

Prof. J. Buhmann

Final Exam

January 23th, 2018

First and Last name:
Student ID (Legi) Nr:
Signature:
General Remarks
Please check that you have all 28 pages of this exam.
 There are 120 points, and the exam duration is 180 minutes. Don't spend too much time on a single question! The maximum number of points is not required for the best grade!
• Remove all material from your desk which is not permitted by the examination regulations.
 Write your answers directly on the exam sheets. If you need more space, make sure you put your student-ID-number on top of each supplementary sheet.
 Immediately inform an assistant in case that you are not able to take the exam under regular conditions. Later complaints are not accepted.
 Attempts to cheat/defraud lead to immediate notification of the rector's office with a possible exclusion from the examination and it can have judicial consequences.
• Please use only a black or a blue pen to answer the questions.
• Provide only one solution to each exercise. Cancel invalid solutions clearly.
• If not indicated otherwise, multiple choice questions are graded as: 1 point per correct answer, -1 point per incorrect answer, non-negative total points in any case. Multiple correct answers are possible.

	Topic	Max. Points	Points Achieved	Visum
1	Regression	6		
2	Elastic Net Regression	12		
3	Classification via density estimation	7		
4	Bayesian Learning	12		
5	Prior in Bayesian Inference	3		
6	MLE & Cramer-Rao bound	13		
7	Maximum Likelihood for Classification	5		
8	Validation	4		
9	k-fold Cross Validation	3		
10	Leave-One-Out Cross Validation	7		
11	k-Nearest Neighbours	8		
12	Linear Discriminant Functions	3		
13	Kernels	3		
14	SVM and Kernel Trick	4		
15	L2-SVM	14		
16	Neural Networks	7		
17	Ensemble methods	9		
Total		120		

Question 1: Regression: Warm-up (6 pts) Which of the following claims are true/false?

vvnic	cn of the following claims are true/false?	6 pts	
1)	Although Lasso regression does not have a closed-form solution, its parallearned through optimization methods like gradient descent. \Box True \Box False	meters ca	ın be
2)	The objective of Lasso regression is differentiable and convex. $\hfill\Box$ True $\hfill\Box$ False		
3)	Using basis expansions, regression models such as Ridge or Lasso regression non-linear relationship between the input ${\bf x}$ and the response y . \Box True \Box False	can capt	ure a
4)	Let $\mathbf{x} \in \mathbb{R}^3$ and each entry of $\mathbf{x} = (x_1, x_2, x_3)$ be strictly greater than 0. $y = \ln(x_1^{\beta_1} x_2^{\beta_2}) + \beta_3 x_3 + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$ is i.i.d. noise, the maxim parameters $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)$ can be learned using linear regression. \square True \square False		
5)	In the bias-variance decomposition, the noise term can be eliminated by usin complex model. $\hfill\Box$ True $\hfill\Box$ False	g a suffici	ently
6)	Among all linear estimators (biased and unbiased ones), least square reg minimizes the expected mean squared error. \Box True \Box False	ression a	lways
Que	estion 2: Elastic Net Regression (12 pts)		
The	elastic net is a linear regression model that combines L_1 and L_2 regularization for given data $(\mathbf{X},\mathbf{y})\in\mathbb{R}^{n imes d} imes\mathbb{R}^n$ is defined by	n: Its obje	ective
	$L(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \rho \ \boldsymbol{\beta}\ _{1} + \lambda (1 - \rho) \ \boldsymbol{\beta}\ _{2}^{2}$		
for £	$oldsymbol{eta} \in \mathbb{R}^d$, where $\lambda > 0$ is the <i>regularization parameter</i> and $ ho \in [0,1]$ is the L_1	ratio.	
•	the following multiple choice questions, 0.5 points are awarded per correct answercer answer, non-negative total points in any case. Multiple correct answers a		
1.	Why do we add the regularization terms? Mark the correct answer(s).	2 pts	
	☐ Decreasing the estimator's variance.	- p	
	\square Decreasing the estimator's bias.		
	\square Performing feature selection.		
	☐ Prevention of underfitting.		

2. What is the purpose of the L_1 term? Mark the	e correct answer(s). 2 pts
 □ Performing feature selection. □ Compensating for overfitting. □ Making our model better interpretable. □ Smoothing. 	
3. When $\rho=0$, what is the purpose of the L_2 terms of L_2 terms of the L_2 terms of the L_2 terms of L_2	m? Mark the correct answer(s). 2 pts
 □ Performing feature selection. □ Increasing the estimator's variance. □ Making the optimization problem strictly of the optimization pro 	
^	
4. Derive the closed-form solution $\hat{m{\beta}}$ that minim $ ho=0.$	izes the elastic net objective for the $$4$ \ pts$
4. Derive the closed-form solution $\hat{m{\beta}}$ that minim $\rho=0$.	

5. We now compare the behaviour of the elastic net for different values of the L_1 ratio ρ . Each plot in Figure 5 belongs to one of the values $\rho=0.19,0.69,0.99$ and shows the results of different elastic net models that have been trained with respect to different values of λ . Which plot belongs to which value of ρ ?

2 pts

Question 3: Classification via Density Estimation (7 pts)

1. The following figure shows a dataset whose samples each belong to one of two possible classes $i \in \{0,1\}$, represented by triangles and circles. In the following we consider classifiers based on density estimation. Recall that these work as follows: We first estimate the class densitites p_0, p_1 by \hat{p}_0, \hat{p}_1 ; then we classify new samples x according to the rule

$$f(\mathbf{x}) = \begin{cases} 0 & \text{if} \quad \hat{p}_0(\mathbf{x}) > \hat{p}_1(\mathbf{x}), \\ 1 & \text{if} \quad \hat{p}_0(\mathbf{x}) < \hat{p}_1(\mathbf{x}), \\ \mathsf{N}/\mathsf{A} & \text{otherwise.} \end{cases}$$

We assume that it is known that p_0, p_1 are zero outside of the shaded square.

(a) Assume that the class densities are estimated using a Parzen window density estimation with the window function

$$\phi(\mathbf{x}) = \begin{cases} 1/2 & \text{if} & \|\mathbf{x}\|_1 < 1, \\ 0 & \text{otherwise.} \end{cases}$$

where $\|\mathbf{x}\|_1 = |x_1| + |x_2|$; note that the window width is already chosen for you. Draw the region where no decision can be made (i.e., where "N/A" is returned) in the figure above.

4 pts

2. Consider the generic density estimation formula discussed in class, $p(x) = \frac{K}{nV}$, where K is the number of points in the test region containing the data point x, V is the volume of the test region, and n is the total number of data points. Tick all true statements:

${\sf Changing}\ V$	corresponds	to	adjusting	the	window	width	in	case	of	Parzen	window
density estim	nation.										

 $\hfill\Box$ To counteract underfitting, one should decrease K.

 $\hfill\Box$ To counteract underfitting, one should increase V.

3 pts

Question 4: Bayesian Learning (12 pts)

Assume that we are given a dataset \mathcal{D} consisting of n random values $x_1, x_2, \ldots, x_n \in \mathbb{R}_{>0}$ drawn independently from the uniform distribution $\mathcal{U}(0,\theta)$ on an interval of the form $(0,\theta)$ for some unknown $\theta > 0$. Our aim is to find a good estimator for θ .

1.	Compute the likelihood function $\theta \mapsto p(\mathcal{D} \theta)$.		
		3 pts	
2.	Assume now that $\mathcal{D}=\{x_1,x_2,x_3\}$ with $x_1=3$, $x_2=1.5$, $x_3=2$. Plot function $\theta\mapsto p(\mathcal{D} \theta)$.	the likeli	hood
		2 pts	
3.	Compute the maximum likelihood estimate $\hat{ heta}_{MLE}$ for $ heta$ given data $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$		
		3 pts	

4.	The Pareto	${\sf distribution}$	$Pareto(\alpha,\beta)$	with	parameters	α, β	>	0 is	the	${\sf distribution}$	on	\mathbb{R}
	whose proba	ability density	y function is g	given	by							

$$p(\theta|\alpha,\beta) = \frac{\alpha\beta^{\alpha}}{\theta^{1+\alpha}} \mathbf{I}_{\{\theta \ge \beta\}}.$$

Show that if in the above situation we use $\operatorname{Pareto}(\alpha,\beta)$ as the prior distribution for the parameter θ , the posterior distribution is $\operatorname{Pareto}(\gamma,\delta)$ for certain parameters $\gamma,\delta>0$. Compute γ and δ .

4 pts

Question 5: Prior in Bayesian Inference (3 pts)

Suppose that we are given a dataset $\mathcal{D} = \{x_1, \dots, x_n\}$ with samples $x_i \in \mathbb{R}$ drawn i.i.d. from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ with unknown mean μ and variance σ^2 .

1) If we assume a Gaussian prior $\mu \sim \mathcal{N}(0, \delta^2)$ for the mean, the density of the resulting posterior distribution of μ given \mathcal{D} looks as follows:

Let now μ_{MAP} be the corresponding maximum a posteriori estimate, and let μ_{MLE} be the maximum likelihood estimate of μ given \mathcal{D} . Which of the following statements is true?

- \square $\mu_{\mathsf{MAP}} = \mu_{\mathsf{MLE}}$
- \square $\mu_{\mathsf{MAP}} > \mu_{\mathsf{MLE}}$
- $\square \mu_{\mathsf{MAP}} < \mu_{\mathsf{MLE}}$

1 pts	
-------	--

- 2) We now change the prior to $\mu \sim \mathcal{N}(0, 10\delta^2)$. Mark all true statements.
 - \Box The mean of the posterior increases.
 - \square The mean of the posterior decreases.
 - \Box The variance of the posterior increases.
 - $\hfill\Box$ The variance of the posterior decreases.

2	pts	

Question 6: MLE & Cramer-Rao bound (13 pts)

Let's estimate the mean μ of a one-dimensional Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ from n samples $x_1, \ldots, x_n \in \mathbb{R}$ drawn independently at random.

1)	Show that the maximum likelihood estimate of μ given x_1,\ldots,x_n is	
	$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n x_i.$	
	3 pts	
2)	Show that $\hat{\mu}_n$ is an unbiased estimator of μ .	
	2 pts	
3)	Indicate which of the following three terms is the <i>bias</i> , the <i>variance</i> resp. the <i>exp</i> mean squared error of the estimator $\hat{\mu}_n$.	pectea
	μ_n .	

$$\mathbf{E}_{\mathbf{x}}\left[\left(\widehat{\mu} - \mathbf{E}_{\mathbf{x}}\left[\widehat{\mu}\right]\right)^{2}\right], \qquad \mathbf{E}_{\mathbf{x}}\left[\left(\mu - \widehat{\mu}\right)^{2}\right], \qquad \mathbf{E}_{\mathbf{x}}\left[\widehat{\mu}\right] - \mu$$

4)	Write down how the terms in 3) relate to each other.		
		2 pts	
5)	Denote by $p(\mathbf{x} \mu,\sigma^2)$ the probability density of the random vector $\mathbf{x}=(x_1,\dots$ that the Fisher information of the sample \mathbf{x} about the parameter μ is defined		Recall
	$I_n(\mu) = \mathbf{E}_{\mathbf{x}}[(\frac{\partial}{\partial \mu} \log p(\mathbf{x} \mu, \sigma^2))^2].$		
	Compute $I_n(\mu)$ as a function of n and σ^2 .		
		3 pts	
6)	Use the Cramer-Rao bound to bound the expected mean squared error ach estimator $\hat{\mu}_n$.	ieved b	y the
		2 pts	

Question 7: Maximum Likelihood for Classification (5 pts)

Assume that we are given a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{10}, y_{10})\}$ consisting of points $\mathbf{x}_i \in \mathbb{R}^2$ with labels $y_i \in \{-1, 1\}$, as depicted in the following figure, where the white points are those with $y_i = -1$, and the black points are those with $y_i = 1$:

Figure 1: (Both figures are identical.)

Consider now the following generative model for the data:

$$P(y_i = y | \mathbf{x}_i, \mathbf{w}) = \begin{cases} 1 & \text{if } y(\mathbf{w}^\top \mathbf{x}_i) > 0, \\ 0 & \text{if } y(\mathbf{w}^\top \mathbf{x}_i) < 0, \end{cases}$$

where $\mathbf{w} = (w_1, w_2) \in \mathbb{R}^2$ is an unknown vector of length $\|\mathbf{w}\|_2 = 1$.

1. Determine the set of values of the likelihood function $\mathbf{w} \mapsto P(y_1, \dots, y_{10} | \mathbf{x}_1, \dots, \mathbf{x}_{10}, \mathbf{w})$.

1 pts

2. Sketch the support of the likelihood function $\mathbf{w} \mapsto P(y_1, \dots, y_{10} | \mathbf{x}_1, \dots, \mathbf{x}_{10}, \mathbf{w})$ in Figure 1(a) (i.e., the region where its value is non-zero).

2 pts

3. Add a black point \mathbf{x}_{11} , i.e. with $y_{11}=1$, to Figure 1(b) such that the resulting likelihood function satisfies

$$\max_{\mathbf{w}} P(y_1,\ldots,y_{11}|\mathbf{x}_1,\ldots,\mathbf{x}_{11},\mathbf{w}) = 0.$$

2 pts

Question 8: Validation (4 pts)

per incorrect answer, non-negative total points in any case. Multiple corre	ect answers are possible.)
\square Minimizing the training error.	
☐ Performing model selection.	
\square Finding a minimum variance estimator.	
\square Finding a minimum bias estimator.	
\square Estimating model robustness.	
\square Estimating the generalization ability of the model.	
\square Choosing a good training and test set.	
\square Tuning hyper-parameters.	
	4 nts

What is the goal of validation? Tick all correct answers. (0.5 points per correct answer, -0.5 points

Question 9: k-fold Cross Validation (3 pts)

Suppose that we have a dataset of size N and a learning algorithm for which the training set size and the expected generalization error ${\rm Err}$ are related as follows:

Here ${\rm Err}$ is the expected generalization error of a model obtained by training our model on a training set of a given size sampled from the dataset. Compute, for given N>m, the smallest k that results in an *unbiased* k-fold cross validation estimation of the generalization error.

3 pts	

Question 1	0: L	eave-One-Out	Cross	Validation	(7	pts
------------	------	--------------	-------	------------	----	-----

Consider the two disjoint intervals $I_1=[-2,-1]$ and $I_2=[1,2]$. Assume that we are given a training dataset $\{(x_i,y_i)\mid i=1,\dots N\}$ consisting of i.i.d. data points generated as follows: First, the x_i are sampled with probability p from the uniform distribution on I_1 , and with probability 1-p from the uniform distribution on I_2 ; then, $y_i\in\{0,1\}$ is sampled from a Bernoulli distribution with parameter u_1 if $x_i\in I_1$, and from a Bernoulli with parameter u_2 if $x_i\in I_2$:

$$y_i \sim \begin{cases} \operatorname{Ber}(u_1) & \text{if } x_i \in I_1, \\ \operatorname{Ber}(u_2) & \text{if } x_i \in I_2. \end{cases}$$

Assume now that we train a 1-nearest-neighbor (1NN) classifier on the training set.

1.	Compute the expected training set error of the 1NN classifier. (Note: Trainin happen on the same dataset.)	g and te	esting
		1 pts	
2.	Compute the expected leave-lone-out cross validation error of the 1NN class	ifier.	
		3 pts	

3.	Assume now that we get an independent test set that is generated in the the training set, but with respect to different parameters $\bar{p}, \bar{u}_1, \bar{u}_2$. Compute prediction error that the 1NN classifier incurs on the training set.		•
		3 pts	
Qu	estion 11: k-Nearest Neighbours (8 pts)		
1.	The figure below shows the output of a 3-class classification task obtained nearest neighbors algorithm for some value of k . Note that the symbols training data	_	

training data.

What value of \boldsymbol{k} was used to obtain this classifier?

1 pts	
-------	--

- $\square \ k=1.$
- $\square \ k=3.$
- $\square \ k=5.$
- $\square \ k = 9.$

2. Consider a k-Nearest Neighbor classifier using the Euclidean distance metric on a binary classification task for the dataset depicted in the figure below.

(a)	How would the point (2, 2) be classified using 1-Nearest Neighbor?	1 pts	
b)	Sketch the 1-Nearest Neighbor decision boundary in the figure.		
. ,		3 pts	
(c)	Compute the leave-one-out cross-validation error that a 3-Nearest Neig incurs when trained on this dataset.	hbor cla	assitier
		•	

Question 12: Linear Discriminant Functions (3 pts)

1. Decide for each of the hyperplanes whether it was produced by running a Support Vector Machine (SVM), Fisher's Linear Discriminant Analysis (LDA), or a Perceptron on the dataset shown in the figure (each method was used exactly once).

2 pts

2. How many iterations does the Perceptron algorithm need to converge if we run it on the following dataset?

1 pts

- $\hfill\Box$ The answer depends on the initialization.
- ☐ The perceptron does not converge.
- □ 1.
- □ 3.

Ωπε	estion 13: Kernels (3 pts)
Q	3 pts
1)	If your input samples have two features, $x=(x_1,x_2)$, what is the dimension of the feature space for the kernel $K(x,x')=(x^Tx')^d$ when $d=2$? $ \square \ 3 $ $ \square \ 5 $ $ \square \ 6$
2)	If your input samples have three features, $x=(x_1,x_2,x_3)$, what is the dimension of the feature space for the kernel $K(x,x')=(x^Tx'+c)^d$ when $d=2$? $ \Box \ 4 $ $ \Box \ 6 $ $ \Box \ 10 $
3)	If you have 1000 input samples, each sample x has three features, $x=(x_1,x_2,x_3)$, and you choose to use the kernel $K(x,x')=(x^Tx'+c)^d$ with $d=2$, how many entries does the corresponding Gram matrix have?
Que	estion 14: SVM and Kernel Trick (4 pts)
	th of the following claims are true/false? 4 pts
1.	Every kernel corresponds to some transformation $\phi(x)$ which converts x to a strictly finite dimensional space. \Box True \Box False
2.	The SVM classifier in its original form provides us with probability estimates. $\hfill\Box$ True $\hfill\Box$ False
3.	We know that support vectors lie on the boundary and between margins, but we cannot

4. A standard way to counteract overfitting of a SVM is to use a more complex kernel (e.g.,

explicitly identify them. \square True

 \square True

☐ False

□ False

a polynomial kernel of degree 3 instead of degree 2).

Question 15: L₂-SVM (14 pts)

Assume that we modify the standard soft margin SVM by using an L_2 penalty on the slack variables (instead of the usual L_1 penalty). In other words, given a training set consisting of N labeled points (\mathbf{x}_i,y_i) with $\mathbf{x}_i\in\mathbb{R}^D$ and $y_i\in\{-1,+1\}$, we consider the constrained optimization problem for the vector $\tilde{\mathbf{w}}=(\mathbf{w},w_0)\in\mathbb{R}^{D+1}$ describing the separating hyperplane whose primal formulation is

Here the ξ_i denote slack variables, and $\tilde{\mathbf{x}}_i := (\mathbf{x}_i, 1) \in \mathbb{R}^{D+1}$.

	n the following, you are asked to show step by step that deleting the considers not affect the solution of the optimization problem.	straints ξ_i	$i \geq 0$
u	des not affect the solution of the optimization problem.	6 pts	
	• Step 1: Assume that there exists a solution $(\tilde{\mathbf{w}}, \xi)$ so that ξ has at lead nent $\xi_i < 0$. Is there another solution with $\xi_i \geq 0$ that leads to the same	me object	•
	• Step 2: Does the optimization problem have a special property that conclude that it attains a unique solution?		
	• Step 3: Can you conclude that each solution of the optimization proble constraints $\xi_i \geq 0$ fulfills the constraint $\xi_i \geq 0$ automatically?		

2. Write down the Lagrangian for the problem	2 pts	
$\begin{split} & \underset{\tilde{\mathbf{w}}, \xi}{\text{minimize}} & & \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{2}C\sum_{i=1}^N {\xi_i}^2 \\ & \text{subject to} & & y_i(\tilde{\mathbf{w}}^T\tilde{\mathbf{x}_i}) \geq 1 - \xi_i, \end{split} \forall i. \end{split}$		
3. Derive the dual formulation of the problem.	5 pts	

4. The following plots show the decisions boundaries produced by running a kernel version of the L_2 -SVM on a dataset, once with C=1, and once with C=1000. Decide which plot belongs to which value of C.

Question 16: Neural Networks (7 pts)

Given N input/output pairs $(\mathbf{x}_n, \mathbf{y}_n)$, where $\mathbf{x}_n \in \mathbb{R}^I$ and $\mathbf{y}_n \in \mathbb{R}^D \ \forall n \in \{1, \dots, N\}$, we want to train a neural network to predict \mathbf{y} for a given \mathbf{x} . Given the input \mathbf{x}_n , the output of the neural network is denoted as $\hat{\mathbf{y}}_n = \hat{\mathbf{y}}(\mathbf{W}, \mathbf{x}_n)$ and the weight parameters as entries of the matrix \mathbf{W} .

1	Why are the activation functions in the hidden layers generally non-linear?		
	viny are the delivation functions in the maderi layers generally non-initial.	1 pts	
2.	Name three regularization techniques and briefly describe each technique.		
		3 pts	

3. Wh	ich of the following claims are true/false?	3 pts	
(a)	The more complex a neural network is, the better its generalization ca $\hfill\Box$ True $\hfill\Box$ False	pacity is.	
(b)	The XOR task can be learned by a neural network consisting of two input layer and one output layer. \Box True \Box False	layers, i.e.	one
(c)	Every continuous function can be approximated by a fully connected feed network with 4 hidden layers and sigmoid activation functions. \Box True \Box False	dforward n	eural
Questi	on 17: Ensemble methods (9 pts)		
	on 17: Ensemble methods (9 pts) ich of the following claims are correct?	3 pts	
1. Wh			
1. Wh	ich of the following claims are correct? A decision tree is equivalent to a random forest consisting of one tree.	ormance ta	rget,
 Wh (a) (b) 	ich of the following claims are correct? A decision tree is equivalent to a random forest consisting of one tree. □ True □ False Given an arbitrary collection of base classifiers and a classification perform an ensemble can be constructed from that collection that achieves the	ormance ta target. are trained g ensemble sifier is tra	by a was ained
 Wh (a) (b) 	A decision tree is equivalent to a random forest consisting of one tree. True False Given an arbitrary collection of base classifiers and a classification performant an ensemble can be constructed from that collection that achieves the True False Suppose you are given one base classification model whose parameters a deterministic algorithm. Assume that the training strategy for a bagging changed to remove the bootstrapping process. Thus, each base class on the original training set. How would the classification performant increasing ensemble size? Decrease.	ormance ta target. are trained g ensemble sifier is tra	by a was ained
 Wh (a) (b) 	A decision tree is equivalent to a random forest consisting of one tree. True False Given an arbitrary collection of base classifiers and a classification performance and ensemble can be constructed from that collection that achieves the True False Suppose you are given one base classification model whose parameters a deterministic algorithm. Assume that the training strategy for a bagging changed to remove the bootstrapping process. Thus, each base class on the original training set. How would the classification performance increasing ensemble size?	ormance ta target. are trained g ensemble sifier is tra	by a was ained

2. What is the smallest number of axis-oriented, linear decision boundaries needed to partition the data given below? Draw one possible solution on the grid.

2 pts

3. What is the smallest number b_{\min} of linear decision boundaries (not necessarily axisoriented) needed to perfectly partition the data? Write down the equation(s) describing the line(s).

2 pts

4. Write down a linear transformation of the data so that it can be perfectly partitioned by b_{\min} axis-oriented decision boundaries.

z pts