УДК 66.0

КАТАЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ ФТАЛОНИТРИЛА В ПРИСУТСТВИЕ КИСЛОРОДА

••••

CATALYTIC PRODUCTION OF PHTHALONITRILE IN THE PRESENCE OF OXYGEN

Моран Христофорова Джессика Александра

студент группы MTC11-18-01, Уфимский государственный нефтяной технический университет

Мовсумзаде Эльдар Мирсамедович

профессор кафедры общей, аналитической и прикладной химии, Уфимский государственный нефтяной технический университет alexandro.dgessika@gmail.com

Аннотация. Данная статья посвящена способу синтеза фталонитрила.

Ключевые слова: фталонитрил, синтез, каталитическое получение.

Moran Christophorova Jessica Alexandra student of MTS11-18-01 group, Ufa State Petroleum Technical University

Movsumzade Eldar Mirsamedovich

Professor, Department of General, Analytical and Applied Chemistry, Ufa State Petroleum Technical University alexandro.dgessika@gmail.com

Annotation. This article is devoted to the method of phthalonitrile synthesis.

Keywords: phthalonitrile, synthesis, catalytic production.

ф талонитрилы является промежуточным продуктом для синтеза пигментов и красителей, красок, лаков, стабилизирующих агентов и других материалов [1]/

Производные фталонитрилов представляют собой относительно новый класс коммерческих высокоэффективных технических термореактивных материалов. Они проявляют очень высокую термическую и окислительную стабильность и выдающиеся высокотемпературные свойства. Они также не изменяют свои физические свойства до разложения при последующем отверждении и, следовательно, не имеют вязкоупругого перехода до термического разложения [2], [3]/

Нами синтезирован фталонитрил, общей формулы C₆H₄(CN)₂.

Синтез фталонитрила проводили на лабораторной установке, принципиальная схема которой показана на рисунке 1. Синтез проводили в периодическом режиме при заданных температурах путем пропускания газового аммиака через расплавленный фталевый ангидрид, перемешанный с катализатором. В качестве катализатора использовали γ -Al $_2$ O $_3$ в виде порошка с диметрами частиц 200—400 мкм. Мелкий диаметр частиц необходим для взвешенного состояния катализатора в процессе синтеза. Конструкция реактора позволяет поддерживать взвешенное состояние катализатора при заданном расходе барботажа аммиака через расплав фталевого ангидрида. Непрореагировавший аммиак охлаждался до 60 °C, отделялся в отстойнике от капель жидкости и проходил каскад абсорберов для улавливания. После пропускания избыточного количества аммиака реакционную массу в нагретом состоянии переливали в металлические формочки для охлаждения и выделения твердого фталонитрила при нормальных условиях.

Рисунок 1 — Схема лабораторной установки получения фталонитрила: 1 — испаритель водного раствора аммиака; 2, 7 — насос циркуляции горячей воды или масла; 3, 8 — водо- или масло-нагреватели; 4, 9 — конденсаторы; 5, 10 — отстойники; 6 — реактор; 11 — абсорберы

Результаты проведенного синтеза представлены в таблице 1 и 2.

Таблица 1 – Результаты синтеза фталонитрила

Показатель	Номер синтеза					
	1	2	3	4	5	
Содержание катализатора, %масс	5 %масс.	5 %масс.	15 %масс.	15 %масс.	15 %масс.	
Температура в реакторе, °С	210 °C	250 °C	200 °C	210 °C	230 °C	
Время контактирования, мин	15	15	15	15	15	
Нагрузка на катализатор по фталевому ангидриду, г/г _{кат}	19	19	5,7	5,7	5,7	
Расход соли аммония в реактор, л/час	120	120	120	120	120	
Содержание фталонитрила в продукте реакции, %масс.	6,2	8,9	5,9	8,7	15,6	
Селективность процесса, %	100	99,8	100	100	100	

Таблица 2 - Результаты синтеза фталонитрила

Показатель	Номер синтеза						
	6	7	8	9	10		
Содержание катализатора, %масс	15 %масс.	20 %масс.	20 %масс.	20 %масс.	20 %масс.		
Температура в реакторе, °С	250 °C	200 °C	210 °C	230 °C	250 °C		
Время контактирования, мин	15	15	15	15	15		
Нагрузка на катализатор по фталевому ангидриду, г/г _{кат}	5,7	4	4	4	4		
Расход соли аммония в реактор, л/час	120	120	120	120	120		
Содержание фталонитрила в продукте реакции, %масс.	26,1	16,2	28,9	30,5	41,5		
Селективность процесса, %	99,7	100	100	100	99,1		

Литература:

- 1. Способ получения фталонитрила. URL : https://yandex.ru/patents/doc/RU2203270C2_20030427 (дата обращения: 29.03.2020 г.).
- 2. Keller T.M. Phthalonitrile conductive polymer // J. Polym. Sci. Part A Polym. Chem. 1987. № 25. P. 2569–2576. doi: 10.1002/pola.1987.080250921.
- 3. Keller T.M. Phthalonitrile-based high temperature resin // J. Polym. Sci. Part A Polym. Chem. 1988. N 26. P. 3199–3212. doi: 10.1002/pola.1988.080261207.

References:

- 1. The method of producing phthalonitrile. URL : https://yandex.ru/patents/doc/RU2203270C2_20030427 (circulation date : 29.03.2020).
- 2. Keller T.M. Phthalonitrile conductive polymer // J. Polym. Sci. Part A Polym. Chem. 1987. № 25. P. 2569–2576. doi: 10.1002/pola.1987.080250921.
- 3. Keller T.M. Phthalonitrile-based high temperature resin // J. Polym. Sci. Part A Polym. Chem. 1988. № 26. P. 3199–3212. doi: 10.1002/pola.1988.080261207.