

$\begin{array}{c} {\bf Type 977~fitting~for~heat~pump}\\ {\bf SINK-14TES} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:05:19 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
	-	[kW]
$\overline{P_{Q_1}}$	1 st condenser polynomial coefficient	2.2000e+02
P_{Q_2}	2^{st} condenser polynomial coefficient	-2.0513e+02
P_{Q_3}	3^{st} condenser polynomial coefficient	-2.8863e+03
P_{Q_4}	4 st condenser polynomial coefficient	2.0874e + 03
P_{Q_5}	5^{st} condenser polynomial coefficient	3.2343e+02
P_{Q_6}	6 st condenser polynomial coefficient	9.4939e + 03
P_{COP_1}	1 st COP polynomial coefficient	9.1287e + 01
P_{COP_2}	2 st COP polynomial coefficient	-5.8357e + 01
P_{COP_3}	3 st COP polynomial coefficient	-1.1986e+03
P_{COP_4}	4 st COP polynomial coefficient	5.8280e + 02
P_{COP_5}	5 st COP polynomial coefficient	1.7233e+02
P_{COP_6}	6 st COP polynomial coefficient	3.8806e + 03
\dot{m}_{cond}	$1600.00 \ [kg/h]$	
\dot{m}_{evap}	$1600.00 \ [kg/h]$	
COP_{nom} (A0W35)	3.52	
$Q_{cond,nom}$ (A0W35)	$10.62 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	7.61 [kW]	
$W_{comp,nom}$ (A0W35)	3.01 [kW]	
RMS_{COP}	5.36e - 02	
$RMS_{Q_{cond}}$	7.58e - 02	
$RMS_{W_{comp}}$	2.94e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	°C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	4.15	4.11	1.0	11.70	11.70	0.0	2.82	2.85	0.99
35.00	0.00	4.61	4.71	2.1	13.10	13.10	0.0	2.84	2.78	2.16
35.00	5.00	5.25	5.21	0.8	14.82	14.80	0.1	2.82	2.84	0.64
55.00	0.00	3.03	3.00	0.9	12.25	12.20	0.4	4.04	4.06	0.49
55.00	5.00	3.34	3.41	1.9	13.95	14.10	1.1	4.18	4.14	0.86
35.00	10.00	6.17	6.11	1.0	17.08	17.10	0.1	2.77	2.80	1.08
35.00	15.00	7.15	7.19	0.5	19.41	19.40	0.0	2.72	2.70	0.58
55.00	10.00	3.85	3.80	1.3	16.05	15.90	0.9	4.16	4.18	0.36
55.00	15.00	4.29	4.30	0.3	17.85	17.90	0.3	4.16	4.16	0.00
Sum				9.8			3.0			7.17
RMS_{COP}	5.36e - 02									
$RMS_{Q_{cond}}$	7.58e - 02									
$RMS_{W_{comp}}$	2.94e - 02									

${\it Meier/SINK-14TES/SINK-14TES-Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

${\it Meier/SINK-14TES/SINK-14TES-Qcomp.pdf}$

Figure 2: W_{comp} differences between experiments and fitted data

${\it Meier/SINK-14TES/SINK-14TES-COP.pdf}$

Figure 3: COP differences between experiments and fitted data