Introduction mathématique aux sciences de la vie

Séance d'exercices du 22/10/25

Télécharger le PDF

Sondage

- Merci d'y avoir répondu
- Tout n'a pas été anlysé (77 pages de rapport)
- Ce que je peux déjà dire:
 - → Correctif disponible àpd d'aujourd'hui
 - → Je n'interrogerai oralement que les volontaires et ceux qui bavardent pendant que je parle
 - → Ceux qui trouvent le rythme trop lent, les exercices trop faciles: avancez dans le cours en autonomie! ;-)

Parité

$$f(x) = \sqrt{x+7}$$

Opérations sur les fonctions

Soit f et g deux fonctions. Les opérations sur ces fonctions sont définie à travers leurs expressions analytiques:

Somme et différence

 $(f\pm g)$ est la fonction définie par

$$(f \pm g)(x) = f(x) \pm g(x).$$

De plus, $\mathrm{dom}(f\pm g)=\mathrm{dom}(f)\cap\mathrm{dom}(g)$.

Produit

 $(f \cdot g)$ est la fonction définie par

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

De plus, $\mathrm{dom}(f\cdot g)=\mathrm{dom}(f)\cap\mathrm{dom}(g)$.

Quotient

 $rac{f}{g}$ est la fonction définie par

$$\left(rac{f}{g}
ight)(x)=rac{f(x)}{g(x)}.$$

De plus,
$$\operatorname{dom}\!\left(\frac{f}{g}\right) = \operatorname{dom}(f) \cap \operatorname{dom}(g) \backslash \{x \in \operatorname{dom}(g) | g(x) = 0\}.$$

Composition

 $f\circ g$ est la fonction définie par

$$(f\circ g)(x)=f(g(x))$$

De plus, $\mathrm{dom}(f\cdot g)=\{x\in\mathrm{dom}(g)|g(x)\in\mathrm{dom}(f)\}$

Attention!: la composée n'est pas une opération commutative: $f\circ g \neq g\circ g$.

Exercice 2.2.B) (p. 9)

Soient f et g deux fonctions. Déterminer une expression analytique de $f\circ g$ et $g\circ f$.

•
$$f(x)=x^2$$
 et $g(x)=\cos(x)$

Exercice 2.2.B)

Soient f et g deux fonctions. Déterminer une expression analytique de $f\circ g$ et $g\circ f$.

•
$$f(x) = \sqrt{x}$$
 et $g(x) = \ln(x)$

Exercice 2.2.B)

Soient f et g deux fonctions. Déterminer une expression analytique de $f\circ g$ et $g\circ f$.

•
$$f(x)=rac{x-1}{1+x}$$
 et $g(x)=x^3$

Exercice 2.2.B)

Soient f et g deux fonctions. Déterminer une expression analytique de $f\circ g$ et $g\circ f$.

Prépa:

- $ullet f(x) = \mathrm{e}^x \; \mathrm{et} \; g(x) = 42 \ln(x)$
- $f(x) = \sin(2x)$ et g(x) = 4 7x
- $ullet f(x) = \sin(x)$ et g(x) = |1-x|

Réciproque d'une fonction

Définition: Soit f une fonction. La réciproque de f est une fonction (si elle existe) g telle que $f \circ g = g \circ f = \operatorname{Id}$.

Graphiquement, la réciproque de f est s'obtient par symétrique d'axe x=y.

Réciproque d'une fonction

Exemple: x^3 a pour réciproque $\sqrt[3]{x}$.

Réciproque d'une fonction

Exemple: x^2 n'a pas de réciproque. Mais restreinte à $\mathbb{R}^{\geq 0}$, alors x^2 a une réciproque, la fonction \sqrt{x} .

Déterminer algébriquement une réciproque (2.2.C)

$$f(x) = 2x + 3$$

$$f(x) = |x| + 2$$

$$f(x) = rac{1-x}{x}$$

Reste: prépa

•
$$f(x) = x^2 - 6x + 9$$

- $\bullet \ \frac{2x+1}{x+3}$
- $f(x) = \sqrt[3]{x+1}$

Exponentielles et logarithmes

Exponentielles

Soit $a \in \mathbb{R}^{>0} \setminus \{1\}$ une base. L'exponentielle de base a, notée a^x , est une fonction dérivable qui prolonge les exposants de base a.

Exponentielles

Soit $a \in \mathbb{R}^{>0} \setminus \{1\}$ une base. Les propriétés algébriques de a^x sont: pour $m,n\in\mathbb{R}$

- $a^0 = 1$
- $\bullet \ a^{m+n}=a^ma^n$
- $ullet a^{m-n}=rac{a^m}{a^n}$ $ullet a^{-m}=rac{1}{a^m}$
- $(a^m)^n = a^{mn}$

La deuxième propriété dit: l'exponentielle transforme une somme ne un produit. En conséquence, une exponentielle croît ou décroît très vite.

Logarithmes

Soit $a \in \mathbb{R}^{>0} \setminus \{1\}$ une base. Le logarithme de base a, noté $\log_a(x)$, est la réciproque de a^x .

Logarithmes

Soit $a \in \mathbb{R}^{>0} \setminus \{1\}$ une base. Les propriétés algébriques de $\log_a(x)$ sont obtenue par traduction de celles de a^x : pour $m,n \in \mathbb{R}$

- $ullet \log_a(a^x) = x$ et $a^{\log_a(x)} = x$
- $\log_a(1) = 0$
- $\log_a(mn) = \log_a(m) + \log_a(n)$
- $ullet \ \log_a(m/n) = \log_a(m) \log_a(n)$
- $ullet \log_a(x^m) = m \log_a(x)$
- ullet si b est une autre base: $\log_b(x) = rac{\log_a(x)}{\log_a(b)}$

Exponentielle et logarithme népérien

Une base est particulière: la base $e \simeq 2,718281828459045$. Pour cette base on note l'exponentielle e^x et le logarithme $\ln(x)$.

Soient a, b et c trois réels strictement positifs et différents de 1. Prouvez que $\log_a(b) \times \log_b(c) \times \log_c(a) = 1$.

Exprimez les logarithmes suivants en fonction de multiples de $\ln(2)$, $\ln(3)$ ou $\ln(5)$:

• ln(4)

Exprimez les logarithmes suivants en fonction de multiples de $\ln(2)$, $\ln(3)$ ou $\ln(5)$:

• ln(6)

Exprimez les logarithmes suivants en fonction de multiples de $\ln(2)$, $\ln(3)$ ou $\ln(5)$:

• ln(8)

Exprimez les logarithmes suivants en fonction de multiples de $\ln(2)$, $\ln(3)$ ou $\ln(5)$:

• ln(9)

Exprimez les logarithmes suivants en fonction de multiples de $\ln(2)$, $\ln(3)$ ou $\ln(5)$:

• ln(10)

Exprimez les logarithmes suivants en fonction de multiples de $\ln(2)$, $\ln(3)$ ou $\ln(5)$:

• ln(0,5)

Le reste est à faire à la maison.

En sachant que $\log(2) \simeq 0,301$, déterminez ce que vaut approximativement :

• log(4)

En sachant que $\log(2) \simeq 0,301$, déterminez ce que vaut approximativement :

• $\log(0,2)$

En sachant que $\log(2) \simeq 0,301$, déterminez ce que vaut approximativement :

•
$$\log(\frac{1}{16})$$

En sachant que $\log(2) \simeq 0,301$, déterminez ce que vaut approximativement :

• $\log(0,00064)$

Le reste est à faire à la maison.

•
$$\ln(x) = 8$$

$$\bullet \ \ln(x+1) = 4$$

•
$$\log(\frac{5}{x}) = 2$$

$$\bullet \ \log(x-5)=0$$

•
$$\ln(2x-3) - \ln(x-4) = 2\ln(5)$$

Le reste est à faire à la maison.

•
$$e^{4x-1} = 0$$

•
$$10^{2x} = 20$$

•
$$e^{2x} - e^{2x+1} + 1 = e$$

$$\bullet e^{2x} + e^x - 2 = 0$$

$$\bullet$$
 9 \times 2^x = 4 \times 3^x

Le reste est à faire à la maison.