Low-Energy Transfer Orbits

A Theoretical and Numerical Study

Gandalf Saxe, DTU

What are transfer orbits?

A way of getting from A to B in space

Why Are Transfer Orbits Interesting?

NASA manned spacecraft: Orion Manned Mars Mission: 2030's

"The first crewed mission — called EM-2 — is now scheduled for April 2023; the flight was originally scheduled for August 2021"

- The Verge, September 16th

Mars One manned spacecraft: Dragon

Manned Mars Mission: ~2026

"Elon Musk argues that we must put a million people on Mars if we are to ensure that humanity has a future"

- Interview with <u>aeon.co</u>, 30 September 2014

Why Are Transfer Orbits Interesting?

Answer: Fuel efficiency

Cost of low Moon orbit: ~ \$100,000 per kg Cost of moon landing: ~ \$1,000,000 per kg

Low-energy transfer orbit can double the payload to Moon!

Sources:

- https://www.astrobotic.com/lunar-delivery
- Jacob Akira Okada. Painting the Way to the Moon. 2015.
- Edward a Belbruno and John P Carrico. "Calculation of Weak Stability Boundary Ballistic Lunar Transfer Trajectories". In: Astrodynamics specialist conference. Denver, Colerado, 2000. doi: doi:10.2514/6.2000-4142.

Hohmann Transfer Orbit to the Moon

Hohmann Transfer Orbit to the Moon

Hohmann Transfer Orbit to the Moon

 $t_H = 5.0 \text{ days}$

 $\Delta v_{Earth} = 3144 \text{ m/s}$

 $\Delta v_{Moon} = 802 \text{ m/s}$

 $\Delta v_{Total} = 3946 \text{ m/s}$

It's all about low Δv

Find transfer orbits with Δv low as possible!

 Δv_{Moon} can be reduced up to ~25%

Low Energy Transfer Orbits

Hiten: Japanese Spacecraft, 1990

Spacecraft

Moon

Assumptions:

- 2D
- 2-body

Earth

Assumptions:

- 1. θ: Position in orbit
- 2. Δv_{earth} : Velocity change
- 3. φ: Angle to velocity vector

Hohmann Transfer Orbit to the Moon

100 positions · 200 velocities = 20,000 simulations

Hohmann Transfer Orbit to the Moon

First search

100 positions 200 velocities = 20,000 simulations

Refinement

15 positions · 15 velocities · 15 angles = 3375 simulations

Hohmann Transfer Orbit to the Moon

First search

100 positions · 200 velocities = 20,000 simulations

Refinement

15 positions · 15 velocities · 15 angles = 3375 simulations

Total: 20,000 + 3375 = 23,375 simulations

Hohmann Transfer Orbit to the Moon

Low Energy Transfer Orbit to the Moon

First search + 7 refinements

- 1. θ : $0 \pm 180^{\circ} \rightarrow 55$ positions
- 2. Δv_{earth} : (3120 ± 100) m/s \rightarrow 55 velocities
- 3. ϕ : 0° ± 1.8° \rightarrow 55 angles

TOTAL 55.55.55.8 = 1,331,000

Entering Moon Orbit

Exit from Earth orbit

Entry to Moon orbit (100±10 km)

Hohmann Transfer Orbit to the Moon

Low-Energy Transfer Orbit (short)

 $t_{short} = 41 days$

Low-Energy Transfer Orbit (long)

(x,y)

 $\Delta v_{total} = 3795$ m/s

 $t_{long} = 194 days$

 $(\mathfrak{X},\mathfrak{Y})$

Results Summarized

All transfer orbits

Trajectory	Flight time	$\Delta v_{\rm total} \ ({\rm km/s})$	$\Delta v_{\rm earth} \ ({\rm km/s})$	$\Delta v_{\mathrm{moon}} \; (\mathrm{km/s})$
Minimum	N/A	3.721	3.099	0.622
Long LETO	194 days	3.795	3.091	0.704
Belbruno-Miller	3 months	3.838	3.187	0.651
Topputo	8 months	3.895	3.265	0.630
Short LETO	41 days	3.896	3.127	0.769
Hohmann - long (sim)	4.3 days	3.912	3.111	0.801
Hohmann - (model)	5.0 days	3.946	3.144	0.802
Hohmann - medium (sim)	3.00 days	4.015	3.136	0.880
Apollo (Hohman)	$3.05 \mathrm{\ days}$	4.115	3.048	1.067
Hohmann - short (sim)	$1.00 \mathrm{\ days}$	6.823	3.809	3.014

We can go to Moon MUCH cheaper.

- We can go to Moon MUCH cheaper.
- I have assembled an algorithm which greatly improves the trajectory compared to the Apollo Missions.

- We can go to Moon MUCH cheaper.
- I have assembled an algorithm which greatly improves the trajectory compared to the Apollo Missions.
- I have used this to estimate a low Δv for a potential Moon mission, and can easily be extended to Mars missions.

- We can go to Moon MUCH cheaper.
- I have assembled an algorithm which greatly improves the trajectory compared to the Apollo Missions.
- I have used this to estimate a low Δv for a potential Moon mission, and can easily be extended to Mars missions.

(My advisor at DTU, Poul G. Hjorth, is so excited about the results that we will be writing an article together next January for publication)

LETO Short Animation

0.043484 days/frame, 60 FPS

Numerical Method

Adaptive Störmer-Verlet (symplectic)

Numerical Method

Adaptive Störmer-Verlet (symplectic)

Numerical Method

Adaptive Störmer-Verlet (symplectic)

Gravitational Potential and Lagrange Points

Wishlist

- Earth \rightarrow L₁ (forward) + L₁ \rightarrow Moon (backward)
- 2D → 3D
- Include Sun's potential
- Higher-order integrator:
 4.-5.-order symplectic Runge-Kutta