

Aplicaciones de Inteligencia Artificial

Unidad 3. Representación del conocimiento (20 horas)

Unidad 3 – Representación del conocimiento (20 hrs.)

APRENDIZAJES ESPERADOS

3.1. Aplica la representación del conocimiento en la resolución de problemas a través de diferentes técnicas del conocimiento.

CRITERIOS DE EVALUACIÓN

3.1.1	Comprende la representación del conocimiento, integrando métodos y procedimientos.
3.1.2	Elabora una representación del conocimiento, tomando en consideración diferentes métodos y procedimientos en la resolución de problemas.
3.1.3	Justifica la selección de una técnica de representación del conocimiento, en la resolución de problemas.
3.1.4	Propone acciones de mejora para el desarrollo óptimo de la tarea, estableciendo propuestas de solución viables.

Contenidos de la Unidad

- 1. Sistemas basados en conocimiento: concepto de conocimiento y lenguajes utilizados en la representación de conocimiento.
- 2. Mapas conceptuales.
- 3. Redes semánticas.
- 4. Lógica de predicados: sintaxis, semántica, validez e inferencia.
- 5. Razonamiento con incertidumbre: aprendizaje, razonamiento probabilístico, lógicas multivaluadas, lógica difusa.
- 6. Demostración y métodos.

Prof. Víctor Valenzuela Ruz

Introducción

- Cómo se mencionó en la clase anterior, representar el conocimiento en Inteligencia Artificial es el proceso de transformación de éste a un dominio o un lenguaje simbólico para ser procesado en un computador. cuyo objetivo fundamental es representar el conocimiento de una manera que facilite la inferencia (sacar conclusiones) a partir de dicho conocimiento.
- En esta clase, veremos otra representación de conocimiento, que es la lógica de predicados.

Conocimiento y razonamiento

- En los sistemas basados en conocimiento (SBC) se usan lenguajes declarativos:
 - Expresiones más cercana a los lenguajes humanos.
- Los SBC expresan el conocimiento de una forma que tanto los humanos como los computadores puedan entender.
- Esta parte del curso, analiza cómo expresar el conocimiento sobre el mundo real en una Ç forma computacional.

Lógica, ontología y computación

- La representación del conocimiento es una materia interdisciplinar que aplica teorías y técnicas de tres campos:
 - o La lógica proporciona la estructura formal y las reglas de inferencia.
 - o La ontología define los tipos de cosas que existen en el dominio de la aplicación.
 - o La computación apoya las **aplicaciones** que distinguen la representación del conocimiento de la filosofía pura.

Inferencia en lógica

- Se quieren conseguir algoritmos que puedan responder a preguntas expresadas en forma lógica.
- Tres grandes familias de algoritmos de inferencia:
 - o encadenamiento hacia delante y sus aplicaciones en los sistemas de producción
 - o encadenamiento hacia atrás y los sistemas de programación lógica
 - o sistemas de demostración de teoremas basados en la resolución

Lógica

- Parte de la filosofía que estudia las formas y principios generales que rigen el conocimiento y el pensamiento humano, considerado puramente en sí mismo, sin referencia a los objetos.
- La lógica es un lenguaje que permite **expresar conocimiento y razonar** a partir de ciertas expresiones para deducir otras (**deducciones**). Se ocupa de la verdad de las declaraciones sobre el mundo. Generalmente cada declaración puede ser verdadera o falsa.
- Características
 - o Sintaxis y semántica bien definidas
 - Sintaxis especifica los **símbolos** del lenguaje acerca de como pueden combinarse para formar sentencias.
 - Semántica especifica como asignar un valor de verdad para una sentencia en base a su **significado**.
 - o reglas de inferencia
 - especifica **métodos** para calcular nuevas sentencias a partir de las sentencias existentes.

Lógica de predicados

- La lógica de predicados está basada en la idea de que las sentencias realmente expresan relaciones entre si.
- En lógica de predicados los valores de verdad se atribuyen a *predicados* que denotan relaciones entre entidades del universo modelado.
- Es una herramienta para estudiar el comportamiento de un sistema lógico. Además proporciona un criterio para determinar si un sistema lógico es absurdo o inconsistente.

Lógica de predicados

- Constituye una extensión lógica, es explicita y sistematiza el proceso inferencial que se efectúa cuando se trabaja con funciones proposicionales y cuantificadores, es decir la lógica de predicados se maneja como una metodología de la programación.
- Ejemplo clásico
 - Todos los filósofos son sabios
 - Algunos griegos son filósofos
 - Luego, algunos griegos son sabios.
- Predicado: cada sentencia completa tiene dos partes, un sujeto y un predicado.
 - Ejemplo: Julia corre.

Cómo identificar los predicados?

• La mejor fórmula para averiguar el sujeto es preguntarnos interiormente ¿quién? PREDICADO: Aquello que se afirma del sujeto en una oración.

• Por ejemplo: En la oración Juan juega al fútbol, el predicado es lo que se dice del sujeto, o sea "juega al fútbol".

Proposiciones

- La proposición es una oración aseverativa de la que tiene sentido decir que es verdadera o falsa. Ejemplo: Dolly fue la primera oveja clonada.
- Es una representación en lenguaje cotidiano que debe estar libre de vaguedades (o ambigüedades).

Conexiones lógicas y términos de enlace

• Palabras de enlace que unen proposiciones atómicas para formar proposiciones moleculares.

Término	Significado	Símbolo
AND	"Y"	&
OR	"O"	V
NOT	"No"	_
IF	"Si entonces"	

Palabra	Prop.	Simbología	Nombre
de	Molecular		
enlace			
Υ	РуQ	P & Q	Conjunción
0	ΡοQ	ΡVQ	Disjunción
No	No Q	¬Q	Negación
Si	Si P	$P \rightarrow O$	Condicional
	entonces	, 2	
Entonces	Q		

Tabla de verdad

P	Q	P∨Q	P∧Q	¬P	P →Q
Т	Т	Т	Т	F	Т
Т	F	Т	F	F	F
F	Т	Т	F	Т	Т
F	F	F	F	Т	Т

- Uso de variables para representar proposiciones.
- Ejemplo:

P = "Hoy llueve" Q = "Pedro se ha mojado"

P & Q = "Hoy llueve y Pedro se ha mojado"

¬ Q = "Pedro No se ha mojado"

- Cuantificadores
 - Universal ∀
 - ∀ x"Establece que para todo x es verdad que ... " (donde x es una variable)
 - Existencial 3
 - $\exists x \land A$ "Establece que existe un x tal que A"

Ejercicios

Formalizar las siguientes proposiciones

1. No es cierto que no me guste bailar

2. Me gusta bailar y leer libros de ciencia ficción

3. Si los gatos de mi hermana no soltaran tanto pelo me gustaría acariciarlos.

Solución

Formalizar las siguientes proposiciones

1. No es cierto que no me guste bailar

[B me gusta bailar]. $\neg(\neg B)$

2. Me gusta bailar y leer libros de ciencia ficción

[B me gusta bailar. C me gusta leer libros de ciencia ficción]. B Λ C

3. Si los gatos de mi hermana no soltaran tanto pelo me gustaría acariciarlos.

[G los gatos de mi hermana sueltan pelo. A me gusta acariciar los gatos]. $\neg G \rightarrow A$

Conclusiones

- El objetivo de la Inteligencia Artificial (IA) es la construcción de sistemas, tanto *hardware* como *software*, que sean capaces de replicar aspectos de lo que se suele considerar inteligencia.
- En CA., se parte siempre de reglas y premisas (antecedentes) verdaderas, a partir de los cuales se construye el grado de verdad del consecuente.
- El lenguaje de la lógica de predicados añade los siguientes elementos al lenguaje:
 - términos : objetos o descripciones de ellos, de los que se afirman o se niegan aseveraciones.
 - predicados : afirmaciones sobre términos
 - cuantificaciones : afirmaciones sobre los elementos de una colección de términos.
- La lógica de predicados no puede funcionar sin la sintaxis de las palabras, números, letras y signos que son utilizados; en conjunto de la semántica que es la interpretación de lo irreal a forma real, o en su caso, a la forma que pueda ser entendido por algún lenguaje (ya sea a lenguaje máquina o lenguaje humano).

Para profundizar...

CAPITULO III REPRESENTACIÓN DEL CONOCIMIENTO E INFERENCIA

inacap.cl