ANALISI DEI DATI SENSORIALI CON THINGY52: MONITORAGGIO E RISULTATI

Introduzione

Durante il corso, ci è stato fornito un dispositivo Thingy52. Si tratta di un apparecchio hardware sviluppato da Nordic Semiconductor, progettato per le applicazioni IoT (Internet of Things). Al suo interno si trovano diversi sensori e ne sono stati analizzati 3:

- Accelerometro: misura l'accelerazione lungo i tre assi (x, y, z).
- Giroscopio: misura la velocità angolare, ovvero la rotazione attorno ai tre assi.
- Bussola: rileva l'orientamento del dispositivo rispetto al campo magnetico terrestre, misurando il campo magnetico lungo i tre assi. (nel progetto non è stata utilizzata)

Il Thingy52 si connette a un computer o smartphone tramite Bluetooth Low Energy (BLE), consentendo la raccolta di dati in tempo reale da questi sensori.

Il software

Nella parte iniziale del corso ci sono state fornite delle basi del linguaggio di programmazione Python. In particolare, uno degli aspetti fondamentali analizzati sono state le classi.

Una classe è un modello strutturato per creare oggetti, che sono istanze di quella classe. Ogni classe può contenere:

- Attributi: variabili che descrivono le caratteristiche di un oggetto.
- Metodi: funzioni che descrivono il comportamento di un oggetto.

Nel progetto è stata creata una classe chiamata Thingy52Client per gestire la connessione al dispositivo Thingy52 e raccogliere i dati dai sensori.

IMPLEMENTAZIONE DEL CODICE

È stato implementato programma Python per raccogliere i dati di tre azioni a scelta dal Thingy52. Le azioni scelte sono state "mescolare" e "tagliare" e "stare fermo".

STEP 1: RACCOLTA E SALVATAGGIO DEI DATI

Attraverso l'invio dello script main_class è stato possibile scansionare i dispositivi BLE nelle vicinanze, individuare tra la lista dei dispositivi trovati l'apparecchio Thingy52 e connettersi a esso. Una volta terminato il collegamento al dispositivo, sono stati registrati e salvati nei file .csv i dati relativi all'accelerometro e al giroscopio delle azioni scelte. Il nome del file è scelto dall'utente tramite input, in questo caso si faceva riferimento a "mescolare", "tagliare" e "stare_fermo".

STEP 2: TRAINING DEI DATI

Nella seconda parte, è stato inviato da terminale la parte di codice relativa al train (addestramento del modello). In particolare, il dataset che costituisce tutti i dati raccolti in precedenza viene suddiviso in più parti (numero di k-folds) e in ogni ciclo si scelgono delle parti che funzionano da test set e altre per il training test e il validation test:

- il training set costituisce la parte più grande e serve per istruire il modello
- Il validation test serve per accertarsi che il modello stia imparando nel modo corretto e migliorarlo alla fine di ogni ciclo di training
- Il test set è lo step finale ed utile per capire quanto è efficiente il modello

Questo processo viene ripetuto k volte in modo che ogni parte (fold) funzioni da test set una volta. Nel mio caso specifico, il parametro k è uguale a 3 quindi questo processo incrociato è stato ripetuto per 3 volte.

Infine si confrontano le previsioni del modello con i dati reali e il programma genera una matrice di confusione che conta quanti elementi ha predetto nel giusto modo e quante volte si è confuso. È una matrice 3x3 (numero di azioni x numero di azioni) e l'ottimo è che la diagonale principale contenga valori prossimi al 100 la diagonale opposta contenga valori prossimi allo zero.

La matrice di confusione è utile per capire la precisione del nostro modello e per migliorarla si possono modificare alcuni parametri nel codice:

- Numero di k-folds (k): numero di volte per il quale si ripete il processo incrociato di training, validation e test
- Dimensione della finestra temporale (window_size): quanti secondi di dati vengono selezionati per fare una previsione
- Frequenza di campionamento (sampling_frequency): rappresenta la frequenza di registrazione dei dati da parte dei sensori
- Batch_size: numero di campioni elaborati dal modello in un passaggio di addestramento

• STEP 3: TESTING DEL MODELLO

Nell'ultima parte del progetto si procede con l'invio dello script main_test dove si valuta l'accuratezza del modello su nuovi dati. Il programma riceve i dati dal dispositivo relativi ai movimenti compiuti in tempo reale e, se il modello è preciso, riconosce l'azione svolta.

Il progetto

PARAMETRI SCELTI

Come detto sopra, durante il training è possibile scegliere e modificare alcuni parametri per fare in modo di ottenere delle matrici di confusione il più possibile precise. Nel mio caso non è stato necessario modificare i parametri perché le matrici di confusione sono risultate sufficientemente precise al primo tentativo:

- <u>k (k-folds)</u>: il parametro k è stato impostato su 3 quindi il processo incrociato è stato ripetuto 3 volte. Ho scelto il valore 3 in modo da non fare troppi cicli di addestramento ed evitare l'overfitting e quindi rendere il modello capace di generalizzare il più possibile.
- <u>window size:</u> il valore di window_size è stato impostato a un secondo.
- sampling frequency: la frequenza di campionamento è stata impostata 60 Hz.
- <u>batch size</u>: il batch_size è stato impostato su 32 ossia il modello elabora 32 campioni di dati alla volta durante l'addestramento.

MATRICI DI CONFUSIONE OTTENUTE

La matrice di confusione mostra buoni risultati e il modello riesce a identificare correttamente nella maggior parte dei casi le azioni di tagliare, mescolare e stare fermo.

Il risultato positivo potrebbe essere dovuto al fatto che:

- Le azioni sono analizzate sono molto diverse tra di loro: tagliare implica un movimento lineare avanti e indietro, mescolare comporta un movimento circolare mentre lo "stare_fermo" non prevede movimento del Thingy52.
- 2. Differenza nell'utilizzo dei sensori: durante l'azione "tagliare" i dati dell'accelerometro in orizzontale sono i più importanti, durante l'azione "mescolare" i dati del giroscopio sono più determinanti mentre durante il gesto dello "stare_fermo" non abbiamo cambiamenti significativi di valore in nessun sensore.
- 3. Migliore riconoscimento dello "stare_fermo": si nota che l'azione "stare_fermo" è quella meglio riconosciuta forse perché non prevede il movimento del Thingy mentre le altre due azioni hanno valori che variano in continuazione per quanto riguarda l'accelerometro e il giroscopio.

TEST

Nonostante le buone matrici di confusione, la fase di test con i dati in tempo reale presenta dei limiti. Infatti il modello fatica a riconoscere l'azione che si sta compiendo in tempo reale.

Conclusioni

Questo progetto ci ha dato l'opportunità di conoscere nuove aree della programmazione, tra cui l'interazione con il Thingy52 tramite BLE, la gestione dei dati dei sensori e l'applicazione di tecniche di machine learning per classificare le attività.