Algorithmique Appliquée

BTS SIO SISR

Algorithmes de recherche et de tri

Plan

- Algorithmiques classiques
- Recherche en Python
- Recherche linéaire
- Recherche binaire
- Tri en Python
- ullet Algorithmes de tri en $O(N^2)$
- Partition
- Tri Rapide
- Tri Fusion

Correction du travail à la maison

DM : Retour sur la complexité et les tests

Lien vers le sujet de DM.

Retour sur les classes de problèmes usuelles en algorithmique

Familles d'algorithmes classiques

	Famille d'algorithmes	Exemple de problème	Exemple d'algorithme
	Recherche	Trouver un nombre dans une liste	Recherche binaire
	Tri	Trier une liste	Tri Fusion
_	Graphes	Trouver le plus court chemin	Bellman-Ford
	Chaînes de caractères	Trouver une sous- chaîne	Boyer-Moore

Intérêt

- De nombreux problèmes peuvent se décomposer en sous-problèmes.
- Ces sous-problèmes se ramènent souvent à ceux résolus par les algorithmes classiques.

Exemples d'autres problèmes

- Optimisation :
 - Graphes, Tri, Recherche.
- Décision :
 - Graphes, Tri, Recherche.
- Classification :
 - Graphes, Tri, Recherche.
- Résolution d'équations (solver \(\overline{\text{**}}\)

Recherche en Python

Opérateur in

```
L = [1, 4, 8, 62]
if 4 in L:
print("On a trouvé 4")
```


On a trouvé 4

Egalement pour les set et tuple

```
S = {1, 4, 8, 62}
if 4 in S:
    print("On a trouvé 4")

T = (1, 4, 8, 62)
if 4 in T:
    print("On a trouvé 4")
```



```
On a trouvé 4
On a trouvé 4
```


Chaînes de caractères

```
Ch = "1, 4, 8, 62"
if "4" in Ch:
    print("On a trouvé 4")
```


On a trouvé 4

Dictionnaires

```
D = {"un": 1, "quatre": 4, "huit": 8, "soixante deux": 62}
if "quatre" in D:
    print("On a trouvé quatre")

if 4 in D.values():
    print("On a trouvé 4")
```


On a trouvé quatre On a trouvé 4

Valeur par défaut

```
resultat = D.get("trois", -1)
print(resultat)
```


- 1

Recherche linéaire

Implémentation itérative

```
def recherche_lineaire(collection, cle):
    for i in range(len(collection)):
        if collection[i] == cle:
            return i
    return -1
```

Preuve d'algorithme

Preuve triviale

- On parcourt chaque élément de la collection une unique fois, donc l'algorithme s'arrête quand chaque élément est traité.
- Chaque élément est comparé à la clé.
- Donc si un élément est égal à la clé, il sera trouvé.

Complexité

- ullet O(N): on parcourt chaque élément une fois.
- $\Omega(1)$: si le 1er élément est égal à la clé, l'algorithme s'arrête immédiatement.

Implémentation récursive

```
def recherche_lineaire(collection, cle):
    def recherche_lineaire_impl(collection, cle, index):
        if index == len(collection):
            return -1
        if collection[index] == cle:
            return index
        return recherche_lineaire_impl(collection, cle, index + 1)
```

Preuve de la version récursive

- L'index est incrémenté à chaque récursion.
- La récursion s'arrête lorsque l'index est égal à la taille de la collection.
- A chaque récursion, on teste l'élément à l'index actuel.
- La récursion s'arrête si l'élément à l'index actuel est égal à la clé.
- On parcourt donc chaque élémént une fois et le reste est identique à la version itérative.

Recherche binaire

Binary search 💥

Implémentation itérative

```
def recherche_binaire(collection, cle):
    debut = 0
    fin = len(collection) - 1
    while debut <= fin:</pre>
        milieu = debut + (fin - debut) // 2
        actuel = collection[milieu]
        if cle < actuel:</pre>
            fin = milieu - 1
        elif cle > actuel:
            debut = milieu + 1
        else:
            return milieu
    return -1
```

Illustration de l'exécution

Exécution sous forme d'arbre (1/4)

Exécution sous forme d'arbre (2/4)

Exécution sous forme d'arbre (3/4)

Exécution sous forme d'arbre (4/4)

Preuve d'algorithme

- A chaque itération :
 - Soit on trouve la clé et l'algorithme s'arrête.
 - Soit l'intervalle de recherche est réduit de moitié et converge vers la clé car la collection est triée :
 - Soit la borne de fin va au milieu,
 - Soit la borne de début va au milieu.

Complexité

- $O(\log N)$: on parcourt chaque étage de l'arbre binaire une fois au maximum.
- $\Omega(1)$: si l'élément du milieu est égal à la clé, l'algorithme s'arrête immédiatement.

Profondeur de l'arbre (1/6)

- ullet A la racine de l'arbre (profondeur p=1), on a un seul noeud.
- A chaque niveau, on multiplie le nombre de noeuds par 2.
- ullet A un niveau donné, on a donc 2^{p-1} noeuds.

Profondeur de l'arbre (2/6)

Profondeur	Arbre	Nombre de noeuds	
1	8	$2^0 = 1$	2 ^{p-1}
2	12	$2^1 = 2$	2 ^{p-1}
3	2 6 10 14	$2^2 = 4$	2 ^{p-1}
4	1 3 5 7 9 11 13 15	$2^3 = 8$	2 ^{p-1}

Total =
$$\sum_{i=0}^{p-1} 2^i = 15$$

Profondeur de l'arbre (3/6)

Donc le nombre total maximal de noeuds N est relié à la profondeur p :

$$N=\sum_{i=0}^{p-1}2^i$$

Profondeur de l'arbre (4/6)

Un peu d'arithmétique

$$egin{aligned} 2^p &= 2^p imes 1 \ &= 2^p imes (2-1) \ &= 2^{p+1} - 2^p \end{aligned}$$

33

Profondeur de l'arbre (5/6)

Application à la somme des profondeurs

$$N = \sum_{i=0}^{p-1} 2^i = 2^{p-1} + 2^{p-2} + \dots + 2^0$$

$$= (2^p - 2^{p-1}) + (2^{p-1} - 2^{p-2}) + \dots + (2^2 - 2^1) + (2^1 - 2^0)$$

$$= 2^p + (-2^{p-1} + 2^{p-1}) + \dots + (-2^1 + 2^1) - 2^0$$

$$= 2^p - 2^0$$

$$= 2^p - 1$$

Profondeur de l'arbre (6/6)

Retour sur le logarithme

$$egin{aligned} 2^p - 1 &= N \ 2^p &= N + 1 \ \log_2(2^p) &= \log_2(N+1) \ p \log_2(2) &= \log_2(N+1) \ p &= \log_2(N+1) \end{aligned}$$

Preuve de la complexité

$$egin{aligned} O(p) &= O(\log_2(N+1)) \ &= O(\log(N)) \end{aligned}$$

On avait vu que la complexité de la recherche binaire était proportionnelle à la profondeur p de l'arbre, c'est- à-dire O(p) soit $O(\log N)$.

Implémentation récursive

```
def recherche_binaire(collection, cle):
    def recherche_binaire_impl(collection, cle, debut, fin):
        if fin < debut:</pre>
            return -1
        milieu = debut + (fin - debut) // 2
        actuel = collection[milieu]
        if cle < actuel:
            return recherche_binaire_impl(collection, cle, debut, milieu - 1)
        elif cle > actuel:
            return recherche_binaire_impl(collection, cle, milieu + 1, fin)
        else:
            return milieu
   debut = 0
    fin = len(collection) - 1
    return recherche_binaire_impl(collection, cle, debut, fin)
```

Relation de récurrence

- Une autre manière de prouver la complexité serait d'utiliser une relation de récurrence.
- On pose que le nombre maximal de comparaisons C pour N=1 est C(1)=1.
- ullet On établi alors que $C(N)=1+C(rac{N}{2}).$
- La résolution de la relation de récurrence donne également $O(\log_2(N))$.

TP: Recherche dans une collection

TP: Recherche dans une collection

Lien vers le sujet de TP.

Tri en Python

Tri interne

In-place sort

```
L = [6, 2, 5, 1, 9, 3, 8, 7, 4]
L.sort()
print(L)
```


[1, 2, 3, 4, 5, 6, 7, 8, 9]

Renvoie une liste triée

```
L1 = [6, 2, 5, 1, 9, 3, 8, 7, 4]

L2 = sorted(L1)

print(f"L1 = {L1}")

print(f"L2 = {L2}")
```


Cas des tuples

```
T = (6, 2, 5, 1, 9, 3, 8, 7, 4)
T2 = sorted(T)
print(T2)
```


[1, 2, 3, 4, 5, 6, 7, 8, 9]

Cas des sets

```
S = {6, 2, 5, 1, 9, 3, 8, 7, 4}
S2 = sorted(S)
print(S2)
```


[1, 2, 3, 4, 5, 6, 7, 8, 9]

Cas des chaînes de caractères (1/2)

```
Ch = "6, 2, 5, 1, 9, 3, 8, 7, 4"
Ch2 = sorted(Ch)
print(Ch2)
```


Cas des chaînes de caractères (2/2)

```
Ch = "6, 2, 5, 1, 9, 3, 8, 7, 4"
Ch3 = sorted(Ch.replace(" ", "").replace(",", ""))
print(Ch3)
```



```
['1', '2', '3', '4', '5', '6', '7', '8', '9']
```

Cas des dictionnaires (1/2)

```
D = {"un": 1, "deux": 2, "trois": 3}
D2 = sorted(D)
print(D2)
```



```
['deux', 'trois', 'un']
```

Cas des dictionnaires (2/2)

```
D = {"un": 1, "deux": 2, "trois": 3}
D3 = sorted(D.values())
print(D3)
```


[1, 2, 3]

Tri décroissant

```
L = [6, 2, 5, 1, 6, 9, 3, 8, 7, 4]
L.sort(reverse=True)
print(L)
```


[9, 8, 7, 6, 6, 5, 4, 3, 2, 1]

Fonction de tri

```
L = [(4, 3, 2, 1), [3, 2, 1], "ba"]
L.sort(key=len)
print(L)
```


['ba', [3, 2, 1], (4, 3, 2, 1)]

Tri d'une structure de données

```
from dataclasses import dataclass

@dataclass
class paiement:
    euros: int = 0
    centimes: int = 0

L = [paiement(10, 0), paiement(3, 55), paiement(3, 99)]
L.sort(key=lambda x: (x.euros, x.centimes))
print(L)
```


Combinaison

```
L = [paiement(10, 0), paiement(3, 55), paiement(3, 99)]
L.sort(key=lambda x: (x.euros, x.centimes), reverse=True)
print(L)
```



```
[paiement(euros=10, centimes=0), paiement(euros=3, centimes=99),
  paiement(euros=3, centimes=55)]
```

Tri dans des ordres inversés sur différentes clés

```
from dataclasses import dataclass
@dataclass
class outil:
    nom: str = ""
    masse: float = 0.
L = [outil("marteau", 1.), outil("niveau", 0.5),
     outil("cutter", 0.3), outil("compas", 0.3)]
L.sort(key=lambda x: (-x.masse, x.nom))
print(L)
```


Algorithmes de tri en $O(N^2)$

Intérêt de l'étude du tri

- Dans le cas général, utilisez sort et sorted pour trier en Python.
- Vous pourriez avoir à implémenter votre propre structure de données et avoir à la trier.
- Les algorithmes de tri sont des cas d'école à connaître en entretien d'embauche.
- Ils présentent un véritable intérêt pédagogique pour aborder les algorithmes linéarithmiques.

Différents algorithmes

- Il existe de nombreux algorithmes de tri.
- Nous allons en étudier 6.
- Ils sont séparés en 2 familles :
 - \circ Algorithmes en $O(N^2)$ donc **quadratiques**.
 - \circ Algorithmes en $O(N\log N)$ donc linéarithmique.

Algorithme (selection sort 🕌)

```
def tri_selection(a):
    N = len(a)
    for i in range(N):
        min = i
        for j in range(i, N):
            if a[j] < a[min]:
                min = j
        a[i], a[min] = a[min], a[i]
    return a
```

Exécution animée

Quelques étapes d'exécution

Complexité

- ullet On a $Nrac{N-1}{2}$ comparaisons et N échanges.
- Par conséquent, on a $\sim \frac{N^2}{2}$ comparaisons.
- ullet Donc on est en $O(N^2)$.

Algorithme (bubble sort 🗮)

```
def tri_bulles(a):
    N = len(a)

for i in range(N - 1):
    for j in range(N - (i + 1)):
        if a[j] > a[j+1]:
        a[j], a[j+1] = a[j+1], a[j]

return a
```

Exécution animée

Quelques étapes d'exécution

Complexité

- \bullet On a $N\frac{N-1}{2}$ comparaisons et au pire $N\frac{N-1}{2}$ échanges.
- Par conséquent, on a $\sim \frac{N^2}{2}$ comparaisons.
- ullet Donc on est en $O(N^2)$.

Algorithme (insertion sort 🕌)

```
def tri_insertion(a):
    N = len(a)

for i in range(1, N):
    j = i
    while j > 0 and a[j] < a[j-1]:
        a[j], a[j-1] = a[j-1], a[j]
        j -= 1</pre>
return a
```

Exécution animée

Quelques étapes d'exécution

Complexité

- On a $\sim \frac{N^2}{4}$ comparaisons et $\sim \frac{N^2}{4}$ échanges.
- ullet Donc on est en $O(N^2)$.

Tri coquille

Algorithme (shell sort \(\bigcup_{\text{*}} \)

```
def tri_coquille(a):
   N = len(a)
    h = 1
    while h < N // 3:
        h = 3 * h + 1
    while h >= 1:
        for i in range(h, N):
            while j >= h and a[j] < a[j-h]:
                a[j], a[j-h] = a[j-h], a[j]
                i -= h
        h //= 3
    return a
```


Tri coquille

Exécution animée

Tri coquille

Quelques étapes d'exécution (1/2)

Tri coquille

Quelques étapes d'exécution (2/2)

Tri coquille

Complexité

- On a $\sim \sqrt{N^3}$ comparaisons.
- ullet Donc on est en $O(N^{3/2})$.

Tri sélection

Tri à bulles

Tri sélection

Tri insertion

Tri insertion

Tri coquille

Partition: diviser et conquérir

Divide-and-Conquer 💥

Diviser et conquérir

- Le principe de **diviser et conquérir** est fondamental en algorithmique.
- On a vu avec la recherche binaire que le fait de diviser en 2 un problème permet de le résoudre beaucoup plus rapidement.

Rappel sur la partition

- En mathématiques, une partition d'un ensemble est un regroupement de ses éléments dans des sousensembles non-vides tel que chaque élément est inclu dans exactement un sous-ensemble.
- Exemple :
 - \circ pour l'ensemble $E=\{6,2,5,1,9,3,8,7,4\}$,
 - \circ le sous-ensemble $C_1=\{2,5,1,3,4\}$,
 - \circ le sous-ensemble $C_2=\{6\}$,
 - \circ le sous-ensemble $C_3=\{9,8,7\}$,
 - \circ on a C_1,C_2,C_3 qui forment une partition de E.

Partitionner en 2

- L'algorithme de partition vise à diviser un ensemble en 2 sous-ensembles :
 - L'ensemble des éléments strictement plus petit qu'une valeur.
 - L'ensemble des autres éléments.

Partition

```
def partition(e):
   N = len(e)
    valeur = e[0]
    i = 0
    j = N
   while True:
        i += 1 # Garanti la progression à droite
        while e[i] < valeur and i != N: i += 1 # Scan vers la droite</pre>
        j -= 1 # Garanti la progression à gauche
        while valeur < e[j] and j != 0: j -= 1 # Scan vers la gauche
        if i >= j: break # Si les indices se croisent on s'arrête
        # Echange des éléments entre les 2 partitions
        e[j], e[i] = e[i], e[j]
   # Met la valeur de partitionnment entre les 2 partitions
    e[j], e[0] = e[0], e[j]
```

Illustration de l'exécution

Exemple

```
L = [6, 2, 5, 1, 9, 3, 8, 7, 4]
partition(L)
print(L)
```


[3, 2, 5, 1, 4, 6, 8, 7, 9]

```
L = [6, 2, 5, 1, 6, 9, 3, 8, 7, 4]
partition(L)
print(L)
```


[3, 2, 5, 1, 4, 6, 9, 8, 7, 6]

Complexité

- ullet On a N+1 comparaisons.
- ullet On est donc en $\sim N$, et O(N).

Tri Rapide

Quick Sort 💥

Introduction

- Le tri rapide a une **meilleure complexité** que les autres algorithmes de tri vu jusqu'ici.
- Il est également plus complexe à comprendre.
- Il repose sur la partition et une définition naturellement récursive.

Tri rapide - Partition

```
def partition(a, debut, fin):
    i = debut
    j = fin + 1
    valeur = a[debut]
    while True:
        i += 1
        while a[i] < valeur and i != fin: i += 1</pre>
        j -= 1
        while valeur < a[j] and j != debut: j -= 1
        if i \ge j: break
        a[j], a[i] = a[i], a[j]
    a[j], a[debut] = a[debut], a[j]
    return j
```

Algorithme (quick sort 🗮)

```
def tri_rapide_recursif(a, debut, fin):
    if fin > debut:
        j = partition(a, debut, fin)
        tri_rapide_recursif(a, debut, j - 1)
        tri_rapide_recursif(a, j + 1, fin)
```

Interface

```
def tri_rapide(a):
    N = len(a)
    tri_rapide_recursif(a, 0, N - 1)
```

Exécution animée

Quelques étapes d'exécution (1/2)

Quelques étapes d'exécution (2/2)

Complexité

- On a $\sim 2N\log N$ comparaisons en moyenne.
- On a $\sim \frac{N^2}{2}$ comparaisons dans le pire cas.
- Comme on peut facilement se prévenir du pire cas, on admet $O(N \log N)$ en pratique.

Le *pire* cas (1/2)

- Le pire cas survient lorsque la collection est déjà triée.
- En effet, le partionnement n'a **aucun effet** dans ce cas.
- On a vu dans la partie sur l'algorithme de partition que la valeur v ne se retrouve pas forcément au milieu.
- Si la valeur v se retrouve toujours en premier,
 cela signifie que la collection est déjà triée et le tri rapide sera lent et inutile.

Le *pire* cas (2/2)

- On peut se prévenir du pire cas en **testant initialement** si le tableau est trié.
- On peut s'éloigner du pire cas en mélangeant les éléments.

Le meilleur cas

- Le tri rapide est à son maximum lorsque v se retrouve toujours *exactement* au milieu à chaque partitionnement.
- ullet Dans ce cas, la relation de récurrence C définissant le nombre de comparaisons $C_N=2C_{N/2}+N$.
- $C_N \sim N \log N$, ce qui est un début de preuve pour la complexité de cet algorithme.

Introduction

- Dans le tri rapide, on partitionne en 2 sousensembles puis on applique l'algorithme récursivement à chaque sous-ensemble.
- Dans le tri fusion, on fait les opérations dans le sens inverse : on applique d'abord récursivement l'algorithme puis on fusionne les résultats.
- C'est la fusion qui entraine le tri.

Tri Fusion - Fusion

```
def fusion(a, debut, milieu, fin):
    i = debut
    j = milieu + 1
    auxiliaire = a[:]
    for k in range(debut, fin + 1):
        if i > milieu:
            a[k] = auxiliaire[j]
            j += 1
        elif j > fin:
            a[k] = auxiliaire[i]
            i += 1
        elif auxiliaire[j] < auxiliaire[i]:</pre>
            a[k] = auxiliaire[j]
            i += 1
        else:
            a[k] = auxiliaire[i]
            i += 1
```

Algorithme (merge sort 🕌)

```
def tri_fusion_recursif(a, debut, fin):
    if fin > debut:
        milieu = debut + (fin - debut) // 2
        tri_fusion_recursif(a, debut, milieu)
        tri_fusion_recursif(a, milieu + 1, fin)
        fusion(a, debut, milieu, fin)
```

Interface

```
def tri_fusion(a):
   N = len(a)
   tri_fusion_recursif(a, 0, N - 1)
```

Exécution animée

Quelques étapes d'exécution (1/2)

Quelques étapes d'exécution (2/2)

Complexité

- ullet La complexité de la fusion elle-même est $\Theta(N)$
- Pour le tri fusion :
 - \circ On a entre $rac{1}{2}N\log N$ et $N\log N$ comparaisons.
 - \circ On est en $\Theta(N \log N)$.

Intuition de preuve

- A chaque récursion, on divise l'espace en 2.
- On peut dessiner un arbre binaire pour représenter les appels.
- La profondeur p de cet arbre binaire est proportionnel à $O(\log N)$.
- On a donc $\log N$ fusions, soit $O(N \log N)$ opérations au total.

Tri rapide

Tri fusion

Existe-t-il un algorithme plus efficace?

- Autrement dit, existe-t-il un algorithme ayant une meilleure complexité que $O(N\log N)$ pour trier une collection ?
- Non, il est possible de prouver que la meilleure complexité pour le tri est $O(N\log N)$.
- En revanche, les implémentations peuvent recevoir de **petites améliorations**.
- Par exemple, il est possible de paralléliser tri rapide ou tri fusion.

Eléments de preuve

- On considère que tous les éléments à trier sont distincts.
- On construit un arbre binaire de toutes les permutations possibles.
- ullet Il y a N! permutations possibles (par définition).
- On s'intéresse à la **profondeur** p et comme l'arbre est binaire, on a $O(p) = O(\log(N!))$.
- L'approximation de Stirling nous donne $\log(N!) \sim N \log(N)$.

TP: Tri de collections

TP: Tri de collections

Lien vers le sujet de TP.