2 - Discrete-Time Signals

Energy
$$E_x = ||x||_2^2 = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

Power $P_x = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N} |x[n]|^2$ Finite support $\exists M \text{ s.t } x[n] = 0, \ \forall n < M \text{ and } n > M+N-1$

3 - Signals and Hilbert Spaces

Vector Space

Commutativity x + y = y + x**Associativity** (x + y) + z = x + (y + z)**Distributivity** $\alpha(x+y) = \alpha x + \alpha y$ $(\alpha + \beta)x = \alpha x + \beta y$ **Null vector** $\exists 0 \in V \text{ s.t } x + 0 = x \forall x$ Inverse x + y = y + x

Identity element $\exists 1 \text{ s.t } x.1 = 1.x = x$

Inner Product Space

Distributivity $\langle x+y,z\rangle$ Scaling property $\langle x, \alpha y \rangle = \alpha^* \langle x, y \rangle$ Commutative $\langle x, y \rangle = \langle y, x \rangle *$ Self-product positive $\langle x, x \rangle \geq 0$ $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ An inner product space is a vector space equipped with an inner product.

Complete space sequences converge in the space

Hilbert space space is a complete inner product space

Subspace

- Closure under additions : $\forall x, y \in P \Rightarrow x + y \in P$ - Closure under scalar multiplication: $\forall x \in P, \forall \alpha \in S \Rightarrow \alpha x \in P$

Span set of all linear combinations of the vectors in W.

Basis set linearly independent, its span covers the region, ie span(W) = P

Norm: ≥ 0 , $||\alpha x|| = |\alpha| ||x||$. triangle inequality

Orthogonal/Orthonormal Basis Parseval's Identity

$||y|| = \sum_{k=0}^{K-1} \left| \left\langle x^{(k)}, y \right\rangle \right|^2$

Bassel's Identity

 $||y|| \ge \sum_{l=0}^{L-1} \left| \left\langle g^{(l)}, y \right\rangle \right|^2, \text{ with } G \subset P$ Best Approximations $\hat{y} = \sum_{k=0}^{K-1} \left\langle x^{(k)}, y \right\rangle x^{(k)}$

$$\hat{y} = \sum_{k=0}^{K-1} \langle x^{(k)}, y \rangle x^{(k)}$$

- ℓ_1 : absolutely summable sequence - ℓ_2 : square summable sequence - L_1 : absolutely integrable function

Cauchy Sequence

$$\overline{\forall \epsilon > 0, \exists N \in \mathbb{N} \mid \forall n, m \ge N, |x_n - x_m| < \epsilon}$$

4 - Fourier Analysis

Discrete-Time Fourier Transform (DTFT)

infinite, two sided signals $(x[n] \in \ell_2(\mathbb{Z}))$ used for: $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$ $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$ analysis formula: synthesis formula: $x[-n] \overset{DTFT}{\longleftrightarrow} X(e^{-j\omega})$ $x^*[n] \overset{DTFT}{\longleftrightarrow} X^*(e^{-j\omega})$ symmetries: $x[n-n_0] \overset{DTFT}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$ shifts: $e^{-j\omega_0 n} x[n] \stackrel{DTFT}{\longleftrightarrow} X(e^{j(\omega-\omega_0)})$ $\sum_{n=0}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$ Parseval:

Discrete Fourier Series(DFS)

used for: periodic signals $(\tilde{x}[n] \in \tilde{\mathbb{C}}^N)$

 $\tilde{X}[k] = \sum_{n=1}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi}{N}nk}, k = 0, \dots, N-1$ analysis formula:

 $\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j\frac{2\pi}{N}nk}, n = 0, \dots, N-1$ synthesis formula:

 $\tilde{x}[-n] \stackrel{DFS}{\longleftrightarrow} \tilde{X}[-k]$ symmetries: $\tilde{x}^*[n] \stackrel{DFS}{\longleftrightarrow} \tilde{X} * [-k]$

 $\tilde{x}[n-n_0] \stackrel{DFS}{\longleftrightarrow} e^{-j\frac{2\pi}{N}kn_0} \tilde{X}[k]$ shifts:

 $e^{j\frac{2\pi}{N}nk_0}\tilde{x}[n] \stackrel{DFS}{\longleftrightarrow} \tilde{X}[k-k_0]$

 $\sum_{n=1}^{N-1} |\tilde{x}[n]|^2 = \frac{1}{N} \sum_{n=1}^{N-1} |\tilde{X}[k]|^2 d\omega$ Parseval:

Some DTFT pairs

$$\begin{split} x[n] &= \delta[n-k] & X(e^{j\omega}) = e^{-j\omega k} \\ x[n] &= 1 & X(e^{j\omega k}) = \tilde{\delta}(\omega) \\ x[n] &= u[n] & X(e^{j\omega}) = \frac{1}{1-e^{-j\omega}} + \frac{1}{2}\tilde{\delta}(\omega) \\ x[n] &= a^n u[n], |a| < 1 & X(e^{j\omega}) = \frac{1}{1-ae^{-j\omega}} \\ x[n] &= e^{j\omega_0 n} & X(e^{j\omega}) = \tilde{\delta}(\omega - \omega_0) \\ x[n] &= \cos(\omega_0 n + \phi) & X(e^{j\omega}) = \frac{1}{2}[e^{j\phi}\tilde{\delta}(\omega - \omega_0) + e^{-j\phi}\tilde{\delta}(\omega + \omega_0)] \\ x[n] &= \sin(\omega_0 n + \phi) & X(e^{j\omega}) = \frac{-j}{2}[e^{j\phi}\tilde{\delta}(\omega - \omega_0) - e^{-j\phi}\tilde{\delta}(\omega + \omega_0)] \end{split}$$

 $x[n] = \left\{ \begin{array}{ll} 1 & \text{for } 0 \leq n \leq N-1 \\ 0 & \text{otherwise} \end{array} \right. \quad X(e^{j\omega}) = \frac{\sin\left((N/2)\omega\right)}{\sin\left(\omega/2\right)} e^{-j\frac{N-1}{2}\omega}$

Discrete Fourier Transform(DFT)

used for: finite support signals $(x[n] \in \mathbb{C}^N)$ $X[k] = \sum_{n=1}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}, k = 0, \dots, N-1$ analysis formula:

 $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}nk}, n = 0, \dots, N-1$ synthesis formula:

 $x[-n \mod N] \xrightarrow{DFT} X[-k \mod N]$ symmetries:

 $x^*[n] \xrightarrow{DFT} X^*[-k \mod N]$

 $x[(n-n_0) \mod N] \stackrel{DFT}{\longleftrightarrow} e^{-j\frac{2\pi}{N}kn_0}X[k]$ shifts: $e^{j\frac{2\pi}{N}nk_0}x[n] \stackrel{DFT}{\longleftrightarrow} X[(k-k_0) \mod N]$

 $\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |X[k]|^2 d\omega$ Parseval:

Some DFT pairs for length-N signals

$$\begin{split} x[n] &= \delta[n-k] \quad X[k] = e^{-j\frac{2\pi}{N}k} \\ x[n] &= 1 \quad X[k] = N\delta[k] \\ x[n] &= e^{j\frac{2\pi}{N}L} \quad X[k] = N\delta[k-L] \end{split}$$

5 - Discrete-Time Filters

Linear Time-Invariant Systems (LTI)

Time Invariance:

$$y[n] = \mathcal{H}\{x[n]\} \Leftrightarrow y[n - n_0] = \mathcal{H}\{x[n - n_0]\}$$

$$\mathbf{LTI:} \ y[n] = \mathcal{H}\{x[n]\} = \sum_{k = -\infty}^{\infty} x[k]h[n - k]$$

Filtering in the Time Domain

$$\begin{array}{lll} \textbf{Convolution: } \tilde{x}[n] * \tilde{y}[n] = \sum_{k=0}^{N-1} \tilde{x}[k] \tilde{y}[n-k] \\ X(e^{j\omega}) & * & Y(e^{j\omega}) & = & \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\sigma}) & * & Y(e^{j(\omega-\sigma)}) \mathrm{d}\sigma \end{array}$$

Properties of the Impulse Response

IIR filters: Infinite Impulse Response. **FIR** filters: Finite Impulse Response.

Causality: outputs doesn't depend on future values of input.

Stability: A system is called BIBO stable if its output is bounded

for all bounded input sequences.

sufficient condition: absolutely summable

6 - The Z-transform

For DFTs : $z = e^{j\omega}$

Signal	Transform	ROC
$\delta[n]$	1	all z
$\delta[n-n_0]$	z^{-n_0}	$z \neq 0$
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$e^{-\alpha n}u[n]$	$\frac{1}{1-e^{-\alpha}z^{-1}}$	$ z > e^{-\alpha} $
-u[-n-1]	$\frac{\frac{1}{1-e^{-\alpha}z^{-1}}}{\frac{1}{1-z^{-1}}}$	z < 1
nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1
-nu[-n-1]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z < 1
$n^2u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z > 1
$-n^2u[-n-1]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z < 1
$n^3u[n]$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z > 1
$-n^3u[-n-1]$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$ $\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z < 1
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$n^2 a^n u[n]$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z > a
$-n^2a^nu[-n-1]$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z < a
$\cos(\omega_0 n)u[n]$	$\frac{1-z^{-1}\cos(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$	z > 1
$\sin(\omega_0 n)u[n]$	$z^{-1}\sin(\omega_0)$	z > 1
$a^n \cos(\omega_0 n) u[n]$	$\frac{1-2z^{-1}\cos(\omega_0)+z^{-2}}{1-az^{-1}\cos(\omega_0)}$ $\frac{1-az^{-1}\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$	z > a
$a^n \sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$	z > a

$$\begin{array}{ll} x[n] = \cos(\frac{2\pi}{N}Ln + \phi) & X[k] = \frac{N}{2}[e^{j\phi}\delta[k-L] + e^{-j\phi}\delta[k-N+L] \\ x[n] = \sin(\frac{2\pi}{N}Ln + \phi) & X[k] = \frac{-jN}{2}[e^{j\phi}\delta[k-L] - e^{-j\phi}\delta[k-N+L] \end{array}$$

$$x[n] = \left\{ \begin{array}{ll} 1 & \text{for } n \leq M-1 \\ 0 & \text{for } M \leq n \leq N-1 \end{array} \right. \quad X[k] = \frac{\sin\left((\pi/N)Mk\right)}{\sin\left((\pi/N)k\right)} e^{-j\frac{\pi}{N}(M-1)k}$$

Filtering in the Frequency Domain

Properties of the Frequency response

Magnitude: lowpass, highpass, bandpass or allpass filter. **Phase:** the phase response acts as a generalized delay.

Linear Phase : $\angle H(e^{j\omega}) = \omega d$

Filtering by Example: Frequency Domain

Moving Average
$$H(e^{j\omega})=\frac{1}{N}\frac{\sin(\omega N/2)}{\sin(\omega/2)}e^{-j\frac{N-1}{2}\omega}$$

Leaky Integrator $H(e^{j\omega})=\frac{1-\lambda}{1-\lambda e^{-j\omega}}$

Ideal Filters

Ideal Lowpass:
$$h_{lp}[n] = \frac{\sin(\omega_c n)}{\pi n}$$
; $\sin(x) = \frac{\sin(\pi x)}{\pi x}$
Ideal Highpass: $h_{hp}[n] = \delta[n] - \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}n\right)$
Ideal Bandpass: $h_{bp}[n] = 2\cos(\omega_0 n)\frac{\omega_b}{2\pi}\operatorname{sinc}\left(\frac{\omega_b}{2\pi}n\right)$
Hilbert Filter: $H(e^{j\omega}) = \begin{cases} -j & 0 \le \omega \le \pi \\ +j & -\pi \le \omega \le 0 \end{cases}$
 $h[n] = \frac{2\sin^2(\pi n/2)}{\pi n} = \begin{cases} 0 & \text{for } n \text{ even} \\ \frac{2}{n\pi} & \text{for } n \text{ odd} \end{cases}$

Hilbert Filter:
$$H(e^{j\omega}) = \begin{cases} -j & 0 \le \omega \le \pi \\ +j & -\pi \le \omega \le 0 \end{cases}$$

$$h[n] = \frac{2\sin^2(\pi n/2)}{\pi n} = \begin{cases} 0 & \text{for } n \text{ even} \\ \frac{2}{n\pi} & \text{for } n \text{ odd} \end{cases}$$

Filter Analysis

Z-transform:
$$X(z) = \mathscr{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Inverse Z-transform: $\mathscr{Z}^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_C X(z)z^{n-1}\mathrm{d}z$

Time-shift $\mathscr{Z}\{x[n-N](z)\}=z^{-N}X(z)$

CCDE: Constant-Coefficient Difference Equation

$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k] - \sum_{k=0}^{N-1} a_k y[n-k], \quad H(z) = \frac{\sum_{k=0}^{M-1} b_k z^{n-k}}{1 + \sum_{k=0}^{N-1} a_k z^{n-k}}$$

Region pf Convergence

The ROC has circular geometry

Anticausal ROC: Disk Causal ROC: plane \disk

Stability: a system is BIBO stable if its ROC includes the unit circle.

The Pole-Zero plot

$$H(z) = b_0 \frac{\prod_{n=0}^{M-1} (1 - z_n z^{-1})}{\prod_{n=0}^{M-1} (1 - p_n z^{-1})}$$

Sketching the Transfer Function from the Pole-Zero Plot

- 1- Check for the zeros on the unit circle; these correspond to points on the frequency axis in which the magnitude response is exactly
- 2 Draw a line from the origin of the complex plane to each pole and each zero. The point of intersection of each line with the unit circle gives the location of a local extremum for the magnitude response.
- 3 The effect of each pole and each zero is made stronger by their proximity to the unit circle

7 - Filter Design

Filter Specifications and Tradeoffs

Transition Band. Range of frequencies between passband and stopband Tolerances. Min and Max frequency response over passband and stopband.

FIR Filter Design

FIR Filter Design By Windowing Impulse Response Trunca-

$$\hat{h}[n] = \begin{cases} h[n] & -N \le n \le N \\ 0 & \text{otherwise} \end{cases}$$

The Rectangular Window

$$\hat{h}[n] = h[n]w[n] \quad \text{with} : w[n] = \text{rect}\left(\frac{n}{N}\right) = \begin{cases} 1 & -N \le n \le N \\ 0 & \text{otherwise} \end{cases}$$

Gibbs phenomenon: The maximum error does not decrease with increasing N and, therefore, there are no means to meet a set of specifications which require less tan 9% error in either stopband or passband.

This truncation produces 2 main effects:

- Sharp transition from passband to stopband is smoothed by the convolution with the main lobe of width Δ .
- Ripples appear both in the stopband and the passband due to the convolution with the sidelobes (the largest ripple being the Gibbs phenomenon).

8 - Stochastic Signal Processing

Random Variables

Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$

 $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ Correlation: $R_{XY} = E[XY]$

Covariance: $K_{XY} = E[XY] - E[X]E[Y]$ Variance: $\sigma_X^2 = E[(W - m_x)^2]$

Random Vectors

Expectation:

$$\begin{split} E[\mathbf{X}] &= \left[E[X_0], E[X_1], ..., E[X_{N-1}]\right]^T \\ \mathbf{Correlation:} \ \mathbf{R}_{\mathbf{XY}} &= E[\mathbf{XY}^T] \\ \mathbf{Cov:} \ \mathbf{K}_{\mathbf{XY}} &= E[(\mathbf{X} - \mathbf{m}_{\mathbf{X}})(\mathbf{Y} - \mathbf{m}_{\mathbf{Y}})] \end{split}$$

Random Processes

Probability Distribution:

$f_{X[i_0]X[i_1]...X[i_{k-1}]}(x_0, x_1, ..., x_{k-1})$ Second Order Description: $R_X[l,k] = E[X[l]X[k]], \quad l,k \in \mathbb{Z}$ $K_X[l,k] = E\left[\left(X[l] - m_{X[l]}\right)\left(X[k] - m_{X[k]}\right)\right]$ Stochastic Signal Processing $R_{XY}[l,k] = E[X[l]Y[k]]$ (cross-correlation)

Stationary Processes

Strict sense: The full probabilistic description of the process is time invariant

WSS: mean and variance are constant over time and autocorrelation and covariance only depend on the time lag (l-k)

Ergodicity

It is legitimate to estimate expectations from a single realization

Spectral Rep of Statio Rand Processes $P_X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} r_X[k]e^{-j\omega k}$

$$P_X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} r_X[k]e^{-j\omega k}$$

$$Y[n] = \sum_{k=-\infty}^{\infty} h[k]X[n-k]$$
 with stable LTI

filter and WSS input process

Time-Domain Analysis

 $m_{Y[n]} = \sum_{n=-\infty}^{\infty} h[k] m_{n-k} = m_X H(e^{j0})$ $r_Y[n] = h[n] * h[-n] * r_X[n]$ $r_{XY}[N] = h[n] * r_X[n]$

Frequency-Domain Analysis

$$P_Y(e^{j\omega}) = |H(e^{j\omega})|^2 P_X(e^{j\omega})$$

$$P_{XY}(e^{j\omega}) = H(e^{j\omega}) P_X(e^{j\omega})$$

9 - Interpolation and Sampling

Continuous-Time Fourier Transform

$$\overline{X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt}$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t}d\Omega$$

Bandlimited Signals

 $\exists \Omega_N \text{ s.t } X(j\Omega) = 0 \text{ for } |\Omega| \geq |\Omega_N|$

Polynomial Interpolation

$$L_n^{(N)}(t) = \prod_{\substack{k=-N\\k\neq n}}^{N} \frac{(t-t_k)}{(t_n - t_k)}$$
$$= \prod_{\substack{k=-N\\k=-N}}^{N} \frac{(t/T_s - k)}{(n-k)}$$

$P(t) = \sum_{n=-N}^{N} x[n] L_n^{(N)}(t)$

Sinc Interpolation
$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

If x(t) is a Ω_N -bandlimited continuous-time signal, a sufficient representation of x(t) is given by the discrete time signal $x[n] = x(nT_s)$, with $T_s = \pi/\Omega_N$. The continuous time signal x(t)can be exactly reconstruced form the discrete-time signal x[n] as:

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

Observation: limited bandwidth in a domain \Leftrightarrow illimited in the other

10 - A/D and D/A Conversions

Quantization

 $\mathcal{Q}\{x[n]\} = \{k|x[n] \in I_k\} \text{ with } I_k = [i_k, i_{k+1}]$

Quantization Error

Quantization is highly non-linear.

$$\mathcal{Q}\{\underbrace{x[n]}_{i_m} + \epsilon[n]\} = \begin{cases} k - 1 & \text{if } \epsilon[n] \le 0\\ k & \text{if } \epsilon[n] > 0 \end{cases}$$

$$\mathbb{P}\left(\tilde{X} = \tilde{x} = \frac{i}{2^r}\right) = p\left\{\frac{i}{2^r} \le x \le \frac{i+1}{2^r}\right\}$$

$$p_e = \int_{\Omega} (x - \tilde{x})^2 f_x(x) dx$$

11 - Multirate Signal Processing

Downsampling

$$\begin{split} x_{ND}[n] &= \mathscr{D}\{x[n]\} = x[nN] \; ; \\ X_{ND}(e^{j\omega}) &= \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j(\frac{\omega}{N} - \frac{2\pi}{N}k)}) = \frac{1}{N} \sum_{k=0}^{N-1} X(z^{\frac{1}{N}} e^{-j\frac{2\pi}{N}k)}) \end{split}$$

Upsampling

$$x_{NU}[n] = \mathcal{U}\{x[n]\} = \begin{cases} x[k] & \text{for } n = kN, k \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases};$$
$$X_{NU}(e^{j\omega}) = X(e^{j\omega N}) = X(z^N)$$

Rappels

Trigonometry

$$\begin{array}{lcl} \underline{\mathbf{Series}} \\ \sum_{i=0}^{n-1} q^i & = & \frac{1-q^n}{1-q}; & \sum_{i=1}^n i & = & \frac{n(n+1)}{2}; \\ \sum_{i=1}^n i^2 & = & \frac{n(n+1)(2n+1)}{6} \end{array}$$

$$\overline{Res(X(z)z^{n-1})}|_{z=z_i} = \frac{A(z_i)}{B'(z_i)}z_i^{n-1}$$

 $\cos(a) = \frac{1 - \tan^2(\frac{a}{2})}{1 + \tan^2(\frac{a}{2})}$

 $\sin(a) = \frac{2\tan(\frac{a}{2})}{1 + \tan^2(\frac{a}{2})}$

 $\tan(a) = \frac{2\tan(\frac{a}{2})}{1 - \tan^2(\frac{a}{2})}$

$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$
$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

$$\cos(p) + \cos(q) = 2\cos(\frac{p+q}{2})\cos(\frac{p-q}{2})$$

$$\cos(p)-\cos(q)=-2\sin(\frac{p+q}{2})\sin(\frac{p-q}{2})$$

$$\sin(p) + \sin(q) = 2\sin(\frac{p+q}{2})\cos(\frac{p-q}{2})$$

$$\sin(p) - \sin(q) = 2\sin(\frac{p-q}{2})\cos(\frac{p+q}{2})$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

Residues

$$Res(X(z)z^{n-1})|_{z=z_i} = \frac{A(z_i)}{B'(z_i)}z_i^{n-1}$$

$$\frac{1}{\log(1+x)} = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$

$$\frac{\textbf{Bayes' Theorem}}{P(A|B) = \frac{P(A \cap B)}{P(B)}} = \frac{P(B|A)P(A)}{P(B)}$$

Chebychev Polynomials

Used to prove Gibbs Phenomenon

$$T_0(x) = 1, T_1(x) = x, T_2(x) = 2x^2 - 1$$

 $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$
 $\cos(n\omega) = T_n(\cos(\omega))$

Gaussian Distribution
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Integral Derivation

if
$$f(t) = \int_{a(t)}^{b(t)} g(x,t) dx$$
 then
$$\frac{\partial f(t)}{\partial t} = \int_{a(t)}^{b(t)} \frac{g(x,t)}{t} dx + \frac{b(t)}{t} g(b(t),t) - \frac{a(t)}{t} g(a(t),t)$$

Period, pulsation, frequence

$$T = \frac{1}{f}, \quad \omega = 2\pi$$

Multirate identities (Noble identities)

- Downsampling by N followed by filtering by H(z) is equivalent to filtering by $H(z^N)$ followed by downsampling by N.
- Filtering by H(z) followed by upsampling by N is equivalent to upsampling by N followed by filtering by $H(z^N)$.

$$\overline{x[n]} = \begin{cases} 1 & \text{if } |n| \le T \\ 0 & \text{otherwise} \end{cases}$$

$$\stackrel{DTFT}{\longleftrightarrow} X(e^{j\omega}) = \frac{\sin(\omega(T + \frac{1}{2}))}{\sin(\omega/2)}$$