

MATEMÁTICA BÁSICA – MB103

Prof. Adjairon Coelho

LISTA DE EXERCÍCIOS III

- 1. Calcule $\sec x$ sabendo que $\sec x = \frac{2ab}{a^2+b^2}$ com a > b > 0
- 2. Determine uma relação entre x e y, independente de t, sabendo que:

a)
$$x = 2 \operatorname{sen} t \operatorname{e} y = 3 \cos t$$

b)
$$x = 3 \tan t e y = 5 \csc t$$

3. Construa os gráficos e dê o domínio e a imagem das funções:

a)
$$f(x) = |2 \operatorname{sen} x|$$

b)
$$f(x) = 1 + 2 \cos 3x$$

c)
$$f(x) = \tan\left(x - \frac{\pi}{4}\right)$$

- 4. Sabendo que sen $x = \frac{15}{17}$, sen $y = -\frac{3}{5}$, $0 < x < \frac{\pi}{2}$ e $\pi < y < \frac{3\pi}{2}$, calcule sen(x + y), $\cos(x + y)$ e $\tan(x + y)$.
- 5. Dados $x = r \cdot \cos \theta$ e $y = r \cdot \sin \theta$. Calcule $\sqrt{x^2 + y^2}$.
- 6. Dizemos que os polinômios $P_1(x)$, $P_2(x)$ e $P_3(x)$ são linearmente independentes (LI) se a relação $a_1P_1(x) + a_2P_2(x) + a_3P_3(x) = 0$ implica $a_1 = a_2 = a_3 = 0$, em que a_1 , a_2 e a_3 são números reais. Caso contrário, dizemos que $P_1(x)$, $P_2(x)$ e $P_3(x)$ são linearmente dependentes (LD). Classifique os polinômios

$$P_1(x) = x^2 + 2x + 1$$
, $P_2(x) = x^2 + 1$ e $P_3(x) = x^2 + 2x + 2$

quanto a dependência linear.

7. Mostre que os polinômios $f(x) = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$ e $g(x) = x^4 + 1$ são iguais.

1

- 8. Sendo $p(x) = 2x^3 + x^2 8x e q(x) = x^2 4$. Calcule $\frac{p(x)}{q(x)}$.
- 9. Sendo $A = \begin{bmatrix} 1 & 9 \\ 2 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & -8 \\ 3 & -1 \end{bmatrix}$, calcule:

a)
$$(A + B)^2$$

b)
$$A^3 - B^3$$

b)
$$A^3 - B^3$$
 c) $(A + B)(A - B)$

10. Se
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, determine $(A + A^{-1})^3$.

11. Calcule o determinante.

a)
$$A = \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$

b)
$$B = \begin{bmatrix} \frac{1}{2} & -\frac{3}{4} \\ 2^{-2} & 0.01 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$
 b) $B = \begin{bmatrix} \frac{1}{2} & -\frac{3}{4} \\ 2^{-2} & 0.01 \end{bmatrix}$ c) $C = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{bmatrix}$

12. Escalone, classifique e resolva os sistemas:

a)
$$\begin{cases} x - y - 2z = 1\\ -x + y + z = 2\\ x - 2y + z = -2 \end{cases}$$

b)
$$\begin{cases} x + y - z + t = 1\\ 3x - y - 2z + t = 2\\ -x - 2y + 3z + 2t = -1 \end{cases}$$

c)
$$\begin{cases} x + y + z + t = 1\\ x - y + z + t = -1\\ y - z + 2t = 2\\ 2x + z - t = -1 \end{cases}$$