Отчет

по лабораторной работе №6 «Работа с системои компьютернои верстки $\text{Т}_{\text{E}}\!X$ »

по дисциплине «Информатика»

Вариант №86

Выполнил: Кокорин Всеволод Вячеславович, группа Р3118 Преподаватель: Рыбаков Степан Дмитриевич

Содержание

1 Задание 1

б)
$$T = AL\sqrt{\frac{p}{E}}$$
 в) $T = \frac{AE}{p}\sqrt{\frac{L}{|\vec{g}|}}$

(Здесь А - безразмерная постоянная, g - ускорения свободного падения.)Ответ объясните.

- 6. Ускорение свободного падения на полюсе Земли равно 9.83 м/c. Радиус Земли $6.36 * 10^6 \text{ м}$. На какой высоте над полюсом ускорение равно $9.78 \text{ м/}c^2$?
- 7. Допишите следующие ядерные реакции:

а)
$$n \to p + ...;$$
 б) $p \to n + ...;$ в) $p + _{-1}e \to ...;$ г) $_{-1}e + _{+1}e \to ...;$ д) $_{1}^{2}H + \gamma \to x + n;$ е) $_{79}^{197}Au + n \to x + \gamma;$ 8. Кубики с массами m, 2m и m соединены длинной гибкой нитью, перекинутой через блоки (рис. 3). Массы блоков и нити пренебрежимо малы. Трение в блоках отсутствует. Кубик массой 2m отпускают. а) Какова будет скорость этого кубика, когда он опустится на 0,5 м? б) Каково положение равновесия системы?

Длина тонкого металлического провода с тяжелым шариком на конце равна 2,0 м. Провод может двигаться в вертикальной плоскости перпендикулярно магнитному полю; начальное положение провода - горизонтальное (положение ОА на рисунке 6). Индукция магнитного поля $|\vec{B}| = 0,25$ мГ. Какова разность потенциалов между концами провода в тот момент, когда он проходит положение ОС?

Задачи присланы М. Ахти. Перевод и подготовка к публикации 3. Абарбанеля

Ответы, указания, решения

Анализ помогает алгебре.

_					
1.	a > 216	1	4a	a < 0	1
	a = 216	2		0 <= a < e	0
	88 < a < 216	3		a = e	1
	a = 88	4		a > e	2
	a < 88	5			
2.	a < 0	0	46	a < -189	0
	a = 0	1		a = -189 - 189 < a < -64	1
	$0 < a < \frac{4}{e^2}$	3		a = -64	2
	$\frac{1}{4}e^2$	2		-64 < a < 0	3
	$a = \frac{\tau}{\sqrt{3}}$	1		a = 0	4
	4			a > 0	3
	$\begin{vmatrix} a = \frac{4}{e^2} \\ a > \frac{4}{e^2} \end{vmatrix}$				2
3.	$a \le 0$	0	4в	a < 0	1
	$0 < a < \frac{1}{e^c}$	3		0 <= a < e	0
	1 ee	1		a = e	1
	$\begin{vmatrix} \frac{1}{e^c} <= a < 1 \\ a = 1 \end{vmatrix}$	0		a > e	2
	a = 1	2			
	$1 < a < e^{\frac{1}{c}}$	1			
	$a = e^{\frac{1}{\epsilon}}$	0			
	$a > e^{\frac{1}{\epsilon}}$				
			11	1	

