Analise exploratória.

Introdução.

Este Jupyter Notebook investiga a base de dados de propriedades acústicas disponíveis no site http://www.primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/ (http://www.primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/)
Objetivo da investigação é determinar as chances de algum algoritmo para detecção de gênero, seja por estatística tradicional ou por meio técnicas machine learning e redes neurais, possibilitando a implantação em dispositivos embarcados de baixo custo de memória e processamento restrito.

Propriedades acústicas medidas

As seguintes propriedades acústicas de cada voz são medidas:

- meanfreq: frequência média (em kHz) sobre as amostras compostas no sinal de arquivo de voz;
- sd : desvio padrão da frequência, sobre as amostras compostas no sinal de arquivo de voz;
- mediana : frequência mediana (em kHz) sobre as amostras compostas no sinal de arquivo de voz;
- Q25 : primeiro quantil (em kHz) sobre as amostras compostas no sinal de arquivo de voz;
- Q75 : terceiro quantil (em kHz) sobre as amostras compostas no sinal de arquivo de voz;
- IQR : intervalo interquartil (em kHz)sobre as amostras compostas no sinal de arquivo de voz;
- skew : média de assimetria da distribuição das frequências de vocal perdominante;
- kurt : curtose distribuição espectral da voz, domínio da frequência;
- sp.ent : entropia espectral, pureza da distribuição da voz em relação ao nível de ruído;
- sfm : nivelamento espectral, estima a planaridade de um espectro de frequência;
- modo : frequência de modo, ou seja, frequência dominante da voz;
- centrod : frequência central máxima visto no domínio da frequência;
- meanfun : média da frequência fundamental medida através do sinal acústico (Tonalidade base da voz);
- minfun : frequência fundamental mínima medida no sinal acústico (Tonalidade base da voz);
- maxfun : frequência fundamental máxima medida através do sinal acústico (Tonalidade base da voz);
- **meandom**: média da frequência dominante medida através do sinal acústico (média total das notas musicais mais graves da voz em relação ao sinal gravado);
- mindom: mínimo de frequência dominante medido através do sinal acústico:
- maxdom: máxima da frequência dominante medida através do sinal acústico;
- dfrange : faixa de frequência dominante medida através do sinal acústico;
- **modindx** : índice de modulação. Calculado como a diferença absoluta acumulada entre medições adjacentes de frequências fundamentais divididas pela faixa de frequência.
- label : rotulo de identificador da amostra em relação ao sexo, adicionado durante a gravação "male" ou
 "female".

Analise em python da base de propriedades acústicas.

In [1]:

```
%matplotlib inline
```

In [2]:

```
# Importa as bibliotecas
import pandas
import matplotlib.pyplot as plt
import numpy
#from pandas.tools.plotting import scatter_matrix
from pandas.plotting import scatter_matrix
import seaborn as sb
```

In [3]:

```
# Carrega os dados
url = ".\\baseDados\\voice.csv"
colunas = ["meanfreq","sd","median","Q25","Q75","IQR","skew","kurt","sp.ent","sfm","mod
e","centroid","meanfun","minfun","maxfun","meandom","mindom","maxdom","dfrange","modind
x","label"]
dataset = pandas.read_csv(url, names=colunas, sep = ",")
```

In [4]:

```
# PANDAS: Verificando alguns dados
exemplos = dataset.head(2)
print(exemplos)
   meanfreq
                   sd
                         median
                                      Q25
                                                Q75
                                                           IQR
                                                                     skew
\
                                           0.090193
            0.064241
                       0.032027
                                 0.015071
0
  0.059781
                                                     0.075122
                                                                12.863462
1
  0.066009
            0.067310 0.040229
                                 0.019414
                                           0.092666
                                                     0.073252
                                                                22.423285
```

```
kurt
                sp.ent
                             sfm
                                         centroid
                                                    meanfun
                                                               minfun
١
  274.402906 0.893369
                        0.491918
                                         0.059781
                                                   0.084279
                                                             0.015702
  634.613855 0.892193
                        0.513724
                                         0.066009
                                                   0.107937
                                                             0.015826
```

```
maxfun
           meandom
                      mindom
                                 maxdom
                                                     modindx
                                                              label
                                          dfrange
0.275862
          0.007812
                    0.007812
                              0.007812
                                         0.000000
                                                   0.000000
                                                               male
0.250000
          0.009014
                    0.007812
                              0.054688
                                         0.046875
                                                   0.052632
                                                               male
```

```
[2 rows x 21 columns]
```

In [5]:

```
dataset.head()
```

Out[5]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	s
0	0.059781	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462	274.402906	0.89
1	0.066009	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285	634.613855	0.89
2	0.077316	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155	1024.927705	0.84
3	0.151228	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.177296	0.96
4	0.135120	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.333713	0.97

5 rows × 21 columns

```
In [6]:
dataset.tail()
exemplos = dataset.tail(2)
print(exemplos)
     meanfreq
                      sd
                            median
                                         Q25
                                                   Q75
                                                             IQR
                                                                      sk
ew
               0.090628
                         0.184976
3166 0.143659
                                   0.043508
                                             0.219943
                                                        0.176435
65
3167 0.165509 0.092884
                         0.183044
                                   0.070072 0.250827
                                                        0.180756
29
                                                       meanfun
                                                                  minfun
          kurt
                  sp.ent
                               sfm
                                            centroid
3166 5.388298
               0.950436
                         0.675470
                                            0.143659
                                                     0.172375
                                                                0.034483
3167 5.769115 0.938829 0.601529
                                            0.165509
                                                     0.185607
                                                                0.062257
       maxfun
                                                                   label
                meandom
                            mindom
                                      maxdom
                                               dfrange
                                                         modindx
3166
     0.250000
               0.791360
                         0.007812
                                   3.593750
                                             3.585938
                                                        0.311002
                                                                  female
3167 0.271186 0.227022
                                   0.554688
                         0.007812
                                             0.546875
                                                        0.350000
                                                                  female
[2 rows x 21 columns]
4
```

Verifica valores nulos.

```
In [7]:
```

```
dfnull = dataset.isnull()
```

In [8]:

```
dfnull.head(3)
Out[8]:
                    median
                              Q25
                                    Q75
                                           IQR skew
    meanfreq
                sd
                                                        kurt
                                                             sp.ent
                                                                      sfm
                                                                              centroid m
0
       False
              False
                      False
                             False
                                   False
                                          False
                                                False
                                                       False
                                                              False
                                                                     False
                                                                                  False
1
       False
              False
                      False
                             False
                                   False
                                          False
                                                False
                                                       False
                                                                                 False
                                                              False
                                                                     False
2
       False False
                      False False False
                                         False False
                                                       False
                                                              False False ...
                                                                                 False
3 rows × 21 columns
In [9]:
dfnull.isnull().sum()
Out[9]:
meanfreq
              0
sd
              0
median
              0
Q25
              0
Q75
              0
IQR
              0
skew
              0
kurt
              0
sp.ent
              0
sfm
              0
mode
              0
centroid
              0
meanfun
              0
minfun
              0
maxfun
              0
meandom
              0
mindom
              0
{\tt maxdom}
              0
dfrange
              0
modindx
              0
label
```

Gerando gráfico com valores nulos.

dtype: int64

In [10]:

```
#!pip install missingno
#!pip3 install missingno
import missingno as msno
msno.matrix(dataset,figsize=(12,5))
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x13a93730>

Compara a dimensão da tabela original com nova tabela onde foi removidos os elementos nulos.

```
In [11]:
```

```
dfnull.dropna()
print(dfnull.shape)
(3168, 21)
```

In [12]:

```
# PANDAS: Verifica a dimensão dos dados (linhas, colunas)
dim = dataset.shape
print(dim)
(3168, 21)
```

Tabela sem elementos nulos tem a mesma dimenssão da tabela original, portanto a base não possui valores nulos.

Verifica os tipos de dados de cada atributo

In [13]:

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3168 entries, 0 to 3167
Data columns (total 21 columns):
meanfreq
            3168 non-null float64
sd
            3168 non-null float64
median
            3168 non-null float64
Q25
            3168 non-null float64
Q75
            3168 non-null float64
IQR
            3168 non-null float64
skew
            3168 non-null float64
            3168 non-null float64
kurt
            3168 non-null float64
sp.ent
sfm
            3168 non-null float64
mode
            3168 non-null float64
           3168 non-null float64
centroid
            3168 non-null float64
meanfun
minfun
            3168 non-null float64
maxfun
           3168 non-null float64
meandom
            3168 non-null float64
mindom
            3168 non-null float64
maxdom
            3168 non-null float64
            3168 non-null float64
dfrange
            3168 non-null float64
modindx
label
            3168 non-null object
dtypes: float64(20), object(1)
memory usage: 507.4+ KB
```

PANDAS: Verifica os tipos de dados de cada atributo.

In [14]:

tipos = dataset.dtypes
print(tipos)

meanfreq float64 float64 sd float64 median Q25 float64 Q75 float64 IQR float64 float64 skew kurt float64 float64 sp.ent sfm float64 float64 mode centroid float64 meanfun float64 minfun float64 float64 maxfun meandom float64 mindom float64 maxdom float64 dfrange float64 modindx float64 label object dtype: object

Estatística descritiva

In [15]:

dataset.describe()

Out[15]:

	meanfreq	sd	median	Q25	Q75	IQR	
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	3168.0
mean	0.180907	0.057126	0.185621	0.140456	0.224765	0.084309	3.
std	0.029918	0.016652	0.036360	0.048680	0.023639	0.042783	4.1
min	0.039363	0.018363	0.010975	0.000229	0.042946	0.014558	0.
25%	0.163662	0.041954	0.169593	0.111087	0.208747	0.042560	1.0
50%	0.184838	0.059155	0.190032	0.140286	0.225684	0.094280	2.
75%	0.199146	0.067020	0.210618	0.175939	0.243660	0.114175	2.9
max	0.251124	0.115273	0.261224	0.247347	0.273469	0.252225	34.
4							•

Pandas: Estatística descritiva

In [16]:

```
pandas.set_option('display.width', 100)
pandas.set_option('precision', 3)
resultado = dataset.describe()
print(resultado)
```

		sd		Q25	Q75	IQR	sk
		sp.ent \					
		3168.000	3168.000	3.168e+03	3168.000	3168.000	3168.0
	68.000 3		A 196	1 4050 01	A 225	0.084	3.1
	36.568	0.057	0.186	1.405e-01	0.225	0.084	3.1
		0.017	0 036	1 868a-02	0 024	0.043	4.2
	34.929		0.030	4.000C 02	0.024	0.043	7.2
		0.018	0.011	2.288e-04	0.043	0.015	0.1
	2.068						
		0.042	0.170	1.111e-01	0.209	0.043	1.6
50	5.670	0.862					
50%	0.185	0.059	0.190	1.403e-01	0.226	0.094	2.1
		0.902					
		0.067	0.211	1.759e-01	0.244	0.114	2.9
		0.929					
		0.115	0.261	2.473e-01	0.273	0.252	34.7
25 13	09.613	0.982					
	- C						
na na		mode maxdom \	centrola	meantun	mintun	maxtun	meanao
		3168.000	3169 000	3169 000	3169 000	3169 000	2169 00
	8.000 31		3100.000	3108.000	3100.000	3100.000	3100.00
		0.165	0 181	0 143	0 037	0.259	0.82
	0.053		0.101	0.1.5	0.037	0.233	0.02
		0.077	0.030	0.032	0.019	0.030	0.52
	0.063						
			0.039	0.056	0.010	0.103	0.00
8	0.005	0.008					
25%	0.258	0.118	0.164	0.117	0.018	0.254	0.42
	0.008						
		0.187	0.185	0.141	0.046	0.271	0.76
	0.023						
		0.221	0.199	0.170	0.048	0.277	1.17
	0.070	7.008	0 254	0 220	0.204	0 270	2.05
max	0.843		0.251	0.238	0.204	0.279	2.95
8	0.459	21.867					
	dfrange	modindx					
count	3168.000						
mean	4.995						
std	3.520						
min	0.000						
25%	2.045						
50%	4.945	0.139					
75%	6.992	0.209					
max	21.844	0.932					

In [17]:

dataset.describe().transpose()

Out[17]:

	count	mean	std	min	25%	50%	75%	max
meanfreq	3168.0	0.181	0.030	3.936e-02	0.164	0.185	0.199	0.251
sd	3168.0	0.057	0.017	1.836e-02	0.042	0.059	0.067	0.115
median	3168.0	0.186	0.036	1.097e-02	0.170	0.190	0.211	0.261
Q25	3168.0	0.140	0.049	2.288e-04	0.111	0.140	0.176	0.247
Q75	3168.0	0.225	0.024	4.295e-02	0.209	0.226	0.244	0.273
IQR	3168.0	0.084	0.043	1.456e-02	0.043	0.094	0.114	0.252
skew	3168.0	3.140	4.241	1.417e-01	1.650	2.197	2.932	34.725
kurt	3168.0	36.568	134.929	2.068e+00	5.670	8.318	13.649	1309.613
sp.ent	3168.0	0.895	0.045	7.387e-01	0.862	0.902	0.929	0.982
sfm	3168.0	0.408	0.178	3.688e-02	0.258	0.396	0.534	0.843
mode	3168.0	0.165	0.077	0.000e+00	0.118	0.187	0.221	0.280
centroid	3168.0	0.181	0.030	3.936e-02	0.164	0.185	0.199	0.251
meanfun	3168.0	0.143	0.032	5.557e-02	0.117	0.141	0.170	0.238
minfun	3168.0	0.037	0.019	9.775e-03	0.018	0.046	0.048	0.204
maxfun	3168.0	0.259	0.030	1.031e-01	0.254	0.271	0.277	0.279
meandom	3168.0	0.829	0.525	7.812e-03	0.420	0.766	1.177	2.958
mindom	3168.0	0.053	0.063	4.883e-03	0.008	0.023	0.070	0.459
maxdom	3168.0	5.047	3.521	7.812e-03	2.070	4.992	7.008	21.867
dfrange	3168.0	4.995	3.520	0.000e+00	2.045	4.945	6.992	21.844
modindx	3168.0	0.174	0.119	0.000e+00	0.100	0.139	0.209	0.932

In [18]:

<pre>print(dataset.describe().transpose())</pre>										
count mean std min 25% 50% 75% m										
ax meanfreq 51	3168.0	0.181	0.030	3.936e-02	0.164	0.185	0.199	0.2		
sd 15	3168.0	0.057	0.017	1.836e-02	0.042	0.059	0.067	0.1		
median 61	3168.0	0.186	0.036	1.097e-02	0.170	0.190	0.211	0.2		
Q25 47	3168.0	0.140	0.049	2.288e-04	0.111	0.140	0.176	0.2		
Q75 73	3168.0	0.225	0.024	4.295e-02	0.209	0.226	0.244	0.2		
IQR 52	3168.0	0.084	0.043	1.456e-02	0.043	0.094	0.114	0.2		
skew 25	3168.0	3.140	4.241	1.417e-01	1.650	2.197	2.932	34.7		
kurt 13	3168.0	36.568	134.929	2.068e+00	5.670	8.318	13.649	1309.6		
sp.ent 82	3168.0	0.895	0.045	7.387e-01	0.862	0.902	0.929	0.9		
sfm 43	3168.0	0.408	0.178	3.688e-02	0.258	0.396	0.534	0.8		
mode 80	3168.0	0.165	0.077	0.000e+00	0.118	0.187	0.221	0.2		
centroid 51	3168.0	0.181	0.030	3.936e-02	0.164	0.185	0.199	0.2		
meanfun 38	3168.0	0.143	0.032	5.557e-02	0.117	0.141	0.170	0.2		
minfun 04	3168.0	0.037	0.019	9.775e-03	0.018	0.046	0.048	0.2		
maxfun 79	3168.0	0.259	0.030	1.031e-01	0.254	0.271	0.277	0.2		
meandom 58	3168.0	0.829	0.525	7.812e-03	0.420	0.766	1.177	2.9		
mindom 59	3168.0	0.053	0.063	4.883e-03	0.008	0.023	0.070	0.4		
maxdom 67	3168.0	5.047	3.521	7.812e-03	2.070	4.992	7.008	21.8		
dfrange 44	3168.0	4.995	3.520	0.000e+00	2.045	4.945	6.992	21.8		
modindx 32	3168.0	0.174	0.119	0.000e+00	0.100	0.139	0.209	0.9		

Variáveis Categóricas

In [19]:

```
contagem = dataset.groupby('label').size()
print(contagem)
```

label

female 1584 male 1584 dtype: int64

In [20]:

```
sb.countplot('label',data=dataset)
plt.rcParams['figure.figsize'] = (10,5)
plt.show()
```


Em nossos dados exitem apenas um variável label que é Qualitativa Nominal sendo que demais são do tipo Quantitativa Contínua

In [21]:

```
dataset.dtypes
A = str(tipos)
A = A.replace('float64',"Quantitativa Contínua")
A = A.replace('object',"Qualitativa Nominal")
print(A)
```

meanfreq Quantitativa Contínua sd Quantitativa Contínua median Quantitativa Contínua Q25 Quantitativa Contínua Quantitativa Contínua Q75 IOR Quantitativa Contínua skew Quantitativa Contínua Quantitativa Contínua kurt sp.ent Quantitativa Contínua sfm Quantitativa Contínua mode Quantitativa Contínua Quantitativa Contínua centroid meanfun Quantitativa Contínua minfun Quantitativa Contínua maxfun Quantitativa Contínua meandom Quantitativa Contínua mindom Quantitativa Contínua maxdom Quantitativa Contínua dfrange Quantitativa Contínua modindx Quantitativa Contínua lahel Qualitativa Nominal dtype: Qualitativa Nominal

Medidas Resumo Variáveis Quantitativas:

MEDIDAS DE POSIÇÃO: Moda, Média, Mediana, Percentís, Quartis.

Voltado na tabela temos:

MEDIDAS DE POSIÇÃO, já estão calculados na tabelas describe Media , Percentís, Quartis

Faltando calcular a Moda e Mediana sabendo a Mediana e a mesma medias Na colunaE o valor da coluna 50% da tabela.

A média é uma medida de tendência central que indica o valor onde estão concentrados os dados de um conjunto de valores, representando um valor significativo para o mesmo.

A mediana é o valor que separa a metade superior da metade inferior de uma distribuição de dados, ou o valor no centro da distribuição.

A moda é simples. Nada mais é que o valor que mais se repete dentro de um conjunto.

In [22]:

```
dataset.describe().transpose()
```

Out[22]:

	count	mean	std	min	25%	50%	75%	max
meanfreq	3168.0	0.181	0.030	3.936e-02	0.164	0.185	0.199	0.251
sd	3168.0	0.057	0.017	1.836e-02	0.042	0.059	0.067	0.115
median	3168.0	0.186	0.036	1.097e-02	0.170	0.190	0.211	0.261
Q25	3168.0	0.140	0.049	2.288e-04	0.111	0.140	0.176	0.247
Q75	3168.0	0.225	0.024	4.295e-02	0.209	0.226	0.244	0.273
IQR	3168.0	0.084	0.043	1.456e-02	0.043	0.094	0.114	0.252
skew	3168.0	3.140	4.241	1.417e-01	1.650	2.197	2.932	34.725
kurt	3168.0	36.568	134.929	2.068e+00	5.670	8.318	13.649	1309.613
sp.ent	3168.0	0.895	0.045	7.387e-01	0.862	0.902	0.929	0.982
sfm	3168.0	0.408	0.178	3.688e-02	0.258	0.396	0.534	0.843
mode	3168.0	0.165	0.077	0.000e+00	0.118	0.187	0.221	0.280
centroid	3168.0	0.181	0.030	3.936e-02	0.164	0.185	0.199	0.251
meanfun	3168.0	0.143	0.032	5.557e-02	0.117	0.141	0.170	0.238
minfun	3168.0	0.037	0.019	9.775e-03	0.018	0.046	0.048	0.204
maxfun	3168.0	0.259	0.030	1.031e-01	0.254	0.271	0.277	0.279
meandom	3168.0	0.829	0.525	7.812e-03	0.420	0.766	1.177	2.958
mindom	3168.0	0.053	0.063	4.883e-03	0.008	0.023	0.070	0.459
maxdom	3168.0	5.047	3.521	7.812e-03	2.070	4.992	7.008	21.867
dfrange	3168.0	4.995	3.520	0.000e+00	2.045	4.945	6.992	21.844
modindx	3168.0	0.174	0.119	0.000e+00	0.100	0.139	0.209	0.932

Vamos calcular Moda e Mediana que faltam na tabela.

Moda

In [23]:

```
Modadic = {}
Medianaadic = {}
for x in colunas:
    if x == "label":
        continue
    Modadic[x]=dataset[x].mode()[0]
    Medianaadic[x]=dataset[x].median()
```

Calculado a moda e mediana e colocando em dicionário.

In [24]:

```
print(Modadic)
```

{'meanfreq': 0.212189914901046, 'sd': 0.0431904308902847, 'median': 0.1866 66666666668, 'Q25': 0.14, 'Q75': 0.24, 'IQR': 0.035, 'skew': 1.862572808 5862199, 'kurt': 6.10979028593433, 'sp.ent': 0.8597123484255591, 'sfm': 0.0849343635514977, 'mode': 0.0, 'centroid': 0.212189914901046, 'meanfun': 0.133667302572349, 'minfun': 0.0469208211143695, 'maxfun': 0.2790697674418 6, 'meandom': 0.0078125, 'mindom': 0.0234375, 'maxdom': 0.0078125, 'dfrang e': 0.0, 'modindx': 0.0}

In [25]:

```
print(Medianaadic)
```

{'meanfreq': 0.18483840942471752, 'sd': 0.05915511912795825, 'median': 0.1 9003237922971, 'Q25': 0.1402864183481785, 'Q75': 0.22568421491103252, 'IQ R': 0.09427995391705071, 'skew': 2.197100657225325, 'kurt': 8.318463288598 01, 'sp.ent': 0.9017668303293546, 'sfm': 0.396335156832049, 'mode': 0.1865 9863945578248, 'centroid': 0.18483840942471752, 'meanfun': 0.1405185180281 2348, 'minfun': 0.0461095100864553, 'maxfun': 0.271186440677966, 'meando m': 0.7657948369565215, 'mindom': 0.0234375, 'maxdom': 4.9921875, 'dfrang e': 4.9453125, 'modindx': 0.13935702262536853}

Transformando os resultados em data frame.

In [26]:

```
dfModa = pandas.DataFrame.from_dict(Modadic, orient="index").reset_index()
dfModa.columns = ["quantitativas","moda"]
dfModa.head()
```

Out[26]:

	quantitativas	moda
0	meanfreq	0.212
1	sd	0.043
2	median	0.187
3	Q25	0.140
4	Q75	0.240

In [27]:

```
dfmediana = pandas.DataFrame.from_dict(Medianaadic, orient="index").reset_index()
dfmediana.columns = ["quantitativas","mediana"]
dfmediana.head()
```

Out[27]:

	quantitativas	mediana
0	meanfreq	0.185
1	sd	0.059
2	median	0.190
3	Q25	0.140
4	Q75	0.226

In [28]:

```
### usado para unir os dataframes.
df50porcento = pandas.DataFrame.from_dict(Medianaadic, orient="index").reset_index()
df50porcento.columns = ["quantitativas","50%"]
df50porcento.head()
```

Out[28]:

	quantitativas	50%
0	meanfreq	0.185
1	sd	0.059
2	median	0.190
3	Q25	0.140
4	Q75	0.226

Montado em um único data frame.

In [29]:

```
dfmediaModa=pandas.merge(dfModa,dfmediana,how='left',on='quantitativas')
dfmediaModa=pandas.merge(dfmediaModa,df50porcento,how='left',on='quantitativas')
```

In [30]:

<pre>print(dfmediaModa)</pre>	
-------------------------------	--

	quantitativas	moda	mediana	50%
0	meanfreq	0.212	0.185	0.185
1	sd	0.043	0.059	0.059
2	median	0.187	0.190	0.190
3	Q25	0.140	0.140	0.140
4	Q75	0.240	0.226	0.226
5	IQR	0.035	0.094	0.094
6	skew	1.863	2.197	2.197
7	kurt	6.110	8.318	8.318
8	sp.ent	0.860	0.902	0.902
9	sfm	0.085	0.396	0.396
10	mode	0.000	0.187	0.187
11	centroid	0.212	0.185	0.185
12	meanfun	0.134	0.141	0.141
13	minfun	0.047	0.046	0.046
14	maxfun	0.279	0.271	0.271
15	meandom	0.008	0.766	0.766
16	mindom	0.023	0.023	0.023
17	maxdom	0.008	4.992	4.992
18	dfrange	0.000	4.945	4.945
19	modindx	0.000	0.139	0.139

MEDIDAS DE DISPERSÃO: Amplitude, Intervalo-Interquartil, Variância, Desvio Padrão, Coeficiente de Variação.

Finalidade: encontrar um valor que resuma a variabilidade de um conjunto de dados

A amplitude nada mais é do que a diferença entre o maior e o menor valor de um conjunto de dados. A variância é uma medida que expressa quanto os dados de um conjunto estão afastados de seu valor esperado. O desvio padrão também é uma medida de dispersão, que indica quanto os dados estão afastados da média.

O coeficiente de varição é usado para expressar a variabilidade dos dados estatísticos excluindo a influência da ordem de grandeza da variável.

Montar a tabela com todos dados estatísticos até agora.

In [31]:

dados_estatisticos = dataset.describe().transpose()
dados_estatisticos=pandas.merge(dfmediaModa,dados_estatisticos,how='right',on='50%')
print(dados_estatisticos)
dados_estatisticos

12

0.843

					_	_		
n	quantitativas 25% 75%	moda \	mediana	50%	count	mean	std	mi
0 2	meanfreq 0.164 0.199		0.185	0.185	3168.0	0.181	0.030	3.936e-0
1 2	centroid 0.164 0.199	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
2 2	meanfreq	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
3	centroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
2 4	0.164 0.199 sd	0.043	0.059	0.059	3168.0	0.057	0.017	1.836e-0
2 5	0.042 0.067 median	0.187	0.190	0.190	3168.0	0.186	0.036	1.097e-0
2 6	0.170 0.211 Q25	0.140	0.140	0.140	3168.0	0.140	0.049	2.288e-0
4 7	0.111 0.176 Q75	0.240	0.226	0.226	3168.0	0.225	0.024	4.295e-0
2 8	0.209 0.244 IQR	0.035	0.094	0.094	3168.0	0.084	0.043	1.456e-0
2 9	0.043 0.114 skew	1.863	2.197	2.197	3168.0	3.140	4.241	1.417e-0
1 10	1.650 2.932 kurt	6.110	8.318	8.318	3168.0	36.568	134.929	2.068e+0
0 11	5.670 13.649 sp.ent	0.860	0.902	0.902	3168.0	0.895	0.045	7.387e-0
1 12	0.862 0.929 sfm	0.085	0.396	0.396	3168.0	0.408	0.178	3.688e-0
2 13	0.258 0.534 mode	0.000	0.187	0.187	3168.0	0.165	0.077	0.000e+0
0 14	0.118 0.221 meanfun	0.134	0.141	0.141	3168.0	0.143	0.032	5.557e-0
2 15	0.117 0.170 minfun	0.047	0.046	0.046	3168.0	0.037	0.019	9.775e-0
3 16	0.018 0.048 maxfun	0.279	0.271	0.271	3168.0	0.259	0.030	1.031e-0
1 17	0.254 0.277	0.008		0.766	3168.0	0.829		7.812e-0
3 18	0.420 1.177	0.023		0.023	3168.0	0.053		4.883e-0
3 19	0.008 0.070	0.008		4.992	3168.0	5.047		7.812e-0
3 20	2.070 7.008	0.000	4.945		3168.0	4.995		0.000e+0
0 21	2.045 6.992		0.139					0.000c+0
0	0.100 0.209	0.000	0.133	0.133	5100.0	0.174	0.115	0.0000
0	max 0.251							
1	0.251							
2	0.251							
3	0.251							
4	0.115							
5	0.261							
6	0.247							
7	0.273							
8	0.252							
9	34.725							
10	1309.613							
11	0.982							
12	0 8/13							

0.280 13 14 0.238 15 0.204 16 0.279 17 2.958 0.459 18 19 21.867 20 21.844 0.932

Out[31]:

	quantitativas	moda	mediana	50%	count	mean	std	min	25%	75%
0	meanfreq	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
1	centroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
2	meanfreq	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
3	centroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
4	sd	0.043	0.059	0.059	3168.0	0.057	0.017	1.836e-02	0.042	0.067
5	median	0.187	0.190	0.190	3168.0	0.186	0.036	1.097e-02	0.170	0.211
6	Q25	0.140	0.140	0.140	3168.0	0.140	0.049	2.288e-04	0.111	0.176
7	Q75	0.240	0.226	0.226	3168.0	0.225	0.024	4.295e-02	0.209	0.244
8	IQR	0.035	0.094	0.094	3168.0	0.084	0.043	1.456e-02	0.043	0.114
9	skew	1.863	2.197	2.197	3168.0	3.140	4.241	1.417e-01	1.650	2.932
10	kurt	6.110	8.318	8.318	3168.0	36.568	134.929	2.068e+00	5.670	13.649
11	sp.ent	0.860	0.902	0.902	3168.0	0.895	0.045	7.387e-01	0.862	0.929
12	sfm	0.085	0.396	0.396	3168.0	0.408	0.178	3.688e-02	0.258	0.534
13	mode	0.000	0.187	0.187	3168.0	0.165	0.077	0.000e+00	0.118	0.221
14	meanfun	0.134	0.141	0.141	3168.0	0.143	0.032	5.557e-02	0.117	0.170
15	minfun	0.047	0.046	0.046	3168.0	0.037	0.019	9.775e-03	0.018	0.048
16	maxfun	0.279	0.271	0.271	3168.0	0.259	0.030	1.031e-01	0.254	0.277
17	meandom	0.008	0.766	0.766	3168.0	0.829	0.525	7.812e-03	0.420	1.177
18	mindom	0.023	0.023	0.023	3168.0	0.053	0.063	4.883e-03	0.008	0.070
19	maxdom	0.008	4.992	4.992	3168.0	5.047	3.521	7.812e-03	2.070	7.008
20	dfrange	0.000	4.945	4.945	3168.0	4.995	3.520	0.000e+00	2.045	6.992
21	modindx	0.000	0.139	0.139	3168.0	0.174	0.119	0.000e+00	0.100	0.209
4										•

Na tabela já temos os valores para Intervalo-Interquartil e Desvio Padrão , Resta calcularmos a Amplitude , Variância e, Coeficiente de Variação e Intervalo-Interquartil.

Amplitude.

```
In [32]:
print(dataset['meanfreq'].max() - dataset['meanfreq'].min())
0.21176041613672117
In [ ]:
```

Variância.

```
In [33]:
```

```
print(dataset['meanfreq'].var())
```

0.0008950770245104506

O cálculo do coeficiente de variação é feito através da fórmula:

cv/

Onde, s \rightarrow é o desvio padrão X ? \rightarrow é a média dos dados CV \rightarrow é o coeficiente de variação

$$CV = \frac{s}{\overline{X}} \cdot 100$$

Coeficiente de Variação.

```
In [34]:
```

```
print( (dataset['meanfreq'].std()/dataset['meanfreq'].mean()) * 100 )
```

16.537725093072137

Intervalo-Interquartil.

É a diferença entre o terceiro quartil e o primeiro quartil, ou seja, d= Q3-Q1

```
In [35]:
```

```
print(dataset['meanfreq'].quantile(q=0.75))
```

0.19914605089620624

```
In [36]:
```

```
print(dataset['meanfreq'].quantile(q=0.25))
```

0.1636621363172535

In [37]:

```
print(dataset['meanfreq'].quantile(q=0.75) - dataset['meanfreq'].quantile(q=0.25))
```

0.03548391457895275

Operando todos cálculos: Amplitude, Variância, Coeficiente de Variação e Intervalo-Interquartil.

In [38]:

```
Amplitudedic = {}
Varianciadic = {}
CoeficienteVardic = {}
IntervaloInterquartildic = {}
for x in colunas:
    if x == "label":
        continue
    Amplitudedic[x]=dataset[x].max() - dataset[x].min()
    Varianciadic[x] = dataset[x].var()
    CoeficienteVardic[x] = (dataset[x].std()/dataset[x].mean()) * 100
    IntervaloInterquartildic[x] = dataset[x].quantile(q=0.75) - dataset[x].quantile(q=0.25)
```

Transfomando os resultados em dataframe.

In [39]:

```
dfAmplitude = pandas.DataFrame.from_dict(Amplitudedic, orient="index").reset_index()
dfAmplitude.columns = ["quantitativas","Amplitude"]
dfAmplitude.head()
```

Out[39]:

	quantitativas	Amplitude
0	meanfreq	0.212
1	sd	0.097
2	median	0.250
3	Q25	0.247
4	Q75	0.231

In [40]:

```
dfVariancia = pandas.DataFrame.from_dict(Varianciadic, orient="index").reset_index()
dfVariancia.columns = ["quantitativas","Variancia"]
dfVariancia.head()
```

Out[40]:

	quantitativas	Variancia
0	meanfreq	8.951e-04
1	sd	2.773e-04
2	median	1.322e-03
3	Q25	2.370e-03
4	Q75	5.588e-04

In [41]:

```
dfCoeficiente = pandas.DataFrame.from_dict(CoeficienteVardic, orient="index").reset_ind
ex()
dfCoeficiente.columns = ["quantitativas","Coef_Var_%"]
dfCoeficiente.head()
```

Out[41]:

	quantitativas	Coef_Var_%
0	meanfreq	16.538
1	sd	29.150
2	median	19.588
3	Q25	34.658
4	Q75	10.517

In [42]:

```
IntervaloInterquartil = pandas.DataFrame.from_dict(IntervaloInterquartildic, orient="in
dex").reset_index()
IntervaloInterquartil.columns = ["quantitativas","Intervalo_Interquartil"]
IntervaloInterquartil.head()
```

Out[42]:

	quantitativas	Intervalo_Interquartil
0	meanfreq	0.035
1	sd	0.025
2	median	0.041
3	Q25	0.065
4	Q75	0.035

Mesclando os resultados.

In [43]:

```
dfresultado_frame=pandas.merge(dfAmplitude,dfVariancia,how='right',on='quantitativas')
dfresultado_frame=pandas.merge(dfresultado_frame,dfCoeficiente,how='right',on='quantitativas')
dfresultado_frame=pandas.merge(dfresultado_frame,IntervaloInterquartil,how='right',on=
'quantitativas')
print(dfresultado_frame)
dfresultado_frame
```

	quantitativas	Amplitude	Variancia	Coef Var %	Intervalo_Interquartil
0	meanfreq	0.212		16.538	0.035
1	sd	0.097	2.773e-04	29.150	0.025
2	median	0.250	1.322e-03	19.588	0.041
3	Q25	0.247	2.370e-03	34.658	0.065
4	Q75	0.231	5.588e-04	10.517	0.035
5	IQR	0.238	1.830e-03	50.745	0.072
6	skew	34.584	1.798e+01	135.041	1.282
7	kurt	1307.544	1.821e+04	368.976	7.979
8	sp.ent	0.243	2.023e-03	5.025	0.067
9	sfm	0.806	3.151e-02	43.487	0.276
10	mode	0.280	5.960e-03	46.710	0.103
11	centroid	0.212	8.951e-04	16.538	0.035
12	meanfun	0.182	1.044e-03	22.621	0.053
13	minfun	0.194	3.694e-04	52.226	0.030
14	maxfun	0.176	9.046e-04	11.620	0.023
15	meandom	2.950	2.758e-01	63.338	0.757
16	mindom	0.454	4.007e-03	120.234	0.062
17	maxdom	21.859	1.240e+01	69.763	4.938
18	dfrange	21.844	1.239e+01	70.476	4.947
19	modindx	0.932	1.427e-02	68.750	0.109

Out[43]:

	quantitativas	Amplitude	Variancia	Coef_Var_%	Intervalo_Interquartil
0	meanfreq	0.212	8.951e-04	16.538	0.035
1	sd	0.097	2.773e-04	29.150	0.025
2	median	0.250	1.322e-03	19.588	0.041
3	Q25	0.247	2.370e-03	34.658	0.065
4	Q75	0.231	5.588e-04	10.517	0.035
5	IQR	0.238	1.830e-03	50.745	0.072
6	skew	34.584	1.798e+01	135.041	1.282
7	kurt	1307.544	1.821e+04	368.976	7.979
8	sp.ent	0.243	2.023e-03	5.025	0.067
9	sfm	0.806	3.151e-02	43.487	0.276
10	mode	0.280	5.960e-03	46.710	0.103
11	centroid	0.212	8.951e-04	16.538	0.035
12	meanfun	0.182	1.044e-03	22.621	0.053
13	minfun	0.194	3.694e-04	52.226	0.030
14	maxfun	0.176	9.046e-04	11.620	0.023
15	meandom	2.950	2.758e-01	63.338	0.757
16	mindom	0.454	4.007e-03	120.234	0.062
17	maxdom	21.859	1.240e+01	69.763	4.938
18	dfrange	21.844	1.239e+01	70.476	4.947
19	modindx	0.932	1.427e-02	68.750	0.109

Mesclando os resultados com tabela de resumo estatístico.

In [44]:

```
dados_estatisticos=pandas.merge(dados_estatisticos,dfresultado_frame,how='right',on='qu
antitativas')
#dados_estatisticos[[quantitativas]]
#dados_estatisticos = dados_estatisticos.drop_duplicates()
print(dados_estatisticos)
#dados_estatisticos = dados_estatisticos[["quantitativas"]]
#print(dados_estatisticos)
dados_estatisticos
```

	quantita			mediana	50%	count	mean	std	mi
	25% mea		0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
2			0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
2		0.199 ntroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
2		0.199 ntroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-0
2 4	0.164	0.199 sd	0.043	0.059	0.059	3168.0	0.057	0.017	1.836e-0
2 5	r	0.067 median	0.187	0.190	0.190	3168.0	0.186	0.036	1.097e-0
2 6	0.170	0.211 Q25	0.140	0.140	0.140	3168.0	0.140	0.049	2.288e-0
4 7 2	0.111	0.176 Q75	0.240	0.226	0.226	3168.0	0.225	0.024	4.295e-0
2 8	0.209	0.244 IQR	0.035	0.094	0.094	3168.0	0.084	0.043	1.456e-0
2 9	0.043	0.114 skew	1.863	2.197	2.197	3168.0	3.140	4.241	1.417e-0
100		2.932 kurt	6.110	8.318	8.318	3168.0	36.568	134.929	2.068e+0
0 11	9	13.649 sp.ent	0.860	0.902	0.902	3168.0	0.895	0.045	7.387e-0
1 12		sfm	0.085	0.396	0.396	3168.0	0.408	0.178	3.688e-0
2 13		mode	0.000	0.187	0.187	3168.0	0.165	0.077	0.000e+0
		0.221 eanfun	0.134	0.141	0.141	3168.0	0.143	0.032	5.557e-0
2 15		0.170 minfun	0.047	0.046	0.046	3168.0	0.037	0.019	9.775e-0
	0.018	maxfun	0.279	0.271	0.271	3168.0	0.259	0.030	1.031e-0
17		eandom	0.008	0.766	0.766	3168.0	0.829	0.525	7.812e-0
3 18		mindom	0.023	0.023	0.023	3168.0	0.053	0.063	4.883e-0
3 19		maxdom	0.008	4.992	4.992	3168.0	5.047	3.521	7.812e-0
3 20		frange	0.000	4.945	4.945	3168.0	4.995	3.520	0.000e+0
0 21			0.000	0.139	0.139	3168.0	0.174	0.119	0.000e+0
0	0.100		144		- 66	· \/ 9/	T+1	- T	
0	ma 0.2!			8.951e-0		_var_% 16.538	interval	o_Interqu	artii 0.035
1				8.951e-0		16.538			0.035
2	0.25			8.951e-0		16.538			0.035
3	0.25			8.951e-0		16.538			0.035
4	0.13		0.097			29.150			0.025
5	0.26		0.250			19.588			0.041
6	0.24		0.247			34.658			0.065
7	0.27		0.231	5.588e-0		10.517			0.035
8	0.25		0.238			50.745			0.072
9	34.72		34.584			35.041			1.282
10	1309.6		07.544			68.976			7.979
11				2.023e-0		5.025			0.067
12				3.151e-0		43.487			0.276

13	0.280	0.280	5.960e-03	46.710	0.103
14	0.238	0.182	1.044e-03	22.621	0.053
15	0.204	0.194	3.694e-04	52.226	0.030
16	0.279	0.176	9.046e-04	11.620	0.023
17	2.958	2.950	2.758e-01	63.338	0.757
18	0.459	0.454	4.007e-03	120.234	0.062
19	21.867	21.859	1.240e+01	69.763	4.938
20	21.844	21.844	1.239e+01	70.476	4.947
21	0.932	0.932	1.427e-02	68.750	0.109

Out[44]:

19/09/2019

	quantitativas	moda	mediana	50%	count	mean	std	min	25%	75%
0	meanfreq	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
1	meanfreq	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
2	centroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
3	centroid	0.212	0.185	0.185	3168.0	0.181	0.030	3.936e-02	0.164	0.199
4	sd	0.043	0.059	0.059	3168.0	0.057	0.017	1.836e-02	0.042	0.067
5	median	0.187	0.190	0.190	3168.0	0.186	0.036	1.097e-02	0.170	0.211
6	Q25	0.140	0.140	0.140	3168.0	0.140	0.049	2.288e-04	0.111	0.176
7	Q75	0.240	0.226	0.226	3168.0	0.225	0.024	4.295e-02	0.209	0.244
8	IQR	0.035	0.094	0.094	3168.0	0.084	0.043	1.456e-02	0.043	0.114
9	skew	1.863	2.197	2.197	3168.0	3.140	4.241	1.417e-01	1.650	2.932
10	kurt	6.110	8.318	8.318	3168.0	36.568	134.929	2.068e+00	5.670	13.649
11	sp.ent	0.860	0.902	0.902	3168.0	0.895	0.045	7.387e-01	0.862	0.929
12	sfm	0.085	0.396	0.396	3168.0	0.408	0.178	3.688e-02	0.258	0.534
13	mode	0.000	0.187	0.187	3168.0	0.165	0.077	0.000e+00	0.118	0.221
14	meanfun	0.134	0.141	0.141	3168.0	0.143	0.032	5.557e-02	0.117	0.170
15	minfun	0.047	0.046	0.046	3168.0	0.037	0.019	9.775e-03	0.018	0.048
16	maxfun	0.279	0.271	0.271	3168.0	0.259	0.030	1.031e-01	0.254	0.277
17	meandom	0.008	0.766	0.766	3168.0	0.829	0.525	7.812e-03	0.420	1.177
18	mindom	0.023	0.023	0.023	3168.0	0.053	0.063	4.883e-03	0.008	0.070
19	maxdom	0.008	4.992	4.992	3168.0	5.047	3.521	7.812e-03	2.070	7.008
20	dfrange	0.000	4.945	4.945	3168.0	4.995	3.520	0.000e+00	2.045	6.992
21	modindx	0.000	0.139	0.139	3168.0	0.174	0.119	0.000e+00	0.100	0.209

ORGANIZAÇÃO E REPRESENTAÇÃO DOS **DADOS**

Tabela de freqüência: relaciona categorias (ou classes) de valores, juntamente com contagem (ou freqüências) do número de valores que se enquadram em cada categoria ou classe.

Variáveis qualitativas:

Temos apenas uma classe qualitativa a variável label fazendo a análise:

```
Tamanho do dataset.
```

```
In [45]:
print(dataset.shape)
(3168, 21)
Agrupar pela variável label.
In [46]:
contagem = dataset.groupby('label').size()
print(contagem)
label
female
          1584
male
          1584
dtype: int64
Prepara os resultados.
In [47]:
print(contagem[['female']][0])
1584
In [48]:
print(contagem[['male']][0])
1584
In [49]:
total=contagem[['female']][0] + contagem[['male']][0]
In [50]:
print(total)
3168
```

Calculando a frequência relativa. fr =fi / n ou seja contagem por classe sobre total somada dos valores de cada classe.

```
In [51]:
freqFRsexodic={}
freqFRsexodic['female']= contagem[['female']][0] / total
freqFRsexodic['male']=
                          contagem[['male']][0] / total
freqFRsexodic['Total']=
                          ( contagem[['female']][0] / total ) + ( contagem[['male']][
0] / total)
In [52]:
freqFRsexodic
Out[52]:
{'female': 0.5, 'male': 0.5, 'Total': 1.0}
Calculando a Frequência relativa percentual da categoria. fri% = fri * 100
In [53]:
freqFRpcsexodic={}
freqFRpcsexodic['female'] = freqFRsexodic['female'] * 100
freqFRpcsexodic['male'] = freqFRsexodic['male'] * 100
freqFRpcsexodic['Total']= freqFRsexodic['Total'] * 100
In [54]:
freqFRpcsexodic
Out[54]:
{'female': 50.0, 'male': 50.0, 'Total': 100.0}
In [ ]:
In [55]:
freqsexodic={}
freqsexodic['female']=contagem[['female']][0]
freqsexodic['male']=contagem[['male']][0]
freqsexodic['Total']=total
In [56]:
freqsexodic
Out[56]:
```

Montado o drataframe com os resultados.

{'female': 1584, 'male': 1584, 'Total': 3168}

In [57]:

```
dffrequenciaSexo = pandas.DataFrame.from_dict(freqsexodic, orient="index").reset_index
()
dffrequenciaSexo.columns = ["qualitivas","contagem"]
```

In [58]:

```
dffrequenciaSexoFR = pandas.DataFrame.from_dict(freqFRsexodic, orient="index").reset_in
dex()
dffrequenciaSexoFR.columns = ["qualitivas","freqRelativa"]
```

In [59]:

```
dffrequenciaSexoFRpc = pandas.DataFrame.from_dict(freqFRpcsexodic, orient="index").rese
t_index()
dffrequenciaSexoFRpc.columns = ["qualitivas","freqRelativa%"]
```

In [60]:

```
dftabelaFreqQualitativas=pandas.merge(dffrequenciaSexo,dffrequenciaSexoFR,how='right',o
n='qualitivas')
dftabelaFreqQualitativas=pandas.merge(dftabelaFreqQualitativas,dffrequenciaSexoFRpc,how
='right',on='qualitivas')
```

In [61]:

dftabelaFreqQualitativas

Out[61]:

	qualitivas	contagem	treqRelativa	treqRelativa%
0	female	1584	0.5	50.0
1	male	1584	0.5	50.0
2	Total	3168	1.0	100.0

In [62]:

print(dftabelaFreqQualitativas)

	qualitivas	contagem	freqRelativa	freqRelativa%
0	female	1584	0.5	50.0
1	male	1584	0.5	50.0
2	Total	3168	1.0	100.0

In [63]:

```
sb.countplot('label',data=dataset)
plt.rcParams['figure.figsize'] = (10,5)
plt.show()
```


Organização e representação de variáveis quantitativas: Quantitativas continuas:

Procedimento de construção de tabelas de freqüência para variáveis contínuas: h = \frac{A}{k}

- 1. Escolha o número de intervalos de classe (k)
- 2. Identifique o menor valor (MIN) e o valor máximo (MAX) dos dados.
- 3. Calcule a amplitude dos dados (A): A=MAX -MIN
- 4. Calcule o comprimento de cada intervalo de classe (h):
- 5. Arredonde o valor de h de forma que seja obtido um número conveniente.
- 6. Obtenha os limites de cada intervalo de classe.
- 7. Construa uma tabela de frequências, constituída pelas seguintes colunas: Número de ordem de cada intervalo (i) Limites de cada intervalo. Os intervalos são fechados á esquerda e aberta à direita: NOTAÇÃO:|----

Devido à complexidade (Muitas operações) dos cálculos vamos analisar via Histograma.

Uma forma de calcular via pandas, Tabela muito elevada no resultado.

In [64]:

```
pandas.DataFrame(dataset['meanfreq'].value_counts(normalize=True)).head()
```

Out[64]:

	meanfreq
0.212	6.313e-04
0.214	6.313e-04
0.229	3.157e-04
0.100	3.157e-04
0.160	3 157e-04

Histograma de freqüências relativas.

In [65]:

```
dataset.hist()
plt.rcParams['figure.figsize'] = (18,18)
plt.show()
```


Fracionado os histogramas

In [66]:

```
### Fracionado os histogramas
n=0
```

In [67]:

```
Part=dataset[colunas[n:n+9]]
n=n+9 -1
Part.hist()
```

Out[67]:

In [68]:

```
plt.rcParams['figure.figsize'] = (15,15)
plt.show()

Part=dataset[colunas[n:n+9]]
n=n+9
Part.hist()
```

Out[68]:

In [69]:

```
Part=dataset[colunas[n:n+9]]
plt.rcParams['figure.figsize'] = (10,10)
plt.show()
Part.hist()
```

Out[69]:

Histograma usando densidade de frequência e Assimetria da distribuição.

Assimetria da distribuição.

 $As = \frac{\sum_{n=0}^{2}}{sigma^{2}}$

Dessa forma podemos classificar o coeficiente de assimetria da seguinte forma:

- Se As=0, distribuição é simétrica
- Se As>0, distribuição assimétrica a direita (positiva)
- Se As<0, distribuição assimétrica a esquerda (negativa) Fonte: Ferreira, D. F. Estatística Básica. Ed. UFLA, 2005. 664 p.

In [70]:

```
# PANDAS: Skew Assiemetria da distribuição
skew = dataset.skew()
print(skew)
```

meanfreq	-0.617								
sd	0.137								
median	-1.013								
Q25	-0.491								
Q75	-0.900								
IQR	0.295								
skew	4.933								
kurt	5.873								
sp.ent	-0.431								
sfm	0.340								
mode	-0.837								
centroid	-0.617								
meanfun	0.039								
minfun	1.878								
maxfun	-2.239								
meandom	0.611								
mindom	1.661								
maxdom	0.726								
dfrange	0.728								
modindx	2.064								
dtype: float64									

In []:

```
In [71]:
```

```
for y in colunas:
    if y == "label":
        continue
    Income = sb.distplot(dataset[y])
    plt.title("Distibuicao")
    plt.rcParams['figure.figsize'] = (8,8)
    plt.show(y)
```


MATPLOTLIB: Gráfico de densidade (univariado)

In [72]:

plt.rcParams['figure.figsize'] = (20,20)
dataset[colunas[0:10]].plot(kind='density', subplots=True, layout=(5,2), sharex=False)
plt.show()

In [73]:

```
# MATPLOTLIB: Gráfico de densidade (univariado)
plt.rcParams['figure.figsize'] = (20,20)
dataset[colunas[10:20]].plot(kind='density', subplots=True, layout=(5,2), sharex=False)
plt.show()
```


Calculando a curtose não-tendenciosa sobre o eixo solicitado usando a definição de curtose de Fisher (curtose de normal == 0,0). Normalizado por N-1:

A medida de curtose pode ser calculada da seguinte maneira:

 $k = \frac{\sum_{k=0}^{4}}{$

De acordo com esta medida temos a seguinte classificação:

- k < 0, distribuição Platicúrtica
- k = 0, distribuição Mesocúrtica
- k > 0, distribuição Leptocúrtica

Fonte: Ferreira, D. F. Estatística Básica. Ed. UFLA, 2005. 664 p.

In [74]:

```
dataset.kurtosis()
```

Out[74]:

meanfreq	0.805
sd	-0.522
median	1.630
Q25	0.018
Q75	2.982
IQR	-0.448
skew	25.363
kurt	35.932
sp.ent	-0.424
sfm	-0.836
mode	-0.256
centroid	0.805
meanfun	-0.860
minfun	10.758
maxfun	5.204
meandom	-0.055
mindom	2.188
maxdom	1.315
dfrange	1.318
modindx	5.925
dtype: float	64

Interpretação: A assimetria da variável *meanfun* é 0.039. Este valor implica que a distribuição dos dados é levemente assimétrica a direita ou positivamente assimétrica. É assimétrica a direita, pois o coeficiente é positivo, e levemente, pois está próximo de zero. Para a curtose, o valor é -0.860, implicando que a distribuição dos dados é Platicúrtica, pois o valor de curtose é menor que 0.

https://biostatistics-uem.github.io/Bio/figuras/curtose.png (https://biostatistics-uem.github.io/Bio/figuras/curtose.png)

Classifcações das distribuiçoes.

In [75]:

```
skew = dataset.skew()
curtose=dataset.kurtosis()
type(skew)
```

Out[75]:

pandas.core.series.Series

Classifcações do tipo de curtose.

In [76]:

```
srcurtose = curtose.to_dict()
for x in srcurtose:
    Z = srcurtose[x]
    if Z > 0:
        srcurtose[x] = 'Leptocúrtica'
    if Z < 0:
        srcurtose[x] = 'Platicúrtica'
    if Z = 0:
        srcurtose[x] = 'Mesocúrtica'</pre>
```

Classifcações do tipo de Assimetria.

Se As=0, distribuição é simétrica Se As>0, distribuição assimétrica a direita (positiva) Se As<0, distribuição assimétrica a esquerda (negativa) Fonte: Ferreira, D. F. Estatística Básica. Ed. UFLA, 2005. 664 p.

In [77]:

```
srskew = skew.to_dict()
for x in srskew:
    Z = srskew[x]
    if Z > 0:
        srskew[x] = 'Assimétrica a direita'
    if Z < 0:
        srskew[x] = 'Assimétrica a esquerda'
    if Z = 0:
        srskew[x] = 'Simétrica'</pre>
```

In [78]:

```
frame = { 'Assimetria': skew, 'Curtose': curtose , 'CurtoseDescricao': srcurtose, 'Assi
metriaCurtoseDescricao': srskew}
result = pandas.DataFrame(frame)
print(result)
result
```

	Assimetria	Curtose	CurtoseDescricao	${\tt AssimetriaCurtoseDescricao}$
IQR	0.295	-0.448	Platicúrtica	Assimétrica a direita
Q25	-0.491	0.018	Leptocúrtica	Assimétrica a esquerda
Q75	-0.900	2.982	Leptocúrtica	Assimétrica a esquerda
centroid	-0.617	0.805	Leptocúrtica	Assimétrica a esquerda
dfrange	0.728	1.318	Leptocúrtica	Assimétrica a direita
kurt	5.873	35.932	Leptocúrtica	Assimétrica a direita
maxdom	0.726	1.315	Leptocúrtica	Assimétrica a direita
maxfun	-2.239	5.204	Leptocúrtica	Assimétrica a esquerda
meandom	0.611	-0.055	Platicúrtica	Assimétrica a direita
meanfreq	-0.617	0.805	Leptocúrtica	Assimétrica a esquerda
meanfun	0.039	-0.860	Platicúrtica	Assimétrica a direita
median	-1.013	1.630	Leptocúrtica	Assimétrica a esquerda
mindom	1.661	2.188	Leptocúrtica	Assimétrica a direita
minfun	1.878	10.758	Leptocúrtica	Assimétrica a direita
mode	-0.837	-0.256	Platicúrtica	Assimétrica a esquerda
modindx	2.064	5.925	Leptocúrtica	Assimétrica a direita
sd	0.137	-0.522	Platicúrtica	Assimétrica a direita
sfm	0.340	-0.836	Platicúrtica	Assimétrica a direita
skew	4.933	25.363	Leptocúrtica	Assimétrica a direita
sp.ent	-0.431	-0.424	Platicúrtica	Assimétrica a esquerda

Out[78]:

	Assimetria	Curtose	CurtoseDescricao	AssimetriaCurtoseDescricao
IQR	0.295	-0.448	Platicúrtica	Assimétrica a direita
Q25	-0.491	0.018	Leptocúrtica	Assimétrica a esquerda
Q75	-0.900	2.982	Leptocúrtica	Assimétrica a esquerda
centroid	-0.617	0.805	Leptocúrtica	Assimétrica a esquerda
dfrange	0.728	1.318	Leptocúrtica	Assimétrica a direita
kurt	5.873	35.932	Leptocúrtica	Assimétrica a direita
maxdom	0.726	1.315	Leptocúrtica	Assimétrica a direita
maxfun	-2.239	5.204	Leptocúrtica	Assimétrica a esquerda
meandom	0.611	-0.055	Platicúrtica	Assimétrica a direita
meanfreq	-0.617	0.805	Leptocúrtica	Assimétrica a esquerda
meanfun	0.039	-0.860	Platicúrtica	Assimétrica a direita
median	-1.013	1.630	Leptocúrtica	Assimétrica a esquerda
mindom	1.661	2.188	Leptocúrtica	Assimétrica a direita
minfun	1.878	10.758	Leptocúrtica	Assimétrica a direita
mode	-0.837	-0.256	Platicúrtica	Assimétrica a esquerda
modindx	2.064	5.925	Leptocúrtica	Assimétrica a direita
sd	0.137	-0.522	Platicúrtica	Assimétrica a direita
sfm	0.340	-0.836	Platicúrtica	Assimétrica a direita
skew	4.933	25.363	Leptocúrtica	Assimétrica a direita
sp.ent	-0.431	-0.424	Platicúrtica	Assimétrica a esquerda

Boxplot

O BOXPLOT representa os dados através de um retângulo construído com os quartis e fornece informação sobre valores extremos.

In [79]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[0:6]].plot(kind='box', subplots=True, layout=(3,3), sharex=False, share
y=False)
plt.show()
```


In [80]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[6:6 * 2]].plot(kind='box', subplots=True, layout=(3,3), sharex=False, s
harey=False)
plt.show()
```


In [81]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[6 *2 :6 * 3]].plot(kind='box', subplots=True, layout=(3,3), sharex=Fals
e, sharey=False)
plt.show()
```


In [82]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[6 *3 :6 * 4]].plot(kind='box', subplots=True, layout=(3,3), sharex=Fals
e, sharey=False)
plt.show()
```


Resultado Boxplot, verificamos a incidência de Observação exterior (discrepante ou atípica).

Esses dados serão tratados utilizando o desvio padrão: calculando o skewness: skewness = 3(média – mediana) / desvio padrão

In [83]:

```
# Carrega os dados
url = ".\\baseDados\\voice.csv"
colunas = ["meanfreq","sd","median","Q25","Q75","IQR","skew","kurt","sp.ent","sfm","mod
e","centroid","meanfun","minfun","maxfun","meandom","mindom","maxdom","dfrange","modind
x","label"]
dataset = pandas.read_csv(url, names=colunas, sep = ",")
```

Primeiro caso.

In [84]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[0]].plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=
False)
plt.show()
dataset[colunas[0]].shape
```


Out[84]:

(3168,)

Esses dados serão tratados utilizando o desvio padrão:

calculando o skewness: skewness = 3(média – mediana) / desvio padrão

In [85]:

```
df_sem_Outliers= dataset[ numpy.abs(dataset[colunas[0]] - dataset[colunas[0]].mean() )
<= ( 3*dataset[colunas[0]].std()) ]</pre>
```

In [86]:

```
plt.rcParams['figure.figsize'] = (15,15)
df_sem_Outliers[colunas[0]].plot(kind='box', subplots=True, layout=(3,3), sharex=False,
sharey=False)
plt.show()
df_sem_Outliers[colunas[0]].shape
```


Out[86]:

(3145,)

Possui ainda muitos ou valores discrepantes vamos o método de interquartil.

Definição da Wikipedia A gama interquartil (IQR), também chamado o midspread ou meio de 50% , ou tecnicamente H-propagação , é uma medida da dispersão estatística, sendo igual à diferença entre os percentis 75 e 25 de, ou entre os quartis superiores e inferiores, IQR = Q 3 - Q 1. Em outras palavras, o IQR é o primeiro quartil subtraído do terceiro quartil; esses quartis podem ser vistos claramente em um gráfico de caixa nos dados. É uma medida da dispersão semelhante ao desvio ou variância padrão, mas é muito mais robusta contra valores extremos.

In [87]:

```
Q1 = dataset[colunas[0]].quantile(0.25)
Q3 = dataset[colunas[0]].quantile(0.75)
IQR = Q3 - Q1
```

In [88]:

Out[88]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm	 centro
0	NaN	0.064	0.032	0.015	0.090	0.075	12.863	274.403	0.893	0.492	 0.0
1	NaN	0.067	0.040	0.019	0.093	0.073	22.423	634.614	0.892	0.514	 0.00
2	NaN	0.084	0.037	0.009	0.132	0.123	30.757	1024.928	0.846	0.479	 0.0
3	0.151	0.072	0.158	0.097	0.208	0.111	1.233	4.177	0.963	0.727	 0.1
4	0.135	0.079	0.125	0.079	0.206	0.127	1.101	4.334	0.972	0.784	 0.10

5 rows × 21 columns

→

In [89]:

```
plt.rcParams['figure.figsize'] = (15,15)
df_sem_Outliersx.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)
plt.show()
df_sem_Outliersx.shape
```


Out[89]:

(3104,)

Resultado melhorou com a técnica interquartil.

Fazendo nas todas variaveis por N vezes

In [90]:

```
dfgrafico_test = dataset
for z in range(0,NV):
    for y in colunas:
        if y == "label":
            continue
        Q1 = dfgrafico_test[y].quantile(0.25)
        Q3 = dfgrafico_test[y].quantile(0.75)
        IQR = Q3 - Q1
        df_sem_Outliersx = dfgrafico_test[y][~((dfgrafico_test[y] < (Q1 - 1.5 * IQR)) |</pre>
(dfgrafico_test[y]>(Q3 + 1.5 * IQR)))]
        dfgrafico_test[y] = df_sem_Outliersx
dfgrafico_test = dataset
for z in range(0,NV):
    for y in colunas:
        if y == "label":
            continue
        Q1 = dataset[y].quantile(0.25)
        Q3 = dataset[y].quantile(0.75)
        IQR = Q3 - Q1
        df_sem_Outliersx = dataset[y][\sim((dataset[y] < (Q1 - 1.5 * IQR)) | (dataset[y]>
(Q3 + 1.5 * IQR)))]
        dataset[y] = df_sem_Outliersx
        dataset=dataset.fillna(dataset.mean())
```

Valores discrepantes Foram removidos da base

In [91]:

```
dfgrafico_test.head()
```

Out[91]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm	 centroid	ı
0	NaN	0.064	NaN	NaN	NaN	0.075	NaN	NaN	0.893	0.492	 NaN	_
1	NaN	0.067	NaN	0.019	NaN	0.073	NaN	NaN	0.892	0.514	 NaN	
2	NaN	0.084	NaN	NaN	NaN	0.123	NaN	NaN	0.846	0.479	 NaN	
3	0.151	0.072	0.158	0.097	0.208	0.111	1.233	4.177	0.963	0.727	 0.151	
4	0.135	0.079	0.125	0.079	0.206	0.127	1.101	4.334	0.972	0.784	 0.135	

5 rows × 21 columns

Analizando o grafio novamente de valorer faltantes antes de aplicar a media

In [92]:

```
msno.matrix(dfgrafico_test,figsize=(12,5))
```

Out[92]:

<matplotlib.axes._subplots.AxesSubplot at 0x16136ed0>

In [93]:

dfgrafico_test.isnull().sum()

Out[93]:

meanfreq	100
sd	10
median	157
Q25	43
Q75	28
IQR	10
skew	253
kurt	446
sp.ent	6
sfm	0
mode	0
centroid	100
meanfun	0
minfun	38
maxfun	972
meandom	20
mindom	902
maxdom	42
dfrange	42
modindx	411
label	0
dtype: into	54

In [94]:

```
dataset = dataset.dropna()
print(dataset.shape)
```

(3168, 21)

Analizando o grafio do dataset aplicado a media nos valores faltantes.

In [95]:

```
msno.matrix(dataset,figsize=(12,5))
```

Out[95]:

<matplotlib.axes._subplots.AxesSubplot at 0x137c4550>

Recalcular as classe qualitativas

In [96]:

```
sb.countplot('label',data=dataset)
plt.rcParams['figure.figsize'] = (10,5)
plt.show()
```



```
In [97]:
```

```
contagem = dataset.groupby('label').size()
print(contagem)

label
female    1584
male    1584
dtype: int64

In [98]:

total=contagem[['female']][0] + contagem[['male']][0]
```

Calculando a frequência relativa. fr =fi / n ou seja contagem por classe sobre total somada dos valores de cada classe.

```
In [99]:
```

Calculando a Frequência relativa percentual da categoria. fri% = fri * 100

```
In [100]:
```

```
freqFRpcsexodic={}
freqFRpcsexodic['female'] = freqFRsexodic['female'] * 100
freqFRpcsexodic['male'] = freqFRsexodic['male'] * 100
freqFRpcsexodic['Total'] = freqFRsexodic['Total'] * 100
```

```
In [ ]:
```

In [101]:

```
freqsexodic={}
freqsexodic['female']=contagem[['female']][0]
freqsexodic['male']=contagem[['male']][0]
freqsexodic['Total']=total
```

Montado o drataframe com os resultados.

```
In [102]:
```

```
dffrequenciaSexo = pandas.DataFrame.from_dict(freqsexodic, orient="index").reset_index
()
dffrequenciaSexo.columns = ["qualitivas","contagem"]
```

In [103]:

```
dffrequenciaSexoFR = pandas.DataFrame.from_dict(freqFRsexodic, orient="index").reset_in
dex()
dffrequenciaSexoFR.columns = ["qualitivas","freqRelativa"]
```

In []:

In [104]:

```
dffrequenciaSexoFRpc = pandas.DataFrame.from_dict(freqFRpcsexodic, orient="index").rese
t_index()
dffrequenciaSexoFRpc.columns = ["qualitivas","freqRelativa%"]
```

In [105]:

```
dftabelaFreqQualitativas=pandas.merge(dffrequenciaSexo,dffrequenciaSexoFR,how='right',o
n='qualitivas')
dftabelaFreqQualitativas=pandas.merge(dftabelaFreqQualitativas,dffrequenciaSexoFRpc,how
='right',on='qualitivas')
```

In [106]:

```
dftabelaFreqQualitativas
```

Out[106]:

	qualitivas	contagem	freqRelativa	freqRelativa%
0	female	1584	0.5	50.0
1	male	1584	0.5	50.0
2	Total	3168	1.0	100.0

Resultado equilbrado entre homens e mulheres.

Refazendo boxplot.

O BOXPLOT representa os dados através de um retângulo construído com os quartis e fornece informação sobre valores extremos.

In [107]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[0:6]].plot(kind='box', subplots=True, layout=(3,3), sharex=False, share
y=False)
plt.show()
```


In [108]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[6:6 * 2]].plot(kind='box', subplots=True, layout=(3,3), sharex=False, s
harey=False)
plt.show()
```


In [109]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[6 *2 :6 * 3]].plot(kind='box', subplots=True, layout=(3,3), sharex=Fals
e, sharey=False)
plt.show()
```


In [110]:

```
plt.rcParams['figure.figsize'] = (15,15)
dataset[colunas[6 *3 :6 * 4]].plot(kind='box', subplots=True, layout=(3,3), sharex=Fals
e, sharey=False)
plt.show()
```


Dataset depois de limpo ainda possui alguns Valores discrepantes.

Analisando a correlação das variáveis.

```
In [111]:
```

```
# PANDAS: Correlação
cor = dataset.corr(method='pearson')
print(cor)
```

meanfreq nt sfm mode `		median	Q25	Q75	IQR	skew	kurt	sp.e
meanfreq 1.000 42 -0.771 0.573		0.828	0.806	0.622	-0.575	0.012	-0.036	-0.6
sd -0.693 66 0.861 -0.516	1.000	-0.468	-0.819	-0.143	0.870	-0.227	-0.114	0.7
median 0.828 98 -0.596 0.521	-0.468	1.000	0.621	0.598	-0.379	-0.043	-0.060	-0.4
Q25 0.806 53 -0.805 0.535	-0.819	0.621	1.000	0.426	-0.856	0.221	0.119	-0.7
Q75 0.622 92 -0.386 0.452	-0.143	0.598	0.426	1.000	0.017	-0.254	-0.230	-0.1
	0.870	-0.379	-0.856	0.017	1.000	-0.364	-0.239	0.6
skew 0.012 07 -0.207 -0.153	-0.227	-0.043	0.221	-0.254	-0.364	1.000	0.694	-0.4
kurt -0.036 85 -0.101 -0.175	-0.114	-0.060	0.119	-0.230	-0.239	0.694	1.000	-0.2
sp.ent -0.642 00 0.869 -0.340	0.766	-0.498	-0.753	-0.192	0.697	-0.407	-0.285	1.0
sfm -0.771 69 1.000 -0.486	0.861	-0.596	-0.805	-0.386	0.689	-0.207	-0.101	0.8
mode 0.573 40 -0.486 1.000	-0.516	0.521	0.535	0.452	-0.387	-0.153	-0.175	-0.3
centroid 1.000 42 -0.771 0.573	-0.693	0.828	0.806	0.622	-0.575	0.012	-0.036	-0.6
meanfun 0.500 11 -0.421 0.325	-0.487	0.444	0.570	0.140	-0.561	0.198	0.122	-0.5
	-0.383	0.334	0.327	0.326	-0.208	-0.080	-0.138	-0.3
maxfun 0.350 98 -0.262 0.286	-0.227	0.302	0.267	0.327	-0.130	-0.116	-0.110	-0.1
meandom 0.500 90 -0.418 0.494	-0.463	0.389	0.427	0.355	-0.310	-0.126	-0.145	-0.2
mindom 0.406 72 -0.373 0.477	-0.386	0.331	0.367	0.309	-0.264	-0.161	-0.169	-0.2
maxdom 0.516 35 -0.442 0.498	-0.486	0.417	0.451	0.339	-0.337	-0.121	-0.122	-0.3
dfrange 0.512 29 -0.437 0.494	-0.479	0.416	0.446	0.339	-0.331	-0.127	-0.125	-0.3
modindx -0.163 35 0.168 -0.129	0.130	-0.148	-0.123	-0.131	0.068	0.023	0.018	0.1
	meanfun	minfu	ın max	fun mea	andom i	mindom	maxdom	dfra
nge modindx meanfreq 1.000	0.500	0.42	21 0.	350 (0.500	0.406	0.516	0.
512 -0.163 sd -0.693	-0.487	-0.38	33 -0.	227 -6	0.463	-0.386	-0.486	-0.
479 0.130 median 0.828	0.444	0.33	34 0.	302 (3.389	0.331	0.417	0.
=	0.570	0.32	27 0.	267 (0.427	0.367	0.451	0.
446 -0.123 Q75 0.622	0.140	0.32	26 0.	327 (0.355	0.309	0.339	0.
339 -0.131 IQR -0.575	-0.561	-0.20	08 -0.	130 -6	0.310	-0.264	-0.337	-0.
331 0.068 skew 0.012	0.198	-0.08	80 -0.	116 -6	0.126	-0.161	-0.121	-0.
127 0.023 kurt -0.036 125 0.018	0.122	-0.13	88 -0.	110 -6	0.145	-0.169	-0.122	-0.
123 0.010								

sp.ent		-0.511	-0.327	-0.198	-0.290	-0.272	-0.335	-0.
329 0.135 sfm		-0.421	-0.416	-0.262	-0.418	-0.373	-0.442	-0.
437 0.168		0 225	0.454	0.206	0 404	0 477	0 400	0
mode 494 -0.129		0.325	0.454	0.286	0.494	0.4//	0.498	0.
centroid	1.000	0.500	0.421	0.350	0.500	0.406	0.516	0.
512 -0.163 meanfun		1.000	0.296	0.169	0.265	0.155	0.286	0.
284 -0.044		0.206	1 000	0.204	0 500	0 503	0.454	•
minfun 451 -0.173		0.296	1.000	0.384	0.500	0.503	0.451	0.
maxfun		0.169	0.384	1.000	0.387	0.341	0.371	0.
374 -0.173 meandom		0.265	0.500	0.387	1.000	0.449	0.811	0.
808 -0.064		0 155	0 503	0 241	0 440	1 000	0.420	0
mindom 428 -0.170		0.155	0.503	0.341	0.449	1.000	0.430	0.
maxdom		0.286	0.451	0.371	0.811	0.430	1.000	0.
997 -0.247 dfrange		0.284	0.451	0.374	0.808	0.428	0.997	1.
000 -0.247 modindx		0 044	0 172	0 172	0.064	0 170	0 247	0
modinax 247 1.000		-0.044	-0.1/3	-0.1/3	-0.004	-0.1/0	-0.24/	-0.

```
In [112]:
```

sb.heatmap(cor, annot = True)

Out[112]:

<matplotlib.axes._subplots.AxesSubplot at 0x164384b0>


```
In [ ]:
```

Analisando a correlação das variáveis, visualmente temos 5 grandes áreas que correlacionam.

Vamos segmentar a base e var as correlações entre homens e mulheres.

```
In [113]:
```

```
dfHomens = dataset[dataset["label"] == "male"]
dfMuheres = dataset[dataset["label"] == "female"]
```

In [114]:

###conferindo segmentação homens.

In [115]:

dfHomens.head(2)

Out[115]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm	 centroid	١
0	0.184	0.064	0.191	0.142	0.226	0.075	2.196	8.442	0.893	0.492	 0.184	_
1	0.184	0.067	0.191	0.142	0.226	0.073	2.196	8.442	0.892	0.514	 0.184	

2 rows × 21 columns

In [116]:

dfHomens.tail(2)

Out[116]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm	 centroid
1582	0.162	0.06	0.140	0.113	0.224	0.112	3.507	8.442	0.907	0.413	 0.162
1583	0.159	0.06	0.147	0.108	0.217	0.109	3.649	8.442	0.898	0.401	 0.159

2 rows × 21 columns

In [117]:

###conferindo segmentação mulheres.

In [118]:

dfMuheres.head(2)

Out[118]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm	 centroi
1584	0.158	0.083	0.191	0.062	0.225	0.162	2.801	8.442	0.952	0.679	 0.15
1585	0.183	0.068	0.201	0.175	0.226	0.051	3.002	8.442	0.910	0.506	 0.18

2 rows × 21 columns

In [119]:

dfMuheres.tail(2)

Out[119]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm	 centroi
3166	0.144	0.091	0.185	0.044	0.220	0.176	1.591	5.388	0.950	0.675	 0.14
3167	0.166	0.093	0.183	0.070	0.251	0.181	1.705	5.769	0.939	0.602	 0.16

2 rows × 21 columns

←

In [120]:

Correlação por seguimento.

In [121]:

```
# PANDAS: Correlação
Mcor = dfMuheres.corr(method='pearson')
print(Mcor)
```

meanfreq nt sfm mode		median	Q25	Q75	IQR	skew	kurt	sp.e
meanfreq 1.000 34 -0.762 0.544		0.877	0.813	0.714	-0.554	0.031	-0.031	-0.6
sd -0.669 15 0.918 -0.536	1.000	-0.405	-0.778	-0.177	0.843	-0.246	-0.130	0.8
median 0.877 02 -0.581 0.464	-0.405	1.000	0.683	0.824	-0.331	-0.049	-0.070	-0.5
Q25 0.813 59 -0.834 0.541	-0.778	0.683	1.000	0.513	-0.842	0.261	0.146	-0.7
Q75 0.374 0.714 32 -0.373 0.400	-0.177	0.824	0.513	1.000	-0.056	-0.233	-0.195	-0.2
IQR -0.554 13 0.753 -0.433	0.843	-0.331	-0.842	-0.056	1.000	-0.422	-0.274	0.7
skew 0.031 83 -0.214 -0.036	-0.246	-0.049	0.261	-0.233	-0.422	1.000	0.581	-0.3
kurt -0.031 40 -0.113 -0.081	-0.130	-0.070	0.146	-0.195	-0.274	0.581	1.000	-0.2
sp.ent -0.634 00 0.895 -0.424	0.815	-0.502	-0.759	-0.232	0.713	-0.383	-0.240	1.0
sfm -0.762 95 1.000 -0.505	0.918	-0.581	-0.834	-0.373	0.753	-0.214	-0.113	0.8
mode 0.544 24 -0.505 1.000	-0.536	0.464	0.541	0.400	-0.433	-0.036	-0.081	-0.4
centroid 1.000 34 -0.762 0.544	-0.669	0.877	0.813	0.714	-0.554	0.031	-0.031	-0.6
meanfun 0.300 70 -0.173 0.217	-0.078	0.425	0.150	0.318	0.006	0.078	-0.019	-0.2
minfun 0.387 25 -0.361 0.403	-0.364	0.308	0.273	0.276	-0.174	-0.048	-0.090	-0.3
maxfun 0.401 24 -0.282 0.274	-0.247	0.365	0.301	0.368	-0.140	-0.088	-0.092	-0.2
meandom 0.482 13 -0.424 0.450	-0.453	0.357	0.379	0.332	-0.271	-0.091	-0.113	-0.3
mindom 0.386 57 -0.397 0.368	-0.422	0.283	0.396	0.235	-0.342	-0.042	-0.057	-0.3
maxdom 0.505 98 -0.490 0.468	-0.507	0.376	0.417	0.317	-0.318	-0.043	-0.059	-0.3
dfrange 0.503 91 -0.484 0.465	-0.500	0.377	0.412	0.319	-0.311	-0.048	-0.061	-0.3
modindx -0.137 50 0.170 -0.121	0.184	-0.085	-0.140	-0.073	0.128	-0.021	-0.025	0.1
	meanfun	minfu	ın max	fun mea	andom i	mindom	maxdom	dfra
nge modindx								
meanfreq 1.000 503 -0.137								
sd -0.669 500 0.184	-0.078	-0.36	64 -0.2	247 -6	0.453	-0.422	-0.507	-0.
median 0.877 377 -0.085	0.425	0.30	08 0.3	365 (0.357	0.283	0.376	0.
	0.150	0.27	3 0.3	301 (3.379	0.396	0.417	0.
Q75 0.714 319 -0.073	0.318	0.27	6 0.3	368 (0.332	0.235	0.317	0.
IQR -0.554 311 0.128	0.006	-0.17	′4 -0.1	140 -6	0.271	-0.342	-0.318	-0.
skew 0.031	0.078	-0.04	8 -0.6	988 -6	0.091	-0.042	-0.043	-0.
048 -0.021 kurt -0.031 061 -0.025	-0.019	-0.09	0 -0.6	992 -6	0.113	-0.057	-0.059	-0.
001 -0.07)								

sp.ent		-0.270	-0.325	-0.224	-0.313	-0.357	-0.398	-0.
391 0.150								
sfm ·	-0.762	-0.173	-0.361	-0.282	-0.424	-0.397	-0.490	-0.
484 0.170								
mode	0.544	0.217	0.403	0.274	0.450	0.368	0.468	0.
465 -0.121								
	1.000	0.300	0.387	0.401	0.482	0.386	0.505	0.
503 -0.137								
meanfun		1.000	0.283	0.090	-0.009	0.009	0.038	0.
0.006								
minfun	0.387	0.283	1.000	0.355	0.483	0.416	0.462	0.
461 -0.164								
	0.401	0.090	0.355	1.000	0.429	0.341	0.414	0.
415 -0.162								
	0.482	-0.009	0.483	0.429	1.000	0.429	0.804	0.
804 -0.100								
	0.386	0.009	0.416	0.341	0.429	1.000	0.442	0.
440 -0.192								
	0.505	0.038	0.462	0.414	0.804	0.442	1.000	0.
998 -0.270								
dfrange		0.038	0.461	0.415	0.804	0.440	0.998	1.
000 -0.268								
	-0.137	0.006	-0.164	-0.162	-0.100	-0.192	-0.270	-0.
268 1.000								

In [122]:

```
# PANDAS: Correlação
Hcor = dfHomens.corr(method='pearson')
print(Hcor)
```

nt sfm	meanfreq mode		median	Q25	Q75	IQR	skew	kurt	sp.e
meanfreq 58 -0.698	1.000	=	0.768	0.722	0.707	-0.321	-0.265	-0.249	-0.4
	-0.587	1.000	-0.435	-0.692	-0.333	0.776	0.141	0.222	0.3
median 67 -0.534	0.768	-0.435	1.000	0.491	0.515	-0.197	-0.213	-0.188	-0.3
	0.722	-0.692	0.491	1.000	0.696	-0.637	-0.183	-0.224	-0.4
	0.707	-0.333	0.515	0.696	1.000	-0.070	-0.244	-0.236	-0.3
	-0.321	0.776	-0.197	-0.637	-0.070	1.000	0.046	0.125	0.1
	-0.265	0.141	-0.213	-0.183	-0.244	0.046	1.000	0.756	-0.2
kurt 73 0.079	-0.249	0.222	-0.188	-0.224	-0.236	0.125	0.756	1.000	-0.1
sp.ent 00 0.795	-0.458	0.323	-0.367	-0.426	-0.363	0.134	-0.250	-0.173	1.0
sfm 95 1.000	-0.698	0.737	-0.534	-0.696	-0.555	0.439	-0.007	0.079	0.7
mode 76 -0.438	0.593	-0.566	0.525	0.593	0.555	-0.356	-0.353	-0.328	-0.1
centroid 58 -0.698	1.000	-0.587	0.768	0.722	0.707	-0.321	-0.265	-0.249	-0.4
	0.477	-0.310	0.337	0.446	0.492	-0.193	-0.236	-0.230	-0.1
	0.451	-0.466	0.333	0.425	0.411	-0.236	-0.182	-0.242	-0.3
maxfun 48 -0.225	0.291	-0.207	0.238	0.252	0.298	-0.083	-0.194	-0.164	-0.1
meandom 91 -0.330	0.465	-0.432	0.372	0.450	0.446	-0.254	-0.306	-0.289	-0.0
mindom	0.446	-0.448	0.360	0.424	0.402	-0.249	-0.317	-0.302	-0.1
	0.459	-0.362	0.408	0.428	0.436	-0.211	-0.368	-0.313	-0.0
46 -0.280 dfrange	0.455	-0.357	0.406	0.424	0.432	-0.208	-0.374	-0.315	-0.0
41 -0.276 modindx	-0.209	0.069	-0.208	-0.134	-0.203	-0.028	0.080	0.069	0.1
46 0.177					-				1.6
nge modir	centroid ndx	meantun	minti	un max	tun mea	andom	minaom	maxaom	atra
meanfreq 455 -0.2		0.477	0.4	51 0.	291 (0.465	0.446	0.459	0.
sd	-0.587	-0.310	-0.4	56 -0.	207 -	0.432	-0.448	-0.362	-0.
357 0.0 median	0.768	0.337	0.3	33 0.	238 (0.372	0.360	0.408	0.
406 -0.2 Q25	0.722	0.446	0.42	25 0.	252 (0.450	0.424	0.428	0.
424 -0.1 Q75	0.707	0.492	0.43	11 0.	298 (ð.446	0.402	0.436	0.
-	-0.321	-0.193	-0.23	36 -0.	083 -0	ð.254	-0.249	-0.211	-0.
	-0.265	-0.236	-0.18	32 -0.	194 -0	0.306	-0.317	-0.368	-0.
kurt	0.249	-0.230	-0.24	42 -0.	164 -0	ð.289	-0.302	-0.313	-0.
315 0.6	969								

sp.ent -0.458	-0.128	-0.327	-0.148	-0.091	-0.177	-0.046	-0.
041 0.146							
sfm -0.698	-0.323	-0.468	-0.225	-0.330	-0.357	-0.280	-0.
276 0.177							
	0.441	0.488	0.289	0.528	0.553	0.520	0.
515 -0.136							
	0.477	0.451	0.291	0.465	0.446	0.459	0.
455 -0.209							
meanfun 0.477	1.000	0.494	0.344	0.514	0.346	0.489	0.
490 -0.118							
minfun 0.451	0.494	1.000	0.409	0.508	0.582	0.418	0.
418 -0.182							
maxfun 0.291	0.344	0.409	1.000	0.324	0.336	0.308	0.
311 -0.183							
meandom 0.465	0.514	0.508	0.324	1.000	0.472	0.805	0.
799 -0.014							
mindom 0.446	0.346	0.582	0.336	0.472	1.000	0.420	0.
417 -0.148							
maxdom 0.459	0.489	0.418	0.308	0.805	0.420	1.000	0.
996 -0.222							
dfrange 0.455	0.490	0.418	0.311	0.799	0.417	0.996	1.
000 -0.225							
modindx -0.209	-0.118	-0.182	-0.183	-0.014	-0.148	-0.222	-0.
225 1.000							

Homens

```
In [123]:
```

sb.heatmap(Hcor, annot = True)

Out[123]:

<matplotlib.axes._subplots.AxesSubplot at 0x1510a7f0>

Mulheres

In [124]:

```
sb.heatmap(Mcor, annot = True)
```

Out[124]:

<matplotlib.axes._subplots.AxesSubplot at 0x16151730>

Não houve grandes diferenças por seguimento na correlação.

Finalização, Apos análises deparamos com valores discrepantes, no qual foram substituídos pela média, Os dados representam arquivos de áudio amostrado, o que pode ter sido gravo com auto indexe de ruído e outras interferências, a base limpa está salva, vamos para etapa de treinamento do modelo.

```
In [125]:
```

```
dataset.to_csv(".\\baseDados\\voice_fix.csv")
```

Gráfico de dispersão geral e por seguimento.

Geral dataset total.

In [126]:

```
# Gráfico de dispersão (multivariado)
scatter_matrix(dataset)
plt.rcParams['figure.figsize'] = (15,15)
plt.show()
```


Dataset Mulheres

In [127]:

```
# Gráfico de dispersão (multivariado)
scatter_matrix(dfMuheres)
plt.rcParams['figure.figsize'] = (15,15)
plt.show()
```


Dataset Homens

```
In [128]:
```

```
# Gráfico de dispersão (multivariado)
scatter_matrix(dfHomens)
plt.rcParams['figure.figsize'] = (15,15)
plt.show()
```


No gráfico de dispersão podemos encontrar correlações positivas frequentes entre as variáveis, isso é visto de forma clara no gráfico de vozes masculinas.

In []:

Comparativo dos dados.

In [2]:

```
%matplotlib inline
```

In [23]:

```
# Importa as bibliotecas
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
#from pandas.tools.plotting import scatter_matrix
from pandas.plotting import scatter_matrix
import seaborn as sb
```

In [8]:

```
# Carrega os dados

url = ".\\baseDados\\voice_fix.csv"

#colunas = ["meanfreq","sd","median","Q25","Q75","IQR","skew","kurt","sp.ent","sfm","mo
de","centroid","meanfun","minfun","maxfun","meandom","mindom","maxdom","dfrange","modin
dx","label"]
dataset = pandas.read_csv(url, sep = ",")
```

In [9]:

```
dataset.head()
```

Out[9]:

	Unnamed: 0	meanfreq	sd	median	Q25	Q75	IQR	skew	ku
0	0	0.183506	0.064241	0.190591	0.142287	0.225624	0.075122	2.196061	8.44236
1	1	0.183506	0.067310	0.190591	0.142482	0.225624	0.073252	2.196061	8.44236
2	2	0.183506	0.083829	0.190591	0.142287	0.225624	0.123207	2.196061	8.44236
3	3	0.151228	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.17729
4	4	0.135120	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.3337′

5 rows × 22 columns

In [11]:

```
dfHomens = dataset[dataset["label"] == "male"]
dfMuheres = dataset[dataset["label"] == "female"]
```

In [12]:

```
dfHomens.head()
```

Out[12]:

	Unnamed: 0	meanfreq	sd	median	Q25	Q75	IQR	skew	ku
0	0	0.183506	0.064241	0.190591	0.142287	0.225624	0.075122	2.196061	8.44236
1	1	0.183506	0.067310	0.190591	0.142482	0.225624	0.073252	2.196061	8.44236
2	2	0.183506	0.083829	0.190591	0.142287	0.225624	0.123207	2.196061	8.44236
3	3	0.151228	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.17729
4	4	0.135120	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.3337

5 rows × 22 columns

→

In [159]:

```
dfMuheres.head()
```

Out[159]:

	Unnamed: 0	meanfreq	sd	median	Q25	Q75	IQR	skew	
1584	1584	0.158108	0.082782	0.191191	0.062350	0.224552	0.162202	2.801344	8.4
1585	1585	0.182855	0.067789	0.200639	0.175489	0.226068	0.050579	3.001890	8.4
1586	1586	0.199807	0.061974	0.211358	0.184422	0.235687	0.051265	2.543841	7.5
1587	1587	0.195280	0.072087	0.204656	0.180611	0.255954	0.075344	2.392326	10.0
1588	1588	0.208504	0.057550	0.220229	0.190343	0.249759	0.059416	1.707786	5.6

5 rows × 22 columns

Gráfico comparativo com valores máximos.

In [207]:

```
DadosMax = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].max())
    Linha.append(dfMuheres[x].max())
    Linha.append(dfHomens[x].max())
    DadosMax.append(Linha)
```

In [208]:

Out[208]:

<matplotlib.axes._subplots.AxesSubplot at 0x172e01d0>

Gráfico comparativo com valores mínimos.

In [209]:

```
DadosMin = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].min())
    Linha.append(dfMuheres[x].min())
    Linha.append(dfHomens[x].min())
    DadosMin.append(Linha)
```

In [210]:

Out[210]:

<matplotlib.axes._subplots.AxesSubplot at 0x181da450>

Gráfico comparativo com valores média.

In [211]:

```
DadosMedia = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].mean())
    Linha.append(dfMuheres[x].mean())
    Linha.append(dfHomens[x].mean())
    DadosMedia.append(Linha)
```

In [212]:

Out[212]:

<matplotlib.axes._subplots.AxesSubplot at 0x10761050>

Gráfico comparativo com valores mediana.

```
In [ ]:
```

In [213]:

```
DadosMediana = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].quantile(q=0.50))
    Linha.append(dfMuheres[x].quantile(q=0.50))
    Linha.append(dfHomens[x].quantile(q=0.50))
    DadosMediana.append(Linha)
```

In [214]:

Out[214]:

<matplotlib.axes._subplots.AxesSubplot at 0x19504f50>

Gráfico comparativo com valores Desvio padrão.

In [215]:

```
Dadosdp = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].std())
    Linha.append(dfMuheres[x].std())
    Linha.append(dfHomens[x].std())
    Dadosdp.append(Linha)
```

In [216]:

Out[216]:

<matplotlib.axes._subplots.AxesSubplot at 0x195af350>

Gráfico comparativo com valores Variância.

In [217]:

```
Dadosvr = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].var())
    Linha.append(dfMuheres[x].var())
    Linha.append(dfHomens[x].var())
    Dadosvr.append(Linha)
```

In [204]:

Out[204]:

<matplotlib.axes._subplots.AxesSubplot at 0x16fc92b0>

Gráfico comparativo com valores Amplitude.

In [225]:

```
Dados = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]

G=dataset[x].max() - dataset[x].min()
    M=dfMuheres[x].max() - dfMuheres[x].min()
    H=dfHomens[x].max() - dfHomens[x].min()

Linha.append(G)
    Linha.append(M)
    Linha.append(H)
    Dados.append(Linha)
```

In [226]:

Out[226]:

<matplotlib.axes._subplots.AxesSubplot at 0x19676910>

Gráfico comparativo com valores Moda.

In [231]:

```
Dados = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append(dataset[x].mode()[0])
    Linha.append(dfMuheres[x].mode()[0])
    Linha.append(dfHomens[x].mode()[0])
    Dados.append(Linha)
```

In [232]:

Out[232]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a0a1290>

Gráfico comparativo com valores Coeficiente de variação.

In [235]:

```
Dados = []
for x in colunas:
    if x == "label":
        continue
    Linha =[]
    Linha.append((dataset[x].std()/dataset[x].mean()) * 100)
    Linha.append((dfMuheres[x].std()/dfMuheres[x].mean()) * 100)
    Linha.append((dfHomens[x].std()/dfHomens[x].mean()) * 100)
    Dados.append(Linha)
```

In [236]:

Out[236]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1a4610>

Fim da análise exploraria.