Logika Ítéletlogika

Első témakör

2020/21. 2. félév

(Első témakör) Logika 2020/21. 2. félév 1 / 39

Elérhetőségek

Név: Tejfel Máté

Szoba: Déli épület 2.616.

E-mail cím: matej@inf.elte.hu

Weboldal: https://matej.web.elte.hu

Előadás követelményei

- maximum 3 hiányzás
- Vizsga:
 - Előfeltétel Elfogadott gyakorlat
 - Beugró Minden témakörből kisebb kérdések.
 - Szóbeli adott kérdések alapján
- részletes információk Canvas-ban fent lesznek.

Logika tananyag tartalma

Könyv: Pásztorné Varga Katalin, Várterész Magda: A Matematikai Logika Alkalmazásszemléletű Tárgyalása

- Ítéletlogika alapfogalmai
- Elsőrendű logika alapfogalmai
- Formulák szemantikus tulajdonságai és azok vizsgálata
- Szintaktikus és szemantikus következményfogalom vizsgálata
 - Ítéletkalkulus, Predikátumkalkulus
 - Természetes levezetés
 - Szekvent kalkulus
 - Rezolúció
 - ▶ Tabló kalkulus

4 / 39

Bevezetés

- Az ég kék.
- A 2 egy páros szám.
- Az 5 egy páros szám.

Egyszerű, konkrét állítások, amelyek egy egyedről mondanak valamit. Ilyeneket tudunk **ítéletlogikában** megfogalmazni.

- Minden nyúl rágcsáló.
- Van olyan hal, ami kék színű.

Egyszerű, konkrét állítások, amelyek egy egyedekből álló csoportról mondanak valamit. Ilyeneket tudunk **elsőrendű logikában** megfogalmazni.

Ilyen típusú állításokhoz egyértelműen tudunk igazságértéket rendelni. Vagyis egyértelműen el tudjuk dönteni, hogy igaz vagy hamis egy állítás.

(Első témakör) Logika 2020/21. 2. félév 5 / 39

Tartalom

Bevezető fogalmak

- Ítéletlogika
 - Ítéletlogika ábécé
 - Ítéletlogika szintaxis
 - Ítéletlogika szemantika

(Első témakör) Logika 2020/21. 2. félév 6 / 39

Halmazok direktszorzata

A és B tetszőleges halmazok direkt vagy Descartes szorzata $A \times B$ az összes olyan (a,b) párok halmaza, ahol $a \in A$ és $b \in B$.

 U^n -nel jelöljük U-nak önmagával vett n-szeres direktszorzatát, ami az U elemeiből képezhető összes n elemű sorozatok halmaza ($U^2 = U \times U$).

Példa

$$A = \{1,2,3\} \text{ \'es } B = \{a,b\}$$

$$A \times B = \{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}$$

$$A^2 = A \times A = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

$$B^3 = B \times B \times B = \{(a,a,a),(a,a,b),(a,b,a),(b,a,a),(a,b,b),(b,a,b),(b,b,a),(b,b,b)\}$$

4D > 4A > 4B > 4B > B 990

(Első témakör) Logika 2020/21. 2. félév 7 / 39

Függvény

Legyen D és R (nem feltétlenül különböző) halmazok. Függvénynek nevezünk egy $D \to R$ (D halmaz minden eleméhez egy R-beli elemet rendelő) leképezést. D a leképezés értelmezési tartománya, R az értékkészlete.

Példa

- ullet Összeadás művelete: $D=\{\mathit{eg\'esz}\;\mathit{sz\'amok}\}^2$, $R=\mathit{eg\'esz}\;\mathit{sz\'amok}$
- Logikai 'És' reláció: $D = \{igaz, hamis\}^2, R = \{igaz, hamis\}$

(Első témakör) Logika 2020/21. 2. félév 8 / 39

Függvény fajtái

Legyen D a függvény értelmezési tartománya, R az értékkészlete. Valamint legyen U egy tetszőleges (individuum)halmaz.

- ullet Ha D=U, akkor a függvény egyváltozós,
- ha $D = U^n (n > 1)$, akkor n változós,
- ullet ha $R=\mathbb{N}$, akkor a függvény egészértékű,
- ullet ha $R=\{i,h\}$, akkor a függvény logikai függvény, más néven reláció,
- ha $D=R^n$ (azaz a függvény általános alakja: $U^n \to U$), akkor a függvény matematikai függvény, más néven művelet,
- az $\{i,h\}^n \to \{i,h\}$ alakú függvény logikai művelet.

(Első témakör) Logika 2020/21. 2. félév 9 / 39

Szerkezeti rekurzió:

- definíciós módszer
- alaplépés + rekurzív lépés
- példa: logikai formulákon értelmezett függvények definíciója

Szerkezeti indukció:

- bizonyítási módszer rekurzívan definiált struktúrák tulajdonságairól
- alaplépés + indukciós lépés
- speciális példa: teljes indukció
- példa: logikai formulák tulajdonságainak bizonyítása

Következtetésforma

Gondolkodásforma vagy következtetésforma

Egy $F = \{A_1, A_2, ..., A_n\}$ állításhalmazból és egy A állításból álló (F, A) pár.

Helyes következtetésforma

Egy $F = \{A_1, A_2, ..., A_n\}$ állításhalmazból és egy A állításból álló (F, A) pár helyes következtetésforma, ha létezik olyan eset, hogy az F állításhalmazban szereplő mindegyik állítás igaz és minden ilyen esetben az A állítás is igaz.

(Első témakör) Logika 2020/21. 2. félév 11 / 39

Példa következtetésforma

Betörtek egy áruházba. A nyomozási jegyzőkönyv a következőket tartalmazza:

- Ha férfi a tettes, akkor kistermetű.
- Ha kistermetű, akkor az ablakon mászott be.
- A tettes férfi vagy legalábbis férfiruhát hordott.
- Ha férfiruhát hordott és feltéve, hogy a szemtanú vallomása hiteles, akkor az ablakon mászott be.
- A helyszíni szemlén megállapították, hogy senki sem mászott be az ablakon.

A nyomozók azt sejtik ezek alapján, hogy a tettes nem férfi.

Tartalom

Bevezető fogalmak

- Ítéletlogika
 - Ítéletlogika ábécé
 - Ítéletlogika szintaxis
 - Ítéletlogika szemantika

(Első témakör) Logika 2020/21. 2. félév 13 / 39

Nyelvdefiníció

$$Nyelv = Abece + Szintaxis + Szemantika$$

(Első témakör) Logika 2020/21. 2. félév 14 / 39

Ítéletlogika vagy állításlogika

Tárgya egy egyszerű állítások és a belőlük logikai műveletekkel kapott összetett állítások vizsgálata.

Egyszerű állítás

Egy olyan kijelentés, amelynek tartalmáról eldönthető, hogy igaz-e vagy nem. Egy állításhoz hozzárendeljük az igazságértékét: az i (igaz) vagy h (hamis) értéket.

Összetett állítás

Egy egyszerű állításokból álló összetett mondat, amelynek az igazságértéke csak az egyszerű állítások igazságértékeitől függ. Az összetett állítások csak olyan nyelvtani összekötőszavakat tartalmazhatnak, amelyek logikai műveleteknek feleltethetők meg.

Tartalom

- Ítéletlogika
 - Ítéletlogika ábécé
 - Ítéletlogika szintaxis
 - Ítéletlogika szemantika

(Első témakör) Logika 2020/21. 2. félév 16 / 39

Az ítéletlogika leíró nyelvének ábécéje (V_0)

Ítéletlogika ábécéje

- Ítéletváltozók (V_v): X, Y, X_i, \dots
- Unér logikai műveleti jel: ¬ (negáció)
- Binér logikai műveleti jelek:
 - ► ∧ (konjukció)
 - ∨ (diszjunkció)
 - → (implikáció)
- Elválasztójelek: ()

17 / 39

Tartalom

- Ítéletlogika
 - Ítéletlogika ábécé
 - Ítéletlogika szintaxis
 - Ítéletlogika szemantika

(Első témakör) Logika 2020/21. 2. félév 18 / 39

Az ítéletlogika leíró nyelvének szintaxisa (L_0)

Ítéletlogikai formula

- (alaplépés) Minden ítéletváltozó ítéletlogikai formula. (prímformula)
- (rekurzív lépés)
 - ► Ha A ítéletlogikai formula, akkor $\neg A$ is az.
 - Ha A és B ítéletlogikai formulák, akkor $(A \circ B)$ is ítéletlogikai formula " \circ " a három binér művelet bármelyike.
- Minden ítéletlogikai formula az 1,2 szabályok véges sokszori alkalmazásával áll elő.

Példa

Ez alapján a következő ítéletlogikai formulák szintaktikailag helyesek? $X \atop X \lor Y$

```
X \lor Y 
 (X \land Y) 
 \neg X \land (Y \supset \neg X) 
 (A \lor B) \land \neg X \land Z
```

Az ítéletlogika leíró nyelvének szintaxisa (L_0)

Ítéletlogikai formula (szerkezeti rekurzióval)

- (alaplépés) Minden ítéletváltozó ítéletlogikai formula. (prímformula)
- (rekurzív lépés)
 - ► Ha A ítéletlogikai formula, akkor ¬A is az.
 - Ha A és B ítéletlogikai formulák, akkor (A ∘ B) is ítéletlogikai formula "∘" a három binér művelet bármelyike.
- Minden ítéletlogikai formula az 1,2 szabályok véges sokszori alkalmazásával áll elő.

Példa

```
Ez alapján a következő ítéletlogikai formulák szintaktikailag helyesek? X \longrightarrow \text{helyes} X \lor Y \longrightarrow \text{nem helyes}. Jó lenne: (X \lor Y) (X \land Y) \longrightarrow \text{helyes} \neg X \land (Y \supset \neg X) \longrightarrow \text{nem helyes}. Jó lenne: (\neg X \land (Y \supset \neg X)) (A \lor B) \land \neg X \land Z \longrightarrow \text{nem helyes}. Több módon javítható pl.: ((A \lor B) \land (\neg X \land Z))
```

4 D F 4 D F 4 D F 4 D F

Formulaszerkezet

Ítéletlogikában a következő formulaszerkezeteket különböztetjük meg:

- ¬A negációs formula
- (A ∧ B) konjukciós formula
- (A ∨ B) diszjunkciós formula
- (A ⊃ B) implikációs formula

Itt A és B tetszőleges formulák.

Így például:

- $\neg(X \land (\neg Z \supset X))$ negációs formula
- $(X \land (Y \land \neg Z))$ konjukciós formula
- $(\neg X \lor (X \land Y))$ diszjunkciós formula
- $((X \land \neg Y) \supset (X \lor Y))$ implikációs formula

Formulaszerkezet vizsgálata

Közvetlen részformula

- Prímformulának nincs közvetlen részformulája.
- \bigcirc ¬A közvetlen részformulája A.
- 3 Az $(A \circ B)$ közvetlen részformulái az A (baloldali) és B (jobboldali).

Példa

A $(\neg(Z\supset \neg X)\lor Y)$ formula baloldali részformulája: $\neg(Z\supset \neg X)$, jobboldali részformulája: Y.

22 / 39

Szerkezeti fa

Szerkezeti fa definíciója

Egy adott formulához tartozó szerkezeti fa egy olyan fa, melynek gyökere a formula, minden csúcs gyerekei a csúcshoz tartozó formula közvetlen részformulái, a fa levelei pedig ítéletváltozók.

Példa

Szintaxis fa

Szintaxis fa definíciója

Egy adott formulához tartozó szintaxis fa egy olyan fa, melynek gyökere a formula fő logikai összekötőjele, minden csúcs gyerekei a csúcshoz tartozó formula közvetlen részformuláinak fő logikai összekötőjelei, a fa levelei pedig ítéletváltozók.

Példa

Zárójelelhagyás

A teljesen zárójelezett formulákat kevesebb zárójellel írhatjuk fel, ha bevezetjük a műveletek prioritását.

Műveletek prioritása csökkenő sorrendben

 \neg , \wedge , \vee , \supset

A **zárójelelhagyás**¹ célja egy formulából a legtöbb zárójel elhagyása a formula szerkezetének megtartása mellett.

- Lépései:
 - A formula külső zárójel párjának elhagyása (ha még van ilyen).
 - Egy binér logikai összekötő hatáskörébe eső részformulák külső zárójelei akkor hagyhatók el, ha a részformula fő logikai összekötőjele nagyobb prioritású nála.

Láncformulák zárójelezése

$A_1...A_n$ tetszőleges formulák esetén:

- **Konjunkciós**: $A_1 \wedge A_2 \wedge ... \wedge A_n$ (tetszőlegesen zárójelezhető)
- **Diszjunkciós**: $A_1 \lor A_2 \lor \ldots \lor A_n$ (tetszőlegesen zárójelezhető)
- Implikációs: $A_1 \supset A_2 \supset ... \supset A_n$ (zárójelezése jobbról-balra) $A_1 \supset (A_2 \supset ... (A_{n-1} \supset A_n) ...)$

Zárójelelhagyás

Példa

$$(((X\supset Y)\land (Y\supset Z))\supset (\neg X\lor Z))$$
 a zárójelelhagyás után:

$$(X\supset Y)\land (Y\supset Z)\supset \neg X\lor Z$$

$$((Y \land \neg X) \supset (\neg Z \lor V))$$
 a zárójelelhagyás után: $Y \land \neg X \supset \neg Z \lor V$

$$(((Y\supset X)\supset \neg Z)\supset V)$$
 a zárójelelhagyás után: $((Y\supset X)\supset \neg Z)\supset V$

Láncformulák

Literál

Ha X ítéletváltozó, akkor az X és a $\neg X$ formulákat literálnak nevezzük. Az ítéletváltozó a literál alapja. (X és $\neg X$ azonos alapú literálok.)

Elemi konjunkció

Különböző literálok konjunkciója.

PI.: $X \wedge \neg Y \wedge \neg W \wedge Z$

Elemi diszjunkció

Különböző literálok diszjunkciója.

PI.: $\neg X \lor Y \lor \neg W \lor \neg Z$

28 / 39

Formula logikai összetettsége

Logikai összetettség definíciója (szerkezeti rekurzióval) (Tk.4.1.12)

Alaplépés

• Ha A ítéletváltozó, akkor $\ell(A)=0$

Rekurziós lépések

- $\ell(\neg A) = \ell(A) + 1$
- $\ell(A \circ B) = \ell(A) + \ell(B) + 1$

Példa

$$\ell((X \land Y) \supset (\neg Z \lor V)) = \ell(X \land Y) + \ell(\neg Z \lor V) + 1 = (\ell(X) + \ell(Y) + 1) + (\ell(\neg Z) + \ell(V) + 1) + 1 = (\ell(X) + \ell(Y) + 1) + ((\ell(Z) + 1) + \ell(V) + 1) + 1 = (0 + 0 + 1) + ((0 + 1) + 0 + 1) + 1 = 4$$

Logikai műveletek hatásköre

Definíció (Tk.4.1.17.)

Logikai műveletek hatásköre a formula részformulái közül az a legkisebb logikai összetettségű, amelyben az adott logikai összekötőjel előfordul.

Példa

A $(X \supset Y) \land (Y \supset Z) \supset \neg X \lor Z$ formula \land műveletet tartalmazó részformulái:

Ezek közül a 2. formula az ∧ hatásköre.

Definíció (Tk.4.1.18.)

Egy formula **fő logikai összekötőjele** az az összekötőjel, amelynek a hatásköre maga a formula.

(Első témakör) Logika 2020/21. 2. félév 30 / 39

4 0 1 4 4 4 5 1 4 5 1

Tartalom

- Ítéletlogika
 - Ítéletlogika ábécé
 - Ítéletlogika szintaxis
 - Ítéletlogika szemantika

(Első témakör) Logika 2020/21. 2. félév 31 / 39

Szemantika

A nyelv ábécéjének értelmezése (interpretációja - modellezése). Az ítéletlogika ábécéjében már csak az ítéletváltozókat kell interpretálni. Az ítéletváltozók befutják az állítások halmazát. Ha megmondjuk melyik ítéletváltozó melyik állítást jelenti, akkor a változó igazságértékét adtuk meg. Annak rögzítését melyik ítéletváltozó i(gaz) és melyik h(amis) igazságértékű **interpretáció**nak nevezzük.

Interpretáció

Igazságkiértékelés, interpretáció (Tk.4.2.1.)

$$\mathcal{I} = V_{v} \rightarrow \{i, h\}$$

 $\mathcal{I}(x)$ jelöli az x ítéletváltozó értékét az \mathcal{I} interpretációban. n db ítéletváltozó interpretációinak száma 2^n . Megadása:

- Felsorolással
- Szemantikus fával
- Stb.

n=3 esetén legyenek az ítéletváltozók X,Y,Z. Ezen változók egy sorrendjét **bázis**nak nevezzük. Legyen most a bázis X,Y,Z. Ekkor az összes interpretációt megadhatjuk táblázatos felsorolással, vagy szemantikus fával is.

Interpretáció megadása táblázattal

Χ	Y	Z
i	i	i
i	i	h
i	h	i
i	h	h
h	i	i
h	i	h
h	h	i
h	h	h

Table: Interpretáció megadása táblázattal X, Y, Z bázis esetén

Interpretáció megadása szemantikus fával

Szemantikus fa

Egy n-változós **szemantikus fa** egy n-szintű bináris fa, ahol a szintek a bázisbeli változóknak vannak megfeleltetve. Egy X változó szintjén a csúcsokból kiinduló élpárokhoz X, $\neg X$ címkéket rendelünk. X jelentése X igaz, $\neg X$ jelentése X hamis az élhez tartozó interpretációkban, így egy n-szintű szemantikus fa ágain az összes (2^n) lehetséges igazságkiértékelés (I interpretáció) megjelenik.

Interpretáció megadása szemantikus fával

Szemantikus fa az X, Y, Z logikai változókra, mint bázisra:

Formula helyettesítési értéke

Formula helyettesítési értéke \mathcal{I} interpretációban: $\mathcal{B}_{\mathcal{I}}(C)$.

$\mathcal{B}_{\mathcal{I}}(C)$ definíciója szerkezeti rekurzióval (Tk.4.2.2.)

- **1** Ha C formula ítéletváltozó, akkor $\mathcal{B}_{\mathcal{I}}(C) = \mathcal{I}(C)$.
- ② Ha C formula negációs, akkor $\mathcal{B}_{\mathcal{I}}(\neg A) = \neg \mathcal{B}_{\mathcal{I}}(A)$.
- **3** Ha *C* formula $(A \circ B)$ alakú, akkor $\mathcal{B}_{\mathcal{I}}(A \circ B) = \mathcal{B}_{\mathcal{I}}(A) \circ \mathcal{B}_{\mathcal{I}}(B)$.

Példa

Adjuk meg az $(X \lor \neg Y)$ formula helyettesítési értékét, az X,Y bázissal meghatározott (i,h) interpretációban.

(Az interpretációt így is jelölhetnénk:
$$\mathcal{I}(X) = i, \mathcal{I}(Y) = h.$$
)

$$\mathcal{B}_{\mathcal{I}}(X \vee \neg Y) = \mathcal{B}_{\mathcal{I}}(X) \vee \mathcal{B}_{\mathcal{I}}(\neg Y) = \mathcal{B}_{\mathcal{I}}(X) \vee \neg \mathcal{B}_{\mathcal{I}}(Y) =$$

$$\mathcal{I}(X) \vee \neg \mathcal{I}(Y) = i \vee \neg h = i \vee i = i$$

Formula igazságtáblája

Formula igazságtáblája

Egy n-változós formula igazságtáblája egy olyan n+1 oszlopból és 2^n+1 sorból álló táblázat, ahol a fejlécben a bázis (a formula változói rögzített sorrendben) és a formula szerepel. A sorokban a változók alatt az interpretációk (a változók igazságkiértékelései), a formula alatt a formula helyettesítési értékei találhatók.

Formula igazságtáblája

Egy n-változós formula az igazságtáblájával megadott $\{i,h\}^n \to \{i,h\}$ n-változós logikai műveletet ír le. Példa: $(\neg(Z \supset \neg X) \lor Y)$ formula igazságtáblája

Χ	Y	Z	$(\neg(Z\supset\neg X)\vee Y)$
i	i	i	i
i	i	h	i
i	h	i	i
i	h	h	h
h	i	i	i
h	i	h	i
h	h	i	h
h	h	h	h

Egy formula **igazhalmaza** azon $\mathcal I$ interpretációk halmaza, amelyekre a formula helyettesítési értéke igaz.

Példában az X, Y, Z bázis esetén az igazhalmaz: $\{(i,i,i), (i,i,h), (i,h,i), (h,i,i), (h,i,h)\}$ Egy formula **hamishalmaza** azon $\mathcal I$ interpretációk halmaza, amelyekre a formula helyettesítési értéke hamis.

Példában az X, Y, Z bázis esetén a hamishalmaz: $\{(i, h, h), (h, h, i), (h, h, h)\}$