PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS

Álgebra Matricial y Geometría Analítica Tercera Práctica Calificada (2017-1)

Indicaciones:

- * No se permite el uso de apuntes de clase ni libros.
- * Explique detalladamente las soluciones.
- * Duración: 1 hora y 50 minutos.
 - 1. Sea \mathcal{L} la recta con ecuación vectorial (x, y, z) = (2, -1, 3) + t(-1, 2, 1), donde $t \in \mathbb{R}$.
 - a) Compruebe que el punto A=(2,-1,3) está en \mathcal{L} , pero que (1,1,1) no lo está.
 - b) Halle la ecuación cartesiana del plano que pasa por A y es orthogonal a \mathcal{L} .
 - c) Halle el punto en el que \mathcal{L} corta al plano 3x + 5y z = 6.

(4 pts.)

- 2. Sea \mathcal{P} el plano que pasa por los puntos (1,0,2), (0,1,3) y (-3,2,0). Halle la distancia del punto Q=(3,2,5) al plano \mathcal{P} . (4 pts.)
- 3. Sea P el paralelepípedo formado por los vectores (1,0,0), (3,2,0) y (0,0,-1). Sea Q el paralelepípedo determinado por los vectores

$$\overrightarrow{u} = (\cos \theta, -\sin \theta, 0), \quad \overrightarrow{v} = (3\cos \theta + 2\sin \theta, -3\sin \theta + 2\cos \theta, 0) \quad \overrightarrow{w} = (0, 0, -k^2),$$

donde k y θ son números reales. Demuestre que el volumen de Q es igual a k^2 (volumen de P). (4 pts.)

4. Sean \mathcal{P}_1 y \mathcal{P}_2 los planos paralelos con ecuaciones $Ax+By+Cz=D_1$ y $Ax+By+Cz=D_2$, respectivamente. Demuestre que la distancia desde cualquier punto $Q(x_0,y_0,z_0)$ de \mathcal{P}_1 al plano \mathcal{P}_2 está dada por

$$\frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}$$

(3 pts.)

Continúa ...

Este material, de distribución gratuita, no contiene necesariamente las modificaciones que se hayan incorporado durante la realización de las evaluaciones.

- 5. Analice y justifique la verdad o falsedad de las siguientes proposiciones. Si la proposición es verdadera, brinde una prueba. En caso de que la afirmación sea falsa, exhiba un contraejemplo.
 - a) El vector $\overrightarrow{w} = (-1, 1, 1)$ es combinación lineal de los vectores $\overrightarrow{u} = (1, 0, 1)$ y $\overrightarrow{v} = (1, 1, 0)$.

(1 pt.)

- b) Para los vectores \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} en \mathbb{R}^n , si $\overrightarrow{u} \cdot \overrightarrow{w} = 0$ y $\overrightarrow{v} \cdot \overrightarrow{w} = 0$, entonces $\overrightarrow{u} = \overrightarrow{v}$. (1 pt.)
- c) En \mathbb{R}^3 , si dos rectas no son paralelas, entonces deben intersectarse en un punto. (1 pt.)
- d) Para los vectores \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} en \mathbb{R}^2 , si \overrightarrow{u} es ortogonal a \overrightarrow{v} y \overrightarrow{v} es orthogonal a \overrightarrow{w} , entonces \overrightarrow{u} es ortogonal a \overrightarrow{w} . (1 pt.)
- e) Sean $\overrightarrow{v} = (1, 2, 3)$ y $\overrightarrow{u} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$. Entonces la proyección ortogonal de \overrightarrow{v} sobre \overrightarrow{u} es $\frac{3}{4}(1, 1, \sqrt{2})$. (1 pt.)

Práctica elaborada por los coordinadores del curso.

Turno: 17:00 - 19:00

San Miguel, 1 de junio de 2017.