Fixed-Point Iteration

Fixed-Point Iteration

Looking for solutions of equations of the form f(x) = x,

called fixed points of f.

Fixed-Point Iteration

Looking for solutions of equations of the form f(x) = x,

called fixed points of f.

Starting from a number X_0 , we generate a sequence X_1, X_2, \ldots of numbers by the rule

$$X_{n+1} = f(X_n)$$
.

Fixed-Point Iteration

Looking for solutions of equations of the form f(x) = x,

called fixed points of f.

Starting from a number X_0 , we generate a sequence X_1, X_2, \ldots of numbers by the rule

 $X_{n+1} = f(X_n)$.

In certain curcumstances, lim xn exists and converges to a fixed point.

Fixed-Point Iteration

THEOREM A fixed-point theorem

Suppose that f is defined on an interval I = [a, b] and satisfies the following two conditions:

- (i) f(x) belongs to I whenever x belongs to I and
- (ii) there exists a constant K with 0 < K < 1 such that for every u and v in I,

$$|f(u) - f(v)| \le K|u - v|.$$

Then f has a unique fixed point r in I, that is, f(r) = r, and starting with any number x_0 in I, the iterates

$$x_1 = f(x_0), \quad x_2 = f(x_1), \quad \dots$$

converge to r.

Fixed-Point Iteration

Fixed-Point Iteration

EXAMPLE

Find a root of the equation $\cos x = 5x$.

Fixed-Point Iteration

EXAMPLE

Find a root of the equation $\cos x = 5x$.

Solution This equation is of the form f(x) = x, where $f(x) = \frac{1}{5}\cos x$. Since $\cos x$ is close to 1 for x near 0, we see that $\frac{1}{5}\cos x$ will be close to $\frac{1}{5}$ when $x = \frac{1}{5}$. This suggests that a reasonable first guess at the fixed point is $x_0 = \frac{1}{5} = 0.2$.

Fixed-Point Iteration

EXAMPLE

Find a root of the equation $\cos x = 5x$.

Solution This equation is of the form f(x) = x, where $f(x) = \frac{1}{5}\cos x$. Since $\cos x$ is close to 1 for x near 0, we see that $\frac{1}{5}\cos x$ will be close to $\frac{1}{5}$ when $x = \frac{1}{5}$. This suggests that a reasonable first guess at the fixed point is $x_0 = \frac{1}{5} = 0.2$.

1 1 1	n	x_n
$x_1 = \frac{1}{5}\cos x_0, x_2 = \frac{1}{5}\cos x_1, x_3 = \frac{1}{5}\cos x_2, \dots$	0	0.2
	1	0.196 013 32
The root is 0.196 164 28 to 8 decimal places.	2	0.196 170 16
	3	0.196 164 05
	4	0.196 164 29
		0.196 164 28
	6	0.196 164 28

Newton's Method

Use Newton's Method to find the only real root of the equation $x^3 - x - 1 = 0$ correct to 10 decimal places.

Newton's Method

EXAMPLE

Use Newton's Method to find the only real root of the equation $x^3 - x - 1 = 0$ correct to 10 decimal places.

Solution We have $f(x) = x^3 - x - 1$ and $f'(x) = 3x^2 - 1$. Since f is continuous and since f(1) = -1 and f(2) = 5, the equation has a root in the interval [1, 2].

$$x_{n+1} = x_n - \frac{x_n^3 - x_n - 1}{3x_n^2 - 1} = \frac{2x_n^3 + 1}{3x_n^2 - 1},$$

n	x_n	$f(x_n)$
0	1.5	0.875 000 000 000
1	1.347 826 086 96 · · ·	0.100 682 173 091 · · ·
2	1.325 200 398 95 · · ·	0.002 058 361 917 · · ·
3	$1.32471817400\cdots$	0.000 000 924 378 · · ·
4	1.324 717 957 24 · · ·	$0.000000000000\dots$
5	1.324 717 957 24 · · ·	

Type	Example
[0/0]	$\lim_{x \to 0} \frac{\sin x}{x}$
$[\infty/\infty]$	$\lim_{x \to 0} \frac{\ln(1/x^2)}{\cot(x^2)}$
$[0\cdot\infty]$	$\lim_{x \to 0+} x \ln \frac{1}{x}$
$[\infty - \infty]$	$\lim_{x \to (\pi/2)^{-}} \left(\tan x - \frac{1}{\pi - 2x} \right)$
[00]	$\lim_{x\to 0+} x^x$
$[\infty^0]$	$\lim_{x\to(\pi/2)-}(\tan x)^{\cos x}$
[1 [∞]]	$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x$

THEOREM The first l'Hôpital Rule

Suppose the functions f and g are differentiable on the interval (a, b), and $g'(x) \neq 0$ there. Suppose also that

(i)
$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$
 and

(ii)
$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L$$
 (where L is finite or ∞ or $-\infty$).

Then

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = L.$$

Similar results hold if every occurrence of $\lim_{x\to a+}$ is replaced by $\lim_{x\to b-}$ or even $\lim_{x\to c}$ where a < c < b. The cases $a = -\infty$ and $b = \infty$ are also allowed.

EXAMPLE Evaluate
$$\lim_{x \to 1} \frac{\ln x}{x^2 - 1}$$
.

Solution We have
$$\lim_{x \to 1} \frac{\ln x}{x^2 - 1}$$
 $\left[\frac{0}{0} \right]$ $= \lim_{x \to 1} \frac{1/x}{2x} = \lim_{x \to 1} \frac{1}{2x^2} = \frac{1}{2}.$

Evaluate
$$\lim_{x\to 0} \frac{2\sin x - \sin(2x)}{2e^x - 2 - 2x - x^2}$$
.

Solution We have (using l'Hôpital's Rule three times)

$$\lim_{x \to 0} \frac{2\sin x - \sin(2x)}{2e^x - 2 - 2x - x^2} \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$= \lim_{x \to 0} \frac{2\cos x - 2\cos(2x)}{2e^x - 2 - 2x} \quad \text{cancel the 2s}$$

$$= \lim_{x \to 0} \frac{\cos x - \cos(2x)}{e^x - 1 - x} \quad \text{still} \quad \begin{bmatrix} 0\\ \overline{0} \end{bmatrix}$$

$$= \lim_{x \to 0} \frac{-\sin x + 2\sin(2x)}{e^x - 1} \quad \text{still} \quad \begin{bmatrix} 0\\ \overline{0} \end{bmatrix}$$

$$= \lim_{x \to 0} \frac{-\cos x + 4\cos(2x)}{e^x} = \frac{-1 + 4}{1} = 3.$$

EXAMPLE

Evaluate (a) $\lim_{x \to (\pi/2)^-} \frac{2x - \pi}{\cos^2 x}$ and (b) $\lim_{x \to 1^+} \frac{x}{\ln x}$.

EXAMPLE Evaluate (a)
$$\lim_{x \to (\pi/2)^{-}} \frac{2x - \pi}{\cos^2 x}$$
 and (b) $\lim_{x \to 1^{+}} \frac{x}{\ln x}$.

(b)
$$\lim_{x \to 1+} \frac{x}{\ln x}$$
.

Solution

(a)
$$\lim_{x \to (\pi/2)^{-}} \frac{2x - \pi}{\cos^2 x} \qquad \left[\frac{0}{0}\right]$$
$$= \lim_{x \to (\pi/2)^{-}} \frac{2}{-2\sin x \cos x} = -\infty$$

EXAMPLE Evaluate (a)
$$\lim_{x \to (\pi/2)^-} \frac{2x - \pi}{\cos^2 x}$$
 and (b) $\lim_{x \to 1^+} \frac{x}{\ln x}$.

(b)
$$\lim_{x \to 1+} \frac{x}{\ln x}$$
.

Solution

(a)
$$\lim_{x \to (\pi/2)^{-}} \frac{2x - \pi}{\cos^2 x} \qquad \left[\frac{0}{0} \right]$$
$$= \lim_{x \to (\pi/2)^{-}} \frac{2}{-2\sin x \cos x} = -\infty$$

(b) l'Hôpital's Rule cannot be used to evaluate $\lim_{x\to 1+} x/(\ln x)$ because this is not an indeterminate form. The denominator approaches 0 as $x \to 1+$, but the numerator does not approach 0. Since $\ln x > 0$ for x > 1, we have, directly,

$$\lim_{x \to 1+} \frac{x}{\ln x} = \infty.$$

(Had we tried to apply l'Hôpital's Rule, we would have been led to the erroneous answer $\lim_{x \to 1+} (1/(1/x)) = 1.$

EXAMPLE Evaluate
$$\lim_{x \to 0+} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$
.

Solution The indeterminate form here is of type $[\infty - \infty]$ to which l'Hôpital's Rule cannot be applied. However, it becomes [0/0] after we combine the fractions into one fraction.

$$\lim_{x \to 0+} \left(\frac{1}{x} - \frac{1}{\sin x} \right) \qquad [\infty - \infty]$$

$$= \lim_{x \to 0+} \frac{\sin x - x}{x \sin x} \qquad \left[\frac{0}{0} \right]$$

$$= \lim_{x \to 0+} \frac{\cos x - 1}{\sin x + x \cos x} \qquad \left[\frac{0}{0} \right]$$

$$= \lim_{x \to 0+} \frac{-\sin x}{2 \cos x - x \sin x} = \frac{-0}{2} = 0.$$

THEOREM The second l'Hôpital Rule

Suppose that f and g are differentiable on the interval (a, b) and that $g'(x) \neq 0$ there. Suppose also that

(i)
$$\lim_{x \to a+} g(x) = \pm \infty$$
 and

(ii)
$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L$$
 (where L is finite, or ∞ or $-\infty$).

Then

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = L.$$

Again, similar results hold for $\lim_{x\to b^-}$ and for $\lim_{x\to c}$, and the cases $a=-\infty$ and $b=\infty$ are allowed.

EXAMPLE

Evaluate (a) $\lim_{x\to\infty} \frac{x^2}{e^x}$ and (b) $\lim_{x\to 0+} x^a \ln x$, where a>0.

(a)
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$

EXAMPLE Evaluate (a) $\lim_{x \to \infty} \frac{x^2}{e^x}$ and (b) $\lim_{x \to 0+} x^a \ln x$, where a > 0.

Solution

(a)
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$
 $\left[\frac{\infty}{\infty}\right]$

$$= \lim_{x \to \infty} \frac{2x}{e^x} \quad \text{still } \left[\frac{\infty}{\infty}\right]$$

$$= \lim_{x \to \infty} \frac{2}{e^x} = 0.$$

Similarly, one can show that $\lim_{x\to\infty} x^n/e^x = 0$ for any positive integer n by repeated applications of l'Hôpital's Rule.

(a)
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$

EXAMPLE Evaluate (a) $\lim_{x \to \infty} \frac{x^2}{e^x}$ and (b) $\lim_{x \to 0+} x^a \ln x$, where a > 0.

Solution

(a)
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$
 $\left[\frac{\infty}{\infty}\right]$

$$= \lim_{x \to \infty} \frac{2x}{e^x} \quad \text{still } \left[\frac{\infty}{\infty}\right]$$

$$= \lim_{x \to \infty} \frac{2}{e^x} = 0.$$

Similarly, one can show that $\lim_{x\to\infty} x^n/e^x = 0$ for any positive integer n by repeated applications of l'Hôpital's Rule.

(b)
$$\lim_{x \to 0+} x^a \ln x$$
 $(a > 0)$ $[0 \cdot (-\infty)]$
 $= \lim_{x \to 0+} \frac{\ln x}{x^{-a}}$ $\left[\frac{-\infty}{\infty}\right]$
 $= \lim_{x \to 0+} \frac{1/x}{-ax^{-a-1}} = \lim_{x \to 0+} \frac{x^a}{-a} = 0.$

EXAMPLE

Evaluate $\lim_{x\to 0+} x^x$.

Solution This indeterminate form is of type $[0^0]$. Let $y = x^x$. Then

$$\lim_{x \to 0+} \ln y = \lim_{x \to 0+} x \ln x = 0,$$

Hence
$$\lim_{x \to 0} x^x = \lim_{x \to 0+} y = e^0 = 1$$
.

$$\lim y = e^{\ln(\lim y)} = e^{\lim(\ln y)}$$

EXAMPLE

Evaluate
$$\lim_{x \to \infty} \left(1 + \sin \frac{3}{x} \right)^x$$
.

Solution This indeterminate form is of type 1^{∞} . Let $y = \left(1 + \sin \frac{3}{x}\right)^x$. Then, taking In of both sides,

$$\lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln \left(1 + \sin \frac{3}{x} \right) \qquad [\infty \cdot 0]$$

$$= \lim_{x \to \infty} \frac{\ln \left(1 + \sin \frac{3}{x} \right)}{\frac{1}{x}} \qquad \left[\frac{0}{0} \right]$$

$$= \lim_{x \to \infty} \frac{1}{1 + \sin \frac{3}{x}} \left(\cos \frac{3}{x} \right) \left(-\frac{3}{x^2} \right)$$

$$= \lim_{x \to \infty} \frac{3 \cos \frac{3}{x}}{1 + \sin \frac{3}{x}} = 3.$$

Hence
$$\lim_{x \to \infty} \left(1 + \sin \frac{3}{x} \right)^x = e^3$$
.

Absolute extreme values

Function f has an **absolute maximum value** $f(x_0)$ at the point x_0 in its domain if $f(x) \le f(x_0)$ holds for every x in the domain of f.

Similarly, f has an **absolute minimum value** $f(x_1)$ at the point x_1 in its domain if $f(x) \ge f(x_1)$ holds for every x in the domain of f.

Absolute extreme values

Function f has an **absolute maximum value** $f(x_0)$ at the point x_0 in its domain if $f(x) \le f(x_0)$ holds for every x in the domain of f.

Similarly, f has an **absolute minimum value** $f(x_1)$ at the point x_1 in its domain if $f(x) \ge f(x_1)$ holds for every x in the domain of f.

THEOREM

Existence of extreme values

If the domain of the function f is a *closed*, *finite interval* or a union of finitely many such intervals, and if f is *continuous* on that domain, then f must have an absolute maximum value and an absolute minimum value.

Local extreme values

Function f has a **local maximum value** (loc max) $f(x_0)$ at the point x_0 in its domain provided there exists a number h > 0 such that $f(x) \le f(x_0)$ whenever x is in the domain of f and $|x - x_0| < h$.

Similarly, f has a **local minimum value (loc min)** $f(x_1)$ at the point x_1 in its domain provided there exists a number h > 0 such that $f(x) \ge f(x_1)$ whenever x is in the domain of f and $|x - x_1| < h$.

Critical Points, Singular Points, and Endpoints

Figure 4.17 suggests that a function f(x) can have local extreme values only at points x of three special types:

- (i) **critical points** of f (points x in $\mathcal{D}(f)$ where f'(x) = 0),
- (ii) singular points of f (points x in $\mathcal{D}(f)$ where f'(x) is not defined), and
- (iii) **endpoints** of the domain of f (points in $\mathcal{D}(f)$ that do not belong to any open interval contained in $\mathcal{D}(f)$).

Critical Points, Singular Points, and Endpoints

Figure 4.17 suggests that a function f(x) can have local extreme values only at points x of three special types:

- (i) **critical points** of f (points x in $\mathcal{D}(f)$ where f'(x) = 0),
- (ii) singular points of f (points x in $\mathcal{D}(f)$ where f'(x) is not defined), and
- (iii) **endpoints** of the domain of f (points in $\mathcal{D}(f)$ that do not belong to any open interval contained in $\mathcal{D}(f)$).

THEOREM

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local minimum) value at point $x = x_0$ in I, then x_0 must be either a critical point of f, a singular point of f, or an endpoint of I.

A function need not have extreme values at a critical point or a singular point

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^{2} - 6x - 9 = 3(x^{2} - 2x - 3)$$

$$= 3(x + 1)(x - 3)$$

$$= 0 if x = -1 or x = 3.$$

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$

= $3(x + 1)(x - 3)$
= 0 if $x = -1$ or $x = 3$.
not in the domain!

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$

= $3(x + 1)(x - 3)$
= 0 if $x = -1$ or $x = 3$.
not in the domain!
 $g(-2) = 0$, $g(-1) = 7$, $g(2) = -20$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3)$$

= $3(x + 1)(x - 3)$
= 0 if $x = -1$ or $x = 3$.
not in the domain!
 $g(-2) = 0$, $g(-1) = 7$, $g(2) = -20$.

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of the function $g(x) = x^3 - 3x^2 - 9x + 2$ on the interval $-2 \le x \le 2$.

$$g'(x) = 3x^{2} - 6x - 9 = 3(x^{2} - 2x - 3)$$

$$= 3(x + 1)(x - 3)$$

$$= 0 if x = -1 or x = 3.$$

$$g(-2) = 0, g(-1) = 7, g(2) = -20.$$

maximum minimum value value

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Solution The derivative of h is

$$h'(x) = 3\left(\frac{2}{3}\right)x^{-1/3} - 2 = 2(x^{-1/3} - 1).$$

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Solution The derivative of h is

$$h'(x) = 3\left(\frac{2}{3}\right)x^{-1/3} - 2 = 2(x^{-1/3} - 1).$$

x = 0 is a singular point of h. Also, h has a critical point at x = 1

$$h(-1) = 5,$$
 $h(0) = 0,$ $h(1) = 1.$

Finding Absolute Extreme Values

EXAMPLE

Find the maximum and minimum values of $h(x) = 3x^{2/3} - 2x$ on the interval [-1, 1].

Solution The derivative of h is

$$h'(x) = 3\left(\frac{2}{3}\right)x^{-1/3} - 2 = 2(x^{-1/3} - 1).$$

x = 0 is a singular point of h. Also, h has a critical point at x = 1

$$h(-1) = 5,$$

$$h(0) = 0,$$
 $h(1) = 1.$

$$h(1) = 1$$

max.

min.

THEOREM

The First Derivative Test

PART I. Testing interior critical points and singular points.

Suppose that f is continuous at x_0 , and x_0 is not an endpoint of the domain of f.

- (a) If there exists an open interval (a, b) containing x_0 such that f'(x) > 0 on (a, x_0) and f'(x) < 0 on (x_0, b) , then f has a local maximum value at x_0 .
- (b) If there exists an open interval (a, b) containing x_0 such that f'(x) < 0 on (a, x_0) and f'(x) > 0 on (x_0, b) , then f has a local minimum value at x_0 .

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

- (c) If f'(x) > 0 on some interval (a, b), then f has a local minimum value at a.
- (d) If f'(x) < 0 on some interval (a, b), then f has a local maximum value at a.

Suppose b is a right endpoint of the domain of f and f is left continuous at b.

- (e) If f'(x) > 0 on some interval (a, b), then f has a local maximum value at b.
- (f) If f'(x) < 0 on some interval (a, b), then f has a local minimum value at b.

EXAMPLE

Find the local and absolute extreme values of $f(x) = x^4 - 2x^2 - 3$ on the interval [-2, 2]. Sketch the graph of f.