Curso a Distancia Thales-CICA-Web 2005: ESTIA Estadística Interactiva en la Red. Laboratorio Virtual de Estadística.

Contenidos Teóricos Tema 4. Distribucionmes Estadísticas.

A. Gámez, L.M. Marín, R. Huertas y S. Fandiño ${\it Marzo - 2005}$

Índice General

4	Dist	tribuci	ones Estadísticas	2
	4.1	Introd	ucción al concepto de variable aleatoria	2
	4.2	Funció	on de probabilidad de variables aleatorias discretas	2
		4.2.1	Función de distribución de una variable aleatoria discreta	3
		4.2.2	Media y varianza de una variable aleatoria discreta	5
		4.2.3	La distribución uniforme discreta	5
		4.2.4	La distribución de Bernoulli	6
		4.2.5	La distribución binomial	6
		4.2.6	La distribución geométrica	7
		4.2.7	La distribución de Poisson	9
		4.2.8	La distribución hipergeométrica	11
	4.3	Funció	on de densidad de probabilidad de variables aleatorias continuas	13
		4.3.1	Función de distribución de una variable aleatoria continua	14
		4.3.2	Media y varianza de una variable aleatoria continua	15
		4.3.3	La distribución uniforme	15
		4.3.4	La distribución exponencial	17
		4.3.5	La distribución normal	18
		4.3.6	Distribuciones asociadas a la distribución normal	21
		4.3.7	La distribución de Weibull	23
		4.3.8	La distribución triangular	25
		4.3.9		26
		4 3 10	La distribución beta	27

Capítulo 4

Distribuciones Estadísticas

4.1 Introducción al concepto de variable aleatoria

En el tema anterior hemos definido el concepto de probabilidad y sus propiedades. Se han asignado probabilidades a los sucesos, así que la probabilidad es una función que está definida sobre subconjuntos del espacio muestral. No obstante, estamos más acostumbrados a manejar funciones que estén definidas sobre variables numéricas. Por este motivo, el estudio de la probabilidad de los sucesos asociados a los experimentos aleatorios suele hacerse asignando un número a cada resultado del experimento. A veces el propio resultado es numérico y no es necesario realizar esta asociación, como en el caso de las puntuaciones obtenidas en un dado. En otros casos, como ocurre cuando se lanza una moneda a cara o cruz, el resultado no es numérico. Podemos decidir asignarle el valor 1 al resultado consistente en sacar cara y 0 al resultado que se obtiene cuando se saca cruz. Una variable aleatoria es una función que asigna un número a cada resultado posible de un experimento aleatorio. Suele designarse el nombre de la variable con una letra mayúscula, por ejemplo X. La correspondiente letra minúscula x indica un valor posible, aunque desconocido, de esta variable.

Conviene tener en cuenta que a un mismo experimento aleatorio pueden asociarse diversas variables aleatorias, dependiendo de la observación que realicemos. Así cuando se arrojan dos dados la variable aleatoria puede ser la suma de las puntuaciones, su producto, la mayor puntuación, etc. Lógicamente, en cada uno de estos casos también variará el espacio muestral asociado Ω .

Formalmente, una variable aleatoria unidimensional X es una aplicación del conjunto muestral asociado al experimento en el conjunto \mathcal{R} de los números reales, $X: \otimes \longrightarrow \mathcal{R}$. Se debe cumplir la siguiente condición: Para cualquier valor real r, la imagen inversa por la aplicación X de cada conjunto de números reales $(-\infty, r)$, $A_r = \{\omega \in \Omega / \omega = X^{-1}(x), x \leq r\}$, ha de ser un suceso perteneciente al σ -álgebra de sucesos \mathcal{A} .

4.2 Función de probabilidad de variables aleatorias discretas

Cuando la variable aleatoria sólo toma una cantidad finita o infinita numerable de valores se denota como variable aleatoria discreta. En este caso se puede definir la probabilidad especificando su valor para cada uno de los sucesos elementales. Por ejemplo, en el caso de un dado $\Omega = \{1, 2, 3, 4, 5, 6\}$ y los valores de la variable aleatoria x pertenecen a $\{1, 2, 3, 4, 5, 6\}$. Podemos definir la probabilidad correspondiente a cada valor de esta

variable aleatoria como $P(x) = \frac{1}{6}$, $\forall x$. En este caso todas los valores posibles de la variable aleatoria tienen la misma probabilidad.

Una función de probabilidad definida sobre una variable aleatoria discreta es una función que asigna a cada valor posible de esta variable aleatoria una probabilidad.

Si la variable aleatoria puede tomar los valores $x_1, x_2, \ldots, x_n, \ldots$, la tendremos perfectamente definida si conocemos los valores

$$p_1 = P(x_1), \quad p_2 = P(x_2), \quad \dots p_n = P(x_n), \dots$$

Para que tal función esté bien definida debe respetar las propiedades de la probabilidad:

a) Todos los valores de P(x) deben pertenecer al intervalo cerrado [0, 1]

$$0 \le P(x) \le 1$$

b) La probabilidad de la unión de conjuntos disjuntos (finita o infinita numerable) ha de ser igual a la suma de la probabilidad de cada uno de los sucesos. Por tanto la probabilidad de la suma de los sucesos elementales ha de ser 1, ya que su unión es el espacio muestral completo. Si el espacio muestral es finito $\Omega = \{x_1, x_2, \dots, x_n\}$:

$$P(x_1) + P(x_2) + \dots + P(x_n) = 1$$

En el caso de que la variable tome un número infinito numerable de valores, la primera propiedad se expresaría como

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

que es una serie de números reales.

Una vez conocida la probabilidad de los sucesos elementales puede hallarse la probabilidad de cualquier otro suceso, realizando la suma (finita o infinita numerable) de las probabilidades de los elementos que contenga este suceso. Por ejemplo la probabilidad del suceso "sacar par en un dado" es:

$$P{2, 4, 6} = P(1) + P(2) + P(3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$$

Uno de los objetivos del Cálculo de Probabilidades es construir funciones de probabilidad que puedan servir de modelos para el comportamiento de los fenómenos aleatorios que se presentan en la naturaleza. Más adelante describimos algunas funciones de probabilidad de variable aleatoria discretas que pueden usarse en la práctica, como la distribución Uniforme Discreta, la de Bernoulli, la Binomial, la Geométrica y la de Poisson, y que se usan para modelar fenómenos aleatorios reales. Estas distribuciones pueden, en este sentido ser consideradas como leyes de la naturaleza, pues, como ya hemos comentado, el azar no es sinónimo de desinformación completa sino que existen leyes que rigen el azar.

4.2.1 Función de distribución de una variable aleatoria discreta

La función de distribución de una variable aleatoria es una abstracción del concepto de frecuencia relativa acumulada. La función de distribución, F(x), se define:

$$F(x) = P(X \le x) = \sum_{x_i \le x} P(x_i)$$

Ejemplo: Consideremos el experimento aleatorio consistente en lanzar dos dados. La variable aleatoria que vamos a asociar a dicho experimento es la diferencia (en valor absoluto) de las puntuaciones de ambos dados. En este caso el espacio muestral $\Omega = \{0, 1, 2, 3, 4, 5\}$. Asignamos ahora probabilidades a los elementos de este espacio muestral. Aunque desde el punto de vista formal, esta asignación puede hacerse de diferentes formas (con tal que se cumplan las propiedades de una función de probabilidad), damos una definición que está acorde con los resultados experimentales. En la siguiente tabla se indican los resultados posibles del experimento según las puntuaciones obtenidas con los dados. Cada uno de estos 36 casos son equiprobables.

	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	0 1 2 3 4 5	4	3	2	1	0

La función de probabilidad viene dada en la siguiente tabla:

x	0	1	2	3	4	5
P(x)	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$

La representación gráfica de esta función de probabilidad usando un diagrama de barras es:

\boldsymbol{x}	P(x)
0	0.16667
1	0.27778
2	0.22222
3	0.16667
4	0.11111
5	0.05555

Su función de distribución, que está definida para todo $x \in R$, viene detallada a continuación.

x < 0	F(x) = 0
$0 \le x < 1$	F(x) = 0.16667
$1 \le x < 2$	F(x) = 0.44444
$2 \le x < 3$	F(x) = 0.66667
$3 \le x < 4$	F(x) = 0.83333
$4 \le x < 5$	F(x) = 0.94444
$5 \le x$	F(x) = 1

Propiedades de la función de distribución:

- 1) $0 \le F(x) \le 1$
- b) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$
- c) F(x) es no decreciente.
- d) F(x) es continua a la derecha.

4.2.2 Media y varianza de una variable aleatoria discreta

El valor esperado, esperanza o media de una variable aleatoria discreta se define como

$$E(X) = \sum_{i=1}^{\infty} p_i x_i = \mu$$

donde $p_i = P(x_i)$. La varianza se define como

$$Var(X) = \sum_{i=1}^{\infty} p_i (x_i - \mu)^2 = \sigma^2$$

La desviación típica, σ , es la raíz cuadrada positiva de la varianza. Obsérvese como en estas expresiones se ha sustituido la frecuencia relativa, que se usaba en el caso de los parámetros muestrales correspondientes, por la probabilidad.

4.2.3 La distribución uniforme discreta

Si cuando se realiza un experimento aleatorio con sólo un número finito de resultados observamos que cada uno de estos resultados ocurre más o menos con la misma frecuencia, como ocurre cuando lanzamos un dado, podemos adaptarle un modelo de distribución uniforme discreta. En este caso $\Omega = \{x_1, x_2, \dots, x_n\}$ y la función de probabilidad de la variable aleatoria uniforme discreta es la siguiente:

$$P(x_i) = \frac{1}{n}$$
, para todo *i*.

Para el caso del dado, la representación gráfica de su función de probabilidad puede ser:

funcion de probabilidad de uniforme discreta (1, 6)

4.2.4 La distribución de Bernoulli

Un $Proceso\ de\ Bernoulli$ es una sucesión de N pruebas que satisfacen las siguientes condiciones:

- a) Los resultados de las N pruebas son sucesos independientes entre sí.
- b) Cada prueba sólo tiene dos resultados. Llamaremos a estos posibles resultados éxito y fracaso.
- c) La probabilidades de estos dos resultados permanecen constantes durante las N pruebas.

A cada una de estas pruebas la llamamos experimento o prueba de Bernoulli. Un ejemplo de este tipo de pruebas podría ser el lanzamiento de una moneda, llamando éxito a sacar cara y fracaso a sacar cruz.

Supongamos que definimos una variable aleatoria X_j , asociada al resultado de la prueba j, que tome el valor uno si es un éxito y el cero si es un fracaso.

(1) Entonces en virtud de la independencia de las pruebas se tiene que

$$P(x_1, x_2, ..., x_N) = P(x_1)P(x_2)...P(x_N)$$

(2) Como la probabilidad de éxito o fracaso permanece constante a lo largo de cada prueba se tiene que la función de probabilidad de una prueba de Bernoulli es,

$$P(1) = p$$
 $P(0) = q = 1 - p$

donde naturalmente $0 \le p \le 1$.

Ésta es la función de probabilidad de la distribución de Bernoulli

(3) La media de la variable aleatoria de Bernoulli se calcula

$$E(X) = 0.q + 1.p = p$$

(4) y la varianza

$$Var(X) = (0-p)^2 q + (1-p)^2 p = p^2 (1-p) + (1-p)^2 p = p - p^2 = p (1-p) = pq$$

Ejemplo:

Si un proceso de fabricación produce un 2% de elementos defectuosos. y llamamos éxito el resultado de obtener un producto correcto, la probabilidad asociada a cada salida del producto sigue la distribución de Bernoulli:

$$P(1) = 0.980 = p$$
 $P(0) = 0.02 = 1 - p$

4.2.5 La distribución binomial

Es la distribución de la variable aleatoria X que representa el número de éxitos obtenidos cuando se realizan un total de n pruebas de Bernoulli. En este caso $\Omega = \{0, 1, 2, 3, ..., n\}$ La expresión para esta función de probabilidad es

$$P(x) = \binom{n}{x} p^x q^{n-x}, x \in \Omega$$

La representación gráfica de la función de probabilidad de una binomial $n=7,\,p=0.3,\,B(7,\,0.3)$ es la siguiente

Los primeros valores de la gráfica se corresponden con los del siguiente ejemplo.

Ejemplo: La probabilidad de curación de un cierto tipo de cáncer es de 0.3. En un grupo de siete de estos enfermos, ¿cuál es la probabilidad de que sanen 0, 1, 2, 3 de ellos?

$$P(0) = \binom{7}{0} (0.3)^0 (0.7)^7 = 0.08235$$

$$P(1) = \binom{7}{1} (0.3) (0.7)^6 = 0.24706$$

$$P(2) = \binom{7}{2} (0.3)^2 (0.7)^5 = 0.31765$$

$$P(3) = \binom{7}{3} (0.3)^3 (0.7)^4 = 0.22689$$

Para calcular la media y la varianza de una distribución Binomial se considera que la variable aleatoria correspondiente a una B(n,p) es la suma de n variables independientes de Bernoulli y que la media de la suma de varias variables aleatorias es la suma de las respectivas medias. Idéntica propiedad tiene la varianza de una suma si estas variables son independientes

$$E(X) = p + p + ... + p = np$$

y la varianza puede expresarse por:

$$Var(X) = pq + pq + ...pq = npq$$

4.2.6 La distribución geométrica

También está relacionada con los experimentos de Bernoulli y es la distribución de la variable aleatoria X consistente en el número de pruebas que se realizan hasta obtener el primer éxito. En este caso el espacio muestral es infinito, el conjunto de todos los números naturales, ya que no hay seguridad de que el éxito se va a producir antes de un determinado valor. La función de probabilidad se calcula con la expresión:

$$p(x) = q^{x-1}p$$
 si $x = 1, 2, 3, ...$

Se entiende que la probabilidad de fracaso es q = 1 - p, siendo p la probabilidad de éxito.

Si p = 0.7, la representación gráfica es:

Distribución Geométrica: P= 0.7

Las expresiones para la media y la varianza de esta distribución son:

$$E(X) = \frac{1}{p}$$

У

$$Var(X) = \frac{q}{p^2}$$

A veces se define esta distribución como la de la variable aleatoria que cuenta el número fracasos (en lugar del número total de pruebas) que ocurren antes del primer éxito, es decir que expresa la probabilidad de que se den y fracasos antes del primer éxito al repetir un experimento de Bernoulli. La variable aleatoria Y, es el número de fracasos.

$$P(y) = q^{y}p$$
 $y = 0, 1, 2, ...$
 $E(Y) = \frac{1-p}{p} = \frac{1}{p} - 1$ $Var(Y) = \frac{q}{p^{2}}$

Nota: Podemos observar que la variable Y es siempre una unidad menor que la X. Por este motivo las medias respectivas también se diferencian en una unidad. En cambio la varianza se mantiene, porque este estadístico es invariante frente a traslaciones.

Ejemplo. En un minucioso control de calidad se ha encontrado que sólo el 40% de los elementos de un proceso son aceptados. Se desea calcular la probabilidad de que haya que inspeccionar cuatro elementos para aceptar el cuarto.

Consideramos x el número total de pruebas. Se realizan 4 pruebas. La probabilidad de tener que realizar 4 pruebas para obtener el primer éxito es:

$$P(x) = q^{x-1}p$$
; $P(4) = 0.6^3 \times 0.4 = 0.0864$

Si por el contrario, decidimos emplear como variable aleatoria el número de fracasos, son 3 en este caso, ya que hay que rechazar 3 elementos antes de aceptar el cuarto, la probabilidad se obtiene

$$P(y) = q^y p;$$
 $P(3) = 0.6^3 \times 0.4 = 0.0864$

En ambos casos se obtiene la misma probabilidad, la probabilidad de que el primer elemento aceptable sea el cuarto. El resultado del experimento es el mismo, lo que cambia es la variable aleatoria.

4.2.7 La distribución de Poisson

Se llama también ley de los sucesos raros.

Comenzamos con un ejemplo que nos va a servir para aclarar la relación existente entre la distribución binomial y la de Poisson.

Ejemplo: Calcular la función de probabilidad del número de accidentes en una carretera peligrosa en una semana (1 semana =10080 minutos), sabiendo que el número medio de accidentes por semana es 4.

Para poder usar la distribución binomial como una aproximación se supone:

- a) La probabilidad de accidentes en cada minuto p es independiente de lo que haya ocurrido en los minutos anteriores.
 - b) En cada minuto puede ocurrir como máximo un accidente.

Si p es la probabilidad de accidente por minuto, la probabilidad de x accidentes en el cruce en los 10080 minutos de una semana es

$$P(x) = \binom{10080}{x} p^x q^{10080 - x}$$

Como la media de la binomial es $np=10080\times p=4$ y $p=\frac{4}{10080}=3.968\,3\times10^{-4}$ Por ejemplo si x=5

$$P(5) = {\binom{10080}{5}} \left(3.9683 \times 10^{-4}\right)^5 \left(1 - 3.9683 \times 10^{-4}\right)^{10080 - 5} = 0.15633$$

Para obtener la distribución de Poisson a partir de la Binomial se supone que n es muy grande y p muy pequeño, como ocurre en el ejemplo, y que se conoce el número medio de accidentes $np = \lambda$, que permanece constante en el intervalo de tiempo considerado.

La función de probabilidad de una distribución de Poisson se calcula como el límite de la Binomial cuando con $n->\infty,\ np=\lambda=constante.$ Por tanto $p=\lambda/n$ con lo cual p->0.

$$P(x) = \lim_{n \to \infty} \binom{n}{x} \left(\frac{\lambda}{n}\right)^x (1 - \frac{\lambda}{n})^{n-x} =$$

$$= \lim_{n \to \infty} \frac{n(n-1)(n-2)...(n-x+1)}{x!} \frac{\lambda^x}{n^x} (1 - \frac{\lambda}{n})^n (1 - \frac{\lambda}{n})^{-x} =$$

$$= \lim_{n \to \infty} \frac{\lambda^x}{x!} (1 - \frac{\lambda}{n})^n \frac{n(n-1)(n-2)...(n-x+1)}{n^x} \left(1 - \frac{\lambda}{n}\right)^{-x} =$$

$$= \lim_{n \to \infty} \frac{\lambda^x}{x!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^{-x} = = \frac{\lambda^x}{x!} e^{-\lambda}$$

ya que todos los otros términos tienden a 1. La media y la varianza de esta distribución toman el mismo valor.

$$E(X) = \lambda$$
 $Var(X) = \lambda$

En el ejemplo, $\lambda = 4$ representa el promedio de accidentes en una semana.

Para calcular el grado de aproximación de ambos enfoques del problema (el primero usando n=10080, el segundo con $n\to\infty$) calculamos el mismo valor anterior por medio de la expresión de la distribución de Poisson. Para x=5

$$P(X=5) = \frac{4^5}{5!}e^{-4} = 0.15629.$$

Como puede verse este valor es bastante parecido al que se ha obtenido usando la aproximación binomial. Por este motivo se usa en ocasiones la distribución de Poisson como una aproximación de la binomial en los casos en que n es grande y p pequeño.

Si se consideran t periodos de tiempo (t semanas en el ejemplo) el promedio sería λt (en el ejemplo λt sería el número medio de accidentes en t semanas) y la distribución quedaría

$$P(x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$

Otras aplicaciones en las que suele usarse la distribución de Poisson son:

El número de llamadas a una central telefónica en un periodo de tiempo.

El número de imperfecciones de un tejido por unidad de superficie.

El número de bacterias en un líquido por unidad de volumen.

El número de clientes que llega a una estación de servicios en un periodo de tiempo.

El número de veces que falla una máquina por día.

El número de accidentes que se producen al día en una fábrica con un gran número de empleados.

Ejemplo: En una gran empresa el número de accidentes de trabajo sigue un promedio de tres por semana. Calcular:

- 1. La probabilidad de que no haya accidentes en una semana
- 2. La probabilidad de que haya exactamente 3 accidentes en una semana
- 3. La probabilidad de que no se superen los cuatro accidentes en una semana
- 4. La probabilidad de que haya más de 5 accidentes

Si usamos la distribución de Poisson, obtenemos:

1.
$$P(x=0) = P(0) = e^{-\lambda} \frac{\lambda x}{x!} = e^{-3} \frac{3^0}{0!} = 4.97871 \times 10^{-2}$$

2.
$$P(x=3) = P(3) = e^{-\lambda} \frac{\lambda^x}{x!} = e^{-3} \frac{3^3}{3!} = 0.224042$$

3.
$$P(x \le 4) = F(4) = \sum_{x=0}^{4} e^{-\lambda} \frac{\lambda^x}{x!} = \sum_{x=0}^{4} e^{-3} \frac{3^x}{x!} = 0.815263$$

4.
$$P(x > 5) = 1 - F(5) = 1 - \sum_{x=0}^{5} e^{-\lambda} \frac{\lambda^x}{x!} = 1 - \sum_{x=0}^{5} e^{-3} \frac{3^x}{x!} = 8.39179 \times 10^{-2}$$

4.2.8 La distribución hipergeométrica

Hemos advertido que la distribución binomial se aplica cuando las pruebas de Bernoulli son independientes. La distribución binomial suele aplicarse si la población en que se realizan las pruebas de Bernoulli es muy grande de modo que la probabilidad de éxito y de fracaso puede suponerse constante cualquiera que haya sido el resultado de la prueba anterior. Otra forma de conseguir probabilidad constante es que las pruebas se realicen con reemplazamiento, porque así volvemos siempre a las condiciones del primer experimento. Si no se dan estas circunstancias se suele emplear la distribución hipergeométrica. Esto es lo que ocurre en el siguiente ejemplo:

Ejemplo: En una urna hay 8 bolas blancas y tres negras. Se sacan cinco bolas. Calcular la probabilidad de que tres de ellas sean blancas.

Puede observarse que la probabilidad es la misma cualquiera que sea el orden en que se extraigan las bolas.

$$\begin{array}{l} P(BBBNN) = \frac{8}{11} \times \frac{7}{10} \times \frac{6}{9} \times \frac{3}{8} \times \frac{2}{7} = 3.6364 \times 10^{-2} \\ P(NBNBB) = \frac{3}{11} \times \frac{8}{10} \times \frac{2}{9} \times \frac{7}{8} \times \frac{6}{7} = 3.6364 \times 10^{-2} \end{array}$$

Las ordenaciones posibles son las permutaciones con repetición de 5 elementos repitiendo tres y dos

$$\binom{5}{3} = \frac{5!}{3!2!}$$

así que la probabilidad pedida sería:

Esta última expresión puede ponerse como

$$\frac{\binom{8}{3}\binom{3}{2}}{\binom{11}{5}}$$

En general si se tiene un conjunto de N elementos K de una clase y el resto, N-K, de otra y se extraen n de ellos, la probabilidad de extraer x elementos de la primera clase es

$$P(X=x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}} \tag{4.1}$$

que es la expresión para la función de probabilidad de la distribución hipergeométrica.

Ejemplo: De un grupo de 20 empleados, 15 hombres y 5 mujeres, se desean seleccionar 6 para realizar un trabajo.

- a) ¿Cuál es la probabilidad de que haya dos mujeres en el grupo?
- b) ¿Cuál es la probabilidad de que no haya ninguna mujer?
- c) Da una expresión de la función de probabilidad y de la función de distribución asociada a este experimento aleatorio si se toma como variable aleatoria el número de mujeres.
 - d) representa gráficamente esta función de probabilidad
- Si llamamos X a la variable aleatoria que representa el número de mujeres seleccionadas, esta variable sigue una distribución hipergeométrica donde $N=20,\ K=5,\ N-K=15,\ n=6.$

a) La probabilidad de que haya 2 mujeres en el grupo es:

$$P(X=2) = \frac{\binom{5}{2}\binom{15}{4}}{\binom{20}{6}} = 0.35217$$

b) La probabilidad de que no haya ninguna mujer en el grupo es:

$$P(X=0) = \frac{\binom{5}{0}\binom{15}{6}}{\binom{20}{6}} = 0.12913$$

c) Si x es la variable aleatoria que da el número de mujeres seleccionadas en un grupo de 6 personas, la función de probabilidad es:

$$P(x) = \frac{\binom{5}{x}\binom{15}{6-x}}{\binom{20}{6}}, \quad x = 0, 1, 2, 3, 4, 5$$

d) La representación gráfica de esta función de probabilidad es:

Es de notar que el rango de definición de la variable aleatoria X de la expresión 4.1. ha de cumplir:

$$\max\{0, n - (N - K)\} \leqslant x \leqslant \min\{K, n\}$$

Así en el ejemplo anterior el número de mujeres que pueden ser seleccionadas cumpliría:

$$\max \{0, \ 6 - (20 - 5)\} \leqslant x \leqslant \min \{5, \ 6\}$$
$$0 \leqslant x \leqslant 5$$

No se pueden seleccionar 6 mujeres porque sólo hay 5 empleadas en total.

Si la variable aleatoria fuera el número de hombres, Y, tomaríamos $N=20,\ K=15,$ N-K=5, n=6.

Las restricciones serían:

$$\max \left\{0, \ n-(N-K)\right\} \leqslant y \leqslant \min \left\{K, \ n\right\}$$
$$\max \left\{0, \ 6-5\right\} \leqslant y \leqslant \min \left\{15, \ 6\right\}$$
$$1 \leqslant y \leqslant 6$$

Hay que seleccionar al menos un hombre, pues las 5 mujeres no pueden completar el grupo de 6 personas seleccionadas.

Si de una urna con un total 20 bolas de las cuales 10 son blancas y 10 son negras, deseamos seleccionar un total de 15 bolas, la variable aleatoria que cuenta el número de bolas blancas se rige con la distribución hipergeométrica de parámetros $N=20,\ K=10,\ N-K=10,\ n=15$

$$P(X=x) = \frac{\binom{10}{x} \binom{20-10}{15-x}}{\binom{20}{15}} \tag{4.2}$$

El número de bolas blancas entre las 15 ha de estar en el siguiente rango

$$\max \{0, \ n - (N - K)\} \leqslant x \leqslant \min \{K, \ n\}$$
$$\max \{0, \ 15 - 10\} \leqslant x \leqslant \min \{10, 15\}$$
$$5 \leqslant x \leqslant 10$$

Si se toma $p = \frac{K}{N}$, y $q = 1 - p = 1 - \frac{K}{N}$, puede comprobarse que la media y la varianza de la distribución hipergeométrica son:

$$E(X) = np, \ Var(X) = npq \frac{N-n}{N-1} = npq \frac{1-\frac{n}{N}}{1-\frac{1}{N}}$$

Si N es grande y la relación $\frac{n}{N}$ pequeña, estas expresiones y las que corresponden a la media y varianza de la distribución binomial tomarían valores muy parecidos. De hecho, la distribución hipergeométrica, $H(N,n,p=\frac{K}{N})$, se puede aproximar con la distribución binomial, B(n,p), si N>40 y $\frac{n}{N}\leqslant 0.10$.

4.3 Función de densidad de probabilidad de variables aleatorias continuas

Para modelar la distribución de probabilidad de una variable aleatoria continua recordamos que este tipo de variables se caracterizan por poder tomar cualquier valor dentro de un intervalo. Por ejemplo, sería una variable aleatoria continua la medida de altura de los varones españoles de 20 años, ya que, potencialmente, puede tomar cualquier valor dentro de un intervalo. Recordamos que para este tipo de variable las tablas de frecuencia se hacen subdividiendo el intervalo de variación de los datos en distintos subintervalos. La representación gráfica más adecuada para este tipo de variables es el histograma de frecuencias. En este histograma, la frecuencia relativa se representa por medio del área del rectángulo elevado sobre cada subintervalo. Si queremos respetar la idea de interpretar la probabilidad como el límite de la frecuencia relativa cuando el número de pruebas tiende a infinito parece natural definir modelos de probabilidad por medio de funciones que se asemejen a estos histogramas de frecuencia. En el siguiente histograma se ha ajustado a los datos una función del tipo exponencial : $f(x) = \lambda e^{-\lambda x}$

Histograma y función de densidad ajustada

Las propiedades que debe tener esta función de ajuste para que pueda ser considerada una función de densidad de probabilidad de una variable aleatoria continua que puede tomar una cantidad infinita de valores asociados con intervalos de la recta real son las siguientes:

- 1) $f(x) \ge 0$, para toda x2) $\int_{-\infty}^{\infty} f(x)dx = 1$

La probabilidad de que la variable aleatoria pertenezca a un subintervalo dado se representa, como se hacía en el histograma, por el área que se eleva sobre este subintervalo.

$$P(a \le X \le b) = \int_a^b f(x)dx$$

En consecuencia la probabilidad de un punto aislado debe definirse como cero, ya que

$$P(a) = P(a \le x \le a) = \int_a^a f(x)dx = 0$$

Función de distribución de una variable aleatoria continua

El concepto de función de distribución se corresponde con el de frecuencia relativa acumulada.

La función de distribución se define, tanto para una variable aleatoria discreta como continua por

$$F(x) = P(X \le x).$$

Si la variable aleatoria es discreta

$$F(x) = P(X \le x) = \sum_{x_i < x} P(x_i).$$

Frecuentemente la variable discreta toma valores consecutivos y enteros. En este caso la función de distribución se expresaría como

$$F(x) = P(X \le x) = \sum_{x_j < x} P(x_j) = \sum_{i=0}^{x} P(i)$$

En el caso de que la variable aleatoria sea continua

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

es una función continua y F'(x) = f(x) en los puntos de continuidad de f(x). La función derivada de la función de distribución de una variable aleatoria continua es su función de densidad de probabilidad. Se deduce que

$$P(a \le X \le b) = \int_a^b f(x)dx = F(b) - F(a)$$

Las propiedades características de la función de distribución de una variable aleatoria discreta dadas en la página 5 se cumplen también para el caso de que la variable aleatoria sea continua.

4.3.2 Media y varianza de una variable aleatoria continua

La media o esperanza matemática de una variable aleatoria X se denotará por E(X) o por μ y se calculará de la siguiente manera en el caso continuo:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \mu$$

La varianza de una variable aleatoria X continua la denotaremos por Var(X) o bien σ^2 y será una medida de la dispersión de los datos. Se calculará de la siguiente manera:

$$Var(X) = E((X - \mu)^2) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$$

La desviación típica, σ , es la raíz cuadrada positiva de la varianza.

En las siguientes secciones describimos algunas funciones de densidad que se usan para modelar distribuciones de probabilidad de algunos fenómenos aleatorios que aparecen con frecuencia en la realidad, tal como la uniforme, exponencial, normal, etc.

4.3.3 La distribución uniforme

La variable aleatoria X sigue una distribución uniforme, U(a,b) si puede tomar valores en un intervalo [a, b] y su función de densidad de probabilidad es

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in (a,b) \\ 0 & \text{si } x \notin (a,b) \end{cases}$$

La función de distribución de la uniforme será

$$F(x) = \begin{cases} 0 & \text{si } x \le a \\ \int_a^x \frac{1}{b-a} dx = \frac{x-a}{b-a} & \text{si } x \in (a,b) \\ 1 & x \ge b \end{cases}$$

Así la función de densidad de una U(3,7) es:

$$f(x) = \begin{cases} \frac{1}{7-3} = 0.25 & \text{si} \quad x \in (3,7) \\ 0 & \text{si} \quad x \notin (3,7) \end{cases}$$

que aparece representada en la siguiente gráfica en el intervalo (3,7)

y su función de distribución es:

$$F(x) = \begin{cases} 0 & \text{si} \quad x \le 3\\ \frac{x-3}{4} & \text{si} \quad x \in (3,7)\\ 1 & x \ge 7 \end{cases}$$

que aparece representada en el mismo intervalo en la gráfica que sigue.

Los valores de la media y la varianza de la distribución uniforme son:

$$E(X) = \frac{b+a}{2}$$
 $Var(X) = \frac{(b-a)^2}{12}$

La mayoría de los programas de ordenador tienen una función de generación de números que siguen una distribución uniforme en el intervalo [0,1], llamados números pseudoaleatorios, que sirven de base para generar números aleatorios procedentes de cualquier otro tipo de distribución. Por ejemplo, para obtener números ,v, uniformemente distribuidos en el intervalo [a,b], se transforman los valores, u, obtenidos de una distribución uniforme en el intervalo [0,1] mediante la transformación $v=a+(b-a)\times u$.

4.3.4 La distribución exponencial

La variable aleatoria X sigue una distribución exponencial (a veces llamada exponencial negativa) de parámetro λ , si su función de densidad de probabilidad es

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

El calculo de la media es

$$\mu = E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \lambda \exp(-\lambda x) dx = \frac{1}{\lambda}$$

y de la varianza

$$Var(X) = \int_0^\infty \left(t - \frac{1}{\lambda}\right)^2 \lambda \exp(-\lambda x) \, dx = \int_0^\infty \left(t\right)^2 \lambda \exp(-\lambda t) \, dx - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

Ambas expresiones pueden encontrarse realizando por partes la integrales definidas correspondientes.

En la siguiente figura se muestra la representación gráfica de la función de densidad de probabilidad de una exponencial con parámetro $\lambda = \frac{1}{5}$.

La distribución exponencial rige el comportamiento de la variable aleatoria "tiempo transcurrido entre dos acontecimientos", cuando el número de acontecimientos por unidad de tiempo se distribuye según una Poisson de parámetro λ . Se usa por tanto para modelar intervalos de tiempo transcurridos entre las llegadas consecutivas de individuos a una cola y el tiempo de duración sin fallo de ciertos dispositivos electrónicos. Está relacionada con la distribución de Poisson en los términos indicados por el siguiente teorema

Teorema 1 Los intervalos entre las ocurrencias de dos sucesos siguen una distribución exponencial de parámetro λ si y sólo si el número de veces que ocurren estos sucesos en un intervalo de tiempo t sigue una distribución de Poisson de parámetro λt .

Ejemplo: Supongamos que el tiempo de duración de una válvula está distribuido exponencialmente con un promedio de 1/3 de fallos por mil horas. ¿Cuál es la probabilidad de que una válvula nueva dure al menos 1000 horas?. Si la válvula ya ha durado 3000 horas, ¿cuál es la probabilidad de que dure al menos 1000 horas más?

 $\lambda = \frac{1}{3}$ fallos cada mil horas, es decir que las válvulas duran por término medio 3000 $horas = \frac{1}{\lambda}$, así que $\lambda = \frac{1}{3000} \ fallos \times horas^{-1}$.

La probabilidad de que una válvula nueva dure al menos 1000 horas se calcula:

$$P(X \ge 1000) = \int_{1000}^{\infty} \frac{1}{3000} e^{-\frac{1}{3000}x} dx =$$

$$\frac{1}{3000} \frac{e^{-\frac{1}{3000}x}}{-\frac{1}{3000}} \Big|_{1000}^{\infty} = -e^{-\frac{1}{3000}x} \Big|_{1000}^{\infty} = e^{-\frac{1}{3}} = 0.71653$$
(4.3)

Tomando la unidad de medida de tiempo en "miles de horas" en lugar de en horas, puede tomarse para λ el valor $\frac{1}{3}$.

La probabilidad de que una válvula que ya ha durado 3000 horas dure al menos 1000 horas más se calcula como una probabilidad condicionada:

$$P(X \ge 4000/X \ge 3000) = \frac{P(X \ge 4000)}{P(X \ge 3000)}$$

$$P(X \ge 3000) = -e^{-\frac{1}{3000}x}\Big|_{3000}^{\infty} = e^{-1}$$

$$P(X \ge 4000) = -e^{-\frac{1}{3000}x}\Big|_{4000}^{\infty} = e^{-\frac{4}{3}}$$

$$P(X \ge 4000/X \ge 3000) = \frac{e^{-\frac{4}{3}}}{e^{-1}} = e^{-\frac{1}{3}}$$
(4.4)

Como se ve la probabilidad dada en 4.3 y en 4.4 son idénticas. Este ejemplo ilustra una propiedad muy importante de la distribución exponencial:

$$P(X \ge h) = P(X \ge c + h/X \ge c)$$

y que se enuncia diciendo que esta distribución carece de memoria. Es decir, que la distribución del tiempo de duración restante no depende del instante en que observamos la válvula, ni lo que ha durado previamente. En otras palabras, la distribución no nos da indicios del tiempo en que la válvula ya ha sido usada (no presenta indicios del pasado). Por eso se dice que la distribución exponencial carece de memoria.

4.3.5 La distribución normal

Decimos que una variable aleatoria X se distribuye según una Normal de media μ y de desviación típica $\sigma > 0$, y se representará por $X \in N(\mu, \sigma)$, si su función de densidad es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \Re$$

También es conocida como distribución de Gauss. Siguen esta distribución una gran cantidad de fenómenos aleatorios naturales. Modela errores de medidas, alturas, pesos, etc. También modela la mayoría de las medidas biológicas y las medias de muestras generadas por cualquier distribución de probabilidad, siempre que el número de elementos de las muestras sea grande.

La siguiente gráfica es una representación de la función de densidad de una distribución normal de media 2 y desviación típica 1.

Propiedades:

- La distribución es simétrica respecto de la recta $x = \mu$
- La función de densidad alcanza su máximo (moda) en $x = \mu$. En este caso la moda coincide con la media y con la mediana.
- Si $X \in N(\mu, \sigma)$, entonces se cumple que

$$Y = aX + b \in N(a\mu + b, |a|\sigma)$$

- Una combinación lineal de variables normales, $X = \sum_{i=1}^{n} a_i X_i$, donde cada $X_i \in N(\mu_i, \sigma_i)$ sigue una distribución $N(\sum_{i=1}^{n} a_i \mu_i, \sqrt{\sum_{i=1}^{n} a_i^2 \sigma_i^2})$
- Si $X \in N(\mu, \sigma)$, entonces

$$Z = \frac{X - \mu}{\sigma} \in N(0, 1)$$

Esta propiedad es consecuencia de la anterior, y nos permite obtener los valores de una distribución normal cualquiera conociendo los de la N(0,1), que es la que está tabulada.

Para calcular los valores de la función de distribución de la distribución normal $N(\mu, \sigma)$ es preciso evaluar

$$F(x) = \int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

No es posible calcular esta expresión usando funciones elementales. Frecuentemente se recurre a realizar la transformación $Z=\frac{X-\mu}{\sigma}$, que se conoce como tipificación o estandarización de la variable X y que transforma cualquier normal en una N(0,1), que se encuentra tabulada. Aunque cada vez es más frecuente usar calculadoras o programas de ordenador para calcular los valores de la probabilidad de la normal o de cualquier otra

de las distribuciones de probabilidad más usuales, aún se emplean las tablas debido a su facilidad de manejo y transporte.

Mostramos a continuación ejemplos de cálculo de valores para la probabilidades de sucesos que se generan a partir de una distribución normal. Las probabilidades se obtendrán a partir de los valores de la tabla de la página 29:

a) Caso de la distribución N(0,1)

a1) Función de distribución en un valor positivo o nulo. La probabilidad pedida puede deducirse directamente de la tabla.

La tabla contiene valores de la función de distribución de una variable aleatoria N(0,1) desde 0 a 4.49 en intervalos de una centésima. Por ejemplo si queremos hallar: $F(2.34) = P(z \le 2.34)$ usamos la tabla de la página 4.3.10. Como 2.34 = 2.3 + 0.04, localizamos el valor que aparece en la fila que comienza en 2.3 y en la columna encabezada con 0.04. Este valor resulta ser 0.99036, por lo que concluimos que:

$$F(2.34) = P(z \le 2.34) = P(z < 2.34) = 0.99036.$$

El último valor de la tabla es $F(4.49) = P(z \le 4.49) = 1.00000$, que es un valor obtenido por redondeo, ya que su valor ha de ser algo menor que 1, pero la tabla no permite más precisión. Si el valor de F(z) que queremos hallar corresponde a un número mayor que 4.49, por ejemplo $P(z \le 5.00)$, tomaremos, con más razón, también 1 como valor aproximado para está probabilidad.

Si el número contiene más cifras por ejemplo : $P(z \le 2.347)$ pueden usarse las siguientes aproximaciones:

1. Realizar una interpolación entre los valores más cercanos:

$$P(z \le 2.34) < P(z \le 2.347) < P(z \le 2.35)$$
:

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}; \qquad \frac{y - P(z \le 2.34)}{x - 2.34} = \frac{P(z \le 2.35) - P(z \le 2.34)}{2.35 - 2.34};$$

$$\frac{y - 0.99036}{2.347 - 2.34} = \frac{0.99061 - 0.99036}{0.01}$$

La solución es y=0.99053. Este procedimiento da un valor más cercano al verdadero, que los dos siguientes, pero requiere un cálculo más largo. El valor que se obtiene usando un programa informático es

$$P(z \le 2.347) = 0.99054$$

2. Usar como aproximación la semisuma de ambos valores:

$$P(z < 2.347) = \frac{P(z < 2.34) + P(z < 2.35)}{2} = \frac{0.99036 + 0.99062}{2} = 0.99049$$

3. Aproximar simplemente con el valor más cercano que venga en la tabla. En este caso

$$P(z < 2.347) \simeq P(z < 2.35) = 0.99061$$

a2) Función de distribución en un valor negativo. En este caso, lo transformamos de la siguiente forma usando la simetría de la N(0,1) con respecto al eje vertical

$$F(-2.34) = P(z \le -2.34) = P(z > 2.34) = 1 - P(z \le 2.34) = 1 - 0.99036 = 0.00964$$

Caso general de la distribución $N(\mu, \sigma)$

En este caso se procede a realizar la transformación de tipificación, que reduce una $N(\mu, \sigma)$ en una N(0,1)

Por ejemplo, si es X una variable aleatoria N(3,2), para calcular $P(x \le 5)$ se sigue el siguiente proceso:

$$P(x \le 5) = P\left(\frac{x-3}{2} \le \frac{5-3}{2}\right) = P(z \le 1) = 0.84134$$

La distribución Normal es la más usada en Estadística. No sólo porque en la Naturaleza aparecen frecuentemente fenómenos que pueden estudiarse con esta distribución, sino también porque otras muchas distribuciones pueden aproximarse, bajo determinadas condiciones, por medio de la distribución Normal.

Ejemplo: Una máquina produce ejes de acero con una longitud media de 1.005 my una desviación típica de 0.01~m=1~cm. Sólo son válidos los ejes que midan $1\pm$ 0.02 m. Suponiendo que la longitud de los ejes producidos se distribuye de acuerdo con una distribución normal, ¿qué porcentaje de ejes de acero se espera que haya que desechar?

Hay que calcular P(0.98 < x < 1.02) con una N(1.005, 0.01)

$$\begin{array}{l} P(0.98 < x < 1.02) = F(1.02) - F(0.98) \\ F(1.02) = P(x \le 1.02) = P(\frac{x-1.005}{0.01} \le \frac{1.02-1.005}{0.01}) = P(z \le 1.5) = 0.93319 \\ F(0.98) = P(x \le 0.98) = P(\frac{x-1.005}{0.01} \le \frac{0.98-1.005}{0.01}) = P(z \le -2.5) = 1 - P(z \le 2.5) = 1 - 0.99379 = 0.00621. \end{array}$$

Por lo tanto

$$P(0.98 < x < 1.02) = F(1.02) - F(0.98) = 0.93319 - 0.00621 = 0.92698$$

Se espera que el 92.7 % serán válidos y el 7.3 % serán desechables.

Distribuciones asociadas a la distribución normal

Son de uso muy frecuente en contraste de hipótesis. Sus valores se encuentran en tablas.

Distribución χ^2 de Pearson

Sean $Z_1, Z_2, \dots Z_n$ variables aleatorias N(0,1) e independientes. Entonces la suma

$$Z_1^2 + Z_2^2 + \ldots + Z_n^2$$

se distribuye según una chi-cuadrado con n grados de libertad. Se representa por χ_n^2 Su función de densidad es de la forma:

$$f(x;n) = \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$
 para $x > 0$

La media de una χ_n^2 es n y su varianza es 2n. Al sumar dos χ^2 independientes de grados de libertad n_1 y n_2 , el resultado es otra χ^2 de $n_1 + n_2$ grados de libertad.

La distribución Chi-cuadrado se usa en Inferencia Estadística para estudiar las variaciones de la varianza muestral con respecto a la varianza poblacional, la adaptación de datos experimentales a ciertas distribuciones teóricas de probabilidad, así como en el estudio de la independencia entre variables cualitativas, mediante el empleo de tablas de

contigencia. Esta distribución también viene tabulada, especialmente para los valores más usuales. Se debe prestar especial atención al tipo de tabla empleada, ya que pueden dar distintos valores para la probabilidad: En unas se da la función de distribución (área a la izquierda del valor buscado) y en otras el valor complementario (cola derecha).

Las siguientes funciones, que también se encuentran tabuladas son de gran interés en Inferencia Estadística.

Distribución F de Fisher-Snedecor

Se define como el cociente de dos χ^2 independientes divididas por sus grados de libertad.

$$F_{n,m} = \frac{\frac{\chi_n^2}{n}}{\frac{\chi_m^2}{m}}$$

es una F con grados de libertad n y m.

La media y la varianza de esta distribución son respectivamente:

$$E(X) = \frac{m}{m-2} \text{ si } m > 2$$

$$Var(X) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)} \text{ si } m > 4.$$

Distribución t de Student

La distribución t se define por

$$t_n = \frac{X}{\sqrt{\frac{\chi_n^2}{n}}}$$

donde X es una v.a. N(0,1) independiente del denominador.

La variable t es simétrica, con mayor dispersión que la normal estándar y tiende a ésta al aumentar el valor de n (prácticamente coinciden si n > 100).

Para valores de n > 30 se puede considerar que la normal estándar da una buena aproximación de la t de Student.

La media de la t de Student es 0, y su varianza, depende de sus grados de libertad:

$$\frac{n}{n-2}$$

Obsérvese que la media coincide con la media de una N(0,1) y que la varianza tiende a 1 si n tiende a infinito.

La distribución log-normal

La distribución log-normal es la distribución de una variable t cuyo logaritmo neperiano x = lnt tiene una distribución normal. Si la media de la normal es μ' y la desviación típica σ' , haciendo el cambio de variable x = lnt en la función de distribución de la normal se obtiene que la función de densidad de la log-normal resulta ser:

$$f(t) = \frac{1}{t\sigma'\sqrt{2\pi}}e^{-\frac{(\ln t - \mu')^2}{2\sigma'^2}}$$
(4.5)

La media de la distribución log-normal, es decir de la variable t, es:

$$\mu = \exp\left(\mu' + \frac{\sigma'^2}{2}\right) \tag{4.6}$$

y su varianza

$$\sigma^2 = \left(\exp \sigma'^2 - 1\right) \exp\left(2\mu' + \sigma'^2\right) \tag{4.7}$$

Ejemplo: Si la distribución normal asociada tiene de media $\mu' = 4$ y la desviación típica es $\sigma' = 2$, entonces la media de la log-normal es:

$$\mu = \exp\left(\mu' + \frac{\sigma'^2}{2}\right) = \exp\left(4 + \frac{2^2}{2}\right) = e^6 = 403.43$$

y la varianza

$$\sigma^2 = (\exp(2^2) - 1) \exp(8 + 4) = 8.7234 \times 10^6$$

Por tanto la desviación típica de la log-normal será la raíz cuadrada de la varianza

$$\sigma = \sqrt{8.7234 \times 10^6} = 2953.5$$

Para evaluar la función de distribución de la log-normal se emplean las tablas de la normal usando el cambio de variables

$$\frac{\ln t - \mu'}{\sigma'} \tag{4.8}$$

Así si se desea calcular la probabilidad de que la variable log-normal t de media μ y desviación típica σ tome valores menores o iguales que a, se procede de la siguiente forma:

$$P(t \le a) = P(\ln t \le \ln a) = P(\frac{\ln t - \mu'}{\sigma'} \le \frac{\ln a - \mu'}{\sigma'})$$

Si se conocen la media y la desviación típica, μ y σ , de la log-normal, esta última expresión se evalúa teniendo en cuenta que la variable

$$z = \frac{\ln t - \mu'}{\sigma'} \in N(0, 1)$$

despejando μ' y σ' de las expresiones 4.6 y 4.7.

4.3.7 La distribución de Weibull

El investigador sueco Weibull propuso esta función para el estudio de fatiga de los metales (1939). Posteriormente se ha aplicado (H.J. Kao de la universidad de Cornell, 1950) al estudio del tiempo de vida de tubos electrónicos. Esta distribución se emplea mucho en fiabilidad (estudios relacionados con la duración sin fallos de los productos industriales) y para modelar la duración de la vida de los seres vivos, incluidos los humanos.

Su función de densidad es

$$f(t) = \frac{\beta}{\eta^{\beta}} (t - \gamma)^{\beta - 1} e^{-\left(\frac{t - \gamma}{\eta}\right)^{\beta}}, \alpha > 0, \beta > 0$$

$$(4.9)$$

Los parámetros de esta distribución γ , η , β se conocen, respectivamente, como parámetros de posición, de escala y de forma. γ suele ser el origen de los tiempos y frecuentemente toma el valor cero. Se observa que para $\beta=1$ y $\gamma=0$ obtenemos una distribución exponencial.

La versatilidad de la distribución de Weibull queda patente en la siguiente gráfica, donde se ha representado esta función para distintos valores de los parámetros.

Funciones de densidad deWeibull $(\beta, \eta, \gamma) = (0.5, 1, 0), (1, 1, 0), (3, 0.5, 0)$

La función de distribución de la Weibul es

$$F(t) = 1 - e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}} \tag{4.10}$$

La media resulta

$$\mu = \gamma + \eta \Gamma \left(1 + \frac{1}{\beta} \right) \tag{4.11}$$

donde Γ indica la función gamma completa que sólo puede ser obtenida numéricamente (con calculadora o algún programa) o recurriendo a tablas, y que se define como:

$$\Gamma\left(a\right) = \int_0^\infty e^{-x} x^{a-1} dx$$

donde a debe ser real y mayor o igual que 1.

Si a=1, $\Gamma(1)=\int_0^\infty e^{-x}dx=1$. En el caso de que a se un número entero n, $\Gamma(n)=\int_0^\infty e^{-x}x^{n-1}dx=(n-1)!$, como puede comprobarse realizando la integración sucesivamente por partes.

Ejemplo: El tiempo de duración vida de un componente se distribuye como una variable de Weibull de parámetros $\gamma=0$, $\beta=2$. Se ha observado que entre los componentes que sobrepasan las 90 horas el 15% fallaba antes de las 100 horas. Estimar, a partir de estos datos, el valor del restante parámetro de la distribución.

$$P(90 < t < 100/t > 90) = 0.15$$

$$0.15 = \frac{P\left(90 < t < 100\right)}{P\left(t > 90\right)} = \frac{1 - e^{-\left(\frac{100}{\eta}\right)^2} - 1 + e^{-\left(\frac{90}{\eta}\right)^2}}{e^{-\left(\frac{90}{\eta}\right)^2}} = 1 - e^{-\left(\frac{100}{\eta}\right)^2 + \left(\frac{90}{\eta}\right)^2}$$
$$\ln 0.85 = -\left(\frac{100}{\eta}\right)^2 + \left(\frac{90}{\eta}\right)^2 = -\frac{1900}{\eta^2}$$

Resulta

$$\frac{1}{\eta^2} = \frac{\ln 0.85}{-1900} = 8.5536 \times 10^{-5}$$

La solución es $\eta = 108.12$.

4.3.8 La distribución triangular

Una variable X sigue una distribución triangular de parámetros a,b,c siendo a < b < c si su función de densidad es

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & si \ a \le x \le b\\ \frac{2(c-x)}{(c-b)(c-a)} & si \ b \le x \le c\\ 0 & en \ el \ resto \end{cases}$$

La moda, máximo de la función de densidad, se alcanza en x=b. La siguiente figura muestra la gráfica de la función de densidad de probabilidad de una distribución triangular de parámetros 1, 2, 4.

Función de densidad de una distribución triangular

La media de la distribución es $E(X)=\frac{a+b+c}{3}$ y la varianza $Var(X)=\frac{1}{18}(a^2+b^2+c^2-ab-ac-bc)$

La función de distribución resulta ser

$$F(x) = \begin{cases} 0 & \text{si } x \le a \\ \frac{(x-a)^2}{(b-a)(c-a)} & \text{si } a \le x \le b \\ 1 - \frac{(c-x)^2}{(c-b)(c-a)} & \text{si } b \le x \le c \\ 1 & \text{si } x \ge c \end{cases}$$

La siguiente gráfica muestra la representación gráfica de la función de distribución de la triangular de parámetros 1, 2, 4.

La distribución triangular se ha usado, junto con la distribución beta, como variable que modela el tiempo de duración de las actividades de un proyecto, tambien se usa en Fiabilidad. Normalmente se emplea cuando se dispone de poca información, ya que es suficiente para modelarla conocer el valor mínimo, el máximo y el más probable. Tiene la ventaja de su simplicidad de cálculo. Además, puede adaptarse a distribuciones asimétricas.

4.3.9 La distribución gamma

La distribución gamma tiene por función de densidad

$$f(x; a, \lambda) = \frac{\lambda}{\Gamma(a)} (\lambda x)^{a-1} e^{-\lambda x} \operatorname{para} x > 0, \ a > 0, \ \lambda > 0$$
(4.12)

siendo $\Gamma\left(a\right)=\int_{0}^{\infty}e^{-x}x^{a-1}dx$. Los parámetros a y λ se llaman respectivamente parámetros de forma y de escala. La media de esta distribución es $\frac{a}{\lambda}$ y la varianza es $\frac{a}{\lambda^2}$. Si a=1 se obtiene la distribución exponencial. Esta distribución se aplica principalmente en problemas de Fiabilidad, siendo la variable aleatoria que modela el tiempo entre dos fallos no consecutivos.

La siguiente gráfica es la función de densidad de una gamma con a=2 y $\lambda=\frac{1}{2}$

En el caso particular de ser $\lambda = \frac{1}{2}$ y $a = \frac{n}{2}$, se obtiene la distribución χ^2 con n grados de libertad.

Si el parámetro de forma a es un entero positivo se conoce con el nombre de distribución de Erlang. En este caso la función de densidad es:

$$f(x; n, \lambda) = \frac{\lambda}{(n-1)!} (\lambda x)^{n-1} e^{-\lambda x} \operatorname{para} x > 0$$

La distribución de Erlang se utiliza para modelar el tiempo que trascurre desde que sucede un acontecimiento hasta que suceden los n acontecimientos siguientes, siempre que el número de veces que suceden estos acontecimientos siga una distribución de Poisson. Por ejemplo el tiempo que pasa desde que llega un cliente a una cola hasta que llegan los n clientes siguientes. Recordemos que el intervalo de tiempo entre dos llegadas consecutivas seguía una distribución exponencial. En efecto si tomamos n=1 obtenemos:

$$f(x; 1, \lambda) = \frac{\lambda}{(1-1)!} (\lambda x)^{1-1} e^{-\lambda x} = \frac{\lambda}{0!} (\lambda x)^{0} e^{-\lambda x} = \lambda e^{-\lambda x}.$$

4.3.10 La distribución beta

La función de densidad de la distribución beta estándar de parámetros α y β es:

$$f(x,\alpha,\beta) = \frac{x^{\alpha-1} (1-x)^{\beta-1}}{B(\alpha,\beta)} \quad 0 \le x \le 1$$

siendo $B(\alpha, \beta)$ la función beta, que está relacionada con la función gamma como muestra la siguiente expresión:

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Dependiendo de los valores de α y β la forma de la distribución puede presentar muchas variaciones. Por esto es un modelo de distribución de gran versatilidad. Podemos observar este hecho en las siguientes gráficas en las que se ha representado la función de densidad de la función beta correspondientes a algunos valores concretos de los parámetros:

La función de densidad de una distribución beta definida en el intervalo $a \leq x \leq b$ viene dada por

$$f(x; \alpha, \beta, a, b) = \frac{(x-a)^{\alpha-1} (b-x)^{\beta-1}}{(b-a)^{\alpha+\beta-1} B(\alpha, \beta)} \quad \text{si } a \le x \le b$$

la media de la distribución es

$$\mu = a + (b - a) \frac{\alpha}{\alpha + \beta}$$

la varianza

$$\sigma^2 = \frac{(b-a)^2 \alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$$

y la moda

$$m = \frac{a(\beta - 1) + b(\alpha - 1)}{\alpha + \beta - 2}$$

La relación entre la media y la moda es

$$\mu = \frac{(a+b) + m(\alpha + \beta - 2)}{\alpha + \beta}$$

Este modelo es aún más versátil, ya que contiene más parámetros. Tiene diferentes aplicaciones entre las que destaca su uso en el método PERT para modelar la variable aleatoria "tiempo de ejecución de las actividades que forman un proyecto". En este caso se toma $\alpha=3+\sqrt{2}$ y $\beta=3-\sqrt{2}$.

La distribución beta se ha usado en diferentes situaciones como por ejemplo para modelar la proporción de área cubierta por una determinada planta, la proporción de impurezas en un compuesto químico, la fracción de tiempo en que una máquina está en reparación, etc.

7	Tabla de	la dist	tribució	n N(0,	1): F((z) = P($(Z \le z)$	$=\int_{-\infty}^{x}$	$\frac{1}{\sqrt{2\pi}}$ $e^{-\frac{1}{2\pi}}$	$\frac{x^2}{2}dx$
z	0,00	0'01	0'02	0,03	0'04	0'05	0,06	0,04	0,08	0,08
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92786	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96637	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99897	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99991	0.99992	0.99992	0.99992
3.8	0.999935	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998
4.1	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99999	0.99999
4.2	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999
4.3	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999
4.4	0.99999	0.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

TABLES OF THE BINOMIAL C.D.F.

n	x	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1	0		0.9900	0.9800	0.9700	0.9600	0.9500	0.9400	0.9300	0.9200	0.9100
	1		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0		0.9801	0.9604	0.9409	0.9216	0.9025	0.8836	0.8649	0.8464	0.8281
	1		0.9999	0.9996	0.9991	0.9984	0.9975	0.9964	0.9951	0.9936	0.9919
	2		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0		0.9703	0.9412	0.9127	0.8847	0.8574	0.8306	0.8044	0.7787	0.7536
	1		0.9997	0.9988	0.9974	0.9953	0.9928	0.9896	0.9860	0.9818	0.9772
	2		1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9995	0.9993
	3		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0		0.9606	0.9224	0.8853	0.8493	0.8145	0.7807	0.7481	0.7164	0.6857
	1		0.9994	0.9977	0.9948	0.9909	0.9860	0.9801	0.9733	0.9656	0.9570
	2		1.0000	1.0000	0.9999	0.9998	0.9995	0.9992	0.9987	0.9981	0.9973
	3		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0		0.9510	0.9039	0.8587	0.8154	0.7738	0.7339	0.6957	0.6591	0.6240
	1		0.9990	0.9962	0.9915	0.9852	0.9774	0.9681	0.9575	0.9456	0.9326
	2		1.0000	0.9999	0.9997	0.9994	0.9988	0.9980	0.9969	0.9955	0.9937
	3		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997
	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
1	0		0.9000	0.8500	0.8000	0.7500	0.7000	0.6500	0.6000	0.5500	0.5000
	1		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0		0.8100	0.7225	0.6400	0.5625	0.4900	0.4225	0.3600	0.3025	0.2500
	1		0.9900	0.9775	0.9600	0.9375	0.9100	0.8775	0.8400	0.7975	0.7500
	2		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0		0.7290	0.6141	0.5120	0.4219	0.3430	0.2746	0.2160	0.1664	0.1250
	1		0.9720	0.9393	0.8960	0.8438	0.7840	0.7183	0.6480	0.5748	0.5000
	2		0.9990	0.9966	0.9920	0.9844	0.9730	0.9571	0.9360	0.9089	0.8750
	3		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0		0.6561	0.5220	0.4096	0.3164	0.2401	0.1785	0.1296	0.0915	0.0625
	1		0.9477	0.8905	0.8192	0.7383	0.6517	0.5630	0.4752	0.3910	0.3125
	2		0.9963	0.9880	0.9728	0.9492	0.9163	0.8735	0.8208	0.7585	0.6875
	3		0.9999	0.9995	0.9984	0.9961	0.9919	0.9850	0.9744	0.9590	0.9375
	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0		0.5905	0.4437	0.3277	0.2373	0.1681	0.1160	0.0778	0.0503	0.0312
	1		0.9185	0.8352	0.7373	0.6328	0.5282	0.4284	0.3370	0.2562	0.1875
	2		0.9914	0.9734	0.9421	0.8965	0.8369	0.7648	0.6826	0.5931	0.5000
	3		0.9995	0.9978	0.9933	0.9844	0.9692	0.9460	0.9130	0.8688	0.8125
	4		1.0000	0.9999	0.9997	0.9990	0.9976	0.9947	0.9898	0.9815	0.9688
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	0		0.5314	0.3771	0.2621	0.1780	0.1176	0.0754	0.0467	0.0277	0.0156
	1		0.8857	0.7765	0.6554	0.5339	0.4202	0.3191	0.2333	0.1636	0.1094
	2		0.9842	0.9527	0.9011	0.8306	0.7443	0.6471	0.5443	0.4415	0.3437
	3		0.9987	0.9941	0.9830	0.9624	0.9295	0.8826	0.8208	0.7447	0.6563
	4		0.9999	0.9996	0.9984	0.9954	0.9891	0.9777	0.9590	0.9308	0.8906
	5		1.0000	1.0000	0.9999	0.9998	0.9993	0.9982	0.9959	0.9917	0.9844
	5		1.0000	1.0000	0.9999	0.9998	0.9993	0.9982	0.9959	0.9917	0.9844
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
6	0		0.9415	0.8858	0.8330	0.7828	0.7351	0.6899	0.6470	0.6064	0.5679
	1		0.9985	0.9943	0.9875	0.9784	0.9672	0.9541	0.9392	0.9227	0.9048
	2		1.0000	0.9998	0.9995	0.9988	0.9978	0.9962	0.9942	0.9915	0.9882
	3		1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9995	0.9992
	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	0		0.9321	0.8681	0.8080	0.7514	0.6983	0.6485	0.6017	0.5578	0.5168
	1		0.9980	0.9921	0.9829	0.9706	0.9556	0.9382	0.9187	0.8974	0.8745
	2		1.0000	0.9997	0.9991	0.9980	0.9962	0.9937	0.9903	0.9860	0.9807
	3		1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9993	0.9988	0.9982
	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	0		0.9227	0.8508	0.7837	0.7214	0.6634	0.6096	0.5596	0.5132	0.4703
	1		0.9973	0.9897	0.9777	0.9619	0.9428	0.9208	0.8965	0.8702	0.8423
	2		0.9999	0.9996	0.9987	0.9969	0.9942	0.9904	0.9853	0.9789	0.9711
	3		1.0000	1.0000	0.9999	0.9998	0.9996	0.9993	0.9987	0.9978	0.9966
	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	0		0.9135	0.8337	0.7602	0.6925	0.6302	0.5730	0.5204	0.4722	0.4279
	1		0.9966	0.9869	0.9718	0.9522	0.9288	0.9022	0.8729	0.8417	0.8088
	2		0.9999	0.9994	0.9980	0.9955	0.9916	0.9862	0.9791	0.9702	0.9595
	3		1.0000	1.0000	0.9999	0.9997	0.9994	0.9987	0.9977	0.9963	0.9943
	4		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9995
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
7	0		0.4783	0.3206	0.2097	0.1335	0.0824	0.0490	0.0280	0.0152	0.0078
	1		0.8503	0.7166	0.5767	0.4449	0.3294	0.2338	0.1586	0.1024	0.0625
	2		0.9743	0.9262	0.8520	0.7564	0.6471	0.5323	0.4199	0.3164	0.2266
	3		0.9973	0.9879	0.9667	0.9294	0.8740	0.8002	0.7102	0.6083	0.5000
	4		0.9998	0.9988	0.9953	0.9871	0.9712	0.9444	0.9037	0.8471	0.7734
	5		1.0000	0.9999	0.9996	0.9987	0.9962	0.9910	0.9812	0.9643	0.9375
	6		1.0000	1.0000	1.0000	0.9999	0.9998	0.9994	0.9984	0.9963	0.9922
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	0		0.4305	0.2725	0.1678	0.1001	0.0576	0.0319	0.0168	0.0084	0.0039
	1		0.8131	0.6572	0.5033	0.3671	0.2553	0.1691	0.1064	0.0632	0.0352
	2		0.9619	0.8948	0.7969	0.6785	0.5518	0.4278	0.3154	0.2201	0.1445
	3		0.9950	0.9786	0.9437	0.8862	0.8059	0.7064	0.5941	0.4770	0.3633
	4		0.9996	0.9971	0.9896	0.9727	0.9420	0.8939	0.8263	0.7396	0.6367
	5		1.0000	0.9998	0.9988	0.9958	0.9887	0.9747	0.9502	0.9115	0.8555
	6		1.0000	1.0000	0.9999	0.9996	0.9987	0.9964	0.9915	0.9819	0.9648
	7		1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9983	0.9961
	8		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	0		0.3874	0.2316	0.1342	0.0751	0.0404	0.0207	0.0101	0.0046	0.0020
	1		0.7748	0.5995	0.4362	0.3003	0.1960	0.1211	0.0705	0.0385	0.0195
	2		0.947	0.8591	0.7382	0.6007	0.4628	0.3373	0.2318	0.1495	0.08984
	3		0.9917	0.9661	0.9144	0.8343	0.7297	0.6089	0.4826	0.3614	0.2539
	4		0.9991	0.9944	0.9804	0.9511	0.9012	0.8283	0.7334	0.6214	0.5000
	5		0.9999	0.9994	0.9969	0.9900	0.9747	0.9464	0.9006	0.8342	0.7461
	6		1.0000	1.0000	0.9997	0.9987	0.9957	0.9888	0.9750	0.9502	0.9102
	7		1.0000	1.0000	1.0000	0.9999	0.9996	0.9986	0.9962	0.9909	0.9805
	8		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980
	9		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
10	0		0.9044	0.8171	0.7374	0.6648	0.5987	0.5386	0.4840	0.4344	0.3894
	1		0.9957	0.9838	0.9655	0.9418	0.9139	0.8824	0.8483	0.8121	0.7746
	2		0.9999	0.9991	0.9972	0.9938	0.9885	0.9812	0.9717	0.9599	0.9460
	3		1.0000	1.0000	0.9999	0.9996	0.9990	0.9980	0.9964	0.9942	0.9912
	4		1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9990
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	0		0.8953	0.8007	0.7153	0.6382	0.5688	0.5063	0.4501	0.3996	0.3544
	1		0.9948	0.9805	0.9587	0.9308	0.8981	0.8618	0.8228	0.7819	0.7399
	2		0.9998	0.9988	0.9963	0.9917	0.9848	0.9752	0.9630	0.9481	0.9305
	3		1.0000	1.0000	0.9998	0.9993	0.9984	0.9970	0.9947	0.9915	0.9871
	4		1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9995	0.9990	0.9983
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
10	0		0.3487	0.1969	0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
	1		0.7361	0.5443	0.3758	0.2440	0.1493	0.0860	0.0464	0.0233	0.0107
	2		0.9298	0.8202	0.6778	0.5256	0.3828	0.2616	0.1673	0.0996	0.0547
	3		0.9872	0.9500	0.8791	0.7759	0.6496	0.5138	0.3823	0.2660	0.1719
	4		0.9984	0.9901	0.9672	0.9219	0.8497	0.7515	0.6331	0.5044	0.3770
	5		0.9999	0.9986	0.9936	0.9803	0.9527	0.9051	0.8338	0.7384	0.6230
	6		1.0000	0.9999	0.9991	0.9965	0.9894	0.9740	0.9452	0.8980	0.8281
	7		1.0000	1.0000	0.9999	0.9996	0.9984	0.9952	0.9877	0.9726	0.9453
	8		1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9983	0.9955	0.9893
	9		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990
	10		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	0		0.3138	0.1673	0.0859	0.0422	0.0198	0.0088	0.0036	0.0014	0.0004
	1		0.6974	0.4922	0.3221	0.1971	0.1130	0.0606	0.0302	0.0139	0.0059
	2		0.9104	0.7788	0.6174	0.4552	0.3127	0.2001	0.1189	0.0652	0.0327
	3		0.9815	0.9306	0.8389	0.7133	0.5696	0.4256	0.2963	0.1911	0.1133
	4		0.9972	0.9841	0.9496	0.8854	0.7897	0.6683	0.5328	0.3971	0.2744
	5		0.9997	0.9973	0.9883	0.9657	0.9218	0.8513	0.7535	0.6331	0.5000
	6		1.0000	0.9997	0.9980	0.9924	0.9784	0.9499	0.9006	0.8262	0.7256
	7		1.0000	1.0000	0.9998	0.9988	0.9957	0.9878	0.9707	0.9390	0.8867
	8		1.0000	1.0000	1.0000	0.9999	0.9994	0.9980	0.9941	0.9852	0.9673
	9		1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9993	0.9978	0.9941
	10		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9995
	11		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12	0		0.2824	0.1422	0.0687	0.0317	0.0138	0.0057	0.0022	0.0008	0.0002
	1		0.6590	0.4435	0.2749	0.1584	0.0850	0.0424	0.0196	0.0083	0.0032
	2		0.8891	0.7358	0.5583	0.3907	0.2528	0.1513	0.0834	0.0421	0.0193
	3		0.9744	0.9078	0.7946	0.6488	0.4925	0.3467	0.2253	0.1345	0.0730
	4		0.9957	0.9761	0.9274	0.8424	0.7237	0.5833	0.4382	0.3044	0.1938
	5		0.9995	0.9954	0.9806	0.9456	0.8822	0.7873	0.6652	0.5269	0.3872
	6		0.9999	0.9993	0.9961	0.9857	0.9614	0.9154	0.8418	0.7393	0.6128
	7		1.0000	0.9999	0.9994	0.9972	0.9905	0.9745	0.9427	0.8883	0.8062
	8		1.0000	1.0000	0.9999	0.9996	0.9983	0.9944	0.9847	0.9644	0.9270
	9		1.0000	1.0000	1.0000	1.0000	0.9998	0.9992	0.9972	0.9921	0.9807
	10		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9968
	11		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
	12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
12	0		0.8864	0.7847	0.6938	0.6127	0.5404	0.4759	0.4186	0.3677	0.3225
	1		0.9938	0.9769	0.9514	0.9191	0.8816	0.8405	0.7967	0.7513	0.7052
	2		0.9998	0.9985	0.9952	0.9893	0.9804	0.9684	0.9532	0.9348	0.9134
	3		1.0000	0.9999	0.9997	0.9990	0.9978	0.9957	0.9925	0.9880	0.9820
	4		1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.9984	0.9973
	5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	0		0.8775	0.7690	0.6730	0.5882	0.5133	0.4474	0.3893	0.3383	0.2935
	1		0.9928	0.9730	0.9436	0.9068	0.8646	0.8186	0.7702	0.7206	0.6707
	2		0.9997	0.9980	0.9938	0.9865	0.9755	0.9608	0.9422	0.9201	0.8946
	3		1.0000	0.9999	0.9995	0.9986	0.9969	0.9940	0.9897	0.9837	0.9758
	4		1.0000	1.0000	1.0000	0.9999	0.9997	0.9993	0.9987	0.9976	0.9959
	5		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9995
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	0		0.8687	0.7536	0.6528	0.5647	0.4877	0.4205	0.3620	0.3112	0.2670
	1		0.9916	0.9690	0.9355	0.8941	0.8470	0.7963	0.7436	0.6900	0.6368
	2		0.9997	0.9975	0.9923	0.9833	0.9699	0.9522	0.9302	0.9042	0.8745
	3		1.0000	0.9999	0.9994	0.9981	0.9958	0.9920	0.9864	0.9786	0.9685
	4		1.0000	1.0000	1.0000	0.9998	0.9996	0.9990	0.9980	0.9965	0.9941
	5		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
13	0		0.2542	0.1209	0.0550	0.0238	0.0097	0.0037	0.0013	0.0004	0.0001
	1		0.6213	0.3983	0.2336	0.1267	0.0637	0.0296	0.0126	0.0050	0.0017
	2		0.8661	0.6920	0.5017	0.3326	0.2025	0.1132	0.0579	0.0269	0.0112
	3		0.9658	0.8820	0.7473	0.5843	0.4206	0.2783	0.1686	0.0929	0.0461
	4		0.9935	0.9658	0.9009	0.7940	0.6543	0.5005	0.3530	0.2279	0.1334
	5		0.9991	0.9925	0.9700	0.9198	0.8346	0.7159	0.5744	0.4268	0.2905
	6		0.9999	0.9987	0.9930	0.9757	0.9376	0.8705	0.7712	0.6437	0.5000
	7		1.0000	0.9998	0.9988	0.9944	0.9818	0.9538	0.9023	0.8212	0.7095
	8		1.0000	1.0000	0.9998	0.9990	0.9960	0.9874	0.9679	0.9302	0.8666
	9		1.0000	1.0000	1.0000	0.9999	0.9993	0.9975	0.9922	0.9797	0.9539
	10		1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9987	0.9959	0.9888
	11		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9983
	12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	13		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	0		0.2288	0.1028	0.0440	0.0178	0.0068	0.0024	0.0008	0.0002	0.0000
	1		0.5846	0.3567	0.1979	0.1010	0.0475	0.0205	0.0081	0.0029	0.0009
	2		0.8416	0.6479	0.4481	0.2811	0.1608	0.0839	0.0398	0.0170	0.0065
	3		0.9559	0.8535	0.6982	0.5213	0.3552	0.2205	0.1243	0.0632	0.0287
	4		0.9908	0.9533	0.8702	0.7415	0.5842	0.4227	0.2793	0.1672	0.0898
	5		0.9985	0.9885	0.9561	0.8883	0.7805	0.6405	0.4859	0.3373	0.2120
	6		0.9998	0.9978	0.9884	0.9617	0.9067	0.8164	0.6925	0.5461	0.3953
	7		1.0000	0.9997	0.9976	0.9897	0.9685	0.9247	0.8499	0.7414	0.6047
	8		1.0000	1.0000	0.9996	0.9978	0.9917	0.9757	0.9417	0.8811	0.7880
	9		1.0000	1.0000	1.0000	0.9997	0.9983	0.9940	0.9825	0.9574	0.9102
	10		1.0000	1.0000	1.0000	1.0000	0.9998	0.9989	0.9961	0.9886	0.9713
	11		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9978	0.9935
	12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991
	13		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	14		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
15	0		0.8601	0.7386	0.6333	0.5421	0.4633	0.3953	0.3367	0.2863	0.2430
	1		0.9904	0.9647	0.9270	0.8809	0.8290	0.7738	0.7168	0.6597	0.6035
	2		0.9996	0.9970	0.9906	0.9797	0.9638	0.9429	0.9171	0.8870	0.8531
	3		1.0000	0.9998	0.9992	0.9976	0.9945	0.9896	0.9825	0.9727	0.9601
	4		1.0000	1.0000	0.9999	0.9998	0.9994	0.9986	0.9972	0.9950	0.9918
	5		1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
16	0		0.8515	0.7238	0.6143	0.5204	0.4401	0.3716	0.3131	0.2634	0.2211
	1		0.9891	0.9601	0.9182	0.8673	0.8108	0.7511	0.6902	0.6299	0.5711
	2		0.9995	0.9963	0.9887	0.9758	0.9571	0.9327	0.9031	0.8689	0.8306
	3		1.0000	0.9998	0.9989	0.9968	0.9930	0.9868	0.9779	0.9658	0.9504
	4		1.0000	1.0000	0.9999	0.9997	0.9991	0.9981	0.9962	0.9932	0.9889
	5		1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9995	0.9990	0.9981
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$ \begin{bmatrix} 15 & 0 & 0.2059 & 0.0874 & 0.0352 & 0.0134 & 0.0047 & 0.0016 & 0.0005 & 0.0001 & 0.0000 \\ 1 & 0.5490 & 0.3186 & 0.1671 & 0.0802 & 0.0353 & 0.0142 & 0.0052 & 0.0017 & 0.0005 \\ 2 & 0.8159 & 0.6042 & 0.3980 & 0.2361 & 0.1268 & 0.0617 & 0.0271 & 0.0107 & 0.0037 \\ 3 & 0.9444 & 0.8227 & 0.6482 & 0.4613 & 0.2969 & 0.1727 & 0.0905 & 0.0424 & 0.0176 \\ 4 & 0.9873 & 0.9383 & 0.8358 & 0.6865 & 0.5155 & 0.3519 & 0.2173 & 0.1204 & 0.0592 \\ 5 & 0.9978 & 0.9832 & 0.9389 & 0.8516 & 0.7216 & 0.5643 & 0.4032 & 0.2608 & 0.1509 \\ 6 & 0.9997 & 0.9964 & 0.9819 & 0.9434 & 0.8689 & 0.7548 & 0.6098 & 0.4522 & 0.3036 \\ 7 & 1.0000 & 0.9994 & 0.9958 & 0.9827 & 0.9500 & 0.8868 & 0.7869 & 0.6535 & 0.5000 \\ 8 & 1.0000 & 0.9999 & 0.9992 & 0.9958 & 0.9848 & 0.9578 & 0.9050 & 0.8182 & 0.6964 \\ 9 & 1.0000 & 1.0000 & 0.9999 & 0.9992 & 0.9963 & 0.9876 & 0.9662 & 0.9231 & 0.8491 \\ 10 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9997 & 0.9997 & 0.9974 & 0.9488 \\ 11 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9995 & 0.9981 & 0.9937 & 0.9824 \\ 12 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\ 1 & 0.01853 & 0.0743 & 0.0281 & 0.0100 & 0.0003 & 0.0003 & 0.0000 & 0.0000 \\ 1 & 0.5147 & 0.2839 & 0.1407 & 0.0635 & 0.0261 & 0.0098 & 0.0033 & 0.0010 & 0.0003 \\ 2 & 0.7892 & 0.5614 & 0.3518 & 0.1971 & 0.0994 & 0.0451 & 0.0183 & 0.0066 & 0.021 \\ 3 & 0.9316 & 0.7899 & 0.5981 & 0.4050 & 0.2459 & 0.1339 & 0.0651 & 0.0281 & 0.0106 \\ 4 & 0.9830 & 0.9209 & 0.7982 & 0.6302 & 0.4499 & 0.2892 & 0.1666 & 0.0853 & 0.0384 \\ 5 & 0.9967 & 0.9765 & 0.9183 & 0.8103 & 0.5598 & 0.4900 & 0.3288 & 0.1976 & 0.1061 \\ 6 & 0.9995 & 0.9944 & 0.9733 & 0.8103 & 0.5598 & 0.4900 & 0.3288 & 0.1976 & 0.1061 \\ 6 & 0.9995 & 0.9944 & 0.9733 & 0.8103 & 0.5598 & 0.4900 & 0.3288 & 0.1976 & 0.1061 \\ 6 & 0.9995 & 0.9994 & 0.9998 & 0.9995 & 0.9987 & 0.9987 & 0.9985 & 0.9981 \\ 10 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9999 & 0.9997 \\ 10 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.0999 & 0.9999 & 0.9991 & 0.9965 \\ 11 & 1.0000 & 1.0000 & 1.0000 & 1.00$	n	x	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
$ \begin{bmatrix} 2 \\ 3 \\ 0.8159 \\ 0.6042 \\ 0.3980 \\ 0.2361 \\ 0.2361 \\ 0.2365 \\ 0.2365 \\ 0.317 \\ 0.0377 \\ 0.0905 \\ 0.0424 \\ 0.0176 \\ 0.0271 \\ 0.01077 \\ 0.0037 \\ 0.0424 \\ 0.0176 \\ 0.0176 \\ 0.0271 \\ 0.01077 \\ 0.0205 \\ 0.0424 \\ 0.0176 \\ 0.0176 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.0424 \\ 0.0176 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.0424 \\ 0.0176 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.0424 \\ 0.0176 \\ 0.0424 \\ 0.0176 \\ 0.0424 \\ 0.0176 \\ 0.0176 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.02173 \\ 0.1204 \\ 0.0592 \\ 0.0592 \\ 0.0305 \\ 0.0515 \\ 0.0305 \\ 0.0515 \\ 0.0305 \\ 0.0515 \\ 0.0305 \\ 0.0515 \\ 0.0305 \\ 0.0515 \\ 0.0305 \\ 0.0515 \\ 0.0515 \\ 0.0516 \\ 0.0997 \\ 0.9994 \\ 0.9994 \\ 0.9995 \\ 0.9998 \\ 0.9992 \\ 0.9998 \\ 0.9998 \\ 0.9995 \\ 0.9998 \\ 0.9993 \\ 0.9997 \\ 0.9998 \\ 0.9997 \\ 0.9998 \\ 0.9997 \\ 0.9998 \\ 0.9997 \\ 0.9998 \\ 0.9997 \\ 0.9998 \\ 0.9997 \\ 0.9998 \\ 0.9997 \\ 0.9999 \\$	15	0		0.2059	0.0874	0.0352	0.0134	0.0047	0.0016	0.0005	0.0001	0.0000
3		1		0.5490	0.3186	0.1671	0.0802	0.0353	0.0142	0.0052	0.0017	0.0005
4 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592 5 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509 6 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036 7 1.0000 0.9994 0.99958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000 8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9950 0.8481 10 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408 11 1.0000 1.0000 1.0000 1.0000 1.0000 1.9999 0.9997 0.9997 0.9987 0.9821 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000		2		0.8159	0.6042	0.3980	0.2361	0.1268	0.0617	0.0271	0.0107	0.0037
S		3		0.9444	0.8227	0.6482	0.4613	0.2969	0.1727	0.0905	0.0424	0.0176
$ \begin{bmatrix} 6 \\ 0.9997 & 0.9964 & 0.9819 & 0.9434 & 0.8689 & 0.7548 & 0.6098 & 0.4522 & 0.3036 \\ 7 \\ 1.0000 & 0.9994 & 0.9958 & 0.9827 & 0.9500 & 0.8868 & 0.7869 & 0.6535 & 0.5000 \\ 8 \\ 1.0000 & 0.9999 & 0.9992 & 0.9958 & 0.9848 & 0.9578 & 0.9050 & 0.8182 & 0.6964 \\ 9 \\ 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9992 & 0.9963 & 0.9876 & 0.9662 & 0.9231 & 0.8491 \\ 10 \\ 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9993 & 0.9972 & 0.9907 & 0.9745 & 0.9408 \\ 11 \\ 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9995 & 0.9981 & 0.9937 & 0.9824 \\ 12 \\ 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.9099 & 0.9997 & 0.9999 & 0.9995 \\ 13 \\ 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9999 & 0.9995 \\ 14 \\ 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\ 1 \\ 0 \\ 0 \\ 1853 & 0.0743 & 0.0281 & 0.0100 & 0.0033 & 0.0010 & 0.0003 & 0.0000 & 0.0000 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$		4		0.9873	0.9383	0.8358	0.6865	0.5155	0.3519		0.1204	0.0592
T		5		0.9978	0.9832	0.9389	0.8516	0.7216	0.5643	0.4032	0.2608	0.1509
8				0.9997	0.9964	0.9819	0.9434	0.8689	0.7548	0.6098	0.4522	0.3036
9		7		1.0000	0.9994	0.9958	0.9827	0.9500	0.8868	0.7869	0.6535	0.5000
10		8		1.0000	0.9999	0.9992	0.9958	0.9848	0.9578	0.9050	0.8182	0.6964
11		9		1.0000	1.0000	0.9999	0.9992	0.9963	0.9876	0.9662	0.9231	0.8491
12		10		1.0000	1.0000	1.0000	0.9999	0.9993	0.9972	0.9907	0.9745	0.9408
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11		1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9981	0.9937	0.9824
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9963
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	0		0.1853	0.0743	0.0281	0.0100	0.0033	0.0010	0.0003	0.0000	0.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		0.5147	0.2839	0.1407	0.0635	0.0261	0.0098	0.0033	0.0010	0.0003
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2		0.7892	0.5614	0.3518	0.1971	0.0994	0.0451	0.0183	0.0066	0.0021
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3		0.9316	0.7899	0.5981	0.4050	0.2459	0.1339	0.0651	0.0281	0.0106
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4		0.9830	0.9209	0.7982	0.6302	0.4499	0.2892	0.1666	0.0853	0.0384
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5		0.9967	0.9765	0.9183	0.8103	0.6598	0.4900	0.3288	0.1976	0.1051
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6		0.9995	0.9944	0.9733	0.9204	0.8247	0.6881	0.5272	0.3660	0.2272
9 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728 10 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949 11 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616 12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894 13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999		7		0.9999	0.9989	0.9930	0.9729	0.9256	0.8406	0.7161	0.5629	0.4018
10 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949 11 1.0000 1.0000 1.0000 0.9997 0.9987 0.9987 0.9951 0.9851 0.9616 12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894 13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9997		8		1.0000	0.9998	0.9985	0.9925	0.9743	0.9329	0.8577	0.7441	0.5982
11 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616 12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894 13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999		9		1.0000	1.0000	0.9998	0.9984	0.9929	0.9771	0.9417	0.8759	0.7728
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894 13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9997		10		1.0000	1.0000	1.0000	0.9997	0.9984	0.9938	0.9809	0.9514	0.8949
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999		11		1.0000	1.0000	1.0000	1.0000	0.9997	0.9987	0.9951	0.9851	0.9616
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997				1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9991	0.9965	0.9894
		13		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9979
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000		14		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997
		15		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
17	0		0.8429	0.7093	0.5958	0.4996	0.4181	0.3493	0.2912	0.2423	0.2012
	1		0.9877	0.9554	0.9091	0.8535	0.7922	0.7283	0.6638	0.6005	0.5396
	2		0.9994	0.9956	0.9866	0.9714	0.9497	0.9218	0.8882	0.8497	0.8073
	3		1.0000	0.9997	0.9986	0.9960	0.9912	0.9836	0.9727	0.9581	0.9397
	4		1.0000	1.0000	0.9999	0.9996	0.9988	0.9974	0.9949	0.9911	0.9855
	5		1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993	0.9985	0.9973
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	0		0.8345	0.6951	0.5780	0.4796	0.3972	0.3283	0.2708	0.2229	0.1831
	1		0.9862	0.9505	0.8997	0.8393	0.7735	0.7055	0.6378	0.5719	0.5091
	2		0.9993	0.9948	0.9843	0.9667	0.9419	0.9102	0.8725	0.8298	0.7832
	3		1.0000	0.9996	0.9982	0.9950	0.9891	0.9799	0.9667	0.9494	0.9277
	4		1.0000	1.0000	0.9998	0.9994	0.9985	0.9966	0.9933	0.9884	0.9814
	5		1.0000	1.0000	1.0000	0.9999	0.9998	0.9995	0.9990	0.9979	0.9962
	6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9994
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	8		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
17	0		0.1668	0.0631	0.0230	0.0075	0.0023	0.0007	0.0002	0.0000	0.0000
	1		0.4818	0.2525	0.1182	0.0501	0.0193	0.0067	0.0021	0.0006	0.0001
	2		0.7618	0.5198	0.3096	0.1637	0.0774	0.0327	0.0123	0.0041	0.0012
	3		0.9174	0.7556	0.5489	0.3530	0.2019	0.1028	0.0464	0.0184	0.0064
	4		0.9779	0.9013	0.7582	0.5739	0.3887	0.2348	0.126	0.05958	0.0245
	5		0.9953	0.9681	0.8943	0.7653	0.5968	0.4197	0.2639	0.1471	0.0717
	6		0.9992	0.9917	0.9623	0.8929	0.7752	0.6188	0.4478	0.2902	0.1662
	7		0.9999	0.9983	0.9891	0.9598	0.8954	0.7872	0.6405	0.4743	0.3145
	8		1.0000	0.9997	0.9974	0.9876	0.9597	0.9006	0.8011	0.6626	0.5000
	9		1.0000	1.0000	0.9995	0.9969	0.9873	0.9617	0.9081	0.8166	0.6855
	10		1.0000	1.0000	0.9999	0.9994	0.9968	0.988	0.9652	0.9174	0.8338
	11		1.0000	1.0000	1.0000	0.9999	0.9993	0.997	0.9894	0.9699	0.9283
	12		1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9975	0.9914	0.9755
	13		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9981	0.9936
	14		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9988
	15		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	16		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	0		0.1501	0.0536	0.0180	0.0056	0.0016	0.0004	0.0001	0.0000	0.0000
	1		0.4503	0.2241	0.0991	0.0395	0.0142	0.0046	0.0013	0.0003	0.0000
	2		0.7338	0.4797	0.2713	0.1353	0.0600	0.0236	0.0082	0.0025	0.0007
	3		0.9018	0.7202	0.5010	0.3057	0.1646	0.0783	0.0328	0.0120	0.0038
	4		0.9718	0.8794	0.7164	0.5187	0.3327	0.1886	0.0942	0.0411	0.0154
	5		0.9936	0.9581	0.8671	0.7175	0.5344	0.355	0.2088	0.1077	0.04813
	6		0.9988	0.9882	0.9487	0.8610	0.7217	0.5491	0.3743	0.2258	0.1189
	7		0.9998	0.9973	0.9837	0.9431	0.8593	0.7283	0.5634	0.3915	0.2403
	8		1.0000	0.9995	0.9957	0.9807	0.9404	0.8609	0.7368	0.5778	0.4073
	9		1.0000	0.9999	0.9991	0.9946	0.9790	0.9403	0.8653	0.7473	0.5927
	10		1.0000	1.0000	0.9998	0.9988	0.9939	0.9788	0.9424	0.872	0.7597
	11		1.0000	1.0000	1.0000	0.9998	0.9986	0.9938	0.9797	0.9463	0.8811
	12		1.0000	1.0000	1.0000	1.0000	0.9997	0.9986	0.9942	0.9817	0.9519
	13		1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987	0.9951	0.9846
	14		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9990	0.9962
	15		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993
	16		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	17		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	\boldsymbol{x}	p	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
19	0		0.8262	0.6812	0.5606	0.4604	0.3774	0.3086	0.2519	0.2051	0.1666
	1		0.9847	0.9454	0.8900	0.8249	0.7547	0.6829	0.6121	0.5440	0.4798
	2		0.9991	0.9939	0.9817	0.9616	0.9335	0.8979	0.8561	0.8092	0.7585
	3		1.0000	0.9995	0.9978	0.9939	0.9868	0.9757	0.9602	0.9398	0.9147
	4		1.0000	1.0000	0.9998	0.9993	0.9980	0.9956	0.9915	0.9853	0.9765
	5		1.0000	1.0000	1.0000	0.9999	0.9998	0.9994	0.9986	0.9971	0.9949
	6		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
	8		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	0		0.8179	0.6676	0.5438	0.4420	0.3585	0.2901	0.2342	0.1887	0.1516
	1		0.9831	0.9401	0.8802	0.8103	0.7358	0.6605	0.5869	0.5169	0.4516
	2		0.9990	0.9929	0.9790	0.9561	0.9245	0.8850	0.8390	0.7879	0.7334
	3		1.0000	0.9994	0.9973	0.9926	0.9841	0.9710	0.9529	0.9294	0.9007
	4		1.0000	1.0000	0.9997	0.9990	0.9974	0.9944	0.9893	0.9817	0.9710
	5		1.0000	1.0000	1.0000	0.9999	0.9997	0.9991	0.9981	0.9962	0.9932
	6		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9994	0.9987
	7		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
	8		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x	p	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
19	0		0.1351	0.0456	0.0144	0.0042	0.0011	0.0003	0.0000	0.0000	0.0000
	1		0.4203	0.1985	0.0829	0.0310	0.0104	0.0031	0.0008	0.0002	0.0000
	2		0.7054	0.4413	0.2369	0.1113	0.0462	0.0170	0.0055	0.0015	0.0004
	3		0.8850	0.6841	0.4551	0.2631	0.1332	0.0591	0.0230	0.0077	0.0022
	4		0.9648	0.8556	0.6733	0.4654	0.2822	0.1500	0.0696	0.0280	0.0096
	5		0.9914	0.9463	0.8369	0.6678	0.4739	0.2968	0.1629	0.0777	0.0318
	6		0.9983	0.9837	0.9324	0.8251	0.6655	0.4812	0.3081	0.1727	0.0835
	7		0.9997	0.9959	0.9767	0.9225	0.8180	0.6656	0.4878	0.3169	0.1796
	8		1.0000	0.9992	0.9933	0.9713	0.9161	0.8145	0.6675	0.4940	0.3238
	9		1.0000	0.9999	0.9984	0.9911	0.9674	0.9125	0.8139	0.6710	0.5000
	10		1.0000	1.0000	0.9997	0.9977	0.9895	0.9653	0.9115	0.8159	0.6762
	11		1.0000	1.0000	1.0000	0.9995	0.9972	0.9886	0.9648	0.9129	0.8204
	12		1.0000	1.0000	1.0000	0.9999	0.9994	0.9969	0.9884	0.9658	0.9165
	13		1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9969	0.9891	0.9682
	14		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9972	0.9904
	15		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9978
	16		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996
	17		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	0		0.1216	0.0388	0.0115	0.0032	0.0008	0.0001	0.0000	0.0000	0.0000
	1		0.3917	0.1756	0.0692	0.0243	0.0076	0.0021	0.0005	0.0001	0.0000
	2		0.6769	0.4049	0.2061	0.0913	0.0355	0.0121	0.0036	0.0009	0.0002
	3		0.8670	0.6477	0.4114	0.2252	0.1071	0.0444	0.0160	0.0049	0.0013
	4		0.9568	0.8298	0.6296	0.4148	0.2375	0.1182	0.0510	0.0189	0.0059
	5		0.9887	0.9327	0.8042	0.6172	0.4164	0.2454	0.1256	0.0553	0.0207
	6		0.9976	0.9781	0.9133	0.7858	0.6080	0.4166	0.2500	0.1299	0.0577
	7		0.9996	0.9941	0.9679	0.8982	0.7723	0.6010	0.4159	0.2520	0.1316
	8		0.9999	0.9987	0.9900	0.9591	0.8867	0.7624	0.5956	0.4143	0.2517
	9		1.0000	0.9998	0.9974	0.9861	0.9520	0.8782	0.7553	0.5914	0.4119
	10		1.0000	1.0000	0.9994	0.9961	0.9829	0.9468	0.8725	0.7507	0.5881
	11		1.0000	1.0000	0.9999	0.9991	0.9949	0.9804	0.9435	0.8692	0.7483
	12		1.0000	1.0000	1.0000	0.9998	0.9987	0.9940	0.9790	0.9420	0.8684
	13		1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9935	0.9786	0.9423
	14		1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9936	0.9793
	15		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9941
	16		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987
	17		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
	18		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Cumulative Poisson Distribution Table

Table shows cumulative probability functions of Poisson Distribution with various α . Example: to find the probability $P(X \leq 3)$ where X has a Poisson Distribution with $\alpha = 2$, look in row 4 and column 4 to find $P(X \leq 3) = 0.8571$ where X is Poisson(2).

					α					
X	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0	0.6065	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.9098	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9856	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9982	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9998	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	1.0000	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8	1.0000	1.0000	1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

					α					
X	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
0	0.0041	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000
1	0.0266	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008	0.0005
23	0.0884	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042	0.0028
3	0.2017	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149	0.0103
$\mid 4 \mid$	0.3575	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403	0.0293
5	0.5289	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885	0.0671
6	0.6860	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649	0.1301
7	0.8095	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687	0.2202
8	0.8944	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918	0.3328
9	0.9462	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218	0.4579
10	0.9747	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453	0.5830
11	0.9890	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520	0.6968
12	0.9955	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364	0.7916
13	0.9983	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981	0.8645
14	0.9994	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400	0.9165
15	0.9998	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665	0.9513
16	0.9999	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823	0.9730
17	1.0000	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911	0.9857
18	1.0000	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957	0.9928
19	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980	0.9965
20	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.9984
21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9993
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997
23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

(Continued)

					α					
X	10.5	11	11.5	12	12.5	13	13.5	14	14.5	15
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0003	0.0002	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0018	0.0012	0.0008	0.0005	0.0003	0.0002	0.0001	0.0001	0.0001	0.0000
3	0.0071	0.0049	0.0034	0.0023	0.0016	0.0011	0.0007	0.0005	0.0003	0.0002
4	0.0211	0.0151	0.0107	0.0076	0.0053	0.0037	0.0026	0.0018	0.0012	0.0009
5	0.0504	0.0375	0.0277	0.0203	0.0148	0.0107	0.0077	0.0055	0.0039	0.0028
6	0.1016	0.0786	0.0603	0.0458	0.0346	0.0259	0.0193	0.0142	0.0105	0.0076
7	0.1785	0.1432	0.1137	0.0895	0.0698	0.0540	0.0415	0.0316	0.0239	0.0180
8	0.2794	0.2320	0.1906	0.1550	0.1249	0.0998	0.0790	0.0621	0.0484	0.0374
9	0.3971	0.3405	0.2888	0.2424	0.2014	0.1658	0.1353	0.1094	0.0878	0.0699
10	0.5207	0.4599	0.4017	0.3472	0.2971	0.2517	0.2112	0.1757	0.1449	0.1185
11	0.6387	0.5793	0.5198	0.4616	0.4058	0.3532	0.3045	0.2600	0.2201	0.1848
12	0.7420	0.6887	0.6329	0.5760	0.5190	0.4631	0.4093	0.3585	0.3111	0.2676
13	0.8253	0.7813	0.7330	0.6815	0.6278	0.5730	0.5182	0.4644	0.4125	0.3632
14	0.8879	0.8540	0.8153	0.7720	0.7250	0.6751	0.6233	0.5704	0.5176	0.4657
15	0.9317	0.9074	0.8783	0.8444	0.8060	0.7636	0.7178	0.6694	0.6192	0.5681
16	0.9604	0.9441	0.9236	0.8987	0.8693	0.8355	0.7975	0.7559	0.7112	0.6641
17	0.9781	0.9678	0.9542	0.9370	0.9158	0.8905	0.8609	0.8272	0.7897	0.7489
18	0.9885	0.9823	0.9738	0.9626	0.9481	0.9302	0.9084	0.8826	0.8530	0.8195
19	0.9942	0.9907	0.9857	0.9787	0.9694	0.9573	0.9421	0.9235	0.9012	0.8752
20	0.9972	0.9953	0.9925	0.9884	0.9827	0.9750	0.9649	0.9521	0.9362	0.9170
21	0.9987	0.9977	0.9962	0.9939	0.9906	0.9859	0.9796	0.9712	0.9604	0.9469
22	0.9994	0.9990	0.9982	0.9970	0.9951	0.9924	0.9885	0.9833	0.9763	0.9673
23	0.9998	0.9995	0.9992	0.9985	0.9975	0.9960	0.9938	0.9907	0.9863	0.9805
24	0.9999	0.9998	0.9996	0.9993	0.9988	0.9980	0.9968	0.9950	0.9924	0.9888
25	1.0000	0.9999	0.9998	0.9997	0.9994	0.9990	0.9984	0.9974	0.9959	0.9938
26	1.0000	1.0000	0.9999	0.9999	0.9997	0.9995	0.9992	0.9987	0.9979	0.9967
27	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9996	0.9994	0.9989	0.9983
28	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9995	0.9991
29	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9996
30	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998
31	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
32	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Student's t-distribution table

										20.1	, I
						р					
df	0.75	0.80	0.85	0.90	0.95	0.975	0.980	0.990	0.995	0.9975	0.9990
1	1.0000	1.3764	1.9626	3.0777	6.3137	12.706	15.895	31.821	63.656	127.32	318.29
2	0.8165	1.0607	1.3862	1.8856	2.9200	4.3027	4.8487	6.9645	9.9250	14.089	22.329
3	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	3.4819	4.5407	5.8408	7.4532	10.214
4	0.7407	0.9410	1.1896	1.5332	2.1318	2.7765	2.9985	3.7469	4.6041	5.5975	7.1729
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	2.7565	3.3649	4.0321	4.7733	5.8935
6	0.7176	0.9057	1.1342	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	4.3168	5.2075
7	0.7111	0.8960	1.1192	1.4149	1.8946	2.3646	2.5168	2.9979	3.4995	4.0294	4.7853
8	0.7064	0.8889	1.1081	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	3.8325	4.5008
9	0.7027	0.8834	1.0997	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	3.6896	4.2969
10	0.6998	0.8791	1.0931	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	3.5814	4.1437
11	0.6974	0.8755	1.0877	1.3634	1.7959	2.2010	2.3281	2.7181	3.1058	3.4966	4.0248
12	0.6955	0.8726	1.0832	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.4284	3.9296
13	0.6938	0.8702	1.0795	1.3502	1.7709	2.1604	2.2816	2.6503	3.0123	3.3725	3.8520
14	0.6924	0.8681	1.0763	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.3257	3.7874
15	0.6912	0.8662	1.0735	1.3406	1.7531	2.1315	2.2485	2.6025	2.9467	3.2860	3.7329
16	0.6901	0.8647	1.0711	1.3368	1.7459	2.1199	2.2354	2.5835	2.9208	3.2520	3.6861
17			1.0690		1.7396	2.1098	2.2238	2.5669	2.8982	3.2224	3.6458
18	0.6884	0.8620	1.0672	1.3304	1.7341	2.1009	2.2137	2.5524	2.8784	3.1966	3.6105
19	0.6876	0.8610	1.0655	1.3277	1.7291	2.0930	2.2047	2.5395	2.8609	3.1737	3.5793
20	0.6870	0.8600	1.0640	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.1534	3.5518
21	0.6864	0.8591	1.0627	1.3232	1.7207	2.0796	2.1894	2.5176	2.8314	3.1352	3.5271
22	0.6858	0.8583	1.0614	1.3212	1.7171	2.0739	2.1829	2.5083	2.8188	3.1188	3.5050
23	0.6853	0.8575	1.0603	1.3195	1.7139	2.0687	2.1770	2.4999	2.8073	3.1040	3.4850
24	0.6848	0.8569	1.0593	1.3178	1.7109	2.0639	2.1715	2.4922	2.7970	3.0905	3.4668
25	0.6844	0.8562	1.0584	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.0782	3.4502
26	0.6840	0.8557	1.0575	1.3150	1.7056	2.0555	2.1620	2.4786	2.7787	3.0669	3.4350
27	0.6837	0.8551	1.0567	1.3137	1.7033	2.0518	2.1578	2.4727	2.7707	3.0565	3.4210
28	0.6834	0.8546	1.0560	1.3125	1.7011	2.0484	2.1539	2.4671	2.7633	3.0470	3.4082
29	0.6830	0.8542	1.0553	1.3114	1.6991	2.0452	2.1503	2.4620	2.7564	3.0380	3.3963
30	0.6828	0.8538	1.0547	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.0298	3.3852
31	0.6825	0.8534	1.0541	1.3095	1.6955	2.0395	2.1438	2.4528	2.7440	3.0221	3.3749
32	0.6822	0.8530	1.0535	1.3086	1.6939	2.0369	2.1409	2.4487	2.7385	3.0149	3.3653
33	0.6820	0.8526	1.0530	1.3077	1.6924	2.0345	2.1382	2.4448	2.7333	3.0082	3.3563
34	0.6818	0.8523	1.0525	1.3070	1.6909	2.0322	2.1356	2.4411	2.7284	3.0020	3.3480
35	0.6816	0.8520	1.0520	1.3062	1.6896	2.0301	2.1332	2.4377	2.7238	2.9961	3.3400
36	0.6814	0.8517	1.0516	1.3055	1.6883	2.0281	2.1309	2.4345	2.7195	2.9905	3.3326
37	0.6812	0.8514	1.0512	1.3049	1.6871	2.0262	2.1287	2.4314	2.7154	2.9853	3.3256
38	0.6810	0.8512	1.0508	1.3042	1.6860	2.0244	2.1267	2.4286	2.7116	2.9803	3.3190
39			1.0504		1.6849	2.0227	2.1247	2.4258	2.7079	2.9756	3.3127
40	0.6807	0.8507	1.0500	1.3031	1.6839	2.0211	2.1229	2.4233	2.7045	2.9712	3.3069
50	0.6794	0.8489	1.0473	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	2.9370	3.2614
60	0.6786	0.8477	1.0455	1.2958	1.6706	2.0003	2.0994	2.3901	2.6603	2.9146	3.2317
75	0.6778	0.8464	1.0436	1.2929	1.6654	1.9921	2.0901	2.3771	2.6430	2.8924	3.2024
100	0.6770	0.8452	1.0418	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	2.8707	3.1738
∞	0.6745	0.8416	1.0364	1.2816	1.6449	1.9600	2.0537	2.3263	2.5758	2.8070	3.0902

TABLA 3-Distribución Chi Cuadrado χ^2

 $P = Probabilidad \ de \ encontrar \ un \ valor \ mayor \ o \ igual \ que \ el \ chi \ cuadrado \ tabulado, \ v = Grados \ de \ Libertad$

γ/p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	10,8274	9,1404	7,8794	6,6349	5,0239	3,8415	2,7055	2,0722	1,6424	1,3233	1,0742	0,8735	0,7083	0,5707	0,4549
2	13,8150	11,9827	10,5965	9,2104	7,3778	5,9915	4,6052	3,7942	3,2189	2,7726	2,4079	2,0996	1,8326	1,5970	1,3863
3	16,2660	14,3202	12,8381	11,3449	9,3484	7,8147	6,2514	5,3170	4,6416	4,1083	3,6649	3,2831	2,9462	2,6430	2,3660
4	18,4662	16,4238	14,8602	13,2767	11,1433	9,4877	7,7794	6,7449	5,9886	5,3853	4,8784	4,4377	4,0446	3,6871	3,3567
5	20,5147	18,3854	16,7496	15,0863	12,8325	11,0705	9,2363	8,1152	7,2893	6,6257	6,0644	5,5731	5,1319	4,7278	4,3515
6	22,4575	20,2491	18,5475	16,8119	14,4494	12,5916	10,6446	9,4461	8,5581	7,8408	7,2311	6,6948	6,2108	5,7652	5,3481
7	24,3213	22,0402	20,2777	18,4753	16,0128	14,0671	12,0170	10,7479	9,8032	9,0371	8,3834	7,8061	7,2832	6,8000	6,3458
8	26,1239	23,7742	21,9549	20,0902	17,5345	15,5073	13,3616	12,0271	11,0301	10,2189	9,5245	8,9094	8,3505	7,8325	7,3441
9	27,8767	25,4625	23,5893	21,6660	19,0228	16,9190	14,6837	13,2880	12,2421	11,3887	10,6564	10,0060	9,4136	8,8632	8,3428
10	29,5879	27,1119	25,1881	23,2093	20,4832	18,3070	15,9872	14,5339	13,4420	12,5489	11,7807	11,0971	10,4732	9,8922	9,3418
11	31,2635	28,7291	26,7569	24,7250	21,9200	19,6752	17,2750	15,7671	14,6314	13,7007	12,8987	12,1836	11,5298	10,9199	10,3410
12	32,9092	30,3182	28,2997	26,2170	23,3367	21,0261	18,5493	16,9893	15,8120	14,8454	14,0111	13,2661	12,5838	11,9463	11,3403
13	34,5274	31,8830	29,8193	27,6882	24,7356	22,3620	19,8119	18,2020	16,9848	15,9839	15,1187	14,3451	13,6356	12,9717	12,3398
14	36,1239	33,4262	31,3194	29,1412	26,1189	23,6848	21,0641	19,4062	18,1508	17,1169	16,2221	15,4209	14,6853	13,9961	13,3393
15	37,6978	34,9494	32,8015	30,5780	27,4884	24,9958	22,3071	20,6030	19,3107	18,2451	17,3217	16,4940	15,7332	15,0197	14,3389
16	39,2518	36,4555	34,2671	31,9999	28,8453	26,2962	23,5418	21,7931	20,4651	19,3689	18,4179	17,5646	16,7795	16,0425	15,3385
17	40,7911	37,9462	35,7184	33,4087	30,1910	27,5871	24,7690	22,9770	21,6146	20,4887	19,5110	18,6330	17,8244	17,0646	16,3382
18	42,3119	39,4220	37,1564	34,8052	31,5264	28,8693	25,9894	24,1555	22,7595	21,6049	20,6014	19,6993	18,8679	18,0860	17,3379
19	43,8194	40,8847	38,5821	36,1908	32,8523	30,1435	27,2036	25,3289	23,9004	22,7178	21,6891	20,7638	19,9102	19,1069	18,3376
20	45,3142	42,3358	39,9969	37,5663	34,1696	31,4104	28,4120	26,4976	25,0375	23,8277	22,7745	21,8265	20,9514	20,1272	19,3374
21	46,7963	43,7749	41,4009	38,9322	35,4789	32,6706	29,6151	27,6620	26,1711	24,9348	23,8578	22,8876	21,9915	21,1470	20,3372
22	48,2676	45,2041	42,7957	40,2894	36,7807	33,9245	30,8133	28,8224	27,3015	26,0393	24,9390	23,9473	23,0307	22,1663	21,3370
23	49,7276	46,6231	44,1814	41,6383	38,0756	35,1725	32,0069	29,9792	28,4288	27,1413	26,0184	25,0055	24,0689	23,1852	22,3369
24	51,1790	48,0336	45,5584	42,9798	39,3641	36,4150	33,1962	31,1325	29,5533	28,2412	27,0960	26,0625	25,1064	24,2037	23,3367
25	52,6187	49,4351	46,9280	44,3140	40,6465	37,6525	34,3816	32,2825	30,6752	29,3388	28,1719	27,1183	26,1430	25,2218	24,3366
26	54,0511	50,8291	48,2898	45,6416	41,9231	38,8851	35,5632	33,4295	31,7946	30,4346	29,2463	28,1730	27,1789	26,2395	25,3365
27	55,4751	52,2152	49,6450	46,9628	43,1945	40,1133	36,7412	34,5736	32,9117	31,5284	30,3193	29,2266	28,2141	27,2569	26,3363
28	56,8918	53,5939	50,9936	48,2782	44,4608	41,3372	37,9159	35,7150	34,0266	32,6205	31,3909	30,2791	29,2486	28,2740	27,3362
29	58,3006	54,9662	52,3355	49,5878	45,7223	42,5569	39,0875	36,8538	35,1394	33,7109	32,4612	31,3308	30,2825	29,2908	28,3361

TABLA 3-Distribución Chi Cuadrado χ^2 . (Continuación)

γ/p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
30	59,7022	56,3325	53,6719	50,8922	46,9792	43,7730	40,2560	37,9902	36,2502	34,7997	33,5302	32,3815	31,3159	30,3073	29,3360
31	61,0980	57,6921	55,0025	52,1914	48,2319	44,9853	41,4217	39,1244	37,3591	35,8871	34,5981	33,4314	32,3486	31,3235	30,3359
32	62,4873	59,0461	56,3280	53,4857	49,4804	46,1942	42,5847	40,2563	38,4663	36,9730	35,6649	34,4804	33,3809	32,3394	31,3359
33	63,8694	60,3953	57,6483	54,7754	50,7251	47,3999	43,7452	41,3861	39,5718	38,0575	36,7307	35,5287	34,4126	33,3551	32,3358
34	65,2471	61,7382	58,9637	56,0609	51,9660	48,6024	44,9032	42,5140	40,6756	39,1408	37,7954	36,5763	35,4438	34,3706	33,3357
35	66,6192	63,0760	60,2746	57,3420	53,2033	49,8018	46,0588	43,6399	41,7780	40,2228	38,8591	37,6231	36,4746	35,3858	34,3356
36	67,9850	64,4097	61,5811	58,6192	54,4373	50,9985	47,2122	44,7641	42,8788	41,3036	39,9220	38,6693	37,5049	36,4008	35,3356
37	69,3476	65,7384	62,8832	59,8926	55,6680	52,1923	48,3634	45,8864	43,9782	42,3833	40,9839	39,7148	38,5348	37,4156	36,3355
38	70,7039	67,0628	64,1812	61,1620	56,8955	53,3835	49,5126	47,0072	45,0763	43,4619	42,0450	40,7597	39,5643	38,4302	37,3354
39	72,0550	68,3830	65,4753	62,4281	58,1201	54,5722	50,6598	48,1263	46,1730	44,5395	43,1053	41,8040	40,5935	39,4446	38,3354
40	73,4029	69,6987	66,7660	63,6908	59,3417	55,7585	51,8050	49,2438	47,2685	45,6160	44,1649	42,8477	41,6222	40,4589	39,3353
45	80,0776	76,2229	73,1660	69,9569	65,4101	61,6562	57,5053	54,8105	52,7288	50,9849	49,4517	48,0584	46,7607	45,5274	44,3351
50	86,6603	82,6637	79,4898	76,1538	71,4202	67,5048	63,1671	60,3460	58,1638	56,3336	54,7228	53,2576	51,8916	50,5923	49,3349
55	93,1671	89,0344	85,7491	82,2920	77,3804	73,3115	68,7962	65,8550	63,5772	61,6650	59,9804	58,4469	57,0160	55,6539	54,3348
60	99,6078	95,3443	91,9518	88,3794	83,2977	79,0820	74,3970	71,3411	68,9721	66,9815	65,2265	63,6277	62,1348	60,7128	59,3347
70	112,3167	107,8079	104,2148	100,4251	95,0231	90,5313	85,5270	82,2553	79,7147	77,5766	75,6893	73,9677	72,3583	70,8236	69,3345
80	124,8389	120,1018	116,3209	112,3288	106,6285	101,8795	96,5782	93,1058	90,4053	88,1303	86,1197	84,2840	82,5663	80,9266	79,3343
90	137,2082	132,2554	128,2987	124,1162	118,1359	113,1452	107,5650	103,9040	101,0537	98,6499	96,5238	94,5809	92,7614	91,0234	89,3342
100	149,4488	144,2925	140,1697	135,8069	129,5613	124,3421	118,4980	114,6588	111,6667	109,1412	106,9058	104,8615	102,9459	101,1149	99,3341
120	173,6184	168,0814	163,6485	158,9500	152,2113	146,5673	140,2326	136,0620	132,8063	130,0546	127,6159	125,3833	123,2890	121,2850	119,3340
140	197,4498	191,5653	186,8465	181,8405	174,6478	168,6130	161,8270	157,3517	153,8537	150,8941	148,2686	145,8629	143,6043	141,4413	139,3339
160	221,0197	214,8081	209,8238	204,5300	196,9152	190,5164	183,3106	178,5517	174,8283	171,6752	168,8759	166,3092	163,8977	161,5868	159,3338
180	244,3723	237,8548	232,6198	227,0563	219,0442	212,3039	204,7036	199,6786	195,7434	192,4086	189,4462	186,7282	184,1732	181,7234	179,3338
200	267,5388	260,7350	255,2638	249,4452	241,0578	233,9942	226,0210	220,7441	216,6088	213,1022	209,9854	207,1244	204,4337	201,8526	199,3337
250	324,8306	317,3609	311,3460	304,9393	295,6885	287,8815	279,0504	273,1944	268,5987	264,6970	261,2253	258,0355	255,0327	252,1497	249,3337
300	381,4239	373,3509	366,8439	359,9064	349,8745	341,3951	331,7885	325,4090	320,3971	316,1383	312,3460	308,8589	305,5741	302,4182	299,3336
500	603,4458	593,3580	585,2060	576,4931	563,8514	553,1269	540,9303	532,8028	526,4014	520,9505	516,0874	511,6081	507,3816	503,3147	499,3335
600	712,7726	701,8322	692,9809	683,5155	669,7690	658,0936	644,8004	635,9329	628,8157	622,9876	617,6713	612,7718	608,1468	603,6942	599,3335

TABLA 3-Distribución Chi Cuadrado χ^2 . (Continuación)

γ/p	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
1	0,3573	0,2750	0,2059	0,1485	0,1015	0,0642	0,0358	0,0158	0,0039	0,0010	0,0002	0,0000	0,0000	0,0000
2	1,1957	1,0217	0,8616	0,7133	0,5754	0,4463	0,3250	0,2107	0,1026	0,0506	0,0201	0,0100	0,0050	0,0020
3	2,1095	1,8692	1,6416	1,4237	1,2125	1,0052	0,7978	0,5844	0,3518	0,2158	0,1148	0,0717	0,0449	0,0243
4	3,0469	2,7528	2,4701	2,1947	1,9226	1,6488	1,3665	1,0636	0,7107	0,4844	0,2971	0,2070	0,1449	0,0908
5	3,9959	3,6555	3,3251	2,9999	2,6746	2,3425	1,9938	1,6103	1,1455	0,8312	0,5543	0,4118	0,3075	0,2102
6	4,9519	4,5702	4,1973	3,8276	3,4546	3,0701	2,6613	2,2041	1,6354	1,2373	0,8721	0,6757	0,5266	0,3810
7	5,9125	5,4932	5,0816	4,6713	4,2549	3,8223	3,3583	2,8331	2,1673	1,6899	1,2390	0,9893	0,7945	0,5985
8	6,8766	6,4226	5,9753	5,5274	5,0706	4,5936	4,0782	3,4895	2,7326	2,1797	1,6465	1,3444	1,1042	0,8571
9	7,8434	7,3570	6,8763	6,3933	5,8988	5,3801	4,8165	4,1682	3,3251	2,7004	2,0879	1,7349	1,4501	1,1519
10	8,8124	8,2955	7,7832	7,2672	6,7372	6,1791	5,5701	4,8652	3,9403	3,2470	2,5582	2,1558	1,8274	1,4787
11	9,7831	9,2373	8,6952	8,1479	7,5841	6,9887	6,3364	5,5778	4,5748	3,8157	3,0535	2,6032	2,2321	1,8338
12	10,7553	10,1820	9,6115	9,0343	8,4384	7,8073	7,1138	6,3038	5,2260	4,4038	3,5706	3,0738	2,6612	2,2141
13	11,7288	11,1291	10,5315	9,9257	9,2991	8,6339	7,9008	7,0415	5,8919	5,0087	4,1069	3,5650	3,1118	2,6172
14	12,7034	12,0785	11,4548	10,8215	10,1653	9,4673	8,6963	7,7895	6,5706	5,6287	4,6604	4,0747	3,5820	3,0407
15	13,6790	13,0298	12,3809	11,7212	11,0365	10,3070	9,4993	8,5468	7,2609	6,2621	5,2294	4,6009	4,0697	3,4825
16	14,6555	13,9827	13,3096	12,6243	11,9122	11,1521	10,3090	9,3122	7,9616	6,9077	5,8122	5,1422	4,5734	3,9417
17	15,6328	14,9373	14,2406	13,5307	12,7919	12,0023	11,1249	10,0852	8,6718	7,5642	6,4077	5,6973	5,0916	4,4162
18	16,6108	15,8932	15,1738	14,4399	13,6753	12,8570	11,9462	10,8649	9,3904	8,2307	7,0149	6,2648	5,6234	4,9048
19	17,5894	16,8504	16,1089	15,3517	14,5620	13,7158	12,7727	11,6509	10,1170	8,9065	7,6327	6,8439	6,1673	5,4067
20	18,5687	17,8088	17,0458	16,2659	15,4518	14,5784	13,6039	12,4426	10,8508	9,5908	8,2604	7,4338	6,7228	5,9210
21	19,5485	18,7683	17,9843	17,1823	16,3444	15,4446	14,4393	13,2396	11,5913	10,2829	8,8972	8,0336	7,2889	6,4467
22	20,5288	19,7288	18,9243	18,1007	17,2396	16,3140	15,2787	14,0415	12,3380	10,9823	9,5425	8,6427	7,8648	6,9829
23	21,5095	20,6902	19,8657	19,0211	18,1373	17,1865	16,1219	14,8480	13,0905	11,6885	10,1957	9,2604	8,4503	7,5291
24	22,4908	21,6525	20,8084	19,9432	19,0373	18,0618	16,9686	15,6587	13,8484	12,4011	10,8563	9,8862	9,0441	8,0847
25	23,4724	22,6156	21,7524	20,8670	19,9393	18,9397	17,8184	16,4734	14,6114	13,1197	11,5240	10,5196	9,6462	8,6494
26	24,4544	23,5794	22,6975	21,7924	20,8434	19,8202	18,6714	17,2919	15,3792	13,8439	12,1982	11,1602	10,2561	9,2222
27	25,4367	24,5440	23,6437	22,7192	21,7494	20,7030	19,5272	18,1139	16,1514	14,5734	12,8785	11,8077	10,8733	9,8029
28	26,4195	25,5092	24,5909	23,6475	22,6572	21,5880	20,3857	18,9392	16,9279	15,3079	13,5647	12,4613	11,4973	10,3907
29	27,4025	26,4751	25,5391	24,5770	23,5666	22,4751	21,2468	19,7677	17,7084	16,0471	14,2564	13,1211	12,1278	10,9861

TABLA 3-Distribución Chi Cuadrado χ^2 . (Continuación)

γ/p	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
30	28,3858	27,4416	26,4881	25,5078	24,4776	23,3641	22,1103	20,5992	18,4927	16,7908	14,9535	13,7867	12,7646	11,5876
31	29,3694	28,4087	27,4381	26,4397	25,3901	24,2551	22,9762	21,4336	19,2806	17,5387	15,6555	14,4577	13,4073	12,1961
32	30,3533	29,3763	28,3889	27,3728	26,3041	25,1478	23,8442	22,2706	20,0719	18,2908	16,3622	15,1340	14,0555	12,8104
33	31,3375	30,3444	29,3405	28,3069	27,2194	26,0422	24,7143	23,1102	20,8665	19,0467	17,0735	15,8152	14,7092	13,4312
34	32,3219	31,3130	30,2928	29,2421	28,1361	26,9383	25,5864	23,9522	21,6643	19,8062	17,7891	16,5013	15,3679	14,0568
35	33,3065	32,2821	31,2458	30,1782	29,0540	27,8359	26,4604	24,7966	22,4650	20,5694	18,5089	17,1917	16,0315	14,6881
36	34,2913	33,2517	32,1995	31,1152	29,9730	28,7350	27,3363	25,6433	23,2686	21,3359	19,2326	17,8868	16,7000	15,3243
37	35,2764	34,2216	33,1539	32,0532	30,8933	29,6355	28,2138	26,4921	24,0749	22,1056	19,9603	18,5859	17,3730	15,9652
38	36,2617	35,1920	34,1089	32,9919	31,8146	30,5373	29,0931	27,3430	24,8839	22,8785	20,6914	19,2888	18,0501	16,6109
39	37,2472	36,1628	35,0645	33,9315	32,7369	31,4405	29,9739	28,1958	25,6954	23,6543	21,4261	19,9958	18,7318	17,2612
40	38,2328	37,1340	36,0207	34,8719	33,6603	32,3449	30,8563	29,0505	26,5093	24,4331	22,1642	20,7066	19,4171	17,9166
45	43,1638	41,9950	40,8095	39,5847	38,2910	36,8844	35,2895	33,3504	30,6123	28,3662	25,9012	24,3110	22,8994	21,2509
50	48,0986	46,8638	45,6100	44,3133	42,9421	41,4492	39,7539	37,6886	34,7642	32,3574	29,7067	27,9908	26,4636	24,6736
55	53,0367	51,7391	50,4204	49,0554	47,6105	46,0356	44,2448	42,0596	38,9581	36,3981	33,5705	31,7349	30,0974	28,1731
60	57,9775	56,6200	55,2394	53,8091	52,2938	50,6406	48,7587	46,4589	43,1880	40,4817	37,4848	35,5344	33,7909	31,7381
70	67,8664	66,3961	64,8990	63,3460	61,6983	59,8978	57,8443	55,3289	51,7393	48,7575	45,4417	43,2753	41,3323	39,0358
80	77,7631	76,1879	74,5825	72,9153	71,1445	69,2070	66,9938	64,2778	60,3915	57,1532	53,5400	51,1719	49,0430	46,5197
90	87,6661	85,9925	84,2854	82,5111	80,6247	78,5584	76,1954	73,2911	69,1260	65,6466	61,7540	59,1963	56,8918	54,1559
100	97,5744	95,8078	94,0046	92,1290	90,1332	87,9453	85,4406	82,3581	77,9294	74,2219	70,0650	67,3275	64,8571	61,9182
120	117,4041	115,4646	113,4825	111,4186	109,2197	106,8056	104,0374	100,6236	95,7046	91,5726	86,9233	83,8517	81,0726	77,7555
140	137,2476	135,1491	133,0028	130,7657	128,3800	125,7580	122,7476	119,0293	113,6594	109,1368	104,0343	100,6547	97,5908	93,9253
160	157,1019	154,8555	152,5564	150,1583	147,5988	144,7834	141,5475	137,5457	131,7560	126,8700	121,3457	117,6791	114,3496	110,3592
180	176,9652	174,5799	172,1373	169,5879	166,8653	163,8682	160,4206	156,1526	149,9687	144,7413	138,8205	134,8843	131,3050	127,0114
200	196,8359	194,3193	191,7409	189,0486	186,1717	183,0028	179,3550	174,8353	168,2785	162,7280	156,4321	152,2408	148,4262	143,8420
250	246,5387	243,7202	240,8297	237,8085	234,5768	231,0128	226,9048	221,8059	214,3915	208,0978	200,9387	196,1604	191,8020	186,5537
300	296,2700	293,1786	290,0062	286,6878	283,1353	279,2143	274,6901	269,0679	260,8781	253,9122	245,9727	240,6631	235,8126	229,9620
500	495,3734	491,3709	487,2569	482,9462	478,3231	473,2099	467,2962	459,9261	449,1467	439,9360	429,3874	422,3034	415,8081	407,9458
600	594,9938	590,6057	586,0930	581,3623	576,2859	570,6681	564,1661	556,0560	544,1801	534,0185	522,3654	514,5285	507,3385	498,6219

Statistical Tables for Students F distribution

Table 10 F distribution — inverse cdf

							df_1								
df_2	1	2	3	4	5	6	ui_ i	8	10	12	24	60	120	∞	
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	241.9	243.9	249.1	252.2	253.3	254.3	0.95
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.6	968.6	976.7	997.3	1010	1014	1018.3	0.975
1	4052	4999	5404	5624	5764	5859	5928	5981	6056	6107	6234	6313	6340	6366.0	0.99
1	405K	500K	540K	563K	576K	586K	593K	598K	606K	610K	624K	631K	634K	637K	0.999
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.40	19.41	19.45	19.48	19.49	19.50	0.95
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.40	39.41	39.46	39.48	39.49	39.50	0.975
2	98.50	99.00	99.16	99.25	99.30	99.33	99.36	99.38	99.40	99.42	99.46	99.48	99.49	99.50	0.99
2	998.4	998.8	999.3	999.3	999.3	999.3	999.3	999.3	999.3	999.3	999.3	999.3	999.3	999.3	0.999
3	10.13	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.785	8.745	8.638	8.572	8.549	8.526	0.95
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.42	14.34	14.12	13.99	13.95	13.90	0.975
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.23	27.05	26.60	26.32	26.22	26.13	0.99
3	167.1	148.5	141.1	137.1	134.6	132.8	131.6	130.6	129.2	128.3	125.9	124.4	124.0	123.5	0.999
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.964	5.912	5.774	5.688	5.658	5.628	0.95
4	12.218	10.649	9.979	9.604	9.364	9.197	9.074	8.980	8.844	8.751	8.511	8.360	8.309	8.257	0.975
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.55	14.37	13.93	13.65	13.56	13.46	0.99
4	74.13	61.25	56.17	53.43	51.72	50.52	49.65	49.00	48.05	47.41	45.77	44.75	44.40	44.05	0.999
5 5 5	6.608 10.01 16.26 47.18	5.786 8.434 13.27 37.12	5.409 7.764 12.06 33.20	5.192 7.388 11.39 31.08	5.050 7.146 10.97 29.75	4.950 6.978 10.67 28.83	4.876 6.853 10.46 28.17	4.818 6.757 10.29 27.65	4.735 6.619 10.05 26.91	4.678 6.525 9.888 26.42	4.527 6.278 9.466 25.13	4.431 6.123 9.202 24.33	4.398 6.069 9.112 24.06	4.365 6.015 9.020 23.78	0.95 0.975 0.99 0.999
6 6 6	5.987 8.813 13.75 35.51	5.143 7.260 10.92 27.00	4.757 6.599 9.780 23.71	4.534 6.227 9.148 21.92	4.387 5.988 8.746 20.80	4.284 5.820 8.466 20.03	4.207 5.695 8.260 19.46	4.147 5.600 8.102 19.03	4.060 5.461 7.874 18.41	4.000 5.366 7.718 17.99	3.841 5.117 7.313 16.90	3.740 4.959 7.057 16.21	3.705 4.904 6.969 15.98	3.669 4.849 6.880 15.75	0.95 0.975 0.99 0.999
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.637	3.575	3.410	3.304	3.267	3.230	0.95
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.761	4.666	4.415	4.254	4.199	4.142	0.975
7	12.25	9.547	8.451	7.847	7.460	7.191	6.993	6.840	6.620	6.469	6.074	5.824	5.737	5.650	0.99
7	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.08	13.71	12.73	12.12	11.91	11.70	0.999
8 8 8	5.318 7.571 11.26 25.41	4.459 6.059 8.649 18.49	4.066 5.416 7.591 15.83	3.838 5.053 7.006 14.39	3.688 4.817 6.632 13.48	3.581 4.652 6.371 12.86	3.500 4.529 6.178 12.40	3.438 4.433 6.029 12.05	3.347 4.295 5.814 11.54	3.284 4.200 5.667 11.19	3.115 3.947 5.279 10.30	3.005 3.784 5.032 9.728	2.967 3.728 4.946 9.532	2.928 3.670 4.859 9.333	0.95 0.975 0.99 0.999
9 9 9	5.117 7.209 10.56 22.86	4.256 5.715 8.022 16.39	3.863 5.078 6.992 13.90	3.633 4.718 6.422 12.56	3.482 4.484 6.057 11.71	3.374 4.320 5.802 11.13	3.293 4.197 5.613 10.70	3.230 4.102 5.467 10.37	3.137 3.964 5.257 9.894	3.073 3.868 5.111 9.570	2.900 3.614 4.729 8.724	2.787 3.449 4.483 8.186	2.748 3.392 4.398 8.002	2.707 3.333 4.311 7.813	0.95 0.975 0.99 0.999
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	2.978	2.913	2.737	2.621	2.580	2.538	0.95
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.717	3.621	3.365	3.198	3.140	3.080	0.975
10	10.04	7.559	6.552	5.994	5.636	5.386	5.200	5.057	4.849	4.706	4.327	4.082	3.996	3.909	0.99
10	21.04	14.90	12.55	11.28	10.48	9.926	9.517	9.204	8.754	8.446	7.638	7.122	6.944	6.763	0.999
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.854	2.788	2.609	2.490	2.448	2.404	0.95
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.664	3.526	3.430	3.173	3.004	2.944	2.883	0.975
11	9.646	7.206	6.217	5.668	5.316	5.069	4.886	4.744	4.539	4.397	4.021	3.776	3.690	3.602	0.99
11	19.69	13.81	11.56	10.35	9.579	9.047	8.655	8.355	7.923	7.625	6.848	6.348	6.175	5.999	0.999
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.753	2.687	2.505	2.384	2.341	2.296	0.95
12	6.554	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.374	3.277	3.019	2.848	2.787	2.725	0.975
12	9.330	6.927	5.953	5.412	5.064	4.821	4.640	4.499	4.296	4.155	3.780	3.535	3.449	3.361	0.99
12	18.64	12.97	10.80	9.633	8.892	8.378	8.001	7.711	7.292	7.005	6.249	5.763	5.593	5.420	0.999
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.602	2.534	2.349	2.223	2.178	2.131	0.95
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.147	3.050	2.789	2.614	2.552	2.487	0.975
14	8.862	6.515	5.564	5.035	4.695	4.456	4.278	4.140	3.939	3.800	3.427	3.181	3.094	3.004	0.99
14	17.14	11.78	9.730	8.622	7.922	7.436	7.078	6.802	6.404	6.130	5.407	4.938	4.773	4.604	0.999

Statistical Tables for Students F distribution

							df_1								
df_2	1	2	3	4	5	6	7	8	10	12	24	60	120	∞	
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.494	2.425	2.235	2.106	2.059	2.010	0.95
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	2.986	2.889	2.625	2.447	2.383	2.316	0.975
16	8.531	6.226	5.292	4.773	4.437	4.202	4.026	3.890	3.691	3.553	3.181	2.933	2.845	2.753	0.99
16	16.12	10.97	9.006	7.944	7.272	6.805	6.460	6.195	5.812	5.547	4.846	4.388	4.226	4.059	0.999
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.412	2.342	2.150	2.017	1.968	1.917	0.95
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.866	2.769	2.503	2.321	2.256	2.187	0.975
18	8.285	6.013	5.092	4.579	4.248	4.015	3.841	3.705	3.508	3.371	2.999	2.749	2.660	2.566	0.99
18	15.38	10.39	8.487	7.460	6.808	6.355	6.021	5.763	5.390	5.132	4.447	3.996	3.836	3.670	0.999
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.348	2.278	2.082	1.946	1.896	1.843	0.95
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.774	2.676	2.408	2.223	2.156	2.085	0.975
20	8.096	5.849	4.938	4.431	4.103	3.871	3.699	3.564	3.368	3.231	2.859	2.608	2.517	2.421	0.99
20	14.82	9.953	8.098	7.096	6.461	6.019	5.692	5.440	5.075	4.823	4.149	3.703	3.544	3.378	0.999
24	4.260	3.403	3.009	2.776	2.621	2.508	2.423	2.355	2.255	2.183	1.984	1.842	1.790	1.733	0.95
24	5.717	4.319	3.721	3.379	3.155	2.995	2.874	2.779	2.640	2.541	2.269	2.080	2.010	1.935	0.975
24	7.823	5.614	4.718	4.218	3.895	3.667	3.496	3.363	3.168	3.032	2.659	2.403	2.310	2.211	0.99
24	14.03	9.340	7.554	6.589	5.977	5.551	5.235	4.991	4.638	4.393	3.735	3.295	3.136	2.969	0.999
30	4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.165	2.092	1.887	1.740	1.683	1.622	0.95
30	5.568	4.182	3.589	3.250	3.026	2.867	2.746	2.651	2.511	2.412	2.136	1.940	1.866	1.787	0.975
30	7.562	5.390	4.510	4.018	3.699	3.473	3.305	3.173	2.979	2.843	2.469	2.208	2.111	2.006	0.99
30	13.29	8.773	7.054	6.125	5.534	5.122	4.817	4.582	4.239	4.001	3.357	2.920	2.760	2.589	0.999
40	4.085	3.232	2.839	2.606	2.449	2.336	2.249	2.180	2.077	2.003	1.793	1.637	1.577	1.509	0.95
40	5.424	4.051	3.463	3.126	2.904	2.744	2.624	2.529	2.388	2.288	2.007	1.803	1.724	1.637	0.975
40	7.314	5.178	4.313	3.828	3.514	3.291	3.124	2.993	2.801	2.665	2.288	2.019	1.917	1.805	0.99
40	12.61	8.251	6.595	5.698	5.128	4.731	4.436	4.207	3.874	3.643	3.011	2.574	2.410	2.233	0.999
50	4.034	3.183	2.790	2.557	2.400	2.286	2.199	2.130	2.026	1.952	1.737	1.576	1.511	1.438	0.95
50	5.340	3.975	3.390	3.054	2.833	2.674	2.553	2.458	2.317	2.216	1.931	1.721	1.639	1.545	0.975
50	7.171	5.057	4.199	3.720	3.408	3.186	3.020	2.890	2.698	2.563	2.183	1.909	1.803	1.683	0.99
50	12.22	7.956	6.336	5.459	4.901	4.512	4.222	3.998	3.671	3.443	2.817	2.378	2.211	2.026	0.999
60 60 60	4.001 5.286 7.077 11.97	3.150 3.925 4.977 7.768	2.758 3.343 4.126 6.171	2.525 3.008 3.649 5.307	2.368 2.786 3.339 4.757	2.254 2.627 3.119 4.372	2.167 2.507 2.953 4.086	2.097 2.412 2.823 3.865	1.993 2.270 2.632 3.542	1.917 2.169 2.496 3.315	1.700 1.882 2.115 2.694	1.534 1.667 1.836 2.252	1.467 1.581 1.726 2.082	1.389 1.482 1.601 1.890	0.95 0.975 0.99 0.999
80	3.960	3.111	2.719	2.486	2.329	2.214	2.126	2.056	1.951	1.875	1.654	1.482	1.411	1.325	0.95
80	5.218	3.864	3.284	2.950	2.730	2.571	2.450	2.355	2.213	2.111	1.820	1.599	1.508	1.400	0.975
80	6.963	4.881	4.036	3.563	3.255	3.036	2.871	2.742	2.551	2.415	2.032	1.746	1.630	1.494	0.99
80	11.67	7.540	5.972	5.123	4.582	4.204	3.923	3.705	3.386	3.162	2.545	2.099	1.924	1.720	0.999
100	3.936	3.087	2.696	2.463	2.305	2.191	2.103	2.032	1.927	1.850	1.627	1.450	1.376	1.283	0.95
100	5.179	3.828	3.250	2.917	2.696	2.537	2.417	2.321	2.179	2.077	1.784	1.558	1.463	1.347	0.975
100	6.895	4.824	3.984	3.513	3.206	2.988	2.823	2.694	2.503	2.368	1.983	1.692	1.572	1.427	0.99
100	11.50	7.408	5.857	5.017	4.482	4.107	3.829	3.612	3.296	3.074	2.458	2.009	1.829	1.615	0.999
120	3.920	3.072	2.680	2.447	2.290	2.175	2.087	2.016	1.910	1.834	1.608	1.429	1.352	1.254	0.95
120	5.152	3.805	3.227	2.894	2.674	2.515	2.395	2.299	2.157	2.055	1.760	1.530	1.433	1.310	0.975
120	6.851	4.787	3.949	3.480	3.174	2.956	2.792	2.663	2.472	2.336	1.950	1.656	1.533	1.381	0.99
120	11.38	7.321	5.781	4.947	4.416	4.044	3.767	3.552	3.237	3.016	2.402	1.950	1.767	1.543	0.999
&	3.841	2.996	2.605	2.372	2.214	2.099	2.010	1.938	1.831	1.752	1.517	1.318	1.221	1.000	0.95
	5.024	3.689	3.116	2.786	2.566	2.408	2.288	2.192	2.048	1.945	1.640	1.388	1.268	1.000	0.975
	6.635	4.605	3.782	3.319	3.017	2.802	2.639	2.511	2.321	2.185	1.791	1.473	1.325	1.000	0.99
	10.83	6.908	5.422	4.617	4.103	3.743	3.474	3.265	2.959	2.742	2.132	1.660	1.447	1.000	0.999