

FAKULTA ELEKTROTECHNICKÁ KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY

Jméno			Datum měření
Anna Ruszová		1.11.2023	
Semestr		Ročník	Datum odevzdání
zimní		2.	29.11.2023
Studijní skupina		Laboratorní skupina	Klasifikace
1081L		10	
Číslo úlohy	Název úlohy		

Měření Dopplerova jevu 11

Měření Dopplerova jevu

Anna Ruszová

1. 11. 2023

1 Úkol měření

Proměřte posuv kmitočtu ultrazvukové vlny, pokud pozorovatel (přijímač) či zdroj (vysílač) této vlny budou ve vzájemném pohybu. Vypracujte graf závislosti (změny) kmitočtu na rychlosti vysílače (přijímače). Porovnejte naměřené hodnoty s hodnotami teoretickými.

2 Seznam použitých přístrojů a pomůcek

kontrolér vláček s ultrazvukovým vysílačem ultrazvukový přijímač ultrazvuková jednotka zdroj napětí teploměr

3 Naměřené hodnoty

naměřená teplota: $t = (24, 5 \pm 0, 5)$ °C klidová frekvence: $f_0 = 39061$ Hz

číslo měření	v(1) [m/s]	f(1) [Hz]	v(2) [m/s]	f(2) [Hz]
1	0,125	39046	0,09	39071
2	0,137	39045	0,097	39071
3	0,147	39044	0,094	39071
4	0,142	39044	0,09	39070
5	0,142	39044	0,099	39071
6	0,11	39049	0,096	39072
7	0,121	39048	0,104	39073
8	0,127	39046	0,103	39072
9	0,131	39047	0,096	39071
10	0,122	39048	0,109	39073

Table 1: Měření při $4,5~\mathrm{V}.$

číslo měření	v(1) [m/s]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		f(2) [Hz]
1	0,214	39038	0,153	39077
2	0,217	39036	0,157	39079
3	0,217	39036	0,135	39075
4	0,223	39036	0,166	39078
5	0,214	39037	0,151	39078
6	0,204	39039	0,182	39081
7	0,199	39038	0,176	39081
8	0,163	39043	0,178	39081
9	0,153	39044	0,158	39079
10	0,182	39040	0,174	39080

Table 2: Měření při 6 V.

číslo měření	v(1) [m/s]	f(1) [Hz]	v(2) [m/s]	f(2) [Hz]
1	0,288	39028	0,223	39087
2	0,284	39028	0,196	39083
3	0,284	39028	0,205	39084
4	0,277	39031	0,221	39086
5	0,279	39031	0,215	39086
6	0,295	39028	0,24	39088
7	0,252	39030	0,228	39087
8	0,282	39030	0,219	39088
9	0,295	39029	0,247	39089
10	0,268	39031	0,246	39090

Table 3: Měření při 7,5 V.

číslo měření	v(1) [m/s]	f(1) [Hz]	v(2) [m/s]	f(2) [Hz]
1	0,341	39023	0,259	39094
2	0,295	39028	0,197	39083
3	0,291	39029	0,192	39082
4	0,294	39028	0,271	39093
5	0,332	39025	0,24	39088
6	0,356	39022	0,266	39092
7	0,365	39022	0,248	39091
8	0,347	39022	0,284	39093
9	0,368	39021	0,31	39097
10	0,364	39021	0,302	39095

Table 4: Měření při 9 V.

číslo měření	v(1) [m/s] f(1) [Hz] v(2) [m/s]		f(2) [Hz]	
1	0,389	39017	0,346	39101
2	0,386	39018	0,341	39100
3	0,374	39020	0,288	39093
4	0,357	39022	0,366	39102
5	0,351	39022	0,331	39099
6	0,392	39017	0,255	39090
7	0,428	39015	0,32	39096
8	0,412	39015	0,294	39096
9	0,393	39018	0,29	39093
10	0,398	39018	0,27	39091

Table 5: Měření při 10,5 V.

číslo měření	v(1) [m/s] f(1) [Hz] v(2) [m/s]		f(2) [Hz]	
1	0,465	39007	0,429	39109
2	0,488	39007	0,36	39102
3	0,44	39011	0,353	39100
4	0,445	39011	0,322	39102
5	0,444	39012	0,332	39101
6	0,508	39005	0,29	39095
7	0,532	39003	0,293	39095
8	0,501	39006	0,334	39098
9	0,526	39002	0,377	39102
10	0,487	39007	0,388	39106

Table 6: Měření při 12 V.

Zpracování naměřených hodnot 4

Nejdříve jsem vypočítala průměry z naměřených hodnot pomocí následujících vzorečků, kde N = 10:

$$\overline{v} = \frac{1}{N} \sum_{i=1}^{N} v_i \tag{1}$$

$$\overline{f} = \frac{1}{N} \sum_{i=1}^{N} f_i \tag{2}$$

Jejich nejistoty (typu A) jsem spočítala následovně:

$$u_{v} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (v_{i} - \overline{v})^{2}}$$

$$u_{f} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (f_{i} - \overline{f})^{2}}$$
(3)

$$u_f = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (f_i - \overline{f})^2}$$
 (4)

Výsledky jsou zapsány v tabulce 7.

	4,5 V	6 V	7,5 V	9 V	10,5 V	12 V
v1 [m/s]	0,1304	0,1986	0,254	0,3353	0,388	0,4836
u(v1) $[m/s]$	0,0037	0,0077	0,00406	0,0098	0,0073	0,0107
f1 [Hz]	39046,1	39038,7	39029,4	39024,1	39018,2	39007,1
u(f1) [Hz]	0,5859	0,0907	0,4269	0,9939	0,7860	1,0692
v2 [m/s]	0,0978	0,163	0,224	0,2569	0,3101	0,3478
u(v2) $[m/s]$	0,0019	0,0047	0,0053	0,0125	0,0114	0,0136
f2 [Hz]	39071,5	39078,9	39086,8	39090,8	39096,1	39101
u(f2) [Hz]	0,3073	0,6227	0,6799	1,5762	1,3536	1,3904

Table 7: Průměrné výsledky měření s nejistotami

Pomocí Univerzálního nástroje pro kreslení grafů jsem proložila hodnoty přímkou, vykreslila do grafu a určila směrnici, která je $a_1 = 111,76 \text{ m}^{-1}$. Výsledná nejistota je $u_a = 0,83 \text{ m}^{-1}$.

Aproximační funkce

$$y(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 \ , \quad y(x) = A \ \mathrm{e}^{kx} \ , \quad y(x) = c \ x^m \ (m=1,2)$$

Průběh č. 1
$a_0 = 39060.891714426$
$a_1 = 111.76057363245$
$\sigma_{a0} = 0.18248177088283$
$\sigma_{al} = 0.82545912574239$
$\chi^2/v = 0.53952661070049$
$(\chi^2/v)^{1/2} = 0.73452475159145$

Figure 1: Získaná aproximační funkce z metody nejmenších čtverců

Na základě teploty v místnosti jsem vypočítala rychlost zvuku: $c=331,06+0,61t=346,005\,\mathrm{m/s}.$

Teoretickou hodnotu jsem spočítala podle vzorce

$$f' = \frac{c \pm v_z}{c} f \tag{5}$$

kde f^\prime je naměřená frekvence, fje skutečná frekvence (naměřená v klidu) a v_z je rychlost vláčku.

Tento vzorec jsem si převedla do tvaru

$$\frac{f'}{c \pm v_z} = \frac{f}{c} = 112,86 \,\mathrm{m}^{-1} \tag{6}$$

5 Grafy

Figure 2: Graf závislosti frekvence na rychlosti

6 Závěr

Směrnice přímky vyšla $(111,76\pm0,83)\,\mathrm{m}^{-1}$, což přibližně odpovídá teoretické hodnotě, která je pro danou teplotu $(24,5\,^{\circ}\mathrm{C})$ 112,89 m $^{-1}$. Pokud vezmu v úvahu ještě nepřesnost měřících přístrojů a fakt, že jsme často neměřili frekvenci a rychlost ve stejnou dobu (a rychlost nemusela být konstantní), mohu říci, že v rámci nejistoty se oba údaje shodují.