(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 29 September 2005 (29.09.2005)

PCT

(10) International Publication Number WO 2005/091350 A1

(51) International Patent Classification⁷: H01L 21/336, 21/265, 29/78, 21/324

(21) International Application Number:

PCT/IB2005/050841

(22) International Filing Date: 8 March 2005 (08.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

04101071.1 16 March 2004 (16.03.2004) EP

(71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

- (72) Inventor; and
- (75) Inventor/Applicant (for US only): PAWLAK, Bartlomiej, J. [PL/BE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agents: ELEVELD, Koop, J. et al.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,

[Continued on next page]

(54) Title: FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURING A FIELD EFFECT TRANSISTOR

(57) Abstract: The invention relates to a method of manufacturing a field effect transistor, in which method a semiconductor body (1) of silicon is provided at a surface thereof with a source region (2) and a drain region (3) of a first conductivity type, which regions are both provided with extensions (2A, 3A), and with a gate region (5) situated above the channel region (4), and wherein a pn-junction between the extensions (2A, 3A) and a neighboring part (4A) of the channel region (4) is formed by two implantations (I_1, I_2) of dopants of opposite conductivity type, and wherein before said two implantations (I_1, I_2) of dopants of opposite conductivity type an amorphizing implantation (I_0) is performed where the pn-junction is to be formed. The amorphizing implantation (I_0) and said two implantations (I₁, I₂) of dopants are both carried out before the gate region (5) is formed and at an angle with the surface of the semiconductor body (1) which is substantially equal to 90 degrees. In this way, the most relevant part of the pn-junction formed, i.e. the vertical part that runs perpendicularly to the surface, is not only very steep and abrupt but also has a very low leakage current due to the absence of implantations defects. Preferably, a low temperature anneal is used to regrow crystalline silicon.

WO 2005/091350 A1

MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.