Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 11 : convexité. Les exercices porteront sur le chapitre 11 : convexité.

Chapitre 11: Convexité

Parties convexes, barycentres

On se limite à l'espace \mathbb{R}^2 pour les notions de géométrie. On confond sa structure affine et vectorielle en le pointant en (0,0). Notion de barycentre d'un système fini de points massiques (ou pondérés) dans \mathbb{R}^2 . Homogénéité du barycentre. Segment d'extrémités A et B dans \mathbb{R}^2 , $[A,B]=\{tA+(1-t)B|t\in[0,1]\}$. Partie convexe. Combinaison linéaire convexe (\star) Caractérisation des convexes par les barycentres : toute partie $\mathcal C$ de \mathbb{R}^2 est convexe ssi stable par combinaison linéaire convexe ssi stable par barycentrage à masses positives.

Fonctions convexes

I désigne un intervalle réel non réduit à un point. Notion de fonction convexe f de I dans \mathbb{R} . (\star) Une fonction est convexe ssi son épigraphe est convexe. Inégalité de Jensen discrète. (\star) Position des cordes d'une fonction convexe : f est convexe ssi sa courbe est en dessous de chacune de ses cordes. (\star) Croissance des taux d'accroissement : f est convexe ssi $\forall x_0 \in \mathbb{R}$, $\tau_{x_0} : I \setminus \{x_0\} \to \mathbb{R}$, $x \mapsto (f(x) - f(x_0))/(x - x_0)$ est croissante. Inégalités des pentes. (\star) Caractérisation dans le cas dérivable : f dérivable est convexe ssi f' est croissante. Position des tangentes. f deux-fois dérivable est convexe ssi $f'' \ge 0$. Exemples fondamentaux : exponentielle, logarithme, sinus sur $[0, \pi/2]$, racine carrée, fonctions puissances.

Compléments

Cette section est à réserver à des étudiants chevronnés ou pour des extensions d'exercices. Si f est convexe, alors, f est dérivable à gauche et à droite en tout point de I et pour tous a < b,

$$f_g'(a) \le f_d'(a) \le \frac{f(b) - f(a)}{b - a} \le f_g'(b) \le f_d'(b)$$

 f_d' et f_g' sont croissantes, et f est continue sur l'intérieur de I. f est dérivable sauf sur une partie au plus dénombrable.

