An Introduction to Abelian Categories

Gabriel Antonio Videtta

May 2025

Preliminary steps (i)

The intuition for abelian categories comes from the behaviour of a kind of mathematical object which is found everywhere in each science: **vector spaces**.

Vector spaces are considered to be well understood and have interesting categorical properties.

Preliminary steps (ii)

First of all, we will denote with $Vect_K$ the category of vector spaces over the field K, whose objects are vector spaces and morphisms are linear maps.

We will denote with $FinDimVect_K$ the subcategory of $Vect_K$ which contains only finite dimensional K-vector spaces.

Preliminary steps (iii): zero objects

Vector spaces have a peculiar property: initial objects are isomorphic to final objects! This tells use that 0 (the zero dimensional vector space) is a special object.

Definition (Zero object)

Let $\mathcal C$ be a category. We say 0 is a **zero object** if it's both an initial and a final object.

Preliminary steps (iv)

Moreover, the hom-set hom(V, W) has an additional structure: it's not just a set, it has a natural structure of a vector space as well!

We can sum linear maps (f + g), multiply a linear map by a scalar (λf) , and all these operations behave "bilinearly" with the composition (\circ) :

$$(f+g) \circ h = f \circ h + g \circ h,$$

 $f \circ (g+h) = f \circ g + f \circ h,$
 $(\lambda f) \circ g = \lambda (f \circ g) = f \circ (\lambda g).$

This gives rise to an important definition...

Preliminary steps (v): enriched categories

Definition (Enriched categories)

Let $\mathcal C$ be a category. We say that $\mathcal C$ is a category **enriched over a monoidal category** $(\mathcal D,\otimes)$ if the hom-sets of $\mathcal C$ are objects from $\mathcal D$ and if the composition of morphisms makes the composition \circ bilinear over \otimes , namely:

$$(F \otimes G) \circ H = (F \circ H) \otimes (G \circ H),$$

$$F \circ (G \otimes H) = (F \circ G) \otimes (F \circ H).$$

Therefore, we can say that $Vect_K$ is enriched over itself!

Preliminary steps (vi): preadditive categories

Recall that an abelian group is a monoid which allows inverses and satisfies the law of commutativity. For example, a vector space V is itself an abelian group.

Definition (Preadditive category)

Let $\mathcal C$ be a category. We say that $\mathcal C$ is a **preadditive category** if it's enriched over the category of abelian groups (Ab).

In short, a preadditive category is such that its morphisms can be added and subtracted in a way that respects composition.

Preliminary steps (vii): modules and relationship with Ab

Before we properly discuss abelian categories, let's introduce the last fundamental algebraic structure we're going to talk about in this seminary: **modules**.

Modules are pretty much "vector spaces over a ring": they have the same axioms as a vector space, except they are built over a ring, which does not have to allow inverses.

Notice that abelian groups are \mathbb{Z} -modules, where:

$$n \cdot x := \underbrace{x + x + \ldots + x}_{n \text{ times}}.$$

This fact will result useful later on.

Products and coproducts behave in the same way in a pre-additive category, as shown below.

Proposition

Let $\mathcal C$ be a preadditive category. Then products and coproducts are isomorphic to one another in $\mathcal C$.

Proof.

Let A and B be two objects in C and let

 $(C := A \times B, \pi_A : C \to A, \pi_B : C \to B)$ be a product of A and B. We shall determine two morphisms $\iota_A : A \to C$ and $\iota_B : B \to C$ such that (C, ι_A, ι_B) is also a coproduct of A and B.

In doing so, we strive to get some "injections" of A and B into $A \times B$. A way of doing that is to use the universal property of $A \times B$ and extend the following morphisms to two morphisms ι_A , $\iota_B : A, B \to C$:

- 2 0_{BA} , $id_B \rightsquigarrow \iota_B$.

Proof.

 ι_A and ι_B yield the following commutative diagram:

Proof.

Let's now prove that (C, ι_A, ι_B) is a coproduct. Let D be an object from C and let $f, g : A, B \to D$ be morphisms.

Let's define $h: C \rightarrow D$ such that:

$$h = f \circ \pi_A + g \circ \pi_B.$$

