EXAMEN D'ELECTRONIQUE 2nde SESSION

17 / 01 / 2019

Durée: 2 heures

Aucun document n'est autorisé. La calculatrice collège est permise.

Exercice 1. (6pts)

1. Lois des mailles. On étudie le circuit ci-dessous. On donne les tensions suivantes : $U_9=20.0V$; $U_1=1.0V$; $U_2=2.0V$; $U_3=3.0V$; $U_5=5.0V$; $U_6=6.0V$; $U_8=8.0V$; Déterminer les valeurs des tensions U_4 ; U_7 ; U_{10} et U_{11} .

2. Lois des nœuds. On donne les courants suivants : $I_9=20\,A$; $I_5=8A$ $I_2=2A\,et$ $I_{10}=12\,A$ Déterminer les valeurs manquantes de tous les courants répertoriés dans le tableau, après avoir choisi vousmême arbitrairement des sens des courants non fléchés sur le schéma.

3. Nature des dipôles. Que signifie convention récepteur ? convention générateur ? Qu'est-ce qu'un dipôle récépteur ? Générateur ? Déterminer la nature (récépteur ou générateur) des dipôles D1 et D2 du circuit étudié.

Exercice2. (3 pts)

- 1. En utilisant de manière appropriée les passages Thévenin- Norton (et réciproquement Norton-Thévénin), Déterminer la valeur du courant I qui traverse la résistance $R=4k\Omega$ branchée entre les points A et B .
- 2. En déduire la valeur de la $tension U_{AB}$.

Exercice 3. (5pts)

Le dipôle AB représenté sur le schéma ci-contre est alimenté par une source de tension parfaite de force électromotrice $e(t)=E0sin(\omega t)$.

- 1. Déterminer l'impédance équivalente Z_{DB} du dipôle DB puis l'impédance équivalente Z_{AB} du dipôle AB.
- 2. Mettre Z_{AB} sous la forme a+jb. A quelle condition le dipôle AB est-il équivalent à une résistance pure Req?

En continuant ce calcul, on montre que dans ce cas on obtient simplement **Z**_{AB}=**L/RC**. Les valeurs des composants sont R=100 Ω , L=120mH, C=1003 μ F et ω =400 rad.s=1.

- 3. L'amplitude de la force électromotrice du générateur vaut E_0 =180 V. Calculer l'amplitude de l'intensité du courant I dans la bobine.
- 4. Calculer les amplitudes des différences de potentiel U_{AD} et U_{DB} .

Exercice4. (6pts)

On étudie le circuit suivant :

$$R = 10k\Omega$$
 ; $C = 10nF$
$$\omega_0 = \frac{1}{RC}$$

- 1. Quelle est la nature de ce filtre ? Justifier.
- 2. Exprimer la fonction de transfert $\underline{T}(j\omega) = \frac{V_s}{\sqrt{\underline{V_e}}}$ et la mettre sous la forme : $\underline{T} = \frac{(1+j\,\omega/\omega_0)^2}{1+2\,jm\,\omega/\omega_0+(j\,\omega/\omega_0)^2}$

$$\underline{T} = \frac{(1+j\omega/\omega_0)^2}{1+2jm\omega/\omega_0 + (j\omega/\omega_0)^2}$$

3. En déduire les valeurs de ω_0 et m.

Les diagrammes de Bode de ce circuit sont représentés sur la page suivante.

- 4. Dans ces diagrammes, quelles sont les fonctions représentées ?
- 5. Comment s'appellent ω_{C1} et ω_{C2} ?
- 6. Déterminer graphiquement les valeurs des 3 autres pulsations caractéristiques ω_0 , ω_1 et ω_2 .

