PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-229084

(43) Date of publication of application: 25.08.1998

(51)Int.CI.

H01L 21/3205

(21)Application number: 09-030432

(71)Applicant: NIPPON TELEGR & TELEPH CORP

<NTT>

(22)Date of filing:

14.02.1997

(72)Inventor: AWAYA NOBUYOSHI

ISHII HITOSHI

(54) WIRING STRUCTURE OF SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF (57)Abstract:

PROBLEM TO BE SOLVED: To easily form a Cu diffusion blocking film in connecting trenches having a more fine diameter and high aspect ratio in a multilayer wiring structure using Cu as a wiring material and using a material having a high adhesion to Cu and low contact resistance as a base film.

SOLUTION: On a substrate 101 having elements e.g. transistors a Cu or Cu alloy wiring 103 is formed through a layer insulation film 102 and covered with a barrier film 104 made of Ru, Os, Ir or Rh.

LEGAL STATUS

[Date of request for examination]

22.12.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3409831

[Date of registration]

20.03.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3409831号 (P3409831)

(45)発行日 平成15年5月26日(2003.5.26)

(24)登録日 平成15年3月20日(2003.3.20)

(51) Int.Cl.7

識別記号

H 0 1 L 21/3205 21/768 FI

H01L 21/88

21/90

R A

請求項の数6(全 6 頁)

(21)出願番号 特願平9-30432 (73)特許権者 000004226 日本電信電話株式会社 (22)出願日 平成9年2月14日(1997.2.14) 東京都千代田区大手町二丁目3番1号 (72) 発明者 粟屋 信義 (65)公開番号 特開平10-229084 東京都新宿区西新宿三丁目19番2号 日 (43)公開日 平成10年8月25日(1998.8.25) 本電信電話株式会社内 審査請求日 平成12年12月22日 (2000.12.22) 石井 仁 (72) 発明者 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (74)代理人 100064621 弁理士 山川 政樹 審査官 齋藤 恭一

最終頁に続く

(54) 【発明の名称】 半導体装置の配線構造の製造方法

1

(57)【特許請求の範囲】

【請求項1】 半導体基板上に絶縁膜<u>を形成する工程</u> と、

前記絶縁膜の所定位置に溝を形成する工程と、 前記絶縁膜上と前記溝底部および側壁とにルテニウム、 オスミウム、イリジウム、もしくは、ロジウムからなる 第1の膜を化学気相成長法により形成する工程と、 前記第1の膜上に銅もしくは銅合金からなる第2の膜を 化学気相成長法により形成して前記溝を埋め込む工程 と、

前記第2の膜および前記第1の膜を、前記溝内に形成された部分を残し、前記絶縁膜表面が露出するまで削除する工程と、

前記削除する工程の後で、前記第1の膜および前記第2 の膜の表面に露出している部分にルテニウム、オスミウ 2

<u>ム、イリジウム、もしくは、ロジウムからなる第3の膜を選択的化学気相成長法により形成する工程とを少なくとも</u>備えたことを特徴とする半導体装置の配線構造<u>の製造方法</u>。

【請求項2】 半導体基板上に絶縁膜<u>を形成する工程</u> と、

前記絶縁膜の所定位置に溝を形成する工程と、

前記絶縁膜上と前記溝底部および側壁とに、ルテニウムの酸化物、オスミウムの酸化物、イリジウムの酸化物、

もしくは、ロジウムの酸化物からなる第1の膜を化学気 相成長法により形成する工程と、

前記第1の膜上に銅もしくは銅合金からなる第2の膜を 化学気相成長法により形成して前記溝を埋め込む工程

前記第2の膜および前記第1の膜を、前記溝内に形成さ

10

3

れた部分を残し、前記絶縁膜表面が露出するまで削除する工程と、

前記削除する工程の後で、前記第1の膜および前記第2 の膜の表面に露出している部分にルテニウム、オスミウム、イリジウム、もしくは、ロジウムの酸化物からなる 第3の膜を選択的化学気相成長法により形成する工程と を少なくとも備えたことを特徴とする半導体装置の配線 構造の製造方法。

【請求項3】 <u>半導体基板上に絶縁膜を形成する工程</u>

前記絶縁膜の所定位置に溝を形成する工程と、前記絶縁膜上と前記溝底部および側壁とにルテニウム、オスミウム、イリジウム、もしくは、ロジウムからなる第1の膜を無電界メッキ法により形成する工程と、前記第1の膜上に銅もしくは銅合金からなる第2の膜をメッキ法により形成して前記溝を埋め込む工程と、前記第2の膜および前記第1の膜を、前記溝内に形成された部分を残し、前記絶縁膜表面が露出するまで削除する工程と、

前記削除する工程の後で、前記第1の膜および前記第2 20 の膜の表面に露出している部分にルテニウム、オスミウム、イリジウム、もしくは、ロジウムからなる第3の膜を選択的な無電界メッキ法により形成する工程とを少なくとも備えたことを特徴とする半導体装置の配線構造の製造方法。

【請求項4】 請求項<u>1</u>記載の半導体装置の配線構造<u>の</u> 製造方法において、

前記第1の膜は、ルテニウム、オスミウム、イリジウム、もしくは、ロジウムのカルボニル化合物、βケトナート化合物、または、シクロベンタジニエル化合物を原 30料とした化学気相成長法により形成し、

前記第2の膜は、銅または銅を主成分とするβケトナート化合物を原料とした化学気相成長法により形成するととを特徴とする半導体装置の配線構造の製造方法。

【請求項5】 <u>請求項2記載の半導体装置の配線構造の</u> 製造方法において、

前記第1の膜は、ルテニウム、オスミウム、イリジウム、もしくは、ロジウムのカルボニル化合物、βケトナート化合物、または、シクロペンタジニエル化合物を原料とした酸化性雰囲気における化学気相成長法により形 40 成し、

前記第2の膜は、銅または銅を主成分とするβケトナート化合物を原料とした化学気相成長法により形成するととを特徴とする半導体装置の配線構造の製造方法。

【請求項6】 <u>請求項3記載の半導体装置の配線構造の</u> 製造方法において、

前記第1の膜は、前記絶縁膜表面にルテニウム、オスミウム、イリジウム、もしくは、ロジウム、またはそれらの酸化物からなる触媒核を担持したあと、無電界メッキ法により形成し、

前記第2の膜は、無電界メッキ法もしくは電界メッキ法 により形成するととを特徴とする半導体装置の配線構造 の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、銅を配線主材料 として用いる半導体装置の配線構造およびその製造方法 に関する。

[0002]

【従来の技術】アルミ配線を用いたシリコン半導体集積回路において、配線遅延の回路性能への影響や、配線のエレクトロマイグレーションによる信頼性の低下が深刻化している。まず、配線による信号の遅延としては、配線抵抗に起因するものがある。この解消には、電気抵抗の低い材料を用いるようにすればよい。また、信号遅延としては、配線容量に起因するものがある。これは、高密度に集積された配線間における配線容量に起因する遅延である。この配線容量の低減のためには、配線の横だけでなく厚さ方向の微細化が必要となる。したがって、配線容量に起因する信号遅延を抑制しようとすると、配

配線容量に起因する信号遅延を抑制しようとすると、配 線に流れる電流が増大することになり、エレクトロマイ グレーションが起きやすい状態となる。

【0003】以上の問題点を解消するために、アルミニウムに変わる配線材料として、電気抵抗が低くマイグレーション耐性を有する銅が有望とされている(特開平2-256238号公報)。ここで、銅はシリコン酸化物中を拡散してトランジスタ素子に悪影響を与えることや、絶縁膜との密着性が弱いことなどから、銅による配線を形成する場合、その下地にタンタルや窒化チタンや窒化タンタルからなる下地膜を配置し、銅の拡散を防止し、配線と絶縁膜との密着性を向上させるようにしていた。

[0004]

【発明が解決しようとする課題】ところで、現在LSIの多層配線では、層間の接続孔のアスペクト比(孔の深さ/孔径)は年々高くなる傾向にある。したがって、微細な径のアスペクト比の高い接続孔に配線材料を埋め込むことになる。ところで、接続孔に前述した銅および下地膜を埋め込む場合、スパッタリングや化学気相成長法またはメッキ法などによる成膜技術が用いられる。しかし、埋め込む孔が微細な径の直アスペクト比となると、以下に説明することによりスパッタリングによる成膜方法では限界がある。

【0005】スパッタリングによる成膜では、ターゲットより飛来してくる成膜材料の粒子が、成膜対象の面に 到達することでその成膜材料による膜が形成されてい く。一方で、接続孔のアスペクト比が高くなりその径が 筬細化していくと、上方から接続孔の底部を見込める角 度幅が小さくなっていく。したがって、接続孔のアスペ クト比が高くなりその径が筬細化していくと、スパッタ

4

リングにより飛来する粒子がその接続孔底部に到達しに くくなる。そして、成膜粒子が接続孔底部に届かなけれ は、接続孔を成膜材料で埋め込むことができなくなる。 【0006】以上のことに対して、化学気相成長法また はメッキ法では、成膜材料が孔底部に届かなくなること が原理的に発生しないため、より高集積化した多層配線 における接続孔へは、化学気相成長法またはメッキによ る成膜が必要になってくる。ところが、タンタルは化学 気相成長法やメッキ法で成膜することが困難である。ま た、それらの技術でタンタル膜が形成できたとしても、 タンタルは空気中で酸化されやすいため、この上に銅配 線形成のための銅を化学気相成長法やメッキ法で成膜す るときに、タンタル膜表面に酸化膜が形成されてしま う。タンタルの酸化膜は絶縁体であるため、下地膜と配 線との間の層間接続の抵抗が高くなってしまう。

【0007】一方、窒化チタンや窒化タンタルは化学気 相成長法で成膜することが可能であり、空気中で酸化す ることはない。しかし、化学気相成長法で成膜した窒化 チタンや窒化タンタルは電気抵抗が高くなってしまう。 また、窒化チタンや窒化タンタルはメッキ法により成膜 20 することが非常に困難である。そして、窒化チタン上に 堆積した銅の密着性は、十分な強度を持っていない。し たがって、この発明は、以上のような問題点を解消する ためになされたものであり、銅を配線材料として用いた 多層配線構造において、銅との密着性が高く接触抵抗の 小さい材料を下地膜とした、銅の拡散を防ぐために用い られる膜を、より微細な径で高アスペクト比となった接 続孔内に形成しやすくすることを目的とする。

[0008]

【課題を解決するための手段】との発明の半導体装置の 30 いるようにすればよい。 配線構造の製造方法は、まず、半導体基板上に形成され た絶縁膜の所定位置に溝を形成した後、その絶縁膜上と 満底部および側壁とにルテニウム, オスミウム, イリジ ウム、もしくは、ロジウムからなる第1の膜を化学気相 成長法により形成する。ついで、第1の膜上に銅もしく は銅合金からなる第2の膜を化学気相成長法により形成 して溝を埋め込み、第2の膜および第1の膜を、溝内に 形成された部分を残して絶縁膜表面が露出するまで削除 する。そして、その削除した後で、第1の膜および前記 第2の膜の表面に露出している部分にルテニウム、オス 40 ミウム, イリジウム, もしくは, ロジウムからなる第3 の膜を選択的化学気相成長法により形成するようにし た。以上説明したように、化学気相成長法により第1お よび第2の膜を形成するので、溝内底部にまで第1の膜 および第2の膜が充填される。

【0009】そして、との発明の半導体装置の配線構造 の製造方法は、まず、半導体基板上に形成された絶縁膜 の所定位置に溝を形成した後、その絶縁膜上と溝底部お よび側壁とにルテニウム、オスミウム、イリジウム、も

より形成する。ついで、第1の膜上に銅もしくは銅合金 からなる第2の膜をメッキ法により形成して溝を埋め込 み、第2の膜および前記第1の膜を、溝内に形成された 部分を残して絶縁膜表面が露出するまで削除する。そし

て、その削除した後で、第1の膜および前記第2の膜の 表面に露出している部分にルテニウム、オスミウム、イ リジウム、もしくは、ロジウムからなる第3の膜を選択 的な無電界メッキ法により形成するようにした。以上説 明したように、メッキ法により第1および第2の膜を形 成するので、溝内底部にまで第1の膜および第2の膜が

充填される。 [0010]

【発明の実施の形態】以下との発明の実施の形態を図を 参照して説明する。

実施の形態 1

図1は、この発明の実施の形態1における半導体装置の 配線構造の一部を示す断面図であり、基板101上には 図示していないがトランジスタ等の素子が形成され、そ の上に層間絶縁膜102を介して、銅もしくは銅合金か らなる配線103が形成されている。そして、との配線 103は、バリア膜104によって被覆されている。と れらの構成の中で、層間絶縁膜102は例えば、二酸化 珪素、三窒化珪素、リンガラス、ボロンリンガラス、ま たは、有機系の低誘電率絶縁材料から構成すればよい。 また、配線部分は、例えばダマシン法による埋め込み配 線形成法や、配線材料を成膜した後で所定形状に加工す るドライエッチング法などにより形成すればよい。そし て、バリア膜104としては、ルテニウム、オスミウ ム、イリジウム、および、ロジウムいずれかの金属を用

【0011】以下、との実施の形態1における配線構造 の製造方法について説明する。まず、図2(a)に示す ように、基板201上に絶縁膜202介して第1層配線 203が形成された状態で、公知の方法(ダマシン法) により、所定位置に接続孔205 および2層配線が形成 される溝206を層間絶縁膜204に同時に形成する。 ととで、溝206は紙面に直角にのびており、また第1 層配線203と直角な関係となっている。なお、図2に は示していないが、基板201の他の領域には、トラン ジスタなどの素子が形成されている。

【0012】ついで、図2(b)に示すように、金属膜 207を以下に説明することにより形成する。この金属 膜207の形成は、化学気相成長法を用い、原料として カルボニル系材料のルテニウムカルボニウム [Ru(C 〇),],を用い、基板201の加熱温度は200~40 0℃程度として行う。すなわち、ルテニウムカルボニウ ムを加熱された基板201上に導入することで、ルテニ ウムカルボニウムを熱分解し、層間絶縁膜204表面に ルテニウムを折出させる。この結果、層間絶縁膜204 しくは,ロジウムからなる第1の膜を無電界メッキ法に 50 表面には、ルテニウムからなる金属膜207(第1の

膜)が形成されることになる。

【0013】ととで、上述では、金属膜207としてル テニウムを用いるようにしたが、これに限るものではな く、オスミウム、イリジウム、ロジウムを用いるように しても同様である。との場合、化学気相成長を行うとき のカルボニル系材として、オスミウムカルボニル [0s (CO),], イリジウムカルボニウム[Ir(CO) ,] もしくは [I r (CO) ,] , ロジウムカルボニル [Rh(CO),]を用いるようにすればよい。また、 熱分解による化学気相成長法の原料として、シクロベン 10 タジニエル系の原料を用いるようにしてもよい。例え ば、ビスシクロペンタジニエルルテニウム [Ru (C, H。) 2] を用い、基板温度を400~600℃とし、ル テニウムを析出させることができる。

【0014】一方、βケトナート系化合物を化学気相成 長原料としてもよい。との場合、水素雰囲気中で基板温 度を300~600℃として、導入した成膜原料を還元 することにより金属膜を析出堆積させて膜形成を行う。 このとき、水蒸気もしくはアルコールを添加すること で、堆積速度を速めることができる。また、水素プラズ 20 マ中もしくは水素ラジカルが導入された状態で、それら の成膜を行うようにすれば、成膜時の基板温度を100 ~200℃低下させることが可能となる。この水素還元 による化学気相成長では、例えば、ルテニウムアセチル Perton Tender Tenderルアセトナト [Os (C, H, O,),], イリジウムアセ チルアセトナト $[Ir(C,H,O_1),]$, もしくは、ロ ジウムアセチルアセトナト [Rh(C,H,O,),]を用 いるようにすればよい。また、それらのフッ化炭素の誘 導体を、原料として用いるようにすればよい。その一例 30 として、ルテニウムヘキサフロロアセチルアセトナト [Ru(C,F,HO]),] がある。

【0015】引き続き、図2(c)に示すように、銅へ キサフロロアセチルアセトナトビニルトリメチルシラン の不均化反応による化学気相成長法で、金属膜207上 に銅膜208 (第2の膜)を堆積形成し、接続孔205 および溝206内をそれらで埋め込む。なお、ことでは 銅膜を形成するようにしたが、銅合金の膜を形成するよ うにしてもよい。ついで、化学機械研磨により銅膜20 8 および金属膜207の平坦部を、層間絶縁膜204の 40 表面が露出するまで除去する。この結果、図3(d)に 示すように、バリアメタル207aに側面および下面が 覆われた、第2層配線としての銅配線208aが形成さ れる。

【0016】ついで、銅配線208aおよびその側面で 表面に露出しているバリアメタル207a上に、以下に 示すことにより選択的にパリアメタル207b (第3の 膜)を形成する。このバリアメタル207bの形成で は、前述した、シクロペンタジニエル系の材料もしくは βケトナート系の材料を用いた化学気相成長法により金 50 属膜としてルテニウムを形成するようにしたが、これに

属膜を形成することで行う。すなわち、この化学気相成 長では、層間絶縁膜204の表面には金属膜が形成され ず、銅配線208aおよびその側面で表面に露出してい るバリアメタル207a上に選択的に金属膜が形成さ

れ、これがバリアメタル207bとなる。

【0017】なお、βケトナート系材料を用いた化学気 相成長では、その原料とともにヘキサフロロアセチルケ トンを、反応系に同時に供給するようにすれば、それら 選択性の維持に効果的である。そして、以上示したよう にして第2層配線を形成した後、それらの上にパシベー ション膜を形成するようにしてもよく、場合によって は、さらに層間絶縁膜を形成して第3層配線を形成する ようにし、多層配線構造を構成するようにしてもよい。 【0018】実施の形態2

なお、上記実施の形態 1 においては、化学気相成長法に より、バリア膜を形成するための金属膜、および、銅配 線層を形成するための銅膜を形成するようにしたが、と れに限るものではなく、それらをメッキ(無電界メッ キ) により形成するようにしてもよい。この場合、図2 (a) に示すように、層間絶縁膜204の所定位置に接 続孔205および第2層配線が形成される溝206を形 成した後、まず、以下に説明するように、層間絶縁膜2 04表面に無電界メッキの析出核となるメッキ触媒を形 成する。なお、以下ではこれらのことを「担持する」と 表現する。

【0019】この担持としては、例えば、ペンタン溶媒 にルテニウムのπ-アリル錯体が溶解している前処理液 に、メッキ対象の基板を浸漬する。ついで、その基板を 水素気流中で約100℃に加熱することで焼成し、つい で、酸素気流中にさらすことで金属膜を形成する表面に 吸着している析出核としてのルテニウムを酸化する。以 上のことにより、前処理として、金属膜を形成する層間 絶縁膜表面に、メッキの析出核となるメッキ触媒が形成 されたととになる。

【0020】ついで、この表面が担持された基板をメッ キ液に浸漬することで、層間絶縁膜204表面にルテニ ウムからなる金属膜207を形成する。このメッキ液と しては、塩化ルテニウムもしくは硫酸ルテニウムの水和 物と、塩酸ヒドラジン[N,H,・HCl]などの還元剤 とを溶かした水溶液を用いるようにすればよい。これら の、メッキ液組成およびメッキ条件は、公知の金属メッ キ法を用いるようにすればよい。そして、この金属膜2 07が形成された表面に、やはり、公知の銅メッキ法に より銅膜208を形成すればよい。なお、銅のメッキと しては無電界メッキの他に、電界メッキを用いるように してもよい。

【0021】以上説明したことにより、前述した実施の 形態1における化学気相成長法と同様に、金属膜207 および銅膜208の形成が行える。なお、ここでは、金

限るものではなく、オスミウム、イリジウム、もしく は、ロジウムの塩化物もしくは硫化物の水和物によるメ ッキ液を用いてそれらの金属膜をメッキするようにして もよい。また、担持材料としてルテニウムのπーアリル 錯体を用いるようにしたが、これに限るものではなく、 有機溶媒に可溶な他の有機金属錯体を用いるようにして もよい。また、有機溶媒としてペンタンを用いるように したが、他の有機溶媒を用いるようにしてもよい。な お、この場合、常温で揮発性を有するものが好ましい。 【0022】との後、前述した実施の形態1と同様に、 化学機械研磨により銅膜208および金属膜207の平 坦部を、層間絶縁膜204の表面が露出するまで除去す る。との結果、図3(d)に示すように、バリアメタル 207aに側面および下面が覆われた、第2層配線とし ての銅配線208aが形成される。そして、銅配線20 8 a およびその側面で表面に露出しているバリアメタル 207a上に、以下に示すことにより選択的にバリアメ タル207bを形成する。とのバリアメタル207bの 形成では、前述した、担持することなく、基板201を メッキ液に浸漬するととで行う。ととでは、銅配線20 8 a およびその側面で表面に露出しているバリアメタル 207aの表面は金属が露出していることになるので、 前述したメッキ液にその表面がふれることで、そこには ルテニウムがメッキされる。しかし、ことでは担持され ていないので、層間絶縁膜204の露出している表面に はメッキがされない。

【0023】なお、このバリアメタル207bは、ルテ ニウムをメッキすることで形成するようにしたが、これ に限るものではなく、バリアメタル207aと同様に、 オスミウム, イリジウム, ロジウムをメッキするように 30 してもよいことはいうまでもない。そして、以上示した ようにして第2層配線を形成した後、それらの上にパシ ベーション膜を形成するようにしてもよく、場合によっ ては、さらに層間絶縁膜を形成して第3層配線を形成す るようにし、多層配線構造を構成するようにしてもよ 44

【0024】実施の形態3

ところで、上記実施の形態1,2においては、銅配線の バリア膜としてルテニウム、オスミウム、イリジウム、 もしくは、ロジウムからなる金属を用いるようにした が、これらに限るものではなく、それらの酸化物を用い るようにしてもよい。このように、それら金属の酸化物 を下地膜として用いる場合、それら金属の酸化物からな る膜は、化学気相成長法を用いて成膜すればよい。との 場合、原料は実施の形態1において掲げたものを用いる ようにすればよい。ただし、成膜雰囲気に酸素を同時に 導入する。このことにより、金属酸化膜の形成が可能と なる。ことで、酸化物の成膜をより効率よく行うために は、高周波放電などにより酸素のプラズマを生成させた 状態とすればよい。この酸素プラズマを用いて金属酸化 50 面図である。 10

物の成膜を行うようにすれば、成膜時の基板温度を低下 させることができる。

【0025】実施の形態4

ところで、上述では、銅配線の側面および底面にバリア 膜を配置するようにしたが、これに限るものではなく、 図4に示すように、バリア膜104と層間絶縁膜102 との間に、タンタルまたはチタンもしくは窒化チタンか らなる分離膜105を設けるようにしてもよい。なお、 図4中において、他の符号は図1と同様である。また、 バリア膜104に酸化膜を用いる場合、分離膜105と してルテニウム、オスミウム、イリジウム、ロジウム、 または、タンタル、チタン、もしくは、窒化チタンを用 いるようにしてもよい。

[0026]

【発明の効果】以上説明したように、この発明では、半 導体基板上に絶縁膜を介して形成された銅もしくは銅合 金からなる配線層と、その配線層を覆うように形成され たルテニウム, オスミウム, イリジウム, もしくは, ロ ジウム、または、それらの酸化物からなるバリア膜とを 備える配線構造を、次に示すようにして製造するように した。すなわち、まず、半導体基板上に形成された絶縁 膜の所定位置に溝を形成した後、その絶縁膜上と溝底部 および側壁とにルテニウム、オスミウム、イリジウム、 もしくは、ロジウムからなる第1の膜を化学気相成長法 もしくは無電界メッキ法により形成する。ついで、第1 の膜上に銅もしくは銅合金からなる第2の膜を化学気相 成長法もしくはメッキ法により形成して溝を埋め込み、 第2の膜および第1の膜を、溝内に形成された部分を残 して絶縁膜表面が露出するまで削除する。そして、その 削除した後で、第1の膜および前記第2の膜の表面に露 出している部分にルテニウム、オスミウム、イリジウ ム, もしくは、ロジウムからなる第3の膜を選択的化学 気相成長法や選択的な無電界メッキ法により形成するよ うにした。

【0027】以上示したことにより、この発明の半導体 装置の配線構造では、配線層と絶縁膜とはバリア膜で分 離され、配線層から絶縁膜へ銅が拡散することがない。 加えて、それらの構造を形成する上で、金属膜の形成を 化学気相成長法もしくはメッキ法により行うようにした ので、たとえ微細で深い溝であっても、溝底部にまでバ リア膜は形成され、そして、その溝を埋めるように配線 層が形成される。また、バリア膜はルテニウム、オスミ ウム、イリジウム、もしくは、ロジウム、または、それ らの酸化物から構成するようにしたので、配線層と絶縁 膜との間の密着性を向上させることが可能となる。

【図面の簡単な説明】

【図1】 との発明の実施の形態1における半導体装置 の配線構造の一部を示す断面図である。

【図2】 との発明の配線構造の製造方法を説明する断

11

【図3】 図2 に続く、この発明の配線構造の製造方法 を説明する断面図である。

【図4】 この発明の実施の形態4における半導体装置 の配線構造の一部を示す断面図である。

*【符号の説明】

101…基板、102…層間絶縁膜、103…配線、104…バリア膜、105…分離膜。

12

【図1】

【図4】

【図3】

フロントページの続き

(56)参考文献

特開 平8-316233(JP, A)

特開 平4-343455 (JP, A)

特開 平8-222569(JP, A)

特開 平5-218035 (JP, A)

特開 平6-140393 (JP, A)

特開 平8-264538 (JP, A)

特開 昭62-207868 (JP, A)

特開 平4-218919 (JP, A)

(58)調査した分野(Int.Cl.', DB名)

H01L 21/28 - 21/288

H01L 21/3205 - 21/3213

H01L 21/768