Insights from Comparing PPP Model Hamiltonian with Tight Binding Model

Zahra Karimi

January 26, 2025

Outline

Hamiltonians Overview

Tight Binding Model

Hückel Model

Hubbard Model

PPP Model

PPP + Hubbard term

Coulomb Interaction Parameters

Results

Conclusion

Hamiltonians Overview

Hamiltonian	Hamiltonian Terms
Tight-Binding	$\hat{H} = \sum_{i} \epsilon_{i} c_{i}^{\dagger} c_{i} + \sum_{\langle i,j \rangle} t_{ij} c_{i}^{\dagger} c_{j}$
Hückel-Model	$\hat{H} = \sum_i \epsilon_i c_i^\dagger c_i + \sum_{\langle i,j angle} t_{ij} c_i^\dagger c_j$
Hubbard-Model	$\hat{H} = \sum_{i} \epsilon_{i} c_{i}^{\dagger} c_{i} + \sum_{\langle i,j \rangle} t_{ij} c_{i}^{\dagger} c_{j} + \sum_{i} U n_{i\uparrow} n_{i\downarrow}$
PPP-Model	$\hat{H} = \sum_i \epsilon_i c_i^\dagger c_i + \sum_{\langle i,j \rangle} t_{ij} c_i^\dagger c_j + \sum_{\langle i,j \rangle} m{V}_{ij} m{n}_i m{n}_j$
PPP+Hubbard term	$\hat{H} = \sum_{i} \epsilon_{i} c_{i}^{\dagger} c_{i} + \sum_{\langle i,j \rangle} t_{ij} c_{i}^{\dagger} c_{j} + \sum_{\langle i,j \rangle} \mathbf{V}_{ij} \mathbf{n}_{i} \mathbf{n}_{j} + \sum_{i} U \mathbf{n}_{i\uparrow} \mathbf{n}_{i\downarrow}$

Tight Binding Model

The tight-binding model in second quantization is given by:

$$\hat{H} = \sum_i \epsilon_i \hat{n}_i + \sum_{\langle i,j
angle} t_{ij} \left(\hat{c}_i^\dagger \hat{c}_j + \hat{c}_j^\dagger \hat{c}_i
ight)$$

where ϵ_i is the onsite energy and t_{ij} is the hopping parameter between sites i and j.

Hückel Model

The Hückel model is a special case of the tight-binding model, with the onsite energies ϵ_i and the hopping energy t_{ij} being constant.

$$\hat{H} = H_{TB} \tag{1}$$

Hubbard Model

The Hubbard interaction is added to the Hamiltonian to describe electron-electron repulsion on the same site:

$$\hat{H} = \hat{H}_{TB} + \sum_{i} U n_{i\uparrow} n_{i\downarrow}$$

where U is the Coulomb repulsion and $n_{i\uparrow}$, $n_{i\downarrow}$ are the number operators for spin-up and spin-down electrons at site i.

PPP Model

The PPP model extends the tight-binding model by including distance-dependent electron-electron interactions:

$$\hat{H} = \hat{H}_{TB} + \sum_{\langle i,j \rangle} V_{ij} n_i n_j$$

where V_{ij} represents the long-range columb interaction between site i and j.

PPP + Hubbard term

The final model combines both the PPP model and the Hubbard model:

$$\hat{H} = \hat{H}_{TB} + \sum_{\langle i,j \rangle} V_{ij} n_i n_j + \sum_i U n_{i\uparrow} n_{i\downarrow}$$

This includes both hopping terms, Coulomb interactions, and onsite repulsion.

The Ohno formula is given by:

$$V_{i,j} = \frac{U}{\kappa_{i,j} \sqrt{1 + 0.6117 R_{i,j}^2}}$$

(2)

Coulomb Interaction Parameters:

- *U*: On-site electron-electron repulsion.
- $\kappa_{i,j}$: Dielectric constant.
- $R_{i,j}$: Distance between *i*-th and *j*-th carbon atoms.

Two Types of Coulomb Parameters:

Screened Parameters:

$$✓ U = 8.0 \text{ eV},$$

 $✓ \kappa_{i,j} = 2.0 (i \neq j),$

• Standard Parameters:

$$\checkmark$$
 U = 11.13 eV,
 \checkmark $\kappa_{i,j}$ = 1.0 (*i* ≠ *j*),

```
2 from pybest import context
3 from pybest.linalg import DenseLinalgFactory
    from pybest.modelhamiltonians.ppp_hub_model import PPPHub
5 from pybest.occ model import AufbauOccModel
    from pybest.units import electronvolt
    coord = context.get fn("test/c36.xvz")
16   occ model = AufbauOccModel(lf. nel=36)
    modelham = PPPHub(lf=lf, occ_model=occ_model, xyz_file=coord)
22 huckel output = modelham(
       parameters={
           "onsite_param": 0.0,
           "hopping_param": -2.4*electronvolt,
           "u param": -8.0*electronvolt.
33 huckel output = modelham(
       parameters={
           "onsite param": 0.0.
           "hopping_param": -2.4 * electronvolt,
           "u param": -11.13 * electronvolt,
```

Results:

Table: HOMO-LUMO gap[eV]

Molecule	ТВ	TB	PPP-RHF_scr		PPP-RHF_std	
iviolecule	Pybest	Paper	Pybest	Paper	Pybest	Paper
Benzo[ghi]perylene	2.11	2.11	3.848	3.85	7.126	7.13
Benzo[a]coronene	2.25	2.25	3.950	3.95	7.138	7.13
Naphtho[2,3a]coronene	1.89	1.89	3.567	3.57	6.71	6.71
Anthra[2,3a]coronene	1.49	1.49	3.141	3.14	6.232	6.23
Naphtho[8,1,2-abc]coronene	1.83	1.83	3.432	3.43	6.478	6.48

Conclusion

- Using Hubbard and Hückel models to demonstrate PPP model implementation:
 - √ Validating the approach.
- Extended Tight-Binding to PPP with electron-electron interactions.
- HOMO-LUMO gap results match paper:
 - √ Validating the PPP model.

Thank You!

Acknowledgments:

Pawel Tecmer, Katharina Boguslawski, Somayeh Ahmadkhani

For your guidance and support