TP5-6 - Entrées/sorties ; interruptions

1. Comptage d'événements en scrutant une entrée

Écrire un programme qui ne termine jamais ; à chaque itération il vérifie si sw[0] est passé de 0 à 1 ; si c'est le cas il incrémente la valeur de la case mémoire d'adresse 0x100 et l'affiche sur les leds

2. Comptage d'événements par interruption

- Écrire un programme qui ne termine jamais ; à chaque itération il lit la valeur de la case mémoire d'adresse 0x100 et l'affiche sur les leds
- Ajouter à ce programme un sous-programme d'interruption, qui incrémente le contenu de la case mémoire 0x100 à chaque occurrence d'une interruption sur IT

3. Buffer d'entrée

- Écrire des sous-programmes gérant un buffer (file) de mots de 32 bits. On doit pouvoir connaître sa taille, ajouter un mot, retirer un mot
- Écrire un sous-programme d'interruption qui, à chaque occurrence de IT, ajoute la valeur de sw [15..0] au buffer
- Écrire un programme qui ne termine jamais et qui attend une centaine de cycles entre chaque itération ; il affiche sur les leds le cumul de toutes les valeurs qui ont été introduites dans le buffer

4. Commutation de tâches

Modifier le code suivant pour qu'il permette d'exécuter les deux programmes prog0 et prog0 en alternance, le changement ayant lieu à chaque appui sur IT. A la commutation, l'état du programme interrompu sera sauvegardé dans sa propre pile.

```
// tâche 0 = comptage sur ld[3...0]; tâche 1 = comptage sur ld[7...4]
// À chaque appui sur IT, changement de tâche
               0xb0000000
STACK0
               0x100
STACK1
               0x200
               start
         .org 1
it:
         // ...
         reti
         // initialisation contexte tâche 1
start:
         setq STACK1, %sp
         // ...
         // démarrage sur la tâche 0
         setq STACKO, %sp
         ba prog0
// tâche 0
```