Simplex Fase II

OBS: Diversos exercícios dessa lista podem ter suas soluções verificadas usando o software GUSEK

1. O que é uma solução básica? O que é uma solução básica factível?

RESPOSTA:

Uma solução básica é aquela em que n-m variáveis possuem valores = 0 (chamadas de x_N , ou $n\tilde{a}o$ básicas), e m variáveis possuem valores diferentes de 0 (x_B , ou básicas). Se todos os valores das variáveis básicas $x_B \ge 0$, a solução é dita básica factível.

2. Para cada um dos modelos de PL a seguir, escreva-o na forma padrão.

(a)

$$\max z = 5x_1 + 2x_2$$

$$10x_1 + 12x_2 \ge -60$$

$$2x_1 + x_2 = 6$$

$$x_1, x_2 \ge 0$$

RESPOSTA:

Multiplicando a função objetivo por -1 e deixando na forma de minimização. Multiplicando a primeira restrição por -1 para deixar 60 positivo e adicionando a variável de folga x_3 , o modelo fica:

(b)

$$\label{eq:max_substitute} \begin{split} \max z &= 10x_1 + 7x_2 \\ &2x_1 + x_2 + x_3 \le &5000 \\ &4x_1 + 5x_2 \ge &15000 \\ &x_1 \ge 0, \underbrace{x_2 \text{ irrestrito}} \end{split}$$

RESPOSTA:

Multiplicando a função objetivo por -1 para deixar na forma de minimização. Como x_2 é irrestrito, fazemos a transformação $x_2 = x_2^+ - x_2^-$. Adicionando uma variável de folga na primeira restrição (x_4) e subtraindo uma da segunda (x_5) para deixá-las na forma de igualdade, temos o modelo:

1

(c)

$$\min z = 2x_1 + 3x_2$$

$$x_1 + 3x_2 \ge 9$$

$$-x_1 + 2x_2 \le 4$$

$$x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

RESPOSTA:

Removendo uma variável de folga da primeira inequação (x_3) e adicionando outras duas nas restrições 2 e 3 $(x_5$ e $x_5)$, temos o modelo:

3. Certo problema de programação linear que envolve 2 variáveis possui a região factível indicada na Figura 1. O objetivo é maximizar o lucro total das duas variáveis. O lucro unitário para

Figura 1: Região factível

cada unidade de x_1 é de R\$1.00 e o lucro unitário para cada unidade de x_2 é R\$2.00.

(a) (0.5) Calcule o lucro total para cada solução básica factível. Use esta informação para encontrar a solução ótima. **RESPOSTA:**

As soluções básicas factíveis são dadas pelos pontos de interseção na região factível. Os pontos com os custos são dados por:

- -(0,0): custo = 0
- -(0,7): custo = 14
- (5,5): custo = 15
- (6,4): custo = 14
- (8,0): custo = 8

Temos que a solução ótima é dada por $(x_1, x_2) = (5, 5)$, com lucro de 15.

- (b) (0.5) Identifique a sequência de soluções básicas factíveis examinadas pelo método simplex para chegar a uma solução ótima (sem aplicar o método). Por que esse caminho ocorre? **RESPOSTA:**
 - O caminho seguido pelo Simplex é: $(0,0) \to (0,7) \to (5,5)$. Esse caminho é seguido pois na primeira iteração a variável x_2 é a mais vantajosa para entrar na base.
- 4. Para facilitar os cálculos, os coeficientes de um modelo de PL são colocados em uma tabela chamada tabela simplex. É muito importante entendermos os elementos dessa tabela. Considerando a tabela simplex 1 após um determinado número de iterações do algoritmo, responda o que se pede:

	x_1	x_2	x_3	x_4	x_5	-Z
$\overline{\mathrm{VB}}$	-7/2	0	3/2	0	0	6
???	-1/2	1	1/2	0	0	2
???	2	0	-1	1	0	2
???	5/2	0	-3/2	0	1	3

Tabela 1: Tabela simplex

(a) Quais são e quais os valores das variáveis básicas da tabela (células com ???)? RES-POSTA:

As variáveis básicas podem ser encontradas pela submatriz identidade na matriz dos coeficientes. Para cada linha dessa identidade, a variável que possui valor 1 é a variável básica da linha. No caso da tabela, temos as variáveis básica, e seus valores, na seguinte ordem:

- $-x_2=2$
- $-x_4=2$
- $-x_5 = 3$
- (b) Qual o valor da função objetivo nessa iteração?

RESPOSTA:

O valor na última coluna da tabela fornece o valor de -z, de forma que a função objetivo nessa iteração é -6.

(c) Existe alguma variável que pode entrar na base e melhorar a função objetivo? Qual? **RESPOSTA:**

As variáveis candidatas a entrar na base são aquelas em que os coeficientes na função objetivo são negativos ($c \le 0$). No caso temos que c_1 , referente a variável x_1 é -7/2, o que a faz uma candidata a entrar na base.

(d) Se existir uma variável candidata a entrar na base, quais serão as candidatas a deixar a base?

RESPOSTA:

Considerando que x_1 é um candidato a entrar na base, os candidatos a sair da base são definidos pela razão entre os coeficientes de b e da coluna referente a variável que entra, **que são** ≥ 0 . Nesse caso, x_2 não é um candidato a sair da base, pois seu coeficiente na coluna de x_1 é -1/2. Os candidatos são x_4 e x_5 .

5. Considere o seguinte conjunto de restrições de um modelo de programação linear (já na forma

padrão com as variáveis de folga):

$$5x_1 - 4x_2 + 13x_3 - 2x_4 + x_5 = 20$$
$$x_1 - x_2 + 5x_3 - x_4 + x_5 = 8$$
$$x_1, x_2 \in R^+$$

(a) Nota-se que o sistema não está na forma canônica. Verifique se a solução com variáveis básicas $x_B = (x_5, x_1)$ é uma solução básica factível.

RESPOSTA:

Para que o sistema fique na forma canônica em relação a x_1 e x_5 , os elementos destacados abaixo devem ser = 1, e os outros das mesmas colunas iguais a zero:

$$5x_1 - 4x_2 + 13x_3 - 2x_4 + \underbrace{(x_5)}_{} = 20$$

$$\underbrace{(x_1)}_{} - x_2 + 5x_3 - x_4 + x_5 = 8$$

$$x_1, x_2 \in R^+$$

Podemos aplicar as seguintes operações nas linhas do sistema para isso:

- $L_2 \leftarrow L_2 L_1$ $L_2 \leftarrow L_2/-4$
- $L_1 \leftarrow L_1 5L_0$

Ficamos então com o sistema equivalente:

$$-1/4x_2 + 3x_3 - 3/4x_4 + (x_5) = 5$$
$$(x_1) - 3/4x_2 + 2x_3 - 1/4x_4 = 3$$
$$x_1, x_2 \in R^+$$

Assim, temos que a solução básica com $x_B = (x_5, x_1) = (5, 3)$ é factível, pois $x_B \ge 0$.

(b) Verifique se a solução com variáveis básicas $x_B = (x_1, x_2)$ é uma solução básica factível. **RESPOSTA:**

Para que o sistema fique na forma canônica em relação a x_1 e x_2 , os elementos destacados abaixo devem ser = 1, e os outros das mesmas colunas iguais a zero:

$$(5x_1) - 4x_2 + 13x_3 - 2x_4 + x_5 = 20$$

$$x_1 - (x_2) + 5x_3 - x_4 + x_5 = 8$$

$$x_1, x_2 \in \mathbb{R}^+$$

Podemos aplicar as seguintes operações nas linhas do sistema para isso:

- $L_2 \leftarrow L_2 L_1$
- $L_2 \leftarrow L_2 / 4$
- $L_1 \leftarrow L_1 5L_0$

Ficamos então com o sistema equivalente:

$$(x_1) + -7x_3 + 2x_4 + -3x_5 = -12$$

$$(x_2) -12x_3 + 3x_4 - 4x_5 = -20$$

$$x_1, x_2 \in \mathbb{R}^+$$

Assim, temos que a solução básica com $x_B = (x_1, x_2) = (-12, -20)$ é infactível, pois $x_B < 0$.

- 6. Para cada um dos modelos de PL abaixo, resolva-os usando o método Simplex (usando tabelas), em seguida mostre o caminho Simplex percorrido na região factível (graficamente).
 - (a) (**R**)

$$\max z = 5x_1 + 2x_2$$
$$10x_1 + 12x_2 \le 60$$
$$2x_1 + x_2 \le 6$$
$$x_1, x_2 \ge 0$$

RESPOSTA:

Forma padrão:

$$\min z = -5x_1 - 2x_2$$

$$10x_1 + 12x_2 + x_3 = 60$$

$$2x_1 + x_2 + x_4 = 6$$

$$x_1, x_2 \ge 0$$

	x_1	x_2	x_3	x_4	$-\mathbf{z}$
$\overline{\mathrm{VB}}$	-5	-2	0	0	0
x_3	10	12	1	0	60
x_4	2	1	0	1	6

	x_1	x_2	x_3	x_4	-Z
$\overline{\mathrm{VB}}$	0	1/2	0	5/2	15
x_3	0	7	1	-5	30
x_1	1	1/2	0	1/2	3

Tabela 2: Ex. 6a tabela inicial

Tabela 3: Ex. 6a iteração 1

Solução ótima com valores $x_B = (x_3, x_1) = (3, 30)$ e $x_N = (x_2, x_4) = (0, 0)$ e função objetivo com custo -15 (voltando ao problema de maximização o custo é de 15). O caminho simplex percorrido foi: $(x_1, x_2) = (0, 0), (x_1, x_2) = (3, 0)$.

(b) (**R**)

$$\max z = 10x_1 + 7x_2$$

$$2x_1 + x_2 \le 5$$

$$4x_1 + 5x_2 \le 15$$

$$x_1, x_2 \ge 0$$

RESPOSTA:

Forma padrão:

$$\min z = -10x_1 - 7x_2$$

$$2x_1 + x_2 + x_3 = 5$$

$$4x_1 + 5x_2 + x_4 = 15$$

$$x_1, x_2 \ge 0$$

Solução ótima com valores $x_B = (x_1, x_2) = (5/3, 5/3)$ e $x_N = (x_3, x_4) = (0, 0)$ e função objetivo com custo -85/3 (voltando ao problema de maximização o custo é de 85/3). O caminho simplex percorrido foi: $(x_1, x_2) = (0, 0), (x_1, x_2) = (5/2, 0), (x_1, x_2) = (5/3, 5/3)$.

	x_1	x_2	x_3	x_4	-z
$\overline{\mathrm{VB}}$	-10	-7	0	0	0
x_3	2	1	1	0	5
x_4	4	5	0	1	15

	x_1	x_2	x_3	x_4	-Z
VB	0	-2	5	0	25
x_1	1	1/2	1/2	0	5/2
x_4	0	3	-2	1	5

Tabela 4: Ex. 6b tabela inicial

Tabela 5: Ex. 6b iteração 1

	x_1	x_2	x_3	x_4	-Z
VB	0	0	11/3	2/3	85/3
x_1	1	0	5/6	-1/6	5/3
x_2	0	1	-2/3	1/3	5/3

Tabela 6: Ex. 6b tabela iteração 2

$$\max z = 2x_1 + 3x_2$$

$$x_1 + 3x_2 \le 9$$

$$-x_1 + 2x_2 \le 4$$

$$x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

RESPOSTA:

Forma padrão:

$$\min z = -2x_1 - 3x_2$$

$$x_1 + 3x_2 + x_3 = 9$$

$$-x_1 + 2x_2 + x_4 = 4$$

$$x_1 + x_2 + x_5 = 6$$

	x_1	x_2	x_3	x_4	x_5	-Z
VB	-2	-3	0	0	0	0
x_3	1	3	1	0	0	9
x_4	-1	2	0	1	0	4
x_5	1	1	0	0	1	6

	x_1	x_2	x_3	x_4	x_5	-Z
VB	-7/2	0	3/2	0	0	6
x_3	5/2	0	1	-3/2	0	3
x_2	-1/2	1	0	1/2	0	2
x_5	3/2	0	0	-1/2	1	4

Tabela 7: Ex. 6b tabela inicial

Tabela 8: Ex. 6b iteração 1

Solução ótima com valores $x_B=(x_1,x_2,x_4)=(9/2,3/2,11/2)$ e $x_N=(x_3,x_5)=(0,0)$ e função objetivo com custo de -27/2 (voltando ao problema de maximização o custo é de 27/2). O caminho percorrido pelo Simplex foi: $(x_1,x_2)=(0,0), (0,2), (6/5,13/5), (9/2,3/2)$. O caminho é mostrado na Figura 2 (caminho A,B,C,D).

	x_1	x_2	x_3	x_4	x_5	-Z
VB	0	0	7/5	-3/5	0	51/5
x_1	1	0	2/5	-3/5	0	6/5
x_2	0	1	1/5	1/5	0	13/5
x_5	0	0	-3/5	-2/5	1	11/5

	x_1	x_2	x_3	x_4	x_5	-Z
VB	0	0	1/2	0	3/2	27/2
x_1	1	0	-1/2	0	3/2	9/2
x_2	0	1	1/2	0	-1/2	3/2
x_4	0	0	-3/2	1	5/2	11/2

Tabela 9: Ex. 6b iteração 2

Tabela 10: Ex. 6b iteração 3

Figura 2: Caminho Simplex

7. Encontre a solução do problema a seguir, utilizando o método Simplex.

$$\max z = 2x_1 + 3x_2 + 4x_3$$

$$x_1 + x_2 + x_3 \le 100$$

$$2x_1 + x_2 \le 210$$

$$x_1 \le 80$$

$$x_1, x_2, x_3 \ge 0$$

RESPOSTA:

Forma padrão:

$$\begin{aligned} \min z &= -2x_1 - 3x_2 - 4x_3 \\ x_1 + x_2 + x_3 + x_4 &= 100 \\ 2x_1 + x_2 + x_5 &= 210 \\ x_1 + x_6 &= 80 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{aligned}$$

Solução ótima com valores $x_B = (x_3, x_5, x_6) = (100, 210, 80)$ e $x_N = (x_1, x_2, x_4) = (0, 0, 0)$ e função objetivo com custo -400 (voltando ao problema de maximização o custo é de 400).

	x_1	x_2	x_3	x_4	x_5	x_6	-z
VB	-2	-3	-4	0	0	0	0
x_4	1	1	1	1	0	0	100
x_5	2	1	0	0	1	0	210
x_6	1	0	0	0	0	1	80

	x_1	x_2	x_3	x_4	x_5	x_6	-Z
VB	2	1	0	4	0	0	400
x_3	1	1	1	1	0	0	100
x_5	2	1	0	0	1	0	210
x_6	1	0	0	0	0	1	80

Tabela 11: Ex. 7 tabela inicial

Tabela 12: Ex. 7 tabela iteração 1

8. Modele e encontre a solução do seguinte problema (lista 1). Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato e 1 unidade de couro para fabricar uma unidade de cinto. Sabendo que o total disponível de couro é de 6 unidades e que o lucro unitário por sapato é de 5 unidades e o do cinto é de 2 unidades, formular o modelo que maximize lucro por hora.

RESPOSTA:

Sejam as variáveis:

 $\begin{cases} x_1: \text{Quantidade sapatos produzidos/hora} \\ x_2: \text{Quantidade cintos produzidos/hora}. \end{cases}$

Temos o modelo:

$$\max z = 5x_1 + 2x_2$$
$$10x_1 + 12x_2 \le 60$$
$$2x_1 + 1x_2 \le 6$$
$$x_1, x_2 \in R^+$$

Forma padrão:

min
$$Z = -5x_1 + -2x_2$$

$$10x_1 + 12x_2 + x_3 = 60$$

$$2x_1 + 1x_2 + x_4 = 6$$

$$x_1, x_2, x_3, x_4 \in \mathbb{R}^+$$

Exercício resolvido em 6a.