Lecture 5

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 5

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
 - Stoichiometric Table: Flow
 - Definitions of Concentration: Flow
 - Gas Phase Volumetric Flow Rate
 - Calculate the Equilibrium Conversion X_e

Review Lecture 2

Reactor Mole Balances Summary

in terms of conversion, X

Reactor

Differential

Algebraic

$$N_{A0} \frac{dX}{dt} = -r_A V$$

$$\frac{dX}{-r_AV}$$

CSTR

$$V = \frac{F_{A0}X}{-r_A}$$

PFR
$$F_{A0} \frac{dX}{dV} = -r_A$$

$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$

PBR
$$F_{A0} \frac{dX}{dW} = -r'_A$$

$$W = F_{A0} \int_{0}^{X} \frac{dX}{-r_A'}$$

Review Lecture 3

Algorithm

How to find
$$-r_A = f(X)$$

Step 1: Rate Law
$$-r_A = g(C_i)$$

Step 2: Stoichiometry
$$(C_i) = h(X)$$

Step 3: Combine to get
$$-r_A = f(X)$$

Review Lecture 3

Reaction Engineering

Mole Balance

Rate Laws

Stoichiometry

These topics build upon one another

Flow System Stoichiometric Table

Species	<u>Symbol</u>	Reactor Feed	<u>Change</u>	Reactor Effluent
Α	Α	F_{A0}	$-F_{A0}X$	$F_A = F_{A0}(1-X)$
В	В	$F_{B0}=F_{A0}\Theta_{B}$	-b/aF _{A0} X	$F_B = F_{A0}(\Theta_B - b/aX)$
С	С	$F_{C0}=F_{A0}\Theta_{C}$	+c/aF _{A0} X	$F_C = F_{A0}(\Theta_C + c/aX)$
D	D	$F_{D0}=F_{A0}\Theta_{D}$	+d/aF _{A0} X	$F_D = F_{A0}(\Theta_D + d/aX)$
Inert	1	$F_{I0}=F_{A0}\Theta_{I}$		$F_I = F_{A0}\Theta_I$
		F _{T0}	-	$F_T = F_{T0} + \delta F_{A0} X$

Where:
$$\Theta_i = \frac{F_{i0}}{F_{A0}} = \frac{C_{i0}\nu_0}{C_{A0}\nu_0} = \frac{C_{i0}}{C_{A0}} = \frac{y_{i0}}{y_{A0}}$$
 and $\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$

Concentration – Flow System $C_A = \frac{F_A}{v}$

Stoichiometry

Concentration Flow System: $C_A = \frac{F_A}{D}$

Liquid Phase Flow System: $\upsilon = \upsilon_0$

Liquid Systems

$$C_A = \frac{F_A}{\upsilon} = \frac{F_{A0} \big(1 - X \big)}{\upsilon_0} = C_{A0} \big(1 - X \big) \quad \text{Flow Liquid Phase}$$

$$C_B = \frac{N_B}{V} = \frac{N_{A0}}{V_0} \left(\Theta_B - \frac{b}{a} X \right) = C_{A0} \left(\Theta_B - \frac{b}{a} X \right)$$

etc.

Liquid Systems

If the rate of reaction were

$$-r_A = kC_A C_B$$

then we would have
$$-r_A = kC_A^2 (1 - X)_{\stackrel{\circ}{e}}^{\Re} O_B - \frac{b}{a} X_{\stackrel{\circ}{\varrho}}^{\stackrel{\circ}{0}}$$

This gives us $-r_A = f(X)$

$$r_A$$

Stoichiometry for Gas Phase Flow Systems

Combining the compressibility factor equation of state with $Z = Z_0$

Stoichiometry:
$$C_T = \frac{P}{ZRT}$$

$$C_{T0} = \frac{P_0}{Z_0 R_0 T_0}$$

$$F_T = C_T \upsilon$$

$$F_{T0} = C_{T0} \nu_0$$

We obtain:

$$\upsilon = \upsilon_0 \, \frac{F_T}{F_{T0}} \, \frac{P_0}{P} \, \frac{T}{T_0}$$

Stoichiometry

for Gas Phase Flow Systems

$$C_A = F_A / \upsilon = \frac{F_A}{\upsilon_0 \left(\frac{F_T}{F_0}\right)} \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right) = \frac{F_{T0}}{\upsilon_0} \frac{F_A}{F_T} \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right)$$

Since $C_{T0} = F_{T0}/\upsilon_0$,

$$C_A = F_A / \upsilon = C_{T0} \frac{F_A}{F_T} \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right)$$

Using the same method,

$$C_B = C_{T0} \left(\frac{F_B}{F_T} \right) \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right)$$

Stoichiometry

for Gas Phase Flow Systems

The total molar flow rate is: $F_T = F_{T0} + F_{A0} \delta X$

Substituting F_T gives:

$$\upsilon = \upsilon_0 \left(\frac{F_{T0} + F_{A0} \delta X}{F_{T0}} \right) \frac{T}{T_0} \frac{P_0}{P} = \upsilon_0 \left(1 + \frac{F_{A0}}{F_{T0}} \delta X \right) \frac{T}{T_0} \frac{P_0}{P}$$

$$= \upsilon_0 \left(1 + y_{A0} \delta X \right) \frac{T}{T_0} \frac{P_0}{P} = \upsilon_0 \left(1 + \varepsilon X \right) \frac{T}{T_0} \frac{P_0}{P}$$

Where $\varepsilon = y_{A0}\delta$

For Gas Phase Flow Systems

Concentration Flow System: $C_A = \frac{F_A}{D}$

Gas Phase Flow System: $v = v_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}$

$$C_{A} = \frac{F_{A}}{\upsilon} = \frac{F_{A0}(1-X)}{\upsilon_{0}(1+\varepsilon X)\frac{T}{T_{0}}\frac{P_{0}}{P}} = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}\frac{T_{0}}{T}\frac{P}{P_{0}}$$

$$C_{B} = \frac{F_{B}}{\upsilon} = \frac{F_{A0} \left(\Theta_{B} - \frac{b}{a}X\right)}{\upsilon_{0} \left(1 + \varepsilon X\right) \frac{T}{T_{0}} \frac{P_{0}}{P}} = \frac{C_{A0} \left(\Theta_{B} - \frac{b}{a}X\right)}{\left(1 + \varepsilon X\right)} \frac{T_{0}}{T} \frac{P}{P_{0}}$$

For Gas Phase Flow Systems

If $-r_A = kC_AC_B$

$$-r_{A} = k_{A}C_{A0}^{2} \left[\frac{(1-X)}{(1+\varepsilon X)} \frac{\left(\Theta_{B} - \frac{b}{a}X\right)}{(1+\varepsilon X)} \left(\frac{P}{P_{0}} \frac{T_{0}}{T}\right)^{2} \right]$$

This gives us

For Gas Phase Flow Systems

where

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

$$\delta = \frac{\text{change in total number of moles}}{\text{mole of A reacted}}$$

$$\varepsilon = \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) \frac{F_{A0}}{F_{T0}} = y_{A0} \delta$$

$$\left| \varepsilon = y_{A0} \delta \right|$$

$$\varepsilon = \frac{\text{change in total number of moles for complete conversion}}{\text{total number of moles fed to the reactor}}$$

Example: Calculating the equilibrium $^{\text{Chapter 4}}$ conversion (X_{ef}) for gas phase reaction in a flow reactor

Consider the following elementary reaction where

 $K_C=20 \text{ dm}^3/\text{mol}$ and $C_{A0}=0.2 \text{ mol/dm}^3$.

Calculate Equilibrium Conversion or both a batch reactor (X_{eb}) and a flow reactor (X_{ef}) .

$$2\mathbf{A} \iff \mathbf{B} \qquad -r_A = k_A \left[C_A^2 - \frac{C_B}{K_C} \right]$$

$$2A \Leftrightarrow B$$
$$X_{eb} = 0.703$$

$$X_{ef} = ?$$

Solution:

Rate Law:

$$-r_A = k_A \left[C_A^2 - \frac{C_B}{K_C} \right]$$

$$A \rightarrow \frac{1}{2}B$$

<u>Species</u>	<u>Fed</u>	<u>Change</u>	Remaining
Α	F _{A0}	-F _{A0} X	$F_A = F_{A0}(1-X)$
В	0	+F _{A0} X/2	$F_B = F_{A0}X/2$
	F _{T0} =F _{A0}		$F_T = F_{A0} - F_{A0}X/2$

 F_{A0}

 $-F_{AO}X$

 $F_{A} = F_{A0}(1-X)$

 $F_{AO}X/2$

 $F_{\rm B} = F_{\rm AO} X / 2$

Stoichiometry:

Gas isothermal $T=T_0$ Gas isobaric

 $P=P_0$

$$\upsilon = \upsilon_0 \left(1 + \varepsilon X \right)$$

$$C_{A} = \frac{F_{A0}(1-X)}{\upsilon_{0}(1+\varepsilon X)} = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}$$

$$C_B = \frac{F_{A0} X/2}{\upsilon_0 (1+\varepsilon X)} = \frac{C_{A0} (1-X)}{2(1+\varepsilon X)}$$

$$-r_{A} = k_{A} \left[\left(\frac{C_{A0}(1-X)}{(1+\varepsilon X)} \right)^{2} - \frac{C_{A0}X}{2(1+\varepsilon X)K_{C}} \right]$$

Pure A \rightarrow y_{A0}=1, C_{A0}=y_{A0}P₀/RT₀, C_{A0}=P₀/RT₀

$$\varepsilon = y_{A0} \delta = \left(1\right) \left(\frac{1}{2} - 1\right) = -\frac{1}{2}$$

At equilibrium: -r_A=0

$$2K_C C_{A0} = \frac{X_e (1 + \varepsilon X_e)}{(1 - X_e)^2}$$

$$2K_{C}C_{A0} = 2\left(20\frac{dm^{3}}{mol}\right)\left(0.2\frac{mol}{dm^{3}}\right) = 8$$

$$\varepsilon = y_{A0}\delta = 1\left(\frac{1}{2} - 1\right) = -\frac{1}{2}$$

$$8 = \frac{X_e - 0.5X_e^2}{\left(1 - 2X_e + X_e^2\right)}$$

$$8.5X_e^2 - 17X_e + 8 = 0$$

Flow: $X_{ef} = 0.757$

Recall

Batch: $X_{eb} = 0.70$

Chapter 4

Choices 1. MOLE BALANCES

Chapter 4

4. COMBINE (First Order Gas-Phase Reaction in a PFR)

From mole balance From rate law From stoichiometry $\frac{dX}{dV} = \frac{-r_A}{F_{A0}}$ $\frac{kC_A}{F_{AO}} = \frac{k}{F_{AO}} \left(C_{AO} \frac{(1-X)}{(1+\epsilon X)} \right) \frac{P}{P_O} \frac{T_O}{T}$ $\frac{k}{v_0} \frac{(1-X)}{(1+\epsilon X)} y \frac{T_0}{T}$, where $y = \frac{P}{P_0}$ (A)

Integrating for the case of constant temperature and pressure gives

$$V = \frac{v_0}{k} \left[(1 + \epsilon) ln \left(\frac{1}{1 - X} \right) - \epsilon X \right]$$
 (B)

End of Lecture 5