Module Math

The Math module contains module methods for basic trigonometric and transcendental functions. See class Float on page 528 for a list of constants that define Ruby's floating-point accuracy.

Module constants

- E An approximation of e (base of natural logarithms)
- PI An approximation of π

Module methods

acos		Math.acos(x) \rightarrow float
	Computes the arc cosine of x. Returns 0π .	
acosh		$Math.acosh(x) \rightarrow float$
	Computes the inverse hyperbolic cosine of x .	
asin		Math.asin(x) \rightarrow float
	Computes the arc sine of <i>x</i> . Returns $-\frac{\pi}{2} \frac{\pi}{2}$.	
asinh		Math.asinh(x) \rightarrow float
	Computes the inverse hyperbolic sine of x .	
atan	_	Math.atan(x) \rightarrow float
	Computes the arc tangent of <i>x</i> . Returns $-\frac{\pi}{2} \frac{\pi}{2}$.	
atanh		Math.atanh(x) \rightarrow float
	Computes the inverse hyperbolic tangent of x .	
atan2		Math.atan2(y , x) \rightarrow float
	Computes the arc tangent given y and x . Returns $-\pi\pi$.	
cbrt		Math.cbrt($numeric$) $\rightarrow float$
1.9	Returns the cube root of <i>numeric</i> .	
cos		$Math.cos(x) \rightarrow float$
	Computes the cosine of x (expressed in radians). Returns -1	1.
cosh		$Math.cosh(x) \rightarrow float$
	Computes the hyperbolic cosine of x (expressed in radians).	

erf Math.erf(x) \rightarrow float

Returns the error function of x.

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

erfc Math.erfc(x) \rightarrow *float*

Returns the complementary error function of x.

$$erfc(x) = 1 - \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

exp Math.exp(x) \rightarrow float

Returns e^x .

frexp Math.frexp(numeric) \rightarrow [fraction, exponent]

Returns a two-element array containing the normalized fraction (a Float) and exponent (a Fixnum) of *numeric*.

fraction, exponent = Math.frexp(1234) # => [0.6025390625, 11] fraction * 2**exponent # => 1234.0

gamma Math.gamma(x) \rightarrow *float*

1.9 Returns the gamma function Γx . For integral x, the Γx approximates factorial(x-1).

Math.gamma(2) # => 1.0 Math.gamma(3) # => 2.0 Math.gamma(4) # => 6.0 Math.gamma(10.34) # => 784993.609149316

hypot Math.hypot(x, y) \rightarrow float Returns $\sqrt{x^2 + y^2}$, the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4) # => 5.0

1.9

Idexp Math.ldexp(float, integer) $\rightarrow float$

Returns the value of $float \times 2^{integer}$.

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent) # => 1234.0

Igamma Math.lgamma(x) \rightarrow [float, sign

The first element of the returned array is the natural logarithm of the absolute value of the gamma function of x. The second value is -1 is the gamma function returned a negative number, +1 otherwise.

	Mall () A	
log	$Math.log(numeric) \rightarrow float$	
	Returns the natural logarithm of <i>numeric</i> .	
log10	Math.log10($numeric$) $\rightarrow float$	
	Returns the base 10 logarithm of <i>numeric</i> .	
log2	Math.log2($numeric$) $\rightarrow float$	
1.9	Returns the base 2 logarithm of <i>numeric</i> .	
sin	Math.sin($numeric$) $\rightarrow float$	
	Computes the sine of <i>numeric</i> (expressed in radians). Returns -11 .	
sinh	Math.sinh($float$) $\rightarrow float$	
	Computes the hyperbolic sine of <i>numeric</i> (expressed in radians).	
sqrt	$Math.sqrt(\mathit{float}) \rightarrow \mathit{float}$	
	Returns the non-negative square root of <i>numeric</i> . Raises ArgError if <i>numeric</i> is less than zero.	
tan	$Math.tan(\mathit{float}) \to \mathit{float}$	
	Returns the tangent of <i>numeric</i> (expressed in radians).	
tanh	Math.tanh($float$) $\rightarrow float$	
	Computes the hyperbolic tangent of <i>numeric</i> (expressed in radians).	