## EE 315

1. Consider the following common source amplifier, where  $V_t$ = 1.5V,  $k'_nW/L$  = .2 mA/V<sup>2</sup>.



- a. Sketch the voltage transfer characteristic, clearly labeling the transition points, A, B and C.
- b. The device is biased for a 0.15 mA drain current. Find the Q-point.
- c. Find the voltage gain at this bias point.
- 2. A common source amplifier uses an NMOS transistor with  $k'_n$ =0.4mA/V², W/L = 10, V<sub>t</sub>=0.4V, V<sub>DD</sub>=2.5 Vand V<sub>A</sub>=10V. The amplifier Q-point is at I<sub>DQ</sub>=0.2mA and uses a drain resistor of 6.2kohms.
- a. Find  $V_{GSQ}$  and  $V_{DSQ}$ .
- b. Draw the small signal model and find g<sub>m</sub>, R<sub>in</sub>, A<sub>vo</sub>, and R<sub>o</sub>.
- c. If a load resistor is connected to the drain where  $R_L$  = 15kohms, what is the gain,  $A_v$ . Update your small signal model.
- d. If a source signal,  $v_{sig}$  in series with a resistance of  $R_{sig}$  = 300kohms is connected to the gate, what is the gain,  $G_v$ .
- 3. A common gate amplifier uses an NMOS transistor with  $g_m$ =4mA/V and a drain resistor of 5kohms and a load resistor of 7.5 kohms. The amplifier is driven by a source,  $v_{sig}$ , that has  $R_{sig}$  = 500 ohms.
- a. Find the input resistance ( $R_{in}$ ) and the overall voltage gain,  $G_{v}$ . Draw the small signal model.
- b. Suppose we want the input resistance to equal the signal resistance at the Q-point, I<sub>DQ</sub>. What would the drain current Q-point need to change to for this to happen?

- 4. A common drain amplifier has the following characteristics:  $k'_n=0.1$ mA/V² and  $V_t=0.6$ V. The operating point is  $V_{GSQ}=0.85$  V.
  - a. What is the W/L ratio for an output resistance of 300 ohms?
  - b. What is the drain current at the operating point?
  - c. This amplifier is connected to a 10kohm potentiometer as the load. What is the range of possible overall voltage gain?
- 1. Consider the following common source amplifier, where  $V_t$ = 1.5V,  $k'_nW/L$  = .2 mA/V<sup>2</sup>.



a. Sketch the voltage transfer characteristic, clearly labeling the transition points, A, B and C.

$$V_{t=1.5}$$

$$K'n \stackrel{W}{U} = 0.2 \stackrel{M}{N}_{z}$$

$$V_{t} = V_{t}$$

$$V_{I} = 1.5 + \frac{\sqrt{1+2(10)(.2)(5)} - 1}{10 \times .2} = 7V_{I} = 3.29v$$
 $V_{0} = V_{05} = V_{I} - V_{t}$ 

$$V_0 = V_{05} = V_{I} - V_{t}$$
  
 $V_0 = 3.29 - 1.5 = 1.79$  (1.79, 3.24)

## Point L:

Triode 
$$V_{GS} = V_{I} = V_{00} = 5$$

$$V_0 = \frac{5}{1 + (.7)(5 + .5)(10)}$$

| Point | ٧٠    | VI   |
|-------|-------|------|
| A     | ゔ     | 1.5  |
| В     | 1.79  | 3.29 |
| С     | .6 25 | 5    |



$$V_{t=1.5}$$
  
 $k'_{t} = 0.2^{mA} / 3$ 



b. The device is biased for a 0.15 mA drain current. Find the Q-point.

$$I_{0.2}^{M}/_{2}$$
 $I_{00} = 0.15 \text{ mA}$ 
 $V_{00} = V_{00} = V_{00} - I_{00} R_{0}$ 
 $V_{00} = (S) - (.15)(10)$ 
 $V_{00} = 3.5$ 

VIA = 
$$V_{GSA}$$
 $I_{OA} = \frac{1}{2} k'_{1} \frac{\omega}{\omega} (V_{IA} - V_{I})^{2}$ 
 $I_{IS} = \frac{1}{2} (.2) (V_{IA} - 1.5)^{2}$ 
 $I_{IS} = (V_{IA} - 1.5)^{2} \sqrt{1.5} + 1.5 = V_{IA}$ 

VIA = 2.72  $V_{IA} = 2.72 V_{IA}$ 

c. Find the voltage gain at this bias point.



- 2. A common source amplifier uses an NMOS transistor with  $k'_n=0.4$ mA/V², W/L = 10, V<sub>t</sub>=0.4V, V<sub>DD</sub>=2.5 Vand V<sub>A</sub>=10V. The amplifier Q-point is at I<sub>DQ</sub>=0.2mA and uses a drain resistor of 6.2kohms.
- a. Find V<sub>GSQ</sub> and V<sub>DSQ</sub>.



$$R_0 = 6.2 \text{k/}2$$
  $V_{00} = 2.5 \text{V}$ 
 $k'_{0} = .4 \text{mA}/\text{v}^{2}$   $V_{A} = 10 \text{V}$ 
 $W/_{L} = 10$   $I_{0a} = .2 \text{mA}$ 
 $V_{0} = .4 \text{v}$ 

$$I DQ = .2mA = \frac{1}{2} k \ln \frac{10}{L} (Vasa-vt)^{2}$$

$$.2mA = \frac{1}{2} (.4)(10) (Vasa-.4)^{2}$$

$$\sqrt{.1} + .4 = VasQ \quad \sqrt[3]{Vasa} = 0.71bV$$

$$VDSQ = 2.5 - IOO PO VOSQ = 1.2bV$$

b. Draw the small signal model and find  $g_m$ ,  $R_{in}$ ,  $A_{vo}$ , and  $R_o$ .



$$Q_{in} = \infty$$
  
 $g_{m} = k'n \frac{\omega}{L} (V_{CT} \leq Q - V_{E}) = [.4](10) (.716 - .4)$   
 $g_{m} = 1.264 \text{ mA/U}$ 

$$\int_0^{\infty} \frac{\sqrt{4}}{Z \log x} = \frac{10}{.2F-3} = 50 \text{kg}$$

$$Avo = \frac{Vo}{v} = -gm(coll Ro)$$

$$= -1.264(5.52)$$

$$Avo = -6.98V/v$$

c. If a load resistor is connected to the drain where  $R_L$  = 15kohms, what is the gain,  $A_v$ . Update your small signal model.



$$A_{v} = \frac{V_{0}}{v_{i}} = -g_{m}(r_{0}||\rho_{0}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_{1}||\rho_$$

d. If a source signal,  $v_{\text{sig}}$  in series with a resistance of  $R_{\text{sig}}$  = 300kohms is connected to the gate, what is the gain,  $G_{\nu}$ .

- 3. A common gate amplifier uses an NMOS transistor with  $g_m$ =4mA/V and a drain resistor of 5kohms and a load resistor of 7.5 kohms. The amplifier is driven by a source,  $v_{sig}$ , that has  $R_{sig}$  = 500 ohms.
- a. Find the input resistance  $(R_{in})$  and the overall voltage gain,  $G_v$ . Draw the small signal model.



b. Suppose we want the input resistance to equal the signal resistance at the Q-point, I<sub>DQ</sub>. What would the drain current Q-point need to change to for this to happen?

$$R in = 2siy$$

$$Rs: y = 500$$

$$Rin = 2so = \frac{1}{9m} \qquad gm_1 = 4mA/V$$

$$\frac{1}{9m} = 500, \qquad gm = 2mA/V$$

$$Toa = \frac{1}{2}k'n \frac{\omega}{L}(V_{C1}so - Vt)^2$$

$$gm = k'n \frac{\omega}{L}(V_{C2}so - Vt)$$

$$gm = \frac{2IDQ}{(V_{C2}so - Vt)}$$

$$Qm = \sqrt{2k'n \frac{\omega}{L}IDQ}$$

$$gm reduces by Vz$$

$$Ioa reduces by 1/4$$

- 4. A common drain amplifier has the following characteristics:  $k'_n=0.1$ mA/V<sup>2</sup> and V<sub>t</sub> = 0.6V. The operating point is V<sub>GSQ</sub>=0.85 V.
  - a. What is the W/L ratio for an output resistance of 300 ohms?
  - b. What is the drain current at the operating point?
  - c. This amplifier is connected to a 10kohm potentiometer as the load. What is the range of possible overall voltage gain?

$$k^{1}n = 0.1 \text{ mA/v}^{2}$$
 $Vt = 0.6v$ 
 $V_{0.50} = 0.85v$ 

$$Vt = 0.6V Vasa = 0.85v$$

$$Q_{0} = \frac{1}{9m} = 300;$$

$$V_{0} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{\omega}{L} = 133.2$$

b) drain Corrent?  

$$Ioa = \frac{1}{2} k'n \frac{\omega}{L} (Vasa - U+)^2$$
  
 $Ioa = \frac{1}{2} (1)(133,2)(-85-.6)^2$   
 $Ioa = 0.416 mA$ 

C) 
$$Grv = \frac{RL}{RL + 1/gm} =$$

$$G_{7} V = O_{0+333}$$

$$(r v = \frac{10}{(0t 3.33)}$$