Review of Last Lecture

- Seebeck effect
- Peltier effect
- Thomson effect
- Device analysis
- Figure of merit ZT
- Applications

Thermoelectric Figure of Merit

Microscopic Formulation of Thermoelectric Properties

- Review of basic concepts in solid states
- Simple kinetic formulation
- Results from formal transport theory

Atomic Vibration

$$U \approx U_o + K(x - x_o)^2$$
$$F = -\frac{dU}{dx} = -K(x - x_o)$$

Classical Oscillator

Natural Frequency

$$\nu = \frac{1}{2\pi} \sqrt{\frac{K}{M}}$$

 From Quantum Mechanics Energy of Mode

$$E = \left(n + \frac{1}{2}\right)hv$$
 $n = 0, 1, 2...$

 Basic vibrational energy quanta hv is called a phonon

1D Atomic Chair

Monatomic

Allowable wavelength $Na = \frac{\lambda}{2}, 2\frac{\lambda}{2}, \dots$

$$Na = \frac{\lambda}{2}, 2\frac{\lambda}{2}, \dots$$

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{2Na}, \dots, \frac{(N-1)a\pi}{2Na}, \frac{\pi}{2a}, \dots$$
 Standing Wave Picture

$$k = \frac{2\pi}{\lambda} = -\frac{\pi}{a}, -\frac{(N-1)a\pi}{Na}, \dots, \frac{(N-1)a\pi}{Na}, \frac{\pi}{a}$$

Diatomic

Unit Cell in Real and Reciprocal Spaces

- Periodic signal in time with period T, Fourier transform gives a frequency $v=2\pi/T$,
- Periodic signal in space with wavelength λ , Fourier transform gives $2\pi/\lambda$.

Crystal unit cell in real space

Fourier Transform

Reciprocal Space

Phonons Dispersion in Crystals

Image removed due to copyright restrictions.

Please see Fig. 1a and 2a in Giannozzi, Paolo, et al.

"Ab initio Calculation of Phonon Dispersions in Semiconductors."

Physical Review B 43 (March 1991): 7231-7242.

Electronic Energy Levels

3s 3p 3d
$$n=3$$
 (-1.5 eV)

$$\frac{2s}{n} = \frac{2p}{n} = (-3.4 \text{ eV})$$

$$\frac{1s}{m}$$
 n=1 (-13.6 eV)

Hydrogen Atom

Wavefunction

$$\Psi_{n\ell ms}(r,\theta,\varphi)$$

$$n = 1, 2, 3, ...$$

$$\ell < n$$

$$|m| \le \ell$$

$$s = \pm \frac{1}{2}$$

Degeneracy

$$D=2n^2$$

Electrons in an Atomic Chain

$$\Psi_{ns}(k,x)$$

$$k = \frac{2\pi}{\lambda} = -\frac{\pi}{a}, -\frac{(N-1)a\pi}{Na}, \dots, \frac{(N-1)a\pi}{Na}, \frac{\pi}{a}$$

k has N discrete values between (-N/2,N/2)

Different Solids

Electronic Band Structures of Real Crystals

Parabolic Band Approximation

Free Electrons

$$E = mv^2/2 = p^2/2m = \hbar k^2/2m$$

Near Minimum (Maximum)

$$E - E_c = \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_{11}} + \frac{k_y^2}{m_{22}} + \frac{k_z^2}{m_{33}} \right)$$

Effective mass

$$m_{ij} = \hbar^2 \left(\partial^2 E / \partial k_i \partial k_j \right)$$

Constant Energy Surface

Statistical Distributions

Average Number of Particles in a Quantum State

Fermi-Dirac

$$f = \frac{1}{\exp\left(\frac{E - \mu}{k_B T}\right) + 1}$$

Bose-Einstein

$$f = \frac{1}{\exp\left(\frac{E - \mu}{k_B T}\right) - 1}$$

Electron Density

$$E - E_c = \frac{\hbar^2 (k_x^2 + k_y^2 + k_z^2)}{2m}$$

$$N = 2 \sum_{-N_{x}/2}^{N_{x}/2} \sum_{-N_{y}/2}^{N_{y}/2} \sum_{-N_{z}/2}^{N_{z}/2} f(E,T)$$

$$= 2 \int_{-\pi/a}^{\pi/a} \frac{dk_{x}}{(2\pi/L_{x})} \int_{-\pi/a}^{\pi/a} \frac{dk_{y}}{(2\pi/L_{y})} \int_{-\pi/a}^{\pi/a} \frac{dk_{z}}{(2\pi/L_{z})} f(E,T)$$

$$= \frac{2V}{8\pi^{3}} \int_{-\pi/a}^{\pi/a} \int_{-\pi/a}^{\pi/a} \int_{-\pi/a}^{\pi/a} dk_{x} dk_{y} dk_{z} \exp\left[-\frac{E-\mu}{k_{B}T}\right]$$

Electron Density

$$n = \frac{N}{V} = \frac{2V}{8\pi^3} \int_{E_c}^{\infty} 4\pi k^2 dk \exp\left[-\frac{E - \mu}{k_B T}\right]$$

$$= \frac{1}{\pi^2} \int_{E_c}^{\infty} \left(\frac{2m(E - E_c)}{\hbar^2}\right) d\sqrt{\left(\frac{2m(E - E_c)}{\hbar^2}\right)} \exp\left[-\frac{E - \mu}{k_B T}\right]$$

$$= \int_{E_c}^{\infty} \left(\frac{\sqrt{2}m^{3/2}\sqrt{E - E_c}}{\pi^2\hbar^3}\right) \exp\left[-\frac{E - \mu}{k_B T}\right] dE = \int_{E_c}^{\infty} D(E) \exp\left[-\frac{E - \mu}{k_B T}\right] dE$$

$$= 2\left(\frac{2\pi m^* \kappa_B T}{\hbar^2}\right)^{3/2} \exp\left(-\frac{E_c - \mu}{k_B T}\right)$$
Density of States D(E)

$$= N_c \exp \left(-\frac{E_c - \mu}{k_B T}\right)$$

Density of States D(E): Number of quantum states per unit volume and per energy interval

Electron Density

General:

$$n = \int_{E_c}^{\infty} D(E) f(E, \mu, T) dE$$

$$n = 2\left(\frac{2\pi m^* \kappa_B T}{h^2}\right)^{3/2} \exp\left(-\frac{E_c - \mu}{k_B T}\right) = N_c \exp\left(-\frac{E_c - \mu}{k_B T}\right)$$

Under Boltzmann Statistics

MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.