HOJA DE EJERCICIOS 2 Análisis Matemático. CURSO 2021-2022.

Sea $f:(X,d) \to (Z,\rho)$ una aplicación entre espacios métricos.

Decimos que f es **Lipschitziana**, o simplemente **Lipschitz**, si existe una constante $M \geq 0$ tal que

$$\rho\left(\,f(x)\,,\,f(y)\,\right) \,\,\leq\,\, M\,d(x,y)\quad,\quad\text{para cualesquiera}\,\,x,y\in X\;,$$

y de un tal número M decimos que es una **constante de Lipschitz para f**.

Decimos que f es localmente Lipschitziana, o localmente Lipschitz, si para cada punto $x_0 \in X$ existen un entorno U de x_0 en X y un número $M_U \ge 0$ tales que

$$\rho(f(x), f(y)) \leq M_U d(x, y)$$
, para cualesquiera $x, y \in U$,

es decir que la restricción $f|_U$ es Lipschitz.

Problema 1. Demuestra que toda aplicación localmente Lipschitz es continua.

Sea X & E X y para E>0 elegér S= E y si
U MU)
yeV y d(x,y)< se trene que
·
$p(f(x_0), f(y_0) \leq M_0 d(x_0, y_0) \leq M_0 d(x_0) \leq E$.
Esto prueba que f es continua en xo.

Problema 2. Determina, para cada una de la siguientes funciones continuas:

1. si es localmente Lipschitz o no,

2. si es Lipschitz o no.

$$\begin{array}{ccc} \mathbb{R} \to \mathbb{R} & , & x \longmapsto x^2. \\ \mathbb{R} \to \mathbb{R} & , & x \longmapsto \sqrt{1+x^2}. \end{array}$$

$$\mathbb{R} \to \mathbb{R}$$
 , $x \longmapsto \arctan x$.

$$(-1,1) \to \mathbb{R}$$
 , $x \longmapsto \arcsin x$.

$$[-1,1] \to \mathbb{R}$$
 , $x \mapsto \arcsin x$.

$$(0, +\infty) \to \mathbb{R}$$
 , $x \longmapsto \log x$.

1.
$$f(x) = x^2$$
; $|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y|$

(LL)
$$x_0 \in \mathbb{R}^+$$
 toman $U = (x_0-2, x_0+1)$. So

$$\leq (x + y) \times -y \leq 2(x_0 + 2) \times -y = Es L$$

b)
$$f(x) = \sqrt{1+x^2}$$
; TVM : $|f(x)-f(y)| = |f(x)||x-y|$

donde $d \in (x,y)$. Como $|f'(x)| = \frac{|\alpha|}{\sqrt{1+\alpha^2}} \le 1 \Rightarrow$
 $|f(x)-f(y)| \le 1|x-y| \Rightarrow fear L y bambion$

LL.

4.
$$f(x) = arcan \times on (-1,1)$$

$$f(x) = \frac{1}{\sqrt{1-x^2}} \text{ no a cotada}$$

1\$6,-\$1/1=1\$6011X-y1 -> 00

cuando x, y cercanos a 1 0-1

No es L

 $\|v\|_{\infty} \le \|v\|_p \le \|v\|_1 \le n \|v\|_{\infty}$.

$S/V = (V_1, V_2, \neg, V_R)$ $ V _{\infty} = \max_{n \in \mathbb{N}} V_n \Rightarrow$
∃ io ∈ {1,-, n} t.g. v _∞ = v _i
$ V _{P} = \left(\frac{\sum_{i=1}^{n} V_{i} ^{p}}{\sum_{i=1}^{n} V_{i} ^{p}}\right)^{p} = V_{i0} = V _{\infty}$
La segunda designaldad esta en el problema 8 de la hoja 1
$\frac{ V _{2}}{ S _{2}} = \frac{ V _{2}}{ S _{2}}$
) (=1 0=1

<u>Problema</u> 7. Sean (X,d) un espacio métrico y $A\subseteq X$ un subconjunto no vacío. Definimos la distancia a A como la siguiente función

$$\operatorname{dist}(\cdot,A):X\ \longrightarrow\ \mathbb{R}\quad,\quad \operatorname{dist}(x,A)\ =\ \inf\left\{\,d(x,y)\,:\,y\in A\,\right\}\,.$$

- 1. Demuesta que $\operatorname{dist}(\cdot,A)$ es una función Lipschitz en (X,d) ¿con qué constate de Lipschitz?
- 2. Si además A es compacto, demuestra que para todo $x \in X$ existe $a \in A$ tal que $\operatorname{dist}(x, A) = d(x, a)$; es decir, un **punto más cercano a x** entre los puntos de A.

1. Al igual que on el ejercico 13 (a) de la hoja
$ d(x,A)-d(y,A) \leq x-y $
Esto procta que la función d(·, A) es L con constante 1.
2. On E = 1/n, I an EA talgre (aEA)
$d(x,A) \leq d(x,a_n) \leq d(x,A) + \frac{1}{n}$
Como {an} = CA y A es compacto, 3 {an} kei
·
tal que lim Rn = a ∈ A. Como d(·, y) es continua
$d(x, A) \leq \lim_{k \to \infty} d(x, a_{n_k}) = d(x, a)$
lim d(x, ank) ≤ d(x, A) + lim 1/2 k→b
= d(x, A)

Problema 8. Fijamos \mathbb{R}^n . Sea $\mathbf{e}_1 = (1, 0, \dots, 0)$ el primer vector de la base estándar. Demuestra que:

- 1. Los subconjuntos $B(0,1) \cup B(2\mathbf{e}_1,1)$ y $\overline{B}(0,1) \cup \overline{B}(3\mathbf{e}_1,1)$ no son conexos por caminos.
- 2. Los subconjuntos $B(0,1) \cup B(2\mathbf{e}_1,1) \cup \{\mathbf{e}_1\}$ y $\overline{B}(0,1) \cup \overline{B}(3\mathbf{e}_1,1) \cup \{t\mathbf{e}_1 : 1 < t < 2\}$ son conexos por caminos.

