## 第三章 微分應用

## 3.1 均值定理

**定理** (Rolle). 若 f(x) 在 [a,b] 連續, 在 (a,b) 可微, 且 f(a)=f(b), 則存在  $c\in(a,b)$  使 f'(c)=0.



定理 (均値定理 (mean-value theorem, MVT) ). 若 f(x) 在 [a,b] 連續, 在 (a,b) 可微, 則存在  $c \in (a,b)$  使  $f'(c) = \frac{f(b) - f(a)}{b - a}$ .



註. 不滿足 f(x) 在 [a,b] 連續, 在 (a,b) 可微 g(x) 時的反例.

$$f(x) = \begin{cases} 0 & \text{ ff } x \leq 1 \\ 1 & \text{ ff } x > 1 \end{cases}$$

(a, f(a)) (b, f(b))

當  $x \neq 1$  時 f'(x) = 0,但連接 (a, f(a)) = (0, 0) 與 (b, f(b)) = (2, 1) 之割線斜率為  $\frac{1}{2}$ .

$$f'(x) = \begin{cases} -1 & \text{ if } x < 0 \\ \text{DNE} & \text{ if } x = 0 \\ 1 & \text{ if } x > 0 \end{cases}$$
 
$$(a, f(a)) \bullet$$



當  $x \neq 0$  時  $f'(x) = \pm 1$ , 但連接 (a, f(a)) = (-1, 1) 與 (b, f(b)) = (1, 1) 之割線斜率為 0.

**性質.** f(x) 在 [a,b] 連續, 在 (a,b) 可微. 若  $\forall x \in (a,b)$ 

 $1. f'(x) > 0 \implies f 在 [a, b]$  嚴格遞增.

 $3. f'(x) \geqslant 0 \implies f 在 [a,b] 遞增.$ 

 $2. f'(x) < 0 \implies f 在 [a,b] 嚴格遞減.$ 

 $4. f'(x) \leqslant 0 \implies f 在 [a,b] 遞減.$ 

**證.** 令  $x, y \in [a, b], x < y$ . 由 MVT  $\exists c \in (x, y) \subseteq (a, b)$  使 f(y) - f(x) = f'(c)(y - x). 又 y - x > 0, f(y) - f(x) 與 f'(c) 同號.

**結論.** 若 f(x), g(x) 在 [a,b] 連續, 在 (a,b) 可微, 且  $f'(x) = g'(x) \ \forall x \in (a,b)$ , 則存在  $C \in \mathbb{R}$  使 f(x) = g(x) + C,  $\forall x \in [a,b]$ .

**例.** 證明  $2x - 1 = \sin x$  僅有唯一解.

**解.** 令  $f(x) = 2x - 1 - \sin x$ , 則  $\forall x \ (f'(x) = 2 - \cos x > 0)$ , f(0) = -1 < 0,  $f(1) = 1 - \sin 1 > 0$ , 故由 Bolzano 定理, 存在  $c \in (0,1)$  使 f(c) = 0. 若存在另一  $c_0 \neq c$  使  $f(c_0) = 0$ , 則由 Rolle 定理, 存在  $c_1$  介於 c,  $c_0$  間使  $f'(c_1) = 0$ , 與  $\forall x \ (f'(x) = 2 - \cos x > 0)$  矛盾; 得證.

**例.** 證明  $x^3 + e^x = 0$  僅有唯一解

**解.** 令  $f(x) = x^3 + e^x$ , 則  $\forall x (f'(x) = 3x^2 + e^x > 0)$ ,  $f(-1) = -1 + e^{-1} < 0$ , f(0) = 1 > 0, 故由 Bolzano 定理, 存在  $c \in (-1,0)$  使 f(c) = 0. 若存在另一  $c_0 \neq c$  使  $f(c_0) = 0$ , 則由 Rolle 定理, 存在  $c_1$  介於 c,  $c_0$  間使  $f'(c_1) = 0$ , 與  $\forall x (f'(x) = 3x^2 + e^x > 0)$  矛盾; 得證.

**例.** 證明  $\ln\left(1+\frac{1}{x}\right) > \frac{1}{1+x}, \forall x > 0.$ 

**解.** 考慮  $\ln t$  在 [x, x+1], x > 0. 由 MVT  $\exists c \in (x, x+1)$   $\ln(x+1) - \ln x = \frac{1}{c} > \frac{1}{x+1}$ .

**例.** 證明  $\tan x > x, \, \forall \, x \in \left(0, \frac{\pi}{2}\right).$ 

**解.**  $\forall x \in \left(0, \frac{\pi}{2}\right)$ ,  $\tan \alpha \in [0, x]$  連續,  $\alpha \in (0, x)$  可微, 故由 MVT  $\exists c \in (0, x)$   $\tan x - \tan 0 = \sec^2 c \cdot x > x$ .

**例.** 證明  $\frac{2}{\pi} < \frac{\sin x}{x} < 1, \forall x \in (0, \frac{\pi}{2}).$ 

**例.** 證明  $\sqrt{1+x} < 1 + \frac{1}{2}x, \forall x > 0.$ 

**解.** 考慮  $\sqrt{1+t}$  在 [0,x], x>0. 由 MVT  $\exists c\in(0,x)$   $\sqrt{1+x}-\sqrt{1}=\frac{1}{2\sqrt{1+c}}x<\frac{1}{2}x \implies \sqrt{1+x}<1+\frac{1}{2}x$ .

**例.** 證明  $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, \forall x \in [-1, 1].$ 

**解.** 令  $f(x) = \sin^{-1} x + \cos^{-1} x$ .  $\forall x \in (-1,1), \ f'(x) = \frac{1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0 \implies f(x)$  為常數  $\implies f(x) = f(0) = \frac{\pi}{2}$ ; 由 f(x) 之連續性或代入  $x = \pm 1$  均可得  $f(\pm 1) = \frac{\pi}{2}$ .

**例.** 證明  $2\sin^{-1} x = \cos^{-1}(1 - 2x^2), \forall x \in [0, 1].$ 

解. 令  $f(x) = 2\sin^{-1}x - \cos^{-1}(1 - 2x^2)$ .  $\forall x \in (0,1), f'(x) = \frac{2}{\sqrt{1 - x^2}} - \frac{4x}{\sqrt{1 - (1 - 2x^2)^2}} = \frac{2}{\sqrt{1 - x^2}} - \frac{4x}{\sqrt{1 - (1 - 2x^2)^2}} = \frac{2}{\sqrt{1 - x^2}} - \frac{4x}{\sqrt{(2 - 2x^2)2x^2}} = \frac{2}{\sqrt{1 - x^2}} - \frac{4x}{2x\sqrt{(1 - x^2)}} = 0 \implies f(x)$  為常數  $\implies f(x) = f\left(\frac{1}{2}\right) = 2 \cdot \frac{\pi}{6} - \frac{\pi}{3} = 0$ ; 由 f(x) 之連續性或代入 x = 0, 1 均可得 f(0) = 0 = f(1).

**例.** 證明  $\sin^{-1}\frac{x-1}{x+1}=2\tan^{-1}\sqrt{x}-\frac{\pi}{2}, \forall x \geqslant 0.$ 

**解.** 令  $f(x) = \sin^{-1}\frac{x-1}{x+1} - 2\tan^{-1}\sqrt{x} + \frac{\pi}{2}$ .  $\forall x > 0$ ,  $f'(x) = \frac{1}{\sqrt{1-(\frac{x-1}{x+1})^2}} \cdot \frac{(x+1)-(x-1)}{(x+1)^2} - 2\frac{1}{(\sqrt{x})^2+1} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{\frac{(x+1)^2-(x-1)^2}{(x+1)^2}}} \cdot \frac{2}{(x+1)^2} - \frac{1}{(x+1)\sqrt{x}} = \frac{1}{\sqrt{x}\sqrt{(x+1)^2}} - \frac{1}{(x+1)\sqrt{x}} = \frac{1}{\sqrt{x}|x+1|} - \frac{1}{(x+1)\sqrt{x}} = 0$   $\implies f(x)$  為常數  $\implies f(x) = f(1) = -2 \cdot \frac{\pi}{4} + \frac{\pi}{2} = 0$ ; 由 f(x) 之連續性或代入 x = 0 均可得 f(0) = 0.

## 3.2 L'Hôpital 法則

**定理** (L'Hôpital 法則 (LHR) ). 若 f 與 g 為實可微函數, 且在 (a,b) 上  $g'(x) \neq 0$   $(a,b \in \mathbb{R})$ . 假設

$$\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) = 0 \quad \left(\frac{0}{0} \; \underline{\Xi}\right) \qquad \vec{\boxtimes} \qquad \lim_{x\to a+} g(x) = \infty \quad \left(\frac{\infty}{\infty} \; \underline{\Xi}\right)$$

若 
$$\lim_{x\to a+} \frac{f'(x)}{g'(x)} = L \in \overline{\mathbb{R}}$$
, 則  $\lim_{x\to a+} \frac{f(x)}{g(x)} = L$ .

例 
$$(\frac{0}{0})$$
. 求  $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$ .

**PF.** 
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x} = \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-2\sin 2x} = \lim_{x \to \frac{\pi}{2}} \frac{-1}{-4\sin x} = \frac{1}{4}.$$

例 
$$(\frac{\infty}{\infty})$$
. 求  $\lim_{x\to\infty} \frac{x^2}{e^x}$ .

**M.** 
$$\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0.$$

例 
$$(0\cdot\infty)$$
. 求  $\lim_{x\to 0+} x \ln \frac{1}{x}$ .

**PF.** 
$$\lim_{x \to 0+} x \ln \frac{1}{x} = \lim_{x \to 0+} \frac{\ln \frac{1}{x}}{\frac{1}{x}} = \lim_{x \to 0+} \frac{-\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0+} x = 0.$$

例 
$$(\infty - \infty)$$
. 求  $\lim_{x \to 1+} \left( \frac{x}{x-1} - \frac{1}{\ln x} \right)$ .

$$\textbf{\textit{pr.}} \ \lim_{x \to 1+} \left( \frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1+} \frac{x \ln x - (x-1)}{(x-1) \ln x} = \lim_{x \to 1+} \frac{1 + \ln x - 1}{(x-1) \frac{1}{x} + \ln x} = \lim_{x \to 1+} \frac{\frac{1}{x}}{\frac{1}{x^2} + \frac{1}{x}} = \frac{1}{2}.$$

**例** 
$$(0^0)$$
. 求  $\lim_{x\to 0+} x^x$ .

**解.** 求 
$$\lim_{x \to 0+} x^x = \lim_{x \to 0+} \exp\{x \ln x\} = \exp\left\{\lim_{x \to 0+} x \ln x\right\} = \exp\left\{-\lim_{x \to 0+} x \ln \frac{1}{x}\right\} = e^0 = 1.$$

例 
$$(\infty^0)$$
. 求  $\lim_{x\to\infty}x^{\frac{1}{x}}$ .

**解.** 
$$\lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} \exp\left\{\ln x^{\frac{1}{x}}\right\} = \lim_{x \to \infty} \exp\left\{\frac{1}{x}\ln x\right\} = \exp\left\{\lim_{x \to \infty} \frac{\ln x}{x}\right\} = \exp\left\{\lim_{x \to \infty} \frac{\frac{1}{x}}{1}\right\} = e^0 = 1.$$

例 
$$(1^{\infty})$$
. 求  $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx}, \ a, \ b\in\mathbb{R}.$ 

$$\mathbf{\mathfrak{F}}. \lim_{x \to \infty} \left( 1 + \frac{a}{x} \right)^{bx} = \lim_{x \to \infty} \exp\left\{ \ln\left(1 + \frac{a}{x}\right)^{bx} \right\} = \lim_{x \to \infty} \exp\left\{ bx \ln\left(1 + \frac{a}{x}\right) \right\} = \exp\left\{ \lim_{x \to \infty} bx \ln\left(1 + \frac{a}{x}\right) \right\} = \exp\left\{ b\lim_{x \to \infty} \frac{\ln(1 + \frac{a}{x})}{\frac{1}{x}} \right\} = \exp\left\{ b\lim_{x \to \infty} \frac{1}{1 + \frac{a}{x}} \cdot \frac{-a}{x^2}}{\frac{-1}{x^2}} \right\} = \exp\left\{ b\lim_{x \to \infty} \frac{a}{1 + \frac{a}{x}} \right\} = e^{ba}.$$

**例** (循環形). 求  $\lim_{x\to\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$ .

**解.** 
$$\lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
 為  $\frac{\infty}{\infty}$  型,理應可使用 LHR,但  $\lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \dots$ ,無限循環;  $\lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to \infty} \frac{e^x (1 + e^{-2x})}{e^x (1 - e^{-2x})} = \lim_{x \to \infty} \frac{1 + e^{-2x}}{1 - e^{-2x}} = 1$ .

例 (LHR 與 DNE). 若 
$$\lim_{x\to a} f(x) = 0$$
,  $\lim_{x\to a} g(x) = 0$  與  $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \text{DNE}$ ,  $\lim_{x\to a} \frac{f(x)}{g(x)}$  仍可能存在: 取  $f(x) = x^2 \sin\frac{1}{x}$ ,  $g(x) = x$  與  $a = 0$ , 則  $\lim_{x\to 0} f(x) = 0$  目  $\lim_{x\to 0} g(x) = 0$ ,  $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \left(2x\sin\frac{1}{x} - \cos\frac{1}{x}\right) = \text{DNE}$ , 但  $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{x} = \lim_{x\to 0} x \sin\frac{1}{x} = 0$ .

### 3.3 極値問題

定義. 給定  $f: I \to \mathbb{R}, B(x,h) \equiv \{y \mid |y-x| < h\}.$ 

- f 在  $x_{\mathrm{M}} \in I$  有最大値 (global maximum)  $f(x_{\mathrm{M}})$ :  $f(x_{\mathrm{M}}) \geqslant f(x)$ ,  $\forall x \in I$ .
- $f \in x_m \in I$  有最小値 (global minimum)  $f(x_m)$ :  $f(x_m) \leqslant f(x)$ ,  $\forall x \in I$ .
- f 在  $x_0 \in I$  有極大値 (local maximum)  $f(x_0)$ :  $\exists h_0 > 0$  使  $f(x_0) \geqslant f(x), \forall x \in B(x_0, h_0) \cap I$ .
- f 在  $x_1 \in I$  有極小値 (local minimum)  $f(x_1)$ :  $\exists h_1 > 0$  使  $f(x_1) \leqslant f(x)$ ,  $\forall x \in B(x_1, h_1) \cap I$ .





例.

- $f(x) = \sin x$  在  $I = \mathbb{R}$  有最大値 1, 最小値 -1.
- $f(x) = \frac{1}{x}$  在  $I = \mathbb{R}$  沒有最大値, 最小値.
- f(x) = x 在 I = (0,1) 沒有最大値, 最小値.
- f(x) = x 在 I = [0,1] 有最大值 1, 最小值 0.
- 若 I = [-3, 3],  $f(x) = x^3 3x$  在 x = 3 有最大値 18, 在 x = -3 有最小値 -18, 在 x = -1 有極大値 2, 在 x = 1 有極小値 -2.

定理. 若函數在定義域為有限閉區間, 或有限閉區間的有限聯集連續, 則函數在定義域上有最大值及最小值.

**定理.** 若 f(x) 在 (a,b) 連續, 且  $\lim_{x\to a+} f(x) = L$ ,  $\lim_{x\to b-} f(x) = M$ .

- 1. 若  $\exists u \in (a,b)$  使 f(u) > L 且 f(u) > M, 則 f 在 (a,b) 有最大値.
- 2. 若  $\exists u \in (a,b)$  使 f(u) < L 且 f(u) < M, 則 f 在 (a,b) 有最小値.

a 可為  $-\infty$ , b 可為  $\infty$ , L, M 可為  $\pm \infty$ .

#### 證.

- 1. 由  $\lim_{x \to a^+} f(x) = L$ , 給定  $\varepsilon > 0$ ,  $\exists \delta_1 > 0$  使得當  $a < x < a + \delta_1$ ,  $f(x) < L + \varepsilon$ .
  - $\mathbb{R} \varepsilon = f(u) L, \mathbb{N}$

$$\exists x_1 \in (a, u)$$
 使得當  $a < x < x_1, f(x) < L + (f(u) - L) = f(u).$  (1)

- 由  $\lim_{x \to b^{-}} f(x) = M$ ,給定  $\varepsilon > 0$ ,  $\exists \delta_2 > 0$  使得當  $b \delta_2 < x < b$ ,  $f(x) < M + \varepsilon$ .
- $\mathbb{R} \varepsilon = f(u) M, \mathbb{R}$

$$\exists x_2 \in (u, b)$$
 使得當  $x_2 < x < b, f(x) < M + (f(u) - M) = f(u).$  (2)

- 因 f 在  $[x_1, x_2]$  連續, f 在  $w \in [x_1, x_2]$  有最大値. 但  $u \in [x_1, x_2] \implies f(w) \geqslant f(u)$ ; 由 (1), (2), f 在  $w \in (a, b)$  有最大値.
- 2. 由  $\lim_{x \to a+} f(x) = L$ , 給定  $\varepsilon > 0$ ,  $\exists \delta_1 > 0$  使得當  $a < x < a + \delta_1$ ,  $f(x) > L \varepsilon$ .
  - $\mathbb{R} \varepsilon = L f(u), \mathbb{R}$

$$\exists x_1 \in (a, u)$$
 使得當  $a < x < x_1, f(x) > L - (L - f(u)) = f(u).$  (3)

- 由  $\lim_{x \to b^{-}} f(x) = M$ ,給定  $\varepsilon > 0$ ,  $\exists \delta_2 > 0$  使得當  $b \delta_2 < x < b$ ,  $f(x) > M \varepsilon$ .
- $\mathfrak{P} = M f(u), \mathfrak{P}$

$$\exists x_2 \in (u, b)$$
 使得當  $x_2 < x < b, f(x) > M - (M - f(u)) = f(u).$  (4)

• 因 f 在  $[x_1, x_2]$  連續, f 在  $w \in [x_1, x_2]$  有最小値. 但  $u \in [x_1, x_2] \implies f(w) \leqslant f(u)$ ; 由 (3), (4), f 在  $w \in (a, b)$  有最小値.

**定理.** 若 f 在  $c \in \text{dom } f$  有極値, 且 f'(c) 存在, 則 f'(c) = 0.

#### 證.

• 若 f 在 c 有極大値, 則  $\exists h_0 > 0$  使  $f(c) \geqslant f(x), \forall x \in B(c, h_0) \cap \text{dom } f$ .

$$- \mathbb{R} x \in B(c, h_0) \cap \operatorname{dom} f \stackrel{\square}{=} x < c, \frac{f(x) - f(c)}{x - c} \geqslant 0 \implies f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \geqslant 0$$

$$- \mathbb{R} x \in B(c, h_0) \cap \operatorname{dom} f \stackrel{\square}{=} x > c, \frac{f(x) - f(c)}{x - c} \leqslant 0 \implies f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \leqslant 0$$

故 f'(c) = 0.

• 若 f 在 c 有極小値, 則  $\exists h_1 > 0$  使  $f(c) \leqslant f(x)$ ,  $\forall x \in B(c, h_1) \cap \text{dom } f$ .

$$- \mathbb{R} x \in B(c, h_1) \cap \operatorname{dom} f \stackrel{\square}{=} x < c, \frac{f(x) - f(c)}{x - c} \leqslant 0 \implies f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \leqslant 0$$

$$- \mathbb{R} x \in B(c, h_1) \cap \operatorname{dom} f \stackrel{\boxtimes}{=} x > c, \frac{f(x) - f(c)}{x - c} \geqslant 0 \implies f'(c) = \lim_{x \to c+} \frac{f(x) - f(c)}{x - c} \geqslant 0$$

故 f'(c) = 0.

**結論.** 設  $f:I\to\mathbb{R}$  在  $x_0\in I$  有極値, 則  $x_0$  為以下三情形之一:

• 臨界點 (critical point):  $f'(x_0) = 0$ .

- I 的邊界點 (boundary).
- 奇異點 (singular point): f 在  $x_0$  不可微.

**例.** 求  $f(x) = x^3 - 3x^2 - 9x + 2$  在 [-2, 2] 的最大値與最小値.

解.

- f 在有限閉區間 [-2, 2] 連續, 故在 [-2, 2] 有最大値, 最小値.
- $-f'(x) = 3x^2 6x 9 = 3(x+1)(x-3)$ , 在 [-2, 2] 之臨界點為 -1: f(-1) = 7.
  - *f* 在 [-2, 2] 可微, 故無奇異點.
  - -[-2, 2] 的邊界點為 -2 與 2; f(-2) = 0, f(2) = -20.

故最大値: f(-1) = 7, 最小値: f(2) = -20.

**例.** 證明  $f(x)=x+\frac{4}{x}$  在  $(0,\infty)$  有最小値, 並求其値.

解.

- 由  $\lim_{x\to 0+} f(x) = \infty$ ,  $\lim_{x\to \infty} f(x) = \infty$ ,  $f(1) = 5 < \infty$ , f 在  $(0,\infty)$  有最小值.
- $f'(x) = 1 \frac{4}{x^2} = \frac{(x+2)(x-2)}{x^2}$ , 臨界點為 2: f(2) = 4.
  - -f 在  $(0,\infty)$  可微, 無奇異點
  - $-(0,\infty)$  無邊界點.

故 f 在  $(0, \infty)$  之最小値為 f(2) = 4.

**例.** 求點 (2,0) 到  $y^2 = x^2 + 1$  之最短距離

解.

- 最小化距離平方 = 最小化距離.
- 由  $\ell^2(\pm\infty) = \infty$ ,  $\ell^2(0) = 5 < \infty$ ,  $\ell^2$  在  $(-\infty, \infty)$  有最小値.
- $-\frac{\mathrm{d}}{\mathrm{d}x}\ell^2(x) = 2(x-2) + 2x = 4(x-1)$ , 臨界點為 1;  $\ell^2(1) = (1-2)^2 + (1+1) = 3 \implies \ell(1) = \sqrt{3}$ .
  - $-\ell^2$  在  $(-\infty,\infty)$  可微, 無奇異點.
  - $-(-\infty,\infty)$ 無邊界點.

故最短距離為  $\ell(1) = \sqrt{3}$ .

**例.** Fermat 原理: 光的行進走需時最短路徑. 如下圖, 試由 Fermat 原理推導 Snell 法則:  $\frac{\sin \theta_i}{\sin \theta_r} = \frac{c_a}{c_w}$ , 其中  $c_a$ ,  $c_w$  分別為光在空氣與在水中之速度.





- 令光從點  $P \ {\cong} \ Q$  需時為  $T, \ {\|} \ T(x) = \frac{1}{c_a} \sqrt{(X_P x)^2 + Y_P^2} + \frac{1}{c_w} \sqrt{(X_Q x)^2 + Y_Q^2} \ \left($  時間  $\equiv \frac{$ 距離 速度  $\right)$
- $T(\pm \infty) = \infty, T(0) = \frac{1}{c_q} \sqrt{X_P^2 + Y_P^2} + \frac{1}{c_w} \sqrt{X_Q^2 + Y_Q^2} < \infty,$  故 T 在  $(-\infty, \infty)$  有最小値.
- T 在  $(-\infty,\infty)$  可微,無奇異點, $(-\infty,\infty)$  無邊界點;T 在  $(-\infty,\infty)$  之最小値出現於臨界點,
- $\mathbf{m} T'(x^*) = 0$ ; 在臨界點  $x^*$  時

$$0 = \frac{1}{c_a} \frac{X_P - x^*}{\sqrt{(X_P - x^*)^2 + Y_P^2}} + \frac{1}{c_w} \frac{X_Q - x^*}{\sqrt{(X_Q - x^*)^2 + Y_Q^2}} = \frac{-\sin\theta_i}{c_a} + \frac{\sin\theta_r}{c_w} \implies \frac{\sin\theta_i}{\sin\theta_r} = \frac{c_a}{c_w}$$

**例.** 如圖, 若桿子可在 3m 寬水平走廊移動, 且無彎折通過 2m 寬垂直走廊, 求最大桿長.



解.

- 如圖, 令桿與 3m 寬走廊内沿夾角為  $\theta$ , 則總桿長為  $\ell(\theta)=\ell_1(\theta)+\ell_2(\theta)=\frac{3}{\sin\theta}+\frac{2}{\cos\theta},\ 0<\theta<\frac{\pi}{2}.$
- $\ell(\theta)$  最小値  $\equiv$  最大桿長
- $\lim_{\theta \to 0+} \ell(\theta) = \infty$ ,  $\lim_{\theta \to \frac{\pi}{2}-} \ell(\theta) = \infty$ ,  $\ell\left(\frac{\pi}{4}\right) = \frac{5}{\sqrt{2}} < \infty$ , 故  $\ell(\theta)$  在  $\left(0, \frac{\pi}{2}\right)$  有最小値.
- $\left(0, \frac{\pi}{2}\right)$  無邊界點,  $\ell(\theta)$  在  $\left(0, \frac{\pi}{2}\right)$  可微, 無奇異點.
- 求臨界點, 亦即  $\ell'(\theta) = 0$  之根  $\theta^{\star}$ :  $\ell'(\theta) = -\frac{3\cos\theta}{\sin^2\theta} + \frac{2\sin\theta}{\cos^2\theta} = \frac{-3\cos^3\theta + 2\sin^3\theta}{\sin^2\theta\cos^2\theta} = 0 \implies \tan\theta^{\star} = \sqrt[3]{\frac{3}{2}}$ . 則最大桿長為  $\ell(\theta^{\star}) = \frac{3}{\sin\theta^{\star}} + \frac{2}{\cos\theta^{\star}} = \frac{3}{\frac{\sqrt[3]{3}}{\sqrt{2^{\frac{2}{3}} + 3^{\frac{2}{3}}}}} + \frac{2}{\frac{\sqrt[3]{2}}{\sqrt{2^{\frac{2}{3}} + 3^{\frac{2}{3}}}}} = \left(2^{\frac{2}{3}} + 3^{\frac{2}{3}}\right)^{\frac{3}{2}} (\approx 7.02\text{m})$

# 3.4 作圖



- 切線斜率遞增
- f''(x) > 0
- 門向上
- 切線在屬形下方



- 切線斜率遞減
- f''(x) < 0
- 四向下
- 切線在圖形上方

• y=f(x) 在  $x=x_0$  有切線. 
• f 的凹向在  $x_0$  的左右兩邊恰相反.

### **性質.** 令 $f:I\to\mathbb{R}$ 為可微.

- 若 f' 在 I 嚴格遞增 (f'' > 0 在 I), f 在 I 凹向上  $(上 \cup)$ .
- 若 f' 在 I 嚴格遞減 (f'' < 0 在 I) , f 在 I 凹向下 ( 下凹) .
- 若  $f''(x_0) = 0$ , 則  $x_0 \in I$  為 f 的反曲點.



### 性質 (漸近線 (asymptote)).

- 若  $\lim_{x\to a-}f(x)=\pm\infty$  或  $\lim_{x\to a+}f(x)=\pm\infty,$  f 在 a 有垂直漸近線.
- 若  $\lim_{x\to-\infty} f(x) = L$  或  $\lim_{x\to\infty} f(x) = L$ , f 有水平漸近線 y=L.
- 若  $\lim_{x\to -\infty}(f(x)-(mx+n))=0$  或  $\lim_{x\to \infty}(f(x)-(mx+n))=0, m\neq 0$ ,則 f 有斜漸近線 y=mx+n: 斜漸近線 y=mx+n 由極限  $m=\lim_{x\to \pm \infty}\frac{f(x)}{x}$  與  $n=\lim_{x\to \pm \infty}(f(x)-mx)$  之存在性決定.

### 結論 (作圖步驟).

- 觀察定義域, 對稱性, 週期性.
- 決定漸近線.
- 解 f'(x) = 0, f''(x) = 0 並決定 f', f'' 之正負區間; 製表.

• 依表判斷 f 之升降, 凹向, 臨界點, 奇異點, 反曲點; 作圖,

**例.** 決定  $f(x) = x^4 - 2x^3 + 1$  的升降, 凹向, 臨界點, 奇異點, 反曲點並作圖.

解.

• 
$$f'(x) = 4x^3 - 6x^2 = 4x^2\left(x - \frac{3}{2}\right)$$
;  $f''(x) = 12x^2 - 12x = 12x(x - 1)$ .

• 製表:

- 臨界點 (f'=0): x=0 與  $x=\frac{3}{2}$
- 嚴格遞增區間  $(f'>0): \left(\frac{3}{2},\infty\right)$
- 嚴格遞減區間  $(f'<0):\left(-\infty,\frac{3}{2}\right)$
- 反曲點 (f''=0 目前後 f'' 異號處): x=0 與 x=1
- 作圖:



**例.** 決定  $f(x) = \frac{x}{x^2 + 3}$  之升降, 凹向, 臨界點, 奇異點, 反曲點並作圖.

解.

• 
$$f'(x) = \frac{3-x^2}{(x^2+3)^2} = \frac{(\sqrt{3}-x)(\sqrt{3}+x)}{(x^2+3)^2}; f''(x) = \frac{2x(x+3)(x-3)}{(x^2+3)^3}.$$

• 製表:

- 水平漸近線: y=0, 因  $\lim_{x\to\pm\infty}\frac{x}{x^2+3}=0$
- 嚴格遞增區間  $(f' > 0) : (-\sqrt{3}, \sqrt{3})$
- 嚴格遞減區間  $(f'<0):(-\infty,-\sqrt{3})$  與  $(\sqrt{3},\infty)$
- 臨界點  $(f'=0): x=\pm\sqrt{3}$

- 反曲點 (f''=0 且前後 f'' 異號處) : x=-3 與 x=0 與 x=3
- 作圖:



**例.** 決定  $f(x) = \frac{x^3}{x^2 - 1}$  的升降, 凹向, 臨界點, 奇異點, 反曲點並作圖.

解.

• 
$$f'(x) = \frac{x^2(x^2-3)}{(x^2-1)^2} = \frac{x^2(x-\sqrt{3})(x+\sqrt{3})}{(x^2-1)^2}; f''(x) = \frac{2x(x^2+3)}{(x^2-1)^3}$$

• 製表:

• 奇異點:  $x^2-1=0 \implies x=\pm 1$ , 故垂直漸近線:  $x=\pm 1$ 

• 斜漸近線: y = x, 因  $\lim_{x \to \pm \infty} \left( \frac{x^3}{x^2 - 1} - x \right) = 0$ 

• 嚴格遞增區間 (f'>0) :  $(-\infty,-\sqrt{3})$  與  $(\sqrt{3},\infty)$ 

• 嚴格遞減區間  $(f' < 0) : (-\sqrt{3}, \sqrt{3})$ 

• 臨界點 (f'=0): x=0 與  $x=\pm\sqrt{3}$ 

• 反曲點 (f'' = 0 且前後 f'' 異號處) : x = 0

• 作圖:

