LISTA DE EXERCICIOS #1

44. Determine the operating point and the small-signal model of Q_1 for each of the circuits shown in Fig. 4.75. Assume $I_S=3\times 10^{-17}$ A, $\beta=100$, and $V_A=\infty$.

Figure 4.75

52. Determine the region of operation of Q_1 in each of the circuits shown in Fig. 4.80. Assume $I_S = 5 \times 10^{-16} \text{ A}, \beta = 100, V_A = \infty.$

53. Consider the circuit shown in Fig. 4.81, where, $I_{S1}=3I_{S2}=5\times 10^{-16}~{\rm A},~\beta_1=100,~\beta_2=50,~V_A=\infty,$ and $R_C=500~\Omega.$

Figure 4.81

- (a) We wish to forward-bias the collector-base junction of Q_2 by no more than 200 mV. What is the maximum allowable value of V_{in} ?
- (b) With the value found in (a), calculate the small-signal parameters of Q_1 and Q_2 and construct the equivalent circuit.

6.57 The NMOS transistor in the circuit of Fig. P6.57 has $V_t = 0.5 \text{ V}_{\odot} k'_n W/L = 2 \text{ mA/V}^2$, and $V_A = 20 \text{ V}$.

FIGURE P6.57

- (a) Neglecting the dc current in the feedback network and the effect of r_o , find V_{GS} and V_{DS} . Now, find the dc current in the feedback network, and verify that you were justified in neglecting it.
- (b) Find the small-signal voltage gain, v_o/v_i . What is the peak of the largest output sine-wave signal that is possible while the NMOS remains in saturation? What is the corresponding input signal?
- (c) Find the small-signal input resistance R_{in} .
- **6.124** The BJTs in the Darlington follower of Fig. P6.124 have $\beta_0 = 100$. If the follower is fed with a source having a
- $100\text{-k}\Omega$ resistance and is loaded with $1\text{ k}\Omega$, find the input resistance and the output resistance (excluding the load). Also find the overall voltage gain, both open-circuited and with load.

FIGURE P6.124