Chapter 14 Test

Multivariable Calculus

Name: _____

Calculator and 3×5 note card permitted

Date: _____

<u>Instructions</u>: Show all of your work and justify all steps. Correct answers without supported work receive reduced credit. Write legibly. (90 points)

True/False Questions [2 points each]

- (1) _____ The Jacobian for spherical coordinates is $J(\rho, \theta, \phi) = \rho \sin \phi$.
- (2) _____ The integral $\int_0^{2\pi} \int_0^2 \int_r^2 dz \, dr \, d\theta$ represents the volume enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2.
- (3) _____ If G is the rectangular box defined by $a \le x \le b, c \le y \le d, k \le z \le l$, then

$$\iiint\limits_{R} f(x)g(y)h(z)\,dV = \left[\int_{a}^{b} f(x)\,dx\right] \left[\int_{c}^{d} g(y)\,dy\right] \left[\int_{k}^{l} h(z)\,dz\right]$$

(4) _____ The following parametric equations represent a sphere.

$$x(u,v) = u$$
, $y(u,v) = \sqrt{4 - u^2}\cos(v)$, $z(u,v) = \sqrt{4 - u^2}\sin(v)$

(5) _____ The center of gravity of a homogeneous lamina in a plane is located at the lamina's centriod.

 $\underline{\text{Multiple Choice Questions}} \ [4 \ \text{points each}]$

(6) _____ Find the surface area of the portion of the plane x + y + z = 3 in the first octant.

A.
$$9\sqrt{3}$$

B.
$$\frac{9}{2}\sqrt{3}$$

C.
$$\frac{9}{2}\sqrt{2}$$

D.
$$9\sqrt{2}$$

(7) _____ Find the Jacobian of the following change of variables,

$$x(\alpha, \beta) = 5\alpha \sin \beta,$$
 $y(\alpha, \beta) = 4\alpha \cos \beta$

A.
$$\frac{\partial(x,y)}{\partial(\alpha,\beta)} = 9\alpha$$

B.
$$\frac{\partial(x,y)}{\partial(\alpha,\beta)} = -20\alpha \sin \beta \cos \beta$$

C.
$$\frac{\partial(x,y)}{\partial(\alpha,\beta)} = -20\alpha$$

D.
$$\frac{\partial(x,y)}{\partial(\alpha,\beta)} = -\alpha$$

- (8) Evaluate $\iiint \sqrt{x^2 + y^2} dV$ where E is the region that lies inside the cylinder $x^2 + y^2 = 4$ and between the planes z = -4 and z = 7.
 - A. 252.61
- B. 184.31
- C. 168.58
- D. 126.99
- (9) _____ Given $\int_0^2 \int_0^{\sqrt{4-x^2}} \sin(x^2+y^2) \, dy \, dx$, when changing to polar coordinates what are the
 - limits for θ

- A. $\left[0, \frac{\pi}{2}\right]$ B. $\left[0, \pi\right]$ C. $\left[0, 2\pi\right]$ D. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- (10) _____ What is the principal unit normal vector to the parametric surface,

$$x(u,v) = u, \quad y(u,v) = v, \quad z(u,v) = u^2 + v^2,$$

$$Recall: \quad \mathbf{n} = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right|\right|}$$

Recall:
$$\mathbf{n} = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\|}$$

A.
$$\frac{\langle -2u, 2v, 1 \rangle}{\sqrt{4u^2 + 4v^2 + 1}}$$

B.
$$\langle -2u, -2v, 1 \rangle$$

C.
$$\frac{\langle -2u, -2v, 1 \rangle}{\sqrt{4u^2 + 4v^2 + 1}}$$

D.
$$\langle -2u, 2v, 1 \rangle$$

Short Answer Questions

(11) Find the tangent plane to the parametric surface in #10 at the point (1,2,5).

(12) Find the value of $\iint_R f(x,y) dA$ for the function $f(x,y) = \sqrt{x^2 + y^2}$, given the semi-annulus region R shown below. [6 points]

(13) Use spherical coordinates to find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 9$ above the xy-plane and below the cone $z = \sqrt{x^2 + y^2}$ [10 points]

(14) Find the centroid for the region bounded by the graphs of $f(x) = 81 - x^2$ and $g(x) = \frac{81 - x^2}{4}$. Integral set-up must be shown, you may use a calculator for integral evaluation.

[10 points]

(15) Use the transformation u(x,y) = 2x - y and v(x,y) = x + 2y to find $\iint_R \frac{2x - y}{x + 2y} dA$. Where R is the region shown in the graph below.

Hint: $x = \frac{2}{5}u + \frac{1}{5}v$, $y = -\frac{1}{5}u + \frac{2}{5}v$

(16) Find the average value of $f(x,y) = 8y^2$ over the triangle with vertices (0,0), (2,0), (2,3).

- (17) Set up, **do not evaluate**, the triple integral $\iiint_R y \, dV$ where R is the "ice-cream cone" region enclosed by a sphere $x^2 + y^2 + z^2 = 4$ centered at the origin and the cone $z = \sqrt{3x^2 + 3y^2}$:
 - a. Use rectangular coordinates.

[5 points]

$$\iiint\limits_R y\,dV =$$

b. Use cylindrical coordinates.

[5 points]

$$\iiint\limits_R y\,dV =$$

c. Use spherical coordinates.

[5 points]

$$\iiint\limits_R y\,dV =$$

(18) BONUS: Points are for correct answer only. You must show all work to recieve credit.

The function $f(x,y) = ax^2 + 4y$ has an average value of 2 on the triangle with vertices (0,0), (0,1), and (1,0). What can you say about the constant a? [2 points]