

Свежие комментарии

- Narod Stream к записи STM Урок 111. FreeRTOS. Очереди. Часть 2
- imperror к записи STM Урок 111.
 FreeRTOS. Очереди. Часть 2
- ok_195 к записи РІС Урок 5. Таймеры
- ok_195 к записи РІС Урок 5. Таймеры
- ok_195 к записи РІС Урок 5.

Форум. Последние ответы

- П Leonid в Программирование MK AVR
 - 2 дн., 19 час. назад
- П nikolay в Программирование МК STM32
 - 5 дн., 13 час. назад
- П den2313 в Программирование МК STM32
 - 1 неделя, 1 день назад
- П Ortos в Программирование МК AVR
 - 2 нед., 5 дн. назад
- Пагкопеп в Программирование МК
 - 2 нед., 6 дн. назад

Март 2018

Пн	Вт	Ср	Чт	Пт	Сб	Вс
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	
« Фев						

Архивы

- Март 2018
- Февраль 2018
- Январь 2018
- Декабрь 2017
- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017Июль 2017
- Июль 2017
 Июнь 2017
- Май 2017

Главная > Программирование PIC > PIC Урок 9.

PIC Урок 9. TIMER2

⊞Posted on Март 3, 2018 by Narod Stream

Опубликовано в Программирование РІС — Нет комментариев ↓

Мета

- Регистрация
- Войти
- RSS записей
- RSS комментариев
- WordPress.org

Замена **Floppy дисководов** на **USB** Замена стандартных **дисководов** на станках ЧПУ FMS-3000, NC210, NC201M,

Защитное заземление

Элементы молниезащиты и заземления. Низкие цены. Гарантия качества. Звони сейчас.

terrazn.by Адрес и телефон

В уроке 5 и в уроке 8 мы познакомились с двумя таймерами микроконтроллера PIC — TIMER0 и TIMER1 .Последний TIMER1 нам интересен был тем, что он, считая также только вперёд и без посторонних модулей сбрасываясь тоже по переполнению, является уже 16-битным, поэтому считает он уже не до 255.

а до 65535, что более удобно и позволяет без лишних плясок с переменными выжидать большие промежутки времени до следующего прерывания.
Вообще у линейки контроллеров РІС, которую мы изучаем, есть три таймера, поэтому последний из таймеров —

TIMER2, мы также не можем пройти стороной и обязаны его изучить и

попробовать в работе.
Таймер TIMER2 является 8-битным, но зато у него есть два делителя, что позволяет также получать немалые периоды между прерываниями. Также в одном из регистров данного таймера — РR2 — можно явным образом задавать значение периода, что также вносит огромное удобство в программирование значения точного периода, позволяя, в отличие от таймера 1 один раз при инициализации задать период. а не

каждом прерывании. Давайте посмотрим блок-схему таймера 2

заносить значение в регистр счётчика при

Заходите на канал Narod Stream

- Март 2017
- Февраль 2017
- Январь 2017
- Декабрь 2016
- Ноябрь 2016

Мы видим, что у таймера есть два делителя. Первый — входной делитель или предделитель, который срабатывает сразу после поступления сигнала от внутреннего тактового генератора, который является единственным тактовым генератором, с которым может работать TIMER2. Затем сигнал предделителя попадает в регистр TMR2, являющийся регистром счёта. Как только значение данного регистра сравняется со значением регистра PR2, сигнал выходит уже с компаратора и идёт на выходную ножку и может быть использован для тактирования и управления какими-либо внешними устройствами. Также данный сигнал попадает в выходной делитель или постделитель и после него уже происходит управление флагом прерывания TMR2IF. То есть на частоту сигнала, идущего на внешний выход, постделитель не влияет. Теперь рассмотрим следующий регистр регистр управления таймером 2 — Т2СОN

Бит 7 данного регистра не используется.

Биты 6-3 — TOUTPS3:TOUTPS0 (Timer2

Output Postscale Select bits) — выбор коэффициента деления выходного делителя (постделителя). Значения данных битов следующим образом плавно управляют коэффициентом деления

0000 = 1:1

0001 = 1:2

0010 = 1:3

•••

1111 = 1:16

Следующий бит $\mathbf{2}$ — TMR2ON (Timer2 On

bit) — бит включения таймера

. 1 — TIMER2 включен

0 — TIMER2 выключен

Биты 1-0 — T2CKPS1:T2CKPS0 (Timer2 Clock Prescale Select bits) — биты управления коэффициентом входного делителя (предделителя). Коэффициент следующим образом зависит от значений битов:

00 = Предделитель 1:1

01 = Предделитель 1:4

1х = Предделитель 1:16

Регистр **TMR2**, являющийся регистром счёта, очищается при сбросе POR, MCLR Reset, WDT Reset или BOR.

Также сигнал от данного регистра, кроме внешней ножки, может

① X

Нужна Помощь от Бога? - Узнай Что Бог Тебе Предлагает

Ты Можешь Ответить Богу Сейчас

mirstudentov.com

Рубрики

- 1-WIRE (3)
- ADC (6)
- DAC (4)
- FreeRTOS (2)
- GPIO (26)
- I2C (19)
- SPI (13)
- USART (8)
- Программирование AVR (131)
- Программирование РІС (10)
- Программирование STM32 (222)
- Тесты устройств и аксессуаров (1)

	7
Э1 ДЕНЬ	155 273 16 780
оп дней	38 687 5 851
24 4ACA	4 379 1 043
сегодня	2 225 596
нялинии	266 30

управлять скоростью работы модуля SSP.

Также ещё не стоит забывать одну важную вещь: значение обоих делителей сбрасывается при записи в регистры TMR2 и T2CON и учитывать это при составлении программы.

Схема для реализации нашего кода с прошлого занятия не изменилась. С помощью таймера 2 мы будем управлять значением числа, выводимого на четырёхразрядный светодиодный индикатор. То есть контроллер у нас не меняется.

Проект мы будем использовать также с прошлого занятия **TIMER1.X** и назовём его **TIMER2.X**.

Откроем наш проект в **MPLAB.X**, сделаем его главным, откроем сначала файл **led.c** и удалим из него следующую глобальную переменную

static unsigned int LED Count=0;

Также из функции ТIM0_Callback удалим условие, оставив там лишь вызов функции вывода на индикатор числа (почему-то так лучше работает, видимо, на то, чтобы определить неравенство величин, уходит большое количество времени)

```
void TIM0_Callback(void)
{
  ledprint(TIM1_Count);
  if(n_count==0)
```

Перейдём в файл **main.c** и удалим из функции **main()** всё, что связано с таймером 1

```
T1CKPS0=1; //Prescaler 8
(1000000/31250/8 = 4 Hz)
T1CKPS1=1;
TMR1CS=0; //Internal clock
TMR1L=0xEE; // 65536 31250 = 34286
- 0x85EE
TMR1H=0x85;
...
TMR1IE=1;
TMR1ON=1;
```

Мы попробуем сегодня запрограммировать счётчик, который считать медленно приблизительно раз в секунду. Только для этого мы не сможем использовать только один период таймера с делителями. Поэтому придётся обработчике прерывания прибегнуть к переменной, которую мы будем там до определённой инкрементировать, а затем сбрасывать. Таймер мы запрограммируем так, что он будет отсчитывать периоды с частотой 25 герц, чтобы было целое число герц и чтобы нам потом легче было управлять общей частотой нашего счётчика.

Поэтому значения делителей и регистра PR0 я рассчитал следующим образом

```
PEIE=1;
TOUTPS3=1; //Prescaler Out 10
TOUTPS2=0;
```



```
TOUTPS0=1;
T2CKPS0=1;//Postcaler In 16
T2CKPS1=1;
PR2=0xF9; // 249 - 1000000/10/16/250
  Затем включим прерывания нашего
таймера и собственно таймер
PR2=0xF9; // 249 - 1000000/10/16/250
= 25Hz
TMR2IE=1;
TMR2ON=1;
  Добавим глобальную переменную для
счётчика прерываний
unsigned char ncnt=0;
unsigned int TIM1_Count=0;
  Далее мы перейдём в функцию-
обработчик прерываний interrupt isr и
подправим там условие прерывания от
таймера 2, так как там было условие
прерывания от таймера 1
else if(TMR2IE&&TMR2IF)
  В теле данного условия сначала
удалим следующий код
TMR1L=0xEE;
TMR1H=0x85;
  Исправим сброс прерывания на
нужный таймер
TMR2IF=0;
  Имя переменной для счётчика
TIM1_Count трогать не будем, так как
от этого ничего не зависит.
  Добавим код инкрементирования
счётчика прерываний
TMR2IF=0;
ncnt++;
  А инкрементирование и сброс
счётчика TIM1_Count теперь будет в
теле следующего условия
ncnt++;
if(ncnt>25)
{
  TIM1_Count++;
  if(TIM1_Count>9999) TIM1_Count=0;
  Также в данном теле мы сбросим
счётчик прерываний
if(ncnt>25)
{
  ncnt=0;
  TIM1_Count++;
  Ну, вроде бы, и всё.
  Соберём код, прошьём контроллер и
посмотрим результат нашей работы
```


Наш счётчик прекрасно считает!

Таким образом, сегодня мы освоили ещё один таймер — ТІМЕR2, воспользовались его делителями и регистром сравнения, чтобы запрограммировать счётчик секунд. Данный счётчик очень приблизительный, так как некоторое время уходит на некоторые операции, но тем не менее это позволяет нам выдерживать хоть и приблизительные, но немалые интервалы.

Всем спасибо за внимание!

Нужна Помощь от Бога? - Узнай Что Бог Тебе Предлагает

Ты Можешь Ответить Богу Сейчас mirstudentov.com

Исходный код

Купить программатор (неоригинальный) можно здесь: PICKit3 Купить программатор (оригинальный) можно здесь: PICKit3 original Отладочную плату PIC Open18F4520-16F877A можно приобрести здесь: PIC Open18F4520-16F877A Семисегментный чертырехразрядный индикатор красный с общим анодом 10 шт

Смотреть ВИДЕОУРОК (нажмите на картинку)

Post Views: 252

< STM Урок 110.

FreeRTOS.

Приоритеты

Задач

КОММЕНТАРИЙ

КОММЕНТАРИЙ

FreeRTOS.

Ваш е-mail не будет блубликовансть
Обязательные поля помечены *

Комментарий

ОТК

Главная Новости Уроки по программированию МК Программирование микроконтроллеров STM32 Программирование микроконтроллеров PIC Тесты устройств и аксессуаров					
Устройства и интерфейсы Ссылки Форум Помощь					
1 884 Ф 712 🖽 537 🖣					

© 2018 Narod Stream

Наверх