Chapitre 2 : Calcul des propositions Théorie sémantique ou théorie des modèles

1 Introduction

L'attribution d'une valeur de vérité précise à une proposition élémentaire concrète ne relève pas de la logique mais du langage de l'observateur.

Par exemple : interpréter à VRAI la proposition "Il pleut ce matin" est extérieur à la logique. Interpréter la proposition " π est un réel positif" relève des mathématiques.

Le but ici est de formaliser l'interprétation d'une formule (à VRAI ou à FAUX) en fonction des valeurs de vérité des propositions élémentaires qui la composent.

Exemple : considérons la proposition

Pierre parle couramment l'anglais et l'allemand.

Posons p: Pierre parle couramment l'anglais et q: Pierre parle couramment l'allemand. La proposition est donc de la forme $p \wedge q$ (se $lit : p \ et \ q$).

On ne peut pas affirmer que cette proposition est vraie ou fausse. Tout dépend des valeurs de vérité de p et q. Tentons alors, en fonction de celles-ci, d'établir la valeur de vérité de cette proposition.

Pierre parle couramment	Pierre parle couramment	Pierre parle couramment
l'anglais	l'allemand	l'anglais et l'allemand
p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

On fera bien attention ici à ne pas affirmer qu'une proposition est vraie ou fausse, mais à parler de sa **valeur de vérité**, qui n'est pas forcément la même selon l'**interprétation** que l'on a faite des propositions élémentaires qui la composent.

2 Interprétation de n propositions élémentaires

Définition 1. On appelle interprétation d'un ensemble P de n propositions élémentaires une application i de P dans l'ensemble $\{V, F\}$.

Exemple avec n = 3. Soit $P = \{p, q, r\}$.

$$\begin{array}{cccc} i: & P & \rightarrow & \{V, F\}. \\ & p & \mapsto & V \\ & q & \mapsto & F \\ & r & \mapsto & V \end{array}$$

On représente plutôt i ainsi :

Théorème 2.1. Soit n un entier naturel non nul. Il existe 2^n interprétations d'un ensemble P de n propositions élémentaires.

On les représente dans un seul tableau.

Exemples:

Pour n= 1	
	p
i_1	V
i_2	F

Po	Pour n= 2			
	p q			
i_1	V	V		
i_2	V	F		
i_3	F	V		
i_4	F	F		

Pour n= 3			
	p	q	r
i_1	V	V	V
i_2	V	V	F
i_3	V	F	V
i_4	V	F	F
i_5	F	V	V
i_6	F	V	F
i_7	F	F	V
i_8	F	F	F

Remarque : L'ordre dans lequel les propositions élémentaires sont disposées ainsi que celui des interprétations i sont arbitraires. On respectera cependant la disposition conventionnelle proposée ici, pour faciliter la communication, à savoir :

- les propositions élémentaires sont rangées par ordre alphabétique
- on attribuera systématiquement la valeur de vérité V en priorité à la proposition élémentaire située la plus à gauche

3 Définition des connecteurs

Pour définir formellement les connecteurs usuels nous nous appuyons sur notre intuition, sur ce que nous souhaitons formaliser. Il y a cependant parfois un "saut théorique" à accomplir, qui se traduira par l'usage des symboles $\neg, \lor, \land, \rightarrow, \leftrightarrow$ au lieu de NON, OU, ET, si ··· alors, si et seulement si.

On définit les connecteurs par leur table de vérité. On remarquera la ligne en caractères gras : elle permet de retenir facilement ces tables, qui doivent être parfaitement connues.

3.1 Le connecteur unaire *négation* noté ¬

p	¬ p
V	F
F	V

Exemple:

	p:11 fait froid	\neg p : if ne fait pas froid
:	V	F
	F	V

3.2 Le connecteur binaire et noté \wedge

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Exemple: voir l'exemple introductif

"Pierre parle couramment l'anglais et l'allemand"

3.3 Le connecteur binaire *ou inclusif* noté ∨

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Exemple:

p : je mange	q : je ris	$p \lor q$: je mange ou je ris
V	V	V
V	F	V
F	V	V
F	F	F

3.4 Le connecteur binaire implication matérielle noté \rightarrow

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Exemple:

p : je mange	q : je dors	$p \rightarrow q$: si je mange alors je dors
V	V	V
V	F	F
F	V	V
F	F	V

Attention à cette définition peu intuitive :

 $p \to q$ est F seulement pour l'interprétation (V, F) des propositions élémentaires.

3.5 Le connecteur binaire biconditionnelle noté \leftrightarrow

p	q	$p\leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Exemple:

p : je mange	q : je dors	$p \leftrightarrow q$:		
		je mange si et seulement si je dors		
V	V	V		
V	F	F		
F	V	F		
F	F	V		

Ainsi $p \leftrightarrow q$ est interprétée à V si et seulement si les propositions élémentaires ont la même valeur de vérité.

4 Interprétation d'une formule composée

L'interprétation d'une formule composée se fait par le principe de composition des valeurs de vérité :

Soit φ une formule composée. Soit i une interprétation des propositions élémentaires. Sur l'arbre de décomposition de la formule φ on indique à côté de chaque feuille la valeur de vérité de la proposition élémentaire dans l'interprétation i. Puis on remonte l'arbre en indiquant à chaque nœud la valeur de vérité de la sous-formule calculée.

La valeur de vérité finale s'appelle l'interprétation de la formule φ dans l'interprétation i.

Exemple 1: Donner l'interprétation de la formule $\varphi:(p\vee q)\to p$ dans l'interprétation i des propositions élémentaires donnée par :

On complète l'arbre suivant :

Et on obtient :

Le résultat est noté ainsi :

	p	q	$(p \lor q)$	\rightarrow	p
i_3	F	V		F	

La **table de vérité** d'une formule φ donne la valeur de vérité de φ dans chacune des interprétations des propositions élémentaires.

	p	q	$(p \lor q)$	\rightarrow	p
i_1	V	V	V	V	V
$\overline{i_2}$	V	F	V	V	V
$\overline{i_3}$	F	V	V	F	F
i_4	F	F	F	V	F

Exemple 2:

	p	q	r	$\psi : p \to (q \land r)$
$\overline{i_1}$	V	V	V	V V V
i_2	V	V	F	V F F
i_3	V	F	V	VF F
i_4	V	F	F	VF F
i_5	F	V	V	F V V
i_6	F	V	F	F V F
i_7	F	F	V	F V F
i_8	F	F	F	F V F

5 Modèles, contre-exemples d'une formule. Formules équivalentes

Définition 2. Soit une formule φ construite sur un ensemble P de propositions élémentaires. On appelle **modèle de** φ une interprétation des propositions élémentaires pour laquelle φ est interprétée à V.

On appelle **contre-exemple de** φ une interprétation des propositions élémentaires pour laquelle φ est interprétée à F.

L'ensemble des modèles de φ est noté \mathcal{M}_{φ} .

Dans l'exemple $1: \mathcal{M}_{\varphi} = \{i_1, i_2, i_4\}$ et i_3 est un contre-exemple de φ .

Dans l'exemple 2 : $\mathcal{M}_{\psi} = \{i_1, i_5, i_6, i_7, i_8\}$ et i_2, i_3, i_4 sont des contre- exemples de ψ .

Définition 3. Soit une formule φ construite sur un ensemble P de propositions élémentaires. On appelle **tautologie** une formule qui n'admet que des modèles. Une formule qui n'admet que des contre-exemples s'appelle une **contradiction**.

La phrase du métalangage : " φ est une tautologie" se note : $\models \varphi$.

" ψ est une contradiction" se note : $\psi \vDash$.

Le symbole ⊨ est donc un métasymbole. Il s'appelle le "double tourniquet sémantique".

Exemples : (Construire les tables de vérité des formules ci-dessous pour vérifier que ce sont des tautologies ou des contradictions.)

Définition 4. On dit que deux formules A et B de $\mathcal{F}(P)$ sont **équivalentes** si elles ont les mêmes modèles (autrement dit si elles ont la même table de vérité). On note alors : A éq B.

Cela équivaut à : $\mathcal{M}_A = \mathcal{M}_B$

Exemples: $\neg \neg p \text{ \'eq } p$, $(p \rightarrow q) \text{ \'eq } (\neg p \lor q)$.

Théorème 5.1. A éq B si et seulement si $\vDash (A \leftrightarrow B)$

6 Réciproque. Contraposée

Définition 5. Soit l'implication $p \to q$ définie sur un ensemble P de propositions élémentaires.

- 1. $q \to p$ est appelée **réciproque** de $p \to q$.
- 2. $\neg q \rightarrow \neg p$ est appelée **contraposée** de $p \rightarrow q$.

Exemple : Considérons la proposition : *Si je gagne au loto alors j'achète une Ferrari*, qui est de la forme $p \rightarrow q$.

Sa réciproque est donc : Si j'achète une Ferrari c'est que j'ai gagné au loto.

Sa contraposée est : Si je n'achète pas de Ferrari c'est que je n'ai pas gagné au loto.

Proposition 1. Soit l'implication $p \to q$ définie sur un ensemble P de propositions élémentaires. $p \to q$ est équivalente à sa contraposée :

$$p \to q \ \acute{e}q \ \neg q \to \neg p$$

Démonstration : Construisons les tables de vérité des deux formules.

	p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
i_1	V	V	V	F V F
$\overline{i_2}$	V	F	F	VFF
i_3	F	V	V	F V V
$\overline{i_4}$	F	F	V	VVV

Les formules $p \to q$ et $\neg q \to \neg p$ ont exactement les mêmes modèles donc elles sont équivalentes.

Attention : $p \to q$ n'est pas équivalente à sa réciproque $q \to p$. Construisons les tables de vérité des deux formules :

	p	q	$p \rightarrow q$	$q \rightarrow p$
i_1	V	V	V	V
i_2	V	F	F	V
$\overline{i_3}$	F	V	V	F
$\overline{i_4}$	F	F	V	V

 i_3 est un modèle de $p \to q$ mais un contre-exemple de $q \to p$. Les deux formules ne sont donc pas équivalentes.

7 Lois de Morgan

Proposition 2. Soit p et q des propositions élémentaires. Alors :

1.
$$\neg (p \land q) \not\in q \neg p \lor \neg q$$

2.
$$\neg (p \lor q) \ \acute{e}q \ \neg p \land \neg q$$

Démonstration:

	p	q	\neg ($p \lor q)$	$\neg p \land \neg q$		$\neg(p \land q)$		$\neg p \lor \neg q$			
i_1	V	V	F	V	F	F	F	F	V	F	F	F
i_2	V	F	F	V	F	\mathbf{F}	V	V	F	F	V	V
i_3	F	V	F	V	V	F	F	V	F	V	V	F
i_4	F	F	V	F	V	V	V	V	F	V	V	V

 $\neg(p\lor q)$ et $\neg p\land \neg q$ ont exactement les mêmes modèles donc elles sont équivalentes. Il en est de même pour $\neg(p\land q)$ et $\neg p\lor \neg q$.

Ces deux équivalences sont appelées lois de De Morgan, usuellement appelées lois de Morgan. Elles sont utilisées pour écrire la négation d'une proposition de la forme $p \wedge q$ ou $p \vee q$ de sorte que la négation porte directement sur les propositions p et q.

Exemples: Ecrivons en français la négation des propositions suivantes:

- 1. Les voitures de ce garage sont neuves et bien équipées. Les voitures de ce garage ne sont pas neuves ou pas bien équipées.
- Ce soir j'irai au restaurant ou au cinéma.
 Ce soir je n'irai ni au restaurant ni au cinéma.