

Application Note

SPICE Modeling Report

35V Voltage Resistance 1A LDO Regulator BD00C0AWFP-C

In this report, the characteristics that can be confirmed by the simulation using the SPICE model of the regulator IC BD00C0AWFP-C will be described.

Simulation Environment

■ Circuit Simulator : PSpice / Cadence Design System, Inc.

■ Version Information : 17.2-2016

■ OS Information :Windows 10 64-bit Edition

File Information

■ Library File Name : BDxxC0AxFP.lib ■ Symbol File Name : BDxxC0AxFP.olb

■ Subcircuit and Symbol

Table 1. Correspondence Table

Product Name	Subcircuit	Symbol	
BD00C0AWFP-C			
BD00C0AWHFP-C	BD00C0AWFP (Rev:5.00)	BD00C0AWFP	
BD00C0AWFP2-C	,		
BD33C0AWFP-C			
BD33C0AWHFP-C	BD33C0AWFP (Rev:3.00)	BD33C0AWFP	
BD33C0AWFP2-C			
BD50C0AWFP-C			
BD50C0AWHFP-C	BD50C0AWFP (Rev:3.00)	BD50C0AWFP	
BD50C0AWFP2-C			
BD80C0AWFP-C			
BD80C0AWHFP-C	BD80C0AWFP (Rev:3.00)	BD80C0AWFP	
BD80C0AWFP2-C			
BD90C0AWFP-C			
BD90C0AWHFP-C	BD90C0AWFP (Rev:3.00)	BD90C0AWFP	
BD90C0AWFP2-C	,		

Product Name	Subcircuit	Symbol	
BD33C0AFP-C			
BD33C0AHFP-C	BD33C0AFP (Rev:3.00)	BD33C0AFP	
BD33C0AFP2-C			
BD50C0AFP-C			
BD50C0AHFP-C	BD50C0AFP (Rev:3.00)	BD50C0AFP	
BD50C0AFP2-C	,		
BD80C0AFP-C		BD80C0AFP	
BD80C0AHFP-C	BD80C0AFP (Rev:3.00)		
BD80C0AFP2-C	,		
BD90C0AFP-C			
BD90C0AHFP-C	BD90C0AFP (Rev:3.00)	BD90C0AFP	
BD90C0AFP2-C			

BD00C0AWFP SPICE MODEL

■ Terminal Information

Table 2. Pin Table

Terminal No.	Terminal Name
1	CTL
2	V _{CC}
3	NC1
4	Vo
5	ADJ
6	GND

Figure 1. Symbol of BD00C0AWFP

Verifiable Characteristics

Electrical Cl	haracteristics (vs. Datasheet)	. 3
	tics in SPICE (vs. Measured Waveform)	
✓	Circuit Current	. 4
✓	Shutdown Current	. 5
✓	Line Regulation	. 6
✓	Load Regulation	. 7
✓	Dropout Voltage	. 8
	Ripple Rejection	
	Circuit Current by Load	
	CTL Current vs CTL Voltage	
	CTL Voltage vs Output Voltage	

(Note 1) This model is not compatible with the influence of ambient temperature.
(Note 2) Please use the simulation results only as a design guide and the data reported herein is not a guaranteed value.

Moreover, the characteristics which are not included in the report may change depending on the actual board design and ROHM strongly recommend to double check those characteristics with actual board where the chips will be mounted on.

Electrical Characteristics (vs. Datasheet)

Table 3. Electrical Characteristics Comparison

Unless otherwise specified, Vcc=13.5V, Io=0mA, VcTL=5.0V (With SW). The resistor of between ADJ and Vo=56.7k Ω , ADJ and GND=10k Ω (Vo=5V)

Parameter	Modeled		lue	Unit	Error	Condition
	(Note 1)	Datasheet	SPICE			
Shutdown Current (With SW)	Yes	0	0.0	μA	1	V _{CTL} =0V
Circuit Current	Yes	0.5	0.50	mA	0.0%	
ADJ Terminal Voltage	Yes	0.750	0.7502	V	0.0%	I ₀ =50mA
Dropout Voltage	Yes	0.3	0.31	V	3.3%	V _{CC} =4.75V, I _O =500mA
Ripple Rejection	Yes	55	54.8	dB	0.4%	f=120Hz, Input Voltage Ripple=1Vrms, Io=100mA
Line Regulation	Yes	20	19.6	mV	2.0%	V ₀ +1.0V ≤ V _{CC} ≤ 26.5V
Load Regulation	Yes	0.050	0.0482	V	3.6%	5mA ≤ I _O ≤ 1A
CTL On Mode Voltage (With SW)	Yes	-	1.75	V	-	ACTIVE MODE
CTL Off Mode Voltage (With SW)	Yes	-	1.75	V	1	OFF MODE
CTL Bias Current (With SW)	Yes	25	25.0	μA	0.0%	V _{CTL} =5.0V

(Note 1) Yes: Model available (supported), No: Model not available" (not supported).

Table 4. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
Circuit Current	0.6	0.50	V	16.7%	-

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 5. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
Shutdown Current	0.5	0.0	μΑ	-	V _{CTL} =0V

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 6. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
Line Regulation	20	19.6	mV	2.0%	V ₀ +1.0V ≤ V _{CC} ≤ 26.5V

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 7. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
Load Regulation	0.050	0.0482	mV	3.6%	5mA ≤ I _O ≤ 1A

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 8. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
Dropout Voltage	0.3	0.31	V	3.3%	V _{CC} =4.75V, I _O =500mA

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 9. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
Ripple Rejection	53	54.8	dB	3.4%	f=120Hz, Input Voltage Ripple=1Vrms, Io=100mA

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 10. Comparison of Characteristics

ParameterMeasured
Result (Note 1)SPICE Simulation
ResultUnitErrorConditionCircuit Current0.660.519mA21.4%Io=500mA

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 11. Comparison of Characteristics

Figure 25.

CTL Current vs CTL Voltage

(SPICE Simulation)

Unless otherwise specified, V_{CC}=13.5V, V_{CTL}=5.0V, I_O=0mA, V_O=5.0V. (The resistor of between ADJ and V_O=56.7k Ω , ADJ and GND=10k Ω)

Figure 24.

CTL Current vs CTL Voltage

(Measured Waveform)

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
CTL Bias Current	25	25.0	μΑ	0.0%	-

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Table 12. Comparison of Characteristics

Parameter	Measured Result ^(Note 1)	SPICE Simulation Result	Unit	Error	Condition
CTL On Mode Voltage	1.7	1.70	mV	0.0%	ACTIVE MODE
CTL Off Mode Voltage	1.7	1.70	mV	0.0%	OFF MODE

(Note 1) The above data is based on a specific sample and it is not meant to be a guaranteed value.

Revision History

Date	Revision	Changes
Apr.2019	001	New Release

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/