0.1 Классы Поста

Всего 5 классов.

1)
$$\mathcal{T}_0 \leftrightharpoons \{f : f(0, \dots, 0) = 0\}$$

2)
$$\mathcal{T}_1 \leftrightharpoons \{f : f(1, \dots, 1) = 1\}$$

3)
$$S \leftrightharpoons \{f : (\forall \widetilde{\alpha})(f(\overline{\widetilde{\alpha}}) = \overline{f(\widetilde{\alpha})})\}\$$
 $f \notin S \iff (\exists \widetilde{\alpha})(f(\widetilde{\alpha}) = f(\overline{\widetilde{\alpha}}))$
 $f, \quad f^*(\widetilde{\alpha}) = \overline{f(\overline{\widetilde{\alpha}})} \iff \overline{f^*(\widetilde{\alpha})} = f(\overline{\widetilde{\alpha}})$

4)
$$\mathcal{M} \leftrightharpoons \{f : (\forall \widetilde{\alpha}, \widetilde{\beta})(\widetilde{\alpha} \leq \widetilde{\beta} \implies f(\widetilde{\alpha}) \leq f(\widetilde{\beta}))$$

 $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_n) \leq \widetilde{\beta} = (\beta_1, \dots, \beta_n) \iff (\forall i = \overline{1, n})(\alpha_i \leq \beta_i)$
 $\overline{\mathcal{T}_0} \cap \overline{\mathcal{T}_1} \subseteq \overline{\mathcal{M}}$

5)
$$\mathcal{L} \leftrightharpoons \{ f : f = \sum_{i=1}^{n} (mod2)a_ix_i \oplus a_0 \}$$

 $x_1 \sim x_2 = x_1 \oplus x_2 \oplus a_0 \in \mathcal{L}$

Есть функции, которые принадлежат всем классам Поста, и есть такие, которые не принадлежат никакому.

Лемма 1 (О несамодвойственной функции). Пусть $f_S \notin \mathcal{S}$. Тогда обе константы (0 и 1) представимы формулами над множеством $\{f_S, \overline{\ }\}$

Доказательство. Так как $f_S \notin \mathcal{S}$, то $(\exists \widetilde{\alpha} = (\alpha_1, \dots, \alpha_n))(f(\widetilde{\alpha}) = f(\overline{\widetilde{\alpha}}))$

Определим

$$h(x) \leftrightharpoons f_S(x^{\alpha_1}, \dots, x^{\alpha_n}); \quad h(x) = const \in \{0, 1\}.$$

Подставим 1 или 0:

$$h(0) = f_S(0^{\alpha_1}, \dots, 0^{\alpha_n}) = f_S(\overline{\widetilde{\alpha}})$$

$$h(1) = f_S(1^{\alpha_1}, \dots, 1^{\alpha_n}) = f_S(\widetilde{\alpha})$$

То есть

$$h(0) = h(1) = f_S(\widetilde{\alpha}) = f(\overline{\widetilde{\alpha}}) \in \{0, 1\}.$$

Представим ее как отрицание: $\overline{h(x)} \in \{0,1\}$ - и получим вторую константу.

Лемма 2 (О немонотонной функции). Если функция $f_M \notin \mathcal{M}$, то существует два набора (вектора) $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_{i-1}, 0, \alpha_{i+1}, \dots, \alpha_n)$ и $\widetilde{\beta} = (\alpha_1, \dots, \alpha_{i-1}, 1, \alpha_{i+1}, \dots, \alpha_n)$, и $f(\widetilde{\alpha}) = 1, f(\widetilde{\beta}) = 0$

Рассмотрим такую функцию: $f_M = (1000\ 0011\ 1111\ 1100) \in \overline{\mathcal{T}_0} \cap \overline{\mathcal{T}_1} \implies f_M \notin \mathcal{M}$

Лемма 3 (О немонотонной функции). Отрицание может быть представлено формулой над множеством $\{f_M,0,1\}$, где $f_M \not\in M$

Доказательство. В силу леммы 2 берем два набора $\widetilde{\alpha}$ и $\widetilde{\beta}$. Тогда очевидно отрицание представимо формулой

$$\overline{x} = f_M(\alpha_1, \dots, \alpha_{i-1}, x, \alpha_{i+1}, \dots, \alpha_n)$$

$$f_M(\alpha_1, \dots, \alpha_{i-1}, 0, \alpha_{i+1}, \dots, \alpha_n) = 1$$
 и 0 иначе.

Лемма 4 (О нелинейной функции). Пусть $f_L \notin \mathcal{L}$. Тогда конъюнкция может быть представлена формулой над множеством $\{f_L, 0, \overline{\ }\}$

Доказательство. Поскольку f_L нелинейная функция, в ее полиноме Жегалкина обязательно будет нелинейное слагаемое. Среди всех нелинейных слагаемых функции f_L выбираем самое короткое. Пусть это самое короткое слагаемое будет $x_{i1}, x_{i2}, \ldots, x_{ik}$. $(k \ge 2)$

Строим новую функцию

$$f'_L = f_L \bigg|_{x_j = 0 \text{ при } j \neq \{i_1, i_2, \dots, i_k\}} = x_{i1} x_{i2} \dots x_{ik} \oplus a_{i1} x_{i1} \oplus a_{i2} x_{i2} \oplus \dots \oplus a_{ik} x_{ik} \oplus a_0$$

Произвольно делим переменные на две части. Мы строим функцию от двух переменных. Первая часть переменных есть x, вторая - y.

$$\chi(x,y) = f'_L \Big| \begin{array}{c} x_{i1} = \dots = x_{i_s} = x \\ x_{i_{s+1}} = \dots = x_{i_k} = y \\ 1 < s < k \end{array} = xy \oplus ax \oplus by \oplus c,$$

где
$$a = \sum_{j=1}^{s} (mod2)a_{ik}, \quad b = \sum_{l=s+1}^{k} (mod2)a_{il}, \quad c = a_0$$

Утверждается, что конъюнкция $xy = \chi(x \oplus b, y \oplus a) \oplus ab \oplus c$.

Посмотрим:

$$(x \oplus b)(y \oplus a) \oplus a(x \oplus b) \oplus b(y \oplus a) \oplus c \oplus ab \oplus c =$$
$$xy \oplus ax \oplus by \oplus ab \oplus ax \oplus ab \oplus by \oplus ab \oplus c \oplus ab \oplus c = xy$$

Что и требовалось доказать.