49. (Homework 5 - Chifan) If f is uniformly continuous and integrable on \mathbb{R} , then $\lim_{|x|\to\infty} f(x) = 0$. True or False?

It suffices to show the result on Rt.

Note that f being integrable means
$$\lim_{\alpha,b\to\infty} \int_{\alpha}^{b} f(x) dx = 0$$
.

Assume $\lim_{x\to\infty} f(x) \neq 0$. Then there is a sequence $\{x_n\}_{n=1}^{\infty}$ such that $f(x_n) \geq \epsilon$ for some $\epsilon > 0$ and so that $|x_n - x_{n-1}| \geq 1$.

Since f is uniformly continuous, there is a 8>0 such that if $|x-x_n| < 8$, then $|f(x)-f(x_n)| < \frac{\epsilon}{2}$. So on the interval $|x_n-8| < x_n+8|$, we have that $|f(x)| > \frac{\epsilon}{2}$ (as the value of f will be at most $\frac{\epsilon}{2}$ away from $f(x_n) > \epsilon$). Thus

$$\int_{x_{n}-\delta}^{x_{n}+\delta} f(x) dx \qquad \sum_{z} \int_{\chi_{n}-\delta}^{z} \chi_{(x_{n}-\delta, x_{n}+\delta)}(x) dx$$

$$= \frac{\varepsilon}{2} \cdot 2\delta$$

$$= \varepsilon \delta$$

But $x_n \rightarrow \infty$, so $\lim_{\alpha, b \rightarrow \infty} \int_{\alpha}^{b} f(x) dx \neq 0$ $\frac{\pi}{2}$.