LECTURE 3: DISTANCE AND SIMILARITY

1) Data

2) Feature Space

a) From data generate feature space of all possible values for set of features in data

Our feature space is the Euclidean plane

3) Distance

- a) **d** is distance function iff:
 - d(i, j) = 0 if and only if i = j
 - d(i, j) = d(j, i)
 - $d(i, j) \le d(i, k) + d(k, j)$
- b) Don't need distance function to compare points, but prefer it

4) Minkowski Distance

a) For x, y points in d-dimensional real space

i)
$$x=[x_1, ..., x_d]$$
 and $y=[y_1, ..., y_d]$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

When **p** = 2 -> Euclidean Distance

When **p** = 1 -> Manhattan Distance

b) Ex: d = 2 and p = 2

c) Ex: d = 3 and p = 2

d) Is L_p distance function when 0 < p < 1

$$D(B,A) = D(A, C) = 1$$

$$D(B, C) = 2^{1/p}$$

$$D(B, C) = 2^{1/p}$$

D(B,A) + D(A,C) = 2

So D(B, C) > D(B, A) + D(A, C) which violates the triangle inequality

5) Cosine Similarity

- a) Similarity function: function that takes 2 objects(data points) and return a large value if these objects are similar
 - i) $s(x, y) = cos(\theta)$ where θ is angle between x and y
- b) To get dissimilarity function, try:

$$d(x, y) = 1 / s(x, y)$$

or

$$d(x, y) = k - s(x, y)$$
 for some k

Here, we can use

$$d(x, y) = 1 - s(x, y)$$

c) Use cosine (dis)similarity over euclidean distance when direction matters more than magnitude

Close under Cosine Similarity

6) Jaccard Similarity

a) How similar are the following documents?

	W ₁	W ₂	 w _d
Х	1	0	 1
у	1	1	 0

i) One way is to use Manhattan distance -> return size of set difference

$$L_1(x,y) = \sum_{i=1}^d (x_i - y_i) \qquad \text{Will only be 1 when } \mathbf{x_i} \neq \mathbf{y_i}$$

b) How to distinguish between 2 cases?

	W ₁	W ₂		W _{d-1}	W _d
х	1	1	1	0	1
у	1	1	1	1	0

	W ₁	W ₂
х	0	1
у	1	0

Only differ on the last two words

Completely different

i) Need to account for size of intersection

$$JSim(x,y) = \frac{|x \cap y|}{|x \cup y|} \qquad JDist(x,y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$

7) Norms

- a) Distance from the origin
 - i) Minkowski Distance <-> Lp Norm
 - ii) Not all distances can create a norm
- b) Notion of size
- c) Has the properties:
 - $\circ \quad p(x+y) \le p(x) + p(y)$
 - \circ p(ax) = |a|p(x)
 - o p(x) = 0 iff x = 0
 - o p(x) ≥ 0 for all x