行列の転置

行列 $A=(a_{ij})$ に対し、その成分の行と列の位置を交換してできる行列を転置行列という

lacktriangleright 転置行列 $A=(a_{ij})$ を m imes n 型行列とするとき、(i,j) 成分が a_{ji} である n imes m 型行列を A の転置行列と呼び、 ${}^t\!A$ と表す

文字 t を左肩に書くのは、右肩に書くと t 乗に見えてしまうからである t 乗と区別しつつ、右肩に書く流儀として、 A^T と書く場合もある

ベクトルの転置

特別な場合として、n 次の数ベクトル \boldsymbol{v} を $n\times 1$ 型行列とみて転置した もの $^t\boldsymbol{v}$ は $1\times n$ 型行列となる

すなわち、数ベクトルの転置は横ベクトルになる

このことを利用して、たとえば

$$egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}$$

を $^t(v_1, v_2, \ldots, v_n)$ と表記することもある

転置の性質

転置は「行と列の入れ替え」であるので、明らかに次が成り立つ

ref: 行列と行列式の基

礎 p78

ref: 長岡亮介 線形代数

入門講義 p30

$$^{t}(^{t}A) = {}^{tt}A = A$$

$$^{t}(AB) = {}^{t}\!B^{t}\!A$$

[Todo 1: ref: 行列と行列式の基礎 p78 命題 2.5.3]

$$^{t}(A+B) = {}^{t}A + {}^{t}B$$

≥ 証明

[Todo 2:]

対称行列と交代行列

正方行列 A が「転置しても元と変わらない」としたら、A の成分は左上から右下にかけての対角線に関して対称($a_{ij}=a_{ji}$)になっている

ref: 長岡亮介 線形代数 入門講義 p30

$${}^t\!A = A$$

$${}^t\!A = -A$$

対称行列の性質

・・・ 任意の行列の積で構成される対称行列 A を任意の実行列 (長方行列) とするとき、 $A^{\mathsf{T}}A$ および AA^{T} は対称行列である

証明

積の転置をとると順序が入れ替わることに注意して、

$$(A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A$$

よって、 $A^{\mathsf{T}}A$ は対称行列である

同様に、

$$(AA^{\mathsf{T}})^{\mathsf{T}} = (A^{\mathsf{T}})^{\mathsf{T}}A^{\mathsf{T}} = AA^{\mathsf{T}}$$

よって、 AA^{T} も対称行列である

...........

Zebra Notes

Туре	Number
todo	2