А. Сравнения подстрок

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: стандартный ввод output: стандартный вывод

Дана строка s. Ответьте на m запросов вида: равны ли подстроки s[a..b] и s[c..d].

Входные данные:

В первой строке ввода записана строка $s\ (1 \le |s| \le 10^5)$.

Во второй строке записано целое число m — количество запросов ($0 \le m \le 10^5$).

В следующих m строках четверки чисел $a,\,b,\,c,\,d$ ($1\leq a\leq b\leq |s|, 1\leq c\leq d\leq |s|$).

Выходные данные:

Выведите m строк. Выведите Yes, если подстроки совпадают, и No иначе.

Пример:

входные данные:

```
trololo
3
1 7 1 7
3 5 5 7
1 1 1 5
```

выходные данные:

```
Yes
Yes
No
```

В. Префикс-функция

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: стандартный ввод output: стандартный вывод

Постройте префикс-функцию для заданной строки s.

Входные данные:

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

выходные данные:

Выведите значения префикс-функции строки

 для всех индексов $1,2,\dots,|s|.$

Пример:

входные данные:

aaaAAA

выходные данные:

0 1 2 0 0 0

С. Z-функция

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: стандартный ввод output: стандартный вывод

Постройте Z-функцию для заданной строки s.

Входные данные:

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные:

Выведите значения Z-функции строки s для индексов $2, 3, \ldots, |s|$.

Примеры:

входные данные:

aaaAAA

выходные данные:

2 1 0 0 0

входные данные:

abacaba

выходные данные:

0 1 0 3 0 1

D. Быстрый поиск подстроки в строке

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: стандартный ввод output: стандартный вывод

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Входные данные:

Первая строка входного файла содержит p, вторая — t ($1 \le |p|, |t| \le 10^6$). Строки состоят из букв латинского алфавита.

Выходные данные:

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

Пример:

входные данные:

aba abaCaba

выходные данные:

2

Е. Поиск периода

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: стандартный ввод output: стандартный вывод

Дана строка s. Требуется найти минимальную по длине строку t, такую что s представима в виде конкатенации одной или нескольких строк t.

Входные данные:

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные:

Выведите длину искомой строки t.

Примеры:

входные данные:

abcabcabc

выходные данные:

3

входные данные:

abacaba

выходные данные:

F. Подстроки-3

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: стандартный ввод output: стандартный вывод

Даны K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Входные данные:

В первой строке число K $(1 \le K \le 10)$.

В следующих K строках — собственно K строк (длины строк от 1 до 10000).

Выходные данные:

Наибольшая общая подстрока.

Пример:

входные данные:

3
abacaba
mycabarchive
acabistrue

выходные данные:

cab

G. Множественный поиск

time limit per test: 3 seconds

memory limit per test: 1024 megabytes

input: стандартный ввод output: стандартный вывод

Дан массив строк s_i и строка t. Требуется для каждой строки s_i определить, встречается ли она в t как подстрока.

Входные данные:

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные:

Для каждой строки s_i выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

Пример:

входные данные:

abc
abcdr
abcde
xabcdef

выходные данные:

YES
NO
YES

Н. Множественный поиск 2

time limit per test: 3 seconds

memory limit per test: 1024 megabytes

input: стандартный ввод output: стандартный вывод

Дан массив строк s_i и строка t. Требуется для каждой строки s_i определить, сколько раз она встречается в t как подстрока.

Входные данные:

Первая строка входных данных содержит целое число $n\ (1 \le n \le 10^6)$ — число элементов в s.

Следующие n строк содержат по одной строке s_i . Гарантируется, что сумма длин всех строк из s не превосходит 10^6 .

Последняя строка входных данных содержит строку t ($1 \le |t| \le 10^6$).

Все строки состоят из строчных латинских букв.

Выходные данные:

Для каждой строки s_i выведите количество её вхождений в строку t в том же порядке, что и во входных данных.

Пример:

входные данные:

```
abc
abcdr
abcde
xabcdef
```

выходные данные:

I. Множественный поиск 3

time limit per test: 3 seconds memory limit per test: 1024 megabytes

input: стандартный ввод output: стандартный вывод

Дан массив строк s_i и строка t. Требуется для каждой строки s_i найти самое левое и самое правое вхождение в t как подстроки.

Входные данные:

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные:

Для каждой строки s_i выведите два числа: индексы самой левой и самой правой позиции, в которых она встречается в t. Если строка не встречается в t ни разу, выведите -1 -1. Строки нумеруются в порядке появления во входном файле. Позиции нумеруются с 0.

Пример:

входные данные:

```
ab bcd abde abcdab
```

выходные данные:

```
0 4
1 1
-1 -1
```

J. Суффиксный массив

time limit per test: 2 seconds

memory limit per test: 512 megabytes

input: стандартный ввод output: стандартный вывод

Постройте суффиксный массив для заданной строки s, для каждых двух соседних суффиксов найдите длину максимального общего префикса.

Входные данные:

Первая строка входного файла содержит строку s ($1 \le |s| \le 400000$). Строка состоит из строчных латинских букв.

Выходные данные:

В первой строке выведите |s| различных чисел — номера первых символов суффиксов строки s так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке. Во второй строке выведите |s|-1 чисел — длины наибольших общих префиксов.

Пример:

входные данные:

ababb

выходные данные:

```
1 3 5 2 4
2 0 1 1
```

К. Количество подстрок

time limit per test: 2 seconds

memory limit per test: 512 megabytes

input: стандартный ввод output: стандартный вывод

Вычислите количество различных подстрок строки s.

Входные данные:

Единственная строка входного файла содержит строку s (1 \leq |s| \leq 400000). Строка состоит из строчных латинских букв.

Выходные данные:

Выведите одно число — ответ на задачу.

Примеры:

входные данные:

ababb

выходные данные:

L. Циклические сдвиги

time limit per test: 2 seconds

memory limit per test: 512 megabytes

input: стандартный ввод output: стандартный вывод

k-м циклическим сдвигом строки S называется строка, полученная перестановкой k первых символов строки S в конец строки.

Рассмотрим все различные циклические сдвиги строки S и отсортируем их по возрастанию. Требуется вычислить i-ю строчку этого массива.

Например, для строки abacabac существует четыре различных циклических сдвига: нулевой (abacabac), первый (bacabaca), второй (acabacab) и третий (cabacaba). После сортировки по возрастанию получится такой массив: abacabac, acabacab, bacabaca, cabacaba.

Входные данные:

В первой строке входного файла записана строка S, длиной не более 100000 символов с ASCII-кодами от 32 до 126. Во второй строке содержится единственное целое число k (1 $\leq k \leq$ 100000).

Выходные данные:

В выходной файл выведите k-й по возрастанию циклический сдвиг строки S, или слово IMPOSSIBLE, если такого сдвига не существует.

Примеры:

входные данные:

abacabac

выходные данные:

cabacaba

входные данные:

abacabac

выходные данные:

IMPOSSIBLE

М. Наибольшая общая подстрока

time limit per test: 2 seconds

memory limit per test: 512 megabytes

input: стандартный ввод output: стандартный вывод

Найдите наибольшую общую подстроку строк s и t.

Входные данные:

Первая строка входного файла содержит строку s, вторая — t (1 \leq $|s|, |t| \leq$ 100, 000). Строки состоят из строчных латинских букв.

Выходные данные:

Выведите одну строку — наибольшую общую подстроку строк s и t. В случае, если ответ не единственный, выведите минимальный лексикографически.

Пример:

входные данные:

bababb zabacabba

выходные данные:

aba