

Approved Specification Rev:A0

MODEL NO.: VSX392A101GG

ISSUED DA.: <u>2020-08-24</u>

Proposed by

Designed Checked Approved

Customer's Approval

Contents

1 Record of Revisions			4
2 General Description			5
2.1 General Feature			5
2.2 Module Part List			6
2.3 FPCB Partlist & Structu	re		7
2.4 Touch FPCB Partlist &	Structure		8
2.5 Optical Characteristics			9
2.6 Optical Specifications (Note)		11
3 Electrical Characteristic			
3.1 Maximum Ratings			
3.2. Electrical Characteristi	· / /		
3.3 FPC PAD Pin Assignm			
3.4 Pin Description (FPCB			
3.5 Block Diagram)	24
3.6Timing Characteristics			25
3.6.1 MIPI interface DC cha	aracteristic	44.	25
3.6.2 MIPI LP Transmitter (Characteristics	<u> </u>	27
3.6.3 Reset Characteristic	cs		27
3.7 Input Timing		9/	, 27
3.8 Initial Sequence			29
3.9 Power On Sequence			31
4 Touch Specification			32
4.1 General Specifications			
4.2 Touch Design			32
4.3 Touch Performance			32
4.4 Touch Function Inspec	tion		33
4.5 Touch Table			34

Visionox Technology Inc. Model No.	VSX392A101GG
5.1 Mechanical Drawing	
5.1 Module layout	36
5.2 PANEL layout	37
5.3 FPCB Layout	38
5.3.1 Main FPC	38
5.3.2 Main FPCB Stack-up	39
5.3.3 Touch FPC	41
5.3.4 Touch FPCB Stack-up	42
5.4 FPCB Schematic	45
5.5 FPCB Gerber Data	46
5.6 TOUCH FPCB Schematic	47
5.7 TOUCH FPCB Gerber Data	48
6 Incoming Inspection Specification	50
6.1 Characteristic Inspection of AMOLED Module	49
6.2 Sampling Procedures for each item acceptance table	
6.3 Inspection standard	50
7 Reliability	
7.1 Environmental Reliability Tests	
7.2 Mechanical Reliability Tests	58
// / =	60
8.1 Handling Precautions	60
	61
9.1 Packing Description	61
9.2 Description of ABS Material composed	62
9.3. Description of packing procedure	62
9.4 Designation of BARCODE PRINT	64
10 Qc Flow Char	65

1 Record of Revisions

Date	Contents of Revision Change	Editor
2020/08/24	Draft	Wangchun
30/		
9		+
	Mann Banoto,	
		11/2
		2020/08/24 Draft Solo

2 General Description

2.1 General Feature

[Front]

[Rear]

No	ITEM	Specification	Remark
1	Display Method	Active Matrix TFT	-
2	Display Mode	AMOLED	-
3	Display Resolution	1080(H) × 1240(V)	-
4	Active Area (mm)	65.448 (W) × 75.144 (H)	-
5	Screen Size (inch)	3.92"	-
6	Pixel Pitch (mm)	0.0606(H) × 0.0606(V)	RGB
7	PPI (Pixel Per Inch)	419PPI	-
8	Display Color	16.7M Colors	-
9	Outside Dimension (mm)	67.248 (W)x79.874 (H)x0.699(D)	Panel outside (Excluding Cover lens)
10	Viewing Angle	Wide view (85°/85°/85°/85°)	(U/D/R/L)
11	Weight (g)	13g	
12	Driver IC	RM692C9	COG Package
13	Interface	MIPI	CMD Mode, 4Lane

2.2 Module Part List

No.	Name		Spec	Maker
1	OL	ED	67.248×79.874×0.465t	Visionox
2	PC	DL	66.948×76.394×0.104t	Nitto
3	Cushion	Foam	66.648×79.274×0.1t	S&K
3	Cushion	Cu	66.648×79.274×0.03t	YUNQING
4	Main	FPC	103.95×49.02×0.13t	KWONG
5	O TP FPC		43.72×14.51×0.13t	KWONG
6	Insulation Tape1		10.96×9.92×0.05t	YINGSHUN
7	Insulatio	n Tape2	34.42×10×0.05t	YINGSHUN
8	Insulation Tape3		11.9×8.1×0.05t	3M
9	Main FPC Fixing Tape		9.68×36.494×0.05t	JINGHUA
10	TP FPC Fixing Tape		9.622×12.723×0.05t	JINGHUA
11	Driver IC ACF		0.	
12	Driver FPCA ACF		Course	LUTACLU
13	TP FP0	CAACF	Secret_	HITACHI
14	T-FO	ACF		

2.3 FPCB Part list & Structure

Bottom Layer

No1	Name	Spec	Maker	EA	Note
1	FPC	57.80×75.8 1×0.15t	KINWONG	1	
2	Capaci tor	1uF, 16V, ±20%, 0201		6	C1,C2,C3,C4,C5,C6
3	Capaci tor	1uF, 16V, ±20%, 0402	20/	2	C22,C23
4	Capaci tor	2.2uF, 10V, ±20%, 0201	Murata/TAIYO YUDEN/TDK/	9	C7,C8,C9,C12,C13,C 14,C15,C16,C30
5	Capaci tor	2.2uF, 16V, ±10%, 0402	KYOCERA	8	C10,C11,C17,C18,C1 9,C20,C21,C25
6	Capaci tor	2.2uF, 10V, ±20%, 0402		4	C26,C27,C28,C29
7	Capaci tor	22nF, 6.3V, ±10%, 0201		70	C24
8	Diode	ESD, DFN1006- 2L/SOD882 , 30V	VAKOS,ADSBD2FD30V01/KE G,KS52130F2- HXC/RS,RSX5362DB	1	SD1
		ESD, 0201, 3.3V	Amazing,AZ5A83- 01B/DIODES,D3V3L1B2LP3/L RC,LESD11D3.3CBT5G	7	D2,D3,D4,D5,D6,D7, D8

١	1	r leaves	-		
	w_{I_2}	ырп	Q/A	Visi	ionox Technology
T			1		

|--|

A 17	Section 1	VIS	ionox Technology Inc. Mod	el No. \	<u> </u>
		ESD, 0402, 7.9/8V	semtech,uClamp0811ZV/DIOD ES,D8V0H1B2LP/LRC,LESD8 D8.0T5G	1	D9
		ESD, 0402, 5/5.5V	Amazing,AZ5825- 01F/DIODES,D5V0H1B2LP/LR C,LESD8D5.0CET5G	2	D10,D11
0) .	ESD, 0201, 30V	Innochips (IMG0330C101MFR)	1	D12
9	IC)	Flash Memory, 16M	Winbond/GigaDevice	1	CON1
10	Conne ctor	BM23PF0.8 -44DP- 0.35V(43)	HIROSE	1	CON2
11	Resista nce	20kohm, 0201	Yageo	1	R7

2.4 Touch FPCB Partlist & Structure

Top Layer

Bottom Layer

VIII	Inn	-
W 15	<u>ISHI</u>	QVE.

DITO	Visionox Techno	ology Inc. Model No.	VSX:	392A1	01GG
Name	Spec	Maker		EA	Not

No1	Name	Spec	Maker	EA	Note
1	TP FPC 14.51×43.72×0.13t		KINWONG	1	
2	Capacitor	2.2uF, 10V, ±20%, 0201		3	C1, C3, C7
Q ₃	Capacitor	1uF, 10V, ±20%, 0201	Pofor to (1)	1	C2
4	Capacitor	1uF, 16V, ±20%, 0201	Refer to (1)	1	C4
5	Capacitor	220nF, 16V, ±10%, 0201			C5, C6
6	Diode ESD, 0201, 30V		Innochips(IMG0330C101MFR)	1	D12
7	7 Resistance 10KΩ, ±1%, 0201		Yageo	1	R1
8	IC	Touch IC SW42000 BGA116, 6×6×0.5mm	Silicon Works	1	U1

(1) Capacitor Maker: TAIYO YUDEN, MURATA, KYOCERA, Walsin

2.5 Optical Characteristics

Ta=25 °C

Parameter	Symbol		20	Units	Notes	
r arameter	Symbol	Min.	Тур.	Max.	Offics	Notes
Luminance of white	L _{WH}	494	520	546	cd/m ²	1, 5
Luminance(AOD mode)			50		cd/m ²	
Luminance(HBM)		570	600	630	cd/m ²	2/
Contrast Ratio	CR	90K	100K	-	-	1, 2
Uniformity of luminance (with L/G)	-	80	-	-	%	5

Visio	TOX	Visionox	Technology Inc	c. Model	No. VSX39	2A101GG	
Color Uni	formity	Δu'v'	-	-	0.012	-	10
	VA/I : (Wx	0.289	0.299	0.309		
	White	Wy	0.3052	0.3152	0.3252		
	Dad	Rx	0.650	0.680	0.710		
CIE color	Red	Ry	0.285	0.315	0.345		F
coordinates	0	Gx	0.210	0.250	0.290	_	5
9/	Green	Gy	0.670	0.710	0.750		
	Div	Bx	0.110	0.140	0.170		
	Blue	Ву	0.017	0.047	0.077		
Color Gamut	Color Gamut (CIE1931)		-	100	-	%	
Cross	talk	-	5-	-	2	%	4
Flick	er	-	0	-	-40	dB	6
Life time	e(T95)		260h@420nit (B10)	My		Hrs	9
Residual	image			. 0	max. 80s (Lv.2)	Sec.	8
Instant Resid	lual image			Ç	10	Sec.	7
Gamı	ma		2.0	2.2	2.4		
Viewing Ang	le (Color)	Δu'v'			0.02		11
Viewing Ang 10 (R/L/L)	θх		85	-	degree	3

2.6 Optical Specifications (Note)

Note 1 : Optical Characteristic Measurement System

- Surface luminance is the center point across the OLED surface 50cm from the surface. Optical characteristics are determined after the unit has been 'ON' and stable for 5 minutes in a dark environment at Room temperature.

Fig. 1 Optical Characteristic Measurement Equipment and Method

[Measuring point for surface luminance

Fig. 2 Luminance

Note 2. Contrast Ratio (CR) is defined mathematically as

Contrast Ratio

Surface Luminance with all white pixels

Surface Luminance with all black pixels

Carrage Larringrice With an Elack pixels

The information contained herein is the exclusive property of Visionox Technology Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Visionox Technology Inc.

50/8/ COM

Note 3: Viewing Angle

The definition of viewing angle range is that the contrast ratio is higher than CR 10.(CR >10)

Fig. 4 Viewing Angle

Horizontal C/T reference A point

Vertical C/T reference A point

Crosstalk measurement points (B point)

- A Luminance for P1 P4 with all 127 gray pixels
- B Luminance for P1 P4 with 127 gray when the white box is applied

Crosstalk [%] = Maximum
$$\left(Absolute \left(\frac{A - B}{A} \right) \right)$$

Note 5: Measurement of Luminance

* Uniformity: 9Point

* Brightness / Chromaticity: Center Point

Note 6: Flicker

10000 D

The flicker level should be measured with G127 gray image. The flicker is essentially a ratio the powers in the frequency spectrum at 30Hz(Px) and 0 Hz(Po-DC level.)

 $F=20Log(P_x/P_0)$

Note 7: Instant residual image

No residual image allowed after burning time of test image

Note 8: Residual image

No residual image allowed after burning time of test image

Note 9: Life time(T95) @Room temp.

[Measurement Procedure]

- carry out display aging for 30 minutes (Check the normal operation of display)
- 2. Measure White Luminance at 1center point (1 Point = P5 in the below picture)
- 3. Keep the White PTN operation (420nit) for 330Hrs at Room temp.
- 4. After display off, keep the display off state for 24Hrs
- 5. After display on, carry out display aging for 30 minutes
- 6. Measure White Luminance at 1center point
 - : Calculate the Ratio(%) of luminance according to the below formula and judge the OK/NG

[T95 Judgment Formula]

T95 measurement points

Note 10: Color Unifor

Total 64 measure points should set as shown in the following figures (255gray pattern)

The color uniformity ($\Delta u'v'$) is calculated by using following formula:

 $\Delta u'v'=$ Square Root(($u_2'-u_1'$) $^2+(v_2'-v_1')$ 2), (CIE1976)

 $Max(\Delta u'v') \le 0.012$ (the max $\Delta u'v'$) value between two random point of 64 points

Note 11: Viewing Angle (Color)

All measurements are done in 255gray pattern

Measure with Eldim equipment

Measure at $\theta = 0^{\circ}(u_1, v_1), \theta = 45^{\circ}(u_2, v_2)$

The viewing angle(Δu'v')is calculated by using following formula

 $\Delta u'v'=$ Square Root($(u_2'-u_1')^2+(v_2'-v_1')^2$), (CIE1976)

3 Electrical Characteristic

3.1 Maximum Ratings

Ambient Temperature : Ta = 25±5℃

The following are maximum values which, if exceeded, may cause operation or damage to the unit

Ite	em	Symbol	MIN	MAX	Unit
	Logic Power supply	VCI	-0.3	5.5	V
/).	Analog Power supply	VDDI	-0.3	5.5	V
Display Power	Analog Power supply	AVDD	-0.3	8.0	V
0%	Positive Power Input	ELVDD	1	5.0	V
70/	Negative Power Input	ELVSS	-5.4	1	V
TSP Power	Logic Power supply	TSP_DVDD	-0.3	2.22	V
13P Power	Analog Power supply	TSP_AVDD	-0.3	4.0	V

Symbol	Val	ues	Linito	Notos	
Symbol	Min	Max	Office	Notes	
H _{OP}	10	90	%RH	*1), *2)	
T _{OP}	-30	70	° C	*1), *2)	
Hstg	10	90	%RH	*1), *2)	
T _{STG}	-40	80	° C	*1), *2)	
ЧX			to/.		
midity shall b	e less than	90% RH at	60°C \	0/	
				18h	
				. (
	T _{OP} Hstg T _{STG}	Symbol Min HOP 10 TOP -30 Hstg 10 TSTG -40	Min Max HoP 10 90 TOP -30 70 Hstg 10 90 TSTG -40 80	Symbol Units Min Max Units HOP 10 90 %RH TOP -30 70 ° C Hstg 10 90 %RH TSTG -40 80 ° C	Symbol Units Notes Min Max Units Notes HoP 10 90 %RH *1), *2) ToP -30 70 ° C *1), *2) Hstg 10 90 %RH *1), *2) TsTG -40 80 ° C *1), *2)

^{*1)} Temp. ≤ 60°C , 90% RH MAX

^{*2)} Temp. > 60°C , Absolute humidity shall be less than 90% RH at 60°C

Visionox Technology Inc.

Model No. VSX392A101GG

3.2. Electrical Characteristic

Ambient Temperature : Ta = $25\pm5^{\circ}$ C

					1001	_	
Chara	cteristics	Symbol	Min	Тур.	Max	Unit	Note
Logic Po	wer Supply	VDDIO	1.65	1.8	1.95	V	
Analog P	ower Supply	VCI	2.5	3.0	3.6	V	
Analog P	ower Supply	AVDD	O:	7.0	-	٧	
		ELVDD	7	4.6	-	V	
Supply	y Voltage	ELVSS	_ 4	-3.0	-	٧	
	supply for logic	TP_DVDD	1.62	1.8	1.98	V	
TP Power	supply Input	TP_AVDD	3.0	3.3	3.6	V	
Frame	Frequency	Ff	57	60	63	Hz	
		I _{VDDIO}	-	38.6	56.1	mA	C.
		Ivcı	-	2.9	4.3	mA	0/
Current Consumption		l _{AVDD}	-	9.4	15.0	mA	Note 1), 2), 3)
		I _{ELVDD}	-	126.3	179.7	mA	
		I _{ELVSS}	-	126.3	179.7	mA	

Visio	70X Vis	sionox Techno	logy Inc.	Mod	el No. N	/SX392A	101GG
		I _{VDDIO}	-	43.9	-	mA	
		I _{VCI}	-	3.4	-	mA	
		I _{AVDD}	1	15.1	1	mA	
		I _{ELVDD}	-	54.9	-	mA	
		I _{ELVSS}	-	54.9	-	mA	
0,		P _{VDDIO}	-	69.5	101.0	mW	
S		P _{VCI}	-	8.7	12.9	mW	
	18/	P _{AVDD}	1	65.8	105.0	mW	
		P _{ELVDD}	1	581.0	820.2	mW	
		P _{ELVSS}	1	378.9	539.1	mW	
Power		Total		1103.9	1578.2	mW	
Consumption		P_{VDDIO}	-	79.2	-	mW	
		P _{VCI}	25	10.2	-	mW	
		P _{AVDD}	'- /	105.7	-	mW	
		P _{ELVDD}	-	164.7	-	mW	
		P _{ELVSS}	-	252.6	-	mW	
		Total	-	612.2	90	mW	

Chara	cteristics	Symbol	Min	Тур.	Max	Unit	Note
		Ivcı	1	3.4	1	mA	0/2
Current Consumption		I _{VDDIO}	1	37.3	1	mA	Just for reference, no control
		I _{AVDD}	ı	8.8	ı	mA	

V 15/0/	10X vi	sionox Techno	logy Inc.	Mod	el No.	<u>VSX392A</u>	101GG
		P _{VCI}	ı	10.2	ı	mW	
Power		P _{VDDIO}	-	67.2	-	mW	
Consumption		P _{AVDD}	-	61.6	-	mW	
		Total	-	139.0	-	mW	

Note:

- The recommended operating conditions refers to a range in which operation of this product is guaranteed. Should this range is exceeded, the operation cannot be guaranteed even if the values may be without the absolute maximum ratings.
 Accordingly, please make sure that the module is used within this range.
 And these current values are measured under the condition that all device are stopped, each component is stable and logic signal is input.
- 2) All the unused input terminals have to be connected to GND or leave it open.

 Please select appropriate one which meet the function required by unused terminal.
- 3) Power Consumption—normal mode
 - ① All kinds of specifications and functions are measured and optimized with the below test condition
 - Input VCI: 3.0V / VDDIO: 1.8V / ELVDD 4.6V / ELVSS -3.0V / AVDD 7.0V
 - All image enhancement IP off
 - ② The patterns of measuring current/power consumption are "Full white image", "40% on image" and "AOD black image".

3.2. FPC PAD Pin Assignment (COG)

<u>5.2. i</u>	101	ו עה	III A3	Sigili	ment	1001	<i>3</i>										
No	NAME	No	NAME	No	NAME	No	NAME	No	NAME	No	NAME	No	NAME	No	NAME	No	NAME
1	D_R	38	DVSS	75	C51P	112	HSSI_D 0_P	149	I_SDA	186	VGMP	223	OVSS_I C	260	VGLR	297	D_G
2	D_G	39	AVSS	76	C51P	113	HSSI_D 0_P	150	I_SPW P	187	VGSP	224	OVDD_ IC	261	TE_R	298	D_R
3	D_B	40	AVSS	77	VCL	114	HSSI_D 0_N	151	I_SPHO LD	188	VREF	225	OVDD_ IC	262	DVDD		
4	D_SW3	41	AVSS	78	VCL	115	HSSI_D 0_N	152	PSWAP	189	AVSS	226	MTP_P WR_R	263	DVDD		
5	D_SW1	42	DVDD	79	VCL	116	VSSAM	153	DSWAP [2]	190	AVSS	227	VDDR	264	VDDI		
6	D_SW2	43	VGHR	80	C41N	117	VSSAM	154	DSWAP [1]	191	AVDD	228	VDDR	265	VEQ_S D		
7	SIN_R	44	VGHR	81	C41N	118	HSSI_C LK_P	155	DSWAP [0]	192	AVDD	229	VSSR	266	PASS3		
8	SCK1_ R	45	VGLR	82	C41N	119	HSSI_C LK_P	156	RSTN	193	DB_MO DE[2]	230	VSSR	267	PASS3		
9	SCK2_ R	46	VGLR	83	C41P	120	HSSI_C LK_N	157	I_DISS	194	DB_MO DE[1]	231	VSSR	268	FBD_L0		
10	ECK1_ R	47	VGL	84	C41P	121	HSSI_C LK_N	158	I_SPDI	195	DB_MO DE[0]	232	AVSS	269	FBD_L1		
11	ECK2_ R	48	VGL	85	C41P	122	VSSAM	159	I_SPDO	196	TEST[1 6]_PCD	233	AVSS	270	DUMM Y(windo w)		
12	EM_12 40	49	VGL	86	VSSA	123	VSSAM	160	I_SPCK	197	TEST[1 5]_ERR _FG	234	AVSS	271	VREFN		
13	S_1240	50	VGL1	87	VSSA	124	HSSI_D 1_P	161	I_SPCS	198	TEST[1 3]	235	AVDD	272	PVGL		
14	D_MUX 2	51	C24N	88	VDDA	125	HSSI_D 1_P	162	AVDD	199	DUMM Y	236	AVDD	273	PVGH		
15	SW_AT	52	C24N	89	VDDA	126	HSSI_D 1_N	163	AVDD	200	DUMM Y	237	C21N	274	ELVDD		
16	DUMM Y	53	C24N	90	DVSS	127	HSSI_D 1_N	164	AVSS	201	DUMM Y	238	C21N	275	ELVDD		
17	ELVSS	54	C24P	91	DVSS	128	VSSAM	165	AVSS	202	TEST[1]	239	C21N	276	ELVDD		
18	ELVSS	55	C24P	92	DVSS	129	VSSAM	166	AVSS	203	VCC	240	C21P	277	ELVDD		9//
19	ELVSS	56	C24P	93	DVDD	130	HSSI_D	167	VSSI	204	DVSS	241	C21P	278	DUMM		

V	510	one	OX	,	Vision	ox Te	chnolo	ogy In	C.	Mo	del No). VS	SX392	A1010	3G		
							2_P	<u> </u>							Υ		
20	ELVSS	57	C23N	94	DVDD	131	HSSI_D 2_P	168	VSSI	205	DVSS	242	C21P	279	ELVSS		
21	DUMM Y	58	C23N	95	DVDD	132	HSSI_D 2_N	169	VDDI	206	DVSS	243	C22N	280	ELVSS		
22	ELVDD	59	C23N	96	VCC	133	HSSI_D 2_N	170	VDDI	207	DVDD	244	C22N	281	ELVSS		
23	ELVDD	60	C23P	97	VCC	134	VSSAM	171	BIST_E N	208	DVDD	245	C22N	282	ELVSS		
24	ELVDD	61	C23P	98	VCC	135	VSSAM	172	AGING _EN	209	DVDD	246	C22P	283	DUMM Y		
25	ELVDD	62	C23P	99	VDDAM	136	DVSS	173	OLED_ EN	210	VCC	247	C22P	284	SW_AT		
26	PVGH	63	AVDD	100	VDDAM	137	AVSS	174	DVSS	211	VCC	248	C22P	285	D_MUX 1		
27	PVGL	64	AVDD	101	VDDAM	138	AVSS	175	SWIRE	212	VCC	249	VGH	286	S_1240		
28	VREFN	65	VDDB	102	MVDDA	139	AVSS	176	VSSA	213	VREFP 5	250	VGH	287	EM_12 40		
29	DUMM Y(windo w)	66	VDDB	103	MVDDA	140	DVDD	177	DVDD	214	DUMM Y	251	VGHR	288	ECK2_		
30	FBD_R	67	VSSB	104	VSSAM	141	AVDD	178	VSSA	215	VREFN 5	252	VGHR	289	ECK1_		
31	FBD_R	68	VSSB	105	VSSAM	142	VDDI	179	IM1	216	VREFN 5	253	DVSS	290	SCK2_		
32	PASS1	69	VSSB	106	HSSI_D 3_P	143	VSSI	180	IM0	217	VCL	254	VDDB	291	SCK1_		
33	PASS1	70	AVEE	107	HSSI_D 3_P	144	VSSI	181	ANA_T EST[1]	218	VCL	255	VDDB	292	EIN_L		
34	MTP_P WR_L	71	AVEE	108	HSSI_D 3_N	145	DUMM Y	182	ANA_T EST[0]	219	AVEE	256	VSSB	293	D_SW2		
35	VDDI	72	AVEE	109	HSSI_D 3_N	146	VSSI	183	VDDA	220	AVEE	257	VSSB	294	D_SW1		
36	VDDI	73	C51N	110	VSSAM	147	BSTM[2]	184	VDDA	221	AVEE	258	VSSB	295	D_SW3		
37	TE_L	74	C51N	111	VSSAM	148	I_SCL	185	VDDA	222	ovss_i c	259	VGLR	296	D_B	•	

Visionox Technology Inc.

Model No. VSX392A101GG

3.3. Pin Description (FPCB Connector)

No	Symbol	I/O	Description
1	VCI	Р	Power supply for display analog circuits
2	GND	GND	Ground
3	VDDIO	Р	Power supply for interface system except MIPI interface
4	RSTX	I	Display reset. Active low.
5	TE	0	Sync Signal for preventing Tearing Effect
6	ERR_FG	0	Error status of MIPI's HSDT
7	NC	/	NC
8	GND	GND	Ground
9	AVDD	Р	Power supply for Analog system
10	GND	GND	Ground
11	ELVDD 9/	Р	Positive power supply for EL
12	ELVDD	P	Positive power supply for EL
13	ELVDD	P	Positive power supply for EL
14	GND	GND	Ground
15	ELVSS	P ()	Negative power supply for EL
16	ELVSS	P	Negative power supply for EL
17	ELVSS	Р	Negative power supply for EL
18	GND	GND	Ground
19	TP_INT	I	Interrupt signal for TP
20	TP_RESET	I	Reset Pin for TP, Active low
21	TP_SDA	I/O	SDA pin for TP
22	TP_SCL	I	SCL pin for TP
23	GND	GND	Ground
24		Р	Power supply for MTP Programming or Erase.
24	VPP	Г	If it is not used, please let it open
25	TP_1P8	Р	Digital Power for TP
26	TSP_AVDD	Р	Analog Power for TP
27	GND	GND	Ground
28	D3N	I	MIPI data lane
29	D3P	I	MIPI data lane
30	GND	0	Control signal for power IC
31	D0N	I	MIPI data lane
32	D0P	I	MIPI data lane
33	GND	GND	Ground
34	CLKN	I	MIPI clock lane

VI.	SIONOX	Visionox Technol	ogy Inc. Model No. VSX392A101GG
35	CLKP	I	MIPI clock lane
36	GND	GND	Ground
37	D1N	I	MIPI data lane
38	D1P	I	MIPI data lane
39	GND	GND	Ground
40	D2N	I	MIPI data lane
41	D2P	I	MIPI data lane
42	GND	GND	Ground
43	VDDP_EN(OLED_EN)	0	Power IC enable control pin for AVDD

Power IC enable control pin for ELVDD/ELVSS

3.4 Block Diagram

ON2(SWIRE)

0

3.4.1 Display

44

3.5 Timing Characteristics

3.5.1 MIPI interface DC characteristic

Parameter	Description	Min	TYP	Max	Units
VCMRX(DC)	Common-mode voltage for HS receiver	70		330	mV
VIDTH	Differential input high threshold			70	mV
VIDTL S	Differential input low threshold	-70			mV
VIHHS	Single-ended input high voltage			460	mV
VILHS	Single-ended input low voltage	-40			mV
ZID	Differential input impedance	80	100	125	Ω

Table 3-1 DC Characteristics of MIPI HS Receiver

High Speed Receiver

Figure 3-1. Signaling Voltage Levels

Model No. VSX392A101GG

Clock Parameter	Symbol	Min	Тур	Max	Units	Notes
UI instantaneous	UIIINST	0.83	31	12.5	ns	1, 3

Notes.

- 1. This value corresponds to a maximum of 1.2Gbps and a minimum of 80 Mbps data rate for HS CMD/ Video mode.
- 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.

Data-Clock Timing Specifications

/is/onex

Parameter	Symbol	Min	Тур	Max	Units	Notes
Data to Clock Skew [measured at transmitter]	Такемітхі	-0.2		0.2	UI _{INST}	1
Data to Clock Setup Time [receiver]	T _{SETUP[RX]}	0.2			UI _{INST}	2
Clock to Data Hold Time [receiver]	THOLD[RX]	0.2			UI _{INST}	2

- Total silicon and package delay budget of 0.3*UliNST
- Total setup and hold window for receiver of 0.3 UIINST.

Table 3-2 AC Characteristics of MIPI HS Receiver

Figure 3-2. AC Timing Waveform for HS Mode MIPI Operation

3.5.2 MIPI LP Transmitter Characteristics

Low-Power	Receiver	Specifical	tions

Parameter	Description	Min	Nom	Max	Units	Note
ViH	Logic 1 input voltage	880		1350	mV	7
VIL	Logic 0 input voltage, not in ULP State			550	mV	
VILULPS	Logic 0 input voltage, ULP State			300	mV	
VHYST	Input hysteresis	25			mV	
eSPIKE	Input pulse rejection			300	V*ps	1

Table 3-3. DC Characteristics of MIPI LP Transmitter

3.5.3 Reset Characteristics

Figure 3-4 Reset Timing

Signal	Symbol	Parameter	Min.	Мах	Note	Unit
nRESET	tRESW	Reset pulse duration	15	M	1. Shorter than 5us, Reset rejected 2. Longer than 15ms, IC reset 3. Between 5ms and 15ms, It depends on voltage and temperature condition.	us
	⁴D⊏CT	Doort concel	-	10	When reset applied at sleep-in mode	ms
	tREST	Reset cancel	-	120	When reset applied at sleep-out mode	ms

Table 3-5. Reset Timing

3.6 Input Timing

VCLK Active Edge	Video data is fetched at rising edge
H Total	1080

Visionox	isionox Technology Inc. Model No. VSX392A101GG
НВР	36
HFP	28
HSW	4
HS polarity	Inverted (active low)
Vertical resolution	1240
VBP	8
VFP	16
vsw	4
VS polarity	Inverted (active low)
VDEN polarity	Normal (active high)

POWER DESCRIPTION

9	
VCI	S 3V
VDDIO	1.8V
ELVSS	-3.0V
ELVDD	4.6V
AVDD	7.0V
	Sold Sold

3.7 Initial Sequence

// ** Please send initial code in LP mode //

[Initial code]

mipi.write 0x39 FE 00

mipi.write 0x39 C2 08 //CMD mode

mipi.write 0x39 35 00

mipi.write 0x39 51 07 FF

mipi.write 0x05 11

delay 120

mipi.write 0x05 29

Delay 10ms or more

Note:

[CGM correlation (after CGM import)]

mipi.write 0x39 FE 12

mipi.write 0x39 83 00

//CGM OFF(10 CGM ON, default ON)

mipi.write 0x39 FE 12

mipi.write 0x39 84 00

//CGM White color coordinate adjustment ON(08 OFF, default OFF)

HBM Enter

mipi.write 0x39 FE 00

mipi.write 0x39 51 0F FF ---HBM ON

HBM Exit

mipi.write 0x39 FE 00

mipi.write 0x39 51 07 FF ---HBM OFF

#AOD Enter

mipi.write 0X39 0xFE 0x00

MMM. Danotor. Solar. Com **#AOD Enter** mipi.write 0X05 0x39

Delay 120ms

#AOD Exit

mipi.write 0X39 0xFE 0x00

mipi.write 0X05 0x38 **#AOD Exit**

Delay 120ms

3.8. Power on Sequence

Timing Specification of Power On Sequence

Complete		Value	F 3	Unit	Damada
Symbol	Min.	Typ.	Max.	Unit	Remark
_ T1	10	1 4- 0		ms	Effective hardware reset period
T2	10	-		ms	OTP reload time
T3:	0	5.00	4	ms	Initial code input finish to SLPOUT command input
T4	-	96		ms	Normal power-up sequence
T5	2			VS	Display-On Blanking region

Notes: VS means the time period of a complete display frame and are approximately 16ms if internal display timing is used.

3.9. Power off Sequence

Constitut	Value			11-4	Downards 6
Symbol	Min.	Typ.	Max.	Unit	Remark
T6	2	-	D	VS	Display-Off blanking region
T7	1	10.4		VS	Blanking region
TB	1	- 9	-	ms	Effective hardware reset period
T9	2	100		ms	Power off period

Notes: VS means the time period of a complete display frame and are approximately 10ms if internal display timing is used.

4 Touch Specification

4.1 General Specifications

	Item	Spec.
Touch IC F/W	V1W39WING_v7.07	V1W39WING_v7.07
Test JIG F/W	/	/
	Multi touch points	10 points
General	Active touch area	66.552 x 75.24 [mm]
Specification	Resolution	1080(H)×1240(V) Pixel
	Interface	I2C

Note: This Touch IC FW is the first version of the FW, it will be updated with debugging.

4.2 Touch Design

	ltem S	Description	Notes				
Touch Design	CH Number	17(Tx) / 19(Rx)					
4.3 Touch P	ch Performance						
	ltom	Snoo	lotoo				

4.3 Touch Performance

	Item	Spec.	Notes
	Report Rate	120 Hz	@ 1 finger
Touch Performance	Point Accuracy (Edge, Center)	≤1.0mm	oto.
	Linearity (Edge, Center)	≤1.0mm	
			J. C.

4.4 Touch Function Inspection

		то	VIS					
No.	ltem	Min Max		Description				
P	Chip ID check	76	00	Check IC type				
2	FW Version check	7.	07	Check firmware version				
3	IO Test	Pass	s/Fail	Function check for INT/SDA/SCL				
4	U3 Open Test	Min	7500	Check TSP OPEN by measuring Cm scan date				
5	U3 Short Test	Min	8000	Check TSP SHORT				
6	U3M2 Raw Test		ce Table	Check Normal mutual raw capacitance of all pixels.				
7	U3M2 Jitter Test	MAX 30		Check Jitter data of all pixels.				
8	U3M2 Raw Self Test	3000	000~5500 Check self raw capacitance.					
9	U3M2 Jitter Self Test	Max	< 40	Check self Jitter data.				

Note1: U3M2 Raw test, Tovis is controlled according to ±10%. For those in the range of 10%-20%, direct RMA is not accepted, the modules must be analyzed. If the analysis result is real quality issues, Visionox accept RMA.

Note2 :For the bad outflow of LPWG, RMA treatment shall be performed after Visionox analytical and rejudgment.

4.5 Touch Table

※.U3M2Raw Min/Max

10	w h	-	-	,													
W ISIQIIQX			Visio	nox 1	Techn	ology	Inc.		Mode	el No.	VS	X392/	1010	G .	_		
X11								3057									
X12								3057									
X13								3060									
X14								3060									
X15		3061						3066									
X16								3069									
X17	3045	3061	3063	3060	3070	3070	3065	3068	3072	3075	3081	3082					
X18	3037	3041	3049	3051	3064	3067	3065	3070	3077	3082	3091	3102	3127	3148	3212	3332	3/13
		0															
		7) ,														
			/_														
			0	1_													
					3												
					4/	2											
						(4)											
							0										
)								
										1.							
	3045									n							
												9/4					
													O.				
													+				
													` (-			
														,	S		
																0	,
																1	
																	<i>!</i> - <i>C</i>
TL - '	mfa	-4i		المحال		io 41-	اديو	.a.:		uds F	\	T	- بام	ا : دا		ا جا جا	الم
	nforma istribut																

5 Mechanical Drawing

5.1 Module Drawing

be distributed, reproduced, Visionox Technology Inc. The information contained herein is the exclusive property of Visionox Technology Inc., ᄋ disclosed ⊒. whole ᄋ ⊒. part without prior written permission and shall not 으

5.2. Panel Layout

The information contained herein is the exclusive property of Visionox Technology Inc., be distributed, reproduced, or disclosed in whole or in part without prior written p Visionox Technology Inc. permission and shall not 으

.3 FPCB Layout 5.3.1 Main FPC

be distributed, reproduced, Visionox Technology Inc. The information contained herein is the exclusive property ᄋ disclosed ⊒. whole ᄋ ⊒. of Visionox Technology Inc part without prior written permission and shall not 으

5.3.2 Main FPCB Stack-up

			4//						
	LAYER		Thickness of raw	^					
ITEM	DESCRIPTIONNS(ALL	Model	material	2		DRI	VER FP	0	
	UNITUM)		(Thickness)	9/					
				1(Thin	O/EDC			E/Dow	6Position
				fingers	2(FPC	3	4(EMI)	5(Dew	of the
				area)), (//		copper)	steel
Stiffener	SUS304						0.		
ad	ADHESIVE						0/		
□ N 41	Electromagnetic	USEC000 2	40				10	2	
EMI	membrane Fangbang	HSF6000-3	10				10	7/_	
ENIIO	Immersion Au		0.05.0.44	0.05-				0.05-	
ENIG	immersion Au	ENIG AREA	0.05-0.11	0.11				0.11	
AREA	Electroless Ni		2~6	2~6				2~6	Un
COVER	Polyimide Film	Covering film	12.5	12.5	12.5		12.5		12.5

	TaiFlex Taimide							
Adhesive(Adsesive educts the amount of spillage)	yellow PI:0.5mil AD:15um FHT0515 250mm(FHT0515)	15	13	13		13		13
Copper Plating	Control hole copper 9-18	9~18		9		9	9	9
1 Conductor (HTE)	FCCL changjieshi	12		12		12	12	12
PI base Film	double-sided ED	25	25	25	25	25	25	25
2 Conductor (HTE)	PI:1mil 1/3oz AD:0um (31RLT1TZ)	12	12	12	12	12	12	12
Copper Plating	Control hole copper 9-18	9~18	9	9	9	9	9	9
Adhesive(Adsesive educts the amount of spillage)	Covering film TaiFlex Taimide yellow PI:0.5mil	15		13	13	13		
Polyimide Film	AD:15um FHT0515 250mm(FHT0515) X1MMN	12.5		12.5	12.5	12.5		
Immersion Au	ENIG AREA	0.05-0.11	0.05- 0.11				0.05- 0.11	
Electroless Ni		2~6	2~6				2~6	
R_[Solder resist ink]	Yellow bright oil_PSR-9000 FLX5010R		ク、					20
Electromagnetic embrane Fangbang	HSF6000-3	10	9/7			10		
ADHESIVE	Tatsuta CBF- 800-D60	60		7)/.·			47
SUS304	SUS304 0.15T	150						150
			71.5	118	71.5	140	67	310
							? .	
				130±0 .03			1	
								m
	ducts the amount of spillage) Copper Plating 1 Conductor (HTE) PI base Film 2 Conductor (HTE) Copper Plating Adhesive(Adsesive ducts the amount of spillage) Polyimide Film Immersion Au Electroless Ni R_[Solder resist ink] Electromagnetic embrane Fangbang ADHESIVE	AD:15um FHT0515 250mm(FHT0515) Copper Plating Copper 9-18 1 Conductor (HTE) PI base Film Copper Plating Copper 9-18 Covering film TaiFlex Taimide yellow Pl:0.5mil AD:15um FHT0515 250mm(FHT0515) X1MMN Immersion Au Electroless Ni Polyimide Film Copper Plating FHT0515 250mm(FHT0515) X1MMN Electroless Ni FHT0515 250mm(FHT0515) X1MMN ENIG AREA FIGURE PSR-9000 FLX5010R FLX5010R FLX5010R Tatsuta CBF-800-D60	AD:15um	AD:15um	AD:15um	AD:15um FHT0515 250mm(FHT0515) Copper Plating Control hole copper 9-18 1 Conductor (HTE) PI base Film Ouble-sided ED PI:1mil 1/3oz AD:0um (31RLT1TZ) Copper Plating Copper 9-18 Copper Plating Control hole copper 9-18 PI:1mil 1/3oz AD:0um (31RLT1TZ) Copper Plating Control hole copper 9-18 Copper Plating Control hole copper 9-18 Copper Plating Control hole copper 9-18 Copper Plating Covering film AD:15um FHT0515 250mm(FHT0515) X1MMN Immersion Au ENIG AREA Electroless Ni FYellow bright oil_PSR-9000 FLX5010R Electromagnetic embrane Fangbang AD:15um FHC00-3 FLX5010R Tatsuta CBF- 800-D60 SUS304 SUS304 SUS304 0.15T 15 12 12 12 12 12 12 12 12 12	AD:15um FHT0515 250mm(FHT0515) Copper Plating Control hole copper 9-18 1 Conductor (HTE) PI base Film AD:0um (31RLT1TZ) Copper Plating Control hole copper 9-18 2 Conductor (HTE) PI base Film Copper Plating Control hole copper 9-18 1 Conductor (HTE) PI base Film Control hole copper 9-18 2 Conductor (HTE) AD:0um (31RLT1TZ) Copper Plating Covering film Covering film TaiFlex Taimide ducts the amount of spillage) Polyimide Film Polyimide Film FHT0515 250mm(FHT0515) X1MMN Immersion Au ENIG AREA Electroless Ni Pellow bright oil PSR-9000 FLX5010R Electromagnetic embrane Fangbang AD:15um FH5600-3 Tatsuta CBF-800-D60 SUS304 SUS304 SUS304 SUS304 SUS304 SUS304 Taisum	AD:15um FHT0515 spillage) AD:15um FHT0515 250mm(FHT0515) 15 13 13 13 Copper Plating 1 Conductor (HTE) Control hole copper 9-18 9~18 9 9 9 1 Conductor (HTE) FCCL changlieshi double-sided ED Pl:1mil 1/3oz 2 Conductor (HTE) 12

be distributed, reproduced, Visionox Technology Inc. The information contained herein is the exclusive property be distributed, reproduced, or disclosed in whole or in of Visionox Technology Inc part without prior written permission and shall not 으

5.3.4 Touch FPCB Stack-up

	LAYER		Thickness of	11.					
ITEM	DESCRIPTIONN	Model	raw material	"In		TF	FPC		
	S(ALL UNITUM)		(Thickness)		1				
				1(Thin	2/Single		4(Large	5(Position	
				fingers	2(Single	3(EMI)	solder pad	of the steel	6 (FPC)
				area)	layer zone)	5_	position))	
Stiffener	SUS304					0			
ad	ADHESIVE					1			
		Yellow bright							
	PSR_[Solder	oil_PSR-					20		
O41	resist ink]	9000					20		
Others		FLX5010R						\sim	
	Chip IC_device						500	4/	
	Solder paste						50		
EMI	fangbang HSF-	fangbang	10			10			-0
□□VII	KDT-02	HSF6000-3	10			10			40
ENIG AREA	Immersion Au	ENIG AREA	0.05-0.11				0.05-0.11	0.05-0.1	

Visio	xonc	Visionox	Technology I	nc.	Model No	o. VSX	(392A1010	eG	
	Electroless Ni		2~6				2~6	2~6	
COVER Film	Polyimide Film	Covering film TaiFlex	12.5	12.5		12.5		12.5	12.5
	Adhesive(Adsesi ve deducts the amount of spillage)	Taimide yellow PI:0.5mil AD:15um FHT0515 250mm(FHT 0515)	15	13		13		13	13
Cu plating	Copper Plating	Control hole copper 9-18	9~18			9	9	9	9
FCCL	L1 Conductor (HTE)	FCCL changjieshi	12			12	12	12	12
	PI base Film	double-sided	25	25	25	25	25	25	25
	L2 Conductor (HTE)	PI:1mil 1/3oz AD:0um (31RLT1TZ)	12	12	12	12	12	12	12
Cu plating	Copper Plating	Control hole copper 9-18	9~18	9	9	9	9	9	9
COVER Film	Adhesive(Adsesi ve deducts the amount of spillage)	Covering film TaiFlex Taimide yellow	15	hn.		13	13		13
	Polyimide Film	PI:0.5mil AD:15um FHT0515 250mm(FHT 0515)	12.5	W.	. 63/	12.5	12.5		12.5
	PSR_[Solder resist ink]	Yellow bright oil_PSR- 9000 FLX5010R				4	7,5	20	
Others	PSR_[Thermoset ting ink] green	Green bright oil_L45 LG20/H43a			20			9/	
ENIG AREA	Immersion Au	ENIG AREA	0.05-0.11	0.05-0.11					
LINIGAREA	Electroless Ni Fangbang HSF-	Fangbang	2~6	2~6				(On
EMI	KDT-12	HSF6000-3	10			10			

Visionox Technology Inc. Model No. VSX392A101GG

ADHESIVE ad		13 / 0 0 5							1
ad		JY205					50		
au	ADHESIVE	Tatsuta CBF-	60				47	47	
	ADITESTVE	800-D60;	00				41	41	
Stiffener	SUS304	SUS304	150				150	150	
Juliellel	505504	0.15T	130				150	130	
The total				71.5	66	140	910	310	118
thickness				7 1.0	00	110	010	010	'''
Customer									
specification(
mm)									
	50/2/	D Ano	5						

5.4 FPCB Schematic

5.5 FPCB Gerber Data

< Top Pattern Layer >

< Top silk Layer >

< Bottom Pattern Layer >

< Bottom silk Layer >

5.6 TOUCH FPCB Schematic

5.7 TOUCH FPCB Gerber Data

< Top silk Layer >

< Bottom silk Layer >

The information contained herein is the exclusive property of Visionox Technology Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Visionox Technology Inc.

St. Com

< Top cover-lay open Layer >

< Bottom cover-lay open Layer >

< Drill >

6 Incoming Inspection Specification

6.1 Characteristic Inspection of AMOLED Module

The environmental condition and visual inspection shall be conducted as below:

- (1) Ambient temperature: 15-35°C
- (2) Humidity: 20-75%RH
- (3) Ambient light intensity of visual inspection: 800 ~ 1200 lux
- (4) Ambient light intensity of function inspection: ≤200lux
- (5) Viewing Distance: 30 ± 5 cm
- (6) Viewing angle (tolerance): the front side 90° (Z) ±45°
- (7) Appearance inspection time:10±5s

6.2 Sampling Procedures for each item acceptance table

Defect type	Sampling Procedures	AQL
Major defect	GB/T2828.1-2003 Inspection level II normal inspection single sample inspection	Before 10/31: 0.4 After 11/1: 0.25
Minor defect	GB/T2828.1-2003 Inspection level II normal inspection single sample inspection	Before 10/31:0.65 After 11/1: 0.40

Major defect:

Any defect may result in functional failure, or reduce the usability of product for its purpose. For example, electrical failure, deformation and etc.

Minor defect:

A defect does not reduce the usability of product for its intended purpose and un-uniformity, such as dot defect and etc.

The criteria on major and/or minor judgment will be according with the classification of defects.

6.3 Inspection standard

No.	Item	Area	Criterion of Defect		0/	Defect type
1	Dot Defect	AA	Туре	DS	Acceptable number	7.
			Bright Dot	-	0	Minor

Visionox	Visionox Techi	nology Inc. I	Model No.	VSX392A101GG	
		Dark Dot (≤2 connection	s) -	Ignore	
		5 . 5 .			

			Dark Dot (≤2 connections)	-	Ignore	
			Dark Dot (3 connections)	≥5mm	3	
			Dark Dot (4 connections)	≥5mm	1	
2	No Display	AA	1		Not allowed	Major
3	Abnormal Display	AA	1		Not allowed	Major
4	Normally white	AA	1		Not allowed	Major
5	Line Defect	AA	1		Not allowed	Major
6	Mura	AA	1、First sample 14.7 2、DVT2 refer to the 3、Visionox will sign with LG;	limit sample	of G3&641;	Minor
7	TP function	AA	TP function NG or T conformity with the sa	•		Fatal defect
			0,5			

			t \$1/2	c c	Ь		
8	Edge/Side Chipping	Non AA region	а	b	c	Acceptable number	Minor
			€ T	≤0.15mm	≤0.15mm	Not control	
			≤ T	≤0.2mm	≤2mm	<5	
			Frit is not allowed to be to glass breakage about		mal card cor	ntrol X / y due	

9	Glass crack	AA、OA	1			No allowed	Major
10	Line defect (filaments,	All over	W(mm)	L(mm)	DS(mm)	Acceptable number	Minor
	linear foreign	and region	W≤0.03	-	-	Ignore	

Vi:	sionox	Visiono	x Technology Inc.	Model No	. VSX392	A101GG	_	
	bodies)		0.03 <w≤0.05< td=""><td>L≤1.0</td><td>_</td><td>Total</td><td></td></w≤0.05<>	L≤1.0	_	Total		
			0.05 <w≤0.1< td=""><td>L≤0.5</td><td>-</td><td>number N≤2</td><td></td></w≤0.1<>	L≤0.5	-	number N≤2		
	Polarizer	All over	W(mm)	L(mm)	DS(mm)	Acceptable number		
11	scratch	the region	W≤0.03	L≤10	-	Total	Minor	
)	0.03 <w≤0.05< td=""><td>L≤6</td><td>-</td><td>number N≤2</td><td></td></w≤0.05<>	L≤6	-	number N≤2		
	Point defect (black and	All over	D(mm)	DS(mm)		Acceptable number		
12	white dots,	the region	D≤0.10	-		Ignore	Minor	
	foreign dots)	and region	0.10 <d≤0.2< td=""><td>-</td><td></td><td>2</td><td></td></d≤0.2<>	-		2		
			0.2 <d< td=""><td>-</td><td></td><td>0</td><td></td></d<>	-		0		
13	Polarizer fold / indentation	AA	D≤0.1mm, Ignore; 0.1mm <d≤0.25mm, 0.25mm<d≤0.3mm,< td=""><td></td><td>)mm;</td><td></td><td>Minor</td></d≤0.3mm,<></d≤0.25mm,)mm;		Minor	
14	Polarizer bump / dent / bubble	AA	D ≤ 0.1mm, ignored; 0.1 < D≤0.25mm, N≤3 D > 0.25mm, not allo		1;		Minor	
15	Back scribing	Terminal area	Width: 0.3 ± 0.1mm ar surface	nd height shal	ll not be high	ner than TFT	Minor	
16	Foreign matter bubble in polarizer protective film	AA	No control of protectiv Foreign matter: D≤0.1 DS no control	7		2mm ,N<5,	Minor	
17	Stain in polarizer protective film	AA	Stain can be wiped: Nand under the film) Stain cannot be wiped		0.	n on the film	Minor	
18	UV glue height	Bonding area	The UV glue height should not exceed the encap					
19	Tape position offset	FPC	The tape film should n	ot beyond the	e edge of m	ain FPC and	Minor	

Vi:	sion	OX	Visionox Technology Inc. Model No. VSX392A101GG	
20	Pol edge overflow / lack of glue	Non AA area		
21	ACF	Bonding Area	he attachment length of ACF is 0.2-1.5mm longer than the two ends f FPC, not beyond the edge of the screen. The effective lap width of CF in the lead area is greater than 2 / 3 of the width of FPC gold nger, without bubbles and wrinkles.	
	S		t is not allowed to reverse polarity welding of capacitance and nductance, wrong package size and wrong component direction	
		0,	Incorrect use, crack, damage, falling off, warping and deviation of components are not allowed	
		1	Component welding deviation does not affect function and assembly regardless of control	
			There is no dead fold, puncturing or spot damage. The scratch is based on no copper exposure	
Parts on FPC shall be consistent with BOM, with wrong		Parts on FPC shall be consistent with BOM, with wrong parts, multiple parts and few parts, not allowed		
			There shall be no tin stained or residual solder beads on the connector and there shall be no tin connection on the connector welding feet	
Dirty FPC surface not allowed		Dirty FPC surface not allowed		
22	FPCA	FPC	No visible impurities and foreign matters in bonding lead area	
			FPC burr and burr are not controlled	
			Poor FPC screen printing:Content error not allowed	
			FPC shape damaged: not allow	
locating hole is not allowed to be punched and offset is not punched a			FPC Poor punching and cutting: Missing punch locating hole or locating hole is not allowed to be punched and offset is not allowed	
		FPC indentation: The line indentation shall not cause the back of the covering film to turn white; the non line area indentation shall not cause FPC damage		
			FPC Bubble area of reinforcement plate<10%	
			FPC Green oil / mulch: No bubbles / exposing or bridging of metal conductors	. ,
			FPC tin solder:It is not allowed to connect tin, fail to weld or leak tin,	(

and there are cracks in the solder

Visionox	Visionox Technology Inc. Model No. VSX392A101GG	
	FPC Residue of tin slag and bead: The area without solder, such as gold finger, is not allowed to have solder slag and solder bead residues (FPC with connector needs to flip over to check whether the above solder defects exist)	
	FPC Poor reinforcement plate: be damaged(W≤0.3mm, L≤1mm)	
	Missing and reverse sticking and deformation of reinforcing plate are not allowed, separation of FPC layer nor allowed.	

Sol		Convex point of reinforcement plate: D≤0.25mm, And shall not affect the overall thickness	Minor
901		FPC Paint falling:D < 2mm , N < 5; Copper leakage is not	
		allowed.	
Ç	71_	FPC Body foreign matter is not controlled (FPC bubble is not	
		allowed)	
		FPC bending is not controlled, but dead bending is not allowed;	
		l.e. no matter U-type is controlled, V-type is not allowed	
		The small blue membrane deviation on the back of tp-fpc shall	
		not exceed the reinforcing plate	
		Color difference in green oil area is not controlled (thickness is	
		within specification range)	
		The gold finger coating is arc-shaped, the surface is uneven,	Minor
		obviously visible, not allowed	
		Crack of golden finger: crack at the top ≤ 0.3mm, cracks at other	
		parts are not allowed	
		Shape damage, bump: not allowed	
		Deviation of gold finger: deviation of front and back gold finger	
		and mark w ≤ 0.1mm	
	FPC	Copper leakage of gold fingers: W ≤ 1 / 3 line width, I ≤ 1 / 3 line	
	Gold	width, copper leakage of three or more gold fingers is not allowed	
	finger	Golden finger gap: the gap is consistent with the line gap ≤ 1 / 3	
	defect	of the line width	
		Golden finger crush: obvious crush is not allowed	
		Gold finger fold and dead fold: no sharp angle fold and dead fold	/
		Broken and dirty golden fingers: not allowed	
		Gold fingers shall not be oxidized, scratched, creased, indented,	(
		broken, dirty or deviated	
		The gold fingers shall not be blackened, scalded or brown, and	
		the electroplated layer shall not be oxidized or discolored	

Visionox Technology Inc. Model No. VSX392A101GG

	Per per Land	V V	isionox Technology Inc. Model No. VSX392A101GG	
23	FPC bound bubble	Bond District	No visible bubbles, no overlapping of 2 pads	Major
24	FPC tilted after bonding	Bond District	The overlap length between two pairs of FPC gold finger and screen lead shall not be less than 1 / 2 of the length of the pair mark	Major
			No damage or fold is allowed	Minor
			Do not leak light	
\mathcal{C}_{λ}			No impact on assembly	
	<i>(</i>).		Thickness not affected	
	S	S	Do not leak stickers. Do not look beyond the screen edge from the Encap surface.	
	Compound	LTPS	Bubble of composite tape: D≤5mm N not counted	
25	adhesive	surface	Concave convex point of composite tape: D≤0.3mm, N≤3	
	tape	and blue film): D≤0.3mm, N≤3 Compound tape edge saw tooth: 0.5×3mm, N≤3	Compound tape foreign body (foreign body between copper foil and blue film): D≤0.3mm, N≤3	
			Compound tape edge saw tooth: 0.5×3mm, N≤3	
			No control of Color difference protective film in composite tape	
			Reference sample limit of copper foil indentation in composite tape	
		•	05	

26	FPC bonding bubble	Bonding Area	Visible bubble is not allowed	Major
27	IC chipping	COF	edge: D≤0.04mm, corner: D≤0.05mm, Non-intrusive sealing line	Major
28	Sealing and dispensing	Terminal area	It is not allowed to break or lack glue in the line area, or expose the line or bubble diameter<1mm The sealant shall be even, and shall not overflow the TFT edge, and the height shall not be higher than the encap glass.	Minor
29	Warpage caused by overflow and lack of glue on the edge of polarizer	AA	Do not extend to AA area	Minor
30	ACF residual sealant	Binding area	No influence on function or reference limit sample.	Minor

VISIONOX		ΙΟΠΟΧ	Visionox Techno	ology Inc. Model No. VSX392A101GG	
				The product is completely placed in the anti- static tray without overlapping, and the direction of each layer of tray is alternate	
				Products with different models cannot be mixed in one inner packing bag	
,	31	Package	other	There is no obvious deformation or damage in the packing case, the printing and label contents, and the model and quantity are correct	Minor
		S		Seal QC, and paste RoHS label for RoHS control	

7 Reliability

7.1 Environmental Reliability Tests

* RT means Room Temperature.

No	Test Item	Condition	Specifications	Quantity
1	High Temperature Operation	70°C±2°C, 96Hrs Operation and display off. After 24Hrs at RT, display on and check OK/NG		10
2	Low Temperature Operation	-20°C, 96Hrs Operation and display off. After 24Hrs at RT, display on and check OK/NG		10
3	High Temperature and High Humidity Operation	60°C, 90% RH, 96 Hrs Operation and display off. After 24Hrs at RT, display on and check OK/NG	Must be no Visual/Function	10
4	High Temperature Storage	80°C±2°C, 96 Hrs Storage without display on. After 24Hrs at RT, display on and check OK/NG	NG /	10
5	Low Temperature Storage	-30°C, 96 Hrs Storage without display on. After 24Hrs at RT, display on and check OK/NG	Ç	10
6	High Temperature and High Humidity	60℃, 90% RH, 96Hrs Storage without display on. After 24Hrs at RT, display on and check OK/NG		10

V	/IS/ONOX	Visionox Technology Inc. Model No.	VSX392A101GG	
	Storage			
7	Thermal Shock	-30°C (30min) ~ 80°C (30min), 35 Cycle After 24Hrs at RT, display on and check OK/NG		10
8	ESD Electrostatic Withstanding Voltage (with coverlens)	<test condition=""> Air: 330ohm 150pF, ±6KV, 10 times at the display off state <test point=""> 9 red dotting positions in the below picture</test></test>	After Reset, must be no Visual/Function NG	5
9	CDM (Charged Device Mode)	1. Low temperature storage (-30°C, 24Hrs) 2. ESD Test - Bending Area 3Points, 5times ±500V, ±700V, 1KV(Regularity), ±1.5KV(Limit) 3. High temperature storage (70°C, 2Hrs)	Must be no Line Defect	10
10	Packing Shock Test	Radom Vibration 1.146Grms,1~200Hz,Random 30mins/(X,Y,Z)axis Packing Drop: 1 corner ,3edges,6surfaces Drop height :760mm	Must be no Crack	1 box

7.2 Mechanical Reliability Tests

1) Panel 4PB Test

Test Condition

Test Method: 4 Point Bending Test

1. Supporting Jig: 3mm, Loading Jig: 3mm

2. Jig Speed: 1mm/min

3. Test Point: X axis, Y axis

4 Jig length (L): L1 - 10mm, L2 - 20mm

5. Jig Material : Steel (or Al)

Criteria (SPEC)

Item	4-Point Bending Test
Criteria B10 (Weibull 10%)	
Spec	B10(Weibull 10%) Stress Higher than 70 Mpa(X) B10(Weibull 10%) Stress Higher than 60 Mpa(Y) (Improvement sample for 4PB testing match customer (LGE, TOVIS) standard B10 (weibull 10%) stress higher than X 90Mpa/Y 90Mpa)
No. of Panel 24ea for each condition (48ea)	

Formula for Stress:

$$\sigma = \frac{3 \cdot 9.8 \cdot P \cdot (L2-L1)}{2 \cdot b \cdot h^2}$$
 (Mpa

(σ : Flexural Stress)

b: item width (mm)

h: item thickness (mm)

L: Length between supports (mm)

P: Load (kgf)

2) Driver IC 3PB Test

Test Condition

Test Method: 3 Point Bending Test

1. Supporting Jig: 3mm, Loading Jig: 3mm

2. Jig Speed : 1mm/min3. Jig length (L) : 10mm4. Jig Material : Steel (or Al)

Criteria (SPEC)

Item	3-Point Bending Test	
Criteria	B10 (Weibull 10%)	
Spec	B10 : Higher than 350Mpa	
No. of IC	24ea	

Formula for Stress:

$$\sigma = \frac{3 \cdot 9.8 \cdot P \cdot (L2-L1)}{2 \cdot b \cdot h^2} \text{ (Mpa)}$$

(σ : Flexural Stress)

b: item width (mm)

h: item thickness (mm)

L: Length between supports (mm)

P: Load (kgf)

8 Precautions for use

8.1 Handling Precautions

- 8.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from height.
- 8.1.2 Do not press down the screen on the adjoining areas too hard because the color tone may be shifted.
- 8.1.3 The polarizer covering the display surface of the AMOLED module is soft and easily scratched. Handle this polarizer carefully.
- 8.1.4 If the display surface is contaminated, blow on the surface and gently wipe it with a soft dry cloth. If it is still not completely clear, moisten the cloth with ethyl alcohol.
- 8.1.5 Solvents may damage the polarizer. Do not use water, ketone or aromatic solvents except ethyl alcohol.
- 8.1.6 Do not attempt to disassemble the AMOLED Module.
- 8.1.7 If the logic circuit power is off, do not apply the input signals.
- 8.1.8 To prevent destruction from static electricity, be careful to maintain an optimum working environment.
- 8.1.9 Be sure to make yourself in contact with the ground when handling with the AMOLED Modules.
- 8.1.9 Tools required for assembly, such as soldering irons, must be properly grounded.
- 8.1.10 To reduce the generation of static electricity, do not conduct assembly or other work under dry conditions.
- 8.1.11 To protect the display surface, the AMOLED Module is coated with a film. Be careful when peeling off this protective film, because static electricity may generate.

8.2 Storage Precautions

- 8.2.1 When storing the AMOLED modules, be sure that they are not directly exposed to the sunlight or the light of fluorescent lamps.
- 8.2.2 The AMOLED modules should be stored under the storage temperature range. If the AMOLED modules will be stored for a long time, the recommended condition is:
- 8.2.3 Temperature: 0°C~40°C Relatively humidity: ≤80%
- 8.2.4 The AMOLED modules should be stored in the room without acid, alkali or harmful gas.

8.3 Transportation Precautions

8.3.1 The AMOLED modules should not be suffered from falling and violent shocking during transportation. Besides, excessive press, water, damp and sunshine, should be avoided.

9 Package

9.1 Packing Description

1/2	Packing Condition	Contents
	Packing Type	TRAY + Carton packing type
	Tray material model	tray (10 ⁵ ~10 ⁹ Ω)
	Tray packing type	See the picture 1
	Number of panels per Tray	6pieces
	Number of Tray per carton	22units ((20units +2empty)PET tray)
	Number of panel per carton	120 pieces

9.2 Description of ABS Material composed

No.	1
Description	Polyethylene terephthalate
Composed Rate	>99%

9.3. Description of packing procedure

a) Packing

Visionox Technology Inc.

Model No. VSX392A101GG

No.	1	2	3	4	5
Description	OLED Module	Tray	PE Foam	Inner Box	Carton Box
Quantity	120	22	2	2	1

b) Box Label

- Label Information

1. Maker P/N : Supplier project name

2. P/O: LGE PO 3. P/N: LGE P/N

4. Q'ty: Quantity of 1 box5. Desc: GOLED Module6. Spec: 3.92" FHD

7. Date : shipment date 8. Vendor : TOVIS Co., Ltd

9. Origin: Manufacture Nationality

10. 생산일 : Product date

11. Color: BLACK

12. Supplier OQC: OQC date

- Information Example

指漢林技般從者原於	产品标识卡		
教科号 (ProductSpace)		090	
物料描述 TABINISTA (Desert		9+0	
雅依 (WATKUFALT)		w 检验(QC Test)	
数量 (47Y)	* * * * * * * * * * * * * * * * * * * *		901
净重 (NetWeight)	Kg €≣ Kg		8L
PPBoxID			·Co
备注			9/

9.4 Designation of Barcode Print

- a) Barcode Print
- 1. QR Code Data Matrix Information

L1E9202A4133AG

14 code

Total 14 code:

Ex.) L1E9202A4133AG

Part Number	*L1E9202A4133AG

Barcode Print Position

c) Barcode Print Size

Size: 4×4mm ~ 6×6mm (Print area: 7mm x 7mm)

10 Qc Flow Char

No	Process	Photo	Sub-process
1	MATERIAL INSPECTION		01-1、MANUAL VISUAL INSPECTION 01-2、CELL TEST 01-3、CELL TP TEST
2	POL. ATTACH		02-1、CLEAN 02-2、POLATTACH 02-3、 ATTACHMENT EFFECT CHECK Instructions: Lower border control standardP0L-Encap 0.6±0.1mm
3	COG BONDING		03-1、SOLVENT&PLASMA CLEAN 03-2、ACF ATTACH 03-3、PRE-BONDING 03-4、MAIN-BONDING 03-5、BONDING INSPECTION
4	FOG BONDING		04-1、ACF ATTACH 04-2、PRE-BONDING 04-3、MAIN-BONDING 04-4、BONDING INSPECTION
5	BONDING INSPECTION		05-1、BONDING INSPECTION
6	DISPENSER		06-1、2D CODING 06-2、GAP SEALING 06-3、BACK ON LINE SEALING 06-4、SURFACE SEALING
7	WATERPROOF GLUE ATTACH		07-1、FOF WATERPROOF GLUE ATTACH 07-2、FOF INSULATING TAPE ATTACH

١	Į,	sionox	Visionox Technol	ogy Inc. Model No. VSX392A101GG
	8	Module Test		08-1、MANUAL VISUAL INSPECTION 08-2、MODULE TEST
	9	TFOG		09-1、ACF ATTACH 09-2、PRE-BONDING 09-3、MAIN-BONDING 09-4、BONDING INSPECTION
	10	TFOF		10-1、ACF ATTACH 10-2、MAIN-BONDING 10-3、BONDING INSPECTION
	11	TP TEST		TP TEST
•	12	CUSHION TAPE		12-1、PANNEL CLEANING 12-2、CUSHION ATTACH 12-3、ATTACHMENT EFFECT CHECK
•	13	ОТР		13-1、 ØTP
	14	DE-MURA		14-1、DE-MURA
	15	PROTECTIVE FILM		15-1、PANNEL CLEANING 15-2、POL. FILM ATTACH 15-3、ATTACHMENT EFFECT CHECK
•	16	ASSEMBLY		16-1、CUSHION BLOCK ATTACH 16-2、 DOUBLE-SIDED TAPE ATTACH 16-3、 WATERPROOF GLUE ATTACH 16-4、 INSULATING TAPE ATTACH

No	Process	Photo	Sub-process
17	FINAL INSPECTION		17-1、DISPLAY FUNCTION INSPECTION 17-2、TP TEST 17-3、FINAL VISIONAL INSPECTION
18	FQC		18-1、DISPLAY FUNCTION INSPECTION 18-2、TP TEST 18-3、FINAL VISIONAL INSPECTION
19	PACKAGE		PACKAGE
		Baha	
		ano,	S Op
			On Many Ody
			09701
			St.