Data Science as a Flashlight

How Predictive Models Can Guide the Way to Student Success

Brad Weiner, PhD

University of Colorado Boulder

2021-05-26

About Me

- Director of Data Science, University of Colorado Boulder
- **19** years experience in higher education
- 14 years on campus (Kansas, Vanderbilt, Minnesota, Colorado)
- **5** years in Ed-Tech/Consultancy
- 11 years Higher Ed Analytics/Data Science

Contact

- **y** brad_weiner
- bradweiner.info

What is a predictive model?

It's an equation

Built on historical data (Beware!)

Estimates the likelihood of a future outcome

Why Use Predictive models in higher education?

Colleges and universities are in the public trust

Our research, teaching, and public engagement missions depend on us to fairly and efficiently allocate resources

If we don't use data, we're guessing If we're guessing, we're biased toward the status quo

How do we use predictive models effectively and fairly?

- Understand the use case. Are you predicting success or failure?
- Assess risk. Don't deploy if the model could deny opportunities
 - Specify the model transparently and test for accuracy
 - Train users on intended uses. Avoid "off-label" efforts
- Align incentives and organizational structures with the outcome
- ✓ Learn to point the outcome toward populations of interest. If you want to recruit more students from under-represented backgrounds, select that group from the distribution

Let's Predict Retention

Reminder: This is an example. Be Careful.

Explore the Data (this is not real student data)

student_id	1	2	3	4	5	6
retained	0	1	1	1	0	0
income_group	Pell Eligible	No Aid	Pell Eligible	No Aid	Pell Eligible	Pell Eligible
sex	male	female	female	female	male	male
age	22	38	26	35	35	NA
siblings_enrolled	1	1	0	1	0	0
peers_from_hs	0	0	0	0	0	0
net_tuition	283	2783	309	2073	314	330
residency	Resident	Non-Resident	Resident	Resident	Resident	International
total_peer_group	1	1	0	1	0	0

Pre-Process the Data

student_id	1	2	3	4	5	6
retained	0	1	1	1	0	0
income_group	Pell Eligible	No Aid	Pell Eligible	No Aid	Pell Eligible	Pell Eligible
sex	male	female	female	female	male	male
age	-0.5300051	0.5714304	-0.2546462	0.3649113	0.3649113	NA
siblings_enrolled	0.4325504	0.4325504	-0.4742788	0.4325504	-0.4742788	-0.4742788
peers_from_hs	-0.4734077	-0.4734077	-0.4734077	-0.4734077	-0.4734077	-0.4734077
net_tuition	-0.5021568	0.7865640	-0.4887541	0.4205673	-0.4861766	-0.4779288
residency	Resident	Non-Resident	Resident	Resident	Resident	International
total_peer_group	1	1	0	1	0	0
income_group_no_aid	0	1	0	1	0	0
income_group_pell_eligible	1	0	1	0	1	1
income_group_state_grant_eligible	0	0	0	0	0	0
sex_female	0	1	1	1	0	0
sex_male	1	0	0	0	1	1
residency_international	0	0	0	0	0	1
residency_non_resident	0	1	0	0	0	0
residency_resident	1	0	1	1	1	0
residency_na	0	0	0	0	0	0

Split Into Training/Test Sets

retn_train\$retained	n	percent
0	412	0.6158445
1	257	0.3841555
retn_test\$retained	n	percent
_		percent 0.6171171

Build Basic Regression Model

(reminder, I only have 8 minutes)

Review and Interpret the Results

term	estimate	std.error	statistic	p.value
(Intercept)	0.190	0.179	-9.255	0.000
total_peer_group	0.786	0.074	-3.245	0.001
net_tuition	1.381	0.168	1.923	0.054
sex_female	17.582	0.225	12.744	0.000
income_group_no_aid	2.992	0.297	3.691	0.000

Interpretation

Students in the Income No Aid Group are 2.992 times more likely to retain than those in the baseline group when controlling for other features

Female Students 17.5 times more likely to retain than those in the baseline group when controlling for other features

Make New Predictions on Out of Sample Data

Allocate Scarce Resources With Interventions/Programming

THIS is where your model goes from an equation to an intervention

Option #1 Option #2

Which option would you take?

Before Deciding, Let's Talk About The Data

Titanic

passenger_id	survived	pclass	sex	age	sib_sp	parch	fare	embarked
1	0	3	male	22	1	0	7.2500	S
2	1	1	female	38	1	0	71.2833	С
3	1	3	female	26	0	0	7.9250	S
4	1	1	female	35	1	0	53.1000	S
5	0	3	male	35	0	0	8.0500	S
6	0	3	male	NA	0	0	8.4583	Q

Titanic -> Retention

student_id	retained	income_group	sex	age	siblings_enrolled	net_tuition	residency
1	0	Pell Eligible	male	-0.5300051	0.4325504	-0.5021568	Resident
2	1	No Aid	female	0.5714304	0.4325504	0.7865640	Non-Resident
3	1	Pell Eligible	female	-0.2546462	-0.4742788	-0.4887541	Resident
4	1	No Aid	female	0.3649113	0.4325504	0.4205673	Resident
5	0	Pell Eligible	male	0.3649113	-0.4742788	-0.4861766	Resident
6	0	Pell Eligible	male	NA	-0.4742788	-0.4779288	International

Titanic Model

term	estimate	std.error	statistic	p.value
(Intercept)	0.186	0.151	-11.121	0.000
group_size	0.810	0.063	-3.348	0.001
fare	1.298	0.132	1.976	0.048
sex_female	15.994	0.193	14.388	0.000
income_group_first_class	3.463	0.251	4.945	0.000

Interpretation

High income passengers in first class were more likely to survive because their cabins were closer to lifeboats

Female passengers were more likely to survive because social norms of the day put them first

Who "succeeds" in higher education is...

Structural Cultural

As educators we should *appropriately* use data to allocate limited resources

That means we can...

Reproduce the Past

Build Bigger Boats

Let's build bigger boats

Thanks Code and Slides available at bradweiner.info/talk