

EXAMEN

Semestre : 1 2 X

Session : Principale Rattrapage X

Module : Mathématiques de base 4

Enseignant(s): Soumaya ben chaabane /Fares Ben Amara/Lotfi Ncib/

Classe(s): 2A/ 2P....

Documents autorisés : OUI NON X Nombre de pages : 2

Date :10/06/2017 Heure: .10h30...... Durée :. 1 heure 30 mn.......

Exercice 1:

Soit f définie sur IR^2 par

$$f(x,y) = 5x^2 - 6xy + 2x + 2y^2 - 2y + 1.$$

- 1) Calculer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
- 2) Déterminer le point critique de f et prouver que f atteint un minimum en ce point.

Exercice 2:

Soit
$$F(x) = \int_{1}^{+\infty} \frac{e^{-xt}}{t(1+t^2)} dt$$
.

- 1) Montrer que F est définie continue sur $[0, +\infty[$.
- 2) Montrer que F est dérivable sur $[0,+\infty[$ et exprimer sa dérivée à l'aide d'une intégrale.
- 3) Montrer que pour x > 0, $|F(x)| \le \int_1^{+\infty} e^{-xt} dt$.
- 4) En déduire $\lim_{x\to+\infty} F(x)$

Exercice 3:

- 1) Les implications suivantes pour une série de terme général U_n sont-elles vraies ou fausses ?
 - $\lim_{n\to+\infty}U_n=0$ \Rightarrow la série de terme général U_n converge.
 - La série de terme général U_n converge \Rightarrow la série de terme général $|U_n|$ converge également.
 - La série de terme général $U_n \ge 0$ converge \Rightarrow la série de terme général ${U_n}^2$ converge également.
 - *On demande une preuve lorsque l'implication est vraie et un contre-exemple dans le cas contraire.
- 2) Déterminer la nature des séries de terme général U_n suivantes (justifier les réponses) :

•
$$U_n = \operatorname{Sin}\left(\frac{n\pi}{3}\right)$$

• $U_n = \frac{(-1)^n}{n^2}$
• $U_n = e^{-n^2}$

$$U_n = \frac{(-1)^n}{n^2}$$

$$\bullet \quad U_n = e^{-n^2}$$

Exercice 5:

On considère l'équation différentielle suivante :

(E) :
$$y'' - 3y' + 2y = xe^x$$

- 1) Résoudre l'équation différentielle homogène associée à (E).
- 2) Trouver une solution particulière de (E). En déduire la solution générale de (E).
- 3) Déterminer la solution y de (E) vérifiant y(0) = 1 et y'(1) = 0.

Bon Travail