Nome: Fabio Grassiotto

RA: 890441

Disciplina: IA941A, 1° S 2018

Aula 13 – LIDA: Controlando o WorldServer3D

Objetivo

Utilizar a arquitetura cognitiva LIDA para controlar uma criatura artificial no ambiente virtual WordServer3D (WS3D) através de implementação de um aplicativo utilizando linguagem de programação Java e modificação dos arquivos de configuração XML.

Atividade 1

Após realizar o download do código da aplicação base DemoLIDA, foi executada a sincronização com os códigos da biblioteca WS3DProxy e a aplicação WS3D. Foi estudado então o código da aplicação, notando o uso do código Java e a integração com os arquivos de configuração XML.

Atividade 2

Nesta segunda atividade foi proposta a modificação da estrutura dos painéis do Lida Framework para adicionar a visualização das ações a serem tomadas pela criatura a cada ciclo de execução.

Para tanto o código do arquivo guipanels.properties foi modificado, adicionando um novo painel na posição A (linhas 17 e 18) para efetuar a visualização conforme abaixo:

```
2. # Copyright (c) 2009, 2011 The University of Memphis. All rights reserved.
3. # This program and the accompanying materials are made available
4. # under the terms of the LIDA Software Framework Non-Commercial License v1.0
5. # which accompanies this distribution, and is available at
6. # http://ccrg.cs.memphis.edu/assets/papers/2010/LIDA-framework-non-commercial-
   v1.0.pdf
8.
9. #name = panel title, class name, Position [A,B,C,FLOAT, TOOL], tab order, Refresh af
   ter load
10.
11. # ____Tool Bar____
12. ToolBarToolBar=ToolBar,edu.memphis.ccrq.lida.framework.gui.panels.ControlToolBarPane
   1,T00L,1,Y,1,20
14. # ____A Section___
15. #environ =AlifeEnvironment, alifeagent.guipanels.ALifeGuiPanel, A, 1, Y, configs/icons.pr
   operties,40
17. # Action Selection Panel - Use A position.
18. actionPanel=Action Selection,edu.memphis.ccrg.lida.framework.gui.panels.ActionSelect
   ionPanel, A, 0, Y, 20
20. # ____B Section_
21. pamTable = PAM Table,edu.memphis.ccrg.lida.framework.gui.panels.NodeStructureTable,B
   ,0,Y,PerceptualAssociativeMemory
22. pamGraph = PAM Graph,edu.memphis.ccrg.lida.framework.gui.panels.NodeStructurePanel,B
   ,1,Y,PerceptualAssociativeMemory
23. activationChart=Activation Chart,edu.memphis.ccrg.lida.framework.gui.panels.Activati
   onChartPanel, B, 2, Y, 100, leafletJewel
```

24. perceptualBufferGraph = Perceptual Buffer,edu.memphis.ccrg.lida.framework.gui.panels .NodeStructurePanel, B, 3, Y, Workspace.PerceptualBuffer 25. globalWorkspace = Global Workspace, edu.memphis.ccrg.lida.framework.gui.panels.Global WorkspaceTablePanel, B, 4, Y, 10 26. proceduralMemory=Procedural Memory,edu.memphis.ccrg.lida.framework.gui.panels.Proced uralMemoryPanel, B, 5, Y 27. #actionSelection=Action Selection, edu.memphis.ccrg.lida.framework.gui.panels.ActionS electionPanel, B, 6, Y, 5 28. 29. # ____C Section____ 30. LogPanel=Logging, edu.memphis.ccrg.lida.framework.gui.panels.LoggingPanel,C,1,N, alif eagent, edu.memphis.ccrg.alife 31. runningTasks = Running Tasks,edu.memphis.ccrg.lida.framework.gui.panels.FrameworkTas kPanel, C, 2, Y, Perceptual Associative Memory 32. taskQueue=Task Queue,edu.memphis.ccrg.lida.framework.gui.panels.TaskQueuePanel,C,3,N 33. configFiles = Configuration Files, edu.memphis.ccrg.lida.framework.gui.panels.Configu rationFilesPanel,C,4,N

O resultado na janela do Lida Framework pode ser visualizado na imagem:

Atividade 3

Nesta terceira atividade, foi proposta a alteração do código do DemoLIDA criando um mecanismo por meio do qual a criatura pudesse detectar blocos a partir do ambiente, e se movimentasse de uma origem até um destino sem colidir com os blocos.

Para execução das alterações são providos scripts nos sistemas operacionais Linux e Windows:

run-R4.sh / run-R4.bat

Descrição da implementação

Esta seção do relatório visa descrever as principais alterações necessárias ao código fonte do DemoLIDA.

1. Alterações no código Java do DemoLIDA

Para adicionar novos blocos no ambiente de simulação, o código do arquivo Environment.java foi modificado para inserir de forma aleatória alguns blocos no ambiente. Isso pode ser verificado no método Environment::init():

```
// Create some bricks around the environment
                 Random rand = new Random();
3.
                 for (int x = 0; x < World.getInstance().getEnvironmentWidth(); <math>x = x + 100) {
4.
                      for (int y = 0; y < World.getInstance().getEnvironmentHeight(); <math>y = y + 100) {
5.
6.
                          // Valid bricks are at least at a distance of 50 units from the creature in
                          // the x and y axis. We do that so there are no problems for maneuvering around
8.
                          // in the environment.
                          if (abs(crX - x) > 50 \&\& abs(crY - y) > 50) {
10
                              // coordinates are ok. Discard randomly most of them so there is no overcrowding.
11.
                              int r = rand.nextInt(4);
12
                              if (r == 0) {
13.
                                  World.createBrick(rand.nextInt(6), x, y, x + 10, y + 10);
14
15.
16.
17.
18.
```

Outras alterações foram necessárias no arquivo Environment.java para executar a detecção de blocos no ambiente de simulação e execução de ações para alterar a trajetória da criatura, nos métodos getstate(), updateEnvironment() e performAction(), conforme abaixo:

```
public Object getState(Map<String, ?> params) {
             Object requestedObject = null;
2.
             String mode = (String) params.get("mode");
3.
4
             switch (mode) {
                 case "food":
5.
6.
                     requestedObject = food:
                     break:
8.
                 case "jewel":
                     requestedObject = jewel;
10.
                     break:
11.
                 case "thingAhead":
12.
                     requestedObject = thingAhead;
13.
14.
                 case "leafletJewel":
                     requestedObject = leafletJewel;
```

```
16.
                     break;
17.
                 case "brick":
                     requestedObject = brick;
19.
20.
                 default:
21.
                     break;
22.
23.
              return requestedObject;
24.
25.
26.
         public void updateEnvironment() {
27.
             creature.updateState();
28.
             food = null;
29.
             jewel = null;
30.
             leafletJewel = null;
31.
             thingAhead.clear();
32.
             brick = null;
33.
34.
              for (Thing thing : creature.getThingsInVision()) {
35.
                 if (thing.getCategory() == Constants.categoryBRICK
36.
                         && creature.calculateDistanceTo(thing) <= DISTANCE_TO_BRICK) {
37.
                      // Identifies we are close to a brick.
38.
                     brick = thing;
39.
                      break;
40.
                 } else if (creature.calculateDistanceTo(thing) <= Constants.OFFSET) {</pre>
41.
                      // Identifica o objeto proximo
42.
                      thingAhead.add(thing);
43.
                      break;
44.
                 } else if (thing.getCategory() == Constants.categoryJEWEL) {
45.
                      if (leafletJewel == null) {
46.
                         // Identifica se a joia esta no leaflet
47.
                          for (Leaflet leaflet : creature.getLeaflets()) {
48.
                           if (leaflet.ifInLeaflet(thing.getMaterial().getColorName())
49.
                                      && leaflet.getTotalNumberOfType(thing.getMaterial().getColorName()) > leaflet.get
     CollectedNumberOfType(thing.getMaterial().getColorName())) {
50.
                                 leafletJewel = thing;
51.
                                  break;
52.
53.
                         }
54.
                      } else {
55.
                          // Identifica a joia que nao esta no leaflet
56.
                         jewel = thing;
57.
58.
                 } else if (food == null && creature.getFuel() <= 300.0</pre>
59.
                          && (thing.getCategory() == Constants.categoryF00D
60.
                          || thing.getCategory() == Constants.categoryPF00D
61.
                          || thing.getCategory() == Constants.categoryNPF00D)) {
62.
                      // Identifica qualquer tipo de comida
63.
64.
                      food = thing;
65.
                 }
66.
67.
68.
69.
         @Override
70.
         public void processAction(Object action) {
71.
             String actionName = (String) action;
72.
             currentAction = actionName.substring(actionName.indexOf(".") + 1);
73.
74.
75.
         private void performAction(String currentAction) {
76.
                 //System.out.println("Action: " + currentAction);
77.
78.
                 switch (currentAction) {
79.
                      case "rotate":
80
                        creature.rotate(1.0);
```

```
81
                          // {\tt CommandUtility.sendSetTurn} ({\tt creature.getIndex}(), -1.0, -1.0, 3.0);
82.
                         break:
83.
                      case "gotoFood":
84.
                          if (food != null) {
85
                              creature.moveto(3.0, food.getX1(), food.getY1());
86.
87.
                          //CommandUtility.sendGoTo(creature.getIndex(), 3.0, 3.0, food.getX1(), food.getY1());
88.
89.
                      case "gotoJewel":
90.
                          if (leafletJewel != null) {
91.
                              creature.moveto(3.0, leafletJewel.getX1(), leafletJewel.getY1());
92.
93.
                          //CommandUtility.sendGoTo(creature.getIndex(), 3.0, 3.0, leafletJewel.getX1(), leafletJewel.g
     etY1());
94.
95.
                      case "get":
96.
                          creature.move(0.0, 0.0, 0.0);
97.
                          // {\tt CommandUtility.sendSetTurn} ({\tt creature.getIndex}(), \ 0.0, \ 0.0, \ 0.0);
98.
                          if (thingAhead != null) {
99.
                              for (Thing thing : thingAhead) {
100.
                                 if (thing.getCategory() == Constants.categoryJEWEL) {
101.
                                      creature.putInSack(thing.getName());
                                  } else if (thing.getCategory() == Constants.categoryFOOD || thing.getCategory() == Co
     nstants.categoryNPF00D || thing.getCategory() == Constants.categoryPF00D) {
103.
                                      creature.eatIt(thing.getName());
104.
106.
107.
                          this.resetState();
108.
                          break;
109.
                      case "avoidBrick":
110.
                         if (brick != null) {
111.
                              // The action here should be to manouver the creature to avoid the wall.
112.
113.
                              double crX = creature.getPosition().getX();
114.
                              double crY = creature.getPosition().getY();
115.
116.
                              double targetX, targetY;
117.
                              // Check coordinates to drive the creature around the bricks in the environment.
118.
119.
                              if (crY >= brick.getY2() || (crY >= brick.getY1() && crY <= brick.getY2())) {</pre>
120.
                                  // creature is below the brick.
121.
                                  // manouver from under it.
122.
                                  targetY = brick.getY2() + BRICK_MANOUVER_DIST;
123.
                              } else {
124.
                                  // creature is above the brick.
125.
                                  targetY = brick.getY1() - BRICK_MANOUVER_DIST;
126.
127.
                              if (crX >= brick.getX2() || (crX >= brick.getX1() && crX <= brick.getX2())) {</pre>
128.
129.
                                  targetX = brick.getX2() + BRICK_MANOUVER_DIST;
                              } else {
130.
131.
                                  targetX = brick.getX1() - BRICK_MANOUVER_DIST;
132.
133.
134.
                              creature.moveto(3.0, targetX, targetY);
135.
136.
                          break;
137.
                      default:
138.
                         break:
139.
                 }
140.
             } catch (Exception e) {
141.
                 e.printStackTrace();
142.
143.
144. }
```

Finalmente, foi adicionada a implementação de um detector adicional para os blocos do ambiente, no arquivo BrickDetector.java.

```
package detectors;
2.
3.
    import java.util.HashMap;

    import java.util.Map;

5.
6. import edu.memphis.ccrg.lida.pam.tasks.BasicDetectionAlgorithm;
import ws3dproxy.model.Thing;
8.
    public class BrickDetector extends BasicDetectionAlgorithm {
10.
         private final String modality = "";
11.
12. private Map<String, Object> detectorParams = new HashMap<>();
 13.
 14. @Override
     public void init() {
 15
 16.
        super.init();
 17.
            detectorParams.put("mode", "brick");
 18.
19.
20. @Override
21. public double detect() {
22. Thing brick = (Thing) sensoryMemory.getSensoryContent(modality, detectorParams);
23
            double activation = 0.0:
     if (brick != null) {
24.
25.
                activation = 1.0:
26.
27.
            return activation:
28. }
29. }
```

2. Alterações nos arquivos de configuração XML

Para implementação da detecção dos blocos no ambiente, foi adicionada ao arquivo **factory.xml** uma task inicial extra para inicializar o detector de blocos:

```
1. <task name="BrickDetector">
2. <class>detectors.BrickDetector</class>
3. <ticksperrun>3</ticksperrun>
4. <associatedmodule>SensoryMemory</associatedmodule>
5. <associatedmodule>PerceptualAssociativeMemory</associatedmodule>
6. </task>
```

No arquivo de definição do agente, Agent.xml, as seguintes alterações foram realizadas:

 Adição de uma nova task no módulo de memória perceptual associativa (PerceptualAssociativeMemory) e novo node para detecção de bloco (brick) no ambiente:

```
1. 
color="mailto: sparam name="nodes">
color="mailto: sparam name="nodes">
color="mailto: sparam name="nodes">
color="mailto: sparam name="nodes" type="string">
color="mailto: sparam name="nodes">
color="mailto: sparam name="nodes" type="string">
color="mailto: sparam name="nodes" type="string" type="string" type="string")

color="mailto: sparam name="string" type="string" type="string" type
```

```
6. <param name="learnable.baseLevelRemovalThreshold" type="double">-1.0</param>
7. <param name="learnable.baseLevelDecayStrategy" type="string">defaultDecay</param>
8. <param name="learnable.baseLevelExciteStrategy" type="string">defaultExcite</param>
9. <param name="learnable.totalActivationStrategy" type="string">DefaultTotalActivationStrategy</param>
10. </task>
```

• No módulo de atenção (*Attention Module*), um novo codelet foi adicionado para trazer para a consciência o evento de detecção de um bloco:

```
1. <task name="BrickAttentionCodelet">
2. <tasktype>BasicAttentionCodelet</tasktype>
3. <ticksperrun>5</ticksperrun>
4. <param name="nodes" type="string">brick</param>
5. <param name="refractoryPeriod" type="int">50</param>
6. <param name="initialActivation" type="double">1.0</param>
7. <param name="learnable.baseLevelActivation" type="double">1.0</param>
8. <param name="learnable.baseLevelRemovalThreshold" type="double">-1.0</param>
9. <param name="learnable.baseLevelRemovalThreshold" type="double">-1.0</param>
10. <param name="learnable.baseLevelExciteStrategy" type="string">defaultDecay</param>
11. <param name="learnable.baseLevelExciteStrategy" type="string">defaultExcite</param>
12. </task>
```

 No módulo de memória procedural, foi adicionada a ação a ser tomada quando da detecção de um bloco no ambiente. Procurou-se ajustar o nível base de detecção de forma a privilegiar a ação de se desviar de blocos:

```
<module name="ProceduralMemory">
2.
                               <class>edu.memphis.ccrg.lida.proceduralmemory.ProceduralMemoryImpl</class>
                                           <param name="proceduralMemory.ticksPerStep" type="int">14 </param>
3.
4.
                                        <param name="proceduralMemory.conditionDecayStrategy">defaultDecay</param>
                                           <param name="proceduralMemory.schemeSelectionThreshold" type="double">0.1</param>
5.
                                         <param name="proceduralMemory.contextWeight" type="double">1.0</param>
                                             <param name="proceduralMemory.addingListWeight" type="double">1.0</param>
8.
                                           \verb|-cparam| name| = procedural Memory.scheme Class" > edu.memphis.ccrg.lida.procedural memory.Scheme Impl<|/param>|-cparam| | procedural Memory.Scheme Impl<|-cparam| | procedural Memory.Scheme Impl
                                     ____scheme_name__ ____ scheme_label_____|_context_____|_action_name____|result|baseLabelActiv. -->
                                      <param name="scheme.1">if no leaflet jewel, rotate|(jewel)()|action.rotate|()()|0.3</param>
                                        \label{lem:condition} $$\operatorname{amm}=\operatorname{scheme}.2\] if leaflet jewel, goto jewel | (leafletJewel)()| action.gotoJewel|()()|0.3</param>0.5 | (leafletJewel)()| action.gotoJewel|()()|0.3</param>0.5 | (leafletJewel)()|0.5 | (leafletJewel)
 12.
                                       <param name="scheme.3">if food, goto food|(food)()|action.gotoFood|()()|0.3</param>
                                        \label{lem:name} $$\operatorname{name}^{-1} \operatorname{scheme}.4"> if nearObject, get object|(nearObject)()|action.get|()()|0.01</param>0.01
 14.
                                      <param name="scheme.5">if near brick, rotate|(brick)()|action.avoidBrick|()()|0.2</param>
 15.
                                        <taskspawner>defaultTS</taskspawner>
 16.
                                       17.
                                                  </module>
```

Resultados

Notou-se que com as alterações implementadas o agente consegue selecionar a ação de desviar dos blocos quando necessário e a coleta das jóias no ambiente foi realizada com sucesso.