

Calhoun: The NPS Institutional Archive

DSpace Repository

Reports and Technical Reports

All Technical Reports Collection

1986-12

Hydrographic data from the OPTOMA program: OPTOMA22 : 27 July -5 August 1986

Ciandro, Melissa L.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/29919

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM
OPTOMA22
27 JULY - 5 AUGUST 1986

by

Melissa L. Ciandro
Paul A. Wittmann
Arlene A. Bird
Christopher N. K. Mooers

December 1986

Approved for public release; distribution unlimited.

Prepared for:
Office of Naval Research
ironmental Sciences Directorate (Code 1122)
ington, VA 22217

FedDocs D 208.14/2 NPS-68-86-012 Teddors 202.142 1163-102-86-012

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

RADM R. C. Austin Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was prepared by:

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE									
	REPORT DOCU	MENTATION	PAGE						
1a. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS									
Unclassified 2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	I/AVAILABILITY O	F REPORT					
2b DECLASSIFICATION / DOWNGRADING SCHEDU	JLE	Approved	l for public	release;					
			tion unlimi						
A PERFORMING ORGANIZATION REPORT NUMBER NPS-68-86-012	ER(S)	5 MONITORING	ORGANIZATION R	REPORT NUMB	BER(S)				
6a NAME OF PERFORMING ORGANIZATION NAVPGSCOL Dept. of Oceanography	6b. OFFICE SYMBOL (If applicable)	7a NAME OF M	ONITORING ORGA	NIZATION					
6c. ADDRESS (City, State, and ZIP Code) Monterey, California 93943-	-5008	7b. ADDRESS (Cit	ty, State, and ZIP	Code)					
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b OFFICE SYMBOL (If applicable) (1122 PO)	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICATION	NUMBER				
8c. ADDRESS (City, State, and ZIP Code)	(1122 FO)		UNDING NUMBER	25					
Arlington, VA 22217		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO	WORK UNIT				
		61153N	RR0310309						
Hydrographic Data from the Approved for public release 12 PERSONAL AUTHOR(S)	11. TITLE (Include Security Classification) Hydrographic Data from the OPTOMA Program, 27 July - 5 August, 1986; Approved for public release; distribution unlimited. 12 PERSONAL AUTHOR(S) Melissa L. Ciandro, Paul A. Wittmann, Arlene A. Bird, Christopher N. K. Mooers								
13a TYPE OF REPORT 13b TIME CO Progress FROM Ju	OVERED 11 86 TO Aug 86	14 DATE OF REPO 86 December		Day) 15 PA	GE COUNT				
16 SUPPLEMENTARY NOTATION					•				
17 COSATI CODES	18 SUBJECT TERMS (Continue on revers	e if necessary and	l identify by l	block number)				
FIELD GROUP SUB-GROUP									
19 ABSTRACT (Continue on reverse if necessary	Land identify by block n	umber)							
The cruise OPTOMA22 was sample a subdomain of the object of the hydrographic data from the	California Curre	•		9					
DISTRIBUTION		V							
DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS R	PT DTIC USERS	21 ABSTRACT SEC UNCLASSI		ATION					
22a NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE (I	,		SYMBOL 68				

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Hydrographic Data from the OPTOMA Program:

*OPTOMA22*27 July - 5 August, 1986

by

Melissa A. Ciandro
Paul A. Wittmann
Arlene A. Bird
Christopher N. K. Mooers

Chief Scientist: Gordon W. Groves

The OPTOMA Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	ii
LIST OF FIGURES	iii
INTRODUCTION	2
DATA ACQUISITION	2
DATA PROCESSING	2
DATA PRESENTATION	3
ACKNOWLEDGEMENTS	36
INITIAL DISTRIBUTION LIST	37

LIST OF TABLES

Table No.	Caption	Page
1.	Scientific instruments aboard USNS DE STEIGUER.	4
2.	Station Listing	8

LIST OF FIGURES

Figure No.	Caption	Page
1.	The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.	The cruise track for OPTOMA22.	5
3.	XBT and CTD locations for OPTOMA22.	6
4.	Station numbers for OPTOMA22.	7
5. (a)-(k)	XBT temperature profiles, staggered by multiples of 5C (OPTOMA22).	14
6.	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt to 1500m (OPTOMA22).	25
7. (a)-(n)	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA22).	26
8.	Mean temperature profiles from (a) XBTs and (b) CTDs with + and - the standard deviation (OPTOMA22).	32
9.	Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTDs (OPTOMA22).	33
10.	(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTDs. Selected sigma-t contours are also shown (OPTOMA22).	34
11.	Mean N^2 profile (), with $+$ and $-$ the standard deviation (). The N^2 profile from $T(z)$ and $S(z)$ is also shown (···) (OPTOMA22).	35

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observation, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The cruise, OPTOMA22, was undertaken during the period 27 July to 5 August 1986, on the USNS De STEIGUER, and sampled a domain approximately 240km square centered about 280km off the coast between Pt. Arena and Cape Mendocino, as shown in Figure 2. Oceanographic stations were occupied during the period 27 July to 5 August at approximately 18km along each track.

DATA ACQUISITION

Data acquired during OPTOMA22 include XBT and CTD profiles. Bucket surface temperatures, surface water samples for salinity and deep water samples for salinity were taken at each CTD station. The surface and deep water values were used solely for calibration purposes.

The XBT data were digitized using a Sippican MK9 unit; data were recorded using an HP200 series computer on data disks. All data were transferred ashore to the IBM 3033 mainframe computer for editing and processing.

Station positions aboard ship were determined by LORAN C fixes and are claimed to be accurate to within about 0.1 km. A NAVOCEANO Neil Brown CTD and Sippican XBTs were used on the cruise. Their accuracies are stated in Table 1. The bottle surface salinity samples were determined ashore by a Guildline Model 8400 "Autosal" salinometer and its accuracy is stated in Table 1.

DATA PROCESSING

Data processing, such as estimating depth profiles for the XBT temperature profiles based on the descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033 at the Naval Postgraduate School. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 99% of casts were retained in the data sets. From a comparison of the CTD salinities with the salinity samples from the bottles, it was determined that the average salinity offset was +.016. Since this offset value was

small, no corrections were made to the salinities. The CTD data were interpolated to 5m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations (with XBTs and CTDs identified) and station numbers are shown in figures 2,3 and 4, respectively. On the cruise track figure, transect extremes are identified by letter to aid in cross-referencing the data presented in subsequent figures. These figures are followed by a listing of the stations, with their coordinates, the date and time when each station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the map of the cruise track. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile, an appropriate multiple of 5C has been added. Vertical profiles from the CTDs follow. Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to ± 20 m. The tick marks identify station positions and, again, the transect extremes are shown on these plots.

Mean profiles of temperature from the XBTs, and temperature, salinity and sigma-t from the CTDs are given in figures 8 and 9, followed by a scatter diagram of the T-S pairs and the mean S(T) curve, with the \pm standard deviation envelope. The data presentation concludes with a plot of the mean N² (Brunt-Vaisala frequency squared) profile, with \pm the standard deviation. On the sigma-t and N² plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

Table 1: Scientific instruments aboard the USNS De STEIGUER

Instrument	Variable	Sensor	Accuracy	Resolution
Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gauge thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmh
Sippican XBT	temperature depth	thermistor descent speed	0.2 C greater of 4.6m and 2% of depth	
Internav LC 408 LORAN C	position	two chain LORAN receiver	100 meters	10 meters

Figure 2: The cruise track for OPTOMA22.

Figure 3: XBT and CTD locations for OPTOMA22.

Figure 4: Station numbers for OPTOMA22.

Table 2: OPTOMA22 Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SURFACE SALINITY (PPT)	BUCKET BOTTLE TEMP SALINITY (DEG C) (PPT)
1	XBT	86209	741	37.30	123.00	13.4		
2	XBT	86209	859	37.40	123.06	12.8		
3	XBT	86209	955	37.48	123.15	12.4		
4	XBT	86209	1048	37.57	123.18	12.9		
5	XBT	86209	1143	38.07	123.24	11.4		
6	XBT	86209	1238	38.16	123.30	11.1		
7	XBT	86209	1330	38.24	123.36	11.0		
8	XBT	86209	1424	38.33	123.41	11.1		
9	XBT	86209	1517	38.42	123.48	11.3		
10	XBT	86209	1559	38.49	123.51	11.2		
11	XBT	86209	1629	38.55	123.52	11.2		
12	XBT	86209	1651	38.54	123.56	11.7		
1.3	XBT	86209	1709	38.52	123.59	12.3		
14	XBT	86209	1801	38.57	124.05	12.3		
15	XBT	86209	1824	38.59	123.59	11.9		
16	XBT	86209	1839	39.02	123.53	12.0		
17	XBT	86209	1946	39.06	124.00	12.2		
18	XBT	86209	2003	39.04	124.03	12.3		
19	XBT	86209	2022	39.02	124.07	12.2		
20	XBT	86209	2059	39.08	124.11	12.1		
21	XBT	86209	2121	39.10	124.06	11.9		
22	XBT	86209	2147	39.13	124.02	11.9		
23	XBT	86209	2206	39.15	123.57	11.7		
24	XBT	86209	2241	39.21	123.59	11.7		
25	XBT	86209	2314	39.18	124.05	12.6		
26	XBT	86209	2340	39.15	124.10	12.3		
27	XBT	86210	8	39.13	124.16	12.1		
28	XBT	86210	49	39.19	124.18	12.9		
29	XBT	86210	110	39.21	124.14	13.2		
30	XBT	86210	131	39.23	124.09	13.0		

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM	SURFACE TEMP)(DEG C)	SURFACE SALINITY (PPT)	BUCKET BOTTLE TEMP SALINITY (DEG C) (PPT)
31	XBT	86210	151	39.26	124.05	12.4		
32	XBT	86210	213	39.28	124.02	11.9		
33	XBT	86210	243	39.34	124.04	11.4		
34	XBT	86210	309	39.32	124.08	11.8		
35	XBT	86210	333	39.29	124.13	11.6		
36	XBT	86210	359	39.27	124.18	12.3		
37	XBT	86210	433	39.32	124.22	11.1		
38	XBT	86210	502	39.35	124.16	10.9		
39	XBŢ	86210	530	39.38	124.10	11.3		
40	XBT	86210	557	39.41	124.04	11.2		
41	XBT	86210	631	39.47	124.06	11.5		
42	XBT	86210	656	39.45	124.11	11.7		
43	XBT	86210	719	39.42	124.16	11.3		
44	XBT	86210	742	39.39	124.21	11.0		
45	XBT	86210	759	39.38	124.24	11.0		
46	XBT	86210	835	39.43	124.29	10.9	•	
47	XBT	86210	904	39.46	124.24	11.1		
48	XBT	86210	930	39.49	124.19	11.5		
49	XBT	86210	957	39.52	124.13	11.3		
50	XBT	86210	1022	39.54	124.08	11.3		
51	XBT	86210	1058	39.59	124.10	11.1		
52	XBT	86210	1129	39.57	124.16	11.6		
53	XBT	86210	1156	39.54	124.21	11.5		
54	XBT	86210	1223	39.51	124.27	11.5		
55	XBT	86210	1251	39.48	124.34	11.4		
56	XBT	86210	1359	39.40	124.45	11.2		
57	XBT	86210	1438	39.33	124.42	10.9		
58	XBT	86210	1523	39.26	124.36	12.0		
59	XBT	86210	1607	39.19	124.31	12.1		
60	XBT	86210	1651	39.11	124.25	12.1		
61	XBT	86210	1742	39.03	124.19	12.7		
62	XBT	86210	1825	38.56	124.14	13.4		

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP)(DEG C)	SURFACE SALINITY (PPT)	BUCKET BOTTLE TEMP SALINITY (DEG C) (PPT)
63	XBT	86210	1912	38.48	124.09	12.6		
64	XBT	86210	2000	38.39	124.04	12.5		
65	XBT	86210	2047	38.31	123.58	14.5		
66	XBT	86210	2130	38.24	123.53	12.6		
67	XBT	86210	2212	38.16	123.48	14.3		
68	XBT	86210	2302	38.08	123.43	14.5		
69	XBT	86210	2347	38.00	123.39	14.5		
70	XBT	86211	35	37.52	123.33	14.2		
71	XBT	86211	114	37.45	123.29	14.4		
72	XBT	86211	156	37.42	123.38	14.3		
73	XBT	86211	242	37.42	123.47	14.0		
74	XBT	86211	324	37.48	123.52	14.4		
75	XBT	86211	414	37.55	123.57	15.0		
76	XBT	86211	502	38.03	124.03	13.5		
77	XBT	86211	604	38.10	124.07	14.7		
78	XBT	86211	722	38.18	124.12	14.4		
79	XBT	86211	840	38.26	124.18	12.9		
80	XBT	86211	1008	38.33	124.23	14.3		
81	XBT	86211	1132	38.40	124.28	13.6		
82	XBT	86211	1258	38.48	124.33	13.6		
83	XBT	86211	1432	38.56	124.38	13.2		
84	XBT	86211	1605	39.04	124.44	13.0		
85	XBT	86211	1732	39.11	124.48	13.1		
86	XBT	86211	1904	39.18	124.54	12.5		
87	XBT	86211	2047	39.27	125.01	12.7		
88	XBT	86211	2156	39.31	125.05	12.8		
89	XBT	86211	2333	39.17	125.15	12.4		
90	XBT	86211	2349	39.14	125.15	13.1		
91	XBT	86212	29	39.07	125.10	13.3		
92	XBT	86212	111	39.00	125.06	13.1		
93	XBT	86212	159	38.52	125.01	13.3		
94	XBT	86212	244	38.44	124.56	13.2		

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SURFACE SALINITY (PPT)	BUCKET BOTTLE TEMP SALINITY (DEG C) (PPT)
95	XBT	86212	327	38.37	124.51	12.8		
96	XBT	86212	413	38.28	124.45	13.3		
97	XBT	86212	455	38.21	124.40	13.2		
98	XBT	86212	537	38.13	124.36	12.8		
99	XBT	86212	618	38.05	124.31	14.3		
100	XBT	86212	702	37.57	124.26	13.5		
101	XBT	86212	751	37.49	124.20	13.4		
102	XBT	86212	830	37.41	124.16	14.8		
103	XBT	86212	919	37.33	124.10	14.8		
104	XBT	86212	1008	37.24	124.14	15.1		
105	XBT	86212	1207	37.20	124.26	15.0		
106	XBT	86212	1346	37.27	124.36	14.0		
107	XBT	86212	1537	37.35	124.43	13.7		
108	XBT	86212	1644	37.40	124.48	13.9		
109	XBT	86212	1815	37.48	124.54	13.6		
110	XBT	86212	1956	37.56	125.00	15.4		
111	XBT	86212	2119	38.03	125.03	15.1		
112	XBT	86212	2245	38.11	125.07	13.6		
113	XBT	86213	9	38.19	125.11	15.2		
114	XBT	86213	135	38.26	125.16	15.6		
115	XBT	86213	308	38.34	125.21	15.4		
116	XBT	86213	437	38.41	125.26	13.2		
117	XBT	86213	619	38.49	125.31	13.2		
118	XBT	86213	825	38.56	125.38	13.4		
119	XBT	86213	1028	39.03	125.42	12.5		
120	XBT	86213	1214	39.11	125.45	12.4		
121	XBT	86213	1258	39.04	125.52	12.5		
122	XBT	86213	1352	38.57	126.01	13.3		
123	XBT	86213	1428	38.48	126.10	14.2		
124	XBT	86213	1517	38.41	126.05	15.7		
125	XBT	86213	1602	38.33	126.00	13.4		
126	XBT	86213	1646	38.26	125.54	13.4		

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	SURFACE SALINITY (PPT)	BUCKET E TEMP SA (DEG C)	SOTTLE LINITY (PPT)
127	XBT	86213	1731	38.19	125.49	13.8	(* * * /	(220 0)	()
128	XBT	86213	1816	38.11	125. 43	13.5			
129	XBT	86213	1902	38.04	125.38	14.1			
130	XBT	86213	1950	37.51	125.30	14.5			
131	XBT	86213	2046	37.41	125.22	14.8			
132	XBT	86213	2130	37.32	125.18	16.3			
133	XBT	86213	2209	37.25	125.13	15.4			
134	XBT	86213	2317	37.16	125.24	15.9			
135	XBT	86214	5	37.08	125.33	16.1			
136	XBT	86214	55	37.03	125.42	16.0			
137	CTD	86214	.223	37.09	125.45	15.5	32.71	* 3	32.77
138	XBT	86214	625	37.22	125.57	16.0			
139	XBT	86214	741	37.29	126.02	16.0			
140	XBT	86214	906	37.36	126.05	17.1			
141	XBT	86214	1034	37.43	126.09	16.2			
142	XBT	86214	1318	37.50	126.13	15.6			
143	CTD	86214	1543	37.53	126.16	15.8	32.72	15.9	32.74
144	XBT	86214	1809	38.04	126.24	16.3			
145	XBT	86214	1925	38.11	126.29	16.2			
146	XBT	86214	2206	38.25	126.37	16.5			
147	XBT	86214	2332	38.32	126.43	16.5			
148	CTD	86215	138	38.40	126.47	16.3	32.71	16.4	32.78
149	XBT	86215	311	38.37	126.56	16.4			
150	XBT	86215	412	38.33	127.04	16.5			
151	XBT	86215	515	38.30	127.12	16.7			
152	XBT	86215	619	38.26	127.22	16.5			
153	CTD	86215	742	38.25	127.27	16.1	32.78	16.1	32.78
154	XBT	86215	946	38.13	127.23	16.9			
155	XBT	86215	1110	38.04	127.17	16.7			
156	XBT	86215	1229	37.54	127.10	16.5			
157	XBT	86215	1353	37.45	127.02	16.4			
158	CTD	86215	1545	37.36	126.55	15.9	32.76	16.1	32.78

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SURFACE SALINITY (PPT)	BUCKET BOTTLE TEMP SALINITY (DEG C) (PPT)
159	XBT	86215	1731	37.25	126.48	17.1	*	
160	XBT	86215	1831	37.15	126.41	17.0		
161	XBT	86215	1929	37.05	126.35	17.1		
162	XBT	86215	2023	36.55	126.29	17.2		
163	CTD	86215	2201	36.47	126.23	16.8	32.84	17.0 *
164	XBT	86216	144	36.32	126.02	16.0		
165	XBT	86216	404	36.45	125.57	16.0		
166	XBT	86216	602	36.55	125.55	16.1		
167	XBT	86216	711	36.47	125.45	15.7		
168	XBT	86216	811	36.42	125.36	14.8		
169	XBT	86216	1110	36.51	125.34	15.1		
170	XBT	86216	1410	36.59	125.30	14.8		
171	XBT	86216	1455	36.54	125.23	13.5		
172	XBT	86216	1546	36.47	125.16	14.2		
173	XBT	86216	1751	36.57	125.13	13.7		
174	XBT	86216	2051	37.07	125.06	14.1		
175	XBT	86216	2143	37.00	124.56	14.7		
176	XBT	86216	2233	36.56	124.46	14.9		
177	XBT	86216	2331	37.00	124.35	15.0		
178	XBT	86217	114	36.59	124.19	15.2		
179	XBT	86217	217	37.04	124.08	15.1		
180	XBT	86217	317	37.08	123.56	15.1		
181	XBT	86217	431	37.14	123.45	13.6		
182	XBT	86217	543	37.18	123.34	14.7		
183	XBT	86217	837	37.28	123.12	15.4		

^{*} Data not available

Figure 5(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA22).

Figure 5(b)

Figure 5(d)

Figure 5(e)

Figure 5(f)

Figure 5(h)

Figure 5(1

Figure 5(k)

24

Figure 6: CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt to 1500m (OPTOMA22).

Figure 7(a)-(b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA22).

Figure 7(g)

Figure 7(h)

Figure 7(i)

Figure 7(j)

Figure 7(k)

Figure 7(1)

Figure 7(m)

Figure 7(n)

Figure 8: Mean temperature profiles from (a) XBTs and (b) CTDs with + and - the standard deviation (OPTOMA22).

Figure 9: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTDs (OPTOMA22).

Figure 10: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTDs. Selected sigma-t contours are also shown (OPTOMA92). Selected sigma-t contours are also shown (OPTOMA22).

Figure 11: Mean N² profile (---), with + and - the standard deviation (----). The N² profile from T(z) and S(z) is also shown $(\cdot\cdot\cdot\cdot)$ (OPTOMA22).

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the Captain and crew of the USNS DE STEIGUER. Members of the scientific cruise party were:

Dr. Gordon W. Groves, Chief Scientist, NPS Ms. Melissa Ciandro, Watch Chief, NPS LT Michael Beasley, USN, NPS Mr. Anthony Campbell, NPS Ms. Christine Fredrickson, NPS Mr. Richard Tharin, NPS

REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res., 28A, 307-328.

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943			
	Ms. Melissa L. Ciandro Mr. Paul A. Wittmann Ms. Arlene A. Bird Dr. Mary L. Batteen LCDR J. Edward Johnson, USN Prof. Kenneth L. Davidson Prof. Roland W. Garwood Prof. Robert L. Haney Prof. Robert D. Renard Dr. David C. Smith, IV Dr. Steven R. Ramp			33 1 1 1 1 1 1 1 1
2.	Institute For Naval Oceanography Bldg. 1100 Room 311 NSTL, Mississippi 39529		e	
	Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker			1
3.	Harvard University Division of Applied Sciences Pierce Hall, Room 100D Cambridge, MA 02138			
	Prof. Allan R. Robinson Mr. Leonard J. Walstad Mr. Wayne G. Leslie			2 1 1
4.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217			
	Dr. Thomas W. Spence Dr. Thomas B. Curtin Dr. Dennis Conlon			1 1 1
5.	College of Oceanography Oregon State University Corvallis, OR 97331			
	Prof. Robert L. Smith Prof. Adriana Huyer			1

6.	Jet Propulsion Laboratory (JPL) California Institute of Tech. 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Mark Abbott (also at Scripps)	1
7.	Commanding Officer Fleet Numerical Oceanography Center (FNOC) Monterey, CA 93943	
	Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse	1 1 1
8.	Sandia National Laboratories Div. 6334 Albuquerque, NM 97185	
	Dr. Mel Marietta Dr. Eugene S. Hertel Dr. Stuart L. Kupferman	1 1 1
9.	Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, D.C. 20233	
	LCDR Craig S. Nelson, NOAA Corps	1
10.	National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307	
	Dr. Dale B. Haidvogel	1
11.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Prof. Russ E. Davis Dr. Jerome A. Smith Mr. Phillip Bogden	1 1 1
12.	Princeton University Geophysical Fluid Dynamics Program P.O. Box 308 Princeton, NJ 08540	
	Dr. George L. Mellor	1

13.	Woods Hole Oceanographic Institution Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. John A. Spiesberger Dr. Kenneth H. Brink Dr. Robert C. Beardsley	1 1 1
14.	Naval Ocean Research and Development Activity (NORDA) NSTL Station, MS 39525	
	Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas	1 1 1
15.	Department of Oceanography University of Hawaii 2525 Correa Road Honolulu, HI 96822	
	Prof. Lorenz Magaard	1
16.	Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2	
	Dr. Motoyoshi Ikeda	1
17.	Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France	
	Dr. Jacques Saurel	
18.	Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149	
	Dr. Otis Brown	,

19.	Applied Physics Laboratory University of Washington 1013 NE 40th Street Seattle, WA 98105	
	Dr. Thomas B. Sanford	1
20.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Steven C. Riser	1
21.	California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093	
	Dr. Robert L. Bernstein	1
22.	Marine Sciences Research Center State University of New York Stony Brook, NY 11794	
	Dr. Dong-Ping Wang	1
23.	Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707	
	Dr. Jack Calman	1
24.	Pacific Marine Environmental Lab NOAA Bldg. 3 7600 Sand Point Way, NE Seattle, WA 98115	
	Mr. James R. Holbrook	1
25.	Naval Environmental Prediction Research Facility (NEPRF)	
	Ms. Marie Colton	1
26.	Graduate School of Oceanography University of Rhode Island Kingston, RI 02881	
	Dr. Everett F. Carter	1

21.	University of Maryland College Park, MD 20792	
	Dr. James A. Carton	1
28.	Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371	
	Dr. Burton H. Jones	1
29.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
30.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2
31.	Research Administration (Code 012) Naval Postgraduate School Monterey, CA 93943	1

3 2768 00342449 0