Résolution du Problème de Flot Maximum avec Gurobi

Bahri Mouhib, Ayadi Roua, Mahjoub Refka, Ben Rhouma Maram, Ghouma Maram, Jouini Nour Elhak

14 mai 2025

Introduction

Ce projet vise à modéliser et résoudre le problème de flot maximum dans un graphe orienté à l'aide du solveur **Gurobi**, et à le rendre accessible via une interface web développée avec Streamlit. L'utilisateur peut saisir ses données, lancer la résolution, visualiser le graphe et télécharger un rapport.

1 Modélisation Mathématique

Données

- c_{ij} : Capacité maximale de l'arc $(i,j) \in E$.
- s: Nœud source.
- -t: Nœud puits.

Variables de décision

 $x_{ij} = \text{flot envoy\'e à travers l'arc } (i, j)$

Fonction objectif

$$\max \sum_{(i,t)\in E} x_{it}$$

Contraintes

Capacité: $0 \le x_{ij} \le c_{ij} \quad \forall (i,j) \in E$

Conservation du flot : $\sum_{i \in V} x_{is} = \sum_{i \in V} x_{sj} \quad \forall s \in V \setminus \{s, t\}$

2 Technologies Utilisées

- **Python**: Langage principal.
- Gurobi : Solveur d'optimisation linéaire.
- **NetworkX** : Modélisation du graphe.
- **Matplotlib** : Visualisation graphique.
- Streamlit : Création d'une interface utilisateur web simple.

3 Guide d'Utilisation

1. Lancer l'application avec la commande :

streamlit run app.py

- 2. Dans le navigateur :
 - Entrer la liste des nœuds (ex : A,B,C,D)
 - Sélectionner le nœud source et le nœud puits
 - Saisir les arcs avec leurs capacités (ex : A,B,10)
- 3. Cliquer sur "Résoudre le problème"
- 4. Le résultat s'affiche avec :
 - Le flot maximal
 - La quantité de flot sur chaque arc
 - Une visualisation graphique avec les arcs saturés colorés en rouge

4 Résultats et Visualisation

Graphe du flot maximum (arcs saturés en rouge) $\begin{array}{c}
Z_{\cdot 0/2,0} \\
Z_{\cdot 0/2,0}
\end{array}$

FIGURE 1 – Exemple de visualisation du graphe de flot maximum.

Conclusion

Cette application fournit une solution complète pour le problème de flot maximum, combinant puissance algorithmique et accessibilité. Elle peut facilement être adaptée à

d'autres problèmes de graphes ou généralisée pour intégrer des fonctions de coûts.