Kapitel 1

Grundlegende Sätze

Beispiel 1. Sei k ein Körper, somit entspricht $d_{k[x]}: k[x] \longrightarrow \Omega_{k[x]/k}$, $f \longmapsto f'd_{k[x]}(x)$ der analytischen Ableitung.

Teste dies an $f(x) = ax^2 + bx + c$:

$$d(f(x)) = a \cdot d(x^{2}) + b \cdot d(x) = (2ax + b)d(x) = f'(x)d(x)$$

Proposition 16.3 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994]

Satz 2. Sei $\pi: S \longrightarrow T$ ein R-Algebrenephimorphismus mit $Kern(\pi) := I$ Dann ist folgende Sequenz rechtsexakt:

$$I/I^2 \xrightarrow{f} T \otimes_S \Omega_{S/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit:
$$f: I/I^2 \longrightarrow T \otimes_S \Omega_{S/R}$$
, $[a]_{I^2} \longmapsto 1 \otimes d_S(a)$
 $g: T \otimes_S \Omega_{S/R} \longrightarrow \Omega_{T/R}$, $b \otimes d_S(c) \longmapsto b \cdot (d_S \circ \pi)(c)$

Beweis.

f ist wohldefiniert: Seien $a, b \in I^2$. Zeige $f(a \cdot b) = 0$:

$$f(a \cdot b) = 1 \otimes (d_S \circ \pi)(a \cdot b) = 1 \otimes \pi(a) \cdot (d_S \circ \pi)(b) + \pi(b) \cdot (d_S \circ \pi)(a) = 0$$

 $D\pi$ ist surjektiv:

$$\begin{array}{ccc}
\Omega_{S/R} & \xrightarrow{D\pi} & \Omega_{T/R} \\
d_S \uparrow & & d_T \uparrow \\
S & \xrightarrow{\pi} & T
\end{array}$$

Da $\Omega_{S/R}$ und $\Omega_{T/S}$ jeweils von d_S und d_T erzeugt werden, vererbt sich die Surjektivität von π auf $D\pi$. Somit ist auch $1 \otimes_S D\pi$ surjektiv.

im(f) = kern(g):

Dies folgt direkt aus der Isomorphie $(T \otimes_S \Omega_{S/R})/Im(f) \simeq \Omega_{T/R}$:

$$(T \otimes_S \Omega_{S/R})/Im(f)$$

$$= (T \otimes_S \Omega_{S/R})/(T \otimes_S d_S(I))$$

$$= T \otimes_S (\Omega_{S/R}/d_S(I))$$

$$= T \otimes_S (d_S(S)/d_S(I))$$

$$\simeq T \otimes_S d_S(S/I)$$

$$\simeq T \otimes_S d_T(T)$$

Kapitel 2

Kolimes

In diesem Kapitel werden wir das Konzept des Kolimes als Konstrukt der Kathegorientheorie kennen lernen. Am Ende des Kapitels werden wir sehen, dass der Kolimes von R-Algebren mit der Bildung des Kähler-Differenzials harmoniert. Dies wird es uns im folgenden vereinfachen, bestimmte Eigenschaften des Kähler-Differenzials nachzuweisen.

Vgl. Anhang A6 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Definition 1. Sei A eine Kategorie und $C \in A$ ein Objekt

- Ein <u>Diagramm</u> über A ist eine Kategorie B zusammen mit einem Funktor $\mathcal{F}: \mathcal{B} \longrightarrow A$.
- Ein Morphismus $\psi : \mathcal{F} \longrightarrow C$ ist eine Menge von Funktionen $\{\psi_B \in Hom(F(B), C) | B \in \mathcal{B}\}$, wobei für alle $B_1, B_2 \in \mathcal{B}$ und $\varphi \in Hom(B_1, B_2)$ folgendes Diagramm kommutiert:

• Der Kolimes $\varinjlim \mathcal{F}$ eines Diagramms $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ist ein Objekt $A \in \mathcal{A}$ zusammen mit einem Morphismus $\psi: \mathcal{F} \longrightarrow A$ und folgender universellen Eigenschaft:

für alle Morphismen $\psi': \mathcal{F} \longrightarrow A'$ existiert genau eine Funktion $\varphi \in Hom(A, A')$, sodass folgendes Diagramm kommutiert:

Bevor der Kolimes weiter charakterisiert wird, zeigen wir zunächst, dass er durch die obige Definition eindeutig bestimmt ist.

Lemma 2. Seien \mathcal{B} , \mathcal{A} zwei Kategorien und $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Funktor, so git: Im Falle der Existenz sind $\varinjlim \mathcal{F}$ und der dazugehörige Morphismus $\psi: \mathcal{F} \longrightarrow A$ bis auf eine eindeutige Isomorphie eindeutig bestimmt.

Beweis. Seien $A_1 \in \mathcal{A}, (\psi_1 : \mathcal{F} \longrightarrow A_1)$ und $A_2 \in \mathcal{A}, (\psi_2 : \mathcal{F} \longrightarrow A_2)$ beide gleich $\lim \mathcal{F}$.

Erhalte durch die universelle Eigenschaft des Kolimes die eindeutig bestimmten Funktionen $\varphi_1 \in Hom_{\mathcal{A}}(A_1, A_2)$ und $\varphi_2 \in Hom_{\mathcal{A}}(A_2, A_1)$, für welche die folgende Diagramme kommutieren:

Wende nun die Universelle Eigenschaft von ψ_1 auf ψ_1 selbst an und erhalte $id_{A_1} = \varphi_2 \circ \varphi_1$. Analog erhalte auch $id_{A_2} = \varphi_1 \circ \varphi_2$.

Somit existiert genau eine Isomorphie $\varphi_1: A_1 \longrightarrow A_2$.

Im folgenden beschäftigen wir uns mit dem Fall des $\varinjlim \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$, bei welchem \mathcal{B} eine Unterkategorie von \mathcal{A} ist. Zur Vereinfachung unterschlagen dabei die triviale Existenz des Funktors $\varinjlim \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$. Wir werden also im folgenden von dem Diagramm \mathcal{B} und dem entsprechenden Kolimes $\varinjlim \mathcal{B}$, sowie dem Morphismus $\phi: \mathcal{B} \longrightarrow A$ sprechen.

Dieser Fall ist vor allem so interessant, weil man den Kolimes eines beliebigen Diagramms immer darauf zurückführen kann.

Bemerkung 3. Seien $\mathcal{B} \nsubseteq \mathcal{A}$ zwei Kategorien und $\mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A}$ ein Diagramm. Dann gilt im Falle der Existenz $\lim_{n \to \infty} \mathcal{F} = \lim_{n \to \infty} \mathcal{F}(\mathcal{B})$

Zunächst untersuchen wir bei einer gegebenen Kategorie \mathcal{A} das Koprodukt einer Menge von Objekten $B_i \in \mathcal{A}$, sowie den Differenzkokern zweier Morphismen $f,g \in Hom_{\mathcal{A}}(C_1,C_2)$.

Definition 4. Sei A eine Kategorie.

Das Koprodukt von {B_i} ⊆ A wird durch ∏_i{B_i} := lim B definiert, wobei B {B_i} als Objekte und die Identitätsabbildungen id_{B_i} : B_i → B_i als Morphismen enthält.

• Der Differenzkokern (oder auch Coequilizer) von $f,g \in Hom_{\mathcal{A}}(C_1,C_2)$ wird durch $\lim_{\longrightarrow} \mathcal{C}$ definiert, wobei \mathcal{C} $\{C_1,C_2\}$ als Objekte und $\{f,g\} := Hom_{\mathcal{C}}(C_1,C_2)$ als Morphismen enthält.

In der Einführung des Differenzkokern's in definition 4 ist deutliche zu sehen, inwiefern dieser ein Kolimes ist. Um aber mit dem Differenzkokern besser zu arbeiten wird er meist anders eingeführt. Daher betrachten auch wir ab nun eine andere, aber äquivalente Definition des Differenzkokern's.

Lemma 5. Sei A eine Kategorie mit $C_1, C_2 \in Hom_A(C_1, C_2)$, so sind folgende Formulierungen äquivalent zur Definition des Differenzkokern's $T := \lim_{n \to \infty} C$

- 1. Es existiert ein Morphismus $\psi: \mathcal{C} \longrightarrow T$, mit der Eigenschaft, dass für alle Morphismen $\psi': \mathcal{C} \longrightarrow T'$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ \psi = \psi'$ existiert.
- 2. Es existiert ein $q \in Hom_{\mathcal{A}}(C_2, T)$ mit $q \circ f = q \circ g$ und der Eigenschaft, dass für alle Morphismen $q' \in Hom_{\mathcal{A}}(C_2, Z)$ mit $q' \circ f = q' \circ g$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ q = q'$ existiert.

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} T$$

$$\downarrow q' \qquad \downarrow \exists ! \varphi$$

$$T'$$

Beweis. 1. ist offensichtlich eine Ausformulierung der Einführung des Kolimes aus ??, zeige also im folgenden noch die Äquivalenz von 1. und 2.

• $1 \Rightarrow 2$:

Da $\psi: \mathcal{C} \longrightarrow T$ ein Morphismus ist, gilt für $\{f,g\} = Hom_{\mathcal{C}}(C_1, C_2)$: $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_1} \circ \psi_{C_2}$, setze also $q := \psi_{C_2}$.

Sei nun $q' \in Hom_{\mathcal{A}}(C_2, T)$ mit der Eigenschaft $q' \circ f = q' \circ g$ gegeben: Definiere den Morphismus $\psi' : \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q' \circ f, \psi_2 = q'\}$, somit folgt direkt aus der Universellen Eigenschaft von ψ , dass genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ existiert, mit $\varphi \circ q = q'$.

• $2 \Rightarrow 1$:

Definiere $\psi: \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q \circ f, \psi_2 = q\}$. Durch die Eigenschaft von q gilt $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_2} \circ g$.

Sei nun $\psi': \mathcal{C} \longrightarrow \mathcal{A}$ ein beliebiger Morphismus.

Definiere $d' := \psi'$, somit existiert durch die Eigenschaft von d genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ mit $\varphi \circ q = q'$.

$$\Rightarrow \varphi \circ \psi_2 = \psi_2'$$

$$und \ \varphi \circ \psi_1 = \varphi \circ \psi_2 \circ f = \varphi \circ \psi_2' \circ f = \varphi \circ \psi_1'$$

Wenn im weiteren Verlauf von dem Differenzkokern zweier Homomorphismen $f, g: C_1 \longrightarrow C_2$ gesprochen wird, meinen wir damit den Homomorphismus $g: C_2 \longrightarrow T$ aus lemma 5.

Bemerkung 6. Seien $f,g \in Hom_{\mathcal{A}}(S_1,S_2)$ R-Algebra-Homomorphismen, so können wir für den Differenzenkokern $q: S_2 \longrightarrow T$ für ein beliebiges S_1 -Modul das Tensorprodukt $T \otimes_{C_1} M$ definieren.

$$f\ddot{u}r \ s_1 \in S_1 \ und \ t \otimes m) \in T \otimes_{C_1} M \ gilt:$$
$$s_1 \cdot (t \otimes m) = ((q \circ f)(s_1)) \cdot t \otimes m = ((q \circ g)) \cdot (s_1)t \otimes m$$

Da wir es hauptsächlich mit R-Algebren zu tun haben, wollen wir natürlich auch wissen, wie sich Koprodukte und Differenzkokerne von R-Algebren verhalten. Daher betrachten wir in der folgenden Proposition genauer welche Form diese haben.

Proposition 7. in der Kategorie der R-Algebren existieren Koprodukte und Differenzkokerne, wobei:

- **1.** Das Koprodukt einer endlichen Familie von R Algebren $\{S_i\}_{i\in\Lambda}$ entspricht deren Tesorprodukt $\bigotimes_{i\in\Lambda} S_i$.
- 2. Der Differenzkokern zweier R-Algebra-Homomorphismen $f,g:S_1 \longrightarrow S_2$ einspricht dem Homomorphismus $q:S_2 \longrightarrow S_2/Q$, $y \longmapsto [y]$, wobei $Q:=\{f(x)-g(x)\mid x\in S_2\}$ das Bild der Differenz von f und g ist.

Beweis. Zu 1.:

Sei \mathcal{B} die Unterkategorie der R-Algebren, welche $\{S_i\}_{i\in\Lambda}$ zusammen mit den Identitätsabbildungen enthält. Wir wollen die universellen Eigenschaften des Tensorproduktes und des Kähler-Differenzials nutzen, um einen Isomorphismus zwischen $\lim \mathcal{F}$ und $\bigotimes_{i\in\Lambda} B_i$ zu finden.

Es sind der Morphismus $\psi: \mathcal{B} \longrightarrow \varinjlim \mathcal{B}$ und die bilineare Abbildung $g: \bigoplus_i S_i \longrightarrow \otimes_i S_i$ gegeben.

Konstruiere den Morphismus $\psi': \mathcal{B} \longrightarrow \otimes_i S_i$ durch $\psi'_i: S_i \longrightarrow \otimes_i S_i$, $s_i \longmapsto g(1, ..., 1, s_i, 1, ..., 1)$ für $i \in \lambda$ und die bilineare Abbildung $f: \oplus_i S_i \longrightarrow \coprod_{i \to \infty} \mathcal{B}$, $s \longmapsto \prod_i \psi_i(s_i)$.

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:

$$\varphi: \varinjlim_{i} \mathcal{B} \longrightarrow \bigotimes_{i} S_{i}$$
$$\phi: \bigotimes_{i} S_{i} \longrightarrow \varinjlim_{i} \mathcal{B}.$$

Die Eindeutigkeit der universellen Eigenschaften liefert uns, das φ und ϕ zueinander Inverse sind und somit haben wir unsere gesuchten Isomorphismen zwischen lim \mathcal{B} und $\bigotimes_i S_i$ gefunden.

Zu 2.:

Zeige, dass $q:S_2\longrightarrow S_2/Q$ die in lemma 5 eingeführten Eigenschaften des Differenzkokern's besitzt.

$$q \circ f = q \circ g$$
 gilt, da $kern(q) = Q = \{f(x) - g(x) \mid x \in C_2\}.$

Sei nun eine Funktion $q' \in Hom_{\mathcal{A}}(S_2, T')$ mit $q' \circ f = q' \circ$ gegeben. Somit gilt $q' \circ (f - g) = 0$, wodurch Q ein Untermodul von Q' := kern(q') ist. Mit dem Isomorphiesatz für R-Algebren erhalten wir:

$$S_2/Q' \simeq (S_2/Q)/(Q'/Q).$$

Somit ist $q': S_2 \longrightarrow (S_2/Q)/(Q'/Q)$, $y \longmapsto [y]'$ eine isomorphe Darstellung von $q': S_2 \longrightarrow T'$.

$$\Rightarrow \exists ! \varphi : S_2/Q \longrightarrow (S_2/Q)/(Q'/Q), [y] \longmapsto [y]' \ mit \ (\varphi \circ q) = q'.$$

Also ist $q: S_2 \longrightarrow S_2/Q$ der bis auf Isomorphie eindeutig bestimmte Differenzkokern von f und g.

Da wir nun auch mal die konkrete Form von Kolimten kennen, können wir uns überlegen bei welchen Algebren es sich um einen Kolimes handelt. Dabei interessiert und vor allem der Kolimes, denn viele Algebren lassen sich als Tensorprodukt von Unteralgebren darstellen. Ein klassisches Beispiel dafür ist die Polynomalgebra $R[x_1,...,x_n]$.

Bemerkung 8. Die Polynomalgebra $R[x_1,...,x_d]$ über R lässt sich wie folgt als Tensorprodukt darstellen:

$$R[x_1,...,x_n] = \bigotimes_{i \in \{1,...,n\}} R[x_i]$$

Genauer gilt für zwei Polynomalgebren $A = R[x_1,...,x_{n_A}], B = R[y_1,...,y_{n_B}]$ über R:

$$A \otimes_R B = R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}]$$

Skizziere den Beweis.

Beweis. Zeige, dass für $g: A \oplus B \longrightarrow R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}], (a, b) \longmapsto a \cdot b$ die Universelle Eigenschaft des Tensorproduktes gilt:

$$A \oplus B \xrightarrow{g} R[x_1,...,x_{n_A},y_1,...,y_{n_B}]$$

$$\downarrow \exists ! \varphi$$

$$\downarrow \exists ! \varphi$$

$$M$$

Es ist leicht nachzurechnen, dass es sich bei φ um folgende Funktion handeln muss:

$$\varphi: R[x_1,...,x_{n_A},y_1,...,y_{n_B}] \longrightarrow M, (x_i \cdot y_j) \longmapsto f(x_i,1) \cdot f(1,y_i)$$

Um im weiteren auch Koprodukte bzw. Differenzenkokerne des Kählerdifferenzials betrachten zu können, wollen wir wissen, wie sich diese in der Kategorie der R-Module verhalten. Daher betrachten wir in der folgenden Proposition genauer welche Form diese haben.

Proposition 9. In Der Kategorie der R-Module existieren Koprodukte und Differenzkokerne, wobei:

- 1. das Koprodukt $\lim \mathcal{B}$ von R-Modulen $M_i \in (R-Module)$ entspricht der direkten Summe $\sum_{i}^{n} M_{i}$.
- 2. der Differenzenkokern zweier Homomorphismen $f, g: M_1 \longrightarrow M_2$ entspricht dem Kokern $M_2/im(f-g)$ der Differenzenabbildung.

Beweis. für 1. Sei $\phi: \{M_i\} \longrightarrow \mathcal{B}$ ein beliebiger Morphismus. Zeige:

Für ein beliebiges i existiert genau ein $\varphi_i: M_i \oplus 0 \longrightarrow M'$, $(0,...,0,m_i,0,...,0 \longmapsto \psi_i'(m_i)$ $mit \ \psi_i' = \psi_i \circ \varphi_i$

$$\Rightarrow \exists ! \varphi : \bigoplus_i M_i \longrightarrow M', (m_1, ..., m_n) \longmapsto \sum_i \psi_i(m_i)$$

2. ist Analog zu proposition 7

Die in proposition 9 gezeigten Darstellungen gelten mit kurzen Überlegungen auch für S-Module, wobei S eine R-Algebra ist.

Eine Anwendung des Kolimes ist die Lokalisation. Hier können wir den Kolimes nutzen, um die multiplikativ abgeschlossene Menge $U \subseteq S$ ohne Einschränkung auf den Fall $U = \{t^n | n \in \mathbb{N}_0\}$ für ein $t \in S$ herunter zu brechen. Betrachte dazu

die folgenden zwei Aussagen.

Aufgabe A6.7 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Lemma 10. Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$S[U^{-1}] = \lim_{\longrightarrow} \mathcal{B}$$

Wobei \mathcal{B} aus den Objekten $\{S[t^{-1}]|t \in U\}$ und den Morphismen $S[t^{-1}] \longrightarrow S[tt'^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{st'^n}{(tt')^n})_{(tt')} \ \forall t,t' \in U$ besteht.

Beweis. Sei $\psi: \mathcal{B} \longrightarrow A$ der Kolimes von \mathcal{B} . Zeige $S[U^{-1}] \simeq A$, definiere dazu:

$$\psi': \mathcal{B} \longrightarrow S[U^{-1}]$$

$$\psi'_{S[t^{-1}]}: S[t^{-1}] \longrightarrow S[t^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{s}{t^n})_U$$

 ψ' ist ein Morphismus, da für beliebige $t,t'\in U$ und $s\in S$ gilt:

$$\left(\frac{s}{t^n}\right)_{\scriptscriptstyle U} = \left(\frac{st'^n}{(tt')^n}\right)_{\scriptscriptstyle U}$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir den eindeutigen Homomorphismus $\varphi: A \longrightarrow S[U^{-1}]$.

$$S[U^{-1}] \xleftarrow{\mathcal{B}} \psi$$

Für $\phi: S[U^{-1}] \longrightarrow A$ benötigen wir kleinere Vorüberlegungen. Zunächst können wir jedes Element $(\frac{s}{u})_{\scriptscriptstyle U} \in S[U^{-1}]$ als $\psi_{S[t^{-1}]}((\frac{s}{t})_{\scriptscriptstyle t})$ schreiben. Weiter gilt für alle $s_1, s_2 \in S, \, t_1, t_2 \in U$:

$$\begin{split} Sei \; \psi_{S[t^{-1}]}'((\frac{s_1}{t_1})_t) &= \psi_{S[t^{-1}]}'((\frac{s_2}{t_2})_t) \\ \Rightarrow \exists u \in U : (s_1t_1 - s_2t_2) \cdot u &= 0 \\ \Rightarrow (\frac{s_1u}{t_1u})_{tu} &= (\frac{s_2u}{t_2u})_{tu} \\ \Rightarrow \psi_{S[t^{-1}]}((\frac{s_1}{t_1})_t) &= \psi_{S[t^{-1}]}((\frac{s_2}{t_2})_t) \end{split}$$

Mit diesem Wissen können wir den R-Algebra-Homomorphismus $\phi:S[U^{-1}]\longrightarrow A$ definieren:

$$\phi: S[U^{-1}] \longrightarrow A\,,\, \psi_{S[t^{-1}]}'((\frac{s}{t})_t) \longmapsto \psi_{S[t^{-1}]}((\frac{s}{t})_t)$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes:

Für $\varphi \circ \phi \stackrel{!}{=} id_{S[U^{-1}]}$ wähle beliebige $s \in S, t \in U$, für diese gilt:

$$(\varphi \circ \phi)(\psi'((\frac{s}{t})_t)) = \varphi(\psi((\frac{s}{t})_t) = \psi'((\frac{s}{t})_t)$$

Damit haben wir gezeigt, dass φ, ϕ Isomorphismen sind und somit $A \simeq S[U^{-1}]$ gilt.

Da der Kolimes bis auf Isomorphie eindeutig ist, definiere ab sofort $S[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{B} .

Korrolar 11. Sei M ein S-Modul, wobei S eine R-Algebra ist. Sei weiter $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$M[U^{-1}] = \varinjlim \mathcal{C}$$

Wobei \mathcal{C} aus den Objekten $\{S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] | t \in U\}$ und folgenden Morphismen besteht:

$$S[U^{-1}] \otimes M[t^{-1}] \longrightarrow S[U^{-1}] \otimes M[(tt')^{-1}],$$
$$(\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{t^n})_{\scriptscriptstyle t} \longmapsto (\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{t'^n m}{(tt')^n})_{\scriptscriptstyle t}$$

Auch wenn sich lemma 10 hier nicht direkt anwenden lässt, so können wir doch im Beweis gleich vorgehen.

Beweis. Schließe zunächst den trivialen Fall $0 \in U$ aus.

Sei $\psi:\mathcal{C}\longrightarrow A$ der Colimes von $\mathcal{C}.$ Zeige $S[U^{-1}]\simeq A,$ definiere dazu folgenden Morphismus :

$$\psi: \mathcal{C} \longrightarrow M[U^{-1}]$$

$$\psi_t: S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow M[U^{-1}], \left(\frac{s}{u}\right)_U \otimes \left(\frac{m}{t^n}\right)_t \longmapsto \left(\frac{sm}{ut^n}\right)_U$$

Die Wohldefiniertheit von ψ_t' für ein beliebiges $t \in U$ folgt direkt aus der Universellen Eigenschaft des Tensorprodukt's. Denn für die bilineare Abbildung $f: S[U^{-1}] \oplus M[t^{-1}] \longrightarrow M[t^{-1}]$, $((\frac{s}{u})_U, (\frac{m}{t^n})_t) \longmapsto (\frac{sm}{ut^n})_U$ gilt:

Durch die Universelle Eigenschaft des Kolimes erhalten wir nun den eindeutigen Homomorphismus $\varphi:A\longrightarrow M[U^{-1}].$

Für $\phi:M[U^{-1}]\longrightarrow A$ benötigen wir kleinere Vorüberlegungen.

Zunächst können wir jedes Element $(\frac{m}{u})_U \in M[U^{-1}]$ als $\psi((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$ schreiben. Wobei mit ψ gemeint ist, dass wir ein beliebiges $t \in U$ wählen und dann ψ_t betrachten. Diese Verallgemeinerung ist möglich, da für beliebige $t_1, t_2, u \in U$ und $m \in M$ gilt:

$$\psi_{t_1}((\frac{1}{u})_{_U}\otimes(\frac{m}{1})_{_{t_1}})=(\frac{m}{u})_{_U}=\psi_{t_2}((\frac{1}{u})_{_U}\otimes(\frac{m}{1})_{_{t_2}})$$

Definiere nun mit diesem Wissen folgenden Homomorphismus:

$$\phi: M[U^{-1}] \longrightarrow A, \ \psi((\frac{1}{u})_U \otimes t) \longmapsto \psi'((\frac{1}{u})_U \otimes t)$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes. Für $\varphi\circ\phi\stackrel{!}{=}id_{M[U^{-1}]}$ wähle $(\frac{m}{u})_{\scriptscriptstyle U}\in M[U^{-1}]$ beliebig, für dieses gilt:

$$(\varphi \circ \phi)(\psi'((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t}))$$

$$= \varphi(\psi((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t}))$$

$$= \psi'((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t})$$

Damit haben wir $A \simeq M[U^{-1}]$ gezeigt, definiere also ab sofort $M[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{C} .

Wie schon angekündigt, bringen wir nun dieses Kapitel zu einem Ende, indem wir die gerade kennen gelernte Theorie mit dem Kähler-Differenzial in Verbindung setzen.

Folgende Proposition zeigt uns, dass Differenzkokerne und Koprodukte unter der Bildung des Kähler-Differenzial's erhalten bleiben.

vlg.Korrolar 16.7 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Proposition 12.

1. Sei $T = \bigotimes_{i \in \Lambda} S_i$ das Koprodukt der R-Algebren S_i . Dann gilt:

$$\Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

2. Seien S_1, S_2 R-Algebra und $\varphi, \varphi': S_1 \longrightarrow S_2$ R-Algebra-Homomorphismen. Sei weiter $q: S_2 \longrightarrow T$ der Differenzkokern von φ, φ' . Dann ist folgende Sequenz rechtsexakt:

$$T \otimes_{S_1} \Omega_{S_1/R} \xrightarrow{f} T \otimes_{S_2} \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

$$mit: f: T \otimes \Omega_{S_1/R} \longrightarrow T \otimes_{S_2} \Omega_{S_2/R}, t \otimes d_{S_1}(x_1) \longmapsto t \otimes d_{S_2}(\varphi(x_1) - \varphi(x_2))$$

$$g: T \otimes_{S_2} \Omega_{S_2/R} \longrightarrow \Omega_{T/R}, t \otimes d_{S_2}(x_2) \longmapsto (d_T \circ q)(x_2)$$

Beweis.

Für 1. finde durch die Universelle Eigenschaft des Kähler-Differenzials Isomorphismen $\Omega_{T/R} \longleftrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$.

Definiere das Differenzial $e: T \longrightarrow \sum_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$, $(s_i \otimes ...) \longmapsto (1 \otimes d_{S_1}, ...)$ und erhalte dadurch

$$T \xrightarrow{d_T} \Omega_{T/R}$$

$$\downarrow_{\exists ! \varphi} \qquad \varphi : \Omega_{T/R} \longrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}).$$

$$\sum_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$$

Definiere nun das Differenzial $k: S_i \hookrightarrow T \longrightarrow \Omega_{T/R}$ und erhalte dadurch:

$$S_i \xrightarrow{d_{S_i}} \Omega_{S_i/R} \xrightarrow{a} T \otimes_{S_i} \Omega_{S_i/R}$$

$$\downarrow_{\exists !k'} \qquad \qquad \phi_i : \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}) \longrightarrow \Omega_{T/R}$$

$$\Omega_{T/R}$$

$$\phi: \sum_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}) \longrightarrow \Omega_{T/R}, (..., t_i \otimes d_{S_i}(s_i), ...) \longmapsto \prod_{i \in \Lambda} t_i \cdot \phi_i(d_{S_i}(s_i))$$

Damit haben wir zwei zueinander inverse Funktionen φ, ϕ gefunden. $\Rightarrow \Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$

Für 2. Wende satz 2 auf den Differenzkokern $q: S_2 \longrightarrow S_2/Q$ (vlg. proposition 7) an und erhalte dadurch eine exakte Sequenz, welche ähnlich zu der gesuchten ist:

$$Q/Q^2 \xrightarrow{f'} T \otimes \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit
$$f': Q/Q^2 \longrightarrow T \otimes_{S_2} \Omega_{S/R}$$
, $[s_2]_{Q^2} \longmapsto 1 \otimes d_{S_2}(s_2)$.
Somit gilt $im(f) = T \otimes_{S_2} d_{S_2}(Q) = im(f')$.
 \Rightarrow die gesuchte Sequenz ist exakt.

An dieser Stelle wollen wir uns daran erinnern, dass wir in bemerkung 8 gesehen haben, dass es sich bei der Polynomalgebra um das Koprodukt von Algebren handelt. Daher können wir nun in den folgenden zwei Korrolaren das Kähler-Differenzial von Polynomalgebren spezifizieren. Vergleiche Proposition

16.1 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Korrolar 13. Sei $S = R[x_1,...,x_n]$ eine Polynomalgebra über R. Dann gilt:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} S\langle d_S(x_i) \rangle$$

Wobei $S\langle d_S(x_i)\rangle$ das von $d_S(x_i)$ erzeugt Modul über S ist.

Beweis. Wie in bemerkung 8 gezeigt, können wir S als $\bigotimes_{i \in \{1,...,n\}} R[x_i]$ schreiben. In proposition 12 haben wir gezeigt, wie das Differenzial eines solchen Tensorproduktes aussieht:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} \Omega_{R[x_i]/R})$$

Da $R[x_i]$ die aus dem Element x_i erzeugte Algebra über R ist, folgt $[vlg.\ BE-MERKUNG\ ZU\ ENDLICH\ ERZEUGTEN\ ALGEBREN]$:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} R[x_i] \langle d_{S[x_i]}(x_i) \rangle) \simeq \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle$$

Für die letzte Isomorphie nutze, dass wegen $R[x_i] \subseteq S$ zum Einen $d_{R[x_i]}$ als Einschränkung von d_S gesehen werden kann und zum Anderen $S \otimes_{R[x_i]} R[x_i] \simeq S$ gilt.

Vergleiche Korrolar 16.6 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Korrolar 14. Sei S eine R-Algebra und $T := S[x_1, ..., x_n]$ eine Polynomalgebra über S. Dann gilt:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_S(x_i) \rangle$$

Beweis. Betrachte T als Tensorprodukt über R-Algebren und wende anschließend proposition 12 an:

$$T \simeq S \otimes_R R[x_1, ..., x_n]$$

$$\Rightarrow T \simeq (T \otimes_S \Omega_{S/R}) \otimes_T (T \otimes_{R[x_1, ..., x_n]} \Omega_{R[x_1, ..., x_n]/R})$$

Zuletzt nutze den soeben gezeigten korrolar 13 an und nutze schließlich $R[x_1,...,x_n] \subseteq$

T um das Tensorprodukt zu vereinfachen:

$$T \otimes_{R[x_1,...,x_n]} \Omega_{R[x_1,...,x_n]/R}$$

$$\simeq T \otimes_{R[x_1,...,x_n]} \bigoplus_{i \in \{1,...,n\}} R[x_1,...,x_n] \langle d_{R[x_i]}(x_i) \rangle$$

$$\simeq \bigoplus_{i \in \{1,...,n\}} T \langle d_R(x_i) \rangle$$

Wir haben nun gezeigt, dass der Kolimes unter Bildung des Kähler-Differenzial's erhalten bleibt. Außerdem habe wir gesehen, wie man Lokalisierung als Kolimes darstellen kann. Daher können wir nun abschließend ein Theorem formulieren, welches besagt, dass auch Lokalisierung unter Bildung des Kähler-Differenzials erhalten bleibt.

Theorem 15. Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}, Wobei:$$

$$d_{S[U^{-1}]}((\frac{1}{u})_U) \longmapsto -(\frac{1}{u^2})_U \otimes d_S(u)$$

Beweis. Wir wollen THEOREM16.8 auf $\mathcal{B}=\{S[t^{-1}]|t\in U\}$ aus lemma 10 anwenden.

Zeige also zunächsten den einfacheren Fall $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R}$ für ein beliebiges $t \in U$:

Nutze hierfür die Isomorphe Darstellung $S[t^{-1}] \simeq S[x]/(tx-1)$, sowie die Isomorphie $\Omega_{S[x]/R} \simeq S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$. aus korrolar 14 Daraus erhalten wir folgende Isomorphismen:

$$\alpha: S[t^{-1}] \longrightarrow S[x]/(tx-1)$$

$$\beta: S[x]/(tx-1) \longrightarrow S[t^{-1}]$$

$$\gamma: \Omega_{S[x]/R} \longrightarrow S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$$

Nutze diese nun, um $\Omega_{S[t^{-1}]/R}$ isomorph zu $S[t^{-1}] \otimes_S \Omega_{S/R}$ umzuformen:

$$\Omega_{S[t^{-1}]/R} \qquad \qquad d_{S[t^{-1}]}((\frac{s}{t})_t)$$

$$\downarrow D\alpha \qquad \qquad \downarrow D\alpha \qquad \qquad \downarrow D\alpha$$

$$\Omega_{S[x]/R}/d_{S[x]}(tx-1) \qquad \qquad [d_{S[x]}(sx)] = [xd_{S[x]}(s) + sd_{S[x]}(x)]$$

$$\downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma$$

$$(S[x] \otimes_S \Omega_{S/R} \oplus S[x]d_{S[x]}x)/((tx-1)d_{S[x]}(tx-1)) \qquad \qquad [x \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow \beta \qquad \qquad \downarrow \beta$$

$$(S[t^{-1}] \otimes_S \Omega_{S/R}) \oplus S[t^{-1}]d_{S[x]}(x)/d_{S[x]}(tx-1) =: M \qquad \qquad [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow f \qquad \qquad \downarrow f \qquad \qquad \downarrow f$$

$$S[t^{-1}] \otimes_S \Omega_{S/R} \qquad \qquad ((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Die ersten drei Schritte ergeben sich aus den oben angegeben Isomorphismen. Für den letzten Schritt definiere:

$$f: M \longrightarrow S[t^{-1}] \otimes_S \Omega_{S/R}, [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)] \longmapsto ((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Damit f ein Isomorphismus ist, genügt es zu zeigen, dass $S[t^{-1}] \otimes_S \Omega_{S/R}$ ein eindeutiges Repräsentantensystem von M ist.

Sei dazu $[m_1, (\frac{s}{t^n})_t d_{S[x]}(x)]$ ein beliebiger Erzeuger von M. Somit gilt:

$$\begin{split} d_{S[x]}(tx-1) &= td_{S[x]}(x) + \beta(x)d_{S[x]}(s) \\ &\Rightarrow [0,d_{S[x]}(x)] = [-(\frac{1}{t^2})_t d_S(t),0] \\ &\Rightarrow [m_1,(\frac{s}{t^n})_t d_{S[x]}(x)] = [m_1 - (\frac{s}{t^{n+2}})_t d_S(t),0] = [f([m_1,(\frac{s}{t^n})_t d_{S[x]}(x)]),0] \end{split}$$

f ist also wie vermutet ein Isomorphismus und aus obigen Umformungen folgt $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R} = \Omega_{S/R}[t^{-1}].$

Definiere für beliebige $t \in U$ folgenden Isomorphismus:

$$f\circ\beta\circ\gamma\circ D\alpha=:\delta_t:\Omega_{S[t^{-1}]/R}\longrightarrow\Omega_{S/R}[t^{-1}]\,,\,d_{S[t^{-1}]}((\frac{1}{t})_t)\longmapsto -(\frac{d_S(t)}{t^2})_t$$

Zeige nun den Allgemeinen Fall $\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}$: Wähle $\mathcal{B} = \{S[t^{-1}]|t \in U\}$ wie in lemma 10, sodass $\lim_{\longrightarrow} \mathcal{B} = S[U^{-1}]$ gilt. Mit THEOREM16.8 folgt somit:

$$\Omega_{S[U^{-1}]/R} = \lim_{\longrightarrow} \mathcal{F} \text{ mit:}$$

$$\mathcal{F}: \mathcal{B} \longrightarrow (S[U^{-1}] - Module), S[t^{-1}] \longmapsto S[U^{-1}] \otimes \Omega_{S[t^{-1}]/R}$$

$$(\varphi: S[t^{-1}] \longrightarrow S[tt'^{-1}])$$

$$\longmapsto (1 \otimes D\varphi: S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[t^{-1}]/R} \longrightarrow S[U^{-1}] \otimes_{S[t^{-1}]} (S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}))$$

Zur Vereinfachung der Morphismen in $\mathcal{F}(\mathcal{B})$ definiere folgenden Isomorphismus:

$$g: S[U^{-1}] \otimes_{S[t^{-1}]} (S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}) \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S[tt'^{-1}]/R}$$

$$(\frac{s}{u})_{U} \otimes ((\frac{s'}{t})_{t} \otimes d_{S[tt'^{-1}]}(x)) \longmapsto (\frac{s}{u})_{U} \otimes \varphi((\frac{s'}{t})_{t}) d_{S[tt'^{-1}]}(x)$$

Als letzten Schritt wollen wir ?? anwenden. Nutze dazu $\delta_t: \Omega_{S[t^{-1}]/R} \longrightarrow \Omega_{S/R}[t^{-1}]$ um den zu \mathcal{F} isomorphen Funktor $\mathcal{F}' := \delta \circ \mathcal{F}$ zu erhalten. Um ein genaueres Bild von \mathcal{F}' zu erlangen, betrachte folgendes Kommutatives Diagramm:

$$(\frac{s}{t})_{t} \xrightarrow{\varphi} (\frac{st'}{tt'})_{tt'}$$

$$\downarrow d_{S[t^{-1}]} \qquad \downarrow d_{S[t^{-1}]}$$

$$1 \otimes ((\frac{1}{t})_{t}d_{S[t^{-1}]}((\frac{s}{1})_{t}) + (\frac{s}{1})_{t}d_{S[t^{-1}]}((\frac{1}{t})_{t})) \xrightarrow{g \circ (1 \otimes D\varphi)} 1 \otimes ((\frac{1}{tt'})_{tt'}d_{S[tt'^{-1}]}((\frac{st'}{1})_{tt'}) + (\frac{st'}{1})_{tt'}d_{S[tt'^{-1}]}((\frac{1}{tt'})_{tt'}))$$

$$\downarrow \delta_{t} \qquad \qquad \downarrow \delta_{tt'}$$

$$1 \otimes ((\frac{d_{S}(s)}{t})_{t} - (\frac{sd_{S}(t)}{t^{2}})_{t}) \xrightarrow{1 \otimes \varphi} 1 \otimes ((\frac{t'd_{S}(s)}{tt'})_{tt'} - (\frac{st'd_{S}(t)}{(tt')^{2}})_{tt'}) (*)$$

Dass das Diagramm in dieser Form kommutiert, ergibt sich in fast allen Fällen direkt aus dem Einsetzen in die entsprechenden Homomorphismen. Der einzige Fall, welcher nicht direkt klar ist, ist (*). Rechne diesen also nochmal nach:

$$\begin{split} \delta_{tt'} (1 \otimes ((\frac{1}{tt'})_{tt'} d_{S[tt'^{-1}]} ((\frac{st'}{1})_{tt'}) + (\frac{st'}{1})_{tt'} d_{S[tt'^{-1}]} ((\frac{1}{tt'})_{tt'}))) \\ &= 1 \otimes ((\frac{d_{S}(st')}{tt'})_{tt'} - (\frac{t'sd_{S}(tt')}{(tt')^{2}})_{tt'}) \\ &= 1 \otimes ((\frac{t'd_{S}(s')}{tt'})_{tt'} + (\frac{sd_{S}(t')}{tt'})_{tt'} - (\frac{tt'd_{S}(t')}{(tt')^{2}})_{tt'} - (\frac{t'^{2}sd_{S}(t)}{(tt')^{2}})_{tt'}) \\ &= 1 \otimes ((\frac{t'd_{S}(s)}{tt'})_{tt'} - (\frac{t'^{2}sd_{S}(t)}{(tt')^{2}})_{tt'}) \\ &= (1 \otimes \varphi)(1 \otimes ((\frac{d_{S}(s)}{t})_{t} - (\frac{sd_{S}(t)}{t^{2}})_{t})) \end{split}$$

Damit ist \mathcal{F}' zu \mathcal{F} isomorph und für $\mathcal{C} := \mathcal{F}'(\mathcal{B})$ gilt $\Omega_{S[U^{-1}]/R} = \varinjlim \mathcal{F}' = \varinjlim \mathcal{C}$ [vlg. bemerkung 3]. Wobei die Form von \mathcal{C} genau dem Fall aus ?? entspricht:

$$\begin{split} \mathcal{C} &= \{S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] | t \in U\} \ \textit{mit den Morphismen} \\ 1 \otimes \varphi : S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] &\longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S/R}[tt'^{-1}] \\ & (\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{d_S(x)}{t^n})_{\scriptscriptstyle t} \longmapsto (\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{t'^n d_S(x)}{(tt')^n})_{\scriptscriptstyle tt'} \end{split}$$

Damit folgt $\lim_{\longrightarrow} \mathcal{C} = \Omega_{S/R}[U^{-1}]$ und wir haben $\Omega_{S[U^{-1}]/R} = \Omega_{S/R}[U^{-1}]$ gezeigt.

Kapitel 3

Aufgaben

• Aufgabe A6.7 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994]ist ??.