19CSE433 Computer Graphics & Visualization

Professional Elective 1 5th Semester,2021-22 Odd 2019-22 Batch, BTech CSE

DR.S.PADMAVATHI,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,
AMRITA SCHOOL OF ENGINEERING, COIMBATORE

2021-2022 Odd Semester

B.Tech CSE - (2019-2023 Batch)

Semester: 5

Course Objectives

This course aims at teaching students about computer graphic application and standard algorithms involved in 2D and 3D graphics.

It gives a clear foundation of the graphic operations performed on 2D objects thereby enabling creation of animations.

19CSE433

COMPUTER GRAPHICS AND VISUALIZATION

2033

Syllabus

Unit 1

Computer graphics fundamentals —overview of CG: video displays —output primitives: points, lines —line drawing algorithms—circle generation algorithm- filled area primitives. Geometric transformations.

Unit 2

Three-dimensional (3D) object representation: geometrical transformation for 3D objects. Viewing and clipping: twodimensional viewing clipping operations — three-dimensional viewing: viewing pipeline, viewing coordinates projections: parallel projections, perspective projections.

Unit 3

Visible surface detection and illumination models: visible surface detection methods — illumination models and surface rendering — polygon rendering methods: constant intensity shading, Gouraud shading, Phong shading.— color models — computer animation.

Text Book(s)

Hearn D and Baker P. Computer Graphics Open GL Version, Second Edition, Prentice Hall of India; 2013.

Reference(s)

Plastook R. A and Kalley G. Theory and Problems of Computer Graphics, Schaum's Outline Series, TMH; 1985.

Foley J. D. D., Eiener S. K. and Hughes J.F. Computer Graphics Principles and Practice, Second Edition, Pearson Education; 1996.

Course Outcomes

	COs	Course Outcome													Bloom's Taxonomy Level			
	CO1	Understand the working principles of I/O devices and lighting of objects.														L2		
	CO2	Understand standard graphic design algorithms and generate 2D primitives for raster graphics.														L3		
	CO3	Apply modeling algorithms to represent polygonal objects and surfaces.														L5		
	CO4	Perform geometric transformations on objects.													L4			
	CO5	Apply state-of-the-art algorithms to create view of objects and surfaces.													L5			
	CO#	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS2			
	CO1	2	1											3	2			
	CO2	2	2	1										3	2			
	CO3	3	2	1										3	2			
	CO4	3	3	2										3	2			
	CO5	2	2	1										3	2			

List of Tools

MSTeams for course delivery and Viva

AUMs for quiz, online exam of periodical and end semester

Lab:

2D Graphics: C

3D Graphics: Blender

Miniproject:

Indian Sign Language gesture generation

EVALUATION PATTERN: 70 + 30

Mid term assessment: 20 marks

online: 10 marks,

Viva: 10 marks

Continuous Assessment (Theory) (CAT) :10 marks (5 online quiz)

Continuous Assessment (Lab) (CAL): 40 marks

- 2 lab assessment in 2D graphics:10 marks (5 marks each)
- 3D animation miniproject:30 marks
- (object creation:10 marks, Animation:10, lighting and texture-10)

End Semester 30 marks

- Online:10,
- Viva:20(10+10 mini project GUI)

Applications

Display of Information

Design

Simulation

Computer Art

Entertainment

Display of Information

Graphics for Scientific, Engineering, and Medical Data

Nebula

Medical Image

Medical Imaging

Scientific Visualisation

Design

Graphics for Engineering and Architectural System

Design of Building, Automobile, Aircraft, Machine etc.

AutoCAD 2002

Interior Design

Computer Aided Design

Simulation

Computer-Generated Models of Physical, Financial and Economic Systems for Educational Aids

Flight Simulator

Mars Rover Simulator

Computer Art

Graphics for Artist

Metacreation Painter

Entertainment

Graphics for Movie, Game, VR etc.

Final Fantasy

Online Game

Animation (films)

Games

What is Computer Graphics?

Algorithms for Visual Simulations

Terminology in Graphics

Imaging

Representing 2D images

Modeling

Representing 3D objects

Rendering

Constructing 2D images from 3D models

Animation

Simulating changes over time

Imaging

Warping

Metamorphosis

Warping

Metamorphosis (Morphing)

Modeling

Rendering

Simulating Behavior of Lights & Image Formation

Animation

Motion Representation & Control

Graphics pipeline

Preparing Shape Models

Designed by polygons, parametric curves/surfaces, implicit surfaces and etc.

Defined in its own coordinate system

Model Transformation

Objects put into the scene by applying translation, scaling and rotation

Linear transformation called homogeneous transformation is used

The location of all the vertices are updated by this transformation

Perspective Projection

We want to create a picture of the scene viewed from the camera

We apply a perspective transformation to convert the 3D coordinates to 2D coordinates of the screen Objects far away appear smaller, closer objects appear bigger

Hidden Surface Removal

Objects occluded by other objects must not be drawn

Shading: Constant Shading - Ambient

Objects colours by its own colour

Shading – Flat Shading

Objects coloured based on its own colour and the lighting condition

One colour for one face

Specular highlights added

Light perfectly reflected in a mirror-like way

Other topics: Reflections, shadows & Bump mapping

Other topics: Global Illumination

