

Aprendizado Supervisionado - Classificação

Objetivos da aula:

- Apresentar e utilizar o classificador k-nearest neighbours (kNN)
- Apresentar a técnica de separação de dados (treino e teste)
- Avaliar Aprendizagem do modelo

- Vamos dar continuidade ao nosso estudo de aprendizagem de máquina, já vimos:
 - Tudo começa, conhecendo os dados disponíveis.
 - Como carregar um data frame
 - Como visualizar os dados em gráficos (histograma, box plot, violin plot)
 - Fizemos uma breve introdução sobre análise exploratória buscando correlacionar os dados para gerar informações.
 - Hoje, vamos seguir nossa jornada e finalizar nosso estudo aplicando a técnica de KNN.

k-Nearest Neighbors

 O KNN(K vizinhos mais próximos) é considerado um dos algoritmos mais simples dentro da categoria de aprendizagem supervisionada sendo muito utilizado para problemas de classificação, porém também pode ser utilizado em problemas de regressão.

• **Problemas de classificação** = Vale lembrar que em problemas de classificação não estamos interessados em valores exatos, queremos apenas saber se um dado pertence ou não a uma dada classe.

Uma intuição sobre o método

 Para realizar a classificação o KNN calcula a distância objeto desconhecido (target) para todos os outros elementos, encontra os mais K vizinhos mais próximos faz uma contagem dos rótulos e considera que o objeto desconhecido pertence ao rótulo de maior contagem.

Exemplo

• A imagem abaixo exemplifica o funcionamento, mas se ficou um pouco complicado de entender, rode o script python *iknn.py* e faça algumas simulações para compreender.

Script

Let's go

Vamos juntos realizar nosso primeiro projeto, do começo ao fim, de aprendizagem de máquina.

Definição do problema

A primeira coisa que precisamos fazer é a definição do problema. Neste primeiro caso vamos trabalhar com o mesmo dataset da última aula, dataset iris. Vamos desenvolver um sistema de machine learning capaz de classificar sua espécie com base nos dimensionais da pétala.

Observação

 São 150 exemplares de flor de íris, pertencentes a três espécies diferentes: setosa, versicolor e virginica, sendo 50 amostras de cada espécie. Os atributos de largura e comprimento de sépala e largura e comprimento de pétala de cada flor foram medidos manualmente.

Iris Versicolor

Iris Setosa

Iris Virginica

Dataframe

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Atributos

-- Iris Virginica

Attribute Information: 1. sepal length in cm 2. sepal width in cm 3. petal length in cm 4. petal width in cm 5. class: -- Iris Setosa -- Iris Versicolour

classificador-knn.ipynb

Desafio 4

• Lembra o dataset 'breast-cancer', faça um modelo de predição que informa se o câncer é maligno ou não.

Copyright © 2023 Prof. Arnaldo Jr/Yan Coelho

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).