- 一、填空题(本题共 25 小题,每小题 4 分,满分 100 分,把答案直接填在题中横线上,答在其它地方不给分!)
- 1. $\lim_{x\to +\infty} \frac{\sin x}{\sqrt{x}} = 0 \Leftrightarrow \forall \varepsilon > 0$, $\exists X = \underline{\hspace{1cm}}$, 使得当 $\underline{\hspace{1cm}}$ 时, $|\frac{\sin x}{\sqrt{x}} 0| < \varepsilon$ 成立.
- 2. 设函数 $f(x) = x^2, F(x) = \sqrt{x}$, 在区间 [0,4]上,适合柯西中值定理的 $\xi =$ _______.
- 3. 极限 $\lim_{x\to 0^+} (\tan x + \arctan \frac{1}{x}) =$ _____.
- 4. 极限 $\lim_{x\to 0} x \sin \frac{1}{x} =$ ______.
- 5. 极限 $\lim_{x \to 1} \frac{\sqrt{3-x} \sqrt{x+1}}{x^2 1} = \underline{\qquad}$.
- 6. 极限 $\lim_{n \to \infty} \frac{(n+1)^{n+1}}{n^n} \sin \frac{1}{n} = \underline{\hspace{1cm}}$
- 7. 极限 $\lim_{x\to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} =$ ______.
- 8. 极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} = \underline{\hspace{1cm}}$.
- 9. 极限 $\lim_{x \to e} \frac{\ln x 1}{x e} = \underline{\qquad}$.
- 10. 极限 $\lim_{x\to 0^+} x^{\sin x} =$ _____.
- 11. 当 $x \to 0$ 时, $f(x) = x \sin(ax)$ 与 $g(x) = x^2 \ln(1+bx)$ 是等价无穷小,那么常数 $a = _____$, $b = _____$ 。
- 12. 设函数 $f(x) = \frac{x^2 1}{x^2 3x + 2}$,若补充定义 $f(1) = _____$,可使 f(x) 在点 x = 1 处连续.
- 13. x = 0 为函数 $f(x) = \frac{2^{\frac{1}{x}} 1}{2^{\frac{1}{x}} + 1}$ 的_____间断点.

- 16. 设函数 f(x) 可导, $y = f(x^2) + \ln[f(x)]$,则 $\frac{dy}{dx} =$ ______.
- 17. 已知 $y = \ln(x + \sqrt{1 + x^2})$,则 y'' =______.
- 18. 设 y = y(x) 是由方程 $e^{y} + xy e = 0$ 确定了隐函数,则 $\frac{dy}{dx}\Big|_{x=0} =$ _______.
- 19. 设 $\begin{cases} x = f'(t), \\ y = tf'(t) f(t), \end{cases}$ 且 $f''(t) \neq 0$, 那么 $\frac{d^2y}{dx^2} = \underline{\hspace{1cm}}$.
- 20. d(_______) = $\frac{1}{x} dx$.
- 21. 设 $y = e^{\arctan \sqrt{x}}$,则 dy =______.
- 22. $\Im f(x) = x \sin x$, $\Im f^{(20)}(0) = \underline{\hspace{1cm}}$.
- $23. \lim_{x \to +\infty} \frac{x + \sin x}{x \cos x} = \underline{\qquad}.$
- 24. 设 g'(x) 连续,且 $f(x) = (x-a)^2 g(x)$,则 f''(a) =_______.
- 25. 若 $\lim_{x \to \infty} f'(x) = k$,则 $\lim_{x \to \infty} [f(x+a) f(x)] =$ ______.

.

姓名______ 学 号_____ 成 绩_____

- 一、**填空题**(本题共 25 小题,每小题 4 分,满分 100 分,把答案直接填在题中横线上,答在其它地方不给分!)
- 1. $\lim_{x\to +\infty} \frac{\sin x}{\sqrt{x}} = 0 \Leftrightarrow \forall \varepsilon > 0, \ \exists X = \underline{} \frac{1}{\varepsilon^2} \underline{}, \ \text{使得当} \underline{} x > X \underline{} \text{时}, \quad |\frac{\sin x}{\sqrt{x}} 0| < \varepsilon \, \text{成立}.$
- 3. 极限 $\lim_{x\to 0^+} (\tan x + \arctan \frac{1}{x}) = \underline{\qquad}$.
- 5. 极限 $\lim_{x \to 1} \frac{\sqrt{3-x} \sqrt{x+1}}{x^2 1} = \underline{\qquad} -\frac{1}{2\sqrt{2}} \underline{\qquad}$.
- 6. 极限 $\lim_{n \to \infty} \frac{(n+1)^{n+1}}{n^n} \sin \frac{1}{n} = \underline{\qquad} e \underline{\qquad}$
- 8. 极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} = \underline{\qquad} e^{-\frac{1}{2}} \underline{\qquad}$.
- 9. 极限 $\lim_{x\to e} \frac{\ln x 1}{x e} = \underline{\qquad} \frac{1}{e} \underline{\qquad}$.
- 10. 极限 $\lim_{x\to 0^+} x^{\sin x} = ____1$.
- 11. 当 $x \to 0$ 时, $f(x) = x \sin(ax)$ 与 $g(x) = x^2 \ln(1 + bx)$ 是等价无穷小,那么常数 $a = __1$ ___, $b = __\frac{1}{6} __o$
- 12. 设函数 $f(x) = \frac{x^2 1}{x^2 3x + 2}$,若补充定义 $f(1) = \underline{\qquad} -2 \underline{\qquad}$,可使 f(x) 在点 x = 1 处连续.

14. 曲线 $\sin y + xe^y = 0$ 则在点 (0,0) 处的切线方程为______y = -x ______.

16. 设函数
$$f(x)$$
 可导, $y = f(x^2) + \ln[f(x)]$,则 $\frac{dy}{dx} = \underline{\qquad} 2xf'(x^2) + \frac{f'(x)}{f(x)} \underline{\qquad}$.

17. 己知
$$y = \ln(x + \sqrt{1 + x^2})$$
,则 $y'' = \underline{\qquad} - \frac{x}{\sqrt{(1 + x^2)^3}} \underline{\qquad}$.

18. 设
$$y = y(x)$$
 是由方程 $e^{y} + xy - e = 0$ 确定了隐函数,则 $\frac{dy}{dx}\Big|_{x=0} = \underline{\qquad} -\frac{1}{e} \underline{\qquad}$

19. 设
$$\begin{cases} x = f'(t), \\ y = tf'(t) - f(t), \end{cases}$$
 且 $f''(t) \neq 0$, 那么 $\frac{d^2y}{dx^2} = \frac{1}{f''(t)}$ ______.

20.
$$d(_{n}|x|+C_{n}) = \frac{1}{x}dx$$
.

21. 设
$$y = e^{\arctan \sqrt{x}}$$
,则 $dy = \underline{\qquad} \frac{1}{2\sqrt{x(1+x)}} e^{\arctan \sqrt{x}} dx \underline{\qquad}$.

23.
$$\lim_{x \to +\infty} \frac{x + \sin x}{x - \cos x} = \underline{\qquad} 1 \underline{\qquad}$$

25. 若
$$\lim_{x \to \infty} f'(x) = k$$
 ,则 $\lim_{x \to \infty} [f(x+a) - f(x)] = _____ ak ____$.

.

20**15** ─2016 学年第**_一** 学期 班级______ 课程名称**_高等数学 A(一)** 考试日期**_2015.11.24**

- 一、**填空题**(本题共 25 小题,每小题 4 分,满分 100 分,把答案直接填在题中横线上,答在其它地方不给分!)
- 2. 函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,由拉格朗日中值定理,在 (a,b) 内至少有一点 ξ ,满足等式
- 3. 极限 $\lim_{x\to\infty} \frac{x+\sin x}{x} =$ ______.
- 4. 极限 $\lim_{x\to\infty}\frac{x+1}{x-2}\sin\frac{1}{x}\cdot\cos x=$ _____.
- 6. 极限 $\lim_{x\to 0} \frac{\ln\cos x}{x^2} = \underline{\hspace{1cm}}.$
- 7. 极限 $\lim_{x \to \infty} \left[x x^2 \ln(1 + \frac{1}{x}) \right] = \underline{\hspace{1cm}}$.
- 8. 极限 $\lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(\pi 2x)^2} = \underline{\hspace{1cm}}$.
- 9. 极限 $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\frac{1}{\cot x}} = \underline{\qquad}$

14. 已知函数
$$f(x) = \begin{cases} \frac{1}{\sin^2 x} - \frac{\cos^2 x}{x^2}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 , 为使 $f(x)$ 在 $x = 0$ 处连续,则常数 $a = \underline{\qquad}$

15. 若函数
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x > 0 \\ 0, & x = 0 \end{cases}$$
 在 $x = 0$ 处右导数存在,则 α 的取值范围是______.

16. 设
$$f'(x_0)$$
 存在,则 $\lim_{h\to\infty} h \left[f(x_0 + \frac{1}{h}) - f(x_0 - \frac{2}{h}) \right] = \underline{\hspace{1cm}}$

17. 设
$$y = x^{\sin x}$$
 $(x > 0)$,则 $\frac{dy}{dx} =$ _______.

18. 设
$$y = (1+x^2)\arctan x$$
,则 $y'' =$ ______.

20. 设
$$y = \arcsin \sqrt{x}$$
, 则 $dy =$ ______.

21. 设
$$y = f(x^2e^{2x})$$
, 其中 f 可导,则 $\frac{dy}{dx} =$ _______.

24. 方程
$$x^5 + x - 1 = 0$$
,有______个正根.

25. 设函数
$$y = f(x)$$
 在 $x = 0$ 处连续,且 $\lim_{x \to 0} \frac{f(x)+1}{x+\sin x} = 2$,则 $f'(0) =$ ______

华侨大学 2015-2016 高等数学(上册)期中考试 答案

2,
$$f(b) - f(a) = f'(\xi)(b - a)$$

12,
$$y = -ex + 1$$

15,
$$\alpha > 1$$

16,
$$3f'(x_0)$$

$$17. \ x^{\sin x}(\cos x \ln x + \frac{\sin x}{x})$$

18.
$$2 \arctan x + \frac{2x}{1+x^2}$$

$$20, \ \frac{1}{\sqrt{1-x} \cdot 2\sqrt{x}} dx$$

21.
$$[2x+2x^2]e^{2x} \cdot f'(x^2e^{2x})$$

22.
$$\frac{f''(x)f(x)-[f'(x)]^2}{f^2(x)}$$

$$23, \frac{-4\sin y}{\left(2-\cos y\right)^3}$$

2014 —2015 学年第<u>一</u>学期 班级_______ 课程名称_**高等数学A(一)** 考试日期 2014.12.2

- 一、填空题(本题共 25 小题,每小题 4 分,满分 100 分,把答案直接填在题中横线上,答在其它地方不给分!)
- 1. 叙述定义: $\lim_{x \to \infty} f(x) = A \Leftrightarrow$ _______.
- 2. 函数 f(x) 在区间 [a,b] 上满足罗尔定理条件,条件指的是______
- 3. 极限 $\lim_{x\to 0} \sin x \cdot \sqrt[3]{\sin \frac{1}{x^2}} =$ _____.
- 4. 极限 $\lim_{x\to+\infty} \ln(1+2^x) \ln\left(1+\frac{1}{x}\right) = \underline{\qquad}$
- 5. 极限 $\lim_{x \to +\infty} \frac{\ln(1+\frac{1}{x})}{\operatorname{arccot} x} = \underline{\hspace{1cm}}$
- 6. 极限 $\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x} = \underline{\hspace{1cm}}$
- 7. 极限 $\lim_{x \to \infty} \frac{x + 2\sin\frac{1}{x}}{3x + 4\sin\frac{1}{x}} =$ ______.
- 8. 极限 $\lim_{x\to 0} \frac{x-\tan x}{x^2 \tan x} = \underline{\hspace{1cm}}.$
- 9. 极限 $\lim_{x\to\pi}(\csc x + \cot x) = \underline{\hspace{1cm}}$

1

- 11. 极限 $\lim_{x\to 0^+} (\cot x)^{\frac{1}{\ln x}} =$ ______.
- 12. 极限 $\lim_{x\to 1} \frac{x-x^x}{1-x+\ln x} =$ _____.

13. 已知函数
$$f(x) = \begin{cases} (\cos x)^{-x^2} & x \neq 0 \\ a & x = 0 \end{cases}$$
 , 为使 $f(x)$ 在 $x = 0$ 处连续,则常数 $a =$ ______.

18.
$$f(x) = \lim_{n \to +\infty} \frac{x^{2n} - 1}{x^{2n} + 1} \cdot x(x > 0)$$
的间断点为________,是______间断点(填名称).

19. 设
$$f(x)$$
 三阶可导,且 $f'(x) = e^{f(x)}$, $f(2) = 1$,则 $f'''(2) =$ ______.

20. 设
$$y = \left(\frac{x}{1+x}\right)^x$$
,则 $\frac{dy}{dx} = \underline{\qquad}$.

21. 设
$$y = \ln |x^2 - 2x|$$
,则 $\frac{dy}{dx} =$ ______.

23. 设
$$y = \sin^2 x \cdot \sin(x^2)$$
, 则 $dy =$ ______.

25. 设函数 y = f(x) 由方程 $\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}}$ 所确定,则曲线 y = f(x) 在点 (1,0) 处的切线方程为

2

A 卷

华侨大学本科考试卷

2014 - 2015 学年第 - 学期

高等数学 A(一)期中考试试题参考答案

填空题【共25小题,每小题4分,共100分】

1、 $\forall \varepsilon > 0$, $\exists X > 0$,当X > X时,有 $|f(x) - A| < \varepsilon$

2、(1) f(x) 在[a,b]上连续(2) f(x) 在(a,b)内可导(3)

$$f(a) = f(b)$$

$$7, \frac{1}{3}$$

$$8, -\frac{1}{3}$$

10.
$$4e^{4x}f''(e^{2x})+4e^{2x}f'(e^{2x})$$

11,
$$e^{-1}$$

14.
$$f'(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 P87 习题 16(2)

17.
$$3f'(x_0)$$

19,
$$2e^3$$

20、
$$\left(\frac{x}{1+x}\right)^x \left(\ln \frac{x}{1+x} + \frac{1}{1+x}\right)$$
; P112 习题 4(1)

$$21, \frac{2x-2}{x^2-2x}$$

23、
$$\left[\sin 2x \cdot \sin x^2 + 2x \sin^2 x \cdot \cos x^2\right] dx;$$
P98 习题 11 (2)

$$25, y = x - 1$$