Pontifícia Universidade Católica de Campinas Arquitetura de Computadores - Prof. Dr. Ricardo Pannain

Henrique Sartori Siqueira 19240472 Jemis Dievas José Manhiça 19076272

Projeto 1

1. Introdução

Neste projeto mostra um programa desenvolvido em linguagem Assembly do MIPS, com o objetivo de registrar as notas dos alunos de uma turma e no final apresentar as médias e a informação dos que foram aprovados.

2. Especificação

2.1. Detalhes de projeto

A confecção do projeto foi feita no software Visual Studio Code, com o armazenamento em nuvem via Github. Os sistemas operacionais utilizados para desenvolver o projeto foram: Windows 10 versão 2004 e Ubuntu 20.04. A execução do código foi realizada no programa MARS versão 4.5.

2.2. Detalhes de implementação

Para o presente projeto, nós optamos em separar o nosso código em blocos (funções), para que pudéssemos ter uma estrutura organizada, que fosse fácil de ler, corrigir e compreender, e no total foram construídas 15 funções (mais a main).

Separamos os dados principais do nosso projeto da seguinte forma:

- Vetor de inteiros (words), no qual foram armazenados os RA's.
- Matriz de floats, na qual foram armazenadas as notas dos projetos, das atividades e as médias ponderadas dos alunos.
- Uma variável float na qual foi armazenado a média aritmética da turma toda.

Colunas		0	4	8	12	16	20	24	28
Linhas		Média	Projeto 1	Projeto 2	Atividade 1	Atividade 2	Atividade 3	Atividade 4	Atividade 5
0	Aluno 1	0	4	8	12	16	20	24	28
32	Aluno 2	32	36	40	44	48	52	56	60
64	Aluno 3	64	68	72	76	80	84	88	92
96	Aluno 4	96	100	104	108	112	116	120	124
128	Aluno 5	128	132	136	140	144	148	152	156

Figura 1: Representação da matriz de notas.

3. Resultados

3.1. Testes realizados

Foram realizados alguns testes com o objetivo de verificar se as funções estavam funcionando de acordo com o desejado, um dos testes mais usados foi o da impressão da mensagem "TESTE", que basicamente nos informava se os acessos estavam sendo feitos de forma correta (ou na quantidade esperada). O outro teste que usamos muito também foi a impressão da própria matriz de notas, para conferir se as modificações que pretendíamos fazer estavam de fato sendo efetuadas. E também, fizemos testes para saber se o vetor de RA's estava ordenado, estamos as aproximações (função que mais deu trabalho), testamos também os intervalos dos valores inseridos (projetos, atividades), e testamos a validade dos RA's no caso da modificação de nota (para saber se o RA inserido era válido), e fizemos um teste em C para compreender melhor como fazer a aproximação no MIPS (imagem abaixo).

```
#include <stdio.h>
#include <stdlib.h>
int main(){
    float loop,n[] = {3.4,4.0,2.5,7.75,6.2,1.8};
    int i = 0;
    for(int j=0;j<6;j++){
        loop = 0.0;
        while(loop < n[j])
            loop += 0.5;
        loop -=0.25;
        if(n[j] < loop)
            loop -= 0.25;
        else
            loop += 0.25;
        n[j] = loop;
        printf("%.2f\n",n[j]);
    return 0;
```

Figura 2: Código modelo para a função de arredondamento.

3.2. Resultados e discussão

Para os resultados do projeto, foi desenvolvida uma tabela modelo para correta verificação do bom funcionamento do programa.

ra	media	p1	p2	at1	at2	at3	ta4	ta5
1	5,30	4,5	6	5,7	4	7	5	5
3	4,25	3	4	8	7	7	3	0
5	5,93	6	5	7	8	3,6	4	9,2
7	5,43	6	5	5,8	4	5	6	6
8	6,5	7	7	6	5	5	8	6

Figura 3: Tabela modelo de testes e resultados.

As imagens a seguir representam os resultados da execução do projeto para a respectiva tabela criada.

RAs	Media	P1	P2	AT1	AT2	AT3	AT4	AT5
1	5.5	4.5	6.0	5.7	4.0	7.0	5.0	5.0
3	4.5	3.0	4.0	8.0	7.0	7.0	3.0	0.0
5	6.0	6.0	5.0	7.0	8.0	3.6	4.0	9.2
7	5.5	6.0	5.0	5.8	4.0	5.0	6.0	6.0
8	6.5	7.0	7.0	6.0	5.0	5.0	8.0	6.0

Figura 4: Tabela de resultados do projeto.

```
Media da sala: 5.5
 0 - Encerrar programa.
1 - Cadastrar notas.
2 - Alterar nota.
3 - Exibir notas.
4 - Media aritmetica da turma.
5 - Aprovados.
-> 5
RA aprovado: 1
RA aprovado: 5
RA aprovado: 7
RA aprovado: 8
 0 - Encerrar programa.
1 - Cadastrar notas.
2 - Alterar nota.
3 - Exibir notas.
4 - Media aritmetica da turma.
5 - Aprovados.
```

Figura 5: Resultados do projeto.

Algumas das dificuldades que superamos foi a de manipulação de registradores tipo float, como por exemplo carregar e mover valores nesses tipos de registradores. Além do algoritmo de arredondamento, em que houve diversas maneiras de realizá-lo, porém somente uma foi capaz de ser implementada de maneira satisfatória.

4. Bibliografia

Disponível em:

https://stackoverflow.com/questions/22770778/how-to-set-a-floating-point-register-to-0-in-mips-or-clear-its-value. Acesso em: 7 de setembro de 2020.

Disponível em:

https://stackoverflow.com/questions/6515799/use-the-floating-point-instructions-to-get-results-in-decimal. Acesso em 10 de setembro de 2020.

Disponível em:

https://stackoverflow.com/questions/10383109/best-way-to-move-float-to-new-register-in-mi ps>. Acesso em 10 de setembro de 2020.