Documents autorisés : cours, TD, notes manuscrites. Barème indicatif (sur 30) : 5+11+4+3+7. Durée : 1h 30.

On joue à pile (noté 1) ou face (noté 0) à n reprise(s) (pièce parfaite) et on compte le nombre k de blocs formés par le même chiffre $(1 \le k \le n)$.

Exemples

- n = 5 00000 : 00000Il y a 1 bloc.
- n = 10 0010001101 : 00 1 000 11 0 1If y a k = 6 blocs.
- $\boxed{n = 12}$ 111100000111 : $\boxed{1111}$ $\boxed{00000}$ $\boxed{111}$ Il y a k = 3 blocs.
- I) On effectue $100\,000$ séries de n lancers et on compte le nombre de blocs dans chacune des séries, ainsi que le nombre moyen m de blocs obtenus.

On reproduit cette expérience pour différentes valeurs de n et on obtient le tableau suivant :

N	5	10	15	20	25
M	2,99947	5,49740	8,00773	10,50988	12,99620

- 1. Représenter graphiquement le nuage de points (N en abscisses, M en ordonnées).
- **2.** Préciser \overline{n} , \overline{m} , σ_N^2 , σ_M^2 et σ_{NM} .
- 3. Ajuster M en N selon la méthode des moindres carrés et préciser la formule obtenue :

$$M = aN + b \tag{1}$$

- 4. Etudier la qualité de l'ajustement en précisant r^2 .
- 5. En utilisant la formule obtenue, donner une estimation de m pour n=30.
- II) On note X_n la variable aléatoire qui compte le nombre de blocs au cours de n pile ou face. On souhaite déterminer la loi de probabilité de X_n , ainsi que $E(X_n)$.
 - 1. Préciser les nombres de manières B_n^k d'obtenir k blocs dans une série de n lancers $(1 \le k \le n)$ pour les différentes valeurs de n proposées (reproduire et compléter le tableau) :

$n \setminus k$	1	2	3	4
1				
2				
3				
4				

- **2.** On pose n = 3.
 - a) En déduire la loi de probabilité de X_3 , ainsi que $E(X_3)$ et $V(X_3)$ (reproduire et compléter le tableau):

x_i	1	2	3
$P\left(X_3 = x_i\right)$			
$E(X_3)$			
$V(X_3)$		7	

- b) Comparer à la moyenne estimée par la formule (1) ci-dessus en prenant n=3.
- c) Représenter graphiquement la loi de probabilité.
- **3.** Reprendre les questions pour n=4.
- III) On note M_3 le nombre maximal de 1 dans les blocs obtenus lors de 3 pile ou face.
 - 1. Préciser la loi conjointe du couple (X_3, M_3) . On présentera les résultats dans un tableau :

$X_3 \backslash M_3$	0	1	2	3
1				
2				
3				

2. Préciser la loi de probabilité de M_3 (reproduire et compléter le tableau suivant).

M_3	0	1	2	3
$P(M_3 = x_i)$				

IV) On démontre que dans le cas général, la loi de probabilité de X_n est définie par

$$P(X_n = i) = \frac{C_{n-1}^{i-1}}{2^{n-1}} = \frac{\binom{n-1}{i-1}}{2^{n-1}} \ (1 \le i \le n)$$
 (2)

Préciser $E(X_n)$ et $V(X_n)$.

Indication: en posant $f(x) = x(1+x)^{n-1}$, on pourra remarquer que $E(X) = \frac{f'(1)}{2^{n-1}}$, puis

en posant
$$g(x) = xf'(x)$$
 que $E(X^2) = \frac{g'(1)}{2^{n-1}}$ car $f(x) = \sum_{i=1}^n C_{n-1}^{i-1} x^i$.

 $D\'{e}monstration\ de\ (2)$: nombre manières de placer i-1 séparations parmi n-1 emplacements pour créer i blocs multiplié par deux (cas 0 et cas 1) divisé par 2^n (nombre de suites de 0 et de 1).

- - 1. Préciser
 - a) la loi de probabilité de X,
 - **b)** $\mu = E(X),$
 - c) $\sigma = \sigma_X$,
 - **d)** P(X=0),

e) P(X = 1).

Indication: $p \approx 0,246094$

- **2.** Pour calculer $P(10 \le X \le 30)$ et $P(X \ge 35)$ on utilise $X' \sim \mathcal{N}(\mu, \sigma)$. Préciser
 - a) $P(10 \le X \le 30) \approx P(9, 5 \le X' \le 30, 5),$
 - **b)** $P(X \ge 35) \approx P(X' \ge 34, 5).$

.