Ordinary Differential Equation Assignment 1

(1) Classify each of the following differential equations linear, nonlinear and specify the orders.

 $(i) y'' + y \sin x = 0$ (ii) $y'' + x \sin y = 0$ (iii) $y' = \sqrt{1+y}$ (iv) $y'' + (y')^2 + y = x$ (v) $y'' + x(y') = \cos y'$ (vi) (xy')' = xy

- (2) Verify that $y = -\frac{1}{x+c}$ is general solution of $y' = y^2$. Find particular solutions such that (i) y(0) = 1 and (ii) y(0) = -1. In both cases find the largest interval I on which y is defined.
- (3) For each of the following differential equations draw several isoclines and sketch some solution curves.

(i) $y' = -\frac{x}{y}$ (ii) $y' = x^2 + y^2$.

(4) Show that the following families of curves are self-orthogonal: (i) $y^2 = 4c(x+c)$ (ii) $x^2/c^2 + y^2/(c^2-1) = 1$

- (5) Find the family of oblique trajectories which intersect the family of straight lines y = cxat an angle of 45° .
- (6) Find general solution of the following differential equations:

(i)
$$(x+2y+1)-(2x+y-1)y'=0$$
 (ii) $y'=(8x-2y+1)^2/(4x-y-1)^2$

Assignment 2

- (1) Show that the set of solutions of the homogeneous linear equation, y' + P(x)y = 0 on an interval I = [a, b] form a vector subspace W of the real vector space of continuous functions on I. What is the dimension of W?
- (2) Show that the equation $(3y^2 x) + 2y(y^2 3x)y' = 0$ admits an integrating factor which is a function of $(x + y^2)$. Hence solve the differential equation.

(3) Solve $xy' + y(x+1) + xy^5 = 0$, y(1) = 1.

(4) Reduce the following differential equations into linear form and solve:

(i) $y^2y' + y^3/x = \sin x$ (ii) $y'\sin y + x\cos y = x$ (iii) $y' = y(xy^3 - 1)$

(5) Let f(x,y) be continuous on the closed rectangle $R:|x-x_0|\leq a,\,|y-y_0|\leq b.$ (i) Show that y is a solution of the initial value problem y' = f(x, y), $y(x_0) = y_0$ iff

 $y(x) = y_0 + \int_{x_0}^x f[t, y(t)] dt.$

(ii) Let $|f(x,y)| \leq M$ and $y_n(x) = y_0 + \int_{x_0}^x f[t,y_{n-1}(t)] dt$, with $y_0(x) = y_0$. Show by the method of induction that $|y_n(x) - y_0| \le b$ for $|x - x_0| \le h$, where $h = \min\{a, b/M\}$.

- (6) Solve $y' = (y-x)^{2/3} + 1$. Show that y = x is also a solution. What can be said about the uniqueness of the initial value problem consisting of the above equation with $y(x_0) = y_0$, where (x_0, y_0) lies on the line y = x.
- (7) Discuss the existence and uniqueness of the solution of the inital value problem

$$(x^2 - 2x)y' = 2(x - 1)y,$$
 $y(x_0) = y_0.$

Assignment 3

- (1) Find the curve y = y(x) passing through origin for which y'' = y' and the line y = x is tangent at the origin.
- (2) If p(x), q(x), r(x) are continuous functions on an interval \mathcal{I} , then show that the set of solutions of the following linear homogeneous equation is a real vector space:

$$y'' + p(x)y' + q(x)y = 0, \qquad x \in \mathcal{I}.$$
(*)

Also show that the set of solutions of the linear non-homogeneous equation

$$y'' + p(x)y' + q(x)y = r(x), \qquad x \in \mathcal{I}$$
(#)

is not a real vector space. Further, suppose $y_1(x), y_2(x)$ are any two solutions of (#). Obtain conditions on the constants a and b so that $ay_1 + by_2$ is also its solution.

- (3) (a) Show that a solution to (*) with x-axis as tangent at any point in \mathcal{I} must be identically zero on \mathcal{I} .
 - (b) Let $y_1(x), y_2(x)$ be two solutions of (*) with a common zero at any point in \mathcal{I} . Show that y_1, y_2 are linearly dependent on \mathcal{I} .
 - (c) Show that y = x and $y = \sin x$ are not a pair solutions of equation (*), where p(x), q(x) are continuous functions on $\mathcal{I} = (-\infty, \infty)$.
- (4) Let $y_1(x), y_2(x)$ are two linearly independent solutions of (*). Show that
 - (i) between consecutive zeros of y_1 , there exists a unique zero of y_2 ;
 - (ii) $\phi(x) = \alpha y_1(x) + \beta y_2(x)$ and $\psi(x) = \gamma y_1(x) + \delta y_2(x)$ are two linearly independent solutions of (*) iff $\alpha \delta \neq \beta \gamma$.

Assignment 4

(1) Verify that $y = x^2 \sin x$ and y = 0 both are solutions of the initial value problem

$$x^2y'' - 4xy' + (x^2 + 6)y = 0, \quad y(0) = y'(0) = 0.$$

Does it contradict the uniqueness?

- (2) Find a particular solution of each of the following equations.
 - (i) $y'' 4y' + 3y = 6e^{3x}$
- (ii) $y'' 2y' + 5y = 25x^2 + 12$
- (iii) $y'' y = e^{-x}(\sin x + \cos x)$ (iv) $y'' y' + 3y = x^2 e^x$
- (3) By using the method of variation of parameters, find the general solution of:
 - (i) $y'' + 4y = 2\cos^2 x + 10e^x$
- (ii) $y'' + y = x \sin x$
- (iii) $y'' + y = \cot^2 x$
- (iv) $x^2y'' x(x+2)y' + (x+2)y = x^3$, x > 0.

Assignment 5

- (1) The equation y'' + y' xy = 0 has a power series solution of the form $y = \sum a_n x^n$.
 - (i) Find the power series solutions $y_1(x)$ and $y_2(x)$ such that $y_1(0) = 1, y_1(0) = 0$ and $y_2(0) = 0, y_2'(0) = 1.$
 - (ii) Find the radius of convergence for $y_1(x)$ and $y_2(x)$.
- (2) Consider the equation $(1 + x^2)y'' 4xy' + 6y = 0$.
 - (i) Find its general solution in the form $y = a_0y_2(x) + a_1y_1(x)$, where $y_1(x)$ and $y_2(x)$ are power series.
 - (ii) Find the radius of convergence for $y_1(x)$ and $y_2(x)$.
- (ii) Find the radius of convergence for $\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$ is called the generating function of the Legendre polynomial P_n . Using this relation, show that

(i)
$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0$$
 (ii) $nP_n(x) = xP'_n(x) - P'_{n-1}(x)$

(iii)
$$P'_{n+1}(x) - xP'_n(x) = (n+1)P_n(x)$$
 (iv) $P_n(1) = 1$, $P_n(-1) = (-1)^n$

(v)
$$P_{2n+1}(0) = 0$$
, $P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n n!}$

Assignment 6

- (1) Locate and classify the singular points in the following:
 - (i) $x^3(x-1)y'' 2(x-1)y' + 3xy = 0$ (ii) (3x+1)xy'' xy' + 2y = 0
- (2) For each of the following, verify that the origin is a regular singular point and find two linearly independent solutions:

(a)
$$9x^2y'' + (9x^2 + 2)y = 0$$
 (b) $x^2(x^2 - 1)y'' - x(1 + x^2)y' + (1 + x^2)y = 0$ (c) $xy'' + (1 - 2x)y' + (x - 1)y = 0$ (d) $x(x - 1)y'' + 2(2x - 1)y' + 2y = 0$

(c)
$$xy'' + (1-2x)y' + (x-1)y = 0$$
 (d) $x(x-1)y'' + 2(2x-1)y' + 2y = 0$

- (3) Let u(x) be any nontrivial solution of u'' + q(x)u = 0 on a closed interval [a, b]. Show that u(x) has at most a finite number of zeros in [a, b].
- (4) Show that any nontrivial solution of u'' + q(x)u = 0, q(x) < 0 has at most one zero.
- (5) Let y_{ν} be a nontrivial solution of Bessel's equation of order ν on the positive x-axis. Show that (i) if $0 \le \nu < 1/2$, then every interval of length π contains at least one zero of $y_{\nu}(x)$; (ii) if $\nu = 1/2$, then the distance between successive zeros of y_{ν} is exactly π ; and (iii) if $\nu > 1/2$, then every interval of length π contains at most one zero of $y_{\nu}(x)$.
- (6) Show that the Bessel functions J_{ν} ($\nu \geq 0$) satisfy

$$\int_0^1 x J_{\nu}(\lambda_m x) J_{\nu}(\lambda_n x) dx = \frac{1}{2} J_{\nu+1}^2(\lambda_n) \delta_{mn},$$

where λ_i are the positive zeros of J_{ν} .

Assignment 7

(1) Find the Laplace transforms:

(a)
$$f(t) = \begin{cases} 1, & 0 < t < \pi, \\ 0, & \pi < t < 2\pi, \\ \cos t, & t > 2\pi, \end{cases}$$
 (b) $f(t) = \begin{cases} 0, & 0 < t < 1, \\ \cos(\pi t), & 1 < t < 2, \\ 0, & t > 2 \end{cases}$

(2) Find the inverse Laplace transforms of

(a)
$$\tan^{-1}(a/s)$$
, (b) $\ln \frac{s^2+1}{(s+1)^2}$, (c) $\frac{s+2}{(s^2+4s-5)^2}$, (d) $\frac{se^{-\pi s}}{s^2+4}$, (e) $\frac{(1-e^{-2s})(1-3e^{-2s})}{s^2}$.

(3) Solve the integral equations

(a)
$$y(t) + \int_0^t y(\tau) d\tau = u(t-a) + u(t-b)$$

(b)
$$e^{-t} = y(t) + 2 \int_0^t \cos(t - \tau) y(\tau) d\tau$$

(c)
$$3\sin 2t = y(t) + \int_0^t (t - \tau)y(\tau) d\tau$$

(4) Sketch the following functions and find their Laplace transforms:

(a)
$$f(t) = \begin{cases} u(t) - 2u(t-1), & 0 \le t < 2, \\ f(t-2), & t > 2, \end{cases}$$
 (b) $f(t) = \begin{cases} t[u(t) - u(t-1)], & 0 \le t < 2, \\ f(t-2), & t > 2, \end{cases}$

(c)
$$f(t) = \begin{cases} tu(t) - 2(t-1)u(t-1), & 0 \le t < 2, \\ f(t-2), & t > 2. \end{cases}$$