# המערכת הקרדיווסקולרית לב וכלי דם

קורס חובשים בכירים ית"מ פברואר 2024 איתן שמשוביץ

# בהקדמות למדתם...

- תפקידי המערכת
  - חלקי המערכת
    - מדחס לב
- צינורות כלי דם
- נוזל דם [הרחבה בנושא זה בפרק המטולוגיה]
  - פיזיולוגיה
  - דיאסטולה / סיסטולה
  - התאמה הפעלה חשמלית מכאנית
    - מחזורי הדם

#### תפקידי מערכת ההובלה

### התפקידים העיקריים של מערכת ההובלה:

| <u>•הובלה של חומרים שונים:</u>                   |
|--------------------------------------------------|
| הובלת חמצן מן הריאות לתאי גוף; 🗖                 |
| ;מתאי הגוף לריאות CO $_2$ מתאי הגוף לריאות ריאות |
| הובלת תוצרי העיכול ממערכת העיכול אל תאי הגוף;    |
| 🗖 הובלת הורמונים מבלוטות ההפרשה אל אברי המטרה.   |
| הובלת פסולת מהתאים לשתן 🗖                        |
|                                                  |
|                                                  |

•באורגניזמים הומאוטרמיים\* (בני אדם ושאר היונקים ועופות):

•<u>הגנה וחיסון:</u> תאי הדם הלבנים פועלים נגד גורמים זרים החודרים לגוף\*.

נוזל הדם מסיע את החום בתוך הגוף ומקרין אותו לסביבה החיצונית, כך שה<u>שמירה על</u> <u>טמפרטורת גוף קבועה נשמרת בעזרת כיווץ/הרחבה של כלי הדם ההיקפיים</u>

כלומר, לדם תפקיד חשוב בשמירת ההומאוסטזיס של טמפרטורת גוף קבועה\*.

בעלי חיים שיש להם מנגנונים משוכללים לשמירה על טמפרטורת גוף קבועה.

# נקודות מרכזיות בכלי הדם







## קוטר כלי הדם – בקרה של הלחץ והזרימה (ועצירת דימומים)



## ?איך דם זורם

- $F=\Delta P/R$  :מפל לחצים... ע"פ הנוסחה •
- התנגדות לזרימה: אורך כלי הדם, צמיגות, רדיוס ע"פ הנוסחה: התנגדות=(קבוע\* אורך כלי דם\* צמיגות)/ (רדיוס כלי דם)<sup>4</sup>
- לחץ הדם העורקי שווה בכניסה לכל העורקים, העורקים קובעים את הזרימה (כמות דם ליחידת זמן) באמצעות הרדיוס
  - הגברה של הלחץ המכני יגרום להתגברות שלו על הלחץ האוסמולרי ונוזלים יצאו מכלי הדם.

## השפעה הפוכה במקומות שונים



#### מסלול זרימת הדם וחילופי החומרים עם הרקמות

בזמן שהדם עובר בריאות מתחוללים חילופי גזים בין הדם בנימי הריאות ובין נאדיות הריאה: חמצן עובר מהנאדיות לדם, ופחמן דו-חמצני



בזמן שהדם זורם בנימים בקרבת תאי הגוף עוברים ממנו אל התאים חמצן וחומרי מזון, ומהתאים לדם עוברים פחמן דו-חמצני וחומרי הפרשה אחרים.

### המחזור הגדול והמחזור הקטן

### מחזור הדם מורכב <u>מהמחזור הגדול והמחזור הקטן</u>:



### מחזור הדם הקטן (מחזור לב-ריאות-לב)

כולל את כלי הדם שמעבירים דם מהלב אל הריאות וחזרה אל הלב. (כולל: עורקים, ורידים, נימים)

### מחזור הדם הגדול (מחזור לב-גוף-לב)

כולל את כלי הדם המעבירים דם מהלב לגוף

תזכורת בנשימה תאית

## מבנה לב אדם ומחזורי הדם

#### מחזורי הדם בגוף האדם



מחזור הדם הגדול – בין הלב דרך האאורטה אל הגוף, ובחזרה דרך הורידים הנבובים מחזור הדם הקטן – בין הלב דרך עורקי הריאות אל הריאות ובחזרה דרך ורידי הריאות

דם עני בחתן 🛗 דם עני בחתון



MINIT



# ?איך דם חוזר ללב מהרגל









# פיזיולוגיה מכנית של הלב

- שלב הדיאסטולה מילוי חדרי הלב
  - הרפיית חדרים (80%)
    - (20%) כיווץ עליות •

- מה קורה במיוקרד?
  מה קורה במסתמים?
  - איך זורם הדם?
- שלב הסיסטולה ריקון החדרים
  - כיווץ החדרים
  - (הרפיית עליות)

# נפחים ולחצים ניתוח סרטון ומושגים

- CO •
- SV •
- EDV •
- PRELOAD •
- **AFTERLOAD**
  - EF •





חוק פרנק סטרלינג התאמה בין מילוי החדר לבין הריקון שלו

# תפוקת לב – כמות הדם היוצאת מהלב בדקה



כמות דם היוצאת בכל פעימה (נפח פעימה)
 X מספר הפעימות בדקה (דופק)

• נפח פעימה – כמות הדם הנכנסת אל הלב (יכולת הדיאסטולה) ועצמת הכיווץ (תכונות המיוקרד) – קצב גבוה מדי\* ירידה בל"ד לחץ דם – הלחץ שמפעיל הדם על דפנות העורקים קוטר כלי הדם תפוקת הלב נפח נוזל הדם נפח קצב לב פעימה עלייה ירידה - קוטר צר קוטר רחב בנפח – בנפח – עלייה – ירידה עלייה ירידה בל"ד בל"ד עלייה רל"ד בל"ד ירידה עלייה ירידה בנפח – בנפח – – בקצב בקצב – עלייה עלייה ירידה ירידה רל"ד בל"ד \*בל"ד



## העורקים הקורונריים

- מספקים דם לשריר הלב
- מוצא תחילתו של אבי העורקים
  - עורק לימין •
  - עורק לשמאל
    - התפצלויות
- חיבור משני הכיוונים אנסטמוזיס

### עורקים קורונריים (המשר)

- LAD חלק קדמי (חדר שמאל), חלק מהמחיצה וחלק מהחלק התחתון של הלב
  - חלק אחורי וצדי של לב שמאל CX
    - צד ימין ומערכת הולכה RCA •



# 



| I lateral    | aVR          | V <sub>1</sub> septal   | V <sub>4</sub> anterior |
|--------------|--------------|-------------------------|-------------------------|
| II inferior  | aVL lateral  | V <sub>2</sub> septal   | V <sub>5</sub> lateral  |
| III inferior | aVF inferior | V <sub>3</sub> anterior | V <sub>6</sub> lateral  |

### הייחוד בתאי שריר הלב

- המבנה של תאי המיוקרד והארגון שלהם נותן להם תכונות מיוחדות:
  - יכולת העברת של זרם חשמלי
  - יכולת שחרור של זרם חשמלי עצמוני (אוטומטיות)
    - מעבר מסונכרן •
    - שיטת "הכל או לא כלום" •
    - המנצחת על התהליך מערכת ההולכה

## מערכת ההולכה החשמלית

- תפקידים:
- סנכרון העברת הזרם
- קביעת כיוון אידיאלי לזרימה
- העברת הזרם דרך המחיצה
  - תכונות:
- מהירים יותר המהיר שולט!
  - אוטומטיות •







## מערכת ההולכה החשמלית (המשך)

- גבוה יותר מהיר יותר חזק יותר
  - : Sinoatrial node (sinus) •
  - מיקום חלק עליון בעלייה ימין •
  - קצב 60-100 פולסים בדקה
  - דרך מסלולים משפעל את העליות
    - :Atrioventricular node (AV) •
    - מיקום חלק תחתון עליה ימין
      - קצב 40-60 פולסים בדקה



# השפעה על הפינוס דרך המערכת האוטונומית

## מערכת ההולכה החשמלית (המשך)

- :(Bundle of his) הצרור ע"ש היס
  - העברת הזרם דרך המחיצה
    - סיב שמאלי המעביר לימני
- יבי פורקנייה (Purkinje fibers):
  - 20-40 קצב
- שפעול החדרים מהאפקס כלפי מעלה

# מערכת ההולכה החשמלית (המשד)



## תאום חשמלי - מכני

- מעבר הזרם מהסינוס עד ה- AV יגרום לכווץ מכני של העליות מלמעלה למטה ולסיום הדיאסטולה.
  - עד סיבי פורקנייה לא יתבטא בפעילות מכאנית AV מעבר הזרם מה
- מעבר הזרם בסיבי פורקנייה יגרום לכווץ החדרים ולסחיטתם מלמטה כלפי מעלה – אל פתח האאורטה
  - ייתכן קצב חשמלי ללא מכני! (PEA) •