

Lecture 0

Introduction to Electronic Devices

Prepared By:
Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: chadman000E@amail com

Outline

- Logistical information
 - Instructor Information
 - Administrative Details
 - Marks Distribution
 - How to get an A/A+ in CSE251?
 - How to get an A/A+ pass in CSE251?
 - Course Outline
 - Course Outcome (COs)

- Introduction
 - Abstraction Levels
 - Historical Perspective
 - Vacuum Tubes
 - Computer Systems with BJTs (60s)
 - Computer Systems with MOSFET (60s)
 - Moore's Law
 - Some Future Outlook

Instructor information

- Shadman Shahid [HAD]
- Seat No. 4N159:

- Consultation: **SUNDAY – 11 AM to 2 PM**

MONDAY / THURSDAY -

11 AM to 2 PM

- Reachable via mail or discord:
 - Mail: ext.shadman.shahid@bracu.ac.bd
 - Discord: shadman<dot>shahid
- Research Interest:
 - Photonics in computational devices

Administrative Details

- Course Discord: Will be updated soon.
- Course Drive folder: CSE251-Spring24-HAD
 - Course Handout Syllabus, Grading Policy.
 - Course Calendar
 - Homework Assignments
 - <u>Past Exams</u> and <u>Practice Problems</u>
 - Class Notes
 - Recorded Lectures

Marks Distribution

Assessment	Percentage	Total number of assessments	Number of assessment to be graded
Attendance	8%	-	-
Assignment	12%	5	Best N-1
Quiz			Best N-1
Midterm	20%	1	1
Final	20%	1	1
Lab	25%	-	-

^{*}I will take pop quizzes every now and then at the end or beginning of a class to be added as 2% bonus mark or as a "separate assignment".

Percentage of Classes Attended	Marks
above 70	8
65-69	7.5
60-64	7
55-59	6.5
50-54	6
45-49	5
40-44	4
below 40	0

PS: Bonus will **only be added** to <u>Assignment and Quiz marks</u>. If you obtain the designated **27%** in quiz and assignments, the bonus will not be added to other areas.

Quiz Schedule

Exam	Time	Date	Syllabus*
Quiz 1	3rd Week	5 February	Lecture 1-4
Quiz 2	5th Week	19 February	Lecture 5-8
Quiz 3	7th Week	4 March	Lecture 9-10
Midterm	8th Week	8 March	Lecture 1-11
Quiz 4	10th Week	27 March	Lecture 13-16
Quiz 5	14th Week	22 April	Lecture 17- 19
Final	15th Week	May 02, 2024	Lecture 13-22

How to get an A/A+ in CSE251?

Time Management: Allocate 10 hrs/wk of <u>regularly scheduled times</u> in the week outside of class for CSE251:

- 30 min for **reading** of textbook / slides **before** each class
- 30 min for **studying** online notes **before** each class
- 30 min for **studying** these notes **between** classes
- 75 min for practicing problems (Check the practice sheet and previous questions).
- 4-5 hrs/wk for HWs / Assignments.
- In a semester, all lectures total only 30 hrs, which is less than 1 week at a job! It's up to you to put in the time to learn
- Get a 1" binder (organize lecture notes/HWs/exams)
- Start assignments early. Do all problems by yourself first. If you get stuck, form study groups to work on problems together but ALWAYS write-up and submit YOUR OWN solutions. Do not blindly copy.
- Ask questions and come to office hrs if you get stuck. Don't let confusion snowball.

How to get an A/A+ in CSE251?

- *Practice doing problems.* Get comfortable with the math manipulations and associated physical meaning, and you will find exam problems to be easier
 - HW problems
 - Example problems worked in lecture and online class notes
 - Old exam problems
 - Office hours
- Review your prerequisites.
 - Node analysis, Mesh Analysis, Circuit solving techniques! CSE250
- Come to class!!
 - HW & Participation are a significant part of your grade
 - I will discuss topics to be emphasized on exams and give hints about how to approach the more difficult homework problems

How to get an A/A+ pass in CSE251?

Attendance + Assignments + Quiz + Lab:

$$8\% + 12\% + 25\% + 15\% = 60\%$$

- Suppose, you attend all the classes. Get 83% in Assignments, 83% in Lab, 75% in Quiz. So, you will get:

$$8 + 10 + 21 + 11.25 = 50.25\%$$
 !!

- Try to do well in these continuous assessments and your road to passing CSE251 will be much easier.

Come to class!!

- HW & Participation are a significant part of your grade
- I will discuss topics to be emphasized on exams and give hints about how to approach the more difficult homework problems

How to approach CSE251?

Write down important information. (See)

Visualize - Draw - doodle - interact (Imagine)

Think and solve. (Act)

First Day Survey

Course outline

Basically, study **four types** of devices. (Application centric usage) ${}^{5}V$

OP-AMP

Diodes

-

MOSFET

• BJT

Application: Amplification and Switching

Course Outcome

CO₁

Understand and compare the **characteristics** and **operation** of electronic devices

CO2

Analyze electronic circuits made from these devices

CO3

<u>Design various electronic</u> <u>circuits</u> for power-generation and analog signal-processing applications.

A list of applications (non-exhaustive)

Switching

- Rectifiers
- Analog-to-digital (ADC)
- Digital-to-analog conversion (DAC)
- Arithmetic operations on analog Signals, e.g, summing, subtracting, exponentiation and generating voltage waveforms of different shapes.

Amplification

- Regulators
- Small-signal Amplifiers

Abstraction Levels

Logic gates -> Electronic Devices

Electronic Devices:

- 1. Transistors (BJT/MOSFET/ JFET/FinFET)
- 2. Diodes

Amplification and **Switching**

MOSFET realization of a NOT gate.

Historical Perspective

Mechanical gears

(1822 - <u>Difference Engine</u>, Analytical Engine)

Has it always been like this?

Electrical switches and mechanical relays

• Eras of Computer evolution:

(1944 - <u>Harvard Mark 1</u>)

1. Gen 1: Mechanical to Vacuum Tubes (17th -1940s):

2. Gen 2: Transistors (BJT) (1950s): Short-lived

(1951 - 1959)

Switchover to *transistors* from

vacuum Tubes

3. Gen 3: Integrated Circuitry (1960s - Present)

VLSI

<u>Microcomputers</u> -> Laptops, Smartphones

WWI: 1914 - 1918 WWII: 1939 - 1945

History of Computers (uah.edu)

Vacuum Tubes (1946 - ENIAC)

Electron Flow ON

Electron Flow OFF

Small changes in *Grid* voltage translate to large voltages at the Anode

Thermionic <u>Tri</u>ode AMPLIFICATION

Computer Systems / Processors with BJT (60s)

Computer System	Year
IBM System/360	1964
DEC PDP Series	1960 (PDP-1), 1965 (PDP-8), 1970 (PDP-11)
Control Data Corporation 6600	1964
IBM System/370	1970
Cray-1	1976

IBM System/360 hybrid
BJT circuit

Computer Systems / Processors with MOSFET (70s - Present)

(Red: Feature size)

Moore's Law

The number of transistors in a microchip doubles every two years

122 YEARS OF MOORE'S LAW

Current scenario and the future

- Ongoing chip shortage!
- Two type of companies:
 - Fabless design companies: AMD
 Apple etc.
 - 2. Foundries: IntelTSMCSamsungGlobal Foundries

Moore's Law is approaching an end. Possible alternatives for the future:

- 1. Spintronics
- 2. Photonics
- 3. Nano-electronics (Quantum)

An Integrated Circuit Layout of a Processor

List of resources used in this slide

- History of Computers
- More about Vacuum Tubes Veritasium YouTube
- More information about Semiconductor chip industry
- Moore's Law

Thank You