

Liberté Égalité Fraternité

MISE EN ŒUVRE DE LA SORA

La demande d'autorisation d'exploitation et l'évaluation des risques

Direction de la sécurité de l'aviation civile 6 DÉCEMBRE 2022

Les objectifs de ce webinaire

- 1. Rappeler les grands principes de la catégorie Spécifique et de la SORA
- 2. Expliciter les attendus de la DSAC pour chaque étape de la SORA
- Décrire les étapes d'une demande d'autorisation d'exploitation (AE) et les pièces attendues
- 4. Répondre aux questions en lien avec la SORA

OUVERTE

Faible risque
Aucune
autorisation
nécessaire

SORA

- Scénario Standard déclaratif (STS)

- Etude de risque - autorisation par

CERTIFIEE

Risque fort
Exploitant
certifié
Drone certifié
Licence pilote

La catégorie Spécifique

Tout ce qui ne relève pas de la catégorie Ouverte ou Certifiée

Principes :

- Régime déclaratif pour les scénarios standard (européen, ou national pendant la transition); ou
- 2. Délivrance d'une autorisation d'exploitation (AE) par la DSAC; ou
- 3. Le "Certificat allégé d'exploitant d'UAS" (LUC)

L'autorisation d'exploitation (AE) et la SORA

- « Specific Operations Risk Assessment » (SORA) : méthode d'évaluation des risques
- Complexe à appréhender, mais :
 - On peut s'en passer : catégorie Ouverte, scénarios standard
 - On peut simplifier: « Pre defined risk assesment » (PDRA) (voir guide)

Les grands principes de la SORA (1/5)

- Méthodologie d'évaluation des risques développée dans le cadre de JARUS
- Version en cours : v2 (depuis fin 2018)
- Reprise par l'AESA en AMC/GM à l'article 11:

https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-systems-regulation-eu (à partir de la p.34)

- Développement d'une nouvelle version (v2.5) et de nouvelles annexes dans le cadre de JARUS :
 - · Consultation publique en fin d'année
 - Sera adaptée puis intégrée par l'AESA en AMC à partir de 2023.

Les grands principes de la SORA (2/5)

- 3 grandes familles de risque :
 - 1. Le risque pour les tiers au SOL
 - 2. Le risque **AIR** pour les usagers de l'espace aérien
 - 3. Le risque d'échappée de l'aéronef dans les zones adjacentes
- Un corpus principal (« Main body ») de 10 étapes autour de ces familles de risques
- Plusieurs annexes de A à H pour décrire et approfondir les étapes (ConOps, atténuation des risques sol, air, etc.)

Les grands principes de la SORA (3/5)

- Méthode ouverte et qualitative, c'est-à-dire non prescriptive
- La SORA vise à évaluer le risque que représente la chute du drone pour les personnes au sol et le risque de collision avec les autres aéronefs
- Hypothèses :
 - « Si le drone touche, il tue »
 - Un drone qui n'a pas été spécialement conçu pour être robuste a par défaut une probabilité forte de défaillance majeure (1 pour 100 heures de vol)

Les grands principes de la SORA (4/5)

- La probabilité de décès par heure de vol est la même quel que soit le niveau de risque (SAIL) (Target level of safety: 1 décès par million d'heures de vol)
- Equilibre entre :
 - Restrictions opérationnelles (densité de population survolée, intégration dans le trafic aérien, etc.)
 - Exigences techniques (navigabilité du drone) et opérationnelles (procédures, formation, etc.)
- Drone peu fiable ou non vérifié → Contraintes opérationnelles fortes, environnement peu risqué
- Environnement urbain, intégration dans le trafic aérien → Drone robuste (DVR/certifié), DAA, exploitant certifié, U-space, etc.

Les grands principes de la SORA (5/5)

• Une large part d'interprétation est laissée à l'exploitant et à l'autorité :

Avantages

- Permet de ne pas enfermer un nouveau type d'opération dans un carcan trop rigide
- Laisse une bonne place à l'innovation

Inconvénients

- Certains critères sont difficiles à évaluer
- Possibles désaccords entre exploitants et autorités sur l'évaluation des risques ou la validité des solutions proposées

La demande d'autorisation d'exploitation (1/4)

- Exploitant :
 - Lecture des guides DSAC et de la SORA (Easy Access Rules EASA)
 - Possible recours à une société spécialisée et/ou contact avec les fédérations
 - Ebauche de CONOPS et de SORA
 - En cas de doute ou d'incertitude sur l'évaluation des risques, rencontre possible avec la DSAC (en fonction des disponibilités)
- Création d'un compte METEOR (demande de compte sur <u>dsac-autorisations-drones-bf@aviation-civile.gouv.fr</u>)

La demande d'autorisation d'exploitation (2/4)

- Dépôt du dossier de demande sous METEOR :
 - Formulaire de demande d'AF
 - Conops / MANEX
 - Dossier technique (incluant la maintenance)
 - SORA (+ matrice de conformité OSO)
 - Fichier kml (tous volumes de vol), situation aérienne (+ protocoles/accords)
 - Emergency response plan (ERP)
 - Demandes de dérogation (nuit/hauteur) et de manifestation aérienne
 - Plan documentaire

La demande d'autorisation d'exploitation (3/4)

- Premier examen du dossier de demande sous guinzaine :
 - Commentaires généraux sur les éventuels obstacles critiques
 - Acceptation ou rejet du dossier de demande
- Poursuite de l'instruction :
 - Itération du dossier de demande
 - A chaque nouvelle itération, commentaires DSAC envoyés sous quinzaine
 - La tenue des délais dépend grandement de la diligence du demandeur
 - Mise en « standby » si pas de réponse sous un mois

La demande d'autorisation d'exploitation (4/4)

- Recommandations:
 - Pour des opérations récurrentes
 documentation générique + fiches missions
 - Plusieurs types d'opérations pour un même exploitant > plusieurs documentations génériques
- Périmètre couvert par l'autorisation :
 - Dépend du niveau de risque de l'opération, des mesures d'atténuation et de la capacité de l'exploitant à définir et appliquer sa propre doctrine
 - Premières opérations : autorisation individuelle (avec ou sans documentation générique) (minimum 3 mois)
 - Opérations récurrentes sur différents sites (documentation générique + fiches missions) :
 - AE individuelles (1 mois)
 - AE générique (envoi fiche mission 72h avant l'opération)
 - LUC

Etape #1 : le ConOPS

Etape #2 : risque SOL initial - iGRC

Etape #3 : (optionnelle) atténuation du risque sol (M1, M2, M3)

Etape #4 : risque AIR initial - iARC

Etape #5 (optionnelle) : atténuation stratégique du risque AIR

Etape #6 : atténuation tactique du risque AIR

Etape #7 : le niveau de SAIL

Etape #8 : les objectifs de sécurité : OSOs

Etape #9 : les espaces adjacents

Etape #10 : le portefeuille complet des risques

Etape 1 : concept d'opérations (CONOPS)

- Concept d'opérations :
 - Description de la ou des opérations
 - Manuel d'exploitation (MANEX) de l'exploitant
 - Dossier technique de l'UAS
 - ... incluant tous les éléments techniques et opérationnels permettant d'évaluer le niveau de risque de l'opération
- La constitution du CONOPS par l'exploitant peut être itérative : les étapes suivantes de la SORA permettent de faire évoluer le CONOPS en fonction du niveau de risque
- Le contenu et la structure du CONOPS sont fournis en Annexe A de la SORA

Etape 1 : concept d'opérations (CONOPS)

- Au cœur de la description de la mission :
 - La géographie du vol
 - La zone d'intervention / de contingence
 - La zone tampon

Figure 2 — Graphical representation of the SORA semantic model

Exemple fil rouge : prises de vue aériennes

- Opération souhaitée:
 - Vols en ascenseur de jour
 - > Entre 0 et 850m de hauteur
 - En VLOS et BVLOS
 - Prises de vue et des mesures de vent par dérive du drone, mesure de la hauteur de plafond nuageux jusqu'à 850m
 - Multirotor de 900g
- Demande déposée le 11/07 pour une opération le 21/08

Exemple fil rouge : Etape #1

- Formulaire de demande d'AE
- Formulaire de demande de dérogation aux hauteurs de survol (en parallèle de l'envoi à la préfecture)
- Analyse SORA
- Fichier kml de la zone de vol.
- ERP
- Protocole d'accord avec un gestionnaire d'aérodrome
- OSO
- MANEX et procédures associées (checklist mission, compte rendu d'évaluation, procédure DV)
- Plan de formation des équipages et fiche d'évaluation des compétences des télépilotes
- MUE du drone

Documentation générique Fiche mission + annexes

Exemple fil rouge : Etape 1

Exemple fil rouge : Etape #1

Dans le ConOps, chaque item de l'AMC est repris et justifié, soit par une explication, soit par un renvoi au MANEX vers la section adéquate.

1.1 - L'exploitant

Section	Référence au MANEX		
Structure et hiérarchie	Partie A, Section I, 1.1		
Politique de sécurité	Partie A, Section 5 : Management et évaluations à visée sécuritaire : 5.1		
	Notifications d'évènement à la DGAC : 5.2 REX : 5.3		
Activités	Partie A, Section 2		
	Partie A:		
Équipages	Noms et qualifications des télépilotes : Section 4, 4.1		
Equipages	Fonctions: Section 1, 1.2, 1.3		
	Suivi des compétences des télépilotes : Section 4, 4.2		
	Partie A, Section 3		
UAS	Liste des UAS et informations réglementaires : 3.1		
	Maintenance et entretien : 3.2		
Repérage	Partie B, Section 1, 1.1 (en particulier § a))		

1.2 - L'opération

Section	Information/Référence au MANEX		
Préparation de la mission	Partie B, section 1, 1.1		
Objectif de la mission	Prise de vue, mesure de vent par dérive du drone en mode ATTI à différentes altitudes, mesure de la hauteur de plafond nuageux jusqu'à 850m.		
Objectii de la mission	Les objectifs de la mission sont spécifiés dans la fiche de mission remise au télépilote par le chef de mission (Partie B, Section 1, 1.1, c)).		
Dates, plage horaire	Les vols sont entrepris de jour uniquement		
Zone Géographique	Partie B, Section 1, 1.1, § c)		
	Cf. cartographie en annexe		
Population aéronautique	Partie B, Section I, 1.1, § b) Les missions sont organisées dans le cadre de manifestations aériennes et sont donc réalisées sous l'autorité du Directeur des Vols. Le terrain à proximité fait l'objet d'un NOTAM réservant le terrain aux aéronefs basés et soumis à l'autorisation du Directeur des Vols.		

Etape #2 : Le risque SOL initial - iGRC

- Rappel: toute chute d'UAS sur un tiers est fatale
- Approche quantitative basée sur :
 - La surface de crash de l'UAS (Critical Area)
 - Densité de population

Objectif de sécurité : 10-6 décès par heure de vol (ou un décès par million d'heure de vol)

Etape #2 : Le risque SOL initial - iGRC

Niveau de risque sol initial						
Dimension caractéristique maximale UAS	1m	3m	8m	>8m		
Energie cinétique normalement associée	<700 J	<34 kJ	<1084 kJ	>1084 kJ		
	Scénario o	pérationnel à con	sidérer			
Vol en vue ou hors vue au-dessus d'une zone contrôlée	1	2	3	4		
Vol en vue au- dessus d'une zone faiblement peuplée	2	3	4	5		
Vol hors vue au- dessus d'une zone faiblement peuplée	3	4	5	 €		
Vol en vue au- dessus d'une zone peuplée	4			300		
Vol hors vue au- dessus d'une zone peuplée			8	10		
Vol en dessus a rassemblement personnes	7					
Vol hors vue au- dessus d'un rassemblement de personnes	8					

Classe de risque sol intrinsèque						
Dimension caractéristique max		1 m	3 m	8 m	20 m	40 m
Vitesse de croisière max		25 m/s	35 m/s	75 m/s	150 m/s	200 m/s
	Zone contrôlée	1	2	3	4	5
	< 25	3	4	5		7
Densité de	< 250	4	5/0	6		8
population max (h/km²)	< 2,500	$\sqrt{2}$			8	9
	< 25,00	6		8	9	10
	< 250,000	7	8	9	10	11
	> 250,000	7	9	Catégor	ie Certifiée (hors	s SORA)

Exemple fil rouge : Etape #2

L'énergie à l'impact

On établit la vitesse terminale de chute de l'UAS selon la formule $v = \sqrt{\frac{2mg}{c_x \rho S}}$ avec m la masse de l'UAS, g l'accélération de pesanteur prise égale à 9, 81 m.s⁻², C_z le coefficient de trainé pris à 0,7 (coefficient de frottement moyen), ρ la masse volumique de l'atmosphère prise égale à 1,2 kg.m³ et S la surface de l'UAS considéré prise à 0,12531m². On trouve alors une vitesse terminale de 14m.s-1 soit une énergie cinétique à l'impact de $E_c = \frac{1}{2}mv^2 = 103J$.

- La densité de population à risque
 - Analyse des terrains et de la densité via les données de l'INSEE avec capture d'écran à l'appui
 - Images satellites
 - Visites sur site
- A 850m avec un drone de 900g, le vol se fait en BVLOS.

Exemple fil rouge : Etape #2

Intrinsic IIAS ground risk class						
Max UAS characteristics dimension	1 m / approx. 3 ft	3 m / approx. 10 ft	8 m / approx. 25 ft	>8 m / approx. 25 ft		
Typical kinetic energy expected	< 700 J (approx. 529 ft lb)	< 34 kJ (approx. 25 000 ft lb)	< 1 084 kJ (approx. 800 000 ft lb)	> 1 084 kJ (approx. 800 000 ft lb)		
Operational scenarios						
VLOS/BVLOS over a controlled ground area ³	1	2	3	4		
VLOS over a sparsely populated area	2	3	4	5		
BVLOS over a sparsely populated area	3	4	5	6		
VLOS over a populated area	4	5	6	8		
BVLOS over a populated area	5	6	8	10		
VLOS over an assembly of people	7					
BVLOS over an assembly of people	8					
$(X \land X)$						

Etape #3 : Le risque SOL final - GRC

- Des moyens d'atténuation peuvent être utilisés pour réduire le risque sol
 - M1 : Atténuation **stratégique** (diminution du nombre de personnes exposées par l'opération)
 - M2 : Réduction de l'effet des impacts au sol
 - M3 : plan d'urgence (ERP emergency response plan)
- Moyens d'atténuation du risque décrits en Annexe B

Etape #3 : L'atténuation stratégique du risque (M1)

- Atténuation stratégique, c'est-à-dire avant le vol
 - Définir une zone buffer → vent, trajectoire balistique, temps de réaction
 - Prendre des mesures dans cette zone : évacuer les tiers, les abriter, équiper l'UAS d'un avertisseur sonore en cas de chute par exemple.
- Le crédit apporté dépend de la robustesse du critère : de 0 à -4 (voir plus loin)
- Diviser le nombre de personnes à risque par <u>10</u> pour obtenir <u>1</u> point de crédit, par <u>100</u> pour <u>2</u> points, etc.

Etape #3 : La réduction des effets de l'impact au sol (M2)

-1 point de GRC = réduction d'un facteur 10 des effets de l'impact au sol

Possibilité de réduire la zone de crash et/ou la létalité du drone

Niveau medium :

- les déclarations doivent être justifiées par des essais ou analyses
- la fiabilité du moyen doit être justifiée
- Arguments possibles:
 - **Parachute**
 - Descente avec énergie réduite (spirale)
 - Diminution de l'énergie transmise

Etape #3 : Le plan d'urgence (M3)

- Plan de réponse d'urgence (ERP)
 - Limiter les conséquences d'un accident
 - Inclure la formation des personnels, un entraînement, des exercices, y compris avec des organismes tiers (autorités, services médicaux par exemple)
 - Prévoir les conditions de reprise des opérations / de retour à la normale
- Canevas disponible en ligne et dans les Easy Access Rules (p. 293 du PDF)
- NB : dans la SORA 2.5 il deviendra obligatoire et partie intégrante du ConOps. Le critère M3 n'existera plus.

Etape #3 : Un mot sur la robustesse

- Elle conditionne le crédit à apporter au moyen d'atténuation du risque
 - Intégrité : le gain de sécurité apporté par la mesure d'atténuation
 - Assurance : le niveau de fiabilité / confiance de la solution

	Assurance faible	Assurance moyenne	Assurance forte
Intégrité faible	Robustesse faible	Robustesse faible	Robustesse faible
Intégrité moyenne	Robustesse faible	Robustesse moyenne	Robustesse moyenne
Intégrité haute	Robustesse faible	Robustesse moyenne	Robustesse haute

- Robustesse faible : déclaratif (ce qui n'exclut pas la vérification par l'autorité)
- Robustesse **moyenne** : nécessite des **faits** pour démontrer l'efficacité et la fiabilité de l'atténuation
- Robustesse haute : nécessite une validation par une autorité ou un organisme tiers

Etape #3 : Le GRC final

		Robustesse		
Atténuation		Faible/Absent	Moyenne	Haute
1	M1- Atténuation Stratégique du risque sol	0 : Absent -1 : Faible	-2	-4
2	M2- Réduction des effets de l'impact au sol	0	-1	-2
3	M3- Plan de réponse d'urgence (ERP) instauré et inclus dans la formation de l'équipe	1	0	-1

$$iGRC + M1 + M2 + M3 = GRC$$

Exemple fil rouge : Etape #3

		Robustness		
Mitigation Sequence	Mitigations for ground risk	Low/None	Medium	High
1	M1 — Strategic mitigations for ground risk ¹	0: None -1: Low	-2	-4
2	M2 — Effects of ground impact are reduced ²	0	-1	-2
3	M3 — An emergency response plan (ERP) is in place, the UAS operator is validated and effective	1	0	-1

Etape #4: Le risque air initial - iARC

- iARC = « Intrinsic Air Risk Category »
- Risque que l'UAS entre en collision avec un aéronef habité
- Situation la plus défavorable : pas de coordination préalable, etc.
- Il doit être justifié avec des cartes et le ConOps:
 - Carte OACI de navigation
 - Plateformes privées
 - Plateformes ULMS
 - DZ, hôpitaux, etc.

Attention aux conditions de pénétration dans les zones Réglementées

Exemple fil rouge: Etape #4

L'opération est réalisée à une hauteur dépassant 500ft et inférieure à 60 000ft, dans un espace aérien de classe D à proximité d'un terrain dont l'accès sera restreint aux aéronefs basés et ceux de la compétition . De cela, on retient donc un ARC initial de type ARC-d.

Etape #5 : atténuation stratégique du risque AIR

- Stratégique = avant le vol
 - Diminution de la probabilité de rencontre avec un autre aéronef
 - Annexe C de la SORA
- Atténuation du risque par les restrictions :
 - Volume d'évolution réduit (VLL, loin des aérodromes, ...)
 - Période d'évolution choisie (jour/nuit)
 - Temps d'exposition
 - ARC-a : espace atypique (h<30m ou près des obstacles) ou ségrégué (ZRT)
- Atténuation du risque par des règles communes :
 - Coordination avec ATC (obtention obligatoire d'un accord ou protocole) / coordination avec les autres usagers (NOTAM, coordination avec gestionnaire d'aérodrome / clubs)
 - U-space (développé dans une nouvelle annexe)
 - Equipements électroniques obligatoires

- Terrain protégé par NOTAM à 2 titres:
 - NOTAM de restriction du terrain car l'opération aura lieu au cours d'une compétition
 - NOTAM d'information spécifie notamment l'activité et la compétition
- Chef de mission informe également dans la semaine qui précède les vols drones les différents acteurs pouvant être amenés à interagir avec la mission (CTR, la SIV, le SAMU, gendarmerie, pompiers, mairie).
- Protocole établi avec le SNA pour réaliser les vols drone au sein de leur CTR + détails fournis
- Procédure prévue pour les aéronefs convergents

Etape #6 : atténuation tactique du risque AIR

- TMPR: Tactical Mitigation Performance Requirements
 - Ce n'est pas une réduction de l'ARC, mais des exigences résultant de l'ARC (étape 5)
 - Obligatoire dès lors que ARC ≠ ARC-a
- Présence d'observateurs visuels de l'espace aérien (AO):
 - Pas forcément en vue du drone
 - VLOS ou Extended VLOS compatible avec tous niveaux d'ARC
 - Procédures d'évitement à définir et inclure dans le Manex.
- Vols hors vue et hors espace atypique :
 - « Detect/Sense & Avoid »
 - Proportion d'aéronefs coopératifs à considérer
 - Efficacité du dispositif reste à démontrer
 - Encore à l'étude au niveau national et européen...

38

- Présence d'un directeur des vols (DV)
 - Pour gérer les aéronefs extérieurs
 - Pour gérer les aéronefs de la compétition
 - Pour gérer les aéronefs basés
 - Pour gérer les vols du drone
- Tout vol est soumis à autorisation du DV et à des procédures → trafic « normal » de la plateforme interrompu.
- Veille radio sur la fréquence du terrain + sur la fréquence de la CTR
- Veille visuelle aussi bien du côté du DV que des télépilotes/observateurs (voire 3 avec le veilleur de sécurité)
- Caméra du drone orientée vers le terrain
- Drone servant aux opérations est équipé d'ADS-B

Etape #7 : détermination du niveau de SAIL

SAIL : Specific Assurance and Integrity Level

SAIL					
	ARC résiduel				
GRC Final	а	b	С	d	
≤2	I	II	IV	VI	
3	II	II	IV	VI	
4	III	III	IV	VI	
5	IV	IV	IV	VI	
6	V	V	V	VI	
7	VI	VI	VI	VI	
>7	Opération en catégorie Certifiée				

SAIL determination				
	Residual ARC			
Final GRC	а	b	С	d
≤2	1	II	IV	VI
3	II	II	IV	VI
4	III	III	IV	VI
5	IV	IV	IV	VI
6	V	V	V	VI
7	VI	VI	VI	VI
>7	Category C operation			

Etape #8 : Objectifs opérationnels de sécurité - OSOs

- OSO Operational Safety Objectives:
 - 24 objectifs identiques pour tous les niveaux de SAIL
 - Niveaux de robustesse dépendant du SAIL : O (optionnel), L (bas), M (Moyen) ou H (Haut)

OSO number (in				SA	AIL		
line with Annex E)		1	II	III	IV	V	VI
	Technical issue with the UAS						
OSO#01	Ensure the UAS operator is competent and/or proven	0	L	M	Н	Н	Н
OSO#02	UAS manufactured by competent and/or proven entity	О	0	L	M	Н	Н
OSO#03	UAS maintained by competent and/or proven entity	L	L	M	M	Н	Н
OSO#04	UAS developed to authority recognised design standards ¹	О	0	L	L	M	Н
OSO#05	UAS is designed considering system safety and reliability	O	0	L	M	Н	Н
OSO#06	C3 link performance is appropriate for the operation	O	L	L	M	Н	Н
OSO#07	Inspection of the UAS (product inspection) to ensure consistency with the ConOps	L	L	M	М	Н	Н

Etape #8 : Objectifs opérationnels de sécurité - OSOs

 Annexe E de la SORA : description des niveaux d'intégrité et d'assurance pour chaque OSOs

OSO #01 — Ensure that the UAS operator is competent and/or proven

TECHNICAL ISSUE WITH THE UAS		Level of integrity				
		Low Medium		High		
OSO #01 Ensure that the UAS operator is	Criteria	The applicant is knowledgeable of the UAS being used and as a minimum has the following relevant operational procedures: checklists, maintenance, training, responsibilities, and associated duties.	Same as low. In addition, the applicant has an organisation appropriate ¹ for the intended operation. Also, the applicant has a method to identify, assess, and mitigate the risks associated with flight operations. These should be consistent with the nature and extent of the operations specified.	Same as medium.		
competent and/or proven	Comments	N/A	For the purpose of this assessment, 'appropriate' should be interpreted as commensurate with/proportionate to the size of the organisation and the complexity of the operation.	N/A		

TECHNICAL ISSUE WITH THE UAS		Level of assurance			
		Low Medium		High	
OSO #01 Ensure that the UAS operator is competent and/or proven	Criteria	The elements delineated in the level of integrity are addressed in the ConOps.	Prior to the first operation, a competent third party performs an audit of the organisation	The applicant holds an organisational operating certificate or has a recognised flight test organisation. In addition, a competent third party recurrently verifies the UAS operator's competences.	
and/or proven	Comments	N/A	N/A	N/A	

Etape #8 : exigences opérationnelles

- Conditions portant sur :
 - La définition et la validation des procédures
 - La formation des télépilotes et du personnel aux situations normales / anormales / urgentes
 - La maintenance du système
 - L'environnement
 - Etc.

Etape #8 : exigences techniques (navigabilité)

- L'AESA est autorité compétente en matière de navigabilité des UAS dans le domaine civil. Cela concerne :
 - Les OSOs « techniques » #2, 4, 5, 6, 10, 12, 18, 19
 - Critères #1 pour M1 et M2
 - Confinement renforcé
- SAIL III:
 - Vérification de conception par l'AESA fortement recommandée ou application du MoC FTB
 - Démarche du constructeur sans implication DSAC
- SAIL IV : vérification de conception par l'AESA
- SAIL V et VI : certificat de type (restreint)

OSOs liés à	à des conditions d'exp	ploitation défavorables		
		Critère n° 1 (Définition) Les conditions environnementales nécessaires à la sécurité des opérations sont définies et reflétées dans le manuel de vol ou un document équivalent ¹	¹ La distinction entre un niveau de robustesse faible, moyen et élevé pour ce critère est obtenue par le niveau d'assurance (voir tableau ci-dessous).	
		Critère n°1 (Définition) Tenez compte des critères définis à le section 9		Cf. manuel d'utilisation du constructeur et MANEX 2.1
Les conditions environnementales nécessaires à la sécurité des opérations sont définies, mesurables et respectées	Critère n° 2 (procédures) Il existe des procédures permettant d'évaluer les conditions environnementales avant et pendant la mission (c'est-à-dire une évaluation en temps réel), qui comprennent l'évaluation des conditions météorologiques (METAR, TAFOR, etc.) et un système d'enregistrement simple².	moyen et élevé pour ce critère est obtenue par le niveau d'assurance (voir tableau ci-dessous).	Cf. MANEX 1.1 et check-list	
	Critère n° 2 (procédures) – Les procédures n'exigent pas de validation par rapport à une norme ou à un moyen de mise en conformité jugé adéquat par l'autorité compétente. – L'adéquation des procédures et des listes de contrôle est déclarée.		Cf. MANEX 1.1 et check-list	
		Critère n° 3 (formation) La formation couvre l'évaluation des conditions météorologiques. ³	³ La distinction entre un niveau de robustesse faible, moyen et élevé pour ce critère est obtenue par le niveau d'assurance (voir tableau ci-dessous).	Cf. Plan de formation
		La formation est auto-déclarée (avec preuves à l'appui)		Cf. Plan de formation et fiches d'évaluation

Etape #9: espaces adjacents

- Même si le niveau de SAIL est bas sur la zone d'opération, les conséquences d'une échappée (« fly away ») doivent être prises en compte.
- Espaces adjacents ≈ 3 minutes de vol à V_{max}

Deux niveaux :

Confinement standard:

- Aucune panne probable de l'UAS ne doit conduire à une sortie de la zone d'opération
 - → justification de la fiabilité du drone (exemple : arbre des défaillances)
 - → ou FTS indépendant (pour drone de conception non maîtrisée)

Etape #9 : espaces adjacents

Deux niveaux :

Confinement renforcé :

- A proximité de rassemblements de personnes, d'un espace ARC-d, ou en zone peuplée (si M1 ou zone contrôlée au sol)
- Pas de panne unique conduisant à une sortie de la zone d'opération
- Probabilité 10⁻⁴/h de sortie de la zone d'opération
- Utilisation de standards/méthodologie reconnue pour le développement de software/hardware pouvant conduire directement à une sortie de la zone d'opérations

Etape #9 : espaces adjacents

Exigences du MoC 2511:

- Pas le niveau de performance du confinement renforcé : autorité apprécie si cela est suffisant pour l'opération considérée.
- SAII II
- Indépendance du FTS
- Tests (sol et vol)
- Limitations et instructions de maintenance
- Définition du buffer
- → Fournir une matrice de conformité

- Pas de proximité immédiate de:
 - zones de trafic dense (cf risque air)
 - de rassemblement de personnes
 - de zones urbaines

Donc confinement standard revendiqué

- Aéronef sans vérification de conception : impossibilité de conclure qu'il est « peu probable » qu'il sorte de sa zone d'opération
- Présence d'un système de coupure moteur indépendant
- Procédures d'urgences correctement décrites

→ Rédaction, relecture puis signature de l'autorisation d'exploitation et de l'avis technique le cas échéant

Etape #10 : Portefeuille complet des risques

- Objectifs:
 - Vérifier la disponibilité des mesures d'atténuation au moment de l'opération
 - Application des dispositions de la réglementation nationale :
 - Arrêté Espace (dérogations vols de nuit, hauteur, etc.)
 - Manifestations aériennes
 - Prise en compte des risques spécifiques non traités par la SORA :
 - Sûreté
 - Vie privée
 - Environnement
 - Marchandises dangereuses (hors catégorie Certifiée)

52

Guide de mise en œuvre de la SORA

https://www.ecologie.gouv.fr/sites/default/files/Guide de mise en oeuvre SORA.pdf

Direction de la sécurité de l'aviation civile 53 6 DÉCEMBRE 2022

Merci pour votre attention