- Les calculatrices ne sont pas autorisées.
- Il est rappelé qu'il sera tenu compte dans l'évaluation, de la présentation et la rédaction des copies.
- Le sujet est constitué de deux problèmes indépendants.

Problème 1. Une caractérisation du déterminant.

Dans ce qui suit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et n est un entier supérieur ou égal à 2.

On cherche à déterminer toutes les applications φ définies sur $\mathcal{M}_n(\mathbb{K})$ à valeurs dans \mathbb{K} , telles que :

- (\star) Pour tout couple de matrices $(A,B) \in \mathcal{M}_n(\mathbb{K})^2$ on a : $\varphi(AB) = \varphi(A)\varphi(B)$ et
- $(\star\star)$ Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ de rang 1, on a : $\varphi(A+I_n)=1+tr(A)$ où tr désigne l'application « trace ».

Soit φ une telle application.

- 1. Montrer l'existence de A telle que $\varphi(A) \neq 0$.
- 2. (a) Montrer que $\varphi(I_n) = 1$.
 - (b) Montrer que si A est une matrice inversible de $\mathcal{M}_n(\mathbb{K})$, alors $\varphi(A) \neq 0$.
 - (c) Montrer que si A et B sont des matrices semblables de $\mathcal{M}_n(\mathbb{K})$, alors $\varphi(A) = \varphi(B)$.
- 3. Calculer:
 - (a) l'image $\varphi(D_i(\alpha))$ d'une matrice de dilatation d'indice i et de rapport α .
 - (b) l'image $\varphi(T_{i,j}(\alpha))$ d'une matrice de transvection d'indice (i,j) de rapport α .
 - (c) l'image $\varphi(P_{i,j})$ d'une matrice de permutation d'indice (i,j).
 - (d) Soit D une matrice diagonale à éléments diagonaux $(\alpha_1, ..., \alpha_n)$ tous non nuls, écrire D comme un produit de matrices de dilatations et en déduire la valeur de $\varphi(D)$.
- 4. Rappeler sans démonstration quelles opérations matricielles simples appliquées à la matrice A permettent de réaliser les opérations élémentaires :

$$L_i \leftarrow \alpha L_i$$
, $L_i \leftarrow L_i + \alpha L_i$, $L_i \leftarrow L_i$ $(i \neq j)$

Reprendre cette question pour les opérations analogues sur les colonnes.

5. En déduire que pour toute matrice A inversible dans $\mathcal{M}_n(\mathbb{K})$, $\varphi(A) = \det(A)$. Indication : On pourra montrer l'existence de matrices de transvections T_1, \ldots, T_r , respectivement $T_1' \ldots T_s'$ telles que :

 $T_1 \times ... \times T_r \times A \times T_1' \times ... \times T_s'$ soit diagonale, r, s étant des entiers naturels éventuellement nuls.

- 6. Soit r < n et $J_{n,r}$ la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les éléments sont nuls sauf les éléments d'indice (i,i) pour $1 \le i \le r$ qui valent 1. Montrer que $\varphi(J_{n,r}) = 0$
- 7. Déduire de ce qui précède que pour toute matrice A non inversible de $\mathcal{M}_n(\mathbb{K})$, $\varphi(A)=0$.
- 8. Conclure sur la forme nécessaire de φ , étudier la réciproque et conclure quant à l'ensemble des fonctions φ cherchées.

Problème 2 : Matrices à coefficients dans $\{-1, 1\}$

Soit n et p deux entiers naturels non nuls. On note $\mathcal{M}_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes) coefficients dans \mathbb{R} , puis $\mathcal{V}_{n,p}$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans $\{-1,1\}$. Si n=p, on note plus rapidement $\mathcal{M}_n(\mathbb{R})$ et \mathcal{V}_n .

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est nilpotente lorsqu'il existe un entier naturel k non nul tel que $M^k = 0$. On admet que la trace de toute matrice nilpotente est nulle. L'ensemble de ces matrices est noté $\mathcal{N}_n(\mathbb{R})$.

A. Matrices nilpotentes

1. Démontrer que l'application trace $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$, $M \mapsto tr(M)$ est une forme linéaire et que

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{R}), tr(AB) = tr(BA)$$

- 2. Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{tr}(AA^T) = 0$. Démontrer que A = 0.
- 3. Soit A une matrice nilpotente, démontrer que son déterminant est nul.
- 4. Montrer que si $M \in \mathcal{M}_n(\mathbb{R})$ est nilpotente, alors M^2 est nilpotente.
- 5. On suppose que M et N sont deux matrices nilpotentes qui commutent. Montrer que MN et M+N sont nilpotentes.
- 6. On suppose que M,N,M + N sont trois matrices nilpotentes (qui ne commutent pas nécessairement), en calculer $(M+N)^2 M^2 N^2$ démontrer que tr(MN) = 0.
- 7. Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que M est nilpotente si et seulement si $\det(M) = 0$ et tr(M) = 0.
- 8. Montrer que la seule matrice réelle symétrique nilpotente est la matrice nulle.
- 9. Soit A une matrice antisymétrique réelle et nilpotente. Montrer que $A^TA = 0$, puis que A = 0.
- 10. On suppose que $n \geq 3$. Donner un exemple de matrice de $\mathcal{M}_n(\mathbb{R})$ de trace nulle, de déterminant nul, mais non nilpotente.

B. Résultats algébriques

Soit $(E_1, ..., E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$. On note $V = \sum_{k=1}^n E_k$.

- 1. Pour tout *i* dans [[1, n]], exprimer E_i en fonction de V et $V-2E_i$. En déduire que $\mathcal{M}_{n,1}(\mathbb{R}) = \text{Vect}(\mathcal{V}_{n,1})$.
- 2. Soit $C_1,...,C_n$ une famille de n matrices colonnes de $\mathcal{M}_{n,1}(\mathbb{R})$ telle que $C_1 \neq 0$ et $(C_1,...,C_n)$ est liée. Démontrer qu'il existe un unique j dans [[1,n-1]] tel que $(C_1,...,C_j)$ est libre et $C_{j+1} \in \text{Vect}(C_1,...,C_j)$.
- 3. Soit $d \in [[1,n]]$, (U_1,\ldots,U_d) une famille libre de $\mathcal{M}_{n,1}(\mathbb{R})$ et $H = \text{Vect}(U_1,\ldots,U_d)$. Démontrer qu'il existe des entiers i_1,\ldots,i_d vérifiant $1 \leq i_1 < \cdots < i_d \leq n$ tels que l'application

$$\mathsf{H} \to \mathcal{M}_{d,1}(\mathbb{R}), \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} x_{i_1} \\ \vdots \\ x_{i_d} \end{pmatrix}$$

est bijective.

4. Soit W un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$ de dimension d. Démontrer que

$$\operatorname{card}(W \cap \mathcal{V}_{n,1}) \leq 2^d$$

C. Matrices à coefficients dans $\{-1, 1\}$.

- 1. Déterminer le cardinal de $\mathcal{N}_2(\mathbb{R}) \cap \mathcal{V}_2$.
- 2. Déterminer le cardinal de $GL_2(\mathbb{R}) \cap \mathcal{V}_2$.
- 3. Soit C et C' deux matrices colonnes dans $\mathcal{V}_{n,1}$. Démontrer que la famille (C, C') est liée si et seulement si (C = C' ou C = -C').
- 4. En déduire le cardinal des matrices de $V_{n,2}$ de rang 1.