Table of results

Fipipp Uskov

May 9, 2018

1 Results

$$H = J \sum_{\langle i,j \rangle} (\boldsymbol{\sigma}_i \boldsymbol{\sigma}_j) = 2J \sum_{\langle i,j \rangle} (\boldsymbol{s}_i \boldsymbol{s}_j)$$

$$E_{gs\ full}/N \geqslant$$

1.1 1d case

cluster	Shredinger	Variational
	-2.1547	-2.09548
• • • • • • • • • • • • • • • • • • • •	-1.92789	-1.91063
• • • • • • • •	-1.99486	-1.94983
• • • • • • •	-1.89083	-1.87265
• • • • • • • • • • • • • • • • • • • •	-1.92853	-1.8388

1.2 2d case

2 Basis overflow hypotesis

All linear dependencies in basis (because of which basis is overcrowded) are derived from equation (1) and (3). But $(1,2) \Rightarrow (3)$. It was checked up to 10 spins.

$$+(\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{2})(\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{5}) - (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{3})(\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{5}) + (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{4})(\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{5}) - (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{5})(\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{4}) = 0$$

$$(\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{3})(\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{5}\boldsymbol{\sigma}_{6}) = \det \begin{pmatrix} (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{4}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{4}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{4}) \\ (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{5}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{5}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{5}) \\ (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{6}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{6}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{6}) \end{pmatrix}$$

$$(1,2) \Rightarrow \det \begin{pmatrix} (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{5}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{5}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{5}) & (\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{5}) \\ (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{6}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{6}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{6}) & (\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{6}) \\ (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{7}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{7}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{7}) & (\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{7}) \\ (\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{8}) & (\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{8}) & (\boldsymbol{\sigma}_{3}\boldsymbol{\sigma}_{8}) & (\boldsymbol{\sigma}_{4}\boldsymbol{\sigma}_{8}) \end{pmatrix} = 0$$

$$(3)$$

$$+(\sigma_{1}\sigma_{2})(\sigma_{3}\sigma_{4}\sigma_{5}) - (\sigma_{1}\sigma_{3})(\sigma_{2}\sigma_{4}\sigma_{5}) + (\sigma_{1}\sigma_{4})(\sigma_{2}\sigma_{3}\sigma_{5}) - (\sigma_{1}\sigma_{5})(\sigma_{2}\sigma_{3}\sigma_{4}) = 0$$

$$(\sigma_{1}\sigma_{2}\sigma_{3})(\sigma_{4}\sigma_{5}\sigma_{6}) = \det \begin{pmatrix} (\sigma_{1}\sigma_{4}) & (\sigma_{2}\sigma_{4}) & (\sigma_{3}\sigma_{4}) \\ (\sigma_{1}\sigma_{5}) & (\sigma_{2}\sigma_{5}) & (\sigma_{3}\sigma_{5}) \\ (\sigma_{1}\sigma_{6}) & (\sigma_{2}\sigma_{6}) & (\sigma_{3}\sigma_{6}) \end{pmatrix}$$

$$(1,2) \Rightarrow \det \begin{pmatrix} (\sigma_{1}\sigma_{5}) & (\sigma_{2}\sigma_{5}) & (\sigma_{3}\sigma_{5}) & (\sigma_{4}\sigma_{5}) \\ (\sigma_{1}\sigma_{6}) & (\sigma_{2}\sigma_{6}) & (\sigma_{3}\sigma_{6}) & (\sigma_{4}\sigma_{6}) \\ (\sigma_{1}\sigma_{7}) & (\sigma_{2}\sigma_{7}) & (\sigma_{3}\sigma_{7}) & (\sigma_{4}\sigma_{7}) \\ (\sigma_{1}\sigma_{8}) & (\sigma_{2}\sigma_{8}) & (\sigma_{3}\sigma_{8}) & (\sigma_{4}\sigma_{8}) \end{pmatrix} = 0$$