

第8章 功率电子电路

8.1 低频功率放大电路

8.2 直流稳压电路

8.3 功率半导体器件和变流电路

功率电子电路的分类

功率电子电路一般可分为两种类型:

- 将信号加以放大,使负载获得所需的信号功率, 常称功率放大器;
- 2. 进行交直流的电能变换,向负载提供直流功率或交流功率,即直流稳压电源及变流电路。

8.1 低频功率放大电路

8.1.1 概述

8.1.2 基本功率放大电路

8.1.3 集成功率放大器举例

对功放电路的要求:

- (1) 输出功率尽可能大,即输出电流和输出电压都要尽可能大,因此功率管通常工作在近于极限状态;
- (2) 非线性失真尽可能小,通常用负反馈等措施来实现;

(3) 效率要高。
$$\eta = \frac{P_O}{P_S} \times 100\%$$

集电极功耗要尽可能小 $P_C = \frac{1}{T} \int_0^T u_{CE} i_c dt$

8.1.1 概述

晶体管的工作状态

- (a)甲类:波形好,但管耗大, 效率低。
- (b)乙类: I_C为零,管耗小, 但波形严重失真。
- (c)甲乙类:介于甲、乙类之间,可消除交越失真,功 放电路常用的工作状态。

(1) OCL电路 (Output Capacitorless)

OCL电路工作波形图

OCL电路的最大输出功率和效率

• 最大输出功率
$$P_{\text{omax}} = \frac{(U_{om}/\sqrt{2})^2}{R_L} = \frac{1}{2} \frac{(U_{CC} - U_{CES})^2}{R_L}$$

• 直流电源功率
$$P_S = P_{S+} + P_{S-} = 2 \times \frac{1}{2\pi} \int_0^{\pi} U_{CC} I_{cm} \sin \omega t d(\omega t)$$

$$= \frac{2}{\pi} \frac{U_{CC}(U_{CC} - U_{CES})}{R_L}$$

• 文文字
$$\eta_{\text{max}} = \frac{P_{\text{omax}}}{P_{S}} \times 100\% = \frac{\pi}{4} \times \frac{U_{CC} - U_{CES}}{U_{CC}} \times 100\%$$

• 若忽略饱和压降
$$\eta_{\text{max}} = \frac{\pi}{4} \times 100\% = 78.5\%$$

OCL功率放大电路

其中:

(1)D₁、D₂用来消除交越失真;

(2)R₁、R₂引入电压串联负反馈。 电压放大倍数:

$$A_f \approx 1 + \frac{R_2}{R_1}$$

THE JIANG UNIVERSITY

8.1.2 基本功率放大电路

(2) OTL电路 (Output Transformerless)

特点:

- (1) 单电源供电,电容C起 到负电源的作用;
- (2) 只能放大交流信号, 不能放大直流信号;
 - (3) 静态时基极电位:

$$U_B = U_{CC}/2$$
.

浙江大学

8.1.2 基本功率放大电路

OTL电路的最大输出功率和效率

• 最大输出功率
$$P_{\text{omax}} = \frac{(\frac{U_{CC}/2 - 2U_{CES}}{\sqrt{2}})^2}{R_L} = \frac{1}{8} \frac{(U_{CC} - 2U_{CES})^2}{R_L}$$

• 直流电源功率

$$P_{S} = \frac{1}{\pi} U_{CC} I_{cm} = \frac{1}{\pi} \frac{U_{CC} (\frac{1}{2} U_{CC} - U_{CES})}{R_{L}}$$

$$= \frac{1}{2\pi} \frac{U_{CC} (U_{CC} - 2U_{CES})}{R_{L}}$$

$$\eta_{\text{max}} = \frac{P_{\text{omax}}}{P_S} \times 100\% = \frac{\pi}{4} \times \frac{U_{CC} - U_{CES}}{U_{CC}} \times 100\% \approx 78.5\%$$

OTL功率放大电路

其中:

 $(1)C_1$ 、 C_2 为隔直电容;

 R_3 用来增加输入电阻;

(2)动态时,电路的电压

放大倍数:

$$A_u \approx 1 + \frac{R_2}{R_1}$$

8.1.3 集成功率放大器举例

TDA2030管脚图

TDA2030接成OCL电路

TDA2030接成OTL电路

8.2 直流稳压电源

- 8.2.1 单相桥式整流电路
- 8.2.2 滤波电路
- 8.2.3 串联型稳压电路
- 8.2.4 开关型稳压电路

直流稳压电路的原理框图

• 整流电路作用:将交流电变换成直流电。

滤波电路作用:将整流后脉动的单向电压、电流变换为比较平滑的电压、电流。

• 稳压电路作用: 使输出直流电压稳定。

8.2.1 单相桥式整流电路

- (1) *U*₂在正半周时, *D*₁、
 *D*₃导通而*D*₂、*D*₄截止,
 电流如图中实线所示;
- (2) U₂在负半周时, D₂、
 D₄导通而D₁、D₃截止,
 电流如图中虚线所示。

由此, u_2 是交变的, 而 u_L 是大小变化而方向不变。

8.2.1 单相桥式整流电路

单相脉动电压的平均值

$$U_{L} = \frac{1}{\pi} \int_{0}^{\pi} \sqrt{2} U_{2} sin\omega t d(\omega t)$$

$$=\frac{2\sqrt{2}}{\pi}U_2\approx 0.9U_2$$

负载电流的平均值

$$I_L = \frac{U_L}{R_L} = 0.9 \frac{U_2}{R_L}$$

每个二极管的电流平均值

$$I_D = \frac{1}{2}I_L = 0.45 \frac{U_R}{R_I}$$

最大反向电压
$$U_{DRM} = \sqrt{2}U_2$$

单相桥式整流电路的波形图

例 题

- [例8.2.1] 某一负载需要18V,1A的直流电源供电,如采用单相 桥式整流电路,试计算:
 - (1) 变压器二次侧的电压和电流有效值及变压器容量;
 - (2) 流过整流二极管的平均电流和承受的反向电压最大值。
 - 解: (1) 变压器二次侧的电压和电流有效值

$$U_2 = U_L/0.9 = 1.11U_L = 1.11 \times 18 = 20(V)$$

$$I_2 = 1.11I_L = 1.11 \times 1 = 1.11(A)$$

变压器容量 $S = U_2I_2 = 20 \times 1.11 = 22.2(VA)$

(2) 流过每个二极管的电流平均值

$$I_D = I_L/2 = 0.5 \times 1 = 0.5(A)$$

每个二极管所承受的最大反向电压

$$U_{DRM} = \sqrt{2}U_2 = \sqrt{2} \times 20 = 28(V)$$

例 题

- [例8.2.2] 有一额定电压为24V,阻值为1ΚΩ的直流负载, 采用单相桥式整流电路供电,求:
 - (1) 变压器付绕组的电压和电流值 (U_2,I_2) ;
 - (2) U_{DRM} 并选择二极管的型号。
- 解: (1) 变压器付绕组的电压和电流分别为 $U_2 = U_L/0.9 = 1.11U_L = 1.11 \times 24 = 26.6(V)$ $I_2 = 1.11I_L = 1.11 \times 24 = 26.6(mA)$
 - (2) $U_{DRM} = \sqrt{2}U_2 = \sqrt{2} \times 26.6 = 27.5(V)$ $I_D = I_L/2 = 0.5 \times 24 = 12(mA)$

查附录,二极管可选用2CP11,最大整流电流为100*mA*,最高反向工作电压为50*V*。

ZHEJIANG UNIVERSITY

8.2.2 滤波电路

电容滤波

当 u_2 为正半周且 $u_2 > u_c$ 时, D_1 、 D_3 导通,C 充电,达到最大值 U_{2m} 后, U_2 开始下降,电容放电,当 $U_c > U_2$, U_1 、 U_2 数规律下降;当 U_2 为负半周时,情况类似。

由图可见,滤波后, u_L 脉动减少,平均值提高。 $U_L \approx 1.2U_2$

8.2.2 滤波电路

其它形式的滤波电路

电容滤波的特点是电路简单, 适用于输出电压高、负载电 流小且负载变化不大的场合。

电感滤波

- 除电容滤波外,还有电感滤波、RC滤波、LC滤波和π型滤波等多种形式。
- 电感滤波的特点是带负载能力强,适用于大电流或负载 变化大的场合,但电感体积大且笨重。

稳压电路的主要质量指标:

1) 稳压系数 (电压调整率) S_v :

$$S_V = rac{\Delta U_O / U_O}{\Delta U_I / U_I} igg|_{R_L = \text{\text{$\#$}} \text{\text{$\geq }}}$$

2) 输出电阻 (动态电阻) R_o :

$$m{R}_{O} = rac{\Delta m{U}_{O}}{\Delta m{I}_{0}}igg|_{U_{I} = \mathbb{R}}$$

1. 串联型稳压电路的工作原理

$$U_{o} \uparrow \rightarrow U_{F} \uparrow \rightarrow U_{B} \downarrow \rightarrow I_{B} \downarrow \rightarrow I_{C} \downarrow -$$

$$U_{o} \downarrow -$$

$$U_F = U_{REF} = \frac{R_2}{R_1 + R_2} U_O$$
 $U_O = \frac{R_1 + R_2}{R_2} U_{REF}$

2. 集成稳压电路

固定输出三端集成稳压器CW7800系列

固定输出的接法

该系列输出正电压,其中符号"00"用数字代替,表示输出电压值。

2. 集成稳压电路

固定输出三端集成稳压器CW7900系列

引脚图

该系列输出负电压,其中符号"00"用数字代替,表示输出电压值。

2. 集成稳压电路

可调式三端集成稳压器CW117和CW137

1.25V固定输出的接法

引脚图

该系列的输出端和调节端之间的电压为1.25V,并在1.25~37V的范围内连续可调。

CW117输出电压可调的基本电路

$$U_{RI} = U_{2I} = 1.25 \text{V}, \quad \exists I_1 \rangle \rangle I$$

所以输出电压 $U_O \approx U_{R1} + I_1 R_2 = 1.25(1 + \frac{R_2}{R_1})$

解: 由图可知 $U_a = -1.25V, U_R = 1.25V$

所以
$$U_O = U_R (1 + \frac{R_p}{R}) + U_a = 1.25(1 + \frac{R_p}{R}) - 1.25 = 1.25 \frac{R_p}{R}$$

故 $R_P = 0$ 时, $U_O = 0V$; R_P 调到最大值时, $U_O \approx 30V$ 。

8.2.4 开关型稳压电路

按调制方式: 脉宽调制型、脉频调制型及混合调制型;

按功率管和负载的连接方式: 串联型和并联型。

串联脉宽调制开关型稳压电路的结构框图

THE JIANG UNIVERSITY

8.2.4 开关型稳压电路

工作原理

当 U_O 升高时, U_{P2} 下降,从而使 U_B 和 T_{on} 减小、 T_{off} 增大,占空比变小。这样使调整管 T 的截止时间 T_{off} 变长,故输出电压随之减小,使 U_O 趋于不变。

占空比
$$q = \frac{T_{on}}{T_{on} + T_{off}}$$

THE JANG UNIVERSITY

8.3 功率半导体器件和变流电路

- 8.3.1 功率半导体器件
- 8.3.2 可控整流电路
- 8.3.3 交流调压和变频电路
- 8.3.4 直流调压电路

8.3.1 功率半导体器件

1. 晶闸管 (可控硅)

晶闸管的导通条件:

- 1) $U_{AK} > 0$;
- 2) 门极和阴极之间加一定 大小的正向触发电压。

晶闸管维持导通必须:

 $I_A > I_H$ (维持电流)。

结构示意图及图形符号

8.3.1 功率半导体器件

工作原理:

- 1) 当 $U_{AK} > 0$ 、 $U_{GK} \le 0$ 时,由于 T_2 反偏,晶闸管处于正向阻断状态;
- 2) 当 $U_{AK} > 0$ 、 $U_{GK} > 0$ 时,产生电流 I_G ,又 $I_{C2} = \beta_2 I_{B2}$, $I_{C2} = I_{B1}$, $I_{C1} = \beta_1 \beta_2 I_{B2}$,…使 T_1 、 T_2 迅速饱和导通,即晶闸管全导通;此时若去掉 U_{GK} ,晶闸管依然导通。

晶闸管的等效模型

8.3.1 功率半导体器件

晶闸管的特性参数

- (1) 正向转折电压 U_{BO} ;
- (2) 正向阻断峰值电压 U_{DRM} ;
- (3) 反向转折电压 U_{BR} ;
- (4) 反向阻断峰值电压 U_{RRM} ;
- (5) 正向平均管压降 U_F ;
- (6) 额定正向平均电流 I_F ;
- (7) 维持电流 I_H 。

晶闸管的伏安特性

8.3.1 功率半导体器件

2. 绝缘门极双极晶体管 (IGBT)

晶闸管属半控型器件,因 为它只能控制其导通,而不能 控制其关断;

IGBT属全控型器件,通过在门极加正向和反向电压来控制管子的导通和截止。

原理示意图及图形符号

8.3.1 功率半导体器件

IGBT的特性

8.3.1 功率半导体器件

3. 集成门极换流晶闸管 (IGCT)

IGCT 是20世纪90年代开发的全控型半导体功率器件,正向导通时其机理与普通晶闸管相同;关断时,它能使阳极电流快速地由阴极转移至门极(故称为门极换流晶闸管),瞬间地从导通状态转为阻断状态。

特点:主回路接线简单、门极控制方便、大电流、高电压、工作频率高、开关速度快、开关能耗小等。比IGBT更适用于高电压、大容量的场合。

IGCT的电路符号

8.3.2 可控整流电路

> 变流电路的四种基本类型:

整流 (AC – DC) 、逆变 (DC – AC) 、 直流调压 (DC - DC) 、交流调压及变频 (AC - AC)

- ▶可控整流电路的功能是将交流电能转换成电压大小可调的直流电能。
- ▶可控整流电路的结构形式:
 单相半波、单相桥式、三相半波、三相桥式。

8.3.2 可控整流电路

单相桥式全控整流电路

与8.2.1中的单相桥 式整流电路的区别在于用 4个晶闸管代替二极管, 从而实现可控整流,即当 晶闸管处于正向偏置时, 还必须在其门极加正向触 发脉冲,才能使其导通。

单相桥式全控整流电路

8.3.2 可控整流电路

1) 负载电压 U_L 的平均值

$$U_{L} = \frac{1}{\pi} \int_{\alpha}^{\pi} \sqrt{2} U_{2} \sin\omega t d(\omega t)$$
$$= 0.9U_{2} \frac{1 + \cos\alpha}{2}$$

2) 负载电流 i_L的平均值

$$I_{L} = \frac{U_{L}}{R_{L}} = 0.9 \frac{U_{2}}{R_{L}} \times \frac{1 + \cos \alpha}{2}$$

3) 变压器二次侧绕组 i2 的有效值

$$I_{2} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} \left(\frac{\sqrt{2}U_{2}}{R_{L}} \sin \omega t\right)^{2} d(\omega t)}$$
$$= \frac{U_{2}}{R_{L}} \sqrt{\frac{1}{2\pi} \sin 2\alpha + \frac{\pi - \alpha}{\pi}}$$

单相桥式全控整流电路波形图

1. 交流调压

1) 相控式交流调压电路

单相相控式交流调压电路

U_L的有效值:

$$U_{L} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} (\sqrt{2}U_{1} \sin \omega t)^{2} d(\omega t)} = U_{1} \sqrt{\frac{1}{2\pi} \sin 2\alpha + \frac{\pi - \alpha}{\pi}}$$

双向晶闸管

双向晶闸管相当于 两只晶闸管反向并联, 但同用一个门极,触发 脉冲(可正可负)加在G和A1之间。则根据外加电 压极性的不同,在触发 脉冲的作用下,导通方 向可从 A_2 到 A_1 ,或反之。

双向晶闸管的图形符号及伏安特性

例 题

[例题8.3.1]

下图是用双向晶闸管等原件构成的调光台灯电路,试分析其工作原理。

调光台灯电路

触发二极管的伏安特性

工作原理:

接通电源后,电路电源经L、 R_I 、 R_P 和 C 形成通路, C 充电,当电容 C 两端的电压上升到触发二极管 D 的导通电压时,双向晶闸管被触发导通,灯亮。当交流电压过零时,双向晶闸管自行关断。

调节 R_P 可以改变 C 的充电时间,以改变触发二极管 D 的导通时间,从而改变双向晶闸管在交流电源正、负半周的导通角,实现灯光亮度的调节。

2) 斩控式交流调压电路

右图为单相斩控式 交流调压电路。其中 S_1 、 S_2 为全控型功率器件 (如IGBT),可以双向 导通,并且双向都可以 控制开通和关断。

2. 交流变频

变频电路原理图

交流变频是指将一种频率(如工频)的交流电变换成另 一种频率的交流电。

常用于交流电动机的变频调速、中频电源、高频电源等。

正弦波脉宽调制方式 (SPWM)

单相SPWM调制原理框图

单相变频电路输出电压

例 题

[例题8.3.2]

下图是一并联逆变器原理图,这种逆变器被广泛地应用于中频感应加热电源上,试分析其工作原理。

例 题

[解] U_d : 经三相整流后的直流电压

 L_d : 滤波电抗器,使 I_d 平滑,限制中频电流进入工频电网,起交流隔离作用。

导通过程:

 T_1 、 T_4 导通时, I_d 经 D_1 、 T_1 、负载、 T_4 、 D_4 流回电源; T_2 、 T_3 导通时, I_d 经 D_2 、 T_2 、负载、 T_3 、 D_3 流回电源, 流经负载的方向与前相反;

负载: 由加热线圈 L_S 、 r_S 和补偿电容 C 并联,工作时的频率 恰好使 L_S 和 C 处于并联谐振状态;

当流过感应加热线圈的电流所产生的中频磁场穿过金属加热件时,会在此金属中产生足够大的感应电动势,形成电流,使金属发热,从而进行热处理或熔炼。

下图是不间断电源(UPS)的原理框图,试说明其工作原理。

基本UPS的原理框图

[解] 图中市电经整流器变为直流后,分为两路:

- 一路通过逆变重新变为工频交流电供给负载;
- 一路对蓄电池进行充电,使市电中断时,UPS仍能 保证负载的供电。

8.3.4 直流调压电路

直流调压电路也称斩波调压器,它利用半导体器件作直流开 关,通过调节矩形波电压的占空比来改变输出电压的平均值。

降压型斩波器原理图

负载电压 U_L 的平均值: $U_L = \frac{T_{on}}{T_{on} + T_{off}} U_S$

8.3.4 直流调压电路

升压型斩波器

升压型斩波器是利用电 感储能释放时所产生的电压 来提高输出电压。

如图IGBT导通时由电

升压型斩波器原理图

源输入电感的能量为: $W_{in} = U_S I_L T_{on}$

IGBT关断时电感释放至负载的能量为:

$$W_{out} = E_L I_L T_{of} f = (U_d - U_S) I_L T_{off}$$

假定:
$$W_{in} = W_{out}$$
 可得: $U_d = \frac{T_{on} + T_{off}}{T_{off}} U_S > U_S$

本章结束 返回目录 第9章 变压器和电动机

