

Vernetzte Systeme

CS3160.000 | Wintersemester 2024/2025

Benjamin Erb | Frank Kargl Institut für Verteilte Systeme Universität Ulm

Kapitel A: Einführung

Vernetzte Systeme | CS3160.000 | Wintersemester 2024/2025

Benjamin Erb | Frank Kargl Institut für Verteilte Systeme Universität Ulm

Überblick

A. Einführung

- A.1 Was ist das Internet (►)
- A.2 Netzwerke (►)
- A.3 Verzögerungen, Verlust und Durchsatz (►)
- A.4 Das Schichtenmodell (►)
- A.5 Netzwerksicherheit (►)
- A.6 Historischer Überblick (►)

A.1 Was ist das Internet?

Was ist das Internet? (1)

Bildquelle: https://www.deviantart.com/jaysimons/art/Map-of-the-Internet-1-0-427143215

Bildquelle: http://www.facebook.com/note.php?note_id=469716398919

Was ist das Internet? (2)

Bildquelle: https://xkcd.com/195/

Bildquelle: http://www.telegeography.com/telecom-maps/global-internet-map/

Begriffe des Internets (1)

Router

- Endsysteme / hosts
- Zugangsnetzwerke / access networks
- Verbindungen / links
 - Kupferkabel, Glasfaser, Satelliten
 - Kabelgebunden oder drahtlos
 - Übertragungsbandbreite / bandwidth
- Router / Switches
 - Packet switching
 - leiten Datenpakete weiter
 - Internet Service Provider (ISP)
- Network Edge und Network Core

Begriffe des Internets (2)

Innenansicht auf das Internet

- Internet: "Netzwerk von Netzen"
 - eine Vernetzung von ISPs
- Protokolle kontrollieren Senden und Empfang von Nachrichten (Messages)
 - TCP, IP, HTTP, Skype, 802.11
- Internet Standards
 - RFC: Request For Comments
 - IETF: Internet Engineering Task Force

Begriffe des Internets (3)

Service-Sicht auf das Internet

- Internet als Infrastruktur für Anwendungen
- Bereitstellung von Diensten für Anwendungen
 - Web, VoIP, Email, Spiele, soziale Netzwerke, eCommerce, ...
- Verwendung von Diensten über Programmierschnittstellen (APIs) in den Anwendungen
 - Schnittstellen zum Senden und Empfangen von Daten
 - Verwendung weiterer Netzwerkdienste

Protokolle

Menschliche Protokolle und Computer-Protokolle

Protokolle legen die **Formate** und **Reihenfolge** von **Nachrichten** fest, die von Netzwerkgeräten gesendet und empfangen werden. Ebenso werden **Aktionen** beim Empfang von Nachrichten geregelt.

A.2 Netzwerke

Netzwerkstruktur

Edge und Core

Edge

- Hosts: Clients und Server
- Server oft in Rechenzentren

Zugangsnetze

- drahtlos: WLAN, GSM/UMTS/LTE, ...
- drahtgebunden: Ethernet, DSL, Kabel

Core

- verbundene Router
- "network of networks"
- Routingprotokolle

Zugangsnetze: Digital Subscriber Line (DSL)

- Breitbandanschluss über bestehende Telefon(kupfer)leitungen an DSLAM in Vermittlungsstelle
- typische Bandbreiten bis 100 Mbps downlink und 5 Mbps uplink

Typisches Heimnetz ("Small Office Network")

Physikalisches Medium

- Übertragung von Bits vom Sender zum Empfänger (Receiver)
- Übertragungsmedium / Physikalischer Link
 - gerichtetes / drahtgebundenes Medium
 - Kupfer, Glasfaser, Koaxkabel
 - ungerichtetes Medium
 - Radiowellen
- Twisted Pair (TP)
 - isolierte und verdrillte Kupferkabel
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6/7: 10/100 Gbps Ethernet
- Koaxialkabel
- Glasfaserkabel

Network Core

- Packet-Switching
 - Hosts teilen Anwendungsdaten in kleinere Pakete auf
 - Router leiten Pakete von der Quelle (Source) zum Ziel (Destination) jeweils an nächsten Router weiter
 - Pakete belegen Link exklusiv

Routing und Forwarding

Forwarding:

Weiterleitung eines Pakets vom Eingangs-/Input-Port zum Ausgangs-/Output-Port

Das Internet - Ein Netz von Netzen

- Endsysteme verbinden sich mit dem Internet via ISPs (Internet Service Provider)
- verschiedene Arten von ISPs
 - Regional, global, Firmen, Universitäten
- ISPs müssen so verbunden sein, dass ein Paket zwischen zwei beliebigen Hosts im Internet übertragen werden kann
- resultierendes Netzwerk sehr komplex
 - wirtschaftliche und politische Interessen

Ein Netz von Netzen: Wie verbindet man eine Million ISPs?

Ein Netz von Netzen: Jeder-mit-Jedem-Vernetzung?

Ein Netz von Netzen: Ein globaler Transit-ISP im Zentrum?

Ein Netz von Netzen: Wettbewerb um globale ISP-Rolle

Ein Netz von Netzen: Vernetzung globaler ISPs

Ein Netz von Netzen: Regionale ISPs zwischen Zugangsnetzen und ISPs

Ein Netz von Netzen: Content Provider Netzwerke (z.B. Google, Akamai)

Struktur des Internets: Ein Netz von Netzen

- im Zentrum: kleine Anzahl großer, eng vernetzter Netzwerke
 - große kommerzielle ISPs ("Tier 1") von nationaler und internationaler, z.B. Telekom
 - Content Provider Networks (z.B. Google): direkt angebundene Datenzentren großer Unternehmen

BelWue: Baden-Württemberg Extended LAN

Bildquellen: https://www.belwue.de/netz/topologie.html

A.3 Verzögerungen, Verlust und Durchsatz

Versand von Datenpaketen durch Hosts

Versenden von Daten

- Empfang der Anwendungsnachricht
- Aufteilen in kleinere Teile (Pakete) fester Länge L bits
- Übertragen des Pakets über das Zugangsnetzwerk mit Datenrate *R* (bit/s)
 - Link Kapazität, Link Bandbreite, Übertragungsrate

Packet Transmission Delay (Übertragungslatenz)

Zeit um ein *L*-bit Paket auf den Link zu senden

$$= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$$

Packet Switching: Store-and-Forward

- L/R Sekunden um L-bit Paket auf Link mit Bandbreite R bps zu übertragen
- Store-and-forward: gesamtes Paket muss vor Weiterleitung beim Router angekommen sein
- Ende-zu-Ende Verzögerung (delay) = 2 * L/R (hier noch *ohne* Signallaufzeit / propagation delay und Verarbeitungszeit / processing delay)
- Beispiel:
 - L = 7.5 Mbits, R = 1.5 Mbps
 - One-hop Übertragungsverzögerung = 5 sec, Ende-zu-Ende Verzögerung bei 2 Hops = 10 sec

Packet Switching: Queueing Delay, Verlust

Queuing und Loss (Paketverlust)

- falls Datenrate ankommender Pakete > Datenrate auf Ausgangslink
 - Zwischenspeichern (Queueing) von Paketen notwendig
 - Queueing Delay
- begrenzter Speicher / Buffer:
 - ◆ Pakete müssen verworfen werden → Paketverlust

Vier Ursachen für Verzögerungen (Delay)

d_{proc}: Verarbeitungsverzögerung

- Fehlerprüfung
- Ausgangslink bestimmen
- typischerweise < msec</p>

d_{queue}: Queueing Delay

- Wartezeit bis Output Link frei für Übertragung
- Verstopfung (congestion) erhöht d_{queue}

Vier Ursachen für Verzögerungen (Delay)

d_{trans}: Übertragungsverzögerung

- L: Paketlänge (bits)
- R: Bandbreite Link(bps)
- \blacksquare d_{trans} = L/R

 $d_{
m trans}$ und $d_{
m prop}$ oft sehr verschieden

d_{prop}: Propagation Delay (Ausbreitungsverzögerung)

- d: Länge des Links
- s: Ausbreitungsgeschwindigkeit im Medium
 - (~3x108 m/sec, 50% weniger in LWL)

$$\blacksquare$$
 d_{prop} = d/s

Queueing Delay

- R: Link Bandbreite (bps)
- L: Paketlänge (bits)
- a: durchschnittliche Paketankunftsrate
- La/R ~ 0
 - Queueing Delay klein
- La/R \rightarrow 1
 - Queueing Delay groß
- La/R > 1
 - mehr Pakete als verarbeitet werden können
 - ◆ → unendliche Verzögerung → Paketverlust

Verzögerungen und Routen im Internet

Wie sehen Routen, Verzögerungen und Verlust im Internet aus?

- traceroute:
 - misst Paketverzögerungen zwischen Sender und Routern auf der Route zum Empfänger
 - für *i* = 1 bis n:
 - sende drei "Probe" Pakete zum i-ten Router
 - Router i sendet ein Antwortpaket zurück
 - Sender misst "Round-Trip-Time" (RTT)

Traceroute

drei RTT-Messungen

```
$ traceroute www.nicta.gov.au
traceroute to nicta.com.au (221.199.217.13), 64 hops max, 52 byte packets
1 192.168.1.1 (192.168.1.1) 0.682 ms 0.196 ms 0.283 ms
2 130.255.104.2 (130.255.104.2) 3.775 ms 3.566 ms 4.013 ms
3 94.125.79.109 (94.125.79.109) 4.296 ms 3.367 ms 4.132 ms
                                                                                               Transatlantik-Link
4 192.168.75.61 (192.168.75.61) 3.536 ms 3.476 ms 4.164 ms
   swu.nueg-ae0-347.de.lambdanet.net (217.71.101.81) 10.800 ms 11.426 ms 10.189 ms
   ae5.irt1.fra44.de.as13237.net (217.71.96.73) 13.319 ms 13.871 ms 13.845 ms
   xe-1-2-0.mpr1.fra4.de.above.net (80.81.194.26) 14.984 ms 15.995 ms 16.822 ms
8 xe-0-0-0.mpr1.fra3.de.above.net (64.125.31.217) 16.881 ms 16.516 ms 17.612 ms
   ae0.cr1.ams5.nl.above.net (64.125.32.106) 21.923 ms 21.132 ms 21.764 ms
10 xe-0-2-0.cr2.lga5.us.above.net (64.125.27.185) 109.433 ms 108.314 ms 107.607 ms
11 xe-3-0-0.cr2.ord2.us.above.net (64.125.31.74) 123.338 ms 122.288 ms 125.281 ms
12 ae5.cr1.ord2.us.above.net (64.125.28.233) 138.718 ms 146.039 ms 167.477 ms
   ae.mpr1.sea1.us.above.net (64.125.20.69) 183.379 ms 169.775 ms 168.130 ms
14 64.125.193.130.i223.above.net (64.125.193.130) 306.944 ms 308.844 ms 322.389 ms
   ge-6-1-0.bb1.a.syd.aarnet.net.au (202.158.194.120) 307.130 ms 309.011 ms 308.298 ms
   gigabitethernet0.er1.nicta.cpe.aarnet.net.au (202.158.202.178) 307.192 ms 319.166 ms 308.450 ms
   gw1.er1.nicta.cpe.aarnet.net.au (202.158.202.186) 307.651 ms 317.598 ms 308.295 ms
18 * * *
   * * *
21 * * *
```

keine Antwort (Paketverlust, Firewall, ...)

Paketverlust

Packet Loss (Paketverlust)

- Queue (oder buffer) vor einem Link hat endliche Kapazität
- wenn vollständig gefüllt → Verwerfung neuer eingehender Pakete
- verlorene Pakete werden evtl. von Sender oder vorherigem Sender erneut übertragen

Durchsatz (1)

Throughput (Durchsatz)

- Datenrate (bits/s), mit der Daten vom Sender zum Empfänger geschickt werden
- punktuell: Datenrate zu einem bestimmten Zeitpunkt (schwer zu bestimmen)
- Durchschnitt (z.B. in 5 Minuten Intervall)

Server sendet File mit Größe F zum Client

Durchsatz (2)

 $R_s < R_c$ Durchschnittlicher Ende-zu-Ende Durchsatz?

 $R_s > R_c$ Durchschnittlicher Ende-zu-Ende Durchsatz?

Bottleneck Link: Derjenige Link auf Ende-zu-Ende Pfad, welcher den Durchsatz bestimmt.

A.4 Das Schichtenmodell

Schichten (Layer)

- Internet: extrem hohe Komplexität
 - eventuell das komplexeste und größte je von Menschen gebaute System(?)
 - Hosts, Router, Links, Anwendungen, Protokolle, Hardware, Software
- Beherrschung von Komplexität im Internet
 - Struktur und Modularisierung
 - Abstraktion auf verschiedenen Ebenen
 - Schichtenmodell
- Aufbau des Systems von einfachen Basisfunktionen hin zu komplexeren Mechanismen
- höhere Schichten nutzen untere Schichten, untere Schichten verbergen Komplexität

Internet Protocol Stack

- Anwendungsschicht (application layer)
 - unterstützt bestimmte Netzwerkanwendungen
 - FTP, SMTP, HTTP
- Transportschicht (transport layer)
 - Ende-zu-Ende Datentransfer zwischen Prozessen
 - TCP, UDP
- Netzwerkschicht (network layer)
 - Routing von Paketen (Datagrammen) von Sender zu Empfänger
 - IP, Routingprotokolle
- Verbindungsschicht (link layer)
 - Datentransfer zwischen benachbarten Netzwerkelementen
 - Ethernet, IEEE 802.11 (WiFi), DSL
- Physikalische Schicht (physical layer)
 - Kodierung der Bits auf dem Medium

Application

Transport

Network

Link

Physical

ISO/OSI-Referenzmodell

ISO Open Systems Interconnection Modell

- komplexeres Schichtenmodell
- zusätzliche Schichten:
 - Präsentationsschicht (presentation layer)
 - Datenrepräsentation (auch Verschlüsselung, Komprimierung, ...)
 - Sitzungsschicht (session layer)
 - Synchronisation, Checkpoints, Sitzungswiederaufnahme
- Internet Stack hat diese Schichten nicht
 - müssen gegebenenfalls auf Anwendungsschicht implementiert werden
 - SSL / TLS hat viele Eigenschaften dieser Schichten

Application
Presentation
Session

Transport

Network

Link

Physical

Kapselung

Encapsulation

 H_{t}

 $H_n H_t$

 $|\mathsf{H_l}|\mathsf{H_n}|\mathsf{H_t}|$

Μ

Μ

Μ

A.5 Netzwerksicherheit

Netzwerksicherheit

Fragen der Netzwerksicherheit

- Wie können Personen (Hacker?) Computernetzwerke angreifen?
- Wie können wir Netzwerke gegen Angriffe schützen?
- Wie bauen wir Netzwerke, die gegen Angriffe immun sind?

Sicherheit kein ursprüngliches Designziel des Internet

- ursprüngliche Vision eines befriedeten Orts
 - "Ein Netz voller freundlicher Wissenschaftlern, die alle zusammenarbeiten" 😊
- Internet Protokoll Design: Versuch diese Fehlannahmen zu reparieren
- Security auf allen Schichten relevant

Beispiele für Angriffe auf das Netzwerk (1)

Malware

- Infektion von Hosts (oder Router?)
 - Virus: Infektion und (passive) Weiterverbreitung über infiziertes Trägermedium (z.B. Email, Floppy Disk, USB Stick, Word Dokument)
 - Wurm: Infektion und (aktive) Weiterverbreitung durch Netzwerk
- Spyware
 - spioniert PC aus, speichert Tastendrücke, Browsing History, ...
- Ransomware
 - verschlüsselt Daten des Rechners und gibt sie erst nach Zahlung eines Lösegelds wieder frei
- infizierte Rechner häufig als Teil von Botnetzen
 - nehmen selbst and Spam-Verteilung, DDoS-Attacken, etc. teil

Beispiele für Angriffe auf das Netzwerk (2)

Denial of Service (DoS)

Angreifer überlasten Resourcen des Netzwerks oder des Servers (z.B. Bandbreite, CPU), so dass Dienst für reguläre Nutzer nicht mehr zur Verfügung steht

Ablauf

- 1. Angriffsziel auswählen (IP-Adresse)
- 2. Infizieren von vielen Rechnern mit Malware (Botnet)
- 3. Infizierte Rechner senden so viele Datenpakete wie möglich an Angriffsziel

Beispiele für Angriffe auf das Netzwerk (3)

Eavesdropping (Packet "Sniffing")

- Broadcast-Medium erlaubt Zugriff durch Dritte (Ethernet-Bus, WLan)
- Interfaces empfangen im "promiscuous mode" alle Pakete
- Mithören mittels Paket Sniffer (z.B. Wireshark)
- Lösung: Verschlüsselung des Datenverkehrs

Beispiele für Angriffe auf das Netzwerk (4)

IP Spoofing

senden von Paketen mit gefälschten Absendeadressen

A.6 Historischer Überblick

Geschichte des Internets (1)

1961 - 1972: Packet-Switching

- **1961:** Queueing-Theorie zeigt Effizienz des Packet-Switching-Ansatzes
- **1967:** Advanced Research Projects Agency konzipiert das ARPAnet

■ **1969:** erste Knoten des ARPAnet online

1972:

- öffentliche ARPAnet Demo
- Network Control Protocol (NCP) als erstes Host-zu-Host Protokoll
- erstes E-Mail-Programm
- 15 Knoten im ARPAnet

1972 – 1980: Internetworking & neue Netze

- **1970:** ALOHAnet in Hawaii als erstes Funk-Rechnernetz
- **1974:** Cerf und Kahn: Architektur für Internetworking
 - Minimalismus und Autonomie als Grundsätze
 - best-effort Service-Modell
 - zustandloses Routing
 - dezentralisierte Kontrolle
 - **1976:** Ethernet (Xerox PARC)
- **1979:** 200 Knoten im ARPAnet

DEC 1969

Geschichte des Internets (2)

1980-1990: Neue Protokolle & Wachstum

- **1982:** Spezifikation des SMTP-Protokolls
- **1983:** Einsatz von TCP/IP
- 1983: DNS-Protokoll für Namensauflösung
- **1985:** Entwicklung des FTP-Protokolls
- 1988: Überlastkontrolle für TCP
- mittlerweile heterogenes Netzwerk von Netzwerken mit über 100.000 Knoten (USA)

NSFNET T1 Network 1991

1990 – 2000: Kommerzieller Erfolg & WWW

- frühe 1990er: Stilllegung des ARPAnet
- **1991:** Aufhebung der Beschränkung kommerzieller Anwendungen (NSFnet)
- frühe 1990er: Geburt des Webs
 - Hypertext, HTTP, HTML
 - erste Browser (Mosaic, Netscape)
- **späte 1990er:** kommerzieller Durchbruch
 - World Wide Web, Instant Messaging, P2P File Sharing als "Killer-Anwendungen"
 - ca. 50 Mio. Hosts, >100 Mio. User
 - Backbone-Links mit Gbps-Durchsatz

Geschichte des Internets (3)

2005 – heute: Viele neue Anwendungen, Internet wird allgegenwärtig

- ca. 18 Milliarden Geräte im Internet (Stand 2017)
 - deutliche Zunahme mobiler Endgeräte und Smartphones (u.a. seit 2007: iPhone)
- hohe Verfügbarkeit von privaten Breitbandanschlüssen in den entwickelten Ländern
- zunehmende Verbreitung von schnellen, drahtlosen Netzen:
 - 4G/5G/WLan
- Entstehung sozialer Netzwerk-Plattformen
 - z.B. Facebook mit 2.5 Milliarden Nutzern (Stand 2019)
- Unternehmen verlagern ihre IT-Dienstleistungen in externe Datenzentren im Internet
 - "Cloud Computing" (z.B. Amazon Web Services)

Literatur

A. Einführung

- A.1 Was ist das Internet?
 - → Kurose & Ross (6. Aufl.): Kapitel 1.1
- A.2 Netzwerke
 - → Kurose & Ross (6. Aufl.): Kapitel 1.2 & 1.3
- A.3 Verzögerungen, Verlust und Durchsatz
 - → Kurose & Ross (6. Aufl.): Kapitel 1.4
- A.4 Das Schichtenmodell
 - → Kurose & Ross (6. Aufl.): Kapitel 1.5
- A.5 Netzwerksicherheit
 - → Kurose & Ross (6. Aufl.): Kapitel 1.6

- A.6 Historischer Überblick
 - → Kurose & Ross (6. Aufl.): Kapitel 1.7

