*Integrais de Superfície

Definida a parametrização de superfícies, vamos entender como funcionam as integrais de uma função sobre uma su Seja S uma superfície suave parametrizada por

em que $D \subseteq R^2$ e f(x, y, z) é uma função escalar definida e contínua num domínio em R^3 contendo S. A integral de supe em que

Exemplo 1 Calcule a integral de superfície $s(x+y^2)dS$, em que S é o cilindro $x^2+y^2=4, 0 \le z \le 3$.a Solução U Assim, os vetores tangentes são $r_u=(-2\sin u, 2\cos u, 0), r_v=(0,0,1)$, tal que o $r_u\times r_v=(2\cos u, 2\sin u, 0)$ e $||r_u\times r_v||$

Estando trabalhando com superfícies, é necessário lidar com a questão da orientação dela. No entanto, por questões