In diesem Versuch wird an der Spannungsquelle eine Spannung eingestellt, welche dann mit dem Mutlimeter Philips PM 2503, dem AD-Wandler und dem Feinmessgerät Keithley TRMS 179 (als Referenzwert) gemessen wird.

Spannung	Feinmessgerät	Multimeter	Messfehler	AD	Messfehler
1	1,051	1,045	0,006	1,0546875	0,0036875
2	2,01	2,002	0,008	2,001953125	0,008
3	3,063	3,051	0,012	3,056640625	0,006
4	4,070	4,05	0,02	4,0625	0,0075
5	5,077	5,06	0,017	5,068359375	0,00864
6	6,085	6,06	0,025	6,083984375	0,001
7	6,997	6,97	0,027	6,982421875	0,0014578
8	8,052	8,02	0,032	8,037109375	0,01489
9	9,061	9,03	0,031	9,052734375	0,007265
10	10,069	10,04	0,029	9,990234375	0,0787625

$$\Delta U_{\rm AD} = \frac{10V - 1V}{2^{11}} = 4.4mV$$

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} e_i^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (U_{i,ref} - U_i)^2},$$

messfehlerMulti = [0.006,0.008,0.012,0.02,0.017,0.025,0.027,0.032,0.031,0.029]
messfehlerAD = [0.0036875,0.008,0.006,0.0075,0.00864,0.001,0.0014578,0.01489,0.007265,0.0787625]
ergebnisMulti = np.std(messfehlerMulti)
ergAD = np.std(messfehlerAD)
print(ergAD)

print(ergebnisMulti)

AD-Wandler: 0.022007238208271385

Multimeter: 0.0091

Aufgabe 3.) Genauigkeit der DA-Wandlung

Spannung (V)	Oszi(V)	Messfehler(V)
0,5	0,511	0,011
1	1,012	0,012
1,5	1,509	0,009
2	2,018	0,018
2,5	2,520	0,020
3	3,025	0,025
3,5	3,531	0,031
4	4,031	0,031
4,5	4,534	0,034
5	5,033	0,033

$$\Delta U_{\rm DA} = \frac{5V - 0.5V}{2^{10}} = 4.4mV$$

messfehler0szu = [0.011₄0.012₄0.009₄0.018₄0.02₄0.025₄0.031₄0.031₄0.034₄0.033]

ergebnisoszu = np.std(messfehlerOszu)

Oszi: 0.009189124006128115

Aufgabe 5.) Abtasttheorem

2000 Hz:

7000 Hz:

8020 Hz:

Aliasing bei 3000, 4010, 5000 und 6000 Hz zu erkennen.

Die Kopien vom Spektrum überlappen sich, da die Abtastfrequenz kleiner als die doppelte Grundfrequenz ist.

Aufgabe1.) Programmierung der AD/DA-Wandlerkarte

16 Bit Value	Voltage Value	Sampler Rate
2050	0.009765625	8021