Viel Erfolg! Freitag 29. August 2014 ne CAS, FoTaBe, ein A4-Blatt Spick,	
ne CAS, FoTaBe, ein A4-Blatt Spick,	
srechnen, runden, Einheit dazu)	frei lassen
mm liegt auf einem Aluminiumring mit rper haben eine Anfangstemperatur von utscht die Kugel durch den Ring?	
nde 250 kg Aluminium von 20 °C (fest) eizleistung des Ofens.	5
5 kg kaltem Wasser gefüllt. Die Wasser- S. Schreiben Sie die formalen Ausdrücken af (mit aussagekräftigen Bezeichnungen) fs.	
nperatur 20°C. Umlauf verrichtet?	4 5 4
mit einer Fläche von 1.5 dm ² . Er ist mit blatte mit Temperatur 150 °C, die 3.0 kW Sie die Wärmeleitfähigkeit des Topfbo- r Literaturwert für Kupfer?	
eine Leistung von 2400 W und strahlender strahlenden Fläche.	5
eit bei 26 °C. Bestimmen Sie die Taupunk ion).	t- 5
mer einen maximalen Wirkungsgrad von 1370 MW. Der den Turbinen zugeführte ipedia). Stunde verheizt? den Turbinen ab (4P).	
	rper haben eine Anfangstemperatur von utscht die Kugel durch den Ring? Inde 250 kg Aluminium von 20 °C (fest) eizleistung des Ofens. 5 kg kaltem Wasser gefüllt. Die Wasser- Schreiben Sie die formalen Ausdrücke if (mit aussagekräftigen Bezeichnungen) fs. Inperatur 20 °C. Umlauf verrichtet? Init einer Fläche von 1.5 dm². Er ist mit blatte mit Temperatur 150 °C, die 3.0 kW Sie die Wärmeleitfähigkeit des Topfbort Literaturwert für Kupfer? eine Leistung von 2400 W und strahlender strahlenden Fläche. eit bei 26 °C. Bestimmen Sie die Taupunktion). mer einen maximalen Wirkungsgrad von 1370 MW. Der den Turbinen zugeführte ipedia). Stunde verheizt?

Abbildung 1: Diagramm zu Aufgabe 4

MNG Rämibühl

1.
$$d_A + \alpha_A d_A \Delta \vartheta = d_K + \alpha_L \alpha_K \Delta \vartheta \rightarrow \vartheta = \vartheta_0 + \Delta \vartheta = \vartheta_0 + \frac{d_K - d_A}{\alpha_A d_A - \alpha_K d_K}$$

 $\vartheta = 20.5 \,^{\circ}\text{C} + \frac{20.00 \,\text{mm} - 19.90 \,\text{mm}}{23.8 \cdot 10^{-6} \,\text{K}^{-1} \cdot 19.90 \,\text{mm} - 16.8 \cdot 10^{-6} \,\text{K}^{-1} \cdot 20.00 \,\text{mm}} = 747.1 \,^{\circ}\text{C} = \frac{7.5 \cdot 10^2 \,^{\circ}\text{C}}{20.00 \,^{\circ}\text{C}}$

2.
$$P = \frac{cm(\vartheta_f - \vartheta_0) + mL_f}{\Delta t} = \frac{250 \text{ kg} \cdot \left(896 \text{ J/(kgK)} \cdot (660 - 20) ^{\circ}\text{C} + 3.97 \cdot 10^5 \text{ J/kg}\right)}{3600 \text{ s}} = \underline{\frac{67.4 \text{ kW}}{1000 \text{ kg}}}$$

3.
$$c_S m_S(\vartheta_M - \vartheta_S) + c_W m_W(\vartheta_M - \vartheta_W) = 0 \Rightarrow \vartheta_S = \vartheta_M + \frac{c_W m_W(\vartheta_M - \vartheta_W)}{c_S m_S}$$

 $\vartheta_S = 19.6 \text{ K} + \frac{4182 \text{ J/(kgK)} \cdot 2.5 \text{ kg} \cdot (19.6 - 17.2) ^{\circ}\text{C}}{452 \text{ J/(kgK)} \cdot 0.870 \text{ kg}} = 83.41 ^{\circ}\text{C} = \underline{83.4 ^{\circ}\text{C}}$

4. a)
$$n = \frac{pV}{RT} = \frac{2.0 \cdot 10^5 \,\text{Pa} \cdot 10 \cdot 10^{-3} \,\text{m}^3}{8.314 \,\text{J/(kgK)} \cdot (273.15 + 20) \,\text{K}} = \frac{0.82 \,\text{mol}}{8.314 \,\text{J/(kgK)} \cdot (273.15 + 20) \,\text{K}}$$

b) $T_C = T_A \cdot \frac{p_C \,V_C}{p_A \,V_A} = (273.15 + 20) \,\text{K} \cdot \frac{1.0 \,\text{bar} \cdot 30.0 \,\text{L}}{2.0 \,\text{bar} \cdot 10.0 \,\text{L}} = 439.725 \,\text{K} \rightarrow \frac{1.7 \cdot 10^2 \,^{\circ}\text{C}}{2.0 \,\text{bar} \cdot 10.0 \,\text{L}}$
c) $W = p_A (V_B - V_A) - p_C (V_C - V_D) = 2.0 \cdot 10^5 \,\text{Pa} \cdot (30 - 10) \cdot 10^{-3} \,\text{m}^3 - 1.0 \cdot 10^5 \,\text{Pa} \cdot (30 - 10) \cdot 10^{-3} \,\text{m}^3 = 2.0 \,\text{kJ}$

5.
$$P = -A\lambda \frac{\Delta \vartheta}{\Delta x} \rightarrow \lambda = \frac{P\Delta x}{A(\vartheta_H - \vartheta_S)} = \frac{3.0 \cdot 10^3 \,\mathrm{W} \cdot 8.0 \cdot 10^{-3} \,\mathrm{m}}{1.5 \cdot 10^{-2} \,\mathrm{m}^2 \cdot (150 - 100) \,^{\circ}\mathrm{C}} = 32 \,\frac{\mathrm{W}}{\mathrm{m} \cdot \mathrm{K}}$$

Der Übergang Herdplatte-Kupfer (Luftspalt) und Kupfer-Wasser ist vernachlässigt worden.

6.
$$P = JA = \sigma T^4 A \Rightarrow T = \left(\frac{P}{A\sigma}\right)^{1/4} = \left(\frac{2400 \text{ W}}{0.252 \text{ m}^2 \cdot 5.670 \cdot 10^{-8} \text{ W/(m}^2 \text{K}^4)}\right)^{1/4} = \underline{640 \text{ K}} \rightarrow 367 \,^{\circ}\text{C}$$

7.
$$\rho_{\text{absolut}} = f_r \rho_{26} = 0.68 \cdot 24.40 \,\text{g/m}^3 = 16.59 \,\text{g/m}^3 \rightarrow \rho_{18} = 15.39 \,\text{g/m}^3 < \rho_{\text{absolut}} < \rho_{20} = 17.32 \,\text{g/m}^3$$

8. a)
$$P = \frac{\Delta mH}{\Delta t} \Rightarrow \frac{\Delta m}{\Delta t} = \frac{P}{H} = \frac{1370 \text{ MW}}{29 \text{ MJ/kg}} = 47.24 \frac{\text{kg}}{\text{s}} \cdot \frac{3600 \text{ s/h}}{1000 \text{ kg/t}} = 170 \text{ t/h} = \frac{1.7 \cdot 10^2 \text{ t/h}}{1000 \text{ kg/t}}$$

b) $\eta = \frac{T_w - T_k}{T_w} \Rightarrow T_k = T_w (1 - \eta) = (273.15 + 580) \text{ K} \cdot (1 - 0.432) = 484.59 \text{ K} \rightarrow \underbrace{211 \text{ °C}}_{\text{mag}}$

Es muss über 100 °C sein und es gibt weitere Verluste (Wärmekraftmaschine nicht ideal).