

100

Figure 1



. ..



Start

(710)

Form a first electrode layer using a first electrically conductive material, an insulating layer, and a stencil layer having an opening, in that order, on a substrate

(720)

Etch the insulating layer through the opening in the stencil layer, to expose a surface of the first electrode layer

750)

Deposit a phase-change material layer through the opening in the stencil layer onto the surface of the first electrode layer

(740)

Deposit a second electrically conductive material to form a second electrode layer and a pillar structure through the opening on the phase-change material layer, using an angle of distribution which is greater than an angle of distribution for the phase-change material

End

700

Figure 7



Figure 8