Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 1 A Lösungshinweise

Aufgabe 1: Es seien A, B, C Aussagen. Die Aussagen $A \Leftrightarrow B$ und $A \Leftrightarrow C$ seien wahr, $B \wedge C$ sei falsch. Bestimmen Sie die Wahrheitswerte von A, B und C mithilfe einer Wahrheitstafel.

Lösung: Mithilfe einer Wahrheitstafel "spielen" wir alle möglichen Situationen durch:

w(A)	w(B)	w(C)	$w(A \Leftrightarrow B)$	$w(A \Leftrightarrow C)$	$w(B \wedge C)$
1	1	1	1	1	1
1	1	0	1	0	0
1	0	1	0	1	0
1	0	0	0	0	0
0	1	1	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
0	0	0	1	1	0

Die vorgegebenen Wahrheitswerte $w(A \Leftrightarrow B) = 1$ und $w(A \Leftrightarrow C) = 1$ und $w(B \land C) = 0$ treten einzig in der letzten Situation auf. Es gilt also w(A) = w(B) = w(C) = 0.

Tatsächlich kann man dies auch direkter einsehen. Ist nämlich $B \wedge C$ falsch, muss mindestens eine der beiden Aussagen B und C falsch sein.

Nehmen wir zunächst an, C wäre wahr und B wäre falsch. Dann muss, weil $A \Leftrightarrow B$ wahr ist, auch A falsch sein, was wiederum wegen $A \Leftrightarrow C$ erzwingen würde, dass C falsch ist – ein Widerspruch! Dieser Fall tritt somit nicht ein.

Nehmen wir an, dass C falsch und B wahr wäre, dann muss, weil $A \Leftrightarrow B$ wahr ist, auch A wahr sein, was wiederum wegen $A \Leftrightarrow C$ erzwingen würde, dass C wahr ist. Auch in diesem Fall ergibt sich also ein Widerspruch!

Es bleibt also nur der Fall, dass alle drei Aussagen falsch sind, was zu zeigen war.

Aufgabe 2: Es seien X und Y beliebige Mengen. Zeigen Sie:

$$X \cap Y = X \cup Y \quad \Leftrightarrow \quad X = Y.$$

Lösung:

 \Rightarrow : Es sei $X \cap Y = X \cup Y$. Wir müssen zeigen, dass X = Y, also $X \subseteq Y$ und $Y \subseteq X$. Die Inklusion $X \subseteq Y$ sieht man wie folgt:

$$X \subseteq X \cup Y = X \cap Y \subseteq Y$$
.

Die umgekehrte Inklusion folgt genauso durch Vertauschen von X und Y.

 \leq : Es sei X = Y. Dann gilt

$$X \cap Y = X \cap X = X = X \cup X = X \cup Y.$$

Aufgabe 3: Es seien $X \neq \emptyset$ eine beliebige Menge und

$$S_1 = \{\{\emptyset\}, \{X\}, X\}, \quad S_2 = X, \quad S_3 = \{X\}, \quad S_4 = \{X, \{X\}\},$$

 $S_5 = \emptyset, \quad S_6 = \{\emptyset\}, \quad S_7 = \{\{\emptyset\}\}, \quad S_8 = \{\emptyset, \{\emptyset\}\}.$

- (a) Welche der Mengen S_1, \ldots, S_8 ist Element in einer der Mengen S_1, \ldots, S_8 ?
- (b) Welche der Mengen S_1, \ldots, S_8 ist Teilmenge von einer der Mengen S_1, \ldots, S_8 ?

Lösung:

(a)
$$S_2 \in S_1, S_3, S_4,$$

 $S_3 \in S_1, S_4,$
 $S_5 \in S_6, S_8,$
 $S_6 \in S_1, S_7, S_8.$
(b) $S_3 \subseteq S_1, S_4,$
 $S_4 \subseteq S_1,$
 $S_5 \subseteq S_1, \dots, S_8,$
 $S_6 \subseteq S_8,$
 $S_7 \subseteq S_1, S_8.$

Aufgabe 4: Es seien X, Y, Z beliebige Mengen. Beweisen oder widerlegen Sie die folgenden Aussagen.

(a)
$$X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$$

(b)
$$(X \cup Y) \setminus Z = X \cup (Y \setminus Z)$$

(c)
$$(X \setminus Y) \cup Y = X$$

(d)
$$X \times (Y \cap Z) = (X \times Y) \cap (X \times Z)$$

Lösung:

(a) Diese Aussage ist richtig. Wir veranschaulichen die Situation zunächst mit dem folgenden Venn-Diagramm:

Den Beweis der Aussage führt man wie folgt:

$$x \in X \setminus (Y \cap Z)$$

$$\Leftrightarrow x \in X \land x \not\in (Y \cap Z)$$

$$\Leftrightarrow x \in X \land ((x \not\in Y \lor x \not\in Z))$$

$$\Leftrightarrow (x \in X \land x \not\in Y) \lor (x \in X \land x \not\in Z)$$

$$\Leftrightarrow (x \in X \setminus Y) \lor (x \in X \setminus Z)$$

$$\Leftrightarrow x \in (X \setminus Y) \cup (X \setminus Z)$$

(b) Diese Aussage ist im Allgemeinen falsch. Wir veranschaulichen die Situation mit den folgenden Venn-Diagrammen:

Als konkretes Gegenbeispiel wählt man

$$X = \{1\}, \qquad Y = \{1, 2\} \qquad \text{und} \qquad Z = \{1, 2, 3\}.$$

Tatsächlich gilt in diesem Fall

$$(X \cup Y) \setminus Z = (\{1\} \cup \{1,2\}) \setminus \{1,2,3\} = \{1,2\} \setminus \{1,2,3\} = \emptyset,$$

während

$$X \cup (Y \setminus Z) = \{1\} \cup \left(\{1,2\} \setminus \{1,2,3\}\right) = \{1\} \cup \emptyset = \{1\}.$$

(c) Diese Aussage ist falsch, falls Y keine Teilmenge von X ist. Betrachte hierzu $X = \{1\}$ und $Y = \{1, 2\}$. Dann gilt

$$(X - Y) \cup Y = (\{1\} \setminus \{1, 2\}) \cup \{1, 2\} = \emptyset \cup \{1, 2\} = \{1, 2\} \neq X.$$

(d) Diese Aussage ist richtig. Ist $(a,b) \in X \times (Y \cap Z)$, so ist $b \in Y$ und $b \in Z$ und damit $(a,b) \in X \times Y$ und $(a,b) \in X \times Z$. Ist umgekehrt $(a,b) \in (X \times Y) \cap (X \times Z)$, so gilt einerseits $(a,b) \in X \times Y$, sodass $b \in Y$, und andererseits $(a,b) \in X \times Z$, sodass $b \in Z$. Es folgt also $b \in Y \cap Z$ und damit $(a,b) \in X \times (Y \cap Z)$.

Aufgabe 5: Negieren Sie die folgenden Aussagen.

- (a) Der Hausmeister schließt den Hörsaal auf.
- (b) Der Professor spricht oder er schreibt an die Tafel.

- (c) Keine Aufgabe ist zu schwer.
- (d) Ingenieure sind fleißig und unterbezahlt.
- (e) Alle Studierenden besuchen jedes Semester genau eine Vorlesung.

Lösung:

- (a) Der Hausmeister schließt den Hörsaal nicht auf.
- (b) Der Professor spricht nicht und er schreibt nicht an die Tafel.
- (c) Es gibt (mindestens) eine Aufgabe, die zu schwer ist.
- (d) Es gibt einen Ingenieur, der nicht fleißig oder nicht unterbezahlt ist.
- (e) Es gibt einen Studierenden, der in einem Semester keine oder mindestens zwei Vorlesungen besucht hat.