MEME15203 Statistical Inference

Assignment 2

UNIVERSITI TUNKU ABDUL RAHMAN

Name: Student ID: Mark: /100

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2025 Due by: 08/03/2025

Q1. Consider

$$f(x|\theta) = pI(x=0) + (1-p)\frac{(\ln \theta)^x}{\theta x!}, x = 0, 1, 2, \dots$$

Suppose parameters are $p \in [0,1]$ and $\theta \geq 0$. Then, for X_1, X_2, \ldots, X_n iid with this marginal distribution, find a method of moments estimator for the parameter vector (p,θ) based on the first two sample moments.

(15 marks)

- Q2. Consider a random sample of size n from a distribution with discrete pdf $f(x : p) = p(1-p)^x$; x = 0, 1, ..., zero otherwise.
 - (a) Find the MLE of p.
 - (b) Find the MLE of $\theta = \frac{1-p}{p}$.
 - (c) Find the CRLB for variance of unbiased estimators of θ .
 - (d) Is MLE of θ a UMVUE?
 - (e) Is MLE of θ MSE consistent?
 - (f) Find the asymptotic distribution of the MLE of θ .

(25 marks)

- Q3. Let Y_1, \ldots, Y_n be independent where $Y \sim EXP(\beta x_i)$.
 - (a) If y_1, \ldots, y_n are observed, derive the MLE $\hat{\beta}$ based on the pairs $(x_1, y_1), \ldots, (x_n, y_n)$.
 - (b) Determine the distribution of the estimator $\hat{\beta}$.
 - (c) Determine the mean and varaince of the estimator $\hat{\beta}$.
 - (d) Find the CRLB of the β .

(20 marks)

- Q4. Let Y_1, \ldots, Y_n be independent where $Y \sim POI(\lambda x_i)$.
 - (a) If y_1, \ldots, y_n are observed, derive the MLE $\hat{\lambda}$ based on the pairs $(x_1, y_1), \ldots, (x_n, y_n)$.

MEME15203 Statistical Inference

- (b) Find a constant c such that $c\hat{\lambda}$ follow the Poisson distribution. State the corresponding parameter,
- (c) Determine the mean and varaince of the estimator $\hat{\lambda}$.
- (d) Determine the asymptotic distribution of the estimator $\hat{\lambda}$.

(20 marks)

Q5. Suppose $X|\theta \sim U(\theta - \frac{1}{5}, \theta + \frac{4}{5})$ and that a prior distribution of θ is $N(\mu, 1)$. Find the Bayes estimator of θ under squared error loss.

(20 marks)