Анализ окупаемости рекламы

Несмотря на огромные вложения в рекламу, последние несколько месяцев компания Procrastinate Pro+ терпит убытки.

Задача — разобраться в причинах и помочь компании выйти в плюс.

Есть данные о пользователях, привлечённых с 1 мая по 27 октября 2019 года: лог сервера с данными об их посещениях, выгрузка их покупок за этот период, рекламные расходы.

Предстоит изучить: откуда приходят пользователи и какими устройствами они пользуются, сколько стоит привлечение пользователей из различных рекламных каналов; сколько денег приносит каждый клиент, когда расходы на привлечение клиента окупаются, какие факторы мешают привлечению клиент

Загрузим данные и подготовим их к анализу

Загрузим данные о визитах, заказах и рекламных расходах из CSV-файлов в переменные.

```
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from matplotlib import pyplot as plt

try:
    visits = pd.read_csv('visits_info_short.csv')# журнал сессий
    orders = pd.read_csv('orders_info_short.csv') # покупки
    costs = pd.read_csv('costs_info_short.csv') # траты на рекламу
except:
    visits = pd.read_csv('/datasets/visits_info_short.csv')
    orders = pd.read_csv('/datasets/orders_info_short.csv')
    costs = pd.read_csv('/datasets/costs_info_short.csv')
```

Изучим данные и выполним предобработку

```
visits.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 309901 entries, 0 to 309900
    Data columns (total 6 columns):
     # Column Non-Null Count
         User Id 309901 non-null int64
         Region
                        309901 non-null object
                       309901 non-null object
         Device
                         309901 non-null object
         Channel
         Session Start 309901 non-null object
        Session End 309901 non-null object
     dtypes: int64(1), object(5)
    memory usage: 14.2+ MB
orders.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 40212 entries, 0 to 40211
    Data columns (total 3 columns):
     # Column Non-Null Count Dtype
     0 User Id 40212 non-null int64
1 Event Dt 40212 non-null object
2 Revenue 40212 non-null float64
     dtypes: float64(1), int64(1), object(1)
     memory usage: 942.6+ KB
costs.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1800 entries, 0 to 1799
    Data columns (total 3 columns):
         Column Non-Null Count Dtype
         ----
         dt
                  1800 non-null
                                   object
         Channel 1800 non-null
```

```
2 costs 1800 non-null float64 dtypes: float64(1), object(2) memory usage: 42.3+ KB
```

Переименуем столбцы

```
Приведем все названия столбцов к нижнему регистру
```

orders.rename(columns = {'user id': 'user_id', 'event dt':'event_dt'}, inplace = True)

```
# преобразование данных о времени
visits['session_start'] = pd.to_datetime(visits['session_start'])
visits['session_end'] = pd.to_datetime(visits['session_end'])
orders['event_dt'] = pd.to_datetime(orders['event_dt'])
costs['dt'] = pd.to_datetime(costs['dt']).dt.date
```

Проверим данные на наличие пропусков

```
visits.isna().sum() #проверим пропуски
     user id
     region
                      a
     device
                      0
     channel
                      0
     session_start
                      0
     session_end
     dtype: int64
orders.isna().sum() #проверим пропуски
     user id
     event_dt
                 0
     revenue
                 0
     dtype: int64
costs.isna().sum() #проверим пропуски
                0
     channel
     costs
     dtype: int64
```

Проверим данные на дубликаты

dt channel costs

Дубликатов и пропусков нет. Проверим данные на неявные дубликаты

Проверим уникальные значения

```
visits['region'].value_counts() #проверим уникальные значения
    United States 207327
    UK
                      36419
    France
                     35396
                     30759
    Germany
    Name: region, dtype: int64
visits['device'].value_counts()#проверим уникальные значения
     iPhone
               112603
    Android
                72590
               62686
               62022
    Name: device, dtype: int64
costs['channel'].value_counts()#проверим уникальные значения
     LeapBob
                          180
    WahooNetBanner
                          180
     RocketSuperAds
                          180
    MediaTornado
                          180
    FaceBoom
    TipTop
                          180
    AdNonSense
                         180
    OppleCreativeMedia
                         180
                          180
    YRabbit
    lambdaMediaAds
                          180
```

Неявных дубликатов нет

Name: channel, dtype: int64

В ходе предобработки данных переименованы столбцы, выполнена проверка на выявление пропусков данных, дубликатов и неявных дубликатов

√ Зададим функции для расчёта и анализа LTV, ROI, удержания и конверсии.

Это функции для вычисления значений метрик:

- get_profiles() для создания профилей пользователей,
- get_retention() для подсчёта Retention Rate,
- get_conversion() для подсчёта конверсии,
- get_ltv() для подсчёта LTV.

А также функции для построения графиков:

- filter_data() для сглаживания данных,
- plot_retention() для построения графика Retention Rate,
- plot_conversion() для построения графика конверсии,
- plot_ltv_roi для визуализации LTV и ROI.

```
# функция для создания пользовательских профилей
def get_profiles(sessions, orders, ad_costs, event_names=[]):
    # находим параметры первых посещений
   profiles = (
        sessions.sort_values(by=['user_id', 'session_start'])
        .groupby('user_id')
                'session_start': 'first',
                'channel': 'first',
                'device': 'first',
                'region': 'first',
            }
       )
        .rename(columns={'session_start': 'first_ts'})
        .reset index()
    )
   # для когортного анализа определяем дату первого посещения
    # и первый день месяца, в который это посещение произошло
   profiles['dt'] = profiles['first_ts'].dt.date
   profiles['month'] = profiles['first_ts'].astype('datetime64[M]')
    # добавляем признак платящих пользователей
   profiles['payer'] = profiles['user_id'].isin(orders['user_id'].unique())
   # считаем количество уникальных пользователей
   # с одинаковыми источником и датой привлечения
   new_users = (
       profiles.groupby(['dt', 'channel'])
        .agg({'user_id': 'nunique'})
        .rename(columns={'user_id': 'unique_users'})
        .reset_index()
    )
    # объединяем траты на рекламу и число привлечённых пользователей
   ad_costs = ad_costs.merge(new_users, on=['dt', 'channel'], how='left')
    # делим рекламные расходы на число привлечённых пользователей
   ad_costs['acquisition_cost'] = ad_costs['costs'] / ad_costs['unique_users']
    # добавляем стоимость привлечения в профили
    profiles = profiles.merge(
       ad_costs[['dt', 'channel', 'acquisition_cost']],
       on=['dt', 'channel'],
       how='left',
    # стоимость привлечения органических пользователей равна нулю
   profiles['acquisition_cost'] = profiles['acquisition_cost'].fillna(0)
   return profiles
# функция для расчёта удержания
def get_retention(
   profiles.
    sessions.
   observation_date,
   horizon days,
   dimensions=[],
   ignore_horizon=False,
):
    # добавляем столбец payer в передаваемый dimensions список
   dimensions = ['payer'] + dimensions
    # исключаем пользователей, не «доживших» до горизонта анализа
    last_suitable_acquisition_date = observation_date
    if not ignore_horizon:
       last_suitable_acquisition_date = observation_date - timedelta(
            days=horizon_days - 1
    result_raw = profiles.query('dt <= @last_suitable_acquisition_date')</pre>
    # собираем «сырые» данные для расчёта удержания
    result_raw = result_raw.merge(
       sessions[['user_id', 'session_start']], on='user_id', how='left'
    result_raw['lifetime'] = (
```

```
result_raw['session_start'] - result_raw['first_ts']
# функция для группировки таблицы по желаемым признакам
def group_by_dimensions(df, dims, horizon_days):
    result = df.pivot_table(
        index=dims, columns='lifetime', values='user_id', aggfunc='nunique'
    cohort_sizes = (
        df.groupby(dims)
        .agg({'user_id': 'nunique'})
        .rename(columns={'user_id': 'cohort_size'})
    result = cohort_sizes.merge(result, on=dims, how='left').fillna(0)
    result = result.div(result['cohort_size'], axis=0)
    result = result[['cohort_size'] + list(range(horizon_days))]
    result['cohort_size'] = cohort_sizes
    return result
# получаем таблицу удержания
result_grouped = group_by_dimensions(result_raw, dimensions, horizon_days)
# получаем таблицу динамики удержания
result_in_time = group_by_dimensions(
    result_raw, dimensions + ['dt'], horizon_days
# возвращаем обе таблицы и сырые данные
return result_raw, result_grouped, result_in_time
```

```
# функция для расчёта конверсии
def get_conversion(
   profiles,
   purchases,
    observation_date,
   horizon days.
   dimensions=[],
   ignore_horizon=False,
):
   # исключаем пользователей, не «доживших» до горизонта анализа
    last_suitable_acquisition_date = observation_date
    if not ignore_horizon:
       last_suitable_acquisition_date = observation_date - timedelta(
            days=horizon_days - 1
    result_raw = profiles.query('dt <= @last_suitable_acquisition_date')</pre>
    # определяем дату и время первой покупки для каждого пользователя
    first_purchases = (
       purchases.sort_values(by=['user_id', 'event_dt'])
        .groupby('user_id')
        .agg({'event_dt': 'first'})
        .reset index()
    )
    # добавляем данные о покупках в профили
    result_raw = result_raw.merge(
       first_purchases[['user_id', 'event_dt']], on='user_id', how='left'
    # рассчитываем лайфтайм для каждой покупки
    result_raw['lifetime'] = (
       result_raw['event_dt'] - result_raw['first_ts']
    ).dt.days
    # группируем по cohort, если в dimensions ничего нет
    if len(dimensions) == 0:
        result_raw['cohort'] = 'All users'
       dimensions = dimensions + ['cohort']
    # функция для группировки таблицы по желаемым признакам
    def group_by_dimensions(df, dims, horizon_days):
       result = df.pivot_table(
           index=dims, columns='lifetime', values='user id', aggfunc='nunique'
       )
       result = result.fillna(0).cumsum(axis = 1)
       cohort_sizes = (
            df.groupby(dims)
            .agg({'user_id': 'nunique'})
            .rename(columns={'user_id': 'cohort_size'})
       result = cohort\_sizes.merge(result, on=dims, how='left').fillna(0)
       # делим каждую «ячейку» в строке на размер когорты
        # и получаем conversion rate
       result = result.div(result['cohort_size'], axis=0)
        result = result[['cohort_size'] + list(range(horizon_days))]
       result['cohort_size'] = cohort_sizes
       return result
    # получаем таблицу конверсии
    result_grouped = group_by_dimensions(result_raw, dimensions, horizon_days)
    # для таблицы динамики конверсии убираем 'cohort' из dimensions
    if 'cohort' in dimensions:
       dimensions = []
    # получаем таблицу динамики конверсии
   result_in_time = group_by_dimensions(
        result_raw, dimensions + ['dt'], horizon_days
    # возвращаем обе таблицы и сырые данные
    return result_raw, result_grouped, result_in_time
```

```
# функция для расчёта LTV и ROI
def get ltv(
   profiles,
   purchases,
   observation_date,
   horizon_days,
   dimensions=[],
   ignore_horizon=False,
   # исключаем пользователей, не «доживших» до горизонта анализа
   last_suitable_acquisition_date = observation_date
   if not ignore horizon:
       last_suitable_acquisition_date = observation_date - timedelta(
            days=horizon_days - 1
   result raw = profiles.query('dt <= @last suitable acquisition date')
   # добавляем данные о покупках в профили
   result_raw = result_raw.merge(
       purchases[['user_id', 'event_dt', 'revenue']], on='user_id', how='left'
   # рассчитываем лайфтайм пользователя для каждой покупки
   result raw['lifetime'] = (
       result_raw['event_dt'] - result_raw['first_ts']
   ).dt.days
   # группируем по cohort, если в dimensions ничего нет
   if len(dimensions) == 0:
       result raw['cohort'] = 'All users'
       dimensions = dimensions + ['cohort']
   # ФУНКЦИЯ ГРУППИРОВКИ ПО ЖЕЛАЕМЫМ ПРИЗНАКАМ
   def group_by_dimensions(df, dims, horizon_days):
       # строим «треугольную» таблицу выручки
       result = df.pivot_table(
            index=dims, columns='lifetime', values='revenue', aggfunc='sum'
       # находим сумму выручки с накоплением
       result = result.fillna(0).cumsum(axis=1)
       # вычисляем размеры когорт
       cohort_sizes = (
           df.groupby(dims)
            .agg({'user_id': 'nunique'})
            .rename(columns={'user_id': 'cohort_size'})
       # объединяем размеры когорт и таблицу выручки
       result = cohort_sizes.merge(result, on=dims, how='left').fillna(0)
       # считаем LTV: делим каждую «ячейку» в строке на размер когорты
       result = result.div(result['cohort_size'], axis=0)
       # исключаем все лайфтаймы, превышающие горизонт анализа
       result = result[['cohort_size'] + list(range(horizon_days))]
       # восстанавливаем размеры когорт
       result['cohort_size'] = cohort_sizes
       # собираем датафрейм с данными пользователей и значениями САС,
       # добавляя параметры из dimensions
       cac = df[['user_id', 'acquisition_cost'] + dims].drop_duplicates()
       # считаем средний САС по параметрам из dimensions
       cac = (
           cac.groupby(dims)
            .agg({'acquisition_cost': 'mean'})
            .rename(columns={'acquisition_cost': 'cac'})
       )
       # считаем ROI: делим LTV на CAC
       roi = result.div(cac['cac'], axis=0)
       # удаляем строки с бесконечным ROI
       roi = roi[~roi['cohort_size'].isin([np.inf])]
       # восстанавливаем размеры когорт в таблице ROI
       roi['cohort_size'] = cohort_sizes
       # добавляем САС в таблицу ROI
       roi['cac'] = cac['cac']
       # в финальной таблице оставляем размеры когорт, САС
       # и ROI в лайфтаймы, не превышающие горизонт анализа
       roi = roi[['cohort_size', 'cac'] + list(range(horizon_days))]
       # возвращаем таблицы LTV и ROI
```

```
return result, roi
    # получаем таблицы LTV и ROI
   result_grouped, roi_grouped = group_by_dimensions(
        result_raw, dimensions, horizon_days
    # для таблиц динамики убираем 'cohort' из dimensions
    if 'cohort' in dimensions:
       dimensions = []
    # получаем таблицы динамики LTV и ROI
    result_in_time, roi_in_time = group_by_dimensions(
       result_raw, dimensions + ['dt'], horizon_days
   return (
        result_raw, # сырые данные
       result_grouped, # таблица LTV result_in_time, # таблица динамики LTV
        roi_grouped, # таблица ROI
        roi_in_time, # таблица динамики ROI
# функция для сглаживания фрейма
def filter_data(df, window):
    # для каждого столбца применяем скользящее среднее
    for column in df.columns.values:
        df[column] = df[column].rolling(window).mean()
   return df
```

```
# функция для визуализации удержания
def plot retention(retention, retention history, horizon, window=7):
   # задаём размер сетки для графиков
   plt.figure(figsize=(15, 10))
   # исключаем размеры когорт и удержание первого дня
   retention = retention.drop(columns=['cohort_size', 0])
   # в таблице динамики оставляем только нужный лайфтайм
   retention_history = retention_history.drop(columns=['cohort_size'])[
       [horizon - 1]
   1
   # если в индексах таблицы удержания только payer,
   # добавляем второй признак - cohort
   if retention.index.nlevels == 1:
       retention['cohort'] = 'All users'
       retention = retention.reset_index().set_index(['cohort', 'payer'])
   # в таблице графиков — два столбца и две строки, четыре ячейки
   # в первой строим кривые удержания платящих пользователей
   ax1 = plt.subplot(2, 2, 1)
   retention.query('payer == True').droplevel('payer').T.plot(
       grid=True, ax=ax1
   plt.legend()
   plt.xlabel('Лайфтайм')
   plt.title('Удержание платящих пользователей')
   # во второй ячейке строим кривые удержания неплатящих
   # вертикальная ось - от графика из первой ячейки
   ax2 = plt.subplot(2, 2, 2, sharey=ax1)
   retention.query('payer == False').droplevel('payer').T.plot(
       grid=True, ax=ax2
   plt.legend()
   plt.xlabel('Лайфтайм')
   plt.title('Удержание неплатящих пользователей')
   # в третьей ячейке - динамика удержания платящих
   ax3 = plt.subplot(2, 2, 3)
   # получаем названия столбцов для сводной таблицы
   columns = [
       name
       for name in retention_history.index.names
       if name not in ['dt', 'payer']
   # фильтруем данные и строим график
   filtered_data = retention_history.query('payer == True').pivot_table(
       index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
   filter_data(filtered_data, window).plot(grid=True, ax=ax3)
   plt.xlabel('Дата привлечения')
   nlt.title(
        'Динамика удержания платящих пользователей на {}-й день'.format(
           horizon
       )
   )
   # в чётвертой ячейке — динамика удержания неплатящих
   ax4 = plt.subplot(2, 2, 4, sharey=ax3)
   # фильтруем данные и строим график
   filtered_data = retention_history.query('payer == False').pivot_table(
       index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
   filter_data(filtered_data, window).plot(grid=True, ax=ax4)
   plt.xlabel('Дата привлечения')
   plt.title(
        'Динамика удержания неплатящих пользователей на {}-й день'.format(
           horizon
   )
   plt.tight_layout()
   plt.show()
```

```
# функция для визуализации конверсии
def plot_conversion(conversion, conversion_history, horizon, window=7):
    # задаём размер сетки для графиков
   plt.figure(figsize=(15, 5))
   # исключаем размеры когорт
   conversion = conversion.drop(columns=['cohort_size'])
    # в таблице динамики оставляем только нужный лайфтайм
   conversion_history = conversion_history.drop(columns=['cohort_size'])[
       [horizon - 1]
   ]
   # первый график - кривые конверсии
   ax1 = plt.subplot(1, 2, 1)
   conversion.T.plot(grid=True, ax=ax1)
   plt.legend()
   plt.xlabel('Лайфтайм')
   plt.title('Конверсия пользователей')
   # второй график — динамика конверсии
   ax2 = plt.subplot(1, 2, 2, sharey=ax1)
   columns = [
       # столбцами сводной таблицы станут все столбцы индекса, кроме даты
       name for name in conversion history.index.names if name not in ['dt']
    filtered_data = conversion_history.pivot_table(
       index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
    filter_data(filtered_data, window).plot(grid=True, ax=ax2)
    plt.xlabel('Дата привлечения')
   plt.title('Динамика конверсии пользователей на {}-й день'.format(horizon))
   plt.tight_layout()
   plt.show()
```

функция для визуализации LTV и ROI

```
def plot ltv roi(ltv, ltv history, roi, roi history, horizon, window=7):
   # задаём сетку отрисовки графиков
   plt.figure(figsize=(20, 10))
   # из таблицы ltv исключаем размеры когорт
   ltv = ltv.drop(columns=['cohort_size'])
   # в таблице динамики ltv оставляем только нужный лайфтайм
   ltv_history = ltv_history.drop(columns=['cohort_size'])[[horizon - 1]]
   # стоимость привлечения запишем в отдельный фрейм
   cac_history = roi_history[['cac']]
   # из таблицы гоі исключаем размеры когорт и сас
   roi = roi.drop(columns=['cohort_size', 'cac'])
   # в таблице динамики roi оставляем только нужный лайфтайм
   roi_history = roi_history.drop(columns=['cohort_size', 'cac'])[
       [horizon - 1]
   # первый график - кривые ltv
   ax1 = plt.subplot(2, 3, 1)
   ltv.T.plot(grid=True, ax=ax1)
   plt.legend()
   plt.xlabel('Лайфтайм')
   plt.title('LTV')
   # второй график - динамика ltv
   ax2 = plt.subplot(2, 3, 2, sharey=ax1)
   # столбцами сводной таблицы станут все столбцы индекса, кроме даты
    columns = [name for name in ltv_history.index.names if name not in ['dt']]
   filtered_data = ltv_history.pivot_table(
       index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
   filter_data(filtered_data, window).plot(grid=True, ax=ax2)
   plt.xlabel('Дата привлечения')
   plt.title('Динамика LTV пользователей на {}-й день'.format(horizon))
   # третий график — динамика сас
   ax3 = plt.subplot(2, 3, 3, sharey=ax1)
   # столбцами сводной таблицы станут все столбцы индекса, кроме даты
   columns = [name for name in cac_history.index.names if name not in ['dt']]
   filtered_data = cac_history.pivot_table(
       index='dt', columns=columns, values='cac', aggfunc='mean'
   filter_data(filtered_data, window).plot(grid=True, ax=ax3)
   plt.xlabel('Дата привлечения')
   plt.title('Динамика стоимости привлечения пользователей')
   # четвёртый график - кривые roi
   ax4 = plt.subplot(2, 3, 4)
   roi.T.plot(grid=True, ax=ax4)
   plt.axhline(y=1, color='red', linestyle='--', label='Уровень окупаемости')
   plt.legend()
   plt.xlabel('Лайфтайм')
   plt.title('ROI')
   # пятый график — динамика roi
   ax5 = plt.subplot(2, 3, 5, sharey=ax4)
   # столбцами сводной таблицы станут все столбцы индекса, кроме даты
   columns = [name for name in roi_history.index.names if name not in ['dt']]
   filtered_data = roi_history.pivot_table(
       index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
   filter_data(filtered_data, window).plot(grid=True, ax=ax5)
   plt.axhline(y=1, color='red', linestyle='--', label='Уровень окупаемости')
   plt.xlabel('Дата привлечения')
   plt.title('Динамика ROI пользователей на {}-й день'.format(horizon))
   plt.tight_layout()
   plt.show()
```

Исследовательский анализ данных

- Составим профили пользователей. Определим минимальную и максимальную даты привлечения пользователей.
- Выясним, из каких стран пользователи приходят в приложение и на какую страну приходится больше всего платящих пользователей. Построим таблицу, отражающую количество пользователей и долю платящих из каждой страны.

- Узнаем, какими устройствами пользуются клиенты и какие устройства предпочитают платящие пользователи. Построим таблицу, отражающую количество пользователей и долю платящих для каждого устройства.
- Изучим рекламные источники привлечения и определите каналы, из которых пришло больше всего платящих пользователей. Построим таблицу, отражающую количество пользователей и долю платящих для каждого канала привлечения.

Составим профили пользователей

```
# получаем профили пользователей
profiles = get_profiles(visits, orders, costs)
print(profiles.head(5))
         user_id
                            first_ts
                                         channel device
                                                                  region
         599326 2019-05-07 20:58:57 FaceBoom
                                                    Mac United States
       4919697 2019-07-09 12:46:07 FaceBoom iPhone United States 6085896 2019-10-01 09:58:33 organic iPhone France
     3 22593348 2019-08-22 21:35:48 AdNonSense
                                                   PC
                                                                 Germany
     4 31989216 2019-10-02 00:07:44
                                         YRabbit iPhone United States
                        month payer acquisition_cost
                d†
    0 2019-05-07 2019-05-01
                                              1.088172
                                True
    1 2019-07-09 2019-07-01 False
                                              1.107237
       2019-10-01 2019-10-01 False
                                             0.000000
     3
       2019-08-22 2019-08-01 False
                                             0.988235
     4 2019-10-02 2019-10-01 False
                                             0.230769
# доступный интервал привлечения пользователей
min analysis date = profiles['dt'].min()
observation_date = profiles['dt'].max() # момент анализа
min_analysis_date, observation_date
     (datetime.date(2019, 5, 1), datetime.date(2019, 10, 27))
```

Минимальная дата привлечения пользователей 2019-05-01

Максимальная дата привлечения пользователей 2019-10-27

Количество пользователей и доля платящих из каждой страны

```
# формируем таблицу количества пользователей с группировкой по странам dt = pd.DataFrame() dt['all'] = profiles.groupby('region')['user_id'].count() dt['payer'] = profiles.query('payer == True').groupby('region')['user_id'].count() dt['part'] = (dt['payer'] / dt['all'])*100 dt.sort_values(by='part', ascending=False).style.format({'part': '{:.1f}%'})

all payer part region
United States 100002 6902 6.9%
Germany 14981 616 4.1%
UK 17575 700 4.0%
France 17450 663 3.8%
```

Количество пользователей и доля платящих для каждого устройства

```
# формируем таблицу количества пользователей с группировкой по устройствам dt = pd.DataFrame() dt['all'] = profiles.groupby('device')['user_id'].count() dt['payer'] = profiles.query('payer == True').groupby('device')['user_id'].count() dt['part'] = (dt['payer'] / dt['all'])*100 dt.sort_values(by='part', ascending=False).style.format({'part': '{:.1f}%'})

all payer part
device

Mac 30042 1912 6.4%
iPhone 54479 3382 6.2%
Android 35032 2050 5.9%
PC 30455 1537 5.0%
```

Количество пользователей и доля платящих для каждого канала привлечения

```
# формируем таблицу количества пользователей с группировкой по каналам привлечения
dt = pd.DataFrame()
dt['all'] = profiles.groupby('channel')['user_id'].count()
dt['payer'] = profiles.query('payer == True').groupby('channel')['user_id'].count()
dt['part'] = (dt['payer'] / dt['all'])*100
\verb|dt.sort_values(by='part', ascending=False).style.format(\{'part': '\{:.1f\}\%'\})|
                       all payer part
          channel
         FaceBoom 29144 3557 12.2%
        AdNonSense 3880 440 11.3%
      lambdaMediaAds 2149 225 10.5%
                     19561 1878 9.6%
          qoTqiT
      RocketSuperAds 4448 352 7.9%
      WahooNetBanner 8553 453 5.3%
          YRabbit 4312 165 3.8%
       MediaTornado 4364 156 3.6%
         LeapBob 8553 262 3.1%
     OppleCreativeMedia 8605 233 2.7%
          organic 56439 1160 2.1%
```

Маркетинг

- Посчитаем общую сумму расходов на маркетинг.
- Выясним, как траты распределены по рекламным источникам, то есть сколько денег потратили на каждый источник.
- Построим визуализацию динамики изменения расходов во времени (по неделям и месяцам) по каждому источнику.
- Узнаем, сколько в среднем стоило привлечение одного пользователя (САС) из каждого источника.

Общая сумма расходов на маркетинг

```
costs['costs'].sum().round(2)
105497.3
```

Общие затраты на маркетинг составляют 105497 долларов

Распределение трат по рекламным источникам

```
# формируем таблицу трат на рекламу с группировкой по рекламным источникам dt = pd.DataFrame() dt['sum'] =costs.groupby('channel')['costs'].sum() dt['part'] = (dt['sum'] / costs['costs'].sum())*100 dt.sort_values(by='part', ascending=False).style.format({'part': '{:.1f}%'})
```

	sum	part
channel		
TipTop	54751.300000	51.9%
FaceBoom	32445.600000	30.8%
WahooNetBanner	5151.000000	4.9%
AdNonSense	3911.250000	3.7%
OppleCreativeMedia	2151.250000	2.0%
RocketSuperAds	1833.000000	1.7%
LeapBob	1797.600000	1.7%
lambdaMediaAds	1557.600000	1.5%
MediaTornado	954.480000	0.9%
YRabbit	944.220000	0.9%

Самые высокие затраты на рекламу по каналу TipTop, самые низкие по YRabbit

∨ Визуализация динамики изменения расходов во времени

```
import warnings
warnings.filterwarnings('ignore')
#yберем предупреждение, связанное с особенностью библиотеки, оно не влияет на результат

costs['month'] = pd.DatetimeIndex(costs['dt']).month #выделяем столбец с месяцем
costs['week'] = pd.DatetimeIndex(costs['dt']).week #выделяем столбец с номером недели
```

```
dt = pd.DataFrame() #формируем таблицу с затратами на рекламу по неделям
dt['sum'] =costs.groupby('week')['costs'].sum()
dt.sort_values(by='sum', ascending=False)
```

	sum
week	
39	6784.580
40	6365.370
43	5601.140
38	5473.535
41	5190.355
26	4837.120
35	4732.160
33	4703.960
42	4679.935
34	4670.370
27	4660.335
31	4609.530
32	4446.835
36	4280.635
37	4227.870
28	3516.835
30	3445.460
22	3427.075
25	3421.390
29	3039.780
23	2915.740
24	2706.390
21	2297.120
19	2031.820
20	1976.320
18	1455.640

```
dt.plot(grid=True, figsize=(10,5)) # gjcnhjbv uhfabr
plt.xlabel('Дата')
plt.title(' Общая динамика изменения расходов по неделям ')
plt.show()
```


Расходы на рекламу стабильно растут

Построим графики изменения расходов на рекламу по месяцам и неделям с разделением по каналам

```
ax1=plt.subplot(2,2,1)
costs.pivot_table(index='channel', columns='month', values='costs', aggfunc='sum').\
T.plot(grid=True, figsize=(14,10), ax=ax1)
plt.xlabel('Дата')
plt.title(' Динамика изменения расходов по месяцам ')
plt.legend(loc="lower center", bbox_to_anchor=(1.1, -0.5), ncol=2)

ax2=plt.subplot(2,2,2, sharey = ax1)
costs.pivot_table(index='channel', columns='week', values='costs', aggfunc='sum').\
T.plot(grid=True, figsize=(14,10), legend= False, ax=ax2)
plt.xlabel('Дата')
plt.title(' Динамика изменения расходов по неделям ')
plt.show()
```


Затраты на рекламу по каналу TipTop самые высокие и увеличиваются со временем. Затраты по FaceBoom также выше остальных, но остаются стабильно высокими. Затраты на остальные каналы распределены почти равномерно.

Комментарий ревьюера

Все отлично! 👍:

Хорошая работа! По маркетинговым расходам все верно, согласна с интерпретацией визуализации.

Средняя стоимость привлечения одного пользователя (САС) из каждого источника

```
dt = pd.DataFrame() #сформирует таблицу со средним САС по каждому каналу dt['CAC'] =profiles.groupby('channel')['acquisition_cost'].mean() dt.sort_values(by='CAC', ascending=False)
```

	CAC		
channel			
ТірТор	2.799003		
FaceBoom	1.113286		
AdNonSense	1.008054		
lambdaMediaAds	0.724802		
WahooNetBanner	0.602245		
RocketSuperAds	0.412095		
OppleCreativeMedia	0.250000		
YRabbit	0.218975		
MediaTornado	0.218717		
LeapBob	0.210172		
organic	0.000000		

Самая высокая стоимость привлечения по каналу ТірТор. Самая низкая по LeapBob.

Оценим окупаемость рекламы

- Проанализируем окупаемость рекламы с помощью графиков LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проверим конверсию пользователей и динамику её изменения. То же самое сделаем с удержанием пользователей. Построим и изучим графики конверсии и удержания.
- Проанализируем окупаемость рекламы с разбивкой по устройствам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проанализируем окупаемость рекламы с разбивкой по странам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проанализируем окупаемость рекламы с разбивкой по рекламным каналам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.

Проанализируем окупаемость рекламы с помощью графиков LTV и ROI и графиков динамики LTV, CAC и ROI

Исключим "органических" пользователей, т.к нас интересуют только платные каналы рекламы, органический трафик бесплатен, поэтому не должен войти в анализ.

По графикам можно сделать такие выводы:

- Рекламный бюджет увеличивается, т.к САС растет
- Реклама не окупается. Кривая не пересекает порог окупаемости. ROI чуть выше 80%

- LTV достаточно стабилен. Значит, дело не в ухудшении качества пользователей.
- Изучим графики конверсии и удержания, проанализируем окупаемость
- Изучим графики с разбивкой по устройствам
- График конверсии

```
# смотрим конверсию с разбивкой по устройствам
dimensions=['device']
conversion_raw, conversion_grouped, conversion_history = get_conversion(
    profiles, orders, observation_date, horizon_days, dimensions=dimensions)

plot_conversion(conversion_grouped, conversion_history, horizon_days)
```


Пользователи Mac и iPhone становятся покупателями чаще других

Пользователи РС меньше всего покупали в июле, в остальном данные стабильны

График удержания

```
# смотрим удержание с разбивкой по устройствам
dimensions= ['device']
retention_raw, retention_grouped, retention_history = get_retention(
    profiles, visits, observation_date, horizon_days, dimensions=dimensions)

plot_retention(retention_grouped, retention_history, horizon_days)
```


По графикам видим, что удержание неплатящих пользователей намного ниже, чем удержание платящих. Удержание неплатящих на графиках истории изменений тоже ниже, чем удержание платящих. Впрочем, как и следовало ожидать.

Анализ окупаемости

```
# смотрим окупаемость с разбивкой по устройствам

dimensions = ['device']

ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
    profiles, orders, observation_date, horizon_days, dimensions=dimensions)

plot_ltv_roi(
    ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14)
```


Реклама не окупается для пользователей iPhone, Mac, Android при этом стоимость привлечения для этих пользователей выше, чем для PC

Окупается только канал РС

Окупаемость стала падать примерно в одно время для пользователей всех устройств.

Учитывая, что пользователи iPhone и Мас хорошо конвертируются, возможно имеет смысл сократить затраты на привлечение пользователей, т.к. удержание этих пользователей стабильно.

- Изучим графики с разбивкой по странам
- График конверсии

```
# смотрим конверсию с разбивкой по странам dimensions=['region'] conversion_raw, conversion_grouped, conversion_history = get_conversion( profiles, orders, observation_date, horizon_days, dimensions=dimensions)
```

plot_conversion(conversion_grouped, conversion_history, horizon_days)

Пользователи из США конвертируются очень хорошо. Остальные пользователи конвертируются примерно одинаково.

График удержания

```
# смотрим удержание с разбивкой по странам dimensions= ['region'] retention_raw, retention_grouped, retention_history = get_retention( profiles, visits, observation_date, horizon_days, dimensions=dimensions )
```


Удержание неплатящих пользователей ниже, чем удержание платящих, что является нормой.

Удержание неплатящих на графиках динамики тоже ниже, чем удержание платящих. Как и следовало ожидать.

Обратим внимание, что удержание платящих пользователей в США ниже, чем в других странах.

Анализ окупаемости

```
# смотрим окупаемость с разбивкой по странам

dimensions = ['region']

ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
    profiles, orders, observation_date, horizon_days, dimensions=dimensions)

plot_ltv_roi(
    ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
```


Окупаются пользователи из всех стран, кроме США

Затраты на привлечение этих пользователей намного выше, чем пользователей из других стран

Окупаемость сильно упала в мае и продорлжала падать на фоне стабильности других стран.

Пользователи из США очень хорошо конвертируются, но очень плохо удерживаются. При этом затраты на их привлечение самые высокие и окупаемость самая низкая. Т.к. падение окупаемости характерно только для США, можно предположить влияние какогото внешнего события, либо техническую неисправность.

Проверим связь между устройствами и страной их использования.

```
dt = pd.DataFrame()
dt['all'] = profiles.groupby('device')['user_id'].count()
dt['usa'] = profiles.query('region == "United States"').groupby('device')['user_id'].count()
dt['part'] = (dt['usa'] / dt['all'])*100
dt.sort_values(by='part', ascending=False).style.format({'part': '{:.1f}%'})
```

all usa part

device

Большая часть iPhone и почти все Мас используются в США. Соответственно можем говорить о зависимости конвертации пользователей этих устройств и пользователей из США

```
DC 404E2 6404 22 E04774
```

- Изучим графики с разбивкой по каналам привлечения
- График конверсии

```
# смотрим конверсию с разбивкой по каналам привлечения
dimensions=['channel']
conversion_raw, conversion_grouped, conversion_history = get_conversion(
    profiles, orders, observation_date, horizon_days, dimensions=dimensions
)
```

 $\verb|plot_conversion(conversion_grouped, conversion_history, horizon_days)|\\$

Лучше других конвертируются пользователи пришедшие с FaceBoom, AdNonSense, lambdaMediaAds, TipTop

В июне был скачок конвертации пользователей с lambdaMediaAds. Других аномалий не выявлено

График удержания

```
# смотрим удержание с разбивкой по каналам привлечения
dimensions= ['channel']
retention_raw, retention_grouped, retention_history = get_retention(
    profiles, visits, observation_date, horizon_days, dimensions=dimensions)
```

plot_retention(retention_grouped, retention_history, horizon_days)

