COUPLE STATIQUE DU MOTEUR MAXPID

La chaîne fonctionnelle asservie MAXPID est commandée par un asservissement de position. La mesure du couple statique est réalisée à partir de la mesure du courant moteur (voir DOC moteur) :

Cm = Km * Im avec Km = 52.5 mNm/A.

En utilisant le menu « réponse à une sollicitation » on peut vérifier la valeur du courant pour une position de l'axe en plan d'évolution vertical.

Le tracé de la réponse théorique est obtenu à partir de la modélisation suivante :

MODELISATION

Pour une position verticale du système la modélisation isostatique retenue est proposée à partir du schéma de la figure 2.

Avec comme hypothèses:

- 1. Les liaisons sont parfaites;
- 2. Le chargement retenu correspond à la pesanteur sur les disques, toutes les autres masses sont négligées

Cm =
$$\frac{-\text{pc} \cdot \text{L} \cdot \text{M} \cdot \text{g}}{l} \cdot \frac{\cos(\theta)}{\sin(\alpha - \theta)}$$

où

L = [DE] variable selon la position des masses donc à mesurer;

l = [DC] constante;

M = masse embarquée variable à déterminer selon votre chargement ;

 \mathbf{g} : accélération de la pesanteur; $\mathbf{\theta}$: position angulaire du bras dans le châssis;

 α : position angulaire de la vis dans le châssis.

Cm est alors obtenu en Nm.

$$\tan(\alpha) = \frac{l.\sin(\theta) - b}{a + l.\cos(\theta)}$$

Avec $\mathbf{a} = 69.5 \text{ mm et } \mathbf{b} = 81 \text{ mm et } l = 82 \text{ mm}.$

Le logiciel demande sur le panneau d'entrée dans la fonction les valeurs variables. Puis lance une acquisition et trace points par points les deux courbes théorique et expérimentale.

Remarque : on peut améliorer l'expression théorique en considérant la masse du bras et en déterminant la charge équivalente ramenée au centre de gravité des disques (<u>voir Inertie BRAS</u>).

