12. Tilde Notation (\sim)

DEFINITION: The notation is useful when the function f(n) and g(n) growth at the same rate. It is written as:

$$f(n) \sim g(n)$$

The above definition suggests that $\frac{f(n)}{g(n)}$ approaches to 1 as N grows. We can observe it from table:

f(n)	$\sim g(n)$ (Tilde approximation)	Order of Growth
$\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}$	$\sim \frac{n^3}{6}$	n^3
$\frac{n^2}{2} - \frac{n}{2}$	$\sim \frac{n^2}{2}$	n^2
logN + 1	$\sim \log(N)$	$\log(N)$
3	~3	1

Hence, we write it as follows:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$$

Example 1

Prove
$$\left(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}\right) \sim \frac{n^3}{6}$$

Solution:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

$$=\lim_{n\to\infty}\frac{\left(\frac{n^3}{6}-\frac{n^2}{2}+\frac{n}{3}\right)}{\frac{n^3}{6}}$$

We know that $\lim_{x\to a} [c \times f(x)] = c \times \lim_{x\to a} f(x)$, hence:

$$= \frac{1}{\frac{1}{6}} \lim_{n \to \infty} \frac{\left(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}\right)}{n^3}$$

$$=6 \times \lim_{n \to \infty} \frac{\left(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}\right)}{n^3}$$

$$= 6 \times \lim_{n \to \infty} \frac{\left(\frac{n^3 - 3n^2 + 2n}{6}\right)}{n^3}$$

$$=6\times\frac{1}{6}\times\lim_{n\to\infty}\frac{(n^3-3n^2+2n)}{n^3}$$

$$=6\times\frac{1}{6}\times\lim_{n\to\infty}\left(\frac{n^3}{n^3}-\frac{3n^2}{n^3}+\frac{2n}{n^3}\right)$$

$$=6\times\frac{1}{6}\times\lim_{n\to\infty}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)$$

As per,

$$\lim_{x\to\infty} \left(\frac{c}{x^a}\right) = 0 \text{ , Infinity property of Limit and } \lim_{n\to a} c$$
$$= c, where c \text{ is constant.}$$

Hence:

$$\lim_{n o\infty} 1=1$$
 , $\lim_{n o\infty} rac{3}{n}=0$, $\lim_{n o\infty} rac{2}{n^2}=0$

$$=6\times\frac{1}{6}\times(1-0+0)$$

$$= 1 \times 1$$

Hence,
$$\left(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}\right) \sim \frac{n^3}{6}$$
 and rate growth is n^3

Example 2

Prove
$$\frac{n^2}{2} - \frac{n}{2} \sim \frac{n^2}{2}$$

Solution

$$\lim_{n\to\infty}\frac{\left(\frac{n^2}{2}-\frac{n}{2}\right)}{2}$$

We know that $\lim_{x\to a} [c \times f(x)] = c \times \lim_{x\to a} f(x)$, *hence*:

$$=\frac{1}{\frac{1}{2}}\times\lim_{n\to\infty}\left(\frac{\left(\frac{n^2}{2}-\frac{n}{2}\right)}{n^2}\right)$$

$$=2\times\lim_{n\to\infty}\left(\frac{\left(\frac{n^2}{2}-\frac{n}{2}\right)}{n^2}\right)$$

We know that $\lim_{x\to a} [c \times f(x)] = c \times \lim_{x\to a} f(x)$, hence:

$$=2\times\frac{1}{2}\times\lim_{n\to\infty}\left(\frac{n^2-n}{n^2}\right)$$

$$=2\times\frac{1}{2}\times\lim_{n\to\infty}\left(\frac{n^2}{n^2}-\frac{n}{n^2}\right)$$

$$=2\times\frac{1}{2}\times\lim_{n\to\infty}\left(1-\frac{1}{n}\right)$$

As per,

$$\lim_{x\to\infty} \left(\frac{c}{x^a}\right) = 0 \text{ , Infinity property of Limit and } \lim_{n\to a} c$$
$$= c, where c \text{ is constant.}$$

Hence:

$$=2\times\frac{1}{2}\times(1-0)$$

$$= 1 \times 1$$

Hence,
$$\frac{n^2}{2} - \frac{n}{2} \sim \frac{n^2}{2}$$
 and rate growth is n^2

Example 3

Prove $log N + 1 \sim log(N)$

Solution

$$= \lim_{n \to \infty} \left(\frac{\log n + 1}{\log n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{\log n}{\log n} + \frac{1}{\log n} \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{\log n} \right)$$

We know that:

$$= \lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} (f(x)) \pm \lim_{x \to a} (g(x))$$

$$=\lim_{n\to\infty}(1)+\lim_{n\to\infty}\frac{1}{logn}$$

We know, $\lim_{n\to a} c = c$, where c is constant.

$$=1+\lim_{n\to\infty}\frac{1}{logn}$$

We know, $\lim_{n \to a} \left(\frac{f(n)}{g(n)} \right) = \frac{\lim_{n \to a} f(n)}{\lim_{n \to a} g(n)}$.

Hence:

$$=1+\frac{\lim\limits_{n\to\infty}(1)}{\lim\limits_{n\to\infty}(\log n)}$$

We know, $\lim_{n\to a} c = c$, where c is constant and $\lim_{n\to \infty} (log(n)) = \infty$, Hence:

$$=1+\frac{1}{\infty}$$

And infinity property $\frac{c}{\infty} = 0$, where c is constant.

$$= 1 + 0$$

= 1

Hence $log N + 1 \sim log(N)$ and rate of growth is log(n).
