Assignment 4

(Submission deadline-11 Sept 2020, 5 PM)

1. For each of the following sets of reactions, describe reactor system and conditions to maximize the selectivity to D. The rates are in mol/(dm³.s) and concentrations are in mol/dm³.

- (a) (1) A + B \rightarrow D $-r_{1A} = 10 \exp(-8000 \,^{\circ}\text{K/T}) C_A C_B$
 - (2) A + B \rightarrow U $-r_{2A} = 100 \exp(-1000 \,^{\circ}\text{K/T}) \, [C_A]^{1/2} \, [C_B]^{3/2}$
- (b) (1) A + B \rightarrow D $-r_{1A} = 100 \exp(-1000 \,^{\circ}\text{K/T}) C_A C_B$
 - (2) A + B \rightarrow U $-r_{2A} = 10^6 \exp(-8000 \, ^{\circ}\text{K/T}) \, C_A C_B$
- (c) (1) A + B \rightarrow D $-r_{1A} = 10 \exp(-1000 \,^{\circ}\text{K/T})C_{A}C_{B}$
 - (2) B + D \rightarrow U $-r_{2A} = 10^9 \exp(-10000 \,^{\circ}\text{K/T}) \, C_B C_D$
- 2. Under certain conditions, A decomposes as follows

$$A \xrightarrow{k_1=0.1 \, min^{-1}} R \xrightarrow{k_2=0.1 \, min^{-1}} S$$

R is to be produced from 1000 liter/hr of feed in which $C_{A0} = 1$ mol/liter, $C_{R0} = C_{S0} = 0$.

- (a) What size of plug flow reactor will maximize the concentration of R, and what is that concentration in the effluent stream from this reactor?
- (b) What size of mixed flow reactor will maximize the concentration of R, and what is $C_{R,max}$ in the effluent stream from this reactor?
- 3. The following liquid-phase reactions were carried out in a CSTR at 325 K:

3A B + C
$$-r_{1A} = k_{1A}C_A$$
 $k_{1A} = 7 \text{ min}^{-1}$

2C + A
$$\rightarrow$$
 3D $r_{2D} = k_{2D} C_A C_C^2$ $k_{2D} = 3 \text{ dm}^6 \text{mol}^{-2} \text{min}^{-1}$

4D + 3C
$$\rightarrow$$
 3E $r_{3E} = k_{3E} C_D C_C$ $k_{2D} = 2 \text{ dm}^3 \text{mol}^{-1} \text{min}^{-1}$

The concentrations measured inside the reactor were $C_A = 0.1$, $C_B = 0.93$, $C_C = 0.51$, and $C_D = 0.049$ all in mol/dm³.

- (a) What are the values of r_{1A} , r_{2A} , and r_{3A} ?
- (b) What are the values of r_{1B} , r_{2B} , and r_{3B} ?
- (c) What are the values of r_{1C} , r_{2C} , and r_{3C} ?
- (d) What are the values of r_{1D} , r_{2D} , and r_{3D} ?
- (e) What are the values of r_{1E} , r_{2E} , and r_{3E} ?
- (f) What are the net rates of formation of species A, B, C, D and E?
- (g) The entering volumetric flow rate is 100 dm³/min and the entering concentration of A is 3 mol/liter. What is the CSTR reactor volume?
- (h) What are the exit molar flow rates from the CSTR of volume obtained in (g)?

4. The complex reactions involved in the oxidation of formaldehyde to formic acid over a Vanadium titanium oxide catalyst are shown below. Each reaction follows an elementary rate law:

HCHO +
$$\frac{k_2}{2}$$
 O2 $\xrightarrow{k_1}$ HCOOH $\xrightarrow{k_3}$ CO + H₂O
2HCHO $\xrightarrow{k_2}$ HCOOCH₃ $\xrightarrow{k_4}$ CH₃OH + HCOOH

Let A = HCHO, B = O_2 , C = HCOOH, D = HCOOCH₃, E = CO, W = H_2O and G = CH_3OH . The entering flow rates are F_{A0} = 10 mol/s and F_{B0} = 5 mol/s, and v_0 = 100 dm³/s. At a total entering concentration C_{T0} = 0.147 mol/dm³, the suggested reactor volume is 1000 dm³.

Data available:

At 300 K, $k_1 = 0.014 \text{ (dm}^3/\text{mol})^{1/2} \text{ s}^{-1}$. $k_2 = 0.007 \text{ dm}^3/\text{(mol.s)}$ $k_3 = 0.014 \text{ s}^{-1}$ $k_4 = 0.45 \text{ dm}^3/\text{(mol.s)}$

- (a) Plot the molar flow rates of each species along the volume (length) of the reactor on the same figure.
- (b) Plot and analyze \tilde{Y}_C , $\tilde{S}_{A/E}$, $\tilde{S}_{C/D}$ and $\tilde{S}_{D/G}$ along the length of the reactor. Find volume at which maximum occur, if any.