File System
Interfaccia del File System

# Lezione 1 – File e loro caratteristiche

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- File system
- · Concetto di file
- Tipi di file
- · Struttura dei file
- Attributi
- Operazioni
- Uso del file
- Metodi di accesso

# File System

- Astrazione delle informazioni nei dispositivi fisici
- Visione logica dei dispositivi fisici di memorizzazione e trasferimento di informazioni
- Visione omogenea dei dispositivi fisici
- Supporto per la memorizzazione di lungo termine e al trasferimento di informazioni
- Consiste nella collezione e gestione di:
  - informazioni (dati, programmi) → file
  - metainformazioni (metadati) → direttori (directory)

# Aggregazione di informazioni

• Array: N elementi omogenei



• Record: K elementi eventualmente disomogenei





Elementi omogenei in numero a priori non definito



# Tipi di file (1)

- Dati
  - numerici
  - alfabetici → character
  - binari → byte
- Programmi

# Tipi di file (2)

- Eseguibile (.exe, .com, .bin, nessuna)
- Oggetto (.obj, .o)
- Codice sorgente (.c, .cc, .java, .pas, .asm, .a)
- Batch (.bat, .sh)
- Testo (.txt, .doc)
- Elaborazione testi (.doc, .wp, .rtf, .tex)
- Libreria (.lib, .a, .so, .dll)
- Grafico (.ps, .pdf, .jpg, .gif, .png, .bmp)
- Archivio (.zip, .arc, .tar, .gz)
- Multimedia (.mpeg, .mov, .rm)



## **Attributi**

- Nome
- Identificatore
- Tipo
- Locazione
- Dimensione
- · Data di creazione
- Data di ultimo accesso
- Proprietario
- Protezione
- Formato
- ...

Descrittore del file

# Operazioni sui file

- Creazione
- Scrittura
- Lettura
- Riposizionamento
- Cancellazione
- Troncamento
- Accodamento
- Modifica di attributi
- Blocco per condivisione
- ...

## Uso dei file (1)

## Apertura di un file

- Verifica delle autorizzazioni all'accesso
- Identificazione del descrittore del file nel file system
- Identificazione della locazione nei dispositivi fisici
- Verifica e gestione dello stato di uso condiviso
- Inizializzazione delle informazioni per la gestione efficiente (tabella dei file aperti)



## Uso dei file (3)

#### Lettura e scrittura

- Accesso attraverso la tabella dei file aperti per reperire:
  - posizione dei componenti del file nei dispositivi fisici
  - puntatore al file per identificare l'elemento correntemente in uso
  - blocco per accesso condiviso

## Uso dei file (4)

#### Chiusura di un file

- Aggiornamento delle informazioni di gestione
- Rilascio dell'uso condiviso
- Cancellazione delle informazioni di gestione nella tabella dei file aperti







## In sintesi

- File system
- · Concetto di file
- Tipi di file
- Struttura dei file
- Attributi
- Operazioni
- Uso dei file
- · Metodi di accesso

File System
Interfaccia del File System

# Lezione 2 – Direttori e loro caratteristiche

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Concetto di direttorio (directory)
- Operazioni sui direttori
- Struttura del file system
- Partizioni
- Montaggio del file system

# Direttorio (Directory)

- Supportare il raggruppamento di file in base a criteri logici
- Supportare gestione efficiente dell'accesso ai file
- Supportare condivisione e protezione
- Collezione omogenea di informazioni (attributi) su gruppi di file



# Operazioni

- Su file:
  - creare
  - cancellare
  - ridenominare
  - modifiche degli attributi
  - **–** ..
- Su direttori:
  - individuare posizione logica di un file nel file system
  - elencare file
  - ricercare file
  - **–** ..

# Strutturazione del file system

Organizzazione dei direttori:

- · a singolo livello
- a due livelli
- ad albero
- · a grafo aciclico
- a grafo generale

# Direttorio a singolo livello



Struttura tipica di vecchi sistemi mono-utente con piccola memoria di massa

#### Problemi:

- · gestione omonimie
- · ridenominazione
- raggruppamento



- Tipico di piccoli vecchi sistemi multi-utente
  - File omonimi per utenti diversi
  - Ricerca più efficiente per singoli utenti
  - · Nessuna capacità di raggruppamento
  - · Nessuna possibilità di condivisione





## Direttorio ad albero (2)

Gestione adatta a sistemi multi-utente

Ricerca efficiente

Capacità di raggruppamento

Capacità di condivisione

Identificazione e capacità di rilocazione → direttorio corrente

- percorso relativo
- percorso assoluto













## In sintesi

- Direttorio
- Operazioni
- Organizzazione del file system:
  - direttorio a singolo livello
  - direttorio a due livelli
  - direttorio ad albero
  - direttorio a grafo
- Visione logica del file system e dell'organizzazione dei direttori
- Partizioni
- Montaggio del file system

File System
Interfaccia del File System

# Lezione 3 – Condivisione dei file e protezione

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Condivisione dei file
  - Sistema centrale
  - Sistema distribuito
- Coerenza
- Protezione
  - Controllo degli accessi

### Condivisione dei file

#### Sistemi multi-utente

Utile per supportare:

- condivisione di informazioni
- collaborazione tra utenti

#### Accesso at file:

- contemporaneo → operazioni compatibili
- in mutua esclusione → operazioni incompatibili

## Sistemi multi-utente

autentices one

- Identificazione univoca degli utenti e dei gruppi
- Definizione e verifica degli accessi ai file in funzione dei diritti assegnati
- Attributi articolati per definire autorizzazioni all'accesso per
  - utente proprietario
  - gruppo a cui appartiene il proprietario
  - altri

# File system remoti

#### Metodi di condivisione:

- Trasferimento di file
  - ftp
  - http

con modalità anonima o autenticata



- File system in rete
  - file system di rete con modello client/server
  - file system distribuito



## Coerenza

- Specifica la modalità di accesso ad un file condiviso per garantire la consistenza delle informazioni
- Definisce le modalità di aggiornamento dei file condivisi
  - modifiche immediatamente visibili
  - modifiche visibili solo immediatamente dopo la chiusura del file
  - modifiche visibili solo nelle sessioni successive alla chiusura del file
  - file condivisi immutabili

# Coerenza in caso di guasti

- Cause di guasto nei sistemi in rete:
  - guasti locali a client
  - guasti locali a server
  - guasti alla rete
- · Gestione dei guasti:
  - rilevamento
  - ripristino
  - sopravvivenza con capacità limitate
  - tolleranza ai guasto mediante ridondanza
- Stato del file system

## **Protezione**

#### Obiettivo:

proteggere le informazioni da accessi impropri e garantirne la consistenza rispetto a tali accessi

#### Tecniche:

- accesso fisico
- permessi su operazioni:
  - lettura
  - scrittura
  - esecuzione
  - cancellazione
  - accodamento

outent, correct primeir

## Controllo dell'accesso

- Accesso ad una risorsa dipendente dall'identità in funzione delle autorizzazioni concesse a ciascun utente
- Lista di controllo degli accessi Access Control List, ACL
  - approccio flessibile
  - lista lunga e di difficile gestione
- Versione ridotta della lista di controllo accessi: proprietario / gruppo / universo
- Lista delle capacità (Capabilities)
- Password

## In sintesi

- Condivisione di file
- Coerenza
- Protezione

File System
Implementazione del File System

# Lezione 1 – Struttura e realizzazione

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Obiettivo
- Struttura della gestione del file system
- Strutture dati per la gestione del file system

# Obiettivo del file system

- Gestire in modo omogeneo
   le risorse informative e fisiche
   del sistema di elaborazione
   come flussi di informazioni elementari
- Focalizziamo l'attenzione sulle informazioni memorizzate nelle memorie secondarie (memorie di massa: dischi) e sulla loro gestione nel file system

# Supporto fisico del file system

### Memoria secondaria

Dischi

## Caratteristica per gestione del file system

- Dispositivo di memorizzazione a blocchi
- Partizioni



Visione utente delle informazioni nel file system

**File** 

Caratteristica per gestione del file system

• Flusso di elementi omogenei

1/ho pore

# File system

La gestione del file system nel sistema operativo deve trasformare

il livello fisico di memorizzazione delle informazioni a blocchi nella memoria di massa nel livello logico di visione come file

- Astrazione della rappresentazione fisica
- Virtualizzazione delle informazioni

# Struttura della gestione del file system

· Gestione della periferica

Comunicazioni con periferica, gestione dipendente dal dispositivo, gestione indipendente dal dispositivo

• File system di base

Gestisce la lettura/scrittura di blocchi fisici

· Modulo di organizzazione dei file

Costruisce la sequenza di blocchi fisici che contengono il file e gestisce lo spazio libero

File system logico

Gestisce i metadati che definiscono la struttura del file system e l'identificazione dei file

## Strutture dati per la gestione del file system (1)

#### Strutture su disco

- blocco di controllo del boot
- · blocco di controllo della partizione
- directory
- · blocchi di controllo dei file

## Strutture dati per la gestione del file system (2)

permessi sul file

date del file (creazione, accesso, scrittura)

proprietario, gruppo, ACL del file

dimensione del file

blocchi di dati del file

## Strutture dati per la gestione del file system (3)

### Strutture in memoria centrale

- tabella delle partizioni
- descrittori delle directory
- tabella dei file aperti del sistema
- tabella dei file aperti per un processo
- tabella di montaggio dei file system







## In sintesi

- Struttura della gestione del file system
- Strutture dati per la gestione del file system

File System
Implementazione del File System

# Lezione 2 – Realizzazione dei direttori

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Tecniche per la realizzazione dei direttori
  - Lista
  - Tabella di hash
- Prestazioni

## Struttura a lista (1)

## Elenco di file e dei riferimenti ai blocchi di dati



## Struttura a lista (2)

- Implementazione semplice
- Efficiente per visualizzazione dell'elenco ordinato dei file
  - Richiede ordinamento
- Accesso costoso: scansione lineare
  - Miglioramenti:
    - cache
    - lista ordinata
    - B-tree

## Struttura a tabella di hash (1)

- Lista per memorizzare elementi
- Tabella con funzione di hashing per identificare rapidamente elementi nella lista



## Struttura a tabella di hash (2)

- · Scelta della funzione di hash
- · Velocizza accesso alla lista
- Collisioni

# In sintesi

- Struttura a liste
- Struttura a tabella di hash

File System
Implementazione del File System

# Lezione 3 – Realizzazione dei file: Gestione dell'astrazione dei file

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Memorizzazione di un file in memoria di massa
  - Visione fisica
  - Byte stream
- Gestione dell'astrazione dei file





# Mappaggio della visione logica sulla visione fisica del file

- Record logici tipizzati
  - Dimensione: L byte
- Blocchi fisici uniformi per supporto di memoria di massa
  - Dimensione: F byte



- Mappaggio per la memorizzazione
  - Un record logico in un blocco fisico
    - L<F → sfridi</p>
    - L>F → tipo base non memorizzabile
  - K record logici in un blocco fisico: K = max{ n | nL=F }
    - KL<F → sfridi</p>



# Visione logica omogenea del file

#### **Byte stream**

Flusso di byte



Tutti i file vengono visti come sequenze di byte Tipo base: byte

# Mappaggio con byte stream (1)

Come mappare la visione logica nella visione fisica attraverso la visione logica a byte stream?

- Mappare la visione logica nella visione a byte stream rimuovendo la tipizzazione
- Mappare la visione a byte stream nella visione fisica imponendo raggruppamento degli elementi logici (byte) in blocchi fisici



# Mappaggio con byte stream (2)

- Sempre possibile
- Sfridi sempre nulli poiché il tipo base (byte)
   è sempre sottomultiplo di F







# Gestione dell'astrazione dei file

- Apertura
- Lettura
- Scrittura
- Posizionamento (seek)
- Chiusura









# Chiusura

- Lettura
  - Libera strutture dati di gestione dei file
- Scrittura
  - Salva su disco l'eventuale byte stream non salvato
  - Libera strutture dati di gestione dei file

# In sintesi

- Memorizzazione di un file in memoria di massa
- Gestione dell'astrazione dei file

#### SISTEMI OPERATIVI

File System
Implementazione del File System

# Lezione 4 – Realizzazione dei file: Allocazione dei blocchi

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

#### **Sommario**

- · Allocazione dei blocchi fisici
- Gestione della lista libera dei blocchi fisici

#### Allocazione dei blocchi

Creare l'insieme ordinato dei blocchi fisici a supporto dell'astrazione dei file

- Allocazione contigua
- Allocazione collegata
- · Allocazione indicizzata

# Allocazione contigua (1)

Ordinamento sequenziale adiacente dei blocchi



| directory |        |           |  |  |  |  |  |  |
|-----------|--------|-----------|--|--|--|--|--|--|
| file      | inizio | lunghezza |  |  |  |  |  |  |
| count     | 0      | 2         |  |  |  |  |  |  |
| tr        | 14     | 3         |  |  |  |  |  |  |
| mail      | 19     | 6         |  |  |  |  |  |  |
| list      | 28     | 4         |  |  |  |  |  |  |
| f         | 6      | 2         |  |  |  |  |  |  |

# Allocazione contigua (2)

- · Accesso rapido al blocco successivo
- · Accesso diretto lento
- Problema di mancanza di spazio contiguo per l'allocazione
  - nuovo file
  - estensione di file esistente
- Frammentazione esterna
  - compattazione
- Estensione dei file
  - frammentazione interna



# Allocazione collegata (2)

- · Nessuna frammentazione esterna
- · Accesso diretto lento
- Spazio per i puntatori al blocco successivo
   cluster
- Problemi di affidabilità in caso di guasto in un blocco fisico





#### Allocazione indicizzata (2)

- Un indice per file
- · Nessuna frammentazione esterna
- · Accesso diretto veloce
- Affidabilità
- Dimensionamento del blocco indice
  - schema collegato
  - indice multilivello
  - schema combinato







#### Miglioramento delle prestazioni per allocazione

- Caching delle informazioni di gestione
- · Lettura anticipata (read ahead)

# **Gestione dello spazio libero** (1)

- Vettore di bit
- · Lista collegata
- Raggruppamento
- Conteggio

# Gestione dello spazio libero (2)

#### Vettore di bit

**Bitmap** 

#### 1011000110110



• Efficiente se supporto hardware





# In sintesi

- Allocazione dei blocchi fisici
- Gestione della lista libera dei blocchi fisici

#### SISTEMI OPERATIVI

File System
Implementazione del File System

# Lezione 5 – Valutazione dell'efficienza e delle prestazioni

#### Vincenzo Piuri

Università degli Studi di Milano

#### **Sommario**

- Efficienza: uso ottimale delle risorse per il file system
- Prestazioni: uso rapido delle risorse per il file system
- Tecniche per migliorare l'efficienza
- Tecniche per migliorare le prestazioni

#### **Efficienza**

# Sfruttamento ottimale delle risorse per il file system

- Dimensionamento
  - Blocchi
  - Puntatori
  - Metadati
- · Rendimento dello spazio
  - Frammentazione interna
  - Frammentazione esterna
  - Aree usate per informazioni di gestione

# Tecniche per migliorare l'efficienza

#### Cluster di dimensioni differenti

#### Definizione di

- dimensione di blocchi, puntatori e metadati
- metadati

in funzione della tecnologia e delle modalità di uso

# Esempi:

- FAT10, FAT16, FAT32
- allocazione statica e dinamica delle tabelle in memoria

#### Prestazioni

#### Rapidità di uso delle risorse per il file system

- Modo di uso delle risorse per il file system
- Strutture dati a supporto dell'uso delle risorse per il file system
- Supporti hardware all'uso delle risorse per il file system
  - Memoria centrale
  - Cache

# Tecniche per migliorare le prestazioni (1)

- Algoritmi semplici
- · Strutture dati ad accesso veloce

#### Tecniche per migliorare le prestazioni (2)

- Supporti hardware dedicati all'accesso ai dischi
  - Cache del disco
  - Cache delle pagine
  - Buffer cache unificata
  - Memoria virtuale unificata



# Tecniche per migliorare le prestazioni (4)

#### Gestione della cache

- Algoritmo LRU
- Priorità di paginazione

# Tecniche per migliorare le prestazioni (5)

I/O mediato da cache

Minimizzare lo spostamento della testina

Scritture asincrone

#### Alternative all'algoritmo LRU

- free-behind
- · read-ahead

# Tecniche per migliorare le prestazioni (6)

#### Memoria virtuale unificata: disco virtuale

RAM-disk

## In sintesi

- Efficienza
- Prestazioni
- Tecniche per migliorare l'efficienza
  - Scelta accurata degli algoritmi e delle strutture dati
- Tecniche per migliorare le prestazioni
  - Scelta accurata degli algoritmi e dei componenti hardware

#### SISTEMI OPERATIVI

File System
Implementazione del File System

# Lezione 6 – Manutenzione del file system

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

#### **Sommario**

- Errori nel file system
- Coerenza del file system
- Backup e ripristino del file system

# Errori nel file system

- Danneggiamenti della struttura dati (consistenza)
- Danneggiamenti del supporto fisico

# Coerenza del file system

# Allineamento dei valori dei dati e dei metadati in memoria e su disco

- Controllore della coerenza (consistenza)
- Scritture sincrone per i dati e i metadati critici

# Backup e ripristino (1)

Salvataggio di sicurezza dei dati e dei metadati backup

Creare e conservare copia delle informazioni per superare situazioni di problemi fisici ai supporti di memoria di massa

- malfunzionamenti
- guasti
- catastrofi

Backup completo
Backup incrementali

# Backup e ripristino (2)

Ripristino dei dati e dei metadati restore

Caricare dati e metadati in memoria di massa per ripristinare una situazione coerente precedente a guasti fisici

# Backup e ripristino (3)

# File system orientati alle transazioni con registrazione

log-based transaction-oriented file system

# File system basato sulla registrazione delle attività

journaling

## In sintesi

- · Coerenza del file system
- Backup e ripristino del file system

#### SISTEMI OPERATIVI

File System
Protezione

# Lezione 1 – Concetti fondamentali della protezione

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

#### **Sommario**

- Obiettivi
- Domini di protezione
- Operazioni sui domini di protezione

#### **Protezione**

Proteggere le risorse da accessi non autorizzati (errati o indebiti)

# Obiettivo

Definire le autorizzazioni ad utilizzare le risorse presenti nel sistema

#### Regole:

specificano chi e come può utilizzare le risorse

# Meccanismi:

strumenti per imporre le regole

#### Domini di protezione (1)

#### Risorse:

• risorse fisiche:

CPU, memoria centrale, periferiche

risorse informative:

file, strutture di comunicazione e sincronizzazione tra processi, ...

#### Caratterizzazione delle risorse:

- identificativo
- insieme di operazioni

# Domini di protezione (2)

#### Principio di minima conoscenza

Un processo deve accedere solo alle risorse strettamente necessarie per effettuare la propria computazione

# Domini di protezione (3)

Un dominio di protezione
definisce
un insieme di risorse
e le relative operazioni lecite
per un processo che venga autorizzato
ad accedere a tale dominio



# Associazione processo-dominio

- · Associazione statica
- · Associazione dinamica
  - cambio di dominio
  - modifica dominio

## Cambiamento di dominio

Un processo può cambiare dominio di protezione se possiede i diritti ad effettuare tale operazione

#### Revoca dei diritti d'accesso

#### Revoca:

- immediata o ritardata
- selettiva o generale
- parziale o totale
- temporanea o permanente

## In sintesi

- Concetto di protezione
- Domini di protezione
- Operazioni sui domini di protezione

#### SISTEMI OPERATIVI

File System
Protezione

# Lezione 2 – Tecniche di realizzazione della protezione

#### Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

#### **Sommario**

- Matrice d'accesso
- · Liste di controllo degli accessi
- Liste di capacità dei domini

# Realizzazione dei domini di protezione

## Rappresentazione

• Matrice degli accessi

#### **Implementazioni**

- Matrice completa
- Liste di controllo degli accessi
- Liste di capacità dei domini
- Meccanismo serrature-chiavi (lock-key)

|         |                 | Mi<br>Insmet | atrice d        | 'accesso  |
|---------|-----------------|--------------|-----------------|-----------|
| oggetto | F <sub>1</sub>  | $F_2$        | $F_3$           | stampante |
| $D_1$   | leggi           |              | leggi           |           |
| $D_2$   |                 | ,            |                 | stampa    |
| $D_3$   |                 | leggi        | esegui          |           |
| $D_4$   | leggi<br>scrivi | V            | leggi<br>scrivi |           |

|   | Matrice d'accesso con domini |                 |       |                 |                    |                       |        |        |        |  |
|---|------------------------------|-----------------|-------|-----------------|--------------------|-----------------------|--------|--------|--------|--|
| i | 2,000#2                      |                 |       |                 |                    |                       |        |        |        |  |
|   | oggetto                      | F <sub>1</sub>  | $F_2$ | F <sub>3</sub>  | stampante<br>laser | <i>D</i> <sub>1</sub> | $D_2$  | $D_3$  | $D_4$  |  |
|   | <b>→</b> D <sub>1</sub>      | leggi           |       | leggi           |                    | (                     | switch |        |        |  |
|   | D <sub>2</sub>               |                 |       |                 | stampa             |                       |        | switch | switch |  |
|   | $D_3$                        |                 | leggi | esegui          |                    |                       |        |        |        |  |
|   | $D_4$                        | leggi<br>scrivi |       | leggi<br>scrivi |                    | switch                |        |        |        |  |
|   |                              |                 |       |                 |                    |                       |        |        |        |  |
|   |                              |                 |       |                 |                    |                       |        |        |        |  |





## Uso della matrice di accesso

Raccoglie tutte le informazioni sui diritti di uso
Supporta meccanismi di protezione dinamica

# Liste di controllo degli accessi

Per ogni risorsa viene conservata la lista dei diritti per ogni dominio

risorsa: { <dominio,diritto>}

|                       | _ χ           |                |                 |                    |                       |        |                       |        |
|-----------------------|---------------|----------------|-----------------|--------------------|-----------------------|--------|-----------------------|--------|
| oggetto<br>dominio    | $F_1$         | F <sub>2</sub> | $F_3$           | stampante<br>laser | <i>D</i> <sub>1</sub> | $D_2$  | <i>D</i> <sub>3</sub> | $D_4$  |
| <i>D</i> <sub>1</sub> | legg          | i M            | leggi           | M                  | M                     | switch | M                     | M      |
| $D_2$                 | 14            | We             | M               | stampa             | 0                     | 13     | switch                | switch |
| $D_3$                 | N.            | leggi          | esegui          | 1/1                |                       | 2      | 11                    | U      |
| D <sub>4</sub>        | legg<br>scriv |                | leggi<br>scrivi | 1                  | switch                | M.     |                       | W      |
|                       | V             |                |                 |                    |                       | 0      |                       |        |

# Liste di capacità dei domini

Per ogni dominio viene conservata la lista dei diritti per ogni risorsa

dominio: { < risorsa, diritto > }

| oggetto<br>dominio | F <sub>1</sub>  | F <sub>2</sub> | $F_3$           | stampante<br>laser | D <sub>1</sub> | $D_2$  | D <sub>3</sub> | $D_4$  |
|--------------------|-----------------|----------------|-----------------|--------------------|----------------|--------|----------------|--------|
| $\overline{D_1}$   | leggi           |                | leggi           |                    |                | switch |                |        |
| D <sub>2</sub>     |                 |                |                 | stampa             |                |        | switch         | switch |
| $D_3$              |                 | leggi          | esegui          |                    |                |        |                |        |
| $D_4$              | leggi<br>scrivi |                | leggi<br>scrivi |                    | switch         |        |                |        |

#### Revoca dei diritti (1)

#### Lista di controllo degli accessi

- Rimuovere i domini e/o i diritti dalla lista della risorsa
- · Revoca immediata
- Revoca generale o selettiva
- · Revoca totale o parziale
- Revoca permanente o temporanea

#### Revoca dei diritti (1)

#### Liste delle capacità dei domini

- · Diritti sparsi nelle liste
- Riacquisizione
- · Puntatori alle capacità
- Indirezione
- Chiavi

#### Confronto

#### Liste di controllo degli accessi

- · Possono essere specificate dagli utenti
- Informazioni globali
- Inefficienti su grandi sistemi

#### Liste delle capacità dei domini

- Relative agli oggetti
- · Informazioni localizzate
- Revoca inefficiente

#### Meccanismo serratura-chiave

lock-key

Serratura e chiave definite da stringhe di bit

Il processo può eseguire
una operazione su una risorsa
se la sua chiave
combacia
con la serratura
per l'operazione indicata

# Sistemi operativi basati sulle capacità

# Mettono a disposizione un approccio nativo all'uso di risorse basato sulle capacità

• Utenti possono definire e controllare capacità

# Protezione basata sul linguaggio (1)

## Protezione può essere incorporata nel linguaggio di programmazione

- Gestione affidata al compilatore
- Riferimenti verificati in fase di compilazione o in esecuzione

## Protezione basata sul linguaggio (2)

## Controllo più granulare

- Progettista (meccanismi, regole base)
- Amministratore (politiche)
- Utente/programmatore (diritti aggiuntivi)

#### Rispetto ad una protezione basata sul kernel:

- minor sicurezza
- maggior flessibilità
- maggior efficienza

#### In sintesi

#### Abbiamo visto:

- Matrice d'accesso
- · Liste di controllo degli accessi
- · Liste di capacità dei domini

#### Notiamo che:

- Alcuni sistemi permettono all'utente di definire diritti aggiuntivi
- Linguaggi di programmazione orientati alla protezione permettono una granularità più fine dei diritti d'accesso