Background on Valuations

Dean Bisogno

April 26, 2016

Definition 1 (Discrete Valuation Ring (D.V.R.)).

A discrete valuation ring is a principal ideal domain O with a unique maximal ideal $p \neq 0$.

Definition 2 (Uniformizing Parameter).

Let \mathfrak{p} be the unique maximal ideal of D.V.R. O. Since O is a PID, there exists a prime π in O such that $\mathfrak{p} = (\pi)$. Such a π is called a uniformizing parameter.

Definition 3 (Discrete Valuation).

A discrete valuation is a function $v_{\mathfrak{p}}: K^* \to \mathbb{Z}$ where K is the field of fractions of O. The valuation $v_{\mathfrak{p}}$ can be extended to K by setting $v_{\mathfrak{p}}(0) = \infty$. Further $v_{\mathfrak{p}}$ satisfies the following

$$I. \ v_{\mathfrak{p}}(ab) = v_{\mathfrak{p}}(a) + v_{\mathfrak{p}}(b).$$

$$II. \ v_{\mathfrak{p}}(a+b) \geq \min\{v_{\mathfrak{p}}(a), v_{\mathfrak{p}}(b)\}.$$

Proposition 1 (Nonarchimedean).

A valuaion v(x) is nonarchimedean if and only if it satisfies $v(x + y) \le max\{v(x), v(y)\}$. All discrete valuations are nonarchimedean.

Proposition 2.

Let O be a noetherian integral domain. O is a Dedekind domain if and only if, for all prime ideals $p \neq 0$, the localizations $O_{(p)}$ are discrete valuation rings.

Definition 4 (Prolongation of a valuation).

If $A \subset B$ are rings with B integral over A, $\mathfrak p$ a prime in A, and $\mathfrak q$ prime in B dividing $\mathfrak p$ with ramification index $e_{\mathfrak q}$ then $v_{\mathfrak q}(x) = e_{\mathfrak q} v_{\mathfrak p}(x)$ is a prolongation of $v_{\mathfrak p}$ with index $e_{\mathfrak q}$.