6.1100 Spring 2024 Miniquiz #2

There are 2 pages. Please submit your answers on Gradescope by Feb 22nd, 2024, 11:59pm.

Name: 6.110 Staff

Email: 6.110-staff@mit.edu

1. Left recursion

Consider the following grammar. E, T, and F are non-terminals. +, \times , (,), and id are terminals.

$$E \rightarrow T \mid E + T$$

 $T \rightarrow F \mid T \times F$
 $F \rightarrow (E) \mid id$

Eliminate left recursion in this grammar using the method taught in lecture.

Introduce new non-terminals as necessary.

We introduce new non-terminals: E' and T'. The updated grammar is as follows:

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \varepsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow \times F T' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

2. Left factoring

Consider the following grammar. P, E, and T are non-terminals. +, [,], and a are terminals.

$$P \rightarrow \underline{I} E \underline{1}$$

$$E \rightarrow T \mid T + E$$

$$T \rightarrow \mathbf{a}$$

Perform left-factoring to eliminate common prefixes.

Here is the left-factored grammar:

3. Constraint propagation

Consider the following grammar. A, B, C, E, and P are non-terminals. \mathbf{I} , \mathbf{I} , \mathbf{I} , \mathbf{I} , \mathbf{A} , \mathbf{b} , and \mathbf{c} are terminals. P is the starting symbol.

$$P \rightarrow E (C)$$

$$E \rightarrow A B$$

$$A \rightarrow a \mid \varepsilon$$

$$B \rightarrow [b] \mid \varepsilon$$

$$C \rightarrow c \mid \varepsilon$$

Compute the following.

a. The set **Nullable** = {NT : NT is a non-terminal that is able to derive ε }.

b. For each non-terminal *NT*, the set

First(NT) = {T: T is a terminal that may appear at the left of a string derived from NT}

First(
$$P$$
) = { $\underline{(}$, $\underline{[}$, a }
First(E) = { a , $\underline{[}$ }
First(A) = { a }
First(B) = { $\underline{[}$ }
First(C) = { c }

Now, we define, for each non-terminal NT,

Follow(NT) = {T : T is a terminal that may appear directly after an expanded NT term in <u>any</u> valid derivation from the starting symbol}.

For example, we can show that $\mathbf{\zeta} \in \mathbf{Follow}(A)$. Consider the following derivation:

$$P \rightarrow E(C) \rightarrow AB(C) \rightarrow aB(C) \rightarrow a(C) \rightarrow a(c)$$
.

The token (directly follows a which is expanded from A. (B is expanded into an empty string.)

c. (Bonus problem; Optional) Compute Follow(NT) for all non-terminal NT.

Follow(P) = {eof}
Follow(E) = {
$$\underline{(}$$
}
Follow(A) = { $\underline{(}$, $\underline{\Gamma}$ }
Follow(B) = { $\underline{(}$ }
Follow(C) = { $\underline{)}$ }