論理と計算

第9回

論理プログラム:発展

担当:尾崎 知伸

ozaki.tomonobu@nihon-u.ac.jp

講義予定 ※一部変更(前倒し)になる可能性があります

09/22	01. オリエンテーション と 論理を用いた問題解決の概要
09/29	02. 命題論理:構文・意味・解釈
10/06	03. 命題論理:推論
10/13	04. 命題論理: 充足可能性問題
10/20	05. 命題論理:振り返りと演習 (課題学習)
10/27	06. 述語論理:構文・意味・解釈
11/03	07. 述語論理:推論 ※文化の日,文理学部授業日
11/10	08. 述語論理:論理プログラムの基礎
11/17	09. 述語論理:論理プログラムの発展
11/24	10. 述語論理:振り返りと演習 (課題学習)
12/01	11. 高次推論: 発想推論
12/08	12. 高次推論:帰納推論の基礎
12/15	13. 高次推論:帰納推論の発展
12/22	14. 高次推論:振り返りと演習 (課題学習)
01/19	15. まとめと発展的話題

目次:今回の授業の内容

- 標準論理プログラムに対する安定モデルの導出アルゴリズム
- 解集合プログラミング
 - 一貫性制約 と その標準論理プログラムへの変換
 - 選択ルール と その標準論理プログラムへの変換
 - 基数制約 とその標準論理プログラムへの変換
 - 条件付きリテラル
 - 短縮表記
 - 算術計算
 - 最適化
- 例題
 - グラフの頂点彩色(SATとの違いを体験しよう)
 - N人の女王(SATとの違いを体験しよう)
 - 数独
 - クリーク抽出(安定モデル=問題の解を意識しよう)
 - ハミルトン閉路(安定モデル=問題の解を意識しよう)

安定モデルの導出アルゴリズム

標準論理プログラムの安定モデルの導出

- ナイーブな方法:エルブラン基底のべき集合を一つずつ調べる
 - エルブラン基底のサイズが|B|のとき、べき集合のサイズは $2^{|B|}$ 、非現実的
 - →安定モデルとReductの最小モデルの関係を利用する
- ・性質1:標準論理プログラムPとアトム集合S1, S2に対し,以下の関係が成立
 - $S1 \subseteq S2 \Rightarrow P^{S2} \subseteq P^{S1} \Rightarrow Cn(P^{S2}) \subseteq Cn(P^{S1})$
 - (S1がS2の部分集合であれば、 P^{S2} は P^{S1} の部分集合となり、 P^{S2} の最小モデルは P^{S1} の最小モデルの部分集合となる)
- 性質 2: 性質 1 より, Pの安定モデルXに対し, 以下の関係1-3が成立
 - 1. $L \subseteq X \Rightarrow X \subseteq Cn(P^{L})$
 - 2. $X \subseteq U \Rightarrow Cn(P^U) \subseteq X$
 - 3. $L \subseteq X \subseteq U \Rightarrow (L \cup Cn(P^{U})) \subseteq X \subseteq (U \cap Cn(P^{L}))$
 - 意図:安定モデルXがLとUの間 ⇒ 安定モデルXは (∠∪Cn(P^U)) と
 (U∩Cn(P^L))の間

X==Cn(P^X) に注意

- なお $L \subseteq (L \cup Cn(P^U)) \subseteq X \subseteq (U \cap Cn(P^L)) \subseteq U$ なので、Xの範囲を $(L \subseteq X \subseteq U \cap G)$ さらに絞ることが可能
- ※それぞれの性質を読み解き、また証明してみよう.

標準論理プログラムの安定モデルの導出

- 関数expand(P, L, U):
 - 性質2-3を繰り返し適用してL,Uを更新:Pの安定モデルXの範囲を絞れるだけ絞る
 - $L \subseteq X \subseteq U \Rightarrow (L \cup Cn(P^{U})) \subseteq X \subseteq (U \cap Cn(P^{L}))$
 - 結果がL == U なら、Lが安定モデル
 - ・ 結果がL⊈U なら、安定モデルは存在しない
 - 結果が上記以外なら、Xの範囲は $L \subseteq X \subseteq U$
 - $\rightarrow L \subseteq X \subseteq U$ の範囲を探す = expandの繰り返し
 - = アルゴリズムsolve
- アルゴリズム solve(P, L, U)
 - expandを用いた安定モデル導出アルゴリズム
 - 最初の呼び出し: L = { }, U = P中のアトム集合
 - solve(P, L∪{a}, U): aを含む安定モデルを探す
 - solve(P, *L*, *U*-{*a*}):aを含まない安定モデルを探す

```
def solve(P, L, U)

(L, U) := expand(P, L, U)

if L \nsubseteq U then return

if L == U then print L

else choose a \in U-L

solve(P, L \cup \{a\}, U)

solve(P, L, U-\{a\})
```

```
def expand( P, L, U )
while( true ):
L\_org := L
U\_org := U
L := L \cup Cn(P^{U\_org})
U := U \cap Cn(P^{L\_org})
if L == L\_org and U == U\_org
then break
t = U \cap C \cap (L, U)
```

導出の例

```
solve(P, { }, {a, b})
   expand(P, L=\{ \}, U=\{ a, b \} )
      L org = \{ \}. U org = \{ a,b \}
      P^{L_{org}} = \{a., b.\}, Cn(P^{L_{org}}) = \{a, b\}
      P^{U_{org}} = \{ \}, \quad Cn(P^{U_{org}}) = \{ \},
      L = \{ \} \cup \{ \} = \{ \} \cup \{ \} = \{ a,b \} \cap \{ a,b \} = \{ a,b \}.
  I = \{ \}, U = \{a,b\}
   aを選択①:L = {} ∪{a}, U={a.b}
   solve(P. {a}, {a,b})
      expand(P, L=\{a\}, U=\{a,b\})
         L_{org} = \{a\}, U_{org} = \{a,b\}
         P^{L_{org}} = \{a, \}, Cn(P^{L_{org}}) = \{a\}
         PU_{org} = \{ \} Cn(PU_{org}) = \{ \}
         L=\{a\} \cup \{\} = \{a\}, U = \{a,b\} \cap \{a\} = \{a\}
         L org = \{a\}, U org = \{a\}
         P^{L_{org}} = \{a\}. Cn(P^{L_{org}}) = \{a\}
         P^{U_{org}} = \{a\}, Cn(P^{U_{org}}) = \{a\}
         L = \{a\} \cup \{a\} = \{a\}, U = \{a\} \cap \{a\} = \{a\},\
      L = \{a\}. U = \{a\} \downarrow \emptyset print \{a\}
```

a :- not b. b :- not a.

aを選択②:L = {}, U={a,b}-{a}={b} solve(P, {}, {b}) expand(P, L={}, U={b}) L_org = {}, U_org = {b} P^{L_org} = {a., b.}, Cn(P^{L_org}) = {a, b} P^{U_org}={b}, Cn(P^{U_org}) = {b} L={} \cup {b} = {b}, U = {b} \cap {a,b} = {b}
$$P^{L_org}={b}, Cn(P^{L_org}) = {b}$$
 $P^{L_org}={b}, Cn(P^{L_org}) = {b}$ $P^{L_org}={b}, Cn(P^{L_org}) = {b}$ $P^{U_org}={b}, Cn(P^{U_org}) = {b}$ $P^{U_org}={b}, Cn(P^{U_org}) = {b}$ $P^{U_org}={b} \cup {b} = {b}, U = {b} \cap {b} = {b}, U = {b} \cup {b} = {b}, U = {b} \cap {b} = {b}, U = {b} \cap {b} = {b}, U = {b}, U = {b} \cap {b} = {b}, U = {b}, U = {b} \cap {b} = {b}, U = {b}, U = {b} \cap {b} = {b}, U =$

a:- not a.

```
solve(P. { }, {a})
                     expand(P, L=\{ \}, U=\{ a \})
                                        L org = \{ \}. U org = \{ a \}
                                        P^{L_{org}} = \{a\}, Cn(P^{L_{org}}) = \{a\}
                                         P^{U_org} = \{ \}, Cn(P^{U_org}) = \{ \},
                                        L = \{ \} \cup \{ \} = \{ \} \cup \{ \} = \{ a \} \cap \{ a \} = \{ a \}.
                  L = \{ \}, U = \{a\}
                     aを選択①:L = {} ∪ {a}, U={a}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         aを選択②:L = {}, U={a}-{a} = {}
                     solve(P. {a}, {a})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         solve(P, {}, {})
                                        expand(P. L=\{a\}. U=\{a\})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              expand(P. L=\{\}). U=\{\})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L org = \{\}, U_org = \{\}
                                                            L org = \{a\}. U org = \{a\}
                                                            P^{L_{org}} = \{\}, Cn(P^{L_{org}}) = \{\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P^{L_{org}} = \{a\}, Cn(P^{L_{org}}) = \{a\}
                                                            PU_{org} = \{ \}, Cn(PU_{org}) = \{ \}, \}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P^{U_{org}} = \{a\}, C_n(P^{U_{org}}) = \{a\},\
                                                            L = \{a\} \cup \{\} = \{a\}, U = \{a\} \cap \{\} = \{\}\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L = \{\} \cup \{a\} = \{a\}, U = \{\} \cap \{a\} = \{\}\}
                                                            L org = \{a\}. U org = \{\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               L org = \{a\}, U org = \{\}
                                                            P^{L_{org}} = \{\}. Cn(P^{L_{org}}) = \{\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PL_{org} = \{\}. Cn(PL_{org}) = \{\}
                                                            P^{U_{org}} = \{a\}, C_n(P^{U_{org}}) = \{a\},\
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P^{U_{org}} = \{a\}, C_n(P^{U_{org}}) = \{a\},\
                                                            L = \{a\} \cup \{a\} = 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 L = \{a\} \cup \{a\} = 
                                         L=\{a\}, U=\{\} return
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              L=\{a\}. U=\{\} return
```

解集合プログラミング

解集合プログラミング (Answer set programming)

- Answer Set Programming (ASP)
 - ASP = Database + Logic Program + Knowledge Representation + SAT
 - 解集合プログラミング = データベース +論理プログラム + 知識表現 + 充足可能性問題
- 論理に基づくプログラミング
 - 入力: (関数フリーで安全な) 一般拡張選言プログラム + α (数量を扱うための拡張など)
 - 関数フリー:項に関数記号を含まない
 - 安全:頭部リテラル中の変数 及び 本体部の負リテラル中の変数は、本体部の正リテラルにも現れる
 - 非安全な節の例:p(A, B, C):-q(B), not r(C), not s(B,D). #A, C, Dが非安全
 - 出力:解集合(の集合)
- 基本構文の要素
 - 一般拡張選言プログラム
 - 一貫性制約(→標準論理プログラムへ変換)
 - 選択ルール (→標準論理プログラムへ変換)
 - ・ 基数制約 (→標準論理プログラムへ変換)
 - 条件付きリテラル
 - ・ 短縮表記 (→表記上の工夫)
 - 算術計算
 - 最適化

一貫性制約(integrity constraint)

- 以下の形式をしたルール(=ヘッドが空のルール)を一貫性制約と呼ぶ
 - $\leftarrow A_{l+1}, ..., A_m, \text{ not } A_{m+1}, ..., \text{ not } A_n \quad (A_1, ..., A_n \bowtie \mathcal{T} \vdash \Delta)$
 - ボディが成り立つとヘッド=矛盾が成り立つ →ボディが成り立ってはいけない
 - :- color(X, C1), color(X, C2), C1!= C2. (Xの色が, C1, C2の両方であってはいけない)
 - デフォルトの否定notと組合せ
 - :- not p. $(pが成り立たないとNG \rightarrow pが成り立たなければいけない) <math>p \in \text{eds}$ $p \in \text{eds$

- 注意:変数を含む制約には注意が必要
 - 変数を含むルール・制約は基礎化される
 - 基礎化された制約すべてを満たす必要がある(一つでも違反すると矛盾が導かれる)
 - クリークの例で確認します(後述)
- 標準論理プログラムへの変換
 - 変換前: $\leftarrow A_{l+1}, ..., A_m$, not $A_{m+1}, ..., not A_n$
 - 変換後: $x \leftarrow A_{l+1}, ..., A_m$, not A_{m+1} , ..., not A_n , not x (xは新たなアトム)

p ← not p. は安定モデルを持たない.

 $x \leftarrow y$, not x は, yが真のときに機能し, モデルを破棄する

※前処理:標準論理プログラムへの変換

※後処理:モデル表示時に、新たに導入したアトムを除去(制約の場合は不要)

選択ルール(choice rule)

- 以下の形式をしたルール({}でヘッドを囲んだルール)を選択ルールと呼ぶ

 - ・ ボディが成り立つとき $\{A_1; ...; A_m\}$ の部分集合のうち少なくとも一つがモデルに含まれる
 - すなわち、 $\{A_1; ...; A_m\}$ のうち 0 個以上のアトムがモデルに含まれる
 - ・ 後ほど、サイズL以上U以下の部分集合が成り立つ
- 例:{ color(X,red); color(X,blue); color(X, green)} :- node(X).
 - ノードXの色は、赤、青、緑 (複数の色を持っていても構わない)
- 標準論理プログラムへの変換
 - 部分集合を考える \Rightarrow 「それぞれの A_i が成り立つ,もしくは成り立たない」
 - 変換前: $\{A_1; ...; A_m\} \leftarrow A_{m+1}, ..., A_n$, not $A_{n+1}, ..., not A_o$
 - 変換後: $A' \leftarrow A_{m+1}, ..., A_n$, $not \ A_{n+1}, ..., not \ A_o$ ※ $A', A'_1 \cdots A'_m$ は新たなアトム $A_1 \leftarrow A'$, $not \ A'_1$. $A'_1 \leftarrow not \ A_1$. (ルール毎に準備する)

 $A_m \leftarrow A'$, not A'_m . $A'_m \leftarrow not A_m$.

 $\{ A \leftarrow \text{not B.} \}$

 $B \leftarrow \text{not A.}$ は、2つの安定モデル $\{A\}$ 、 $\{B\}$ を持つ。すなわち $\{A,B\}$ から一つを選択する上記の変換では、各頭部アトム A_i に対し、条件A'の下で $\{A_i,A'_i\}$ から一つを選択する

基数制約では,頭部,本体部それぞれに 上限と下限を指定できます

基数制約(1) (cardinality rules)

- 以下の形式をしたルール(本体部を{}で囲んだルール)を基数制約と呼ぶ
 - $A_0 \leftarrow l\{A_1; ...; A_m; not A_{m+1}; ..., not A_n\}$ $(A_0, ..., A_n$ はアトム, $1 \leq m \leq n$, l は非負整数)
 - /個以上の本体部リテラルが成り立つとき, 頭部 A_0 が成り立つ
- 例:pass(c42):-2 { pass(a1); pass(a2); pass(a3) }.
 - 課題 a1, a2, a3のうち2つ以上を満たすと、コース c42 に合格する
- 標準論理プログラムへの変換
 - ctrl(i, j):i番目以降のアトムのうち,少なくともj個が成立する
 - 変換前: $A_0 \leftarrow l \{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}$
 - 変換後: $A_0 \leftarrow ctrl(1,l)$ [本体部の1番目以降のアトムのうち,少なくとも/個が成立するなら A_0] ctrl(n+1,0). [n+1番目以降では(本体部リテラルがないので)0個のアトムが成立]

$$ctrl(i, k + 1) \leftarrow ctrl(i + 1, k), A_i \qquad (1 \le i \le m, \ 0 \le k \le l)$$

$$ctrl(i, k) \leftarrow ctrl(i + 1, k) \qquad (1 \le i \le m, \ 0 \le k \le l)$$

$$ctrl(j, k + 1) \leftarrow ctrl(j + 1, k), not \ A_i \quad (m + 1 \le j \le n, \ 0 \le k \le l)$$

$$ctrl(j,k) \leftarrow ctrl(j+1,k) \qquad (m+1 \le j \le n, \ 0 \le k \le l)$$

i+1番目以降で最低k個成り立つ(ctrl(i+1, k))かつ i番目が成り立つ(Ai)ならば i番目以降では最低k+1個成り立つ j+1番目以降で最低k個成り立つ(ctrl(j+1, k))なら (j番目の成否に関係なく) i番目以降では最低k個成り立つ

 $\rightarrow 0\{A_1; ...; A_m\}m \leftarrow A_{m+1}; ...; A_n; not A_{n+1}; ...; not A_n$

基数制約

```
変換前: c:-1 { a; b }. (I = 1, m = 2, n = 2)
変換後:
  c := ctrl(1,1).
  ctrl(3,0).
  \# k=0, i=1
  ctrl(1,1) := ctrl(2,0), a.
  ctrl(1,0) := ctrl(2,0).
  \# k=1, i=1
  ctrl(1,2) := ctrl(2,1), a.
  ctrl(1,1) := ctrl(2,1).
  \# k=0, i=2
  ctrl(2,1) := ctrl(3,0), b.
  ctrl(2,0) := ctrl(3,0).
  \# k=0, i=2
  ctrl(2,2) := ctrl(3,1), b.
  ctrl(2,1) := ctrl(3,1).
```

基数制約(2)

- 本体部リテラルに対する上限
 - $A_0 \leftarrow l\{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}u$ $(A_0, ..., A_n$ はアトム, $1 \le m \le n, l \le u$ は非負整数)
 - / 個以上 u 個以下の本体部リテラルが成り立つとき, 頭部 A_0 が成り立つ
- 標準論理プログラムへの変換
 - 変換前: $A_0 \leftarrow l \{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}u$
 - 変換後: $A_0 \leftarrow B$, not C

 $B \leftarrow l \{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}$ $C \leftarrow u + 1 \{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}$ ※ B, C新たなアトム (ルール毎に準備する)

- 頭部に対する制約
 - $l\{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}u \leftarrow A_{n+1}, ..., A_o, not A_{o+1}, ..., not A_p$ $(A_1, ..., p$ はアトム, $0 \le m \le n \le o \le p$, $l \le u$ は非負整数)
 - 本体部が成り立つとき、/個以上 u個以下の頭部リテラルが成り立つ
 - 1{ color(X,red); color(X,blue); color(X, green)}1:- node(X). ノードの色は赤青緑のどれか一つ
- 標準論理プログラムへの変換
 - 変換前: $l\{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}u \leftarrow A_{n+1}, ..., A_o, not A_{o+1}, ..., not A_p$
 - 変換後: $B \leftarrow A_{n+1}, ..., A_o$, not $A_{o+1}, ..., not A_p$

$$\{A_1; \ldots; A_m\} \leftarrow B$$

$$C \leftarrow l \{A_1; ...; A_m; not A_{m+1}; ...; not A_n\}u$$

$$\leftarrow$$
 B, not C.

本体部が成り立ち (B)かつ頭部の条件を満たさない (not C)はNG

条件付きリテラル(conditional literals)

- 以下の形式のリテラルを条件付きリテラルと呼ぶ
 - $l: l_1, ..., l_n (l, l_1 ... l_n はリテラル, 0 \leq n)$
 - リテラルの横に、条件 $l_1 \sim l_n$ を:でつなげたもの
 - 集合 $\{l \mid l_1, ..., l_n\}$ の要素の連言を表す
- ・例:{ color(blue). color(yellow). color(red).}のとき color(v1, C): color(C). → color(v1,blue); color(v1,yellow); color(v1,red). #ヘッドは選言 1 { color(v1, C): color(C) } 1:- vertex(v1). → 1{ color(v1,blue); color(v1,yellow); color(v1,red) } 1:- vertex(v1).
 - :- color(v1,C): color(C) → :- color(v1,blue), color(v1,yellow), color(v1,red). #ボディは連言 ※「v1が何かの色ならNG」ではなく「v1がblue,yellow,redを持ったらNG」となるので注意

```
node(x). color(a). color(b).
1 { n(N,C):color(C) } 1:- node(N).

→
1 { n(N,a); n(N,b) } 1:- node(N).

→
1 { n(x,a); n(x,b) } 1:- node(x).

→安定モデル { n(x,a) }, {n(x,b) }
```

```
node(x). color(a). color(b).
1 { n(N,C) } 1:- node(N), color(C).

→
1 { n(x,a) } 1:- node(x), color(a).
1 { n(x,b) } 1:- node(x), color(b).

→ 安定モデル {n(x,a), n(x,b) }
```

短縮表記 · 整数演算

- 短縮表記:述語内の「項」に対するセミコロン、整数のインターバル
 - ・ セミコロンまでを1つ単位とし、それぞれを述語名で囲む
 - p(a;b). ··· p(a). p(b).
 - p(a, b; x, y). ... p(a, b). p(x, y).
 - p(a, b; c; d, e, f). · · · p(a, b). p(c). p(d, e, f).
 - ドットx2で、整数範囲を示す
 - p(1.3). · · · p(1). p(2). p(3).
 - p(1..2, 5..6). ··· p(1,5). p(1,6). p(2,5). p(2,6).
 - 両者を組み合わせることも可能
 - p(1 .. 2; a; b; 10, 11). ··· p(1). p(2). p(a). p(b). p(10, 11).
- 比較演算:=, !=, <, >, <=, >=
- 整数演算:+,-,*,/,**
 - 整数に対する演算

```
p(1..3).

q(Y):-p(X), Y = X * 2.

r(X,Y):-p(X), q(Y), X > Y.

s(X+Y):-r(X,Y).

t(X/Y):-r(X,Y).

\rightarrow 解集合

{ p(1), p(2), p(3), q(2), q(4), q(6), r(3,2), s(5), t(1) }
```

※弱い制約は複数準備することができる

最適化

- やりたいこと:安定モデルに対する順序付け
- 弱い制約 (weak constraint) : なるべく満たしてはいけない条件
 - cf. 一貫性制約:絶対に満たしてはいけない条件
- 以下の形式をしたルール (=ヘッドが空のルール) を一貫性制約と呼ぶ
 - •: $\sim A_{l+1}, ..., A_m$, not A_{m+1} , ..., not A_n . [w, $t_1, ..., t_s$] $(A_1, ..., A_n$ はアトム, $t_1, ..., t_s$ は項)
 - t1…ts に関して、ルール(制約)が成立するとき、コスト(ペナルティ)wが発生する
 - モデルに対するペナルティは、成立する弱い制約のコストの総和(小さい方が嬉しい)

```
hotel(1..3). % 3つのホテルがある
cost(X, X*10):- hotel(X). %各ホテルのコストは ID * 10
noisy(X):- hotel(X), X != 3. %3番目のホテル以外はnoisy

2{ select(X): hotel(X)}2. %ホテルを2つ選ぶ

:~ select(X), noisy(X), cost(X, C). [C, X] % noisyなホテルXにペナルティCを設定
% Xに対してルールが成立するとコストCがかかる
% 変数を含むルールは, (複数のルールに)基礎化されることに注意
```

弱い制約がない場合は、以下の3つの安定モデルが得られる。このうち、コスト最小のものが出力される $\{ \text{hotel}(1) \text{ hotel}(2) \text{ hotel}(3) \text{ cost}(1,10) \text{ cost}(2,20) \text{ cost}(3,30) \text{ noisy}(1) \text{ noisy}(2) \text{ select}(2) \text{ select}(3) <math>\}$: コスト20 $\{ \text{hotel}(1) \text{ hotel}(2) \text{ hotel}(3) \text{ cost}(1,10) \text{ cost}(2,20) \text{ cost}(3,30) \text{ noisy}(1) \text{ noisy}(2) \text{ select}(1) \text{ select}(2) <math>\}$: コスト30 $\{ \text{hotel}(1) \text{ hotel}(2) \text{ hotel}(3) \text{ cost}(1,10) \text{ cost}(2,20) \text{ cost}(3,30) \text{ noisy}(1) \text{ noisy}(2) \text{ select}(1) \text{ select}(3) <math>\}$: コスト10

最適化

重みの和が最小になるように、隣接する2辺を選択する

```
edge(d, p, 18). edge(d, m, 20). edge(d, s, 26). edge(p, m, 7). edge(p, n, 38). edge(m, s, 14). edge(m, n, 34). edge(s, n, 36).

2 { select(X, Y) : edge(X, Y) } 2. %辺を2つ選択 node(X):- select(X, Y). %選択された辺の頂点を導出 node(Y):- select(X, Y). %選択された辺の頂点を導出 3 { node(X):select(X, Y) ; node(Y):select(X, Y) } 3. %導出ノード数は3
:~ select(X, Y), edge(X, Y, C). [C, X, Y] %導出辺に対するコスト
```

% select/2とnode/1のみを表示する #show select/2. #show node/1.

例題

これまでの資料より

解集合プログラミングシステム clingo

表記

- ";" 選言はセミコロン
- ", " 連言はカンマ
- " :- " ←はコロンマイナス (メダカマークですね)
- "not" デフォルトの否定はnot
- " " 論理否定(負リテラル)はマイナス
- 注意1:ボディが空の場合は、:- は記述しない。
- 注意2:各ルールは、"."で終わる。
- 使い方 \$ clingo 0 入力ファイル
 - clasp と同じ使い方(0 はすべてのモデルを表示するためのオプション)
 - Clingoは、基礎化器(grounder)gringoを用いてプログラムを基礎化&変換し、claspを用いて解集合を 求めている
- やってみよう1:clingoを用いて資料中の「安定モデルの例・解集合の例」を計算してみよう
- やってみよう2:以下のプログラムの解集合を計算し、だれが飛ぶのか確認しよう

```
fly(X) \leftarrow bird(X), not abnormal(X).
abnormal(X) \leftarrow penguin(X).
bird(john).
bird(tweety).
penguin(tweety).
```

```
ルール: { p; not p. }
clingo: p; not p.
ルール: { p. ¬ p }
clingo: p.
        -p.
ルール: { p ← not q.
        a ← not p. }
clingo: p:-not q.
        q:-notp.
```

グラフの頂点彩色

#show node color/2.

- 隣接する頂点同士が同じ色にならないように全頂点を彩色する
 - どんな(平面)グラフも、4色で塗り分けることができる
- ・プログラム
 - color(N): N は色である. node_color(X, C): ノードXの色はCである.
 - node(X): Xはノードである。edge(X, Y): XとYの間に辺がある。
 - 条件1:各ノードの色は一つ(チョイスルールで表現)
 - 条件2:隣接のノードが同じ色であってはいけない(一貫性制約で表現)

クリーク抽出

- グラフ中でサイズNの全結合グラフを抽出する
 - node(X): Xはノードである. edge(X, Y): XとYの間に辺がある.
 - in_clique(X): Xがクリークに含まれる.
 - クリークに含まれる(異なる)2頂点間には辺がある。
 - 辺がない場合は矛盾
 - ・ 下記で、X!= Y を忘れると、上手く動作しない
 - XとYが同じ定数に基礎化された場合、自己辺がないために、制約違反になる

```
3 { in_clique(X) : node(X) } . %今回は頂点数3のクリークを考えている:- in_clique(X), in_clique(Y), X != Y, not edge(X, Y).

%%%
node(1..4).
edge(X,Y):- edge(Y,X).
edge(1,2).
edge(2,4).
edge(2,3).
edge(3,4).

#show in_clique/1.
```

N人の女王

- n個のクイーンを、n×nのチェス盤に、お互いに取られないように並べる
 - queen(X, Y): セルX, Y にクイーンがいる
 - 制約1:同じ行(X), 違う列(Y1, Y2)にクイーンを配置してはいけない
 - 制約2:同じ列(Y), 違う行(X1, X2)にクイーンを配置してはいけない
 - 制約3:異なる行 (X1,X2) , 異なる列(Y1,Y2)でも, 斜めに2つのクイーンを配置しては いけない

```
n { queen(1..n, 1..n) } n.

:- queen(X, Y1), queen(X, Y2), Y1 != Y2.
:- queen(X1, Y), queen(X2, Y), X1 != X2.
:- queen(X, Y), queen(X1, Y1), X != X1, Y != Y1, |X-X1| = |Y-Y1|.
```

実行時に-cオプションを用いて定数nを指定する.

% clingo -c n=8 queen.lp

https://ja.wikipedia.org/wiki/エイト・クイーン より

数独

9つある各行, 9つある各列, 9つある3x3の各ブロックに1..9の数が1回ずつ埋める number(X): xは数 row(X): Xは行 col(Y): Yは列 cell(X, Y, N): セルX, Yの数はN square(S, X, Y): セルX, Y はブロックSに属する in_square(S,N): ブロックSは数Nを含む 制約1:同じ行(X), 違う列(Y1, Y2)にあるセルの数(N)が同じではいけない 制約2:同じ列(Y), 違う行(X1, X2)にあるセルの数(N)が同じではいけない

```
制約3:ブロックSは数Nを含んでいないといけない
number(1..9).
row(0..8).
square(s0, 0..2, 0..2). square(s1, 0..2, 3..5). square(s2, 0..2, 6..8). square(s3, 3..5, 0..2). square(s4, 3..5, 3..5). square(s5, 3..5, 6..8). square(s6, 6..8, 0..2). square(s7, 6..8, 3..5). square(s8, 6..8, 6..8).
```

:- cell(X, Y1, N), cell(X, Y2, N), Y1 != Y2. :- cell(X1, Y, N), cell(X2, Y, N), X1 != X2.

in_square(S, N):= square(S, X, Y), cell(X,Y,N).
:- number(N), square(S, X, Y), not in square(S, N).

(a) は http://puzzle.gr.jp で作成. (b) は藤原博文氏作

#show ce11/3.

田村他「SATとパズル」情報処理Vol.57, No.8, pp.710-715,2016. より

ハミルトン閉路

- 起点へ戻る一筆書き
 - node(X): Xはノードである. edge(X, Y): XとYの間に辺がある.
 - cycle(X,Y): XからYへ移動する
 - reachable(X):ノードXは到達可能
 - 起点 sからcycleでつながっているYは到達可能
 - 到達可能なXから、cycleでつながっているYは到達可能
 - 制約1:Xから移動できる場所はちょうど一ヶ所 (出次数=1)
 - 制約2:Xへ移動できる場所はちょうど一ヶ所(入次数=1)
 - 制約3:すべてのノードは到達可能でなければいけない。

```
1 { cycle(X, Y) : edge(X, Y) } 1 :- node(X).
1 { cycle(X, Y) : edge(X, Y) } 1 :- node(Y).
reachable(Y):- cycle(s, Y).
reachable(Y):- reachable(X), cycle(X, Y).
:- node(X), not reachable(X).
#show cycle/2.
```

実行時に-cオプションを用いて定数sを指定する. % clingo -c s=dresden hamilton.lp


```
node(dresden).
node(petersburg).
node(novosibirsk).
node(stavropol).
node(moscow).

edge(stavropol, novosibirsk).
edge(dresden, moscow).
edge(moscow, petersburg).
edge(dresden, petersburg).
edge(moscow, stavropol).
edge(dresden, stavropol).
edge(moscow, novosibirsk).
edge(petersburg, novosibirsk).
edge(Y, X) :- edge(X, Y).
```