МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 2.1.3

Определение Ср/Су по скорости звука в газе

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу
- 2. определение показателя адиабаты с помощью уравнения состояния идеального газа

В работе используются:

- звуковой генератор ГЗ
- электронный осциллограф ЭО
- микрофон
- телефон
- раздвижная труба
- теплоизолированная труба, обогреваемая водой из термостата
- баллон со сжатым углекислым газом
- газгольдер

2 Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты. Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}$$

Отсюда можно выразить показатель адиабаты:

$$\gamma = \frac{\mu}{RT}c^2\tag{1}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость звука.

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\lambda/2 \tag{2}$$

Если это условие выполнено, то в трубе наступает резонанс.

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad ..., \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2}$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (3).

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k)$$
 (4)

Из (3) и (4) имеем

$$f_{1} = \frac{c}{\lambda_{1}} = \frac{c}{2L}n, \quad f_{2} = \frac{c}{\lambda_{2}} = \frac{c}{2L}(n+1) = f_{1} + \frac{c}{2L}, ...,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_{1} + \frac{c}{2L}k$$
(5)

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

3 Оборудование и экспериментальные погрешности

Соответственно двум методам измерения скорости звука в работе имеются две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО. Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь. Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для СО2. Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

Рис. 2: Установка для изучения зависимости скорости звука от температуры

4 Результаты измерений и обработка данных

4.1 Подготовка приборов

Включим в сеть электронный осциллограф и звуковой генератор, дадим им прогреться 5 минут. Настроим осциллограф так, чтобы на экране было видно линию, прочерченную электронным лучом.

На генераторе звука установим нулевое значение частоты.

4.2 Подборка напряжения

На выходе генератора такое напряжение, чтобы на экране осциллографа амплитуда колебаний была достаточной для определения резонанса.

4.3 Измерения на первой установке

Длина трубы в установке: $L = (740 \pm 1)$ мм

Постепенно увеличивая частоту на генераторе найдём значение частоты первого резонанса, полученною частоту запишем в таблицу 1

Далее по этой частоте можно приблизительно оценить значения следующих резонансных частот. Найдём значения резонансных частот, которые возможно определить осциллографом и запишем в таблицу 1.

Далее включим термостат (нужно также записать температуру в трубе) и проведём аналогичные измерения для температур: 35, 45 и 60 C° . Результаты измерений запишем в таблицу 1.

T, K	290,7	308,2	318,2	333,2
T, C°	17,5	35	45	60
\overline{n}	f, Гц	f, Гц	f, Гц	f, Гц
1	236	242	246	250
2	466	476	484	495
3	699	714	724	740
4	928	948	962	985
5	1158	1184	1202	1230
6	1390	1420	1442	1476
7	1620	1655	1682	1721
8	1852	1892	1922	1966
9	2083	2128	2161	2211
10	2313	2363	2400	2456
11	2544	2599		
12	2774	2834		
13	3005	3070		
14	3236	3305		

Таблица 1: Значения резонансов для четырёх температур

Так как зависимость частоты от номера резонанса должна быть линейной, то для проверки зависимости можно воспользоваться МНК, для аппроксимации наилучшей прямой, где x=k, где k=n-1, а y=f.

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \text{ a } b = \langle y \rangle - k \langle x \rangle$$
 (6)

Погрешности для k и b рассчитываются по формулам:

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
 (7)

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{8}$$

Посчитаем все промежуточные значения и вычислим коэффициенты прямой.

$$k_1 = \frac{15034 - 6.5 \cdot 1736}{58.5 - 6.5^2} \approx 230,77 \ \Gamma \text{I} \text{I}$$

$$\sigma_{k1} = \frac{1}{\sqrt{13}} \sqrt{\frac{3879114 - 1736^2}{58.5 - 6.5^2}} - 230,77^2 \approx 0,04 \ \Gamma \text{I} \text{I}$$

$$k_2 = \frac{15358 - 6.5 \cdot 1773}{58.5 - 6.5^2} \approx 235,71 \ \Gamma \text{I} \text{I}$$

$$\sigma_{k2} = \frac{1}{\sqrt{13}} \sqrt{\frac{4048358 - 1773^2}{58.5 - 6.5^2}} - 235,71^2 \approx 0,04 \ \Gamma \text{I} \text{I}$$

$$k_3 = \frac{7927 - 4.5 \cdot 1322}{28.5 - 4.5^2} \approx 239,48 \ \Gamma \text{I} \text{I}$$

$$\sigma_{k3} = \frac{1}{\sqrt{9}} \sqrt{\frac{2222168 - 1322^2}{28.5 - 3.5^2}} - 239,48^2 \approx 0,08 \ \Gamma \text{I} \text{I}$$

$$k_4 = \frac{8111 - 4.5 \cdot 1353}{28.5 - 4.5^2} \approx 245,15 \ \Gamma \text{I} \text{I}$$

$$\sigma_{k4} = \frac{1}{\sqrt{9}} \sqrt{\frac{2326428 - 1353^2}{28.5 - 3.5^2}} - 245,15^2 \approx 0,03 \ \Gamma \text{I} \text{I}$$

Все прямые и экспериментальные точки изобразим на рисунке 3.

Согласно формуле (5) свободными членами являются значения первого резонанса. Из этой формулы следует:

$$c_i = 2Lk_i \tag{9}$$

Для каждой серии измерений посчитаем скорость звука и запишем в таблицу 2. Погрешность измерения скорости звука вычисляется по формуле:

$$\sigma_c = c\sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2} \tag{10}$$

Посчитаем их и запишем в таблицу 2.

T, C°	17,5	35	45	60
с, м/с	341,5	348,8	354,4	362,8
σ_c , M/C	0,5	0,5	0,5	0,5
γ	1,401	1,378	1,378	1,379
σ_{γ}	0,004	0,004	0,004	0,004

Таблица 2: Вычисление скорости звука для четырёх температур

По формуле (1) вычислим показатель адиабаты γ для каждой температуры и запишем в таблицу 2.

Погрешность измерения γ можно вычислить по формуле:

$$\sigma_{\gamma} = \sqrt{\left(\frac{\gamma}{T}\right)^2 \sigma_T^2 + \left(\frac{2\gamma}{c}\right)^2 \sigma_c^2} = \gamma \sqrt{\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{2\sigma_c}{c}\right)^2} \tag{11}$$

Вычислим погрешность и запишем её в таблицу 2.

Тогда в качестве значения γ возьмём среднее:

$$\gamma = 1.384 \pm 0.004$$

4.4 Измерения на второй установке

Длина трубки в данном опыте $L = (795 \pm 1)$ мм

Проведём аналогичные измерения для углекислого газа и одного значения температуры $(t_{\kappa}=24,4~C^{\circ})$. Измерения запишем в таблицу 3. В этой таблице сразу посчитаем промежуточные значения MHK.

	n	f, Гц	\hat{x}^2	y2̂	x*y
	1	342	1	116964	342
	2	673	4	452929	1346
	3	1006	9	1012036	3018
	4	1339	16	1792921	5356
	5	1671	25	2792241	8355
	6	2005	36	4020025	12030
	7	2339	49	5470921	16373
	8	2677	64	7166329	21416
	9	3014	81	9084196	27126
	10	3349	100	11215801	33490
cp	5,5	1841,5	38,5	4312436,3	12885,2

Таблица 3: Значение резонансов для углекислого газа

Значения коэффициентов наилучшей прямой:

$$k_1 = \frac{12885,2 - 5,5 \cdot 1841,5}{38,5 - 5,5^2} \approx 334,2 \ \Gamma \text{ц}$$

$$\sigma_{k1} = \frac{1}{\sqrt{10}} \sqrt{\frac{4312436,3 - 1841,5^2}{38,5 - 5,5^2} - 334,2^2} \approx 0.3 \ \Gamma \text{ц}$$

Прямую и экспериментальные точки изобразим на рисунке 4.

Вычислим скорость звука и ее погрешность по формулам (9) и (10) соответственно:

$$c = (531.3 \pm 0.8) \text{ m/c}$$

Далее по формулам (1) и (11) вычислим γ и ее погрешность:

$$\gamma = 5.02 \pm 0.02$$

Рис. 3: График зависимости f от k для первой установки

Рис. 4: Γ рафик зависимости f от k для второй установки