Computational Mechanics by Isogeometric Analysis

Dr. L. Dedè. A.Y. 2015/16

Exercises April 4, 2016

NURBS-based Isogeometric Analysis: Galerkin method

Let us consider the following Poisson problem:

find
$$u : \Omega \to \mathbb{R}$$
 :
$$\begin{cases} -\nabla \cdot (\mu \nabla u) = f & \text{in } \Omega, \\ u = g & \text{on } \Gamma_D, \\ \mu \nabla u \cdot \widehat{\mathbf{n}} = \phi & \text{on } \Gamma_N, \end{cases}$$

being $\Omega \subset \mathbb{R}^d$, for d=2,3, a bounded open computational domain with regular boundary $\partial \Omega = \Gamma_D \cup \Gamma_N$ such that $\overset{\circ}{\Gamma}_D \cap \overset{\circ}{\Gamma}_N = \emptyset$ and $\widehat{\mathbf{n}}$ the outward directed unit vector normal to $\partial \Omega$. The diffusion coefficient $\mu \in L^{\infty}(\Omega)$ and the source term $f \in L^2(\Omega)$ are assigned functions such that $\mu \geq \mu_0 > 0$ a.e. in Ω ; we assume that $g \in H^{1/2}(\Gamma_D)$ and $\phi \in L^2(\Gamma_N)$.

Solve the Poisson problem by means of the Galerkin method with NURBS-based Isogeometric Analysis for the data reported in the following. Consider different h, p, and k-refinement strategies and evaluate the errors in norms L^2 and H^1 when the exact solution is available. Use the MATLAB functions $\texttt{test_iga2D.m}$ (see point 1) and $\texttt{test_iga3D.m}$ (see point 4) as templates (the functions are based on the GeoPDEs software); use ParaView to visualize the approximated solution u_h (http://www.paraview.org/).

- 1. Set $\Omega = (0,1)^2$, $\Gamma_D \equiv \partial \Omega$ $(\Gamma_N = \emptyset)$, $\mu = 1$, g = 0, and f such that the exact solution is $u = \sin(\pi x) (\sin(\pi y))^2$.
- 2. Set $\Omega = (0,1)^2$, $\Gamma_N = \{(\mathbf{x},\mathbf{y}) \in \partial\Omega : \mathbf{x} = 1\}$, $\Gamma_D = \partial\Omega \setminus \Gamma_N$, $\mu = 1$, g = 0, and f and ϕ such that the exact solution is $u = \sin\left(\frac{\pi}{6}\mathbf{x}\right)(\sin(\pi\mathbf{y}))^2$.
- 3. Let us consider the domain Ω reported in the following figure $(\Omega = (1,2) \times (0,\pi/2))$ in polar coordinates (r,θ) for which $\Gamma_N = \{(x,y) \in \partial\Omega : x = 0 \text{ or } y = 0\}, \Gamma_D = \partial\Omega \setminus \Gamma_N, \ \mu = 1, \ \phi = 0, \ \text{and} \ f \ \text{and} \ g \ \text{are such that the exact solution reads} \ u = \frac{1}{3}(4-x^2-y^2)e^{x^2+y^2-1}.$

- 4. Set $\Omega = (0,1)^3$, $\Gamma_D \equiv \partial \Omega$ $(\Gamma_N = \emptyset)$, $\mu = 1$, g = 0, and f such that the exact solution is $u = \sin(\pi x) \sin(\pi y) \sin(\pi z)$.
- 5. Let us consider the three dimensional domain Ω reported in the following figure $(\Omega = (1,2) \times (0,\pi/2) \times (0,1)$ in cylindrical coordinates (r,θ,z) for which $\Gamma_D = \{(x,y,z) \in \partial\Omega : x=0 \text{ or } y=0\}, \Gamma_N = \partial\Omega \setminus \Gamma_D, \mu=1, f=0.$ Set:

$$g = \begin{cases} 1 & \text{on } \Gamma_{D1}, \\ 0 & \text{on } \Gamma_{D} \setminus \Gamma_{D1}, \end{cases} \text{ and } \phi = \begin{cases} \sin(\pi z) e^{2z-1} & \text{on } \Gamma_{N1}, \\ 0 & \text{on } \Gamma_{N} \setminus \Gamma_{N1}, \end{cases}$$

where $\Gamma_{D1} = \{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \Gamma_D : \mathbf{x} = 0\}$ and $\Gamma_{N1} = \{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \Gamma_N : \mathbf{x}^2 + \mathbf{y}^2 = 1\}.$

