Linear Algebra

A summary for MIT 18.06SC

Jiaxin Hu

June 30, 2020

1 Matrices & Spaces

1.1 Basic concepts

- Given vectors $v_1, ..., v_n$ and scalars $c_1, ..., c_n$, the sum $c_1v_1 + \cdots + c_nv_n$ is called a *linear combination* of $v_1, ..., v_n$.
- The vectors $v_1, ..., v_n$ are linearly independent (or just independent) if $c_1v_1 + \cdots + c_nv_n = 0$ holds only when $c_1 = ... = c_n = 0$. If the vectors $v_1, ..., v_n$ are dependent, there exist scalars $c_1, ..., c_n$ which are not all equal to 0 such that $c_1v_1 + \cdots + c_nv_n = 0$.
- Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, the multiplication $\mathbf{A}x$ is a linear combination of the columns of \mathbf{A} , and $x^T \mathbf{A}$ is a linear combination of the rows of \mathbf{A} .
- Matrix multiplication is typically not communicative, i.e. $AB \neq BA$. Lemma 1 describes a special case where matrix multiplication is communicative.
- Suppose A is a square matrix. The matrix A is invertible or non-singular if there exists an A^{-1} such that $A^{-1}A = AA^{-1} = I$. Otherwise, the matrix A is singular, and the determinant of A is 0.
- The inverse of a matrix product AB is $(AB)^{-1} = B^{-1}A^{-1}$. The product of invertible matrices is still invertible.
- The transpose of a matrix product AB is $(AB)^T = B^T A^T$. For any invertible matrix A, $(A^T)^{-1} = (A^{-1})^T$.
- A matrix Q is orthogonal if $Q^T = Q^{-1}$. A matrix Q is unitary if $Q^* = Q^{-1}$, where Q^* is the conjugate transpose of Q.

Lemma 1 (Communicative matrix multiplication). For matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$, the matrix multiplication of A and B is communicative, i.e. AB = BA, if A and B have the same set of eigenvectors corresponding to their non-zero eigenvalues.

Proof. If A and B have the same set of eigenvectors corresponding to their non-zero eigenvalues, there exists a matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$A = QD_AQ^{-1}, \quad B = QD_BQ^{-1},$$

where columns of Q are eigenvectors of A and B, and $D_A \in \mathbb{R}^{n \times n}$, $D_B \in \mathbb{R}^{n \times n}$ are diagonal matrices whose diagonal elements are eigenvalues of A and B, respectively. Because matrix multiplication is communicative for two diagonal matrices with same dimensions, we have

$$AB = QD_AQ^{-1}QD_BQ^{-1} = QD_AD_BQ^{-1} = QD_BD_AQ^{-1} = QD_BQ^{-1}QD_AQ^{-1} = BA.$$

Therefore, the matrix multiplication of A and B is communicative.

1.2 Permutation of matrices

Let A be a matrix, we swap the rows of A by multiplying a permutation matrix P on the left of A. For example,

$$m{PA} = egin{bmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} a_1 \ a_2 \ a_3 \end{bmatrix} = egin{bmatrix} a_3 \ a_1 \ a_2 \end{bmatrix}$$

where a_k refers to the k-th row of A. The inverse of the permutation matrix P is $P^{-1} = P^T$, which implies the orthogonality of permutation matrix. For an $n \times m$ matrix, there are n! different row permutation matrices, which form a multiplicative group.

Similarly, we also swap the columns of the matrix A by multiplying a permutation matrix on the right of A.

1.3 Elimination of matrices

Elimination is an important technique in linear algebra. We eliminate the matrix by multiplications and subtractions. Take a 3-by-3 matrix \boldsymbol{A} as an example.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow{\text{step 1}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow{\text{step 2}} \mathbf{U} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix}$$

In step 1, we choose the number 1 in row 1 column 1 as a *pivot*. Then we recopy the first row, multiply an appropriate number (in this case, 3) and subtract these values from the numbers in the second row. We have thus eliminated 3 in row 2 column 1. Similarly, in step 2, we choose 2 in row 2 column 2 as a pivot and eliminate the number 4 in row 3 column 2. The number 5 in row 3 column 3 is also a pivot. The matrix U is an upper traingular matrix.

The *elimination matrix* used to eliminate the entry in row m column n is denoted as E_{mn} . In the previous example,

$$E_{21}A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix}; \quad E_{32}(E_{21}A) = U.$$

Pivots are non-zero. If there exists a 0 in the pivot position, we exchange the row with one below to get a non-zero value in pivot position. If all numbers below the pivots are 0, we skip this column and find a pivot in the next column.

We write $E_{32}(E_{21}A) = (E_{32}E_{21})A = U$, because matrix multiplication is associative. Let E denote the product of all elimination matrices. If we need to permute the rows during the process, we multiply a permutation matrix on the left of A. Therefore, the elimination process of A is

$$EPA = U, (1)$$

where U is an upper triangular matrix.

Next, we prove the invertibility of the elimination matrix.

Lemma 2 (Invertiblity of elimination matrix). Suppose there is an elimination matrix $E_{ij} \in \mathbb{R}^{n \times n}$ that multiplies a scalar -c to the j-th row and subtracts the row from i-th row, where $i \neq j$. The matrix E_{ij} is invertible.

Proof. We write the elimination matrix as

$$\boldsymbol{E}_{ij} = \boldsymbol{I}_n + ce_i e_j^T,$$

where $e_i \in \mathbb{R}^n$ denotes the vector with 1 in the *i*-th entry and 0 elsewhere. Because $i \neq j$, $e_i^T e_j = 0$. We have

$$(\boldsymbol{I}_n + ce_i e_j^T)(\boldsymbol{I}_n - ce_i e_j^T) = \boldsymbol{I}_n - c^2 e_i e_j^T e_i e_j^T = \boldsymbol{I}_n; \quad (\boldsymbol{I}_n - ce_i e_j^T)(\boldsymbol{I}_n + ce_i e_j^T) = \boldsymbol{I}_n.$$

Therefore, $I_n - ce_i e_i^T$ is the inverse of E_{ij} . The elimination matrix E_{ij} is invertible.

Corollary 1 (Inverse of elimination matrix). Suppose the elimination matrix E_{ij} in lemma 2 is a lower/upper-triangular matrix. The inverse E_{ij}^{-1} is also a lower/upper-triangular matrix.

Proof. By the proof of lemma 2, the matrix E_{ij} and its inverse are written as

$$\boldsymbol{E}_{ij} = \boldsymbol{I}_n + ce_i e_j^T, \quad \boldsymbol{E}_{ij}^{-1} = \boldsymbol{I}_n - ce_i e_j^T.$$

Without the loss of generality (WLOG), we assume that E_{ij} is a lower-triangular matrix. Then $ce_ie_j^T$ and $-ce_ie_j^T$ are also lower-triangular matrices. Therefore, E_{ij}^{-1} is a lower-triangular matrix.

1.4 Gauss-Jordan Elimination

We also use elimination to find the inverse of an invertible matrix.

Suppose $A \in \mathbb{R}^{n \times n}$ is an invertible matrix. The inverse of A, denoted A^{-1} , satisfies

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n. \tag{2}$$

Suppose there exists an elimination matrix E such that $EA = I_n$. Multiplying E on the both sides of the equation (2), we have $EAA^{-1} = A^{-1} = E$. To obtain a such E, we eliminate the augmented matrix $[A|I_n]$ until A becomes I_n . Then, the augmented matrix becomes $E[A|I_n] = [I_n|E]$, where E is the inverse of A.

We call this elimination process of finding E as Gauss-Jordan Elimination.

1.5 Factorization of matrices

By elimination, any square matrix A has the factorization (1). By lemma 2, E is invertible. Multiplying E^{-1} on both sides of equation (1) yields,

$$\boldsymbol{P}\boldsymbol{A} = \boldsymbol{E}^{-1}\boldsymbol{U}.$$

Note that E is a lower-triangular matrix. By corollary 1, E^{-1} is also a lower-triangular matrix. Let L denote E^{-1} , where the letter L refers to "lower triangular". Therefore, any square matrix A has a factorization:

$$PA = LU, (3)$$

where U is an upper triangular matrix with pivots on the diagonal, L is a lower triangular matrix with ones on the diagonal, and P is a permutation matrix. However, the equation (3) is not the unique factorization of A. For example, cL and $c^{-1}U$ also factorize A, where c is a non-zero scalar.

1.6 Time complexity of elimination

For an n-by-n matrix, a single elimination step multiplies a selected row and subtracts the selected row from another row. A single elimination step requires $\mathcal{O}(n)$ operations. To eliminate the elements below the first diagonal element, we need to repeat single elimination (n-1) times and thus require $\mathcal{O}(n^2)$ operations. Similarly, we require $\mathcal{O}((n-1)^2)$ operations to eliminate the elements below the second diagonal element. Repeat the elimination until we meet the n-th diagonal element. Therefore, we require in total $\mathcal{O}(n^3)$ operations to obtain an upper-triangular matrix by elimination:

$$1^{2} + 2^{2} + \dots + (n)^{2} = \sum_{i=1}^{n} i^{2} \approx \int_{0}^{n} x^{2} dx = \frac{1}{3} n^{3} = \mathcal{O}(n^{3}).$$

1.7 Reduced row echelon form of matrices

In previous sections, we convert a matrix \mathbf{A} to an upper triangular matrix \mathbf{U} . Next, we convert \mathbf{U} into the reduced row echelon form (RREF), which is a simpler form than upper triangle. We use $\mathbf{R} = RREF(\mathbf{A})$ to denote the reduced row echelon form of \mathbf{A} . In the matrix \mathbf{R} , the pivots are equal to 1, and the elements above and below the pivots are eliminated to 0. In the previous example,

$$\boldsymbol{U} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix} \xrightarrow{\text{make pivots} = 1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{0 \text{ above and below pivots}} \boldsymbol{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

There is another example,

$$\boldsymbol{U} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{make pivots} = 1} \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{0 \text{ above and below pivots}} \boldsymbol{R} = \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Assume that there are r pivots in $\mathbf{A} \in \mathbb{R}^{m \times n}$. With proper permutation, the matrix \mathbf{R} is in the form of $\begin{bmatrix} \mathbf{I}_r & \mathbf{F} \\ 0 & 0 \end{bmatrix}$, where $\mathbf{F} \in \mathbb{R}^{r \times (n-r)}$ is an arbitrary matrix. The columns in \mathbf{A} which correspond to the identity matrix \mathbf{I}_r are called *pivot columns*. The other columns are *free columns*.

1.8 Vector space, Subspace, and Column space

- Vector space is a collection of vectors that is closed under linear combination (addition and multiplication by any real number); i.e. for any vectors in the collection, all the combinations of these vectors are still in the collection.
- Subspaces of the vector space is a vector space that is contained inside of another vector space.

Note that any vector space or subspace must include an origin. For a vector space \mathcal{A} , the subspace of \mathcal{A} can be \mathcal{A} itself or a set that contains only a zero vector.

• Vectors $v_1, ..., v_n$ span a space that consists of all the linear combination of these vectors.

• Column space of a matrix A is the space spanned by the columns of A. Let C(A) denote the column space of A.

If $v_1, ..., v_n$ span a space \mathcal{S} , then \mathcal{S} is the smallest space that contains these vectors.

- Basis of a vector space is a set of vectors $v_1, ..., v_n$ that satisfy: (1) $v_1, ..., v_n$ are independent; (2) $v_1, ..., v_n$ span the space.
- Dimension of a space is the number of vectors in a basis of this space. Let dim(A) denote the dimension of space A.

1.9 Matrix rank

Let $rank(\mathbf{A})$ denote the rank of matrix \mathbf{A} . We have

$$rank(\mathbf{A}) \stackrel{\Delta}{=} dim(C(\mathbf{A})) = \# \text{ of pivot columns of } \mathbf{A}.$$
 (4)

If $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $rank(\mathbf{A}) = r$, we have $r \leq \min\{m, n\}$. The matrix is full rank if $r = \min\{m, n\}$. The rank of a square matrix is closely related to the invertibility.

Lemma 3 (Full rankness and invertibility). A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is full rank, if and only if \mathbf{A} is an invertible matrix.

Proof. (\Rightarrow) Suppose **A** is full rank.

Let R denote the RREF form of A. There exist an elimination matrix E and a permutation matrix P such that

$$EPA = R$$
.

By the full rankness of A, A has n pivot columns, and thus $R = I_n$. By lemma 2, E is invertible. The permutation matrix P is also invertible. Then, the matrix product EP is invertible, and A is the inverse of EP. Therefore, A is invertible.

 (\Leftarrow) Suppose A is invertible. We prove the full rankness of A by contradiction.

Assume that $rank(\mathbf{A}) < n$. By equation (4), $dim(C(\mathbf{A})) = rank(\mathbf{A}) < n$, which implies that the columns of \mathbf{A} are linearly dependent. Then, there exists a non-zero vector v such that

$$\mathbf{A}v = 0. (5)$$

By assumption, the inverse A^{-1} exists. Multiplying A^{-1} on both sides of equation (5), we have

$$v = A^{-1}0 = 0. (6)$$

However, equation (6) contradicts the fact that v is a non-zero vector. Therefore, \mathbf{A} is full rank. \square

The rank of A also affects the number of solutions to the system Ax = b. We will discuss the relationship between matrix rank and the solutions in next section.

2 Solving Ax = b

In this section, we discuss the solutions to the linear system $\mathbf{A}x = b$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix, and $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ are vectors.

2.1 Solving Ax = 0: nullspace

The nullspace of matrix \mathbf{A} is the collection of all solutions x to the system $\mathbf{A}x = 0$. Let $N(\mathbf{A})$ denote the nullspace of \mathbf{A} .

Lemma 4 (Nullspace). The nullspace of matrix A is a vector space.

Proof. We only need to prove that $N(\mathbf{A})$ is closed under linear combination. For any $v_1, v_2 \in N(\mathbf{A})$, we have,

$$\mathbf{A}(c_1v_1 + c_2v_2) = c_1\mathbf{A}v_1 + c_2\mathbf{A}v_2 = 0, \quad \forall c_1, c_2 \in \mathbb{R}.$$
 (7)

The equation (7) implies that $N(\mathbf{A})$ is closed under linear combination. Therefore, $N(\mathbf{A})$ is a vector space.

Lemma 5 (The rank of nullspace). If $rank(\mathbf{A}) = r$, the rank of nullspace $rank(N(\mathbf{A})) = n - r$.

Proof. Let R denote the RREF(A). We write R as $R = \begin{bmatrix} I_r & F \\ 0 & 0 \end{bmatrix}$, where $F \in \mathbb{R}^{r \times (n-r)}$ is an arbitrary matrix. Let $X = \begin{bmatrix} -F \\ I_{n-r} \end{bmatrix}$. We have

$$\boldsymbol{R}\boldsymbol{X} = \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{F} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\boldsymbol{F} \\ \boldsymbol{I}_{n-r} \end{bmatrix} = 0.$$

Therefore, the columns of X are independent solutions to the system Ax = 0 Next, we show that any vector $x \in N(A)$ is a linear combination of the columns of X.

Suppose there is a solution $x = (x_1, x_2) \in N(\mathbf{A})$, where $x_1 \in \mathbb{R}^r$ and $x_2 \in \mathbb{R}^{n-r}$. We have

$$\mathbf{R}x = \begin{bmatrix} \mathbf{I}_r & \mathbf{F} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + \mathbf{F}x_2 \\ 0 \end{bmatrix} = 0.$$

This implies that $x_1 = -\mathbf{F}x_2$, and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\mathbf{F} \\ \mathbf{I}_{n-r} \end{bmatrix} x_2 = \mathbf{X}x_2$. Any vector in $N(\mathbf{A})$ is a linear combination of the columns of \mathbf{X} , i.e. $C(\mathbf{X}) = N(\mathbf{A})$. Therefore, the rank of nullspace $rank(N(\mathbf{A})) = dim(C(\mathbf{X})) = n - r$.

Recall the definitions of pivot columns and free columns. In $\mathbf{A}x = b$, the variables in x that correspond to pivot columns are called *pivot variables*, and others are *free variables*. If $rank(\mathbf{A}) = r$, there are n - r free variables.

In the proof of lemma 5, the columns of $X = \begin{bmatrix} -F \\ I_{n-r} \end{bmatrix}$ compose the basis of N(A). Practically, we calculate the columns by assigning 1 to a free variable and 0 to other free variables, and then we solve the system Ax = 0.

2.2 Solving Ax = b: complete solutions

Lemma 6 (Solvability of Ax = b). The system Ax = b is solvable only when $b \in C(A)$.

Proof. If $\mathbf{A}x = b$ is solvable, there exists a vector x such that $\mathbf{A}x = b$. For any x, $\mathbf{A}x \in C(\mathbf{A})$.

Lemma 7 (Complete solution). The complete solution of $\mathbf{A}x = b$ is given by $x_{comp} = x_p + x_n$, where x_p is a solution such that $\mathbf{A}x_p = b$, and $x_n \in N(\mathbf{A})$.

Proof. Suppose $x = x_p + x_0$ is a solution to $\mathbf{A}x = b$. We have

$$\mathbf{A}x - \mathbf{A}x_p = \mathbf{A}(x - x_p) = \mathbf{A}x_0 = 0.$$

Therefore,
$$x_0 \in N(\mathbf{A})$$
.

Usually, we find a solution x_p by assigning 0 to free variables, and we solve the system $\mathbf{A}x = b$. The following table discusses the rank of \mathbf{A} , the form of \mathbf{R} , the dimension of nullspace $N(\mathbf{A})$, and the number of solutions to $\mathbf{A}x = b$.

	r = m = n	r = n < m	r = m < n	r < m, r < n
R	I	$\begin{bmatrix} I \\ 0 \end{bmatrix}$	$\begin{bmatrix} I & F \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{I} & \boldsymbol{F} \\ 0 & 0 \end{bmatrix}$
$dim(N(m{A}))$	0	0	n-r	n-r
# solutions to $\mathbf{A}X = b$	1	0 or 1	infinitely many	0 or infinitely many