Lebanese University
Faculty of Engineering III
Mechanical Engineering department
Semester: V

Midterm Exam
Kinematics of machinery
Cinématique des machines
CDM

Date: 18/12/2020 Time: 1h00

Formula sheet allowed Dr. Jaafar Hallal

[EN] (Version Française au verso)

A package-moving device is shown in the figure below. The device can be analyzed as a pin-jointed fourbar mechanism in series with a slider crank mechanism.

A. Kinematics fundamentals

- 1) Draw the kinematic diagram of the machine in the figure above. (Hint: ABC is a ternary link)
- 2) Determine the number of links, full joints, half joints and the mobility.
- 3) Explain physically, and using the example in the figure, what did the mobility mean.
- 4) The design engineer propose to replace the joint at **C** by a half joint. What should we do in order to keep the mobility constant. Draw the new mechanism
- 5) The input of the machine is an electric motor **(DE)**. Based on the Barker classification, proove that the motor can make a full revolution.

B. Fourbar pin jointed mechanism

Consider the fourbar pin jointed mechanism "DEBA"

- 1) Draw clearly the kinematic diagram, the local coordinate system and the vector loop of the mechanism.
- 2) Calculate the angular position of the link "AB" with respect to the horizental axis (the global coordinate system).
- 3) Calculate the angular velocity of the link "AB" if the electric motor rotates counterclockwise at a constant rate of 20 rpm.

C. Fourbar slider crank mechanism

Consider now the fourbar slider crank mechanism "ACF". The link "AC" is considered the input link of the slider crank mechanism.

- 1) Draw clearly the kinematic diagram, the local coordinate system and the vector loop of the mechanism
- 2) Calculate the input angle of the slider crank mechanism.
- 3) Calculate the position of the slider (Point F) with respect to point D.
- 4) Calculate the velocity of the slider.

End of the English version

Version française

[FR] Une machine sert à pousser les colis est présentée dans la figure en page 1. La machine peut être analyser en tant qu'un quadrilatère articulé en série avec un bielle manivelle.

A. Principes de cinématique

- 1) Tracez le diagram cinematique de la machine. (Indice: ABC est une barre ternaire)
- 2) Determinez le nombre de barres, pivots et la mobilité du mechanism.
- 3) Expliquez phicallement, et en utilisant l'exemple dans la figure, la definition de la mobilité.
- 4) L'ingenieur design propose de remplacer le pivot **(C)** par un (half joint). Que ce qu'il faut changer pour garder le meme nomber de degres de liberte. Dessinez le nouveau mechanism.
- 5) L'entree de la machine est un moteur electrique **(DE)**. EN se basant sur la classification de Barker, monter que le moteur est capable de faire une revolution complete.

B. Quadrilatère articulé

On considère le quadrilatère articulé "DEBA"

- 1) Dessinez le diagramme cinématique, le système de coordonnées local et la boucle des vecteurs du mécanisme.
- 2) Calculez la position angulaire de la barre "AB", par rapport à l'axe horizontale (Système de coordonnées global).
- 3) Calculez la vitesse angulaire de la barre "AB" si le moteur tourne avec une vitesse de rotation de 20 tr/min.

C. Bielle manivelle

On considère le mécanisme bielle manivelle "ACF". Le bar "AC" est considéré l'entrée du mécanisme bielle manivelle.

- 1) Dessinez le diagramme cinématique, le système de coordonnées local et la boucle des vecteurs du mécanisme.
- 2) Calculez l'angle d'entrée du bielle manivelle mécanisme.
- 3) Calculez la position de la bielle (Point F) par rapport au point D.
- 4) Calculez la vitesse de la bielle.

End of the french version