

FCC RADIO TEST REPORT FCC ID: 2ADC7BBHFSPKR100

Product: Banana boat waterproof suction Bluetooth speaker

Trade Name: banana boat

Model Name: BBHFSPKR100

Serial Model: N/A

Prepared for

YongChangXing Group Co., Limited Zhongfang Industrial Park, The South Part Of Shatou, Chang'an, Dongguan City, GD, China

Prepared by

DongGuan Precise Testing Service Co.,Ltd.

Room 203-204, 2F, Xinye Building, No.67 Shijing, Guanzhang
Road, Dongguan, China

Report No.: PT1409298128F

TEST RESULT CERTIFICATION

Applicant's name	YongChangXing	Group Co	Limited

Address Zhongfang Industrial Park, The South Part Of Shatou, Chang'an,

Dongguan City, GD, China

Manufacture's Name... Dongguan YiYong Electronic Science and Technology Co., Ltd.

Address3rd Floor, No#6th, Ming Road#2, Wusha District, Chang'an

Town, Dongguan City, Guangdong Province, China

Product description

Product name Banana boat waterproof suction Bluetooth speaker

Model and/or type

referenceBBHFSPKR100

Serial Model N/A

In all, the original product and the alternative product are the same.

Standards FCC Part 15.247

Test procedure ANSI C63.10-2003

This device described above has been tested by PTS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTS, this document may be altered or revised by PTS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests 16, Oct. 2014 ~ 24, Oct. 2014

Test Result..... Pass

Testing Engineer :

Assistant

fores Sorg

Technical Manager:

Supervisor

Down d Liu

Authorized Signatory:

Jacky Ou /

Manager

2 Test Summary

Test Items	Test Requirement	Result	
	15.205(a)		
Spurious Radiated Emissions	15.209	PASS	
	15.247(d)		
Band edge Emissions	15.247(d)	PASS	
Conducted Emissions	15.207	PASS	
20dB Bandwidth	15.215c	PASS	
200B Balluwiutii	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	1 1207/h\/1\	PASS	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	FASS	

TABLE OF CONTENTS

2	TEST SUMMARY	3
3	GENERAL INFORMATION	5
	 3.1 GENERAL DESCRIPTION OF E.U.T. 3.2 DETAILS OF E.U.T. 3.3 CHANNEL LIST 3.4 DESCRIPTION OF SUPPORT UNITS 3.5 2TEST FACILITY 3.6 TEST LOCATION 	5 5 5 5 6 6
4	EQUIPMENT USED DURING TEST	7
	 4.1 EQUIPMENTS LIST 4.2 MEASUREMENT UNCERTAINTY 4.3 TEST EQUIPMENT CALIBRATION 	7 7 7
5	CONDUCTED EMISSION	8
	5.1 E.U.T. OPERATION5.2 EUT SETUP5.3 CONDUCTED EMISSION TEST RESULT	8 8 8
6	SPURIOUS RADIATED EMISSIONS	10
	 6.1 EUT OPERATION: 6.2 TEST SETUP 6.3 SPECTRUM ANALYZER SETUP 6.4 TEST PROCEDURE 6.5 CORRECTED AMPLITUDE & MARGIN CALCULATION 6.6 SUMMARY OF TEST RESULTS 	10 11 12 13 13
7	BAND EDGE MEASUREMENT	17
	7.1 TEST PROCEDURE7.2 TEST RESULT:	17 18
8	20 DB BANDWIDTH MEASUREMENT	21
	8.1 Test Procedure:8.2 Test Result:	21 21
9	MAXIMUM PEAK OUTPUT POWER	26
	9.1 TEST PROCEDURE: 9.2 TEST RESULT:	26 26
10	HOPPING CHANNEL SEPARATION	32
	10.1 TEST PROCEDURE: 10.2 TEST RESULT:	32 32
11	NUMBER OF HOPPING FREQUENCY	38
	11.1 Test Procedure:11.2 Test Result:	38 38
12	DWELL TIME	40
	12.1 TEST PROCEDURE: 12.2 TEST RESULT:	40 40
13	ANTENNA REQUIREMENT	56

3 General Information

3.1 General Description of E.U.T.

Product Name : Banana boat waterproof suction Bluetooth speaker

Model No. : BBHFSPKR100

Brand Name : banana boat

Model Description : N/A

Operation Frequency : 2402MHz ~ 2480MHz,79 channels in total, separated by 1MHz

Report No.: PT1409298128F

Type of Modulation: GFSK, Pi/4DQPSK, 8DPSK

Oscillator : 26MHz for RF module

Antenna installation : PCB Printed Antenna

Antenna Gain : 0dBi

3.2 Details of E.U.T.

Technical Data : (1)DC 3.7V from battery

(2)AC 100-240V, 0.5A

3.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

3.4 Description of Support Units

No.	Equipment	Manufacturer	Model No.	Serial No.
1.	N/A	N/A	N/A	N/A

3.5 2Test Facility

The test facility has a test site registered with the following organizations:

NTEK Testing Technology Co., Ltd

Add.:1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

Report No.: PT14092980128F

FCC Registration No.:238937; IC Registration No.:9270A-1

CNAS Registration No.:L5516

3.6 Test Location

All the tests were performed at:

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

4 Equipment Used during Test

4.1 Equipments List

Main	s Terminal Distur	bance Voltage (Co	nducted Emis	sion)		
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.17,2014	1 Year
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.17,2014	1 Year
3.	Cable	LARGE	RF300	-	Sep.17,2014	1 Year
3m S	emi-anechoic Cha	amber for Radiation	n			
tem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.17,2014	1 Year
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.17,2014	1 Year
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2014	1 Year
	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.17,2014	1 Year
,	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2014	1 Year
;	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.06,2014	1 Year
	Coaxial Cable (above 1GHz)	Тор	25MHz- 18GHz	EW02014-7	Apr.19,2014	1 Year
}	Horn Antenna	EM	EM-AH-10180	2011071402	Apr.19,2014	1 Year

Report No.: PT14092980128F

4.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Temperature	±1 °C
DC Source	±0.05%
	± 5.03 dB
Radiated Emissions test	(Bilog antenna 30M~1000MHz)
Nadiated Liffissions test	± 4.74 dB
	(Horn antenna 1000M~25000MHz)
Conducted Emissions test	3.64dB (150kHz~30MHz)

4.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

5 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: $66-56 \text{ dB}_{\mu}\text{V}$ between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-

Peak & Average if maximised peak within 6dB of Average

Report No.: PT14092980128F

Limit

5.1 E.U.T. Operation

Operating Environment:

Temperature: 25.2 °C Humidity: 55% RH

Atmospheric Pressure: 1017 mbar

EUT Operation:

The pre-test was performed in Bluetooth linking, and the data were shown as follow.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.2 EUT Setup

The EUT was placed on the test table in shielding room.

5.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Report No.: PT14092980128F

Test Mode: Running

Live line:

6 Spurious Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Report No.: PT14092980128F

Test Method: DA 00-705

Test Result: PASS
Measurement Distance: 3m

Limit:

Frequency	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
(MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

6.1 EUT Operation:

Operating Environment:

Temperature: 25.1 °C

Humidity: 53% RH

Atmospheric Pressure:1015 mbar

Operation Mode:

The EUT was tested in transmitting mode, and the data were shown as follow.

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

Report No.: PT14092980128F

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Report No.: PT14092980128F

The test setup for emission measurement above 1 GHz.

6.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9kHz to 25000MHz.

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz

Video Bandwidth......10Hz

6.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Report No.: PT14092980128F

- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

6.6 Summary of Test Results

Test Frequency :Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Test mode: transmitting

All the modulation modes were tested, the data of the worst mode (GFSK) were recorded in the

Report No.: PT14092980128F

	following	pages.		_							
. Frequency	Receiver	Detector	Turn table	RX Antenna Corrected Corrected FCC Pa							
rrequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	GFSK Lower Channel 2402MHz										
156.02	24.02	QP	46	1.2	Н	17.01	41.03	46.00	-4.97		
156.02	23.25	QP	228	1.3	V	17.01	40.26	46.00	-5.74		
4804	54.38	PK	356	1.8	V	-1.06	53.32	74.00	-20.68		
4804	47.56	Ave	356	1.8	V	-1.06	46.50	54.00	-7.50		
7206	49.53	PK	246	1.9	V	1.33	50.86	74.00	-23.14		
7206	44.79	Ave	246	1.9	V	1.33	46.12	54.00	-7.88		
2347.32	45.84	PK	67	1.6	V	-13.19	32.65	74.00	-41.35		
2347.32	38.85	Ave	67	1.6	V	-13.19	25.66	54.00	-28.34		
2361.35	44.12	PK	147	2.0	V	-13.14	30.98	74.00	-43.02		
2361.35	40.33	Ave	147	2.0	V	-13.14	27.19	54.00	-26.81		
2491.47	42.69	PK	17	1.1	Н	-13.08	29.61	74.00	-44.39		
2491.47	40.06	Ave	17	1.1	Н	-13.08	26.98	54.00	-27.02		

Frequency	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F	
Trequency	Reading	Betteetoi	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Ce	enter Cha	nnel 24	41MHz			
156.05	24.02	PK	40	1.2	Н	17.01	41.03	46.00	-4.97
156.02	23.74	PK	8	1.3	V	17.01	40.75	46.00	-5.25
4882	54.38	PK	258	1.3	V	-1.06	53.32	74.00	-20.68
4882	47.56	Ave	258	1.3	V	-1.06	46.50	54.00	-7.50
7323	49.53	PK	342	1.3	V	1.33	50.86	74.00	-23.14
7323	44.79	Ave	342	1.3	V	1.33	46.12	54.00	-7.88
2316.13	45.62	PK	189	1.5	V	-13.19	32.43	74.00	-41.57
2316.13	38.45	Ave	189	1.5	V	-13.19	25.26	54.00	-28.74
2385.86	44.94	PK	87	1.3	V	-13.14	31.80	74.00	-42.20
2385.86	38.73	Ave	87	1.3	V	-13.14	25.59	54.00	-28.41
2499.13	42.68	PK	244	1.8	Н	-13.08	29.60	74.00	-44.40
2499.13	38.03	Ave	244	1.8	Н	-13.08	24.95	54.00	-29.05

Frequency	Receiver	Detector	Turn table	RX Antenna		Corrected	Corrected	FCC I 15.247/2		
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	GFSK Upper Channel 2480MHz									
156.06	24.41	PK	139	1.2	Н	17.01	41.42	46.00	-4.58	
156.05	23.45	PK	71	1.2	V	17.01	40.46	46.00	-5.54	
4960	54.38	PK	171	1.3	V	-1.06	53.32	74.00	-20.68	
4960	47.56	Ave	171	1.3	V	-1.06	46.50	54.00	-7.50	
7440	49.53	PK	229	1.0	V	1.33	50.86	74.00	-23.14	
7440	44.79	Ave	229	1.0	V	1.33	46.12	54.00	-7.88	
2326.52	46.46	PK	281	1.0	V	-13.19	33.27	74.00	-40.73	
2326.52	39.66	Ave	281	1.0	V	-13.19	26.47	54.00	-27.53	
2382.48	44.83	PK	1	1.9	V	-13.14	31.69	74.00	-42.31	
2382.48	38.47	Ave	1	1.9	V	-13.14	25.33	54.00	-28.67	
2483.77	42.56	PK	310	1.0	Н	-13.08	29.48	74.00	-44.52	
2483.77	40.43	Ave	310	1.0	Н	-13.08	27.35	54.00	-26.65	

Test Frequency :Above 18GHz
The measurements were more than 20 dB below the limit and not reported.

7 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Report No.: PT14092980128F

Section 15.205(c)).

Test Method: DA 00-705

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

7.1 Test Procedure

1. The EUT was placed on a turntable which is 0.8m above ground plane

2. Measurement Distance is 3m

3. Detector: For Peak value:

RBW = 1 MHz for f ≥ 1 GHz VBW ≥ RBW; Sweep = auto Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function = AVG

Trace = max hold

4.continuous transmitting

7.2 Test Result:

Test result plots shown as follows:

Report No.: PT14092980128F

8 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

8.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Report No.: PT14092980128F

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

8.2 Test Result:

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Lower	1.104
	Middle	1.108
	Upper	1.141
Pi/4DQPSK	Lower	1.353
	Middle	1.365
	Upper	1.397
8DPSK	Lower	1.141
	Middle	1.383
	Upper	1.305

Test result plot as follows:

Modulation:GFSK
Lower Channel

Modulation: Pi/4DQPSK

Modulation: 8DPSK

Upper Channel

9 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

Report No.: PT14092980128F

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

9.2 Test Result:

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
	Lower	-3.17	30
GFSK	Middle	-4.48	30
	Upper	-6.85	30
Pi/4DQPSK	Lower	-4.33	30
	Middle	-5.72	30
	Upper	-7.26	30
	Lower	-4.09	30
8DPSK	Middle	-5.26	30
	Upper	-7.96	30

Test result plot as follows:

Modulation:GFSK

Modulation: Pi/4DQPSK

Modulation: 8DPSK

10 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

Report No.: PT14092980128F

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100KHz. VBW = 100KHz , Span = 6MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

10.2 Test Result:

Modulation	Test Channel	Separation (MHz)
GFSK	Lower	1.008
	Middle	1.008
	Upper	1.008
Pi/4DQPSK	Lower	1.008
	Middle	1.008
	Upper	1.008
8DPSK	Lower	1.008
	Middle	1.008
	Upper	1.008

Test result plot as follows:

Report No.: PT14092980128F

Modulation:GFSK

Modulation: Pi/4DQPSK

Upper Channel

Modulation: 8DPSK
Lower Channel

11 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Report No.: PT14092980128F

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Centre Frequency = 2.441GHz, Span = 86MHz. Sweep=auto;

11.2 Test Result:

Total Channels are 79 Channels.

12 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

Report No.: PT14092980128F

used.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 1MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

12.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX)

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Frequency	Data Packet	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
GFSK	Lower channel	DH1	0.427	0.137	0.400
	Middle channel		0.433	0.139	0.400
	Upper channel		0.434	0.139	0.400
	Lower channel	DH3	1.721	0.275	0.400
	Middle channel		1.681	0.269	0.400
	Upper channel		1.393	0.223	0.400
	Lower channel	DH5	2.650	0.283	0.400
	Middle channel		2.944	0.314	0.400
	Upper channel		2.989	0.319	0.400
Pi/4DQPSK	Lower channel	DH1	0.445	0.142	0.400
	Middle channel		0.447	0.143	0.400
	Upper channel		0.442	0.141	0.400
	Lower channel	DH3	1.645	0.263	0.400
	Middle channel		1.688	0.270	0.400
	Upper channel		1.655	0.265	0.400
	Lower channel	DH5	2.980	0.318	0.400
	Middle channel		0.305	0.033	0.400
	Upper channel		2.998	0.320	0.400
8DPSK	Lower channel	DH1	0.440	0.141	0.400
	Middle channel		0.445	0.142	0.400
	Upper channel		0.447	0.143	0.400
	Lower channel	DH3	1.698	0.272	0.400
	Middle channel		1.719	0.275	0.400
	Upper channel		1.770	0.283	0.400
	Lower channel	DH5	2.968	0.317	0.400
	Middle channel		2.928	0.312	0.400
	Upper channel		2.984	0.318	0.400

Modulation:GFSK

Data Packet:DH1,Lower channel

Data Packet: DH1, Middle channel

200.0 µs/

CF 2.48 GHz

Report No.: PT14092980128F

Data Packet: DH3, Middle channel

Data Packet: DH5, Lower channel

Data Packet: DH5, Middle channel

Report No.: PT14092980128F

Data Packet: DH5, Upper channel

Modulation: Pi/4DQPSK

Report No.: PT14092980128F

Data Packet: DH1, Middle channel

Data Packet: DH1, Upper channel

Data Packet: DH3, Middle channel

Data Packet: DH3, Upper channel

Data Packet: DH5, Middle channel

Data Packet: DH5, Upper channel

Modulation: 8DPSK

Data Packet:DH1,Lower channel

Report No.: PT14092980128F

Data Packet: DH1, Middle channel

Data Packet: DH1, Upper channel

Data Packet: DH3, Lower channel

Report No.: PT14092980128F

Data Packet: DH3, Middle channel

Data Packet: DH5, Lower channel

Data Packet: DH5, Upper channel

13 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfill the requirement of this section.

Report No.: PT14092980128F

======= End of Test Report =========