EC315 Topics in Microeconomics with Cross-Section Econometrics Coursework Summary

LEWIS BRITTON

Academic Year 2019/2020

Table of Contents

1	Exam Summary		1
	1.1	Cost-Benefit Analysis Summary	1
	1.2	Program & Policy Evaluation Summary	2
	1.3	Crime & Punishment Summary	3
	1.4	Exam Arithmetic Summary	5

1 Exam Summary

1.1 Cost-Benefit Analysis Summary

- 1. Purpose
- 2. Alternatives
- 3. Who
- 4. C/B Impacts
- 5. Lifetime Impacts
- 6. Monetize:
 - Social Cost: harm done to living organisms
 - Revealed/Stated Preference: willingness to pay or willingness to accept
 - Revealed: shown in behaviour
 - Stated: questionnaires etc.
 - *Time*:
 - Work vs leisure using wage rate
 - Travel time; how much people are willing to trade-off
 - Lives: life expectancy, pay, age, risks taken
 - Natural Resources: AONBs, surveys, investment, regulation
- 7. PV Discounts
 - Social discount rate
 - Intergenerational (more than 50 years)
- 8. NPV of Alternatives
- 9. Sensitivity Analysis
- 10. Recommend

1.2 Program & Policy Evaluation Summary

 ${\bf Cause} \longrightarrow {\bf Intermediaries} \longrightarrow {\bf Effect}$

- 1. Omitted Variable Bias
 - Selection Bias: e.g. grades, income, area of ogigin
 - Selection Bias 2: e.g. effort, determination, stamina
- 2. Randomized Control Trial
 - Unbiased Estimator: $\bar{x} \longrightarrow \bar{\mu}$ (LLN)
 - Unbiased Estimator: randomization
 - σ^2 : "how much of the result is due to chance?"
 - t-tests: causal effect; $(\bar{Y}^T \bar{Y}^C)$
- 3. Regression
 - Dummy Variables: causal variable / group
 - Instrumental Variables: omitted variables (α corr. w/ ε)

1.3 Crime & Punishment Summary

- 1. Supply: $\pi_t = \pi_i c_i w_i p_i(f_i)$
 - i = Individual
 - π_t = Net Total Payoff of Crime
 - π_i = Expected Payoff Per Offense (Minus Costs)
 - $c_i = \text{Cost Incurred if Caught}$
 - w_i = Wage Rate From Non-Criminal Work
 - p_i = Probability of Aprehension & Conviction
 - f_i = Punishment in Convicted
- 2. Normal Distribution
 - Req. $\uparrow \pi$, $\uparrow \delta$, $[\bar{x} \to (Right of Mean)]$
 - Req. $\downarrow \pi$, $\downarrow \delta$, $[\leftarrow \bar{x}(\text{Left of Mean})]$
 - Morals, enjoyment, risk, some demand for significantly higher payoffs etc.
 effect decision
- 3. Demand: $e_i f(v_r, v_l); q$
 - $e_i = \text{Expenditure on Protection}$
 - $v_r = \text{Risk of Victimization}$
 - $v_l = \text{Loss of Victim}$
 - q = Total Crime
- 4. Derivatives
 - $\frac{\partial e_i}{\partial v_i} > 0$: Risk \uparrow , Expenditure \uparrow
 - $\frac{\partial c_i}{\partial e_i} < 0$: Expenditure \uparrow , Cost \uparrow
 - $\frac{\partial \pi_i}{\partial c_i} < 0$: Cost \uparrow , Payoff \downarrow
- 5. Supply / Demand

- ss =Supply of Crime
- dd = Initial Demand
- $\pi\pi$ = Demand After Government Intervention (T)
- MC of Catching Last Criminal $> MB \ [\leftarrow \pi^*, \ q^*]$
- MC of Catching Last Criminal $< MB \ [\pi^*, \ q^* \rightarrow]$

1.4 Exam Arithmetic Summary

1.
$$\pi_A = x_A p_A (x_A + x_B) - x_A$$

2.
$$J = \pi_A + \pi_B$$
; $\frac{\partial J}{\partial x_A} = \frac{\partial \pi_A}{\partial x_A} + \frac{\partial \pi_B}{\partial x_B}$

3. Externalities:
$$\frac{\partial \pi_A}{\partial x_B}$$

• > 0: Positive: "you do
$$\uparrow$$
, my $\pi \uparrow$ "

• < 0: Negative: "you do
$$\uparrow$$
, my $\pi \downarrow$ "

4. Strategic Nature:
$$\frac{\partial \pi_A}{\partial x_A}$$

• > 0: Complements: "you do
$$\uparrow$$
, I do \uparrow "

• < 0: Substitutes: "you do
$$\uparrow$$
, I do \downarrow "

5. Grim Trigger Strategy

•
$$\frac{40}{(1-\delta)} \ge 50 + \frac{30\delta}{(1-\delta)}$$

•
$$40 \ge 50 - 50\delta + 30\delta$$

•
$$\delta \ge \frac{1}{2}$$
: cooperation possible

Tit-for-Tat Strategy

•
$$\frac{40}{(1-\delta)} \ge \frac{50}{(1-\delta^2)} + \frac{30\delta}{(1-\delta^2)}$$

•
$$40 + 40\delta \ge 50 + 20\delta$$

•
$$\delta \ge \frac{1}{2}$$
: cooperation easy