

<u>SR – CHE - VII GROUP ELEMENTS - DPT</u>

1.	HCl is dried using, NF 1. CaO, CaO 2. H ₂	I ₃ is dried using SO ₄ , H ₂ SO ₄ 3. H ₂ SO ₄ , CaO	4. H ₂ SO ₄ , P ₂ O ₅					
2.		when NaNO ₂ is treated with HCl i						
	1) $NO + N_2O$	2) $NO + NO_2$ 3) N_2O	$O + NO_2$ 4) $N_2 + NO$					
3.	Which of the following is mo	st reactive?						
	1) I_2 2) Cl_2 3) IC	d 4) all are equally reactive						
4.	3) HC<i>l</i> is dried by passing thr4) HOF cannot exist	s Ammonia to liberate nitrogen gas ough conc. H ₂ SO ₄						
5.	Charring takes place when Cl	2 is exposed to						
	1) H_2S 2) $C_{10}H_{16}$	3) S_8 4) P_4						
6.	List - I I) Acidic nature II) Reducing nature III) Boiling points IV) Volatility The correct match is	List - II a) HF> HI > HBr > HCl b) HI > HBr > HCl > HF c) HCl > HBr > HI > HF d) HCl > HF > HBr > HI						
	I II III IV	I II III IV						
	1) a b c d	2) b d a c						
7.	3) d c a b Incorrect combination is	4) b b a c						
/ •	1) Br_2O , BrO_2 , BrO_3 -unstable	2) <i>CuCl</i> ₂ -catalyst in Deacon's	s nrocess					
		4) IF – highly unstable	, process					
8.	3) Cl_2 -Oxidises H_2S to SCl_6	4) II [*] – Highly unstable						
0.	List – I	atching the following st – I List – II						
	Inter halogen compound	Product of hydrolysis						
	A) XX^1	1) halite						
	B) XX_3^1	2) perhalate						
	C) XX_5^1	3) hypohalite						
	D) XX_{7}^{1}	4) halate						
	, ,	2) A – 1, B – 4, C – 2, D – 3						
	3) $A - 3$, $B - 1$, $C - 4$, $D - 2$	4) $A - 4$, $B - 2$, $C - 3$, $D - 1$						
9.	The molecule ClF_3 has same number of lone pairs of electrons as present in							
	1) SF_4 2) XeF_2	3) IF_5 4) XeI						
10.	Incorrect statement is							
	1) $F_2 > Cl_2 > Br_2 > I_2 - \text{reacti}$	vity 2) $Cl > F > Br > I$ – electron §	gain enthalpy					
	3) $F_2 > ClF_3 > Cl_2$ – reactivity	4) $F_2 > Cl_2 > Br_2 > I_2 - bond$	dissociation energy					
11.	$Cl_2 + 2KX \rightarrow 2KCl + X_2$. In	this reaction 'X' can be						
12.	1) Br, I 2) Br, In which of the following rea	F 3) F ctions precipitate is not obtained	4) I, F					
	1) $H_2S + Cl_2 \rightarrow \text{Products}$	2) $Na_2S_2O_3 + Cl_2 + H_2O$	\rightarrow Products					

3) $I^- + H^+ + O_2 \rightarrow \text{Products}$ 4) $PCl_5 + H_2O \rightarrow \text{Products}$ $HCl + O_2 \xrightarrow{CuCl_2} A(gas)$; Excess 'A' reacts with NH₃ to form 13. B) NH₄Cl C) HCl A) NCl₃ $D) N_2$ 2) B, C 3) A, B 4) A, C 1) A, D Increasing order of P^{Ka} values among hydrohalic acids 14. 1) HI < HBr < HCl < HF2) HF < HCl < HBr < HI3) HBr < HI < HF < HC14) HCl < HF < HI < HBr15. Match the following Set – II(Excited state of Halogen) Set – I (Compounds) A) 1st P) $C\ell_2O_7$ B) 2nd Q) *Cℓ*,*O* C) 3^{rd} R) I_2O_5 D) 4th S) $C\ell F_3$ E) ground P QRS P QR S C E B1) 2) B E C A A 3) E B C 4) A BC D Α 16. $R-Cl+AgF \rightarrow R-F+AgCl$ is 1) Swart's reaction 2) Finkelstein reaction 3) Grove's reaction 4) Dow's reaction To remove Plutonium from spent nuclear fuel, the compound used is 17. $2.O_2F_2$ 4. I₂ The metallic fluoride not used in Swart's reaction is 18. 2) CaF₂ 3) Hg₂F₂4) SbF₃ 19. The ratio of number of $d - p\pi$ bonds in $HC \ell O_2, HC \ell O_3$ and $HC \ell O_4$ are 1) 1:2:3 2) 1:1:1 3) 3:2:1 4) 1:2:4 20. Hypochlorite disproportionate to give 1) ClO_2^- and ClO_4^- 2) ClO_4^- and ClO_3^- 3) ClO_3^- and Cl^- 4) ClO_{2}^{-} and ClO_{3}^{-} Sum of the total number lone pairs on the central atom of Cl in HOCl, $HClO_2$, $HClO_3$, $HClO_4$ 21. $Fe + 2HCl \longrightarrow X + H_2 \uparrow$ the no. of d electron of Fe^{+n} is X is 22. The basicity of $HClO_4$ is 'X' what is the value of X 23. 24. How many no. of hybrid orbitals of chlorine are present in ClO_4^- 25. How many of the following are paramagnetic nature Cl_2O , ClO_2 , ClO_3 , Cl_2O_6 , Cl_2O_7 26. How many of the following do not react with dilute HCl, Cu, Ag, Na_2CO_3 , $NaHCO_3$, Na_2HPO_4 , Na_3PO_4 , Mg, K, KHO_7 , KH_2PO_3 , NH_3KCl 27. Chlorine form many oxides, the maximum oxidation state of the chlorine in its oxide $XCl_2 + Y NaOH \longrightarrow NaCl + NaClO_3 + H_2O$. what is the ratio of the Y to that of X 28. 29. NH_3 react with Cl_2 to N_2 gas? How many number of Cl_2 are required 30. Some halogens show +7 oxidation state in its excited state of configuration. What is excited state

KEY

1) 3	2) 2	3) 3	4) 4	5) 2	6) 4	7) 3	8) 3	9) 4	10) 4
11) 1	12) 4	13) 4	14) 1	15) 1	16) 1	17) 2	18) 2	19) 1	20) 3
21) 6	22) 6	23) 1	24) 4	25) 2	26) 3	27) 7	28) 2	29) 3	30) 3

SOLUTION

- 1. HCl is dried using H₂SO₄, NH₃ is dried using CaO
- 2. The gaseous mixture liberated when $NaNO_2$ is treated with HCl is $NO + NO_2$

- 3. IC*l* is most reactive
- 4. HOF cannot exist
- 5. Charring takes place when Cl_2 is exposed to $C_{10}H_{16}$
- 7. $S + 3Cl_2 \rightarrow SCl_6$
- 9. The molecule ClF_3 has same number of lone pairs of electrons as present in XeF_4
- 10. $Cl_2 > Br_2 > F_2 > I_2$ bond dissociation energy
- 11. $Cl_2 + 2KX \rightarrow 2KCl + X_2$. In this reaction 'X' can be Br, I
- 12. $PCl_5 + H_2O \rightarrow \text{Products reactions precipitate is not obtained}$
- 13. $HCl + O_2 \xrightarrow{CuCl_2} NCl_3 + HCl(gas)$
- 14. HI < HBr < HCl < HF
- 16. $R Cl + AgF \rightarrow R F + AgCl$ is Swart's reaction
- 17. To remove Plutonium from spent nuclear fuel, the compound used is O₂F₂
- 18. The metallic fluoride not used in Swart's reaction is CaF₂
- 19. The ratio of number of $d p\pi$ bonds in $HC \ell O_2$, $HC \ell O_3$ and $HC \ell O_4$ are 1:2:3
- 20. Hypochlorite disproportionate to give ClO₃ and Cl⁻
- 21.

$$HOCl \rightarrow 3$$

$$HClO_2 \rightarrow 2$$

$$HClO_3 \rightarrow 1$$

$$HClO_4 \rightarrow 0$$

22.
$$Fe + 2Hcl \longrightarrow FeCl_2 + H_2 \uparrow$$

 Fe^{+2} contains 6 d electrons

23.

24. sp³ hybridisation

25.
$$Cl_2O \rightarrow 42e^-$$

$$ClO_2 \rightarrow 33e^-$$

$$ClO_3 \rightarrow 41e^{-}$$

$$Cl_2O_6 \rightarrow 82e^-$$

$$Cl_2O_7 \rightarrow 146e^-$$

Paramagnetic are ClO₂ and ClO₃

- 26. *Cu*, *Ag*, *KCl*
- 27.

$$Cl_2O_7 \Rightarrow 2x + 7(-2) = 0$$

$$2x = 14 \rightarrow x = +7$$

28.
$$3Cl_2 + 6NaOH \longrightarrow 5NaCl + NaClO_3 + H_2O$$

$$x = 3, y = 6$$

$$\frac{y}{x} = \frac{6}{3} = 2$$

29.
$$2NH_3 + 3Cl_2 \rightarrow N_2 + 6HCl$$

 $6HCl + 6NH_3 \rightarrow 6NH_4Cl$

$$8NH_3 + 3Cl_2 \rightarrow N_2 + 6NH_4Cl$$

30. $ns^2np^5nd^0 \rightarrow Ground \ state$ $ns^1np^3nd^3 \rightarrow 3rd \ excited \ state$