Contact effects on voice-onset time (VOT) in Patagonian Welsh

Morgan Sleeper • University of California, Santa Barbara • e: msleeper@umail.ucsb.edu // t: @zipmon

Background

- Welsh
 - Brythonic Celtic
 - Wales & Argentina
- Patagonian Welsh
 - Since 1865
 - Long-term Spanish contact
- Jones' 1984 study on Welsh in Gaiman, Patagonia [7]
 - Young speakers: 'Spanish unaspirated'/p t k/
 - Older speakers: 'Welsh aspirated'/p t k/
 - Middle-aged speakers: split
 - No specific VOT values
- VOT (voice-onset timing)
 - Negative (voicing lead) or positive (lag) [8]
 - Languages differ in how they contrast voiced and voiceless stops:
 - [voiced], [voiceless unaspirated], [aspirated] [5]
- This study aims to:
 - Quantitatively investigate whether the contactinduced changes in VOT Jones noted have become a feature of modern Patagonian Welsh
 - Increase understanding of phonetic contact and of this unique, underdescribed variety of Welsh

Data/Methods

- Conversational corpus data: Bangor Siarad/Patagonia [6]
- 36 speakers (18 from Wales, 18 from Patagonia)
 - 9 male and 9 female speakers from each
 - 3 each of Early (0-29), Middle (30-59), Older (60+)
- Tokens with word-initial /p t k/
 - Followed by /a/
 - Non-prominent, phrase-medial, initial-stress

- 291 tokens total
- Statistical methods: linear mixed-effects model [2]
 - Dependent variable: VOT
 - Fixed effects: Country, Sound (/p t k/), Age, Sex
 - Random effects: Speaker, Word

Results

- Final model ($R^2m=0.36$; $R^2c=0.43$)
 - Highest level predictors of VOT:
 - Country (p=3.44e-06)
 - Sound*Age (p=0.015)
- Random effects: Speaker kept, Word discarded

	1		1 /			
'ixed effects:	Coefficient estimate	Standard error	DF	t-value	Pr(> t)	
(Intercept)	0.031	0.002	36.64	15.36	< 2e-16	**
Country:Wales	0.014	0.003	30.63	5.16	1.4E-05	**:
Sound:k_vs_p.t	0.007	0.002	264.51	3.56	0.0004	**
Sound:p_vs_t	-0.024	0.003	264.22	-9.08	< 2e-16	**
Age:Early_vs_Middle.Old	-0.004	0.003	29.07	-1.28	0.209	
Age:Middle_vs_Old	0.001	0.003	35.87	0.46	0.651	
Sound:k_vs_p.t x Age:Early_vs_Middle.Old	-0.013	0.004	263.8	-3.07	0.002	**
Sound:p_vs_t x Age:Early_vs_Middle.Old	0.006	0.005	264.01	1.18	0.239	
Sound:k_vs_p.t x Age:Middle_vs_Old	0.002	0.005	276.68	0.33	0.743	
Sound:p_vs_t x Age:Middle_vs_Old	0.002	0.007	267.87	0.37	0.708	

Discussion

Patagonian speakers produce /p t k/ with significantly shorter VOT than Welsh speakers

- VOT continuum points to phonetic influence from contact:

	/p/	/ t /	/ k /
Spanish (Argentina) [4]	10	15	25
Welsh (Patagonia)	17	40	36
Welsh (Wales)	31	55	49
English [8]	58	70	80

- No age-graded difference
 - No interaction between Age & Country; applies to all Patagonian speakers
 - Differs from Jones, where younger speakers had 'Spanish' (less aspirated) /p t k/ and older speakers had 'Welsh' (more aspirated) /p t k/
 - Less-aspirated /p t k/ reported in Jones' younger and middle-aged speakers start of diachronic shift, rather than synchronically age-graded pattern
- Shorter VOT could point to possible shift in voicing contrast
 - Standard Welsh contrasts /p t k/ and /b d g/ on aspiration, rather than voicing [1]
 - If Patagonian /b d g/ shift towards or into negative values, this contrast could change:

	Welsh (Wales)		Patagonian Welsh
/p t k/	voiceless aspirated	shorter VOT values for /p t k/	voiceless unaspirated
/b d g/	voiceless unaspirated	\longrightarrow	voiced?

- Older speakers in Patagonia & Wales produce /k/ with longer VOT than younger speakers
 - Pattern of contrasting /p/ vs. /t k/ acquired later in language development?

Patagonia Wales Speaker 11 (Female) Speaker 5 (Female) VOT = 11ms (Speaker /p/ avg = 17ms) VOT = 37ms (Speaker /p/ avg = 32ms) The property of the property o 'until' Speaker 33 (Male) Speaker 24 (Male) VOT = 24ms (Speaker /t/ avg = 25ms) VOT = 62ms (Speaker /t/ avg = 65ms) cadw keep Speaker 3 (Female) Speaker 10 (Female) VOT = 22ms (Speaker /k/ avg = 22ms) VOT = 41 ms (Speaker /k/ avg = 46ms)

Conclusions

- Patagonian Welsh speakers produce voiceless stops /p t k/ with significantly shorter VOT than Welsh speakers
 - Confirms & quantifies Jones' [7] observations: less aspirated stops due to contact with Spanish
 - Applies to all age-groups; lower VOT values now a unique phonetic feature of Patagonian Welsh
- Future research: /b d g/; changing sociolinguistic situation and increased contact from Wales

References

Ball, Martin J. 1984. Phonetics for Phonology. In

Selected Readings. Cardiff: University of Wales Press. 5-39. chler, B.M. Bolker & S. Walker. 2014. lem4: Linear mixed-effects model using eigen and s4. *Journal of Statistical* ://arxiv.org/abs/1406.5823 [3] Boersma, Paul & David Weenink. 2015. Praat: doing phonetics by computer. Computer Program. Version 5.4.17, retrieved 25 August 2015 from http://www.praat.org/.[4] Borozone de Manrique, Ana Maria. 1980. Manual de fonética acústica. Buenos Aires: Librería Hachette. [5] Cho, Taehong & Peter Ladefoged. 1999. Variation and universals in VOT: evidence from 18 languages. Journal of Phonetics, 27. 207-229. [6] Deuchar, Margaret, P. Peredur Davies, Jon Russell Herring, M. Carmen Parafita Couto & D Carter.2014. Building bilingual corpora. In Enlli Môn Thomas & Ineke Mennen (eds.), *Advances in the Study of Bilingualism*. Bristol: Multilingual Matters. [7] Jones, Robert O. 1984. Change and Variation in the Welsh of Gaiman, Chubut. In Martin J. Ball and Glyn E. Jones (eds.), Welsh Phonology. Cardiff: University of Wales Press. 237-261. [8] Lisker, Leigh & Arthur S. Abramson. 1964. Cross-language study of voicing in initial stops: acoustical measurements. Word, 20. 384-422. [9] R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. [10] Zuur, A., E.N. Ieno, N. Walker, A.A. Saveliev, & G.M. Smith. 2009

Mixed effects models and extensions in ecology with R. New York: Springer Science & Business Media. [Image: Wikipedia]