Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria ordinaria

Ejercicio 1. (2.5 puntos) Sea Ω un dominio de \mathbb{C} y sean $f, g \in \mathcal{H}(\Omega)$. Supongamos que existe $k \in \mathbb{N}$ de modo que $f^k(z) = g^k(z)$ para todo $z \in \Omega$. Probar que existe $\lambda \in \mathbb{C}$, con $\lambda^k = 1$, tal que $f(z) = \lambda g(z)$ para cada $z \in \Omega$.

Ejercicio 2. (2.5 puntos) Integrando la función $z \mapsto \frac{ze^{iz}}{(1+z^2)^2}$ sobre un camino cerrado que recorra la frontera de la mitad superior del disco D(0,R) calcular la integral:

$$\int_{-\infty}^{+\infty} \frac{x \operatorname{sen}(x)}{(1+x^2)^2} \, dx.$$

Ejercicio 3. (2.5 puntos) Sean $f, g \in \mathcal{H}(\mathbb{C})$ verificando $f(g(z)) = z^2$ para cada $z \in \mathbb{C}$. Probar que una de las funciones f y g es un polinomio de grado uno y la otra es un polinomio de grado dos.

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\operatorname{sen}(t^n + z) \operatorname{cos}(t^n + z)}{1 + t^2} dt$$
 $\forall z \in \mathbb{C}.$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en \mathbb{C} y que su suma es una función entera.

Granada, 9 de junio de 2020

Instrucciones:

- Enviad la prueba resuelta a mi email (jmeri@ugr.es) en un único archivo .pdf con el nombre en el formato Apellido1Apellido2Nombre.pdf
- Tenéis hasta las 13:00 para entregar la prueba.

Ejercicio 1. (2.5 puntos) Sea Ω un dominio de $\mathbb C$ y sean $f,g\in \mathcal H(\Omega)$. Supongamos que existe $k\in \mathbb N$ de modo que $f^k(z)=g^k(z)$ para todo $z\in \Omega$. Probar que existe $\lambda\in \mathbb C$, con $\lambda^k=1$, tal que $f(z)=\lambda g(z)$ para cada $z\in \Omega$.

si g = 0 => g = 0, y podemos tomar >=1. si g ≠ 0 => Jaer/ga) ≠ 0 => JS>0/D(a,8)>DS-R y g(2) ≠ 0 FZED, per continuidad deg.

For hipotesis,
$$h(z) = \left(\frac{g(z)}{g(z)}\right)^k = \frac{g(z)^k}{g(z)^k} = 1 \Rightarrow h(D) \subseteq C[1]$$

D conexo, h cont. por ser acciente de continuos $\Rightarrow h(D)$ conexo \Rightarrow se limito on un unico punto h=h(Z) h=h(Z)

Como J. MCR(I), D'AR FO => Por Principio Idellidad 8(3) = 19(3) YZER **Ejercicio 3.** (2.5 puntos) Sean $f,g\in\mathcal{H}(\mathbb{C})$ verificando $f\left(g(z)\right)=z^2$ para cada $z\in\mathbb{C}$. Probar que una de las funciones f y g es un polinomio de grado uno y la otra es un polinomio de grado dos.

Vaunos & es estera polindinica:

Tenemos $g(g(s)) = s^2$ f = c. Sea [wn] = c [(wn) $= \infty$) $g(s_0) = s^2$ f = c. Sea [wn] = c [$g(s_0) = s^2$] = c f = c

f.o polindminos => gr(fog) = grf grg => grf = 1 1grg = 2 o'

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\sin(t^n + z)\cos(t^n + z)}{1 + t^2} dt$$
 $\forall z \in \mathbb{C}$.

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera

A)

Sec
$$x_n: [n, n+1] \rightarrow \mathbb{C} / x_n(x) = x \Rightarrow x_n(x) = 1, \text{ on } \infty x = 0$$

Sec $x_n: x_n \times \mathbb{C} \rightarrow \mathbb{C} / x_n(x) = \frac{x_n(x)}{x_n(x)} = \frac{x_n(x)}{x_n(x$

autitua the No.

Adamós
$$V+L V_n^*$$
 $(D_n)_{t}: C \to C / (D_n)_{t}(z) = D_n(t_1 z)$ es entera por ser ocionte de sunciones enteras, yn e No

For to holomorphia de integrales depondientes de pardimetros, $g: \Lambda \to \mathbb{C} \mid f(z) = \int_{S} \Phi(w; z) dw$ es entero vine No

$$|\frac{Sen(f^{h}+2)\cos(f^{h}+2)}{n+f^{2}}| \leq \frac{|e^{i(f^{h}+2)}| + e^{-i(f^{h}+2)}|}{|f^{h}+2|} = \frac{|e^{i(f^{h}+2)}|}{|f^{h}+2|} =$$

Como $2e^{2M} = \frac{1}{n \ge 0}$ convergente \Rightarrow for test Weierstrass $= \frac{1}{n \ge 0}$ converge absolutamente, puntualmente y unisormemente en cada compacto de C Recubriando C por compactos, $= \frac{1}{n \ge 0}$ Ca. en C

Par Ta Guvergacia de Weierstrass para series, $f(z) = \sum_{k=0}^{\infty} f_k(z)$ $f(z) \in C$ es entera.