J'intefre

Lionel Porcheron

LE FORMULAIRE MPSI, MP

1 500 formules de mathématiques, physique et chimie

4º édition

DUNOD

LE FORMULAIRE MPSI, MP

www.biblio-scientifique.com

LE FORMULAIRE MPSI, MP

1 500 formules de mathématiques, physique et chimie

Lionel Porcheron

Ingénieur de l'ENSEEIHT à Toulouse

4e édition

DUNOD

www.biblio-scientifique.com

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

> les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© Dunod, Paris, 2000, 2003, 2004, 2008 ISBN 978-2-10-053787-7

DANGER

LE PHOTOCOPILLAGE TUE LE LIVRE

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

www.biblio-scientifique.com

Table des matières

A	vant-propos	Iλ
C	1	
1.	 Algèbre 1.1 Relations 1.2 Structures algébriques 1.3 Nombres entiers, nombres rationnels 1.4 Arithmétique dans ℤ 1.5 Polynômes et fractions rationnelles 1.6 Généralités sur les applications 1.7 Applications linéaires – Espaces vectoriels 1.8 Matrices – Déterminants – Systèmes linéaires 1.9 Espaces vectoriels euclidiens 1.10 Réduction des endomorphismes 	1 1 2 5 7 8 11 12 17 22 26
2.	Analyse 2.1 Espaces vectoriels normés 2.2 Nombres réels 2.3 Nombres complexes 2.4 Suites 2.5 Fonctions réelles de la variable réelle 2.6 Dérivation 2.7 Intégration 2.8 Équations différentielles 2.9 Séries 2.10 Séries entières 2.11 Suites et séries d'applications	27 27 31 32 34 35 38 41 44 47 51 52

/I	Table des matières
7 I	iable des illationes

	2.12 Séries de Fourier 2.13 Fonctions de plusieurs variables	57 58
3.	Géométrie 3.1 Courbes du plan 3.2 Propriétés métriques des courbes	59 59 64
CI	napitre 2 : Physique	65
0.	Éléments de mathématiques 0.1 Différentielles 0.2 Équations différentielles 0.3 Coniques	65 65 66 68
1.	Électronique 1.1 Lois générales 1.2 Régime variable 1.3 Montages avec amplificateur opérationnel	69 69 70 73
2.	Thermodynamique 2.1 Gaz parfait 2.2 Premier et second principes de la thermodynamique 2.3 Changements de phase d'un corps pur 2.4 Machines thermiques 2.5 Diffusion thermique 2.6 Rayonnement thermique	76 76 77 81 83 85 86
3.	Mécanique du point 3.1 Cinématique 3.2 Changement de référentiel 3.3 Lois générales de la mécanique 3.4 Oscillateurs 3.5 Mouvement d'une particule chargée 3.6 Systèmes de deux points matériels	88 88 90 91 95 98
4.	Mécanique du solide 4.1 Cinématique du solide 4.2 Théorèmes généraux de la dynamique 4.3 Contacts entre les solides	101 101 103 104
5.	Optique 5.1 Généralités 5.2 Optique géométrique 5.3 Interférences lumineuses 5.4 Interféromètre de Michelson 5.5 Autres dispositifs d'interférences 5.6 Diffraction des ondes lumineuses	105 105 106 109 112 115

www.biblio-scientifique.com			
Table des matières			
6.	Électromagnétisme	118	
	6.1 Électrostatique	118	
	6.2 Magnétostatique	121	
	6.3 Équations de Maxwell dans le vide	123	
	6.4 Conduction métallique6.5 Induction dans un circuit fixe avec B variable	125 126	
	6.6 Induction dans un circuit mobile soumis à B stationnaire	128	
	6.7 Matériaux magnétiques	129	
7.	Ondes	131	
	7.1 Oscillateurs couplés	131	
	7.2 Équation de d'Alembert - Ondes stationnaires	132 134	
	7.3 Ondes électromagnétiques dans le vide7.4 Dispersion – Absorption	134	
	7.5 Ondes électromagnétiques dans les milieux matériels	138	
C	hapitre 3 : Chimie	141	
	Atomistique	141	
1.	1.1 Spectroscopie	141	
	1.2 Modèle ondulatoire	142	
	1.3 Atome polyélectronique	143	
	1.4 Architecture moléculaire1.5 Orbitales moléculaires	145 147	
2	Cinétique	148	
3.	Cristallographie 3.1 Généralités	150 150	
	3.2 Mailles et sites dans les cristaux métalliques	150	
	3.3 Cristaux ioniques	152	
4.	Thermodynamique	153	
	4.1 Fonctions d'état	153	
	4.2 Potentiel chimique	154	
	4.3 Grandeurs standards de réaction4.4 Équilibres chimiques	155 157	
	4.5 Équilibres liquide–vapeur	160	
•	4.6 Réactions d'oxydoréduction	163	

165 165

166

168 170

173

 $\ \odot$ Dunod. La photocopie non autorisée est un délit.

5. Matériaux métalliques5.1 Diagrammes d'Ellingham

5.2 Diagrammes potentiel-pH

5.3 Courbes intensité–potentiel5.4 Corrosion

Annexe A: Primitives usuelles

VIII Table des matières

A	Annexe B : Développements limités	
Annexe C : Formules trigonométriques		177
1.	Angles remarquables	177
2.	Relations trigonométriques	178
A	nnexe D : Opérateurs vectoriels	181
1.	Notations	181
2.	Gradient	182
3.	Divergence	183
4.	Rotationnel	183
5.	Laplacien	184
6.	Relations entre les opérateurs	185
7.	Théorèmes géométriques	186
Annexe E : Unités et constantes fondamentales		187
1.	Unités du Système International 1.1 Unités principales du système international 1.2 Unités secondaires du système international 1.3 Unités courantes du système international 1.4 Multiples décimaux pour les unités	187 187 188 188 188
2.	Constantes fondamentales	189
3.	Ordres de grandeurs	189
Annexe F : Constantes chimiques		191
Annexe G : Tableau périodique		193
Index		197

www.biblio-scientifique.com

Avant-propos

La quatrième édition de ce formulaire rassemble les principaux résultats des cours de mathématiques, de physique et de chimie établis tout au long des deux années de classes préparatoires dans la filière MP. Cette nouvelle édition, s'améliore encore un peu avec l'apparition de la couleur. Ce formulaire s'avérera fort utile aussi bien pendant votre « prépa » que lorsque la période fatidique des concours approchera.

Il a été scindé en trois parties : les parties relatives aux mathématiques, à la physique et à la chimie, chacune d'entre elles rassemblant les principaux résultats établis en cours pour chacune des filières auxquelles s'adresse cet ouvrage. À la fin de l'ouvrage, figurent en annexes les données qui ne sont pas nécessairement à connaître, mais qui sont néanmoins fort utiles au quotidien.

Un effort tout particulier a été fait pour rendre ces formules les plus « lisibles » possible en détaillant la signification de chaque symbole et en précisant bien à chaque fois les conditions d'application de ces formules. Soulignons tout de même que l'apprentissage de ces formules ne se substitue pas à l'apprentissage du cours...

Merci à tous ceux qui ont accepté de collaborer à cet ouvrage et en particulier à Pascal OLIVE et Jean-Marie MONIER pour leur consciencieuse relecture respective des parties physique et mathématiques, à Bruno COURTET pour avoir parfaitement assuré le suivi de ce nouveau venu dans la collection « J'intègre ».

www.biblio-scientifique.com

Chapitre

Mathématiques

1. Algèbre

1.1 Relations

Propriétés d'une relation binaire

Soit \mathcal{R} une relation binaire dans E; elle est dite : **réflexive** si et seulement si $\forall x \in E, x\mathcal{R}x$

symétrique si et seulement si $\forall (x,y) \in E^2, x\mathcal{R}y \Longrightarrow y\mathcal{R}x$

antisymétrique si et seulement si $\forall (x, y) \in E^2$, $\begin{cases} x\mathcal{R}y \\ y\mathcal{R}x \end{cases} \implies x = y$

transitive si et seulement si $\forall (x, y, z) \in E^3$, $\begin{cases} x \mathcal{R}y \\ y \mathcal{R}z \end{cases} \implies x \mathcal{R}z$

Relation d'ordre

Une relation binaire \mathcal{R} de E est dite **relation d'ordre** si et seulement si \mathcal{R} est réflexive, antisymétrique et transitive.

Relation d'équivalence

Une relation binaire \mathcal{R} de E est une **relation d'équivalence** si et seulement si \mathcal{R} est réflexive, symétrique et transitive.

Classe d'équivalence

Soit \mathcal{R} une relation d'équivalence dans E; pour $x \in E$, on appelle classe d'équivalence de x (modulo \mathcal{R}) l'ensemble défini par :

$$\operatorname{cl}_{\mathcal{R}}(x) = \{ y \in E, x\mathcal{R}y \}$$

Ensemble-quotient

On appelle **ensemble-quotient** de E par \mathcal{R} , et on note E/\mathcal{R} , l'ensemble des classes d'équivalence modulo \mathcal{R} :

$$E/\mathcal{R} = \{ \operatorname{cl}_{\mathcal{R}}, x \in E \}$$

1.2 Structures algébriques

Lois de compositions

On appelle loi interne toute application de $E \times E \rightarrow E$.

Un loi * est dite associative si et seulement si :

$$\forall (x, y, z) \in E^3, x * (y * z) = (x * y) * z$$

Une loi * interne est dite commutative si et seulement si :

$$\forall (x, y) \in E^2, x * y = y * x$$

On dit que *e* est un élément neutre pour * si et seulement si :

$$\forall x \in E, x * e^{1} = e * x = x$$

On appelle symétrique de $x \in E$ un élement de E noté x^{-1} vérifiant :

 $x^{-1} * x = x * x^{-1} = e$ On dit que rHE est stable par * si et seulement si :

$$\forall (x, y) \in H^2, x * y \in H$$

Groupe

Un ensemble muni d'une loi interne (G, \cdot) est un **groupe** si et seulement si :

- est associative :
- · admet un élément neutre : e ;
- tout élément de *G* admet un symétrique pour la loi ·.

Si la loi \cdot est commutative, on dit que le groupe G est abélien ou commutatif.

Sous-groupe

Soit (G, \cdot) un groupe. Une partie H de G est un sous groupe de G si et seulement si :

- -H est stable par la loi \cdot ;
- H contient l'élément neutre :
- $-\forall x \in H, x^{-1} \in H.$

Groupe commutatif

- $-(\mathbb{Z}/_{n\mathbb{Z}},+)$ est un groupe commutatif.
- l'application $p_n: \mathbb{Z} \to (\mathbb{Z}/n\mathbb{Z})$, appelée surjection canonique, est $x \mapsto x \mod n$

un morphisme surjectif de groupes.

Générateurs du groupe

Les générateurs du groupe $(\mathbb{Z}/_{n\mathbb{Z}},+)$ sont les \hat{k} , avec $k\in\mathbb{Z}$ et $k\wedge n=1$.

Groupe monogène - Groupe cyclique

- Un groupe G est dit **monogène** si et seulement s'il admet un générateur, c'est-à-dire si et seulement s'il existe $a \in G$ tel que G = < a >
- Un groupe G est dit **cyclique** si et seulement si \hat{G} est monogène et fini.

Anneau

Un ensemble A muni de deux lois internes notées + et \cdot est un **anneau** si et seulement si :

- -(A, +) est un groupe commutatif, d'élément neutre 0_A ;
- $-\cdot$ est associative et admet un élément neutre 1_A ;
- · est distributive par rapport à +, c'est-à-dire :

$$\forall (x, y, z) \in A^3, x \cdot (y + z) = (x \cdot y) + (x \cdot z);$$

$$(x + y) \cdot z = (x \cdot z) + (y \cdot z).$$

Si \cdot est commutative, on dit que l'anneau A est commutatif.

Anneau intègre

On dit qu'un anneau $(A, +, \cdot)$ est **intègre** si et seulement si A est commutatif et :

$$\forall (x, y) \in A^2, (x \cdot y = 0_A) \Rightarrow (x = 0_A \text{ ou } y = 0_A)$$

Sous-anneau

Soit $(A, +, \cdot)$ un anneau; B une partie de A est un sous-anneau si et seulement si :

- -(B,+) est un sous groupe de (A,+);
- -B est stable par \cdot ;
- $-1_A \in B$.

Idéal d'un anneau commutatif

I est dit un **idéal** de A, anneau commutatif avec $I \subset A$ si et seulement s'il vérifie les propriétés :

$$\left\{ \begin{array}{l} I \neq \emptyset \\ \forall (x,y) \in I^2, x+y \in I \\ \forall a \in A, \forall x \in I, \ ax \in I \end{array} \right.$$

Corps

Un ensemble $(K, +\cdot)$ muni de deux lois internes est un **corps** si et seulement si :

- $-(K,+,\cdot)$ est un anneau commutatif;
- Tout élément de $K \setminus \{0_K\}$ est inversible par la loi \cdot .

Espace vectoriel

Un ensemble E est dit un K-espace vectoriel, si E est non vide et si on dispose de deux lois, une loi interne notée +, et d'une loi externe $(K \times E \rightarrow E)$ vérifiant :

(E, +) est un groupe abélien

1.
$$\forall (\lambda, \mu) \in K^2, \forall x \in E, (\lambda + \mu)x = \lambda x + \mu x$$

2.
$$\forall \lambda \in K, \forall (x, y) \in E^2, \lambda(x + y) = \lambda x + \lambda y$$

3.
$$\forall (\lambda, \mu) \in K^2, \forall x \in E, \lambda(\mu x) = (\lambda \mu)x$$

 $4. \ \forall x \in E, 1x = x$

Algèbre

On appelle K-algèbre tout ensemble A muni d'une loi interne notée +, d'une loi externe $K \times A \rightarrow A$ et d'une loi interne notée * vérifiant :

- 1. $(A, +, \cdot)$ est un K-espace vectoriel
- 2. * est distributive par rapport à +
- 3. $\forall \lambda \in K, \forall (x, y) \in A^2, \lambda(x * y) = (\lambda x) * y = x * (\lambda y)$

Cette algèbre est associative si et seulement si \ast est associative, commutative si et seulement si \ast est commutative, unitaire si et seulement si A admet un élement neutre pour \ast .

1.3 Nombres entiers, nombres rationnels

Factorielle - Définition

$$n! = \prod_{k=1}^{n} k$$

n!: factorielle nPar convention : 0! = 1

Permutations

$$card\mathfrak{S}(n) = n!$$

n!: factorielle n, nombre de permutations d'un ensemble à n éléments

Arrangements

$$A_n^p = \frac{n!}{(n-p)!}$$

$$(n,p) \in \mathbb{N}^2$$
 avec $p \leqslant n$

On note A_n^p le nombre d'arrangements de p éléments à partir d'un ensemble de n éléments (c'est-àdire le nombre de p-uplets composés d'éléments deux à deux distincts)

$$C_n^p = \frac{n!}{p!(n-p)!}$$

 $(n,p) \in \mathbb{N}^2$ avec $p \le n$ On appelle **combinaison** (notée C_n^p) toute partie de cardinal p d'un ensemble à *n* éléments.

$$C_n^p = C_n^{n-p}$$

$$\forall (n, p) \in \mathbb{N} \times \mathbb{N}$$

$$C_n^p + C_n^{p+1} = C_{n+1}^{p+1}$$

$$\forall (n, p) \in \mathbb{N} \times \mathbb{Z}$$

Binôme de Newton

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$

 $n \in \mathbb{N}$ $(x, y) \in A^2$ et xy = yx, avec A un anneau commutatif

Soit $(a, b) \in \mathbb{Z}^2$, on dit que a divise b si et seulement si il existe $c \in \mathbb{Z}$ tel que b = ac.

Division euclidienne

$$\forall (a, b) \in \mathbb{Z} \times \mathbb{N}^*, \exists ! (q, r) \in \mathbb{Z}^2 \text{ tel que } a = bq + r \text{ et } 0 \leqslant r < b.$$

est archimédien

$$\forall \varepsilon \in \mathbb{Q}_+^*, \forall A \in \mathbb{Q}_+^*, \exists N \in \mathbb{N}^*, N\varepsilon > A$$

Q est dense

$$x < y \Longrightarrow (\exists z \in \mathbb{Q}/x < z < y) \qquad \forall (x, y) \in \mathbb{Q}^2$$

$$\forall (x, y) \in \mathbb{Q}^2$$

1.4 Arithmétique dans \mathbb{Z}

Plus Grand Commun Diviseur (PGCD)

Soit $(x_1, ..., x_n) \in \mathbb{Z}^n$, une famille d'entiers relatifs non tous nuls ; la famille des diviseurs communs à tous les $(x_i)_{i \in [1,n]}$ admet un plus grand élément appelé **plus grand commun diviseur**.

Plus Petit Commun Multiple (PPCM)

Soit $(x_1, \ldots, x_n) \in \mathbb{N}^n$; la famille des multiples communs non nuls aux $(x_i)_{i \in [1,n]}$ admet un plus petit élément appelé plus petit commun multiple.

Nombres premiers entre eux

Soient $(x_1, ..., x_n) \in (\mathbb{Z}^*)^n$, ces nombres sont premiers entre eux si et seulement si ils vérifient la propriété : $pgcd(x_1, ..., x_n) = 1$.

Théorème de Bezout

Soient $(x_1, \ldots, x_n) \in (\mathbb{Z}^*)^n$, pour que tous ces entiers soient premiers entre eux, il faut et il suffit qu'il existe $(u_1, \ldots, u_n) \in \mathbb{Z}^n$ tel que $\sum_{i=1}^n x_i u_i = 1$.

Théorème de Gauss

$$\begin{cases} a|bc \\ \operatorname{pgcd}(a,b) = 1 \end{cases} \implies a|c \qquad \forall (a,b,c) \in (\mathbb{Z}^*)^3$$

Produit du PGCD par le PPCM

$$pgcd(a,b) \cdot ppcm(a,b) = |a \cdot b| \quad \forall (a,b) \in (\mathbb{Z}^*)^2$$

Nombres premiers

On dit qu'un entier $p \in \mathbb{N}$ est **premier** si et seulement si $p \geqslant 2$ et s'il vérifie :

$$\forall a \in \mathbb{N}^*, (a|p \Longrightarrow (a = 1 \text{ ou } a = p))$$

Décomposition en nombres premiers

Tout entier $n \in \mathbb{N} \setminus \{0,1\}$ admet une décomposition unique en un produit de nombres premiers à l'ordre près des facteurs.

1.5 Polynômes et fractions rationnelles

Support d'une suite - Définition d'un polynôme

Pour toute suite $(a_n)_{n\in\mathbb{N}}$ de $K^{\mathbb{N}}$, on apelle support l'ensemble des $n\in\mathbb{N}$ tels que $a_n\neq 0$.

On appelle polynôme à une indéterminée à coefficients constants toute suite de $K^{\mathbb{N}}$ à support fini.

Polynôme à une indéterminée

On note K[X] le corps des polynômes à une indéterminée X à valeurs dans K. Tout élément P de K[X] peut s'écrire sur la base canonique $(X^n)_{n\in\mathbb{N}}$ sous la forme : $P=\sum_n a_n X^n$.

Degré d'un polynôme – Définition

$$\deg P = \max \{ n \in \mathbb{N} / a_n \neq 0 \}$$

deg P : degré du polynôme P

Degré d'un polynôme - Propriétés

$$\deg(P+Q)\leqslant \max(\deg P,\deg Q)$$

$$(P,Q) \in K[X]$$

Lorsque $\deg P \neq \deg Q$, alors : $\deg(P+Q) = \max(\deg P + \deg Q)$

$$\deg(PQ) = \deg P + \deg Q$$

Produit

$$PQ = \sum_{n} c_{n} X^{n}$$

$$c_{n} = \sum_{n=0}^{n} a_{n} b_{n-p}$$

$$P = \sum_{n} a_n X^n \in K[X]$$
$$Q = \sum_{n} b_n X^n \in K[X]$$

Composition

$$P \circ Q = P(Q) = \sum_{n} a_n Q^n$$

$$P \circ Q$$
: polynôme composé $P = \sum_{n} a_n X^n \in K[X]$ $Q \in K[X]$

Dérivation

$$P' = \sum_{n \ge 1} n a_n X^{n-1}$$

$$P = \sum_{n} a_n X^n \in K[X]$$

 P' : polynôme dérivé de P

Division euclidienne

 $\forall (A,B) \in (K[X])^2, \exists !(Q,R) \in (K[X])^2/A = BQ + R \text{ avec deg } R < \deg B.$

Q: quotient de la division euclidienne de A par B R: reste de la division euclidienne de A par B

Divisibilité dans K[X]

On dit que A divise P deux polynômes de K[X] si et seulement s'il existe $Q \in K[X]$ tel que P = AQ.

On appelle plus grand commun diviseur de $(P_k)_{k \in [1,n]} \in (K[X] \setminus \{0\})$, le polynôme de plus haut degré parmi les diviseurs des P_k .

Soient $(P,Q) \in (K[X])^2$, ils sont dits premiers entre eux si et seulement si leur plus grand commun diviseur est 1.

Propriété de Gauss : Soient A, B et C trois polynômes non nuls de K[X] : si A divise BC et si A et B sont premiers entre eux, alors A divise C.

Si A est premier avec B et avec C, alors A est premier avec BC

Égalité de Bezout pour deux polynômes

Soient A et B deux polynômes non nuls de K[X]. Ces deux polynômes sont premiers entre eux, si et seulement si il existe un unique couple (U,V) de polynômes de K[X] tels que :

$$AU + BV = 1$$

Polynôme irréductible

Un polynôme $P \in K[X]$ est dit **irréductible** si et seulement si deg $P \geqslant 1$ et si P n'admet comme diviseurs que les éléments non nuls du corps K et les multiples de lui-même.

Fonction polynomiale

À tout polynôme $P=\sum_n a_n X^n$ on associe la **fonction polynomiale** : $\widetilde{P}: \xi \mapsto \sum a_n \xi^n$.

Racine d'un polynôme

$$\widetilde{P}(\alpha) = 0$$

 α est appelée **racine** du polynôme $P \in K[X]$ si elle vérifie la propriété ci-contre.

Soit $(\alpha)_{i \in I}$ famille des racines deux à deux distinctes du polynôme P. Ce polynôme peut alors s'exprimer sous la forme $P = Q \prod_{i \in I} (x - \alpha_i)^{m_i}$

où m_i est la multiplicité de la racine α_i et Q un polynôme n'ayant pas de zéro dans K.

Multiplicité d'une racine d'un polynôme

$$\widetilde{P}^{(m-1)}(\alpha) = 0$$

$$\widetilde{P}^{(m)}(\alpha) \neq 0$$

 α est une racine P de multiplicité m si elle vérifie la propriété cicontre.

Polynôme scindé

Un polynôme $P \in K[X]$ est dit **scindé** sur K si et seulement si il existe $\lambda \in K \setminus \{0\}$ et une famille d'éléments non nécessairement distincts $(x_i)_{i \in [1,n]}$ tels que :

$$P = \lambda \prod_{i=1}^{n} (X - x_i)$$

Théorème de d'Alembert & Conséquence

Le corps $\mathbb C$ est algébriquement clos : tout polynôme non constant de K[X] admet au moins un zéro dans $\mathbb C$

Conséquence : Tout polynôme non constant est scindé sur C.

Fraction rationnelle – Définition

$$R = \frac{\sum_{n} a_n X^n}{\sum_{n} b_n X^n}$$

 $R \in K(X)$: fraction rationnelle K(X): corps des fractions rationnelles $(a_n, b_n) \in K^2$: coefficients

Zéros et pôles d'une fraction rationnelle

Soit $R = \frac{P}{O} \in K(X)$ avec $(P, Q) \in K[X]^2$, une fraction rationnelle.

Si P et Q sont deux polynômes premiers entre eux :

- on appelle **zéros** de *R* les zéros de *P*.
- on appelle **pôles** de *R* les zéros de *Q*.

Décomposition en éléments simples

$$R = \frac{P}{S_1^{\alpha_1} \times \dots \times S_n^{\alpha_n}}$$

$$R = E + \sum_{i=1}^n \sum_{i=1}^{\alpha_i} \frac{C_{\alpha_i, j}}{S_i^j}$$

 $R \in K(X)$: une fraction rationnelle $S_{i}^{\alpha_{i}} \in K[X]$: polynôme irréductibles premiers deux à deux entre eux. $\forall i, \alpha_{i} \in \mathbb{N}^{*}$ $E \in K[X]$: partie entière de R

1.6 Généralités sur les applications

Application injective

$$\forall (x, y) \in E^2$$

$$(f(x) = f(y) \Longrightarrow x = y)$$

Une application *f* est dite **injective** si et seulement si elle vérifie la propriété ci-contre.

Application surjective

$$\forall y \in F, \ \exists x \in E/f(x) = y$$

Une application linéaire f de E dans F est dite surjective si et seulement si elle vérifie la propriété ci-contre.

Composition de fonctions injectives, de fonctions surjectives

$$g \circ f$$
 injective $\Rightarrow f$ injective $g \circ f$ surjective $\Rightarrow g$ surjective

f et g: deux applications

1.7 Applications linéaires – Espaces vectoriels

Espace vectoriel - Définition

Soit E un ensemble muni d'une loi interne notée +, d'une loi externe $K \times E \to E$ notée \cdot telles que :

(E, +) est un groupe abélien

$$\forall \lambda \in K, \forall (x, y) \in E^2, \lambda(x + y) = \lambda x + \lambda y$$

$$\forall (\lambda, \mu) \in K^2, \forall x \in E, (\lambda + \mu)x = \lambda x + \mu x$$

$$\forall (\lambda, \mu) \in K^2, \forall x \in E, \lambda(\mu x) = (\lambda \mu) x$$

 $\forall x \in E, 1x = x$

Un tel ensemble est appelé *K***-espace vectoriel**.

Sous-espace vectoriel

Soit E un K-espace vectoriel et $F \subset E$. F est dit sous-espace vectoriel de E si et seulement si il vérifie les propriétés suivantes :

- (1) $F \neq \emptyset$
- $(2) \ \forall (x,y) \in F^2, x+y \in F$
- (3) $\forall \lambda \in K, \forall x \in F, \lambda x \in F$

Sous-espace engendré par une partie

$$Vect(A) = \bigcap_{\substack{F \subset E, \\ F \supset A}} F$$

E: K-espace vectoriel $A \subset E$ Vect(A): sous-espace vectoriel engendré par A

Autrement dit, $\operatorname{Vect}(A)$ est le plus petit sous-espace vectoriel de E contenant A ou, si $A \neq \emptyset$, l'ensemble des combinaisons linéaires des éléments de E.

Somme directe de sous-espaces vectoriels

$$E = \sum_{i \in I} E_i$$

$$\forall (i,j) \in I^2 \quad E_i \cap \sum_{j \neq i} E_j = \{0\}$$

 $(E_i)_{i \in I}$: famille de sous-espaces vectoriels d'un espace vectoriel E. Si la somme des E_i vérifie les deux propriétés ci-contre, elle est dite directe.

Dans ce cas : $\forall x \in E$, il existe une unique décomposition $x = \sum_{i \in I} x_i$

avec $x_i \in E_i$.

Sous-espaces vectoriels supplémentaires

$$E = \bigoplus_{i \in I} E_i$$

 $(E_i)_{i\in I}$: famille de sous-espaces vectoriels d'un espace vectoriel E. Ils sont dits **supplémentaires** si et seulement s'ils sont en somme directe et que leur somme est égale à E.

Famille génératrice

Soit $(x_i)_{i\in I}$ une famille de vecteurs d'un espace vectoriel de E sur K. On dit que cette famille est **génératrice** si et seulement si tout élément x de E peut s'exprimer comme combinaison linéaire des x_i , c'est-à-dire qu'il existe une famille $(\lambda_i)_{i\in I}$ telle que : $x=\sum_{i\in I}\lambda_ix_i$.

Famille libre

$$\sum_{i \in I} \lambda_i x_i = 0 \Longrightarrow \forall i \in I, \lambda_i = 0$$

 $(x_i)_{i \in I}$: famille de vecteurs de E $(\lambda_i)_{i \in I}$: famille de scalaires de KUne famille est **libre** si elle vérifie la propriété ci-contre.

Propriétés fondamentales des familles

- Toute sur-famille d'une famille génératrice d'une famille génératrice est génératrice.
- Toute sous famille d'une famille libre est une famille libre.

– Si
$$(x_1, \ldots, x_n)$$
 libre et $(x_1, \ldots, x_n, x_{n+1})$ liée, alors $x_{n+1} = \sum_{i=1}^n \lambda_i x_i$

- Une famille comportant le vecteur nul est liée.

Base d'un espace vectoriel – Définition

Une base de E est une famille de vecteurs $(x_i)_{i \in I}$ de E libre et génératrice.

Autres formulations : une base est une famille libre maximale ou encore une famille génératrice minimale.

Théorie de la dimension

Un *K*-espace vectoriel est dit de **dimension finie** si et seulement si *E* admet au moins une famille génératrice de dimension finie.

Soit *E* un *K*-espace vectoriel de dimension finie, alors :

- 1. E admet au moins une base de dimension finie.
- 2. Toutes les bases de *E* sont finies et ont le même cardinal appelé **dimension** de *E* et noté dim *E*.

Théorème de la base incomplète

Soit E un K-espace vectoriel de dimension n et $\mathcal{F} = (x_1, \dots, x_r)$ une famille libre de E. Il y a au moins une façon de compléter \mathcal{F} par n-r vecteurs d'une base de E pour obtenir une base de E.

Base duale définition

$$e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

E : *K*-espace-vectoriel

 E^* : dual de E

 $\mathcal{B} = (e_1, \dots, e_n)$ une base de E

 $\mathcal{B}^* = (e_1^*, \dots, e_n^*)$ base de E^*

 \mathcal{B}^* est appelé **base duale** de \mathcal{B}

Propriétés des familles libres et des familles génératrices

Soient *E* un *K*-espace vectoriel de dimension *n*

- Toute famille libre de E comporte au plus n éléments.
- − Toute famille génératrice de *E* comporte au moins *n* éléments.

Droite vectorielle - Hyperplan

On appelle droit vectorielle tout sous-espace vectoriel de dimension 1. On appelle hyperplan tout sous-espace vectoriel, de dimension n-1, d'un espace vectoriel de dimension n.

Codimension

Soit *F* un sous-espace vectoriel de *E*, il est dit de **codimension finie** si et seulement si *F* admet au moins un supplémentaire de dimension finie dans *E*.

Application linéaire – Définition

$$\forall (x,y) \in E^2, \ \forall \lambda \in K :$$

$$f(x + \lambda y) = f(x) + \lambda f(y)$$

On dit que *f* est une application linéaire de *E* dans *F* si et seulement si elle vérifie la propriété ci-contre.

Forme linéaire – Définition

On appelle forme linéaire une application linéaire qui va de $\it E$ dans le corps de référence : $\it K$.

Applications linéaires et famille de vecteurs

 $\forall f \in \mathcal{L}(E, F)$, et pour toute famille finie \mathcal{F} d'éléments de E: $-f(\text{Vect}(\mathcal{F})) = \text{Vect}(f(\mathcal{F}))$.

 $-\operatorname{si} \mathcal{F}$ est liée alors $f(\mathcal{F})$ est liée.

– si $f(\mathcal{F})$ est libre, alors \mathcal{F} est libre.

– si f est bijective, pour toute base \mathcal{B} de E, $f(\mathcal{B})$ est une base de F.

Image et noyau d'une application linéaire – Définition

$$\operatorname{Im} f = \{ y \in F / \exists x \in E, f(x) = y \}$$

On appelle **image** de f, le sousespace vectoriel de F noté Im f défini ci-contre.

$$\operatorname{Ker} f = \{ x \in E / f(x) = 0 \}$$

On appelle **noyau** de *f* , le sousespace vectoriel de *E* noté Ker *f* défini ci-contre.

Noyau d'une forme linéaire

Le noyau d'une forme linéaire, autre que la forme nulle, est un hyperplan.

Rang d'une application linéaire - Définition

Soient E et F deux espaces vectoriels sur K et f une application linéaire de E dans F. Si Im f est de dimension finie, dim Im f s'appelle rang de f et se note $\operatorname{rg} f$.

Formule du rang

$$\dim E = \operatorname{rg} f + \dim(\operatorname{Ker} f)$$

E : espace vectoriel de dimension finie *f* : application linéaire

 $\operatorname{rg} f$: rang de fKer f: noyau de f

Isomorphisme - Endomorphisme - Automorphisme

- Un **isomorphisme** d'espaces vectoriels est une application linéaire de *E* dans *F* bijective.
- Un **endomorphisme** de *E* est une application linéaire de *E* dans *E*.
- Un **automorphisme** est un endomorphisme bijectif. On note $\mathcal{GL}(E)$ l'ensemble des automorphismes de E.

Endomorphisme nilpotent

On dit qu'un endomorphisme f d'un K-espace-vectoriel E est nil**potent** si et seulement si : $\exists p \in \mathbb{N}^*$ tel que $f^p = 0$. L'ordre de nilpotence est alors le plus petit $p \in \mathbb{N}^*$ tel que $f^{p} = 0$.

Applications linéaires - Cas de la dimension finie

(1) f isomorphisme

(2) f injective

(3) f surjective

(4) rg f = n

(1) f automorphisme

(2) f injective

(3) f surjective (4) $\operatorname{rg} f = n$

E et *F* : deux espaces vectoriels de même dimension *n* sur *K* $f \in \mathcal{L}(E,F)$

Les propositions ci-contre sont deux à deux équivalentes.

E : espace vectoriel de dimension n sur K

 $f \in \mathcal{L}(E)$

Les propositions ci-contre sont deux à deux équivalentes.

$$f$$
 surjective \iff Im $f = F$ f injective \iff Ker $f = \{0\}$

f application linéaire de E dans F.

Projecteur – Définition

$$p^2 = p \quad (1)$$

Un projecteur est une application linéaire vérifiant la relation (1). p est alors le projecteur sur Îm p parallèlement à Ker p.

$$s^2 = \mathrm{Id}_E$$

 $p = \frac{1}{2}(s + \mathrm{Id}_E)$ est un projecteur. s est la symétrie par rapport à $Ker(s - Id_E)$, parallèlement à $Ker(s + Id_E)$

Une symétrie est une application linéaire vérifiant la relation cicontre.

Une symétrie est une application linéaire vérifiant les propriétés cicontre.

Formule de Grassman

 $\dim(A+B)=\dim A+\dim B-\dim(A\cap B)$, où A et B sont deux sous-espaces vectoriels de E de dimensions finies.

1.8 Matrices – Déterminants – Systèmes linéaires

Ensemble des matrices

On note $\mathcal{M}_{m,n}(\mathbb{K})$ l'ensemble des matrices à m lignes et n colonnes.

Matrices et applications linéaires

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

f : application linéaire de *E* dans *F*, deux espaces vectoriels de dimension finie.

 $M = (a_{ij})_{i \in [1,m]} j \in [1,n]$: matrice associée à l'application linéaire f $\mathcal{B} = (e_j)_{j \in [1,n]}$: base de E

 $\mathcal{B}' = (f_i)_{i \in [1,m]}$: base de F

Somme de deux matrices

$$\gamma_{ij} = \alpha_{ij} + \beta_{ij}$$

$$M = (\alpha_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$$

$$N = (\beta_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$$

$$M + N = (\gamma_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$$

Produit d'une matrice par un scalaire

$$M = \lambda N$$

$$(\gamma_{ij}) = (\lambda \cdot \alpha_{ij})$$

$$\lambda \in \mathbb{K}$$
 $M = (\alpha_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$
 $N = (\gamma_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$

Produit de matrices

$$M = (\alpha_{ik}) \in \mathcal{M}_{mp}(\mathbb{K})$$

$$N = (\beta_{kj}) \in \mathcal{M}_{pn}(\mathbb{K})$$

$$MN = (\gamma_{ij}) \in \mathcal{M}_{mn}(\mathbb{K})$$

$$\gamma_{ij} = \sum_{k=1}^{p} \alpha_{ik} \cdot \beta_{kj}$$

Propriétés des opérations sur les matrices

$$(M+N)P = MP + NP \qquad (M,N) \in (\mathcal{M}_{mp}(\mathbb{K}))^{2}, P \in \mathcal{M}_{pn}(\mathbb{K})$$

$$(\mu M)(\lambda N) = \mu \lambda (MN) \qquad M \in \mathcal{M}_{mp}(\mathbb{K})$$

$$(\lambda,\mu)^{2} \in \mathbb{K}^{2}$$

$$M \in \mathcal{M}_{mp}(\mathbb{K})$$

$$(\lambda,\mu)^{2} \in \mathbb{K}^{2}$$

$$M \in \mathcal{M}_{mp}(\mathbb{K})$$

$$N \in \mathcal{M}_{pn}(\mathbb{K})$$

$$N \in \mathcal{M}_{pn}(\mathbb{K})$$

$$N \in \mathcal{M}_{pn}(\mathbb{K})$$

$$N \in \mathcal{M}_{pn}(\mathbb{K})$$

Attention : En général, $MN \neq NM$

Transposée d'une matrice

$$A = (a_{ij})_{\begin{subarray}{l} i \in [1,n] \\ j \in [1,p] \end{subarray}} A = (a_{ji})_{\begin{subarray}{l} j \in [1,p] \\ i \in [1,n] \end{subarray}} A \in \mathcal{M}_{np}(\mathbb{K})$$

$$A \in \mathcal{M}_{np}(\mathbb{K})$$

$$A \in \mathcal{M}_{np}(\mathbb{K})$$

$$A \in \mathcal{M}_{np}(\mathbb{K})$$

$$A \in \mathcal{M}_{np}(\mathbb{K})$$

Changement de base

$$A' = O^{-1}AP$$

A': matrice d'une application linéaire de E (dans la base base \mathcal{B}') vers F (dans la base base \mathcal{C}') A: matrice de la même application linéaire de E (dans la base base \mathcal{B}) vers F (dans la base base \mathcal{B}) vers F (dans la base base \mathcal{B}) P: matrice de passage de \mathcal{B} à \mathcal{B}' Q: matrice de passage de \mathcal{C} à \mathcal{C}' Dans le cas d'un endomorphisme, Q = P (seulement deux bases sont nécessaires).

Exponentielle de matrice

$$\exp(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$$

 $A \in \mathcal{M}_n(\mathbb{K})$ exp(A): **exponentielle** de la matrice A

Déterminant – Définition

Un déterminant est une forme multilinéaire alternée.

Multilinéarité : $(\det(\alpha_1 V_1, \dots, \alpha_n V_n) = \alpha_1 \cdots \alpha_n \det(V_1, \dots, V_n))$

Alternée : $V_i = V_j$ avec $i \neq j \Longrightarrow \det(V_1, \dots, V_n) = 0$

Dans une base $\mathcal{B} = (e_1, \dots, e_n)$ de E, on note $\det_{\mathcal{B}} l$ 'application :

$$\det_{\mathcal{B}}(V_1, \dots, V_n) = \sum_{\sigma \in \mathfrak{S}} \varepsilon(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n}$$

Avec
$$V_j = \sum_{i_j=1}^n a_{i_j j} e_{i_j j}$$

Déterminant d'un produit de matrices

$$\det(M \cdot N) = \det M \cdot \det N$$

$$M \in \mathcal{M}_n(\mathbb{K})$$

 $N \in \mathcal{M}_n(\mathbb{K})$

Déterminant et matrice inversible

M inversible \iff det $M \neq 0$

$$\det(M^{-1}) = (\det M)^{-1}$$

$$M \in \mathcal{M}_n(\mathbb{K})$$
 inversible

Déterminant de Vandermonde

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j), (x_1, \dots, x_n) \in \mathbb{K}^n$$

Matrice inversible - Définition

Une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est dite inversible s'il existe une matrice N telle que :

$$M \cdot N = N \cdot M = I_n$$

La matrice N est alors appelée inverse de M et se note M^{-1} .

Matrices inversibles

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et f un endomorphisme représenté par A dans une base. Les propriétés ci-dessous sont deux à deux équivalentes :

- (1) f est bijective.
- (2) A est inversible à gauche.
- (3) A est inversible à droite.
- (4) A est inversible.
- (5) A est régulière à gauche.
- (6) A est régulière à droite.
- (7) A est régulière.

Matrice des cofacteurs – Comatrice

$$com M = (\det M_{ij})_{\substack{i \in [1,n] \\ j \in [1,n]}}$$

comM: comatrice de M (ou matrice des cofacteurs) M_{ij} : matrice M « privée » de sa $i^{\rm e}$ ligne et de sa $j^{\rm e}$ colonne.

Matrice inverse

$$M^{-1} = \frac{1}{\det M}^t \text{com}(M)$$

 $M \in \mathcal{M}_n(\mathbb{K})$ matrice inversible com(M): matrice des cofacteurs de M

Système linéaire – Définition

$$\begin{cases}
a_{11}x_1 + \cdots + a_{1p}x_p = b \\
\vdots & \vdots \\
a_{n1}x_1 + \cdots + a_{np}x_p = b
\end{cases}$$

On peut interpréter ce système comme le produit de la matrice comme le produit de la matrice $a_{11}x_1 + \cdots + a_{1p}x_p = b_1$ comme le produit de la matrice $A = (a_{ij})_{i \in [1,n]} j \in [1,p]$ par le vecteur $X = (x_i)_{i \in [1,p]}$ (vecteur inconnu). $a_{n1}x_1 + \cdots + a_{np}x_p = b_n$ Ce produit est égal au vecteur second membre : $B = (b_i)_{i \in [1,n]}$

Système de Cramer

$$\forall j \in [1, p], x_j = \frac{\det A_j(b)}{\det A}$$

Dans le cas d'un système de Cramer, $n = p = \operatorname{rg} A$.

Le système admet alors une solution unique donnée par les formules de Cramer ci-contre.

 $A_i(b)$ est obtenue à partir de A en remplaçant le vecteur colonne c_i par b.

Cas où $\operatorname{rg} A = n < p$

Après permutation des inconnues, on peut supposer que la matrice $A' = (a_{ij})_{i \in [1,n]}$ extraite de A est inversible. On établit alors le système

suivant:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 - (a_{1n+1}x_{n+1} + \dots + a_{1p}x_p) \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n - (a_{nn+1}x_{n+1} + \dots + a_{np}x_p) \end{cases}$$

Ce système est de Cramer et admet donc une solution unique. Cet ensemble est un sous-espace affine de dimension p - n.

Cas où $\operatorname{rg} A < n$

Soit on peut se ramener au cas précédent par combinaison linéaire des équations, soit le système n'admet pas de solution.

1.9 Espaces vectoriels euclidiens

Produit scalaire - Définition

Un produit scalaire euclidien sur

E est une application φ de E^2 dans \mathbb{R} vérifiant :

- (1) φ est bilinéaire
- (2) φ est symétrique
- (3) $\forall x \in E, \varphi(x, x) \geq 0$
- (4) $\forall x \in E, \varphi(x, x) = 0 \Rightarrow x = 0$

φ vérifiant (3) est dite **positive** φ vérifiant (4) est dite **définie** φ vérifiant (3) et (4) est dite **définie-positive**On note ce produit scalaire (-|-)

Forme quadratique

$$\forall x \in E, \ q(x) = \varphi(x, x)$$

 φ une forme bilinéaire symétrique sur $E \times E$ $q: E \to \mathbb{R}$: forme quadratique associée à φ

Matrice associée

$$\mathrm{Mat}_{\mathcal{B}}(\varphi) = (\varphi(e_i, e_j))_{\substack{i \in [1, n] \\ j \in [1, n]}}$$

 $\operatorname{Mat}_{\mathcal{B}}(\phi)$: matrice de ϕ dans \mathcal{B} : base de E $\phi: E \times E \to \mathbb{R}$: forme bilinéaire symétrique.

Expression matricielle

$$\varphi(x,y) = XAY$$

 $\varphi: E \times E \to \mathbb{R}$: forme bilinéaire symétrique $(x,y) \in E^2$ $X = \operatorname{Mat}_{\mathcal{B}}(x)$ $Y = \operatorname{Mat}_{\mathcal{B}}(y)$

Norme euclidienne - Définition

$$||x||_2 = \sqrt{(x|x)}$$

 $\|\cdot\|_2$: norme euclidienne sur E $x \in E$

Inégalité de Cauchy-Schwarz

$$|(x|y)| \leqslant ||x|| \cdot ||y||$$

$$\forall (x, y) \in E^2$$

Il y a égalité si et seulement si les vecteurs *x* et *y* sont liés.

Inégalité triangulaire ou de Minkowski

$$||x + y|| \le ||x|| + ||y||$$

$$\forall (x, y) \in E^2$$

Il y a égalité si et seulement si les vecteurs x et y sont positivement liés

Relations entre produit scalaire et norme

 $\forall (x, y) \in E^2$:

1.
$$||x + y||^2 = ||x||^2 + 2(x|y) + ||y||^2$$

1.
$$||x + y||^2 = ||x||^2 + 2(x|y) + ||y||^2$$

2. $||x - y||^2 = ||x||^2 - 2(x|y) + ||y||^2$

3.
$$(x|y) = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

4.
$$(x|y) = \frac{1}{4} (||x + y||^2 - ||x - y||^2)$$

Vecteurs orthogonaux

Soit $(x, y) \in E_x^2$ on dit que ces deux vecteurs sont **orthogonaux** si et seulement si (x, y) = 0.

Parties orthogonales – Orthogonal d'une partie

$$\forall (x,y) \in A \times B, (x|y) = 0$$

x, y: deux vecteurs respectivement de A et de B

A, B: deux parties orthogonales de E

 A^{\perp} : orthogonal de la partie A

$A^{\perp} = \{x \in E / \forall y \in A, (x|y) = 0\}$

Inégalité de Bessel

$$\sum_{i=1}^{n} |(e_j|x)|^2 \leqslant ||x||^2$$

E : espace vectoriel préhilbertien x: vecteur de E $(e_j)_{j \in [1,n]}$: famille orthonormale

dé É

Projecteur orthogonal

$$\operatorname{Ker} p = (\operatorname{Im} p)^{\perp}$$

$$\operatorname{Im} p = (\operatorname{Ker} p)^{\perp}$$

p: projecteur orthogonal sur Im p parallèlement à Ker p

Attention: un projecteur orthogonal n'est pas une application orthogonale.

Diagonalisation d'une matrice symétrique

$$\forall S \in \mathcal{S}_n(\mathbb{R}), \ \exists (\Omega, D) \in \mathcal{O}_n(\mathbb{R}) \times \mathcal{D}_n(\mathbb{R}), \ S = \Omega D \Omega^{-1}$$

 $\mathcal{S}_n(\mathbb{R})$: ensemble des matrices symétriques de \mathbb{R}

 $\mathcal{O}_n(\mathbb{R})$: groupe orthogonal

 $\mathcal{D}_n(\mathbb{R})$: ensemble des matrices diagonales de \mathbb{R}

Valeurs propres de matrices symétriques

Les valeurs propres d'une matrice $S \in \mathcal{S}_n(\mathbb{R})$ sont réelles.

Endomorphisme adjoint – Définition

$$\forall f \in \mathcal{L}(E), \ \exists ! f^* \in \mathcal{L}(E) \text{ tel que} :$$

 $\forall (x, y) \in E^2 (f(x)|y) = (x|f^*(y))$

E : espace vectoriel euclidien $\mathcal{L}(E)$: ensemble des endomorphismes de E

f: endomorphisme de E

 f^* : l'adjoint de fx, y: deux vecteurs de E

$$(1) f^* = f^{-1}$$

(2)
$$f^* = f$$

(3) $f^* = -f$

(3)
$$f^* = -f$$

Un automorphisme *f* vérifiant :

- (1) est dit orthogonal

- (2) est dit symétrique ou autoadjoint

- (3) est dit antisymétrique

Propriétés des adjoints

$$\operatorname{Ker} f^* = (\operatorname{Im} f)^{\perp}, \operatorname{Im} f^* = (\operatorname{Ker} f)^{\perp}$$
$$(\lambda f + g)^* = \lambda f^* + g^*$$
$$(g \circ f)^* = f^* \circ g^*$$
$$(\operatorname{Id}_E)^* = \operatorname{Id}_E$$
$$(f^*)^* = f$$

 $(f^{-1})^* = (f^*)^{-1}$

$$Matf* = {}^{t} Matf$$

 $(f,g) \in \mathcal{L}(E)^2$: endomorphismes de E admettant des adjoints f^* : endomorphisme adjoint de E A^{\perp} : orthogonal de A, A étant une partie de E

Définition et propriétés des automorphismes orthogonaux

(1)
$$\forall (x,y) \in E^2$$
:
 $(f(x)|f(y)) = (x|y)$
(2) $\forall x \in E, ||f(x)|| = ||x||$
(3) $f \in \mathcal{O}(E)$

Les propriétés (1), (2) et (3) sont équivalentes.

(1) traduit la conservation du produit scalaire.

(2) traduit la conservation de la norme.

 $\mathcal{O}(E)$: ensemble des automorphismes orthogonaux de E $f \in \mathcal{L}(E)$

Caractérisation des automorphismes orthogonaux

$${}^tM \cdot M = I_n \text{ ou } M \cdot {}^tM = I_n$$
 $f^* \circ f = f \circ f^* = \operatorname{Id}_E$

M: matrice orthogonale de $\mathcal{M}_n(\mathbb{K})$

f : automorphisme orthogonal de

 Id_E : application identité de E I_n : matrice identité de $\mathcal{M}_n(\mathbb{K})$

1.10 Réduction des endomorphismes

Valeur propre – Définition

$$\exists x \in E, x \neq 0 \text{ tel que}:$$

$$f(x) = \lambda x$$

 $f \in \mathcal{L}(E)$ $\lambda \in \mathbb{K}$: **valeur propre** de fAutre formulation : $f - \lambda$ Id $_E$ est non injectif.

Spectre d'un endomorphisme

Soit
$$f \in \mathcal{L}(E)$$
, on appelle spectre de f noté $\operatorname{Sp}(f)$ l'ensemble : $\operatorname{Sp}(f) = \{\lambda \in \mathbb{K}, \exists x \in E \setminus \{0\}/f(x) = \lambda x\}$

Vecteur propre – Définition

$$x \neq 0 \text{ et } \exists \lambda \in \mathbb{K}$$

$$f(x) = \lambda x$$

 $x \in E$: vecteur propre de f $f \in \mathcal{L}(E)$ (alors $\lambda \in \operatorname{Sp}(f)$)

Sous-espace propre - Définition

$$SEP(f,\lambda) = Ker(f - \lambda Id_E)$$

SEP (f, λ) : sous-espace propre associé à λ $f \in \mathcal{L}(E)$ $\lambda \in \operatorname{Sp}(f)$

Polynôme caractéristique - Définition

$$\chi_A(\lambda) = \det(A - \lambda I_n)$$

$$\chi_f(\lambda) = \det(f - \lambda I d_E)$$

 $\chi_A(\lambda)$: polynôme caractéristique de A $\chi_f(\lambda)$: polynôme caractéristique de f $f \in \mathcal{L}(E)$ A: matrice d'ordre n associée à f

Polynôme caractéristique - Propriétés

 $\begin{array}{lll} - & \text{Le coefficient dominant est} \\ (-1)^n & \\ - & \text{Le coefficient de } \lambda^{n-1} & \text{est} \\ (-1)^{n-1} & \text{tr } A & \\ - & \text{Le terme constant est det } A & \end{array}$

 $A \in \mathcal{M}_n(\mathbb{K})$ $\chi_A(\lambda)$: polynôme caractéristique de A λ : indéterminée du polynôme

Diagonalisabilité

- 1. *f* est diagonalisable.
- 2. Il existe une base de *E* formée de vecteurs propres de *f* .
- 3. La somme des sous-espaces propres pour f est égale à E.
- 4. La somme des dimensions des sous-espaces propres pour f est égale à dim E.

Les propriétés ci-contre sont deux à deux équivalentes.

E : espace vectoriel de dimension finie

 $f \in \mathcal{L}(E)$

Trigonalisation

Soit $f \in \mathcal{L}(E)$, les deux propriétés suivantes sont équivalentes :

- 1. f est trigonalisable
- 2. χ_f est scindé sur \mathbb{K}

Drapeau

$$\begin{cases} \forall i \in \{1, \dots, n\}, \dim(E_i) = i \\ \forall i \in \{1, \dots, n-1\}, E_i \subset E_{i+1} \end{cases}$$

E: un \mathbb{K} -espace-vectoriel (E_1,\ldots,E_n) : famille de sous-espaces vectoriels de E $n=\dim E$

Théorème de Cayley - Hamilton

Le polynôme caractéristique de f annule f, c'est-à-dire $\forall f \in \mathcal{L}(E), \chi_f = 0.$

2. Analyse

2.1 Espaces vectoriels normés

Norme – Définition

On appelle **norme** sur un \mathbb{K} -espace vectoriel E toute application $N: E \to \mathbb{R}$ vérifiant les trois points suivants :

- 1. $\forall \lambda \in \mathbb{K}, \forall x \in E, N(\lambda x) = |\lambda|N(x)$
- $2. \forall x \in E, \ N(x) = 0 \Longrightarrow x = 0$
- 3. $\forall (x, y) \in E^2, N(x + y) \leq N(x) + N(y)$

Normes équivalentes

Deux normes N_1 et N_2 sont dites équivalentes si et seulement si il existe $(\alpha, \beta) \in \mathbb{R}^*_+^2$ tels que :

$$\alpha N_1 \leqslant N_2 \leqslant \beta N_1$$

Soit $(E, \|\cdot\|)$ un espace vectoriel normé, on appelle distance associée à la norme $\|\cdot\|$ l'application $d: E^2 \to \mathbb{R}$ définie par $d(x,y) = \|x-y\|$. La distance possède les propriétés suivantes :

- 1. $\forall (x,y) \in E^2$, d(x,y) = d(y,x)2. $\forall (x,y) \in E^2$, $d(x,y) = 0 \Longrightarrow x = y$
- 3. $\forall (x, y, z) \in E^3, d(x, z) \leq d(x, y) + d(y, z)$
- $4. \forall (x,y) \in E^2, \forall \lambda \in \mathbb{K}, d(\lambda x, \lambda y) = |\lambda| d(x,y)$
- 5. $\forall (x, y, z) \in E^3, d(x + z, y + z) = d(x, y)$

Distance d'un point à une partie

On appelle distance de $x \in E$ à A, une partie non vide de E, \mathbb{R} espace vectoriel, le réel défini par :

$$d(x,A) = \inf_{a \in A} d(x,a)$$

Boule ouverte - Définition

$$B(a,r) = \{ x \in E / ||a - x|| < r \}$$

Boule fermée – Définition

$$B(a,r) = \{x \in E/||a-x|| \leqslant r\}$$

Partie ouverte de E

On appelle **ouvert de** *E* toute partie *X* de *E* vérifiant la propriété

$$\forall x \in X, \exists r \in \mathbb{R}_+^*, B(x,r) \subset X$$

Partie fermée de E

On appelle **fermé de** *E* toute partie de *E* dont le complémentaire dans E est un ouvert de E

Partie bornée - Définition

Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel, une partie A de E est dite **bornée** si et seulement si :

$$\exists M \in \mathbb{R}^+, \forall (x,y) \in A^2, d(x,y) \leq M$$

<u>Voisinage</u>

Soit $a \in E$ un \mathbb{K} -espace vectoriel, on dit que V est un **voisinage** de a si et seulement s'il existe r > 0 tel que $B(a, r) \subset V$

Intérieur – Frontière – Adhérence

On appelle intérieur d'une partie $A \subset E$, avec E un \mathbb{K} -espace vectoriel :

$$\overset{\circ}{A} = \bigcup_{\substack{\Omega \text{ ouvert de } E}} \Omega$$

On appelle **adhérence** de A (notée \overline{A}) la partie : $\overline{A} = \bigcap_{\substack{F \text{ fermé de } E \\ F \cap A}} F$

On appelle frontière de A la partie de A notée ∂A , la partie définie par $\overline{A}\setminus \stackrel{\circ}{A}$

Valeur d'adhérence

On dit que a est valeur d'adhérence de la suite de $E(u_n)_{n\in\mathbb{N}}$ si et seulement s'il existe une suite extraite de $(u_n)_{n\in\mathbb{N}}$ telle que $u_{\sigma(n)} \xrightarrow[a \to +\infty]{} a$.

Caractérisation de la continuité pour une application linéaire

Soit $f \in \mathcal{L}(E, F)$ où E et F sont deux \mathbb{K} -espaces vectoriels, alors les deux propositions suivantes sont équivalentes :

- (1) *f* est continue
- (2) $\exists M \in \mathbb{R}^+, \forall x \in E, ||f(x)||_F \leqslant M||x||_E$

Partie compacte

On dit que $X \subset E$, E étant un \mathbb{K} -espace vectoriel, est une partie **compacte** de E si et seulement toute suite d'éléments de X admet au moins une valeur d'adhérence dans X.

Partie compacte en dimension finie

Les parties compactes d'un \mathbb{K} -espace vectoriel de dimension finie sont les parties fermées bornées.

Normes en dimension finie

Toutes les normes sur un $\mathbb{K}\text{-espace}$ vectoriel de dimension finie sont équivalentes.

Applications linéaires en dimension finie

Soient E et F deux \mathbb{K} -espaces vectoriels normés, si E est de dimension finie, alors toute application linéaire $E \to F$ est continue.

Suites de Cauchy

On appelle suite de Cauchy dans un K-espace vectoriel normé toute suite vérifiant :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N} \times \mathbb{N}^*, p \geqslant N \Longrightarrow ||u_p - u_{p+q}|| \leqslant \varepsilon$$

Toute suite convergente dans un \mathbb{K} -espace vectoriel normé est de Cauchy.

Partie complète - Définition

Une partie A d'un \mathbb{K} -espace vectoriel normé est dite complète si et seulement si toute suite de Cauchy d'éléments de A converge dans A

Partie complète - Propriétés

Toute partie X d'un K-espace vectoriel normé complet vérifie : X fermée $\iff X$ complète

Toute partie compacte d'un *K*-espace vectoriel normé est complète.

Connexité par arcs

Une partie A d'un \mathbb{K} -espace vectoriel normé de dimension finie est dite **connexe par arcs** si et seulement si $\forall (x,y) \in A^2, \exists \gamma \in \mathcal{C}^0([a,b],E)$ tel que :

$$\begin{cases} \gamma(a) = x, \ \gamma(b) = y \\ \forall t \in [a; b], \gamma(t) \in A \end{cases}$$

Espace préhilbertien – Espace euclidien

On appelle espace préhilbertien tout couple (E, φ) où E est un \mathbb{K} -espace vectoriel et φ un produit scalaire sur E.

On appelle espace euclidien tout espace préhilbertien de dimension finie.

Théorème de Pythagore

Pour toute famille orthogonale finie $(x_i)_{i\in I}$ d'un espace préhilbertien $(E, (\cdot|\cdot))$ on a :

$$\left\| \sum_{i \in I} x_i \right\|^2 = \sum_{i \in I} \|x_i\|^2$$

2.2 Nombres réels

Présentation

 $(\mathbb{R}, +, \cdot)$ est un corps commutatif.

 \leq est une relation d'ordre total dans \mathbb{R} .

$$\forall (a,b,c) \in \mathbb{R}^3, \left\{ \begin{array}{l} a \leqslant b \Longrightarrow a+c \leqslant b+c \\ a \leqslant b \\ 0 \leqslant c \end{array} \right. \Longrightarrow ac \leqslant bc$$

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure dans $\mathbb R$.

Distance usuelle dans $\mathbb R$

$$d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(x, y) \mapsto |x - y|$$

Le nombre réel d(x, y) est la distance usuelle dans \mathbb{R} .

R : corps archimédien

$$\forall \varepsilon \in \mathbb{R}_+^*, \forall A \in \mathbb{R}_+^*, \exists n \in \mathbb{N}^*, n\varepsilon > A$$

Partie entière - Définition

$$\forall x \in \mathbb{R}$$
:

$$E(x) \le x \le E(x) + 1$$

 $x \in \mathbb{R}$

E(x): partie entière de x

E(x) est l'unique entier relatif vérifiant la propriété ci-contre.

Densité

$$\forall (x, y) \in \mathbb{R}^2$$

$$(x < y \Longrightarrow (\exists d \in D, x < d < y))$$

 $D \subset \mathbb{R}$

Cette partie D est dite dense dans \mathbb{R} si et seulement si elle vérifie la propriété ci-contre.

Théorème : \mathbb{Q} est dense dans \mathbb{R} .

2.3 Nombres complexes

Forme cartésienne / Forme polaire d'un nombre complexe

$$z = a + ib$$

$$z = \rho e^{i\theta}$$

z: nombre complexe $(z \in \mathbb{C})$

a: partie réelle de z ($a \in \mathbb{R}$), on la

note aussi Re(z)

b: partie imaginaire de z ($b \in \mathbb{R}$),

on la note aussi Im(z)

 ρ : module de z, ($\rho \in \mathbb{R}_+$) θ : argument de z, ($\theta \in \mathbb{R}$)

Nombre complexe conjugué – Définition

$$z = a + ib$$

$$\overline{z} = a - ib$$

 $z \in \mathbb{C}$: nombre complexe

 $\overline{z} \in \mathbb{C}$: nombre complexe conju-

gué de z

a: partie réelle de z et de \overline{z}

b : partie imaginaire de z

Nombre complexe conjugué – Propriétés

$$z + \overline{z} = 2\text{Re}(z)$$

~ = 0: I... (~)

 $z - \overline{z} = 2i\operatorname{Im}(z)$

 $\overline{z} = z$

 $\overline{z} = -z$

z: nombre complexe

 \overline{z} : nombre complexe conjugué de

2

si z est réel

si z est imaginaire pur

Module d'un nombre complexe

$$|z|^2 = z \cdot \overline{z}$$

|z|: module de z

Module d'un produit – Module d'un quotient

$$|zz'| = |z| \cdot |z'|$$

$$z' \neq 0 \quad \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

 $z \in \mathbb{C}$: nombre complexe $z' \in \mathbb{C}$: nombre complexe

Inégalité triangulaire

$$|z + z'| \leqslant |z| + |z'|$$

 $z \in \mathbb{C}$: nombre complexe $z' \in \mathbb{C}$: nombre complexe

Condition de cocyclicité ou d'alignement de quatre points

$$\frac{z_4 - z_1}{z_3 - z_1} / \frac{z_4 - z_2}{z_3 - z_2} \in \mathbb{R}$$

 M_i point du plan d'affixe z_i $z_i \in \mathbb{C}$ Les points M_1 , M_2 , M_3 et M_4 sont cocyliques ou alignés si et seulement si leurs affixes vérifient la propriété ci-contre.

Formule de Moivre

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

 $\theta \in \mathbb{R}$ $n \in \mathbb{Z}$

Formule d'Euler

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

 $x \in \mathbb{R}$

Racines nièmes d'un complexe

$$z_k = \sqrt[n]{r} \left(e^{i\frac{\varphi + 2k\pi}{n}} \right)$$

Les z_k sont les solutions de l'équation $z^n = r\mathrm{e}^{\mathrm{i}\varphi}$. $(k,n) \in \mathbb{N}^2$ avec $0 \leqslant k \leqslant n-1$ $z \in \mathbb{C}$ $r \in \mathbb{R}_+$

En particulier, les racines nièmes de l'unité : $z_k = e^{i\frac{2k\pi}{n}}$

Groupe des racines nièmes de l'unité

 $\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}$ est un groupe pour la multiplication.

2.4 Suites

Convergence – Définition

On dit qu'une suite numérique $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $l\in\mathbb{K}$ si et seulement si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N \in \mathbb{N}, n \Longrightarrow |u_n - l| \leqslant \varepsilon$$

On dit qu'une suite numérique $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si :

$$\exists l \in \mathbb{K}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow |u_n - l| \leqslant \varepsilon$$

Suite bornée

Une suite complexe $(u_n)_{n\in\mathbb{N}}$ est dite **bornée** si et seulement si : $\exists M \in \mathbb{R}_+, \forall n \in \mathbb{N}, |u_n| \leq M$.

Théorème d'encadrement

Soient
$$(u_n)_{n\in\mathbb{N}}$$
, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ trois suites réelles telles que :
$$\begin{cases} \exists N\in\mathbb{N}, \forall n\in\mathbb{N}, n\geqslant N\Longrightarrow u_n\leqslant v_n\leqslant w_n\\ (u_n)_n \text{ et } (w_n)_n \text{ convergent vers une même limite } l \end{cases}$$

Alors $(v_n)_n$ converge aussi vers l.

Suite arithmétique

$$u_n = u_{n-1} + r$$

$$S_n = \frac{(u_1 + u_n)n}{2}$$

 u_n : n^e terme de la suite r: raison

 u_1 : premier terme de la suite S_n : somme des n premiers termes de la suite u_n

Suite géométrique

$$u_n = q \cdot u_{n-1}$$

$$S_n = \frac{u_1(q^n - 1)}{q - 1} \quad q \neq 1$$

 $u_n : n^e$ terme de la suite q: raison de la suite

 u_1 : premier terme de la suite S_n : somme des n premiers termes

de la suite u_n

Suites réelles monotones

On dit que $(u_n)_{n\in\mathbb{N}}$ est **croissante** si et seulement si :

$$\forall n \in \mathbb{N}, u_n \leq u_{n+1}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si et seulement si :

$$\forall n \in \mathbb{N}, u_n \geq u_{n+1}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est **strictement croissante** si et seulement si :

$$\forall n \in \mathbb{N}, u_n < u_{n+1}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si et seulement si :

$$\forall n \in \mathbb{N}, u_n > u_{n+1}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est (strictement) monotone si et seulement si $(u_n)_{n\in\mathbb{N}}$ est (strictement) croissante ou (strictement) décroissante. Toute suite réelle croissante (respectivement décroissante) et majorée (respectivement minorée) est convergente.

Suites adjacentes

$$\left\{ \begin{array}{l} (u_n)_{n \in \mathbb{N}} \text{ est croissante} \\ (v_n)_{n \in \mathbb{N}} \text{ est décroissante} \\ (v_n - u_n) \xrightarrow[n \to +\infty]{} 0 \end{array} \right.$$

Si deux suites réelles vérifient les propriétés ci-contre, ces suites sont dites adjacentes.

Si deux suites sont adjacentes, elles convergent vers la même limite.

Suites extraites

On appelle suite extraite de $(u_n)_{n\in\mathbb{N}}$ toute suite $(u_{\sigma(n)})_{n\in\mathbb{N}}$ où $\sigma:\mathbb{N}\to\mathbb{N}$ est une application strictement croissante.

Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{K}$, alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge aussi vers l.

Valeur d'adhérence

On dira que a est une valeur d'adhérence d'une suite $(u_n)_{n\in\mathbb{N}}$ si et seulement s'il existe une suite extraite telle que $u_{\sigma(n)} \xrightarrow[n \to +\infty]{} a$

Théorème de Bolzano-Weiertrass

De toute suite bornée de \mathbb{R} on peut extraire une suite convergente.

2.5 Fonctions réelles de la variable réelle

Parité

Soit $X \subset \mathbb{R}$ vérifiant $x \in X \Longrightarrow -x \in X$

$$\forall x \in X, f(-x) = f(x)$$

Une fonction *f* est **paire** si et seulement si elle vérifie la relation cicontre.

$$\forall x \in X, f(-x) = -f(x)$$

Une fonction *f* est **impaire** si et seulement si elle vérifie la relation ci-contre.

Périodicité

Soit $f:X\to \mathbb{K}$ avec $X\subset \mathbb{R}$, on dit que f est T-périodique si et seulement si elle vérifie :

$$\forall x \in X, \begin{cases} x + T \in X \\ f(x+T) = f(x) \end{cases}$$

Application en escalier

On dit qu'une fonction $f:[a;b]\to\mathbb{R}$ est en escalier si et seulement s'il existe une famille $(a_i)_{i\in[0,n]}$ telle que $(a_0,\ldots,a_n)\in[a;b]^{n+1}$ avec $n\in\mathbb{N}^*$ et une famille $(\lambda_0,\ldots,\lambda_{n-1})\in\mathbb{R}^n$ tels que :

$$\begin{cases} a = a_0 < a_1 < \dots < a_{n-1} < a_n = b \\ \forall i \in \{0, \dots, n-1\}, \forall x \in]a_i; a_{i+1}[, f(x) = \lambda_i \end{cases}$$

Application majorée – minorée – bornée

Une fonction $f: X \to \mathbb{R}$ est dite :

- majorée si et seulement s'il existe $A \in \mathbb{R}$ tel que $\forall x \in X$, $f(x) \leq A$.
- minorée si et seulement s'il existe $B \in \mathbb{R}$ tel que $\forall x \in X$, $f(x) \ge B$.
- **bornée** si et seulement s'il existe (A, B) ∈ \mathbb{R}^2 tel que $\forall x \in X$, $B \leq f(x) \leq A$.

Limites

Soit $f: I \to \mathbb{R}$ une application.

On dit que f admet une limite l en $a \in \overline{I}$ si et seulement si :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \forall x \in I, |x - a| \leqslant \eta \Longrightarrow |f(x) - l| \leqslant \varepsilon$$

On dit que f admet une limite l en $+\infty$ si et seulement si :

$$\forall \varepsilon > 0, \ \exists A \in \mathbb{R}, \forall x \in I, x \geqslant A \Longrightarrow |f(x) - l| \leqslant \varepsilon$$

On dit que f admet comme limite $+\infty$ en $a \in \overline{I}$ si et seulement si : $\forall A > 0, \ \exists \eta > 0, \forall x \in I, |x - a| \le \eta \Longrightarrow f(x) \ge A$

On dit que f admet comme limite $+\infty$ en $+\infty$ si et seulement si :

$$\forall A > 0, \exists B > 0, \forall x \in I, x \geqslant B \Longrightarrow f(x) \geqslant A$$

On dit que f admet comme limite $-\infty$ en $-\infty$ si et seulement si :

$$\forall A < 0, \exists B < 0, \forall x \in I, x \leq B \Longrightarrow f(x) \leq A$$

Continuité

soit $f:I\to K$, $a\in I$, on dit que cette fonction est continue en a si et seulement si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| \leq \eta \Longrightarrow |f(x) - f(a)| \leq \varepsilon$$

Discontinuité

Soit $f: I \to K$, on dit que :

-f est **discontinue** en a si et seulement si elle n'est pas continue en a.

-f admet une **discontinuité de première espèce** en a si et seulement si f n'est pas continue en a mais admet une limite finie à droite et une limite finie à gauche en a.

Si f n'est pas continue et ne présente pas de continuité de première espèce en a, on dit que f admet une discontinuité de seconde espèce en a.

Composition et continuité

Soient $f: I \to \mathbb{R}$ et $g: J \to K$ où I et J sont deux intervalles de \mathbb{R} tels que $f(I) \subset J$, si f et g sont respectivement continues en a et f(a), alors $g \circ f$ est continue en a.

Continuité sur un segment

Soient $(a, b) \in \mathbb{R}^2$ tel que $a \leq b$ et une fonction $f : [a, b] \to \mathbb{R}$. Si f est continue, alors f est bornée et atteint ses bornes.

Continuité uniforme

Soit $f: I \to K$, on dit que cette fonction est **uniformément continue** sur I si et seulement si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x_1, x_2) \in I^2, |x_1 - x_2| \leqslant \eta \Longrightarrow |f(x_1) - f(x_2)| \leqslant \varepsilon$$

L'uniforme continuité implique la continuité.

Théorème de Heine

Soient $(a, b) \in \mathbb{R}^2$ tels que $a \le b$ et une fonction $f : [a; b] \to \mathbb{R}$. Si f est continue sur [a; b], alors f est uniformément continue sur [a; b].

Applications lipschitziennes

Soient $f:I\to\mathbb{R}$ et $k\in\mathbb{R}_+^*$, on dit que la fonction f est k-lipschitzienne si et seulement si :

$$\forall (x_1, x_2) \in I^2, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

Si $k \in [0;1[$, l'application f est dite contractante. Une application lipschitzienne est uniformément continue.

Fonctions trigonométriques circulaires réciproques

Arcsin:
$$[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

$$\forall x \in]-1,1[:$$

$$Arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$

Arccos:
$$[-1,1] \rightarrow [0,\pi]$$

 $\forall x \in]-1,1[:$

$$\forall x \in]-1,1[:$$

$$\operatorname{Arccos}'(x) = \frac{-1}{\sqrt{1 - x^2}}$$

Arctan :
$$\mathbb{R} \to \left] -\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$\forall x \in \mathbb{R}$$
:

$$Arctan'(x) = \frac{1}{1+x^2}$$

$$ch' x = sh x$$

$$th' x = \frac{1}{ch^2 x} = 1 - th^2 x$$

$$sh' x = ch x$$

2.6 Dérivation

Soient un point $a \in I$, où I est un intervalle, et une fonction $f: I \to K$. On dit que f est dérivable en a si et seulement si $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ existe et est finie. Dans ce cas, cette limite est appelée dérivée de f en aet est notée f'(a).

Dérivation et continuité

Soient un point $a \in I$ et une fonction $f : I \to K$, si f est dérivable en a, alors f est continue en a.

Propriétés des dérivées

Soient f et g deux fonctions de I dans K dérivables en a, alors : (f+g)'(a) = f'(a) + g'(a)

$$(\lambda f)'(a) = \lambda f'(a)$$

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

$$g(a) \neq 0, \ \left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g^{2}(a)}$$

$$g(a) \neq 0, \ \left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^{2}(a)}$$

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

Dérivabilité d'une fonction sur un intervalle

 $f:I\to K$, où I est un intervalle est dite dérivable sur un intervalle $I\subset I$ si et seulement si : $\forall a\in I$, f est dérivable en a.

Formule de Leibniz

 $f: I \to K$ et $g: I \to E$ on suppose que λ et f sont dérivables sur I:

Alors $f \cdot g$ est n fois dérivable sur I et $(f \cdot g)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} \cdot g^{(n-k)}$

Classe d'une fonction

Soient $f:I\to K$ et $k\in\mathbb{N}$, on dit que f est de classe \mathcal{C}^k sur I si et seulement si f est k fois dérivable sur I et $f^{(k)}$ est continue sur I.

Soient $f : [a; b] \to K$ avec $a \le b$ et $k \in \mathbb{N}$, on dit que f est de classe C^k par morceaux sur [a; b] si et seulement si :

- il existe une famille $(a_0, ..., a_p)$ ∈ \mathbb{R}^{p+1} telle que :

$$a = a_0 < a_1 < \dots < a_{p-1} < a_p = b$$

– Chaque restriction de f sur $]a_i; a_{i+1}[$ admet un prolongement de classe C^k sur $[a_i; a_{i+1}], \forall i \in [0; p-1].$

Théorème de Rolle

 $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur]a,b[, f(a)=f(b); alors il existe $c\in]a,b[$ tel que :

$$f'(c) = 0$$

Théorème des accroissements finis

 $f : [a, b] \to \mathbb{R}$, avec $(a, b) \in \mathbb{R}^2$ et a < b, continue sur [a, b] et dérivable sur [a, b[. Il existe $c \in]a, b[$:

$$f(b) - f(a) = (b - a)f'(c)$$

Inégalité de Taylor-Lagrange

 $f:[a,b]\to (E,\|\ \|)$ et f de classe \mathcal{C}^n sur [a,b], (n+1) fois dérivable sur [a,b] et telle que $\forall t\in]a,b[$, $\|f^{(n+1)}(t)\|\leqslant M$ alors :

$$\left\| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right\| \leqslant M \frac{(b-a)^{n+1}}{(n+1)!}$$

Reste intégral

 $f: [a,b] \to (E, \| \|) \text{ de classe } \mathcal{C}^{n+1} \text{ sur } [a,b] \text{ alors } :$ $f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \underbrace{\frac{1}{n!} \int_a^b (b-t)^n f^{(n+1)}(t) \, dt}_{\text{Reste de Laplace}}$

Formule de Taylor-Young

 $f: I \to E$, I un intervalle de \mathbb{R} où $f^{(n)}(a)$ existe :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \underset{x \to a}{o} ((x-a)^n)$$

Difféomorphisme – Définition

Soient $f: I \to J$ avec I, J deux intervalles de \mathbb{R} , $n \in \mathbb{N}^* \cup \{+\infty\}$, on dit que f est un C^k -difféomorphisme de I sur J si et seulement si :

- -f est de classe C^k sur I
- -f est bijective
- $-f^{-1}$ est de classe C^k sur J

Convexité – Définitions

Soit $f: I \to K$, on dit que cette fonction est convexe si et seulement si : $\forall \theta \in [0,1], \forall (x,y) \in I^2, f(\theta x + (1-\theta)y) \leq \alpha f(x) + (1-\theta)f(y)$

Inégalité de convexité

Si f est convexe, soit $\lambda_j \geqslant 0$ tel que $\sum_{j=1}^n \lambda_j = 1$, alors : $f\left(\sum_{j=1}^n \lambda_j a_j\right) \leqslant \sum_{j=1}^n \lambda_j f(a_j)$.

Fonction convexe - Fonction concave

Une fonction f est concave si et seulement si -f est convexe.

2.7 Intégration

Linéarité de l'intégrale

$$\int_{a}^{b} (\lambda f + g) = \lambda \int_{a}^{b} f + \int_{a}^{b} g$$

f et g: deux fonctions continues par morceaux

Inégalité de la moyenne

$$\left| \int_{[a,b]} fg \right| \leqslant \operatorname{Sup}_{[a,b]} |f| \int_{[a,b]} |g|$$

$$\left| \int_{[a,b]} f \right| \leqslant (b-a) \operatorname{Sup}_{[a,b]} |f|$$

f, g: deux fonctions continues par morceaux sur [a,b] [a,b]: intervalle de \mathbb{R}

Inégalité de Cauchy-Schwarz

$$\left(\int_{a}^{b} fg\right)^{2} \leqslant \left(\int_{a}^{b} f^{2}\right) \left(\int_{a}^{b} g^{2}\right)$$

f,g: deux applications continues par morceaux $[a;b] \to \mathbb{R}$, on a l'inégalité ci-contre.

Si $\exists (\lambda, \mu) \in \mathbb{R}^2 \setminus \{(0,0)\}$ tel que : $\lambda f + \mu g = 0$, il y a égalité.

Sommes de Riemann

$$S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$$

$$\lim_{n\to+\infty} S_n = \int_a^b f$$

 $f:[a,b]\to E$: une fonction continue

Intégration par parties

$$\int_a^b uv' = [uv]_a^b - \int_a^b u'v$$

 $u, v : [a, b] \rightarrow E$, fonctions continues C^1 par morceaux sur [a, b]

Intégrabilité – Définition

$$\int_{I} f \leqslant M$$

 $f: [a,b] \to \mathbb{R}$: fonction positive continue par morceaux.

f est dite intégrable sur [a,b] si et seulement s'il existe un $M \in \mathbb{R}_+$ pour tout segment J inclus dans [a,b], vérifiant l'inégalité ci-contre.

Intégrabilité sur un segment

Soit f une fonction positive continue par morceaux de I dans $\mathbb R$. Les propriétés suivantes sont deux à deux équivalentes :

- (i) \hat{f} est intégrable sur I.
- (ii) Il existe $M \in \mathbb{R}_+$ tel que, pour toute suite croissante de segments
- $(J_n)_{n\in\mathbb{N}^*}$ dont la réunion est égale à $I: \forall n\in\mathbb{N}^*\int_{I_n}f\leqslant M.$

Théorème de domination

$$0 \leqslant f \leqslant g \quad (1)$$

$$0 \leqslant \int_{I} f \leqslant \int_{I} g$$
 (2)

Soient f et g deux fonctions continues par morceaux de I dans \mathbb{R} vérifiant (1) et si g intégrable, alors f est intégrable sur I et on a l'inégalité (2).

Exemple de Riemann

Fonctions de Riemann:

$$f(x) = \frac{1}{x^{\alpha}}$$

Une fonction de Riemann est intégrable sur $[1; +\infty[$ si et seulement si $\alpha > 1$.

Une fonction de Riemann est intégrable sur]0;1] si et seulement si $\alpha < 1$.

Théorème d'équivalence

Soient $(a,b) \in \mathbb{R} \times \overline{\mathbb{R}}$ tels que a < b, f et g deux fonctions positives continues par morceaux de [a,b[dans \mathbb{R} vérifiant en $b: f \underset{b}{\sim} g$, alors f est intégrable sur [a,b[si et seulement si g l'est.

Règle $x^{\alpha} f(x)$

Intégrabilité en $+\infty$:

– S'il existe α ∈]1,+∞[vérifiant $\lim_{x\to+\infty} x^{\alpha} f(x) = 0$ alors f est intégrable sur $[a,+\infty[$ avec a>0.

– S'il existe $\alpha \in]-\infty,1]$ vérifiant $\lim_{x\to +\infty}x^{\alpha}f(x)=+\infty$ alors f n'est pas intégrable sur $[a,+\infty[$ avec a>0.

Intégrabilité en 0 :

- S'il existe α ∈] - ∞, 1[vérifiant $\lim_{x\to 0} x^{\alpha} f(x) = 0$ alors f est intégrable sur]0, a] avec a > 0.

- S'il existe α ∈ [1, +∞[vérifiant $\lim_{x\to 0} x^{\alpha} f(x) = +\infty$ alors f n'est pas intégrable sur]0, a] avec a > 0.

Relation de Chasles

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

f: une fonction continue par morceaux intégrable sur un intervalle I contennant les intervalles ouverts:]a,b[,]b,c[et]a,c[. $(a,b,c) \in \mathbb{R}^3$

Croissance de l'intégration

$$f \leqslant g \Longrightarrow \int_{I} f \leqslant \int_{I} g$$

f,g : deux fonctions continues et intégrables sur I

Fonctions continues à valeurs complexes

Soit $f:I\to\mathbb{C}$ une fonction continue. On dira que f est intégrable sur I si et seulement si |f| l'est.

Intégrale impropre

$$(a,b) \in \mathbb{R} \times (\mathbb{R} \cup \{+\infty\})$$

$$\int_{a}^{X} f$$

f : fonction continue par morceaux sur [*a*, *b*[

On dit que cette intégrale impropre converge si et seulement si elle admet une limite finie lorsque X tend vers b. On note alors cette intégrale $\int_a^b f$.

Intégrale dépendant d'un paramètre - Définition

$$f(x) = \int_{I} F(x, t) \, \mathrm{d}t$$

x: paramètre

t : variable d'intégration

I: intervalle de \mathbb{R}

Continuité d'une intégrale à paramètre

 $\forall x \in A, F(x, \cdot)$ intégrable sur I

 $f: A \to \mathbb{K}$ est continue sur A $x \mapsto \int_I F(x,t) dt$

F: fonction continue sur $A \times I$ vérifiant l'hypothèse de domination : Soient $f, g: I \to \mathbb{R}$ continues.

Si $\begin{cases} 0 \leqslant f \leqslant g \\ g \text{ est intégrable sur } I \end{cases}$, alors

f est intégrable sur I et $\int_I f \leq \int_I g$ Sous ces hypothèses, F vérifie les relations ci-contre.

F: fonction continue sur $A \times I$ vé-

Dérivation d'une intégrale à paramètre

 $F(x,\cdot)$ et $\frac{\partial F}{\partial x}(x,\cdot)$ intégrables sur I $f: A \to \mathbb{K} \text{ est de classe } \mathcal{C}^1 \text{ sur } A$ $x \mapsto \int_I F(x,t) \, \mathrm{d}t$ $\forall x \in A, f'(x) = \int_I \frac{\partial F}{\partial x}(x,t) \, \mathrm{d}t$

rifiant une hypothèse de domination sur $A \times I$: Soient $F,g:I \to \mathbb{R}$ continues. Si $\begin{cases} 0 \leqslant F \leqslant g \\ g \text{ est intégrable sur } I \end{cases}$, alors F est intégrable sur I et $\int_I F \leqslant \int_I g \, dF$

 $\frac{\partial F}{\partial x}$ existe et est continue sur $A \times I$. $\frac{\partial F}{\partial x}$ vérifie une hypothèse de domi-

nation sur $A \times I$. Sous ces hypothèses, on a les relations ci-contre.

2.8 Équations différentielles

Équations différentielles linéaires du premier ordre

$$\alpha y' + \beta y = \gamma$$
 (E)

 $\alpha, \beta, \gamma : I \to \mathbb{K}$ des applications continues.

y est une solution de cette équation sur $J \subset I$ si et seulement si y est dérivable sur J et si $\forall x \in J$, y vérifie (E).

Équation résolue

Une équation différentielle linéaire du premier ordre est dite **normalisée** ou **résolue** en y' si et seulement si $\alpha = 1$.

Solution d'une équation différentielle linéaire du premier ordre

$$S = \{\lambda e^{-A} + Be^{-A}, \lambda \in \mathbb{K}\}\$$

La solution ci-contre est la solution de l'équation résolue avec $\alpha = 1$ *A* : primitive de β

B: primitive de γe^A

La solution de (E) est la somme de la solution générale de l'équation homogène associée à (E) et d'une solution particulière de (E).

Méthode de résolution de E

- 1. Résolution de l'équation homogène associée, solution de la forme $\lambda y_0(x)$.
- 2. Réinjecter la solution trouvée dans l'équation complète avec la méthode de variation de la constante qui permet de trouver la fonction qui vérifie l'équation complète.

Nature de la solution

L'ensemble des solutions d'une équation différentielle linéaire du premier ordre est une droite affine dont la direction est donnée par l'ensemble des solutions de l'équation homogène.

Théorème de Cauchy-Lipschitz

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}$, $f: U \to E$ une application localement lipschitzienne par rapport à sa seconde variable et continue, un couple $(t_0, y_0) \in U$.

Sous ces conditions, il existe une unique solution maximale au problème de Cauchy, c'est-à-dire vérifiant :

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$
 (problème de Cauchy)

Et possédant en plus les propriétés suivantes (solution maximale):

- l'intervalle de définition est un ouvert,
- toute solution du problème de Cauchy est une restriction de cette solution.

Équation différentielle du second ordre homogène

$$\alpha y'' + \beta y' + \gamma y = 0$$

 α , β , γ : fonctions continues $I \to \mathbb{K}$ y: fonction de $J \subset I$ dans \mathbb{K} solution de cette équation

Équation différentielle du second ordre à coefficients constants

$$y'' + \beta y' + \gamma y = 0$$
$$(E_c): r^2 + \beta r + \gamma$$

$$(\beta,\gamma)\in\mathbb{R}^2$$
 : coefficients de l'équation différentielle

Soit (E_c) l'équation caractéristique associée à l'équation différentielle. Si cette équation caractéristique admet : — deux racines distinctes r_1 et r_2 ,

- deux racines distinctes r_1 et r_2 , les solutions de l'équation sont de la forme $\lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x}$

– une racine double r, les solutions sont de la forme $(\lambda x + \mu)e^{rx}$

- deux racines complexes conjuguées $r = a \pm ib$, les solutions sont de la forme $(\lambda \cos bx + \mu \sin bx)e^{ax}$

Équation du second ordre avec second membre $e^{\gamma x}R(x)$

$$y'' + \beta y' + \gamma y = e^{mx} P(x)$$

 $(\beta, \gamma, m) \in \mathbb{K}^3$: coefficients constants de l'équation différentielle $P \in \mathbb{K}[X]$ L'équation différentielle admet une solution de la forme $e^{mx}S(x)$ avec $S \in \mathbb{K}[X]$: $-\deg S = \deg P$ si m n'est pas racine de (E_c) $-\deg S = 1 + \deg P$ si m est racine simple de (E_c) $-\deg S = 2 + \deg P$ si m est racine double de (E_c)

Résolution grâce aux séries entières

Lorsque les coefficients et le second membre de l'équation différentielle sont constitués par des polynômes, on peut chercher les solutions sous la forme de séries entières, on obtient ainsi une relation de récurrence sur les coefficients. Une fois ces coefficients calculés, le rayon de convergence déterminés et, si possible, la somme calculée, on a une solution de l'équation différentielle.

Système d'équations différentielles du premier ordre

Soit I un intervalle de \mathbb{R} , $B=(b_i)_{i\in[1,n]}$ un vecteur de E et $A=(a_{ij})_{i\in[1,n]}:I\to E$ une application continue. On appelle système $i\in[1,n]$

d'équations différentielles du premier ordre le système :

$$\begin{pmatrix} y_1'(t) \\ \vdots \\ y_n'(t) \end{pmatrix} = \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{pmatrix} + \begin{pmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{pmatrix}$$

Résolution dans le cas où A est diagonalisable

Dans le cas où $A \in \mathcal{M}_n(\mathbb{K})$, si A est diagonalisable, le système homogène admet une solution du type :

$$Y = \sum_{i=1}^{n} c_i e^{\lambda_i t} V_i$$

 λ_i : valeur propre de A

 c_i : constante liée aux conditions initiales

 V_i : colonne de la matrice de passage de A à la matrice diagonale associée.

2.9 Séries

Définition

$$S_N = \sum_{n=0}^N u_n$$

On appelle série le couple $((u_n), (S_n))$.

 $((u_n), (\hat{S}_n))$. S_N : somme partielle d'ordre N u_n : terme général de la série

Condition nécessaire de convergence

Une condition nécessaire mais non suffisante de convergence d'une série est que $\lim_{n\to+\infty}u_n=0$. Si le terme général de la série ne tend pas vers zéro, la série est dite grossièrement divergente.

Changement d'indice de départ

Soit $\sum_{n\geqslant 0}u_n$ une série de E et $n_0\in\mathbb{N}$, les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant n_0}u_n$ sont de même nature.

Série géométrique

$$S = \sum_{n=0}^{+\infty} u_n = \frac{1}{1 - u_0} \quad (1)$$

 u_0 : terme général de la suite de rang 0

 u_n : terme général de la suite, $u_n = (u_0)^n$

Une condition nécessaire et suffisante de convergence d'une telle série est $|u_0| < 1$. Dans ce cas, la série vérifie (1).

Série à termes positifs

Une série à termes positifs converge si et seulement sila suite des sommes partielles est majorée.

Série de Riemann

$$\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}(1)$$

Une série vérifiant (1) est dite de Riemann. Une telle série converge si et seulement si:

$$\alpha > 1$$

Valeur remarquable :
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Série de Bertrand

$$\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$$

On appelle série de Bertrand la série définie ci-contre.

Cette série converge si et seulement si :

$$\alpha > 1$$

 $\alpha = 1$ et $\beta > 1$

Comparaison de deux séries à termes positifs

$$\forall n \in \mathbb{N}$$
:

$$0 \leqslant u_n \leqslant v_n$$
 (1)

 u_n : terme général de la série S v_n : terme général de la série S'

Si (1) est vérifiée et si S' converge,

alors *S* converge.

Remarque : Si S diverge et (1) est vérifiée, la série S' diverge.

Règle de d'Alembert

Soit une série de terme général u_n telle que $\left|\frac{u_{n+1}}{u_n}\right| \xrightarrow[n \to +\infty]{} \beta$:

- Si β < 1 la série de terme général u_n converge;
- Si $\beta > 1$ la série de terme général u_n diverge grossièrement;
- Si $\beta = 1$ on ne peut rien dire de la nature de la série.

Règle de Cauchy

Soit une série de terme général u_n réel positif telle que $\sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \beta$:

- Si β < 1 la série de terme général u_n converge;
- Si $\beta > 1$ la série de terme général u_n diverge grossièrement;
- Si $\beta = 1$ on ne peut rien dire de la nature de la série.

Séries de même nature

Soit $\sum u_n$ et $\sum v_n$ deux séries réelles à termes positifs telles que, au voisinage de $+\infty$, $v_n \geqslant 0$, et $u_n \sim v_n$. Alors, on a également $u_n \geqslant 0$ au voisinage de $+\infty$ et les deux séries sont de même nature (elles convergent ou divergent en même temps).

Série alternée

$$\left|\sum_{n=n+1}^{+\infty} u_n\right| \leqslant |u_{p+1}|$$

Une série de terme général u_n est dite **alternée** si et seulement si la suite $(-1)^n u_n$ est de signe constant.

Une telle série converge si :

- $1. \lim_{n \to +\infty} u_n = 0$
- 2. la suite $(|u_n|)_{n\in\mathbb{N}}$ est décroissante.

Sous ces hypothèses, la série vérifie la relation ci-contre.

Critère de Cauchy

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2$$
:

$$N \leqslant p < q \Longrightarrow \left\| \sum_{n=p+1}^{q} u_n \right\| \leqslant \varepsilon$$

Le critère ci-contre est une condition nécessaire et suffisante de convergence pour une série dans un **espace de Banach** (*K*-espace vectoriel normé complet).

Formule de Stirling

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

 $n \in \mathbb{N}$ La formule de Stirling fournit un équivalent simple de n! en $+\infty$.

Convergence absolue - Semi convergence

Une série est dite **absolument convergente** si et seulement si la série de terme général $|u_n|$ converge.

Une série alternée est dite **semi-convergente** si et seulement la série de terme général u_n converge alors que celle de terme général $|u_n|$ diverge.

Séries doubles – Interversion des sommations

Soit une suite double d'éléments de \mathbb{K} : $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ que l'on suppose sommable (c'est-à-dire $\exists M\in\mathbb{R}_+/\forall J\subset\mathbb{N}\sum_{p\in J}u_{pq}\leqslant M$), alors :

1.
$$\forall q \in \mathbb{N}$$
, $\sum_{p\geqslant 0} u_{p,q}$ est convergente et la série $\sum_{q\geqslant 0} \left(\sum_{p=0}^{+\infty} u_{p,q}\right)$ est convergente.

2.
$$\forall p \in \mathbb{N}$$
, $\sum_{q \ge 0} u_{p,q}$ est convergente et la série $\sum_{p \ge 0} \left(\sum_{q=0}^{+\infty} u_{p,q}\right)$ est convergente.

3.
$$\sum_{(p,q)\in\mathbb{N}^2} u_{p,q} = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right) = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right).$$

Produit de Cauchy

$$w_n = \sum_{k=0}^n u_k \cdot v_{n-k} \quad (1)$$

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right) \quad (2$$

On appelle produit de Cauchy des deux séries de terme général u_n et v_n la série dont le terme général vérifie (1).

Si les deux séries de terme général u_n et v_n sont absolument convergentes, alors la série w_n est elle aussi absolument convergente et vérifie (2).

2.10 Séries entières

Série entière

$$S(z) = \sum_{n=0}^{+\infty} a_n z^n$$

S(z): somme de la série entière a_n : coefficient de la série entière z : variable de la série entière

Rayon de convergence - Définition

$$I = \{ r \in \mathbb{R}_+ / \sum_{n=0}^{+\infty} |a_n| r^n \text{ converge} \}$$

La borne supérieure de l'intervalle I dans $\overline{\mathbb{R}}$ est appelée rayon de **convergence** de la série $\sum a_n z^n$, on le note $R = \operatorname{Sup} I$.

Série entière somme

Soient deux séries entières $\sum_{n\geqslant 0}a_nz^n$ et $\sum_{n\geqslant 0}b_nz^n$, on appelle série entière somme la série $\sum_{n>0} (a_n + b_n) z^n$.

Soit R_a et R_b les deux rayons de convergence respectifs de ces deux séries, on a $R_{a+h} \ge \min(R_a, R_h)$ (avec égalité si $R_a \ne R_h$).

Lemme d'Abel

Soit $r_0 > 0$, si la suite $(|a_n|r_0^n)_{n \in \mathbb{N}}$ est majorée, alors $\forall r \in [0, r_0]$ la série $\sum |a_n| r^n$ est convergente.

Dérivation d'une série entière

$$S'(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n$$

S: série de terme général $a_n x^n$ S' : dérivée de la série S La série dérivée a le même ravon de convergence que la série à déri-

Intégration d'une série entière

$$\int_0^x \left(\sum_{n=0}^{+\infty} a_n z^n\right) dz = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$
 La série des intégrales a le même rayon de convergence que la série intégrée.

La série des intégrales a le même

Développement en série entière d'une fonction

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite **développable en série entière** autour d'un point $x_0 \in \mathbb{R}$ si et s'il existe une série entière $\sum_{n\geqslant 0} a_n x^n$ de rayon de

convergence R > 0 telle que :

$$\forall x \in]x_0 - R; x_0 + R[, f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

Le développement en série entière est unique.

Développement en série entière d'une fraction rationnelle

Une fraction rationnelle *R* est développable en série entière autour de 0 si et seulement si 0 n'est pas un pôle de cette fraction rationnelle. Le rayon de convergence du développement en série entière est alors égal au plus petit module des pôles complexes de la fraction rationnelle.

2.11 Suites et séries d'applications

Convergence simple – Définition

$$\forall \varepsilon > 0, \forall x \in D, \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0 :$$

$$|f_n(x) - f(x)| \leqslant \varepsilon$$

 $(f_n: X \to E)_{n \in \mathbb{N}}$: suite d'applications E: un \mathbb{K} -espace vectoriel normé f: limite de la suite d'applications dans D (domaine de convergence) D: domaine de convergence

Convergence uniforme – Définition

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall x \in D, \forall n \geqslant n_0 :$$

$$|f_n(x) - f(x)| \leqslant \varepsilon$$

 $(f_n : X \to E)_{n \in \mathbb{N}}$: suite d'applications E: un \mathbb{K} -espace vectoriel normé f: limite de la suite d'applications dans D (domaine de convergence)

Convergence uniforme et convergence simple

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X, il y a également convergence simple de $(f_n)_{n\in\mathbb{N}}$ vers f dans ce même domaine.

Propriété de la convergence uniforme

Si les fonctions f_n sont continues (respectivement admettent une limite en a), alors la limite uniforme (si elle existe) de ces fonctions f est continue (respectivement admet une limite en a).

Convergence uniforme et intégration sur un segment

f est continue sur [a, b]

$$\left(\int_{a}^{b} f_{n}\right)_{n \in \mathbb{N}} \text{ converge dans } E$$

$$\int_{a}^{b} f = \lim_{n \to +\infty} \int_{a}^{b} f_{n}$$

 $(f_n: X \to E)_{n \in \mathbb{N}}$: suite d'applications continues convergeant uniformément vers f sur X. E: un \mathbb{K} -espace vectoriel normé f: limite de la suite d'applications Sous ces hypothèses, f vérifie les propriétés énoncées ci-contre.

Convergence uniforme et dérivation

 $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de I vers ff est de classe \mathcal{C}^1 sur If'=g $(f_n: X \to E)_{n \in \mathbb{N}}$: suite d'applications \mathcal{C}^1 convergeant simplement vers f sur X $(f'_n)_{n \in \mathbb{N}}$: converge uniformément vers une application notée g

Sous ces hypothèses, *f* vérifie les propriétés énoncées ci-contre.

d'applications \mathcal{C}^1 surX convergeant

Soit $(f_n : X \to E)_{n \in \mathbb{N}}$ une suite d'applications C^1 sur X convergeant simplement vers f sur X.

Soit $(f'_n)_{n\in\mathbb{N}}$ une suite de fonctions qui converge uniformément sur tout segment de X vers une application g.

Soit f la limite de la suite d'applications vérifiant les hypothèses précédentes. Sous ces hypothèses, on a f de classe C^1 sur X et f' = g.

Théorème de convergence monotone

$$\int_{I} f = \operatorname{Sup}_{n \in \mathbb{N}} \int_{I} f_{n} = \lim_{n \to +\infty} \int_{I} f_{n}$$

 $\forall n \in \mathbb{N}, \ f_n$ est continue par morceaux et intégrable sur I. $(f_n)_{n \in \mathbb{N}}$ vérifie une **hypothèse de monotonie**: $\forall n \in \mathbb{N}, f_n \leqslant f_{n+1}$. $(f_n)_{n \in \mathbb{N}}$ converge simplement sur I vers une application notée f continue par morceaux sur I. Sous ces hypothèses, f **est intégrable** si et seulement si la suite $\left(\int_I f_n\right)_{n \in \mathbb{N}}$ et vérifie alors les propriétés ci-contre.

Théorème de convergence dominée

$$\int_{I} f = \lim_{n \to +\infty} \int_{I} f_n$$

 $\forall n \in \mathbb{N}, \ f_n \text{ est continue par morceaux sur } I.$

 $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une application notée f continue par morceaux sur I.

 $(f_n)_{n\in\mathbb{N}}$ vérifie une **hypothèse de domination** : $\forall n\in\mathbb{N}, |f_n|\leqslant \varphi$ où φ est une fonction continue par morceaux positive et intégrable sur I.

Sous ces hypothèses, *f* vérifie la propriété ci-contre.

Premier théorème de Weierstrass

Pour toute application continue $f:[a;b] \to \mathbb{K}$, il existe une suite $(P_n:[a;b] \to \mathbb{K})_{n \in \mathbb{N}}$ de polynômes convergeant uniformément vers f sur [a;b].

Deuxième théorème de Weierstrass

Pour toute application continue $f: \mathbb{R} \to \mathbb{K}$ et T-périodique, il existe une suite $(T_n: [a;b] \to \mathbb{K})_{n \in \mathbb{N}}$ de polynômes trigonométriques convergeant uniformément vers f sur \mathbb{R} .

Séries d'applications : convergence simple - Définition

On dit qu'une série d'applications **converge simplement** si et seulement si la suite des sommes partielles $(S_n(x))_{n\in\mathbb{N}}$, avec $S_n(x) = \sum_{k=0}^n f_k(x)$, converge simplement.

Séries d'applications : convergence absolue - Définition

On dit qu'une série d'applications **converge absolument** si et seulement si la suite des sommes partielles $(S_n(x))_{n\in\mathbb{N}}$, avec $S_n(x) = \sum_{k=0}^n \|f_k(x)\|$, converge absolument.

Séries d'applications : convergence uniforme - Définition

On dit qu'une série d'applications converge uniformément si et seulement si la suite des sommes partielles $(S_n(x))_{n\in\mathbb{N}}$, avec $S_n(x)=\sum_{k=0}^n f_k(x)$, converge uniformément.

Séries d'applications : convergence normale – Définition

 $\exists n_0 \in \mathbb{N} :$

 $\sum_{n \ge n_0} ||f_n||_{\infty}$ converge

On dit que $\sum_n f_n$ converge normalement et seulement si elle vérifie la propriété ci-contre.

Convergences normale, uniforme et simple

La convergence normale entraîne la convergence uniforme qui ellemême entraîne la convergence simple.

Convergence uniforme – Limite et continuité

Si $\sum_{n\geqslant 0} f_n$ converge uniformément sur X et si $\forall n\in\mathbb{N}$, f_n est continue en a (respectivement admet une limite en a), alors $\sum_{n\geqslant 0} f_n$ est continue en a (respectivement admet une limite en a).

Convergence uniforme et intégration sur un segment

$$\sum_{n=0}^{+\infty} f_n \text{ est continue sur } [a, b]$$

$$\sum_{n>0} \left(\int_a^b f_n(x) \, \mathrm{d}x \right) \text{ converge dans } E$$

$$\int_{0}^{b} \int_{a}^{b} f_{n}(x) dx$$
 converge dans E

$$(f_n)_{n\in\mathbb{N}}$$
: série d'applications avec f_n continue sur $[a,b]$

$$\sum_{n\geqslant 0} \left(\int_a^b f_n(x) \, \mathrm{d}x \right) \text{ converge dans } E \sum_{n=0}^{+\infty} f_n \text{ converge uniformément sur } [a,b]$$

Sous ces hypothèses, la série de $\int_{a}^{b} \left(\sum_{n=0}^{+\infty} f_n(x) \right) dx = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx$ fonctions vérifie les propriétés ci-

Convergence uniforme et dérivation

 $\sum_{n\geqslant 0} f_n \text{ converge uniformément }$ sur tout segment I

$$\sum_{n=0}^{+\infty} f_n \text{ est de classe } \mathcal{C}^1 \text{ sur } I$$

$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

$$\sum_{n\geqslant 0} f_n : \text{ série } \text{ d'applications}$$

convergeant simplement sur I

$$f_n: I \to E$$
 de classe \mathcal{C}^1

 $\sum_{n} f'_n$ converge uniformément sur

tout segment de *I*.

Sous ces hypothèses, f_n et f'_n vérifient les propriétés ci-contre.

Intégration sur un intervalle quelconque des fonctions

$$\sum_{n=0}^{+\infty} f_n \text{ est intégrable sur } I$$

$$\left| \int_{I} \left| \sum_{n=0}^{+\infty} f_{n} \right| \leq \sum_{n=0}^{+\infty} \int_{I} |f_{n}| \right|$$

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

$$\sum_{n\geqslant 0} (f_n)$$
 : série d'applications

convergeant simplement sur I $f_n: I \to E$: fonction continue par morceaux sur I

$$\sum_{n\geqslant 0} \int_{I} |f_n| \text{ converge}$$

Sous ces hypothèses, f_n vérifie les propriétés ci-contre.

2.12 Séries de Fourier

Coefficients de Fourier exponentiels

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

 c_n : coefficient de Fourier exponentiel

f: fonction 2π -périodique continue par morceaux à valeurs complexes $n \in \mathbb{Z}$

Coefficients de Fourier trigonométriques

$$a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$

$$b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, \mathrm{d}x$$

 a_n : coefficient de Fourier trigonométrique en cosinus

 b_n : coefficient de Fourier trigonométrique en sinus

f: fonction dont on souhaite obtenir les coefficients de Fourier Lorsque la fonction f est paire (respectivement impaire), les coefficients b_n (respectivements a_n) sont nuls.

Théorème de Dirichlet

Si f est de classe \mathcal{C}^1 par morceaux et 2π -périodique, pour tout réel x, on a l'égalité suivante :

$$S(x) = \sum_{n = -\infty}^{+\infty} c_n e^{inx} = \frac{a_0}{2} + \sum_{n = 1}^{+\infty} a_n \cos nx + \sum_{n = 1}^{+\infty} b_n \sin nx$$
$$S(x) = \frac{1}{2} \left(f(x^-) + f(x^+) \right)$$

Dans ce cas, il y a convergence simple de la série vers S(x).

Égalité de Parseval

Si f est continue par morceaux, on a l'égalité suivante :

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \frac{|a_0|^2}{4} + \sum_{n=1}^{+\infty} \frac{|a_n|^2 + |b_n|^2}{2} = \sum_{n=-\infty}^{+\infty} |c_n|^2$$

Convergence normale

Si f est continue et de classe C^1 par morceaux sur \mathbb{R} , la série de Fourier de f est normalement convergente sur \mathbb{R} et a pour somme f.

2.13 Fonctions de plusieurs variables

Dérivée partielle

$$D_j f(a) = \frac{\partial f}{\partial x_j}(a) = \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(a_1, \dots, a_j + t, \dots, a_n) - f(a_1, \dots, a_n)}{t}$$

f : une fonction de plusieurs variables.

On définit ci-dessus la dérivée partielle par rapport à la variable x_j (sa j^e variable) de la fonction f en un point $a = (a_1, \dots, a_n)$.

Dérivée selon un vecteur

On dit que f admet une dérivée en a selon un vecteur v que l'on note $d_v f(a)$ si et seulement si la limite suivante existe :

$$\lim_{t \to 0} \frac{1}{t} \left(f(a + tv) - f(a) \right)$$

Si elle existe, cette limite est $d_v f(a)$.

Théorème fondamental

Soit U un ouvert de \mathbb{R}^p , si $f: U \to \mathbb{R}^n$ est de classe \mathcal{C}^1 sur \mathbb{R}^p , alors f admet en tout point a de \mathbb{R}^p , une dérivée selon tout vecteur h et

$$D_h f(a) = \sum_{j=1}^p h_j D_j f(a).$$

Gradient

$$\mathbf{grad} f = \left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)$$

 $f: U \to \mathbb{R}$: fonction de classe \mathcal{C}^1

U: ouvert de \mathbb{R}^2

 $\operatorname{grad} f$: gradient de fAlors: $D_v f(a) = (\operatorname{grad} f(a)) \cdot v$

Différentielle d'une fonction de deux variables

$$\mathrm{d}f = \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y$$

 $f: U \to \mathbb{R}$: fonction de classe C^1 sur U

U: ouvert de \mathbb{R}^2

Applications de classe C^k

On dit que f est de classe \mathcal{C}^k , avec $k \in \mathbb{N}^*$ sur U si et seulement si f admet des dérivées partielles successives sur U jusqu'à l'ordre k et ce, quel que soit l'ordre de dérivation, et chacune de ces dérivées partielles est continue sur U.

3. Géométrie 59

Théorème de Schwarz

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

f: fonction C^2 sur \mathbb{R}^p .

Point critique

Soit U un ouvert de \mathbb{R}^2 , $a \in U$ et $f: U \to \mathbb{R}$ une fonction de classe C^n . On dira que a est un point critique pour f si et seulement si toutes les dérivées partielles de f existent et s'annulent en a.

Extremum local

On dira que $f:U\to\mathbb{R}^2$ admet un extremum local sur $X\subset U$ en un point $a\in X$ si et seulement si $\forall x\in X,\ f(x)\leqslant f(a)$ (f admettant alors un maximum en a) ou $\forall x\in X,\ f(x)\geqslant f(a)$ (f admettant alors un minimum en a).

Théorème des fonctions implicites

Soient $x=(x_1,x_2)\in U$, où U est un ouvert de \mathbb{R}^2 , $f:U\to\mathbb{R}$ une fonction de classe \mathcal{C}^k sur U telle que f(x)=0 et $\frac{\partial f}{\partial x_2}(x)\neq 0$, alors il existe deux intervalles ouverts J et K respectivement centrés en x_1 et x_2 tels qu'il existe une unique fonction de classe \mathcal{C}^1 , $\varphi:J\to K$ telle que:

$$\forall (x, y) \in J \times K, (f(x, y) = 0 \iff y = \varphi(x))$$

3. Géométrie

3.1 Courbes du plan

Point régulier – Point birégulier

Un point M(t) est dit **régulier** si et seulement s'il vérifie $f'(t) \neq 0$; il est dit birégulier si et seulement si la famille (f'(t), f''(t)) est libre.

Tangente - Définition

$$\mathbf{M_0P} = \lambda \mathbf{f}'(t_0)$$

Si $\mathbf{f}'(t_0) \neq 0$, la tangente en un point M de coordonnées t_0 est l'ensemble des points P vérifiant la propriété ci-contre avec $\lambda \in \mathbb{R}$. Si cette limite n'existe qu'en t_0^+ (respectivement en t_0^-), on dira que la courbe admet une demi-tangente en $M(t_0^+)$ (respectivement en $M(t_0^+)$). Si les limites en t_0^+) et en t_0^- sont différentes, la courbe admet deux demi-tangentes en M.

Position d'un arc par rapport à la tangente

Dans les figures ci-dessous, $f^{(p)}(t_0)$ et $f^{(q)}(t_0)$ représentent les deux premiers vecteurs dérivés non nuls.

p impair, q pair : allure générale

p impair, q impair : point d'inflexion

p pair, *q* pair point de rebroussement de seconde espèce

p pair, *q* impair : point de rebroussement de première espèce

Branche infinie – Définition

On dit que la courbe Γ admet une branche infinie en t_0 si et seulement si $\lim_{t\to t_0}\|f(t)\|=+\infty$.

Direction asymtotique – Asymptote

Si la branche infinie forme un angle θ_0 par rapport à l'axe des abscisses, pour savoir s'il s'agit d'une asymptote ou d'une direction asymptotique, on étudie la limite :

$$Y = \lim_{\theta \to \theta_0} \rho \sin(\theta - \theta_0)$$

Si cette limite vaut $+\infty$, il s'agit d'une direction asymptotique, si la limite vaut 0, il s'agit d'une asymptote, si la limite vaut b avec $b \in \mathbb{R}$, la droite d'équation $y = \theta_0 x + b$ est asymptote à la courbe.

Branche parabolique

O dira que la courbe Γ admet une **branche parabolique** quand t tend vers t_0 si cette même courbe admet une direction asymptotique quand t tend vers t_0 mais pas d'asymptote.

Symétries

Soit $\varphi: t \mapsto \varphi(t)$ une fonction de changement de paramétrage. On donne ci-dessous les symétries classiques qui permettent de limiter l'intervalle d'étude de la courbe :

$$\begin{cases} x(\varphi(t) = x(t) \\ y(\varphi(t) = y(t) \end{cases}$$
 Identité

$$\begin{cases} x(\varphi(t) = -x(t) \\ y(\varphi(t) = -y(t) \end{cases}$$

Symétrie par rapport à l'origine

$$\begin{cases} x(\varphi(t) = y(t) \\ y(\varphi(t) = x(t) \end{cases}$$

Symétrie par rapport à la première bissectrice

$$\begin{cases} x(\varphi(t) = -x(t)) \\ y(\varphi(t) = y(t)) \end{cases}$$

Symétrie par rapport à l'axe des ordonnées

$$x(\varphi(t) = x(t) y(\varphi(t) = -y(t))$$

Symétrie par raport à l'axe des abscisses

Coordonnées polaires

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

Équations en coordonnées polaires

La droite:

$$\rho = \frac{1}{\lambda \cos \theta + \mu \sin \theta}$$

 $(\lambda, \mu) \in \mathbb{R}^2$

Cette équation représente la droite d'équation cartésienne $\lambda x + \mu y - 1 = 0$.

Le cercle:

$$\rho = \lambda \cos \theta + \mu \sin \theta$$

 $(\lambda, \mu) \in \mathbb{R}^2$

Cette équation représente le cercle centré en O d'équation cartésienne $x^2 + y^2 - \lambda x - \mu y = 0$.

Conique dont le foyer est à l'origine :

$$\rho = \frac{p}{1 + e\cos(\theta - \varphi)}$$

p : paramètre de la conique

e : excentricité de la conique

 θ : angle polaire

 φ : phase

Branches infinies – Définitions

Si $\lim_{\theta \to +\infty} \rho = 0$, on dit que O est un **point-asymptote** de la courbe.

Si $\lim_{\theta \to \pm \infty} \rho = a$, on dit que le cercle de centre O et de rayon |a| est un **cercle-asymptote** à la courbe.

Si $\lim_{\theta \to \pm \infty} \rho = \pm \infty$, on dit que la courbe admet une **branche-spirale**.

Si la branche infinie forme un angle θ_0 par rapport à l'axe des abscisses, pour savoir s'il s'agit d'une **asymptote** ou d'une direction asymptotique, on étudie la limite :

$$Y = \lim_{\theta \to \theta_0} \rho \sin(\theta - \theta_0)$$

Si cette limite vaut $+\infty$, il s'agit d'une direction asymptotique, si la limite vaut 0, il s'agit d'une asymptote, si la limite vaut b avec $b \in \mathbb{R}$, la droite d'équation $y = \theta_0 x + b$ est asymptote à la courbe.

Symétries

Soit T la **période** de ρ (c'est-à-dire $\rho(\theta+T)=\rho(\theta)$). S'il existe T' tel que $\rho(\theta+T')=-\rho(\theta)$, T' est appelé **antipériode** de ρ .

$$\rho(-\theta) = \rho(\theta)$$

Symétrie par rapport à l'axe des abscisses. On fait varier θ dans $[0; +\infty[$ avant d'effectuer la symétrie.

$$\rho(\alpha - \theta) = \rho(\alpha)$$

On fait varier θ dans $\left[\frac{\alpha}{2}; +\infty\right]$ puis on effectue la symétrie par rapport à la droite passant par O et d'angle polaire $\alpha/2$.

$$\rho(-\theta) = -\rho(\theta)$$

Symétrie par rapport à l'axe des ordonnées. On fait varier θ dans $[0; +\infty[$ avant d'effectuer la symétrie.

$$\rho(\alpha-\theta)=-\rho(\alpha)$$

On fait varier θ dans $\left\lfloor \frac{\alpha}{2}; +\infty \right\rfloor$ puis on effectue la symétrie par rapport à la droite passant par O et d'angle polaire $\frac{\alpha}{2} + \frac{\pi}{2}$.

3.2 Propriétés métriques des courbes

Abscisse curviligne

$$\forall t \in I, s(t) = \int_{t_0}^t ||f'(u)|| \, \mathrm{d}u$$

$$f: t \mapsto M(t)$$
$$s: t \mapsto s(t)$$

Longueur d'un arc

$$l(AB) = \int_a^b \|f'(t)\| \, \mathrm{d}t$$

l(AB): longueur de l'arc AB

Rayon de courbure - Courbure

$$R = \frac{\mathrm{d}s}{\mathrm{d}\alpha}$$
$$\gamma = \frac{1}{R}$$

R: rayon de courbure s: abscisse curviligne $\alpha = (\mathbf{i}, \mathbf{T})$ où \mathbf{T} est le vecteur tangent γ : courbure au point M(t)

Physique

0. Éléments de mathématiques

0.1 Différentielles

Développements limités

Soit $f: x \mapsto f(x)$, alors $f(x + \delta x) = f(x) + \delta x f'(x) + \frac{(\delta x)^2}{2} f''(x) + \frac{(\delta x)^2}{2} f''(x)$

Différentielle d'une fonction de plusieurs variables

Soit f une fonction des variables x et y, alors :

$$\mathrm{d}f = \left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{d}x + \left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{d}y$$

On peut étendre cette définition de df pour une fonction de n variables.

On a par définition du gradient :

$$df = (\mathbf{grad}f) \cdot d\mathbf{M}$$

Théorème de Schwarz

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}$$

(les dérivées croisées d'une fonction C^2 sont égales)

0.2 Équations différentielles

Équation de relaxation

$$y'(t) + \frac{y(t)}{\tau} = \gamma$$
 (où γ est une constante). Sa solution est $y(t) = \gamma \tau + (y(0) - \gamma \tau e^{-t/\tau}$.

Équation de l'oscillateur harmonique

$$y''(t) + \omega_0^2 y(t) = 0$$
. Sa solution est $y(t) = \lambda \cos(\omega_0 t) + \mu \sin(\omega_0 t)$ ou $y(t) = \delta \cos(\omega_0 t + \varphi)$

Équation d'un système explosif

$$y''(t) - \omega_0^2 y(t) = 0$$
. Sa solution est $y(t) = \lambda \operatorname{ch}(\omega_0 t) + \mu \operatorname{sh}(\omega_0 t)$

Équation de diffusion

 $= D\Delta y$. Les solutions dépendent des conditions aux limites et des conditions initiales. On la résoud généralement en régime permanent où la solution est sinusoïdale.

Équation de précession

 $\boldsymbol{\omega} \wedge \mathbf{u}$. \mathbf{u} est en rotation autour du vecteur w

Équation du second ordre

$$ay''(t) + by'(t) + cy(t) = g(t)$$

Le discriminant de son équation caractéristique ((E_c) $ar^2 + br + c = 0$) est $\Delta = b^2 - 4ac$. Soient r_1 et r_2 les deux racines de cette équation caractéristique.

Dans un premier temps, intéressons nous au cas où $g(t) = \gamma$, une constante.

Si $\Delta > 0$, les deux racines r_1 et r_2 sont réelles, la solution est du type apériodique :

$$y(t) = \lambda e^{r_1 t} + \mu e^{r_2 t} + \frac{\gamma}{c}$$

 $y(t) = (\lambda \cos(\beta t) + \mu \sin(\beta t))e^{\alpha t} + \frac{\gamma}{2}$ partie imaginaire de r_1

Si $\Delta=0$, le régime est critique, l'équation caractéristique admet une racine double.

La solution est : $y(t) = (\lambda t + \mu)e^{r_1t} + \frac{\gamma}{c}$

Si g(t) est une excitation sinusoïdale, on résout en complexes en posant $y(t) = \underline{Y} e^{j\omega t}$ pour obtenir une solution particulière.

0.3 Coniques

Équation polaire d'une conique avec origine au foyer

 $r(\theta) = \frac{p}{1 + e \cos \theta}$

r : distance du point courant à l'origine

θ : angle polairep : paramètree : excentricité

Nature de la conique

– une ellipse si $0 < e = \frac{a}{b} < 1$

– une parabole si e = 1

– une hyperbole si e > 1

Aire d'une ellipse

 $S = \pi ab$

S : surface de la conique

a: demi grand axe

b: demi petit axe

1. Électronique

1.1 Lois générales

Loi de Pouillet

$$i = \frac{E}{\sum_{k} R_k}$$

i : intensité du courant dans le circuit

E : tension délivrée par le générateur

 R_k : résistance k du circuit

Loi des nœuds

La loi des nœuds en N s'écrit :

$$\sum_{k=1}^{n} i_k = 0$$

Loi des mailles

La loi des mailles sur la maille cicontre s'écrit : $\sum_{k=1}^{n} u_k = 0$

Théorème de Millman

Le théorème de Millman appliqué en N donne :

$$u = \frac{\sum_{k=1}^{n} G_k \cdot u_k + \sum_{j=1}^{p} i_j}{\sum_{k=1}^{n} G_k}$$

Théorème de superposition (Helmholtz)

Dans un réseau de dipôles linéaires comportant n sources, la tension aux bornes de chaque dipôle est la somme algébrique des tensions qu'il y aurait aux bornes de ce dipôle si une seule source autonome fonctionnait. De même, l'intensité dans une branche d'un circuit est la somme des intensités qui règneraient dans la branche si une seule source autonome fonctionnait.

1.2 Régime variable

Puissance reçue par un dipôle

$$p(t) = u(t)i(t)$$

$$\langle p \rangle = \frac{1}{T} \int_0^T p(t) \, \mathrm{d}t$$

$$_{\text{sinuso\"idal}} = U_{\text{eff}} I_{\text{eff}} \cos \varphi$$

On se place en convention récepteur.

p(t) : puissance instantanée reçue par le dipôle

: puissance moyenne reçue par le dipôle

u(t): tension aux bornes de ce dipôle

i(t) : intensité traversant le dipôle U_{eff} : tension efficace aux bornes du dipôle

 $I_{\rm eff}$: intensité efficace traversant le dipôle

 φ : déphasage entre la tension et l'intensité $\varphi = \arg \underline{Z}$ où \underline{Z} est l'impédance complexe

Impédance complexe et phase des composants usuels

Résistance:

$$Z = R$$

$$\varphi = 0$$

Bobine:

$$Z = jL\omega$$

$$\varphi = +\frac{\pi}{2}$$

Condensateur:

$$Z = \frac{1}{jC\omega}$$

$$\varphi = -\frac{\pi}{2}$$

Z : impédance

R : valeur de la résistance

C : capacité du condensateur *L* : inductance de la bobine

ω : pulsation

 φ : déphasage de u par rapport à i

Fonction de transfert

$$\underline{H}(j\omega) = \frac{\underline{s}}{e}$$

 $H(j\omega)$: fonction de transfert

<u>s</u>: signal de sortiee: signal d'entrée

Gain en décibels - Phase

$$H(\omega) = |\underline{H}(j\omega)|$$

$$G_{\mathrm{dB}} = 20 \log |\underline{H}(j\omega)|$$

$$\varphi = \arg \underline{H}$$

 $H(\omega)$: gain

G_{dB}: gain en décibels

 $\underline{H}(j\omega)$: fonction de transfert φ : phase (avance de la sortie sur

l'entrée)

Diagramme de Bode

Le diagramme de Bode en gain (respectivement en phase) consiste à représenter le gain en décibel (respectivement la phase) en fonction de $\log \frac{\omega}{\omega_0}$ ou de $\log \omega$.

Filtre passe-bas du premier ordre

$$H(\omega) = \frac{H_0}{1 + j\frac{\omega}{W_0}}$$

Filtre passe-haut du premier ordre

$$H(\omega) = \frac{H_0 j \frac{\omega}{\omega_0}}{1 + j \frac{\omega}{\omega_0}}$$

Filtre passe-bas du deuxième ordre

$$H(\omega) = \frac{H_0}{1 + \left(j\frac{\omega}{\omega_0}\right)^2 + j\frac{\omega}{Q\omega_0}}$$

Filtre passe-haut du deuxième ordre

$$H(\omega) = \frac{H_0 \left(j \frac{\omega}{\omega_0} \right)}{1 + \left(j \frac{\omega}{\omega_0} \right)^2 + j \frac{\omega}{Q\omega_0}}$$

Filtre passe bande du deuxième ordre

$$H(\omega) = \frac{H_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

1.3 Montages avec amplificateur opérationnel

Généralités

Pour un amplificateur opérationnel idéal en régime linéaire :

$$-\varepsilon = V_{+} - V_{-} = 0 \Longleftrightarrow |u_{S}| \leqslant V_{sat}.$$

-Si $\varepsilon < 0$, $u_S = -V_{sat}$, si $\varepsilon > 0$, $u_S = V_{sat}$: on est en régime saturé.

- L'intensité entrant par les bornes + et − est nulle.

Suiveur de tension

$$u_{\rm S} = u_{\rm E}$$

Amplificateur non inverseur

Convertisseur courant-tension

Comparateur simple

Intégrateur théorique

Dérivateur théorique

Comparateur à hystérésis

$$u_{\epsilon} = \frac{R_1}{R_1 + R_2} u_{\rm S} - u_{\rm E}$$

$$-\operatorname{Si} u_{S} = +V_{\operatorname{sat}} \Rightarrow \varepsilon > 0 \Rightarrow u_{E} < \frac{R_{1}}{R_{1} + R_{2}} V_{\operatorname{sat}}$$

$$-\operatorname{Si} u_{S} = -V_{\operatorname{sat}} \Rightarrow \varepsilon < 0 \Rightarrow u_{E} > -\frac{R_{1}}{R_{1} + R_{2}} V_{\operatorname{sat}}$$

$$-\operatorname{Si} u_{E} \in \left[-\frac{R_{1}}{R_{1} + R_{2}} V_{\operatorname{sat}}, \frac{R_{1}}{R_{1} + R_{2}} V_{\operatorname{sat}} \right] \text{ alors le montage est bistable}$$

$$(u_{S} = \pm V_{\operatorname{sat}})$$

Sommateur inverseur

$$i_k = \frac{u_{E_k}}{R_{1k}}$$
 $u_S = -R_2 \sum_k \frac{u_{E_k}}{R_{1k}}$

2. Thermodynamique

2.1 Gaz parfait

Équation d'état

pV = nRT

p : pression du gazV : volume du gaz

 $R = \mathcal{N} \cdot k$: constante des gaz par-

faits

T: température

n : quantité de matière

Vitesse quadratique moyenne

$$\frac{1}{2}mu^2 = \frac{3}{2}kT$$

m : masse atomique du gaz

u : vitesse quadratique moyenne

k : constante de Boltzmann

T: température

Coefficients thermoélastiques

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$
$$\beta = \frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_{V}$$
$$\chi_{T} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T}$$

 α : coefficient de dilatation isobare β : coefficient d'augmentation de pression à volume constant

 χ_T : coefficient de compressibilité isotherme

p : pression*T* : température*V* : volume

Relation entre les coefficients thermoélastiques

$$\alpha = p\beta \chi_T$$

Modèle de Van der Waals

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

a, b : constantes positivesn : quantité de matière

p : pressionT : température

V : volume nb : covolume

R : constante des gaz parfaits

2.2 Premier et second principes de la thermodynamique

Premier principe

$$\Delta U = W + Q$$

 ΔU : variation d'énergie interne

W : transfert mécaniques reçus par le système

Q : transferts thermiques vers le système

Travail réversible des forces de pression

$$W = -\int_{V_i}^{V_f} p \, dV$$

W: travail des forces de pression

 V_i : volume initial V_f : volume final

p: pression

Si la transformation est isobare,

alors : $W = -p\Delta V$

Enthalpie

H = U + pV

H: enthalpie

U : énergie interne

p : pression

V : volume du système

L'enthalpie est une fonction d'état.

Première loi de Joule pour un gaz parfait

 $dU = C_V dT$

 $\mathrm{d}U$: variation d'énergie interne C_V : capacité thermique à volume constant

dT: variation de température

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Autre formulation : U ne dépend que de T

Seconde loi de Joule pour un gaz parfait

 $dH = C_v dT$

d*H* : variation d'enthalpie

 C_p : capacité thermique à pression constante

dT: variation de température

$$C_p = \left(\frac{\partial H}{\partial T}\right)_p$$

Autre formulation : H ne dépend que de T

Gaz parfait monoatomique

$$U = \frac{3}{2}nRT$$

$$H = \frac{5}{2}nRT$$

U : énergie interne

H : enthalpie

n : quantité de matière

R : constante des gaz parfaits

T: température

Bilan sur les écoulements permanents

$$(h_2 + e_{k_2} + \rho g z_2) - (h_1 + e_{k_1} + \rho g z_1) = w_m + q_m$$

Cette relation est aussi appelée relation de Zeuner.

On indexe par 1 et 2 les grandeurs relatives au fluide respectivement en amont et en aval de la machine. h_i : enthalpie massique

 $e_{\mathbf{k}_i}$: énergie cinétique massique $\rho g z_i$ énergie potentielle de pesan-

teur massique

 w_{m} : travail reçu par l'unité de masse de fluide qui traverse la machine

 $q_{\rm m}$: transfert thermique reçu par l'unité de masse de fluide qui traverse la machine

Détente de Joule Gay-Lussac

$$\Delta U = 0$$

U : énergie interne

Détente de Joule-Kelvin

$$h_1 + e_{\mathbf{k}_1} = h_2 + e_{\mathbf{k}_2}$$

En écoulemement lent ($e_{k_i} \ll h_i$), la détente est isenthalpique ($h_2 = h_1$).

Rapport des capacités thermiques

$$\gamma = \frac{C_p}{C_V} > 1$$

$$C_p = \frac{\gamma R}{\gamma - 1}$$

$$C_V = \frac{R}{\gamma - 1}$$

R : constante des gaz parfaits γ : rapport des capacités thermiques

Second principe - Entropie

$$dS = \frac{\delta Q}{T_{\Sigma}} + \delta S_{\text{irrev}}$$

S : entropie

Q : transferts thermiques vers le système

 T_{Σ} : température de surface du système

 $\delta S_{\rm irrev} \geqslant 0$: création d'entropie L'entropie est une mesure statistique du désordre

Identités thermodynamiques

$$dU = T dS - p dV$$

$$dH = T dS + V dp$$

d*U* : variation d'énergie interne

dH: variation d'enthalpie dS: variation d'entropie

p : pression du gaz*V* : volume du système

T: température

Lois de Laplace

$$p V^{\gamma} = cste_1$$

$$T V^{\gamma-1} = cste_2$$

$$T^{\gamma}p^{1-\gamma} = cste_3$$

Ces lois décrivent l'évolution des paramètres thermodynamiques pour une transformation isentropique (adiabatique réversible) de gaz parfait.

p: pression du gaz

V : volume du système

T: température

 γ : rapport isentropique

2.3 Changements de phase d'un corps pur

Diagramme d'état

Le point *C* est le point critique au delà duquel on ne fait plus la différence entre la phase liquide et la phase vapeur (état fluide).

Le point *T* est le point triple où toutes les phases coexistent.

p : pression

T: température

Nomenclature des changements de phase

sublimation

condensation

Diagramme d'équilibre liquide-vapeur

Titre de vapeur - Titre de liquide

$$x_{\rm v} = \frac{m_{\rm v}}{m} = \frac{LM}{LV}$$
$$x_{\rm l} = \frac{m_{\rm l}}{m} = \frac{MV}{LV}$$

 x_1 : titre massique de liquide x_v : titre massique de vapeur m_1, m_v : masse de liquide et de vapeur LM, LV, MV: distance LM, LV, MV mesurées sur un des deux diagrammes d'état précédent.

On a également la relation : $x_1 + x_y = 1$

Expression des fonctions d'état

$$u = x_1u_1 + x_2u_2$$

 $h = x_1h_1 + x_2h_2$
 $s = x_1s_1 + x_2s_2$

 x_i : le titre massique du corps pur dans la phase i

 u_i, h_i, s_i : l'énergie interne massique, l'enthalpie massique et l'entropie massique du corps dans la phase i

u,h,s: l'énergie interne massique, l'enthalpie massique et l'entropie massique du corps

Chaleur latente

$$l_{1\rightarrow 2} = h_2 - h_1 = T(s_2 - s_1)$$

 $l_{1\rightarrow 2}$: chaleur latente massique de passage de la phase 1 à la phase 2

 h_i : enthalpie massique du corps dans la phase i

 s_i : entropie massique du corps dans la phase i

T : température de cœxistance des phases

Relation de Clapeyron

$$l_{1\to 2} = T(v_2 - v_1) \frac{\partial p}{\partial T}$$

 $l_{1 \rightarrow 2}$: chaleur latente massique de passage de la phase 1 à la phase 2

 v_i : volume massique du corps dans la phase i

p: pression

T: température de changement d'état

2.4 Machines thermiques

Machines dithermes

 T_C : température de la source chaude Q_C : transfert thermique algébrique de

la source chaude vers la machine $T_{\rm F}$: température de la source froide

 $Q_{\rm F}$: transfert thermique algébrique de la source froide vers la machine

W : transfert mécanique reçu par la machine

Premier et second principes appliqués sur un cycle

$$\Delta U = 0$$

$$\Delta S = 0$$

Sur un cycle, la variation d'énergie interne (*U*) et d'entropie (*S*) est nulle (fonctions d'état).

Inégalité de Clausius

$$\frac{Q_{\rm C}}{T_{\rm C}} + \frac{Q_{\rm F}}{T_{\rm F}} \leqslant 0$$

(Second principe appliqué à la machine) $T_{\rm C}$: température de la source chaude $Q_{\rm C}$: transfert thermique algébrique de la source chaude vers la machine $T_{\rm F}$: température de la source froide $Q_{\rm F}$: transfert thermique algébrique de la source froide vers la machine

Efficacité de Carnot du moteur ditherme

$$e_{C} = 1 - \frac{T_{F}}{T_{C}}$$
$$e \leqslant e_{C}$$

 e_C : efficacité de Carnot (machine réversible) T_C : température de la source chaude

 $T_{\rm F}$: température de la source froide

e : efficacité réelle

Efficacité de Carnot du réfrigérateur ditherme

$$e_{C} = \frac{T_{F}}{T_{C} - T_{F}}$$
$$e \leqslant e_{C}$$

 e_C : efficacité de Carnot (machine réversible)

 T_C : température de la source chaude T_F : température de la source froide e: efficacité réelle

Efficacité de Carnot de la pompe à chaleur

$$e_{C} = \frac{T_{C}}{T_{C} - T_{F}}$$
$$e \leqslant e_{C}$$

 $e_{\rm C}$: efficacité de Carnot (machine réversible)

 $T_{\rm C}$: température de la source chaude $T_{\rm F}$: température de la source froide

e: efficacité réelle

Représentation du cycle

Le transfert mécanique reçu par la machine correspond à l'aire intérieure de la courbe dans le diagramme de Clapeyron (p, V). Cette aire doit donc être négative (parcourue dans le sens horaire) pour obtenir un moteur. (w < 0)

Le transfert thermique reçu correspond à l'aire intérieure à la courbe dans le diagramme (S, T).

2.5 Diffusion thermique

Flux thermique

$$\Phi_{\mathsf{t}h} = \iint_{\mathcal{S}} \mathbf{j}_{\mathsf{t}h} \cdot \mathbf{n} \, \mathrm{d}S$$

 Φ_{th} : flux thermique

 \mathbf{j}_{th} : vecteur courant de diffusion

thermique

n : normale à la surface dS

Loi de Fourier

$$\mathbf{j}_{\mathsf{t}h} = -\lambda \mathbf{grad}T$$

 \mathbf{j}_{th} : vecteur courant de diffusion thermique

T: température

λ : conductivité thermique

Équation de la chaleur

$$\frac{\partial T}{\partial t} = \kappa \Delta T$$

$$\kappa = \frac{\lambda}{\rho C}$$

κ : diffusivité thermique

T: température

 Δ : laplacien scalaire

 λ : conductivité thermique

ρ: masse volumique

C : capacité thermique

Convection

$$j_{\rm c} = -h(T_{\rm int} - T_{\rm ext})$$

*j*_c : courant de convection algébrique

h: coefficient de convection T_{int} : température intérieure T_{ext} : température extérieure

$$\Phi = G(T_{\rm int} - T_{\rm ext})$$

$$G = h_{eq}S$$

$$h_{\text{eq}} = \left(\sum_{i} \frac{1}{h_i} + \sum_{j} \frac{e_j}{\lambda_j}\right)^{-1}$$

En régime permanent, on définit ainsi la conductance thermique.

 Φ : flux thermique total

G : conductance thermique

 T_{int} : température intérieure T_{ext} : température extérieure

h : coefficient de convection

 λ : conductivité thermique

 e_i : epaisseur de la paroi de conduc-

tivité λ_i

Rayonnement thermique

Loi de Planck

$$F_{\lambda}(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{k\lambda T} - 1}}$$

 $F_{\lambda}(\lambda, T)$: émittance

λ: longueur d'onde

T: température

h : constante de Planck c : vitesse de la lumière dans le

k: constante de Boltzmann

Représentation graphique de la loi de Planck

Loi du déplacement de Wien

$$\lambda_{\rm m}T = 2897, 8 \ \mu {\rm m} \cdot {\rm K}$$

 $\lambda_{\rm m}$: longueur d'onde où l'émission est maximale T : température

Loi de Stefan

Cette loi est valable pour tout corps à l'équilibre thermodynamique et à l'équilibre thermique pour $\phi_p.$

$$\varphi_{e} = \int_{0}^{+\infty} F_{\lambda}(\lambda, T) \, d\lambda$$
$$\varphi_{e} = \sigma T^{4}$$

 $F_{\lambda}(\lambda, T)$: luminance (décrite par la loi de Planck)

 ϕ_e : flux émis

σ : constante de Stefan λ : longueur d'onde *T* : température

Corps noir

Un corps noir absorbe le flux incident pour toute longueur d'onde et quelque soit son incidence. Il est en équilibre radiatif ($\phi_p=\phi_i$ et $\phi_e=\phi_a$, où ϕ_p est le flux partant, ϕ_i le flux incident, ϕ_e le flux émis et ϕ_a le flux absorbé) et thermique.

3. Mécanique du point

3.1 Cinématique

Coordonnées cartésiennes

$$\mathbf{OM} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

x: abscisse

y : ordonnée *z* : cote

$$\mathbf{v} = \frac{\mathrm{d}\mathbf{O}\mathbf{M}}{\mathrm{d}t} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix}$$

$$\mathbf{a} = \frac{\mathrm{d}^2 \mathbf{OM}}{\mathrm{d}t^2} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix}$$

Coordonnées cylindriques

$$\mathbf{OM} = r\mathbf{u}_r + z\mathbf{u}_z$$

r: rayon polaire

 θ : angle polaire z: cote

$$\mathbf{v} = \frac{\mathrm{d}\mathbf{O}\mathbf{M}}{\mathrm{d}t} = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ \dot{z} \end{pmatrix} \mathbf{u}_{r} \\ \mathbf{u}_{\theta} \\ \mathbf{u}_{r}$$

$$\mathbf{a} = \frac{\mathrm{d}^2 \mathbf{OM}}{\mathrm{d}t^2} = \left(\begin{array}{c} \ddot{r} - r\dot{\theta}^2 \\ 2\dot{r}\dot{\theta} + r\ddot{\theta} \\ \ddot{z} \end{array} \right) \mathbf{u}_r \\ \mathbf{u}_\theta \\ \mathbf{u}_z$$

Coordonnées sphériques

$$\mathbf{OM} = r\mathbf{u}_r$$

r: rayon

 θ : colatitude variant dans $[0, \pi]$ φ : longitude variant dans $[0, 2\pi]$

$$\mathbf{v} = \frac{d\mathbf{OM}}{dt} = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ r\sin\theta\dot{\phi} \end{pmatrix} \mathbf{u}_{\theta} \\ \mathbf{u}_{\varphi}$$

Mouvement circulaire uniforme

$$\mathbf{OM} = r\mathbf{u}_r$$

r : rayon polaire

 θ : angle polaire

 $\boldsymbol{\omega}$: vitesse angulaire uniforme

 $(\boldsymbol{\omega} = \omega \mathbf{u}_z)$

$$\mathbf{v} = \omega \mathbf{u}_z \wedge \mathbf{OM} = \omega r \mathbf{u}_{\theta}$$

$$\mathbf{a} = -\omega^2 r \mathbf{u}_r = -\frac{v^2}{r} \mathbf{u}_r$$

Changement de référentiel 3.2

Composition des vitesses

$$\mathbf{v}(M)_R = \underbrace{\mathbf{v}(M)_{R'}}_{\text{vitesse relative}} + \underbrace{\mathbf{v}(O')_R + \Omega \wedge O'\mathbf{M}}_{\text{vitesse d'entraînement}}$$

 Ω : vecteur de rotation instantannée de R' par rapport à R

Composition d'accélération

$$\mathbf{a}(M)_R = \mathbf{a}(M)_{R'} + \underbrace{2\mathbf{\Omega} \wedge \mathbf{v}(M)_{R'}}_{\text{accélération de Coriolis } (a_c)} + \underbrace{\mathbf{a}(O')_R + \mathbf{\Omega} \wedge \left(\mathbf{\Omega} \wedge \mathbf{O'M}\right) + \frac{d\mathbf{\Omega}}{dt} \wedge \mathbf{O'M}}_{\text{accélération d'entraînement } (a_c)}$$

Forces associées

$$\boldsymbol{f}_e = -m\boldsymbol{a}_e$$

$$\mathbf{f}_{c} = -m\mathbf{a}_{c}$$

 $oldsymbol{f}_e$: force d'entraı̂nement $oldsymbol{f}_c$: force de Coriolis

ae: accélération d'entraînement

a_c: accélération de Coriolis

Référentiel en rotation uniforme autour d'un axe fixe

$$\mathbf{f}_{o} = m\Omega^{2}r\mathbf{u}_{r}$$

(force centrifuge)

$$\mathbf{f}_{c} = -2m\mathbf{\Omega} \wedge \mathbf{v}(M)_{R'}$$

Référentiel galiléen

Dans un référentiel galiléen un point matériel isolé est soit au repos, soit animé d'un mouvement rectiligne uniforme.

3.3 Lois générales de la mécanique

Principe des actions réciproques

$$\mathbf{F}_{1\to2} = -\mathbf{F}_{2\to1}$$

$$\mathbf{M_1M_2} \wedge \mathbf{F_{1 \to 2}} = \mathbf{0}$$

 $\mathbf{F}_{i \to i}$: force de i sur j

 M_i : point d'application de la force $F_{i \rightarrow i}$

Principe fondamental de la dynamique

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \sum_{i} \mathbf{f}_{i}$$

 $\mathbf{p} = m\mathbf{v}$: quantité de mouvement du système

 \mathbf{f}_i : force appliquée au système $\sum \mathbf{f}_i$: résultante des forces

Quantité de mouvement d'un système fermé

$$\mathbf{p} = \sum_{i} m_{i} \mathbf{v}(P_{i}) = M \mathbf{v}(G)$$

p : quantité de mouvement du système

 m_i : masse associée au point matériel P_i

M : masse du système

G : centre de masse du système

Théorème du moment cinétique en un point fixe

$$\frac{\mathrm{d}\mathbf{L}_{O}}{\mathrm{d}t} = \mathbf{M}_{O}\left(\sum_{i}\mathbf{f}_{i}\right)$$

 \mathbf{L}_O : moment cinétique au point de réduction O

 $\mathcal{M}_O\left(\sum_i \mathbf{f}_i\right)$: moment de la résultante des forces en O

Moment cinétique - Moment cinétique barycentrique

$$\mathbf{L}_B = \mathbf{L}_A + \mathbf{B}\mathbf{A} \wedge m\mathbf{v}(M)$$

 $\mathbf{L}^*_{ ext{système}} = \mathbf{L}_G$

 \mathbf{L}_P : moment cinétique en P m: masse du système $\mathbf{v}(M)$: vitesse du point M $\mathbf{L}_{\text{système}}^*$: moment cinétique barycentrique du système

Théorème de Kœnig du moment cinétique

$$\mathbf{L}_A = \mathbf{L}^* + \mathbf{AG} \wedge M\mathbf{v}(G)$$

 $\mathbf{L}(P)$: moment cinétique en P \mathbf{L}^* : moment cinétique barycentrique

M : masse du système

 $\mathbf{v}(G)$: vitesse du centre de gravité du système

Moment de forces

$$\mathcal{M}_B(\mathbf{f}) = \mathcal{M}_A(\mathbf{f}) + \mathbf{B}\mathbf{A} \wedge \mathbf{f}$$

 \mathcal{M}_P : moment de force en P **f**: force appliquée au système

Théorème du moment cinétique en un point mobile

$$\frac{\mathrm{d}\mathbf{L}_{A}}{\mathrm{d}t} = \mathcal{M}_{A} \left(\sum_{i} \mathbf{f}_{i} \right) \\ -\mathbf{v}(A) \wedge m\mathbf{v}(P)$$

L: moment cinétique

 $\mathcal{M}\left(\sum_{i}\mathbf{f}_{i}
ight)$: moment de la résul-

tante des forces m: masse du système $\mathbf{v}(P)$: vitesse de P

Puissance d'une force

$$\mathcal{P} = \mathbf{f} \cdot \mathbf{v}$$

 \mathcal{P} : puissance de la force **f**

f : force

 $\mathbf{v}(G)$: vitesse du point matériel

Énergie cinétique d'un point et d'un système de points

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

$$E_{\mathbf{k}} = \sum_{i} \frac{m_i}{2} v_i^2$$

*E*_k énergie cinétique *m* : masse du système

 m_i : masse du point matériel P_i

v : vitesse du système

 v_i : vitesse du point matériel P_i

Théorème de l'énergie cinétique

$$\frac{dE_{\mathbf{k}}}{dt} = \mathcal{P}$$

 $E_{\mathbf{k}}$: énergie cinétique

 \mathcal{P} : puissance des forces appli-

quées au système

Théorème de Kœnig de l'énergie cinétique

$$E_{\mathbf{k}} = E_{\mathbf{k}}^* + \frac{1}{2}mv^2(G)$$

 $E_{\mathbf{k}}$: énergie cinétique

 $E_{\mathbf{k}}^*$: énergie cinétique barycen-

trique

m : masse du système

v(G) : vitesse du centre de gravité

du système

Énergie mécanique

$$E_{\rm m} = E_{\rm k} + E_{\rm p}$$

 $E_{\rm m}$: énergie mécanique $E_{\rm k}$: énergie cinétique $E_{\rm p}$: énergie potentielle

Énergies potentielles

– énergie potentielle de pesanteur

$$E_{p_{pes}} = Mgz_G$$

 $E_{\rm p_{\rm pes}}$: énergie potentielle de pesanteur

m : masse du système

g: accélération de la pesanteur z_G : cote du centre de gravité du

svstème

- énergie potentielle élastique

$$E_{p_{elas}} = \frac{1}{2}k(\Delta l)^2$$

 E_{Pelas} : énergie potentielle élastique k : constante de raideur du ressort Δl : allongement du ressort

- énergie potentielle de gravitation

$$E_{p_{grav}} = -\mathcal{G}\frac{m_1 m_2}{r}$$

 $E_{p_{grav}}$: énergie potentielle de gravitation

 \mathcal{G} : constante universelle de gravitation

 m_1, m_2 : masses en interaction r: distance séparant les deux masses

– énergie potentielle électrique

$$E_{p_{el}} = qV$$

 $E_{\mathbf{p}_{el}}$: énergie potentielle électrique q: charge ponctuelle

V : potentiel au point où se trouve la charge

Equilibre

$$\frac{\mathrm{d}E_{\mathrm{p}}}{\mathrm{d}x}(x_0) = 0$$

 x_0 : position d'équilibre E_p : énergie potentielle

Équilibre stable – Équilibre instable

Minimum d'énergie potentielle : équilibre stable

Maximum d'énergie potentielle : équilibre instable

Forces conservatives

$$\mathbf{F}_{cons} = -\mathbf{grad}E_{p}$$

Les forces conservatives dérivent d'une énergie potentielle.

Théorème de l'énergie mécanique

$$\frac{\mathrm{d}E_{\mathrm{m}}}{\mathrm{d}t} = \mathcal{P}_{\mathrm{ext\,non\,cons}} + \mathcal{P}_{\mathrm{int\,non\,cons}}$$

*E*_m : énergie mécanique

 $\mathcal{P}_{\text{ext non cons}}$: puissance des forces extérieures au système non

conservatives

P_{int non cons}: puissance des forces intérieures au système (dans le cas d'un système de points) non conservatives

3.4 Oscillateurs

On se reportera également aux oscillateurs électriques dans la partie électronique de cet ouvrage.

Oscillateur harmonique

$$\frac{\mathrm{d}^2 A}{\mathrm{d}t^2} + \omega_0^2 A = 0$$

$$A = \alpha \cos \omega_0 t + \beta \sin \omega_0 t$$

$$A = \gamma \cos(\omega_0 t + \varphi)$$

Un oscillateur harmonique est régit par l'équation ci-contre où : A : grandeur physique ω_0 : pulsation de l'oscillateur α , β , γ , φ : constantes déterminées par les conditions initiales

Portrait de phase d'un oscillateur harmonique

Le portrait de phase d'un oscillateur harmonique est constitué de cercles concentriques.

Oscillateur harmonique amorti

$$\frac{\mathrm{d}^2 A}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}A}{\mathrm{d}t} + \omega_0^2 A = 0$$

A: grandeur physique ω_0 : pulsation de l'oscillateur harmonique Q: facteur de qualité de l'oscillateur

Réponses d'un oscillateur harmonique amorti

Q > 1/2, les deux racines de l'équation caractéristique r_1 et r_2 sont réelles, la solution est du type apériodique : $A(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$

Q=1/2, on est en régime critique, l'équation caractéristique admet une racine double r. La solution est : $A(t)=(\lambda t+\mu)e^{rt}$

Q < 1/2, les deux racines de l'équation caractéristiques sont complexes conjuguées, la solution est alors pseudo-périodique : $A(t) = (\lambda \cos(\beta t) + \mu \sin(\beta t))e^{\alpha t}$ avec α et β respectivement parties réelle et imaginaire de la solution.

Portrait de phase d'un oscillateur amorti

Oscillations forcées

$$\frac{\mathrm{d}^2 A}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}A}{\mathrm{d}t} + \omega_0^2 A = E(t)$$

A: grandeur physique

 ω_0 : pulsation de l'oscillateur harmonique

Q : facteur de qualité de l'oscillateur

E(t): excitation

Si l'excitation est sinusoïdale, on résout une telle équation en utilisant la notation complexe et en posant $\underline{A}(t) = \underline{A}_0 e^{j\omega t}$.

Il ne peut y avoir résonance que si $Q > 1/\sqrt{2}$

3.5 Mouvement d'une particule chargée

Force de Lorentz

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \wedge \mathbf{B})$$

F: force de Lorentz

q : charge de la particule

v : vitesse de la particuleB : champ magnétique

E : champ électrique

Mouvement dans un champ magnétique stationnaire uniforme

$$R = \left| \frac{mv_0}{qB} \right|$$

$$\omega = \left| \frac{qB}{m} \right|$$

Ces lois décrivent la trajectoire circulaire d'une particule de masse m et de charge q abandonnée dans un champ magnétique avec une vitesse \mathbf{v}_0 orthogonale au champ magnétique \mathbf{B} .

R : rayon de la trajectoire

ω : vitesse angulaire de la parti-

cule

Un champ magnétique ne fait que dévier une particule : il ne l'accélère pas

Effet Hall

$$E_{\mathsf{Hall}} = -v \wedge B$$

$$U_{\text{Hall}} = \frac{BI}{nq\ell}$$

 $\mathbf{E}_{\mathrm{Hall}}$: champ électrique créé par effet Hall

 $U_{\rm Hall}$: différence de potentiel qui apparaît aux bornes de la sonde

v : vitesse des particules

B : champ magnétique

I : intensité du courant traversant la sonde

n : densité particulaire

q : charge de la particule

 ℓ : largeur de la sonde

3.6 Systèmes de deux points matériels

Système isolé de deux points matériels

Pour étudier un système isolé de deux points matériels de masse m_1 et m_2 , on étudie le mouvement d'une particule équivalente dans le référentiel barycentrique et de masse $\mu = \frac{m_1 m_2}{m_1 + m_2}$ située en un point M tel que $GM = M_1 M_2 = \mathbf{r}$.

$$\mathbf{GM_1} = \frac{-m_2}{m_1 + m_2} \mathbf{M_1} \mathbf{M_2}$$

$$\mathbf{GM_2} = \frac{m_1}{m_1 + m_2} \mathbf{M_1M_2}$$

$$(m_1+m_2)\mathbf{v}(G)=\mathbf{cste}$$

 m_i : masse de la particule se trouvant en M_i

μ : masse réduite

G : centre de gravité du système

 $\mathbf{v}(G)$: vitesse de ce centre de gravité

 \mathbf{v}_i : vitesse de la particule se trouvant en M_i

Conservation du moment cinétique

$$\mathbf{L}_{\mathcal{O}} = m\mathbf{C}$$

$$p = Cste$$

Dans le cas d'un système isolé de deux particules, il y a conservation du moment cinétique et de la quantité de mouvement.

L : moment cinétique

P : point fictif (représentant le mobile équivalent)

 $\mathbf{v}(P)$: vitesse de ce point m: masse du système

C : constante des aires

Planéité de la trajectoire - Loi des aires

La trajectoire est plane et la vitesse aréolaire est constante :

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{C}{2}$$

« Pour des temps égaux, les aires balayées sont égales. »

Énergie potentielle efficace

$$\begin{split} E_{\rm m}^* &= \frac{1}{2} \mu \dot{r}^2 + E_{{\rm p}_{\it eff}} = E_0 \\ E_{{\rm p}_{\it eff}} &= \frac{\mu C^2}{2r^2} + E_{{\rm p}_{\it int}}(r) \end{split}$$

Pour un système isolé de deux point matériels, il y a conservation de l'énergie mécanique barycentrique.

 $E_{\rm m}^*$: énergie mécanique barycentrique

 $E_{\mathrm{p}_{\mathrm{int}}}$: énergie potentielle efficace $E_{\mathrm{p}_{\mathrm{int}}}(r)$: énergie potentielle intérieure

 μ : masse réduite $\left(\mu = \frac{m_1 m_2}{m_1 + m_2}\right)$

 $r = M_1 M_2$

C : constante des aires

Formules de Binet

$$\mathbf{v} = -C\frac{\mathrm{d}u}{\mathrm{d}\theta}\mathbf{u}_r + Cu\mathbf{u}_\theta$$

$$\mathbf{a} = -C^2 u^2 \left(\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u \right) \mathbf{u}_r$$
$$u = \frac{1}{r}$$

v : vitessea : accélération

C : constante des aires

 θ : angle polaire \mathbf{u}_r : vecteur radial \mathbf{u}_{θ} : vecteur orthoradial

Trajectoires newtonniennes en coordonnées polaires

$$r(\theta) = \frac{p}{1 + e\cos(\theta - \theta_0)}$$

p : paramètre de la conique *e* : excentricité de la conique

e et θ_0 sont déterminés par les conditions initiales

Lois de Kepler

Ces lois décrivent les trajectoires des planètes en supposant le référentiel de Kepler centré sur le soleil galiléen et les trajectoires des différentes planètes indépendantes.

- 1. Les orbites des planètes sont des ellipses ayant le soleil pour foyer.
- 2. La vitesse aréolaire est constante : pour des temps égaux, les aires balayées sont égales.

Dunod. La photocopie non autorisée est un délit.

3. Le carré de la période est proportionnelle au cube du grand axe : $T^2 = \frac{4\pi^2 a^3}{GM_{\rm coloil}}$

4. Mécanique du solide

4.1 Cinématique du solide

Champ de vitesse du solide

$$\mathbf{v}(A,t) = \mathbf{v}(B,t) + \mathbf{AB} \wedge \mathbf{\Omega}(t)$$

v : vitesse du point du solide considéré

 Ω : vecteur instantané de rotation du solide

Roulement sans glissement

$$\mathbf{v}_{g S_1/S_2} = \mathbf{v}(I_{S_1}) - \mathbf{v}(I_{S_2}) = \mathbf{0}$$

 $\mathbf{v}(I_{S_k})$: vitesse du point appartenant au solide S_k et coïncident avec le point I de contact entre les deux solides

 $\mathbf{v}_{g S_1/S_2}$: vitesse de glissement de S_1 par rapport à S_2

Énergie cinétique du solide

$$E_{\mathrm{k}} = \underbrace{\frac{1}{2} m v^2(G)}_{\mathrm{translation}} + \underbrace{\frac{1}{2} J_{\Delta} \Omega^2}_{\mathrm{rotation propre}}$$

*E*_k : énergie cinétique *m* : masse du solide

v(G): vitesse du centre d'inertie

 J_{Δ} : moment d'inertie par rapport à l'axe de rotation instantané du solide dans le référentiel barycentrique

Ω : vecteur vitesse de rotation instantané

Moment d'inertie

Moment d'inertie par rapport à l'axe Δ :

$$J_{\Delta} = \iiint_{\text{solide}} r^2 \, \mathrm{d}m$$

Éléments cinétiques :

 $L_{\Delta} = J_{\Delta}\Omega$ (Moment cinétique) $E_{\rm k} = \frac{1}{2}J_{\Delta}\Omega^2$ (Énergie cinétique)

Théorème d'Huygens

$$J_{\Lambda} = J_G + ma^2$$

 J_{Δ} : moment d'inertie par rapport

à l'axe de rotation

 J_G : moment d'inertie par rapport à l'axe passant par G et parallèle à Λ

Quelques moments d'inertie classiques

homogène de masse

tige mince homogène de masse *m*

$$J_{\Delta} = \frac{1}{2} mR^2$$

$$J_{\Delta} = \frac{2}{5}mR^2 \qquad \qquad J_{\Delta} = \frac{1}{2}mR^2 \qquad \qquad J_{\Delta} = \frac{1}{12}m\ell^2$$

4.2 Théorèmes généraux de la dynamique

Théorème du centre d'inertie

$$m\frac{\mathrm{d}\mathbf{v}_G}{\mathrm{d}t} = \sum_i \mathbf{f}_i$$

 \mathbf{v}_G : vitesse du centre d'inertie du solide \mathbf{f}_i : force extérieure appliquée au solide

Théorème du moment cinétique

$$\frac{\mathrm{d}\mathbf{L}_O}{\mathrm{d}t} = \sum_i \mathbf{OM}_i \wedge \mathbf{f}_i$$

L_O: moment cinétique du solide en O, point immobile \mathbf{f}_i : force extérieure appliquée au solide

 M_i : point d'application de la force fi

Moment cinétique - Moment cinétique barycentrique

$$\mathbf{L}_B = \mathbf{L}_A + \mathbf{B}\mathbf{A} \wedge m\mathbf{v}(P)$$

 $\mathbf{L}^*_{\text{système}} = \mathbf{L}_G$

L : moment cinétique m: masse du solide $\mathbf{v}(P)$: vitesse du point P

L* : moment cinétique barycentrique du solide

Théorème de Kœnig du moment cinétique

$$\mathbf{L}_A = \mathbf{L}^* + \mathbf{AG} \wedge m\mathbf{v}(G)$$

L: moment cinétique

L* : moment cinétique barycentrique

m: masse du système

 $\mathbf{v}(G)$: vitesse du centre de gravité du solide

$$\frac{\mathrm{d}E_{\mathrm{k}}}{\mathrm{d}t} = \mathcal{P}_{\mathrm{ext}}$$

 $E_{\mathbf{k}}$: énergie cinétique \mathcal{P}_{ext} : puissance des forces extérieures appliquées au solide

Puissance des forces appliquées à un solide

$$\mathcal{P} = \boldsymbol{F} \cdot \boldsymbol{v}(G) + \boldsymbol{\mathcal{M}}_G \cdot \boldsymbol{\Omega}$$

 ${\mathcal P}$: puissance des forces appliquées au solide

F : force résultante

 $\mathbf{v}(G)$: vitesse du centre d'inertie

M : moment des forces extérieures

en G

Ω : vecteur de rotation instantanée du solide

Théorème de Kœnig de l'énergie cinétique

$$E_{k} = E_{k}^{*} + \frac{1}{2}mv^{2}(G)$$

*E*_k : énergie cinétique

 $E_{\mathbf{k}}^{*}$: énergie cinétique barycentrique

m: masse du solide

 $\mathbf{v}(G)$: vitesse du centre d'inertie

du solide

Théorème de l'énergie mécanique

$$\frac{\mathrm{d}E_{\mathrm{m}}}{\mathrm{d}t} = \mathcal{P}_{\mathrm{ext\,non\,cons}}$$

E_m énergie mécanique

 $\mathcal{P}_{\text{ext non cons}}$: puissance des forces extérieures non conservatives

Liaison pivot

Pour une liaison pivot parfaite, $\mathcal{M}_{\Delta}=0$, où \mathcal{M}_{Δ} est le moment des actions de contact.

4.3 Contacts entre les solides

5. Optique 105

Roulement sans glissement

$$\mathbf{v}_{g \text{ de } S_1/S_2} = \mathbf{v}(I_{S_1}) - \mathbf{v}(I_{S_2}) = \mathbf{0}$$

 $\mathbf{v}(I_{S_k})$: vitesse du point appartenant au solide S_k et coïncident avec le point I de contact entre les deux solides

 $\mathbf{v}_{\text{g de }S_1/S_2}$: vitesse de glissement du solide S_1 par rapport au solide S_2

Lois de Coulomb

- 1. La réaction normale N est dirigée vers l'extérieur du support.
- 2. Condition de roulement sans glissement :

$$\|\mathbf{T}\| < f_{\mathrm{s}} \|\mathbf{N}\|$$

où \mathbf{T} est la réaction tangentielle ou force de frottement, \mathbf{N} la réaction normale et f_s le coefficient de frottements statiques.

3. S'il y a glissement, **T** est dans la même direction que la vitesse de glissement et de sens opposé. Alors :

$$\|\mathbf{T}\| = f_{\mathrm{d}} \|\mathbf{N}\|$$

où $f_{\rm d}$ est le coefficient de frottement dynamique, souvent confondu avec $f_{\rm s}$.

5. Optique

5.1 Généralités

Propagation dans le vide d'une onde lumineuse

$$\lambda = cT = \frac{c}{2}$$

 λ : longueur d'onde du signal

c : vitesse de la lumière dans le vide

 ν : fréquence du signal

T : période du signal

$$v = \frac{c}{n}$$

$$\lambda = vT = \frac{v}{2}$$

v : vitesse de la lumière dans le mi-

n : indice du milieu T : période du signal ν : fréquence du signal

Optique géométrique

Loi de Snell-Descartes

$$n_1\sin i_1=n_2\sin i_2$$

$$r = i_1$$

5. Optique 107

Prisme

$$\sin i_1 = n \sin r_1$$

$$\sin i_2 = n \sin r_2$$

$$r_1 + r_2 = A$$

Déviation du prisme

$$D = i_1 + i_2 - A$$

$$D_{\rm m} = 2\arcsin\left(n\sin\frac{A}{2}\right) - A$$

D: déviation

A: angle au sommet du prisme $D_{\rm m}$: minimum de déviation i: angle d'incidence au minimum de déviation

Approximation de Gauss

Pour se placer dans l'approximation de Gauss, il faut des faisceaux peu ouverts et des angles d'incidence petits.

Dioptre sphérique

$$\frac{n_1}{p'} - \frac{n_2}{p} = \frac{n_1 - n_2}{r}$$

p : abscisse du point objet *p'* : abscisse du point image

 $R = \overline{SC}$: rayon algébrique du dioptre

Miroirs sphériques

Miroir convexe ($R = \overline{SC} > 0$)

Relation de conjugaison des miroirs sphériques

$$\frac{1}{p'} + \frac{1}{p} = \frac{2}{R}$$

R: rayon algébrique du miroir (R < 0 pour un miroir concave et R > 0 pour un miroir divergent).

p': distance algébrique de S au point image

p : distance algébrique de *S* au point objet

Miroir plan

$$p' = -p$$

p' : distance algébrique de S au point image

p: distance algébrique de S au point objet

Lentilles minces

Lentille convergente

Relation de conjugaison des lentilles minces

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

f': distance focale de la lentille (f' < 0) pour une lentille divergente et f' > 0 pour une lentille convergente).

p': distance algébrique du foyer au point image

p : distance algébrique du foyer au point objet

Relation de Descartes - Relation de Newton

$$\frac{f'}{p'} + \frac{f}{p} = 1$$

(relation de Descartes)

$$ff' = (p' - f')(p - f)$$

(relation de Newton)

5. Optique 109

Grandissement

$$\gamma = \frac{p'}{p}$$

 γ : grandissement

p': distance algébrique de O au point image

p : distance algébrique de O au point objet

5.3 Interférences lumineuses

Obtention d'interférences

On ne peut obtenir d'interférences qu'avec des rayons lumineux issus de deux sources cohérentes secondaires, obtenues avec une seule source par division ou du front d'onde ou de l'amplitude.

Chemin optique dans un milieu homogène isotrope

$$[SM] = c \cdot \tau_{SM}$$

[SM]: chemin optique de S à M c: vitesse de la lumière dans le vide

 τ_{SM} : temps mis par le signal pour parcourir la distance SM

Différence de marche

$$\delta = [SP_1M] - [SP_2M]$$

 δ : différence de marche $[SP_jM]$: chemin optique du rayon passant par P_j

Vibration lumineuse

$$s(M) = s_0 \cos \left(\omega t - \varphi_S - \frac{2\pi}{\lambda}[SM]\right)$$

s(M): vibration lumineuse en M S_0 : amplitude de la vibration ω : pulsation de la vibration lumineuse

 ϕ_S : phase de la vibration à la source

λ: longueur d'onde

[SM]: chemin optique de S à M

Vibration complexe

$$s(M) = S_0 e^{i(\omega t - \varphi_s)} e^{-\frac{2i\pi}{\lambda}[SM]}$$

 $\underline{s}(M)$: vibration lumineuse complexe en M

 S_0 : amplitude de la vibration ω : pulsation de la vibration lumineuse

 φ_S : phase de la vibration à la source

λ: longueur d'onde

[SM] : chemin optique de S à M

Plan d'onde

On appelle plan d'onde un plan où tous les points sont dans le même état vibratoire.

Théorème de Malus

Les rayons lumineux sont perpendiculaires en tout point aux surfaces d'ondes.

Éclairement

$$E(M) = \alpha s^2(M)$$

$$E(M) = \frac{1}{2} \alpha \underline{s}(M) \underline{s}^*(M)$$

E(M): éclairement au point M $\alpha = c\varepsilon_0$: une constante positive (E est en fait le vecteur de Poyting, voir cours d'électromagnétisme) s(M): vibration lumineuse en M $\underline{s}(M)$: vibration lumineuse complexe en M

Interférences

$$E(M) = 2E_0(1 + \cos \Delta \varphi(M))$$

E(M): éclairement

 E_0 : éclairement de la source $\Delta \varphi(M)$: déphasage en M

L'écran est brillant si $\Delta \varphi = 2k\pi$,

 $k \in \mathbb{Z}$

L'écran est noir si :

$$\Delta \varphi = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$$

5. Optique 111

Ordre d'interférence

$$p = \frac{\Delta \varphi}{2\pi} = \frac{\delta}{\lambda}$$

p : ordre d'interférence $\Delta \varphi$: déphasage en M δ : différence de marche λ : longueur d'onde L'écran est brillant si $p \in \mathbb{Z}$ L'écran est sombre si $p \in \mathbb{Z} + \frac{1}{2}$

Contraste

$$C = \frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}}$$

C: contraste

 E_{max} : éclairement maximum E_{min} : éclairement minimum

Trous d'Young

$$\delta(x) = \frac{ax}{D}$$
 (différence de marche)

$$E(x) = 2E_0 \left(1 + \cos \frac{2\pi}{\lambda} \frac{ax}{D} \right)$$
$$i = \frac{\lambda D}{a} \text{ (interfrange)}$$

5.4 Interféromètre de Michelson

Schémas équivalents avec une source ponctuelle

Source ponctuelle – Source étendue

Dans la suite nous considérerons que l'interféromètre est éclairé avec une source étendue : les interférences sont localisées à l'infini (observables dans le plan focal image d'une lentille convergente) alors qu'elles sont délocalisées avec une source ponctuelle.

Lame d'air

 $\delta = 2e \cos i$

 δ : différence de marche

i : angle d'incidence

e: « épaisseur » entre les miroirs

5. Optique 113

Figure d'interférence

Par symétrie, des anneaux. r_n : rayon du n^e anneau λ : longueur d'onde e: « épaisseur » entre les miroirs f': distance focale de la lentille utilisée pour l'observation (valable si le centre de la figure d'interférence est brillant)

Coin d'air

$$\delta = 2\alpha x$$

 δ : différence de marche α : angle entre les deux miroirs (quelques dixièmes de degrés)

x : abscisse du point du miroir considéré

Figure d'interférence

Par symétrie, des franges.

i : interfrange

λ: longueur d'onde

 α : angle entre les deux miroirs

γ : grandissement de la lentille utilisée pour l'observation

Source émettant un doublet

$$E(e) = 4E_0 \left(1 + V(e) \cos \left(\frac{4\pi e}{\lambda_0} \right) \right)$$

$$V(e) = \cos \left(2\pi \frac{\delta \lambda}{\lambda_0^2} e \right)$$

On observe des battements :

Entre les fréquences ν et $\nu + d\nu$ la source émet :

$$dE = L(v) dv$$

Source à raie spectrale

$$E(e) = 4E_0 \left(1 + V(e) \cos \left(\frac{4\pi e}{\lambda_0} \right) \right)$$

$$V(e) = \sin_c \left(2\pi \frac{\delta \lambda}{\lambda_0^2} e \right)$$

5. Optique 115

5.5 Autres dispositifs d'interférences

Le Fabry—Pérot

Le Fabry–Pérot permet de réaliser des interférences entre une infinité d'ondes, il est donc d'une très grande précision.

Expression de l'éclairement d'un Fabry-Pérot

$$E(\Phi) = \frac{E_0}{1 + \frac{4r^2}{(1 - r^2)^2} \sin^2\left(\frac{\Phi}{2}\right)}$$
$$\Phi = \frac{4\pi e}{\lambda_0} \cos i$$
$$F = \frac{4r^2}{(1 - r^2)^2} : \text{finesse}$$

Miroirs de Fresnel

Expression de l'éclairement des miroirs de Fresnel

$$E(x) = \frac{E_0}{2} \left(1 + \cos \left(\frac{2\pi\delta}{\lambda} \right) \right)$$
$$\delta = \frac{2d\alpha}{d+D}$$

 α : angle entre les miroirs

x : abscisse d'un point de l'écran

d : distance entre la source et l'ar-

rête des miroirs

D : distance entre l'arrête des mi-

roirs et l'écran

λ : longueur d'onde

5.6 Diffraction des ondes lumineuses

Principe d'Huygens-Fresnel

Quand une onde lumineuse traverse une ouverture (Σ) qui la limite , pour décrire l'onde diffractée au delà de (Σ) , on suppose que chaque surface élémentaire $(\mathrm{d}\Sigma)$ autour du point courant P de (Σ) réemet vers l'avant une ondelette sphérique :

- de même fréquence que l'onde incidente;
- en phase en \vec{P} avec l'onde incidente;
- d'amplitude proportionnelle à celle de l'onde incidente et à $(d\Sigma)$.

C'est la superposition de ces ondelettes qui décrit l'onde diffractée.

Conditions de Fraunhofer

On observe la diffraction à l'infini (c'est-à-dire à une distance très grande devant les dimensions de l'objet diffractant ou, mieux, au foyer objet d'une lentille convergente).

Montage de la diffraction à l'infini

5. Optique 117

Formulation pratique du principe d'Huygens-Fresnel

$$s(\mathit{M},t) = kS_0 \mathrm{e}^{\mathrm{i} \left(\omega t - \frac{2\pi}{\lambda}[\mathit{SOM}]\right)} \iint_{P \in \Sigma} t(P) \mathrm{e}^{\mathrm{i} \frac{\pi}{\lambda} n \mathbf{OP}(\mathbf{u} - \mathbf{u}_0)} \, \mathrm{d}\Sigma$$

k : constante de Fraunhoher

 S_0 : amplitude de la vibration lumineuse t(P): transparence de l'objet diffractant n: indice du milieu (supposé homogène) λ : longueur d'onde de la lumière utilisée

Diffraction par une ouverture rectangulaire

$$E(X,Y) = k^2 S_0^2 a^2 b^2 \sin^2 \left(\frac{\pi a X}{\lambda f}\right) \sin^2 \left(\frac{\pi b Y}{\lambda f}\right)$$

k : constante de Fraunhofer

a: longueur de la fente

b: largeur de la fente

f : distance focale de la lentille utilisée pour l'observation

λ : longueur d'onde de la lumière utilisée

On suppose ici que t(P)=1 en tout point de l'ouverture et que cette même ouverture est plongée dans un milieu d'indice uniforme 1.

Diffraction par un motif circulaire

La majorité de la lumière est dans un disque de rayon angulaire $\theta = 0.61^{\frac{\Lambda}{1}}$ (tache d'Airy), où θ est le rayon angulaire du premier anneau sombre.

Critère de séparation de Rayleigh: deux taches lumineuses sont séparées si leur centres sont distincts de plus du rayon de la tache d'Airy.

On obtient la même figure à l'écran que pour une ouverture de la même forme, si ce n'est que le centre est très brillant.

Électromagnétisme

6.1 Électrostatique

Symétries du champ électrique

Le champ **E** est symétrique par rapport aux plans de symétrie des charges et antisymétrique par rapport aux plans d'antisymétrie des charges.

Champ et potentiel créés par une charge fixe

$$E(M)$$

$$r$$

$$M$$

$$V(M) = \frac{q}{4\pi\epsilon_0 r}$$

$$E(M) = \frac{q}{4\pi\epsilon_0 r^2} \mathbf{u}$$

$$\mathbf{E} = -\mathbf{grad}V$$

q : charge ponctuelle fixe ε_0 : perméabilité du vide r: distance entre le point M et la charge $\mathbf{E}(M)$: champ électrique en M

V(M): potentiel électrique en M

Distribution discrète - Distribution continue

Distribution discrète:

Distribution continue:

$$\mathbf{E}(M) = \sum_{i} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_i^2} \mathbf{u}_i$$

 $\mathbf{E}(M) = \iiint \frac{1}{4\pi\varepsilon_0} \frac{\rho}{r^2} \mathbf{u} \, d\tau$

 q_i : charge ponctuelle située en r_i ε_0 : permittivité du vide

 ρ : densité de charge ϵ_0 : permittivité du vide

Équation de Poisson

$$\Delta V + \frac{\rho}{\varepsilon_0} = 0$$

Équation vérifiée par le potentiel électrique en régime permanent.

V : potentiel électrique ρ : densité de charge

 ε_0 : permittivité du vide

Théorème de Gauss

$$\iint \mathbf{E}(M)\mathbf{n} \, \mathrm{d}S = \frac{Q_{\mathrm{int}}}{\varepsilon_0}$$

 $\mathbf{E}(M)$: champ électrique au point M

n : normale en *M* à la surface Q_{int} : charges intérieures à la surface fermée

 ε_0 : permittivité du vide

Théorème de Gauss pour la gravitation

$$\oint \mathbf{G}(M)\mathbf{n} \, \mathrm{d}S = -4\pi \mathcal{G} M_{\text{int}}$$

G(M): champ de gravitation au point M

n : normale en *M* à la surface M_{int} : masse intérieure à la surface fermée

 \mathcal{G} : constante universelle de gravitation

Champ électrique créés par un plan infini

$$\mathbf{E}(M) = \pm \frac{\sigma}{2\varepsilon_0} \mathbf{u}_z$$
$$\int + \sin z > 0$$

 $\mathbf{E}(M)$: champ électrique créé en M par le plan

 σ : charge surfacique ε_0 : permittivité du vide

 \mathbf{u}_z : vecteur normal à la surface

Condensateur plan

 $\mathbf{E} = 0$ à l'extérieur

 $\mathbf{E} = \frac{\sigma}{\varepsilon_0} \mathbf{u}_z$ à l'intérieur

E: champ électrique σ: charge surfacique ε_0 : permittivité du vide On définit la capacité C du condensateur:

$$C = \frac{\varepsilon_0 S}{e}$$

S: surface des armatures e : distance entre les armatures

Dipôle électrostatique

$$p = aNP$$

$$V(M) = \frac{p\cos\theta}{4\pi\epsilon_0 r^2} = \frac{\mathbf{p} \cdot \mathbf{OM}}{4\pi\epsilon_0 OM^3}$$

 $\mathbf{E} = -\mathbf{grad}V$

q : charge positive

N : barycentre des charges néga-

P: barycentre des charges posi-

p: moment dipolaire

V(M): potentiel électrique du di-

E : champ électrique

équipotentielles

Énergie potentielle – Moment subi dans un champ extérieur

$$E_p = -\mathbf{p} \cdot \mathbf{E}_{ext}(M)$$

$$\mathcal{M} = \mathbf{p} \wedge \mathbf{E}_{\mathrm{ext}}(M)$$

 E_p : Énergie potentielle

M : moment résultant des forces électriques

p: moment dipolaire

E_{ext} : champ électrique auquel est

soumis le dipôle

6.2 Magnétostatique

Symétries du champ magnétique

Le champs **B** est symétrique par rapport aux plans d'antisymétrie des courants et symétrique par rapport aux plans d'antisymétrie des courants.

Loi de Biot et Savart

$$\boldsymbol{dB}(M) = \frac{\mu_0\boldsymbol{dC}(P)}{4\pi r^2} \wedge \boldsymbol{u}_{PM}$$

$$dC = \begin{cases} I dl \text{ pour un circuit filiforme} \\ qv \text{ pour une charge ponctuelle} \\ j d\tau \text{ pour un courant volumique} \\ j_S dS \text{ pour un courant surfacique} \end{cases}$$

dB: champ magnétique créé par

l'élément de courant dC dC: élément de courant μ_0 : perméabilité du vide

r: distance du point courant au point M

q : charge ponctuelle

j_S: vecteur courant surfacique

j: vecteur courant

Théorème d'Ampère

$$\oint \mathbf{B}(M) \cdot \mathbf{dl} = \mu_0 I_{\text{enlac\'ee}}$$

 $\mathbf{B}(M)$: champ magnétique μ_0 : perméabilité du vide $I_{\text{enlac\'e}}$: intensité enlacée par la courbe fermée d'Ampère \mathbf{dl} : choisi en accord avec l'orienta-

dl : choisi en accord avec l'orientation de l'intensité

Champ magnétique créé par une spire circulaire

$$\mathbf{B}(M) = \frac{\mu_0 I}{2R} \sin^3 \alpha \mathbf{e}_z$$

Champ magnétique à l'intérieur un solénoïde infini

 $\mathbf{B} = \mu_0 n I \mathbf{e}_z$

 $\mathbf{B} = \mu_0 j_{\mathbf{S}} \mathbf{e}_z$

B : champ à l'intérieur du solénoïde

n : nombre de spires par unité de longueur

I : intensité du courant *j*₅ : courant surfacique

e_z : vecteur directeur sur l'axe du solénoïde orienté par le sens du courant

 μ_0 : perméabilité du vide

Moment magnétique d'une spire

 $\mathbf{m} = IS\mathbf{n}$

m : moment magnétique de la spire

 \bar{S} : surface de la spire

I : intensité parcourant la spiren : normale à la spire dirigée par le

sens du courant

Énergie potentielle – Moment magnétique

 $E_{p} = -\mathbf{m} \cdot \mathbf{B}$

 $\mathcal{M} = \mathbf{m} \wedge \mathbf{B}$

 $E_{\rm p}$: énergie potentielle magnétique

m : moment de force exercé sur la spire

B : champ magnétique auquel est soumis la spire

m : moment magnétique de la spire

Force de Laplace

 $df = dC \wedge B$

df : force élémentaire **dC** : élément de courant **B** : champ magnétique

Équations de Maxwell dans le vide

Vecteur courant

$$\mathbf{j} = n_{p}q\mathbf{v} = \rho\mathbf{v}$$

$$\mathbf{j}_{S} = \sigma \mathbf{v}$$

j: vecteur courant

is : vecteur de courant surfacique

v : vitesse des porteurs de charge n_p : densité particulaire de porteurs

q : charge d'un porteur

ρ : densité volumique de charge

σ : densité surfacique de charge

Équation de conservation de la charge

$$\operatorname{div} \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$$

i : vecteur courant

ρ: charge volumique

Ces équations portent les noms respectifs de:

 $\text{div } \mathbf{E} = \frac{\rho}{\epsilon_0}$

 $\mathbf{rot}\;\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

 $\operatorname{div} \mathbf{B} = \mathbf{0}$

 $\mathbf{rot} \, \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

Maxwell–Gauss

 Maxwell–Faraday - sans nom

- Maxwell-Ampère

Le terme $\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ est appelé courant

de déplacement.

E, B: champs électrique et magné-

j : vecteur densité de courant

ρ: charge volumique

 ε_0 , μ_0 : permittivité et perméabilité

du vide

Les équations de Maxwell sont linéaires : toute combinaison linéaire de solutions est encore une solution.

Puissance des forces électromagnétiques

$$dP = jE d\tau$$

dP: puissance élémentaire par unité de volume dτ

i : vecteur courant **E** : champ électrique

Densité d'énergie électromagnétique

$$W_{\rm em} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$$

W_{em}: énergie électromagnétique

E : champ électrique

B : champ magnétique

 ε_0 : permittivité du vide

 μ_0 : perméabilité du vide

Vecteur de Poynting

$$\Pi = \frac{E \wedge B}{\mu_0}$$

Π : vecteur de Poynting

E: champ électrique

B: champ magnétique

 μ_0 : perméabilité du vide

Théorème de Poynting : forme locale

$$-\frac{\partial}{\partial t} \left(\frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0} \right) = \mathbf{j}\mathbf{E} + \operatorname{div} \left(\frac{\mathbf{E} \wedge \mathbf{B}}{\mu_0} \right)$$

La perte d'énergie électromagnétique est due à l'effet Joule et au rayonnement du vecteur de Poynting.

Potentiel vecteur

$$B = rot A$$

$$\mathbf{A}(M) = \frac{\mu_0}{4\pi} \int_{\text{circuit}} \frac{i \cdot \mathbf{dl}}{r}$$

A: potentiel vecteur

B : champ magnétique

i : intensité dans le circuit filiforme *r* : distance du point *M* au point cou-

rant du circuit

 μ_0 : perméabilité du vide

Expression générale du champ électrique

$$\mathbf{E} = -\mathbf{grad}V - \frac{\partial \mathbf{A}}{\partial t}$$

E: champ électrique

V : potentiel électrique

A: potentiel vecteur

Jauge de Lorentz

$$\operatorname{div} \mathbf{A} + \mu_0 \epsilon_0 \frac{\partial V}{\partial t} = 0$$

A : potentiel vecteur

V : potentiel électrique

 ε_0 : permittivité du vide μ_0 : perméabilité du vide

Cette jauge permet de fixer le poten-

tiel V

Relations de passage

$$E_{2t} = E_{1t}$$

$$\textbf{E}_{2n}-\textbf{E}_{1n}=\frac{\sigma}{\epsilon_0}\textbf{n}_{1\rightarrow 2}$$

$$\boldsymbol{B}_{2t} - \boldsymbol{B}_{1t} = \mu_0 \boldsymbol{j}_S \wedge \boldsymbol{n}_{1 \rightarrow 2}$$

$$B_{2n} = B_{1n}$$

 \mathbf{E}_{in} : composante normale du champ \mathbf{E}_{i}

 \mathbf{B}_{it} : composante tangentielle du champ \mathbf{B}_{i}

σ : charge surfacique

j_S : vecteur densité de courant surfacique

 $\mathbf{n}_{1\rightarrow 2}$: normale à la surface ϵ_0 : permittivité du vide μ_0 : perméabilité du vide

6.4 Conduction métallique

Loi d'Ohm locale

$$\mathbf{i} = \gamma \mathbf{E}$$

j : vecteur courant

E : champ électrique γ : conductivité

Loi d'Ohm globale

$$\int_{A}^{B} \mathbf{E} \cdot \mathbf{dl} = R_{AB} \cdot I$$

E: champ électrique

I : intensité circulant dans le circuit

 $R = \frac{\ell}{\gamma S}$: résistance d'un circuit de

longueur ℓ et de section S

Propriétés locales des champs dans les métaux

- 1. $\rho = 0$: les charges sont surfaciques
- 2. $f \ll 10^{17} \text{Hz} \Longrightarrow \left\| \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right\| \ll \|\mathbf{j}_{\text{conduction}}\|$
- 3. En haute fréquence, les courants sont surfaciques (sur une épaisseur

dite épaisseur de peau : $\delta = \sqrt{\frac{2}{\mu_0\gamma\omega}}).$

6.5 Induction dans un circuit fixe avec B variable

Force électromotrice

$$e_{AB} = \int_{A}^{B} \left(-\frac{\partial \mathbf{A}}{\partial t} \cdot \mathbf{dl} \right)$$

 e_{AB} : forcé électromotrice \mathbf{A} : potentiel vecteur

Différence de potentiel

$$V(B) - V(A) = e_{AB} - R_{AB}i$$

 e_{AB} : force électromotrice V(B) - V(A): différence de potentiel entre les points A et B: résistance du circuit ABi: intensité du courant circulant dans le circuit

Flux de B à travers le circuit

$$\Phi = \iint_{\text{circuit}} \mathbf{B} \cdot \mathbf{n} \, \mathrm{d}S$$

Φ: flux de B à travers le circuit
B: champ magnétique
n: normale n au circuit compatible avec le sens du courant

Loi de Faraday

$$e_{\text{circuit}} = -\frac{\partial \Phi}{\partial t}$$

 Φ : le flux de **B** à travers le circuit e_{circuit} : la force électromotrice du circuit

Loi de Lenz

Les conséquences des phénomènes d'induction s'opposent toujours aux causes qui leur ont donné naissance. En terme de flux, cela signifie que si le flux du champ magnétique varie, l'induction va produire un champ magnétique qui tendra à compenser cette variation de flux.

Auto inductance d'un circuit

$$\Phi = Li$$

Φ : flux de **B** à travers le circuit *L* : coefficient d'auto inductance du circuit *i* : intensité dans le circuit

Mutuelle inductance d'un circuit

$$\Phi_{1\rightarrow 2}=Mi_1$$

$$\Phi_{2\rightarrow 1} = Mi_2$$

 $\Phi_{i o j}$: flux du champ \mathbf{B} , induit par le circuit i, à travers le circuit j i_k : courant dans le circuit k M: coefficient de mutuelle inductance

Flux tota

$$\Phi_1 = Li_1 + Mi_2$$

 Φ_1 : flux de **B** à travers le circuit 1 L: coefficient d'auto inductance M: coefficient de mutuelle inductance i_k : intensité dans le circuit k

Énergie magnétique

$$W_{\rm em} = \frac{Li_1^2}{2} + Mi_1i_2$$

 $W_{\rm em}$: énergie électromagnétique stockée dans le circuit L: coefficient d'auto inductance M: coefficient de mutuelle inductance i_k : intensité dans le circuit k

Propriétés du transformateur idéal

$$1. \frac{u_2(t)}{u_1(t)} = \frac{N_2}{N_1}$$

- 2. Si le secondaire est en court-circuit alors $\left| \frac{i_2}{i_1} \right| = \frac{N_1}{N_2}$
- 3. Le rapport de puissance du primaire au secondaire est de 100%
 - 4. On a $R_{\text{vue du primaire}} = \left(\frac{N_1}{N_2}\right)^2 R_{\text{charge}}$

Induction dans un circuit mobile soumis à B stationnaire

$$\mathbf{B}' = \mathbf{B}$$

$$\mathbf{E}' = \underbrace{\mathbf{E}}_{-\mathbf{grad}V} + \mathbf{v} \wedge \mathbf{B}$$

$$\mathbf{j}_{\text{sol}} = \mathbf{j}_{\text{cond}}$$

B': champ magnétique dans le référentiel du conducteur

B : champ magnétique dans le référentiel du sol

 \mathbf{E}' : champ électrique dans le référentiel du conducteur E: champ électrique dans le référen-

tiel du sol v : vitesse du conducteur par rapport au sol

jsol : vecteur densité de courant dans le référentiel lié au sol

j_{cond} : vecteur densité de courant dans le référentiel du conducteur

Champ électromoteur

$$\mathbf{E}_m = \mathbf{v} \wedge \mathbf{B}$$

 \mathbf{E}_m : champ électromoteur v : vitesse du conducteur

B: champ magnétique

Force électromotrice

$$e_{AB} = \int_{A}^{B} (\mathbf{v} \wedge \mathbf{B}) \cdot \mathbf{dl}$$

$$V(B) - V(A) = e_{AB} - R_{AB}i$$

 e_{AB} : force électromotrice du circuit R_{AB} : résistance du circuit i : intensité du circuit

v: vitesse du conducteur B: champ magnétique

V(M): potentiel au point M

Loi de Faraday

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

e: force électromotrice

 Φ : flux de **B** à travers le circuit

6.7 Matériaux magnétiques

Aimantation

 $d\mathbf{m} = \mathbf{M} d\tau$

M: aimantation

m : moment magnétique

Courants d'aimantation

 $\mathbf{j}_{\text{aimantation}} = \mathbf{rot} \, \mathbf{M}$

 $\mathbf{j}_{S \text{ aimantation}} = \mathbf{M} \wedge \mathbf{n}$

 $j_{\text{aimantation}}$: vecteur courant d'aimantation

is aimantation: vecteur courant surfa-

cique d'aimantation **M** : aimantation **n** : normale à la surface

Excitation magnétique

 $\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$

 $\boldsymbol{B}=\mu_0\left(\boldsymbol{H}+\boldsymbol{M}\right)$

H : excitation magnétique **B** : champ magnétique

M: aimantation

 μ_0 : perméabilité du vide

Équation de Maxwell - Ampère en ARQS

 $rot H = j_{conduction}$

H : excitation magnétique

j_{conduction} : vecteur courant de

conduction

Aimantation des matériaux linéaires

 $\mathbf{M} = \chi_m \mathbf{H}$

M: aimantation

 \mathbf{H} : excitation magnétique χ_m : susceptibilité magnétique

Différentes catégories de matériaux magnétiques

– diamagnétiques : $\chi_m \sim -10^{-5} < 0$

– paramagnétiques : $\chi_{\rm m} \sim 10^{-4} > 0$

– ceux pour lesquels $\chi_m \ll 1$ qui ne sont pas linéaires

Champ magnétique dans les matériaux linéaires

$$\boldsymbol{B}=\mu_0\mu_r\boldsymbol{H}$$

$$\mu_r = 1 + \chi_m$$

 ${f B}$: champ magnétique ${f H}$: excitation magnétique ${f \mu}_0$: perméabilité du vide

 μ_r : perméabilité relative χ_m : susceptibilité magnétique

Diamagnétiques

$$\chi_{\rm m} = -n\mu_0 \frac{Ze^2}{6m_{\rm o}} < r^2 >$$

 $\chi_{\rm m}$: susceptibilité magnétique μ_0 : perméabilité du vide n: densité particulaire Z: charge du noyau e: charge élémentaire m_e : masse de l'électron

< $r^2 >$: distance moyenne de l'électron au noyau

Paramagnétiques

$$\chi_{\rm m} = \frac{n\mu_0 m^2}{3kT}$$

 χ_m : susceptibilité magnétique n: densité particulaire μ_0 : permittivité du vide m: moment magnétique k: constante de Boltzmann

T: température

Aimantation : cycle d'hystéresis

M : aimantation

H: excitation magnétique $M_{\rm r}$: aimantation rémanente

 $H_{\rm c}$: champ coercitif

Dispositif de mesure de H et de B

7. Ondes 131

$$H(t) = \frac{N_1}{\ell R} u_1(t)$$

$$B(t) = \frac{RC}{N_2 S} u_2(t)$$

H : valeur de l'excitation magnétique

B: valeur du champ magnétique N_1 : nombre de spires du primaire N_2 : nombre de spires du secondaire

ℓ: longueur du tore

7. Ondes

7.1 Oscillateurs couplés

Couplage par un ressort

$$m\ddot{x}_1 = -k(x_1 - x_2) - Kx_1$$
 (1)

$$m\ddot{x}_2 = -k(x_2 - x_1) - Kx_2 (2)$$

Résolution

Dans ces cas simples, on combine linéairement les équations (1) et (2).

$$s = (1) + (2)$$

$$\ddot{s} + \omega_s^2 s = 0$$

$$d = (1) - (2)$$

$$\ddot{d} + \omega_d^2 d = 0$$

Modes propres

$$\omega_s = \sqrt{\frac{K}{m}}$$

$$\omega_d = \sqrt{\frac{2k+K}{m}}$$

Le système d'oscillateurs couplés vibre uniquement à ω_s si d=0, c'est-à-dire si les oscillateurs sont lancés en phase.

Le système d'oscillateurs couplés vibre uniquement à ω_d si s=0, c'està-dire si les oscillateurs sont lancés en opposition de phase.

Battements

Si le couplage est fort et que l'on écarte un seul oscillateur de l'équilibre, on observe un phénomène de battements :

Résonance

Si on force l'oscillateur à osciller, on observera aux pulsations ω_s et ω_d des résonances :

7.2 Équation de d'Alembert - Ondes stationnaires

Équation de d'Alembert

$$\Delta F = \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2}$$

 $F(\mathbf{r},t)$: une grandeur physique qui vérifie l'équation de d'Alembert c: vitesse de propagation de l'onde Δ : laplacien

Solutions de l'équation de d'Alembert à une dimension

$$F(x,t) = f\left(t - \frac{x}{c}\right) + g\left(t + \frac{x}{c}\right)$$

f : partie onde progressive de la solution

g : partie onde régressive de la solution

7. Ondes 133

Onde stationnaire

$$F(\mathbf{r},t) = f(r)g(t)$$

Dans le cas d'une onde stationnaire, il y a découplage entre le temps et le repérage spatial.

Onde plane progressive harmonique (OPPH)

$$F = F_0 \cos\left(\omega t - \mathbf{k} \cdot \mathbf{OM}\right)$$

$$\underline{F} = \underline{F}_0 e^{i(\omega t - \mathbf{k} \cdot \mathbf{OM})}$$

$$\mathbf{k} = \frac{\omega}{c} \mathbf{u}$$

Ces notations sont intrinsèques à l'OPPH.

F : la grandeur physique qui décrit l'onde

k : vecteur d'onde donnant la direction de propagation

OM: vecteur position

u : vecteur unitaire selon la direction de propagation

ω: pulsation de l'onde

c : vitesse de propagation de l'onde

Onde plane progressive harmonique : notation complexe

$$\frac{\partial \cdot}{\partial t} = i\omega \cdot$$

$$\nabla \cdot = -ik \cdot$$

Lorsqu'on utilise la notation complexe, les opérateurs usuels prennent des formes très simples.

Onde sur une file d'atomes - Onde sur une corde

$$\frac{\partial^2 \xi_n}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \xi_n}{\partial t^2}$$
$$c = \sqrt{\frac{ka^2}{m}}$$

 ξ_n : le déplacement du n^e atome k: constante de raideur des ressorts

a : distance au repos entre deux atomes

m : masse d'un atome

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$
$$c = \sqrt{\frac{T_0}{\rho_t}}$$

y: ordonnée du point

 T_0 : tension au repos de la corde ρ_I : masse linéique de la corde

7.3 Ondes électromagnétiques dans le vide

Équations de propagation des champs

$$\Delta \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\Delta \mathbf{B} = \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

E : champ électrique

B : champ magnétique μ_0 : perméabilité du vide

 ε_0 : permittivité du vide

Vecteur d'onde d'une OPPH

$$\mathbf{k} = k\mathbf{u}$$

$$k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$$

k: vecteur d'onde

u : vecteur unitaire directeur ω : pulsation de l'onde

λ: longueur d'onde de l'onde

c : vitesse de propagation de

Champs transverses

$$div \mathbf{E} = 0 = -i\mathbf{k}\mathbf{E}$$

$$\operatorname{div} \mathbf{B} = 0 = -\mathrm{i}\mathbf{k}\mathbf{B}$$

k : vecteur d'onde **E** : champ électrique

B : champ magnétique

E et B sont orthogonaux à la direction de propagation.

Relation de dispersion - Relation de structure

$$k = \frac{\omega}{c}$$

$$\mathbf{B} = \frac{\mathbf{k}}{\omega} \wedge \mathbf{E}$$

Représentation du champ électromagnétique dans le vide

7. Ondes 135

Polarisation

- elliptique :

$$\mathbf{E}(z=0,t) = \begin{pmatrix} E_{0x}\cos\omega t \\ E_{0y}\cos(\omega t + \varphi) \end{pmatrix}$$

- circulaire :

$$\mathbf{E}(z=0,t) = \begin{pmatrix} E_0 \cos \omega t \\ E_0 \sin \omega t \end{pmatrix}$$

- rectiligne :

$$\mathbf{E}(z=0,t) = \begin{pmatrix} E_{0x}\cos\omega t \\ E_{0y}\cos\omega t \end{pmatrix}$$

Lames à retard

Une lame 1/4 d'onde déphase de $\pi/2$.

- une onde polarisée rectilignement ressort de ce type de lame polarisée elliptiquement.
- une onde polarisée elliptiquement ressort de ce type de lame polarisée rectilignement.

Une lame 1/2 d'onde déphase de π .

- une onde polarisée elliptiquement droite ressort elliptique gauche de ce type de lame.
- une onde polarisée rectilignement ressort symétrique par rapport à son axe lent de ce type de lame.

Vecteur de Poynting

$$\mathbf{\Pi} = \mathbf{E} \wedge \frac{\mathbf{B}}{\mu_0} = \frac{E^2}{\mu_0 c} \mathbf{u} = \frac{\varepsilon B^2}{c} \mathbf{u}$$

$$\underline{\Pi} = \underline{\textbf{E}} \wedge \frac{\textbf{B}^*}{\mu_0}$$

Π : vecteur de Poynting

E : champ électrique **B** : champ magnétique

 μ_0 : perméabilité du vide

Rayonnement dipolaire

$$\mathbf{B} = \frac{\mu_0 \sin \theta}{4\pi rc} \ddot{p} \left(t - \frac{r}{c} \right) \mathbf{u}_{\varphi}$$

$$\mathbf{E} = \frac{\mu_0 \sin \theta}{4\pi r} \ddot{p} \left(t - \frac{r}{c} \right) \mathbf{u}_{\theta}$$

B : champ magnétique

E: champ électrique

p : moment dipolaire

μ₀ : perméabilité du vide

c : vitesse de la lumière dans le vide

Puissance rayonnée en régime sinusoïdal

$$<\mathcal{P}> = \frac{\mu_0 p_0^2 \omega^4}{12\pi c}$$

$$p = p_0 \cos(\omega_0 t + \varphi)$$

 $<\mathcal{P}>$: puissance moyenne rayonnée

p: moment dipolaire

c : vitesse de la lumière dans le vide

μ₀ : perméabilité du vide

7. Ondes 137

7.4 Dispersion – Absorption

Relation de dispersion

$$k(\omega) = k'(\omega) + ik''(\omega)$$

 $k(\omega)$: vecteur d'onde

 $k'(\omega)$: partie réelle du vecteur

d'onde

 $k''(\omega)$: partie imaginaire du vecteur

d'onde

 ω : pulsation de l'onde

Vitesse de phase - Vitesse de groupe

$$v_{\varphi} = \frac{\omega}{k'}$$

$$v_{\rm g} = \frac{\partial \omega}{\partial k'}$$

 v_{φ} : vitesse de phase v_{g} : vitesse de groupe ω : pulsation de l'onde

k': partie réelle du vecteur d'onde v_{φ} est la vitesse de propagation de l'amplitude et v_{g} est en général la vitesse de propagation de l'énergie.

Absorption

$$\delta = \frac{1}{|k''|}$$

 δ : profondeur caractéristique de l'absorption

k'': partie imaginaire du vecteur d'onde

Représentation du champ électromagnétique dans les métaux

[2] Physique 138

7.5 Ondes électromagnétiques dans les milieux matériels

Polarisation

$$\mathbf{P} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\tau}$$

$$\rho_p = -div \; \textbf{P}$$

$$\mathbf{j}_{\mathrm{p}} = \frac{\partial \mathbf{P}}{\partial t}$$

p: moment dipolaire

P: polarisation

 ρ_p : charges dues à la polarisation ip: vecteur courant de polarisation

$$\mathbf{M} = \frac{d\mathbf{m}}{d\tau}$$

$$j_a = rot M$$

m: moment magnétique

M: aimantation

ia: vecteur courant d'aimantation

Vecteurs H et D

$$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$$

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

H: vecteur excitation magnétique

B: champ magnétique

D: vecteur D

E: champ électrique

M: aimantation P: polarisation

 μ_0 : perméabilité du vide

 ε_0 : permittivité du vide

Milieux linéaires

$$\mathbf{P} = \chi_e \mathbf{E}$$

$$\mathbf{D} = \varepsilon_r \varepsilon_0 \mathbf{E}$$

$$\varepsilon_{\rm r} = 1 + \chi_{\rm e}$$

$$\mathbf{M} = \chi_{\mathrm{m}} \mathbf{H}$$

$$\mathbf{B} = \mu_r \mu_0 \mathbf{H}$$

$$\mu_r = 1 + \chi_m$$

H: vecteur excitation magnétique

B: champ magnétique

D: vecteur D **M**: aimantation

P: polarisation

E : champ électrique

 μ_0 : perméabilité du vide

 μ_r : perméabilité relative

 ε_0 : permittivité du vide

 ε_r : permittivité relative

χ_e : susceptibilité électrique du mi-

 χ_m : susceptibilité magnétique du milieu

Équations de Maxwell dans les milieux

$$div \mathbf{D} = \rho_{libre}$$

rot
$$\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\operatorname{div} \mathbf{B} = 0$$

$$\mathbf{rot}\,\mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$$

D: vecteur D

E : champ électrique

B: champ magnétique

j : vecteur courant vrai

ρ_{libre} : densité de charges libres

Relation de dispersion - Indice

$$k^2 = \varepsilon_r \frac{\omega^2}{c^2}$$

$$n = \sqrt{\epsilon_r}$$

$$v_{\varphi} = \frac{c}{u}$$

k : vecteur d'onde

 ε_r : permittivité relative

ω: pulsation de l'onde

c : vitesse de la lumière dans le vide

n : indice du milieu

(En utilisant ici, comme dans les cas courants, l'approximation : $\mu_r \sim 1$)

140 [2] Physique

Réflexion – Transmission

$$r = \frac{n_1 - n_2}{n_1 + n_2}$$

$$t = \frac{2n_1}{n_1 + n_2}$$

$$R = r^2 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

$$T = t^2 = \left(\frac{2n_1}{n_1 + n_2}\right)^2$$

$$R + T = 1$$

r : coefficient de réflexion en amplitude

t: coefficient de transmission en amplitude

R : coefficient de réflexion énergétique

T : coefficient de transmission énergétique

 n_1 : indice du milieu de l'onde incidente

 n_2 : indice du milieu de l'onde transmise

R + T = 1 traduit la conservation énergétique

Un changement de milieu donne naissance à :

- une onde progressive (onde transmise)
- une onde régressive (onde réfléchie)

Relation de continuité sur la séparation de deux diélectriques

$$\mathbf{B_2} = \mathbf{B_1}$$

$$\mathbf{E_{2t}} = \mathbf{E_{1t}}$$

$$\varepsilon_{r2}\mathbf{E_{2n}} = \varepsilon_{r1}\mathbf{E_{1n}}$$

(loi de Snell-Descartes)

On indice par 1 les grandeurs du milieu de l'onde incidente et par 2 les grandeurs du milieu de l'onde transmise.

Le champ magnétique, comme la composante tangentielle du champ électrique, est continue à la surface d'un diélectrique.

Le comportement de la composante normale du champ électrique est décrite par la loi de Snell-Descartes.

Chimie

1. Atomistique

1.1 Spectroscopie

Spectroscopie

Lors d'une transition électronique, une particule émet un rayonnement décrit par :

$$\Delta E = h \gamma$$

Relation de De Broglie:

$$\lambda = \frac{h}{m\tau}$$

h : constante de Planck

ν : fréquence du rayonnement

émis par la particule

λ : longueur d'onde du rayonnement émis par la particule

m : masse de la particule

v : vitesse de la particule

La relation de Ritz établit que :

$$\nu = R_H \cdot c \left(\frac{1}{n^2} - \frac{1}{m^2} \right) (n, m) \in \mathbb{N}^2$$

 ν : fréquence de rayonnement R_H : constante de Rydberg

n : nombre quantique principal du niveau énergétique final de la particule

m: nombre quantique principal du niveau énergétique initial de la particule

c : vitesse de propagation de la lumière dans le vide

-n = 1 correspond à la série de Lyman (ultraviolet) -n = 2 correspond à la série de Balmer (visible) -n = 3 correspond à la série de Paschen (infrarouge)

1.2 Modèle ondulatoire

Principe d'incertitude de Heisenberg

$$\Delta x \cdot \Delta p_x \geqslant \frac{h}{2\pi}$$

 Δx : incertitude sur la position Δp_x : incertitude sur la quantité de mouvement selon l'axe des x m: masse de l'atome

En mécanique quantique, on ne peut pas connaître précisément à la fois la position et la vitesse.

Équation de Schrödinger en régime stationnaire

$$H \Psi = E \Psi$$

$$\iiint_{espace} \Psi^2 d\tau = 1$$

 $\Psi(\mathbf{r})$: fonction d'onde \mathbf{r} : vecteur position E: énergie totale de l'électron E: opérateur hamiltonien appliqué à Ψ

 $|\Psi^2|$ d τ représente la probabilité de présence de l'électron dans un volume d τ autour d'un point $M(\mathbf{r})$.

Énergie de l'atome d'hydrogène

$$E_n = \frac{-13,6}{n^2}$$

$$E_n = -13, 6\frac{Z^2}{n^2}$$

L'énergie de l'atome d'hydrogène est quantifiée (*n* nombre quantique principal).

Décrit l'énergie de l'atome hydrogénoïde (qui ne comporte qu'un seul électron).

Nombres quantiques

Principal : $n \in \mathbb{N}^*$

Décrit le niveau énergétique de l'atome :

$$E_n = -13, 6\frac{Z^2}{n^2}$$

Secondaire : $0 \le l \le n-1$ $l \in \mathbb{N}$ Quantifie le module du moment cinétique **L** de l'atome :

$$|\mathbf{\sigma}| = \sqrt{l(l+1)}\hbar$$

 $(\hbar = h/2\pi, h \text{constante de Planck})$

Magnétique : $-l \le m \le l$ $m \in \mathbb{Z}$

Spin

Quantifie la projection du moment cinétique : $L_{Oz} = m\hbar$

$$m_{\rm s}=\pm\frac{1}{2}$$

1.3 Atome polyélectronique

Charge nucléaire effective

$$Z_i^* = Z - \sigma_i$$

 Z_i^* : charge nucléaire effective

Z : numéro atomique

σ : constante d'écran de Slater

Position de l'électron	s et p	d
même couche	0	0,35
couche $> n$	0	0
couche $n-1$	0,85	1
couches $< n-1$	1	1

Énergie

$$E_i = -13, 6\frac{Z_i^{*2}}{n^2}$$

 Z_i^* : charge nucléaire effective E_i : énergie de l'électron n : nombre quantique principal

$$E = \sum_{i} E_{i}$$

Énergie totale de la molécule

Diagramme énergétique

Règles de remplissage des niveaux électroniques

Principe de stabilité : on remplit les orbitales atomiques par ordre d'énergie croissante (règle de Klechkowsky).

Principe de Pauli : sur une même orbitale atomique, les deux électrons sont de spin opposés.

Principe de Hund : lorsque plusieurs orbitales atomiques sont de même niveau énergétique, les électrons occupent le maximum d'orbitales atomiques.

Règle de Klechkowsky:

Énergie d'ionisation

C'est l'énergie de la réaction d'arrachement d'un électron d'une molécule sous forme gazeuse.

$$X(g) = X^+(g) + e^-$$

Affinité électronique

C'est l'énergie libérée par la réaction de capture d'un électron par une molécule sous forme gazeuse.

$$X(g) + e^- = X^-(g)$$

1.4 Architecture moléculaire

Règle de l'octet

Les éléments de la deuxième période du tableau périodique peuvent s'entourer au maximum de huit électrons.

Charge formelle

$$n = n_{\rm i} - n_{\rm e}$$

n : charge formelle de l'atome

 $n = n_i - n_e$ n_i : nombre d'électrons de valence dans l'atome isolé

 $n_{\rm e}$: nombre d'électrons de valence dans l'atome lié

Mésomérie

C'est l'ensemble des formules mésomères qui modélise la réalité.

$$\langle 0 = \overline{S} = 0 \rangle \longleftrightarrow \langle 0 = \overline{S} - \overline{0} | \longleftrightarrow | \overline{0} - \overline{S} = 0 \rangle$$

Niveau de représentativité des formules mésomères

Les formules mésomères qui vérifient la règle de l'octet, qui sont neutres ou dont la charge négative est portée par l'atome le plus électronégatif sont plus représentatives que les autres.

VSEPR

On compte les doublets d'un atome A : AX_pE_q où :

p: nombre d'atomes directement liés à A (\dot{X})

q : nombre de doublets libres portés par A (É)

Ces n = p + q doublets tendent à s'éloigner au maximum les uns des autres. (Théorie de Gillepsie)

n = 2: molécule linéaire

n = 3: molécule trigonale

n = 4: molécule tétraédrique

n = 5: molécule bipyramidale à base triangulaire

n = 6: molécule octaédrique

1.5 Orbitales moléculaires

Combinaison linéaire des orbitales atomiques

La combinaison linéaire de deux orbitales atomiques de même énergie donne naissance à deux orbitales moléculaires : l'une liante et l'autre antiliante

Indice de liaison

$$i = \frac{n - n^*}{2}$$

n: nombre d'électrons de l'orbitale moléculaire liante n^* : nombre d'électrons de l'orbitale moléculaire antiliante

Diagramme des orbitales moléculaires

Diagramme moléculaire des molécules A_2 de la deuxième ligne du tableau périodique à partir de O_2 inclus. Pour les autres molécules, π_x et π_y sont plus stables que σ_p

2. Cinétique

Avancement de la réaction

$$\mathrm{d}\xi = \frac{\mathrm{d}n_i}{v_i}$$

 ξ : avancement de la réaction v_i : nombre stœchiométrique algébrique ($v_i > 0$ pour un produit et $v_i < 0$ pour un réactif) n_i : quantité de matière échangée

Quantité de matière en cours de réaction

$$n_i = n_{i0} + \nu_i \xi,$$

 n_i : quantité de matière à la date t n_{i0} : quantité de matière initiale v_i : nombre stœchimétrique algébrique ξ : avancement

Vitesse de réaction

$$r = \frac{1}{v_i} \frac{\mathrm{d}c_i}{\mathrm{d}t} = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t}$$

r: vitesse de la réaction v_i : nombre stœchiométrique algébrique c_i : concentration ξ : avancement V: volume du réacteur

Ordre d'une réaction

$$\nu_1 A_1 + \nu_2 A_2 \rightarrow \nu_1' A_1' + \nu_2' A_2'$$

$$v = k[A_1]^{p_1} [A_2]^{p_2}$$

k: constante de vitesse de la réaction $[A_i]$: concentration de l'espèce A_i p_i : ordre partiel en A_i $\sum_i p_i = p$: ordre global de la réaction

2. Cinétique 149

Dégénérescence de l'ordre

Si
$$[A_2]_0 \gg [A_1]_0$$
 alors $v = k'[A_1]^{p_1}$

 $k' = k[A_2]_0^{p_2}$: constante de vitesse apparente de la réaction p_1 : ordre apparent de la réaction

Loi de Van't Hoff

Lorsque la réaction est un processus élémentaire, les ordres partiels se confondent avec les coefficients stœchiométriques et l'ordre total à la molécularité

Loi d'Arrhénius

$$\frac{\mathrm{d}\ln k}{\mathrm{d}T} = \frac{E_{\mathrm{a}}}{\mathrm{R}T^2}$$

k: constante de vitesse E_a : énergie d'activation R: constante des gaz parfaits

T: température

Loi de vitesse d'une réaction d'ordre 1

$$c = c_0 e^{-kt}$$

c : concentration de l'espèce
c₀ : concentration initiale
k : constante de vitesse

$$t_{1/2} = \frac{\ln 2}{\alpha k}$$

Le temps de demi-réaction est indépendant de c_0 (α étant le nombre stœchiométrique du réactif limitant).

AEQS: théorème de Bodenstein

$$\frac{\mathrm{d}[A]}{\mathrm{d}t} = 0$$

Conditions d'application de l'Approximation des États Quasi Stationnaires :

- [A] très faible
- A espèce très réactive (intermédiaire réactionnel)

Longueur de chaîne

$$l = \frac{\text{vitesse de disparition réactif}}{\text{vitesse d'initiation}}$$

3. Cristallographie

3.1 Généralités

Définitions

Réseau : disposition spatiale des noeuds

Compacité : Rapport entre le volume de la maille et le volume réellement occupé par les entités de la maille.

Une maille est entièrement décrite par son réseau et son motif.

Motif: description des entités qui occupent ces noeuds

Coordinence: nombre d'entités en contact avec une autre entité.

3.2 Mailles et sites dans les cristaux métalliques

Maille hexagonale compacte

Coordinence : 12 Compacité : 0,74 2 atomes par maille

Maille cubique à faces centrées

Coordinence : 12 Compacité : 0,74 4 atomes par maille

Maille cubique centrée

Coordinence: 8 Compacité: 0,68 2 atomes par maille

Sites octaédriques

Dimension : $r_{\rm O} = (\sqrt{2} - 1)r$

- Au centre et au milieu de chaque arrête du la maille cubique face centrée (4 sites par maille)

 $-\grave{A}\frac{c}{4}$ et $\frac{3c}{4}$ dans la maille hexagonale compacte (2 sites par maille)

Sites tétraédriques

 $\text{Dimension}: r_{\text{T}} = (\sqrt{\frac{3}{2}} - 1)r$

- Au centre de huit petits cubes d'arrête $\frac{a}{2}$ dans la maille cubique face centrée (8 sites par maille)

 $-\grave{A}\frac{c}{8}$ et $\frac{7c}{8}$ sur chaque côté vertical dans l'hexagonale compacte (4 sites par maille)

3.3 Cristaux ioniques

Chlorure de césium (CsCI)

Les ions Cl⁻ forment un réseau cubique (1 atome par maille)

Les ions Cs⁺ sont aux centres de ces cubes (1 atome par maille)

Coordination : [8-8] Structure adoptée si :

$$\sqrt{3} - 1 \leqslant \frac{r_+}{r} < 1$$

Chlorure de sodium (NaCl)

Les ions Cl⁻ forment un réseau cubique faces centrées (4 atomes par maille)

Les ions Na⁺ occupent les sites octaédriques de ce réseau (4 atomes par maille)

Coordination : [6-6] Structure adoptée si :

$$\sqrt{2}-1\leqslant \frac{r_+}{r}<\sqrt{3}-1$$

Blende (ZnS)

Les ions Zn²⁺ forment un réseau cubique faces centrées (4 atomes par maille)

Les ions S²⁻ occupent un site tétraédrique sur deux dans le réseau précédent (4 atomes par maille)

Coordination : [4-4] Structure adoptée si :

$$0 \leqslant \frac{r_+}{r} < \sqrt{2} - 1$$

4. Thermodynamique

La thermodynamique a déjà été abordée au cours du chapitre de physique. Il est conseillé de se reporter à cette section, les notions préalablement traitées n'étant pas à nouveau abordées ici.

4.1 Fonctions d'état

Définition

$$X_i = \left(\frac{\partial X}{\partial n_i}\right)_{T, p, n_i \neq n_i}$$

X: fonction d'état extensive X_i : grandeur molaire partielle relative au composé A_i n_i : quantité de matière du constituant A_i

Relation de Gibbs-Duhem

$$\sum_{i} n_i \, \mathrm{d} X_{i \, T, p} = 0$$

 n_i : quantité de matière du constituant A_i d $X_{i \ T,p}$: grandeur standard de réaction concernant le constituant A_i à T et p constantes

Grandeurs de réaction associées aux fonctions d'état

$$\Delta_{\mathbf{r}}X = \sum_{i} \nu_{i}X_{i} = \left(\frac{\partial X}{\partial \xi}\right)_{T,p}$$

 $\Delta_r X$: grandeur de réaction ν_i : nombre stœchiométrique relatif au composé A_i X_i : grandeur molaire partielle relative au corps A_i

Relation de Gibbs-Helmoltz

$$\frac{\partial}{\partial T} \left(\frac{\Delta_{\rm r} G}{T} \right) = -\frac{\Delta_{\rm r} H}{T^2}$$

 $\Delta_r G$: enthalpie libre de réaction $\Delta_r H$: enthalpie de réaction T : température

4.2 Potentiel chimique

Définition

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,p,n_{j} \neq n_{i}}$$

$$\mu_{i} = \left(\frac{\partial U}{\partial n_{i}}\right)_{V,S,n_{j} \neq n_{i}}$$

$$\mu_{i} = \left(\frac{\partial H}{\partial n_{i}}\right)_{p,S,n_{j} \neq n_{i}}$$

$$\mu_{i} = \left(\frac{\partial F}{\partial n_{i}}\right)_{V,T,n_{j} \neq n_{i}}$$

 μ_i : potentiel chimique du composé A_i U, H, F, G: énergie interne, enthalpie, énergie libre, enthalpie libre T, p, V: température, pression, volume n_i : quantité de matière du composé A_i

Condition d'équilibre physique

$$\mu_{\phi_1}=\mu_{\phi_2}$$

Le potentiel chimique du corps pur dans les deux phases est le même. μ_{φ_i} : potentiel chimique du corps pur dans la phase i

Évolution vers un état d'équilibre

S'il n'est pas à l'équilibre, le corps pur passe irréversiblement de la phase de plus haut potentiel chimique vers la phase de plus bas potentiel chimique et ce, jusqu'à l'obtention de l'égalité précédente.

Potentiel d'un gaz

$$\mu_{i(g)} = \mu_{i(g)}^0 + RT \ln \frac{p_i}{p^0}$$

 $\mu_{i(g)}$: potentiel chimique du gaz A_i $\mu^0_{i(g)}$: potentiel chimique standard du gaz A_i (à la pression p^0)
R: constante des gaz parfaits T: température p_i : pression partielle du gaz A_i p^0 : pression standard (1 bar = 10^5 Pa)

Potentiel d'un soluté

$$\mu_{i(s)} = \mu_{i(s)}^0 + RT \ln \frac{c_i}{c^0}$$

R : constante des gaz parfaits

T : température

 c_i concentration du composé A_i c^0 : concentration standard

 c^0 : concentration $(1 \text{ mol} \cdot \text{L}^{-1})$

4.3 Grandeurs standards de réaction

Enthalpie standard de réaction

$$\Delta_{\mathbf{r}}H^0 = \sum_{i} \nu_i H_i^0$$

 $\Delta_r H^0$: enthalpie standard de réaction

 \mathbf{v}_i : nombre stæchiométrique du composé \mathbf{A}_i

 H_i^0 : enthalpie standard molaire de A_i pris dans son état standard

Entropie standard de réaction

$$\Delta_{\mathbf{r}}S^0 = \sum_{i} \gamma_i S_i^0$$

 $\Delta_{\rm r} S^0$: entropie standard de réaction

 v_i : nombre stæchiométrique du composé A_i

 S_i^0 : entropie standard molaire de A_i pris dans son état standard

Enthalpie libre standard de réaction

$$\Delta_{\mathbf{r}}G^0 = \sum_{i} \nu_i G_i^0$$

 $\Delta_r G^0$: enthalpie libre standard de réaction

 v_i : nombre stæchiométrique du composé A_i

 G_i^0 : enthalpie libre standard molaire de A_i pris dans son état standard

Relation entre grandeurs de réaction

$$\Delta_{\rm r}G^0 = \Delta_{\rm r}H^0 - T\Delta_{\rm r}S^0$$

 $\Delta_{\rm r} S^0$: entropie standard de réaction

 $\overline{\Delta_r} H^0$: enthalpie standard de réac-

tion $\Delta_r G^0$: enthalpie libre standard de réaction

T: température

Première loi de Kirchhoff

$$\frac{\mathrm{d}\Delta_{\mathrm{r}}H^{0}}{\mathrm{d}T} = \Delta_{\mathrm{r}}C_{p}^{0} = \sum_{i} \nu_{i}C_{p,i}^{0}$$

 $\Delta_{\rm r} H^0$: enthalpie standard de réaction

 $C_{p,i}^0$: capacité thermique molaire du constituant A_i à pression constante

 v_i : nombre stæchimétrique du composé A_i

T: température

Deuxième loi de Kirchhoff

$$\frac{\mathrm{d}\Delta_{\mathrm{r}}S^{0}}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}C_{p}^{0}}{T} = \sum_{i} \frac{\nu_{i}C_{p,i}^{0}}{T}$$

 $\Delta_{\rm r} S^0$: entropie standard de réaction

 $C_{p,i}^{0}$: capacité thermique molaire du constituant A_i à pression constante

constante v_i : nombre steechimétrique du composé A_i

T: température

Relations de Gibbs-Helmoltz

$$\begin{split} \Delta_{\rm r} S^0 &= -\frac{{\rm d}\Delta_{\rm r} G^0}{{\rm d}T} \\ \Delta_{\rm r} H^0 &= -T^2 \frac{{\rm d}}{{\rm d}T} \left(\frac{\Delta_{\rm r} G^0}{T}\right) \end{split}$$

 $\Delta_r S^0$: entropie standard de réaction $\Delta_r H^0$: enthalpie standard de réaction

tion $\Delta_r G^0$: enthalpie libre standard de réaction

T: température

Relation de Hess

$$\Delta_{\mathbf{r}}H^{0} = \sum_{i} \nu_{i} \Delta_{f} H_{i}^{0}$$
$$\Delta_{\mathbf{r}}G^{0} = \sum_{i} \nu_{i} \Delta_{f} G_{i}^{0}$$

 $\Delta_{\rm r} H^0$: enthalpie standard de réaction

 $\Delta_{\rm r}G^0$: enthalpie libre standard de

 $\Delta_f H^0$: enthalpie standard de formation du composé A_i (nulle pour les corps purs)

 $\Delta_f G^0$: enthalpie libre standard de formation du composé A_i

Cycle de Born-Haber

C'est un cycle thermodynamique qui permet de calculer avec la loi de Hess l'enthalpie de standard de réaction en décomposant les réactifs en atomes et en recomposant ces mêmes atomes pour former les produits.

4.4 Équilibres chimiques

Définition de l'affinité chimique

$$\mathcal{A} = -\sum_{i} \mathbf{v}_{i} \mathbf{\mu}_{i} = -\Delta_{\mathbf{r}} G$$

 \mathcal{A} : affinité chimique

 $\Delta_{\rm r}G^0$: enthalpie libre standard de réaction

 v_i : nombre stæchiométrique du composé A_i

 μ_i : potentiel chimique du composé A_i

Expression de l'affinité

$$\mathcal{A} = \mathcal{A}^0 - RT \ln \left(\prod_i a_i^{\mathbf{v}_i} \right)$$

 \mathcal{A} : affinité chimique

 A^0 : affinité chimique standard a_i : activité du composé A_i

 v_i : nombre steechimétrique du composé A_i

R : constante des gaz parfaits

T: température

Condition d'équilibre

$$A = 0$$

Dans ce cas:

$$\mathcal{A}^{0} = RT \ln K^{0} = RT \ln \left(\prod_{i} a_{i}^{\nu_{i}} \right)$$

*K*⁰ est la constante d'équilibre de la réaction

Sens d'évolution

$$A \cdot d\xi \geqslant 0$$

Si $\mathcal{A}>0$, d $\xi>0$: il y a évolution dans le sens $\stackrel{1}{\longrightarrow}$ Si $\mathcal{A}<0$, d $\xi<0$: il y a évolution dans le sens $\stackrel{2}{\longleftarrow}$

Constante d'équilibre

$$K^0(T) = \prod_i a_i^{\nu_i}_{\text{\'equilibre}}$$

 $K^0(T)$: constante d'équilibre de la réaction qui ne dépend que de la température

 $a_{i \text{ \'equilibre}}$: coefficient d'activité du composé A_{i} à l'équilibre

 v_i : nombre stechiométrique du composé A_i

Température d'inversion

$$\Delta_{\mathbf{r}}G^0(T_i) = 0$$
$$K^0(T_i) = 1$$

À cette température, la réaction prépondérante passe du sens $\stackrel{1}{\longrightarrow}$ au sens $\stackrel{2}{\longleftarrow}$

Effet de la température : loi de Van't Hoff

$$\frac{\mathrm{dln}\,K^0}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^0}{\mathrm{R}T^2}$$

 K^0 : constante d'équilibre de la réaction

 $\Delta_r H^0$: enthalpie standard de la ré-

R: constante des gaz parfaits

T: température

Une augmentation de la température déplace la réaction dans le sens endothermique.

Effet de la pression : loi de Le Châtelier

Une augmentation de la pression déplace l'équilibre dans le sens de diminution de la quantité de matière de gaz ($\Delta v_{gaz} < 0$).

Introduction d'un constituant actif

$$dA = RT \left(\Delta v_{\text{gaz}} - \frac{v_i}{x_i} \right) \frac{dn_i}{n}$$

dA: variation de l'affinité v_i : nombre stœchimétrique du composé A_i x_i : titre molaire du composé A_i n: quantité de matière totale dn_i : variation de quantité de matière du composé A_i

Ajout d'un constituant inactif

$$dA = RT\Delta v_{\text{gaz}} \frac{dn}{n}$$

d*A* : variation de l'affinité
n : quantité de matière
dn : variation de quantité de matière du constituant introduit

Variance - Règle des phases de Gibbs

$$v = c + 2 - \varphi$$
$$c = n - k - r$$

v: variance

c : nombre de constituants indépendants

 φ : nombre de phases

n : nombre de constituants

k : nombre de relations entre les constituants

r : relation particulières (imposées par le manipulateur)

4.5 Équilibres liquide-vapeur

Loi de Raoult

$$p_i = p_i^* x_i^{\mathrm{l}}$$

 p_i : pression partielle du composé

 A_i

 p_i^* : pression saturante du composé A:

pose A_i

 x_i^l : titre molaire de A_i liquide

Loi de Henry

$$p_i = kx_i^{\mathrm{l}}$$

 p_i : pression partielle du composé

 $k \neq p_i^*$: constante de Henry $x_i^!$: titre molaire de A_i liquide

Solution idéale : définition

Une solution est dite idéale si toutes les interactions entre les espèces qui la composent sont identiques : interactions A_1-A_1 , A_2-A_2 et A_1-A_2

Diagramme binaire d'une solution idéale

Équations des courbes

Courbe d'ébullition:

$$p = p_1^* + (p_2^* - p_1^*)x_2^1$$

Courbe de rosée :

$$p = \frac{p_1^* p_2^*}{p_2^* - (p_2^* - p_1^*) x_2^{\mathsf{v}}}$$

Diagrammes isothermes

Fuseau simple

L'azéotrope est la manifestation de l'écart de la solution par rapport à la solution idéale.

Diagrammes isobares

À pression constante, un azéotrope bout à température constante et donne une vapeur de même composition.

Analyse thermique

Théorème des moments

$$n^{1}\overline{ML} + n^{V}\overline{MV} = 0$$

 n^{l} : quantité de matière de liquide n^{v} : quantité de matière de vapeur \overline{ML} : distance algébrique de M à la courbe d'ébullition

 \overline{MV} : distance algébrique de M à la courbe de rosée

4.6 Réactions d'oxydoréduction

Couple redox

$$\alpha \ ox + n \ e^{- \ \ reduction} \underset{\text{oxydation}}{\rightleftharpoons} \beta \ red$$

Nombre d'oxydation – Définition

C'est le nombre d'électrons « perdus » par rapport à l'atome neutre.

Nombre d'oxydations – Règles de détermination

– atome isolé neutre : n.o. : 0;

ion simple : le nombre d'oxydations est la charge de l'ion;

- molécule ou ion complexe :

 entre deux atomés du même élément, on attribue à chacun l'un des électrons du doublet de liaison;

 entre deux atomes différents, on attribue les électrons de liaison au plus électronégatif. Dans tous les cas : $\sum n.o. = q$ avec q la charge de l'édifice atomique.

Oxydant - Réducteur

Un oxydant est une espèce dont le nombre d'oxydation peut diminuer.

Un réducteur est une espèce dont le nombre d'oxydation peut augmenter.

Équilibrage d'une équation redox

Pour équilibrer une équation on procède en :

- 1. déterminant le nombre d'électrons échangés avec le nombre d'oxydations;
- 2. effectuant un bilan des charges et en assurant l'électroneutralité avec H^+ et l'équilibre en atomes d'oxygène avec H_2O ;
- 3. effectuant un bilan de matière.

Électrode à hydrogène

C'est l'électrode de référence pour les mesures de potentiels redox (à toute température $E^0(H^+/H_2) = 0,000 \text{ V}$). Cette électrode est fictive.

Formule de Nernst

$$E = E^0 + \frac{RT}{n\mathcal{F}} \ln \frac{a_{\text{ox}}^{\alpha}}{a_{\text{red}}^{\beta}}$$

 a_{ox} : activité de l'oxydant a_{red} : activité du réducteur Avec: -a=1 pour tout solide ou un liquide pur dans la phase $-a=\frac{c}{c^0}$ pour un soluté $-a=\frac{p_i}{p^0}$ la pression partielle pour un gaz (dans le cas des solutions diluées) E: potentiel de l'électrode E^0 : potentiel standard du couple redox n: nombre d'électrons échangés

 $\mathcal{F} = \mathcal{N} \cdot e$: nombre de Faraday R: constante des gaz parfaits

T: température

Formule de Nernst : forme usuelle

$$E = E^0 + \frac{0.06}{n} \log \frac{a_{\text{ox}}^{\alpha}}{a_{\text{red}}^{\beta}}$$

$$\grave{A} 25^{\circ} C, \frac{RT}{\mathcal{F} \ln 10} = 0,06$$

Réactions aux électrodes d'une pile

La réduction se produit à la cathode

thode L'oxydation se produit à l'anode On symbolise une pile par :

$$\underbrace{\text{ox}_1, \text{red}_1}_{\text{pôle négatif}} // \underbrace{\text{ox}_2, \text{red}_2}_{\text{pôle positif}}$$

Force électromotrice d'une pile

$$E = E_2 - E_1$$

E : force électromotrice (fém) de la pile

 E_1 : potentiel du couple constituant l'anode

 E_2 : potentiel du couple constituant la cathode

5. Matériaux métalliques

5.1 Diagrammes d'Ellingham

Principe

On étudie la formation des oxydes ramenée à une même quantité de dioxygène, réaction qui s'écrit sous la forme générale :

$$\alpha \text{ red} + \frac{1}{2}O_2 \rightleftharpoons \beta \text{ ox}$$

On trace la courbe:

$$\Delta_{\mathbf{r}}G^0 = \Delta_{\mathbf{r}}H^0 - T\Delta_{\mathbf{r}}S^0$$

Approximation d'Ellingham

Pour construire ces diagrammes, on considère que $\Delta_{\rm r}G^0$, $\Delta_{\rm r}H^0$ et $\Delta_{\rm r}S^0$ sont indépendants de la température. Cette approximation est appelée approximation d'Ellingham.

Affinité du système

$$A = \frac{1}{2}RT \ln \frac{p}{p_e}$$

 \mathcal{A} : affinité chimique

p : pression du réacteur

p_e: pression d'équilibre à une tem-

pérature donnée T: température

R: constante des gaz parfaits

Corrosion d'un métal

Un métal est oxydé par un oxyde dont la droite d'Ellingham se situe au-dessus de sa propre droite.

Diagrammes potentiel-pH

Conventions

Convention 1 : sur le domaine frontière les concentrations des deux espèces sont égales à une concentration arbitrairement choisie Convention 2 : on fixe la concentration totale en un élément donné. Sur le domaine frontière, les concentrations sont réparties équitablement.

Construction du diagramme potentiel-pH

- 1. On détermine le degré d'oxydation des espèces mises en jeu.
- 2. On calcule le pH frontière pour les espèces de même degré d'oxy-
- dation.
 3. On calcule avec la formule de Nernst l'équation des droites séparant les domaines des espèces de degré d'oxydation distincts.

Les droites verticales marquent des réactions acido-basiques.

Les droites horizontales marquent des réactions redox.

Définition du pH

$$pH = -\log\left(\frac{[H_3O^+]}{c^0}\right)$$

La relation ci-contre n'est valable qu'en milieux dilués.

 $[H_3O^+]$: concentration en ions H_3O^+ dans le milieu c^0 : concentration standard $(1 \text{ mol} \cdot L^{-1})$

Produit ionique de l'eau

$$K_e = \frac{[H_3O^+] \cdot [OH^-]}{(c^0)^2} = 10^{-14}$$

$$pK_e = -\log K_e = 14$$

 K_e : produit ionique de l'eau $[H_3O^+]$: concentration en ions H_3O^+ dans le milieu $[OH^-]$: concentration en ions OH^- dans le milieu c^0 : concentration standard

Constante d'acidité d'un couple acidobasique

$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$

$$K_a = \frac{[H_3O^+] \cdot [A^-]}{[HA] \cdot c^0}$$

$$pK_a = -\log K_a$$

 K_a : constante d'acidité du couple acidobasique (ne dépend que de la température).

 $[H_3O^+]$: concentration en ions H_3O^+ dans le milieu

[HA] : concentration de l'espèce acide dans le milieu

[A⁻] : concentration de l'espèce basique dans le milieu

 c^0 : concentration standard

Principaux diagrammes potentiels - pH

Diagramme potentiel - pH de l'eau

Le couple H_2 / H_2O est représenté par une droite de pente -0,06 et d'ordonnée à l'origine 0,00 V.

Le couple $\rm H_2O$ / $\rm OH^-$ est représenté par une droite de pente -0,06 et d'ordonnée à l'origine 1, 23 V.

5.3 Courbes intensité-potentiel

Tension minimale à appliquer

$$U \geqslant \frac{\Delta_{\rm r} G}{2F}$$

U : tension appliquée

 $\Delta_{\rm r}G$: enthalpie libre de la réaction

F : nombre de Faraday

Intensité du courant - Vitesse de réaction

$$i = nF \frac{\mathrm{d}\xi}{\mathrm{d}t}$$
$$v = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t}$$

i: intensité du courant
n: nombre d'électrons échangés
au cours de la réaction
F: nombre de Faraday
ξ: avancement de la réaction
V: volume de solution électrolyte
La vitesse de réaction et l'inten-

sité sont proportionnelles.

Montage expérimental

Système lent - Système rapide

Système rapide

Système lent (existence de surtensions η_A et η_C respectivement anodiques et cathodiques)

170 [3] Chimie

Courant limite de diffusion

Le phénomène de diffusion limite la vitesse de déplacement des électrons; il existe donc un courant limite.

Tension à appliquer

$$U = \underbrace{E_{A} - E_{C}}_{\text{thermodynamique}} + \underbrace{\eta_{A} - \eta_{C}}_{\text{cinétique}} + ri$$

U : tension à appliquer

 $E_{\rm A}$: potentiel du couple de l'anode

*E*_C : potentiel du couple de la cathode

 η_A : surtension anodique η_C : surtension cathodique

r : résistance interne de l'électro-

lyte

i: intensité du courant

5.4 Corrosion

Réaction de corrosion

$$M + ox \longrightarrow M^{n+} + red$$

M : métal qui va être corrodé

ox : un meilleur oxydant que le métal

 M^{n+} : cation associé au métal dans un couple redox

red : réducteur associé à l'oxydant ox

Corrosion avec des électrodes différentes

Quand les électrodes sont différentes, c'est le métal qui a le plus petit potentiel redox qui se corrode.

Corrosion avec des électrodes identiques

Dans le cas d'une pile de concentration, c'est le métal qui plonge dans la solution la plus diluée qui se corrode.

C'est le métal qui plonge dans la solution la moins aérée qui se corrode.

Domaines de corrosion, d'immunité et de passivation

- On appelle domaine de corrosion le(s) domaine(s) d'un diagramme
 E-pH où le métal se retrouve sous forme d'ions.
- Ôn appelle domaine d'immunité le domaine d'un diagramme E-pH où le métal est stable (il n'est pas corrodé).
- On appelle domaine de passivation le domaine d'un diagramme E-pH où le métal se retrouve sous forme de précipité qui est susceptible de former une couche protectrice à la surface du métal.

Dunod. La photocopie non autorisée est un délit.

www.biblio-scientifique.com

Primitives usuelles

Primitive	Intervalle			
$\int \frac{\mathrm{d}t}{t} = \ln t + k$	\mathbb{R}^*			
$\int \cos t \mathrm{d}t = \sin t + k$	\mathbb{R}			
$\int \frac{\mathrm{d}t}{\cos^2 t} = \tan t + k$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\right\}\ k\in\mathbb{Z}$			
$\int \frac{\mathrm{d}t}{\cos t} = \ln \left \tan \left(\frac{t}{2} + \frac{\pi}{4} \right) \right + k$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\right\}\ k\in\mathbb{Z}$			
$\int \tan t \mathrm{d}t = -\ln \cos t + k$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\right\}\ k\in\mathbb{Z}$			
$\int \operatorname{ch} t \mathrm{d}t = \operatorname{sh} t + k$	\mathbb{R}			
$\int \frac{\mathrm{d}t}{\mathrm{ch}^2 t} = \mathrm{th}t + k$	\mathbb{R}			
$\int \frac{\mathrm{d}t}{\mathrm{ch}t} = 2\mathrm{Arctan}\mathrm{e}^t + k$	\mathbb{R}			
$\int \operatorname{th} t \mathrm{d}t = \ln \operatorname{ch} t + k$	\mathbb{R}			
$\int e^{mt} dt = \frac{1}{m} e^{mt} + k, (m \in \mathbb{C}^*)$	\mathbb{R}			
$\int t^{\alpha} dt = \frac{t^{\alpha+1}}{\alpha+1} + k, (\alpha \in \mathbb{R} - \{-1\})$	\mathbb{R}			
$\int \sin t \mathrm{d}t = -\cos t + k$	\mathbb{R}			

$$\int \frac{\mathrm{d}t}{\sin^2 t} = -\cot t + k \qquad \qquad \mathbb{R} \setminus \{k\pi\} \ k \in \mathbb{Z}$$

$$\int \frac{\mathrm{d}t}{\sin t} = \ln \left| \tan \frac{t}{2} \right| + k \qquad \qquad \mathbb{R} \setminus \{k\pi\} \ k \in \mathbb{Z}$$

$$\int \cot t \, dt = \ln \left| \sin t \right| + k \qquad \qquad \mathbb{R} \setminus \{k\pi\} \ k \in \mathbb{Z}$$

$$\int \sinh t \, dt = \coth t + k \qquad \qquad \mathbb{R}$$

$$\int \frac{\mathrm{d}t}{\sinh^2 t} = -\coth t + k \qquad \qquad \mathbb{R}^*$$

$$\int \frac{\mathrm{d}t}{\sinh^2 t} = \ln \left| \ln \frac{t}{2} \right| + k \qquad \qquad \mathbb{R}^*$$

$$\int \coth t \, dt = \ln \left| \sinh t \right| + k \qquad \qquad \mathbb{R}$$

$$\int a^t \, dt = \frac{a^t}{\ln a} + k, (a \in \mathbb{R}_+^* - \{1\}) \qquad \qquad \mathbb{R}$$

$$Dans \ la \ suite \ on \ suppose : a \in \mathbb{R}^*$$

$$\int \frac{\mathrm{d}t}{t^2 + a^2} = \frac{1}{a} \operatorname{Arctan} \frac{t}{a} + k \qquad \qquad \mathbb{R}$$

$$\int \frac{\mathrm{d}t}{\sqrt{t^2 + a^2}} = \begin{cases} \operatorname{Arcsin} \frac{t}{|a|} + k \qquad \qquad] - a, a[$$

$$\int \frac{\mathrm{d}t}{\sqrt{t^2 + a^2}} = \begin{cases} \operatorname{Argsh} \frac{t}{|a|} + k \qquad \qquad] - a, a[$$

$$\int \frac{\mathrm{d}t}{\sqrt{t^2 + a^2}} = \begin{cases} \operatorname{Argch} \frac{t}{|a|} + k \qquad \qquad] |a|, +\infty[$$

$$\ln \left(t + \sqrt{t^2 - a^2} \right) + k \qquad \qquad] - \infty, |a|[$$

$$\int \frac{\mathrm{d}t}{\sqrt{t^2 + b}} = \ln \left| t + \sqrt{t^2 + b} \right| + k, (b \in \mathbb{R} [-b, b])$$

$$\int \frac{\mathrm{d}t}{t^2 - a^2} = \begin{cases} \operatorname{Argth} t + k \qquad \qquad] - \infty, |a|[$$

$$\int \frac{\mathrm{d}t}{\sqrt{t^2 + b}} = \ln \left| t + \sqrt{t^2 + b} \right| + k, (b \in \mathbb{R} [-b, b])$$

Développements limités

Principaux développements limités

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} x^n + \underbrace{\underset{\lambda \to a}{o}}_{\alpha}(x^n)$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{2 \cdot 4} x^2 + \dots + (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} x^n + o(x^n)$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4} x^2 + \dots + (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} x^n + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots - \frac{x^n}{n} + o(x^n)$$

$$\ln(a+x) = \ln a + \frac{x}{a} - \frac{x^2}{2a^2} + \frac{x^3}{3a^3} + \dots + (-1)^{n+1} \frac{x^n}{a^n} + o(x^n)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \frac{17}{315}x^7 + o(x^7)$$

$$\tan x = x - \frac{x^3}{3} + \frac{2}{15}x^5 - \frac{17}{315}x^7 + o(x^7)$$

$$\operatorname{Arccos} x = \frac{\pi}{2} - x - \frac{1}{2}\frac{x^3}{3} - \dots - \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\operatorname{Arcsin} x = x + \frac{1}{2}\frac{x^3}{3} + \dots + \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\operatorname{Arctan} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)} + o(x^{2n+2})$$

$$\operatorname{Argch} x \text{ n'est pas défini au voisinage de 0 et n'admet pas de développement limité au voisinage de 1 (tangente verticale).}$$

$$\operatorname{Argsh} = x - \frac{1}{2}\frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4}\frac{x^5}{5} + \dots + (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\operatorname{Argth} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{(2n+1)} + o(x^{2n+2})$$

Formules trigonométriques

1. Angles remarquables

	0	$\frac{\pi}{6}$			$\frac{\pi}{2}$	
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0

2. Relations trigonométriques

Relations entre les rapports trigonométriques d'un même arc

$$\cos^2 a + \sin^2 a = 1$$

$$\tan a = \frac{\sin a}{\cos a}$$

$$1 + \tan^2 a = \frac{1}{\cos^2 a}$$

$$\cos^2 a = \frac{1}{1 + \tan^2 a}$$

$$\cot a = \frac{\cos a}{\sin a}$$
$$1 + \cot^2 a = \frac{1}{\sin^2 a}$$
$$\sin^2 a = \frac{1}{1 + \cot^2 a}$$

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Formules de duplication

$$\cos(2a) = \begin{cases} \cos^2 a - \sin^2 a \\ 2\cos^2 a - 1 \\ 1 - 2\sin^2 a \end{cases}$$
$$\sin(2a) = 2\sin a \cos a$$

$$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$$

Expression de $\cos a$, $\sin a$, $\tan a$, **en fonction de** $\tan a/2$

$$\cos a = \frac{1 - \tan^2 \frac{a}{2}}{1 + \tan^2 \frac{a}{2}}$$
$$\sin a = \frac{2 \tan \frac{a}{2}}{1 + \tan^2 \frac{a}{2}}$$

$$\tan a = \frac{2\tan\frac{a}{2}}{1-\tan^2\frac{a}{2}}$$

Transformations de produits en sommes

$$\cos a \cos b = \frac{1}{2} \left(\cos(a-b) + \cos(a+b) \right)$$

$$\sin a \sin b = \frac{1}{2} \left(\cos(a-b) - \cos(a+b) \right)$$

$$\sin a \cos b = \frac{1}{2} \left(\sin(a+b) + \sin(a-b) \right)$$

$$\sin b \cos a = \frac{1}{2} (\sin(a+b) - \sin(a-b))$$
$$\cos^2 a = \frac{1 + \cos(2a)}{2}$$
$$\sin^2 a = \frac{1 - \cos(2a)}{2}$$

Transformation des sommes en produits

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$$

$$1 + \cos a = 2\cos^2\frac{a}{2}$$

$$1 - \cos a = 2\sin^2\frac{a}{2}$$

Arcs associés

$$\cos(-a) = \cos a$$

$$\cos(\pi + a) = -\cos a$$

$$\cos(\pi - a) = -\cos a$$

$$\cos(\pi - a) = -\cos a$$

$$\cos(\frac{\pi}{2} - a) = \sin a$$

$$\cos(\frac{\pi}{2} + a) = -\sin a$$

$$\sin(\frac{\pi}{2} - a) = \cos a$$

$$\sin(\frac{\pi}{2} + a) = \cos a$$

$$\cot(\pi + a) = \cot a$$

$$\cot(\frac{\pi}{2} - a) = \cot a$$

Fonctions circulaires réciproques

$$\operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \frac{\pi}{2} \operatorname{sgn} x$$

$$\forall (a,b) \in \mathbb{R}^2 :$$

$$\operatorname{Arctan} a + \operatorname{Arctan} b = \begin{cases} \operatorname{Arctan} \frac{a+b}{1-ab} & \operatorname{si} ab < 1 \\ \frac{\pi}{2} \operatorname{sgn} a & \operatorname{si} ab = 1 \\ \operatorname{Arctan} \frac{a+b}{1-ab} + \pi \operatorname{sgn} a & \operatorname{si} ab > 1 \end{cases}$$

© Dunod. La photocopie non autorisée est un délit.

$$Arctan x + Arctan \frac{1}{x} = \frac{\pi}{2} \operatorname{sgn} x$$

Trigonométrie hyperbolique

$$sh x = \frac{e^{x} - e^{-x}}{2}
ch(a+b) = ch a ch b + sh a sh b
ch(a-b) = ch a ch b - sh a sh b
th(a+b) = $\frac{th a + th b}{1 + th a th b}$

$$ch 2a = \begin{cases}
ch^{2} a + sh^{2} a \\
2 ch^{2} a - 1 \\
1 + 2 sh^{2} a
\end{cases}$$$$

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$

$$\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{ch} a \operatorname{sh} b$$

$$\operatorname{sh}(a-b) = \operatorname{sh} a \operatorname{ch} b - \operatorname{ch} a \operatorname{sh} b$$

$$\operatorname{th}(a-b) = \frac{\operatorname{th} a + \operatorname{th} b}{1 - \operatorname{th} a \operatorname{th} b}$$

sh 2a = 2 sh a ch a

$$ch^{2} x - sh^{2} x = 1$$

$$th 2a = \frac{2 th a}{1 + th^{2} a}$$

$$ch p + ch q = 2 \cosh \frac{p+q}{2} ch \frac{p-q}{2}$$

$$ch p - ch q = 2 sh \frac{p+q}{2} sh \frac{p-q}{2}$$

$$sh p + sh q = 2 sh \frac{p+q}{2} ch \frac{p-q}{2}$$

$$sh p - sh q = 2 cosh \frac{p+q}{2} sh \frac{p-q}{2}$$

Opérateurs vectoriels

Cette annexe sert essentiellement en physique mais elle peut trouver son utilité en chimie (par exemple l'Hamiltonien comporte un laplacien) ou en maths (notamment dans le cadre du chapitre des fonctions de plusieurs variables).

1. Notations

Opérateur Nabla

On utilise très souvent l'opérateur « Nabla » :

$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$

Champs utilisés par la suite

Dans la suite, on considère un champ vectoriel :

$$\mathbf{A}(M) = \begin{pmatrix} A_x(x, y, z) \\ A_y(x, y, z) \\ A_z(x, y, z) \end{pmatrix} \mathbf{i}_{\mathbf{k}}$$

© Dunod. La photocopie non autorisée est un délit.

On considérera également un champs vectoriel $\bf B$ et le champs scalaire V(x,y,z)

2. Gradient

Coordonnées cartésiennes

$$\mathbf{grad}V = \nabla V = \begin{pmatrix} \frac{\partial V}{\partial x}(x, y, z) \\ \frac{\partial V}{\partial y}(x, y, z) \\ \frac{\partial V}{\partial z}(x, y, z) \end{pmatrix}$$

Coordonnées cylindriques

$$\mathbf{grad}V = \mathbf{\nabla}V = \left(egin{array}{c} rac{\partial V}{\partial r} \ rac{1}{r} rac{\partial V}{\partial heta} \ rac{\partial V}{\partial z} \end{array}
ight) egin{array}{c} \mathbf{u}_r \ \mathbf{u}_{ heta} \ \end{array}$$

Coordonnées sphériques

$$\mathbf{grad}V = \left(egin{array}{c} rac{\partial V}{\partial r} \\ rac{1}{r}rac{\partial V}{\partial heta} \\ rac{1}{r\sin heta}rac{\partial V}{\partial arphi} \end{array}
ight) egin{array}{c} \mathbf{u}_r \\ \mathbf{u}_{ heta} \end{array}$$

4. Rotationnel 183

3. Divergence

Coordonnées cartésiennes

$$\operatorname{div} \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \nabla \cdot \mathbf{A}$$

Coordonnées cylindriques

$$\operatorname{div} \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (r \cdot A_r) + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}$$

Coordonnées sphériques

$$\operatorname{div} \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \cdot A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

4. Rotationnel

Coordonnées cartésiennes

$$\mathbf{rot} \, \mathbf{A} = \mathbf{\nabla} \wedge \mathbf{A} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{pmatrix}$$

Dunod. La photocopie non autorisée est un délit.

Coordonnées cylindriques

$$\mathbf{rot} \, \mathbf{A} = \left(\begin{array}{c} \frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_{\theta}}{\partial z} \\ \frac{\partial A_r}{\partial z} - \frac{\partial A_x}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial r} (r \cdot A_{\theta}) - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \end{array} \right)$$

Coordonnées sphériques

$$\begin{aligned} \mathbf{rot}\,\mathbf{A} &= \left(\begin{array}{c} \frac{1}{r\sin\theta} \left(\frac{\partial}{\partial\theta} (A_{\varphi}\sin\theta) - \frac{\partial A_{\theta}}{\partial\varphi} \right) \\ \\ \frac{1}{r} \left(\frac{1}{\sin\theta} \frac{\partial A_{r}}{\partial\varphi} - \frac{\partial}{\partial r} (r \cdot A_{\varphi}) \right) \\ \\ \frac{1}{r} \left(\frac{\partial}{\partial r} (r \cdot A_{\theta}) - \frac{\partial A_{r}}{\partial\theta} \right) \end{array} \right) \end{aligned}$$

5. Laplacien

Coordonnées cartésiennes

Laplacien scalaire:

$$\Delta V = \nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = \operatorname{div}\left(\operatorname{grad}V\right)$$

Laplacien vectoriel:

$$\Delta \mathbf{A} = \nabla^2 \mathbf{A} = \begin{pmatrix} \Delta A_x = \frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_x}{\partial y^2} + \frac{\partial^2 A_x}{\partial z^2} \\ \Delta A_y = \frac{\partial^2 A_y}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \\ \Delta A_z = \frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2} \end{pmatrix}$$

Coordonnées cylindriques

Laplacien scalaire:

$$\Delta V = \frac{1}{r} \frac{\partial V}{\partial r} + \frac{\partial^2 V}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2}$$

$$\Delta V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2}$$

Le Laplacien vectoriel n'a pas ici d'expression simple.

Coordonnées sphériques

Le Laplacien scalaire est :

$$\Delta V = \frac{1}{r} \frac{\partial}{\partial r^2} (rV) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right)$$

6. Relations entre les opérateurs

Opérateur A · grad

$$(\mathbf{B}.\mathbf{grad}) \mathbf{A} = \begin{pmatrix} (\mathbf{B}.\nabla) A_x \\ (\mathbf{B}.\nabla) A_y \\ (\mathbf{B}.\nabla) A_z \end{pmatrix}$$

$$= \begin{pmatrix} B_x \frac{\partial A_x}{\partial x} + B_y \frac{\partial A_x}{\partial y} + B_z \frac{\partial A_x}{\partial z} \\ B_x \frac{\partial A_y}{\partial x} + B_y \frac{\partial A_y}{\partial y} + B_z \frac{\partial A_y}{\partial z} \\ B_x \frac{\partial A_z}{\partial x} + B_y \frac{\partial A_z}{\partial y} + B_z \frac{\partial A_z}{\partial z} \end{pmatrix}$$

En coordonnées cylindriques et sphériques l'expression n'est plus lisible.

Dunod. La photocopie non autorisée est un délit.

Autres relations

$$\begin{aligned}
 & \mathbf{rot}\left(\mathbf{grad}U\right) = 0 \\
 & \mathbf{div}\left(\mathbf{rot}\;\mathbf{A}\right) = 0 \\
 & \mathbf{\Delta A} = \mathbf{grad}\left(\mathbf{div}\;\mathbf{A}\right) - \mathbf{rot}\left(\mathbf{rot}\;\mathbf{A}\right) \\
 & \mathbf{grad}\left(U \cdot V\right) = U\;\mathbf{grad}V + V\;\mathbf{grad}U \\
 & \mathbf{div}\left(V \cdot \mathbf{A}\right) = V\;\mathbf{div}\;\mathbf{A} + \mathbf{A} \cdot \mathbf{grad}V \\
 & \mathbf{rot}\left(V \cdot \mathbf{A}\right) = V\;\mathbf{rot}\;\mathbf{A} + \left(\mathbf{grad}V\right) \wedge \mathbf{A} \\
 & \mathbf{div}\left(\mathbf{A} \wedge \mathbf{B}\right) = \mathbf{B} \cdot \mathbf{rot}\;\mathbf{A} - \mathbf{A} \cdot \mathbf{rot}\;\mathbf{B} \end{aligned}$$

7. Théorèmes géométriques

Théorème d'Ostrogradski

$$\iint_{M \in (S)} \mathbf{A}(M) \mathbf{n}_{\text{ext}} \, dS = \iiint_{M \in (V)} \text{div } \mathbf{A}(M) \, dV$$

Théorème de Stokes

$$\oint_{M \in (\mathcal{C})} \mathbf{A}(M).dM = \iint_{M \in (S)} \mathbf{rot} \, \mathbf{A}.\mathbf{n}(P) \, \mathrm{d}S$$

Théorème du gradient

Autre formulation (avec les notations adoptées pour le théorème de Stokes):

$$\oint_{M \in (\mathcal{C})} U(M).\mathbf{dM} = \iint_{M \in (S)} \mathbf{n}(M) \wedge \mathbf{grad}U(M) \, \mathrm{d}S$$

Unités et constantes fondamentales

Unités du Système International

On distingue trois types d'unités dans le Système International : les unités de base, les unités supplémentaires (ces deux premières catégories étant dimensionnellement indépendante) et les unités supplémentaires et dérivées qui peuvent s'exprimer en fonction des premières.

1.1 Unités principales du système international

Grandeur physique	Unité	Symbole
Longueur	mètre	m
Masse	kilogramme	kg
Temps	seconde	s
Courant électrique	ampère	A
Température	kelvin	K
Quantité de matière	mole	mol
Intensité lumineuse	candela	cd

© Dunod. La photocopie non autorisée est un délit.

1.2 Unités secondaires du système international

Grandeur physique	Unité	Symbole
Angle	radian	rad
Angle solide	steradian	sr

1.3 Unités courantes du système international

Grandeur physique	Unité	Symbole
Fréquence	hertz	$Hz \leftrightarrow s^{-1}$
Force	newton	$N \leftrightarrow kg \cdot m \cdot s^{-2}$
Énergie	joule	$J \leftrightarrow m \cdot N$
Puissance	watt	$W \leftrightarrow J \cdot s^{-1}$
Pression	pascal	$Pa \leftrightarrow N \cdot m^{-2}$
Charge électrique	coulomb	$C \leftrightarrow A \cdot s$
Différence de potentiel électrique	volt	$V \leftrightarrow A^{-1} \cdot m \cdot N \cdot s^{-1}$
Résistance électrique	ohm	$\Omega \leftrightarrow A^{-1} \cdot m \cdot N \cdot s^{-2}$
Conductance électrique	siemens	$S \leftrightarrow A^2 \cdot N \cdot s$
Capacité électrique	farad	$F \leftrightarrow A^2 \cdot m^{-1} \cdot N^{-1} \cdot s^2$
Champ magnétique	tesla	$T \leftrightarrow A^{-1} \cdot m^{-1} \cdot N$
Inductance	henry	$H \leftrightarrow A^{-2} \cdot m \cdot N$
Flux magnétique	weber	$Wb \leftrightarrow A^{-1} \cdot m \cdot N$
Flux lumineux	lumen	$lm \leftrightarrow cd \cdot sr$
Illumination	lux	$lx \leftrightarrow cd \cdot m^{-2} \cdot sr$

1.4 Multiples décimaux pour les unités

Facteur	Préfixe	Symbole	Facteur	Préfixe	Symbole
10	déca-	da	10^{-1}	déci-	d
10^{2}	hecto-	h	10^{-2}	centi-	С
10^{3}	kilo-	k	10^{-3}	milli-	m
10^{6}	méga-	M	10^{-6}	micro-	μ
10^{9}	giga-	G	10^{-9}	nano-	n
10^{12}	tera-	T	10^{-12}	pico-	p
10^{15}	peta-	P	10^{-15}	femto	f
10^{18}	exa-	E	10^{-18}	atto-	a

2. Constantes fondamentales

Constante	Valeur
Constante de gravitation	$G = 6,67259 \cdot 10^{-11} \mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}$
Célérité de la lumière dans le vide	$\begin{array}{l} c \ = \ 299792458 \ m \cdot s^{-1} \\ c \approx 3 \cdot 10^8 \ m \cdot s^{-1} \\ \mu_0 = 4\pi \cdot 10^{-7} \ H \cdot m^{-1} \end{array}$
Perméabilité du vide	$\mu_0 \approx 1,25664 \cdot 10^{-6} \mathrm{H}\cdot\mathrm{m}^{-1}$
Permittivité du vide	$\varepsilon_0 \approx 8,85419 \cdot 10^{-12} \text{ F} \cdot \text{m}^{-1}$
Constante de Planck	$h = 6,6260755 \cdot 10^{-34} \text{J} \cdot \text{s}^{-1}$ $h = 4,135669 \cdot 10^{-15} \text{eV} \cdot \text{s}$
Constante des gaz parfaits	$R = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Nombre d'Avogadro	$\mathcal{N} = 6,0221367 \cdot 10^{23} \text{ mol}^{-1}$
Constante de Boltzmann	$k = 1,380658 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$
Charge élémentaire	$e = 1,602217733 \cdot 10^{-19} C$
Constante de Faraday	$\mathcal{F} = 96485,309 \mathrm{C} \cdot \mathrm{mol}^{-1}$
Constante de Stefan-Boltzmann	$\sigma = 5,67051 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$

3. Ordres de grandeurs

Grandeur	Valeur
Conductivité du métal	$\sigma \approx 10^8 \ \Omega^{-1} \cdot m^{-1}$
Tension de seuil pour une diode	$V_d \approx 0.6 \text{ V}$
Champ de pesanteur à la surface de la Terre	$g = 9.8 \mathrm{m \cdot s^{-2}}$
Rayon terrestre	$R_T = 6400 \text{ km}$
Masse de la Terre	$M_T \approx 6 \cdot 10^{24} \text{ kg}$
Altitude d'un satellite géostationnaire	$H \approx 36~000 \text{ km}$
Distance Terre-Soleil	$d_{T-S} \approx 1.5 \cdot 10^{11} \text{ m}$
Distance Terre-Lune	$d_{T-L} \approx 3.8 \cdot 10^8 \text{ m}$
Masse du soleil	$M_S \approx 2 \cdot 10^{30} \text{ kg}$
Coefficient de frottement acier-acier	$\mu \approx 0.2$
Raideur d'un ressort	$k \approx 100 \mathrm{N}\cdot\mathrm{m}^{-1}$
Masse du proton	$m_p = 1,673 \cdot 10^{-27} \text{ kg}$
Masse du neutron	$m_n = 1,675 \cdot 10^{-27} \text{ kg}$
Masse de l'électron	$m_e = 9,109 \cdot 10^{-31} \text{ kg}$

www.biblio-scientifique.com

Constantes chimiques

Potentiels standards redox

(À 25°C, 1,013 bar, pH=0)

Couples redox	E ₀ en volts
$MnO_4^- + 4H^+ + 3e^- \longleftrightarrow MnO_2 + 2H_2O$	1,700
$MnO_4^- + 8H^+ + 5e^- \longleftrightarrow Mn^{2+} + 4H_2O$	1,490
$Cr_2O_7^{2-} + 14H^+ + 6e^- \longleftrightarrow 2Cr^{3+} + 7H_2O$	1,330
$MnO_2 + 4H^+ + 2e^- \longleftrightarrow Mn^{2+} + 2H_2O$	1,230
$Br_2 + 2e^- \longleftrightarrow 2Br^-$	1,090
$Hg^{2+} + 2e^- \longleftrightarrow Hg$	0,850
$Ag^+ + e^- \longleftrightarrow Ag$	0,798
$Hg^+ + e^- \longleftrightarrow Hg^-$	0,790
$Fe^{3+} + e^{-} \longleftrightarrow Fe^{2+}$	0,780
$MnO_4^- + e^- \longleftrightarrow MnO_4^{2-}$	0,560
$I_2 + 2e^- \longleftrightarrow 2I^-$	0,540
$Cu^{2+} + 2e^- \longleftrightarrow Cu$	0,340
$Cu^{2+} + e^- \longleftrightarrow Cu^+$	0,150
$2H^+ + 2e^- \longleftrightarrow H_2$	0,000
$Fe^{3+} + 3e^- \longleftrightarrow Fe$	-0.040

Couples redox	E ₀ en volts
$Pb^{2+} + 2e^- \longleftrightarrow Pb$	-0,120
$\operatorname{Sn}^{2+} + 2e^- \longleftrightarrow \operatorname{Sn}$	-0,140
$Fe^{2+} + 2e^- \longleftrightarrow Fe$	-0,441
$Zn^{2+} + 2e^- \longleftrightarrow Zn$	-0,762
$Mn^{2+} + 2e^- \longleftrightarrow Mn$	-1,180
$Al^{3+} + 3e^- \longleftrightarrow Al$	-1,660
$Na^+ + e^- \longleftrightarrow Na$	-2,715
$Ca^{2+} + 2e^- \longleftrightarrow Ca$	-2,763
$Ba^{2+} + 2e^- \longleftrightarrow Ba$	-2,900
$K^+ + e^- \longleftrightarrow K$	-2,924

Tableau périodique

1^{re} colonne: alkalins métalliques

2e colonne: alkalino terreux

Colonnes 3-11: métaux de transition

Colonne 17: halogènes

Colonnes 18: gaz rares

	1	2	3	4	5	6	7	8	9
	1	1							
I	Н								
Ш	1,008		•				_		
II	3 Li	4 Be	num	éro atom	ique –	→ 6 C		1 1	
ш	lithium	béryllium	nom	ı de l'éléi	ment _	→ carbone	← sy	mbole	
		9,01	11011	i de i eiei	псп	12.01	← ma	asse atom	iane
Н	11	12				12/01	1111		ique
III	Na	Mg							
		magnésium							
Ш	22,99	24,31	01	22	20	0.1	0.5	06	0.7
IV	19 K	20 Ca	21 Sc	22	23 V	24 Cr	25 Mn	26 Fe	27
l v	potassium	calcium	scandium	titane	vanadiur		manganès		cobalt
		40,08	44,96	47,88	50,94	_	54,94		
	37	38	39	40	41	42	43	44	45
V	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh
		strontium	yttrium	zirconium	niobium	1			
Н	85,47	87,62 56	88,91 57	91,22	92,21 73	95,94	98,91 75	101,1	102,9
VI	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir
` 1	césium	baryum	lanthane	hafnium	tantale	tungstène			iridium
		137,3	138,9	178,5	180,9	_		190,2	192,2
	87	88	89						
VII	Fr	Ra	Ac		58	59	60	61	62
		radium 226,0	actinium		Ce	Pr	Nd	Pm	Sm
Ш	220,0	220,0	227,0		cérium 140,1	praséodyme 140,9	néodyme 144,2	prométhium 144,9	samarium 150,4
				\	90	91	92	93	94
				Y	Th	Pa	U	Np	Pu
					thorium	protactinium	uranium	neptunium	plutonium
					232,0	231,0	238,0	237,0	244,1

	10	11	10	10	1.1	15	1.0	177	10
	10	11	12	13	14	15	16	17	18
									2
									He
									hélium 4,003
				5	6		8	9	10
				В	C		O	F	Ne
				bore	carbone		oxygène	fluor	néon
				10,81	12,01		16,00	19,00	20,18
				13	14		16	17	18
				Al	Si		S	C1	Ar
				aluminium	silicium		soufre	chlore	argon
				26,98	28,09		32,07	35,45	39,95
	28	29	30	31	32	33	34	35	36
	Ni	Cu	Zn	Ga	Ge		Se	Br	Kr
	nickel	cuivre	zinc	gallium	germanium		sélénium	brome	krypton
	58,69	63,55	65,39	69,72	72,59		78,96	79,90	83,80
	46	47	48	49	50	51	52	53	54
	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	palladium	argent	cadmium	indium	étain	antimoine	tellure	iode	xénon
	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
	78	79	80	81	82	83	84	85	86
	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
	platine	or	mercure	thallium	plomb	bismuth	polonium	astate	radon
	195,1	197,0	200,6	204,4	207,2	209,0	210,0	210,0	222,0
							-		
	63	64	65	66	67	68	69	70	71
	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutétium
	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
	95	96	97	98	99	100	101	102	103
	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	américium	curium	berkélium	californium	einstenium		mendélevium	nobélium	lawrencium
	243,1	247,1	247,1	252,1	252,1	257,1	256,1	259,1	260,1
4	- , -	,-	,-	,-	- /-	- /-	/-	/-	,-

© Dunod. La photocopie non autorisée est un délit.

www.biblio-scientifique.com

www.biblio-scientifique.com

Index

© Dunod. La photocopie non autorisée est un délit.

Abel (lemme d'–), 51 absorption, 137 accroissements finis	spectre, 26 approximation des états quasi stationnaires (AEQS), 149
(théorème des), 39	arrangement, 5
activité, 164	Arrhénius (loi d'–), 149
adhérence, 29	asymptote, 61
adiabatique (transformation –), 81	asymtote, 63
adjoint (d'un	auto-induction, 126
endormorphisme), 24	automorphisme, 15
affinité, 145	automorphismes
Alembert	orthogonaux, 25
équation d'–, 132	avancement d'une réaction, 148
règle de d'-, 49	avaricement a une reaction, 140
théorème de d'-, 10	base, 13
algèbre, 5	changement de –, 19
Ampère (théorème d'-), 121	duale, 14
amplificateur opérationnel, 73	Bertrand
angles remarquables, 177	série de –, 48
anneau, 3	Bessel (inégalité de –), 23
application	Bezout
composition, 11	égalité de, 9
injective, 11	Bezout (théorème de –), 7 binôme (de Newton), 6
lipschitizienne, 37	Binet (formules de –), 100
surjective, 11	Biot et Savart (loi de –), 121
application linéaire, 12–17	Bolzano-Weiertrass
image, 15, 16	(théorème de –), 35
noyau, 15, 16	boule
rang, 15	fermée, 28
application lineaire	ouverte, 28 branche infinie, 61

branche parabolique, 61	de vitesse (d'une réaction), 148
	continuité, 36
capacités thermiques, 78	continuité uniforme, 37 convection, 85
Cauchy	convegence
critère de –, 49	simple (série d'applications),
produit de –, 50	55
règle de –, 49	
suite de –, 30	convergence
Cauchy-Lipschitz (théorème	absolue (série d'applications),
de –), 45	55 absoluc (cário) 50
Cauchy-Schwarz (inégalité de –),	absolue (série), 50
22	normale (série d'applications), 55
Cayley-Hamilton (théorème de –	normale (série de Fourier), 57
), 27	semi-convergence (série), 50
centre d'intertie (théorème	simple (suite d'applications),
du –), 91	52 shiple (state a applications),
chaleur latente, 83	théorème de – dominée (suite
champ	d'applications), 54
gravitationnel, 119	théorème de – monotone (suite
magnétostatique, 121	d'applications), 54
champ	uniforme (série d'applications)
électrostatique, 118	55
changement de référentiel, 90	uniforme (suite d'applications)
Chasles (relation de –), 43	52
cinétique chimique, 148	convexité, 40
Clapeyron (relation de –), 83	convexité (inégalité de –), 40
classe (d'une fonction), 39	coordonnées
classe d'équivalence, 2	cartésiennes, 88
codimension, 14	cylindriques, 88
coefficients	polaires, 62
thermoélastiques, 77	sphériques, 89
combinaison, 6	Coriolis
compacte (partie), 29	accélération de –, 90
complète (partie –), 30	force de -, 90
complexe (nombre –), 32–33	corps, 4
composition	Coulomb (lois de –), 105
des accélérations, 90	couple
des vitesses, 90	redox, 163
conduction de la chaleur, 85	courbure, 64
coniques, 68	Cramer (système de –), 21
conjugué (d'un nombre complexe),	14.4.4.00
32	dérivée, 38
connexité par arcs, 30	partielle, 58
constante	selon un vecteur, 58
d'écran, 143 d'acidité 167	dérivabilité, 39 déterminant 19

développements limités, 175	linéaire du second ordre, 45
degré (d'un polynôme), 8	équilibre, 94
Descartes (loi de –), 106	stabilité d'un –, 95
diélectriques (milieux –), 138	espace
diagonalisabilité, 27	euclidien, 30
diagramme	préhilbertien, 30
binaires, 160–163	vectoriel, 5, 12–17
d'Ellingham, 165	vectoriel normé, 27–31
E-pH, 166	extremum local, 59
intensité-potentiel, 168	factorialla E
difféomorphisme, 40	factorielle, 5 famille
diffraction, 116–118	génératrice, 13
diffusion	libre, 13
équation de –, 67	Faraday (loi de –), 126, 128
de chaleur, 85	fermé, 28
direction asymptotique, 61, 63	filtre, 71–73
Dirichlet (théorème de –), 57	flux
dispersion, 137	du champ magnétique, 126
relation de, 134 divisibilité	thermique, 85
dans N, 6	fonction
dans $K[X]$, 9	de plusieurs variables, 58
division euclidienne	de transfert, 71 réelle de la variable
d'un polynôme, 9	réelle, 35–38
dans N, 6	trigonométrique
domination (théorème de –), 42	réciproque, 38
	fonctions implicites (théorème
électrostatique, 118	des –), 59
endomorphisme, 15	force
adjoint, 24	centrale, 99
énergie	d'inertie, 90
cinétique, 93	de Lorentz, 98 forme
cinétique (du solide), 101	linéaire, 14
interne, 77	quadratique, 22
mécanique, 93	forttements solide, 105
magnétique, 127	Fourier
potentielle, 94	loi de –, 85
enthalpie, 78	séries de -, 57
entropie, 80 équation	fraction rationnelle, 10–11 Fresnel
d'onde, 132	miroirs de –, 115
d office, 132 différentielle, 66	principe d'Huyghens –, 116
redox, 164	1 1 70 /
équation différentielle, 44	Gauss
linéaire du premier ordre, 44	approximation de –, 107
=	= =

© Dunod. La photocopie non autorisée est un délit.

théorème de –, 7, 119 gaz parfait, 76 Gibbs règle des phases de –, 159 relation de Gibbs–Duhem, 153 relation de Gibbs–Helmoltz, 153 gradient, 58 Grassman (formule de –), 17 groupe, 2 cyclique, 3 générateurs de –, 3 monogène, 3	Kænig (théorèmes de –), 92, 93, 103, 104 Kepler (lois de –), 100 Klechkowsky (règle de –), 145 lames à retard, 135 Laplace (force de –), 122 Le Châtelier (loi de –), 159 Leibniz (formule de –), 39 lemme d'Abel, 51 lentille mince, 108 Lenz (loi de –), 126 limite, 36 lipschitzienne (application –), 37
Heine (théorème de –), 37 Henry (loi de –), 160 Hess (loi de –), 157 Hund (principe de –), 145 hystéresis, 130	loi d'Arrhénius, 149 d'Ohm, 125 de Biot et Savart, 121 de composition, 2 de Faraday, 126, 128 de Fourier, 85
idéal, 4 identités thermodynamiques, 80 inégalité de la moyenne, 41 induction de Lorentz, 128 de Neumann, 126 inertie (force d'-), 90 injective, 11 intégrale dépendant d'un paramètre, 43	de Hess, 157 de Le Châtelier, 159 de Lenz, 126 de Planck, 86 de Pouillet, 69 de Raoult, 160 de Snell-Descartes, 106, 140 de Stefan, 87 de Van't Hoff, 149 des mailles, 69 des noeuds, 69 longueur (d'un arc), 64
de Riemann, 42 impropre, 43 intégration, 41–44 intérieur (d'une partie), 29 interférences, 109–116 interféromètre de Fabry-Perot, 115 de Michelson, 112 intgréation par parties, 41 isomorphisme, 15	machines thermiques, 83 magnétostatique, 121 Malus (théorème de –), 110 matériaux magnétiques, 129 matrice, 17–22 exponentielle de –, 19 inverse, 20 opérations, 18 produit, 18 Maxwell équations de – dans le vide,
jauge de Lorentz, 124	123

	équations de – dans les	Pauli (principe de –), 145
	milieux, 139	pgcd dans \mathbb{Z} , 7
	équation de – en ARQS, 129	pKa, 167
	Minkowski (inégalité de –), 23	Planck (loi de –), 86
	miroirs	point
	de Fresnel, 115 sphériques, 107	birégulier, 59
		régulier, 59
	modes propres, 131 module (d'un nombre complexe),	polarisation
	32	d'un diélectrique, 138
	Moivre (formule de –), 33	de la lumière, 135
	moment cinétique, 92	polynôme, 8–11
	théorème du –, 92, 103	caractéristique, 26
	multiplicité (des racines), 10	scindé, 10
	•	potentiel 119
	Nernst (formule de –), 164	électrique, 118
	Newton	chimique, 154
	binôme de –, 6	redox, 164 Pouillet (loi de –), 69
	nombre	Poynting (vecteur de –), 124
	d'oxydations, 163 entier, 5–7	Poyting (vecteur de –), 136
	premier, 7	ppcm dans \mathbb{Z} , 7
	quantique, 143	premier principe (thermodynamique),
	rationnel, 5–7	77
	norme	primitives usuelles, 173
	équivalente, 28	principe fondamental de la
	euclidienne, 22	dynamique, 91
		prisme, 107
	Ohm (loi d'–), 125	produit scalaire, 22
déli	onde	projecteur, 16
'n	électromagnétique, 134–140	puissance
Dunod. La photocopie non autorisée est un délit.	équation d'–, 132	d'une force, 93, 104
isée	lumineuse, 109	rayonnée, 136
utor	plane progressive, 133	puissance électromagnétique, 123
ın aı	stationnaire, 133 orbitale	Pythagore (théorème de –), 30
e nc	atomique, 144	
ido	moléculaire, 147	référentiel
oto	orthogonalité, 23	changement de –, 90
ı ph	oscillateurs, 95	galiléen, 91
_ Ľ	couplés, 131	réflextion d'une onde, 140
pou	ouvert, 28	résultante cinétique (théorème de
	oxydo-réduction, 163	la –), 103
0		règle
	paramagnétisme, 129	de Klechkowsky, 145
	Parseval (égalité de –), 57	règle des $x^{\alpha} f(x)$, 42

racine	Stirling (formule de –), 50
d'un polynôme, 10	suite, 34–35
nièmes d'un complexe, 33	adjacente, 35
nièmes de l'unité, 33	arithmétique, 34
rang	extraite, 35
d'une application linéaire, 15	géométrique, 34
formule du –, 15	supplémentaire (sous-espaces), 13
Raoult (loi de –), 160 rayon de courbure, 64	surjective, 11
relation	susceptibilité
binaire, 1	électrique, 139
d'équivalence, 1	magnétique, 129, 130
d'ordre, 1	symétrie, 16
de conjugaison, 108	d'une courbe paramétrée, 61
de dispersion, 134	d'une courbe polaire, 63
de structure, 134	système linéaire, 21
Riemann	de Cramer, 21
intégrale de –, 42	
série de –, 48	tangente (à une courbe), 60
somme de –, 41	Taylor-Lagrange
Rolle (théorème de –), 39	inégalité de –, 40
roulement sans glissement, 101, 105	Taylor-Young (formule de –), 40
	température d'inversion, 158
série, 47–51	Théorème
alternée, 49	de Dirichlet, 57
de Bertrand, 48	de Scharz, 59
de Fourier, 57	théorème
de Riemann, 48	d'équivalence., 42
géométrique, 48	de domination, 42
produit de Cauchy, 50	de Rolle, 39 des accroissements finis, 39
série entière, 51–52 dérivation, 51	topologie, 27
intégration, 51	torseur cinétique, 101
rayon de convergence, 51	torsear enterique, 101
Schwarz (théorème de –), 59	valeur d'adhérence, 29
Snell-Descartes (loi de -), 140	valeur propre, 26
solide (mécanique du –), 101	Van der Waals (gaz de –), 77
somme de Riemann, 41	Van't Hoff (loi de –), 149
somme directe, 12	variance, 159
sous-anneau, 4	vecteur propre, 26
sous-espace	vitesse
supplémentaire, 13	d'entraînement, 90
sous-espace propre, 26	de groupe, 137
sous-groupe, 3	de phase, 137
spectroscopie, 141	de réaction, 148
Stefan (loi de –), 87	quadratique moyenne, 76

www.biblio-scientifique.com

INDEX 203

voisinage, 29

Weierstrass deuxième théorème de –, 54 premier théorème de –, 54

Young (trous d'-), 111

www.biblio-scientifique.com

J'INTÈGRE

Lionel Porcheron

LE FORMULAIRE MPSI, MP

- Toutes les formules et définitions du programme de MPSI et MP en mathématiques, physique et chimie.
- Pour chaque formule : la signification des termes, les unités, les limites d'usage.
- De très nombreux schémas, des exemples et des conseils.
- Un index fourni pour trouver rapidement l'information recherchée.

L'outil indispensable pour réviser!

ISBN 210051941-7

J'intêgre

4e édition

LIONEL PORCHERON Ingenieur de l'ENSEEIHT à Toulouse.

INFORMATIQUE