

FACULTY OF ENGINEERING

Building a better VHDL testing environment

Joren Guillaume

FEA Ghent University

Thesis presentation

- Situating
 - VHDL
 - Testing and problems
 - Software development techniques
- 2 Proposed solution
 - VHDL testing framework
 - Using the framework
 - Automation
- Concluding
 - Results
 - Future work
 - Conclusion
- Demo

- Situating
 - VHDL
 - Testing and problems
 - Software development techniques
- Proposed solution
 - VHDL testing framework
 - Using the framework
 - Automation
- Concludir
 - Results
 - Future work
 - Conclusion
- 4 Demo

VHDL

- VHSIC Hardware Description Language
- Used for describing digital and mixed-signal systems
- Developed by U.S. Department of Defense
 - ▶ Document → Simulate → Synthesize

Testing VHDL

Test benches

- Unit Under Test (UUT)
- Apply stimuli
- Signal/output tracking
 - Assertions
 - Comparison to desired result
 - Wave-check

Testing VHDL

Problems with testing

- Non-standardized process
- Single point of failure
- Time consuming

Software development techniques

Unit testing

- Unit = smallest behaviour in code
- Test failure → exact location

Test First Development

- Create test before the code
- How will the code behave?

Test Driven Development

- TFD & refactoring
- Proven to significantly reduce errors

7 / 24

- - VHDL
 - Testing and problems
 - Software development techniques
- Proposed solution
 - VHDL testing framework
 - Using the framework
 - Automation
- - Results
 - Future work
 - Conclusion

Proposed solution

Standardized testing framework

- Based on software development techniques
- Cross platform
- At the core: Python script
- Utility library
- Continuous Integration system

VHDL testing framework

- Split test bench into groups of tests
- Separate groups into new test benches
- Ompile sources and new test benches
- Execute test benches
- 6 Capture and process results

→ Execute

Preparing test benches

- Use Bitvis utility library
 - ► Faster coding
 - Improved readability
- Separate independent tests
 - ► Line by line
 - ► Start/Stop
 - Partitioned
- Create commands file

Modified test bench example

D flip-flop

• Old test bench:

```
assert q = '0'
    report "Wrong output value at startup" severity FAILURE;
d <= '1';
WAIT FOR clk_period;
assert q = '1'
    report "Wrong output value at first test" severity FAILURE;</pre>
```

• Modified test bench:

```
— Test 1
    check_value(q = '0', FAILURE, "Wrong output value at startup");
    write(d, '1', "DFF");
    check_value(q = '1', FAILURE, "Wrong output value at first test");
    ...
—End 1
```


Processing and compiling

Python script:

- Reads command line arguments
- Reads modified test bench
- Groups tests into new test benches

Processing and compiling

ModelSim:

- Compiles source code
- Compiles test benches
 - → One entity, many architectures

Execution and results

ModelSim:

Executes each test bench

Python script:

- Captures ModelSim output
- Processes results
 - Text report
 - ▶ JUnit XML report

Automation

Hudson-CI

- Gets latest version from RC
 - Timed retrieval
 - Detect changes
- Automated script execution
- Result progress (XML)

- Situating
 - VHDL
 - Testing and problems
 - Software development techniques
- Proposed solution
 - VHDL testing framework
 - Using the framework
 - Automation
- Concluding
 - Results
 - Future work
 - Conclusion
- Demo

Results

Multiple open-source projects tested

S	w	Job ↓	Last Success	Last Failure	Last Duration	Console	
	<i>-</i>	VHDL-AES	1 min 15 sec (<u>#30</u>)	3 mo 4 days (<u>#16</u>)	41 sec		
	774		38 sec (<u>#35</u>)	, , , , , , , , , , , , , , , , , , , ,			②
	offin.		3 mo 1 day (<u>#12</u>)				(2)
	<i>-</i>	VHDL-SHA	N/A	52 sec (<u>#5</u>)	6,2 sec	_	(2)

Results

Precise debugging information

Test Result

110 tests (±0) Took 0 ms.

All Failed Tests

Test Name	Duration	Age
>>> 2014.12.03 - 14.22 - NRVOYGJC.0114 - SBI check(A:x"1", x"FF")	0.0	4
>>> 2014.12.03 - 14.22 - NRVOYGJC.0115 - SBI check(A:x"0", x"FF")	0.0	4
>>> 2014.12.03 - 14.22 - NRVOYGJC.0116 - SBI check(A:x"4", x"FF")	0.0	4

All Tests

Package	Duration	Fail	(diff)	Skip	(diff)	Total	(diff)
2014.12.03 - 14	0 ms	3	+3	0		110	+110

Future work

- Wider, better tool support
- Lexical analysis
 - Automated partitioning
 - ▶ Smart test bench generation
- Adapted CI tool
 - Specific needs of hardware development

Conclusion

- Software methods are applicable if:
 - Tailored to development needs
 - Integrated with existing methods
- The framework provided:
 - ► Fasier to read code
 - Precise debugging information
 - Eliminated single point of failure

End

Thanks for your attention!

Questions?

- Situating
 - VHDL
 - Testing and problems
 - Software development techniques
- Proposed solution
 - VHDL testing framework
 - Using the framework
 - Automation
- 3 Concluding
 - Results
 - Future work
 - Conclusion
- Demo

Demo

Demo

