UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA LABORATÓRIO DE FÍSICA MODERNA

Gotas de Millikan

Adão Murillo dos Santos RA:100126

João Marcos Fávaro Lopes RA:98327

Lucas Maquedano da Silva RA:98901

Pedro Haerter Pinto RA:100852

TURMA:32 Professor:Nelson Guilherme Castelli Astrath

Sumário

Sumário						
1	Des	senvolvimento Experimental	2			
	1.1	Materiais e Métodos	2			
	1.2	Dados Obtidos Experimentalmente	2			
	1.3	Interpretação dos Resultados	2			
R	eferê	encias	4			

1 Desenvolvimento Experimental

1.1 Materiais e Métodos

Foram utilizados para a realização do experimento:

- Tubo e/m;
- Duas bobinas de Helmholtz com 15 cm de raio;
- Régua espelhada;
- Duas fontes DC;
- Multímetros;
- Cabos de energia.

O experimento consiste em um tubo com gás rarefeito ao qual é acoplado um filamento de metal. Ligase o filamento a uma fonte em uma tensão menor que 6,0 volts, então ao passar uma corrente pelo fio este emitirá elétrons os quais serão defletidos em forma de feixe, que ionizarão o gás formando um rastro de luz. Em seguida, deve-se regular o foco do feixe através do botão a frente do equipamento. É submetido o tubo a um campo margnético uniforme por meio de uma bobina cuja corrente e voltagem podem ser controladas pelo painel frontal. O campo defletirá o fixe de elétrons em um círculo que poderá ser medido por uma régua ao fundo do tubo. Para se calcular a razão carga-massa é preciso variar a voltagem da bobina e consequentemente o raio ao qual o feixe é defletido. A variação é dada entre 150 e 300 volts atingidas de 10 em 10 volts.

1.2 Dados Obtidos Experimentalmente

Após a realização do experimento duas vezes, foram obtidos diversos tempos de subida e descida, utilizando os mesmos, foram calculadas as velocidades de subida e descida e também o raio de cada gota, como é possível ver na tabela 1

Gota	$V_d \times 10^{-5} (m/s)$	$\Delta V_d(m/s)$	$V_s \times 10^{-5} (m/s)$	$\Delta V_s(m/s)$	$a \times 10^{-7} (m)$	$\Delta a(m)$
1	2,28	0,01	2,03	0,05	4,69	0,03
2	2,75	0,14	2,6	0,2	5,16	0,15
3	2,8	0,15	1,9	0,01	5,21	0,16
4	3,08	0,22	3,1	0,33	5,46	0,23
5	3,25	$0,\!27$	3,39	0,41	5,61	0,27
6	2,06	0,05	1,64	0,06	4,46	0,04
7	1,43	$0,\!22$	0,6	0,33	3,68	0,24
8	1	0,33	0,91	$0,\!25$	3,09	0,4
9	1,52	0,19	1,5	0,09	3,82	0,21
10	1,65	0,16	0,53	$0,\!35$	3,98	0,17
11	2,1	0,04	0,87	$0,\!26$	4,5	0,03
12	2,02	0,06	1,89	0,01	4,41	0,05
13	2,46	0,06	1,93	0,02	4,87	0,07
14	3,06	0,22	3	0,31	5,44	0,22

Tabela 1: Valores calculados para as velocidades de descida (V_d) , velocidade de subida (V_s) e o raio de cada gota(a), assim como o desvio padrão associado a cada medida.

Com os valores obtidos e utilizando a equação [CITAS A LA DE CIMA] é possível encontrar o valor de carga que cada gota possui, explicito na tabela 2.

1.3 Interpretação dos Resultados

Utilizando os dados contidos na tabela 2 é possível produzir o gráfico 1 que contêm a carga pelo número da gota, e assim analisar de forma adequada os dados obtidos.

Gota	$Carga \times 10^{-19}(C)$	$\Delta Carga \times 10^{-19}(C)$
1	1,09	0,29
2	1,49	0,4
3	1,32	0,35
4	1,82	0,49
5	2,01	0,54
6	0,89	0,24
7	0,4	0,11
8	0,31	0,08
9	0,62	0,17
10	0,46	0,12
11	0,72	0,19
12	0,93	0,25
13	1,15	0,31
14	1,78	0,48

Tabela 2: Valores da carga associada a cada gota, assim como o seu respectivo desvio padrão.

Figura 1: Distribuição de carga das gotas

Referências

[1] PASCO, Electron Charge-to-Mass Ratio, Instruction Manual and Experiment Guide for the PASCO Scientific Model OS-9629.