

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/41
Paper 4 Mechanics	1 (M1)		May/June 2018
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

Find the time from projection until P reaches the ground.	
	•••••
	•••••

8 N and 10 N. The angle between the 6 N force and the 8 N force is 90°. The forces are Find the other angles between the forces.	

A particle P of mass 8 kg is on a smooth plane inclined at an angle of 30° to the horizontal. A force of magnitude 100 N, making an angle of θ ° with a line of greatest slope and lying in the vertical plane containing the line of greatest slope, acts on P (see diagram).

(i)	Given that P is in equilibrium, show that $\theta = 66.4$, correct to 1 decimal place, and find the normal reaction between the plane and P . [4]

[2]

particle P moves in a straight line starting from a point O. At the splacement s m from O is given by $s = t^3 - 4t^2 + 4t$ and the velocity is	$v \mathrm{m} \mathrm{s}^{-1}$.
(i) Find an expression for v in terms of t .	[2
ii) Find the two values of t for which P is at instantaneous rest.	

Find the minimum velocity of P .	[3]

A sprinter runs a race of 200 m. His total time for running the race is 20 s. He starts from rest and accelerates uniformly for 6 s, reaching a speed of $12 \,\mathrm{m\,s^{-1}}$. He maintains this speed for the next $10 \,\mathrm{s}$, before decelerating uniformly to cross the finishing line with speed $V \,\mathrm{m\,s^{-1}}$.

i)	Find the distance travelled by the sprinter in the first 16 s of the race. Hence sketch a displaceme time graph for the 20 s of the sprinter's race.	nt- [6]

i)	Find the value of V .	[2]
		•••••

6	Α	car	has	mass	1250 kg.
---	---	-----	-----	------	----------

(i)	The car is moving along a straight level road at a constant speed of 36 m s ⁻¹ and is subject to a constant resistance of magnitude 850 N. Find, in kW, the rate at which the engine of the car is working.
(ii)	The car travels at a constant speed up a hill and is subject to the same resistance as in part (i). The hill is inclined at an angle of θ° to the horizontal, where $\sin \theta^{\circ} = 0.1$, and the engine is working at 63 kW. Find the speed of the car.

		$m s^{-1}$ and ligainst the r			the eight	seconds			
••••••		•••••	•••••	•••••		•••••		•••••	
•••••		•••••						•••••	
•••••		•••••	•••••	•••••		••••••		•••••	••••••
•••••						•••••		•••••	
•••••	•••••••	•••••	•••••		••••••	•••••	••••••	•••••	
								•••••	
								•••••	
•••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
								•••••	
••••••	••••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••
				•••••				•••••	

7

The diagram shows a triangular block with sloping faces inclined to the horizontal at 45° and 30° . Particle A of mass 0.8 kg lies on the face inclined at 45° and particle B of mass 1.2 kg lies on the face inclined at 30° . The particles are connected by a light inextensible string which passes over a small smooth pulley P fixed at the top of the faces. The parts AP and BP of the string are parallel to lines of greatest slope of the respective faces. The particles are released from rest with both parts of the string taut. In the subsequent motion neither particle reaches the pulley and neither particle reaches the bottom of a face.

(i)	Given that both faces are smooth, find the speed of A after each particle has travelled a distance of $0.4 \mathrm{m}$.							

•••••		•••••	••••••	•••••		•••••		•••••	••••
••••••		••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	••••
									••••
									••••
									•••
•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••
	•••••		•••••		•••••				•••
	•••••		••••••	•••••	•••••	•••••			•••
				•••••	•••••	•••••			•••
	•••••				•••••	•••••			•••
									•••
									•••
•••••••	•••••	••••••	••••••	••••••	•••••	••••••		•••••	•••
	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••
	•••••	••••••	••••••	••••••	•••••	•••••		•••••	•••
									•••
									•••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.										

15

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.