Chemical Engineering Thermodynamics

Lecture 7 Refrigeration Cycles
Xiaofei Xu

Refrigerators and Heat Pumps

$$\begin{split} \text{COP}_{\text{R}} &= \frac{\text{Desired output}}{\text{Required input}} = \frac{\text{Cooling effect}}{\text{Work input}} = \frac{Q_L}{W_{\text{net,in}}} \\ \text{COP}_{\text{HP}} &= \frac{\text{Desired output}}{\text{Required input}} = \frac{\text{Heating effect}}{\text{Work input}} = \frac{Q_H}{W_{\text{net,in}}} \end{split}$$

The Reversed Carnot Cycle

COP of Reversed Carnot Cycle

$$COP_{R,Carnot} = \frac{1}{\frac{T_H}{T_L} - 1}$$

$$COP_{HP,Carnot} = \frac{1}{1 - \frac{T_L}{T_H}}$$

The Ideal Vapor-Compression Refrigeration Cycle

- The most widely used cycle for refrigerators and airconditioning systems
- Replacing the turbine with a throttling device

The Ideal Vapor-Compression Refrigeration Cycle

- 1-2: Isentropic compression
- 2-3: Constant-pressure heat rejection in a condenser
- 3-4: Throttling in an expansion device
- 4-1: Constant-pressure heat absorption in an evaporator

The Ideal Vapor-Compression Refrigeration Cycle

Energy balance

$$(q_{in} - q_{out}) + (w_{in} - w_{out}) = h_{exit} - h_{inlet}$$

$$COP_{R} = \frac{q_{L}}{w_{\text{net,in}}} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

$$COP_{HP} = \frac{q_{H}}{w_{\text{net,in}}} = \frac{h_{2} - h_{3}}{h_{2} - h_{1}}$$

Actual Vapor-Compression Refrigeration Cycle

- state 1: slight superheated
- 2

Refrigerator

https://www.youtube.com/watch?v=nVTdukNJdtM

Oliver Evans

1755-1819

1844

Example

A refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapor-compression refrigeration cycle between 0.14 and 0.8 MPa. If the mass flow rate of the refrigerant is 0.05 kg/s, determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, (b) the rate of heat rejection to the environment, and (c) the COP of the refrigerator.

The Choice of Refrigerant

- The COP of Carnot refrigerator is independent of the refrigerant
- Irreversibility
- Toxicity, flammability, cost, corrosion properties, vapor pressure, environmental concerns

Ozone Depletion

Ozone Depletion

Ozone Depletion

Absorption Refrigerator

Summary Points

- Reversed Carnot cycle
- Ideal vapor-compression refrigeration cycle
- Absorption refrigerator