En este capítulo formulamos y probamos los resultados necesarios para ver como la conjetura de Shimura-Taniyama-Weil semiestable se sigue de la conjetura del levantamiento modular semiestable:

Teorema 1. (CLMS) Sea p un primo impar y E una curva elíptica semiestable definida sobre \mathbb{Q} tal que cumple las siguientes dos propiedades:

- i) $\bar{\rho}_{E,p}$ es irreducible
- ii) Existe una eigenforma $f \in S_2(\Gamma_0(N))$ y un ideal primo $\mathfrak{P} \subset \mathcal{O}_f$ tal que, para casi todo número primo q, se tiene

$$a_q(f) \equiv q + 1 - \#E(\mathbb{F}_q) \pmod{\mathfrak{P}}.$$

Entonces E es modular.

A la proposición lógica que postula el teorema ??, aplicado a un primo impar p, la llamaremos CLMS(p). En las siguientes tres secciones vamos a probar tres resultados fundamentales que reducen la prueba de STW-semiestable a la prueba de CLMS(3) y CLMS(5).