Modelagem de Banco de Dados

- Modelo Lógico: forma de apresentação do modelo de dados considerando uma das abordagens: hierárquica, rede, relacional ou orientada a objetos;
 - Deriva do modelo conceitual e visa a representação do negócio
 - Possui entidades associativas em lugar de relacionamentos n:m
 - Define as chaves primárias das entidades
 - Normalização até a 3a. forma normal
 - Adequação ao um padrão de nomenclatura
 - Documentação de entidades e atributos.
- Descreve as estruturas que estarão contidas no banco de dados. No caso do SGBD relacional, construiremos a estrutura relacional, ou seja, tabelas e relacionamentos.

Representação da estrutura dos dados para SGBDR

Estrutura SGBDR

Tabelas

Colunas

Integridade referencial

Linguagem SQL

Conversão do Modelo Conceitual para Modelo Lógico Nomenclatura

Conceitual	Lógico
Entidade	Tabela
Atributo	Coluna
Relacionamento	Relacionamento
Atributo Identificador	Chave Primária PK Primary Key
	Chave Estrangeira FK Foreign Key

Os dados são estruturados em tabelas;

- Uma tabela contém um conjunto de linhas (registros ou instâncias);
- Cada linha (tupla) é composta por várias colunas (atributos);

Banco de Dados do tipo Relacional

Estrutura básica de uma tabela

A estrutura básica de uma tabela é composta por colunas e linhas.

Cada coluna está relacionada a um dado específico como nome ou endereço.

Cada linha armazena um conjunto de dados associados e distribuídos pelas diversas colunas

	C	olunas		
			_	
	CÓDIGO	NOME	ENDEREÇO	CIDADE
linhas	1	Konan S.A.	Rua Marcondes Filho, 24765	Campinhas
	2	Estaleiros Neptuno Ltda.	Av. Mercesul, 1200	Santos
	3	J. Alves & Irmãos Ltda.	Estrada Velha da Serra, 494	Caçador
	4	Fenix S.A.	Rua Olívio Dutra, 12	Londrina
	5	Aços Petrópolis S.A.	Estrada de Petépolis, 949	R. de Janeiro
	6	Metalurgica Audax S.A.	Av. das Américas, 4940	Belo Horizonte
	7	Siderúrgica Ônix S.A.	Av. Carlos Filhe, 1003	Itabira
L	8	Fundição Ajax Ltda.	Rua da Alfândega, 88	Diadema

Chave Primária ou Primary Key: é um atributo aplicado a uma coluna de uma tabela e que impede a existência de registros duplicados.

Chave Estrangeira ou Foreign Key: é a Primary Key de uma tabela (pai) que migra para a tabela (filha) através de um relacionamento. Uma Chave estrangeira é uma coluna ou conjunto de colunas de uma tabela que referencia uma chave primária de outra tabela.

A inclusão de uma chave estrangeira em uma tabela é a forma de implementar no modelo lógico, um relacionamento entre entidades do modelo conceitual

Relacionamentos

Relacionamento Um Para Muitos

um mesmo fornecedor com muitos produtos

integridade referencial somente serão aceitos produtos cujos fornecedores já estejam previamente cadastrados

Note que apenas o campo código da tabela 1 recebeu o atributo de chave primária, pois cada fornecedor tem o seu código específico.

O campo código na tabela 2 não foi marcado como chave primária, pois um mesmo código repete-se para mais de um produto. Ele é denominado de chave estrangeira.

tabela 1

fornecedor

0192 Fazenda Real

5657 Usina Corrente

3938 Sugar Free - Alimentos

ChocoSuper Ind. Alimentícia

chave primária cada fornecedor tem o seu código exclusivo e é cadastrado apenas uma vez

tabela 2

código produto

0192 Café solúvel

0192 Leite em pó

5657 Açúcar

3938 Adoçante

3454 Achocolatado

chave
estrangeira
um ou mais
produtos
podem ser
associados
a um mesmo
fornecedor

Integridade de Chave: toda tabela deve ter uma chave primária, que não pode conter nenhuma parte nula.

A integridade dos dados, refere-se à consistência dos dados, do interrelacionamento das tabelas, da consistência do processo de atualização, inclusão, exclusão ... que devem ser obedecidas de forma a não ferir nenhuma regra do negócio estabelecida no Modelo Conceitual.

Integridade referencial: garantia de que as tabelas armazenem informações compatíveis.

Implementada através da chave estrangeira. O conteúdo de uma coluna definida como uma chave estrangeira de uma tabela deve ser igual a um valor da chave primária associada ou ser nulo.

Deve ser garantida para as operações de inserção, exclusão e atualização.

As regras de integridade devem ser implementadas pelo SGBD ou mantidas pela aplicação.

REPRESENTAÇÃO GRÁFICA DO MODELO LOGICO TABELA

Conversão do modelo conceitual em lógico

Relacionamento "um-para-muitos"

Contexto:

Um departamento tem nenhum ou vários funcionários, mas um funcionário pode pertencer a somente um departamento.

Modelo conceitual:

Explicação:

Quanto há um relacionamento "um-para-muitos", a entidade do lado "N" recebe como atributo a chave primária da entidade do lado "um".

Conversão do modelo conceitual em lógico

Relacionamento "muitos-para-muitos"

Contexto:

Um aluno tem aulas de nenhuma ou várias disciplinas e uma disciplina é cursada por nenhum ou vários alunos.

Modelo conceitual:

Modelo lógico:

Explicação:

Num relacionamento "muitos-para-muitos", é preciso criar uma tabela intermediária que terá como chave primária composta as chaves primárias das outras duas tabelas

REPRESENTAÇÃO GRÁFICA DO MODELO LOGICO

RELACIONAMENTO E CARDINALIDADES

RELACIONAMENTO		
CARDINALIDADES	OBRIGATÓRIO, MÍNIMO UMA OCORRÊNCIA	
	OPCIONAL, PODE. NÃO TER OCORRÊNCIA	
	MÚLTIPLAS OCORRÉNCIAS	

CRIAÇÃO DE TABELAS A PARTIR DO M-E-R

- Para cada entidade (normal ou fraca):
 - Construir uma tabela com os atributos da entidade (colunas)
 - O(s) atributo(s) identificador(es) da entidade deve(m) ser considerado(s) como chave primária na tabela.

- Para relacionamentos 1:1
 - Escolhe-se uma das tabelas para se acrescentar a chave estrangeira.
 - Os atributos de relacionamento, se existirem, deverão ser acrescentados na tabela escolhida; considere a tabela que tiver um maior fluxo de acessos.

Relacionamento "um-para-um".

Contexto:

Um produto tem estoque.

Modelo conceitual:

Modelo lógico:

Explicação:

Como não nos interessa manter dados do estoque senão sua quantidade, estoque não é uma entidade e por isso seus atributos (quantidade) são incorporadas pela entidade produto.

- Para os relacionamentos 1:N
 - Adicionar na tabela que representa a entidade de cardinalidade N,um novo atributo: a chamada chave estrangeira, que corresponde à chave primária da entidade de cardinalidade 1;
 - Se houver atributos de relacionamento, adicioná-los à tabela que representa a entidade de cardinalidade N.

Relacionamento "um-para-muitos"

Contexto:

Um departamento tem nenhum ou vários funcionários, mas um funcionário pode pertencer a somente um departamento.

Modelo conceitual:

Explicação:

Quanto há um relacionamento "um-para-muitos", a entidade do lado "N" recebe como atributo a chave primária da entidade do lado "um".

EMPRESA 1,1 DIMIDE-SE 1,1 DEPARTA-MENTO 1,1 POSSU 1,N **FUNCIONÁRIO** 0,8 ESTÁ ALOCADO 1,N **PROJETO**

- Para cada relacionamento M:N
 - Construir uma tabela, que terá como chave primária a composição das chaves primárias das tabelas que representam as entidades que compõem o relacionamento;
 - Acrescentar os atributos do relacionamento à tabela em questão.
 - A colunas que compõem a chave primária desta tabela, devem ser consideradas chaves –estrangeiras em relação às tabelas de origem.
 - Substitua o relacionamento por uma tabela e dois relacionamentos 1:N.

Relacionamento "muitos-para-muitos"

Contexto:

Um aluno tem aulas de nenhuma ou várias disciplinas e uma disciplina é cursada por nenhum ou vários alunos.

Modelo conceitual:

Modelo lógico:

Explicação:

Num relacionamento "muitos-para-muitos", é preciso criar uma tabela intermediária que terá como chave primária composta as chaves primárias das outras duas tabelas.

EMPRESA 1,1 DIMIDE-SE 1,1 DEPARTA-MENTO 1,1 POSSU 1,N **FUNCIONÁRIO** 0,8 ESTÁ ALOCADO 1,N **PROJETO**

- Para cada agregação (entidades associativas):
 - Construir uma tabela com os atributos do relacionamento que forma a agregação.
 - A chave primária dessa tabela deve ser a composição das chaves primárias das tabelas que representam as entidades participantes do relacionamento, as quais devem ser consideradas chaves estrangeiras em relação às tabelas de origem.
 - Adicione dois relacionamentos 1:N.

Agregação

Auto-relacionamento "um-para-muitos"

Contexto:

Um funcionário supervisiona nenhum ou vários funcionários e um funcionário tem somente um supervisor.

Modelo conceitual:

Modelo lógico:

Auto-relacionamento "muitos-para-muitos"

Contexto:

Um aluno só poderá cursar a disciplina X se tiver sido aprovado nas disciplinas A e B. E só poderá cursar a disciplina Y se tiver sido aprovado na disciplina A.

Modelo conceitual:

Modelo lógico:

