

Contact us

E-mail: info@calsimu-tech.com

One can probe materials behavior in three ways:

- 1. Theory
- 2. Computations >>> Expertise of this startup.
- 3. Experiment

Computational Materials Science

"The application of computational tools to materials discovery, characterization, design and optimization." (solving quantum mechanical equations for atoms.)

History of quantum mechanical computations

Schroedinger equation to describe electrons-protons

Hartree-Fock flowchart to compute Schroedinger equation

Ab-initio electronic structure methods in terms of energy

Time-lapse

Erwin Schroedinger (1926)

Hartree (1935)

Fock (1935)

John Pople Gaussian (1998)

Walter Kohn DFT Equations (1998)

Who are using Computational Materials Science?

Almost all advanced research centers in the world

Why using Computational Materials Science?

Experimental steps must be designed and executed to save time and money.

In **CMS**, lengthy experimental steps are replaced by computer modeling to save both **Money** and **Time**.

Modern computations are **cheap** yet **powerful**.

CMS

- >>> Drives innovation and discovery
- » Addresses international goals
- >>> Brings new and optimized products to market
- >>> Trains next-generation workforce

CMS in Industry

Global competitiveness of manufacturing firms requires accelerated materials development and deployment.

CMS can compress development pipeline by eliminating laborious, costly, and lengthy experimental "trial and error".

Validated computational models to perform	
1	Prototyping
2	Screening
3	Materials Selection
4	Materials Design
5	Failure Analysis
6	Virtual Analysis
7	Optimization
8	Reliability Testing

Our main expertise:

Predict materials properties without using experimental results.

Research Methodology Capabilities and Skills:

- >>> Development of screening criteria.
- >>> In-depth analysis of bottlenecks in material performance.
- >> Molecular dynamics and force field development.
- >> Ab-initio thermodynamics.
- >> Ab-initio spectral benchmarking and analysis.
- >>> High-throughput screening of materials.

Research Procedure

Break device into known materials structures

Model atomic structure of all materials

Pre-process to create input files for computations

Run computations to solve Schrodinger equations

Post-process to extract raw data from output files

Analyze and Propose materials properties

Thank You!