RecFormer

One Model To Rule Them All

June 6, 2022

Derrick Adams

Department of Chemical and
Biomolecular Engineering, KAIST
Daejeon, South Korea
derrad@kaist.ac.kr

Dongjae Lee

Graduate School of AI, KAIST

Daejeon, South Korea

dongjae.lee@kaist.ac.kr

Nikita Sokovnin

School of Computing, KAIST

Daejeon, South Korea

sokovnik@fel.cvut.cz

Problem Description

	# recipes	
Training data	32,457	
Validation data 7,848		
Test data	3,294	

2. Completion task(Predicting missing ingredient in a recipe)

Approach

Finding the best baseline models and the target model

Baseline Model Exploration

Best baseline model: LSVC with Tf-idf vectorizer

RecFormer: Recipe Transformer

Multi-task Transformer model

- The main building block is Transformer
- Can effectively deal with variable-length sequences
- Trains on both tasks simultaneously
- One model for both classification and completion

Target model exploration

Finding the best architecture

Multi-task model showing better performance than single-task model

Task (%)	Classification head	Completion head	Multitask
Classification	74.29	=	76.08
Completion	-	11.38	12.44

Table 2: Comparison of accuracy between single-task and multitask models. Accuracy is measured on the validation

 Pre-trained word embeddings (GloVe) improved accuracy to 76.63% and 12.70%

Accuracy comparison

RecFormer shows better or comparable accuracy

Dataset/Model	LSVC (%)	RecFormer (%)
Classification train	91.98	85.16
Classification val	78.05	76.63
Completion train	53.80	20.76
Completion val	13.66	12.70

Table 3: Comparison of accuracy of the RecFormer and the best baseline.

	_	_	_
Ensemb		mode	
LII3CIII.		HIIOU	

Classification task	Completion task
79.20%	14.74%

Model/Task	Classification (%)	Completion (%)
LR count	76.61	-
LR TF-idf	76.41	-
RF count	69.28	-
RF TF-idf	69.07	-
MNB count	72.26	-
MNB TF-idf	70.77	-
Collaborative filtering	-	6.10
RecFormer	76.63	12.70

Table 4: Accuracy of different baseline models and RecFormer measured on validation data.

Final prediction model for the test data

Conclusion and improvements

Conclusion:

- We developed a novel Transformer-based model which can effectively deal with both tasks
- RecFormer is **better than most of the baselines**
- RecFormer shows lower overfitting than the best baseline model
- Ensemble of LSVC and RecFormer provides the best accuracy

Possible improvements:

- To increase the accuracy, we can tune hyperparameters
- Preprocessing of ingredients might improve the performance

Thank You