SCSA SC2001 Lab Example Class Project 3 Team 7

PU FANYI (U2220175K)
PUSHPARAJAN ROSHINI (U2222546A)
QIAN JIANHENG OSCAR (U2220109K)
RHEA SUSAN GEORGE (U2220116B)

- (1) 2 Recursive Definitions
 - Naive Approach
 - Optimised Approach
 - #1 Improved optimised approach 2 column
 - #2 Further improved optimised approach 1 column

Recursive Definition: Naive Approach

Base Case: P(C,0) = 0

Subproblem Graph: Naive Approach

	0	1	2	3	j
0	0	0			
1	0	0			
2	d	0			
3	0	0			
4	0	7			
5	0				
6	0				
7	0				
8	0				
9	0				
10	0				
11	0				
12	0				
13	0				
14	0				
Capacity					

0	1	2	
4	6	8	
7	6	9	

pi

$$P(C,j) = \max_{k=0}^{\left\lfloor \frac{C}{W_{j-1}} \right\rfloor} \{ P(C - kw_{j-1}, j-1) + kp_{j-1} \}$$

$$C = 4$$

$$W_{j-1} = 4$$

$$k = 4/4 = 1 \rightarrow k \text{ stops at } 1$$

$$k=0,$$

$$P(4, 0) = 0$$

$$k=1,$$

$$P(0,0) + 1*7 = 7$$

	0	1	2	3 j
0	0	0		
1	0	0		
2	d	0		
3	0	0		
4	0	7		
5	Q.	7		
6	0			
7	0			
8	0			
9	0			
10	0			
11	0			
12	0			
13	0			
14	0			
Capacity				

	0	1	2	
Wi	4	6	8	
pi	7	6	9	

$$P(C,j) = \max_{k=0}^{\left\lfloor \frac{C}{W_{j-1}} \right\rfloor} \left\{ P(C - kw_{j-1}, j-1) + kp_{j-1} \right\}$$

C = 5

$$W_{j-1} = 4$$

 $k = 5/4 = 1 \rightarrow k \text{ stops at } 1$

$$k=0,$$
 $P(5, 0) = 0$

$$k=1$$
, $P(1,0) + 1*7 = 7$

	0	1	2	3	j
0	0	0	0		
1	0	0	0		
2	0	0	0		
3	0	0	0		
4	0	7	7		
5	0	7	7		
6	0	7	7		
7	0	7	7		
8	0	14	14		
9	0	14	14		
10	0	14	14		
11	0	14	14		
12	0	21	21		
13	0	21	21		
14	0	21	7 21		

	0	1	2
Wi	4	6	8
pi	7	6	9

$$P(C,j) = \max_{k=0}^{\left\lfloor \frac{C}{W_{j-1}} \right\rfloor} \left\{ P\left(C - kw_{j-1}, j - 1\right) + kp_{j-1} \right\}$$

$$C = 14$$

$$W_{j-1} = 6$$

$$k = floor(14/6) = 2 \rightarrow k \text{ stops at } 2$$

k=0,

Complexity: Naive Approach

Average Time Complexity:

$$O\left(C^2 \cdot \sum_{j=0}^{n-1} \frac{1}{w_j}\right)$$

Worst time complexity: when $w_i = 1$

$$O(C^2 \cdot n)$$

```
For c in range(C): # 0(C)
```

 $P(C,j) = \max_{k=0}^{\left[\frac{C}{W_{j-1}}\right]} \left\{ P(C - kw_{j-1}, j-1) + kp_{j-1} \right\}$

```
for c in range(C):  # O(C)
for j in range(n):  # O(n)
for k in range(C / w[j - 1]): # O(C/W_{j-1})
# Calculate P(C, j)
```

Code for Naive Approach

```
int knapsack(const Item *items_begin, const Item *items_end, const int capacity) {
  size_t len = items_end - items_begin;
  int **f = calloc(len + 1, sizeof(int *));
  for (int i = 0; i <= len; ++i) {</pre>
   f[i] = calloc(capacity + 1, sizeof(int));
   memset(f[i], 0, (capacity + 1) * sizeof(int));
  for (int i = 1; i <= len; ++i) {</pre>
    for (int j = 0; j \leftarrow capacity; ++j) {
      for (int k = 0; k * items_begin[i - 1].weight <= j; ++k) {
        f[i][j] = max(f[i][j],
                      f[i-1][j-k * items_begin[i-1].weight] +
                              k * items_begin[i - 1].profit);
  int ans = f[len][capacity];
  free(f);
  return ans;
```

Recursive Definition: Optimised Approach

Subproblem Graph: Optimised Approach

	0	1	2	3	j
0	0	, 0	0	0	
1	0	0			
2	0	0			
3	0	0			
4	0 -	7			
5	0				
6	0				
7	0				
8	0				
9	0				
10	0				
11	0				
12	0				
13	0				
14	0				
Capacity					

$$P(4,1) = max((P(4,0), P(4-4,1) + 7)$$

$$= max((P(4,0), P(0,1) + 7)$$

$$= max(0,7)$$

 $P(C,j) = \max\{P(C,j-1), P(C-w_{j-1},j) + p_{j-1}\}$

Wi

pi

= 7

	0	1	2	
Wi	4	6	8	
pi	7	6	9	

	0	1	2	3	j
0	0	A 0	0	0	
1	0	0	0	0	
2	0	0	0	0	$P(C,j) = \max\{P(C,j-1), P(C-w_{j-1},j) + p_{j-1}\}$
3	0	0	0	0	1 (0))) 1. man(x (0)) 1)) x (0 11) + p]-
4	0 -	7	/7	7	
5	0	7	7	7	D(40.4)
6	0	7		7	P(12,1) = max((P(12,0), P(12-4,1) + 7)
7	0	7		7/	$= \max((P(12,0), P(8,1) + 7)$
8	0 -	↑14			= max(0,21)
9	0	14			= 21
10	0	14			- 21
11	0	14			
12	0	21			
13	0	21			
14	0	21			
Capacity					Wj < C

Notice the pattern!

	0	1		2	3	j
0	0	0	4	0	0	
1	0	0		0	0	
2	0	0		0	0	
3	0	0		0	0	
4	0	7		7	7	
5	0	7	*	7	7	
6	0	7		7	7	
7	0	7		7	7	
8	0	14		14		
9	0	14		14		
10	0	14	MAX(14,13)	14		
11	0	14		14		
12	0	21		21		
13	0	21		21		
14	0	21		21		
Capacity						

$$P(C,j) = \max\{P(C,j-1), P(C-w_{j-1},j) + p_{j-1}\}$$

Wi

pi

$$P(11,2) = \max((P(11,1), P(11-6,2) + 6)$$

$$= \max((P(11,1), P(5,2) + 6)$$

$$= \max(14,13)$$

$$= 14$$

	0	1	2	3	j
0	0	0	0	A 0	
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	7	7	7	
5	0	7	7	7	
6	0	7	7	A 7	
7	0	7	7	7	
8	0	14	14	14	
9	0	14	14	14	
10	0	14	14	14	
11	0	14	14	14	
12	0	21	21	21	
13	0	21	21	21	
14	0	21	21 -	21	
Capacity					

Object 0 costs lesser weight + profit-friendly Example : 2 times of Object 0 is >> 1 Object 2

$$P(C,j) = \max\{P(C,j-1), P(C-w_{j-1},j) + p_{j-1}\}\$$

$$P(8,3) = max((P(8,2), P(8-8,3) + 9)$$

$$= max((P(8,2), P(0,3) + 9)$$

$$= max(14,9)$$

$$= 14$$

$$P(14,3) = max((P(14,2), P(14-8,3) + 9)$$

= $max((P(14,2), P(6,3) + 9)$
= $max(21,15)$
= **21**

Complexity: Optimised Approach

```
for c in range(C + 1):  # 0(C)
  for j in range(n):  # 0(n)
     # 0(1) calculate P(c, j)
```

$$\Theta(C \cdot n)$$

Running result for

Wi pi

0	1	2
5	6	8
7	6	9

	0	1		
0	0	0		
1	0	0	U	U
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	7	7	7
6	0	7	7	7
7	0	7	7	7
8	0	7	7	9
9	0	7	7	9
10	0	14	14	14
11	0	14	14	14
12	0	14	14	14
13	0	14	14	16
14	0	14	14	(16)
Capacity				

Maximum Profit = 16

Code for Optimised Approach

```
int knapsack(const Item *items_begin, const Item *items_end, const int capacity) {
    int **f = calloc((items_end - items_begin + 1), sizeof(int *));
    for (int i = 0; i <= items_end - items_begin; ++i) {</pre>
        f[i] = calloc(capacity + 1, sizeof(int));
    memset(f[0] 0 (canacity + 1) * sizeof(int)).
    for (const Item *item = items_begin; item != items_end; ++item) {
        for (int i = 0; i \leftarrow capacity; ++i) {
            if (i >= item->weight) {
                f[item - items_begin + 1][i] = max(f[item - items_begin][i],
                    f[item - items_begin + 1][i - item->weight] + item->profit);
            } else {
                f[item - items_begin + 1][i] = f[item - items_begin][i];
              flitome and - itome hagin | | |
    for (int i = 0; i <= items_end - items_begin; ++i) {</pre>
        free(f[i]);
    free(f);
    return ans;
```

Analysis of both approaches

- Time Complexity for Optimised Approach is better than Naive
 - \circ O(Cn) << O(C²n)

Improved optimised approach: 2 columns + 1 column

	0	1	2	3	i			
0	0	0	0	0	::1			2
- 0	0	0	- A				0	0 0
1	0	0	0	0			1	1 0
2	0	0	0	0			2	2 0
3	0	0	0	0			3	3 0
4	0	7	7	7			4	4 7
5	0	7	7	7			5	5 7
6	0	7	7	7			6	6 7
7	0	7	7	7			7	7
- 1	U	1	1	1		-	/	1
8	0	14	14	14			8	8 14
9	0	14	14	14			9	9 14
10	0	14	14	14		10)	14
11	0	14	14	14		11		14
12	0	21	21	21		12		21
13	0	21	21	21		13		21
14	0	21	21	21		14		21
apacity		7.74			Capacity			

Saves space! Improves space complexity

Saves space! Improves space complexity

Final Approach

```
int knapsack(const Item *items_begin, const Item *items_end,
             const int capacity) {
  int *f = calloc(capacity + 1, sizeof(int));
  memset(f, 0, (capacity + 1) * sizeof(int));
  for (const Item *item = items_begin; item != items_end; ++item) {
    for (int i = item->weight; i <= capacity; ++i) {</pre>
      f[i] = max(f[i], f[i - item->weight] + item->profit);
  int ans = f[capacity];
  return ans;
```

Looking closely

P(14)

P(13)

P(12)

P(10)

P(9)

P(8)

```
w<sub>i</sub> 4 6 8 p<sub>i</sub> 7 6 9
```

P(2)

P(1)

P(0)

```
int knapsack(const Item *items_begin, const Item *items_end,
             const int capacity) {
  int *f = calloc(capacity + 1, sizeof(int));
  memset(f, 0, (capacity + 1) * sizeof(int));
  for (const Item *item = items_begin; item != items_end; ++item) {
    for (int i = item->weight; i <= capacity; ++i) {</pre>
      f[i] = max(f[i], f[i - item->weight] + item->profit);
                                                         Choose ith element
  int ans = f[capacity];
  return ans;
                            P(C) = \max_{i=0}^{n-1} \{ P(C - w_i) + p_i \}
```

P(6)

P(5)

P(4)