Exercises 8

These used to be called "Fundamental Questions". Do not hand the solutions to these exercises in; they are just to make sure you can have some practice with the current material.

1. Find $\det A$ using the Cofactor Formula.

(a)
$$A = \begin{bmatrix} 1 & 5 & 2 \\ -1 & -1 & -2 \\ 2 & 1 & -3 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 4 & -1 & 7 & 1 \\ 2 & 0 & -1 & -3 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 5 & 0 \end{bmatrix}$$

2. Let
$$A = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 0 \\ 2 & 0 & -3 \end{bmatrix}$$

- (a) Find $\det A$.
- (b) Find $\operatorname{adj} A$.
- (c) Find A^{-1} .
- (d) Find the solution to $A\mathbf{x} = \begin{bmatrix} -12 \\ 0 \\ 3 \end{bmatrix}$.
- (e) Verify your solution, by also calculating it using Cramer's Rule.
- 3. Consider $A \lambda I = \begin{bmatrix} 4 \lambda & 2 \\ 1 & 3 \lambda \end{bmatrix}$. For which values of λ is $A \lambda I$ not invertible?
- 4. If all entries of A are integers, and det A = 1 or -1, prove that all entries of A^{-1} are integers.
- 5. For invertible $n \times n$ matrices A and B, show that the following statements are true:
 - (a) $\operatorname{adj} I = I$.
 - (b) $\operatorname{adj}(A^T) = (\operatorname{adj} A)^T$.
 - (c) $\operatorname{adj}(tA) = t^{n-1}(\operatorname{adj} A)$.
 - (d) $\operatorname{adj}(AB) = (\operatorname{adj} A)(\operatorname{adj} B)$.
- 6. Given a permutation σ of 1, 2, 3, ..., n, we can define the permutation matrix $P_{\sigma} = [\mathbf{e}_{\sigma(1)}, \mathbf{e}_{\sigma(2)}, \cdots, \mathbf{e}_{\sigma(n)}]$ where \mathbf{e}_i are the standard basis vectors of \mathbb{R}^n for i = 1, 2, ..., n. (In lecture we used the transpose of this matrix.)

1

- (a) Write down P_{σ} for $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$ (this is shorthand notation for $\sigma(1) = 3, \sigma(2) = 2, \sigma(3) = 4, \sigma(4) = 1$).
- (b) How many pairs of rows are outof order in P_{σ} in (a) (where the order of the rows in I is the correct order)?
- (c) What is $\det P_{\sigma}$ for P_{σ} in (a)?
- (d) Given a permutation σ of $1, 2, 3, \ldots, n$, define a new permutation π of $1, 2, 3, \ldots, n$ as follows: for $i = 1, 2, \ldots, n$ we define $\pi(i) = j$ for the j so that $\sigma(j) = i$. (Note that π is well defined, because there is exactly one such j.)

What is π when $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$ (as in (a))?

- (e) What is $\sigma(\pi(1))$? What is $\sigma(\pi(2))$? (For a general permutation σ of 1, 2, ..., n, and π defined as in (d), what is $\sigma(\pi(i))$ for i = 1, 2, ..., n?)
- (f) Write down P_{π} for the π you found in (d).
- (g) Find the product $P_{\sigma}P_{\pi}$ of the matrices in (a) and (f).
- (h) What is P_{σ}^{-1} ? What is P_{π}^{-1} ?

This is not a coincidence! π as defined above is known as the inverse permutation of σ . You can write down the matrix product of P_{σ} and P_{π} for general σ and π (in terms of its columns), and if you think about it a little bit, you will see that the definition of π is exactly so that this is equal to the identity.

7. Finish the (first) proof of Cramer's Rule, by plugging in the definition of adj A in

$$\mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{\det A}(\operatorname{adj} A)\mathbf{b},$$

and doing matrix algebra until you reach the conclusion of Cramer's Rule.

8. If you know all 16 cofactors of a 4×4 invertible matrix A, how would you find A?