Claims

1. (currently amended) A process for the preparation of a narrow molecular weight distributed hydroxy-vinyl aromatic oligomer, cooligomer, polymer or copolymer with a polydispersity M_w/M_n between 1 and 2, which process comprises the steps reacting a composition of at least one monomer of formula I

$$R_3$$
 R_2
 R_4
 R_2
 R_3
 R_4

wherein

R₁ is H or CH₃;

 R_2 and R_3 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxycarbonyl, C_1 - C_8 alkylthio, C_1 - C_8 dialkylamino, trihalogenmethyl;

 R_4 is C_1 - C_{12} alkyl or benzyl which is unsubstituted or substituted with one or two C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxycarbonyl, C_1 - C_8 alkylthio, C_1 - C_8 dialkylamino, trihalogenmethyl, halogen; or R_4 is a group phenyl(methyl)CH-, (phenyl)₂CH-, C_1 - C_{12} alkyl-O-C(O)-, phenyl-CH₂-O-C(O)- or (phenyl)₂CH-O-C(O)-;

a1) in the presence of at least one nitroxylether having the structural element N-O-X, wherein

X represents a group having at least one carbon atom and is such that the free radical X• derived from X is capable of initiating polymerization of ethylenically unsaturated monomers; or

a2) in the presence of at least one stable free nitroxyl radical $N-O_{\bullet}$ and a free radical initiator; or

a3) in the presence of a compound of formula (III) In Hall (III) and a catalytically

effective amount

of an oxidizable transition metal complex catalyst, wherein

p represents a number greater than zero and defines the number of initiator fragments;

q represents a number greater than zero;

[In] represents a radically transferable atom or group capable of initiating polymerization and -[Hal] represents a leaving group; or

- a4) in an anionic polymerization reaction in the presence of a metal or organo metal catalyst; and optionally simultaneously or in a subsequent step with one or more ethylenically unsaturated monomers different from those of formula (I); and
- b) isolating the resulting polymer oligomer, cooligomer, polymer or copolymer and subjecting it to a reaction with a halosilane giving a polymer with repeating units of formula II

and with a degree of OH-groups of between 10 mol % and 100 mol %, based on the molar amount of protected hydroxy-vinyl aromatic monomer of formula I.

- 2. (original) A process according to claim 1 wherein halosilane is iodosilane.
- **3. (original)** A process according to claim 1 wherein the polymerization is carried out according to steps a1) or a2).

4. (original) A process according to claim 1 wherein in formula I

R₁ is H;

R₂ and R₃ are H;

OR4 is in the 4-position and

R₄ is C₁-C₄alkyl, benzyl, C₁-C₄alkoxycarbonyl or benzyloxycarbonyl.

5. (original) A process according to claim 1, wherein the nitroxylether in step a1) is of formula A, B or O,

.. 3

wherein

m is 1,

R is hydrogen, C₁-C₁8alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an □,□-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

10/533,574 - 4 - EL/21-22785/A/PCT

p is 1;

 $R_{101} \text{ is } C_1\text{-}C_{12} \text{alkyl, } C_5\text{-}C_7 \text{cycloalkyl, } C_7\text{-}C_8 \text{aralkyl, } C_2\text{-}C_{18} \text{alkanoyl, } C_3\text{-}C_5 \text{alkenoyl or benzoyl; } C_7\text{-}C_8 \text{aralkyl, } C_7 \text{-}C_8 \text{aralkyl, } C_7 \text{$

R₁₀₂ is C₁-C₁₈alkyl, C₅-C₇cycloalkyl, C₂-C₈alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl;

G₆ is hydrogen and G₅ is hydrogen or C₁-C₄alkyl,

 G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl; and

X is selected from the group consisting of

-CH₂-phenyl, CH₃CH-phenyl, (CH₃)₂C-phenyl, (C₅-C₆cycloalkyl)₂CCN, (CH₃)₂CCN,

, -CH₂CH=CH₂, CH₃CH-CH=CH₂ (C₁-C₄alkyl)CR₂₀-C(O)-phenyl, (C₁-

 $C_4)alkyl-CR_{20}-C(O)-(C_1-C_4)alkoxy, (C_1-C_4)alkyl-CR_{20}-C(O)-(C_1-C_4)alkyl, (C_1-C_4)alkyl-CR_{20}-C(O)-N-di(C_1-C_4)alkyl, (C_1-C_4)alkyl-CR_{20}-C(O)-NH(C_1-C_4)alkyl, (C_1-C_4)alkyl-CR_{20}-C(O)-NH_2, wherein R_{20} is hydrogen or (C_1-C_4)alkyl.$

6. (currently amended) A process according to claim 1, wherein the nitroxylether of step a1) is of formula (Ic), (Id), (Ie), (Ig) or (Ih)

(le),

10/533,574

wherein R_{201} , R_{202} , R_{203} and R_{204} independently of each other are C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by OH, halogen or a group - O-C(O)- R_{205} , C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl or R_{201} and R_{202} and/or R_{203} and R_{204} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

 R_{205} , R_{206} and R_{207} independently are hydrogen, C_1 - C_{18} alkyl or C_6 - C_{10} aryl;

 R_{208} is hydrogen, OH, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by one or more OH, halogen or a group -O-C(O)- R_{205} , C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl, C_7 - C_9 phenylalkyl, C_5 - C_{10} heteroaryl, -C(O)- C_1 - C_{18} alkyl, -O- C_1 - C_{18} alkyl or -COOC₁- C_{18} alkyl;

R₂₀₉, R₂₁₀, R₂₁₁ and R₂₁₂ are independently hydrogen, phenyl or C₁-C₁₈alkyl; and X is selected from the group consisting of -CH₂-phenyl, CH₃CH-phenyl, (CH₃)₂C-phenyl, (C₅-

C₆cycloalkyl)₂CCN, (CH₃)₂CCN,

, -CH₂CH=CH₂, CH₃CH-CH=CH₂ (C₁-

: ---

 $C_4 \text{alkyl}) \text{CR}_{20} - \text{C(O)-phenyl, } (C_1 - C_4) \text{alkyl-CR}_{20} - \text{C(O)-(C}_1 - C_4) \text{alkoxy, } (C_1 - C_4) \text{alkyl-CR}_{20} - \text{C(O)-(C}_1 - C_4) \text{alkyl-CR}_{20} - \text{C(O)-NH(C}_1 - C_4) \text{alkyl-CR}_{20} - \text{C(O)-NH(C}_1 - C_4) \text{alkyl-CR}_{20} - \text{C(O)-NH}_2, \text{ wherein}$

 R_{20} is hydrogen or (C_1-C_4) alkyl.

10/533,574 - 6 - EL/21-22785/A/PCT

7. (original) A process according to claim 1, wherein the nitroxyl radical of step a2) is of formula A', B' or O',

$$G_1 \qquad G_2 \qquad G_6 \qquad G_6 \qquad G_7 \qquad G_8 \qquad G_8 \qquad G_9 \qquad G_9$$

wherein

m is 1.

R is hydrogen, C₁-C₁8alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an □,□-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

R₁₀₁ is C₁-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₈aralkyl, C₂-C₁₈alkanoyl, C₃-C₅alkenoyl or benzoyl;
R₁₀₂ is C₁-C₁₈alkyl, C₅-C₇cycloalkyl, C₂-C₈alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl;

G₆ is hydrogen and G₅ is hydrogen or C₁-C₄alkyl, and

 G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.

8. (currently amended) A process according to claim 1, wherein the nitroxyl radical of step a2) is of formula (Ic'), (Id'), (Ie'), (If'), (Ig') or (Ih')

wherein R_{201} , R_{202} , R_{203} and R_{204} independently of each other are C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by OH, halogen or a group - O-C(O)- R_{205} , C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl or R_{201} and R_{202} and/or R_{203} and R_{204} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

 $R_{205},\,R_{206}$ and R_{207} independently are hydrogen, $C_1\text{-}C_{18}\text{alkyl}$ or $C_6\text{-}C_{10}\text{aryl};$

 R_{208} is hydrogen, OH, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkinyl which are substituted by one or more OH, halogen or a group -O-C(O)- R_{205} , C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl, C_7 - C_9 phenylalkyl, C_5 - C_{10} heteroaryl, -C(O)- C_1 - C_{18} alkyl, -O- C_1 - C_{18} alkyl or -COOC $_1$ - C_{18} alkyl; and R_{209} , R_{210} , R_{211} and R_{212} are independently hydrogen, phenyl or C_1 - C_{18} alkyl.

9. (currently amended) A process according to claim 1, wherein in step a3)

[In] represents the polymerization initiator fragment of a polymerization initiator of formula (III) capable of initiating polymerization of monomers or oligomers which polymerization initiator is selected from the group consisting of C_1 - C_8 -alkyl halides, C_6 - C_{15} -aralkylhalides, C_2 - C_8 -haloalkyl esters, arene sulfonyl chlorides, haloalkanenitriles, α -haloacrylates and halolactones, p and q represent one-and-the-other components-are as defined in claim 1.

- **10. (original)** A process according to claim 1, wherein in step a3) the oxidizable transition metal in the transition metal complex salt is present as a transition metal complex ion in the lower oxidation state of a redox system.
- **11. (original)** A process according to claim 10, wherein the transition metal complex ion is a Cu(I) complex ion in the Cu(I)/Cu(II) system.
- 12. (original) A process according to claim 1 wherein the nitroxyl ether of formula

is used in the polymerization step a1).

- **13. (original)** A process according to claim 1 wherein the optionally used additional ethylenically unsaturated monomer is selected from the group consisting of an acrylic acid ester, acrylamide, acrylnitrile, methacrylic acid ester, methacrylamide, methacrylnitrile and styrene.
- **14. (original)** A process according to claim 1 wherein the polymerization temperature in the steps a1), a2) or a3) is between 90° C and 150° C.
- **15.** (original) A process according to claim 1 wherein the hydroxy-vinyl aromatic oligomer, cooligomer, polymer or copolymer has a weight molecular weight average from 2000 to 30 000 Daltons.

· . : : : : : -

- **16.** (original) A process according to claim 1 wherein the iodosilane reagent of step b) is $R_{13}R_{14}R_{15}Sil$, wherein R_{13} , R_{14} and R_{15} are independently C_1 - C_8 alkyl, chloromethyl, vinyl or phenyl.
- 17. (original) A process according to claim 1 wherein the reaction with a halosilane reagent is carried out using a chlorosilane reagent from $R_{13}R_{14}R_{15}SiCl$ wherein R_{13} , R_{14} and R_{15} are independently C_{1} - C_{8} alkyl, chloromethyl, vinyl or phenyl in the presence of a halide salt and/or thiol, wherein the halide salt is selected from the group consisting of alkaline metal halide, alkaline-earth metal halide, ammonium halide or phosphonium halide.

18. (cancelled)

ngriden i

10/533,574 - 10 - EL/21-22785/A/PCT