

HI-MIA声纹识别实战

第3节-模型实现

讲师: 覃晓逸

课程目录:

- 1 前端建模的实现
- 2 编码层的实现
- 3 分类器的实现
- **4** 总结

Layer	Layer context	Total context	Input x output
frame1	[t-2, t+2]	5	120x512
frame2	$\boxed{\{t-2,t,t+2\}}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	[0,T)	T	1500Tx3000
segment6	{0}	T	3000x512
segment7	{0}	T	512x512
softmax	{0}	T	512x <i>N</i>

*版权归属于语音之家(北京)科技有限公司,贩卖和传播盗版将被追究刑事责任

Table 1: x-vector topology proposed in [5]. K in the first layer indicates different feature dimensionalities, T is the number of training segment frames and N in the last row is the number of speakers.

Layer	Standard DNN		BIG DNN	
	Layer context	$(Input) \times output$	Layer context	$(Input) \times output$
frame1	[t-2, t-1, t, t+1, t+2]	$(5 \times K) \times 512$	[t-2,t-1,t,t+1,t+2]	$(5 \times K) \times 1024$
frame2	$\begin{bmatrix} [t] & 2, t & 2, t & 2 \end{bmatrix}$	512×512	[t]	1024×1024
frame3	$ \iota-2,\iota,\iota+2 $	$(3 \times 512) \times 512$	[t-4, t-2, t, t+2, t+4]	$(5 \times 1024) \times 1024$
frame4	$[t] \ [t-3,t,t+3]$	512×512	[t]	1024×1024
frame5	[t-3, t, t+3]	$(3 \times 512) \times 512$	[t-3, t, t+3]	$(3 \times 1024) \times 1024$
frame6	[t]	512×512	[t]	1024×1024
frame7	[t-4, t, t+4]	$(3 \times 512) \times 512$	[t-4, t, t+4]	$(3 \times 1024) \times 1024$
frame8	[t]	512×512	[t]	1024×1024
frame9	[t]	512×1500	[t]	1024×2000
stats pooling	[0, T]	1500×3000	[0,T]	2000×4000
segment1	[0,T]	3000×512	[0,T]	4000×512
segment2	[0,T]	512×512	[0,T]	512×512
softmax	[0,T]	$512 \times N$	[0,T]	512 × <i>N</i>

[1] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matějka, Oldřich Plchot, "BUT System Description to VoxCeleb Speaker Recognition Challenge 2019"

[2] Brecht Desplanques, Jenthe Thienpondt, Kris Demuynck, "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification"

前端模型:

TDNN, ResNet, SE-ResNet, ECAPA-TDNN (作业)

编码层:

StatsPool,ASP(作业)

分类器:

Softmax, AAMSoftmax

课程问题可随时联系班主任