Lista 1 – Cálculo 2

1) Calcule a área da região limitada pelas curvas:

a)
$$v = 4 - x^2$$
 e $v = x^2 - 14$:

Resp. 72 u.a.

b)
$$y = |x-2|$$
 e $y = 2-(x-2)^2$;

Resp. 1/3 u.a.

c)
$$y = e^x - 1$$
, $y = -x$ e $x = 1$;

Resp. $e - \frac{3}{2}$ u.a.

d)
$$y = arcsenx$$
, $y = \frac{\pi}{2}$ e $x = 0$;

Resp. 1 u.a.

2) Calcule o comprimento das curvas:

a)
$$y = \frac{e^x + e^{-x}}{2}, x \in [0,1];$$

Resp. senh1 u.c.

b)
$$y = x^{\frac{2}{3}} - 1, x \in [1, 2];$$

Resp.
$$\frac{1}{27}[(9.2^{\frac{2}{3}}+4)^{\frac{3}{2}}-13\sqrt{13}]$$
 u.c

c)
$$y = 4\sqrt{x^3} + 2$$
 de $P = (0,2)$ até $Q = (1,6)$;

Resp.
$$\frac{1}{54}(37\sqrt{37}-1)$$
 u.c.

d)
$$y = \frac{1}{3}(2+x^2)^{\frac{3}{2}}, 0 \le x \le 3$$
;

e)
$$y = \ln x$$
, $x \in [\sqrt{3}, \sqrt{8}]$;

Resp.
$$1 + \frac{1}{2} \ln \frac{3}{2}$$
 u.c.

3) Calcule o volume do sólido de revolução obtido pela rotação da região R em torno do eixo indicado:

a) R limitada por:
$$y = \frac{1}{x}, x = 1, x = 2, y = 0$$
. Eixo OX.

Resp.
$$\pi/2$$
 u.v.

b) R limitada por:
$$y = x^2, x \in [0, 2], x = 0, y = 4$$
. Eixo OY.

Resp.
$$8\pi$$
 u.v.

c) R limitada por:
$$y = x^2$$
, $x = y^2$. Eixo OX.

$$=x^2$$
, $x=y^2$. Eixo OX.

Resp.
$$3\pi/10$$
 u.v.

d) R limitada por:
$$y = x^4$$
, $y = 1$. Eixo $y = 2$.

Resp.
$$^{208\pi}/_{45}$$
 u.v.

e) R limitada por:
$$x = y^2$$
, $x = 1$. Eixo $x = 1$.

$$y^2$$
, $x = 1$. Eixo $x = 1$.

Resp.
$$^{16\pi}/_{15}$$
 u.v.

f) R limitada por:
$$y = 1 - x^2$$
, $x = -2$, $y = 2$. Eixo $y = 2$.

$$-y$$
, $x-1$. Like $x-1$.

Resp.
$$\frac{412\pi}{15}$$
 u.v.

4) Calcule a área da superfície obtida pela rotação da curva em torno do eixo indicado:

a)
$$y = 2x^3, x \in [0,2]$$
. Eixo OX.

Resp.
$$\frac{\pi}{54}(577\sqrt{577}-1)$$
 u.a.

b)
$$y = \sqrt{4 - x^2}$$
, $x \in [0,1]$. Eixo OX.

Resp.
$$4\pi$$
 u.a.

c)
$$x = \sqrt{y}, y \in [1, 4]$$
. Eixo OY.

Resp.
$$\frac{\pi}{6}(17^{\frac{3}{2}}-5^{\frac{3}{2}})$$
 u.a.

5) Calcule a área da superfície do cone, gerado pela rotação do segmento de reta $y = 4x, x \in [0, 2],$

Resp.
$$16\sqrt{17}\pi$$
 u.a.

Resp.
$$4\sqrt{17}\pi$$
 u.a.