BLG 336E - Analysis of Algorithms II Recitation IV

Dynamic Programming

Tuğba PAMAY

Istanbul Technical University - Department of Computer Engineering

18.04.2017

What is Dynamic Programming?

Dynamic programming is efficient in finding **optimal solutions** for cases with lots of overlapping sub-problems.

It solves problems by:

recombining solutions of sub-problems,

Some examples:

Fibonacci Numbers
Maximum Value Contiguous Subsequence
Balanced Partition
Minimum Edit Distance
Knapsack Problem

For more examples, click <u>here</u>.

Minimum Edit Distance

Given two strings: source and target

Set of editing operations that can performed on source

Find **minimum number of edits** (operations) required **to convert source into target**

Minimum Edit Distance

Pseudocode:

```
EDITDISTANCE(s_1, s_2)
 1 int \ m[i,j] = 0
  2 for i ← 1 to |s<sub>1</sub>|
 3 do m[i, 0] = i
 4 for i \leftarrow 1 to |s_2|
  5 do m[0, j] = j
 6 for i \leftarrow 1 to |s_1|
      do for j \leftarrow 1 to |s_2|
          do m[i,j] = \min\{m[i-1,j-1] + \text{if } (s_1[i] = s_2[j]) \text{ then } 0 \text{ else } 1\text{fi},
 8
                                 m[i-1,j]+1,
 9
                                  m[i, i-1]+1
10
      return m[|s_1|, |s_2|]
11
```

String distance metrics: Levenshtein

Simple set of operations:

- Delete a character in s: cost 1
- Insert a character in t: cost 1
- Substitute one character for another: cost 1 (or cost 2)

Let's start with an easy example...

Source word : AT Target word : TO

Find the minimum number of operations to convert source word to target word.

Example

Example

- Initialize the array
- Insert "null" character at the beginning of the words

Example (row #1)

Example (row #2)

Example

So, Now **backtrack** to find necessary operations for conversion.

Scenario #1

So, Now **backtrack** to find necessary operations for conversion.

Scenario #2

Another Example

Source word : SPARE Target word : PAIR

Find the **minimum number of operations** to convert source word to target word.

D(i,i) = score of best alignment from s1..si to t1..ti

```
Min = \begin{cases} D(i-1,j-1)+2, & \text{if si!=tj, else } +0// \text{ substitute} \\ D(i-1,j)+1// & \text{insert} \\ D(i,j-1)+1// & \text{delete} \end{cases}
```

Example

- Initialize the array
- Insert "null" character at the beginning of the words

	null	Р	Α	- 1	R
null					
S			insert		
Р		delete	substitut	e	
Α					
R					
E					

Example

- Initialize the first row to 0...n
- Initialize the first column to 0...m

	null	Р	Α	-1	R
null	0	1	2	3	4
S	1				
Р	2				
Α	3				
R	4				
E	5				

Example (row #2)

- Fill the second row
- For each cell, think that
 by which operation the minimum cost is achieved ???

	null	Р	Α	-1	R
null	0	1	2	3	4
S	1	2	3	4	5
Р	2				
Α	3				
R	4				·
Е	5				·

Example (row #3)

- Fill the third row
- For each cell, think that
 by which operation the minimum cost is achieved ???

	null	Р	Α	-	R
null	0	1	2	3	4
S	1	2	3	4	5
Р	2	1	2	3	4
Α	3				
R	4			·	·
Е	5				·

Example (row #4)

- Fill the fourth row
- For each cell, think that by which operation the minimum cost is achieved ???

	null	Р	A	-	R
null	0	1	2	3	4
S	1	2	3	4	5
Р	2	1	2	3	4
Α	3	2	1	2	3
R	4				
E	5				

Example (row #5)

- Fill the fifth row
- For each cell, think that by which operation the minimum cost is achieved ???

	null	Р	Α	-1	R
null	0	1	2	3	4
S	1	2	3	4	5
Р	2	1	2	3	4
Α	3	2	1	2	3
R	4	3	2	3	2
Е	5				

Example (row #6)

- Fill the last row
- For each cell, think that
 by which operation the minimum cost is achieved ???

	null	Р	Α	-	R
null	0	1	2	3	4
S	1	2	3	4	5
Р	2	1	2	3	4
Α	3	2	1	2	3
R	4	3	2	3	2
Е	5	4	3	4	3

Knapsack problem

- Given some items, pack the knapsack to get the maximum total value.
- Each item has some weight and some (benefit) value.
- Total weight that we can carry is no more than some fixed number W.

Weight	Value
1	8
3	6
5	5
	Weight 1 3 5

Knapsack problem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i and W are integer values)
- <u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?

Knapsack Algorithm

```
for w = 0 to W
 V[0,w] = 0
for i = 1 to n
 V[i.0] = 0
for i = 1 to n
 for w = 0 to W
       if w_i \le w // item i can be part of the solution
       if b_i + V[i-1, w-w_i] > V[i-1, w]
                     V[i.w] = b_i + V[i-1,w-w_i]
              else
                     V[i,w] = V[i-1,w]
       else V[i,w] = V[i-1,w] // w_i > w
```

Running time

```
for w = 0 to W
                     O(W)
 V[0,w] = 0
for i = 1 ton
 V[i,0] = 0
for i = 1 ton
                      Repeat n times
 for w = 0 to W
      < the rest of the code Q(W)
What is the running time of this algorithm?
  O(n*W)
Remember that the brute-force algorithm
                 takes O(2n)
```

Example

Let's run our algorithm on the following data:

```
n = 4 (# of elements)
W = 5 (max weight)
Elements (weight, benefit):
(2,3), (3,4), (4,5), (5,6)
```

Example (2)

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

$$\begin{aligned} \text{for } w &= 0 \text{ to } W \\ V[0, w] &= 0 \end{aligned}$$

Example (3)

i∖V	0 \	_1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

 $\begin{aligned} \text{for } i &= 1 \text{ to n} \\ V[i, 0] &= 0 \end{aligned}$

Example (4)

Items: 1:(2,3) 2:(3,4)

3:(4,5)4: (5.6)

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0				
2	0					
3	0					
4	0					
-						

$$w_i=2$$

 $w=1$

i=1

 $b_i=3$

 $w-w_{i} = -1$

if $w_i \le w$ // item i can be part of the solution

$$\begin{split} & \text{if } b_i + V[i\text{--}1, w\text{--}w_i] > V[i\text{--}1, w] \\ & V[i, w] = b_i + V[i\text{--}1, w\text{---}w_i] \quad else \\ & V[i, w] = V[i\text{--}1, w] \end{split}$$

else
$$V[i,w] = V[i-1,w] // w_i > w$$

Example (5)

Items: 1:(2,3) 2:(3,4)

> 3: (4,5) 4: (5,6)

 $i \backslash W$ 0 0 0 0 0 0 0 0 0 0 **3** 2 0 0 3 0 4

 $w_i=2$ w=2 $w-w_i=0$

i=1

 $b_i=3$

if $\mathbf{w}_i <= \mathbf{w}$ // item i can be part of the solution if $\mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i] > \mathbf{V}[i\text{-}1, \mathbf{w}]$ $\mathbf{V}[i, \mathbf{w}] = \mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$

Example (6)

Items: 1:(2,3) 2:(3,4)

> 3: (4,5) 4: (5,6)

 $i \backslash W$ 0 0 0 0 0 0 0 0 3 0 0 * 3 2 0 0 3 0 4

w=3 $w-w_i=1$

i=1

 $b_i=3$

 $w_i=2$

if $\mathbf{w}_i \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i] > \mathbf{V}[i\text{-}1, \mathbf{w}]$ $\mathbf{V}[i, \mathbf{w}] = \mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$

Example (7)

Items: 1:(2,3) 2:(3,4)

3: (4,5) i=1 4: (5,6)

i∖V	V 0	1	2	3	4	5
0	0	0	0 ~	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$\begin{split} &\text{if } w_i \! <= \! w \text{ // item i can be part of the solution} \\ &\text{if } b_i \! + \! V[i\text{-}1,\!w\text{-}w_i] > \! V[i\text{-}1,\!w] \\ &V[i,\!w] = b_i \! + \! V[i\text{-}1,\!w\text{-}w_i] \\ &\text{else} \\ &V[i,\!w] = \! V[i\text{-}1,\!w] \end{split}$$

else $V[i,w] = V[i-1,w] // w_i > w$

Example (8)

Items: 1:(2,3) 2:(3,4)

> 3: (4,5) 4: (5,6)

i∖W	0 V	1	2	3	4	5
0	0	0	0	0 ~	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$w_i=2$$

 $w=5$

i=1

 $b_i=3$

 $w-w_i=3$

$$\begin{split} &\text{if } \mathbf{w}_i \! <= \! \mathbf{w} \ /\!/ \text{ item i can be part of the solution} \\ &\text{if } \mathbf{b}_i \! + \! \mathbf{V}[i\!-\!1,\!\mathbf{w}\!-\!\mathbf{w}_i] > \! \mathbf{V}[i\!-\!1,\!\mathbf{w}] \\ & \mathbf{V}[i,\!\mathbf{w}] = \! \mathbf{b}_i \! + \! \mathbf{V}[i\!-\!1,\!\mathbf{w}\!-\!\mathbf{w}_i] \\ &\text{else} \\ & \mathbf{V}[i,\!\mathbf{w}] = \! \mathbf{V}[i\!-\!1,\!\mathbf{w}] \\ &\text{else } \mathbf{V}[i,\!\mathbf{w}] = \! \mathbf{V}[i\!-\!1,\!\mathbf{w}] \ /\!/ \ \mathbf{w}_i \! > \! \mathbf{w} \end{split}$$

Example (9)

Items:			
1:(2,3)			
2:(3,4)			

3: (4,5) 4: (5,6)

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

$$b_i=4$$

$$w_i=3$$

$$w=1$$

$$w-w_i=-2$$

if
$$\mathbf{w}_i <= \mathbf{w}$$
 // item i can be part of the solution
if $b_i + V[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i] > V[i\text{-}1, \mathbf{w}]$
 $V[i, \mathbf{w}] = b_i + V[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i]$
else
 $V[i, \mathbf{w}] = V[i\text{-}1, \mathbf{w}]$
else $V[i, \mathbf{w}] = V[i\text{-}1, \mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$

Example (10)

Items:
1:(2,3)
2: (3,4)

3: (4,5) 4: (5,6)

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3			
3	0					
4	0					

$$w_i=3$$
 $w=2$
 $w-w_i=-1$

 $b_i=4$

Example (11)

Items: 1:(2,3) 2:(3,4)

i=2

 $b_i=4$

 $w_i=3$

w=3

 $w-w_i=0$

3: (4,5) 4: (5,6)

if $\mathbf{w_i} \leftarrow \mathbf{w} \text{ // item i can be part of the solution}$ if $\mathbf{b_i} + \mathbf{V[i-1, w-w_i]} > \mathbf{V[i-1, w]}$ $\mathbf{V[i, w]} = \mathbf{b_i} + \mathbf{V[i-1, w-w_i]}$ else $\mathbf{V[i, w]} = \mathbf{V[i-1, w]}$ else $\mathbf{V[i, w]} = \mathbf{V[i-1, w]} \text{ // } \mathbf{w_i} > \mathbf{w}$

Example (12)

Items: 1: (2,3) 2: (3,4)

3: (4,5) 4: (5,6)

 $w_i=3$ w=4 $w-w_i=1$

i=2

 $b_i=4$

if $\mathbf{w}_i <= \mathbf{w}$ // item i can be part of the solution if $\mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i] > \mathbf{V}[i\text{-}1, \mathbf{w}]$ $\mathbf{V}[i, \mathbf{w}] = \mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$

Example (13)

Items: 1:(2,3)2:(3,4)

3:(4,5) 4:(5,6)

i=2

 $b_i=4$ $w_i=3$ w=5

i∖V	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 _	3	3	3
2	0	0	3	4	4	→ 7
3	0					
4	0					

 $w-w_i=2$

if
$$\mathbf{w}_i \leq \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b}_i + \mathbf{V}[\mathbf{i} \cdot \mathbf{1}, \mathbf{w} \cdot \mathbf{w}_i] > \mathbf{V}[\mathbf{i} \cdot \mathbf{1}, \mathbf{w}]$
 $\mathbf{V}[\mathbf{i}, \mathbf{w}] = \mathbf{b}_i + \mathbf{V}[\mathbf{i} \cdot \mathbf{1}, \mathbf{w} \cdot \mathbf{w}_i]$
else
 $\mathbf{V}[\mathbf{i}, \mathbf{w}] = \mathbf{V}[\mathbf{i} \cdot \mathbf{1}, \mathbf{w}]$
else $\mathbf{V}[\mathbf{i}, \mathbf{w}] = \mathbf{V}[\mathbf{i} \cdot \mathbf{1}, \mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$

Example (14)

i∖V	<u>/ 0</u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4		
4	0					

if $\mathbf{w}_i <= \mathbf{w}$ // item i can be part of the solution if $\mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i] > \mathbf{V}[i\text{-}1, \mathbf{w}]$ $\mathbf{V}[i, \mathbf{w}] = \mathbf{b}_i + \mathbf{V}[i\text{-}1, \mathbf{w}\text{-}\mathbf{w}_i]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ else $\mathbf{V}[i, \mathbf{w}] = \mathbf{V}[i\text{-}1, \mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$ Items:

1: (2,3) 2: (3,4) 3: (4,5)

i=3 4: (5,6)

 $b_i=5$ $w_i=4$

 $w_i = 4$ w = 1...3

w= 1...

Example (15)

Items: 1:(2,3) 2:(3,4) 3:(4,5)

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0_	0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

i=3 4: (5,6) b_i=5 w_i=4 w=4 w- w_i=0

$$\begin{split} &\text{if } \mathbf{w_i} \! < \! = \! \mathbf{w} \ /\!/ \text{ item i can be part of the solution} \\ &\text{if } \mathbf{b_i} \! + \! \mathbf{V[i\text{-}1,w\text{-}w_i]} \! > \! \mathbf{V[i\text{-}1,w]} \\ & \mathbf{V[i,w]} = \mathbf{b_i} \! + \! \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ & \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \ /\!/ \ w_i \! > \! w \end{split}$$

Example (16)

Items:
1:(2,3)
2:(3,4)
3:(4,5)

4: (5,6)

i=3

 $b_i=5$ $w_i=4$ w=5w-w=1

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0					

V[i,w] = V[i-1,w]else $V[i,w] = V[i-1,w] // w_i > w$

Example (17)

$$\begin{split} & \text{if } w_i \! <= w \text{ } / \text{ item } i \text{ can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1, w\text{-}w_i] > V[i\text{-}1, w] \\ & V[i, w] = b_i + V[i\text{-}1, w\text{-}w_i] \\ & \text{else} \\ & V[i, w] = V[i\text{-}1, w] \end{split}$$

else $V[i,w] = V[i-1,w] // w_i > w$

Items:

1:(2,3)

2: (3,4) 3: (4,5) 4: (5,6)

i=4

 $b_i = 6$

 $w_i=5$

w = 1..4

Example (18)

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

$$\begin{split} &\text{if } \mathbf{w}_i \! <= \! \mathbf{w} \ /\!/ \ \text{item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \end{split}$$

else $V[i,w] = V[i-1,w] // w_i > w$

Result:

Chosen items: 1 & 2 Total Benefit : 7 Total Weight: 5