Севастопольский государственный университет

Институт информационных технологий и управления в технических системах

Основы системного анализа

Лекция 4. Закономерности систем

профессор кафедры ИС доктор технических наук **ДОРОНИНА Юлия Валентиновна**

Закономерности функционирования и развития систем (в более краткой формулировке — закономерности систем) — общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем. Такие закономерности Л. фон Берталанфи вначале называл системными параметрами, а Л. Холл [89] — макроскопическими свойствами или закономерностями.

^{89.} Холл, А. Опыт методологии для системотехники / А. Холл. — М.: Советское радио, 1975. — 448 с.

Закономерности взаимодействия части и целого	Степень целостности α	Коэффициент свободы элементов β
Целостность (эмерджентность) $Q_s \neq \sum_{i=1}^n q_i$	1	0
Прогрессирующая систематизация	α > β	
Прогрессирующая факторизация	α < β	
Аддитивность (суммативность) $Q_s = \sum_{i=1}^n q_i$	0	1

Развивающаяся система находится между состояниями абсолютной целостности и абсолютной аддитивности

Иерархичность

Выделим основные особенности иерархической упорядоченности с точки зрения полезности их использования в качестве моделей системного анализа.

 Закономерность коммуникативности проявляется между уровнями иерархии исследуемой системы, и поэтому каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

Коммуникативность

Коммуникативность

Иерархичность

 Закономерность целостности (т.е. качественные изменения свойств компонентов более высокого уровня по сравнению с объединяемыми компонентами нижележащего) проявляется в ней на каждом уровне иерархии.

Благодаря этой особенности с помощью иерархических представлений можно исследовать системы и проблемные ситуации с неопределенностью.

Иерархичность

3. Одну и ту же систему можно представить разными иерархическими структурами.

Иерархичность

Одну и ту же систему можно представить разными иерархическими структурами.

Лекция 4. Тема: Закономерности систем.

12

Закон необходимого разнообразия

Когда исследователь (лицо, принимающее решение, «наблюдатель») N сталкивается с проблемой D, решение которой для него неочевидно, то имеет место некоторое разнообразие возможных решений V_D . Этому разнообразию противостоит разнообразие мыслей исследователя («наблюдателя») V_N . Задача исследователя заключается в том, чтобы свести разнообразие $(V_D - V_N)$ к минимуму, в идеале $(V_D - V_N) \rightarrow 0$.

Закон необходимого разнообразия

Сказанное означает, что, создавая систему, способную справиться с решением проблемы, обладающей определенным, известным разнообразием (сложностью), нужно обеспечить, чтобы система имела еще большее разнообразие (знания методов решения), чем разнообразие решаемой проблемы, или была способна создать в себе это разнообразие (владела бы методологией, могла разработать методику, предложить новые методы решения проблемы).

Закон необходимого разнообразия

Применительно к системам управления закон «необходимого разнообразия» может быть сформулирован следующим образом: разнообразие управляющей системы (системы управления) $V_{\rm cy}$ должно быть больше (или по крайней мере равно) разнообразию объекта управления $V_{\rm oy}$:

$$V_{\rm cy} \geq V_{\rm oy}$$
.

Закономерность самоорганизации

Пригожин, И. Порядок из хаоса / И. Пригожин, И. Стенгерс. — М.: Прогресс, 1986. — 431 с.

Бельгийский ученый *И. Р. Пригожин*, также назвавший свою науку о самоорганизации *синергетикой*, пришел к интересным идеям из анализа специфических химических реакций, которые приводят к образованию нестабильной, *диссипативной* (распадающейся) пространственной структуры², образующейся за счет диссипации (рассеяния) энергии, использованной системой, и способной воспринимать новую энергию из среды, благодаря чему может изменяться прежняя структура и система может переходить в новое состояние. Простейшим аналогом подобных структур, исследуемых термодинамикой, является эффект Бенара (структура, возникающая в момент начала кипения).

Синергетика *И. Р. Пригожина* является основой закономерности самоорганизации.

 $^{^2}$ За исследования по термодинамике диссипативных структур *И. Р. Пригожину* была присуждена Нобелевская премия.

Закономерность самоорганизации

Первоначально, опираясь на *Берталанфи*, исследователи объясняли способность системы противостоять энтропийным тенденциям ее *открытостью*, т.е. взаимодействием системы со средой.

В частности, Л. А. Растригин начинает объяснение этой закономерности в своей популярной брошюре так: «Всякая система, изолированная от других систем, может только разрушаться (энтропийные тенденции. — Авт.)...»

Но в дальнейшем появились исследования, опирающиеся на активное начало компонентов системы.

Закономерность самоорганизации

Поиском «гена» развивающейся информационной системы занимался Ф. Е. Темников (см. гл. 4); закономерности системогенетики исследует А. И. Субетто [77]; в рассматриваемой в гл. 5 модели «пространства инициирования целей» (В. Н. Сагатовского, Ф. И. Перегудова и др. [9, 66]), наряду с взаимодействием со сложной средой, учитываются инициативы собственно системы, обусловленные самодвижением целостности, активностью элементов системы.

- Для сложных систем в зависимости от степени сложности:
- 1 либо разрушение прежней структуры,
- 2 либо возникновение нового порядка.

Энтропийные закономерности

Понятие «энтропия» ввел в 1865 г. немецкий физик Р. Клаузиус как понятие физическое: энтропия в термодинамике — функция состояния термодинамической системы, характеризующая направленность тепловых процессов. Согласно принятому в термодинамике определению, изменение энтропии некоторой системы равно отношению приращения (или уменьшения) количества теплоты к абсолютной температуре, при которой это приращение (или уменьшение) происходит.

Энтропийные закономерности

В системном анализе энтропия Э служит количественной мерой беспорядка (свободы, разнообразия) в системе и определяется числом допустимых состояний системы N_S [14]:

$$\vartheta = \ln N_S$$
.

Приведенная формула справедлива только для равновероятных состояний. Если же система может находиться в n состояниях — s_1 , $s_2,...,s_n$ — с вероятностями соответственно $p(s_1), p(s_2),..., p(s_n)$, то ее энтропия рассчитывается по формуле

$$\partial = -\sum_{i=1}^{n} p(s_i) \ln p(s_i).$$

- 14. *Прангишвили И.В.* Системный подход и общесистемные закономерности. М.: СИНТЕГ, 2000. 528 с.
- 15. *Прангишвили И.В.* Энтропийные и другие системные закономерности: Вопросы управления сложными системами. М.: Наука, 2003. 428 с.

Энтропийные закономерности

Так как логарифм является безразмерной величиной, то и энтропия также безразмерная величина. С другой стороны, энтропия, как и информация*, может измеряться в битах, если формулах вместо натурального использовать двоичный логарифм.

Примеры. 1. Система с жесткой структурой (например, армейская) может находиться только в одном состоянии (в армии есть поговорка: «Из нас прав ктонибудь один: или я, или никто»). Энтропия такой системы равна нулю ($\Theta = \ln 1 = 0$).

 Бюрократией называют систему, в которой почти не осталось разнообразия [1], поэтому энтропия такой системы предельно мала.

Другие общесистемные закономерности:

- **1. Полисистемность** (любой объект окружающего мира принадлежит в качестве элемента многим системам)
- 2. Противодействие системы внешнему возмущению (целое препятствует нарушению целостности)
- **3. Закономерность «наиболее слабых мест»** («где тонко, там и рвется»)
- **4.** Закономерность «80/20» (Закономерность Патеро: 20% усилий дают 80% результата)

Другие общесистемные закономерности

Из статистики [14] следует, что:

- 20 % продаж приносят 80 % общего дохода;
- 80 % посетителей смотрят только 20 % страниц сайта;
- 80 % случаев задержек возникает по вине 20 % возможных их причин;
- 20 % крупных предприятий создают 80 % всей продукции в мире, в то время как 80 % средних и мелких предприятий создают 20 % продукции;
- 20 % населения мира, живущего в странах с самым высоким уровнем доходов, создают 80 % мирового объема внутреннего валового продукта (ВВП);
- 20%-ная наиболее активная часть ученых создает 80 % научной продукции, а другая, менее активная, 80%-ная часть создает 20 % продукции. Но при этом для создания всей научной продукции обе части одного целого должны существовать;

выводы

- 1. В связи с тем, что пока не удалось установить единые общесистемные законы, то, говоря о свойствах систем, чаще всего ограничиваются закономерностями — часто наблюдаемыми, типичными свойствами, устанавливаемыми опытом. Наибольший интерес представляют общесистемные закономерности — закономерности, характеризующие принципиальные особенности систем любой природы.
- Одной из фундаментальных общесистемных закономерностей является эмерджентность возникновение в системе новых интегративных качеств, не свойственных ее компонентам.

Устойчивость системы зависит от слабых элементов

Формальные описания систем

Формализация — отображение содержательного зна-ния в знаково-символическом виде.

Формализация бази-руется на различении естественных и искусственных язы-ках.

Операции и методы, с помощью которых задастся интерпретация формальной системы, называются **семантическими**.

Изучение предметной теории в отвлечении от того, что обозначают ее выражения, называется <u>синтаксисом</u>.

Формальные описания систем

Многообразие языков описания системы связано с многообразием сторон изучения и ее свойств

Гераклит

Из разнообразия возникает совершенная гармония.

Состояние системы и его оценка

Состояние входов системы представляется вектором значений входных параметров: $X = (x_1, ..., x_n)$ и фактически является отражением состояния окружающей среды.

Внутреннее состояние системы представляется вектором значений ее внутренних параметров (параметров состояния): $Z = (z_1,...,z_v)$ и зависит от состояния входов X и начального состояния Z_0 :

$$Z = F_1(X, Z_0).$$

Внутреннее состояние практически не наблюдаемо, его можно оценивать по состоянию выходов: Y=(y1,....yn).

$$S_t = \{Y_t, Y_t', Y_t'', ...\}.$$

Процесс

В случае непрерывной смены состояний, процесс P можно описать функцией времени:

$$P = S(t),$$

а в дискретном случае — множеством:

$$P = \{S_{t_1}, S_{t_2},\}.$$

Функция динамической системы

Функцию динамической системы можно представить логико-математической моделью, связывающей входные (X) и выходные (Y) координаты системы, — моделью «вход-выход»:

$$Y = F(X),$$

где F — оператор (в частном случае некоторая формула), называемый алгоритмом функционирования, — вся совокупность математических и логических действий, которые нужно произвести, чтобы по данным входам X найти соответствующие выходы Y.

Условно можно считать, что функция F состоит из структуры St и параметров $A = (a_0, a_1, a_2, ...)$:

$$F = \{St, A\},\$$

Функционирование системы

Функционирование системы — это процесс переработки входной информации в выходную.

Математически функционирование можно записать так:

$$Y(t) = F(X(t)),$$

Классы методов

 аналитические (методы классической математики, включая интегро-дифференциальное исчисление, методы поиска экстремумов функций, вариационное исчисление и т.п.; методы математического программирования; первые работы по теории игр и т.п.);

Классы методов

■ статистические (включающие и теоретические разделы математики — теорию вероятностей, математическую статистику, и направления прикладной математики, использующие стохастические представления, — теорию массового обслуживания, методы статистических испытаний, основанные на методе Монте-Карло, метод выдвижения и проверки статистических гипотез А. Вальда и другие методы статистического имитационного моделирования);

Классы методов

методы дискретной математики, включая теоретико-множественные, логические, лингвистические, семиотические представления, составляющие теоретическую основу разработки языков моделирования, автоматизации проектирования, информационно-поисковых языков; графические (теория графов и разного рода графические представления информации типа диаграмм, гистограмм и других графиков).

Классы методов

Существуют и другие классификации формальных методов.

В большинстве первоначально применявшихся при исследовании систем классификаций выделяли детерминированные и вероятностные (статистические) методы или классы моделей, которые сформировались в конце прошлого столетия.

Затем появились классификации, в которых в самостоятельные классы выделились теоретико-множественные представления, графы, математическая логика и некоторые новые разделы математики. Например, в классификации современного математического аппарата инженера обычно выделяют: множества, матрицы, графы, логику, вероятности¹.

Аналитические методы. Аналитическими методами в рассматриваемой классификации названы методы, которые отображают реальные объекты и процессы в виде точек (безразмерных в строгих математических доказательствах), совершающих какие-либо перемещения в пространстве или взаимодействующих между собой.

Основу понятийного (терминологического) аппарата этих представлений составляют понятия классической математики (величина, формула, функция, уравнение, система уравнений, логарифм, дифференциал, интеграл и т.д.).

Математическое программирование

Предположим, что в трех цехах (Ц1, Ц2, Ц3) изготавливается два вида изделий И1 и И2. Известна загрузка каждого цеха a_i (оцениваемая в данном случае в процентах) при изготовлении каждого из изделий и прибыль (или цена, объем реализуемой продукции в рублях) c_i от реализации изделий. Требуется определить, сколько изделий каждого вида следует производить при возможно более полной загрузке цехов, чтобы получить за рассматриваемый плановый период максимальную прибыль или максимальный объем реализуемой продукции.

Таблица	2.3
---------	-----

Изделия	Загрузка цеха a_i , $\%$			Цена изде-
	Ц1	Ц2	Ц3	лия, руб.
И1	5	1,6	2,9	240
И2	4	6,4	5,8	320
Максимальная загрузка, %	100	100	100	_

Целевая функция:

$$F = \sum_{i=1}^{n} c_i x_i = 240 x_1 + 320 x_2 \to \text{max},$$
 (2.1)

и ряд ограничений (в данном случае диктуемых возможностями цехов, т.е. их предельной 100%-ной загрузкой)

$$5x_1 + 4x_2 \le 100;$$

 $1,6x_1 + 6,4x_2 \le 100;$
 $2,9x_1 + 5,8x_2 \le 100.$ (2.2)

В данном случае ограничения однородны и их можно записать короче:

$$\sum_{i=1}^{n} a_{ij} \le B_j. \tag{2.2a}$$

Решение задачи методом математического программирования

Графическое решение задачи приведено на рис. 2.4.

Ограничения определяют область допустимых решений, а наклон прямой, отображающий целевую функцию, — точку последнего ее пересечения с областью допустимых решений, которая и является наилучшим решением задачи (оптимумом). В данном случае $x_1 = 9$, $x_2 = 13$.

Методы математического программирования

- при использовании методов математического программирования появляется возможность объединения в единой модели разнородных критериев (разных размерностей, предельных значений), что очень важно для отображения реальных проектных и производственных ситуаций;
- модель математического программирования допускает (и даже ориентирует на это) выход на границу области определения переменных (в то время, как методы классической математики требуют введения строгих начальных и граничных условий, значений которых переменная не может принимать в процессе анализа модели);
- изучение методов решения задач математического программирования позволяет получить представление о пошаговом приближении к решению, т.е. о пошаговом алгоритме получения результата моделирования;
- графическая интерпретация задачи дает наглядное представление об области допустимых решений (которая на рис. 2.4 заштрихована), что помогает в практических ситуациях даже в тех случаях, когда не удается получить формальное отображение целевой функции и строго решить задачу математического программирования.

Статистические методы. Статистические представления сформировались как самостоятельное научное направление в середине прошлого века (хотя возникли значительно раньше). Основу их составляет отображение явлений и процессов с помощью случайных (стохастических) событий и их поведений, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями.

Для дискретных событий соотношение между возможными значениями случайной величины x_i и их вероятностями p_i называют законом распределения и либо записывают в виде ряда (табл. 2.4), либо представляют в виде зависимостей F(x) (рис. 2.5, a) или p(x) (рис. 2.5, b).

Таблица 2.4

x	<i>x</i> ₁	x_2	 x_i	 x_n
<i>p</i> (<i>x</i>)	p_1	p_2	 p_i	 p_n

При этом

$$F(x) = \sum_{x_{i} < x} p_{i}(x_{i}). \tag{2.3}$$

Для непрерывных случайных величин (процессов) закон распределения представляют (соответственно дискретным законам) либо в виде функции распределения (интегральный закон распределения — рис. 2.5, б), либо в виде плотности вероятностей (дифференциальный закон распределения — рис. 2.5, г). В этом случае

$$p(x) = dF(x)/dx$$
 и $\Delta F(x) = p(x)\Delta x$,

где p(x) — вероятность попадания случайных событий в интервал от x до $x + \Delta x$.

Характеристики распределения (начальный, центральный моменты)

■ 1-й начальный момент — математическое ожидание или среднее значение случайной величины:

$$m_{_{X}} = \sum_{i=1}^{n} x_{i} p_{i}(x_{i})$$
 — для дискретных величин;
$$m_{_{X}} = \int_{-\infty}^{\infty} p(x) dx$$
 — для непрерывных величин;

■ 2-й центральный момент — дисперсия случайной величины:

$$\sigma_x^2 = \sum_{\substack{i=1 \ \infty}}^n (x_i - m_x)^2 p_i(x_i)$$
 — для дискретных величин; (2.5)
$$\sigma_x^2 = \int_{-\infty}^n (x - m_x)^2 p(x) dx$$
 — для непрерывных величин.

Статистические исследования

На базе статистических представлений развивается ряд математических теорий, которые можно разделить на четыре основные группы:

- математическая статистика, объединяющая различные методы статистического анализа (регрессионный, дисперсионный, корреляционный, факторный и т.п.);
- теория статистических испытаний;

основой этой теории является метод Монте-Карло; развитием — *теория статистического имитационного моделирования*;

■ теория выдвижения и проверки статистических гипотез;

Лекция 4. Методы формализованного представления систем

Теоретико-множественные представления. Базируются на понятиях «множество», «элементы множества», «отношения на множествах».

Понятие «множество» относится к числу интуитивно постигаемых понятий, которым трудно дать определение. Это понятие содержательно эквивалентно понятиям «совокупность», «собрание», «ансамбль», «коллекция», «семейство», «класс» и другим обобщающим понятиям.

Множества могут задаваться следующими способами:

1) списком, перечислением (интенсионально); например,

$$\{a_i\}$$
, где $i = 1, ..., n$ (2.8a)

или

$$\langle a_1, a_2, ..., a_i, ..., a_n \rangle$$
, (2.86)

где $a_i \in A$; \in — знак вхождения элементов в множество;

2) путем указания некоторого характеристического свойства А (экстенсионально). Например, «множество натуральных чисел», «множество рабочих данного завода», «множество планет солнечной системы», «множество А» и т.д.

Лекция 4. Тема: Формальные описания систем.

Наименование	Диаграмма	Обозначение
Множество <i>А</i>	A	A
Дополнение C множества A	A	$C\!A$ или \overline{A} , или $\neg A$
Множество <i>В</i>	В	В
Дополнение C множества B	В	CB или \overline{B} , или \neg B
Множество А, множество B и их дополнения C	A B	A, B, CA, CB

Лекция 4. Тема: Закономерности систем. Формальные описания систем.

Выводы

- 1. На основе закономерностей систем формулируются общесистемные особенности их построения, функционирования и развития.
- 2. Методы формализованного описания систем позволяют получать представления систем различных типов для дальнейшего моделирования (анализа), синтеза.