Esercizio 1. Dimostrare che i seguenti insiemi in \mathbb{R}^N hanno misura di Lebesgue nulla costruendo esplicitamente un ricoprimento numerabile di misura ε :

- $A_1=(n)_{n\in\mathbb{Z}}$,
- $A_2 = (1/n)_{n \in \mathbb{Z}^*}$,
- $A_3 = \mathbb{Q}^N, N \ge 1,$
- $A_4 = \mathbb{Q}^{\omega} = \mathbb{Q} \times \mathbb{Q} \times \dots$ Difficile, extra,
- $A_6 = \left(\frac{1}{n}\left(1 + \frac{1}{n^2 2^k}\right)\right)_{n \ k \in \mathbb{N}^*}$ Difficile, extra.

Esercizio 2 (Difficile). Definiamo l'insieme di Cantor C nella maniera seguente;

- Prendiamo l'intervallo chiuso $C_0 = [0, 1]$ e ad esso sottraiamo l'insieme ternario aperto $(\frac{1}{3}, \frac{2}{3})$. Definiamo $C_1 = C_0 \setminus (\frac{1}{3}, \frac{2}{3})$.
- Definiamo gli insiemi ternari di secondo ordine $\left(\frac{1}{9},\frac{2}{9}\right)$ e $\left(\frac{7}{9},\frac{8}{9}\right)$. Definiamo $C_2=C_1\setminus\left(\left(\frac{1}{9},\frac{2}{9}\right)\cup\left(\frac{7}{9},\frac{8}{9}\right)\right)$.
- Reiterare la procedura all'infinito (vedere figura per un'idea precisa).

Dimostrare:

- 1. Che l'insieme di Cantor ha misura di Lebesgue nulla e,
- 2. Che l'insieme di Cantor ha la stessa cardinalità del segmento reale [0,1]. Suggerimento: Notare che ogni elemento x del segmento reale che appartiene all'insieme di Cantor si può scrivere, nella sua notazione in base tre, come $x=0,a_1a_2a_3\dots$ dove $a_n=0,2$. Relazionare tale osservazione con la rappresentazione binaria di [0,1],
- 3. Che l'insieme di Cantor ha una cardinalità superiore a quella dei numeri naturali (a.k.a. C non è numerabile).

Concludere che esistono insiemi non-numerabili con misura di Lebesgue nulla.

Esercizio 3 (Spazi normati non completi). Considerare lo spazio normato $(\mathcal{C}([-1,1]); \|\bullet\|_1)$. Dimostrare che le sequenze

- $\bullet \ f_n\left(x\right) = \left\{ \begin{array}{ll} n & \text{se} \quad |x| \leq e^{-n} \\ -\log|x| & \text{se} \quad e^{-n} \leq |x| \leq 1 \end{array} \right. ,$
- $g_n(x) = \operatorname{sgn}(x) \sqrt[n]{|x|}$,
- $h_n(x) = (1 |x|)^n$,

sono sequenze di Cauchy rispetto alla norma $\|\bullet\|_1$ tuttavia non convergono a elementi di $(\mathcal{C}([-1,1]); \|\bullet\|_1)$.

Esercizio 4 (Spazi normati non completi, continuazione). Dimostrare che lo spazio delle funzioni $f:[0,1]\to\mathbb{R}$ Riemann-integrabili non è completo.

Suggerimento: Considerare la successione di funzioni $f_n = \chi_{Q_n}$ dove $Q_n = (q_j)_{j=0,\dots,n}$ e l'insieme $(q_j)_{j\in\mathbb{N}} = [0,1]\cap\mathbb{Q}$.