# <u>Class IX Chapter 1 – </u>

## Number Sustems Maths

Exercise 1.1 Ouestion

Is zero a rational number? Can you write it in the form q, where p and q are integers  $\neq$ and q

Answer:

Yes. Zero is a rational number as it can be represented as  $\frac{0}{1}$  or  $\frac{0}{2}$  or  $\frac{0}{3}$  etc.

Question 2:

Find six rational numbers between 3 and 4.

Answer:

There are infinite rational numbers in between 3 and 4.

 $\frac{24}{8}$  and  $\frac{32}{8}$ 

3 and 4 can be represented as

respectively.

Therefore, rational numbers between 3 and 4 are

 $\frac{25}{8}$ ,  $\frac{26}{8}$ ,  $\frac{27}{8}$ ,  $\frac{28}{8}$ ,  $\frac{29}{8}$ ,  $\frac{30}{8}$ 

Question 3:

Find five rational between Answer:  $\frac{3}{5}$  and  $\frac{4}{5}$ 

numbers

There between.

are infinite

rational numbers

$$\frac{3}{5} = \frac{3 \times 6}{5 \times 6} = \frac{18}{30}$$

$$\frac{4}{5} = \frac{4 \times 6}{5 \times 6} = \frac{24}{30}$$

$$\frac{3}{5}$$
 and  $\frac{4}{5}$ 

numbers between 
$$\frac{3}{5}$$
 and  $\frac{3}{5}$ 

Therefore, rational are

$$\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$$

Question 4:

State whether the following statements are true or false. Give reasons for your answers.

- (i) Every natural number is a whole number.
- (ii) Every integer is a whole number.
- (iii) Every rational number is a whole number.

Answer:

- (i) True; since the collection of whole numbers contains all natural numbers.
- (ii) False; as integers may be negative but whole numbers are positive. For example: -3 is an integer but not a whole number.
- (iii) False; as rational numbers may be fractional but whole numbers may not be. For

example:  $\overline{\mathbf{5}}$  is a rational number but not a whole number.

### Exercise 1.2 Question 1:

State whether the following statements are true or false. Justify your answers.

- (i) Every irrational number is a real number.
- (ii) Every point on the number line is of the form  $\sqrt{m}$ , where m is a natural number.
- (iii) Every real number is an irrational number.

#### Answer:

- (i) True; since the collection of real numbers is made up of rational and irrational numbers.
- (ii) False; as negative numbers cannot be expressed as the square root of any other number.
- (iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

### Question 2:

Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

#### Answer:

If numbers such as  $\sqrt{4} = 2$ ,  $\sqrt{9} = 3$  are considered,

Then here, 2 and 3 are rational numbers. Thus, the square roots of all positive integers are not irrational.

Question 3: 
$$\sqrt{5}$$

Answer:

$$\sqrt{4}=2$$

We know that,  $\sqrt{4} = 2$ 

$$\sqrt{5} = \sqrt{(2)^2 + (1)^2}$$

Show howAnd,





Mark a point 'A' representing 2 on number line. Now, construct AB of unit length perpendicular to OA. Then, taking O as centre and OB as radius, draw an arc intersecting number line at  $\mathsf{C}.$ 

C is representing  $\sqrt{5}$  .

(i) 
$$\frac{36}{100}$$
 (ii)  $\frac{1}{11}$  (iii)  $\frac{4\frac{1}{8}}{8}$  (iv)  $\frac{3}{13}$  (v)  $\frac{2}{11}$  (vi)  $\frac{329}{400}$ 

Answer:

(i) 
$$\frac{36}{100} = 0.36$$

Terminating

(ii) 
$$\frac{1}{11} = 0.090909...$$
 =  $0.\overline{09}$ 

Non-terminating repeating

$$4\frac{1}{8} = \frac{33}{8} = 4.125$$

Terminating

(iv) 
$$\frac{3}{13} = 0.230769230769...$$
 =  $0.230769$ 

Non-terminating repeating

$$\frac{2}{11} = 0.18181818...$$
  $= 0.18$ 

Non-terminating repeating

$$\frac{329}{400} = 0.8225$$

Terminating

$$\frac{1}{7} = 0.\overline{142857}$$
 Question 2

You know that

$$\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$$

Exercise 1.3 Question 1:

Write the following in decimal form and say what kind of decimal expansion each . Can you predict what the decimal expansion of are, without actually doing the long division? If so, how?

[Hint: Study the remainders while finding the value of  $\overline{\mathcal{I}}$  carefully.] Answer:

Yes. It can be done as follows.

$$\frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

$$\frac{3}{7} = 3 \times \frac{1}{7} = 3 \times 0.\overline{142857} = 0.\overline{428571}$$

$$\frac{4}{7} = 4 \times \frac{1}{7} = 4 \times 0.\overline{142857} = 0.\overline{571428}$$

$$\frac{5}{7} = 5 \times \frac{1}{7} = 5 \times 0.\overline{142857} = 0.\overline{714285}$$

$$\frac{6}{7} = 6 \times \frac{1}{7} = 6 \times 0.\overline{142857} = 0.\overline{857142}$$

Question 3:

Express the following in the form

(i) 
$$0.\overline{6}$$
 (ii)  $0.4\overline{7}$  (iii)  $0.\overline{001}$ 

Answer:

(i) 
$$0.\overline{6} = 0.666...$$

Let x = 0.666...

$$10x = 6.666...$$

999x = 1

$$x = \frac{1}{999}$$

Question 4:

, where p and q are integers and q  $\neq 0$ .

$$10x = 6 + x$$

$$9x = 6$$
$$x = \frac{2}{3}$$

Let 
$$x = 0.777...$$
  
10 $x = 7.777...$ 

$$10x = 7 + x$$

$$x = \frac{7}{9}$$

$$\frac{4}{10} + \frac{0.777...}{10} = \frac{4}{10} + \frac{7}{90}$$
$$= \frac{36 + 7}{90} = \frac{43}{90}$$

(iii) 
$$0.\overline{001} = 0.001001...$$

Let x = 0.001001...

1000x = 1.001001...

1000x = 1 + x

Express 0.99999...in the form q. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Answer:

Let 
$$x = 0.9999...$$
  
 $10x = 9.9999...$ 

$$10x = 9 + x$$

$$9x = 9x =$$

1

## Question 5:

What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 17? Perform the division to check your answer.

Answer:

It can be observed that,

$$\frac{1}{17} = 0.0588235294117647$$

There are 16 digits in the repeating block of the decimal expansion of 17.

Question 6:

Look at several examples of rational numbers in the form  $\Psi$  (q  $\neq$  0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Answer:

Terminating decimal expansion will occur when denominator q of rational number  ${\mathscr Q}$  is either of 2, 4, 5, 8, 10, and so on...

$$\frac{9}{4} = 2.25$$

$$\frac{11}{8} = 1.375$$

$$\frac{27}{5} = 5.4$$

$$\frac{27}{5} = 5.4$$

It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.

#### Question 7:

Write three numbers whose decimal expansions are non-terminating non-recurring. Answer:

3 numbers whose decimal expansions are non-terminating non-recurring are as follows.

- 0.505005000500005000005...
- 0.7207200720007200007200000... 0.08008000800008000008000008...

Question 8:

$$\frac{5}{7}$$
  $\frac{9}{11}$ 

Find three different irrational numbers between the rational numbers and Answer:

$$\frac{5}{7} = 0.714285$$

$$\frac{9}{11} = 0.\overline{81}$$

3 irrational numbers are as follows.

- 0.73073007300073000073...
- 0.75075007500075000075... 0.7907900790007900079...

Question 9:

Classify the following numbers as rational or irrational:

(i) 
$$\sqrt{23}$$
 (ii)  $\sqrt{225}$  (iii) 0.3796

(iv) 7.478478 (v) 1.101001000100001...

$$\sqrt{23} = 4.79583152331 \dots$$

As the decimal expansion of this number is non-terminating non-recurring, therefore, it

is an irrational number.

(ii) 
$$\sqrt{225} = 15 = \frac{15}{1}$$

It is a rational number as it can be represented in  $\overline{q}$  form.

(iii) 0.3796

As the decimal expansion of this number is terminating, therefore, it is a rational number.

(iv) 
$$7.478478 \dots = 7.478$$

As the decimal expansion of this number is non-terminating recurring, therefore, it is a rational number.

## (v) 1.10100100010000 ...

As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.

## Exercise 1.4 Question

1:

Visualise 3.765 on the number line using successive magnification.

## Answer:

3.765 can be visualised as in the following steps.



Question 2:

Visualise  $^{4.26}$  on the number line, up to 4 decimal places.

Answer:

4.2626 can be visualised as in the following steps.



## Exercise 1.5 Question 1:

1Classify the following numbers as rational or irrational:

(i) 
$$2-\sqrt{5}$$
 (ii)  $(3+\sqrt{23})-\sqrt{23}$  (iii)  $\frac{2\sqrt{7}}{7\sqrt{7}}$  (iv)  $\frac{1}{\sqrt{2}}$  (v)  $2\pi$  Answer: (i)  $2-\sqrt{5}$  =  $2-2.2360679...$  =  $-0.2360679...$ 

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

form, therefore, it is a rational

number. form, therefore, it is a

$$(3+\sqrt{23})-\sqrt{23}=3=\frac{3}{1}$$

rational number.

 $\underline{p}$ 

As it can be represented in

$$\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}$$

(iii)

As it can be represented in

As the decimal expansion of this expression is non-terminating non-recurring,

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = 0.7071067811...$$

therefore, it is an

irrational number. (v)  $2\pi = 2(3.1415 ...)$ 

= 6.2830 ...

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

#### Question 2:

Simplify each of the following expressions:

(i) 
$$\frac{(3+\sqrt{3})(2+\sqrt{2})}{(\sqrt{5}+\sqrt{2})^2}$$
 (ii)  $\frac{(3+\sqrt{3})(3-\sqrt{3})}{(\sqrt{5}+\sqrt{2})}$  Answer:  $(3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2})$   $=6+3\sqrt{2}+2\sqrt{3}+\sqrt{6}$  (ii)  $\frac{(3+\sqrt{3})(3-\sqrt{3})=(3)^2-(\sqrt{3})^2}{(3+\sqrt{3})(3-\sqrt{3})=(3)^2-(\sqrt{3})^2}$   $=9-3=6$  (iii)  $\frac{(\sqrt{5}+\sqrt{2})^2=(\sqrt{5})^2+(\sqrt{2})^2+2(\sqrt{5})(\sqrt{2})}{(5+\sqrt{2})^2=(\sqrt{5})^2+2\sqrt{10}}$   $=5+2+2\sqrt{10}=7+2\sqrt{10}$  (iv)  $\frac{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^2-(\sqrt{2})^2}{(5+\sqrt{2})^2=(\sqrt{5})^2-(\sqrt{2})^2}$   $=5-2=3$  Ouestion 3:

Recall,  $\pi$  is defined as the ratio of the circumference (say c) of a circle to its diameter

(say d). That is,  $\pi = \frac{1}{d}$ . This seems to contradict the fact that  $\pi$  is irrational. How will you resolve this contradiction?

#### Answer:

There is no contradiction. When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value. For this reason, we may not realise that either c or d is irrational. Therefore,

the fraction is irrational. Hence, 
$$\pi$$
 is irrational. Question 4: Represent on the number  $\sqrt{9.3}$  line. Answer:

Mark a line segment OB = 9.3 on number line. Further, take BC of 1 unit. Find the midpoint D of OC and draw a semi-circle on OC while taking D as its centre. Draw a

(i) 
$$\frac{1}{\sqrt{7}}$$
 (ii)  $\frac{1}{\sqrt{7}-\sqrt{6}}$  (iii)  $\frac{1}{\sqrt{5}+\sqrt{2}}$  (iv)  $\frac{1}{\sqrt{7}-2}$ 

Answer:

$$\frac{1}{\sqrt{7}} = \frac{1 \times \sqrt{7}}{1 \times \sqrt{7}} = \frac{\sqrt{7}}{7}$$

perpendicular to line OC passing through point B. Let it intersect the semi-circle at E.

Taking B as centre and BE as radius, draw an arc in tersecting number line at F. BF  $\sqrt{9.3}$ 



Question 5:

Rationalise the denominators of the following:

$$\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{1}{\left(\sqrt{7} + \sqrt{6}\right)} \frac{\left(\sqrt{7} + \sqrt{6}\right)}{\left(\sqrt{7} - \sqrt{6}\right)\left(\sqrt{7} + \sqrt{6}\right)}$$
(ii)
$$= \frac{\sqrt{7} + \sqrt{6}}{\left(\sqrt{7}\right)^2 - \left(\sqrt{6}\right)^2}$$

$$= \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \frac{\sqrt{7} + \sqrt{6}}{1} = \sqrt{7} + \sqrt{6}$$

$$\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{1}{\left(\sqrt{5} - \sqrt{2}\right)} \frac{\sqrt{5} - \sqrt{2}}{\left(\sqrt{5}\right)^2 - \left(\sqrt{2}\right)^2}$$
(iii)
$$= \frac{\sqrt{5} - \sqrt{2}}{\left(\sqrt{5}\right)^2 - \left(\sqrt{2}\right)^2} = \frac{\sqrt{5} - \sqrt{2}}{5 - 2}$$

$$= \frac{\sqrt{5} - \sqrt{2}}{3}$$

$$\frac{1}{\sqrt{7} - 2} = \frac{1}{\left(\sqrt{7} + 2\right)} \frac{\left(\sqrt{7} + 2\right)}{\left(\sqrt{7} - 2\right)\left(\sqrt{7} + 2\right)}$$
(iv)
$$= \frac{\sqrt{7} + 2}{\left(\sqrt{7}\right)^2 - \left(2\right)^2}$$

$$= \frac{\sqrt{7} + 2}{7 - 4} = \frac{\sqrt{7} + 2}{3}$$

Exercise 1.6 Question 1:

Find:

(i) 
$$64^{\frac{1}{2}}$$
  $32^{\frac{1}{5}}$  (ii)  $125^{\frac{1}{3}}$ 

Question 2:

Question 3:

## Simplify:

(i) 
$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$$
 (ii)  $\left(\frac{1}{3^3}\right)^7$  (iii)  $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$  (iv)  $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$ 

## Answer:

(i)

$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = 2^{\frac{2}{3} \cdot \frac{1}{5}}$$

$$= 2^{\frac{10+3}{15}} = 2^{\frac{13}{5}}$$

$$\left[ a^{m} \cdot a^{n} = a^{m+n} \right]$$

(ii)

$$\left(\frac{1}{3^3}\right)^7 = \frac{1}{3^{3\times7}} \qquad \left[\left(a^m\right)^n = a^{mn}\right]$$

$$= \frac{1}{3^{21}}$$

$$= 3^{-21} \qquad \left[\frac{1}{a^m} = a^{-m}\right]$$

(iii)

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}} \qquad \qquad \left[ \frac{a^m}{a^n} = a^{m-n} \right]$$
$$= 11^{\frac{2-1}{4}} = 11^{\frac{1}{4}}$$

(iv)

$$7^{\frac{1}{2}}.8^{\frac{1}{2}} = (7 \times 8)^{\frac{1}{2}}$$
  $[a^m.b^m = (ab)^m]$   
=  $(56)^{\frac{1}{2}}$