# Data & Web Mining

## **General information**

Moodle

- Software:
  - Jupyter Notebooks: Python-based environment
  - You may bring your laptop with
  - Google Colab <a href="https://colab.research.google.com/">https://colab.research.google.com/</a>
  - or Anaconda <a href="https://www.anaconda.com/products/individual">https://www.anaconda.com/products/individual</a>
  - or DataSpell <a href="https://www.jetbrains.com/dataspell">https://www.jetbrains.com/dataspell</a>
  - ot VSCode <a href="https://code.visualstudio.com/">https://code.visualstudio.com/</a>
- Exam: please wait for the last slide
- Teaching Material
  - Introduction to Data Mining, Global (or Second) Edition, Kumar et al
  - Book excerpts. Check moodle and references at the end of each set of slides.
- Contact
  - claudio.lucchese@unive.it
  - Always check the moodle !!!!!!!

#### DATA AND WEB MINING

| Spazio Moodle                    | Link allo spazio del corso   |  |  |
|----------------------------------|------------------------------|--|--|
| Sede                             | LNEZIA                       |  |  |
| Anno corso                       | 3                            |  |  |
| Periodo                          | I Semestre                   |  |  |
| Settore scientifico disciplinare | INF/01                       |  |  |
| Livello laurea                   | Laurea                       |  |  |
| Crediti formativi universitari   | 6                            |  |  |
| Modalità                         | In presenza                  |  |  |
| Codice insegnamento              | CT0509 (AF:337527 AR:178736) |  |  |
| Titolo corso in inglese          | DATA AND WEB MINING          |  |  |
| Anno accademico                  | 2021/2022                    |  |  |
|                                  |                              |  |  |



## The Data Deluge

- "When the Sloan Digital Sky Survey started work in 2000, its
  telescope in New Mexico collected more data in its first few weeks
  than had been amassed in the entire history of astronomy.
  Now, a decade later, its archive contains a whopping 140 terabytes of
  information. A successor, the Large Synoptic Survey Telescope, due to
  come on stream in Chile in 2016, will acquire that quantity of data
  every five days."
- "[..] Wal-Mart, a retail giant, handles more than 1m customer transactions every hour, feeding databases estimated at more than 2.5 petabytes, the equivalent of 167 times the books in America's Library of Congress [...]"
- "Facebook, a social-networking website, is home to 40 billion photos."



# Plucking the diamond from the waste

- "Credit-card companies monitor every purchase and can identify fraudulent ones with a high degree of accuracy, using rules derived by crunching through billions of transactions."
  - Also check https://www.bloomberg.com/news/articles/2018-08-30/google-and-masterc ard-cut-a-secret-ad-deal-to-track-retail-sales
- "Mobile-phone operators, meanwhile, analyse subscribers' calling patterns to determine, for example, whether most of their frequent contacts are on a rival network."
- "[...] Cablecom, a Swiss telecoms operator. It has reduced customer defections from one-fifth of subscribers a year to under 5% by crunching its numbers."
- "Retailers, offline as well as online, are masters of data mining."

# The Long Tail



## The Data Deluge



•"[...] mankind created 150 exabytes (billion gigabytes) of data in 2005. This year, it will create 1,200 exabytes.

Merely keeping up with this flood, and storing the bits that might be useful, is difficult enough.

Analysing it, to spot patterns and extract useful information, is harder still."

The Economist, Feb 2010

# **Knowledge Discovery in Database**

Generalize to the future Knowledge discovery is iterative. As you uncover "nuggets" in the data, you learn to ask better questions.

The non–trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data.

-- Fayyad, Piatetsky-Shapiro, Smyth [1996]

Not something we already know

For our task. Actionable

Process leads to human insight.
Black-box methods are sometimes inappropriate.
Visualization is *crucial* for human comprehension.

# The KDD process



## In Web search there are plenty of KDD processes



## The Netflix Contest

- Netflix Company
  - DVD rental and video streaming

#### •Cinematch:

- "Its job is to predict whether someone will enjoy a movie based on how much they liked or disliked other movies"
- "To qualify for the \$1,000,000 Grand Prize, the accuracy of your submitted predictions on the qualifying set must be at least 10% better than the accuracy Cinematch"
- "Contest begins October 2, 2006"
- •Winners awarded on September 21, 2009.

## **Yahoo! Learning to Rank Challenge**

- 2010 scientific contest (no money)
- One of the datasets included:
  - 20K queries, 470K document, 519 features
  - This means ~24 candidate results per query
  - Each document has a label in [0,4]
- The goal is to predict the correct ranking on an unseen test set

•In this course, we will study the winning algorithm of this contest.

## Which kind of data can we mine?



study this problem for

|            | D1 | D2 | D3 | D4 | D5 |
|------------|----|----|----|----|----|
| complexity | 2  |    | 3  | 2  | 3  |
| algorithm  | 3  |    |    | 4  | 4  |
| entropy    | 1  |    |    | 2  |    |
| traffic    |    | 2  | 3  |    |    |
| network    |    | 1  | 4  |    |    |

Term-document matrix

| Tid | Home<br>Owner | Marital<br>Status | Taxable<br>Income | Defaulted<br>Borrower |
|-----|---------------|-------------------|-------------------|-----------------------|
| 1   | Yes           | Single            | 125K              | No                    |
| 2   | No            | Married           | 100K              | No                    |
| 3   | No            | Single            | 70K               | No                    |
| 4   | Yes           | Married           | 120K              | No                    |
| 5   | No            | Divorced          | 95K               | Yes                   |
| 6   | No            | Married           | 60K               | No                    |
| 7   | Yes           | Divorced          | 220K              | No                    |
| 8   | No            | Single            | 85K               | Yes                   |
| 9   | No            | Married           | 75K               | No                    |
| 10  | No            | Single            | 90K               | Yes                   |





# KDD is the meeting point of several disciplines



# Data Mining allows for a new kind of data analysis

#### Data-driven

- The computer, i.e., the DM algorithms, generates and tests million of hypothesis and presents the bests ones
- New knowledge is extracted automatically with a smaller contribution from the analyst, and may generate novel and unexpected knowledge

## •Example:

• A big company (e.g., Amazon, Spotify), exploits a data mining algorithm to find groups of users with similar interests. Those users are likely to purchase the same items. An item purchased by a user can be recommended to the other users in the same group. (profiling for recommentation)

## **Data Mining versus Statistics**

#### Statistics:

- Primary analysis: data is collected for a specific analysis, the design of the data collection is part of the process
- Random samples, statistically significant samples
- Usually small amounts of data
- Statistical significance

#### Data mining:

- Secondary analysis: analysis is run on data usually collected for another purpose
- Convenience sample
- Large amounts of data
- Other measures of interest (including human understandability)

# **Data Quality Issues**

- Examples:
  - Noise: original values are altered
  - Missing:
  - Duplicate data
    - Solutions:
      - Removal of noisy data,
      - Estimate missing values,
      - Discard duplicates.
  - Outliers
    - Objects considerably different from the others



## **Typologies of DM tasks**

#### Prediction Methods

• Use some variables to predict unknown or future values of other variables.

## Description Methods

• Find human-interpretable patterns that describe the data.

# **Data Mining tasks**



# Phylogenetic trees



## An example from astronomy

- Input:
  - A large image database coming from radar measurements of stars luminosity over time
- Data Mining:
  - clustering: segmentation in groups of similar elements
- Output:
  - A group of images unexpectedly different from the others...



# An example from astronomy



## The motto

• "Data! Data! Data!" he cried impatiently.
"I can't make bricks without clay."



## **Correlation vs. Causation**

### US spending on science, space, and technology correlates with

#### Suicides by hanging, strangulation and suffocation



#### Per capita consumption of margarine



- Both are 99% correlated!
  - Check <a href="http://www.tylervigen.com/spurious-correlations">http://www.tylervigen.com/spurious-correlations</a> for more

## Written + Oral Exam

- Written Exam
  - ~ 6 questions/exercises about the notions, methods and concepts discussed
- Oral Exam: Lab project discussion
  - Only if written exam is sufficient
  - Next Week!
  - Groups are allowed
    - larger groups = more work
  - To be delivered
    - Jupyter/Colab Notebooks and 5-page report via Moodle
  - Evaluation
    - Quality of the report, quality of the code, number of methods experimented, depth of the analysis
  - Deadline
    - Same day of the written exam

## Want to start?

