CS 446: Machine Learning Homework 7

Due on Tuesday, March 6, 2018, 11:59 a.m. Central Time

1. [4 points] Inference Methods for Discrete Markov Random Fields

For this problem, consider the following Markov Random Field, where each node can be assigned one of the values in $\{1, 2, 3, 4, 5\}$:

(a)	To conduct MAP	inference on	this graph	using	exhaustive	search,	how	many	configura-
` ,	tions must be che	ecked?							

tions must be checked?	
Your answer:	

(b)	Can	MAP	inference	be r	un on	$_{ m this}$	graph	using	\mathbf{a}	dynamic	programming	algorithm?
	Why	or wh	ny not?									

Your answer:

(c) To run MAP inference on this graph using loopy belief propagation, how many messages must be computed?

Your answer:		

- 2. [7 points] ILP Inference formulation in Discrete Markov Random Fields
 - (a) Suppose we have two variables $x_1 \in \{0,1\}$ and $x_2 \in \{0,1\}$ and their local evidence functions $\theta_1(x_1)$ and $\theta_2(x_2)$ as well as a pairwise function $\theta_{1,2}(x_1,x_2)$. Using this setup, inference solves $\arg\max_{x_1,x_2}\theta_1(x_1)+\theta_2(x_2)+\theta_{1,2}(x_1,x_2)$. Using

$$\theta_1(x_1) = \begin{cases} 1 & \text{if } x_1 = 0 \\ 2 & \text{otherwise} \end{cases} \quad \theta_2(x_2) = \begin{cases} 1 & \text{if } x_2 = 0 \\ 2 & \text{otherwise} \end{cases}$$

$$\theta_{1,2}(x_1, x_2) = \begin{cases} -1 & \text{otherwise} \\ 2 & \text{if } x_1 = 0 \& x_2 = 1 \end{cases}$$

what is the integer linear programming formulation of the inference task? Make the cost function and constraints explicit for the given problem, i.e., do not use a general formulation.

Your answer: