Спектральное разложение

Собственные числа и векторы

• Собственные числа и собственные векторы матрицы.

- Собственные числа и собственные векторы матрицы.
- Характеристический многочлен.

- Собственные числа и собственные векторы матрицы.
- Характеристический многочлен.
- Алгебраическая кратность.

От оператора к матрице

Определение

Если для оператора $\mathsf{L}:\mathbb{R}^n \to \mathbb{R}^n$ найдётся такой ненулевой вектор \mathbf{v} , что $\mathsf{L}\,\mathbf{v} = \lambda \cdot \mathbf{v}$, где $\lambda \in \mathbb{R}$, то:

- вектор v называется собственным вектором;
- число λ называется собственным числом.

Собственные числа и векторы матрицы

Определение

Собственными числами и собственными векторами матрицы размера $n \times n$ называются собственные числа и векторы соответствующего линейного оператора.

Собственные числа и векторы матрицы

Определение

Собственными числами и собственными векторами матрицы размера $n \times n$ называются собственные числа и векторы соответствующего линейного оператора.

Для абстрактного векторного пространства V матрица L_{ee} линейного оператора $\mathsf{L}:V\to V$ зависит от выбора базиса $\mathsf{e}.$ При этом выбор базиса e никак не влияет на собственные числа и собственные векторы.

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Если найдётся один собственный вектор $\mathbf{v} \neq \mathbf{0}$, то любой вектор $\mathbf{v}' = c \cdot \mathbf{v}$ также будет собственным:

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Если найдётся один собственный вектор $\mathbf{v} \neq \mathbf{0}$, то любой вектор $\mathbf{v}' = c \cdot \mathbf{v}$ также будет собственным:

$$L \mathbf{v}' = L c \mathbf{v} = c L \mathbf{v} = c \lambda \mathbf{v} = \lambda \mathbf{v}'.$$

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Если найдётся один собственный вектор $\mathbf{v} \neq \mathbf{0}$, то любой вектор $\mathbf{v}' = c \cdot \mathbf{v}$ также будет собственным:

$$L \mathbf{v}' = L c \mathbf{v} = c L \mathbf{v} = c \lambda \mathbf{v} = \lambda \mathbf{v}'.$$

Система уравнений L ${f v}=\lambda{f v}$ должна иметь бесконечное количество решений!

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(\mathsf{L} - \lambda \mathsf{I})\mathbf{v} = \mathbf{0}$.

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(\mathsf{L} - \lambda \mathsf{I})\mathbf{v} = \mathbf{0}$.

Система имеет бесконечное количество решений, если и только если $\det(\mathbf{L} - \lambda \mathbf{I}) = 0$.

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(L - \lambda I)\mathbf{v} = \mathbf{0}$.

Система имеет бесконечное количество решений, если и только если $\det(\mathbf{L} - \lambda \mathbf{I}) = 0$.

Алгоритм

1. Из уравнения $\det(\mathsf{L}-\lambda\mathsf{I})=0$ находим собственные числа $\lambda_1,...,\lambda_k$.

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(\mathsf{L} - \lambda \mathsf{I})\mathbf{v} = \mathbf{0}$.

Система имеет бесконечное количество решений, если и только если $\det(\mathbf{L} - \lambda \mathbf{I}) = 0$.

Алгоритм

- 1. Из уравнения $\det(\mathsf{L}-\lambda\mathsf{I})=0$ находим собственные числа $\lambda_1,...,\lambda_k$.
- 2. Для каждого λ_i решаем систему $(\mathbf{L} \lambda_i \mathbf{I}) \mathbf{v} = \mathbf{0}$ относительно \mathbf{v} , то есть находим все собственные векторы.

Определение

Многочлен $\mathrm{char}_{\mathsf{L}}(\lambda) = \det(\mathsf{L} - \lambda \mathsf{I})$ называется

характеристическим многочленом линейного оператора L.

Определение

Многочлен $\operatorname{char}_{\mathsf{L}}(\lambda) = \det(\mathsf{L} - \lambda \mathsf{I})$ называется характеристическим многочленом линейного оператора L.

Характеристическим многочленом матрицы называется характеристический многочлен соответствующего линейного оператора.

Рассмотрим матрицу
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$
 .

Рассмотрим матрицу
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$
 .

$$\operatorname{char}_A(\lambda) = \det(A - \lambda \operatorname{I}) = \begin{vmatrix} 4 - \lambda & 6 & 0 \\ 6 & 4 - \lambda & 0 \\ 0 & 0 & 7 - \lambda \end{vmatrix} =$$

Рассмотрим матрицу
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$
 .

$$\operatorname{char}_A(\lambda) = \det(A - \lambda \operatorname{I}) = \begin{vmatrix} 4 - \lambda & 6 & 0 \\ 6 & 4 - \lambda & 0 \\ 0 & 0 & 7 - \lambda \end{vmatrix} =$$

$$= (7 - \lambda) \begin{vmatrix} 4 - \lambda & 6 \\ 6 & 4 - \lambda \end{vmatrix} = (7 - \lambda)((4 - \lambda)^2 - 36) =$$

Рассмотрим матрицу
$$A=\begin{pmatrix} 4&6&0\\ 6&4&0\\ 0&0&7 \end{pmatrix}$$
 .
$$\operatorname{char}_A(\lambda)=\det(A-\lambda \mathsf{I})=\begin{vmatrix} 4-\lambda&6&0\\ 6&4-\lambda&0\\ 0&0&7-\lambda \end{vmatrix}=\\ =(7-\lambda)\begin{vmatrix} 4-\lambda&6\\ 6&4-\lambda \end{vmatrix}=(7-\lambda)((4-\lambda)^2-36)=\\ =-(\lambda-7)(\lambda+2)(\lambda-10)=-\lambda^3+15\lambda^2-36\lambda-140$$

По характеристическому многочлену можно найти:

По характеристическому многочлену можно найти:

1. Собственные числа A из уравнения $\operatorname{char}_A(\lambda)=0$.

$$\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda+2)(\lambda-10)$$

$$\lambda_1 = 7, \ \lambda_2 = -2, \ \lambda_3 = 10.$$

По характеристическому многочлену можно найти:

1. Собственные числа A из уравнения $\operatorname{char}_A(\lambda)=0.$

$$\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda+2)(\lambda-10)$$

$$\lambda_1 = 7, \ \lambda_2 = -2, \ \lambda_3 = 10.$$

2. Определитель A из равенства $\operatorname{char}_A(0) = \det(A - 0 \cdot \mathbf{I}).$

$$\operatorname{char}_A(\lambda) = -\lambda^3 + 15\lambda^2 - 36\lambda - 140$$

$$\det A = \operatorname{char}_A(0) = -140.$$

Алгебраическая кратность

Утверждение

По основной теореме алгебры любой многочлен f с действительными коэффициентами можно единственным образом представить в виде:

$$f(x) = (x - x_1)^{k_1} \cdot \dots \cdot (x - x_p)^{k_p} g(x),$$

где $x_1, ..., x_p \in \mathbb{R}$ — различные корни многочлена f, а многочлен g действительных корней не имеет.

Алгебраическая кратность

Утверждение

По основной теореме алгебры любой многочлен f с действительными коэффициентами можно единственным образом представить в виде:

$$f(x) = (x - x_1)^{k_1} \cdot \ldots \cdot (x - x_p)^{k_p} g(x),$$

где $x_1, ..., x_p \in \mathbb{R}$ — различные корни многочлена f, а многочлен g действительных корней не имеет.

Определение

Число k_i называется алгебраической кратностью корня x_i .

Алгебраическая кратность: пример

Если $\mathrm{char}_A(\lambda) = -(\lambda-7)^2(\lambda+3)$, то собственное число $\lambda=7$ имеет алгебраическую кратность 2, а собственное число $\lambda=-3$ имеет алгебраическую кратность 1.

Алгебраическая кратность: пример

Если $\operatorname{char}_A(\lambda) = -(\lambda-7)^2(\lambda+3)$, то собственное число $\lambda=7$ имеет алгебраическую кратность 2, а собственное число $\lambda=-3$ имеет алгебраическую кратность 1.

Если L : $\mathbb{R}^n \to \mathbb{R}^n$, то сумма алгебраических кратностей k_i действительных собственных чисел $\lambda_i \in \mathbb{R}$ не превосходит n:

$$\sum_{i=1}^{p} k_i \le n.$$

Теорема Гамильтона-Кэли

Утверждение

Если подставить матрицу A в характеристический многочлен $\mathrm{char}_A(\lambda)$, то получится матрица из нулей,

$$\operatorname{char}_A(A) = \mathbf{0};$$

Теорема Гамильтона-Кэли

Утверждение

Если подставить матрицу A в характеристический многочлен $\mathrm{char}_A(\lambda)$, то получится матрица из нулей,

$$\operatorname{char}_A(A) = \mathbf{0};$$

Пример. Если $\mathrm{char}_A(\lambda)=\lambda^2-3\lambda+8$, то $A^2-3A+8\mathrm{I}=\mathbf{0}$ и $A^2=3A-8\mathrm{I}.$

Нахождение собственных чисел и векторов

Это видеофрагмент с доской, слайдов здесь нет:)

Диагонализация матрицы

• Собственные векторы как линейное пространство.

- Собственные векторы как линейное пространство.
- Геометрическая кратность собственных чисел.

- Собственные векторы как линейное пространство.
- Геометрическая кратность собственных чисел.
- Диагонализация матрицы.

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda} \, {\rm L}$ — множество всех собственных векторов, растягивающихся в λ раз, дополненное нулевым вектором ${\bf 0}$:

$$\operatorname{Eig}_{\lambda} L = \{ \mathbf{v} \mid L \mathbf{v} = \lambda \mathbf{v} \}.$$

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda} \, {\rm L}$ — множество всех собственных векторов, растягивающихся в λ раз, дополненное нулевым вектором ${\bf 0}$:

$$\operatorname{Eig}_{\lambda} \mathsf{L} = \{ \mathbf{v} \mid \mathsf{L} \, \mathbf{v} = \lambda \mathbf{v} \}.$$

Утверждение

Множество $\operatorname{Eig}_{\lambda} \operatorname{L}$ является векторным пространством:

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda} \, {\rm L}$ — множество всех собственных векторов, растягивающихся в λ раз, дополненное нулевым вектором ${\bf 0}$:

$$\operatorname{Eig}_{\lambda} \mathsf{L} = \{ \mathbf{v} \mid \mathsf{L} \, \mathbf{v} = \lambda \mathbf{v} \}.$$

Утверждение

Множество $\operatorname{Eig}_{\lambda} \operatorname{L}$ является векторным пространством:

Если вектор ${\bf v}$ растягивается в λ раз, то и вектор $t{\bf v}$ растягивается в λ раз.

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\sf Eig}_{\lambda} \, {\sf L}$ — множество всех собственных векторов, растягивающихся в λ раз, дополненное нулевым вектором ${\bf 0}$:

$$\operatorname{Eig}_{\lambda} \mathsf{L} = \{ \mathbf{v} \mid \mathsf{L} \, \mathbf{v} = \lambda \mathbf{v} \}.$$

Утверждение

Множество $\operatorname{Eig}_{\lambda} \operatorname{L}$ является векторным пространством:

Если вектор ${\bf v}$ растягивается в λ раз, то и вектор $t{\bf v}$ растягивается в λ раз.

Если векторы ${\bf a}$ и ${\bf b}$ растягивается в λ раз, то и их сумма ${\bf c}={\bf a}+{\bf b}$ растягивается в λ раз.

Геометрическая кратность

Определение

Размерность пространства $\operatorname{Eig}_{\lambda} \mathsf{L}$ называется

геометрической кратностью собственного числа $\lambda \in \mathbb{R}$.

Геометрическая кратность

Определение

Размерность пространства $\operatorname{Eig}_{\lambda} \mathsf{L}$ называется геометрической кратностью собственного числа $\lambda \in \mathbb{R}.$

Эквивалентное определение

Максимальное количество линейно независимых собственных векторов, соответствующих собственному числу $\lambda \in \mathbb{R}$, называют его геометрической кратностью.

Утверждение

Геометрическая кратность собственного числа $\lambda \in \mathbb{R}$ не превосходит его алгебраической кратности и не меньше единицы.

Утверждение

Геометрическая кратность собственного числа $\lambda \in \mathbb{R}$ не превосходит его алгебраической кратности и не меньше единицы.

Пример. У матрицы A характеристический многочлен равен $\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda-9)^2.$

Утверждение

Геометрическая кратность собственного числа $\lambda \in \mathbb{R}$ не превосходит его алгебраической кратности и не меньше единицы.

Пример. У матрицы A характеристический многочлен равен $\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda-9)^2.$

Числу $\lambda=7$ соответствует ровно один линейно независимый собственный вектор.

Утверждение

Геометрическая кратность собственного числа $\lambda \in \mathbb{R}$ не превосходит его алгебраической кратности и не меньше единицы.

Пример. У матрицы A характеристический многочлен равен $\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda-9)^2.$

Числу $\lambda=7$ соответствует ровно один линейно независимый собственный вектор.

Числу $\lambda = 9$ соответствуют один или два линейно независимых собственных вектора.

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Утверждение

Если векторы набора $A = \{ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Домножим A на обе части равенства, $8{f v}_3=2\cdot 7{f v}_1-3\cdot 4{f v}_2.$

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Домножим A на обе части равенства, $8{f v}_3=2\cdot 7{f v}_1-3\cdot 4{f v}_2$.

Поделим на большее собственное число,

$$\mathbf{v}_3 = \frac{2}{8} \cdot 7\mathbf{v}_1 - \frac{3}{8} \cdot 4\mathbf{v}_2.$$

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Домножим A на обе части равенства, $8{f v}_3=2\cdot 7{f v}_1-3\cdot 4{f v}_2$.

Поделим на большее собственное число,

$$\mathbf{v}_3 = \frac{2}{8} \cdot 7\mathbf{v}_1 - \frac{3}{8} \cdot 4\mathbf{v}_2.$$

Повторим бесконечно много раз, ${f v}_3={f 0}$. Противоречие.

Базис из собственных векторов

Векторы, отвечающие различным собственным числам, независимы.

Базис из собственных векторов

Векторы, отвечающие различным собственным числам, независимы.

В каждом пространстве Eig_{λ_i} L найдётся базис из $\gamma_i = \mathrm{dim}\,\mathrm{Eig}_{\lambda_i}$ L собственных векторов.

Базис из собственных векторов

Векторы, отвечающие различным собственным числам, независимы.

В каждом пространстве Eig_{λ_i} L найдётся базис из $\gamma_i = \mathrm{dim}\,\mathrm{Eig}_{\lambda_i}$ L собственных векторов.

Утверждение

Если $\sum_i \gamma_i = n$, то в \mathbb{R}^n существует базис из n векторов, являющихся собственными векторами оператора L.

Диагонализация: обозначения

Допустим, у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, которым соответствуют собственные числа $\{\lambda_1,\lambda_2,\dots,\lambda_n\}$.

Диагонализация: обозначения

Допустим, у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, которым соответствуют собственные числа $\{\lambda_1,\lambda_2,\dots,\lambda_n\}$.

Запишем все собственные векторы в матрицу P столбцами друг за другом.

А в матрицу D поместим все собственные числа на главную диагональ.

$$P = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & | & | \end{pmatrix}, \ D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Домножаем на P^{-1} и получаем P^{-1} L $P\mathbf{e}_i=\lambda_i\mathbf{e}_i$.

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Домножаем на P^{-1} и получаем P^{-1} L $P\mathbf{e}_i=\lambda_i\mathbf{e}_i$.

Диагональная матрица растягивает базисные вектора,

$$P^{-1} \operatorname{L} P \mathbf{e}_i = D \mathbf{e}_i.$$

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Домножаем на P^{-1} и получаем P^{-1} L $P\mathbf{e}_i=\lambda_i\mathbf{e}_i$.

Диагональная матрица растягивает базисные вектора,

$$P^{-1} \operatorname{L} P \mathbf{e}_i = D \mathbf{e}_i.$$

$$D = P^{-1} \, \mathsf{L} \, P$$
, или $\mathsf{L} = P D P^{-1}$

Диагонализация матрицы

Это видеофрагмент с доской, слайдов здесь нет:)

След матрицы

Краткий план:

• Сумма диагональных элементов.

Краткий план:

- Сумма диагональных элементов.
- Свойства следа.

След квадратной матрицы

Определение

Следом квадратной матрицы L называют сумму её диагональных элементов.

$$\operatorname{tr} \mathsf{L} = \ell_{11} + \ell_{22} + \ldots + \ell_{nn}$$

След квадратной матрицы

Определение

Следом квадратной матрицы L называют сумму её диагональных элементов.

$$\operatorname{tr} \mathsf{L} = \ell_{11} + \ell_{22} + \ldots + \ell_{nn}$$

Пример.
$$\operatorname{tr} \begin{pmatrix} 4 & 6 \\ 9 & 1 \end{pmatrix} = 4 + 1 = 5.$$

Основное свойство следа

Утверждение

Если матрицы A и B имеют размер $n \times k$, то

$$\operatorname{tr} A^T B = \sum_{ij} a_{ij} b_{ij} = \operatorname{tr} B^T A$$

Основное свойство следа

Утверждение

Если матрицы A и B имеют размер $n \times k$, то

$$\operatorname{tr} A^T B = \sum_{ij} a_{ij} b_{ij} = \operatorname{tr} B^T A$$

Пример.
$$A=\begin{pmatrix}a_1&a_2\\a_3&a_4\end{pmatrix},\ B=\begin{pmatrix}b_1&b_2\\b_3&b_4\end{pmatrix}.$$

$$\operatorname{tr} A^TB=a_1b_1+a_2b_2+a_3b_3+a_4b_4$$

Основное свойство следа

Утверждение

Если матрицы A и B имеют размер $n \times k$, то

$$\operatorname{tr} A^T B = \sum_{ij} a_{ij} b_{ij} = \operatorname{tr} B^T A$$

Доказательство

$$\begin{split} \operatorname{tr} A^T B &= \sum_i \langle \operatorname{row}_i A^T, \operatorname{col}_i B \rangle = \\ &= \sum_i \langle \operatorname{col}_i A, \operatorname{col}_i B \rangle = \sum_{ij} a_{ij} b_{ij} \end{split}$$

И ещё немного свойств

Если A имеет размер $n \times k$, а B — размер $k \times n$, то:

$$\operatorname{tr} AB = \operatorname{tr} BA$$

И ещё немного свойств

Если A имеет размер $n \times k$, а B — размер $k \times n$, то:

$$\operatorname{tr} AB = \operatorname{tr} BA$$

След — линейный оператор, превращающий матрицы размера $n \times n$ в числа!

И ещё немного свойств

Если A имеет размер $n \times k$, а B — размер $k \times n$, то:

$$\operatorname{tr} AB = \operatorname{tr} BA$$

След — линейный оператор, превращающий матрицы размера $n \times n$ в числа!

$$\operatorname{tr} \lambda A = \lambda \operatorname{tr} A$$

$$\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$$

Зачем нужен след?

Зачем нужен след?

Элегантно позволяет записывать сложные выражения.

$$\sum_{ij} a_{ij}^2 = \operatorname{tr} A^T A$$

Зачем нужен след?

Элегантно позволяет записывать сложные выражения.

$$\sum_{ij} a_{ij}^2 = \operatorname{tr} A^T A$$

Упрощает теоретические выкладки.

Вокруг собственных чисел

• Реинкарнация теоремы Виета.

- Реинкарнация теоремы Виета.
- Обратимость и собственные числа.

- Реинкарнация теоремы Виета.
- Обратимость и собственные числа.
- Собственные числа проектора.

Рассмотрим пример характеристического многочлена:

$$\operatorname{char}_B(\lambda) = \det(B - \lambda \operatorname{I}) = \begin{vmatrix} 4 - \lambda & 5 & 6 \\ 1 & 2 - \lambda & 2 \\ 4 & 3 & 7 - \lambda \end{vmatrix} =$$

Рассмотрим пример характеристического многочлена:

$$\operatorname{char}_B(\lambda) = \det(B - \lambda \operatorname{I}) = \begin{vmatrix} 4 - \lambda & 5 & 6 \\ 1 & 2 - \lambda & 2 \\ 4 & 3 & 7 - \lambda \end{vmatrix} =$$

$$= (4 - \lambda)(2 - \lambda)(7 - \lambda) + \dots = -\lambda^3 + \lambda^2(4 + 2 + 7) + \dots$$

Рассмотрим пример характеристического многочлена:

$$\mathrm{char}_B(\lambda) = \det(B - \lambda \mathrm{I}) = \begin{vmatrix} 4 - \lambda & 5 & 6 \\ 1 & 2 - \lambda & 2 \\ 4 & 3 & 7 - \lambda \end{vmatrix} =$$

$$= (4 - \lambda)(2 - \lambda)(7 - \lambda) + \dots = -\lambda^3 + \lambda^2(4 + 2 + 7) + \dots$$

$$= -\lambda^3 + \operatorname{tr} A \cdot \lambda^2 + \dots$$

Утверждение

В характеристическом многочлене $\operatorname{char}_A(\lambda)$ матрицы A размера $n \times n$ перед λ^{n-1} стоит $(-1)^{n-1}$ tr A:

$$\operatorname{char}_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{tr} A \lambda^{n-1} + \dots$$

Утверждение

В характеристическом многочлене $\operatorname{char}_A(\lambda)$ матрицы A размера $n \times n$ перед λ^{n-1} стоит $(-1)^{n-1}$ tr A:

$$\operatorname{char}_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{tr} A \lambda^{n-1} + \dots$$

$$A = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix}, \; \mathrm{char}_A(\lambda) = \lambda^2 - 6\lambda + 3$$

Утверждение

В характеристическом многочлене $\operatorname{char}_A(\lambda)$ матрицы A размера $n \times n$ перед λ^{n-1} стоит $(-1)^{n-1}$ tr A:

$$\operatorname{char}_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{tr} A \lambda^{n-1} + \dots$$

Пример.

$$A = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix}, \; \mathrm{char}_A(\lambda) = \lambda^2 - 6\lambda + 3$$

$$B = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 2 \\ 4 & 3 & 7 \end{pmatrix}, \; \mathsf{char}_B(\lambda) = -\lambda^3 + 13\lambda^2 + \dots$$

Утверждение

Если у матрицы A размера $n \times n$ ровно n действительных собственных чисел $\lambda_1, \lambda_2, ..., \lambda_n$, то

Утверждение

Если у матрицы A размера $n \times n$ ровно n действительных собственных чисел $\lambda_1, \lambda_2, ..., \lambda_n$, то

$$\mathsf{char}_A(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda)$$

Утверждение

Если у матрицы A размера $n \times n$ ровно n действительных собственных чисел $\lambda_1, \lambda_2, ..., \lambda_n$, то

$$\mathsf{char}_A(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda)$$

Следствия

$$\det A = \prod_{i=1}^{n} \lambda_i;$$

Утверждение

Если у матрицы A размера $n \times n$ ровно n действительных собственных чисел $\lambda_1, \lambda_2, ..., \lambda_n$, то

$$\mathsf{char}_A(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda)$$

Следствия

$$\det A = \prod_{i=1}^n \lambda_i;$$

$$\operatorname{tr} A = \sum_{i=1}^{n} \lambda_i;$$

Пополним критерий вырожденности!

Матрица A размера $n \times n$ называется вырожденной, если:

- 1. $\det A = 0$;
- 2. Система $A\mathbf{x} = \mathbf{0}$ имеет бесконечное количество решений;
- 3. Система $A\mathbf{x} = \mathbf{b}$ имеет ноль или бесконечное количество решений;
- 4. rank A < n;
- 5. Столбцы A линейно зависимы;
- 6. Строки A линейно зависимы;
- 7. A^{-1} не существует;
- 8. У матрицы A есть $\lambda = 0$.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Утверждение

Собственные числа проектора H равны 0 или 1.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Утверждение

Собственные числа проектора H равны 0 или 1.

Собственными векторами с $\lambda = 0$ будут векторы, ортогональные M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Утверждение

Собственные числа проектора H равны 0 или 1.

Собственными векторами с $\lambda = 0$ будут векторы, ортогональные M.

Собственными векторами с $\lambda = 1$ будут векторы из M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Утверждение

Собственные числа проектора H равны 0 или 1.

Собственными векторами с $\lambda = 0$ будут векторы, ортогональные M.

Собственными векторами с $\lambda = 1$ будут векторы из M.

У проектора ровно n линейно независимых собственных векторов.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Ранг проектора — число элементов в базисе M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Ранг проектора — число элементов в базисе M.

След проектора — кратность собственного числа $\lambda = 1$:

$$\operatorname{tr} H = \lambda_1 + \lambda_2 + \ldots + \lambda_n$$

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует \mathbb{R}^n на некоторую линейную оболочку M.

Ранг проектора — число элементов в базисе M.

След проектора — кратность собственного числа $\lambda = 1$:

$$\operatorname{tr} H = \lambda_1 + \lambda_2 + \ldots + \lambda_n$$

Утверждение

Для проектора H след и ранг равны размерности множества, на которое проецирует H,

$$rank H = tr H$$
.

Комплексные собственные числа

• Комплексные числа.

- Комплексные числа.
- Основная теорема алгебры.

- Комплексные числа.
- Основная теорема алгебры.
- Снова след и определитель.

Множество С вида

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

с естественным сложением и умножением по правилу $i^2 = -1$ называется множеством комплексных чисел.

Множество С вида

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

с естественным сложением и умножением по правилу $i^2 = -1$ называется множеством комплексных чисел.

$$(5+6i) + (2+i) = 7+7i$$

Множество С вида

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

с естественным сложением и умножением по правилу $i^2 = -1$ называется множеством комплексных чисел.

$$(5+6i) + (2+i) = 7+7i$$

$$(5+6i)(2+i) = 10+17i+6i^2 = 10-6+17i = 4+17i$$

Множество С вида

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

с естественным сложением и умножением по правилу $i^2 = -1$ называется множеством комплексных чисел.

$$(5+6i) + (2+i) = 7+7i$$

$$(5+6i)(2+i) = 10+17i+6i^2 = 10-6+17i = 4+17i$$

$$\frac{5+6i}{2-i} = \frac{(5+6i)(2+i)}{(2-i)(2+i)} = \frac{4+17i}{4-i^2} = \frac{4}{5} + \frac{17}{5}i$$

Идея

Комплексное число a+bi — способ записывать повороты плоскости, растяжения плоскости и композиции этих действий.

Идея

Комплексное число a+bi — способ записывать повороты плоскости, растяжения плоскости и композиции этих действий.

 $a+bi \leftrightarrow$ преобразование плоскости!

Число a+bi кодирует преобразование плоскости

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} a \\ b \end{pmatrix}$$

Поворот на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix} \leftrightarrow 0 + 1 \cdot i = i$$

Поворот на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix} \leftrightarrow 0 + 1 \cdot i = i$$

Растягивание в 7 раз:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 7 \\ 0 \end{pmatrix} \leftrightarrow 7 + 0 \cdot i = 7$$

Поворот на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix} \leftrightarrow 0 + 1 \cdot i = i$$

Растягивание в 7 раз:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 7 \\ 0 \end{pmatrix} \leftrightarrow 7 + 0 \cdot i = 7$$

Растягивание в $\sqrt{2}$ раз и вращение на 45° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 1 \end{pmatrix} \leftrightarrow 1 + 1 \cdot i = 1 + i$$

Поворот на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix} \leftrightarrow 0 + 1 \cdot i = i$$

Два поворота подряд на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} -1 \\ 0 \end{pmatrix} \leftrightarrow -1 + 0i = -1$$

Поворот на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix} \leftrightarrow 0 + 1 \cdot i = i$$

Два поворота подряд на 90° :

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} -1 \\ 0 \end{pmatrix} \leftrightarrow -1 + 0i = -1$$

Если повернуться на 90° , а затем повернуться ещё на 90° , то развернёшься в обратную сторону, $i \cdot i = -1$.

Определение

Множество С преобразований плоскости, включающее повороты плоскости, растяжения плоскости в произвольное количество раз и композиции этих двух действий, называется множеством комплексных чисел.

Определение

Множество С преобразований плоскости, включающее повороты плоскости, растяжения плоскости в произвольное количество раз и композиции этих двух действий, называется множеством комплексных чисел.

Растягивание в 7 раз \leftrightarrow 7.

Определение

Множество С преобразований плоскости, включающее повороты плоскости, растяжения плоскости в произвольное количество раз и композиции этих двух действий, называется множеством комплексных чисел.

Растягивание в 7 раз \leftrightarrow 7.

Поворот на $90^{\circ} \leftrightarrow i$.

Определение

Множество С преобразований плоскости, включающее повороты плоскости, растяжения плоскости в произвольное количество раз и композиции этих двух действий, называется множеством комплексных чисел.

Растягивание в 7 раз \leftrightarrow 7.

Поворот на $90^{\circ} \leftrightarrow i$.

Для $z\in\mathbb{C}$ определяют:

Модуль |z| — во сколько раз изменяется длина вектора.

Аргумент $\arg z$ — на сколько изменяется угол вектора.

Основная теорема алгебры

Утверждение

Любой многочлен f(z) степени n имеет ровно n корней, если считать корни $z\in\mathbb{C}$ с учётом алгебраической кратности.

Основная теорема алгебры

Утверждение

Любой многочлен f(z) степени n имеет ровно n корней, если считать корни $z\in\mathbb{C}$ с учётом алгебраической кратности.

$$f(z) = a(z-z_1)(z-z_2) \cdot \ldots \cdot (z-z_n)$$

Основная теорема алгебры

Утверждение

Любой многочлен f(z) степени n имеет ровно n корней, если считать корни $z\in\mathbb{C}$ с учётом алгебраической кратности.

$$f(z) = a(z-z_1)(z-z_2)\cdot\ldots\cdot(z-z_n)$$

Следствие

У любой квадратной матрицы размера $n \times n$ найдётся ровно n комплексных собственных чисел $\lambda \in \mathbb{C}$ с учётом алгебраической кратности.

След линейного оператора

Определение

Следом линейного оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ называют сумму всех его комплексных собственных чисел $\lambda_i\in\mathbb{C}$,

$$\operatorname{tr} \mathsf{L} = \lambda_1 + \lambda_2 + \ldots + \lambda_n.$$

След линейного оператора

Определение

Следом линейного оператора L : $\mathbb{R}^n \to \mathbb{R}^n$ называют сумму всех его комплексных собственных чисел $\lambda_i \in \mathbb{C}$,

$$\operatorname{tr} \mathbf{L} = \lambda_1 + \lambda_2 + \ldots + \lambda_n.$$

Пример. Если $\operatorname{char}_A(\lambda) = -(\lambda-1)(\lambda-5)^2$, то $\operatorname{tr} A = 1+5+5=11.$

След линейного оператора

Определение

Следом линейного оператора L : $\mathbb{R}^n \to \mathbb{R}^n$ называют сумму всех его комплексных собственных чисел $\lambda_i \in \mathbb{C}$,

$$\operatorname{tr} \mathbf{L} = \lambda_1 + \lambda_2 + \ldots + \lambda_n.$$

Пример. Если $\mathrm{char}_A(\lambda) = -(\lambda-1)(\lambda-5)^2$, то $\mathrm{tr}\,A = 1+5+5=11.$

Пример. Если $\mathrm{char}_A(\lambda) = -(\lambda-1)(\lambda-2+3i)(\lambda-2-3i)$, то $\mathrm{tr}\,A = 1 + (2-3i) + (2+3i) = 5.$

Определитель линейного оператора

Утверждение

Определитель линейного оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ равен произведению всех его комплексных собственных чисел $\lambda_i\in\mathbb{C}$,

$$\det \mathsf{L} = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n.$$

Нахождение проектора

Это видеофрагмент с доской, слайдов здесь нет:)

Прогнозирование с помощью мнк

Это скринкаст, слайдов здесь нет:)

Бонус: задача про Чабана и 101 овцу

Это видеофрагмент с доской, слайдов здесь нет:)