

Google Play Store Analysis - Task 7

Task 7 Instructions

- 1. Plot a strip plot with the x-axis extending along the `Price` range and the y-axis depicting the `Category`.
- 2. Filter apps priced above \$200 and print the `Category`, `App`, and `Price` columns for such apps.
- 3. Use the `stripplot()` function from the `seaborn` library to create the plot.

Correct Code Implementation

import seaborn as sns import matplotlib.pyplot as plt

Step 1: Filter apps by popular categories
popular_app_cats = apps[apps.Category.isin(['GAME', 'FAMILY',
'PHOTOGRAPHY',

'MEDICAL', 'TOOLS', 'FINANCE', 'LIFESTYLE', 'BUSINESS'])]

Step 2: Examine price trends by category using strip plot fig, ax = plt.subplots() fig.set size inches(15, 8)

Step 3: Filter apps where Price > \$200 and print specific columns apps_above_200 = apps[apps['Price'] > 200][['Category', 'App', 'Price']] print(apps_above_200)

Explanation of the Code

- 1. **Filter Popular Categories**:
- Select apps from categories of interest using the `isin()` method on the `Category` column.
- 2. **Strip Plot**:
- The `stripplot()` function visualizes the distribution of app prices across categories.
- Adding `jitter=True` and `linewidth=1` improves the clarity of data points.
- 3. **Filter Expensive Apps**:
- Use the condition `apps['Price'] > 200` to identify apps priced above \$200.
- The `[['Category', 'App', 'Price']]` selects only the relevant columns for display.