Chapitre 1

Le second degré

I. Polynôme du second degré

1) Forme d'une fonction trinôme

Forme réduite

Définition:

On appelle **polynôme du second degré** (ou **trinôme**) toute expression qui peut s'écrire sous la forme $ax^2 + bx + c$ où a, b et c sont des réels $(a \ne 0)$.

Exemple:

 $P(x)=2x^2-8x+8$ est un trinôme donné sous sa **forme réduite** avec a=2, b=-8 et c=8.

Forme canonique

Propriété:

Tout trinôme $ax^2 + bx + c$ peut s'écrire sous la forme $a(x-\alpha)^2 + \beta$ où a, α et β sont des réels $(a \neq 0)$.

Cette forme s'appelle la forme canonique du trinôme.

Démonstration :

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c \quad (a \neq 0)$$
Or $\left(x + \frac{b}{2a}\right)^{2} = x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2}$. On en déduit : $x^{2} + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}$.

On a donc : $ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right] + c = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$.

Propriété:

Pour tous réels a, b et c avec $a \neq 0$, on a donc :

$$P(x)=ax^2+bx+c=a(x-\alpha)^2+\beta$$
 avec $\alpha=-\frac{b}{2a}$ et $\beta=\frac{-b^2+4ac}{4a}$

Remarque:

On vérifie que $\beta = P(\alpha)$.

En effet,
$$P(\alpha) = P\left(\frac{-b}{2a}\right) = a\left(\frac{-b}{2a}\right)^2 + b\left(\frac{-b}{2a}\right) + c = \frac{ab^2}{4a^2} - \frac{b^2}{2a} + c = \frac{b^2}{4a} - \frac{2b^2}{4a} + \frac{4ac}{4a} = \frac{-b^2 + 4ac}{4a} = \beta$$

1

Exemples:

- $P(x)=2x^2-8x+8=2(x^2-4x+4)=2(x-2)^2$ On obtient donc la forme canonique de P(x) avec a=2, $\alpha=2$ et $\beta=0$.
- On considère le polynôme Q(x) = -2x(x-2) + 3On a $Q(x) = -2x^2 + 4x + 3$. (forme réduite avec a = -2, b = 4 et c = 3) En calculant $\alpha = -\frac{b}{2a} = -\frac{4}{2\times(-2)} = 1$ et $\beta = \frac{-4^2 + 4\times(-2)\times 3}{4\times(-2)} = \frac{-16-24}{-8} = 5$. Donc $Q(x) = -2(x-1)^2 + 5$ (forme canonique avec a = -2, $\alpha = 1$ et $\beta = 5$)

Forme factorisée

Il est parfois possible de factoriser P(x). On obtient alors $P(x)=a(x-x_1)(x-x_2)$. $a(x-x_1)(x-x_2)$ est la **forme factorisée** de P(x).

Exemples:

- $P(x)=2(x-2)^2$ (forme factorisée avec a=2, $x_1=2$ et $x_2=2$)
- $R(x)=x^2-2x-15$ (forme réduite avec a=1, b=-2 et c=-15) $R(x)=(x-1)^2-16$ (forme canonique avec a=1, $\alpha=1$ et $\beta=-16$) R(x)=(x-5)(x+3) (forme factorisée avec a=1, $x_1=5$ et $x_2=-3$)
- $T(x)=2(x-1)^2+5$ On ne peut pas donner la forme factorisée.

2) Sens de variation

Théorème:

Suivant le signe de a, on obtient le sens de variation de la fonction polynôme du second degré :

$$f: x \mapsto ax^2 + bx + c$$
 avec $a \neq 0$; $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$

- a > 0 (positif)

Le **minimum** β de f est atteint pour $x = \alpha$

• a < 0 (négatif)

Le **maximum** β de f est atteint pour $x = \alpha$

Démonstration:

Pour le cas où a > 0

En mettant f sous sa forme canonique on obtient $f(x)=a(x-\alpha)^2+\beta$.

- Pour tout x, on a $f(x) \ge \beta$ (donc β est un minimum de f sur $]-\infty$; $+\infty[$)
- Pour x_1 et x_2 appartenant à] $-\infty$; α [(donc $x_1 < \alpha$ et $x_2 < \alpha$), on a : Si $x_1 < x_2$, (donc $x_1 x_2 < 0$) alors

$$f(x_{1})-f(x_{2})=[a(x_{1}-\alpha)^{2}+\beta]-[a(x_{2}-\alpha)^{2}+\beta]$$

$$f(x_{1})-f(x_{2})=a(x_{1}-\alpha)^{2}-a(x_{2}-\alpha)^{2}=a[(x_{1}-\alpha)^{2}-(x_{2}-\alpha)^{2}]$$

$$f(x_{1})-f(x_{2})=a[(x_{1}-\alpha)^{2}-(x_{2}-\alpha)^{2}]=a[[(x_{1}-\alpha)-(x_{2}-\alpha)][(x_{1}-\alpha)+(x_{2}-\alpha)]]$$

$$f(x_{1})-f(x_{2})=a[[x_{1}-x_{2}][x_{1}+x_{2}-2\alpha]] \text{ avec } x_{1}-x_{2}<0 \text{ et } x_{1}+x_{2}<2\alpha \text{ donc}$$

$$f(x_{1})-f(x_{2})>0 \text{ et } f(x_{1})>f(x_{2})$$

Ainsi f est décroissante sur $]-\infty$; $\alpha[$

On démontre les autres cas de la même manière.

3) Représentation graphique

Définition:

La courbe représentative d'une fonction polynôme $P: x \longmapsto ax^2 + bx + c$, avec $a \ne 0$, est une **parabole**.

- Son sommet $S(\cdot; \sqrt{2})$ a pour abscisse $\alpha = -\frac{b}{2a}$ et pour ordonnée $\sqrt{2} = P(\cdot)$
- La droite d'équation $x = \alpha$ est axe de symétrie de la parabole.

Démonstration :

 $P(\alpha + t) = a(\alpha + t)^2 + b(\alpha + t) + c = a\alpha^2 + b\alpha + c + 2a\alpha t + at^2 + bt = P(\alpha) + at^2 + t(2a\alpha + b)$

Or
$$\alpha = \frac{-b}{2a}$$
 donc $2a\alpha + b = 0$. Ainsi $P(\alpha + t) = P(\alpha) + at^2$

De la même manière on a :

 $P(\alpha-t) = P(\alpha) + at^2 - t(2 a \alpha + b) = P(\alpha) + at^2$ Donc, on obtient, pour tout $t \in \mathbb{R}$, $P(\alpha+t) = P(\alpha-t)$

Ainsi $x=\alpha$ est axe de symétrie de la parabole.

Remarque:

Le signe de *a* permet de connaître l'allure de la parabole :

Si a > 0La parabole est tourné

La parabole est tournée vers le haut.

Si a < 0La parabole est tournée vers le bas.

Exemples:

• La courbe représentative de la fonction P définie sur \mathbb{R} par $P(x)=2x^2-8x+8$ est une parabole \mathcal{C}_P de sommet S(2;0).

Comme a=2 (positif), la parabole \mathcal{C}_P est tournée vers le haut.

• La courbe représentative de la fonction Q définie sur \mathbb{R} par $Q(x)=-2x^2+4x+3$ est une parabole \mathcal{C}_Q de sommet S'(1; 5).

Comme a=-2 (négatif), la parabole \mathcal{C}_0 est tournée vers le bas.

II. Équation du second degré

Définition 1)

Définition:

Une **équation du second degré** à **une inconnue** x est une équation qui peut s'écrire sous la forme :

$$ax^{2} + bx + c = 0$$

où a, b et c sont des réels donnés et $a \neq 0$.

Exemples:

- $3x^2 7x + 2 = 0$ $2x^2 9 = 0$
- $-x^2+2x=0$
- L'équation (E) $x^2-4+3x=2x^2-x$ peut s'écrire sous la forme $ax^2+bx+c=0$ En effet, (E) équivaut à $x^2-4+3x-2x^2+x=0$ soit $-x^2+4x-4=0$ Donc ici a=-1; b=4 et c=-4.

Interprétation graphique :

Les solutions de l'équation $ax^2 + bx + c = 0$ correspondent aux abscisses des points d'intersections entre la parabole \mathscr{P} d'équation $y=ax^2+bx+c$ et l'axe des abscisses d'équation y=0.

L'équation n'a pas de solution.

L'équation admet une solution.

L'équation admet deux solutions.

2) Discriminant

Propriété:

Pour tous réels a, b et c avec $a \neq 0$, on a :

$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
 avec $\Delta = b^2 - 4ac$

Démonstration:

On a vu que:

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} \right] + c \text{ donc}$$

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{4ac}{4a^{2}} \right] = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} \right]$$

Définition:

Le nombre $\Delta = b^2 - 4ac$ est appelé discriminant de l'équation $ax^2 + bx + c = 0$.

3) Résolution

Théorème:

Résolution de l'équation du second degré $ax^2+bx+c=0$ $(a \ne 0)$:

$$\Delta = b^2 - 4ac$$

- Lorsque $\Delta < 0$, l'équation n'a pas de solution.
- Lorsque $\Delta = 0$, l'équation admet une solution $x = -\frac{b}{2a}$.
- Lorsque $\Delta > 0$, l'équation admet deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Démonstration :

On sait que $ax^2 + bx + c = 0$ équivaut à $a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] = 0$ donc à $\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} = 0$ (a\neq 0),

c'est-à-dire
$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$$
.

En posant $X = x + \frac{b}{2a}$, résoudre l'équation $ax^2 + bx + c = 0$ revient donc à résoudre $X^2 = \frac{\Delta}{4a^2}$.

- Si $\Delta < 0$, alors $\frac{\Delta}{4a^2} < 0$. L'équation n'a pas de solution (car X^2 est positif).
- Si $\Delta = 0$, alors l'équation s'écrit $X^2 = 0$. Cette équation a une seule solution X = 0, c'est-àdire $x + \frac{b}{2a} = 0$ donc $x = -\frac{b}{2a}$.
- Si $\Delta > 0$, alors l'équation admet deux solutions :

$$X_1 = \sqrt{\frac{\Delta}{4a^2}}$$
 et $X_2 = -\sqrt{\frac{\Delta}{4a^2}}$
 $x_1 + \frac{b}{2a} = \sqrt{\frac{\Delta}{4a^2}}$ et $x_2 + \frac{b}{2a} = -\sqrt{\frac{\Delta}{4a^2}}$

Soit
$$x_1 + \frac{1}{2a} = \sqrt{\frac{1}{2a}}$$

o Si
$$a > 0$$
, $\sqrt{4a^2} = 2a$ donc:
 $x_1 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{2a} = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b}{2a} - \frac{\sqrt{\Delta}}{2a} = \frac{-b - \sqrt{\Delta}}{2a}$

• Si
$$a < 0$$
, $\sqrt{4a^2} = -2a$ donc:

$$x_1 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{-2a} = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b}{2a} - \frac{\sqrt{\Delta}}{-2a} = \frac{-b + \sqrt{\Delta}}{2a}$

Exemples:

- Résolution de l'équation $2x^2-3x+5=0$ a=2, b=-3 et c=5 ainsi $\Delta=(-3)^2-4\times2\times5=9-40=-31$ donc $\Delta<0$. L'équation n'admet aucune solution.
- Résolution de l'équation $3x^2-x-4=0$ a=3, b=-1 et c=-4 ainsi $\Delta=(-1)^2-4\times 3\times (-4)=1+48=49$ donc $\Delta>0$. L'équation admet deux solutions:

5

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1+7}{6} = \frac{8}{6} = \frac{4}{3}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1-7}{6} = \frac{-6}{6} = -1$

L'ensemble des solutions S= $\{-1; \frac{4}{3}\}$.

Utilisation de la calculatrice :

```
PROGRAM: DEGRE2

:Prompt A,B,C

:B2-4AC→D

:If D>0

:Then

:Disp "2 SOLS :"

,(-B-√(D))/(2A)*

Frac, "ET",(-B+√(D))/(2A)*

Frac "ET",(-B+√(D))/(2A)*

Frac "ET",(-B-√(D))/(2A)*

:Else

:If D=0

:Then

:Disp "1 SOL :",-B/(2A)*

:B/(2A)*

:Else

:Disp "0 SOL"

:End
```

```
pr9mDEGRE2
A=?2
B=?-3
C=?5
Ø SOL
                   Fait
pr9mDEGRE2
A=?4
B=?-12
C=?9
Ĭ ŚŎL
                    3/2
                  Fait
pr9mDEGRE2
A=?3
B=?-1
C=?-4
2 SOLS :
                      -1
ET
                    4/3
                  Fait
```

```
=====DEGRE2 =====

"A"?→A#

"B"?→B#

"C"?→C#

"DELTA=":B²-4AC→D』

#

If D>0#

Then "2 SOLUTIONS :"#

"X1=":(-B-JD)」(2A)』

"X2=":(-B+JD)」(2A)』

#

Else #

If D=0#

Then "1 SOLUTION:"#

"X=":-B」(2A)』

#

Else "0 SOLUTION"#

IfEnd#

IfEnd#

IfEnd#

IfEnd#
```

```
A?
2
B?
-3
-3
C?
5
DELTA=
0 SOLUTION
```

```
A?

4

B?

-12

C?

DELTA=

1 SOLUTION:

X=

3J2

- Disp -
```

```
A?
3
B?
-1
C?
-4
DELTA=
2 SOLUTIONS:
X1=
-1
X2=
4,3
- Disp -
```

4) Factorisation du trinôme

Propriété:

On considère le trinôme $ax^2 + bx + c$.

• Lorsque $\Delta > 0$, en notant x_1 et x_2 les deux racines, on a :

$$ax^2 + bx + c = a(x-x_1)(x-x_2)$$

• Lorsque $\Delta = 0$, en notant x_0 l'unique racine, on a :

$$ax^2 + bx + c = a(x-x_0)^2$$

• Lorsque $\Delta < 0$, le trinôme $ax^2 + bx + c$ ne se factorise pas.

Exemple:

On a vu que l'équation $3x^2-x-4=0$ avait deux solutions : -1 et $\frac{4}{3}$.

On a done
$$3x^2 - x - 4 = 3(x+1)\left(x - \frac{4}{3}\right)$$
.

Remarques:

- Lorsque l'équation $ax^2 + bx + c = 0$ admet des solutions, ces solutions sont les racines du trinôme $ax^2 + bx + c$.
 - Ce sont les abscisses des points d'intersection de la parabole avec l'axe des abscisses.
- Lorsque le polynôme a deux racines distinctes α_1 et α_2 , l'abscisse α du sommet de la parabole est la moyenne des deux racines : $\alpha = \frac{\alpha_1 + \alpha_2}{2}$.

5) Signe du trinôme

Propriété:

Soit f, une fonction polynôme de degré 2, définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec $a \ne 0$ et Δ le discriminant du trinôme ax^2+bx+c .

- Si $\Delta > 0$, alors, x_1 et x_2 étant les racines du trinôme telles que $x_1 < x_2$, f(x) est du signe de a si et seulement si $x \in]-\infty; x_1[\cup]x_2; +\infty[$.
- Si $\Delta = 0$, alors f(x) est du signe de a si et seulement si $x \neq -\frac{b}{2a}$.
- Si $\Delta < 0$, alors, pour tout réel x, f(x) est du signe de a.

Démonstration :

• Si $\Delta > 0$, alors, pour tout réel x, $f(x) = a(x - x_1)(x - x_2)$ où x_1 et x_2 sont les racines du trinôme (avec $x_1 < x_2$).

On a donc le tableau de signe suivant :

On a done le tableau de signe survant.							
x	$-\infty$	x_1		x_2		$+\infty$	
$x-x_1$	_	0	+		+		
$x-x_2$	_		_	0	+		
$(x-x_1)(x-x_2)$	+	0	_	0	+		
$a(x-x_1)(x-x_2)$	Signe de a	0	Signe de -a	0	Signe de a		

Ainsi, f(x) est du signe de a si et seulement si $x \in]-\infty; x_1[\cup]x_2; +\infty[$.

• Si $\Delta = 0$, alors, pour tout réel x, $f(x) = a(x - x_0)^2$, avec $x_0 = \frac{-b}{2a}$.

Le carré $(x-x_0)^2$ est strictement positif pour $x \neq x_0$ et il s'annule en x_0 .

Ainsi f(x) est du signe de a si et seulement si $x \neq -\frac{b}{2a}$.

• Si $\Delta < 0$, alors $\frac{\Delta}{4a^2} < 0$. On en déduit que, pour tout réel x, $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$.

Or $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$, donc le signe de f(x) est celui de a.

III. <u>Synthèse</u>

Soit le polynôme $P(x)=ax^2+bx+c$

$\Delta = b^2 - 4ac$	$\Delta < 0$	$\Delta = 0$	$\Delta > 0$
Solutions de l'équation $P(x)=0$	Pas de solution	Une seule solution : $\alpha = -\frac{b}{2a}$	Deux solutions: $\alpha_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $\alpha_2 = \frac{-b + \sqrt{\Delta}}{2a}$
Factorisation de $P(x)$	Pas de factorisation	$P(x) = a(x - \alpha)^2$	$P(x) = a(x - \alpha_1)(x - \alpha_2)$
a>0 Position de la parabole par rapport à l'axe des abscisses	a	α	α α α α α α α α α α α α α α α α α α α
Signe de $P(x)$	$\begin{array}{ c c c c }\hline x & -\infty & +\infty \\\hline P(x) & + & \\\hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline x & -\infty & \alpha_1 & \alpha_2 & +\infty \\\hline P(x) & + & 0 & - & 0 & + \\\hline \end{array}$
a < 0			
Position de la parabole par rapport à l'axe des abscisses		a	α_1 α_2 α_2
Signe de $P(x)$	$ \begin{array}{ c c c c } \hline x & -\infty & +\infty \\ \hline P(x) & - & \\ \hline \end{array} $	$ \begin{array}{c ccccc} x & -\infty & \alpha & +\infty \\ \hline P(x) & -0 & - \end{array} $	$\begin{array}{ c c c c c c c }\hline x & -\infty & \alpha_1 & \alpha_2 & +\infty \\ \hline P(x) & - & 0 & + & 0 & - \\ \hline \end{array}$