FINANCIAL MATHEMATICS (STAT 2032 / STAT 6046)

TUTORIAL EXERCISES WEEK 3

Question 1

Find the present value of \$1000 due at the end of 10 years if (a) $i^{(2)} = 0.09$, (b) $i^{(6)} = 0.09$, and (c) $i^{(12)} = 0.09$.

Question 2

Mountain Bank pays interest at a nominal rate convertible half-yearly of $i^{(2)} = 0.15$. River Bank pays interest compounded daily. What minimum nominal annual rate convertible daily must River Bank pay in order to be as attractive as Mountain Bank?

Question 3

Bank A has an effective annual rate of 18%. Bank B has a nominal annual rate of 17% convertible m times per year. What is the smallest whole number of times per year (m) that Bank B must compound its interest in order that the rate at Bank B be at least as attractive as that at Bank A on an effective annual basis? Repeat the exercise with a nominal rate of 16% per annum at Bank B.

Hint: Use trial and error to check the whole numbers.

Question 4

Nominal interest can be defined even if m is not an integer. The algebraic definition $1+i=\left(1+\frac{i^{(m)}}{m}\right)^m$ is still valid. Suppose a bank advertises a nominal rate of 10% per annum convertible every 45 days on short-term deposits. Find m and the equivalent effective annual rate of interest.

Question 5

The nominal rate of interest $i^{(m)}$ can be defined for values of m < 1. Algebraically the definition follows the relationship in the equation $1 + i = \left(1 + \frac{i^{(m)}}{m}\right)^m$

(a) If i = 0.10, find the equivalent $i^{(0.5)}$, $i^{(0.25)}$, $i^{(0.1)}$, and $i^{(0.01)}$. Rank the values in increasing size, and compare with the relationship $i^{(m)} < i$ for m > 1.

(b) Find the equivalent effective annual rate i if (i) $i^{(0.5)} = 0.10$, (ii) $i^{(0.25)} = 0.10$, (iii) $i^{(0.1)} = 0.10$, and (iv) $i^{(0.01)} = 0.10$.

Question 6

If the effective rate of interest is 10% per annum, calculate (a) d and (b) $d^{(12)}$.

Question 7

Find the accumulated value of \$100 at the end of two years if:

- (a) the nominal annual rate of interest is 6% convertible quarterly.
- (b) the nominal annual rate of discount is 4% convertible monthly.
- (c) the nominal annual rate of discount is 6% convertible once every four years.

Question 8

An investment of \$1,000 accumulates to \$1,360.86 at the end of 5 years. If the force of interest is δ during the first year and 1.5δ in each subsequent year, find the equivalent effective annual interest rate in the second year.

Question 9

Smith forecasts that interest rates will rise over a 5-year period according to a force of interest function given by $\delta_t = 0.08 + \frac{0.025t}{t+1}$ for $0 \le t \le 5$.

- (a) According to this scheme, what is the average annual compound effective rate for the 5-year period?
- (b) What is the present value at t=2 of \$1,000 due at t=4?

Hint:
$$\int \left(\frac{t}{t+1}\right) dt = t - \ln(t+1)$$

Question 10

The present value of K payable after 2 years is \$960. If the force of interest is cut in half the present value becomes \$1,200. Find K.

What is the present value if the effective annual discount rate is cut in half?

- <u>Past Exam Question 2005 Final Exam Q1</u>
 (a) Find the accumulated value of \$100 at the end of two years if the nominal annual rate of interest is 6% per annum convertible weekly.
- (c) An investment is made at a compound force of interest of 8% p.a. for a period of 5 years. Find the equivalent rate of *simple interest* per annum.