Τεχνητή Νοημοσύη

Εργασία 3

Απαντήσεις

Ονοματεπώνυμο: Αντρέας Παύλου

A.M.: 1115202100223

Θέμα 1

Instance	FC-BT	FC-MAC	FC-CBJ	MIN_CONFLICTS
	Assignments: 410	Assignments: 211		Assignments: -
	Checks: 43416	Checks: 169663	Checks: 43416	Checks: -
2-f24	Time: 0.16668 sec	Time: 0.3389 sec	Time: 0.1604 sec	Time: -
	Assignments: 128489	Assignments: 25304		Assignments: -
	Checks: 22629909	Checks: 53784583	Checks: 608865	Checks: -
2-f25	Time: 74.2436 sec		Time: 2.0099 sec	Time: -
	Assignments: 1640808		•	Assignments: -
	Checks: 168488496	Checks: 1186917		Checks: -
3-f10	Time: 463.3715	Time: 2.7492 sec		Time: -
	Assignments: 347035	Assignments: 8946	Assignments: 280720	•
	Checks: 56386851	Checks: 25576285	Checks: 45881879	Checks: -
3-f11	Time: 133.9254 sec	Time: 68.3457 sec	Time: 109.0364 sec	Time: -
	Assignments: 263	Assignments: 43	Assignments: 263	Assignments: -
	Checks: 48310	Checks: 97215	Checks: 48310	Checks: -
6-w2	Time: 0.0838 sec	Time: 0.117 sec	Time: 0.0826 sec	Time: -
	Assignments: 37207	Assignments: 525	Assignments: 19691	Assignments: -
	Checks: 1428953	Checks: 356673	Checks: 761794	Checks: -
7-w1-f4	Time: 2.4260 sec	Time: 0.2864 sec	Time: 1.4174 sec	Time: -
	Assignments: -	Assignments: 8476	Assignments: 5685	Assignments: -
	Checks: -	Checks: 34177396	Checks: 379211	Checks: -
7-w1-f5	Time: -	Time: 25.4055 sec	Time: 0.5802 sec	Time: -
	Assignments: -	Assignments: 17144	Assignments: 89600	Assignments: -
	Checks: -	Checks: 34281675	Checks: 11533273	Checks: -
8-f10	Time: -	Time: 74.1703 sec	Time: 33.3175 sec	Time: -
	Assignments:1541509	Assignments:3357	Assignments: 15029	Assignments: -
	Checks: 226519475	Checks: 7500135	Checks: 3257124	Checks: -
8-f11	Time: 600.5770 sec	Time: 16.6046 sec	Time: 8.0097 sec	Time: -
	Assignments: 3644	Assignments: 1875	Assignments: 3644	Assignments: -
	Checks: 715867	Checks: 3895932	Checks: 715867	Checks: -
-11	Time: 3.4099 sec	Time: 9.1482 sec	Time: 3.2450 sec	Time: -
	Assignments: 1008869	Assignments: 18161	Assignments: 27648	Assignments: -
	Checks: 41131131	Checks: 6422588	Checks: 1506978	Checks: -
14-f27	Time: 186.0311 sec	Time: 13.1030 sec	Time: 9.1750 sec	Time: -
	Assignments: 408915	Assignments: 6818	Assignments: 16502	Assignments: -
	Checks: 28573194	Checks: 7171206	Checks: 1349846	Checks: -
14-f28	Time: 123.1860 sec	Time: 14.0072 sec	Time: 6.1959 sec	Time: -

Color Mapping

Solution Found Interrupted Solution Not Found

Σχήμα 1: Αποτελέσματα

1. Βάσει τα πιο πάνω αποτελέσματα, εξάγονται τα εξής συμπεράσματα: 1) Η χρήση της ευρετικής DOM/WDEG έχει σταθερό αποτέλεσμα κάθε φορά καθώς δεν εξαρτάται από κάποιο τυχαίο παράγοντα. 2) Όπως και στη θεωρία, τώρα επαληθεύεται ότι οι κόμβοι που έγιναν

assigned και οι έλεγχοι για τον κάθε αλγόριθμο είναι:

$$FC - CBJ \le FC - BT$$

 $MAC \le FC - BT$

, χωρίς να μπορεί να εξαχθεί κάποιο συμπέρασμα για MAC/FC-CBJ. Η ισότητα μεταξύ FC-CBJ/FC-BT εμφανίζεται σε δύο στιγμιότυπα, στα οποία υπήρξε τελικό αποτέλεσμα μετά από ελάχιστους ελέγχους/αναθέσεις. Κατά κύριο λόγο η χρήση CBJ αντί για BT συμβάλλει αρκετά στην επίλυση των στιγμιότυπων σε πολύ λιγότερο χρόνο. 3) Min_conflicts: Δεν φαίνεται να είναι αποδοτική, καθώς τις περισσότερες φορές δεν τερματίζεται καν, με κάποιο αποτέλεσμα. Τα αποτελέσματα διαφέρουν αφού υπάρχει ο τυχαίος παράγοντας (επιλογή μεταβλητής). Συνεπώς αυτή η επιλογή τυχαίας μεταβλητής συμβάλλει στην κακή αποδοτικότητα του αλγορίθμου, λόγω του ότι κατά την επιλογή της, επαναλαμβάνεται πολλές φορές τυχαία μέχρι να βρεθεί η λύση.

Υλοποιήσεις/Αλλαγές: Όλες οι αλλαγές βρίσκονται στη νέα κλάση NewCSP.

- DOM/WDEG: Αποτελείται από τις συναρτήσεις wdeg, dom_wdeg, find_dom. Αρχικά γίνεται έλεγχος κάθε μεταβλητής η οποία δεν είναι αρχικοποιημένη με κάποια τιμή. Για κάθε τέτοια μεταβλητή ελέγχουμε τους μη αρχικοποιημένους γείτονες, και προστίθεται, το βάρος του συνδυασμού (var, neighbour) σε ένα νέο counter (αυτό το βάρος οφείλεται στο ότι υπήρξε domain wipe out, κατά τον έλεγχο ενός περιορισμού). Στη συνέχεια βρίσκεται μια νέα μεταβλητή η οποία εξαρτάται από τη διαίρεση του μεγέθους του domain της (στην περίπτωση που το curr_domain[var] είναι κενό τότε λαμβάνεται υπόψιν το domain[var]) δια του προηγούμενου counter. Τέλος επιστρέφεται η μεταβλητή με τη μικρότερη αναλογία.

Αυξήσεις βαρών

- 1)Forward_Check2: Αύξηση βάρους κατα 1 μεταξύ (var, B), (B, var) κατά την στιγμή που το domain της μεταβλητής B γίνεται κενό, από τα prunes που προέκυψαν, από την ανάθεση τιμής στο var.
- 2) Mac: Στην συνάρτηση revise2, όμοιος με Forward_Check2.
- -Conflict Directed Backjumping Κύριες Δομές:
- 1)Past FC(dictionary of sets)
- 2) Conflict setdictionary of sets)
- 3)no_good(set)

Βασικά σημεία αλγορίθμου είναι τα εξής: 1)Προσθήκη στο Past_FC, μίας unassigned μεταβλητής, την τρέχουσα assigned μεταβλητη η οποια προκάλεσαι καποιο prune στο Domain της, προηγούμενης unassigned. 2) Κατά domain wipe out κάποιας unassigned μεταβλητής, γίνεται ενημέρωση του conflict_set της τρέχουσας μεταβλητής με την ένωση του conflict_set της τρέχουσας μεταβλητής και του past_fc της μεταβλητής στην οποία έγινε το domain wipe out. 3)Ενημέρωση no_good set με την ένωση του past_fc και conflict_set της τρέχουσας μεταβλητής αφού έγινε έλεγχος όλων των τιμών της τρέχουσας μεταβλητής. 4)Κατά το backtracking, στο προηγούμενο set βρίσκεται η μεταβλητή που προκάλεσε κάποιο conflict και θα πρέπει να βρεθεί η πιο βαθιά. 5) Αφού βρεθεί η πιο "βαθιά" μεταβλητή ενημερώνεται το conflict_set της μεταβλητής ώστε να μην χαθεί πληροφορία όσον αφορά προηγούμενα conflicts. 6)Ενημέρωση όλων των conflict_set που είχαν αλλάξει κατά την ανάθεση της νέας μεταβλητής.

Βοηθητικό Link

Θέμα 2

1. Variables: $\{X0, X1, X2, X3\}$

Suspects: $\{X0, X1, X2\}$

Domains: $X0 = \{90\}, X1 = \{30, 60\}, X2 = \{60, 30\}$

Constraints: X0 + X2 + X3 = 1, $X_i = \{0, 1\}$, $\forall i \in \{0, 1, 2\}$

 $V_i \ge \min_{\text{time}} = 20 + 45 + 20, (V = \text{value})$

2. Αρχικά γίνεται ταξινόμηση μεταβλητών σε φθίνουσα σειρά με βάση την μεγαλύτερη τιμή στο Domain της κάθε μεταβλητής.

 $\Rightarrow \max(X0) = 90, \max(X1) = 60, \max(X2) = 60$

 \Rightarrow Σειρά ελέγχου: X0, X1, X2

Για τη σειρά των τιμών, επιλέγεται ταξινόμηση σε φθίνουσα σειρά για το κάθε Domain. Αρχίζοντας τον αλγόριθμο αρχικοποιούμε το X0, με ένα (1 = assigned, 0 unassigned). Παρατηρούμε ότι τηρούνται όλοι οι περιορισμοί, καθώς μόνο μια μεταβλητή έγινε assigned και ισχύει 85 < 90. Καθώς γνωρίζουμε ότι υπάρχει αποκλειστικά ένας ύποπτος, η ανάθεση κάποιας άλλης μεταβλητής με 1, θα παραβίαζε τον πρώτο περιορισμό. Τέλος, καταλήγουμε ότι ο ύποπτος είναι X0, ο Γιάννης.

3. Ο τρόπος μοντελοποίησης που επιλέχθηκε δεν λαμβάνει υπόψιν γειτονικούς κόμβους, καθώς οι τιμές στα domains απεικονίζουν τα διαστήματα κατά τα οποία οι τρεις ύποπτοι έχουν ελεύθερο χρόνο χωρίς κάποια διακοπή. Συνεπώς, δεν μπορεί να χρησιμοποιηθεί κάποιος αλγόριθμος διάδοσης περιορισμών.

Θέμα 3

1. Variables: A1, A2, A3, A4, A5

Domains: $A1 = \{9, 10, 11\}, A2 = \{9, 10, 11\}, A3 = \{9, 10, 11\}, A4 = \{9, 11\},$

 $A5 = \{9, 10, 11\}$

Constraints: $A2 \neq A2, A1 > A3, A4 \neq 10, A3 > A5, A3 < A4, A2 \neq A4$

2. Γράφος

Σχήμα 2: Γράφος

3. 3) Σειρά ανάθεσης μεταβλητών: A1, A2, A3, A4, A5 Σειρά ανάθεσεις τιμών: (Άξουσα) $Domain_i: \{9, 10, 11\} \forall i \in [1, 5] - 4, Domain_4 = \{9, 11\}$

Assign
$$A1 = 9 \Rightarrow D2 = \{10, 11\}, D3 = \emptyset$$

Assign
$$A1 = 10 \Rightarrow D2 = \{10, 11\}, D3 = \{9\}$$

$$A3 > A5 \Rightarrow \text{Not Consistent}$$

Assign
$$A1 = 11 \Rightarrow D2 = \{9, 10\}, D3 = \{9, 10\}$$

$$(A2 > A4) \Rightarrow \text{Consistent}$$

$$(A3 < A4) \Rightarrow \text{Consistent}$$

$$(A3 > A5) \Rightarrow \text{Consistent}$$

Assign
$$A2 = 9 \Rightarrow D4 = \{11\}$$

$$(A3 < A4) \Rightarrow Consistent$$

Assign
$$A3 = 9 \Rightarrow D4 = \{11\}, D5 = \emptyset$$

Assign
$$A3 = 10 \Rightarrow D4 = \{11\}, D5 = \{9\}$$

Assign
$$A4 = 11$$

Assign
$$A5 = 9$$

Αποτέλεσμα:
$$A1 = 11, A2 = 2, A3 = 10, A4 = 11, A5 = 9$$