

SSL Seminars
Five-month internship in partnership with ISAESupaero

Calibration and Fusion of Stereoscopic and Time-of-Flight Cameras for Zero Gravity Targets Inspection

Gabriel Urbain - Graduate student - ISAE Supaero - France

Wednesday, October 29th 2014

Overview

- Introduction
- Sensors Features and Acquisition
 - Time-of-Flight Camera (Optical Range Finder)
 - Stereoscopic Cameras (VERTIGO)
 - Thermocam
- Calibration Algorithm
 - ORF calibration
 - Stereo calibration
 - System calibration
- Fusion Algorithm
- Conclusions and Perspectives

Introduction

INSPECT is an extension of SPHERES intending to test pieces of hardware inside the ISS prior to moving into the vacuum of space

Introduction

INSPECT adds two cameras to VERTIGO: a thermocam and an Optical Range Finder to perform Visual Navigation.

Thermocam

Optical Range Finder or Time-of-Flight Camera

Stereoscopic Cameras of the VERTIGO Goggles

Introduction

Computer Vision enables Simultaneous Localization and Mapping.

Overview

- Introduction
- Sensors Features and Acquisition
 - Time-of-Flight Camera (Optical Range Finder)
 - Stereoscopic Cameras (VERTIGO)
 - Thermocam
- Calibration Algorithm
 - ORF calibration
 - Stereo calibration
 - System calibration
- Fusion Algorithm
- Conclusions and Perspectives

VERTIGO goggles:

Feature	Value	
Frequency Domain	717nm dominant (visible)	
Resolution	752x480 pixels	
Pixel Size	6μm	
FoV	35°x35°	
Output Data	10 bits monochrome	

Two images are captured synchronously

Stereo Cameras

uEye API

Feature Detection and matching

Optional: Aggregation and Optimization

VERTIGO goggles:

Stereo Cameras

uEye API

Feature Detection and matching

Optional: Aggregation and Optimization

VERTIGO goggles:

Low-textured objects lead to bad stereo 3D estimations

Stereo Cameras

uEye API

Feature Detection and matching

Optional: Aggregation and Optimization

$$\begin{pmatrix} u_{L} \\ v_{L} \\ 1 \end{pmatrix} = K_{L} * M_{L} * \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{R} \\ v_{R} \\ 1 \end{pmatrix} = K_{R} * M_{R} * \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\Rightarrow$$

$$\begin{cases} z = \frac{baseline}{u_{L} - u_{R}} \\ x = \frac{(u_{L} - c_{U}) * z}{f} \end{cases}$$

Stereo Cameras

uEye API

Feature Detection and matching

Optional: Aggregation and Optimization

ORF:

Feature	Value	
Frequency Domain	850nm (far IR)	
Resolution	176x144 pixels	
Pixel Size	$40\mu m$	
FoV	69°x55°	
Output Data	14 bits depth, 16 bits visual, 16 bits confidence	

Three images are captures in the same time: depth, visual, confidence

ORF Camera

MESA-Imaging API

Three images are captures in the same time: depth, visual, confidence

ORF Camera

MESA-Imaging API

ORF:

ORF Camera

MESA-Imaging API

ORF:

ORF is motion sensitive

ORF is material sensitive

ORF Camera

MESA-Imaging API

ORF:

ORF is exposure sensitive

ORF is range sensitive

ORF Camera

MESA-Imaging API

Thermocam:

Feature	Value	
Frequency Domain	7.5 - 13nm (near IR)	
Resolution	80x64 pixels	
Pixel Size	$50\mu m$	
FoV	44°x36°	
Output Data	8 bits monochrome	

The thermocam provides data diversity but with a low resolution

Overview

- Introduction
- Sensors Features and Acquisition
 - Time-of-Flight Camera (Optical Range Finder)
 - Stereoscopic Cameras (VERTIGO)
 - Thermocam
- Calibration Algorithm
 - ORF calibration
 - Stereo calibration
 - System calibration
- Fusion Algorithm
- Conclusions and Perspectives

ORF Calibration (intrinsic):

$$K_T = \begin{pmatrix} f_U & s_{UV} & c_U \\ \mathbf{0} & f_V & c_V \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

and distortion coefficients:

$$k_1, k_2, k_3, k_4, k_5$$

To compute extrinsic parameters, m checkerboard corners are projected and an iterative minimization process is performed:

$$oldsymbol{ heta_T^i} = arg\ min\ \left\{ \sum_{i=0}^m \left| \left| \mathcal{F}(\widehat{oldsymbol{ heta}}_T^i) - oldsymbol{p_T^i}
ight| \right|^2
ight\}$$

VERTIGO Calibration (intrinsic + extrinsic):

Extrinsic parameters corespond to the transformation matrix:

$$M_{LR} = \begin{pmatrix} r_{X^{L}X^{R}} & r_{X^{L}Y^{R}} & r_{X^{L}Z^{R}} & t_{X^{L}X^{R}} \\ r_{Y^{L}X^{R}} & r_{Y^{L}Y^{R}} & r_{Y^{L}Z^{R}} & t_{Y^{L}Y^{R}} \\ r_{Z^{L}X^{R}} & r_{Z^{L}Y^{R}} & r_{Z^{L}Z^{R}} & t_{Z^{L}Z^{R}} \end{pmatrix}$$

To compute stereo parameters (intrinsic + extrinsic), m checkerboard corners are projected and an iterative minimization process is performed:

$$\theta_{stereo}^{i} = arg min \left\{ \sum_{i=0}^{m} \left| \left| \mathcal{F}(\widehat{\theta}_{stereo}^{i}) - {p_{L} \choose p_{R}} \right| \right|^{2} \right\}$$

HALO Calibration (extrinsic):

Three sets of points are deduced:

$$p_T^i = \begin{pmatrix} u \\ v \end{pmatrix}_T^i \qquad p_L^i = \begin{pmatrix} u \\ v \end{pmatrix}_L^i \qquad p_R^i = \begin{pmatrix} u \\ v \end{pmatrix}_R^i$$

$$p_L^i = \begin{pmatrix} u \\ v \end{pmatrix}_L^i$$

Horn's

minimization algorithm in a RANSAC process

$$p_R^i = \binom{u}{v}_R^i$$

Corners Detection

Stereo Triangulation

ORF Pinhole Inversion

EROASTRO

HALO Calibration (extrinsic):

 $\begin{cases} z_L = \frac{t_{RL}}{u_L - u_R} \\ x_L = \frac{(u_L - c_U)z_L}{f} \\ y_L = \frac{(v_L - c_V)z_L}{f} \end{cases}$

Corners Detection

ORF capture

Checkerboard **Corners Detection** **ORF Pinhole** Inversion

Horn's minimization algorithm in a RANSAC process

HALO Calibration (extrinsic):

 $\begin{cases} x_T = \frac{u_T - c_U}{z_T} f \\ y_T = \frac{v_T - c_V}{z_T} f \\ \frac{f}{z_T} = \frac{a}{b} \\ d_T^2 = z_T^2 + b^2 \end{cases}$

minimization algorithm in a RANSAC process

ORF capture

Checkerboard **Corners Detection**

Corners Detection

HALO Calibration (extrinsic):

The minimization process is:

$$M_{LT} =$$

$$arg min \left\{ \sum_{i=0}^{m} \left| \left| P_{T}^{i} - \widehat{M}_{LT} * P_{L}^{i} \right| \right|^{2} \right\}$$

Stereo capture

Checkerboard Corners Detection

Stereo Triangulation

ORF capture

Checkerboard Corners Detection ORF Pinhole Inversion

Horn's minimization algorithm in a RANSAC process

HALO Calibration (extrinsic):

The minimization process is:

$$M_{LT} =$$

$$arg min \left\{ \sum_{i=0}^{m} \left| \left| P_{T}^{i} - \widehat{M}_{LT} * P_{L}^{i} \right| \right|^{2} \right\}$$

Stereo capture

Checkerboard Corners Detection

Stereo Triangulation

ORF capture

Checkerboard Corners Detection ORF Pinhole Inversion

Horn's minimization algorithm in a RANSAC proces

HALO Calibration (extrinsic):

Translation axis	CAD Model	Calib with RANSAC	Calib without RANSAC
X	16.09 cm	16.6 cm	14 cm
Υ	2.01 <i>cm</i>	0.77 cm	$-0.67 \ cm$
Z	4.74 <i>cm</i>	5.89 <i>cm</i>	8.46 <i>cm</i>

The minimization process is:

$$M_{LT} =$$

$$arg min \left\{ \sum_{i=0}^{m} \left| \left| P_T^i - M_{LT} * P_L^i \right| \right|^2 \right\}$$

Stereo capture

Checkerboard Corners Detection

Stereo Triangulation

Horn's minimization algorithm in a RANSAC proces

ORF capture

Checkerboard Corners Detection ORF Pinhole Inversion

Overview

- Introduction
- Sensors Features and Acquisition
 - Time-of-Flight Camera (Optical Range Finder)
 - Stereoscopic Cameras (VERTIGO)
 - Thermocam
- Calibration Algorithm
 - ORF calibration
 - Stereo calibration
 - System calibration
- Fusion Algorithm
- Conclusions and Perspectives

Goals of multi-sensor data fusion:

For this algorithm:

- Increase accuracy
- Increase certainty
- Increase completeness
- Increase representation

Goals of multi-sensor data fusion:

For a future algorithm:

- Increase accuracy
- Increase certainty
- Increase *completeness*
- Increase representation

ORF Confidence

Stereo Left

Stereo Right

ORF Visual

Determination of Points Framed by all Sensors

ORF Noise Model

Noise Interval Discretization

Stereo projection

Probability maximization

Acquisition

Determination of Point Framed by all Sensors

ORF Noise Model

Noise Interval Discretization

Stereo projection

Probability maximization

For each 3D point constructed by the ORF, ORF noise can be reduce to a Normal with variance σ_w including:

- Thermal noise with variance σ_t
- Scattering noise with variance σ_s

Acquisition

Determination of Points Framed by all Sensors

ORF Noise Model

Noise Interval Discretization

Stereo projection

Probability maximization

Each $P^{i,j}$ is projected in left and right images and a degree of likeliness is computed around each points:

$$c_{i,j} = min\{\sum_{k}\sum_{l}|I_{L}(u_{i,j}+k,v_{i,j}+l)-I_{L}(u_{i,j}+k,v_{i,j}+l)|, thresh\}$$

Acquisition

Determination of Points Framed by all Sensors

ORF Noise Model

Noise Interval Discretization

Stereo projection

Probability maximization

maximization

Probability

Probability is computed as:

 $P[d^i = d^{i,j}] = P[d^i = d^{i,j}|I_T] * P[d^i = d^{i,j}|I_LI_R]$

Where:

$$Pig[d^i=d^{i,j}ig|I_Tig]=rac{1}{\sigma_w^i\sqrt{2\pi}}e^{-rac{ig(d^{i,j}-d^iig)^2}{2|\sigma_w^i|^2}}$$

$$P[d^i = d^{i,j}|I_LI_R] = e^{\frac{-c_{i,j}}{\sigma_n^i}}$$

$$\widehat{d}^{i} = max_{i} \{ P[d^{i} = d^{i,j}] \}$$

And finally,

Acquisition

Determination of Points Framed by all Sensors

ORF Noise Model

Noise Interval Discretization

Stereo projection

Probability maximization

In the first results with INSPECT, fusion (right) does not improve accuracy of the ORF cloud (left)

In the first results with INSPECT, fusion (right) does not improve accuracy of the ORF cloud (left)

Errors seem to come essentially from stereo calibration matrices accuracy and non-linearity of the process

Overview

- Introduction
- Sensors Features and Acquisition
 - Time-of-Flight Camera (Optical Range Finder)
 - Stereoscopic Cameras (VERTIGO)
 - Thermocam
- Calibration Algorithm
 - ORF calibration
 - Stereo calibration
 - System calibration
- Fusion Algorithm
- Conclusions and Perspectives

Conclusions and Future Perspectives

- Acquisition seems to give acceptable results on the ground and during RGA flights.
- The calibration algorithm gives good results but could be improved by:
 - Adding the thermocam by using a cold/hot checkerboard pattern
 - Using better stereo calibration parameters during system calibration
- The fusion algorithm does not increase accuracy for the moment (on the ground and during RGA flights) and will not for sure increase completeness and certainty:
 - A way to improve it would be a better ORF noise computation or stereo likeliness determination
 - The thermocam should be added to create a second point cloud
 - Other algorithms have been found that are more adapted to SLAM, avoid the stereo re-projection and consider full objects instead of separated points

