# Thesis Introduction

2020.10.15 Yi Wang

Supervisor: Dr. Ksenia Bittner Prof. Norbert Haala





# Outline



- □ General idea
- Methodology
- □ References



### General idea



Core idea: Machine-learnt 3D vectorization of buildings from satellite imagery

- Methodology: multi-task conditional generative adversarial network (cGAN)
- Objective: refined DSM + (instances / edges) + 3D vectorization



Source data: stereo DSM + Panchromatic image (WV-1) / RGB image (WV-4)



#### **Generative adversarial network:**

- Given the training data, <u>two neural networks</u> compete with each other: the Generator learns to generate real-like samples, while the Discriminator learns to distinguish between generated samples and real data.
- In other words,
  - Discriminator: binary classifier (real or fake)
  - Generator: learns to fool the discriminator (learns real data's distribution)
- A min-max problem:

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$
[2]

• In theory, it is proved that this game will go to Nash-equilibrium:

$$P(D(real)) = P(D(fake)) = 0.5$$





**Conditional GAN**: (Generally) apart from random noise, input also other constraints (label, text, image, etc.) to control the generated outputs.

**Pix2pix**: train source & destination image pairs to perform image to image style translation.

$$\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim p_{real}(\boldsymbol{y})} [\log D(\boldsymbol{y}|\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x}, \boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z}|\boldsymbol{x})|\boldsymbol{x}))]$$
[3]

During training, we build generator (usually ResNet/UNet structure) and discriminator (usually simple CNN) as two independent networks, train and optimize them alternately.





#### cGAN -> DSM refinement (base):







#### **Building vectorization (new):**

- previous research --- 2D polygonization; my task --- 3D vectorization
- Step1: Extract corners and edges from satellite image (DSM+orthophoto)
- Step2: Connect the corners and edges as polygons and combine these polygons for vectorized building

#### Multi-task learning (new):

- multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks.
- In our case, the building instance masks (optional), the edge extraction and the DSM refinement should have useful commonalities, thus we expect the combination of all tasks can improve each other.





#### **Whole Process:**

- For the GAN network,
  - Input: Panchromatic/RGB image + stereo DSM
  - Output: refined DSM + extracted core points + (optional, building instance mask)
- Afterwards,
  - Connect the core points with the help of all outputs to get vectorized 3D buildings
- To be mentioned, the ground truth consists of:
  - Ground truth DSM
  - Ground truth core points
  - Ground truth instance mask (optional)

All these three are to be generated from cityGML data





#### Ideas for the network structure:

- Generator: U-Net with residual block, Discriminator: PatchGAN
- Several 1x1 conv layers for edge detection task
- Attention module in encoder → importance weight → attention feature map
- Fine tune GAN based on pretrained CNN: Network interpolation [5]
- Optional: Give a Discriminator to edge-detection (segmentation GAN)?







#### **Ideas for the objective function:**

- DSM refinement: LSGAN loss + L1 loss + Surface Normal loss [1]
- Edge detection:
  - CrossEntropy (weighted?)
  - multi-scale edge-detection loss
    - Encoder?  $\rightarrow$  HED[6]
    - Discriminator? → Feature Matching Loss [7]
- Loss weights: Learnable multi-task loss weights [8]



### References



[1] Bittner, Ksenia, Peter Reinartz, and Marco Korner. "Late or Earlier Information Fusion from Depth and Spectral Data? Large-Scale Digital Surface Model Refinement by Hybrid-cGAN." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.

[2] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

[3] Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

[4] Bittner, Ksenia, et al. "Dsm-to-lod2: Spaceborne stereo digital surface model refinement." Remote Sensing 10.12 (2018): 1926.



### References



- [5] Wang, Xintao, et al. "Esrgan: Enhanced super-resolution generative adversarial networks." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
- [6] Xie, Saining, and Zhuowen Tu. "Holistically-nested edge detection." Proceedings of the IEEE international conference on computer vision. 2015.
- [7] Nazeri, Kamyar, et al. "Edgeconnect: Generative image inpainting with adversarial edge learning." arXiv preprint arXiv:1901.00212 (2019).
- [8] Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

