Applications of Mathematics in Computer Science (MACS)

LECTURE #5:
FOURIER
TRANSFORM

	<u> </u>	
-RA-Wa win-	HAMP AND AND THE STATE OF	
	mine m m	
umam m	A company and a 14 are company	
He so near Hearth	Water-war, to we then	Ihave
as Manuaramentant	444 44 44 Am 10 41	
un 1/1 mm un - m	16.m. 1. M. 10 . 10. 10.	discovered
· Hu-mow w who	-	a truly
em wom min	man are w	•
mangeneral in most		marvelous
m	u mu ma - fm . M.	proof that
		'
m mare we we	www.ou.ou.	information
numer a manuer	munum mu males	is infinitely
manther ann mer	UB- 4m + m - n m d 4 m m -	
VIL 40 PA		Compressible,
	and the or of the present	but this
may processing	- مروس بسومها سر سر سه به اوره	
MM M M M	-	Margin is too
u sa sama sa ur sam	me as municipal	small to
·-munum mu ·		J. 10
· u ~ vmm · u	are -1966 me -116 1666 manu	
oma mu u mm		oh
······································		011
rmmmmmmmmmm.	with the same of the same	
nuck town h + num	wacmpapm.	never mind :(
* **** ***	mar was de la la mar and	11010. 1
10 minimum	a man make to make been un	
my manyer w	moment on more organization	
	Maran alle a dan arrive	

The CS Problem:

frequency filtering

- Time-series search and comparison (Shazam)
- Information compression (Zoom, Skype)
- Image processing

Frequency filtering

Sound

Image

Noise reduction

Original Image

Modified Image

Types of filters

Low-pass filter

High-pass filter

Band-pass filter

Method: Fourier transform

spacial/temporal domain y = f(x)

frequency domain y' = f(frequency)

But how?

The math technique: Complex Numbers & Fourier Transform

Complex Numbers

$$x^2 + 1 = 0$$

$$x = ?$$

$$x = \sqrt{-1} = i$$

Complex numbers:

$$x = a + bi$$

Re(x) real Im(x)
imaginary

Complex Numbers: Operations

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i$$

$$\frac{1}{a+bi} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

Complex Numbers: Polar Form

$$x = a + bi = r \cdot e^{\varphi i}$$

$$r = \sqrt{a^2 + b^2}$$

$$\varphi = \arctan\left(\frac{b}{a}\right)$$

Euler's formula

$$e^{a+bi} = e^a \cdot (\cos b + i \sin b)$$

$$y = a \sin\left(\frac{2\pi}{b}(x - c)\right) + d$$

Fourier transform

$$f(t) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{\frac{2\pi n}{T}ti}$$

$$c_n = \frac{1}{T} \int_0^T f(t) \cdot e^{-\frac{2\pi n}{T}ti} dt$$

$$f(t) = A \cdot \frac{t}{T} \quad , \quad 0 \le t < T$$

Coefficients:

$$c_0 = \frac{A}{2} \qquad c_n = \frac{A}{2\pi n}i \qquad c_n = \frac{1}{T} \int_0^T f(t) \cdot e^{-\frac{2\pi n}{T}ti} dt$$

$$c_n = \frac{1}{T} \int_0^T f(t) \cdot e^{-\frac{2\pi n}{T}ti} dt$$

2 Terms

4 Terms

20 Terms

Discrete Fourier transform

When the data is discrete (pixels, measurements)

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-\frac{2\pi i}{N}kn}$$

Fast Fourier Transform (FFT) computes in $O(N \log N)$ instead of $O(N^2)$

Let's try...