Reinforcement Learning

Approximate Dynamic Programming/ Neuro Dynamic Programming
Sanjit Kaul

Mathematical Games

- 1961: Matchbox Educable Naughts and Crosses Engine (MENACE)
- Teaching a machine to play Naughts and Crosses (Tic-Tac-Toe)
 - Donald Michie, Biologist at University of Edinburgh, used 304 matchboxes
- One matchbox per tic tac toe position
 - Each matchbox contains multiple beads of different colors
 - Each color corresponding to a possible move
 - Shake the matchbox to randomly draw a bead
 - Remove (reduce in number) beads that led to a defeat in a game
 - Increase beads that led to a victory/ draw
- More details
 - http://cs.williams.edu/~freund/cs136-073/GardnerHexapawn.pdf

The Optimization Problem

- Stochastic and Multi-stage (multi-time-step)
 - NOT one shot optimization
 - One shot: A priori deciding that you will drive in the right most lane
 - Multi-Stage: Change lane while you drive based on your perceived lane occupancy
 - Beneficial as the lane conditions are stochastic (not deterministic)
 - Multi-stage allows adapting to the current conditions

Examples

- Artificial Intelligence
 - Play games like humans
- Operations Research
 - Inventory control
- Optimal Control
 - Path planning
 - Network optimization

The Grid World

- State, Agent, Actions, Reward, Environment
- At every time-step/stage Agent can choose from a known set of actions in a state
 - State is a perfect summary the current environment.
 - All that the agent needs at a given time to choose the best possible action. No additional information can help, given the state.
 - Agent observes state and chooses its action.
 - State is Markov
 - Often, an agent can't see the state and has access to observations (the state is partially observable or agent has imperfect state information)
- Reward (negative Costs)/ Costs (negative rewards)
 - Agent receives reward after every action
- The received reward and next state is in general random (described by a PMF/PDF)

The Grid World

- No sense in optimizing random variables
- Instead optimize expected values of random variables
- Goal: Maximize expected sum reward starting in any state
 - Agent wants to perform its assigned task at hand such that sum reward is maximized
- Tasks may be finite time steps long, episodic, infinite
 - Episodic: Task is guaranteed to end in a finite but random number of steps
 - Infinite: Task continues for ever... for an infinite number of time steps
 - What happens to sum reward?
 - Maximize discounted sum reward

The Grid World

- RL algorithms help the agent learn an optimal map between states and actions
 - The functional map is called a policy
 - At every time step agent gives the observed state to the policy
 - Policy tells the agent the action it must perform
- If using optimal policy, agent maximizes expected sum reward

On the State

- Suppose the grid is static (occupancy never changes)
- What could be a state?
 - Agent's location on the grid?
 - Entire grid occupancy (obstacle/ free) and the agent's location?
 - Only the occupancy of the cell where the agent is currently?
- What if the grid is just an instance drawn in an IID manner?
- What if the grid summarizes a moving vehicle's view?

At Every Stage/ Time-Step

Capturing The Stochastic (Markov) Environment

- Use the so called Markov Decision Process
- Markov
 - The future is entirely determined by the current state and your action
 - Given the current, no amount of information from the past is beneficial
- MDP is just a bunch of probability mass functions (PMFs)

MDP Example (Graphical Representation)

Setting Rewards

- You need to nudge the agent to choose beneficial actions...
 - -1 reward for moving into an occupied cell
 - 0 for moving into a free cell
 - 1 for moving into the goal!

Return: The Sum Reward

 Return Gt obtained by the agent starting at time t

Solve Using Dynamic Programming

- In principle, can always find the optimal *solution*
- Large state and action spaces make exact DP computationally infeasible
 - Grid: How big a mapping is the policy function? How many states?
- Models of state evolution may not be known
 - May be easier to simulate than capture in an analytic form
- Approximations and numerical techniques become important

Expected Sum Reward

- The agent could optimize this over a sequence of action a0, a1, a2,...
 - This would be the one-shot optimization way
 - The agent sticks to an a priori chosen sequence of actions
 - Is unable to adapt its actions to what it sees when it interact with the environment
- Our agent must choose a policy (a map between state and actions)

Policy Function

A conditional PMF over the set of actions conditioned on the state

For severy SES, this function is IT (a/s) defined for all actions a EA(s).

State-Value and Action-Value Function

$$V_{\Gamma}(s) = E_{\Gamma} \left[G_{t} \middle| S_{t} = s \right]$$

$$Q_{\Gamma}(s,a) = E_{\Gamma} \left[G_{t} \middle| S_{t} = s, A_{t} = a \right]$$

Relate the two functions?