

IC Value Forecasting on 2025

Apa itu Integrated Circuits?

Integrated Circuits (IC) adalah komponen elektronik kecil yang menggabungkan ratusan hingga jutaan transistor, resistor, dan kapasitor ke dalam satu chip silikon.

Berperan Penting pada Perkembangan:

5G

Α

5G

IoT

Kendaraan otonom

IC berperan penting dalam industri teknologi dan menjadi komoditas strategis dalam perdagangan global.

"Chips are ground zero for our future economic competitiveness."

[&]quot;Semiconductors are the oil of the 21st century. They're critical for economic and national security."

Pat Gelsinger, CEO Intel, dalam wawancara CNBC (2021)

Methodology

Analisis Eksploratif (EDA)

Feature Engineering

Data Visualisasi

Machine Learning

Recommendation & Summary

Agenda

01

Goal & Data

Further understand with our data

02

Method & Backtest

Models & Fair Evaluation

03

Forecast

Look at the future

04

Summary

So..?

Goal & Data

Objective

Memprediksi nilai ekspor barang IC pada sisa bulan di tahun 2025 menggunakan beberapa metode *forecasting* dan penilaian berdasarkan *Root Mean Squared Error*.

Scope & Source

Source: UN Comtrade monthly CSV's, **Jan-2020** \rightarrow **Jun-2025**. **Scope filters:**

- Exports only
- Drop aggregates (reporterDesc ≠ "World", partnerDesc ≠ "World")
- Prefer primaryValue; if missing, use fobvalue
- Keep positive rows (value > 0, netWgt > 0); isLeaf = True/1 if present

Time index: built from **period** (YYYY-MM)

Data

Data pada awal tahun 2020 memiliki trend yang cukup rendah, yang kemudian terjadi *rebound* yang cukup cepat.

Hal ini diasumsikan karena efek Covid 19.

Rebound diasumsikan karena naiknya kebutuhan WFH.

2022 - 2023 diasumsikan bahwa terjadinya *correction*, kebutuhan menjadi stabil.

"COVID-19 disruptions + stay-at-home demand (PCs up ~13%) drove the 2020–2021 chip surge after the initial dip." — Summary of the 2020–2023 global chip shortage, Wikipedia.

"Peak shipping season for U.S. imports typically runs August–October (holiday build)." — project44, ocean peak-season analysis.

Method & Backtest

Methods

SNaive12 (Baseline on this research)

"Next month will be the same as the same month last year."

Merupakan forecasting dengan konsep penyamaan dengan bulan dan tahun sebelumnya.

Contoh: forecast Agustus 2025 akan sama dengan Agustus 2024

Linear Trend with Seasonality

- Mengekstrak linear trend dari CMA (Centered Moving Average) untuk menghilangkan noise dan seasonality.
- Mengestimasi SI (Seasonal Indices) ratiot=yt/CMAt. "Average those ratios by month (Jan...Dec) and normalize so the mean SI = 1"
- Regress nilai CMA on time: CMAt ≈ a+b t. slope b and intercept a
- Forecast : $\hat{y}_{T+h} = \left(a + b\,t_{T+h}\right) imes ext{SI}_{ ext{month}(T+h)}$

Methods

Linear Regression with Time Series

Time series merupakan serangkaian data yang dikumpulkan dan dicatat dalam interval waktu yang teratur

- Trend
- Seasonality (month dummies dan Fourier)

$$\hat{y}_t \ = \ eta_0 + eta_1 t \ + \ \sum_{m=2}^{12} \gamma_m \ \mathbf{1}\{ ext{month} = m\} \ + \ \sum_{k=1}^K \left(a_k \sin(2\pi kt/12) + b_k \cos(2\pi kt/12)
ight)$$

• *Month dummies* → Koefisien tiap bulan.

$$\hat{y}_t = eta_0 + eta_1 t + \sum_{m=2}^{12} \gamma_m \, \mathbf{1}\{ ext{month} = m\}$$

Fourier terms → penurun noise berupa sin/cos (dengan nilai
 1 atau 2 biasanya sudah cukup).

$$\hat{y}_t = eta_0 + eta_1 t + \sum_{k=1}^K ig(a_k \sin(2\pi k t/12) + b_k \cos(2\pi k t/12) ig)$$

As expected, adding seasonality has improved the fit to the forecast — Forecasting in Python: A Practical Guide, **Medium**.

Methods

Hybrid Method

Linear Regression + Lags

Regression menangkap trend + seasonality, lalu ditambah model untuk memprediksi residual berbasis lag, dan keduanya dijumlahkan.

$$\widehat{y}_t^{\,hyb} = \widehat{y}_t^{\,reg} + \widehat{r}_t.$$

Penambahan lags biasanya sering menurunkan RMSE (Root Mean Squared Error).

Parameter Setup

Linear Regression & Hybrid Method

Melakukan iterasi untuk memutuskan nilai parameter yang paling bagus digunakan.

a2.0|F1|lags(1,)|mt36
Ridge alpha = 2
Hybr
Fourier = 1
Hybr

Lags = (1,)
min_train = 36 months

Hybrid & Linear Reg

Hybrid & Linear Reg

Hybrid

All models

lower = better

Backtest

All models

Hasil backtest yang mendekati dengan nilai *actual* ialah pemenangnya.

	MAE	RMSE	МАРЕ%
Hybrid = Reg + ML(resid)	1.119456e+11	1.311014e+11	6.611934
SNaive12	1.453650e+11	1.682135e+11	8.423396
LTwS (CMAT)	2.192191e+11	2.493511e+11	13.237938
Regression	2.305839e+11	2.513635e+11	13.840486

SNaive12 lebih tinggi daripada LTwS dan Regression, berarti series data memiliki seasonality yang sangat kuat hingga SNaive12 cukup mampu digunakan sebagai baseline.

Forecast

Forecast

All models

- □ Regression (hijau tua) tertinggi dan paling mulus → tren liniernya mendorong naik.
- ∠ LTwS/CMAT (ungu) sedikit di bawah Regression → mirip tren, lebih hati-hati.
- ☐ Hybrid (merah) di tengah → mengikuti tren+musim, dikoreksi "memori pendek" (lags).
- SNaive12 (oranye) terendah → meniru pola tahun lalu (tidak menangkap tren baru).
- Hybrid kira-kira: 1.73–1.79T USD dalam 6 bulan ke depan (naik perlahan).
- Regression/LTwS: sekitar 1.78–1.86T (lebih optimistis).
- SNaive12: sekitar 1.64–1.75T (lebih konservatif).

Summary

Summary

What we found so far

- □ Pola musiman kuat: Feb rendah, Sep-Nov tinggi.
- ☐ Hybrid (Regression + lag residual) adalah terbaik pada uji jalan-maju (RMSE \approx \$0.13T), mengalahkan SNaive12 dan LTwS/Regression.
- Proyeksi 6 bulan ke depan: rebound moderat dengan puncak musiman di Ags-Okt.
 Gunakan Hybrid sebagai central forecast, dengan rentang ± \$0.13T.

Business Recommendation

- Perencanaan volume/pendapatan: pakai Hybrid sebagai angka utama; siapkan band ±\$0.13T untuk budgeting & S&OP.
- Manajemen stok & kapasitas: pull-up produksi & logistik menuju Sep-Nov; slowdown di Feb.

Thank you

Want to make a presentation like this one?

Start with a fully customizable template, create a beautiful deck in minutes, then easily share it with anyone.

Create a presentation (It's free)