

Universidade de Aveiro Dep. de Engenharia Mecânica

Sistemas de Visão e Percepção Industrial

Exame de Época de Recurso - 7 de Julho de 2014

Mestrado Integrado em Engenharia Mecânica; Mestrado em Engenharia de Automação Industrial Minor em Automação da Licenciatura em Matemática

 Seja uma câmara de vigilância de tráfego com o eixo ótico perpendicular ao eixo da estrada, mas inclinado um ângulo θ em direção ao plano da estrada. O poste de suporte da câmara tem altura H, e está à distância L do eixo da estrada. A câmara usa um CCD de 1025x769 pixels, com dot pitch de 120 pixels/mm. A distância focal da câmara é f.

- a) Com base no sistema de coordenadas representado, e em função das diversas variáveis do problema (L, H, θ, f), indicar a expressão matricial que permite calcular as coordenadas de um pixel na imagem, q=[x_{pix} y_{pix} 1]^T, a partir das coordenadas no mundo real do ponto correspondente P=[X_s Y_s Z_s 1]^T. Indicar os elementos das matrizes e vetores.
- b) Para os valores H=15 m, L=20 m, θ=45°, calcular qual pode ser a máxima distância focal f_{max} da câmara para que um veículo de 20 m de comprimento e 3 m de altura, a circular junto ao eixo da via, seja totalmente visível na imagem quando passa no campo de visão da câmara. NB. Considera-se o veículo totalmente visível quando na imagem da câmara estiverem presentes os 4 vértices do retângulo de 20m x 3m que envolve a face lateral virada para a câmara.
- Sejam as seguintes quatro imagens binárias. Nas respostas às questões não podem ser usadas nenhumas funções da Digital Image Processing Toolbox do Matlab, devendo usar-se operações sobre conjuntos e de morfologia, recorrendo à notação usada no formulário.

- a) Indicar uma sequência de operações morfológicas (e respetivos elementos estruturantes) para obter a imagem B a partir da imagem A. **Sugestão:** Usar operações que emulem a função "B=imfill(A, 'holes')" do Matlab.
- Indicar uma sequência de operações morfológicas (e respetivos elementos estruturantes) que permita obter a imagem C a partir das anteriores (A e/ou B).
- c) Indicar um filtro de convolução F e uma função g(x) para detetar os *pixels* que estão nos "vértices" com ângulos de 90° dos objetos com furos, ou seja, indicar F e g(x) tal que: D = g(C * F), onde "*" representa a operação de convolução.

 Considerar que existem duas imagens X e Y com 16 níveis de cinzento das quais se representam os respetivos histogramas:

- a) Sabendo que a proporção das dimensões da imagem X é de 16:9, e da imagem Y é de 16:8, calcular as respetivas dimensões (largura e altura).
- Determinar qual das imagens tem estatisticamente um contraste médio maior. Justificar com cálculos baseados na variância dos histogramas.
- c) Usando o momento μ₀ do histograma para definir o valor inicial T₀ para o cálculo do limiar de binarização para a imagem X, pelo algoritmo de isodados, qual seria a iteração seguinte T₁? Indicar os cálculos.
- 4. Num processo de classificação de objetos numa imagem, serão usados dois descritores específicos (d1 e d2) que definem o padrão x=[d1 d2]^T. Os objetos presentes na imagem devem ser classificados no tipo A ou tipo B. Para definir os critérios de classificação são fornecidos os descritores de amostras conhecidas de vários objetos de tipo A e B (4 amostras de cada tipo), e que constam na tabela 1. Na tabela 2 são dados descritores de outros objetos desconhecidos que se pretendem classificar como tipo A ou B. A título ilustrativo, confirma-se que os objetos desconhecidos têm correspondência de número na imagem ilustrada.

	Objetos do tipo A		Objetos do tipo B	
	d1	d2	d1	d2
Amostras	0,16131	0,50070	0,18363	0,43355
	0,16188	0,50839	0,17652	0,45671
ШÖШ	0,20461	0,56125	0,22963	0,56802
<	0,16387	0,50513	0,18709	0,49219

Tabela 1

Objetos desconhecidos				
Num	d1	d2		
10	0,17167	0,44149		
11	0,13413	0,44276		
12	0,17059	0,46867		
13	0,13040	0,42440		

Tabela 2

- a) Com base nas amostras dadas, determinar o padrão médio $\mu_x = \begin{bmatrix} \overline{d}_1 & \overline{d}_2 \end{bmatrix}^T$ para cada tipo de objeto A e B e, pelo critério da distância Euclidiana, determinar o tipo dos objetos desconhecidos (10, 11, 12 e 13). Indicar os cálculos.
- b) Com o objetivo de usar a distância de Mahalanobis, e com base nas amostras de objetos conhecidos, calcular e indicar as matrizes de covariância dos descritores para as amostras dos objetos de tipo A e tipo B. NB. A título indicativo, refere-se que os elementos das matrizes de covariância são da ordem de grandeza de 10⁻³.
- c) Com os dados calculados nas alíneas anteriores, e usando a distância de Mahalanobis, classificar os objetos desconhecidos no tipo A ou B. Indicar os cálculos. NB. É de esperar um desempenho superior relativamente ao processo que usa a distância Euclidiana.