وَمَا أُوتِيتُوْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Ain Shams University – Faculty of Engineering – ECE Dept. – Integrated Circuits Lab.

Dr. Hesham Omran

Analog IC Design Design Challenge – 2024

Self-Biased Sub-1V Bandgap Reference Circuit

Intended Learning Objectives

In this design challenge you will:

- Learn how to design a sub-1V self-biased BGR circuit.
- Learn how to analyze and redesign an existing circuit.
- Learn how to size an analog circuit on your own.
- Learn how variations affect the circuit.
- Learn how to design a startup circuit.

Design Specs

It is required to redesign the BGR circuit shown above according to the following specifications.

	<u> </u>
Technology	65nm
Supply voltage	2
Corners	Temp: -40 to 125
	Process: SS, SF, FS, FF
Output voltage	0.8
Bias current	< 10uA
Phase margin	> 60°

Deliverables

- Part 1 (6 pts): BGR core circuit
 - Design the core BGR circuit only
 - Do not use a startup circuit
 - Replace the amplifier by a behavioral amplifier (VCVS)
 - Present the following:
 - Hand analysis
 - Schematics with device sizing.
 - Schematics with DC OP and node voltages annotated.
 - Vout vs temperature (-40 to 125) at TT, SS, FF, SF, FS
- Part 2 (4 pts): Replace the behavioral amplifier with the actual self-biased amplifier
 - Present the following:
 - Hand analysis
 - Schematics with device sizing.
 - Schematics with DC OP and node voltages annotated.
 - Vout vs temperature (-40 to 125) at TT, SS, FF, SF, FS
 - STB analysis results
 - From the closed loop specs, use hand analysis to find the worst-case open loop specs of the OTA (CLeff, DC Gain, UGF, PM).
- Part 3 (2 pts BONUS): Design the startup circuit
 - o Present the following:
 - Schematics with device sizing.
 - Schematics with DC OP and node voltages annotated.
 - Transient simulation of Vout vs time
 - Apply VDD as a ramp from (0,0) to (1ms,2V).

Acknowledgements

Thanks to all who contributed to these labs. If you find any errors or have suggestions concerning these labs, contact Hesham.omran@eng.asu.edu.eg.