Limits of functions Continuity of functions

Limit of a function at a point (by Heine)

The number g (or $\pm \infty$) is called **the limit of the function** f **at** x_0 if and only if for every sequence of arguments $\{x_n\}$ near x_0 that converges to x_0 , the sequence of values $\{f(x_n)\}$ converges to g (or $\pm \infty$).

$$\lim_{x \to x_0} f(x) = g, \qquad f(x) \xrightarrow{x \to x_0} g$$

◆□▶ ◆□▶ ◆注▶ ◆注▶主 めな○

Data Engineering

Limit of a function at a point (by Cauchy)

The number g is called **the limit of the function** f **at** x_0 if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \neq x_0$ that satisfy $|x - x_0| < \delta$ it is true that $|f(x) - g| < \varepsilon$.

$$\lim_{x \to x_0} f(x) = g, \qquad f(x) \xrightarrow{x \to x_0} g$$

- (ロ) (回) (注) (注) 注 り(()

Evaluating limits

Arithmetic

If limits of f(x) and g(x) exist at x_0 , then

•
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

•
$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$$
, where $c \in \mathbb{R}$

•
$$\lim_{x \to x_0} (f(x)g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right)$$

$$\bullet \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \quad , \text{ provided} \quad \lim_{x \to x_0} g(x) \neq 0$$

$$\bullet \lim_{x \to x_0} (f(x))^{g(x)} = \left(\lim_{x \to x_0} f(x)\right)^{\lim_{x \to x_0} g(x)}$$

• If
$$\lim_{x \to x_0} f(x) = y_0$$
 and $\lim_{y \to y_0} h(y) = q$ then $\lim_{x \to x_0} h(f(x)) = q$

Data Engineering Calculus 4 / 19

Evaluating limits in practice

- Use the Heine definition, that is, first substitute x_0 for x and hope that it results in a number (or $\pm \infty$)
- What if you get an undetermined symbol?

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right], \quad \left[0^{0}\right]$$

- simplify the expression
- use one of the known limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

• use the squeeze theorem

Squeeze (sandwich) theorem

If the functions f, g, and h are such that $f(x) \leq g(x) \leq h(x)$ for x near x_0 and

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = g$$

then

$$\lim_{x \to x_0} g(x) = g$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● める○

Limits at infinity

The essence of definitions (details are in textbooks)

• finite limit – for every sequence $x_n \to \infty$ $(x_n \to -\infty)$, $f(x_n) \to L$

$$\lim_{x \to \infty} f(x) = L \quad \left(\lim_{x \to -\infty} f(x) = L\right)$$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ か へ ②

Limits at infinity

The essence of definitions (details are in textbooks)

• infinite limit – for every sequence $x_n \to \infty$ $(x_n \to -\infty)$, $f(x_n) \to \pm \infty$

$$\lim_{x \to \infty} f(x) = \pm \infty \quad \left(\lim_{x \to -\infty} f(x) = \pm \infty \right)$$

Evaluating limits at infinity

- We proceed as we did with limits of sequences
- Be careful with limits at $x \to -\infty$
- We use the squeeze theorem

•

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

• Theorem: The product of a function that converges to zero and a bounded function, converges to zero.

One-sided limits

One-sided limits

Definitions by Heine (shortened versions)

• Left-hand limit at x_0 – for every sequence $x_n \to x_0^-$ the sequence $f(x_n) \to g$ (or ∞)

$$\lim_{x \to x_0^-} f(x) = g \,(\text{ or } \infty)$$

• Right-handed limit at x_0 – for every sequence $x_n \to x_0^+$ the sequence $f(x_n) \to g$ (or ∞)

$$\lim_{x \to x_0^+} f(x) = g \,(\text{ or } \infty)$$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · かなぐ

The connection between various limits

The necessary and sufficient condition

$$\lim_{x \to x_0} f(x) = g \quad \Longleftrightarrow \quad \lim_{x \to x_0^+} f(x) = g \quad \text{and} \quad \lim_{x \to x_0^-} f(x) = g$$

Example

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 3^+} f(x) =$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 3^-} f(x) =$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 3} f(x) =$$

f(3) =

f(1) =

Does one-sided limit always exist?

$$\lim_{x \to 0^+} \cos \frac{1}{x} = ?$$

If one-sided limit is infinite ...

Vertical asymptote

We say that $x = x_0$ is the **vertical asymptote** of f(x) if

$$\lim_{x\to x_0} f(x) = \pm \infty \quad \text{or} \quad \lim_{x\to x_0^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x\to x_0^-} f(x) = \pm \infty$$

- 4 ロ b 4 個 b 4 種 b 4 種 b 2 種 り Q ()

Continuity

Continuity at a point

Definition

Let f be defined at and near x_0 .

We say that the function is **continuous at** x_0 if and only if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Otherwise we say that the function is discontinuous at x_0 .

If the function is defined only on one side of x_0 , then we say that it is continuous from the left or from the right.

Data Engineering

Points of discontinuity

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

$$\bullet \ x = 5: \quad \lim_{x \to 5} f(x) = \infty$$

Types of discontinuities

$$x = 1, x = 2$$
: removable, $x = 3$: jump, $x = 5$: infinite

17 / 19

If f and g are continuous at x_0 , then the following functions are also continuous at x_0 .

- $f \pm g$
- \bullet $c \cdot f$

• $\frac{f}{g}$, o ile $g(x_0) \neq 0$

 $\bullet f \cdot q$

- $f^{n/m}$, $f(x_0) \ge 0$ if m even
- If g is continuous at x_0 and f is continuous at $g(x_0)$, then the composite function $(f \circ g)(x) = f(g(x))$ is continuous at x_0 .

Definition

A function is **continuous on an interval I** if it is continuous at every point of I. At the endpoints continuity means from the right or left.

A function is **continuous on its domain** if it is continuous at every point of the domain.

Functions continuous at all points of their domains

Polynomials, Rational, Radical, Trigonometric, Exponential, Logarithmic functions.

Continuity of an inverse function

If f is continuous and increasing (or decreasing) on an interval $A \subset \mathbb{R}$ then the invers function $f^{-1}(A)$ is also continuous and increasing (or decreasing) on the interval f(A).