Processamento Digital de Sinal

Recurso 2014-2015

1. Considere o sistema LTI discreto que para a entrada $x[n] = (n-1)\left(\frac{1}{2}\right)^n u[n+1]$ tem como saída $y[n] = n\left(\frac{1}{2}\right)^n u[n] + \delta[n-1]$

- a) Determine a transformada-Z da resposta impulsional do sistema.
- b) Determine a resposta impulsional do sistema.
- c) Faça o diagrama de zeros e pólos do sistema. Como caracteriza este sistema em termos de estabilidade e causalidade. O sistema é fisicamente realizável?
- d) Determine a equação de diferenças do sistema.
- e) Apresente uma função em Matlab que calcule a saída deste sistema supondo que tem a entrada na variável *x*.
- 2. Pretende-se desenvolver um estetoscópio digital. O sinal de auscultação do pulmão tem componentes importantes até à frequência de 1 kHz. Sabendo que o sinal é adquirido à 5 kHz projecte um filtro digital passa-baixo de butterworth. Na sua resposta justifique todos os passos.
 - a) Supondo que utiliza a transformação bilinear, determine a ordem mínima do filtro digital. No seu projecto deve garantir uma atenuação de 1dB à frequência de 1 kHz Hz e de 60 dB à frequência de 1.2 kHz. Justifique.
 - b) Determine a frequência para a qual atenuação é superior a 100, sabendo que o filtro anterior foi projectado para optimizar a banda de rejeição. Justifique.
 - c) Foi aplicado à entrada um sinal sinusoidal com frequência de 1.1 kHz, determine a amplitude do sinal à saída do filtro. Justifique.
 - d) No sistema anterior pretende-se analisar as componentes do sinal entre as frequências de 100 a 400 Hz, usando um filtro FIR, sabendo que a frequência de amostragem foi decimada para 2.5 kHz. Pretende-se que o filtro tenha um ganho de rejeição de -60 dB e uma banda de transição de 45 Hz com um ganho máximo e mínimo na banda passante respectivamente de 1.01 e 0.99.
 - e) Diga quais janelas que permitem a implementação do filtro. Justifique.
 - f) Deduza, justificando todos os passos, a resposta impulsional do filtro FIR desejado.
 - g) Implemente o filtro requerido usando o método que achar mais conveniente. Justifique todos os passos que efectuar bem como a escolha do método.
 - h) Apresente uma função em Matlab devidamente comentada que implemente o filtro. Diga como poderia testar o filtro. Apresente um bloco de código em Matlab que teste o filtro.
- 3. Considere um sinal discreto s[n] de média m_s e desvio padrão σ_s corrompido de modo multiplicativo por um sinal ruído branco e[n] de média m_e e desvio padrão σ_e .

- a) Determine a média e a variância do processo x[n]=s[n].e[n] admitindo que os processos são não correlados.
- b) Determine a sequência de autocorrelação e a densidade espectral de potência de x[n] em função dos parâmetros conhecidos dos processos s[n] e e[n].
- c) Considere que s[n] é um sinal sinusoidal com fase aleatória e uniformemente distribuída em [0, 2π[ou seja s[n]=Acos(w₀n+φ). Mostre que nestas circunstâncias, se os processos são não correlados então

$$\Phi_{xx}[m] = \frac{A^2}{2} \cos w_0 \, m. \, [\sigma_e^2 \delta[m] + m_e^2]$$

- d) Determine e esboce justificando, no contexto da alínea c) a densidade espectral de potência do processo x[n].
- e) Apresente um método eficiente para estimar a densidade espectral do ruído e[n] tomando por base Cxx(m). Mostre que este estimador é consistente relativamente à média.
- f) Mostre que o periodograma é um estimador consistente da densidade espectral de potência mas apenas relativamente à média. Explique como é que o método de Bartlett diminui a variância deste estimador. Justifique.
- 4. Considere um sistema discreto LTI caracterizado pela função de transferência

$$H(z) = \frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

e ao qual é aplicado um sinal ruído branco de média nula.

- a) Dos métodos de estimação espectral que conhece qual o mais indicado para estimar a densidade espetral de potência do processo de saída? Justifique.
- b) Mostre que a autocorrelação do sinal de saída é dada por

$$\varphi_{xx}(m) = \sum_{k=1}^{N} a_k \varphi_{xx}(|m-k|)$$

- c) Considere que dispõe de uma amostra do sinal de saída de 4 pontos {1, 0,-1, -1}. Estime a sequência de autocorrelação do processo de saída para -3≤m≤3.
- d) Determine o erro do preditor.
- e) Estime a sequência de autocorrelação do processo de saída para m>3 e m<9.

Window Type	Peak Sidelobe Amplitude (Relative)	Approximate Width of Mainlobe	Peak Approximation Error 20 log ₁₀ δ (dB)	Equivalent Kaiser Window β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	- 41	$8\pi/M$	- 53	4.86	$6.27\pi/M$
Blackman	- 57	$12\pi/M$	- 74	7.04	$9.19\pi/M$

$$M = \frac{-10\log(\delta_1 \delta_2) - 13}{2.324\Delta\Omega}$$

$$M = \frac{A - 8}{2.285\Delta\Omega}$$

$$\left|H_c(w)\right|^2 = \frac{1}{1 + \left(\frac{jw}{jw_c}\right)^{2N}}$$