Why Share Biomedical Data?

- Science has always encouraged data sharing to advance.
 - It allows scientists to check and build on the work of others.
 - Saves public resources as data can be produced once and used over again by many.
- Its the right thing to do.

Why Not Share Biomedical Data?

- Some special issues exist for clinical data in regards to patient privacy issues.
- Some technological challenges exist but are not the main problem.
- "Many of the barriers to sharing and reuse are social in nature, arising from researchers' concerns about and attitudes toward sharing their data."

Federer et al (2015) http://dx.doi.org/10.1371/journal.pone.0129506

How to Share Data?

Metadata is "data that provides information about other data".

Example: A book entry in a library catalog is metadata about the book.

Multiple types of metadata

Descriptive metadata describes individual instances of the data or the data content. Used for discovery.

(Title, abstract, author, & keywords)

Metadata is "data that provides information about other data".

Example: A book entry in a library catalog is metadata about the book.

Multiple types of metadata

Descriptive metadata

Structural metadata is data about how the data is put together, the containers of data.

(File formats, database schema, versions)

Metadata is "data that provides information about other data".

Example: A book entry in a library catalog is metadata about the book.

Multiple types of metadata

Descriptive metadata

Structural metadata

Administrative metadata provides information to manage a resource, such as when and how it was created, file type and other technical information, access restrictions.

Metadata is "data that provides information about other data".

Example: A book entry in a library catalog is metadata about the book.

- Multiple types of metadata
 Descriptive metadata
 Structural metadata
 Administrative metadata
- The term metadata is used differently in different communities.
 - Some use it to refer to machine understandable information Some use it only for human readable records that describe a resource

1 to **25** of **109**

BLAST Align

Retrieve/ID mapping

Peptide search

Help Contact

Show quick links

Show 25 ♣

Help results

Filter by

UniProtKB manual

★
(109)

Categories

3D structure (4)

Cross-references (2)

Entry information (5)

Expression (4)

Family and domains (9)

Function (16)

Interaction (3)

Miscellaneous (2)

Help Search Results

Accession

Provides a stable way of identifying UniProtKB entries

Active site

Amino acid(s) directly involved in the activity of an enzyme

Allergenic properties

Information relevant to allergenic proteins

Alternative products

Description of the different proteins generated from the same gene

Annotation score

Annotation scores provide a measure of how much annotation has been associated with a given entry or proteome.

Binary interactions

Information relevant to binary protein-protein interactions

Binding site

Binding site for any chemical group (co-enzyme, prosthetic group, etc.)

Biophysicochemical properties

Description of biophysical and physicochemical properties

```
<!-- Entry definition begins -->
- <xs:element name="entry">
  -<xs:annotation>
      <xs:documentation>Describes a UniProtKB entry.
   </xs:annotation>
  -<xs:complexType>
    -<xs:sequence>
        <xs:element name="accession" type="xs:string" maxOccurs="unbounded"/>
        <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
        <xs:element name="protein" type="proteinType"/>
        <xs:element name="gene" type="geneType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="organism" type="organismType"/>
        <xs:element name="organismHost" type="organismType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="geneLocation" type="geneLocationType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="reference" type="referenceType" maxOccurs="unbounded"/>
        <xs:element name="comment" type="commentType" nillable="true" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="dbReference" type="dbReferenceType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="proteinExistence" type="proteinExistenceType"/>
        <xs:element name="keyword" type="keywordType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="feature" type="featureType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="evidence" type="evidenceType" minOccurs="0" maxOccurs="unbounded"/>
        <xs:element name="sequence" type="sequenceType"/>
      </xs:sequence>
    - <xs:attribute name="dataset" use="required">
      -<xs:simpleType>
        -<xs:restriction base="xs:string">
            <xs:enumeration value="Swiss-Prot"/>
            <xs:enumeration value="TrEMBL"/>
          </xs:restriction>
        </xs:simpleType>
      </xs:attribute>
      <xs:attribute name="created" type="xs:date" use="required"/>
      <xs:attribute name="modified" type="xs:date" use="required"/>
      <xs:attribute name="version" type="xs:int" use="required"/>
   </xs:complexType>
 </xs:element>
 <!-- Entry definition ends -->
```

core:Annotation (rdf:type owl:Class)

rdfs:comment Description of a resource on a specific topic. xsd:string

core:Attribution (rdf:type owl:Class)

rdfs:comment Entity used to attach evidence or provenance to a rdf statement via reification. @en

core:Beta_Strand_Annotation (rdf:type owl:Class)						
rdfs:subClassOf	core:Secondary_Structure_Annotation					
rdfs:comment	Beta strand regions within the experimentally determined protein structure xsd:string					
rdfs:label	Strand xsd:string					
rdfs:seeAlso	http://www.uniprot.org/manual/strand					

core:Binding_Site_	Annotation (rdf:type owl:Class)
rdfs:subClassOf	core:Site_Annotation
rdfs:comment	Binding site for any chemical group (co-enzyme, prosthetic group, etc.). xsd:string
rdfs:label	Binding Site **sd:string
rdfs:seeAlso	http://www.uniprot.org/manual/binding

core:Biophysicoche	mical_Annotation (rdf:type owl:Class)				
rdfs:subClassOf	core: Annotation				
rdfs:comment	Biophysical and physicochemical data such as pH dependence, temperature dependence, kinetic parameters, redox potentials, and maximal absorption. xsd:string				
rdfs:label	Biophysicochemical Property xsd:string				
rdfs:seeAlso	core:biophysicochemical_properties				

Gene Expression Omnibus HOME SEARCH SITE MAP MIAME Email GEO **GEO Publications** FAQ NCBI > GEO > Accession Display 2 Not logged in | Login 2 GEO accession: GSE54293 GO Format: HTML Amount: Quick Scope: Self Series GSE54293 Query DataSets for GSE54293 Public on Jan 23, 2014 Status Title Akt inhibitor MK2206 prevents influenza A(H1N1)pdm09 virus infection in vitro

Organism Homo sapiens

Experiment type Expression profiling by array

Summary The influenza A(H1N1)pdm09 virus caused a global flu pandemic in 2009 and

contributes to seasonal epidemics. Different treatment and prevention options for influenza have been developed and applied with limited success. Here we report that an Akt inhibitor MK2206 possesses potent antiviral activity against influenza A(H1N1)pdm09 virus in vitro. We showed that MK2206 blocks the entry of different A(H1N1)pdm09 strains into cells. Moreover, MK2206 prevented A(H1N1)pdm09-mediated activation of cellular signaling pathways and the development of cellular immune responses. Importantly, A(H1N1)pdm09 virus was unable to develop resistance to MK2206. Thus,

MK2206 is a potent anti-influenza A(H1N1)pdm09 agent.

Overall design Total RNA obtained from NCI-H1666 cells, which are non-small cell lung cancer

cell line. NCI-H1666 cells were non- or MK2206-treated (10 µM) and mock- or

virus-infected (A/Helsinki/p14/2009) at moi of 3.

Contributor(s) Denisova OV, Virtanen S, VonSchantz C, Bychkov D, Desloovere J, Soderholm

S, Theisen LL, Tynell J, Ikonen N, Vashchinkina E, Nyman TA, Matikainen S,

Kallioniemi O, Julkunen I, Muller CP, Saelens X, Verkhusha VV, Kainov DE

Citation(s) Denisova OV, Söderholm S, Virtanen S, Von Schantz C et al. Akt inhibitor

MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob Agents

Chemother 2014 Jul;58(7):3689-96. PMID: 24752266

Submission date Jan 22, 2014 Last update date Aug 30, 2016

Contact name Denis Kainov

E-mail denis.kainov@helsinki.fi

Organization name Helsinki University

Department Institute for Molecular Medicine Finland

The influenza A(H1N1)pdm09 virus caused a global flu pandemic in 2009 and contributes to seasonal epidemics. Different treatment and prevention options for influenza have been developed and applied with limited success. Here we report that an Akt inhibitor MK2206 possesses potent antiviral activity against influenza A(H1N1)pdm09 virus in vitro. We showed that MK2206 blocks the entry of different A(H1N1)pdm09 strains into cells. Moreover, MK2206 prevented A(H1N1)pdm09-mediated activation of cellular signaling pathways and the development of cellular immune responses. Importantly, A(H1N1)pdm09 virus was unable to develop resistance to MK2206. Thus, MK2206 is a potent anti-influenza A(H1N1)pdm09 agent.

<0verall-Design>

Total RNA obtained from NCI-H1666 cells, which are non-small cell lung cancer cell line. NCI-H1666 cells were non- or MK2206-treated (10 μM) and mock- or virus-infected (A/Helsinki/p14/2009) at moi of 3.

<Type>Expression profiling by array
<Contributor-Ref ref="contrib3" position="1" />
<Contributor-Ref ref="contrib4" position="2" />

Biological Data Standards

Why do we need Standards?

- Without standards it becomes impossible to reuse or combine similar data types. Data is not interoperable.
- There are two types of interoperability
 - Syntactic interoperability

means two or more systems are capable of communicating and exchanging data. Specific data formats and protocols are required.

Biological Data Standards

Why do we need Standards?

- Without standards it becomes impossible to reuse or combine similar data types.
 Data is not interoperable.
- There are two types of interoperability
 - Syntactic interoperability
 - Symantec interoperability

is the ability to automatically interpret the information exchanged meaningfully and accurately to produce a useful exchange for the end users of both systems. Specific data models including vocabularies and/or ontologies are required to make sure both systems are communicating.

What Standards to Use?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SOON:

SITUATION:

THERE ARE

15 COMPETING

STANDARDS.

http://imgs.xkcd.com/comics/standards.png

Minimum Information Standards

- The minimum information standard is a set of guidelines for reporting data derived by relevant methods in biosciences.
 - What is good about it?
 As a minimal standard it tends to be simpler to meet and create than a complete standard.
 - What is not good?
 It is a minimal standard and as such not as rich as it could be and may not meet all usecases.

Look for Standards at Biosharing.org

Standards at Biosharing.org

Registry	Name	Abbreviation	Туре	Domain	Taxonomy	Related Database	Related Standard	Related Policy	In Collection/Recommendation
	CDISC Analysis Data Model	CDISC ADaM	Standard	Analysis Biomedical Science Clinical Trial Data Model Data Transformation		None	CDISC SEND CDISC SDTM CDISC CDASH CDISC Define.xml CDISC ODM Plus 6 more	None	eTRIKS Standards Starter Pack Clinical Research (CDISC)
	mz peptide and protein Identification Markup Language	mzIndentML	Standard	Centrally Registered Identifier Identification Life Science Protein Standard	✓ All	None	mzQuantML PSI-MS CV PSI SpML QCML	None	None
	mz Quantitative Markup Language	mzQuantML	Standard	 ✔ Life Science ✔ Protein ✔ Quantification ✔ Quantity 	All	PRIDE	PSI-MS CV mzIndentML mzML PSI SpML HUPO-PSI TraML Plus 2 more	None	None
ф h	Anatomical Entity Ontology	AEO	Standard	Anatomy Life Science	✔ Invertebrata✔ Vertebrata	None	CARO EHDAA2	None	OBO Foundry
da.	Biological SPatial Ontology	BSPO	Standard		Animalia Fun Viridiplantae	ZFIN	CARO	None	OBO Foundry
dh.	Common Anatomy Reference Ontology	CARO	Standard	Anatomy Life Science Ontology Standardization	✓ Vertebrata	None	AEO BSPO VSAO FMA	None	OBO Foundry