Review: Shortest Path Routing: Dijkstra's Algorithm

ECE 50863 – Computer Network Systems

Graph Model

- Represent each router as node
- Direct link between routers represented by edge
 - Symmetric links ⇒ undirected graph
- Edge "cost" c(x,y) denotes measure of difficulty of using link

Task

- Determine least cost path from every node to every other node
 - Path cost d(x,y) = sum of link costs

Dijkstra's Algorithm

- Given
 - Graph with source node s and edge costs c(u,v)
 - Determine least cost path from s to every node v
- Shortest Path First Algorithm
 - Traverse graph in order of least cost from source

Dijkstra's Algorithm: Concept

- Done
 - Already have least cost path to it
- Horizon:
 - Reachable in 1 hop from node in Done
- Unseen:
 - Cannot reach directly from node in Done

- d(v) = path cost
 - From s to v
 - Optimal for nodes in Done
- Path
 - Keep track of last link in path

Dijkstra's Algorithm

Initially:

- Source A is in Done.
- Direct neighbors of A are in Horizon.

Next:

Select node v in horizon with minimum d(v). Move it to Done

Dijkstra's Algorithm

Next:

- Update which nodes are in Horizon
- Update costs to nodes in Horizon
- Update last link

Dijkstra's Algorithm: Selection

Repeat

Select node v in horizon with minimum d(v). Add to Done

Dijkstra's Algorithm: Selection

Next:

- Update which nodes are in Horizon
- Update costs to nodes in Horizon
- Update last link

Repeat previous steps

Repeat previous steps

Repeat previous steps

