Combinatorial Probability

Ashoke Kumar Sinha

Why counting is important in probability?

For a symmetric probability space
$$(S,P)$$
: $P(A)=\frac{N(A)}{N(S)}.$

- 1 Toss a fair coin twice.
 - $S = \{TT, TH, HT, HH\}.$
 - ▶ $P(\text{exactly one head}) = \frac{2}{4} = \frac{1}{2}$.
- Toss a fair coin 20 times.
 - ► S = ??
 - $P(\text{exactly one head}) = \frac{\#\text{outcomes with exactly one head}}{N(S)} = ?$

Outline

Addition Rule

2 Product Rule

Number of samples

Examples: Use of combinatorics in probability

Addition Rule

When A_1, A_2, \ldots, A_k are mutually exclusive events, then:

$$N\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} N(A_i).$$

outcomes of the experiment are possible.

Outline

Addition Rule

Product Rule

Number of samples

Examples: Use of combinatorics in probability

- At a restaurant, you can choose one of 2 starters: soup, salad.
- and you can choose one from 3 main dishes, namely:
 - fish, meat, vegetarian.
- How many different two-course meals are possible?

Product Rule

- Suppose an experiment consists of performing k partial experiments.
- The i^{th} partial experiment has n_i possible outcomes $(i=1,\ldots,k)$,
- no matter what the results of other partial experiments are.
- Then there are total

$$n_1 \times n_2 \times \cdots \times n_k$$

outcomes of the experiment are possible.

Factorial

For any positive integer n we define n factorial as

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1.$$

Convention: 0! = 1.

For instance:

- 1! = 1,
- $2! = 2 \times 1 = 2$,
- $3! = 3 \times 2 \times 1 = 6$,
- $4! = 4 \times 3 \times 2 \times 1 = 24$, etc.

Note, $n! = n \times (n-1)!$.

Suppose there are 3 balls of identical shape - two of them are red (r) and one is blue (b). How many different ordered arrangements of these balls are possible?

Permutation of indistinguishable objects

- ullet Suppose, of n objects, there are k distinct types.
- n_1 of them are of type 1.

 n_2 of them are of type 2.

:

 n_k of them are of type k.

$$n = n_1 + n_2 + \dots + n_k.$$

Then there are total

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

arrangements possible.

Outline

Addition Rule

2 Product Rule

Number of samples

Examples: Use of combinatorics in probability

Example: How many different samples?

- Suppose we select 2 objects from the collection $\{a, b, c, d\}$.
- How many different samples are possible?

It depends on:

- whether sampling is done
 - with replacement (WR), or
 - without replacement (WOR),
- whether it is an
 - ordered sampling, or
 - unordered sampling.

How many different samples?

	Without Replacement	With Replacement
Ordered	$\frac{n!}{(n-k)!}$	n^k
Unordered	$\binom{n}{k}$	$\binom{n+k-1}{k}$

Remark: In the "with replacement unordered sampling scheme", the resulting sample space is not symmetric.

WR and Ordered sampling

- Suppose we select 2 objects from the collection $\{a,b,c,d\}$ with replacement (WR).
- How many different samples are possible if order matters?

		2^{nd} draw						
		\overline{a}	b	c	d			
raw	a	(a,a)	(a,b)	(a,c)	(a,d)			
dra	b	(b,a)	(b,b)	(b, c)	(b,d)			
1^{st}	c	(c,a)	(c,b)	(c,c)	(c,d)			
<u> </u>	d	(d,a)	(d,b)	(d, c)	(d,d)			

WR Ordered Sampling

- ullet Suppose there are n number of distinct elements.
- A sample of k elements is to be selected with replacement.
- The number of different ordered samples possible is

 n^k .

EXAMPLE: If we select 2 elements out of 4 with replacement, then there are

 $4^2 = 16$ different ordered samples possible.

WOR and Ordered sampling

- Suppose we select 2 objects from the collection $\{a,b,c,d\}$ with replacement (WR).
- How many different samples are possible if order matters?

		2^{nd} draw					
		\overline{a}	b	c	d		
≥	a		(a,b)	(a,c)	(a,d)		
lra ⊗	b	(b,a)		(b, c)	(b,d)		
3	c	(c,a)	(c,b)		(c,d)		
-	d	(d,a)	(d,b)	(d,c)			

WOR Ordered Sampling

- Suppose there are n number of distinct elements.
- A sample of k elements is to be selected without replacement $(k \le n)$.
- The number of different *ordered* samples possible is

$$\frac{n!}{(n-k)!}.$$

EXAMPLE: If we select 2 elements out of 4 without replacement, then there are

$$\frac{4!}{(4-2)!} = 12$$
 different ordered samples possible.

WOR and Unordered sampling

- Suppose we select 2 objects from the collection $\{a, b, c, d\}$ without replacement (WOR).
- How many different samples are possible if order does not matter?

	2^{nd} draw						
	\overline{a}	b	c	d			
a		(a,b)	(a,c)	(a,d)			
b	(b,a)		(b, c)	(b,d)			
c	(c,a)	(c,b)		(c,d)			
d	$ \begin{array}{c} (b,a) \\ (c,a) \\ (d,a) \end{array} $	(d,b)	(d, c)				

 1^{st} draw

WOR and Unordered sampling

- Suppose we select 2 objects from the collection $\{a, b, c, d\}$ without replacement (WOR).
- How many different samples are possible if order does not matter?

	2^{nd} draw						
	a b c d						
a		(a,b)	(a,c)	(a,d)			
b	$ \begin{array}{c} (b,a) \\ (c,a) \end{array} $		(b, c)	(b,d)			
c		(c,b)		(c,d)			
d	(d, a)	(d,b)	(d, c)				

Unordered sample

 1^{st} draw

WOR Unordered Sampling

- Suppose there are n number of distinct elements.
- A sample of k elements is to be selected without replacement $(k \le n)$.
- The number of different *unordered* samples possible is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

The symbol $\binom{n}{k}$ is often called n choose k.

EXAMPLE: If we select 2 elements out of 4 without replacement, then there are

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = 6 \quad \text{different unordered samples possible}.$$

WR and Unordered sampling

- Suppose we select 2 objects from the collection $\{a, b, c, d\}$ with replacement (WR).
- How many different samples are possible if order does not matter?

and 1

			2	araw	
		\overline{a}	b	c	d
≥	a	(a,a)	(a,b)	(a,c)	(a,d)
draw	b	(b,a)	(b,b)	(b, c)	(b,d)
1^{st} (c	(c,a)	(c,b)	(c,c)	(c,d)
_	d	(d,a)	(d,b)	(d, c)	(d,d)

WR and Unordered sampling

- Suppose we select 2 objects from the collection $\{a,b,c,d\}$ with replacement (WR).
- How many different samples are possible if order does not matter?

		2^{nd} draw							
		a b c d			Unordered sample				
≥	a	(a,a)	(a,b)		(a,d)	$\{a,a\}$	$\{a,b\}$	$\{a,c\}$	$\{a,d\}$
draw	b	(b,a)	(b,b)	(b, c)	(b,d)		$\{b,b\}$	$\{b,c\}$	$\{b,d\}$
st	c	(c,a)	(c,b)	(c,c)	(c,d)			$\{c,c\}$	$\{c,d\}$
1	d	(d,a)	(d,b)	(d, c)	(d,d)				$\{d,d\}$

N.B.: Sample space is <u>NOT</u> symmetric.

i.e., outcomes are not equally likely.

WR Unordered Sampling

- Suppose there are *n* number of distinct elements.
- A sample of k elements is to be selected with replacement.
- The number of different unordered samples possible is

$$\binom{n+k-1}{k}$$
.

EXAMPLE: If we select 2 elements out of 4 with replacement, then there are

$$\binom{4+2-1}{2} = \binom{5}{2} = 10$$

different unordered samples possible.

Outline

Addition Rule

2 Product Rule

Number of samples

Examples: Use of combinatorics in probability

If we toss a fair coin 20 times, what is the probability of getting exactly one head?

If we toss a fair coin 20 times, what is the probability of getting exactly k heads?

If we randomly pick two cards from a pack of cards without replacement, what is the chance that both selected cards are diamonds?

If we randomly pick two cards from a pack of cards without replacement, what is the chance that one diamond and one spade are selected?

If we randomly pick 2 cards from a pack of cards without replacement, what is the chance that exactly one diamond is selected?