J. BASKARAN M.Sc., B.Ed. (C.S) <u>jbaskaran89@gmail.com</u> Puducherry. J. ILAKKIA M.Sc., M.Phil., B.Ed. (C.S) <u>jilakkia@gmail.com</u> Puducherry.

3.SCOPING

Choose the best answer	Section	<u>– A</u>	(1 Mark)
1. Which of the following the same program.	refers to the visibility of va	riables in one part of	a program to another part of
(A) Scope	(B) Memory	(C) Address	(D) Accessibility
2. The process of binding	a variable name with an obj	ect is called	
(A) Scope	(B) Mapping	(C) late binding	(D) early binding
3. Which of the following	is used in programming lan	guages to map the va	riable and object?
(A) ::	(B) :=	<u>(C) =</u>	(D) ==
4. Containers for mapping	names of variables to object	ets is called	
(A) Scope	(B) Mapping	(C) Binding	(D) Namespaces
5. Which scope refers to v	ariables defined in current f	unction?	
(A) Local Scope	(B) Global scope	(C) Module scope	(D) Function Scope
6. The process of subdivid	ing a computer program into	o separate sub-progra	ams is called
(A) Procedural Progr	ramming	(B) Modular progr	ramming
(C)Event Driven Programming		(D) Object oriented Programming	
7. Which of the followin environment?	g security technique that r	egulates who can us	se resources in a computin
(A) Password	(B)Authentication	(C) Access control	(D) Certification
8. Which of the following	members of a class can be h	nandled only from wi	thin the class?
(A) Public members	(B)Protected members	(C) Secured member	ers (D) Private members
9. Which members are acc	essible from outside the cla	ss?	
(A) Public members	(B)Protected members	(C) Secured member	ers (D) Private members
10. The members that are called	accessible from within the	e class and are also a	available to its sub-classes i

(A) Public members (B)Protected members (C) Secured members (D) Private members

Section-B

Answer the following questions

(2 Marks)

1. What is a scope?

• Scope refers to the visibility of variables, parameters and functions in one part of a program to another part of the same program.

2. Why scope should be used for variable. State the reason.

- The scope should be used for variables because; it limits a variable's scope to a single definition.
- That is the variables are visible only to that part of the code.

• Example:

3. What is Mapping?

- The process of binding a variable name with an object is called mapping.
- = (equal to sign) is used in programming languages to map the variable and object.

4. What do you mean by Namespaces?

- Namespaces are containers for mapping names of variables to objects (name : = object).
- **Example:** a:=5
- Here the variable 'a' is mapped to the value '5'.

5. How Python represents the private and protected Access specifiers?

- Python prescribes a convention of adding a prefix __(double underscore) results in a variable name or method becoming private.
- Example: self.__n2=n2
- Adding a prefix _ (single underscore) to a variable name or method makes it protected.
- Example: self._sal = sal

Section-C

Answer the following questions

(3 Marks)

1. Define Local scope with an example.

- Local scope refers to variables defined in current function.
- A function will always look up for a variable name in its local scope.
- Only if it does not find it there, the outer scopes are checked.
- Example:

• On execution of the above code the variable **a** displays the value 7, because it is defined and available in the local scope.

2. Define Global scope with an example.

- A variable which is declared outside of all the functions in a program is known as global variable.
- Global variable can be accessed inside or outside of all the functions in a program.
- Example:

• On execution of the above code the variable **a** which is defined inside the function displays the value 7 for the function call Disp() and then it displays 10, because **a** is defined in global scope.

3. Define Enclosed scope with an example.

- A variable which is declared inside a function which contains another function definition with in
 it, the inner function can also access the variable of the outer function. This scope is called
 enclosed scope.
- When a compiler or interpreter searches for a variable in a program, it first search Local, and then search Enclosing scopes.

• In the above example Disp1() is defined within Disp(). The variable 'a' defined in Disp() can be even used by Disp1() because it is also a member of Disp().

4. Why access control is required?

- Access control is a security technique that regulates who or what can view or use resources in a computing environment.
- It is a fundamental concept in security that minimizes risk to the object.
- In other words access control is a selective restriction of access to data.
- In OOPS Access control is implemented through access modifiers.

5. Identify the scope of the variables in the following pseudo code and write its output.

color:= Red
mycolor():
b:=Blue
myfavcolor():
g:=Green
print color, b, g
myfavcolor()
print color, b
mycolor()
print color

OUTPUT:

Red Blue Green Red Blue

Red

Scope of Variables:

Variables	Scope
Color:=Red	Global
b:=Blue	Enclosed
G:=Green	Local

Section - D

Answer the following questions:

(5 Marks)

1. Explain the types of scopes for variable or LEGB rule with example.

SCOPE:

• Scope refers to the visibility of variables, parameters and functions in one part of a program to another part of the same program.

TYPES OF VARIABLE SCOPE:

- ➤ Local Scope
- > Enclosed Scope
- ➤ Global Scope
- ➤ Built-in Scope

LEGB RULE:

- The **LEGB** rule is used to decide the order in which the scopes are to be searched for scope resolution.
- The scopes are listed below in terms of hierarchy (highest to lowest).

Local(L)	Defined inside function/class
Enclosed(E)	Defined inside enclosing functions (Nested function concept)
Global(G)	Defined at the uppermost level
Built-in (B)	Reserved names in built-in functions (modules)

i) LOCAL SCOPE:

- Local scope refers to variables defined in current function.
- A function will always look up for a variable name in its local scope.
- Only if it does not find it there, the outer scopes are checked.
- Example:

• On execution of the above code the variable **a** displays the value 7, because it is defined and available in the local scope.

ii) ENCLOSED SCOPE:

- A variable which is declared inside a function which contains another function definition with in it, the inner function can also access the variable of the outer function. This scope is called enclosed scope.
- When a compiler or interpreter searches for a variable in a program, it first search Local, and then search Enclosing scopes.

• In the above example Disp1() is defined within Disp(). The variable 'a' defined in Disp() can be even used by Disp1() because it is also a member of Disp().

iii) GLOBAL SCOPE:

- A variable which is declared outside of all the functions in a program is known as global variable.
- Global variable can be accessed inside or outside of all the functions in a program.
- Example:

• On execution of the above code the variable **a** which is defined inside the function displays the value 7 for the function call Disp() and then it displays 10, because **a** is defined in global scope.

iv) BUILT-IN-SCOPE:

- The built-in scope has all the names that are pre-loaded into the program scope when we start the compiler or interpreter.
- Any variable or module which is defined in the library functions of a programming language has Built-in or module scope.

2. Write any Five Characteristics of Modules.

The following are the desirable characteristics of a module.

- 1. Modules contain instructions, processing logic, and data.
- 2. Modules can be separately compiled and stored in a library.
- 3. Modules can be included in a program.
- 4. Module segments can be used by invoking a name and some parameters.
- 5. Module segments can be used by other modules.

3. Write any five benefits in using modular programming.

- Less code to be written.
- A single procedure can be developed for reuse, eliminating the need to retype the code many times.
- Programs can be designed easily because a small team deals with only a small part of the entire code.
- Modular programming allows many programmers to collaborate on the same application.
- The code is stored across multiple files.
- Code is short, simple and easy to understand.
- Errors can easily be identified, as they are localized to a subroutine or function.
- The same code can be used in many applications.
- The scoping of variables can easily be controlled.

PREPARED BY