Prediction model

July 28, 2025

0.1 1. Setup & Data Load

Load libraries, set constants (random seed, paths), and read the CSV.

```
[1]: import os
    from pathlib import Path
    import numpy as np
    import pandas as pd

RANDOM_STATE = 42
    DATA_PATH = "C:/Users/USER/anxiety-risk-api/data/anxiety.csv"

plots_dir = Path("plots")
    plots_dir.mkdir(exist_ok=True)

df = pd.read_csv(DATA_PATH)
    df.head()
```

[1]:		Age	Gender	Occupation	Sleep H	lours	Physical	Activity	(hrs/	week) '	\
	0	29	Female	Artist		6.0				2.7	
	1	46	Other	Nurse		6.2				5.7	
	2	64	Male	Other		5.0				3.7	
	3	20	Female	Scientist		5.8				2.8	
	4	49	Female	Other		8.2			2.3		
		Caff	eine In	take (mg/day)) Alcoh	ol Con	sumption	(drinks/w	veek)	Smoking	\
	0			18:	1				10	Yes	
	1			200	0				8	Yes	
	2			11	7				4	No	
	3			360	0				6	Yes	
	4			24	7				4	Yes	
		Famil	y Histo	ry of Anxiet	y Stres	s Leve	1 (1-10)	Heart Ra	ate (b	pm) \	
	0			No	0		10			114	
	1			Yes	S		1			62	
	2			Yes	S		1			91	
	3			No	0		4			86	
	4			No	0		1			98	

```
Breathing Rate (breaths/min)
                                    Sweating Level (1-5) Dizziness Medication \
0
                                                         4
                                                                   No
                                                                              Yes
                                                         2
1
                                23
                                                                  Yes
                                                                               No
2
                                28
                                                         3
                                                                   No
                                                                               No
3
                                17
                                                         3
                                                                   No
                                                                               No
4
                                19
                                                                  Yes
                                                                              Yes
   Therapy Sessions (per month) Recent Major Life Event Diet Quality (1-10)
0
                                 3
1
                                                          No
                                                                                   8
2
                                 1
                                                         Yes
                                                                                   1
3
                                 0
                                                          No
                                                                                   1
4
                                 1
                                                          No
                                                                                   3
   Anxiety Level (1-10)
                      5.0
0
                      3.0
1
2
                      1.0
3
                      2.0
4
                     1.0
```

0.2 2. Feature Engineering

Add interaction terms and bucketed categories you designed earlier.

This can reveal non-linear relationships and make class boundaries easier to learn.

```
[2]: # Interactions / ratios
    df['sleep_stress_int'] = df['Sleep Hours'] * df['Stress Level (1-10)']
    df['caffeine_per_sleep'] = df['Caffeine Intake (mg/day)'] / df['Sleep Hours']
    df['alc_per_activity']
                             = df['Alcohol Consumption (drinks/week)'] /_
     df['therapy_efficiency'] = df['Therapy Sessions (per month)'] / (df['Stress⊔
     \rightarrowLevel (1-10)'] + 1e-3)
    # Composite scores
    df['unhealthy_score'] = (
        (df['Smoking'] == 'Yes').astype(int)
      + (df['Alcohol Consumption (drinks/week)'] > 7).astype(int)
      + (df['Caffeine Intake (mg/day)'] > 400).astype(int)
    df['symptom_severity'] = (
        (df['Dizziness'] == 'Yes').astype(int)
      + df['Sweating Level (1-5)']
      + (df['Recent Major Life Event'] != 'None').astype(int)
```

```
→week)']
     # Buckets
     df['age_group'] = pd.cut(df['Age'], bins=[0,25,35,50,100],__
      \rightarrowlabels=['<25','25-35','35-50','50+'])
     df['sleep_cat'] = pd.cut(df['Sleep Hours'], bins=[0,6,8,24], labels=['Short_
      \hookrightarrow (<6h)','Normal (6-8h)','Long (>8h)'])
     df['activity_cat'] = pd.cut(df['Physical Activity (hrs/week)'],
      ⇒bins=[-1,2,5,100], labels=['Low', 'Moderate', 'High'])
     df.head()
             Gender Occupation Sleep Hours Physical Activity (hrs/week) \
[2]:
        Age
         29
             Female
                         Artist
                                          6.0
                                                                           2.7
         46
              Other
                          Nurse
                                          6.2
                                                                           5.7
     1
     2
         64
               Male
                          Other
                                          5.0
                                                                           3.7
         20 Female Scientist
     3
                                          5.8
                                                                           2.8
             Female
                          Other
                                          8.2
                                                                           2.3
                                   Alcohol Consumption (drinks/week) Smoking
        Caffeine Intake (mg/day)
     0
                                                                             Yes
                               181
                                                                     10
                               200
                                                                      8
                                                                             Yes
     1
     2
                               117
                                                                      4
                                                                              No
     3
                               360
                                                                      6
                                                                             Yes
     4
                               247
                                                                             Yes
       Family History of Anxiety
                                   Stress Level (1-10)
                                                          ... sleep_stress_int \
     0
                               No
                                                      10
                                                          . . .
                                                                             60.0
     1
                               Yes
                                                       1
                                                                              6.2
                                                          . . .
     2
                                                                              5.0
                               Yes
                                                       1
                                                          . . .
     3
                               No
                                                                             23.2
                                                       4
                                                                              8.2
     4
                                No
                                                       1
                             alc_per_activity therapy_efficiency unhealthy_score
        caffeine_per_sleep
                  30.166667
                                                          0.299970
     0
                                      3.702332
                  32.258065
                                      1.403263
                                                           1.998002
                                                                                   2
     1
     2
                  23.400000
                                      1.080789
                                                          0.999001
                                                                                   0
     3
                  62.068966
                                      2.142092
                                                          0.000000
                                                                                   1
     4
                  30.121951
                                                          0.999001
                                      1.738375
                                                                                   1
        symptom_severity diet_activity_int
                                                                          activity_cat
                                               age_group
                                                               sleep_cat
                                        18.9
                                                             Short (<6h)
                                                                               Moderate
     0
                        5
                                                   25 - 35
                        4
                                        45.6
     1
                                                   35-50 Normal (6-8h)
                                                                                   High
     2
                        4
                                         3.7
                                                     50+
                                                             Short (<6h)
                                                                               Moderate
                                                     <25
                                                                               Moderate
     3
                        4
                                         2.8
                                                             Short (<6h)
     4
                        6
                                         6.9
                                                                               Moderate
                                                   35-50
                                                              Long (>8h)
```

df['diet_activity_int'] = df['Diet Quality (1-10)'] * df['Physical Activity (hrs/

0.3 3. Target Binning (Low / Medium / High)

Convert the 1–10 anxiety score into 3 ordered categories to combat sparsity and class imbalance.

[3]: (array([2, 1, 1, 1, 1]), array(['High', 'Low', 'Medium'], dtype=object))

0.4 4. Train/Test Split

Use a stratified split so each class proportion is maintained in train & test.

[4]: (8800, 2200)

0.5 5. Global Benchmark

Compare multiple model variants via 5-fold CV on macro-F1:

- LR / RF / XGB
- With and without class_weight='balanced'
- With SMOTE & BorderlineSMOTE (oversampling)
- StandardScaler only in LR pipelines (trees don't need scaling)

Pick the best by mean macro-F1.

```
[5]: from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    from imblearn.pipeline import Pipeline as ImbPipeline
    from imblearn.over_sampling import SMOTE, BorderlineSMOTE
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    from xgboost import XGBClassifier
    from sklearn.model_selection import cross_val_score
    variants = {
         'LR (base)': Pipeline([
             ('scaler', StandardScaler()),
            ('lr', LogisticRegression(multi_class='multinomial', solver='lbfgs',
                                      max_iter=2000, random_state=RANDOM_STATE))
        ]),
         'RF (base)': RandomForestClassifier(n_estimators=200,__
      →random_state=RANDOM_STATE),
         'XGB (base)': XGBClassifier(use_label_encoder=False, eval_metric='mlogloss',__
      →random_state=RANDOM_STATE),
         'LR (balanced)': Pipeline([
             ('scaler', StandardScaler()),
             ('lr', LogisticRegression(multi_class='multinomial', solver='lbfgs',
                                      class_weight='balanced', max_iter=2000,__
      →random_state=RANDOM_STATE))
        ]),
         'RF (balanced)': RandomForestClassifier(n_estimators=200,__
      'LR + SMOTE': ImbPipeline([
             ('smote', SMOTE(random_state=RANDOM_STATE)),
             ('scaler', StandardScaler()),
            ('lr', LogisticRegression(multi_class='multinomial', solver='lbfgs',
                                      max_iter=2000, random_state=RANDOM_STATE))
        ]),
         'RF + SMOTE': ImbPipeline([
             ('smote', SMOTE(random_state=RANDOM_STATE)),
             ('rf', RandomForestClassifier(n_estimators=200,__
      →random_state=RANDOM_STATE))
```

```
]),
    'XGB + SMOTE': ImbPipeline([
        ('smote', SMOTE(random_state=RANDOM_STATE)),
        ('xgb', XGBClassifier(use_label_encoder=False, eval_metric='mlogloss',u
 →random_state=RANDOM_STATE))
    ]),
    'LR + BSMOTE': ImbPipeline([
        ('bsmote', BorderlineSMOTE(random_state=RANDOM_STATE)),
        ('scaler', StandardScaler()),
        ('lr', LogisticRegression(multi_class='multinomial', solver='lbfgs',
                                  max_iter=2000, random_state=RANDOM_STATE))
    ]),
    'RF + BSMOTE': ImbPipeline([
        ('bsmote', BorderlineSMOTE(random_state=RANDOM_STATE)),
        ('rf', RandomForestClassifier(n_estimators=200,__
 →random_state=RANDOM_STATE))
    ]),
    'XGB + BSMOTE': ImbPipeline([
        ('bsmote', BorderlineSMOTE(random_state=RANDOM_STATE)),
        ('xgb', XGBClassifier(use_label_encoder=False, eval_metric='mlogloss',u
 →random_state=RANDOM_STATE))
    1)
}
cv_results = {}
for name, model in variants.items():
    scores = cross_val_score(model, X_train, y_train,
                             cv=5, scoring='f1_macro', n_jobs=-1)
    cv_results[name] = (scores.mean(), scores.std())
cv_df = (pd.DataFrame(cv_results, index=['mean','std']).T
         .sort_values('mean', ascending=False))
cv_df
                   mean
                              std
RF (balanced) 0.845616 0.007463
RF + SMOTE
               0.845177 0.006085
RF + BSMOTE
               0.845059 0.005716
```

```
[5]:
    RF (base)
                   0.844704 0.005433
    LR (base)
                   0.843253 0.008198
    LR + SMOTE
                   0.840373 0.008587
    LR + BSMOTE
                   0.839609 0.009977
    LR (balanced) 0.836242 0.009739
    XGB + SMOTE
                   0.833341 0.007265
    XGB + BSMOTE
                   0.833042 0.006517
    XGB (base)
                   0.830181 0.006430
```

0.6 6. Test Evaluation

Fit the best variant on the full training set, evaluate on the test set, and plot a confusion matrix.

```
[6]: from sklearn.metrics import f1_score, accuracy_score, classification_report,
     import seaborn as sns
     import matplotlib.pyplot as plt
     best_name = cv_df.index[0]
     best_model = variants[best_name].fit(X_train, y_train)
     y_pred = best_model.predict(X_test)
     print(f"Best variant: {best_name}")
     print(f"Test macro-F1: {f1_score(y_test, y_pred, average='macro'):.3f}")
     print(f"Test accuracy: {accuracy_score(y_test, y_pred):.3f}\n")
     print("Classification Report:\n",
           classification_report(le.inverse_transform(y_test),
                                le.inverse_transform(y_pred),
                                digits=3))
     cm = confusion_matrix(y_test, y_pred, labels=[hi_id, lo_id, me_id])
     plt.figure(figsize=(6,5))
     sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
                xticklabels=['High','Low','Medium'],
                yticklabels=['High','Low','Medium'])
     plt.xlabel('Predicted'); plt.ylabel('True')
     plt.title(f'{best_name} Confusion Matrix')
     plt.tight_layout()
     plt.savefig(plots_dir/'cm_best.png')
    plt.show()
```

Best variant: RF (balanced)

Test macro-F1: 0.852 Test accuracy: 0.800

Classification Report:

	precision	recall	f1-score	support
High	1.000	0.990	0.995	203
Low	0.789	0.789	0.789	1040
Medium	0.770	0.771	0.770	957
accuracy			0.800	2200
macro avg	0.853	0.850	0.852	2200
weighted avg	0.800	0.800	0.800	2200

0.7 7. Hierarchical Model

Use the best model twice: 1. Stage 1: High vs Not-High 2. Stage 2: Low vs Medium (on remaining samples)

Evaluate whether it actually improves Low/Medium F1.

```
[7]: from sklearn.base import clone

# Stage 1: High vs Rest
y_hi = (y_train == hi_id).astype(int)
clf_hi = clone(best_model)
clf_hi.fit(X_train, y_hi)

# Stage 2: Low vs Medium
mask_lm = (y_train != hi_id)
y_lm = (y_train[mask_lm] == lo_id).astype(int)
clf_lm = clone(best_model)
clf_lm.fit(X_train[mask_lm], y_lm)
```

```
# Predict
p_hi = clf_hi.predict(X_test)
pred_final = np.full(len(X_test), me_id)
pred_final[p_hi == 1] = hi_id
idx_rest = np.where(p_hi == 0)[0]
pred_final[idx_rest] = np.where(clf_lm.predict(X_test.iloc[idx_rest])==1, lo_id,__
\rightarrowme_id)
# Evaluate
macro_all = f1_score(y_test, pred_final, average='macro')
lm_mask = np.isin(y_test, [lo_id, me_id])
macro_lm = f1_score(y_test[lm_mask], pred_final[lm_mask], average='macro')
print(f"Hierarchical -> Macro-F1(all): {macro_all:.3f} | Macro-F1(L+M):
\rightarrow {macro_lm:.3f}\n")
print("Classification Report (hierarchical):\n",
      classification_report(le.inverse_transform(y_test),
                            le.inverse_transform(pred_final),
                            digits=3))
cm_h = confusion_matrix(y_test, pred_final, labels=[hi_id, lo_id, me_id])
plt.figure(figsize=(6,5))
sns.heatmap(cm_h, annot=True, fmt='d', cmap='Blues',
            xticklabels=['High','Low','Medium'],
            yticklabels=['High','Low','Medium'])
plt.xlabel('Predicted'); plt.ylabel('True')
plt.title('Hierarchical Confusion Matrix')
plt.tight_layout()
plt.savefig(plots_dir/'cm_hier.png')
plt.show()
```

Hierarchical -> Macro-F1(all): 0.854 | Macro-F1(L+M): 0.784

Classification Report (hierarchical):

	precision	recall	f1-score	support
High	1.000	0.990	0.995	203
Low	0.801	0.780	0.790	1040
Medium	0.766	0.789	0.777	957
accuracy			0.803	2200
macro avg	0.855	0.853	0.854	2200
weighted avg	0.804	0.803	0.803	2200

0.8 Conclusion

- Best single model: RandomForestClassifier with class_weight = "balanced"
 - Test macro-F1: 0.852|Accuracy: 0.800
 - Class "High" is essentially perfect (F1 = 0.995; only 2 misclassifications).
 - Main confusion: "Low" "Medium" (219 swaps each way).
- Hierarchical model (High vs Rest \rightarrow Low vs Medium):
 - Macro-F1 (all): $0.854 (\uparrow +0.002) |$ Accuracy: 0.803
 - Macro-F1 on Low & Medium: 0.784 (very close to the flat model)
 - Slight reduction of Medium→Low errors (202 vs 219) but an increase of Low→Medium (229 vs 219). Net gain is marginal.

Takeaway:

The flat RF model is simpler and already strong. The hierarchical approach adds complexity without a meaningful overall improvement. Unless you must prioritize one specific class (Low or Medium)

for business reasons, keep the single RF (balanced) pipeline.

Potential next steps: 1. Fine-tune class weights or probability thresholds if class-specific performance matters.

- 2. Prune or rework features that showed negative importance.
- 3. Test an ordinal model or regression-then-round as an alternative baseline.
- 4. Package the final pipeline (preprocessing + model) and log metrics for reproducibility.