

Department of Computer Science and Engineering

Data Structures and Object-Oriented Design

Hasan Baig

Office: UConn (Stamford), 305C email: hasan.baig@uconn.edu

1

Module 11 Graphs

Paragen Polymer CSE-2050 – Data Structures and Object-Oriented Design

Recap

Quick Recap

Non-Linear data structures

For N nodes → N-1 edges (parent child relation)

All nodes are accessible through root

Also, there is only one path to reach to any node from root

Trees are special form of Graphs

Alson Baig

Graphs 16

CSE-2050 – Data Structures and Object-Oriented Design

Some important types of graphs are:

3. Mixed Graphs

Types

Graphs

- Edges have a direction pointing from one vertex to another vertex
- Some edges are undirected

CSE-2050 - Data Structures and Object-Oriented Design Graphs 20 Representation Graphs Representation of a graph, G(V,E), in a programming language. 1 3 1. Edge Set → Stores a set of vertices and a set of edges $V = \{1, 2, 3, 4\}$ $E = \{ (1, 2), (1, 3), (1, 4),$ (2, 1), (2, 4), (3,4), (4,3)} 2. Adjacency Set → Stores a set of vertices and a dictionary of neighbors $V = \{1, 2, 3, 4\}$ $nbrs = \{ 1: \{2, 3, 4\}, \}$ 2: {1, 4}, 3: {4}, 4: {3}, } Hasan Baig

Τ.

Department of Computer Science and Engineering

Data Structures and Object-Oriented Design

(CSE - 2050)

Hasan Baig

Office: UConn (Stamford), 305C email: hasan.baig@uconn.edu

27

