Name:				
	Karan Pandya			
Netid:				
	karandp2			

CS 441 - HW1: Instance-based Methods

Complete the sections below. You do not need to fill out the checklist.

Total	[]/145	
1.	Retrieval, K-means, 1-NN on MNIST	
	a. Retrieval	[]/5
	b. K-means	[]/15
	c. 1-NN	[]/10
2.	Make it fast	
	a. K-means plot	[]/15
	b. 1-NN error plots	[]/8
	c. 1-NN time plots	[]/7
	d. Most confused label	[]/5
3.	Temperature Regression	
	a. RMSE Tables	[]/20
4.	Conceptual questions	[]/15
5.	Stretch Goals	
	 a. Evaluate effect of K for MNIST 	[]/15
	 b. Evaluate effect of K for Temp Reg. 	[]/15
	c. Compare Kmeans more iterations vs. restarts	[]/15

1. Retrieval, K-means, 1-NN on MNIST

a. What index is returned for x_test[1]?

28882

b. Paste the display of clusters after the 1st and 10th iteration for K=30.

After 1st Iteration:

504792131435361728694097429327

After 10th Iteration:

509792831435361708694047207529

c. Error rate for first 100 test samples, using first 10,000 training samples (x.x)

8.0%

2. Make it fast

a. KMeans plot of RMSE vs iterations for K=10, 30, 100

b. Nearest neighbor error vs training size plot

c. Nearest neighbor time vs training size plot

d. What label is most commonly confused with '2'?

7

3. Temperature Regression

a. Table of RMSE for KNN with K=5 (x.xx)

	KNN (K=5)		
Original Features	3.249		
Normalized Features	2.932		

4. Test your understanding

Fill in the letter corresponding to the answer. If you're not sure, you can sometimes run small experiments to check.

1. Is K-means guaranteed to decrease RMSE between nearest cluster and samples at each iteration until convergence?

		b				
2.	If you increase K, is K-means examples a. Guaranteed b. Expected but not guarantee. Not expected		uaranteed	to achieve l	ower RMSI	Ξ?
3.	In K-NN regression, for training be predicted for any query? a. Min(y) b. Mean(y) c. Can't be determined	labels y, wh	at is the lov	vest target v	value that c	an possibly
4.	Would you expect the "training eclassification? Training error is a. Higher b. Lower c. It's problem-dependent		-			N for
5.	Would you expect the test error regression? a. Higher b. Lower c. It's problem-dependent	for 1-NN to	be higher o	or lower than	n for 3-NN t	for
5. Stretch Goals (optional) a. Select best K parameter for K-NN MNIST classification in K=1, 3, 5, 11, 25. (x.xx)						
	·		Ī		. ,	V-25
valid	lation Set Performance	K=1	K=3	K=5	K=11	K=25

a. Yesb. No

% error	2.88	2.71	2.70	2.97	3.72
Best K:					

5

Test % error (x.xx)

3.03

b. Select best K parameter for K-NN temperature regression in K=1, 3, 5, 11, 25. (x.xx)

Validation Set RMSE	K=1	K=3	K=5	K=11	K=25
Original Features	4.33	3.22	3.09	3.05	3.06
Normalized Features	3.866	3.174	3.03	2.89	2.91

Best Setting (K, feature type):

25

Test RMSE (x.xx)

2.76

c. K Means, MNIST: compare average and standard deviation RMSE based on number of iterations and number of restarts

(4 digit precision)

K=30	RMSE avg	RMSE std
20 iterations, 1 restart	61.88	0.5988
4 iterations, 5 restarts	61.47	0.16
50 iterations, 1 restart	61.71	0.42
10 iterations, 5 restarts	60.90	0.19

CS441_SP24_HW1_karandp2

February 5, 2024

0.1 CS441: Applied ML - HW 1

0.1.1 Parts 1-2: MNIST

Include all the code for generating MNIST results below

```
[]: # initialization code
     import numpy as np
     from keras.datasets import mnist
     %matplotlib inline
     from matplotlib import pyplot as plt
     from scipy import stats
     def load mnist():
       Loads, reshapes, and normalizes the data
       (x_train, y_train), (x_test, y_test) = mnist.load_data() # loads MNIST data
      x_train = np.reshape(x_train, (len(x_train), 28*28)) # reformat to 768-d_
      x_{test} = np.reshape(x_{test}, (len(x_{test}), 28*28))
      maxval = x_train.max()
      x_train = x_train/maxval # normalize values to range from 0 to 1
      x_test = x_test/maxval
      return (x_train, y_train), (x_test, y_test)
     def display mnist(x, subplot rows=1, subplot cols=1):
      Displays one or more examples in a row or a grid
       if subplot_rows>1 or subplot_cols>1:
         fig, ax = plt.subplots(subplot_rows, subplot_cols, figsize=(15,15))
         for i in np.arange(len(x)):
           ax[i].imshow(np.reshape(x[i], (28,28)), cmap='gray')
           ax[i].axis('off')
       else:
           plt.imshow(np.reshape(x, (28,28)), cmap='gray')
           plt.axis('off')
```

```
plt.show()

[]: # example of using MNIST load and display functions
  (x_train, y_train), (x_test, y_test) = load_mnist()
  display_mnist(x_train[:30],1,30)
  print('Total size: train={}, test ={}'.format(len(x_train), len(x_test)))
```

1. Retrieval, Clustering, and NN Classification

```
[]: from re import L
     # Retrieval
     def get_nearest(X_query, X):
       ''' Return the index of the sample in X that is closest to X_query according
           to L2 distance '''
       # TO DO
       min = 99999999
       pos = 0
       for i in range(len(X)) :
         L2 = (np.sum((X[i]-X_query)**2))**0.5
         if (L2<min):</pre>
           min=L2
           # print(min)
           pos = i
       return pos
     j = get_nearest(x_test[0], x_train)
     print(j)
     j = get_nearest(x_test[1], x_train)
     print(j)
```

```
[]: X= x_train[:1000]
print(X[0])
```

```
clusters = []
def kmeans(X, K, niter=10):

   for i in range(K):
        clusters.append(X[i].tolist())

   for point in X[K:]:
        nearest = get_nearest(point, X[:K])
        print(nearest)
```

```
clusters[nearest].append(point)

for i in range(k):
    clusters[k] = np.mean(clusters[k])
    print("clusters shape", np.shape(clusters[0]))
    return clusters
    print("cm", clusters)
K= 30
centers = kmeans(x_train[:1000], K)
```

link text

```
\lceil \rceil : \mid \# K - means \rceil
     def kmeans(X, K, niter):
       Starting with the first K samples in X as cluster centers, iteratively assign \square
       point to the nearest cluster and compute the mean of each cluster.
       Input: X[i] is the ith sample, K is the number of clusters, niter is the \sqcup
      \hookrightarrow number of iterations
       Output: K cluster centers
       111
       Cluster_mean = X[:K].copy()
       rmse_values = []
       for n in range(niter):
         display_mnist(Cluster_mean,1,30)
         Cluster_centers = np.array([get_nearest(point, Cluster_mean) for point in_
      →X])
         rmse = np.sqrt(np.mean(np.sum((X -

    Gluster_mean[Cluster_centers])**2,axis=1)))

         for k in range(K):
           if len(X[Cluster_centers == k]) > 0:
                Cluster_mean[k] = np.mean(X[Cluster_centers == k], axis=0)
         display_mnist(Cluster_mean, 1, 30)
         print("iter", n)
         rmse_values.append(rmse)
         print(f"Iteration {n+1}/{niter}, RMSE: {rmse}")
       return Cluster_mean, rmse_values
     K= 30
     centers = kmeans(x_train[:1000], K, 20)
```

```
# K=10
# centers, rmse_values = kmeans(x_train[:1000], K, 20)
# plt.plot(np.arange(len(rmse_values)), rmse_values, label='K=10')

# K=30
# centers, rmse_values = kmeans(x_train[:1000], K, 20)
# plt.plot(np.arange(len(rmse_values)), rmse_values, label='K=30')

# K=100
# centers, rmse = kmeans(x_train[:1000], K, 20)
# plt.plot(np.arange(len(rmse)), rmse, label='K=100')
# plt.legend(), plt.ylabel('RMSE'), plt.xlabel('# iterations')
# plt.show()
```

```
[]: # 1-NN
error_count = 0
for sample_idx in range(100):
    index = get_nearest(x_test[sample_idx],x_train[:10000])
    if(y_train[index] != y_test[sample_idx]):
        error_count += 1

error = error_count/100
print("error percentage is", error*100,"%")

# TO DO
```

2. Make it fast

```
[]: # install libraries you need for part 2
!apt install libomp-dev
!pip install faiss-cpu
import faiss
import time
```

```
[]: # retrieval
index = faiss.IndexFlatL2(x_train[:5].shape[1]) # set for exact search
centers = x_train[:5].copy()
index.add(centers) # add the data
dist, idx = index.search(x_test[10:30],1)
idx=idx.flatten()
X = x_test[10:30].copy()
print("idx is",idx)
for k in range(5):
    cluster_points = X[idx == k]
    print("cluster points for k=", k, " are", cluster_points)
    if len(cluster_points) > 0:
```

```
centers[k] = np.mean(cluster_points, axis=0)
    # print("mean of cluster points is ", centers[0])
# print(idx, "done")
# print("getnearest funct", get_nearest(x_test[12], x_train[:10]))
# TO DO (check that you're using FAISS correctly)
```

```
[ ]:  # K-means
     def kmeans_fast(X, K, niter=10):
       Starting with the first K samples in X as cluster centers, iteratively assign \Box
      point to the nearest cluster using faiss and compute the mean of each cluster.
      Input: X[i] is the ith sample, K is the number of clusters, niter is the
      →number of iterations
       Output: K cluster centers
       111
       rmse_values = []
       cluster_centers = X[50:K+50].copy()
       for n in range(niter):
        # display_mnist(X[:30],1,30)
          index = faiss.IndexFlatL2(784) # set for exact search
          index.add(cluster_centers)
          dist curr, idx = index.search(X,1)
          print("idx shape", np.shape(idx))
          idx = idx.flatten()
          print("idx flat shape", np.shape(idx))
         # rmse = np.sqrt(np.sum((X - cluster_centers[idx])**2)/len(X))
          rmse = np.sqrt(np.mean(np.sum((X - cluster_centers[idx])**2,axis=1)))
          for k in range(K):
             cluster_points = X[idx==k]
             cluster_centers[k] = np.mean(cluster_points, axis=0)
        # display_mnist(cluster_centers[idx[0:30]],1,30)
          rmse_values.append(rmse)
          print(f"Iteration {n+1}/{niter}, RMSE: {rmse}")
       return cluster_centers, rmse_values
     K = 10
     centers, rmse_values = kmeans_fast(x_train, K, niter=20)
     plt.plot(np.arange(len(rmse_values)), rmse_values, label='K=10')
     K = 30
     centers, rmse_values = kmeans_fast(x_train, K, niter=20)
     plt.plot(np.arange(len(rmse_values)), rmse_values, label='K=30')
```

```
K=100
     centers, rmse = kmeans_fast(x_train, K, niter=20)
     plt.plot(np.arange(len(rmse)), rmse, label='K=100')
     plt.legend(), plt.ylabel('RMSE'), plt.xlabel('# iterations')
     plt.show()
[]: a =np.array([[ 1,2,3], [4,5,7]])
     sum = np.mean(np.sum(a, axis=1))
     print(a)
     print(np.sum(a, axis=1))
     sum
「 ]:  # 1-NN
     import time
     nsample = [100, 1000, 10000, 60000]
     # TO DO
     # 1-NN
     error_count = 0
     error_lsh= []
     timing_lsh = []
     error_exact= []
     timing_exact = []
     for n in nsample:
       start_time = time.time()
      X = x_{train}
      dim = X.shape[1]
       index = faiss.IndexLSH(dim, dim)
       index.add(x_train[:n])
       dist, idx = index.search(x_test,1)
       for i in range(len(x_test)):
         if(y_train[idx[i]] != y_test[i]):
           error_count += 1
       error_lsh.append( error_count/len(x_test))
      print("error percentage is", error_count/len(x_test),"%")
       error_count = 0
       elapsed_time = time.time() - start_time
       timing_lsh.append(elapsed_time)
     for n in nsample:
      start_time = time.time()
      X = x_train
       dim = X.shape[1]
       index = faiss.IndexFlatL2(x_train.shape[1])
       index.add(x_train[:n])
```

```
dist, idx = index.search(x_test,1)
 for i in range(len(x_test)):
   if(y_train[idx[i]] != y_test[i]):
      error_count += 1
 error_exact.append(error_count/len(x_test))
 print("error percentage is", error_count/len(x_test),"%")
 error count = 0
 elapsed_time = time.time() - start_time
 timing_exact.append(elapsed_time)
plt.semilogx(nsample, error_exact, label='exact')
plt.semilogx(nsample, error_lsh, label='lsh')
plt.legend(), plt.ylabel('% error'), plt.xlabel('# training samples')
plt.show()
plt.semilogx(nsample, timing_exact, label='exact')
plt.semilogx(nsample, timing_lsh, label='lsh')
plt.legend(), plt.ylabel('time'), plt.xlabel('# training samples')
plt.show()
```

```
[]: # Confusion matrix
import sklearn
from sklearn.metrics import confusion_matrix

X = x_train.copy()
dim = X.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(x_train)
dist, idx = index.search(x_test,1)
confusion_mat = confusion_matrix(y_test, y_train[idx])
print(confusion_mat)
print(np.sum(confusion_mat, axis=1))
print(np.shape(y_test))
print(len(y_test[y_test==2]))
```

0.2 Part 3: Temperature Regression

Include all your code used for part 2 in this section.

```
# load data (modify to match your data directory or comment)
def load temp data():
  datadir = "temperature_data.npz"
  T = np.load(datadir)
 x_train, y_train, x_val, y_val, x_test, y_test, dates_train, dates_val, u

dates_test, feature_to_city, feature_to_day = \

 T['x_train'], T['y_train'], T['x_val'], T['y_val'], T['x_test'], T['y_test'],
 →T['dates_train'], T['dates_val'], T['dates_test'], T['feature_to_city'], □

¬T['feature_to_day']
 return (x_train, y_train, x_val, y_val, x_test, y_test, dates_train,_

dates_val, dates_test, feature_to_city, feature_to_day)

# plot one data point for listed cities and target date
def plot_temps(x, y, cities, feature_to_city, feature_to_day, target_date):
 nc = len(cities)
 ndays = 5
  xplot = np.array([-5, -4, -3, -2, -1])
 yplot = np.zeros((nc,ndays))
  for f in np.arange(len(x)):
   for c in np.arange(nc):
      if cities[c] == feature_to_city[f]:
        yplot[feature_to_day[f]+ndays,c] = x[f]
 plt.plot(xplot,yplot)
 plt.legend(cities)
 plt.plot(0, y, 'b*', markersize=10)
  plt.title('Predict Temp for Cleveland on ' + target_date)
 plt.xlabel('Day')
 plt.ylabel('Avg Temp (C)')
 plt.show()
```

```
[]: # load data
(x_train, y_train, x_val, y_val, x_test, y_test, dates_train, dates_val, \( \) \( \times \) dates_test, feature_to_city, feature_to_day) = load_temp_data()
''' Data format:

\[ x_train, y_train: features and target value for each training sample_\( \times \) \( \times \) (used to fit model)

\[ x_val, y_val: features and target value for each validation sample (used_\( \times \) \( \times \) to select hyperparameters, such as regularization and \( K \)

\[ x_test, y_test: features and target value for each test sample (used to_\( \times \) \( \times \) evaluate final performance)

\[ dates_xxx: date of the target value for the corresponding sample feature_to_city: maps from a feature number to the city feature_to_day: maps from a feature number to a day relative to the_\( \times \) target value, e.g. -2 means two days before

\[ Note: 361 is the temperature of Cleveland on the previous day \]
```

```
f = 361
    print('Feature {}: city = {}, day= {}'.format(f,feature_to_city[f],__

¬feature_to_day[f]))
    baseline rmse = np.sqrt(np.mean((y val[1:]-y val[:-1])**2)) # root mean squared
     ⇔error example
    print('Baseline - prediction using previous day: RMSE={}'.format(baseline rmse))
    # plot first two x/y for val
    plot_temps(x_val[0], y_val[0], ['Cleveland', 'New York', 'Chicago', 'Denver', __
     plot_temps(x_val[1], y_val[1], ['Cleveland', 'New York', 'Chicago', 'Denver', _
     []: # install libraries you need for part 2
    import faiss
    import time
    # K-NN Regression
    def regress_KNN(X_trn, y_trn, X_tst, y_test, K):
      Predict the target value for each data point in X_tst using a
      \it K-nearest\ neighbor\ regressor\ based\ on\ (\it X\_trn,\ \it y\_trn), with L2 distance.
      Input: X_{trn}[i] is the ith training data. y_{trn}[i] is the ith training label.
      \hookrightarrow K is the number of closest neighbors to use.
      Output: return y_pred, where y_pred[i] is the predicted ith test value
      # TO DO
      Y_pred = np.zeros(X_tst.shape[0])
      index = faiss.IndexFlatL2(X_trn.shape[1]) # set for exact search
      index.add(X trn)
      for i in range(X_tst.shape[0]):
        query_vector = X_tst[i].reshape(1, -1)
        dist, idx = index.search(query_vector, K)
        Y_pred[i] = np.mean(y_trn[idx])
      # rmse = np.sqrt(np.mean((y_test - Y_pred)**2))
```

rmse = np.sqrt(np.mean((y_test - Y_pred)**2))

def normalize_features(x, y, fnum):

For each data sample i: x2[i] = x[i]-x[i,fnum]y2[i] = y[i]-x[i,fnum]

''' Normalize the features in x and y.

return rmse

```
111
  # TO DO
  x_normalized = np.copy(x)
  y_normalized = np.copy(y)
  # Normalize features for each data sample
 for i in range(x.shape[0]):
    x_normalized[i, :] = x[i, :] - x[i, fnum]
    y_normalized[i] = y[i] - x[i, fnum]
 return x_normalized, y_normalized
# KNN with original features
# TO DO
# print(np.shape(x_train))
K = 3
print(x_train.shape, y_train.shape)
rmse =regress_KNN(x_train, y_train, x_test, y_test, K)
print("rmse", rmse)
# KNN with normalized features
fnum = 361 # previous day temp in Cleveland
# KNN with normalized features
x_norm, y_norm = normalize_features(x_train, y_train, fnum)
xtest_norm, ytest_norm = normalize_features(x_test, y_test, fnum)
rmse =regress_KNN(x_norm, y_norm, xtest_norm , ytest_norm, K)
print("rmse", rmse)
```

0.3 Part 5: Stretch Goals

Include all your code used for part 5 in this section. You can copy-paste code from parts 1-3 if it is re-usable.

```
K-nearest neighbor regressor based on (X trn, y trn), with L2 distance.
  Input: X_{trn}[i] is the ith training data, y_{trn}[i] is the ith training label.
 \hookrightarrow K is the number of closest neighbors to use.
  Output: return y_pred, where y_pred[i] is the predicted ith test value
  111
  # TO DO
  dimrow, dimcol = X_tst.shape
  Y pred = np.zeros(dimrow)
  index = faiss.IndexFlatL2(X_trn.shape[1]) # set for exact search
  index.add(X_trn)
  error_count = 0
  error = 0
  for i in range(dimrow):
    query_vector = X_tst[i].reshape(1, -1)
    dist, idx = index.search(query_vector, K)
    # print(y_trn[idx].flatten())
    Y_pred[i] = most_common_and_closest(y_trn[idx].flatten(), Y_tst[i], X_tst,_u
 →X_trn, i, idx.flatten())
    # print(Y pred[i])
    if Y_pred[i] != Y_tst[i]:
       error_count += 1
  error = error_count/dimrow
  return error
def most common and closest(sequence, sample, X tst, X trn,i, idx):
    # if not sequence:
          return None # Handle the case when the sequence is empty
    unique_elements, counts = np.unique(sequence, return_counts=True)
    # Find indices of maximum count(s)
    max_count_indices = np.where(counts == np.max(counts))[0]
    # print(np.where(counts == np.max(counts))[0])
    # If there's only one element with the maximum count, return it
    if len(max_count_indices) == 1:
        return unique_elements[max_count_indices[0]]
    else:
    # If there's a tie, find the index of the element closest to the sample
      closest_index = np.argmin(np.abs(unique_elements[max_count_indices] -_u
 ⇒sample))
      print("tie casee", "sequence", sequence, "unique_elements", __
 ounique_elements, "counts", counts, "mci", max_count_indices, "closesst index", ⊔

¬closest_index, "Sample", sample)
      display mnist(X tst[i],1,1)
      display_mnist(X_trn[idx],1,11)
```

```
return unique_elements[max_count_indices[closest_index]]
def normalize_features(x, y, fnum):
  ''' Normalize the features in x and y.
     For each data sample i:
        x2[i] = x[i]-x[i,fnum]
        y2[i] = y[i]-x[i,fnum]
  111
  # TO DO
  x normalized = np.copy(x)
  y_normalized = np.copy(y)
  # Normalize features for each data sample
  for i in range(x.shape[0]):
    x_normalized[i, :] = x[i, :] - x[i, fnum]
    y_normalized[i] = y[i] - x[i, fnum]
  return x_normalized, y_normalized
# KNN with original features
# TO DO
# print(np.shape(x train))
K = [1,3,5,11,25]
x_t = x_{train}[:50000]
y_t = y_train[:50000]
x_v = x_{train}[50000:]
y_v = y_{train}[50000:]
print(x_t.shape, y_t.shape, x_v.shape, y_v.shape)
rmse =regress_KNN(x_t, y_t, x_v, y_v, 11)
print("Error for K", i, "is ", rmse)
# # KNN with normalized features
# fnum = 361 # previous day temp in Cleveland
# # KNN with normalized features
# x_norm, y_norm = normalize_features(x_train, y_train, fnum)
# xtest_norm, ytest_norm = normalize_features(x_test, y_test, fnum)
# rmse =regress_KNN(x_norm, y_norm, xtest_norm , ytest_norm, K)
# print("rmse", rmse)
```

```
[]: # Stretch: KNN regression (Select K)
display_mnist(x_v[:20], 1,20)
```

```
[]: # Stretch: KNN classification (Select K)
     # install libraries you need for part 2
     import faiss
     import time
     # K-NN Regression
     def regress_KNN(X_trn, y_trn, X_tst, Y_tst, K):
      Predict the target value for each data point in X_tst using a
      K-nearest neighbor regressor based on (X_trn, y_trn), with L2 distance.
       Input: X_{trn}[i] is the ith training data. y_{trn}[i] is the ith training label.
      \hookrightarrow K is the number of closest neighbors to use.
       Output: return y_pred, where y pred[i] is the predicted ith test value
       111
       # TO DO
       dimrow, dimcol = X_tst.shape
       Y pred = np.zeros(dimrow)
       index = faiss.IndexFlatL2(X_trn.shape[1]) # set for exact search
       index.add(X_trn)
       error_count = 0
       error = 0
       for i in range(dimrow):
         query_vector = X_tst[i].reshape(1, -1)
         dist, idx = index.search(query_vector, K)
         # print(y_trn[idx].flatten())
         Y_pred[i] = most_common_and_closest(y_trn[idx].flatten(), Y_tst[i], X_tst,_u

¬X_trn, i, idx.flatten(), dist.flatten())
         # print(Y_pred[i])
         if Y_pred[i] != Y_tst[i]:
            error_count += 1
       error = error count/dimrow
       return error
     def most_common_and_closest(sequence, sample, X_tst, X_trn,i, idx, dist):
         # if not sequence:
               return None # Handle the case when the sequence is empty
         unique_elements, counts = np.unique(sequence, return_counts=True)
         # Find indices of maximum count(s)
         max_count_indices = np.where(counts == np.max(counts))[0]
         # print(np.where(counts == np.max(counts))[0])
         # If there's only one element with the maximum count, return it
         if len(max count indices) == 1:
             return unique_elements[max_count_indices[0]]
         else:
```

```
for i in range(len(sequence)):
         if np any(np isin( unique_elements[max_count_indices], sequence)):
            if dist[i] < min:</pre>
              min=dist[i]
              pos = i
    # If there's a tie, find the index of the element closest to the sample
      # print("tie casee", "sequence", sequence, "unique_elements",_
 ⇔unique_elements, "counts", counts, "mci", max_count_indices, "closest", __
 ⇔sequence[pos], "Sample", sample)
      # display_mnist(X_tst[i],1,1)
      # display_mnist(X_trn[idx],1,5)
    return sequence[pos]
def normalize_features(x, y, fnum):
  ''' Normalize the features in x and y.
     For each data sample i:
       x2[i] = x[i]-x[i,fnum]
       y2[i] = y[i]-x[i,fnum]
  111
  # TO DO
  x_normalized = np.copy(x)
  y_normalized = np.copy(y)
  # Normalize features for each data sample
  for i in range(x.shape[0]):
    x_normalized[i, :] = x[i, :] - x[i, fnum]
    y_normalized[i] = y[i] - x[i, fnum]
 return x_normalized, y_normalized
# KNN with original features
# TO DO
# print(np.shape(x_train))
K = [1,3,5,11,25]
x_t = x_{train}[:50000]
y_t = y_train[:50000]
x_v = x_{train}[50000:]
y_v = y_{train}[50000:]
for i in K:
 print(x_t.shape, y_t.shape, x_v.shape, y_v.shape)
```

```
rmse =regress_KNN(x_t, y_t, x_v, y_v, i)
print("Error for K", i, "is ", rmse)

# # KNN with normalized features
# fnum = 361 # previous day temp in Cleveland

# # KNN with normalized features
# x_norm, y_norm = normalize_features(x_train, y_train, fnum)
# xtest_norm, ytest_norm = normalize_features(x_test, y_test, fnum)

# rmse =regress_KNN(x_norm, y_norm, xtest_norm , ytest_norm, K)
# print("rmse", rmse)
```

```
[]: | #temp regression
     # install libraries you need for part 2
     import faiss
     import time
     # K-NN Regression
     def regress_KNN(X_trn, y_trn, X_tst, y_test, K):
      Predict the target value for each data point in X_tst using a
      K-nearest neighbor regressor based on (X trn, y trn), with L2 distance.
       Input: X_{trn}[i] is the ith training data. y_{trn}[i] is the ith training label.
      \hookrightarrow K is the number of closest neighbors to use.
       Output: return y_pred, where y_pred[i] is the predicted ith test value
       111
       # TO DO
       Y_pred = np.zeros(X_tst.shape[0])
       index = faiss.IndexFlatL2(X_trn.shape[1]) # set for exact search
       index.add(X trn)
       for i in range(X_tst.shape[0]):
         query_vector = X_tst[i].reshape(1, -1)
         dist, idx = index.search(query_vector, K)
         Y_pred[i] = np.mean(y_trn[idx])
       \# rmse = np.sqrt(np.mean((y_test - Y_pred)**2))
       rmse = np.sqrt(np.mean((y_test - Y_pred)**2))
       return rmse
     def normalize_features(x, y, fnum):
       ''' Normalize the features in x and y.
           For each data sample i:
             x2[i] = x[i]-x[i,fnum]
```

```
# TO DO
       x_normalized = np.copy(x)
       y_normalized = np.copy(y)
       # Normalize features for each data sample
       for i in range(x.shape[0]):
         x_normalized[i, :] = x[i, :] - x[i, fnum]
         y_normalized[i] = y[i] - x[i, fnum]
       return x_normalized, y_normalized
     # KNN with original features
     # TO DO
     # print(np.shape(x_train))
     K = [1,3,5,11,25]
     k = 25
     # for k in K:
     print(x_train.shape, y_train.shape)
     rmse =regress_KNN(x_train, y_train, x_test, y_test, k)
     print("rmse", "unnormalized", rmse, "k", k)
     # KNN with normalized features
     fnum = 361 # previous day temp in Cleveland
     # KNN with normalized features
     x_norm, y_norm = normalize_features(x_train, y_train, fnum)
     xtest_norm, ytest_norm = normalize_features(x_test, y_test, fnum)
     rmse =regress_KNN(x_norm, y_norm, xtest_norm , ytest_norm, k)
     print("rmse", "normalized", rmse, "k", k)
[]: # Compare (niter=10, nredo=5) vs. (niter=50, nredo=1) for K=30.
     #Repeat this test five times and report the mean and standard deviation of the
      \hookrightarrow RMSE.
     import time
     t = int(time.time())
     rmse_vals = []
     for i in range(5):
         kmeans = faiss.Kmeans(x_train.shape[1], 30, niter=20, nredo=1,_
      ⇔seed=int(i*10000))
         kmeans.train(x_train)
         dist, idx = kmeans.index.search(x_train, 1)
         rmse = np.sqrt(np.sum(dist) / x_train.shape[0])
```

y2[i] = y[i]-x[i,fnum]