Université de Paris UFR de Mathématiques et Informatique 45, rue des Saints-Pères, 75006, Paris.

Licence 1^{ère} année, Groupe 5, MATHÉMATIQUES ET CALCUL 2 (MC2)

Interrogation n°2 (12/02/2021): intégrales et primitives

Durée : 30 min

On pensera à bien détailler les raisonnements et justifier les réponses.

Exercice 1 (12 points)

Donner les primitives des fonctions suivantes :

1. $f: t \mapsto \frac{e^t}{e^{2t}+1}$ (5 points),

2. $g: t \mapsto \frac{4e^t}{e^{2t}-4}$ (7 points).

On précisera bien l'ensemble de définition des fonctions et on pensera à effectuer le changement de variable $u = e^t$.

Correction:

1. la fonction f est définie et continue sur \mathbb{R} car son dénominateur est toujours strictement positif. Elle admet donc des primitives sur \mathbb{R} (1pt). Soit $x_0 \in \mathbb{R}$ alors $F: x \in \mathbb{R} \mapsto \int_{x_0}^x f(t)dt$ est une primitive de f (1pt). Soit $x \in \mathbb{R}$, on a

$$F(x) = \int_{x_0}^{x} f(t)dt = \int_{x_0}^{x} \frac{e^t}{e^{2t} + 1} dt.$$

On fait le changement de variable $u = e^t$. L'application $t \mapsto e^t$ est \mathcal{C}^1 sur \mathbb{R} , bijective donc on va pouvoir appliquer la formule du changement de variable (1pt). On a $du = e^t dt$, les bornes d'intégration x_0 , x deviennent respectivement e^{x_0} et e^x et en remplaçant e^t par u dans l'intégrale, on obtient

$$F(x) = \int_{e^{x_0}}^{e^x} \frac{du}{u^2 + 1}, \quad \text{(1pt)}$$
$$= \left[\arctan(u)\right]_{e^{x_0}}^{e^x}.$$

Ainsi une primitive de f sur \mathbb{R} est $x \in \mathbb{R} \mapsto \arctan(e^x)$ et l'ensemble des primitives de f sur \mathbb{R} est $x \in \mathbb{R} \mapsto \arctan(e^x) + c$ avec $c \in \mathbb{R}$ (1pt).

2. la fonction g est définie et continue sur $D_g = \mathbb{R} \setminus \{\ln(2)\}$ car son dénominateur s'annule en $\ln(2)$. Elle admet donc des primitives sur $\mathbb{R} \setminus \{\ln(2)\}$ (1pt). Soient x_0, x tels que $[x_0, x] \subset D_g$. Alors considérons

$$G(x) = \int_{x_0}^{x} g(t)dt = \int_{x_0}^{x} \frac{4e^t}{e^{2t} - 4}dt.$$

On fait le changement de variable $u=e^t$. L'application $t\mapsto e^t$ est \mathcal{C}^1 sur \mathbb{R} , bijective donc on va pouvoir appliquer la formule du changement de variable (1pt). On a $du=e^t dt$, les bornes d'intégration x_0 , x deviennent respectivement e^{x_0} et e^x et en remplaçant e^t par u dans l'intégrale, on obtient

$$G(x) = \int_{e^{x_0}}^{e^x} \frac{4du}{u^2 - 4}, \ (1pt).$$

Comme $u^2 - 4 = (u - 2)(u + 2)$, par décomposition en éléments simples, pour tout $u \in \mathbb{R} \setminus \{2\}$ on a

$$\frac{4}{u^2 - 4} = \frac{a_0}{u - 2} + \frac{b_0}{u + 2}, \text{ (1pt)}.$$

avec $a_0, b_0 \in \mathbb{R}$. En multipliant à gauche et à droite de l'égalité précédente par u-2 et en faisant $u \to 2$, on obtient $a_0 = 1$. En multipliant à gauche et à droite par u+2 et en faisant $u \to -2$, on obtient $b_0 = -1$ (1pt). On a donc

$$G(x) = \int_{e^{x_0}}^{e^x} \frac{1}{u - 2} - \int_{e^{x_0}}^{e^x} \frac{1}{u + 2},$$

= $\left[\ln(|u - 2|)\right]_{e^{x_0}}^{e^x} - \left[\ln(u + 2)\right]_{e^{x_0}}^{e^x}.$

Ainsi une primitive de g sur D_g est $x \mapsto \ln(|e^x - 2|) - \ln(e^x + 2)$ (1pt). On peut simplifier cette écriture en distinguant les deux cas suivants (1pt) :

- si $[x_0, x] \subset]-\infty, \ln(2)[$ alors $e^x-2<0$ (et donc $|e^x-2|=2-e^x)$, d'où $G(x)=\ln\Big(\frac{2-e^x}{e^x+2}\Big)$,
- sinon si $[x_0,x] \subset]\ln(2),+\infty[$ alors $e^x-2>0$ et donc $G(x)=\ln\left(\frac{e^x-2}{e^x+2}\right).$

En conclusion, l'ensemble des primitives de g sur D_g est donné par les applications $x \in D_g \mapsto \ln\left(\frac{e^x-2}{e^x+2}\right) + c$ avec $c \in \mathbb{R}$.