Suites numérique

Définition

Une suite $(U_{n}) \in N$ est dite

- stationnaire (ou constante) à partir d'un certain rang n_0 si : $\exists n_0 \in N$: $\forall n \in N, n \ge n_0 \Rightarrow U_{n+1} = U_n$.
- périodique si : $\exists n_0 \in N^* : \forall n \in N, U_{n+n0} = U_n$.
- arithmétique de raison r si : $\forall n \in \mathbb{N}, U_{n+1} = U_n + r$ et alors $U_n = U_0 + n.r$
- géométrique de raison q si : $\forall n \in N, U_{n+1} = q \times U_n$ et alors
- $\bullet \quad U_n = U_0 \times q^n.$
- majorée si : $\exists M \in \Re : \forall n \in \mathbb{N}, U_n \leq M$.
- minorée si : \exists m \in \Re : \forall $n \in \mathbb{N}$, $U_n \geqslant$ m.
- bornée si : $\exists m \in \Re$, $\exists M \in \Re$: $\forall n \in N$, $m \le U_n \le M$ et de façon équivalente : $\exists M \ge 0$: $\forall n \in N$, $|U_n| \le M$.
- croissante si : $\forall n \in \mathbb{N}, U_n \leq U_{n+1}$.
- strictement croissante si : $\forall n \in \mathbb{N}, U_n < U_{n+1}$.
- décroissante si : $\forall n \in \mathbb{N}, U_n \geqslant U_{n+1}$.
- strictement décroissante si : $\forall n \in \mathbb{N}, U_n > U_{n+1}$.
- monotone (resp. strictement monotone) si elle est croissante ou décroissante (resp. strictement croissante ou décroissante).
- convergente s'il existe $l \in \mathbb{R}$ tel que $\forall e > 0$, $\exists n_0 \in \mathbb{N}$:

$$\forall n \in N, n \ge n_0 \Rightarrow |U_n - l| < e$$
.

- divergente si elle n'est pas convergente.
- divergente vers + ∞ si : \forall M > 0, \exists $n_0 \in N$: \forall $n \in N$, $n \ge n_0 \Rightarrow U_n > M$.
- divergente vers $-\infty$ si : \forall M > 0, \exists $n_0 \in N$: \forall $n \in N$, $n \geqslant n_0 \Rightarrow U_n < -M$

Définition

Si $(U_n) \in N$ est une suite réelle, on appelle suite extraite ou sous-suite de $(U_n) \in N$ tout suite $(V_n) \in N$ de la forme

$$V_n = U_{\varphi}(n), \ \forall \ n \in \mathbb{N}$$

où $\phi: N \to N$ est une application strictement croissante.

(Exemple:
$$(U_{2n}) \in N$$
, $(U_{2n+1}) \in N$, $(U_{n+3}) \in N \dots$)

Corollaire 0.1

Si une suite $(U_n) \in N$ admet deux sous-suites (ou plus !) convergeant vers des limites distinctes alors la suite $(U_n) \in N$ ne converge pas.

Suite adjacente

a.Definition:

Deux suites $(U_n) \in N$ et $(V_n) \in N$ sont dites adjacentes si

- **1.** $\forall n \in \mathbb{N}, U_n \leq V_n$.
- **2.** $(U_n) \in N$ est croissante.
- **3.** $(V_n) \in N$ est décroissante.
- **4.** $(V_n U_n) \in N$ converge vers **0**.

b.Théorème : Deux suites adjacentes convergent et ce vers une même limite.

Théorème (Limites et fonctions continues)

Soient $\mathbf{f}: \mathbf{I} \subset \mathfrak{R} \to \mathfrak{R}$ une fonction et $(U_n) \in \mathbb{N}$ une suite dont tous les termes appartiennent à \mathbf{I} . Si $(U_n) \in \mathbb{N}$ converge vers un réel l et si \mathbf{f} est continue en l alors

$$\lim_{n \to +\infty} f(U_n) = f(l).$$

Proposition 0.1 (Comparaison de suites convergentes)

Soient $(U_n) \in N$ et $(V_n) \in N$ deux suites réelles convergentes telles que

$$\exists \ \mathbf{N} \in \mathbb{N} : \ \forall \ n \in \mathbb{N}, n \geqslant \mathbf{N} \Rightarrow V_n \leqslant U_n,$$

alors on a

$$\lim_{n \to +\infty} V_n \leq \lim_{n \to +\infty} U_n.$$

Proposition 0.2 (Suite géométrique)

On fixe un réel a. Soit $(U_n) \in N$ une suite de terme général $U_n = a^n$. Alors on a le résultat suivant :

- **1.** Si a = 1, alors $(U_n) \in N$ converge vers 1.
- **2.** Si a > 1 alors $(U_n) \in N$ diverge vers $+\infty$.
- 3. Si −1 < a < 1, alors (U_n) ∈ N converge vers 0.
- **4.** Si a \leq -1 alors (U_n) \subseteq N diverge en ayant aucune limite.

Proposition 0.3 (Série géométrique)

On fixe un réel a, a ≠ 1. En notant

$$\sum_{k=0}^{n} a^{k} = 1 + a + a^{2} + \dots + a^{n} = \frac{1 - a^{n-1}}{1 - a}.$$

Théorème (Théorème des gendarmes)

Soient (a_n) , (b_n) et (c_n) $n \in \mathbb{N}$ trois suites réelles telles que $\forall n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$. Si (a_n) et (c_n) convergent vers un même réel l alors (b_n) converge aussi vers l.

Corollaire 0.2

On considère (U_n) et (V_n) $n \in N$ deux suites réelles telles que

1.
$$\forall n \in N, |U_n| \leq |V_n|.$$

2.
$$\lim_{n \to +\infty} V_n = 0$$
. Alors $\lim_{n \to +\infty} U_n = 0$.

Corollaire 0.3

On considère (U_n) $n \in N$ et (V_n) $n \in N$ deux suites réelles telles que

1.
$$(U_n)$$
 $n \in N$ est bornée.

$$2. \lim_{n \to +\infty} V_n = 0.$$

Alors
$$\lim_{n \to +\infty} U_n \cdot V_n = 0$$
.

Proposition 0.4

Soit (U_n) $n \in N$ une suite à termes non nuls et telle que

$$\lim_{n\to+\infty} \left| \frac{U_{n+1}}{U_n} \right| = q.$$

Si
$$q < 1$$
 alors $\lim_{n \to +\infty} U_n = 0$.

Suite récurrente

a.Définition

Soit I un intervalle de \Re et $f: I \rightarrow I$ une application.

Toute suite définie par

• U_0 donné dans l

•
$$U_{n+1} = f(U_n), \forall n \in \mathbb{N},$$

est appelée suite récurrente.

b.Théorème

Soit I un intervalle de \Re et $f:I\to I$ une application continue sur I. Si la suite récurrente (un) $n\in N$ définie par

- U_0 donné dans I
- $U_{n+1} = f(U_n), \forall n \in \mathbb{N},$

converge vers $l \in I$, alors l est solution dans I de l'équation f(l) = l.