Backtesting of a Moving Average Crossover Trading Strategy

Alexandre Chisholm

1 Definition

The Short-Term Exponential Moving Average (EMA) is defined as:

$$EMA_t^S = \alpha_S P_t^c + (1 - \alpha_S) EMA_{t-1}^S$$
(1)

Similarly, the Long-Term Exponential Moving Average (EMA) is given by:

$$EMA_t^L = \alpha_L P_t^c + (1 - \alpha_L)EMA_{t-1}^L \tag{2}$$

where:

- \bullet EMA S_t : Short-Term Exponential Moving Average at time t.
- EMA_t^L : Long-Term Exponential Moving Average at time t.
- P_t^c : Closing price of the asset at time t.
- α_S : Smoothing factor for the short EMA, defined as $\alpha_S = \frac{2}{N_S+1}$, where N_S is the period of the short EMA.
- α_L : Smoothing factor for the long EMA, defined as $\alpha_L = \frac{2}{N_L+1}$, where N_L is the period of the long EMA.
- EMA_{t-1}^S : Previous value of the short-term EMA.
- $\bullet \ \mathrm{EMA}_{t-1}^L$: Previous value of the long-term EMA.

The Moving Average Convergence Divergence (MACD) is computed as:

$$MACD_t = EMA_t^S - EMA_t^L$$
(3)

The MACD provides a measure of momentum by indicating the relationship between the short-term and long-term EMAs. A positive MACD suggests an uptrend, while a negative MACD indicates a downtrend.

2 Strategy

- Go long at time t+1 if $MACD_t>0$ and $MACD_{t-1}<0$
- Go short at time t+1 if $MACD_t < 0$ and $MACD_{t-1} > 0$