UNIVERSIDAD NACIONAL DE LUJÁN Centro Regional CHIVILCOY Licenciatura en Sistemas de Información

ASIGNATURA: Matemática Discreta

II Cuatrimestre - Año 2021

Unidad 6: Espacios Vectoriales Práctica 6

- **1.** Demostrar si (V+W, +) es un grupo abeliano.
- **2.** En un sistema de ejes coordenados cartesianos ortogonales representar los puntos A(-1;3) B(2;5) y con ellos el vector \overrightarrow{AB} .
 - **2.1.** A partir del vector anterior ubica un punto T, tal que el vector $\overrightarrow{OT} = \overrightarrow{AB}$, otro M tal que $\overrightarrow{OM} = -\overrightarrow{AB}$; otro H, tal que $\overrightarrow{OH} = 2.\overrightarrow{AB}$
 - **2.2.** ¿Cuánto miden cada uno de los vectores anteriores? Estas medidas son *el módulo del vector* y lo expresaremos, por ejemplo, $|\overrightarrow{AB}|$ (sugerencia: recordar el teorema de Pitágoras)
 - **2.3.** Cada uno de los vectores anteriores, forman con la abscisa positiva, un ángulo α.
 - **2.3.1**.-Expresar $\cos \alpha$ para cada uno de los vectores.
 - **2.4.** Trasladar el conocimiento adquirido en el ítem anterior a un sistema de tres dimensiones a partir de los puntos: A(-1;3;5); B(2;5;-3)
 - **2.4.1.** ¿cuál es el módulo de cada uno de esos vectores?
 - **2.5**. Tomar un par de vectores cualesquiera, *u*; *v*.
 - **2.5.1**. Ahora hallar: w = u + v
 - **2.5.2**. Calcula |u|; |v|; |w|
 - **2.5.3.** Verificar si se cumple: $|w| \le |u| + |v|$ que es lo mismo que decir $|u+v| \le |u| + |v|$
 - **2.5.4.** Si la desigualdad se ha cumplido, su nombre es *Desigualdad Triangular*.

Definirla:

- **2.6.** Se llama vector unitario a aquel cuyo módulo es 1, es decir dado V, si | V |=1 entonces V es unitario.
 - **2.6.1.** ¿Es unitario el vector \overrightarrow{OT} del ítem 3-1?
 - **2.6.2.** Teniendo el módulo de \overrightarrow{OT} , ahora tomar el vector $W = \left(\frac{x_{OT}}{|OT|}; \frac{y_{OT}}{|OT|}\right)$ y calcular su módulo, ¿W es unitario?.

Escribir la **conclusión**

- **2.6.3.** Unitarizar (transformar en unitario) al vector $V_8 = (3;5)$
- **2.6.4.** Representar el vector V₈ y determinar el valor del seno y el coseno del ángulo que él forma con el sentido positivo de la abscisa. ¿Tiene algo que ver con el vector unitarizado?

Ya hemos considerado, y lo fijaremos , que un vector está dado por un conjunto ordenado de componentes tales que puede ser V=(a,b) *si* $V \in \mathbb{R}^2$; V=(a,b,c) *si* $V \in \mathbb{R}^3$, V=(a,b,c,.....n) *si* $V \in \mathbb{R}^n$.

A su vez, podemos expresar los vectores como $V = (x_1, x_2, x_3,....x_n)$ donde el subíndice indica la coordenada correspondiente al valor x.

Por definición de suma algebraica de vectores, resulta que: Si $V = (x_1, x_2, x_3,x_i)$ $W = (y_1, y_2, y_3,y_i)$ entonces

$$V + W = P = (x_1+y_1, x_2+y_2, x_3+y_3,...,x_i+y_i)$$

Sería bueno que recordáramos la estructura a la cual pertenecen los vectores en la suma, recordar su neutro y su inverso aditivo.

ESPACIO VECTORIAL

- **3.** Dados: $V = \{(x,y) \in RxR \}$ y $A = \{ a \in R \}$ verificar si:
 - **4.1.** $a_1.(a_2.V) = (a_1.a_2).V$
 - **4.2.** $(a_1 + a_2).V = a_1.V + a_2.V$
 - **4.3.** $a.(V_1 + V_2) = a.V_1 + a.V_2$
 - **4.4.** 1.V = V

Si se demuestra que (V,+) es un grupo y con (R,.) tiene estas propiedades entonces (V,+,R,.) es un **Espacio Vectorial**, donde V es un conjunto de vectores y R son números reales.

<u>Por lo tanto</u>: dos conjuntos bajo dos operaciones resultan un **Espacio Vectorial** si el primer conjunto es grupo con la primera operación y el segundo conjunto, con la segunda operación aplicada sobre el primer conjunto, goza de las propiedades observadas.

4. Dados los dos conjuntos del ejercicio anterior verificar si:

4.1.
$$1.V = V$$

4.2. a . $(0,0) = (0,0)$

- **5.** En el espacio vectorial R^2 donde la suma de vectores se define componente a componente, es decir, si: $V_1=(x_1,y_1)$ y $V_2=(x_2,y_2)$ el vector suma $V_1+V_2=(x_1+x_2,y_1+y_2)$ y el producto de un escalar a (un número real) por un vector V=(x,y) se define por a.V=(ax,ay) Encontrar las componentes de los vectores:
 - **5.1.** 2.(1;-3)-4.(1,-1)
 - **5.2.** (1, 4) +5.(-2, -3)+2.(0,1)
 - **5.3.** -[(2,1)+(-5,3)]

6. Dados $V_1 = (-1,3)$; $V_2 = (5,2)$ tal que $V_1 \in V$ y $V_2 \in V$ verificar si:

6.a.
$$0.V = (0.0)$$

6.b.
$$a.(0,0) = (0,0)$$

6.c.
$$a_1.(a_2.V) = (a_1.a_2).V$$

6.d.
$$(a_1 + a_2).V = a_1.V + a_2.V$$

6.e.
$$a.(V_1 + V_2) = a.V_1 + a.V_2$$

6.f.
$$1.V = V$$

7. Analizar si es posible encontrar a y b:

7.a.
$$(a,2)+b(0,1)=a(2,4)$$

7.b.
$$(a,2)+b(0,1)=a(1,0)$$

7.c.
$$(a,2)+b(1,0)=a(2,4)$$

8. Analizar si es un espacio vectorial
$$(V, \oplus, K, \otimes)$$
 donde $V = R^2$, $K = R$; $a \in V$, $a' \in V$; $b \in V$, $b' \in V$, $\alpha \in K$ $(a,b) \oplus (a',b') = (\frac{1}{2}a + \frac{1}{2}a'; \frac{1}{2}b + \frac{1}{2}b')$ y $\alpha \otimes (a,b) = (\alpha .a, \alpha .b)$

Combinación Lineal

9.

9.1. Demostrar si existen valores a, b reales tales que:

$$a.(3,5) + b.(-2,4) = (2,-1)$$

9.2. Demostrar si existen valores a,b,c reales tales que:

$$a.(-2,4,0) + b.(3,-1,5) + c.(0,1,-3) = (2,-2,4)$$

Si los valores reales a,b,c....existen, entonces el vector resultado es **combinación lineal** (C.L.) de los otros.

10.

11. Mostrar que el vector nulo es C.L. de cualquier par de vectores $V_1=(x_1,y_1)$ y $V_2=(x_2,y_2)$, es decir, es posible encontrar a y b tal que :

$$(0,0) = a. V_1 + b. V_2$$

11.a. Si
$$V_1 = (2,5)$$
 y $V_2 = (3,-1)$ cómo tienen que ser a y b.

11.b. Si
$$V_1 = (2,-1)$$
 y $V_2 = (-4, 2)$ cómo tienen que ser a y b.

11.c. Si
$$V_1 = (1,-1)$$
 y $V_2 = (0,0)$ cómo tienen que ser a y b.

- **12.** Dado los vectores $V_1 = (1+a, 1-a)$ y $V_2 = (1-a, 1+a)$ ¿Bajo qué condiciones impuestas al real a resultan $c.V_1 + d.V_2 = 0 \Leftrightarrow c=d=0$
- **13.** Expresar el vector V = (-1,4,3) como combinación lineal de:

13.b.
$$(i,0,0)$$
; $(0,j,0)$; $(0,0,k)$

14. ¿Cómo deben ser los escalares a, b y c para que:

14.a.
$$a.(2,1,-2) + b.(3,0,1) + c.(-2,2,3) = (0,0,0)$$

14.b. $a.(3,-4,12) + b.(3/2,-2,6) + c.(5,7,-1) = (0,0,0)$

Definición:

Dados escalares a_i tales que $\sum_{i=1}^n a_i V_i = 0 \Leftrightarrow a_i = 0, \forall i = 1,...n$ entonces los vectores V_i son linealmente independientes (LI).

Es decir, la única manera de escribir al vector nulo como combinación lineal de los vectores $V_1, \ldots V_n$ es la combinación lineal trivial, es decir, aquella en la que todos los escalares son cero.

Si, por el contrario, los escalares no deben resultar simultáneamente iguales a cero, los vectores son linealmente dependientes (LD).

15. Determinar si los siguientes conjuntos de vectores son L.D. En caso de serlo expresar uno de los vectores como combinación lineal de los otros:

```
15-a. \{(1,1,1); (0,1,-1); (1,4,-1)\}

15-b. \{(0,0,1); (1,1,-2); (3,4,1)\}

15-c. \{(-1,2); (3,4)\}

15-d. \{(-1,2); (-3,6)\}

15-e. \{(-1,2,4); (3,0,1); (2,-4,-8)\}

15-f. \{(1,1,0); (-2,3,5); (2,0,-1)\}
```

16. Determinar x para que los vectores siguientes sean L.D. Ídem para que sean L.I.

16-a.
$$\{(1,-4,6); (1,4,4); (0,-4,x)\}$$

16-b. $\{(x,1,0); (1,x,1); (0,1,x)\}$

17. Si los vectores U y V son linealmente independientes, demostrar si W = U + V es también linealmente independiente.

Sub-Espacio Vectorial

18. Dado el conjunto de vectores $V=\{(x; 3x-1; x^2-2) \in \mathbb{R}^3: x \in \mathbb{R}\}$

Indicar cuáles de los siguientes vectores están en V:

$$V_1 = (-3.8, -11)$$
 $V_2 = (0, -1, -2)$ $V_3 = (3.8.7)$ $V_4 = (2.7.2)$

- **19.** Expresar los vectores de la forma S = (x,y,z,w) que resultan dados por el conjunto: $S = \{ x \in \mathbb{R}^4 : x 2y + z = 0 ; y z = 0 \}$
- **20.** Expresar un conjunto de vectores V del cual V_1 es uno de ellos: $V_1 = (-1, 5, -4)$

21. Dados U= (1,1,0), V= (-1/2,0,2/3), W= (0,1/4,2) vectores en R³, calcular

21-a.
$$U + 2V - W$$

21-b. $(U + V) - (2V + W)$
21-c. calcular el vector X siendo: $6V + 5X = U$

22. Dado el espacio vectorial de las ternas reales, $V = R^3$

```
¿Cuáles de los siguientes subconjuntos T de V, son tales que T \subset V, a su vez, si U \in T \land W \in T \implies (U+W) \in T, además si a \in R \land U \in T \implies a.U \in T
```

```
22-a. T = \{ (x; y; z) \in R^3 : x=0 \}

22-b. T = \{ (x; y; z) \in R^3 : x+y=0 \}

22-c. T = \{ (x; y; z) \in R^3 : x+y=1 \}

22-d. T = \{ (x; y; z) \in R^3 : z=2 \}

22-e. T = \{ (x; y; z) \in R^3 : x.z=0 \}
```

Un subconjunto que cumpla con las condiciones pedidas en este ítem, es un **sub-espacio vectorial** del espacio de referencia.

Considerando esta definición indicar cuáles de los subconjuntos anteriores son sub-espacios del espacio vectorial \mathbb{R}^3 .

23. Determinar si alguno de los siguientes conjuntos son sub-espacios del espacio vectorial R²:

```
23.a. \{(x,y): x=y\}

23.b. \{(x,y): x \ge 0\}

23.c. \{(x,y): x.y = 0\}

23.d. \{(x,y): x + y = 1\}

23.e. \{(x,y): 3x - 2y = 0\}
```

24. Demostrar si son sub-espacios vectoriales K- del espacio vectorial V que se indica:

```
24-a. \{P(x) \in R[X]: P_{(x)} = a+bx+cx^2, \text{ con a,b,c reales}\}\ siendo V=R[X] y K=R 24-b. Los números complejos que tienen parte real 0 (los imaginarios puros), siendo V=C y K=R
```

25. Demostrar si los siguientes conjuntos son sub-espacios vectoriales del espacio vectorial R³ o R² según corresponda:

```
25-a. W = { (x,y,z) ; y=0}

25-b. W= { (x,y) ; x + 3y = 0}

25-c. W = {(x,y,z) ; x = 7}

25-d. W = { (x,y,z) ; x + 2y - z = 0 ; y - x = 0}
```

- **26.** Dado el sub-espacio S de R³ de todos los vectores de la forma (0,b,c), con b y c reales, y el sub-espacio T generado por los vectores (1,2,0) y (3,1,2). ¿Qué vectores forman el conjunto S \cap T y cuáles S+T?
- **27.** Calcular $S \cap T$ si los vectores vienen dados por.

S=
$$\{x \in \mathbb{R}^3 : -x-y = 0 ; z=0\}$$

$$T = \{ x \in \mathbb{R}^3 : z - x = 0 \}$$

28. ¿Los siguientes sub-espacios vectoriales son iguales? Justificar.

```
28-a. A= { x \in R^4 : x_1 + x_2 = x_3 + x_4 = 0}
B= { x \in R^4 : x = a.(-1,1,0,0) + b.(-1,1,-1,1) con a,b reales}

28-b. M= {x \in R^3 : x = a.(1,0,-1) + b.(-2,1,1) con a,b reales}
P= {x \in R^3 : x = a.(-1,1,0) + b.(3,-1,-2) con a,b reales}

28-c. S = { x \in R^4 : 2.x_1 - x_3 = 0 = x_1 + x_2 + x_3}
T = {x \in R^3 : -2x_2 + x_3 = 0 = x_1 - x_2}
```

Sistema de Generadores y Base

Un conjunto A de vectores es un **sistema de generadores de V** si y solo si todo vector de V puede expresarse como C.L. de los vectores de A.

- **29**. Encontrar generadores para el sub-espacio $S = \{ (x,y,z,w) \in R^4 : x 2y + z = 0 ; y z = 0 \}$ del R-espacio vectorial R^4 .
- **30.** Dado $v_1 = (-1,2)$ y $v_2 = (3,5)$
 - **30-a**. Escribir v = (-4,1) como combinación lineal de v_1 y v_2
 - **30-b.** Probar que cualquier vector de R² es combinación lineal de v₁ y v₂
 - **30-c.** Probar que $V = \{v_1, v_2\}$ es L.I.
- **31.** Determinar si el vector V = (-1,4,3) está en el sub-espacio generado (cápsula lineal) por los vectores:

31-a.
$$(-2,0,0)$$
; $(0,-1.1)$; $(0,0,4)$
31-b. $i = (1,0,0)$; $j = (0,1,0)$; $k = (0,0,1)$

32. Decidir si los siguientes conjuntos de vectores generan R³:

35-a-
$$u=(0,0,0)$$
 , $v=(-1,1,3)$, $w=(\pi,0,1)$
35-b.- $u=(0,0,0)$, $v=(-1,1,3)$, $w=(\pi,0,1)$, $t=(0,0,1)$
35-c.- $u=(-1,1,0)$, $v=(1,1,-1)$, $w=(0,-1,0)$

33. Dado el sub-espacio generado por los vectores $\{V_1, V_2, V_3\}$, es decir, $H = \{v \in R^3 : v = a.V_1 + b. V_2 + c. V_3 \text{ con a,b,c reales} \}$ donde $V_1 = (1,0,-2)$; $V_2 = (2,-1,-4)$ $V_3 = (0,1,0)$

Decidir si los siguientes vectores son elementos de H:

34. Dados los vectores: $v_1 = (-1,2)$ y $v_2 = (3,5)$

```
34-a. Probar que B = \{v_1, v_2\}es L. I.
```

34-b. Probar que cualquier vector de R² es combinación lineal de v₁ y v₂

34-c. Mostrar que v = (-4,1) se puede escribir de manera única como combinación lineal de v_1 y v_2 . Encontrar las coordenadas de v en la base, coinciden estas con las componentes del vector.

Dado un conjunto B de vectores, tal que $B \subset V$, siendo V un espacio vectorial, consideramos que B es una base de $V \Leftrightarrow B$ es un conjunto L.I. y sistema de generadores de V.

35. ¿Cuáles de los siguientes conjuntos de vectores son bases de los respectivos espacios vectoriales:

```
38-a.- (1,2), (-1,-3) en R<sup>2</sup>

38-b.- (2,1,4), (4,-2,7) en R<sup>3</sup>

38-c.- (1,0,0), (0,1,0), (0,0,1) en R<sup>3</sup>

38-d.- (1,-1,2), (4,0,0), (-2, ½, -1) en R<sup>3</sup>
```

Si se obtiene una base finita de un espacio vectorial V, entonces toda otra base de V es coordinable con la hallada; significa que dos bases cualesquiera de un mismo espacio vectorial tienen el mismo número de vectores. **Ese número de vectores determina la dimensión de la base.**

36. Determinar todos los valores de k para los cuales:

36-a. B =
$$\{(0,-1,k), (1,-1,0), (-1,0,2)\}$$
 es una base de R³.
36-b. el sub-espacio generado por $\{(0,-1,k), (1,-1,0), (-1,0,2)\}$ tiene dimensión 2.

37. Dados u = (5,3); v = (-3,4); w = (3,-2)

37-a. Determinar si $B=\{u,v\}$ es una base en R^2 . En tal caso hallar las coordenadas y componentes de w.

37-b. Determinar si $B=\{v,w\}$ es una base de R^2 . en tal caso hallar las coordenadas y componentes de n

37-c. Sea x el vector cuyas coordenadas en la base $\{u,v\}$ son -1 y 1. Hallar las coordenadas de x en la base canónica y luego hallar las coordenadas de x en la base $\{v,w\}$.

38. Hallar una base B de \mathbb{R}^2 tal que:

38-a. las coordenadas de un vector en la base B sean el doble que sus componentes

38-b. las coordenadas del vector (3,6) sean (3,0)_B y las de (1,0) sean (1,1)_B

39. Hallar, por lo menos, dos bases de los siguientes sub-espacios:

39-a.
$$T = \{(x,y,z): 2x - 2y + z = 0\}$$

39-b. $T = \{(x,y,z,u): x - u = 0; x + y + z = 0\}$
39-c. $T = gen \{ (1,0,-1); (0,1,-2); (2,-1,0) \}$

40. Determinar todos los valores de h para los cuales el conjunto de vectores V es generador del espacio R³

```
V = \{(1,h,0), (h,1,0), (5,1,6)\}; Para cuáles de estos valores es una base?
```

41. Dados U = (2,1,-1), V = (1,3,1), W = (0,2,1); determinar todos los valores reales a para que el conjunto de vectores B resulte una base de \mathbb{R}^3

$$B = \{a.U + 3V ; 2.V + 3.W ; (1-a).W\}$$

42. Hallar base y dimensión de los siguientes sub-espacios:

43-a. S = {
$$(x,y,z,u) : 3x + y + z = 2y + z = 0$$
 } **43-b.** T = { $(x,y,z) : x + y = 0$ }

43. Decidir si es posible extraer una base de los siguientes conjuntos de vectores:

43-a.
$$V = \{(1,-1,2); (2,0,5); (1,1,2); (-1,1,0)\}$$

43-b. $W = \{(1,2,-1,0); (2,1,-5,-6); (1,3,1,1); (0,1,2,1); (1,3,0,2)\}$

44. Sea V un espacio vectorial real de dimensión 3 y $B=\{v_1, v_2, v_3\}$ una base de V.

Sea
$$S = gen \{ 2v_1 + v_2 + v_3 ; -v_1 + 2v_2 + 3v_3 ; v_1 + 3v_2 + 4v_3 \}$$

Determinar todos las valores de $a \in R$ para los cuales $v \in S$ siendo:

$$v = 2 a^2 v_1 - 3v_2 - 7 a v_3$$

45. Sea V un espacio vectorial real con $B = \{v_1; v_2; v_3\}$ una base de V.

Sea B'=
$$\{v_1 + 2v_3 ; v_2 - v_3 ; 2v_1 + v_2 + v_3\}$$

45-a. Probar que B´es base de V

45-b. Sea $S = gen \{ u, v, w \}$ donde u,v,w son de V y tales que:

$$u = (0;-2;-1)_{B'}$$
 $v = (1;0;0)_{B'}$ $w = (-1;2;1)_{B'}$

Probar que
$$S = gen \{ 5v_1 + 6v_2 ; -3v_2 + 5v_3 \}$$

46. Sea $\{v_1; v_2; v_3; v_4\}$ un conjunto de vectores LI en un espacio vectorial V. Si

$$S = gen \{ v_1 - 3v_2 ; v_2 - v_3 + v_4 ; v_2 - v_4 \}$$

$$T = gen \{ v_2 + v_3 + v_4 ; v_1 - v_3 \}$$

Determinar si $\{v_1; v_2; v_3; v_4\}$ es una base de S + T

Producto Escalar o Interior

47. Representar un par de vectores V=(a,b); W=(c,d)

Resolver: V.W = (a,b).(c,d).

Indicar a qué es igual V.W en función de sus coordenadas.

Calcular el coseno del ángulo que forman V con W

Definición 1:

Dado los vectores $V = (x_1, x_2,, x_n)$, $W = (y_1, y_2,, y_n)$, se denomina **producto escalar** de vectores $V.W = \sum x_i.y_i = h \varepsilon R$

Definición 2:

Se define como **producto escalar de dos vectores**:

$$V_1$$
. $V_2 = N_1 / N_2 / \cos \alpha$

48. Aplicando lo obtenido, hallar el producto escalar de los siguientes vectores:

48-a.
$$V = (1,3,-1)$$
 y $W = (2,1,0)$

48-b.
$$V = (2,6,1)$$
 y $W = (-3,2,2)$

48-c.
$$V = (-1,5,-1,1)$$
 y $W = (3,0,-1,6)$

49. De los vectores 43-1. hallar:

V.W v V . W comparar resultados

50. En un espacio con producto escalar definido, el ángulo entre los vectores V, W es α . Sabiendo que: V = T + W, demostrar si:

$$|T|^2 = |V|^2 + |W|^2 - 2 \cdot |V| \cdot |W| \cdot \cos \alpha$$

Recordar por trigonometría a que es igual cos ($\pi/2$). Por lo tanto ¿qué puede decirse de dos vectores cuyo producto escalar es nulo?

- **51.** En $(R^3,+,R,.)$ con el producto escalar habitual:
 - **51-a**. Obtener un vector unitario ortogonal a: $V_1 = (1,-1,3)$ y $V_2 = (2,4,3)$
 - **51-b.** Obtener dos vectores unitarios ortogonales entre sí y ortogonales a: V = (1,-1,3)
- **52.** Dados los puntos A(-1,2,-3) ; B(3,-5,1) ; C(2,9,-4) calcular los ángulos que forman entre ellos, tomando como vértices A , B , C.
- **53.** Demostrar que la condición para que los vectores A + B y A B sean perpendiculares es que: |A| = |B|
- **54.** Determinar el valor de *k* para que los vectores indicados resulten perpendiculares:

$$v = (k,3,4)$$
 $w = (4, k, -7)$

55. Dado los vectores w = (x, y); v = (-y, x) Demostrar si:

55-a. Son ortogonales

55-b. Son ortogonales solo si $x^2 + y^2 = 1$

- **56.** Hallar los cosenos directores del vector v = (1,-1,3)
- **57.** Hallar las componentes del vector, en el plano, cuyo módulo es 2, y que forma un ángulo de 30° con el eje de abscisas.
- **58.** Un vector de módulo 5, en R³, tiene sus tres componentes iguales, ¿cuáles son?
- **59.** Demostrar si:

$$\left\{ \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \right\}$$
 es base ortonormal en \mathbb{R}^2

60. Demostrar si:

$$\{(1/3,-2/3,2/3);(2/3,-1/3,2/3);(2/3,2/3,-1/3)\}$$
 es base ortogonal en \mathbb{R}^3

61. Si V, W, Z son vectores, probar que si V.W = V.Z no se deduce que W = Z

Producto Vectorial o Producto Exterior

Se define al **producto vectorial** de dos vectores, VxW = N/N, sen α .- El resultado es otro vector perpendicular al plano que formar los vectores originales.

¿ Qué puede decirse de sen (α) y sen (- α). Por lo tanto, ¿ qué puede decirse de VxW respecto a WxV?

En base a la definición, y dados los vectores V=(a,b,c) y W=(d,e,f), encontrar una expresión que permita resolver VxW en función de sus coordenadas.

62. Dado V = (-1,3,0) y W = (2,-3,6) hallar:

$$\begin{bmatrix} V & x & W \\ W & x & V \\ V & x & W \end{bmatrix}$$

63. Hallar las componentes de un vector perpendicular a:

$$V_1 = (0;1;5) \text{ y } V_2 = (-3;0;2)$$

64. Dados los vectores: V = (2,0,3); W = (-1,5,2); Z = (0,-4,1), calcular:

64-a. V.(W x Z) 64-b. V x (W x Z) 64-c. (V x W) x Z 64-d. V x (V x W) 64-e. (V.W).(V x W) 64-f. (V x W) x (V x Z)

Superficie de Paralelogramo

- **65.** Hallar el área del paralelogramo construido sobre los vectores: V = (6,3,-2); W = (3,-2,6)
- **66.** Hallar el área del triángulo que tiene como vértices: A(1,1,1); B(2,3,4); C(4,3,2)

<u>Producto Mixto – Volumen de Paralelepípedo</u>

El **producto mixto** de vectores está dado por: (VxW).U

67. Hallar el producto mixto ((VxW).T) de los vectores:

$$V = (-1,3,3)$$
, $W = (2,-3,1)$, $T = (0,3,-4)$

68. Comprobar si los vectores:

$$V = 2i - j - k$$

$$W = i + 3j - k$$

$$U = i + 2j + 2k$$
son coplanares (están en un mismo plano)

69. Hallar el volumen de un paralelepípedo cuyas aristas son los vectores:

$$V_1 = (-1,3,3)$$
; $V_2 = (2,-3,1)$; $V_3 = (0,3,-4)$