1.Jazyk a sémantika predikátové logiky (termy, formule, realizace jazyka, pravdivost formulí)

Základy logiky

Logikou rozumíme analýzu usuzovacích metod a zkoumání matematických důkazů.

Zobrazení $f: X \rightarrow Y$ je relace $f \subseteq X \times Y$:

☑ $\forall x \in X : \exists y \in Y, y = f \ x \iff \text{každému } x \text{ je tedy přiřazeno nějaké } y;$ ☑ $\forall x \in X, \forall y, z \in Y : y = f \ x \land z = f \ x \Rightarrow y = z \iff \text{zobrazení z } X \text{ do } Y \text{ je jednoznačné;}$

Axiomy jsou výchozí tvrzení dané teorie, nedokazují se, jejich platnost se předpokládá. Z axiomů se dedukcí odvozují další tvrzení, tzv. **důsledky**. Základním požadavkem je **bezespornost** – důsledkem axiomu nesmí být nějaké tvrzení a současně jeho negace. Vedlejším požadavkem je **nezávislost** axiomů, tzn., že žádný axiom není důsledkem zbývajících axiomů.

Matematická tvrzení se zapíší pomocí speciálních znaků – **symbolů** (tvoří abecedu dané teorie). Tvrzení dostanou podobu zvláštních **formulí** – slov sestavených určitým způsobem z daných symbolů (tvoří jazyk teorie). Axiomy jsou zapsány jako formule, které chápeme jako vždy pravdivé. **Odvozovací pravidla** jsou jisté manipulace s formulemi, pomocí nichž a axiomů odvozujeme důsledky.

Výroková logika

Výroková logika zkoumá způsoby tvorby složených výroků z daných jednoduchých výroků, závislost pravdivosti (resp. nepravdivosti) složeného výroku na pravdivosti výroků, z nichž je složen. Buď P neprázdná množina symbolů, které nazýváme **prvotní formule**, zpravidla značíme např. písmeny p, q. Tyto hrají úlohu jednoduchých výroků. **Složené výroky** vytváříme z jednoduchých pomocí logických spojek: \neg nebo & konjunkce, \lor disjunkce, \rightarrow nebo \Rightarrow implikace, \equiv nebo \Leftrightarrow nebo \leftrightarrow ekvivalence.

Symboly jazyka L_P výrokové logiky (nad množinou P) jsou prvky množiny P, logické spojky a závorky (a). Úlohu složených výroků hrají výrokové formule jazyka L_P , definované následovně:

- 1. $\forall p \in P$ je výroková formule;
- 2. Jsou-li A a B výrokové formule, pak $\neg A$, $A \land B$, $A \lor B$, $A \to B$
- 3. Každá výroková formule vznikne konečným počtem užití pravidel (1) a (2).

Pravdivostní ohodnocení prvotních formulí je libovolné zobrazení $v:P \rightarrow \{0,1\}$, tj. zobrazení, které každé prvotní formuli $p \in P$ přiřadí hodnotu 0 (tj. nepravda) nebo 1 (pravda).

Pravdivostní ohodnocení základních složených výrokových formulí je dáno tabulkou:

r	(A)	v(B)	v (A)	$v(A \wedge B)$	$v(A \lor B)$	$v(A \rightarrow B)$	$v(A\equiv B)$	v(A B)	$v(A \downarrow B)$
	0	0	1	0	0	1	1	1	1
	0	1	1	0	1	1	0	1	0
	1	0	0	0	1	0	0	1	0
	1	1	0	1	1	1	1	0	0

Říkáme, že výroková formule A je **tautologie**, jestliže v (A) =1 pro libovolné ohodnocení A. Jinak řečeno A je pravdivá vždycky, bez ohledu na ohodnocení případných jednotlivých prvotních formulí, ze kterých se skládá, což píšeme $\models A$. Následující výrokové formule jsou tautologiemi:

 $\square \models (A \lor \neg A)$, což je **zákon vyloučení třetího**;

 $\square \models (\neg \neg A \equiv A)$, což je **zákon dvojí negace**;

 $[] \models] (A \land] A)$, což je **vyloučení sporu**.

Říkáme, že výrokové formule A a B jsou **logicky ekvivalentní**, právě když v (A) =v (B), což znamená $A \equiv B$. Následující formule jsou ekvivalentní:

Predikátová logika

Pro označení libovolného prvku z daného oboru používáme **proměnné** (např. *x, y, z, ...*). Mezi prvky z daného oboru mohou být nějaké význačné objekty (0, 1, neutrální prvek), pro něž zavádíme speciální symboly zvané **konstanty**.

K označení operací užíváme **funkcí symboly** (např. *f, g, h, ...*). Matematika zkoumá vlastnosti objektů a vztahy mezi nimi. Vlastnosti a vztahy mezi objekty daného oboru, tzv. **predikáty**, ("*být záporným číslem"*, "*být menším než"*, "*být prvkem"*) vyjadřujeme pomocí **predikátových symbolů** (např. *p, q, r, ...*). Predikát znamená vztah mezi užitým počtem objektů, tedy je příkladem relace. Tím je každému predikátovému symbolu přiřazeno přirozené číslo, jeho četnost, udávající počet jeho argumentů. Je-li četnost rovna *n*, říkáme, že symbol je *n*-ární.

Z uvedených symbolů sestavujeme jistým způsobem nejjednodušších tvrzení, vyjádřených tzv. **atomickými formulemi**. Z nich vytváříme složitější formule pomocí logických spojek (stejných jako ve výrokové logice) a pomocí následujících **kvantifikátorů proměnných**:

☑ univerzální (obecný) kvantifikátor ∀ vyjadřuje platnost pro všechny objekty daného oboru;
 ☑ existenční kvantifikátor ∃ vyjadřuje existenci požadovaného prvku v daném oboru.

Abecedu predikátové logiky 1. řádu tak tvoří tedy funkční, predikátové a pomocné symboly,

proměnné, konstanty, logické spojky a nově i kvantifikátory.

Jazyk predikátové logiky 1. řádu je tedy tvořen:

- 🛮 **logickými symboly** (proměnné, logické spojky, kvantifikátory, závorky, predikát rovnosti =);
- \square **speciálními symboly** (funkční symboly s \mathbb{N}_0 +-ární četností a predikátové symboly \mathbb{N} +-ární četností).

Termy jsou rekurentně definovány následujícími pravidly:

- 1. Každá proměnná je term;
- 2. Je-li f funkční symbol četnosti n a jsou-li $t_1,...,t_n$ termy, pak $f(t_1,...,t_n)$ je term;
- 3. Každý term vznikne konečným užitím pravidel (1) a (2).

Je-li p predikátový symbol četnosti n a jsou-li $t_1,...,t_n$ termy, pak $p(t_1,...,t_n)$ nazýváme **atomickou** (elementární) formulí.

Formule je rekurentně definována následujícími pravidly:

- 1. Každá atomická formule je formule;
- 2. Jsou-li φ,ψ formule, pak také $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \equiv \psi)$ jsou formule;
- 3. Je-li *x* proměnná a φ formule, pak také $\forall x \varphi$ a $\exists x \varphi$ jsou formule;
- 4. Každá formule vznikne konečným užitím pravidel (1), (2) a (3).

Řekneme, že daný **výskyt** proměnné x ve formuli φ **je vázaný**, nachází-li se v nějaké podformuli tvaru $\forall x \varphi$ nebo $\exists x \varphi$, opačném případě se jedná o **volný výskyt**. V těchto souvislostech hovoříváme o x jako o **vázané/volné proměnné**. Formule neobsahující žádnou volnou proměnnou se nazývá **uzavřená formule** nebo též **výrok**.

Sémantika predikátové logiky

Chceme dát interpretaci symbolům jazyka predikátové logiky 1. řádu. Nejprve vymezíme obor, který bude určovat možné hodnoty proměnných, bude to určitý soubor M uvažovaných objektů. Funkčním symbolům budou odpovídat operace na M příslušných četností. Predikátovým symbolům budou odpovídat vztahy mezi objekty z M, které lze popsat jako relace na M s patřičnou aritou. Máme-li jazyk s rovností, interpretujeme symbol = jako rovnost objektů z M.

Nechť L je jazyk 1. řádu, pak **realizací jazyka** L rozumíme algebraickou strukturu \mathcal{M} , která se skládá z:

- 🛮 neprázdné množiny *M* nazývané **univerzum**;
- \square pro každý funkční symbol *f* četnosti *n*, je dáno zobrazení $f M: M^n \rightarrow M$;
- \square pro každý predikátový symbol p četnosti n, krom rovnosti je dána relace $pM\subseteq M^n$.

Libovolné zobrazení e množiny všech proměnných do univerza M dané realizace $\mathcal M$ jazyka L budeme nazývat **ohodnocení proměnných**.

Hodnota termu t v realizaci \mathcal{M} jazyka L při daném ohodnocení e označujeme jako t[e] a indukcí se definuje následovně:

```
② Je-li t proměnná x, potom t[e] = e(x);
② Je-li t ve tvaru f(t_1,...,t_n), kde f je funkční symbol četnosti n a t_1,...,t_n jsou termy, potom t[e] = f \mathcal{M}(t_1[e],...,t_n[e]);
```

Formule φ je splněna v realizaci \mathcal{M} pokud je pravdivá při každém ohodnocení e, píšeme $\mathcal{M} \models \varphi$. Je-li φ uzavřená, pak říkáme, že φ je pravdivá v \mathcal{M} . Formule φ jazyka L je logicky platná, pokud pro každou realizaci \mathcal{M} jazyka L platí $\mathcal{M} \models \varphi$.

Říkáme, že formule φ , ψ jazyka L **jsou logicky ekvivalentní**, jestliže v libovolné realizaci \mathcal{M} jazyka L při libovolné ohodnocení e proměnných, je $\mathcal{M} \models \varphi \ [e] \Leftrightarrow \mathcal{M} \models \psi \ [e]$. Každá formule φ jazyka L je logicky ekvivalentní nějaké formuli ψ v níž se nevyskytuje kvantifikátor \exists/\forall . Každá formule jazyka L je logicky ekvivalentní nějaké formuli vytvořené z atomických formulí jen pomocí logických spojek \lnot , \rightarrow a kvantifikátoru \forall . Významné dvojice ekvivalentních formulí:

$$(\exists x\varphi) \Leftrightarrow \exists (\forall x (\exists \varphi))$$

$$(\forall x\varphi) \Leftrightarrow \exists (\exists x (\exists \varphi))$$

$$(\forall x\varphi) \land (\forall x\psi) \Leftrightarrow \forall x (\varphi \land \psi)$$

$$(\exists x\varphi) \lor (\exists x\psi) \Leftrightarrow \exists x (\varphi \lor \psi)$$

Substituce termů za proměnné: Pokud v termu *t* dosadíme za proměnné další termy, *t* zůstává termem. Dosazením termu za proměnné ve formuli vytvoříme opět formuli. Ne vždy je to vhodné, proměnná musí být substituovatelná (proměnná *x* taková, že žádný její volný výskyt neleží v oboru kvantifikátoru proměnné *y*, která je obsažena v substituovatelném termu).