

planetmath.org

Math for the people, by the people.

special elements in a lattice

Canonical name SpecialElementsInALattice

Date of creation 2013-03-22 16:42:29 Last modified on 2013-03-22 16:42:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Definition Classification msc 06B99

Defines distributive element
Defines standard element
Defines neutral element
Defines dually distributive
Defines dually standard

Let L be a lattice and $a \in L$ is said to be

- distributive if $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$,
- standard if $b \wedge (a \vee c) = (b \wedge a) \vee (b \wedge c)$, or
- neutral if $(a \wedge b) \vee (b \wedge c) \vee (c \wedge a) = (a \vee b) \wedge (b \vee c) \wedge (c \vee a)$

for all $b, c \in L$. There are also dual notions of the three types mentioned above, simply by exchanging \vee and \wedge in the definitions. So a dually distributive element $a \in L$ is one where $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ for all $b, c \in L$, and a dually standard element is similarly defined. However, a dually neutral element is the same as a neutral element.

Remarks For any $a \in L$, suppose P is the property in L such that $a \in P$ iff $a \lor b = a \lor c$ and $a \land b = a \land c$ imply b = c for all $b, c \in L$.

- A standard element is distributive. Conversely, a distributive satisfying *P* is standard.
- A neutral element is distributive (and consequently dually distributive). Conversely, a distributive and dually distributive element that satisfies P is neutral.

References

- [1] G. Birkhoff Lattice Theory, 3rd Edition, AMS Volume XXV, (1967).
- [2] G. Grätzer, General Lattice Theory, 2nd Edition, Birkhäuser (1998).