

Data Collection and Preprocessing Phase

Date	8th July 2024
Team ID	SWTID1720195938
Project Title	CovidVision: Advanced COVID-19 Detection from Lung X-Rays with Deep Learning
Maximum Marks	6 Marks

Section	Description
Data Overview	Give an overview of the data, which you are going to use in your project. The dataset consists of lung X-ray images, including COVID-19-positive cases, normal lung images, lung opacity images, and viral pneumonia images. The images are in PNG format with a resolution of 299x299 pixels. The objective is to use deep learning models to detect COVID-19 infections from these X-ray images. PATH_TO_METADATA = "/content/COVID-19_Radiography_Dataset/Normal.metadata.xlsx" df = pd.read_excel(PATH_TO_METADATA) df.head()
	FILE NAME FORMAT SIZE URL O NORMAL-1 PNG 256*256 https://www.kaggle.com/c/rsna-pneumonia-detect NORMAL-2 PNG 256*256 https://www.kaggle.com/c/rsna-pneumonia-detect NORMAL-3 PNG 256*256 https://www.kaggle.com/c/rsna-pneumonia-detect NORMAL-4 PNG 256*256 https://www.kaggle.com/c/rsna-pneumonia-detect NORMAL-5 PNG 256*256 https://www.kaggle.com/c/rsna-pneumonia-detect
Resizing	Images will be resized to 299x299 pixels to ensure uniformity and compatibility with the input requirements of the deep learning models. Found 5064 images belonging to 2 classes. Found 2168 images belonging to 2 classes.
Normalization & Data Augmentation	Pixel values of the images will be normalized to a range of [0, 1] to facilitate faster convergence during training. Data augmentation techniques, such as random rotation, flipping, shifting, zooming, and shearing, will be applied to increase the

	diversity of the training set and improve the model's generalization.
Batch Normalization	Batch normalization will be applied to the input of each layer in the neural network to stabilize and speed up the training process.
Data Preprocessing Cod	le Screenshots
Loading Data	[4] files.upload() **** *** ***************************

Resizing

```
IMAGE_SIZE = (299,299)
IMAGE_SHAPE = IMAGE_SIZE + (3,)

[28] from tensorflow.keras.preprocessing.image import ImageDataGenerator
img_height, img_width= IMAGE_SIZE
batch_size=32
train_datagen = ImageDataGenerator(validation_split=0.3)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
tanget_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
subset='training')

validation_generator = train_datagen.flow_from_directory(
train_data_dir,
tanget_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
subset='validation')

Found 5064 images belonging to 2 classes.
Found 2168 images belonging to 2 classes.
```



```
Found 5064 images belonging to 2 classes.
                                                                  Found 2168 images belonging to 2 classes.
                                                                  train_datagen = ImageDataGenerator(
                                                                           rescale=1./255,
                                                                          rotation_range=20,
Normalization & Data
                                                                          width_shift_range=0.2,
Augmentation
                                                                          height_shift_range=0.2,
                                                                           shear_range=0.2,
                                                                           zoom_range=0.2,
                                                                          horizontal_flip=True,
                                                                           fill_mode='nearest',
                                                                           validation_split=0.3)
                                                                  from keras.models import load_model
from keras.layers import BatchNormalization
from keras.utils import register_keras_serializable # Import from the correct module
                                                                 # Define the custom BatchNormalization layer class 
@register_keras_serializable() # Register the custom layer 
class CustomBatchNormalization(BatchNormalization):
                                                                     def __init__(self, **kwargs):
    super(CustomBatchNormalization, self).__init__(**kwargs)
                                                                     @classmethod
def from_config(cls, config):
    config['axis'] = config.get('axis', [])[0] if isinstance(config.get('axis', []), list) else config.get('axis')
    return cls(**config)
Batch Normalization
                                                                 # toad the model with the custom objects
model = load_model('Xception-Covid.h5', custom_objects={'CustomBatchNormalization': CustomBatchNormalization')
                                                                 # Optionally, save the model in the new Keras format
model.save('Xception-Covid.keras')
                                                                 # Load the model in the new Keras format
model = load_model('Xception-Covid.keras')
```