1 | Silicon

- 1.1 | refirenry
- 1.1.1 | from sand
- 1.1.2 | **melted**
- 1.1.3 | small molten crystal "seed" lower into a vat
- 1.1.4 | crystal forms
- 1.1.5 | pull cylander from molten reigon
- 1.1.6 ground to form ingots
- 1.1.7 | sawed with diamond blade to form wafers
- 1.1.8 | wafer scrubbed
- 1.1.9 edges rounded and surfaces ground smooth and to create uniform thickness
- 1.1.10 | rinsed and etched in "chemicals" to remove impurities
- 1.1.11 | final polish on one side of the wafer
- 1.1.12 | all so that there are no scratches or contamination
- 1.1.13 | then, measured for resistivity
 - 1. function of dopant concentratian
- 1.1.14 electron beam machine
 - 1. etches patterns onto chrome plated glass plates in clean room
- 1.1.15 glass plates become masks used to transfer the circuit pattern onto the wafer
- 1.1.16 usage of masks
 - 1. first mask creates divots
 - 2. masks 4, 5 define source and drain reigons
 - 3. mask 6 defines contact holes to allow aluminium to be inserted
 - 4. mostly use 12-25 masks depending on complexity and type of circuit (much more now)

Taproot · 2020-2021 Page 1

1.1.17 | decontamination

- 1. bunny suits
- 2. very high purity materials

1.1.18 | fabrication techniques (4)

- 1. formation of thin layers of silicon dioxidn
- 2. introduction of dopants
- 3. deposition of thin layers of?
- 4. something?

1.1.19 | cleaning

1. hot acids to clean wafers, repeated throughout process

1.2 | design

1.2.1 | circuit design

1.2.2 organization of design team

- 1. based on organization of the chip
- 2. establish microarchitecture that regulates sequences and timings
- 3. design divided into areas
 - (a) each unit given to logic designer
 - (b) each functional block given to circuit designer who works at transistor level
- 4. mask designer draws out blueprints on paper

1.2.3 | transistors

- 1. represents digital zero or one
- 2. C-MOS transistors
 - (a) complementary metal oxidized transistor
 - (b) n type transistor
 - i. surrounded by n-type
 - ii. sandwhiching a p-type layer
 - iii. gate electrode is near but not connect to the p type reigon
 - iv. a positive charge in gate attracts electrons and allows electrons to pass
 - (c) both types can be made on the same chip using "complementary manufacturing?"
 - (d) signals propogate through complex maze of switches

Taproot · 2020-2021 Page 2

- 1.3 | structure
- 1.3.1 | cubic atomic structure
- 1.3.2 | 4 electrons valence shell
- 1.3.3 perfect crystal will have no holes
- 1.3.4 | but at room temperature, free electrons can conduct
- 1.4 | impurities called dopants
- 1.4.1 | negative
 - 1. arsenic or phospherus
 - 2. one more valence
 - 3. n type crystal because negative free carriers
- 1.4.2 | positive
 - 1. boron
 - 2. missing electron acts like positive carrier, "hole"
- 1.4.3 | silicon can be either good or poor conductor (semiconductor)
 - 1. controlled by concentration of dopant

Taproot · **2020-2021** Page 3