RGPD avec Apache BEAM et BigQuery

Mehdi BEN HAJ ABBES

@mbha_phoenix github.com/mbhaphoenix

DevFest Paris 2020

Règlement général sur la protection des données (RGPD)

- □ Un règlement de l'Union européenne qui constitue le texte de référence en matière de protection des données à caractère personnel
- Les principales dispositions :
 - Privacy by design : sécuriser les DCP
 - Droit à l'effacement "à l'oubli"
 - Portabilité des données
 - Le consentement explicite
 - Notification des fuites
 - Nommer un DPO

• ...

Crypto-shredding

- Wikipedia: the practice of 'deleting' data by deliberately deleting or overwriting the encryption keys. This requires that the data have been encrypted
- <u>Thoughtworks</u>: the practice of rendering sensitive data unreadable by deliberately overwriting or deleting encryption keys used to secure that data.

Clé de cryptage par id

id	name (DCP)	non DCP col
1	mehdi	toto
2	ben	bobo
3	haj	COCO
1	mehdi	hoho

id	keyset
1	CNXCzocLEm
2	QKWAowdHI
3	ZS5nb29nbG

BigQuery: Les fonctions de chiffrement AEAD En mode Batch

A base de Tink: lib open source de crypto par Google

Permet de :

- Créer des collections de clés (keyset) de chiffrement et de déchiffrement KEYS. NEW_KEYSET (key_type)
- Utiliser ces clés pour chiffrer et déchiffrer les valeurs individuelles d'une table

```
AEAD.ENCRYPT(keyset, plaintext, additional_data)
AEAD.DECRYPT_BYTES(keyset, ciphertext, additional_data)
AEAD.DECRYPT_STRING(keyset, ciphertext, additional_data)
```

Assurer la rotation des clés d'une keyset :

KEYS.ROTATE KEYSET

BigQuery AEAD en batch

id	name (DCP)	non DCP col
1	mehdi	toto
2	ben	bobo
3	haj	COCO
1	mehdi	hoho

CREATE OR REPLACE TABLE

df_secure.keysets AS SELECT
id, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyse

FROM
(SELECT DISTINCT(id)

FROM df.plain)

id	keyset
1	CNXCzocLEm
2	QKWAowdHI
3	ZS5nb29nbG

id	crypted DCP	non DCP col
1	AZvFDcZtK1	toto
2	YfDempUS0	bobo
3	R0bKCvwC	COCO
1	FDcZtK1Fk	hoho

CREATE OR REPLACE TABLE
encrypted AS SELECT
plain.* EXCEPT(dcp),
AEAD.ENCRYPT((SELECT keyset FROM keysets
WHERE
keysets.id = plain.id),plain.dcp, plain.id) AS cipher,
FROM plain

Tink en streaming

Ressources

- https://github.com/mbhaphoenix/devfest-paris2020-rgpd-bq-beam
- Antisèches RGPD: https://www.datagalaxy.com/blog/antiseches-rgpd/antiseche-rgpd-6-anonymisation-et-pseudonymisation/
- ☐ BigQuery AEAD : https://cloud.google.com/bigquery/docs/reference/standard-sql/aead_encryption_functions
- ☐ Tink lib: https://github.com/google/tink

Merci