Simulate from fitted Integrated Step-Selection-Functions

Johannes Signer
Animal Movement Course 2025

Aims of this session

- Why to simulate?
- Simulate from fitted step selection functions
- Distinguish between redistribution kernel, selection-free movement kernel and movement-free habitat-selection function.

Some background reading

Article 🙃 Open Access 🙃 👣

Estimating utilization distributions from fitted stepselection functions

Johannes Signer ⋈, John Fieberg, Tal Avgar

First published: 11 April 2017 | https://doi.org/10.1002/ecs2.1771 | Citations: 88

How to scale up from animal movement decisions to spatiotemporal patterns: An approach via step selection

Jonathan R. Potts ⋈, Luca Börger

Simulating animal space use from fitted integrated **Step-Selection Functions (iSSF)**

J. Signer X, J. Fieberg, B. Reineking, U. Schlägel, B. Smith, N. Balkenhol, T. Avgar

What is it all about?

Where will the animal be next?

Does it have a preference?

Can it reach its preferred position in space?

Animal at time t

Animal at time t + 1

So, we have a fitted model

Remember

What is the model, that we fitted:

What is the probability that the animal will be at position \mathbf{s} at the next time step (t + Δ t), given the animal is currently (t) at position \mathbf{s} .

Movement free habitat selection function: where the animal would like to go.

Selection free movement kernel:

where the animal is able to go (given constraints in movement).

$$(\mathbf{s}, t + \Delta t)|u(\mathbf{s}', t) = \frac{w(\mathbf{X}(\mathbf{s}); \beta(\Delta t)) \phi(\theta(\mathbf{s}, \mathbf{s}'), \gamma(\Delta t))}{\int_{\tilde{\mathbf{s}} \in G} w(\mathbf{X}(\tilde{\mathbf{s}}); \beta(\Delta t)) \phi(\theta(\tilde{\mathbf{s}}, \mathbf{s}'); \gamma(\Delta t)) d\tilde{\mathbf{s}}}$$

Normalizing constant

Let's reuse `m5` from before

 We model habitat selection for distance to forest and movement as a function of time of day.

$$(\mathbf{s}, t + \Delta t)|u(\mathbf{s}', t) = \underbrace{\frac{w(\mathbf{X}(\mathbf{s}); \beta(\Delta t))\phi(\theta(\mathbf{s}, \mathbf{s}'), \gamma(\Delta t))}{\int_{\tilde{\mathbf{s}} \in G} w(\mathbf{X}(\tilde{\mathbf{s}}); \beta(\Delta t))\phi(\theta(\tilde{\mathbf{s}}, \mathbf{s}'); \gamma(\Delta t))d\tilde{\mathbf{s}}}_{\text{Normalizing constant}}$$

Results of model 5

$$(\mathbf{s}, t + \Delta t)|_{\mathbf{u}(\mathbf{s}', t)} = \frac{w(\mathbf{X}(\mathbf{s}); \beta(\Delta t))\phi(\theta(\mathbf{s}, \mathbf{s}'), \gamma(\Delta t))}{\int_{\tilde{\mathbf{s}} \in G} w(\mathbf{X}(\tilde{\mathbf{s}}); \beta(\Delta t))\phi(\theta(\tilde{\mathbf{s}}, \mathbf{s}'); \gamma(\Delta t))d\tilde{\mathbf{s}}}$$

Normalizing constant

What next?

- We can use the output of model 5 to create a redistribution kernel.
- A redistribution kernel is the product of a selection-free movement kernel and a movement-free habitat-selection function.

Image source: Michelot et al. 2024; MEE

What can we do with a redistribution kernel?

- Simulate an individual path by consecutively sampling from the redistribution kernel.
- Simulate space use on the long term (steady state utilization distribution [UD]) or short term space use (transient UD).

An example

Model movement of African buffalo. We fitted three models:

- 1. Base model: case_ ~ cos(ta_) + sl_ + log(sl_) +
 water_dist_end
- 2. Home-range model: case_ ~ cos(ta_) + sl_ + $log(sl_)$ + water_dist_end + x2_ + y2_ + $I(x2_^2 + y2_^2)$
- 3. River model: case_ ~ cos(ta_) + sl_ + log(sl_) +
 water_dist_end + x2_ + y2_ + I(x2_^2 + y2_^2) +
 I(water_crossed_end != water_crossed_start)

The observed data

Model 1: Naïve model

Model 2: With home ranging

Model 3: With river crossing

Practical