Introduction to Machine Learning

Session 1

Intro

Maxime Ossonce

Introduction and Dataviz

What is machine learning (ML)?

▶ Data based programming: improve **performance** at some **task** with experience

▶ Model inference.

ML-Ing1 maxime.ossonce@esme.fr

Introduction and Dataviz

1.1 Intro

ML and artificial intelligence (AI)

ML-Ing 1 maxime.ossonce@esme.fr

Applications

- > Image classification, object detection.
- ▶ Medical diagnosis.
- ► Audio captioning.
- ► Chatbot.
- ▶ Product recommendation.

ML-Ing 1 maxime.ossonce@esme.fr

> **Introduction and Dataviz** 1.1 Intro

ML project

Data engineering process

- 1. Visualize, pre-processing of the data.
- **2.** Identify the approach.
- 3. Design a model.
- 4. Evaluate the model.
- 5. Go back to ?? if needed.

ML-Ing1 maxime.ossonce@esme.fr 5/

Introduction and Dataviz 1.1 Intro

Approaches

- ➤ Supervised learning:
 - **▶** classification,
 - > regression.
- ▶ Unsupervised learning:
 - ▶ clustering,
 - ▶ dimension reduction.

ML-Ing1 maxime.ossonce@esme.fr 6/

Supervised learning

- **>** Given a **training set** of *N* samples $\{(x^i, y^i) : i \in 1, \dots, N\}$ we want to **estimate** the function y = f(x).
- ► Examples: image classification, object detection....

ML-Ing 1 maxime.ossonce@esme.fr 7/

Introduction and Dataviz 1.1 Intro

Unsupervised learning

- ▶ Given a **training set** of *N* samples $\{x^i : i \in 1, \dots, N\}$ we want to **describe** how the data is organized.
- ➤ Examples: image segmentation, customers clustering....

ML-Ing1 maxime.ossonce@esme.fr 8/

Supervised learning principle

- $\triangleright \mathcal{X}, \mathcal{Y}$ two sets with an unknown **distribution** p(x, y).
- ▶ Find a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ which estimates y associated to x.
- \triangleright *f* belongs to \mathcal{H} the **hypothesis class**.
- ▶ *E.g.* linear regression:

$$\mathcal{H} = \{ f : x \mapsto y = ax + b : (a, b) \in \mathbb{R}^2 \}.$$

Figure: Simple linear regression.

ML-Ing1 maxime.ossonce@esme.fr

> **Introduction and Dataviz** 1.1 Intro

Loss function

- \triangleright The loss function *L* evaluates the relevance of f(x):
 - ightharpoonup L(y, f(x)) = 0 if y = f(x).
 - $ightharpoonup L(y, f(x)) > 0 \text{ if } y \neq f(x).$
- ightharpoonup For **regression** ($\mathcal{Y} = \mathbb{R}$):
 - \triangleright absolute deviation |y f(x)|,
 - \triangleright quadratic loss $(y f(x))^2$.
- \triangleright For **classification** (\mathcal{Y} is a finite set):
 - \triangleright 0 1 loss,
 - ▶ hinge loss,
 - ➤ cross-entropy (CE).

ML-Ing1 maxime.ossonce@esme.fr 10/

Risk

▶ True risk

$$R(f) = \mathbb{E}_{(\mathsf{X},\mathsf{Y}) \sim p(x,y)} \big[L(\mathsf{Y}, f(\mathsf{X})) \big].$$

 \triangleright Objective find f^* :

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}} R(f).$$

ightharpoonup Be R^* the minimal risk attained over all measurable functions. The **approximation** error is

$$R(f^*) - R^*$$
.

ML-Ing1 maxime.ossonce@esme.fr 11/

Introduction and Dataviz 1.1 Intro

Empirical risk

- ▶ The distribution p(x, y) is **unknown**.
- ▶ Only a finite **training set** is available $\{(x^i, y^i)\}_{i=1}^N$.
- **▶** Empirical risk

$$\hat{R}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y^{i}, f(x^{i})).$$

Training: minimization of the empirical risk:

$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{arg\,min}} \hat{R}(f).$$

▶ The **estimation error** is

$$R(\hat{f}) - R(f^*)$$
.

 $ML-Ing \ 1 \\ naxime.ossonce@esme.fr \\ 12/$

Overfitting

$$R(\hat{f}) - R^* = \underbrace{R(\hat{f}) - R(f^*)}_{\text{estim. error}} + \underbrace{R(f^*) - R^*}_{\text{approx. error}}.$$

- ▶ Low complexity: approximation error (**bias**) high.
- ► High complexity: estimation error (variance) high.

ML-Ing 1 maxime.ossonce@esme.fr 13/

Introduction and Dataviz 1.1 Intro

Overfitting: example

Figure: Polynomial regression.

Generalization gap

- ▶ Generalization gap: $R(f) \hat{R}(f)$.
- ▶ $\hat{R}(f) \rightarrow 0$ when model complexity $\rightarrow \infty$.

ML-Ing 1 maxime.ossonce@esme.fr 15/

Introduction and Dataviz

1.1 Intro

Model selection

- ightharpoonup Split dataset \mathcal{D} in three sets \mathcal{D}_{train} , \mathcal{D}_{valid} , \mathcal{D}_{test}
- ▶ For each **hyperparamter** α (*e.g.* polynom order), train the model and estimate f_{α} .
- \triangleright Evaluate f_{α} on $\mathcal{D}_{\text{valid}}$.
- **Select** α with best **validation** performance.
- \triangleright **Test** selected model on $\mathcal{D}_{\text{test}}$.

 \mathcal{D}_{test} is only used once.