ANÁLISIS DE DECISIÓN DE INVERSIÓN -La Construcción del Flujo de Caja del Proyecto-

Paula Arango Correa

p-arango@uniandes.edu.co

MÉTODOS DE DEPRECIACIÓN

Ejemplo:

Suponga que la compañía XYZ compra una máquina por \$12.2 Millones. Su vida útil es 5 años, y su valor de salvamento es \$200. Estime la depreciación de la máquina por el método de línea recta, S.D.A y reducción de saldos:

MÁQUINA

V.Compra	12200
V.Salvamento	200
Vida útil	5
Costo Total Depreciable	12000

Método Línea Recta							
P&G	año 1	año 2	año 3	año 4	año 5		
Depreciación	2400	2400	2400	2400	2400		
Balance General	año 1	año 2	año 3	año 4	año 5		
Valor Activo Bruto	12200	12200	12200	12200	12200		
Depreciación Acumulada	2400	4800	7200	9600	12000		
Valor Activo Neto	9800	7400	5000	2600	200		
Método S.D.A							
P&G	año 1	año 2	año 3	año 4	año 5		
Depreciación	4000	3200	2400	1600	800		
Balance General	año 1	año 2	año 3	año 4	año 5		
Valor Activo Bruto	12200	12200	12200	12200	12200		
Depreciación Acumulada	4000	7200	9600	11200	12000		
Valor Activo Neto	8200	5000	2600	1000	200		
Método Reducción de Saldos							
Tasa	56.1%						
P&G	año 1	año 2	año 3	año 4	año 5		
Depreciación	6838	3005	1321	580	255		
Balance General	año 1	año 2	año 3	año 4	año 5		
Valor Activo Bruto	12200	12200	12200	12200	12200		
Depreciación Acumulada	6838	9844	11164	11745	12000		
Valor Activo Neto	5362	2356	1036	455	200		

MÉTODOS DE DEPRECIACIÓN

P&G	año 1	año 2	año 3	año 4	año 5
Depreciación Línea Recta	2400	2400	2400	2400	2400
Depreciación S.D.A	4000	3200	2400	1600	800
Depreciación Reducción Saldos	6838	3005	1321	580	255

- ¿Cuál es el sistema de depreciación más conveniente para una empresa que requiere reducir sus utilidades los primeros años?
- •¿Es conveniente utilizar el método de reducción de saldos cuando el valor de salvamento es 0?
- •Si una compañía requiere mayores utilidades en los primeros cómo transformaría el S.D.A para que se tenga un mayor gasto de depreciación los últimos años?
- •¿Cómo se puede compensar el gasto de mantenimiento y reparaciones con la depreciación con el método de S.D.A?

MÉTODOS DE DEPRECIACIÓN

Ejemplo Contabilización de la Depreciación (cada año existe inversión en activos por lo tanto la base a depreciar varia en cada periodo).

		PROY	PROY	PROY	PROY	PROY	PROY
	XYZ	2008	2009	2010	2011	2012	2013
	Estados Financieros (miles)	DIC	DIC	DIC	DIC	DIC	DIC
		0000		2010	0011	0010	0010
	ESTADO DE RESULTADOS	2008	2009	2010	2011	2012	2013
517500	DEPRECIACIONES	1,588,398	1,596,314	1,661,486	1,755,945	1,827,634	1,931,540
517510	EQUIPO, MUEBLES Y ENSERES DE OFICIN	201,077	402,061	403,445	455,271	458,828	513,803
517515	EQUIPO DE COMPUTACION	789,060	829,928	859,397	883,138	914,780	941,670
517520	VEHICULOS	598,260	364,325	398,643	417,535	454,026	476,067
	Balance General	2008	2009	2010	2011	2012	2013
100000	ACTIVO	61,167,830	80,964,909	101,358,056	123,485,075	147,355,491	173,294,110
180000	PROPIEDADES Y EQUIPO	4,729,175	5,078,447	4,664,003	4,983,987	4,592,314	4,880,082
182000	EQUIPO, MUEBLES Y ENSERES DE OFICIN	4,020,609	4,034,448	4,552,713	4,588,277	5,138,028	5,197,488
182500	EQUIPO DE COMPUTACION	8,299,279	8,593,975	8,831,383	9,147,803	9,416,698	9,757,015
183000	VEHICULOS	3,643,249	3,986,434	4,175,353	4,540,262	4,760,668	5,149,474
189500	DEPRECIACION ACUMULADA	11,233,962	11,536,410	12,895,448	13,292,355	14,723,082	15,223,895
189510	EQUIPO, MUEBLES Y ENSERES DE OFICIN	2,783,151	2,858,081	3,194,775	3,293,107	3,647,561	3,771,635
189515	EQUIPO DE COMPUTACION	6,886,647	7,072,054	7,905,171	8,148,484	9,025,548	9,332,557
189520	VEHICULOS	1,564,164	1,606,275	1,795,501	1,850,765	2,049,972	2,119,703
	Universidad de						
	los Andes						

CONTENIDO

- 1 UNA INTRODUCCIÓN A LOS ESTADOS FINANCIEROS
- 2 | EL CONCEPTO DE DEPRECIACIÓN Y EL VALOR SALVAMENTO
- 3 LOS MÉTODOS DE DEPRECIACIÓN
- 4 ESTRUCTURACIÓN DE UN PROYECTO DE INVERSION
- 5 | FLUJO DE CAJA LIBRE (FCF)
 - 5.1 CAPITAL DE TRABAJO E INVERSIÓN (CAPEX)

•Desde el punto de vista de la estructuración de PROYECTOS DE INVERSIÓN lo que nos importa y es relevante **ES EL FLUJO DE CAJA GENERADO POR EL PROYECTO**, no la utilidad.

UTILIDAD ≠LIQUIDEZ

EVALUACIÓN DE I PROYECTOS DE INVERSIÓN

Proceso de Estructuración de un Proyecto de Inversión

PROYECTO DE INVERSIÓN

FLUJO DE CAJA DEL PROYECTO (FCL/FEDI)

 Cuando hablamos de FLUJO DE CAJA DEL PROYECTO nos referimos a la cantidad de efectivo (\$\$\$) producto de la generación/necesidades de caja asociadas a un proyecto de inversión.

FLUJO DE CAJA

MÉTODO DIRECTO: Registrar DIRECTAMENTE todos los ingresos y egresos de efectivo. Es necesario conocer cada transacción en detalle

FLUJO DE CAJA

MÉTODO INDIRECTO: A partir de Estados Financieros BG_{t-1} , BG_t , P&G

¿QUÉ ES EL FLUIO DE CAIA?

 Tal como lo indica su nombre un flujo de caja es simplemente un estado financiero en el que se registran los movimientos efectivos de dinero.

Existen diferentes flujos de caja de acuerdo al propósito para el que se requiera

- > Flujo de caja de Tesorería (FCT) (Caja BG)
- Flujo de caja libre (FCL)
- > Flujo de caja de la deuda (FCD)
- Flujo de caja disponible para los accionistas (FCA)

CONTENIDO

- 1 UNA INTRODUCCIÓN A LOS ESTADOS FINANCIEROS
- 2 | EL CONCEPTO DE DEPRECIACIÓN Y EL VALOR SALVAMENTO
- 3 LOS MÉTODOS DE DEPRECIACIÓN
- 4 ESTRUCTURACIÓN DE UN PROYECTO DE INVERSION
- 5 | FLUJO DE CAJA LIBRE (FCF)
 - 5.1 CAPITAL DE TRABAJO E INVERSIÓN (CAPEX)

TERMINOLOGÍA

- Flujo de caja libre (FCL)
- Flujo libre de caja (FLC)
- Free Cash-flow (FCF)
- Flujo de caja del proyecto
- Flujo de efectivo después de impuestos (FEDI)

IMPORTANTE:

En finanzas genéricamente se suele usar el término *flujo de caja*, para referirse al flujo de caja libre, sin embargo deben tener cuidado de cuando se está hablando del <u>flujo de caja de libre</u> y cuando se refiere al <u>flujo de caja de tesorería</u>.

FLUJO DE CAJA LIBRE

Pero, ¿qué es el Flujo de Caja Libre?

¿por qué se llama *"libre"* a este flujo de caja?

 Al evaluar la conveniencia financiera de un proyecto es necesario <u>separar</u> los flujos de efectivo generados por el proyecto de la forma en que este va a ser financiado.

• En otras palabras es necesario separar los flujos de caja generados por el proyecto de la forma en que este va a ser financiado, ya sea vía deuda de largo plazo o aportes de capital (*Equity*).

Recordemos el Balance General:

INVERSIÓN

Lado Izquierdo del BG

FINANCIACIÓN

Lado Derecho del BG

Recordemos el Balance General:

 Se dice que el que el FCL es libre, porque no tiene en cuenta ninguna cuenta relacionada con dichas fuentes de financiación.

 Cuánto dinero generó el proyecto antes de (NO SE INCLUYE):

- Pagar intereses
- Pagar amortizaciones de créditos
- Recibir nuevos créditos
- Recibir nuevos aportes de los socios
- Repartir utilidades

DECISIONES DE INVERSIÓN (PROYECTOS DE INVERSIÓN)

FUENTES DE FINANCIACIÓN

FLUJOS DE EFECTIVO QUE GENERAN LOS PROYECTOS (FCL)

FLUJO DE CAJA LIBRE

OPERACIÓN

INVERSIONES

IMPUESTOS

FCL

ACTIVOS

INVERSION

FLUJOS GENERADOS POR LA OPERACIÓN DEL PROYECTO

(-)IMPUESTOS

FCL

 El FCL se puede calcular de manera indirecta a partir de la Utilidad Operacional (EBIT) del P&G.

1. EBIT (Utilidad Operativa - Earnings **Before Interest And Taxes)**

> 2.(+) Depreciaciones y **Amortizaciones**

3.(-) Impuestos Operativos

4.(-) △ Capital de Trabajo

5.(-) CAPEX (Capital Expenditures)

EBITDA

T x EBIT

Cambio en el capital de trabajo neto

FCL → FLUJO DE EFECTIVO QUE QUEDA LIBRE DESPUÉS DE ATENDER TODAS LAS NECESIDADES DE CAJA OPERATIVAS PARA REMUNERAR LA DEUDA Y EL EQUITY

expandir la capacidad de operación

Dpto. Ingeniería Indea proyecto.

CAPEX (Inversión en Activos)

El CAPEX (*Capital Expenditures*) se define como las "inversiones de largo plazo realizadas, tanto iniciales como de mantenimiento y mejora, por parte de una compañía/proyecto".

Esto es, la caja que anualmente dedica cada empresa a mantener y mejorar, en sentido amplio, sus activos fijos en condiciones de producción y funcionamiento estable.

CAPEX (Inversión en Activos)

- •¿Por qué se debe hacer este tipo de inversión?
- •¿Cómo podemos clasificar las inversiones?
- •¿Estas inversiones garantizan el crecimiento de la compañía?
- •¿Qué puede pasar si no se hacen inversiones en activos a tiempo?
- •¿Qué tipo de proyectos considera usted que requieren de mayor inversión?

CAPEX (Inversión)

1) Las inversiones deben realizarse en función de los objetivos que se quieren alcanzar y el tipo de proyecto o compañía que las emprende

2) CLASIFICACIÓN DE LAS INVERSIONES:

Inversiones de Expansión: Son aquellas destinadas a incrementar la capacidad productiva o de distribución de la compañía en respuesta a un crecimiento de la demanda y de sus necesidades. Este tipo de inversiones son también las generadas por las empresas en los momentos iniciales de su creación, pueden contener también inversiones de modernización e innovación.

Inversiones de Reposición: Son aquellas destinadas a mantener la capacidad productiva en los niveles actuales.

Método Indirecto a partir del EBIT

UTILIDAD OPERACIONAL = EBIT

(+) Depreciaciones y Amortizaciones

EBITDA

- (-) ∆ Capital de Trabajo
 - (-) Incremento en Activos Corrientes
 - (+) Disminución en Activos Corrientes
 - (+) Aumento en Pasivos Corrientes
 - (-) Disminución en Activos Corrientes
- (-) CAPEX: Capital Expenditures, inversiones en activos
 - (-) Impuestos Operativos (EBIT x T)

FLUJO DE CAJA LIBRE DEL PERIODO

FLUJO DE CAJA LIBRE-FLUJO DE EFECTIVO DESPUÉS DE IMPUESTOS

1. EBIT (Utilidad Operativa- Earnings Before Interest And Taxes)

2.(+) Depreciaciones y

Amortizaciones

3.(-) Impuestos (τ*EBIT)

4.(-) △ Capital de Trabajo

5.(-) CAPEX (Capital Expenditures)

FLUJO DE CAJA Utilidad Operacional

- + Depreciaciones
- + Amortizaciones

Capital de Trabajo

Fuentes

Proveedores

Cuentas por Pagar

Pasivos Laborales

Otros Pasivos

Usos

Cartera

Inventarios

Anticipos y avances

Anticipo de impuestos

otros Usos

Cambios en KW

Impuestos gravámenes y tasas

Inversión Activos Fijos

FLUJO DE CAJA LIBRE OPERACIONAL

FLUJO DE CAJA LIBRE-FLUJO DE EFECTIVO DESPUÉS DE IMPUESTOS

Conclusiones acerca del FCF:

- •El flujo de caja libre se obtiene después de deducir todos los costos y/o gastos de operación, hacer las correcciones por los gastos y/o costos no efectivos, considerar el capital de trabajo y las inversiones en activos necesarias para reponer y expandir la capacidad de los activos.
- •Es el flujo que queda LIBRE después de cubrir todas las necesidades de caja operativas para remunerar tanto la DEUDA como el EQUITY.

Un repaso de Estados Financieros

Para llevar a cabo la estructuración de un proyecto de inversión se tienen en cuenta los principales estados financieros, **Pérdidas y Ganancias (P&G)**, **Balance General**.

El Estado de Pérdidas y Ganancias (P&G) define la estructura de Ingresos, Costos y gastos del proyecto, mientras que el Balance General define su requerimiento de capital de trabajo (Fuentes: Proveedores, Cuentas por Pagar, etc. y USOS: Cartera e inventarios).

Haremos un breve repaso de cada una de los estados financieros, para tener un punto de partida para la construcción del FLUJO DE CAJA LIBRE.

Pérdidas y Ganancias (P&G)

Este estado financiero presenta en detalle la manera en como se obtiene una utilidad o pérdida en un periodo respectivo. En el caso Colombiano, las empresas rigen su contabilidad por el PUC (Plan único de Cuentas) en el cual se agrupan cada una de las cuentas tanto de P&G como de Balance General.

ESTADO DE RESULTADOS

TOTAL INGRESOS OPERACIONALES

COSTOS OPERACIONALES

UTILIDAD BRUTA

Margen Bruto

GASTOS OPERACIONALES

Part. Sobre Ventas

Gastos de ventas

Part. Sobre Ventas

Gastos de administración

Part. Sobre Ventas

Crecimiento

EBITDA

Margen Ebitda

Crecimiento

Gastos no desembolsables

Depreciaciones

UTILIDAD OPERACIONAL

Margen Operacional

Ingresos No Operacionales

Gastos No operacionales

UTILIDAD ANTES DE IMPUESTOS

Impo-renta

UTILIDAD NETA

Margen Neto

Los ingresos Operacionales son el producto de la "operación" como tal del negocio. Es decir por ejemplo, si usted se encuentra estructurando un proyecto de fabricación de zapatos, sus ingresos operacionales como tal se derivan de la venta de los zapatos producidos.

$$Ingresos = PxQ$$

Donde P= Precio Producto
Q= Unidades de Producto Vendidas

Ejemplo: Suponga que usted produce 1000 pares de zapatos mensuales, precio promedio= \$50.000. ¿Cuál es su ingreso total por venta de zapatos en un año?

$$Ingresos = 1000 * 50.000 * 12 = $600,000,000$$

Es importante saber calcular los **Costos Operacionales** de un proyecto para incorporarlos en su P&G. A continuación se presenta un breve repaso de los costos que deben ser tenidos en cuenta.

En esta parte del curso revisaremos los costos que deben ser considerados en la estructuración de un proyecto, su significado y cómo y cuándo emplearlos.

DEFINICIONES:

- •Costos Fijos: No dependen del volumen total de producción ni del nivel de utilización de los recursos de la compañía. Algunas veces se clasifican como gastos administrativos y de ventas.
- •Costos Variables: Se modifican-no necesariamente en forma proporcional- con el volumen de producción o con el nivel de utilización del proceso o servicio.
- •Costos Totales: Son la suma de los costos fijos y los costos variables y están asociados con un volumen específico de producción y utilización de recursos.

De estos costos principales podemos calcular los costos unitarios (fijos y variables), y costos marginales.

EJEMPLO CLASIFICACIÓN DE COSTOS:

La planta de la ensambladora CCVSA con sede en Bogotá tiene una capacidad de producción de 3000 unidades con tres turnos (capacidad instalada del 85%). Si utiliza dos turnos puede producir 2000 unidades- un solo turno 1000 unidades. Calcule los costos totales para la producción de 2500 unidades.

A continuación se presentan los costos clasificados:

EJEMPLO CLASIFICACIÓN DE COSTOS:

	COP\$ MILES			
A) Costos inmodificados para cualquier volumen de pr	oducción:			
Costos de Administración	10,000			
Costo de Inversión en Adecuación e Instalaciones	20,000			
Impuesto Predial	1,000			
Arrendamiento de Local	4,000			
	35,000			
B) Costos producción 0-1000 Unidades				
Mano de obra (Turno 1)	6,000			
Energía y Agua	3,000			
Control de Calidad	5,000			
	14,000			
C) Costos producción 1000-2000 Unidades				
Mano de obra (Turno 2)	14,000			
Energía y Agua	4,000			
Control de Calidad	5,000			
	23,000			

	COP\$ MILES
D) Costos producción 2000-3000 l	Jnidades
Mano de obra (Turno 3)	24,000
Energía y Agua	5,000
Control de Calidad	8,000
	37,000
stos variables proporcionalmente con el v	olumen de produ
Materia Prima por Unidad	20
Aditivos por Unidad	3
Empaque por Unidad	5
Desgaste de buriles por Unidad	2
POR UNIDAD	30

EJEMPLO CLASIFICACIÓN DE COSTOS:

	COP\$ MILES
Producción (Unidades)	2,500
Costos Fijos	35,000
C. Variables nivel Producción	37,000
C. Variables volumen Producción (30x2500)	75,000
COSTOS TOTALES	147,000

	COP\$ MILES
Costo unitario total	58.8
(Costo Total/Producción)	30.0
Costos Fijos por Unidad	14
(Costos Fijos/Producción)	14
Costos Variables por Unidad (C. Variables nivel Producción+C. Variables Volumen Producción)/Unidades	44.8
Costo Variable constante por Unidad	30
Costo Variable cambiante por Unidad	14.8

ANALISIS DE SENSIBILIDAD							
Producción (Unidades)	-	500	1,000	1,500	2,000	2,500	3,000
Costos Fijos	35,000	35,000	35,000	35,000	35,000	35,000	35,000
C. Variables nivel Producción	14,000	14,000	14,000	23,000	23,000	37,000	37,000
C. Variables volumen Producción	-	15,000	30,000	45,000	60,000	75,000	90,000
COSTOS TOTALES	49,000	64,000	79,000	103,000	118,000	147,000	162,000

COSTO DE PRODUCCIÓN DE ENSAMBLADORA

Dpto. Ingeniería Industrial Prof: Paula Arango

•¿Cuánto cuesta producir mil unidades adicionales al cambiar de un nivel de producción a otro?

El costo de producir 2500 unidades es \$147.000 y el costo de producir 1000 unidades es \$103.000. Es decir producir 1000 unidades adicionales es 44,000.

•EJEMPLO CONSOLIDACIÓN P&G

EL CAPITAL DE TRABAJO

PRINCIPALES CUENTAS BALANCE GENERAL

Balance General

ACTIVO

DISPONIBLE

INVERSIONES

CUENTAS POR COBRAR

INVENTARIOS

PROPIEDADES Y EQUIPO

OTROS ACTIVOS

PASIVO

CREDITOS DE BCOS Y OTRAS OBLIGAC.FI

CUENTAS POR PAGAR

OTROS PASIVOS

PASIVOS ESTIMADOS Y PROVISIONES

PATRIMONIO

CAPITAL SOCIAL

RESERVAS

SUPERAVIT O DEFICIT

RESULTADOS DE EJERCICIOS ANTERIORES

RESULTADOS DEL EJERCICIO

PASIVO + PATRIMONIO

Recuerde que el Balance General *define el* requerimiento de capital de trabajo del proyecto.

FUENTES: Cuentas por Pagar

USOS: Cuentas por Cobrar, Inventarios.