Deep Q-Networks

Volodymyr Mnih

Deep RL Bootcamp, Berkeley

Recap: Q-Learning

- Learning a parametric Q function: $Q_{ heta}(s,a)$
 - Remember: $target(s') = R(s, a, s') + \gamma \max_{s'} Q_{\theta_k}(s', a')$
 - Update: $\theta_{k+1} \leftarrow \theta_k \alpha \nabla_{\theta} \mathbb{E}_{s' \sim P(s'|s,a)} \left[(Q_{\theta}(s,a) \text{target}(s'))^2 \right] \Big|_{\theta = \theta_k}$
 - For tabular function, $\ \theta \in \mathbb{R}^{||S|| imes ||A||}$, we recover the familiar update:

$$Q_{k+1}(s,a) \leftarrow (1-\alpha)Q_k(s,a) + \alpha \left[\operatorname{target}(s') \right]$$

- Converges to optimal values (*)
- Does it work with a neural network Q functions?
 - Yes but with some care

Recap: (Tabular) Q-Learning

```
Algorithm:
       Start with Q_0(s,a) for all s, a.
       Get initial state s
       For k = 1, 2, ... till convergence
               Sample action a, get next state s'
               If s' is terminal:
                     target = R(s, a, s')
                     Sample new initial state s'
               else:
              \operatorname{target} = R(s, a, s') + \gamma \max_{a'} Q_k(s', a')Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \left[\operatorname{target}\right]
```

Recap: Approximate Q-Learning

```
Algorithm:
      Start with Q_0(s,a) for all s, a.
       Get initial state s
       For k = 1, 2, ... till convergence
              Sample action a, get next state s'
                                                         Chasing a nonstationary target!
              If s' is terminal:
                   target = R(s, a, s')
                   Sample new initial state s'
              else:
                   target = R(s, a, s') + \gamma \max_{s'} Q_k(s', a')
             \theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \mathbb{E}_{s' \sim P(s'|s,a)} \left[ (Q_{\theta}(s,a) - \text{target}(s'))^2 \right] \Big|_{\theta = \theta}
              s \leftarrow s'
                                       Updates are correlated within a trajectory!
```

DQN

- High-level idea make Q-learning look like supervised learning.
- Two main ideas for stabilizing Q-learning.
- Apply Q-updates on batches of past experience instead of online:
 - Experience replay (Lin, 1993).
 - Previously used for better data efficiency.
 - Makes the data distribution more stationary.
- Use an older set of weights to compute the targets (target network):
 - Keeps the target function from changing too quickly.

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r \sim D} \left(\underbrace{r + \gamma \ \max_{a'} Q(s', a'; \boldsymbol{\theta}_i^-)}_{\text{target}} - Q(s, a; \theta_i) \right)^2$$

Target Network Intuition

- Changing the value of one action will change the value of other actions and similar states.
- The network can end up chasing its own tail because of bootstrapping.
- Somewhat surprising fact bigger networks are less prone to this because they alias less.

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r \sim D} \left(\underbrace{r + \gamma \, \max_{a'} Q(s', a'; \boldsymbol{\theta_i^-})}_{\text{target}} - Q(s, a; \theta_i) \right)^2$$

DQN Training Algorithm

Algorithm 1: deep Q-learning with experience replay.

```
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1.T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
       Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
        Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
        Every C steps reset Q = Q
```


End For

End For

DQN Details

Uses Huber loss instead of squared loss on Bellman error:

$$L_\delta(a) = egin{cases} rac{1}{2}a^2 & ext{for } |a| \leq \delta, \ \delta(|a| - rac{1}{2}\delta), & ext{otherwise}. \end{cases}$$

- Uses RMSProp instead of vanilla SGD.
 - Optimization in RL really matters.

 \circ Start ε at 1 and anneal it to 0.1 or 0.05 over the first million frames.

DQN on ATARI

49 ATARI 2600 games.

- · From pixels to actions.
- The change in score is the reward.
- · Same algorithm.
- Same function approximator, w/ 3M free parameters.
- Same hyperparameters.
- · Roughly human-level performance on 29 out of 49 games.

ATARI Network Architecture

- Convolutional neural network architecture:
 - History of frames as input.
 - \circ One output per action expected reward for that action Q(s, a).
 - Final results used a slightly bigger network (3 convolutional + 1 fully-connected hidden layers).

Stability Techniques

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Atari Results

DQN Playing ATARI

Action Values on Pong

Learned Value Functions

Sacrificing Immediate Rewards

DQN Source Code

• The DQN source code (in Lua+Torch) is available:

https://sites.google.com/a/deepmind.com/dqn/

Neural Fitted Q Iteration

- NFQ (Riedmiller, 2005) trains neural networks with Q-learning.
- Alternates between collecting new data and fitting a new Q-function to all previous experience with batch gradient descent.

```
\label{eq:NFQ_main()} \begin{split} \mathbf{NFQ\_main()} & \{ \text{ input: a set of transition samples } D; \text{ output: Q-value function } Q_N \\ & \mathbf{k} \! = \! 0 \\ & \text{ init\_MLP()} \to Q_0; \\ & \text{Do } \{ \\ & \text{ generate\_pattern\_set } P = \{ (input^l, target^l), l = 1, \dots, \#D \} \text{ where: } \\ & input^l = s^l, u^l, \\ & target^l = c(s^l, u^l, s'^l) + \gamma \min_b Q_k(s'^l, b) \\ & \text{Rprop\_training}(P) \to Q_{k+1} \\ & \mathbf{k} \! := \mathbf{k} \! + \! 1 \\ \} & \text{WHILE } (k < N) \end{split}
```

DQN can be seen as an online variant of NFQ.

Lin's Networks

- Long-Ji Lin's thesis "Reinforcement Learning for Robots using Neural Networks" (1993) also trained neural nets with Q-learning.
- Introduced experience replay among other things.
- Lin's networks did not share parameters among actions.

Double DQN

- There is an upward bias in $max_a Q(s, a; \theta)$.
- DQN maintains two sets of weight θ and θ , so reduce bias by using:
 - \circ θ for selecting the best action.
 - \circ θ for evaluating the best action.
- Double DQN loss:

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r} \ D\left(r + \gamma Q(s', \arg\max_{a'} Q(s', a'; \theta); \theta_i^-) - Q(s, a; \theta_i)\right)^2$$

	no ops		human starts		
	DQN	DDQN	DQN	DDQN	DDQN
					(tuned)
Median	93%	115%	47%	88%	117 %
Mean	241%	330%	122%	273%	475%

Prioritized Experience Replay

- Replaying all transitions with equal probability is highly suboptimal.
- Replay transitions in proportion to absolute Bellman error:

$$\left| r + \gamma \max_{a'} Q(s', a'; \theta^{-}) - Q(s, a; \theta) \right|$$

Leads to much faster learning.

	DQN		Double DQN (tuned)			
	baseline	rank-based	baseline	rank-based	proportional	
Median	48%	106%	111%	113%	128%	
Mean	122%	355%	418%	454%	551%	
> baseline	_	41	-	38	42	
> human	15	25	30	33	33	
# games	49	49	57	57	57	

Dueling DQN

Value-Advantage decomposition of Q:

$$Q^{\pi}(s, a) = V^{\pi}(s) + A^{\pi}(s, a)$$

Dueling DQN (Wang et al., 2015):

$$Q(s,a) = V(s) + A(s,a) - \frac{1}{|A|} \sum_{a=1}^{|A|} A(s,a)$$

Atari Results

	30 no-ops		Human Starts		
	Mean	Median	Mean	Median	
Prior. Duel Clip	591.9%	172.1%	567.0%	115.3%	
Prior. Single	434.6%	123.7%	386.7%	112.9%	
Duel Clip	373.1%	151.5%	343.8%	117.1%	
Single Clip	341.2%	132.6%	302.8%	114.1%	
Single	307.3%	117.8%	332.9%	110.9%	
Nature DQN	227.9%	79.1%	219.6%	68.5%	

"Dueling Network Architectures for Deep Reinforcement Learning", Wang et al. (2016)

Noisy Nets for Exploration

- Add noise to network parameters for better exploration [Fortunato, Azar, Piot et al. (2017)].
- Standard linear layer: y = wx + b
- Noisy linear layer: $y \stackrel{\text{def}}{=} (\mu^w + \sigma^w \odot \varepsilon^w) x + \mu^b + \sigma^b \odot \varepsilon^b$
- ε^w and ε^b contain noise.
- σ^w and σ^b are learned parameters that determine the amount of noise.

	Baseline		NoisyNet	
	Mean	Median	Mean	Median
DQN	213	47	1210	89
A ₃ C	418	93	1112	121
Dueling	2102	126	1908	154

Questions?