Class Test 4

Spring-2019

Marks: 10 Time: 25 min.

- 1. What role does utility theory play in acting under uncertainty? (2)
- 2. Write a short note on Types of nodes in Decision networks. (3)
- 3. Consider the 'Escape the monster' environment given below.

OK	OK	
1,2 S	2,2 S	
OK	OK	OK
1,1	2,1	3,1 S

Assume that OK indicates absence of a monster(M) at the cell, the status of the cells of the 4 x 4 grid other than those shown are unknown, and that the agent can smell(S) a monster at a cell vertically or horizontally adjacent to it. Find $P(M_{2,3})$ taking 0.1 as the independent probability of a monster at any of the unknown cells. (5)

- 1. What role does probability theory play in acting under uncertainty? (2)
- 2. Derive the Bayes' rule from the definition of conditional probabilities, and explain its importance. (3)
- 3. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute P(D | a ∧ ¬b ∧ c) using the network. (5)

A	В	P(c)
a	b	0.7
a	$\neg b$	0.5
¬a	b	0.2
¬a	¬b	0.02

Α	C	P(d)
a	c	0.8
a	¬c	0.4
¬a	c	0.3
¬a	¬с	0.01

В	P(a)
b	0.6
¬b	0.05

- 1. What are the major components of a Bayesian Network? (2)
- 2. Explain the basic principle of decision theory. (3)
- 3. Joint-probability distribution of two random variables, having three different values each is shown in the table below.

		X_2		
		V21	V22	V23
	V ₁₁	0.06	0.07	0.13
X_1	V12	0.21	0.14	0.12
	V13	0.08	0.15	0.04

Explain the major features of such a distribution regarding inference about the domain. (5)

- 1. What are the major components of a Decision Network? (2)
- 2. Explain the purpose of Bayesian Networks. (3)
- 3. Joint-probability distribution of three Boolean random variables is shown in the table below.

	a		¬a	
	c	$\neg c$	c	$\neg c$
b	0.104	0.016	0.082	0.008
¬b	0.016	0.066	0.144	0.564

Compute the posterior probabilities, $P(\neg c \lor b \mid \neg a)$ and $P(a \mid \neg b \lor c)$ using the distribution. (5)

- 1. What are the major tools for acting under uncertainty? (2)
- 2. Explain how utility of an alternative is computed using a decision network. (3)
- 3. Joint-probability distribution of two random variables, having three different values each is shown in the table below.

		X_2		
		V21	V22	V23
	v_{11}	0.06	0.07	0.13
X_1	V ₁₂	0.21	0.14	0.12
	V ₁₃	0.08	0.15	0.04

Compute the probabilities of the compound propositions, $v_{11} \lor v_{22}$, $v_{12} | v_{23}$ and $v_{21} | v_{13}$ using the distribution. (5)

- 1. What do you know about Decision nodes? (2)
- 2. Explain the Bayes' rule using an illustrative example. (3)
- 3. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute

 $P(C \mid \neg a \land b \land d)$ using the network. (5)

Α	В	P(d)
a	b	0.7
a	¬b	0.5
¬a	b	0.2
¬a	¬b	0.02

Α	D	P(c)
a	d	0.8
a	$\neg d$	0.4
¬a	d	0.3
¬a	¬d	0.01

P(a)
0.6
0.05

P(b)
0.09

- 1. What do you know about conditional probability tables? (2)
- 2. Write a brief essay on 'judgmental domains'. (3)
- 3. Consider the 'Escape the monster' environment given below.

OK	OK			
1,2	2,2	S		
OK	OK		OK	
1,1	2,1		3,1	S

Assume that OK indicates absence of a monster(M) at the cell, the status of the cells of the 4 x 4 grid other than those shown are unknown, and that the agent can smell(S) a monster at a cell vertically or horizontally adjacent to it. Find $P(M_{3,2})$ taking 0.2 as the independent probability of a monster at any of the unknown cells. (5)

- 1. How probability is related to uncertainty management? (2)
- 2. Explain the advantages and disadvantages of inference using full joint-probability distribution. (3)
- 3. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute

 $P(C \mid \neg a \land b \land \neg d)$ using the network. (5)

Α	В	P(d)
a	b	0.9
a	¬b	0.5
	a b	0.2
_;	a ∣¬b	0.02

A	D	P(c)
a	d	0.8
a	$\neg d$	0.4
−a	d	0.3
¬a	$\neg d$	0.01

В	P(a)
b	0.6
¬b	0.05

- 1. What are the positive sides of Bayesian networks? (2)
- 2. Illustrate the use of utility theory in Decision Networks. (3)
- 3. Joint-probability distribution of two random variables, having three different values each is shown in the table below.

			X_2		
			V ₂₁	V ₂₂	V ₂₃
Г		V ₁₁	0.05	0.07	0.09
	X_1	V12	0.22	0.14	0.13
		V13	0.11	0.15	0.04

Compute $P(v_{12} \lor v_{22})$, $P(v_{11} | v_{23})$ and $P(v_{21} | v_{11})$ using the distribution. (5)

- 1. Write a short note on Utility node. (2)
- 2. Describe the components of a Bayesian network. (3)
- 3. Joint-probability distribution of three Boolean random variables is shown in the table below.

	a		$\neg a$	
	c	$\neg c$	c	¬с
b	0.104	0.012	0.084	0.006
¬b	0.014	0.068	0.146	0.566

Compute the posterior probabilities, $P(\neg c \lor \neg b \mid \neg a)$ and $P(c \mid b \lor \neg a)$ using the distribution. (5)

- 1. How do you define a Bayesian network? (2)
- 2. Explain the nodes representing future state in a Decision network. (3)
- 3. Joint-probability distribution of two random variables, having three different values each is shown in the table below.

		X_2		
		v_{21}	V ₂₂	V ₂₃
	\mathbf{v}_{11}	0.05	0.07	0.09
X_1	V ₁₂	0.22	0.14	0.13
	V ₁₃	0.11	0.15	0.04

Illustrate the features of inference using full joint-probability distribution in light of the given distribution. (5)

- 1. How is the probability theory related to uncertainty management? (2)
- 2. Explain how utility of an alternative is computed using a Decision network. (3)
- 3. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute

 $P(D \mid \neg a \land \neg b \land c)$ using the network. (5)

Α	В	P(c)
a	b	0.7
a	$\neg b$	0.5
¬a	b	0.2
⊸a	⊸b	0.02

A	C	P(d)
a	С	0.8
a	¬с	0.4
¬a	С	0.3
¬a	¬с	0.01

В	P(a)
b	0.6
¬b	0.05

- 1. How the truth of a proposition is computed involving full joint-probability distribution? (2)
- 2. What are the functions of Chance nodes and Decision nodes? (3)
- 3. Consider the 'Escape the monster' environment given below.

OK					
1,2	S			_	
OK		OK			
1,2		2,2	S		
OK		OK		OK	
1,1		2,1		3,1	S

Assume that OK indicates absence of a monster(M) at the cell, the status of the cells of the 4×4 grid other than those shown are unknown, and that the agent can smell(S) a monster at a cell vertically or horizontally adjacent to it.

Find $P(M_{2,3})$ taking 0.3 as the independent probability of a monster at any of the unknown cells. (5)

- 1. Why a full joint-probability distribution can be called a complete knowledgebase of the domain. (2)
- 2. How utility functions are computed in Decision Networks? (3)
- 3. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute P(C | a ∧¬d) using the network. (5)

Α	В	P(d)
a	b	0.8
a	¬b	0.5
¬a	b	0.2
	L.	0.02

A	D	P(c)
a	d	0.9
a	¬d	0.4
¬a	d	0.3
¬a	$\neg d$	0.01

P(a)
0.7
0.05

P(b) 0.6

- 1. Write a short note on 'A degree of usefulness'. (2)
- 2. How do you explain the importance of Bayesian Networks? (3)
- Joint-probability distribution of two random variables, having three different values each is shown in the table below.

		X_2		
		v_{21}	V ₂₂	V ₂₃
	\mathbf{v}_{11}	0.06	0.07	0.09
X_1	V ₁₂	0.22	0.14	0.15
	V ₁₃	0.11	0.12	0.04

Compute $P(v_{21} \lor v_{12})$, $P(v_{22} | v_{12} \lor v_{13})$ and $P(v_{11} | v_{22} \lor v_{23})$ using the distribution. (5)

- 1. Write a short note on 'Future state in Decision Networks'. (2)
- 2. How consistent models of the environment can be used for making inference in uncertain domains? (3)
- 3. Joint-probability distribution of three Boolean random variables is shown in the table below.

	a			a
	c	$\neg c$	c	¬с
b	0.103	0.015	0.082	0.007
−b	0.016	0.068	0.144	0.565

Compute the posterior probabilities, P(a|c), $P(\neg a \lor b | \neg c)$ and $P(a|\neg b \lor c)$ using the distribution. (5)

- 1. How utility of an alternative is computed using a decision network? (2)
- 2. Explain the main problems and relevant tools for acting under uncertainty. (3)
- 3. Joint-probability distribution of two random variables, having three different values each is shown in the table below.

		X_2		
		V21	V22	V23
	V ₁₁	0.06	0.09	0.13
X_1	V12	0.19	0.14	0.12
	V13	0.08	0.15	0.04

Compute the probabilities of the compound propositions, $v_{12} \lor v_{21}$, $v_{13} | v_{23}$ and $v_{22} | v_{12}$ using the distribution. (5)

- 1. What do you know about Utility functions? (2)
- 2. Point out the positive and negative sides of inference using full joint-probability distribution. (3)
- 3. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute P(D|¬b∧c) using the network. (5)

Α	В	P(c)
a	b	0.9
a	¬b	0.7
¬a	b	0.2
¬a	¬b	0.02

A	C	P(d)
a	c	0.8
a	$\neg c$	0.4
¬a	С	0.3
¬a	¬с	0.01

В	P(a)
b	0.6
⊣b	0.05

P(b)
0.5