Лекция 1. Основы матричного анализа

М. В. Рахуба

20 января 2024 г.

1 Нормированные пространства

Определение 1. Пусть задано некоторое линейное пространство V над полем $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Функцию $\|\cdot\| \colon V \to \mathbb{R}$ будем называть нормой, если она удовлетворяет следующим четырем свойствам

Запись $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ обозначает, что \mathbb{F} является либо полем действительных, либо комплексных чисел.

- 1. $||x|| \ge 0 \quad \forall x \in V$,
- 2. $||x|| = 0 \Leftrightarrow x = 0$,
- 3. $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{F}, \ \forall x \in V$,
- 4. $||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in V$, (неравенство треугольника).

Пространство V, оснащенное нормой, называется нормированным пространством.

Обратите внимание, что $x=0 \Rightarrow \|x\|=0$ следует из 3-го свойства при подстановке $\alpha=0$.

1.1 Векторные нормы

Пусть $V=\mathbb{F}^n$, где $\mathbb{F}\in\{\mathbb{R},\mathbb{C}\}$. Элементы $x\in\mathbb{F}^n$ будем записывать в виде векторов-столбцов $x=[x_1,\dots,x_n]^\intercal$. Введем p-норму:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

для некоторого $p \geq 1$. Среди p-норм популярными являются случаи $p \in \{1, 2, \infty\}$:

- $\|x\|_1 = |x_1| + \ldots + |x_n|$ (1-норма). В некоторых случаях является желаемым выбором, так как, например, помогает наложить условие разреженности на векторы (подробнее дальше в курсе). Несмотря на это, она не является гладкой функцией, и построение эффективных алгоритмов может оказаться непростой задачей.
- $\|x\|_2 = \left(|x_1|^2 + \ldots + |x_n|^2\right)^{1/2} = \sqrt{x^*x}$ (2- или евклидова норма). Часто является наиболее удобным выбором для анализа. Позволяет получать явные формулы и строить эффективные алгоритмы для решения некоторых задач оптимизации, например, для метода наименьших квадратов.

Первые 3 свойства из Определения 1 для $\|\cdot\|_p$ проверяются непосредственно. Неравенство треугольника верно при любом $p \geq 1$ и называется неравенством Минковского. Для случаев $p \in \{1,2,\infty\}$ проверка неравенства треугольника является простым упражнением.

¹ Разреженными называют векторы, у которых большое количество компонент равно 0.

 $A^* \equiv \overline{A}^{\mathsf{T}}$ (транспонирование и поэлементное комплексное сопряжение) называется эрмитовым сопряжением A. Например,

$$\begin{bmatrix} 1 \\ i \end{bmatrix}^* = \begin{bmatrix} 1 & -i \end{bmatrix}.$$

• $\|x\|_{\infty}=\max_i |x_i|$ (бесконечная норма). В силу того, что $\|x\|_p \to \infty$ $\|x\|_{\infty}$ при $p o \infty$, мы также относим $\|\cdot\|_{\infty}$ к p-нормам при $p=\infty$. Ошибки, измеренные в $||x||_{\infty}$, легко интерпретировать. Например, если известно, что \hat{x} приближает x с относительной точностью 10^{-d} , то есть,

$$\frac{\|\hat{x} - x\|_{\infty}}{\|x\|_{\infty}} \approx 10^{-d}, \quad d \in \mathbb{N},$$

то каждая компонента \hat{x} имеет как минимум d верных знаков после запятой.

На Рисунке 1 представлены единичные сферы $\|x\|_p = 1$ для различных p. Обратите внимание, что в случае $p=\frac{1}{2}$ функция $\|\cdot\|_p$ не является нормой (используя неравенство треугольника, несложно убедиться, что множество $\{x \in \mathbb{R}^2 \colon \|x\|_p \leq 1\}$ должно быть выпуклым).

В случае с $\|\cdot\|_1$ или $\|\cdot\|_2$ это, вообще говоря, неверно. Пусть, например, $x \in \mathbb{R}^n$ – вектор из всех единиц, а \hat{x} отличается от x только в одной позиции: $\hat{x}_1 = 0$. Тогда $||x - \hat{x}_1|| = 0$ $\hat{x}\|_1/\|x\|_1 = 1/n$ мало при большом n, H0 $||x - \hat{x}||_{\infty} / ||x||_{\infty} = 1$.

Рис. 1: Единичные сферы

 $\{x \in \mathbb{R}^2 : ||x||_p = 1\}$

для различных значений p.

Эквивалентность норм и сходимость

Определение 2. *Нормы* $\|\cdot\|_a$ *и* $\|\cdot\|_b$ *на нормированном про*странстве V называются эквивалентными, если

$$C_1 ||x||_a \le ||x||_b \le C_2 ||x||_a \quad \forall x \in V,$$

где $C_1, C_2 > 0$ – константы, не зависящие от x.

Известно, что все нормы на конечномерных пространствах являются эквивалентными. Например, для p-норм на \mathbb{F}^n справедливы следующие неравенства:

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2,$$

 $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty},$
 $||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty}.$

Будем говорить, что последовательность $\{x_k\}$ сходится к x, если $\|x_k - x\| \to 0$ при $k \to \infty$. Благодаря эквивалентности норм на конечномерных пространствах мы можем выбрать любую норму для проверки сходимости.

Константы C_1 и C_2 , вообще говоря, зависят от V. Например, для \mathbb{F}^n и р-норм мы получим зависимость C_1, C_2 ot n.

ляются:

Матричные нормы

Мы можем ввести нормы для матриц размера $m \times n$ как нормы из Определения 1 для векторного пространства $V = \mathbb{F}^{m \times n}$. Тогда по аналогии с p-нормами векторов для $p \in \{1, 2, \infty\}$ определим следующие нормы:

$$\|A\|_{\mathrm{sum}} = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|,$$
 $\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$ (фробениусова норма), $\|A\|_C = \max_{i,j} |a_{ij}|$ (чебышёвская или тах-норма).

 $||A||_F^2 = \operatorname{trace}(A^*A) = \operatorname{trace}(AA^*).$

Полезными формулами также яв-

Однако для того, чтобы называть норму матричной, мы потребуем еще одно условие — субмультипликативность.

Определение 3. Пусть $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Функция $\|\cdot\|$, которая каждой матрице А ставит в соответствие действительное число ||A||, называется матричной нормой, если

- 1. Она является нормой на $V = \mathbb{F}^{m \times n}$ для любых $m, n \in \mathbb{N}$.
- 2. $||AB|| \le ||A|| \, ||B|| \,$ для всех $A, B, \,$ для которых определено AB(свойство субмультипликативности).

Можно проверить, что нормы $\|\cdot\|_{\text{sum}}$ и $\|\cdot\|_F$ удовлетворяют условию субмультипликативности. Для $\|\cdot\|_C$ это неверно:

$$A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies AB = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix},$$

то есть $||AB||_C = 2 > 1 = ||A||_C ||B||_C$.

В литературе также встречается определение матричной нормы без требования субмультипликативности.

Операторные нормы 2.1

Матричные нормы можно также ввести с помощью векторных норм.

Определение 4. Пусть задана матрица $A \in \mathbb{F}^{m \times n}$, и на \mathbb{F}^n задана норма $\|\cdot\|_a$, а на \mathbb{F}^m – норма $\|\cdot\|_b$. Операторной (или индуцированной) нормой A, подчиненной векторным нормам $\|\cdot\|_a$ $u \parallel \cdot \parallel_b$, называется следующее выражение:

$$||A||_{a\to b} = \sup_{x\neq 0} \frac{||Ax||_b}{||x||_a}.$$

По сути выражение $||Ax||_b/||x||_a$ является коэффициентом растяжения вектора х при умножении на матрицу А. Операторная норма является наибольшим коэффициентом растяжения по всем направлениям.

Замечание 1.

1. Для $||A||_{a\to b}$ можно также записать:

$$||A||_{a\to b} = \sup_{x\neq 0} \left\| A\left(\frac{x}{||x||_a}\right) \right\|_b = \sup_{||x||_a = 1} ||Ax||_b.$$

- 2. В определении $||A||_{a\to b}$ супремум можно заменить на максимум благодаря теореме Вейерштрасса: конечномерная сфера является компактным множеством, а композиция умножения на матрицу и нормы — непрерывной функцией.
- 3. Операторные нормы являются нормами, но не любых двух норм $\|\cdot\|_a$ и $\|\cdot\|_b$ являются матричными нормами.

Важным частным случаем операторных норм являются рнормы матриц, подчиненные векторным p-нормам:

$$||A||_p \equiv ||A||_{p \to p} = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}.$$

Несложно убедиться, что такие нормы являются матричными, так как

$$||AB||_p = \sup_{x \neq 0} \frac{||ABx||_p}{||x||_p} = \sup_{\substack{x \neq 0 \\ Bx \neq 0}} \frac{||ABx||_p}{||Bx||_p} \frac{||Bx||_p}{||x||_p} \le$$

$$\le \sup_{\substack{x \neq 0 \\ Bx \neq 0}} \frac{||ABx||_p}{||Bx||_p} \sup_{\substack{x \neq 0 \\ Bx \neq 0}} \frac{||Bx||_p}{||x||_p} \le ||A||_p ||B||_p.$$

В качестве упражнения покажите, что

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|, \quad ||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}|,$$

то есть $||A||_1$ есть максимальная из сумм модулей элементов в столбцах, а $\|A\|_{\infty}$ – в строках. На следующей лекции мы покажем, что $||A||_2 = \sigma_1(A)$ — старшее сингулярное число матрицы A, которое также совпадает с $\sqrt{\lambda_1(A^*A)}$ и $\sqrt{\lambda_1(AA^*)}$ — максимальными собственными значениями матриц A^*A и AA^* соответственно. Поэтому 2-норма матриц иногда называется спектральной.

Фробениусова норма $||A||_F$, а также $||A||_p$ при $p \in \{1, 2, \infty\}$ будут регулярно встречаться в нашем курсе.

Эквивалентность матричных норм и сходимость

По аналогии с векторным случаем будем говорить, что последовательность матриц $\{A_k\}$ сходится к матрице A, если $\|A_k - A\|$

 $A\| \to 0$ при $k \to \infty$. Так как на конечномерных пространствах все нормы эквивалентны, то для проверки сходимости можно выбрать любую из норм (не обязательно матричную).

Унитарные матрицы

Особую роль для построения эффективных и устойчивых матричных алгоритмов играют унитарные матрицы.

Определение 5. *Матрица* $U \in \mathbb{C}^{n \times n}$, удовлетворяющая

$$U^{-1} = U^*$$
.

называется унитарной.

Из определения следует, что для унитарных матриц выполняется

$$UU^* = U^*U = I.$$

где *I* обозначает единичную матрицу. То есть унитарность матрицы подразумевает ортонормированность ее строк и столбцов. Действительно, для столбцов u_1, \ldots, u_n матрицы $U = [u_1, \ldots, u_n]$ имеем:

а значит $u_i^*u_i = \delta_{ij}$ — дельта Кронекера. Следовательно,

$$u_i \perp u_i, \quad i \neq j,$$

И

$$u_i^* u_i = ||u_i||_2^2 = 1.$$

Одним из важных свойств векторной 2-нормы является ее унитарная инвариантность, то есть неизменность значения нормы вектора при умножении на унитарную матрицу.

Утверждение 1. Пусть $U \in \mathbb{C}^{n \times n}$ — унитарная. Тогда

$$||Ux||_2 = ||x||_2 \ \forall x \in \mathbb{C}^n.$$

Доказательство.

$$||Ux||_2^2 = (Ux)^*Ux = x^*U^*Ux = x^*x = ||x||_2^2.$$

Аналогичные утверждения можно сформулировать для фробениусовой и 2-нормы матриц:

В случае $U \in \mathbb{R}^{n \times n}$ матрицы называются ортогональными.

На матрицу $U = [u_1, \ldots, u_n]$ можно смотреть как на блочную строку. При умножении блочных мат-

Векторы $u,v\in\mathbb{C}^n$ будем называть ортогональными, если $u^*v = 0$.

В обратную сторону утверждение также остается верным: если $||Ux||_2 = ||x||_2 \quad \forall x \in \mathbb{C}^n$, to U унитарная. Доказательство оставляется в качестве упражнения.

Утверждение 2. Для любой $A \in \mathbb{C}^{m \times n}$ и любых унитарных $U \in$ $\mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ справедливо:

$$||UAV||_F = ||A||_F,$$

 $||UAV||_2 = ||A||_2.$

Доказательство. Доказательство для $\|\cdot\|_F$ следует из формулы $||A||_F^2 = \operatorname{trace}(A^*A)$ и перестановочности матриц под сле-

Докажем для $\|\cdot\|_2$:

$$\begin{aligned} \|UAV\|_2 &= \sup_{x \neq 0} \frac{\|UAVx\|_2}{\|x\|_2} \overset{(\text{Y}_{\text{TB}.1})}{=} \sup_{x \neq 0} \frac{\|AVx\|_2}{\|Vx\|_2} = \\ &\stackrel{y = Vx}{=} \sup_{y \neq 0} \frac{\|Ay\|_2}{\|y\|_2} = \|A\|_2. \end{aligned}$$

Благодаря невырожденности Vвекторы x и y = Vx пробегают все \mathbb{C}^n , а значит на супремум замена переменных не повлияет.

4 Разложение Шура

Собственное разложение и жорданова форма 4.1

Давайте вспомним некоторые разложения из классического курса линейной алгебры. Во-первых, запишем собственное разложение матрицы $A \in \mathbb{C}^{n \times n}$:

$$A = S\Lambda S^{-1}$$
,

где $S=[s_1,\ldots,s_n]\in\mathbb{C}^{n\times n}$ — невырожденная матрица, столбцы которой являются собственными векторами матрицы А, а $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ — матрица, на диагонали которой стоят собственные значения А. Действительно:

$$A = S\Lambda S^{-1} \iff AS = S\Lambda \iff As_i = \lambda_i s_i, i = 1, \dots, n.$$

Собственное разложение существует не для любой квадратной матрицы. Однако любую квадратную матрицу можно привести к жордановой нормальной форме (ЖНФ):

$$A = PJP^{-1}$$
.

где $P \in \mathbb{C}^{n \times n}$ — некоторая невырожденная матрица, а $J \in$ $\mathbb{C}^{n \times n}$ — блочно-диагональная матрица вида

$$J = \begin{bmatrix} J_{n_1}(\lambda_1) & & & \\ & \ddots & & \\ & & J_{n_m}(\lambda_m) \end{bmatrix}, \quad J_{n_k}(\lambda_k) = \begin{bmatrix} \lambda_k & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_k \end{bmatrix}_{n_k \times n_k},$$

где $n_1+\cdots+n_m=n$, n_k — алгебраическая кратность собственного значения λ_k . ЖНФ является полезным инструментом при теоретическом анализе во многих приложениях, например, при анализе систем дифференциальных уравнений, матричных функций, итерационных процессов и т.д. Несмотря на это, ее применение в вычислениях является ограниченным. Одним из неприятных свойств является то, что любую матрицу можно диагонализовать, возмутив ее элементы сколько угодно малым образом. Это означает, что сколь угодно малые изменения в матрице могут привести к большим изменениям в ЖН Φ : J может стать диагональной при возмущении.

4.2 Разложение Шура

В вычислениях, например, при вычислении матричных функций используется другое разложение — разложение Шура. Оказывается, любая квадратная матрица подобна верхнетреугольной, и более того, это подобие унитарное. Справедлива следующая теорема:

Теорема 1 (Разложение Шура). Для любой матрицы $A \in \mathbb{C}^{n \times n}$ найдется унитарная $U \in \mathbb{C}^{n \times n}$ и верхнетреугольная матрица $T \in \mathbb{C}^{n \times n}$, такие что

$$A = UTU^*$$

причем на диагонали T находятся собственные значения A.

Доказательство. Будем доказывать теорему по индукции. Для n=1 доказательство очевидно. Пусть теорема доказана для матриц порядка n-1. Так как мы рассматриваем поле комплексных чисел, то у любой матрицы найдется как минимум одна собственная пара:

$$Av_1 = \lambda_1 v_1, \quad ||v_1||_2 = 1.$$

Рассмотрим матрицу $V=[v_1,v_2,\ldots,v_n]\in\mathbb{C}^{n\times n}$, где v_2,\ldots,v_n выбраны так, чтобы столбцы матрицы V были ортонормированы. Значит, V — унитарная (Секция 3). Получим:

$$V^*AV = \begin{bmatrix} v_1^* \\ \dots \\ v_n^* \end{bmatrix} \begin{bmatrix} Av_1 & \dots & Av_n \end{bmatrix} = \begin{bmatrix} v_1^*Av_1 & \dots & v_1^*Av_n \\ \vdots & \ddots & \vdots \\ v_n^*Av_1 & \dots & v_n^*Av_n \end{bmatrix}.$$

Так как $Av_1=\lambda_1v_1$ и $v_1\perp v_i$ при $2\leq i\leq n$, матрица V^*AV имеет следующий вид:

$$V^*AV = \begin{bmatrix} \lambda_1 & \star \\ 0 & A_1 \end{bmatrix}.$$

Рассмотрим матрицу

$$A(\varepsilon) = \begin{bmatrix} 0 & 1 \\ 0 & \varepsilon \end{bmatrix},$$

у которой при $\varepsilon > 0$ два разных с.з.: 0 и ε , а значит матрица диагонализуема. Однако при $\varepsilon=0$ матрица не является диагонализуемой.

Напомним, что квадратные матрицы A, B одного размера называются подобными, если существует S:

$$A = SBS^{-1}.$$

Обратите внимание, что $A = UTU^* = UTU^{-1}$ в силу унитарности U, а значит матрицы A и T подобны.

Символом "*" мы будем обозначать не интересующие нас элементы в матрице. Будем также писать 0, подразумевая некоторую нулевую подматрицу подходящего размера. В данном случае 0 является вектором-столбцом длины n-1.

$$V^*AV = \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} \lambda_1 & \star \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}^*.$$

Вводя обозначение

$$U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}, \quad T = \begin{bmatrix} \lambda_1 & \star \\ 0 & T_1 \end{bmatrix},$$

получаем искомое разложение $A=UTU^*$.

На диагонали у T могут стоять только собственные значения A, так как матрицы подобны, и собственные значения треугольных матриц расположены на диагонали.

Замечание 2. Разложение Шура можно записать и над \mathbb{R} , но с небольшой модификацией. Для любой $A \in \mathbb{R}^{n \times n}$ справедливо

$$A = UTU^{\mathsf{T}},$$

где $U \in \mathbb{R}^{n \times n}$ – ортогональная, а T – блочно-верхнетреугольная:

$$T = \begin{bmatrix} T_{11} & T_{12} & \dots & T_{1m} \\ 0 & T_{22} & \dots & T_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & T_{mm} \end{bmatrix} \in \mathbb{R}^{n \times n},$$

где T_{ii} , $i=1,\ldots,m$ являются блоками размера 1×1 или 2×2 .

Список литературы

- [1] Е. Е. Тыртышников. Методы численного анализа. Академия, 2007.
- [2] Е. Е. Тыртышников. Матричный анализ и линейная алгебра. Физматлит, 2007.
- [3] G.H. Golub and C.F. Van Loan. *Matrix Computations, 4th Edition.* The Johns Hopkins University Press, Baltimore, 2013.
- [4] https://github.com/oseledets/nla2020.

Несложно убедиться, что произведение унитарных матриц P и Q также является унитарной:

$$(PQ)^*(PQ) = Q^*P^*PQ = Q^*Q = I.$$