复习积分中值定理

- 复习积分中值定理: 若 $f \in C([a,b])$, 则存在 $c \in [a,b]$ 使 得 $\int_a^b f(x) dx = f(c)(b-a)$.
- 若令 $F(x) = \int_a^x f(t)dt$, 上面中值定理可以写成: 存在 $c \in [a,b]$ 使得

$$f(c) = F'(c) = \frac{F(b) - F(a)}{b - a}.$$

• 若还有 F(a) = F(b), 则上面的 c 满足 F'(c) = 0.

复习积分中值定理

- 复习积分中值定理: 若 $f \in C([a,b])$, 则存在 $c \in [a,b]$ 使 得 $\int_a^b f(x) dx = f(c)(b-a)$.
- 若令 $F(x) = \int_a^x f(t) dt$, 上面中值定理可以写成: 存在 $c \in [a,b]$ 使得

$$f(c) = F'(c) = \frac{F(b) - F(a)}{b - a}.$$

• 若还有 F(a) = F(b), 则上面的 c 满足 F'(c) = 0.

复习积分中值定理

- 复习积分中值定理: 若 $f \in C([a,b])$, 则存在 $c \in [a,b]$ 使 得 $\int_a^b f(x) dx = f(c)(b-a)$.
- 若令 $F(x) = \int_a^x f(t) dt$, 上面中值定理可以写成: 存在 $c \in [a,b]$ 使得

$$f(c) = F'(c) = \frac{F(b) - F(a)}{b - a}.$$

• 若还有 F(a) = F(b), 则上面的 c 满足 F'(c) = 0.

一个引理

- 引理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导, 若 c∈ (a, b) 为 最值点,则有 f'(c) = 0.
- 引理证明: 不妨假设 c 是最大值点. 由于 x > c 时, $f(x) \le f(c)$,因此 $\lim_{x \to c+0} \frac{f(x) f(c)}{x c} \le 0$;由于 x < c 时, $f(x) \le f(c)$,因此 $\lim_{x \to c-0} \frac{f(x) f(c)}{x c}$

$$f'(c) = \lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c-0} \frac{f(x) - f(c)}{x - c} = 0$$

一个引理

- 引理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导, 若 c∈ (a, b) 为 最值点,则有 f'(c) = 0.
- 引理证明: 不妨假设 c 是最大值点. 由于 x > c 时, $f(x) \le f(c)$,因此 $\lim_{x \to c+0} \frac{f(x) f(c)}{x c} \le 0$;由于 x < c 时, $f(x) \le f(c)$,因此 $\lim_{x \to c-0} \frac{f(x) f(c)}{x c}$ > 0,由于 f 在 c 点可导.

$$f'(c) = \lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c-0} \frac{f(x) - f(c)}{x - c} = 0.$$

- Rolle 定理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导, 且 f(b) = f(a), 则存在 $c \in (a, b)$, 使得 f'(c) = 0.
- 证明: 不妨设 f(x) 在 [a,b] 上的最大值为 M, 最小值为 m. 若 M=m, 则 f 是常数函数, 结论显然成立. 若 M>m, 则 M 和 m 中至少有一个不等于 f(a). 不妨设 $M\neq f(a)$. 则存在最大值点 $c\in (a,b)$, 由引理得 f'(c)=0.

- Rolle 定理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导,
 且 f(b) = f(a), 则存在 c∈ (a, b), 使得 f'(c) = 0.
- 证明: 不妨设 f(x) 在 [a,b] 上的最大值为 M, 最小值为 m. 若 M=m,则 f 是常数函数,结论显然成立.若 M>m,则 M 和 m 中至少有一个不等于 f(a). 不妨设 $M\neq f(a)$.则存在最大值点 $c\in (a,b)$,由引理得 f'(c)=0.

- 注: f 不可导时,结论不成立,如 $f(x) = |x|, x \in [-1,1]$. 满足条件的 c 也不一定唯一.
- 例: 若 f 在 $[a, +\infty)$ 上连续, $(a, +\infty)$ 上可导,且有 $f(a) = \lim_{x \to +\infty} f(x)$,则存在 $c \in (a, +\infty)$ 使得 f'(c) = 0. 证明: $g(x) = f(\tan x)$, $x \in [\arctan a, \frac{\pi}{2})$, 令 $g(\frac{\pi}{2}) = \lim_{x \to +\infty} f(x)$ 则 $g \in C([\arctan a, \frac{\pi}{2}])$,且 $g(\arctan a) = g(\frac{\pi}{2})$. 存在 $\xi \in (\arctan a, \frac{\pi}{2})$, $g'(\xi) = f'(\tan \xi) \frac{1}{\cos^2 \xi} = 0$. 取 $c = \tan \xi$,则 f'(c) = 0.

- 注: f 不可导时,结论不成立,如 $f(x) = |x|, x \in [-1,1]$. 满足条件的 c 也不一定唯一.
- 例: 若 f 在 $[a, +\infty)$ 上连续, $(a, +\infty)$ 上可导,且有 $f(a) = \lim_{x \to +\infty} f(x)$,则存在 $c \in (a, +\infty)$ 使得 f'(c) = 0. 证明: $g(x) = f(\tan x)$, $x \in [\arctan a, \frac{\pi}{2}]$, $\diamondsuit g(\frac{\pi}{2}) = \lim_{x \to +\infty} f(x)$ 则 $g \in C([\arctan a, \frac{\pi}{2}])$,且 $g(\arctan a) = g(\frac{\pi}{2})$. 存在 $\xi \in (\arctan a, \frac{\pi}{2})$, $g'(\xi) = f'(\tan \xi) \frac{1}{\cos^2 \xi} = 0$. 取 $c = \tan \xi$,则 f'(c) = 0.

- 注: f 不可导时,结论不成立,如 $f(x) = |x|, x \in [-1,1]$. 满足条件的 c 也不一定唯一.
- 例: 若 f 在 $[a, +\infty)$ 上连续, $(a, +\infty)$ 上可导,且有 $f(a) = \lim_{x \to +\infty} f(x)$,则存在 $c \in (a, +\infty)$ 使得 f'(c) = 0. 证明: $g(x) = f(\tan x)$, $x \in [\arctan a, \frac{\pi}{2}]$,令 $g(\frac{\pi}{2}) = \lim_{x \to +\infty} f(x)$. 则 $g \in C([\arctan a, \frac{\pi}{2}])$,且 $g(\arctan a) = g(\frac{\pi}{2})$. 存在 $\xi \in (\arctan a, \frac{\pi}{2})$, $g'(\xi) = f'(\tan \xi) \frac{1}{\cos^2 \xi} = 0$. 取 $c = \tan \xi$,

- 注: f 不可导时,结论不成立,如 $f(x) = |x|, x \in [-1,1]$. 满足条件的 c 也不一定唯一.
- 例: 若 f 在 $[a, +\infty)$ 上连续, $(a, +\infty)$ 上可导,且有 $f(a) = \lim_{x \to +\infty} f(x)$,则存在 $c \in (a, +\infty)$ 使得 f'(c) = 0. 证明: $g(x) = f(\tan x)$, $x \in [\arctan a, \frac{\pi}{2}]$,令 $g(\frac{\pi}{2}) = \lim_{x \to +\infty} f(x)$. 则 $g \in C([\arctan a, \frac{\pi}{2}])$,且 $g(\arctan a) = g(\frac{\pi}{2})$. 存在 $\xi \in (\arctan a, \frac{\pi}{2})$, $g'(\xi) = f'(\tan \xi) \frac{1}{\cos^2 \xi} = 0$. 取 $c = \tan \xi$,则 f'(c) = 0.

• 设 c₁, c₂, · · · , c_n 为任意实数, 证明函数

$$f(x) = c_1 \cos x + c_2 \cos 2x + \dots + c_n \cos nx$$

在 $(0,\pi)$ 内必有实根.

证明: 方法 1. $\int_0^{\pi} f(x) dx = 0$. 方法 2. 今

$$g(x) = c_1 \sin x + \frac{c_2}{2} \sin 2x + \dots + \frac{c_n}{n} \sin nx,$$

则有 g'(x) = f(x), $g(0) = g(\pi) = 0$, 由 Rolle 定理, 存在 $c \in (0, \pi)$ 使得 g'(c) = f(c) = 0.

• 设 c₁, c₂, · · · , c_n 为任意实数, 证明函数

$$f(x) = c_1 \cos x + c_2 \cos 2x + \dots + c_n \cos nx$$

在 $(0,\pi)$ 内必有实根.

证明: 方法 1. $\int_0^{\pi} f(x) dx = 0$.

方法 2. 令

$$g(x) = c_1 \sin x + \frac{c_2}{2} \sin 2x + \dots + \frac{c_n}{n} \sin nx$$

则有 g'(x) = f(x), $g(0) = g(\pi) = 0$, 由 Rolle 定理, 存在 $c \in (0, \pi)$, 使得 g'(c) = f(c) = 0.

• 设 c₁, c₂, · · · , c_n 为任意实数, 证明函数

$$f(x) = c_1 \cos x + c_2 \cos 2x + \dots + c_n \cos nx$$

在 $(0,\pi)$ 内必有实根.

证明: 方法 1. $\int_0^{\pi} f(x) dx = 0$.

方法 2. 令

$$g(x) = c_1 \sin x + \frac{c_2}{2} \sin 2x + \dots + \frac{c_n}{n} \sin nx,$$

则有 g'(x) = f(x), $g(0) = g(\pi) = 0$, 由 Rolle 定理, 存在 $c \in (0, \pi)$, 使得 g'(c) = f(c) = 0.

- 设 f(x), g(x) 在 [a, b] 上连续, 且 f(x) 在 (a, b) 上可导, f(a) = f(b) = 0, 证明存在 $\xi \in (a, b)$, 使得 $f'(\xi) + g(\xi)f(\xi) = 0$. 证明: 令 $G(x) = \int_a^x g(t)dt$, $F(x) = e^{G(x)}f(x)$, 则 $G \in C([a, b])$, $G'(x) = g(x), x \in (a, b)$. 且有 F(a) = F(b) = 0, 则存在 $\xi \in (a, b)$, $F'(\xi) = e^{G(\xi)}(f'(\xi) + g(\xi)f(\xi)) = 0$.
- 特例: f(x) 同上. 存在 $\xi \in (a, b)$, 使 得 $f'(\xi) + f(\xi) = 0$.(取 G(x) = x).
- 例: 设 b > a > 0, 设 f(x) 在 [a,b] 上连续, f(x) 在 (a,b) 上可导, f(a) = 0, 证明存在 $\xi \in (a,b)$, 使得 $f(\xi) \frac{b-\xi}{a}f'(\xi) = 0$. 证明: $f'(\xi) \frac{a}{b-\xi}f(\xi) = 0$, $F(x) = (b-x)^a f(x)$. $F'(x) = (b-x)^a (f'(x) \frac{a}{b-x}f(x))$.

- 设 f(x), g(x) 在 [a, b] 上连续, 且 f(x) 在 (a, b) 上可导, f(a) = f(b) = 0, 证明存在 $\xi \in (a, b)$, 使得 $f'(\xi) + g(\xi)f(\xi) = 0$. 证明: 令 $G(x) = \int_a^x g(t)dt$, $F(x) = e^{G(x)}f(x)$, 则 $G \in C([a, b])$, $G'(x) = g(x), x \in (a, b)$. 且有 F(a) = F(b) = 0, 则存在 $\xi \in (a, b)$, $F'(\xi) = e^{G(\xi)}(f'(\xi) + g(\xi)f(\xi)) = 0$.
- 特例: f(x) 同上. 存在 $\xi \in (a, b)$, 使 得 $f'(\xi) + f(\xi) = 0$.(取 G(x) = x).
- 例: 设 b > a > 0, 设 f(x) 在 [a,b] 上连续, f(x) 在 (a,b) 上可导, f(a) = 0, 证明存在 $\xi \in (a,b)$, 使得 $f(\xi) \frac{b-\xi}{a}f'(\xi) = 0$. 证明: $f'(\xi) \frac{a}{b-\xi}f(\xi) = 0$, $F(x) = (b-x)^a f(x)$. $F'(x) = (b-x)^a (f'(x) \frac{a}{b-x}f(x))$.

- 设 f(x), g(x) 在 [a, b] 上连续, 且 f(x) 在 (a, b) 上可导, f(a) = f(b) = 0, 证明存在 $\xi \in (a, b)$, 使得 $f'(\xi) + g(\xi)f(\xi) = 0$. 证明: 令 $G(x) = \int_a^x g(t)dt$, $F(x) = e^{G(x)}f(x)$, 则 $G \in C([a, b])$, $G'(x) = g(x), x \in (a, b)$. 且有 F(a) = F(b) = 0, 则存在 $\xi \in (a, b)$, $F'(\xi) = e^{G(\xi)}(f'(\xi) + g(\xi)f(\xi)) = 0$.
- 特例: f(x) 同上. 存在 $\xi \in (a, b)$, 使 得 $f'(\xi) + f(\xi) = 0$.(取 G(x) = x).
- 例: 设 b > a > 0, 设 f(x) 在 [a,b] 上连续, f(x) 在 (a,b) 上可导, f(a) = 0, 证明存在 $\xi \in (a,b)$, 使得 $f(\xi) \frac{b-\xi}{a}f'(\xi) = 0$. 证明: $f'(\xi) \frac{a}{b-\xi}f(\xi) = 0$, $F(x) = (b-x)^af(x)$. $F'(x) = (b-x)^a(f'(x) \frac{a}{b-x}f(x))$.

- 设 f(x), g(x) 在 [a, b] 上连续, 且 f(x) 在 (a, b) 上可导, f(a) = f(b) = 0, 证明存在 $\xi \in (a, b)$, 使得 $f'(\xi) + g(\xi)f(\xi) = 0$. 证明: 令 $G(x) = \int_a^x g(t)dt$, $F(x) = e^{G(x)}f(x)$, 则 $G \in C([a, b])$, $G'(x) = g(x), x \in (a, b)$. 且有 F(a) = F(b) = 0, 则存在 $\xi \in (a, b)$, $F'(\xi) = e^{G(\xi)}(f'(\xi) + g(\xi)f(\xi)) = 0$.
- 特例: f(x) 同上. 存在 $\xi \in (a, b)$, 使 得 $f'(\xi) + f(\xi) = 0$.(取 G(x) = x).
- 例: 设 b > a > 0, 设 f(x) 在 [a,b] 上连续, f(x) 在 (a,b) 上可导, f(a) = 0, 证明存在 $\xi \in (a,b)$, 使得 $f(\xi) \frac{b-\xi}{a}f'(\xi) = 0$. 证明: $f'(\xi) \frac{a}{b-\xi}f(\xi) = 0$, $F(x) = (b-x)^a f(x)$. $F'(x) = (b-x)^a (f'(x) \frac{a}{b-x}f(x))$.

- 设 f(x), g(x) 在 [a, b] 上连续, 且 f(x) 在 (a, b) 上可导, f(a) = f(b) = 0, 证明存在 $\xi \in (a, b)$, 使得 $f'(\xi) + g(\xi)f(\xi) = 0$. 证明: 令 $G(x) = \int_a^x g(t)dt$, $F(x) = e^{G(x)}f(x)$, 则 $G \in C([a, b])$, $G'(x) = g(x), x \in (a, b)$. 且有 F(a) = F(b) = 0, 则存在 $\xi \in (a, b)$, $F'(\xi) = e^{G(\xi)}(f'(\xi) + g(\xi)f(\xi)) = 0$.
- 特例: f(x) 同上. 存在 $\xi \in (a, b)$, 使 得 $f'(\xi) + f(\xi) = 0$.(取 G(x) = x).
- 例: 设 b > a > 0, 设 f(x) 在 [a,b] 上连续, f(x) 在 (a,b) 上可导, f(a) = 0, 证明存在 $\xi \in (a,b)$, 使得 $f(\xi) \frac{b-\xi}{a}f'(\xi) = 0$. 证明: $f'(\xi) \frac{a}{b-\xi}f(\xi) = 0$, $F(x) = (b-x)^a f(x)$. $F'(x) = (b-x)^a (f'(x) \frac{a}{b-x}f(x))$.

- 定理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导, 则存在 $c \in (a, b)$, 使得 $f'(c) = \frac{f(b) f(a)}{b a}$.
- 证明: 令

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}x,$$

则有 $g(a) = g(b) = \frac{bf(a) - af(b)}{b - a}$, 由 Rolle 定理。

存在 $c \in (a, b)$, 使得 g'(c) = 0, 以

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

- 定理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导, 则存在 $c \in (a, b)$, 使得 $f'(c) = \frac{f(b) f(a)}{b a}$.
- 证明: 令

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}x,$$

则有 $g(a) = g(b) = \frac{bf(a) - af(b)}{b - a}$, 由 Rolle 定理.

存在 $c \in (a, b)$, 使得 g'(c) = 0, 即

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

• 推论: 设 y = f(x) 在 (a, b) 内可导, $x_0, x \in (a, b)$. 则存在 $0 < \theta < 1$, 使得 $f(x) = f(x_0) + f'(x_0 + \theta \Delta x) \Delta x$, 其中 $\Delta x = x - x_0$. 证明: 不妨设 $x > x_0$, 在 $[x_0, x]$ 上利用 Lagrange 中值定理,存在 $c \in (x_0, x)$,使得

$$f(x) = f(x_0) + f'(c)\Delta x.$$

 $\diamondsuit \theta = \frac{c - x_0}{x - x_0} \in (0, 1), \ \mathbb{N} \ c = x_0 + \theta \Delta x.$

• 推论: 设 y = f(x) 在 (a, b) 内可导, $x_0, x \in (a, b)$. 则存在 $0 < \theta < 1$,使得 $f(x) = f(x_0) + f'(x_0 + \theta \Delta x) \Delta x$,其中 $\Delta x = x - x_0$. 证明: 不妨设 $x > x_0$,在 $[x_0, x]$ 上利用 Lagrange 中值定理,存在 $c \in (x_0, x)$,使得

$$f(x) = f(x_0) + f'(c)\Delta x.$$

$$\ \ \ \varphi \ \theta = \frac{c - x_0}{x - x_0} \in (0, 1), \ \mathbb{M} \ c = x_0 + \theta \Delta x.$$

• 推论: 设 y = f(x) 在 (a, b) 上可导,且 $f'(x) \equiv 0$,则 f(x) 在 (a, b) 上为常数. (这里 a 可以是 $-\infty$, b 可以是 $+\infty$.)

证明:固定 $x_0 \in (a,b)$. 对任意 $x \in (a,b)$, 存在 $0 < \theta < 1$, 使得

$$f(x) = f(x_0) + f'(x_0 + \theta \Delta x) \Delta x = f(x_0).$$

• 推论: 若 G(x), F(x) 都是 f(x) 在 (a,b) 上的原函数,则存在常数 C, 使得 G(x) = F(x) + C.

推论: 设 y = f(x) 在 (a, b) 上可导, 且 f'(x) ≡ 0, 则 f(x) 在 (a, b) 上为常数. (这里 a 可以是 -∞, b 可以是 +∞.)
 证明: 固定 x₀ ∈ (a, b). 对任意 x ∈ (a, b), 存在 0 < θ < 1, 使得

$$f(x) = f(x_0) + f'(x_0 + \theta \Delta x) \Delta x = f(x_0).$$

• 推论: 若 G(x), F(x) 都是 f(x) 在 (a,b) 上的原函数,则存在常数 C, 使得 G(x) = F(x) + C.

推论: 设 y = f(x) 在 (a,b) 上可导, 且 f'(x) ≡ 0,则 f(x) 在 (a,b) 上为常数. (这里 a 可以是 -∞, b 可以是 +∞.)
 证明: 固定 x₀ ∈ (a,b). 对任意 x ∈ (a,b),存在 0 < θ < 1,使得
 f(x) = f(x₀) + f'(x₀ + θΔx)Δx = f(x₀).

 推论: 若 G(x), F(x) 都是 f(x) 在 (a, b) 上的原函数,则存在常数 C, 使得 G(x) = F(x) + C.

- 定理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导.
 - 若 f'(x) > 0, x ∈ (a, b), 则 f(x) 在 [a, b] 上严格单调增.
 - 若 f'(x) ≥ 0, x ∈ (a, b), 则 f(x) 在 [a, b] 上单调增.
 - 若 f'(x) < 0, x ∈ (a, b), 则
 f(x) 在 [a, b] 上严格单调减.
 - 若 f'(x) ≤ 0, x ∈ (a, b),
 则 f(x) 在 [a, b] 上单调减.

• 证明: 若有 f'(x) > 0. 设 $a \le x_1 < x_2 \le b$, 存在 $c \in (\dot{x}_1, x_2)$, 使得 $f(x_2) = f(x_1) + f'(c)(x_2 - x_1) > f(x_1)$.

- 定理: 设 y = f(x) 在 [a, b] 上连续, (a, b) 内可导.
 - 若 f'(x) > 0, x ∈ (a, b), 则 f(x) 在 [a, b] 上严格单调增.
 - 若 f'(x) ≥ 0, x ∈ (a, b), 则 f(x) 在 [a, b] 上单调增.
 - 若 f'(x) < 0, x ∈ (a, b), 则
 f(x) 在 [a, b] 上严格单调减.
 - 若 f'(x) ≤ 0, x ∈ (a, b),
 则 f(x) 在 [a, b] 上单调减.

• 证明: 若有 f'(x) > 0. 设 $a \le x_1 < x_2 \le b$, 存在 $c \in (x_1, x_2)$, 使得 $f(x_2) = f(x_1) + f'(c)(x_2 - x_1) > f(x_1)$.

- 推论: 设 y = f(x) 在 (a,b) 内可导. 若 f'(x) > 0, $x \in (a,b)$, 则 f(x) 在 (a,b) 上严格单调增 (这里 a 可以是 $-\infty$, b 可以是 $+\infty$). 证明: 设 $a < x_1 < x_2 < b$, 在 $[x_1, x_2]$ 上利用上面的定理, 得 $f(x_2) > f(x_1)$.
- 由 f(x) 严格单调增不能得出 f'(x) > 0,如 $f(x) = x^3$.
- 若 y = f(x) 在 [a, b] 上连续,在 (a, b) 上 f'(x) ≥ 0,且 f'(x) 只有有限个零点,则 f(x) 也是严格单调增的.
 证明:设 f'(x) 在 (a, b) 上有零点 x₁,x₂,···,x_n,则由上面的定理, f(x) 在 [a,x₁], [x₁,x₂],···, [x_n, b] 上均严格单调,从而 f(x) 在 [a, b] 上严格单调.

- 推论: 设 y = f(x) 在 (a, b) 内可导. 若 f'(x) > 0, $x \in (a, b)$, 则 f(x) 在 (a, b) 上严格单调增 (这里 a 可以是 $-\infty$, b 可以是 $+\infty$). 证明: 设 $a < x_1 < x_2 < b$, 在 $[x_1, x_2]$ 上利用上面的定理, 得 $f(x_2) > f(x_1)$.
- 由 f(x) 严格单调增不能得出 f'(x) > 0, 如 $f(x) = x^3$.
- 若 y = f(x) 在 [a, b] 上连续,在 (a, b) 上 f'(x) ≥ 0,且 f'(x) 只有有限个零点,则 f(x) 也是严格单调增的.
 证明:设 f'(x) 在 (a, b) 上有零点 x₁,x₂,···,x_n,则由上面的定理, f(x) 在 [a,x₁], [x₁,x₂],···, [x_n, b] 上均严格单调,从而 f(x) 在 [a, b] 上严格单调.

- 推论: 设 y = f(x) 在 (a, b) 内可导. 若 f'(x) > 0, $x \in (a, b)$, 则 f(x) 在 (a, b) 上严格单调增 (这里 a 可以是 $-\infty$, b 可以是 $+\infty$). 证明: 设 $a < x_1 < x_2 < b$, 在 $[x_1, x_2]$ 上利用上面的定理, 得 $f(x_2) > f(x_1)$.
- 由 f(x) 严格单调增不能得出 f'(x) > 0, 如 $f(x) = x^3$.
- 若 y = f(x) 在 [a, b] 上连续,在 (a, b) 上 f'(x) ≥ 0,且 f'(x) 只有有限个零点,则 f(x) 也是严格单调增的.
 证明:设 f'(x) 在 (a, b) 上有零点 x₁,x₂,···,x_n,则由上面的定理, f(x) 在 [a,x₁], [x₁,x₂],···, [x_n, b] 上均严格单调,从而 f(x) 在 [a, b] 上严格单调.

- 推论: 设 y = f(x) 在 (a, b) 内可导. 若 f'(x) > 0, $x \in (a, b)$, 则 f(x) 在 (a, b) 上严格单调增 (这里 a 可以是 $-\infty$, b 可以是 $+\infty$). 证明: 设 $a < x_1 < x_2 < b$, 在 $[x_1, x_2]$ 上利用上面的定理, 得 $f(x_2) > f(x_1)$.
- 由 f(x) 严格单调增不能得出 f'(x) > 0,如 $f(x) = x^3$.
- 若 y = f(x) 在 [a, b] 上连续,在 (a, b) 上 f'(x) ≥ 0,且 f'(x) 只有有限个零点,则 f(x) 也是严格单调增的.

证明:设 f'(x) 在 (a,b) 上有零点 x_1, x_2, \dots, x_n ,则由上面的定理, f(x) 在 $[a,x_1]$, $[x_1,x_2]$, \dots , $[x_n,b]$ 上均严格单调,从而 f(x) 在 [a,b] 上严格单调.

- 推论: 设 y = f(x) 在 (a,b) 内可导. 若 f'(x) > 0, $x \in (a,b)$, 则 f(x) 在 (a,b) 上严格单调增 (这里 a 可以是 $-\infty$, b 可以是 $+\infty$). 证明: 设 $a < x_1 < x_2 < b$, 在 $[x_1, x_2]$ 上利用上面的定理, 得 $f(x_2) > f(x_1)$.
- 由 f(x) 严格单调增不能得出 f'(x) > 0,如 $f(x) = x^3$.
- 若 y = f(x) 在 [a, b] 上连续,在 (a, b) 上 f'(x) ≥ 0,且 f'(x) 只有有限个零点,则 f(x) 也是严格单调增的.
 证明:设 f'(x) 在 (a, b) 上有零点 x₁,x₂,···,x_n,则由上面的定理, f(x) 在 [a,x₁], [x₁,x₂],···, [x_n, b] 上均严格单调,从而 f(x) 在 [a, b] 上严格单调.

函数的导数和单调性 —例 1

• 例: 求 $f(x) = x^3 - 3x^2 + 1$ 的单调区间. 解:

$$f'(x) = 3x^2 - 6x = 3x(x-2),$$

因此 f(x) 在 (0,2)([0,2]) 上严格单调下降, $(-\infty,0)$ 和 $(2,+\infty)$ 上严格单调增

函数的导数和单调性 —例 1

• 例: 求 $f(x) = x^3 - 3x^2 + 1$ 的单调区间. 解:

$$f'(x) = 3x^2 - 6x = 3x(x-2),$$

因此 f(x) 在 (0,2)([0,2]) 上严格单调下降, $(-\infty,0)$ 和 $(2,+\infty)$ 上严格单调增.

函数的导数和单调性 —例 2

例:证明 f(x) = (1+x)^{1/x} 在 (0,+∞) 上递减.
 证明:

$$f'(x) = (1+x)^{\frac{1}{x}} \left(\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2}\right) = (1+x)^{\frac{1}{x}} \frac{g(x)}{x^2}$$

其中
$$g(x) = \frac{x}{1+x} - \ln(1+x)$$
, $g'(x) = \frac{1}{(1+x)^2} - \frac{1}{1+x} < 0$, 因此当 $x > 0$ 时, $g(x) < g(0) = 0$, 从而 $f'(x) < 0$

• 推论: $(1+\frac{1}{n})^n$ 单调递增.

函数的导数和单调性 —例 2

例:证明 f(x) = (1+x)^{1/x} 在 (0,+∞) 上递减.
 证明:

$$f'(x) = (1+x)^{\frac{1}{x}} \left(\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2}\right) = (1+x)^{\frac{1}{x}} \frac{g(x)}{x^2},$$

其中
$$g(x) = \frac{x}{1+x} - \ln(1+x)$$
, $g'(x) = \frac{1}{(1+x)^2} - \frac{1}{1+x} < 0$, 因此当 $x > 0$ 时, $g(x) < g(0) = 0$,从而 $f'(x) < 0$.

• 推论: $(1+\frac{1}{n})^n$ 单调递增.

函数的导数和单调性 —例 2

例:证明 f(x) = (1+x)^{1/x} 在 (0,+∞) 上递减.
 证明:

$$f'(x) = (1+x)^{\frac{1}{x}} \left(\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2}\right) = (1+x)^{\frac{1}{x}} \frac{g(x)}{x^2},$$

其中
$$g(x) = \frac{x}{1+x} - \ln(1+x)$$
, $g'(x) = \frac{1}{(1+x)^2} - \frac{1}{1+x} < 0$, 因此当 $x > 0$ 时, $g(x) < g(0) = 0$,从而 $f'(x) < 0$.

• 推论: $(1 + \frac{1}{n})^n$ 单调递增.

• Bernoulli 不等式: 设 $\alpha > 1, (1+x)^{\alpha} > 1 + \alpha x, x \in (-1,0) \cup (0,+\infty)$. 证明: 设

$$f(x) = (1+x)^{\alpha} - (1+\alpha x) \Longrightarrow f'(x) = \alpha (1+x)^{\alpha-1} - \alpha.$$

x > 0 时,f'(x) > 0,f(x) 在 $[0, +\infty)$ 上严格单调增,因此 x > 0 时,f(x) > f(0) = 0. -1 < x < 0 时,f'(x) < 0,f(x) 在 (-1, 0] 上严格单调减. 因此 -1 < x < 0 时,f(x) > f(0) = 0.

• 注: 设 $0 < \alpha < 1, (1+x)^{\alpha} < 1 + \alpha x,$ $x \in (-1,0) \cup (0,+\infty).$ 事实上 x > 0时, f'(x) < 0; -1 < x < 0 时, f'(x) > 0

• Bernoulli 不等式: 设 $\alpha > 1, (1+x)^{\alpha} > 1 + \alpha x, x \in (-1,0) \cup (0,+\infty)$. 证明: 设

$$f(x) = (1+x)^{\alpha} - (1+\alpha x) \Longrightarrow f'(x) = \alpha (1+x)^{\alpha-1} - \alpha.$$

x>0 时,f'(x)>0,f(x) 在 $[0,+\infty)$ 上严格单调增,因此 x>0 时,f(x)>f(0)=0. -1< x<0 时,f'(x)<0,f(x) 在 (-1,0] 上严格单调减. 因此 -1< x<0 时,f(x)>f(0)=0.

• 注: 设 $0 < \alpha < 1, (1+x)^{\alpha} < 1 + \alpha x,$ $x \in (-1,0) \cup (0,+\infty).$ 事实上 x > 0时, f'(x) < 0; -1 < x < 0 时, f'(x) > 0

• Bernoulli 不等式: 设 $\alpha > 1, (1+x)^{\alpha} > 1 + \alpha x, x \in (-1,0) \cup (0,+\infty)$. 证明: 设

$$f(x) = (1+x)^{\alpha} - (1+\alpha x) \Longrightarrow f'(x) = \alpha (1+x)^{\alpha-1} - \alpha.$$

x > 0 时,f'(x) > 0,f(x) 在 $[0, +\infty)$ 上严格单调增,因此 x > 0 时,f(x) > f(0) = 0. -1 < x < 0 时,f'(x) < 0,f(x) 在 (-1, 0] 上严格单调减. 因此 -1 < x < 0 时,f(x) > f(0) = 0.

注:设 0 < α < 1,(1+x)^α < 1 + αx,
 x ∈ (-1,0) ∪ (0,+∞).事实上x > 0
 时,f'(x) < 0; -1 < x < 0 时,f'(x) > 0.

- $[0, +\infty)$ 上的可导函数 f(x) 满足 f(0) = 0 且导函数 f'(x) 严格单调 递减, 对任意正数 a, b, 证明 f(a) + f(b) > f(a + b).
- 证法 1. 不妨设 $0 < a \le b$. 存在 $\xi_1 \in (0,a)$, $\xi_2 \in (b,a+b)$, 使得 $f(a) f(0) = f(a) = f'(\xi_1)a$, $f(a+b) f(b) = f'(\xi_2)a$, 由于 $\xi_2 > \xi_1$ $f'(\xi_2) < f'(\xi_1)$, 因此 f(a+b) f(b) < f(a).
- 证法 2. 令 F(x) = f(a) + f(x) f(a+x), 则有 F'(x) = f'(x) f'(a+x) > 0, 因此 F(b) > F(0) = 0

- $[0, +\infty)$ 上的可导函数 f(x) 满足 f(0) = 0 且导函数 f'(x) 严格单调 递减, 对任意正数 a, b, 证明 f(a) + f(b) > f(a + b).
- 证法 1. 不妨设 $0 < a \le b$. 存在 $\xi_1 \in (0, a)$, $\xi_2 \in (b, a + b)$, 使得 $f(a) f(0) = f(a) = f'(\xi_1)a$, $f(a + b) f(b) = f'(\xi_2)a$, 由于 $\xi_2 > \xi_1$, $f'(\xi_2) < f'(\xi_1)$, 因此 f(a + b) f(b) < f(a).
- 证法 2. 令 F(x) = f(a) + f(x) f(a+x), 则有 F'(x) = f'(x) f'(a+x) > 0, 因此 F(b) > F(0) = 0

- $[0, +\infty)$ 上的可导函数 f(x) 满足 f(0) = 0 且导函数 f'(x) 严格单调 递减, 对任意正数 a, b, 证明 f(a) + f(b) > f(a + b).
- 证法 1. 不妨设 $0 < a \le b$. 存在 $\xi_1 \in (0, a)$, $\xi_2 \in (b, a + b)$, 使得 $f(a) f(0) = f(a) = f'(\xi_1)a$, $f(a + b) f(b) = f'(\xi_2)a$, 由于 $\xi_2 > \xi_1$, $f'(\xi_2) < f'(\xi_1)$, 因此 f(a + b) f(b) < f(a).
- 证法 2. 令 F(x) = f(a) + f(x) f(a+x), 则有 F'(x) = f'(x) f'(a+x) > 0, 因此 F(b) > F(0) = 0.

• f(x) 是 (a,b) 上的可微函数,则 f'(x) 没有第一类间断点.

证明: 若 f'(x) 有第一类间断点 $x_0 \in (a,b)(x_0$ 在 f'(x) 的定义域内,即 f(x) 在 x_0 处可导). 则有 $\lim_{x\to x_0\pm 0} f'(x)$ 存在. $x>x_0$ 时,

$$f'(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$$

=
$$\lim_{x \to x_0 + 0} f'(x_0 + \theta(x - x_0)) = \lim_{x \to x_0 + 0} f'(x)$$

同理可得 $f'(x_0) = \lim_{x \to x_0 - 0} f'(x)$, 从而 f'(x) 在 x_0 处连续,矛盾。

• f(x) 是 (a,b) 上的可微函数,则 f'(x) 没有第一类间断点. 证明: 若 f'(x) 有第一类间断点 $x_0 \in (a,b)(x_0$ 在 f'(x) 的定义域内,即 f(x) 在 x_0 处可导). 则有 $\lim_{x\to x_0\pm 0} f'(x)$ 存在. $x>x_0$ 时,

$$f'(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$$

=
$$\lim_{x \to x_0 + 0} f'(x_0 + \theta(x - x_0)) = \lim_{x \to x_0 + 0} f'(x)$$

同理可得 $f'(x_0) = \lim_{x \to x_0 - 0} f'(x)$, 从而 f'(x) 在 x_0 处连续,矛盾.

• 注: 上面最后一个等式

$$\lim_{x \to x_0 + 0} f'(x_0 + \theta(x - x_0)) = \lim_{x \to x_0 + 0} f'(x)$$

成立,可以用复合函数的极限解释 $(c_x = x_0 + \theta(x - x_0))$ 看成 x 的函数),也可以直接证明:设 $\lim_{x \to x_0 + 0} f'(x) = A$,对任给 $\epsilon > 0$,存在 $\delta > 0$,当 $0 < x - x_0 < \delta$ 时, $|f'(x) - A| < \epsilon$. 由于 c_x 在 x_0 与 $x \geq 0$ 间, $0 < c_x - x_0 < \delta$ 时,因此 $|f'(c_x) - A| < \epsilon$.

- 推论: sgn x 在 ℝ 上没有原函数.
- f'(x) 可以有第二类间断点,如 $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

• 注:上面最后一个等式

$$\lim_{x \to x_0 + 0} f'(x_0 + \theta(x - x_0)) = \lim_{x \to x_0 + 0} f'(x)$$

成立,可以用复合函数的极限解释 $(c_x = x_0 + \theta(x - x_0))$ 看成 x 的函数),也可以直接证明:设 $\lim_{x \to x_0 + 0} f'(x) = A$,对任给 $\epsilon > 0$,存在 $\delta > 0$,当 $0 < x - x_0 < \delta$ 时, $|f'(x) - A| < \epsilon$. 由于 c_x 在 x_0 与 $x \geq 0$ 间, $0 < c_x - x_0 < \delta$ 时,因此 $|f'(c_x) - A| < \epsilon$.

- 推论: sgn x 在 ℝ 上没有原函数.
- f'(x) 可以有第二类间断点,如 $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

• 注:上面最后一个等式

$$\lim_{x \to x_0 + 0} f'(x_0 + \theta(x - x_0)) = \lim_{x \to x_0 + 0} f'(x)$$

成立,可以用复合函数的极限解释 $(c_x = x_0 + \theta(x - x_0))$ 看成 x 的函数),也可以直接证明:设 $\lim_{x \to x_0 + 0} f'(x) = A$,对任给 $\epsilon > 0$,存在 $\delta > 0$,当 $0 < x - x_0 < \delta$ 时, $|f'(x) - A| < \epsilon$.由于 c_x 在 x_0 与 $x \ge 1$ 间, $0 < c_x - x_0 < \delta$ 时,因此 $|f'(c_x) - A| < \epsilon$.

- 推论: sgn x 在 ℝ 上没有原函数.
- f'(x) 可以有第二类间断点,如 $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

• 定理: 设 f(x), g(x) 在 [a,b] 上连续, (a,b) 内可导, 且 $g'(x) \neq 0$ 则 存在 $c \in (a,b)$, 使得

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

• 证明: 令

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}[g(x) - g(a)],$$

则有 h(b) = h(a) = f(a), 由 Rolle 定理,存在 $c \in (a, b)$, 使得

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0.$$

• 定理: 设 f(x), g(x) 在 [a,b] 上连续, (a,b) 内可导, 且 $g'(x) \neq 0$ 则 存在 $c \in (a,b)$, 使得

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

• 证明: 令

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}[g(x) - g(a)],$$

则有 h(b)=h(a)=f(a), 由 Rolle 定理,存在 $c\in (a,b)$, 使得

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0.$$

- 注: 参数方程 $\begin{cases} x = g(t) \\ y = f(t) \end{cases}$, $t \in [a,b]$ 表示一段曲线, $\frac{f(b) f(a)}{g(b) g(a)}$ 表示端点连线的斜率, $\frac{f'(c)}{g'(c)}$ 是 (g(c),f(c)) 点的切线斜率.
- 如下证明是否正确: 由 Lagrange 定理, 存在 c, 使得 f(b) f(a) = f'(c)(b-a), g(b) g(a) = g'(c)(b-a), 从而有 $\frac{f'(c)}{g'(c)} = \frac{f(b) f(a)}{g(b) g(a)}.$

- 注: 参数方程 $\begin{cases} x = g(t) \\ y = f(t) \end{cases}$, $t \in [a,b]$ 表示一段曲线, $\frac{f(b) f(a)}{g(b) g(a)}$ 表示端点连线的斜率, $\frac{f'(c)}{g'(c)}$ 是 (g(c),f(c)) 点的切线斜率.
- 如下证明是否正确:由 Lagrange 定理,存在 c,使得 f(b)-f(a)=f'(c)(b-a),g(b)-g(a)=g'(c)(b-a),从而有 $\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}.$

• 设 0 < a < b, f(x) 在 [a,b] 上可导, 则存在 $\xi \in (a,b)$, 使得

$$\frac{af(b)-bf(a)}{a-b}=f(\xi)-\xi f'(\xi).$$

特别地若取 $f(x) = \ln x$, 得到 $b \ln a - a \ln b = (b - a)(\ln \xi - 1)$.

证明: 因为

$$\frac{af(b) - bf(a)}{a - b} = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}}.$$

读
$$F(x) = \frac{f(x)}{x}, \ G(x) = \frac{1}{x}, \ \frac{F'(x)}{G'(x)} = f(x) - xf'(x).$$

设 0 < a < b, f(x) 在 [a, b] 上可导, 则存在 ξ∈ (a, b), 使得

$$\frac{af(b)-bf(a)}{a-b}=f(\xi)-\xi f'(\xi).$$

特别地若取 $f(x) = \ln x$, 得到 $b \ln a - a \ln b = (b - a)(\ln \xi - 1)$. 证明: 因为

$$\frac{af(b) - bf(a)}{a - b} = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}}.$$

读 $F(x) = \frac{f(x)}{x}$, $G(x) = \frac{1}{x}$, $\frac{f'(x)}{G'(x)} = f(x) - xf'(x)$.

- 设 f(x), g(x) 在 [a, b] 上二次可导,且 $g''(x) \neq 0$. 则存在 $c \in (a, b)$,使得 $\frac{f''(c)}{g''(c)} = \frac{f(b) f(a) f'(a)(b a)}{g(b) g(a) g'(a)(b a)}$.
- 证明: 令 F(x) = f(x) f(a) f'(a)(x a), G(x) = g(x) g(a) g'(a)(x a), 则有 F(a) = G(a) = 0, $G'(x) \neq 0$. 则由 Cauchy 中值定理, 存在 $c_1 \in (a, b)$, 使得

$$\frac{f'(c_1)}{G'(c_1)} = \frac{f'(c_1) - f'(a)}{g'(c_1) - g'(a)} = \frac{F(b)}{G(b)}$$

在 $[a, c_1]$ 上对函数用 Cauchy 中值定理, 存在 $c \in (a, c_1)$, 使得

$$\frac{F(b)}{G(b)} = \frac{f'(c_1) - f'(a)}{g'(c_1) - g'(a)} = \frac{f''(c)}{g''(c)}.$$

- 设 f(x), g(x) 在 [a, b] 上二次可导,且 $g''(x) \neq 0$. 则存在 $c \in (a, b)$,使得 $\frac{f''(c)}{g''(c)} = \frac{f(b) f(a) f'(a)(b a)}{g(b) g(a) g'(a)(b a)}$.
- 证明: 令 F(x) = f(x) f(a) f'(a)(x a), G(x) = g(x) g(a) g'(a)(x a), 则有 F(a) = G(a) = 0, $G'(x) \neq 0$. 则由 Cauchy 中值定理, 存在 $c_1 \in (a, b)$, 使得

$$\frac{F'(c_1)}{G'(c_1)} = \frac{f'(c_1) - f'(a)}{g'(c_1) - g'(a)} = \frac{F(b)}{G(b)}.$$

在 $[a, c_1]$ 上对函数用 Cauchy 中值定理, 存在 $c \in (a, c_1)$, 使得

$$\frac{F(b)}{G(b)} = \frac{f'(c_1) - f'(a)}{g'(c_1) - g'(a)} = \frac{f''(c)}{g''(c)}.$$

- $\frac{0}{0}$ 型: $\mathop{\mathsf{ii}}\nolimits_{\mathsf{x}\to\mathsf{a}} f(\mathsf{x}) = \lim_{\mathsf{x}\to\mathsf{a}} \mathsf{g}(\mathsf{x}) = 0$, $\mathop{\mathsf{x}}\nolimits_{\mathsf{x}\to\mathsf{a}} \lim_{\mathsf{x}\to\mathsf{a}} \frac{f(\mathsf{x})}{\mathsf{g}(\mathsf{x})}$.
- 例: 若 f(x), g(x) 在 a 点的附近连续且可导,且 f(a) = g(a) = 0, $g'(a) \neq 0$, 则有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)(x-a) + o((x-a))}{g'(a)(x-a) + o((x-a))} = \frac{f'(a)}{g'(a)}$$

• 定理:设 f(x), g(x) 在 a 点的某个空心邻域上有定义,且可导, $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to a} \frac{f(x)}{g'(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

- $\frac{0}{0}$ 型: $\mathop{\mathsf{ii}}\nolimits_{\mathsf{x}\to\mathsf{a}} f(\mathsf{x}) = \lim_{\mathsf{x}\to\mathsf{a}} \mathsf{g}(\mathsf{x}) = 0$, $\mathop{\mathsf{x}}\nolimits_{\mathsf{x}\to\mathsf{a}} \lim_{\mathsf{x}\to\mathsf{a}} \frac{f(\mathsf{x})}{\mathsf{g}(\mathsf{x})}$.
- 例: 若 f(x), g(x) 在 a 点的附近连续且可导,且 f(a) = g(a) = 0, $g'(a) \neq 0$, 则有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)(x-a) + o((x-a))}{g'(a)(x-a) + o((x-a))} = \frac{f'(a)}{g'(a)}.$$

• 定理:设 f(x), g(x) 在 a 点的某个空心邻域上有定义,且可导, $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to a} \frac{f(x)}{g'(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

- $\frac{0}{0}$ 型: $\mathop{\mathfrak{V}}\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=\lim_{\mathbf{x}\to\mathbf{a}}g(\mathbf{x})=0$, $\mathop{\mathfrak{K}}\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})}{g(\mathbf{x})}$.
- 例: 若 f(x), g(x) 在 a 点的附近连续且可导,且 f(a) = g(a) = 0, $g'(a) \neq 0$, 则有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)(x-a) + o((x-a))}{g'(a)(x-a) + o((x-a))} = \frac{f'(a)}{g'(a)}.$$

• 定理:设 f(x), g(x) 在 a 点的某个空心邻域上有定义,且可导, $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

• 定理证明: 定义 f(a) = g(a) = 0, 则 f(x) 在 [x, a](或 [a, x]) 上连续, 内部可导.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$
$$= \lim_{x \to a} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

上面用到当 $x \rightarrow a$ 时, $c_x \rightarrow a$.

• 注:上面最后一个等式成立,可以用复合函数的极限解释 $(c_x$ 看成 x 的函数),也可以直接证明:设 $\lim_{\substack{x \to a \\ g'(x)}} \frac{f'(x)}{g'(x)} = A$,对任给 $\epsilon > 0$,存在 $\delta > 0$,当 $0 < |x - a| < \delta$ 时, $|\frac{f'(x)}{g'(x)} - A| < \epsilon$.由于 c_x 在 $a \to x$ 之间, $0 < |c_x - a| < \delta$ 时,因此 $|\frac{f'(c_x)}{g'(c_x)} - A| < \epsilon$.

• 定理证明: 定义 f(a) = g(a) = 0, 则 f(x) 在 [x, a](或 [a, x]) 上连续, 内部可导.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$
$$= \lim_{x \to a} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

上面用到当 $x \rightarrow a$ 时, $c_x \rightarrow a$.

• 注:上面最后一个等式成立,可以用复合函数的极限解释 $(c_x$ 看成 x 的函数),也可以直接证明:设 $\lim_{x\to a} \frac{f'(x)}{g'(x)} = A$,对任给 $\epsilon > 0$,存在 $\delta > 0$,当 $0 < |x-a| < \delta$ 时, $|\frac{f'(x)}{g'(x)} - A| < \epsilon$. 由于 c_x 在 a 与 x 之间, $0 < |c_x - a| < \delta$ 时,因此 $|\frac{f'(c_x)}{g'(c_x)} - A| < \epsilon$.

- 注: 对 $x \rightarrow a \pm 0$, 也有相应的结论成立.
- 注: 若 $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \infty$, 上面结论依然成立。
- 注: $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 不存在时, $\lim_{x \to a} \frac{f(x)}{g(x)}$ 也可能存在,如 $f(x) = x^2 \sin \frac{1}{x}$, g(x) = x, $x \to 0$, $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$,但是下面极限不存在.

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2x \sin \frac{1}{x} - \cos \frac{1}{x}}{1}$$

- 注: 对 $x \rightarrow a \pm 0$, 也有相应的结论成立.
- 注: 若 $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \infty$, 上面结论依然成立。
- 注: $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 不存在时, $\lim_{x \to a} \frac{f(x)}{g(x)}$ 也可能存在,如 $f(x) = x^2 \sin \frac{1}{x}$, g(x) = x, $x \to 0$, $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$,但是下面极限不存在.

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2x \sin \frac{1}{x} - \cos \frac{1}{x}}{1}$$

- 注: 对 $x \rightarrow a \pm 0$, 也有相应的结论成立.
- 注: 若 $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \infty$, 上面结论依然成立。
- 注: $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 不存在时, $\lim_{x \to a} \frac{f(x)}{g(x)}$ 也可能存在,如 $f(x) = x^2 \sin \frac{1}{x}$, g(x) = x, $x \to 0$, $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$,但是下面极限不存在.

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2x \sin \frac{1}{x} - \cos \frac{1}{x}}{1}$$

• 推论: 设 f(x), g(x) 在 a 点的某个空心邻域上有定义,且 n 次可导. 若 $g^{(k)}(x) \neq 0$ ($k = 0, 1, \dots, n$), $\lim_{x \to a} f^{(k)}(x) = \lim_{x \to a} g(x)^{(k)} = 0$ ($k = 0, 1, 2, \dots, n - 1$), $\lim_{x \to a} \frac{f^{(n)}(x)}{g^{(n)}(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f^{(x)}}{g^{(x)}}$ 存在,且 $\lim_{x \to a} \frac{f^{(x)}}{g^{(x)}} = \lim_{x \to a} \frac{f^{(n)}(x)}{g^{(n)}(x)}$.

• 看看下面是否正确

$$\lim_{x \to 1} \frac{x - 1}{(\ln x)^2} = \lim_{x \to 1} \frac{1}{\frac{2 \ln x}{x}} = \lim_{x \to 1} \frac{x}{2 \ln x} = \lim_{x \to 1} \frac{1}{\frac{2}{x}} = \frac{1}{2}$$

• 推论: 设 f(x), g(x) 在 a 点的某个空心邻域上有定义,且 n 次可导. 若 $g^{(k)}(x) \neq 0$ ($k = 0, 1, \dots, n$), $\lim_{X \to a} f^{(k)}(x) = \lim_{X \to a} g(x)^{(k)} = 0$ ($k = 0, 1, 2, \dots, n - 1$), $\lim_{X \to a} \frac{f^{(n)}(x)}{g^{(n)}(x)}$ 存在,则极限 $\lim_{X \to a} \frac{f^{(x)}}{g^{(x)}}$ 存在,且 $\lim_{X \to a} \frac{f^{(x)}}{g^{(x)}} = \lim_{X \to a} \frac{f^{(n)}(x)}{g^{(n)}(x)}$.

• 看看下面是否正确

$$\lim_{x \to 1} \frac{x-1}{(\ln x)^2} = \lim_{x \to 1} \frac{1}{\frac{2 \ln x}{x}} = \lim_{x \to 1} \frac{x}{2 \ln x} = \lim_{x \to 1} \frac{1}{\frac{2}{x}} = \frac{1}{2}$$

$$\bullet \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2}}{2} = -\frac{1}{2}.$$

•
$$\mathfrak{P}$$
: $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$. $\mathfrak{K} f''(0)$.

解:
$$f'(0) = \lim_{x \to 0} \frac{\frac{1}{x} - 1}{x} = \lim_{x \to 0} \frac{\sin x - x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0, x \neq 0$$
 时, $f'(x) = \frac{x \cos x - \sin x}{x^2}$. 因此

$$f''(0) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{3x^2} = -\frac{1}{3}$$

$$\bullet \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2}}{2} = -\frac{1}{2}.$$

•
$$\mathfrak{H}$$
: $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$. \mathfrak{K} $f''(0)$.

解:
$$f'(0) = \lim_{x \to 0} \frac{\frac{\sin x - 1}{x}}{x} = \lim_{x \to 0} \frac{\frac{\sin x - x}{x^2}}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2}$$
 = 0, $x \neq 0$ 时, $f'(x) = \frac{x \cos x - \sin x}{x^2}$. 因此

$$f''(0) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{3x^2} = -\frac{1}{3}$$

$x \to \infty$ 的 L'Hospital 法则

- $\frac{0}{0}$ 型: $\mathop{\mathsf{id}}\nolimits_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$, $\mathop{\not{\!\!\!/}}\nolimits_{x \to +\infty} \lim_{x \to +\infty} \frac{f(x)}{g(x)}$.
- 定理: 设 f(x), g(x) 在 $[A, +\infty)$ 上有定义 (不妨设 A > 0),且可导, $g'(x) \neq 0$. 若 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$, $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$. 证明: 令 $F(x) = f(\frac{1}{x})$, $G(x) = g(\frac{1}{x})$, F, G 在 $(0, \frac{1}{A})$ 上有定义,且 $\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} G(x) = 0$,

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to 0+0} \frac{F(x)}{G(x)} = \lim_{x \to 0+0} \frac{F'(x)}{G'(x)}$$

$$= \lim_{x \to 0+0} \frac{f'(\frac{1}{x})(-\frac{1}{x^2})}{g'(\frac{1}{x})(-\frac{1}{x^2})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

$x \to \infty$ 的 L'Hospital 法则

- $\frac{0}{0}$ 型: $\mathop{\mathfrak{P}}_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$, $\mathop{\mathfrak{K}}_{x \to +\infty} \lim_{g(x)} \frac{f(x)}{g(x)}$.
- 定理: 设 f(x), g(x) 在 $[A, +\infty)$ 上有定义 (不妨设 A > 0), 且可导, $g'(x) \neq 0$. 若 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$, $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$.

证明: 令 $F(x) = f(\frac{1}{x})$, $G(x) = g(\frac{1}{x})$, F, G 在 $(0, \frac{1}{A})$ 上有定义,且

$$\lim_{x \to 0+0} F(x) = \lim_{x \to 0+0} G(x) = 0,$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to 0+0} \frac{F(x)}{G(x)} = \lim_{x \to 0+0} \frac{F'(x)}{G'(x)}$$

$$= \lim_{x \to 0+0} \frac{f'(\frac{1}{x})(-\frac{1}{x^2})}{g'(\frac{1}{x})(-\frac{1}{y^2})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

$x \to \infty$ 的 L'Hospital 法则

- $\frac{0}{0}$ 型: 设 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$, 求 $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$.
- 定理: 设 f(x), g(x) 在 $[A, +\infty)$ 上有定义 (不妨设 A > 0),且可导, $g'(x) \neq 0$. 若 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$, $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$ 存在,则极 限 $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$. 证明: 令 $F(x) = f(\frac{1}{x})$, $G(x) = g(\frac{1}{x})$, F, G 在 $(0, \frac{1}{A})$ 上有定义,且 $\lim_{x \to 0+0} F(x) = \lim_{x \to 0+0} G(x) = 0$,

$$\begin{split} \lim_{x \to +\infty} \frac{f(x)}{g(x)} &= \lim_{x \to 0+0} \frac{F(x)}{G(x)} = \lim_{x \to 0+0} \frac{F'(x)}{G'(x)} \\ &= \lim_{x \to 0+0} \frac{f'(\frac{1}{x})(-\frac{1}{x^2})}{g'(\frac{1}{x})(-\frac{1}{x^2})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}. \end{split}$$

- $\frac{\infty}{\infty}$ 型: $\mathop{\forall}\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$, $\mathop{\not{\!\!\!\!/}}\mathop{\lim}_{x\to a} \frac{f(x)}{g(x)}$.
- 定理: 设 f(x), g(x) 在 a 的某个空心邻域上可导,且 $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x)$, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.
- 把 f(x), g(x) 转变为 $\frac{1}{f(x)}, \frac{1}{g(x)}$ 可转换为 $\frac{0}{0}$ 型,

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \lim_{x \to a} \frac{\frac{1}{f(x)}}{\frac{1}{g(x)}} = \lim_{x \to a} \frac{\frac{f'(x)}{f(x)^2}}{\frac{g'(x)}{g(x)^2}} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \cdot \left(\lim_{x \to a} \frac{g(x)}{f(x)}\right)^2$$

若已知 $\lim_{x\to a} \frac{f(x)}{g(x)} = A$ 存在,且 $A \neq 0$,则有由此可得 $A = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

- $\frac{\infty}{\infty}$ 型: $\mathop{\mathfrak{P}}_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$, $\mathop{\mathfrak{F}}_{x\to a} \lim_{x\to a} \frac{f(x)}{g(x)}$.
- 定理: 设 f(x), g(x) 在 a 的某个空心邻域上可导,且 $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x)$, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.
- 把 f(x), g(x) 转变为 $\frac{1}{f(x)}$, $\frac{1}{g(x)}$ 可转换为 $\frac{0}{0}$ 型,

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \lim_{x \to a} \frac{\frac{1}{f(x)}}{\frac{1}{g(x)}} = \lim_{x \to a} \frac{\frac{f'(x)}{f(x)^2}}{\frac{g'(x)}{g(x)^2}} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \cdot \left(\lim_{x \to a} \frac{g(x)}{f(x)}\right)^2$$

若已知 $\lim_{x\to a} \frac{f(x)}{g(x)} = A$ 存在,且 $A \neq 0$,则有由此可得 $A = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

- $\frac{\infty}{\infty}$ 型: $\mathop{\mathfrak{P}}_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$, $\mathop{\mathfrak{F}}_{x\to a} \lim_{x\to a} \frac{f(x)}{g(x)}$.
- 定理:设 f(x), g(x) 在 a 的某个空心邻域上可导,且 $g'(x) \neq 0$. 若 $\lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x)$, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则极限 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 存在,且 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.
- 把 f(x), g(x) 转变为 $\frac{1}{f(x)}, \frac{1}{g(x)}$ 可转换为 $\frac{0}{0}$ 型,

$$\lim_{\mathbf{x} \to \mathbf{a}} \frac{g(\mathbf{x})}{f(\mathbf{x})} = \lim_{\mathbf{x} \to \mathbf{a}} \frac{\frac{1}{f(\mathbf{x})}}{\frac{1}{g(\mathbf{x})}} = \lim_{\mathbf{x} \to \mathbf{a}} \frac{\frac{f'(\mathbf{x})}{f(\mathbf{x})^2}}{\frac{g'(\mathbf{x})}{g(\mathbf{x})^2}} = \lim_{\mathbf{x} \to \mathbf{a}} \frac{f'(\mathbf{x})}{g'(\mathbf{x})} \cdot \left(\lim_{\mathbf{x} \to \mathbf{a}} \frac{g(\mathbf{x})}{f(\mathbf{x})}\right)^2$$

若已知 $\lim_{x \to a} \frac{f(x)}{g(x)} = A$ 存在,且 $A \neq 0$,则有由此可得 $A = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

• 定理证明思路: 由柯西中值定理,存在 c_x , 使得 $\frac{f(x)-f(x_1)}{g(x)-g(x_1)} = \frac{f'(c_x)}{g'(c_x)}$, 即

$$f(x) = f(x_1) + \frac{f'(c_x)}{g'(c_x)}(g(x) - g(x_1)).$$

两边除以 g(x), 得

$$\frac{f(x)}{g(x)} = \frac{f(x_1)}{g(x)} + \frac{f'(c_x)}{g'(c_x)} \left(1 - \frac{g(x_1)}{g(x)}\right)$$

设 $A = \lim_{x \to a} \frac{f'(x)}{g'(x)}$,则存在 δ_0 满足当 $|x - a| \le \delta_0$ 时, $|\frac{f'(x)}{g'(x)} - A| < \frac{\epsilon}{3}$,然后令 $x_1 = a + \delta_0$, $x \to a$ 即可.

• 其它不定型: $0 \cdot \infty = \frac{0}{\frac{1}{\omega}}$, $0 \ln 0 = \frac{\ln 0}{\frac{1}{0}}$, $0^0 = e^{0 \ln 0}$, $0 \ln \infty = \frac{\ln \infty}{\frac{1}{0}}$, $\infty^0 = e^{0 \ln \infty}$, $\infty \ln 1 = \frac{\ln 1}{\frac{1}{\omega}}$, $1^\infty = e^{\infty \ln 1}$.

• 定理证明思路: 由柯西中值定理,存在 c_x , 使得 $\frac{f(x)-f(x_1)}{g(x)-g(x_1)} = \frac{f'(c_x)}{g'(c_x)}$, 即

$$f(x) = f(x_1) + \frac{f'(c_x)}{g'(c_x)}(g(x) - g(x_1)).$$

两边除以 g(x), 得

$$\frac{f(x)}{g(x)} = \frac{f(x_1)}{g(x)} + \frac{f'(c_x)}{g'(c_x)} \left(1 - \frac{g(x_1)}{g(x)}\right)$$

设 $A = \lim_{x \to a} \frac{f'(x)}{g'(x)}$,则存在 δ_0 满足当 $|x - a| \le \delta_0$ 时, $|\frac{f'(x)}{g'(x)} - A| < \frac{\epsilon}{3}$,然后令 $x_1 = a + \delta_0$, $x \to a$ 即可.

• 其它不定型: $0\cdot\infty=\frac{0}{\frac{1}{\omega}}$, $0\ln0=\frac{\ln0}{\frac{1}{0}}$, $0^0=e^{0\ln0}$, $0\ln\infty=\frac{\ln\infty}{\frac{1}{0}}$, $\infty^0=e^{0\ln\infty}$, $\infty\ln1=\frac{\ln1}{\frac{1}{\omega}}$, $1^\infty=e^{\infty\ln1}$.

•
$$\{ \tilde{p} \} : \lim_{x \to +\infty} \frac{P(x)}{e^x} = \lim_{x \to +\infty} \frac{P'(x)}{e^x} = 0.$$

• 例:
$$\lim_{x\to 0+0} x^x = \lim_{x\to 0+0} e^{\frac{\ln x}{\frac{1}{x}}} = 1$$
, 这里用到

$$\lim_{x \to 0+0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$$

•
$$\emptyset$$
: $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} = \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2}.$

•
$$\lim_{n\to\infty} \frac{n}{e^n} = \lim_{x\to +\infty} \frac{x}{e^x} = \lim_{x\to +\infty} \frac{1}{e^x} = 0.$$

$$\bullet \ \ \text{Im} \ \ \lim_{\mathbf{x} \to +\infty} \frac{P(\mathbf{x})}{\mathbf{e}^{\mathbf{x}}} = \lim_{\mathbf{x} \to +\infty} \frac{P'(\mathbf{x})}{\mathbf{e}^{\mathbf{x}}} = 0.$$

• 例:
$$\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{\frac{\ln x}{\frac{1}{x}}} = 1$$
, 这里用到

$$\lim_{x \to 0+0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0.$$

•
$$\mathfrak{P}$$
: $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} = \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2}.$

•
$$\lim_{n \to \infty} \frac{n}{e^n} = \lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0.$$

•
$$\mathfrak{P}: \lim_{x \to +\infty} \frac{P(x)}{e^x} = \lim_{x \to +\infty} \frac{P'(x)}{e^x} = 0.$$

• 例:
$$\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{\frac{\ln x}{\frac{1}{x}}} = 1$$
, 这里用到

$$\lim_{x \to 0+0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0.$$

•
$$\mathfrak{P}$$
: $\lim_{x \to 1} (\frac{1}{\ln x} - \frac{1}{x-1}) = \lim_{x \to 1} \frac{x-1-\ln x}{(x-1)\ln x} = \lim_{x \to 1} \frac{1-\frac{1}{x}}{\ln x + \frac{x-1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2}.$

•
$$\lim_{n \to \infty} \frac{n}{e^n} = \lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0.$$

•
$$\mathfrak{P}: \lim_{x \to +\infty} \frac{P(x)}{e^x} = \lim_{x \to +\infty} \frac{P'(x)}{e^x} = 0.$$

• 例:
$$\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{\frac{\ln x}{\frac{1}{x}}} = 1$$
, 这里用到

$$\lim_{x \to 0+0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0.$$

•
$$\mathfrak{P}$$
: $\lim_{x \to 1} (\frac{1}{\ln x} - \frac{1}{x-1}) = \lim_{x \to 1} \frac{x-1-\ln x}{(x-1)\ln x} = \lim_{x \to 1} \frac{1-\frac{1}{x}}{\ln x + \frac{x-1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2}.$

•
$$\lim_{n\to\infty} \frac{n}{e^n} = \lim_{x\to +\infty} \frac{x}{e^x} = \lim_{x\to +\infty} \frac{1}{e^x} = 0.$$

• 设 $a_k > 0$, $k = 1, 2, \dots, n$. 证明:

$$\lim_{x \to 0} \left(\frac{a_1^{x} + a_2^{x} + \dots + a_n^{x}}{n} \right)^{\frac{1}{x}} = \left(a_1 \cdots a_n \right)^{\frac{1}{n}}.$$

证明:

$$\lim_{x \to 0} \ln\left(\frac{a_1^{x} + a_2^{x} + \dots + a_n^{x}}{n}\right)^{\frac{1}{x}}$$

$$= \lim_{x \to 0} \frac{\ln(a_1^{x} + a_2^{x} + \dots + a_n^{x}) - \ln n}{x}$$

$$= \lim_{x \to 0} \frac{a_1^{x} \ln a_1 + a_2^{x} \ln a_2 + \dots + a_n^{x} \ln a_n}{a_1^{x} + a_2^{x} + \dots + a_n^{x}}$$

$$= \frac{\ln a_1 + \ln a_2 + \dots + \ln a_n}{n}.$$

• $\mathfrak{P}_{a_k} > 0$, $k = 1, 2, \dots, n$. 证明:

$$\lim_{x \to 0} \left(\frac{a_1^{x} + a_2^{x} + \dots + a_n^{x}}{n} \right)^{\frac{1}{x}} = \left(a_1 \dots a_n \right)^{\frac{1}{n}}.$$

证明:

$$\begin{split} & \lim_{x \to 0} \ln (\frac{a_1^{\mathsf{X}} + a_2^{\mathsf{X}} + \dots + a_n^{\mathsf{X}}}{n})^{\frac{1}{\mathsf{X}}} \\ &= \lim_{x \to 0} \frac{\ln (a_1^{\mathsf{X}} + a_2^{\mathsf{X}} + \dots + a_n^{\mathsf{X}}) - \ln n}{\mathsf{X}} \\ &= \lim_{x \to 0} \frac{a_1^{\mathsf{X}} \ln a_1 + a_2^{\mathsf{X}} \ln a_2 + \dots + a_n^{\mathsf{X}} \ln a_n}{a_1^{\mathsf{X}} + a_2^{\mathsf{X}} + \dots + a_n^{\mathsf{X}}} \\ &= \frac{\ln a_1 + \ln a_2 + \dots + \ln a_n}{n}. \end{split}$$

- 历史注记: 1715 年 Taylor 在《正的和反的增量法》中给出 Taylor 公式(没有考虑余项),后来 Lagrange 给出余项表达式,指出不考 虑余项是不严格的.
- 复习: 若 f(x) 在 x₀ 处可导,则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o((x - x_0)).$$

- 历史注记: 1715 年 Taylor 在《正的和反的增量法》中给出 Taylor 公式(没有考虑余项),后来 Lagrange 给出余项表达式,指出不考 虑余项是不严格的.
- 复习: 若 f(x) 在 xn 处可导, 则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o((x - x_0)).$$

- 定理: y = f(x) 在 x_0 的某个邻域上有定义,且在 x_0 处有 n 阶导数 (则在 x_0 的某个邻域上的 n-1 阶导数存在),则有
 - ① $x \rightarrow x_0$ 时,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + o((x - x_0)^n).$$

② 若存在常数 A_0, A_1, \dots, A_n , 使得 $x \rightarrow x_0$ 时,

$$f(x) = A_0 + A_1(x - x_0) + \cdots + A_n(x - x_0)^n + o((x - x_0)^n).$$

则有
$$A_0 = f(x_0)$$
, $A_k = \frac{1}{k!} f^{(k)}(x_0) (k = 1, 2, \dots, n)$.

• 注: $x_0 = 0$ 时的 Taylor 公式称为 Marclaurin 公式,

$$R_n(x) = o((x - x_0)^n)$$

称为 Peano 余项.

• 多项式

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n,$$

满足
$$f(x_0) = T(x_0), f'(x_0) = T'(x_0), \dots, f^{(n)}(x_0) = T^{(n)}(x_0).$$

• 注: $x_0 = 0$ 时的 Taylor 公式称为 Marclaurin 公式,

$$R_n(x) = o((x - x_0)^n)$$

称为 Peano 余项.

• 多项式

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n,$$

满足
$$f(x_0) = T(x_0)$$
, $f'(x_0) = T'(x_0)$, ..., $f^{(n)}(x_0) = T^{(n)}(x_0)$.

• 若 $f(x) = \sin x$, Taylor 展式的逼近程度如图.

• 1 的证明: 令多项式

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n,$$

则有
$$T_n^{(k)}(x_0) = f^{(k)}(x_0)(k = 0, \dots, n),$$

$$T_n^{(n-1)}(x) = f^{(n-1)}(x_0) + f^{(n)}(x_0)(x - x_0).$$
 利用 L'Hospital 法则,

$$\lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - T_n^{(n-1)}(x)}{n!(x - x_0)}$$

$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{n!(x - x_0)} - \frac{1}{n!} f^{(n)}(x_0) = 0.$$

• 1 的证明: 令多项式

$$T_{n}(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) + \dots + \frac{1}{n!} f^{(n)}(x_{0})(x - x_{0})^{n},$$
則有 $T_{n}^{(k)}(x_{0}) = f^{(k)}(x_{0})(k = 0, \dots, n),$

$$T_{n}^{(n-1)}(x) = f^{(n-1)}(x_{0}) + f^{(n)}(x_{0})(x - x_{0}).$$
 利用 L'Hospital 法则,
$$\lim_{x \to x_{0}} \frac{f(x) - T_{n}(x)}{(x - x_{0})^{n}} = \lim_{x \to x_{0}} \frac{f^{(n-1)}(x) - T_{n}^{(n-1)}(x)}{n!(x - x_{0})}$$

$$= \lim_{x \to x_{0}} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_{0})}{n!(x - x_{0})} - \frac{1}{n!} f^{(n)}(x_{0}) = 0.$$

• 2 的证明: 令

$$S_{n}(x) = A_{0} + A_{1}(x - x_{0}) + \dots + A_{n}(x - x_{0})^{n},$$
由 $f(x) = S_{n}(x) + o((x - x_{0})^{n}), x \to x_{0}$ 得 $f(x_{0}) = A_{0}$. 又由
$$\frac{f(x) - f(x_{0})}{x - x_{0}} = A_{1} + A_{2}(x - x_{0}) + o((x - x_{0})) \to f'(x_{0}) = A_{1},$$
即我们证明了 $S_{1}(x) = T_{1}(x)$. 下面用归纳法, 若 $S_{k} = T_{k}(k < n)$, 则有 $f(x) - T_{k}(x) = A_{k+1}(x - x_{0})^{k+1} + o((x - x_{0})^{k+1}),$ 由于
$$\lim_{x \to x_{0}} \frac{f(x) - T_{k}(x)}{(x - x_{0})^{k+1}} = \lim_{x \to x_{0}} \frac{f^{(k)}(x) - f^{(k)}(x_{0})}{(k+1)!(x - x_{0})} = \frac{1}{(k+1)!} f^{(k+1)}(x_{0}),$$

• 2 的证明: 令

$$S_n(x) = A_0 + A_1(x - x_0) + \dots + A_n(x - x_0)^n$$
,由 $f(x) = S_n(x) + o((x - x_0)^n)$, $x \to x_0$ 得 $f(x_0) = A_0$. 又由
$$\frac{f(x) - f(x_0)}{x - x_0} = A_1 + A_2(x - x_0) + o((x - x_0)) \to f'(x_0) = A_1,$$
 即我们证明了 $S_1(x) = T_1(x)$. 下面用归纳法,若 $S_k = T_k(k < n)$,则有 $f(x) - T_k(x) = A_{k+1}(x - x_0)^{k+1} + o((x - x_0)^{k+1})$,由于
$$\lim_{x \to x_0} \frac{f(x) - T_k(x)}{(x - x_0)^{k+1}} = \lim_{x \to x_0} \frac{f^{(k)}(x) - f^{(k)}(x_0)}{(k+1)!(x - x_0)} = \frac{1}{(k+1)!} f^{(k+1)}(x_0),$$
 因此 $A_{k+1} = \frac{1}{(k+1)!} f^{(k+1)}(x_0).$

- 例: e^{x} 的泰勒公式. $e^{x} = 1 + \frac{1}{1!}x + \dots + \frac{1}{n!}x^{n} + o(x^{n})$.
- 例: $\sin x$ 的泰勒公式.利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^k \frac{1}{(2k+1)!}x^{2k+1} + o(x^{2k+2})$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^k \frac{1}{(2k)!}x^{2k} + o(x^{2k+1})$$

- 例: e^x 的泰勒公式. $e^x = 1 + \frac{1}{1!}x + \cdots + \frac{1}{n!}x^n + o(x^n)$.
- 例: $\sin x$ 的泰勒公式.利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^k \frac{1}{(2k+1)!}x^{2k+1} + o(x^{2k+2})$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^k \frac{1}{(2k)!}x^{2k} + o(x^{2k+1})$$

- 例: e^{x} 的泰勒公式. $e^{x} = 1 + \frac{1}{1!}x + \cdots + \frac{1}{n!}x^{n} + o(x^{n})$.
- 例: $\sin x$ 的泰勒公式.利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^k \frac{1}{(2k+1)!}x^{2k+1} + o(x^{2k+2})$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^k \frac{1}{(2k)!}x^{2k} + o(x^{2k+1}).$$

- 例: e^{x} 的泰勒公式. $e^{x} = 1 + \frac{1}{1!}x + \cdots + \frac{1}{n!}x^{n} + o(x^{n})$.
- 例: $\sin x$ 的泰勒公式.利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^k \frac{1}{(2k+1)!}x^{2k+1} + o(x^{2k+2})$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^k \frac{1}{(2k)!}x^{2k} + o(x^{2k+1})$$

- 例: e^x 的泰勒公式. $e^x = 1 + \frac{1}{1!}x + \cdots + \frac{1}{n!}x^n + o(x^n)$.
- 例: $\sin x$ 的泰勒公式.利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^k \frac{1}{(2k+1)!}x^{2k+1} + o(x^{2k+2})$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^k \frac{1}{(2k)!}x^{2k} + o(x^{2k+1})$$

- 例: e^x 的泰勒公式. $e^x = 1 + \frac{1}{1!}x + \cdots + \frac{1}{n!}x^n + o(x^n)$.
- 例: $\sin x$ 的泰勒公式.利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^k \frac{1}{(2k+1)!}x^{2k+1} + o(x^{2k+2})$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^k \frac{1}{(2k)!}x^{2k} + o(x^{2k+1}).$$

• $\ln(1+x)$ 的泰勒公式.由 $\ln(1+x)^{(k)} = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n).$$

• $(1+x)^{\alpha}(\alpha$ 不是非负整数) 的泰勒公式 (二项式展开).

$$((1+x)^{\alpha})^{(k)} = \alpha(\alpha-1)\cdots(\alpha-k+1)(1+x)^{(\alpha-k)}$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha - 1)x^2 + \cdots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}x^n + o(x^n)$$

• $\ln(1+x)$ 的泰勒公式.由 $\ln(1+x)^{(k)} = (-1)^{k-1}(k-1)!\frac{1}{(1+x)^k}$,

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n).$$

• $(1+x)^{\alpha}(\alpha$ 不是非负整数) 的泰勒公式 (二项式展开).

$$((1+x)^{\alpha})^{(k)} = \alpha(\alpha-1)\cdots(\alpha-k+1)(1+x)^{(\alpha-k)},$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha - 1)x^2 + \cdots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}x^n + o(x^n).$$

• $\ln(1+x)$ 的泰勒公式.由 $\ln(1+x)^{(k)} = (-1)^{k-1}(k-1)!\frac{1}{(1+x)^k}$,

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n).$$

• $(1+x)^{\alpha}(\alpha$ 不是非负整数) 的泰勒公式 (二项式展开).

$$((1+x)^{\alpha})^{(k)} = \alpha(\alpha-1)\cdots(\alpha-k+1)(1+x)^{(\alpha-k)},$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha - 1)x^2 + \cdots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}x^n + o(x^n).$$

• $\ln(1+x)$ 的泰勒公式.由 $\ln(1+x)^{(k)} = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n).$$

• $(1+x)^{\alpha}(\alpha$ 不是非负整数) 的泰勒公式 (二项式展开).

$$((1+x)^{\alpha})^{(k)} = \alpha(\alpha-1)\cdots(\alpha-k+1)(1+x)^{(\alpha-k)},$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha - 1)x^2 + \cdots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}x^n + o(x^n).$$

- $\alpha = -1$, $\frac{1}{1+x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^n)$. $\Rightarrow \mathring{x} \perp$, $\frac{1}{1+x} - (1 - x + x^2 + \dots + (-1)^n x^n) = \frac{(-1)^{n+1} x^{n+1}}{1+x}$.
- $\alpha = -\frac{1}{2}$,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}x^2 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!}x^n + o(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!}x^2 + \dots + (-1)^{n-1} \frac{(2n-3)!!}{(2n)!!}x^n + o(x^n).$$

- $\alpha = -1$, $\frac{1}{1+x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^n)$. $\Rightarrow \mathcal{L}$, $\frac{1}{1+x} - (1 - x + x^2 + \dots + (-1)^n x^n) = \frac{(-1)^{n+1} x^{n+1}}{1+x}$.
- $\alpha = -\frac{1}{2}$,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}x^2 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!}x^n + o(x^n).$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!}x^2 + \dots + (-1)^{n-1} \frac{(2n-3)!!}{(2n)!!}x^n + o(x^n).$$

- $\alpha = -1$, $\frac{1}{1+x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^n)$. • $x + \frac{1}{1+x} - (1 - x + x^2 + \dots + (-1)^n x^n) = \frac{(-1)^{n+1} x^{n+1}}{1+x}$.
- $\alpha = -\frac{1}{2}$,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}x^2 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!}x^n + o(x^n).$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!}x^2 + \dots + (-1)^{n-1} \frac{(2n-3)!!}{(2n)!!}x^n + o(x^n).$$

- $\alpha = -1$, $\frac{1}{1+x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^n)$. $\Rightarrow \not\subseteq \bot$, $\frac{1}{1+x} - (1 - x + x^2 + \dots + (-1)^n x^n) = \frac{(-1)^{n+1} x^{n+1}}{1+x}$.
- $\alpha = -\frac{1}{2}$,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}x^2 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!}x^n + o(x^n).$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!}x^2 + \dots + (-1)^{n-1} \frac{(2n-3)!!}{(2n)!!}x^n + o(x^n).$$

- $\alpha = -1$, $\frac{1}{1+x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^n)$. $\Rightarrow \not\subseteq \bot$, $\frac{1}{1+x} - (1 - x + x^2 + \dots + (-1)^n x^n) = \frac{(-1)^{n+1} x^{n+1}}{1+x}$.
- $\alpha = -\frac{1}{2}$,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}x^2 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!}x^n + o(x^n).$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!}x^2 + \dots + (-1)^{n-1} \frac{(2n-3)!!}{(2n)!!}x^n + o(x^n).$$

一些初等函数的 Taylor 公式 3

- $\alpha = -1$, $\frac{1}{1+x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^n)$. • $x + 1 + \dots + (-1)^n x^n = \frac{(-1)^{n+1} x^{n+1}}{1+x}$.
- $\alpha = -\frac{1}{2}$,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}x^2 + \dots + (-1)^n \frac{(2n-1)!!}{(2n)!!}x^n + o(x^n).$$

• $\alpha = \frac{1}{2}$,

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!}x^2 + \dots + (-1)^{n-1} \frac{(2n-3)!!}{(2n)!!}x^n + o(x^n).$$

• 例: 求 $f(x) = e^{-x^2}$ 在 x = 0 处的 Taylor 公式, 并求 f 在 0 处的任意阶导数.

解: 利用 e^x 的 Taylor 公式, 有

$$e^{-x^2} = 1 + (-x^2) + \frac{1}{2!}(-x^2)^2 + \dots + \frac{1}{n!}(-x^2)^n + o(x^{2n})$$
$$= 1 - x^2 + \frac{1}{2!}x^4 + \dots + (-1)^n \frac{1}{n!}x^{2n} + o(x^{2n}),$$

由此可得 $f^{(2n+1)}(0) = 0$, $f^{(2n)}(0) = \frac{(-1)^n}{n!}(2n)!$

• 例: 求 $f(x) = e^{-x^2}$ 在 x = 0 处的 Taylor 公式, 并求 f 在 0 处的任意阶导数.

解:利用 e^{x} 的 Taylor 公式,有

$$e^{-x^{2}} = 1 + (-x^{2}) + \frac{1}{2!}(-x^{2})^{2} + \dots + \frac{1}{n!}(-x^{2})^{n} + o(x^{2n})$$
$$= 1 - x^{2} + \frac{1}{2!}x^{4} + \dots + (-1)^{n}\frac{1}{n!}x^{2n} + o(x^{2n}),$$

由此可得 $f^{(2n+1)}(0) = 0$, $f^{(2n)}(0) = \frac{(-1)^n}{n!}(2n)!$.

• 例:
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 , 则有 $f'(x) = \begin{cases} \frac{2}{x^3}e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. 事实上,存在多项式 $P_n(x)$,使得

$$f^{(n)}(x) = \begin{cases} P_n(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

f(x) 的 Taylor 公式 $f(x) = o(x^n)$.

• 例:
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 , 则有 $f'(x) = \begin{cases} \frac{2}{x^3}e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. 事实上,存在多项式 $P_n(x)$,使得

$$f^{(n)}(x) = \begin{cases} P_n(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

f(x) 的 Taylor 公式 $f(x) = o(x^n)$.

• 例: 求极限 $I = \lim_{x \to 0} \frac{e^x - 1 - x - \frac{x}{2}\sin x}{\sin x - x\cos x}$.

$$I = \lim_{x \to 0} \frac{\frac{1}{2!}x^2 + \frac{1}{3!}x^3 - \frac{1}{2}x^2 + o(x^3)}{x - \frac{1}{6}x^3 - x(1 - \frac{1}{2!}x^2) + o(x^3)} = \frac{1}{2}$$

$$I = \lim_{x \to +\infty} \left[x(1 + \frac{1}{x})^{\frac{1}{m}} - x(1 - \frac{1}{x})^{\frac{1}{m}} \right]$$
$$= \lim_{x \to +\infty} \left[x(1 + \frac{1}{mx}) - x(1 - \frac{1}{mx}) + o(1) \right] = \frac{2}{m}.$$

• 例: 求极限 $I = \lim_{x \to 0} \frac{e^{x} - 1 - x - \frac{x}{2}\sin x}{\sin x - x\cos x}$.

$$I = \lim_{x \to 0} \frac{\frac{1}{2!}x^2 + \frac{1}{3!}x^3 - \frac{1}{2}x^2 + o(x^3)}{x - \frac{1}{6}x^3 - x(1 - \frac{1}{2!}x^2) + o(x^3)} = \frac{1}{2}.$$

$$\begin{split} I &= \lim_{x \to +\infty} [x(1 + \frac{1}{x})^{\frac{1}{m}} - x(1 - \frac{1}{x})^{\frac{1}{m}}] \\ &= \lim_{x \to +\infty} [x(1 + \frac{1}{mx}) - x(1 - \frac{1}{mx}) + o(1)] = \frac{2}{m} \end{split}$$

• 例: 求极限 $I = \lim_{x \to 0} \frac{e^{x} - 1 - x - \frac{x}{2}\sin x}{\sin x - x\cos x}$.

$$I = \lim_{x \to 0} \frac{\frac{1}{2!}x^2 + \frac{1}{3!}x^3 - \frac{1}{2}x^2 + o(x^3)}{x - \frac{1}{6}x^3 - x(1 - \frac{1}{2!}x^2) + o(x^3)} = \frac{1}{2}.$$

$$I = \lim_{x \to +\infty} \left[x(1 + \frac{1}{x})^{\frac{1}{m}} - x(1 - \frac{1}{x})^{\frac{1}{m}} \right]$$

$$= \lim_{x \to +\infty} \left[x(1 + \frac{1}{mx}) - x(1 - \frac{1}{mx}) + o(1) \right] = \frac{2}{m}$$

• 例: 求极限 $I = \lim_{x \to 0} \frac{e^{x} - 1 - x - \frac{x}{2}\sin x}{\sin x - x\cos x}$.

$$I = \lim_{x \to 0} \frac{\frac{1}{2!}x^2 + \frac{1}{3!}x^3 - \frac{1}{2}x^2 + o(x^3)}{x - \frac{1}{6}x^3 - x(1 - \frac{1}{2!}x^2) + o(x^3)} = \frac{1}{2}.$$

$$I = \lim_{x \to +\infty} \left[x(1 + \frac{1}{x})^{\frac{1}{m}} - x(1 - \frac{1}{x})^{\frac{1}{m}} \right]$$
$$= \lim_{x \to +\infty} \left[x(1 + \frac{1}{mx}) - x(1 - \frac{1}{mx}) + o(1) \right] = \frac{2}{m}.$$

$$\begin{split} I &= \lim_{x \to 1} \frac{x - 1 - \ln(1 + x - 1)}{(x - 1)\ln(1 + x - 1)} \\ &= \lim_{x \to 1} \frac{x - 1 - ((x - 1) - \frac{1}{2}(x - 1)^2)}{(x - 1)^2} = \frac{1}{2}. \end{split}$$

• 例: 求极限
$$I = \lim_{x \to 0} \left(\frac{1}{\ln(x + \sqrt{1 + x^2})} - \frac{1}{\ln(1 + x)} \right)$$

$$I = \lim_{x \to 0} \frac{\ln(1 + x) - \ln(x + \sqrt{1 + x^2})}{\ln(x + \sqrt{1 + x^2}) \ln(1 + x)}$$

$$= \lim_{x \to 0} \frac{x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - (x - \frac{1}{6}x^3)}{x^2} = -\frac{1}{2}$$

$$\begin{split} I &= \lim_{x \to 1} \frac{x - 1 - \ln(1 + x - 1)}{(x - 1)\ln(1 + x - 1)} \\ &= \lim_{x \to 1} \frac{x - 1 - ((x - 1) - \frac{1}{2}(x - 1)^2)}{(x - 1)^2} = \frac{1}{2}. \end{split}$$

• 例: 求极限
$$I = \lim_{x \to 0} \left(\frac{1}{\ln(x + \sqrt{1 + x^2})} - \frac{1}{\ln(1 + x)} \right)$$

$$I = \lim_{x \to 0} \frac{\ln(1 + x) - \ln(x + \sqrt{1 + x^2})}{\ln(x + \sqrt{1 + x^2}) \ln(1 + x)}$$

$$= \lim_{x \to 0} \frac{x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - (x - \frac{1}{6}x^3)}{x^2} = -\frac{1}{2}$$

$$\begin{split} I &= \lim_{x \to 1} \frac{x - 1 - \ln(1 + x - 1)}{(x - 1) \ln(1 + x - 1)} \\ &= \lim_{x \to 1} \frac{x - 1 - ((x - 1) - \frac{1}{2}(x - 1)^2)}{(x - 1)^2} = \frac{1}{2}. \end{split}$$

• 例: 求极限
$$I = \lim_{x \to 0} \left(\frac{1}{\ln(x + \sqrt{1 + x^2})} - \frac{1}{\ln(1 + x)} \right)$$

$$\begin{split} I &= \lim_{x \to 0} \frac{\ln(1+x) - \ln(x + \sqrt{1+x^2})}{\ln(x + \sqrt{1+x^2}) \ln(1+x)} \\ &= \lim_{x \to 0} \frac{x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - (x - \frac{1}{6}x^3)}{x^2} = -\frac{1}{2}. \end{split}$$

$$\begin{split} I &= \lim_{x \to 1} \frac{x - 1 - \ln(1 + x - 1)}{(x - 1)\ln(1 + x - 1)} \\ &= \lim_{x \to 1} \frac{x - 1 - ((x - 1) - \frac{1}{2}(x - 1)^2)}{(x - 1)^2} = \frac{1}{2}. \end{split}$$

• 例: 求极限
$$I = \lim_{x \to 0} \left(\frac{1}{\ln(x + \sqrt{1 + x^2})} - \frac{1}{\ln(1 + x)} \right)$$

$$I = \lim_{x \to 0} \frac{\ln(1 + x) - \ln(x + \sqrt{1 + x^2})}{\ln(x + \sqrt{1 + x^2}) \ln(1 + x)}$$

$$= \lim_{x \to 0} \frac{x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - (x - \frac{1}{6}x^3)}{x^2} = -\frac{1}{2}.$$

Taylor 公式 -例

•
$$\sqrt{1+x^2} = 1 + \frac{1}{2}x^2 + o(x^3)$$
, $\ln(x + \sqrt{1+x^2}) = \ln(1+x + \frac{1}{2}x^2 + o(x^3))$

$$\ln(x + \sqrt{1 + x^2}) = x + \frac{1}{2}x^2 + o(x^3) - \frac{1}{2}(x + \frac{1}{2}x^2 + o(x^3))^2 + \frac{1}{3}(x + \frac{1}{2}x^2 + o(x^3))^3 + o(x^3)$$
$$= x - \frac{1}{6}x^3 + o(x^3).$$

•
$$(\ln(x+\sqrt{1+x^2}))' = (1+x^2)^{-\frac{1}{2}} = 1 - \frac{1}{2}x^2 + o(x^2).$$

|Taylor 公式 -例

•
$$\sqrt{1+x^2} = 1 + \frac{1}{2}x^2 + o(x^3)$$
, $\ln(x+\sqrt{1+x^2}) = \ln(1+x+\frac{1}{2}x^2 + o(x^3))$

$$\ln(x+\sqrt{1+x^2}) = x + \frac{1}{2}x^2 + o(x^3) - \frac{1}{2}(x+\frac{1}{2}x^2 + o(x^3))^2 + \frac{1}{3}(x+\frac{1}{2}x^2 + o(x^3))^3 + o(x^3)$$

$$= x - \frac{1}{6}x^3 + o(x^3).$$

• $(\ln(x+\sqrt{1+x^2}))' = (1+x^2)^{-\frac{1}{2}} = 1 - \frac{1}{2}x^2 + o(x^2).$

带 Peano 余项的 Taylor 公式

• 带 Peano 余项的 Taylor 公式: f 在 x_0 附近有定义,f 在 x_0 处有 n 阶导数,则 $x \to x_0$ 时,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{1}{n!}f^{(n)}(x - x_0)^n + o((x - x_0)^n).$$

这里余项 $R_n(x) = o((x - x_0)^n)$ 只反映了 $x \to x_0$ 时,余项趋向于 0 的速度.

带 Peano 余项的 Taylor 公式

• 带 Peano 余项的 Taylor 公式: f 在 x_0 附近有定义,f 在 x_0 处有 n 阶导数,则 $x \to x_0$ 时,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x - x_0)^n + o((x - x_0)^n).$$

这里余项 $R_n(x) = o((x - x_0)^n)$ 只反映了 $x \to x_0$ 时,余项趋向于 0 的速度.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n + \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x - x_0)^{n+1}.$$

- 注: (A, B) 可以是无穷区间. n = 0 时,带 Lagrange 余项的 Taylor 公式即为 Lagrange 中值定理.
- 注: 两个 Taylor 公式的条件不同.
- 注: 余项 $R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x x_0)^{n+1}$ 可用于估计余项大小.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n + \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x - x_0)^{n+1}.$$

- 注: (A, B) 可以是无穷区间. n = 0 时, 带 Lagrange 余项的 Taylor 公式即为 Lagrange 中值定理.
- 注: 两个 Taylor 公式的条件不同.
- 注: 余项 $R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x x_0)^{n+1}$ 可用于估计余项大小.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n + \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x - x_0)^{n+1}.$$

- 注: (A, B) 可以是无穷区间. n = 0 时, 带 Lagrange 余项的 Taylor 公式即为 Lagrange 中值定理.
- 注: 两个 Taylor 公式的条件不同.
- 注: 余项 $R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x x_0)^{n+1}$ 可用于估计余项大小.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n + \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x - x_0)^{n+1}.$$

- 注: (A, B) 可以是无穷区间. n = 0 时,带 Lagrange 余项的 Taylor 公式即为 Lagrange 中值定理.
- 注: 两个 Taylor 公式的条件不同.
- 注: 余项 $R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x x_0)^{n+1}$ 可用于估计余项大小.

• $\diamondsuit R_n(x) = f(x) - T_n(x)$, 其中

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n.$$

则有 $R_n(x_0) = R'_n(x_0) = \cdots = R_n^{(n)}(x_0) = 0$, $R_n^{(n+1)}(x) = f^{(n+1)}(x)$. 重复利用 Cauchy 中值定理,存在 $\xi_1, \xi_2, \cdots, \xi_{n+1}(\xi_1$ 位于 χ_0 与 χ_0 之间, χ_0 之间, χ_0 与 χ_0 之间, χ_0 之间,

$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n} = \dots = \frac{R_n^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

取 $\xi = \xi_{n+1}$ 即可

• \diamondsuit $R_n(x) = f(x) - T_n(x)$, 其中

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n.$$

则有 $R_n(x_0) = R'_n(x_0) = \cdots = R_n^{(n)}(x_0) = 0$, $R_n^{(n+1)}(x) = f^{(n+1)}(x)$. 重复利用 Cauchy 中值定理,存在 $\xi_1, \xi_2, \cdots, \xi_{n+1}(\xi_1$ 位于 x_0 与 x 之间, ξ_{k+1} 位于 x_0 与 ξ_k 之间),使得

$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n} = \dots = \frac{R_n^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

取 $\xi = \xi_{n+1}$ 即可.

- $e^{\mathbf{x}}$: $e^{\mathbf{x}} = 1 + \frac{1}{1!}x + \dots + \frac{1}{n!}x^n + \frac{e^{\xi}}{(n+1)!}x^{n+1}, x \in \mathbb{R}$.
- $\sin x$: 利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + (-1)^n \frac{\cos \xi}{(2n+1)!}x^{2n+1}, x \in \mathbb{R}$$

•
$$\cos x$$
: $(\cos x)^{(2k)} = (-1)^k \cos x$, $(\cos x)^{(2k+1)} = (-1)^{k+1} \sin x$

$$\cos x = 1 - \frac{1}{2!}x + \dots + (-1) \frac{1}{(2n)!}x + (-1)^{n+1} \frac{\cos \xi}{(2n+2)!}x^{2n+2}, x \in \mathbb{R}.$$

- e^{x} : $e^{x} = 1 + \frac{1}{1!}x + \dots + \frac{1}{n!}x^{n} + \frac{e^{\xi}}{(n+1)!}x^{n+1}, x \in \mathbb{R}$.
- $\sin x$: 利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + (-1)^n \frac{\cos \xi}{(2n+1)!}x^{2n+1}, x \in \mathbb{R}$$

$$\cos x = 1 - \frac{1}{2!}x^{n} + \dots + (-1)^{n} \frac{1}{(2n)!}x^{n} + (-1)^{n+1} \frac{\cos \xi}{(2n+2)!}x^{2n+2}, x \in \mathbb{R}$$

- e^{x} : $e^{x} = 1 + \frac{1}{1!}x + \dots + \frac{1}{n!}x^{n} + \frac{e^{\xi}}{(n+1)!}x^{n+1}, x \in \mathbb{R}$.
- $\sin x$: $\text{All } (\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + (-1)^n \frac{\cos \xi}{(2n+1)!}x^{2n+1}, x \in \mathbb{R}$$

$$\cos x = 1 - \frac{1}{2!}x^{n} + \dots + (-1)^{n} \frac{1}{(2n)!}x^{n} + (-1)^{n+1} \frac{\cos \xi}{(2n+2)!}x^{2n+2}, x \in \mathbb{R}$$

- e^{x} : $e^{x} = 1 + \frac{1}{1!}x + \dots + \frac{1}{n!}x^{n} + \frac{e^{\xi}}{(n+1)!}x^{n+1}, x \in \mathbb{R}$.
- $\sin x$: 利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + (-1)^n \frac{\cos \xi}{(2n+1)!}x^{2n+1}, x \in \mathbb{R}.$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \dots + (-1)^{n} \frac{1}{(2n)!}x^{2n} + (-1)^{n+1} \frac{\cos \xi}{(2n+2)!}x^{2n+2}, x \in \mathbb{R}$$

- e^x : $e^x = 1 + \frac{1}{1!}x + \dots + \frac{1}{n!}x^n + \frac{e^{\xi}}{(n+1)!}x^{n+1}, x \in \mathbb{R}$.
- $\sin x$: 利用 $(\sin x)^{(2k+1)} = (-1)^k \cos x$, $(\sin x)^{(2k)} = (-1)^k \sin x$,

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + (-1)^n \frac{\cos \xi}{(2n+1)!}x^{2n+1}, x \in \mathbb{R}.$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^n \frac{1}{(2n)!}x^{2n} + (-1)^{n+1} \frac{\cos \xi}{(2n+2)!}x^{2n+2}, x \in \mathbb{R}.$$

• $\ln(1+x)$: $(\ln(1+x))^{(k)} = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$.

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+\xi)^{n+1}}, x > -1$$

•
$$(1+x)^{\alpha}$$
: $\exists ((1+x)^{\alpha})^{(n+1)} = \alpha(\alpha-1)\cdots(\alpha-n)(1+x)^{\alpha-n-1},$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha-1)x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!}(1+\xi)^{\alpha-n-1}x^{n+1}, x > -1.$$

•
$$\ln(1+x)$$
: $(\ln(1+x))^{(k)} = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$.

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+\xi)^{n+1}}, x > -1.$$

•
$$(1+x)^{\alpha}$$
: $\exists ((1+x)^{\alpha})^{(n+1)} = \alpha(\alpha-1)\cdots(\alpha-n)(1+x)^{\alpha-n-1},$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha-1)x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!}(1+\xi)^{\alpha-n-1}x^{n+1}, x > -1.$$

•
$$\ln(1+x)$$
: $(\ln(1+x))^{(k)} = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$.

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+\xi)^{n+1}}, x > -1.$$

•
$$(1+x)^{\alpha}$$
: \dots $((1+x)^{\alpha})^{(n+1)} = \alpha(\alpha-1)\cdots(\alpha-n)(1+x)^{\alpha-n-1}$,

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{1}{2!}\alpha(\alpha - 1)x^{2} + \dots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}x' + \frac{\alpha(\alpha - 1)\cdots(\alpha - n)}{(n+1)!}(1+\xi)^{\alpha - n - 1}x^{n+1}, x > -1.$$

•
$$\ln(1+x)$$
: $(\ln(1+x))^{(k)} = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$.

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+\xi)^{n+1}}, x > -1.$$

误差估计

• $f(x) = \sin x$, $n \to +\infty$ 时,

$$|R_{2n}(\mathbf{x})| = \left| (-1)^n \frac{\cos \xi}{(2n+1)!} \mathbf{x}^{2n+1} \right| \le \frac{1}{(2n+1)!} |\mathbf{x}|^{2n+1} \to 0.$$

• $f(x) = e^x$, $n \to +\infty$ $\exists t$,

$$|R_n(x)| = \left| \frac{e^{\xi}}{(n+1)!} x^{n+1} \right| \le \frac{e^{|x|}}{(n+1)!} (|x|)^{n+1} \to 0$$

误差估计

• $f(x) = \sin x$, $n \to +\infty$ \mathbb{H} ,

$$|R_{2n}(x)| = \left| (-1)^n \frac{\cos \xi}{(2n+1)!} x^{2n+1} \right| \le \frac{1}{(2n+1)!} |x|^{2n+1} \to 0.$$

• $f(x) = e^x$, $n \to +\infty$ 时,

$$|R_n(x)| = \left| \frac{e^{\xi}}{(n+1)!} x^{n+1} \right| \le \frac{e^{|x|}}{(n+1)!} (|x|)^{n+1} \to 0.$$

一个特殊函数的 Taylor 公式

• 设
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 则存在多项式 $P_n(x)$,使得

$$f^{(n)}(x) = \begin{cases} P_n(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

该函数的 Taylor 公式为 $f(x) = 0 + \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$.

• 注: 存在 ξ (在 0 与 $-\frac{1}{x^2}$ 之间), 使得

$$e^{-\frac{1}{x^2}} = 1 - \frac{1}{x^2} + \dots + \frac{1}{n!} \left(-\frac{1}{x^2} \right)^n + \frac{e^{\xi}}{(n+1)!} \left(-\frac{1}{x^2} \right)^{n+1},$$

但上式不是 Taylor 公式

一个特殊函数的 Taylor 公式

• 设 $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 则存在多项式 $P_n(x)$,使得

$$f^{(n)}(x) = \begin{cases} P_n(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

该函数的 Taylor 公式为 $f(x) = 0 + \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$.

• 注: 存在 ξ (在 0 与 $-\frac{1}{x^2}$ 之间), 使得

$$e^{-\frac{1}{x^2}} = 1 - \frac{1}{x^2} + \dots + \frac{1}{n!} \left(-\frac{1}{x^2} \right)^n + \frac{e^{\xi}}{(n+1)!} \left(-\frac{1}{x^2} \right)^{n+1},$$

但上式不是 Taylor 公式.

极值与极值点1

- 历史注记: 极值问题历史悠久. 1638 年 Fermat 在《求最大值和最小值的方法》用微积分方法研究极值 (该研究对微积分的创立发挥了很大的作用). 规划论、对策论等研究的本质上也是极值问题.
- 极值与极值点:设 f(x) 在 x_0 附近有定义,若存在 $\delta > 0$,使得对任意的 $x \in (x_0 \delta, x_0 + \delta)$,有 $f(x) \leq f(x_0)$,则称 $f(x_0)$ 是 f(x) 的 极大值, x_0 为 f(x) 的一个极大点. 类似地可定义极小值和极小值点.

极大值和极小值统称为极值,极小点和极大点统称为极值点.

极值与极值点1

- 历史注记: 极值问题历史悠久. 1638 年 Fermat 在《求最大值和最小值的方法》用微积分方法研究极值 (该研究对微积分的创立发挥了很大的作用). 规划论、对策论等研究的本质上也是极值问题.
- 极值与极值点:设 f(x) 在 x_0 附近有定义,若存在 $\delta > 0$,使得对任意的 $x \in (x_0 \delta, x_0 + \delta)$,有 $f(x) \leq f(x_0)$,则称 $f(x_0)$ 是 f(x) 的 极大值, x_0 为 f(x) 的一个极大点. 类似地可定义极小值和极小值点.

极大值和极小值统称为极值,极小点和极大点统称为极值点.

- 注: 极值点必须是在定义域内部. 极大值是局部最大值, 一个函数可以有多个极大值和极小值, 极小值可能比极大值大. 对 f(x) = C, 所有点都是极值点. 而 $f = \chi_0$, 有理点是极大点, 无理点是极小点.
- 定理:设 f(x) 在 [a,b] 上有定义, 若 $x_0 \in (a,b)$ 是 f(x) 的极值点, 且 f(x) 在 x_0 处可导,则有 $f'(x_0) = 0$.
- 证明: 存在 $\delta > 0$, x_0 是 $f(x)(x \in (x_0 \delta, x_0 + \delta))$ 的内部最值点.
- 极值点不一定可导,如 f(x) = |x|; 导数为 0 的点也不一定是极值点,如 $y = x^3$, $x_0 = 0$.

- 注: 极值点必须是在定义域内部. 极大值是局部最大值, 一个函数可以有多个极大值和极小值, 极小值可能比极大值大. 对 f(x) = C, 所有点都是极值点. 而 $f = \chi_0$, 有理点是极大点, 无理点是极小点.
- 定理: 设 f(x) 在 [a,b] 上有定义, 若 $x_0 \in (a,b)$ 是 f(x) 的极值点, 且 f(x) 在 x_0 处可导,则有 $f'(x_0) = 0$.
- 证明: 存在 $\delta > 0$, x_0 是 $f(x)(x \in (x_0 \delta, x_0 + \delta))$ 的内部最值点.
- 极值点不一定可导,如 f(x) = |x|; 导数为 0 的点也不一定是极值点,如 $y = x^3$, $x_0 = 0$.

- 注: 极值点必须是在定义域内部. 极大值是局部最大值, 一个函数可以有多个极大值和极小值, 极小值可能比极大值大. 对 f(x) = C, 所有点都是极值点. 而 $f = \chi_0$, 有理点是极大点, 无理点是极小点.
- 定理: 设 f(x) 在 [a,b] 上有定义, 若 $x_0 \in (a,b)$ 是 f(x) 的极值点, 且 f(x) 在 x_0 处可导,则有 $f'(x_0) = 0$.
- 证明: 存在 $\delta > 0$, x_0 是 $f(x)(x \in (x_0 \delta, x_0 + \delta))$ 的内部最值点.
- 极值点不一定可导,如 f(x) = |x|; 导数为 0 的点也不一定是极值点,如 $y = x^3$, $x_0 = 0$.

- 注: 极值点必须是在定义域内部. 极大值是局部最大值, 一个函数可以有多个极大值和极小值, 极小值可能比极大值大. 对 f(x) = C, 所有点都是极值点. 而 $f = \chi_0$, 有理点是极大点, 无理点是极小点.
- 定理: 设 f(x) 在 [a,b] 上有定义, 若 $x_0 \in (a,b)$ 是 f(x) 的极值点, 且 f(x) 在 x_0 处可导,则有 $f'(x_0) = 0$.
- 证明: 存在 $\delta > 0$, x_0 是 $f(x)(x \in (x_0 \delta, x_0 + \delta))$ 的内部最值点.
- 极值点不一定可导,如 f(x) = |x|; 导数为 0 的点也不一定是极值点,如 $y = x^3$, $x_0 = 0$.

- 定义:设 f(x) 可导, 称导数为 0 的点为稳定点(或驻点).
- 命题: 可导函数的极值点一定是稳定点.
- 极值点的求法: 先求出稳定点, 再判别稳定点是否是极值点.
- 稳定点是否是极值点的判别方法:
 - 根据函数在稳定点两边的单调性来判别,若两边单调性相反,则是极值点.
 - 根据 f'(x) 在稳定点两边的符号来判别,若 f'(x) 在稳定点两边的符号相反,则是极值点.
 - 若 f 在 x₀ 处有二阶导数, 可用下面的定理来判断.

- 定义:设 f(x) 可导, 称导数为 0 的点为稳定点(或驻点).
- 命题: 可导函数的极值点一定是稳定点.
- 极值点的求法: 先求出稳定点, 再判别稳定点是否是极值点,
- 稳定点是否是极值点的判别方法:
 - 根据函数在稳定点两边的单调性来判别,若两边单调性相反,则是极值点.
 - 根据 f'(x) 在稳定点两边的符号来判别,若 f'(x) 在稳定点两边的符号相反,则是极值点.
 - 若 f 在 x₀ 处有二阶导数,可用下面的定理来判断.

- 定义:设 f(x) 可导, 称导数为 0 的点为稳定点(或驻点).
- 命题: 可导函数的极值点一定是稳定点.
- 极值点的求法: 先求出稳定点, 再判别稳定点是否是极值点.
- 稳定点是否是极值点的判别方法:
 - 根据函数在稳定点两边的单调性来判别,若两边单调性相反,则是极值点.
 - 根据 f'(x) 在稳定点两边的符号来判别, 若 f'(x) 在稳定点两边的符号相反,则是极值点.
 - 若 f 在 x₀ 处有二阶导数,可用下面的定理来判断.

- 定义:设 f(x) 可导, 称导数为 0 的点为稳定点(或驻点).
- 命题: 可导函数的极值点一定是稳定点.
- 极值点的求法: 先求出稳定点, 再判别稳定点是否是极值点.
- 稳定点是否是极值点的判别方法:
 - 根据函数在稳定点两边的单调性来判别,若两边单调性相反,则是极值点.
 - 根据 f'(x) 在稳定点两边的符号来判别, 若 f'(x) 在稳定点两边的符号相反,则是极值点.
 - 若 f 在 x₀ 处有二阶导数,可用下面的定理来判断.

- 定义:设 f(x) 可导, 称导数为 0 的点为稳定点(或驻点).
- 命题: 可导函数的极值点一定是稳定点.
- 极值点的求法: 先求出稳定点, 再判别稳定点是否是极值点.
- 稳定点是否是极值点的判别方法:
 - 根据函数在稳定点两边的单调性来判别,若两边单调性相反,则是极值点.
 - 根据 f'(x) 在稳定点两边的符号来判别,若 f'(x) 在稳定点两边的符号相反,则是极值点.
 - 若 f 在 x₀ 处有二阶导数,可用下面的定理来判断.

- 定义:设 f(x) 可导, 称导数为 0 的点为稳定点(或驻点).
- 命题: 可导函数的极值点一定是稳定点.
- 极值点的求法: 先求出稳定点, 再判别稳定点是否是极值点.
- 稳定点是否是极值点的判别方法:
 - 根据函数在稳定点两边的单调性来判别,若两边单调性相反,则是极值点.
 - 根据 f'(x) 在稳定点两边的符号来判别, 若 f'(x) 在稳定点两边的符号相反,则是极值点.
 - 若 f 在 x₀ 处有二阶导数,可用下面的定理来判断.

- 定理: y = f(x) 在 (a, b) 内有一阶导数, $x_0 \in (a, b)$ 是稳定点, 且 f(x) 在 x_0 处有二阶导数. 若 $f''(x_0) < 0$, 则 x_0 为极大点; 若 $f''(x_0) > 0$, 则 x_0 为极小点. $(f''(x_0) = 0$, 不定)
- 证明 1: 若 f"(x₀) > 0, 则有

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0} > 0,$$

则存在 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, $\frac{f'(x)}{x - x_0} > 0$, 从而 $x \in (x_0, x_0 + \delta)$ 时, f'(x) > 0, $x \in (x_0 - \delta, x_0)$ 时, f'(x) < 0, 因此 x_0 为极小点.

• 注: 若 f''(x) > 0, 则利用 f'(x) 严格单调增, 直接可得 f'(x) 在 x_0 左边为负, 右边为正. x_0 为极小点.

- 定理: y = f(x) 在 (a, b) 内有一阶导数, $x_0 \in (a, b)$ 是稳定点, 且 f(x) 在 x_0 处有二阶导数. 若 $f''(x_0) < 0$, 则 x_0 为极大点; 若 $f''(x_0) > 0$, 则 x_0 为极小点. $(f''(x_0) = 0$, 不定)
- 证明 1: 若 f"(x₀) > 0, 则有

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0} > 0,$$

则存在 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, $\frac{f'(x)}{x - x_0} > 0$,从而 $x \in (x_0, x_0 + \delta)$ 时, f'(x) > 0, $x \in (x_0 - \delta, x_0)$ 时, f'(x) < 0,因此 x_0 为极小点.

• 注: 若 f''(x) > 0,则利用 f'(x) 严格单调增,直接可得 f'(x) 在 x_0 左边为负,右边为正. x_0 为极小点.

- 定理: y = f(x) 在 (a, b) 内有一阶导数, $x_0 \in (a, b)$ 是稳定点,且 f(x) 在 x_0 处有二阶导数. 若 $f''(x_0) < 0$,则 x_0 为极大点;若 $f''(x_0) > 0$,则 x_0 为极小点. $(f''(x_0) = 0, 不定)$
- 证明 1: 若 f"(x₀) > 0, 则有

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0} > 0,$$

则存在 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, $\frac{f'(x)}{x - x_0} > 0$,从而 $x \in (x_0, x_0 + \delta)$ 时, f'(x) > 0, $x \in (x_0 - \delta, x_0)$ 时, f'(x) < 0,因此 x_0 为极小点.

注:若 f"(x) > 0,则利用 f'(x)严格单调增,直接可得 f'(x) 在 x₀
 左边为负,右边为正.x₀为极小点.

证明 2: 设 f''(x₀) > 0. 由于 f(x) 在 x₀ 处有二阶导数,有 Taylor
 公式

$$f(x) - f(x_0) = \frac{1}{2}f''(x_0)(x - x_0)^2 + R_2(x)$$

其中 $R_2(x) = o((x-x_0)^2)$,即 $\frac{R_2(x)}{(x-x_0)^2} \to 0$. 因此存在 $\delta > 0$,使得当 $0 < |x-x_0| < \delta$ 时, $\frac{|R_2(x)|}{(x-x_0)^2} < \frac{1}{4}f''(x_0)$,从而

$$f(x) - f(x_0) = \frac{1}{2}f''(x_0)(x - x_0)^2 + R_2(x)$$

$$\geq \frac{1}{2}f''(x_0)(x - x_0)^2 - \frac{1}{4}f''(x_0)(x - x_0)^2 > 0$$

因此 x₀ 为极小点

证明 2: 设 f''(x₀) > 0. 由于 f(x) 在 x₀ 处有二阶导数,有 Taylor
 公式

$$f(x) - f(x_0) = \frac{1}{2}f''(x_0)(x - x_0)^2 + R_2(x)$$

其中 $R_2(x) = o((x-x_0)^2)$,即 $\frac{R_2(x)}{(x-x_0)^2} \to 0$. 因此存在 $\delta > 0$,使得当 $0 < |x-x_0| < \delta$ 时, $\frac{|R_2(x)|}{(x-x_0)^2} < \frac{1}{4}f''(x_0)$,从而

$$f(x) - f(x_0) = \frac{1}{2}f''(x_0)(x - x_0)^2 + R_2(x)$$

$$\geq \frac{1}{2}f''(x_0)(x - x_0)^2 - \frac{1}{4}f''(x_0)(x - x_0)^2 > 0$$

因此 x₀ 为极小点.

• 上面的证明 2 可以用于证明下面更一般的结论: 设 f(x) 在 x_0 处有 2n 阶导数,且 $f'(x_0) = f''(x_0) = \cdots = f^{(2n-1)}(x_0) = 0$. 若 $f^{(2n)}(x_0) < 0$,则 x_0 为极大点;若 $f^{(2n)}(x_0) > 0$,则 x_0 为极小点. $(f^{(2n)}(x_0) = 0$,不定)

证明:
$$f(x) - f(x_0) = \frac{1}{(2n)!} f^{(2n)}(x_0) (x - x_0)^{2n} + o((x - x_0)^{2n}).$$

• 注: 若 $f'(x_0) = f''(x_0) = \cdots = f^{(2n)}(x_0) = 0$, $f^{(2n+1)}(x_0) \neq 0$, 则 x_0 不是极值点. 例如 $f(x) = x^3$.

- 上面的证明 2 可以用于证明下面更一般的结论: 设 f(x) 在 x_0 处有 2n 阶导数,且 $f'(x_0) = f''(x_0) = \cdots = f^{(2n-1)}(x_0) = 0$. 若 $f^{(2n)}(x_0) < 0$,则 x_0 为极大点;若 $f^{(2n)}(x_0) > 0$,则 x_0 为极小点. $(f^{(2n)}(x_0) = 0$,不定) 证明: $f(x) f(x_0) = \frac{1}{(2n)!} f^{(2n)}(x_0)(x x_0)^{2n} + o((x x_0)^{2n})$.
- 注: 若 $f'(x_0) = f''(x_0) = \cdots = f^{(2n)}(x_0) = 0$, $f^{(2n+1)}(x_0) \neq 0$, 则 x_0 不是极值点. 例如 $f(x) = x^3$.

- 上面的证明 2 可以用于证明下面更一般的结论: 设 f(x) 在 x_0 处有 2n 阶导数,且 $f'(x_0) = f''(x_0) = \cdots = f^{(2n-1)}(x_0) = 0$. 若 $f^{(2n)}(x_0) < 0$,则 x_0 为极大点;若 $f^{(2n)}(x_0) > 0$,则 x_0 为极小点. $(f^{(2n)}(x_0) = 0$,不定) 证明: $f(x) f(x_0) = \frac{1}{(2n)!} f^{(2n)}(x_0)(x x_0)^{2n} + o((x x_0)^{2n})$.
- 注: 若 $f'(x_0) = f''(x_0) = \cdots = f^{(2n)}(x_0) = 0$, $f^{(2n+1)}(x_0) \neq 0$, 则 x_0 不是极值点. 例如 $f(x) = x^3$.

• 例: 求 $f(x) = x^3 - 6x^2 - 15x + 4$ 的极值点.

解: $f'(x) = 3x^2 - 12x - 15 = 3(x+1)(x-5)$ 有两个稳定点: -1.5.

万法一: f'(x) 在 -1 的左边为止,右边为贞,走极大点; f'(x) 在 5 的左边为负,右边为正,是极小点.

f''(-1) < 0, 极大点; f''(5) > 0, 极小点

解: $f'(x) = 3x^2 - 12x - 15 = 3(x+1)(x-5)$.

有两个稳定点: -1,5.

方法一: f'(x) 在 -1 的左边为正, 右边为负, 是

极大点; f'(x) 在 5 的左边为负, 右边为正, 是极小点.

方法二: f''(x) = 6x - 12,

f''(-1) < 0, 极大点; f''(5) > 0, 极小点.

- f(x) 是集合 X 上的函数, $x_0 \in X$ 满足 $f(x) \ge f(x_0)$ 对所有 $x \in X$ 成立,则称 $f(x_0)$ 是 f(x) 在 X 上的最小值, x_0 为最小点,类似地可定义最大值和最大点.
- 注: 最值可以在边界上取得, 内部的最值点一点是极值点.
- 若 $f(x) \in C([a,b])$, f(x) 在 [a,b] 上有 n 个极值点 $x_1, x_2, \cdots, x_n \in (a,b)$, 则最大值 M 和最小值 m 分别为

$$M = \max\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

$$m = \min\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

证明: f连续, 最值点一定存在, 若不是边界点, 必为极值点

- f(x) 是集合 X 上的函数, $x_0 \in X$ 满足 $f(x) \ge f(x_0)$ 对所有 $x \in X$ 成立,则称 $f(x_0)$ 是 f(x) 在 X 上的最小值, x_0 为最小点,类似地可定义最大值和最大点.
- 注: 最值可以在边界上取得, 内部的最值点一点是极值点.
- 若 $f(x) \in C([a,b])$, f(x) 在 [a,b] 上有 n 个极值点 $x_1, x_2, \cdots, x_n \in (a,b)$, 则最大值 M 和最小值 m 分别为

$$M = \max\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

$$m = \min\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

证明: f连续, 最值点一定存在, 若不是边界点, 必为极值点.

- f(x) 是集合 X 上的函数, $x_0 \in X$ 满足 $f(x) \ge f(x_0)$ 对所有 $x \in X$ 成立,则称 $f(x_0)$ 是 f(x) 在 X 上的最小值, x_0 为最小点,类似地可定义最大值和最大点.
- 注: 最值可以在边界上取得, 内部的最值点一点是极值点.
- 若 f(x) ∈ C([a, b]), f(x) 在 [a, b] 上有 n 个极值点
 x₁, x₂, · · · , x_n ∈ (a, b), 则最大值 M 和最小值 m 分别为

$$M = \max\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

$$m = \min\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

证明: f连续, 最值点一定存在, 若不是边界点, 必为极值点.

- f(x) 是集合 X 上的函数, $x_0 \in X$ 满足 $f(x) \ge f(x_0)$ 对所有 $x \in X$ 成立,则称 $f(x_0)$ 是 f(x) 在 X 上的最小值, x_0 为最小点,类似地可定义最大值和最大点.
- 注: 最值可以在边界上取得, 内部的最值点一点是极值点.
- 若 f(x) ∈ C([a, b]), f(x) 在 [a, b] 上有 n 个极值点
 x₁, x₂, · · · , x_n ∈ (a, b), 则最大值 M 和最小值 m 分别为

$$M = \max\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

$$m = \min\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

证明: f连续, 最值点一定存在, 若不是边界点, 必为极值点.

• 若 $f(x) \in C^1([a,b])$, f(x) 在 [a,b] 上有 n 个稳定点 $x_1, x_2, \cdots, x_n \in (a,b)$, 则最大值 M 和最小值 m 分别为

$$M = \max\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

$$m = \min\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

证明:由于 f连续,最值点一定存在,若不是边界点,必为稳定点.

• 例: 求 $f(x) = x^3 - 6x^2 - 15x + 4$ 在 [-2, 6] 上的最值点. 解: 有两个稳定点: -1, 5. f(-1) = 12, f(5) = -96, f(-2) = 2, f(6) = -86. 最大值为 12, 最小值为 -96.

• 若 $f(x) \in C^1([a,b])$, f(x) 在 [a,b] 上有 n 个稳定点 $x_1, x_2, \cdots, x_n \in (a,b)$, 则最大值 M 和最小值 m 分别为

$$M = \max\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

$$m = \min\{f(a), f(b), f(x_1), f(x_2), \cdots, f(x_n)\}$$

证明:由于 f 连续,最值点一定存在,若不是边界点,必为稳定点.

• 例: 求 $f(x) = x^3 - 6x^2 - 15x + 4$ 在 [-2, 6] 上的最值点. 解: 有两个稳定点: -1, 5. f(-1) = 12, f(5) = -96, f(-2) = 2, f(6) = -86. 最大值为 12, 最小值为 -96.

• f(x) 在区间 X 上连续, 且有唯一的极值点 x_0 (必为 X 的内点). 若 x_0 为极小点,则必为最小点; 若 x_0 为极大点,则必为最大点.

证明:设 x_0 是唯一的极值点 (不妨设是极小点),则存在邻域 $(x_0 - \delta, x_0 + \delta)$,使得 x_0 是 f(x) 在 $(x_0 - \delta, x_0 + \delta)$ 上的最小点.下面证明 $f(x) > f(x_0)$ 对所有 $x \neq x_0$ 成立. 反设存在 x_1 使得 $f(x_1) \leq f(x_0)$,不妨设 $x_1 > x_0$.考虑 f(x) 在 $[x_0, x_1]$ 上的最大值 M,则 $M > f(x_0) > f(x_1)$.

(1) 若 $M = f(x_0)$

则 $f(x_0)$ 同时是 f 在 $[x_0, x_0 + \delta)$ 上的最大值和最小值, 即 f 在 $[x_0, x_0 + \delta)$ 上为常数, 与极值点的唯一性矛盾.

• f(x) 在区间 X 上连续, 且有唯一的极值点 x_0 (必为 X 的内点). 若 x_0 为极小点, 则必为最小点; 若 x_0 为极大点, 则必为最大点. 证明: 设 x_0 是唯一的极值点 (不妨设是极小点), 则存在邻域 $(x_0-\delta,x_0+\delta)$, 使得 x_0 是 f(x) 在 $(x_0-\delta,x_0+\delta)$ 上的最小点. 下面证明 $f(x)>f(x_0)$ 对所有 $x\neq x_0$ 成立. 反设存在 x_1 使得 $f(x_1)\leq f(x_0)$,不妨设 $x_1>x_0$. 考虑 f(x) 在 $[x_0,x_1]$ 上的最大值 M, 则 $M\geq f(x_0)\geq f(x_1)$.

(1) 若 $M = f(x_0)$,

则 $f(x_0)$ 同时是 f 在 $[x_0, x_0 + \delta]$

上的最大值和最小值,即 f 在 $[x_0, x_0 + \delta]$

上为常数, 与极值点的唯一性矛盾.

(2) $M > f(x_0) \ge f(x_1)$,

f 在 $[x_0, x_1)$ 上的最大值在区间内部取得,必为极值点,这也与极值点唯一矛盾.

- 光的折射原理:介质甲、乙中光速分别为 v_1, v_2 , 光线从介质甲中的 A 点到乙中的 B 点, 求花时间最短的路径.
- ●解:如图以两种介质分界线为 x 轴, A 到分界线的垂线为 y 轴的建立坐标 系.设 P 是两种介质分界线上的一点,设 路径是折线 APB,设 B 到 x 轴的垂线的 垂足分别为 C,设 OC 长为 d, AO, BC 长 分别为 a 和 b.设 OP 长为 x,则总时间为

$$T(x) = \frac{\sqrt{a^2 + x^2}}{v_1} + \frac{\sqrt{b^2 + (d - x)^2}}{v_2}$$

- 光的折射原理: 介质甲、乙中光速分别为 V_1, V_2 , 光线从介质甲中的 A 点到乙中的 B 点, 求花时间最短的路径.
- 解:如图以两种介质分界线为 x
 轴, A 到分界线的垂线为 y 轴的建立坐标系.设 P 是两种介质分界线上的一点,设路径是折线 APB,设 B 到 x 轴的垂线的垂足分别为 C,设 OC 长为 d, AO, BC 长分别为 a 和 b.设 OP 长为 x,则总时间为

$$T(x) = \frac{\sqrt{a^2 + x^2}}{v_1} + \frac{\sqrt{b^2 + (d - x)^2}}{v_2}$$

• 解 (续): 下面求 T(x) 的最小值. T(x) 的一阶导数为

$$T'(x) = \frac{x}{v_1 \sqrt{a^2 + x^2}} - \frac{d - x}{v_2 \sqrt{b^2 + (d - x)^2}}.$$

T(x) 的二阶导数

$$T''(x) = \frac{a^2}{v_1 \sqrt{(a^2 + x^2)^3}} + \frac{b^2}{v_2 \sqrt{(b^2 + (d - x)^2)^3}} > 0.$$

显然 T'(0) < 0, T'(d) > 0, 因此存在唯一的 $x_0 \in (c, d)$, 使得 $T'(x_0) = 0$, 且 x_0 是极小点,从而是最小点. x_0 满足

$$\frac{x_0}{v_1\sqrt{a^2+x_0^2}} = \frac{d-x_0}{v_2\sqrt{b^2+(d-x_0)^2}} \operatorname{FP} \frac{\sin\alpha}{v_1} = \frac{\sin\beta}{v_2}$$

• 解 (续): 下面求 T(x) 的最小值. T(x) 的一阶导数为

$$T'(x) = \frac{x}{v_1 \sqrt{a^2 + x^2}} - \frac{d - x}{v_2 \sqrt{b^2 + (d - x)^2}}.$$

T(x) 的二阶导数

$$T''(x) = \frac{a^2}{v_1 \sqrt{(a^2 + x^2)^3}} + \frac{b^2}{v_2 \sqrt{(b^2 + (d - x)^2)^3}} > 0.$$

显然 T'(0) < 0, T'(d) > 0, 因此存在唯一的 $x_0 \in (c, d)$, 使得 $T'(x_0) = 0$, 且 x_0 是极小点,从而是最小点. x_0 满足

$$\frac{x_0}{v_1\sqrt{a^2+x_0^2}} = \frac{d-x_0}{v_2\sqrt{b^2+(d-x_0)^2}} \operatorname{FP} \frac{\sin \alpha}{v_1} = \frac{\sin \beta}{v_2}$$

• 解 (续): 下面求 T(x) 的最小值. T(x) 的一阶导数为

$$T'(x) = \frac{x}{v_1 \sqrt{a^2 + x^2}} - \frac{d - x}{v_2 \sqrt{b^2 + (d - x)^2}}.$$

T(x) 的二阶导数

$$T''(x) = \frac{a^2}{v_1 \sqrt{(a^2 + x^2)^3}} + \frac{b^2}{v_2 \sqrt{(b^2 + (d - x)^2)^3}} > 0.$$

显然 T'(0) < 0, T'(d) > 0, 因此存在唯一的 $x_0 \in (c, d)$, 使得 $T'(x_0) = 0$, 且 x_0 是极小点,从而是最小点. x_0 满足

$$\frac{x_0}{v_1\sqrt{a^2+x_0^2}} = \frac{d-x_0}{v_2\sqrt{b^2+(d-x_0)^2}} \, \text{Fp} \, \frac{\sin\alpha}{v_1} = \frac{\sin\beta}{v_2}$$

最小二乘法

- 最小二乘法: 作 n 次实验, 得到数据 a_1, a_2, \dots, a_n . 找 x_0 , 使得 $f(x) = \sum_{i=1}^{n} (x a_i)^2$ 在 x_0 处最小 (此时我们认为 x_0 就是真实值).
- 解: 先求 f(x) 的稳定点. 解 $f'(x) = 2\sum_{i=1}^{n} (x a_i) = 0$ 得 $x_0 = \frac{1}{n}(a_1 + a_2 + \dots + a_n)$. 显然 $f''(x_0) = 2n > 0$, 因此 x_0 是唯一的极小点,也是最小点.
- 注: $a \neq 0$, $f(x) = ax^2 + bx + c = a(x x_0)^2 + c'$, $f'(x_0) = 0$.

最小二乘法

- 最小二乘法: 作 n 次实验, 得到数据 a_1, a_2, \dots, a_n . 找 x_0 , 使得 $f(x) = \sum_{i=1}^{n} (x a_i)^2$ 在 x_0 处最小 (此时我们认为 x_0 就是真实值).
- 解: 先求 f(x) 的稳定点. 解 $f'(x) = 2\sum_{i=1}^{n}(x a_i) = 0$ 得 $x_0 = \frac{1}{n}(a_1 + a_2 + \dots + a_n)$. 显然 $f''(x_0) = 2n > 0$, 因此 x_0 是唯一的 极小点,也是最小点.
- 注: $a \neq 0$, $f(x) = ax^2 + bx + c = a(x x_0)^2 + c'$, $f'(x_0) = 0$.

函数的凸凹性的定义

• 定义: 设 f(x) 在 (a,b) 上可导, 若任意固定 $x_0 \in (a,b)$, 都有

$$f(x) < f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b), x \neq x_0,$$

则称 f(x) 在 (a,b) 上是一个向上凸(凸)函数;若任意固定 $x_0 \in (a,b)$,都有

$$f(x) > f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b), x \neq x_0,$$

则称 f(x) 在 (a,b)上是一个向下凸(凹)函数.

函数的凸凹性的定义

• 定义: 设 f(x) 在 (a,b) 上可导, 若任意固定 x₀ ∈ (a,b), 都有

$$f(x) < f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b), x \neq x_0,$$

则称 f(x) 在 (a,b) 上是一个向上凸(凸)函数;若任意固定 $x_0 \in (a,b)$,都有

$$f(x) > f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b), x \neq x_0,$$

则称 f(x) 在 (a,b)上是一个向下凸(凹)函数.

- 例: p > 1 时, $f(x) = x^p$, 是 $(0, +\infty)$ 上的下凸函数.
- 证明: 对不相等的正实数 x 和 x_0 , $\frac{x-x_0}{x_0} > -1$ 且不等于 0, 利用贝努利不等式,

$$\left(\frac{x}{x_0}\right)^p = \left(1 + \frac{x - x_0}{x_0}\right)^p > 1 + p\left(\frac{x}{x_0} - 1\right),$$

即得
$$x^p > x_0^p + px_0^{p-1}(x - x_0) = f(x_0) + f'(x_0)(x - x_0)$$

- 例: p > 1 时, $f(x) = x^p$, 是 $(0, +\infty)$ 上的下凸函数.
- 证明: 对不相等的正实数 x 和 x_0 , $\frac{x-x_0}{x_0} > -1$ 且不等于 0, 利用贝努利不等式,

$$\left(\frac{x}{x_0}\right)^p = \left(1 + \frac{x - x_0}{x_0}\right)^p > 1 + p\left(\frac{x}{x_0} - 1\right),$$

即得
$$x^p > x_0^p + px_0^{p-1}(x - x_0) = f(x_0) + f'(x_0)(x - x_0).$$

• 若 f(x) 在 (a,b) 上是一个向上凸函数,则对任意两个不相等的 $x_1, x_2 \in (a,b)$, $0 < k_1, k_2 < 1$, $k_1 + k_2 = 1$, $x_0 = k_1x_1 + k_2x_2$, 有

$$k_1 f(x_1) + k_2 f(x_2) < f(x_0)$$

类似地, 若 f(x) 在 (a,b) 上是一个凹函数, 则有 $k_1 f(x_1) + k_2 f(x_2) > f(x_0)$.

• 证明: 若 f(x) 是一个凸函数,则 $f(x_k) < f(x_0) + f'(x_0)(x_k - x_0)(k = 1, 2)$,

$$k_1 f(x_1) + k_2 f(x_2) < (k_1 + k_2) f(x_0)$$

 $+ f'(x_0) (k_1 x_1 + k_2 x_2 - (k_1 + k_2) x_0) = f(x_0)$

• 若 f(x) 在 (a,b) 上是一个向上凸函数,则对任意两个不相等的 $x_1, x_2 \in (a,b)$, $0 < k_1, k_2 < 1$, $k_1 + k_2 = 1$, $x_0 = k_1x_1 + k_2x_2$, 有

$$k_1 f(x_1) + k_2 f(x_2) < f(x_0)$$

类似地, 若 f(x) 在 (a,b) 上是一个凹函数, 则有 $k_1 f(x_1) + k_2 f(x_2) > f(x_0)$.

证明:若 f(x) 是一个凸函数,则
 f(x_k) < f(x₀) + f'(x₀)(x_k - x₀)(k = 1,2),

$$k_1 f(x_1) + k_2 f(x_2) < (k_1 + k_2) f(x_0)$$

 $+ f'(x_0) (k_1 x_1 + k_2 x_2 - (k_1 + k_2) x_0) = f(x_0)$

• 若 f(x) 在 (a,b) 上是一个向上凸函数,则对任意两个不相等的 $x_1, x_2 \in (a,b)$, $0 < k_1, k_2 < 1$, $k_1 + k_2 = 1$, $x_0 = k_1x_1 + k_2x_2$, 有

$$k_1 f(x_1) + k_2 f(x_2) < f(x_0)$$

类似地, 若 f(x) 在 (a,b) 上是一个凹函数, 则有 $k_1 f(x_1) + k_2 f(x_2) > f(x_0)$.

证明:若 f(x) 是一个凸函数,则
 f(x_k) < f(x₀) + f'(x₀)(x_k - x₀)(k = 1,2),

$$k_1 f(x_1) + k_2 f(x_2) < (k_1 + k_2) f(x_0)$$

 $+ f'(x_0)(k_1 x_1 + k_2 x_2 - (k_1 + k_2) x_0) = f(x_0)$

• 若 f(x) 是凸函数, $x_k \in (a, b)(k = 1, 2, \dots, n)$, $0 < c_k < 1$ 满足 $c_1 + c_2 + \dots + c_n = 1$, 则有

$$c_1 f(x_1) + c_2 f(x_2) + \cdots + c_n f(x_n) \le f(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n).$$

上面不等式取等号当且仅当全部 Xk 相等.

证明: 设 $x_0 = c_1 x_1 + c_2 x_2 + \cdots c_n x_n$, 则有

$$c_k f(x_k) \le c_k f(x_0) + f'(x_0)(c_k x_k - c_k x_0)(k = 1, 2, \dots, n),$$

且上面的不等式取等号当且仅当 $x_k = x_0$

• 若 f(x) 是凸函数, $x_k \in (a, b)(k = 1, 2, \dots, n)$, $0 < c_k < 1$ 满足 $c_1 + c_2 + \dots + c_n = 1$, 则有

$$c_1 f(x_1) + c_2 f(x_2) + \cdots + c_n f(x_n) \le f(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n).$$

上面不等式取等号当且仅当全部 Xk 相等.

证明: 设 $x_0 = c_1 x_1 + c_2 x_2 + \cdots c_n x_n$, 则有

$$c_k f(x_k) \le c_k f(x_0) + f'(x_0)(c_k x_k - c_k x_0)(k = 1, 2, \dots, n),$$

且上面的不等式取等号当且仅当 $x_k = x_0$.

凸凹性的应用

- 对上凸函数有 $f(\frac{x_1+x_2+\cdots x_n}{n}) \geq \frac{f(x_1)+f(x_2)+\cdots f(x_n)}{n}$; 对凹函数有 $f(\frac{x_1+x_2+\cdots x_n}{n}) \leq \frac{f(x_1)+f(x_2)+\cdots f(x_n)}{n}$.
- 例: 设 a₁, a₂, ···, a_n 是正实数, p>1 时有

$$\frac{a_1+a_2+\cdots+a_n}{n} \leq \left(\frac{a_1^p+a_2^p+\cdots+a_n^p}{n}\right)^{\frac{1}{p}}.$$

0 时有

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \left(\frac{a_1^p + a_2^p + \dots + a_n^p}{n}\right)^{\frac{1}{p}}.$$

证明: 利用 $f(x) = x^p$. 当 p > 1 时, f(x) 是 $(0.+\infty)$ 上的下凸函数, 0 有是上凸函数.

凸凹性的应用

- 对上凸函数有 $f(\frac{x_1+x_2+\cdots x_n}{n}) \geq \frac{f(x_1)+f(x_2)+\cdots f(x_n)}{n}$; 对凹函数有 $f(\frac{x_1+x_2+\cdots x_n}{n}) \leq \frac{f(x_1)+f(x_2)+\cdots f(x_n)}{n}$.
- 例:设 a₁, a₂, ···, a_n 是正实数, p>1 时有

$$\frac{a_1 + a_2 + \dots + a_n}{n} \leq \left(\frac{a_1^p + a_2^p + \dots + a_n^p}{n}\right)^{\frac{1}{p}}.$$

0 时有

$$\frac{a_1+a_2+\cdots+a_n}{n}\geq \left(\frac{a_1^p+a_2^p+\cdots+a_n^p}{n}\right)^{\frac{1}{p}}.$$

证明: 利用 $f(x) = x^p$. 当 p > 1 时, f(x) 是 $(0.+\infty)$ 上的下凸函数, 0 有是上凸函数.

• 设 f(x) 在 (a,b) 上是一个向上凸的可微函数,则 f'(x) 严格递减证明:对任意的 $x_1 < x_2$,由 f 是凸函数。

$$f(x_1) < f(x_2) + f'(x_2)(x_1 - x_2),$$

 $f(x_2) < f(x_1) + f'(x_1)(x_2 - x_1).$

因此

$$f'(x_1) > \frac{f(x_2) - f(x_1)}{x_2 - x_1} > f'(x_2)$$

• 设 f(x) 在 (a,b) 上是一个向上凸的可微函数,则 f'(x) 严格递减证明:对任意的 $x_1 < x_2$,由 f 是凸函数,

$$f(x_1) < f(x_2) + f'(x_2)(x_1 - x_2),$$

 $f(x_2) < f(x_1) + f'(x_1)(x_2 - x_1).$

因此

$$f'(x_1) > \frac{f(x_2) - f(x_1)}{x_2 - x_1} > f'(x_2)$$

• 设 f(x) 在 (a,b) 上是一个向上凸的可微函数,则 f'(x) 严格递减证明:对任意的 $x_1 < x_2$,由 f 是凸函数,

$$f(x_1) < f(x_2) + f'(x_2)(x_1 - x_2),$$

 $f(x_2) < f(x_1) + f'(x_1)(x_2 - x_1).$

因此

$$f'(x_1) > \frac{f(x_2) - f(x_1)}{x_2 - x_1} > f'(x_2).$$

命题:若 f'(x) 在 (a,b) 上严格递减,则 f(x) 在 (a,b) 上为上凸函数,若 f'(x) 在 (a,b) 上严格递增,则 f(x) 在 (a,b) 上为下凸函数.证明:若 f'(x) 在 (a,b) 上严格递减, x≠x₀,存在 ξ 位于 x₀ 与 x 之间,使得

$$f(x) - f(x_0) - f'(x_0)(x - x_0) = (f'(\xi) - f'(x_0))(x - x_0) < 0.$$

f(x) 为上凸函数

命题:若 f'(x) 在 (a, b) 上严格递减,则 f(x) 在 (a, b) 上为上凸函数,若 f'(x) 在 (a, b) 上严格递增,则 f(x) 在 (a, b) 上为下凸函数.证明:若 f'(x) 在 (a, b) 上严格递减,x≠x₀,存在ξ位于 x₀ 与 x 之间,使得

$$f(x)-f(x_0)-f'(x_0)(x-x_0)=(f'(\xi)-f'(x_0))(x-x_0)<0.$$
 $f(x)$ 为上凸函数

设 f(x) 在 (a,b) 二阶可导,若 f"(x) > 0 对任意 x ∈ (a,b) 成立,则
 f(x) 在 (a,b) 上是凹函数; f"(x) < 0 对任意 x ∈ (a,b) 成立,则 f(x)
 在 (a,b) 上是凸函数

证明 1: 有 f''(x) > 0, f'(x) 严格增, 从而 f(x) 是凹函数.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2 > f(x_0) + f'(x_0)(x - x_0)^2$$

• 设 f(x) 在 (a,b) 二阶可导,若 f''(x) > 0 对任意 $x \in (a,b)$ 成立,则 f(x) 在 (a,b) 上是凹函数; f''(x) < 0 对任意 $x \in (a,b)$ 成立,则 f(x) 在 (a,b) 上是凸函数

证明 1: 有 f''(x) > 0, f'(x) 严格增, 从而 f(x) 是凹函数.

证明 2:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2 > f(x_0) + f'(x_0)(x - x_0)$$

 设 f(x) 在 (a, b) 二阶可导,若 f"(x) > 0 对任意 x ∈ (a, b) 成立,则 f(x) 在 (a,b) 上是凹函数; f''(x) < 0 对任意 $x \in (a,b)$ 成立, 则 f(x)在 (a, b) 上是凸函数

证明 1: 有 f''(x) > 0, f'(x) 严格增, 从而 f(x) 是凹函数.

证明 2:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2 > f(x_0) + f'(x_0)(x - x_0)$$

- $f(x) = x^p$, x > 0. $f'(x) = px^{p-1}$, $f''(x) = p(p-1)x^{p-2}$. 当 p > 1 或 p < 0 时, f'(x) 严格单调增 (f''(x) > 0), 是下凸函数; 当 0 时, <math>f'(x) 严格单调减 (f''(x) < 0), 是上凸函数.
- 例: 设 $f(x) = x^3 + bx^2 + cx + d$, 则有 y''(x) = 6x + 2b. 当 $x > -\frac{b}{3}$ 时, y'' > 0, $(-\frac{b}{3}, +\infty)$ 上是凹函数; $x < -\frac{b}{3}$ 时, y'' < 0, y'' < 0, $(-\infty, -\frac{b}{3})$ 上凸. f(x) 在 $-\frac{b}{3}$ 两 边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.

- $f(x) = x^p$, x > 0. $f'(x) = px^{p-1}$, $f''(x) = p(p-1)x^{p-2}$. 当 p > 1 或 p < 0 时, f'(x) 严格单调增 (f''(x) > 0), 是下凸函数; 当 0 时, <math>f'(x) 严格单调减 (f''(x) < 0), 是上凸函数.
- 例: 设 $f(x) = x^3 + bx^2 + cx + d$, 则有 y''(x) = 6x + 2b. 当 $x > -\frac{b}{3}$ 时, y'' > 0, $(-\frac{b}{3}, +\infty)$ 上是凹函数; $x < -\frac{b}{3}$ 时, y'' < 0, y'' < 0, $(-\infty, -\frac{b}{3})$ 上凸. f(x) 在 $-\frac{b}{3}$ 两边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.

- 上例中 $f(x) = x^3 + bx^2 + cx + d$ 在 $-\frac{b}{3}$ 两边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.
- 性质: 设 $f(x) \in C^2((a,b))$. 若 $c \in (a,b)$ 是 f(x) 的拐点,则 f''(c) = 0.
 - 证明:由于 f'(x) 在 c 两边的单调性相反,则 f''(x) 在 c 的一边非负,一边非正,由连续性, f''(c)=0.
- 注: 二阶导数为 0 的点不一定是拐点, 如 $y = x^4, x_0 = 0$.

- 上例中 $f(x) = x^3 + bx^2 + cx + d$ 在 $-\frac{b}{3}$ 两边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.
- 定义: 若 x_0 为 f(x) 定义域的一个内点,存在 δ , 使得 f(x) 在 $(x_0 \delta, 0)$ 和 $(0, x_0 + \delta)$ 上的凸凹性相反,则称 x_0 为 f(x) 的拐点.
- 性质: 设 $f(x) \in C^2((a,b))$. 若 $c \in (a,b)$ 是 f(x) 的拐点,则 f''(c) = 0.
 - 证明:由于 f'(x) 在 c 两边的单调性相反,则 f''(x) 在 c 的一边非负,一边非正,由连续性, f''(c)=0.
- 注: 二阶导数为 0 的点不一定是拐点, 如 $y = x^4, x_0 = 0$.

- 上例中 $f(x) = x^3 + bx^2 + cx + d$ 在 $-\frac{b}{3}$ 两边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.
- 定义: 若 x_0 为 f(x) 定义域的一个内点,存在 δ , 使得 f(x) 在 $(x_0 \delta, 0)$ 和 $(0, x_0 + \delta)$ 上的凸凹性相反,则称 x_0 为 f(x) 的拐点.
- 性质: 设 $f(x) \in C^2((a,b))$. 若 $c \in (a,b)$ 是 f(x) 的拐点,则 f''(c) = 0.
 - 证明:由于 f'(x) 在 c 两边的单调性相反,则 f''(x) 在 c 的一边非负,一边非正,由连续性, f''(c)=0.
- 注: 二阶导数为 0 的点不一定是拐点, 如 $y = x^4, x_0 = 0$.

- 上例中 $f(x) = x^3 + bx^2 + cx + d$ 在 $-\frac{b}{3}$ 两边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.
- 定义: 若 x_0 为 f(x) 定义域的一个内点,存在 δ , 使得 f(x) 在 $(x_0 \delta, 0)$ 和 $(0, x_0 + \delta)$ 上的凸凹性相反,则称 x_0 为 f(x) 的拐点.
- 性质:设 f(x) ∈ C²((a,b)). 若 c∈ (a,b) 是 f(x) 的拐点,则
 f"(c) = 0.
 证明:由于 f'(x) 在 c 两边的单调性相反,则 f"(x) 在 c 的一边非
 - 证明:由于 f'(x) 在 c 两边的单调性相反,则 f''(x) 在 c 的一边非负,一边非正,由连续性, f''(c) = 0.
- 注: 二阶导数为 0 的点不一定是拐点, 如 $y = x^4, x_0 = 0$.

- 上例中 $f(x) = x^3 + bx^2 + cx + d$ 在 $-\frac{b}{3}$ 两边的凸凹性相反,称 $-\frac{b}{3}$ 为 f(x) 的拐点.
- 性质: 设 $f(x) \in C^2((a,b))$. 若 $c \in (a,b)$ 是 f(x) 的拐点,则 f''(c) = 0.
 - 证明:由于 f'(x) 在 c 两边的单调性相反,则 f''(x) 在 c 的一边非负,一边非正,由连续性, f''(c)=0.
- 注: 二阶导数为 0 的点不一定是拐点, 如 $y = x^4, x_0 = 0$.

拐点的判别

- 拐点的判别: 满足下列条件之一的 xo 是拐点:
 - 1. 若 f'(x) 在 x_0 两边的单调性相反.
 - 2. f''(x) 在 x_0 两边的正负相反.
 - 3. $f''(x_0) = 0$, $f'''(x_0) \neq 0$.

- 当曲线上一点 P 沿曲线趋向无穷远点时,如果 P 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线.
- 曲线 y = f(x), 当 $x \to \pm \infty$ 时曲线上的点 (x, f(x)) 趋向无穷远点; 若 $\lim_{x \to x_0} f(x) = \infty$, 当 $x \to x_0$ 时曲线上的点 (x, f(x)) 趋向无穷远点.
- 当 $x \to \pm \infty$ 时, y = f(x) 上的点 (x, f(x)) 到直线 y = ax + b 的距离

$$\frac{|f(x) - (ax + b)|}{\sqrt{a^2 + 1}} \to 0 \Leftrightarrow f(x) - (ax + b) \to 0$$

 \ddot{z} $\lim_{x \to x_0} f(x) = \infty$, y = f(x) 上的点 (x, f(x)) 到直线 $x = x_0$ 的距离 $|x - x_0| \to 0 (x \to x_0)$.

- 当曲线上一点 P 沿曲线趋向无穷远点时,如果 P 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线.
- 曲线 y = f(x), 当 $x \to \pm \infty$ 时曲线上的点 (x, f(x)) 趋向无穷远点; 若 $\lim_{x \to x_0} f(x) = \infty$, 当 $x \to x_0$ 时曲线上的点 (x, f(x)) 趋向无穷远点.
- 当 $x \to \pm \infty$ 时, y = f(x) 上的点 (x, f(x)) 到直线 y = ax + b 的距离

$$\frac{|f(\mathbf{x}) - (\mathbf{a}\mathbf{x} + \mathbf{b})|}{\sqrt{\mathbf{a}^2 + 1}} \to 0 \Leftrightarrow f(\mathbf{x}) - (\mathbf{a}\mathbf{x} + \mathbf{b}) \to 0$$

若 $\lim_{x \to x_0} f(x) = \infty$, y = f(x) 上的点 (x, f(x)) 到直线 $x = x_0$ 的距离 $|x - x_0| \to 0 (x \to x_0)$.

- 当曲线上一点 P 沿曲线趋向无穷远点时,如果 P 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
- 曲线 y = f(x), 当 $x \to \pm \infty$ 时曲线上的点 (x, f(x)) 趋向无穷远点; 若 $\lim_{x \to x_0} f(x) = \infty$, 当 $x \to x_0$ 时曲线上的点 (x, f(x)) 趋向无穷远点.
- 当 $x \to \pm \infty$ 时, y = f(x) 上的点 (x, f(x)) 到直线 y = ax + b 的距离

$$\frac{|f(\mathbf{x}) - (\mathbf{a}\mathbf{x} + \mathbf{b})|}{\sqrt{\mathbf{a}^2 + 1}} \to 0 \Leftrightarrow f(\mathbf{x}) - (\mathbf{a}\mathbf{x} + \mathbf{b}) \to 0$$

若 $\lim_{x\to x_0} f(x) = \infty$, y = f(x) 上的点 (x, f(x)) 到直线 $x = x_0$ 的距离 $|x-x_0| \to 0 (x \to x_0)$.

- 若 y = f(x) 在 $(c, +\infty)$ 有定义, $\lim_{\substack{x \to +\infty}} (f(x) (ax + b)) = 0$,则称 y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线. 类似可定义 $x \to -\infty$ 的渐近线.
- 若 $\lim_{x\to a+0} f(x) = \infty$ 或 $\lim_{x\to a-0} f(x) = \infty$, 则称 x=a 是 y=f(x) 的 (垂直) 渐近线.
- 定理: 若 y = f(x) 在 $(c, +\infty)$ 有定义, y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线的充分必要条件是 $a = \lim_{x \to +\infty} \frac{f(x)}{x}$, $b = \lim_{x \to +\infty} (f(x) ax)$. 证明: 若 $\lim_{x \to +\infty} (f(x) (ax + b)) = 0$, 则 $\lim_{x \to +\infty} (\frac{f(x)}{x} a) = 0$, $b = \lim_{x \to +\infty} (f(x) ax)$.

- 若 y = f(x) 在 $(c, +\infty)$ 有定义, $\lim_{\substack{x \to +\infty}} (f(x) (ax + b)) = 0$,则称 y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线. 类似可定义 $x \to -\infty$ 的渐近线.
- 若 $\lim_{x\to a+0} f(x) = \infty$ 或 $\lim_{x\to a-0} f(x) = \infty$,则称 x=a 是 y=f(x) 的(垂直)渐近线.
- 定理: 若 y = f(x) 在 $(c, +\infty)$ 有定义, y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线的充分必要条件是 $a = \lim_{x \to +\infty} \frac{f(x)}{x}$, $b = \lim_{x \to +\infty} (f(x) ax)$. 证明: 若 $\lim_{x \to +\infty} (f(x) (ax + b)) = 0$, 则 $\lim_{x \to +\infty} (\frac{f(x)}{x} a) = 0$, $b = \lim_{x \to +\infty} (f(x) ax)$.

- 若 y = f(x) 在 $(c, +\infty)$ 有定义, $\lim_{\substack{x \to +\infty}} (f(x) (ax + b)) = 0$,则称 y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线. 类似可定义 $x \to -\infty$ 的渐近线.
- 若 $\lim_{x\to a+0} f(x) = \infty$ 或 $\lim_{x\to a-0} f(x) = \infty$,则称 x=a 是 y=f(x) 的(垂直)渐近线.
- 定理: 若 y = f(x) 在 $(c, +\infty)$ 有定义, y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线的充分必要条件是 $a = \lim_{x \to +\infty} \frac{f(x)}{x}$, $b = \lim_{x \to +\infty} (f(x) ax)$.

证明: 若
$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$$
, 则 $\lim_{x \to +\infty} (\frac{f(x)}{x} - a) = 0$, $b = \lim_{x \to +\infty} (f(x) - ax)$.

- 若 y = f(x) 在 $(c, +\infty)$ 有定义, $\lim_{\substack{x \to +\infty}} (f(x) (ax + b)) = 0$,则称 y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线. 类似可定义 $x \to -\infty$ 的渐近线.
- 若 $\lim_{x\to a+0} f(x) = \infty$ 或 $\lim_{x\to a-0} f(x) = \infty$,则称 x=a 是 y=f(x) 的(垂直)渐近线.
- 定理: 若 y = f(x) 在 $(c, +\infty)$ 有定义,y = ax + b 是 y = f(x) 在 $x \to +\infty$ 时的渐近线的充分必要条件是 $a = \lim_{x \to +\infty} \frac{f(x)}{x}$, $b = \lim_{x \to +\infty} (f(x) ax)$. 证明: 若 $\lim_{x \to +\infty} (f(x) (ax + b)) = 0$,则 $\lim_{x \to +\infty} (\frac{f(x)}{x} a) = 0$, $b = \lim_{x \to +\infty} (f(x) ax)$.

渐近线 -例1

• 例: 双曲线 $\frac{x^2}{2^2} - \frac{y^2}{4^2} = 1$ 的渐近线. 上半部分 $f(x) = b\sqrt{\frac{x^2}{a^2}-1}$, $\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{b}{a}$, $\lim_{x \to +\infty} (f(x) - \frac{b}{a}x) = 0$, $\lim_{x \to -\infty} \frac{f(x)}{x} = -\frac{b}{a}, \lim_{x \to -\infty} (f(x) + \frac{b}{a}x) = 0$ 因此 $y = \frac{b}{2}x$ 是 $x \to +\infty$ 时 f(x)的渐近线, 双曲线的下半部分可类似讨论,

渐近线 -例 2

- 例: \bar{x} $y = \frac{x^3 + x + 1}{(x+1)^2}$ 的渐近线.
- $\Re: \lim_{x \to \pm \infty} \frac{f(x)}{x} = 1$,

$$\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{-2x^2 + 1}{(x+1)^2} = -2$$

因此 y=x-2 是 $x\to\pm\infty$ 时 f(x) 的渐近线. 显然 x=-1 是垂直渐近线

渐近线 -例 2

- 例: $x y = \frac{x^3 + x + 1}{(x+1)^2}$ 的渐近线.
- $\Re: \lim_{x \to \pm \infty} \frac{f(x)}{x} = 1$,

$$\lim_{\mathsf{x}\to\pm\infty}(f(\mathsf{x})-\mathsf{x})=\lim_{\mathsf{x}\to\pm\infty}\frac{-2\mathsf{x}^2+1}{(\mathsf{x}+1)^2}=-2,$$

因此 y = x - 2 是 $x \to \pm \infty$ 时 f(x) 的渐近线. 显然 x = -1 是垂直渐近线.

• 函数作图的步骤:

- 确定定义域, 间断点
- 求导数,确定不可微点,稳定点,单调区间,极值点
- 求 f''(x), 确定凸凹区间, 拐点.
- 求渐近线.
- 求出几个点(包括特殊点)的值.

- 函数作图的步骤:
 - 确定定义域, 间断点
 - 求导数,确定不可微点,稳定点,单调区间,极值点
 - 求 f''(x), 确定凸凹区间, 拐点.
 - 求渐近线.
 - 求出几个点(包括特殊点)的值.

- 函数作图的步骤:
 - 确定定义域, 间断点
 - 求导数,确定不可微点,稳定点,单调区间,极值点
 - 求 f"(x), 确定凸凹区间, 拐点.
 - 求渐近线.
 - 求出几个点(包括特殊点)的值.

- 函数作图的步骤:
 - 确定定义域, 间断点
 - 求导数,确定不可微点,稳定点,单调区间,极值点
 - 求 f"(x), 确定凸凹区间, 拐点.
 - 求渐近线.
 - 求出几个点(包括特殊点)的值.

- 函数作图的步骤:
 - 确定定义域, 间断点
 - 求导数,确定不可微点,稳定点,单调区间,极值点
 - 求 f"(x), 确定凸凹区间, 拐点.
 - 求渐近线.
 - 求出几个点(包括特殊点)的值.

- 例: $y = \frac{x^2}{x-1}$,
 - 定义域为 $x \neq 1$, 没有间断点.
 - 导数 $y'(x) = \frac{x(x-2)}{(x-1)^2}$,没有不可微点. 稳定点 x = 0, 2,区间 $(-\infty, 0)$ 上函数递增,(0,1) 和 (1,2) 上递减,x = 0 是极大点,x = 2 是极小点.
 - $f''(x) = \frac{2}{(x-1)^3}$, 区间 $(-\infty, 1)$ 上函数凸, $(1, +\infty)$ 上函数凹. 没有拐点
 - 渐近线 $y = x + 1(x \to \pm \infty)(\frac{f(x)}{x} \to 1,$ $f(x) - x = \frac{x}{x-1} \to 1), x = 1.$
 - 几个点的值: $f(-1) = -\frac{1}{2}$, f(0) = 0, $f(\frac{1}{2}) = -\frac{1}{2}$, f(2) = 4, $f(3) = \frac{9}{2}$

- 例: $y = \frac{x^2}{x-1}$,
 - 定义域为 $x \neq 1$, 没有间断点.
 - 导数 $y'(x) = \frac{x(x-2)}{(x-1)^2}$,没有不可微点. 稳定点 x = 0, 2,区间 $(-\infty, 0)$ 上函数递增,(0,1) 和 (1,2) 上递减,x = 0 是极大点,x = 2 是极小点.
 - $f''(x) = \frac{2}{(x-1)^3}$, 区间 $(-\infty, 1)$ 上函数凸, $(1, +\infty)$ 上函数凹. 没有拐点
 - 渐近线 $y = x + 1(x \to \pm \infty)(\frac{f(x)}{x} \to 1)$, $f(x) x = \frac{x}{y-1} \to 1)$, x = 1.
 - 几个点的值: $f(-1) = -\frac{1}{2}$, f(0) = 0, $f(\frac{1}{2}) = -\frac{1}{2}$, f(2) = 4, $f(3) = \frac{9}{2}$

- \emptyset : $y = \frac{x^2}{x-1}$,
 - 定义域为 x≠1, 没有间断点.
 - 导数 $y'(x) = \frac{x(x-2)}{(x-1)^2}$,没有不可微点. 稳定点 x = 0, 2,区间 $(-\infty, 0)$ 上函数递增,(0,1) 和 (1,2) 上递减,x = 0 是极大点,x = 2 是极小点.
 - $f''(x) = \frac{2}{(x-1)^3}$, 区间 $(-\infty, 1)$ 上函数凸, $(1, +\infty)$ 上函数凹. 没有拐点
 - 渐近线 $y = x + 1(x \to \pm \infty)(\frac{f(x)}{x} \to 1,$ $f(x) x = \frac{x}{x-1} \to 1), x = 1.$
 - 几个点的值: $f(-1) = -\frac{1}{2}$, f(0) = 0, $f(\frac{1}{2}) = -\frac{1}{2}$, f(2) = 4, $f(3) = \frac{9}{2}$

- 例: $y = \frac{x^2}{x-1}$,
 - 定义域为 x≠1, 没有间断点.
 - 导数 $y'(x) = \frac{x(x-2)}{(x-1)^2}$,没有不可微点. 稳定点 x = 0, 2,区间 $(-\infty, 0)$ 上函数递增,(0,1) 和 (1,2) 上递减,x = 0 是极大点,x = 2 是极小点.
 - $f''(x) = \frac{2}{(x-1)^3}$, 区间 $(-\infty, 1)$ 上函数凸, $(1, +\infty)$ 上函数凹. 没有拐点
 - 渐近线 $y = x + 1(x \to \pm \infty)(\frac{f(x)}{x} \to 1, f(x) x = \frac{x}{x-1} \to 1), x = 1.$
 - 几个点的值: $f(-1) = -\frac{1}{2}$, f(0) = 0, $f(\frac{1}{2}) = -\frac{1}{2}$, f(2) = 4, $f(3) = \frac{9}{2}$

- \emptyset : $y = \frac{x^2}{x-1}$,
 - 定义域为 x≠1, 没有间断点.
 - 导数 $y'(x) = \frac{x(x-2)}{(x-1)^2}$,没有不可微点. 稳定点 x = 0, 2,区间 $(-\infty, 0)$ 上函数递增,(0,1) 和 (1,2) 上递减,x = 0 是极大点,x = 2 是极小点.
 - $f''(x) = \frac{2}{(x-1)^3}$, 区间 $(-\infty, 1)$ 上函数凸, $(1, +\infty)$ 上函数凹. 没有拐点
 - 渐近线 $y = x + 1(x \to \pm \infty)(\frac{f(x)}{x} \to 1,$ $f(x) x = \frac{x}{x-1} \to 1), x = 1.$
 - 几个点的值: $f(-1) = -\frac{1}{2}$, f(0) = 0, $f(\frac{1}{2}) = -\frac{1}{2}$, f(2) = 4, $f(3) = \frac{9}{2}$.

