SECTION A (40 Marks)

Attempt all questions in this section.

- 1. Solve $2\cos 2\theta 5\sin 2\theta = 4$ for $0 \le \theta \le \pi$ (5 marks)
- 2. Given that $y = \log_5 \left\{ e^x \left(\frac{x+2}{x-2} \right)^{\frac{4}{3}} \right\}$. Find $\frac{dy}{dx}$ (5 marks)
- 3. Solve the equations $x^2 10x + y^2 = 25$ and x y + 1 = 0 (5 marks)
- 4. If the lines $3\mathbf{i} + 4\mathbf{j} + 4\mathbf{k} + \lambda(10\mathbf{i} + 5\mathbf{j} 5\mathbf{k})$ and $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu[9\mathbf{i} + (t 2)\mathbf{j} + 3\mathbf{k}]$ intersect, find the value of t. (5 marks)
- 5. A right circular cone of radius r cm has a maximum volume. The sum of its vertical height h and the circumference is 15cm. find the maximum volume of the cone. (5 marks)
- 6. A point Z moves such that its distance from two points P(2,0) and Q(6,8) are in the ratio PZ:PQ=3:5. Show that the locus of Z is a circle. (5 marks)
- 7. Displacement of a particle from a fixed point after time t is given by $y = e^{-t} \sin t$. Show that the particle is instantaneously at rest at time $t = \frac{\pi}{4}$ seconds. (5 marks)
- 8. Expand $(1-x)^{\frac{1}{3}}$ as far as the term including x^3 . Use your expansion to estimate the $\sqrt[3]{24}$ correct to 4 significant figures. (5 marks)

SECTION B (60 Marks)

- 9. a) If (1 i) is a root of $z^4 6z^3 + 23z^2 34z + 26 = 0$ find the other roots. (6 marks)
 - b) Given that $z = \frac{(3+4i)(2-3i)}{(-i+3)}$,
 - i. express z in terms of a + bi (4 marks)
 - ii. find the argument of z. (2 marks)
- 10. a) Line L_1 is the intersection of the two planes whose equations are x + 5y + 2z = 6 and y 3x z + 2 = 0. Find the Cartesian equation of the line L_1 . (6 marks)
 - b) Show that lines $\mathbf{r} = 3\mathbf{i} 4\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{j} + 2\mathbf{k} \mathbf{i})$ and $\mathbf{r} = 5\mathbf{i} 2\mathbf{k} + \beta(2\mathbf{k} \mathbf{i} \mathbf{j})$ intersect. (6 marks)
- 11. a) Given that $\sin A = \frac{4}{5}$ and $\sin B = \frac{5}{13}$ where both A and B are acute angles. Find the value of;
 - i. Cot(A+B)
 - ii. Sin(A-B) (6 marks)
 - b) Use $t = \tan \frac{x}{2}$, to solve $3 \sin x + 4 \cos x = 2$ for $-360^{\circ} \le x \le 360^{\circ}$ (6 marks)

1

- 12. a) Given that $y = \frac{1+\sin^2 x}{1+\cos^2 x}$, prove that $\frac{dy}{dx} = \frac{3\sin 2x}{(\cos^2 x + 1)^2}$ (4 marks)
 - b) Differentiate $x^2e^{-bx}10^{sinx}$ with respect to x. (4 marks)
 - c) A curve is represented by the parametric equations x = 3t and $y = \frac{4}{1+t^2}$ Determine the equation of the tangent to the curve (3,2) (4 marks)
- 13. a) The line x + y = c is a tangent to the curve $x^2 + y^2 4y + 2 = 0$. Find the coordinates of the points of contact of the tangent for each value of c. (6 marks)
 - b) the equation of the curve is given by $y^2 6y + 20x + 49 = 0$. Sketch the curve showing clearly the vertex, focus, directive, and the axis. (6 marks)

END.