Задача 1. Дадена е случайна величина X с плътност $f_X(x) = \begin{cases} c(x^2+2x) &, x \in [0,1] \\ 0 &, x \notin [0,1] \end{cases}$. Намерете

- 1. константата c;
- 2. $\mathbb{E}X$ и DX;
- 3. вероятността X да е по-малка от математическото си очакване;
- 4. очакването на случайната величина $X^2 + 3X$.

Задача 2. Върху окръжност k(O,r) е фиксирана точка A, а точка B попада по случаен начин върху окръжността. Да се намери математическото очакване на лицето на $\triangle AOB$.

Задача 3. Нека $X \sim U(0,7)$ е времето на безотказна работа в години на даден апарат. Съгласно гаранцията на апарата, той ще бъде заменен с нов на петата година или преди това, в случай на дефект. Нека Y е времето до смяната на апарата. Да се пресметнат $\mathbb{P}(Y < 4), \mathbb{E}Y$ и DY. Ако са продадени 1000 апарата, колко средно ще трябва да се подменят преди петата година?

Задача 4. Във вътрешността на кръг с радиус R случайно се избират точките A и B. Да се намери вероятността окръжността с център A и радиус AB да лежи във вътрешността на кръга.

Задача 5. В магазин работят две касиерки. Предполагаме, че времето необходимо за обслужване на клиент на всяка от двете опашки е експоненциално разпределена случайна величина с математическо очакване 8(мин) за първата опашка и 5(мин) за втората. Клиент, избрал по случаен начин опашка, е чакал по-малко от 4 минути. Каква е вероятността той да е бил на първата опашка?

Задача 6. Времето за преглед на пациент е експоненциално разпределена случайна величина с очакване 30(мин). За преглед има записани двама пациенти - първият за 11:00, а вторият за 11:30, като и двамата пристигат в точно определения час. Ако прегледът на първия не е завършил, вторият изчаква. Да се пресметне средно колко време ще прекара вторият пациент в поликлиниката.

Задача 7. Нека случайната величина $X \sim Exp(\lambda)$. Да се намерят плътностите на случайните величини

- Y = -X;
- Y = 2X 1:
- $Y = \sqrt{X}$;
- $Y = X^{\alpha}$ 3a $\alpha > 0$.

Задача 8. Лъч (светлина) минава от точката (0,2) към т. (0,1) и се пречупва случайно, сключвайки ъгъл $\theta \in (-\pi/2;\pi/2)$ с Oy. Нека X е точката, в която пречупеният лъч пресича Ox. Да се намери плътността на X.

Задача 9. Монета, за която вероятността за падане на ези е 3/4 се хвърля 2000 пъти. Каква е вероятността броят на падналите се езита да е между 1475 и 1535?

Задача 10. Точка (X,Y) попада по случаен начин в триъгълник с върхове в точките с координати (0,0), (0,2) и (3,0). Да се намери съвместната плътност, функцията на разпределение и корелацията на X и Y.

Задача 11. Електронно устройство за предпазване от крадци автоматично променя осветлението в дома. То е настроено така, че през фиксиран час, в случаен момент X ще запали лампите, а в момент Y ще ги угаси. Нека съвместната плътност на случайните величини X и Y е $f_{X,Y}(x,y) = cxy, 0 < x < y < 1$.. Да се намери

- 1. константата с;
- 2. маргиналните плътности и математическите очаквания;
- 3. вероятността лампите да бъдат запалени преди 45-тата минута и да светят по-малко от 10 минути;
- 4. колко е средното време на светене, ако лампите са запалени на 15-тата минута;
- 5. каква е вероятността лампите да светят по-малко от 20 минути?

Задача 12. Върху страните на квадрат, независимо една от друга, по случаен начин попадат две точки. Да се намери математическото очакване на квадрата на разстоянието между точките, ако страната на квадрата е a.

Задача 13. Нека случайните величини $X_1, X_2 \sim Exp(\lambda)$ са независими. Да се намери разпределението на случайната величина $Y = X_1/(X_1 + X_2)$.

Задача 14. Нека случайните величини $X_1, X_2 \sim U(0,1)$ са независими. Да се намери разпределението на случайната величина $Y = X_1 + X_2$.

Задача 15. Нека случайните величини $X_1, X_2 \sim Exp(\lambda)$ са независими. Да се намери плътността на случайната величина

- 1. $Y = \max(X_1, X_2)$;
- 2. $Y = \min(X_1, X_2)$.

Задача 16. Във вътрешността на триъгълник с лице 1 по случаен начин попада точка P. Правата през P, успоредна на страна на тригълника, пресичат другите му две страни в точките Q и R. Точките S и T лежат върху страна на триъгълника, така че QRST е правоъгълник. Да се намери $\mathbb{E}S_{QRST}$.

Задача 17. Два инструмента се използват за измерването на прахови частици във въздуха. Да допуснем, че реалното количество е x g/m^3 . В такъв случай, първият дава показание, което е с нормално разпределение със средно x и стандартно отклонение (σ) 0.05x, а резултатът от втория също е с нормално разпределение със средно x, но със стандартно отклонение 0.1x. Кой апарат бихте използвали? Колко е вероятността за всеки от апаратите да допусне грешка, която е повече от 0.1x?

Човек решава да използва средното аритметично от двата апарата. Ако измерванията им са независими, каква е вероятността за грешка над 0.1x при тази процедура?

Задача 18. Нека ξ и η са независими случайни величини, $\xi \sim Exp(2)$ и $\eta \sim U(0,3)$, т.е.

$$f_{\xi}(x) = egin{cases} 2e^{-2x} & \text{,ako } x > 0 \\ 0 & \text{,иначе} \end{cases}; \quad f_{\eta}(x) = egin{cases} rac{1}{3} & \text{,ako } 0 < x < 3 \\ 0 & \text{,иначe}. \end{cases}$$

Намерете корелация на ξ и η , $P(\xi < \eta)$ и плътността на ξ/η .

Задача 19. Точка A попада случайно в окръжност k(O,1) с център O и радиус 1. Нека случайната величина X е равна на |OA|. Можете ли да предположите колко са модата и медианата? Аргументирайте се. Колко бихте очаквали да е $\mathbb{E}X$? (Мода на дискретно разпределение наричаме стойността с найголяма вероятност. B непрекъснатия случай, по аналогия, се интересуваме от стойността, която максимизира f_X . Наричаме а медиана на разпределението на X, ако $\mathbb{P}(X \leq a) = \mathbb{P}(X \geq a) = 1/2$.)

- 1. Намерете функцията на разпределение, плътността, очакването и дисперсията на X.
- 2. Нека сега разгледаме 3 точки, A_1 , A_2 и A_3 , които попадат случайно и независимо една от друга в същата окръжност. Колко е очакването на разстоянието до най- близката до центъра? А до най- отдалечената? (Бонус: Намерете очакваното разстояние до средната точка. Би ли трябвало то да е равно на $\mathbb{E}X$?)

Задача 20. (1 т.) На спирките за градски транспорт се инсталират информационни табла с размери 10×100 диода. Доставени са качествени материали, като можем да моделираме времето на изправност на един диод чрез експоненциална сл. вел. със средно 10 години.

Опитът показва, че ако работят по-малко от 75% от диодите, информацията често е неразбираема и таблото трябва да се ремонтира. Каква е вероятността да трябва да бъде извършен ремонт след 3 години експлоатация?

Задача 21. Да предположим, че можем да моделираме възвръщаемостите на три актива A, B и C като независими нормално разпределени случайни величини N(3,2), N(3,3), N(1,10) и че разполагате с 5 единици за инвестиции.

- 1. (0.25 т.) Как бихте разпределили парите си, за да максимизирате очакваната печалба?
- $2.~(0.25~{\rm T.})$ Между всички възможности от 1., един начин за избор е да предпочетем разпределението с най-малка дисперсия. Кое е то?
- 3. (0.5 т.) Рисков инвеститор залага 5-те си единици в независим актив $D \sim N(-2, 20)$. Каква е вероятността неговата инвестиция да е по-успешна от тази в 2.?

Задача 22. X и Y пътуват заедно от град A до B. След пристигането си, изчакват съответно автобуси до C и D. Предполагаме, че пътуванията траят съответно $T_{AB} \sim Exp(3), T_{BC} \sim Exp(4)$ и $T_{BD} \sim Exp(5),$ а изчакванията в B са $T_C \sim Exp(1)$ и $T_D \sim Exp(2),$ като така дефинираните времена са независими. Нека ξ и η са времената на пътуване на X и Y.

- 1. (0.25 т.) Намерете $\mathbb{P}(T_C + \ln(\mathbb{E}T_D) > 0)$.
- 2. (0.75 т.) Намерете $Cor(\xi, \eta)$.