МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №4

'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №25

Студент: Хоанг Ван Куан Группа Р3266

Преподаватель: Машина Екатерина Александровна

1. Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

2. Порядок выполнения работы

- 1 часть: Вычислительная реализация задачи
 - 1. Сформировать таблицу табулирования заданной функции на указанном интервале

$$y = \frac{28x}{x^4 + 25}, \quad x \in [0,4], \quad h = 0,4$$

- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой
- 4. Выбрать наилучшее приближение
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения
- 2 часть: Программная реализация задачи
 - 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x)должна содержать от 8 до 12 точек)
 - 2. Реализовать метод наименьших квадратов, исследуя все указанные функции
 - 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений $x_i, y_i, \varphi(x_i), \varepsilon_i$
 - 4. Для линейной зависимости вычислить коэффициент корреляции Пирсона
 - 5. Программа должна отображать наилучшую аппроксимирующую функцию
 - 6. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом)
 - 7. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных

2

3. Рабочие формулы

Аппроксимировать f(x) функцией $\varphi(x)$

$$\varphi(x) = a_0 + a_1 x + \dots + a_n x^n$$

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения.

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^{n} x_i + \dots + a_{m-1} \sum_{i=1}^{n} x_i^{m-1} + a_m \sum_{i=1}^{n} x_i^m &= \sum_{i=1}^{n} y_i \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + \dots + a_{m-1} \sum_{i=1}^{n} x_i^m + a_m \sum_{i=1}^{n} x_i^{m+1} &= \sum_{i=1}^{n} x_i y_i \\ \dots &\dots &\dots \\ a_0 \sum_{i=1}^{n} x_i^m + a_1 \sum_{i=1}^{n} x_i^{m+1} + \dots + a_{m-1} \sum_{i=1}^{n} x_i^{2m-1} + a_m \sum_{i=1}^{n} x_i^{2m} &= \sum_{i=1}^{n} x_i^m y_i \end{cases}$$

в матричном виде:
$$\begin{vmatrix} n & \sum_{i=1}^n x_i & \dots & \sum_{i=1}^n x_i^m \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 & \dots & \sum_{i=1}^n x_i^{m+1} \\ \dots & \dots & \dots \\ \sum_{i=1}^n x_i^m & \sum_{i=1}^n x_i^{m+1} & \dots \sum_{i=1}^n x_i^{2m} \end{vmatrix} \cdot \begin{vmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{vmatrix} = \begin{vmatrix} \sum_{i=1}^n y_i \\ x_i \\ \dots \\ x_i \end{vmatrix}$$

Коэффициент корреляции

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Среднеквадратичное отклонение

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Выбор аппроксимирующей функции

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \varphi_{i})^{2}}{\sum_{i=1}^{n} \varphi_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} \varphi_{i})^{2}}$$

4. Вычислительная часть

Сформировать таблицу табулирования функции

$$y = \frac{28x}{x^4 + 25}, \quad x \in [0,4], \quad h = 0,4$$

х	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
у	0	0.448	0.882	1.241	1.42	1.366	1.155	0.907	0.69	0.522	0.399

Построить линейное и квадратичное приближения по 11 точкам заданного интервала

+ Линейное приближения:

Для определения вида зависимости. Выбираем многочлен первой степени и строим линейную модель $P_1(x) = ax + b$

Вычисляем суммы:

$$SX = \sum_{i=1}^{n} x_i = 22$$

$$SXX = \sum_{i=1}^{n} x_i^2 = 61,6$$

$$SY = \sum_{i=1}^{n} y_i = 9,03$$

$$SXY = \sum_{i=1}^{n} x_i y_i = 18,3728$$

Получим систему управнений для нахождения параметров a и b

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases} \rightarrow \begin{cases} 61,6a + 22b = 18,3728 \\ 22a + 11b = 9,03 \end{cases}$$

Решая систему, получим значения коэффициентов:

$$a \approx 0.0178$$

 $b \approx 0.785$

Проверим правильность выбора линейной модели. Для этого вычислим значения аппроксимирующей финкции $P_1(x) = 0.0178x + 0.785$

№ п.п	1	2	3	4	5	6	7	8	9	10	11
X	0	0.4	8.0	1.2	1.6	2	2.4	2.8	3.2	3.6	4.0
у	0	0.448	0.882	1.241	1.42	1.366	1.155	0.907	0.69	0.522	0.399
$P_1(x) = ax + b$	0.785	0.79212	0.79924	0.80636	0.81348	0.8206	0.82772	0.83484	0.84196	0.84908	0.8562
ε_i	-0.785	-0.34412	0.08276	0.43464	0.60652	0.5454	0.32728	0.07216	-0.15196	-0.32708	-0.4572

Определим меру отклонения $S = \sum_{i=1}^{n} \varepsilon_i^2 = 2.047$

Среднеквадратичное отклонение
$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}} = 0.4314$$

+ Квадратичное приближения:

Для определения вида зависимости. Выбираем многочлен второй степени и строим линейную модель $P_2(x) = a_0 + a_1 x + a_2 x^2$

Сумма квадратов отклонений запишется следующим образом:

$$S = \sum_{i=1}^{n} (a_0 + a_1 x + a_2 x^2 - y_i)^2 \to min$$

Вычислим:

$$\sum_{i=1}^{n} x_i = 22
 \sum_{i=1}^{n} x_i^3 = 193,6
 \sum_{i=1}^{n} y_i = 9,03
 \sum_{i=1}^{n} x_i^2 y_i = 45,5008$$

$$\sum_{i=1}^{n} x_i^2 = 61,6
 \sum_{i=1}^{n} x_i^4 = 648,5248
 \sum_{i=1}^{n} x_i y_i = 18,3728$$

Получим систему линейных управнений, решив которую, определим значения коэффициентов эмпирической формулы:

$$\begin{cases} 11a_0 + 22a_1 + 61,6a_2 = 9,03 \\ 22a_0 + 61,6a_1 + 193,6a_2 = 18,3728 \\ 61,6a_0 + 193,6a_1 + 648,5248a_2 = 45,5008 \end{cases} \rightarrow \begin{cases} a_0 = 0.095 \\ a_1 = 1.168 \\ a_2 = -0.288 \end{cases}$$

Проверим правильность выбора линейной модели. Для этого вычислим значения аппроксимирующей финкции $P_2(x) = -0.288x^2 + 1.168x + 0.095$

№ п.п	1	2	3	4	5	6	7	8	9	10	11
х	0	0.4	0.8	1.2	1.6	2	2.4	2.8	3.2	3.6	4.0
у	0	0.448	0.882	1.241	1.42	1.366	1.155	0.907	0.69	0.522	0.399
$P_2(x)=$											
$a_0 + a_1 x$											
$+ a_2 x^2$	0.095	0.51612	0.84508	1.08188	1.22652	1.279	1.23932	1.10748	0.88348	0.56732	0.159
ε_i	-0.095	-0.06812	0.03692	0.15912	0.19348	0.087	-0.08432	-0.20048	-0.19348	-0.04532	0.24

Определим меру отклонения $S = \sum_{i=1}^{n} \varepsilon_i^2 = 0.229$

Среднеквадратичное отклонение
$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}} = 0.1445$$

- Выбрать наилучшее приближение Наилучшее приближение: Квадратичное приближения
- Построить графики заданной функции, а также полученные линейное и квадратичное приближения

5. Листинг программы

from dataclasses import dataclass
import math

```
import numpy as np
@dataclass
class Result:
    coefficients: iter
    apply: callable
    function: str
   S: float
   deviation: float
   confidence: float
   r: float | None = None
   def __lt__(self, other):
       return self.deviation < other.deviation</pre>
    def __le__(self, other):
        return self.deviation == other.deviation
def getData(x, y):
    x = np.array(x)
   y = np.array(y)
   return x, y
# среднеквадратичное отклонение
def msr(phi, y):
   return (np.sum((phi - y) ** 2) / len(y)) ** 0.5
# достоверность аппроксимации
def confidence(phi, y):
   return 1 - np.sum((y - phi) ** 2) / (np.sum(phi ** 2) - np.sum(phi) ** 2 /
len(y))
# Коэффициент корреляции
def r(x, y):
   x0, y0 = np.mean(x), np.mean(y)
   return np.sum((x - x0) * (y - y0)) / (np.sum((x - x0) ** 2) * np.sum((y - y0)
** 2)) ** 0.5
# линейная функция - done
def Approximation_linear(x, y):
   x, y = getData(x, y)
    SX, SXX, SY, SXY = np.sum(x), np.sum(x ** 2), np.sum(y), np.sum(x * y)
    b, a = np.linalg.solve(
        np.array([[len(x), SX], [SX, SXX]]),
        np.array([SY, SXY])
    # Сумма квадратов отклонений
    phi = a * x + b
    S = np.sum((phi - y) ** 2)
    return Result(
        coefficients = (a, b),
```

```
apply = lambda x: a * x + b,
        function = f'\{a:.4f\}x + \{b:.4f\}',
        S = S,
        r = r(x, y),
        confidence = confidence(phi, y),
        deviation = msr(phi, y)
    )
# полиномиальная функция 2-й степени - done
def Approximation degree2(x, y):
    x, y = getData(x, y)
    SX, SXX, SXXX, SY, SXY, SXYY = np.sum(x), np.sum(x**2), np.sum(x**3),
np.sum(x**4), np.sum(y), np.sum(x*y), np.sum(x*x*y)
    a0, a1, a2 = np.linalg.solve(
        np.array([[len(x), SX, SXX], [SX, SXXX], [SXX, SXXXX]]),
        np.array([SY, SXY, SXXY])
    # Сумма квадратов отклонений
    phi = a2*x**2 + a1*x + a0
   S = np.sum((phi - y) ** 2)
   return Result(
        coefficients = (a0, a1, a2),
        apply = lambda x: a2*x**2 + a1*x + a0,
        function = f'\{a2:.4f\}x^2 + \{a1:.4f\}x + \{a0:.4f\}',
        S = S,
        deviation = msr(phi, y),
        confidence = confidence(phi, y)
    )
# полиномиальная функция 3-й степени - done
def Approximation_degree3(x, y):
   x, y = getData(x, y)
    SX,SX2, SX3, SX4, SX5, SX6, SY,SXY, SX2Y, SX3Y = np.sum(x), np.sum(x**2),
np.sum(x**3), np.sum(x**4), np.sum(x**5), np.sum(x**6), np.sum(y), np.sum(x*y),
np.sum(x*x*y), np.sum(x*x*x*y)
    a0, a1, a2, a3 = np.linalg.solve(
        np.array([[len(x), SX, SX2, SX3], [SX, SX2, SX3, SX4], [SX2, SX3, SX4,
SX5], [SX3, SX4, SX5, SX6]]),
       np.array([SY, SXY, SX2Y, SX3Y])
    # Сумма квадратов отклонений
    phi = a3*x**3 + a2*x**2 + a1*x + a0
    S = np.sum((phi - y) ** 2)
    return Result(
        coefficients = (a0, a1, a2),
        apply = lambda x: a3*x**3 + a2*x**2 + a1*x + a0,
        function = f'\{a3:.4f\}x^3 + \{a2:.4f\}x^2 + \{a1:.4f\}x + \{a0:.4f\}',
```

```
S = S,
        deviation = msr(phi, y),
        confidence = confidence(phi, y)
class LnException(Exception):
    pass
# логарифмическая функция - done
def Approximation_logarith(x, y):
    x, y = getData(x, y)
    if x[x < 0]:
        raise LnException('х должен быть больше чем 0')
    X = np.log(x)
    a, b = Approximation_linear(X, y).coefficients
    phi = a*np.log(x) + b
    S = np.sum((phi - y)** 2)
    return Result(
        coefficients = (a, b),
        apply = lambda x: a*math.log(x) + b,
        function = f'\{a:.4f\}\ln(x) + \{b:.4f\}',
        S = S,
        deviation = msr(phi, y),
        confidence = confidence(phi, y)
  степенная функция - done
def Approximation_power(x, y):
    x, y = getData(x,y)
    X, Y = np.log(x), np.log(y)
    B, A = Approximation_linear(X, Y).coefficients
    a, b = math.exp(A), B
    phi = a*x**b
    S = np.sum((phi - y)** 2)
    return Result(
        coefficients = (a, b),
        apply = lambda x: a*math.pow(x, b),
        function = f'\{a:.4f\}x^{b}:.4f\}',
        S = S,
        deviation = msr(phi, y),
        confidence = confidence(phi, y)
# экспоненциальная функция - done
def Approximation_exp(x, y):
    x, y = getData(x, y)
    Y = np.log(y)
    B, A = Approximation_linear(x, Y).coefficients
    a, b = math.exp(A), B
```

```
phi = a*np.exp(b*x)
S = np.sum((phi - y)** 2)

return Result(
    coefficients = (a, b),
    apply = lambda x: a*math.exp(b*x),
    function = f'{a:.4f}e^{b:.4f}x',
    S = S,
    deviation = msr(phi, y),
    confidence = confidence(phi, y)
)
```

6. Результаты выполнения программы


```
Введите '+' или '-' для выбора способа ввода: +
Вывод в файл (+/-): -
--- Линейная функция
\phi(x) = 1.6854x + 1.2168
S = 0.4730
\delta = 0.2600
R^2 = 0.9948
r = 0.9974
--- Полиномиальная функция 2-й степени
\phi(x) = -0.0589x^2 + 2.1974x + 0.3743
S = 0.0690
\delta = 0.0993
R^2 = 0.9992
--- Полиномиальная функция 3-й степени
\phi(x) = -0.0060x^3 + 0.0191x^2 + 1.9119x + 0.6398
S = 0.0594
\delta = 0.0921
R^2 = 0.9994
--- Экспоненциальная функция
\phi(x) = 2.7309e^{0.2346x}
S = 10.7071
\delta = 1.2368
R^2 = 0.9131
--- Логарифмическая функция
\phi(x) = 5.6500 \ln(x) + 1.1989
S = 4.1998
\delta = 0.7746
R^2 = 0.9520
--- Степенная функция
\phi(x) = 2.5421x^{0.8380}
S = 0.1544
\delta = 0.1485
R^2 = 0.9984
Лучше всего аппроксимирует, Полиномиальная функция 3-й степени: \delta = 0.092
```

7. Выводы

В результате выполнения данной лабораторной работой я познакомился с аппроксимация функции методом наименьших квадратов и реализовал их на языке программирования Python, закрепив знания.

Аппроксимация может потребоваться, например, в случае, если из эксперимента известны лишь некоторые значения функции и требуется найти неизвестное. Или же, если изначальная функция слишком сложна для регулярного использования.

Можно выделить следующие достоинства метода: расчеты довольны просты необходимо лишь найти коэффициенты, полученная функция также проста, разнообразие возможных аппроксимирующих функций.

Основным недостатком МНК является чувствительность оценок к резким выбросам, которые встречаются в исходных данных.