Rappel de cours

Definition 1. Soit E un K-espace vectoriel. Une partie F de E est appelée un sous-espace vectoriel si :

- $0_E \in F$,
- $u + v \in F$ pour tous $u, v \in F$,
- $\lambda.u \in F$ pour tout $\lambda \in K$ et tout $u \in F$.

Definition 2. Une famille $\{v_1, v_2, \dots, v_p\}$ de E est une famille libre ou linéairement indépendante si toute combinaison linéaire nulle

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_p v_p = 0$$

est telle que tous ses coefficients sont nuls, c'est-à-dire

$$\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_p = 0$$

Definition 3. Soient v_1, \ldots, v_p des vecteurs de E. La famille $\{v_1, \ldots, v_p\}$ est une famille génératrice de l'espace vectoriel E si tout vecteur de E est une combinaison linéaire des vecteurs v_1, \ldots, v_p . Ce qui peut s'écrire aussi :

$$\forall v \in E, \exists \lambda_1, \dots, \lambda_p, v = \lambda_1 v_1 + \dots + \lambda_p v_p$$

Exercice 1

Soit $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 + x_2 - 2x_3 + 4x_4 = 0\}$ et $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | 2x_1 + 3x_2 + x_3 + 5x_4 = 0\}$. Il faut calculer $U \cap V$.

Trouvons une base pour l'espace vectoriel U.

$$U = \begin{pmatrix} -x_2 + 2x_3 - 4x_4 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = ((-1, 1, 0, 0), (2, 0, 1, 0), (-4, 0, 0, 1))$$

Trouvons une base pour l'espace vectoriel V.

$$U = \begin{pmatrix} x_1 \\ x_2 \\ -2x_1 - 3x_2 - 5x_4 \\ x_4 \end{pmatrix} = ((1, 0, -2, 0), (0, 1, -3, 0), (0, 0, -5, 1))$$

Pour qu'un vecteur v appartienne à $U \cap V$, il est nécessaire et suffisant d'avoir v comme une combinaison linéaire des 2 bases de U et V, donc

$$v = a_1 \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix} + a_2 \begin{pmatrix} 2\\0\\1\\0 \end{pmatrix} + a_3 \begin{pmatrix} -4\\0\\0\\1 \end{pmatrix} = b_1 \begin{pmatrix} 1\\0\\-2\\0 \end{pmatrix} + b_2 \begin{pmatrix} 0\\1\\-3\\0 \end{pmatrix} + b_3 \begin{pmatrix} 0\\0\\-5\\1 \end{pmatrix}$$

Donc

$$\begin{vmatrix} -1 & 2 & -4 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & -3 & -5 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -\frac{1}{5} & \frac{3}{5} \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & \frac{7}{5} & \frac{14}{5} \end{vmatrix}$$

D'où

$$v = a_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = b_1 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + b_2 \begin{pmatrix} 1 \\ -\frac{1}{5} \\ 0 \\ \frac{7}{5} \end{pmatrix} + b_3 \begin{pmatrix} \frac{3}{5} \\ 1 \\ \frac{14}{5} \end{pmatrix}$$

On obtient le système d'équations

$$\begin{cases} a_1 = b_2 \\ a_2 = -\frac{1}{5}b_2 + \frac{3}{5}b_3 \\ a_3 = b_3 \\ b_1 = \frac{7}{5}b_2 + \frac{14}{5}b_3 \end{cases}$$

On peut maintenant calculer v

$$v = b_2 \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix} + \left(-\frac{1}{5}b_2 + \frac{3}{5}b_3 \right) \begin{pmatrix} 2\\0\\1\\0 \end{pmatrix} + b_3 \begin{pmatrix} -4\\0\\0\\1 \end{pmatrix}$$

La base de $U \cap V$ est

$$((-1 - \frac{1}{5}.2, 1 - \frac{1}{5}.0, 0 - \frac{1}{5}.1, 0 - \frac{1}{5}.0), (\frac{3}{5}.2 - 4, \frac{3}{5}.0 + 0, \frac{3}{5}.1 + 0, \frac{3}{5}.0 + 1))$$

$$((-\frac{7}{5}, 1, -\frac{1}{5}, 0), (-\frac{14}{5}, 0, \frac{3}{5}, 1))$$

Exercice 2

QED