

DPP: 3

Subject: Mathematics

Topic: Limits

∞/∞ Forms of Limits

1.
$$\lim_{x \to \infty} \frac{x^4 + 7x^3 + 46x + a}{x^4 + 6}, \ a \neq 0$$

2.
$$\lim_{x \to \infty} \frac{(2+x)(3x-4)}{(4x-5)(5x-6)}$$

3.
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^3 + 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}}$$

4.
$$\lim_{x\to\infty}\frac{(2+x)^{40}(4+x)^5}{(2-x)^{45}}$$

5. Find
$$\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 1} + n\right)^2}{\left(n^6 + 1\right)^{1/3}}$$

$$6. \qquad \lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + \sqrt{x + \sqrt{x}}}}$$

7.
$$\lim_{x \to \infty} \frac{2x^{1/2} + 3.x^{1/3} + 4.x^{1/4} + \dots + n.x^{1/n}}{(3x - 4)^{1/2} + (3x - 4)^{1/3} + \dots + (3x - 4)^{1/n}}$$

8.
$$\lim_{x \to \infty} \frac{x}{x + \frac{\sqrt{x}}{x + \sqrt{x} + \sqrt{x} + \sqrt{x} + \sqrt{x}}}$$

9.
$$\lim_{x \to \infty} \frac{x}{x + \frac{3\sqrt{x}}{x + \frac{3\sqrt{x}$$

(C) 2

(D) N.O.T

10. Find
$$\lim_{n\to\infty} \frac{(n+2)!+(n+1)!}{(n+3)!}$$

11. If
$$f(x)$$
 is continuous in $[0, 1]$ and $f(1/3) = 1$, Find $\lim_{n \to \infty} f\left(\frac{n}{\sqrt{9n^2 + 1}}\right)$.

12. Find
$$\lim_{x \to \infty} \left(\frac{1}{x^2} + \frac{2}{x^2} + \dots + \frac{x}{x^2} \right)$$

13. Lt
$$\underset{n\to\infty}{\text{Lt}} \frac{1}{n^4} (14.7 + 2.5.8 + 3.6.9 + \dots \text{to n terms})$$

14.
$$\lim_{n\to\infty} \frac{a^n+b^n}{a^n-b^n} \quad (a>b)$$

15.
$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right).$$

16.
$$\lim_{x \to \infty} \left(\sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right)$$

17.
$$\lim_{x\to\infty} \left(\sqrt{x+\sqrt{x}} - \sqrt{x}\right)$$

18.
$$\lim_{x \to -\infty} \left(3x + \sqrt{9x^2 - x} \right)$$

19.
$$\lim_{x\to\infty} \sqrt[4]{(x+a)(x+b)(x+c)(x+d)} - x$$
, where a,b,c,d are real numbers, is equal to

(A)
$$\frac{a+b+c+d}{4}$$
 (B) $\frac{abcd}{4}$ (C) \sqrt{abcd}

(B)
$$\frac{abcd}{4}$$

(C)
$$\sqrt{abcd}$$

20. Find the constants a and b so that
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0$$

21. If
$$f(x) = \frac{ax^2 + b}{x^2 + 1}$$
, $\lim_{x \to 0} f(x) = 1$ and $\lim_{x \to \infty} f(x) = 1$ then prove that $f(-2) = f(2) = 1$

22. Find a, b, c and d if
$$\lim_{x \to \infty} \left(\sqrt{x^4 + ax^3 + 3x^2 + bx + 2} - \sqrt{x^4 + 2x^3 - cx^2 + 3x - d} \right) = 4$$

23.
$$\lim_{n \to \infty} (\log_{(n-1)} n \cdot \log_n (n+1) \cdot \log_{(n+1)} (n+2) \cdot \dots \cdot \log_{n^k} (n^k+1)) =$$
(A) 1 (B) k (C) 2k

24. Let
$$P_n = \frac{2^3 - 1}{2^3 + 1} \cdot \frac{3^3 - 1}{3^3 + 1} \cdot \frac{4^3 - 1}{4^3 + 1} \cdot \dots \cdot \frac{n^3 - 1}{n^3 + 1}$$
. Prove that $\lim_{n \to \infty} P_n = \frac{2}{3}$

25. Let
$$S_n = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots$$
 to n terms then $\lim_{n \to \infty} S_n = \frac{1}{(A) 1/3}$ (B) 3 (C) 1/4 (D) ∞

Let the variable x_n be determined by the following low of formation **26.**

$$x_0 = \sqrt{a}$$
, $x_1 = \sqrt{a + \sqrt{a}}$, $x_2 = \sqrt{a + \sqrt{a + \sqrt{a}}}$, find $\lim_{n \to \infty} x_n$.

27. If
$$f_1(x) = \frac{x}{2} + 10$$
, $\forall x \in \mathbb{R}$ and define $f_n(x) = f(f_{n-1}(x))$, $\forall n \ge 2$. Find $\lim_{n \to \infty} f_n(x)$.

28. If
$$f(x+y) = f(x).f(y) \ \forall x, y \in R$$
; $f(x) > 0 & f(x)$ is continuous and if $f(1) = 1/2$.
Prove that $\lim_{n \to \infty} f(x) + 2f(x+1) + 3f(x+2) + \dots + (n+1)f(x+n) = 4f(x)$

Passage 1:

A Square is inscribed in a circle of radius R, acircle is inscribed in the square, a new square in the circle so on for n times. and

Choose the correct answer:

29. Sum of areas of all the circles is:

(A)
$$4\pi R^2 \left(1 - \left(\frac{1}{2}\right)^n\right)$$

(B)
$$2\pi R^2 \left(1 - \left(\frac{1}{2}\right)^n\right)$$

(C)
$$3\pi R^2 \left(1 - \left(\frac{1}{3}\right)^n\right)$$

(D)
$$\pi R^2 \left(1 - \left(\frac{1}{2} \right)^n \right)$$

- The limit of sum of areas of all the squares as $n \to \infty$ is: **30.**
 - (A) $2R^2$
- (B) $3R^2$
- (D) $8R^2$

- The limit of sum of areas of all the circles as $n \to \infty$ is: 31.
 - (A) $2\pi R^2$
- (B) $3\pi R^2$
- (C) $4\pi R^2$
- (D) $8\pi R^2$

Answer key

- **1.** 1
- 2. $\frac{3}{20}$
- **3.** 0
- **4.** -1
- **5.** 4
- **6.** d.n.e
- 7. $\frac{2}{\sqrt{3}}$

- **8.** 1
- 10.0
- **11.** 1
- 12. $\frac{1}{2}$
- 13. $\frac{1}{4}$
- **14.** 1

- 15. $-\frac{1}{2}$ 16. $\frac{1}{2}$ 17. $\frac{1}{2}$
- 18. $\frac{1}{6}$
- 19.a
- **20.** 2
- 21.1

- **22.** (a) $a = 1, b = -1, (b) a = 2, c = 5, b, d \in R$
- 23.b
- 25.a
- **26.** $\frac{1+\sqrt{1+4a}}{2}$

- 29.b
- 30.c
- 31.a

Pinnacle

IIT-JEE | NEET | Pre-Foundation