per cubic meter) of Dead Load for a maximum velocity of 120 km/h. (33.3 m/sec.).

77 - 7	Enve	lope Diaphr.	Reinforcing Arma- ture				
Volume	Total kg.	Unit kg.	Total kg.	Unit kg.	Total kg.	Unit kg.	
50,000 100,000 150,000 200,000 350,000 350,000 400,000	9,900 :19,960 :30,660 :43,100 :53,995 :66,620 :79,465 :93,035	0.1980 0.1996 0.2042 0.2105 0.2160 0.2220 0.2270 0.2326	500 1,000 1,500 2,000 2,500 3,000 3,500 4,000	: 0.010 : 0.010 : 0.010 : 0.010 : 0.010 : 0.010	5,190 10,350 15,450 20,400 25,350 30,200 35,000 39,700	: 0.1038 : 0.1035 : 0.1030 : 0.1020 : 0.1014 : 0.1006 : 0.1000 : 0.0992	
	Stiffene	d Part e Bow	K	eels	Rudders		
	Total kg.	Unit kg.	Total kg.	Unit kg.	Total kg.	Unit. kg.	
50,000 100,000 150,000 200,000 250,000 350,000 400,000	1,260 : 2,520 : 3,780 : 5,045 : 6,305 : 7,560 : 8,820 : 10,090 :	0.0352 0.0353 0.0353 0.0353 0.0353 0.0353 0.0353	410 650 850 1,030 1,190 1,350 1,490 1,630	:0.00820 :0.00650 :0.00567 :0.00515 :0.00476 :0.00450 :0.00407	845 : 1,340 : 1,750 : 2,120 : 2,460 : 2,785 : 3,080 : 3,370 :	0.01690	

Total and Unit Weight (per cubic meter) of Dead Load for a Maximum Velocity of 120 km/h. (33.3 m/sec.)

	Engin	Set	: :			rts of Plant	:	Cabi and Pas		ontrol gers.	
Volume cu.m.	Total kg.	:	Unit kg.	:	Totaī kg.	:	Unit kg.	: 9	Total kg.	:	Unit lig.
50,000 : 100,000 : 150,000 : 200,000 : 350,000 : 350,000 : 400,000 : 400,000	8,740 11,440 13,890 16,100 18,200 20,120 23,000	: :	0.1102 0.0874 0.0763 0.0694 0.0666 0.0575 0.0550		725 1,150 1,505 1,325 2,120 2,390 2,650 2,890	:	0.0145 0.0115 0.0100 0.0091 0.0084 0.0079 0.0076 0.C072		650 1,300 1,950 2,600 3,250 3,900 4,550 5,200		0.013 0.013 0.013 0.013 0.013 0.013 0.013
	Total kg.	:	Unit kg.	:	Total	:	Unit kg.	: : :			
50,000 100,000 150,000 200,000 250,000 300,000 350,000	500 1,000 1,500 2,000 2,500 3,000 3,500 4,000		0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	: : :	25,490 48,010 70,385 93,000 115,770 139,005 162,175 185,915		0.510 0.480 0.469 0.465 0.463 0.463 0.464 0.465	:			

From Figs. 1 and 2 it follows that the unit weight of the envelope increases with the increase of cubature owing to the fabric of the external reinforcing part, and that, increasing the cubature up to about 200,000 m., there is an appreciable gain in the unit weight of the dead load, although this cubature gives a slightly diminished unit weight and reaches a minimum between 250,000 and 300,000 cubic meters.

Number of Passengers for a Given Flight.

As we have said, by dead load we mean the whole of the essential parts of the structure; then, according to the duration and object of the journey, must be taken on board navigating instruments, the crew, the passengers, cabins, foodstuffs, baggage, tanks for ballast and fuel, etc.; in short, all that constitutes the load to be carried and which, varying from time to time, forms, together with the dead load, the fixed load.

As a first approximation, we may take the weight (in kg.). of the load which can be carried as follows:

Gangway = 12 V 1/3

Wireless Set = 200 kg.

Generating Set and Electric
Lighting = 6.5 V 1/3

Engine Spare Parts and Tools . . . = 0.1 (No. of HP)

Tanks for fuel and liquid ballast = 7% of the liquid contained therein if not under pressure; 10% if under pressure.

Cabins and furniture for crew and passengers

= 25 kg, per person.

Minimum Crew:

- 1 First Commander.
- 1 Second Commander.
- 1 Chief Pilot.
- 2 Pilots (Steersmen).
- 2 " (for elevator).
- 1 Head Driver.

 $\frac{\text{Power HP}}{500}$ = Number of drivers (1 for each 500 HP).

- 2 Wireless Operators.
- 4 Mechanics and Riggers.
- Baggage per person (crew and passengers) each . . 25 kg.
- Food and water per person for 24 hours 3 kg.

We will now suppose that a distance of 5,000 km. is to be covered in calm weather, at a cruising speed of 95 km/h. at half power (53 hours' sailing) and we wish to know how many passengers can be carried for the different cubatures. We will take:

- 1.100 kg. the lifting force of the gas per cubic meter.
- 0.250 " hourly consumption of fuel per HP.
- 0.050 " liquid ballast available per l cubic meter of grante total weight per passenger carried will be:

Passenge	r.		•	٠	•	•	•	•	•	•	•	75	kg.
Cabin .		• • •		•	•	•	•	•	•	•	•	25	tt
Baggage			•	•		•				•		25	ŧŧ
Food for	two	days	•	٠	•	•	•			•	•	6	tt
1			T(ota	a1							131	11

The following Table gives the weight of the various parts of the useful load and fuel, and the number of passengers which can be carried.

Weight of Fuel, of the Various Parts of Possible Load and Number of Passengers.

Volume	:Lifting : Foice : : : : : : : : : : : : : : : : : : :	Load	: i :Ballast : : : : : kg.	Fuel: for 53 ht Ga Flight: at half: power: kg.	angway kg.	: Wireless : Set : : : : kg.
50,000 100,000 150,000 200,000 350,000 350,000 400,000	: 55,000 : 110,000 : 165,000 : 220,000 : 275,000 : 330,000 : 385,000	25,490 43,010 70,380 93,000 115,770 129,000 162,170 185,910	: 2,500 : 5,000 : 7,500 : 10,000 : 12,500 : 15,000 : 17,500 : 20,000 : : : : Tanks :for Bal-	: 19,200 : 30,500 : 59,900 : 48,350 : 56,120 : 70,250 : 76,650 : :	440 560 640 700 760 800 850 890	: 200 : 200 : 200 : 200 : 200 : 200 : 200
	kg.	Parts kg.	:last & : Fuel : : kg.	Number	Cre	Weight kg.
50,000 100,000 150,000 200,000 350,000 350,000 400,000	240 300 350 380 410 440 460 480	290 460 600 730 850 950 1060	: 1,520 : 2,480 : 3,320 : 4,080 : 4,800 : 5,490 : 6,140 : 6,770	20 23 26 29 31 33 35 37	:	1,500 1,730 1,950 2,180 2,320 2,480 2,630 2,770

Weight of Fuel of the Various Parts of Possible Load and Number of Passengers.

Volume	Cabin kg.	Baggage kg.	Food for Crew for 2 Days. kg.	Total Weight	Remaining Lifting Force kg.
50,000 100,000 150,000 200,000 350,000 350,000 400,000	500 580 650 730 780 830 830 830 930	500 580 650 730 760 830 880 930	120 140 160 180 190 200 210 220	52,500 90,540 126,300 161,260 195,480 229,630 263,230 296,910 g h t o f	3,500 19,460 38,700 58,740 79,520 100,370 121,770 143,090
	:Passen- : gers :	Passen- gers		Baggage kg.	Foodstuffs kg.
50,000 100,000 150,000 200,000 250,000 350,000 400,000	: 19 : 148 : 295 : 448 : 607 : 766 : 930 :1,092	1,420 11,100 22,150 33,630 45,540 57,470 69,730 81,930	480 3,730 7,390 11,210 15,170 19,150 23,230 27,300	480 3,730 7,390 11,210 15,170 19,150 23,230 27,300	: 120 : 900 : 1,770 : 2,690 : 3,640 : 4,600 : 5,580 : 6,560

The following table is made up from the preceding.

Volume	; ; ; pe	Volume of Gas er passenger cu.m.	* * * * * * * * * * * * * * * * * * * *	Weight of Fuel per passeng km, kg.	er/:	Number of Passengers per 1000 cu.m.
50,000		3 ,6 3 0	:	0.2020	:	0.38
100,000	:	676	:	0.0412	:	1.48
150,000	:	508	:	0.0270	:	1.97
200,000	.:	446	:	0.0216	:	2.24
250,000	:	412	:	0.0186	:	2.43
300,000	:	392	:	0.0166	;	2.55
350,000	:	376	:	0.0152	:	2.66
400,000	:	366	:	0.0140	:	2.73
	•	·	:		:	

From Fig. 3, we see that for a given length of flight, there is much advantage in increasing the cubature, both on account of the greater number of passengers per unit volume, which means a smaller cubature per passenger, and also on account of the smaller weight of fuel per passenger, which means a lower rate of transport. In the case considered of a trip of 5,000 km., there is an appreciable advantage in increasing the cubature up to 200,000 cubic meters, as was already stated for the unit weight of the dead load, but beyond that cubature the advantage is smaller.

Translated by Paris Office, M.A.C.A.

Total weight of envelope in kg.

