Temporal Locality

- if a memory location is accessed at a certain moment, it will very likely be accessed again in the near future
- examples
 - variables are used repeatedly in a program
 - program loops instructions are repeated

Spatial Locality

- if a memory location is accessed at a certain moment, the neighboring locations will very likely be accessed again in the near future
- examples
 - walking through arrays
 - the execution of instruction sequences their codes are stored at consecutive memory addresses

Physical Order and Logical Order

- instructions to be executed are stored in memory in the physical order
- they are read from memory and executed
 - the rule: in the same order they are memorized
 - exception: jumping over several instructions
- the result is the logical order of instructions
 - may differ from one run to another
 - an instruction can be executed 0, 1, 2, ... times

II. Combinational Circuits and Boole Functions

Analogical Signal vs. Digital Signal

- analogical signal continuous
 - if it can have values a and b, then it can also have any value in [a,b]
- digital signal discrete
 - can only have a few distinct levels (values)
 - computer 2-level digital signal (0 and 1)
 - there are also other computing systems apart from PCs

Types of Circuits

- combinational circuits
 - the output values depend only on the input values
 - the same input values always yield the same output values
- sequential circuits
 - beside the inputs, the output values also depend on the state of the circuit
 - which evolves through time

Truth tables

- how to describe how a combinational circuit works?
- apply each possible combination of input values
- and observe the output values for each such combination
- together, these relationships (input-output)
 make a truth table

Circuits and Boole Functions

- each truth table has a corresponding Boole function
 - so each combinational circuit has a corresponding Boole function

	inputs		outputs						
\mathbf{I}_1	•••	I_n	O_1	•••	O_{m}				
0	00	0	?	??	?				
0	00	1	?	??	?				
•••	•••	•••	•••	•••	•••				
1	11	1	?	??	?				

II.1. Boole Functions

Algebraic Structure

- a non-void set B, containing at least two elements: $a, b, a \neq b$
- the set of binary operations $\{+, \cdot\}$
- one unary operation { }
- closure: $a+b \in B$ $a \cdot b \in B$ $\bar{a} \in B$

Boole Functions

- $B = \{0,1\}$
- $f: B^n \to B^m$
 - function: *n* variables, *m* values
 - circuit: *n* inputs, *m* outputs
- there are $(2^m)^{2^n}$ such distinct functions
 - -n = 1, m = 1: 4 unary functions of one value
 - -n = 2, m = 1: 16 2-variable Boole functions of one value

Truth Tables

а	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1
	= 0	= a	$=\bar{a}$	= 1

a	b	$ F_0 $	F_1	F_2	F_3	F_4	F ₅	F_6	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Axioms and Theorems in Boole Algebra (1)

identity	X + 0 = X	$X \cdot 1 = X$
constants	X + 1 = 1	$\mathbf{X} \cdot 0 = 0$
idempotence	X + X = X	$X \cdot X = X$
involution	$\overline{\overline{X}}=X$	
complementarity	$X + \overline{X} = 1$	$\mathbf{X} \cdot \overline{\mathbf{X}} = 0$
commutativity	X + Y = Y + X	$X \cdot Y = Y \cdot X$
associativity	(X + Y) + Z = X + (Y + Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
distributivity	$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$

Axioms and Theorems in Boole Algebra (2)

unification	$X \cdot Y + X \cdot \overline{Y} = X$	$(X + Y) \cdot (X + \overline{Y}) = X$				
absorption	$X + X \cdot Y = X$ $(X + \overline{Y}) \cdot Y = X \cdot Y$	$(X \cdot (X + Y) = X)$ $(X \cdot \overline{Y}) + Y = X + Y$				
De Morgan laws	$\overline{X+Y+\ldots}=\overline{X}\cdot\overline{Y}\cdot\ldots$	$\overline{X \cdot Y \cdot \ldots} = \overline{X} + \overline{Y} + \ldots$				
generalization (duality)	lity) $\overline{f(X_1,,X_n,0,1,+,\cdot)} = f(\overline{X_1},,\overline{X_n},1,0,\cdot,+)$					

The Computer - Elementary Operations

- in today's computers, elementary operations are the operations of Boole logic
 - which simulate (among others) the elementary
 arithmetic operations in base 2
- a combinational circuit actually implements a Boole function
 - how do we get the expression of the Boole function from the truth table?

Normal Forms

- disjunctive normal form (DNF)
 - for each row that yields value 1 on output −
 conjunction term (·)
 - contains each variable: negated if the variable is 0 on that row, not negated if the variable is 1
 - these terms connected through disjunction (+)
- conjunctive normal form (CNF): dual
- example: $F_9(x,y) = \overline{x} \cdot \overline{y} + x \cdot y = (x + \overline{y}) \cdot (\overline{x} + y)$

II.2. Logic Diagrams

The Alphabet of Logic Diagrams

- logic gates are the implementations of some Boole functions
- so the behavior of each gate can be described by a truth table
 - corresponding to the Boole function associated with the gate
- elementary gates: AND, OR, NOT
- other gates: NAND, NOR, XOR, NXOR

The Alphabet of Logic Diagrams

A	NOT
0	1
1	0

A	В	AND	OR	NAND	NOR	XOR	NXOR
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

Gate Symbols

associative binary operations can be extended operations with a finite number of operands

Minimal Set of Generators

- set of generators set of gate types which can implement any Boole function
 - minimal set of generators set of generators
 with the minimal number of gate types
- it is possible with 3 (NOT, AND, OR)
 - normal forms (disjunctive, conjunctive)
 - also possible with (NOT + AND, NOT + OR)
 - minimal 1 (NAND, NOR)

Homework

- prove that the following sets of gate types are sets of generators
 - -NOT + AND
 - -NOT + OR
 - NAND
 - NOR

II.3. Circuit Implementation Through Boole Functions

Defining Boole Functions

- can be defined in several ways
 - truth table
 - expressions variables and logical operations
 - graphic representation
 - sigma-notation (Σ)
- in the end, we need to have a Boole expression
 - which allows a gate implementation

Σ -notation(1)

- example "majority of k inputs"
 - function value: 1 if most input variables have
 value 1, 0 otherwise
 - for 3 variables: $f(x_1, x_2, x_3) = \Sigma(3, 5, 6, 7)$
- Σ-notation corresponds to the disjunctive normal form
 - each number in the brackets is a conjunction term
 - $-\Sigma$ denotes the disjunction of terms

Σ -notation(2)

- how many variables are necessary?
 - the lowest power of 2 that is equal to or greater than the highest number in the brackets
 - for our example: $2^2 < 7 < 2^3 \rightarrow n = 3$
- the term corresponding to a number
 - all variables, connected through conjunction
 - each variable is negated if assigned to a bit with value 0; not negated for 1
 - example: $3_{(10)} = 011_{(2)} \rightarrow \overline{x_1} \cdot x_2 \cdot x_3$

Minimization (1)

• the disjunctive normal form of the function majority of 3

$$f(A,B,C)=\overline{A}\cdot B\cdot C+A\cdot \overline{B}\cdot C+A\cdot B\cdot \overline{C}+A\cdot B\cdot C$$

- large number of elementary gates
- a simpler equivalent expression (the same
 Boole function) would make the circuit
 - faster
 - cheaper
 - more reliable

Minimization (2)

- how to get a simpler expression from the disjunctive normal form?
 - equivalent rewriting
 - use the laws and axioms of Boole algebra
 - perfect induction
 - Veitch-Karnaugh method
 - Quine-McCluskey method
 - hybridization (combine the above methods)

Minimization - Algebraic Rewriting

same example

$$f = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$
(idempotence)
$$= \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C + A \cdot B \cdot C + A \cdot B \cdot C$$
(unification)
$$= B \cdot C + A \cdot C + A \cdot B$$

difficult for complex expressions

Homework

- find the disjunctive normal form and study minimization through algebraic rewriting for the function "odd"
 - the function value is: 1 for an odd number of inputs with value 1; 0 otherwise

II.4. Minimization of Boole Functions Using Karnaugh Diagrams

The Veitch-Karnaugh Method

- provides a visual way of putting together the conjunction terms in DNF for which unification can be applied
- unification is possible if two terms differ on one variable only
 - which is negated for one term and not negated for the other one
- such terms become neighbors in a Karnaugh diagram

Structure of a Karnaugh Diagram

2-dimensional table

- variable names
 - for rows and columns, respectively
- label area
 - label bit string of length n
 - each bit corresponds to a variable (input)
 - all possible input combinations are present
- function value (output) area

Examples of Diagrams

Grey Code

- labels are not written in increasing order, but in Grey order
- any two consecutive labels, including the first and the last, differ by one bit
 - 2 bits: 00, 01, 11, 10
 - 3 bits: 000, 001, 011, 010, 110, 111, 101, 100
 - 4 bits: 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1011, 1001, 1000

Diagram Adjacencies (1)

- two positions are adjacent if their corresponding labels differ by a single bit
 - Grey code: adjacency → neighborhood
- for an *n*-variable function, a location has *n* adjacent locations
 - -n < 5: adjacent locations are found visually (up, down, left, right)
 - $-n \ge 5$: there are also other adjacencies, not directly visible

Diagram Adjacencies (2)

- there may be more than 2 adjacent locations
 - extend the unification to more than 2 variables
- in Karnaugh diagrams, they correspond to blocks with 2^k locations
 - power of 2 both for rows and for columns
 - including power 0
 - rectangle-shaped
 - for each location, the block must contain precisely k adjacent locations

Karnaugh Minimization

- look for blocks containing only 1s
 - corresponding to an adjacency (see before)
 - the blocks as large and as few as possible
- for each block with 2^k locations (all 1s)
 - we have a conjunction term of n-k variables
 - contains the variables whose values are constant for all locations in the block
 - 0: variable is negated; 1: variable is not negated
 - all these terms are connected by disjunction

Examples

Adjacency of Extreme Rows/Columns

$$f = \Sigma(0,2,3,4,5,6)$$

Expression Depends on Groups

Avoiding Redundancies

non-minimal simplification

minimal simplification

Impossible Value Combinations

- certain value combinations will never show up on input
 - according to the behavior we seek
 - but the diagram must be filled for all value combinations of the variables
- in the locations corresponding to these combinations we can write either 0 or 1
 - in order to get a simpler expression

Example - Displaying Decimal Digits

- 7 segment display
- selecting the segments for each digit
 - 0 switched off
 - 1 switched on
- input (command) 4 variables
 - a decimal digit can be written on 4 bits

Segment *d* - Truth Table

No	A	В	C	D	d
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

No	A	В	C	D	d
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	*
11	1	0	1	1	*
12	1	1	0	0	*
13	1	1	0	1	*
14	1	1	1	0	*
15	1	1	1	1	*

Simpler Expressions

"safe" simplification

exploiting impossible combinations

Homework: 2-bit Comparison

- 4 variables: A, B, C, D
- make 2 numbers

$$-N_1 = AB$$

$$-N_2 = CD$$

• 3 outputs - correspond to the truth values

$$-LT = (N_1 < N_2)$$

$$- EQ = (N_1 = N_2)$$

$$-GT = (N_1 > N_2)$$

A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Homework: 2-bit Multiplication

- 4 variables: A, B, C, D
- make 2 numbers

$$-N_1 = AB$$

$$-N_2 = CD$$

• 4 outputs - the product $N_1 \cdot N_2$

A	В	C	D	P8	P4	P2	P1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

Homework: BCD Increment by 1

- 4 variables
 - make a BCD numbers
 - between 0 and 9
- 4 outputs the input number, incremented
 - the result is also aBCD number

I8	I4	I2	I1	O8	O4	O2	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	*	*	*	*
1	0	1	1	*	*	*	*
1	1	0	0	*	*	*	*
1	1	0	1	*	*	*	*
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*