

Universidade Estadual de Campinas Instituto de Computação Arquitetura de Computadores II – MO601 Prof. Rodolfo Jardim de Azevedo

Projeto 4

Experimento de replicação de resultados do artigo *Memory Centric Characterization* and *Analysis of SPEC CPU2017 Suite*

Rubens de Castro Pereira RA 217146

Campinas - SP

Junho de 2023

Índice

1	Introdução	. 3
2	Ambiente de Experimentação	. :
3	Experimento do Projeto	. 3
4	Experimentos Adicionais	. 5
5	Considerações sobre o aprendizado nesse projeto	.6

1 Introdução

Esse projeto tem o propósito de desenvolver um experimento que replique algum dos resultados apresentados no artigo "Memory Centric Characterization and Analysis of SPEC CPU2017 Suite", indicando o processo de realização do experimento dos benchmarks selecionados, a métrica utilizada e a a comparação dos resultados. A Seção 2 apresenta o ambiente de experimentação, a Seção 3 detalha a execução e resultados, e a Seção 4 descreve considerações sobre o aprendizado neste projeto.

2 Ambiente de Experimentação

O computador utilizado neste experimento será denominado "Laptop Rubens" e a Tabela 1 apresenta alguns detalhes da configuração dos computadores utilizados nos experimentos.

Característica	Computador utilizado no artigo	Laptop Rubens
Modelo	40-core Intel Xeon E5-2698 v4	Intel(R) Core(TM) i7-2620M CPU
Frequência da CPU	2.2GHz	2.70GHz
L1i cache	8-way, 32 KB	64 KiB (2 instances)
L1d cache	8-way, 32 KB	64 KiB (2 instances)
L2 cache	8-way, 32 KB	512 KiB (2 instances)
L3 cache	Shared 20-way, 50 MB	4 MiB (1 instance)
Tamanho da linha de cache	64 Bytes	64 Bytes
Memória principal	505 GB, DDR4	16 GB

Tabela 1. Configuração do computador utilizado no artigo e do Laptop Rubens.

3 Experimento do Projeto

O experimento foi realizado utilizando o SPEC CPU 2017 e, dentre os diversos benchmarks, foram selecionados os seguintes: 531.deepsjeng_r, 538.imagick_r e 638.imagick_s. A métrica a ser comparada foi IPC (Instruções por Ciclos) e os dados foram coletados com a ferramenta de análise perf.

As instruções SPEC CPU 2017 executadas no experimento foram conforme segue:

- perf stat runcpu --config=projeto04 --noreportable --iterations=1 531.deepsjeng r
- perf stat runcpu --config=projeto04 --noreportable --iterations=1
 538.imagick r

perf stat runcpu --config=projeto04 --noreportable --iterations=1
 638.imagick s

A Tabela 2 apresenta os dados coletados após a execução do experimento, a qual indica o benchmark executado, o número de instruções executadas, o número de ciclos de execução e o IPC obtido no Laptop Rubens. A última coluna da tabela apresenta os valores estimados dos benchmarks selecionados os quais foram estimados a partir do gráfico da Figura 3 do artigo referencia.

Benchmark	Número de Instruções Executadas	Ciclos	IPC Laptop Rubens	IPC estimado do computador do artigo
531.deepsjeng_r	1,963,001,964,112	1,344,526,586,469	1.46	1.7
538.imagick_r	4,098,276,981,208	1,799,915,281,828	2.28	2.7
638.imagick_s	64,430,187,824,838	31,640,567,351,734	2.04	2.6

Tabela 2. Dados coletados na execução dos benchmarks pelo SPEC CPU 2017.

A Figura 1 apresenta o gráfico dos resultados obtidos para os bechmarks selecionados (531.deepsjeng_r, 538.imagick_r e 638.imagick_s) nos dois experimentos, indicando relativa proximidade nos resultados de ambos experimentos. Como se pode observar na Tabela 1, o computador utilizado no artigo possui características superiores em relação ao Laptop Rubens, o que justifica as diferenças nos resultados.

Figura 1. Gráfico da métrica IPC (Instruções por Ciclos) para os benchmarks selecionados (531.deepsjeng_r, 538.imagick_r e 638.imagick_s) e executados no Laptop Rubens, bem como os valores estimados do computador do artigo.

4 Experimentos Adicionais

A Tabela 3 apresenta o número de instruções executadas para um conjunto expandido de benchmarks extraídos das quatro suítes da ferramenta SPEC CPU 2017 (intspeed, intrate, fpspeed e fprate). A Figura 2 apresenta o gráfico desses resultados com valores expressos em bilhões e na escala logarítimica.

Suite	Benchmark	Número de Instruções Executadas no Laptop Rubens
SPECrate®2017 Integer	520.omnetpp_r	1,232,643,034,873
SPECrate®2017 Integer	531.deepsjeng_r	1,963,001,964,112
SPECspeed®2017 Integer	620.omnetpp_s	1,232,757,062,682
SPECspeed®2017 Integer	631.deepsjeng_s	2,293,851,692,553
SPECrate®2017 Floating Point	521.wrf_ro	3,556,545,936,880
SPECrate®2017 Floating Point	538.imagick_r	4,098,276,981,208
SPECrate®2017 Floating Point	549.fotonik3d_r	2,078,734,689,113
SPECspeed®2017 Floating Point	621.wrf_so	20,043,292,977,959
SPECspeed®2017 Floating Point	638.imagick_s	64,430,187,824,838
SPECspeed®2017 Floating Point	649.fotonik3d_s	347,184,298,983

Tabela 3. Experimento adicional com os dados coletados de número de instruções executadas em benchmarks variados do SPEC CPU 2017.

Figura 2. Gráfico da métrica Instruções executadas de benchmarks ampliados.

5 Considerações sobre o aprendizado nesse projeto

Esse projeto propôs uma atividade de replicação de resultados experimentais a partir da mesma ferramenta de benchmark, contudo, em computador e ambiente operacional distinto. Para os três benchmarks selecionados, a métrica IPC foi relativamente próxima no experimento do artigo e o experimento realizado neste projeto. Devido a isso, um artigo publicado deve conter todos os elementos de modo a permitir que os experimentos sejam reprodutíveis.

Como esse projeto fez uso de uma ferramenta de simulação trabalhada anteriormente, a realização desse projeto com a execução e coleta de dados foi bem mais rápida que a primeira.

Ao final desse projeto me sinto mais familiarizado com ferramentas de simulação, compreendo com maior profundidade o significado e uso dos dados coletados.