Deep Learning - Theory and Practice

IE 643 Lectures 6, 7

August 23 & 26, 2022.

- Recap
 - Multi Layer Perceptron
 - MLP-Data Perspective

- Optimization Concepts
 - Gradient Descent
 - Stochastic Gradient Descent
 - Mini-batch SGD

Notable features:

- Multiple layers stacked together.
- Zero-th layer usually called input layer.
- Final layer usually called output layer.
- Intermediate layers are called hidden layers.

Notable features:

- Each neuron in the hidden and output layer is like a perceptron.
- However, unlike perceptron, different activation functions are used.
- $\max\{x,0\}$ has a special name called **ReLU** (Rectified Linear Unit).

• This MLP contains an input layer L_0 , 2 hidden layers denoted by L_1 , L_2 , and output layer L_3 .

Recall:

- n_k^ℓ denotes k-th neuron at ℓ -th layer.
- a_k^ℓ denotes activation of neuron n_k^ℓ .

• w_{ij}^{ℓ} denotes weight of connection connecting n_i^{ℓ} from $n_j^{\ell-1}$.

• w_{ij}^{ℓ} denotes weight of connection connecting n_i^{ℓ} from $n_j^{\ell-1}$.

• w_{ij}^{ℓ} denotes weight of connection connecting n_i^{ℓ} from $n_j^{\ell-1}$.

• In this particular case, the inputs are x_1 and x_2 at input layer L_0 .

- At layer L₁:
 - At neuron n_1^1 :
 - * $a_1^1 = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.

- At layer L₁:
 - At neuron n_1^1 :
 - * $a_1^1 = \phi(w_{11}^1 x_1 + w_{12}^1 x_2) =: \phi(z_1^1)$.

- At layer L_1 :
 - At neuron n_2^1 :

- At layer L_1 :
 - At neuron n_2^1 :
 - * $a_2^1 = \phi(w_{21}^1 x_1 + w_{22}^1 x_2) =: \phi(z_2^1)$.

• At layer L_1 :

$$\begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} = \begin{bmatrix} \phi(z_1^1) \\ \phi(z_2^1) \end{bmatrix} = \begin{bmatrix} \phi(w_{11}^1 x_1 + w_{12}^1 x_2) \\ \phi(w_{21}^1 x_1 + w_{22}^1 x_2) \end{bmatrix}$$

• Letting $W^1=\begin{bmatrix}w_{11}^1&w_{12}^1\\w_{21}^1&w_{22}^1\end{bmatrix}$ and $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$, we have at layer L_1 :

$$\begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} = \phi \left(\begin{bmatrix} z_1^1 \\ z_2^1 \end{bmatrix} \right) = \phi \left(\begin{bmatrix} w_{11}^1 x_1 + w_{12}^1 x_2 \\ w_{21}^1 x_1 + w_{22}^1 x_2 \end{bmatrix} \right) = \phi(W^1 x)$$

• Letting $a^1 = \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix}$, we have at layer L_1 :

$$a^1 = \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} = \phi(W^1 x)$$

- At layer L_2 :
 - At neuron n_1^2 :
 - $\star a_1^2 = \phi(w_{11}^2 a_1^1 + w_{12}^2 a_2^1) .$

- At layer L_2 :
 - At neuron n_1^2 :
 - * $a_1^2 = \phi(w_{11}^2 a_1^1 + w_{12}^2 a_2^1) =: \phi(z_1^2)$.

- At layer L_2 :
 - ▶ At neuron n_2^2 :
 - $\star \ a_2^2 = \phi(w_{21}^2 a_1^1 + w_{22}^2 a_2^1) \ .$

- At layer L_2 :
 - ▶ At neuron n_2^2 :
 - * $a_2^2 = \phi(w_{21}^2 a_1^1 + w_{22}^2 a_2^1) =: \phi(z_2^2).$

• At layer L₂:

$$a^{2} = \begin{bmatrix} a_{1}^{2} \\ a_{2}^{2} \end{bmatrix} = \begin{bmatrix} \phi(z_{1}^{2}) \\ \phi(z_{2}^{2}) \end{bmatrix} = \begin{bmatrix} \phi(w_{11}^{2}a_{1}^{1} + w_{12}^{2}a_{2}^{1}) \\ \phi(w_{21}^{2}a_{1}^{1} + w_{22}^{2}a_{2}^{1}) \end{bmatrix}$$

• Letting $W^2 = \begin{bmatrix} w_{11}^2 & w_{12}^2 \\ w_{21}^2 & w_{22}^2 \end{bmatrix}$, we have at layer L_2 :

$$a^2 = \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix} = \phi \left(\begin{bmatrix} z_1^2 \\ z_2^2 \end{bmatrix} \right) = \phi \left(\begin{bmatrix} w_{11}^2 \, a_1^1 + \, w_{12}^2 \, a_2^1 \\ w_{21}^2 \, a_1^1 + \, w_{22}^2 \, a_2^1 \end{bmatrix} \right) = \phi \left(W^2 \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} \right)$$

• We have at layer L₂:

$$a^2 = \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix} = \phi\left(\begin{bmatrix} z_1^2 \\ z_2^2 \end{bmatrix}\right) = \phi\left(W^2 \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix}\right) = \phi(W^2 a^1)$$

- At layer L_3 :
 - At neuron n_1^3 :
 - $\star \ a_1^3 = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2) \ .$

- At layer L_3 :
 - At neuron n_1^3 :
 - * $a_1^3 = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2) =: \phi(z_1^3)$.

• At layer L_3 :

$$a^3 = [a_1^3] = [\phi(z_1^3)] = [\phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)]$$

• Letting $W^3 = \begin{bmatrix} w_{11}^3 & w_{12}^3 \end{bmatrix}$, we have at layer L_3 :

$$a^3 = \left[a_1^3\right] = \phi\left(\left[z_1^3\right]\right) = \phi\left(\left[w_{11}^3 a_1^2 + w_{12}^3 a_2^2\right]\right) = \phi\left(W^3 \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix}\right)$$

• Letting $W^3 = \begin{bmatrix} w_{11}^3 & w_{12}^3 \end{bmatrix}$, we have at layer L_3 :

$$a^3 = \begin{bmatrix} a_1^3 \end{bmatrix} = \phi\left(\begin{bmatrix} z_1^3 \end{bmatrix}\right) = \phi\left(W^3 \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix}\right) = \phi(W^3 a^2)$$

$$a^3 = \phi(W^3 a^2)$$

$$a^3 = \phi(W^3 a^2) = \phi(W^3 \phi(W^2 a^1))$$

$$a^3 = \phi(W^3 a^2) = \phi(W^3 \phi(W^2 a^1)) = \phi(W^3 \phi(W^2 \phi(W^1 x)))$$

$$\hat{y} = a^3 = \phi(W^3 a^2) = \phi(W^3 \phi(W^2 a^1)) = \phi(W^3 \phi(W^2 \phi(W^1 x)))$$

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3\phi(W^2\phi(W^1x)))$$

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Note: The same activation function ϕ was assumed for simplicity. Typically different activations functions are used for different layers. Then we can write:

$$\hat{y} = \phi_3(W^3\phi_2(W^2\phi_1(W^1x))) =: MLP(x)$$

where ϕ_1, ϕ_2 and ϕ_3 are activation functions for layers L_1, L_2 and L_3 respectively.

P. Balamurugan

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3\phi(W^2\phi(W^1x))) =: \mathsf{MLP}(x)$$

Similar to perceptron, if $y \neq \hat{y}$ an error $E(y, \hat{y})$ is incurred.

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Similar to perceptron, if $y \neq \hat{y}$ an error $E(y, \hat{y})$ is incurred.

Aim: To change the weights W^1, W^2, W^3 , such that the error $E(y, \hat{y})$ is minimized.

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Similar to perceptron, if $y \neq \hat{y}$ an error $E(y, \hat{y})$ is incurred.

Aim: To change the weights W^1, W^2, W^3 , such that the error $E(y, \hat{y})$ is minimized.

Leads to an error minimization problem.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

- Input: Training Data $D = \{(x^s, y^s)\}_{s=1}^S$.
- For each sample x^s the prediction $\hat{y}^s = MLP(x^s)$.
- **Error:** $e^s = E(y^s, \hat{y}^s)$.
- Aim: To minimize $\sum_{s=1}^{S} e^{s}$.

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^{S} e^{s}$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^S e^s = \sum_{s=1}^S E(y^s, \hat{y}^s)$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^S e^s = \sum_{s=1}^S E(y^s, \hat{y}^s) = \sum_{s=1}^S E(y^s, \mathsf{MLP}(x^s))$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^{S} e^{s} = \sum_{s=1}^{S} E(y^{s}, \hat{y}^{s}) = \sum_{s=1}^{S} E(y^{s}, \mathsf{MLP}(x^{s}))$$

• Note: The minimization is over the weights of the MLP W^1, \ldots, W^L , where L denotes number of layers in MLP.

$$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2) = \frac{1}{1 + \exp(-[w_{11}^1 x_1 + w_{12}^1 x_2])}$$

$$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2) = \frac{1}{1 + \exp(-[w_{11}^1 x_1 + w_{12}^1 x_2])}$$

Property of 0-1 sigmoid $\sigma: \mathbb{R} \to [0,1]$

- \bullet σ is continuous
- \bullet σ is monotonic
- $\sigma(z) \to \begin{cases} 0 & \text{if } z \to -\infty \\ 1 & \text{if } z \to +\infty \end{cases}$

Let

$$D = \{(x^{1} = (-3, -3), y^{1} = 1), (x^{2} = (-2, -2), y^{2} = 1), (x^{3} = (4, 4), y^{3} = 0), (x^{4} = (2, -5), y^{4} = 0)\}.$$

• **Assume:** $Err(y, \hat{y}) = (y - \hat{y})^2$.

- **Assume:** $Err(y, \hat{y}) = (y \hat{y})^2$.
- Popularly called the squared error.

Total error (or loss):

$$E = \sum_{i=1}^{4} e^{i} = \sum_{i=1}^{4} Err(y^{i}, \hat{y}^{i})$$

• Total error (or loss):

$$E = \sum_{i=1}^{4} \left(y^{i} - \frac{1}{1 + \exp\left(-\left[w_{11}^{1} x_{1}^{i} + w_{12}^{1} x_{2}^{i}\right]\right)} \right)^{2}$$

• Aim: To minimize the total error (or loss), which is

$$\min_{w_{11}^1, w_{12}^1} E = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Visualizing the loss surface:

<i>x</i> ₁	<i>X</i> ₂	у	$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2)$
-3	-3	1	$\sigma(-3w_{11}^1-3w_{12}^1)$
-2	-2	1	$\sigma(-2w_{11}^1-2w_{12}^1)$
4	4	0	$\sigma(4w_{11}^1+4w_{12}^1)$
2	-5	0	$\sigma(2w_{11}^1-5w_{12}^1)$

$$E = \sum_{i=1}^{4} \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Optimization Concepts

$$\min_{x\in\mathcal{C}}f(x)$$

$$\min_{x \in \mathcal{C}} f(x)$$

- f is called objective function and C is called feasible set.
- Let $f^* = \min_{x \in C} f(x)$ denote the **optimal objective function value**.
- Optimal Solution Set $S^* = \{x \in \mathcal{C} : f(x) = f^*\}.$
- Let us denote by x^* an optimal solution in S^* .

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Note: $\mathcal{N}(z,\epsilon)$ denotes suitable ϵ -neighborhood of z.

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Note: $\mathcal{N}(z,\epsilon)$ denotes suitable ϵ -neighborhood of z.

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Note: $\mathcal{N}(z,\epsilon)$ denotes suitable ϵ -neighborhood of z.

ϵ — Neighborhood of $z \in \mathcal{C}$

$$\mathcal{N}(z,\epsilon) = \{u \in \mathcal{C} : \mathsf{dist}(z,u) \le \epsilon\}.$$

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Global Optimal Solution

A solution z to (OP) is called global optimal solution if $f(z) \leq f(\hat{z})$, $\forall \hat{z} \in C$.

$$\min_{x \in \mathcal{C}} f(x)$$

• General Assumption: $C \subseteq \mathbb{R}^d$.

High Dimensional Representation

• Points $x \in \mathbb{R}^d$, an Euclidean Space of dimension d.

High Dimensional Representation - Notations

• Vector Representation of $x \in \mathbb{R}^d$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

• Transpose of vector x

$$x^{\top} = \begin{pmatrix} x_1 & x_2 & \dots & x_d \end{pmatrix}.$$

• ℓ_2 Norm of vector x

$$||x||_2 = \sqrt{x^\top x} = (|x_1|^2 + |x_2|^2 + \ldots + |x_d|^2)^{1/2}.$$

• ℓ_1 Norm of vector x

$$||x||_1 = |x_1| + |x_2| + \ldots + |x_d|.$$

Note: $|x_1|$ denotes the absolute value of x_1 .

High Dimensional Representation - Notations

Zero vector has all its components to be zero:

$$\begin{pmatrix} 0 & 0 & \dots & 0 \end{pmatrix}^{\top}$$
.

- Non-zero vector $(x \neq 0)$ has at least one non-zero component.
- One vector has all its components to be one:

$$\begin{pmatrix} 1 & 1 & \dots 1 \end{pmatrix}^{\top}$$
.

High Dimensional Representation - Notations

• Gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point x

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \vdots \\ \frac{\partial f(x)}{\partial x_d} \end{pmatrix}$$

$$\min_{x \in \mathcal{C}} f(x)$$

- $C \subseteq \mathbb{R}^d$.
- $f: \mathcal{C} \longrightarrow \mathbb{R}$.

Directional derivative

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function defined over $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x \in int(\mathcal{C})$. Let $\mathbf{0} \neq d \in \mathbb{R}^d$. If the limit

$$\lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}$$

exists, then it is called the directional derivative of f at x along the direction d, and is denoted by f'(x; d).

Directional derivative

Interior of a set $\mathcal C$

Let $\mathcal{C} \subseteq \mathbb{R}^d$. Then $int(\mathcal{C})$ is defined by:

$$int(C) = \{x \in C : B(x, \epsilon) \subseteq C, \text{ for some } \epsilon > 0\},\$$

where $B(x, \epsilon)$ is the open ball centered at x with radius ϵ given by

$$B(x,\epsilon) = \{ y \in \mathcal{C} : ||x - y|| < \epsilon \}.$$

Directional derivative

Directional derivative

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function defined over $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x \in int(\mathcal{C})$. Let $d \neq \mathbf{0} \in \mathbb{R}^d$. If the limit

$$\lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}$$

exists, then it is called the directional derivative of f at x along the direction d, and is denoted by f'(x; d).

Note: If all partial derivatives of f exist at x, then $f'(x; d) = \langle \nabla f(x), d \rangle$, where $\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \dots & \frac{\partial f(x)}{\partial x_d} \end{bmatrix}^\top$.

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Then a vector $\mathbf{0} \neq d \in \mathbb{R}^d$ is called a descent direction of f at x if the directional derivative of f at x is negative; that is,

$$f'(x; d) = \langle \nabla f(x), d \rangle < 0.$$

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Then a vector $\mathbf{0} \neq d \in \mathbb{R}^d$ is called a descent direction of f at x if the directional derivative derivative of f at x is negative; that is,

$$f'(x; d) = \langle \nabla f(x), d \rangle < 0.$$

Note: A natural candidate for a descent direction is $d = -\nabla f(x)$.

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x)$$
.

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x).$$

Proof idea:

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x).$$

Proof idea: Since $\mathbf{0} \neq d \in \mathbb{R}^d$ is a descent direction, by definition of the directional derivative we have

$$f'(x;d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha} < 0$$

 $\implies \exists \epsilon > 0 \text{ such that } \forall \alpha \in (0, \epsilon], f(x + \alpha d) < f(x).$

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x).$$

Proof idea: Since $\mathbf{0} \neq d \in \mathbb{R}^d$ is a descent direction, by definition of the directional derivative we have

$$f'(x;d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha} < 0$$

 $\implies \exists \epsilon > 0 \text{ such that } \forall \alpha \in (0, \epsilon], f(x + \alpha d) < f(x).$

Note: If we cannot find such ϵ , d is no longer a descent direction. Why?

Consider the general optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (GEN-OPT)

where $f: \mathbb{R}^d \longrightarrow \mathbb{R}$

Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - Find a descent direction d^k of f at x^k and $\alpha^k > 0$ such that $f(x^k + \alpha^k d^k) < f(x^k)$.
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - Check for some stopping criterion and break from loop.

Characterization Of Local Optimum

Proposition

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function over the set $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x^* \in int(\mathcal{C})$ be a local optimum point of f. Let all partial derivatives of f exist at x^* . Then $\nabla f(x^*) = \mathbf{0}$.

Characterization Of Local Optimum

Proposition

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function over the set $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x^* \in int(\mathcal{C})$ be a local optimum point of f. Let all partial derivatives of f exist at x^* . Then $\nabla f(x^*) = \mathbf{0}$.

Exercise: Prove this result!

Consider the general optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (GEN-OPT)

where $f: \mathbb{R}^d \longrightarrow \mathbb{R}$.

Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - Find a descent direction d^k of f at x^k and $\alpha^k > 0$ such that $f(x^k + \alpha^k d^k) < f(x^k)$.
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - ▶ If $\|\nabla f(x^{k+1})\|_2 = 0$, set $x^* = x^{k+1}$, break from loop.
- Output x*.

Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - Find a descent direction d^k of f at x^k and $\alpha^k > 0$ such that $f(x^k + \alpha^k d^k) < f(x^k)$.
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - ▶ If $\|\nabla f(x^{k+1})\|_2 = 0$, set $x^* = x^{k+1}$, break from loop.
- Output x^* .

Homework: Compare the structure of this algorithm with the Perceptron training algorithm and try to understand the perceptron update rule from an optimization perspective.

Consider the general optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (GEN-OPT)

where $f: \mathbb{R}^d \longrightarrow \mathbb{R}$.

Gradient Descent Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - $d^k = -\nabla f(x^k).$
 - $\alpha^k = \operatorname{argmin}_{\alpha > 0} f(x^k + \alpha d^k).$
 - $x^{k+1} = x^k + \alpha^k d^k$.
 - ▶ If $\|\nabla f(x^{k+1})\|_2 = 0$, set $x^* = x^{k+1}$, break from loop.
- Output x*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

where $E: \mathbb{R}^2 \longrightarrow \mathbb{R}$.

Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For $k = 0, 1, 2, \dots$
 - $d^k = -\nabla E(w^k).$

 - $w^{k+1} = w^k + \alpha^k d^k.$
 - ▶ If $\|\nabla E(w^{k+1})\|_2 = 0$, set $w^* = w^{k+1}$, break from loop.
- Output w*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - $d^k = -\nabla E(w^k).$
 - $\alpha^k = \operatorname{argmin}_{\alpha > 0} E(w^k + \alpha d^k).$
 - $w^{k+1} = w^k + \alpha^k d^k.$
 - ▶ If $\|\nabla E(w^{k+1})\|_2 = 0$, set $w^* = w^{k+1}$, break from loop.
- Output w*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...

$$d^k = -\sum_{i=1}^4 \nabla e^i(w^k).$$

$$\qquad \alpha^k = \operatorname{argmin}_{\alpha > 0} E(w^k + \alpha d^k).$$

$$w^{k+1} = w^k + \alpha^k d^k.$$

▶ If
$$\|\nabla E(w^{k+1})\|_2 = 0$$
, set $w^* = w^{k+1}$, break from loop.

Output w*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent:

- ▶ Function values $E(w^t)$ exhibit $O(1/\sqrt{k})$ convergence under minor assumptions and the assumption of existence of a local optimum.
- $O(1/k^2)$ convergence possible.
- Linear convergence also possible for strongly convex and smooth function E(w).
- ▶ Arbitrary accuracy possible $|W(w^{gd}) E(w^*)| \approx O(10^{-15})$.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent:

- ▶ Blind to structure of E(w).
- Finding proper α^k at each k is computationally intensive takes at least O(Sd) time.
- ► Storage complexity: O(d)

Stochastic Gradient Descent for our MLP Problem

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Stochastic Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For $k = 0, 1, 2, \dots$
 - ► Choose a sample $j_k \in \{1, ..., 4\}$.
 - $w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k} (w^k).$

4 D > 4 A > 4 B > 4 B > B = 900

Regularized Empirical Loss Minimization - Optimization Methods

Stochastic Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - ► Choose a sample $j_k \in \{1, ..., 4\}$.
 - $w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k}(w^k).$

 $\nabla_w e^{j_k}(w^k)$: Gradient at point w^k , of e^{i_k} with respect to w. Takes only O(d) time.

Under suitable conditions on γ_k ($\sum_k \gamma_k^2 < \infty$, $\sum_k \gamma_k \to \infty$), this procedure converges **asymptotically**.

For smooth functions, O(1/k) convergence possible (in theory!).

Typical choice: $\gamma_k = \frac{1}{k+1}$.

4□▶ 4□▶ 4□▶ 4□▶ 3□ 90○

Mini-Batch Stochastic Gradient Descent for our MLP Problem

Mini-batch SGD Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - ▶ Choose a block of samples $B_k \subseteq \{1, ..., 4\}$.
 - $w^{k+1} \leftarrow w^k \gamma_k \sum_{i \in B_k} \nabla_w e^j(w^k).$

Mini-batch Stochastic Gradient Descent for our MLP Problem

Mini-batch SGD Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - ► Choose a block of samples $B_k \subseteq \{1, ..., 4\}$.

$$w^{k+1} \leftarrow w^k - \gamma_k \sum_{j \in B_k} \nabla_w e^j(w^k).$$

- Restrictions on γ_k similar to that in SGD.
- Asymptotic convergence !

GD/SGD: Crucial Step

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Crucial step in Gradient Descent Algorithm

$$w^{k+1} = w^k - \alpha^k \sum_{i=1}^4 \nabla e^i(w^k)$$

Crucial step in Stochastic Gradient Descent Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \nabla_w e^{j_k}(w^k).$$

Crucial step in Mini-batch SGD Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \sum_{i \in B_k} \nabla_w e^j(w^k).$$

GD/SGD for MLP: Crucial Step

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Crucial step in Gradient Descent Algorithm

$$w^{k+1} = w^k - \alpha^k \sum_{i=1}^4 \nabla e^i(w^k)$$

Crucial step in Stochastic Gradient Descent Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \nabla_w e^{j_k} (w^k).$$

Crucial step in Mini-batch SGD Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \sum_{j \in B_k} \nabla_w e^j(w^k).$$

Note: $\nabla e^{i}(w^{k})$, $\nabla_{w}e^{j_{k}}(w^{k})$, $\nabla e^{j}(w^{k})$ denote sample-wise gradient computation.

References:

- Cauchy, A.: Méthode générale pour la résolution des systèmes d'équations simultanées. Comptes rendus des séances de l'Académie des sciences de Paris 25, 536–538, 1847.
- H. Robbins, and D.Siegmund: A convergence theorem for non-negative almost supermartingales and some applications.
 Optimizing Methods in Statistics. Academic Press, 1971.

Acknowledgments:

CalcPlot3D website for plotting.