Mid Term-1 Solution

Question 1:

a) (0.7 points)

Algorithms	Worst Case	Best Case
Insertion Sort	$O(n^2)$	0 (n)
Merge Sort	O(nlogn)	O(nlogn)
Heap Sort	O(nlogn)	O(nlogn)
Quick Sort	$O(n^2)$	O(nlogn)
Counting Sort	O(n+k)	O(n+k)
Radix Sort	O(nk) or	O(nk) or
	O(d(n+k))	O(d(n+k))
Bubble Sort	$O(n^2)$	0 (n)

b) Show $3n^2 + 4n - 3 = O(n^2)$. **(0.8 points)**

We need to find c and n_0 such that:

$$3n^2 + 4n - 3 \le cn^2$$
 for all $n >= n_0$

Divide both sides by
$$n^2$$
, getting: $3 + 4/n - 3/n^2 \le c$ for all $n >= n_0$

If we choose n_0 equal to 1, then we need a value of c such that:

$$3 + 4 - 3 \le c$$

We can set c equal to 4. Now we have: $3n^2 + 4n - 2 \le 4n^2$ for all n >= 1

$$3n^2 + 4n - 2 \le 4n^2$$
 for all $n >= 1$

$$3n^2 + 4n^2 - 3n^2 \le cn^2$$
; either c = 4 or 7 is true for n = 1

Question 2:

a. (2.5 points)

(a) The hecusewere is T(m) = 3T(m/3) + n T(1) = 1Solidion using focusience force T(n) = 1 T(n) = 1Solidion using focusience force T(n) = 1 T(n) = 1Subproblem forze at level K is n/3K. Subproblem forze hits 1 when n/3K = 1 => K = Log₃ n. Cost at each level is the or O(n). Number of nodes at each level 3K => 3 log₃ n. Total Cost T(n) = 1So, cost is $O(n\log n)$. OR we have to K-level So Tactal Cast is n/3K => $O(n \log n)$.

$$T(n) = 3T(n/3) + n$$
// Divide both sides by n
$$T(n)/n = 3T(n/3)/n + 1$$

$$T(n)/n = T(n/3)/(n/3) + 1$$

$$T(n)/n = T(n/9)/(n/9) + 1 + 1$$

$$T(n)/n = T(n/27)/(n/27) + 1 + 1 + 1$$

$$T(n)/n = T(n/3^3)/(n/3^3) + 3$$
In general
$$T(n)/n = T(n/3^k)/(n/3^k) + k$$
Let $k = \log_3 n$

$$T(n)/n = T(1) + \log_3 n => T(n) = n + n\log_3 n => T(n) = O(n\log n)$$

b. (1 points)

Question 3:

(3 points)

Compute the time complexity of the provided recursive relations by using master theorem and write it in the most appropriate asymptotic notation.

The generic form of the equation is as $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ where $f(n) = \theta(n^c)$

a)
$$T(n) = 4T(n/4) + 4n^2$$

$$a = 4, b = 4, c = 2$$

a < b^c:

 $c > \log_b a$

$$T(n) = \theta(f(n))$$

$$T(n) = \theta(n^c) = \theta(n^2)$$

b)
$$T(n) = T(n/2) + 8$$

$$a = 1, b = 2, c = 0, i.e. a = b^{c}, f(n) = \theta(n^{2} \log n)$$

$$c = \log_b a$$

$$T(n) = \theta \big(n^c \log n \big)$$

$$T(n) = \theta(\log n)$$

c)
$$T(n) = 16T(n/2) + 16n$$

$$a = 16, b = 2, c = 1 i.e. a > b^c$$

$$c < \log_b a$$

$$T(n) = \theta(n^{\log_b a})$$

$$T(n) = \theta(n^{\log_2 16}) = \theta(n^4)$$

d)
$$T(n) = 2T\left(\frac{n}{2}\right) + 2n\log n$$

Special Case:

If
$$f(n) \in \Theta(n^{\log_b a} \log^k n)$$
 for some $k \geq 0$ then

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$$

$$a=2,b=2,c=1,f(n)=\theta(n^c\log^k n)$$

```
c = \log_b a
T(n) = \theta(n^c \log^{k+1} n)
T(n) = \theta(n \log^2 n)
```

Question 4: (2 points)

```
\begin{aligned} & carry = 0; \\ & for(i=N-1 \ to \ 0) \ do \\ & r[i+1] = (a[i] + b[i] + carry) \ \% \ 10; \\ & carry = (a[i] + b[i] + carry)/10; \\ & end \ for \\ & r[0] = carry; \end{aligned}
```