Основы теории графов. Теория

1 Основы

Teop. 1.1.

$$\sum_{v \in V} \deg(v) = 2|E(G)|$$

2 Вершинная связность

Опр. 2.1. Точка сочленения – если удалить, то распадётся.

Л. 2.0.1 (Хёринг). тах кол-во путей $P(x \to y)$ (не перес. во внутр. точках) = |R| – тах мн-ва вершин, отделяющих x и y.

Теор. 2.1 (Менгер). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер мин. верш.разделяющего мн-ва $|R_{min}(x \leftrightarrow y)| = \max$ числу простых путей $P(x \to y)$, отличных во внутренних точках.

Теор. 2.2 (Уитни). G - k-связный $\iff \forall x,y \in V, \exists k \text{ простых путей } P(x \to y), не пересекающихся во внутренних точках <math>P_i \neq P_i$ (внут.).

$$\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$$

$$e \partial e \quad \delta(G) = \min_{V} deg(v)$$

3 Рёберная связность

Опр. 3.1. Мост – ребро, при его удалении граф развалится

Теор. 3.1 (Форд-Фалкерсон). тах поток Q через сеть = пропускной способности минимального S-T разреза.

Теор. 3.2 (Менгер "рёберная"). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер \min рёберно-разделяющего мн-ва $|R_{min}^{edge}(x \leftrightarrow y)| = \max$ числу простых рёберно-непересекающихся путей $P(x \to y)$.

3.1 Задачи

4 Паросочетания

	вершинное	рёберное	
незав. мн-во	α	α'	max
покрытие	β	β'	min
	вершинное	п-сочетание	

Св. 4.0.1. Если S – независ.мн-во вершин, то \bar{S} – покрытие (необязательно \max). Замечание: это неверно для рёбер.

Teop. 4.1 (Галаи).

$$\alpha + \beta = \alpha' + \beta' = n$$

Теор. 4.2 (Кёниг). $B \,\forall \, 2$ -дольном графе B(m,n): $\beta = \alpha'$

Опр. 4.1. *Кубический* граф – регулярный ($\deg v_i = \mathrm{const}$) граф: $\deg = 3$

Св. 4.1.1. В кубическом графе |V| – чётное

Teop. 4.3 (Татт). \exists совершенное $n.c. \iff npu \ y \partial a$ лении $\forall \ S \subset V$ образуется нечётных компонент

$$C_o(G \setminus S) \leqslant |S|$$

Сл. 4.3.1 (Петерсен). В кубическом графе $\exists c.n.c.$, если $N(\text{мостов}) \leqslant 2$

Св. 4.1.2. В чётном графе если $C_o(G \setminus S) \ge |S|$ то $C_o(G \setminus S) \geqslant |S| + 2$

Опр. 4.2. Дефицит – число вершин, не покрытых максимальным n.c.

$$def(G) = |V| - 2\max|M|$$

Теор. 4.4 (Татта-Бержа). $def(G) = \max_{S \subset V} (C_o(G \setminus S) - |S|)$

Сл. 4.4.1. def $\equiv |V| \pmod{2}$

5 Раскраски

Onp. 5.1. $\Delta = \max_{v \in V} \deg(v)$

Св. 5.1.1. chromatic number $\mathcal{X}(G) \leqslant \Delta + 1$ (оценка жадного алгоритма)

- деревья: $\mathcal{X} = 2$
- двудольные графы B(m,n): $\mathcal{X} = 2$
- полные графы K_n : $\Delta = n 1$, $\mathcal{X} = n$
- циклы чётной длины C_{2n} : $\Delta = 2$, $\mathcal{X} = 2$
- циклы нечётной длины C_{2n+1} : $\Delta = 2, \mathcal{X} = 3$

Teop. 5.1 (Брукс). $\mathcal{X}(G) \leqslant \Delta$ для всех графов кроме полных и нечётных циклов

Опр. 5.2. Kлика — полный подграф

Опр. 5.3. *Кликовое число* $\omega(G) = \max_{K_n \subseteq G} n$

CB. 5.3.1. $\mathcal{X}(G) \geqslant \omega(G)$

Св. 5.3.2. K_n содержит $K_{n-1}, K_{n-2}, \ldots, K_3$ (треугольники)

Теор. 5.2 (Мицельский). $\forall n \in \mathbb{N} \ \exists G : \mathcal{X}(G) = n, \ G \not\supseteq K_3$ (свободен от треугольников, т.е. $\omega(G) = 2$)

Опр. 5.4. Обхват $\Omega(G) = \min_{C_n \subseteq G} n, C_n - nростой цикл$

Теор. 5.3 (Эрдёш). $\forall k \in \mathbb{N} \ \exists G : \mathcal{X}(G) = k, \ \Omega(G) \geqslant k$

Опр. 5.5. $P_G(k)$ – число способов раскрасить G в k цветов, $P_G(k)=0$ при $k<\mathcal{X}(G)$

- ullet полный граф K_n $P_{K_n}(z)=z(z-1)\cdots(z-n+1)$
- ullet пустой граф $ar{K}_n$ $P_{\overline{K}_n}(z)=z^n$
- дерево T_n $P_{T_n}(z) = z(z-1)^{n-1}$
- ullet лес $T_{n,k}$ из k деревьев и $n=n_1+\cdots+n_k\geqslant k$ вершин $P_{T_{n,k}}(z)=z^k(z-1)^{n-k}$
- цикл C_n $P_{C_n}(z) = (z-1)^n + (-1)^n(z-1)$

Св. 5.5.1. Если в графе есть кратные рёбра, то это никак не влияет на раскраску

Л. 5.3.1. $(G \setminus e - cmягивание ребра e)$

$$P_G(z) = P_{G-e}(z) - P_{G \setminus e}(z)$$

Доказательство.

Рис. 1: chromatic polynome rule