LSTAT 2040 - Quelques distributions et faits utiles

Distributions : notations, fonction de densité/masse et premiers moments

- Si $X=(X_1,\ldots,X_d)$ suit une loi Normale multivariée de dimension $d\geq 1$ avec paramètres $(\mu,\Sigma)\in\mathbb{R}^d\times\mathbb{R}^{d\times d}$:
 - Notation : $X \sim N_d(\mu, \Sigma)$. Si d = 1, on notera plutôt $X \sim N(\mu, \sigma^2)$ où $\sigma \in (0, \infty)$.
 - Fonction de densité :

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right), \quad x \in \mathbb{R}^d$$

- $E[X] = \mu \text{ et } Var[X] = \Sigma.$
- Si X suit une loi Exponentielle avec paramètre $\theta \in (0, \infty)$:
 - Notation : $X \sim \text{Exp}(\theta)$.
 - Fonction de densité :

$$f_X(x) = \frac{1}{\theta} \exp(-x/\theta) I(0 \le x < \infty), \quad x \in \mathbb{R}.$$

- $E[X] = \theta \text{ et } Var[X] = \theta^2.$
- Si X suit une loi Gamma de paramètres $(k, \theta) \in (0, \infty)^2$:
 - Notation : $X \sim \text{Gamma}(k, \theta)$.
 - Fonction de densité :

$$f_X(x) = \frac{x^{k-1} \exp(-x/\theta)}{\Gamma(k)\theta^k} I(0 \le x < \infty), \quad x \in \mathbb{R}$$

où Γ est la fonction gamma

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} \exp(-x) dx, \qquad \alpha \in \mathbb{R}.$$

Il s'agit d'une fonction possédant de nombreuses propriétés, notamment le fait que $\Gamma(\alpha+1) = \alpha\Gamma(\alpha), \ \forall \alpha > 0$ et $\Gamma(n+1) = n!, \ \forall n \in \mathbb{N}$.

- $E[X] = k\theta \text{ et } Var[X] = k\theta^2.$
- Si X suit une loi de Rayleigh de paramètre $\sigma \in (0, \infty)$:
 - Notation : $X \sim \text{Rayleigh}(\sigma)$.
 - Fonction de densité :

$$f_X(x) = \frac{x}{\sigma^2} \exp\left(\frac{-x^2}{2\sigma^2}\right) I(0 \le x < \infty), \quad x \in \mathbb{R}.$$

- $E[X] = \sigma \sqrt{\pi/2} \text{ et } Var[X] = (4 \pi)\sigma^2/2.$
- Si X suit une loi de Weibull de paramètres $(\lambda,k)\in(0,\infty)^2$:
 - Notation : $X \sim \text{Weibull}(\lambda, k)$.
 - Fonction de densité :

$$f_X(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp(-(x/\lambda)^k) I(0 \le x < \infty), \qquad x \in \mathbb{R}$$

- $E[X] = \lambda \Gamma(1 + 1/k) \text{ et } Var[X] = \lambda^2 (\Gamma(1 + 2/k) \Gamma(1 + 1/k)^2).$
- Si X suit une loi Uniforme continue de paramètres $(a,b) \in \mathbb{R}^2$ tels que a < b:

- Notation : $X \sim \text{Unif}[a, b]$.
- Fonction de densité :

$$f_X(x) = \frac{1}{b-a} I(a \le x \le b), \quad x \in \mathbb{R}.$$

- $E[X] = (a+b)/2 \text{ et } Var[X] = (b-a)^2/12.$
- Si X suit une loi Beta de paramètres $(\alpha, \beta) \in (0, \infty)^2$:
 - Notation : $X \sim \text{Beta}(\alpha, \beta)$.
 - Fonction de densité :

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} I(0 \le x \le 1), \qquad x \in \mathbb{R}.$$

- $E[X] = \alpha/(\alpha + \beta)$ et $Var[X] = \alpha\beta/((\alpha + \beta)^2(\alpha + \beta + 1))$.
- Si X suit une loi Binomiale de paramètres $(m,\pi) \in \{1,2,3,\ldots\} \times [0,1]$:
 - Notation: $X \sim \text{Bin}(m, \pi)$. Si m = 1, on dit que X suit une loi de Bernoulli et on note $X \sim \text{Be}(\pi)$.
 - Fonction de masse :

$$f_X(x) = {m \choose x} \pi^x (1-\pi)^{m-x}, \qquad x \in \{0, 1, 2, \dots, m\}.$$

- $E[X] = m\pi \text{ et } Var[X] = m\pi(1 \pi).$
- Si $X = (X_1, \dots, X_k)$ suit une loi Multinomiale de dimension $k \ge 1$ avec paramètre $(m, \pi) \in \{1, 2, 3, \dots\} \times \{1, 2, 3, \dots\}$ $[0,1]^k \text{ tel que } \pi_k = 1 - \sum_{j=1}^{k-1} \pi_j :$ - Notation : $X \sim \text{Mult}_k(m,\pi)$.

 - Fonction de masse :

$$f_X(x) = \frac{m!}{x_1! \cdots x_k!} \pi_1^{x_1} \cdots \pi_k^{x_k} I\left(\sum_{j=1}^k x_j = m\right), \qquad x \in \{0, 1, 2, \dots\}^k.$$

- $\operatorname{E}[X] = (m\pi_1, \dots, m\pi_k) \text{ et } \operatorname{Var}[X] = (\sigma_{ij})_{i,j=1,\dots,k} \text{ où } \sigma_{ij} = m\pi_i(1-\pi_i) \text{ si } i=j \text{ et } \sigma_{ij} = -m\pi_i\pi_j$
- Si X suit une loi Géométrique de paramètre $\pi \in [0,1]$:
 - Notation : $X \sim \text{Geo}(\pi)$.
 - Fonction de masse :

$$f_X(x) = (1-\pi)^{x-1}\pi, \qquad x \in \{1, 2, 3, \ldots\}.$$

- $E[X] = 1/\pi \text{ et } Var[X] = (1 \pi)/\pi^2.$
- Si X suit une loi Poisson de paramètre $\lambda \in (0, \infty)$:
 - Notation : $X \sim \text{Poi}(\lambda)$.
 - Fonction de masse :

$$f_X(x) = \frac{\lambda^x}{x!} \exp(-\lambda), \qquad x \in \{0, 1, 2, \ldots\}.$$

 $- E[X] = \lambda \text{ et } Var[X] = \lambda.$

Relations entre les distributions

- Si $X_1, \ldots, X_n \sim \text{Exp}(\theta)$ sont indépendantes, alors $\sum_{i=1}^n X_i \sim \text{Gamma}(n, \theta)$. En particulier, on a $\operatorname{Exp}(\theta) = \operatorname{Gamma}(1, \theta).$
- Si $X^k \sim \text{Exp}(\theta)$, on a $X \sim \text{Weibull}(k, \theta)$. En particulier, on a $\text{Exp}(\theta) = \text{Weibull}(1, \theta)$.
- Rayleigh(σ) = Weibull(2, $\sigma\sqrt{2}$).
- Si $(U, V) \sim N_2((0, 0)^T, \sigma^2 \mathrm{Id}_2)$, alors $\sqrt{U^2 + V^2} \sim \mathrm{Rayleigh}(\sigma)$.
- Si $X \sim \text{Rayleigh}(\sigma)$, alors $X^2 \sim \text{Exp}(2\sigma^2)$.
- Si $X \sim \Gamma(\alpha, \theta)$ et $Y \sim \Gamma(\beta, \theta)$ sont indépendantes, alors $X/(X+Y) \sim \text{Beta}(\alpha, \beta)$.
- Si $X \sim \operatorname{Mult}_k(m, \pi)$, alors pour chaque $j \in \{1, \ldots, k\}$, on a $X_j \sim \operatorname{Bin}(m, \pi_j)$.