A truly wonderful article

S. Lindner 1 and Nico Dirnberger 2

 1 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria 2 Kinderkrippe Siegmundstadl

December 18, 2024

Abstract

Figure 1: Pictures of the milled nanodiamonds (sample insitu100). (a) SEM picture showing the distribution of the nanodiamond crystals on the substrate. (b) TEM picture of a nanodiamond particle.

(b)

1 Introduction

Some people say this [1]

2 Methods

(a)

3 Results

In the following, we present our findings

4 Conclusion

Table 1: Overview of the investigated nanodiamond samples. The columns indicate sample names, the mean diameter of the nanodiamonds, the SiV center incorporation method, and the post-processing treatment(s) of the samples.

Sample name	Diameter	Siv incorporation	post-processing
insitu50	50 nm	in-situ	series of individual samples with combinations of annealing and oxidation
insitu70	70 nm	in-situ	series of individual samples with combinations of annealing and oxidation
insitu70n	70 nm	in-situ	no post-processing subset of insitu70
insitu70o	70 nm	in-situ	oxidized in air at 450 °C subset of insitu70
insitu100	100 nm	in-situ	series of individual samples with combinations of annealing and oxidation
insitu100ao	100 nm	in-situ	annealed in vacuum at 900 °C, consecutively oxidized in air at 450 °C subset of insitu100
implanted250ao	250 nm	implanted	annealed in vacuum at 900 °C, consecutively oxidized in air at 450 °C

References

[1] Beatrice Rodiek et al. "Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond". In: *Optica* 4.1 (2017), p. 71.