OGDEN AIR LOGISTICS CENTER HILL AFB UTAH PROPELLANT L--ETC F/G 21/8.2 LGM-30B, STAGE II DISSECTED MOTORS.(U)
MAR 79 N M HANSEN
MANCP-414(79)
NL AD-A071 402 UNCLASSIFIED 1 of 2 AD A071402 C legition.

HEADQUARTERS
OGDEN AIR LOGISTICS CENTER
UNITED STATES AIR FORCE
HILL AIR FORCE BASE, UTAH, 84056

LGM-30 B
STAGE II
DISSECTED
MOTORS
TEST REPORT

PROPELLANT LAB SECTION

MANCP REPORT NR 414(79)

MARCH 1979

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Accession For MANCP REPORT -414(79) NTIS GRALI MWRM Project M83258C DDC TAB Unannounced Justification LGM-30B, Stage II By DISSECTED MOTORS' Distribution/ Availability Codes TEST REPORT eni-annual test rept. Availand/or Dist special noal M. Hanson NEAL M. HANSEN, Chemist Engineering & Statistical Review By EDWARD J. EPICKSON, Statistician GLENN S. PORTER, Project Engineer Service Engineering Data Analysis Unit Recommended Approval By Sayl anderson for Leonidas Brown, Chief Component & Combustion Test Unit Physical & Mechanical Test Unit Approved By on FWwods DON F. WOODS, Chief Propellant Lab Section

Industrial Products & Landing Gear Division
Directorate of Maintenance
Ogden Air Logistics Center
United States Air Force
Hill Air Force Base, Utah 84056

March 1979

407387

DISTRIBUTION STATEMEN

Approved for public release Distribution Unlimited 13

ABSTRACT

This report contains test data from propellant and case bond materials from Minuteman Stage II dissected motors. Testing was performed in accordance with Service Engineering General Test Directive GTD-1 Dissect dated 28 June 1974 and Project M83258C. Statistical analysis includes data from both inner (ANP 2864) and outer (ANP 2862) propellant. Test samples were obtained from two dissected motors this test period. Data obtained from these two motors have been combined with earlier test data from these same two motors and from a third motor.

Linear regression plots using unique symbols to identify the three motors were used to indicate trends. Most of the propellant specimens were prepared and tested in the axial orientation, that is, parallel to the longitudinal axis of the motor.

TABLE OF CONTENTS

	Page
Abstract	11
List of Data Tables	iv
List of Figures	v
References	viii
Glossary of Symbols and Terms	ix
Introduction	112
Statistical Discussion	3
Test Results	5
Conclusions	10
Recommendations	11
Distribution	130
DD 1473	131

LIST OF DATA TABLES

Table		Page
1	Low and Very Low Rate Tensile, Outer Axial	17
2	Low and Very Low Rate Tensile, Inner Axial	20
3	Low and Very Low Rate Tensile, Inner and Outer Groups	23
4.	Bipropellant Tensile, Raw Data	26
5	Biaxial Tensile, Outer Raw Data	28
6	Biaxial Tansile, Inner Raw Data	30
7	Low Rate Pressurized Tensile, Outer Group	32
8	Low Rate Pressurized Tensile, Inner Group	33
9	High Rate Triaxial Tensile, Raw Data	34
10	High Rate Hydrostatic Tensile, Raw Data	35
11	Stress Relaxation, Grouped, 0.5% Strain	36
12	Stress Relaxation, Axial, 0.5% Strain	40
13	Stress Relaxation, Outer, 3% Strain	43
14	Stress Relaxation, Inner, 3% Strain	45
1.5	Burn Rate, 350 & 500 psi Initial Pressure	47
16	TCLE, Raw Data	48
17	TCLE, Equations of Curves	49
18	Hardness, Raw Data	50
19	Case Bond, Raw Data	51
20	Bulk Modulus, Raw Data, Motor 0027788 (recalculated)	52
21	Bulk Modulus, 1977 Data (recalculated)	53
22	Bulk Modulus, Summary	54
23	Bulk Modulus, 1978 Data	55
24	Sol Gel. Raw Data	56

LIST OF FIGURES

Figures		Page
1	Dissection Layout of Cuts, Locations, and Section Numbers	12
2	Sections 3 and 4 Segment Layout and Identification	13
3	Sample Orientation	14
4	Bond Shear Specimen	15
5	Bond Tensile Specimen (sleeved)	16
	Regression Plot, Tensile, 0.0002 in/min	
6	Outer, Maximum Stress	58
7	Outer, Strain at Rupture	59
8	Outer, Modulus	60
9	Inner, Maximum Stress	62
10	Inner, Strain at Rupture	63
11	Inner, Modulus	64
	Regression Plot, Tensile, 2.0 in/min	
12	Outer, Maximum Stress	66
13	Outer, Strain at Rupture	67
14	Outer, Modulus	68
15	Inner, Maximum Stress	70
16	Inner, Strain at Rupture	71
17	Inner, Modulus	72
	Regression Plot, Biaxial Tensile, 0.2 in/min	
18	Outer, Maximum Stress	74
19	Outer, Strain at Rupture	75
20	Outer, Modulus	76
21	Inner. Maximum Stress	78

LIST OF FIGURES (cont)

Figure		Page
22	Inner, Strain at Rupture	79
23	Inner, Modulus	80
	Regression Plot, Triaxial Tensile, 1750 in/min, 500 psi	
24	Outer, Maximum Stress	82
25	Outer, Strain at Rupture	83
26	Outer, Modulus	84
27	Inner, Marimum Stress	86
28	Inner, Strain at Rupture	87
29	Inner, Modulus	88
	Regression Plot, High Rate Hydrostatic Tensile, 1750 in/min, 500 psi	
30	Outer, Maximum Stress	90
31	Outer, Strain at Rupture	91
32.	Outer, Modulus	92
33	Inner, Maximum Stress	94
34	Inner, Strain at Rupture	95
35	Inner, Modulus	96
	Stress Relaxation Master Stress-Strain Curves	
36	Outer, Modulus, 5% Strain	97
37	Outer, Log Et, 5% Strain	98
38	Inner, Modulus, 5% Strain	99
39	Inner, Log Et, 5% Strain	100
40	Outer, Modulus, 3% Strain	101
41	Outer, Log Et, 3% Strain	102
42	Inner, Modulus, 3% Strain	103
43	Inner, Log Et. 3% Strain	104

LIST OF FIGURES (cont)

Figure		Page
	Regression Plot, Burning Rate, 500 psi	
44	Outer	106
45	Inner	108
	Regression Plot, TCLE	
46	Outer, Below Glass Point	110
47	Outer, Above Glass Point	111
48	Inner, Below Glass Point	112
49	Inner, Above Glass Point	113
	Regression Plot, Hardness	
50	Outer	115
51	Inner	117
	Regression Plot, Sol Gel	
52	Gel Swell Ratio, Outer	119
53	Wt. Swell Ratio, Outer	120
54	Mass Density, Outer	121
55	Cross Link Density, Outer	122
56	% Extractables, Outer	123
57	Gel Swell Ratio, Inner	125
58	Wt. Swell Ratio, Inner	126
59	Mass Density, Inner	127
60	Cross Link Density, Inner	128
61	% Extractables, Inner	129

REFERENCES

Title and Report Nr

Minuteman Stage II Surveillance Quarterly Report Wespon System 133A, Report Nr 214(71)	Jun 1971
Propellant Test Report, LGM-30 A & B Stage II Phase VI Series II, Report Nr 259(72)	Nov 1972
Air Force Contract F42600-72-2002 Aerojet Solid Propulsion Company	1972
LGM-30 Second Stage Component Materials Laboratory Testing, Service Engineering Division Directorate of Material Management, Test Directive Nr GTD-20 Amendment 3	Jul 1972
LCM-30 Stage II Dissected Motors Test Report Nr 269(73)	Jun 1973
LGM-30B Stage II Dissected Motors Test Report Nr 338(76)	May 1976
Ten Year Aging and Storage Program, Wings I Through V Minuteman Second-Stage Motors And Components, Aerojet-General Report 0162-01FAS-R	Nov 1967
LGM-30 Stage II Dissected Motors Test Report Nr 384(77)	Dec 1977

GLOSSARY OF SYMBOLS AND TERMS

Symbol .

F

Y

Definition

Crosshead Speed	The rate of travel of the crosshead
	which pulls on a tensile specimen.
	Dimensions: in/min

Dimensions:

CSA Cross-sectional Area. Dimensions:

DSC Differential Scanning Calorimetry

D(t) Creep Compliance - ratio between strain and stress at a given time following application of a constant stress.

Dimensions: in/in/psi

DTA Differential Thermal Analysis

E Young's Modulus - ratio between stress (acting to change length) and the strain produced by this stress. It is calculated from a portion of the curve where stress and strain are linearly related. Dimensions: 1bs/in2

EGL Effective Gage Length. Dimensions: in

Tensile strain (fractional change in em length) at maximum stress. Listed as EM in GO85. Dimensions: in/in

Tensile strain at rupture. Listed as ER er in GO85. Dimensions: in/in

E(t) Stress Relaxation Modulus - ratio between stress and strain at a given time following application of a constant strain. Dimensions: 1bs/in2

> The ratio of the sum of the deviations from the regression line to (SE) 2. This calculated value is compared with a table of critical values to determine whether or not the variation from the regression line

is significant.

Cohesive Tear Energy. Dimensions: 1b/in

GLOSSARY OF SYMBOLS AND TERMS (CONT)

Symbol Symbol	Definition
JANNAF	Joint Army, Navy, NASA & Air Force Committee
MANCP	Propellant Laboratory Section, Ogden ALC
N	Number of test specimens represented
Ogden ALC	Ogden Air Logistics Center, Air Force Logistics Command
Linear Regression	A line with the general equation Y = a + bx which best represents the trend of the mean test values with respect to time.
R	Linear Correlation Coefficient. It is the slope of the regression line corrected by the standard deviation of x over the standard deviation of y. The calculated value of R is compared with a table of critical values to determine whether or not the correlation of the samples is significant.
Sm	Maximum tensile stress (normal force per unit cross-sectional area). Listed as SM in GO-85, Dimensions: psi
Sr	Tensile stress at rupture. Listed as SR in GO-85, Dimensions: psi
Sy	Standard deviation (square root of variance)
s_B	Standard error of estimate of the regression coefficient.
$\mathbf{s}_{\mathtt{E}}$	Standard deviation of the data about the regression line (also $S_{y.x}$).
Strain Rate	The crosshead speed divided by the EGL. Dimensions: in/in/min
t	The ratio of the slope of the regression line to $S_{\rm B}$. The calculated value of t is compared with a table of critical values to determine whether or not the slope of the regression line is significant.

GLOSSARY OF SYMBOLS AND TERMS (CONT)

Symbol	Definition
TCLE	Thermal Coefficient of Linear Expansion. Dimensions: in/in/°C
$T_{\mathbf{g}}$	Glass Transition Temperature. Dimension: OC
TGA	Thermogravimetric Analysis
Variance	The sum of squares of deviations of the test results from the mean of the series after division by one less than the total number of test results.
3-Sigma Band	The area between the upper and lower 3-sigma limits. Presuming normal distribution, it can be expected that 99.73% of the inventory represented by the test samples would fall within this range.
90-90 Band	Assuming normal distribution, it can be stated with 90% confidence that 90% of the inventory represented by the test samples would fall within this range.
Significant	As used in the statistical sense, means a difference unlikely to have been the result of random sampling from some specified population.

Standard Deviation

S.D.

INTRODUCTION

A. PURPOSE:

- To provide information on the structural reliability of the propellant and insulation materials in LGM-30 Stage II Motors in support of the Safeguard Program.
- 2. To provide age versus physical property trends, using statistical analysis as an aid in determining shelf/service life predictions of the motor's propellant.
- To detect degradation of propellant and insulation materials physical properties, due to aging or environmental conditions.

B. BACKGROUND:

Since 1963, materials property testing has been performed on propellant specimens prepared from cartons of propellant used in motor manufacture.

Similarly, insulation materials have been tested.

In 1971, all laboratory prepared insulation materials and case to propellant bond specimens were destroyed in a conditioning chamber malfunction. This incident, coupled with near depletion of propellant carton samples, necessitated a search for other sources of test materials. From a Force Modernization Program, some older motors became available for testing. Three motors were selected as being representative of the inventory and were dissected for testing. The oldest one, Motor S/N 0022135 is 6.9 months older than Motor S/N 0022583, which in turn is 6.2 months older than Motor S/N 0022788. To date, five test periods have been completed at annual intervals. There are no test results on Motor S/N 0022583 propellant this test period because the last of the available

material was tested the previous test period. Dissection of a replacement is being negotiated.

The last of the insulation materials from all three motors was tested the previous test period, thus there are no insulation materials test results in this report. Some case bond material from the two remaining motors was available and test results are included.

C. DISSECTION:

The motors were dissected and cut into segments as shown in Figures 1 and 2. Propellant specimen orientations are shown in Figure 3.

The case bond shear and tensile specimens are illustrated in Figures 4 and 5 respectively.

D. MOTOR DATA:

Motor Nr	Cast Date	Age at Test
0022135	63162	15.0 years
0022583	64008	Not applicable
0022788	64197	13.7 years

Each motor contains ANP 2862 (Outer) and ANP 2864 (Inner) propellant.

Manufacturer: Aerojet Solid Propulsion Company.

STATISTICAL ANALYSIS

The objective of this statistical analysis is to determine whether or not any aging trends are demonstrated by accumulated test data in order to assist Service Engineering to more accurately predict motor serviceability.

Propellant was made available for testing and statistical analysis to obtain an overall view of the aging trends affecting the Second Stage Dissected Motor Program. In the past, carton data and dissected motor data were combined to yield sufficient samples to perform the analysis. Since there is now sufficient dissected motor data, carton data will not be included in the analysis. This will eleminate a further biasing factor in the results.

A Multi-symbol Regression Analysis Program was used to determine aging trends. The sampling is combined for each test parameter in a single regression analysis. The linear equation (Y = a + bX) was found to be the best fit model for the data in this report. A composite population aging trend line was then calculated accepting the fact that individual aging of different motors may be masked.

The Multi-symbol Program uses a unique plotting code for each motor on the regression plots. This method of data plotting allows a visual display of the overall relationship between motors and how they relate to the overall least square aging trend line.

The regression program uses an analysis with individual data points from different time periods combined to establish a least squares aging trend line for the overall data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level 90% of the population falls within this interval. This tolerance interval was extrapolated to a maximum of 24 months to give an indication of the statistical significance of the slope of any aging trends. The computer tolerance interval about the composite regression line is wider than what the tolerance interval would be about any individual motor regression line because of the increased data spread introduced by combining data from different motors. The 't' values and the significance of this statistic, which are reported for each regression model, gives an indication of the "statistical significance" of the slope of the aging trend in the Y-axis. Data and regression trend lines were plotted utilizing an IBM-360/65 computer.

The accuracy of the statistical inferences improves as the sampling becomes larger. An analysis of the slope of the trend lines revealed the majority are becoming flatter:

Motor	Symbol
0022135	•
0022583	0
0022788	Δ

TEST RESULTS

Because of rather extensive testing, the propellant tensile test results are presented in tabular form rather than as a narrative.

A. Tensile Test Results:

1. Uniaxial Tensile

Propellant	CHS (1)	Test	Slope (2)	Slope (3)
Outer	0.0002	Maximum Stress	FL	N
		Strain at Rupture	FL	N
		Modulus	N.C.	N
Inner	0.0002	Maximum Stress	FL	S
		Strain at Rupture	FL	S
		Modulus	FL	S
Outer	2.0	Maximum Stress	N.C.	s
		Strain at Rupture	N.C.	N
		Modulus	N.C.	S
Inner	2.0	Maximum Stress	N.C.	s
		Strain at Rupture	N.C.	N
		Modulus	N.C.	N

For regressions see Figures 6 thru 17. Raw data for this test period are in Tables 1 thru 4.

2. Biaxial Tensile

Propellant	CHS(1)	Test	Slope(2)	Slope (3)
Outer	0.2	Maximum Stress (4) Strain at Rupture Modulus	N.C. N.C. N.C.	S N N
Inner	0.2	Maximum Stress Strain at Rupture Modulus	N.C. N.C. N.C.	N N N

For regressions see Figures 18 thru 23. Raw data for this test period are in Tables 5 thru 8.

3. High Rate Triaxial Tensile

<u>Propellant</u>	CHS (1)	Test	Slope(2)	Slope(3)
Outer	1750 at	Maximum Stress	N.C.	N
	500 psi	Strain at Rupture	FL	S
		Modulus(4)	St	S
Inner	1750 at	Maximum Stress	St	S
	500 ps1	Strain at Rupture	FL	S
		Modulus (4)	FL	S

For regressions see Figures 24 thru 29: Raw data for this test period is in Table 9.

4. High Rate Hydrostatic Tensile

Propellant	CHS(1)	Test	Slope(2)	Slope(3)
Outer	1750 at	Maximum Stress	St	S
	500 psi	Strain at Rupture	FL	S
		Modulus	St	S
Inner	1750 at	Maximum Stress	N.C.	N
	500 psi	Strain at Rupture	FL	S
		Modulus	St	S

For regressions see Figures 30 thru 35. Raw data for this test period is in Table 10.

NOTES:

- (1) CHS = crosshead speed in inches per minute.
- (2) St means the slope obtained this test period may be increasing from that indicated in the last report. FL means that the indicated slope this test period may be flatter than indicated the last test period. N.C. indicates that the slopes obtained this test period could not be directly compared with slopes obtained the previous test period.
 - (3) S means statistically significant. N means not statistically significant.
- (4) The slope indicates a rather sharp decreasing trend. The most probable cause is insufficient data to establish a realistic trend line plus the variance between motors.

B. Stress Relaxation Master Curves at 0.5 and 3.0 Percent Strain:

The relaxation modulus results at -65° and -40°F were not used. For a single plot to include the modulus values covering a temperature range from -65° to +180° the Y-axis must span from 0 to 90,000 psi. This reduces the visibility at the low end of the curve. The master stress/strain curves are shown in Figures 36 thru 43. The raw data are in Tables 11 thru 14.

C. Burning Rate:

Both outer and inner regressions at 500 psi initial pressure have a trend line with a flatter slope (approaching a zero slope line) than in previous reports due to the accumulation of more data. The regression slope for outer propellant is statistically significant and the inner is not significant (Figures 44 and 45). Raw data is in Table 15.

D. TCLE (Thermal Coefficient of Linear Expansion):

The regressions below the glass point have a flatter slope than the previous test period for both inner and outer propellant. The regression showed a statistically significant decrease at the last test period while a non-significant trend is shown here.

The regressions above the glass point have a flatter slope than the previous test period for both inner and outer propellant. Both are statistically significant. See Figures 46 thru 49. Raw data for this test period are in Tables 16 and 17.

The TCLE is defined as the change in length per unit of length in turn divided by the change in temperature. The TCLE varies with temperature, thus the temperature range for the TCLE must be known. Equations of the TCLE curves are given to simplify determining the TCLE over shorter

temperature ranges within the ranges used in the testing.

E. Hardness:

The outer hardness has a statistically significant decreasing trend and the inner hardness a statistically significant increasing trend. See Figures 50 and 51. Raw data is in Table 18.

F. Additional Testing:

Additional raw data on propellant and case bond material is included where data were not available for regression analysis. This data is in Table 19. No abnormalities were observed during this test period.

G. Bulk Modulus:

During the 1978 test period it was discovered the bulk modulus calculated from 0 to 200 psi was comparatively low and when calculated from 200 to 400 psi, 200 to 600 psi, etc. was higher and virtually constant. This method of calculation gives a more realistic presentation than previously wherein the calculations were from 0 to 200 psi, 0 to 400 psi etc., and the bulk modulus continuously increased. Accordingly, the bulk modulus from the 1977 report (MANCP Nr 384(77)) was recalculated to correspond to the improved presentation.

An example from the 1977 data is given in Table 20, "Bulk Modulus, Motor 0022788 Inner, Specimen Nr 2", under the heading, "1977 Data as Originally Reported". The same data recalculated in 200 psi intervals, 0 to 200 psi, 200 to 400 psi etc., to 2000 psi is shown in the same table

under the heading, "1977 Data Recalculated". The two answers, 8.33×10^{-5} and 11.11×10^5 are caused by a 1 millivolt difference in test equipment readings, the limit of accuracy at the time. This was improved to 0.5 millivolt by the time the 1978 testing was done.

Because the bulk modulus is nearly constant above 200 psi, the 1977 data was recalculated for the ranges 0 to 200, 200 to 1400, and 200 to 2000 psi. The results are in Table 21, "Bulk Modulus, 1977 Data Recalculated". The range 200 to 1400 psi was included because in 1978 this was the maximum pressure used. The one number, bulk modulus 200 to 1400 psi can, with little error, be used over the range 200 to 2000 psi.

A side by side comparison of 1977 data recalculated and 1978 data is given in Table 22, "Bulk Modulus Summary". The percent change in volume and bulk modulus for inner and outer propellant from Motors 0022135 and 0027788 are given in this table.

The bulk modulus data for 1978 is given in Table 23, "Bulk Modulus 1978 Data".

H. SOL GEL:

Linear regressions for Sol Gel data are presented for the first time.

Four test periods are included for Motors S/N 0022135 and S/N 0022788. Only three test periods are included for motor S/N 0022583 because the last available propellant was tested the previous test period.

For regressions see Figures 52 thru 61, and for raw data for this test period see Table 24.

CONCLUSIONS

As stated in greater detail in "Test Results", three propellant regressions show decreasing trends. However, only three test periods are involved and probably the trends will level off considerably as additional testing is performed. Based on these analyses, none of the other trends show cause for appreciable concern at this time.

RECOMMENDATIONS

It is recommended that:

- 1. The motor scheduled for dissection be dissected immediately so it can be tested with the remaining two motors.
- 2. The amount of Garlock and Genguard insulation materials in a motor is rather limited. Because of this, recommend existing data and the testing program for these materials be examined to see if it is feasible to materially lengthen the time period over which they could be tested.
- 3. It is further recommended, testing continue to accumulate sufficient data to establish realistic trends.

Figure 1 Dissection layout of Cuts, Locations and Section Numbers

Figure 2 Section 3 and 4 Segment Layout and Letter Identification

This figure illustrates what the various sample orientation terms mean with respect to a segment of the motor.

A JANNAF dogbone is used in the illustration to depict the areas from where the specimens are obtained.

FIGURE 3

Figure 4 Bond Shear Specimen
(Propellant/Liner/Insulation)

Figure 5 Sleeved Bond Specimen (for Bond Tensile Test)
(Propellant/Liner/Insulation/Case)

NOTE: Case may be left as cut from motor

LOW AND VERY LOW RATE DISSECTED MOTOR TENSILE (AXIAL POSITION)

(OUTER)

MODULUS (PSI)	360.0	334.0	407.0	294.0	287.0	315.0	186.0	197.0	199.0	0.644	357.0	338.0	306.0	270.0	280.0	546.0	582.0	585.0	364.0	420.0	425.0	2507.0	2485.0	2497.0	4676.0	4523.0	4590.0
STRAIN AT RUPTURE (IN/IN)	0.2156	0.2236	0.1836	0.2036	0.2122	0.1703	0.2559	0.2709	0.2559	0.2889	0.3289	0.3275	0.2223	0.2642	0.2555	0.3469	0.3092	0.3219	0.2676	0.2745	0.3016	0.4168	0.4219	0.3903	0.3199	0.3388	0.3115
MAXIMUM STRESS (PSI)	39.57	39.25	43.02	38.77	37.97	40.88	35.09	38.77	38.93	51.38	44.01	43.61	36.91	35.50	36.67	62.89	02.99	67.93	47.01	47.77	48.63	209.16	210.02	209.73	291.56	291.13	290.27
AAT (MO)	178			177			179			177			177			177			177			177			177		
TEST	78097			78086			78122			78081			78083			78080			78082			78081			78081		
TEST TEMP. (°F)	+077			+120			+160			+077			+120			+077			+120			+020			+020		
X-HD SPEED (IN/MIN)	0.0002			0.0002			0.0002			0.002			0.002			0.02			0.02			0.2			2.0		
MSN	0022135																										

TABLE 1 (cont)

LOW AND VERY LOW RATE DISSECTED MOTOR TENSILE (AXIAL POSITION)

(OUTER)			DISSECTED (AXIA	DISSECTED MOTOR TENSILE (AXIAL POSITION)	<u> </u>		
MSN	X-HD SPEED (IN/MIN)	TEST TEMP. (°F)	TEST	AAT (MO)	MAXIMUM STRESS (PSI)	STRAIN AT RUPTURE (IN/IN)	MODULUS (PSI)
0022135	2.0	+077	78074	177	118.89	0.4702	1250.0
	20.0	+020	78081	177	427.23	0.3523	10135.0
					412.30	0.3079	10044.0
0022788	0.0002	+077	78097	165	36.63	0.2756	215.0
					42.18	0.2716	262.0
					40.19	0.2796	236.0
	0.0002	+120	78128	166	54.03	0.3818	198.0
					53.84	0.4004	192.0
					46.77	0.3658	205.0
	0.0002	+160	78128	166	36.71	0.3469	147.0
					35.56	0.3349	145.0
					31.86	0.3309	124.0
	0.002	+077	78109	165	48.67	0.3159	376.0
					49.98	0.2695	377.0
					49.42	0.2943	382.0
	0.002	+120	78103	165	47.47	0.2999	292.0
					47.41	0.2599	271.0
					45.69	0.2666	305.0
	0.02	+077	78094	165	64.07	0.3366	491.0
					55.81	0.3766	365.0
					64.92	0.3482	531.0
	0.02	+120	78088	165	50.82	0.2692	386.0
					49.27	0.2863	379.0
					52.71	0.2474	432.0

TABLE 1 (cont)

MODULUS 2242.0 2454.0 358.0 456.0 469.0 3176.0 3176.0 3176.0 1087.0 834.0 1101.0 7729.0 (PSI) STRAIN AT RUPTURE (IN/IN) 0.4470 0.4689 0.4107 0.5550 0.557 0.5279 0.4353 0.5272 0,5183 0.5530 0.4697 0.3529 0.3629 MAXINUM STRESS 184.86 69.30 73.37 251.72 245.83 252.73 120.31 199.73 184,58 108.48 373.64 372.78 378.23 (PSI) LOW AND VERY LOW RATE DISSECTED MOTOR TENSILE (AXIAL POSITION) (MO) 165 165 165 165 165 78094 78094 78093 78093 78094 TEST TENP. +020 +077 +020 +020 +077 X-HD SPEED (IN/MIN) 20.0 0.2 2.0 0.2 2.0 (OUTER) MSN

		on maon	(PSI)	243.0	296.0	360.0	309.0	305.0	245.0	256.0	442.0	521.0	441.0	371.0	328.0	332.0	603.0	483.0	0.009	454.0	454.0	436.0	2089.0	2091.0	2154.0	3377.0	2407.0	3039.0	5983.0	7143.0	6656.0
		STRAIN AT	(IN/IN)	0.3166	0.2796	0.2946	0.3146	0.3046	0.2686	0.2599	0.3470	0.3089	0.3541	0.2541	0.2728	0.2006	0.4118	0.4139	0.4219	0.3349	0.3301	0.3482	0.4720	0.4897	0.4917	0.4603	0.5954	0.5639	6967.0	0.4049	0.4569
NTE	ILE)	MAXIMUM	(PSI)	54.64	53.28	59.98	59.14	50.25	46.51	76.90	76.07	74.96	92.89	55.85	48.77	47.16	91.23	93.53	90.19	64.43	64.22	63.62	240.17	245.77	242.61	271.97	247.70	264.50	374.64	377.66	377.23
LOW AND VERY LOW RATE	DISSECTED MOTOR TENSILE (AXIAL POSITION)		(MO)	178					178		177			178			177			178			177			178			178		
LOW AN	DISSECTE (AX	ESAE	DATE	78097					78086		78081			78083			78080			78082			78081			78093			78093		
		9	(F)	+077					+120		+077			+120			+077			+120			+020			+020			+020		
		X-HD	(IN/MIN)	0.0002					0.0002		0.002			0.002			0.02			0.02			0.2			2.0			20.0		
	(INNER)		MSN	0022135											20																

TARLE 2(cont)

LOW AND VERY LOW RATE DISSECTED MOTOR TENSILE (AXIAL POSITION)

(INNER)

MODULUS (PSI)	201.0	181.0	190.0	174.0	202.0	158.0	201.0	211.0	174.0	196.0	166.0	157.0	136.0	232.0	244.0	252.0	234.0	215.0	212.0	337.0	349.0	232.0	228.0	224.0	1734.0	1761.0
STRAIN AT RUPTURE (IN/IN)	0.2716	0.2906	0.3546	0.3606	0.3706	0.3479	0.3679	0.3859	0.3819	0.3479	0.4089	0.4549	0.4369	0.4306	0.3950	0.4341	0.2844	0.3595	0.3162	0.4649	0.4310	0.3659	0.4733	0.4416	0.6072	0.4004
MAXIMUM STRESS (PSI)	44.80	45.43	45.01	44.69	42.18	47.19	46.86	98.95	47.30	47.86	47.58	46.17	43.60	51.27	52.40	53.31	45.82	45.62	44.80	73.65	75.31	50,31	49.10	48.26	217.20	218.92
AAT (MO)	165					164		164			166			164			164			164		164			164	
TEST	78097					78086		78086			78122			78081			78083			78080		78082			78081	
TEST TEMP. (°F)	+077					+120		+120			+160			+077			+120			+077		+120			+020	
X-HD SPEED (IN/MIN)	0.0002					0.0002		0.0002			0.0002		0.000	0.005			0.002			0.03		0.05			0.2	
MSN	0022788																									

TABLE 2 (cont)

LOW AND VERY LOW RATE DISSECTED MOTOR TENSILE (AXIAL POSITION)

(INNER)

MODULUS (PSI)	1644.0	2887.0	3150.0	3194.0	526.0	562.0	1090.0	7335.0	10847.0	10563.0	8360.0	8382.0
STRAIN AT RUPTURE (IN/IN)	0.5734	0.6739	0.6179	0.6099	0.6921	0.7163	0.5164	0.3079	0.3521	0.3873	0.4074	0.4552
MAXIMUM STRESS (PSI)	217.63	280.78	282.37	286.98	114.07	117.59	107.11	417.43	429.83	427.09	410.51	424.06
AAT (MO)	164	164			164			164				
TEST	78081	78080			78082			78080				
TEST TEMP. (*F)	+020	+020			+077			+020				
X-HD SPEED (IN/MIN)	0.2	2.0			7.0			70.0				
MSN	0022788											

TABLE 3

LOW AND VERY LOW RATE TENSILE GROUPED (AXIAL POSITION)

			MINAN	2	ar v ar s	Ę.		
- F	A.I		STRESS	E S	RUPTURE	E E	MODULUS	US
IN/MIN °F MO		2	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.
0.0002 +077 178		5	55.5	4.08	0.3021	0.015291	302.6	41.6
+126 178		2	46.7	0.28	0.2643	0.006152	250.5	7.8
0.002 +077 177		3	73.3	3.94	0.3368	0.024307	468.0	45.9
+120 178		3	9.09	4.62	0.2426	0.037472	343.7	23.8
		3	91.7	1.71	0.4160	0.005329	562.0	68.4
+120 178		6	64.1	0.42	0.3378	0.003763	447.7	10.1
+020 177		3	242.9	2.81	97870	0.010843 2111.3	2111.3	37.0
+020 178		3	261.4	12.43	0.5400	0.070684 2941.0	2941.0	492.4
+020 178		8	376.3	2.00	0.4529	0.046130 6594.0	6594.0	582.5
		2	44.4	1.3	0.3297	0.045144		12.3
		2	47.2	7.0	0.3664	0.018078		21.6
+160 166		8	45.8	2.0	0.4337	0.023180	153.0	15.
0.002 +077 164		3	52.3	1.0	0.4200	0.021635	242.7	10.1
+120		9	42.4	0.5	0.3201	0.037697	220.3	11.9
+077 164		2	74.5	1.2	0.4480	0.023971	343.0	8.5
+120 164		8	49.2	1.0	0.4270		228.0	4.0
+020 164		3	217.9	6.0	0.5271	0.110933 1713.0	1713.0	61.3

TABLE 3 (cont)

LOW AND VERY LOW RATE TENSILE GROUPED (AXIAL POSITION)

(INNER)

MOTOR	X-HEAD SPEED	TEST	AGE AT		MAXIMUM	E SS	STRAIN AT RUPTURE	AT.	MODULUS
S/N	IN/MIN	•	MO	N ₀	MEAN	S.D.	MEAN	.D.	S.D.
0022788	2.0	+020	164	m m	283.4	3.2	0.6340	0.034871 3077.0	.0 166.0 3 316.3
	20.0	+020	164	5	421.8	7.8	0.3821	0.055714 9097.4	.4 1530.6
(OUTER)									
0022135	0.0002	+077	178	3	9.04	2.09	0.2077	0.021167 367.0	
		+120	177	ოო	39.2 37.6	2.17	0.1955	0.022130 298.7 0.008660 194.0	7 14.6 0 7.0
	0.002	+077	171	e	46.3	4.38	0.3152	0.02270 381.3	3 59.4
		+120	171	9	36.4	0.75	0.2474	0.022112 285.3	
	0.05	+077	177	e	8.99	1.03	0.3261	0.019182 571.	0 21.7
		+120	177	9	47.8	0.81	0.2813	0.017972 403.0	
	0.2	+020	111	e	209.6	0.44	0.4098	0.016965 2496.3	.3 11.0
	2.0	+020	177	mc	291.0	99.00	0.3235	0.013982 4596.3	.3 76.7
	20.0	+020	171	ч m	416.2	9.66	0.3328		

TABLE S (cont)

LOW AND VERY LOW RATE TENSILE GROUPED (AXIAL POSITION)

MOTOR S/N 0022788

(OUTER)

	.pl	3.5	12.7	3.2	7.2	9.6	28.8	37.2	72.3	32.2	150.3	421.8
	SULUS	2	1		17	86	28					
	MODULUS MEAN S.	237.7	138.7	378.3	289.3	462.3	399.0	2357.3	437.7	3504.3	1007.3	7454.7
-	1:1	0.004000	0.008327	0.023218	0.021423		0.019497		0.030201 437.7	0.056003	0.022699	0.064741 7454.7
STRAIN AT	RUPTURE MEAN S.I	0.2757	0.3377	0.2933	0.2756	0.3539	0.2677	0.4423	0.5260	0.4998	0.5273	0.3953
AUM AUM	3.5S S.D.	2.81	2.53	0.29	1.01	5.03	1.73	8.70	10.37	3.73	7.23	2.93
MAXIMUM	STRESS	39.7	34.7	8.67	6.94	61.6	50.9	189.7	77.2	250.1	116.8	374.9
	ON	165	166	165	165	165	165	165	165	165	165	165
AGE AT	TEST	en en	3	3	3	3	8	3	3	ຕ	3	8
TEST	TEMP.	+077	+160	4077	+120	+077	+120	+020	+077	+020	+077	+020
X-HEAD	SPEED IN/MIN	0.0002		0.002		0.02		0.2		2.0		20.0

TABLE 4

BI-PROPELLANT TENSILE
DISSECTED MOTORS
(NON-ORIENTED)
in. JANNAF dogbone, EGL=3.00 in., CSA=0.1875 in.

Specimen Configuration 1/2 in.

MODULUS (PSI)	289.0 289.0 289.0/0.0	233.0 260.0 246.5/19.09	10324.0 9714.0 10019.0/431.3	374.0 360.0 367.0/9.90	211.0 201.0 206.0/7.07	11061.0 7552.0 9306.5/2481.2
STRAIN AT RUPTURE (IN/IN)	0.1837 0.1637 0.1737/0.014	0.2138 0.2037 0.2088/0.007	0.2230 0.2328 0.2279/0.007	0.2077 0.2197 0.2137/0.008	0,2499 0,3320 0,2910/0,06	0.3420 0.4036 0.3728/0.044
MAXIMUM STRESS (PSI)	37.90 32.45 35.18/3.85	40.02 38.28 39.15/1.23	403.45 396.82 400.14/4.69	42.51 43.34 42.93/0.59	39.10 48.99 44.05/7.00	415.85 396.39 406.12/13.76
AAT (MO)	178 Mean/S.D.=	178 Mean/S.D.=	177 Mean/S.D.=	165 Mean/S.D.=	164 Mean/S.D.=	164 Mean/S.D.=
TEST	78097	78086	78080	78097	78086	78086
TEST TEMP. (°F)	+077	+120	+020	+077	+120	+120
X-HD SPEED (IN/MIN)	0.0002		20.0	0.0002		20.0
MSN	0022135			0022788		

TABLE 4 (cont)

BI-PROPELLANT TENSILE DISSECTED MOTORS (NON-ORIENTED) 3/4 in. GL dogbone, EGL=3.00 in., CSA=0.1875 in²

X-HD SPEED (IN/MIN)	TEST TEMP. (°F)	TEST	AAT (MO)	MAXIMUM STRESS (PSI)	STRAIN AT RUPTURE (IN/IN)	MODULUS (PSI)
0.2	+077	78125	179 Mean/S.D.=	76.81 76.67 77.10 76.86/0.22	0.4817 0.4615 0.4669 0.4700/0.01	519.0 536.0 527.0 527.3/8.5
2.0	+020	78125	179 Mean/S.D.=	258.42 261.75 262.83 261, /2.30	0.3879 0.3490 0.3373 0.3581/0.03	3249.0 5701.0 3433.0 4127.7/1365.6
2.0	+077	78125	179 Mean/S.D.=	102.62 103.91 105.20 103.9/1.29	0.5510 0.5608 0.5784 0.5634/0.014	777.0 721.0 758.0 752/28.48
0.2	+077	78130	166 Mean/S.D.=	91.32 91.91 91.27 91.5/0.36	0.3696 0.3689 0.3697 0.3694/0.0004	482.0 474.0 474.0 476.7/4.62
2.0	+020	78131	166	281.95	0.2820	3298.0
	+077	78130	10 166Mean/S.D.=	118.67 118.51 119.69 118.96/0.64	0.4392 0.4432 0.4140 0.4321/0.016	753.0 716.0 696.0 721.7/28.9

0022788

0022135

TABLE 5

LOW RATE BIAXIAL
Dissected Motor Tensile
(Axial Position)

OUTER

MODULUS (PSI)	240.0 323.0 276.0 279.7/41.6	364.0 345.0 305.0 338.0/30.1	706.0 805.0 790.0 767.0/53.4	4191.0 4309.0 3682.0 4060.7/333.2	878.0 1169.0 1131.0 1059.3/158.2
STRAIN AT RUPTURE (IN/IN)	0.1608 0.1608 0.1608 0.1608/0.0	0.2285 0.2056 0.1999 0.2113/0.02	0.3642 0.3759 0.3549 0.3650/0.01	0.3252 0.3317 0.3639 0.3403/0.02	0.4509 0.3789 0.3989 0.4096/0.04
MAXIMUM STRESS (PSI)	47.74 52.63 45.95 48.77/3.46	42.53 42.13 40.92 41.87/0.83	89.79 93.57 92.25 91.88/1.92	312.22 320.19 289.40 307.28/15.98	118.22 123.28 120.09 120.54/2.56
TEST ATT DATE (MO)	78109 178 MEAN/S.D. =	78103 178MEAN/S.D.=	78101 178MEAN/S.D. =	78101 178 MEAN/S.D. =	78101 178MEAN/S.D.=
TEST TEMP.	+120	+120	+077	+020	+077
X-HD SPEED (IN/MIN)	0.0002	0.002	0.2	2.0	2.0
MSN	0022135		- 28 -		

TABLE 5 (cont)
1.0W RATE BIAXIAL
Dissected Motor Tensile
(Axial Position)

MODULUS (PSI)	275.0 300.0 295.0 290.0/13.23	331.0 326.0 330.0 329.0/2.65	690.0 762.0 641.0 697.7/60.86	3028.0 3261.0 3196.0 3161.67/120.23	1098.0 974.0 877.0 983.0/110.77
STRAIN AT RUPTURE (IN/IN)	0.2803 0.2872 0.2855 0.2843/0.004	0.2628 0.2323 0.2285 0.2412/0.02	0.3725 0.3680 0.4130 0.3845/0.02	0.3329 0.3421 0.3820 0.3523/0.03	0.4449 0.4519 0.4929 0.4632/0.03
MAXIMUM STRESS (PSI)	46.58 53.00 53.16 50.91/3.75	51.01 50.56 48.53 50.03/1.32	94.78 97.85 90.80 94.48/3.53	303.26 310.48 274.70 296.15/18.92	132.53 130.25 129.01 130.60/1.79
ATT (MO)	165 .D. =	165 .D. =	165 .D. =	165 .D.=	165 .D. =
TEST	78109 165	78103 165 MEAN/S.D. =	78101 165	78101 165	78101 165
TEST TEMP. (*F)	+120	+120	+077	+020	+077
X-HD SPEED (IN/MIN)	0.0002	0.002	0.2	2.0	2.0

MSN 0022788

OUTER

TABLE 6

LOW RATE BIAXIAL
Dissected Motor Tensile
(Axial Position)

MODULUS (PSI)	321.0 288.0 333.0 314.0/23.30	379.0 390.0 297.0 355.3/50.82	672.0 689.0 843.0 734.7/94.2	3642.0 3635.0 3505.0 3594.0/77.16	1174.0 1213.0 1116.0 1167.67/48.81
STRAIN AT RUPTURE (IN/IN)	0.1615 0.1615 0.1607 0.1612/0.0005	0.3124 0.2629 0.3660 0.3138/0.05	0.4240 0.3850 0.3920 0.4003/0.02	0.4260 0.4030 0.3830 0.4040/0.02	0.4557 0.3761 0.4494 0.4271/0.04
MAXIMUM STRESS (PSI)	52.22 49.44 53.29 51.65/1.99	58.15 57.00 56.89 57.35/0.70	101.95 110.33 126.64 112.97/12.56	309.09 336.69 324.79 323.5/13.8	166.44 151.46 148.84 155.58/9.50
TEST ATT DATE (MO)	78109 178MEAN/S.D. =	78103 178 MEAN/S.D. =	78101 178 MEAN/S.D. =	78101 178 MEAN/S.D. =	78101 178 MEAN/S.D. =
TEST TEMP. (*F)	+120	+120	+077	+020	+077
x-HD SPEED (IN/MIN)	0.0002	0.002	0.2	2.0	2.0

TABLE 6 (cont)

LOW RATE BIAXIAL
Dissected Motor Tensile
(Axial Position)

MODULUS (PSI)	165.0 183.0 197.0 181.67/16.04	258.0 231.0 226.0 241.67/22.94	461.0 369.0 428.0 460.0 420.0 488.0	3697.0 3638.0 2974.0 3236.3/353.2
STRAIN AT RUPTURE (IN/IN)	0.3260 0.3285 0.3780 0.3442/0.03	0.3650 0.3249 0.3369 0.3422/0.02	0.4689 0.4824 0.4397 0.4310 0.4239 0.4499	0.3979 0.3669 0.1069 0.2906/0.16
MAXIMUM STRESS (PSI)	41.37 44.24 48.90 44.84/3.80	49.67 47.98 48.92 48.86/0.85	97.78 83.50 97.72 96.00 103.39 94.96	312.61 320.00 257.28 296.63/34.28
ATT (MO)	167 .D	167 .D. =		
TEST	78167 167 78170 78174 MEAN/S.D. =	78166 167 78167 73170 MEAN/S.D. =	78165	78170 167
TEST TEMP.	+120	+120	+077	+020
X-HD SPEED (IN/MIN)	0.0002	0.002	0.2	2.0

MSN 0022788

INNER

TABLE 7

LOW RATE PRESSURIZED TENSILE 500 PSI Test Pressure +20°F Test Temp.

MODULUS (PSI)	3015.0 3488.0 2660.0 3054.3/415.4	6457.0 5377.0 4916.0 5583.3/790.9	3605.0 4614.0 3855.0 4024.7/525.5	4729.0 4775.0 4458.0 4654.0/171.3
STRAIN AT RUPTURE (IN/IN)	0.3587 0.3568 0.3669 0.3608/0.005	0.2809 0.3769 0.3017 0.3198/0.05	0.3359 0.3159 0.3389 0.3302/0.013	0.3919 0.3299 0.4269 0.3829/0.05
MAXIMUM STRESS (PSI)	398.69 422.65 363.27 394.87/29.87	582.29 534.89 508.06 541.75/37.59	432.28 456.19 446.34 444.94/12.02	516.29 530.72 512.50 519.84/9.61
TEST	78079	78079 S.D.=	78079 D.=	78079 =.0.
AAT (MO)	177 781	177 78	164 7MEAN/S.D.=	164 7MEAN/S.D.=
X-HD SPRED (IN/MIN)	2.0	20.0	2.0	20.0
NSW	0022135		22 0022788	

TABLE 8

LOW RATE PRESSURIZED TENSILE 500 PSI Test Pressure 420*F Test Temp

	~	ı
٠	2	ĕ
1		3
	•	9
8	7	ı
1	•	3
٠	e.	9
1	_	ė

MSN	X-HD SPEED (IN/MIN)	ATT (MO)	TEST	NAXIMUM STRESS (PSI)	STRAIN AT RUPTURE (IN/IN)	MODULUS (PSI)
0022135	2.0	177 177 177	78079 78079 5.D.=	492.18 490.88 491.53/0.919	0.2239	4687.0 5466.0 5076 5/550 8
	20.0	177	78079	552.07	0.4579	4729.0
		MEAN/S.D. =	/S.D. =	564.57 550.77/14.49	0.4269	5176.0 4684.7/514.9
0022788	2.0	164	78079	489.05	0.2309	4775.0
		MEAN/S.D. =	S.D. =	466.40	0.2679	4763.0 5060.0/504.1
	20.0	164	78079	500.19	0.5999	3754.0
		MEAN/S.D. =	S.D. =	563.69 525.11/33.88	0.5539/0.064	5535.0 4252.3/1119.99

TABLE 9

HIGH RATE TRIAXIAL TENSILE

Test Pressure = 500 psi Test temp = +077°F

Dissected Only (3/4" GL Rail)

STRAIN AT RUPTURE MODULUS (IN/IN) (PSI)	0.3249 4902.0 0.3429 4755.0 0.3739 5192.0 0.3472/0.025 4949.7/222.4	0.3829 4731.0 0.4059 4714.0 0.3965 4417.0 0.3951/0.012 4620.7/176.6		0.4549 5064.0 0.4259 5275.0 0.4849 4277.0 0.4552/0.03 4872.0/526.0	0.4849 4246.0 0.4499 3746.0 0.4029 4465.0 0.4459/0.04 4152.3/368.5
	/3.35	15.74		/9.30	5.54
AAT STRESS (MO) (PSI)	0	99		62	166
TEST DATE	78137 17MEAN/S.D. =	78137 1		78137 1MEAN/S.D. =	78137 MEAN/S.D.=
X-HD SPEED (IN/MIN)	1750	1750		1750	1750
WSW	0022135	0022788	INNER	0022135	0022788

HICH RATE HYDROSTATIC TENSILE
Test Pressure = 500 psi Test Temp = +077*F
Dissected Only (3/4" GL Dogbone)

OUTER	X-HD SPEED	TEST	AAT	MAX IMUM STRESS	STRAIN AT RUPTURE	MODITLES
MSN 0022135	(IN/MIN) 1750	DATE 78199	(MO)	(PSI) 535.78	(IN/IN) 0.4748	(PSI) 5524.0
0022788	1750	MEAN/S.D.=	.D.= 168	530.72 530.72 530.72	0.4924 0.4329/0.009 0.4675	5406.0/122.2 5406.0/122.2 4902.0
INNER		MEAN/S.D. =	n.G.	539.20 540.28 536.73/5.24	0.4642 0.4581 0.4633/0.005	4865.0 5574.0 5113.7/399.1
0022135	1750	78199	181	578.19 590.80 594.89	0.4992 0.5149 0.5580	6821.0 6221.0 5210.0
0022788	1750	MEAN/S.D. 78199	.D. =	587.96/8.70	0.5240/0.03	6084.0/814.2 4710.0
		MEAN/S.D.=	.b.=	518.78 515.34/4.62	0.6224 0.6339/0.015	5022.0/821.7

TABLE 11
STRESS RELAXATION
0.5% Strain
(Data Compiled)

ပ္ခ	S.D.	7170	1402	66	17	63	45	39	4738	824	65	18	36	27	27		1359	1763	20	67	18	29	20	392	570	39	20	14	30	14
1000 s	MEAN	41330	7207	679	222	333	227	208	57910	7093	492	242	265	189	107		37193	7392	979	367	330	296	187	36887	10073	311	201	193	158	148
၁၃	S.D.	12883	1866	146	25	58	55	54	6208	1005	66	18	37	26	28		6869	3489	221	45	18	37	70	1657	193	107	22	27	30	19
100 Se	MEAN	57350	15247	1024	293	412	272	250	71670	15780	757	325	324	233	148		53213	14318	1131	493	405	360	241	49280	20247	649	271	237	191	190
ဝဗ	S.D.	13873	2281	162	20	57	53	51	9869	798	120	23	38	25	23		8732	3981	289	55	23	41	70	2322	1342	135	15	25	32	21
50 S	MEAN S.D.	61170	18227	1192	321	443	291	271	74860	19300	899	356	344	248	162		57937	17054	1342	539	777	386	261	52093	24240	784	306	258	207	198
1	S.D.	16094	2715	274	34	71	63	29	8683	771	170	24	67	29	18		11300	4647	586	107	35	52	87	3087	2725	362	21	28	34	20
10 Sec	MEAN	68400	27473	1781	431	536	344	313	81180	29280	1391	697	423	293	195		65913	24791	1899	703	552	955	314	57.227	34767	1177	422	331	241	232
	MR.	2	6	9	Ŋ	9	9	9	2	3	9	9	9	9	9		3	4	9	9	9	9	9	0	m	9	9	9	9	9
TEST	(F)	-065	-040	+020	+077	+100	+140	+180	-065	-040	+020	+077	+100	+140	+180		-065	-040	+020	+077	+100	+140	+180	-065	-040	+020	+077	+100	+140	+180
	MSN	0022135							0022788				24			INNER	0022135							0022788						

TABLE 11 (cont)

OUTER MSN 0022135	TEST TEMP (*F) -065	TEST DATE 78080	AAT (MO) 177 177	STRESS RELAXATION 0.5% Strain (Axial Position) 10 SEC (PSI) 57020.0 79780.0 24860.0 30280.0 27280.0	50 SEC (PSI)	100 SEC (PSI) 48240.0 66460.0 17020.0 15420.0	1000 SEC (PSI) 36260.0 46400.0 5760.0 8560.0
	+020	78079	177	1940.0 2080.0 2020.0 1407.0 1543.0	1260.0 1360.0 1340.0 953.0 1053.0	1080.0 1180.0 1160.0 813.0 879.0	660.0 780.0 720.0 507.0 570.0 657.0
	+077	78075	177	460.0 380.0 440.0 460.0 413.0	340.0 300.0 320.0 343.0	320.0 260.0 300.0 310.0 277.0	220.0 200.0 220.0 247.0 223.0

240.0 320.0 340.0 293.0 410.0

340.0 400.0 420.0 357.0 490.0

380.0 440.0 440.0 383.0 523.0 493.0

460.0 500.0 520.0 490.0 643.0

177

78075

+100

TABLE 11 (cont)

STRESS RELAXATION 0.5% Strain (Axial Position)

CUTER

0022788

TENT (*F)	TEST	AAT (MO)	10 SEC (PSI)	50 SEC (PSI)	100 SEC (PSI)	1000 SEC (PSI)
+077	78075	164	440.0	340.0	320.0	220.0
			500.0	400.0	360.0	260.0
			440.0	340.0	320.0	220.0
			487.0	357.0	323.0	257.0
			473.0	347.0	313.0	247.0
			473.0	350.0	313.0	250.0
+100	78075	164	0.044	360.0	340.0	260.0
			440.0	360.0	340.0	280.0
			340.0	280.0	260.0	200.0
			0.094	370.0	347.0	293.0
			470.0	377.0	357.0	297.0
			390.0	317.0	297.0	257.0
0717	75002	177	0 0 10			
+T40	9/08/	164	340.0	280.0	260.0	220.0
			280.0	240.0	220.0	160.0
			280.0	220.0	200.0	160.0
			317.0	277.0	267.0	220.0
			280.0	243.0	230.0	190.0
			263.0	277.0	223.0	183.0
+180	78076	164	200.0	160.0	140.0	100.0
			160.0	120.0	100.0	0.09
			200.0	160.0	140.0	100.0
			200.0	173.0	167.0	130.0
			213.0	190.0	177.0	127.0
			197.0	170.0	163.0	127.0

STRESS RELAXATION 0.5% Strain (Axial Position) 10 SEC 50 SEC (PSI)

1000 SEC (PSI)	38160.0 35640.0 37780.0	7260.0 9460.0 7680.0 5167.0	720.0 680.0 660.0 623.0 587.0 603.0	300.0 320.0 380.0 403.0 370.0	320.0 360.0 320.0 330.0 340.0
100 SEC (PSI)	61280.0 48960.0 49400.0	15700.0 17440.0 14780.0 9353.0	1380.0 1240.0 1360.0 960.0 910.0	480.0 420.0 540.0 510.0 473.0	400.0 420.0 380.0 403.0 423.0 383.0
50 SEC (PSI)	68000.0 53260.0 52520.0	18940.0 20420.0 17500.0 11357.0	1680.0 1500.0 1620.0 1113.0 1057.0	540.0 440.0 580.0 560.0 520.0	440.0 480.0 440.0 437.0 457.0
10 SEC (PSI)	78940.0 60040.0 58760.0	27420.0 28760.0 24680.0 18303.0	2560.0 2260.0 2460.0 1410.0 1343.0 1363.0	700.0 500.0 780.0 743.0 797.0	540.0 580.0 500.0 563.0 597.0
(MO)	7.71	771	171	771	177
TEST	78080	78080	78079	78075	78075
(F)	-065	-040	+020	+077	+100

STRESS RELAXATION 0.5% Strain (Axial Position)

0 SEC 1000 SEC (PSI)		220.0 180.0 340.0 240.0 200.0 140.0 200.0 160.0 317.0 257.0 170.0 143.0		000	
					720 820 660 571 573
50 SEC (PSI)	440.0 400.0 340.0 420.0 377.0	240.0 360.0 240.0 213.0 333.0	52200.0 49720.0 54360.0	23620.0 23320.0 25780.0	840.0 1000.0 840.0 690.0 643.0
10 SEC (PSI)	540.0 460.0 420.0 487.0 430.0 397.0	300.0 440.0 300.0 247.0 390.0	58240.0 53760.0 59680.0	33900.0 32580.0 37820.0	1380.0 1680.0 1420.0 867.0 880.0
(MO)	771	111	164	164	164
TEST	78076	78076	78080	78080	78079
TEST TEMP (*F)	5 +140	+180	8 -065	-040	+020
MSN	0022135	- 41 -	0022788		

INNER

1000 SEC (PSI)	200.0	180.0	197.0	227.0	180.0	200.0	180.0	190.0	217.0	190.0	200.0	120.0	140.0	187.0	143.0	160.0	140.0	140.0	140.0	137.0	170.0	163.0
100 SEC (PSI)	280.0	240.0	253.0	283.0	220.0	260.0	200.0	240.0	273.0	230.0	240.0	160.0	180.0	213.0	167.0	183.0	180.0	180.0	200.0	163.0	217.0	197.0
50 SEC (PSI)	320.0	300.0	280.0	313.0	260.0	280.0	220.0	257.0	290.0	243.0	260.0	180.0	200.0	227.0	177.0	197.0	180.0	200.0	200.0	170.0	230.0	207.0
10 SEC (PSI)	440.0	420.0	387.0	437.0	320.0	340.0	300.0	333.0	380.0	310.0	300.0	220.0	240.0	257.0	203.0	227.0	220.0	240.0	240.0	200.0	257.0	237.0
AAT (MO)	164				164						164						164					
TEST	78075				78075						78076						78076					
TEMP (F)	+011				+100						+140						+180					

TABLE 13 STRESS RELAXATION At 3% Strain

(Outer)							
MSN	Test Temp.	Test Date	AAT (MO)	10 Sec. (Ps1)	50 Sec (ps1)	100 Sec (ps1)	1000 Sec. (psi)
22135	+20	78079	177	1407 1543 1697	953 1053 1183	813 897 1013	507 570 657
			Mean/S.D.=	1549/145	1063/115	908/100	57/8/2
22135	+77	78075	111	097	343	310	247
			Mean/S.D.=	413	323/28	294/23	235/17
22135	+100	78075	177	490	383	357	293
				643	523	490	410
			Mean/S.D.=	61/618	72/997	437/70	365/63
22135	+140	78076	177	313	277	263	220
				390	340	330	27.7
			Mean/S.D.=	314/75	276/65	263/66	220/57
22135	+180	78076	177	233	207	197	157
				303	270	253	233
			Mean/S.D.=	292/54	261/51	247/47	203/41
22788	+20	78079	164	1383	920	770	470
				1347	883	747	450
			Mean/S.D.=	1393 1374/24	913 905/20	763 760/12	453 458/11

TABLE 13 (cont)
STRESS RELAXATION
At 3% Strain

(Outer)			1				
NSW	Test Temp	Test Date	AAT (MO)	10 Sec. (psi)		100 Sec. (psi)	1000 Sec. (psi)
22788	+77	78075	164 Mean/S.D.=	487 473 473 478/8		323 313 313 316/6	257 247 250 251/5
22788	+100	78075	164 Mean/S.D.=	460 470 390 440/44		347 357 297 334/32	293 297 257 282/22
22788	+140	78076	164 Mean/S.D.=	317 280 263 287/28		267 230 223 240/24	220 190 183 198/20
22788	+1.80	78076	164 Mean/S.D.=	200 213 197 203/8	173 190 170 178/11	167 177 163 169/7	130 127 127 128/2
(Imer)							
22135	+20	78079	177 Mean/S.D.=	1410 1340 1360 1370/36	~	960 910 933 934/25	623 587 603 604/18
22135	77+	78075	177 Mean/S.D.=			510 473 537 507/32	403 370 427 400/29

TABLE 14 STRESS RELAXATION At 3% Strain

(Inner)

	Test Temp.		AAT	10 Sec.	50 Sec.		1000 Sec.
NSW	(AE)	Test Date	(MO)	(ps1)	(ps1)		(pst)
22135	+100	78075	177	563	437		330
				597	457		340
					410		310
			Mean/S.D.=		435/24		327/15
22135	+140	78076	177		420		333
					377		297
					340		267
			Mean/S.D.=		379/40		299/33
22135	+180	78076	177		213		160
					333		257
					180		143
45			Mean/S.D.=		242/81		187/62
22788	+20	78079	164	867	069	577	350
					069		340
					643		313
			Mean/S.D.=		674/27		334/19
22788	+77	78075	164		300		220
					280		197
					313		227
			Mean/S.D.=		298/17		215/16
22788	+100	78075	164		257		190
					290		217
					243		190
			Mean/S.D.=	341/36	263/24		199/16

TABLE 14 (cont)
STRESS RELAXATION
At 3% Strain

(Inner)							
MSN	Test Temp.	Test Date	AAT (MO)	10 Sec. (ps1)	50 Sec. (psi)	100 Sec. (psi)	1000 Sec. (ps1)
22788	+140	78076	164	257 203 227	227 177 197	213 167 183	187 143 160
22788	180	78076	Mean/S.D.=	229/27	200/25	188/23	163/22
			Mean/S.D.=	257 237 231/29	230 207 202/30	103 217 197 192/27	15/ 170 163 157/17

TABLE 15

BURN RATE INITIAL PRESSURE = 350 PSI (NON-ORIENTED)

	MSN	TEST DATE	AAT (MO)	BURN RATE (IN/SEC)
(OUTER)	0022135	78082	177	0.270 0.270 0.270
			Mean/S.D. = 0.	
	0022788	78082	164	0.316 0.316
				0.315
			\dots Mean/S.D. = 0.3	157/0.00058
(INNER)	0022135	78082	177	0.319
				0.319
			Mean/S.D. = 0.3	
	0022788	78082	164	0.271
				0.271 0.272
			\dots Mean/S.D. = 0.2	
			N RATE	
			ESSURE = 500 PSI -ORIENTED)	
(OUTER)	0022135	(NON	-ORIENTED)	0.275
(CUTER)	0022135			0.275 0.275
(CUTER)	0022135	(NON	-ORIENTED)	0.275 0.275
(CUTER)	0022135	(NON	-ORIENTED)	0.275 0.275
(CUTER)	0022135	(NON	-ORIENTED)	0.275 0.275 75/0.0
(CUTER)		(NON-	-ORIENTED) 177Mean/S.D. = 0.2	0.275 0.275 75/0.0
(CUTER)		(NON-	-ORIENTED) 177Mean/S.D. = 0.2	0.275 0.275 75/0.0 0.336 0.339 0.335
(CUTER)		(NON-	-ORIENTED) 177Mean/S.D. = 0.2	0.275 0.275 75/0.0 0.336 0.339 0.335 367/0.0021
	0022788	(NON: 78082	-ORIENTED) 177Mean/S.D. = 0.2 164Mean/S.D. = 0.3	0.275 0.275 75/0.0 0.336 0.339 0.335 367/0.0021 0.340 0.340
	0022788	(NON: 78082	-ORIENTED) 177Mean/S.D. = 0.2 164Mean/S.D. = 0.3	0.275 0.275 75/0.0 0.336 0.339 0.335 367/0.0021 0.340 0.340 0.341
	0022788 0022135	(NON- 78082 78082	-ORIENTED) 177 Mean/S.D. = 0.2 164 Mean/S.D. = 0.3 177 Mean/S.D. = 0.3	0.275 0.275 75/0.0 0.336 0.339 0.335 367/0.0021 0.340 0.340 0.341 403/0.00058
	0022788	(NON: 78082	-ORIENTED) 177 Mean/S.D. = 0.2 164 Mean/S.D. = 0.3	0.275 0.275 75/0.0 0.336 0.339 0.335 367/0.0021 0.340 0.340 0.341 403/0.00058 0.273 0.273
	0022788 0022135	(NON- 78082 78082	-ORIENTED) 177 Mean/S.D. = 0.2 164 Mean/S.D. = 0.3 177 Mean/S.D. = 0.3	0.275 0.275 75/0.0 0.336 0.339 0.335 367/0.0021 0.340 0.340 0.341 403/0.00058 0.273 0.273 0.273

TABLE 16

THERMAL COEFFICIENT OF LINEAR EXPANSION (NON-ORIENTED) Temp -120° to 0°C

	MSN	TEST	(MO)	TCLE/ BELOW (IN/IN/°C)	GLASS POINT (°C)	TCLE/ ABOVE (IN/IN/°C)
Outer	0022788	78072	164	0.0000622	-60.0	0.0000950
				0.0000633	-59.0	0.0000950
				0.0000578	-55.0	0.0000982
	•••	Mean/S.D.	- 0.00	00611/0.0000029	-58/2.65	0.0000961/0.0000018
	0022135	78073	177	0.0000635	-59.0	0.0000918
				0.0000696	-63.0	0.0000849
				0.0000666	-60.0	0.0000900
		Mean/S.D.	= 0.00	00666/0.0000031	-60.7/2.0	8 0.0000889/0.0000036

Inner	0022788	78072	164	0.0000633	-56.0	0.0001010
				0.0000691	-57.0	0.0001033
				0.0000683	-56.0	0.0001068
	• • • •	Mean/S.D.	= 0.0	000669/0.0000031	-56.3/0.58	0.0001037/0.0000029

0022135	78073	177	0.0000608	-60.0	0.0000017
002233	10013	111	0.000000	-60.0	0.0000947
			0.0000661	-60.0	0.0000917
			0.0000612	-59.0	0.0000931
			0.0000702	-57.0	0.0000976

...Mean/S.D. = 0.0000646/0.0000045 -59.0/1.41 0.0000943/0.0000025

TABLE 17

TCLE EQUATIONS OF CURVES

	L, inches	2-40.0015450 0.19925 2C+0.0016016 0.20033 5C+0.0016066 0.20000 0C+0.0014649 0.19967		3C+0.0022551 0.19925 3C+0.0021384 0.20033	
	Equation of Curve (1)	Y = -2.9297A+1.2500B+1.4796C+0.0015450 Y = -6.0417A+0.78750B+1.5162C+0.0016016 Y = -6.1458A+0.81880B+1.5256C+0.0016066 Y = -7.8177A+0.36380B+1.3770C+0.0014649		Y = -0.65104A+2.5000B+2.1886C+0.0022551 Y = -9.5703A+0.72500B+2.0068C+0.0021384	Y = -3.8672A+2.3000B+2.4066C+0.0024900 Y = -8.6590A+1.0453B+2.1682C+0.0023017
	TCLE x 10 ⁵ (1)	6.46 6.66 6.69 6.11		9.43	10.37
	Propellant	Inner Outer Inner Outer		Inner Outer	Inner
Below Tg	Motor Nr	0022135 0022135 0022788 0022788	Above Tg	0022135	0022788

(1) -120 to 0°C. The TCLE trace below Tg was extrapolated to 0°C and the trace above Tg was extrapolated to -120°C.

NOTE:
$$A = 10^{-11} \text{ K}^3$$

 $B = 10^{-8} \text{ X}^2$
 $C = 10^{-5} \text{ X}$

TABLE 18

HARDNESS DISSECTED MOTORS (NON-ORIENTED)

	MSN	TEST DATE	(MO)	SHORE-A 10 SEC.
Outer	0022135	78080	177	67.0 67.0 68.0 68.0 66.0 67.0
			Mean/S.D.= 6	70.0 68.0
	0022788	78090	164	66.0 65.0 65.0 63.0 64.0 63.0
			Mean/S.D.= 64	67.0 4.5/1.51
Inner	0022135	78080	177Mean/S.D.= 68	68.0 67.0 68.0 69.0 69.0 69.0 70.0
	0022788	78080	164Mean/S.D.= 59	59.0 57.0 60.0 60.0 60.0 59.0 60.0 58.0 9.1/1.13

TABLE 19 CASE BOND

 Bond Shear, Constant Load Case/Liner/Propellant "Poker Chip"

A. TEST TEMP: 77°F

MSN	Test Date	AAT (mo)	Regression Equation (1)		ed Load Fail At 10 min
0022135 0022788	78207 78206	181 162	Y = -0.07647X+1.554 Y = -0.1119X+1.619	35.8 41.6	30.0 32.1
B. TEST	TEMP: 120°F 78206	168	Y = -0.2283X+1.485	30.5	18.0

 Bond Tensile, Constant Load Case/Liner/Propellant "Sleeved Bond Specimen"

TEST TEMP: 77°F

MSN	Test Date	AAT (mo)	Regression Equation (1)		ted Load o Fail At 10 min
0022135	78205	181	Y = -0.03695X+1.550	35.5	32.6
0022 788	78204	168	Y = -0.03169X+1.539	34.6	32.2

⁽¹⁾ Obtained from log, log plots, therefore, logs of times must be used in evaluations.

TABLE 20
BULK MODULUS, MOTOR 0022788 INNER, SPECIMEN NR. 2

1977 Data as Originally Reported

1977 Data Recalculated

Applied Pressur PSI From		% Change In Volume	K/Bulk Modulus PSI/x10 ⁻⁵	Applie Press PSI From		% Change In Volume	K/Bulk Modulus PSI/x10 ⁻⁵
0	200	0.060	3.33	0	200	0.060	3.33
0	400	0.084	4.76	200	400	0.024	8.33
0	600	0.102	5.88	400	600	0.018	11.11
0	800	0.126	6.35	600	800	0.024	8.33
0	1000	0.144	6.94	800	1000	0.018	11.11
0	1200	0.168	7.14	1000	1200	0.024	8.33
0	1400	0.186	7.53	1200	1400	0.018	11.11
0	1600	0.204	7.84	1400	1600	0.018	11.11
0	1800	0.228	7.90	1600	1800	0.024	8.33
0	2000	0.246	8.13	1800	2000	0.018	11.11

TABLE 21 BUIK MODULUS, 1977 DATA RECALCULATED

Motor 0022135 Inner, Age at Test 172 Months

		Specimen Nr. 1	-1	Specimen Nr. 2	. 2	Specimen Nr. 3	.3		
Applied Pressure PSI	e e	% Change	K/Bulk Modulus psr/~10-5	% Change	K/Bulk Modulus	% Change	K/Bulk Modulus PSI/w10-5	% Change In Volume	K/ Mean S. D. x 10 ⁻⁵
		TII AOTOM	LOTA / TOJ	TII AOTOME	137/410	TII AOTOM	014/161	mean John	
0	200	0.054	3.70	0.048	8.00	0.072	2.78	0.058/0.0125	8.36/0.629
200	2000	0.198	60.6	0.216	8.33	0.210	8.57	0.208/0.00916	8.66/0.388
			Motor 0022788	Inner, Age	Motor 0022788 Inner, Age at Test 158 Months	ths			
0	200	0.042	4.76	090.0	3.33	0.018	11.11	0.040/0.0211	6.40/4.17
200	1400	0.150	8.00	0.126	9.52	0.126	9.52	0.134/0.0138	9.01/0.878
200	2000	0.228	7.89	0.186	89.6	0.192	9.37	0.202/0.0227	8.98/0.957
			Motor 0022788	Outer, Age	Motor 0022788 Outer, Age at Test 158 Months	ths			
0	200	0.070	2.56	0.072	2.78	0.042	4.76	0.0613/0.0168	3.37/1.21
200	1400	0.108	11.11	0.168	7.14	0.138	8.70	0.138/0.0300	8.98/2.00
200	7000	0.156	11.54	0.240	00.7	0.204	78.8	0.200/0.0421	9.77/67.6

TABLE 22
BULK MODULUS SUMMARY

Applied Pressure PSI From	a T	Motor Nr. & Propellant	1977 Data Recalculated % Change In Volume Kx10	ın د	1978 Data % Change In Volume	Kx 10 ⁻⁵
		The state of the s	1	mean/ S	Mean/S	Mean/S
200	1400	0022135 Inner 0022135 Outer	0.144/0.0104 8 No date	8.36/0.629	0.165/0.0134	7.31/0.611
000	1400	0022788 Inner 0022788 Outer	0.134/0.0138 9 0.138/0.0300 8	9.01/0.878 8.98/2.00	0.173/0.0226	7.00/0.0912

TABLE 23 BULK MODULUS 1978

Motor 0022135 Inner, Age at Test 178 Months

		Specimen Nr. 1	7	Specimen Nr. 2	2	Specimen Nr. 3	<u>س</u> ا		
Applied Pressure PSI From	To To	% Change In Volume	K/Bulk Modulus PSI/x10 ⁻⁵	% Change In Volume	K/Bulk Modulus PSI/x10-5	% Change In Volume	K/Bulk Modulus PSI/x10 ⁻⁵	% Change In Volume Mean/S.D.	K/ Mean S.D.x10 ⁻⁵
200	200	0.096	2.08	0.0785	2.55	0.0349	5.73		
200	200	Specimen Nr. 0.113 0.177	1.76					0.0806/0.0336 0.165/0.0134	3.03/1.83
			Motor 0022135	Outer, Age a	Motor 0022135 Outer, Age at Test 178 Months	ths			
00 - 55	200	0.0320	6.26 12.90	0.0872 0.151	2.29			0.0596/0.0397	4.28/2.81 10.42/3.51
			Motor 0022788	Inner, Age a	Motor 0022788 Inner, Age at Test 165 Months	ths			
200	200	0.0523	3.82 6.88	0.0465	4.30			0.0494/0.00410	4.06/0.339
0 200	200	Specimen Nr. 0.0640 0.157	3.13 7.64	Specimen Nr. 0.0465 0.189	4.30 6.35			0.0552/0.0124 0.173/0.0226	3.72/0.827 7.00/0.0912
200	200	0.0407	Motor 0022788 Outer, Age at Test 165 Months 4.91 0.0349 5.73 0.088.62 0.134 10.47 0.3	Outer, Age a 0.0349 0.134	1 Test 165 Mon 5.73 10.47	ths 0.0523 0.160	3.82		
200	200	Specimen Nr. 0.0407 0.169	. 4 7.12	Speciemn Nr. 0.0465 0.163	5 7.37			0.0430/0.00661 0.154/0.0143	4.73/0.721 8.22/1.38

SOL GEL Test Temp. 77°F (Non Oriented)

% Extract- able	7.9042 7.4416 7.4970 7.4127 7.5639 0.2296	7.3169 7.1628 7.4652 7.0115 7.2391	7.6030 6.9511 7.5947 5.4921 6.9102 0.9935	6.0468 6.0482 6.5250 6.7024 6.3306
9			0.0499 0.0673 0.0573 0.0600 0.0586	
Mass Density (gm/cc)	1.7516 1.7510 1.7520 1.7518 1.7516 0.0004	1.7520 1.7511 1.7430 1.7532 1.7498 0.0046	1.7572 1.7572 1.7583 1.7557 1.7571 0.0011	1.7566 1.7570 1.7569 1.7572 1.7569 0.0002
Weight Swell Ratio	3.5994 4.0101 3.7085 3.7316 3.7624 0.1749	3.2720 3.3199 3.2954 3.3309 3.3046 0.0263	2.9013 2.9200 2.9112 3.8336 3.1415 0.4614	3.3202 3.3303 3.2844 3.2233 3.2233 0.0484
Gel Swell Ratio	11.4208 11.6652 11.0241 10.9464 11.2641 0.3386	9.6914 9.5903 9.8586 9.4410 9.6453	9.2145 8.4544 9.2396 8.8291 8.9344 0.3710	8.3647 8.3893 8.7929 8.8604 8.6018
_1	771	164	771	164
Test	78075	78075	78075	78075
MSN	Mean		Mean	Mean
	OUTER		INNER	

(1) Units are milliequivalents per cubic centimeter

**** LINEAR REGRESSION ANALYSIS ***

*** ANALYSIS OF TIME SERIES ***

REGRESSICA	+3.7260561E+02	+3.725144CE+02	+3.7127554E+02	+3.7059438E+02	+3.7042431E+02	+3.69755276+02	+3.6566430E+02	+3.6909423E+02	+3.6633422E+C2	+3.67.659135+02	+3.6728906E+02	+3.6633911E+02	+3.6510400E+02	
A NORINIA	+2.84 C00 COE + C2	+2.7200030E+02	+4.18C00C0E+C2	+3.38000005+02	+3.7900000E+02	+4.3500000E+C2	44 .3400000E+02	+3.2600000E+02	+3.6400000E+02	+3.57000005+02	+2.68C00C0E+02	+2.15000G0E+02	+3.3400000E+02	
A ADAIXEA	+4 .4 0000 COE+02	+3.2000000E+C2	+4.71C00C0E+02	+3.9000000E+02	+3.95000CE+02	+4.5400000E+02	+4.85C0000E+02	+3.35000C0E+C2	44.3700000E+02	+4.8500000E+02	+3.2500000E+02	+2.62C00C0E+C2	+4. C7000C0E+C2	
STANDARD	+5.3C 92910E+01	+1.76(80(3E+01	+1.8273712E+01	+2.1548395E+01	+7.8C49129E+0C	+9.8319208E+00	+2.7C2468CE+01	+4.5328828E+0C	+4.0278199E+01	+6.6063101E+01	+3.0643106E+01	+2.3544284E+01	+3.65599E+01	
F P A	+3.505000E+02	+2.9462500E+32	+4.4325C00E+02	+3.6550000E+02	+3.8525000E+02	+4.4500000E+02	+4.646650E+02	+3.3166650E+02	+4 . 1033325E+02	+4.21333256+02	+3. C300000E +02	+2.3766665E+02	+3.67C0000E+02	
SPECIMENS PER GROUP	Œ)	60	00	4	4	4	3	3	3	3	m	٣	m	
AGE (MCNTHS)	69.0	100.0	113.0	116.0	122.3	129.0	133.0	136.0	144.3	143.0	155.0	165.0	178.0	

II STAGE DECT MTRS. CUTER, AXIAL FCS, V.L. FATE CHS=0.0002 IN/MIN, MODULUS

This sample size summary is applicable to figures 6 thru 8.

Figure 6

II STAGE DSCT MTRS, OUTER, AXIAL POS, V. L. RATE CHS=0.0002 IN/MIN, STRAIN/RUPTURE

If STAGE DSCT MTRS, GUTER, AXIAL PUS, V. L. RATE CHS=0.0002 IN/MIN, MODULUS

**** LINEAR RECRESSION ANALYSIS ***

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+2.2239317E+02	+2.2344938E+02	+2.3718CC0E+02	+2.4034860E+02	+2.4668582E+02	+2.54C7922E+02	+2.5513542E+02	+2.6147241E+02	+2.6952211E+02	+2.7520312E+02	+2.8154028E+02		+2,921C229E+02	*3.0583300E+02
MINIMUM Y	+1.820C000E+02	+1.650CCC0E+02	+2.980CC00E+02	+2,3100000E+02	+1.750CC00E+02	+3.760CC00E+02	+2.230C000E+02						+1.740CC00E+02	+3.050CGGGE+02
MAXIMUM Y	+2.1300000E+02	+1,9500000E+02	+3.5100000E+02	+2.4900000E+02	+1.80CCC00E+02	+4.4800000E+02	+2.3200000E+02	+2.140C000E+02	+4.3000000E+02	+2.3000000E+02	+3.7700000E+02	+2.94CC000E+02	+2.0200000E+32	+3.6000000E+02
STANDARD DEVIATION	+1,1861552E+01	+1,0013383E+01	+1.5638779E+01	+8.3666002E+00	+2.1502458E+00	+3.1187604E+01	+5.1961524E+00	+1.97315316+01	+2.5980762E+01	+8.1445278E+00	+8.8681944E+01	+2.4255583E+01	+1.4047538E+01	+3.0664855E+01
MEAN Y		+1,7562500E+02	+3.1900000E+02	+2.4200000E+02	+1.7700000E+02	+4.2100000E+02	+2.2900000E+02	+1.9133332E+02	+4.0000000E+02	+2.2066665E+02	+2.7700000E+02	+2.6950000E+02	+1.8866665E+02	+3.2466650E+02
SPECIMENS PER GROUP	00	α:	œ	4	7	4	3	3	3	6	3	4	3	3
AGE (MONTHS)	0.66	100.0	113.0	116.0	122.0	129.0	130.0	136,0	144 0	149.0	155.0	162.0	165.0	178.0

II STAGE CSCT MTRS, INNER, AXIAL POS, V.L. RATE CHS=6.0002 IN/MIN, MODULUS

This sample size summary is applicable to figures 9 thru 11.

II STAGE DSCT MTRS, INNER, AXIAL PUS, V.L. RATE CHS=0.0002 IN/MIN, MAXIMUM STRESS

II STAGE DSCT MTAS, INNER, AXIAL POS, V. L. RATE CHS=0.0002 IN/MIN, STRAIN/RUPTURE

- 64 -

II STAGE DSCT MTRS, INNER, AXIAL POS, V. L. RATE CHS=0.0002 IN/MIN, MCDULUS

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

AGE	SPECIMENS		STANCARD			
(MCNTES)	PER GROUP	> NEBR	DEVIATION	PAXI PUN Y	MINIMON	REGRESSICH Y
0.001	91	+5.537500E+C1	+1.4172556E+01	+1.1500000E+02	+8.0000000E+C1	+1.CE76467E+02
113.0	80	+1.2562500E+02	+3.5256482E+00	+1.35000CGE+C2	+1.2300000E+02	+1 -1223168E+02
115.0	4	+1.2783956E+02	+1.2518885E+0C	+1.2562998E+02	+1.2666999E+C2	+1.12765G7E+02
122.0	•	+1.2726489E+02	+1.24£1648E+00	+1.2857998E+02	+1.2614999E+02	+1 . 1463152E+02
129.3	•	+1.2971240E+02	+8.4€71722E-C1	+1.30750C0E+C2	+1.2503999E+02	+1-16498778+62
131.0	6	+1.23C1992E+02	+7.1236251E-G1	+1.2377995E+02	+1.2240958E+C2	+1.17(3216E+C2
137.0	m	+1.0322329E+C2	+2.15C49C2E+0C	+1.0£19995E+02	+1.0086959E+02	+1.1863232E+02
143.0	4	+1.0432495E+02	+9.7243835E+0C	+1.1617959E+02	+9.4009554E+01	+1.2023248E+02
148.0	m	+1.2565985E+02	+2.67651656+00	+1.3144955E+02	+1.2662958E+02	+ 1 . 2 156 E 54 E + C2
155.0	5	+1.421655E+02	+8.1255019E+0C	+1.5122999E+02	+1.3562998E+02	+1.234328CE+02
161.0	6	+1.13C1660E+02	+1.76239376+00	+1.1472955E+02	+1.1121998E+C2	+1.25C3255E+02
165.3	9	+1.16 ECC 64E+02	+7.2316964E+00	+1.2160998E+02	+1.0848959E+02	+1.2609573E+C2
177.0	8	+1.1815499E+02	+9.56.79176-01	+1.1685959E+02	+1-1748999E+02	+1 .25300C4E+C2

This sample size summary is applicable to figures 12 thru 14.

II STACE DECT MTHE ONLY, CUTER, MYIAL PCS.LOW RATE CHS=2.0 IN/MIN, MAX STREES

COUTER, AXIAL PUS. LOW RATE CHS=2.0 IN/MIN, MAX STRESS II STAGE DSCT MTRS BNLY,

- 67 -

II STAGE DSCT MTRS UNLY, BUTER, AXIAL PUS.LOW RATE CHS=2.0 IN/MIN, MODULUS

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+1.15746295+02	+1.2131475F+62	+1.22171445+02	+1.25169865+02	+1.28168255+02	+1,29024946+02	+1.3159501E+02	+1,34553426+02	+1.36306796+02	+1.3887686E+02	+1.41 E7527E+02	+1,4316030E+02
YMUMINIM	+8. SCC(CCOE+01	+1.500CC03E+02	+1.2173599E+02	+1.1891595+02	+1.59005996+02	+1.1451998E+02	+1.2217599E+02	+1.4356999E+02	+1.12885995+02	+1.3075CCOE+02	+1.5157598E+C2	+1.07119995+02
MAXIMUNY	+1.110CCGOE+02	+1.5900000E+02	+1.26075986+02	+1.21863995+02	+1.62759995+02	+1.1891999E+02	+1.2475599E+02	+1.4675999E+02	+1.21059996+02	+1.379599E+02	+1.6356999E+02	+1.1755999E+02
STANDARD DEVIATION	+8.6598166E+00	+3.6620642E+00	+1.84C3804E+CC	+1.2474978E+00	+1.6142939E+00	+2.2014737E+00	+1,3552253E+00	+1.70276195+00	+4.1233268E+00	+3.8992797E+00	+6.1652806E+00	+5.3350770E+0C
MEAN Y	+9.62833286+01	+1.5362500E+02	+1.2376245E+02	+1,20327455+02	+1.6060485E+02	+1.1671997E+02	+1,2369995F+02	+1.4483657E+02	+1.1721328E+02	+1,3520996E+02	+1.5639656E+02	+1.12933255+02
SPECIMENS PER GROUP	12	œ	4	4	4		3	3	3	3	3	3
AGE (MONTHS)	100.0	113.0	115.0	122.0	129.0	131.0	137.0	144.0	148.0	154.0	161.0	164.0

II STAGE, CSCT MTRS, ONLY, INNER, AXIAL POS, LOW RATE CHS=2.C IN/MIN, MAX STRESS

This sample size summary is applicable to figures 15 thru 17.

- 70 -

Figure 17

MODULLUS

PARAMETER

**** LINFAR REGRESSION ANALYSIS ****

REGRESSION Y	+1,04677036+02	+1.02762495+02	+9.9850625E+01	+9.8933319E+01	+9.6655645E+01	+9.47E5049E+01	+9,35C8651E+01	+8.936C382E+01
MINIMUM Y	+1,12835996+02	+9.314999E+01	+9.1139999E+01	+1.02725996+02	+8.7549987E+01	+8.54399876+01	+9.4775598E+01	+8.5795987E+01
Y MUMIXAM	+1.1475598E+22	+9,9160098E+01	+9.6269989E+01	+1.0963599E+02	+9.64459965+01	+1.0102399E+32	+9.784990E+31	+9.3579986E+31
STANDARD DEVIATICN	+9.79656716-01	+3.1650804E+00	+2.5700148E+00	+4.8854464E+00	+4,32670176+00	+7.7975986E+00	+2.1704230E+00	+1.9139357E+00
MEAN Y	+1,13436626+02	+9.55999296+01	+9.3756591E+01	+1.00184996+02	+9.34199706+01	+9.3129959E+01	+9,63149875+01	+9.1876617E+01
SPECTMENS PER GROUP	3	3	*	2	3	3	7	3
ASE (MONTHS)	130.0	136.€	145.0	146.0	155.0	161.0	165.0	178.0

II STAGE DSCT MIRS ONLY, CUTER, AXIAL PCS. BIAXIAL CHS=0.2 IN/MIN, MAXIMUM STRESS

This sample size summary is applicable to figures 18 thru 20.

II STAGE DSCT MTAS BNLY, BUTER, AXIAL PBS. BIAXIAL CHS=0.2 IN/MIN, MAXIMUM STRESS

Figure 18

II STAGE DSCT MTAS GNLY, GUTER, AXIAL POS.BIAXIAL CHS=0.2 IN/MIN, NODULUS

**** LINEAR REGRESSION ANALYSIS ***

>	N	2	~	N	~	N	N	N	CV.	(4	~
REGRESSICN Y	+1 -13 10993E+C2	+1.1258652E+C2	+1.1157673E+C2	+1.1136654E+C2	+1.1075634E+02	+1.1058201E+C2	+1 -1032045E+C2	+1.0971031E+C2	+1.0918728E+02	+1.0666426E+02	+1.6770E35E+C2
FINIRUR Y	+1.0468958E+02	+9.4229995E+01	+1.1665998E+02	+1.1143998E+02	+1.3589995E+02	+1.0342955E+02	+1 .0035998E+02	+1.0025955E+02	+1.2177999E+02	+8.35C00C0E+01	+1.0195999E+02
FAXINCM Y	+1.1076998E+02	+1.CE86995E+C2	+1.3267955E+C2	+1.2177995E+02	+1.3717955E+02	+1.0629958E+02	+1.0285995E+02	+1.0406959E+02	+1.2347995E+C2	+1.0335955E+C2	+1.2664955E+C2
STANCARC	+2.03£1905E+0C	+4.5356021E+00	+5.45EEEE4E+CC	+E.4460552E+00	+6.5€37421E-C1	+1.5647966E+00	+1.2785654E+CC	+1.9C 96078E+0C	+8.532667E-01	+6.5516284E+0C	+1.2555533E+01
FEAN Y	+1.06£1115E+02	+1.0042492E+02	+1.2839617E+02	+1.1561994E+02	+1.3641992E+02	+1.0451325E+02	+1.0156325E+02	+1.C219326E+02	+1.2264557E+02	+5.5566558E+01	+1 - 1258330E+02
SPECIMENS PER GECUP	Œ	80	80	3	E	3	3	3	E	¥	9
AGE (MCNTHS)	116.0	122.3	129.0	136.0	143.0	145.0	148.0	155.0	161.0	167.0	178.0

STAGE II CISSECTEC MTRS.INNER, ANIAL PCS. BIAXIAL CHS=0.2 IN/MIN, WAX STRESS

This sample size summary is applicable to figures 21 thru 23.

STAGE II DISSECTED MTRS, INNER, AXIAL PUS. BIAXIAL CHS=0.2 IN/MIN, MAX STRESS

Figure 21

II STAGE DSCT MTRS, INNER, RXIAL POS, BIRXIAL CHS=0.2 IN/MIN, STRAIN AT RUPURE

*** LINEAR REGRESSION ANALYSIS ***

>	~	•						~1
REGRESS TON Y	+6.2425585E+02	+6.2387695E+02	+6.2343505E+02	+6.2223535E+02	+6.2179345E+02	+6.2141479E+02	+6.21CS887E+02	+6.2027832E+02
MINIMUM Y	+6.0285986E+02	+5.9466992E+02	+6.135CC00E+02	+6.0393594E+02	+6.3372998E+02	+6.175CC00E+02	+5.8965595E+02	+6.1822998E+02
MAXIMUM Y	+6.4366992E+02	+6.1859985E+02	+6.5463989E+02	+6.0872998E+02	+6.4642993E+02	+6.3342993E+02	+6.1869995E+02	+6.2469995E+02
STANDARD DEVIATION	+1.3668804E+01	+9.2450688E+00	+1.4666867E+01	+2.3380559E+00	+6.4245224E+00	+8.2544035E+00	+1.5744462E+01	+3.2874800E+00
MEAN Y	+6.2769580E+02	+6.0893212E+02	+6.3754589E+02	+6.0843652E+02	+6.3951660E+02	+6.2420654E+02	+6.0773657E+02	+6.2197314E+02
SPECIMENS PER GROUP	60	80	80	3	3	3	3	e
AGE (MONTHS)	116.0	122.0	129.0	148.0	155.0	161.0	166.0	179.0

II STAGE DSCT MTRS, DUTER, AXIAL, H. R. TRIAX, CHS=1750 AT 500 PSI, MAXIPUM STRESS

This sample size summary is applicable to figures 24 thru 26.

II STAGE DSCT MTRS, OUTER, RXIAL, H. R. TRIRX. CHS=1750 AT 500 PSI, MAXIMUM STRESS

II STAGE DSCT MTRS, OUTER, AXIAL, H. R. TRIAX. CHS=1750 AT 500 PSI, STRAIN/RUPTURE

STAGE OSCT MTRS, CUTER, RXIAL, H. R. TRIRX. CHS=1750 AT 500 PSI, MODULUS 11

**** LINEAR REGRESSION ANALYSIS ****

>	20	2	2	2	2	7	2	2
REGRESSION Y		+6.5685620E+02	+6.5459692E+02			+6.4426928E+02		
MINIHUM Y	+6.0677978E+02	+6.3355981E+02				+6.6915995E+02		+6.3448999E+02
MAXIMUM Y	+6.7690991E+02	+6.8095996E+02	+6.8808984E+02	+6.1765991E+02	+6.5038989E+02	+6.7514990E+02	+6.3663989E+02	+6.5107983E+02
STANDARD DEVIATION	+2.2788905E+01	+1.9959315E+01	+1,23248786+01	+6.7323190E+00	+4.5513768E+00	+3.3502709E+00	+5.5396870E+00	+9.2801802E+00
MEAN Y	+6.5638085E+02	+6.5665502E+02	+6.6325048E+02	+6.1255322E+02	+6.4761303E+02	+6.7303637E+02	+6.3031640E+02	+6.4035644E+02
SPECIMENS PER GROUP	80	1	80	3	3	3	3	3
AGE (MONTHS)	116.0	122.0	129.0	148.0	155.0	161.0	166.0	179.0

II STAGE DSCT MTRS, INNER, AXIAL, H. R. TRIAX, CHS=1750 AT 500 PSI, MAXIPUM STRESS

This sample size summary is applicable to figures 27 thru 29.

II STAGE DSCT MTRS, INNER, BXIAL, H. R. TRIAX. CHS=1750 AT 500 PSI, MAXIMUM STRESS

Figure 27

MUMIXAM

PARAMETER

SIBESS

- 87 -

*** LINEAR REGRESSION ANALYSIS ***

REGRESSION Y	+4.5680273E+02	+4.6473974E+02	+4.7267700E+02	+4.7948022E+02	+4.9155288E+02	+4.9988989E+02	+5.0669311E+02	+5.1463037E+02	+5.2937060E+02
MINIMUM Y	+4.850CCC0E+02	+4.2952978E+02	+3.0756982E+02	+3.2154980E+02	+5.3983984E+02	+5.1295996E+02	+5.383C981E+02	+5.3072598E+02	+5.3061987E+02
MAXIMUM Y	+5.3400000E+02	+5.1744995E+02			+5.4407983E+02			+5.4028979E+02	+5.3578979E+02
STANDARD DEVIATION	+1.8140194E+01	+3.2672605E+01	+6.9663695E+01	+1.1748934E+01	+2.1834794E+00	+6.1236293E+00	+2.1730326E+00	+5.2441832E+00	+2.6153435E+00
MEAN Y	+5.0579980E+02	+4.7163989E+02	+4.2857934E+02	+3.3146972E+02	+5.4205981E+02	+5.18943116+02	+5.3964306E+02	+5.3674316E+02	+5.3312304E+02
SPECIMENS PER GROUP	10	8	==	3	3	3	6	3	m
AGE (MONTHS)	117.0	124.0	131.0	137.0	148.0	155.0	161.0	168.0	181.0

II STAGE DSCT MTRS, OUTER, AXIAL, H. R. HYDRO. CHS=1750 AT 500 PSI, MAXIPUM STRESS

This sample size summary is applicable to figures 30 thru 32

II STAGE OSCT MTRS, OUTER, AXIAL, H. R. HYDRO. CHS=1750 A7 500 PSI, STRAIN/RUPTURE

II STAGE DSCT MTRS, duter, AXIAL, H. A. HYDRO. CHS=1750 AT 500 PSI, MODULUS

Figure 32

**** LINEAR REGRESSION ANALYSIS ****

REGRESSION Y	+4.69C0073E+02 +4.7372534E+02				+4.8952382E+02				+5.1219677E+02
MINIMUM Y	+5.010CC00E+02 +5.08CCC0E+02	+3.0765591E+02	+3.4614590E+02	+2.485CS99E+02	+5.2742593E+02	+4.9675596E+02	+5.6123599E+02	+5.1011987E+02	+5.7815995E+02
MAXIMUM Y	+5.1900000E+02 +5.3700000E+02	+5.5189990E+02	+3.5565991E+02	+3.6158984E+02	+5.3495996E+02	+5.4444995E+02	+5.8347998E+02	+5.1878979E+02	+5.9489990E+02
STANDARD DEVIATION	+7.4342354E+00 +1.0329396E+01	+9.3815221E+01	+6.7308742E+00	+3.7589597E+01	+4-3107426E+00		+1.1130109E+01		+8.7135741E+00
MEAN Y	+5.1012500E+02 +5.2212500E+02	+4.7591796E+32	+3.5090478E+02	+3.0096630E+02	+5.3238647E+02	+5.2184326E+02	+5.7210986E+02	+5.1537646E+02	+5.8796972E+02
SPECIMENS PER GROUP	60 60	::	2	9	3	3	3	3	3
AGE (MONTHS)	117.0	131.0	137.0	144.0	148.0	155.0	161.0	168.0	181.0

II STAGE CSCT MTRS, INNER, AXIAL, H. R. HYDRO, CHS=1750 AT 500 PSI, MAXIPUM STRESS

This sample size summary is applicable to figures 33 thru 35.

II STAGE DSCT MTRS, INNER, AXIAL, H. R. HYDRO. CHS=1750 AT 500 PSI, STRAIN/RUPTURE

Figure 34

PSI, NODULUS 200 H STAGE DSCT MTRS, INNER, RXIAL, H. R. HYDRG. CHS=1750

Figure 35

- 98 -

Tigure 37

- 103 -

Figure 43

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

>						_	_	_
REGRESSION Y	+2.5111079E-01 +2.5336009E-01	+2.6573139E-01	+2.7657801E-01	+2.8465065E-01	+2.9272329E-01	+3.0059587E-01	+3.2421380E-01	+3.3883440E-01
MINIMUM Y	+2.2599995E-01 +2.3695598E-01	+2.4595999E-01	+2.6295995E-01	+2.7399998E-01 +3.1595998E-01	+3.1095998E-01	+3.499596E-01	+3.3499997E-01	+2.7499997E-01
MAXIMUM Y	+2.5000000E-01	+2.6599997E-01	+2.689999E-01	+2.9699999E-01	+3.449996E-01	+3.6499994E-01	+3.3899998E-01	+2.7459997E-01
STANDARD DEVIATION	+7.3303108E-03 +5.1938044E-03	+6.5268895E-03	+2.3808063E-03	+7.9519349E-03 +8.3845155E-03	+1.8357310E-02	+7.5123672E-03	+2.1319166E-03	+2.5721811E-04
MEAN Y	+2.4124979E-01 +2.4637472E-01	+2.5474977E-01	+2.6649963E-01	+2.8199988E-01	+3.239994E-01	+3.5733318E-01	+3.3666640E-01	+2.7499997E-01
SPECIMENS PER GROUP	60 60	∞ ∢	• •	o r	. 6	3	3	3
AGE (MONTHS)	99.0	112.0	122.0	130.0	136.0	143.0	164.0	177.0

STAGE II DISSECTED MTRS, OUTER, BURNING RATE AT 500 PSI

This sample size summary is applicable to figure 44.

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

>																		
REGRESSION	+3.5493665E-01	+3.5563904E-01	+3.5950219E-01	+3.6090701E-01	+3.63C1416E-01	+3.6547255E-01				+3.7214523E-01					+3.7706196E-01	+3.7776434E-01	+3.8232988E-01	
MINIMUM Y	+3.2299995E-01	+3.3095597E-01	+3.2699996E-01	+3.5295998E-01	+3.7195597E-01	+3.3899998E-01	+4.2795997E-01	+4.2995994E-01	+3.9195595E-01	+3.659999E-01	+3.8595997E-01	+3.7599998E-01	+4°1395997E-01	+2.5795995E-01	+3.8195596E-01	+2.7295994E-01	+3.3999997E-01	
MAXIMUM Y	+3.4999996E-01	+3.5499995E-01	+3.4299999E-01	+3.8299995E-01	+3.789994E-01	+3.68999956-01	+4.2999994E-01	+4.4699996E-01	+4.1999995E-01	+3.7999996-01			+4.29999945-01	+2.7999997E-01	+4.0899997E-01	+2.7299994E-01	+3.4099996E-01	
STANDARD	+8.7289668E-03	+7.7998263E-03	+5.4830428E-03	+1.1091773E-02	+2.6392265E-03	+1.0976121E-02	+1.0423056E-03	+8.8926405E-03	+1.5625256E-02	+7.5826026E-03	+8.2492111E-03	+3.5078943E-03	+5.1693175E-03	+1.1371360E-02	+1.0393267E-02	+1.8846263E-04	+5.8383356E-04	
MEAN Y	+3.3949971E-01	+3.4537458E-01	+3.3537447E-01	+3.6566621E-01	+3.7566626E-01	+3.5466635E-01	+4.2899990E-01	+4.3999987E-01	+4.0999984E-01	+3.7133312E-01	+3.9766645E-01	+3.7966662E-01	+4.2283308E-01	+2.7066659E-01	+4.0016633E-01	+2.729994E-01	+3.4033328E-01	
SPECIMENS PER GROUP	80	60								3				3		3	3	
AGE (MONTHS)	0.66	101.0	112.0	116.0	122.0	129.0	130.0	136.0	143.0	148.0	149.0	154.0	155.0	161.0	162.0	164.0	177.0	

STAGE II DISSECTED MTRS, INNER, BURNING RATE AT 500 PSI

This sample size summary is applicable to figure 45.

500 PS c II DISSECTED MIRS, INNER, BURNING RATE

45

**** LINEAR RECRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

AGE	SPECINENS	Y AAAA	STANDARD	A WINING	VINIMUN Y	REGRESSION
;						
103.0	an an	+6.069938E-35	+3.66644785-66	+6.48559596-05	+5.5299996-05	+5.9613827E-C5
137.0	60	+6.1862403E-05	+2.07995C5E-06	+6.5499989E-C5	+5.8999998E-05	+5.9613870E-05
113.0	œ	+5.8524950E-C5	+2. EC2696 EE-C6	+6.269997E-C5	+5.539999E-05	+5.5613914E-05
116.0	3	+5.9333324E-05	+1.8579846E-CE	+6.059999E-05	+5.7199998E-05	+5-9613943E-05
122.3	3	+6.4255580E-05	+2.3514228E-CE	+6.6599986E-05	+6.2699957E-05	+5.56139676-05
123.3	3	+5.5899990E-05	+4.85(8042E-06	+6.5499989E-05	+5.6999997E-05	+5.96140305-05
131.0	5	+5.3033320E-05	+5.99101675-06	+5.9699988E-05	44.8099987E-05	+5.9614045E-CS
137.0	6	+5.3166659E-05	+3.5C14814E-06	+5.6599994E-05	+4.955999E-05	+5.9614088E-05
144.0	3	+5.699982E-05	+5.3328859E-C6	+6.1199985E-05	+5.0999995E-05	+5.9614132E-05
148.0	3	+6.7533325E-05	+4.70E8606E-06	+6.2399994E-C5	+5.299996€-0€	+5.9614161E-05
154.0		+5.5466648E-05	+1.8230929E-CE	+6.1(9999E-05	+5.7499986E-0E	+5.9614205E-05
161.0	3	+5.8366655E-05	+2.3113455E-C6	+6.0799997E-05	+5.61999915-05	+5.5614263E-05
164.0	6	+6.1099985E-05	+2.91C1019E-CE	+6.3299987E-05	+5.7799989E-05	+5.9614278E-05
177.0	3	+6.6566659E-05	+3. C459544E-CE	+6.959991E-05	+6.3499988E-CE	+5.9614365E-05

STAGE II DISSECTED WIRS, BUTER, THERMAL CCEFFICIENT OF LINEAR EXPANSION BELOW TO

This sample size summary is applicable to figures 46 thru 49.

95

- 110 -

10 OF LINEAR EXPANSION BELOW COEFFICIENT DISSECTED MTRS, BUTER, THERMAL STAGE

Figure 47

STACE II DISSECTED MIRS, INNER, THERMAL COEFFICIENT OF LINEAR EXPANSION BELOW TO

(9) 1

ABOVE

STAGE II DISSECTED MTRS, INNER, THERMAL COEFFICIENT OF LINEAR EXPANSION ABOVE TO

Figure 49

=

PARAMETER

TCLE

CHER LINEAR REGRESSION ANALYSIS ****

AND ANDLYSIS OF TIME SERIES HAY

REGPESSION Y	+6.8028106E+01	+6.75555185+01	+6.70891518+01	+6.72670336+01	+6.7051239E+01	+6.69636716+01	+6.67817536+01	+6.6545955E+01	+6.64112245+01	+6.5939636E+C1	+6.58385775+01	+6.5400665E+01
A AUNINIA	+6.53030305+01	+7.37030005+91	+6.5000005+01	+6-19939395+91	+6.5000000E+01	+6.500000001+01	+6.40000005+01	+6.30000000+01	+6.40000000401	+6.40000001+01	+6.330000305+01	+6.6303300E+01
MAXINUM Y	+7.0000000E+01	+7.3000300F+01	+5.90000039.6+	+6-6C03000E+31	+7-1000000F+61	+6.8000000+01	+6.600000E+01	+6.8C00300E+01	+6.7C0000E+01	+6.8CC00005+01	+6.700000E+01	+7.00000000+01
STANDARD	+1.45638638+00	+9.23548146-01	+1.16726175+30	+1.35314736+33	+2.0726 392E+00	+1.13% 9835+00	+6.45.8699.54-01	+1.95543955+30	+1-16-36475+03	+1.29000445+30	+1.51186788+10	+1.16773495+00
WE 6.1 Y	+6.76366428+31	+7.18333280 +31	+6.44128375+31	+6.38750305+)1	+6.91976336+31	+6.67551135+31	+6.51250307+31	+6.54759105+91	+6.525000.+31	+6.62503307+01	+6.45000005+31	+6.76253305+01
SNEW TODAY	ř	01	41	16	16	0	ŭ	n	c.	1.5	Œ	œ)
100 (101145)		113.0	113.	121.3	123.0	137.3	136.)	1-3-3	127.	161.	164.3	177.3

DECT WTHS UNLY, GUTEP, HASSINESS, NON-CONTE, WSN=3022136,0322593, 3622788

This sample size summary is applicable to figure 50 .

RESPONDENCE OF THE PROPERTY OF

- 115 -

SHIR LINEAR REGRESSION ANALYSIS ****

ERR ANALYSIS OF TIME SERIES ARK

REGRESSICA Y	+6.2204345E+01	+6.27584655+01	+6.2837631E+01	+6.3C75103E+01	+6.3352172E+01	+6.34313355+01	+6.36688235+01	+6.39456775+01	+5.4104202E+C1	+6.44206375+01	+6.4658325E+01	10+3590222794	+6.529161GE+01
WINIMUW Y	+6.30003006+01	+7.2000000E+01	+5.50000005+01	+5.10000005+01	+6.5000000E+C1	+6.1000000E+01	+6.2000005+61	+6.70000005+01	+6.100000005+51	+6.3000000E+01	+6.8000000E+01	+5.70000005+01	+6.7000C00E+01
Y MUMINAM	+6.4 CC33 COF + C1	+7.40000005+01	+5.8C0C0C0E+01	+5.90000005+01	+6.80000008+01	+6.5C00000E+C1	+6.4000000F+C1	10+3000000569+	+5.3C00000E+01	+6.86000006+01	+7.0000000E+01	+6.0000000F+01	+7.30000000E+31
STANDARD	+1.37238676+30	+7.665U498E-01	+1.01447856+00	+3.1191e12F+30	+8.7321245E-01	+1.24642345+30	+7.559928-01	+7.4432380E-01	+4.4C86934E-C1	+2.7491999F+09	+5.34 :22485-01	+1.1259916E+00	+9.16125385-01
> 2 41 111 2	+6.2705541E+31	+7.2-666 505 +31	16+306-63-3-5+	+5.5.375305.+31	+6.60878035+31	+6.21251105+11	+6.30001 105+01	+6.75250305+91	+6.1875030F+J1	+6.3312F30E+31	+6.90030335+31	+5.9125030E+01	+6.84250008+01
SPECIMENS	35	1.8	0	16	0.	ď	α)	60	8	16	re	æ	τ
ACT (VCNTHS)	63.	113.	115.	121.0	123.	133.	136.1	153.)	147.)	165.7	161.	154.)	177.0

II STAGE DECT MTRS ONLY, INNER, HARDNESS, NCN-CRNTC, MSN=0022135, 0022583, 0022788

This sample size summary is applicable to figure 51.

THE SPACE IS SEEN COUNTY FOR THE PROPERTY OF T

**** LINE 4R REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

RECRESSION Y	+1.26121115+01	+1.20313272+01	+1.19463575+01	+1.16554495+01	+1.14090576+01	+1.0620E49E+C1	+1.0371541E1C1	+1.00E15055+C1	+5.35703515+00	+9.41775E1E+CC
MINIMENA	+113841998+01	+1.1423875E+C1	+1.2320595E+C1	+1.11683555+01	+1.33566595+01	10+34555248.8+	+7.33779345+0C	934-3555046-5+	+9.44099998+0C	+1.09463555+01
Y 2041 K44	+1.26 936 95E+01	+1.17 92 C95E+C1	+1.3028898+C1	+1.20337992+01	+1.39 22055 + 61	+8.60059975+00	20+21555555-1+	+3.54.76,510+66	+9.65 E5 556E+CC	+1.1c (31996+01
STANDARC CEVIATION	+5.66818748-01	+1.45513618-01	+2.629.7118-51	+3.15486736-01	+1.54936476-61	+1.88464308-01	\$0-EER35195.5+	+1.34231566-01	+1.75433693-01	+3.36537186-01
× 4902	+1.20248263+01	+1.10553353+01	+1.27564413+01	+1-1-22627E+01	+1.30626262+01	+6.10006375+30	+7.49263CCE+CC	+6.44EE255E+0C	+5.64E38C6E+CC	+1.16641622+01
DEED LIVENS	o	10	w	n	10	••	۲)	(*)	•	3
ACE VENTES	103.	114.0	116.0	162.3	123.0	7.5.51	134.0	161.0	164.3	177.3

DISSECTED NTHS, CUTER, SOL GEL, CEL SWELL RATIO STAGE 11,

This sample size summary is applicable to figures 52 thru 56.

- 121 -

Figure 5

**** LINE THE HEGRESSION ANALYSIS

*** ANALYSIS OF TIME SERIES ...

RECHESSION Y	+9 - 9 6 6 6 C 6 4 B + C C +5 - 1 2 3 5 C 7 1 E + C C +5 - 1 2 3 5 C 7 1 E + C C +6 - 5 6 2 6 7 8 + C C +6 - 7 8 1 3 6 1 E + C C +6 - 7 8 1 3 6 1 E + C C +6 - 7 8 1 3 6 1 E + C C +7 - 6 7 1 9 6 7 1 1 3 + C C +7 - 6 7 1 9 7 7 E + C C
MINIMEN	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
FEXING Y	+ + + + + + + + + + + + + + + + + + +
STANDANE CEVIATION	+ + + + + + + + + + + + + + + + + + +
Y NEW	
Per circle	o ju no o o o o o o a x
(NCN 14 5)	2200202020

CEL SWELL FITT CISSECTED ATHS. INNER, SCL GEL. 5746c iI.

This sample size summary is applicable to figures 57 thru 61.

This Page 18 HEST QUALITY PROPILE.

Figure 57

igure 58

- 129 -

DISTRIBUTION

	COPIES
OOALC MMWRME MMWRMT	1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
SAMSO, Norton AFB, CA 92409 MMNP	1
TWR Systems, Norton AFB, CA 92409 Attn: Mr. J. C. Metcalf, Bldg 523/315	1
AFPRO, Aerojet, Sacramento, CA 95813	1
Aerojet Solid Propulsion Company P. O. Box 15847, Sacramento, CA 95813 Attn: Mr. G. Hoover for Mr. J. Drislane	1
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGBM) Offutt AFB, NB 68113	1
U. S. Naval Ordnance Station, Indian Head, MD 20460 Dr. James H. Wiegand Fleet Support Dept., Propulsion System Development Division, Code FS7	1
CPIA, Johns Hopkins University Applied Physics Lab John Hopkins Road, Laurel, MD 20810 Attn: Dr. P. L. Nichols	1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
MANCP Report Nr 414(79)	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
10V 20D 0 TT DI	Test Results - Semi Annual
LGM-30B, Stage II Dissected Motors	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(4)	8. CONTRACT OR GRANT NUMBER(#)
Neal M. Hansen	
Near m. mansen	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Propellant Lab Section	
Directorate of Maintenance	
Hill AFB, UT 84056	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Service Engineering Division	March 1979 /
Directorate of Materiel Management	13. NUMBER OF PAGES 145
Hill AFB, UT 84056	15. SECURITY CLASS. (of this report)
T4. MONITORING AGENCY NAME & ADDRESS(It different from Controlling Office)	15. SECURITY CLASS. (or time report)
	Unclassified
	15a. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for Public Release, Distribution Unlimit	tad
	Lea
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
The Distribution of Attached to the about of the beat	
18. SUPPLEMENTARY NOTES	
4	

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Dissected Motor Solid Propellant Minuteman Safeguard

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report contains test data from propellant and case bond materials from two Minuteman Stage II dissected motors. Testing was performed in accordance with Service Engineering General Test Directive GTD-1 Dissect dated 28 June 1974 and Project M83258C.

Statistical analysis includes data from both inner (ANP 2864) and outer (ANP 2862) propellant from the two dissected motors for this test period and includes a third motor from the previous test periods DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE - 131 - SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)