The **xtable** Gallery

Jonathan Swinton and others

October 21, 2015

Contents

1	Introduction	2
2	Gallery	2
	2.1 Data frame	2
	2.2 Matrix	2
	2.3 aov	3
	2.4 lm	3
	2.5 glm	4
	2.6 prcomp	4
	2.7 Time series	5
3	Automatic formatting	6
	3.1 Suggest alignment, digits, and display	6
	3.2 Shorthand notation	6
4	Sanitization	7
	4.1 Markup in tables	8
5	Format examples	8
	5.1 Adding a centering environment	8
	5.2 Column alignment	9
	5.3 Number of digits	10
	5.4 Suppress row/column names	11
	5.5 Rotate row/column names	13
	5.6 Horizontal lines	14
	5.7 Table level commands	15
	5.8 Long tables	15
	5.9 Use of add.to.row argument	18
	5.10 Sideways tables	18
	5.11 Rescaled tables	20
	5.12 Aligning fixed width columns	20
	5.13 Table width	21
6	Suppressing printing	21
7	Acknowledgements	22
8	Session information	22

1 Introduction

This document gives a gallery of tables which can be made using the **xtable** package to create LATEX output. It doubles as a regression check for the package.

The first step is to load the package and set an option for this document.

```
library(xtable)
options(xtable.floating = FALSE)
```

2 Gallery

2.1 Data frame

```
data(tli)
xtable(tli[1:10, ])
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	Μ	YES	HISPANIC	43
2	7	\mathbf{M}	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	\mathbf{M}	YES	HISPANIC	65
5	8	\mathbf{M}	YES	WHITE	75
6	5	\mathbf{M}	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	\mathbf{M}	YES	BLACK	79
9	6	\mathbf{M}	NO	WHITE	88
10	7	\mathbf{M}	YES	HISPANIC	87

2.2 Matrix

```
design.matrix <- model.matrix(~ sex*grade, data = tli[1:10, ])
xtable(design.matrix, digits = 0)</pre>
```

	(Intercept)	sexM	grade	sexM:grade
1	1	1	6	6
2	1	1	7	7
3	1	0	5	0
4	1	1	3	3
5	1	1	8	8
6	1	1	5	5
7	1	0	8	0
8	1	1	4	4
9	1	1	6	6
_10	1	1	7	7

2.3 aov

fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)
xtable(fm1)</pre>

	Df	$\operatorname{Sum} \operatorname{Sq}$	Mean Sq	F value	Pr(>F)
sex	1	75.37	75.37	0.38	0.5417
ethnicty	3	2572.15	857.38	4.27	0.0072
grade	1	36.31	36.31	0.18	0.6717
disadvg	1	59.30	59.30	0.30	0.5882
Residuals	93	18682.87	200.89		

2.4 lm

fm2 <- lm(tlimth ~ sex*ethnicty, data = tli)
xtable(fm2)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	73.6364	4.2502	17.33	0.0000
sexM	-1.6364	5.8842	-0.28	0.7816
ethnictyHISPANIC	-9.7614	6.5501	-1.49	0.1395
ethnictyOTHER	15.8636	10.8360	1.46	0.1466
ethnictyWHITE	4.7970	4.9687	0.97	0.3368
sexM:ethnictyHISPANIC	10.6780	8.7190	1.22	0.2238
sexM:ethnictyWHITE	5.1230	7.0140	0.73	0.4670

Anova table (one model)

xtable(anova(fm2))

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
sex	1	75.37	75.37	0.38	0.5395
ethnicty	3	2572.15	857.38	4.31	0.0068
sex:ethnicty	2	298.43	149.22	0.75	0.4748
Residuals	93	18480.04	198.71		

$Anova\ table\ (two\ models)$

fm2b <- lm(tlimth ~ ethnicty, data = tli)
xtable(anova(fm2b, fm2))</pre>

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	96	19053.59				
2	93	18480.04	3	573.55	0.96	0.4141

2.5 glm

fm3 <- glm(disadvg ~ ethnicty*grade, data = tli, family = binomial)
xtable(fm3)</pre>

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	3.1888	1.5966	2.00	0.0458
ethnictyHISPANIC	-0.2848	2.4808	-0.11	0.9086
ethnictyOTHER	212.1701	22122.7093	0.01	0.9923
ethnictyWHITE	-8.8150	3.3355	-2.64	0.0082
grade	-0.5308	0.2892	-1.84	0.0665
ethnictyHISPANIC:grade	0.2448	0.4357	0.56	0.5742
ethnictyOTHER:grade	-32.6014	3393.4687	-0.01	0.9923
ethnicty WHITE: grade	1.0171	0.5185	1.96	0.0498

$Analysis\ of\ deviance$

xtable(anova(fm3))

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

2.6 prcomp

pr1 <- prcomp(USArrests)
xtable(pr1)</pre>

	PC1	PC2	PC3	PC4
Murder	0.0417	-0.0448	0.0799	-0.9949
Assault	0.9952	-0.0588	-0.0676	0.0389
UrbanPop	0.0463	0.9769	-0.2005	-0.0582
Rape	0.0752	0.2007	0.9741	0.0723

xtable(summary(pr1))

	PC1	PC2	PC3	PC4
Standard deviation	83.7324	14.2124	6.4894	2.4828
Proportion of Variance	0.9655	0.0278	0.0058	0.0008
Cumulative Proportion	0.9655	0.9933	0.9991	1.0000

2.7 Time series

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1954							1	2	4	5	7	9
1955	10	11	13	14	15	16	17	17	17	18	20	22
1956	22	23	25	26	28	30	30	30	31	31	31	32
1957	35	37	37	38	37	37	39	42	45	46	45	46
1958	45	48	49	49	51	50	51	53	55	56	56	56
1959	59	60	59	58	58	58	60	59	60	61	63	63
1960	65	64	63	65	65	67	68	68	69	70	72	72
1961	73	73	73	74	75	76	79	81	83	83	85	84
1962	83	85	87	88	88	90	90	91	93	95		

3 Automatic formatting

3.1 Suggest alignment, digits, and display

The functions xalign, xdigits, and xdisplay are useful for formatting tables in a sensible way. Consider the output produced by the default formatting.

```
dat <- mtcars[1:3, 1:6]
x <- xtable(dat)
x</pre>
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.00	6.00	160.00	110.00	3.90	2.62
Mazda RX4 Wag	21.00	6.00	160.00	110.00	3.90	2.88
Datsun 710	22.80	4.00	108.00	93.00	3.85	2.32

Now change the default alignment, digits and display using helper functions xalign, xdigits, and xdisplay. This produces a better format as shown below.

```
align(x) <- xalign(x)
digits(x) <- xdigits(x)
display(x) <- xdisplay(x)
x</pre>
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320

3.2 Shorthand notation

For convenience, the three 'autoformat' functions (xalign, xdigits, and xdisplay) can be applied together when an xtable is created, using the auto argument:

```
xtable(dat, auto = TRUE)
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320

Similarly, the autoformat function can be used to postprocess an existing xtable:

```
x <- xtable(dat)
autoformat(x)</pre>
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320

4 Sanitization

	Name	&><_%\$\#^~{}
1	Ampersand	&
2	Greater than	>
3	Less than	<
4	Underscore	-
5	Per cent	%
6	Dollar	\$
7	Backslash	\
8	Hash	#
9	Caret	^
10	Tilde	~
11	Left brace	{
12	Right brace	}

Sometimes you might want to have your own sanitization function.

	Column
1	Value_is 10 ⁻¹
2	Value_is 10^{-2}

³ Value_is 10^{-3}

4.1 Markup in tables

Markup can be included in tables, including in column and row names, by using a custom sanitize.text.function.

```
\label{eq:mat_solution} $$ \max <- \operatorname{round}(\operatorname{matrix}(c(0.9, 0.89, 200, 0.045, 2.0), c(1, 5)), 4) $$ rownames(\operatorname{mat}) <- "$y_{t-1}$" $$ colnames(\operatorname{mat}) <- c("$R^2$", "$\bar{x}$", "F-stat", "S.E.E", "DW") $$ mat <- xtable(\operatorname{mat}) $$ print(\operatorname{mat}, sanitize.text.function = function(x) {x}) $$
```

			F-stat		
y_{t-1}	0.90	0.89	200.00	0.04	2.00

You can also have sanitize functions that are specific to column or row names. In the table below, the row name is not sanitized but column names and table elements are.

	Income (US\$)	Expenses (US\$)	Profit (US\$)
α	\$1,000	\$900	\$100

5 Format examples

5.1 Adding a centering environment

```
print(xtable(anova(fm3), caption = "\\tt latex.environments = \"\""),
    floating = TRUE, latex.environments = "")
```

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

Table 1: latex.environments = ""

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

Table 2: latex.environments = "center"

5.2 Column alignment

```
tli.table <- xtable(tli[1:10, ])
align(tli.table) <- rep("r", 6)
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	M	YES	HISPANIC	43
2	7	\mathbf{M}	NO	BLACK	88
3	5	\mathbf{F}	YES	HISPANIC	34
4	3	\mathbf{M}	YES	HISPANIC	65
5	8	\mathbf{M}	YES	WHITE	75
6	5	\mathbf{M}	NO	BLACK	74
7	8	\mathbf{F}	YES	HISPANIC	72
8	4	\mathbf{M}	YES	BLACK	79
9	6	\mathbf{M}	NO	WHITE	88
10	7	\mathbf{M}	YES	HISPANIC	87

$Left\ aligned\ strings\ with\ column\ lines$

```
align(tli.table) <- "|rrl|1|1r|"
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	Μ	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	\mathbf{F}	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	\mathbf{F}	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	Μ	YES	HISPANIC	87

$Fixed\ width\ columns$

```
align(tli.table) <- "|rr|lp{3cm}l|r|"
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	M	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	M	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	Μ	YES	HISPANIC	87

5.3 Number of digits

One number for all columns,

```
display(tli.table)[c(2,6)] <- "f"
digits(tli.table) <- 3
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6.000	M	YES	HISPANIC	43.000
2	7.000	M	NO	BLACK	88.000
3	5.000	F	YES	HISPANIC	34.000
4	3.000	M	YES	HISPANIC	65.000
5	8.000	M	YES	WHITE	75.000
6	5.000	Μ	NO	BLACK	74.000
7	8.000	F	YES	HISPANIC	72.000
8	4.000	Μ	YES	BLACK	79.000
9	6.000	Μ	NO	WHITE	88.000
10	7.000	Μ	YES	HISPANIC	87.000

or one for each column, including the row names,

```
digits(tli.table) <- 1:(ncol(tli)+1)
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6.00	M	YES	HISPANIC	43.000000
2	7.00	Μ	NO	BLACK	88.000000
3	5.00	F	YES	HISPANIC	34.000000
4	3.00	Μ	YES	HISPANIC	65.000000
5	8.00	Μ	YES	WHITE	75.000000
6	5.00	Μ	NO	BLACK	74.000000
7	8.00	F	YES	HISPANIC	72.000000
8	4.00	Μ	YES	BLACK	79.000000
9	6.00	Μ	NO	WHITE	88.000000
10	7.00	Μ	YES	HISPANIC	87.000000

or as a full matrix.

```
digits(tli.table) <- matrix(0:4, nrow = 10, ncol = ncol(tli)+1)
tli.table</pre>
```

			1. 1	. 1	. 11 . 1
	grade	sex	disadvg	$_{ m ethnicty}$	tlimth
1	6	M	YES	HISPANIC	43
2	7.0	M	NO	BLACK	88.0
3	5.00	F	YES	HISPANIC	34.00
4	3.000	M	YES	HISPANIC	65.000
5	8.0000	M	YES	WHITE	75.0000
6	5	M	NO	BLACK	74
7	8.0	F	YES	HISPANIC	72.0
8	4.00	M	YES	BLACK	79.00
9	6.000	M	NO	WHITE	88.000
10	7.0000	M	YES	HISPANIC	87.0000

5.4 Suppress row/column names

$Suppress\ row\ names$

```
tli.table <- xtable(tli[1:10, ])
print(tli.table, include.rownames = FALSE)</pre>
```

grade	sex	disadvg	ethnicty	tlimth
6	Μ	YES	HISPANIC	43
7	M	NO	BLACK	88
5	F	YES	HISPANIC	34
3	M	YES	HISPANIC	65
8	${\bf M}$	YES	WHITE	75
5	${\bf M}$	NO	BLACK	74
8	\mathbf{F}	YES	HISPANIC	72
4	${\bf M}$	YES	BLACK	79
6	${\bf M}$	NO	WHITE	88
7	\mathbf{M}	YES	HISPANIC	87

If you want a vertical line on the left, you need to change the <code>align</code> attribute.

```
align(tli.table) <- "|r|r|lp{3cm}1|r|"
print(tli.table, include.rownames = FALSE)</pre>
```

grade	sex	disadvg	ethnicty	tlimth
6	M	YES	HISPANIC	43
7	M	NO	BLACK	88
5	F	YES	HISPANIC	34
3	M	YES	HISPANIC	65
8	M	YES	WHITE	75
5	M	NO	BLACK	74
8	F	YES	HISPANIC	72
4	M	YES	BLACK	79
6	M	NO	WHITE	88
7	M	YES	HISPANIC	87

Revert the alignment to what is was before.

```
align(tli.table) <- "|rr|lp{3cm}l|r|"
```

$Suppress\ column\ names$

print(tli.table, include.colnames = FALSE)

1	6	M	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	Μ	YES	HISPANIC	87

Note the doubled header lines which can be suppressed.

1	6	M	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	M	YES	HISPANIC	87

$Suppress\ row\ and\ column\ names$

print(tli.table, include.colnames = FALSE, include.rownames = FALSE)

6	M	YES	HISPANIC	43
7	M	NO	BLACK	88
5	F	YES	HISPANIC	34
3	M	YES	HISPANIC	65
8	M	YES	WHITE	75
5	M	NO	BLACK	74
8	F	YES	HISPANIC	72
4	M	YES	BLACK	79
6	M	NO	WHITE	88
7	M	YES	HISPANIC	87
				•

5.5 Rotate row/column names

The rotate.rownames and rotate.colnames arguments can be used to rotate the row and/or column names. This requires \usepackage{rotating} in the LATEX preamble.

print(tli.table, rotate.rownames = TRUE, rotate.colnames = TRUE)

	grade	sex	disadvg	ethnicty	tlimth
-	6	M	YES	HISPANIC	43
2	7	M	NO	BLACK	88
က	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
ಬ	8	Μ	YES	WHITE	75
9	5	Μ	NO	BLACK	74
<u>~</u>	8	F	YES	HISPANIC	72
∞	4	Μ	YES	BLACK	79
6	6	Μ	NO	WHITE	88
10	7	Μ	YES	HISPANIC	87

5.6 Horizontal lines

Line locations

Use the hline.after argument to specify the position of the horizontal lines.

print(xtable(anova(fm3)), hline.after = c(1))

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

Line styles

Specifying booktabs = TRUE will generate three line types. By default, when no value is given for hline.after, a \toprule will be drawn above the table, a \midrule after the table headings and a \bottomrule below the table. This requires \usepackage{booktabs} in the LATEX preamble.

The top and bottom rules are slightly thicker than the mid rule. The thickness of the lines can be set via the LATEX lengths \heavyrulewidth and \lightrulewidth.

```
tli.table <- xtable(tli[1:10, ])
print(tli.table, include.rownames = FALSE, booktabs = TRUE)</pre>
```

grade	sex	disadvg	ethnicty	tlimth
6	Μ	YES	HISPANIC	43
7	Μ	NO	BLACK	88
5	\mathbf{F}	YES	HISPANIC	34
3	\mathbf{M}	YES	HISPANIC	65
8	\mathbf{M}	YES	WHITE	75
5	Μ	NO	BLACK	74
8	\mathbf{F}	YES	HISPANIC	72
4	\mathbf{M}	YES	BLACK	79
6	\mathbf{M}	NO	WHITE	88
7	Μ	YES	HISPANIC	87

If hline.after includes -1, a \toprule will be drawn above the table. If hline.after includes the number of rows in the table, a \bottomrule will be drawn below the table. For any other values specified in hline.after, a \midrule will be drawn after that line of the table.

The following table has more than one \midrule.

```
bktbs <- xtable(matrix(1:10, ncol = 2))
hlines <- c(-1, 0, 1, nrow(bktbs))
print(bktbs, booktabs = TRUE, hline.after = hlines)</pre>
```

	1	2
1	1	6
2	2	7
3	3	8
4	4	9
5	5	10

5.7 Table level commands

print(xtable(anova(fm3)), size = "large")

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

 $print(xtable(anova(fm3)), \ size = "\\ \ | \{12pt\}")$

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

5.8 Long tables

Requires \usepackage{longtable} in the LATEX preamble.

```
x <- matrix(rnorm(1000), ncol = 10)
x.big <- xtable(x, caption = "A \\code{longtable} spanning several pages")
print(x.big, hline.after=c(-1, 0), tabular.environment = "longtable")</pre>
```

	1	2	3	4	5	6	7	8	9	10
1	-1.81	-0.38	0.26	0.53	-1.68	1.12	0.13	0.93	-0.55	0.87
2	-1.91	0.01	0.70	0.72	-0.15	0.45	0.36	0.31	0.52	0.96
3	-1.08	-0.99	-1.10	-0.12	-0.69	1.04	-1.91	0.47	-1.68	0.12
4	1.48	-0.64	1.13	-1.95	0.30	-0.68	1.25	0.48	-0.07	0.40
5	0.10	-0.14	-0.88	0.95	0.19	-0.09	-0.30	0.64	1.36	1.41
6	-0.55	1.60	-1.26	0.60	-0.16	-0.23	-3.23	-0.66	-1.00	-0.58
7	0.55	0.29	1.52	0.92	-0.81	0.15	-1.17	-0.24	0.49	-0.11
8	-0.48	2.19	-0.00	-0.26	-0.98	0.71	-1.70	0.53	0.57	-2.21
9	-0.41	-0.89	-0.87	-0.50	0.66	-1.47	-0.98	0.28	-0.80	0.11
10	1.06	-1.06	0.15	1.33	-1.14	0.22	1.00	-0.72	-0.94	-1.08
11	0.44	-0.14	-0.08	-1.06	-0.37	0.64	-1.25	0.27	-0.44	-1.86
12	0.92	0.82	0.21	-0.43	0.34	2.27	-1.36	1.08	1.62	0.38
13	-1.08	1.18	0.09	-0.64	-1.00	0.93	-0.17	-0.99	1.22	-0.42
14	-0.28	-0.67	1.30	1.00	-1.40	-0.59	-2.37	0.76	2.18	-1.46
15	-0.74	0.25	0.45	-1.96	-0.22	-0.44	-0.45	-0.66	0.01	0.42
16	0.32	1.87	-1.32	0.02	0.61	1.55	-0.90	-1.24	0.19	1.01
17	1.25	-1.40	1.24	-0.09	-1.73	-0.22	-0.89	0.26	0.33	-1.21
18	-0.06	-0.54	-1.13	0.80	-0.75	0.11	-1.24	0.27	-0.43	-0.78
19	-1.47	-0.11	-1.01	0.72	0.36	0.39	-0.37	-1.22	1.46	-1.13
20	1.23	0.06	-0.31	-1.34	-1.68	1.02	-1.27	-0.64	0.28	0.76
21	-0.24	0.92	2.20	-0.06	-0.99	0.89	0.47	0.22	-1.47	-0.97
22	-1.69	-0.08	0.60	-0.82	-0.57	-0.29	1.83	-1.96	0.22	-0.75
23	-1.64	-1.43	0.31	0.07	0.24	1.04	0.77	-1.04	-2.22	1.93
24	-0.08	1.07	0.85	1.04	-0.97	-0.09	-0.54	0.54	0.14	-1.34
25	0.59	1.48	-2.20	1.31	0.69	0.86	0.50	-0.15	0.42	-0.77
26	-0.75	-1.84	-0.42	-0.13	-1.02	0.42	-0.06	-1.12	-0.83	-0.67
27	1.32	-1.66	-0.68	-1.82	-0.56	-1.75	-1.68	-1.40	0.55	0.68
28	0.37	-0.16	0.76	0.19	0.26	-0.43	-0.97	-0.64	0.58	0.74
29	0.59	-0.14	-0.22	0.06	-0.14	1.85	1.83	0.05	-0.67	-0.82

30	-1.60	1.93	0.96	1.35	0.88	0.62	-0.86	-0.49	-0.96	0.67
31	0.88	0.73	-0.06	-0.88	0.68	0.06	1.39	1.29	-0.63	-0.54
32	-0.97	0.89	-0.02	0.64	-0.84	-0.52	1.29	0.97	-0.53	0.60
33	-0.07	1.89	0.38	2.08	-0.48	-0.90	0.72	-0.62	-0.54	0.95
34	0.48	-1.91	0.77	-0.19	-0.18	0.05	0.64	-0.91	-0.85	-1.82
35	0.79	-0.68	0.39	2.36	-0.72	-1.62	0.21	1.33	-0.14	-0.09
36	-0.86	1.31	0.44	-0.45	2.16	-0.42	-1.13	-2.79	0.09	-1.22
37	-2.35	0.24	-0.83	-0.41	1.55	-0.63	-0.27	-0.49	-0.12	0.71
38	$\frac{-2.33}{2.01}$	1.96	1.50	0.37	0.11	-1.25	-2.07	-0.43	-0.12	0.71
39	0.12	-0.43	-0.57	1.24	0.37	0.13	-2.15	-0.17	1.05	-1.62
40	-0.77	-2.57	0.73	1.06	-0.05	1.65	1.86	-1.58	0.82	0.23
41	0.77	0.18	-1.25	0.10	-0.01	-0.61	-1.04	1.16	-0.99	1.33
42	-1.10	0.97	0.96	0.31	0.09	0.29	0.10	1.62	0.29	0.09
43	-0.40	-0.49	2.14	-0.37	0.89	1.04	1.71	-0.15	-0.05	-1.25
44	1.29	0.14	-1.29	-0.49	-2.16	-0.43	-0.07	-0.22	0.77	-0.12
45	0.87	-0.80	-0.50	-0.63	-0.65	0.60	0.02	0.07	1.47	-1.84
46	0.55	0.96	-0.59	0.57	0.11	0.32	-1.91	-0.08	0.79	-0.18
47	-0.63	-0.58	0.39	-0.67	1.20	2.12	-1.93	-2.50	-0.84	1.07
48	0.20	-0.02	-1.69	-1.51	-0.96	-0.32	0.72	-1.88	0.43	0.19
49	0.89	-1.87	0.28	2.28	1.83	0.04	0.26	-1.26	-1.82	-0.21
50	0.72	0.34	1.68	-0.97	-1.12	1.82	0.03	-0.07	-0.78	-0.80
51	-1.67	0.22	1.43	0.69	0.15	0.17	-1.66	-0.41	-0.25	1.20
52	0.75	0.05	-1.23	-1.28	0.40	-0.31	-3.50	-0.13	1.08	-0.30
$\frac{52}{53}$			-0.66		1.10					
	-0.44	0.43		-0.28		-0.55	0.00	1.64	-0.87	-1.79
54	0.25	-0.55	-0.62	0.49	-1.52	0.66	0.42	-0.20	-0.04	-0.01
55	-0.66	0.97	-1.50	-0.85	1.31	-0.62	-0.67	0.03	1.52	-0.96
56	0.50	0.26	-0.33	1.32	0.07	-1.26	0.65	-1.36	-0.13	0.23
57	-0.31	-0.25	-1.37	-2.10	1.71	-1.04	-0.75	-0.82	0.49	-1.33
58	0.54	0.01	0.29	-0.57	-0.03	-0.25	-1.55	-0.43	-0.07	-0.92
59	0.21	-0.26	1.29	0.53	1.89	0.52	-1.72	-1.19	-0.49	1.64
60	0.84	1.51	-0.16	-0.01	-0.13	-0.56	2.02	0.83	1.37	-1.19
61	-0.39	-0.38	-0.37	1.16	1.09	0.40	1.24	0.34	-0.00	-0.83
62	-0.79	-0.23	-0.24	-0.40	-1.17	-0.47	-0.24	-0.68	0.60	-0.97
63	-0.65	-0.56	0.46	-0.42	-0.22	1.55	-0.57	-1.92	-1.65	-0.06
64	1.04	-0.51	1.29	-0.47	0.43	-2.36	0.79	-0.21	0.73	-0.66
65	-1.14	-0.92	1.67	2.28	-0.54	1.77	-0.89	-0.34	-1.05	-0.64
66	0.05	-0.73	-0.12	-0.54	0.82	-0.83	-0.82	0.24	0.50	1.95
67	1.12	0.96	-0.16	0.35	0.74	0.03	-2.22	-0.11	-0.91	0.18
68	0.44	-0.68	-1.02	0.35 0.19	0.74 0.51	1.40	0.32	-0.25	-0.04	-0.21
69	0.55	-0.58	0.30	-0.42	1.17	-1.57	0.79	0.77	-1.53	-1.09
70	0.00	-0.01	0.06	0.27	0.82	-1.56	-0.40	-1.47	0.61	0.41
71	0.26	-1.66	-1.07	-1.11	-0.08	-1.49	-2.21	-0.17	2.70	0.04
72	0.39	0.25	-0.57	1.51	-0.43	0.46	1.83	-1.27	0.41	-0.23
73	-1.89	1.38	-0.08	-1.51	1.05	-0.49	-1.15	1.44	-0.20	-0.72
74	1.12	1.80	-0.70	-0.10	0.70	-0.00	-1.67	-0.08	-0.05	0.50
75	-1.75	-0.44	-0.18	0.01	-2.18	0.04	0.74	-0.02	0.80	-0.57
76	-1.76	0.88	-0.14	-1.92	-1.47	-0.96	-0.26	0.36	0.32	-1.00
77	0.35	-0.31	0.58	-0.40	1.23	-2.21	0.56	-0.03	-1.23	-1.69
78	0.30	1.10	-0.01	-0.16	-0.10	-1.44	0.58	-0.20	-0.54	0.21
79	0.45	0.35	0.12	0.07	1.60	-0.10	0.63	-0.52	0.27	0.84
80	1.00	0.14	-0.26	-0.75	0.72	0.57	1.01	1.50	0.04	-0.32
81	-0.48	1.04	0.23	-0.74	-1.02	-0.82	-0.44	0.54	-2.41	-1.94
82	-0.62	-0.46	-1.05	0.05	-0.84	-0.87	1.09	-0.62	1.76	1.29
83	-0.95	0.40	0.29	1.78	0.36	-1.99	-0.11	1.38	-0.56	-1.67
84	0.50	0.01 0.26	1.61	-1.31	-0.07	-1.12	1.08	0.33	-1.46	-2.16
85	-0.10		-1.43	-0.96	0.07	0.38	1.33	-1.02	-1.40	$\frac{-2.10}{1.50}$
		-1.05								
86	-0.98	0.22	0.85	1.45	1.58	0.51	0.36	0.83	1.15	-0.78

87	-1.62	0.02	-0.46	1.24	-1.10	-0.22	1.03	1.09	-0.20	0.17
88	1.60	1.36	-1.94	-0.95	0.93	0.52	-2.63	0.01	1.42	0.23
89	-0.17	2.01	0.14	-0.58	-1.20	-0.03	0.32	-0.55	1.16	0.32
90	-0.45	0.49	0.44	0.90	0.89	-0.43	-1.87	-0.41	-0.08	-0.43
91	0.74	0.80	0.04	0.92	-1.16	0.52	-0.12	-0.00	-1.41	0.71
92	1.04	-0.34	-0.29	-1.17	0.10	-0.12	-1.11	0.32	0.79	0.24
93	0.42	-0.04	0.02	-0.20	-1.52	-1.04	-0.35	-1.71	0.75	1.46
94	0.38	-0.97	2.26	0.35	-0.40	1.88	0.06	0.47	0.19	-0.48
95	-0.34	-0.48	-0.05	-0.44	0.68	0.39	0.35	1.32	-0.97	-0.11
96	-1.80	0.05	0.28	0.10	-0.63	0.68	1.63	0.25	1.32	-0.73
97	-0.21	-0.98	-0.80	-0.61	0.63	-1.37	1.19	1.68	-0.51	-0.68
98	-1.33	-0.58	1.25	-1.34	0.79	-0.92	0.22	0.81	-1.79	0.45
99	-0.89	-0.85	-0.41	0.52	0.42	1.19	2.08	0.32	-0.50	-0.88
100	-0.96	-0.87	0.85	1.31	-1.39	0.48	2.21	0.70	-0.87	0.02

Table 3: A longtable spanning several pages

5.9 Use of add.to.row argument

The following frequency table has outer dimnames: Grade3 and Grade6.

```
Grade3 <- c("A","B","B","A","B","C","C","D","A","B",</pre>
             "C", "C", "C", "D", "B", "B", "D", "C", "C", "D")
Grade6 <- c("A","A","A","B","B","B","B","B","C","C",</pre>
            "A","C","C","C","D","D","D","D","D","D")
Cohort <- table(Grade3, Grade6)</pre>
Cohort
##
         Grade6
## Grade3 A B C D
    A 1 1 1 0
##
        B 2 1 1 2
        C 1 2 2 2
##
##
   D 0 1 1 2
```

The default behavior of print.xtable is to strip outer dimnames.

xtable(Cohort)

	A	В	С	D
A	1	1	1	0
В	2	1	1	2
\mathbf{C}	1	2	2	2
D	0	1	1	2

The desired column labels can be created using add.to.row, in this case applying two commands to "row number zero" while suppressing the basic column names.

	Grade 6						
${\rm Grade}\ 3$	A	В	\mathbf{C}	D			
A	1	1	1	0			
В	2	1	1	2			
\mathbf{C}	1	2	2	2			
D	0	1	1	2			

5.10 Sideways tables

Requires \usepackage{rotating} in the LaTeX preamble. Sideways tables can't be forced in place with the [H] specifier, but you can use the \clearpage command to get them fairly nearby.

```
x <- x[1:30, ]
x.side <- xtable(x, caption = "A sideways table")
print(x.side, floating = TRUE, floating.environment = "sidewaystable")</pre>
```

1 -1.81 2 -1.91 3 -1.08 4 1.48 5 0.10 6 -0.55 7 0.55 8 -0.48 9 -0.41 10 1.06 11 0.44 12 0.92 13 -1.08 14 -0.28 15 -0.74 16 0.32 17 1.25 18 -0.06	-0.38 0.01 -0.99 -0.64 -0.14 1.60 0.29 -0.89 -0.89 -0.14 0.82	0.26 0.70 -1.10 1.13 -0.88 -1.26 1.52 -0.00 -0.87 0.15 0.15	0.53 0.72 -0.12 -1.95 0.95 0.92 -0.26 -0.50 -0.50 -0.43	-1.68 -0.15 -0.69 0.30 0.19 -0.16 -0.81	1.12 0.45 1.04 -0.68	0.13 0.36 -1.91	0.93 0.31 0.47	-0.55 0.52 -1.68	0.87
	0.01 -0.99 -0.64 -0.14 1.60 0.29 -0.89 -0.89 -0.14 0.82 0.82	0.70 -1.10 1.13 -0.88 -1.26 -0.00 -0.87 0.15 0.09	0.72 -0.12 -1.95 0.95 0.60 0.92 -0.26 -0.50 -1.06	-0.15 -0.69 0.30 0.19 -0.16 -0.81	0.45 1.04 -0.68	0.36 -1.91	$0.31 \\ 0.47$	0.52 -1.68	0.96
	-0.99 -0.64 -0.14 1.60 0.29 -0.89 -1.06 -0.14 0.82 1.18	-1.10 1.13 -0.88 -1.26 -0.00 -0.87 0.15 0.09	-0.12 -1.95 0.95 0.60 0.92 -0.26 -0.50 -1.06	-0.69 0.30 0.19 -0.16 -0.81	1.04	-1.91	0.47	-1.68	
	-0.64 -0.14 1.60 0.29 -0.89 -1.06 -0.14 0.82 1.18	1.13 -0.88 -1.26 -1.52 -0.00 -0.87 0.15 -0.08	-1.95 0.95 0.60 0.92 -0.26 -0.50 1.33 -1.06	$0.30 \\ 0.19 \\ -0.16 \\ -0.81 \\ -0.98$	-0.68	1			0.12
	-0.14 1.60 0.29 0.29 -0.89 -1.06 -0.14 0.82 1.18	-0.88 -1.26 1.52 -0.00 -0.87 0.15 -0.08 0.21	0.95 0.60 0.92 -0.26 -0.50 1.33 -1.06	0.19 -0.16 -0.81 -0.98		1.25	0.48	-0.07	0.40
	1.60 0.29 -0.29 -1.06 -0.14 0.82 1.18 -0.67	-1.26 1.52 -0.00 -0.87 0.15 -0.08 0.21 0.09	0.60 0.92 -0.26 -0.50 1.33 -1.06	-0.16 -0.81 -0.98	-0.09	-0.30	0.64	1.36	1.41
	0.29 2.19 -0.89 -0.14 0.82 1.18 -0.67	$ \begin{array}{c} 1.52 \\ -0.00 \\ -0.87 \\ 0.15 \\ -0.08 \\ 0.21 \\ 0.09 \end{array} $	0.92 -0.26 -0.50 1.33 -1.06	-0.81	-0.23	-3.23	-0.66	-1.00	-0.58
	2.19 -0.89 -1.06 -0.14 0.82 1.18 -0.67	-0.00 -0.87 0.15 -0.08 0.21 0.09	-0.26 -0.50 1.33 -1.06	-0.98	0.15	-1.17	-0.24	0.49	-0.11
	-0.89 -1.06 -0.14 0.82 1.18 -0.67	-0.87 0.15 -0.08 0.21 0.09	-0.50 1.33 -1.06		0.71	-1.70	0.53	0.57	-2.21
	-1.06 -0.14 0.82 1.18 -0.67 0.25	0.15 -0.08 0.21 0.09	1.33 -1.06 -0.43	0.66	-1.47	-0.98	0.28	-0.80	0.11
	-0.14 0.82 1.18 -0.67 0.25	-0.08 0.21 0.09	-1.06	-1.14	0.22	1.00	-0.72	-0.94	-1.08
	0.82 1.18 -0.67 0.25	$0.21 \\ 0.09$	-0.43	-0.37	0.64	-1.25	0.27	-0.44	-1.86
	$\frac{1.18}{-0.67}$	0.09	0	0.34	2.27	-1.36	1.08	1.62	0.38
	-0.67 0.25		-0.04	-1.00	0.93	-0.17	-0.99	1.22	-0.42
	0.25	1.30	1.00	-1.40	-0.59	-2.37	0.76	2.18	-1.46
		0.45	-1.96	-0.22	-0.44	-0.45	-0.66	0.01	0.42
	1.87	-1.32	0.02	0.61	1.55	-0.90	-1.24	0.19	1.01
	-1.40	1.24	-0.09	-1.73	-0.22	-0.89	0.26	0.33	-1.21
	-0.54	-1.13	0.80	-0.75	0.11	-1.24	0.27	-0.43	-0.78
	-0.11	-1.01	0.72	0.36	0.39	-0.37	-1.22	1.46	-1.13
	0.06	-0.31	-1.34	-1.68	1.02	-1.27	-0.64	0.28	0.76
	0.92	2.20	-0.06	-0.99	0.89	0.47	0.22	-1.47	-0.97
	-0.08	0.60	-0.82	-0.57	-0.29	1.83	-1.96	0.22	-0.75
	-1.43	0.31	0.07	0.24	1.04	0.77	-1.04	-2.22	1.93
	1.07	0.85	1.04	-0.97	-0.09	-0.54	0.54	0.14	-1.34
	1.48	-2.20	1.31	0.69	0.86	0.50	-0.15	0.42	-0.77
	-1.84	-0.42	-0.13	-1.02	0.42	-0.06	-1.12	-0.83	-0.67
	-1.66	-0.68	-1.82	-0.56	-1.75	-1.68	-1.40	0.55	0.68
	-0.16	0.76	0.19	0.26	-0.43	-0.97	-0.64	0.58	0.74
	-0.14	-0.22	0.06	-0.14	1.85	1.83	0.05	-0.67	-0.82
	1.93	0.96	1.35	0.88	0.62	-0.86	-0.49	-0.96	0.67

Table 4: A sideways table

5.11 Rescaled tables

Specify a scalebox value to rescale the table.

```
x <- x[1:20, ]
x.rescale <- xtable(x)
print(x.rescale, scalebox = 0.7)</pre>
```

	1	2	3	4	5	6	7	8	9	10
										10
1	-1.81	-0.38	0.26	0.53	-1.68	1.12	0.13	0.93	-0.55	0.87
2	-1.91	0.01	0.70	0.72	-0.15	0.45	0.36	0.31	0.52	0.96
3	-1.08	-0.99	-1.10	-0.12	-0.69	1.04	-1.91	0.47	-1.68	0.12
4	1.48	-0.64	1.13	-1.95	0.30	-0.68	1.25	0.48	-0.07	0.40
5	0.10	-0.14	-0.88	0.95	0.19	-0.09	-0.30	0.64	1.36	1.41
6	-0.55	1.60	-1.26	0.60	-0.16	-0.23	-3.23	-0.66	-1.00	-0.58
7	0.55	0.29	1.52	0.92	-0.81	0.15	-1.17	-0.24	0.49	-0.11
8	-0.48	2.19	-0.00	-0.26	-0.98	0.71	-1.70	0.53	0.57	-2.21
9	-0.41	-0.89	-0.87	-0.50	0.66	-1.47	-0.98	0.28	-0.80	0.11
10	1.06	-1.06	0.15	1.33	-1.14	0.22	1.00	-0.72	-0.94	-1.08
11	0.44	-0.14	-0.08	-1.06	-0.37	0.64	-1.25	0.27	-0.44	-1.86
12	0.92	0.82	0.21	-0.43	0.34	2.27	-1.36	1.08	1.62	0.38
13	-1.08	1.18	0.09	-0.64	-1.00	0.93	-0.17	-0.99	1.22	-0.42
14	-0.28	-0.67	1.30	1.00	-1.40	-0.59	-2.37	0.76	2.18	-1.46
15	-0.74	0.25	0.45	-1.96	-0.22	-0.44	-0.45	-0.66	0.01	0.42
16	0.32	1.87	-1.32	0.02	0.61	1.55	-0.90	-1.24	0.19	1.01
17	1.25	-1.40	1.24	-0.09	-1.73	-0.22	-0.89	0.26	0.33	-1.21
18	-0.06	-0.54	-1.13	0.80	-0.75	0.11	-1.24	0.27	-0.43	-0.78
19	-1.47	-0.11	-1.01	0.72	0.36	0.39	-0.37	-1.22	1.46	-1.13
20	1.23	0.06	-0.31	-1.34	-1.68	1.02	-1.27	-0.64	0.28	0.76

5.12 Aligning fixed width columns

Note that using specifications such as $p\{2cm\}$ always produces a **left aligned** column. What if some other alignment is desired?

This is not really a problem with **xtable** but with the formatting of tables with fixed width columns and different alignments using standard LAT_EX.

One solution is to use the array package, defining new column formats.

```
\newcolumntype{L}[1]{>{\raggedright\let\newline\\
    \arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\
    \arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\
    \arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{P}[1]{>{\raggedright\tabularxbackslash}p{#1}}
```

These allow for very sophisticated cell formatting, namely left-aligned, centred, or right-aligned text, with recognition of line breaks for the first three new column types. If these lines are included along with \usepackage{array}, then the following is possible.

name	right	left	text
A	1.40	1.40	txt1
В	34.60	34.60	txt2

5.13 Table width

The tabularx environment is for typesetting tables whose overall width is fixed. The column alignment code X denotes columns that will be stretched to achieve the desired table width. Requires \usepackage{tabularx} in the LATEX preamble.

	One	Two	Three	Four
1	item 1	item 2	item 3	item 4
2	A	В	C	D

6 Suppressing printing

By default the print method will print the LATEX or HTML to standard output and also return the character strings invisibly. The printing to standard output can be suppressed by specifying print.results = FALSE.

```
x.out <- print(tli.table, print.results = FALSE)</pre>
```

Formatted output can also be captured without printing with the toLatex method. This function returns an object of class "Latex".

```
x.ltx <- toLatex(tli.table)</pre>
class(x.ltx)
## [1] "Latex"
x.ltx
## \% latex table generated in R 3.2.2 by xtable 1.8-0 package
## % Wed Oct 21 23:30:41 2015
## \begin{tabular}{rrlllr}
##
    \hline
## & grade & sex & disadvg & ethnicty & tlimth \\
##
   \hline
        6 & M & YES & HISPANIC & 43 \\
## 1 &
    2 & 7 & M & NO & BLACK & 88 \\
##
    3 & 5 & F & YES & HISPANIC & 34 \\
##
          3 & M & YES & HISPANIC & 65 \\
##
    4 &
##
    5 &
          8 & M & YES & WHITE & 75 \\
##
    6 &
         5 & M & NO & BLACK & 74 \\
    7 &
         8 & F & YES & HISPANIC & 72 \\
##
##
    8 & 4 & M & YES & BLACK & 79 \\
##
    9 &
          6 & M & NO & WHITE & 88 \\
          7 & M & YES & HISPANIC & 87 \\
##
    10 &
##
     \hline
## \end{tabular}
```

7 Acknowledgements

Most of the examples in this gallery are taken from the **xtable** documentation. Two examples (add.to.row and 'Aligning fixed width columns') are from Stack Exchange.

8 Session information

toLatex(sessionInfo())

- R version 3.2.2 (2015-08-14), x86_64-w64-mingw32
- Locale: LC_COLLATE=C, LC_CTYPE=English_New Zealand.1252, LC_MONETARY=English_New Zealand.1252, LC_NUMERIC=C, LC_TIME=English_New Zealand.1252
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: knitr 1.11, xtable 1.8-0
- Loaded via a namespace (and not attached): evaluate 0.8, formatR 1.2.1, highr 0.5.1, magrittr 1.5, stringi 0.5-5, stringr 1.0.0, tools 3.2.2