СОЗДАНИЕ НОВОСТНОГО АІ-БОТА

или как избавиться от информационного шума

КОМАНДА М&L

Дмитрий Науменко ML

Татьяна Кутькина ML, backend

Зорикто Дамдинов Капитан, ML

ПРОБЛЕМАТИКА

- 1. Слишком много источников ненужной читателю информации
- 2. Слишком много дубликатов новостей
- 3. Думскроллинг
- 4. Отсутствие единого новостного агрегата, способного персонализировать новостные предпочтения читателя

ЗАДАЧИ

Необходимо разработать 2 алгоритма:

- 1. Алгоритм, способный классифицировать новости по категориям
- 2. Алгоритм, способный точно и быстро идентифицировать дубликаты новостей

ДАННЫЕ

Способы улучшения датасета:

- Разметить все данные. То есть перевести задачу в обучение с учителем.
 Недостаток: долго или дорого.
- Использовать сторонние датасеты для обогащения данных.
 Однако обучение на датасете Лента.ру (700к сэмплов) не дало значимых улучшений.

В итоге используем первоначальный датасет и решаем задачу обучения без учителя.

Для процедуры валидации отобрали 1000 случайных новостей из датасета и разметили 3-мя разными людьми. Метрика F1-score измеряется как среднее среди 3-х датасетов.

КЛАССИФИКАЦИЯ НОВОСТЕЙ

Что пробовали?

Supervised:

- CountVectorizer
- TfidfVectorizer
- BERT
- Fine-tuned BERT

Unsupervised:

- ВЕЯТ кластеризация
- Universal Sentence Encoder
- Матрица близости слов

Hедостатки supervised:

- Нет размеченных данных для обучения, критерии разметки не однозначны
- Размеченные данные смещены, поэтому обучение на них дает плохой результат на реальных датасетах

Проверка концепций определила моделей-финалистов, которые дальше сравнивались на валидации.

Модели-финалисты:

- Варианты кластеризации на эмбеддингах текста
- Матрица косинусной близости эмбеддингов текстов

СРАВНЕНИЕ АЛГОРИТМОВ

Сравнение метрик на валидации

Модель	f1 micro (all)	fl micro (w/o rare)	accuracy
clf_kernel	0.2956	0.2961	0.4784
part_bert_res	0.0518	0.0523	0.0943
closest_word_bert	0.0327	0.0285	0.0532
cats_from_gpt_news	0.1067	0.1064	0.1996
closest_gpt_news	0.0916	0.0904	0.1785
optimized_clf_cosin	0.2956	0.2961	0.4784

Преимущества нашего решения:

- 1. Возможность подстраивать категории без обучения
- 2. Высокое качество
- 3. Быстродействие
- 4. Без GPU, но можно задействовать
- 5. Экономия памяти

Лучший алгоритм классификации – optimized_clf_cosin.

Время работы алгоритма на 50к сэмплах: ~1 минута.

ПОИСК ДУБЛИКАТОВ

Выявленные недостатки ANN-алгоритмов FAISS, NeoFuzz:

- Пропускает даже явные дубликаты (до 5%)
- Для частотных векторов не хватает памяти
- Эмбеддинги теряют данные и требуют времени на расчет

Найденное оптимальное решение – сравнение коэффициента Жаккара по «Bag-of-Words».

Алгоритм показывает хороший результат нахождения дубликатов вкупе с быстрой скоростью (~2 минуты для 50к сэмплов с мультпроцессингом).

КОЭФФИЦИЕНТ **WAKKAPA**

$$K_J = \frac{n(A \cap B)}{n(A \cup B)}$$

Пересечение множеств

Объединение множеств

Пример работы алгоритма:

- «В лесу упало дерево»
- «Дерево упало в лесу»
- III. «Кошка залезла на дерево»

ИНСТРУМЕНТЫ И ТЕХНОЛОГИИ

- Python
- Pandas
- Numpy
- BERT
- Universal Sentence Transformer
- Torch
- Navec
- Faiss
- NeoFuzz
- FastAPI
- Unicorn
- Docker

КОНТАКТЫ

Науменко Дмитрий –

t.me/naumenko_ds

Кутькина Татьяна –

t.me/Tatyanna_Kutkina

Дамдинов Зорикто –

t.me/suzuyajxiii

gravitypotter@gmail.com

