AMENDMENTS TO THE SPECIFICATION

Please replace the paragraph on page 5, lines 15-24 with the following amended paragraph:

The filter updating part 203 updates the separating filter coefficients using the steepest ascent rule with natural gradient by the following equation:

$$w_{ij,p}(k+1) = w_{ij,p}(k) + \mu \Delta w_{ij,p}(k)$$
 (6)

for $1 \le i \le m$, $1 \le j \le n$, $0 \le p \le L - 1$, where μ is the step size and $\Delta w_{ij,p}(k)$ is the natural gradient defined by the following equation:

$$\Delta w_{ij,p}(k) = \Delta w_{ij,p}(k) - \sum_{l=1}^{m} \sum_{q=0}^{p} \overline{y}_{i}(k) \overline{u}_{l}(k-p+q) w_{ij,q}(k)$$
 (7)

$$\Delta w_{ij,p}(k) = w_{ij,p}(k) - \sum_{l=1}^{m} \sum_{q=0}^{p} \overline{y}_{i}(k) \overline{u}_{l}(k-p+q) w_{lj,q}(k)$$
(7)

Where $\bar{y}_i(k)$ and $\bar{u}_i(k)$ are the frequency-domain normalized versions, having flat spectrum, of $y_i(k)$ and $u_i(k)$, respectively. Note also that the filter lag q in equation (7) is limited up to p not up to L-1. In this invention the separating filter is unidirectional of length L. Thus no sample delay is required.