Boolean Logic Gates

ian.mcloughlin@atu.ie

Last updated: 26 September 2023

Gates

Tables

	x_2					
0	0 1 0 1	0	0	0	1	1
0	1	0	1	1	1	1
1	0	0	1	1	1	0
1	1	1	1	0	0	0

Universal nand

x_1	x_2	$x_1 \wedge x_1$	$x_2 \bar{\wedge} x_2$	\land	$ x_1 \lor x_2$
0	0	1	1	0	0
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	1	1

All Possible One-Bit Gates

$$g_i: \{0,1\} \to \{0,1\}$$

x	80	<i>g</i> 1	82	<i>8</i> 3
0	0	0	1 0	1
1	0	1	0	1

Nand logic - wikipedia, 2023. URL https://en.wikipedia.org/wiki/ NAND_logic

All Possible Two-Bit Gates

 $g_i: \{0,1\}^2 \to \{0,1\}$

x_1	x_2	<i>g</i> ₀	81	82	<i>8</i> 3	84	<i>8</i> 5	86	<i>8</i> 7	<i>g</i> ₈	<i>g</i> 9	8a	g_b	<i>8c</i>	8d	8e	g_f
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1