

Scheduling della CPU

Nei grafici ho riportato i 4 processi in tabella pianificati con i tre approcci: mono-tasking, multi-tasking, time-sharing.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	1 secondo	1 secondo
P2	1 secondo	2 secondi	-
Р3	2 secondi	-	-
P4	4 secondi	1 secondo	-

Legenda

Tempo esecuzione
Tempo attesa

Come mostra il grafico, il sistema **mono-tasking** non consente di sospendere un processo per assegnare la CPU a un secondo processo, se il processo precedente non è terminato.

Sistema mono-tasking

Nel sistema multi-tasking, quando un processo è in attesa, la CPU può essere impiegata per un altro processo.

Nel sistema time-sharing ogni processo viene eseguito in modo ciclico per piccole porzioni di tempo "quanti".

Sistema time-sharing

In conclusione notiamo che il metodo mono-tasking è il meno efficiente, perché terminerà i processi in 15 secondi, mentre gli altri due metodi impiegheranno entrambi 11 secondi.

ESERCIZIO FACOLTATIVO

- Scheduling con politica Round Robin (time slice 12 millisec)
- Tempi di attesa e di durata medi

Processo	Tempo di arrivo (t ₀)	Tempo di esecuzione (\underline{T}_x)
P1	0	14
P2	30	16
P3	6	40
P4	46	26
P5	22	28

Di seguito la tabella contenente inizio e fine di ogni slice con i relativi processi

Time slice	Inizio	Fine	Processo
1	0	12	P1
2	12	24	Р3
3	25	36	P5

4	37	38	P1 Fine
5	39	50	P2
6	51	62	Р3
7	63	74	P4
8	75	86	P5
9	87	90	P2 Fine
10	91	102	Р3
11	103	114	P4
12	115	118	P5 Fine
13	119	122	P3 Fine
14	123	124	P4 Fine

*Tempo di attesa** - Calcolato sottraendo il **Tempo impiegato** al **Tempo di esecuzione**, che sarebbe il tempo che avrebbe dovuto impiegare.

*Durata media*** - Calcolato dividendo il **Tempo impiegato** per il **Tempo di esecuzione,** per capire mediamente, per ogni processo, quanti millisecondi ha impiegato per compiere ogni millisecondo di Tempo di esecuzione.

	Tempo di	Tempo		Tempo di	Durata
Processo	arrivo	esecuzione	Tempo impiegato	attesa*	media**
P1	0	14	38	24	2,7
P2	30	16	90	74	5,6
Р3	6	40	122	82	3,1
P4	46	26	124	98	4,8
P5	22	28	118	90	4,2