1 Dynamické systémy

Definice 1.1 (Dynamický systém)

 $(\varphi,\Omega), \Omega \subset \mathbb{R}^n$ otevřená, $\varphi : \mathbb{R} \times \Omega \to \Omega \ \varphi(t,x)$.

- $\varphi(0,x)=x$;
- $\varphi(t, \varphi(s, x)) = \varphi(t + s, x)$
- φ je spojité.

Definice 1.2 (Orbit)

 $\gamma^+(x_0) = \{\varphi(t, x_0) | t \ge 0\}$ je pozitivní orbit.

 $\gamma^-(x_0) = \{\varphi(t, x_0) | t \leq 0\}$ je negativní orbit.

 $\gamma(x_0) = \{ \varphi(t, x_0) | t \in \mathbb{R} \}$ je plný orbit.

Definice 1.3 (Pozitivně, negativně a úplně invariantní)

 (φ, Ω) dynamický systém, $M \subset \Omega$.

M je pozitivně invariantní $\equiv \forall x \in M : \gamma^+(x) \subset M$.

M je negativně invariantní $\equiv \forall x \in M : \gamma^{-}(x) \subset M$.

M je úplně invariantní $\equiv \forall x \in M : \gamma(x) \subset M$.

Poznámka

 $\gamma^+(x_0)$ je pozitivně invariantní, $\gamma^-(x_0)$ je negativně invariantní a $\gamma(x_0)$ je úplně invariantní.

Definice 1.4

$$\omega(x_0) = \{ y \in \Omega | \exists \{t_k\}_{k=1}^{\infty}, t_k \to \infty : \varphi(t_k, x_0) \to y \},$$

$$\alpha(x_0) = \{ y \in \Omega | \exists \{t_k\}_{k=1}^{\infty}, t_k \to -\infty : \varphi(t_k, x_0) \to y \}.$$

Poznámka (To je ekvivalentní)

$$\omega(x_0) = \{ y \in \Omega | \forall \varepsilon > 0 \ \forall T > 0 \ \exists t \geqslant T : |\varphi(t_r, x_0) - y| < \varepsilon \}.$$

Lemma 1.1

$$\overline{\omega(x_0) = \bigcap_{\tau \geqslant 0} \overline{\gamma^+(\tau, x_0)}}.$$

Věta 1.2 (Vlastnosti ω -limitní množiny)

Nechť (φ, Ω) je dynamický systém, $x_0 \in \Omega$. Potom

- 1. $\omega(x_0)$ je uzavřená, úplně invariantní.
- 2. Pokud $\gamma^+(x_0)$ je relativně kompaktní v \mathbb{R}^n , pak $\omega(x_0) \neq \emptyset$, $\omega(x_0)$ je kompaktní, souvislá.

 $D\mathring{u}kaz$

1. $\omega(x_0)$ je průnik uzavřených množin, tedy uzavřená. $y \in \omega(x_0) \; \exists t_k \nearrow \infty \; \varphi(t_k, x_0) \rightarrow y$.

$$s_k = t_k + t$$
 $\varphi(s_k, x_0) = \varphi(t_k + t, x_0) = \varphi(t, \varphi(t_k, x_0))$
 $t_k \to \infty, \varphi \text{ spojitá}$ $\varphi(s_k, x_0) = \varphi(t, \varphi(t_k, x_0)) \to \varphi(t, y)$

- 2. Víme $\exists K \subset \mathbb{R}^n$ kompaktní $\gamma^+(x_0) \subset K$. a) pokud $t_n \geq 0, t_n \to \infty \{\varphi(t_n, x_0)\}_{n=1}^{\infty}$ omezená posloupnost $\Longrightarrow \exists \{t_{n_k}\}_{k=1}^{\infty} \subset \{t_n\}_{n=1}^{\infty}$, podposloupnost, $\exists y \in \Omega \varphi(t_{n_k}, x_0) \to y$. Pak $y \in \omega(x_0)$.
- b) $\omega(x_0)$ je tedy úplná a omezená, takže kompaktní. c) at $\omega(x_0)$ je nesouvislá, tedy $\omega(x_0) \subseteq U \cup V, U, V$ otevřené disjunktní neprázdné, $U, V \subseteq K$. Vezměme $y \in \omega(x_0) \cap U, z \in \omega(x_0) \cap V$. Nechť t_n je posloupnost taková, že $\varphi(t_{2n}x_0) \to y, \ \varphi(t_{2n+1},x_0) \to z, t_{2n} < t_{2n+1}, \ \varphi(t_{2n},x_0) \in U, \ \varphi(t_{2n+1},x_0) \in V. \ F = K \setminus (U \cup V)$ uzavřená, tedy $\exists s_n \in (t_{2n},t_{2n+1}): \varphi(s_n,x_0) \in F$. Tedy $\{\varphi(s_n,x_0)\}$ je omezená posloupnost $\Longrightarrow \exists$ podposloupnost konvergující k $w \in F$.

Definice 1.5 (Topologická konjugovanost)

 $(\varphi,\Omega),\ \psi,\Theta$ dynamické systémy. $\exists:\Omega\to\Theta$ homeomorfismus (bijekce, spojité, spojitá inverze) h:

$$\forall x \in \Omega \ \forall t \in \mathbb{R}$$
 $h(\varphi(t, x)) = \psi(t, h(x)).$

Poznámka

Dá se zobecnit ještě zobrazováním časů.

Věta 1.3 (O rektifikaci)

$$\dot{x} = f(x), f(x_0) \neq 0, \ (\varphi, \Omega) \ p \check{r} \acute{s} lu \check{s} n \acute{y} \ dynamick \acute{y} \ syst \acute{e} m. \ \dot{y} = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix}, \ y(0) = 0 \ a \ (\psi, \Theta) \ j e$$

příslušný dynamický systém. Potom (φ, Ω) , (ψ, Θ) jsou lokálně topologicky konjugované $(\exists U \text{ okolí } \mathbf{o} \in \Omega \text{ a } V \text{ okolí } \mathbf{o} \in \mathbb{R}^n \text{ taková, že } \exists g : U \to V \text{ homeomorfismus } g(\varphi(t, x)) = \psi(t, g(x)) \ \forall x \in U, \ \forall t : \varphi(t, x) \in U).$

 $D\mathring{u}kaz$

BÚNO $f_1(x_0) = \alpha \neq 0$ (první souřadnice funkce f) a $x_0 = \mathbf{o}$. Buď \tilde{V} okolí $\mathbf{o} \in \mathbb{R}^n$ $G: \tilde{V} \to \mathbb{R}^n$, $G(y_1, \ldots, y_n) = \varphi(y_1, (0, y_2, \ldots, y_n))$. Chceme ukázat, že G je invertibilní na nějakém okolí.

$$\frac{\partial G(y_1, \dots, y_n)}{\partial y_1}|_{(0,\dots,0)} = \frac{\partial \varphi}{\partial t}(t = y_1, (0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} =$$

$$= f(\varphi(y_1(0, y_2, \dots, y_n)))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(0, (0, \dots, 0))) = f(x_0) = \alpha.$$

$$\frac{\partial G(y_1, \dots, y_n)}{\partial y_j}|_{(0,\dots,0)} = \lim_{h \to 0} \frac{G(0, \dots, h, \dots, 0) - G(0, \dots, 0)}{h} =$$

$$= \lim_{h \to 0} \frac{(0, \dots, h, \dots, 0)^T - (0, \dots, 0)^T}{h} = (0, \dots, 1, \dots, 0)^T = e_j.$$

Tedy $\nabla G(0,\ldots,0)$ je "jednotková matice, až na to, že a_{11} je α ", tudíž podle věty o inverzi funkce $\exists V \subseteq \tilde{V}$ okolí 0, $\exists U$ okolí bodu x_0 tak, že $G:V \to U$ je homeomorfismus. Položme $g=G^{-1}$.

Nyní stačí $g(\varphi(t,x_0)) = \psi(t,g(x_0)) \ \forall x_0 \in U \ \forall t : \varphi(t,x_0) \in U. \ \varphi(t,x_0) = G(\psi(t,g(x_0)))$

3.
$$x \in U = G(V) \exists y \in V \ x = G(y)$$

$$x = \varphi(y, (x_{01}, x_{02} + y_2, \dots, x_{0n} + y_n))$$

$$\varphi(t,x) = \varphi(t,\varphi(y,(x_{01},x_{02}+y_2,\ldots,x_{0n}+y_n))) = \varphi(t+y,(x_{01},x_{02}+y_2,\ldots,x_{0n}+y_n))$$

Věta 1.4 (La Salle invariance principle)

$$x' = f(x), (\varphi, \Omega) \quad \varphi : \mathbb{R} \to \Omega, f \text{ loc. Lip.}$$

 $\exists V : \Omega \to \mathbb{R}$, bounded from below.

$$\exists l \in \mathbb{R} : \Omega_l = \{x \in \Omega | V(x) \leq l\} - bounded$$

$$\dot{V}_f(x) := \nabla V(x) \cdot f(x) = \sum_{j=1}^n \frac{\partial V(x)}{\partial x_j} \cdot f_j(x) \leqslant 0 \qquad \forall x \in \Omega_l$$
$$R = \left\{ x \in \Omega_l | \dot{V}_f(x) = 0 \right\}, \quad M = \left\{ y \in R | \gamma^+(y) \subset R \right\}.$$

Then $\forall x \in \Omega_l : \omega(x) \subset M$.

 $D\mathring{u}kaz$

Let $x \in \Omega_l$. $\forall y \in \omega(x) \ \exists t_k \nearrow \infty : x(t_k) \to y$. $\varphi(t, x_0) = x(t)$.

$$\frac{d}{dt}V(x(t)) = \nabla V(x(t)) \cdot x'(t) = \dot{V}_f(x(t)) \le 0.$$

 $V(x(t)) \searrow \text{ and } \exists C : \forall x \in \Omega : V(x) > -C \text{ so } \exists \lim_{t \to \infty} V(x(t)) = c.$

So $\exists c \ \forall y \in \omega(x_0)V(y) = c. \ V(x(t_k)) \to V(y) = c.$

$$\gamma^+(y) \subset \omega(x_0) \ V(\varphi(t,y)) = c \ \forall t \geqslant 0 \implies$$

$$\implies \frac{d}{dt}V(\varphi(t,y)) = 0.$$

 $\gamma^+(y) \subset R$ in particular, $y \in R$. Hence $y \in M$.

2 Poincaré-Bendixson theory

Věta 2.1 (Poincaré-Bendixson)

Let $p \in \Omega$, Ω open connected. $\omega(p)$ doesn't contain stationary points and $\gamma^+(p)$ is relatively compact $(\overline{\gamma^+(p)})$ is compact. Then $\omega(p) = \Gamma$ -periodic orbit.

Věta 2.2 (Bendixson-Dulas)

 Ω -simply connected (\forall closed Jordan curve γ in Ω , int(γ) $\subset \Omega$). $\exists B : \Omega \to \mathbb{R} : (\operatorname{div} Bf)(x) = \frac{\partial Bf_1}{\partial x_1}(x_1, x_2) + \frac{\partial Bf_2}{\partial x_2}(x_1, x_2) > 0$ for almost every $x \in \Omega$. Then x' = f(x) doesn't have nontrivial periodic solutions.

Definice 2.1 (Transverzála)

 Σ segment on a line such that $\forall p \in \Sigma : \Sigma \not\parallel f(p)$.

Lemma 2.3

 Σ transverzála, $p \in \Sigma \subset \Omega$. Then $\exists \tilde{U} \subset U$ neighborhood of p, $\exists \Delta > 0$ such that

$$\forall y \in \tilde{U} : \varphi(t,y) \subset U \ \forall t : |t| < \Delta \land \exists \tau : |\tau| < \frac{\Delta}{2} : \varphi(\tau,y) \in \Sigma \cap \tilde{U}.$$

 $D\mathring{u}kaz$

Use Th. of rect.

Lemma 2.4

Let $p \in \Omega$ and assume that $|\gamma^+(p) \cap \Sigma| \ge 3$, i. e. $\exists t_1 < t_2 < t_3 \ \varphi(t_j, p) \in \Sigma$, j = 1, 2, 3. Then $\varphi(t_2, p)$ lies between $\varphi(t_1, p)$ and $\varphi(t_3, p)$.

 $D\mathring{u}kaz$

Simple closed curve:

$$\psi := \{ \varphi(t, x), t \in [t_1, t_2] \} \cup \underbrace{\operatorname{conv} \{ z_1, z_2 \}}_{\subseteq \Sigma}.$$

By uniqueness of φ and by the Jordan Lemma.

Lemma 2.5

 $\Sigma \subseteq \Omega \subseteq \mathbb{R}^2 \ transversal, \ p \in \Omega \implies |\omega(p) \cap \Sigma| \leqslant 1.$

Důkaz

$$y \neq z \in \omega(p) \cap \Sigma \implies \exists t_k \nearrow \infty : x(t_{2k}) \to y \land x(t_{2k+1}) \to z.$$

From lemma above: $\exists \tilde{U} \subset U$ – neighbourhoods of y and $\exists \Delta$:

$$\exists k_0 : \forall k > k_0, (x(t_{2k}) \in \tilde{U}) \implies (\exists \tilde{t}_{2k} : |\tilde{t}_{2k} - t_{2k}| < \frac{\Delta}{2} \land x(\tilde{t}_{2k}) \in \Sigma \cap \tilde{U}.$$

Similarly $\exists \tilde{V}$ – neighbourhood of z, $\exists \tilde{t}_{2k+1} \colon |\tilde{t}_{2k+1} - t_{2k+1}| < \frac{\Delta}{2}$ and $x(\tilde{t}_{2k+1}) \in \Sigma \cap \tilde{V}$.

WLOG $\tilde{V} \cap \tilde{U} = O$. Now continue with Lemma 2 (not monotonic).

Důkaz (Poincaré-Bendixson theorem)

Step 1: For $q \in \omega(p)$ we want to show that q belongs to $q \in \Gamma$, where Γ is non-trivial periodic orbit.

 $\exists x_0 \in \omega(q), \ \exists t_k \nearrow \infty : \varphi(t_k, q) \to x_0. \ x_0 \text{ is not a stationary point } (q \in \omega(p) \implies \omega(q) \subseteq \omega(p)).$ So there exists a transversal $\Sigma \subseteq \Omega, x_0 \in \Sigma$.

By lemma above $\exists \tilde{t}_k, \exists \Delta > 0$: $|\tilde{t}_k - t_k| < \frac{\Delta}{2}$. $q \in \omega(p) \implies \varphi(\tilde{t}_k, q) \in \omega(p) \implies \varphi(\tilde{t}_k, q) \in \Sigma \cap \omega(p)$ at most 1-point set by theorem...

$$\varphi(\tilde{t}_k, q) \to x_0 \implies \varphi(\tilde{t}_k, q) = x_0.$$

Periodic orbit $\implies x_0 \in \Gamma = \{ \varphi(t, q) | \tilde{t}_k < t < \tilde{t}_{k+1}, k \in \mathbb{N} \} \implies q \in \Gamma \text{ (uniqueness)}.$

Now we want to show that $\omega(p) \subseteq \Gamma$. Let $M \neq \emptyset$, $M = \omega(p) \backslash \Gamma$: $\gamma^+(p)$ is bounded $\Longrightarrow \omega(p)$ is connected

$$\exists x_0 \in \Gamma : \exists \{p_n\}_{n \in \mathbb{N}} \subseteq M, p_n \to x_0.$$

 $\exists \Sigma$ transversal: $x_0 \in \Sigma$ (because not stationary). By lemma above we have

$$\exists \tilde{p}_n \in \gamma^+(p_n) : \tilde{p}_n \in \Sigma \cap \gamma^+(p_n) \cap \tilde{U}(x_0).$$

Since $p_n \in \omega(p)$, $n \in \mathbb{N}$, then $\gamma^+(p_n) \subseteq \omega(p) \implies \tilde{p}_n \in \omega(p)$.

By previous lemma $\tilde{p}_n = x_0$ and $p_n \in \gamma^-(\tilde{p}_n) = \gamma^-(x_0) \subseteq \Gamma$. 4.

Důkaz (Bendixson-Dulas theorem)

Let Γ be a non-trivial periodic orbit, $\Gamma \subset \Omega$, $\Gamma = \partial M$

$$0 < \int_{M} \operatorname{div}[B(x) \cdot f(x)] d\lambda^{2} = \int_{\partial M} \langle B(x) \cdot f(x), \nu(x) \rangle dS = 0.$$

3 Caratheodory theory

Definice 3.1 (Caratheodory theory)

f measurable, x(t) absolutely continuous, Lebesgue integral.

Definice 3.2

 $\Omega \subseteq \mathbb{R}^{n+1}$, $f \in Car(\Omega) \equiv \forall I \times B \subset \Omega$, $I \subseteq \mathbb{R}$ bounded interval, $B \subseteq \mathbb{R}^n$ bounded closed ball:

- $\forall x \in B: t \mapsto f(t, x(t))$ is measurable;
- for almost every $t \in I$: $x \mapsto f(t, x)$ is continuous;
- $\exists h \in L^1(I): |f(t,x)| \leq |h(t)|$ for almost every $t \in I$ and $\forall x \in B$.

Definice 3.3 (*)

$$x' = f(t, x), x(t_0) = x_0, \Omega \subseteq \mathbb{R}^{n+1} \text{ open, } f : \Omega \to \mathbb{R}^n, f \in Car(\Omega).$$

Definice 3.4

 $x: I \to \mathbb{R}^n$ (*I* interval) is a solution of * in the sense of Caratheodory, if $x \in AC_{loc}(I)$ and $graph(x) \subset \Omega$ and for almost every $t \in I: x'(t) = f(t, x(t))$ and $x(t_0) = x_0$.

Poznámka

$$\Leftrightarrow x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds,$$
 for almost every t .

Lemma 3.1

 $f \in Car(\Omega), \ x : I \to \mathbb{R} \ is \ continuous, \ graph(f) \subseteq \Omega, \ then \ f(t, x(t)) \in L^1_{loc}(I).$

Důkaz

Step 1: "f is measurable": We approximate x(t) by step function on $I = I_1 \cup \ldots \cup I_n \cup \ldots$, $\{x_n(x)\}_{n=1}^{\infty}$, piecewise constant functions, $x_n(t) \rightrightarrows x(t)$ on I_k , $I = \bigcup_j I_{j,n}$ disjoint union, $x_n(x) = \xi_{j,n}$ for $t \in I_{j,n}$. $f(t, x_n(t)) = f(t, \xi_{j,n})$ for $t \in I_{j,n}$, $f(t, \xi_{j,n})$ is measurable.

 $f(t,x_n(t)) \to f(t,x(t))$ for almost every $t \in I \implies f(t,x(t))$ is measurable.

Step 2: $|f(t, x(t))| \le l(t)$ for almost every $t \implies f \in L^1_{loc}(I)$.

Lemma 3.2

 $x: I \to \mathbb{R}^n$ continuous, $graph(x) \subseteq \Omega$, $f \in Car(\Omega)$ then x is solution of $* \Leftrightarrow \forall t_1, t_2: x(t_2) - x(t_1) = \int_{t_1}^{t_2} f(s, x(s)) ds$.

 $D\mathring{u}kaz$

 $, \Longrightarrow$ " $x \in AC_{loc}(I), x'(t) = f(t, x)$ for almost every $t \in I$, add \int :

$$\int_{t_1}^{t_2} x'(t)dt = \int_{t_1}^{t_2} f(s, x(s))ds.$$

 $= t_1 = t_0, t_2 = t$

$$x(t) - x_0 = \int_{t_0}^t f(s, x(s))ds, \qquad x(0) = x_0.$$

 $(f \in L^1_{loc}, \text{ so it make sense}).$

 $\implies x \text{ is AC, } graph(x) \subseteq \Omega, \ x'(t) = f(t,x) \text{ for almost every } t \in I.$

Věta 3.3 (Uniform contraction theorem (generalized Banach theorem))

 Λ , X metric spaces, $X \neq \emptyset$ complete, $\Phi : \Lambda \times X \to X$. $\forall x \in X : \Phi(\cdot, x)$ is continuous, $\exists \varkappa \in (0,1) : \varrho(\Phi(\lambda,x), \Phi(\lambda,y)) \leq \varkappa \cdot \varrho(x,y) \ \forall \lambda \in \Lambda, \ \forall x,y \in X$.

Then $\forall \lambda \in \Lambda \ \exists ! x(\lambda) \in X \ such \ that \ \Phi(\lambda, x(\lambda)) = x(\lambda), \ \lambda \mapsto x(\lambda) \ is \ continuous \ and$

$$\varrho(y,x(\lambda))\leqslant \frac{\varrho(y,\Phi(\lambda,y))}{1-\varkappa}\ \forall y\in X\ \forall \lambda\in\Lambda.$$

 \Box $D\mathring{u}kaz$

Let
$$x_0 \in X$$
, $x_1 = x_1(\lambda, x_0) := \Phi(\lambda, x_0)$, $x_{n+1} = x_{n+1}(\lambda, x_0) := \Phi(\lambda x_n)$. $\lambda \in \Lambda$ fixed:

$$\varrho(x_{n}(\lambda, x_{0}), x_{m}(\lambda, x_{0})) \leqslant \sum_{k=n}^{m-1} \varrho(x_{k}(\lambda, x_{0}), x_{k+1}(\lambda, x_{0})) =$$

$$= \sum_{k=n}^{m-1} \varrho(\Phi(\lambda, x_{k-1}(x, x_{0})), \Phi(\lambda, x_{k}(\lambda, x_{0}))) \leqslant$$

$$\leqslant \sum_{k=n}^{m-1} \varkappa \varrho(x_{k}, x_{k-1}) \leqslant$$

$$(\varrho(x_{k}, x_{k-1}) \leqslant \varkappa \varrho(x_{k}, x_{k-1}) \leqslant \ldots \leqslant \varkappa^{k} \varrho(x_{0}, x_{1}).)$$

$$\leqslant \sum_{k=n}^{m-1} \varkappa^{k} \varrho(x_{0}, x_{1}(\lambda, x_{0})) \leqslant \varrho(x_{0}, x_{1}(\lambda, x_{0})) \underbrace{\sum_{k=n}^{\infty} \varkappa^{k}}_{\stackrel{\varkappa}{1-\varkappa}}.$$

 \implies sequence $\{x_n(\lambda, x_0)\}_{k=1}^{\infty}$ is Cauchy \implies it has a limit:

$$\exists x(\lambda, x_0) : \lim_{n \to \infty} x_n(\lambda, x_0) = x(\lambda, x_0).$$

We want to show that $x(\lambda, x_0)$ does not depend on x_0 . $\tilde{x}_0 : x_n(\lambda, \tilde{x}_0) =: \tilde{x}_n$.

$$\varrho(x_n, \tilde{x}_n) = \varrho(\Phi(\lambda x_{n-1}), \Phi(x, \tilde{x}_{n-1})) \leqslant \varkappa^n \varrho(x_0, \tilde{x}_0) \to 0 \implies x = \tilde{x}.$$

$$,\Phi(\lambda,x(\lambda))=x(\lambda)$$
":

$$\varrho(\Phi(\lambda, x(\lambda)), x(\lambda)) = \lim_{n \to \infty} \varrho(\Phi(\lambda, x(\lambda)), x_n(\lambda)) =$$

$$= \lim_{n \to \infty} \varrho(\Phi(\lambda, x(\lambda)), \Phi(\lambda, x_{n-1}(\lambda))) \leqslant \varkappa \varrho(x(\lambda, x_{n-1})) = 0.$$

 $D\mathring{u}kaz (,\lambda \mapsto x(\lambda) \text{ is continuous}^{"})$

$$\begin{split} \varrho(x(\lambda),x(\mu)) &= \varrho(\Phi(\lambda,x(\lambda)),\Phi(\mu,x(\mu))) \leqslant \\ &\leqslant \varrho(\Phi(\lambda,x(\lambda)),\Phi(\lambda,x(\mu))) + \varrho(\Phi(\mu,x(\mu)),\Phi(\lambda,x(\mu))) \leqslant \\ &\leqslant \varkappa \varrho(x(\lambda),x(\mu)) + \varrho(\Phi(\mu,x(\mu)),\Phi(\lambda,x(\mu))) \implies \\ &\Longrightarrow \varrho(x(\lambda),x(\mu)) \leqslant (1-\varkappa)^{-1}\varrho(\Phi(\lambda,x(\mu)),\Phi(\mu,x(\mu))) \to 0. \end{split}$$

So Φ is continuous in the first variable.

$$\mu$$
 fixed, $\lambda = \mu_n \to \mu$. y , λ fixed, $x_1 = \Phi(\lambda, y)$, $x_n = \Phi(\lambda, x_{n-1})$, $n \ge 2$.
$$n = 0 \ (y = x_0) \colon m \to \infty$$

$$\varrho(y,\lambda(x)) \leqslant \frac{\varkappa^0}{1-\varkappa}\varrho(y,\Phi(\lambda,y)) = \frac{\varkappa^0}{1-\varkappa}\varrho(y,x_1).$$

Věta 3.4 (Generalized Picard theorem)

$$*: x' = f(t, x), \qquad x(t_0) = x_0, \qquad f: \Omega \to \mathbb{R}^n, \qquad \Omega \subseteq \mathbb{R}^{n+1}.$$

 $I = [0, T], \Pi \text{ metric space}, f : I \times \mathbb{R}^n \times \Pi \to \mathbb{R}^n, f(t, x, p)$

- $\forall p \in \Pi \text{ fixed } f(\cdot, \cdot, p) \in Car(I \times \mathbb{R}^n);$
- $||f(t,x,p)-f(t,y,p)|| \leq |l(t)||x-y||$ for some $l(t) \in L^1(I)$, $\forall x,y \in \mathbb{R}^n$, $\forall p \in \Pi$ and almost all $t \in I$;
- for every $x(\cdot) \in \mathcal{L}(I)$ the map

$$p \mapsto \int_0^t f(s, x(s), p) ds, \qquad t \in I$$

is continuous.

Then for all $x_0 \in \mathbb{R}^n$ a $\forall p \in \Pi \exists ! x(\cdot) = x(x_0, p) \in AC(I)$ satisfying * in Caratheodory sense with initial condition $x(t_0) = x_0$ and $x(\cdot)$ depends continuously on x_0 , p, t_j .

$$(x_0)_n \to x_0 \land p_n \to p \implies x_n(\cdot) \equiv x((x_0)_n, p_n) \rightrightarrows x(x_0, p).$$

 $D\mathring{u}kaz$

 $X := \varphi(I) \text{ is complete, } \|f\|_x = \sup_{t \in I} \left\{ f(x) \cdot e^{-Lt} \right\}, L \text{ will be chosen } L > \varepsilon. \ \Lambda := \mathbb{R}^n \times \Pi \ni (\lambda_0, p), \int_0^t e^{L(t-s)} ds \leqslant \int_0^t e^{-Ly} dy \leqslant \int_0^\infty e^{-Ly} dy = \frac{1}{L}.$

$$\Phi(x_0, p, x(\cdot))(t) := x_0 + \int_0^t f(s, x(s)) ds, \qquad t \in [0, T].$$

 Φ is continuous in x_0 and p. Φ is contraction:

$$\|(\Phi(x_0, \varrho, x(\cdot)) - \Phi(x_0, p, y(\cdot)))\| = \int_0^t f(s, x(x)) - f(s, y(s)) \le$$

$$\le \int_0^T \|f(s, x(s), p) - f(s, y(s), p)\| ds \le \int_0^T l(s) \|x - y\| ds,$$

for almost every t.

$$\|x(s) - y(s)\|e^{-L \cdot s} \leq \|x - y\|_{X} \leq \int_{0}^{t} l(s)e^{+L(s)}ds \cdot \|x - y\|_{X}?$$

$$\|\Phi(x_{0}, p, x(\cdot)) - \Phi(x_{0}, p, y(\cdot))\|_{X} \leq \|x(\cdot) - y(\cdot)\|_{X} \sup_{t} \int_{0}^{t} l(s)e^{-L(t-s)}ds \leq \int_{0}^{T} l(s)e^{-Ls}ds, \qquad l \in L^{1}([0, T]).$$

$$\exists l_1, l_2 \geqslant 0 : \int_0^T l_1(x)dt \leqslant \frac{1}{3}$$

$$\exists c > 0 : ||l_2|| \leqslant c \text{ for almost every } t \in I$$

$$? \leqslant \frac{1}{3} + c \cdot \frac{1}{L} \leqslant \frac{2}{3}.$$

Then $x \in \mathcal{L}(I)$ fixed point of Φ .

$$\implies x(t) = x_0 + \int_0^t f(s, x(s), p) ds \implies x \in AC(I).$$

Continuously depends on p, x_0 :

$$\sup_{t \in I} \left\{ (x(t, x_0, p) - y(t))e^{-Lt} \right\} \le (1 - \varkappa)^{-1} ((y(x) - x_0 + \int_0^t f(s, y, TODO)))TODO$$

4 Controllability

Definice 4.1 (Control theory)

$$x' = f(x, u), f : \Omega \times U, \Omega \subset \mathbb{R}^n, U \subset \mathbb{R}^n,$$

 $u \in \mathcal{U} := \{u : [0, T] \to \mathbb{R}^n | \text{measurable}, ||u||_{\infty} < \infty\} = L^{\infty}(0, T, \mathbb{R}^n).$

(\mathcal{U} is admissible functions).

Definice 4.2 (Linear task)

 $x' = Ax + Bu, A, B \in \mathbb{R}^{n \times m}, m < n.$

Definice 4.3

 $x_0 \xrightarrow[u(0)]{t} 0 \text{ iff } x(0) = x_0, x(t) = 0.$

Definice 4.4 (Area of controllability)

$$\mathcal{R}(t) = \left\{ x_0 \in \mathbb{R}^n \middle| \exists u \in L^{\infty}(0, t, \mathbb{R}^n) : x_0 \xrightarrow[u(0)]{t} 0 \right\}$$

Definice 4.5 (Kalman matrix)

$$\mathcal{K}(A,B) := (B|AB|A^2B|\dots|A^{n-1}B)$$

Věta 4.1

For linear problem $\mathcal{R}(t) = \text{LO}(g_1, g_2, \dots, g_{n \cdot m})$, where $\mathcal{K}(A, B) = (g_1 | g_2 | \dots | g_{n \cdot m})$

Tvrzení 4.2 (Observation)

$$\overline{x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)Bu(s)ds}}.$$

$$x_0 \xrightarrow[u(0)]{t} 0 \Leftrightarrow x(t) = 0 \Leftrightarrow x_0 = -\int_0^t e^{-As} Bu(s) ds.$$

Lemma 4.3 (1)

$$A^k \in \mathrm{LO}(I, A, A^2, \dots, A^{n-1}), k \in \mathbb{N}_0$$

 $D\mathring{u}kaz$

 ${\bf Cayley\text{-}Hamilton.}$

 $D\mathring{u}kaz$

- 1) $\mathcal{R}(t)$ is vector subspace of \mathbb{R}^n from definition $x_0 + x_1 \xrightarrow[(u_1 + u_2)(0)]{t} 0$, $\alpha x \xrightarrow[\alpha u(0)]{t} 0$.
- 2) We want $\mathcal{R}(t)^{\perp} = (LO(g_1, \ldots, g_n))^{\perp}$. $\square : p \in (LO(g_1, \ldots, g_n))^{\perp}$. $x_0 \in \mathcal{R}(t)$ arbitrary. From observation.:

$$0 \stackrel{?}{=} p^T x_0 = -\int_0^t p^T e^{-As} Bu(s) ds = -\int_0^t \sum_{k=0}^\infty \frac{(-s)^k}{k!} p^T A^k Bu(s) ds$$

We know $(p, g_j) = 0$, $p^T g_j = 0$, $p^T \mathcal{K}(A, B) = 0$, $p^T A^k B = 0$, $k \in [n-1]$. And from lemma 1 $k \in \mathbb{N}$. " \subseteq ": $p \in \mathbb{R}^n$, $p \in \mathcal{R}(t)^{\perp}$. We want to prove $p \perp B$, AB, $A^2 B$, ..., $A^{n-1} B$. $B = (b_1 | \dots | b_m)$. $\forall j \in [n] : p \perp b_j$, Ab_j , ..., $A^{n-1} b_j$. $\varphi \in L^{\infty}(0, T, \mathbb{R})$, $u(t) = \varphi(t) \cdot \mathbf{e}_j$, where $x_0 = -\int_0^t e^{-As} Bu(s) ds$. We have $x_0 \stackrel{t}{\underset{u(0)}{\longrightarrow}} 0$, hence $x_0 \in \mathcal{R}(t)$.

$$0 = p^{T} x_{0} = -p^{T} \int_{0}^{t} e^{-As} Bu(s) ds = -\int_{0}^{t} p^{T} e^{-As} b_{j} \varphi(s) ds \implies y(s) := p^{T} e^{-As} b_{j} \equiv 0$$

So we have $p^T e^{-As} b_j \equiv 0$, we derivate it, $p^T A^n e^{-As} b_j \equiv 0$, and set s = 0.

Důsledek

 $\mathcal{R}(t)$ doesn't depend on time.

Definice 4.6 (Locally and globally controllable)

Linear problem is called locally controllable, iff $\exists \delta > 0 : \{x_0 \in \mathbb{R}^2 | |x_0| < \delta\} \subset \mathcal{R}(t)$. And globally if $\mathbb{R}^n = \mathcal{R}(t)$.

Dusledek

Linear problem is controllable \Leftrightarrow rank K(A, B) = n.

4.1 Observability

Definice 4.7 (System for observability)

$$x' = f(x), x(0) = x_0, f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n y = g(x), g: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, m < n.$$

Definice 4.8

We say that system x' = f(x) is observable through $g(\cdot)$ on [0, t], iff $\forall x_1(\cdot), x_2(\cdot) : [0, T] \to \mathbb{R}^n : g(x_1(t)) = g(x_2(t)) \ \forall t \in [0, T] \implies x_1(0) = x_2(0)$.

Definice 4.9 (Linear observability)

 $x' = Ax, y = Bx, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}.$

Věta 4.4

x' = Ax is observable on [0,T] through $y = Bx \Leftrightarrow x' = A^Tx + B^Tu$ is controllable.

 $D\mathring{u}kaz$

(We will prove equivalence with rank $\mathcal{K}(A^T, B^T) = n$.) ,, \iff ": For contradiction

$$\exists x_1(t), x_2(t), t \in [0, T], Bx_1(t) \equiv Bx_2(t) : x(t) = x_1(t) - x_2(t), x(0) = x_0 \neq 0, Bx(t) \equiv 0.$$

$$x(t) = e^{At}x_0, Bx(t) = Be^{At}x_0 \equiv 0 \qquad \forall t \in [0, T].$$

We differentiate it, set t = 0 and get $Bx_0 = 0$, $BAx_0 = 0$, ..., $BA^{n-1}x_0 = 0$. So $x_0^TB^T = 0$, ..., $x_0^T(A^T)^{n-1}B^T = 0$. $x_0^T\mathcal{K}(A^T, B^T) = 0$, $x_0 \perp \mathcal{K}(A^T, B^T)$, 4.

" \Longrightarrow ": For contradiction rank $(A^T, B^T) < n \Longrightarrow \exists x_0 \neq 0 : x_0^T \mathcal{K}(A^T, B^T) = 0$. $x_0^T \left(A^T\right)^k B^T = 0 \ \forall k \in [n-1] \ \text{and from lemma } 1 \ \forall k \in \mathbb{N}. \ BA^T x_0 = 0. \ Be^{At} x_0 = 0$. $\forall t \in [0,T]$. 4.

Věta 4.5 (Local controllability)

Let $V \subset \mathbb{R}^n$ neighbourhood of 0, $U \subset \mathbb{R}^n$ neighbourhood of 0, $f: V \times U \to \mathbb{R}^n$ C^1 smooth, f(0,0) = 0, $\mathcal{U} = \{u: [0,T] \to U \text{ measurable}\}$, $A = \nabla_x f(0,0)$, $B = \nabla_u f(0,0)$, rank $\mathcal{K}(A,B) = n$. Then

 $x' = f(x, u), x(0) = x_0$ is locally controllable $\forall t \in (0, T]$.

Důkaz

Fix t > 0, consider x' = Ax + Bu. Since $\operatorname{rank}(A, B) = n$, the linear problem is globally controllable. Take initial condition y_1, \ldots, y_n linearly independent.

$$\exists u_i \in L^{\infty}(0, t, \mathbb{R}^n) : y_j \to_{u_i(0)}^t 0$$

 $\forall \lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ denote by $u_{\lambda(t)} = \sum_{j=1}^n \lambda_j u_j(t)$. We know $\sum_{j=1}^n \lambda_j y_j \to_{u_{\lambda}(0)}^t 0$.

Step 2:

$$x'_{\lambda} = f(x_{\lambda}, u_{\lambda}), \qquad x_{\lambda}(t) = 0$$

If $\lambda = 0$, then $u_{\lambda} \neq 0$, then $x_{\lambda} \equiv 0$.

$$\psi(\lambda) := x_{\lambda}(0), \psi : U_{\lambda}(0) \subset \mathbb{R}^n \to \mathbb{R}^n$$

We want to prove $\psi(U_{\lambda}(0)) \supseteq \tilde{V}$, for some $\tilde{V} \subset \mathbb{R}^n$ open, $0 \in \tilde{V}$. We will prove that ψ is C^1 smooth, and that $\nabla \varphi(0)$ is regular (if this is proved, than ψ is local diffeomorphism).

Step 3:

$$x_{\lambda}(s) = x_{\lambda}(t) + \int_{t}^{s} f(x_{\lambda}(s), u_{\lambda}(s)) ds.$$

Formally differentiate:

$$\frac{\partial x_{\lambda}(s)}{\partial \lambda_{j}} = \int_{t}^{s} (\nabla_{x} f(x_{\lambda}(s), u_{\lambda}(s)) \cdot \frac{\partial x_{\lambda}(s)}{\partial \lambda_{j}} + \nabla_{u} f(x_{\lambda}(s), u_{j}(s))) ds.$$

Denote $y_{\lambda,j}(s) = \frac{\partial x_{\lambda}(s)}{\partial \lambda_i}$.

$$y'_{\lambda,j}(s) = \nabla_x f(x_\lambda(s), u_\lambda(s)) \cdot y_{\lambda,j}(s) + \nabla_u f(x_\lambda(s), u_\lambda(s)) \cdot u_j(s).$$

$$y_{\lambda,i}(t) = 0.$$

Consider $(LPy) \to y_{\lambda,j}(\cdot)$.

$$x_{\lambda+\Delta\lambda}(s) - x_{\lambda}(s) - \Delta\lambda \cdot y_{\lambda,i}(s) = 0$$

(as in Thn? of differentiability w. r. t. initial condition)

$$\frac{\partial \psi}{\partial \lambda_j}(\lambda=0) = \frac{\partial x_{\lambda}(s=0)}{\partial \lambda_j}|_{\lambda=0} = y_{\lambda,j}(s=0)|_{\lambda=0} = y_{\lambda,j}(s=0)|_{\lambda=0} = y_j.$$

If $\lambda = 0$, then (LPy): $y'_{0,j}(s) = Ay_{0,t}(s) + Bu_j(s)$, $y_{0,j}(t) = 0$. From uniq.: $y_{0,j}(0) = y_{j,0}$.

$$\nabla \psi(0) = \left(\frac{\partial \psi}{\partial \lambda_1}(0) \dots \frac{\partial \psi}{\partial \lambda_n}(0)\right) = (y_1, \dots, y_n)$$

regular matrix.

Poznámka

$$x' = Ax + Bu, u \in \mathcal{U} = \{u : [0, T] \to [-1, 1] \text{ measurable}\}, x(0) = x_0.$$

Definice 4.10

$$\mathcal{R}(t) = \left\{ x_0 \in \mathbb{R}^n | \exists u \in \mathcal{U} \land x_0 \to_{u(0)}^t 0 \right\}.$$

Definice 4.11

$$u_n \in \mathcal{U}_0: u_n \rightharpoonup^* u \in \mathcal{U} \equiv \forall f \in L(0, T, \mathbb{R}^n): \int_0^T f(s) u_n(s) ds \to \int_0^T f(s) u^*(s) ds.$$

Věta 4.6 (Alaoglu)

 \mathcal{U} is weak-* sequentially compact (i. e. $\forall \{u_n\}_{n=1}^{\infty} \in \mathcal{U} \ \exists \{u_{n_k}\} \ weekly-* convergent$).

Věta 4.7

 $\mathcal{R}(t)$ convex, symmetric, closed $0 < t_1 < t_2 \implies \mathcal{R}(t_1) \subset \mathcal{R}(t_2)$.

Důkaz

Convex: $x_{01}, x_{02} \in \mathcal{R}(t), \alpha \in [0, 1] \implies \alpha x_{01} + (1 - \alpha) x_{02} \in \mathcal{R}(t).$

$$x(t) = e^{At}x_0 + \int_0^t e^{As}Bu(s)ds. x_{01} \to_{u_{01}}^t 0 \land x_{02} \to_{u_{02}}^t 0 \Leftrightarrow x_{0i} = -\int_0^t e^{(s-t)A}Bu_{0i}(s)ds.$$

Symmetry: $x_0 \in \mathcal{R}(t) \implies -x_0 \in \mathcal{R}(t), x_0 \to_u^t 0 \implies -x_0 \to_{-u}^t 0.$

Closedness: $x_{0n} \in \mathbb{R}(t), x_{0n} \to x_0.$ $x_0 \in \mathcal{R}(t)$? $\exists u_n(0) \in \mathcal{U}, x_{0n} = -\int_0^t e^{(s-t)A} Bu_n(s) ds \to -\int_0^t e^{(s-t)A} Bu(s) ds.$ WLOG $u_n \to^* u \in \mathcal{U}$. Then $x_0 \to_u^t 0$.

$$\mathcal{R}(t_1) \subset \mathcal{R}(t_2), \qquad 0 < t_1 < t_2 < T$$

$$\exists u_1 \in \mathcal{U} \qquad x_0 = -\int_0^t e^{(s-t)A} Bu_1(s) ds.$$

Define $u_2(s) = u_1(s)$ if $0 \le s \le t$, else 0.

Definice 4.12 (Area of controllability)

$$\mathcal{R} := \bigcup_{t>0} \mathcal{R}(t).$$

Věta 4.8

$$\operatorname{rank} \mathcal{K}(A, B) = n \Leftrightarrow \forall t > 0 : \mathcal{R}(t) \supseteq U(0),$$

where $U(0) \subset \mathbb{R}^n$ is some neighbourhood of 0.

 $D\mathring{u}kaz$

"
$$\Leftarrow=$$
 ": If $\exists t>0$ $\mathcal{R}(t)\supset U(0)$ open, $0\in U(0)$. $\tilde{\mathcal{R}}:u\in L^{\infty},\mathcal{R}:||u||_{\infty}\leqslant 1$, then $\tilde{\mathcal{R}}(t)\supset\mathcal{R}(t)\supset U(0)\implies \tilde{\mathcal{R}}(t)=\mathbb{R}^n.\implies \mathrm{rank}\,\mathcal{K}(A,B)=n$.

 \Longrightarrow ": rank $\mathcal{K}(A,B)=n \implies \tilde{\mathcal{R}}(t)=\mathbb{R}^n$. From theorem of local controllability.

Věta 4.9 (Minimal time)

$$x' = Ax + Bu$$

$$\forall x_0 \in \mathcal{R} = \bigcup_{s>0} \mathcal{R}(s)$$

$$\exists t > 0 \ \exists u(0) \in \mathcal{U} : x_0 \to_u^t 0$$

$$t = \inf\{s > 0 | x_0 \in \mathcal{R}(s)\}.$$

 $D\mathring{u}kaz$

$$t > 0, \exists t_n \setminus t, t_n \in (0, T], \exists u_n \in U, x_0 = -\int_0^{t_n} e^{(t_n - s)A} V u_n(s).$$

Alaoglu: WLOG $u_n \stackrel{*}{\rightharpoonup} u \in U$.

$$x_0 = -\int_0^{t_n} e^{(t-s)A} B u_n(s) ds - \int_0^{t_n} \left[e^{(t-s)A} - e^{(t_n-s)A} \right] B u_n(s) ds$$

$$x_0 = -\underbrace{\int_0^t e^{(t-s)A} B u_n(s) ds}_{\stackrel{*}{\underline{}} \int_0^t e^{(t-s)A} B u(s) ds} - \underbrace{\int_t^t \left[e^{(t-s)A} - e^{(t_n-s)A} \right] B u_n(s) ds}_{\rightarrow 0}.$$

Definice 4.13 (Bang-bang)

We say that a regulation $u \in U(0)$ is of type bang-bang, if for almost every $t \in [0, T]$: $u(t) = \pm 1$.

Věta 4.10 (Bang-bang)

If $x_0 \in \mathcal{R}(t) \implies \exists \tilde{u}(0) \text{ of type bang-bang } x_0 \to_{\tilde{u}}^t 0.$

Definice 4.14 (Extremal point)

X vector space, $K \subset X$. $x \in K$ is called an extremal point, if it cannot be written as $x = \frac{y+z}{2}$, $y, z \in K$, $y \neq z$. We denote ex(K) the set of extremal points.

Tvrzení 4.11 (Krein-Milman theorem)

X locally convex vector space, $K \subset X \colon K \neq \emptyset$, K convex and compact. Then $ex(K) \cap K \neq \emptyset$.

Důkaz (Bang-bang)

$$K = \{ u \in \mathcal{U} | x_0 \to_{u(0)}^t 0 \}, \qquad X = L^{\infty}(0, T, \mathbb{R}^n).$$

 $K \neq \emptyset$ $(u \in \mathcal{R}(t))$, K convex, K is compact (sequential compactness: Alaoglu theorem? $L'(0,T,\mathbb{R}^n)$ separable $\Longrightarrow L^{\infty}(0,T,\mathbb{R}^n)$ with locale * topology is metrizable \Longrightarrow sequential compactness \Longrightarrow compactness.

Choose $\tilde{u}_j \in ex(K)$ (from Krein-Milman). It remains to check that $\tilde{u}_j(s) = \pm 1, \ \forall j \in [n]$ for almost every $s \in (0,t)$. For contradiction: for some $j \in [n] \ \exists E \subset (0,t), \ \lambda(E) > 0 \ \forall s \in E \ |\tilde{u}_j(s)| < 1$. WLOG

$$\exists \varepsilon > 0 \ \forall s \in E |\tilde{u}_j(s)| < 1 - \varepsilon \qquad \left[E = \bigcup_{n \in \mathbb{N}} \left\{ s \in (0, t) \middle| |\tilde{u}_j(s)| \leqslant 1 - \frac{1}{n} \right\} \right].$$

$$x_0 = -\int_0^t e^{-sA} B\tilde{u}(s) ds$$

We find (from ortogonality to $B_i e^{-sA}$) $\varphi \in L^{\infty}(0, T, \mathbb{R})$ such that:

- 1. supp $\varphi \subset E$;
- 2. $\int_E e^{-sA} B(0, \dots, 0, \varphi(s), 0, \dots, 0)^T ds = 0;$
- $3. \ \forall s \in E|\varphi(s)| < \varepsilon.$

Define $u_1(s) = \tilde{u}(s) + (0, \dots, 0, \varphi(s), 0, \dots, 0)^T$ and $u_2(s) = \tilde{u}(s) - (0, \dots, 0, \varphi(s), 0, \dots, 0)^T$. Then $x_0 \to_{u_{1,2}(0)}^t 0$, and $u_1, u_2 \in K$.

Věta 4.12 (Global controllability)

We have (LTP) x' = Ax + Bu, $x(0) = x_0$, $u \in \mathcal{U}$.

- 1. rank $K(A, B) = n \implies (LTP)$ is locally controllable.
- 2. rank K(A, B) = n and $\Re \lambda \leq 0 \ \forall \lambda$ -eigenvalues of A. Then (LTP) is globally controllable $\mathcal{R} = \bigcup_{t>0} \mathcal{R}(t) = \mathbb{R}^n$.

 $D\mathring{u}kaz$

1) follows from "In theorem of local controllability for the problem x' = f(x, u) we could take $u \in \mathcal{U}$."

2a) If $\forall \lambda$ eigenvalue of A we have $\Re \lambda < 0 \implies$ theorem follows from text above: first, set u = 0. Then we arrive at a neighbourhood of zero.

2b) For contradiction $x_0 \in \mathbb{R}^n \backslash \mathcal{R}$. \mathcal{R} convex $\exists z_0 \in \partial \mathcal{R}$, n normal vector. $\forall x_1 \in \mathcal{R} : n^T(x_1 - x_0) \leq 0, n^T x_1 \leq n^T x_0 =: M$.

$$x_1 = -\int_0^t e^{-sA} Bu(s) ds$$

$$n^T x_1 = -\int_0^t \underbrace{n^T e^{-sA} B}_{v(s)} u(s) ds$$

$$\tilde{u}(s) := \begin{cases} 0, & v(s) = 0, \\ \frac{-v(s)}{||v(s)||_2}, & v(s) \neq 0. \end{cases}$$

If $v(s) \equiv 0$, then apply $\frac{d^p}{(ds)^p}$, $n^T A^p e^{-sA} B \equiv 0$, then $n^T \mathcal{K}(A, B) = 0$.

$$\int_0^\infty ||v(s)||_2 ds = \infty.$$

If this is true, then $t_k \nearrow \infty$, $u_k = \tilde{u}|_{[0,t_k]}$, $x_{1,k} = -\int_0^{t_k} e^{-sA} Bu_k(s) ds$.

$$n^T x_{1,k} = -\int_0^{t_k} v^t(s) \cdot \tilde{u}(s) ds = \int_0^{t_k} ||v(s)||_2 ds \to \infty.4$$

v(s) is linear combination of $s^j e^{-s\lambda_p}$, $\Re \lambda_p \leq 0$. Then $\int_0^\infty |v(s)| ds = \infty$.

Věta 4.13 (Pontrjagin maximum)

$$x' = Ax + Bu, ||u||_{\infty} \le 1, x(0) = x_0.$$

Let $x_0 \to_{u^*(0)}^{t^*} 0$, t^* is the minimal. Then $\exists h \in \mathbb{R}^n \setminus \{\mathbf{o}\}$:

$$h^T \cdot e^{-sA} B u^*(s) = \max_{\eta \in [-1,1]^m} h^t e^{-sA} B \eta$$

for almost every $s \in (0, t^*)$.

 $D\mathring{u}kaz$ $x_0 \in \partial \mathcal{R}(t^*).$

Step 2 – contradiction: $\exists E \subset (0, t^*), \lambda(E) > 0, \forall s \in E \ \exists \eta_s \in [-1, 1]^m \ h^T e^{-sA} B u^*(s) < h^T e^{-sA} B \eta_s$. But $x_i(\delta) \in \mathcal{R}(t^* - \delta)$, hence $x_0 \in \mathcal{R}(t^* - \delta)$ and t^* is not minimal.

Step 1: $x_0 \in \partial \mathcal{R}(t^*)$. For contradiction $x_0 \in \operatorname{int} \mathcal{R}(t^*)$.

$$\exists x_1, \dots, x_{n+1} \in \mathcal{R}(t^*), x_0 \in CO(x_1, \dots, x_{n+1}).$$

$$\exists u_1, \dots, u_{n+1} \in U, x_j \to_{u_j(\cdot)}^{t^*} 0 \ \forall j \in [n+1].$$

Let $\tilde{u}_j(t)$ are the corresponding solutions

TODO!!!

Věta 4.14 (Pontrjagin)

 $x'(f, u), x(0) = x_0, u \in \mathcal{U} = \{u : (0, T) \to U \subset \mathbb{R}^n\}, T \text{ fixed,}$

$$P[u(\cdot)] = g(x(T)) + \int_0^T r(x(s), u(s)) ds \to maximum.$$

 $f, g, r, \nabla_x f, \nabla_x g, \nabla_x r$ are continuous.

Let u is a local maximum of this problem (it maximizes P), then for p solving:

$$H(x, p, u) := p^{T} f(x, u) + r(x, u),$$
$$p' = -\nabla_{x} H(x, p, u),$$
$$p(T) = \nabla_{x} g(x(T)),$$

we have

$$H(x, p, u) = \max_{\eta \in U} H(x, p, \eta)$$
 for almost every $t \in (0, T)$.

Důkaz

Step one "WLOG r = 0": We set

$$x' = f(x, u),$$
 $x'_{n+1} = r(x, u), x_{n+1}(0) = 0, P[u(\cdot)] = \hat{g}(\hat{x}(T)) = g(x(T)) + x_{n+1}(T).$

Step 2: Fix
$$\tau \in (0,T)$$
, $\eta \in U$, $u_{\varepsilon}(T) = \begin{cases} \eta, & t \in (\tau - \varepsilon, \tau), \\ u(t), & \text{elsewhere,} \end{cases}$ and corresponding $x_{\varepsilon}(t)$.

$$u$$
 "best" $\Longrightarrow P[u_{\varepsilon}(0)] \leqslant P[u(0)] \Longrightarrow g(x_{\varepsilon}(T)) \leqslant g(x(t)).$

$$D := \frac{d}{d\varepsilon}|_{\varepsilon=0^+} \qquad Dg(x_{\varepsilon}(T))|_{\varepsilon=0^+} \leqslant 0$$

$$\nabla_x g(x(T)) \cdot Dx_{\varepsilon}(T)|_{\varepsilon=0^+} \leqslant 0.$$

Step 2.2: $x_{\varepsilon}(t) = x_0 + \int_0^t f(x_{\varepsilon}(s), u_{\varepsilon}(s)) ds$. If $t < \tau$, then $u_{\varepsilon} \equiv u$, $x_{\varepsilon} \equiv x$, $Dx_{\varepsilon}(t) \equiv 0$ on [0, t]. If $t > \tau$, then $x_{\varepsilon}(t) =: y(t), y'(t) = f(y(t), u(t)), u(\tau) = x_{\varepsilon}(\tau)$,

$$Dx_{\varepsilon}(t) \equiv z(t) : z' = \nabla_x f(y(t), u(t))z, z(\tau) = Dx_{\varepsilon}(\tau),$$
 variational equation.

Statement: z' = A(t)z, $p' = -A^T(t)p \implies p^Tz = const$. Proof: $(p^Tz)' = (p^T)'z + p^Tz' = -p^TAz + p^TAz = 0$.

Step 2.3: $p' = -(\nabla_x f(y(t), u(t)))^T p$, $p(T) = (\nabla_x g(x(T)))^T$. Then $p^T(t)z(t)$ constant on (τ, T) , $p^T(\tau)z(\tau) \leq 0$.

Step 2.4:
$$Dx_{\varepsilon}(\tau)|_{\varepsilon=0^+} \stackrel{?}{=} f(x(\tau), \eta) - f(x(\tau), u(\tau))$$
. Then

$$p^{T}(\tau) \left(f(x(\tau), \eta) - f(x(\tau), u(\tau)) \right) \leqslant 0$$

$$\frac{1}{\varepsilon}(x_{\varepsilon}(\tau) - x(\tau)) = \frac{1}{\varepsilon} \int_{\tau - \varepsilon}^{\tau} \left[f(x_{\varepsilon}(s), \eta) - f(x(s), u(s)) \right] ds =$$

$$\frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{\tau} \left[f(x_{\varepsilon}(s), \eta) - f(x(s), \eta) \right] ds + \int_{\tau-\varepsilon}^{\tau} \left[f(x(s), \eta) - f(x(s), u(s)) \right] ds.$$

Fist converge to zero from Lebesgue theorem about average value. Second to $f(x(\tau), \eta) - f(x(\tau), u(\tau)) \to 0$.

Věta 4.15 (Potrjagin for fixed point ("fixed finish"))

Same as previous, but T is not fixed, x(T) is fixed $\implies g \equiv 0$ (we don't "rate" final point, because it's the same for all u).

5 Bifurcation

Definice 5.1

 $x' = \mu - x^2$ is saddle-node bifurcation, $x' = \mu x - x^2 = x(\mu - x)$ is transcritical bifurcation, $x' = \mu x - x^3 = x(\mu - x^2)$ is fork bifurcation, in $x' = x - \sin \mu$ there is no bifurcation.

Pozorování

 $f(x_0, \mu_0) \neq 0 \implies$ no bifurcation. (From lemma of rect.) (Bifurcation $\implies f = 0$.)

Pozorování

$$f(x_0, \mu_0) = 0, \sigma(\nabla_x f(x_0, \mu_0)) = \{\lambda_i | \Re \lambda_i \neq 0\}.$$

Definice 5.2

Point from previous observation is called hyperbolic stationary point.

Věta 5.1

 $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$ be C^1 , (x_0, μ_0) is a hyperbolic stationary point. Then $\exists \Delta > 0 \ \exists \delta > 0$ $\forall \mu \in U_{\delta}(\mu_0) \ \exists x = x(\mu) \in U_{\Delta}(x_0)$, stationary point $x(\mu)$ is a hyperbolic stationary point of $\mu \mapsto x(\mu)$, which is C^1 .

 $D\mathring{u}kaz$

IFT (Implicit function theorem):

$$f(x_0, \mu_0) = 0 \land \nabla_x f(x_0, \mu_0)$$
 regular? $\land f \in C^1 \implies x = x(\mu), f(x(\mu), \mu) = 0.$

Hyperbolic? Eigenvalues of $A = \nabla_x f(x(\mu), \mu)$, $\det(\lambda I - A(\mu))$ – polynomial in λ , deg = n.

Věta 5.2

 $f: \mathbb{R}^2 \to \mathbb{R} \ be \ C^2 \ on \ neighborhood \ (0,0) \in \mathbb{R}^2.$

$$f(0,0) = 0,$$
 $f_{\mu}(0,0) \neq 0,$ $f_{x}(0,0) = 0,$ $f_{xx}(0,0) \neq 0.$

Then f has bifurcation at (0,0) of the type saddle-node.

 $D\mathring{u}kaz$

Without proof.

Věta 5.3

 $f: \mathbb{R}^2 \to \mathbb{R}$ be C^2 on neighborhood $(0,0) \in \mathbb{R}^2$.

$$f(0,0) = 0$$
, $f_x(0,0) = 0$, $f(0,\mu) = 0 \ \forall \mu \in U_\delta(0)$, $f_{xx}(0,0) \neq 0$, $f_{x\mu}(0,0) \neq 0$.

Then f has bifurcation at (0,0) of the type transcritical. $(f(0,\mu)=0 \implies f_{\mu}(0,0)=0.)$

 $D\mathring{u}kaz$

Without proof.

Lemma 5.4 (About division)

 $h: U(0,0) \to \mathbb{R}$ be C^k for some $k \in \mathbb{N}$. $h(0,\lambda) = 0 \ \forall \lambda \in U_{\delta}(0)$. Then

$$h(x,\lambda) = xH(x,\lambda), H \in C^{k-1}(U(0,0), \mathbb{R}).$$

$$H(0,0) = h_x(0,0),$$
 $H_x(0,0) = \frac{1}{2}h_{xx}(0,0),$ $H_{\lambda}(0,0) = h_{x\lambda}(0,0),$ $H_{xx}(0,0) = \frac{1}{3}h_{xxx}(0,0),$

if k is sufficiently large.

 $D\mathring{u}kaz$

$$H(x,\lambda) := \int_0^1 \partial_x h(\sigma x, \lambda) d\sigma.$$

 $D\mathring{u}kaz$ (Theorem of transcritical bifurcation)

$$f(x,\mu) = xF(x,\mu). F_{\mu}(0,0) \neq 0$$
?

$$F(x,\mu(x)) = 0? \to \frac{d}{dt} : \mu'(x) = \frac{-\partial_x F(x,\mu(x))}{\partial_\mu (F(x,\mu(x)))}.$$

$$f_{x\mu}(x,\mu) = F_{\mu}(x,\mu) + xF_{x\mu}(x,\mu) \implies F_{\mu}(0,0) = f_{x\mu}(0,0) \neq 0.$$

Věta 5.5 (Fork)

$$f \in C^3(U),$$
 $f(0,0) = f_x(0,0) = f_{xx}(0,0) = 0,$ $f_{xxx}(0,0) \neq 0,$
 $f(0,\mu) = 0 \ \forall (0,\mu) \in U,$ $(f_\mu(0,0) = 0),$ $f_{x\mu}(0,0) \neq 0.$

Then f has bifurcation at (0,0) of type fork.

 $D\mathring{u}kaz$

 \Box

$$\mu'(0) = 0, \ \mu''(0) = \frac{\dots}{-\partial_{\nu} F(x, \mu(x))}, \ \partial_{x,x} F(0, 0) = \frac{1}{3} f_{xxx}(0, 0) \neq 0.$$

 $\mu''(0) \neq 0 \implies \mu''(x)$ doesn't change sign $\implies \mu(x)$ has a local extreme at (0,0).

Věta 5.6 (?)

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = f(x, y, \mu), f \in C^2, f(0, 0, \mu) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \sigma\left(\nabla f(0, 0, \mu)\right) = \left\{\alpha(\mu) \pm i\omega(\mu)\right\}.$$

$$\alpha(0) = 0, \alpha'(0) \neq 0, \omega(0) \neq 0, \quad \alpha, \omega \in C^1.$$

Then
$$\exists \delta > 0, \varepsilon > 0 : \mu = \mu(a), a \in (0, \varepsilon) \mapsto \mu(a) \in (-\delta, \delta).$$

 $\forall a \in (0, \varepsilon) \exists nontrivial periodic solution passing through (a, 0).$

Důkaz

Rotation: $x' = \alpha(\mu)x - \omega(\mu)y + f_1(x, y, \mu), \ y' = \omega(\mu)x + \alpha(\mu)y + f_2(x, y, \mu), \ f_2(x, y, \mu) = O(x^2 + y^2).$

Polar coords:

$$x = r \cos \theta, y = r \sin \theta, x' = g_1(x, y), y' = g_2(x, y),$$

$$r' \cos \theta - r \sin \theta \cdot \theta' = g_1, \qquad r' \sin \theta + r \cos \theta \cdot \theta' = g_2.$$

$$r' = g_i \cdot \cos \theta + g_2 \sin \theta, \qquad r \cdot \theta' = -g_1 \sin \theta + g_2 \cos \theta.$$

$$r; = \alpha \cdot r + \underbrace{f_1 \cdot \cos \theta + f_2 \cdot \sin \theta}_{=R}, \qquad r\theta' = \omega(\mu) \cdot r + \underbrace{\left(-f_1 \cdot \sin \theta + f_2 \cdot \cos \theta\right)}_{=r \cdot Q}.$$

$$r' = \alpha(\mu)r + R(r, \theta, \mu), R = O(r^2), \quad \theta' = \Omega(\mu) + Q(r, \theta, \mu), Q = O(r).$$

WLOG $\omega(0) > 0$. $\exists \varepsilon, \delta > 0 \ \forall r \leqslant \varepsilon \ \forall \mu \in [-\delta, \delta], \ \theta'(t) > 0$. $r(t) \mapsto \hat{r}(\theta) := r(t(\theta))$. $t \mapsto \theta(t)$ is simple $\implies \exists t = t(\theta)$.

$$\frac{dr}{d\theta} = \frac{\frac{dr}{dt}}{\frac{d\theta}{dt}} = \frac{\alpha(\mu)r + R}{\omega(\mu) + Q} = \frac{\alpha(\mu)}{\omega(\mu)}r + T(r, \theta, \mu).$$

$$\lambda(\mu) := \frac{\alpha(\mu)}{\omega(\mu)} : r'(\theta) = \lambda(\mu)r(\theta) + T(r, \theta, \mu),$$
$$(r(\theta)e^{-\lambda(\mu)\theta})' = T(r, \theta, \mu)e^{-\lambda(\mu)\theta}$$
$$r(\theta) \cdot e^{-\lambda(\mu)\theta} = r'(\theta_0) \cdot e^{-\lambda(\mu)\theta_0} + \int_{\theta_0}^{\theta} T(r(\psi), \psi, \mu) \cdot e^{-\lambda(\mu)\psi} d\psi.$$

We get $r(\theta_0) = r(\theta_0 + 2\pi)$ – periodicity. If we denote $r(\theta_0) = a$, we get

$$\left(e^{2\pi\lambda(\mu)}-1\right)a+\int_{\theta_0}^{\theta_0+2\pi}T(r(\psi),\psi,\mu)\cdot e^{-\lambda(\mu)(\psi-\theta_0)}d\psi.$$

$$h_{\mu}(0,0) \neq 0$$
? $h''(a,\mu)$, $a = 0 \implies r = 0$, $T = 0$, $h(0,\mu) = 0$.
$$h(a,\mu) =: a \cdot H(a,\mu).$$
$$H(0,0) = 0$$
? $H_{\mu}(0,0) \neq 0$? $H \in C^{1}$ $H(0,0) = \partial_{?}h(0,0)$.

6 Central manifolds

Poznámka

$$x' = Ax + f(x, y), y' = By + g(x, y),$$

$$\sigma(B) \subset \{z \in \mathbb{C} | \Re z < -\beta\}, \beta > 0, \sigma(A) \subset \{z \in \mathbb{C} | \Re z \ge 0\},$$

$$x \in \mathbb{R}^n, y \in \mathbb{R}^n, f, g \in C^1(\mathbb{R}^{n+m}),$$

$$f(0) = 0, g(0) = 0, \nabla f(0) = 0, \nabla g(0) = 0,$$

$$|f| \le \varrho, |g| \le \varrho, |\nabla f| \le \sigma, |\nabla g| \le \sigma.$$

Goal: $\exists \varphi : \mathbb{R}^n \to \mathbb{R}^m$ Lipschitz, $\varphi(0) = 0$, $\nabla \varphi(0) = 0$:

INV: if (x(t), y(t)) solution to previous and $y(0) = \varphi(x(0))$, then $\forall t : y(t) = \varphi(x(t))$.

Definice 6.1 (Reduced equation)

$$p'(t) = A \cdot p(t) + f(p(t), \varphi(p(t))), p(t) \in \mathbb{R}^n.$$

Lemma 6.1

 φ satisfies INV iff φ satisfies RED: (if p(t) satisfies reduced equation then $(x(t), y(t)) := (p(t), \varphi(p(t)))$ satisfies INV equation)

 $D\mathring{u}kaz$

Straightforward.

Definice 6.2 (RED')

If p(t) satisfies reduced equation, then $y(t) := \varphi(p(t))$ satisfies

$$y'(t) = By(t) + g(p(t), \varphi(p(t))).$$

Lemma 6.2

 $\gamma(t)$ is bounded on $(-\infty, 0]$. Then $\exists ! y(t) : y'(t) = By(t) + \gamma(t)$, such that y(t) is bounded on $(-\infty, 0]$. For this $y, y(0) = \int_{-\infty}^{0} e^{-Bs} \gamma(s) ds$.

Důkaz

$$e^{-Bt}y'(t) - Be^{-Bt}y(t) = e^{-Bt}\gamma(t).(e^{-Bt}y(t))' = e^{-Bt}\gamma(t).$$
$$e^{-Bt}y(t) = y(0) + \int_0^t e^{-Bs}\gamma(s)ds.$$

If y is bounded on $(-\infty, 0]$, then $y(0) + \int_0^{-\infty} e^{-Bs} \gamma(s) ds = 0$, $y(0) = \int_{-\infty}^0 e^{-Bs} \gamma(s) ds$.

Take y with (i. c.). Then

$$y(t) = e^{Bt} \left(\int_{-\infty}^t e^{-Bs} \gamma(s) ds \right) = \int_{-\infty}^t e^{B(t-s)} \gamma(s) ds.$$
$$|e^{s \cdot B}| \leqslant c_0 e^{-\beta s}, \quad c_0 > 0, \forall s$$
$$|y(t)| \leqslant \int_{-\infty}^t |e^{B(t-s)}| \cdot |\gamma(s)| ds \leqslant \|\gamma\|_{\infty} \int_{-\infty}^t c_0 e^{-\beta(t-s)} ds = \frac{\|\gamma\|_{\infty} c_0}{\beta}.$$

Lemma 6.3

 φ satisfies INV $\Leftrightarrow \varphi$ satisfies (RED) $\Leftrightarrow \varphi$ satisfies (RED') $\Leftrightarrow \varphi$ satisfies FP:

$$\forall p_0 \in \mathbb{R}^n : \varphi(p_0) = \int_{-\infty}^0 e^{-Bs} g(p(s), \varphi(p(s))) ds,$$

where p satisfies reduced equation with $p(0) = p_0$.

 $D\mathring{u}kaz$

" \Longrightarrow ": φ RED' \Longrightarrow y satisfies $y'(t) = By(t) + g(p(t), \varphi(p(t)))$ and y is bounded. Then previous lemma:

$$\varphi(p_0) = \varphi(p(0)) = y(0) = \int_{-\infty}^{0} e^{-B \cdot s} g(p(s), \varphi(p(s))) ds.$$

 $t_1 \text{ arbitrary } y_1 := y(t+t_1), p_1(t) := p(t+t_1).p_1'(t) = Ap_1(t) + f(p_1(t), \varphi(p, t)), p_1(0) = p(t_1),$ $y_1'(t) = B \cdot y_1(t) + g(p_1(t), \varphi(p, t)), y_1(0) = y(t_1).$

 $y(0) = \varphi(p(0)) = \int_{-\infty}^{0} e^{-B \cdot s} g(p(s), \varphi(p(s))) ds \implies y \text{ is bounded on } (-\infty, 0] \implies y_1 \text{ is bounded. From lemma:}$

$$y(t_1) = y_1(0) = \int_{-\infty}^{0} e^{-B \cdot s} g(p(s), \varphi(p, s)) ds = \varphi(p(0)) = \varphi(p(t_1)).$$

Věta 6.4 (Existence of central manifold)

 $\forall \beta \ \exists \varrho > 0, \sigma > 0, b > 0, l > 0 : \exists ! \varphi \in \mathcal{X} \ satisfying \ INV.$

 \Box $D\mathring{u}kaz$

$$\mathcal{X} \subset C(\mathbb{R}^n, \mathbb{R}^n), \|\varphi\|_{\mathcal{X}} = \sup_{x \in \mathbb{R}^n} |\varphi(x)|,$$
$$T: \mathcal{X} \to \mathcal{X}, \varphi \mapsto T\varphi, \quad (T\varphi)(p_0) = \int_{-\infty}^0 e^{-B \cdot s} g(p(s), \varphi(p(s))) ds.$$

Step 1: T is well-defined $\forall \varphi \in \mathcal{X}: T\varphi \in \mathcal{X}$.

Step 2: T is contraction.

Step $1 + 2 \implies (Banach) \exists ! \varphi \in \mathcal{X} : T\varphi = \varphi.$

- $(T\varphi)(0) = 0$? Take p(0) satisfying reduced equation, $p(0) = 0 \implies p(t) \equiv 0$.
- $|(T\varphi)(p_0)| \leq \int_{-\infty}^{0} |e^{-B \cdot s}| \cdot |g(p(s), \varphi(p(s)))| ds \leq \frac{\varrho c_0}{\beta} \stackrel{?}{\leq} f$ (true for sufficiently small ρ).
- $(T\varphi)(p_0) (T\varphi)(q_0) = \int_{-\infty}^{0} e^{-B \cdot s} [g(p(s), \varphi(p(s))) g(q(s), \varphi(q(s)))] ds.$

Definice 6.3 (Central manifold)

 $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ is called a central manifold if $\varphi(0) = 0$, $\nabla \varphi(0) = 0$, $\varphi \in C^1$, it satisfies INV.

Definice 6.4

$$M[\varphi](x) = \nabla \varphi(x)(Ax + f(x, \varphi(x))) - B\varphi(x) - g(x, \varphi(x)).$$

Důsledek

 φ is a central manifold $\Leftrightarrow M[\varphi] = 0$.

Poznámka

Dělal se podrobně důkaz Existence centrální variety.