FCC RF Test Report

APPLICANT : Lenovo Mobile Communication Technology Ltd.

EQUIPMENT: Lenovo Mobile Phone

BRAND NAME : lenovo

MODEL NAME : Lenovo S90-L

FCC ID : YCNS90L MID : 90L00111

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Nov. 05, 2014 and testing was completed on Nov. 20, 2014. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC.

No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 1 of 54
Report Issued Date : Nov. 26, 2014

2627

Report No.: FR4N0501C

Report Version : Rev. 01

TABLE OF CONTENTS

RE'	VISIO	N HISTORY	3
SU	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
	2.7	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB Bandwidth Measurement	12
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Radiated Band Edges and Spurious Emission Measurement	31
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	52
4	LIST	OF MEASURING EQUIPMENT	53
5	UNCE	ERTAINTY OF EVALUATION	54
AP	PENDI	IX A. SETUP PHOTOGRAPHS	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

: Rev. 01

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4N0501C	Rev. 01	Initial issue of report	Nov. 26, 2014

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

Page Number : 3 of 54 Report Issued Date: Nov. 26, 2014

Report No. : FR4N0501C

: Rev. 01 Report Version

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
2.4	45 247(4)	Conducted Band Edges	2040-	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	· ≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 6.96 dB at 36.790 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 14.66 dB at 4.570 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 4 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

1 General Description

1.1 Applicant

Lenovo Mobile Communication Technology Ltd.

No.999, Qishan North 2nd Road, Information & Optoelectronics Park, Torch Hi-tech Industry Development Zone, Xiamen, P.R.China

1.2 Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong

1.3 Product Feature of Equipment Under Test

Product Feature						
Equipment	Lenovo Mobile Phone					
Brand Name	lenovo					
Model Name	Lenovo S90-L					
FCC ID	YCNS90L					
MID	90L00111					
	GSM/GPRS/EGPRS/WCDMA/HSPA/LTE					
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20					
	Bluetooth v3.0 + EDR/Bluetooth v4.0 LE					
HW Version	H-3-01					
SW Version	S90-L_AMX_ROW_B007_141113					
EUT Stage	Production Unit					

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard						
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz					
Maximum (Peak) Output Power to	802.11b : 20.02 dBm (0.1005 W)					
Antenna	802.11g : 20.48 dBm (0.1117 W)					
Antonna	802.11n HT20 : 19.85 dBm (0.0966 W)					
Antenna Type / Gain	PIFA Antenna with gain -4.6 dBi					
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK)					
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)					

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 5 of 54

Report Issued Date : Nov. 26, 2014

Report Version : Rev. 01

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.						
	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China						
Test Site Location	TEL: +86-0512-5790-0158						
	FAX: +86-0512-5790-0958						
Test Site No.		Sporton Site No.	FCC Registration No.				
Test Site NO.	TH01-KS	03CH01-KS	CO01-KS	149928			

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.4-2003

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 6 of 54

Report Issued Date : Nov. 26, 2014

Report Version : Rev. 01

Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2402 F MI I-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

Page Number : 7 of 54 Report Issued Date: Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)								
Po	wer vs. Chan	nnel		Power	vs. Data Rate				
Channel		Data Rate	Channel	2Mbps	5.5Mbps	11Mbps			
	(MHz)	1Mbps				· · · · · · · · · · · · · · · · · · ·			
CH 01	2412 MHz	18.80							
CH 06	2437 MHz	19.25	CH 11	19.87	19.94	19.92			
CH 11	2462 MHz	<mark>20.02</mark>							

	2.4GHz 802.11g RF Output Power (dBm)									
Po	wer vs. Chan	nel				Power vs.	Data Rate			
Channel	Frequency	Data Rate	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
	(MHz)	6Mbps			·	·	·			
CH 01	2412 MHz	19.67								
CH 06	2437 MHz	19.99	CH 11	20.38	20.46	20.38	20.45	20.05	20.32	20.35
CH 11	2462 MHz	20.48								

	2.4GHz 802.11n HT20 RF Output Power (dBm)									
Po	wer vs. Chan	nel				Power vs. I	MCS Index			
Channel	Frequency	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	(MHz)	MCS0								
CH 01	2412 MHz	19.24								
CH 06	2437 MHz	19.52	CH 11	19.75	19.82	19.72	19.73	19.68	19.81	19.78
CH 11	2462 MHz	<mark>19.85</mark>								

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 8 of 54

Report Issued Date : Nov. 26, 2014

Report Version : Rev. 01

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

	Test Cases									
	Test Items	Mode	Data Rate	Test Channel						
	6dB BW	802.11b	1 Mbps	1/6/11						
	Power Spectral	802.11g	6 Mbps	1/6/11						
	Density	802.11n HT20	MCS0	1/6/11						
		802.11b	1 Mbps	1/6/11						
Conducted	Output Power	802.11g	6 Mbps	1/6/11						
TCs		802.11n HT20	MCS0	1/6/11						
108	Conducted Bond	802.11b	1 Mbps	1/11						
	Conducted Band	802.11g	6 Mbps	1/11						
	Edge	802.11n HT20	MCS0	1/11						
	Conducted Spurious	802.11b	1 Mbps	1/6/11						
		802.11g	6 Mbps	1/6/11						
	Emission	802.11n HT20	MCS0	1/6/11						
		802.11b	1 Mbps	1/11						
	Radiated Band Edge	802.11g	6 Mbps	1/11						
Radiated		802.11n HT20	MCS0	1/11						
TCs	De diete d'Onumieure	802.11b	1 Mbps	1/6/11						
	Radiated Spurious Emission	802.11g	6 Mbps	1/6/11						
	Emission	802.11n HT20	MCS0	1/6/11						
AC										
Conducted	Mode 1 : GSM850 Idle	+ Bluetooth Link + WLAN Link	c + USB Cable (Charging from	Adapter) + Earphone						
Emission										

Remark: For radiated test cases, the tests were performed with adapter, earphone and USB cable.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 9 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

Page Number : 10 of 54 Report Issued Date: Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	Notebook	Lenovo	G480	PRC4		shielded cable DC O/P 1.8 m unshielded AC I/P cable1.8 m
3.	Bluetooth Earphone	Lenovo	LBH505	N/A	N/A	N/A
4.	WLAN AP	D-Link	DIR-855	KA2DIR855A2	N/A	Unshielded,1.8m

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 6 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 12 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Test Band :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	7.52	0.5	Pass
11b	1Mbps	1	6	2437	7.54	0.5	Pass
11b	1Mbps	1	11	2462	7.04	0.5	Pass
11g	6Mbps	1	1	2412	16.32	0.5	Pass
11g	6Mbps	1	6	2437	16.32	0.5	Pass
11g	6Mbps	1	11	2462	16.34	0.5	Pass
HT20	MCS0	1	1	2412	17.32	0.5	Pass
HT20	MCS0	1	6	2437	17.60	0.5	Pass
HT20	MCS0	1	11	2462	17.54	0.5	Pass

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 13 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 14 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 15 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	18.80	30	-4.60	Pass
11b	1Mbps	1	6	2437	19.25	30	-4.60	Pass
11b	1Mbps	1	11	2462	20.02	30	-4.60	Pass
11g	6Mbps	1	1	2412	19.67	30	-4.60	Pass
11g	6Mbps	1	6	2437	19.99	30	-4.60	Pass
11g	6Mbps	1	11	2462	20.48	30	-4.60	Pass
HT20	MCS0	1	1	2412	19.24	30	-4.60	Pass
HT20	MCS0	1	6	2437	19.52	30	-4.60	Pass
HT20	MCS0	1	11	2462	19.85	30	-4.60	Pass

Note: Measured power (dBm) has offset with cable loss.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 16 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.10	16.03	30	-4.60	Pass
11b	1Mbps	1	6	2437	0.10	16.31	30	-4.60	Pass
11b	1Mbps	1	11	2462	0.10	17.33	30	-4.60	Pass
11g	6Mbps	1	1	2412	0.59	10.54	30	-4.60	Pass
11g	6Mbps	1	6	2437	0.59	11.05	30	-4.60	Pass
11g	6Mbps	1	11	2462	0.59	11.95	30	-4.60	Pass
HT20	MCS0	1	1	2412	0.63	9.72	30	-4.60	Pass
HT20	MCS0	1	6	2437	0.63	10.23	30	-4.60	Pass
HT20	MCS0	1	11	2462	0.63	11.16	30	-4.60	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 17 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 **Test Procedures**

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

: 18 of 54 Page Number Report Issued Date: Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-5.25	8	-4.60	Pass
11b	1Mbps	1	6	2437	-5.19	8	-4.60	Pass
11b	1Mbps	1	11	2462	-3.82	8	-4.60	Pass
11g	6Mbps	1	1	2412	-14.41	8	-4.60	Pass
11g	6Mbps	1	6	2437	-16.52	8	-4.60	Pass
11g	6Mbps	1	11	2462	-13.05	8	-4.60	Pass
HT20	MCS0	1	1	2412	-14.10	8	-4.60	Pass
HT20	MCS0	1	6	2437	-15.84	8	-4.60	Pass
HT20	MCS0	1	11	2462	-14.74	8	-4.60	Pass

Note: Measured power density (dBm) has offset with cable loss.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 19 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 20 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.4.3 **Test Procedures**

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

Page Number : 21 of 54 Report Issued Date: Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 22 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 23 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

 Test Mode :
 802.11b
 Temperature :
 24~25°C

 Test Band :
 2.4GHz High
 Relative Humidity :
 49~51%

 Test Channel :
 11
 Test Engineer :
 Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 24 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 25 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 26 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

 Test Mode :
 802.11g
 Temperature :
 24~25℃

 Test Band :
 2.4GHz High
 Relative Humidity :
 49~51%

 Test Channel :
 11
 Test Engineer :
 Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 27 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 28 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 29 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

 Test Mode :
 802.11n HT20
 Temperature :
 24~25℃

 Test Band :
 2.4GHz High
 Relative Humidity :
 49~51%

 Test Channel :
 11
 Test Engineer :
 Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 30 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 31 of 54
Report Issued Date : Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.63	8.24	0.12	300Hz
802.11g	87.26	1.37	0.73	1kHz
2.4GHz 802.11n HT20	86.50	1.28	0.78	1kHz

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: YCNS90L

Page Number : 32 of 54 Report Issued Date: Nov. 26, 2014 : Rev. 01

Report No.: FR4N0501C

Report Version

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 33 of 54
Report Issued Date : Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 34 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	802.11b	Temperature :	22~23°C
Test Band :	Low	Relative Humidity :	40~41%
Test Channel :	01	Test Engineer :	Nick Su

	ANTENNA POLARITY : HORIZONTAL										
Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Rem									Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2388.21	51.21	-22.79	74	49.11	32.01	6.17	36.08	121	299	Peak	
2387.49	40.44	-13.56	54	38.34	32.01	6.17	36.08	121	299	Average	

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2349.6	49.88	-24.12	74	48.28	31.82	6.12	36.34	100	183	Peak		
2387.4	38.37	-15.63	54	36.27	32.01	6.17	36.08	100	183	Average		

Test Mode :	802.11b	Temperature :	22~23°C
Test Band :	High	Relative Humidity :	40~41%
Test Channel :	11	Test Engineer :	Nick Su

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2486.77	52.44	-21.56	74	49.56	32.34	6.33	35.79	115	297	Peak		
2484.7	39.64	-14.36	54	36.76	32.34	6.33	35.79	115	297	Average		

	ANTENNA POLARITY: VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2486.65	51.66	-22.34	74	48.78	32.34	6.33	35.79	174	261	Peak	
2484.52	39.28	-14.72	54	36.4	32.34	6.33	35.79	174	261	Average	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 35 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~23°C
Test Band :	Low	Relative Humidity :	40~41%
Test Channel :	01	Test Engineer :	Nick Su

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.83	61.97	-12.03	74	59.87	32.01	6.17	36.08	114	331	Peak		
2390	42.93	-11.07	54	40.83	32.01	6.17	36.08	114	331	Average		

ANTENNA POLARITY : VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2366.79	50.14	-23.86	74	48.33	31.89	6.17	36.25	103	182	Peak
2389.83	38.79	-15.21	54	36.69	32.01	6.17	36.08	103	182	Average

Test Mode :	802.11g	Temperature :	22~23°C
Test Band :	High	Relative Humidity :	40~41%
Test Channel :	11	Test Engineer :	Nick Su

ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2483.68	66.4	-7.6	74	63.52	32.34	6.33	35.79	144	300	Peak
2483.5	42.3	-11.7	54	39.42	32.34	6.33	35.79	144	300	Average

ANTENNA POLARITY : VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2483.53	55.5	-18.5	74	52.62	32.34	6.33	35.79	123	168	Peak
2484.07	39.1	-14.9	54	36.22	32.34	6.33	35.79	123	168	Average

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 36 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	22~23°C
Test Band :	Low	Relative Humidity :	40~41%
Test Channel :	01	Test Engineer :	Nick Su

	ANTENNA POLARITY : HORIZONTAL												
Frequency	y Level Over Limit Read Antenna Cable Preamp Ant Table Remar												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2389.11	60.72	-13.28	74	58.62	32.01	6.17	36.08	100	323	Peak			
2390	40.71	-13.29	54	38.61	32.01	6.17	36.08	100	323	Average			

	ANTENNA POLARITY : VERTICAL												
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Rema												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2388.3	62.56	-11.44	74	60.46	32.01	6.17	36.08	127	262	Peak			
2390	41.44	-12.56	54	39.34	32.01	6.17	36.08	127	262	Average			

Test Mode :	802.11n HT20	Temperature :	22~23°C
Test Band :	High	Relative Humidity :	40~41%
Test Channel :	11	Test Engineer :	Nick Su

	ANTENNA POLARITY : HORIZONTAL												
Frequency	cy Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB) (dB) (dB) (cm) (deg)												
2484.13	56.74	-17.26	74	53.86	32.34	6.33	35.79	101	35	Peak			
2483.56	39.14	-14.86	54	36.26	32.34	6.33	35.79	101	26	Average			

Ī		ANTENNA POLARITY : VERTICAL											
I	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
Į			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
l	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
	2484.1	63.87	-10.13	74	60.99	32.34	6.33	35.79	101	238	Peak		
	2483.5	41.25	-12.75	54	38.37	32.34	6.33	35.79	101	238	Average		

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 37 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	802.11b	Temperature :	22~23°C			
Test Channel :	01	Relative Humidity :	40~41%			
Test Engineer :	Nick Su	Polarization :	Horizontal			
	1. 2412 MHz is fundame	2412 MHz is fundamental signal which can be ignored.				
Remark :	2. Average measuremen	nt was not performed if	peak level went lower than the			
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	108.2	-	-	105.92	32.08	6.22	36.02	121	299	Peak
2412	103.29	-	-	101.01	32.08	6.22	36.02	121	299	Average
4824	45.59	-28.41	74	39.31	34.2	8.73	36.65	100	46	Peak

Test Mode :	802.11b	Temperature :	22~23°C					
Test Channel :	01	Relative Humidity :	40~41%					
Test Engineer :	Nick Su	Polarization :	Vertical					
	1. 2412 MHz is fundamenta	2412 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	99.34	-	-	97.06	32.08	6.22	36.02	100	183	Peak
2412	94.77	-	-	92.49	32.08	6.22	36.02	100	183	Average
4824	44.09	-29.91	74	37.81	34.2	8.73	36.65	100	67	Peak

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 38 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	22~23°C
Test Channel :	06	Relative Humidity :	40~41%
Test Engineer :	Nick Su	Polarization :	Horizontal
	1. 2437 MHz is fundament	al signal which can be	ignored.
Remark :	2. Average measurement	was not performed if	peak level went lower than the
	average limit.		

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	109.05	-	-	106.53	32.21	6.22	35.91	118	306	Peak
2437	104.5	-	-	101.98	32.21	6.22	35.91	118	306	Average
4874	43.29	-30.71	74	37.17	34.2	8.76	36.84	100	0	Peak
7312	45.15	-28.85	74	37.45	35.72	10.84	38.86	100	68	Peak

Test Mode :	802.11b	Temperature :	22~23°C						
Test Channel :	06	Relative Humidity :	40~41%						
Test Engineer :	Nick Su	Polarization :	Vertical						
	1. 2437 MHz is fundament	2437 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement	was not performed if	peak level went lower than the						
	average limit.								

Frequency	Level	Over Limit	Limit Line	Read	Antenna	Cable	Preamp	Ant Pos	Table	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	(cm)	Pos (deg)	
2437	99.68	-	-	97.16	32.21	6.22	35.91	100	180	Peak
2437	94.39	-	-	91.87	32.21	6.22	35.91	100	180	Average
4874	44.27	-29.73	74	38.15	34.2	8.76	36.84	103	49	Peak
7312	47.03	-26.97	74	39.33	35.72	10.84	38.86	100	68	Peak

Page Number : 39 of 54 Report Issued Date: Nov. 26, 2014 Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	22~23°C				
Test Channel :	11	Relative Humidity :	40~41%				
Test Engineer :	Nick Su	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	105.6	-	-	102.9	32.27	6.28	35.85	117	0	Peak
2462	100.85	-	-	98.15	32.27	6.28	35.85	117	0	Average
4924	47.63	-26.37	74	41.67	34.2	8.79	37.03	105	123	Peak
7386	48.06	-25.94	74	40.6	35.76	10.89	39.19	100	68	Peak

Test Mode :	802.11b	Temperature :	22~23°C				
Test Channel :	11	Relative Humidity :	40~41%				
Test Engineer :	Nick Su	Polarization :	Vertical				
	1. 2462 MHz is fundament	2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	96.87	-	-	94.17	32.27	6.28	35.85	100	205	Peak
2462	91.92	-	-	89.22	32.27	6.28	35.85	100	205	Average
4924	48.36	-25.64	74	42.4	34.2	8.79	37.03	149	248	Peak
7386	47.4	-26.6	74	39.94	35.76	10.89	39.19	148	219	Peak

Page Number : 40 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~23°C					
Test Channel :	01	Relative Humidity :	40~41%					
Test Engineer :	Nick Su	Polarization :	Horizontal					
	1. 2412 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	103.5	-	-	101.22	32.08	6.22	36.02	119	314	Peak
2412	91.38	-	-	89.1	32.08	6.22	36.02	119	314	Average
4824	43.62	-30.38	74	37.34	34.2	8.73	36.65	110	60	Peak

Test Mode :	802	2.11g	Temperature :	22~23°C				
Test Channel :	01		Relative Humidity :	40~41%				
Test Engineer :	Nic	k Su	Polarization :	Vertical				
	1.	2412 MHz is fundamental signal which can be ignored.						
Remark :	2.	Average measurement	was not performed if	peak level went lower than the				
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	94.14	-	-	91.86	32.08	6.22	36.02	102	180	Peak
2412	82.05	-	-	79.77	32.08	6.22	36.02	102	180	Average
4824	42.59	-31.41	74	36.31	34.2	8.73	36.65	100	44	Peak

Page Number : 41 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~23°C				
Test Channel :	06	Relative Humidity :	40~41%				
Test Engineer :	Nick Su	Polarization :	Horizontal				
	1. 2437 MHz is fundament	. 2437 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2437	105.25	-	-	102.73	32.21	6.22	35.91	119	304	Peak
2437	93.25	-	-	90.73	32.21	6.22	35.91	119	304	Average
4874	46.47	-27.53	74	40.35	34.2	8.76	36.84	105	24	Peak
7312	49	-25	74	41.3	35.72	10.84	38.86	105	56	Peak

Test Mode :	802.11g	Temperature :	22~23°C		
Test Channel :	06	Relative Humidity :	40~41%		
Test Engineer :	Nick Su	Polarization :	Vertical		
	1. 2437 MHz is fundament	al signal which can be	ignored.		
Remark: 2. Average measurement was not performed if peak level went lower					
	average limit.				

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	96.67	-	-	94.15	32.21	6.22	35.91	102	189	Peak
2437	84.55	-	-	82.03	32.21	6.22	35.91	102	189	Average
4874	46.99	-27.01	74	40.87	34.2	8.76	36.84	105	24	Peak
7312	49.37	-24.63	74	41.67	35.72	10.84	38.86	105	26	Peak

Page Number : 42 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~23°C			
Test Channel :	11	Relative Humidity :	40~41%			
Test Engineer :	Nick Su	Polarization :	Horizontal			
	2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than					
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
66.86	25.99	-14.01	40	50.25	7.57	0.79	32.62	-	-	Peak
95.96	29.68	-13.82	43.5	50.38	10.86	1.04	32.6	-	-	Peak
140.58	32.27	-11.23	43.5	51.98	11.62	1.23	32.56	100	0	Peak
160.95	29.61	-13.89	43.5	49.43	11.29	1.44	32.55	-	-	Peak
223.03	25.62	-20.38	46	45.64	10.86	1.61	32.49	-	-	Peak
951.5	29.66	-16.34	46	36.07	21.59	3.68	31.68	-	-	Peak
2462	103.23	-	-	100.53	32.27	6.28	35.85	144	299	Peak
2462	91.84	-	-	89.14	32.27	6.28	35.85	144	299	Average
4924	42.97	-31.03	74	37.01	34.2	8.79	37.03	100	49	Peak
7386	46.7	-27.3	74	39.24	35.76	10.89	39.19	157	70	Peak

Page Number : 43 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

SPORTON LAB.	FCC RF T

Test Mode :	802.11g	Temperature :	22~23°C		
Test Channel :	11	Relative Humidity :	40~41%		
Test Engineer :	Nick Su	Polarization :	Vertical		
	1. 2462 MHz is fundament	al signal which can be	ignored.		
Remark :	2. Average measurement was not performed if peak level went lower than the				
	average limit.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
36.79	33.04	-6.96	40	49.09	15.77	0.79	32.61	200	0	Peak
57.16	31.24	-8.76	40	56.17	6.88	0.79	32.6	-	-	Peak
80.44	28.85	-11.15	40	51.36	9.1	1.04	32.65	-	-	Peak
95.96	28	-15.5	43.5	48.7	10.86	1.04	32.6	-	-	Peak
139.61	23.77	-19.73	43.5	43.48	11.62	1.23	32.56	-	-	Peak
951.5	29.01	-16.99	46	35.42	21.59	3.68	31.68	-	-	Peak
2462	94.41	-	-	91.71	32.27	6.28	35.85	124	161	Peak
2462	83.38	-	-	80.68	32.27	6.28	35.85	124	161	Average
4924	44.92	-29.08	74	38.96	34.2	8.79	37.03	100	64	Peak
7386	46.12	-27.88	74	38.66	35.76	10.89	39.19	100	94	Peak

Page Number : 44 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	22~23°C			
Test Channel :	01	Relative Humidity :	40~41%			
Test Engineer :	Nick Su	Polarization :	Horizontal			
	1. 2412 MHz is fundament	al signal which can be	ignored.			
Remark :	peak level went lower than the					
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	97.19	-	-	94.91	32.08	6.22	36.02	100	331	Peak
2412	86.15	-	-	83.87	32.08	6.22	36.02	100	331	Average
4824	46.06	-27.94	74	39.78	34.2	8.73	36.65	105	264	Peak

Test Mode :	2.4	GHz 802.11n HT20	Temperature :	22~23°C		
Test Channel :	01		Relative Humidity :	40~41%		
Test Engineer :	Nic	k Su	Polarization :	Vertical		
2412 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than					
		average limit.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	101.36	-	-	99.08	32.08	6.22	36.02	108	238	Peak
2412	88.34	-	-	86.06	32.08	6.22	36.02	108	238	Average
4824	46.45	-27.55	74	40.17	34.2	8.73	36.65	162	14	Peak

Page Number : 45 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	22~23°C			
Test Channel :	06	Relative Humidity :	40~41%			
Test Engineer :	Nick Su	Polarization :	Horizontal			
	1. 2437 MHz is fundament	. 2437 MHz is fundamental signal which can be ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	98.65	-	-	96.13	32.21	6.22	35.91	119	335	Peak
2437	87.16	-	-	84.64	32.21	6.22	35.91	119	335	Average
4874	45.56	-28.44	74	39.44	34.2	8.76	36.84	115	24	Peak
7312	47.59	-26.41	74	39.89	35.72	10.84	38.86	159	206	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	22~23°C				
Test Channel :	06	Relative Humidity :	40~41%				
Test Engineer :	Nick Su	Polarization :	Vertical				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	102.13	-	-	99.61	32.21	6.22	35.91	122	296	Peak
2437	89.36	-	-	86.84	32.21	6.22	35.91	122	296	Average
4874	46.53	-27.47	74	40.41	34.2	8.76	36.84	147	252	Peak
7312	49.42	-24.58	74	41.72	35.72	10.84	38.86	156	332	Peak

Page Number : 46 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	22~23°C				
Test Channel :	11	Relative Humidity :	40~41%				
Test Engineer :	Nick Su	Polarization :	Horizontal				
	1. 2462 MHz is fundament	2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	95.43	-	-	92.73	32.27	6.28	35.85	100	36	Peak
2462	83.96	-	-	81.26	32.27	6.28	35.85	100	36	Average
4924	46.09	-27.91	74	40.13	34.2	8.79	37.03	100	0	Peak
7386	47.17	-26.83	74	39.71	35.76	10.89	39.19	112	302	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	22~23°C				
Test Channel :	11	Relative Humidity :	40~41%				
Test Engineer :	Nick Su	Polarization :	Vertical				
	1. 2462 MHz is fundament	2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2462	100.72	-	-	98.02	32.27	6.28	35.85	105	236	Peak
2462	89.64	-	-	86.94	32.27	6.28	35.85	105	236	Average
4924	45.87	-28.13	74	39.91	34.2	8.79	37.03	105	64	Peak
7386	49.72	-24.28	74	42.26	35.76	10.89	39.19	154	306	Peak

Page Number : 47 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)					
(MHz)	Quasi-Peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

3.6.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 49 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Temper	ature :	22~24°C	<u> </u>
est Engineer :	Eligah V	Vang		Relative	Humidity:	38~40%	, 0
est Voltage :	120Vac	/ 60Hz		Phase :		Line	
······································	GSM85	0 Idle + Blu	uetooth Li	nk + WLA	AN Link + USE	3 Cable (Charging from Ada
Function Type :	+ Earph	one					
80 Lev	el (dBuV)						
70.0							
70.0							
60.0							FCC PART 15C
50.0					44.		FCC PART 15C(AVG)
				Harris Company			
40.0	hu . /\	A MA	M/_/^\\\	ANAMMANA	MANA THE THE	12	
30.0	WILL THE STATE OF	KAND TO THE		. Mr. al al a	6810		MANA MANAGEMENT AND
20.0		Aut					· • • • • • • • • • • • • • • • • • • •
20.0							
10.0							
0.15	2	.5	1	2	5		10 20 30
	.2	.5	•		cy (MHz)		10 20 30
Site Conditio		: CO01-KS : FCC PART 1	5C LISN-L20	140306 LIN	IE		
mode	:	: Mode 1					
ouc				ad LISN el Factor	Cable Loss Remark		
	MHz c	iBuV dB	dBuV dE	BuV dB	dB		
1 2	0.89 28	3. 87 -22. 13 5. 37 -20. 63	46.00 14.	59 0.13	10.65 QP 10.65 Average		
3 4 5	2.72 27	5. 17 -20. 83 7. 47 -18. 53 9. 59 -16. 41	46.00 16.	30 0.12 60 0.12	10.75 QP 10.75 Average 10.82 QP		
6 7	3.55 29 3.76 40	9. 89 -16. 11 0. 60 -15. 40	46.00 18. 56.00 29.	90 0.17 60 0.18	10.82 Average 10.82 QP		
8 9 10 *	4.09 40), 60 -15, 40), 62 -15, 38 l, 12 -14, 88	56.00 29.	60 0.19	10.82 Average 10.83 QP 10.83 Average		
11 12	5.93 38	3. 68 -21. 32 4. 18 -15. 82	60.00 27.	60 0.20	10.88 QP 10.88 Average		
					_		

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 50 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Test Mode :	Mode 1	Temperature :	22~24 ℃						
Test Engineer :	Eligah Wang	Relative Humidity :	38~40%						
Test Voltage :	120Vac / 60Hz	Phase :	Neutral						
Eupation Type	GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter)								
Function Type :	+ Earphone								
80 Level (dBuV)									

Site : CO01-KS

Condition : FCC PART 15C LISN-N20140306 NEUTRAL

mode : Mode 1

Houc			uc I					
	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1 2 3 4 5 6 7 8 9 10 *	0. 88 0. 88 1. 80 3. 66 4. 07 4. 57 4. 57 5. 56 5. 56	25. 08 29. 40 24. 10 35. 60 28. 80 38. 62 30. 62 38. 14 31. 34 39. 16	-25. 12 -20. 92 -26. 60 -21. 90 -20. 40 -17. 20 -17. 38 -15. 38 -17. 86 -14. 66 -20. 84 -15. 64	46.00 56.00 46.00 56.00 46.00 56.00 46.00	20. 10 14. 30 18. 60 13. 30 24. 60 17. 80 27. 60 19. 60 27. 11 20. 31 28. 10 23. 30	0. 10 0. 10 0. 18 0. 18 0. 19 0. 19 0. 19	10. 70 10. 70 10. 82 10. 82 10. 83 10. 83 10. 84 10. 84	Average QP Average QP Average QP Average QP Average

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 51 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Page Number : 52 of 54
Report Issued Date : Nov. 26, 2014

Report No.: FR4N0501C

Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100319	9kHz~40GHz	Oct. 28, 2014	Nov. 10, 2014	Oct. 27, 2015	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	30MHz~40GHz	Feb. 27, 2014	Nov. 10, 2014	Feb. 26, 2015	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Feb. 27, 2014	Nov. 10, 2014	Feb. 26, 2015	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESCI	100534	9kHz~3GHz	Oct. 25, 2014	Nov. 20, 2014	Oct. 24, 2015	Radiation (03CH01-KS)
Spectrum Analyzer	R&S	FSP30	101399	9kHz~30GHz	May 04, 2014	Nov. 20, 2014	May 03, 2015	Radiation (03CH01-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 13, 2014	Nov. 20, 2014	Nov. 12, 2015	Radiation (03CH01-KS)
Bilog Antenna	SCHAFFNER	CBL6112D	23182	25MHz~2GHz	Jan. 08, 2014	Nov. 20, 2014	Jan. 07, 2015	Radiation (03CH01-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 08, 2014	Nov. 20, 2014	Nov. 07, 2015	Radiation (03CH01-KS)
Active Horn Antenna	com-power	AHA-118	701030	1GHz~18GHz	Nov. 08, 2014	Nov. 20, 2014	Nov. 07, 2015	Radiation (03CH01-KS)
SHF-EHF Horn	Schwarzbeck	BBHA 9170	BBHA1702 49	15GHz~40GHz	Mar. 10, 2014	Nov. 20, 2014	Mar. 09, 2015	Radiation (03CH01-KS)
Amplifier	com-power	PA-103A	161073	1MHz~1GHz	May 04, 2014	Nov. 20, 2014	May 03, 2015	Radiation (03CH01-KS)
Amplifier	Agilent	8449B	3008A023 71	1GHz~26.5GHz	Oct. 28, 2014	Nov. 20, 2014	Oct. 27, 2015	Radiation (03CH01-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Nov. 20, 2014	NCR	Radiation (03CH01-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Nov. 20, 2014	NCR	Radiation (03CH01-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Nov. 20, 2014	NCR	Radiation (03CH01-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 04, 2014	Nov. 10, 2014	May 03, 2015	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 25, 2014	Nov. 10, 2014	Oct. 24, 2015	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 25, 2014	Nov. 10, 2014	Oct. 24, 2015	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 25, 2014	Nov. 10, 2014	Oct. 24, 2015	Conduction (CO01-KS)

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L Page Number : 53 of 54
Report Issued Date : Nov. 26, 2014
Report Version : Rev. 01

Uncertainty of Evaluation 5

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.3
Confidence of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.5
Confidence of 95% (U = 2Uc(y))	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YCNS90L

Page Number : 54 of 54 Report Issued Date: Nov. 26, 2014

Report No. : FR4N0501C

Report Version : Rev. 01