

Республиканская юниорская олимпиада для юниоров по химии Заключительный этап (2021-2022). Официальный комплект решений 8 класса

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Αl	Si	Р	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22 T :	23	24	25	26	27	28 N.I.:	29	30	31	32	33	34	35 D =	36
K 39.10	Ca	Sc 44.96	Ti 47.87	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.63	As 74.92	Se 78.97	Br 79.90	Kr
39.10	38	39	47.07	41	42	43	44	45	46	47	48	49	50	74.92 51	52	53	83.80 54
Rb	Sr	Y	Zr	Ν̈́b	Mo	Tc	Ru	Rh	₽d		Cd	In	Sn	Sb	Te	. I	Хe
85.47	87.62	88.91	91.22	92.91	95.95	-	1 \U 101.1	102.9	106.4	Ag	112.4	114.8	118.7	121.8	127.6	1 126.9	131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	57-71	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

qazcho.kz 2/17

Тест (Моргунов А.)

1	2	3	4	5	Всего
2	2	2	2	2	10

- 1. Сколько электронов, протонов и нейтронов содержится в ионе хлора $^{35}_{17}Cl^-$? Выберите правильный вариант:
 - а. 17 электронов, 18 протонов, 17 нейтронов
 - b. 18 электронов, 17 протонов, 18 нейтронов
 - с. 17 электронов, 17 протонов, 35 нейтронов
 - d. 18 электронов, 17 протонов, 35 нейтронов
 - е. 17 электронов, 17 протонов, 18 нейтронов
- 2. Сравните количество атомов, содержащихся в 1 моле воды и 1 моле метана:
 - а. 1 моль молекул воды содержит больше атомов, чем 1 моль молекул метана
 - b. 1 моль молекул воды содержит меньше атомов, чем 1 моль молекул метана
 - с. 1 моль молекул воды и 1 моль молекул метана содержит одинаковое количество атомов
 - d. 1 моль молекул воды может содержать больше или меньше атомов, чем 1 моль молекул метана, в зависимости от иных параметров.
- 3. Выберите элемент, чьи химические свойства наиболее близки к химическим свойствам элемента бериллия:
 - а. Углерод
 - b. Алюминий
 - с. Водород
 - d. Кислород
 - е. Кремний
- 4. Определите массовую долю фосфора в высшем оксиде фосфора:
 - a. 56.36%
 - b. 32.63%
 - c. 43.66%
 - d. 39.24%
- 5. Выберите правильную электронную конфигурацию атома серы:
 - a. $1s^22s^22p^63s^13p^5$
 - b. $1s^22s^22p^63s^23p^6$
 - c. $1s^2 2s^2 2p^6 3s^3 3p^3$
 - d. $1s^22s^22p^63s^23p^4$

gazcho.kz 3/17

Задача №1. Смеси (Абдугафарова К.)

1	2	"Всего
2	8	10

Смесь алюминия и магния массой $18\ r$ обработали избытком соляной кислоты, при этом выделилось $21\ л$ газа при температуре $15\ ^{\circ}$ С и давлении $769\ миллиметров$ ртутного столба.

1. Вычислите количество вещества газа в молях, используя формулу

$$PV = nRT$$

где P — давление в Паскалях (1 мм. рт. ст. = 133.3 Па), V — объем в кубических метрах (1 м³ = 1000 л), R — универсальная газовая постоянная, равная 8.31Дж / (моль * K), T — температура в Кельвинах, для получения которой необходимо прибавить к температуре в Цельсиях 273 градуса:

Находим количество водорода по формуле PV = nRT

$$n = \frac{769 \times 133.3 \times 21 \div 1000}{8.31 \times (15 + 273)} = 0.9$$
 моль

(2 балла)

2. Определите массы металлов в смеси:

Реакшии:

$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$$
 (1 балл)
Mg + 2HCl \rightarrow MgCl₂ + H₂ (1 балл)

Пусть количество алюминия = x моль; а меди = y моль; тогда масса алюминия = 27x г и масса меди = 24 у г. Составляем систему уравнений и решаем:

$$27x + 24y = 18$$

$$3/2 x + y = 0.9$$

Получаем что x = 0.4 моль и y = 0.3 моль. (2 балла)

Рассчитываем массы металлов:

Масса алюминия: $0.4 \times 27 = 10.8 \, \Gamma$ (2 балла)

Масса меди: $0.3 \times 24 = 7.2 \Gamma$ (2 балла)

gazcho.kz 4/17

Задача №2. Кристаллы (Бекхожин Ж.)

1	2	"Всего
2	8	10

Благодаря кристаллографии, мы знаем о строении вещества на атомарном уровне, от простейших солей до сложных макромолекулярных комплексов, таких как антенновый комплекс фотосистем растений. Основой кристаллографии является диффракция рентгеновских лучей от упорядоченных атомов в кристалле, при котором атомы образуют плоскости которые выступают в роли зеркал. Например, есть простейшая кубическая решетка, в которой атомы располагаются в вершинах куба. Этот наименьший элемент кристалла, называемый элементарной ячейкой, повторяется во всем кристалле путем параллельного переноса. Ниже представлена простая кубическая решетка, главная часть этой задачи.

1. Элемент **X** существует в виде кристаллов с простой кубической решеткой. Его плотность ρ составляет **9.14 г/см³**. С помощью кристаллографии, было определено что длина ребра куба α составляет **3.36** Å (1 Å = 10^{-8} см). С помощью рассмотрения элементарной ячейки, можно понять что молярную массу **X** можно определить используя следующее уравнение:

$$M = N_A * \boldsymbol{\rho} * \boldsymbol{a}^3$$

Данная формула является следствием применения закона Авогадро. Рассчитайте молярную массу элемента ${\bf X}$ и определите, что это за элемент:

$$M = 6.02 * 10^{23} * 9.14 * (3.36 * 10^{-8})^3 = 208.7$$
 г/моль $\mathbf{X} = \mathrm{Po}$ (2 балла)

gazcho.kz 5/17

2. Несколько соединений с формулой $\mathbf{A}\mathbf{b}$ также принимают похожую структуру, в половине вершин находятся атомы металла \mathbf{A} , а в другой половине атомы неметалла \mathbf{b} .

Приведенная выше формула немного меняется:

$$M = 2 * N_A * \boldsymbol{\rho} * \boldsymbol{a}^3$$

Здесь M это молярная масса вещества, то есть молярная масса металла плюс молярная масса неметалла. После кристаллографического анализа, была установлен длина a элементарной ячейки для четырех соединений с известной плотностью. Так же, используя интенсивность пика, соответствующего плоскости (111), была определена разница в количестве электронов ионов металла и неметалла (то есть магний, например, имеет 12 электронов, но ион Mg^{2+} имеет 10 электронов так как два электрона он уже потерял, учтите это при расчете). В одном случае ионы металла и неметалла обладают одинаковым количеством электронов, что приводит к полному исчезновению этого пика из-за леструктивной интерференции.

Номер вещества	Плотность, г/см ³	a, Å	n(A) - n(B)
1	2.17	2.82	-8
2	1.98	3.15	0
3	3.36	2.4	8
4	1.39	2.43	8

Определите молярную массу каждого из веществ, и, используя разницу в количестве электронов ионов, определите вещества.

qazcho.kz 6/17

1

$$M=2*6.02*10^{23}*$$
 2. 17 * $(2.82*10^{-8})^3=58.6$ г/моль $NaCl$ **(2 балла)**

2

$$M=2*6.02*10^{23}*$$
 1.98 * $(3.15*10^{-8})^3=74.5$ г/моль KCl **(2 балла)**

3

$$M=2*6.02*10^{23}*3.36*(2.4*10^{-8})^3=55.9$$
 г/моль $\it CaO$ (2 балла)

4

$$M=2*6.02*10^{23}*{\bf 1.39}*(2.43*10^{-8})^3=24$$
 г/моль NaH (2 балла)

qazcho.kz 7/17

Задача №3. Равновесие (Мужубаев А.)

1	2	3	4	5	6	7	8	9	Всего
0.5	1	1.5	1	1.5	0.5	1.5	1	1.5	10

Давайте рассмотрим следующую реакцию:

$$aA + bB \rightarrow cC + dD$$
 (1)

где a, b, c и d являются коэффициентами реакции. Очевидно, что C и D в данной реакции являются продуктами, а A и B реагентами. Возникает вопрос, а может ли пойти обратная реакция? То есть, могут ли продукты C и D обратно превратиться в исходные вещества A и B? Да, могут.

Такую реакцию назовем обратной:

$$cC + dD \rightarrow aA + bB$$
 (2)

Суммарно, процесс выглядит так.

$$aA + bB \rightleftharpoons cC + dD \tag{3}$$

Дело в том, что, если в реакционную среду поместить A и B, они начнут реагировать с образованием C и D (по реакции 1), часть которых, в свою очередь, начнет обратно превращаться в A и B (по реакции 2). В определенный момент времени скорость прямой и обратной реакции станут равными, и система достигнет равновесия, в котором количества веществ в ней будут постоянными. Концентрацию вещества при состоянии равновесия называют равновесной концентрацией.

Чтобы математически описать количественный состав равновесной системы используют константу равновесия *К*. Чтобы посчитать ее значение, нужно поделить произведение равновесных концентраций продуктов, возведенных в степень равную соответствующим стехиометрическим коэффициентам, на произведение равновесных концентраций реагентов, возведенных в степень равную соответствующим стехиометрическим коэффициентам. Для системы 3 константа равновесия выглядит так:

$$K = \frac{[C]_{\text{равновесная}}^{c} * [D]_{\text{равновесная}}^{d}}{[A]_{\text{равновесная}}^{a} * [B]_{\text{равновесная}}^{b}}$$

Также, давайте введем математическую величину Q, которая будет показывать соотношение продуктов к реагентам в определенный момент времени. Она выражается схоже с константой равновесия, но концентрации, используемые для ее расчета, не обязательно равновесные:

$$Q = \frac{[C]^c * [D]^d}{[A]^a * [B]^b}$$

gazcho.kz 8/17

При установлении равновесия концентрации веществ в системе будут равны равновесным, соответственно Q будет равно K.

Теперь, после небольшого лирического отступления, примемся решать задачи.

Химик аналитик решил исследовать химические свойства слабых кислот. Для этого, он растворил некоторое количество HNO_2 .

1. Запишите реакцию диссоциации HNO_2 .

$$HNO_2 \leftrightharpoons H^+ + NO_2^-$$

0.5 баллов за реакцию Всего 0.5 балл за пункт

Известно, что константа равновесия этой реакции равна $5.117 * 10^{-4}$. После химического анализа над этим раствором, были получены следующие данные:

Вещество	Концентрация
NO_2^-	$1.782 * 10^{-2} M$
H^+	$1.782 * 10^{-2} M$
HNO_2	$6.205 * 10^{-1} M$

2. Рассчитайте Q для этой системы. Сравните значение Q с K — установилось ли равновесие?

$$Q = \frac{[H^+]\{NO_2^-\}}{[HNO_2]} = \frac{1.782 * 10^{-2} * 1.782 * 10^{-2}}{6.205 * 10^{-1}} = 5.117 * 10^{-4}$$

Видно, что Q = K. Равновесие установилось.

- 0.5 балл за расчет Q
- 0.5 балл за сравнение констант и выводе о том, что установилось равновесие. Без сравнения 0 баллов.

Всего 1 балл за пункт

3. Рассчитайте массу добавленной к раствору кислоты, если объем раствора 100 мл.

100 мл. Из уравнения реакции видно, что, если образовалось $1.782*10^{-2}$ М H^+ , то столько же прореагировало HNO_2 . Тогда:

$$c_0(HNO_2) = 6.205 * 10^{-1} + 1.782 * 10^{-2} = 6.383 * 10^{-1}M$$

$$n_0(HNO_2) = 6.383 * 10^{-1} * 0.1 = 6.383 * 10^{-2}M$$

$$m_0(HNO_2) = 6.383 * 10^{-2} * 47 = 3$$
 грамм

- 0.5 баллов за расчет начальной концентрации
- 0.5 баллов за расчет количества вещества HNO_2
- 0.5 баллов за расчет массы

Всего 1.5 балла за пункт

4. Рассчитайте степень диссоциации HNO_2 . Степень диссоциации равна соотношению количества кислоты, которое диссоциировало, к ее изначальному количеству. Ответ приведите в процентах.

$$\alpha = \frac{1.782 * 10^{-2}}{6.383 * 10^{-1}} * 100\% = 2.79\%$$

1 балл за расчет степени диссоциации Всего 1 балл за пункт

Дела шли у нашего химика отлично, но вдруг случилась беда – химический анализатор сломался. Давайте поможем ему определить концентрации с помощью теории.

В одном из опытов, он растворил в 500 мл воды 2.217 грамм HF. Установилось равновесие. Известно, что константа равновесия для реакции диссоциации HF равна $6.61 \cdot 10^{-4}$.

5. Заполните таблицу недостающими данными. Покажите свои расчеты.

Вещество	Концентрация
F ⁻	
H^+	
HF	

Давайте посчитаем изначальную концентрацию *HF* до диссоциации:

$$c_0(HF)=rac{n}{V}=rac{rac{m}{M}}{V}=rac{\left(rac{2.217}{20}
ight)}{0.5}=0.2217$$
 моль/л

В растворе плавиковая кислота диссоциирует следующим образом:

$$HF \leftrightharpoons H^+ + F^-$$

Давайте скажем, что x моль/л кислоты распалось, тогда H^+ и также образовались в количество x моль/л.

Концентрация	HF	H ⁺	F ⁻
моль/л			
Изначальная	0.2217	0	0
Изменение	-x	+ <i>x</i>	+x
Равновесная	0.2217 - x	x	x

Запишем выражение для константы равновесия:

$$K = \frac{[H^+]_{\text{равн}}[F^-]_{\text{равн}}}{[HF]_{\text{равн}}} = \frac{x * x}{0.2217 - x} = 6.61 * 10^{-4}$$

Решая уравнение для х получим:

$$x = 0.01178$$
 моль/л

Тогда, рассчитаем равновесные концентрации:

$$[H^+]_{
m pabh}=[F^-]_{
m pabh}=0.01178$$
 моль/л $[HF]_{
m pabh}=0.2217-0.01178=0.2099$ моль/л

За расчет начальной концентрации $c_0(HF)$ - 0.5 балла

За расчет концентрации $[H^+]_{\text{равн}}$ - 0.3 балла

За расчет концентрации $[F^-]_{\text{равн}}$ - 0.3 балла

За расчет концентрации $[HF]_{\text{равн}}$ - 0.4 балла

Всего 1.5 балла за пункт

К раствору химик добавил 3 грамм *NaF*.

6. Пользуясь принципом Ле-Шателье, определите в какую сторону сместится равновесие в реакции диссоциации HF? Ответ поясните.

Реакция диссоциации выглядит так:

$$HF \leftrightharpoons H^+ + F^-$$

При растворении фторида натрия, он так же полностью диссоциирует на ионы:

$$NaF \leftrightharpoons Na^+ + F^-$$

Как мы видим, фторид натрия является источником F^- ионов, которые являются продуктом в реакции диссоциации HF. Увеличивая концентрацию продуктов реакции, по принципу Ле-Шателье, мы смещаем равновесие в сторону исходных регаентов, то есть - налево.

0.5 баллов за ответ с пояснением.

Всего 0.5 баллов за пункт

7. Заполните таблицу недостающими данными после добавления *NaF*. Покажите расчеты.

Вещество	Концентрация
F^-	
H ⁺	
HF	

qazcho.kz 11/17

Из-за того, что NaF диссоциирует полностью, в систему добавляются ионы F^- :

$$c(NaF) = \frac{3}{(23+19)*0.5} = 0.143$$
 моль/л

Очевидно, с добавлением NaF равновесие в следующей реакции сместится налево $HF \leftrightharpoons H^+ + F^-$

Концентрация	HF	H ⁺	F ⁻
моль/л			
Изначальная	0.2099	0.01178	0.143+0.01178
Изменение	+x	-x	-x
Равновесная	0.2099 + x	0.01178 - x	0.15447 - x

$$K = \frac{[H^+]_{\text{равн}}[F^-]_{\text{равн}}}{[HF]_{\text{равн}}} = \frac{(0.01178 - x) * (0.15447 - x)}{0.22099 + x} = 6.61 * 10^{-4}$$

Решая уравнение для х получим:

$$x = 0.0107$$
 моль/л

Тогда, рассчитаем равновесные концентрации:

$$[H^+]_{
m pabh}=0.00108\,$$
 моль/л $[F^-]_{
m pabh}=0.144\,$ моль/л $[HF]_{
m pabh}=0.2099+0.0107=0.2206\,$ моль/л

За расчет начальной концентрации $c_0(NaF)$ - 0.5 балла

За расчет концентрации $[H^+]_{\text{равн}}$ - 0.3 балла

За расчет концентрации $[F^-]_{\text{равн}}^{\dagger}$ - 0.3 балла

За расчет концентрации $[HF]_{\text{равн}}$ - 0.4 балла

Всего 1.5 балла за пункт

8. Рассчитайте степень диссоциации HF до добавления *NaF* и после. Сделайте вывод на основании вашего наблюдения.

$$lpha(ext{до}) = rac{0.01178}{0.2217} * 100\% = 5.31\%$$
 $lpha(ext{после}) = rac{0.2217 - 0.2206}{0.2217} * 100\% = 0.49\%$

С добавлением NaF, диссоциация плавиковой кислоты стала меньше

За расчет степеней диссоциации по 0.35 балла

За сделанный вывод 0.3 балла

Всего 1 балл за пункт

В случае, если вещества находятся в газообразном состоянии, константу равновесия рассчитывают с использованием парциальных давлений, измеряемых в бар. Например, для реакции:

$$aA_{(\Gamma)} + bB_{(\Gamma)} \to cC_{(\Gamma)} + dD_{(\Gamma)} \tag{4}$$

Константа равновесия будет выглядеть следующим образом:

gazcho.kz 12/17

$$K_p = \frac{p(C)_{\text{равновесное}}^c * p(D)_{\text{равновесное}}^d}{p(A)_{\text{равновесное}}^a * p(B)_{\text{равновесное}}^b}$$

Аналогично, парциальные давления используются и для расчета Q

В реакционный сосуд при 298 К добавляли газообразные H_2 и Cl_2 , пока давление каждого не оказалось равным 0.3 Бар. Примечательно то, что реакции не происходило до тех пор, пока в систему не сообщили некоторое количество энергии путем зажигания искры. K_p реакции хлора с водородом равна $1.6*10^{33}$.

- 9. Выберите все верные утверждения. За неправильные ответы баллы будут вычитаться.
 - \circ При установлении равновесия давления H_2 и Cl_2 пренебрежимо малы по сравнению с давлением HCl.
 - о Зажигание искры понижает энергию активации реакции
 - о Зажигание искры повышает энергию активации реакции
 - \circ Константа равновесия обратной реакции будет иметь значение больше $1.5*10^5$
 - Q для системы до зажигания искры равно нулю

Реакция:

$$H_{2_{\text{ra3}}} + Cl_{2_{\text{ra3}}} \rightleftharpoons 2HCl_{\text{ra3}}$$

Первое утверждение: верно

Давайте взглянем на константу равновесия.

$$K_p = \frac{p_{\text{равновесное}}^2(HCl)}{p_{\text{равновесное}}(H_2) * p_{\text{равновесное}}(Cl_2)} = 1.6 * 10^{33}$$

Давление, атм	H_2	Cl_2	HCl
Изначальное	0.3	0.3	0
Изменение	-x	-x	+2x
Равновесное	0.3 - x	0.3 - x	2 <i>x</i>

$$K_p = \frac{(2x)^2}{(0.3-x)*(0.3-x)} = \frac{(2x)^2}{(0.3-x)^2} = \left(\frac{2x}{0.3-x}\right)^2 = 1.6*10^{33}$$

$$\frac{2x}{0.3-x} = \sqrt{1.66*10^{33}} = 4.07*10^{16}$$

$$x \approx 0.3$$

$$p(Cl_2)_{\text{равновесное}} = p(H_2)_{\text{равновесное}} = 0.3 - 0.3 = 0 \text{ бар}$$

$$p(HCl)_{\text{равновесное}} = 2*0.3 = 0.6 \text{ бар}$$

Как мы видим, давление хлора и водорода близко к 0 атм. Оно действительно пренебрежимо мало по сравнению с давлением хлороводорода.

Второе утверждение: неверно

gazcho.kz 13/17

Зажигание искры сообщает некоторое количество энергии в систему, которое нужно, чтобы число молекул водорода и хлора, обладающих энергией большей, чем энергия активации реакции, возросло. Но оно никак не влияет на само значение энергии активации.

Третье утверждение: неверно

По той же причине, что и во втором утверждении, это утверждение тоже является неверным.

Четвертое утверждение: неверно

Обратная реакция выглядит так:

$$2HCl_{\text{газ}} \rightleftharpoons H_{2_{\text{газ}}} + Cl_{2_{\text{газ}}} \\ K_p(\text{обратная}) = \frac{p_{\text{равновесноe}}(H_2) * p_{\text{равновесноe}}(Cl_2)}{p_{\text{равновесноe}}^2(HCl)} = \frac{1}{K_p(\text{прямая})} = \frac{1}{1.6 * 10^{33}} = 6.25 * 10^{-34}$$

Как мы видим, это значение намного меньше $1.5 * 10^5$.

Пятое утверждение: верно

До зажигания искры реакции не шло, соответственно, давление HCl было равно нулю. Посчитаем Q до зажигания искры и получим:

$$Q = \frac{(0)^2}{(0.3 - 0) * (0.3 - 0)} = 0$$

За каждое выбранное правильное утверждение - 0.75 баллов

За каждое выбранное неправильное утверждение вычитается 0.5 баллов.

Количество набранных баллов за пункт не может быть меньше 0.

Всего 1.5 балла за пункт.

Задача №4. Титрование (Бекхожин Ж.)

1	2	3	4	4	"Всего
1.4	2	4.1	1	1.5	10

Для подготовки к олимпиаде по химии, Алия решила провести определение чистоты карбоната кальция с помощью окислительно-восстановительного титрования.

Сначала, ей необходимо было приготовить стандартные растворы оксалата и перманганата. Для этого она отвесила 1.843 г оксалата натрия ($Na_2C_2O_4$) и растворила в 100.0 мл дистиллированной воды. Перенеся 20.00 мл этого раствора в коническую колбу, она добавила разбавленной серной кислоты чтобы создать кислую среду и начала титровать приготовленным раствором перманганата калия. После добавления 11.67 мл перманганата, раствор приобрел малиновый цвет который не исчезал после стояния.

1. Запишите полуреакции восстановления и окисления, протекающие в данном титровании. Затем запишите уравновешенную окислительно-восстановительную

qazcho.kz 14/17

реакцию. Во всей задаче принимаются как молекулярные $(NaOH + HCl \rightarrow NaCl + H_2O)$, так и ионные $(H^+ + OH^- \rightarrow H_2O)$ уравнения.

Полуреакция восстановления:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
(0.4 балла)

Полуреакция окисления:

$$C_2 O_4^{2-} \rightarrow 2CO_2 + 2e^-$$
(0.4 балла)

Уравновешенная реакция:

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 4H_2O$$
 (0.6 балла)

2. Определите концентрации растворов оксалата и перманганата, просто подставив коэффиценты из пункта выше, где это требуется (то есть не нужно объяснять почему вы умножаете на это)

$$C_{Na_2C_2O_4} = rac{n_{Na_2C_2O_4}}{V_{Na_2C_2O_4}} = rac{m_{Na_2C_2O_4}}{M_{Na_2C_2O_4}*V_{Na_2C_2O_4}} = 0.1375\,M$$
 (1 балл)
$$C_{KMnO_4} = rac{2}{5}*rac{C_{Na_2C_2O_4}*V_{Na_2C_2O_4, \mathrm{аликв.}}}{V_{KMnO_4}} = 0.09428\,M$$
 (1 балл)

Затем, она отвесила 0.4375 г карбоната кальция, в котором могли быть примеси. Добавив избыток разбавленной соляной кислоты, Алия наблюдала небольшое выделение газа. Затем она нейтрализовала кислоту, доведя среду до нейтральной гидроксидом натрия, и разбавила раствор до 50.00 мл. При добавлении к полученному раствору 50.00 мл приготовленного ранее раствора оксалата натрия, раствор помутнел и выпал осадок. Чтобы избавиться от осадка, Алия отфильтровала раствор и промыла фильтр водой чтобы количественно перенести раствор в чистую коническую колбу. После добавления разбавленной серной кислоты она начала титровать раствор перманганатом, потратив 12.52 мл раствора перманганата для достижения точки эквивалентности.

3. Запишите реакцию карбоната кальция с соляной кислотой и реакцию полученного раствора с оксалатом натрия. Основываясь на этом, определите количество вещества и массовую долю карбоната кальция в навеске.

gazcho.kz 15/17

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

$$(0.2 \text{ балла})$$

$$CaCl_2 + Na_2C_2O_4 \rightarrow CaC_2O_4 \downarrow + 2NaCl$$

$$(0.4 \text{ балла})$$

$$n_{Na_2C_2O_4,\text{оставш.}} = \frac{5}{2} * C_{KMnO_4} * V_{KMnO_4} = 2.951 \text{ ммоль}$$

$$n_{CaCO_3} = C_{Na_2C_2O_4} * V_{Na_2C_2O_4} - n_{Na_2C_2O_4,\text{оставш.}} = 0.1375 * 50 - 2.951 = 3.924 \text{ ммоль}$$

$$(3 \text{ балла})$$

$$\omega = \frac{n_{CaCO_3} * M_{CaCO_3}}{m_{\text{навески}}} = 89.78\%$$

$$(0.5 \text{ балла})$$

4. Ключевым качеством реакций, используемых в аналитике, является их количественность и необратимость, то есть они должны протекать только по одному пути, без образования побочных продуктов, и протекать максимально полно. Рассматривая образование осадка из кальция и оксалата, считайте для расчетов в этом пункте что навеска карбоната абсолютно чистая.

Рассчитайте концентрацию оксалат-ионов в растворе после того как весь осадок выпал, выпадение осадка возьмите как количественную реакцию.

$$C_{C_2O_4^{2-}} = C_{C_2O_4^{2-}}^0 * rac{V_0}{V_0 + V_1} - rac{m_{
m {\scriptscriptstyle HABECKU}}}{M_{CaCO_3} * (V_0 + V_1)} = 0.02504\,M$$
 (1 балл)

5.~3ная, что произведение растворимости осадка равно $2.3*10^{-9}M^2$, рассчитайте концентрацию кальция в растворе после выпадения осадка. Какой процент от общего кальция остался в растворе (помните, что тут навеска берется как чистый карбонат кальция)?

qazcho.kz 16/17

$$C_{Ca^{2+}}=rac{K_{\Pi P}}{C_{C_2O_4^{2-}}}=9.2*10^{-8}$$
 (1 балл) $\chi=rac{C_{Ca^{2+}}*(V_0+V_1)*M_{CaCO_3}}{m_{{ t HaBecku}}}=2.1*10^{-6}=0.00021\%$ (0.5 балла)

qazcho.kz 17/17