Лабораторная работа № 3

Детализация функциональной модели управления предприятием, выделение потоков данных

Задачи

- 1. Ознакомиться с методиками поиска и структурирования справочной информации.
- 2. Ознакомиться функциональной моделью управления предприятием согласно ИСА-95.
- 3. Ознакомиться с моделью Data Flow.

Справочные материалы

- 1. Материалы полученные в рамках выполнения работы No 2.
- 2. ГОСТ Р МЭК 62264-1-2010.
- 3. Приложение No1 к работе.

Программное обеспечение

- 1. MS Word или другой текстовый редактор.
- 2. MS Visio, Dia или любой другой редактор диаграмм.
- 3. Интернет браузер.

Задание на лабораторную работу

- 1. Проанализировать функциональную модель управления предприятием в терминах ГОСТ Р МЭК 62264-1-2010 (ИСА 95), полученную в работе No2.
- 2. Провести анализ потоков управления, выделить 2 контура управления.
- 3. Для выделенных контуров управления детализировать информационные потоки, согласно методологии DFD.

Отчет

- 1. Титульный лист.
- 2. Краткое описание предприятия.
- 3. Функциональная модель управления предприятием согласно ГОСТ Р МЭК 62264-1-2010 (ИСА 95), с графическим выделением результатов полученных в п.2 задания.
- 4. Детальная модель DFD для каждого контура управления.
- 5. Выводы каковы основные контуры управления предприятием, органы управления, потоки управления, роль информации в процессах управления.

Отчет предоставляется в электронном виде одним документом.

ПРИЛОЖЕНИЕ No 1

Нотация и построение Data Flow диаграмм

При построении DFD-схемы бизнес-процесса нужно помнить, что данная схема показывает потоки материальных и информационных потоков и ни в коем случае не говорит о временной последовательности работ, хотя в большинстве случаев временная последовательность работ и совпадает с направлением движения потоков в бизнес-процессе.

Существуют две нотации DFD:

Элемент	Описание	Нотация Йордона- Де Марко	Нотация Гейна- Сарсона
Функция	Работа.	Имя функции Номер	Имя функции Номер
Поток данных	Объект, над которым выполняется работа. Может быть логическим или управляющим. (Управляющие потоки обозначаются пунктирной линией со	Имя объекта ————————————————————————————————————	Имя объекта (Понятие управляющего потока отсутствует)
Хранилище данных	стрелкой). Структура для хранения информационных объектов.	 Имя объекта	Имя объекта
Внешняя сущность	Внешний по отношению к системе объект, обменивающийся с нею потоками.	Имя внешнего объекта	Имя внешнего объекта

Требования к оформлению функций:

- 1. Каждая функция должна иметь идентификатор;
- 2. Названия работы нужно формулировать согласно следующее формуле:

 Название работы = Действие + Объект, над которым действие осуществляется

Требования к оформлению потока данных:

- 1. Название потока нужно формулировать согласно следующей формуле: Название потока = Объект, представляющий поток + Статус объекта
- 2. Название должно быть по возможности кратким и состоять из 2-3 слов.

Построение DFD-модели

Построение DFD-модели базируется на принципе декомпозиции. DFD-модель включает в себя три документа, которые ссылаются друг на друга: Графические диаграммы, Миниспецификация, Словарь данных.

1. Контекстная диаграмма и детализация контекстной диаграммы

Первым шагом является построение контекстной диаграммы. Диаграмма имеет звездообразную топологию, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы.

При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем. Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи диаграммы DFD. Каждый процесс, в свою очередь, может быть детализирован при помощи отдельной диаграммы или миниспецификации, рис.1..

рисунок 1. Детализация моделей DFD

При детализации должны выполняться следующие правила:

правило балансировки — при детализации процесса дочерняя диаграмма в качестве внешних источников/приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеет информационную связь соответствующий процесс на родительской диаграмме;

правило нумерации — при детализации процессов должна поддерживаться их иерархическая нумерация.

правило семи — для того, чтобы диаграмма легко читалась, количество функций на диаграмме не должно быть больше семи.

Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т. д. 2. Миниспецификация

Миниспецификация — документ, детально описывающий логику процесса. Она содержит номер процесса, списки входных и выходных данных, тело процесса — подробный алгоритм функции, преобразующий входные потоки данных в выходные.

Миниспецификация является конечной вершиной иерархии модели DFD. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком исходя из следующих критериев:

- у процесса небольшое количество входных и выходных потоков данных (2-3 потока);
- процесс можно описать в виде последовательного алгоритма;
- процесс выполняет единственную логическую функцию преобразования входной информации в выходную;
- описать логику процесса можно в виде миниспецификации небольшого объема (не более 20-30 строк).

3. Словарь данных

В словаре данных определяется структура и содержание всех потоков данных и накопителей данных, которые присутствуют на диаграммах.

Для каждого потока в словаре хранятся: имя потока, тип, атрибуты.

4. Проверка DFD модели

После построения законченной модели системы ее необходимо проверить на полноту и согласованность.

Модель считается полной, если все ее объекты (подсистемы, процессы, потоки данных) подробно описаны и детализированы.

Модель считается согласованной, если для всех потоков данных и накопителей данных выполняется правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.