All chemical reactions are affected by thermal fluctuations and are stochastic

$$A + B \longrightarrow C$$

- 1. Reactants diffuse to find each other in solution
- 2. They must overcome the energy barrier of the reaction

Both events are randomly affected by thermal fluctuations: collisions with other molecules.

#### How should we quantify stochasticity?



Noise is often defined as the coefficient of variation, which is the typical size of a fluctuation relative to the mean:

$$noise = \frac{standard\ deviation}{mean}$$

### Stochasticity is more substantial at low numbers. Why?



Why is stochasticity only substantial when typical numbers of molecules are low?

As a reaction only increases or decreases the number of molecules by one or two, it is only when numbers of molecules are small that stochasticity – the random timing of individual reactions – matters.

Stochasticity can be exploited: persister cells enable a population to be both invasive and tolerant to drugs

Planktonic cells

Biofilm cells

Mucosal surface

Mucosal surface

Antibiotic treatment cells

persister is less than 10-5 for *E. coli*Repopulation of biofilm

Lewis, Nat Rev Microbiol 1977

Stochasticity affects the reliability of biochemical networks by affecting timing and is therefore regulated away

e.g. biological rhythms



Elowitz & Leibler, Nature 2000 Barkai & Leibler, Nature 2000 Translation can occur in bursts

### Probing Gene Expression in Live Cells, One Protein Molecule at a Time

Ji Yu,<sup>1\*</sup> Jie Xiao,<sup>1\*</sup> Xiaojia Ren,<sup>1</sup> Kaiqin Lao,<sup>2</sup> X. Sunney Xie<sup>1</sup>†

Following expression of a fluorescent membrane protein in bacteria over time.



Occasionally, one mRNA is transcribed.



Bursts of translated protein.



Yu et al., Science (2006)

Transcription can occur in bursts

# Real-Time Kinetics of Gene Activity in Individual Bacteria

Ido Golding, <sup>1,\*</sup> Johan Paulsson, <sup>2,3</sup> Scott M. Zawilski, <sup>1</sup> and Edward C. Cox <sup>1,\*</sup> Cell 123, 1025–1036, December 16, 2005



Red: protein Green spots: mRNA

scale bar: I µm

### Time course of mRNA numbers: mRNA is produced in bursts



## The most common model of gene expression can have both bursts in transcription and translation



Kaern et al., Nat Rev Genetics 2005

### To perform stochastic simulations, we typically use the Gillespie algorithm

Step 1: choose which reaction will occur

Step 2: choose when that reaction will occur

Example: a birth-death process with two reactions



probability of a reaction in time  $\delta t$ 

$$a_1\delta t=k\,\delta t$$
 propensity of reaction 1  $a_2\delta t=dA\,\delta t$  propensity of reaction 2

probability of no reaction

$$P_0(t+\delta t) = P_0(t) \Big[ 1 - (a_1 + a_2)\delta t \Big]$$
 hence  $P_0 \sim e^{-(a_1 + a_2)t}$ 

probability of a reaction  $\emph{i}$  at time  $\emph{t} + \emph{\delta} \emph{t}$ 

$$P_i(t)\delta t = P_0(t)a_i\delta t$$

Gillespie, J Phys Chem 1977