Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 12. 27. maja i później

Zadania

- 1. Niezależne zmienne losowe X_i podlegają rozkładom normalnym $X_i \sim N(\mu_i, \sigma_i^2)$. Niech $X = [X_1, \dots, X_m]^T$. Jaki rozkład ma zmienna $(X \mu)^T D(X \mu)$? Oznaczenia: $\mu = [\mu_1, \dots, \mu_n]^T$, $D = \text{diag}(1/\sigma_1^2, \dots, 1/\sigma_n^2)$ (macierz diagonalna z podanymi elementami na przekątnej).
- 2. $X = [X_1, X_2]^T$ ma rozkład normalny z parametrami

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}.$$

Jaki rozkład ma zmienna $X^T \Sigma^{-1} X$?

3. Zmienna $X = [X_1, \dots, X_n]^T$ ma rozkład $N(\mu, \Sigma)$. Macierz Σ ma rozkład LL^T . Jaki rozkład ma zmienna $(X - \mu)^T \Sigma^{-1} (X - \mu)$?

Plik I12z4.csv to dane do zadań 4–7. Odpowiedzią jest wartość 1 - F(x), gdzie x jest wartością pewnej statystyki testowej, F – odpowiednią do treści zadania dystrybuantą.

- 4. Testujemy hipotezę $\mu_1=\mu_2$. Przyjmujemy, że znamy σ_1,σ_2 i są one równe S_1^2,S_2^2 .
- 5. Testujemy hipotezę $\mu_1=\mu_2$. Nie znamy wariancji $\sigma_1^2,\sigma_2^2,$ ale zakładamy, że są równe.
- 6. Testujemy hipotezę $\sigma_1 = \sigma_2$. Zakładamy, że μ_1, μ_2 są równe średnim z odpowiednich kolumn danych.
- 7. Testujemy hipotezę $\sigma_1 = \sigma_2$. Nie znamy μ_1, μ_2 ,

Plik l12z8.csv zawiera liczby losowe z rozkładu U[0,1]. Przekształcić te liczby na liczby o podanym rozkładzie. Podać wzory, oraz wartości 1., 14. i 38. liczby.

- 8. Rozkład N(0,1).
- 9. Rozkład Exp(5).
- 10. Rozkład o gęstości f(x) = x na [0, 2].

Witold Karczewski