STA250 Probability and Statistics

Chapter 4 Notes

Discrete and Continuous Random Variables and Their Probability Functions

Asst. Prof. Abdullah YALÇINKAYA

Ankara University, Faculty of Science, Department of Statistics

ANA CONTRACTOR OF THE PARTY OF

STA250 Probability and Statistics

Reference Book

This lecture notes are prepared according to the contents of

"PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS by Walpole, Myers, Myers and Ye"

- □ A random variable is a function that associates a real number with each element in the sample space. Consequently, a random variable can be used to identify numerical events that are of interest in an experiment.
- \square If X denote a random variable, we shall use a capital letter. Its corresponding small letter, x in this case, for one of its values.
- *X* random variable is shown as follows,

$$X : S \to \mathbb{R}$$
$$w \to X(w)$$

where:

 D_X : The set of X values.

There are two types of random variables:

Discrete and Continuous Random Variables.

- □ **Two balls** are drawn in succession without replacement from an urn containing 4 red (R) balls and 3 black (B) balls.
- □ The possible outcomes and the values *y* of the random variable *Y* , where *Y* is the number of red balls, are

Sample Space	y
RR	2
RB	1
BR	1
BB	0

Example 1: Flip a coin two times.

Let random variable X denote the number of tails in each sample point. A = even of at least 1 Tail (T) occurring.

Sample Space:

$$S = \{TT, TH, HT, HH\}$$

n(S) = 4 (Number of Elements)

$$D_X = \{0, 1, 2\}$$

$$P(X > 2) = 0$$

$$P(X \ge 1) = P(X = 1) + P(X = 2)$$

$$= P(\{TH, HT\}) + P(\{TT\})$$

$$= 2/4 + 1/4 = 3/4$$

- Example 2: Components can either be defective (D) or not (N).
 - What is the sample space for this situation? $S = \{NNN, NND, NDN, NDD, DNN, DND, DDN, DDD\}$
 - Let random variable X denote the number of **defective components** in each sample point.

•
$$P(X \le 2) = ?$$
 $P(X = 0) + P(X = 1) + P(X = 2)$

What are the values of P(X = x), for x = 0, 1, 2, 3?

- $D_X = \{0,1,2,3\}$ its values of X random variable.
- $NNN(1 \text{ of } 8) \rightarrow X=0;$
- NND, NDN, DNN (3 of 8) \rightarrow X=1
- *NDD, DND, DDN (3 of 8)* → *X=2;*
- DDD (1 of 8) \rightarrow X=3
- $P(X = 0) = \frac{1}{8} = .125$
- $P(X = 1) = \frac{3}{8} = .375$
- $P(X = 2) = \frac{3}{8} = .375$
- $P(X = 3) = \frac{1}{8} = .125.$

- A discrete sample space has a finite or countably infinite number of points (outcomes).
- □ Example of countably infinite: experiment consists of flipping a coin until a heads occurs.
 - S = ?
 - S = {H, TH, TTH, TTTH, TTTTH, ...}
 - S has a countably infinite number of sample points.

Discrete Probability Distribution

- The probability that X takes on the value x, P(X = x), is defined as the sum of the probabilities of all sample points in S that are assigned the value x. It is denoted f(x) = P(X = x).
- □ The set of ordered pairs (x, f(x)) is called <u>probability</u> <u>function</u> or probability function of X.
- For any discrete probability distribution, the following must be true
 - $f(x) \ge 0$ $x \in D_x$
 - $\sum_{x \in D_x} f(x) = 1$
 - P(X = x) = f(x)

Cumulative Distribution & Plotting

- □ The cumulative distribution function, denoted F(x), of a discrete random variable X with probability distribution f(x) is
 - $F(x) = P(X \le x)$

F(x) is calculated as follows,

- $F(x) = \sum_{t \le x} f(t)$
- □ It is useful to plot both a probability distribution and the corresponding cumulative distribution.
 - Typically, the values of f(x) versus x are plotted using a <u>probability histogram</u>.
 - Cumulative distributions are also plotted using a similar type of histogram/step function.

- The probability function of X random variable is given as;
 - $f(x) = cx^2$ $D_X = \{-2, -1, 1, 2\}$
- a) c = ?
- Obtain the probability function, table. **b**)
- Find the probabilities.

$$P(X > 2) = ?$$

$$P(X \ge 1) = ?$$

$$P(X \ge 1) = ?$$
 $P(0 < X \le 2) = ?$

Solution 1

a)
$$\sum_{-2}^{2} cx^2 = 1 \rightarrow c = \frac{1}{10}$$

 \square The probability function of X random variable is given as;

•
$$f(x) = \frac{x^2}{10}$$
 $D_X = \{-2, -1, 1, 2\}$

b) The probability Function and Table

$$f(x) = \begin{cases} \frac{4}{10}, & x = -2\\ \frac{1}{10}, & x = -1\\ \frac{1}{10}, & x = 1\\ \frac{4}{10}, & x = 2 \end{cases}$$

X = x	-2	-1	1	2
P(X=x)	$\frac{4}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{4}{10}$

c)
$$P(X > 2) = 0$$

$$P(X \ge 1) = P(X = 1) + P(X = 2) = f(1) + f(2) = \frac{1}{10} + \frac{4}{10} = \frac{5}{10}$$
$$P(0 < X \le 2) = P(X = 1) + P(X = 2) = f(1) + f(2) = \frac{5}{10}$$

Discrete Probability Distribution

- □ If a car agency sells 50% of its inventory of a certain foreign car equipped with side airbags, find a formula for the probability distribution of the number of cars with side airbags among the next 4 cars sold by the agency.
- □ *Solution*: Since the probability of selling an automobile with side airbags is 0.5, the $2^4 = 16$ points in the sample space are equally likely to occur. Therefore, the denominator for all probabilities, and also for our function, is 16.
- To obtain the number of ways of selling 3 cars with side airbags, we need to consider the number of ways of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned to one cell and the model without side airbags assigned to the other. This can be done in $\binom{4}{3} = 4$ ways.
- □ In general, the event of selling x models with side airbags and 4-x models without side airbags can occur in $\binom{4}{x}$ ways, where x can be 0, 1, 2, 3, or 4.
- □ Thus, the probability distribution f(x) = P(X = x) is

$$f(x) = \frac{1}{16} {4 \choose x}$$
, for $x = 0, 1, 2, 3, 4$.

The probability function

•
$$f(x) = P(X = x) = \frac{1}{16} {4 \choose x}$$
 $x = 0,1,2,3,4$

• Using F(x), verify that f(2) = 3/8.

Find the cumulative distribution function of the random variable *X*.

$$f(0) = \frac{1}{16}$$
 $f(1) = \frac{1}{4}$ $f(2) = \frac{3}{8}$ $f(3) = \frac{1}{4}$ $f(4) = \frac{1}{16}$

Solution 2

$$F(0) = f(0) = \frac{1}{16},$$

$$F(1) = f(0) + f(1) = \frac{5}{16},$$

$$F(2) = f(0) + f(1) + f(2) = \frac{11}{16},$$

$$F(3) = f(0) + f(1) + f(2) + f(3) = \frac{15}{16},$$

$$F(4) = f(0) + f(1) + f(2) + f(3) + f(4) = 1.$$

$$F(x) = \begin{cases} 0, & \text{for } x < 0, \\ \frac{1}{16}, & \text{for } 0 \le x < 1, \\ \frac{5}{16}, & \text{for } 1 \le x < 2, \\ \frac{11}{16}, & \text{for } 2 \le x < 3, \\ \frac{15}{16}, & \text{for } 3 \le x < 4, \\ 1 & \text{for } x \ge 4. \end{cases}$$

$$f(2) = F(2) - F(1) = \frac{11}{16} - \frac{5}{16} = \frac{3}{8}.$$

Figure 3.1: Probability mass function plot.

Figure 3.3: Discrete cumulative distribution function.

Continuous Probability Distributions

- □ A continuous random variable has a probability of 0 of assuming *exactly* any of its values.
 - $\bullet P(X = x) = 0.$
 - Otherwise the probabilities couldn't sum to 1.
- That is, it does not matter whether we include an endpoint of the interval or not. This is not true, though, when X is discrete.
 - Since the probability of any individual point is 0,
 P(a < X < b) = P(a ≤ X ≤ b)
 on, the endpoints can be included or not.
- In dealing with continuous variables, f(x) is usually called the probability density function, or simply the density function, of X.

Continuous Probability Distributions

□ The probability that X assumes a value between a and b is equal to the shaded area under the density function between the ordinates at x = a and x = b, and from integral calculus is given by

Figure 3.5: P(a < X < b).

Continuous Distributions

- □ The function f(x) is a <u>probability density function</u> (pdf) for the continuous random variable X, defined over the set of real numbers, if
 - 1. $f(x) \ge 0$, for all $x \in R$
 - $2. \int_{-\infty}^{\infty} f(x) dx = 1$
 - 3. $P(a < X < b) = \int_a^b f(x) dx$.
- □ The cumulative distribution function F(x) of a continuous random variable X with density function f(x) is
 - $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$, $-\infty < x < \infty$
 - $P(a < X \le b) = F(b) F(a)$
 - If discrete, must use "a < X", and not " $a \le X$ ", above.
 - $f(x) = \frac{dF(x)}{dx}$

 Suppose that the error in the reaction temperature, in C, for a controlled laboratory experiment is a continuous random variable X having the probability density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & elsewhere \end{cases}$$

- Verify that f(x) is a density function.
- Find $P(0 < X \le 1)$.
- Solution:
 - Obviously, $f(x) \ge 0$. To verify condition $\int_{-\infty}^{\infty} f(x) dx = 1$.

•
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-1}^{2} \frac{x^{2}}{3} dx = \frac{x^{3}}{9} (2|-1) = \frac{8}{9} + \frac{1}{9} = 1.$$

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & elsewhere \end{cases}$$

- Find $P(0 < X \le 1)$.
- Solution:

$$P(0 < X \le 1) = \int_0^1 \frac{x^2}{3} dx = \frac{x^3}{9} | = \frac{1}{9}$$

□ For the density function of Example 1. Find F(x), and use it to evaluate $P(0 < X \le 1)$.

Solution: For -1 < x < 2,

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-1}^{x} \frac{t^2}{3} dt = \frac{t^3}{9} | = \frac{x^3 + 1}{9}.$$

Therefore,

$$F(x) = \begin{cases} 0, & x < -1, \\ \frac{x^3 + 1}{9}, & -1 < x \le 2, \\ 1, & x \ge 2. \end{cases}$$

The cumulative distribution function F(x) is expressed in Figure 3.6. Now,

$$P(0 < X \le 1) = F(1) - F(0) = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

Which agrees with the result obtained by using the density function in Example 1.

Figure 3.6: Continuous cumulative distribution function.

The Department of Energy (DOE) puts projects out on bid and generally estimates what a reasonable bid should be. Call the estimate b. The DOE has determined that the density function of the winning (low) bid is

$$f(y) = \begin{cases} \frac{5}{8b}, & \frac{2}{5}b \le y \le 2b\\ 0, & elsewhere \end{cases}$$

- Find F(y) and use it to determine the probability that the winning bid is less than the DOE's preliminary estimate b.
- Solution: For $\frac{2b}{5} \le y \le 2b$;

$$F(y) = \int_{0}^{y} \frac{5}{8b} dy = \frac{5t}{8b} \bigg| = \frac{5y}{8b} - \frac{1}{4}$$

Thus;

$$F(y) = \begin{cases} 0, & y < \frac{2}{5}b \\ \frac{5y}{8b} - \frac{1}{4}, & \frac{2}{5}b \le y < 2b \\ 1, & y \ge 2b \end{cases}$$

To determine the probability that the winning bid is less than the preliminary bid estimate *b*, we have

$$P(Y \le b) = F(b) = \frac{5}{8} - \frac{1}{4} = \frac{3}{8}$$

Joint Probability Distributions

□ Given a pair of discrete random variables on the same sample space, X and Y, the joint probability distribution of X and Y is

$$f(x,y) = P(X = x, Y = y)$$

f(x,y) equals the probability that both x and y occur.

- □ The usual rules hold for joint probability distributions:
 - $f(x,y) \ge 0$ for all (x,y)
 - $\sum_{x} \sum_{y} f(x, y) = 1$
 - For any region A in the xy plane, $P[(X,Y) \in A] = \sum \sum_{A} f(x,y)$
- □ For continuous joint probability distributions, the sums above are replaced with integrals.

Joint Probability Distributions

- Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens.
- □ If *X* is the number of blue pens selected and *Y* is the number of red pens selected, find
- \square (a) the joint probability function f(x, y),
- □ (b) $P[(X,Y) \in A]$, where A is the region $\{(x,y)|x+y \le 1\}$.
- Solution: The possible pairs of values (x, y) are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0).
 Because of selecting Two pens, x + y must be equal 2.
- (a) Now, f(0, 1), for example, represents the probability that a red and a green pens are selected. The total number of equally likely ways of selecting any 2 pens from the $8 \text{ is } {8 \choose 2} = 28$.
- The number of ways of selecting 1 red from 2 red pens and 1 green from 3 green pens is $\binom{2}{1}\binom{3}{1} = 6$.
- □ Hence, $f(0,1) = \frac{6}{28} = \frac{3}{14}$.

Joint Probability Distributions

□ Similar calculations yield the probabilities for the other cases, which are presented in Table. Note that the probabilities sum to 1.

			x		Row
	f(x,y)	0	1	2	Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\begin{array}{c c} \frac{15}{28} \\ \frac{3}{7} \end{array}$
y	1	$\begin{array}{c} \frac{3}{28} \\ \frac{3}{14} \end{array}$	$\frac{28}{3}$ $\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Column Totals		$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

it will become clear that the joint probability distribution of Table can be represented by the formula

$$f(x,y) = \frac{\binom{3}{x} \binom{2}{y} \binom{3}{2-x-y}}{\binom{8}{2}}$$

for $x = 0, 1, 2; y = 0, 1, 2; 0 \le x + y \le 2$.

□ (b) $P[(X,Y) \in A]$, where A is the region $\{(x,y)|x+y \le 1\}$.

The probability that (X, Y) fall in the region A is

$$P[(X,Y) \in A] = P(X + Y \le 1) = f(0,0) + f(0,1) + f(1,0)$$
$$= 3/28 + 3/14 + 9/28 = 9/14$$

Marginal Distributions

□ The <u>marginal distribution</u> of X alone or Y alone can be calculated from the joint distribution function as follows:

•
$$g(x) = \sum_{y} f(x, y)$$
 and $h(y) = \sum_{x} f(x, y)$ if discrete

•
$$g(x) = \int_{y} f(x,y)dy$$
 and $h(y) = \int_{x} f(x,y)dx$ if continuous

□ In other words, for example, g(x) = P(X = x) is the sum (or integral) of f(x, y) over all values of y.

					Ъ
			x	Row	
	f(x,y)	0	1	2	Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$ $\frac{3}{7}$
y	1	$\begin{array}{c} \frac{3}{28} \\ \frac{3}{14} \end{array}$	$\frac{9}{28}$ $\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Col	Column Totals		$\frac{15}{28}$	$\frac{3}{28}$	1

Show that the column and row totals of Table give the marginal distribution of *X* alone and of *Y* alone.

Marginal Distributions

			\overline{x}		Row
	f(x,y)	0	1	2	Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\begin{array}{r} \frac{15}{28} \\ \frac{3}{7} \end{array}$
y	1	$\frac{\frac{3}{28}}{\frac{3}{14}}$	$\frac{9}{28}$ $\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Column Totals		$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

Show that the column and row totals of Table give the marginal distribution of *X* alone and of *Y* alone.

Solution: For the random variable X, we see that

$$g(0) = f(0,0) + f(0,1) + f(0,2) = 3/28 + 3/14 + 1/28 = 5/14,$$

 $g(1) = f(1,0) + f(1,1) + f(1,2) = 9/28 + 3/14 + 0 = 15/28,$
 $g(2) = f(2,0) + f(2,1) + f(2,2) = 3/28 + 0 + 0 = 3/28,$

which are just the column totals of Table. In a similar manner we could Show that the values of h(y) are given by the row totals. In tabular form, these marginal distributions may be written as follows:

\underline{x}	0	1	2	$\underline{}$	0	1	2
g(x)	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	h(y)	$\frac{15}{28}$	$\frac{3}{7}$	$\frac{1}{28}$

Conditional Distributions

□ For either discrete or continuous random variables, X and Y, the conditional distribution of Y given that X = x is

$$f(y | x) = f(x,y)/g(x)$$
 if $g(x) > 0$

□ and the <u>conditional distribution</u> of <u>X given that Y=y</u> is

$$f(x | y) = f(x,y)/h(y)$$
 if $h(y) > 0$

□ X and Y are <u>statistically independent</u> if

$$f(x,y) = g(x) h(y)$$

for all x and y within their range.

□ A similar equation holds for n mutually statistically independent jointly distributed random variables.

Statistical Independence

- □ The definition of <u>independence</u> is as before:
 - Previously, $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$.
 - How about terms of the conditional distribution?
 - $f(x \mid y) = g(x)$ and $f(y \mid x) = h(y)$.
 - The other way to demonstrate independence?
 - f(x,y) = g(x) h(y) $\forall x, y \text{ in range.}$
- Similar formulas also apply to more than two mutually independent random variables.

Conditional Distribution

If we wish to find the probability that the discrete random variable X falls between a and b when it is known that the discrete variable Y = y, we evaluate

$$P(a < X < b \mid Y = y) = \sum_{a < x < b} f(x|y)$$

□ where the summation extends over all values of *X* between *a* and *b*. When *X* and *Y* are continuous, we evaluate

$$P(a < X < b \mid Y = y) = \int_{a}^{b} f(x|y)dx$$

Conditional Distribution

	0 (_	x		Row		x	0	1	2
	f(x,y)	0	$\frac{1}{2}$	2	Totals	_	$\alpha(m)$	5	15	3
	0	$\begin{array}{c c} \frac{3}{28} \\ \frac{3}{14} \end{array}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$		$g(x) \mid$	$\overline{14}$	$\overline{28}$	$\overline{28}$
y	1	$\frac{3}{14}$	$\frac{3}{14}$	0	$\frac{3}{7}$		y	1 0	1	2
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$	_	g			
Col	umn Totals	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1		h(y)	$\frac{15}{28}$	$\frac{3}{7}$	$\frac{1}{28}$

Find the conditional distribution of X given that Y = 1, and use it to determine $P(X = 0 \mid Y = 1)$.

Solution: We need to find f(x|y), where y = 1. First, we find that

$$h(1) = \sum_{x=0}^{2} f(x,1) = \frac{3}{14} + \frac{3}{14} + 0 = \frac{3}{7} \qquad f(x|1) = \frac{f(x,1)}{h(1)} = \frac{7}{3} f(x,1), \qquad x = 0,1,2$$

$$f(0|1) = \frac{7}{3}f(0,1) = \frac{7}{3}\frac{3}{14} = \frac{1}{2} f(1|1) = \frac{7}{3}f(1,1) = \frac{7}{3}\frac{3}{14} = \frac{1}{2} f(2|1) = \frac{7}{3}f(2,1) = \frac{7}{3}0 = 0$$

The conditional distribution of X, given that Y=1, x = 0 1 2 $f(x|1) = \frac{1}{2} = \frac{1}{2} = 0$

Therefore, if it is known that 1 of the 2 pen refills selected is red, we have a probability equal to 1/2 that the other refill is not blue.

$$P(X = 0 | Y = 1) = 1/2$$

Next Lesson

Discrete Probability Distributions

See you@

