Kate Messitte – Exam I Summary Sheet

0. Data Structures in R

Vectors

- Homogeneous data
- c() to combine elements
- seq() for custom sequences

Lists

- Can hold heterogeneous objects
- Access:
 - \circ mylist[1] \rightarrow element
 - o mylist\$element → named element

Data Frames

- Create: data.frame(), read.csv()
- Access: df\$col, df[1,2]

Tibbles

• Modern data frames: nicer printing, better handling of strings/factors

Categorical Variables

• Use factor() and levels()

1. Data Wrangling

- select(), filter(), arrange(), mutate(), summarize(), group_by()
- Pivot: pivot_longer(), pivot_wider()
- Joins: left_join(), right_join()

2. Data Visualization

Grammar of Graphics

• ggplot(data) + aes(x, y) + geom_*()

Geoms

• geom_point(), geom_line(), geom_bar(), geom_histogram(), etc

Facets

• facet_wrap()

Themes

• theme_minimal(), theme_bw(), etc

Labels

• labs(title="...", x="...", y="...")

3. Strings (from ThinkCSpy)

- Sequence of characters: s[i], slicing
- Methods: toupper(), tolower(), strsplit(), replace(), split()
- Searching: grep(), sub(), gsub(), grepl()

4. Spatial Visualization

• Spatial data handling

```
o sf package: st_read(), st_write()
```

o Geometry types: points, lines, polygons

• Basic plotting

- o plot() for quick spatial plots
- o ggplot2 + geom_sf() for layered spatial visualizations

• Coordinate systems

```
o st_transform() to change CRS
```

• Spatial operations

```
o st_buffer(), st_intersection(), st_union()
```

• Mapping tips

- Color and size mappings: aes(fill=..., size=...)
- o Themes for maps: theme_void(), coord_sf()