Docket No.: 22409-00006

**AMENDMENTS TO THE CLAIMS** 

. 1. (Currently Amended) A method of forming an electrically conducting feedthrough for

implantable medical device comprising:

forming an electrically conductive structure comprising a sacrificial component and a

non-sacrificial component comprising at least one electrically conductive elongate member;

coating at least a portion of the non-sacrificial component with an electrically insulating

material such that each said at least one electrically conductive elongate member is contiguous

and circumferentially covered by said electrically insulating material hermetically sealing said at

least one electrically conductive elongate member; and

removing at least a portion of the sacrificial component from the electrically conductive

structure to expose opposing ends of said at least one electrically conductive elongate member:

<u>and</u>

electrically coupling at least one opposing end of said at least one hermetically sealed

and electrically conductive elongate member to the implantable medical device.

2. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

the electrically insulating material is a ceramic material.

3. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

the electrically insulating material is coated on the non-sacrificial component and not coated on

to any portion of the sacrificial component of the conductive structure.

After Allowance Under 37 C.F.R. 1.312

4. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

the electrically conductive structure is selected from the group comprising a metal, a metal alloy,

an electrically conductive ceramic, an electrically conductive composite, and an intrinsically or

extrinsically electrically conductive polymer.

5. (Original) The method of forming an electrically conducting feedthrough of claim 4 wherein

the electrically conductive structure is formed from a film or shim of platinum.

6. (Original) The method of forming an electrically conducting feedthrough of claim 5 wherein

the film or shim has a shape comprising two or more conductive elements extending between

respective transverse support members.

7. (Original) The method of forming an electrically conducting feedthrough of claim 6 wherein

at least one of the conductive elements is linear.

8. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 6

wherein at least one of the conductive elements is non-linear.

9. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 6

wherein at least one of the conductive elements has a length that is greater than the shortest

distance between the respective transverse support members.

10. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 6

wherein at least one of the conductive elements has a surface that is non-linear.

11. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 6

wherein at least one of the conductive elements has a surface that defines an interface path

between the conductive element and the insulating material that is longer than the shortest

distance between the respective transverse support members.

After Allowance Under 37 C.F.R. 1.312

12. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

the shape of the electrically conductive structure is formed in step (i) by punching the shape from

a film of electrically conductive material.

. 13. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

the shape of the electrically conductive structure is formed in step (i) by using electrical

discharge machining (EDM) to remove unwanted portions of the film.

14. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 1

wherein step (i) comprises the steps of:

(a) forming a relatively electrically insulating disc having an outer periphery defining

a plurality of outwardly extending teeth having notches therebetween; and

winding an electrically conductive element around the disc such that at least some

of the notches have a portion of the conductive element passing therethrough.

15. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 14

wherein the electrically insulating disc is formed of a ceramic material.

16. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 15

wherein the electrically conductive element is a platinum metal wire.

17. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

step (i) comprises a step of forming a film of platinum having a plurality of integrally attached

substantially elongate members extending outwardly from at least a portion of the periphery

thereof.

18. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 17

wherein the elongate members extend outwardly and in a direction out of the plane of the film.

Application No. 10/529,063

Amendment dated October 15 2007

After Allowance Under 37 C.F.R. 1.312

19. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 18

wherein at least three sides of the film have elongate members extending at least out of the plane

Docket No.: 22409-00006

of the film.

20. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 1

wherein step (i) comprises a step of spirally coiling an electrically conductive metal wire along at

least a portion of a length of a screw thread.

21. (Cancelled)

22. (Original) The method of forming an electrically conducting feedthrough of claim 6 wherein

the electrically insulating material is moulded around at least a portion of the conductive

elements of the conductive structure.

23. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 14

wherein the electrically insulating material is moulded around the disc such that at least those

portions of the conductive element passing through the notches of the disc are encapsulated in

the insulating material.

24. (Original) The method of forming an electrically conducting feedthrough of claim 17

wherein the insulating material is moulded to both sides of the film and elongate members.

thereby encapsulating at least a portion of the members in the insulating material.

25. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 20

wherein once the wire is positioned around the screw thread, an insulating layer is moulded

around the thread and the wire.

After Allowance Under 37 C.F.R. 1.312

26. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 25

wherein once the insulating layer has at least partially cured, the screw thread is withdrawn from

the insulating material so leaving the coiled wire embedded within the inner surface of the

insulating layer, the inner surface defining an orifice.

27. (Withdrawn) The method of forming an electrically conducting feedthrough of claim 26

wherein the orifice left by the withdrawal of the screw thread is filled with insulating material.

28. (Original) The method of forming an electrically conducting feedthrough of claim 1 wherein

step (ii) comprises a step of using powder injection moulding (PIM) to mould the insulating

material around said portion of the conductive structure.

29. (Original) The method of forming an electrically conducting feedthrough of claim 1 further

comprising a step of mounting the feedthrough in an orifice in the wall of a unit adapted to

receive the feedthrough.

30. (Currently Amended) A feedthrough comprised of one or more relatively electrically

conductive structures extending through and embedded within a relatively electrically insulating

body when formed using the method of claim 1.

31. (Withdrawn) A feedthrough comprised of one or more relatively electrically conductive

structures extending through and embedded within a relatively electrically insulating body,

wherein the one or more electrically conductive structures are formed from a film or shim of an

electrically conductive metal or metal alloy.

32. (Withdrawn) The feedthrough of claim 31 wherein the film or shim is formed of platinum.

Application No. 10/529,063 Amendment dated October 15 2007

After Allowance Under 37 C.F.R. 1.312

33. (Withdrawn) The feedthrough of claim 31 wherein the electrically insulating body is formed of a ceramic.

Docket No.: 22409-00006

## 34. (Withdrawn) An electrically conducting feedthrough comprising:

a relatively electrically insulating member having a first face and at least a second face; and

at least one electrically conductive member extending through at least a portion of the electrically insulative member from the first face to the second face;

wherein said at least one conductive member is non-linear between said first face and said second face.

## 35. (Withdrawn) An electrically conducting feedthrough comprising:

a relatively electrically insulative member having a first face and at least a second face; and

at least one relatively electrically conductive member extending through at least a portion of the electrically insulative member from the first face to the second face:

wherein said at least one conductive member has a length between said first face and second face that is greater than the shortest distance between said first face and said second face.

## 36. (Withdrawn) An electrically conducting feedthrough comprising:

a relatively electrically insulative member having a first face and at least a second face; and

at least one relatively electrically conductive member having an outer surface and extending through at least a portion of the electrically insulative member from the first face to the second face:

wherein at least a portion of the outer surface of said at least one conductive member is non-linear between said first face and said second face.

After Allowance Under 37 C.F.R. 1.312

37. (Withdrawn) An electrically conducting feedthrough comprising:

a relatively electrically insulative member having a first face and at least a second face;

and

at least one relatively electrically conductive member having an outer surface and

extending through at least a portion of the electrically insulative member from the first face to

the second face;

wherein at least a portion of the outer surface of said at least one conductive member

defines an interface path between the conductive element and the insulating material that is

greater than the shortest distance between said first face and said second face.

38. (Withdrawn) The electrically conducting feedthrough of claim 34 wherein the first face and

second face of the insulating member face outwardly in opposite directions

39. (Withdrawn) The electrically conducting feedthrough of claim 38 wherein the first and

second faces are at least substantially parallel.

40. (Withdrawn) An electrically conducting feedthrough comprising:

a relatively electrically insulating member having a first face and at least a second face;

and

a plurality of electrically conductive members each having a first end and a second end

and extending through at least a portion of the insulative member from said first end at or

adjacent the first face to said second end at or adjacent the second face of the insulative member;

wherein the configuration of the first ends of the conductive members relative to each

other at or adjacent the first face of the insulative member is different to the configuration of the

second ends of the conductive members relative to each other at or adjacent the second face of

the insulative member.

After Allowance Under 37 C.F.R. 1.312

41. (Withdrawn) The electrically conducting feedthrough of claim 40 wherein the respective

configurations of the first ends and the second ends of the conductive members are such that the

number of first ends of the conductive members per a defined unit area at or adjacent the first

face of the insulating member is different to the number of second ends of the conductive

members per said defined unit area at or adjacent the second face of the insulating member.

42. (Withdrawn) The electrically conducting feedthrough of claim 40 wherein the respective

configurations of the first ends and the second ends of the conductive members are such that the

spacing between the first ends of the conductive members at or adjacent the first face of the

insulating member is different to the spacing between the second ends of the conductive

members at or adjacent the second face of the insulating member.

43. (Withdrawn) The electrically conducting feedthrough of claim 34 wherein the feedthrough

comprises two or more groups of said plurality of electrically conductive members.

44. (Withdrawn) The electrically conducting feedthrough of claim 43 wherein each conductive

member in a group is identical in configuration to the other conductive members in a group.

45. (Withdrawn) The electrically conducting feedthrough of claim 43 wherein the conductive

members of one group are different in configuration to one or more of the conductive members

of another group of the feedthrough.

46. (Withdrawn) The electrically conducting feedthrough of claim 43 wherein each group

comprises a series of conductive members in side-by-side relationship, with said two or more

groups layered one on top of the other.

47. (Withdrawn) The electrically conducting feedthrough of claim 46 wherein the groups are

such that the conductive members of one group are off-set relative to the conductive members of

an adjacent group.

Application No. 10/529,063
Amendment dated October 15 2007

After Allowance Under 37 C.F.R. 1.312

48. (Withdrawn) The electrically conducting feedthrough of claim 40 wherein the dimension

Docket No.: 22409-00006

and/or shape of the first ends of said conductive members are different from the dimension

and/or shape of the second ends of the conductive members.

. 49. (Withdrawn) An implantable device having a housing and further wherein a feedthrough

according to claim 34 is mounted in a wall of the housing.

50. (Withdrawn) The implantable device of claim 49 wherein the device is a cochlear implant

hearing prosthesis and the feedthrough provides electrical conduction between the circuitry

within an implantable stimulator unit of said prosthesis and one or more intracochlear or

extracochlear electrodes and/or an implantable receiver coil.

51. (Previously added) The method of forming an electrically conducting feedthrough of claim 1

wherein step (ii) comprises a step of mounting or clamping the electrically conductive structure

in a mould and then moulding a coating of the insulating material around the conductive

structure.