PAT-NO:

JP411346078A

DOCUMENT-IDENTIFIER:

JP 11346078 A

TITLE:

ELECTRONIC DEVICE

PUBN-DATE:

December 14, 1999

INVENTOR-INFORMATION:

NAME

COUNTRY

NAKAJIMA, HIROAKI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FUJI ELECTRIC CO LTD

A/A

APPL-NO:

JP10152494

APPL-DATE:

June 2, 1998

INT-CL (IPC): H05K007/20

ABSTRACT:

PROBLEM TO BE SOLVED: To enable a cooling fan to be quickly replaced and easily changed in capacity without changing a cooling fan mounting pad.

SOLUTION: A first cooling fan 15 and a second cooling fan 19 provided to an electronic device are mounted on a common cooling fan mounting pad 30. The cooling fan mounting pad 30 is equipped with a first cooling fan mounting leg 37 and a second cooling fan mounting leg 33 which are so structured as to be capable of coping with a change in size and number of the cooling fans 15 and 19. A first and a second cooling fan mounting screw

hexagon nut insertion opening, 32 and 34, which are each conformable in size to a first and a second cooling fan mounting screw hexagon nut are provided to the cooling fan mounting legs 37 and 33 at mountable positions corresponding to the number of them.

COPYRIGHT: (C) 1999, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出廣公閱番号

特開平11-346078

(43)公開日 平成11年(1999)12月14日

(51) Int(1.º

量別記号

ΡI

H05K 7/20

H05K 7/20

G

審査請求 未請求 請求項の数3 OL (全8 頁)

(21)出職番号

特要平10-152494

(71)出頭人 000005234

省土電機株式会社

(22)出職日 平成10年(1998) 6月2日

神奈川県川崎市川崎区田辺新田 1番1号

(72)発明者 中嶋 宏明

神奈川県川崎市川崎区田辺新田1番1号

宫士司提供式会社内

(74)代理人 弁理士 養部 正治

(54) [発明の名称] 電子装置:

(57)【要約】

【課題】冷却ファンの交換が素早く行えるようにすると 共に、冷却ファン取付け台を変更せずに冷却ファンの容 量変更が容易に行えるようにする。

【解決手段】電子装置に備える第1冷却ファン15と第2冷却ファン19とは共通の冷却ファン取付け台30に取り付ける。この冷却ファン取付け台30には、前記第1冷却ファン15の大きさや数量が異なっても、また前記第2冷却ファンの大きさや数量が異なっても対応できる構造の第1冷却ファン取付け脚37と第2冷却ファン取付け脚33には、それぞれ第1冷却ファン15取付けねじ用六角ナットに適合した寸法の第1冷却ファン取付け用ナット挿入口32と、第2冷却ファン19取付けねじ用六角ナットに適合した寸法の第2冷却ファン取付け用ナット挿入口34を、台数に対応して取付けできる位置に設ける。

【特許請求の範囲】

【請求項1】大きな電力を消費して発熱する発熱部品 と、半導体素子とその関連部品でなる電子回路と、前記 発熱部品や電子回路へ冷却空気を送る冷却ファンと、こ れらを収納する箱体とで構成している電子装置におい

前記箱体には前記発熱部品の収納場所と前記電子回路の 収納場所とを区切る仕切り板を備え、前記発熱部品へ冷 却空気を送る第1冷却ファンと、前記電子回路へ冷却空 した台に取り付ける冷却ファン取付け台とを備えること を特徴どする電子装置。

【請求項2】請求項1に記載の電子装置において、 前記冷却ファン取付け台は、前記第1冷却ファンの大き さまたは数量が異なっていても取り付けることができる 第1冷却ファン取付け脚と、前記第2冷却ファンの大き さまたは数量が異なっていても取り付けることができる 第2冷却ファン取付け脚とを備えることを特徴とする電 子装置。

【請求項3】請求項1または請求項2に記載の電子装置 20 において、

前記冷却ファン取付け台に設ける第1冷却ファン取付け 脚は、前記第1冷却ファン取付け用ねじに適合する六角 ナットの対辺寸法と厚さ寸法とを断面が矩形状の溝の縦 寸法と横寸法にした構成の第1六角ナット用溝を、前記 第1冷却ファン取付け用ねじに対応した位置に設け、前 記冷却ファン取付け台に設ける第2冷却ファン取付け脚 は、前記第2冷却ファン取付け用ねじに適合する六角ナ ットの対辺寸法と厚さ寸法とを断面が矩形状の溝の縦寸 法と横寸法にした構成の第2六角ナット用溝を、前記第 30 2冷却ファン取付け用ねじに対応した位置に設けること を特徴とする電子装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、大きな発熱体と 電子回路とへ冷却空気を送る電子装置に関する。

[0002]

【従来の技術】商用電源に接続して所望の電圧と周波数 の交流電力を得るインバータ装置は、商用電力を直流電 力に変換するコンバータ回路と、このコンバータ回路が 40 が設けている。 出力する直流電力を所望の電圧と周波数の交流電力に変 換するインバータ回路とでなる。これらコンバータ回路 とインバータ回路はトランジスタなどの半導体スイッチ 素子で構成するのが一般的であるが、この半導体スイッ チ素子は電力変換の際に損失を発生して素子の温度を上 昇させる。特にパルス幅変調制御などの制御方法により 電力変換を行う場合は、半導体スイッチ素子を極めて高 頻度でスイッチング動作させるので、その発熱量も大き くなる。ところで半導体スイッチ素子は、周知のように

転ができなくなる。またその一方で半導体スイッチ素子 は熱容量が小さいから、この半導体スイッチ素子に冷却 空気を送るなどにより熱破壊を避ける対策が必要であ る。更にこれら半導体スイッチ素子は、適切な時点で適 切な業子を順次オン・オフ動作させることで電力変換を 行わせているので、このような制御のために電子部品で 構成した制御回路を備えているが、この制御回路も損失 を生じるので冷却が必要である。

【0003】そこで、以下では電子装置の例としてイン 気を送る第2冷却ファンと、これら各冷却ファンを共通 10 バータ装置を採り上げることとし、このインバータ装置 で本発明の詳細を説明する。この場合、発熱部品に相当 するのは半導体スイッチ素子であり、電子回路に相当す るのは制御回路であり、この制御回路は一般にプリント 板で構成している。また、第1冷却ファンは半導体スイ ッチ素子冷却用のファンであり、第2冷却ファンは制御 回路冷却用のファンとなる。

> 【0004】図9は従来のインバータ装置の外観を示し た外観図である。インバータ装置はこの図9に図示のよ うに箱体1に箱体取付け脚2を備えた壁掛け形の構造で あることが多い。壁掛け形箱体では、内部の保守・点検 は前面側からしか行えないから、前面側カバーを取り外 すと制御回路を搭載したアリント板があり、このアリン ト板を取り除くとその下には冷却フィンに取り付けられ た半導体スイッチ素子がある。箱体1の内部はこの半導 体スイッチ素子部分で前後に区切られており、図示して いない仕切り板 (図9では破線部分) が前後を区切って いる。この仕切り板よりも前側の箱体前部3には半導体 スイッチ素子やアリント板を収納しているから、前面関 カバーを開ければこれらの保守・点検や交換は簡単に行

> 【0005】一方冷却フィンは仕切り板よりも後ろの箱 体後部4に突出している。この箱体後部4は風洞になっ ていて、半導体スイッチ素子で発生した熱は前記風洞内 に突出している冷却フィンへ伝えられる。 箱体1の下部 に設置しているために図示することができない第1冷却 ファンが風洞内に送り込む冷却空気が、前記冷却フィン から熱を奪う。その結果暖かくなった空気は箱体1の上 部の冷却空気放出部から排出されるが、ここには異物が 落下して箱体1の内部へ侵入するのを防ぐための金網5

> 【0006】第2冷却ファン6は箱体前部3の上部に設 置してこの部分の空気を誘引することで、制御回路など から発生する熱を箱体1の外へ放出する。一般に制御回 路の発熱量は半導体スイッチ素子が発生する熱量に比べ ると少ないから、第2冷却ファン6で誘引する冷却用空 気は少量でよいことから、第2冷却ファン6は第1冷却 ファンよりも小容量である。

【0007】すなわち図9に図示のインバータ装置は、 箱体1の下側に設置した第1冷却ファンが風洞内へ冷却 その接合部温度が所定値を越えると熱破壊して装置の運 50 空気を送り込む押込み通風方式であって、第2冷却ファ

ン6は箱体1の上側に設置して箱体内部の空気を吸い出 す誘引通風方式であるが、第1冷却ファンを誘引通風方 式にすることもできるし、第2冷却ファンを押込み通風 方式にすることもできる。従って両冷却ファンを共に誘 引通風方式にすることも、共に押込み通風方式にするこ とも可能である。

【0008】図10は冷却ファンの取付けの第1従来例 を示した構造図である。この図10では、例えば第2冷 却ファン6は金属板を加工した冷却ファン取付け板7 ン取付け板7には増子9や図示していない冷却ファン用 の進相コンデンサも取付けた後、この冷却ファン取付け 板7をインバータ装置内に別のねじなどで取り付けるこ とになる.

【0009】図11は冷却ファンの取付けの第2従来例 を示した構造図である。この図11では、例えば第2冷 却ファン6は金属板を加工した冷却ファン取付け板10 にわじ11とナット12とで取り付けるが、必要に応じ てこの冷却ファン取付け板10には増子や進相コンデン サを取り付けることもあるのは前述と同様である。 [0010]

【発明が解決しようとする課題】インバータ装置は半導 体スイッチ素子とこれを制御する機器で構成していて、 全体として静止機器である。しかしながらこのインバー 夕装置からの発熱を除去する冷却ファンは可動部分を有 しているから、機械的な損耗を生じる。即ち寿命があ る。従って長時間の使用により、例えば軸受け部分が破 損するなどの故障により冷却ファンが停止することがあ る。前述したように半導体スイッチ素子の熱容量は極め て小さいから、冷却ファンが停止すれば短時間で熱破壊 30 に至る。よって、通常は冷却ファンの停止と同時に当該 インパータ装置の運転を中断させる保護装置を備えてお り、冷却ファンを新品と交換しなければ運転を再開でき ないようにしている.

【0011】それ故、インバータ装置の停止時間を極力 短縮するためには、冷却ファンを取り外して新品を取り 付ける作業を素早く行わなければならない。しかしなが ら大きな風量を必要とする第1冷却ファンと、これより も小風量の第2冷却ファンが別個の場所に異なる取付け 構造で取り付けられていることが多いので、これらを別 40 個に交換するには手間がかかる。またこれらのファンが 複数台の場合はその手間は更に増大するし、当該インバ ータ装置の停止時間がますます長くなってしまう不都合 を生じる。更に、インバータ装置内の狭い場所に複数の 冷却ファンやその進相コンデンサをその取付け板へねじ とナットで締めつけたり、電気回路を接続する作業には 手間がかってしまう不都合がある。

【0012】またインバータ装置の容量が変更になれば その発熱量も変化するので、第1冷却ファンと第2冷却 ファンの容量を変更しなければならない事態も生じる。 冷却ファンの容量が変更になればその外形寸法や取付け 寸法が変わるから、各冷却ファン取付け板も変更しなけ

ればならない不都合も生じる。そこでこの発明の目的 は、冷却ファンの交換が素早く行えるようにすると共 に、冷却ファン取付け台を変更せずに冷却ファンの容量 変更が容易に行えるようにすることにある。

[0013]

- 【謎頭を解決するための手段】前記の目的を達成するた。 めに、この発明の電子装置は、大きな電力を消費して発 へ、ねじ8で取り付けるが、必要に応じてこの冷却ファ 10 熱する発熱部品と、電子回路と、これらの発熱部品や電 子回路へ冷却空気を送る冷却ファンと、これらを収納す る箱体とで構成している電子装置において、前記箱体に は前記発熱部品の収納場所と前記電子回路の収納場所と を区切る仕切り板を備え、前記発熱部品へ冷却空気を送 る第1冷却ファンと前記電子回路へ冷却空気を送る第2 冷却ファンとを、両者に共通の冷却ファン取付け台に取 り付けるものとする。

> 【0014】この冷却ファン取付け台は、前記第1冷却 ファンの大きさまたは数量が異なっていても取り付ける ことができる第1冷却ファン取付け脚と、前記第2冷却 ファンの大きさまたは数量が異なっていても取り付ける ことができる第2冷却ファン取付け脚とを備えるものと する。前記第1冷却ファン取付け脚は、第1冷却ファン を取付けるねじに適合する六角ナットの対辺寸法と厚さ 寸法とが矩形状断面の溝の縦寸法と横寸法になっている 第1六角ナット用溝を、前記第1冷却ファン取付け用ね じに対応した位置に設ける。前記第2冷却ファン取付け 脚は、第2冷却ファンを取付けるねじに適合する六角ナ ットの対辺寸法と厚さ寸法とが矩形状断面の溝の縦寸法 と横寸法になっている第2六角ナット用溝を、前記第2 冷却ファン取付け用わじに対応した位置に設けるものと する.

[0015]

【発明の実施の形態】図1は本発明の第1実施例を表し た構造図であって、2台の第1冷却ファン15と1台の 第2冷却ファン19とを、これら各冷却ファンに共通の 冷却ファン取付け台30に取り付けた状態を表してい る。即ち第1冷却ファン15と第2冷却ファン19とは インバータ装置の上部に設置して冷却空気を装置内から 誘引する構成になっている。インバータ装置の上部に設 置すれば、このインバータ装置を配電盤などに収納した 場合でも、冷却ファンを取り外したり取付けたりするの が容易になるからである。しかし各冷却ファンをインバ ータ装置の下部に設置して冷却空気を押し込み通風する 構成であっても差し支えないのは勿論である。いずれの 場合でも、各冷却ファンはインバータ装置の上部または 下部に纏めて設置する。

【0016】第1冷却ファン15と第2冷却ファン19 とを纏めて設置するために、本発明では冷却ファン取付 50 け台30を使用する。この冷却ファン取付け台30には 第1冷却ファン15と第2冷却ファン19とを設置するための取付け脚を備えるが、これ以外にも進相コンデンサ20を取り付けるための取付け穴や、電線接続用の端子台31とその端子用金具21なども備える。なお符号16は第1冷却ファン15へ異物が侵入するのを防ぐ保護覆いであり、符号17と18は第1冷却ファン15を取り付けるためのねじとナットである。

【00-1-7】図2は本発明の第2実施例と第3実施例を一表した構造図であって、図1に図示の冷却ファン取付け 台30を図1と同じ方向から見た状態を表している。冷 10 却ファン取付け台30は合成樹脂成形品であって、上面 側には端子台31と、8個の第1六角ナット用溝としての第1冷却ファン取付け用ナット挿入口32と、それぞれに第2六角ナット用溝としての第2冷却ファン取付け 用ナット挿入口34を備えている6個の第2冷却ファン 取付け 開33と、2個の進相コンデンサ取付け六35と、2個の進相コンデンサ回り止め36とが設けてある。

【0018】8個の第1冷却ファン取付け用ナット挿入 口32は2種類の容量の第1冷却ファン15のいずれか 20 る。 を2台取付けることができるようにするためのものであ り、6個の第2冷却ファン取付け買33は第2冷却ファ ン19の1台または2台を取付けできるようにするため に設けている。ここでそれぞれの取付け用ナット挿入口 図8 32,34は、ナットの対辺寸法と厚み寸法とに適合し た寸法の矩形の穴であって、この矩形穴へナットを落と し込むと、当該ナットは回転できないから、このナット を押さえなくても、ナットへねじをねじ込むことができ る。 は、

【0019】図3は図2に図示の冷却ファン取付け台を 30 逆方向から見た状態で本発明の第2実施例と第3実施例を表した構造図である。図4は図2に図示の冷却ファン取付け台を端子台が手前にある状態で裏返して本発明の第2実施例と第3実施例を表した構造図である。冷却ファン取付け台30の裏面(下面部)には山形をした複数の第1冷却ファン取付け脚37が突出している。

【0020】図5は図2に図示の冷却ファン取付け台を 端子台が向こう側にある状態で裏返して(図4とは逆方向)本発明の第2実施例と第3実施例を表した構造図である。山形に突出している第1冷却ファン取付け脚37 40 には4個の第1冷却ファン取付け穴(小形用)38と第1冷却ファン取付け穴(大形用)39がある。これらの穴に冷却ファン取付けようねじを差し込み、このねじを前述した第1冷却ファン取付け用ナット挿入口32から落とし込まれたナットへねじ込むことで第1冷却ファン15を冷却ファン取付け台30へ取り付ける。このときナットは回転できないからねじのみを回転させればよいので、取付け作業は素早く円滑に行える。また、この第1冷却ファン取付け脚37には2個の進相コンデンサ用ナット挿入口40も設けてあり、この進相コンデンサ50

用ナット挿入口40を使用するナットの外形に合わせて 六角形状にしておけば、進相コンデンサ20の取付けも 作業も前述と同様に、楽早く且つ円滑に行える。

【0021】図6は図2に図示の冷却ファン取付け台を 真上からみた平面図である。 図7は冷却ファン取付け台 の断面で本発明の第2実施例と第3実施例を表した第1 断面図であって、図6の平面図におけるA-A部分を示 している。この図7において、冷却ファン取付け台3.0 の上面側には第2冷却ファン取付け用ナット挿入口34 を備えた第2冷却ファン取付け脚33が6個あるが、こ れらを左側から右へ向かってa, b, c, d, e, fと すると、第2冷却ファン19が1台のときはbとeを使 って取付け、第2冷却ファン19が2台のときはa, c で1台を取付け、d、fで他の1台を取り付ける。ま た、冷却ファン取付け台30の下面側に山形に突出して いる第1冷却ファン取付け脚37には、第1冷却ファン 取付け穴(小形用)38が4個と第1冷却ファン取付け 穴(大形用)39が4個設けられていて、第1冷却ファ ン15の大きさに対応して使用する取付け穴を選定す

【0022】図8は冷却ファン取付け台の別の断面で本発明の第2実施例と第3実施例を表した第2断面図であって、図6の平面図におけるB-B部分を示している。図8において、冷却ファン取付け台30の上面側には第2冷却ファン取付け開ナット挿入口34を備えた第2冷却ファン取付け関33が6個あるのは図7で既述した通りであるが、冷却ファン取付け台30の下面側に山形に突出している第1冷却ファン取付け過37の斜面部分には、進相コンデンサを取り付けるために2個の進相コンデンサ用ナット挿入口40を設けており、第1冷却ファンを取り付けるための第1冷却ファン取付け用ナット挿入口32も設けてある。

[0023]

【発明の効果】従来の電子装置では、動作に伴って大きな熱を発生する主回路用半導体スイッチ素子を冷却する、ための第1冷却ファンと、この半導体スイッチ素子の動作を制御する制御回路(発熱量は比較的に少ない)を冷却する第2冷却ファンとを別個に備えているので、保守・点検作業や交換作業に手間がかかり、各冷却ファンの取り付け台もその取付け場所やファン容量に対応した構造にする必要があるので、部品点数が多くなる欠点を有していた。

【0024】これに対して、本発明では冷却ファン取付け台にすべての冷却ファンとその付属品(進相コンデンサや端子台など)も一括して取り付けてしまう構造にしているので、この冷却ファン取付け台を電子装置から取り外せば、冷却ファンの保守・点検と交換の作業を広い場所で素早く行えるので、冷却ファンが故障した場合でも電子装置の停止時間を最小限度に止めることができる効果が得られる。更にこの冷却ファン取付け台は、冷却

ファン容量の変更や使用台数の変更に対応できる構造に しているので、電子装置が要求とする冷却能力が変化し ても、冷却ファン取付け台を変更せずにその要求に素早 く対応することができるから、部品点数の増加を即制で きる効果も合わせて得られる。

【図面の簡単な説明】

【図1】本発明の第1実施例を表した構造図

-【図2-】-本発明の第2実施例と第3実施例を表した構造

【図3】図2に図示の冷却ファン取付け台を逆方向から 10 9,31 端子台 見た状態で本発明の第2実施例と第3実施例を表した構 遊園

【図4】図2に図示の冷却ファン取付け台を端子台が手 前にある状態で裏返して本発明の第2実施例と第3実施 例を表した構造図

【図5】図2に図示の冷却ファン取付け台を端子台が向 こう側にある状態で裏返して(図4とは逆方向)本発明 の第2実施例と第3実施例を表した構造図

【図6】図2に図示の冷却ファン取付け台を真上からみ た平面図

【図7】冷却ファン取付け台の断面で本発明の第2実施 例と第3実施例を表した第1断面図

【図8】冷却ファン取付け台の別の断面で本発明の第2 実施例と第3実施例を表した第2断面図

【図9】従来のインバータ装置の外観を示した外観図

【図10】冷却ファンの取付けの第1従来例を示した構 固

【図11】冷却ファンの取付けの第2従来例を示した構

造図

【符号の説明】

- 1
- 2 取付け脚
- 3 箱体前部
- 4 箱体後部
- 5 金網
- -6---第2冷却ファン---
 - 7,10 冷却ファン取付け板
- - 15 第1冷却ファン
 - 16 保護覆い
 - 19 第2冷却ファン
 - 20 進相コンデンサ
 - 21 端子用金具
 - 30 冷却ファン取付け台
 - 32 第1六角ナット用溝としての第1冷却ファ

8

- ン取付け用ナット挿入口
- 33 第2冷却ファン取付け脚
- 34 第2六角ナット用溝としての第2冷却ファ ン取付け用ナット挿入口
 - 35 進相コンデンサ取付け穴
 - 36 進相コンデンサ回り止め
 - 37 第1冷却ファン取付け脚
 - 38 第1冷却ファン取付け穴(小形用)
 - 39 第1冷却ファン取付け穴(大形用)
 - 40 進相コンデンサ用ナット挿入口

【図1】

【図10】

【図2】

