

# **LOONGSON**

# 龙芯2H处理器用户手册

V1.6

2016年3月

龙芯中科技术有限公司

自主决定命运,创新成就未来





#### 版权声明

本文档版权归龙芯中科技术有限公司所有,并保留一切权利。未经书面许可,任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法律责任。

#### 免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

#### 龙芯中科技术有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No.2, Loongson Industrial Park, Zhongguancun Environmental Protection Park

电话 (Tel): 010-62546668 传真 (Fax): 010-62600826



### 阅读指南

《龙芯 2H 处理器用户手册》主要介绍龙芯 2H 的架构与寄存器描述;包括用户手册和片上设备使用指南两部分,软件编程指南介绍对 BIOS 和操作系统开发过程中的常见问题。关于龙芯 2H 处理器所集成的 LS464 高性能处理器核的相关资料,请参阅《龙芯 LS464 处理器核用户手册》



## 修订历史

| 序号 | 更新日期    | 版本号  | 更新内容                                       |
|----|---------|------|--------------------------------------------|
| 1  | 2012-11 | V1.0 | 初稿,第一次正式发布                                 |
| 2  | 2013-11 | V1.1 | 修正若干拼写错误,更正 CLKSEL1 描述、EJTAG_DROP 寄存器      |
|    |         |      | 配置                                         |
| 3  | 2014-03 | V1.2 | 更新到 2H3 版本, 增加 CHIPID、USB PHY 配置, PCIE 增加总 |
|    |         |      | 线错屏蔽和插入状态检测,增加 HPET 和 PWM章节                |
| 4  | 2014-08 | V1.3 | 文档排版,修正若干文字错误                              |
| 5  | 2014-09 | V1.4 | 修正 LPC/PCIE 地址空间错误, 去除 PCIE 控制器软复位的描述      |
| 6  | 2015-06 | V1.5 | 增加分频器配置方法 (5.4节), 修正若干文字错误                 |
| 7  | 2016-03 | V1.6 | 修订 pcie_link_init 函数                       |

手册信息反馈: service@loongson.cn

客户可通过问题反馈网站 http://bugs.loongnix.org/ 向我司提交芯片产品使用过程中的问题,并获取技术支持。



# 目 录

| 目录 … |        |                                                  | i |
|------|--------|--------------------------------------------------|---|
| 第一章  | 概述·    |                                                  | 1 |
| 1.1  | 体系结    | 构框图                                              | 1 |
| 1.2  | 芯片主    | 要功能                                              | 2 |
|      | 1.2.1  | 处理器核                                             | 2 |
|      | 1.2.2  | 媒体处理器 · · · · · · · · · · · · · · · · · · ·      | 3 |
|      | 1.2.3  | GPU                                              | 3 |
|      | 1.2.4  | 显示控制器                                            | 3 |
|      | 1.2.5  | DDRII 控制器                                        | 3 |
|      | 1.2.6  | SATA 控制器 · · · · · · · · · · · · · · · · · · ·   | 4 |
|      | 1.2.7  | USB2.0 控制器 · · · · · · · · · · · · · · · · · · · | 4 |
|      | 1.2.8  | GMAC 控制器 · · · · · · · · · · · · · · · · · · ·   | 4 |
|      | 1.2.9  | LPC 控制器 · · · · · · · · · · · · · · · · · · ·    | 4 |
|      | 1.2.10 | HDA 控制器 · · · · · · · · · · · · · · · · · · ·    | 5 |
|      | 1.2.11 | NAND 控制器 · · · · · · · · · · · · · · · · · · ·   | 5 |
|      | 1.2.12 | SPI 控制器                                          | 5 |
|      | 1.2.13 | UART                                             | 5 |
|      | 1.2.14 | I2C 总线 · · · · · · · · · · · · · · · · · ·       | 5 |
|      | 1.2.15 | PWM                                              | 6 |
|      | 1.2.16 | HPET                                             | 6 |
|      | 1.2.17 | RTC                                              | 6 |
|      | 1.2.18 | Watchdog · · · · · · · · · · · · · · · · · · ·   | 6 |
|      | 1.2.19 | 中断控制器 · · · · · · · · · · · · · · · · · · ·      | 6 |
|      |        | ACPI 功耗管理 · · · · · · · · · · · · · · · · · · ·  | 6 |
|      | 1.2.21 | PCIe 接口 ·····                                    | 7 |
|      | 1.2.22 | HT 接口 · · · · · · · · · · · · · · · · · ·        | 7 |
| 第二章  |        | 『义                                               | 9 |
| 2.1  | 约定…    |                                                  | 9 |
| 2.2  | 引脚列    | 表                                                | 9 |



| 第三章 | 时钟绉   | 吉构 · · · · · · · · · · · · · · · · · · ·               | 19 |
|-----|-------|--------------------------------------------------------|----|
| 3.1 | 系统参   | 考时钟                                                    | 19 |
| 3.2 | CPU F | 付钟                                                     | 19 |
| 3.3 | DDR   | 讨钟                                                     | 20 |
| 3.4 | SYS 时 | †钟                                                     | 20 |
| 3.5 | 显示时   | 钟                                                      | 21 |
| 3.6 | 时钟信   | 号说明                                                    | 22 |
| 第四章 | 电源管   | <b>管理······</b>                                        | 25 |
| 4.1 | 电源管   | F理模块介绍 · · · · · · · · · · · · · · · · · · ·           | 25 |
| 4.2 | 电源级   | 8别 · · · · · · · · · · · · · · · · · · ·               | 25 |
| 4.3 | 控制引   | 脚说明                                                    | 26 |
| 第五章 | 芯片酉   | 2置与控制 · · · · · · · · · · · · · · · · · · ·            | 27 |
| 5.1 | 芯片工   |                                                        | 27 |
|     | 5.1.1 | 独立 SoC · · · · · · · · · · · · · · · · · · ·           | 27 |
|     | 5.1.2 | HT 桥片 · · · · · · · · · · · · · · · · · ·              | 27 |
|     | 5.1.3 | PCIE 桥片 · · · · · · · · · · · · · · · · · ·            | 28 |
| 5.2 | 芯片初   | ]始化信号                                                  | 29 |
| 5.3 | 地址空   | ぎ间分配                                                   | 30 |
| 5.4 | 时钟与   | 5复位控制                                                  | 32 |
|     | 5.4.1 | 时钟配置概要                                                 | 32 |
|     | 5.4.2 | 高频 PLL 配置 · · · · · · · · · · · · · · · · · ·          | 32 |
|     | 5.4.3 | 展频 PLL 配置 · · · · · · · · · · · · · · · · · ·          | 33 |
|     | 5.4.4 | 复位控制                                                   | 33 |
| 5.5 | 芯片面   | 2置寄存器                                                  | 34 |
|     | 5.5.1 | 消息中断写端口(msiport) · · · · · · · · · · · · · · · · · · · | 40 |
|     | 5.5.2 | 中断状态寄存器(intisr)······                                  | 41 |
|     | 5.5.3 | 中断使能寄存器(intien) · · · · · · · · · · · · · · · · · · ·  | 41 |
|     | 5.5.4 | 中断设置寄存器(intset) · · · · · · · · · · · · · · · · · · ·  | 41 |
|     | 5.5.5 | 中断清除寄存器(intclr)······                                  | 41 |
|     | 5.5.6 | 中断极性寄存器(intpol) · · · · · · · · · · · · · · · · · · ·  | 41 |
|     | 5.5.7 | 中断模式寄存器(intedge)······                                 | 41 |



|     | 5.5.8  | 通用输入输出配置(gpiocfg)······                                            | 42 |
|-----|--------|--------------------------------------------------------------------|----|
|     | 5.5.9  | 通用输入输出方向(gpiooe) · · · · · · · · · · · · · · · · · · ·             | 42 |
|     | 5.5.10 | 通用输入采样(gpioin)·······                                              | 42 |
|     | 5.5.11 | 通用输出设置(gpioout)······                                              | 42 |
|     | 5.5.12 | DMA 命令控制寄存器(dma_order)······                                       | 43 |
|     | 5.5.13 | 芯片配置寄存器 0(chip_config0) · · · · · · · · · · · · · · · · · · ·      | 43 |
|     | 5.5.14 | 芯片配置寄存器 1(chip_config1) · · · · · · · · · · · · · · · · · · ·      | 44 |
|     | 5.5.15 | 芯片配置寄存器 2(chip_config2) · · · · · · · · · · · · · · · · · · ·      | 45 |
|     | 5.5.16 | 芯片配置寄存器 3(chip_config3) · · · · · · · · · · · · · · · · · · ·      | 45 |
|     | 5.5.17 | 芯片采样寄存器 0(chip_sample0) · · · · · · · · · · · · · · · · · · ·      | 46 |
|     | 5.5.18 | 芯片采样寄存器 1(chip_sample1) · · · · · · · · · · · · · · · · · · ·      | 47 |
|     | 5.5.19 | 芯片采样寄存器 2(chip_sample2) · · · · · · · · · · · · · · · · · · ·      | 47 |
|     | 5.5.20 | 芯片采样寄存器 3(chip_sample3) · · · · · · · · · · · · · · · · · · ·      | 47 |
|     | 5.5.21 | 芯片采样寄存器 4(chip_sample4) · · · · · · · · · · · · · · · · · · ·      | 47 |
|     | 5.5.22 | 芯片采样寄存器 5(chip_sample5) · · · · · · · · · · · · · · · · · · ·      | 47 |
|     | 5.5.23 | 时钟配置寄存器 0(clock_ctrl0) · · · · · · · · · · · · · · · · · · ·       | 48 |
|     | 5.5.24 | 时钟配置寄存器 1(clock_ctrl1) · · · · · · · · · · · · · · · · · · ·       | 48 |
|     | 5.5.25 | 时钟配置寄存器 2(clock_ctrl2) · · · · · · · · · · · · · · · · · · ·       | 49 |
|     | 5.5.26 | 时钟配置寄存器 3(clock_ctrl3) · · · · · · · · · · · · · · · · · · ·       | 49 |
|     | 5.5.27 | 显示时钟配置寄存器 0(pixclk0/1_ctrl0) · · · · · · · · · · · · · · · · · · · | 50 |
|     | 5.5.28 | 显示时钟配置寄存器 1(pixclk0/1_ctrl1) · · · · · · · · · · · · · · · · · · · | 50 |
|     | 5.5.29 | USB PHY0 配置寄存器(usbphy0_ctrl) · · · · · · · · · · · · · · · · · · · | 51 |
|     | 5.5.30 | USB PHY1 配置寄存器(usbphy1_ctrl) · · · · · · · · · · · · · · · · · · · | 51 |
| 5.6 | 中断配    | L置及路由 ·····                                                        | 52 |
| 第六章 | DDR    | 2/3 控制器 · · · · · · · · · · · · · · · · · · ·                      | 55 |
| 6.1 | 功能概    | [述                                                                 | 55 |
| 6.2 | 读操作    | 协议                                                                 | 56 |
| 6.3 | 写操作    | 协议                                                                 | 56 |
| 6.4 | 参数面    | 「置格式                                                               | 56 |



| 第七章 | HT 挖   | 2制器                                                                       | 89  |
|-----|--------|---------------------------------------------------------------------------|-----|
| 7.1 | HT 硬   | 件设置及初始化                                                                   | 89  |
| 7.2 | HT 协   | 议支持                                                                       | 89  |
| 7.3 | HT 配   | 置寄存器                                                                      | 91  |
|     | 7.3.1  | Bridge Control·····                                                       | 92  |
|     | 7.3.2  | Capability Registers · · · · · · · · · · · · · · · · · · ·                | 92  |
|     | 7.3.3  | 自定义寄存器                                                                    | 95  |
|     | 7.3.4  | 接收地址窗口配置寄存器                                                               | 96  |
|     | 7.3.5  | 中断向量寄存器                                                                   | 97  |
|     | 7.3.6  | 中断使能寄存器                                                                   | 99  |
|     | 7.3.7  | Interrupt Discovery & Configuration · · · · · · · · · · · · · · · · · · · | 101 |
|     | 7.3.8  | POST 地址窗口配置寄存器                                                            | 102 |
|     | 7.3.9  | 可预取地址窗口配置寄存器 · · · · · · · · · · · · · · · · · · ·                        | 103 |
|     | 7.3.10 | UNCACHE 地址窗口配置寄存器 ·····                                                   | 104 |
| 第八章 | PCIE   | 〉控制器 · · · · · · · · · · · · · · · · · · ·                                | 107 |
| 8.1 | 使用说    | i明 · · · · · · · · · · · · · · · · · · ·                                  | 107 |
| 8.2 | 地址空    | 图划分和地址转换机制                                                                | 107 |
|     | 8.2.1  | RC 模式下的地址空间划分 · · · · · · · · · · · · · · · · · · ·                       | 107 |
|     | 8.2.2  | EP 模式下的地址空间划分 · · · · · · · · · · · · · · · · · · ·                       | 109 |
|     | 8.2.3  | PCI 地址空间到物理地址的转换 · · · · · · · · · · · · · · · · · · ·                    | 110 |
| 8.3 | 龙芯 2   | H 处理器 PCIE 控制器内部寄存器定义 · · · · · · · · · · · · · · · · · · ·               | 110 |
|     | 8.3.1  | PCIE 端口控制寄存器 0 · · · · · · · · · · · · · · · · · ·                        | 111 |
|     | 8.3.2  | PCIE 端口控制寄存器 1 · · · · · · · · · · · · · · · · · ·                        | 112 |
|     | 8.3.3  | PCIE 端口状态寄存器 0 · · · · · · · · · · · · · · · · · ·                        | 113 |
|     | 8.3.4  | PCIE 端口状态寄存器 1 · · · · · · · · · · · · · · · · · ·                        | 114 |
|     | 8.3.5  | 用户定义消息 ID 寄存器                                                             | 116 |
|     | 8.3.6  | PCIE 端口中断状态寄存器                                                            | 116 |
|     | 8.3.7  | PCIE 端口中断状态清除寄存器                                                          | 119 |
|     | 8.3.8  | PCIE 端口中断掩码寄存器 · · · · · · · · · · · · · · · · · · ·                      | 119 |
|     | 8.3.9  | PCIE 端口对外配置访问参数寄存器                                                        | 120 |
|     | 8.3.10 | PCIE 端口控制和状态寄存器······                                                     | 120 |



|     | 8.3.11 | PHY 状态寄存器 · · · · · · · 120                                     |
|-----|--------|-----------------------------------------------------------------|
|     | 8.3.12 | 用户定制消息寄存器 0 · · · · · · · 121                                   |
|     | 8.3.13 | 用户定制消息寄存器 1 · · · · · · · · 121                                 |
|     | 8.3.14 | 用户定制消息数据发送寄存器 0 · · · · · · · 121                               |
|     | 8.3.15 | 用户定制消息数据发送寄存器 1 · · · · · · · 122                               |
|     | 8.3.16 | MSI 参数寄存器 · · · · · · · 122                                     |
|     | 8.3.17 | 地址译码掩码寄存器 0 · · · · · · · 122                                   |
|     | 8.3.18 | 地址译码掩码寄存器 1 · · · · · · · · 122                                 |
|     | 8.3.19 | 地址译码转换地址寄存器 0······ 122                                         |
|     | 8.3.20 | 地址译码转换地址寄存器 1······122                                          |
|     | 8.3.21 | 接收消息数据负载寄存器 0 · · · · · · · · 123                               |
|     | 8.3.22 | 接收消息数据负载寄存器 1 · · · · · · · · · 123                             |
| 8.4 | PCIE Ì | 配置头空间 123                                                       |
|     | 8.4.1  | Ack Latency Timer and Replay Timer Register $\cdots \cdots 124$ |
|     | 8.4.2  | Vendor Specific DLLP Register · · · · · · 125                   |
|     | 8.4.3  | Port Force Link Register $\cdots \cdots 126$                    |
|     | 8.4.4  | Ack frequency and L0-L1 ASPM control Register $\cdots 126$      |
|     | 8.4.5  | Port Link Control Register · · · · · · 127                      |
|     | 8.4.6  | Lane Skew Register · · · · · · 128                              |
|     | 8.4.7  | Symbol Number Register · · · · · · 129                          |
|     | 8.4.8  | Symbol Timer Register and Filter Mask Register 1 $\cdots 129$   |
|     | 8.4.9  | Filter Mask Register 2 · · · · · · 131                          |
|     | 8.4.10 | AMBA Multiple Outbound Decomposed NP Sub-Requests Control       |
|     |        | Register                                                        |
|     | 8.4.11 | Transmit Posted FC Credit Status Register · · · · · · 132       |
|     | 8.4.12 | Transmit Non-Posted FC Credit Status Register · · · · · · 132   |
|     | 8.4.13 | Transmit Completion FC Credit Status Register · · · · · · 132   |
|     | 8.4.14 | Queue Status Register · · · · · · 133                           |
|     | 8.4.15 | VC0 Posted Receive Queue Control······ 133                      |
|     | 8.4.16 | VC0 Non-Posted Receive Queue Control · · · · · · 134            |
|     | 8.4.17 | VC0 Completion Receive Queue Control · · · · · · · · 134        |



|     | 8.4.18 | VC0 Posted Buffer Depth · · · · · · 134                         |
|-----|--------|-----------------------------------------------------------------|
|     | 8.4.19 | VC0 Non-Posted Buffer Depth                                     |
|     | 8.4.20 | VC0 Completion Buffer Depth······ 134                           |
|     | 8.4.21 | Gen2 Control Register · · · · · · 135                           |
|     | 8.4.22 | Master Response Composer Control Register 0 · · · · · · · 136   |
|     | 8.4.23 | Master Response Composer Control Register 1 · · · · · · · · 136 |
|     | 8.4.24 | MSI Controller Address · · · · · · · 136                        |
|     | 8.4.25 | MSI Controller Upper Address · · · · · · · 137                  |
| 8.5 | 常用例    | 程137                                                            |
| 第九章 | 显示控    | 2制器 ······141                                                   |
| 9.1 | 概述     |                                                                 |
| 9.2 | 寄存器    | 定义 · · · · · · · · · · · · · · · 141                            |
|     | 9.2.1  | 帧缓冲配置寄存器 141                                                    |
|     | 9.2.2  | 帧缓冲地址寄存器 0 · · · · · · · · 141                                  |
|     | 9.2.3  | 帧缓冲地址寄存器 1 · · · · · · · · · 142                                |
|     | 9.2.4  | 帧缓冲跨度寄存器 142                                                    |
|     | 9.2.5  | 帧缓冲初始字节寄存器 · · · · · · · · · 142                                |
|     | 9.2.6  | 颜色抖动配置寄存器 142                                                   |
|     | 9.2.7  | 颜色抖动查找表低位寄存器 142                                                |
|     | 9.2.8  | 颜色抖动查找表高位寄存器 143                                                |
|     | 9.2.9  | 液晶面板配置寄存器 143                                                   |
|     | 9.2.10 | 水平显示宽度寄存器 143                                                   |
|     | 9.2.11 | 行同步配置寄存器 143                                                    |
|     | 9.2.12 | 垂直显示高度寄存器 144                                                   |
|     | 9.2.13 | 场同步配置寄存器 144                                                    |
|     | 9.2.14 | 伽玛校正目录寄存器 · · · · · · · · 144                                   |
|     | 9.2.15 | 伽玛校正值寄存器 144                                                    |
|     |        | 光标配置寄存器 145                                                     |
|     | 9.2.17 | 光标存储地址寄存器 145                                                   |
|     | 9.2.18 | <b>光标显示位置寄存器</b> 145                                            |
|     | 9.2.19 | 光标背景色寄存器 145                                                    |



|   |      | 9.2.20  | 光标前景色寄存器 146                                                                      |
|---|------|---------|-----------------------------------------------------------------------------------|
|   |      | 9.2.21  | 中断寄存器 146                                                                         |
|   |      | 9.2.22  | DAC 控制寄存器 · · · · · · · 146                                                       |
|   |      | 9.2.23  | DAC Sense 值寄存器 · · · · · · · 147                                                  |
|   |      | 9.2.24  | Sense 配置寄存器 · · · · · · · 147                                                     |
|   |      | 9.2.25  | DVO 输出模式寄存器 · · · · · · 147                                                       |
|   | 9.3  | 相关功     | 1能说明                                                                              |
|   |      | 9.3.1   | 颜色抖动 147                                                                          |
|   |      | 9.3.2   | 输出定序 148                                                                          |
|   |      | 9.3.3   | 伽玛校正 · · · · · · · 148                                                            |
|   |      | 9.3.4   | 硬件光标 149                                                                          |
| 第 | 十章   | GMA     | .C 控制器 ···········151                                                             |
|   | 10.1 | DMA :   | 寄存器描述 · · · · · · · · · · · · 151                                                 |
|   |      | 10.1.1  | Register0 (Bus Mode Register) · · · · · · · 151                                   |
|   |      | 10.1.2  | Register1 (Transmit Poll Demand Register) · · · · · · 152                         |
|   |      | 10.1.3  | Register2 (Receive Poll Demand Register) · · · · · · 152                          |
|   |      | 10.1.4  | Register3 (Receive Descriptor List Address Register) · · · · · · · 152            |
|   |      | 10.1.5  | Register4 (Transmit Descriptor List Address Register) · · · · · · 153             |
|   |      | 10.1.6  | Register5 (Status Register) · · · · · · · 153                                     |
|   |      | 10.1.7  | Register6 (Operation Mode Register) · · · · · · 154                               |
|   |      | 10.1.8  | Register7 (Interrupt Enable Register) · · · · · · 156                             |
|   |      | 10.1.9  | Register<br>8 (Missed Frame and Buffer Overflow Counter Register)<br>$\cdots$ 157 |
|   |      | 10.1.10 | Register9(Receive Interrupt Watchdog Timer Register) · · · · · · · 157            |
|   |      | 10.1.11 | Register10 (AXI Bus Mode Register) · · · · · · · 158                              |
|   |      | 10.1.12 | 2 Register11 (AXI Status Register) · · · · · · · 159                              |
|   |      | 10.1.13 | Register18 (Current Host Transmit Descriptor Register) · · · · · · · 159          |
|   |      | 10.1.14 | Register19 (Current Host Receive Descriptor Register) · · · · · · · 159           |
|   |      | 10.1.15 | 6 Register 20 (Current Host Transmit Buffer Address Register) · · · · · 160       |
|   |      | 10.1.16 | 8 Register21 (Current Host Receive Buffer Address Register) · · · · · · 160       |
|   | 10.2 | GMAC    | C 控制器寄存器描述 · · · · · · · · · · · · · · · · · · ·                                  |
|   |      | 10.2.1  | Register (MAC Configuration Register) · · · · · · · 160                           |



| 10.2.2  | Register1 (MAC Frame Filter)······                                                      | [61 |
|---------|-----------------------------------------------------------------------------------------|-----|
| 10.2.3  | Register2 (Hash Table High Register) · · · · · · · · · · · · · · · · · · ·              | 162 |
| 10.2.4  | Register3 (Hash Table Low Register) · · · · · · · · · · · · · · · · · · ·               | 162 |
| 10.2.5  | Register4 (GMII Address Register) · · · · · · · · · · · · · · · · · · ·                 | 163 |
| 10.2.6  | Register5 (GMII Data Register) · · · · · · · · · · · · · · · · · · ·                    | 163 |
| 10.2.7  | Register6 (Flow Control Register) · · · · · · · · · · · · · · · · · · ·                 | 163 |
| 10.2.8  | Register7 (VLAN Tag Register) · · · · · · · · · · · · · · · · · · ·                     | 164 |
| 10.2.9  | Register8 (Version Register) · · · · · · · · · · · · · · · · · · ·                      | 164 |
| 10.2.10 | Register14 (Interrupt Status Register) · · · · · · · · · · · · · · · · · · ·            | 165 |
| 10.2.11 | Register15 (Interrupt Mask Register) · · · · · · · · · · · · · · · · · · ·              | 165 |
| 10.2.12 | Register16 (MAC Address0 High Register) · · · · · · · · · · · · · · · · · · ·           | 166 |
| 10.2.13 | Register17 (MAC Address0 Low Register) · · · · · · · · · · · · · · · · · · ·            | 166 |
| 10.2.14 | Register18 (MAC Address1 High Register) · · · · · · · · · · · · · · · · · · ·           | 166 |
| 10.2.15 | Register19 (MAC Address1 Low Register) · · · · · · · · · · · · · · · · · · ·            | 167 |
| 10.2.16 | Register48 (AN Control Register) · · · · · · · · · · · · · · · · · · ·                  | 167 |
| 10.2.17 | Register49 (AN Status Register) · · · · · · · · · · · · · · · · · · ·                   | 167 |
| 10.2.18 | Register 50 (Auto-Negotiation Advertisement Register) · · · · · · · · · ·               | 168 |
| 10.2.19 | Register<br>51 (Auto-Negotiation Link Partner Ability Register)<br>$\cdots$ .           | 168 |
| 10.2.20 | Register52 (Auto-Negotiation Expansion Register) · · · · · · · · · · · · · · · · · · ·  | 169 |
| 10.2.21 | Register54 (SGMII/RGMII Status Register)·····                                           | 169 |
| 10.2.22 | Register448 (Time Stamp Control Register) · · · · · · · · · · · · · · · · · · ·         | 170 |
| 10.2.23 | Register449 (Sub-Second Increment Register) · · · · · · · · · · · · · · · · · · ·       | 171 |
| 10.2.24 | Register 450 (System Time - Seconds Register) · · · · · · · · · · · · · · · · · · ·     | 171 |
| 10.2.25 | Register 451 (System Time - Nanoseconds Register) · · · · · · · · · · · · · · · · · · · | 172 |
| 10.2.26 | Register 452 (System Time - Seconds Update Register) · · · · · · · · ·                  | 172 |
| 10.2.27 | Register 453 (System Time - Nanoseconds Update Register) · · · · · ·                    | 172 |
| 10.2.28 | Register 454 (Time Stamp Addend Register) · · · · · · · · · · · · · · · · · · ·         | 172 |
| 10.2.29 | Register 455 (Target Time Seconds Register) · · · · · · · · · · · · · · · · · · ·       | 172 |
| 10.2.30 | Register 456 (Target Time Nanoseconds Register) · · · · · · · · · · · · · · · · · · ·   | 173 |
| 10.2.31 | Register 457 (System Time - Higher Word Seconds Register) $\cdots \cdots$               | 173 |
| 10.2.32 | Register 458 (Time Stamp Status Register) · · · · · · · · · · · · · · · · · · ·         | 173 |



|      | 10.2.33 Register 459 (PPS Control Register) · · · · · · · · · · · · · · · · · · ·         | 174 |
|------|-------------------------------------------------------------------------------------------|-----|
|      | 10.2.34 Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register)                    | 174 |
|      | 10.2.35 Register 461 (PPS Auxiliary Time Stamp - Seconds Register) $\cdot\cdot\cdot\cdot$ | 174 |
| 10.3 | DMA 描述符 · · · · · · · · · · · · · · · · · · ·                                             | 175 |
|      | 10.3.1 TDES0 · · · · · · · · · · · · · · · · · · ·                                        | 175 |
|      | 10.3.2 TDES1 · · · · · · · · · · · · · · · · · · ·                                        | 177 |
|      | 10.3.3 TDES2 · · · · · · · · · · · · · · · · · · ·                                        | 177 |
|      | 10.3.4 TDES3 · · · · · · · · · · · · · · · · · · ·                                        | 177 |
|      | 10.3.5 TDES6 · · · · · · · · · · · · · · · · · · ·                                        | 178 |
|      | 10.3.6 TDES7 · · · · · · · · · · · · · · · · · · ·                                        | 178 |
|      | 10.3.7 RDES0 · · · · · · · · · · · · · · · · · · ·                                        | 178 |
|      | 10.3.8 RDES1 · · · · · · · · · · · · · · · · · · ·                                        | 179 |
|      | 10.3.9 RDES2 · · · · · · · · · · · · · · · · · · ·                                        | 180 |
|      | 10.3.10 RDES3 · · · · · · · · · · · · · · · · · · ·                                       | 180 |
|      | 10.3.11 RDES4 · · · · · · · · · · · · · · · · · · ·                                       | 180 |
|      | 10.3.12 RDES6                                                                             | 181 |
|      | 10.3.13 TDES7                                                                             | 181 |
| 10.4 | 软件编程向导                                                                                    | 182 |
|      | 10.4.1 DMA 初始化 · · · · · · · · · · · · · · · · · · ·                                      | 182 |
|      | 10.4.2 MAC 初始化······                                                                      | 182 |
|      | 10.4.3 发送和接收的一般过程                                                                         | 183 |
| 第十一章 | 章 SATA 控制器······1                                                                         | .85 |
| 11.1 | SATA 总体描述 · · · · · · · · · · · · · · · · · · ·                                           | 185 |
| 11.2 | SATA 控制器内部寄存器描述 1                                                                         | 185 |
| 第十二章 | 章 USB 控制器 · · · · · · · · · · · · · · · · · · ·                                           | .87 |
| 12.1 | 总体描述 ]                                                                                    | 187 |
| 12.2 | USB 主机控制器寄存器 · · · · · · · · · · · · · · · · · · ·                                        | 187 |
|      | 12.2.1 EHCI 相关寄存器 · · · · · · · · · · · · · · · · · · ·                                   | 187 |
|      | 12.2.2 Capability 寄存器 · · · · · · · · · · · · · · · · · · ·                               | 187 |
|      | 12.2.3 Operational 寄存器 · · · · · · · · · · · · · · · · · · ·                              | 187 |
|      | 12.2.4 EHCI 实现相关寄存器 · · · · · · · · · · · · · · · · · · ·                                 | 188 |



| 12.3 | OHCI   | 相关寄存器                                                              | 190         |
|------|--------|--------------------------------------------------------------------|-------------|
|      | 12.3.1 | Operational 寄存器 · · · · · · · · · · · · · · · · · · ·              | 190         |
|      | 12.3.2 | OHCI 实现相关寄存器 · · · · · · · · · · · · · · · · · · ·                 | 191         |
| 第十三章 | 章 OT   | 'G 控制器 ·····                                                       | 193         |
| 13.1 | 概述.    |                                                                    | 193         |
| 13.2 | 寄存器    | }列表 · · · · · · · · · · · · · · · · · · ·                          | 193         |
|      | 13.2.1 | 全局控制与状态寄存器 (Global CSR Map)······                                  | 193         |
|      | 13.2.2 | 模式控制与状态寄存器 (Host Mode CSR)······                                   | 195         |
|      | 13.2.3 | 模式控制与状态寄存器 (Device Mode CSR) · · · · · · · · · · · · · · · · · · · | 195         |
|      | 13.2.4 | 数据 FIFO 访问寄存器组 (DFIFO Access Register MAP) · · · · · · · · ·       | 196         |
|      | 13.2.5 | 功耗控制与门控时钟寄存器组 (Power and Clock Gating CSR Map)                     | 197         |
| 13.3 | 寄存器    | a                                                                  | 197         |
|      | 13.3.1 | 寄存器访问特性                                                            | 197         |
|      | 13.3.2 | 全局寄存器                                                              | 197         |
|      | 13.3.3 | Host 模式寄存器 · · · · · · · · · · · · · · · · · · ·                   | 218         |
| 13.4 | Device | · 模式寄存器 · · · · · · · · · · · · · · · · · · ·                      | 228         |
|      | 13.4.1 | 功耗与门控时钟寄存器                                                         | 242         |
| 第十四章 | 章 HD   | OA 控制器 ······                                                      | 245         |
| 14.1 | 功能概    | 抵述                                                                 | 245         |
| 14.2 | 寄存器    | }描述······                                                          | 246         |
|      | 14.2.1 | 协议定义的音频控制器寄存器集                                                     | 246         |
|      | 14.2.2 | 自定义的调试寄存器                                                          | 249         |
| 14.3 | 内存数    | τ据结构                                                               | 249         |
| 第十五章 | 章 AC   | 97 控制器 · · · · · · · · · · · · · · · · · · ·                       | <b>25</b> 1 |
| 15.1 | 概述.    |                                                                    | 251         |
| 15.2 | AC97   | 控制器寄存器                                                             | 251         |
|      | 15.2.1 | 配置状态寄存器 (CSR) · · · · · · · · · · · · · · · · · · ·                | 252         |
|      | 15.2.2 | 输出通道配置寄存器 (OCC) · · · · · · · · · · · · · · · · · ·                | 252         |
|      | 15.2.3 | 输入通道配置寄存器 (ICC) · · · · · · · · · · · · · · · · · ·                | 253         |
|      | 15.2.4 | 声道格式说明                                                             | 253         |
|      | 15.2.5 | Codec 寄存器访问命令 (Codec)                                              | 253         |



|      | 15.2.6 中断状态寄存器 / 中断掩膜寄存器25                                          | 4 |
|------|---------------------------------------------------------------------|---|
|      | 15.2.7 中断状态 / 清除寄存器 25                                              | 4 |
|      | 15.2.8 OC 中断清除寄存器 25                                                | 4 |
|      | 15.2.9 IC 中断清除寄存器 · · · · · · · · 25                                | 5 |
|      | 15.2.10 CODEC WRITE 中断清除寄存器 · · · · · · · · · · · · · · 25          | 5 |
|      | 15.2.11 CODEC READ 中断清除寄存器 · · · · · · · · · · · · · · 25           | 5 |
| 第十六章 | LPC 控制器 · · · · · · · · · · · · · · · · · · ·                       | 7 |
| 第十七章 | SPI 控制器 · · · · · · · · · · · · · · · · · · ·                       | 9 |
| 17.1 | SPI 控制器结构 · · · · · · · · · · · · · · · 25                          | 9 |
| 17.2 | <b>配置寄存器</b>                                                        | 9 |
| 17.3 | 接口时序 26                                                             | 1 |
|      | 17.3.1 SPI 主控制器接口时序 · · · · · · · · · 26                            | 1 |
|      | 17.3.2 SPI Flash 访问时序 · · · · · · · · · 26                          | 1 |
| 17.4 | 使用指南 · · · · · · · · · · · · · · · · · · 26                         | 1 |
|      | 17.4.1 SPI 主控制器的读写操作 · · · · · · · · · · · · · · · · · · ·          | 1 |
|      | 17.4.2 硬件 SPI Flash 读 · · · · · · · · · 26                          | 3 |
|      | 17.4.3 混合访问 SPI Flash 和 SPI 主控制器 · · · · · · · · · · · · · · · · 26 | 4 |
| 第十八章 | I2C 控制器 ·······26                                                   | 5 |
| 18.1 | 既述                                                                  | 5 |
| 18.2 | [2C 控制器结构 · · · · · · · · · · · · · · · · 26                        | 5 |
| 18.3 | [2C 控制器寄存器说明 · · · · · · · · · · · · · · · · · · ·                  | 5 |
|      | 18.3.1 分频锁存器低字节寄存器(PRERlo)                                          | 6 |
|      | 18.3.2 分频锁存器高字节寄存器(PRERhi)26                                        | 6 |
|      | 18.3.3 控制寄存器(CTR) · · · · · · · · · · · · · · · · · · ·             | 6 |
|      | 18.3.4 发送数据寄存器(TXR)                                                 | 6 |
|      | 18.3.5 接受数据寄存器(RXR) · · · · · · · · · · · · · · · · · · ·           | 7 |
|      | 18.3.6 命令控制寄存器(CR)                                                  | 7 |
|      | 18.3.7 状态寄存器(SR) · · · · · · · · · · · · · · · · · · ·              | 7 |
| 第十九章 | UART 控制器 · · · · · · · · · · · · · · · · · · ·                      | 9 |
| 19.1 | 既述                                                                  | 9 |
| 19.2 | 控制器结构 · · · · · · · · · · · · · · 26                                | 9 |



|    | 19.3 | 寄存器抗     | 描述 · · · · · · · · · · · · · · · · · · ·                     | 269         |
|----|------|----------|--------------------------------------------------------------|-------------|
|    |      | 19.3.1 💈 | 数据寄存器 (DAT) · · · · · · · · · · · · · · · · · · ·            | 270         |
|    |      | 19.3.2   | 中断使能寄存器 (IER) · · · · · · · · · · · · · · · · · · ·          | 270         |
|    |      | 19.3.3   | 中断标识寄存器 (IIR) · · · · · · · · · · · · · · · · · · ·          | 271         |
|    |      | 19.3.4 H | FIFO 控制寄存器 (FCR) · · · · · · · · · · · · · · · · · · ·       | 271         |
|    |      | 19.3.5   | 线路控制寄存器 (LCR) · · · · · · · · · · · · · · · · · · ·          | 271         |
|    |      | 19.3.6 N | MODEM 控制寄存器 (MCR) ····································       | 272         |
|    |      | 19.3.7   | 线路状态寄存器 (LSR) · · · · · · · · · · · · · · · · · · ·          | 273         |
|    |      | 19.3.8 N | MODEM 状态寄存器 (MSR) · · · · · · · · · · · · · · · · · · ·      | 273         |
|    |      | 19.3.9   | 分频锁存器                                                        | 274         |
| 第. | 二十章  | i NAN    | ND 控制器 ···································                   | <b>27</b> 5 |
|    | 20.1 | NAND ‡   | 控制器结构描述                                                      | 275         |
|    | 20.2 | NAND a   | 寄存器配置描述                                                      | 275         |
|    |      | 20.2.1   | 命令寄存器 NAND_CMD······                                         | 275         |
|    |      | 20.2.2 J | 页内偏移地址寄存器 ADDR_C · · · · · · · · · · · · · · · · · · ·       | 276         |
|    |      | 20.2.3 J | 页地址寄存器 ADDR_R · · · · · · · · · · · · · · · · · ·            | 276         |
|    |      | 20.2.4   | 付序寄存器 NAND_TIMING · · · · · · · · · · · · · · · · · · ·      | 276         |
|    |      | 20.2.5 I | D 寄存器 ID_L · · · · · · · · · · · · · · · · · · ·             | 277         |
|    |      | 20.2.6 I | D 和状态寄存器 STATUS & ID_H ······                                | 277         |
|    |      | 20.2.7   | 参数配置寄存器 NAND_PARAMETER · · · · · · · · · · · · · · · · · · · | 277         |
|    |      | 20.2.8 ‡ | 操作数量寄存器 NAND_OP_NUM · · · · · · · · · · · · · · · · · · ·    | 277         |
|    |      | 20.2.9 I | DMA 读写数据寄存器 DMA_ADDRESS · · · · · · · · · · · · · · · · · ·  | 278         |
|    | 20.3 | NAND A   | ADDR 说明 · · · · · · · · · · · · · · · · · ·                  | 278         |
|    | 20.4 | NAND-f   | flash 读写操作举例                                                 | 280         |
|    | 20.5 | NAND 1   | ECC 说明 ······                                                | 280         |
|    | 20.6 | NAND /   | 启动说明                                                         | 281         |
| 第. | =+-  | −章 PV    | VM 控制器 ······2                                               | 283         |
|    | 21.1 | 概述…      |                                                              | 283         |
|    | 21.2 | 寄存器抗     | 描述 · · · · · · · · · · · · · · · · · · ·                     | 283         |
|    | 21.3 | 功能说明     | 月                                                            | 284         |
|    |      | 21.3.1 月 | 脉宽调制功能                                                       | 284         |



|    |          | 21.3.2 脉冲测量功能 · · · · · · · · · · · · · · · · · · ·                                             | 285 |
|----|----------|-------------------------------------------------------------------------------------------------|-----|
|    |          | 21.3.3 防死区功能 2                                                                                  | 285 |
| 第. | <u> </u> | 二章 HPET 控制器····································                                                 | 87  |
|    | 22.1     | 概述                                                                                              | 287 |
|    | 22.2     | 寄存器描述 2                                                                                         | 287 |
| 第. | <u> </u> | 三章 DMA 控制器······2                                                                               | 91  |
|    | 23.1     | DMA 控制器结构描述 2                                                                                   | 291 |
|    | 23.2     | DMA 控制器与 APB 设备的交互 · · · · · · · · · · · · · · · · · · ·                                        | 291 |
|    | 23.3     | DMA 控制器 · · · · · · · · · · · · · · · · · · ·                                                   | 291 |
|    |          | 23.3.1 下一个描述符地址寄存器 (DMA_ORDER_ADDR) · · · · · · · · · · · · · · · · · · ·                       | 291 |
|    |          | 23.3.2 内存地址寄存器 (DMA_SADDR) · · · · · · · · · · · · · · · · · · ·                                | 292 |
|    |          | 23.3.3 设备地址寄存器 (DMA_DADDR)··································                                    | 292 |
|    |          | 23.3.4 长度寄存器 (DMA_LENGTH) · · · · · · · · · · · · · · · · · · ·                                 | 292 |
|    |          | 23.3.5 间隔长度寄存器 (DMA_STEP_LENGTH) · · · · · · · · · · · · · · · · · · ·                          | 293 |
|    |          | 23.3.6 循环次数寄存器 (DMA_STEP_TIMES) · · · · · · · · · · · · · · · · · · ·                           | 293 |
|    |          | 23.3.7 控制寄存器 (DMA_CMD) · · · · · · · · · · · · · · · · · · ·                                    | 293 |
| 第. | 二十四      | 四章 电源管理模块2                                                                                      | 95  |
|    | 24.1     | 概述                                                                                              | 295 |
|    | 24.2     | 寄存器描述 2                                                                                         | 295 |
|    |          | 24.2.1 PMCON_SOC : SOC General PM Configuration Register · · · · · · · · · · · · · · · · · · ·  | 295 |
|    |          | 24.2.2 PMCON_RESUME : RESUME General PM Configuration Register 2                                | 296 |
|    |          | 24.2.3 PMCON_RTC : RTC General PM Configuration Register · · · · · · · · · · · · · · · · · · ·  | 297 |
|    |          | 24.2.4 PM1_STS: Power Management 1 Status Register · · · · · · · · · · · · · · · · · · ·        | 298 |
|    |          | 24.2.5 PM1_EN: Power Management 1 Enable Register · · · · · · · · · · · · · · · · · · ·         | 299 |
|    |          | 24.2.6 PM1_CNT : Power Management 1 Control Register · · · · · · · · · · · · · · · · · · ·      | 299 |
|    |          | 24.2.7 PM1_TMR : Power Management 1 Timer · · · · · · · · · · · · · · · · · · ·                 | 300 |
|    |          | 24.2.8 P_CNT : Processor Control Register · · · · · · · · · · · · · · · · · · ·                 | 300 |
|    |          | 24.2.9 P_LVL2 : Processor LVL_2 Register · · · · · · · · · · · · · · · · · · ·                  | 300 |
|    |          | 24.2.10 P_LVL3 : Processor LVL_3 Register · · · · · · · · · · · · · · · · · · ·                 | 300 |
|    |          | 24.2.11 GPE0_STS : General Purpose Event0 Status Register · · · · · · · · · · · · · · · · · · · | 301 |
|    |          | 24.2.12 GPE0_EN: General Purpose Event0 Status Register · · · · · · · · · · 3                   | 301 |



|      | 24.2.13 | RST_CNT : Reset Control Register · · · · · · · · · · · · · · · · · · ·                                                                                                     | 302 |
|------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | 24.2.14 | WD_SET : Watch Dog Set Register $\cdots \cdots \cdots$     | 302 |
|      | 24.2.15 | WD_Timer : Watch Dog Timer Register $\cdots \cdots \cdots$ | 303 |
|      | 24.2.16 | DVFS_CNT : Dynamic Voltage Frequency Scaling Control Register                                                                                                              | 303 |
|      | 24.2.17 | <code>DVFS_STS</code> : Dynamic Voltage Frequency Scaling Status Register $\cdot$                                                                                          | 303 |
|      | 24.2.18 | $\operatorname{MS\_CNT}$ :<br>Media Subsystem Power Control Register · · · · · · · · · · ·                                                                                 | 304 |
|      | 24.2.19 | $MS\_THT: Media~Subsystem~Throttling~Register~\cdots \cdots$                                                                                                               | 304 |
|      | 24.2.20 | $\label{thm:cnt:cnt:control} THSENS\_CNT: CPU\ Thermal\ Sensor\ Control\ Register\ \cdots\cdots\cdots$                                                                     | 305 |
|      | 24.2.21 | GEN_RTC_1 : General RTC Register $1 \cdot $                          | 305 |
|      | 24.2.22 | GEN_RTC_2 : General RTC Register $2 \cdot $                          | 305 |
| 第二十3 | 五章 R'   | ${f TC} \cdots \cdots$                              | 307 |
| 25.1 | 概述      |                                                                                                                                                                            | 307 |
| 25.2 | 寄存器     | 描述 · · · · · · · · · · · · · · · · · · ·                                                                                                                                   | 307 |
|      | 25.2.1  | 寄存器地址列表                                                                                                                                                                    | 307 |
|      | 25.2.2  | TOY 计数器低 32 位数值 (SYS_TOYWRITE0)······                                                                                                                                      | 308 |
|      | 25.2.3  | TOY 计数器高 32 位数值 (SYS_TOYWRITE1)······                                                                                                                                      | 308 |
|      | 25.2.4  | TOY 计数器低 32 位数值 (SYS_TOYREAD0) · · · · · · · · · · · · · · · · · · ·                                                                                                       | 308 |
|      | 25.2.5  | TOY 计数器高 32 位数值 (SYS_TOYREAD1) · · · · · · · · · · · · · · · · · · ·                                                                                                       | 308 |
|      | 25.2.6  | TOY 计数器中断寄存器 0/1/2(SYS_TOYMATCH0/1/2) ·········                                                                                                                            | 309 |
|      | 25.2.7  | RTC 定时器中断寄存器 0/1/2(SYS_RTCCTRL) · · · · · · · · · · · · · · · · · · ·                                                                                                      | 309 |
|      | 25.2.8  | RTC 计数器写入端口 (SYS_RTCWRITE)······                                                                                                                                           | 310 |
|      | 25.2.9  | RTC 计数器写入端口 (SYS_RTCREAD) · · · · · · · · · · · · · · · · · · ·                                                                                                            | 310 |
|      | 25.2.10 | RTC 定时器中断寄存器 0/1/2(SYS_RTCMATCH0/1/2) · · · · · · · · ·                                                                                                                    | 310 |
|      |         |                                                                                                                                                                            |     |



# 表目录

| 2.1  | 信号类型代码                                                   | 9  |
|------|----------------------------------------------------------|----|
| 2.2  | DDR2 SDRAM 控制器接口信号 · · · · · · · · · · · · · · · · · · · | 9  |
| 2.3  | HT 总线信号                                                  | 10 |
| 2.4  | PCIE 总线信号                                                | 10 |
| 2.5  | VGA 接口信号                                                 | 11 |
| 2.6  | DVO 接口信号 · · · · · · · · · · · · · · · · · · ·           | 11 |
| 2.7  | GMAC 接口信号 · · · · · · · · · · · · · · · · · · ·          | 11 |
| 2.8  | SATA 接口信号 · · · · · · · · · · · · · · · · · · ·          | 11 |
| 2.9  | USB 接口信号 · · · · · · · · · · · · · · · · · · ·           | 12 |
| 2.10 | AC97/HDA 接口信号 · · · · · · · · · · · · · · · · · · ·      | 12 |
| 2.11 | LPC 接口信号                                                 | 12 |
| 2.12 | SPI 接口信号                                                 | 12 |
| 2.13 | I2C 接口信号                                                 | 12 |
| 2.14 | UART 接口信号                                                | 13 |
| 2.15 | NAND 接口信号 · · · · · · · · · · · · · · · · · · ·          | 13 |
| 2.16 | GPIO 信号                                                  | 13 |
| 2.17 | 电源接口                                                     | 14 |
| 2.18 | 电源管理接口                                                   | 15 |
| 2.19 | 测试接口                                                     | 16 |
| 2.20 | EJTAG 接口·····                                            | 16 |
| 2.21 | 时钟信号                                                     | 16 |
| 2.22 | 其它信号                                                     | 16 |
| 3.1  | 龙芯 2H 时钟信号                                               | 23 |
| 4.1  | ACPI 状态说明 · · · · · · · · · · · · · · · · · · ·          | 25 |
| 4.2  | 处理器 Cx 状态 · · · · · · · · · · · · · · · · · ·            | 26 |
| 4.3  | 媒体处理器状态 Dx · · · · · · · · · · · · · · · · · ·           | 26 |



| 4.4  | 控制引脚说明·····                                        | 26 |
|------|----------------------------------------------------|----|
| 5.1  | 配置信号                                               | 29 |
| 5.2  | 地址空间分配之 CPU 视角 · · · · · · · · · · · · · · · · · · | 30 |
| 5.3  | 地址空间分配之 DMA 视角                                     | 31 |
| 5.4  | 高频 PLL 工作条件 · · · · · · · · · · · · · · · · · · ·  | 33 |
| 5.5  | 展频 PLL 工作条件 · · · · · · · · · · · · · · · · · · ·  | 34 |
| 5.6  | 芯片配置寄存器列表                                          | 34 |
| 5.7  | 消息中断写端口 · · · · · · · · · · · · · · · · · · ·      | 40 |
| 5.8  | 中断状态寄存器                                            | 41 |
| 5.9  | 中断使能寄存器                                            | 41 |
| 5.10 | 中断设置寄存器                                            | 41 |
| 5.11 | 中断清除寄存器                                            | 41 |
| 5.12 | 中断极性寄存器                                            | 41 |
| 5.13 | 中断模式寄存器                                            | 42 |
| 5.14 | 通用输入输出配置 · · · · · · · · · · · · · · · · · · ·     | 42 |
| 5.15 | 通用输入输出方向 · · · · · · · · · · · · · · · · · · ·     | 42 |
| 5.16 | 通用输入采样                                             | 42 |
| 5.17 | 通用输出设置                                             | 42 |
| 5.18 | DMA 命令控制寄存器                                        | 43 |
| 5.19 | 芯片配置寄存器 0 · · · · · · · · · · · · · · · · · ·      | 43 |
| 5.20 | 串口复用配置                                             | 44 |
| 5.21 | 芯片配置寄存器 1 · · · · · · · · · · · · · · · · · ·      | 45 |
| 5.22 | 芯片配置寄存器 2 · · · · · · · · · · · · · · · · · ·      | 45 |
| 5.23 | 芯片配置寄存器 3 · · · · · · · · · · · · · · · · · ·      | 45 |
| 5.24 | 芯片采样寄存器 0 · · · · · · · · · · · · · · · · · ·      | 46 |
| 5.25 | 芯片采样寄存器 1 · · · · · · · · · · · · · · · · · ·      | 47 |
| 5.26 | 芯片采样寄存器 2 · · · · · · · · · · · · · · · · · ·      | 47 |
| 5.27 | 芯片采样寄存器 3 · · · · · · · · · · · · · · · · · ·      | 47 |
|      | 芯片采样寄存器 4 · · · · · · · · · · · · · · · · · ·      | 47 |
| 5.29 | 芯片采样寄存器 5 · · · · · · · · · · · · · · · · · ·      | 47 |
| 5.30 | 时钟配置寄存器 0 · · · · · · · · · · · · · · · · · ·      | 48 |



| 5.31 | 时钟配置寄存器 1 · · · · · · · · · · · · · · · · · ·                    | 48  |
|------|------------------------------------------------------------------|-----|
| 5.32 | 时钟配置寄存器 2 · · · · · · · · · · · · · · · · · ·                    | 49  |
| 5.33 | 时钟配置寄存器 3 · · · · · · · · · · · · · · · · · ·                    | 49  |
| 5.34 | 显示时钟配置寄存器 0                                                      | 50  |
| 5.35 | 显示时钟配置寄存器 1 · · · · · · · · · · · · · · · · · ·                  | 50  |
| 5.36 | USB PHY0 配置寄存器                                                   | 51  |
| 5.37 | USB PHY1 配置寄存器                                                   | 52  |
| 5.38 | 中断源映射关系                                                          | 52  |
| 5.39 | 中断控制器配置                                                          | 53  |
| 6.1  | DDR2 SDRAM 配置参数寄存器格式 · · · · · · · · · · · · · · · · · · ·       | 57  |
| 7.1  | HyperTransport 接收端可接收的命令 · · · · · · · · · · · · · · · · · · ·   | 90  |
| 7.2  | HyperTransport 发送端会向外发送的命令 · · · · · · · · · · · · · · · · · · · | 90  |
| 7.3  | HT 配置寄存器列表 · · · · · · · · · · · · · · · · · · ·                 | 91  |
| 8.1  | mem0 空间划分 · · · · · · · · · · · · · · · · · · ·                  | 108 |
| 8.2  | mem1 空间划分 · · · · · · · · · · · · · · · · · · ·                  | 108 |
| 8.3  | RC 模式下 cfg&ctrl 空间划分······1                                      | 108 |
| 8.4  | EP 模式下 cfg&ctrl 空间划分 · · · · · · · 1                             | 109 |
| 8.5  | 寄存器属性类型 1                                                        | 111 |
| 8.6  | PCIE 端口控制寄存器 0 · · · · · · · · · · · · · · · · · ·               | 111 |
| 8.7  | PCIE 端口控制寄存器 1 · · · · · · · · · · · · · · · · · ·               | 112 |
| 8.8  | PCIE 端口状态寄存器 0 · · · · · · · · · 1                               | 113 |
| 8.9  | PCIE 端口状态寄存器 1 · · · · · · · · · · · · · · · · · ·               | 114 |
| 8.10 | 用户定义消息 ID 寄存器 1                                                  | 116 |
| 8.11 | PCIE 端口中断状态寄存器 1                                                 | 116 |
| 8.12 | PCIE 端口对外配置访问参数寄存器 · · · · · · · 1                               | 120 |
| 8.13 | PCIE 端口控制和状态寄存器 · · · · · · · 1                                  | 120 |
| 8.14 | PHY 状态寄存器 1                                                      | 121 |
| 8.15 | 用户定制消息寄存器 0 · · · · · · · · · 1                                  | 121 |
| 8.16 | 用户定制消息寄存器 1 · · · · · · · · · · · · · · · · · ·                  | 121 |
| 8.17 | MSI 参数寄存器 · · · · · · · · · · · · · · · · · · ·                  | 122 |



| 8. | .18 | PCI Standard Capability Structures · · · · · · 123                                                                                                         |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | .19 | Port Logic 寄存器地址划分 · · · · · · · 123                                                                                                                       |
| 8  | .20 | Ack Latency Timer and Replay Timer Register $\cdots \cdots 124$                                                                                            |
| 8  | .21 | Vendor Specific DLLP Register · · · · · · · 126                                                                                                            |
| 8  | .22 | Port Force Link Register · · · · · · 126                                                                                                                   |
| 8  | .23 | Ack frequency and L0-L1 ASPM control Register $\cdots 127$                                                                                                 |
| 8  | .24 | Port Link Control Register · · · · · · 128                                                                                                                 |
| 8  | .25 | Lane Skew Register                                                                                                                                         |
| 8  | .26 | Symbol Number Register · · · · · · 129                                                                                                                     |
| 8  | .27 | Symbol Timer Register and Filter Mask Register 1 · · · · · · · · · · · 130                                                                                 |
| 8  | .28 | Filter Mask Register 2 $\cdots 131$                                                                                                                        |
| 8  | .29 | AMBA Multiple Outbound Decomposed NP Sub-Requests Control Register 131                                                                                     |
| 8  | .30 | Transmit Posted FC Credit Status Register · · · · · · 132                                                                                                  |
| 8  | .31 | Transmit Non-Posted FC Credit Status Register · · · · · · 132                                                                                              |
| 8  | .32 | Transmit Completion FC Credit Status Register · · · · · · · 133                                                                                            |
| 8  | .33 | Queue Status Register····· 133                                                                                                                             |
| 8  | .34 | VC0 Posted Receive Queue Control · · · · · · · 133                                                                                                         |
| 8  | .35 | VC0 Non-Posted Receive Queue Control · · · · · · · 134                                                                                                     |
| 8  | .36 | VC0 Completion Receive Queue Control · · · · · · · 134                                                                                                     |
| 8  | .37 | VC0 Posted Buffer Depth · · · · · · 134                                                                                                                    |
| 8  | .38 | VC0 Non-Posted Buffer Depth $\cdots 134$                                                                                                                   |
| 8  | .39 | VC0 Completion Buffer Depth $\cdots 135$                                                                                                                   |
| 8  | .40 | Gen2 Control Register · · · · · 135                                                                                                                        |
| 8  | .41 | Master Response Composer Control Register $0 \cdot $ |
| 8  | .42 | Master Response Composer Control Register 1 $\cdots 136$                                                                                                   |
| 8  | .43 | MSI Controller Address · · · · · · 136                                                                                                                     |
| 8  | .44 | MSI Controller Upper Address · · · · · · · 137                                                                                                             |
| 9  | .1  | 帧缓冲配置寄存器 141                                                                                                                                               |
| 9  | .2  | 帧缓冲地址寄存器 0 142                                                                                                                                             |
| 9  | .3  | 帧缓冲地址寄存器 1 · · · · · · · · · · · · · · · · 142                                                                                                             |
| 9. | .4  | 帧缓冲跨度寄存器 142                                                                                                                                               |



| 9.5   | 帧缓冲初始字节寄存器                                                                                  | 142  |
|-------|---------------------------------------------------------------------------------------------|------|
| 9.6   | 颜色抖动配置寄存器 · · · · · · · · · · · · · · · · · · ·                                             | 142  |
| 9.7   | 颜色抖动查找表低位寄存器                                                                                | 142  |
| 9.8   | 颜色抖动查找表高位寄存器                                                                                | 143  |
| 9.9   | 液晶面板配置寄存器                                                                                   | 143  |
| 9.10  | 水平显示宽度寄存器                                                                                   | 143  |
| 9.11  | 行同步配置寄存器                                                                                    | 144  |
| 9.12  | 垂直显示高度寄存器 · · · · · · · · · · · · · · · · · · ·                                             | 144  |
| 9.13  | 场同步配置寄存器 · · · · · · · · · · · · · · · · · · ·                                              | 144  |
| 9.14  | 伽玛校正目录寄存器 · · · · · · · · · · · · · · · · · · ·                                             | 144  |
| 9.15  | 伽玛校正值寄存器 · · · · · · · · · · · · · · · · · · ·                                              | 144  |
| 9.16  | 光标配置寄存器                                                                                     | 145  |
| 9.17  | 光标存储地址寄存器 · · · · · · · · · · · · · · · · · · ·                                             | 145  |
| 9.18  | 光标显示位置寄存器                                                                                   | 145  |
| 9.19  | 光标背景色寄存器 · · · · · · · · · · · · · · · · · · ·                                              | 145  |
| 9.20  | 光标前景色寄存器 · · · · · · · · · · · · · · · · · · ·                                              | 146  |
| 9.21  | 中断寄存器 · · · · · · · · · · · · · · · · · · ·                                                 | 146  |
| 9.22  | DAC 控制寄存器······                                                                             | 146  |
| 9.23  | DAC Sense 值寄存器·····                                                                         | 147  |
| 9.24  | Sense 配置寄存器 · · · · · · · · · · · · · · · · · · ·                                           | 147  |
| 9.25  | DVO 输出模式寄存器                                                                                 | 147  |
| 9.26  | 单色光标颜色配置 · · · · · · · · · · · · · · · · · · ·                                              | 149  |
| 10.1  | Register0 (Bus Mode Register) · · · · · · · · · · · · · · · · · · ·                         | 151  |
|       | Register1 (Transmit Poll Demand Register) · · · · · · · · · · · · · · · · · · ·             |      |
|       | Register2 (Receive Poll Demand Register)······                                              |      |
|       | Register3 (Receive Descriptor List Address Register) · · · · · · · · · · · · · · · · · · ·  |      |
|       | Register4 (Transmit Descriptor List Address Register) · · · · · · · · · · · · · · · · · · · |      |
|       | Register5 (Status Register) · · · · · · · · · · · · · · · · · · ·                           |      |
|       | Register6 (Operation Mode Register) · · · · · · · · · · · · · · · · · · ·                   |      |
|       | Register7 (Interrupt Enable Register) · · · · · · · · · · · · · · · · · · ·                 |      |
|       | Register (Missed Frame and Ruffer Overflow Counter Register)                                |      |
| 111 4 | - Devisiera uvussen rianne ann immer CN/PHIOW COHHLEL Devisieri CCCCCCCCC                   | 1.1/ |



| 10.10 | Register9(Receive Interrupt Watchdog Timer Register) · · · · · · · · · · · · · · · · · · ·                                                                 | 158 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10.11 | Register<br>10 (AXI Bus Mode Register) $\cdot \cdot \cdot$ | 158 |
| 10.12 | Register11 (AXI Status Register) · · · · · · · · · · · · · · · · · · ·                                                                                     | 159 |
| 10.13 | Register<br>18 (Current Host Transmit Descriptor Register) $\cdots \cdots \cdots$                                                                          | 159 |
| 10.14 | Register<br>19 (Current Host Receive Descriptor Register) $\cdot \cdot \cdot \cdot \cdot$                                                                  | 159 |
| 10.15 | Register<br>20 (Current Host Transmit Buffer Address Register) $\cdots \cdots \cdots$                                                                      | 160 |
| 10.16 | Register<br>21 (Current Host Receive Buffer Address Register) $\cdots \cdots \cdots$                                                                       | 160 |
| 10.17 | Register0 (MAC Configuration Register) · · · · · · · · · · · · · · · · · · ·                                                                               | 160 |
| 10.18 | Register1 (MAC Frame Filter)······                                                                                                                         | 161 |
| 10.19 | Register2 (Hash Table High Register) · · · · · · · · · · · · · · · · · · ·                                                                                 | 162 |
| 10.20 | Register3 (Hash Table Low Register) · · · · · · · · · · · · · · · · · · ·                                                                                  | 162 |
| 10.21 | Register4 (GMII Address Register) · · · · · · · · · · · · · · · · · · ·                                                                                    | 163 |
| 10.22 | Register5 (GMII Data Register) · · · · · · · · · · · · · · · · · · ·                                                                                       | 163 |
| 10.23 | Register6 (Flow Control Register) · · · · · · · · · · · · · · · · · · ·                                                                                    | 164 |
| 10.24 | Register7 (VLAN Tag Register) · · · · · · · · · · · · · · · · · · ·                                                                                        | 164 |
| 10.25 | Register8 (Version Register) · · · · · · · · · · · · · · · · · · ·                                                                                         | 165 |
| 10.26 | Register14 (Interrupt Status Register) · · · · · · · · · · · · · · · · · · ·                                                                               | 165 |
| 10.27 | Register15 (Interrupt Mask Register) · · · · · · · · · · · · · · · · · · ·                                                                                 | 165 |
| 10.28 | Register16 (MAC Address0 High Register) · · · · · · · · · · · · · · · · · · ·                                                                              | 166 |
| 10.29 | Register17 (MAC Address0 Low Register) · · · · · · · · · · · · · · · · · · ·                                                                               | 166 |
| 10.30 | Register18 (MAC Address1 High Register) · · · · · · · · · · · · · · · · · · ·                                                                              | 166 |
| 10.31 | Register19 (MAC Address1 Low Register) · · · · · · · · · · · · · · · · · · ·                                                                               | 167 |
| 10.32 | Register48 (AN Control Register) · · · · · · · · · · · · · · · · · · ·                                                                                     | 167 |
| 10.33 | Register49 (AN Status Register) · · · · · · · · · · · · · · · · · · ·                                                                                      | 167 |
| 10.34 | Register<br>50 (Auto-Negotiation Advertisement Register) $\cdot \cdot \cdot \cdot \cdot$                                                                   | 168 |
| 10.35 | ${\it Register 51 \ (Auto-Negotiation \ Link \ Partner \ Ability \ Register)} \cdots \cdots \cdots$                                                        | 168 |
| 10.36 | Register<br>52 (Auto-Negotiation Expansion Register) $\cdots\cdots\cdots\cdots$                                                                            | 169 |
| 10.37 | Register54 (SGMII/RGMII Status Register) · · · · · · · · · · · · · · · · · · ·                                                                             | 169 |
| 10.38 | Register448 (Time Stamp Control Register) · · · · · · · · · · · · · · · · · · ·                                                                            | 170 |
| 10.39 | Register449 (Sub-Second Increment Register) · · · · · · · · · · · · · · · · · · ·                                                                          | 171 |
| 10.40 | Register 450 (System Time - Seconds Register) · · · · · · · · · · · · · · · · · · ·                                                                        | 171 |



| 10.41 Register 451 (System Time - Nanoseconds Register) · · · · · · · 172            |
|--------------------------------------------------------------------------------------|
| 10.42 Register 452 (System Time - Seconds Update Register) · · · · · · 172           |
| 10.43 Register 453 (System Time - Nanoseconds Update Register) · · · · · · 172       |
| 10.44 Register 454 (Time Stamp Addend Register) · · · · · · · 172                    |
| 10.45 Register 455 (Target Time Seconds Register) · · · · · · · 175                  |
| 10.46 Register 456 (Target Time Nanoseconds Register) · · · · · · · 173              |
| 10.47 Register 457 (System Time - Higher Word Seconds Register) · · · · · · 173      |
| 10.48 Register 458 (Time Stamp Status Register) · · · · · · 173                      |
| 10.49 Register 459 (PPS Control Register) · · · · · · 174                            |
| 10.50 Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register) · · · · · · 174 |
| 10.51 Register 461 (PPS Auxiliary Time Stamp - Seconds Register) · · · · · · · 175   |
| 10.52 TDES0 · · · · · · 176                                                          |
| 10.53 TDES1 · · · · · · 177                                                          |
| 10.54 TDES2 · · · · · · 177                                                          |
| 10.55 TDES3 · · · · · 178                                                            |
| 10.56 TDES6 · · · · · · 178                                                          |
| 10.57 TDES7 · · · · · · 178                                                          |
| 10.58 RDES0 · · · · · · 178                                                          |
| 10.59 RDES1 · · · · · · 179                                                          |
| 10.60 RDES2 · · · · · · 180                                                          |
| 10.61 RDES3 · · · · · 180                                                            |
| 10.62 RDES4 · · · · · · 180                                                          |
| 10.63 RDES6 · · · · · 181                                                            |
| 10.64 TDES7 · · · · · 182                                                            |
| 11.1 SATA 控制器内部寄存器 · · · · · · · · · · · · · · · · · · ·                             |
| 16.1 LPC 控制器地址空间分布 · · · · · · 257                                                   |
| 16.2 LPC 寄存器 0····································                                   |
| 16.3 LPC 寄存器 1······ 258                                                             |
| 16.4 LPC 寄存器 2····································                                   |
| 16.5 LPC 寄存器 3                                                                       |



| 17.1 | SPI 配置寄存器列表 259                                                |
|------|----------------------------------------------------------------|
| 17.2 | 控制寄存器 (SPCR) · · · · · · · · · · · · · · · · · · ·             |
| 17.3 | 状态寄存器 (SPSR) · · · · · · · · 260                               |
| 17.4 | 数据寄存器 (TxFIFO/RxFIFO) · · · · · · · · · · · · · · · · · · ·    |
| 17.5 | 外部寄存器 (SPER) · · · · · · · · · · · · · · · · · · ·             |
| 17.6 | SPI 分频系数 · · · · · · · · 260                                   |
| 17.7 | 参数控制寄存器 (SFC_PARAM) · · · · · · · · 261                        |
| 17.8 | 片选控制寄存器 (SFC_SOFTCS) · · · · · · · · · · · · · · 261           |
| 17.9 | 时序控制寄存器 (SFC_TIMING) · · · · · · · · · · · · · · · · 261       |
| 21.1 | 四路 PWM 控制器 · · · · · 283                                       |
| 21.3 | PWM 控制寄存器设置 · · · · · · · 283                                  |
| 22.1 | HPET 寄存器列表 · · · · · · · 287                                   |
| 22.2 | General Capabilities and ID Register · · · · · · 288           |
| 22.3 | General Configuration Register · · · · · · 288                 |
| 22.4 | General Interrupt Status Register · · · · · · 288              |
| 22.5 | Main Counter Value Register · · · · · · · 289                  |
| 22.6 | Timer N Configuration and Capabilities Registe · · · · · · 289 |
| 22.7 | Timer N Comparator Value Register · · · · · · · 289            |



# 图目录

| 1.1  | 龙芯 2H 结构图                                                          | 2   |
|------|--------------------------------------------------------------------|-----|
| 3.1  | 时钟结构                                                               | 19  |
| 3.2  | 系统参考时钟                                                             | 19  |
| 3.3  | CPU 时钟结构 · · · · · · · · · · · · · · · · · · ·                     | 20  |
| 3.4  | DDR 时钟结构 · · · · · · · · · · · · · · · · · · ·                     | 20  |
| 3.5  | SYS 时钟结构 · · · · · · · · · · · · · · · · · · ·                     | 21  |
| 3.6  | 显示时钟结构                                                             | 21  |
| 5.1  | 龙芯 2H 单芯片系统 · · · · · · · · · · · · · · · · · · ·                  | 27  |
| 5.2  | 龙芯 3A+2H 双芯片系统                                                     | 28  |
| 5.3  | 高频 PLL 概念性结构 · · · · · · · · · · · · · · · · · · ·                 | 32  |
| 5.4  | 展频 PLL 概念性结构 · · · · · · · · · · · · · · · · · · ·                 | 33  |
| 5.5  | 中断结构示意                                                             | 54  |
| 6.1  | DDR2 SDRAM 行列地址与 CPU 物理地址的转换 · · · · · · · · · · · · · · · · · · · | 55  |
| 6.2  | DDR2 SDRAM 读操作协议 ······                                            | 56  |
| 6.3  | DDR2 SDRAM 写操作协议 · · · · · · · · · · · · · · · · · · ·             | 57  |
| 8.1  | PCIE 控制器结构 · · · · · · · · · · · · · · · · · · ·                   | 107 |
| 8.2  | PCIE 配置空间划分 · · · · · · · · · · · · · · · · · · ·                  | 125 |
| 9.1  | 显示控制器输出定序图                                                         | 148 |
| 10.1 | 增强型发送描述符                                                           | 175 |
| 10.2 | 增强型接收描述符                                                           | 184 |
| 13.1 | OTG CSRs 地址映射·····                                                 | 194 |
| 14.1 | HDA 模块的整体设计框图                                                      | 245 |
| 15.1 | AC97 应用系统 · · · · · · · · · · · · · · · · · · ·                    | 251 |



| 17.1 | SPI 控制器结构 · · · · · · · · · · · · · · · · · · ·            | 259 |
|------|------------------------------------------------------------|-----|
| 17.2 | SPI 主控制器接口时序                                               | 262 |
| 17.3 | SPI Flash 标准读时序······                                      | 262 |
| 17.4 | SPI Flash 快速读时序······                                      | 263 |
| 17.5 | SPI Flash 双向 I/O 读时序 · · · · · · · · · · · · · · · · · · · | 263 |
| 18.1 | I2C 主控制器结构                                                 | 265 |
| 19.1 | UART 控制器结构 · · · · · · · · · · · · · · · · · · ·           | 270 |
| 21.1 | 防死区功能例图                                                    | 285 |



### 第一章 概述

龙芯 2H 是龙芯 2G 处理器与龙芯 1A(2F 南桥)的后继产品,其目标是为安全适用计算机提供单片解决方案。龙芯 2H 采用 65nm 工艺实现,主频达 1GHz 以上。片内集成定点处理器、浮点处理器、流媒体处理和图形图像处理功能,以及南桥、北桥等配套芯片组功能。

龙芯 2H 具有以下关键特性:

- 集成一个 GS464 四发射龙芯处理器核, L1 Cache(I/D) 64KB, L2 Cache 512KB
- 集成 GS232v 媒体处理器, 支持 H264/AVS/VC-1 解码, 720p
- 集成 3D GPU, 兼容 OpenGL ES2.0
- 集成两路 DC 控制器, 最大分辨率可支持到 1920\*1080@60Hz/24bit
- 集成 8 位 HT 控制器, 支持从模式
- 集成 PCIE gen2 控制器, 支持 1x4 和 4x1, 支持主从模式
- 集成 2 个 10M/100M/1000M 自适应 GMAC
- 集成 2 个 SATA2
- 集成 1 个 64 位 DDR2/3 控制器
- 集成6个USB HOST接口,其中1个可配置为OTG接口
- 集成1个8位NANDFLASH控制器,支持MLC,支持系统启动
- 集成中断控制器, 支持灵活的中断设置
- 集成1个SPI控制器,支持系统启动
- 集成 AC97/HDA 控制器
- 集成1个LPC控制器
- 集成4路 UART 串口
- 集成2路I2C控制器,兼容SMBUS
- 集成 16 路 GPIO 端口
- 集成1个RTC
- 集成 4 路 PWM 控制器
- 集成 ACPI, 支持 USB/ 网络唤醒
- 集成看门狗电路

#### 1.1 体系结构框图

龙芯 2H 内部采用多级总线结构。处理器核、内存控制器、图形媒体模块、PCIE 和南桥使用交叉开关互连。南桥内为共享总线,连接 GMAC 、USB 、SATA 、HDA 、



DMA等 IO设备。低速外设(I2C/UART等)作为一个集合加在南桥总线上。



图 1.1: 龙芯 2H 结构图

## 1.2 芯片主要功能

#### 1.2.1 处理器核

- MIPS64 R2 体系结构兼容
- 包括 2 个全流水的 64 位双精度浮点乘加部件
- 64KB 数据 Cache 和 64KB 的指令 Cache
- 512K 二级 Cache
- 通过目录协议维护 I/O DMA 访问的 Cache 一致性
- x86 虚拟机支持
- EJTAG 支持



#### 1.2.2 媒体处理器

- 支持 AVS、H.264、VC-1 解码
- 支持 720p 高清

#### 1.2.3 GPU

- 支持 OpenGL ES 2.0, OpenGL ES 1.1
- 支持 OpenVG
- 通过 Futuremark 认证
- 动态电源管理
- 支持 BitBLT 和 Stretch BLT
- 矩形填充
- 硬件画线
- 单色字体渲染
- ROP2, ROP3, ROP4
- Alpha 混合
- 32Kx32K 坐标系统
- 90 度旋转
- 透明支持
- YUV 色域空间转换
- 高质量缩放

#### 1.2.4 显示控制器

- 双显示输出(CRT/DVO)
- 硬件光标
- 伽玛校正
- 输出抖动
- 最高像素时钟 (CRT 200MHz, DVO165MHz)
- 支持线性显示缓冲
- 上电序列控制
- 低功耗管理
- VGA 电源管理

#### 1.2.5 DDRII 控制器

• 64 位 DDRII/III 控制器



- 可配置为 32/16 位模式
- 接口上命令、读写数据全流水操作
- 内存命令合并、排序提高整体带宽
- 内建动态延迟补偿电路(DCC),用于数据的可靠发送和接收
- ECC 功能可以对数据通路上的 1 位和 2 位错误进行检测,并能对 1 位错误进行自 动纠错

#### 1.2.6 SATA 控制器

- 2 个独立 SATA 端口
- 支持 SATA 1.5Gbps 和 SATA2 代 3Gbps 的传输
- 兼容串行 ATA 2.6 规范和 AHCI 1.1 规范
- 低功耗设计

#### 1.2.7 USB2.0 控制器

- 6 个独立的 USB2.0 的 HOST 端口
- 其中1端口可配置为 OTG 模式
- 兼容 USB1.1 和 USB2.0
- 内部 EHCI 控制和实现高速传输可达 480 Mbps
- 内部 OHCI 控制和实现全速和低速传输
- 低功耗管理

#### 1.2.8 GMAC 控制器

- 两路 10/100/1000Mbps 自适应以太网 MAC
- 双网卡均兼容 IEEE 802.3
- 对外部 PHY 实现 RGMII 接口
- 半双工 / 全双工自适应
- Timestamp 功能
- 半双工时,支持碰撞检测与重发(CSMA/CD)协议
- 支持 CRC 校验码的自动生成与校验,支持前置符生成与删除
- 支持网络开机

#### 1.2.9 LPC 控制器

- 兼容 LPC Rev1.1 标准
- 支持系统启动



#### 1.2.10 HDA 控制器

- 支持 16, 18 和 20 位采样精度支持可变速率
- 最高达 192KHz
- 7.1 频道环绕立体声输出
- 三路音频输入

#### 1.2.11 NAND 控制器

- 最大支持 4GB NAND Flash
- 支持 MLC
- 支持系统启动
- 支持 512/2K/4K/8K 页

#### 1.2.12 SPI 控制器

- 双缓冲接收器
- 极性和相位可编程的串行时钟
- 主模式支持
- 支持到 4 个的变长字节传输
- 支持系统启动
- 支持标准读、连续地址读、快速读、双路 I/O 等 SPI Flash 读模式

#### 1.2.13 UART

- 1 个全功能 UART
- 在寄存器与功能上兼容 NS16550A
- 两路全双工异步数据接收 / 发送
- 可编程的数据格式
- 16 位可编程时钟计数器
- 支持接收超时检测
- 带仲裁的多中断系统
- 可配置为 4 个两线串口 (TXD,RXD)

#### 1.2.14 I2C 总线

- 兼容 SMBUS (100Kbps)
- 与 PHILIPS I2C 标准相兼容
- 履行双向同步串行协议



- 只实现主设备操作
- 能够支持多主设备的总线
- 总线的时钟频率可编程
- 可以产生开始 / 停止 / 应答等操作
- 能够对总线的状态进行探测
- 支持低速和快速模式
- 支持时钟延伸和等待状态

#### 1.2.15 PWM

- 32 位计数器
- 支持脉冲生成及捕获
- 4 路控制器

#### 1.2.16 HPET

- 32 位计数器
- 支持1个周期性中断
- 支持 2 个非周期性中断

#### 1.2.17 RTC

- 计时精确到 0.1 秒
- 可产生3个计时中断
- 支持定时开机功能

#### 1.2.18 Watchdog

• 32 比特计数器及初始化寄存器

#### 1.2.19 中断控制器

- 支持软件设置中断
- 支持电平与边沿触发
- 支持中断屏蔽与使能

#### 1.2.20 ACPI 功耗管理

- 处理器核动态频率电压调节
- 媒体处理器可关断



- 全芯片时钟门控
- PHY 可关断
- USB/GMAC 可唤醒
- 来电可自动启动

#### 1.2.21 PCIe 接口

- 兼容 PCIe 2.0
- 外部连接支持 X4\*1 或者 X1\*4
- 支持作为 PCIe 桥片

#### 1.2.22 HT 接口

- 支持从模式,可作为 HT 桥片
- 兼容 HyperTransport 1.03
- 接口频率支持 200/400/800Mhz
- 接口宽度支持8位模式





## 第二章 引脚定义

## 2.1 约定

本章对龙芯 2H 引脚定义的说明使用以下约定:

- 信号名 信号名的选取以方便记忆和明确标识功能为原则。低有效信号以n结尾,高有效信号则不带n。如无特别说明,以ACPI/GMAC/USB开头的信号位于RSM域;以RTC开头的信号位于RTC域;其它信号位于SOC域。
- 类型 信号的输入输出类型由一个代码表示, 见表 2.1

| 代码       | 描述   |
|----------|------|
| A        | 模拟   |
| DIFF I/O | 双向差分 |
| DIFF IN  | 差分输入 |
| DIFF OUT | 差分输出 |
| I        | 输入   |
| I/O      | 双向   |
| О        | 输出   |
| OD       | 开漏输出 |
| P        | 电源   |
| G        | 地    |

表 2.1: 信号类型代码

## 2.2 引脚列表

表 2.2: DDR2 SDRAM 控制器接口信号

| 信号名称          | 类型       | 描述                          |
|---------------|----------|-----------------------------|
| DDR_DQ[63:0]  | I/O      | DDR2/3 SDRAM 数据总线信号         |
| DDR_CB[7:0]   | I/O      | DDR2/3 SDRAM 数据总线 ECC 信号    |
| DDR_DQSp[8:0] | DIFF I/O | DDR2/3 SDRAM 数据选通 (包括 ECC ) |
| DDR_DQSn[8:0] | DIFF 1/0 | DDI(2/3 5DI(AM              |
| DDR_DQM[8:0]  | О        | DDR2/3 SDRAM 数据屏蔽 (包括 ECC ) |
| DDR_A[14:0]   | О        | DDR2/3 SDRAM 地址总线信号         |
| DDR_BA[2:0]   | О        | DDR2/3 SDRAM 逻辑 Bank 地址信号   |
| DDR_WEn       | О        | DDR2/3 SDRAM 写使能信号          |
| DDR_CASn      | О        | DDR2/3 SDRAM 列地址选择信号        |
| DDR_RASn      | О        | DDR2/3 SDRAM 行地址选择信号        |
| DDR_CSn[3:0]  | О        | DDR2/3 SDRAM 片选信号           |
| DDR_CKE[3:0]  | О        | DDR2/3 SDRAM 时钟使能信号         |



| 信号名称                      | 类型       | 描述                               |
|---------------------------|----------|----------------------------------|
| DDD CV_[*.0]              |          | DDDR2/3 SDRAM 差分时钟输出信号           |
| DDR_CKp[5:0] DDR_CKn[5:0] | DIFF OUT | 1,3,5为一组 DIMM 时钟,                |
|                           |          | 0,2,4为另一组 DIMM 时钟                |
| DDR_ODT[3:0]              | О        | DDR2/3 SDRAM ODT 信号              |
| DDR_RESETn                | О        | DDR2/3 SDRAM 复位控制信号              |
| ACPLCKE[3:0]              | О        | DDR2/3 SDRAM 时钟使能信号 (RSM 域 3.3V) |

## 表 2.3: HT 总线信号

| 信号名称            | 类型       | 描述                       |
|-----------------|----------|--------------------------|
| HTCLKp          | DIFF OUT | HT 总线参考时钟 (200MHz)       |
| HTCLKn          | DH1 001  | 111 心灵多~3#17 (2001/1112) |
| HT_POWEROK      | I/O      | HT 总线 PowerOK 信号         |
| HT_RSTn         | I/O      | HT 总线 Resetn 信号          |
| HT_LDT_STOPn    | I/O      | HT 总线 Ldt_Stopn 信号       |
| HT_LDT_REQn     | I/O      | HT 总线 Ldt_Reqn 信号        |
| HT_TX_CADp[7:0] | DIFF OUT | HT 总线发送数据命令总线            |
| HT_TX_CADn[7:0] | DIFF OOT | 111 心线及心致拍明 《心线          |
| HT_TX_CTLp[0]   | DIFF OUT | HT 总线发送控制信号              |
| HT_TX_CTLn[0]   | DH1 001  | 111 心线及心压的旧 5            |
| HT_TX_CLKp[0]   | DIFF OUT | HT 总线发送时钟总线              |
| HT_TX_CLKn[0]   | DH1 001  | 111 心风人也可可心风             |
| HT_RX_CADp[7:0] | DIFF IN  | HT 总线接收数据命令总线            |
| HT_RX_CADn[7:0] | DHT IIV  | 111 心线及状数加州 4 心线         |
| HT_RX_CTLp[0]   | DIFF IN  | HT 总线接收控制信号              |
| HT_RX_CTLn[0]   | DHT IIV  | 11. 写经这位证明日 2            |
| HT_RX_CLKp[0]   | DIFF IN  | HT 总线接收时钟信号              |
| HT_RX_CLKn[0]   | DIII IIV | TIT GOOD VALUE A         |

# 表 2.4: PCIE 总线信号

| 信号名称            | 类型       | 描述                                     |
|-----------------|----------|----------------------------------------|
| PCIE_XTAL[2:1]  | DIFF IN  | PCIE 参考时钟输入                            |
| PCIE[3:0]_CLKp  | DIFF OUT | PCIE 参考时钟输出                            |
| PCIE[3:0]_CLKn  |          | 1 〇正 多巧时怀柳山                            |
| PCIE_REFRES     | A        | 外部参考电阻                                 |
| r CIE_REFRES    | A        | 通过 487ohm(+/-1%) 电阻连至 PLL_PCIE_DVDD 电源 |
| PCIE[3:0]_TXp   | DIFF OUT | PCIE 差分数据输出                            |
| PCIE[3:0]_TXn   |          | T CIL 左刀 奴馅 側 U                        |
| PCIE[3:0]_RXp   | DIFF IN  | PCIE 差分数据输入                            |
| PCIE[3:0]_RXn   | DIFF     | 1016 左刀 奴馅 棚八                          |
| PCIE[3:0]_PRSNT | I        | PCIE 插卡检测                              |
| PCIE_RSTn       | О        | PCIE 复位                                |



## 表 2.5: VGA 接口信号

| 信号名称                   | 类型 | 描述                                             |
|------------------------|----|------------------------------------------------|
| VGA_ROUT               | A  | VGA 红色通道输出                                     |
| VGA_GOUT               | A  | VGA 绿色通道输出                                     |
| VGA_BOUT               | A  | VGA 蓝色通道输出                                     |
| VGA_HSYNC              | О  | VGA 水平同步                                       |
| VGA_VSYNC              | О  | VGA 垂直同步                                       |
| VGA_IDUMP              | G  | 模拟地                                            |
| VGA_REXTP<br>VGA_REXTN | A  | 外部参考电阻<br>4.12k:满幅电流 18.7mA<br>7.81k:满幅电流 10mA |

# 表 2.6: DVO 接口信号

| 信号名称        | 类型 | 描述       |
|-------------|----|----------|
| DVO_CLKp    | О  | DVO 时钟输出 |
| DVO_CLKn    | О  | DVO 时钟输出 |
| DVO_HSYNC   | О  | DVO 水平同步 |
| DVO_VSYNC   | О  | DVO 垂直同步 |
| DVO_DE      | О  | DVO 数据有效 |
| DVO_D[23:0] | O  | DVO 显示数据 |

## 表 2.7: GMAC 接口信号

| 信号名称               | 类型  | 描述         |
|--------------------|-----|------------|
| GMAC[1:0]_TXCK     | О   | RGMII 发送时钟 |
| GMAC[1:0]_TCTL     | О   | RGMII 发送控制 |
| GMAC[1:0]_TXD[3:0] | О   | RGMII 发送数据 |
| GMAC[1:0]_RXCK     | I   | RGMII 接收时钟 |
| GMAC[1:0]_RCTL     | I   | RGMII 接收控制 |
| GMAC[1:0]_RXD[3:0] | I   | RGMII 接收数据 |
| GMAC[1:0]_MDCK     | О   | SMA 接口时钟   |
| GMAC[1:0]_MDIO     | I/O | SMA 接口数据   |

# 表 2.8: SATA 接口信号

| 信号名称           | 类型       | 描述                                     |
|----------------|----------|----------------------------------------|
| SATA_XTAL[2:1] | I/O      | 参考时钟晶体                                 |
| SATA_REFRES    | A        | 外部参考电阻                                 |
| SATALICETIES   | A        | 通过 487ohm(+/-1%) 电阻连至 PLL_SATA_DVDD 电源 |
| SATA[1:0]_TXp  | DIFF OUT | SATA 差分数据输出                            |
| SATA[1:0]_TXn  |          | SATA 左刀 妖焰 側山                          |
| SATA[1:0]_RXp  | DIFF IN  | SATA 差分数据输入                            |
| SATA[1:0]_RXn  | DILLIN   | BAIA 左刀 双冲側八                           |
| SATA[1:0]_LEDn | OD       | SATA 工作状态,低表示有数据传输                     |



## 表 2.9: USB 接口信号

| 信号名称             | 类型  | 描述                         |
|------------------|-----|----------------------------|
| USB_XI[1:0]      | I/O | 参考时钟晶体                     |
| USB_XO[1:0]      | 1/0 | 多.2 h.1 t.L.明 b.           |
| USB_TXRTUNE[1:0] | A   | 参考电阻,分别经 43.2ohm 电阻连接到地    |
| USB[5:0]_DP      | I/O | USB D+                     |
| USB[5:0]_DM      | I/O | USB D-                     |
| USB[5:0]_OC      | T   | USB 过流检测                   |
| 030[3.0]_00      | 1   | USB0₋OC 复用为 OTG DRVVBUS 输出 |
| USB0_ID          | I   | USB0 OTG ID 输入             |
| USB0_VBUS        | A   | USB0 OTG VBUS 输入           |

## 表 2.10: AC97/HDA 接口信号

|             | • • | ,              |
|-------------|-----|----------------|
| 信号名称        | 类型  | 描述             |
| AC97_BITCLK | I/O | AC97 BITCLK 输入 |
| AC37_BITCER | 1/0 | HDA BITCLK 输出  |
| AC97_SDATAI | I   | AC97/HDA 数据输入  |
| AC97_SDATAO | О   | AC97/HDA 数据输出  |
| AC97_SYNC   | О   | AC97/HDA 同步    |
| AC97_RESET  | О   | AC97/HDA 复位    |

## 表 2.11: LPC 接口信号

| 信号名称         | 类型  | 描述                 |
|--------------|-----|--------------------|
| LPC_CLKIN    | I   | LPC 时钟输入           |
| LPC_CLK[1:0] | О   | 相位相同的两路 33MHz 时钟输出 |
| LPC_RESETn   | O   | LPC 复位输出,需外部下拉     |
|              |     | LPC FRAME 控制信号     |
| LPC_FRAMEn   | I/O | 主控: 输出             |
|              |     | ROM:输入             |
| LPC_AD[3:0]  | I/O | LPC 总线数据           |
| LPC_SIRQ     | I/O | LPC 中断线            |

# 表 2.12: SPI 接口信号

| 信号名称    | 类型 | 描述       |
|---------|----|----------|
| SPI_SCK | О  | SPI 时钟输出 |
| SPI_CSn | О  | SPI 片选 0 |
| SPLSDO  | O  | SPI 数据输出 |
| SPLSDI  | I  | SPI 数据输入 |

# 表 2.13: I2C 接口信号

| 信号名称         | 类型  | 描述     |
|--------------|-----|--------|
| IIC[1:0]_SCL | О   | I2C 时钟 |
| IIC[1:0]_SDA | I/O | I2C 数据 |



# 表 2.14: UART 接口信号

| 信号名称      | 类型 | 描述         |
|-----------|----|------------|
| UART0_TXD | O  | UART0 数据发送 |
| UART0_RXD | I  | UART0 数据接收 |

## 表 2.15: NAND 接口信号

| 信号名称        | 类型  | 描述         |
|-------------|-----|------------|
| NAND_CLE    | О   | NAND 命令锁存  |
| NAND_ALE    | О   | NAND 地址锁存  |
| NAND_RD     | О   | NAND 读信号   |
| NAND_WR     | О   | NAND 写信号   |
| NAND_CE     | О   | NAND 片选 0  |
| NAND_RDY    | I   | NAND 准备好 0 |
| NAND_D[7:0] | I/O | NAND 数据线   |

# 表 2.16: GPIO 信号

| 信号名称        | 类型  | 描述                   |
|-------------|-----|----------------------|
| GPIO00      | I/O | 通用输入输出               |
| HDA_SDATAI1 | I   | HDA 数据输入,连接第二个 codec |
| GPIO01      | I/O | 通用输入输出               |
| HDA_SDATAI2 | I   | HDA 数据输入,连接第三个 codec |
| GPIO02      | I/O | 通用输入输出               |
| UART0_RTS   | О   | 8线全功能串口信号,更多复用见表519  |
| GPIO03      | I/O | 通用输入输出               |
| UART0_DTR   | О   | 8 线全功能串口信号           |
| GPIO04      | I/O | 通用输入输出               |
| UART0_RI    | I/O | 8 线全功能串口信号           |
| GPIO05      | I/O | 通用输入输出               |
| UART0_CTS   | I   | 8 线全功能串口信号           |
| GPIO06      | I/O | 通用输入输出               |
| UART0_DSR   | I   | 8 线全功能串口信号           |
| GPIO07      | I/O | 通用输入输出               |
| UART0_DCD   | I   | 8 线全功能串口信号           |
| GPIO08      | I/O | 通用输入输出               |
| SPI_CSn1    | О   | SPI 片选 1             |
| GPIO09      | I/O | 通用输入输出               |
| SPI_CSn2    | О   | SPI 片选 2             |
| GPIO10      | I/O | 通用输入输出               |
| NAND_CE1    | О   | NAND 片选 1            |
| GPIO11      | I/O | 通用输入输出               |
| NAND_RDY1   | I   | NAND 准备好 1           |
| GPIO12      | I/O | 通用输入输出               |
| PWM0        | О   | PWM0 输出              |



| 信号名称   | 类型  | 描述           |
|--------|-----|--------------|
| GPIO13 | I/O | 通用输入输出       |
| PWM1   | О   | PWM1 输出      |
| GPIO14 | I/O | 通用输入输出       |
| PWM2   | I/O | PWM2 输入 / 输出 |
| GPIO15 | I/O | 通用输入输出       |
| PWM3   | I/O | PWM3 输入 / 输出 |

表 2.17: 电源接口

| 信号名称          | 类型 | 描述                     |
|---------------|----|------------------------|
| PLL_CORE_AVDD | P  | Core PLL 1.8V 模拟电源     |
| PLL_CORE_AGND | G  | Core PLL 模拟地           |
| PLL_CORE_DVDD | Р  | Core PLL 1.1V 数字电源     |
| PLL_CORE_DGND | G  | Core PLL 数字地           |
| PLL_SYS_AVDD  | P  | System PLL 1.8V 模拟电源   |
| PLL_SYS_AGND  | G  | System PLL 模拟地         |
| PLL_SYS_DVDD  | Р  | System PLL 1.1V 数字电源   |
| PLL_SYS_DGND  | G  | System PLL 数字地         |
| PLL_HT_AVDD   | P  | HT PLL 1.8V 模拟电源       |
| PLL_HT_AGND   | G  | HT PLL 模拟地             |
| PLL_HT_DVDD   | Р  | HT PLL 1.1V 数字电源       |
| PLL_HT_DGND   | G  | HT PLL 数字地             |
| PLL_DDR_AVDD  | Р  | DDR PLL 2.5V 模拟电源      |
| PLL_DDR_AGND  | G  | DDR PLL 模拟地            |
| PLL_DDR_DVDD  | Р  | DDR PLL 1.2V 数字电源      |
| PLL_DDR_DGND  | G  | DDR PLL 数字地            |
| PLL_VGA_AVDD  | Р  | VGA PLL 2.5V 模拟电源      |
| PLL_VGA_AGND  | G  | VGA PLL 模拟地            |
| PLL_VGA_DVDD  | Р  | VGA PLL 1.2V 数字电源      |
| PLL_VGA_DGND  | G  | VGA PLL 数字地            |
| PLL_DVO_AVDD  | P  | DVO PLL 2.5V 模拟电源      |
| PLL_DVO_AGND  | G  | DVO PLL 模拟地            |
| PLL_DVO_DVDD  | Р  | DVO PLL 1.2V 数字电源      |
| PLL_DVO_DGND  | G  | DVO PLL 数字地            |
| PLL_PCIE_AVDD | Р  | PCIE PLL 2.5V 模拟电源     |
| PLL_PCIE_DVDD | Р  | PCIE PLL 1.2V 模拟电源     |
| PLL_PCIE_VSS  | G  | PCIE PLL 地             |
| PLL_SATA_AVDD | Р  | SATA PLL 2.5V 模拟电源     |
| PLL_SATA_DVDD | Р  | SATA PLL 1.2V 模拟电源     |
| PLL_SATA_VSS  | G  | SATA PLL 地             |
| THSENS_AVDD   | Р  | Thermal sensor 2.5V 电源 |
| THSENS_AGND   | G  | Thermal sensor 地       |
| SENSE_VCPU    | О  | CPU 域电源测试点             |
| SENSE_VSOC    | О  | SOC 域电源测试点             |
| SENSE_VSS     | О  | CPU/SOC 地测试点           |



| 信号名称      | 类型 | 描述                    |
|-----------|----|-----------------------|
| VDD_CPU   | P  | CPU 域电源 (0.95V 1.3V)  |
| VDD_SOC   | P  | SOC 域电源 (1.15V)       |
| VDD_RSM   | P  | RSM 域电源 (1.15V)       |
| VSS       | G  | 核心地                   |
| RTC_VDD   | P  | RTC 域电源 (1.3 2.5V)    |
| RTC_GND   | G  | RTC 域地                |
| VDDE3V3   | P  | SOC 域 3.3V IO 电源      |
| RSM3V3    | P  | RSM 域 3.3V IO 电源      |
| RSM2V5    | P  | RSM 域 2.5V IO 电源      |
| VSSE      | G  | IO地                   |
| DDR_VDDQ  | P  | DDR IO 1.8/1.5V 电源    |
| DDR_VREF  | P  | DDR 参考电压              |
| HT_VDD    | P  | HT PHY CORE 电源 (1.1V) |
| HT_VSS    | G  | HT PHY CORE 地         |
| HT_1V8    | P  | HT PHY IO 电源 (1.8V)   |
| HT_VSSE   | G  | HT PHY IO 地           |
| USB_A3V3  | P  | USB 3.3V 模拟电源         |
| USB_A2V5  | P  | USB 2.5V 模拟电源         |
| USB_AVSS  | G  | USB 模拟地               |
| VGA_A2V5  | P  | VGA 2.5V 模拟电源         |
| VGA_AVSS  | G  | VGA 模拟地               |
| PEST_1V2T | P  | PCIE/SATA 发送端 1.2V 电源 |
| PCIE_VSST | G  | PCIE 发送端地             |
| SATA_VSST | G  | SATA 发送端地             |
| PCIE_1V2R | Р  | PCIE 接收端 1.2V 电源      |
| PCIE_VSSR | G  | PCIE 接收端地             |
| SATA_1V2R | Р  | SATA 接收端 1.2V 电源      |
| SATA_VSSR | G  | SATA 接收端地             |

表 2.18: 电源管理接口

| 信号名称         | 类型 | 描述                 |
|--------------|----|--------------------|
| ACPL-SYSRSTn | I  | 系统复位               |
| ACPI_RSMRSTn | I  | RSM 域复位 (RTC 电压域 ) |
| ACPLRTCRSTn  | I  | RTC 域复位 (RTC 电压域 ) |
| ACPI_RINGn   | I  | 振铃唤醒               |
| ACPI_WAKEn   | I  | PCIE 唤醒            |
| ACPI_LID     | I  | 屏盖状态               |
| ACPI_PWRTYPE | I  | 供电来源               |
| ACPLBATLOWn  | I  | 电源电量低              |
| ACPLSUSSTATn | О  | 低功耗状态              |
| ACPI_S3n     | О  | S3 状态              |
| ACPI_S4n     | О  | S4 状态              |
| ACPI_S5n     | О  | S5 状态              |



| 信号名称          | 类型 | 描述     |
|---------------|----|--------|
| ACPI_VID[5:0] | O  | 调压控制   |
| ACPLPLTRSTn   | O  | 平台复位   |
| ACPI_SLPLANn  | О  | 网络电源控制 |
| ACPI_PWRBTNn  | I  | 电源开关   |
| ACPI_PWROK    | I  | 电源有效   |

## 表 2.19: 测试接口

| 信号名称         | 类型 | 描述                |
|--------------|----|-------------------|
|              |    | 测试模式控制 (RSM 电压域 ) |
| ACPL_DOTESTn | I  | 0: 测试模式           |
|              |    | 1: 功能模式           |

## 表 2.20: EJTAG 接口

| 信号名称       | 类型 | 描述                          |
|------------|----|-----------------------------|
| EJTAG_SEL  | I  | JTAG 选择 (0: JTAG, 1: EJTAG) |
| EJTAG_TCK  | I  | JTAG 时钟                     |
| EJTAG_TDI  | I  | JTAG 数据输入                   |
| EJTAG_TMS  | I  | JTAG 模式                     |
| EJTAG_TRST | I  | JTAG 复位                     |
| EJTAG_TDO  | О  | JTAG 数据输出                   |

## 表 2.21: 时钟信号

| 信号名称           | 类型  | 描述                                     |
|----------------|-----|----------------------------------------|
| SYS_BAKCLK     | I   | 100MHz 备份参考时钟                          |
| SYS_TESTCLK    | I   | 测试时钟                                   |
| SATA_XTAL[2:1] | I/O | 参考时钟晶体 (25MHz)                         |
| RTC_XI         | I/O | RTC 参考时钟晶体 (32.768KHz)                 |
| RTC_XO         | 1/0 | N1 ○ 多方町   PT   同   PT   (32.700 N112) |

# 表 2.22: 其它信号

| 信号名称         | 类型 | 描述                           |
|--------------|----|------------------------------|
|              |    | 系统参考时钟选择                     |
| SYS_CLKSEL0  | I  | 0: SATA_XTAL                 |
|              |    | 1: SYS_BAKCLK                |
|              |    | PCIE 参考时钟选择                  |
| SYS_CLKSEL1  | I  | 0: 从 PCIE_XTAL 输入            |
|              |    | 1: 内部 100MHz 时钟              |
|              |    | USB PHY1 时钟选择                |
| ACPI_CLKSEL2 | I  | 0: 内部时钟                      |
|              |    | 1: 在 USB_XI1/XO1 上的 12MHz 晶体 |



| 信号名称         | 类型  | 描述               |
|--------------|-----|------------------|
|              |     | ACPI 使能          |
| ACPI_CLKSEL3 | I   | 0: 不使用 ACPI 控制芯片 |
|              |     | 1:使用 ACPI 控制     |
| OVO NIMI     | I/O | 不可屏蔽中断           |
| SYS_NMIn     |     | 桥片模式下为输出, 否则为输入  |
| CIVICI INITI | I/O | 普通中断             |
| SYS_INTn     |     | 桥片模式下为输出, 否则为输入  |





## 第三章 时钟结构

龙芯 2H 的时钟结构如图3.1所示,片内的时钟主要由一个系统参考时钟经由多个时钟复位生成器 (RCG) 产生。本章将详细介绍时钟的结构及其配置情况。



图 3.1: 时钟结构

## 3.1 系统参考时钟

系统参考时钟有两种来源,分别为 SATA\_XTAL 和 SYS\_BAKCLK。前者不需要有源晶振,可降低系统成本,因而推荐使用。SYS\_BAKCLK 为后备参考时钟,建议在测试系统中连接,若使用 PCIE 参考时钟输出则必须连接并选用。



图 3.2: 系统参考时钟

## 3.2 CPU **时钟**

CPU 时钟有硬件跳线和软件控制两种配置方式。硬件跳线使用 NAND\_D[2:0] 作为配置信号 (bootcfg[6:4]),只能有少数几种频率选择。硬件配置模式下,参考时钟必须



为 100MHz。软件控制方式可以对所有的参数进行控制,通过 clock\_ctrl0 寄存器进行配置,其定义见表5.30。CPU 时钟由高频 PLL(HPLL) 产生,其倍频后频率输出应当在700MHz 3GHz 之间。



图 3.3: CPU 时钟结构

### 3.3 DDR 时钟

DDR 时钟有硬件跳线和软件控制两种配置方式。硬件跳线使用 NAND\_D[5:3] 作为配置信号 (bootcfg[9:7]),只能有少数几种频率选择。硬件配置模式下,参考时钟必须为100MHz。软件控制方式可以对所有的参数进行控制,通过 clock\_ctrl0 和 clock\_ctrl1 寄存器进行配置,其定义见表5.30和表5.31。 DDR 时钟由展频 PLL(SPLL) 产生,其倍频后频率输出应当在600MHz 1.8GHz 之间。



图 3.4: DDR 时钟结构

## 3.4 SYS **时钟**

龙芯 2H 多数片上模块的工作时钟由 SYS 时钟复位发生器产生,包括 GMAC 的 125MHz 时钟,HDA 的 24MHz 时钟,GPU、HDV 以及 PCIe 参考时钟等等。SYS\_RCG



由一个高频 PLL 和一组分频器组成,如图 3.5 所示。SYS\_RCG 有硬件跳线和软件控制两种配置方式。硬件跳线使用 NAND\_D[7:6] 作为配置信号 (bootcfg[11:10]),只有一种固定频率: HPLL 输出 3GHz 时钟,分频器采用默认分频(见图3.5)。硬件配置模式下,参考时钟必须为 100MHz。软件控制方式可以对所有的参数进行控制,通过 sys\_pllcfg 寄存器配置 HPLL,通过 clock\_ctrl2/3 配置分频器,其定义见表5.32和表5.33。默认分频见图3.5。



图 3.5: SYS 时钟结构

## 3.5 显示时钟

显示时钟由 SPLL 产生,需要根据目标显示模式进行设置。其结构如图3.6所示,由软件通过 pix\*\_pllcfg 寄存器进行配置,其定义见表5.34和表5.35。为保证时钟正确,软件应当先切换到 refclk,然后按选参考时钟一预分频器— SPLL—后分频器的次序配置时钟通路,最后将输出切换到后分频器输出。



图 3.6: 显示时钟结构



# 3.6 时钟信号说明

表3.1统一介绍了龙芯 2H 的所有时钟引脚。



表 3.1: 龙芯 2H 时钟信号

| 信号名称                             | 频率 (MHz)     | 类型                                       | 描述                                                            |  |
|----------------------------------|--------------|------------------------------------------|---------------------------------------------------------------|--|
| SATA_XTAL[2:1]                   | 25           | I/O                                      | SATA 参考时钟晶体<br>如果没有选择 BAKCLK,则该 25M 晶体必须连接。                   |  |
| RTC_XI<br>RTC_XO                 | 32.768K      | I/O                                      | RTC 参考时钟晶体                                                    |  |
| USB_XI[1:0]<br>USB_XO[1:0]       | 12           | I/O                                      | USB 参考时钟晶体<br>根据软件配置,第2个晶体可不接。                                |  |
| LPC_CLKIN                        | 33           | I                                        | LPC 时钟输入                                                      |  |
| EJTAG_TCK                        | 33           | I                                        | JTAG 时钟                                                       |  |
| AC97_BITCLK                      | 12.288<br>24 | I<br>O                                   | AC97 时钟输入<br>HDA时钟输出                                          |  |
| SYS_BAKCLK                       | 100          | I                                        | 100MHz 时钟                                                     |  |
| SYS_TESTCLK                      | -            | I                                        | 测试时钟, 不需要连接                                                   |  |
| GMAC[1:0]_TXCK                   | 125/25/2.5   | О                                        | RGMII 发送时钟                                                    |  |
| GMAC[1:0]_RXCK                   | 125/25/2.5   | I                                        | RGMII 接收时钟                                                    |  |
| LPC_CLK[1:0]                     | 33           | O                                        | 相位相同的两路 33MHz 时钟输出,可为两个设备(含2H)的 LPC 总线提供时钟。                   |  |
| PCIE_XTAL[2:1] 100               |              | DIFF IN PCIE 参考时钟输入 如果使用内部 100M 时钟,则可悬空。 |                                                               |  |
| HT_TX_CLKp[0]<br>HT_TX_CLKn[0]   | 200/800      | DIFF<br>OUT                              | HT 总线发送时钟                                                     |  |
| HT_RX_CLKp[0]<br>HT_RX_CLKn[0]   | 200/800      | DIFF IN                                  | HT 总线接收时钟                                                     |  |
| HTCLKp<br>HTCLKn                 | 200          | DIFF<br>OUT                              | HT 总线参考时钟                                                     |  |
| PCIE[3:0]_CLKp<br>PCIE[3:0]_CLKn | 100          | DIFF<br>OUT                              | PCIE 参考时钟输出                                                   |  |
| DDR_CKp[5:0]<br>DDR_CKn[5:0]     | 400          | DIFF<br>OUT                              | DDR2/3 SDRAM 差分时钟输出<br>1,3,5为一组 DIMM 时钟,<br>0,2,4为另一组 DIMM 时钟 |  |





## 第四章 电源管理

本章对电源管理的大的方面进行介绍, 寄存器和使用方法放到第二十四章

### 4.1 电源管理模块介绍

- 龙芯 2H 电源管理模块提供系统功耗管理实现机制。
- 支持 Advanced Configuration and Power Interface, Version 4.0a(ACPI), 提供相应的功耗管理功能。
- 系统休眠与唤醒,支持 ACPI S3 (待机到内存), ACPI S4 (待机到硬盘), ACPI S5 (软关机),并且支持电源失效检测和自动系统恢复。支持多种唤醒方式(USB, GMAC,电源开关等)
- 动态性能功耗控制,支持处理器核 DVFS 控制,支持动态关闭媒体解码协处理器 电源。
- 系统时钟控制,模块时钟门控,多种方式调节频率。
- 提供温度管理控制功能。支持3级报警机制。

### 4.2 电源级别

表4.1显示了系统支持的 ACPI 状态及其相关说明。

表4.2显示了处理器相关状态 Cx,处理器运行时状态表示为 ACPI 的 P 状态, P 状态由软件决定, Px 对应于每一组电压和频率值。

媒体处理器状态 Dx 如表4.3所示:

表 4.1: ACPI 状态说明

| 状态    | 描述                                       |
|-------|------------------------------------------|
| G0/S0 | 全部工作,该模式下系统全部工作,处理器子状态可由 Cx 或 Px 决定,媒体处理 |
|       | 器由状态 Dx 决定                               |
| G1/S1 | 暂不支持                                     |
| G1/S3 | Suspend to RAM(STR),上下文保存到内存             |
| G1/S4 | Suspend to Disk(STD),保存到硬盘,除唤醒电路全部掉电     |
| G2/S5 | Soft off,只有唤醒电路上电                        |
| G3    | Mechanical off,所有供电失效                    |



表 4.2: 处理器 Cx 状态

| 状态 | 描述                                     |
|----|----------------------------------------|
| C0 | Full on                                |
| C2 | Stop Grant. 处理器时钟停止                    |
| С3 | Deep Sleep. 处理器时钟停止,处理器工作电压降低,恢复时间较长,电 |
|    | 压由软件控制                                 |

表 4.3: 媒体处理器状态 Dx

| 状态 | 描述                      |
|----|-------------------------|
| D0 | 媒体处理器工作,其性能功耗可以通过工作频率调节 |
| D2 | 媒体处理器时钟关断               |
| D3 | 媒体处理器电源关闭               |

# 4.3 控制引脚说明

表 4.4 为电源管理部分的 IO 信号描述。

表 4.4: 控制引脚说明

| 名称          | 类型  | 描述                                   | 供电      |
|-------------|-----|--------------------------------------|---------|
| SYSRESETn   | I   | 系统复位                                 | RSM3V3  |
| RSMRSTn     | I   | 复位 Resume 域逻辑,该信号需在 resume 域上电稳定后保持一 | RTC2V5  |
|             |     | 段时间有效(推荐; 5ms)                       |         |
| RTCRSTn     | I   | 电池更换后, 重启 RTC 逻辑                     | RTC2V5  |
| PLTRSTn     | O   | 对系统平台其它设备进行复位                        | RSM3V3  |
| PWROK       | I   | 主供电电源上电稳定,如有多个供电,该信号表示最后一个电源         | RSM3V3  |
|             |     | 稳定                                   |         |
| PWRBTNn     | I   | 电源按钮                                 | RSM3V3  |
| RINGn       | I   | Modem 唤醒信号                           | RSM3V3  |
| PCIWAKEn    | I   | PCIE 边带唤醒信号                          | RSM3V3  |
| BATLOWn     | I   | 电池电量低                                | RSM3V3  |
| LID         | I   | 显示器开关信号                              | RSM3V3  |
|             |     | 识别电池供电和电源供电                          |         |
| PWRTYPE     | I   | 1: AC Power                          | RSM3V3  |
|             |     | 0: System Battery                    |         |
| SUS_STATn   | О   | 指示系统将要进入低功耗状态                        | RSM3V3  |
| SLP_S3n     | О   | STR,待机到内存指示信号                        | RSM3V3  |
| SLP_S4n     | О   | STD, 待机到硬盘指示信号                       | RSM3V3  |
| SLP_S5n     | О   | Soft off                             | RSM3V3  |
| SLP_LANn    | О   | 以太网 PHY 休眠指示信号                       | RSM3V3  |
| VID[5:0]    | О   | 电压值指示信号                              | RSM3V3  |
| VCORE_SENSE | O/A | CPU 供电电源采样                           | VDD_CPU |
| GND_SENSE   | O/A | CPU 供电地信号采样                          | VDD_CPU |



## 第五章 芯片配置与控制

## 5.1 芯片工作模式

龙芯 2H 可以作为独立的 SoC 也可以作为 HT 或者 PCIE 的桥片使用。本节就对这几种模式分别进行介绍。

#### 5.1.1 独立 SoC

龙芯 2H 有丰富外围接口,配合若干外围器件,可简便地搭建一个单芯片计算机系统。一个常见的应用如图5.1 所示。



图 5.1: 龙芯 2H 单芯片系统

#### 5.1.2 HT 桥片

龙芯 3 号多核处理器使用 HT 总线接口,可通过 2H 连接各种外设,形成两片系统。 以龙芯 3A 为例,图5.2给出一个搭建的样例。





图 5.2: 龙芯 3A+2H 双芯片系统

为降低板级时钟成本, 龙芯 3A 的一些参考时钟可以从龙芯 2H 得到, 如 HT 和 PCI 时钟。如果要保留时钟的灵活性, 这些时钟也可在板级实现。

为方便龙芯 3A 的 LPC 启动,龙芯 2H 的 LPC 接口可配置为 ROM 模式 (板级上拉 NAND\_ALE),支持 3A 的启动。LPC ROM 大小 2KB,只能装载 512 条初始化指令,后续指令应当从 HT 接口得到。需注意的是,3A 的系统复位应当连接 2H 的 LPC\_RSTn,因为 2H 初始化 ROM 的内容需要一段时间,复位是软件可控制的。

在桥片模式下, 龙芯 2H 的中断由 SYS\_INTn 和 SYS\_NMIn 两引脚输出, 送往 3A。 龙芯 3A 需查询 2H 的中断控制器得到更详细的中断信息。

#### 5.1.3 PCIE 桥片

龙芯 2H 的 PCIE 接口支持从模式 (endpoint),实现桥片功能。该模式下,PCIE 只能作为 x4 使用,其系统连接情况与 HT 桥片类似,在此不再赘述。



## 5.2 芯片初始化信号

龙芯 2H 有两类初始化信号:一类从专用的配置引脚 (CLKSEL[3:0]) 输入,控制参考时钟;其它的复用功能引脚,通过在系统复位期间采样外部上下拉的值得到配置信息。部分配置信息编码成 bootcfg(见表 5.24),供软件判定上电状态。

表 5.1: 配置信号

| 信号名称         | bootcfg | 描述                                     |
|--------------|---------|----------------------------------------|
| SYS_CLKSEL0  |         | 系统参考时钟选择                               |
|              | 0       | 0: SATA_XTAL                           |
|              |         | 1: SYS_BAKCLK                          |
|              |         | PCIE 参考时钟选择                            |
| SYS_CLKSEL1  | 1       | 0: 从 PCIE_XTAL 输入                      |
|              |         | 1: 内部 100MHz 时钟                        |
|              |         | USB PHY1 时钟选择                          |
| ACPLCLKSEL2  | 2 2     | 0: 内部时钟                                |
|              |         | 1:在 USB_XI1/XO1 上的 12MHz 晶体            |
|              |         | ACPI 使能                                |
| ACPI_CLKSEL3 | 3       | 0: 不使用 ACPI 控制芯片                       |
|              |         | 1:使用 ACPI 控制                           |
|              |         | 硬件控制模式下 CPU PLL 倍频配置                   |
| NAND D1      |         | 00: *4                                 |
| NAND DO      | 5:4     | 01: *6                                 |
| NAND_D0      |         | 10: *8                                 |
|              |         | 11: bypass                             |
|              |         | CPU PLL 纯硬件控制选择                        |
| NAND_D2      | 6       | 0: 关闭,CPU PLL 频率由软件配置                  |
|              |         | 1:打开,CPU PLL 频率由 D1/D0 两位配置            |
|              | 8:7     | 硬件控制模式下 DDR PLL 倍频配置                   |
| NAND DA      |         | 00: *5/3                               |
| NAND D2      |         | 01: *8/3                               |
| NAND_D3      |         | 10: *10/3                              |
|              |         | 11: bypass                             |
|              |         | DDR PLL 纯硬件控制选择                        |
| NAND_D5      | 9       | 0: 关闭, DDR PLL 频率由软件配置                 |
|              |         | 1: 打开,DDR PLL 频率由 D4/D3 两位配置           |
|              |         | SYS PLL 纯硬件控制选择                        |
| NAND_D6      | 10      | 0: 关闭, SYS PLL 频率由软件配置                 |
|              |         | 1:打开,SYS PLL 固定振荡在 3GHz                |
|              |         | 分频器后备模式选择                              |
| NAND_D7      | 11      | 0: 关闭, 分频器软件可配                         |
|              |         | 1: 打开,分频器使用固定分频                        |
|              |         | PCIE 从模式选择                             |
| NAND_CLE     | 12      | 0: 关闭,PCIE 为 1x4 或者 4x1 的 root complex |
|              |         | 1: 打开,PCIE 为 x4 的 endpoint             |



| 信号名称          | bootcfg | 描述                                  |
|---------------|---------|-------------------------------------|
|               |         | LPC ROM 模式使能                        |
| NAND_ALE      | 13      | 0: 关闭, LPC 接口为主控模式                  |
|               |         | 1: 打开,LPC 接口可接受 BOOT ROM 访问         |
| NAND_WR       | 14      | NAND 启动                             |
|               |         | NAND 是否打开读校验                        |
| NAND_RD       | 15      | 0: 关闭                               |
|               |         | 1: 打开                               |
|               |         | 启动源选择                               |
| SPI_SCK       | 17:16   | 00: NAND 启动 (不建议使用) <sup>1</sup>    |
| SPI_CSn       |         | 10: LPC 启动                          |
|               |         | x1: SPI 启动                          |
|               | 18      | NAND 启动类型选择                         |
|               |         | {SPLSDO, NAND_WR}                   |
| SPLSDO        |         | 00: <256Mbit                        |
| 51 1-550      |         | 01: 512Mbit                         |
|               |         | 10: 1Gbit                           |
|               |         | 11: >2Gbit                          |
|               |         | VID 初始值                             |
| ACPI_VID[5:0] | -       | 用于初始化电源管理模块中 VID 寄存器, 使得复位结束后在没有软件干 |
|               |         | 预的情况下 ACPL-VID 能输出有效的编码。            |

## 5.3 地址空间分配

龙芯 2H 的地址空间分为 CPU 和 DMA 两个视角: 所有 CPU 可访问的设备编址在 CPU 地址空间上,谓之 CPU 视角;可通过 DMA 直接访问系统内存的主设备所见到的空间为 DMA 视角。表5.2和表5.3分别给出了这两个视角的具体定义。表格中未包含的地址空间均为系统保留,软件错误地访问保留空间将导致不可预知的后果。

CPU 可发生多种访问类型,包括字节 (B)、半字 (H)、字 (W)、双字 (D)、四字 (Q) 和块式 (C) 等。每个设备所支持的访问类型有限制,如果超出其范围同样会导致不可预知的后果。

| 地址空间                      | 模块   | 说明          | 访问     |
|---------------------------|------|-------------|--------|
| 0x0000,0000 - 0x0fff,ffff | DDR  | 256MB       | BHWDQC |
| 0x1000,0000 - 0x17ff,ffff | PCIE | PCIE MEM    | BHW    |
|                           |      | PCIE IO     | В      |
| 0x1800,0000 - 0x18ff,ffff | PCIE | PCIE CFG    | BHW    |
|                           |      | PCIE MEM-Lo | BHW    |
| 0x1c00,0000 - 0x1dff,ffff | LPC  | LPC MEM     | BHWDQC |

表 5.2: 地址空间分配之 CPU 视角

<sup>&</sup>lt;sup>1</sup>由于 SPLSDO 复位时方向为输出,且输出值不确定,NAND 启动时类型可能会出错,从而使启动失败。如必须从 NAND 启动,可使用 GPIO 控制一个可关断的强上拉或者强下拉驱动 SPLSDO 引脚。



| 地址空间                      | 模块   | 说明          | 访问     |
|---------------------------|------|-------------|--------|
| 0x1e00,0000 - 0x1eff,ffff | SPI  | SPI Flash   | BHWDQC |
|                           |      | spi         | BHWDQC |
| 0x1fc0,0000 - 0x1fcf,ffff | Boot | nand        | W      |
|                           |      | lpc         | BHWDQC |
| 0x1fd0,0000 - 0x1fd7,ffff | creg | 中断与全局配置     | BHW    |
| 0x1fd8,0000 - 0x1fdf,ffff | cbus | 片上配置寄存器     | BHWD   |
| 0x1fe0,0000 - 0x1fe0,ffff | USB  | 32KB EHCI   | W      |
| OxileO,0000 OxileO,1111   | ОЗВ  | 32KB OHCI   | VV     |
| 0x1fe1,0000 - 0x1fe1,ffff | GMAC | 32KB GMAC0  | W      |
| Oxile1,0000 Oxile1,1111   | GMAC | 32KB GMAC1  | VV     |
| 0x1fe2,0000 - 0x1fe2,ffff | HDA  |             | BHW    |
| 0x1fe3,0000 - 0x1fe3,ffff | SATA |             | W      |
| 0x1fe4,0000 - 0x1fe4,ffff | GPU  |             | W      |
| 0x1fe5,0000 - 0x1fe5,ffff | DC   |             | W      |
| 0x1fe6,0000 - 0x1fe6,ffff | OTG  |             | W      |
| 0x1fe7,0000 - 0x1fe7,ffff | SPI  | SPI regs    | В      |
| 0x1fe8,0000 - 0x1fe8,ffff | uart |             | В      |
| 0x1fe9,0000 - 0x1fe9,ffff | i2c  |             | W      |
| 0x1fea,0000 - 0x1fea,ffff | pwm  |             | W      |
| 0x1fec,0000 - 0x1fec,ffff | hpet |             | W      |
| 0x1fed,0000 - 0x1fed,ffff | ac97 |             | W      |
| 0x1fee,0000 - 0x1fee,ffff | nand |             | W      |
| 0x1fef,0000 - 0x1fef,7fff | acpi |             | W      |
| 0x1fef,8000 - 0x1fef,ffff | rtc  |             | W      |
| 0x1ff0,0000 - 0x1ff0,ffff | LPC  | LPC IO      | В      |
| 0x1ff1,0000 - 0x1ff1,00ff | LPC  | LPC regs    | W      |
| 0x4000,0000 - 0x7fff,ffff | PCIE | PCIE MEM-Hi | BHW    |
| 0x8000,0000 - 0xffff,ffff | DDR  | 2GB         | BHWDQC |

龙芯 2H 内部可发起 DMA 的主设备包括 GPU、DC、PCIE、MEDIA、GMAC、USB、SATA、HDA、DMA 等。除了 GPU、DC 只能访问 DDR 之外,其它主设备的请求可以访问路由到表5.3中的所有空间。

通过 HT 实现桥片功能前, HT 总线需要进行若干配置, 详见第七章。

表 5.3: 地址空间分配之 DMA 视角

| 地址空间                      | 目标  | 说明                |
|---------------------------|-----|-------------------|
| 0x0000,0000 - 0x3fff,ffff | DDR | 不维护 IO 一致性        |
| 0x4000,0000 - 0x7fff,ffff | DDR | 维护 IO 一致性         |
| 0x8000,0000 - 0xbfff,ffff | HT  | 跨 HT 总线送到 3A 系统内存 |



### 5.4 时钟与复位控制

#### 5.4.1 时钟配置概要

龙芯 2H 的片上时钟有硬件、软件两种配置模式。硬件配置模式下时钟生成完全不需要软件参与,但频率选择非常有限。软件配置模式下所有时钟相关的参数都可以改变,非常灵活,但在操作时需谨慎。本小节主要描述软件配置的流程。

在系统复位结束后,所有 PLL 输出均被旁路为参考时钟,分频器设置初始化为默认分频数,整个系统以最低速度运行。这时引导程序应当对片上的每个 PLL 进行以下操作:

- 1. 进入关断模式,\*\_pd 置位
- 2. 修改 PLL 参数 (idf/ldf/odf etc.)
- 3. 满足最短持续时间后离开关断模式,\*\_pd 清零
- 4. 等待锁定信号 (\*\_lock)
- 5. 切换时钟 (\*\_sel)

如果后期有需要修改 PLL 参数,则要先切换时钟为参考时钟,然后按上述步骤再配一遍。

有些时钟通路中还包含软件可配置的分频器,应按以下流程进行配置:

- 1. 确认 \*\_set 为零
- 2. 设置分频系数 \*\_df 和关断模式 (\*\_pd 置 1)
- 3. 设置 \*\_set 为 1, 然后清零
- 4. 退出关断模式 (\*\_pd 置 0)
- 5. 设置 \*\_set 为 1, 然后清零

当输入时钟停止时分频器无法设置,所以应当从参考时钟开始对时钟通路中的模块逐个进行配置(比如显示时钟,详见 3.5 节)。

#### 5.4.2 高频 PLL 配置

高频 PLL 概念性结构如图5.3所示,输入的参考时钟 Fref 送到倍频器,得到 Fvco,然后在输出前除以一个分频系数。



图 5.3: 高频 PLL 概念性结构

该 PLL 的频率转换公式为  $Fout = Fref * ldf/2^{odf}$ , 其工作条件见表5.4。

| 参数    | 最小值               | 最大值                | 说明     |
|-------|-------------------|--------------------|--------|
| ldf   | 7                 | 127                |        |
| odf   | 0                 | 7                  |        |
| Fref  | $25 \mathrm{MHz}$ | $200 \mathrm{MHz}$ |        |
| Fvco  | 700MHz            | 3000MHz            |        |
| Fout  | -                 | 3000MHz            |        |
| Tpd   | 10us              | -                  | 关断持续时间 |
| Tlock | -                 | 200us              | 锁定时间   |

表 5.4: 高频 PLL 工作条件

#### 5.4.3 展频 PLL 配置

展频 PLL 概念性结构如图5.4所示,输入时钟 Fin 经过输入分频器得到 Fref 送到倍频器,倍频器送出 Fvco,然后在输出前除以一个分频系数。展频 PLL 还带有一个展频控制器,能够用三角波对输出时钟的频率进行调制。



图 5.4: 展频 PLL 概念性结构

该 PLL 的频率转换公式为  $Fout = Fin/idf * 2 * ldf/2^{odf}$ ,其工作条件见表5.5。 展频配置所涉及的参数计算方法如下

$$mdperiod = round(\frac{Fref}{4*Fmod})$$

$$inc\_step = round(\frac{65534*md*ldf}{500*mdperiod})$$

#### 5.4.4 复位控制

龙芯 2H 内部有多种复位机制,用户可根据需要进行选择:

- 模块级复位 只针对一个模块发起,如 USB/HDV/GPU 等。一般只在配置时钟完成,还未开始工作前进行。在工作后复位有使系统死锁的危险。
- 系统热复位 除芯片配置寄存器和时钟配置寄存器保持不变外,全系统复位。
- 系统冷复位 由看门狗或者电源管理模块发起,详见相关章节。



最大值 参数 最小值 说明 idf 7 1 ldf 225 8 odf0 3 Fin  $4 \mathrm{MHz}$  $525\mathrm{MHz}$  $4 \mathrm{MHz}$  $75 \mathrm{MHz}$  $\operatorname{Fref}$ 600 MHz $1800 \mathrm{MHz}$ Fvco $75 \mathrm{MHz}$ 1800MHz Fout  $\operatorname{Tpd}$ 10us 关断持续时间 100 us锁定时间 Tlock $\operatorname{md}$ 调制深度,根据展频模式有所不同 +/-0.25% +/-2.0%center-spread down-spread -0.5%-4.0%调制频率 Fmod  $3700/\mathrm{LDF}\ \mathrm{KHz}$  $16{<}\mathrm{LDF}{<}148$ 150<LDF<450  $25\mathrm{KHz}$ inc\_step \* mdperiod  $2^{15}$ -1 两输入参数的积

表 5.5: 展频 PLL 工作条件

## 5.5 芯片配置寄存器

龙芯 2H 有大量的配置寄存器,多数分布于各个功能模块中,本节介绍芯片级的配置寄存器。

| 地址          | 名称       | 描述         |
|-------------|----------|------------|
| 0x1fd0,0000 | msiport  | MSI 中断写端口  |
| 0x1fd0,0040 | intisr0  | 中断状态       |
| 0x1fd0,0044 | intien0  | 中断使能       |
| 0x1fd0,0048 | intset0  | 中断设置(边沿模式) |
| 0x1fd0,004c | intclr0  | 中断清除(边沿模式) |
| 0x1fd0,0050 | intpol0  | 中断有效极性     |
| 0x1fd0,0054 | intedge0 | 边沿模式       |
| 0x1fd0,0058 | intisr1  | 中断状态       |
| 0x1fd0,005c | intien1  | 中断使能       |
| 0x1fd0,0060 | intset1  | 中断设置(边沿模式) |
| 0x1fd0,0064 | intclr1  | 中断清除(边沿模式) |
| 0x1fd0,0068 | intpol1  | 中断有效极性     |
| 0x1fd0,006c | intedge1 | 边沿模式       |
| 0x1fd0,0070 | intisr2  | 中断状态       |
| 0x1fd0,0074 | intien2  | 中断使能       |
| 0x1fd0,0078 | intset2  | 中断设置(边沿模式) |
| 0x1fd0,007c | intclr2  | 中断清除(边沿模式) |
| 0x1fd0,0080 | intpol2  | 中断有效极性     |
| 0x1fd0,0084 | intedge2 | 边沿模式       |

表 5.6: 芯片配置寄存器列表



| 地址          | 名称            | 描述         |
|-------------|---------------|------------|
| 0x1fd0,0088 | intisr3       | 中断状态       |
| 0x1fd0,008c | intien3       | 中断使能       |
| 0x1fd0,0090 | intset3       | 中断设置(边沿模式) |
| 0x1fd0,0094 | intclr3       | 中断清除(边沿模式) |
| 0x1fd0,0098 | intpol3       | 中断有效极性     |
| 0x1fd0,009c | intedge3      | 边沿模式       |
| 0x1fd0,00a0 | intisr4       | 中断状态       |
| 0x1fd0,00a4 | intien4       | 中断使能       |
| 0x1fd0,00a8 | intset4       | 中断设置(边沿模式) |
| 0x1fd0,00ac | intclr4       | 中断清除(边沿模式) |
| 0x1fd0,00b0 | intpol4       | 中断有效极性     |
| 0x1fd0,00b4 | intedge4      | 边沿模式       |
| 0x1fd0,00c0 | gpiocfg       | GPIO 功能选择  |
| 0x1fd0,00c4 | gpiooe        | GPIO 输出使能  |
| 0x1fd0,00c8 | gpioin        | GPIO 输入    |
| 0x1fd0,00cc | gpioout       | GPIO 输出    |
| 0x1fd0,00d0 | -             | 保留         |
| 0x1fd0,00d4 | -             | 保留         |
| 0x1fd0,00d8 | chip_sample4  | 芯片采样       |
| 0x1fd0,00dc | -             | 保留         |
| 0x1fd0,00e0 | -             | 保留         |
| 0x1fd0,00e4 | -             | 保留         |
| 0x1fd0,00e8 | chip_sample5  | 芯片采样       |
| 0x1fd0,00ec | -             | 保留         |
| 0x1fd0,0100 | dma_order     | DMA 命令寄存器  |
| 0x1fd0,0180 | hdv_scratch0  | 保留         |
| 0x1fd0,0184 | hdv_scratch1  | 保留         |
| 0x1fd0,01fc | key           | 保留         |
| 0x1fd0,0200 | chip_config0  | 芯片配置       |
| 0x1fd0,0204 | chip_config1  | 芯片配置       |
| 0x1fd0,0208 | chip_config2  | 芯片配置       |
| 0x1fd0,020c | chip_config3  | 芯片配置       |
| 0x1fd0,0210 | chip_sample0  | 芯片采样       |
| 0x1fd0,0214 | chip_sample1  | 芯片采样       |
| 0x1fd0,0218 | chip_sample2  | 芯片采样       |
| 0x1fd0,021c | chip_sample3  | 芯片采样       |
| 0x1fd0,0220 | clock_ctrl0   | 时钟控制       |
| 0x1fd0,0224 | clock_ctrl1   | 时钟控制       |
| 0x1fd0,0228 | clock_ctrl2   | 时钟控制       |
| 0x1fd0,022c | clock_ctrl3   | 时钟控制       |
| 0x1fd0,0230 | pixclk0_ctrl0 | 显示时钟控制     |
| 0x1fd0,0234 | pixclk0_ctrl1 | 显示时钟控制     |
| 0x1fd0,0238 | pixclk1_ctrl0 | 显示时钟控制     |
| 0x1fd0,023c | pixclk1_ctrl1 | 显示时钟控制     |



| 地址          | 名称               | 描述                       |
|-------------|------------------|--------------------------|
| 0x1fd00240  | chipid0          | 芯片编号 0                   |
| 0x1fd00244  | chipid1          | 芯片编号1                    |
| 0x1fd00248  | chipid2          | 芯片编号 2                   |
| 0x1fd0024c  | chipid3          | 芯片编号 3                   |
| 0x11d0024C  | cinpido          | 该寄存器读出后 chipid[03] 将变为 0 |
| 0x1fd8,0000 | $m0\_win0\_base$ | 保留                       |
| 0x1fd8,0008 | m0_win1_base     | 保留                       |
| 0x1fd8,0010 | m0_win2_base     | 保留                       |
| 0x1fd8,0018 | m0_win3_base     | 保留                       |
| 0x1fd8,0020 | m0_win4_base     | 保留                       |
| 0x1fd8,0028 | m0_win5_base     | 保留                       |
| 0x1fd8,0030 | m0_win6_base     | 保留                       |
| 0x1fd8,0038 | m0_win7_base     | 保留                       |
| 0x1fd8,0040 | m0_win0_mask     | 保留                       |
| 0x1fd8,0048 | m0_win1_mask     | 保留                       |
| 0x1fd8,0050 | $m0\_win2\_mask$ | 保留                       |
| 0x1fd8,0058 | m0_win3_mask     | 保留                       |
| 0x1fd8,0060 | $m0\_win4\_mask$ | 保留                       |
| 0x1fd8,0068 | m0_win5_mask     | 保留                       |
| 0x1fd8,0070 | m0_win6_mask     | 保留                       |
| 0x1fd8,0078 | m0_win7_mask     | 保留                       |
| 0x1fd8,0080 | m0_win0_mmap     | 保留                       |
| 0x1fd8,0088 | m0_win1_mmap     | 保留                       |
| 0x1fd8,0090 | m0_win2_mmap     | 保留                       |
| 0x1fd8,0098 | m0_win3_mmap     | 保留                       |
| 0x1fd8,00a0 | m0_win4_mmap     | 保留                       |
| 0x1fd8,00a8 | m0_win5_mmap     | 保留                       |
| 0x1fd8,00b0 | m0_win6_mmap     | 保留                       |
| 0x1fd8,00b8 | m0_win7_mmap     | 保留                       |
| 0x1fd8,0100 | m1_win0_base     | 保留                       |
| 0x1fd8,0108 | m1_win1_base     | 保留                       |
| 0x1fd8,0110 | m1_win2_base     | 保留                       |
| 0x1fd8,0118 | m1_win3_base     | 保留                       |
| 0x1fd8,0120 | m1_win4_base     | 保留                       |
| 0x1fd8,0128 | m1_win5_base     | 保留                       |
| 0x1fd8,0130 | m1_win6_base     | 保留                       |
| 0x1fd8,0138 | m1_win7_base     | 保留                       |
| 0x1fd8,0140 | m1_win0_mask     | 保留                       |
| 0x1fd8,0148 | m1_win1_mask     | 保留                       |
| 0x1fd8,0150 | m1_win2_mask     | 保留                       |
| 0x1fd8,0158 | m1_win3_mask     | 保留                       |
| 0x1fd8,0160 | m1_win4_mask     | 保留                       |
| 0x1fd8,0168 | m1_win5_mask     | 保留                       |
| 0x1fd8,0170 | m1_win6_mask     | 保留                       |



| 地址          | 名称               | 描述 |
|-------------|------------------|----|
| 0x1fd8,0178 | m1_win7_mask     | 保留 |
| 0x1fd8,0180 | m1_win0_mmap     | 保留 |
| 0x1fd8,0188 | m1_win1_mmap     | 保留 |
| 0x1fd8,0190 | m1_win2_mmap     | 保留 |
| 0x1fd8,0198 | m1_win3_mmap     | 保留 |
| 0x1fd8,01a0 | m1_win4_mmap     | 保留 |
| 0x1fd8,01a8 | m1_win5_mmap     | 保留 |
| 0x1fd8,01b0 | m1_win6_mmap     | 保留 |
| 0x1fd8,01b8 | m1_win7_mmap     | 保留 |
| 0x1fd8,0200 | m2_win0_base     | 保留 |
| 0x1fd8,0208 | m2_win1_base     | 保留 |
| 0x1fd8,0210 | m2_win2_base     | 保留 |
| 0x1fd8,0218 | m2_win3_base     | 保留 |
| 0x1fd8,0220 | m2_win4_base     | 保留 |
| 0x1fd8,0228 | $m2\_win5\_base$ | 保留 |
| 0x1fd8,0230 | $m2\_win6\_base$ | 保留 |
| 0x1fd8,0238 | $m2\_win7\_base$ | 保留 |
| 0x1fd8,0240 | $m2\_win0\_mask$ | 保留 |
| 0x1fd8,0248 | $m2\_win1\_mask$ | 保留 |
| 0x1fd8,0250 | $m2\_win2\_mask$ | 保留 |
| 0x1fd8,0258 | $m2\_win3\_mask$ | 保留 |
| 0x1fd8,0260 | $m2\_win4\_mask$ | 保留 |
| 0x1fd8,0268 | $m2\_win5\_mask$ | 保留 |
| 0x1fd8,0270 | $m2\_win6\_mask$ | 保留 |
| 0x1fd8,0278 | $m2\_win7\_mask$ | 保留 |
| 0x1fd8,0280 | m2_win0_mmap     | 保留 |
| 0x1fd8,0288 | m2_win1_mmap     | 保留 |
| 0x1fd8,0290 | m2_win2_mmap     | 保留 |
| 0x1fd8,0298 | m2_win3_mmap     | 保留 |
| 0x1fd8,02a0 | m2_win4_mmap     | 保留 |
| 0x1fd8,02a8 | m2_win5_mmap     | 保留 |
| 0x1fd8,02b0 | m2_win6_mmap     | 保留 |
| 0x1fd8,02b8 | m2_win7_mmap     | 保留 |
| 0x1fd8,0300 | m3_win0_base     | 保留 |
| 0x1fd8,0308 | m3_win1_base     | 保留 |
| 0x1fd8,0310 | m3_win2_base     | 保留 |
| 0x1fd8,0318 | m3_win3_base     | 保留 |
| 0x1fd8,0320 | m3_win4_base     | 保留 |
| 0x1fd8,0328 | m3_win5_base     | 保留 |
| 0x1fd8,0330 | m3_win6_base     | 保留 |
| 0x1fd8,0338 | m3_win7_base     | 保留 |
| 0x1fd8,0340 | m3_win0_mask     | 保留 |
| 0x1fd8,0348 | m3_win1_mask     | 保留 |
| 0x1fd8,0350 | m3_win2_mask     | 保留 |



| 地址          | 名称               | 描述 |
|-------------|------------------|----|
| 0x1fd8,0358 | m3_win3_mask     | 保留 |
| 0x1fd8,0360 | m3_win4_mask     | 保留 |
| 0x1fd8,0368 | m3_win5_mask     | 保留 |
| 0x1fd8,0370 | m3_win6_mask     | 保留 |
| 0x1fd8,0378 | m3_win7_mask     | 保留 |
| 0x1fd8,0380 | m3_win0_mmap     | 保留 |
| 0x1fd8,0388 | m3_win1_mmap     | 保留 |
| 0x1fd8,0390 | m3_win2_mmap     | 保留 |
| 0x1fd8,0398 | m3_win3_mmap     | 保留 |
| 0x1fd8,03a0 | m3_win4_mmap     | 保留 |
| 0x1fd8,03a8 | m3_win5_mmap     | 保留 |
| 0x1fd8,03b0 | m3_win6_mmap     | 保留 |
| 0x1fd8,03b8 | m3_win7_mmap     | 保留 |
| 0x1fd8,0400 | $m4\_win0\_base$ | 保留 |
| 0x1fd8,0408 | m4_win1_base     | 保留 |
| 0x1fd8,0410 | $m4\_win2\_base$ | 保留 |
| 0x1fd8,0418 | m4_win3_base     | 保留 |
| 0x1fd8,0420 | $m4\_win4\_base$ | 保留 |
| 0x1fd8,0428 | m4_win5_base     | 保留 |
| 0x1fd8,0430 | m4_win6_base     | 保留 |
| 0x1fd8,0438 | m4_win7_base     | 保留 |
| 0x1fd8,0440 | $m4\_win0\_mask$ | 保留 |
| 0x1fd8,0448 | m4_win1_mask     | 保留 |
| 0x1fd8,0450 | m4_win2_mask     | 保留 |
| 0x1fd8,0458 | m4_win3_mask     | 保留 |
| 0x1fd8,0460 | m4_win4_mask     | 保留 |
| 0x1fd8,0468 | m4_win5_mask     | 保留 |
| 0x1fd8,0470 | m4_win6_mask     | 保留 |
| 0x1fd8,0478 | m4_win7_mask     | 保留 |
| 0x1fd8,0480 | m4_win0_mmap     | 保留 |
| 0x1fd8,0488 | m4_win1_mmap     | 保留 |
| 0x1fd8,0490 | m4_win2_mmap     | 保留 |
| 0x1fd8,0498 | m4_win3_mmap     | 保留 |
| 0x1fd8,04a0 | m4_win4_mmap     | 保留 |
| 0x1fd8,04a8 | m4_win5_mmap     | 保留 |
| 0x1fd8,04b0 | m4_win6_mmap     | 保留 |
| 0x1fd8,04b8 | m4_win7_mmap     | 保留 |
| 0x1fd8,0500 | m5_win0_base     | 保留 |
| 0x1fd8,0508 | m5_win1_base     | 保留 |
| 0x1fd8,0510 | m5_win2_base     | 保留 |
| 0x1fd8,0518 | m5_win3_base     | 保留 |
| 0x1fd8,0520 | m5_win4_base     | 保留 |
| 0x1fd8,0528 | m5_win5_base     | 保留 |
| 0x1fd8,0530 | m5_win6_base     | 保留 |



| 地址          | 名称           | 描述 |
|-------------|--------------|----|
| 0x1fd8,0538 | m5_win7_base | 保留 |
| 0x1fd8,0540 | m5_win0_mask | 保留 |
| 0x1fd8,0548 | m5_win1_mask | 保留 |
| 0x1fd8,0550 | m5_win2_mask | 保留 |
| 0x1fd8,0558 | m5_win3_mask | 保留 |
| 0x1fd8,0560 | m5_win4_mask | 保留 |
| 0x1fd8,0568 | m5_win5_mask | 保留 |
| 0x1fd8,0570 | m5_win6_mask | 保留 |
| 0x1fd8,0578 | m5_win7_mask | 保留 |
| 0x1fd8,0580 | m5_win0_mmap | 保留 |
| 0x1fd8,0588 | m5_win1_mmap | 保留 |
| 0x1fd8,0590 | m5_win2_mmap | 保留 |
| 0x1fd8,0598 | m5_win3_mmap | 保留 |
| 0x1fd8,05a0 | m5_win4_mmap | 保留 |
| 0x1fd8,05a8 | m5_win5_mmap | 保留 |
| 0x1fd8,05b0 | m5_win6_mmap | 保留 |
| 0x1fd8,05b8 | m5_win7_mmap | 保留 |
| 0x1fd8,0600 | $qos\_cfg0$  | 保留 |
| 0x1fd8,0608 | qos_cfg1     | 保留 |
| 0x1fd8,0610 | $qos\_cfg2$  | 保留 |
| 0x1fd8,0618 | $qos\_cfg3$  | 保留 |
| 0x1fd8,0620 | qos_cfg4     | 保留 |
| 0x1fd8,0628 | $qos\_cfg5$  | 保留 |
| 0x1fd8,0630 | $qos\_cfg6$  | 保留 |
| 0x1fd8,0638 | $qos\_cfg7$  | 保留 |
| 0x1fd8,0660 | hdv_cmdstat  | 保留 |
| 0x1fd8,0670 | amon_cfg     | 保留 |
| 0x1fd8,0678 | amon_pcnt    | 保留 |
| 0x1fd8,0680 | amon_stat0   | 保留 |
| 0x1fd8,0688 | amon_stat1   | 保留 |
| 0x1fd8,0690 | amon_stat2   | 保留 |
| 0x1fd8,0698 | amon_stat3   | 保留 |
| 0x1fd8,06a0 | amon_stat4   | 保留 |
| 0x1fd8,06a8 | amon_stat5   | 保留 |
| 0x1fd8,06b0 | amon_stat6   | 保留 |
| 0x1fd8,06b8 | amon_stat7   | 保留 |
| 0x1fd8,06c0 | amon_stat8   | 保留 |
| 0x1fd8,06c8 | amon_stat9   | 保留 |
| 0x1fd8,06d0 | amon_stat10  | 保留 |
| 0x1fd8,06d8 | amon_stat11  | 保留 |
| 0x1fd8,06e0 | amon_stat12  | 保留 |
| 0x1fd8,06e8 | amon_stat13  | 保留 |
| 0x1fd8,0700 | ds_cpu       | 保留 |
| 0x1fd8,0720 | ds_ddr       | 保留 |



| 地址          | 名称               | 描述          |
|-------------|------------------|-------------|
| 0x1fd8,0740 | ds_sb            | 保留          |
| 0x1fd8,0800 | usbphy0_cfg      | USB PHY0 配置 |
| 0x1fd8,0808 | usbphy1_cfg      | USB PHY1 配置 |
| 0x1fd8,2600 | m6_win0_base     | 保留          |
| 0x1fd8,2608 | m6_win1_base     | 保留          |
| 0x1fd8,2610 | m6_win2_base     | 保留          |
| 0x1fd8,2618 | m6_win3_base     | 保留          |
| 0x1fd8,2620 | m6_win4_base     | 保留          |
| 0x1fd8,2628 | m6_win5_base     | 保留          |
| 0x1fd8,2630 | m6_win6_base     | 保留          |
| 0x1fd8,2638 | m6_win7_base     | 保留          |
| 0x1fd8,2640 | m6_win0_mask     | 保留          |
| 0x1fd8,2648 | m6_win1_mask     | 保留          |
| 0x1fd8,2650 | m6_win2_mask     | 保留          |
| 0x1fd8,2658 | m6_win3_mask     | 保留          |
| 0x1fd8,2660 | $m6\_win4\_mask$ | 保留          |
| 0x1fd8,2668 | m6_win5_mask     | 保留          |
| 0x1fd8,2670 | $m6\_win6\_mask$ | 保留          |
| 0x1fd8,2678 | m6_win7_mask     | 保留          |
| 0x1fd8,2680 | m6_win0_mmap     | 保留          |
| 0x1fd8,2688 | m6_win1_mmap     | 保留          |
| 0x1fd8,2690 | m6_win2_mmap     | 保留          |
| 0x1fd8,2698 | m6_win3_mmap     | 保留          |
| 0x1fd8,26a0 | m6_win4_mmap     | 保留          |
| 0x1fd8,26a8 | m6_win5_mmap     | 保留          |
| 0x1fd8,26b0 | m6_win6_mmap     | 保留          |
| 0x1fd8,26b8 | m6_win7_mmap     | 保留          |
| 0x1fd8,4200 | sc_lock0_addr    | 二级缓存锁地址     |
| 0x1fd8,4208 | sc_lock1_addr    | 二级缓存锁地址     |
| 0x1fd8,4210 | sc_lock2_addr    | 二级缓存锁地址     |
| 0x1fd8,4218 | sc_lock3_addr    | 二级缓存锁地址     |
| 0x1fd8,4240 | sc_lock0_mask    | 二级缓存锁掩码     |
| 0x1fd8,4248 | sc_lock1_mask    | 二级缓存锁掩码     |
| 0x1fd8,4250 | sc_lock2_mask    | 二级缓存锁掩码     |
| 0x1fd8,4258 | sc_lock3_mask    | 二级缓存锁掩码     |

# 5.5.1 消息中断写端口(msiport)

MSI 中断的写端口,可用于提供 PCIe 的 MSI 中断。

表 5.7: 消息中断写端口

| 位域  | 名称      | 访问 | 初值 | 描述                         |
|-----|---------|----|----|----------------------------|
| 4:0 | int_vec | W  | -  | 中断向量的编号。写入的值将译码为32位中断设置信号, |
|     |         |    |    | 送往第3组中断控制器                 |



#### 5.5.2 中断状态寄存器(intisr)

中断状态寄存器。

表 5.8: 中断状态寄存器

| 位域   | 名称        | 访问 | 初值 | 描述         |
|------|-----------|----|----|------------|
| 0~31 | intisr[i] | R  | -  | 中断状态,1为有中断 |

#### 5.5.3 中断使能寄存器(intien)

中断使能寄存器。

表 5.9: 中断使能寄存器

| 位域   | 名称        | 访问  | 初值 | 描述        |
|------|-----------|-----|----|-----------|
| 0~31 | intien[i] | R/W | 0  | 中断使能,1为使能 |

## 5.5.4 中断设置寄存器(intset)

在边沿触发的中断模式下,往 intset 位写1可以将置起该位所对应的中断状态。

表 5.10: 中断设置寄存器

| 位域   | 名称        | 访问 | 初值 | 描述           |
|------|-----------|----|----|--------------|
| 0~31 | intset[i] | W  | -  | 中断设置,写1为置起中断 |

#### 5.5.5 中断清除寄存器(intclr)

在边沿触发的中断模式下,往 intclr 位写 1 可以将清除该位所对应的中断状态。

表 5.11: 中断清除寄存器

| 位域   | 名称        | 访问 | 初值 | 描述           |
|------|-----------|----|----|--------------|
| 0~31 | intclr[i] | W  | -  | 中断清除,写1为清除中断 |

#### 5.5.6 中断极性寄存器(intpol)

用于设置中断线的有效极性。

表 5.12: 中断极性寄存器

| 位域   | 名称        | 访问  | 初值 | 描述             |
|------|-----------|-----|----|----------------|
| 0~31 | intpol[i] | R/W | 0  | 电平有效模式下,1为高电平; |
|      |           |     |    | 边沿有效模式下,1为上升沿  |

### 5.5.7 中断模式寄存器(intedge)

用于设置中断线的触发模式。



表 5.13: 中断模式寄存器

| 位域   | 名称         | 访问  | 初值 | 描述               |
|------|------------|-----|----|------------------|
| 0~31 | intedge[i] | R/W | 0  | 0 为电平触发, 1 为边沿触发 |

## 5.5.8 通用输入输出配置(gpiocfg)

gpiocfg 用于选择 GPIO 引脚的功能。

表 5.14: 通用输入输出配置

| 位域   | 名称         | 访问  | 初值 | 描述                                     |
|------|------------|-----|----|----------------------------------------|
| 18   | pwm3_dir   | R/W | 0  | 复用 GPIO 的 PWM3 引脚方向控制                  |
|      |            |     |    | 0: 输出                                  |
|      |            |     |    | 1: 输入                                  |
| 17   | pwm2_dir   | R/W | 0  | 复用 GPIO 的 PWM2 引脚方向控制                  |
|      |            |     |    | 0: 输出                                  |
|      |            |     |    | 1: 输入                                  |
| 16   | gpio_led   | R/W | 0  | SATA 状态指示灯复用控制                         |
|      |            |     |    | 0:两个 led 灯分别对应两个 SATA                  |
|      |            |     |    | 1: 使能 gpio 点灯,两 SATA 状态汇集后由 SATA0_LEDn |
|      |            |     |    | 输出,由 gpio 控制 SATA1 LEDn 的输出。           |
| 15:0 | gpiocfg[i] | R/W | 0  | 对应 16 个 GPIO 引脚。置 1 则选择 GPIO 引脚的第二功    |
|      |            |     |    | 台上<br>目上。                              |

### 5.5.9 通用输入输出方向(gpiooe)

gpiooe 用于控制 GPIO 的方向。

表 5.15: 通用输入输出方向

| 位域   | 名称        | 访问  | 初值 | 描述           |
|------|-----------|-----|----|--------------|
| 0~15 | gpiooe[i] | R/W | 1  | 0 为输出, 1 为输入 |

## 5.5.10 通用输入采样(gpioin)

GPIO 引脚的值由 gpioin 寄存器读出。

表 5.16: 通用输入采样

| 位域   | 名称        | 访问 | 初值 | 描述             |
|------|-----------|----|----|----------------|
| 0~15 | gpioin[i] | R  | -  | 直接反映 GPIO 引脚的值 |

### 5.5.11 通用输出设置(gpioout)

方向为输出的 GPIO 引脚的值由 gpioout 寄存器控制。

表 5.17: 通用输出设置

| 位域   | 名称         | 访问  | 初值 | 描述               |
|------|------------|-----|----|------------------|
| 0~15 | gpioout[i] | R/W | 0  | 0 输出低电平, 1 输出高电平 |



| 位域 | 名称        | 访问  | 初值 | 描述                        |
|----|-----------|-----|----|---------------------------|
| 16 | sata1_led | R/W | 0  | gpio_led 为高时控制 SATA1_LEDn |
|    |           |     |    | 0: 高阻                     |
|    |           |     |    | 1: 驱动为低                   |

## 5.5.12 DMA 命令控制寄存器(dma\_order)

DMA 控制器的命令控制寄存器, 存放。

表 5.18: DMA 命令控制寄存器

| 位域   | 名称        | 访问  | 初值 | 描述                                  |
|------|-----------|-----|----|-------------------------------------|
| 31:6 | ask_addr  | R/W | 0  | 32 位地址的高 26 位                       |
| 5    | -         | -   | 0  | 保留                                  |
| 4    | dma_stop  | R/W | 0  | 停止 DMA 操作。DMA 控制器完成当前数据读写后停止。       |
| 3    | dma_start | R/W | 0  | 开始 DMA 操作。DMA 控制器读取描述符地址 (ask_addr) |
|      |           |     |    | 后将些位清零。                             |
| 2    | ask_valid | R/W | 0  | DMA 工作寄存器写回到 (ask_addr) 所指向的内存,完成后  |
|      |           |     |    | 清零。                                 |
| 1:0  | dev_num   | R/W | 0  | DMA 设备选择                            |
|      |           |     |    | 00: NAND                            |
|      |           |     |    | 01: AC97 record                     |
|      |           |     |    | 10: AC97 replay                     |

## 5.5.13 芯片配置寄存器 0(chip\_config0)

芯片配置寄存器提供一般性的全局配置。

表 5.19: 芯片配置寄存器 0

| 位域    | 名称         | 访问  | 初值  | 描述                                 |
|-------|------------|-----|-----|------------------------------------|
| 31:30 | -          | -   | 0   | 保留                                 |
| 29    | hdv_rstn   | R/W | 0   | 媒体解码器复位,低有效                        |
| 28    | -          | -   | 0   | 保留                                 |
| 27    | gpu_rst    | R/W | 0   | GPU 复位,高有效                         |
| 26    | usb_rstn   | R/W | 0   | USB 复位, 低有效。访问 USB 寄存器前须置位。        |
| 25    | lpc_rst    | R/W | 0/1 | LPC 总线复位,高有效。在桥片模式下复位值为1,否则为       |
|       |            |     |     | 0 。                                |
| 24    | thsens_pdn | R/W | 0   | 温度传感器关断,低有效。在使用温度传感器前需置位。          |
| 23    | -          | -   | 0   | 保留                                 |
| 22    | dc_shut    | R/W | 0   | DC 时钟关断,高有效                        |
| 21    | otg_shut   | R/W | 0   | OTG 时钟关断,高有效                       |
| 20    | gmac1_shut | R/W | 0   | GMAC1 时钟关断,高有效                     |
| 19    | gmac0_shut | R/W | 0   | GMAC0 时钟关断,高有效                     |
| 18    | sata_shut  | R/W | 0   | SATA 时钟关断,高有效                      |
| 17    | hda_shut   | R/W | 0   | HDA 时钟关断,高有效                       |
| 16    | usb_shut   | R/W | 0   | USB 时钟关断,高有效                       |
| 15    | macptp_en  | R/W | 0   | MAC 控制器 IEEE1588 时间计数器使能。该位控制一个 64 |
|       |            |     |     | 位时间计数器,在不使用时关闭有助于降低功耗。             |



| 位域  | 名称           | 访问     | 初值 | 描述                                                          |
|-----|--------------|--------|----|-------------------------------------------------------------|
| 14  | otg_sel      | R/W    | 0  | USB 端口 0 模式选择                                               |
|     |              |        |    | 0: Host                                                     |
|     |              |        |    | 1: OTG,端口 0 由 OTG 控制器接管                                     |
|     |              |        |    | 在初始化 USB/OTG 控制器前须配置好                                       |
| 13  | ddrcnf_off   | R/W    | 0  | DDR 配置空间关闭,高有效                                              |
|     |              |        |    | DDR 控制器在内存空间中开辟了一小段配置空间 (1MB                                |
|     |              |        |    | @0x0ff0,0000),在关闭后软件就可以使用这段空间。为避                            |
|     |              |        |    | 免意外访问,建议在配置完成后及时关闭                                          |
| 12  | ht_addr_m    | R/W    | 0  | HT 地址过滤                                                     |
|     |              |        |    | 置位后 3A 通过 HT 发出地址的 31 和 30 位将被抹零                            |
| 11  | ht_fscale    | R/W    | 0  | 保留                                                          |
| 10  | ht_pll_byp   | R/W    | 0  | HT PLL 旁路选择, 高有效                                            |
| 9   | ht_pll_pd    | R/W    | 0  | HT PLL 关断,高有效                                               |
|     |              |        |    | 在不使用 HT 时建议置位。                                              |
| 8:7 | ejtag_drop   | R/W    | 0  | ejtag 链选择                                                   |
|     |              |        |    | $00: tdi \rightarrow LS464 \rightarrow tdo$                 |
|     |              |        |    | 10: $tdi \rightarrow LS464 \rightarrow HDV \rightarrow tdo$ |
|     |              | D /III | 0  | 11: tdi→HDV →tdo                                            |
| 6   | set_nmi      | R/W    | 0  | 桥片模式下 NMI 输出控制,高为置位 (NMIn 引脚输出低                             |
| 5   | br_mode      | R/W    | 0  | 电平 ) 标片模式使能,高有效                                             |
| 9   | br_mode      | n/w    | 0  | 桥片模式下 INTn 和 NMIn 引脚方向                                      |
| 4   | hda_sel      | R/W    | 0  | AC97/HDA 模式选择                                               |
|     | inda_sor     | 10/ 11 |    | 0: AC97 模式                                                  |
|     |              |        |    | 1: HDA 模式                                                   |
| 3   | hda_clksel   | R/W    | 0  | HDA 比特时钟选择                                                  |
|     |              | ,      |    | 0: SYS_RCG 分频器输出                                            |
|     |              |        |    | 1: USB 时钟分频                                                 |
| 2   | ddr32to16_en | R/W    | 0  | DDR 总线 16 位模式选择                                             |
|     |              |        |    | 0: 64/32 位                                                  |
|     |              |        |    | 1: 16 位                                                     |
|     |              |        |    | 将此位配置为1的前提是DDR控制器工作在32位模式下,                                 |
|     |              |        |    | 且完成初始化,不再访问 DDR 配置空间                                        |
| 1:0 | uart_split   | R/W    | 0  | 8 线串口复用选择, 见表 5.20                                          |

表 5.20: 串口复用配置

| uart_split | TXD  | RTS  | DTR  | RI   | RXD  | CTS  | DSR  | DCD  |
|------------|------|------|------|------|------|------|------|------|
| 00         | TXD0 | RTS0 | DTR0 | RI0  | RXD0 | CTS0 | DSR0 | DCD0 |
| 01         | TXD0 | RTS0 | TXD1 | RTS1 | RXD0 | CTS0 | RXD1 | CTS1 |
| 10         | TXD0 | RTS0 | TXD1 | TXD2 | RXD0 | CTS0 | RXD1 | RXD2 |
| 11         | TXD0 | TXD1 | TXD2 | TXD3 | RXD0 | RXD1 | RXD2 | RXD3 |

# 5.5.14 芯片配置寄存器 1(chip\_config1)

芯片配置寄存器提供一般性的全局配置。



| / \ 1_D | £ 7L       |     | I  | 1 HO TT 63 12 HH T                 |
|---------|------------|-----|----|------------------------------------|
| 位域      | 名称         | 访问  | 初值 | 描述                                 |
| 31:24   | phy_ctrl   | -   | 0  | 保留                                 |
| 23:20   | -          | -   | 0  | 保留                                 |
| 19      | pe_pwrfail | R/W | 0  | PCIe 电源失效                          |
| 18      | pe_sleep   | R/W | 0  | PCIe 睡眠控制                          |
| 17      | pe_wake    | R/W | 0  | PCIe 唤醒控制                          |
| 16      | pe_retryn  | R/W | 0  | PCIe 请求重试                          |
| 15      | gpu_clkdiv | R/W | 0  | GPU 接口时钟二分频                        |
|         |            |     |    | 0: 与 DDR 时钟同频                      |
|         |            |     |    | 1: DDR 时钟的二分频                      |
| 14      | gpu_ramcgn | R/W | 0  | GPU RAM 时钟门控使能                     |
|         |            |     |    | 0:允许 GPU RAM 的时钟门控                 |
|         |            |     |    | 1:禁止 GPU RAM 的时钟门控                 |
| 13:8    | ccio_mask  | R/W | 0  | 检测一致性访存的使能位                        |
|         |            |     |    | 如果需要使用 ACPI 的 C2/C3 BML 唤醒功能, 此域应置 |
|         |            |     |    | 为 0x3f 。                           |
| 7:2     | -          | -   | 0  | 保留                                 |
| 1       | dreset     | R/W | 0  | 软件全系统复位                            |
|         |            |     |    | 除芯片配置、时钟控制寄存器以及 RSM/RTC 电压域外,      |
|         |            |     |    | 所有的逻辑都将被复位。                        |
| 0       | -          | -   | 0  | 保留                                 |

表 5.21: 芯片配置寄存器 1

## 5.5.15 芯片配置寄存器 2(chip\_config2)

芯片配置寄存器 2 主要提供 HT IO 的特性配置。

表 5.22: 芯片配置寄存器 2

| 位域    | 名称           | 访问  | 初值 | 描述                          |
|-------|--------------|-----|----|-----------------------------|
| 31:26 | -            | -   | 0  | 保留                          |
| 25:19 | $ht_asrc$    | R/W | 0  |                             |
| 18    | $ht\_freeze$ | R/W | 0  |                             |
| 17    | $ht\_comptq$ | R/W | 0  |                             |
| 16    | $ht\_compen$ | R/W | 0  |                             |
| 15:0  | scratch      | R/W | 0  | 保存 16 位用户自定义的信息,可用于在热复位时保存状 |
|       |              |     |    | 态。                          |

## 5.5.16 芯片配置寄存器 3(chip\_config3)

芯片配置寄存器 3 提供 RGMII IO 和普通 3.3V IO 的特性设置。

表 5.23: 芯片配置寄存器 3

| 位域    | 名称         | 访问  | 初值 | 描述                        |
|-------|------------|-----|----|---------------------------|
| 31    | mac_update | R/W | 0  | 更新配置先置位后清零,29:16 的配置才会生效。 |
| 30    | -          | -   | 0  | 保留                        |
| 29:23 | mac_asrc   | R/W | 0  |                           |
| 22    | mac_freeze | R/W | 0  |                           |



| 位域    | 名称         | 访问     | 初值  | 描述                                 |
|-------|------------|--------|-----|------------------------------------|
| 21    | mac_comptq | R/W    | 0   |                                    |
| 20    | mac_compen | R/W    | 0   |                                    |
| 19:18 | mac_drive  | R/W    | 0   | RGMII 接口驱动强度选择                     |
|       |            |        |     | 00: 4mA                            |
|       |            |        |     | 01: 6mA                            |
|       |            |        |     | 10: 8mA                            |
|       |            |        |     | 11: 10mA                           |
| 17:16 | mac_volt   | R/W    | 0x2 | RGMII 接口电压选择                       |
|       |            |        |     | 10: 2.5V                           |
|       |            |        |     | 11: 3.3V                           |
| 15    | pad_update | R/W    | 0   | 更新配置                               |
|       |            | - /    | _   | 先置位后清零,14:0 的配置才会生效                |
| 14    | dvo_drive2 | R/W    | 0   | DVO_CLKp 、DVO_CLKn 的驱动强度选择         |
|       |            |        |     | 0: 2mA                             |
| 1.0   | 1 1 1      | D /III | 0   | 1: 8mA                             |
| 13    | dvo_drive1 | R/W    | 0   | DVO_HSYNC 、DVO_VSYNC 、DVO_DE 的驱动强度 |
|       |            |        |     | 选择                                 |
|       |            |        |     | 0: 2mA                             |
|       |            | - /    | _   | 1: 8mA                             |
| 12    | dvo_drive0 | R/W    | 0   | DVO_DAT 的驱动硬件选择                    |
|       |            |        |     | 0: 2mA                             |
|       |            |        |     | 1: 8mA                             |
| 11    | -          | -      | 0   | 保留                                 |
| 10:4  | phy_asrc   | R/W    | 0   |                                    |
| 3     | -          | -      | 0   | 保留                                 |
| 2     | phy_freeze | R/W    | 0   |                                    |
| 1     | phy_comptq | R/W    | 0   |                                    |
| 0     | phy_compen | R/W    | 0   |                                    |

# 5.5.17 芯片采样寄存器 0(chip\_sample0)

表 5.24: 芯片采样寄存器 0

| 位域    | 名称         | 访问 | 初值 | 描述                   |
|-------|------------|----|----|----------------------|
| 31:16 | bootcfg_lo | R  | -  | 上电配置状态 bootcfg[15:0] |
| 15:14 | -          | -  | -  | 保留                   |
| 13    | ht_lock    | R  | -  | ht pll 锁定            |
| 12    | pix1_lock  | R  | -  | pix1 pll 锁定          |
| 11    | pix0_lock  | R  | -  | pix0 pll 锁定          |
| 10    | sys_lock   | R  | -  | sys pll 锁定           |
| 9     | ddr_lock   | R  | -  | ddr pll 锁定           |
| 8     | cpu_lock   | R  | -  | cpu pll 锁定           |
| 7     | thsens_ov  | R  | -  | 温度传感器溢出              |
| 6:0   | thsens_val | R  | -  | 温度传感器读数              |
|       |            |    |    | 7位整数,单位为摄氏度          |



#### 5.5.18 芯片采样寄存器 1(chip\_sample1)

表 5.25: 芯片采样寄存器 1

| 位域   | 名称         | 访问 | 初值    | 描述                    |
|------|------------|----|-------|-----------------------|
| 31:4 |            | -  | 保留,读为 |                       |
|      |            |    | 0     |                       |
| 3:0  | bootcfg_hi | R  | -     | 上电配置状态 bootcfg[19:16] |

#### 5.5.19 芯片采样寄存器 2(chip\_sample2)

表 5.26: 芯片采样寄存器 2

|   | 位域   | 名称 | 访问 | 初值    | 描述 |
|---|------|----|----|-------|----|
| Ī | 31:0 |    | -  | 保留,读为 |    |
|   |      |    |    | 0     |    |

## 5.5.20 芯片采样寄存器 3(chip\_sample3)

表 5.27: 芯片采样寄存器 3

| 位域   | 名称 | 访问 | 初值    | 描述 |
|------|----|----|-------|----|
| 31:0 |    | -  | 保留,读为 |    |
|      |    |    | 0     |    |

## 5.5.21 芯片采样寄存器 4(chip\_sample4)

表 5.28: 芯片采样寄存器 4

| 位域    | 名称                     | 访问 | 初值 | 描述     |
|-------|------------------------|----|----|--------|
| 31    | $\mathrm{cmptl\_ok}$   | R  | -  |        |
| 30:24 | $\mathrm{cmptl\_asrc}$ | R  | -  |        |
| 23:16 | -                      | -  | -  | 保留,读为0 |
| 15:0  | version                | R  | -  | 芯片版本号  |
|       |                        |    |    | 0: 2H2 |
|       |                        |    |    | 1: 2H3 |

## 5.5.22 芯片采样寄存器 5(chip\_sample5)

表 5.29: 芯片采样寄存器 5

| 位域    | 名称                   | 访问 | 初值 | 描述 |
|-------|----------------------|----|----|----|
| 31    | cmppd_ok             | R  | -  |    |
| 30:24 | cmppd_asrc           | R  | -  |    |
| 23    | cmpgm_ok             | R  | -  |    |
| 22:16 | cmpgm_asrc           | R  | -  |    |
| 15    | $\mathrm{cmpbt\_ok}$ | R  | -  |    |
| 14:8  | cmpbt_asrc           | R  | -  |    |



| 位域  | 名称         | 访问 | 初值 | 描述 |
|-----|------------|----|----|----|
| 7   | cmpht_ok   | R  | -  |    |
| 6:0 | cmpht_asrc | R  | -  |    |

## 5.5.23 时钟配置寄存器 0(clock\_ctrl0)

时钟寄存器提供 ddr 和 cpu 两个 pll 的配置。

表 5.30: 时钟配置寄存器 0

| 位域    | 名称         | 访问  | 初值 | 描述                                        |
|-------|------------|-----|----|-------------------------------------------|
| 31:24 | ddrpll_ldf | R/W | 0  | ddr pll 倍频系数                              |
| 23:22 | ddrpll_odf | R/W | 0  | ddr pll 输出分频                              |
| 21:19 | ddrpll_idf | R/W | 0  | ddr pll 输入分频                              |
| 18    | ddrpll_pd  | R/W | 0  | ddr pll 美断                                |
| 17    | ddrpll_sel | R/W | 0  | ddr pll 输出选择                              |
|       |            |     |    | 0: 参考时钟旁路                                 |
|       |            |     |    | 1: pll 输出                                 |
| 16    | ddrpll_set | R/W | 0  | ddr pll 配置更新                              |
|       |            |     |    | 在配好 pd/idf/odf/ldf/clock_ctrl1 后再置位并清零,从而 |
|       |            |     |    | 更新到 PLL 中                                 |
| 15:13 | -          | -   | -  | 保留                                        |
| 12    | cpupll_sel | R/W | 0  | cpu pll 输出选择                              |
|       |            |     |    | 0: 参考时钟旁路                                 |
|       |            |     |    | 1: pll 输出分频后时钟                            |
| 11    | cpupll_pd  | R/W | 0  | cpu pll 美断                                |
| 10:8  | cpupll_odf | R/W | 0  | cpu pll 输出分频                              |
| 7:1   | cpupll_ldf | R/W | 0  | cpu pll 倍频系数                              |
| 0     | cpupll_set | R/W | 0  | cpu pll 配置更新                              |
|       |            |     |    | 在配好 pd/odf/ldf 后再置位并清零                    |

## 5.5.24 时钟配置寄存器 1(clock\_ctrl1)

时钟配置寄存器 1 提供 ddr pll 的展频配置。

表 5.31: 时钟配置寄存器 1

| 位域    | 名称        | 访问  | 初值                            | 描述                             |
|-------|-----------|-----|-------------------------------|--------------------------------|
| 31    | -         | -   | -                             | 保留                             |
| 30    | strobe    | R/W | 0                             | ddr pll 展频参数更新<br>如使用展频模式,则应置位 |
| 29    | sscg_en   | R/W | 0                             | 展频模式使能<br>0: 普通模式<br>1: 展频模式   |
| 28    | sprd_ctrl | R/W | 0 展频模式选择<br>0: 中心展频<br>1: 下展频 |                                |
| 27:13 | inc_step  | R/W | 0                             | 调制深度                           |
| 12:0  | mdperiod  | R/W | 0                             | 调制周期                           |



#### 5.5.25 **时钟配置寄存器** 2(clock\_ctrl2)

时钟配置寄存器 2 提供 sys pll 参数以及 sbc 、hdv 分频配置。

表 5.32: 时钟配置寄存器 2

| 位域    | 名称         | 访问  | 初值 | 描述                                |  |
|-------|------------|-----|----|-----------------------------------|--|
| 31    | hdvdiv_set | R/W | 0  | hdv 分频器参数设置                       |  |
|       |            |     |    | 先置位后清零,以使设置生效                     |  |
| 30    | hdvdiv_pd  | R/W | 0  | hdv 分频器关断,高有效                     |  |
| 29:24 | hdvdiv_df  | R/W | 0  | hdv 分频器分频系数 (1~31)                |  |
| 23    | sbcdiv_set | R/W | 0  | sbc 分频器参数设置                       |  |
|       |            |     |    | 先置位后清零,以使设置生效                     |  |
| 22    | sbcdiv_pd  | R/W | 0  | sbc 分频器关断,高有效                     |  |
| 21    | sbcdiv_2   | R/W | 0  | sbc 时钟减半运行,该位不影响 GMAC 125M 时钟的生成。 |  |
|       |            |     |    | 当要求功耗较低且 IO 性能不要求时可配置为 1          |  |
| 20:16 | sbcdiv_df  | R/W | 0  | sbc 分频器分频系数 (1~31)                |  |
| 15:13 | -          | -   | -  | 保留                                |  |
| 12    | syspll_sel | R/W | 0  | sys pll 输出选择                      |  |
|       |            |     |    | 0: 参考时钟旁路                         |  |
|       |            |     |    | 1: pll 输出分频后时钟                    |  |
| 11    | syspll_pd  | R/W | 0  | sys pll 关断                        |  |
| 10:8  | syspll_odf | R/W | 0  | sys pll 输出分频                      |  |
| 7:1   | syspll_ldf | R/W | 0  | sys pll 倍频系数                      |  |
| 0     | syspll_set | R/W | 0  | sys pll 配置更新                      |  |
|       |            |     |    | 在配好其它参数后再置位并清零                    |  |

#### 5.5.26 **时钟配置寄存器** 3(clock\_ctrl3)

时钟配置寄存器 3 提供 pcie 参考时钟和 hda、gpu 时钟分频的配置。

表 5.33: 时钟配置寄存器 3

| 位域    | 名称         | 访问  | 初值 | 描述                      |
|-------|------------|-----|----|-------------------------|
| 31:28 | -          | -   | 0  | 保留                      |
| 27    | pe3ref_en  | R/W | 0  | PCIE3_CLKp/n 输出使能,高有效   |
| 26    | pe2ref_en  | R/W | 0  | PCIE2_CLKp/n 输出使能,高有效   |
| 25    | pe1ref_en  | R/W | 0  | PCIE1_CLKp/n 输出使能,高有效   |
| 24    | pe0ref_en  | R/W | 0  | PCIE0_CLKp/n 输出使能,高有效   |
| 23    | pediv_set  | R/W | 0  | pcie_ref 分频器参数设置        |
|       |            |     |    | 先置位后清零, 以使设置生效          |
| 22    | pediv_pd   | R/W | 0  | pcie ref 分频器关断,高有效      |
| 21:16 | pediv_df   | R/W | 0  | pcie ref 分频器分频系数 (1~31) |
| 15    | hdadiv_set | R/W | 0  | hda 分频器参数设置             |
|       |            |     |    | 先置位后清零, 以使设置生效          |
| 14    | hdadiv_pd  | R/W | 0  | hda 分频器关断,高有效           |
| 13:8  | hdadiv_df  | R/W | 0  | hda 分频器分频系数 (1~31)      |
| 7     | gpudiv_set | R/W | 0  | gpu 分频器参数设置             |
|       |            |     |    | 先置位后清零,以使设置生效           |
| 6     | gpudiv_pd  | R/W | 0  | gpu 分频器关断,高有效           |



| 位域  | 名称        | 访问  | 初值 | 描述                 |
|-----|-----------|-----|----|--------------------|
| 5:0 | gpudiv_df | R/W | 0  | gpu 分频器分频系数 (1~31) |

## 5.5.27 显示时钟配置寄存器 0(pixclk0/1\_ctrl0)

显示时钟配置寄存器提供 pixclk0/1 的频率配置。

表 5.34: 显示时钟配置寄存器 0

| 位域    | 名称         | 访问  | 初值   | 描述                        |  |  |
|-------|------------|-----|------|---------------------------|--|--|
| 31    | pstdiv_set | R/W | 0    | 输出分频器参数设置                 |  |  |
|       |            |     |      | 先置位后清零,以使设置生效             |  |  |
| 30    | pstdiv_pd  | R/W | 0    |                           |  |  |
| 29:24 | pstdiv_df  | R/W | 0    | 输出分频器分频系数 (1~31)          |  |  |
| 23:16 | pll_ldf    | R/W | 0x10 | pll 倍频系数                  |  |  |
| 15    | prediv_set | R/W | 0    | 输入分频器参数设置                 |  |  |
|       |            |     |      | 先置位后清零,以使设置生效             |  |  |
| 14    | prediv_pd  | R/W | 0    | 输入分频器关断,高有效               |  |  |
| 13:8  | prediv_df  | R/W | 0    | 输入分频器分频系数 (1~31)          |  |  |
| 7     | pll_pd     | R/W | 0    | pll 关断,高有效                |  |  |
|       |            |     |      | 在改变 pll 配置前必须清零,完成修改后再置位。 |  |  |
| 6:5   | pll_odf    | R/W | 0x2  | pll 输出分频                  |  |  |
|       |            |     |      | 00: 1 分频                  |  |  |
|       |            |     |      | 01: 2 分頻                  |  |  |
|       |            |     |      | 10: 4 分频                  |  |  |
|       |            |     |      | 11: 8 分頻                  |  |  |
| 4:2   | pll_idf    | R/W | 0x2  | pll 输入分频                  |  |  |
|       |            |     |      | 1~7: 1 到 7 分频             |  |  |
| 1:0   | ref_sel    | R/W | 0    | 参考时钟选择                    |  |  |
|       |            |     |      | 00: refclk                |  |  |
|       |            |     |      | 01: sbc_clk               |  |  |
|       |            |     |      | 10: pcie_ref              |  |  |
|       |            |     |      | 11: hda_clk               |  |  |

## 5.5.28 显示时钟配置寄存器 1(pixclk0/1\_ctrl1)

显示时钟配置寄存器提供 pixclk0/1 的展频配置。

表 5.35: 显示时钟配置寄存器 1

| 位域    | 名称        | 访问  | 初值 | 描述           |  |
|-------|-----------|-----|----|--------------|--|
| 31    | strobe    | R/W | 0  | pll 展频参数更新   |  |
|       |           |     |    | 如使用展频模式,则应置位 |  |
| 30    | sscg_en   | R/W | 0  | 展频模式使能       |  |
|       |           |     |    | 0: 普通模式      |  |
|       |           |     |    | 1: 展频模式      |  |
| 29    | sprd_ctrl | R/W | 0  |              |  |
|       |           |     |    | 0: 中心展频      |  |
|       |           |     |    | 1: 下展频       |  |
| 28:14 | inc_step  | R/W | 0  | 调制深度         |  |



| 位域   | 名称       | 访问  | 初值        | 描述        |  |
|------|----------|-----|-----------|-----------|--|
| 13:1 | mdperiod | R/W | 0 调制周期    |           |  |
| 0    | pll_sel  | R/W | 0         | 时钟输出选择    |  |
|      |          |     | 0: 参考时钟旁路 |           |  |
|      |          |     |           | 1: pll 输出 |  |

## 5.5.29 USB PHY0 配置寄存器(usbphy0\_ctrl)

配置 USB 接口 0/1/2 相关的电气特性。

表 5.36: USB PHY0 配置寄存器

| 位域    | 名称           | 访问  | 初值 | 描述             |
|-------|--------------|-----|----|----------------|
| 63:61 | dppulldown   | R/W | 0  | 硬件默认配置 0       |
| 60:58 | dmpulldown   | R/W | 0  | 硬件默认配置 0       |
| 57:56 | txhsxvtune2  | R/W | 0  | 硬件默认配置 0       |
| 55    | txpreemtune2 | R/W | 0  | 硬件默认配置 1       |
| 54    | txrisetune2  | R/W | 0  | 硬件默认配置 0       |
| 53:50 | txvreftune2  | R/W | 0  | 硬件默认配置 0x5     |
| 49:46 | txfslstune2  | R/W | 0  | 硬件默认配置 0x3     |
| 45:43 | sqrxtune2    | R/W | 0  | 硬件默认配置 0x4     |
| 42:40 | compdistune2 | R/W | 0  | 硬件默认配置 0x4     |
| 39:38 | txhsxvtune1  | R/W | 0  | 硬件默认配置 0       |
| 37    | txpreemtune1 | R/W | 0  | 硬件默认配置 1       |
| 36    | txrisetune1  | R/W | 0  | 硬件默认配置 0       |
| 35:32 | txvreftune1  | R/W | 0  | 硬件默认配置 0x5     |
| 31:28 | txfslstune1  | R/W | 0  | 硬件默认配置 0x3     |
| 27:25 | sqrxtune1    | R/W | 0  | 硬件默认配置 0x4     |
| 24:22 | compdistune1 | R/W | 0  | 硬件默认配置 0x4     |
| 21:20 | txhsxvtune1  | R/W | 0  | 硬件默认配置 0       |
| 19    | txpreemtune0 | R/W | 0  | 硬件默认配置 1       |
| 18    | txrisetune0  | R/W | 0  | 硬件默认配置 0       |
| 17:14 | txvreftune0  | R/W | 0  | 硬件默认配置 0x5     |
| 13:10 | txfslstune0  | R/W | 0  | 硬件默认配置 0x3     |
| 9:7   | sqrxtune0    | R/W | 0  | 硬件默认配置 0x4     |
| 6:4   | compdistune0 | R/W | 0  | 硬件默认配置 0x4     |
| 3:1   | otgtune      | R/W | 0  | 硬件默认配置 0x5     |
| 0     | cfg_en       | R/W | 0  | 配置使能           |
|       |              |     |    | 0: 使用硬件默认配置    |
|       |              |     |    | 1: 使用该寄存器的软件配置 |

## 5.5.30 USB PHY1 配置寄存器(usbphy1\_ctrl)

配置 USB 接口 3/4/5 相关的电气特性。



表 5.37: USB PHY1 配置寄存器

| 位域    | 名称           | 访问  | 初值 | 描述                         |  |
|-------|--------------|-----|----|----------------------------|--|
| 63:61 | dppulldown   | R/W | 0  | 硬件默认配置 0                   |  |
| 60:58 | dmpulldown   | R/W | 0  | 硬件默认配置 0                   |  |
| 57:56 | txhsxvtune2  | R/W | 0  | 硬件默认配置 0                   |  |
| 55    | txpreemtune2 | R/W | 0  | 硬件默认配置 1                   |  |
| 54    | txrisetune2  | R/W | 0  | 硬件默认配置 0                   |  |
| 53:50 | txvreftune2  | R/W | 0  | 硬件默认配置 0x5                 |  |
| 49:46 | txfslstune2  | R/W | 0  | 硬件默认配置 0x3                 |  |
| 45:43 | sqrxtune2    | R/W | 0  | 硬件默认配置 0x4                 |  |
| 42:40 | compdistune2 | R/W | 0  | 硬件默认配置 0x4                 |  |
| 39:38 | txhsxvtune1  | R/W | 0  | 硬件默认配置 0                   |  |
| 37    | txpreemtune1 | R/W | 0  | 硬件默认配置 1                   |  |
| 36    | txrisetune1  | R/W | 0  | 硬件默认配置 0                   |  |
| 35:32 | txvreftune1  | R/W | 0  | 硬件默认配置 0x5                 |  |
| 31:28 | txfslstune1  | R/W | 0  | 硬件默认配置 0x3                 |  |
| 27:25 | sqrxtune1    | R/W | 0  | 硬件默认配置 0x4                 |  |
| 24:22 | compdistune1 | R/W | 0  | 硬件默认配置 0x4                 |  |
| 21:20 | txhsxvtune1  | R/W | 0  | 硬件默认配置 0                   |  |
| 19    | txpreemtune0 | R/W | 0  | 硬件默认配置 1                   |  |
| 18    | txrisetune0  | R/W | 0  | 硬件默认配置 0                   |  |
| 17:14 | txvreftune0  | R/W | 0  | 硬件默认配置 0x5                 |  |
| 13:10 | txfslstune0  | R/W | 0  | 硬件默认配置 0x3                 |  |
| 9:7   | sqrxtune0    | R/W | 0  | 硬件默认配置 0x4                 |  |
| 6:4   | compdistune0 | R/W | 0  | 硬件默认配置 0x4                 |  |
| 1     | ls_mod       | R/W | 0  | 低速模式兼容性优化                  |  |
|       |              |     |    | 0: 关闭                      |  |
|       |              |     |    | 1: 打开 (建议配置, 不受 cfg_en 影响) |  |
| 0     | cfg_en       | R/W | 0  | 配置使能                       |  |
|       |              |     |    | 0: 使用硬件默认配置                |  |
|       |              |     |    | 1: 使用该寄存器的软件配置             |  |

#### 5.6 中断配置及路由

龙芯 2H 内置简单、灵活的中断控制器,管理内部中断事件以及外部中断输入。中断控制器结构如图 5.5所示,由 5 组中断控制寄存器组成。每组寄存器有 32 个中断控制位,对应内外中断源。每个中断控制位有一组寄存器加以控制,包括 intien 、 intpol 、 intedge 、 intset 、 intclr 等,中断状态可由 intisr 读出,详见表5.9~5.11

中断控制器共五个中断输出连接处理器核,分别对应 INT0, INT1, INT2, INT3, INT4。芯片支持 64 个内部中断和 16 个 GPIO 中断,如表5.38所示。

表 5.38: 中断源映射关系

|    | INT0 | INT1 | INT2 | INT3 | INT4 |
|----|------|------|------|------|------|
| 31 | 保留   | 保留   | 保留   | 保留   | 保留   |



|    | INT0     | INT1    | INT2   | INT3 | INT4 |
|----|----------|---------|--------|------|------|
| 30 | 保留       | 保留      | 保留     | 保留   | 保留   |
| 29 | 保留       | 保留      | 保留     | 保留   | 保留   |
| 28 | 保留       | 保留      | 保留     | 保留   | 保留   |
| 27 | 保留       | 保留      | 保留     | 保留   | 保留   |
| 26 | 保留       | 保留      | 保留     | 保留   | 保留   |
| 25 | 保留       | HDA     | 保留     | 保留   | 保留   |
| 24 | 保留       | SATAPHY | 保留     | 保留   | 保留   |
| 23 | SYS_INTn | PCIE3   | 保留     | 保留   | 保留   |
| 22 | NAND     | PCIE2   | 保留     | 保留   | 保留   |
| 21 | TOY_TICK | PCIE1   | 保留     | 保留   | 保留   |
| 20 | RTC_TICK | PCIE0   | 保留     | 保留   | 保留   |
| 19 | TOY_INT2 | HT7     | 保留     | 保留   | 保留   |
| 18 | TOY_INT1 | HT6     | 保留     | 保留   | 保留   |
| 17 | TOY_INT0 | HT5     | 保留     | 保留   | 保留   |
| 16 | RTC_INT2 | HT4     | 保留     | 保留   | 保留   |
| 15 | RTC_INT1 | НТ3     | GPIO15 | 保留   | 保留   |
| 14 | RTC_INT0 | HT2     | GPIO14 | 保留   | 保留   |
| 13 | LPC      | HT1     | GPIO13 | 保留   | 保留   |
| 12 | DMA2     | HT0     | GPIO12 | 保留   | 保留   |
| 11 | DMA1     | PWM3    | GPIO11 | 保留   | 保留   |
| 10 | DMA0     | PWM2    | GPIO10 | 保留   | 保留   |
| 9  | AC97     | PWM1    | GPIO09 | 保留   | 保留   |
| 8  | I2C1     | PWM0    | GPIO08 | 保留   | 保留   |
| 7  | I2C0     | DC      | GPIO07 | 保留   | 保留   |
| 6  | SPI      | GPU     | GPIO06 | 保留   | 保留   |
| 5  | UART3    | SATA    | GPIO05 | 保留   | 保留   |
| 4  | UART2    | GMAC1   | GPIO04 | 保留   | 保留   |
| 3  | UART1    | GMAC0   | GPIO03 | 保留   | 保留   |
| 2  | URAT0    | OTG     | GPIO02 | 保留   | 保留   |
| 1  | HPET     | OHCI    | GPIO01 | 保留   | 保留   |
| 0  | ACPI     | EHCI    | GPIO00 | 保留   | 保留   |

INT3 所对应的中断控制器用于接收 MSI 中断,往消息中断写端口写入的 5 位向量 号将译码成 32 位的向量,产生与写向 intset 寄存器相同的结果。在使用中断前,软件需根据表5.39的值,从左至右逐列配置中断控制器。其中 intien 设为使能所有中断,用户可根据需要配置。

表 5.39: 中断控制器配置

|      | intedge    | intpol     | intclr     | intien     |
|------|------------|------------|------------|------------|
| INT0 | 0x00000000 | 0xff7fffff | 0x00000000 | 0x00ffffff |
| INT1 | 0x00000000 | Oxfeffffff | 0x00000000 | 0x03ffffff |
| INT2 | 0x00000000 | Oxffffffff | 0x00000000 | 0x00000000 |
| INT3 | Oxffffffff | Oxffffffff | Oxffffffff | Oxffffffff |
| INT4 | Oxffffffff | Oxffffffff | Oxffffffff | 0x00000000 |





图 5.5: 中断结构示意



## 第六章 DDR2/3 控制器

龙芯 2H 处理器内部集成的 DDR2/3 SDRAM 内存控制器的设计遵守 DDR2/3 SDRAM 的行业标准(JESD79-2 和 JESD79-3), 所实现的所有内存读 / 写操作都遵守 JESD79-2B 及 JESD79-3 的规定。

#### 6.1 功能概述

龙芯 2H 处理器支持最大 4 个 CS(由 4 个 DDR2 SDRAM 片选信号实现,即两个双面内存条),一共含有 18 位的地址总线(即: 15 位的行列地址总线和 3 位的逻辑 Bank 总线)。

龙芯 2H 处理器在具体选择使用不同内存芯片类型时,可以调整 DDR2/3 控制器参数设置进行支持。其中,支持的最大片选(CS\_n)数为 4,行地址(RAS\_n)数为 15,列地址(CAS\_n)数为 14,逻辑体选择(BANK\_n)数为 3。最大支持的地址空间为 128GB(237)。

CPU 发送的内存请求物理地址将按照图6.1所示的方法进行行列地址转换:

以 4GB 地址空间为例,按照下面的配置:

片选= 4Bank 数= 8行地址数= 12列地址数= 12

| 36 | 32 | 31 |    | 30 | 29 | 18 | 17  | 15  | 14 | 3 | 2   | 0    |
|----|----|----|----|----|----|----|-----|-----|----|---|-----|------|
|    |    |    | 片选 |    | 行选 |    | BAN | K选择 | 列选 |   | 生成: | 字节使能 |
|    |    |    |    |    |    |    |     |     |    |   |     |      |

图 6.1: DDR2 SDRAM 行列地址与 CPU 物理地址的转换

龙芯 2H 处理器所集成的内存控制电路接受来自处理器或者内部设备的内存读 / 写请求,在所有的内存读 / 写操作中,内存控制电路处于从设备状态(Slave State)。

龙芯 2H 处理器中内存控制器具有如下特征:

- 接口上命令、读写数据全流水操作
- 内存命令合并、排序提高整体带宽
- 配置寄存器读写端口,可以修改内存设备的基本参数
- 内建动态延迟补偿电路(DCC),用于数据的可靠发送和接收
- ECC 功能可以对数据通路上的 1 位和 2 位错误进行检测,并能对对 1 位错误进行 自动纠错



• 支持 133-400MHZ 工作频率

#### 6.2 读操作协议

DDR2/3 SDRAM 读操作的协议如图6.2所示。在图中命令(Command,简称CMD)由RAS\_n, CAS\_n和WE\_n,共三个信号组成。对于读操作,RAS\_n=1,CAS\_n=0,WE\_n=1。



图 6.2: DDR2 SDRAM 读操作协议

其中, Cas Latency (CL) = 3, Read Latency (RL) = 3, Burst Length = 8.

#### 6.3 写操作协议

DDR2/3 SDRAM 写操作的协议如图6.3所示。在图中命令 CMD 是由 RAS\_n,CAS\_n 和 WE\_n,共三个信号组成的。对于写操作,RAS\_n=1,CAS\_n=0,WE\_n=0。另外,与读操作不同,写操作需要 DQM 来标识写操作的掩码,即需要写入的字节数。DQM 与图中 DQs 信号同步。其中,Cas Latency (CL)=3,Write Latency (WL)=Read Latency (RL)-1=2,Burst Length=4。

## 6.4 参数配置格式

由于系统中可能使用不同类型的 DDR2/3 SDRAM,因此,在系统上电复位以后,需要对 DDR2/3 SDRAM 进行配置。在 JESD79-2B 和 JESD79-3 中规定了详细的配置操作和配置过程,在没有完成 DDR2/3 的内存初始化操作之前, DDR2/3 不可用。内存初始化操作执行顺序如下:

- 1. 系统复位,此时控制器内部所有寄存器内容将被清除为初始值。
- 2. 系统解复位。





图 6.3: DDR2 SDRAM 写操作协议

- 3. 向配置寄存器地址发 64 位写指令,配置所有 180 个配置寄存器。此时如果写 CTRL\_03,应将其中参数 START 设为 0。所有寄存器都必须正确配置才可以正 常工作。
- 4. 向配置寄存器 CTRL\_03 中发 64 位写指令。此时应将参数 START 设为 1。结束后内存控制器将自动对内存发起初始化指令。

在龙芯 2H 处理器设计中,DDR2/3 SDRAM 的配置在系统主板初始化完成以后,需要使用内存之前,进行内存类型的配置。具体的配置操作是对物理地址 0x0000 0000 0ff0 0000 相对应的 180 个 64 位寄存器写入相应的配置参数。一个寄存器可能会包括多个、一个、部分参数的数据。这些配置寄存器及其包含的参数意义如下表(寄存器中未使用的位均为保留位),表中还给出了基于 DDR2 667 的一种寄存器配置方式,具体的配置可以根据实际情况再决定:

| 10.0                                                        | 农 0.1. DDR2 SDRAM 癿且多数可付价价以 |     |         |                                    |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------|-----|---------|------------------------------------|--|--|--|--|--|
| 参数名称                                                        | 位                           | 初值  | 范围      | 描述                                 |  |  |  |  |  |
| CONF_CTL_00[63:0] Offset: 0x00 DDR2 667: 0x0000010000000101 |                             |     |         |                                    |  |  |  |  |  |
| CONCURRENTAP                                                | 48:48                       | 0x0 | 0x0-0x1 | 是否允许控制器对一个 bank 进行 auto precharge  |  |  |  |  |  |
|                                                             |                             |     |         | 时,对另外一个 bank 发出命令。注:部分内存条          |  |  |  |  |  |
|                                                             |                             |     |         | 不支持                                |  |  |  |  |  |
| BANK_SPLIT_EN                                               | 40:40                       | 0x0 | 0x0-0x1 | 是否允许命令队列重排序逻辑对 bank 进行拆分(          |  |  |  |  |  |
|                                                             |                             |     |         | split )                            |  |  |  |  |  |
| AUTO_REFRESH_MODE                                           | 32:32                       | 0x0 | 0x0-0x1 | 设置 auto-refresh 是在下一个 burst 还是下一个命 |  |  |  |  |  |
|                                                             |                             |     |         | 令边界发出                              |  |  |  |  |  |
| AREFRESH                                                    | 24:24                       | 0x0 | 0x0-0x1 | 根据 auto_refresh_mode 参数的设置,向内存发起   |  |  |  |  |  |
|                                                             |                             |     |         | 自动刷新命令(只写)                         |  |  |  |  |  |
| AP                                                          | 16:16                       | 0x0 | 0x0-0x1 | 是否使能内存控制器自动刷新功能,置1,表示内             |  |  |  |  |  |
|                                                             |                             |     |         | 存访问为 CLOSE PAGE 方式。                |  |  |  |  |  |

表 6.1: DDR2 SDRAM 配置参数寄存器格式



| 参数名称                     | 位       | 初值   | 范围          | 描述                                                 |
|--------------------------|---------|------|-------------|----------------------------------------------------|
| ADDR_CMP_EN              | 8:8     | 0x0  | 0x0-0x1     | 是否允许命令队列重排序逻辑对地址冲突进行检                              |
|                          |         |      |             | 测                                                  |
| CONF_CTL_01[63:0] Offse  | t: 0x10 | DDR2 | 2.667: 0x0  |                                                    |
| FWC                      | 56:56   | 0x0  | 0x0-0x1     | 是否强制进行写检查,当这个参数设置后,内存控                             |
|                          |         |      |             | 制器将用 xor_check_bits 参数指定的数与数据进行                    |
|                          | 10.10   |      |             | 异或写入内存(只写)                                         |
| FAST_WRITE               | 48:48   | 0x0  | 0x0-0x1     | 是否允许控制器打开快速写功能。打开快速写功能                             |
|                          |         |      |             | 后,控制器在未收到全部写数据后即向内存模块发                             |
| ENABLE-QUICK_SREFRESH    | I 40:40 | 0x0  | 0x0-0x1     | 出写命令。<br>是否使能快速自刷新。当这个参数使能后,内存的                    |
| ENABLE-QUICK-SILEFILESI  | 1 40.40 | OXO  | 0.00-0.01   | 初始化未进行完就进入自刷新状态                                    |
| EIGHT_BANK_MODE          | 32:32   | 0x0  | 0x0-0x1     | 指示内存模块是否有8个bank                                    |
| ECC_DISBALE_W_UC_ERR     | 24:24   | 0x0  | 0x0-0x1     | 当检测到不可恢复的错误时,是否将 ECC 关闭                            |
| DQS_N_EN                 | 16:16   | 0x0  | 0x0-0x1     | 设置 DQS 信号为单端还是差分信号。                                |
| DLLLOCKREG               | 0:0     | 0x0  | 0x0-0x1     | 指示 DLL 是否已锁定 (只读), 只有在 DLL 锁定                      |
|                          |         |      |             | 之后,对内存发起的读写操作才能有效到达内存,                             |
|                          |         |      |             | 所以,可以用本位判断第一次写内存的时机。                               |
| CONF_CTL_02[63:0] Offset | t: 0x20 | DDR2 | 2 667 : 0x0 |                                                    |
| PRIORITY_EN              | 56:56   | 0x0  | 0x0-0x1     | 是否使能命令队列重排序逻辑使用优先级                                 |
| POWER_DOWN               | 48:48   | 0x0  | 0x0-0x1     | 当使能这个参数时,内存控制器将用 pre-charge                        |
|                          |         |      |             | 命令关闭内存模块的所有页面,使时钟使能信号为                             |
|                          |         |      |             | 低,不发送收到的所有命令,直到这个参数重新设                             |
|                          |         |      |             | 置为 0                                               |
| PLACEMENT_EN             | 40:40   | 0x0  | 0x0-0x1     | 是否使能命令重排序逻辑                                        |
| ODT_ADD_TURN_CLK_EN      | 32:32   | 0x0  | 0x0-0x1     | 在对不同片选的快速背对背读或者写命令中间是                              |
|                          |         |      |             | 否插入一个 turn-around 时钟。通常情况下,插入                      |
|                          |         |      |             | 一个这样的周期是对内存是需要的。                                   |
| NO_CMD_INIT              | 24:24   | 0x0  | 0x0-0x1     | 在内存初始化过程中,是否禁止在内存模块的                               |
|                          |         |      |             | tDLL 时间内发出其它命令                                     |
| INTRPTWRITENA            | 16:16   | 0x0  | 0x0-0x1     | 是否允许用 autoprecharge 命令加上对同一 bank                   |
| INTRPTREADA              | 8:8     | 0x0  | 0x0-0x1     | 的其它写命令打断前一个写命令<br>是否允许用 autoprecharge 命令加上对同一 bank |
| INTRETREADA              | 0.0     | UXU  | UXU-UXI     | 的其它读命令打断前一个读命令                                     |
| INTRPTAPBURST            | 0:0     | 0x0  | 0x0-0x1     | 是否允许对另一 bank 的其它命令打断当前的                            |
| 11.1101 1111 201001      | 0.0     | 0110 | 0110 0111   | auto-precharge 命令                                  |
| CONF_CTL_03[63:0] Offset | t: 0x30 | DDR2 | 2667: 0x0   | 1 1                                                |
| SWAP_PORT_RW_SAME_EN     | 56:56   | 0x0  | 0x0-0x1     | 当 swap_en 使能时,该参数决定是否将同一端口上                        |
|                          |         |      |             | 的类似命令进行交换                                          |
| SWAP_EN                  | 48:48   | 0x0  | 0x0-0x1     | 在使能命令队列重排序逻辑时, 当高优先级命令到                            |
|                          |         |      |             | 达时,是否将正在执行的命令与新命令交换                                |
| START                    | 40:40   | 0x0  | 0x0-0x1     | 是否开始内存的初始化工作。需要在所有的参数                              |
|                          |         |      |             | 配置完成之后,再设置该位,让内存进入初始化配                             |
|                          |         |      |             | 置。在没有完成其它位的配置之前就配置该位,很                             |
|                          |         |      |             | 可能导致内存访问错误。                                        |
| SREFRESH                 | 32:32   | 0x0  | 0x0-0x1     | 内存模块是否进入自刷新工作模式                                    |
| RW_SAME_EN               | 24:24   | 0x0  | 0x0-0x1     | 在命令队列重排序逻辑中是否考虑对同一 bank 读                          |
| PEG PRG C TY             | 1000    | 0.0  | 0.00        | 写命令的重组                                             |
| REG_DIMM_EN              | 16:16   | 0x0  | 0x0-0x1     | 是否使能 registered DIMM 内存模组                          |



| 参数名称                                    | 位       | 初值   | 范围          | 描述                                                      |
|-----------------------------------------|---------|------|-------------|---------------------------------------------------------|
| REDUC                                   | 8:8     | 0x0  | 0x0-0x1     | 是否只使用 32 位位宽的内存数据通道,通常情况                                |
|                                         |         |      |             | 下,不应设置该位                                                |
| PWRUP_SREFRESH_EXIT                     | 0:0     | 0x0  | 0x0-0x1     | 是用 self-refresh 命令而不是用正常的内存初始化                          |
|                                         |         |      |             | 命令来脱离下电模式                                               |
| CONF_CTL_04[63:0] Offse                 | t: 0x40 | DDR2 | 2667: 0x0   | 0102010100010101                                        |
| RTT_0                                   | 57:56   | 0x0  | 0x0-0x3     | 使能内存模块的片上终端电阻。                                          |
|                                         |         |      |             | 00 - disable                                            |
|                                         |         |      |             | 其它 - enable,电阻大小由 mrs_data 中的值决定                        |
| $CTRL_RAW$                              | 49:48   | 0x0  | 0x0-0x3     | 设置 ECC 的检错和纠错模式                                         |
|                                         |         |      |             | 2'b00 - 不使用 ECC                                         |
|                                         |         |      |             | 2'b01 - 只报错, 不纠错                                        |
|                                         |         |      |             | 2'b10 - 没有使用 ECC 设备                                     |
|                                         |         |      |             | 2'b11 - 使用 ECC 报错纠错                                     |
| AXI0_W_PRIORITY                         | 41:40   | 0x0  | 0x0-0x3     | 设置 AXI0 端口写命令优先级                                        |
| AXI0_R_PRIORITY                         | 33:32   | 0x0  | 0x0-0x3     | 设置 AXI0 端口读命令优先级                                        |
| WRITE_MODEREG                           | 24:24   | 0x0  | 0x0-0x1     | 是否写内存模块的 EMRS 寄存器 (只写),每次写                              |
|                                         |         |      |             | 1时控制器就将配置参数中emrs_data与mrs_data                          |
|                                         |         |      |             | 发往内存。                                                   |
| WRITEINTERP                             | 16:16   | 0x0  | 0x0-0x1     | 定义是否能用一个读命令取打断一个写突发                                     |
| TREF_ENABLE                             | 8:8     | 0x0  | 0x0-0x1     | 是否使能控制器内部的自动刷新功能,通常的情况                                  |
|                                         |         |      |             | 下,应该将该位置1                                               |
| TRAS_LOCKOUT                            | 0:0     | 0x0  | 0x0-0x1     | 是否在 tRAS 时间到期之前发出 auto-prechareg                        |
| COLD COT OF SO STORY                    |         | DDD  |             | 命令                                                      |
| CONF_CTL_05[63:0] Offse                 | ı       |      |             |                                                         |
| Q_FULLNESS                              | 58:56   | 0x0  | 0x0-0x7     | 定义内存控制器命令队列中有多少命令时认为命                                   |
| DODE DAMA EDDOD EVDE                    | FO 40   | 0.0  | 0.007       | 令队列满                                                    |
| PORT_DATA_ERROR_TYPE                    | 50:48   | 0x0  | 0x0-0x7     | 定义内存控制器端口上数据错误类型(只读)                                    |
|                                         |         |      |             | 位 0 - 突发数据个数大于 16                                       |
|                                         |         |      |             | 位1 - 写数据交错                                              |
| OUT_OF_RANGE_TYPE                       | 42:40   | 0x0  | 0x0-0x7     | 位2 - ECC 2 位错<br>定义发生越界访问时的错误类型(只读)                     |
| MAX_CS_REG                              |         |      |             | 定义控制器所用片选个数(只读)                                         |
|                                         | 34:32   | 0x4  | 0x0-0x4     |                                                         |
| COLUMN_SIZE                             | 26:24   | 0x0  | 0x0-0x7     | 设置实际列地址数和最大列地址数 (14) 之间的差                               |
|                                         |         |      |             | 值,应该根据具体的内存颗粒进行配置。                                      |
| CASLAT                                  | 18:16   | 0x0  | 0x0-0x7     | 内存所用列地址数= 14 - COLUMN_SIZE 设置 CAS latency 值。应当根据具体的内存颗粒 |
| CASLAI                                  | 10:10   | UXU  | UXU-UX1     | · ·                                                     |
| ADDR_PINS                               | 10:8    | 0x0  | 0x0-0x7     | 在不同的运行频率下进行配置。<br>设置实际地址引脚数和最大地址数 (15) 之间的差             |
| 111111111111111111111111111111111111111 | 10.0    | UAU  | 0A0-0A1     | 值                                                       |
|                                         |         |      |             | 「                                                       |
| CONF_CTL_06[63:0] Offse                 | t: 0x60 | DDR2 | 1 667 : 0x0 |                                                         |
|                                         |         |      | Jo OAC      |                                                         |
| APREBIT                                 | 59:56   | 0x0  | 0x0-0xf     | 定义用哪位地址线向内存发出 autoprecharge 命                           |



| 参数名称                                    | 位         | 初值   | 范围          | 描述                                             |
|-----------------------------------------|-----------|------|-------------|------------------------------------------------|
| WRLAT                                   | 50:48     | 0x0  | 0x0-0x7     | 写操作时写命令发出到接收到第一个数据的时                           |
|                                         |           |      |             | 间(按时钟周期数),同时决定何时使对应的 ODT                       |
|                                         |           |      |             | 信号有效。                                          |
|                                         |           |      |             | 注: 当 WRLAT = (CASLAT_LIN /2) 时,会在不             |
|                                         |           |      |             | 同 CS 读写之间加入一拍额外延迟。                             |
| TWTR                                    | 42:40     | 0x0  | 0x0-0x7     | 定义从写命令切换到读命令所需要的时钟周期数,                         |
|                                         |           |      |             | 需要根据具体内存颗粒及运行频率进行配置。                           |
| TWR_INT                                 | 34:32     | 0x0  | 0x0-0x7     | 定义内存模组的写恢复时间, 需要根据具体内存颗                        |
|                                         |           |      |             | 粒及运行频率进行配置。                                    |
| TRTP                                    | 26:24     | 0x0  | 0x0-0x7     | 定义内存模组的读命令到 precharge 周期数,需要                   |
|                                         |           |      |             | 根据具体内存颗粒及运行频率进行配置。                             |
| TRRD                                    | 18:16     | 0x0  | 0x0-0x7     | 定义到不同 bank 的 active 命令时间间隔, 需要根                |
|                                         |           |      |             | 据具体内存颗粒及运行频率进行配置。                              |
| TCKE                                    | 2:0       | 0x0  | 0x0-0x7     | 定义 CKE 信号最小脉宽                                  |
| CONF_CTL_07[63:0] Off                   | set: 0x70 | DDR2 | 2 667 : 0x0 | )f0e0200000f0a0a                               |
| MAX_ROW_REG                             | 59:56     | 0xf  | 0x0-0xf     | 系统最大行地址个数(只读)                                  |
| MAX_COL_REG                             | 51:48     | 0xe  | 0x0-0xe     | 系统最大列地址个数(只读)                                  |
| INITAREF                                | 43:40     | 0x0  | 0x0-0xf     | 定义系统初始化时所需要执行的 autorefresh 命令                  |
|                                         |           |      |             | 个数。DDR2 时设为 2 , DDR3 时设为 0 。                   |
| CS_MAP                                  | 19:16     | 0x0  | 0x0-0xf     | 定义可用片选信号,本参数应当根据实际使用的片                         |
|                                         |           |      |             | 选个数进行正确的配置,不正确的配置将会导致                          |
|                                         |           |      |             | 错误的内存访问。该参数的四位分别对应于 CS0-                       |
|                                         |           |      |             | CS3                                            |
| CASLAT_LIN                              | 3:0       | 0x0  | 0x0-0xf     | 当板上走线延迟为 DDR2 时钟周期的                            |
|                                         |           |      |             | $0.5\sim1.5$ 倍: CASLAT_LIN = CASLAT $\times$ 2 |
|                                         |           |      |             | 小于 0.5 倍: CASLAT_LIN = CASLAT × 2-1            |
|                                         |           |      |             | 大于 1.5 倍: CASLAT_LIN = CASLAT × 2+1            |
|                                         |           |      |             | (以半个时钟周期为单位)                                   |
| CONF_CTL_08[63:0] Off                   | set: 0x80 | DDR2 | 2 667 : 0x0 |                                                |
| ODT_WR_MAP_CS3                          | 59:56     | 0x0  | 0x0-0xf     | 定义 CS3 有写命令时,将指定的 CS 的 ODT 终端                  |
|                                         |           |      |             | 电阻有效,具体的配置应当参考相应的内存颗粒手                         |
|                                         |           |      |             | 册对于 ODT 配置的要求。该参数的四位分别对应                       |
|                                         |           |      |             | 于 CS0- CS3                                     |
| ODT_WR_MAP_CS2                          | 51:48     | 0x0  | 0x0-0xf     | 定义 CS2 有写命令时,将指定的 CS 的 ODT 终端                  |
|                                         |           |      |             | 电阻有效,具体的配置应当参考相应的内存颗粒手                         |
|                                         |           |      |             | 册对于 ODT 配置的要求。该参数的四位分别对应                       |
|                                         |           |      |             | 于 CS0- CS3                                     |
| ODT_WR_MAP_CS1                          | 43:40     | 0x0  | 0x0-0xf     | 定义 CS1 有写命令时,将指定的 CS 的 ODT 终端                  |
| 021111111111111111111111111111111111111 | 10.10     | 0110 | ONO ONI     | 电阻有效,具体的配置应当参考相应的内存颗粒手                         |
|                                         |           |      |             | 册对于 ODT 配置的要求。该参数的四位分别对应                       |
|                                         |           |      |             |                                                |
| ODT_WR_MAP_CS0                          | 35:32     | 0x0  | 0x0-0xf     | 于 CS0- CS3                                     |
| ODI-WIT-MAR -090                        | 39:32     | UXU  | UXU-UXI     |                                                |
|                                         |           |      |             | 电阻有效,具体的配置应当参考相应的内存颗粒手                         |
|                                         |           |      |             | 册对于 ODT 配置的要求。该参数的四位分别对应                       |
|                                         |           |      |             | 于 CS0- CS3                                     |



| 参数名称                    | 位       | 初值    | 范围              | 描述                                              |
|-------------------------|---------|-------|-----------------|-------------------------------------------------|
| ODT_RD_MAP_CS3          | 27:24   | 0x0   | 0x0-0xf         | 定义 CS3 有读命令时,将指定的 CS 的 ODT 终端                   |
|                         |         |       |                 | 电阻有效,具体的配置应当参考相应的内存颗粒手                          |
|                         |         |       |                 | 册对于 ODT 配置的要求。该参数的四位分别对应                        |
|                         |         |       |                 | 于 CS0- CS3                                      |
| ODT_RD_MAP_CS2          | 19:16   | 0x0   | 0x0-0xf         | 定义 CS2 有读命令时,将指定的 CS 的 ODT 终端                   |
|                         |         | 0110  | 0110 0111       | 电阻有效,具体的配置应当参考相应的内存颗粒手                          |
|                         |         |       |                 | 册对于 ODT 配置的要求。该参数的四位分别对应                        |
|                         |         |       |                 | 于 CS0- CS3                                      |
| ODT_RD_MAP_CS1          | 11:8    | 0x0   | 0x0-0xf         | 定义 CS1 有读命令时,将指定的 CS 的 ODT 终端                   |
|                         |         | 0110  | 0110 0111       | 电阻有效,具体的配置应当参考相应的内存颗粒手                          |
|                         |         |       |                 | 册对于 ODT 配置的要求。该参数的四位分别对应                        |
|                         |         |       |                 | 于 CS0- CS3                                      |
| ODT_RD_MAP_CS0          | 3:0     | 0x0   | 0x0-0xf         | 定义 CSO 有读命令时,将指定的 CS 的 ODT 终端                   |
|                         | 0.0     | 0120  | 0110 0111       | 电阻有效,具体的配置应当参考相应的内存颗粒手                          |
|                         |         |       |                 | 册对于 ODT 配置的要求。该参数的四位分别对应                        |
|                         |         |       |                 | 于 CS0- CS3                                      |
| CONF_CTL_09[63:0] Offse | t: 0x90 | DDR.2 | 2 667 : 0x0     |                                                 |
| OCD_ADJUST_PUP_CS0      | 60:56   | 0x0   | 0x0-0x1f        | 设置内存模组片选 0 OCD 上拉调整值。内存控制                       |
|                         | 00.50   | OXO   | 000-0011        | 器将在初始化时根据这个参数的值向内存模组发                           |
|                         |         |       |                 | 出OCD调整命令                                        |
| OCD_ADJUST_PDN_CS0      | 52:48   | 0x0   | 0x0-0x1f        | 设置内存模组片选 0 OCD 下拉调整值。内存控制                       |
|                         | 02.40   | OXO   | 000-0011        | 器将在初始化时根据这个参数的值向内存模组发                           |
|                         |         |       |                 |                                                 |
| TRP                     | 43:40   | 0x0   | 0x0-0xf         | 出 OCD 调整命令<br>定义内存模组执行 pre-charge 所需要的时钟周期      |
|                         | 10.10   | OAO   | ONO ONI         | 数,需要根据具体内存颗粒及运行频率进行配置。                          |
| TDAL                    | 35:32   | 0x0   | 0x0-0xf         | 当 auto-precharge 参数设置后,该参数定义了                   |
|                         | 00102   | 0110  | 0110 0111       | auto-precharge 和 write recovery 时钟周期数。          |
|                         |         |       |                 | TDAL = auto-precharge + write recovery          |
|                         |         |       |                 | 该参数仅在设置了AP之后才生效。                                |
| PORT_CMD_ERROR_TYPE     | 19:16   | 0x0   | 0x0-0xf         | 端口上发生命令错误的类型(只读)                                |
|                         | 10.10   | 0120  | 0110 0111       | 位 0 - 数据位宽过大                                    |
|                         |         |       |                 | 位1 - 关键字优先操作地址未对齐                               |
|                         |         |       |                 | 位2 - 关键字优先操作字数不是2幂                              |
|                         |         |       |                 |                                                 |
| CONF_CTL_10[63:0] Offse | t. OvaO | DDR2  | <br>  667 + 0v0 | 位3 - narrow transform 出错                        |
| COMMAND_AGE_COUNT       | 37:32   | 0x0   | 0x0-0x3f        | 定义命令队列重排序逻辑使用 aging 算法时每个                       |
| COMMAND_AGE_COON1       | 31.32   | UXU   | 0x0-0x31        |                                                 |
| AGE_COUNT               | 29:24   | 0x0   | 0x0-0x3f        | 命令的 aging 初始值<br>定义命令队列重排序逻辑使用 aging 算法时每个      |
| AGELCOUNT               | 23.24   | UXU   | 0x0-0x31        |                                                 |
| TRC                     | 20:16   | 0x0   | 0x0-0x1f        | 命令的 aging 初始值<br>定义对内存模组同一 bank 的 active 命令之间的时 |
| 1100                    | 20.10   | UXU   | UAU-UA11        | 钟周期数,需要根据具体内存颗粒及运行频率进行                          |
|                         |         |       |                 |                                                 |
| TMRD                    | 12:8    | 0x0   | 0x0-0x1f        | <u>配置。</u><br>定义配置内存模组模式寄存器需要的时钟周期数,            |
| 1 WILLI                 | 12.0    | UXU   | UAU-UA11        |                                                 |
| TFAW                    | 4:0     | 0x0   | 0x0-0x1f        | 通常为 2 个周期   定义内存模组 tFAW 参数, 8 个逻辑 bank 时使用      |
| CONF_CTL_12[63:0] Offse |         |       | l .             |                                                 |
|                         |         |       | ı               | 定义内存模组刷新操作需要的时钟周期数,需要根                          |
| TRFC                    | 47:40   | 0x0   | 0x0-0xff        |                                                 |
|                         |         |       |                 | 据具体内存颗粒及运行频率进行配置。                               |



| 参数名称                             | 位                                    | 初值     | 范围                 | 描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|--------------------------------------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRCD_INT                         | 39:32                                | 0x0    | 0x0-0xff           | 定义内存模组 RAS 到 CAS 之间的时钟周期数,需                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  |                                      |        |                    | 要根据具体内存颗粒及运行频率进行配置。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRAS_MIN                         | 31:24                                | 0x0    | 0x0-0xff           | 定义内存模组行地址有效命令的最小时钟周期数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OUT_OF_RANGE_LENGTH              | 23:16                                | 0x0    | 0x0-0xff           | 发生越界访问时的命令长度(只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ECC_U_SYND                       | 15:8                                 | 0x0    | 0x0-0xff           | 发生 2bit 不可纠错误时的原因 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ECC_C_SYND                       | 7:0                                  | 0x0    | 0x0-0xff           | 发生 1bit 可纠错错误时的原因 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONF_CTL_17[63:0] Offse          | t: 0x11                              | 0 DDR  | 2 667 : 0x         | 000000000000c2d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TREF                             | 13:0                                 | 0x0    | 0x0-0x3ff          | 定义内存模组两次刷新命令的时钟间隔,需要根据                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                      |        |                    | <br>  具体内存颗粒及运行频率进行配置。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ${ m CONF\_CTL\_18[63:0]}$ Offse | t: 0x12                              | 0 DDR  | 2 667 : 0x         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AXI0_EN_LT_WIDTH_INSTR           | 63:48                                | 0x0    | 0x0-0xffff         | 定义 AXIO 端口是否接收小于 64 位位宽的内存访问                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONF_CTL_19[63:0] Offse          | t: 0x13                              | 0 DDR  | 2 667 : 0x         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TRAS_MAX                         | 63:48                                | 0x0    | 0x0-0xffff         | 定义内存模组行有效命令的最大时钟周期数,需要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                      |        |                    | 根据具体内存颗粒及运行频率进行配置。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TPDEX                            | 47:32                                | 0x0    | 0x0-0xffff         | 定义内存模组掉电退出命令的时钟周期数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TDLL                             | 31:16                                | 0x0    | 0x0-0xffff         | 定义内存模组 DLL 锁定需要的时钟周期数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TCPD                             | 15:0                                 | 0x0    | 0x0-0xffff         | 定义内存模组时钟有效到 precharge 之间的时钟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  |                                      |        |                    | 周期数,需要根据具体内存颗粒及运行频率进行配                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                      |        |                    | 置。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $CONF_CTL_20[63:0]$ Offse        | t: 0x14                              | 0 DDR  | 2 667 : 0x         | 0000204002000030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XOR_CHECK_BITS                   | 63:48                                | 0x0    | 0x0-0xffff         | 当 fwc 参数设定时,下次写操作的 check bit 将会                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                      |        |                    | 与该参数进行异或后写入内存                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VERSION                          | 47:32                                | 0x2040 | 0x2040             | 定义内存控制器版本号(只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TXSR                             | 31:16                                | 0x0    | 0x0-0xffff         | 定义内存模组自刷新退出需要的时钟周期数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TXSNR                            | 15:0                                 | 0x0    | 0x0-0xffff         | 定义内存模组 tXSNR 参数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ${ m CONF\_CTL\_21[63:0]}$ Offse | t: 0x15                              | 0 DDR  | 2 667 : 0x         | 000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ECC_C_ADDR[36:8]                 | 60:32                                | 0x0    | 0x0-               | 记录发生 1bit ECC 错误时的地址信息 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  |                                      |        | 0x1fffffff         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ECC_C_ADDR[7:0]                  | 31:24                                | 0x0    | 0x0-               | 记录发生 1bit ECC 错误时的地址信息 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TINIT                            | 23:0                                 | 0x0    | 0x1fffffff<br>0x0- | <br>  定义内存模组初始化需要的时钟周期数,需要根据                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TINIT                            | 25:0                                 | UXU    |                    | 是文内存模组初始化而安的可许周朔数,而安根描<br>具体内存颗粒及运行频率进行配置。一般为 200us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  |                                      |        | 0xfffff            | 共体的行规位及运行频率进行配直。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONF_CTL_22[63:0] Offse          | $\mathbf{t} \colon 0 \mathbf{x} 1 6$ | 0 DDR  | 2667: 0x           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ECC_U_ADDR[36:32]                | 36:32                                | 0x0    | 0x0-               | 记录发生 2bit ECC 错误时的地址信息 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | 50.52                                | 0210   | 0x0=<br>0x1fffffff | STATE TO SECOND STATE OF THE ST |
| ECC_U_ADDR[31:0]                 | 31:0                                 | 0x0    | 0x0-               | 记录发生 2bit ECC 错误时的地址信息 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  |                                      |        | 0x1fffffff         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONF_CTL_23[63:0] Offse          | t: 0x17                              | 0 DDR  |                    | 000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OUT_OF_RANGE_ADDR[36:3           | 236:32                               | 0x0    | 0x0-               | 记录发生越界访问时的地址信息(只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  |                                      |        | 0x1fffffff         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OUT_OF_RANGE_ADDR[31:0           | ] 31:0                               | 0x0    | 0x0-               | 记录发生越界访问时的地址信息(只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COME CONT 24 22 21 CM            | . 0 10                               | 0 DDD  | 0x1fffffff         | 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONF_CTL_24[63:0] Offse          |                                      | 1      | I                  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PORT_CMD_ERROR_ADDR[             | ₿ <b>6362</b> }2                     | 0x0    | 0x0-               | 记录端口发生命令错误时的地址信息(只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                      |        | 0x1fffffff         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| 参数名称                    | 位       | 初值               | 范围                  | 描述                                             |
|-------------------------|---------|------------------|---------------------|------------------------------------------------|
| PORT_CMD_ERROR_ADDR[    | 3130]:0 | 0x0              | 0x0-                | 记录端口发生命令错误时的地址信息(只读)                           |
|                         |         |                  | 0x1fffffff          |                                                |
| CONF_CTL_25[63:0] Offse | t: 0x19 | 0 DDR            | 2667: 0x            |                                                |
| ECC_C_DATA[63:32]       | 63:32   | 0x0              | 0x0-<br>0x1fffffff  | 记录发生 1bit ECC 错误时的数据信息 (只读)                    |
| ECC_C_DATA[31:0]        | 31:0    | 0x0              | 0x0-<br>0x1fffffff  | 记录发生 1bit ECC 错误时的数据信息 (只读)                    |
| CONF_CTL_26[63:0] Offse | t: 0x1a | 0 DDR            |                     | 00000000000000                                 |
| ECC_U_DATA[63:32]       | 63:32   | 0x0              | 0x0-                | 记录发生 2bit ECC 错误时的数据信息 (只读)                    |
| ECC_U_DATA[31:0]        | 31:0    | 0x0              | 0x1ffffffff<br>0x0- | 记录发生 2bit ECC 错误时的数据信息 (只读)                    |
|                         |         |                  | 0x1fffffff          |                                                |
| CONF_CTL_27[63:0] Offse | t: 0x1b | 0 DDR            |                     | 00000000000000                                 |
| CKE_DELAY               | 2:0     | 0x0              | 0x0-0x7             | CKE 有效延迟。                                      |
|                         |         |                  |                     | 注:用于控制内部 srefresh_enter 命令的响应时间,               |
|                         |         |                  |                     | 対于龙芯2号无效。                                      |
| CONF_CTL_29[63:0] Offse | t: 0x1d | T                |                     |                                                |
| TDFLPHY_WRLAT_BASE      | 59:56   | 0x0              | 0x0-0xf             | 设置 DDR PHY 中写数据需加入的延迟。对于龙<br>芯 2 号这个值应为 2      |
| TDFI_PHY_WRLAT          | 51:48   | 0x0              | 0x0-0xf             | 用于显示实际从写命令发出到写数据发出间隔的<br>周期数(只读)               |
| TDFI_PHY_RDLAT          | 44:40   | 0x0              | 0x0-0xf             | 设置读命令发出到读数据返回间隔的周期数                            |
| TDFI_CTRLUPD_MIN        | 35:32   | 0x4              | 0x0-0xf             | 保存 DFI Tctrlup_min 时间参数 (只读)                   |
| DRAM_CLK_DISABLE        | 19:16   | 0x0              | 0x0-0xf             | 设置是否输出 DRAM 时钟信号,每位对应一个片选信号。0:输出时钟信号;1:禁止输出时钟信 |
|                         |         |                  |                     | 号。                                             |
| ODT_ALT_EN              | 8:8     | 0x0              | 0x0-0x1             | 是否支持 CAS = 3 时的 ODT 信号。<br>注: 对于龙芯 2 号, 无效     |
| DRIVE_DQ_DQS            | 0:0     | 0x0              | 0x0-0x1             | 设置当控制器空闲时是否驱动数据总线                              |
| CONF_CTL_30[63:0] Offse | t: 0x1e | $0~\mathrm{DDR}$ | 2.667 : 0x          |                                                |
| TDFI_PHYUPD_TYPE0       | 61:48   | 0x0              | 0x0-                | 这个值等于 TREF(只读)                                 |
|                         |         |                  | 0x3fff              | - 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        |
| TDFI_PHYUPD_RESP        | 45:32   | 0x0              | 0x0-<br>0x3fff      | 这个值等于 TREF(只读)                                 |
| TDFI_CTRLUPD_MAX        | 29:16   | 0x0              | 0x0-                | 这个值等于 TREF (只读)                                |
|                         |         |                  | 0x3fff              |                                                |
| TDFI_RDDATA_EN_BASE     | 12:8    | 0x0              | 0x0-0x1f            | DDR PHY 内部读命令发出到读返回的基本时间。                      |
| TDFI_RDDATA_EN          | 4:0     | 0x0              | 0x0-0x1f            | 对于龙花2号这个值为2<br>用于显示从读命令发出到读数据返回的实际周期           |
| IDFILIDDAIAEN           | 4.0     | UAU              | 0.00-0.11           | 数                                              |
| CONF_CTL_31[63:0] Offse | t: 0x1f | DDR              | 2667:0x0            | 1 2/-                                          |
| DLL_CTRL_REG_0_0        | 63:32   | 0x0              | 0x0-                | 第0数据组(DQ7-DQ0)DLL 控制信号                         |
|                         | 00.02   | 0.20             | 0xfffffff           | 24: 控制内部 DLL 的使能信号, 为 0 时 DLL 有效               |
|                         |         |                  |                     | 23:16:控制写数据(DQ)与DQS之间的相位关                      |
|                         |         |                  |                     | 系,每个数值表示为 (1/ 精度) * 360。在龙芯 2                  |
|                         |         |                  |                     | 号中, 这个值一般为 1/4, 即 8 'h20                       |
|                         |         |                  |                     | 7:0: 控制内部 DLL 的精度, 在龙芯 2 号中, 这个                |
|                         |         |                  |                     | 值一般为 8 'h80                                    |



| 参数名称                    | 位       | 初值    | 范围                | 描述                                                |
|-------------------------|---------|-------|-------------------|---------------------------------------------------|
| DFT_CTRL_REG            | 7:0     | 0x0   | 0x0-0xff          | 测试使能信号,0x0 为正常工作模式                                |
| CONF_CTL_32[63:0] Offse | t: 0x20 | 0 DDF | R2 667 : 0x       | 0020008000200080                                  |
| DLL_CTRL_REG_0_2        | 63:32   | 0x0   | 0x0-              | 第 2 数据组(DQ23-DQ16 )DLL 控制信号                       |
|                         |         |       | 0xffffffff        | 24:控制内部 DLL 的使能信号,为 0 时 DLL 有效                    |
|                         |         |       |                   | 23:16:控制写数据(DQ)与 DQS 之间的相位关                       |
|                         |         |       |                   | 系,每个数值表示为 (1/ 精度)*360。在龙芯2                        |
|                         |         |       |                   | 号中,这个值一般为 1/4,即 8 h20                             |
|                         |         |       |                   | 7:0:控制内部 DLL 的精度, 在龙芯 2 号中, 这个                    |
| DIL CTDI DEC 0.1        | 91.0    | 00    | 00                | <u>值一般为 8                                   </u>  |
| DLL_CTRL_REG_0_1        | 31:0    | 0x0   | 0x0-<br>0xfffffff | 第 1 数据组(DQ15-DQ8 / DLL 控制信号                       |
|                         |         |       | UXIIIIIIII        | 23:16: 控制写数据(DQ)与 DQS 之间的相位关                      |
|                         |         |       |                   | <b>23.10</b> : 控制                                 |
|                         |         |       |                   | 号中,这个值一般为 1/4, 即 8, h20                           |
|                         |         |       |                   | 7:0: 控制内部 DLL 的精度, 在龙芯 2 号中, 这个                   |
|                         |         |       |                   | 值一般为 8 'h80                                       |
| CONF_CTL_33[63:0] Offse | t: 0x21 | 0 DDF | R2 667 : 0x       |                                                   |
| DLL_CTRL_REG_0_4        | 63:32   | 0x0   | 0x0-              | 第 4 数据组(DQ39-DQ32 )DLL 控制信号                       |
|                         |         |       | 0xffffffff        | 24:控制内部 DLL 的使能信号,为 0 时 DLL 有效                    |
|                         |         |       |                   | 23:16:控制写数据(DQ)与DQS之间的相位关                         |
|                         |         |       |                   | 系,每个数值表示为 (1/ 精度)*360。在龙芯2                        |
|                         |         |       |                   | 号中,这个值一般为 1/4,即 8 'h20                            |
|                         |         |       |                   | 7:0:控制内部 DLL 的精度,在龙芯 2 号中,这个                      |
| DLL_CTRL_REG_0_3        | 31:0    | 0x0   | 0x0-              | <u>值一般为 8                                   </u>  |
| DEEL TRELICE CLOS       | 01.0    | OXO   | 0xffffffff        | 24: 控制内部 DLL 的使能信号, 为 0 时 DLL 有效                  |
|                         |         |       | 011111111         | 23:16:控制写数据(DQ)与DQS之间的相位关                         |
|                         |         |       |                   | 系,每个数值表示为 (1/ 精度 ) * 360。在龙芯 2                    |
|                         |         |       |                   | 号中, 这个值一般为 1/4, 即 8 'h20                          |
|                         |         |       |                   | 7:0:控制内部 DLL 的精度, 在龙芯 2 号中, 这个                    |
|                         |         |       |                   | 值一般为 8 ' h80                                      |
| CONF_CTL_34[63:0] Offse | t: 0x22 | 0 DDF | R2 667: 0x        |                                                   |
| DLL_CTRL_REG_0_6        | 63:32   | 0x0   | 0x0-              | 第 6 数据组(DQ55-DQ48) DLL 控制信号                       |
|                         |         |       | 0xfffffff         | 24: 控制内部 DLL 的使能信号, 为 0 时 DLL 有效                  |
|                         |         |       |                   | 23:16:控制写数据(DQ)与DQS之间的相位关                         |
|                         |         |       |                   | 系,每个数值表示为(1/精度)*360。在龙芯2                          |
|                         |         |       |                   | 号中,这个值一般为 1/4,即 8 ' h20                           |
|                         |         |       |                   | 7:0: 控制内部 DLL 的精度, 在龙芯 2 号中, 这个                   |
| DLL_CTRL_REG_0_5        | 31:0    | 0x0   | 0x0-              | <u>值一般为 8 'h80</u><br>第 5 数据组(DQ47-DQ40 )DLL 控制信号 |
|                         | 31.0    |       | 0x0=<br>0xfffffff | 24: 控制内部 DLL 的使能信号, 为 0 时 DLL 有效                  |
|                         |         |       |                   | 23:16:控制写数据(DQ)与DQS之间的相位关                         |
|                         |         |       |                   | 系,每个数值表示为 (1/ 精度) * 360。在龙芯 2                     |
|                         |         |       |                   | 号中, 这个值一般为 1/4, 即 8 'h20                          |
|                         |         |       |                   | 7:0:控制内部 DLL 的精度, 在龙芯 2 号中, 这个                    |
|                         |         |       |                   | 值一般为 8 ' h80                                      |



| 参数名称                    | 位       | 初值             | 范围               | 描述                                           |
|-------------------------|---------|----------------|------------------|----------------------------------------------|
| CONF_CTL_35[63:0] Offse | t: 0x23 | 0 DDR          | 2667: 0x         | 0020008000200080                             |
| DLL_CTRL_REG_0_8        | 63:32   | 0x0            | 0x0-             | 第 8 数据组(DQ71-DQ64 )DLL 控制信号                  |
|                         |         |                | 0xfffffff        | 24:控制内部 DLL 的使能信号, 为 0 时 DLL 有效              |
|                         |         |                |                  | 23:16:控制写数据(DQ)与DQS之间的相位关                    |
|                         |         |                |                  | 系,每个数值表示为 (1/ 精度) * 360。在龙芯 2                |
|                         |         |                |                  | 号中,这个值一般为 1/4, 即 8 'h20                      |
|                         |         |                |                  | 7:0: 控制内部 DLL 的精度, 在龙芯 2 号中, 这个              |
|                         |         |                |                  | 值一般为8'h80                                    |
| DLL_CTRL_REG_0_7        | 31:0    | 0x0            | 0x0-             | 第7数据组(DQ63-DQ56)DLL 控制信号                     |
|                         |         |                | 0xfffffff        | 24: 控制内部 DLL 的使能信号, 为 0 时 DLL 有效             |
|                         |         |                | 011111111        | 23:16:控制写数据(DQ)与DQS之间的相位关                    |
|                         |         |                |                  | 系,每个数值表示为(1/精度)*360。在龙芯2                     |
|                         |         |                |                  | 号中,这个值一般为 1/4, 即 8 h20                       |
|                         |         |                |                  | 7:0:控制内部 DLL 的精度, 在龙芯 2 号中, 这个               |
|                         |         |                |                  |                                              |
| CONF_CTL_36[63:0] Offse | t. 0v24 | $^{\circ}$ DDB | 2 667 . Ovi      | 值一般为 8 ' h80                                 |
| DLL_CTRL_REG_1_1        | 63:32   | 0x0            | 0x0-             | 第 1 数据组 DLL 控制信号                             |
| DLL_CTRL_REG_I_I        | 05:52   | UXU            |                  |                                              |
|                         |         |                | 0xffffffff       | 15:8:读数据返回时,DQSn 的相位延迟。                      |
| DLL_CTRL_REG_1_0        | 31:0    | 0x0            | 0x0-             | 5:0: DLL 测试控制信号,正常情况下为 8 h0 第 0 数据组 DLL 控制信号 |
|                         | 31.0    | OAU            | 0xffffffff       | 15:8:读数据返回时,DQSn 的相位延迟。                      |
|                         |         |                | UXIIIIIIII       | 5:0: BLL 测试控制信号, 正常情况下为 8 ' h0               |
| CONF_CTL_37[63:0] Offse | t: 0x25 | 0  DDR         | $2.667 \cdot 0x$ |                                              |
| DLL_CTRL_REG_1_3        | 63:32   | 0x0            | 0x0-             | 第 3 数据组 DLL 控制信号                             |
|                         | 00.02   | 0220           | 0xfffffff        | 15:8:读数据返回时,DQSn 的相位延迟。                      |
|                         |         |                | OMILITIE         | 5:0: DLL 测试控制信号,正常情况下为 8 ' h0                |
| DLL_CTRL_REG_1_2        | 31:0    | 0x0            | 0x0-             | 第2数据组 DLL 控制信号                               |
|                         |         |                | 0xfffffff        | 15:8:读数据返回时,DQSn 的相位延迟。                      |
|                         |         |                | V                | 5:0: DLL 测试控制信号, 正常情况下为 8 ' h0               |
| CONF_CTL_38[63:0] Offse | t: 0x26 | 0 DDR          | 2 667 : 0x       |                                              |
| DLL_CTRL_REG_1_5        | 63:32   | 0x0            | 0x0-             | 第 5 数据组 DLL 控制信号                             |
|                         |         |                | 0xfffffff        | <br>  15:8:读数据返回时,DQSn 的相位延迟。                |
|                         |         |                |                  | 5:0: DLL 测试控制信号, 正常情况下为 8 ' h0               |
| DLL_CTRL_REG_1_4        | 31:0    | 0x0            | 0x0-             | 第 4 数据组 DLL 控制信号                             |
|                         |         |                | 0xfffffff        | 15:8:读数据返回时,DQSn 的相位延迟。5:0:                  |
|                         |         |                |                  | DLL 测试控制信号,正常情况下为 8 ' h0                     |
| CONF_CTL_39[63:0] Offse | t: 0x27 | 0 DDR          | 2 667 : 0x       |                                              |
| DLL_CTRL_REG_1_7        | 63:32   | 0x0            | 0x0-             | 第7数据组 DLL 控制信号                               |
|                         |         |                | 0xfffffff        | 15:8:读数据返回时,DQSn 的相位延迟。5:0:                  |
|                         |         |                |                  | DLL 测试控制信号,正常情况下为 8 'h0.                     |
| DLL_CTRL_REG_1_6        | 31:0    | 0x0            | 0x0-             | 第 6 数据组 DLL 控制信号                             |
|                         |         |                | 0xfffffff        | 15:8:读数据返回时,DQSn 的相位延迟。                      |
|                         |         |                |                  | 5:0: DLL 测试控制信号, 正常情况下为 8 ' h0               |
|                         |         | o DDD          | 0.007 0          |                                              |
| CONF_CTL_40[63:0] Offse | t: UX28 | 0 DDR          | 2 667 : UX       | 000000000001e00                              |



| 参数名称                     | 位                                                                               | 初值    | 范围          | 描述                                 |  |  |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------|-------|-------------|------------------------------------|--|--|--|--|--|--|--|
| DLL_CTRL_REG_1_8         | 31:0                                                                            | 0x0   | 0x0-        | 第8数据组DLL 控制信号                      |  |  |  |  |  |  |  |
|                          | 01.0                                                                            | OAO   | 0xffffffff  | 15:8:读数据返回时,DQSn 的相位延迟。            |  |  |  |  |  |  |  |
|                          |                                                                                 |       | OXIIIIIII   | 5:0: DLL 测试控制信号,正常情况下为 8 ' h0      |  |  |  |  |  |  |  |
| CONF_CTL_41[63:0] Offse  | CONF_CTL_41[63:0] Offset: 0x290 DDR2 667: 0x00000000000000000000000000000000000 |       |             |                                    |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_2          | 33:32                                                                           | 0x0   | 0x0-0x3     | 测试模式下的第2数据组 DLL 输出(只读)             |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_1          | 1:0                                                                             | 0x0   | 0x0-0x3     | 测试模式下的第1数据组 DLL 输出(只读)             |  |  |  |  |  |  |  |
| CONF_CTL_42[63:0] Offse  | t: 0x2a                                                                         | 0 DDR | 2 667 : 0x  | 0x000000000000000                  |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_4          | 33:32                                                                           | 0x0   | 0x0-0x3     | 测试模式下的第 4 数据组 DLL 输出 (只读)          |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_3          | 1:0                                                                             | 0x0   | 0x0-0x3     | 测试模式下的第3数据组 DLL 输出(只读)             |  |  |  |  |  |  |  |
| CONF_CTL_43[63:0] Offse  | t: 0x2b                                                                         | 0 DDF | 22 667 : 0x | 0x000000000000000                  |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_6          | 33:32                                                                           | 0x0   | 0x0-0x3     | 测试模式下的第 6 数据组 DLL 输出 (只读)          |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_5          | 1:0                                                                             | 0x0   | 0x0-0x3     | 测试模式下的第 5 数据组 DLL 输出 (只读)          |  |  |  |  |  |  |  |
| CONF_CTL_44[63:0] Offse  | t: 0x2c                                                                         | 0 DDR | 2 667 : 0x  |                                    |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_8          | 33:32                                                                           | 0x0   | 0x0-0x3     | 测试模式下的第 8 数据组 DLL 输出 (只读)          |  |  |  |  |  |  |  |
| DLL_OBS_REG_0_7          | 1:0                                                                             | 0x0   | 0x0-0x3     | 测试模式下的第7数据组 DLL 输出(只读)             |  |  |  |  |  |  |  |
| CONF_CTL_45[63:0] Offset | t: 0x2d                                                                         | 0 DDF | 22 667 : 0x | f30029470000019d                   |  |  |  |  |  |  |  |
| PHY_CTRL_REG_0_0         | 63:32                                                                           | 0x0   | 0x0-        | 第0数据组时延控制.                         |  |  |  |  |  |  |  |
|                          |                                                                                 |       | 0xffffffff  | 28:是否对读 DQS 使用去毛刺电路,指 gate 信号      |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 是否通过 PAD_feedback 延迟               |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 27:使用读 FIFO 有效信号自动控制读数据返回          |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 采样(1), 还是使用 26:24 中的固定时间采样(0))     |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 26:24:读数据返回采样完成时机,从内部时钟域           |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 采样的延迟。                             |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 21:在 Read Leveling 模式下,采样数据总线的电平高低 |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 20:数据有效控制信号的电平,龙芯2号中为0             |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 19:是否将写数据延迟再增加一周期                  |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 18:读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同 |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 步)                                 |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 17:写数据 /DQS 延迟是否增加半周期延迟            |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 16: CAS 延迟是否为半周期                   |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 15:12: 写 DQS 有效的起始时间, 对于 DDR3 应    |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 该比 DDR2 提前一个周期打开,提供颗粒要求的           |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | Preamble DQS                       |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 11:8:写 DQS 有效的结束时间                 |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 6:4:写数据有效的起始时间                     |  |  |  |  |  |  |  |
|                          |                                                                                 |       |             | 2:0:写数据有效的结束时间                     |  |  |  |  |  |  |  |



| 参数名称                    | 位       | 初值    | 范围          | 描述                                                 |
|-------------------------|---------|-------|-------------|----------------------------------------------------|
| PAD_CTRL_REG_0          | 25:0    | 0x0   | 0x0-        | 引脚控制信号                                             |
|                         |         |       | 0x3ffffff   | 25:22:对应 COMPZCP_dig                               |
|                         |         |       |             | 21:18:对应 COMPZCN_dig                               |
|                         |         |       |             | 17:对应引脚的 TQ1v8                                     |
|                         |         |       |             | 16:对应内部反馈引脚的使能信号,低有效                               |
|                         |         |       |             | 15:对应内部反馈引脚的输出使能信号,低有效                             |
|                         |         |       |             | 14:对应数据选通引脚的输出使能信号,低有效                             |
|                         |         |       |             | 13:对应数据屏蔽引脚的输出使能信号,低有效                             |
|                         |         |       |             | 12:对应数据引脚的输出使能信号,低有效                               |
|                         |         |       |             | 11:对应引脚的 USEPAD                                    |
|                         |         |       |             | 0:使用内部参考电压;                                        |
|                         |         |       |             | 1:使用外部参考电压。                                        |
|                         |         |       |             | 8:对应时钟引脚1,3,5的使能信号,高有效                             |
|                         |         |       |             | 7:对应时钟引脚0,2,4的使能信号,高有效                             |
|                         |         |       |             | 6:对应地址引脚的使能信号,低有效                                  |
|                         |         |       |             | 5:对应引脚的 PROGB1v8                                   |
|                         |         |       |             | 4:对应引脚的 PROGA1v8                                   |
|                         |         |       |             | 用于控制引脚驱动能力                                         |
|                         |         |       |             | 3:对应引脚的 ODTB                                       |
|                         |         |       |             | 2:对应引脚的 ODTA                                       |
|                         |         |       |             | 用于控制引脚 ODT 阻值大小                                    |
|                         |         |       |             | ODTA ODTB DDRII DDRIII                             |
|                         |         |       |             | 1 0 150 120                                        |
|                         |         |       |             | 1 1 5 60                                           |
|                         |         |       |             | 0 0 Disable Disable   Disable   1: 对应引脚的 MODEZI1v8 |
|                         |         |       |             | 1: 初应引牌的 MODEZIIV8                                 |
|                         |         |       |             | 0: 对应引脚的 DDR1v8                                    |
|                         |         |       |             | 0: 对应 DDRII 的 1.8v 模式                              |
|                         |         |       |             | 1: 对应 DDRIII 的 1.5v 模式                             |
| CONF_CTL_46[63:0] Offse | t: 0x2e | 0 DDR | 2 667 : 0x1 |                                                    |

龙芯中科技术有限公司 Loongson Technology Corporation Limited



| 参数名称                        | 位        | 初值  | 范围         | 描述                                 |
|-----------------------------|----------|-----|------------|------------------------------------|
| PHY_CTRL_REG_0_2            | 63:32    | 0x0 | 0x0-       | 第2数据组时延控制.                         |
|                             |          |     | 0xfffffff  | 28:是否对读 DQS 使用去毛刺电路, 指 gate 信号     |
|                             |          |     |            | 是否通过 PAD_feedback 延迟               |
|                             |          |     |            | 27:使用读 FIFO 有效信号自动控制读数据返回          |
|                             |          |     |            | 采样(1),还是使用26:24中的固定时间采样(0          |
|                             |          |     |            | )                                  |
|                             |          |     |            | 26:24:读数据返回采样完成时机,从内部时钟域           |
|                             |          |     |            | 采样的延迟。                             |
|                             |          |     |            | 21:在 Read Leveling 模式下,采样数据总线的电    |
|                             |          |     |            | 平高低                                |
|                             |          |     |            | 20:数据有效控制信号的电平,龙芯2号中为0             |
|                             |          |     |            | 19:是否将写数据延迟再增加一周期                  |
|                             |          |     |            | 18:读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同 |
|                             |          |     |            | 步)                                 |
|                             |          |     |            | 17:写数据 /DQS 延迟是否增加半周期延迟            |
|                             |          |     |            | 16: CAS 延迟是否为半周期                   |
|                             |          |     |            | 15:12:写 DQS 有效的起始时间, 对于 DDR3 应     |
|                             |          |     |            | 该比 DDR2 提前一个周期打开,提供颗粒要求的           |
|                             |          |     |            | Preamble DQS                       |
|                             |          |     |            | 11:8:写 DQS 有效的结束时间                 |
|                             |          |     |            | 6:4:写数据有效的起始时间                     |
|                             |          |     |            | 2:0:写数据有效的结束时间                     |
| PHY_CTRL_REG_0_1            | 31:0     | 0x0 | 0x0-       | 第1数据组时延控制.                         |
|                             |          |     | 0xffffffff | 28:是否对读 DQS 使用去毛刺电路,指 gate 信号      |
|                             |          |     |            | 是否通过 PAD_feedback 延迟               |
|                             |          |     |            | 27: 使用读 FIFO 有效信号自动控制读数据返回         |
|                             |          |     |            | 采样(1),还是使用26:24中的固定时间采样(0          |
|                             |          |     |            | )                                  |
|                             |          |     |            | 26:24: 读数据返回采样完成时机,从内部时钟域          |
|                             |          |     |            | 采样的延迟。                             |
|                             |          |     |            | 21:在 Read Leveling 模式下,采样数据总线的电    |
|                             |          |     |            | 平高低                                |
|                             |          |     |            | 20:数据有效控制信号的电平,龙芯2号中为0             |
|                             |          |     |            | 19:是否将写数据延迟再增加一周期                  |
|                             |          |     |            | 18:读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同 |
|                             |          |     |            | 步)                                 |
|                             |          |     |            | 17:写数据 /DQS 延迟是否增加半周期延迟            |
|                             |          |     |            | 16: CAS 延迟是否为半周期                   |
|                             |          |     |            | 15:12: 写 DQS 有效的起始时间, 对于 DDR3 应    |
|                             |          |     |            | 该比 DDR2 提前一个周期打开,提供颗粒要求的           |
|                             |          |     |            | Preamble DQS                       |
|                             |          |     |            | 11:8:写 DQS 有效的结束时间                 |
|                             |          |     |            | 6:4:写数据有效的起始时间                     |
|                             |          |     |            | 2:0:写数据有效的结束时间                     |
| $CONF\_CTL\_47[63:0]$ Offse | t: 0x2f0 | DDR | 2667: 0xf  | 3002947f3002947                    |



| 参数名称                    | 位       | 初值    | 范围         | 描述                                          |
|-------------------------|---------|-------|------------|---------------------------------------------|
| PHY_CTRL_REG_0_4        | 63:32   | 0x0   | 0x0-       | 第4数据组时延控制.                                  |
|                         |         |       | 0xfffffff  | 28:是否对读 DQS 使用去毛刺电路, 指 gate 信号              |
|                         |         |       |            | 是否通过 PAD_feedback 延迟                        |
|                         |         |       |            | <br>  27:使用读 FIFO 有效信号自动控制读数据返回             |
|                         |         |       |            | 采样(1),还是使用26:24中的固定时间采样(0                   |
|                         |         |       |            |                                             |
|                         |         |       |            | 26:24:读数据返回采样完成时机,从内部时钟域<br>采样的延迟。          |
|                         |         |       |            | 21:在 Read Leveling 模式下,采样数据总线的电平高低          |
|                         |         |       |            | 20:数据有效控制信号的电平,龙芯2号中为0<br>19:是否将写数据延迟再增加一周期 |
|                         |         |       |            | 18: 读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同步)       |
|                         |         |       |            | 17:写数据 /DQS 延迟是否增加半周期延迟<br>16: CAS 延迟是否为半周期 |
|                         |         |       |            | 15:12: 写 DQS 有效的起始时间, 对于 DDR3 应             |
|                         |         |       |            | 该比 DDR2 提前一个周期打开,提供颗粒要求的                    |
|                         |         |       |            | Preamble DQS                                |
|                         |         |       |            | 11:8:写 DQS 有效的结束时间                          |
|                         |         |       |            | 6:4:写数据有效的起始时间                              |
|                         |         |       |            | 2:0:写数据有效的结束时间                              |
| PHY_CTRL_REG_0_3        | 31:0    | 0x0   | 0x0-       | 第3数据组时延控制.                                  |
|                         |         |       | 0xfffffff  | 28:是否对读 DQS 使用去毛刺电路,指 gate 信号               |
|                         |         |       |            | 是否通过 PAD_feedback 延迟                        |
|                         |         |       |            | 27:使用读 FIFO 有效信号自动控制读数据返回                   |
|                         |         |       |            | 采样(1),还是使用 26:24 中的固定时间采样(0)                |
|                         |         |       |            | 26:24:读数据返回采样完成时机,从内部时钟域<br>采样的延迟。          |
|                         |         |       |            | 21:在 Read Leveling 模式下,采样数据总线的电平高低          |
|                         |         |       |            | 20:数据有效控制信号的电平, 龙芯 2 号中为 0                  |
|                         |         |       |            | 19:是否将写数据延迟再增加一周期                           |
|                         |         |       |            | 18:读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同          |
|                         |         |       |            | 步)                                          |
|                         |         |       |            | 17:写数据 /DQS 延迟是否增加半周期延迟                     |
|                         |         |       |            | 16: CAS 延迟是否为半周期                            |
|                         |         |       |            | 15:12:写 DQS 有效的起始时间, 对于 DDR3 应              |
|                         |         |       |            | 该比 DDR2 提前一个周期打开,提供颗粒要求的                    |
|                         |         |       |            | Preamble DQS                                |
|                         |         |       |            | 11:8:写 DQS 有效的结束时间                          |
|                         |         |       |            | 6:4:写数据有效的起始时间                              |
|                         |         |       |            | 2:0:写数据有效的结束时间                              |
| CONF_CTL_48[63:0] Offse | t: 0x30 | 0 DDR | 2 667 : 0x | f3002947f3002947                            |



| 参数名称                    | 位       | 初值    | 范围         | 描述                                 |
|-------------------------|---------|-------|------------|------------------------------------|
| PHY_CTRL_REG_0_6        | 63:32   | 0x0   | 0x0-       | 第6数据组时延控制.                         |
|                         |         |       | 0xffffffff | 28:是否对读 DQS 使用去毛刺电路,指 gate 信号      |
|                         |         |       |            | 是否通过 PAD_feedback 延迟               |
|                         |         |       |            | 27:使用读 FIFO 有效信号自动控制读数据返回          |
|                         |         |       |            | 采样(1),还是使用26:24中的固定时间采样(0          |
|                         |         |       |            | )                                  |
|                         |         |       |            | 26:24:读数据返回采样完成时机,从内部时钟域           |
|                         |         |       |            | 采样的延迟。                             |
|                         |         |       |            | 21:在 Read Leveling 模式下,采样数据总线的电    |
|                         |         |       |            | 平高低                                |
|                         |         |       |            | 20:数据有效控制信号的电平, 龙芯 2 号中为 0         |
|                         |         |       |            | 19: 是否将写数据延迟再增加一周期                 |
|                         |         |       |            | 18:读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同 |
|                         |         |       |            | 步)                                 |
|                         |         |       |            | 17:写数据 /DQS 延迟是否增加半周期延迟            |
|                         |         |       |            | 16: CAS 延迟是否为半周期                   |
|                         |         |       |            | 15:12:写 DQS 有效的起始时间,对于 DDR3 应      |
|                         |         |       |            | 该比 DDR2 提前一个周期打开,提供颗粒要求的           |
|                         |         |       |            | Preamble DQS                       |
|                         |         |       |            | 11:8:写 DQS 有效的结束时间                 |
|                         |         |       |            | 6:4:写数据有效的起始时间                     |
|                         |         |       |            | 2:0:写数据有效的结束时间                     |
| PHY_CTRL_REG_0_5        | 31:0    | 0x0   | 0x0-       | 第5数据组时延控制.                         |
|                         |         |       | 0xffffffff | 28:是否对读 DQS 使用去毛刺电路,指 gate 信号      |
|                         |         |       |            | 是否通过 PAD_feedback 延迟               |
|                         |         |       |            | 27: 使用读 FIFO 有效信号自动控制读数据返回         |
|                         |         |       |            | 采样(1),还是使用 26:24 中的固定时间采样(0        |
|                         |         |       |            | )                                  |
|                         |         |       |            | 26:24:读数据返回采样完成时机,从内部时钟域           |
|                         |         |       |            | 采样的延迟。                             |
|                         |         |       |            | 21:在 Read Leveling 模式下,采样数据总线的电    |
|                         |         |       |            | 平高低                                |
|                         |         |       |            | 20:数据有效控制信号的电平,龙芯2号中为0             |
|                         |         |       |            | 19:是否将写数据延迟再增加一周期                  |
|                         |         |       |            | 18:读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同 |
|                         |         |       |            | 步)                                 |
|                         |         |       |            | 17: 写数据 /DQS 延迟是否增加半周期延迟           |
|                         |         |       |            | 16: CAS 延迟是否为半周期                   |
|                         |         |       |            | 15:12:写 DQS 有效的起始时间,对于 DDR3 应      |
|                         |         |       |            | 该比 DDR2 提前一个周期打开,提供颗粒要求的           |
|                         |         |       |            | Preamble DQS                       |
|                         |         |       |            | 11:8:写 DQS 有效的结束时间                 |
|                         |         |       |            | 6:4:写数据有效的起始时间                     |
|                         |         |       |            | 2:0:写数据有效的结束时间                     |
| CONF_CTL_49[63:0] Offse | t: 0x31 | 0 DDF | 82~667:~0x |                                    |



| 参数名称                    | 位       | 初值    | 范围                     | 描述                                                  |
|-------------------------|---------|-------|------------------------|-----------------------------------------------------|
| PHY_CTRL_REG_0_8        | 63:32   | 0x0   | 0x0-                   | 第8数据组时延控制.                                          |
|                         |         |       | 0xfffffff              | 28:是否对读 DQS 使用去毛刺电路, 指 gate 信号                      |
|                         |         |       |                        | 是否通过 PAD_feedback 延迟                                |
|                         |         |       |                        | 27:使用读 FIFO 有效信号自动控制读数据返回                           |
|                         |         |       |                        | 采样(1),还是使用26:24中的固定时间采样(0                           |
|                         |         |       |                        | )                                                   |
|                         |         |       |                        | 26:24:读数据返回采样完成时机,从内部时钟域<br>采样的延迟。                  |
|                         |         |       |                        | 21:在 Read Leveling 模式下,采样数据总线的电平高低                  |
|                         |         |       |                        | 20:数据有效控制信号的电平,龙芯2号中为0<br>19:是否将写数据延迟再增加一周期         |
|                         |         |       |                        | 18: 读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同步)               |
|                         |         |       |                        | 17: 写数据 /DQS 延迟是否增加半周期延迟                            |
|                         |         |       |                        | 16: CAS 延迟是否为半周期<br>  15:12:写 DQS 有效的起始时间,对于 DDR3 应 |
|                         |         |       |                        | 该比 DDR2 提前一个周期打开,提供颗粒要求的                            |
|                         |         |       |                        | Preamble DQS                                        |
|                         |         |       |                        | 11:8:写 DQS 有效的结束时间                                  |
|                         |         |       |                        | 6:4:写数据有效的起始时间                                      |
|                         |         |       |                        | 2:0:写数据有效的结束时间                                      |
| PHY_CTRL_REG_0_7        | 31:0    | 0x0   | 0x0-                   | 第7数据组时延控制.                                          |
|                         |         |       | 0xffffffff             | 28:是否对读 DQS 使用去毛刺电路,指 gate 信号                       |
|                         |         |       |                        | 是否通过 PAD_feedback 延迟                                |
|                         |         |       |                        | 27: 使用读 FIFO 有效信号自动控制读数据返回                          |
|                         |         |       |                        | 采样 ( 1 ),还是使用 26:24 中的固定时间采样 ( 0<br>  )             |
|                         |         |       |                        | 26:24:读数据返回采样完成时机,从内部时钟域采样的延迟。                      |
|                         |         |       |                        | 21:在 Read Leveling 模式下,采样数据总线的电平高低                  |
|                         |         |       |                        | 20:数据有效控制信号的电平, 龙芯 2 号中为 0                          |
|                         |         |       |                        | 19:是否将写数据延迟再增加一周期                                   |
|                         |         |       |                        | 18: 读 DQS 采样是否提前 1/4 周期 (与 clk_wr 同步)               |
|                         |         |       |                        | 少!<br>  17:写数据 /DQS 延迟是否增加半周期延迟                     |
|                         |         |       |                        | 16: CAS 延迟是否为半周期                                    |
|                         |         |       |                        | 15:12: 写 DQS 有效的起始时间, 对于 DDR3 应                     |
|                         |         |       |                        | 该比 DDR2 提前一个周期打开,提供颗粒要求的                            |
|                         |         |       |                        | Preamble DQS                                        |
|                         |         |       |                        | 11:8:写 DQS 有效的结束时间                                  |
|                         |         |       |                        | 6:4:写数据有效的起始时间                                      |
|                         |         |       |                        | 2:0:写数据有效的结束时间                                      |
| CONF_CTL_50[63:0] Offse | t: 0x32 | 0 DDR | $2 \overline{667}: 0x$ |                                                     |



| 参数名称                    | 位       | 初值    | 范围         | 描述                                           |
|-------------------------|---------|-------|------------|----------------------------------------------|
| PHY_CTRL_REG_1_1        | 63:32   | 0x0   | 0x0-       | 第1数据组中 PAD 的终端电阻控制,发起读操作                     |
|                         |         |       | 0xfffffff  | 时,才会启用                                       |
|                         |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周                     |
|                         |         |       |            | 期                                            |
|                         |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后                     |
|                         |         |       |            | 4 拍开始计算                                      |
|                         |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为                      |
|                         |         |       |            | 1                                            |
|                         |         |       |            | 22:终端电阻的使能信号,为1时,使用动态方                       |
|                         |         |       |            | 式控制终端电阻的使能;为0时,可以通过第23                       |
|                         |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无                    |
|                         |         |       |            | 效(置1)                                        |
|                         |         |       |            | 21:测试用信号,正常应为0                               |
|                         |         |       |            | 20:16:测试用信号,正常应为0                            |
|                         |         |       |            | 14:12:测试用信号,正常应为 0                           |
|                         |         |       |            | 11:8:读采样延时1,其中只能1位有效,用于控                     |
|                         |         |       |            | 制读 DQS 采样窗口关闭时机                              |
|                         |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制                     |
|                         |         |       |            | 读 DQS 采样窗口打开时机                               |
| PHY_CTRL_REG_1_0        | 31:0    | 0x0   | 0x0-       | 第 0 数据组中 PAD 的终端电阻控制,发起读操作                   |
|                         |         |       | 0xfffffff  | 时,才会启用                                       |
|                         |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周                     |
|                         |         |       |            | 期                                            |
|                         |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后                     |
|                         |         |       |            | 4拍开始计算                                       |
|                         |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为                      |
|                         |         |       |            |                                              |
|                         |         |       |            | 22:终端电阻的使能信号,为1时,使用动态方式控制终端电阻的使能;为0时,可以通过第23 |
|                         |         |       |            |                                              |
|                         |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无<br>效(置 1)          |
|                         |         |       |            | X (                                          |
|                         |         |       |            | 20:16:测试用信号,正常应为 0                           |
|                         |         |       |            | 14:12:测试用信号,正常应为 0                           |
|                         |         |       |            | 11:8: 读采样延时 1, 其中只能 1 位有效, 用于控               |
|                         |         |       |            | 制读 DQS 采样窗口关闭时机                              |
|                         |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制                     |
|                         |         |       |            | 读 DQS 采样窗口打开时机                               |
| CONF_CTL_51[63:0] Offse | t: 0x33 | 0 DDR | 2 667 : 0x | •                                            |



| 参数名称                      | 位       | 初值    | 范围         | 描述                                                           |  |  |  |  |  |  |  |
|---------------------------|---------|-------|------------|--------------------------------------------------------------|--|--|--|--|--|--|--|
| PHY_CTRL_REG_1_3          | 63:32   | 0x0   | 0x0-       | 第3数据组中PAD的终端电阻控制,发起读操作                                       |  |  |  |  |  |  |  |
|                           |         |       | 0xfffffff  | 时,才会启用                                                       |  |  |  |  |  |  |  |
|                           |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 期                                                            |  |  |  |  |  |  |  |
|                           |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 4 拍开始计算                                                      |  |  |  |  |  |  |  |
|                           |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为                                      |  |  |  |  |  |  |  |
|                           |         |       |            | 1                                                            |  |  |  |  |  |  |  |
|                           |         |       |            | 22:终端电阻的使能信号,为1时,使用动态方                                       |  |  |  |  |  |  |  |
|                           |         |       |            | 式控制终端电阻的使能;为0时,可以通过第23                                       |  |  |  |  |  |  |  |
|                           |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无                                    |  |  |  |  |  |  |  |
|                           |         |       |            | 效(置1)                                                        |  |  |  |  |  |  |  |
|                           |         |       |            | <br>  21:测试用信号,正常应为 0                                        |  |  |  |  |  |  |  |
|                           |         |       |            | 20:16:测试用信号,正常应为 0                                           |  |  |  |  |  |  |  |
|                           |         |       |            | <br>  14:12:测试用信号,正常应为 0                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 11:8:读采样延时1,其中只能1位有效,用于控                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 制读 DQS 采样窗口关闭时机                                              |  |  |  |  |  |  |  |
|                           |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 读 DQS 采样窗口打开时机                                               |  |  |  |  |  |  |  |
| PHY_CTRL_REG_1_2          | 31:0    | 0x0   | 0x0-       | 第2数据组中 PAD 的终端电阻控制,发起读操作                                     |  |  |  |  |  |  |  |
|                           |         |       | 0xffffffff | 时,才会启用                                                       |  |  |  |  |  |  |  |
|                           |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 期                                                            |  |  |  |  |  |  |  |
|                           |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 4 拍开始计算                                                      |  |  |  |  |  |  |  |
|                           |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为                                      |  |  |  |  |  |  |  |
|                           |         |       |            | 1                                                            |  |  |  |  |  |  |  |
|                           |         |       |            | 22:终端电阻的使能信号,为1时,使用动态方                                       |  |  |  |  |  |  |  |
|                           |         |       |            | 式控制终端电阻的使能;为0时,可以通过第23                                       |  |  |  |  |  |  |  |
|                           |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无                                    |  |  |  |  |  |  |  |
|                           |         |       |            | 效(置1)                                                        |  |  |  |  |  |  |  |
|                           |         |       |            | 21:测试用信号,正常应为0                                               |  |  |  |  |  |  |  |
|                           |         |       |            | 20:16:测试用信号,正常应为 0                                           |  |  |  |  |  |  |  |
|                           |         |       |            | 14:12:测试用信号,正常应为 0                                           |  |  |  |  |  |  |  |
|                           |         |       |            | 11:8:读采样延时1,其中只能1位有效,用于控                                     |  |  |  |  |  |  |  |
|                           |         |       |            | 制读 DQS 采样窗口关闭时机                                              |  |  |  |  |  |  |  |
|                           |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制                                     |  |  |  |  |  |  |  |
| CONF CTI. 52[62:0] Office | t. 0x24 | 0 DDD | 22 667 . 0 | 读 DQS 采样窗口打开时机                                               |  |  |  |  |  |  |  |
| CONF_C1L_52[63:0] Offse   | UX34    | o DDR | 2 007 : UX | CONF_CTL_52[63:0] Offset: 0x340 DDR2 667: 0x07c0000007c00000 |  |  |  |  |  |  |  |



| 参数名称                     | 位       | 初值    | 范围         | 描述                                   |
|--------------------------|---------|-------|------------|--------------------------------------|
| PHY_CTRL_REG_1_5         | 63:32   | 0x0   | 0x0-       | 第 5 数据组中 PAD 的终端电阻控制,发起读操作           |
|                          |         |       | 0xfffffff  | 时,才会启用                               |
|                          |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周             |
|                          |         |       |            | 期                                    |
|                          |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后             |
|                          |         |       |            | 4 拍开始计算                              |
|                          |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为              |
|                          |         |       |            | 1                                    |
|                          |         |       |            | 22:终端电阻的使能信号,为1时,使用动态方               |
|                          |         |       |            | 式控制终端电阻的使能;为0时,可以通过第23               |
|                          |         |       |            | 位 PAD 上的终端电阻永远有效 (置 0 ) 或永远无         |
|                          |         |       |            | 效(置1)                                |
|                          |         |       |            | 21:测试用信号,正常应为0                       |
|                          |         |       |            | 20:16:测试用信号,正常应为 0                   |
|                          |         |       |            | 14:12:测试用信号,正常应为0                    |
|                          |         |       |            | 11:8:读采样延时1,其中只能1位有效,用于控             |
|                          |         |       |            | 制读 DQS 采样窗口关闭时机                      |
|                          |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制             |
|                          |         |       |            | 读DQS采样窗口打开时机                         |
| PHY_CTRL_REG_1_4         | 31:0    | 0x0   | 0x0-       | 第 4 数据组中 PAD 的终端电阻控制,发起读操作           |
|                          |         |       | 0xffffffff | 时,才会启用                               |
|                          |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周             |
|                          |         |       |            | 期 27.04                              |
|                          |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后             |
|                          |         |       |            | 4 拍开始计算<br>23:终端电阻的有效电平控制,对于龙芯 2 号应为 |
|                          |         |       |            | 23: 经项电阻的有效电干控制, 对于龙心 2 亏应为          |
|                          |         |       |            | 1<br>  22:终端电阻的使能信号,为1时,使用动态方        |
|                          |         |       |            | 式控制终端电阻的使能;为0时,可以通过第23               |
|                          |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无            |
|                          |         |       |            | 效(置1)                                |
|                          |         |       |            |                                      |
|                          |         |       |            | 20:16:测试用信号,正常应为 0                   |
|                          |         |       |            | 14:12:测试用信号,正常应为 0                   |
|                          |         |       |            | 11:8:读采样延时1,其中只能1位有效,用于控             |
|                          |         |       |            | 制读 DQS 采样窗口关闭时机                      |
|                          |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制             |
|                          |         |       |            | 读 DQS 采样窗口打开时机                       |
| CONF_CTL_53[63:0] Offset | t: 0x35 | 0 DDR | 2 667 : 0x | •                                    |



| 参数名称                    | 位       | 初值    | 范围         | 描述                             |
|-------------------------|---------|-------|------------|--------------------------------|
| PHY_CTRL_REG_1_7        | 63:32   | 0x0   | 0x0-       | 第7数据组中PAD的终端电阻控制,发起读操作         |
|                         |         |       | 0xfffffff  | 时,才会启用                         |
|                         |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周       |
|                         |         |       |            | 期                              |
|                         |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后       |
|                         |         |       |            | 4 拍开始计算                        |
|                         |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为        |
|                         |         |       |            | 1                              |
|                         |         |       |            | 22:终端电阻的使能信号,为1时,使用动态方         |
|                         |         |       |            | 式控制终端电阻的使能;为0时,可以通过第23         |
|                         |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无      |
|                         |         |       |            | 效(置1)                          |
|                         |         |       |            | 21:测试用信号,正常应为0                 |
|                         |         |       |            | 20:16:测试用信号,正常应为0              |
|                         |         |       |            | 14:12:测试用信号,正常应为 0             |
|                         |         |       |            | 11:8:读采样延时1,其中只能1位有效,用于控       |
|                         |         |       |            | 制读 DQS 采样窗口关闭时机                |
|                         |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制       |
|                         |         |       |            | 读 DQS 采样窗口打开时机                 |
| PHY_CTRL_REG_1_6        | 31:0    | 0x0   | 0x0-       | 第6数据组中PAD的终端电阻控制,发起读操作         |
|                         |         |       | 0xffffffff | 时,才会启用                         |
|                         |         |       |            | 31:28:终端电阻关闭时机控制,每个值表示半周       |
|                         |         |       |            |                                |
|                         |         |       |            | 27:24:终端电阻开启时机控制,从发送读命令后       |
|                         |         |       |            | 4拍开始计算                         |
|                         |         |       |            | 23:终端电阻的有效电平控制,对于龙芯2号应为        |
|                         |         |       |            | 1<br>  22:终端电阻的使能信号,为1时,使用动态方  |
|                         |         |       |            | 式控制终端电阻的使能; 为 0 时, 可以通过第 23    |
|                         |         |       |            | 位 PAD 上的终端电阻永远有效(置 0)或永远无      |
|                         |         |       |            | 效(置1)                          |
|                         |         |       |            | X                              |
|                         |         |       |            | 20:16: 测试用信号,正常应为 0            |
|                         |         |       |            | 14:12: 测试用信号, 正常应为 0           |
|                         |         |       |            | 11:8: 读采样延时 1, 其中只能 1 位有效, 用于控 |
|                         |         |       |            | 制读 DQS 采样窗口关闭时机                |
|                         |         |       |            | 7:0:读采样延时0,其中只能1位有效,用于控制       |
|                         |         |       |            | 读 DQS 采样窗口打开时机                 |
| CONF_CTL_54[63:0] Offse | t: 0x36 | 0 DDR | 2 667 : 0x |                                |



| 参数名称                                                                            | 位       | 初值       | 范围                               | 描述                                                        |  |  |
|---------------------------------------------------------------------------------|---------|----------|----------------------------------|-----------------------------------------------------------|--|--|
| PHY_CTRL_REG_2                                                                  | 63:32   | 0x0      | 0x0-                             | 读写数据延迟控制                                                  |  |  |
|                                                                                 |         |          | 0xffffffff                       | 27:选择读数据缓冲类型,默认为0                                         |  |  |
|                                                                                 |         |          |                                  | 26:用于清除读返回缓冲区的数据,正常为0                                     |  |  |
|                                                                                 |         |          |                                  | 25:高速引脚使能,为1时,所有信号通过引脚向                                   |  |  |
|                                                                                 |         |          |                                  | 外传输的延迟减小1周期                                               |  |  |
|                                                                                 |         |          |                                  | 16:13:设置读数据有效时机,从 FIFO 中收集数                               |  |  |
|                                                                                 |         |          |                                  | 据返回控制器的延迟。如果从引脚到 FIFO 的延迟                                 |  |  |
|                                                                                 |         |          |                                  | 增加,这个值也必须增加                                               |  |  |
|                                                                                 |         |          |                                  | 8:设置 DQS 信号输出是否为 DDR3 模式, DDR3                            |  |  |
|                                                                                 |         |          |                                  | 模式下,写 DQS 的 Preamble 将含有一个脉冲                              |  |  |
|                                                                                 |         |          |                                  | 5:测试模式信号,正常为0                                             |  |  |
|                                                                                 |         |          |                                  | 4:测试模式信号,正常为0                                             |  |  |
| PHY_CTRL_REG_1_8                                                                | 31:0    | 0x0      | 0x0-                             | 第8数据组中的终端电阻控制                                             |  |  |
|                                                                                 |         |          | 0xffffffff                       | PAD 的终端电阻控制,发起读操作时,才会启用                                   |  |  |
|                                                                                 |         |          |                                  | 31:28:终端电阻关闭时机控制,每个值表示半周                                  |  |  |
|                                                                                 |         |          |                                  | 期                                                         |  |  |
|                                                                                 |         |          |                                  | 27:24:终端电阻开启时机控制,从发送读命令后                                  |  |  |
|                                                                                 |         |          |                                  | 4 拍开始计算                                                   |  |  |
|                                                                                 |         |          |                                  | 23:终端电阻的有效电平控制,对于龙芯2号应为                                   |  |  |
|                                                                                 |         |          |                                  | 1                                                         |  |  |
|                                                                                 |         |          |                                  | 22:终端电阻的使能信号,为1时,使用动态方                                    |  |  |
|                                                                                 |         |          |                                  | 式控制终端电阻的使能;为0时,可以通过第23                                    |  |  |
|                                                                                 |         |          |                                  | 位 PAD 上的终端电阻永远有效(置 0)或永远无                                 |  |  |
|                                                                                 |         |          |                                  | 效(置1)                                                     |  |  |
|                                                                                 |         |          |                                  | 21:测试用信号,正常应为0                                            |  |  |
|                                                                                 |         |          |                                  | 20:16:测试用信号,正常应为0                                         |  |  |
|                                                                                 |         |          |                                  | 14:12:测试用信号,正常应为0                                         |  |  |
|                                                                                 |         |          |                                  | 11:8:读采样延时1,其中只能1位有效,用于控                                  |  |  |
|                                                                                 |         |          |                                  | 制读 DQS 采样窗口关闭时机                                           |  |  |
|                                                                                 |         |          |                                  | 7:0:读采样延时0,其中只能1位有效,用于控制                                  |  |  |
|                                                                                 |         |          |                                  | 读 DQS 采样窗口打开时机                                            |  |  |
| CONF_CTL_55[63:0] Offse                                                         | t: 0x37 | 0 DDF    |                                  |                                                           |  |  |
| PHY_OBS_REG_0_1                                                                 | 63:32   | 0x0      | 0x0-                             | 第1数据组测试用观测信号(只读)                                          |  |  |
| DITT ODG DEG o o                                                                | 01.0    | 0.0      | 0xffffffff                       | <b>林 5 张坦州加州</b> 中日 7 日 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 |  |  |
| PHY_OBS_REG_0_0                                                                 | 31:0    | 0x0      | 0x0-                             | 第0数据组测试用观测信号(只读)                                          |  |  |
| CONF_CTL_56[63:0] Offse                                                         | t: 0x38 | 0 DDF    | 0xfffffff<br><b>22 667 : 0</b> x | 000000000000000000000000000000000000000                   |  |  |
| PHY_OBS_REG_0_3                                                                 | 63:32   | 0x0      | 0x0-                             | 第3数据组测试用观测信号(只读)                                          |  |  |
|                                                                                 | 55.52   |          | 0xffffffff                       | 200 - 200 PROPERTY NAMED OF STREET                        |  |  |
| PHY_OBS_REG_0_2                                                                 | 31:0    | 0x0      | 0x0-                             | 第2数据组测试用观测信号(只读)                                          |  |  |
|                                                                                 |         | <u> </u> | 0xffffffff                       |                                                           |  |  |
| CONF_CTL_57[63:0] Offse                                                         | _       |          |                                  |                                                           |  |  |
| PHY_OBS_REG_0_5                                                                 | 63:32   | 0x0      | 0x0-                             | 第5数据组测试用观测信号(只读)                                          |  |  |
| DIIV ODG DEG 0.4                                                                | 91.0    | 0.0      | 0xfffffff<br>00                  | <b>公 4 粉柜</b> 加油油用亚洲岸口 / 口 / 生 /                          |  |  |
| PHY_OBS_REG_0_4                                                                 | 31:0    | 0x0      | 0x0-                             | 第4数据组测试用观测信号(只读)                                          |  |  |
| CONF CTL 58[63:0] Offse                                                         | t: 0x3a | 0 DDF    | 0xfffffff<br>R2 667 : 0x         | 0000000000000000                                          |  |  |
| CONF_CTL_58[63:0] Offset: 0x3a0 DDR2 667: 0x00000000000000000000000000000000000 |         |          |                                  |                                                           |  |  |



| 参数名称                    | 位       | 初值                      | 范围                           | 描述                                       |
|-------------------------|---------|-------------------------|------------------------------|------------------------------------------|
| PHY_OBS_REG_0_7         | 63:32   | 0x0                     | 0x0-                         | 第7数据组测试用观测信号(只读)                         |
|                         |         |                         | 0xffffffff                   |                                          |
| PHY_OBS_REG_0_6         | 31:0    | 0x0                     | 0x0-                         | 第6数据组测试用观测信号(只读)                         |
| COME CEL FOIGO OLOG     | 4 0 01  | 0 DDD                   | 0xfffffff                    | 2 200000000000000                        |
| CONF_CTL_59[63:0] Offse | T       |                         |                              |                                          |
| PHY_OBS_REG_0_8         | 31:0    | 0x0                     | 0x0-                         | 第8数据组测试用观测信号(只读)                         |
| CONF_CTL_114[63:0] Offs | et: 0x7 | 20 DD                   | 0xfffffff<br><b>R2 667</b> : | 0x0000000000000000                       |
| RDLVL_GATE_REQ          | 56      | 0x0                     | 0x0-0x1                      | 用户请求读选通采样训练功能.(只写)                       |
| RDLVL_GATE_PREAMBLE_0   | CHÆXCK  | <b>E0X</b> (0           | 0x0-0x1                      | 开启读选通采样训练时的前导采样检查                        |
| RDLVL_GATE_EN           | 40      | 0x0                     | 0x0-0x1                      | 使能 Read Leveling 时读选通采样训练, 在初始化          |
|                         |         |                         |                              | 完成后会向颗粒发送命令,进行读 DQS 采样窗口                 |
|                         |         |                         |                              | 的训练                                      |
| RDLVL_EN                | 32      | 0x0                     | 0x0-0x1                      | 使能 Read Leveling 功能                      |
| RDLVL_BEGIN_DELAY_EN    | 24      | 0x0                     | 0x0-0x1                      | 使能 Read Leveling 寻找数据采样点功能               |
| SWLVL_OP_DONE           | 8       | 0x0                     | 0x0-0x1                      | 用于指示软件 Leveling 是否完成 (只读)                |
| CONF_CTL_115[63:0] Offs | et: 0x7 | 30 DD                   | R2 667 :                     | 0x0000000000000000                       |
| RDLVL_OFFSET_DIR_7      | 56      | 0x0                     | 0x0-0x1                      | 第7数据组 Read Leveling 时中点的调整方向。为           |
|                         |         |                         |                              | 0 时,中点计算为减去 rdlvl_offset_delay,为 1 则     |
|                         |         |                         |                              | 加。                                       |
| RDLVL_OFFSET_DIR_6      | 48      | 0x0                     | 0x0-0x1                      | 第6数据组 Read Leveling 时中点的调整方向。为           |
|                         |         |                         |                              | 0时,中点计算为减去 rdlvl_offset_delay ,为 1则      |
|                         |         |                         |                              | 加。                                       |
| RDLVL_OFFSET_DIR_5      | 40      | 0x0                     | 0x0-0x1                      | 第 5 数据组 Read Leveling 时中点的调整方向。为         |
|                         |         |                         |                              | 0 时,中点计算为减去 rdlvl_offset_delay ,为 1 则    |
| DDILL OFFICER DID (     | 22      |                         | 0.001                        | 加。                                       |
| RDLVL_OFFSET_DIR_4      | 32      | 0x0                     | 0x0-0x1                      | 第 4 数据组 Read Leveling 时中点的调整方向。为         |
|                         |         |                         |                              | 0 时,中点计算为减去 rdlvl_offset_delay,为 1 则     |
| RDLVL_OFFSET_DIR_3      | 24      | 0x0                     | 0x0-0x1                      | 加。<br>  第3数据组 Read Leveling 时中点的调整方向。为   |
| RDEVE-OFF SET -DIRC-5   | 24      | UXU                     | 0.00-0.11                    | 0时,中点计算为减去 rdlvl_offset_delay,为1则        |
|                         |         |                         |                              |                                          |
| RDLVL_OFFSET_DIR_2      | 16      | 0x0                     | 0x0-0x1                      | 加。<br>  第2数据组 Read Leveling 时中点的调整方向。为   |
|                         |         |                         |                              | 0 时,中点计算为减去 rdlvl_offset_delay,为 1 则     |
|                         |         |                         |                              | 加。                                       |
| RDLVL_OFFSET_DIR_1      | 8       | 0x0                     | 0x0-0x1                      | 第1数据组 Read Leveling 时中点的调整方向。为           |
|                         |         |                         |                              | 0 时,中点计算为减去 rdlvl_offset_delay,为 1 则     |
|                         |         |                         |                              | 加。                                       |
| RDLVL_OFFSET_DIR_0      | 0       | 0x0                     | 0x0-0x1                      | 第0数据组 Read Leveling 时中点的调整方向。为           |
|                         |         |                         |                              | 0 时,中点计算为减去 rdlvl_offset_delay,为 1 则     |
|                         |         |                         |                              | 加。                                       |
| CONF_CTL_116[63:0] Offs | I       |                         |                              | 0x010000000000000                        |
| AXI1_PORT_ORDERING      | 57:56   | 0x0                     | 0x0-0x3                      | 内部端口1是否可乱序执行,对于龙芯2号无效                    |
| AXI0_PORT_ORDERING      | 49:48   | 0x0                     | 0x0-0x3                      | 内部端口0是否可乱序执行                             |
| WRLVL_REQ               | 40      | 0x0                     | 0x0-0x1                      | 用户请求开始 Write Leveling 训练功能. (只写)         |
| WRLVL_INTERVAL_CT_EN    | 32      | 0x0                     | 0x0-0x1                      | 使能 Write Leveling 时间间隔功能                 |
| WEIGHTED_ROUND_ROBIN    | _W2MIG  | H <b>0</b> x <b>6</b> H | <b>170H0O</b> x1             | Per-port pair shared arbitration for WRR |



| L <b>A6</b> TE      | N <b>O</b> \$30L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0-0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Free-running or limited WRR latency counters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free-running or innited war latency counters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 用户请求开始 Read Leveling 训练功能. (只写)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                   | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 第8数据组 Read Leveling 时中点的调整方向。为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0时,中点计算为减去 rdlvl_offset_delay,为1则                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 加。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57:56               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 指示当前 Write Leveling 操作的片选信号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 49:48               | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 定义软件 Leveling 操作的模式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41:40               | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 指示当前 Read Leveling 操作的片选信号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33:32               | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口2的写操作优先级,对于龙芯2号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25:24               | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口2的读操作优先级,对于龙芯2号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17:16               | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口2是否可乱序执行,对于龙芯2号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9:8                 | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口1的写操作优先级,对于龙芯2号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1:0                 | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口1的读操作优先级,对于龙芯2号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| et: 0x7             | 60 DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R2 667: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\times 0303030000020002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| E <b>59R</b> 6O     | ROFOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口0优先级2的命令的相对优先级                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E.5RR18O            | ROFOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口0优先级1的命令的相对优先级                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 内部端口 0 优先级 0 的命令的相对优先级                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 指示哪个片选支持 Address mirroring 功能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 从内部时钟关闭到外部时钟关闭的延迟设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 设置控制器上向内存模块发送的 Burst 长度值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 用户请求开始 ZQ 调整功能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 定义在退出自刷新模式时 ZQ 调整功能的模式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 内部端口2优先级2的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | RWXOr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UXU-UXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E. <b>512 RAN</b> O | BOSTOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | □ 芯 2 号无效<br>□ 内部端口 2 优先级 1 的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22114               | 100201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0110 0111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 芯 2 号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E <b>4BR</b> IO     | ROFOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口2优先级0的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 芯 2 号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E <b>3BR</b> 120    | ROFFOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口1优先级3的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 芯 2 号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E <b>277R211</b> 0  | ROFFOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口1优先级2的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 40 D 100          | D#/DXZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 芯 2 号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EJBHRO              | RWXOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口1优先级1的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r Dibilo            | DWAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ov0 Ovf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | │ <u>芯 2 号无效</u><br>│ 内部端口 1 优先级 0 的命令的相对优先级,对于龙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | 1 WAOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x0-0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 芯 2 号无效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E_BROIO             | ROTOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 内部端口 0 优先级 3 的命令的相对优先级                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\times 0102020400040c01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 59:56               | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0-0xf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 从内部时钟有效到输出时钟有效的延迟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 从时钟有效到输出命令之间的延迟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 设置读选通采样训练时,表求由1到0的0的个数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 设置读 Read Leveling 时,表求由 1 到 0 的 0 的个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 55.54               | UAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OAU-UAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 数 数 Leveling 时,农水田 1 到 0 时 0 时 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | 57:56 49:48 41:40 33:32 25:24 17:16 9:8 1:0 et: 0x7 E:59RIO 35:32 26:24 18:16 9:8 1:0 et: 0x7 E:59RIO E:51RIO | 57:56   0x0 49:48   0x0 41:40   0x0 33:32   0x0 25:24   0x0 17:16   0x0 9:8   0x0 1:0   0x0 E: 0x760 DD E:59BIO ROW E:1816   0x0 9:8   0x0 1:0   0x0 26:24   0x0 18:16   0x0 9:8   0x0 1:0   0x0 E: 0x770 DD E:59BIO ROW E:59B | 49:48 0x0 0x0-0x3 41:40 0x0 0x0-0x3 33:32 0x0 0x0-0x3 25:24 0x0 0x0-0x3 17:16 0x0 0x0-0x3 17:16 0x0 0x0-0x3 1:0 0x0 0x0-0x6 2:59RIO ROWY 0x0-0xf 2:43RIO ROWY 0x0-0xf 26:24 0x0 0x0-0x7 18:16 0x0 0x0-0x7 18:16 0x0 0x0-0x7 1:0 0x0 0x0-0x3 1:0 0x0 0x0-0x3 1:0 0x0 0x0-0x3 1:0 0x0 0x0-0x3 2:59RIO ROWY 0x0-0xf |



| 参数名称                    | 位               | 初值    | 范围         | 描述                                             |
|-------------------------|-----------------|-------|------------|------------------------------------------------|
| LOWPOWER_REFRESH_EN     | -               | 0x0   | 0x0-0xf    | 使能低功耗模式下的刷新功能                                  |
| DRAM_CLASS              | 19:16           | 0x0   | 0x0-0xf    | 定义控制器外接内存类型                                    |
| 110 : DDR3 100 : DDR2   |                 |       |            |                                                |
| BURST_ON_FLY_BIT        | 11:8            | 0x0   | 0x0-0xf    | 对 DRAM 发出的模式配置中的 burst-on-fly 位                |
| AXI2_PRIORITY3_RELATIV  | E_BRNO          | ROFOY | 0x0-0xf    | 内部端口2优先级3的命令的相对优先级,对于龙                         |
|                         |                 |       |            | 芯 2 号无效                                        |
| CONF_CTL_121[63:0] Offs | et: 0x7         | 90 DD | R2 667 :   |                                                |
| WLMRD                   | 61:56           | 0x0   | 0x0-0x3f   | 从对 DRAM 发送模式配置到 Write Leveling 的延迟             |
| WLDQSEN                 | 53:48           | 0x0   | 0x0-0x3f   | 从对 DRAM 发送模式配置到 Write Leveling 的的<br>选通数据采样延迟  |
| LOWPOWER_CONTROL        | 44:40           | 0x0   | 0x0-0x1f   | 低功耗模式使能<br>-                                   |
|                         |                 | 0110  | 0110 01111 | Bit 4: power down                              |
|                         |                 |       |            | Bit 3: power down external                     |
|                         |                 |       |            | Bit 2: self refresh                            |
|                         |                 |       |            | Bit 1: external                                |
|                         |                 |       |            | Bit 0: internal                                |
| LOWPOWER_AUTO_ENABI     | E36:32          | 0x0   | 0x0-0x1f   | 使能当控制器内闲时自动进入低功耗模式                             |
|                         |                 |       |            | 控制位与 LOWERPOWER_CONTROL 相同                     |
| ZQCS_CHIP               | 27:24           | 0x0   | 0x0-0xf    | 定义下次 ZQ 时的有效片选                                 |
| WRR_PARAM_VALUE_ERR     | 19:16           | 0x0   | 0x0-0xf    | Errors/warnings related to the WRR parameters. |
| TDFI_WRLVL_DLL          | 15:8            | 0x0   | 0x0-0xff   | (只读)<br>读操作到 Write Leveling 更新延迟线数目的最小         |
|                         | 15:8            | UXU   | UXU-UXII   | 馬期 Write Levening 史제延心线数目的取小                   |
| TDFI_RDLVL_DLL          | 7:0             | 0x0   | 0x0-0xff   | 读操作到 Read Leveling 更新延迟线数目的最小                  |
|                         |                 |       |            | 周期                                             |
| CONF_CTL_122[63:0] Offs | et: 0x7         | a0 DD | R2 667 :   | 0x000000000000000                              |
| SWLVL_RESP_6            | 63:56           | 0x0   | 0x0-0xff   | 第6数据组的 Leveling 响应                             |
| SWLVL_RESP_5            | 55:48           | 0x0   | 0x0-0xff   | 第 5 数据组的 Leveling 响应                           |
| SWLVL_RESP_4            | 47:40           | 0x0   | 0x0-0xff   | 第 4 数据组的 Leveling 响应                           |
| SWLVL_RESP_3            | 39:32           | 0x0   | 0x0-0xff   | 第3数据组的 Leveling 响应                             |
| SWLVL_RESP_2            | 31:24           | 0x0   | 0x0-0xff   | 第2数据组的 Leveling 响应                             |
| SWLVL_RESP_1            | 23:16           | 0x0   | 0x0-0xff   | 第1数据组的 Leveling 响应                             |
| SWLVL_RESP_0            | 15:8            | 0x0   | 0x0-0xff   | 第0数据组的 Leveling 响应                             |
| CONF_CTL_123[63:0] Offs | et: 0x7         | b0 DD | R2 667:    | 0x000000000000000                              |
| OBSOLETE                | 63:16           |       |            |                                                |
| SWLVL_RESP_8            | 15:8            | 0x0   | 0x0-0xff   | 第8数据组的 Leveling 响应                             |
| SWLVL_RESP_7            | 7:0             | 0x0   | 0x0-0xff   | 第7数据组的 Leveling 响应                             |
| CONF_CTL_124[63:0] Offs | et: 0x7         | c0 DD | R2 667 :   | 0x000000000000000                              |
| OBSOLETE                |                 |       |            |                                                |
| CONF_CTL_125[63:0] Offs | et: 0x7         | d0 DD | R2 667 :   | 0x000000000000000                              |
| RDLVL_GATE_CLK_ADJUST   | <b>-3</b> 53:56 | 0x0   | 0x0-0xff   | 第3数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST   | <b>-25</b> 5:48 | 0x0   | 0x0-0xff   | 第2数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST   | _147:40         | 0x0   | 0x0-0xff   | 第1数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST   | <b>_3</b> 9:32  | 0x0   | 0x0-0xff   | 第0数据组中,读采样训练的起始值                               |
| CONF_CTL_126[63:0] Offs | et: 0x7         | e0 DD | R2 667 :   | 0x000000000000000                              |



| 参数名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 位                | 初值    | 范围          | 描述                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------------|------------------------------------------------|
| RDLVL_GATE_CLK_ADJUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ <b>8</b> 9:32  | 0x0   | 0x0-0xff    | 第8数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -31:24           | 0x0   | 0x0-0xff    | 第7数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>_@</b> 3:16   | 0x0   | 0x0-0xff    | 第6数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _515:8           | 0x0   | 0x0-0xff    | 第5数据组中,读采样训练的起始值                               |
| RDLVL_GATE_CLK_ADJUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _47:0            | 0x0   | 0x0-0xff    | 第4数据组中,读采样训练的起始值                               |
| CONF_CTL_127[63:0] Offset: 0x7f0 DDR2 667: 0x0000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |             |                                                |
| OBSOLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |       |             |                                                |
| CONF_CTL_128[63:0] Offset: 0x800 DDR2 667: 0x00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |             |                                                |
| OBSOLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |       |             |                                                |
| CONF_CTL_129[63:0] Offset: 0x810 DDR2 667: 0x00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |             |                                                |
| OBSOLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |       |             |                                                |
| CONF_CTL_130[63:0] Offset: 0x820 DDR2 667: 0x0420000c20400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |       |             |                                                |
| TDFI_WRLVL_RESPLAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63:56            | 0x0   | 0x0-0xff    | Write Leveling 选通到响应有效的周期数                     |
| TDFI_RDLVL_RESPLAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39:32            | 0x0   | 0x0-0xff    | Read Leveling 选通到响应有效的周期数                      |
| REFRESH_PER_ZQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23:16            | 0x0   | 0x0-0xff    | 自动 ZQCS 命令之间的刷新命令数目                            |
| CONF_CTL_131[63:0] Offset: 0x830 DDR2 667: 0x00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |             |                                                |
| TMOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15:8             | 0x0   | 0x0-0xff    | DRAM 模式配置后需空闲的周期数                              |
| CONF_CTL_132[63:0] Offset: 0x840 DDR2 667: 0x0000640064000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |       |             |                                                |
| AXI1_PRIORITY_RELAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49:40            | 0x0   | 0x0-0x3ff   | 内部端口1上触发优先控制放松的计数器值,对于                         |
| ANTO DELORIENT DEL ANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.22            |       | 0.000       | 龙芯2号无效                                         |
| AXI0_PRIORITY_RELAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33:32            | 0x0   | 0x0-0x3     | 内部端口 0 上触发优先控制放松的计数器值                          |
| [9:8]<br>AXI0_PRIORITY_RELAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31:24            | 0x0   | 0x0-0xff    | 内部端口 0 上触发优先控制放松的计数器值                          |
| [7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.24            | UXU   | UXU-UXII    | 四部一口 0 工版次 亿元1至中从7亿日7月 数备由                     |
| CONF_CTL_133[63:0] Offset: 0x850 DDR2 667: 0x000000000000064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |       |             |                                                |
| OUT_OF_RANGE_SOURCE_ID57:48 0x0 0x0-0x3ff 访问地址溢出请求的 ID 号 (只读)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |       |             |                                                |
| ECC_U_ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41:32            | 0x0   | 0x0-0x3ff   | 访问出现 2 位错请求的 ID 号 (只读)                         |
| ECC_C_ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25:16            | 0x0   | 0x0-0x3ff   | 访问出现 1 位错请求的 ID 号 (只读)                         |
| AXI2_PRIORITY_RELAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9:0              | 0x0   | 0x0-0x3ff   | 内部端口2上触发优先控制放松的计数器值,对于                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |       |             | 龙芯 2 号无效                                       |
| CONF_CTL_134[63:0] Offset: 0x860 DDR2 667: 0x000000400000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |       |             |                                                |
| ZQCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43:32            | 0x0   | 0x0-0xfff   | ZQCS 命令需要的周期数                                  |
| PORT_DATA_ERROR_ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25:16            | 0x0   | 0x0-0x3ff   | 内部端口数据错请求的 ID 号 (只读)                           |
| PORT_CMD_ERROR_ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9:0              | 0x0   | 0x0-0x3ff   | 内部端口命令错请求的 ID 号 (只读)                           |
| CONF_CTL_135[63:0] Offset: 0x870 DDR2 667: 0x00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |             |                                                |
| OBSOLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |       |             |                                                |
| CONF_CTL_136[63:0] Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | et: 0x8          | 80 DD | R2 667 : 0: | x0000000000000000                              |
| OBSOLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |       |             |                                                |
| CONF_CTL_137[63:0] Offset: 0x890 DDR2 667: 0x00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |             |                                                |
| OBSOLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |       |             |                                                |
| CONF_CTL_138[63:0] Offset: 0x8a0 DDR2 667: 0x0000000001c001c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |       |             |                                                |
| LOWPOWER_INTERNAL_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N <b>T</b> 63:48 | 0x0   | 0x0-0xffff  | Counts idle cycles to self-refresh with memory |
| TOTAL DATE OF THE PARTY OF THE | ON THERM S.C.    | 0.0   | 0.00 000    | and controller clk gating.                     |
| LOWPOWER_EXTERNAL_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11N4II7:32       | 0x0   | 0x0-0xffff  | Counts idle cycles to self-refresh with memory |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |       |             | clock gating.                                  |



| 参数名称                     | 位                | 初值     | 范围                               | 描述                                       |
|--------------------------|------------------|--------|----------------------------------|------------------------------------------|
| AXI2_EN_SIZE_LT_WIDTH_I  | NSTR6            | 0x0    | 0x0-0xffff                       | 使能内部端口2上的各种窄访问,对于龙芯2号无                   |
|                          |                  |        |                                  | 效                                        |
| AXI1_EN_SIZE_LT_WIDTH_II | NSII5RO          | 0x0    | 0x0-0xffff                       | 使能内部端口1上的各种窄访问,对于龙芯2号无                   |
| GOLTE GET 100 [00 ol 0 m |                  | 1000   | Da 665 6                         | 效                                        |
| CONF_CTL_139[63:0] Offs  |                  |        |                                  |                                          |
| LOWPOWER_POWER_DOW       |                  | 0x0    | 0x0-0xffff                       | 进入 Power Down 模式前的空闲周期数                  |
| LOWPOWER_REFRESH_HO      | LB1:16           | 0x0    | 0x0-0xffff                       | 在时钟门控模式下,内存控制器 re-lock DLL 前的            |
| LOWPOWER_SELF_REFRES     | HU7CROT          | 0x0    | 0x0-0xffff                       |                                          |
| CONF_CTL_140[63:0] Offs  |                  |        |                                  |                                          |
| OBSOLETE                 | 0110             | 00 223 | 00 0.                            |                                          |
| CONF_CTL_141[63:0] Offs  | et: 0x8          | 40 DD  | R2 667 : 0:                      | ×0000000c8000000                         |
| CKE_INACTIVE[31:8]       | 55:32            | 0x0    | 0x0-                             | 从输出 DDR_RESET 有效到 CKE 有效的时间间             |
|                          | 30.02            | 0110   | 0xffffffff                       | 隔高位                                      |
| CKE_INACTIVE [7:0]       | 31:24            | 0x0    | 0x0-0xff                         | 从输出 DDR_RESET 有效到 CKE 有效的时间间             |
|                          |                  |        |                                  | 隔低位                                      |
| WRLVL_STATUS             | 17:0             | 0x0    | 0x0-                             | 最近一次 Write Leveling 操作状态 (只读)            |
| CONF_CTL_142[63:0] Offs  | at. 00           | °0 DD1 | 0x3ffff                          | -0000000000000E0                         |
| TRST_PWRON               |                  |        |                                  | 从 start 有效 500 拍后到 DDR_RESET 有效之间        |
| TRST_PWRON               | 31:0             | 0x0    | 0x0-                             | M start 有效 500 拍后到 DDR_RESEI 有效之间<br>的延迟 |
| CONF_CTL_143[63:0] Offs  | et: 0x8          | f0 DDI | 0xfffffff<br>R2 667 : 0x         |                                          |
| DLL_CTRL_REG_2 [32]      | 32:32            | 0x0    | 0x0-0x1                          | 输出时钟 DLL 使能信号,高有效                        |
| DLL_CTRL_REG_2 [31:0]    | 31:0             | 0x0    | 0x0-                             | 输出时钟 DLL 控制                              |
|                          |                  |        | 0xfffffff                        | 31:24:输出时钟 DLL 上 CLK4 与 CLK5 的延迟         |
|                          |                  |        |                                  |                                          |
|                          |                  |        |                                  | <br>  15:8:输出时钟 DLL 上 CLK0 与 CLK1 的延迟    |
|                          |                  |        |                                  | 7:0:输出时钟 DLL 上精度值                        |
| CONF_CTL_144[63:0] Offs  | et: 0x9          | 00 DD  | R2 667: 02                       | x0000000000000000                        |
| RDLVL_ERROR_STATUS[37:   | 3237:32          | 0x0    | 0x0-0x3f                         | 指示 RDLVL 发生错误时的状态                        |
| RDLVL_ERROR_STATUS[31:   | 0] 31:0          | 0x0    | 0x0-                             | 指示 RDLVL 发生错误时的状态                        |
| COMP CET 4 (Flee of OF   |                  | 10 DD: | 0xfffffff                        |                                          |
| CONF_CTL_145[63:0] Offs  |                  |        |                                  |                                          |
| RDLVL_GATE_RESP_MASK[    | o <b>3032</b> §2 | 0x0    | 0x0-                             | 采样训练中读返回屏蔽<br>                           |
| RDLVL_GATE_RESP_MASK[    | 31301:0          | 0x0    | 0xfffffff<br>0x0-                | <br>  采样训练中读返回屏蔽                         |
|                          | 7:~              |        | 0xffffffff                       |                                          |
| CONF_CTL_146[63:0] Offs  | et: 0x9          | 20 DD  |                                  | x0000000000000000                        |
| RDLVL_GATE_RESP_MASK[    | 71:76:40]        | 0x0    | 0x0-0xff                         | 采样训练中读返回屏蔽                               |
| CONF_CTL_147[63:0] Offs  | et: 0x9          | 30 DD  | R2 667 : 02                      | x0000000000000000                        |
| RDLVL_RESP_MASK[63:32]   | 63:32            | 0x0    | 0x0-                             | Read Leveling 中读返回屏蔽                     |
|                          |                  |        | 0xffffffff                       |                                          |
| RDLVL_RESP_MASK[31:0]    | 31:0             | 0x0    | 0x0-                             | Read Leveling 中读返回屏蔽                     |
| CONF_CTL_148[63:0] Offs  | et: Ovo          | 40 DD  | 0xfffffff<br><b>B2 667 : 0</b> 3 | x0301010000050500                        |
| TDFI_RDLVL_EN            | 59:56            | 0x0    | 0x0-0xf                          | Read Leveling 使能到 Read Leveling 读之间的最    |
|                          | 30.00            | 0110   | 0110 0211                        | 小周期数                                     |
| W2R_SAMECS_DLY           | 50:48            | 0x0    | 0x0-0x7                          | 对同一个片选信号,写到读之间的附加延迟                      |
|                          |                  |        |                                  | ı                                        |



| 参数名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 位       | 初值    | 范围                    | 描述                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----------------------|-----------------------------------------|--|
| W2R_DIFFCS_DLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42:40   | 0x0   | 0x0-0x7               | 对不同片选信号,写到读之间的附加延迟                      |  |
| LVL_STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34:32   | 0x0   | 0x0-0x7               | Write Leveling ,Read Leveling 与采样训练请求   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                       | 的状态,用于 LVL_REQ 中断 (只读)                  |  |
| RDLVL_EDGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24      | 0x0   | 0x0-0x1               | Read Leveling 操作中,指明 DQS 上升沿有效或         |  |
| GMGDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.10   |       |                       | 下降沿有效                                   |  |
| CKSRX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19:16   | 0x0   | 0x0-0x0               | 退出自刷新模式的时钟周期延迟                          |  |
| CKSRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11:8    | 0x0   | 0x0-0x0               | 进入自刷新模式的时钟周期延迟                          |  |
| RDLVL_RESP_MASK[71:64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7:0     | 0x0   | 0x0-0xff              | Read Leveling 中读返回屏蔽                    |  |
| CONF_CTL_149[63:0] Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       | I                     |                                         |  |
| INT_MASK[17:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41:24   | 0x0   | 0x0-                  | 中断屏蔽                                    |  |
| TXPDLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23:8    | 0x0   | 0x3ffff<br>0x0-0xffff | DRAM TXPDLL parameter in cycles.        |  |
| TDFI_WRLVL_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:0     | 0x0   | 0x0-0xf               | Write Leveling 使能到 Write Leveling 读操作最小 |  |
| TETTE VIOLENCE VIOLEN | 0.0     | 0110  | ONO ONI               | 周期数                                     |  |
| CONF_CTL_150[63:0] Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | et: 0x9 | 60 DD | R2 667 : 0:           |                                         |  |
| RDLAT_ADJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60:56   | 0x0   | 0x0-0x1f              | PHY 读延迟周期                               |  |
| WRLAT_ADJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51:48   | 0x0   | 0x0-0xf               | PHY 写延迟周期                               |  |
| SWLVL_START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40      | 0x0   | 0x0-0x1               | 软件 Leveling 模式下开始操作 (只写)                |  |
| SWLVL_LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32      | 0x0   | 0x0-0x1               | 软件 Leveling 模式下装入操作 (只写)                |  |
| SWLVL_EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24      | 0x0   | 0x0-0x1               | 软件 Leveling 模式下退出操作 (只写)                |  |
| INT_STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18:0    | 0x0   | 0x0-                  | 中断状态(只读)                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 0x7ffff               |                                         |  |
| CONF_CTL_151[63:0] Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       | ı                     |                                         |  |
| CONCURRENTAP_WR_ONL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y 56    | 0x0   | 0x0-0x1               | 写操作之后读操作之前是否通过等待写恢复时间                   |  |
| CKE_STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40      | 00    | 00 01                 | 来阻止并发的 auto-precharge 操作                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48      | 0x0   | 0x0-0x1<br>0x0-       | 指示 CKE_STATUS(只读)<br>中断清除(只写)           |  |
| INT_ACK [16:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40:24   | 0x0   | 0x0-<br>0x1ffff       | 中國用隊(八与)                                |  |
| DLL_RST_DELAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23:8    | 0x0   | 0x0-0xffff            | DLL 复位最小周期数                             |  |
| DLL_RST_ADJ_DLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7:0     | 0x0   | 0x0-0xff              | 配置 DLL 精度到 DLL 复位结束的最小周期数               |  |
| CONF_CTL_152[63:0] Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | et: 0x9 | 80 DD |                       | x0001010001000101                       |  |
| ZQ_IN_PROGRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56      | 0x0   | 0x0-0x1               | 指示 ZQ 操作正在进行 (只读)                       |  |
| ZQCS_ROTATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48      | 0x0   | 0x0-0x1               | 使能 ZQCS ( short ZQ ) 轮流校正。当该位为 0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                       | 时,每次 ZQCS 请求命令会对系统中所有的片选                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                       | 进行校正,当该位置为1时,系统在每个ZQCS命                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                       | 令到来时只对一个片选进行校正,系统会轮流校正                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                       | 所有的片选。ZQCS 和 REFRESH_PER_ZQ 参数          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                       | 的设置应该与该位一致                              |  |
| WRLVL_REG_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40      | 0x0   | 0x0-0x1               | 使能写 wrlvl_delay 寄存器                     |  |
| WRLVL_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32      | 0x0   | 0x0-0x1               | 使能控制器的 Write Leveling 功能                |  |
| RESYNC_DLL_PER_AREF_E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N 24    | 0x0   | 0x0-0x1               | 使能在每个刷新命令之后 DLL 自动同步                    |  |
| RESYNC_DLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16      | 0x0   | 0x0-0x1               | 发起一个 DLL 同步命令 (只写)                      |  |
| RDLVL_REG_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8       | 0x0   | 0x0-0x1               | 使能写 rdlvl_delay 寄存器                     |  |
| RDLVL_GATE_REG_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 0x0   | 0x0-0x1               | 使能写 rdlvl_gate_delay 寄存器                |  |
| CONF_CTL_153[63:0] Offset: 0x990 DDR2 667: 0x0101020202010100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |       |                       |                                         |  |



| 参数名称                    | 位                | 初值     | 范围          | 描述                                  |
|-------------------------|------------------|--------|-------------|-------------------------------------|
| W2W_SAMECS_DLY          | 58:56            | 0x0    | 0x0-0x7     | 对同一个片选的写命令到写命令的附加延时时钟               |
|                         |                  |        |             | 周期数                                 |
| W2W_DIFFCS_DLY          | 50:48            | 0x0    | 0x0-0x7     | 对不同片选的写命令到写命令的附加延时时钟周               |
|                         |                  |        |             | 期数                                  |
| TBST_INT_INTERVAL       | 42:40            | 0x0    | 0x0-0x7     | DRAM burst 中断间隔周期数                  |
| R2W_SAMECS_DLY          | 34:32            | 0x0    | 0x0-0x7     | 对同一个片选的读命令到写命令的附加延时时钟               |
|                         |                  |        |             | 周期数                                 |
| R2W_DIFFCS_DLY          | 26:24            | 0x0    | 0x0-0x7     | 对不同片选的读命令到写命令的附加延时时钟周               |
|                         |                  |        |             | 期数                                  |
| R2R_SAMECS_DLY          | 18:16            | 0x0    | 0x0-0x7     | 对同一个片选的读命令到读命令的附加延时时钟               |
| Dan Diffeed DIV         | 10.0             | 0.0    | 0.00.7      | 周期数                                 |
| R2R_DIFFCS_DLY          | 10:8             | 0x0    | 0x0-0x7     | 对不同片选的读命令到读命令的附加延时时钟周               |
| AXI_ALIGNED_STROBE_DIS  | A PHOE           | 0x0    | 0x0-0x7     | <u>期数</u> 当 AXI 端口的事务具有以下特征之一时: 一、事 |
| AALADIGNED-511(OBE-DIC  | A 12 IVIL        | UAU    | 0.00-0.7    | 务的起始地址和结束地址按用户字对齐; 二、事务             |
|                         |                  |        |             | 长度为一个用户字(128 位),禁止 AXI Strobe,      |
|                         |                  |        |             | 每位对应一个AXI端口。                        |
|                         |                  |        |             |                                     |
|                         |                  |        |             | 当设为0时,写操作会按照读-修改-写的顺序执              |
|                         |                  |        |             |                                     |
|                         |                  |        |             | 当设为1时,写操作作为一个标准的写操作(非               |
| CONF_CTL_154[63:0] Offs | ot. Ove          | *** DD | P2 667 . 0: | 读-修改-写的顺序)<br>0707040200060100      |
| TDFI_WRLVL_LOAD         | 63:56            | 0x0    | 0x0-0xff    | 写 Leveling 延时数有效到第一个写 Leveling Load |
| I DFI_W KLV L_LOAD      | 05.50            | UXU    | UXU-UXII    | 命令的最小时钟周期数                          |
| TDFI_RDLVL_LOAD         | 55:48            | 0x0    | 0x0-0xff    | 读 Leveling 延时数有效到第一个读 Leveling Load |
|                         | 00.10            | OAO    | ONO ONII    | 命令的最小时钟周期数                          |
| TCKESR                  | 44:40            | 0x0    | 0x0-0x1f    | 自刷新进入到退出时 CKE 保持为低电平的最小时            |
|                         |                  |        |             | 钟周期数                                |
| TCCD                    | 36:32            | 0x0    | 0x0-0x1f    | CASn 到 CASn 命令的延时                   |
| ADD_ODT_CLK_DIFFTYPE_   | D <b>28:2</b> CS | 0x0    | 0x0-0x1f    | 为了满足 ODT 时序,对不同片选的不同命令之间            |
|                         |                  |        |             | 插入的附加时钟周期数                          |
| TRP_AB                  | 19:16            | 0x0    | 0x0-0xf     | 对所有 bank 的 trp 时间                   |
| ADD_ODT_CLK_SAMETYPE    | DIFF             | S0x0   | 0x0-0xf     | 为了满足 ODT 时序,对不同片选的同类型命令之            |
|                         |                  |        |             | 间插入的附加时钟周期数                         |
| ADD_ODT_CLK_DIFFTYPE_   | SA3MOEC          | S0x0   | 0x0-0xf     | 为了满足 ODT 时序,对同一片选的不同命令之间            |
|                         |                  |        |             | 插入的附加时钟周期数                          |
| CONF_CTL_155[63:0] Offs | I                | ı      |             |                                     |
| ZQINIT                  | 59:48            | 0x0    | 0x0-0xfff   | DRAM 初始化过程中 ZQ 命令需要的时钟周期数           |
| ZQCL                    | 43:32            | 0x0    | 0x0-0xfff   | 正常的 ZQCL 命令需要的时钟周期数,它应等于            |
|                         |                  |        |             | ZQINIT 的一半                          |
| TDFI_WRLVL_WW           | 25:16            | 0x0    | 0x0-0x3ff   | 连续两次写 leveling 命令之间的最小时钟周期数         |
| TDFI_RDLVL_RR           | 9:0              | 0x0    | 0x0-0x3ff   | 连续两次读 leveling 命令之间的最小时钟周期数         |
| CONF_CTL_156[63:0] Offs | et: 0x9          | c0 DD  | R2 667 : 02 | x0a5200000000000                    |
| MR0_DATA_0              | 62:48            | 0x0    | 0x0-        | 对应片选0的模式寄存器0配置值                     |
|                         |                  |        | 0x7fff      |                                     |
| TDFI_PHYUPD_TYPE3       | 45:32            | 0x0    | 0x0-        | 保存 DFI Tphyupd_type3 参数(只读)         |
|                         |                  |        | 0x3fff      |                                     |



| 参数名称                                                                             | 位       | 初值    | 范围                                                                                               | 描述                                            |  |  |
|----------------------------------------------------------------------------------|---------|-------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| TDFI_PHYUPD_TYPE2                                                                | 29:16   | 0x0   | 0x0-                                                                                             | 保存 DFI Tphyupd_type2 参数 (只读)                  |  |  |
|                                                                                  | 100     |       | 0x3fff                                                                                           | Ut promise to AW (Dit)                        |  |  |
| TDFI_PHYUPD_TYPE1                                                                | 13:0    | 0x0   | 0x0-<br>0x3fff                                                                                   | 保存 DFI Tphyupd_type1 参数 (只读)                  |  |  |
| CONF_CTL_157[63:0] Offs                                                          | et: 0x9 | d0 DD | $\begin{array}{c} \downarrow \\ \text{x}00440 \text{a} 520 \text{a} 520 \text{a} 52 \end{array}$ |                                               |  |  |
| MR1_DATA_0                                                                       | 62:48   | 0x0   | 0x0-                                                                                             | 对应片选0的模式寄存器1配置值                               |  |  |
|                                                                                  | 02120   | 0110  | 0x7fff                                                                                           |                                               |  |  |
| MR0_DATA_3                                                                       | 46:32   | 0x0   | 0x0-                                                                                             | 对应片选3的模式寄存器0配置值                               |  |  |
|                                                                                  |         |       | 0x7fff                                                                                           |                                               |  |  |
| MR0_DATA_2                                                                       | 30:16   | 0x0   | 0x0-                                                                                             | 对应片选2的模式寄存器0配置值                               |  |  |
| MR0_DATA_1                                                                       | 14:0    | 0x0   | 0x7fff<br>0x0-                                                                                   | 对应片选1的模式寄存器0配置值                               |  |  |
| WII(O_D71171_I                                                                   | 11.0    | OXO   | 0x7ffff                                                                                          | /1/2/1/2011/K/N N ITHE O HOLL ID              |  |  |
| CONF_CTL_158[63:0] Offs                                                          | et: 0x9 | e0 DD |                                                                                                  | x0000004400440044                             |  |  |
| MR2_DATA_0                                                                       | 62:48   | 0x0   | 0x0-                                                                                             | 对应片选0的模式寄存器2配置值                               |  |  |
|                                                                                  |         |       | 0x7fff                                                                                           |                                               |  |  |
| MR1_DATA_3                                                                       | 46:32   | 0x0   | 0x0-                                                                                             | 对应片选3的模式寄存器1配置值                               |  |  |
| MR1_DATA_2                                                                       | 30:16   | 0x0   | 0x7fff<br>0x0-                                                                                   | <br>  对应片选 2 的模式寄存器 1 配置值                     |  |  |
| WIKI DATA 2                                                                      | 30.10   | UXU   | 0x0-<br>0x7fff                                                                                   | 内四月远~时候八司行船 I 癿直直                             |  |  |
| MR1_DATA_1                                                                       | 14:0    | 0x0   | 0x0-                                                                                             | 对应片选1的模式寄存器1配置值                               |  |  |
|                                                                                  |         |       | 0x7fff                                                                                           |                                               |  |  |
| CONF_CTL_159[63:0] Offs                                                          | et: 0x9 | fo DD | R2 667 : 02                                                                                      | x000000000000000                              |  |  |
| MR3_DATA_0                                                                       | 62:48   | 0x0   | 0x0-                                                                                             | 对应片选0的模式寄存器3配置值                               |  |  |
| MR2_DATA_3                                                                       | 46:32   | 0x0   | 0x7fff<br>0x0-                                                                                   | <br>  対应片选 3 的模式寄存器 2 配置值                     |  |  |
| MR2_DATA_3                                                                       | 40:52   | UXU   | 0x0-<br>0x7fff                                                                                   | 內四月处3的侯氏司任命2批直阻                               |  |  |
| MR2_DATA_2                                                                       | 30:16   | 0x0   | 0x0-                                                                                             | 对应片选2的模式寄存器2配置值                               |  |  |
|                                                                                  |         |       | 0x7fff                                                                                           |                                               |  |  |
| MR2_DATA_1                                                                       | 14:0    | 0x0   | 0x0-                                                                                             | 对应片选1的模式寄存器2配置值                               |  |  |
| CONTROLL 100[00 0] Off                                                           | 1 0     | 00 DD | 0x7fff                                                                                           | 000000000000000000000000000000000000000       |  |  |
| CONF_CTL_160[63:0] Offs                                                          |         |       |                                                                                                  |                                               |  |  |
| DFI_WRLVL_MAX_DELAY                                                              | 63:48   | 0x0   | 0x0-0xffff                                                                                       | Hareware Write leveling 会使用的延迟线的最大级数          |  |  |
| MR3_DATA_3                                                                       | 46:32   | 0x0   | 0x0-                                                                                             | 对应片选3 的模式寄存器3配置值                              |  |  |
|                                                                                  |         |       | 0x7fff                                                                                           |                                               |  |  |
| MR3_DATA_2                                                                       | 30:16   | 0x0   | 0x0-                                                                                             | 对应片选2的模式寄存器3配置值                               |  |  |
| MD2 DATA 1                                                                       | 14.0    | 00    | 0x7fff                                                                                           | 对应从选上的模型安存现 9 配置店                             |  |  |
| MR3_DATA_1                                                                       | 14:0    | 0x0   | 0x0-                                                                                             | 对应片选1的模式寄存器3配置值                               |  |  |
| CONF_CTL_161[63:0] Offs                                                          | et: 0xa | 10 DD | 0x7fff <b>R2 667 : 0</b> :                                                                       | $\times 000000000000000000000000000000000000$ |  |  |
| RDLVL_BEGIN_DELAY_3                                                              | 63:48   | 0x0   | 0x0-0xffff                                                                                       | 第3数据组中,Read Leveling 时从第一个1到0                 |  |  |
|                                                                                  | 00120   | 0110  |                                                                                                  | 的延迟单元数目                                       |  |  |
| RDLVL_BEGIN_DELAY_2                                                              | 47:32   | 0x0   | 0x0-0xffff                                                                                       | 第2数据组中,Read Leveling 时从第一个1到0                 |  |  |
|                                                                                  |         |       |                                                                                                  | 的延迟单元数目                                       |  |  |
| RDLVL_BEGIN_DELAY_1                                                              | 31:16   | 0x0   | 0x0-0xffff                                                                                       | 第1数据组中,Read Leveling 时从第一个1到0                 |  |  |
| DDIVI DECIM DELAW :                                                              | 15.0    | 0.0   | 0.00 000                                                                                         | 的延迟单元数目                                       |  |  |
| RDLVL_BEGIN_DELAY_0                                                              | 15:0    | 0x0   | 0x0-0xffff                                                                                       | 第 0 数据组中,Read Leveling 时从第一个 1 到 0            |  |  |
| CONF CTL 162[63:0] Offe                                                          | ot. Ovo | 20 DD | R2 667 . O                                                                                       | │ 的延迟单元数目<br><b>~00000000000000</b>           |  |  |
| CONF_CTL_162[63:0] Offset: 0xa20 DDR2 667: 0x00000000000000000000000000000000000 |         |       |                                                                                                  |                                               |  |  |



| 参数名称                    | 位       | 初值    | 范围                      | 描述                              |
|-------------------------|---------|-------|-------------------------|---------------------------------|
| RDLVL_BEGIN_DELAY_7     | 63:48   | 0x0   | 0x0-0xffff              | 第7数据组中,Read Leveling 时从第一个1到0   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_BEGIN_DELAY_6     | 47:32   | 0x0   | 0x0-0xffff              | 第6数据组中,Read Leveling 时从第一个1到0   |
|                         |         |       |                         |                                 |
| RDLVL_BEGIN_DELAY_5     | 31:16   | 0x0   | 0x0-0xffff              | 第5数据组中,Read Leveling 时从第一个1到0   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_BEGIN_DELAY_4     | 15:0    | 0x0   | 0x0-0xffff              | 第4数据组中,Read Leveling 时从第一个1到0   |
|                         |         |       |                         | 的延迟单元数目                         |
| CONF_CTL_163[63:0] Offs | et: 0xa | 30 DD | R2 667: 0               | x0000000000000000               |
| RDLVL_DELAY_2           | 63:48   | 0x0   | 0x0-0xffff              | 第2数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 且                               |
| RDLVL_DELAY_1           | 47:32   | 0x0   | 0x0-0xffff              | 第 1 数据组中,Read Leveling 使用的延迟单元数 |
|                         |         |       |                         | 且                               |
| RDLVL_DELAY_0           | 31:16   | 0x0   | 0x0-0xffff              | 第0数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 且                               |
| RDLVL_BEGIN_DELAY_8     | 15:0    | 0x0   | 0x0-0xffff              | 第8数据组中,Read Leveling 时从第一个1到0   |
|                         |         |       |                         | 的延迟单元数目                         |
| CONF_CTL_164[63:0] Offs | et: 0xa | 40 DD | R2~667:~0               | x000000000000000                |
| RDLVL _DELAY_6          | 63:48   | 0x0   | 0x0-0xffff              | 第6数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 且                               |
| RDLVL_DELAY_5           | 47:32   | 0x0   | 0x0-0xffff              | 第5数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 且                               |
| RDLVL_DELAY_4           | 31:16   | 0x0   | 0x0-0xffff              | 第 4 数据组中,Read Leveling 使用的延迟单元数 |
|                         |         |       |                         | 且                               |
| RDLVL_DELAY_3           | 15:0    | 0x0   | 0x0-0xffff              | 第3数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 目                               |
| CONF_CTL_165[63:0] Offs | et: 0xa | 50 DD | R2 667 : 0:             | x000000000000000                |
| RDLVL_END_DELAY_1       | 63:48   | 0x0   | 0x0-0xffff              | 第1数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_END_DELAY_0       | 47:32   | 0x0   | 0x0-0xffff              | 第0数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_DELAY_8           | 31:16   | 0x0   | 0x0-0xffff              | 第8数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 目                               |
| RDLVL_DELAY_7           | 15:0    | 0x0   | 0x0-0xffff              | 第7数据组中,Read Leveling 使用的延迟单元数   |
|                         |         |       |                         | 且                               |
| CONF_CTL_166[63:0] Offs | 1       | 60 DD | 1                       |                                 |
| RDLVL_END_DELAY_5       | 63:48   | 0x0   | 0x0-0xffff              | 第5数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_END_DELAY_4       | 47:32   | 0x0   | 0x0-0xffff              | 第4数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_END_DELAY_3       | 31:16   | 0x0   | 0x0-0xffff              | 第3数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |
| RDLVL_END_DELAY_2       | 15:0    | 0x0   | 0x0-0xffff              | 第2数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |
| CONF_CTL_167[63:0] Offs | et: 0xa | 70 DD | $\mathbf{R2} \ 667 : 0$ |                                 |
| RDLVL_GATE_DELAY_0      | 63:48   | 0x0   | 0x0-0xffff              | 第0数据组中,采样时机到选通信号上升沿的延迟          |
|                         |         |       |                         | 单元个数                            |
| RDLVL_END_DELAY_8       | 47:32   | 0x0   | 0x0-0xffff              | 第8数据组中,Read Leveling 时从第一个0到1   |
|                         |         |       |                         | 的延迟单元数目                         |



| 参数名称                     | 位         | 初值    | 范围         | 描述                                                 |
|--------------------------|-----------|-------|------------|----------------------------------------------------|
| RDLVL_END_DELAY_7        | 31:16     | 0x0   | 0x0-0xffff | 第7数据组中,Read Leveling 时从第一个0到1                      |
|                          |           |       |            | 的延迟单元数目                                            |
| RDLVL_END_DELAY_6        | 15:0      | 0x0   | 0x0-0xffff | 第6数据组中,Read Leveling 时从第一个0到1                      |
| COME CEL 100[00 0] OF    |           | 00 DD | 的延迟单元数目    |                                                    |
| CONF_CTL_168[63:0] Offs  |           |       | 1          |                                                    |
| RDLVL_GATE_DELAY_4       | 63:48     | 0x0   | 0x0-0xffff | 第4数据组中,采样时机到选通信号上升沿的延迟<br>单元个数                     |
| RDLVL_GATE_DELAY_3       | 47:32     | 0x0   | 0x0-0xffff | 第3数据组中,采样时机到选通信号上升沿的延迟<br>单元个数                     |
| RDLVL_GATE_DELAY_2       | 31:16     | 0x0   | 0x0-0xffff | 第2数据组中,采样时机到选通信号上升沿的延迟<br>单元个数                     |
| RDLVL_GATE_DELAY_1       | 15:0      | 0x0   | 0x0-0xffff | 第1数据组中,采样时机到选通信号上升沿的延迟<br>单元个数                     |
| CONF_CTL_169[63:0] Offs  | et: 0xa   | 90 DD | R2 667: 0  |                                                    |
| RDLVL_GATE_DELAY_8       | 63:48     | 0x0   | 0x0-0xffff | 第8数据组中,采样时机到选通信号上升沿的延迟                             |
|                          |           |       |            | 单元个数                                               |
| RDLVL_GATE_DELAY_7       | 47:32     | 0x0   | 0x0-0xffff | 第7数据组中,采样时机到选通信号上升沿的延迟<br>单元个数                     |
| RDLVL_GATE_DELAY_6       | 31:16     | 0x0   | 0x0-0xffff | 第6数据组中,采样时机到选通信号上升沿的延迟                             |
|                          | 0 = 1 = 0 | 0110  |            | 单元个数                                               |
| RDLVL_GATE_DELAY_5       | 15:0      | 0x0   | 0x0-0xffff | 第5数据组中,采样时机到选通信号上升沿的延迟                             |
| CONTROLL AMOING OF OWN   |           | 6 DD  | Do 00= 0   | 单元个数                                               |
| CONF_CTL_170[63:0] Offs  |           |       |            |                                                    |
| RDLVL_MIDPOINT_DELAY.    | 0 63:48   | 0x0   | 0x0-0xffff | 当 Hardware read leveling 模块使能时,等于                  |
|                          |           |       |            | rdlvl_begin_delay_0 和 rdlvl_end_delay_0 的中间        |
| RDLVL_MAX_DELAY          | 47:32     | 0x0   | 0x0-0xffff | 值,否则,等于 rdlvl_delay_0( 只读 ) Read Leveling 延迟线的最大数目 |
| RDLVL_GATE_REFRESH_IN    |           |       | 0x0-0xffff | 两次自动 Gate Training 之间的最大刷新命令                       |
| TODY E-GATE-ITEFTESH-IIV | I DICION  | L OXO | 0X0-0XIIII | 数(应设为 0)                                           |
| RDLVL_GATE_MAX_DELAY     | 15:0      | 0x0   | 0x0-0xffff | 采样延迟线的最大数目                                         |
| CONF_CTL_171[63:0] Offs  | et: 0xa   | b0 DD | R2 667: 0  | $\mathbf{x}$ 000000000000000000000000000000000000  |
| RDLVL_MIDPOINT_DELAY     |           | 0x0   | 0x0-0xffff | 当 Hardware read leveling 模块使能时,等于                  |
|                          |           |       |            | rdlvl_begin_delay_4 和 rdlvl_end_delay_4 的中间        |
|                          |           |       |            | 值,否则,等于 rdlvl_delay_4( 只读 )                        |
| RDLVL_MIDPOINT_DELAY_    | 3 47:32   | 0x0   | 0x0-0xffff | 当 Hardware read leveling 模块使能时,等于                  |
|                          |           |       |            | rdlvl_begin_delay_3 和 rdlvl_end_delay_3 的中间        |
|                          |           |       |            | 值,否则,等于 rdlvl_delay_3( 只读 )                        |
| RDLVL_MIDPOINT_DELAY.    | 2 31:16   | 0x0   | 0x0-0xffff | 当 Hardware read leveling 模块使能时,等于                  |
|                          |           |       |            | rdlvl_begin_delay_2 和 rdlvl_end_delay_2 的中间        |
|                          |           |       |            | 值, 否则, 等于 rdlvl_delay_2( 只读 )                      |
| RDLVL_MIDPOINT_DELAY.    | 1 15:0    | 0x0   | 0x0-0xffff | 当 Hardware read leveling 模块使能时,等于                  |
|                          |           |       |            | rdlvl_begin_delay_1 和 rdlvl_end_delay_1 的中间        |
|                          |           |       |            | 值,否则,等于 rdlvl_delay_1( 只读 )                        |
| CONF_CTL_172[63:0] Offs  |           |       | T          | x0000000000000000                                  |
| RDLVL_MIDPOINT_DELAY_    | 8 63:48   | 0x0   | 0x0-0xffff | 当 Hardware read leveling 模块使能时,等于                  |
|                          |           |       |            | rdlvl_begin_delay_8 和 rdlvl_end_delay_8 的中间        |
|                          |           |       |            | 值,否则,等于 rdlvl_delay_8( 只读 )                        |



| 参数名称                    | 位       | 初值     | 范围          | 描述                                          |
|-------------------------|---------|--------|-------------|---------------------------------------------|
| RDLVL_MIDPOINT_DELAY_   | 7 47:32 | 0x0    | 0x0-0xffff  | 当 Hardware read leveling 模块使能时,等于           |
|                         |         |        |             | rdlvl_begin_delay_7 和 rdlvl_end_delay_7 的中间 |
|                         |         |        |             | 值,否则,等于 rdlvl_delay_7( 只读 )                 |
| RDLVL_MIDPOINT_DELAY_   | 6 31:16 | 0x0    | 0x0-0xffff  | 当 Hardware read leveling 模块使能时,等于           |
|                         |         |        |             | rdlvl_begin_delay_6 和 rdlvl_end_delay_6 的中间 |
|                         |         |        |             | 值, 否则, 等于 rdlvl_delay_6( 只读 )               |
| RDLVL_MIDPOINT_DELAY_   | 5 15:0  | 0x0    | 0x0-0xffff  | 当 Hardware read leveling 模块使能时,等于           |
|                         |         |        |             | rdlvl_begin_delay_5 和 rdlvl_end_delay_5 的中间 |
|                         |         |        |             | 值,否则,等于 rdlvl_delay_5( 只读 )                 |
| CONF_CTL_173[63:0] Offs | 1       |        |             |                                             |
| RDLVL_OFFSET_DELAY_3    | 63:48   | 0x0    | 0x0-0xffff  | 第3数据组中,到 Read Leveling 中点的偏移                |
| RDLVL_OFFSET_DELAY_2    | 47:32   | 0x0    | 0x0-0xffff  | 第2数据组中,到 Read Leveling 中点的偏移                |
| RDLVL_OFFSET_DELAY_1    | 31:16   | 0x0    | 0x0-0xffff  | 第1数据组中,到 Read Leveling 中点的偏移                |
| RDLVL_OFFSET_DELAY_0    | 15:0    | 0x0    | 0x0-0xffff  | 第0数据组中,到Read Leveling中点的偏移                  |
| CONF_CTL_174[63:0] Offs | et: 0xa | e0 DD  | R2 667 : 02 | k000000000000000                            |
| RDLVL_OFFSET_DELAY_7    | 63:48   | 0x0    | 0x0-0xffff  | 第7数据组中,到 Read Leveling 中点的偏移                |
| RDLVL_OFFSET_DELAY_6    | 47:32   | 0x0    | 0x0-0xffff  | 第6数据组中,到 Read Leveling 中点的偏移                |
| RDLVL_OFFSET_DELAY_5    | 31:16   | 0x0    | 0x0-0xffff  | 第5数据组中,到 Read Leveling 中点的偏移                |
| RDLVL_OFFSET_DELAY_4    | 15:0    | 0x0    | 0x0-0xffff  | 第4数据组中,到 Read Leveling 中点的偏移                |
| CONF_CTL_175[63:0] Offs | et: 0xa | f0 DDI | R2 667 : 0x | :0000000000000000                           |
| WRLVL_DELAY_1           | 63:48   | 0x0    | 0x0-0xffff  | 第1数据组中,控制写 DQS 经 DLL 延迟数                    |
| WRLVL_DELAY_0           | 47:32   | 0x0    | 0x0-0xffff  | 第0数据组中,控制写DQS经DLL延迟数                        |
| RDLVL_REFRESH_INTERVA   | L31:16  | 0x0    | 0x0-0xffff  | 两次自动 Read Leveling 之间的最大刷新命令                |
|                         |         |        |             | 数(应设为0)                                     |
| RDLVL_OFFSET_DELAY_8    | 15:0    | 0x0    | 0x0-0xffff  | 第8数据组中,到Read Leveling中点的偏移                  |
| CONF_CTL_176[63:0] Offs | et: 0xb | 00 DD  | R2 667 : 0: | x000000000000000                            |
| WRLVL_DELAY_5           | 63:48   | 0x0    | 0x0-0xffff  | 第5数据组中,控制写 DQS 经 DLL 延迟数                    |
| WRLVL_DELAY_4           | 47:32   | 0x0    | 0x0-0xffff  | 第4数据组中, 控制写 DQS 经 DLL 延迟数                   |
| WRLVL_DELAY_3           | 31:16   | 0x0    | 0x0-0xffff  | 第3数据组中,控制写 DQS 经 DLL 延迟数                    |
| WRLVL_DELAY_2           | 15:0    | 0x0    | 0x0-0xffff  | 第2数据组中,控制写 DQS 经 DLL 延迟数                    |
| CONF_CTL_177[63:0] Offs | et: 0xb | 10 DD  | R2 667 : 0: | x0000000000000000                           |
| WRLVL_REFRESH_INTERVA   | 163:48  | 0x0    | 0x0-0xffff  | 两次自动 Write Leveling 之间的最大刷新命令               |
|                         |         |        |             | 数(应设为0)                                     |
| WRLVL_DELAY_8           | 47:32   | 0x0    | 0x0-0xffff  | 第8数据组中,控制写 DQS 经 DLL 延迟数                    |
| WRLVL_DELAY_7           | 31:16   | 0x0    | 0x0-0xffff  | 第7数据组中,控制写 DQS 经 DLL 延迟数                    |
| WRLVL_DELAY_6           | 15:0    | 0x0    | 0x0-0xffff  | 第6数据组中,控制写 DQS 经 DLL 延迟数                    |
| CONF_CTL_178[63:0] Offs | et: 0xb | 20 DD  | R2 667 : 0  | x00000c2d00000c2d                           |
| TDFI_RDLVL_RESP         | 63:32   | 0x0    | 0x0-0xffff  | 保存 DFI Trdlvl_resp 时间参数                     |
| TDFI_RDLVL_MAX          | 31:0    | 0x0    | 0x0-0xffff  | 保存 DFI Trdlvl_max 时间参数                      |
| CONF_CTL_179[63:0] Offs | et: 0xb | 30 DD  | R2 667 : 0: | x00000c2d00000c2d                           |
| TDFI_WRLVL_RESP         | 63:32   | 0x0    | 0x0-0xffff  | 保存 DFI Twrlvl_resp 时间参数                     |
| TDFI_WRLVL_MAX          | 31:0    | 0x0    | 0x0-0xffff  | 保存 DFI Twrlvl_max 时间参数                      |





## 第七章 HT 控制器

龙芯 2H 中,HyperTransport 总线用于连接 3A 芯片。用于外设连接时,用户程序可以自由选择是否支持 IO Cache 一致性(由地址窗口 Uncache 窗口设置,见 7.4.2 节)。在 Cache 一致性支持模式下, IO 设备对内 DMA 访问对于 Cache 层次透明,即不需要通过程序 Cache 指令维护一致性,而是由硬件自动维护其一致性。

HyperTransport 控制器在龙芯 2H 中只支持双向 8 位宽度,最高运行频率为 800Mhz。在系统自动初始化建立连接后,用户可通过修改协议中的配置寄存器对需要的运行频率与宽度进行修改,重新初始化,详细方法见 7.1 节。

龙芯 2H HyperTransport 控制器的主要特征如下:

- 支持 200/400/800Mhz
- 支持 8 位宽度
- 总线控制信号(包括 PowerOK, Rstn, LDT\_Stopn)方向可配置
- 外设 DMA 空间 Cache/Uncache 可配置
- HT0 控制器只能用于连接 3A

注:以下的控制器配置及初始化中所有的 Hi 信号和控制位宽的寄存器都写成定值了,不可配置与访问。

## 7.1 HT 硬件设置及初始化

HyperTransport 的初始化在每次复位完成后自动开始,冷启动后 HyperTransport 总线将自动工作在最低频率 (200Mhz) 与最小宽度 (8bit),并尝试进行总线初始化握手。初始化是否完成的状态可以由寄存器"Init Complete"(见7.3.2节)读出。初始化完成后,总线的宽度可以由寄存器"Link Width Out"与"Link Width In"(见7.3.2节)读出。在初始化完成后,用户可以重新对寄存器"Link Width Out","Link Width In"以及"Link Freq"进行编程,同时需要对对方设备的相应寄存器也进行编程,编程完成后需要重新热复位总线或是通过 HT\_Ldt\_Stopn 信号对总线进行重新初始化操作,以使编程后的值在重新初始化后生效。在重新初始化后 HyperTransport 总线将工作在新的频率和宽度。需要注意的是,HyperTransport 两端的设备的配置需要一一对应,否则将使得 HyperTransport 接口不能正常工作。

## 7.2 HT 协议支持

HyperTransport 总线支持 1.03 协议中的大部分命令,并且在多片互联支持的扩展一致性协议中加入了一些扩展指令,对于两种模式下, HyperTransport 接收端可接收



的命令如下表所示。需要注意的是,不支持 HyperTransport 总线的原子操作命令。

表 7.1: HyperTransport 接收端可接收的命令

| 编码     | 通道  | 命令           | 标准模式                 | 扩展(一致性)            |
|--------|-----|--------------|----------------------|--------------------|
| 000000 | -   | NOP          | 空包或流控                |                    |
| 000001 | NPC | FLUSH        | 无操作                  |                    |
| x01xxx | NPC | Write        | bit 5: 0 - Nonposted | bit 5: 必为1, POSTED |
|        | or  |              | 1 - Posted           | bit 2: 0 - Byte    |
|        | PC  |              | bit 2: 0 - Byte      | 1 - Doubleword     |
|        |     |              | 1 - Doubleword       | bit 1: Don't Care  |
|        |     |              | bit 1: Don't Care    | bit 0: 必为 1        |
|        |     |              | bit 0: Don't Care    |                    |
| 01xxxx | NPC | Read         | bit 3: Don't Care    | bit 3: Don't Care  |
|        |     |              | bit 2: 0 - Byte      | bit 2: 0 - Byte    |
|        |     |              | 1 - Doubleword       | 1 - Doubleword     |
|        |     |              | bit 1: Don't Care    | bit 1: Don't Care  |
|        |     |              | bit 0: Don't Care    | bit 0: 必为 1        |
| 110000 | R   | RdResponse   | 读操作返回                |                    |
| 110011 | R   | TgtDone      | 写操作返回                |                    |
| 110100 | PC  | WrCoherent   | _                    | 写命令扩展              |
| 110101 | PC  | WrAddr       | _                    | 写地址扩展              |
| 111000 | R   | RespCoherent | _                    | 读响应扩展              |
| 111001 | NPC | RdCoherent   | _                    | 读命令扩展              |
| 111010 | PC  | Broadcast    | 无操作                  |                    |
| 111011 | NPC | RdAddr       | _                    | 读地址扩展              |
| 111100 | PC  | FENCE        | 保证序关系                |                    |
| 111111 | -   | Sync/Error   | Sync/Error           |                    |

对于发送端,在两种模式下会向外发送的命令如下表所示。

表 7.2: HyperTransport 发送端会向外发送的命令

| 编码     | 通道  | 命令           | 标准模式                 | 扩展(一致性)             |
|--------|-----|--------------|----------------------|---------------------|
| 000000 | -   | NOP          | 空包或流控                |                     |
| x01x0x | NPC | Write        | bit 5: 0 - Nonposted | bit 5: 必为 1, POSTED |
|        | or  |              | 1 - Posted           | bit 2: 0 - Byte     |
|        | PC  |              | bit 2: 0 - Byte      | 1 - Doubleword      |
|        |     |              | 1 - Doubleword       | bit 0: 必为 1         |
|        |     |              | bit 0: 必为 0          |                     |
| 010x0x | NPC | Read         | bit 2: 0 - Byte      | bit 2: 0 - Byte     |
|        |     |              | 1 - Doubleword       | 1 - Doubleword      |
|        |     |              | bit 0: Don't Care    | bit 0: 必为 1         |
| 110000 | R   | RdResponse   | 读操作返回                |                     |
| 110011 | R   | TgtDone      | 写操作返回                |                     |
| 110100 | PC  | WrCoherent   | _                    | 写命令扩展               |
| 110101 | PC  | WrAddr       |                      | 写地址扩展               |
| 111000 | R   | RespCoherent | _                    | 读响应扩展               |
| 111001 | NPC | RdCoherent   |                      | 读命令扩展               |



|   | 编码     | 通道  | 命令         | 标准模式 | 扩展(一致性) |
|---|--------|-----|------------|------|---------|
|   | 111011 | NPC | RdAddr     | _    | 读地址扩展   |
| Ī | 111111 | -   | Sync/Error | 只会转发 |         |

## 7.3 HT 配置寄存器

每个寄存存器的具体含义如下节如示:

表 7.3: HT 配置寄存器列表

| 偏移地址 | 名称                     | 描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x30 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x34 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x38 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x3c | Bridge Control         | Bus Reset Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0x40 |                        | Command , Capabilities Pointer , Capability ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x44 | Capability Registers   | Link Config, Link Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x48 | Capability Iteglisters | Revision ID , Link Freq , Link Error , Link Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                        | Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x4c |                        | Feature Capability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0x50 | 自定义寄存器                 | MISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x54 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x58 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x5c |                        | The state of the s |
| 0x60 |                        | HT 总线接收地址窗口 0 使能 (外部访问)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x64 | 接收地址窗口配置寄存器            | HT 总线接收地址窗口 0 基址 (外部访问)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x68 |                        | HT 总线接收地址窗口 1 使能 (外部访问)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x6c |                        | HT 总线接收地址窗口 1 基址 (外部访问)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x70 |                        | HT 总线接收地址窗口 2 使能 (外部访问)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x74 |                        | HT 总线接收地址窗口 2 基址 (外部访问)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x78 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x7c |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x80 |                        | HT 总线中断向量寄存器[ 31:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x84 |                        | HT 总线中断向量寄存器[63:32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x88 |                        | HT 总线中断向量寄存器[95:64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x8c | 中断向量寄存器                | HT 总线中断向量寄存器[ 127:96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0x90 |                        | HT 总线中断向量寄存器[159:128]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0x94 |                        | HT 总线中断向量寄存器[191:160]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0x98 |                        | HT 总线中断向量寄存器[ 223:192]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0x9C |                        | HT 总线中断向量寄存器[ 255:224]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0xA0 |                        | HT 总线中断使能寄存器[ 31:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0xA4 |                        | HT 总线中断使能寄存器[63:32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0xA8 |                        | HT 总线中断使能寄存器[ 95:64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0xAC | 中断使能寄存器                | HT 总线中断使能寄存器[ 127:96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0xB0 | 1 60 10,110 10 11      | HT 总线中断使能寄存器[ 159:128]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0xB4 |                        | HT 总线中断使能寄存器[ 191:160]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -    | •                      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| 偏移地址 | 名称                                   | 描述                             |
|------|--------------------------------------|--------------------------------|
| 0xB8 |                                      | HT 总线中断使能寄存器[ 223:192]         |
| 0xBC |                                      | HT 总线中断使能寄存器[ 255:224]         |
| 0xC0 |                                      | Interrupt Capability           |
| 0xC4 | Interrupt Discovery & Configuration  | DataPort                       |
| 0xC8 | interrupt Discovery & Configuration  | IntrInfo[31:0]                 |
| 0xCC |                                      | IntrInfo[63:32]                |
| 0xD0 |                                      | HT 总线 POST 地址窗口 0 使能 (内部访问)    |
| 0xD4 | POST 地址窗口配置寄存器                       | HT 总线 POST 地址窗口 0 基址 (内部访问)    |
| 0xD8 |                                      | HT 总线 POST 地址窗口 1 使能 (内部访问)    |
| 0xDC |                                      | HT 总线 POST 地址窗口 1 基址 (内部访问)    |
| 0xE0 |                                      | HT 总线可预取地址窗口 0 使能 (内部访问)       |
| 0xE4 | <br>  可预取地址窗口配置寄存器                   | HT 总线可预取地址窗口 0 基址 (内部访问)       |
| 0xE8 | A 1X-XX-Seria in the first of 11 and | HT 总线可预取地址窗口 1 使能 (内部访问)       |
| 0xEC |                                      | Ht 总线可预取地址窗口1基址(内部访问)          |
| 0xF0 | Uncache 地址窗口配置寄存器                    | HT 总线 Uncache 地址窗口 0 使能 (内部访问) |
| 0xF4 |                                      | HT 总线 Uncache 地址窗口 0 基址 (内部访问) |
| 0xF8 |                                      | HT 总线 Uncache 地址窗口 1 使能 (内部访问) |
| 0xFC |                                      | HT 总线 Uncache 地址窗口 1 基址 (内部访问) |

### 7.3.1 Bridge Control

偏移量: 0x3C

复位值: 0x00200000

名称: Bus Reset Control

| 位域    | 名称       | 位宽 | 初值  | 访问  | 描述                       |
|-------|----------|----|-----|-----|--------------------------|
| 31:23 | Reserved | 4  | 0x0 |     | 保留                       |
| 22    | Reset    | 12 | 0x0 | R/W | 总线复位控制:                  |
|       |          |    |     |     | 0→1: HT_RSTn 置 0 , 总线复位  |
|       |          |    |     |     | 1→0: HT_RSTn 置 1 , 总线解复位 |
| 21:0  | Reserved | 5  | 0x0 |     | 保留                       |

### 7.3.2 Capability Registers

偏移量: 0x40

复位值: 0x20010008

名称: Command, Capabilities Pointer, Capability ID

| 位域    | 名称       | 位宽 | 初值  | 访问 | 描述                   |
|-------|----------|----|-----|----|----------------------|
| 31:29 | HOST/Sec | 3  | 0x1 | R  | Command 格式为 HOST/Sec |
| 28:27 | Reserved | 2  | 0x0 | R  | 保留                   |



| 位域    | 名称                   | 位宽 | 初值     | 访问    | 描述                             |
|-------|----------------------|----|--------|-------|--------------------------------|
| 26    | Act as Slave         | 1  | 0x0/0x | l R/W | HOST/SLAVE 模式初始值由引脚 HOST-      |
|       |                      |    |        |       | MODE 决定                        |
|       |                      |    |        |       | HOSTMODE 上拉: 0                 |
|       |                      |    |        |       | HOSTMODE 下拉: 1                 |
| 25    | Reserved             | 1  | 0x0    |       | 保留                             |
| 24    | Host Hide            | 1  | 0x0    | R/W   | 是否禁止来自 HT 总线的寄存器访问             |
| 23    | Reserved             | 1  | 0x0    |       | 保留                             |
| 22:18 | Unit ID              | 5  | 0x0    | R/W   | HOST 模式时:可用于记录使用 ID 个数         |
|       |                      |    |        |       | SLAVE 模式时: 记录自身 Unit ID        |
| 17    | Double Ended         | 1  | 0x0    | R     | 不采用双 HOST 模式                   |
| 16    | Warm Reset           | 1  | 0x1    | R     | Bridge Control 中 reset 采用热复位方式 |
| 15:8  | Capabilities Pointer | 8  | 0xa0   | R     | 下一个 Cap 寄存器偏移地址                |
| 7:0   | Capability ID        | 8  | 0x08   | R     | HyperTransport capability ID   |

偏移量: 0x44

复位值: 0x00112000

名称: Link Config, Link Control

| 位域    | 名称                 | 位宽 | 初值  | 访问  | 描述                              |
|-------|--------------------|----|-----|-----|---------------------------------|
| 31    | Reserved           | 1  | 0x0 |     | 保留                              |
| 30:28 | Link Width Out     | 3  | 0x0 | R/W | 发送端宽度                           |
|       |                    |    |     |     | 冷复位后的值为当前连接的最大宽度,写入此寄           |
|       |                    |    |     |     | 存器的值将会在下次热复位或是 HT Disconnect    |
|       |                    |    |     |     | 之后生效                            |
|       |                    |    |     |     | 000: 8 位方式                      |
|       |                    |    |     |     | 001: 16 位方式                     |
| 27    | Reserved           | 1  | 0x0 |     | 保留                              |
| 26:24 | Link Width In      | 3  | 0x0 | R/W | 接收端宽度                           |
|       |                    |    |     |     | 冷复位后的值为当前连接的最大宽度, 写入此寄          |
|       |                    |    |     |     | 存器的值将会在下次热复位或是 HT Disconnect    |
|       |                    |    |     |     | 之后生效                            |
| 23    | Dw Fc out          | 1  | 0x0 | R   | 发送端不支持双字流控                      |
| 22:20 | Max Link Width out | 3  | 0x1 | R   | HT 总线发送端最大宽度: 16bits            |
| 19    | Dw Fc In           | 1  | 0x0 | R   | 接收端不支持双字流控                      |
| 18:16 | Max Link Width In  | 3  | 0x1 | R   | HT 总线接收端最大宽度: 16bits            |
| 15:14 | Reserved           | 2  | 0x0 |     | 保留                              |
| 13    | LDTSTOP# Tristate  | 1  | 0x1 | R/W | 当 HT 总线进入 HT Disconnect 状态时,是否关 |
|       | Enable             |    |     |     | 闭 HT PHY                        |
|       |                    |    |     |     | 1: 关闭                           |
|       |                    |    |     |     | 0:不关闭                           |
| 12:10 | Reserved           | 3  | 0x0 |     | 保留                              |
| 9     | CRC Error (hi)     | 1  | 0x0 | R/W | 高8位发生CRC错                       |
| 8     | CRC Error (lo)     | 1  | 0x0 | R/W | 低 8 位发生 CRC 错                   |



| 位域  | 名称               | 位宽 | 初值  | 访问  | 描述                         |
|-----|------------------|----|-----|-----|----------------------------|
| 7   | Trans off        | 1  | 0x0 | R/W | HT PHY 关闭控制                |
|     |                  |    |     |     | 处于 16 位总线工作方式时             |
|     |                  |    |     |     | 1:关闭高 / 低 8 位 HT PHY       |
|     |                  |    |     |     | 0:使能低 8 位 HT PHY,          |
|     |                  |    |     |     | 高 8 位 HT PHY 由 bit 0 控制    |
| 6   | End of Chain     | 0  | 0x0 | R   | HT 总线末端                    |
| 5   | Init Complete    | 1  | 0x0 | R   | HT 总线初始化是否完成               |
| 4   | Link Fail        | 1  | 0x0 | R   | 指示连接失败                     |
| 3:2 | Reserved         | 2  | 0x0 |     | 保留                         |
| 1   | CRC Flood Enable | 1  | 0x0 | R/W | 发生 CRC 错误时, 是否 flood HT 总线 |
| 0   | Trans off (hi)   | 1  | 0x0 | R/W | 使用 16 位 HT 总线运行 8 位协议时,    |
|     |                  |    |     |     | 高8位PHY关闭控制                 |
|     |                  |    |     |     | 1:关闭高 8 位 HT PHY           |
|     |                  |    |     |     | 0:使能高8位HTPHY               |

偏移量: 0x48

复位值: 0x80250023

名称: Revision ID , Link Freq , Link Error , Link Freq Cap

| 位域    | 名称              | 位宽 | 初值     | 访问  | 描述                      |
|-------|-----------------|----|--------|-----|-------------------------|
| 31:16 | Link Freq Cap   | 16 | 0x0025 | R   | 支持的 HT 总线频率             |
|       |                 |    |        |     | 200Mhz, 400Mhz, 800Mhz, |
| 15:14 | Reserved        | 2  | 0x0    |     | 保留                      |
| 13    | Over Flow Error | 1  | 0x0    | R   | HT 总线包溢出                |
| 12    | Protocol Error  | 1  | 0x0    | R/W | 协议错误,                   |
|       |                 |    |        |     | 指 HT 总线上收到不可识别的命令       |
| 11:8  | Link Freq       | 4  | 0x0    | R/W | HT 总线工作频率               |
|       |                 |    |        |     | 写入此寄存器的值后将在下次热复位或是 HT   |
|       |                 |    |        |     | Disconnect 之后生效         |
|       |                 |    |        |     | 0000: 200M              |
|       |                 |    |        |     | 0010: 400M              |
|       |                 |    |        |     | 0101: 800M              |
| 7:0   | Revision ID     | 8  | 0x23   | R/W | 版本号: 1.03               |

偏移量: 0x4C

复位值: 0x00000002

名称: Feature Capability

| 位域   | 名称                | 位宽 | 初值  | 访问 | 描述  |
|------|-------------------|----|-----|----|-----|
| 31:9 | Reserved          | 25 | 0x0 |    | 保留  |
| 8    | Extended Register | 1  | 0x0 | R  | 没有  |
| 7:4  | Reserved          | 3  | 0x0 |    | 保留  |
| 3    | Extended CTL Time | 1  | 0x0 | R  | 不需要 |



| 位域 | 名称               | 位宽 | 初值  | 访问 | 描述          |
|----|------------------|----|-----|----|-------------|
| 2  | CRC Test Mode    | 1  | 0x0 | R  | 不支持         |
| 1  | LDTSTOP#         | 1  | 0x1 | R  | 支持 LDTSTOP# |
| 0  | Isochronous Mode | 1  | 0x0 | R  | 不支持         |

### 7.3.3 自定义寄存器

偏移量: 0x50

复位值: 0x00904321

名称: MISC

| 位域    | 名称              | 位宽 | 初值  | 访问  | 描述                                |
|-------|-----------------|----|-----|-----|-----------------------------------|
| 31    | Reserved        | 1  | 0x0 |     | 保留                                |
| 30    | Ldt Stop Gen    | 1  | 0x0 | R/W | 使总线进入 LDT DISCONNECT 模式           |
|       |                 |    |     |     | 正确的方法是: 0 →1                      |
| 29    | Ldt Req Gen     | 1  | 0x0 | R/W | 从 LDT DISCONNECT 中唤醒 HT 总线,设置     |
|       |                 |    |     |     | LDT_REQ_n                         |
|       |                 |    |     |     | 正确的方法是先置 0 再置 1: 0 →1             |
|       |                 |    |     |     | 除此之外,直接向总线发出读写请求也可以自动             |
|       |                 |    |     |     | 唤醒总线                              |
| 28:24 | Interrupt Index | 5  | 0x0 | R/W | 将除了标准中断之外的其它中断重定向到哪个中             |
|       |                 |    |     |     | 断向量中(包括 SMI , NMI , INIT , INTA , |
|       |                 |    |     |     | INTB, INTC, INTD)                 |
|       |                 |    |     |     | 总共256个中断向量,本寄存器表示的是中断向            |
|       |                 |    |     |     | 量的高 5 位,内部中断向量如下:                 |
|       |                 |    |     |     | 000: SMI                          |
|       |                 |    |     |     | 001: NMI                          |
|       |                 |    |     |     | 010: INIT                         |
|       |                 |    |     |     | 011: Reservered                   |
|       |                 |    |     |     | 100: INTA                         |
|       |                 |    |     |     | 101: INTB                         |
|       |                 |    |     |     | 110: INTC                         |
|       |                 |    |     |     | 111: INTD                         |
| 23    | Dword Write     | 1  | 0x1 | R/W | 对于 32/64/128/256 位的写访问, 是否采用      |
|       |                 |    |     |     | Dword Write 命令格式                  |
|       |                 |    |     |     | 1:使用 Dword Write                  |
| 22    | G 1             | -  | 0.0 |     | 0:使用 Byte Write (帯 MASK)          |
| 22    | Coherent Mode   | 1  | 0x0 | R   | 是否是处理器一致性模式                       |
| 21    | Not Care Seqid  | 1  | 0x0 | R/W | 由引脚 ICCC_EN 决定<br>是否不关心 HT 序关系    |
| 20    | Not Axi2Seqid   | 1  | 0x0 | R   | 是否把 Axi 总线上的命令转换成不同的 SeqID,       |
| 20    | 1100 AAIZBEQIU  | 1  | UAI | 16  | 如果不转换,则所有的读写命令都会采用 Fixed          |
|       |                 |    |     |     | Seqid 中的固定 ID 号                   |
|       |                 |    |     |     | 1: 不转换                            |
|       |                 |    |     |     |                                   |
|       |                 |    |     |     | 0:转换                              |



| 位域    | 名称           | 位宽 | 初值  | 访问  | 描述                              |
|-------|--------------|----|-----|-----|---------------------------------|
| 19:16 | Fixed Seqid  | 4  | 0x0 | R/W | 当 Not Axi2Seqid 有效时,配置 HT 总线发出的 |
|       |              |    |     |     | Seqid                           |
| 15:12 | Priority Nop | 4  | 0x4 | R/W | HT 总线 Nop 流控包优先级                |
| 11:8  | Priority NPC | 4  | 0x3 | R/W | Non Post 通道读写优先级                |
| 7:4   | Priority RC  | 4  | 0x2 | R/W | Response 通道读写先级                 |
| 3:0   | Priority PC  | 4  | 0x1 | R/W | Post 通道读写优先级                    |
|       |              |    |     |     | 0x0:最高优先级                       |
|       |              |    |     |     | 0xF: 最低优先级                      |
|       |              |    |     |     | 对于各个通道的优先级均采用根据时间变化提高           |
|       |              |    |     |     | 的优先级策略,该组存器用于配置各个通道的初           |
|       |              |    |     |     | 始优先级                            |

#### 7.3.4 接收地址窗口配置寄存器

本控制器中的地址窗口命中公式如下:

hit = (BASE & MASK) == (ADDR & MASK)

addr\_out = TRANS\_EN ? TRANS | ADDR & MASK : ADDR

值得一提的是,配置地址窗口寄存器时,MASK 高位应全为 1,低位应全为 0。MASK 中 0 的实际位数表示的就是地址窗口的大小。本窗口的地址为 HT 总线上接收的地址。落在本窗口内的 HT 地址将被发往 CPU 内,其它地址的命令将作为 P2P 命令被转发回 HT 总线。

偏移量: 0x60

复位值: 0x00000000

名称: HT 总线接收地址窗口 0 使能(外部访问)

| 位域    | 名称                        | 位宽 | 初值  | 访问  | 描述                          |
|-------|---------------------------|----|-----|-----|-----------------------------|
| 31    | ht_rx_image0_en           | 1  | 0x0 | R/W | HT 总线接收地址窗口 0,使能信号          |
| 30    | ht_rx_image0_trans_en     | 1  | 0x0 | R/W | HT 总线接收地址窗口 0,映射使能信号        |
| 29:23 | Reserved                  | 14 | 0x0 |     | 保留                          |
| 15:0  | ht_rx_image0_trans[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 0,映射后地址的[39:24] |

偏移量: 0x64

复位值: 0x00000000

名称: HT 总线接收地址窗口 0 基址(外部访问)

| 位域    | 名称                       | 位宽 | 初值  | 访问  | 描述                          |
|-------|--------------------------|----|-----|-----|-----------------------------|
| 31:16 | ht_rx_image0_base[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 0,地址基址的[39:24]  |
| 15:0  | ht_rx_image0_mask[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 0,地址屏蔽的[ 39:24] |



偏移量: 0x68

复位值: 0x00000000

名称: HT 总线接收地址窗口 1 使能 (外部访问)

| 位域    | 名称                        | 位宽 | 初值  | 访问  | 描述                          |
|-------|---------------------------|----|-----|-----|-----------------------------|
| 31    | $ht_rx_image1_en$         | 1  | 0x0 | R/W | HT 总线接收地址窗口 1,使能信号          |
| 30    | ht_rx_image1_trans_en     | 1  | 0x0 | R/W | HT 总线接收地址窗口1,映射使能信号         |
| 29:23 | Reserved                  | 14 | 0x0 |     | 保留                          |
| 15:0  | ht_rx_image1_trans[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 1,映射后地址的[39:24] |

偏移量: 0x6c

复位值: 0x00000000

名称: HT 总线接收地址窗口1基址(外部访问)

| 位域    | 名称                       | 位宽 | 初值  | 访问  | 描述                          |
|-------|--------------------------|----|-----|-----|-----------------------------|
| 31:16 | ht_rx_image1_base[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 1,地址基址的[ 39:24] |
| 15:0  | ht_rx_image1_mask[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 1,地址屏蔽的[39:24]  |

偏移量: 0x70

复位值: 0x00000000

名称: HT 总线接收地址窗口 2 使能 (外部访问)

| 位域    | 名称                          | 位宽 | 初值  | 访问  | 描述                          |
|-------|-----------------------------|----|-----|-----|-----------------------------|
| 31    | $ht\_rx\_image2\_en$        | 1  | 0x0 | R/W | HT 总线接收地址窗口 2,使能信号          |
| 30    | $ht\_rx\_image2\_trans\_en$ | 1  | 0x0 | R/W | HT 总线接收地址窗口 2,映射使能信号        |
| 29:23 | Reserved                    | 14 | 0x0 |     | 保留                          |
| 15:0  | ht_rx_image2_trans[39:24]   | 16 | 0x0 | R/W | HT 总线接收地址窗口 2,转译后地址的[39:24] |

偏移量: 0x74

复位值: 0x00000000

名称: HT 总线接收地址窗口 2 基址(外部访问)

| 位域    | 名称                       | 位宽 | 初值  | 访问  | 描述                         |
|-------|--------------------------|----|-----|-----|----------------------------|
| 31:16 | ht_rx_image2_base[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 2,地址基址的[39:24] |
| 15:0  | ht_rx_image2_mask[39:24] | 16 | 0x0 | R/W | HT 总线接收地址窗口 2,地址屏蔽的[39:24] |

#### 7.3.5 中断向量寄存器

中断向量寄存器共 256 个, 其中除去 HT 总线上 Fixed 与 Arbitrated , PIC 中断直接映射到此 256 个中断向量之中, 其它的中断, 如 SMI , NMI , INIT , INTA , INTB



,INTC,INTD 可以通过寄存器 0x50 的 [28:24] 映射到任何一个 8 位中断向量上去,映射的顺序为 INTD,INTC,INTB,INTA,1'b0,INIT,NMI,SMI。此时中断向量对应值为 Interrupt Index, 内部向量 [2:0]。

偏移量: 0x80

复位值: 0x00000000

名称: HT 总线中断向量寄存器[31:0]

| 位域   | 名称                   | 位宽 | 初值  | 访问  | 描述                     |
|------|----------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case[31:0] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 31:0],   |
|      |                      |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0x84

复位值: 0x00000000

名称: HT 总线中断向量寄存器[63:32]

| 位域   | 名称                    | 位宽 | 初值  | 访问  | 描述                     |
|------|-----------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case[63:32] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 63:32],  |
|      |                       |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0x88

复位值: 0x00000000

名称: HT 总线中断向量寄存器[95:64]

| 位域   | 名称                    | 位宽 | 初值  | 访问  | 描述                     |
|------|-----------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case[95:64] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 95:64],  |
|      |                       |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0x8c

复位值: 0x00000000

名称: HT 总线中断向量寄存器[127:96]

| 位域   | 名称                     | 位宽 | 初值  | 访问  | 描述                     |
|------|------------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case[127:96] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 127:96], |
|      |                        |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0x90

复位值: 0x00000000

名称: HT 总线中断向量寄存器[159:128]



| 位域   | 名称                           | 位宽 | 初值  | 访问  | 描述                      |
|------|------------------------------|----|-----|-----|-------------------------|
| 31:0 | $Interrupt\_case[159{:}128]$ | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 159:128], |
|      |                              |    |     |     | 对应中断线 2 /HT HI 对应中断线 6  |

偏移量: 0x94

复位值: 0x00000000

名称: HT 总线中断向量寄存器[191:160]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_case[191:160] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 191:160], |
|      |                         |    |     |     | 对应中断线 2 /HT HI 对应中断线 6  |

偏移量: 0x98

复位值: 0x00000000

名称: HT 总线中断向量寄存器[223:192]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_case[223:192] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 223:192], |
|      |                         |    |     |     | 对应中断线 3 /HT HI 对应中断线 7  |

偏移量: 0x9c

复位值: 0x00000000

名称: HT 总线中断向量寄存器[255:224]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_case[255:224] | 32 | 0x0 | R/W | HT 总线中断向量寄存器[ 255:224], |
|      |                         |    |     |     | 对应中断线 3 /HT HI 对应中断线 7  |

#### 7.3.6 中断使能寄存器

中断使能寄存器共256个,与中断向量寄存器——对应。置1为对应中断打开,置0则为中断屏蔽。

偏移量: 0xa0

复位值: 0x00000000

名称: HT 总线中断使能寄存器[31:0]

| 位域   | 名称                   | 位宽 | 初值  | 访问  | 描述                     |
|------|----------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask[31:0] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 31:0],   |
|      |                      |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |



偏移量: 0xa4

复位值: 0x00000000

名称: HT 总线中断使能寄存器[63:32]

| 位域   | 名称                    | 位宽 | 初值  | 访问  | 描述                     |
|------|-----------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask[63:32] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[63:32],   |
|      |                       |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0xa8

复位值: 0x00000000

名称: HT 总线中断使能寄存器[95:64]

| 位域   | 名称                    | 位宽 | 初值  | 访问  | 描述                     |
|------|-----------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask[95:64] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 95:64],  |
|      |                       |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0xac

复位值: 0x00000000

名称: HT 总线中断使能寄存器[127:96]

| 位域   | 名称                     | 位宽 | 初值  | 访问  | 描述                     |
|------|------------------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask[127:96] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 127:96], |
|      |                        |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0xb0

复位值: 0x00000000

名称: HT 总线中断使能寄存器[159:128]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_mask[159:128] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 159:128], |
|      |                         |    |     |     | 对应中断线 2 /HT HI 对应中断线 6  |

偏移量: 0xb4

复位值: 0x00000000

名称: HT 总线中断使能寄存器[191:160]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_mask[191:160] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 191:160], |
|      |                         |    |     |     | 对应中断线 2 /HT HI 对应中断线 6  |



偏移量: 0xb8

复位值: 0x00000000

名称: HT 总线中断使能寄存器[223:192]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_mask[223:192] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 223:192], |
|      |                         |    |     |     | 对应中断线 3 /HT HI 对应中断线 7  |

偏移量: 0xbc

复位值: 0x00000000

名称: HT 总线中断使能寄存器[255:224]

| 位域   | 名称                      | 位宽 | 初值  | 访问  | 描述                      |
|------|-------------------------|----|-----|-----|-------------------------|
| 31:0 | Interrupt_mask[255:224] | 32 | 0x0 | R/W | HT 总线中断使能寄存器[ 255:224], |
|      |                         |    |     |     | 对应中断线 3 /HT HI 对应中断线 7  |

### 7.3.7 Interrupt Discovery & Configuration

偏移量: 0xc0

复位值: 0x80000008

名称: Interrupt Capability

| 位域    | 名称                   | 位宽 | 初值   | 访问  | 描述                                          |
|-------|----------------------|----|------|-----|---------------------------------------------|
| 31:24 | Capabilities Pointer | 8  | 0x80 | R   | Interrupt discovery and configuration block |
| 23:16 | Index                | 8  | 0x0  | R/W | 读寄存器偏移地址                                    |
| 15:8  | Capabilities Pointer | 8  | 0x0  | R   | Capabilities Pointer                        |
| 7:0   | Capability ID        | 8  | 0x08 | R   | Hypertransport Capablity ID                 |

偏移量: 0xc4

复位值: 0x00000000

名称: Dataport

| 位域   | 名称       | 位宽 | 初值  | 访问  | 描述                           |
|------|----------|----|-----|-----|------------------------------|
| 31:0 | Dataport | 32 | 0x0 | R/W | 当上一寄存器 Index 为 0x10 时,本寄存器读写 |
|      |          |    |     |     | 结果为 0xa8 寄存器, 否则为 0xac       |

偏移量: 0xc8

复位值: 0xF8000000 名称: IntrInfo[31:0]



| 位域    | 名称              | 位宽 | 初值   | 访问  | 描述                                    |
|-------|-----------------|----|------|-----|---------------------------------------|
| 31:24 | IntrInfo[31:24] | 32 | 0xF8 | R   | 保留                                    |
| 23:2  | IntrInfo[23:2]  | 22 | 0x0  | R/W | IntrInfo[23:2],当发出 PIC 中断时,IntrInfo 的 |
|       |                 |    |      |     | 值用来表示中断向量                             |
| 1:0   | Reserved        | 2  | 0x0  | R   | 保留                                    |

偏移量: 0xcc

复位值: 0x00000000

名称: IntrInfo[63:32]

| 位均  | 或名称               | 位宽 | 初值  | 访问 | 描述 |
|-----|-------------------|----|-----|----|----|
| 31: | 0 IntrInfo[63:32] | 32 | 0x0 | R  | 保留 |

#### 7.3.8 POST 地址窗口配置寄存器

本控制器中的地址窗口命中公式如下:

hit = (BASE & MASK) == (ADDR & MASK)

值得一提的是,配置地址窗口寄存器时,MASK 高位应全为1,低位应全为0。MASK中0的实际位数表示的就是地址窗口的大小。本窗口的地址是AXI总线上接收到的地址。落在本窗口的所有写访问将立即在AXIB通道返回,并以POST WRITE的命令格式发给HT总线。而不在本窗口的写请求则以NONPOST WRITE的方式发送到HT总线,并等待HT总线响应后再返回AXI总线。

偏移量: 0xd0

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 0 使能(内部访问)

| 位域    | 名称                    | 位宽 | 初值  | 访问  | 描述                        |
|-------|-----------------------|----|-----|-----|---------------------------|
| 31    | ht_post0_en           | 1  | 0x0 | R/W | HT 总线 POST 地址窗口 0,使能信号    |
| 30:23 | Reserved              | 15 | 0x0 |     | 保留                        |
| 15:0  | ht_post0_trans[39:24] | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 0,转译后地址的[ |
|       |                       |    |     |     | 39:24]                    |

偏移量: 0xd4

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 0 基址 (内部访问)

| 位域    | 名称                   | 位宽 | 初值  | 访问  | 描述                             |
|-------|----------------------|----|-----|-----|--------------------------------|
| 31:16 | ht_post0_base[39:24] | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 0,地址基址的[39:24] |
| 15:0  | ht_post0_mask[39:24] | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 0,地址屏蔽的[39:24] |



偏移量: 0xd8

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 1 使能 (内部访问)

| 位域    | 名称                    | 位宽 | 初值  | 访问  | 描述                        |
|-------|-----------------------|----|-----|-----|---------------------------|
| 31    | ht_post1_en           | 1  | 0x0 | R/W | HT 总线 POST 地址窗口 1,使能信号    |
| 30:23 | Reserved              | 15 | 0x0 |     | 保留                        |
| 15:0  | ht_post1_trans[39:24] | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 1,转译后地址的[ |
|       |                       |    |     |     | 39:24]                    |

偏移量: 0xdc

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 1 基址(内部访问)

| 位域    | 名称                     | 位宽 | 初值  | 访问  | 描述                              |
|-------|------------------------|----|-----|-----|---------------------------------|
| 31:16 | $ht_post1_base[39:24]$ | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 1,地址基址的[39:24]  |
| 15:0  | ht_post1_mask[39:24]   | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 1,地址屏蔽的[ 39:24] |

#### 7.3.9 可预取地址窗口配置寄存器

本控制器中的地址窗口命中公式如下:

hit = (BASE & MASK) == (ADDR & MASK)

值得一提的是,配置地址窗口寄存器时,MASK 高位应全为 1,低位应全为 0。MASK 中 0 的实际位数表示的就是地址窗口的大小。本窗口的地址是 AXI 总线上接收到的地址。落在本窗口的取指指令,CACHE 访问才会被发往 HT 总线,其它的取指或是 CACHE 访问将不会被发往 HT 总线,而是立即返回,如果是读命令,则会返回相应个数的无效读数据。

偏移量: 0xe0

复位值: 0x00000000

名称: HT 总线可预取地址窗口 0 使能(内部访问)

| 位域    | 名称                        | 位宽 | 初值  | 访问  | 描述                       |
|-------|---------------------------|----|-----|-----|--------------------------|
| 31    | ht_prefetch0_en           | 1  | 0x0 | R/W | HT 总线可预取地址窗口 0,使能信号      |
| 30:23 | Reserved                  | 15 | 0x0 |     | 保留                       |
| 15:0  | ht_prefetch0_trans[39:24] | 16 | 0x0 | R/W | HT 总线可预取地址窗口 0 , 转译后地址的[ |
|       |                           |    |     |     | 39:24]                   |

偏移量: 0xe4

复位值: 0x00000000



名称: HT 总线可预取地址窗口 0 基址 (内部访问)

| 位域    | 名称                           | 位宽 | 初值  | 访问  | 描述                          |
|-------|------------------------------|----|-----|-----|-----------------------------|
| 31:16 | $ht\_prefetch0\_base[39:24]$ | 16 | 0x0 | R/W | HT 总线可预取地址窗口 0,地址基址的[39:24] |
|       |                              |    |     |     | 位地址                         |
| 15:0  | $ht\_prefetch0\_mask[39:24]$ | 16 | 0x0 | R/W | HT 总线可预取地址窗口 0,地址屏蔽的[39:24] |

偏移量: 0xe8

复位值: 0x00000000

名称: HT 总线可预取地址窗口 1 使能(内部访问)

| 位域    | 名称                        | 位宽 | 初值  | 访问  | 描述                       |
|-------|---------------------------|----|-----|-----|--------------------------|
| 31    | ht_prefetch1_en           | 1  | 0x0 | R/W | HT 总线可预取地址窗口 1,使能信号      |
| 30:23 | Reserved                  | 15 | 0x0 |     | 保留                       |
| 15:0  | ht_prefetch1_trans[39:24] | 16 | 0x0 | R/W | HT 总线可预取地址窗口 1 , 转译后地址的[ |
|       |                           |    |     |     | 39:24]                   |

偏移量: 0xec

复位值: 0x00000000

名称: HT 总线可预取地址窗口1基址(内部访问)

| 位域    | 名称                       | 位宽 | 初值  | 访问  | 描述                          |
|-------|--------------------------|----|-----|-----|-----------------------------|
| 31:16 | ht_prefetch1_base[39:24] | 16 | 0x0 | R/W | HT 总线可预取地址窗口 1,地址基址的[39:24] |
| 15:0  | ht_prefetch1_mask[39:24] | 16 | 0x0 | R/W | HT 总线可预取地址窗口 1,地址屏蔽的[39:24] |

#### 7.3.10 UNCACHE 地址窗口配置寄存器

本控制器中的地址窗口命中公式如下:

hit = (BASE & MASK) == (ADDR & MASK)

addr\_out = TRANS\_EN ? TRANS | ADDR & MASK : ADDR

值得一提的是,配置地址窗口寄存器时,MASK 高位应全为 1,低位应全为 0。MASK 中 0 的实际位数表示的就是地址窗口的大小。本窗口的地址是 HT 总线上接收到的地址。落在本窗口地址的读写命令,将不会被送往二级 CACHE,也不会使得一级CACHE 发生失效,而是被直接送至内存,或是其它的地址空间。这也就是说这个地址窗口中的读写命令将不会维持 IO 的 CACHE 一致性。这一窗口主要针对一些不会在CACHE 中命中而可以提高存问效率的操作,如显存的访问等。

偏移量: 0xf0

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 0 使能(内部访问)



| 位域    | 名称                       | 位宽 | 初值  | 访问  | 描述                           |
|-------|--------------------------|----|-----|-----|------------------------------|
| 31    | ht_uncache0_en           | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 0,使能信号    |
| 30    | ht_uncache0_trans_en     | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 1,映射使能信号  |
| 29:23 | Reserved                 | 14 | 0x0 |     | 保留                           |
| 15:0  | ht_uncache0_trans[39:24] | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 0,转译后地址的[ |
|       |                          |    |     |     | 39:24]                       |

偏移量: 0xf4

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 0 基址(内部访问)

| 位域    | 名称                          | 位宽 | 初值  | 访问  | 描述                            |
|-------|-----------------------------|----|-----|-----|-------------------------------|
| 31:16 | $ht\_uncache0\_base[39:24]$ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 0 , 地址基址的[ |
|       |                             |    |     |     | 39:24]                        |
| 15:0  | ht_uncache0_mask[39:24]     | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 0,地址屏蔽的[   |
|       |                             |    |     |     | 39:24]                        |

偏移量: 0xf8

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 1 使能(内部访问)

| 位域    | 名称                       | 位宽 | 初值  | 访问  | 描述                           |
|-------|--------------------------|----|-----|-----|------------------------------|
| 31    | ht_uncache1_en           | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 1,使能信号    |
| 30    | ht_uncache1_trans_en     | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 1,映射使能信号  |
| 29:23 | Reserved                 | 14 | 0x0 |     | 保留                           |
| 15:0  | ht_uncache1_trans[39:24] | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 1,转译后地址的[ |
|       |                          |    |     |     | 39:24]                       |

偏移量: 0xfc

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 1 基址 (内部访问)

| 位域    | 名称                      | 位宽 | 初值  | 访问  | 描述                            |
|-------|-------------------------|----|-----|-----|-------------------------------|
| 31:16 | ht_uncache1_base[39:24] | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 1 , 地址基址的[ |
|       |                         |    |     |     | 39:24]                        |
| 15:0  | ht_uncache1_mask[39:24] | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 1 , 地址屏蔽的[ |
|       |                         |    |     |     | 39:24]                        |





## 第八章 PCIE 控制器

### 8.1 使用说明

龙芯 2H 在 PCIE 总线上既可以充当 RC (root complex)也可以充当 EP (end point)。在充当 RC 时,龙芯 2H 的 PCIE 接口既可以充当一个 X4 的 PCIE 端口也可以充当 4 个独立的 X1 的 PCIE 端口;在充当 EP 时,龙芯 2H 的 PCIE 接口可充当 1 个 X4/X1 的 PCIE 接口。

图 1 为龙芯 2H 的 PCIE 控制器结构示意。龙芯 2H 的 PCIE 控制器包含 0  $\sim$  3 号,共 4 个 PCIE 端口。 0 号端口可以以 X4/X1 的方式工作, 1  $\sim$  3 号端口仅能以 X1 的方式工作。作为 RC 时 0  $\sim$  3 号端口可用,但在 X4 模式下仅 0 号端口可用。作为 EP 使用时,仅 0 号端口可用。每个 PCIE 端口均有自己独立的 PCI 地址空间。



图 8.1: PCIE 控制器结构

## 8.2 地址空间划分和地址转换机制

龙芯 2H 处理器的 PCIE 控制器的地址空间划分在 RC 模式和 EP 模式下被区别对待。

### 8.2.1 RC 模式下的地址空间划分

作为RC时所占用的空间分为3部分: mem0、cfg&ctrl、mem1。



Mem0 从 0x10000000 起始,大小为 128MB。在这段空间中处理器的物理地址和 PCIE 端口上的 PCI 地址相同。这段空间被用于访问设备中被映射为 MEM 空间的资源。这段空间可以由一个 X4 端口独享,也可以由 4 个 X1 端口分享。 Mem0 空间被 X1 端口分享时,每个端口均有 32MB 大小的空间。

 起始地址
 大小
 所属端口号

 0x10000000
 32MB
 0

 0x12000000
 32MB
 1 (4X1)/0 (X4)

 0x14000000
 32MB
 2 (4X1)/0 (X4)

 0x16000000
 32MB
 3 (4X1)/0 (X4)

表 8.1: mem0 空间划分

Mem1 从 0x40000000 起始,大小为 1GB。这段空间处理器的物理地址和 PCIE 端口上的 PCI 地址相同。这段空间被用于访问需要映射较大 MEM 空间的设备。这段空间可以由一个 X4 端口独享,也可以由 4 个 X1 端口分享。 Mem1 空间被 X1 端口分享时,每个端口均有 256MB 大小的空间。

| 起始地址       | 大小    | 所属端口号           |
|------------|-------|-----------------|
| 0x40000000 | 256MB | 0               |
| 0x50000000 | 256MB | 1 (4X1) /0 (X4) |
| 0x60000000 | 256MB | 2 (4X1) /0 (X4) |
| 0x70000000 | 256MB | 3 (4X1) /0 (X4) |

表 8 2: mem1 空间划分

Cfg&ctrl 空间从 0x18000000 起始,大小为 16MB 。这个空间由  $0 \sim 3$  号 4 个 PCIE 端口分享,每个端口均有 4MB 空间。当 PCIE 控制器在 X4 模式工作时, $1 \sim 3$  号所属的 cfg&ctrl 空间不可访问。表8.3 给出了这段空间的划分,其中未列出的地址空间为保留空间。

龙芯 2H 处理器 PCIE 模块的内部寄存器在 cfg&ctrl 段中。龙芯 2H 的 PCIE 控制器内部的寄存器包含 3 部分:每个端口都有的 PCIE 头控制寄存器、每个端口都有的端口控制寄存器、phy 控制寄存器。其中对 phy 控制寄存器的访问以字节访问的形式进行,而其它的寄存器则以 32 位的 word 方式进行。当 PCIE 控制器以 X4 方式工作时,仅能访问端口 0 所属寄存器。

 起始地
 大小
 用途
 备注

 0x18000000
 1MB
 对 PCIE 控制器 port 0 的 PCI 空间起始地址为 0x000000000 的最低 1MB 空间进行 mem 访问

 0x18100000
 64KB
 对 PCIE 控制器 port 0 的 PCI I/O 访问

 0x18110000
 16KB
 对 PCIE 控制器的 phy 进行控制和配置访问
 以字节访问的形式进行

表 8.3: RC 模式下 cfg&ctrl 空间划分



| 起始地址       | 大小      | 用途                                        | 备注                                    |
|------------|---------|-------------------------------------------|---------------------------------------|
| 0x18114000 | 8KB     | 对 PCIE 控制器 port0 本地的 PCIE 配置头空            |                                       |
|            |         | 间进行访问                                     |                                       |
| 0x18116000 | 4KB     | 对 PCIE 控制器 port0 所连接的 PCIE 设备发            |                                       |
|            |         | 起配置访问                                     |                                       |
| 0x18118000 | 4KB     | 对配置和控制 PCIE 控制器 port0 的内部寄存               |                                       |
|            |         | 器进行访问                                     |                                       |
| 0x18400000 | 1MB     | 对 PCIE 控制器 port 1 的 PCI 空间起始地址为           | X4 模式时, 此段空间保留                        |
|            |         | 0x000000000 的最低 1MB 空间进行 mem 访问           |                                       |
| 0x18500000 | 64KB    | 对 PCIE 控制器 port 1 的 PCI I/O 访问            | X4 模式时, 此段空间保留                        |
| 0x18514000 | 8KB     | 对 PCIE 控制器 port1 本地的 PCIE 配置头空            | X4 模式时,此段空间保留                         |
|            |         | 间进行访问                                     |                                       |
| 0x18516000 | 4KB     | 对 PCIE 控制器 port1 所连接的 PCIE 设备发            | X4 模式时, 此段空间保留                        |
|            |         | 起配置访问                                     |                                       |
| 0x18518000 | 4KB     | 对配置和控制 PCIE 控制器 port1 的内部寄存               | X4 模式时, 此段空间保留                        |
|            |         | 器进行访问                                     |                                       |
| 0x18800000 | 1MB     | 对 PCIE 控制器 port 2 的 PCI 空间起始地址为           | X4 模式时,此段空间保留                         |
|            |         | 0x00000000 的最低 1MB 空间进行 mem 访问            |                                       |
| 0x18900000 | 64KB    | 对 PCIE 控制器 port 2 的 PCI I/O 访问            | X4 模式时,此段空间保留                         |
| 0x18914000 | 8KB     | 对 PCIE 控制器 port2 本地的 PCIE 配置头空 X4 模式时,此段空 |                                       |
|            |         | 间进行访问                                     |                                       |
| 0x18916000 | 4KB     | 对 PCIE 控制器 port2 所连接的 PCIE 设备发            | X4 模式时,此段空间保留                         |
|            |         | 起配置访问                                     |                                       |
| 0x18918000 | 4KB     | 对配置和控制 PCIE 控制器 port2 的内部寄存               | X4 模式时, 此段空间保留                        |
|            |         | 器进行访问                                     |                                       |
| 0x18c00000 | 1MB     | 对 PCIE 控制器 port 3 的 PCI 空间起始地址为           | X4 模式时, 此段空间保留                        |
|            | a III D | 0x00000000 的最低 1MB 空间进行 mem 访问            | 77 / 남반 - N H - 11 - CH - 근구 2그 /□ CH |
| 0x18d00000 | 64KB    | 对 PCIE 控制器 port 3 的 PCI I/O 访问            | X4 模式时, 此段空间保留                        |
| 0x18d14000 | 8KB     |                                           |                                       |
|            |         | 间进行访问                                     |                                       |
| 0x18d16000 | 4KB     | 对 PCIE 控制器 port3 所连接的 PCIE 设备发            | X4 模式时, 此段空间保留                        |
|            | 47.75   | 起配置访问                                     |                                       |
| 0x18d18000 | 4KB     | 对配置和控制 PCIE 控制器 port3 的内部寄存               | X4 模式时, 此段空间保留                        |
|            |         | 器进行访问                                     |                                       |

#### 8.2.2 EP 模式下的地址空间划分

在 EP 模式下,除了 mem0、cfg&ctrl、mem1 这 3 段空间外的所有访问都被直接 映射为 PCI 地址空间上的 mem 访问。Mem0 和 mem1 在 EP 模式的使用和 RC 模式相同,cfg&ctrl 段地址的使用由表8.4给出。

表 8.4: EP 模式下 cfg&ctrl 空间划分

| 起始地址       | 大小   | 用途                             | 备注         |
|------------|------|--------------------------------|------------|
| 0x18000000 | 1MB  | 保留                             |            |
| 0x18100000 | 64KB | 保留                             |            |
| 0x18110000 | 16KB | 对 PCIE 控制器的 phy 进行控制和配置访问      | 以字节访问的形式进行 |
| 0x18114000 | 8KB  | 对 PCIE 控制器 port0 本地的 PCIE 配置头空 |            |
|            |      | 间进行访问                          |            |
| 0x18116000 | 4KB  | 保留                             |            |



| 起始地址       | 大小   | 用途                          | 备注 |
|------------|------|-----------------------------|----|
| 0x18118000 | 4KB  | 对配置和控制 PCIE 控制器 port0 的内部寄存 |    |
|            |      | 器进行访问                       |    |
| 0x18400000 | 12MB | 保留                          |    |

#### 8.2.3 PCI 地址空间到物理地址的转换

龙芯 2H 的 PCIE 控制器在 RC 模式和 EP 模式下拥有不同的 PCI 地址空间到处理器的物理地址空间的地址转换机制。

在 RC 模式下,来自 PCIE 总线的请求需要从 PCI 地址空间转换到处理器内部的物理地址空间。这个转换过程由 cfg&ctrl 地址段中的一组寄存器控制: at\_en、addr\_decoder\_mask、addr\_decoder\_trans。当 at\_en(0x18118000的第 24位,此位上电值为 0 )为 0 时,PCI 地址被直接作为物理地址使用。当 at\_en 为 1 时,物理地址[63:12] = (PCI 地址[63:12]& addr\_decoder\_mask)— addr\_decoder\_trans,物理地址[11:0] = PCI 地址[11:0]。

在 EP 模式下,来自 PCIE 总线的请求先经过  $3 \land 64$  位的 PCI base 译码,译码后的地址根据所命中的不同 PCI base 进行地址变换。龙芯 2H 在作为 EP 时有  $3 \land 64$  位的 PCI base。

Base 0 的大小为 128MB。命中这个地址窗口的请求的[63:32] 位被赋值为 0,[31:27] 位被赋值为 5 ,b00011,[26:0] 位保持不变。这个窗口对应处理器内部物理地址 从  $0x18000000 \sim 0x1fffffff$  的范围。

Base1 的大小为 256MB。命中这个地址窗口的请求的[63:28] 位被赋值为 0, [27:0] 位保持不变。这个窗口被用来映射 DDR 内存的低 256MB 空间。

Base2 的大小可配,命中这个地址窗口的请求的地址不做变化。这个窗口在上电后是关闭的。需要通过编程配置其大小并将其使能后才能使用。Base2 的使用需要 base2 所属寄存器进行本地配置。下面的 c 代码例子将说明如何将 base2 配置为一个大小为 2GB 的可以预取的 mem 窗口。

```
//set bar4 to 2GB bar and enable bar4
*(volatile unsigned int *)0xb8115020 = 0x80000001;//[0] set to 1 to enable bar4,
    the upper bit is mask
*(volatile unsigned int *)0xb8115024 = 0xffffffffff;//set upper 32 bit mask
//set bar4 to 64 bit memory prefetchable bar
*(volatile unsigned int *)0xb8114020 = 0x00000000c;
```

## 8.3 龙芯 2H 处理器 PCIE 控制器内部寄存器定义

龙芯 2H 的 4 个 PCIE 端口都有自己的端口控制寄存器。每个端口的控制寄存器都有自己的基址。端口 0 的端口控制寄存器基址为 0x18118000,端口 1 的端口控制寄存



器基址为 0x18158000,端口 2 的端口控制寄存器基址为 0x18198000,端口 3 的端口控制寄存器基址为 0x181d8000。由于 0 ~ 3 号端口的端口控制寄存器在命名和使用方法上相同,为了节省篇幅,我们在此仅介绍端口 0 的端口控制寄存器定义。端口 1 的控制寄存器地址为端口 0 的控制寄存器地址为端口 0 的控制寄存器地址为端口 0 的控制寄存器地址为端口 0 的控制寄存器地址+ 0x800000。端口 3 的控制寄存器地址为端口 0 的控制寄存器地址+ 0xc00000。对只占 1 位的寄存器,如非特别说明均为高有效。

表 8.5: 寄存器属性类型

| 属性名称 | 描述                                         |
|------|--------------------------------------------|
| RO   | 只读                                         |
| RW   | 可读可写                                       |
| RW1C | 只读,对应位写入1则将该位清0                            |
| ROS  | 只读,并且寄存器的值不会因为热复位而发生变化                     |
| RWS  | 可读可写,并且寄存器的值不会因为热复位而发生变化                   |
| RW1P | 可读可写,并且如果向寄存器写入1,寄存器的值下1个时钟周期会自动清0。因此读此寄存器 |
|      | 仅能获得0值                                     |

### 8.3.1 PCIE 端口控制寄存器 0

地址: 0x18118000

表 8.6: PCIE 端口控制寄存器 0

| 位域   | 初值    | 属性 | 名称               | 描述                                         |
|------|-------|----|------------------|--------------------------------------------|
| 0    | 0     | RW | Rx_lane_flip_en  | PCIE 接收线反转                                 |
|      |       |    |                  | when set to 1, Performs lane reversal for  |
|      |       |    |                  | receive lanes. for use when automatic lane |
|      |       |    |                  | reversal does not occur because lane 0 is  |
|      |       |    |                  | not detected.                              |
| 1    | 0     | RW | Tx_lane_flip_en  | PCIE 发送线反转                                 |
|      |       |    |                  | when set to 1, initiate lane reversal for  |
|      |       |    |                  | transmit lanes. for use when automatic     |
|      |       |    |                  | lane reversal does not occur because lane  |
|      |       |    |                  | 0 is not detected.                         |
| 2    | 1     | RW | Sys_aux_pwr_det  | 指示拥有辅助电源(Vaux)                             |
|      |       |    |                  | Auxiliary power detected. indicates that   |
|      |       |    |                  | auxiliary power(Vaux) is present.          |
| 3    | 0(RC) | RW | App_ltssm_enable | PCIE 端口链路建立使能                              |
|      | 1(EP) |    |                  | When set to 1, enables PCIE link train     |
|      |       |    |                  | start.                                     |
| 11:4 | 0x4   | RW |                  | Reserved                                   |
|      |       |    |                  | Should be set to 0x0 after reset           |
| 12   | 0     | RW | App_req_enter_L1 | 要求 PCIE 链路进入 L1                            |
|      |       |    |                  | Application request to enter L1.           |
|      |       |    |                  | When set to 1, indicates request from the  |
|      |       |    |                  | application to enter ASPM state L1. only   |
|      |       |    |                  | effective if L1 is enabled.                |



| 位域    | 初值           | 属性   | 名称                  | 描述                                         |
|-------|--------------|------|---------------------|--------------------------------------------|
| 13    | 0            | RW   | App_ready_enter_L23 | 已经准备好让 PCIE 链路进入 L23                       |
|       |              |      |                     | Application ready to enter L23.            |
|       |              |      |                     | When set to 1, indicates from the applica- |
|       |              |      |                     | tion that it is ready to enter L23 state.  |
| 14    | 0            | RW   | App_req_exit_L1     | 要求 PCIE 端口退出 L1                            |
|       |              |      |                     | Application request to exit L1.            |
|       |              |      |                     | When set to 1, indicates request from the  |
|       |              |      |                     | application to exit ASPM state L1, only    |
|       |              |      |                     | effective if L1 is enabled.                |
| 15    | 0            | RW   | Soft_reset_en       | 软复位使能                                      |
|       |              |      |                     | When set to 1, enables soft reset on this  |
|       |              |      |                     | PCIE port                                  |
| 23:16 | 0xff         | RW   |                     | Reserved                                   |
| 24    | 0            | RW   | at_en               | .PCIE 端口在 RC 工作模式下入站地址转换                   |
|       |              |      |                     | 使能                                         |
|       |              |      |                     | When set to 1, enables PCI address to      |
|       |              |      |                     | physical address translate in RC mode.     |
| 25    | 0            | RW   | bus_error_en        | PCIE 读返回总线错误的处理方式                          |
|       |              |      |                     | 0:读数据返回全1,不产生总线错例外                         |
|       |              |      |                     | 1:产生总线错例外                                  |
|       |              |      |                     | 当 PCIE 控制器完成总线扫描和初始化后,                     |
|       |              |      |                     | 此位可以修改为1                                   |
| 27:26 | 0x0          | RO   |                     | Reserved                                   |
| 31:28 | 由芯片的         | RO   |                     | 设备挂载状态                                     |
|       | PCIE[3:0]_PI | RSNT |                     | 28 到 31 位分别对应插槽 0 3 上设备的挂载                 |
|       | 引脚的值确        |      |                     | 状态,每一位的含义如下:                               |
|       | 定            |      |                     | 1:插槽中有设备                                   |
|       |              |      |                     | 0:插槽中无设备                                   |

#### 8.3.2 PCIE 端口控制寄存器 1

地址: 0x18118004

通过对相应位写入 1 产生一个时钟周期的脉冲, 控制 PCIE 接口进行相应的操作。写写此寄存器时, 一次仅能有 1 位被置 1。

表 8.7: PCIE 端口控制寄存器 1

| 位域 | 初值 | 属性   | 名称                  | 描述                                        |
|----|----|------|---------------------|-------------------------------------------|
| 0  | 0  | RW1P | App_unlock_msg      | 在 PCIE 端口上发送解锁消息                          |
|    |    |      |                     | When set to 1, indicates the application  |
|    |    |      |                     | request an unlock message. This bits will |
|    |    |      |                     | be automatically cleared.                 |
| 1  | 0  | RW1P | Apps_pm_xmt_turnoff | 在 PCIE 端口上发送 PM_Turn_Off 消息               |
|    |    |      |                     | When set to 1, indicates the application  |
|    |    |      |                     | generate a PM_Turn_Off message. This      |
|    |    |      |                     | bits will be automatically cleared.       |



| 位域   | 初值  | 属性   | 名称              | 描述                                           |
|------|-----|------|-----------------|----------------------------------------------|
| 2    | 0   | RW1P | App_init_rst    | 在 PCIE 端口上发送热复位消息                            |
|      |     |      |                 | when set to 1, the Hot Reset request is sent |
|      |     |      |                 | to the downstream device. this bits will be  |
|      |     |      |                 | automaticly cleared.                         |
| 3    | 0   | RW1P | Soft_reset      | 对 PCIE 端口进行软复位                               |
|      |     |      |                 | When set to 1, generate a soft reset on this |
|      |     |      |                 | PCIE port, only effective if soft reset of   |
|      |     |      |                 | this port is enabled                         |
| 4    | 0   | RW1P | Apps_pm_xmt_pme | 将 PCIE 端口从 D1 或者 D2 或者 D3 状态                 |
|      |     |      |                 | 中唤醒,并发送 PM_PME 消息                            |
|      |     |      |                 | Set to 1 to wake up the PMC state from a     |
|      |     |      |                 | D1, D2 or D3 power state. Upon wake-up,      |
|      |     |      |                 | this port sends a PM_PME message. this       |
|      |     |      |                 | bits will be automaticly cleared.            |
| 31:5 | 0x0 | RO   |                 | Reserved                                     |

### 8.3.3 PCIE 端口状态寄存器 0

地址: 0x18118008 只读寄存器

表 8.8: PCIE 端口状态寄存器 0

| 位域  | 名称            | 描述                                                      |
|-----|---------------|---------------------------------------------------------|
| 1:0 | Cfg_pwr_ind   | 系统电源状态指示                                                |
|     |               | the system power indicator (from bits [9:8] of the Slot |
|     |               | Control register)                                       |
|     |               | 00b: Reserved                                           |
|     |               | 01b: On                                                 |
|     |               | 10b: Blink                                              |
|     |               | 11b: Off                                                |
| 3:2 | Cfg_atten_ind | Attention 按钮状态指示                                        |
|     |               | Indicates the state of the system attention indicator(  |
|     |               | from bits [7:6] of the Slot Control register)           |
|     |               | 00b: Reserved                                           |
|     |               | 01b: On                                                 |
|     |               | 10b: Blink                                              |
|     |               | 11b: Off                                                |
| 4   | Cfg_pwr_ctrl  | 系统电源控制器状态                                               |
|     |               | Indicates the state of the system power controller(     |
|     |               | from bits 10 of the Slot Control register)              |
|     |               | 0: Power On                                             |
|     |               | 1: Power Off                                            |



| 位域    | 名称                         | 描述                                                                                 |
|-------|----------------------------|------------------------------------------------------------------------------------|
| 5     | Pm_xtlh_block_tlp          | 禁止发出请求指示                                                                           |
|       |                            | When set to 1, indicates that the application must                                 |
|       |                            | stop generating new outgoing request TLPs due to the                               |
|       |                            | current power management state. The application can                                |
|       |                            | continue to generate completion TLPs.                                              |
| 6     | Cfg_bus_master_en          | PCI 主设备使能                                                                          |
|       |                            | The state of the Bus Master Enable bit in the PCI-                                 |
|       |                            | compatible command register.                                                       |
|       |                            | 1: enabled                                                                         |
|       |                            | 0: disabled                                                                        |
| 7     | Cfg_mem_space_en           | 内存映射访问使能                                                                           |
|       |                            | The state of the Memory Space Enable bit in the PCI-                               |
|       |                            | compatible command register.                                                       |
|       |                            | 1: enabled                                                                         |
| 10.0  | Gf 1i                      | 0: disabled<br>早上法注:                                                               |
| 10:8  | Cfg_max_rd_req_size        | 最大读请求大小                                                                            |
|       |                            | The value of the Max_Read_Request_Size field in the                                |
| 13:11 | Cfg_max_payload_size       | Device Control register.<br>最大数据负载                                                 |
| 15.11 | Olg_illax_payload_size     | The value of the Max_Payload_Size field in the Device                              |
|       |                            | Control register.                                                                  |
| 14    | Cfg_rcb                    | RCB 位                                                                              |
|       |                            | The value of the RCB bit in the Link Control register.                             |
| 15    | Rdlh_link_up               | 数据链路层状态                                                                            |
|       |                            | Data Link Layer up/down indicator                                                  |
|       |                            | 1: Link is up                                                                      |
|       |                            | 0: Link is down                                                                    |
| 18:16 | Pm_curnt_state             | 当前电源状态                                                                             |
|       |                            | Indicates the current power state.                                                 |
| 23:19 | Cfg_aer_int_msg_num        | 根错误状态寄存器的 31:21 位                                                                  |
|       |                            | Form bits [31:27] of the Root Error Status register,                               |
| 20.24 | Of a pois can int man pro- | used when MSI is enabled. PCIE 能力寄存器 13:9 位                                        |
| 28:24 | Cfg_pcie_cap_int_msg_num   |                                                                                    |
|       |                            | Form bits [13:9] of the PCI Express Capabilities register used when MCI is enabled |
| 31:29 |                            | ister, used when MSI is enabled.  Reserved                                         |
| 51.23 |                            | TWOST YEU                                                                          |

# 8.3.4 PCIE 端口状态寄存器 1

地址: 0x1811800c 只读寄存器

表 8.9: PCIE 端口状态寄存器 1

| 位域  | 名称               | 描述                         |
|-----|------------------|----------------------------|
| 5:0 | Xmlh_ltssm_state | LTSSM 状态机的当前状态             |
|     |                  | current state of the LTSSM |



| 位域    | 名称                   | 描述                                                       |
|-------|----------------------|----------------------------------------------------------|
| 6     | Xmlh_link_up         | 物理链路状态指示                                                 |
|       |                      | PHY link up/down indicator                               |
|       |                      | 1: Up                                                    |
|       |                      | 0: Down                                                  |
| 7     | Rtlh_rfc_upd         | 数据链路层收到流控包指示                                             |
|       |                      | Indicates that the port received a flow control update   |
| 0     | CC 1                 | DLLP. none useful for user.                              |
| 8     | Cfg_eml_control      | Electromechanical interlock control. The state of the    |
|       |                      | Electromechanical interlock control bit in the Slot      |
| 16:9  | Cfg_pbus_num         | Control register.  设备所属总线号                               |
| 10.9  | Cig_pous_num         | The primary bus number assigned to the function.         |
| 21:17 | Cfg_pbus_dev_num     | 设备号                                                      |
| 21.11 | O1g-pous-dev-min     | The device number assigned to the function.              |
| 24:22 | Pm_dstate            | 电源管理状态指示                                                 |
|       |                      | The current power management D-state of the func-        |
|       |                      | tion:                                                    |
|       |                      | 000b: D0                                                 |
|       |                      | 001b: D1                                                 |
|       |                      | 010b: D2                                                 |
|       |                      | 011b: D3                                                 |
|       |                      | 100b: Uninitialized                                      |
|       |                      | Other values: Not applicable                             |
| 25    | Pm_status            | 电源管理状态位                                                  |
|       |                      | PME status bit from PMCSR                                |
| 26    | Pm_pme_en            | PME 使能指示                                                 |
| 97    | A 2020               | PME enable bit in the PMCSR 辅助电源使能指示                     |
| 27    | Aux_pm_en            |                                                          |
|       |                      | Auxiliary power enable bit in the Device Control reg-    |
| 28    | Cfg_link_auto_bw_int | ister                                                    |
|       |                      | A notification when the Link Autonomous Bandwidth        |
|       |                      | Status register (Link Status register bit 15) is updated |
|       |                      | and the Link Autonomous Bandwidth interrupt en-          |
|       |                      | able(Link Control register bit 11) is set. This bit is   |
|       |                      | not applicable to, and is reserved, for EP devices and   |
|       |                      | upstream ports of switch.                                |
| 29    | Cfg_bw_mgt_int       | 链路带宽管理状态寄存器更新指示                                          |
|       |                      | A notification when the Link Bandwidth Management        |
|       |                      | Status register (Link Status register bit 14) is updated |
|       |                      | and the Link Bandwidth Management interrupt en-          |
|       |                      | able(Link Control register bit 10) is set. This bit is   |
|       |                      | not applicable to, and is reserved, for EP devices and   |
|       |                      | upstream ports of switch.                                |
| 31:30 |                      | Reserved                                                 |



### 8.3.5 用户定义消息 ID 寄存器

地址: 0x18118010

只读

表 8.10: 用户定义消息 ID 寄存器

| 位域    | 名称              | 描述                                          |
|-------|-----------------|---------------------------------------------|
| 15:0  | Radm_msg_req_id | 用户定义消息所携带的 ID                               |
|       |                 | The requester ID of vender-defined message. |
| 31:16 |                 | Reserved                                    |

### 8.3.6 PCIE 端口中断状态寄存器

地址: 0x18008018

只读。对应的位为1,表示有该位代表的中断。

表 8.11: PCIE 端口中断状态寄存器

| 位域 | 次 5.11. I OID 洞口下烟\\\ \\ \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                        |  |
|----|----------------------------------------------------------|--------------------------------------------------------|--|
|    | 名称                                                       | 描述                                                     |  |
| 0  | aer_rc_err_int                                           | 当 RC 产生或收到错误消息并且 Root Error Command                    |  |
|    |                                                          | 寄存器中对应的错误报告使能被打开时置位。此位仅在                               |  |
|    |                                                          | RC 工作模式下使用。                                            |  |
|    |                                                          | This bit is set when a reported error condition causes |  |
|    |                                                          | a bit to be set in the Root Error Status register and  |  |
|    |                                                          | the associated error message reporting enable bit is   |  |
|    |                                                          | set in the Root Error Command register. This bit       |  |
|    |                                                          | is set when an internally generated error message is   |  |
|    |                                                          | generated/received by the RC.                          |  |
| 1  | aer_rc_err_msi                                           | 当 RC 产生或收到错误消息并且 MSI 被使能且 Root                         |  |
|    |                                                          | Error Command 寄存器中对应的错误报告使能被打开                         |  |
|    |                                                          | 时置位。此位仅在 RC 工作模式下使用。                                   |  |
|    |                                                          | This bit is set when MSI is enabled and a reported er- |  |
|    |                                                          | ror condition causes a bit to be set in the Root Error |  |
|    |                                                          | Status register and the associated error message re-   |  |
|    |                                                          | porting enable bit is set in the Root Error Command    |  |
|    |                                                          | register. This bit is set when an internally generated |  |
|    |                                                          | error message is generated/received by the RC.         |  |
| 2  | sys_err_rc                                               | 此位报告检测到系统错误。当 Root Control 寄存器的对                       |  |
|    |                                                          | 应位使能被打开并且 PCIE 总线上如何设备产生:可修                            |  |
|    |                                                          | 复错误、致命错误、非致命错误时,或者 RC 产生内部                             |  |
|    |                                                          | 错误时置位。                                                 |  |
|    |                                                          | System error detected. This bit is set to indicate if  |  |
|    |                                                          | any device in the hierarchy reports internal error and |  |
|    |                                                          | any of the following errors and the associated enable  |  |
|    |                                                          | bit is set in the Root Control register:               |  |
|    |                                                          | ERR_COR, ERR_FATAL, ERR_NONFATAL                       |  |



| 位域 | 名称                   | 描述                                                              |
|----|----------------------|-----------------------------------------------------------------|
| 3  | pme_int              | 收到 PME 中断。当下列条件满足时,此位置位:                                        |
|    |                      | 1. Command 寄存器中 INTx 未被禁止;                                      |
|    |                      | 2. Root Control 寄存器中 PME 中断使能位被打开;                              |
|    |                      | 3.收到 PME 消息(Root Status 寄存器中 PME 状态                             |
|    |                      | 位被置位)。                                                          |
|    |                      | This bit is set when all of the following conditions are        |
|    |                      | true:                                                           |
|    |                      | The INTx assertion disable bit in the Command reg-              |
|    |                      | ister is 0.                                                     |
|    |                      | The PME interrupt enable bit in the Root Control                |
|    |                      | register is set to 1.                                           |
|    |                      | The PME status bit in the Root Status register is set           |
|    |                      | to 1.                                                           |
| 4  | pme_msi              | 收到 PME 中断。当下列条件满足时,此位置位:                                        |
|    |                      | 1. Command 寄存器中 INTx 被禁止, MSI 被使能;                              |
|    |                      | 2. Root Control 寄存器中 PME 中断使能位被打开;                              |
|    |                      | 3. 收到 PME 消息(Root Status 寄存器中 PME 状态                            |
|    |                      | 位被置位)。                                                          |
|    |                      | This bit is set when all of the following conditions are        |
|    |                      | true:                                                           |
|    |                      | The MSI is enabled.                                             |
|    |                      | The PME interrupt enable bit in the Root Control                |
|    |                      | register is set to 1.                                           |
|    |                      | The PME status bit in the Root Status register is set to 1.     |
| 5  | vendor_msg           | 收到用户定义消息                                                        |
|    |                      | This bit is set when the PCIE port received a vendor-           |
|    |                      | defined message.                                                |
| 6  | rc_core_wake         | 从电源管理中唤醒                                                        |
|    |                      | Wake up from power management unit.                             |
| 7  | INTA                 | INTA 中断                                                         |
| 0  | INTD                 | This bit is set when INTA asserted message is received. INTB 中断 |
| 8  | INTB                 |                                                                 |
| 9  | INTC                 | This bit is set when INTB asserted message is received. INTC 中断 |
|    |                      | This bit is set when INTC asserted message is received.         |
| 10 | INTD                 | INTD 中断                                                         |
|    |                      | This bit is set when INTD asserted message is received.         |
| 11 | radm_correctable_err | 此 PCIE 端口收到可修复错误消息                                              |
|    |                      | received an ERR_COR message                                     |
| 12 | radm_nonfatal_err    | 此 PCIE 端口收到非致命错误消息                                              |
|    |                      | received an ERR_NONFATAL message                                |
| 13 | radm_fatal_err       | 此 PCIE 端口收到致命错误消息                                               |
| 14 | nm nmo               | received an ERR_FATAL message<br>收到 PM_PME 消息                   |
| 14 | pm_pme               |                                                                 |
|    |                      | received a PM_PME message                                       |



| 位域 | 名称        | 描述                                                                |
|----|-----------|-------------------------------------------------------------------|
| 15 | pm_to_ack | 收到 PM_TO_Ack 消息                                                   |
|    |           | received a PM_TO_Ack message                                      |
| 16 | hp_pme    | 当下列条件满足时,此位置位:                                                    |
|    |           | 1. PCI 电源管理控制和状态寄存器中 PME 使能被打                                     |
|    |           | 开;                                                                |
|    |           | 2. Slot Status 寄存器中的任意 1 位由 0 变 1 并且对应                            |
|    |           | 位的通知使能被打开。                                                        |
|    |           | This bit is set when all of the following conditions are          |
|    |           | true                                                              |
|    |           | The PME enable bit in the Power Management Con-                   |
|    |           | trol and Status register is set to 1                              |
|    |           | Any bit in the Slot Status register transitions from 0            |
|    |           | to 1 and the associated event notification is enabled in          |
|    |           | the Slot Control register.                                        |
| 17 | hp_int    | 当下列条件满足时,此位置位:                                                    |
|    |           | 1. Command 寄存器中 INTx 未被禁止;                                        |
|    |           | 2. Slot Control 寄存器中热插拔中断使能被打开;                                   |
|    |           | 3. Slot Status 寄存器中的任意 1 位为 1,并且对应位的                              |
|    |           | 通知使能被打开。                                                          |
|    |           | This bit is set when all of the following conditions are          |
|    |           | true                                                              |
|    |           | The INTx assertion disable bit in the Command reg-                |
|    |           | ister is 0.                                                       |
|    |           | Hot-Plug interrupts are enabled in the Slot Control               |
|    |           | register.                                                         |
|    |           | Any bit in the Slot Status register is equal to 1, and            |
|    |           | the associated event notification is enabled in the Slot          |
| 18 | l:        | Control register.  当下列条件满足时,此位置位:                                 |
| 16 | hp_msi    | 1. MSI 使能被打开;                                                     |
|    |           | 2. Slot Control 寄存器中热插拔中断使能被打开;                                   |
|    |           |                                                                   |
|    |           | 3. Slot Status 寄存器中的任意 1 位从 0 变 1,并且对应 位的通知使能被打开。                 |
|    |           |                                                                   |
|    |           | This bit is set when all of the following conditions are          |
|    |           | true The MSI is enabled.                                          |
|    |           | Hot-Plug interrupts are enabled in the Slot Control               |
|    |           |                                                                   |
|    |           | register.  Any bit in the Slot Status register transitions from 0 |
|    |           | to 1, and the associated event notification is enabled            |
|    |           |                                                                   |
|    |           | in the Slot Control register.                                     |



| 位域    | 名称                        | 描述                                                                   |
|-------|---------------------------|----------------------------------------------------------------------|
| 19    | link_auto_bw_int          | 当链路的自治带宽状态寄存器被更新并且链路的自治带                                             |
|       |                           | 宽中断被使能时置位仅在 RC 模式下使用。                                                |
|       |                           | This bit is set when the link Autonomous Bandwidth                   |
|       |                           | Status register is updated and the Link Autonomous                   |
|       |                           | Bandwidth Interrupt enable is set. Only used by RC                   |
|       |                           | mode                                                                 |
| 20    | bw_mgt_int                | 当链路的带宽状态寄存器被更新并且链路的带宽中断被                                             |
|       |                           | 使能时置位。仅在 RC 模式下使用。                                                   |
|       |                           | This bit is set when the link Bandwidth Management                   |
|       |                           | Status register is updated and the Link Bandwidth                    |
|       |                           | Interrupt enable is set. Only used by RC mode                        |
| 21    | gm_composer_lookup_err    | 此位被置位表示此 PCIE 端口在向外发送数据响应时溢                                          |
|       |                           | 出。这通常表示此 PCIE 端口接收端收到的 Non-Posted                                    |
|       |                           | 请求的数量超出了端口流控限制。                                                      |
|       |                           | This bit is set when the an overflow that occurred in                |
|       |                           | a lookup table of the outbound responses. This indi-                 |
|       |                           | cates that there was a violation for the number of out-              |
|       |                           | standing Non-Posted requests issued for the inbound                  |
| 22    |                           | direction. 此位被置位表示此 PCIE 端口接收送数据响应时溢出。                               |
| 22    | radmx_composer_lookup_err | 这通常表示此 PCIE 端口按权医数据响应的温面。<br>这通常表示此 PCIE 端口发送端发送的 Non-Posted 请       |
|       |                           | 求的数量超出了端口流控限制。                                                       |
|       |                           | 求的数重炮击了编口流程限制。 This bit is set when the an overflow that occurred in |
|       |                           |                                                                      |
|       |                           | a lookup table of the inbound responses. This indi-                  |
|       |                           | cates that there was a violation for the number of out-              |
|       |                           | standing Non-Posted requests issued for the outbound                 |
| 23    | phy_int                   | direction. PHY 中断                                                    |
| 24    |                           | Reserved                                                             |
| 25    | ltssm_l2_to_detect        | LTSSM 状态从 L2 状态退出到设备检测状态                                             |
|       |                           | LTSSM state exit L2 and enter detect state                           |
| 26    | pm_turn_off               | 收到 PM_Turn_Off 消息                                                    |
|       |                           | received PM_Turn_Off message.                                        |
| 27    | Link_req_rst_not_fall     | PCIE 端口物理链路断裂                                                        |
| 31:28 |                           | Reserved                                                             |

# 8.3.7 PCIE 端口中断状态清除寄存器

地址: 0x1811801c

RW1C。在某一位写入1则清除PCIE端口中断状态寄存器的对应位。

# 8.3.8 PCIE 端口中断掩码寄存器



RW。PCIE 端口中断状态寄存器对应的中断掩码。哪1位置1并且中断状态寄存器的相应位也为1时,此PCIE端口产生中断。

#### 8.3.9 PCIE 端口对外配置访问参数寄存器

地址: 0x18118024

表 8.12: PCIE 端口对外配置访问参数寄存器

| 位域    | 名称            | 描述                |
|-------|---------------|-------------------|
| 0     | $cfg\_type$   | 0: 发起 type 0 访问   |
|       |               | 1: 发起 type 1 访问   |
| 7:1   |               | Reserved          |
| 23:8  | cfg_addr_high | PCI 配置访问的 31:16 位 |
| 31:24 |               | Reserved          |

#### 8.3.10 PCIE 端口控制和状态寄存器

地址: 0x18118028

表 8.13: PCIE 端口控制和状态寄存器

| 位域    | 初值 | 属性 | 名称          | 描述                         |
|-------|----|----|-------------|----------------------------|
| 0     | 0  | RW | func_bypass | 置1时,取消内部接口请求间的先后顺序限        |
|       |    |    |             | 制(读可能会越过写,写也可能越过读)         |
| 7:1   |    |    |             | Reserved                   |
| 8     | 0  | RW | ssc_en      | 让 PHY 进入 SSC 模式            |
| 15:9  |    |    |             | Reserved                   |
| 16    | 0  | RW | aux_clk_en  | PCIE 端口辅助时钟使能              |
| 23:17 |    |    |             | Reserved                   |
| 24    | 1  | RW | tx_lspd     | PHY 发送端在 PCIE gen1 工作模式下使用 |
|       |    |    |             | 低功耗模式工作                    |
| 25    | 1  | RW | rx_lspd     | PHY 接收端在 PCIE gen1 工作模式下使用 |
|       |    |    |             | 低功耗模式工作                    |
| 26    |    | RO | X4_mode     | PCIE 端口在 X4 模式工作           |
| 27    |    | RO | Is_rc       | PCIE 端口在 RC 模式工作           |
| 28    |    | RO | L0s         | PCIE 端口处于 L0s 功耗状态         |
| 29    |    | RO | L1          | PCIE 端口处于 L1 功耗状态          |
| 30    |    | RO | L2          | PCIE 端口处于 L2 功耗状态          |
| 31    |    | RO | L2_exit     | PCIE 端口退出 L2 功耗状态          |

#### 8.3.11 PHY 状态寄存器

地址: 0x1811802c

RO



| 表 | 8.14: | PHY | 状态寄存器 |
|---|-------|-----|-------|
|   |       |     |       |

| 位域   | 名称        | 描述                                 |
|------|-----------|------------------------------------|
| 3:0  | Phy_ready | 0 到 3 位分别表示 PHY 的 0 到 3 号端口是否准备好。在 |
|      |           | X1 模式下, 仅第 0 位有效。                  |
| 31:4 |           | Reserved                           |

#### 8.3.12 用户定制消息寄存器 0

地址: 0x18118038

RW。此寄存器用于在发送用户定制 PCIE 消息前存储 PCIE 传输层协议消息包头的头 4 个字节的信息。

表 8.15: 用户定制消息寄存器 0

| 位域    | 名称           | 描述                         |
|-------|--------------|----------------------------|
| 1:0   | ven_msg_fmt  | PCIE 协议中传输层协议包头中的 Fmt 域    |
| 6:2   | ven_msg_type | PCIE 协议中传输层协议包头中的 Type 域   |
| 9:7   | ven_msg_tc   | PCIE 协议中传输层协议包头中的 TC 域     |
| 10    | ven_msg_td   | PCIE 协议中传输层协议包头中的 TD 域     |
| 11    | ven_msg_ep   | PCIE 协议中传输层协议包头中的 EP 域     |
| 13:12 | ven_msg_attr | PCIE 协议中传输层协议包头中的 Attr 域   |
| 23:14 | ven_msg_len  | PCIE 协议中传输层协议包头中的 Length 域 |
| 31:24 |              | Reserved                   |

#### 8.3.13 用户定制消息寄存器 1

地址: 0x1811803c

RW。此寄存器用于在发送用户定制 PCIE 消息前存储 PCIE 传输层协议消息包头的第4到第7字节的消息。

表 8.16: 用户定制消息寄存器 1

| 位域    | 名称                | 描述                                  |
|-------|-------------------|-------------------------------------|
| 2:0   | ven_msg_fun_num   | PCIE 协议中传输层协议包头中的 Function Number 域 |
| 10:3  | ven_msg_tag       | PCIE 协议中传输层协议包头中的 Tag 域             |
| 18:11 | ven_msg_code      | PCIE 协议中传输层协议包头中的 Message Code 域    |
| 22:19 |                   | Reserved                            |
| 23    | ven_msg_req_valid | 此位置1表示当前用户定制消息的所有参数均已经配置            |
|       |                   | 完毕,要求 PCIE 端口发送此用户定制消息。消息发送         |
|       |                   | 完毕后,此位自动清0。                         |
| 31:24 |                   | Reserved                            |

#### 8.3.14 用户定制消息数据发送寄存器 0

地址: 0x18118040

RW。用于存储待发送用户定制消息所携带数据的低 32 位。



#### 8.3.15 用户定制消息数据发送寄存器 1

地址: 0x18118044

RW。用于存储待发送用户定制消息所携带数据的高 32 位。

#### 8.3.16 MSI 参数寄存器

地址: 0x1811805c

RW。用于存储 MSI 消息的参数。

表 8.17: MSI 参数寄存器

| MC 0.11, 11501 2 200, 14 Ht |                  |                                     |
|-----------------------------|------------------|-------------------------------------|
| 位域                          | 名称               | 描述                                  |
| 4:0                         | ven_msi_vector   | PCI 协议 MSI 包中的 Vector 域             |
| 7:5                         | ven_msg_tc       | PCIE 协议中传输层协议包头中的 TC 域              |
| 10:8                        | ven_msg_func_num | PCIE 协议中传输层协议包头中的 Function Number 域 |
| 11                          | ven_msi_valid    | 此位置 1 表示当前 MSI 消息的所有参数均已经配置完        |
|                             |                  | 毕,要求 PCIE 端口发送此 MSI 消息。消息发送完毕后,     |
|                             |                  | 此位自动清 0。                            |
| 31:12                       |                  | Reserved                            |

#### 8.3.17 地址译码掩码寄存器 0

地址: 0x18118068

RW。用于存储此 PCIE 端口作为 RC 时入站地址转换的地址掩码的低 32 位。

#### 8.3.18 地址译码掩码寄存器 1

地址: 0x1811806c

RW。用于存储此 PCIE 端口作为 RC 时入站地址转换的地址掩码的高 32 位。

#### 8.3.19 地址译码转换地址寄存器 0

地址: 0x18118070

RW。用于存储此 PCIE 端口作为 RC 时入站地址转换的转换地址的低 32 位。

#### 8.3.20 地址译码转换地址寄存器 1

地址: 0x18118074

RW。用于存储此 PCIE 端口作为 RC 时入站地址转换的转换地址的高 32 位。



#### 8.3.21 接收消息数据负载寄存器 0

地址: 0x18118078

RW。用于存储此接收到的消息所携带数据的低 32 位。

#### 8.3.22 接收消息数据负载寄存器 1

地址: 0x1811807c

RW。用于存储此接收到的消息所携带数据的高 32 位。

## 8.4 PCIE 配置头空间

龙芯 2H 的 4 个 PCIE 端口都有自己的 PCIE 配置头空间。每个端口的 PCIE 配置头空间都有自己的基址。端口 0 的 PCIE 配置头空间基址为 0x18114000,端口 1 的 PCIE 配置头空间基址为 0x18154000,端口 2 的 PCIE 配置头空间基址为 0x18194000,端口 3 的 PCIE 配置头空间基址为 0x181d4000。由于 0 ~ 3 号端口的 PCIE 配置头空间在命名和使用方法上相同,为了节省篇幅,我们在此仅介绍端口 0 的 PCIE 配置头空间定义。端口 1 的 PCIE 配置头空间寄存器地址=端口 0 的 PCIE 配置头空间寄存器地址+0x400000。端口 2 的 PCIE 配置头空间寄存器地址=端口 0 的 PCIE 配置头空间寄存器地址+0x800000。端口 3 的 PCIE 配置头空间寄存器地址=端口 0 的 PCIE 配置头空间寄存器地址+0x800000。端口 3 的 PCIE 配置头空间寄存器地址=端口 0 的 PCIE 配置头空间寄存器地址+0x600000。

 起始地堆偏移
 区域

 0x00
 PCI-Compatible Header

 0x40
 PCI Power Management

 0x50
 Message Signaled Interrupt (MSI)

 0x70
 PCI Express Capabilities

 0xd0
 VPD

表 8.18: PCI Standard Capability Structures

图 8.2 给出了每个 PCIE 端口的 PCIE 配置空间的划分。其中的 PCI Configuration Header Space、PCI Standard Capability Structures、PCIe Extended Capability Structures 均为 PCIE 协议定义。本小节将主要介绍和端口控制相关的 Port Logic Registers

表8.19中的地址偏移是指,寄存器地址相对 Port Logic 寄存器段起始地址的偏移。

表 8.19: Port Logic 寄存器地址划分

| 地址偏移 | 寄存器命名                                       |
|------|---------------------------------------------|
| 0x0  | Ack Latency Timer and Replay Timer Register |
| 0x4  | Vendor Specific DLLP Register               |



| 地址偏移  | 寄存器命名                                                     |
|-------|-----------------------------------------------------------|
| 0x8   | Port Force Link Register                                  |
| 0xc   | Ack frequency and L0-L1 ASPM control Register             |
| 0x10  | Port Link Control Register                                |
| 0x14  | Lane Skew Register                                        |
| 0x18  | Symbol Number Register                                    |
| 0x1c  | Symbol Timer Register and Filter Mask Register 1          |
| 0x20  | Filter Mask Register 2                                    |
| 0x24  | AMBA Multiple Outbound Decomposed NP Sub-Requests Control |
|       | Register                                                  |
| 0x30  | Transmit Posted FC Credit Status Register                 |
| 0x34  | Transmit Non-Posted FC Credit Status Register             |
| 0x38  | Transmit Completion FC Credit Status Register             |
| 0x3c  | Queue Status Register                                     |
| 0x48  | VC0 Posted Receive Queue Control                          |
| 0x4c  | VC0 Non-Posted Receive Queue Control                      |
| 0x50  | VC0 Completion Receive Queue Control                      |
| 0xa8  | VC0 Posted Buffer Depth                                   |
| 0xac  | VC0 Non-Posted Buffer Depth                               |
| 0xb0  | VC0 Completion Buffer Depth                               |
| 0x10c | Gen2 Control Register                                     |
| 0x118 | Master Response Composer Control Register 0               |
| 0x11c | Master Response Composer Control Register 1               |
| 0x120 | MSI Controller Address                                    |
| 0x124 | MSI Controller Upper Address                              |

# 8.4.1 Ack Latency Timer and Replay Timer Register

表 8.20: Ack Latency Timer and Replay Timer Register

| 位域   | 初值   | 属性 | 描述                                                                   |
|------|------|----|----------------------------------------------------------------------|
| 15:0 | 2071 | RW | 往返延迟计数器                                                              |
|      |      |    | 当 Ack/Nak 延迟计数器达到此数值时将产生超时错误。当 PCIE 端口                               |
|      |      |    | 在 GEN2 状态工作时,此计数器的缺省值为原值+25。                                         |
|      |      |    | Round Trip Latency Time Limit                                        |
|      |      |    | The Ack/Nak latency timer expires when it reaches this limit. If op- |
|      |      |    | erating at 5 Gb/s, then an additional 25 is added.                   |
| 31:0 | 6214 | RW | 重发延迟计数器                                                              |
|      |      |    | 当 PCIE 端口收到 Nack 或者此计数器超时时,PCIE 端口将进行重发                              |
|      |      |    | 操作。当 PCIE 端口在 GEN2 状态工作时,此计数器的缺省值为原值+                                |
|      |      |    | 76 .                                                                 |
|      |      |    | Replay Time Limit                                                    |
|      |      |    | The replay timer expires when it reaches this limit. The PCIE port   |
|      |      |    | initiates a replay upon reception of a Nack or when the replay timer |
|      |      |    | expires. If operating at 5 Gb/s, then an additional 76 is added.     |





图 8.2: PCIE 配置空间划分

#### 8.4.2 Vendor Specific DLLP Register

地址: 18114704



表 8.21: Vendor Specific DLLP Register

| 位域   | 初值         | 属性 | 描述                                                                   |
|------|------------|----|----------------------------------------------------------------------|
| 31:0 | 0xffffffff | RW | 特殊 DLLP (数据链路层包) 寄存器                                                 |
|      |            |    | 用于在此 PCIE 端口上发送一个特殊的 DLLP。用户将 DLLP 的 8 位类                            |
|      |            |    | 型、24位数据存入此寄存器后,通过将 Port Link Control register 的第                     |
|      |            |    | 0 位置 1 来发送此特殊 DLLP 。                                                 |
|      |            |    | Vendor Specific DLLP Register                                        |
|      |            |    | Used to send a specific PCI Express DLLP. The application write the  |
|      |            |    | 8-bit DLLP Type and 24-bits of Payload data into this register, then |
|      |            |    | sets bit 0 of the Port Link Control register to send the DLLP.       |

# 8.4.3 Port Force Link Register

地址: 0x18114708

此寄存器仅在调试时使用。

表 8.22: Port Force Link Register

| 位域    | 初值   | 属性 | 描述                                                                      |
|-------|------|----|-------------------------------------------------------------------------|
| 7:0   |      | RW | 链路号                                                                     |
|       |      |    | 仅在 RC 模式下使用                                                             |
|       |      |    | Link Number.                                                            |
|       |      |    | Not used for EP.                                                        |
| 14:8  | 0x00 |    | Reserved                                                                |
| 15    | 0    | RW | 链路强制控制寄存器                                                               |
|       |      |    | 强制链路状态机进入 Link State 域指示的状态。此位置位将导致链路重                                  |
|       |      |    | 新进行握手。此位为自动清0寄存器。读此位将得到0值。                                              |
|       |      |    | Force Link                                                              |
|       |      |    | Forces the link to the state specified by the Link State field. The     |
|       |      |    | Force Link pulse will trigger Link re-negotiation. Reading from this    |
|       |      |    | self-clearing register field always returns a 0.                        |
| 21:16 | 0x00 | RW | 待进入的链路状态域                                                               |
|       |      |    | Link State                                                              |
|       |      |    | The Link state that the PCIE port will be forced to when bit 15 is set. |
| 23:22 | 0    |    | Reserved                                                                |
| 31:24 | 0x7  | RW | Reserved                                                                |

# 8.4.4 Ack frequency and L0-L1 ASPM control Register

地址: 0x1811470c



# 表 8.23: Ack frequency and L0-L1 ASPM control Regis-

|       | ter |       |                                                                      |
|-------|-----|-------|----------------------------------------------------------------------|
| 位域    | 初值  | 属性    | 描述                                                                   |
| 7:0   | 0   | RWS   | 响应频率                                                                 |
|       |     |       | PCIE 端口在收集的 Ack 达到此数值时才会发送数据链路层 Ack 包                                |
|       |     |       | Ack Frequency                                                        |
|       |     |       | The PCIE port accumulates the number of pending Ack's specified      |
|       |     |       | here before sending Ack DLLP                                         |
| 15:8  | 15  | RWS   | 从 L0s 到 L0 状态转换时需要传送的快速训练序列数。                                        |
|       |     |       | The number of Fast Training Sequence ordered sets to be transmitted  |
|       |     |       | when transitioning from L0s to L0. The maximum number of FTS         |
|       |     |       | ordered-sets that a component can request is 255                     |
| 23:16 | 15  | RW    | 从 L0s 到 L0 状态转换时需要传送的快速训练序列数。                                        |
|       |     |       | This is the N <sub>-</sub> FTS when common clock is used.            |
|       |     |       | The number of Fast Training Sequence ordered sets to be transimitted |
|       |     |       | when transitioning from L0s to L0.                                   |
| 26:24 | 0x3 | RWS   | L0s 状态进入延迟                                                           |
|       |     |       | L0s Entrance Latency                                                 |
|       |     |       | Values correspond to :                                               |
|       |     |       | 000:1 μ s                                                            |
|       |     |       | 001 : 2 µ s                                                          |
|       |     |       | 010:3 μ s                                                            |
|       |     |       | 011 : 4 µ s                                                          |
|       |     |       | 100 : 5 μ s                                                          |
|       |     |       | 101 : 6 µ s                                                          |
|       |     |       | 110 or 111 :7 µ s                                                    |
| 29:27 | 0x3 | RWS   | L1 状态进入延迟                                                            |
|       |     |       | L1 Entrance Latency                                                  |
|       |     |       | Values correspond to :                                               |
|       |     |       | 000:1 μ s                                                            |
|       |     |       | 001 : 2 μ s                                                          |
|       |     |       | 010 : 4 µ s                                                          |
|       |     |       | 011 : 8 µ s                                                          |
|       |     |       | 100 : 16 µ s                                                         |
|       |     |       | 101 : 32 µ s                                                         |
|       | -   | DIIIG | 110 or 111 : 64 \mu s                                                |
| 30    | 0   | RWS   | 允许 ASPM 在 PCIE 链路的另一端尚未进入 L0s 时进入 L1 状态。                             |
|       |     |       | Enter ASPM L1 without receive in L0s                                 |
|       |     |       | Allow PCIE port to enter ASPM L1 even when link partner did not      |
|       |     |       | go to L0s( receive is not in L0s).                                   |
|       |     |       | When not set, PCIE port goes to ASPM L1 only after idle period       |
| 0.1   |     |       | during which both receive and transmit are in L0s.                   |
| 31    | 0   |       | Reserved                                                             |

#### Port Link Control Register 8.4.5



表 8.24: Port Link Control Register

| 位域    | 初值        | 属性  | 描述                                                                  |
|-------|-----------|-----|---------------------------------------------------------------------|
| 0     | 0         | RW  | 用户定义 DLLP 发送请求                                                      |
|       |           |     | 当软件在此位写入 1 时,此 PCIE 端口将发送 Vendor Specific DLLP                      |
|       |           |     | Registe 中指定的 DLLP。此寄存器写入后自动清 0。                                     |
|       |           |     | Vendor Specific DLLP Request                                        |
|       |           |     | When software writes a '1' to this bit, the core transmits the DLLP |
|       |           |     | contained in the Vendor Specific DLLP Register on 4.2.2             |
|       |           |     | Reading from this self-clearing register field always returns a 0.  |
| 1     | 0         | RWS | Scramble Disable                                                    |
|       |           |     | Turns off data scrambling                                           |
| 2     | 0         | RWS | Loopback Enable                                                     |
|       |           |     | Turns on loopback.                                                  |
| 3     | 0         | RWS | 置热复位                                                                |
|       |           |     | 仅在 RC 模式下使用                                                         |
|       |           |     | Reset Assert                                                        |
|       |           |     | Triggers a recovery and forces the LTSSM to the HOT Reset state(RC  |
|       |           |     | mode only)                                                          |
| 4     | 0         | 0   | Reserved                                                            |
| 5     | 1         | RWS | 数据链路初始化使能                                                           |
|       |           |     | 当此位为 0 时,此 PCIE 端口将不会传送数据链路层的流控初始化信息,                               |
|       |           |     | 也不会建立链路。                                                            |
|       |           |     | DLL Link Enable                                                     |
|       |           |     | Enables Link initialization. If DLL Link Enable = 0, the PCIE port  |
| -     |           |     | does not transmit InitFC DLLPs and does not establish a Link.       |
| 6     | 0         |     | Reserved                                                            |
| 7     | 0         |     | Reserved                                                            |
| 15:8  | 0         |     | Reserved                                                            |
| 21:16 | PCIE 端口 0 | RWS | Link Mode Enable                                                    |
|       | : 000111  |     | 000001 : x1                                                         |
|       | 其它 PCIE   |     | 000011 : x2                                                         |
|       | 端口:       |     | 000111 : x4                                                         |
|       | 000001    |     | others: not supported                                               |
| 22    | 1         | RWS | Crosslink Enable                                                    |
| 23    | 0         | RO  | Crosslink Active. Indicates a change from upstream to downstream or |
|       |           |     | downstream to upstream.                                             |
| 31:24 |           |     | Reserved                                                            |

# 8.4.6 Lane Skew Register

表 8.25: Lane Skew Register

| 位域   | 初值 | 属性  | 描述                                                                 |
|------|----|-----|--------------------------------------------------------------------|
| 23:0 | 0  | RWS | Insert Lane Skew for Transmit                                      |
|      |    |     | There are three bits per Lane. The value is in units of one symbol |
|      |    |     | time                                                               |



| 位域    | 初值 | 属性  | 描述                                                               |
|-------|----|-----|------------------------------------------------------------------|
| 24    | 0  | RWS | 禁止流控                                                             |
|       |    |     | 禁止发送数据链路层的流控包                                                    |
|       |    |     | Flow Control Disable                                             |
|       |    |     | Prevents the PCIE port from sending DLLPs                        |
| 25    | 0  | RWS | 禁止应答                                                             |
|       |    |     | 禁止在数据链路层发送应答包                                                    |
|       |    |     | Ack/Nack Disable                                                 |
|       |    |     | Prevents the PCIE port from sending ACK and Nack DLLPs           |
| 30:26 | 0  |     | Reserved                                                         |
| 31    | 0  | RWS | Disable Lane-to-Lane Deskew                                      |
|       |    |     | Causes the PCIE port to disable the internal Lane-toLane deskew. |

# 8.4.7 Symbol Number Register

地址: 0x18114718

表 8.26: Symbol Number Register

| 位域    | 初值  | 属性  | 描述                                                                        |
|-------|-----|-----|---------------------------------------------------------------------------|
| 3:0   | 0xA | RWS | Number of TS Symbols                                                      |
|       |     |     | Sets the number of TS identifier symbols that are sent in TS1 and TS2     |
|       |     |     | ordered sets.                                                             |
| 7:4   | 0   |     | Reserved                                                                  |
| 10:8  | 0x3 | RWS | Number of SKP Symbols                                                     |
| 13:11 | 0   |     | Reserved                                                                  |
| 18:14 | 1   | RWS | Timer Modifier for Replay Timer                                           |
|       |     |     | Increases the timer value for the replay timer, in increments of 64 clock |
|       |     |     | cycles.                                                                   |
| 23:19 | 0   | RWS | Timer Modifier for Ack/Nack Latency Timer                                 |
|       |     |     | Increases the timer value for the Ack/Nack latency timer, increments      |
|       |     |     | of 64 clock cycles.                                                       |
| 28:24 | 0   | RWS | Timer Modifier for Flow Control Watchdog Timer                            |
|       |     |     | Increases the timer value for the Flow Control watchdog timer, incre-     |
|       |     |     | ments of 16 clock cycles.                                                 |
| 31:29 | 1   | RWS | Configuration Requests targeted at function numbers above this value      |
|       |     |     | will be returned with UR (unsupported request).                           |

# 8.4.8 Symbol Timer Register and Filter Mask Register 1

地址: 0x1811471c



表 8.27: Symbol Timer Register and Filter Mask Register

| 位域    |     | 属性    | 描述                                                                      |
|-------|-----|-------|-------------------------------------------------------------------------|
| 10:0  | 640 | RWS   | SKP 间隔值                                                                 |
|       |     |       | 当传送的符号数为此寄存器值×2+1时,传送一次SKP。                                             |
|       |     |       | SKP interval Value                                                      |
|       |     |       | The number of symbol times to wait between transmitting SKP or-         |
|       |     |       | dered sets. Note that the PCIE port actually waits the number of        |
|       |     |       | symbol times in this register plus 1 between transmitting SKP or-       |
|       |     |       | dered sets. The user must program this register accordingly. the value  |
|       |     |       | programmed to this register is actually clock ticks and not symbol      |
|       |     |       | times.                                                                  |
|       |     |       | For example, if $768(1536/2)$ we're programmed into this register, then |
|       |     |       | the PCIE port will actually transmit Skp ordered sets once every 1537   |
|       |     |       | symbol times.                                                           |
| 14:11 | 0   |       | Reserved                                                                |
| 15    | 0   | RWS   | 禁流控看门狗                                                                  |
| 16    | 0   |       | Disable FC Watchdog Timer<br>允许接收设备功能号不匹配的请求。                           |
| 10    | 0   |       | 无行按权权备功能与不匹配的调求。 Treat Function MisMatched TLPs as Supported。           |
| 17    | 0   | RWS   | 允许接收被污染的请求。                                                             |
|       |     |       | Treat poisoned TLPs as Supported Requests                               |
| 18    | 0   | RWS   | 允许接收未命中地址窗口的请求。                                                         |
|       |     |       | Treat out-of-bar TLPs as Supported Requests                             |
| 19    | 0   | RWS   | 作为 RC 工作时,此寄存器值为 0,允许接收类型 1 的配置访问请求。                                    |
|       |     |       | 作为 EP 工作时,此寄存器值为 1 则允许接收类型 1 的配置访问。                                     |
|       |     |       | Treat CFG type 1 TLPs as Supported for EP; UR for RC.                   |
| 20    | 0   | RWS   | 作为RC工作时,此寄存器值为0,接收读加锁请求。                                                |
|       |     |       | 作为 EP 工作时,此寄存器值为 1 则允许接收读加锁请求。                                          |
| 21    | 0   | RWS   | Treat locked Read TLPs as Supported for EP; UR for RC 忽略数据响应包请求标识号的错误   |
| 21    |     | 1000  | 此寄存器值为0时,数据响应包的请求标识号出错将被丢弃                                              |
|       |     |       | Mask Tag Error Rules for received CPL TLPs.                             |
| 22    | 0   | RWS   | 忽略数据响应包请求者标识的不匹配                                                        |
|       |     |       | 此寄存器值为0时,与请求的请求者标识不匹配的数据响应包将被丢弃                                         |
|       |     |       | Mask Req.Id match for received CPL TLPs.                                |
| 23    | 0   | RWS   | 忽略数据响应包设备功能号的不匹配                                                        |
|       |     |       | 此寄存器值为0时,与请求设备功能号不匹配的数据响应包将被丢弃                                          |
|       |     | DIIIG | Mask function match for received CPL TLPs.                              |
| 24    | 0   | RWS   | 忽略数据响应包 TC 的不匹配                                                         |
|       |     |       | 此寄存器值为 0 时,与请求 TC 不匹配的数据响应包将被丢弃                                         |
| 25    | 0   | RWS   | Mask Traffic Class match for received CPL TLPs. 忽略数据响应包属性的不匹配           |
|       |     |       | 此寄存器值为0时,与请求属性不匹配的数据响应包将被丢弃                                             |
|       |     |       | Mask attribute match for received CPL TLPs.                             |
| 26    | 0   | RWS   | 忽略数据响应包长度的不匹配                                                           |
|       |     |       | 此寄存器值为0时,与请求长度不匹配的数据响应包将被丢弃                                             |
|       |     |       | Mask length match for received CPL TLPs.                                |



| 位域 | 初值 | 属性  | 描述                                                       |
|----|----|-----|----------------------------------------------------------|
| 27 | 0  | RWS | 允许向用户提交 ECRC 出错的数据请求包。                                   |
|    |    |     | 当此寄存器值为 0 时,ECRC 校验出错的数据请求包将被丢弃。                         |
|    |    |     | Allow TLPs with ECRC errors to be passed up              |
| 28 | 0  | RWS | 允许向用户提交 ECRC 出错的数据响应包。                                   |
|    |    |     | 当此寄存器值为 0 时,ECRC 校验出错的数据响应包将被丢弃。                         |
|    |    |     | Allow TLPs with ECRC errors to be passed up for CPL type |
| 29 | 0  | RWS | Reserved                                                 |
| 30 | 0  | RWS | 在 RC 模式下允许接收 IO 访问                                       |
|    |    |     | Allow IO transaction being received in RC mode           |
| 31 | 0  | RWS | 在 RC 模式下允许接收配置访问                                         |
|    |    |     | Allow CFG transaction being received in RC mode          |

#### 8.4.9 Filter Mask Register 2

地址: 0x18114720

表 8.28: Filter Mask Register 2

| 位域   | 初值 | 属性  | 描述                                          |
|------|----|-----|---------------------------------------------|
| 0    | 0  | RWS | 向用户提交类型 0 的消息包                              |
|      |    |     | Vendor MSG Type 0 not dropped               |
| 1    | 0  | RWS | 向用户提交类型 1 的消息包                              |
|      |    |     | Vendor MSG Type 1 not dropped               |
| 2    | 0  | RWS | 此寄存器值为0时,不期望收到的CPL包将在数据链路层被丢弃               |
|      |    |     | Do not enable DLLP abort for unexpected CPL |
| 3    | 0  | RWS | 允许 PCIE 端口处理数据刷新请求                          |
|      |    |     | Enable core filter to handle flush request  |
| 31:4 | 0  | RWS | Reserved                                    |

# 8.4.10 AMBA Multiple Outbound Decomposed NP Sub-Requests Control Register

地址: 0x18114724

# 表 8.29: AMBA Multiple Outbound Decomposed NP

Sub-Requests Control Register

| 位域 | 初值 | 属性  | 描述                                                                       |
|----|----|-----|--------------------------------------------------------------------------|
| 0  | 1  | RWS | 允许此 PCIE 端口将用户发出的读请求被分解为更小的读请求。                                          |
|    |    |     | 用户通常不需要改变此寄存器的初始值。                                                       |
|    |    |     | Enable multiple outbound decomposed NP sub-requests.                     |
|    |    |     | This bit when set to '0' disables the possiblity of having multiple out- |
|    |    |     | standing non-posted requests that were derived from decomposition of     |
|    |    |     | an outbound request.                                                     |
|    |    |     | User should not clear this register unless you are requesting an amount  |
|    |    |     | of read data greater than Max_Read_Request_Size, and the remote          |
|    |    |     | device is reordering completions that have different tags                |
|    |    |     | Vendor MSG Type 0 not dropped                                            |



| 位域   | 初值 | 属性 | 描述       |
|------|----|----|----------|
| 31:1 | 0  |    | Reserved |

#### 8.4.11 Transmit Posted FC Credit Status Register

地址: 0x18114730

表 8.30: Transmit Posted FC Credit Status Register

| 位域    | 属性 | 描述                                                                                 |  |
|-------|----|------------------------------------------------------------------------------------|--|
| 11:0  | RO | Posted 写包数据流控信用                                                                    |  |
|       |    | 链路另一端设备的 Posted 写包数据信用。此寄存器的值在收到数据链路层的流控                                           |  |
|       |    | 更新包后会被更新。                                                                          |  |
|       |    | Transmit Posted Data FC Credits                                                    |  |
|       |    | The Posted Data credits advertised by the receiver at the other end of the Link,   |  |
|       |    | updeted with each UpdateFC DLLP.                                                   |  |
| 19:12 | RO | Posted 写包报头流控信用                                                                    |  |
|       |    | 链路另一端设备的 Posted 写包报头信用。此寄存器的值在收到数据链路层的流控                                           |  |
|       |    | 更新包后会被更新。                                                                          |  |
|       |    | Transmit Posted Header FC Credits                                                  |  |
|       |    | The Posted Header credits advertised by the receiver at the other end of the Link, |  |
|       |    | updeted with each UpdateFC DLLP.                                                   |  |
| 31:20 |    | Reserved                                                                           |  |

# 8.4.12 Transmit Non-Posted FC Credit Status Register

地址: 0x18114734

表 8.31: Transmit Non-Posted FC Credit Status Register

| 位域    | 属性 | 描述                                                                               |
|-------|----|----------------------------------------------------------------------------------|
| 11:0  | RO | Non-Posted 写包数据流控信用                                                              |
|       |    | 链路另一端设备的 Non-Posted 写包数据信用。此寄存器的值在收到数据链路层的                                       |
|       |    | 流控更新包后会被更新。                                                                      |
|       |    | Transmit Non-Posted Data FC Credits                                              |
|       |    | The Non-Posted Data credits advertised by the receiver at the other end of the   |
|       |    | Link, updeted with each UpdateFC DLLP.                                           |
| 19:12 | RO | Non-Posted 写包报头流控信用                                                              |
|       |    | 链路另一端设备的 Non-Posted 写包报头信用。此寄存器的值在收到数据链路层的                                       |
|       |    | 流控更新包后会被更新。                                                                      |
|       |    | Transmit Non-Posted Header FC Credits                                            |
|       |    | The Non-Posted Header credits advertised by the receiver at the other end of the |
|       |    | Link, updeted with each UpdateFC DLLP.                                           |
| 31:20 |    | Reserved                                                                         |

#### 8.4.13 Transmit Completion FC Credit Status Register



| 表 8.32: | Transmit | Completion | FC | Credit | Status | Register |
|---------|----------|------------|----|--------|--------|----------|
|         |          |            |    |        |        |          |

| 位域    | 属性 | 描述                                                                               |
|-------|----|----------------------------------------------------------------------------------|
| 11:0  | RO | 数据响应包数据流控信用                                                                      |
|       |    | 链路另一端设备的数据响应包数据信用。此寄存器的值在收到数据链路层的流控更                                             |
|       |    | 新包后会被更新。                                                                         |
|       |    | Transmit Completion Data FC Credits                                              |
|       |    | The Completion Data credits advertised by the receiver at the other end of the   |
|       |    | Link, updeted with each UpdateFC DLLP.                                           |
| 19:12 | RO | 数据响应包报头流控信用                                                                      |
|       |    | 链路另一端设备的数据响应包报头信用。此寄存器的值在收到数据链路层的流控更                                             |
|       |    | 新包后会被更新。                                                                         |
|       |    | Transmit Completion Header FC Credits                                            |
|       |    | The Completion Header credits advertised by the receiver at the other end of the |
|       |    | Link, updeted with each UpdateFC DLLP.                                           |
| 31:20 |    | Reserved                                                                         |

# 8.4.14 Queue Status Register

地址: 0x181473c

表 8.33: Queue Status Register

| 位域   | 属性  | 描述                                                                             |
|------|-----|--------------------------------------------------------------------------------|
| 0    | ROS | 已接收传输协议层包的流控信用未被返回                                                             |
|      |     | 标识此 PCIE 端口发送了一个传输协议层包,但是此包所占用的流控信用未被接收                                        |
|      |     | 者返回                                                                            |
|      |     | Received TLP FC Credits Not Returned                                           |
|      |     | Indicates that the PCIE port has sent a TLP but has not yet received an Up-    |
|      |     | dateFC DLLP indicating that the credits for that TLP have been restored by the |
|      |     | receiver at the other end of the Link.                                         |
| 1    | ROS | 重试缓存非空                                                                         |
|      |     | Transmit Retry Buffer Not Empty                                                |
|      |     | Indicates that there is data in the transimt retry buffer                      |
| 2    | ROS | 接收队列非空                                                                         |
|      |     | Received Queue Not Empty                                                       |
|      |     | Indicates there is data in one or more of the receive buffers.                 |
| 31:3 |     | Reserved                                                                       |

# 8.4.15 VC0 Posted Receive Queue Control

表 8.34: VC0 Posted Receive Queue Control

| 位域    | 初值 | 属性  | 描述                        |
|-------|----|-----|---------------------------|
| 11:0  | 55 | ROS | VC0 Posted Data Credits   |
| 19:12 | 29 | ROS | VC0 Posted Header Credits |
| 31:20 |    |     | Reserved                  |



#### 8.4.16 VC0 Non-Posted Receive Queue Control

地址: 0x1811474c

表 8.35: VC0 Non-Posted Receive Queue Control

| 位域    | 初值 | 属性  | 描述                            |
|-------|----|-----|-------------------------------|
| 11:0  | 12 | ROS | VC0 Non-Posted Data Credits   |
| 19:12 | 29 | ROS | VC0 Non-Posted Header Credits |
| 31:20 |    |     | Reserved                      |

#### 8.4.17 VC0 Completion Receive Queue Control

地址: 0x18114750

表 8.36: VC0 Completion Receive Queue Control

| 位域    | 初值 | 属性  | 描述                            |
|-------|----|-----|-------------------------------|
| 11:0  | 0  | ROS | VC0 Completion Data Credits   |
| 19:12 | 0  | ROS | VC0 Completion Header Credits |
| 31:20 |    |     | Reserved                      |

#### 8.4.18 VC0 Posted Buffer Depth

地址: 0x181147a8

表 8.37: VC0 Posted Buffer Depth

| 位域    | 初值  | 属性  | 描述                            |
|-------|-----|-----|-------------------------------|
| 13:0  | 134 | ROS | VC0 Posted Data Queue Depth   |
| 15:14 |     |     | Reserved                      |
| 25:16 | 58  | ROS | VC0 Posted Header Queue Depth |
| 31:26 |     |     | Reserved                      |

#### 8.4.19 VC0 Non-Posted Buffer Depth

地址: 0x181147ac

表 8.38: VC0 Non-Posted Buffer Depth

| 位域    | 初值 | 属性  | 描述                                |
|-------|----|-----|-----------------------------------|
| 13:0  | 0  | ROS | VC0 Non-Posted Data Queue Depth   |
| 15:14 |    |     | Reserved                          |
| 25:16 | 0  | ROS | VC0 Non-Posted Header Queue Depth |
| 31:26 |    |     | Reserved                          |

#### 8.4.20 VC0 Completion Buffer Depth

地址: 0x181147b0



表 8.39: VC0 Completion Buffer Depth

| 位域    | 初值 | 属性  | 描述                                |
|-------|----|-----|-----------------------------------|
| 13:0  | 0  | ROS | VC0 Completion Data Queue Depth   |
| 15:14 |    |     | Reserved                          |
| 25:16 | 0  | ROS | VC0 Completion Header Queue Depth |
| 31:26 |    |     | Reserved                          |

# 8.4.21 Gen2 Control Register

地址: 0x1811480c

表 8.40: Gen2 Control Register

| 位域    | 初值 | 属性    | 描述                                                                              |  |  |  |
|-------|----|-------|---------------------------------------------------------------------------------|--|--|--|
| 7:0   | 15 | RWS   | 快速训练序列数目                                                                        |  |  |  |
|       |    |       | 在切换到 Gen2 时传送的快速训练序列的数目。                                                        |  |  |  |
|       |    |       | Sets the Number of Fast Training Sequences(N_FTS) that the PCIE                 |  |  |  |
|       |    |       | port advertises as its N <sub>-</sub> FTS during Gen2 Link training. This value |  |  |  |
|       |    |       | is used to inform the Link partner about the PHY's ability to recover           |  |  |  |
|       |    |       | synchronization after a low power state.                                        |  |  |  |
| 16:8  | 0  | RWS   | 确定有效的传输线数目                                                                      |  |  |  |
|       |    |       | Predetermined Number of Lanes                                                   |  |  |  |
|       |    |       | Used to limit the effective link width to ignore "broken" lanes that            |  |  |  |
|       |    |       | detect a receiver. Indicates the number of lanes to check for exit from         |  |  |  |
|       |    |       | Electrical Idle in POLLING.ACTIVE and L2.IDLE. It is possible that              |  |  |  |
|       |    |       | the LTSSM may detect a Receiver on a "bad" or "broken" lane during              |  |  |  |
|       |    |       | the Detect Sub-state. However, it is also possible that such a lane may         |  |  |  |
|       |    |       | also fail to exit Electrical Idle and therefore prevent a valid link from       |  |  |  |
|       |    |       | being configured. This value is referred as the 'Predetermined Number           |  |  |  |
|       |    |       | of Lanes' in section 4.2.6.2.1 of the PCI Express Base Specification            |  |  |  |
|       |    |       | Revision 2.1.                                                                   |  |  |  |
|       |    |       | Encoding is as follows:                                                         |  |  |  |
|       |    |       | 0x01 = 1 lane, $0x02 = 2$ lanes, $0x03 = 3$ lanes and so on.                    |  |  |  |
| 17    | 0  | RWS   | 主动发起到 Gen2 转换                                                                   |  |  |  |
|       |    |       | Directed Speed Change                                                           |  |  |  |
|       |    |       | Indicates to the LTSSM whether or not to initiate a speed change to             |  |  |  |
|       |    |       | Gen2 after the link is initialized at Gen1 speed.                               |  |  |  |
| 18    | 0  | RWS   | 配置 PHY 发送端电平波动水平                                                                |  |  |  |
|       |    |       | Config PHY Tx Swing                                                             |  |  |  |
|       |    |       | Indicates the voltage level the PHY should drive. When set to 1,                |  |  |  |
|       |    |       | indicates Full Swing. When set to 0, indicates Low Swing.                       |  |  |  |
| 19    | 0  | RWS   | Config Tx Compliance Receive Bit                                                |  |  |  |
|       |    |       | When set to 1, signals LTSSM to transmit TS ordered sets with the               |  |  |  |
|       |    | DIVIG | compliance receive bit assert                                                   |  |  |  |
| 20    | 0  | RWS   | Used to set the de-emphasis level for upstream ports                            |  |  |  |
| 31:21 |    |       | Reserved                                                                        |  |  |  |



#### 8.4.22 Master Response Composer Control Register 0

地址: 0x18114818

表 8.41: Master Response Composer Control Register 0

| 位域    | 初值 | 属性  | 描述                                                                       |  |  |  |
|-------|----|-----|--------------------------------------------------------------------------|--|--|--|
| 2:0   | 0  | RWS | 请求者最大读请求数据长度(字节)                                                         |  |  |  |
|       |    |     | Remote Read Request Size                                                 |  |  |  |
|       |    |     | Specifies the largest amount of data (bytes) that will ever be requested |  |  |  |
|       |    |     | (via an inbound MemRd TLP) by a remote device.                           |  |  |  |
|       |    |     | Encoding is as follows:                                                  |  |  |  |
|       |    |     | 000: 128                                                                 |  |  |  |
|       |    |     | 001: 256                                                                 |  |  |  |
|       |    |     | 010: 512                                                                 |  |  |  |
|       |    |     | 011: 1024                                                                |  |  |  |
|       |    |     | 100: 2048                                                                |  |  |  |
|       |    |     | 101: 4096                                                                |  |  |  |
|       |    |     | default: 128                                                             |  |  |  |
| 7:3   |    |     | Reserved                                                                 |  |  |  |
| 15:8  | 15 | ROS | Remote Max Bridge Tag                                                    |  |  |  |
|       |    |     | Specifies the maximum number (-1) of Non-Posted request inbound.         |  |  |  |
| 31:16 |    |     | Reserved                                                                 |  |  |  |

#### 8.4.23 Master Response Composer Control Register 1

地址: 0x1811481c

表 8.42: Master Response Composer Control Register 1

| 位域   | 初值 | 属性  | 描述                                                                     |
|------|----|-----|------------------------------------------------------------------------|
| 0    | 0  | RWS | 向此寄存器中写入 1 将使对 Master Response Composer Control Reg-                   |
|      |    |     | ister $0$ 的修改生效。读此寄存器仅能获得 $0$ 。                                        |
|      |    |     | Writing '1' to this (self-clearing register) causes any changes in the |
|      |    |     | Master Response Composer Control Register 0 to take place in the       |
|      |    |     | hardware.                                                              |
| 31:1 |    |     | Reserved                                                               |

#### 8.4.24 MSI Controller Address

表 8.43: MSI Controller Address

| 位域   | 初值 | 属性 | 描述                                                                 |
|------|----|----|--------------------------------------------------------------------|
| 31:0 | 0  | RW | 接收 MSI 的地址                                                         |
|      |    |    | MSI Controller Address                                             |
|      |    |    | System specified address for MSI memory write transaction termina- |
|      |    |    | tion.                                                              |



#### 8.4.25 MSI Controller Upper Address

地址: 0x18114824

表 8.44: MSI Controller Upper Address

| 位域   | 初值 | 属性 | 描述                                                              |  |  |  |
|------|----|----|-----------------------------------------------------------------|--|--|--|
| 31:0 | 0  | RW | 接收 MSI 的地址的高 32 位                                               |  |  |  |
|      |    |    | MSI Controller Upper Address                                    |  |  |  |
|      |    |    | System specified Upper address for MSI memory write transaction |  |  |  |
|      |    |    | termination.                                                    |  |  |  |

## 8.5 常用例程

本节给出龙芯 2H 的 PCIE 控制器的常用例程。

当龙芯 2H 以 PCIE 总线上的 EP 方式工作时龙芯 2H 需要执行下面例程中的 pcie\_link\_init;而以方式 RC 工作时,龙芯 2H 需要先执行下面示例中的 pcie\_link\_init,再执行下面示例中的 pcie\_header\_init。随后,龙芯 2H 可以通过 cfg\_device\_read 和 cfg\_device\_write 这两个函数对端口 0 上的设备的 PCI Header 进行初始化。

```
unsigned int tmp_var;
unsigned char * pcie_base = 0xfffffffff00000000;
unsigned int * header_base = 0xb8114000;
unsigned int * ctrl_base = 0xb8118000;
unsigned int * cfg_base = 0xb8116000;
void pcie_link_init(unsigned int port_id)
  unsigned int port_base = pcie_base + port_id*0x400000;
    // set port logic register of port 0
    // initiate speed change to PCIE Gen2 and set Tx to Low Swing
    tmp_var = *(volatile unsigned int *)(port_base + header_base + 0x80c);
    *(volatile unsigned int *)(port_base + header_base + 0x80c) = (tmp_var | 0
       x20000)\&0xfffbffff;
    //start link training
    *(volatile unsigned int *)(port_base + ctrl_base) = 0xff000c;
    //wait link train end
    tmp_var = *(volatile unsigned int *)( port_base + ctrl_base +0xc);
    while ((tmp_var\&0x1f)!=0x11)
        tmp_var = *(volatile unsigned int *)( port_base + ctrl_base +0xc);
    printf("now_PCIE_port_0_link_is_start_up\n");
}
```



```
void pcie_hot_reset(unsigned int port_id)
{
    unsigned int port_base = pcie_base + port_id*0x400000;
    tmp_var = *(volatile unsigned int *)( port_base + ctrl_base);
    //enable soft reset
    *(volatile unsigned int *)( port_base + ctrl_base) = tmp_var |0x1000;
    //triger hot reset
    *(volatile unsigned int *)( port_base + ctrl_base +0x4) = 0x4;
}
void pcie_header_init(unsigned int port_id)
{//only used in RC mode
    unsigned int port_base = pcie_base + port_id*0x400000 + header_base;
    //set master enable, io enable, mem enable, perr enable, serr enable
    *(volatile unsigned int *)( port_base + 0x4) = 0x147;
    //clear master abort, serr and perr status
//set IO space to be 16-bit address
//set 64 KB IO space: 0x0000 ~ 0xffff
    *(volatile unsigned int *)( port_base + 0x1c) = 0xf100f000;
    //set IO limit and IO base up 16 bit address
    *(volatile unsigned int *)( port_base + 0x30) = 0x0;
//set memory limit and memory base
//the memory window: 0x0 ~ 0x17ffffff
//but only two memory window bellow is valid
//1MB lowest memory space: 0x0 ~0xfffff
    //128~M\!B memory space : 0x10000000 ^{\circ} 0x17ffffff
    *(volatile unsigned int *)( port_base + 0x20) = 0x17f00000;
    //set prefetchable memory limit and base
    //2 GB prefetchable memory space : 0x40000000 ~ 0x7fffffff
    *(volatile unsigned int *)( port_base + 0x24) = 0x7ff04000;
    //set prefetchable base up 32 bit
    *(volatile unsigned int *)( port_base + 0x28) = 0x0;
    //set prefetchable limit up 32 bit
    *(volatile unsigned int *)( port_base + 0x2c) = 0x0;
    //enable serr
    *(volatile unsigned int *)( port_base + 0x3c) = 0x20000;
    //enable system error on correctable error, non-fatal error and fatal error
    //enable PME interrupt
    *(volatile unsigned int *)( port_base + 0x8c) = 0xf;
```



```
//enable correctable error, non-fatal error and fatal error
    *(volatile unsigned int *)( port_base + 0x12c) = 0x7;
    //enable ASPM LOs and L1
    *(volatile unsigned char *)( port_base + 0x80) = 0x3;
void cfg_device_read(
                     unsigned int type, unsigned int bus_num,
                     unsigned int dev_num, unsigned int func_num,
unsigned int reg_id , unsigned int * read_data ,
                     unsigned int port_id
{
    unsigned int port_base = pcie_base + port_id *0x400000;
    *(volatile unsigned char *)( port_base + ctrl_base + 0x24) = (type&0x1) | (
       bus_num << 24) | (dev_num <<19) | (func_num <<16);
    *(read_data) = *(volatile unsigned int *)( port_base + cfg_base + (reg_id << 2)
       );
}
void cfg_device_write(
                     unsigned int type, unsigned int bus_num,
                     unsigned int dev_num, unsigned int func_num,
unsigned int reg_id, unsigned int write_data,
                     unsigned int port_id
{
    unsigned int port_base = pcie_base + port_id*0x400000;
    *(volatile unsigned char *)( port_base + ctrl_base + 0x24) = (type&0x1) | (
       bus_num << 24) | (dev_num <<19) | (func_num <<16);
    *(volatile unsigned int *)( port_base + cfg_base + (reg_id <<2)) = write_data;
}
```

在上面的 pcie\_header\_init 例程中,我们将端口对外的 IO、Memory、Prefetchable Memory 窗口皆设为我们所支持的最大窗口。当龙芯 2H 仅在端口 0 接有设备时,Memory 和 Prefetchable Memory 窗口所设的最大值可由端口 0 所独享。当龙芯 2H 在端口 0 以外的端口也接有设备时,Memory 和 Prefetchable Memory 窗口所设的最大值在每个端口上除了最低 1MB 的空间外其它的窗口仅为最大值的四分之一。





# 第九章 显示控制器

## 9.1 概述

显示控制器从内存中取帧缓冲和光标信息输出到外部显示接口上。 龙芯 2H 的显示控制器支持的特性包括:

- 双路显示,一路 DVO 接口,一路 VGA 接口
- 每路显示最大支持至 2048x2048@60Hz
- Monochrome、ARGB8888 两种模式硬件光标
- RGB444, RGB555, RGB565, RGB888 四种色深
- 输出抖动和伽马校正
- 可切换的双路线性帧缓冲
- 中断和软复位
- DAC 控制和内存调度支持
- DVO 接口线序可配置

# 9.2 寄存器定义

#### 9.2.1 帧缓冲配置寄存器

表 9.1: 帧缓冲配置寄存器

| 名称                      | 位域                                           | 初值 | 描述                     |  |  |  |
|-------------------------|----------------------------------------------|----|------------------------|--|--|--|
| 帧缓冲配置寄存器 地址: 0xbfe51240 | 帧缓冲配置寄存器 地址: 0xbfe51240/0xbfe51250 (DVO/VGA) |    |                        |  |  |  |
| Reset                   | 20                                           | 0  | 从值1变为0时软复位             |  |  |  |
| Gamma                   | 12                                           | 0  | 写1使能伽玛校正               |  |  |  |
| FB_num                  | 11                                           | 0  | 指示当前正在使用的缓冲区号,只读       |  |  |  |
| Switch_panel            | 9                                            | 0  | 写1表示使用另一路显示输出,两路配合可实现两 |  |  |  |
|                         |                                              |    | 路显示交换、拷贝               |  |  |  |
| Output_enable           | 8                                            | 0  | 写1使能显示输出               |  |  |  |
| FB_switch               | 7                                            | 0  | 写1使能缓冲区切换,下一帧完成切换      |  |  |  |
| Format                  | 2:0                                          | 0  | 色深格式:                  |  |  |  |
|                         |                                              |    | 0:none                 |  |  |  |
|                         |                                              |    | 1:RGB444               |  |  |  |
|                         |                                              |    | 2:RGB555               |  |  |  |
|                         |                                              |    | 3:RGB565               |  |  |  |
|                         |                                              |    | 4:RGB888               |  |  |  |

#### 9.2.2 帧缓冲地址寄存器 0



表 9.2: 帧缓冲地址寄存器 0

| 名称                       | 位域         | 初值       | 描述              |
|--------------------------|------------|----------|-----------------|
| 帧缓冲地址寄存器 0 地址: 0xbfe5120 | 60/0xbfe51 | 270 (DVC | O/VGA)          |
| Address                  | 31:0       | 0        | 缓冲区 0 在内存中的物理地址 |

#### 9.2.3 帧缓冲地址寄存器 1

表 9.3: 帧缓冲地址寄存器 1

| 名称                                             | 位域   | 初值 | 描述              |  |  |
|------------------------------------------------|------|----|-----------------|--|--|
| 帧缓冲地址寄存器 1 地址: 0xbfe51580/0xbfe51590 (DVO/VGA) |      |    |                 |  |  |
| Address                                        | 31:0 | 0  | 缓冲区 1 在内存中的物理地址 |  |  |

# 9.2.4 帧缓冲跨度寄存器

表 9.4: 帧缓冲跨度寄存器

| 名称                      | 位域         | 初值       | 描述                     |
|-------------------------|------------|----------|------------------------|
| 帧缓冲跨度寄存器 地址: 0xbfe51280 | 0/0xbfe512 | 90 (DVO/ | VGA)                   |
| Stride                  | 31:0       | 0        | 显示屏一行的字节数,按 256 字节向上取整 |

#### 9.2.5 帧缓冲初始字节寄存器

表 9.5: 帧缓冲初始字节寄存器

| 名称                    | 位域        | 初值        | 描述                |
|-----------------------|-----------|-----------|-------------------|
| 帧缓冲初始字节寄存器 地址: 0xbfe5 | 1300/0xbf | e51310 (D | VO/VGA)           |
| Origin                | 31:0      | 0         | 显示屏左侧原有字节数,一般配0即可 |

#### 9.2.6 颜色抖动配置寄存器

表 9.6: 颜色抖动配置寄存器

| 名称                     | 位域           | 初值        | 描述           |
|------------------------|--------------|-----------|--------------|
| 颜色抖动配置寄存器 地址: 0xbfe513 | 60/0xbfe $5$ | 1370 (DVC | O/VGA)       |
| Enable                 | 31           | 0         | 写 1 使能颜色抖动功能 |
| RedSize                | 19:16        | 0         | 红色域宽度        |
| GreenSize              | 11:8         | 0         | 绿色域宽度        |
| BlueSize               | 3:0          | 0         | 蓝色域宽度        |

#### 9.2.7 颜色抖动查找表低位寄存器

表 9.7: 颜色抖动查找表低位寄存器

| 名称                  | 位域        | 初值        | 描述             |
|---------------------|-----------|-----------|----------------|
| 颜色抖动查找表低位寄存器 地址: 0x | bfe51380/ | 0xbfe5139 | 0 (DVO/VGA)    |
| Y1_X3               | 31:28     | 0         | 坐标 (3,1) 处的比较值 |



| 名称    | 位域    | 初值 | 描述             |
|-------|-------|----|----------------|
| Y1_X2 | 27:24 | 0  | 坐标 (2,1) 处的比较值 |
| Y1_X1 | 23:20 | 0  | 坐标 (1,1) 处的比较值 |
| Y1_X0 | 19:16 | 0  | 坐标 (0,1) 处的比较值 |
| Y0_X3 | 15:12 | 0  | 坐标 (3,0) 处的比较值 |
| Y0_X2 | 11:8  | 0  | 坐标 (2,0) 处的比较值 |
| Y0_X1 | 7:4   | 0  | 坐标 (1,0) 处的比较值 |
| Y0_X0 | 3:0   | 0  | 坐标 (0,0) 处的比较值 |

# 9.2.8 颜色抖动查找表高位寄存器

表 9.8: 颜色抖动查找表高位寄存器

| 名称                                               | 位域    | 初值 | 描述             |  |  |  |
|--------------------------------------------------|-------|----|----------------|--|--|--|
| 颜色抖动查找表高位寄存器 地址: 0xbfe513a0/0xbfe513b0 (DVO/VGA) |       |    |                |  |  |  |
| Y3_X3                                            | 31:28 | 0  | 坐标 (3,3) 处的比较值 |  |  |  |
| Y3_X2                                            | 27:24 | 0  | 坐标 (2,3) 处的比较值 |  |  |  |
| Y3_X1                                            | 23:20 | 0  | 坐标 (1,3) 处的比较值 |  |  |  |
| Y3_X0                                            | 19:16 | 0  | 坐标 (0,3) 处的比较值 |  |  |  |
| Y2_X3                                            | 15:12 | 0  | 坐标 (3,2) 处的比较值 |  |  |  |
| Y2_X2                                            | 11:8  | 0  | 坐标 (2,2) 处的比较值 |  |  |  |
| Y2_X1                                            | 7:4   | 0  | 坐标 (1,2) 处的比较值 |  |  |  |
| Y2_X0                                            | 3:0   | 0  | 坐标 (0,2) 处的比较值 |  |  |  |

#### 9.2.9 液晶面板配置寄存器

表 9.9: 液晶面板配置寄存器

| 名称                                            | 位域 | 初值 | 描述          |  |  |
|-----------------------------------------------|----|----|-------------|--|--|
| 液晶面板配置寄存器 地址: 0xbfe513c0/0xbfe513d0 (DVO/VGA) |    |    |             |  |  |
| ClockPol                                      | 9  | 0  | 时钟极性,写1取反   |  |  |
| ClockEn                                       | 8  | 1  | 时钟使能,写1使能   |  |  |
| DEPol                                         | 1  | 0  | 数据使能极性,写1取反 |  |  |
| DE                                            | 0  | 1  | 数据使能,写1使能   |  |  |

# 9.2.10 水平显示宽度寄存器

表 9.10: 水平显示宽度寄存器

| 名称                     | 位域        | 初值       | 描述                 |
|------------------------|-----------|----------|--------------------|
| 水平显示宽度寄存器 地址: 0xbfe514 | 00/0xbfe5 | 1410 (DV | O/VGA)             |
| Total                  | 26:16     | 0        | 显示屏一行的总像素数(包括非显示区) |
| Display                | 10:0      | 0        | 显示屏一行中显示区的像素数      |

#### 9.2.11 行同步配置寄存器



表 9.11: 行同步配置寄存器

| 名称                                           | 位域    | 初值 | 描述         |  |  |
|----------------------------------------------|-------|----|------------|--|--|
| 行同步配置寄存器 地址: 0xbfe51420/0xbfe51430 (DVO/VGA) |       |    |            |  |  |
| Pol                                          | 31    | 0  | 行同步极性,写1取反 |  |  |
| Pulse                                        | 30    | 1  | 行同步使能,写1使能 |  |  |
| End                                          | 26:16 | 0  | 行同步结束时的像素数 |  |  |
| Start                                        | 10:0  | 0  | 行同步结束时的像素数 |  |  |

#### 9.2.12 垂直显示高度寄存器

表 9.12: 垂直显示高度寄存器

| 名称                     | 位域         | 初值       | 描述                 |
|------------------------|------------|----------|--------------------|
| 垂直显示高度寄存器 地址: 0xbfe514 | .80/0xbfe5 | 1490 (DV | D/VGA)             |
| Total                  | 26:16      | 0        | 显示屏一列的总像素数(包括非显示区) |
| Display                | 10:0       | 0        | 显示屏一列中显示区的像素数      |

#### 9.2.13 场同步配置寄存器

表 9.13: 场同步配置寄存器

| 名称                                           | 位域    | 初值 | 描述         |  |  |
|----------------------------------------------|-------|----|------------|--|--|
| 场同步配置寄存器 地址: 0xbfe514a0/0xbfe514b0 (DVO/VGA) |       |    |            |  |  |
| Pol                                          | 31    | 0  | 场同步极性,写1取反 |  |  |
| Pulse                                        | 30    | 1  | 场同步使能,写1使能 |  |  |
| End                                          | 26:16 | 0  | 场同步结束时的像素数 |  |  |
| Start                                        | 10:0  | 0  | 场同步结束时的像素数 |  |  |

#### 9.2.14 伽玛校正目录寄存器

表 9.14: 伽玛校正目录寄存器

| 名称                     | 位域        | 初值        | 描述                        |
|------------------------|-----------|-----------|---------------------------|
| 伽玛校正目录寄存器 地址: 0xbfe514 | e0/0xbfe5 | 14f0 (DVC | O/VGA)                    |
| Index                  | 7:0       | 0         | 表示从 0-255 颜色值之间的哪一项开始进行   |
|                        |           |           | Gamma 调整,一般设 0。只需配一次,此后该值 |
|                        |           |           | 硬件会自增                     |

#### 9.2.15 伽玛校正值寄存器

表 9.15: 伽玛校正值寄存器

| 名称                                           | 位域    | 初值 | 描述                            |  |  |
|----------------------------------------------|-------|----|-------------------------------|--|--|
| 伽玛校正值寄存器 地址: 0xbfe51500/0xbfe51510 (DVO/VGA) |       |    |                               |  |  |
| Red                                          | 23:16 | 0  | Gamma 调整的红色域,将 Index 指示的值调整为当 |  |  |
|                                              |       |    | 前域的值                          |  |  |
| Green                                        | 15:8  | 0  | Gamma 调整的绿色域,将 Index 指示的值调整为当 |  |  |
|                                              |       |    | 前域的值                          |  |  |



| 名称   | 位域  | 初值 | 描述                            |
|------|-----|----|-------------------------------|
| Blue | 7:0 | 0  | Gamma 调整的蓝色域,将 Index 指示的值调整为当 |
|      |     |    | 前域的值                          |

#### 9.2.16 光标配置寄存器

表 9.16: 光标配置寄存器

| 名称                     | 位域    | 初值 | 描述                          |
|------------------------|-------|----|-----------------------------|
| 光标配置寄存器 地址: 0xbfe51520 |       |    |                             |
| HotSpotX               | 20:16 | 0  | 光标的作用点的横坐标 (在光标 32*32 的图案中的 |
|                        |       |    | 横坐标)                        |
| HotSpotY               | 12:8  | 0  | 光标的作用点的纵坐标 (在光标 32*32 的图案中的 |
|                        |       |    | 纵坐标)                        |
| Display                | 4     | 0  | 指示光标存在于哪个显示单元中,0表示在 DVO     |
|                        |       |    | 中,1表示在 VGA 中                |
| Format                 | 1:0   | 0  | 光标类型:                       |
|                        |       |    | 0:disabled                  |
|                        |       |    | 1:monochrome                |
|                        |       |    | 2:ARGB8888                  |

#### 9.2.17 光标存储地址寄存器

表 9.17: 光标存储地址寄存器

| 名称                       | 位域   | 初值 | 描述            |
|--------------------------|------|----|---------------|
| 光标存储地址寄存器 地址: 0xbfe51530 |      |    |               |
| Address                  | 31:0 | 0  | 光标数据在内存中的物理地址 |

# 9.2.18 光标显示位置寄存器

表 9.18: 光标显示位置寄存器

| 名称                     | 位域    | 初值 | 描述             |
|------------------------|-------|----|----------------|
| 光标显示位置寄存器 地址: 0xbfe515 | 40    |    |                |
| Y                      | 26:16 | 0  | 光标作用点在整个屏幕的纵坐标 |
| X                      | 10:0  | 0  | 光标作用点在整个屏幕的横坐标 |

#### 9.2.19 光标背景色寄存器

表 9.19: 光标背景色寄存器

| 名称                      | 位域    | 初值      | 描述                      |
|-------------------------|-------|---------|-------------------------|
| 光标背景色寄存器 地址: 0xbfe51550 |       | 177 122 | , MAC                   |
| Red                     | 23:16 | 0       | monochrome 模式下光标背景色的红色域 |
| Green                   | 15:8  | 0       | monochrome 模式下光标背景色的绿色域 |
| Blue                    | 7:0   | 0       | monochrome 模式下光标背景色的蓝色域 |



# 9.2.20 光标前景色寄存器

表 9.20: 光标前景色寄存器

| 名称                      | 位域    | 初值 | 描述                      |  |
|-------------------------|-------|----|-------------------------|--|
| 光标前景色寄存器 地址: 0xbfe51550 |       |    |                         |  |
| Red                     | 23:16 | 0  | monochrome 模式下光标前景色的红色域 |  |
| Green                   | 15:8  | 0  | monochrome 模式下光标前景色的绿色域 |  |
| Blue                    | 7:0   | 0  | monochrome 模式下光标前景色的蓝色域 |  |

#### 9.2.21 中断寄存器

表 9.21: 中断寄存器

| 名称                   | 位域                   | 初值 | 描述                        |  |  |  |
|----------------------|----------------------|----|---------------------------|--|--|--|
| 中断寄存器 地址: 0xbfe51570 | 中断寄存器 地址: 0xbfe51570 |    |                           |  |  |  |
| En                   | 26:16                | 0  | 中断时能信号,对应于10:0位中断,写1使能,写0 |  |  |  |
|                      |                      |    | 屏蔽                        |  |  |  |
| DB0_FUF              | 10                   | 0  | DVO 内部数据缓冲区致命下溢,只读        |  |  |  |
| DB1_FUF              | 9                    | 0  | VGA 内部数据缓冲区致命下溢,只读        |  |  |  |
| DB0_UF               | 8                    | 0  | DVO 内部数据缓冲区下溢,只读          |  |  |  |
| DB1_UF               | 7                    | 0  | VGA 内部数据缓冲区下溢,只读          |  |  |  |
| FB0_End              | 6                    | 0  | DVO 帧缓冲读取结束, 只读           |  |  |  |
| FB1_End              | 5                    | 0  | VGA 帧缓冲读取结束, 只读           |  |  |  |
| Cursor_End           | 4                    | 0  | 光标数据读取结束, 只读              |  |  |  |
| Display0_Hsync       | 3                    | 0  | DVO 产生了 Hsync,只读          |  |  |  |
| Display0_Vsync       | 2                    | 0  | DVO 产生了 Vsync,只读          |  |  |  |
| Display1_Hsync       | 1                    | 0  | VGA 产生了 Hsync,只读          |  |  |  |
| Display1_Vsync       | 0                    | 0  | VGA 产生了 Vsync, 只读         |  |  |  |

# 9.2.22 DAC 控制寄存器

表 9.22: DAC 控制寄存器

| 名称                       | 位域    | 初值 | 描述                 |  |  |
|--------------------------|-------|----|--------------------|--|--|
| DAC 控制寄存器 地址: 0xbfe51600 |       |    |                    |  |  |
| fscsel                   | 15    | 0  | 控制 DAC 的 fscsel 端口 |  |  |
| cmdr                     | 14    | 0  | 控制 DAC 的 cmdr 端口   |  |  |
| cmds                     | 13    | 0  | 控制 DAC 的 cmds 端口   |  |  |
| ftb                      | 12:10 | 0  | 控制 DAC 的 ftb 端口    |  |  |
| ftg                      | 9:7   | 0  | 控制 DAC 的 ftg 端口    |  |  |
| ftr                      | 6:4   | 0  | 控制 DAC 的 ftr 端口    |  |  |
| hzb                      | 3     | 0  | 控制 DAC 的 hzb 端口    |  |  |
| hzg                      | 2     | 0  | 控制 DAC 的 hzg 端口    |  |  |
| hzr                      | 1     | 0  | 控制 DAC 的 hzr 端口    |  |  |



#### 9.2.23 DAC Sense **值寄存器**

表 9.23: DAC Sense 值寄存器

| 名称                         | 位域  | 初值 | 描述                                |
|----------------------------|-----|----|-----------------------------------|
| DAC Sense 值寄存器 地址: 0xbfe51 | 610 |    |                                   |
| DAC_Sense                  | 2:0 | 0  | DAC 的 sense 端口,当 RGB 端口有翻转时,sense |
|                            |     |    | 会相应改变。配合 Sense 配置寄存器可以检测接口        |
|                            |     |    | 上是否有设备                            |

# 9.2.24 Sense 配置寄存器

表 9.24: Sense 配置寄存器

| 名称                         | 位域    | 初值    | 描述                             |
|----------------------------|-------|-------|--------------------------------|
| Sense 配置寄存器 地址: 0xbfe51620 | 1—177 | 17712 | 77.0                           |
| SenseEn                    | 25    | 0     | 写 1 使能, 使能时 VGA 通路的 R、G、B、DE 将 |
|                            |       |       | 由此寄存器操纵                        |
| DE                         | 24    | 0     | 受控制的 DE                        |
| Red                        | 23:16 | 0     | 受控制的红色域                        |
| Green                      | 15:8  | 0     | 受控制的绿色域                        |
| Blue                       | 7:0   | 0     | 受控制的蓝色域                        |

# 9.2.25 DVO 输出模式寄存器

表 9.25: DVO 输出模式寄存器

| 名称                      | 位域                         | 初值 | 描述                  |  |  |
|-------------------------|----------------------------|----|---------------------|--|--|
| DVO 输出模式寄存器 地址: 0xbfe51 | DVO 输出模式寄存器 地址: 0xbfe51630 |    |                     |  |  |
| Clk_Pol                 | 15                         | 0  | DVO 时钟相位,写 1 反向     |  |  |
| -                       | 14:10                      | 0  | 保留,必须写0             |  |  |
| p_BGR                   | 9                          | 0  | RGB 三个总线输出 BGR 颜色信息 |  |  |
| p_BRG                   | 8                          | 0  | RGB 三个总线输出 BRG 颜色信息 |  |  |
| p_GBR                   | 7                          | 0  | RGB 三个总线输出 GBR 颜色信息 |  |  |
| p_GRB                   | 6                          | 0  | RGB 三个总线输出 GRB 颜色信息 |  |  |
| p_RBG                   | 5                          | 0  | RGB 三个总线输出 RBG 颜色信息 |  |  |
| p_RGB                   | 4                          | 1  | RGB 三个总线输出 RGB 颜色信息 |  |  |
| B_Inv                   | 3                          | 0  | DVO 接口蓝色域按位倒置       |  |  |
| G_Inv                   | 2                          | 0  | DVO 接口绿色域按位倒置       |  |  |
| R_Inv                   | 1                          | 0  | DVO 接口红色域按位倒置       |  |  |
| -                       | 0                          | 0  | 保留,必须写0             |  |  |

# 9.3 相关功能说明

#### 9.3.1 颜色抖动

颜色抖动功能用于根据一定规则来增强像素值,下面的这个例子将解释颜色抖动功



能的实现步骤。

首先,确定是对哪一数据位进行增强(即该数据位加1),为此需要配置颜色抖动配置寄存器。比如配置 RedSize 为6(1到8之间,包含1和8),则表明对从 MSB 位数起第6位进行增强,即 RedColor[7:0]的 RedColor[2]位增强,GreenSize 和 BlueSize 同理。

其次,需要建立查找表,即配置颜色抖动查找表寄存器。查找表包含 16 个条目,即 16 个阈值,每个条目位宽为 4 。查找表通过屏幕像素计数器的横坐标 x 的最低两位 x[1:0] 和纵坐标 y 的最低两位 y[1:0] 进行索引,得到一个阈值 U[3:0] 。

对应屏幕(x, y)位置的像素值的最低四位被拿来跟查到的这个阈值比较。如果 RedColor[3:0] > U[3:0],并且 RedColor[7:2] 不为 6'b111111,则 RedColor[2] 位加 1,实现颜色增强。

# 9.3.2 输出定序



图 9.1: 显示控制器输出定序图

#### 9.3.3 伽玛校正

伽玛校正模块包含三个查找表,分别负责红绿蓝三色,查找表可以通过寄存器改写。

考虑一个伽玛校正配对如:(原色,校正色)。当设置伽玛颜色查找表时,先将 Index 设为 0 (即原色从 0 开始配置),然后依次配置三种原色对应的校正色。

当使用伽玛校正功能时,控制器将自动访问查找表并完成原色到校正色的转换。



#### 9.3.4 硬件光标

硬件光标包含两种格式: Monochrome 和 ARGB8888。

在 Monochrome 格式下, 光标每个像素点占用两位数据, 分别为 mask 和 xor, 两个位共同决定了光标的形状和颜色, 如表9.26所示。

表 9.26: 单色光标颜色配置

| $\operatorname{mask}$ | XOR | 颜色   |
|-----------------------|-----|------|
| 0                     | 0   | 背景色  |
| 0                     | 1   | 前景色  |
| 1                     | 0   | 透明   |
| 1                     | 1   | 屏幕反色 |

在 ARGB 模式下, 红绿蓝三色各有 8 位 色深, A 表示透明度, 即光标与底色的插值系数。

指针有两个重要的点:左上点(top-left point)和作用点(hot spot)。左上点用来作为指针地址的参考点,作用点用来将鼠标按下动作确定到一个像素上。





# 第十章 GMAC 控制器

# 10.1 DMA 寄存器描述

龙芯 2H 集成了两个 GMAC 控制器,即 GMAC0 和 GMAC1,二者在逻辑结构上完全相同。以下文档部分在未区分二者的情况下,表示该部分说明对二者均适用。

GMAC 控制器寄存器包括 GMAC 寄存器部分和 DMA 寄存器部分

GMAC0 的 GMAC 寄存器的起始地址是 0x1fe1\_0000; GMAC0 的 DMA 寄存器的起始地址是 0x1fe1\_1000。

GMAC1 的 GMAC 寄存器的起始地址是 0x1fe1\_8000; GMAC0 的 DMA 寄存器的起始地址是 0x1fe1\_9000。

下面分别介绍 DMA 寄存器和 GMAC 寄存器的意义。

#### 10.1.1 Register (Bus Mode Register)

表 10.1: Register0 (Bus Mode Register)

| 名称                                  | 位域       | 初值   | 描述                                 |
|-------------------------------------|----------|------|------------------------------------|
| Register0 (Bus Mode Register) Offse | et: 0x00 |      |                                    |
| Reserved                            | 31:27    | 0x0  | 保留,只读                              |
| 保留                                  |          |      |                                    |
| MB: Mixed Burst                     | 26       | 0x0  | 当此位为高,FB 位为低时,AXI master 在突发访      |
| 混合突发访问                              |          |      | 问长度大于 16 时采用 INCR 访问模式, 当突发访问      |
|                                     |          |      | 长度为 16 或者小于 16 时采用 FIX 访问模式。用户     |
|                                     |          |      | 不用关心此位设置。                          |
| AAL:Address-Aligned Beats           | 25       | 0x0  | 当此位和 FB 位同时为高时,AXI 接口的所有访问         |
| 地址对齐节拍                              |          |      | 将对齐到起始地址的 LS 位。如果 FB 位为 0,首次       |
|                                     |          |      | 访问地址访问不对齐, 剩余的访问地址对齐。用户            |
|                                     |          |      | 不用关心此位设置。                          |
| 8XPBL Mode                          | 24       | 0x0  | 此位为高时,GMAC DMA 的最大突发数据传输长          |
| 是否使能 PBLX8 模式                       |          |      | 度为 8,16,32,64,128 或者 256。最大突发长度取决于 |
|                                     |          |      | PBL。用户不用关心此位设置。                    |
| USP:Use Separate PBL                | 23       | 0x0  | 此位为高时,PBL 值只应用于 TxDMA。此位为低         |
| 使用分离的 PBL 值                         |          |      | 时,PBL 值应用于 TxDMA 和 RxDMA 。用户不      |
|                                     |          |      | 用关心此位设置。                           |
| RPBL: RxDMA PBL                     | 22:17    | 0x01 | 表示一次 RxDMA 传输的最大突发传输长度。只能          |
| RxDMA 突发传输长度                        |          |      | 为 1,2,4,8,16 和 32,其它值无效。           |
| FB: Fixed Burst                     | 16       | 0x0  | 指定 AXI Master 接口是否采用 FIX 突发传输模式。   |
| 定长突发传输长度使能                          |          |      | 用户不用关心此位设置。                        |



| 名称                             | 位域    | 初值   | 描述                            |
|--------------------------------|-------|------|-------------------------------|
| PR: Rx:Tx priority ratio       | 15:14 | 0x0  | 在 DA 位为 0 时起作用。               |
| RxDMA 与 TxDMA 优先级比例            |       |      | 00:1:1                        |
|                                |       |      | 01: 2: 1                      |
|                                |       |      | 10:3:1                        |
|                                |       |      | 11: 4: 1                      |
| PBL:Programmable Burst Length  | 13:8  | 0x1  | 用户不用关心此设置。                    |
| 可编程突发传输长度                      |       |      |                               |
| ATDS:Alternate Descriptor size | 7     | 0x0  | 此位为 1 时使用 32 字节大小的描述符         |
| 是否使用 32 字节大小描述符                |       |      | 此位为 0 时使用 16 字节大小的描述符         |
| DSL: Descriptor Skip Length    | 6:2   | 0x00 | 设置 2 个描述符间的距离。但此值为 0 时, 默认为   |
| 描述符间隔距离                        |       |      | DMA 描述符大小。                    |
| DA: DMA Arbitration scheme     | 1     | 0x0  | 0: 在 RxDMA 和 TxDMA 间采用轮转仲裁机制  |
| DMA                            |       |      | 1: RxDMA 优先级高于 TxDMA 优先级。具体比值 |
| 传输仲裁策略                         |       |      | 见 PR 值。                       |
| SWR:Software Reset             | 0     | 0x1  | 此位置高 DMA 控制器将复位 GMAC 内部寄存器    |
| 软件复位                           |       |      | 和逻辑。当复位结束时该位自动清零。             |

# 10.1.2 Register1 (Transmit Poll Demand Register)

表 10.2: Register1 (Transmit Poll Demand Register)

| 名称                                                     | 位域   | 初值  | 描述                        |  |
|--------------------------------------------------------|------|-----|---------------------------|--|
| Register1 (Transmit Poll Demand Register) Offset: 0x04 |      |     |                           |  |
| TPD: Transmit Poll Demand                              | 31:0 | 0x0 | 向此值写入任意值,发送 DMA 控制器将会读取寄  |  |
| 传输轮询使能                                                 |      |     | 存器 18 对应的描述符。如果该描述符无效,DMA |  |
|                                                        |      |     | 传输将会停止。如果该描述符有效,DMA 传输将会  |  |
|                                                        |      |     | 继续。                       |  |

# 10.1.3 Register2 (Receive Poll Demand Register)

表 10.3: Register2 (Receive Poll Demand Register)

| 名称                                                    | 位域   | 初值  | 描述                                                                              |  |
|-------------------------------------------------------|------|-----|---------------------------------------------------------------------------------|--|
| Register2 (Receive Poll Demand Register) Offset: 0x08 |      |     |                                                                                 |  |
| RPD: Receive Poll Demand<br>接收轮询使能                    | 31:0 | 0x0 | 向此值写入任意值,接收 DMA 控制器将会读取寄存器 18 对应的描述符。如果该描述符无效, DMA 传输将会停止。如果该描述符有效, DMA 传输将会继续。 |  |

## 10.1.4 Register3 (Receive Descriptor List Address Register)

表 10.4: Register3 (Receive Descriptor List Address Register)

| 名称                                                                | 位域   | 初值  | 描述          |  |  |
|-------------------------------------------------------------------|------|-----|-------------|--|--|
| Register3 (Receive Descriptor List Address Register) Offset: 0x0C |      |     |             |  |  |
| Start of Receive List                                             | 31:0 | 0x0 | 指向接收描述符首地址。 |  |  |
| 接收描述符起始地址                                                         |      |     |             |  |  |



### 10.1.5 Register4 (Transmit Descriptor List Address Register)

表 10.5: Register4 (Transmit Descriptor List Address Register)

| 名称                                  | 位域        | 初值         | 描述           |
|-------------------------------------|-----------|------------|--------------|
| Register4 (Transmit Descriptor List | Address R | egister) C | Offset: 0x10 |
| Start of Transmit List              | 31:0      | 0x0        | 指向发送描述符首地址   |
| 发送描述符起始地址                           |           |            |              |

#### 10.1.6 Register5 (Status Register)

表 10.6: Register5 (Status Register)

| 名称                                    | 位域    | 初值  | 描述                             |
|---------------------------------------|-------|-----|--------------------------------|
| Register5 (Status Register) Offset: 0 | 0x14  |     |                                |
| Reserved                              | 31:30 |     | 保留, 只读                         |
| TTI: Time-Stamp Trigger Interrupt     | 29    | 0x0 | 时间戳模块触发中断。只读。                  |
| 时间戳触发中断                               |       |     |                                |
| GPI:GMAC PMT Interrutp                | 28    | 0x0 | 电源管理模块触发中断。只读。                 |
| 电源管理模块触发中断                            |       |     |                                |
| GMI:GMAC MMC Interrupt                | 27    | 0x0 | MMC 模块触发中断。只读。                 |
| MMC 模块触发中断                            |       |     |                                |
| GLI:GMAC Line interface               | 26    | 0x0 | GMAC 模块的 PCS 或者 RGMII 模块触发中断。只 |
| Interrupt                             |       |     | 读。                             |
| GMAC 模块线路触发中断                         | 07.00 | 0.0 | 22 121 E DMA 数据化检注和中华化性识       |
| EB: Error Bits                        | 25:23 | 0x0 | 23: 1'b1 TxDMA 数据传输过程中发生错误     |
| 错误位                                   |       |     | 1'b0 RxDMA 数据传输过程中发生错误         |
|                                       |       |     | 24: 1'b1 读传输错误                 |
|                                       |       |     | 1'b0 写传输错误                     |
|                                       |       |     | 25: 1'b1 描述符访问错误               |
|                                       |       |     | 1'b0 数据缓存访问错误                  |
| TS:Transmit Process State             | 22:20 | 0x0 | 3'b000: 传输停止; 复位或者停止命令发送       |
| 传输过程状态                                |       |     | 3'b001: 正在进行; 获取传输描述符          |
|                                       |       |     | 3'b010: 正在进行;等待传输状态            |
|                                       |       |     | 3'b011: 正在进行; 从发送缓存读取数据并发送到传   |
|                                       |       |     | 输 FIFO(TxFIFO)                 |
|                                       |       |     | 3'b100: 写入时间戳状态                |
|                                       |       |     | 3'b101: 保留                     |
|                                       |       |     | 3'b110: 挂起; 传输描述符不可用或者传输缓存下    |
|                                       |       |     | 溢。                             |
|                                       |       |     | 3'b111: 运行;关闭传输描述符。            |



| 名称                                      | 位域    | 初值   | 描述                                        |
|-----------------------------------------|-------|------|-------------------------------------------|
| RS:Receive Process State                | 19:17 | 0x0  | 3'b000: 停止; 复位或者接收到停止命令                   |
| 接收过程状态                                  |       |      | 3'b001: 运行; 获取接收描述符。                      |
|                                         |       |      | 3'b010: 保留:                               |
|                                         |       |      | 3'b011: 运行; 等待接收包。                        |
|                                         |       |      | 3'b100: 暂停;接收描述符不可用。                      |
|                                         |       |      | 3'b101: 运行;关闭接收描述符。                       |
|                                         |       |      | 3'b110: 时间戳写状态。                           |
|                                         |       |      |                                           |
|                                         |       |      | 3'b111: 运行;将包内容从接收缓存传输到系统内                |
| NIS:Normal Interrutp Summary            | 16    | 0x0  | 存。<br>提示系统是否存在正常中断。                       |
| Tris.Normal Interruty Summary<br>正常中断汇总 | 10    | UXU  | 泛小水乳是百行任正市门·例。<br>                        |
| AIS:Abnormal Interrutp Summary          | 15    | 0x0  | 提示系统是否存在异常中断。                             |
| 异常中断汇总                                  | 10    | OX0  | 是小水泥是自有压力而下断。                             |
| ERI:Early Receive Interrutp             | 14    | 0x0  | 提示 DMA 控制器已经把包的第一个数据写入接收                  |
| 提前接收中断                                  | 11    | 0210 | 缓存                                        |
| FBI:Fatal Bus Error Interrutp           | 13    | 0x0  | 提示总线错误,具体信息见[25:23]。当此位设置后                |
|                                         |       |      | DMA 引擎停止总线访问操作。                           |
| Reserved                                | 12:11 | 0x0  | 保留                                        |
| ETI:Early Transmit Interrupt            | 10    | 0x0  | 提示需要传输的以太网帧已经完全传输到 MTL 模                  |
| <br>  提前发送中断                            |       |      | 块中的传输 FIFO                                |
| RWT:Receive Watchdog Timeout            | 9     | 0x0  | 提示接收到一个大小超过 2048 字节的以太网                   |
| <br> 接收看门狗超时                            |       |      | 帧。(当巨帧使能时,提示接收到大小超过10240                  |
|                                         |       |      | 字节的以太网帧)                                  |
| RPS:Receive Process Stopped             | 8     | 0x0  | 指示接收过程停止                                  |
| 接收过程停止                                  |       |      | W. C. |
| RU:Receive Buffer Unavailable           | 7     | 0x0  | 指示接收缓存不可用                                 |
| <br>  接收缓存不可用                           |       |      |                                           |
| RI:Receive Interrupt                    | 6     | 0x0  | 指示帧接收完成。帧接收的状态信息已经写入接收                    |
| 接收中断                                    |       |      | 描述符。接收处于运行状态。                             |
| UNF:Transmit Underflow                  | 5     | 0x0  | 指示帧发送过程中产生接收缓存下溢。                         |
| 传输缓存下溢                                  |       |      |                                           |
| OVF:Receive Overflow                    | 4     | 0x0  | 指示帧接收过程中接收缓存上溢。                           |
| 接收缓存上溢                                  |       |      |                                           |
| TJT:Transmit Jabber Timeout             | 3     | 0x0  |                                           |
| TU:Transmit Buffer Unavailable          | 2     | 0x0  | 提示传输列表中的下一个描述符不能被 DMA 控制                  |
| 传输缓存不可用                                 |       |      | 器访问。                                      |
| TPS:Transmit Process Stopped            | 1     | 0x0  | 提示传输过程停止                                  |
| 传输过程停止                                  |       |      |                                           |
| TI:Transmit Interrutp                   | 0     | 0x0  | 提示帧传输完成并且第一个描述符的 31 位置位。                  |
| 传输完成中断                                  |       |      |                                           |

# 10.1.7 Register6 (Operation Mode Register)

表 10.7: Register<br/>6 (Operation Mode Register)

| 名称                                               | 位域    | 初值  | 描述 |  |  |  |
|--------------------------------------------------|-------|-----|----|--|--|--|
| Register6 (Operation Mode Register) Offset: 0x18 |       |     |    |  |  |  |
| Reserved                                         | 31:27 | 0x0 | 保留 |  |  |  |
| 保留                                               |       |     |    |  |  |  |



| 名称                                | 位域    | 初值  | 描述                                         |
|-----------------------------------|-------|-----|--------------------------------------------|
| DT                                | 26    | 0x0 | 此位为 1 时 GMAC 将不丢弃 checksum 错误的以太           |
| 关闭丢弃 TCP/IP Checksum 错误           |       |     | 网帧。                                        |
| 以太网帧的功能                           |       |     |                                            |
| RSF:Receive Store and Forward     | 25    | 0x0 | 此位为1时 MTL 模块只接收已经全部存储在接收                   |
| <br>  接收存储转发                      |       |     | FIFO 中的以太网帧。                               |
| DFF:Disable Flushing of Received  | 24    | 0x0 | 此位为1时,接收DMA在接收描述符或者接收缓                     |
| Frames                            |       |     | 存不可用时不冲刷任何以太网帧。                            |
| 关闭冲刷接收的以太网帧的功能                    |       |     |                                            |
| RFA[2]:MSB of Threshold for       | 23    | 0x0 | 100:最大值减去 5KB                              |
| Activating Flow Control           |       |     | 101:最大值减去 6KB                              |
| 激活流控阈值                            |       |     | 110:最大值减去 7KB                              |
| WITH MULTINA IE.                  |       |     | 111:保留                                     |
|                                   |       |     | (注: 最大值为 8KB )                             |
| RFD[2]:MSB of Threshold for       | 22    | 0x0 | 100:最大值减去 5KB                              |
| Deactivating Flow Control         |       | OAO | 101:最大值减去 6KB                              |
| 9                                 |       |     |                                            |
| 关闭流控阈值                            |       |     | 110:最大值减去 7KB                              |
|                                   |       |     | 111:保留                                     |
| mon m                             | 0.1   | 0.0 | (注:最大值为 8KB)<br>此位为 1 时,帧的发送只在帧的内容已经全部进入   |
| TSF:Transmit Store and Forward    | 21    | 0x0 |                                            |
| 发送存储转发                            | 20    | 00  | MTL 的传输 FIFO 中。<br>此位为1时,传输控制逻辑复位为默认值,并且会导 |
| FTF:Flush Transmit FIFO           | 20    | 0x0 |                                            |
| 冲刷传输 FIFO<br>  Reserved           | 19:17 | 00  | 致发送 FIFO 里面的数据全部丢失。<br>保留                  |
|                                   |       | 0x0 |                                            |
| TTC:Transmit Threshold Control    | 16:14 | 0x0 | 当帧大小超过此值时 MTL 将会传输该帧。                      |
| 传输阈值控制                            |       |     | 000: 64 字节                                 |
|                                   |       |     | 001: 128 字节                                |
|                                   |       |     | 010: 192 字节                                |
|                                   |       |     | 011: 256 字节                                |
|                                   |       |     | 100: 40 字节                                 |
|                                   |       |     | 101: 32 字节                                 |
|                                   |       |     | 110: 24 字节                                 |
|                                   |       |     | 111: 16 字节                                 |
| ST:Start/Stop Transmission        | 13    | 0x0 | 此位为1,传输进入运行状态。                             |
| Command                           |       |     | 此位为0,传输进入停止状态。                             |
|                                   |       |     | PSECOND TO THE POST                        |
| RFD:Threshold for deactivating    | 12:11 | 0x0 | 00: 最大值减去 1KB                              |
| flow control                      | 12.11 | OAO | 01: 最大值减去 2KB                              |
| 关闭流控阈值                            |       |     | 10: 最大值减去 3KB                              |
| 大的加克陶匠                            |       |     |                                            |
|                                   |       |     | 11: 最大值减去 4KB                              |
| DEA. Threshold for Astirution of  | 10.0  | 00  | (最大值为 8KB )                                |
| RFA:Threshold for Activating flow | 10:9  | 0x0 | 00: 最大值减去 1KB                              |
| control                           |       |     | 01: 最大值减去 2KB                              |
| 激活流控阈值                            |       |     | 10: 最大值减去 3KB                              |
|                                   |       |     | 11: 最大值减去 4KB                              |
|                                   |       |     | (最大值为 8KB)                                 |
| EFC:Enable HW flow control        | 8     | 0x0 | 此位为1时,基于接收 FIFO 利用率的硬件流控电                  |
| 使能硬件流控                            |       |     | 路生效。                                       |



| 名称                            | 位域  | 初值  | 描述                         |
|-------------------------------|-----|-----|----------------------------|
| FEF:Forward Error Frames      | 7   | 0x0 | 此位为1时,接收错误帧(错误帧包括: CRC 错误, |
| 传输错误帧                         |     |     | 冲突错误, 巨帧, 看门狗超时, 溢出等)      |
| FUF:Forward Undersized Good   | 6   | 0x0 | 此位为1时,接收 FIFO 将会接收没有错误但小于  |
| Frames                        |     |     | 64 字节的以太网帧。                |
| 接收无错误的小帧                      |     |     |                            |
| Reserved                      | 5   | 0x0 | 保留                         |
| RTC:Receive Threshold Control | 4:3 | 0x0 | MTL 传输接收 FIFO 中帧内容已经超过此项设置 |
| 接收阈值控制                        |     |     | 大小。                        |
|                               |     |     | 00: 64 字节                  |
|                               |     |     | 01:32 字节                   |
|                               |     |     | 10: 96 字节                  |
|                               |     |     | 11: 128 字节                 |
| OSF:Operate on Second Frame   | 2   | 0x0 | 此位为高时,DMA 在第一个以太网帧的状态尚未    |
| 是否操作第二个以太网帧                   |     |     | 写回时即可以开始处理第二个以太网帧。         |
| SR:Start/Stop Receive         | 1   | 0x0 | 此位设置为高时,接收进入运行状态。          |
| 开始 / 停止接收                     |     |     | 此位设置为低时,接收进入停止状态。          |
| Reserved                      | 0   | 0x0 | 保留                         |
| 保留                            |     |     |                            |

# 10.1.8 Register7 (Interrupt Enable Register)

表 10.8: Register7 (Interrupt Enable Register)

| 名称                                                 | 位域    | 初值  | 描述                 |  |  |  |
|----------------------------------------------------|-------|-----|--------------------|--|--|--|
| Register7 (Interrupt Enable Register) Offset: 0x1C |       |     |                    |  |  |  |
| Reserved                                           | 31:17 | 0x0 | 保留                 |  |  |  |
| 保留                                                 |       |     |                    |  |  |  |
| NIE:Normal Interrupt Summary                       | 16    | 0x0 | 此位为1时:正常中断使能       |  |  |  |
| Enable                                             |       |     | 此位为0时:正常中断不使能      |  |  |  |
| 正常中断汇总使能                                           |       |     |                    |  |  |  |
| AIE:Abnormal Interrupt Summary                     | 15    | 0x0 | 此位为1时:非正常中断使能。     |  |  |  |
| Enable                                             |       |     | 此位为0时:非正常中断不使能。    |  |  |  |
| 非正常中断汇总使能                                          |       |     |                    |  |  |  |
| ERE: Early Receive Interrupt                       | 14    | 0x0 | 此位为高时:早期接收中断使能     |  |  |  |
| Enable                                             |       |     |                    |  |  |  |
| 早期接收中断使能                                           |       |     |                    |  |  |  |
| FBE:Fatal Bus Error Enable                         | 13    | 0x0 | 此位为高时: 总线致命错误中断使能。 |  |  |  |
| 总线致命错误中断使能                                         |       |     |                    |  |  |  |
| Reserved                                           | 12:11 | 0x0 | 保留                 |  |  |  |
| 保留                                                 |       |     |                    |  |  |  |
| ETE:Early Transmit Interrupt                       | 10    | 0x0 | 此位为高时: 使能早期传输中断    |  |  |  |
| Enable                                             |       |     |                    |  |  |  |
| 早期传输中断使能                                           |       |     |                    |  |  |  |
| RWE:Receive Watchdog Timeout                       | 9     | 0x0 | 此位为高时: 使能接收看门狗超时中断 |  |  |  |
| Enable                                             |       |     |                    |  |  |  |
| 接收看门狗超时中断使能                                        |       |     |                    |  |  |  |
| RSE:Receive Stopped Enable                         | 8     | 0x0 | 此位为高时: 使能接收停止中断。   |  |  |  |
| 接收停止中断使能                                           |       |     |                    |  |  |  |



| 名称                              | 位域 | 初值  | 描述                     |
|---------------------------------|----|-----|------------------------|
| RUE:Receive Buffer Unavailable  | 7  | 0x0 | 此位为高时: 使能接收缓冲区不可用中断。   |
| Enable                          |    |     |                        |
| 接收缓冲区不可用中断使能                    |    |     |                        |
| RIE:Receive Interrupt Enable    | 6  | 0x0 | 此位为高时: 使能接收完成中断        |
| 接收中断使能                          |    |     |                        |
| UNE:Underflow Interrupt Enable  | 5  | 0x0 | 此位为高时: 使能传输 FIFO 下溢中断  |
| 传输 FIFO 下溢中断使能                  |    |     |                        |
| OVE:Overflow Interrupt Enable   | 4  | 0x0 | 此位为高时: 使能接收 FIFO 上溢中断。 |
| 接收 FIFO 上溢中断使能                  |    |     |                        |
| TJE:Transmit Jabber Timeout     | 3  | 0x0 | 此位为高时: 使能 Jabber 超时中断。 |
| Enable                          |    |     |                        |
| 传输 Jabber 超时中断使能                |    |     |                        |
| TUE:Transmit Buffer Unavailable | 2  | 0x0 | 此位为高时: 使能传输缓存不可用中断。    |
| Enable                          |    |     |                        |
| 传输缓存不可用中断使能                     |    |     |                        |
| TSE:Transmit Stopped Enable     | 1  | 0x0 | 此位为高时: 使能传输停止中断。       |
| 传输停止中断使能                        |    |     |                        |
| TIE:Transmit Interrupt Enable   | 0  | 0x0 | 此位为高时: 使能传输完成中断。       |
| 传输完成中断使能                        |    |     |                        |

# 10.1.9 Register8 (Missed Frame and Buffer Overflow Counter Register)

表 10.9: Register8 (Missed Frame and Buffer Overflow Counter Register)

| 10.5. Registero (Missed Frame and Duner Overnow Counter Register)          |       |     |                        |  |  |
|----------------------------------------------------------------------------|-------|-----|------------------------|--|--|
|                                                                            | 位域    | 初值  | 描述                     |  |  |
| Register8 (Missed Frame and Buffer Overflow Counter Register) Offset: 0x20 |       |     |                        |  |  |
| Reserved                                                                   | 31:29 | 0x0 | 保留                     |  |  |
| 保留                                                                         |       |     |                        |  |  |
| Overflow bit for FIFO Overflow                                             | 28    | 0x0 | FIFO 溢出指示位             |  |  |
| Counter                                                                    |       |     |                        |  |  |
| FIFO 溢出指示位                                                                 |       |     |                        |  |  |
| Indicates the number of frames                                             | 27:17 | 0x0 | 指示应用程序丢失帧的个数           |  |  |
| missed by the application                                                  |       |     |                        |  |  |
| 应用程序丢失的帧个数                                                                 |       |     |                        |  |  |
| Overflow bit for Missed Frame                                              | 16    | 0x0 | 提示丢失帧个数已经超过计数的最大值。     |  |  |
| Counter                                                                    |       |     |                        |  |  |
| 丢失帧个数溢出指示                                                                  |       |     |                        |  |  |
| Indicates the number of frames                                             | 15:0  | 0x0 | 指示因为主机接收缓存不可用导致帧丢失个数的计 |  |  |
| missed by the controller due to the                                        |       |     | 数。                     |  |  |
| Host Receive Buffer being                                                  |       |     |                        |  |  |
| unavailable                                                                |       |     |                        |  |  |
| 因为主机接收缓存不可用导致帧丢失                                                           |       |     |                        |  |  |
| 的个数                                                                        |       |     |                        |  |  |

### 10.1.10 Register9(Receive Interrupt Watchdog Timer Register)



表 10.10: Register9(Receive Interrupt Watchdog Timer Register)

| 名称                                  | 位域        | 初值           | 描述                            |
|-------------------------------------|-----------|--------------|-------------------------------|
| Register9(Receive Interrupt Watchdo | g Timer R | Offset: 0x24 |                               |
| Reserved                            | 31:8      | 0x0          |                               |
| 保留                                  |           |              |                               |
| RIWT: RI Watchdog Timer count       | 7:0       | 0x0          | 当看门狗设置后,表示以时钟周期 x256 的时间为单    |
| 接收看门狗时间计数                           |           |              | 位计时。当 DMA 接收到数据包且 status 寄存器中 |
|                                     |           |              | RI 位为 0 时开始计时, 当看门狗计数超时后 RI 位 |
|                                     |           |              | 置 1 。当 RI 位为 1 后该域复位          |

# 10.1.11 Register10 (AXI Bus Mode Register)

表 10.11: Register10 (AXI Bus Mode Register)

| 名称                                  | 位域      | 初值   | 描述                                         |
|-------------------------------------|---------|------|--------------------------------------------|
| Register10 (AXI Bus Mode Register)  | Offset: | 0x28 |                                            |
| EN_LPI: Enable LPI (Low Power       | 31      | 0x0  | 该位为1时,启用低功耗接口(Low Power Interface)         |
| Interface)                          |         |      | ,系统接受来自 AXI 系统时钟控制器的 LPI 请求。               |
| 启用低功耗接口                             |         |      | 该位为 0 时,不启用低功耗接口,系统永远拒绝 LPI                |
|                                     |         |      | 请求                                         |
| UNLCK_ON_MGK_RWK: Unlock            | 30      | 0x0  | 当该位为 1 时,GMAC 处于低功耗 (Low Power)            |
| on Magic Packet or Remote Wake      |         |      | 状态下时只能通过魔法包或者远程唤醒包来重新回                     |
| Up                                  |         |      | 到工作状态; 当该位为 0 时, GMAC 处于低功耗                |
| 解锁魔法包或远程唤醒包                         |         |      | (Low Power) 状态下时只能通过任意包重新回到工               |
|                                     |         |      | 作状态                                        |
| Reserved                            | 29:23   | 0x0  |                                            |
| 保留                                  |         |      |                                            |
| WR_OSR_LMT: AXI Maximum             | 22:20   | 0x0  | 该位设置了 AXI 接口写操作发出最大的 outstand-             |
| Write Out Standing Request Limit    |         |      | ing 请求数                                    |
| AXI 最大 outstanding 写请求              |         |      |                                            |
| Reserved 保留                         | 19      | 0x0  |                                            |
| WR_OSR_LMT: AXI Maximum             | 18:16   | 0x0  | 该位设置了 AXI 接口读操作发出最大的 outstand-             |
| Read Out Standing Request Limit     |         |      | ing 请求数                                    |
| AXI 最大 outstanding 读请求              |         |      |                                            |
| Reserved                            | 15:13   | 0x0  |                                            |
| 保留                                  |         |      |                                            |
| AXI_AAL: Address-Aligned Beats      | 12      | 0x0  | 这位是一个只读位,与 AAL 位 0 相同                      |
| AXI 地址对齐                            | 11.0    | 0.0  |                                            |
| Reserved                            | 11:8    | 0x0  |                                            |
| 保留<br>BLEN256: AXI Burst Length 256 | 7       | 0x0  | 该位只有当 AXI_BURST_LENGTH 配置 256 时有           |
| AXI Burst 长度 256                    | '       | 0.00 | 效, 为 1 时表示 AXI 支持 Burst 长度为 256 的请求;       |
| AXI Burst 💢 250                     |         |      | 一次,为了时表示 AXI 文诗 Bulst 长皮为 250 时间来;<br>否则保留 |
| BLEN256: AXI Burst Length 128       | 6       | 0x0  | 百则味菌<br>  该位只有当 AXI_BURST_LENGTH 配置 128 时有 |
| AXI Burst 长度 128                    | v       |      | 效, 为 1 时表示 AXI 支持 Burst 长度为 128 的请求;       |
|                                     |         |      | 一 否则保留                                     |
| BLEN256: AXI Burst Length 64        | 5       | 0x0  | 该位只有当 AXI_BURST_LENGTH 配置 64 时有            |
| AXI Burst 长度 64                     |         |      | 效, 为 1 时表示 AXI 支持 Burst 长度为 64 的请求;        |
|                                     |         |      | 否则保留                                       |



| 名称                           | 位域 | 初值  | 描述                                  |
|------------------------------|----|-----|-------------------------------------|
| BLEN256: AXI Burst Length 32 | 4  | 0x0 | 该位只有当 AXI_BURST_LENGTH 配置 32 时有     |
| AXI Burst 长度 32              |    |     | 效,为1时表示 AXI 支持 Burst 长度为32的请求;      |
|                              |    |     | 否则保留                                |
| BLEN256: AXI Burst Length 16 | 3  | 0x0 | 该位只有当 AXI_BURST_LENGTH 配置 16 时有     |
| AXI Burst 长度 16              |    |     | 效, 为 1 时表示 AXI 支持 Burst 长度为 16 的请求; |
|                              |    |     | 否则保留                                |
| BLEN256: AXI Burst Length 8  | 2  | 0x0 | 该位只有当 AXI_BURST_LENGTH 配置 8 时有效,    |
| AXI Burst 长度 8               |    |     | 为 1 时表示 AXI 支持 Burst 长度为 8 的请求; 否则  |
|                              |    |     | 保留                                  |
| BLEN256: AXI Burst Length 4  | 1  | 0x0 | 该位只有当 AXI_BURST_LENGTH 配置 4 时有效,    |
| AXI Burst 长度 4               |    |     | 为 1 时表示 AXI 支持 Burst 长度为 4 的请求; 否则  |
|                              |    |     | 保留                                  |
| UNDEF: AXI Undefined Burst   | 0  | 0x0 | 该位为 1 时表示 AXI 接口可以发出任意 Burst 长度     |
| Length                       |    |     | 的请求,为0时表示 AXI 支持以上 bit7-1 定义的长      |
| 为定义 AXI Burst 长度             |    |     | 度为 256/128/64/32/16/8/4 或者 1 的请求    |

# 10.1.12 Register11 (AXI Status Register)

表 10.12: Register11 (AXI Status Register)

| 名称                                            | 位域   | 初值  | 描述                    |  |  |  |
|-----------------------------------------------|------|-----|-----------------------|--|--|--|
| Register11 (AXI Status Register) Offset: 0x2C |      |     |                       |  |  |  |
| Reserved                                      | 31:2 | 0x0 |                       |  |  |  |
| 保留                                            |      |     |                       |  |  |  |
|                                               | 1    | 0x0 | 该为为1时表示当前 AXI 正在发送读请求 |  |  |  |
|                                               | 0    | 0x0 | 该为为1时表示当前 AXI 正在发送写请求 |  |  |  |

### 10.1.13 Register18 (Current Host Transmit Descriptor Register)

表 10.13: Register18 (Current Host Transmit Descriptor Register)

| 名称                                  | 位域         | 初值        | 描述           |
|-------------------------------------|------------|-----------|--------------|
| Register18 (Current Host Transmit I | Descriptor | Register) | Offset: 0x48 |
| Host Transmit Descriptor Address    | 31:0       | 0x0       | 只读           |
| Pointer                             |            |           |              |
| 当前发送描述符主机地址指针                       |            |           |              |

### 10.1.14 Register19 (Current Host Receive Descriptor Register)

表 10.14: Register19 (Current Host Receive Descriptor Register)

|                                     | ,           |            | - ,          |
|-------------------------------------|-------------|------------|--------------|
| 名称                                  | 位域          | 初值         | 描述           |
| Register19 (Current Host Receive De | escriptor R | egister) ( | Offset: 0x4C |
| Host Receive Descriptor Address     | 31:0        | 0x0        | 只读           |
| Pointer                             |             |            |              |
| 当前接收描述符主机地址指针                       |             |            |              |



#### 10.1.15 Register20 (Current Host Transmit Buffer Address Register)

表 10.15: Register20 (Current Host Transmit Buffer Address Register)

| 名称                                  | 位域         | 初值          | 描述                |
|-------------------------------------|------------|-------------|-------------------|
| Register20 (Current Host Transmit E | Buffer Add | ress Regist | ser) Offset: 0x50 |
| Host Transmit Buffer Address        | 31:0       | 0x0         | 只读                |
| Pointer                             |            |             |                   |
| 当前传输缓冲区主机地址指针                       |            |             |                   |

#### 10.1.16 Register21 (Current Host Receive Buffer Address Register)

表 10.16: Register21 (Current Host Receive Buffer Address Register)

| 名称                                  | 位域          | 初值         | 描述              |
|-------------------------------------|-------------|------------|-----------------|
| Register21 (Current Host Receive Bu | iffer Addre | ss Registe | r) Offset: 0x54 |
| Host Receive Buffer Address         | 31:0        | 0x0        | 只读              |
| Pointer                             |             |            |                 |
| 当前接收缓冲区主机地址指针                       |             |            |                 |

# 10.2 GMAC 控制器寄存器描述

# 10.2.1 Register0 (MAC Configuration Register)

表 10.17: Register0 (MAC Configuration Register)

| 名称                                 | 位域         | 初值  | 描述                             |
|------------------------------------|------------|-----|--------------------------------|
| Register0 (MAC Configuration Regis | ter) Offse |     |                                |
| Reserved                           | 31:26      | 0x0 | 保留                             |
| 保留                                 |            |     |                                |
| TC: Transmit Configuration in      | 24         | 0x0 | 此位为高时,将会把双工模式,链路速度,链路以         |
| RGMII                              |            |     | 及链路连接 / 断开等信息通过 RGMII 接口传输给    |
| 使能 RGMII 链路信息传输                    |            |     | PHY 。                          |
| WD: Watchdog Disable               | 23         | 0x0 | 此位为高时,GMAC 将关闭接收端的看门狗定时        |
| 关闭看门狗                              |            |     | 器,可以接收最大 16384 字节的以太网帧。        |
| JD: Jabber Disable                 | 22         | 0x0 | 此位为高时,GMAC 关闭发送过程中的 Jabber 定   |
| 关闭 Jabber 定时器                      |            |     | 时器,可以发送最大 16384 字节的以太网帧。       |
| BE: Frame Burst Enable             | 21         | 0x0 | 此位为高时,GMAC 使能传输过程中的帧突发传输       |
| 帧突发传输使能                            |            |     | 模式。                            |
| JE: Jumbo Frame Enable             | 20         | 0x0 | 此位为高时,GMAC 使能巨帧 (最大 9018 字节) 的 |
| 巨帧使能                               |            |     | 接收。                            |
| IFG: Inter-Frame Gap               | 19:17      | 0x0 | 设置传输过程中的最小帧间距。                 |
| 最小帧间距                              |            |     | 000: 96 位时间                    |
|                                    |            |     | 001: 88 位时间                    |
|                                    |            |     | 010: 80 位时间                    |
|                                    |            |     |                                |
|                                    |            |     | 111: 40 位时间                    |



| 名称                          | 位域  | 初值  | 描述                             |
|-----------------------------|-----|-----|--------------------------------|
| DCRS: Disable Carrier Sense | 16  | 0x0 | 此位为高时,MAC 忽略半双工模式下 CRS 信号的     |
| During Transmission         |     |     | 检测。                            |
| 传输过程中关闭载波冲突检测               |     |     |                                |
| PS: Port Select             | 15  | 0x0 | 0: GMII (1000Mbps)             |
| 端口选择                        |     |     | 1: MII (10/100Mbps)            |
| FES: Speed                  | 14  | 0x0 | 0: 10Mbps                      |
| 快速以太网速度提示                   |     |     | 1: 100Mbps                     |
| DO: Disable Receive Own 关闭接 | 13  | 0x0 | 此位为高时, GMAC 不接收半双工模式下          |
| 收自己发出的以太网帧                  |     |     | gmii_txen_o 有效的以太网帧。           |
| LM: Loopback Mode           | 12  | 0x0 | 此位为高时,GMII/MII 工作在环回模式下。       |
| 使能环回模式                      |     |     |                                |
| DM: Duplex Mode             | 11  | 0x0 | 此位为高时,GMAC 工作在全双工模式下,在全双       |
| 使能全双工模式                     |     |     | 工模式下可以同时发送和接收以太网帧。             |
| IPC: Checksum Offload       | 10  | 0x0 | 此位为高时,GMAC 硬件计算接收到以太网帧的负       |
| 校验和卸载使能                     |     |     | 载(payload)。还检查 IPV4 头的校验和是否正确。 |
| DR: Disable Retry           | 9   | 0x0 | 此位为高时,GMAC 在遇到冲突时不重传发送冲突       |
| 关闭重传                        |     |     | 的以太网帧,而只报告冲突错误。                |
| LUD: Link Up/Down           | 8   | 0x0 | 0:链路断开                         |
| 链路连接 / 链路断开                 |     |     | 1:链路连接                         |
| ACS: Automatic Pad/CRC      | 7   | 0x0 | 此位为1时,GMAC 中去除接收到的以太网帧的        |
| Stripping                   |     |     | Pad 和 FCS。                     |
| 以太网帧 Pad/CRC 自动去除           |     |     |                                |
| BL: Back-Off Limit          | 6:5 | 0x0 | 回退限制决定基于 slot 的延迟时间。           |
| 回退限制                        |     |     | 00: k=min(n,10)                |
|                             |     |     | 01: k=min(n,8)                 |
|                             |     |     | 10: k=min(n,4)                 |
|                             |     |     | 11: k=min(n,1)                 |
| DC: Deferral Check          | 4   | 0x0 | 此位为 1 时,使能 deferral 检测功能。      |
| Deferral 检查                 |     |     |                                |
| TE: Transmitter Enable      | 3   | 0x0 | 此位为1时,使能GMAC传输功能。              |
| 传输使能                        |     |     |                                |
| RE: Receiver Enable         | 2   | 0x0 | 此位为1时,使能GMAC接收功能。              |
| 接收使能                        |     |     |                                |
| Reserved                    | 1:0 | 0x0 | 保留。                            |

# 10.2.2 Register1 (MAC Frame Filter)

表 10.18: Register1 (MAC Frame Filter)

| 名称                                          | 位域    | 初值  | 描述                      |  |  |
|---------------------------------------------|-------|-----|-------------------------|--|--|
| Register1 (MAC Frame Filter) Offset: 0x0004 |       |     |                         |  |  |
| RA: Receive All                             | 31    | 0x0 | 此位为1时,GMAC接收模块把接收到的所有帧都 |  |  |
| 接收全部                                        |       |     | 发给应用程序,忽略源地址/目标地址过滤机制。  |  |  |
| Reserved                                    | 30:11 | 0x0 | 保留                      |  |  |
| 保留                                          |       |     |                         |  |  |



| 名称                                | 位域  | 初值  | 描述                             |
|-----------------------------------|-----|-----|--------------------------------|
| HPF: Hash or Perfect Filter       | 10  | 0x0 | 此位为1时,在哈希/完全过滤机制中匹配的以太         |
| 哈希或者完全过滤                          |     |     | 网帧发送给应用。                       |
|                                   |     |     | 此位为0时,只有在哈希过滤机制中匹配的以太网         |
|                                   |     |     | 帧才发送给应用。                       |
| SAF: Source Address Filter Enable | 9   | 0x0 | GMAC CORE 比较比较接收到以太网帧的源地址      |
| 源地址过滤使能                           |     |     | 域和在 SA 寄存器中的值,如果匹配,接收状态寄存      |
|                                   |     |     | 器中的 SAMatch 位设置为高。如果此位为 1,源地   |
|                                   |     |     | 址匹配失败,GMAC CORE 将丢弃该以太网帧。      |
|                                   |     |     | 如果此位为 0,不管源地址匹配结果 GMAC CORE    |
|                                   |     |     | 都接收此帧,而匹配结果写入接收状态寄存器。          |
| SAIF: SA Inverse Filtering        | 8   | 0x0 | 此位为1时,和SA寄存器中源地址匹配的以太网         |
| 源地址反转过滤                           |     |     | 帧将会标记为源地址匹配失败。                 |
|                                   |     |     | 此位为0时,和SA寄存器中源地址不匹配的以太         |
|                                   |     |     | 网帧将会标记为源地址匹配失败。                |
| PCF: Pass Control Frames          | 7:6 | 0x0 | 00: GMAC 过滤所有控制帧               |
| 接收控制帧                             |     |     | 01: GMAC 接收除了 pause 帧以外的所有控制帧。 |
|                                   |     |     | 10: GMAC 接收所有控制帧。              |
|                                   |     |     | 11: GMAC 根据地址过滤情况接收控制帧         |
| DBF: Disable Broadcast Frames     | 5   | 0x0 | 此位为1时,过滤所有接收的广播帧。              |
| <br>  美闭广播帧                       |     |     | 此位为0时,接收所有广播帧。                 |
| PM: Pass All Multicast            | 4   | 0x0 | 此位为1时,接收所有多播帧。                 |
| 接收所有多播帧                           |     |     | 此位为0时,过滤所有多播帧。                 |
| DAIF: DA Inverse Filtering        | 3   | 0x0 | 此位为1时,对单播和多播帧进行反向目标地址匹         |
| 目标地址反转过滤                          |     |     | 固己。                            |
|                                   |     |     | 此位为0时,对单播和多播帧进行正常目标地址匹         |
|                                   |     |     | 唱。                             |
| HMC: Hash Multicast               | 2   | 0x0 | 此位为1时,对接收到的多播帧根据哈希表的内容         |
| 哈希多播过滤                            |     |     | 进行目标地址过滤。                      |
| HUC: Hash Unicast                 | 1   | 0x0 | 此位为1时,对接收到的单播帧根据哈希表的内容         |
| 哈希单播过滤                            |     |     | 进行目标地址过滤。                      |
| PR: Promiscuous Mode              | 0   | 0x0 | 接收所有以太网帧。                      |
| 混杂模式                              |     |     |                                |

# 10.2.3 Register2 (Hash Table High Register)

表 10.19: Register2 (Hash Table High Register)

| (11dell 10001001)                                   |      |     |             |  |  |  |
|-----------------------------------------------------|------|-----|-------------|--|--|--|
| 名称                                                  | 位域   | 初值  | 描述          |  |  |  |
| Register2 (Hash Table High Register) Offset: 0x0008 |      |     |             |  |  |  |
| HTH: Hash Table High                                | 31:0 | 0x0 | 哈希表的高 32 位。 |  |  |  |
| 哈希表高位                                               |      |     |             |  |  |  |

# 10.2.4 Register3 (Hash Table Low Register)

表 10.20: Register3 (Hash Table Low Register)

| 名称                                                 | 位域 | 初值 | 描述 |  |
|----------------------------------------------------|----|----|----|--|
| Register3 (Hash Table Low Register) Offset: 0x000C |    |    |    |  |



| 名称                  | 位域   | 初值  | 描述          |
|---------------------|------|-----|-------------|
| HTL: Hash Table Low | 31:0 | 0x0 | 哈希表的低 32 位。 |
| 哈希表低位               |      |     |             |

# 10.2.5 Register4 (GMII Address Register)

表 10.21: Register4 (GMII Address Register)

| 名称                                               | 位域    | 初值  | 描述                             |  |  |
|--------------------------------------------------|-------|-----|--------------------------------|--|--|
| Register4 (GMII Address Register) Offset: 0x0010 |       |     |                                |  |  |
| Reserved                                         | 31:16 | 0x0 | 保留                             |  |  |
| 保留                                               |       |     |                                |  |  |
| PA: Physical Layer Address PHY                   | 15:11 | 0x0 | 此域选择需要访问 32 个 PHY 中的哪个。        |  |  |
| 地址                                               |       |     |                                |  |  |
| GR: GMII Register                                | 10:6  | 0x0 | 此域选择需要访问的的 PHY 的哪个 GMII 配置寄    |  |  |
| 需要访问的 PHY 设备中的寄存器                                |       |     | 存器。                            |  |  |
| Reserved                                         | 5     | 0x0 | 保留                             |  |  |
| 保留                                               |       |     |                                |  |  |
| CR: CSR Clock Range                              | 4:2   | 0x0 | 此域决定 MDC 时钟是 clk_csr_i 时钟频率比例。 |  |  |
| CSR 时钟范围                                         |       |     | 0000 clk_csr_i/42              |  |  |
|                                                  |       |     | 0001 clk_csr_i/62              |  |  |
|                                                  |       |     | 0010 clk_csr_i/16              |  |  |
|                                                  |       |     | 0011 clk_csr_i/26              |  |  |
|                                                  |       |     | 0100 clk_csr_i/102             |  |  |
|                                                  |       |     | 0101 clk_csr_i/124             |  |  |
|                                                  |       |     | 0110, 0111 Reserved            |  |  |
| GW: GMII Write                                   | 1     | 0x0 | 此位为 1 时,通过 GMII 数据寄存器对 PHY 进行  |  |  |
| GMII 写                                           |       |     | 写操作                            |  |  |
|                                                  |       |     | 此位为0时,通过GMII数据寄存器对PHY进行读       |  |  |
|                                                  |       |     | 操作。                            |  |  |
| GB: GMII Busy                                    | 0     | 0x0 | 对寄存器 4 和寄存器 5 写之前,此位应为 0。在写寄   |  |  |
| GMII 忙                                           |       |     | 存器 4 之前此位必须先置 0。在访问 PHY 的寄存器   |  |  |
|                                                  |       |     | 时,应用程序需要将此位设置为1,表示GMII接口       |  |  |
|                                                  |       |     | 上有写或者读操作正在进行。                  |  |  |

# 10.2.6 Register5 (GMII Data Register)

表 10.22: Register5 (GMII Data Register)

|                                               | 0     | (   | 9 /                         |  |  |  |
|-----------------------------------------------|-------|-----|-----------------------------|--|--|--|
| 名称                                            | 位域    | 初值  | 描述                          |  |  |  |
| Register5 (GMII Data Register) Offset: 0x0014 |       |     |                             |  |  |  |
| Reserved                                      | 31:16 | 0x0 | 保留                          |  |  |  |
| 保留                                            |       |     |                             |  |  |  |
| GD: GMII Data                                 | 15:0  | 0x0 | 此域保存了对 PHY 进行管理读访问操作的 16 位数 |  |  |  |
| GMII 数据                                       |       |     | 据,或者对 PHY 进行管理写访问的 16 位数据。  |  |  |  |

# 10.2.7 Register6 (Flow Control Register)



表 10.23: Register6 (Flow Control Register)

| 名称                                               | 位域    | 初值  | 描述                                  |  |  |
|--------------------------------------------------|-------|-----|-------------------------------------|--|--|
| Register6 (Flow Control Register) Offset: 0x0018 |       |     |                                     |  |  |
| PT: Pause Time                                   | 31:16 | 0x0 | 此域保存了需要填入传输控制帧中的暂停时间域。              |  |  |
| 暂停时间                                             |       |     |                                     |  |  |
| Reserved                                         | 15:8  | 0x0 | 保留                                  |  |  |
| 保留                                               |       |     |                                     |  |  |
| DZPQ: Disable Zero-Quanta Pause                  | 7     | 0x0 | 此位为1时,禁止自动零时间片的暂停控制帧的产              |  |  |
| 禁止零时间片暂停帧                                        |       |     | 生。                                  |  |  |
| Reserved                                         | 6     | 0x0 | 保留                                  |  |  |
| 保留                                               |       |     | HIDDE THE HEAD OF A LOT ALL AND ALL |  |  |
| PLT: Pause Low Threshold                         | 5:4   | 0x0 | 此域用于设置暂停时间的阈值。                      |  |  |
| 暂停帧的低阈值                                          |       |     | 00: 暂停时间减少 4 个时间槽                   |  |  |
|                                                  |       |     | 01: 暂停时间减少 28 个时间槽                  |  |  |
|                                                  |       |     | 10: 暂停时间减少 144 个时间槽                 |  |  |
|                                                  |       |     | 11: 暂停时间减少 256 个时间槽                 |  |  |
|                                                  |       |     | (一个时间槽为在 GMII/MII 接口上传输 512 比特      |  |  |
|                                                  |       |     | 或者 64 字节的时间)                        |  |  |
| UP: Unicast Pause Frame Detect                   | 3     | 0x0 | 此位为1时,GMAC将会根据MAC地址0指定的             |  |  |
| 单播的暂停帧探测                                         |       |     | 本站单播地址来探测暂停帧。                       |  |  |
| RFE: Receive Flow Control Enable                 | 2     | 0x0 | 此位为1时,GMAC 将会解析接收到的暂停帧,并            |  |  |
| 接收流控使能                                           |       |     | 且按照暂停帧指定的时间暂停帧的发送。                  |  |  |
| TEF: Transmit Flow Control                       | 1     | 0x0 | 在全双工模式下,此位为1时,GMAC 使能暂停帧            |  |  |
| Enable                                           |       |     | 的发送。                                |  |  |
| 发送流控使能                                           |       |     | 在半双工模式下,此位为1时,GMAC 使能反压操            |  |  |
|                                                  |       |     | 作。                                  |  |  |
| FCB/BPA: Flow Control                            | 0     | 0x0 | 此位为1时,在全双工模式下发起暂停控制帧的发              |  |  |
| Busy/Backpressure Activate                       |       |     | 送或在半双工模式下启动反压操作。                    |  |  |
| 流控忙 / 反压激活                                       |       |     |                                     |  |  |

# 10.2.8 Register7 (VLAN Tag Register)

表 10.24: Register7 (VLAN Tag Register)

| -                                            | 0     | (   | 0 0 /                              |  |  |  |
|----------------------------------------------|-------|-----|------------------------------------|--|--|--|
| 名称                                           | 位域    | 初值  | 描述                                 |  |  |  |
| Register7 (VLAN Tag Register) Offset: 0x001C |       |     |                                    |  |  |  |
| Reserved                                     | 31:17 | 0x0 | 保留                                 |  |  |  |
| 保留                                           |       |     |                                    |  |  |  |
| ETV: Enable 12-Bit VLAN Tag                  | 16    | 0x0 | 此位为 1 时, 使用 12 位 VLAN Tag 而不是使用 16 |  |  |  |
| Comparison                                   |       |     | 位 VLAN Tag 用于以太网帧比较和过滤。            |  |  |  |
| 使能 12 位 VLAN Tag 比较                          |       |     |                                    |  |  |  |
| VL: VLAN Tag Identifier for                  | 15:0  | 0x0 | 此域保存802.1Q格式的VLAN Tag,用于比较接收       |  |  |  |
| Receive Frames                               |       |     | 到的以太网帧的位于第 15 和第 16 个字节的 VLAN      |  |  |  |
| 帧接收的 VLAN Tag 标识                             |       |     | Tag .                              |  |  |  |

# 10.2.9 Register8 (Version Register)



# 表 10.25: Register8 (Version Register)

| 名称                                          | 位域   | 初值  | 描述   |  |  |
|---------------------------------------------|------|-----|------|--|--|
| Register8 (Version Register) Offset: 0x0020 |      |     |      |  |  |
| Reserved                                    | 15:8 | 0x0 | 保留   |  |  |
| 保留                                          |      |     |      |  |  |
| Version                                     | 7:0  | 0x0 | 0X35 |  |  |
| 版本号                                         |      |     |      |  |  |

# 10.2.10 Register14 (Interrupt Status Register)

表 10.26: Register14 (Interrupt Status Register)

| 名称                                     | 位域      | 初值     | 描述                                  |
|----------------------------------------|---------|--------|-------------------------------------|
| Register14 (Interrupt Status Register) | Offset: | 0x0038 |                                     |
| Reserved                               | 15:8    | 0x0    | 保留                                  |
| 保留                                     |         |        |                                     |
| MMC Receive Checksum Offload           | 7       | 0x0    | MMC 校验和卸载寄存器产生任何中断产生时,此             |
| Interrupt Status                       |         |        | 位设置为 1。                             |
| MMC 接收校验和卸载状态中断                        |         |        |                                     |
| MMC Transmit Interrupt Status          | 6       | 0x0    | MMC 传输中断寄存器产生任何中断时,此位设置             |
| MMC 传输中断                               |         |        | 为1。                                 |
| MMC Receive Interrupt Status           | 5       | 0x0    | MMC 接收中断寄存器产生任何中断时,此位设置             |
| MMC 接收中断状态                             |         |        | 为1。                                 |
| MMC Interrupt Status                   | 4       | 0x0    | 7:5 的任何位为高时,此位设置为1。                 |
| MMC 中断状态                               |         |        |                                     |
| PMT Interrupt Status                   | 3       | 0x0    | 在 Power Down 状态下,收到 magic 帧或在 Wake- |
| 电源管理中断状态                               |         |        | on-LAN 帧时,此位设置为 1。                  |
| PCS Auto-Negotiation Complete          | 2       | 0x0    | RGMII PHY 接口自动协商完成时,此位设置为 1。        |
| PCS 自动协商完成                             |         |        |                                     |
| PCS Link Status Changed                | 1       | 0x0    | RGMII PHY 接口的链路状态发生任何变化时,此          |
| PCS 链路状态变化                             |         |        | 位设置为 1。                             |
| RGMII Interrupt Status                 | 0       | 0x0    | RGMII 接口的链路状态发生任何变化时,此位设置           |
| RGMII 中断状态                             |         |        | 为1。                                 |

# 10.2.11 Register15 (Interrupt Mask Register)

表 10.27: Register15 (Interrupt Mask Register)

| 名称                                                  | 位域    | 初值  | 描述                 |  |  |  |
|-----------------------------------------------------|-------|-----|--------------------|--|--|--|
| Register15 (Interrupt Mask Register) Offset: 0x003C |       |     |                    |  |  |  |
| Reserved                                            | 15:10 | 0x0 | 保留                 |  |  |  |
| 保留                                                  |       |     |                    |  |  |  |
| Time Stamp Interrupt Mask                           | 9     | 0x0 | 此位为1时,禁止时间戳发生的中断   |  |  |  |
| 时间戳中断使能                                             |       |     |                    |  |  |  |
| Reserved                                            | 8:4   | 0x0 | 保留                 |  |  |  |
| 保留                                                  |       |     |                    |  |  |  |
| PMT Interrupt Mask                                  | 3     | 0x0 | 此位为1时,禁止电源管理引起的中断。 |  |  |  |
| 电源管理中断使能                                            |       |     |                    |  |  |  |



| 名称                             | 位域 | 初值  | 描述                      |
|--------------------------------|----|-----|-------------------------|
| PCS AN Completion Interrupt    | 2  | 0x0 | 此位为1时,禁止PCS自动协商完成中断。    |
| Mask                           |    |     |                         |
| PCS 自动协商完成中断使能                 |    |     |                         |
| PCS Link Status Interrupt Mask | 1  | 0x0 | 此位为1时,禁止由于PCS链路状态变化引起的中 |
| PCS 链路状态中断使能                   |    |     | 断。                      |
| RGMII Interrupt Mask           | 0  | 0x0 | 此位为1时,禁止RGMII引起的中断。     |
| RGMII 中断使能                     |    |     |                         |

# 10.2.12 Register16 (MAC Address0 High Register)

表 10.28: Register16 (MAC Address0 High Register)

| 名称                                                     | 位域    | 初值  | 描述                      |  |  |
|--------------------------------------------------------|-------|-----|-------------------------|--|--|
| Register16 (MAC Address0 High Register) Offset: 0x0040 |       |     |                         |  |  |
| MO: Always 1                                           | 31    | 0x0 | 保留                      |  |  |
| 保留                                                     |       |     |                         |  |  |
| Reserved                                               | 30:16 | 0x0 | 保留                      |  |  |
| 保留                                                     |       |     |                         |  |  |
| MAC Address0[47:32]                                    | 15:0  | 0x0 | 存放用于接收地址过滤和传输流控帧的 MAC 地 |  |  |
| MAC 地址高 16 位                                           |       |     | 址。                      |  |  |

# 10.2.13 Register17 (MAC Address0 Low Register)

表 10.29: Register17 (MAC Address0 Low Register)

| ,, , , , , , , , , , , , , , , , , , , , |             |            |                         |  |  |
|------------------------------------------|-------------|------------|-------------------------|--|--|
| 名称                                       | 位域          | 初值         | 描述                      |  |  |
| Register17 (MAC Address0 Low Re          | gister) Off | set: 0x004 | 4                       |  |  |
| MAC Address0[31:0]                       | 31:0        | 0x0        | 存放用于接收地址过滤和传输流控帧的 MAC 地 |  |  |
| MAC 地址低 32 位                             |             |            | 址。                      |  |  |

# 10.2.14 Register18 (MAC Address1 High Register)

表 10.30: Register<br/>18 (MAC Address<br/>1 High Register)

| 名称                                                     | 位域    | 初值  | 描述                           |  |  |
|--------------------------------------------------------|-------|-----|------------------------------|--|--|
| Register18 (MAC Address1 High Register) Offset: 0x0048 |       |     |                              |  |  |
| AE: Address Enable                                     | 31    | 0x0 | 此位为1时,地址过滤模块使用第2个MAC地址       |  |  |
| 地址使能                                                   |       |     | 用于完全地址过滤。此位为0时,地址过滤模块不       |  |  |
|                                                        |       |     | 使用第 2 个 MAC 地址用于地址过滤。        |  |  |
| SA: Source Address                                     | 30    | 0x0 | 此位为1时, MAC 地址1用于比较接收帧的源      |  |  |
| 源 MAC 地址                                               |       |     | MAC 地址。                      |  |  |
|                                                        |       |     | 此位为 0 时, MAC 地址 1 用于比较接收帧的目标 |  |  |
|                                                        |       |     | MAC 地址。                      |  |  |
| MBC: Mask Byte Control                                 | 29:24 | 0x0 | 此域用于比较每个 MAC 地址的字节掩模控制位。     |  |  |
| 掩模字节控制                                                 |       |     | 比如第29位用于掩码寄存器18的[15:8]这个字节。  |  |  |
| Reserved                                               | 23:16 | 0x0 | 保留。                          |  |  |
| 保留                                                     |       |     |                              |  |  |



| 名称                  | 位域   | 初值     | 描述 |
|---------------------|------|--------|----|
| MAC Address1[47:32] | 15:0 | 0xFFFF |    |
| 第 2 个 MAC 地址的高 16 位 |      |        |    |

# 10.2.15 Register19 (MAC Address1 Low Register)

表 10.31: Register19 (MAC Address1 Low Register)

| 名称                                                    | 位域   | 初值  | 描述 |  |  |
|-------------------------------------------------------|------|-----|----|--|--|
| Register19 (MAC Address1 Low Register) Offset: 0x004C |      |     |    |  |  |
| MAC Address1[31:0]                                    | 31:0 | 0x0 |    |  |  |
| 第 2 个 MAC 地址的低 32 位                                   |      |     |    |  |  |

# 10.2.16 Register48 (AN Control Register)

表 10.32: Register48 (AN Control Register)

| 名称                                              | 位域    | 初值  | 描述                             |  |  |
|-------------------------------------------------|-------|-----|--------------------------------|--|--|
| Register48 (AN Control Register) Offset: 0x00C0 |       |     |                                |  |  |
| Reserved                                        | 31:19 | 0x0 | 保留                             |  |  |
| 保留                                              |       |     |                                |  |  |
| SGMII RAL Control                               | 18    | 0x0 | 保留                             |  |  |
| 保留                                              |       |     |                                |  |  |
| LR: Lock to Reference                           | 17    | 0x0 | 此位为 1 时, PHY 将其锁相环锁定到 125MHz 的 |  |  |
| 锁定到参考时钟                                         |       |     | 参考时钟。                          |  |  |
| ECD: Enable Comma Detect                        | 16    | 0x0 | 此位为1时,使能PHY的停顿探测和字重同步。         |  |  |
| 使能停顿探测                                          |       |     |                                |  |  |
| Reserved                                        | 15    | 0x0 | 保留                             |  |  |
| 保留                                              |       |     |                                |  |  |
| ELE: External Loopback Enable                   | 14    | 0x0 | 此位为1时,使能PHY进入环回模式。             |  |  |
| 外部环回使能                                          |       |     |                                |  |  |
| Reserved                                        | 13    | 0x0 | 保留                             |  |  |
| 保留                                              |       |     |                                |  |  |
| ANE: Auto-Negotiation Enable                    | 12    | 0x0 | 此位为1时,GMAC将会和链路对方进行自动协         |  |  |
| 自动协商使能                                          |       |     | 商。                             |  |  |
| Reserved                                        | 11:10 | 0x0 | 保留                             |  |  |
| 保留                                              |       |     |                                |  |  |
| RAN: Restart Auto-Negotiation                   | 9     | 0x0 | 此位为1时,重新进行自动协商。                |  |  |
| 重新进行自动协商                                        |       |     |                                |  |  |
| Reserved                                        | 8:0   | 0x0 | 保留                             |  |  |
| 保留                                              |       |     |                                |  |  |

# 10.2.17 Register49 (AN Status Register)

表 10.33: Register49 (AN Status Register)

| •                                              | O    | (   | 0 / |  |  |  |
|------------------------------------------------|------|-----|-----|--|--|--|
| 名称                                             | 位域   | 初值  | 描述  |  |  |  |
| Register49 (AN Status Register) Offset: 0x00C4 |      |     |     |  |  |  |
| Reserved                                       | 31:9 | 0x0 | 保留  |  |  |  |
| 保留                                             |      |     |     |  |  |  |



| 名称                             | 位域  | 初值  | 描述                    |
|--------------------------------|-----|-----|-----------------------|
| ES: Extended Status            | 8   | 0x0 | 只读, 因为 GMAC 支持扩展状态信息。 |
| 扩展状态                           |     |     |                       |
| Reserved                       | 7:6 | 0x0 | 保留                    |
| 保留                             |     |     |                       |
| ANC: Auto-Negotiation Complete | 5   | 0x0 | 只读, 指示自动协商完成。         |
| 自动协商完成                         |     |     |                       |
| Reserved                       | 4   | 0x0 | 保留                    |
| 保留                             |     |     |                       |
| ANA: Auto-Negotiation Ability  | 3   | 0x0 | 只读, 因为 GMAC 支持自动协商。   |
| 自动协商能力                         |     |     |                       |
| LS: Link Status                | 2   | 0x0 | 此位为1时,指示链路连接上。        |
| 链路状态                           |     |     | 此位为0时,指示链接未连接。        |
| Reserved                       | 1:0 | 0x0 | 保留。                   |
| 保留                             |     |     |                       |

# 10.2.18 Register50 (Auto-Negotiation Advertisement Register)

表 10.34: Register50 (Auto-Negotiation Advertisement Register)

| 名称                                  | 位域        | 初值         | 描述                          |
|-------------------------------------|-----------|------------|-----------------------------|
| Register50 (Auto-Negotiation Advert | isement R | egister) ( | Offset: 0x00C8              |
| Reserved                            | 31:16     | 0x0        | 保留                          |
| 保留                                  |           |            |                             |
| NP: Next Page Support               | 15        | 0x0        | 只读为 0,因为 GMAC 不支持下一页面。      |
| 下一页面支持                              |           |            |                             |
| Reserved                            | 14        | 0x0        | 保留                          |
| 保留                                  |           |            |                             |
| RFE: Remote Fault Encoding          | 13:12     | 0x0        | 此2位指示链路对端发生错误,具体编码将 IEEE    |
| 远端错误编码                              |           |            | 802.3z 第 37.2.1.5 小节。       |
| Reserved                            | 11:9      | 0x0        | 保留                          |
| 保留                                  |           |            |                             |
| PSE: Pause Encoding                 | 8:7       | 0x0        | 见 IEEE 802.3z 第 37.2.1.4 小节 |
| Pause 位编码                           |           |            |                             |
| HD: Half-Duplex                     | 6         | 0x0        | 此位为 1 时,指示 GMAC 支持半双工。      |
| 半双工                                 |           |            |                             |
| FD: Full-Duplex                     | 5         | 0x0        | 此位为 1 时,指示 GMAC 支持全双工。      |
| 全双工                                 |           |            |                             |
| Reserved                            | 4:0       | 0x0        | 保留                          |
| 保留                                  |           |            |                             |

### 10.2.19 Register51 (Auto-Negotiation Link Partner Ability Register)

表 10.35: Register51 (Auto-Negotiation Link Partner Ability Register)

| 12 10.001 1000 1000 (11000 11000 1100 1100                                 |       |     |    |  |  |  |
|----------------------------------------------------------------------------|-------|-----|----|--|--|--|
| 名称                                                                         | 位域    | 初值  | 描述 |  |  |  |
| Register51 (Auto-Negotiation Link Partner Ability Register) Offset: 0x00CC |       |     |    |  |  |  |
| Reserved                                                                   | 31:16 | 0x0 | 保留 |  |  |  |
| 保留                                                                         |       |     |    |  |  |  |



| 名称                         | 位域    | 初值  | 描述                           |
|----------------------------|-------|-----|------------------------------|
| NP: Next Page Support      | 15    | 0x0 | 此位为1时,指示有更多下一页面信息可用          |
| 下一页面支持                     |       |     | 此位为0时,指示下一页面交换不可用。           |
| ACK: Acknowledge           | 14    | 0x0 | 指示在自动协商中,链路对端成功接收到 GMAC 的    |
| 确认                         |       |     | 基本页面。                        |
| RFE: Remote Fault Encoding | 13:12 | 0x0 | 见 IEEE 802.3z 第 37.2.1.5 小节。 |
| 远端错误编码                     |       |     |                              |
| Reserved                   | 11:9  | 0x0 | 保留                           |
| 保留                         |       |     |                              |
| PSE: Pause Encoding        | 8:7   | 0x0 | 见 IEEE 802.3z 第 37.2.14 小节。  |
| 对端 pause 状态编码              |       |     |                              |
| HD: Half-Duplex            | 6     | 0x0 | 指示对端可以运行在半双工模式。              |
| 半双工                        |       |     |                              |
| FD: Full-Duplex            | 5     | 0x0 | 指示对端可以运行在全双工模式。              |
| 全双工                        |       |     |                              |
| Reserved                   | 4:0   | 0x0 | 保留                           |
| 保留                         |       |     |                              |

# 10.2.20 Register52 (Auto-Negotiation Expansion Register)

表 10.36: Register52 (Auto-Negotiation Expansion Register)

| 名称                                                              | 位域   | 初值  | 描述                       |  |  |  |
|-----------------------------------------------------------------|------|-----|--------------------------|--|--|--|
| Register52 (Auto-Negotiation Expansion Register) Offset: 0x00D0 |      |     |                          |  |  |  |
| Reserved                                                        | 31:3 | 0x0 | 保留                       |  |  |  |
| 保留                                                              |      |     |                          |  |  |  |
| NPA: Next Page Ability                                          | 2    | 0x0 | 只读为 0,因为 GMAC 不支持下一页面。   |  |  |  |
| 下一页面能力                                                          |      |     |                          |  |  |  |
| NPR: New Page Received                                          | 1    | 0x0 | 此位为 1 时, 指示 GMAC 接收到新页面。 |  |  |  |
| 接收到新页面                                                          |      |     |                          |  |  |  |
| Reserved                                                        | 0    | 0x0 | 保留                       |  |  |  |
| 保留                                                              |      |     |                          |  |  |  |

# 10.2.21 Register54 (SGMII/RGMII Status Register)

表 10.37: Register54 (SGMII/RGMII Status Register)

| 名称                                                      | 位域   | 初值  | 描述              |  |  |  |
|---------------------------------------------------------|------|-----|-----------------|--|--|--|
| Register54 (SGMII/RGMII Status Register) Offset: 0x00D8 |      |     |                 |  |  |  |
| Reserved                                                | 31:4 | 0x0 | 保留              |  |  |  |
| 保留                                                      |      |     |                 |  |  |  |
| Link Status                                             | 3    | 0x0 | 此位为1时,指示链路连接上。  |  |  |  |
| 链路状态                                                    |      |     | 此位为0时,指示链路未连接上。 |  |  |  |
| Link Speed                                              | 2:1  | 0x0 | 指示链路当前速度        |  |  |  |
| 链路速度                                                    |      |     | 00: 2.5MHz      |  |  |  |
|                                                         |      |     | 01: 25MHz       |  |  |  |
|                                                         |      |     | 10: 125MHz      |  |  |  |
| Link Mode                                               | 0    | 0x0 | 0: 半双工          |  |  |  |
| 链路模式                                                    |      |     | 1: 全双工          |  |  |  |



IEEE1588 寄存器:

# 10.2.22 Register448 (Time Stamp Control Register)

表 10.38: Register448 (Time Stamp Control Register)

|                                                          |       |      | Stamp Control Register)                                |  |  |
|----------------------------------------------------------|-------|------|--------------------------------------------------------|--|--|
| 名称                                                       | 位域    | 初值   | 描述                                                     |  |  |
| Register448 (Time Stamp Control Register) Offset: 0x0700 |       |      |                                                        |  |  |
| Reserved                                                 | 31:20 | 0x0  | 保留                                                     |  |  |
| 保留                                                       |       |      |                                                        |  |  |
| ATSFC: Auxiliary Snapshot FIFO                           | 19    | 0x0  | 该位为1时重置 Auxiliary Snapshot FIFO 的指针,                   |  |  |
| Clear                                                    |       |      | FIFO 清空,完成后为 0                                         |  |  |
| Auxiliary 快照 FIFO 清除                                     |       |      |                                                        |  |  |
| TSENMACADDR: Enable MAC                                  | 18    | 0x0  | 此位为1时,接收到的PTP包会经过GMAC的                                 |  |  |
| address for PTP frame filtering                          |       |      | MAC                                                    |  |  |
| 启用 PTP 帧的 MAC 地址过滤                                       |       |      | 目的地址过滤器 (DA Fiter),不匹配的 PTP 包会                         |  |  |
|                                                          |       |      | 被丢弃                                                    |  |  |
| TSCLKTYPE: Select the type of                            | 17:16 | 0x0  | 该域按照以下类型编码:                                            |  |  |
| clock node                                               |       |      | 00: 普通时钟 (Ordinary clock)                              |  |  |
| 选择时间节点类型                                                 |       |      | 01: 边界时钟 (Boundary clock)                              |  |  |
|                                                          |       |      | 10: 端到端的透明时钟 (End-to-End Transparent                   |  |  |
|                                                          |       |      | clock)                                                 |  |  |
|                                                          |       |      | 11: 点到点透明时钟 (Peer-to-peer Transparent                  |  |  |
|                                                          |       |      | clock)                                                 |  |  |
| TSMSTRENA: Enable Snapshot                               | 15    | 0x0  | 该位为 1 时快照 (Snapshot) 记录主机相关信息                          |  |  |
| for Messages Relevant to Master                          | 10    | 0210 | (Relevant to Master);为0时快照记录从机相关信                      |  |  |
| 启用主机相关信息快照                                               |       |      | 息 (Relevant to Slave)                                  |  |  |
| TSEVNTENA: Enable Time                                   | 14    | 0x0  | 该位为1时快照(Snapshot)只记录事件相关信息                             |  |  |
| Stamp Snapshot for Event                                 | 11    | OAO  | (Event Message);为0时快照记录所有信息                            |  |  |
| Messages                                                 |       |      | (Dvent Message); > 0 + 1   N :   Carlot H   H :        |  |  |
|                                                          |       |      |                                                        |  |  |
| 启用事件信息时间戳快照<br>TSIPV4ENA: Enable Time Stamp              | 13    | 0x0  | 该位为 1 时,IPv4 帧的时间戳快照 (Time Stamp                       |  |  |
| Snapshot for IPv4 frames                                 | 10    | UXU  | Snapshot) 启用                                           |  |  |
| *                                                        |       |      | Shapshot) / I/h                                        |  |  |
| 启用 IPv4 时间戳快照<br>TSIPV4ENA: Enable Time Stamp            | 12    | 0x0  | 该位为 1 时,IPv6 帧的时间戳快照 (Time Stamp                       |  |  |
| Snapshot for IPv4 frames                                 | 12    | OAO  | Snapshot) 启用                                           |  |  |
| •                                                        |       |      | Shapshot) /H/II                                        |  |  |
| 启用 IPv6 时间戳快照<br>TSIPENA: Enable Time Stamp              | 11    | 0x0  | 该位为1时,以太网格式的PTP包(PTP over Eth-                         |  |  |
| Snapshot for PTP over Ethernet                           | 11    | 0.00 | ernet) 启用时间戳快照 (Time Stamp Snapshot);                  |  |  |
|                                                          |       |      | 为 0 时 UDP-IP-Ethernet 格式的 PTP 包启用时间                    |  |  |
| frames                                                   |       |      |                                                        |  |  |
| 启用以太网 PTP 包时间戳快照<br>TSVER2ENA: Enable PTP packet         | 10    | 0x0  | │ 戳快照<br>│ 该位为1时,以太网格式的 PTP 包快照为第二版                    |  |  |
| snooping for version 2 format                            | 10    | UAU  | 本格式 (version 2 format); 为 0 时为第一版本格式                   |  |  |
|                                                          |       |      | , , , , , , , , , , , , , , , , , , ,                  |  |  |
| 基于第二版本格式启用 PTP 包快照<br>TSCTRLSSR: Time Stamp Digital      | 9     | 00   | (version 1 format)<br>该位为 1 时,时间戳低位寄存器 (Time Stamp Low |  |  |
|                                                          | 9     | 0x0  | ` -                                                    |  |  |
| or Binary rollover control                               |       |      | register) 在值超过 0x3B9A_C9FF 后更新且增加时                     |  |  |
| 时间戳数字或二进制更新控制                                            |       |      | 间戳高位寄存器的秒;该为为0时,时间戳低位寄存                                |  |  |
|                                                          |       |      | 器复位为 0x7FFF_FFFF                                       |  |  |



| 名称                             | 位域  | 初值  | 描述                                        |
|--------------------------------|-----|-----|-------------------------------------------|
| TSENALL: Enable Time Stamp for | 8   | 0x0 | 该为为1时,表示对所有GMAC接收到的帧启用时                   |
| All Frames                     |     |     | 间戳                                        |
| 对所有帧启用时间戳                      |     |     |                                           |
| Reserved                       | 7:6 | 0x0 | 保留                                        |
| 保留                             |     |     |                                           |
| TSADDREG: Addend Reg Update    | 5   | 0x0 | 该位为 1 时,时间戳被加数寄存器 (Time Stamp             |
| 被加数寄存器                         |     |     | Addend register) 的值被用来更新 PTP 块来做 fine     |
|                                |     |     | correction. 当更新结束时该位为 0                   |
| TSTRIG: Time Stamp Interrupt   | 4   | 0x0 | 该位为 1 时, 当系统时间大于目标时间寄存器 (Tar-             |
| Trigger Enable                 |     |     | get Time register) 中的值时,产生一个时间戳中断;        |
| 启用时间戳中断触发                      |     |     | 中断产生后该位重置为0                               |
| TSUPDT: Time Stamp Update      | 3   | 0x0 | 该位为1时,系统根据时间戳更新高位寄存器和时                    |
| 时间戳更新                          |     |     | 间戳低位寄存器的值 (Time Stamp High Update         |
|                                |     |     | and Time Stamp Low Update registers) 更新当前 |
|                                |     |     | 系统时间,完成后该位为0                              |
| TSINIT: Time Stamp Initialize  | 2   | 0x0 | 该位为1时,系统根据时间戳更新高位寄存器和时                    |
| 时间戳初始化                         |     |     | 间戳低位寄存器的值 (Time Stamp High Update         |
|                                |     |     | and Time Stamp Low Update registers) 初始化当 |
|                                |     |     | 前系统时间,完成后该位为0                             |
| TSCFUPDT: Time Stamp Fine or   | 1   | 0x0 | 该位为 1 时,表示时间戳更新将会用 Fine Update            |
| Coarse Update                  |     |     | 的方式,为0时表示时间戳更新将会用Coarse的方                 |
| 时间戳 Fine or Coarse 更新          |     |     | 式                                         |
| TSENA: Time Stamp Enable       | 1   | 0x0 | 该位为1时,表示当前对于接收和发送帧系统将会                    |
| 时间戳启用                          |     |     | 启用时间戳记录;为0时表示当前停止向接收和发                    |
|                                |     |     | 送帧进行时间戳记录,并且暂停时间戳发生器;该                    |
|                                |     |     | 为置 1 后应该接着进行时间戳初始化 (bit 2)                |

# 10.2.23 Register449 (Sub-Second Increment Register)

表 10.39: Register449 (Sub-Second Increment Register)

| · · · · · · · · · · · · · · · · · · ·                      |      |     |                                  |  |  |
|------------------------------------------------------------|------|-----|----------------------------------|--|--|
| 名称                                                         | 位域   | 初值  | 描述                               |  |  |
| Register449 (Sub-Second Increment Register) Offset: 0x0704 |      |     |                                  |  |  |
| Reserved                                                   | 31:8 | 0x0 | 保留                               |  |  |
| 保留                                                         |      |     |                                  |  |  |
| SSINC: Sub-second increment value                          | 7:0  | 0x0 | 此域中的值将会被加到亚秒寄存器 (sub-second reg- |  |  |
| 亚秒增加值                                                      |      |     | ister)                           |  |  |

# 10.2.24 Register 450 (System Time - Seconds Register)

表 10.40: Register 450 (System Time - Seconds Register)

| (10) 100 100 100 100 100 100 100 100 100                     |      |     |                   |  |  |  |
|--------------------------------------------------------------|------|-----|-------------------|--|--|--|
| 名称                                                           | 位域   | 初值  | 描述                |  |  |  |
| Register 450 (System Time - Seconds Register) Offset: 0x0708 |      |     |                   |  |  |  |
| TSS: Time Stamp Second                                       | 31:0 | 0x0 | 该域的值表示当前系统时间的秒级计数 |  |  |  |
| 时间戳秒                                                         |      |     |                   |  |  |  |



#### 10.2.25 Register 451 (System Time - Nanoseconds Register)

表 10.41: Register 451 (System Time - Nanoseconds Register)

| 名称                                                               | 位域   | 初值  | 描述                               |  |  |
|------------------------------------------------------------------|------|-----|----------------------------------|--|--|
| Register 451 (System Time - Nanoseconds Register) Offset: 0x070C |      |     |                                  |  |  |
| PSNT: Positive or Negative Time                                  | 31   | 0x0 | 该域表示正或负的时间, 当为1时表示时间为正数,         |  |  |
| 正或负时间                                                            |      |     | 为 0 时表示为负数                       |  |  |
| TSSS: Time Stamp Sub Seconds                                     | 30:0 | 0x0 | 该域的值表示当前系统时间的亚秒级计数, 默认时          |  |  |
| 时间戳亚秒                                                            |      |     | 间精度为 0.46 纳秒 ( 当 TSCTRLSSR 置起时精度 |  |  |
|                                                                  |      |     | 为 1ns,最大值为 0x3B9A_C9FF)          |  |  |

#### 10.2.26 Register 452 (System Time - Seconds Update Register)

表 10.42: Register 452 (System Time - Seconds Update Register)

| 名称                                  | 位域       | 初值        | 描述                     |
|-------------------------------------|----------|-----------|------------------------|
| Register 452 (System Time - Seconds | Update F | Register) | Offset: 0x0710         |
| TSS: Time Stamp Second              | 31:0     | 0x0       | 该域的值在系统初始化时的初值,或是更新时的增 |
| 时间戳秒                                |          |           | 加值                     |

#### 10.2.27 Register 453 (System Time - Nanoseconds Update Register)

表 10.43: Register 453 (System Time - Nanoseconds Update Register)

| 名称                                  | 位域                                                                      | 初值  | 描述                          |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------|-----|-----------------------------|--|--|--|
| Register 453 (System Time - Nanosec | Register 453 (System Time - Nanoseconds Update Register) Offset: 0x0714 |     |                             |  |  |  |
| ADDSUB: Add or subtract time        | 31                                                                      | 0x0 | 该域表示加或减时间, 当为1时表示更新时减去更     |  |  |  |
| 加或减时间                               |                                                                         |     | 新寄存器的值,为0时表示增加更新寄存器的值       |  |  |  |
| TSSS: Time Stamp Sub Seconds        | 30:0                                                                    | 0x0 | 该域的值表示当前系统时间更新时增加或减         |  |  |  |
| 时间戳亚秒                               |                                                                         |     | 少的亚秒级计数,默认时间精度为 0.46 纳秒 (   |  |  |  |
|                                     |                                                                         |     | 当 TSCTRLSSR 置起时精度为 1ns,最大值为 |  |  |  |
|                                     |                                                                         |     | 0x3B9A_C9FF)                |  |  |  |

### 10.2.28 Register 454 (Time Stamp Addend Register)

表 10.44: Register 454 (Time Stamp Addend Register)

| 名称                                                       | 位域   | 初值  | 描述                      |  |  |
|----------------------------------------------------------|------|-----|-------------------------|--|--|
| Register 454 (Time Stamp Addend Register) Offset: 0x0718 |      |     |                         |  |  |
| TSAR: Time Stamp Addend                                  | 31:0 | 0x0 | 该域的值表示在系统时间同步时需要被增加的 32 |  |  |
| Register                                                 |      |     | 位时间值                    |  |  |
| 时间戳加数寄存器                                                 |      |     |                         |  |  |

#### 10.2.29 Register 455 (Target Time Seconds Register)



表 10.45: Register 455 (Target Time Seconds Register)

| 名称                                                         | 位域   | 初值  | 描述                           |  |  |
|------------------------------------------------------------|------|-----|------------------------------|--|--|
| Register 455 (Target Time Seconds Register) Offset: 0x071C |      |     |                              |  |  |
| TSTR: Target Time Seconds                                  | 31:0 | 0x0 | 该域保存了以秒为单位的时间, 当时间戳时间匹配      |  |  |
| Register                                                   |      |     | 或超过了该域的值及低位寄存器 (reg 456) 的值且 |  |  |
| 目标时间秒寄存器                                                   |      |     | 包 MAC 地址匹配,系统会产生一个中断(中断必     |  |  |
|                                                            |      |     | 须事先启用)                       |  |  |

#### 10.2.30 Register 456 (Target Time Nanoseconds Register)

表 10.46: Register 456 (Target Time Nanoseconds Register)

| 10.10. Register 100 (Target Time Transseconds Register)        |      |     |                               |  |  |
|----------------------------------------------------------------|------|-----|-------------------------------|--|--|
| 名称                                                             | 位域   | 初值  | 描述                            |  |  |
| Register 456 (Target Time Nanoseconds Register) Offset: 0x0720 |      |     |                               |  |  |
| Reserve                                                        | 31   | 0x0 |                               |  |  |
| 保留                                                             |      |     |                               |  |  |
| TSTR: Target Time Stamp Low                                    | 30:0 | 0x0 | 该域保存了以纳秒为单位的时间,当时间戳时间匹        |  |  |
| Register 目标时间戳低寄存器                                             |      |     | 配或超过了该域的值及目标时间寄存器 (reg 455) 的 |  |  |
|                                                                |      |     | 值且包 MAC 地址匹配,系统会产生一个中断(中      |  |  |
|                                                                |      |     | 断必须事先启用)                      |  |  |

### 10.2.31 Register 457 (System Time - Higher Word Seconds Register)

表 10.47: Register 457 (System Time - Higher Word Seconds Register)

| 10.11. Register 10. (System Time Higher Word Seconds Register)           |       |     |                                         |  |  |  |
|--------------------------------------------------------------------------|-------|-----|-----------------------------------------|--|--|--|
| 名称                                                                       | 位域    | 初值  | 描述                                      |  |  |  |
| Register 457 (System Time - Higher Word Seconds Register) Offset: 0x0724 |       |     |                                         |  |  |  |
| Reserve                                                                  | 31:16 | 0x0 |                                         |  |  |  |
| 保留                                                                       |       |     |                                         |  |  |  |
| TSHWR: Time Stamp Higher                                                 | 15:0  | 0x0 | 该域保存高 16 位 (most significant bit) 的时间戳值 |  |  |  |
| Word Register                                                            |       |     |                                         |  |  |  |
| 时间戳高位寄存器                                                                 |       |     |                                         |  |  |  |

#### 10.2.32 Register 458 (Time Stamp Status Register)

表 10.48: Register 458 (Time Stamp Status Register)

| 名称                                                       | 位域    | 初值  | 描述                              |  |  |  |
|----------------------------------------------------------|-------|-----|---------------------------------|--|--|--|
| Register 458 (Time Stamp Status Register) Offset: 0x0728 |       |     |                                 |  |  |  |
| Reserve                                                  | 31:28 | 0x0 |                                 |  |  |  |
| 保留                                                       |       |     |                                 |  |  |  |
| ATSNS: Auxiliary Time Stamp                              | 27:25 | 0x0 | 该域表示了 FIFO 中快照的个数, 4(3'b100) 表示 |  |  |  |
| Number of Snapshots                                      |       |     | FIFO 满,0(3'000) 表示 FIFO 空       |  |  |  |
| 附属时间戳快照个数                                                |       |     |                                 |  |  |  |
| ATSSTM: Auxiliary Time Stamp                             | 24    | 0x0 | 该位为 1 时表示当前 FIFO 满且设置了外部触发,     |  |  |  |
| Snapshot Trigger Missed                                  |       |     | 表示最后一个快照因为 FIFO 满被丢失了; 否则为 0    |  |  |  |
| 附属时间戳快照触发缺失                                              |       |     |                                 |  |  |  |



| 名称                           | 位域   | 初值  | 描述                               |
|------------------------------|------|-----|----------------------------------|
| Reserve                      | 23:3 | 0x0 |                                  |
| 保留                           |      |     |                                  |
| Auxiliary Time Stamp Trigger | 2    | 0x0 | 该位为 1 时表示有快照 (snapshot) 写入了 FIFO |
| Snapshot                     |      |     |                                  |
| 附属时间戳快照触发                    |      |     |                                  |
| TSTARGT: Time Stamp Target   | 1    | 0x0 | 该位为1时表示系统时间已经大于或等于目标时间           |
| Time Reached                 |      |     | 戳寄存器中的值                          |
| 达到时间戳目标时间                    |      |     |                                  |
| TSSOVF: Time Stamp Seconds   | 0    | 0x0 | 该位为1时表示当前时间戳的时间已经溢出(大于           |
| Overflow                     |      |     | 0xFFFF_FFFF); 反之为 0              |
| 时间戳秒溢出                       |      |     | ,                                |

# 10.2.33 Register 459 (PPS Control Register)

表 10.49: Register 459 (PPS Control Register)

| 2 10.49. Register 459 (FFS Control Register) |            |       |                                                  |  |
|----------------------------------------------|------------|-------|--------------------------------------------------|--|
| 名称                                           | 位域         | 初值    | 描述                                               |  |
| Register 459 (PPS Control Register)          | Offset: 0: | x072C |                                                  |  |
| Reserve                                      | 31:4       | 0x0   |                                                  |  |
| 保留                                           |            |       |                                                  |  |
| PPSCTRL: Control the duration                | 15:0       | 0x0   | 该域设置2个PPS信号输出的时间间隔,编码如                           |  |
| between 2-pulses of PPS signal               |            |       | 下:                                               |  |
| output                                       |            |       | 0000: 1.0 秒 (Binary & Digital Rollover)          |  |
| 2个 PPS 信号输出的时间间隔控制                           |            |       | 0001: 0.5 秒 (Binary Rollover), 0.536 秒 (Digital  |  |
|                                              |            |       | Rollover)                                        |  |
|                                              |            |       | 0010: 0.25 秒 (Binary Rollover), 0.26 秒 (Digital  |  |
|                                              |            |       | Rollover)                                        |  |
|                                              |            |       | 0011: 0.125 秒 (Binary Rollover), 0.13 秒 (Digital |  |
|                                              |            |       | Rollover)                                        |  |
|                                              |            |       |                                                  |  |
|                                              |            |       | 1111: 15.28 μ秒 (Binary Rollover), 32.77 μ秒       |  |
|                                              |            |       | (Digital Rollover)                               |  |

# 10.2.34 Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register)

表 10.50: Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register)

| 名称                                                                            | 位域   | 初值  | 描述                                   |  |  |
|-------------------------------------------------------------------------------|------|-----|--------------------------------------|--|--|
| Register 460 (PPS Auxiliary Time Stamp - Nanoseconds Register) Offset: 0x0730 |      |     |                                      |  |  |
|                                                                               | 31:0 | 0x0 | 包含了附属时间戳 (Auxiliary Time Stamp) 的低 ( |  |  |
|                                                                               |      |     | 纳秒 )32 位值                            |  |  |

### 10.2.35 Register 461 (PPS Auxiliary Time Stamp - Seconds Register)



| 表 10.51: Register 461 | (PPS Auxiliary Ti | ime Stamp - Seconds | Register) |
|-----------------------|-------------------|---------------------|-----------|
|                       |                   |                     |           |

| 名称                                  | 位域        | 初值         | 描述                                   |
|-------------------------------------|-----------|------------|--------------------------------------|
| Register 461 (PPS Auxiliary Time St | amp - Sec | onds Regis | ster) Offset: 0x0730                 |
|                                     | 31:0      | 0x0        | 包含了附属时间戳 (Auxiliary Time Stamp) 的高 ( |
|                                     |           |            | 秒 )32 位值                             |

#### 10.3 DMA 描述符

DMA 描述符是 GMAC 驱动和硬件的交互接口,记录了数据包的内存地址和传输状态。在此分别定义了发送描述符 (Tx Desciptor) 和接收描述符 (Rx Descriptor) 两种数据结构。两种描述符可以自由选择分别以环式 (ring mode) 或者链式 (chain mode) 相连,以供 GMAC 使用。本芯片集成的 GMAC 控制器采用增强型描述符格式 (enhanced descriptor formate),具体介绍如下:

增强型发送描述符 (enhanced transmit descriptor): 描述符大小为 32 字节, 依次为 TDES0-7, 其整体结构如图10.1。



图 10.1: 增强型发送描述符

其中每一位具体意义如下表:

#### 10.3.1 TDES0



表 10.52: TDES0

| 名称                                  | 位域    | 描述                                                                  |
|-------------------------------------|-------|---------------------------------------------------------------------|
| OWN                                 | 31    | 该位为 1 时表示描述符当前属于 DMA 控制, 0 表示属于主机控                                  |
|                                     | 31    |                                                                     |
| 所属模式<br>IC: Interrption on Complete | 30    | 制。当 DMA 模块完成一次传输时,会将该位主动清 0<br>该位为 1 时表示该帧接发送完成后将会置起 STATUS 寄存器中 TI |
|                                     | 30    |                                                                     |
| 完成时中断                               | 29    | 位 (CSR5[0])                                                         |
| LS: Last Segment                    | 29    | 该位为1时表示当前 buffer 包含的是一帧数据的最后一段(如果                                   |
| 最后段                                 | 20    | 帧分为多个段                                                              |
| FS: First Segment                   | 28    | 该位为1时表示当前 buffer 包含的是一帧数据的第一段(如果帧                                   |
| 第一段                                 |       | 分为多个段)                                                              |
| DC: Disable CRC                     | 27    | 该位为 1 时 GMAC 硬件不在每个发送帧的结尾添加 CRC 校验数                                 |
| 禁止 CRC 校验                           |       | 据                                                                   |
| DP: Dissable Pading                 |       |                                                                     |
| 禁止填充                                | 26    | 该位为 1 时表示 GMAC 将不会对长度小于 64 字节的数据包进行                                 |
|                                     |       | <u> </u>                                                            |
| TTSE: Transmit Time Stamp           | 25    | 该位为 1 时表示将启用内部模块计算 IEEE1588 硬件时间戳计算,                                |
| Enable                              |       | 在 TDES0[28] 为 1 时有效                                                 |
| 启用发送时间戳                             |       |                                                                     |
| Reserved                            | 24    |                                                                     |
| 保留                                  |       | 12-1 N 12-1-1 1 2-1-1-1 1 1 1 1 1 1 1 1 1 1 1                       |
| CIC: Checksum Insertion             | 23:22 | 该域控制内部模块是否在发送帧中填充校验数据。                                              |
| Control                             |       | 2'b00: 不填充校验数据                                                      |
| 校验数据填充控制                            |       | 2'b01: 填充 IP 头校验数据                                                  |
|                                     |       | 2'b10: 填充 IP 头和负载 (payload) 的校验数据, 硬件不计算伪头                          |
|                                     |       | 数据 (pseudo-header) 校验                                               |
|                                     |       | 2'b11: 填充 IP 头和负载 (payload) 的校验数据, 硬件计算伪头数                          |
|                                     |       | 据 (pseudo-header) 校验                                                |
| TER: Transmit End of Ring           | 21    | 该位为1时表示该描述符为环型描述符链表的最后一个,下一个描                                       |
| -<br>- 环形描述符结尾                      |       | <br>  述符的地址为发送描述符链的基址                                               |
| TCH: Second Address Chained         | 20    | 该位为1时表示描述符中的第二个 buffer 地址指向的是下一个描                                   |
| 第二个 buffer 地址指向下个链式                 |       | 述符的地址,为0时表示该地址指向第二个buffer地址                                         |
| <br>  描述符                           |       | 当该位为 1 时,TDES1[28-16] 的值将没有意义,TDES0[21] 比                           |
|                                     |       | TDES0[20] 具有更高优先级 ( 代表环型而不是链型 )                                     |
| Reserved                            | 19:18 | and all ventures and the transfer of                                |
|                                     |       |                                                                     |
| TTSS: Tx Time Stamp Status          | 17    | 该位为 1 表示 TDES6 和 TDES7 中保存了该发送帧的时间戳信                                |
| 发送时间戳状态                             |       | <br>  息。该位在 TDES0[29] 为 1 时有效                                       |
| IHE: IP Header Error                | 16    | 该位为1时表示内部校验模块发现该发送帧的 IP 头出错,并且不                                     |
| <br>  IP 头错误                        |       | 会对该域做任何修改                                                           |
| ES: Error Summary                   | 15    | 指示当前帧是否出错,其值为 TDES[1] 、TDES[2] 、TDES[8] 、                           |
| 总体错误信息                              |       | TDES[9] 、TDES[10] 、TDES[11] 、TDES[12] 、TDES[13] 、                   |
|                                     |       | TDES[14] 、TDES[16] 各位作或运算 (OR) 的结果                                  |
| JT: Jabber Timeout                  | 14    | 该位为 1 时表示 GMAC 发送模块遇到了 Jabber 超时                                    |
| Jabber 超时                           |       |                                                                     |
| FF: Frame Flushed                   | 13    | 该位为 1 时表示软件发出了一个刷新命令导致 DMA/MTL 将其内                                  |
| 帧刷新                                 |       | 部的帧刷新掉                                                              |
| IPE: IP Payload Error               | 12    | 该位为 1 时表示 GMAC 检测到所发出的 TCP/UDP/ICMP 包的                              |
| IP 负载错误                             |       | 负载数据出错。GMAC 比较协议头中的负载长度和实际发出的数                                      |
| 2.2.2.2.2                           |       | 据负载长度,当二者不匹配时发出一个错误状态。                                              |
|                                     | L     |                                                                     |



| 名称                     | 位域  | 描述                                  |
|------------------------|-----|-------------------------------------|
| LC: Loss of Carrier    | 11  | 该位为1时表示在发送该帧过程中载波丢失 (gmii_crs 信号多个周 |
| 载波丢失                   |     | 期未置起)                               |
| NC: No Carrier         | 10  | 该位为1时表示在发送过程中,PHY的载波信号一直未置起         |
| 载波无效                   |     |                                     |
| LC: Late Collision     | 9   | 当该位为1时表示在半双工模式下,当前帧接收时发生了一个后期       |
| 后期冲突                   |     | 冲突                                  |
| EC: Excessive Collison | 8   | 当该位为1时表示在发送当前帧的时候连续出现了16次冲突         |
| 连续冲突                   |     |                                     |
| VF: VLAN Frame         | 7   | 该位为 1 时表示当前发送帧为一个 VLAN 帧            |
| VLAN 帧                 |     |                                     |
| CC: Collsion Count     | 6:3 | 该域表示当前帧在成功发送之前所遇到冲突次数的总数。当          |
| 冲突计数                   |     | TDES0[8] 为 1 时有效。                   |
| ED: Excessive Deferral | 2   | 该位为1时表示当前帧传输结束                      |
| 连续 Deferral            |     |                                     |
| UF: Underflow Error    | 1   | 该位为1时表示当前帧传输时发生了溢出错误,即数据传输 buffer   |
| 溢出错误                   |     | 过小或不可用                              |
| DB: Defered Bit        | 0   | 该位为1时表示此次发送被延迟,只有在半双工模式下有效          |
| 帧刷新                    |     |                                     |

#### 10.3.2 TDES1

表 10.53: TDES1

| 名称                           | 位域    | 描述                                        |
|------------------------------|-------|-------------------------------------------|
| Reserved                     | 31:29 |                                           |
| 保留                           |       |                                           |
| TBS2: Transmit Buffer Size 2 | 28:16 | 该域表示数据 buffer2 的大小。当 TDES0[20] 为 1 时,该域无效 |
| 发送 buffer2 大小                |       |                                           |
| Reserved                     | 15:13 |                                           |
| 保留                           |       |                                           |
| TBS1: Transmit Buffer Size 1 | 12:0  | 该域表示数据 buffer1 的大小。该域一直有效。如果该域值为 0,       |
| 发送 buffer1 大小                |       | DMA 则会自动访问 buffer2 或者下一个接收描述符             |

#### 10.3.3 TDES2

表 10.54: TDES2

| 名称                      | 位域   | 描述                                    |
|-------------------------|------|---------------------------------------|
| Buffer1 Address Pointer | 31:0 | 该域记录了数据接收 buffer1 的 32 位物理地址。该物理地址没有默 |
| 发送 buffer1 地址           |      | 认的对齐要求。当 GMAC DMA 内部实现了总线数据 32/64/128 |
|                         |      | 位对齐,则该地址的低 2/3/4 位会被忽略                |

# 10.3.4 TDES3



表 10.55: TDES3

| 名称                      | 位域   | 描述                                    |
|-------------------------|------|---------------------------------------|
| Buffer2 Address Pointer | 31:0 | 该域记录了数据接收 buffer2 的 32 位物理地址。该物理地址没有默 |
| 发送 buffer2 地址           |      | 认的对齐要求。当 GMAC DMA 内部实现了总线数据 32/64/128 |
|                         |      | 位对齐,则该地址的低 2/3/4 位会被忽略。如果描述符是以链式连     |
|                         |      | 接,则该域记录的是下一个描述符的地址                    |

#### 10.3.5 TDES6

记录了时间戳低 32 位值

表 10.56: TDES6

| 名称                        | 位域   | 描述                                    |
|---------------------------|------|---------------------------------------|
| TTSL: Transmit Frame Time | 31:0 | 该域记录了 GMAC 所捕捉的发送帧时间戳低 32 位 (LSB) 有   |
| Stamp Low                 |      | 效值,由 DMA 模块负责更新。该位只有当 LS(TDES0[29]) 和 |
| 发送帧时间戳低位                  |      | TTSE(TDES0[25]) 同时为 1 时有效             |

#### 10.3.6 TDES7

记录了时间戳高 32 位值

表 10.57: TDES7

| 名称                        | 位域   | 描述                                    |
|---------------------------|------|---------------------------------------|
| TTSL: Transmit Frame Time | 31:0 | 该域记录了 GMAC 所捕捉的发送帧时间戳高 32 位 (MSB) 有   |
| Stamp Low                 |      | 效值,由 DMA 模块负责更新。该位只有当 LS(TDES0[29]) 和 |
| 发送帧时间戳低位                  |      | TTSE(TDES0[25]) 同时为 1 时有效             |

增强型接收描述符 (enhanced receive descriptor): 描述符大小为 32 字节, 依次为 RDES0-7, 其整体结构图10.2: 其中每一位具体意义如下表:

#### 10.3.7 RDES0

表 10.58: RDES0

| 名称                       | 位域    | 描述                                               |
|--------------------------|-------|--------------------------------------------------|
| OWN                      | 31    | 该位为 1 时表示描述符当前属于 DMA 控制,0 表示属于主机控                |
| 所有模式                     |       | 制。当 DMA 模块完成一次传输时,会将该位主动清 0                      |
| AFM: Destination Address | 30    | 当该位为1时,表示当前数据帧目标地址不符合 GMAC 内部的帧                  |
| Filter Fai               |       | 目标地址过滤器                                          |
| 目标地址过滤错误1                |       |                                                  |
| FR: Frame length         | 29:16 | 表示接收当前帧的长度, 当 ES 位为 0 时有效                        |
| 帧长度                      |       |                                                  |
| ES: Error Summary        | 15    | 指示当前帧是否出错,其值为 RDES[0] 、RDES[1] 、RDES[3] 、        |
| 总体错误信息                   |       | RDES[4] 、RDES[6] 、RDES[7 、RDES[11] 、RDES[14] 各位作 |
|                          |       | 或运算 (OR) 的结果                                     |
| DE: Descriptor Error     | 14    | 当该位为 1 时表示, 当前描述符所指向的 buffer 与帧不相符或者             |
| 描述符错误                    |       | OWN 为 0( 主机控制 )                                  |



| 位域 | 描述                                            |
|----|-----------------------------------------------|
| 13 | 当该位为1时,表示当前数据帧的源地址不符合 GMAC 内部的帧               |
|    | 源地址过滤器                                        |
| 12 | 当该位为 1 时,表示当前接收帧长度与默认长度不符。当 Frame             |
|    | Type 位为 1 且 CRC Error 位为 0 时有效                |
| 11 | 当该位为 1 时,表示接收该帧时 GMAC 内部 RxFIFO 溢出            |
|    |                                               |
| 10 | 当该位为 1 时,表示该帧的类型为 VLAN                        |
|    |                                               |
| 9  | 当该位为1时,表示当前描述符所指向的 buffer 为当前接收帧的第            |
|    | 一个保存 buffer                                   |
| 8  | 当该位为1时,表示当前描述符所指向的 buffer 为当前接收帧的最            |
|    | 后一个保存 buffer                                  |
| 7  | 当该位为1时,如果IPC校验功能启用则表示当前帧的IPv4头                |
|    | 校验值与帧内部校验域的值不相符。如果未启用则表示当前帧为一                 |
|    | 个超长帧 ( 长度大于 1518 字节 )                         |
| 6  | 当该位为1时,表示在半双工模式下,当前帧接收时发生了一个后                 |
|    | 期冲突                                           |
| 5  | 当该位为1时,表示当前帧为一个以太网格式帧,为0时表示当前                 |
|    | 帧为一个 IEEE802.3 格式帧                            |
| 4  | 当该位为1时,表示当前时钟值超过了接收模块看门狗电路时钟的                 |
|    | 值,既接收帧超时                                      |
| 3  | 当该位为1时,表示接收当前帧时内部模块出错。内部信号 rxer 置             |
|    | 1 且 rxdv 置 1                                  |
| 2  | 当该位为1时,表示接收帧长度不是整数,即总长度为奇数位,该                 |
|    | 位只有在 mii 模式下有效                                |
| 1  | 当该位为 1 时,表示接收当前帧时内部 CRC 校验出错。该位只有             |
|    | 在 last descriptor(RDES0[8]) 为 1 时有效           |
| 0  | 当高级时间戳 (Advanced Time Stamp) 或者 ip 校验去载 (IP   |
|    | Checksum Offload) 功能启用时,该位为 1 表示 RDES4 中记录    |
|    | 的扩展状态是有效的。该位仅在 LS(RDES0[8]) 为 1 时有效。          |
|    | 当高级时间戳 (Advanced Time Stamp) 和 ip 完全校验去载功能未   |
|    | 被启用时 (IPC Full Offload),该位表示接收 MAC 地址状态。 当该   |
|    | 位为 1 时表示接收帧的目的 MAC 地址与 DA(Destination Filter) |
|    | 寄存器的值匹配,反之为不匹配。                               |
|    | 13 12 11 10 9 8 7 6 5 4 3 2 1                 |

#### 10.3.8 RDES1

# 表 10.59: RDES1

| 名称                          | 位域    | 描述                                      |
|-----------------------------|-------|-----------------------------------------|
| Disable Intr in Completion  | 31    | 该位为 1 时表示该帧接收完成后将不会置起 STATUS 寄存器中 RI    |
| 禁止完成后发中断                    |       | 位(CSR5[6]),这将会使得主机无法检测到该中断              |
| Reserved                    | 30:29 |                                         |
| 保留                          |       |                                         |
| RBS2: Receive Buffer Size 2 | 28:16 | 该域表示数据 buffer2 的大小。根据系统总线的宽度 32/64/128, |
| 接收 buffer2 大小               |       | Buffer2 的大小应该为 4/8/16 的整数倍。如果不满足则会导致未知  |
|                             |       | 的结果。 该域在 RDES1[14] 为 0 时有效              |
| RER: Receive End of Ring    | 15    | 该位为1时表示该描述符为环型描述符链表的最后一个,下一个描           |
| 环型描述符结尾                     |       | 述符的地址为接收描述符链的基址                         |



| 名称                          | 位域   | 描述                                        |
|-----------------------------|------|-------------------------------------------|
| RCH: Second Address Chained | 14   | 该位为1时表示描述符中的第二个 buffer 地址指向的是下一个描         |
| 第二个 buffer 地址指向下个链式         |      | 述符的地址,为0时表示该地址指向第二个buffer地址               |
| 描述符                         |      | 当该位为 1 时,RDES1[21-11] 的值将没有意义,RDES1[25] 比 |
|                             |      | RDES1[24] 具有更高优先级 ( 代表环型而不是链型 )           |
| Reserved                    | 13   |                                           |
| 保留                          |      |                                           |
| RBS2: Receive Buffer Size 1 | 12:0 | 该域表示数据 buffer1 的大小。根据系统总线的宽度 32/64/128,   |
| 接收 buffer1 大小               |      | Buffer1 的大小应该为 4/8/16 的整数倍。如果不满足则会导致未     |
|                             |      | 知的结果。该域一直有效。如果该域值为 0 , DMA 则会自动访问         |
|                             |      | buffer2 或者下一个接收描述符                        |

#### 10.3.9 RDES2

表 10.60: RDES2

| 名称                      | 位域   | 描述                                    |
|-------------------------|------|---------------------------------------|
| Buffer1 Address Pointer | 31:0 | 该域记录了数据接收 buffer1 的 32 位物理地址。该物理地址没有默 |
| 接收 buffer1 地址           |      | 认的对齐要求。当 GMAC DMA 内部实现了总线数据 32/64/128 |
|                         |      | 位对齐,则该地址的低 2/3/4 位会被忽略                |

#### 10.3.10 RDES3

表 10.61: RDES3

| 名称                      | 位域   | 描述                                    |
|-------------------------|------|---------------------------------------|
| Buffer2 Address Pointer | 31:0 | 该域记录了数据接收 buffer2 的 32 位物理地址。该物理地址没有默 |
| 接收 buffer2 地址           |      | 认的对齐要求。当 GMAC DMA 内部实现了总线数据 32/64/128 |
|                         |      | 位对齐,则该地址的低 2/3/4 位会被忽略. 如果描述符是以链式连    |
|                         |      | 接,则该域记录的是下一个描述符的地址                    |

#### 10.3.11 RDES4

表 10.62: RDES4

| 名称             | 位域    | 描述                                               |
|----------------|-------|--------------------------------------------------|
| 保留             | 31:14 |                                                  |
| PTP Version    | 13    | 该位为1时表示接收到的ptp同步信息(ptp message)符合                |
| PTP 版本         |       | IEEE1588 第二版 (version 2) 的规定。为 0 时,表示符合 IEEE1588 |
|                |       | 第一版 (version 1) 的规定                              |
| PTP Frame Type | 12    | 该位为 1 时表示 ptp 包直接通过以太网 (ethernet) 发送, 为 0 时且     |
|                |       | 信息类型 (RDES4[11:8]) 不为 0 时,表示 ptp 包通过 UDP-ipv4 或  |
|                |       | UDP-ipv6 发送                                      |



| 名称                   | 位域   | 描述                                                             |  |  |
|----------------------|------|----------------------------------------------------------------|--|--|
| Message Type         | 11:8 | 表示当前信息类型 (ptp message type),按以下值编码:                            |  |  |
| 信息类型                 |      | 0000: 没有 ptp 包收到                                               |  |  |
|                      |      | 0001: SYNC 包 (all clock types)                                 |  |  |
|                      |      | 0010: Follow_Up 包 (all clock types)                            |  |  |
|                      |      | 0011: Delay_Req包 (all clock types)                             |  |  |
|                      |      | 0100: Delay_Resp 包 (all clock types)                           |  |  |
|                      |      | 0101: Pdelay_Req 包 (in peer-to-peer transparent clock) or An-  |  |  |
|                      |      | nounce (in ordinary or boundary clock)                         |  |  |
|                      |      | 0110: Pdelay_Resp包 (in peer-to-peer transparent clock) or Man- |  |  |
|                      |      | agement (in ordinary or boundary clock)                        |  |  |
|                      |      | 0111: Pdelay_Resp_Follow_Up 包 (in peer-to-peer transparent     |  |  |
|                      |      | clock) or Signaling (for ordinary or boundary clock)           |  |  |
|                      |      | 1xxx - 保留                                                      |  |  |
| IPv6 Packet Received | 7    | 该位为 1 时表示当前接收到的包是一个 ipv6 包                                     |  |  |
| 收到 IPV6 包            |      |                                                                |  |  |
| IPv4 Packet Received | 6    | 该位为1时表示当前接收到的包是一个 ipv4 包                                       |  |  |
| 收到 IPV4 包            |      |                                                                |  |  |
| IP Checksum Bypassed | 5    | 该位为1时表示校验去载引擎 (checksum offload engine) 被忽略                    |  |  |
| IP 校验忽略              |      | (bypassed)                                                     |  |  |
| IP Payload Error     | 4    | 该位为 1 时表示 GMAC 检测到所接收的 TCP/UDP/ICMP 包的                         |  |  |
| IP 负载错误              |      | 负载数据出错。GMAC 比较协议头中的负载长度和实际发出的数                                 |  |  |
|                      |      | 据负载长度,当二者不匹配时发出一个错误状态。                                         |  |  |
| IP Header Error      | 3    | 该位为1时表示内部校验模块发现该接收帧的 IP 头出错                                    |  |  |
| IP 头错误               |      |                                                                |  |  |
| IP Payload Type      | 2:0  | 该 3 位表示经过接收校验去载引擎 (receive checksum offload en-                |  |  |
| IP 负载类型              |      | gine) 计算后的包负载类型,编码如下:                                          |  |  |
|                      |      | 3'b000: 未知类型或未启用收校验去载引擎                                        |  |  |
|                      |      | 3'b001: UDP                                                    |  |  |
|                      |      | 3'b010: TCP                                                    |  |  |
|                      |      | 3'b011: ICMP                                                   |  |  |
|                      |      | 3'b1xx: 保留                                                     |  |  |

#### 10.3.12 RDES6

记录时间戳低 32 位值

表 10.63: RDES6

| 名称                       | 位域   | 描述                                    |
|--------------------------|------|---------------------------------------|
| RTSL: Receive Frame Time | 31:0 | 该域记录了 GMAC 所捕捉的接收帧时间戳低 32 位 (LSB) 有   |
| Stamp Low                |      | 效值,由 DMA 模块负责更新。该位只有当 LS(TDES0[29]) 和 |
| 接收帧时间戳低位                 |      | TTSE(TDES0[25]) 同时为 1 时有效             |

#### 10.3.13 TDES7

记录时间戳高 32 位值



表 10.64: TDES7

| 名称                       | 位域   | 描述                                    |
|--------------------------|------|---------------------------------------|
| RTSL: Receive Frame Time | 31:0 | 该域记录了 GMAC 所捕捉的接收帧时间戳高 32 位 (MSB) 有   |
| Stamp Low                |      | 效值,由 DMA 模块负责更新。该位只有当 LS(TDES0[29]) 和 |
| 接收帧时间戳低位                 |      | TTSE(TDES0[25]) 同时为 1 时有效             |

#### 10.4 软件编程向导

#### 10.4.1 DMA 初始化

- 1. 软件重置 (reset)GMAC
- 2. 等待重置完成 (查询 DMA reg0[0])
- 3. 对 DMA reg0 的以下域进行编程
  - (a) MIX-BURST 和 AAL(DMA reg0[26]、[25])
  - (b) Fixed-burst 或者 undefined-burst(DMA reg0[16])
  - (c) Burst-length 和 Burst-mode
  - (d) Descriptor Length(只有当环形格式时有效)
  - (e) Tx 和 Rx 仲裁调度
- 4. 对 AXI Bus Mode Reg 进行编程
  - (a) 如果选择了 Fixed-burst,则需要在该寄存器内设置最大 burst length
- 5. 分别创建发送、接收描述符链,可以分别选择环形模式或者链型模式进行连接,并 将接收描述符的 OWN 位设为 1(DMA 拥有)
- 6. 在软件启用 DMA 描述符之前,必须保证至少发送 / 接收描述符链中有三个描述符
- 7. 将发送、接收描述符链表的首地址写入 DMA reg3、4
- 8. 对 DMA reg6(DMA mode operation) 中的以下位进行配置
  - (a) 接收 / 发送的 Store and Forward
  - (b) 接收 / 发送的阈值因子 (Threshold Control)
  - (c) 启用流控制 (hardware flow control enable)
  - (d) 错误帧和未识别的正确帧略过 (forwarding enable)
  - (e) OSF 模式
- 9. 向 DMA reg6(Status reg) 写 1. 清除所有中断请求
- 10. 向 DMA reg7(interrupt enable reg) 写 1, 启用所有中断
- 11. 向 DMA reg6[1]、[13] 中写 1,启用发送和接收 DMA

#### 10.4.2 MAC 初始化

1. 正确配置配套 PHY 芯片



- 2. 对 GMAC reg4(GMII Address Register) 进行正确配置,使其能够正常访问 PHY 相关寄存器
- 3. 读取 GMAC reg5(GMII Data Register) 获取当前 PHY 的链接 (link)、速度 (speed)、模式 ( 双工 ) 等信息
- 4. 配置 MAC 地址
- 5. 如果启用了 hash filtering,则需要对 hash filtering 进行配置
- 6. 对 GMAC reg1(Mac Frame filter) 以下域进行配置,来进行帧过滤
  - (a) 接收所有
  - (b) 混杂模式 (promiscuous mode)
  - (c) 哈希或完美过滤 (hash or perfect filter)
  - (d) 组播、多播过滤设置等等
- 7. 对 GMAC reg6(Flow control register) 以下域进行配置
  - (a) 暂停时间和其他暂停控制位
  - (b) 接收和发送流控制位
  - (c) 流控制忙 / 后压力启用
- 8. 对中断掩码寄存器 (Mac reg15) 进行配置
- 9. 基于之前得到的线路信息 (link,speed,mode) 对 GMAC reg0 进行正确的配置
- 10. 设置 GMAC reg0[2]、[3] 来启用 GMAC 中的发送、接收模块

#### 10.4.3 发送和接收的一般过程

- 1. 检测到发送或接收中断后,查寻相应描述符来判断其是否属于主机,并读取描述符中的数据
- 2. 完成对描述符中数据的读取后,将描述符各位清 0 并设置其 OWN 位,使其继续 发送 / 接收数据
- 3. 如果当前发送或接收描述符不属于 DMA(OWN=0),则 DMA 模块会进入挂起状态。当有数据需要被发送或接收时,向 DMA Tx/Rx POLL 寄存器写 1 重新使能 DMA 模块。需要注意的是接收描述符在空闲时应该总是属于 DMA(OWN=1)
- 4. 发送和接收描述符及对应 buffer 地址的实时信息可以通过查寻 DMA reg18、19、 20、21 获得





图 10.2: 增强型接收描述符



# 第十一章 SATA 控制器

# 11.1 SATA 总体描述

SATA 的特性包括:

- 支持 SATA 1代 1.5Gbps 和 SATA2代 3Gbps 的传输
- 兼容串行 ATA 2.6 规范和 AHCI 1.1 规范

# 11.2 SATA 控制器内部寄存器描述

SATA 的基地址是 0xbfe30000,寄存器的定义和协议标准定义完全一致。

表 11.1: SATA 控制器内部寄存器

| 地址          | 位宽 | 名称        | 描述             |
|-------------|----|-----------|----------------|
| 0xbfe3,0000 | 32 | CAP       | HBA 特性寄存器      |
| 0xbfe3,0004 | 32 | GHC       | 全局 HBA 控制寄存器   |
| 0xbfe3,0008 | 32 | IS        | 中断状态寄存器        |
| 0xbfe3,000c | 32 | PI        | 端口寄存器          |
| 0xbfe3,0010 | 32 | VS        | AHCI 版本寄存器     |
| 0xbfe3,0014 | 32 | CCC_CTL   | 命令完成合并控制寄存器    |
| 0xbfe3,0018 | 32 | CCC_PORTS | 命令完成合并端口寄存器    |
| 0xbfe3,0024 | 32 | CAP2      | HBA 特性扩展寄存器    |
| Oxbfe3,00A0 | 32 | BISTAFR   | BIST 激活 FIS    |
| Oxbfe3,00A4 | 32 | BISTCR    | BIST 控制寄存器     |
| Oxbfe3,00A8 | 32 | BISTCTR   | BIST FIS 计数寄存器 |
| Oxbfe3,00AC | 32 | BISTSR    | BIST 状态寄存器     |
| 0xbfe3,00B0 | 32 | BISTDECR  | BIST 双字错计数寄存器  |
| Oxbfe3,00BC | 32 | OOBR      | OOB 寄存器        |
| 0xbfe3,00E0 | 32 | TIMER1MS  | 1ms 计数寄存器      |
| 0xbfe3,00E8 | 32 | GPARAM1R  | 全局参数寄存器 1      |
| Oxbfe3,00EC | 32 | GPARAM2R  | 全局参数寄存器 2      |
| 0xbfe3,00F0 | 32 | PPARAMR   | 端口参数寄存器        |
| 0xbfe3,00F4 | 32 | TESTR     | 测试寄存器          |
| 0xbfe3,00F8 | 32 | VERIONR   | 版本寄存器          |
| Oxbfe3,00FC | 32 | IDR       | ID 寄存器         |
| 0xbfe3,0100 | 32 | P0_CLB    | 命令列表基地址低 32 位  |
| 0xbfe3,0104 | 32 | P0_CLBU   | 命令列表基地址高 32 位  |
| 0xbfe3,0108 | 32 | P0_FB     | FIS 基地址低 32 位  |
| 0xbfe3,010c | 32 | P0_FBU    | FIS 基地址高 32 位  |
| 0xbfe3,0110 | 32 | P0_IS     | 中断状态寄存器        |
| 0xbfe3,0114 | 32 | P0_IE     | 中断使能寄存器        |



| 地址          | 位宽 | 名称        | 描述            |
|-------------|----|-----------|---------------|
| 0xbfe3,0118 | 32 | P0_CMD    | 命令寄存器         |
| 0xbfe3,0120 | 32 | P0_TFD    | 任务文件数据寄存器     |
| 0xbfe3,0124 | 32 | P0_SIG    | 签名寄存器         |
| 0xbfe3,0128 | 32 | P0_SSTS   | SATA 状态寄存器    |
| 0xbfe3,012C | 32 | P0_SCTL   | SATA 控制寄存器    |
| 0xbfe3,0130 | 32 | P0_SERR   | SATA 错误寄存器    |
| 0xbfe3,0134 | 32 | P0_SACT   | SATA 激活寄存器    |
| 0xbfe3,0138 | 32 | P0_CI     | 命令发送寄存器       |
| 0xbfe3,013C | 32 | P0_SNTF   | SATA 命令通知寄存器  |
| 0xbfe3,0170 | 32 | P0_DMACR  | DMA 控制寄存器     |
| 0xbfe3,0178 | 32 | P0_PHYCR  | PHY 控制寄存器     |
| 0xbfe3,017C | 32 | P0_PHYSR  | PHY 状态寄存器     |
| 0xbfe3,0180 | 32 | P1_CLB    | 命令列表基地址低 32 位 |
| 0xbfe3,0184 | 32 | P1_CLBU   | 命令列表基地址高 32 位 |
| 0xbfe3,0188 | 32 | P1_FB     | FIS 基地址低 32 位 |
| 0xbfe3,018c | 32 | P1_FBU    | FIS 基地址高 32 位 |
| 0xbfe3,0190 | 32 | P1_IS     | 中断状态寄存器       |
| 0xbfe3,0194 | 32 | P1_IE     | 中断使能寄存器       |
| 0xbfe3,0108 | 32 | P1_CMD    | 命令寄存器         |
| 0xbfe3,01a0 | 32 | P1_TFD    | 任务文件数据寄存器     |
| 0xbfe3,01a4 | 32 | P1_SIG    | 签名寄存器         |
| 0xbfe3,01a8 | 32 | P1_SSTS   | SATA 状态寄存器    |
| Oxbfe3,01aC | 32 | P1_SCTL   | SATA 控制寄存器    |
| 0xbfe3,01b0 | 32 | P1_SERR   | SATA 错误寄存器    |
| 0xbfe3,01b4 | 32 | P1_SACT   | SATA 激活寄存器    |
| 0xbfe3,01b8 | 32 | P1_CI     | 命令发送寄存器       |
| Oxbfe3,01bC | 32 | P1_SNTF   | SATA 命令通知寄存器  |
| 0xbfe3,01f0 | 32 | P1_DMACR  | DMA 控制寄存器     |
| 0xbfe3,01f8 | 32 | P1_PHYCR  | PHY 控制寄存器     |
| Oxbfe3,01fC | 32 | P1s_PHYSR | PHY 状态寄存器     |



# 第十二章 USB 控制器

#### 12.1 总体描述

2H的 USB 主机端口特性如下:

- 兼容 USB Rev 1.1 、USB Rev 2.0 协议
- 兼容 OHCI Rev 1.0 、EHCI Rev 1.0 协议
- 支持 LS(Low Speed)、FS(Full Speed) 和 HS(High Speed) 的 USB 设备
- 支持六个端口,每个端口都可挂 LS、FS 或 HS 设备

USB 主机控制器模块包括一个支持高速设备的 EHCI 控制器,一个支持全速与低速设备的 OHCI 控制器。其中 EHCI 控制器处于主控地位,只有当挂上的设备是全速或低速设备时,才将控制权转交给 OHCI 控制器;当全速或低速设备拔掉时,控制权返回 EHCI 控制器。同时 USB 控制器内部集成了 DMA 控制器,用来和内存/应用程序之间通信。

### 12.2 USB 主机控制器寄存器

#### 12.2.1 EHCI 相关寄存器

EHCI 的相关寄存器包括 Capability 寄存器、Operational 寄存器和,EHCI 实现相关寄存器。 2H 的 USB 主机控制器兼容 EHCI Rev 1.0 协议,Capability 寄存器和 Operational 寄存器的详细信息参照 Enhanced Host Controller Interface Rev 1.0 Specification。 EHCI 寄存器的基址为 0xbfe00000,以下寄存器的地址为基址加偏移。

#### 12.2.2 Capability 寄存器

| 名称        | 偏移   | 宽度 | 访问 | 说明               |
|-----------|------|----|----|------------------|
| HCCAPBASE | 0x00 | 32 | RO | 默认值为32'h01000010 |
| HCSPARAMS | 0x04 | 32 | RO | 默认值为32'h00001116 |
| HCCPARAMS | 0x08 | 32 | RO | 默认值为32'h0000A010 |

#### 12.2.3 Operational 寄存器

| 名称      | 偏移   | 宽度 | 访问      | 说明                |
|---------|------|----|---------|-------------------|
| USBCMD  | 0x10 | 32 | R/W 、RO | USB 主机控制器的命令寄存器   |
| USBSTS  | 0x14 | 32 | R/W 、RO | USB 主机控制器的状态寄存器   |
| USBINTR | 0x18 | 32 | R/W     | USB 主机控制器的中断设置寄存器 |
| FRINDEX | 0x1c | 32 | R/W     | USB 主机控制器的帧索引寄存器  |



| 名称               | 偏移   | 宽度 | 访问      | 说明                  |
|------------------|------|----|---------|---------------------|
| CTRLDSSEGMENT    | 0x20 | 32 | R/W     | 存放 EHCI 控制数据结构的地址   |
| PERIODICLISTBASE | 0x24 | 32 | R/W     | 存放周期数据帧表的起始地址       |
| ASYNCLISTADDR    | 0x28 | 32 | R/W     | 存放下一个要被执行的异步队列的起始地址 |
| CONFIGFLAG       | 0x50 | 32 | R/W     | 配置模式寄存器             |
| PORTSC 1         | 0x54 | 32 | R/W, RO | 端口1状态和控制寄存器         |
| PORTSC 2         | 0x58 | 32 | R/W, RO | 端口2状态和控制寄存器         |
| PORTSC 3         | 0x5c | 32 | R/W, RO | 端口3状态和控制寄存器         |
| PORTSC 4         | 0x60 | 32 | R/W, RO | 端口 4 状态和控制寄存器       |
| PORTSC 5         | 0x64 | 32 | R/W, RO | 端口5状态和控制寄存器         |
| PORTSC 6         | 0x88 | 32 | R/W, RO | 端口6状态和控制寄存器         |

# 12.2.4 EHCI 实现相关寄存器

EHCI 实现相关寄存器的详细描述如下。

| 名称        | 偏移   | 宽度 | 访问      | 说明                          |
|-----------|------|----|---------|-----------------------------|
| INSNREG00 | 0x90 | 32 | R/W     | 帧的长度配置寄存器                   |
| INSNREG01 | 0x94 | 32 | R/W     | 数据包缓冲区 OUT/IN 阈值寄存器         |
| INSNREG02 | 0x98 | 32 | RO      | 数据包缓冲深度寄存器                  |
| INSNREG03 | 0x9c | 32 | RO, R/W | 参照寄存器详细描述                   |
| INSNREG04 | 0xa0 | 32 | R/W     | 用于 Debug                    |
| INSNREG05 | 0xa4 | 32 | RO, R/W | UTMI 配置 ( 默认配置 ) , 控制和状态寄存器 |
| INSNREG06 | 0xa8 | 32 | RO      | AHB 错误状态寄存器                 |
| INSNREG07 | 0xac | 32 | RO      | AHB Master 错误地址寄存器          |
| INSNREG08 | 0xb0 | 32 | RO      | HSIC 使能寄存器                  |

# 12.2.4.1 INSNREG01 寄存器

| 位域    | 访问  | 初值       | 描述                                         |
|-------|-----|----------|--------------------------------------------|
| 31:16 | R/W | 16'h0020 | OUT 阈值 (单位是 4 bytes),一旦从系统内存中取出的数          |
|       |     |          | 据量达到 OUT 阈值,就开始 USB 传输,最小为 16bytes         |
| 15:0  | R/W | 16'h0020 | IN 阈值 (单位是 4 bytes),一旦 Packet Buffer 里的数据量 |
|       |     |          | 达到 IN 阈值,就开始向内存传输,最小为 16bytes              |

#### 12.2.4.2 INSNREG02 寄存器

| 位域    | 访问 | 初值       | 描述                     |
|-------|----|----------|------------------------|
| 31:12 | -  | 20'h0    | 保留                     |
| 11:0  | RO | 12'h0020 | 数据包缓冲深度 ( 单位是 4 bytes) |

# 12.2.4.3 INSNREG03 寄存器



| 位域    | 访问  | 初值    | 描述                              |
|-------|-----|-------|---------------------------------|
| 31:13 | -   | 19'h0 | 保留                              |
| 12:10 | RO  | 3'h0  | 这个字段指定 phy_clks 的额外延时,这个延时被添加到" |
|       |     |       | Tx-Tx turnaround Delay "中。      |
| 9     | RO  | 1'h0  | 置1:将迫使主机控制器在一帧的每一微帧中获取周期数据      |
|       |     |       | 帧表,                             |
|       |     |       | 置 0: 主机控制器在一帧的微帧 0 中获取周期数据帧表    |
| 8:1   | R/W | 8'h0  | 时间可容忍偏移,这个字段用来指明为了容忍计算可用时间      |
|       |     |       | 而要附加的字节数。计算可用时间为以后的传输弹性增加的,     |
|       |     |       | 用户程序默认不需要修改这个字段。                |
| 0     | RO  | 1'h0  | Break Memory Transaction 模式     |
|       |     |       | 置1:使能此功能                        |
|       |     |       | 置 0:禁止此功能                       |

# 12.2.4.4 INSNRE04 寄存器 (仅用于调试,软件不必更改此寄存器)

| 位域   | 访问  | 初值    | 描述                                            |
|------|-----|-------|-----------------------------------------------|
| 31:6 | -   | 26'h0 | 保留                                            |
| 5    | R/W | 1'h0  | 置 1:禁止 automatic 功能,即当软件清除 Run/Stop 位时,       |
|      |     |       | USB 主机控制器会把挂起 (Suspend) 的端口唤醒                 |
|      |     |       | 置 0:启用 automatic 功能,当 reset Run/Stop 位时, Sus- |
|      |     |       | pend 信号会置为 1                                  |
| 4    | R/W | 1'h0  | 置 1:禁止 NAK reload 修复                          |
|      |     |       | 置 0:启用 NAK reload 修复                          |
| 3    | -   | 1'h0  | 保留                                            |
| 2    | R/W | 1'h0  | 置 1:缩短端口枚举 (enumeration) 时间 ( 仿真 )            |
| 1    | R/W | 1'h0  | 置 1: HCCPARAMS 寄存器的第 17 、15:4 、2:0 位均可写       |
| 0    | R/W | 1'h0  | 置 1: HCSPARAMS 寄存器可写                          |

# 12.2.4.5 INSNRE05 寄存器

| 位域    | 访问  | 初值                 | 描述                         |
|-------|-----|--------------------|----------------------------|
| 31:18 | -   | 14'h0              | 保留                         |
| 17    | RO  | 1'h0               | 置1:表示对这个寄存器进行了一个写操作,硬件正在执行 |
|       |     |                    | 置 0:表示硬件已经执行完操作            |
| 16:13 | R/W | 5'h0               | 端口号                        |
| 12    | R/W | 4'h1 VControlLoadM |                            |
|       |     |                    | 置1: NOP                    |
|       |     |                    | 置 0: Load                  |
| 11:8  | R/W | 4'h0               | VControl                   |
| 7:0   | RO  | 4'h0               | VStatus                    |

### 12.2.4.6 INSNREG06 寄存器



| 位域    | 访问  | 初值    | 描述                          |
|-------|-----|-------|-----------------------------|
| 31    | R/W | 1'h0  | 一旦 AHB 出错即被捕获并置 1,写 0 清除该字段 |
| 30:12 | -   | 19'h0 | 保留                          |
| 11:9  | RO  | 3'h0  | AHB 出错时控制段 HBURST 的值        |
| 8:4   | RO  | 5'h0  | AHB 出错的 burst 的预计节拍数        |
| 3:0   | RO  | 4'h0  | 在当前 burst 下,AHB 出错前完成的节拍数   |

#### 12.2.4.7 INSNREG07 寄存器

| 位域   | 访问 | 初值      | 描述            |
|------|----|---------|---------------|
| 31:0 | RO | 32 ' h0 | AHB 出错时控制段的地址 |

#### 12.2.4.8 INSNREG08 寄存器

| 位域   | 访问 | 初值    | 描述      |
|------|----|-------|---------|
| 31:0 | RO | 1' b0 | HSIC 使能 |

# 12.3 OHCI 相关寄存器

OHCI 的相关寄存器包括 Operational 寄存器和 OHCI 实现相关寄存器。 2H 的 USB 主机控制器兼容 OHCI Rev 1.0 协议,Operational 寄存器的详细信息参照 Open Host Controller Interface Rev 1.0 Specification。OHCI 寄存器的基址为 0xbfe08000,以下寄存器的地址为基址加偏移。

#### 12.3.1 Operational 寄存器

| 名称                 | 偏移   | 宽度 | 访问 | 说明    |
|--------------------|------|----|----|-------|
| HcRevision         | 0x00 | 32 | -  | 控制和状态 |
| HcControl          | 0x04 | 32 | -  |       |
| HcCommonStatus     | 0x08 | 32 | -  |       |
| HcInterruptStatus  | 0x0C | 32 | -  |       |
| HcInterruptEnable  | 0x10 | 32 | -  |       |
| HcInterruptDisable | 0x14 | 32 | -  |       |
| HcHCCA             | 0x18 | 32 | -  | 内存指针  |
| HcPeriodCuttentED  | 0x1C | 32 | -  |       |
| HcControlHeadED    | 0x20 | 32 | -  |       |
| HcControlCurrentED | 0x24 | 32 | -  |       |
| HcBulkHeadED       | 0x28 | 32 | -  |       |
| HcBulkCurrentED    | 0x2C | 32 | -  |       |
| HcDoneHead         | 0x30 | 32 | -  |       |
| HcRmInterval       | 0x34 | 32 | -  | 帧计数器  |
| HcFmRemaining      | 0x38 | 32 | -  |       |



| 名称              | 偏移    | 宽度 | 访问 | 说明   |
|-----------------|-------|----|----|------|
| HcFmNumber      | 0x3C  | 32 | _  |      |
| HcPeriodicStart | 0x40  | 32 | -  |      |
| HcLSThreshold   | 0x44  | 32 | -  |      |
| HcRhDescriptorA | 0x48  | 32 | -  | 根集线器 |
| HcRhDescriptorB | 0x04C | 32 | -  |      |
| HcRhStatus      | 0x50  | 32 | -  |      |
| HcRhPortStatus1 | 0x54  | 32 | -  |      |
| HcRhPortStatus2 | 0x58  | 32 | -  |      |

# 12.3.2 OHCI 实现相关寄存器

除了标准的 OHCI 操作寄存器,还实现了两个额外寄存器 (寄存器偏移 0x98 和 0x9C) 用来报告总线的错误状态。

| 名称        | 偏移   | 宽度 | 访问 | 说明      |
|-----------|------|----|----|---------|
| INSNREG06 | 0x98 | 32 | RO | 错误状态寄存器 |
| INSNREG07 | 0x9c | 32 | RO | 错误地址寄存器 |

#### 12.3.2.1 INSNREG06 寄存器

| 位域    | 访问  | 初值    | 描述                       |
|-------|-----|-------|--------------------------|
| 31    | R/W | 1'h0  | 一旦总线出错即被捕获并置 1,写 0 清除该字段 |
| 30:12 | RO  | 19'h0 | 保留                       |
| 11:9  | RO  | 3'h0  | 出错时控制段 HBURST 的值         |
| 8:4   | RO  | 5'h0  | 出错的 burst 的预计节拍数         |
| 3:0   | RO  | 4'h0  | 在当前 burst 下, 出错前完成的节拍数   |

#### 12.3.2.2 INSNREG07 寄存器

| 位域   | 访问 | 初值    | 描述          |
|------|----|-------|-------------|
| 31:0 | RO | 32'h0 | 总线出错时控制段的地址 |





# 第十三章 OTG 控制器

#### 13.1 概述

2H 的 OTG 支持特性如下:

- 支持 HNP 与 SRP 协议;
- 内嵌 DMA, 无需占用处理器带宽即可在 OTG 与外部存储之间移动数据;
- 在 device 模式下, 为高速设备 (480Mbps);
- 在 host 模式下, 仅能支持高速设备 (480Mbps);
- 在 device 模式下,支持 6 个双向的 endpoint,其中仅有默认的 endpoint0 支持控制传输;
- 在 device 模式下, 最多同时支持 4 个 IN 方向的传输;
- 在 host 模式下, 支持 12 个 channel, 且软件可配置每个 channel 的方向;
- 在 host 模式下, 支持 periodic OUT 传输;

#### 13.2 寄存器列表

应用程序通过 AHB slave 接口来读写 OTG 控制器里的控制与状态寄存器 (CSRs), 这些寄存器都是 32 位宽, 寄存器地址为 32 位对齐。

这里需要注意的是,在 host 模式与 device 模式下都能访问的寄存器组仅包括全局寄存器组 (Core Global),功耗与门控时钟 (Power and Clock Gating)寄存器组,数据FIFO 访问 (Data FIFO Access)寄存器组,端口 (Host Port)寄存器组。当 OTG 控制器处于 host 或 device 模式下,不能访问另一个模式下的寄存器。如果发生非法的寄存器读写,将发生模式不匹配 (Mode Mismatch)中断,这个中断将反映在中断寄存器中 (Core Interrupt Register).

当 OTG 从一个模式转换到另一个模式时,必须重新配置这个模式下的寄存器,因为这些寄存器在转换后的状态与上电重启时是一样的。

CSR 的地址映射是固定的,其中 Host 模式下的寄存器与 Device 模式下的寄存器处于不同的地址空间,图13.1显示了 CSR 的地址映射关系:

以下章节分组列出了 OTG 所有的寄存器, 及其偏移地址。

# 13.2.1 全局控制与状态寄存器 (Global CSR Map)

不管 OTG 工作在 host 模式下还是 Device 模式下都可访问这组寄存器, 其对应的偏移地址如下表所示:



| 0000h  |                                              |
|--------|----------------------------------------------|
|        | Core Global CSRs(1KB)                        |
| 0400h  | Host Mode CSRs(1KB)                          |
| 0800h  | Device Mode CSRs(1.5KB)                      |
| 0E00h  | Power and Clock Gating CSRs (1.5KB)          |
| 1000h  | Device EP 0/Host Channel 0<br>FIFO (4KB)     |
| 2000h  | Device EP 1/Host Channel 1<br>FIFO (4KB)     |
| 3000h  |                                              |
| 7000h  | Device EP 6/Host Channel 6<br>FIFO (4KB)     |
| 8000h  | Reserved                                     |
| 20000h | Direct Access to Data FIFO RAM for Debugging |
| 3FFFFh | (128KB)                                      |

图 13.1: OTG CSRs 地址映射

| 寄存器缩略名    | 偏移地址 | 寄存器名                                                    |  |
|-----------|------|---------------------------------------------------------|--|
| GOTGCTL   | 000h | Control and Status Register                             |  |
| GOTGINT   | 004h | Interrupt Register                                      |  |
| GAHBCFG   | 008h | AHB Configuration Register                              |  |
| GUSBCFG   | 00Ch | USB Configuration Register                              |  |
| GRSTCTL   | 010h | Reset Register                                          |  |
| GINTSTS   | 014h | Interrupt Status Register                               |  |
| GINTMSK   | 018h | Interrupt Mask Register                                 |  |
| GRXSTSR   | 01Ch | Receive Status Debug Read/Status Read and Pop Registers |  |
| GRXSTSP   | 020h |                                                         |  |
| GRXFSIZ   | 024h | Receive FIFO Size Register                              |  |
| GNPTXFSIZ | 028h | Non-Periodic Transmit FIFO Size Register                |  |
| GNPTXSTS  | 02Ch | Non-Periodic Transmit FIFO/Queue Status Register        |  |
| GSNPSID   | 040h | Synopys ID Register                                     |  |
| GHWCFG1   | 044h | User HW Config1 Register                                |  |
| GHWCFG2   | 048h | User HW Config2 Register                                |  |
| GHWCFG3   | 04Ch | User HW Config3 Register                                |  |
| GHWCFG4   | 050h | User HW Config4 Register                                |  |



| 寄存器缩略名    | 偏移地址      | 寄存器名                                           |  |
|-----------|-----------|------------------------------------------------|--|
| GDFIFOCFG | 05Ch      | DFIFO Software Config Register                 |  |
| HPTXFSIZ  | 100h      | Host Periodic Transmit FIFO Size Register      |  |
| DIEPTXFn  | 104h-3FFh | Device IN Endpoint Transmit FIFO Size Register |  |

# 13.2.2 模式控制与状态寄存器 (Host Mode CSR)

一旦 OTG 工作在 Host 模式下,这组寄存器必须被重新配置。

| 寄存器缩略名    | 偏移地址        | 寄存器名                                              |  |  |
|-----------|-------------|---------------------------------------------------|--|--|
| 1 HCFG    | 400h        | Host Configuration                                |  |  |
| HFIR      | 404h        | Host Frame Interval Register                      |  |  |
| HFNUM     | 408h        | Host Frame Number/Frame Time Remaining Register   |  |  |
|           | 40ch        | Reserved                                          |  |  |
| HPTXSTS   | 410h        | Host Periodic Transmit FIFO/Queue Status Register |  |  |
| HAINT     | 414h        | Host All Channels Interrupt Register              |  |  |
| HAINTMSK  | 418h        | Host All Channels Interrupt Mask Register         |  |  |
| HPRT      | 440h        | Host Port Control and Status Register             |  |  |
|           | 444h-4FCh   | Reserved                                          |  |  |
| HCCHARn   | 500h        | Moving the Host Core to Test Mode                 |  |  |
| HCSPLTn   | 504h        | Host Channel-n Split Control Register (HCSPLTn    |  |  |
| HCINTn    | 508h        | Host Channel-n Interrupt Register (HCINTn)        |  |  |
| HCINTMSKn | 50Ch        | Host Channel-n Interrupt Mask Register (HCINTMSKn |  |  |
| HCTSIZn   | 510h        | Host Channel-n Transfer Size Register (HCTSIZn    |  |  |
| HCDMAn    | 514h        | Host Channel-n DMA Address Register               |  |  |
|           | 518h        | Reserved                                          |  |  |
| HCDMABn   | 51Ch        | Host Channel-n DMA Buffer Address Register        |  |  |
| HCCHARn   | 520h - 53Ch | Host Channel-n Characteristics Register           |  |  |
|           | 540h-55h    |                                                   |  |  |
|           | •••         |                                                   |  |  |
|           | 6C0h - 6DCh |                                                   |  |  |
|           | 6E0h-6FCh   |                                                   |  |  |
|           | 6FDh-7FFh   |                                                   |  |  |

# 13.2.3 模式控制与状态寄存器 (Device Mode CSR)

一旦 OTG 工作在 Device 模式下,这组寄存器必须被重新配置。

| 寄存器缩略名  | 偏移地址 | 寄存器名                                               |
|---------|------|----------------------------------------------------|
| 1 DCFG  | 800h | Device Configuration Register                      |
| DCTL    | 804h | Device Control Register                            |
| DSTS    | 808h | Device Status Register                             |
|         | 80Ch | Reserved                                           |
| DIEPMSK | 810h | Device IN Endpoint Common Interrupt Mask Register  |
| DOEPMSK | 814h | Device OUT Endpoint Common Interrupt Mask Register |
| DAINT   | 818h | Device All Endpoints Interrupt Register            |



| 寄存器缩略名              | 偏移地址      | 寄存器名                                                  |  |  |
|---------------------|-----------|-------------------------------------------------------|--|--|
| DAINTMSK            | 81Ch      | Device All Endpoints Interrupt Mask Register          |  |  |
| DVBUSDIS            | 828h      | Device VBUS Discharge Time Register                   |  |  |
| DVBUSPULSE          | 82Ch      | Device VBUS Pulsing Time Register                     |  |  |
| DTHRCTL             | 830h      | Device Threshold Control Register                     |  |  |
| DIEPEPMSK           | 834h      | Device IN Endpoint FIFO Empty Interrupt Mask Register |  |  |
| DIEPCTL0            | 900h      | Device Control IN Endpint0 Control Register           |  |  |
|                     | 904h      | Reserved                                              |  |  |
| DIEPCTLn            | 920-AE0h  | Device Endpoint-n Control Register                    |  |  |
| DIEPINTn            | 908h      | Device Endoint-n Interrupt Register                   |  |  |
|                     | 90Ch      | Reserved                                              |  |  |
| DIEPTSIZ0/DOEPTSIZ0 | 910h      | Device Endpoint0 Transfer Size Register               |  |  |
| DIEPTSIZn/DOEPTSIZn | 910h      | Device Endpointn Transfer Size Register               |  |  |
| DIEPDMAn            | 914h      | Device Endpoint-n DMA Address Register                |  |  |
| DTXFSTSn            | 918h      | Device IN Endpoint Transmit FIFO Status Register      |  |  |
| DIEPDMAB0           | 91Ch      | Device Endpoint-n DMA Buffer Address Register         |  |  |
| DOEPCTL0            | B00h      | Device Control OUT Endpint0 Control Register          |  |  |
|                     | B04h      | Reserved                                              |  |  |
| DOEPCTLn            | B20-BE0h  | Device Endpoint-n Control Register                    |  |  |
| DOEPINTn            | B08h      | Device Endoint-n Interrupt Register                   |  |  |
|                     | B0Ch      | Reserved                                              |  |  |
| DOEPTSIZ0           | B10h      | Device Endpoint0 Transfer Size Register               |  |  |
| DOEPTSIZn           | B10h      | Device Endpointn Transfer Size Register               |  |  |
| DOEPDMAn            | B14h-CF4h | Device Endpoint-n DMA Address Register                |  |  |
| DOEPDMAB0           | B1Ch-CFCh | Device Endpoint-n DMA Buffer Address Register         |  |  |

### 13.2.4 数据 FIFO 访问寄存器组 (DFIFO Access Register MAP)

不管 OTG 工作在 host 模式下还是 Device 模式下,都可访问这组寄存器。这组寄存器用作读写某个给定方向的 endpoint 或 channel 的 FIFO。如果 host 模式下 channel 的方向为 IN,那么只能读这个 channel 上的 FIFO;相类似地,若 host 模式下 channel 的方向为 OUT,那么只能写这个 channel 上的 FIFO。

| 寄存器名                                                          | 偏移地址          | 读写特性  |
|---------------------------------------------------------------|---------------|-------|
| Device IN Endpoint 0/Host OUT Channel 0: DFIFO Write Access   | 1000h-1FFCh   | WO/RO |
| Device OUT Enpoint 0/Host IN Channel 0 : DFIFO Read Access    |               |       |
| Device IN Endpoint 0/Host OUT Channel 0: DFIFO Write Access   | 2000h-2FFCh   | WO/RO |
| Device OUT Enpoint 0/Host IN Channel 0 : DFIFO Read Access    |               |       |
| Device IN Endpoint 14/Host OUT Channel 14: DFIFO Write Access | F000h-FFFCh   | WO/RO |
| Device OUT Enpoint 14/Host IN Channel 14 : DFIFO Read Access  |               |       |
| Device IN Endpoint 15/Host OUT Channel 15: DFIFO Write Access | 10000h-10FFCh | WO/RO |
| Device OUT Enpoint 15/Host IN Channel 15: DFIFO Read Access   |               |       |



#### 13.2.5 功耗控制与门控时钟寄存器组 (Power and Clock Gating CSR Map)

不管 OTG 工作在 host 模式下还是 Device 模式下,都可访问这组寄存器。这组寄存器用作功耗控制与门控时钟。寄存器缩略名偏移地址寄存器名

| 寄存器缩略名  | 偏移地址 | 寄存器名                                    |
|---------|------|-----------------------------------------|
| PCGCCTL | E00h | Power and Clock Gating Control Register |

### 13.3 寄存器描述

#### 13.3.1 寄存器访问特性

用来标示这些寄存器的读写特性,会有一栏访问特性,描述寄存器时在以下章节。 下面的内容将列出这些访问特性的具体含义。

| Read Only (RO)                                | 只读                                |  |  |
|-----------------------------------------------|-----------------------------------|--|--|
| Write Only(WO)                                | 只写                                |  |  |
| Read and Write(R_W)                           | 可读可写                              |  |  |
| Read , Write, and Self Clear(R_W_SC)          | 可读可写;且 OTG 控制器自身可清 0,具体清 0的条件在以   |  |  |
|                                               | 下章节的各个域中有详细解释                     |  |  |
| Read, Write, Self Set and Self Clear          | 可读可写;且 OTG 控制器自身可置位,可清 0,具体置位与清   |  |  |
| (R_W_SS_SC)                                   | 0的条件在以下章节的各个域中有详细解释               |  |  |
| Read, Self Set, and Write Clear (R_SS_WC)     | 可读;且 OTG 控制器自身可置位;且当软件往这位写1完成     |  |  |
|                                               | 清 0 效果, 往这位写 0 不会产生效果。OTG 置位的条件在以 |  |  |
|                                               | 下章节的各个域中有详细解释                     |  |  |
| Read, Write Set, and Self Clear (R_WS_SC)     | 可读; 且当软件往这位写 1 完成置位效果; 且 OTG 控制器自 |  |  |
|                                               | 身可清 0,软件不可清 0,即软件往这位写 1 不会产生效果。   |  |  |
|                                               | OTG 清 0 的条件在以下章节的各个域中有详细解释        |  |  |
| Read, Self Set, and Self Clear or Write Clear | 可读;且 OTG 控制器自身可置位,可清 0;当软件往这位写 1  |  |  |
| (R_SS_SC_WC)                                  | 完成清 0 效果, 往这位写 0 不会产生效果。OTG 具体置位与 |  |  |
|                                               | 清 0 的条件在以下章节的各个域中有详细解释            |  |  |

#### 13.3.2 全局寄存器

不管 OTG 工作在 host 模式下还是 Device 模式下都可访问这组寄存器,当 OTG 从一种工作模式转换到另一种工作模式时,无需重新例化这些寄存器。

### 13.3.2.1 控制与状态寄存器 (GOTGCTL)

偏移地址: 000h

OTG 控制与状态寄存器 (GOTGCTL) 控制 OTG 的功能以及反映其状态。

| 域     | 说明  | 工作模式   | 复位值 | 访问特性 |
|-------|-----|--------|-----|------|
| 31:21 | 保留域 | Host ; |     | RO   |
|       |     | Device |     |      |



| 域     | 说明                                         | 工作模式      | 复位值  | 访问特性     |
|-------|--------------------------------------------|-----------|------|----------|
| 20    | OTG 版本                                     | Host;     | 1'b0 | RW       |
|       | 1'b0: 版本 1.3; 此版本 OTG 支持 Data line pulsing | Device    |      |          |
|       | 与 VBus pulsing 的 SRP                       |           |      |          |
|       | 1'b1: 版本 2.0; 此版本的 OTG 仅支持 Data line       |           |      |          |
|       | pulsing 的 SRP                              |           |      |          |
| 19    | B-session valid(BSesVld)                   | Device    | 1'b1 | RO       |
|       | 指定 device 模式下 transceiver 的状态。             | only      |      |          |
|       | 1'b0: B-session 非法                         | Ū.        |      |          |
|       | 1'b1: B-session 合法。                        |           |      |          |
|       | 在OTG模式下,用这位来决定设备是否连接上                      |           |      |          |
| 18    | A-session valid(ASesVld)                   | Host only | 1'b0 | RO       |
|       | 指定 host 模式下 transceiver 的状态。               |           |      |          |
|       | 1'b0: A-session 非法                         |           |      |          |
|       | 1'b1: A-session 合法。                        |           |      |          |
|       | 在 device 模式下,此位为保留位                        |           |      |          |
| 17    | Long/Short Debounce Time(DbncTime)         | Host only | 1'b0 | RO       |
|       | 指定一个发现连接的 debounce 时间                      |           |      |          |
|       | 1'b0: long debounce time,用作物理连接(100ms+     |           |      |          |
|       | 2.5us)                                     |           |      |          |
|       | 1'b1: short debounce time, 用作软连接 (2.5us)   |           |      |          |
| 16    | 连接器 ID 的状态                                 | Host ;    | 1'b1 | RO       |
|       | 在一次连接事件中,指示 ID 的状态                         | Device    |      |          |
|       | 1'b0: OTG 工作在 A 设备模式下                      | 201100    |      |          |
|       | 1'b1: OTG 工作在 B 设备模式下                      |           |      |          |
| 15:12 | 保留域                                        | Host;     |      | RO       |
|       |                                            | Device    |      |          |
| 11    | 设备 HNP 使能位 (DevHNPEn)                      | Device    | 1'b0 | R_W      |
|       | 1'b0: HNP 未被使能                             | Only      |      |          |
|       | 1'b1: HNP 使能                               |           |      |          |
| 10    | Host Set HNP 使能位                           | Host Only | 1'b0 | R_W      |
|       | 1'b0: Host Set HNP 未被使能                    |           |      |          |
|       | 1'b1: Host Set HNP 使能                      |           |      |          |
| 9     | HNP 请求                                     | Device    | 1'b0 | $R_{-}W$ |
|       | 软件将这位置位从而发起一个 HNP 请求给 host。当               | Only      |      |          |
|       | GOTGINT.HstNegSucStsChng 位置位时,软件通过         |           |      |          |
|       | 往这位写 0 来清 0。当 HstNegSucStsChng 位为 0,       |           |      |          |
|       | OTG 控制器将这位清 0.                             |           |      |          |
|       | 1'b0: 无 HNP 请求                             |           |      |          |
|       | 1'b1: HNP 请求                               |           |      |          |
| 8     | Host Negotiation Success(HstNegScs)        | Device    | 1'b0 | RO       |
|       | 当 host 互换 (Host Negotiation) 成功后, OTG 控制   | only      |      |          |
|       | 器将这位置起。                                    |           |      |          |
|       | 1'b0: host 互换失败                            |           |      |          |
|       | 1'b1: host 互换成功                            |           |      |          |



| 域 | 说明                                           | 工作模式      | 复位值  | 访问特性     |
|---|----------------------------------------------|-----------|------|----------|
| 7 | B-Peripheral Session Valid 覆盖值               | Device    | 1'b0 | R_W      |
|   | (BvalidOvVal) 当GOTGCTL.BvalidOvEn置位时,        | only      |      |          |
|   | BValidOvVal 位用来重新设置 Bvalid 信号                |           |      |          |
|   | 1'b0: 当 GOTGCTL.BvalidOvEn = 1 时, Bvalid     |           |      |          |
|   | 信号的值为 0;                                     |           |      |          |
|   | 1'b1: 当 GOTGCTL.BvalidOvEn = 1 时, Bvalid     |           |      |          |
|   | 信号的值为1;                                      |           |      |          |
| 6 | B-Peripheral Session Valid 重置使能 (BvalidOvEn) | Device    | 1'b0 | RW       |
|   | 这位用来使能软件通过 GOTGCTL.BValidOvVal 位             | only      |      |          |
|   | 来覆盖 Bvalid 信号。                               |           |      |          |
|   | 1'b1: 从 PHY 接收到的 Bvalid 信号值被 BvalidOv-       |           |      |          |
|   | Val 重新设置。                                    |           |      |          |
|   | 1'b0:Bvalid 信号重置功能关闭,OTG 控制器内部使              |           |      |          |
|   | 用的 Bvalid 信号的值即位从 PHY 接收到的值                  |           |      |          |
| 5 | A-Peripheral Session Valid 重置值 (AvalidOvVal) | Host only | 1'b0 | $R_{-}W$ |
|   | 当 GOTGCTL.AvalidOvEn 置位时,AValidOvVal         |           |      |          |
|   | 位用来重新设置 Avalid 信号                            |           |      |          |
|   | 1'b0: 当 GOTGCTL.AvalidOvEn = 1 时, Avalid     |           |      |          |
|   | 信号的值为0;                                      |           |      |          |
|   | 1'b1: 当 GOTGCTL.AvalidOvEn = 1 时,Avalid      |           |      |          |
|   | 信号的值为1;                                      |           |      |          |
| 4 | A-Peripheral Session Valid 重置使能 (AvalidOvEn) | Host only | 1'b0 | RW       |
|   | 这位用来使能软件通过 GOTGCTL.AValidOvVal 位             |           |      |          |
|   | 来 Override Avalid 信号。                        |           |      |          |
|   | 1'b1: 从 PHY 接收到的 Avalid 信号值被 AvalidOv-       |           |      |          |
|   | Val 重新设置。                                    |           |      |          |
|   | 1'b0:Avalid 信号重置功能关闭,OTG 控制器内部使              |           |      |          |
|   | 用的 Avalid 信号的值即位从 PHY 接收到的值                  |           |      |          |
| 3 | VBUS Valid 重置值 (VbvalidOvVal) 当 GOT-         | Host only | 1'b0 | $R_{-}W$ |
|   | GCTL.VbvalidOvEn 置位时, VbvalidOvVal 位用        |           |      |          |
|   | 来重新设置 vbus valid 信号                          |           |      |          |
|   | 1'b0: 当 GOTGCTL.VbvalidOvEn = 1 时, Vbus      |           |      |          |
|   | valid 信号的值为 0;                               |           |      |          |
|   | 1'b1: 当 GOTGCTL.VbvalidOvEn = 1 时, vbus      |           |      |          |
|   | valid 信号的值为 1;                               |           |      |          |
| 2 | VBUS Valid 重置使能 (AvalidOvEn) 这位用来使能          | Host only | 1'b0 | $R_{-}W$ |
|   | 软件通过 GOTGCTL.VbValidOvVal 位来 Override        |           |      |          |
|   | vbus valid 信号。                               |           |      |          |
|   | 1'b1: 从 PHY 接收到的 vbus valid 信号值被 Vbvali-     |           |      |          |
|   | dOvVal 重新设置。                                 |           |      |          |
|   | 1'b0:vbus valid 信号重置功能关闭,OTG 控制器内            |           |      |          |
|   | 部使用的 vbus valid 信号的值即位从 PHY 接收到的             |           |      |          |
|   | 值                                            |           |      |          |



| 域 | 说明                                          | 工作模式   | 复位值  | 访问特性 |
|---|---------------------------------------------|--------|------|------|
| 1 | 会话请求 (Session Request, SesReq) 软件通过置位       | Device | 1'b0 | R_W  |
|   | SesReq 位在 USB 总线上发起一次会话请求。当                 | only   |      |      |
|   | OTG 中断寄存器的 Host Negotiation Success Sta-    |        |      |      |
|   | tus Change 位置位时,软件通过往这位写 0 来清 0             |        |      |      |
|   | 。当 HstNegSucStsChng 位为 0 ,OTG 控制器将这         |        |      |      |
|   | 位清 0.                                       |        |      |      |
|   | 1'b0: 无会话请求                                 |        |      |      |
|   | 1'b1: 请求会话                                  |        |      |      |
| 0 | 会话请求成功 (Session Request Success, SesReqScs) | Device | 1'b0 | R_W  |
|   | 1'b0: 会话请求失败                                | only   |      |      |
|   | 1'b1: 会话请求成功                                |        |      |      |

# 13.3.2.2 中断寄存器 (GOTGINT)

偏移地址: 004h

| 域     | 说明                                     | 工作模式      | 复位值  | 访问特性    |
|-------|----------------------------------------|-----------|------|---------|
| 31:20 | 保留域                                    | Host ;    |      | RO      |
|       |                                        | Device    |      |         |
| 19    | Debounce Done (DbnceDone )             | Host only | 1'b0 | R_SS_WC |
|       | 当设备连接上的 debounce 完成后,OTG 控制器置          |           |      |         |
|       | 起这位。当应用看到这个中断后,可以开始 USB 复              |           |      |         |
|       | 位操作。                                   |           |      |         |
| 18    | A 设备超时改变 (ADevTOUTChg)                 | Host ;    | 1'b0 | R_SS_WC |
|       | 当 A 设备等待 B 设备连接超时时,OTG 控制器置            | Device    |      |         |
|       | 起这位                                    |           |      |         |
| 17    | 检测到角色互换 (HstNegDet):                   | Host ;    | 1'b0 | R_SS_WC |
|       | 当在 USB 总线上发现角色互换请求 (Host Negotia-      | Device    |      |         |
|       | tion Req) 时,OTG 控制器置起这位。               |           |      |         |
| 16:10 | 保留域                                    | Host and  |      | RO      |
|       |                                        | Device    |      |         |
| 9     | 角色互换成功状态改变位 (HstNegSucStsChng) :       | Host and  | 1'b0 | R_SS_WC |
|       | Host Negotiation Success Status Change | Device    |      |         |
|       | 当 USB 总线上的角色请求成功或失败时, OTG              |           |      |         |
|       | 控制器将这位置起。软件可通过查询 GOT-                  |           |      |         |
|       | GCTL.HstNegSus 位来确定角色互换请求是否成           |           |      |         |
|       | 功                                      |           |      |         |
| 8     | 会话请求成功状态改变位 (SesReqSusStsChng) :       | Host and  | 1'b0 | R_SS_WC |
|       | Session Request Success Status Change  | Device    |      |         |
|       | 当 USB 总线上的会话请求成功或失败时, OTG              |           |      |         |
|       | 控制器将这位置起。软件可通过查询 GOT-                  |           |      |         |
|       | GCTL.SesReqScs 位来确定会话请求是否成功            |           |      |         |
| 7:3   | 保留域                                    | Host and  | 1'b0 | RO      |
|       |                                        | Device    |      |         |



| 域   | 说明                                   | 工作模式     | 复位值  | 访问特性    |
|-----|--------------------------------------|----------|------|---------|
| 2   | 会话结束检测位 (SesEndDet): Session End De- | Device   | 1'b0 | R_SS_WC |
|     | tected                               |          |      |         |
|     | 当 utmisrp_bvalid 信号拉低时,OTG 控制器置起这    |          |      |         |
|     | 位                                    |          |      |         |
| 1:0 | 保留域                                  | Host and |      | RO      |
|     |                                      | Device   |      |         |

# 13.3.2.3 AHB 配置寄存器 (GAHBCFG)

偏移地址: 008h

这个寄存器用来在上电或工作模式改变时配置 OTG 控制器,配置的内容主要包括 AHB 相关的系统参数。在初始配置完成后,不能再修改这个寄存器的值。不管是在 AHB 总线还是 USB 总线上开始一次事务 (transaction) 时,都需要重新配置这个寄存器。

| 域     | 说明                                        | 工作模式     | 复位值  | 访问特性 |
|-------|-------------------------------------------|----------|------|------|
| 31:23 | 保留域                                       | Host ;   |      | RO   |
|       |                                           | Device   |      |      |
| 22    | 通知所有的 DMA 写事务 (NotiAllDmaWrit): Notify    | Host;    | 1'b0 | R_W  |
|       | All Dma Write Transactions                | Device   |      |      |
|       | 用来使能对所有的 DMA 写事务 (to end-                 |          |      |      |
|       | point/Channel) 的 DMA Done 功能.只有当 GAH-     |          |      |      |
|       | BCFG.RemMemSupp 位为 1'b1 时,这位才意义。          |          |      |      |
|       | 1'b1:对于所有的DMA写事务,OTG控制器都会在                |          |      |      |
|       | AHB 总线上置起 (assert) dma_req, int_dma_done, |          |      |      |
|       | chep_last_transact 以及 chep_number 信号。为了完  |          |      |      |
|       | 成对某个 channel/endpoint 的传输,OTG 控制器需        |          |      |      |
|       | 要等待所有写事务的 sys_dma_done 信号。                |          |      |      |
|       | 1'b0:仅对写传输 (transfer) 的最后一个事务 (trans-     |          |      |      |
|       | action) , OTG 控制器才会置起 int_dma_done 信      |          |      |      |
|       | 号。同样,为了完成对某个 channel/endpoint 的传          |          |      |      |
|       | 输, OTG 控制器仅需要等待那个 DMA 写事务的                |          |      |      |
|       | sys_dma_done 信号。                          |          |      |      |
| 21    | Remote Memory Support (RemMemSupp)        | Host and | 1'b0 | R_W  |
|       | 使能为 DMA 写传输等待系统 DMA DONE 信号功              | Device   |      |      |
|       | 能                                         |          |      |      |
|       | 1'b1: 当 OTG DMA 开始对外部存储空间的传输时,            |          |      |      |
|       | 置起输出信号 int_dma_req。当完成这个传输,OTG            |          |      |      |
|       | 控制器置起 int_dma_done 信号用来指示从 OTG 控          |          |      |      |
|       | 制器来的 DMA 写完成。然后 OTG 控制器等待从                |          |      |      |
|       | 系统来 sys_dma_done 信号, 以便完成对某个 chan-        |          |      |      |
|       | nel/endpoint 的数据传输。                       |          |      |      |
|       | 无需置起 int_dma_req 与 int_dma_done 信号; 一旦    |          |      |      |
|       | DMA 写传输完成,XferComp 中断之气,OTG 控             |          |      |      |
|       | 制器继续工作。且无需等待 sys_dma_done 信号以完            |          |      |      |
|       | 成数据传输。                                    |          |      |      |



| 域   | 说明                                     | 工作模式      | 复位值  | 访问特性     |
|-----|----------------------------------------|-----------|------|----------|
| 8   | 周期性 TxFIFO Empty Level (PTxFIFOEmpLvl) | Host only | 1'b0 | R_W      |
|     | : Periodic TxFIFO Empty Level          |           |      |          |
|     | 指示周期性 TxFIFO 空中断位                      |           |      |          |
|     | (GINTSTS.PTxFEMp) 何时置起。这位仅用在           |           |      |          |
|     | slave 模式下。                             |           |      |          |
|     | 1'b0:GINTSTS.PTxFEMp中断位指示当周期性Tx-       |           |      |          |
|     | FIFO 半空                                |           |      |          |
|     | 1'b1: GINTSTS.PTxFEMp 中断位指示周期性 Tx-     |           |      |          |
|     | FIFO 全空                                |           |      |          |
| 7   | 非周期性 TxFIFO Empty Level (NPTxFIFOEm-   | Host and  | 1'b0 | R_W      |
|     | pLvl): Non-Periodic TxFIFO Empty Level | device    |      |          |
|     | 这位仅用在 slave 模式下。                       |           |      |          |
|     | 指示 IN 端点的 TxFIFO 空中断位                  |           |      |          |
|     | (DIEPINTn.TxFEmp) 何时置起。                |           |      |          |
|     | Host 模式:                               |           |      |          |
|     | 1'b0: GINTSTS.PTxFEMp 中断位指示非周期性        |           |      |          |
|     | TxFIFO 半空;                             |           |      |          |
|     | 1'b1: GINTSTS.PTxFEMp 中断位指示非周期性        |           |      |          |
|     | TxFIFO 全空;                             |           |      |          |
|     | device 模式:                             |           |      |          |
|     | 1'b0: DIEPINTn.TxFEmp 中断位指示 IN 端点的     |           |      |          |
|     | TxFIFO 半空;                             |           |      |          |
|     | 1'b1: DIEPINTn.TxFEmp 中断位指示 IN 端点的     |           |      |          |
|     | TxFIFO 全空;                             |           |      |          |
| 6   | 保留域                                    | Host ;    |      | RO       |
|     |                                        | Device    |      |          |
| 5   | DMA 使能 (DMAEn)                         | Host ;    | 1'b0 | $R_{-}W$ |
|     | 1'b0: OTG 工作在 Slave 模式                 | Device    |      |          |
|     | 1'b1: OTG 工作在 DMA 模式                   |           |      |          |
| 4:1 | Burst 长度 (HBstLen)                     | Host;     | 4'b0 | $R_{-}W$ |
|     | AHB Master 的 burst 类型                  | Device    |      |          |
|     | 4'b0000: Single                        |           |      |          |
|     | 4'b0001: INCR                          |           |      |          |
|     | 4'b0000: INCR4                         |           |      |          |
|     | 4'b0000: INCR8                         |           |      |          |
|     | 4'b0000: INCR16                        |           |      |          |
|     | 其他: 保留                                 |           |      |          |
| 0   | 全局中断屏蔽位 (GlblIntrMsk)                  | Host;     | 1'b0 | R_W      |
|     | 用来屏蔽对软件的中断。不管是否置起这位,OTG                | Device    |      |          |
|     | 控制器总是更新中断状态寄存器。                        |           |      |          |
|     | 1'b0: 中断对软件不可见                         |           |      |          |
|     | 1'b0:中断对软件可见                           |           |      |          |

# 13.3.2.4 USB 配置寄存器 (GUSBCFG)

偏移地址: 00Ch



这个寄存器用来在上电或工作模式改变时配置 OTG 控制器, 配置的内容主要包括 USB 与 USB-PHY 相关的参数。不管是在 AHB 总线还是 USB 总线上开始一次事务 (transaction) 时,都需要配置这个寄存器。在初始配置完成后, 不能再修改这个寄存器的值。

| 域      | 说明                                        | 工作模式            | 复位值  | 访问特性      |
|--------|-------------------------------------------|-----------------|------|-----------|
| 31     | Corrupt Tx package ()                     | Host;           | 1'b0 | WO        |
|        | 仅用来做调试使用,不可写 1.                           | Device          |      |           |
| 30     | 强制 device 模式 (ForceDevMod)                | Host;           | 1'b0 | RW        |
|        | 写 1 意味着 OTG 控制器将工作在 device 模式下,而          | Device          |      |           |
|        | 不管 utmiotg_iddig 输入管脚的值。                  |                 |      |           |
|        | 1'b0: 正常工作模式                              |                 |      |           |
|        | 1'b1:强制 device 模式                         |                 |      |           |
|        | 将这位写 1 后,软件必须等待至少 25ms 的生效时间。             |                 |      |           |
|        | 当在 scale down 模式下的仿真环境下, 500us 已经         |                 |      |           |
|        | 足够。                                       |                 |      |           |
| 29     | 强制 Host 模式 (ForceHostMod)                 | Host;           | 1'b0 | RW        |
|        | 写 1 意味着 OTG 控制器将工作在 Host 模式下,而            | Device          |      |           |
|        | 不管 utmiotg_iddig 输入管脚的值。                  |                 |      |           |
|        | 1'b0: 正常工作模式                              |                 |      |           |
|        | 1'b1: 强制 Host 模式                          |                 |      |           |
|        | 将这位写1后,软件必须等待至少25ms的生效时间。                 |                 |      |           |
|        | 当在 scale down 模式下的仿真环境下, 500us 已经         |                 |      |           |
|        | 足够。                                       |                 |      |           |
| 28     | Tx End 延时 (TxEndDelay)                    | Device          | 1'b0 | R_W       |
|        | 写 1 使能 TxEndDelay 计时器。                    | only            |      |           |
|        | 1'b0: 正常模式                                |                 |      |           |
|        | 1'b1: 引入 Tx end 延时计时器                     |                 |      |           |
| 27: 23 | 保留                                        | Host;           |      | RO        |
|        |                                           | Device          |      |           |
| 22     | TermSel DLine Pulsing 选择 (TermSelDLPulse) | Device          | 1'b0 | R_W       |
|        | 用来在 SRP 过程中,选择 utmi_termselect 驱动数据       |                 |      |           |
|        | 脉冲 (data line pulse)。                     |                 |      |           |
|        | 1'b0: 用 utmi_txvalid 驱动数据脉冲(默认)           |                 |      |           |
| 24 40  | 1'b1: 用 utmi_termselect 驱动数据脉冲            | **              |      | 7.0       |
| 21: 16 | 保留                                        | Host;           |      | RO        |
| 15     | PHY 的低功耗时钟选择 (PhyLpwClkSel)               | Device<br>Host; | 1'b0 | R_W       |
| 10     | 选择使用 480MHz 或 48Mhz(低功耗)PHY 模式。在          | Device          | 1 00 | I ( - V V |
|        | FS 与 LS 模式下,PHY 通常工作在 48MHz 下以节           | Device          |      |           |
|        | 省功耗。                                      |                 |      |           |
|        |                                           |                 |      |           |
|        | 1'b0: 480MHz 内部 PLL 时钟                    |                 |      |           |
| 14     | 1'b1: 48MHz 外部时钟<br>  保留位                 | Host;           |      | RO        |
| 1.4    |                                           | Device          |      | 100       |
|        |                                           | Device          | 1    |           |



| 域     | 说明                                        | 工作模式   | 复位值  | 访问特性 |
|-------|-------------------------------------------|--------|------|------|
| 13:10 | USB 周期时间 (USBTrdTime): USB Turnaround     | Device | 4'h5 | R_W  |
|       | Time                                      |        |      |      |
|       | 设置 PHY 时钟位单位的周期时间。                        |        |      |      |
|       | 即指定 MAC 请求 PFC( 数据 FIFO 控制器 ) 去数据         |        |      |      |
|       | FIFO 中获取数据的响应时间。其值必须如下设置:                 |        |      |      |
|       | 4'h5: 当 MAC 接口位 16 位的 UTMI+               |        |      |      |
|       | 4'h6: 当 MAC 接口位 8 位的 UTMI+                |        |      |      |
| 9     | HNP-Capable(HNPCap)                       | Host,  | 1'b0 | R_W  |
|       | 软件用此控制 OTG 控制器的 HNP 功能。                   | Device |      |      |
|       | 1'b0: HNP 功能不可用                           |        |      |      |
|       | 1'b0: HNP 功能可用                            |        |      |      |
|       | 注意,如果 HNP 功能被软件禁掉,那么 PHY 域相应              |        |      |      |
|       | 的 OTG 信号必须固定为确定的值(?)。                     |        |      |      |
| 8     | SRP-Capable(SRPCap)                       | Host;  | 1'b0 | R_W  |
|       | 软件用此控制 OTG 控制器的 SRP 功能。                   | Device |      |      |
|       | 1'b0: SRP 功能不可用                           |        |      |      |
|       | 1'b0: SRP 功能可用                            |        |      |      |
|       | 注意,如果 SRP 功能被软件禁掉,那么 PHY 域相应              |        |      |      |
|       | 的 OTG 信号必须固定为确定的值                         |        |      |      |
| 7: 4  | 保留位                                       | Host;  |      | RO   |
|       |                                           | Device |      |      |
| 3     | PHY 接□ (PHYIf)                            | Host;  | 可配   | RO   |
|       | 用来配置 UTMI+PHY 的接口。                        | Device |      |      |
|       | 1'b0: 8bits                               |        |      |      |
|       | 1'b1: 16bits                              |        |      |      |
|       | 若选择 ULPI 接口,则仅能配置位 8bits。                 |        |      |      |
| 2:0   | HS 超时校准 (TOutCal): HS Timeout Calibration | Host;  | 3'h0 | R_W  |
|       | 单位为一个 PHY 时钟。用来修正因为 PHY 引起的               | Device |      |      |
|       | 包之间超时时间。不同的 PHY 引入的延时不同。                  |        |      |      |
|       | 对于 HS 而言, USB 标准的超时值为 736 - 816 bit       |        |      |      |
|       | times;软件必须基于枚举的速度来配置这个域。每                 |        |      |      |
|       | 个 PHY 时钟的 bits 时间如下解释:                    |        |      |      |
|       | HS:                                       |        |      |      |
|       | 一个 30MHz 的 PHY 时钟= 16bit times            |        |      |      |
|       | 一个 60MHz 的 PHY 时钟= 8bit times             |        |      |      |

# 13.3.2.5 复位寄存器 (GRSTCTL)

偏移地址: 010h

| 域  | 说明                          | 工作模式   | 复位值  | 访问特性 |
|----|-----------------------------|--------|------|------|
| 31 | .AHB Master Idle(AHBIdle)   | Host;  | 1'b1 | RO   |
|    | 指示 AHB Master 状态机处于 IDLE 状态 | Device |      |      |
| 30 | DMA 请求信号 (DMAReq)           | Host;  | 1'b0 | RO   |
|    | 指示现在总线上有个 DMA 请求; 调试使用      | Device |      |      |



| 域     | 说明                                | 工作模式   | 复位值  | 访问特性     |
|-------|-----------------------------------|--------|------|----------|
| 29:11 | 保留域                               | Host;  |      | RO       |
|       |                                   | Device |      |          |
| 10:6  | TxFIFO 号 (TxFNum)                 | Host;  | 5'h0 | R_W      |
|       | 指示必须用 TxFIFO Flush 位清空的 FIFO 号。   | Device |      |          |
|       | 直到控制器清空了 TxFIFO 位, TxFNum 才可修     |        |      |          |
|       | 改。                                |        |      |          |
|       | 5'h0:                             |        |      |          |
|       | - host 模式下清空非周期性 TxFIFO           |        |      |          |
|       | - device 模式下清空 TxFIFO 0           |        |      |          |
|       | 5'h1:                             |        |      |          |
|       | - host 模式下清空周期性 TxFIFO            |        |      |          |
|       | - device 模式下清空 TxFIFO 1           |        |      |          |
|       | 5'h2:                             |        |      |          |
|       | - device 模式下清空 TxFIFO 2           |        |      |          |
|       | 5'h3:                             |        |      |          |
|       | - device 模式下清空 TxFIFO 3           |        |      |          |
|       |                                   |        |      |          |
|       | 5'H10:                            |        |      |          |
|       | - 清空所有的 TxFIFO (不管是 host 模式下还是    |        |      |          |
|       | device 模式下)                       |        |      |          |
| 5     | TxFIFO 清空 (TxFFlsh)               | Host;  | 1'b0 | R_WS_SC  |
|       | 用来选择性地清空一个或所有的 TxFIFO。但是有         | Device |      |          |
|       | 事务正在进行时不可进行此操作。                   |        |      |          |
|       | 软件必须在确认 OTG 控制器没有读或写 TxFIFO       |        |      |          |
|       | 时才可写此位。确认方式如下:                    |        |      |          |
|       | 读- NAK 有效中断能确保 OTG 控制器没有读         |        |      |          |
|       | FIFO;                             |        |      |          |
|       | 写 - GRSTCTL.AHBIdle 能确保 OTG 控制器没有 |        |      |          |
|       | 写FIFO                             |        |      |          |
|       | 清空 FIFO 的操作可以在以下情形下使用,比如          |        |      |          |
|       | FIFO 需要重新配置或在共享 FIFO 模式与专用        |        |      |          |
|       | FIFO 模式下转换以及禁用某个 device endpoint。 |        |      |          |
|       | 软件必须等待 OTG 控制器将此位清 0 后才能继续其       |        |      |          |
|       | 他操作。这大概需要8个时钟,且是使用phy_clk与        |        |      |          |
|       | hclk 中比较慢的那个时钟。                   |        |      |          |
| 4     | RxFIFO 清空 (RxFFlsh)               | Host;  | 1'b0 | R_WS_SC  |
|       | 用来清空整个 RxFIFO ,同样有事务正在进行时不        | Device |      |          |
|       | 可进行此操作。                           |        |      |          |
|       | 软件必须在确认 OTG 控制器没有读或写 RxFIFO       |        |      |          |
|       | 时才可写此位。                           |        |      |          |
|       | 软件必须等待 OTG 控制器将此位清 0 后才能继续其       |        |      |          |
|       | 他操作。这大概需要8个时钟,且是使用phy_clk与        |        |      |          |
|       | hclk 中比较慢的那个时钟。                   | TT .   |      | DO.      |
| 3     | 保留位                               | Host;  |      | RO       |
|       |                                   | Device |      | <u> </u> |



| 域 | 说明                                    | 工作模式   | 复位值  | 访问特性    |
|---|---------------------------------------|--------|------|---------|
| 2 | Host Frame Counter Reset (FrmCntrRst) | Host   | 1'b0 | R_WS_SC |
|   | 软件通过写此位来重置 OTG 控制器内的帧数。一旦             |        |      |         |
|   | 帧数被重置,下一个 OTG 控制器发出的 SOF 的帧           |        |      |         |
|   | 号为 0.                                 |        |      |         |
| 1 | 保留域                                   | Host;  |      | RO      |
|   |                                       | Device |      |         |
| 0 | OTG 控制器软重启 (CSftRst)                  | Host;  | 1'b0 | R_WS_SC |
|   | 复位 hclk 与 phy_clock 时钟域的内容如下:         | Device |      |         |
|   | 清空除以下列以外的所有中断以及 CSR 寄存器               |        |      |         |
|   | - PCGCCTL.RstPdwn                     |        |      |         |
|   | - PCGCCTL.GateHclk                    |        |      |         |
|   | - PCGCCTL.PwrClmp                     |        |      |         |
|   | - GUSBCFG.DDRSel                      |        |      |         |
|   | - GUSBCFG.PHYSel                      |        |      |         |
|   | - GUSBCFG.FSIntf                      |        |      |         |
|   | - GUSBCFG.ULPI_UTMI_Sel               |        |      |         |
|   | - GUSBCFG.PHYIf                       |        |      |         |
|   | - HCFG¿FSLSPclkSel                    |        |      |         |
|   | - DCFG.DevSpd                         |        |      |         |
|   | - GGPIO                               |        |      |         |
|   | - GPWRDN                              |        |      |         |
|   | - GADPCTL                             |        |      |         |
|   | 所有模块的状态机 (除 AHB Slave 单元) 都被复位至       |        |      |         |
|   | IDLE 状态; 清空所有的 TxFIFO 与 RxFIFO        |        |      |         |
|   | 在平滑地完整最后一个 AHB 传输的数据相后,立              |        |      |         |
|   | 即结束所有的 AHB Master 事务。立即结束所有的          |        |      |         |
|   | USB 事务                                |        |      |         |
|   | PMU 模块 (功耗管理单元) 不会被复位                 |        |      |         |
|   | 软件在任意时刻都可软复位 OTG 控制器。这位是自             |        |      |         |
|   | 清 0 的,即在所有必要的逻辑复位后控制器会清 0 此           |        |      |         |
|   | 位。根据控制器当时的状态不同,这将花费数个时钟。              |        |      |         |
|   | 一旦此位被清 0,软件必须等待 3 个 PHY 时钟后才          |        |      |         |
|   | 能操作 PHY 域 (同步延时)。软件在开始任何动作之           |        |      |         |
|   | 前,必须确保 AHBIdle 位位 1。                  |        |      |         |

# 13.3.2.6 中断寄存器 (GINTSTS)

偏移地址: 014h



| 域   | 说明                                             | 工作模式   | 复位值   | 访问特性      |
|-----|------------------------------------------------|--------|-------|-----------|
| 31  | 系统恢复 / 远程唤醒中断                                  | Host;  | 1'b0  | R_SS_WC   |
|     | (WkUpInt):Resume/Remote Wakeup Detected        | Device |       |           |
|     | Interrupt                                      |        |       |           |
|     | 处于挂起 (L2) 状态时的唤醒中断.                            |        |       |           |
|     | - Device 模式: 仅当在 USB 总线上发现 Host 发起             |        |       |           |
|     | 的唤醒操作时,发生此中断                                   |        |       |           |
|     | - Host 模式: 仅当在 USB 总线上发现 device 发起的            |        |       |           |
|     | 远程唤醒操作时,发生此中断                                  |        |       |           |
| 30  | 会话请求 / 发现新会话中断 (SessReqInt) :Session           | Host;  | 1'b0  | R_SS_WC   |
|     | Request/New Session Detected Interrupt.        | Device |       |           |
|     | - 在 Host 模式下, 当发现从 device 来的会话请求时,             |        |       |           |
|     | 置 1.                                           |        |       |           |
|     | - 在 device 模式下,当 utmisrp_bvalid 信号拉高时,         |        |       |           |
|     | 置1                                             |        |       |           |
| 29  | 断开中断 (DisconnInt)                              | Host   | 1'b0  | R_SS_WC   |
|     | 当 device 断开时,置 1.                              |        |       |           |
| 28  | 连接器 ID 状态变化 (ConIDStsChng)                     | Host;  | 1'b1  | R_SS_WC   |
|     | 当连接器 ID 状态有变化时,置 1.                            | Device |       |           |
| 27  | 保留位                                            | Host;  |       | RO        |
| 9.0 | 田畑州 T PIPO ☆ (PT PP )                          | Device | 171 1 | DO.       |
| 26  | 周期性 TxFIFO 空 (PTxFEmp)                         | Host   | 1'b1  | RO        |
|     | 当周期性 TxFIFO 是半空或全空,且在周期性请求                     |        |       |           |
|     | 队列中至少有一项请求时,此位置 1. 是半空还是全                      |        |       |           |
| 0.5 | 空时置 1 由 GAHBCFG.PTxFEmpLvl 来决定。                | TT4    | 121-0 | DO.       |
| 25  | Host Channels Interrupt (HChInt)               | Host   | 1'b0  | RO        |
|     | 在 host 模式下,当 OTG 控制器里某一个通道上有一                  |        |       |           |
|     | 个等待处理的中断时,置1.软件必须读HAINT寄存                      |        |       |           |
|     | 器来确定有未处理中断的 channel 号,然后读取对应                   |        |       |           |
|     | 的 HCINTn 寄存器来确定发生中断的原因。为了将                     |        |       |           |
|     | 这位清 0,软件必须先将 HCINTn 寄存器中对应状                    |        |       |           |
| 9.4 | 态位清 0.                                         | TT4    | 121-0 | DO.       |
| 24  | Host 端口中断 (PrtInt)                             | Host   | 1'b0  | RO        |
|     | 在 Host 模式下, 若 OTG 控制器的某个端口状态发                  |        |       |           |
|     | 生变化时,置 1. 软件必须读 HPRT 寄存器来确定引                   |        |       |           |
|     | 起这个中断的真正原因。为了将这位清 0,软件必须                       |        |       |           |
| 23  | <u> </u>                                       | Device | 1'b0  | R_SS_WC   |
| 20  | 在 device 模式下, 处于挂起状态下的 OTG 控制器发                | Device | 1 00  | 10_55_770 |
|     | 下一复位操作时,置 1.                                   |        |       |           |
|     |                                                |        |       |           |
|     | 仅当 OTG 控制器处于 device 模式,且工作在 partial            |        |       |           |
|     | Power-down, 或是门控挂起状态下才效。                       |        |       |           |
|     | 当 OTG 控制器工作在 Hibernation 挂起状态时,这               |        |       |           |
| 22  | 位无效。<br>数据获取挂起 (FetSusp): Data Fetch Suspended | Device | 1250  | D CC W/C  |
| 22  |                                                | Device | 1'b0  | R_SS_WC   |
|     | 仅在DMA模式下有效。当TxFIFO或请求队列没有                      |        |       |           |
|     | 空间时 OTG 会停止为 IN endpoint 取数据,这时置               |        |       |           |
|     | 1. 软件在 endpoint 不匹配算法中使用此中断。                   |        |       |           |



| 域  | 说明                                              | 工作模式   | 复位值  | 访问特性      |
|----|-------------------------------------------------|--------|------|-----------|
| 21 | 未完成周期性传输 (incomplIP)                            | Host   | 1'b0 | R_SS_WC   |
|    | Host 模式下, 当有一未完成的周期性事务仍等待在                      | Device |      |           |
|    | 当前帧时间内处理时,置1.                                   |        |      |           |
|    | 未完成的实时 OUT 传输 (incomplSOOUT)                    |        |      |           |
|    | device 模式下, 若在当前帧时间内, 至少有一个实时                   |        |      |           |
|    | OUT endpoint 上有一个未完成的传输时,置 1. 同时                |        |      |           |
|    | 置 EOPF 位                                        |        |      |           |
| 20 | 未完成的实时 IN 传输 (incomplSOIN)                      | Device | 1'b0 | R_SS_WC   |
|    | 若在当前帧时间内,至少有一个实时 IN endpoint 上                  |        |      |           |
|    | 有一个未完成的传输时,置 1. 同时置 EOPF 位                      |        |      |           |
| 19 | OUT endpoint 中断 (OEPInt)                        | Device | 1'b0 | RO        |
|    | 当在 OUT endpint 上有一等待处理的中断时,OTG                  |        |      |           |
|    | 控制器置 1. 软件必须读 DAINT 寄存器从而确定                     |        |      |           |
|    | 具体是哪个 enpoint 上有等待处理的中断; 然后读                    |        |      |           |
|    | DOEPINTn 寄存器从而确定引起这个中断的原因。                      |        |      |           |
|    | 为了将这位清 0,软件必须先将 DOEPINTn 寄存器                    |        |      |           |
|    | 中对应状态位清 0.                                      |        |      |           |
| 18 | IN endpoint 中断 (IEPInt)                         | Device | 1'b0 | RO        |
|    | 当在 IN endpint 上有一等待处理的中断时, OTG                  |        |      |           |
|    | 控制器置 1. 软件必须读 DAINT 寄存器从而确定                     |        |      |           |
|    | 具体是哪个 enpoint 上有等待处理的中断; 然后读                    |        |      |           |
|    | DOEPINTn 寄存器从而确定引起这个中断的原因。                      |        |      |           |
|    | 为了将这位清 0,软件必须先将 DOEPINTn 寄存器                    |        |      |           |
|    | 中对应状态位清 0.                                      |        |      |           |
| 17 | 保留位                                             | Host;  |      | RO        |
|    |                                                 | Device |      |           |
| 16 | 保留位                                             | Host;  |      | RO        |
| 15 | 国期税帧结束 (EODE)                                   | Device | 1'b0 | R_SS_WC   |
| 15 | 周期性帧结束 (EOPF)<br>当在当前帧时间内,DCFG.PerFrInt 指示的阈值达  | Device | 1.00 | R_SS_WC   |
|    |                                                 |        |      |           |
| 14 | 到时,置 1.<br>实时的 OUT 包结束 (ISOOutDrop)             | Device | 1'b0 | R_SS_WC   |
| 14 | 若 RxFIFO 没有足够的空间来为实时 OUT endpoint               | Device | 1 50 | 16_55_770 |
|    | 存放一 maximum package size packet ,则 OTG 控        |        |      |           |
|    | 制器将无法将一个实时 OUT 包写入到 RxFIFO。当                    |        |      |           |
|    |                                                 |        |      |           |
| 13 | 发生这种情况时,置此位为 1.<br>枚举结束 (EnumDone): Enumeration | Device | 1'b0 | R_SS_WC   |
| 10 | 当速度枚举结束是,置 1. 软件读取 DSTS 寄存器获                    | DOVICE | 1 50 | 10-55-77  |
|    | 取枚举的确切速度                                        |        |      |           |
| 12 | USB 复位 (USBRst)                                 | Device | 1'b0 | R_SS_WC   |
|    | 当 USB 总线上有一复位操作时,置 1                            | 201100 |      | 10-00-110 |
| 11 | USB 挂起 (USBSusp)                                | Device | 1'b0 | R_SS_WC   |
|    | 当 OTG 控制器检测到 USB 总线上有一挂起操作时,                    |        |      |           |
|    | 置 1. 若在一段较长的时间内 utmi.linestate 信号线              |        |      |           |
|    | 上没有活动,那么 OTG 控制器将进去挂起状态                         |        |      |           |



| 域   | 说明                                    | 工作模式    | 复位值  | 访问特性    |
|-----|---------------------------------------|---------|------|---------|
| 10  | Early Suspend(ErlySusp)               | Device  | 1'b0 | R_SS_WC |
|     | 当检测到 USB 已进入空闲状态超过 3ms 时,OTG          |         |      |         |
|     | 控制器置此位为 1.                            |         |      |         |
| 9:8 | 保留位                                   | Host;   |      | RO      |
|     |                                       | Device  |      |         |
| 7   | 全局 OUT NAK 有效 (GOUTNakEff)            | Device  | 1'b0 | RO      |
|     | 软件置 DCTL.SGOUTNak 位后其开始有效时,置 1.       |         |      |         |
|     | 通过清 0 DCTL.SGOUTNak 位达到清 0 此位的效       |         |      |         |
|     | 果                                     |         |      |         |
| 6   | 全局 IN 非周期性 NAK 有效 (GINNakEff)         | Device  | 1'b0 | RO      |
|     | 软件置 DCTL.SGNPInNak 位后其开始有效时,置         |         |      |         |
|     | 1.                                    |         |      |         |
|     | 通过清 0 DCTL. SGNPInNak 位达到清 0 此位的效     |         |      |         |
|     | 果                                     |         |      |         |
| 5   | 保留位                                   | Host;   |      | RO      |
|     |                                       | Device  |      |         |
| 4   | RxFIFO 非空 (RxFLvl)                    | Host;   | 1'b0 | RO      |
|     | 当 RxFIFO 中至少有一个包时,置 1.                | Device1 |      |         |
| 3   | 帧开始 (Sof)                             | Host;   | 1'b0 | R_SS_WC |
|     | Host 模式下,当 SOF 在 USB 总线上传输时,OTG       | Device  |      |         |
|     | 控制器将此位置 1. 软件写 1 将此位清 0.              |         |      |         |
|     | Device 模式下, 当 OTG 控制器收到 SOF 标志 (to-   |         |      |         |
|     | ken) 时,置 1. 软件可通过读 Deivce status 寄存器来 |         |      |         |
|     |                                       |         |      |         |
| 2   | OTG 中断 (OTGInt)                       | Host;   | 1'b0 | RO      |
|     | 置1指示发生了OTG协议事件。软件可读GOT-               | Device  |      |         |
|     | GINT 寄存器来确定发生中断的原因。为了将这位清             |         |      |         |
|     | 0,软件必须清空 GOTGINT 寄存器相应的状态位。           |         |      |         |
| 1   | 模式不匹配中断 (ModeMis)                     | Host;   | 1'b0 | R_SS_WC |
|     | 当软件试图进行一下操作时,置1.                      | Device  |      |         |
|     | 当 OTG 工作在 device 模式下时,试图访问 host 模     |         |      |         |
|     | 式下的寄存器。                               |         |      |         |
|     | 当 OTG 工作在 Host 模式下时, 试图访问 device 模    |         |      |         |
|     |                                       |         |      |         |
| 0   | 式下的寄存器。<br>当前工作模式 (CurMod)            | Host;   | 1'b0 | RO      |
|     | 指示当前 OTG 控制器的工作模式                     | Device  | 1 50 | 100     |
|     |                                       | Device  |      |         |
|     | 1'b0: device 模式                       |         |      |         |
|     | 1'b1: host 模式                         | I .     |      |         |

# 13.3.2.7 中断屏蔽寄存器 (GINTMSK)

偏移地址: 018h

这个寄存器与 GINTSTS 寄存器共同使用。当某个中断被屏蔽,那么这个中断不会被软件看到。当然,GINTSTS 对应的位仍旧置位。

- 1: 中断使能
- 0: 中断屏蔽



| 域     | 说明                                              | 工作模式             | 复位值  | 访问特性      |
|-------|-------------------------------------------------|------------------|------|-----------|
| 31    | 系统恢复 / 远程唤醒中断屏蔽位                                | Host;            | 1'b0 | R_SS_WC   |
|       | (WkUpIntMsk):Resume/Remote Wakeup De-           | Device           |      |           |
|       | tected Interrupt Mask                           |                  |      |           |
| 30    | 会话请求 / 发现新会话中断屏蔽位 (SessReqIntMsk)               | Host;            | 1'b0 | R_SS_WC   |
|       | :Session Request/New Session Detected Interrupt | Device           |      |           |
| 29    | Mask.  断开中断屏蔽位 (DisconnIntMsk)                  | Host             | 1'b0 | R_SS_WC   |
| 28    | 连接器 ID 状态变化屏蔽位 (ConIDStsChngMsk)                | Host :           | 1'b1 | R_SS_WC   |
| 20    | 是按冊ID 机心文化屏蔽区 (Compsisoningwisk)                | Device           |      | 112552770 |
| 27    | 保留位                                             | Host;            |      | RO        |
|       |                                                 | Device           |      |           |
| 26    | 周期性 TxFIFO 空屏蔽位 (PTxFEmpMsk)                    | Host             | 1'b1 | RO        |
| 25    | Host Channels Interrupt 屏蔽位 (HChIntMsk)         | Host             | 1'b0 | RO        |
| 24    | Host 端口中断屏蔽位 (PrtIntMsk)                        | Host             | 1'b0 | RO        |
| 23    | 复位中断屏蔽位 (ResetDetMsk): Reset Detected           | Device           | 1'b0 | R_SS_WC   |
|       | Interrupt Mask                                  |                  |      |           |
| 22    | 数据获取挂起屏蔽位 (FetSuspMsk) : Data Fetch             | Device           | 1'b0 | R_SS_WC   |
| 21    | Suspended Mask                                  | TT .             | 17.0 | D GG HIG  |
| 21    | 未完成周期性传输屏蔽位 (incomplIPMsk)                      | Host             | 1'b0 | R_SS_WC   |
|       | 未完成的实时 OUT 传输屏蔽位 (incom-                        | Device           |      |           |
| 20    | plSOOUTMsk)<br>未完成的实时 IN 传输屏蔽位 (incomplSOINMsk) | Device           | 1'b0 | R_SS_WC   |
| 19    | OUT endpoint 中断屏蔽位 (OEPIntMsk)                  | Device           | 1'b0 | RO        |
| 18    | IN endpoint 中断屏蔽位 (IEPIntMsk)                   | Device           | 1'b0 | RO        |
| 17:16 | 保留位                                             | Host;            | 1 50 | RO        |
| 17.10 |                                                 | Device           |      | 100       |
| 15    | 周期性帧结束屏蔽位 (EOPFMsk)                             | Device           | 1'b0 | R_SS_WC   |
| 14    | 实时的 OUT 包结束屏蔽位 (ISOOutDropMsk)                  | Device           | 1'b0 | R_SS_WC   |
| 13    | 枚举结束屏蔽位 (EnumDoneMsk): Enumeration              | Device           | 1'b0 | R_SS_WC   |
|       | Mask                                            |                  |      |           |
| 12    | USB 复位屏蔽位 (USBRstMsk)                           | Device           | 1'b0 | R_SS_WC   |
| 11    | USB 挂起屏蔽位 (USBSuspMsk)                          | Device           | 1'b0 | R_SS_WC   |
| 10    | Early Suspend 屏蔽位 (ErlySuspMsk)                 | Device           | 1'b0 | R_SS_WC   |
| 9:8   | 保留位                                             | Host;            |      | RO        |
| 7     | 全局 OUT NAK 有效屏蔽位 (GOUTNakEffMsk)                | Device<br>Device | 1'b0 | RO        |
| 6     | 全局 IN 非周期性 NAK 有效屏蔽位 (GIN-                      | Device           | 1'b0 | RO        |
| U     | E 向 IN 中 向 朔 臣 NAK 有 双 併 敝 恒 (GIN-NakEffMsk)    | Device           | 1 50 | I KO      |
| 5     | 保留位                                             | Host;            |      | RO        |
|       |                                                 | Device           |      |           |
| 4     | RxFIFO 非空屏蔽位 (RxFLvlMsk)                        | Host;            | 1'b0 | RO        |
| 3     | 帧开始屏蔽位 (SofMsk)                                 | Device1<br>Host; | 1'b0 | R_SS_WC   |
| J     | TRAINT MX PL. (SOLIVISK)                        | Device           | 1 00 | 11.00-11  |
| 2     | OTG 中断屏蔽位 (OTGIntMsk)                           | Host;            | 1'b0 | RO        |
|       | ,                                               | Device           |      |           |



| 域 | 说明                      | 工作模式   | 复位值  | 访问特性    |
|---|-------------------------|--------|------|---------|
| 1 | 模式不匹配中断屏蔽位 (ModeMisMsk) | Host;  | 1'b0 | R_SS_WC |
|   |                         | Device |      |         |
| 0 | 当前工作模式 (CurModMsk)      | Host;  | 1'b0 | RO      |
|   |                         | Device |      |         |

# 13.3.2.8 接收状态调试寄存器 / 状态 read 以及 pop 寄存器 (GRXSTSR/-GRXSTSP)

读偏移地址: 01Ch Pop 偏移地址: 020h

对接收状态调试寄存器的读操作返回的是 RxFIFO 的第一项内容。对状态 read 以及 pop 寄存器的读操作额外还会将 RxFIFO 的第一项内容 pop 出来。接收状态寄存器的内容在 host 模式与 device 模式下有着不同的解释。若 RxFIFO 空,那么 OTG 控制器将忽略对这个寄存器的读以及 pop 操作,且返回 32'h0000\_0000。只有当 GINTSTS.RxFLvl位为 1 时,软件才可以进行 pop 操作。NOTE: OTG 在不同的工作模式下,此寄存器的各个域有着不同的解释

# Host 模式

| 域     | 说明                             | 复位值   | 访问特性 |
|-------|--------------------------------|-------|------|
| 31:21 | 保留域                            | 1     | RO   |
| 20:17 | 包状态 (PktSts)                   | 4'b0  | RO   |
|       | 指示接收包的状态:                      |       |      |
|       | 4'b0010: 接收到 IN 数据包            |       |      |
|       | 4'b0011: IN 传输结束 (触发中断)        |       |      |
|       | 4'b0101: 数据 toggle 错误 ( 触发中断 ) |       |      |
|       | 4'b0111: 通道 halt( 触发中断 )       |       |      |
|       | 其他: 保留                         |       |      |
| 16:15 | 数据 PID (DPID)                  | 2'b0  | RO   |
|       | 指示接收包的数据 PID                   |       |      |
|       | 2'b00:DATA0                    |       |      |
|       | 2'b10:DATA1                    |       |      |
|       | 2'b01:DATA2                    |       |      |
|       | 2'b11:MDATA                    |       |      |
| 14:4  | 字节数 (BCnt)                     | 11'h0 | RO   |
|       | 指示接收到的 IN 数据包的字节数              |       |      |
| 3:0   | 通道号 (ChNum)                    | 4'h0  | RO   |
|       | 指示当前接收到的数据包所属的通道号              |       |      |

#### Device 模式

| 域     | 说明  | 复位值 | 访问特性 |
|-------|-----|-----|------|
| 31:25 | 保留域 |     | RO   |



| 域     | 说明                           | 复位值   | 访问特性 |
|-------|------------------------------|-------|------|
| 24:21 | 帧号 (FN)                      | 4'h0  | RO   |
|       | 接收包所在帧的帧号最低四位。               |       |      |
|       | 仅当支持实时 OUT 端点时,此域有效          |       |      |
| 20:17 | 包状态 (PktSts)                 | 4'b0  | RO   |
|       | 指示接收包的状态:                    |       |      |
|       | 4'b0001: 全局 OUT NAK (触发中断)   |       |      |
|       | 4'b0010: 接收到 OUT 数据包         |       |      |
|       | 4'b0011: OUT 传输结束 ( 触发中断 )   |       |      |
|       | 4'b0100: SETUP 事务结束 ( 触发中断 ) |       |      |
|       | 4'b0110: 接收到 SETUP 数据包       |       |      |
|       | 其他:保留                        |       |      |
| 16:15 | 数据 PID (DPID)                | 2'b0  | RO   |
|       | 指示接收到的 OUT 包的数据 PID          |       |      |
|       | 2'b00:DATA0                  |       |      |
|       | 2'b10:DATA1                  |       |      |
|       | 2'b01:DATA2                  |       |      |
|       | 2'b11:MDATA                  |       |      |
| 14:4  | 字节数 (BCnt)                   | 11'h0 | RO   |
|       | 指示接收到的 IN 数据包的字节数            |       |      |
| 3:0   | 端点号 (EPNum)                  | 4'h0  | RO   |
|       | 指示当前接收到的数据包所属的端点号            |       |      |

# 13.3.2.9 RxFIFO 容量寄存器 (GRXFSIZ)

读偏移地址: 024h

软件用此寄存器分配分配给 RxFIFO 的 RAM 大小。

| 域     | 说明                 | 复位值 | 访问特性 |
|-------|--------------------|-----|------|
| 31:16 | 保留域                |     | RO   |
| 15:0  | RxFIFO 深度 (RxFDep) | 533 | RW   |
|       | 以 32-bits 的字为单位。   |     |      |
|       | - 最小值为 16          |     |      |
|       | - 最大值为 32768       |     |      |

### 13.3.2.10 非周期性 TxFIFO 容量寄存器 (GNPTXFSIZ)

读偏移地址: 028h

软件用此寄存器分配分配给非周期性 TxFIFO 的 RAM 大小以及开始地址。

Note: OTG 在 host 工作模式下,还是在 device 工作模式下,此寄存器有不同的解释。

Host 模式下



| 域     | 说明                           | 复位值 | 访问特性 |
|-------|------------------------------|-----|------|
| 31:16 | 非周期性 TxFIFO 深度 (NPTxDep)     | 256 | R_W  |
|       | 以 32-bits 的字为单位。             |     |      |
|       | - 最小值为 16                    |     |      |
|       | - 最大值为 32768                 |     |      |
| 15:0  | 非周期性 TxRAM 开始地址 (NPTxStAddr) | 533 | R_W  |

#### Device 模式下

| 域     | 说明                                 | 复位值 | 访问特性 |
|-------|------------------------------------|-----|------|
| 31:16 | IN 端点 TxFIFO 0 的深度。仅当 Device 模式下,且 | 32  | R_W  |
|       | OTG_EN_DED_TX_FIFO = 1 时有效。        |     |      |
|       | - 最小值为 16                          |     |      |
|       | - 最大值为 32768                       |     |      |
| 15:0  | IN 端点 FIFO0 TxRAM 开始地址             | 533 | R_W  |

# 13.3.2.11 Synopsys ID 寄存器 (GSNPSID)

读偏移地址: 040h

包含 OTG 控制器的版本号

| 域     | 说明                                   | 复位值      | 访问特性 |
|-------|--------------------------------------|----------|------|
| 31: 0 | Synopsys ID (SynopsysID) OTG 控制器的版本号 | 32'h4F54 | RO   |

### 13.3.2.12 User HW Config1 寄存器

读偏移地址: 044h

用户硬件配置寄存器 2, 指定 endpont 的方向。

| 域      | 说明                         | 复位值   | 访问特性 |
|--------|----------------------------|-------|------|
| 31: 14 | 保留域                        | 18'b0 | RO   |
| 13: 0  | Bits[13:12]: endpoint 6 方向 | 14'b0 | RO   |
|        | Bits[11:10]: endpoint 5 方向 |       |      |
|        | Bits[9:8]: endpoint 4 方向   |       |      |
|        | Bits[7:6]: endpoint 3 方向   |       |      |
|        | Bits[5:4]: endpoint 2 方向   |       |      |
|        | Bits[3:2]: endpoint 1 方向   |       |      |
|        | Bits[1:0]: endpoint 0 方向   |       |      |
|        | 2'b00: 双向 endpoint         |       |      |
|        | 2'b01: IN endpoint         |       |      |
|        | 2'b10: OUT endpoint        |       |      |
|        | 2'b11: 保留                  |       |      |



# 13.3.2.13 User HW Config2 寄存器

读偏移地址: 048h

用户硬件配置寄存器 2

| 域      | 说明                            | 复位值   | 访问特性 |
|--------|-------------------------------|-------|------|
| 31: 26 | 保留域                           | 6'b0  | RO   |
| 25: 24 | Host 模式下,周期性请求队列的深度           | 2'b10 | RO   |
|        | 2'b00: 2                      |       |      |
|        | 2'b01: 4                      |       |      |
|        | 2'b10: 8                      |       |      |
|        | 2'b11: 16                     |       |      |
| 23: 22 | 非周期性请求队列的深度                   | 2'b10 | RO   |
|        | 2'b00: 2                      |       |      |
|        | 2'b01: 4                      |       |      |
|        | 2'b10: 8                      |       |      |
|        | 2'b11: 16                     |       |      |
| 21     | 保留域                           |       | RO   |
| 20     | 使能多个处理器中断                     | 1'b0  | RO   |
|        | 1'b0: 否                       |       |      |
|        | 1'b1:是                        |       |      |
| 19     | 使能动态 FIFO 大小                  | 1'b1  | RO   |
|        | 1'b0: 否                       |       |      |
|        | 1'b1:是                        |       |      |
| 18     | 使能周期性 OUT channel             | 1'b1  | RO   |
|        | 1'b0: 否                       |       |      |
| 17.14  | 1'b1: 是                       | 41110 | DO.  |
| 17:14  | Host 模式下的 Channel 数           | 4'd12 | RO   |
| 13:10  | Device 模式下的端点数,除 endpoint 0 外 | 4'd6  | RO   |
| 9: 8   | 全速 PHY 接口类型                   | 2'b00 | RO   |
|        | 2'b00: 无                      |       |      |
|        | 2'b01: FS 有专用 pin             |       |      |
|        | 2'b10:与 UTMI+共用               |       |      |
|        | 2'b11: 与 ULPI 共用              |       |      |
| 7:6    | HS PHY 接口类型                   | 2'b01 | RO   |
|        | 2'b00: 无                      |       |      |
|        | 2'b01: UTMI+                  |       |      |
|        | 2'b10: ULPI                   |       |      |
|        | 2'b11: UTMI+与ULPI             |       |      |
| 5      | 点对点                           | 1'b1  | RO   |
|        | 1'b0: 否                       |       |      |
| 4 2    | 1'b1: 是                       | 02.10 | DO.  |
| 4: 3   | 结构                            | 2'b10 | RO   |
|        | 2'b00: 仅能做从设备                 |       |      |
|        | 2'b01:外部 DMA                  |       |      |
|        | 2'b10:内嵌 DMA                  |       |      |
|        | 2'b11:保留                      |       |      |



| 域   | 说明                                          | 复位值    | 访问特性 |
|-----|---------------------------------------------|--------|------|
| 2:0 | 操作模式                                        | 3'b000 | RO   |
|     | 3'b000: 支持 HNP 与 SRP 的 OTG (host 与 device)  |        |      |
|     | 3'b001: 仅支持 SRP 的 OTG (host 与 device)       |        |      |
|     | 3'b010: 不支持 HNP 与 SRP 的 OTG (host 与 device) |        |      |
|     | 3'b011: 支持 SRP 的 device                     |        |      |
|     | 3'b100:非OTG的device                          |        |      |
|     | 3'b101:支持 SRP 的 device                      |        |      |
|     | 3'b110: 非 OTG 的 host                        |        |      |
|     | 其他:保留                                       |        |      |

# 13.3.2.14 User HW Config3 寄存器

读偏移地址: 04Ch

用户硬件配置寄存器3

| 域      | 说明                                  | 复位值      | 访问特性 |
|--------|-------------------------------------|----------|------|
| 31: 16 | DFIFO 的深度                           | 16'd3072 | RO   |
|        | - 最小值: 32                           |          |      |
|        | - 最大值: 32768                        |          |      |
| 15     | OTG_ENABLE_LPM                      | 1'b0     | RO   |
|        | 指定 OTG 是否支持 LPM 模式                  |          |      |
|        | 1'b0: 否                             |          |      |
|        | 1'b1:是                              |          |      |
| 14     | OTG_BC_SUPPOT                       | 1'b0     | RO   |
|        | 指定是否支持 USB 充电功能                     |          |      |
|        | 1'b0: 否                             |          |      |
|        | 1'b1:是                              |          |      |
| 13     | OTG_ENABLE_HSIC                     | 1'b0     | RO   |
|        | 指定是否支持 HSIC                         |          |      |
|        | 1'b0: 否                             |          |      |
|        | 1'b1:是                              |          |      |
| 12     | OTG_ADP_SUPPORT                     | 1'b0     | RO   |
|        | 指定是否支持 ADP                          |          |      |
|        | 1'b0: 否                             |          |      |
|        | 1'b1: 是                             |          |      |
| 11     | OTG_SYNC_RESET_TYPE                 | 1'b0     | RO   |
|        | 指定是否支持同步复位                          |          |      |
|        | 1'b0: 否                             |          |      |
|        | 1'b1: 是                             |          |      |
| 10     | 去掉一些非必须的特性 (OptFeature)             | 1'b1     | RO   |
|        | 1'b0: 否                             |          |      |
|        | 1'b1: 是                             |          |      |
| 9      | 是否支持 vendor control 接口 (VndctlSupt) | 1'b0     | RO   |
|        | 此接口用于访问 PHY 的内部寄存器。                 |          |      |
|        | 1'b0: 否                             |          |      |
|        | 1'b1: 是                             |          |      |



| 域    | 说明                                                | 复位值     | 访问特性 |
|------|---------------------------------------------------|---------|------|
| 8    | 是否支持 I2C 接口 (I2CIntSel)                           | 1'b0    | RO   |
|      | 1'b0: 否                                           |         |      |
|      | 1'b1: 是                                           |         |      |
| 7    | OTG 功能使能 (OtgEn)                                  | 1'b1    | RO   |
|      | 指定是否使能 OTG 功能                                     |         |      |
|      | 1'b0: 否                                           |         |      |
|      | 1'b1: 是                                           |         |      |
| 6: 4 | Packet Counters 的宽度 (PktSizeWidth)                | 3'b110  | RO   |
|      | 表示在一次传输中 USB 控制器 send/receive 的 Packet 的最大个       |         |      |
|      | 数.                                                |         |      |
|      | 3'b000: 4bits                                     |         |      |
|      | 3'b001: 5bits                                     |         |      |
|      | 3'b010: 6bits                                     |         |      |
|      | 3'b011: 7bits                                     |         |      |
|      | 3'b100: 8bits                                     |         |      |
|      | 3'b101: 9bits                                     |         |      |
|      | 3'b110: 10bits                                    |         |      |
|      | 其他: 保留                                            |         |      |
| 3: 0 | Transfer Size Counters 的宽度 (XferSizeWidth),表示最大传输 | 4'b1000 | RO   |
|      | 数据大小                                              |         |      |
|      | 4'b0000: 11bits                                   |         |      |
|      | 4'b0001: 12bits                                   |         |      |
|      |                                                   |         |      |
|      | 4'b1000: 19bits                                   |         |      |
|      | 其他:保留                                             |         |      |

# 13.3.2.15 User HW Config4 寄存器

读偏移地址: 050h

用户硬件配置寄存器 4

| 域     | 说明                                              | 复位值  | 访问特性 |
|-------|-------------------------------------------------|------|------|
| 31    | 保留                                              |      | RO   |
| 30    | 是否支持 Scatter/Gather DMA                         | 1'b1 | RO   |
|       | 1'b0: 否                                         |      |      |
|       | 1'b1: 是                                         |      |      |
| 29:26 | Device 模式下,IN endpoint 的个数,包括 endpoint0 (INEps) | 4    | RO   |
|       | 0: 1 个 IN endpoint                              |      |      |
|       | 1: 2 个 IN endpoint                              |      |      |
|       |                                                 |      |      |
|       | 16: 16 个 IN endpoint                            |      |      |
| 25    | 对 Device In endpoint 使能专用的 TxFIFO               | 1'b1 | RO   |
|       | l'b0: 否                                         |      |      |
|       | 1'b1: 是                                         |      |      |
| 24    | 是否加一个对 session_end 信号的去抖逻辑                      | 1'b1 | RO   |
|       | 1'b0: 否                                         |      |      |
|       | 1'b1:是                                          |      |      |



| 域     | 说明                                       | 复位值   | 访问特性 |
|-------|------------------------------------------|-------|------|
| 23    | 是否加一个对 b_valid 信号的去抖逻辑                   | 1'b1  | RO   |
|       | 1'b0: 否                                  |       |      |
|       | 1'b1:是                                   |       |      |
| 22    | 是否加一个对 a_valid 信号的去抖逻辑                   | 1'b1  | RO   |
|       | 1'b0: 否                                  |       |      |
|       | 1'b1: 是                                  |       |      |
| 21    | 是否加一个对 vbus_valid 信号的去抖逻辑                | 1'b1  | RO   |
|       | 1'b0: 否                                  |       |      |
|       | 1'b1: 是                                  |       |      |
| 20    | 是否加一个对 iddig_valid 信号的去抖逻辑               | 1'b1  | RO   |
|       | 1'b0: 否                                  |       |      |
|       | 1'b1: 是                                  |       |      |
| 19:16 | 除去 endpoint0 , device 模式下控制 ednpoint 的个数 | 4'b0  | RO   |
| 15:14 | UTMI+ PHY 数据宽度                           | 2'b10 | RO   |
|       | 2'b00: 8bits                             |       |      |
|       | 2'b01: 16bits                            |       |      |
|       | 2'b10: 8/16 bits 软件可选                    |       |      |
|       | 2'b11: 保留                                |       |      |
| 13:7  | 保留域                                      |       | RO   |
| 6     | 使能 Hibernation                           | 1'b0  | RO   |
|       | 1'b0 : 否                                 |       |      |
|       | 1'b1: 是                                  |       |      |
| 5     | AHB 频率是否最小不能低于 60MHA(AhbFreq)            | 1'b0  | RO   |
|       | 1'b0:否                                   |       |      |
|       | 1'b1: 是                                  |       |      |
| 4     | 是否使能降低部分功耗                               | 1'b1  | RO   |
|       | 1'b0: 否                                  |       |      |
|       | 1'b1: 是                                  |       |      |
| 3:0   | 保留域                                      |       | RO   |

# 13.3.2.16 DFIFO 软件配置寄存器 (GDFIFOCFG)

偏移地址: 05Ch

| 域     | 说明                | 工作模式   | 复位值       | 访问特性       |
|-------|-------------------|--------|-----------|------------|
| 31:16 | EPInfoBaseAddr    | Host;  | EPINFO_B. | A SREWIDDR |
|       | Endpoint 控制器的起始地址 | Device |           |            |
| 15:0  | GDFIFOCfg         | Host;  | 3072      | $R_{-}W$   |
|       | 动态配置 DFIFO 的大小    | Device |           |            |

# 13.3.2.17 Host 周期性 TxFIFO 容量寄存器 (HPTXFSIZ)

读偏移地址: 0100h



| 域     | 说明                             | 复位值 | 访问特性 |
|-------|--------------------------------|-----|------|
| 31:16 | PTxFSize                       | 512 | R_W  |
|       | 周期性 TxFIFO 深度,以 32-bits 的字位单位。 |     |      |
|       | - 最小值: 16                      |     |      |
|       | - 最大值: 32768                   |     |      |
| 15:0  | PTxFStAddr                     | 789 | R_W  |
|       | Host 模式下周期性 TxFIFO 的起始地址       |     |      |

# 13.3.2.18 Device 模式下 IN 端点 TxFIFO2 容量寄存器 (DIEPTXF1)

读偏移地址: 0104h

| 域     | 说明                                | 复位值 | 访问特性 |
|-------|-----------------------------------|-----|------|
| 31:16 | INEPnTxFDep                       | 256 | R_W  |
|       | IN 端点 TxFIFO1 深度,以 32-bits 的字位单位。 |     |      |
|       | - 最小值: 16                         |     |      |
|       | - 最大值: 32768                      |     |      |
| 15:0  | INEPnTxFStAddr                    | 565 | RW   |
|       | IN 端点 FIFO 1 开始地址                 |     |      |

# 13.3.2.19 Device 模式下 IN 端点 TxFIFO2 容量寄存器 (DIEPTXF1)

读偏移地址: 0108h

| 域     | 说明                                | 复位值 | 访问特性 |
|-------|-----------------------------------|-----|------|
| 31:16 | INEPnTxFDep                       | 256 | R_W  |
|       | IN 端点 TxFIFO2 深度,以 32-bits 的字位单位。 |     |      |
|       | - 最小值: 16                         |     |      |
|       | - 最大值: 32768                      |     |      |
| 15:0  | INEPnTxFStAddr                    | 821 | RW   |
|       | IN 端点 FIFO 2 开始地址                 |     |      |

# 13.3.2.20 Device 模式下 IN 端点 TxFIFO3 容量寄存器 (DIEPTXF1)

读偏移地址: 010Ch

| 域     | 说明                                | 复位值  | 访问特性 |
|-------|-----------------------------------|------|------|
| 31:16 | INEPnTxFDep                       | 512  | R_W  |
|       | IN 端点 TxFIFO3 深度,以 32-bits 的字位单位。 |      |      |
|       | - 最小值: 16                         |      |      |
|       | - 最大值: 32768                      |      |      |
| 15:0  | INEPnTxFStAddr                    | 1077 | R_W  |
|       | IN 端点 FIFO 3 开始地址                 |      |      |

#### 13.3.3 Host 模式寄存器

这组寄存器仅在 Host 模式下有效; 在 Device 模式下不可访问这组寄存器。



# 13.3.3.1 Host 模式配置寄存器 (HCFG)

读偏移地址: 400h

| 域     | 说明                                                         | 复位值   | 访问特性 |
|-------|------------------------------------------------------------|-------|------|
| 31:28 | 保留域                                                        |       | RO   |
| 27    | ModeChTimEn                                                | 1'b0  | R_W  |
|       | 是否使能模式转换准备计时器.                                             |       |      |
|       | 用来决定是否使能 host 控制器在 Resume 状态结束时,等待                         |       |      |
|       | 200PHY 时钟以改变对 PHY 的 opmode 信号从 2'b10 到 00                  |       |      |
|       | 1'b0: 否                                                    |       |      |
|       | 1'b1: 是                                                    |       |      |
| 26    | PerSchedEna                                                | 1'b0  | R_W  |
|       | 是否使能周期调度.                                                  |       |      |
|       | 1'b0: 否                                                    |       |      |
|       | 1'b1: 是                                                    |       |      |
| 25:24 | FrListEn                                                   | 2'b00 | R_W  |
|       | Frame list 项数                                              |       |      |
|       | 2'b00: 8                                                   |       |      |
|       | 2'b01: 16                                                  |       |      |
|       | 2'b00: 32                                                  |       |      |
|       | 2'b00: 64                                                  |       |      |
| 23    | DescDMA                                                    | 1'b0  | RO   |
|       | Host 模式下,使能 Scatter/gather DMA                             |       |      |
|       | 注意,在复位之后,这位仅能背修改一次。以下配置是可用的:                               |       |      |
|       | GAHBCFG.DMAEn = 0,HCFG.DescDMA = 0 = $\xi$ slave 模         |       |      |
|       | 式;                                                         |       |      |
|       | GAHBCFG.DMAEn = 0, HCFG.DescDMA = 1 = ; 非法配                |       |      |
|       | 置;                                                         |       |      |
|       | GAHBCFG.DMAEn = 1 , HCFG.DescDMA = 0 = ; Buffered          |       |      |
|       | DMA 模式;                                                    |       |      |
|       | GAHBCFG.DMAEn = 0 , HCFG.DescDMA = 1 = $\lambda$ Scatter/- |       |      |
|       | Gather 模式;                                                 |       |      |
| 15:0  | 保留域                                                        |       | RO   |

# 13.3.3.2 Host 帧间隔寄存器 (HFIR)

读偏移地址: 404h

|   | 域     | 说明                   | 复位值  | 访问特性 |
|---|-------|----------------------|------|------|
|   | 31:17 | 保留域                  |      | RO   |
| Ī | 16    | Reload 控制            | 1'b0 | R_W  |
|   |       | 是否允许动态重新载入 HFIR 寄存器。 |      |      |
|   |       | 1'b0: 否              |      |      |
|   |       | 1'b1: 是              |      |      |



| 域    | 说明                                     | 复位值       | 访问特性 |
|------|----------------------------------------|-----------|------|
| 15:0 | 帧间隔 (FrInt)                            | 16'd60000 | R_W  |
|      | 软件用这个值来制定两个连续 micro-SOFs 之间的间隔。以 PHY   |           |      |
|      | 时钟位单位。仅当 HPRT.PrtEnaPort 置 1 后才能更改此位。在 |           |      |
|      | 最初配置后,不能再更改。                           |           |      |
|      | 125us * (PHY 时钟频率)                     |           |      |

# 13.3.3.3 Host 帧号 / 剩余帧时间寄存器 (HFNUM)

读偏移地址: 408h

| 域     | 说明                                     | 复位值      | 访问特性 |
|-------|----------------------------------------|----------|------|
| 31:16 | 剩余帧时间                                  | 16'h0    | RO   |
|       | 指示当前 micorFrame 的剩余时间,以 PHY 时钟为单位。当为 0 |          |      |
|       | 时,重新载入 HFIR.FrInt 的值,并在 USB 总线上发送一个新的  |          |      |
|       | SOF                                    |          |      |
| 15:0  | 帧号 (FrNum)                             | 16'h3FFF | RO   |
|       | 当一个新的 SOF 传输时,此域加 1,当达到 16'h3FFF 时复位为  |          |      |
|       | 0.                                     |          |      |

# 13.3.3.4 Host 周期性 TxFIFO/Queue 状态寄存器 (HPTXSTS)

读偏移地址: 410h

| 域     | 说明                                 | 复位值  | 访问特性 |
|-------|------------------------------------|------|------|
| 31:24 | HPTXSTS                            | 8'h0 | RO   |
|       | 周期性 TxFIFO 请求队列的第一项 (TOP) .用作调试。   |      |      |
|       | Bits[31]: 奇偶帧                      |      |      |
|       | - 1'b0: 在偶帧发送                      |      |      |
|       | - 1'b1: 在奇帧发送                      |      |      |
|       | Bits[30:27]: channel 号             |      |      |
|       | Bits[26:25]: 类型                    |      |      |
|       | - 2'b00: IN/OUT                    |      |      |
|       | - 2'b01:0 长度包                      |      |      |
|       | - 2'b10:CSPLIT                     |      |      |
|       | - 2'b11: 无效 channel 命令             |      |      |
|       | Bits[24]: 终止(对选定的 channel 来讲为最后一项) |      |      |
| 23:16 | PTxQSpcAvali                       | 8    | RO   |
|       | 周期性 Tx 请求队列可用项数.                   |      |      |
|       | 指示周期性请求队列中的空项数,请求队列中包含 IN 与 OUT    |      |      |
|       | 8'b0: 队列满                          |      |      |
|       | 8'b1: 1 个空项                        |      |      |
|       | 8'b2: 2 个空项                        |      |      |
|       |                                    |      |      |
|       | 8:8个空项                             |      |      |
|       | 其他:保留                              |      |      |



| 域    | 说明               | 复位值 | 访问特性 |
|------|------------------|-----|------|
| 15:0 | PTxFSpcAvail     | 512 | RO   |
|      | 周期性 TxFIFO 可用项数。 |     |      |
|      | 以 32-bits 的字为单位。 |     |      |
|      | 16'h0: FIFO 满    |     |      |
|      | 16'h1: 1 个空项     |     |      |
|      |                  |     |      |
|      | 16'h200: 512 个空项 |     |      |

# 13.3.3.5 Host 所有 channel 中断寄存器 (HAINT)

读偏移地址: 414h

| 域     | 说明                   | 复位值   | 访问特性 |
|-------|----------------------|-------|------|
| 31:16 | 保留域                  |       | RO   |
| 15:0  | Channel 中断 (HAINT)   | 16'h0 | RO   |
|       | 一个 bit 对应一个 channel: |       |      |
|       | Bits 11: channel 11  |       |      |
|       |                      |       |      |
|       | Bits0: channel0      |       |      |

# 13.3.3.6 Host 所有 channel 中断屏蔽寄存器 (HAINTMSK)

读偏移地址: 414h

| 域     | 说明                                                                 | 复位值   | 访问特性 |
|-------|--------------------------------------------------------------------|-------|------|
| 31:16 | 保留域                                                                |       | RO   |
| 15:0  | Channel 中断屏蔽位 (HAINTMSK) 一个 bit 对应一个 channel : Bits 11: channel 11 | 16'h0 | R_W  |
|       | Bits0: channel0                                                    |       |      |

# 13.3.3.7 Host 端口控制与状态寄存器 (HPRT)

读偏移地址: 440h

| 域     | 说明        | 复位值  | 访问特性 |
|-------|-----------|------|------|
| 31:19 | 保留域       |      | RO   |
| 18:17 | PrtSpd    | 2'b0 | RO   |
|       | 端口速度      |      |      |
|       | 2'b00: 高速 |      |      |
|       | 2'b01: 全速 |      |      |
|       | 2'b10: 低速 |      |      |
|       | 2'b11: 保留 |      |      |



| 域         | 说明                                            | 复位值   | 访问特性         |
|-----------|-----------------------------------------------|-------|--------------|
| 16:13     | PrtTstCtl                                     | 4'h0  | R_W          |
|           | 端口测试控制                                        |       |              |
|           | 当软件往此域写非0值时,使此端口进入测试模式。相应的                    |       |              |
|           | Pattern 出现端口上。                                |       |              |
|           | 4'b0000: 非测试模式                                |       |              |
|           | 4'b0001: Test_J 模式                            |       |              |
|           | 4'b0010: Test_K 模式                            |       |              |
|           | 4'b0011: Test_SE0_NAK 模式                      |       |              |
|           | 4'b0100: Test_Packet 模式                       |       |              |
|           | 4'b0101: Test_Force 模式                        |       |              |
|           | 其他: 保留                                        |       |              |
| 12        | PrtPwr                                        | 1'b0  | R_W_SC       |
|           | 端口供电。                                         |       |              |
|           | 1'b0: power off                               |       |              |
|           | 1'b1: power on                                |       |              |
| 11:10     | Port Line Status(PrtLnSts)                    | 1'b0  | RO           |
|           | Bits[10]: D+                                  |       |              |
|           | Bits[11]: D-                                  |       |              |
| 9         | 保留                                            |       | RO           |
| 8         | 端口复位 (PrtRst)                                 | 1'b0  | R_W          |
| 7         | 端口挂起 (PrtSup)                                 | 1'b0  | R_WS_SC      |
| 6         | 端口恢复 (PrtRes)                                 | 1'b0  | R_W_SS_SC    |
| 5         | 端口过载改变 (PrtOvrCurrChng)                       | 1'b0  | R_SS_WC      |
|           | 当 PrtOvrCurrAct 位改变时,OTG 控制器将这位置 1            |       |              |
| 4         | 端口过载 (PrtOvrCurrAct)                          | 1'b0  | RO           |
|           | 1'b0: 无                                       |       |              |
| 0         | 1'b1: 有                                       | 177.0 | D cc mc      |
| 3         | 端口使能状态改变 (PrtEnChng)                          | 1'b0  | R_SS_WC      |
| 2         | 当 PrtEna 位改变时,OTG 控制器将这位置 1<br>端口使能位 (PrtEna) | 1'b0  | R_SS_SC_WC   |
| _ <u></u> | 1'b0: 否                                       | 1 50  | 11_55_50_770 |
|           | 1 b0. 日<br>  1'b1: 是                          |       |              |
| 1         | 发现端口连接 (PrtConnDet) 当发现设备连接时,将通过              | 1'b0  | R_SS_WC      |
|           | GINTSTS.PrtInt 触发中断。软件写 1 将此位清 0.             |       | 3.2.0.2      |
| 0         | 端口连接状态 (PrtConnSts)                           | 1'b0  | RO           |
|           | 无设备连接到此端口                                     |       |              |
|           | 有设备连接到此端口                                     |       |              |

# 13.3.3.8 Host Channel-n 特性寄存器 (HCCHARn)

Channel\_num:  $0 \le n \le 11$ 

读偏移地址: 500h + (Channel\_num \* 20h)



| 域     | 说明                                          | 复位值   | 访问特性       |
|-------|---------------------------------------------|-------|------------|
| 31    | Channel 使能 (ChEna)                          | 1'b0  | R_WS_SC    |
|       | 当 Scatter/Gather 模式使能时                      |       |            |
|       | 1'b0: 指示描述符结构还未准备好                          |       |            |
|       | 1'b1: 指示描述符结构以及数据缓冲已经准备好,这个通道可以             |       |            |
|       | 访问描述符                                       |       |            |
|       | 当 Scatter/Gather 模式未使能时:                    |       |            |
|       | 1'b0: 通道失效                                  |       |            |
|       | 1'b1: 通道使能                                  |       |            |
| 30    | 通道失效 (ChDis)                                | 1'b0  | R_WS_SC_SS |
|       | 即使此通道上的传输还未完成,软件也可通过将这位置1来停止                |       |            |
|       | 在此通道上的数据发送与接收。软件必须等待通道失效中断发生                |       |            |
|       | 后,才能认为此通道已失效。                               |       |            |
| 29    | 奇帧 (OddFrm)                                 | 1'b0  | $R_{-}W$   |
|       | 软件通过将此位置 1 来告知 OTG host 必须在奇数 micro Frame   |       |            |
|       | 内完成一个传输。此域仅对周期性事务(实时与中断)有效                  |       |            |
|       | 1'b0: 偶帧                                    |       |            |
|       | 1'b1: 奇帧                                    |       |            |
| 28:22 | 设备地址 (DevAddr)                              | 7'h0  | $R_{-}W$   |
| 21:20 | Multi Count (MC) /Error Count(EC)           | 2'b0  | R_W        |
|       | 当 HCSPLTn.SpltEna 为 1'b0 时,此域指示对于每个周期性的     |       |            |
|       | endpoint,在每个 microFrame 时间内完成的事务数。对于非周      |       |            |
|       | 期性传输,此域尽在 DMA 模式下使用,用来指定在 DMA 改变            |       |            |
|       | 仲裁之前, host 必须为此通道获取的包数。                     |       |            |
|       | 2'b00: 保留                                   |       |            |
|       | 2'b01: 1 个事务                                |       |            |
|       | 2'b10: 2 个事务                                |       |            |
|       | 2'b11: 3 个事务                                |       |            |
|       | 当 CSPLTn.SpltEna 为 1'b1 时,此域指定对于一个周期性 split |       |            |
|       | 事务出错时,必须重传的次数。至少设置为 2'b01                   |       |            |
| 19:18 | 端点类型 (EPType)                               | 2'b0  | R_W        |
|       | 2'b00: 控制                                   |       |            |
|       | 2'b01: 实时                                   |       |            |
|       | 2'b10: 批量                                   |       |            |
|       | 2'b11: 中断                                   |       |            |
| 17:16 | 保留                                          |       | RO         |
| 15    | 端点方向 (EPDir)                                | 1'b0  | R_W        |
|       | 1'b0: OUT                                   |       |            |
|       | 1'b1: IN                                    |       |            |
| 14:11 | 端点号                                         | 4'b0  | R_W        |
| 10:0  | 最大的包容量 (MPS)                                | 11'h0 | R_W        |

# 13.3.3.9 Host Channel-n Split 控制寄存器 (HCSPLTn)

Channel\_num:  $0 \le n \le 11$ 

读偏移地址: 504h + (Channel\_num \* 20h)



| 域     | 说明                                   | 复位值  | 访问特性 |
|-------|--------------------------------------|------|------|
| 31    | Split 使能                             | 1'b0 | R_W  |
| 30:17 | 保留                                   |      | RO   |
| 16    | Do Complete Split                    | 1'b0 | R_W  |
|       | 指示 OTG host 必须完成一个完整的 split 传输       |      |      |
| 15:14 | 事务位置 (XactPos)                       | 2'h0 | R_W  |
|       | 2'b00; all, 此事务的整个数据 ( 少于或等于 188B)   |      |      |
|       | 2'b01: begin, 此事务的开始数据 ( 少于或等于 188B) |      |      |
|       | 2'b10: Mid, 此事务的中间数据 ( 少于或等于 188B)   |      |      |
|       | 2'b01: End, 此事务的最后数据 ( 少于或等于 188B)   |      |      |
| 13:7  | Hub 地址 (HubAddr)                     | 7'b0 | R_W  |
| 6: 0  | 端口地址 (PrtAddr)                       | 7'h0 | R_W  |

# 13.3.3.10 Host Channel-n 中断寄存器 (HCINTn)

Channel\_num:  $0 \le n \le 11$ 

读偏移地址: 508h + (Channel\_num \* 20h)

| 域     | 说明                                       | 复位值  | 访问特性    |
|-------|------------------------------------------|------|---------|
| 31:14 | 保留                                       |      | RO      |
| 13    | 描述符 rollover 中断 (DESC_LST_ROLLIntr)      | 1'b0 | R_SS_WC |
|       | 仅当 Scatter/Gather DMA 模式使能时,此域有效。当对应通道   |      |         |
|       | 的描述符列表 roll over 时置 1.                   |      |         |
|       | 对于非 Scatter/Gather DMA 模式,此域位保留域         |      |         |
| 12    | 过多事务错 (XCS_XACT_ERR)                     | 1'b0 | R_SS_WC |
|       | 当 Scatter/Gather DMA 模式使能时,此域有效。当 3 个连续的 |      |         |
|       | 事务出错时时置 1.                               |      |         |
|       | 对于非 Scatter/Gather DMA 模式,此域位保留域         |      |         |
| 11    | BNA(buffer 不可用 ) 中断 (BNAIntr)            | 1'b0 | R_SS_WC |
|       | 当 Scatter/Gather DMA 模式使能时,此域有效。当描述符访问   |      |         |
|       | 还未准备好时置 1.                               |      |         |
|       | 对于非 Scatter/Gather DMA 模式,此域位保留域         |      |         |
| 10    | 数据反转位错 (DataTglErr)                      | 1'b0 | R_SS_WC |
| 9     | 帧 overrun (FrmOvrun)                     | 1'b0 | R_SS_WC |
| 8     | 空泡错 (BblErr)                             | 1'b0 | R_SS_WC |
| 7     | 事务错 (XactErr)                            | 1'b0 | R_SS_WC |
|       | 当 USB 总线上发生了以下错误时置 1:                    |      |         |
|       | - CRC 验证失败                               |      |         |
|       | - 超时                                     |      |         |
|       | - 位填充错                                   |      |         |
|       | - 错误的 EOP                                |      |         |
| 6     | 收到 NYET 握手 (NYET)                        | 1'b0 | R_SS_WC |
| 5     | 收到 ACK 握手 (ACK)                          | 1'b0 | R_SS_WC |
| 4     | 收到 NAK 握手 (NAK)                          | 1'b0 | R_SS_WC |
| 3     | 收到 STALL 握手 (STALL)                      | 1'b0 | R_SS_WC |
| 2     | AHB 错 (AHBErr)                           | 1'b0 | R_SS_WC |



| 域 | 说明                                       | 复位值  | 访问特性    |
|---|------------------------------------------|------|---------|
| 1 | 通道停止 (ChHltd)                            | 1'b0 | R_SS_WC |
|   | 对于非 Scatter/Gather DMA 模式,由于 USB 传输错或软件置 |      |         |
|   | 无效请求而引起传输的非正常结束,或正常结束时置1                 |      |         |
|   | 对于 Scatter/Gather DMA 模式,若因为以下原因导致传输结束,  |      |         |
|   | 则置 1:                                    |      |         |
|   | - 描述符中 EOL 置位                            |      |         |
|   | - AHB 错                                  |      |         |
|   | - 过多的事务错                                 |      |         |
|   | - 软件置无效请求                                |      |         |
|   | - 空泡                                     |      |         |
|   | - Stall                                  |      |         |
| 0 | 传输结束 (XferCompl)                         | 1'b0 | R_SS_WC |
|   | 对于 Scatter/Gather DMA 模式,指示完成对当前描述符的处理,  |      |         |
|   | 其描述符的 IOC 位置 1。                          |      |         |
|   | 对于非 Scatter/Gather DMA 模式,表示没有任何错误的传输完   |      |         |
|   | 成。                                       |      |         |

### 13.3.3.11 Host Channel-n 中断屏蔽寄存器 (HCINTMSKn)

Channel\_num:  $0 \le n \le 11$ 

读偏移地址: 50Ch + (Channel\_num \* 20h)

| 域     | 说明                                        | 复位值  | 访问特性 |
|-------|-------------------------------------------|------|------|
| 31:14 | 保留                                        |      | RO   |
| 13    | 描述符 rollover 中断屏蔽位 (DESC_LST_ROLLIntrMsk) | 1'b0 | R_W  |
|       | 仅当 Scatter/Gather DMA 模式使能时,此域有效。         |      |      |
|       | 对于非 Scatter/Gather DMA 模式,此域位保留域          |      |      |
| 12    | 保留                                        |      | RO   |
| 11    | 保留                                        |      | RO   |
| 10    | 数据反转位错中断屏蔽位 (DataTglErrMsk)               | 1'b0 | R_W  |
| 9     | 帧 overrun 中断屏蔽位 (FrmOvrunMsk)             | 1'b0 | R_W  |
| 8     | 空泡错中断屏蔽位 (BblErrMsk)                      | 1'b0 | R_W  |
| 7     | 事务错中断屏蔽位 (XactErrMsk)                     | 1'b0 | R_W  |
| 6     | 收到 NYET 握手中断屏蔽位 (NYETMsk)                 | 1'b0 | R_W  |
| 5     | 收到 ACK 握手中断屏蔽位 (ACKMsk)                   | 1'b0 | R_W  |
| 4     | 收到 NAK 握手中断屏蔽位 (NAKMsk)                   | 1'b0 | R_W  |
| 3     | 收到 STALL 握手中断屏蔽位 (STALLMsk)               | 1'b0 | R_W  |
| 2     | AHB 错中断屏蔽位 (AHBErrMsk)                    | 1'b0 | R_W  |
| 1     | 通道停止中断屏蔽位 (ChHltdMsk)                     | 1'b0 | R_W  |
| 0     | 传输结束中断屏蔽位 (XferComplMsk)                  | 1'b0 | R_W  |

# 13.3.3.12 Host Channel-n 传输大小寄存器 (HCTSIZn)

Channel\_num:  $0 \le n \le 11$ 



读偏移地址: 510h + (Channel\_num \* 20h)

在 Scatter/Gather DMA 模式下, 此寄存器各个域定义如下

| 域     | 说明                                       | 复位值   | 访问特性 |
|-------|------------------------------------------|-------|------|
| 31    | Do ping(DoPng)                           | 1'b0  | R_W  |
|       | 仅对 OUT 传输有效,置 1 时,指示 Host 做 PING 协议。     |       |      |
|       | 若对 IN 传输将此位置 1,将使此通道无效                   |       |      |
| 30:29 | PID(Pid)                                 | 2'b00 | RW   |
|       | 2'b00:DATA0                              |       |      |
|       | 2'b01:DATA2                              |       |      |
|       | 2'b10:DATA1                              |       |      |
|       | 2'b11:MDATA(非控制)                         |       |      |
| 28:16 | 保留域                                      | 9'b0  | RO   |
| 15:8  | NTD(传输描述符的数目)                            | 8'h0  | R_W  |
|       | (非实时传输)                                  |       |      |
|       | 0 - 1 个描述符                               |       |      |
|       | 63 - 64 个描述符                             |       |      |
|       | (实时传输)                                   |       |      |
|       | 7 - 8 个描述符                               |       |      |
|       | 15 - 16 个描述符                             |       |      |
|       | 31 - 32 个描述符                             |       |      |
|       | 63 - 64 个描述符                             |       |      |
|       | 127 - 128 个描述符                           |       |      |
|       | 255 - 256 个描述符                           |       |      |
| 7:0   | SCHED_INFO(调度信息)                         | 8'h0  | RW   |
|       | 对应的每一位代表着在那个 microFrame 中角度。 Bit0 代表在    |       |      |
|       | 1st microFrame 中调度。Bits7 代表在 8th 中调度。    |       |      |
|       | 8'b11111111 代表着对应的中断通道被调度,在对应帧时间内每       |       |      |
|       | 个 microFrame 都发送一个标记。8'b10101010 代表对应的中断 |       |      |
|       | 通道被调度,在对应帧时间内每隔一个 microFrame 发送一个标       |       |      |
|       | 记。                                       |       |      |
|       | 注意,此域仅对周期性传输有效。                          |       |      |

# 在非 Scatter/Gather DMA 模式下, 此寄存器各个域定义如下

| 域     | 说明                                 | 复位值   | 访问特性 |
|-------|------------------------------------|-------|------|
| 31    | Do ping(DoPng)                     | 1'b0  | R_W  |
|       | 仅对 OUT 传输有效,置1时,指示 Host 做 PING 协议。 |       |      |
|       | 若对 IN 传输将此位置 1,将使此通道无效             |       |      |
| 30:29 | PID(Pid)                           | 2'b00 | R_W  |
|       | 2'b00:DATA0                        |       |      |
|       | 2'b01:DATA2                        |       |      |
|       | 2'b10:DATA1                        |       |      |
|       | 2'b11:MDATA(非控制)                   |       |      |



| 域     | 说明                                      | 复位值   | 访问特性 |
|-------|-----------------------------------------|-------|------|
| 28:19 | 包数目 (PktCnt).                           | 10'h0 | R_W  |
|       | 软件写入传输的包数据。                             |       |      |
|       | 每当一个传输完成,host 将此域减 1. 一旦为 0 , 软件将接收到中   |       |      |
|       | 断表示正常结束。                                |       |      |
| 18:0  | 传输大小 (XferSize)                         | 19'h0 | R_W  |
|       | 对于 OUT 传输, 指定 host 将发送的数据字节数; 对于 IN 传输, |       |      |
|       | 指定 host 将接收到的数据字节数。                     |       |      |

### 13.3.3.13 Host Channel-n DMA 地址寄存器 (HCDMAn)

Channel\_num:  $0 \le n \le 11$ 

读偏移地址: 514h + (Channel\_num \* 20h)

在 IN/OUT 传输中, 此寄存器用来维持当前 buffer 的地址。 DMA 传输的起始地址 必须双字对齐。

| 域      | 说明                                 | 复位值   | 访问特性 |  |  |
|--------|------------------------------------|-------|------|--|--|
|        | DMA 模式                             |       |      |  |  |
| 31:0   | DMA 地址 (DMAAddr)                   | X     | R_W  |  |  |
|        | 每个 AHB 事务后累加。                      |       |      |  |  |
|        | 描述符 DMA 模式                         |       |      |  |  |
| 31 : N | DMA 地址 (DMAAddr)                   | 23'h0 | R/W  |  |  |
| (同步)   | 非同步传输:保存512字节页的起始地址。描述符列表的第一个      |       |      |  |  |
| 31:9   | 描述符即在此地址上。OTG 控制器从 CTD 开始处理描述符列表   |       |      |  |  |
| (非同步)  | 同步传输:保存 2*(nTD+1) 个字节的地址,此地址为实时描述符 |       |      |  |  |
|        | 所在位置。其中 N 的值基于 nTD 而来, 具体如下表:      |       |      |  |  |
|        |                                    |       |      |  |  |
|        | 31 : N N-1 : 3 2:0                 |       |      |  |  |
|        | 基址   偏移   000                      |       |      |  |  |
|        | nTD N                              |       |      |  |  |
|        |                                    |       |      |  |  |
|        | 7 6                                |       |      |  |  |
|        |                                    |       |      |  |  |
|        | 31 8                               |       |      |  |  |
|        | 63 9                               |       |      |  |  |
|        | 127 10                             |       |      |  |  |
|        | 255 11                             |       |      |  |  |
| N-1: 3 | 当前传输描述符 (CTD)                      | 6'h0  | R_W  |  |  |
| (实时)   | 非实时传输:以描述符为单位,范围 0 - 63. 指定当前正在处理  |       |      |  |  |
| 8:     | 的描述符。                              |       |      |  |  |
| (非实时)  | 实时传输:基于当前 micorFrame 的值,需被软件清 0    |       |      |  |  |
| 2:0    | 保留                                 | 3'h0  | RO   |  |  |

### 13.3.3.14 Host Channel-n DMA Buffer 地址寄存器 (HCDMBAn)

Channel\_num:  $0 \le n \le 11$ 



读偏移地址: 518h + (Channel\_num \* 20h)

此仅在 Scatter/Gather DMA 模式下有效

| 域    | 说明             | 复位值 | 访问特性 |
|------|----------------|-----|------|
| 31:0 | 当前 buffer 的地址。 | X   | RO   |

#### 13.3.3.15 Host Frame List 基地址寄存器 (HFLBAddr)

Offset: 41Ch

此仅在 Scatter/Gather DMA 模式下有效

| 域    | 说明               | 复位值   | 访问特性 |
|------|------------------|-------|------|
| 31:0 | Frame list 的起始地址 | 32'h0 | RO   |

# 13.4 Device 模式寄存器

这组寄存器仅在 device 模式下有效, host 模式下不可访问。

#### 13.4.0.16 Device 配置寄存器 (DCFG)

Offset: 800h

在初始配置过后,不能修改此寄存器的值

| 域     | 说明                                    | 复位值   | 访问特性 |
|-------|---------------------------------------|-------|------|
| 31:26 | Resume 有效期 (ResValid)                 | 6'd2  | R_W  |
|       | 此域控制 OTG 控制器从挂起状态到 resume 的时间。以时钟周期   |       |      |
|       | 为单位。仅当 DCFG.Ena32KHzSusp 置 1 时,此位有效   |       |      |
| 25:24 | 周期性调度间隔 (PerSchIntvl)                 | 2'b00 | R_W  |
|       | 仅在 Scatter/Gather DMA 模式下有效。          |       |      |
|       | 用来指定 DMA 引擎给周期性 IN 端点获取数据分配的时间。基于     |       |      |
|       | 周期性 IN 端点的数目, 其值必须设定为 75% microFrame. |       |      |
|       | - 当任意周期性端节点活动时,DMA 引擎给周期性 IN 端点获取     |       |      |
|       | 数据分配一定的时间                             |       |      |
|       | - 当无周期性端节点活动时,忽略此域                    |       |      |
|       | - 在指定时间后,DMA 引擎开始给非周期性端节点获取数据。        |       |      |
|       | 2'b00: 25% microFrame                 |       |      |
|       | 2'b01: 50% microFrame                 |       |      |
|       | 2'b10: 75% microFrame                 |       |      |
|       | 2'b11: 保留                             |       |      |



| 域     | 说明                                              | 复位值  | 访问特性     |
|-------|-------------------------------------------------|------|----------|
| 23    | 在 device 模式下使能 Scatter/Gather DMA 模式 (DescDMA)  | 1'b0 | R_W      |
|       | - GAHBCFG.DMAEn=0, DCFG.DescDMA=0 =; 从模式        |      |          |
|       | - GAHBCFG.DMAEn=0, DCFG.DescDMA=1=; 非法          |      |          |
|       | - GAHBCFG.DMAEn=1, DCFG.DescDMA=0 =; buffer DMA |      |          |
|       | 模式                                              |      |          |
|       | - GAHBCFG.DMAEn=0, DCFG.DescDMA=0 =; Scatter/-  |      |          |
|       | Gather DMA 模式                                   |      |          |
| 22:14 | 保留                                              |      | RO       |
| 13    | 是否使能 device OUT NAK。                            | 1'b0 | $R_{-}W$ |
|       | 仅对描述符 DMA 模式有效。                                 |      |          |
|       | 1'b0: 在批量 OUT 传输结束时,OTG 控制器不送出 NAK 握手           |      |          |
|       | 信号                                              |      |          |
|       | 1'b0: 在批量 OUT 传输结束时,OTG 控制器送出 NAK 握手信           |      |          |
|       | 号                                               |      |          |
| 12:11 | 周期帧的间隔 (PerFrInt)                               | 2'h0 | $R_{-}W$ |
|       | 指示在一个 microFrame 内何时用 EOP 中断来通知软件。此域可           |      |          |
|       | 用来决定当前 microFrame 内是否所有的实时传输已经完成。               |      |          |
|       | 2'b00: 80%                                      |      |          |
|       | 2'b01: 85%                                      |      |          |
|       | 2'b00: 90%                                      |      |          |
|       | 2'b00: 95%                                      |      |          |
| 10:4  | Device 地址 (DevAddr)                             | 7'h0 | R_W      |
| 3     | 保留                                              | 1'b0 | RO       |
| 2     | 非 0 长度的 Status OUT 握手 (NZStsOUTHShk)            | 1'b0 | R_W      |
|       | 当控制传输的 Status 阶段的 OUT 事务中,OTG 接收到一个非            |      |          |
|       | 0 的数据包, 此域用来选着 OTG 控制送出的不同的握手信号。                |      |          |
|       | 1'b1: STALL                                     |      |          |
|       | 1'b0:送出接收到的 OUT 数据包,并基于 device endpoint 控制      |      |          |
|       | 寄存器中 NAK 与 STALL 位,送出握手信号                       |      |          |
| 1:0   | 设备速度 (DevSpd)                                   | 2'b0 | RW       |
|       | 2'b00: HS(USB2.0 PHY )                          |      |          |
|       | 2'b01: FS(USB2.0 PHY )                          |      |          |
|       | 2'b10: LS(USB1.1 PHY )                          |      |          |
|       | 2'b11: FS(USB1.1 PHY )                          |      |          |

# 13.4.0.17 Device 控制寄存器 (DCTL)

Offset: 804h

| 域     | 说明                   | 复位值  | 访问特性 |
|-------|----------------------|------|------|
| 31:17 | 保留                   |      | RO   |
| 16    | 遇到 babble 发送 NAK 握手。 | 1'b0 | R_W  |



| 域     | 说明                                            | 复位值  | 访问特性  |
|-------|-----------------------------------------------|------|-------|
| 15    | 对实时端节点忽略帧号 (IgnrFrmNum)                       | 1'b0 | R_W   |
|       | GAHBCFG.DMAEn=0, 此域无效                         |      |       |
|       | GAHBCFG.DMAEn=1, DCFG.DescDMA = 0: 当threshold |      |       |
|       | 模式有效时,此位无效。否则,软件用此位来使能周期性传输中                  |      |       |
|       | 断。                                            |      |       |
|       | - 1'b0 周期性传输中断无效。                             |      |       |
|       | - 1'b1 当接收到 ISOC IN 标记时, 无需清空包。OTG 控制器忽       |      |       |
|       | 略帧号,一旦包准备好且接收到对应的标记,就将这个包发送出                  |      |       |
|       | 去。此域也用来使能周期性传输中断                              |      |       |
|       | GAHBCFG.DMAEn=1, DCFG.DescDMA = 1:            |      |       |
|       | 对高速的传输无效                                      |      |       |
| 14:13 | 全局 Multi Count(GMC)                           | 2'h0 | R_W   |
|       | 仅在 Scatter/Gater DMA 模式下有效。用来指示在转移到下一个        |      |       |
|       | 结束点之前,接收或发送的包个数。仅对非周期性端节点有效。                  |      |       |
|       | 2'b00: 非法;                                    |      |       |
|       | 2'b01: 1 个包;                                  |      |       |
|       | 2'b00: 2 个包;                                  |      |       |
|       | 2'b00: 3 个包;                                  |      |       |
|       | 当 DCFG.DescDMA =1 时,此域自动改变成 2'h1              |      |       |
| 12    | 保留域                                           |      | RO    |
| 11    | Powr-on 编程完成 (PWROnPrgDone)                   | 1'b0 | R_W   |
|       | 从 power_down 模式恢复后,寄存器编程完成时,此位置 1.            |      |       |
| 10    | 清空全局 OUT NAK(CGOUTNak)                        | 1'b0 | WO    |
|       | 对此位的写,将清空全局 OUT NAK                           |      |       |
| 9     | 设置全局 OUT NAK(SGOUTNak)                        | 1'b0 | WO    |
|       | 对此位的写,将设置全局 OUT NAK                           |      |       |
| 8     | 清空全局的非周期性 IN NAK (CGNPInNak)                  | 1'b0 | WO    |
|       | 此位的写,将清空全局非周期性 IN NAK                         |      |       |
| 7     | 设置全局的非周期性 IN NAK (SGNPInNak)                  | 1'b0 | WO    |
| 6: 4  | 此位的写,将设置全局非周期性 IN NAK<br>测试控制 (TstCtl)        | 3'b0 | R_W   |
| 0:4   |                                               | 3 00 | ιπ_vv |
|       | 3'b000: 无效 Test 模式<br>3'b001: Test_J 模式       |      |       |
|       |                                               |      |       |
|       | 3'b010: Test_K 模式                             |      |       |
|       | 3'b011: Test_SE0_NAK 模式                       |      |       |
|       | 3'b100: Test_Packet 模式                        |      |       |
|       | 3'b101: Test_Force_Enable 模式                  |      |       |
| 3     | 其他: 保留<br>全局 OUT NAK 状态 (GOUTNakSts)          | 1'b0 | RO    |
| 9     | 1'b0: 基于 FIFO 的状态以及 NAK, STALL 位的设置情况来发       | 1 00 | 100   |
|       | 送相应的握手                                        |      |       |
|       |                                               |      |       |
|       | 1'b1: 不管 RxFIFO 是否有空项,都无数据写入 RxFIFO. 除        |      |       |
|       | SETUP 事务以外,对所有的包都发送 NAK 握手。终止所有的实             |      |       |
|       | 时 OUT 包。                                      |      |       |



| 域 | 说明                                          | 复位值  | 访问特性     |
|---|---------------------------------------------|------|----------|
| 2 | 全局非周期性 IN NAK 状态位                           | 1'b0 | RO       |
|   | 1'b0: 基于 TxFIFO 的有效数据发送相应的握手;               |      |          |
|   | 1'b1: 对于所有的非周期性 IN 端节点, 发送 NAK 握手信号, 不      |      |          |
|   | 管 TxFIFO 是否有有效数据                            |      |          |
| 1 | 软断开 (SftDisCon)                             | 1'b0 | $R_{-}W$ |
|   | 一旦此位置1,host 将看不到 device 的连接,device 也讲接收不    |      |          |
|   | 到 USB 上的信号。                                 |      |          |
|   | 1'b0: 正常操作                                  |      |          |
|   | 1'b1: OTG 控制器将 utmi+ 接口上的 phy_opmode_o 信号置为 |      |          |
|   | 2'b01, 这将给 USB host 产生一个断开事件                |      |          |
| 0 | 远程唤醒信号 (RmtWkUpSig)                         | 1'b0 | $R_{-}W$ |
|   | 当次位置1,OTG 控制器将发送一个远程唤醒信号去唤醒 USB             |      |          |
|   | host .                                      |      |          |

# 13.4.0.18 Device 状态寄存器 (DSTS)

Offset: 808h

| 域      | 说明                                                  | 复位值   | 访问特性 |
|--------|-----------------------------------------------------|-------|------|
| 31: 22 | 保留                                                  |       | RO   |
| 21:8   | 接收到的 SOF 的帧号 (SOFN)                                 | 14'h0 | RO   |
| 7: 4   | 保留                                                  |       | RO   |
| 3      | 严重错 (ErrticErr)                                     |       | RO   |
|        | OTG 控制器通过此域来报告发生了严重错误(由于 PHY                        |       |      |
|        | 出错,phy_rxvalid_i/phy_rxvldh_i 或 phy_rxactive_i 置位超过 |       |      |
|        | 2ms),一旦发生严重错误, OTG 控制器进入挂起模式,                       |       |      |
|        | GINTSTS.ErlySusp 位置 1. 且软件仅能通过软断开来恢复                |       |      |
| 2:1    | 枚举速度 (EnumSpd)                                      |       | RO   |
|        | 2'b00: HS(USB2.0 PHY)                               |       |      |
|        | 2'b01: FS(USB2.0 PHY )                              |       |      |
|        | 2'b10: LS(USB1.1 PHY )                              |       |      |
|        | 2'b11: FS(USB1.1 PHY )                              |       |      |
| 0      | 挂起状态 (SuspSts)                                      | 1'b0  | RO   |
|        | Device 模式下, 只要在 USB 总线上发现挂起状态, 则置 1. 当              |       |      |
|        | utmi_linestate 信号在一定事件内无活动,则 OTG 控制器进入挂             |       |      |
|        | 起状态。一旦以下条件发生,则 OTG 控制器退出挂起状态:                       |       |      |
|        | 当 utmi_linestate 信号有活动                              |       |      |
|        | 当软件往 DCTL.RmtWkUpSig 位写 1 时。                        |       |      |

# 13.4.0.19 Device IN 端点共用的中断屏蔽寄存器 (DIEPMSK)

Offset: 810h

| 域      | 说明                 | 复位值  | 访问特性 |
|--------|--------------------|------|------|
| 31: 14 | 保留                 |      | RO   |
| 13     | NAK 中断屏蔽位 (NAKMsk) | 1'h0 | R_W  |



| 域     | 说明                              | 复位值  | 访问特性     |
|-------|---------------------------------|------|----------|
| 12:10 | 保留                              |      | RO       |
| 9     | BNA 中断品屏蔽位 (BNAInIntrMsk)       | 1'h0 | R_W      |
|       | 仅当描述符 DMA 模式时有效                 |      |          |
| 8     | FIFO 下溢中断屏蔽位屏蔽 (TxFifoUndrnMSK) | 1'b0 | R_W      |
| 7     | 保留                              | 1'b0 | RO       |
| 6     | IN 端节点 NAK 有效中断屏蔽位              | 1'b0 | R_W      |
|       | (INEPNakEffMsk)                 |      |          |
| 5     | 接收到 EP 不匹配的 IN 标记中断屏蔽位          | 1'b0 | R_W      |
|       | (INTknEPMisMsk)                 |      |          |
| 4     | 当 TxFIFO 空时接收到 IN 标记中断屏蔽位       | 1'b0 | R_W      |
|       | (INTknTXFEmpMsk)                |      |          |
| 3     | 超时中断屏蔽位                         | 1'b0 | R_W      |
|       | (TImeOUTMsk)                    |      |          |
|       | 仅对非实时端节点有效                      |      |          |
| 2     | AHB 错误中断屏蔽位                     | 1'b0 | R_W      |
|       | (AHBErrMsk)                     |      |          |
| 1     | 端节点失效中断屏蔽位                      | 1'b0 | $R_{-}W$ |
|       | (EPDisbldMsk)                   |      |          |
| 0     | 传输完成中断屏蔽位                       | 1'b0 | RW       |
|       | (XferCompIMsk)                  |      |          |

# 13.4.0.20 device OUT 端点共用的中断屏蔽寄存器 (DOEPMSK)

Offset: 810h

| 域      | 说明                     | 复位值  | 访问特性 |
|--------|------------------------|------|------|
| 31: 15 | 保留                     |      | RO   |
| 14     | NYET 中断屏蔽位             | 1'b0 | R_W  |
|        | (NYETMsk)              |      |      |
| 12     | 空泡中断屏蔽位                | 1'b0 | RW   |
|        | (BbleErrMsk)           |      |      |
| 11:10  | 保留                     |      | RO   |
| 9      | BNA 中断屏蔽位              | 1'b0 | RW   |
|        | (BnaOutIntrMsk)        |      |      |
| 8      | OUT 包错误中断屏蔽位           | 1'b0 | RW   |
|        | (OutPktErrMsk)         |      |      |
| 7      | 保留                     |      | RO   |
| 6      | 接收到背对背的 SETUP 包中断屏蔽位   | 1'b0 | RW   |
|        | (Back2BackSETup)       |      |      |
| 5      | 保留                     |      | RO   |
| 4      | 当端节点失效时接收到 OUT 标记中断屏蔽位 | 1'b0 | RW   |
|        | (OUTTknEPdisMsk)       |      |      |
| 3      | SETUP 阶段完成中断屏蔽位        | 1'b0 | RW   |
|        | (SetUPMsk)             |      |      |
| 2      | AHB 错误中断屏蔽位            | 1'b0 | RW   |
|        | (AHBErrMsk)            |      |      |



| 域 | 说明             | 复位值  | 访问特性 |
|---|----------------|------|------|
| 1 | 端节点失效中断屏蔽位     | 1'b0 | R_W  |
|   | (EPDisbldMsk)  |      |      |
| 0 | 传输完成中断屏蔽位      | 1'b0 | R_W  |
|   | (XferComplMsk) |      |      |

# 13.4.0.21 Device 所有端点共用的中断寄存器 (DAINT)

Offset: 818h

| 域      | 说明                    | 复位值   | 访问特性 |
|--------|-----------------------|-------|------|
| 31: 16 | OUT 端节点中断位 (OutEPInt) | 16'h0 | RO   |
|        | 一个 OUT 端节点对应一位。       |       |      |
|        | 位 16 对应端节点 0          |       |      |
| 15:0   | IN 端节点中断位 (InEPInt)   | 16'h0 | RO   |
|        | 一个 IN 端节点对应一位。        |       |      |
|        | 位 0 对应端节点 0           |       |      |

# 13.4.0.22 Device 所有端点共用的中断屏蔽寄存器 (DAINTMSK)

Offset: 81Ch

| 域      | 说明                         | 复位值   | 访问特性     |
|--------|----------------------------|-------|----------|
| 31: 16 | OUT 端节点中断屏蔽位 (OutEPIntMsk) | 16'h0 | $R_{-}W$ |
|        | 一个 OUT 端节点对应一位。            |       |          |
|        | 位 16 对应端节点 0               |       |          |
| 15:0   | IN 端节点中断屏蔽位 (InEPIntMsk)   | 16'h0 | R_W      |
|        | 一个 IN 端节点对应一位。             |       |          |
|        | 位 0 对应端节点 0                |       |          |

# 13.4.0.23 Device VBUS 放电寄存器 (DVBUSDIS)

Offset: 828h

| 域     | 说明                                       | 复位值      | 访问特性 |
|-------|------------------------------------------|----------|------|
| 31:16 | 保留                                       |          | RO   |
| 15:0  | Device Vbus 放电时间 (DVBUSDis)              | 30MHZ:   | RW   |
|       | SRP 期间, 在 Vbus 脉冲后 Vbus 放电的时间。以 PHY 时钟为单 | 16'h0B8F |      |
|       | 位。                                       | 60MHZ:   |      |
|       |                                          | 16'h17D7 |      |

# 13.4.0.24 Device VBUS 脉冲寄存器 (DVBUSPULSE)

Offset: 82Ch

| 域     | 说明 | 复位值 | 访问特性 |
|-------|----|-----|------|
| 31:12 | 保留 |     | RO   |



| 域    | 说明                                | 复位值     | 访问特性 |
|------|-----------------------------------|---------|------|
| 11:0 | Device Vbus 脉冲时间 (DVBUSPulse)     | 30MHZ:  | R_W  |
|      | SRP 期间, 在 Vbus 脉冲的时间。以 PHY 时钟为单位。 | 12'h2c6 |      |
|      |                                   | 60MHZ:  |      |
|      |                                   | 12'h5b8 |      |

### 13.4.0.25 Device 阈值控制寄存器 (DTHRCTL)

Offset: 830h

| 域     | 说明                           | 复位值  | 访问特性 |
|-------|------------------------------|------|------|
| 31:28 | 保留                           |      | RO   |
| 27    | 仲裁器 parking 使能               | 1'b1 | R_W  |
| 26    | 保留                           |      | RO   |
| 25:17 | 接收阈值长度 (RxThrLen)            | 9'h8 | R_W  |
| 16    | 接收阈值使能 (RxTHrEn)             | 1'b0 | RW   |
| 15:13 | 保留                           |      | RO   |
| 12:11 | AHB 阈值率 (AHBThrRatio)        | 2'b0 | RW   |
| 10:2  | 发送阈值长度 (TxThrLen)            | 9'h8 | R_W  |
| 1     | 实时 IN 端节点阈值使能 (ISOThrEn)     | 1'b0 | RW   |
| 0     | 非实时 IN 端节点阈值使能 (NonISOThrEn) | 1'b0 | R_W  |

#### 13.4.0.26 Device IN 端节 FIFO 空中断屏蔽寄存器 (DIEPEMPMSK)

Offset: 834h

| 域     | 说明                                  | 复位值   | 访问特性 |
|-------|-------------------------------------|-------|------|
| 31:16 | 保留                                  |       | RO   |
| 15:0  | IN 端节点 Tx FIFO 空中断屏蔽位               | 16'b0 | R_W  |
|       | (InEpTxfEmpMsk)                     |       |      |
|       | 作为 DIEPINTn 的中断屏蔽位,一位对应一个端节点。Bit0 对 |       |      |
|       | 应端节点 0,以此类推                         |       |      |

# 13.4.0.27 Device 控制 IN 端节 0 控制寄存器 (DIEPCTL0)

Offset: 900h

| 域  | 说明                                           | 复位值  | 访问特性    |
|----|----------------------------------------------|------|---------|
| 31 | 端节点使能 (EPEna)                                | 1'b0 | R_WS_SC |
|    | - 对于 Scatter/Gather DMA 模式, 对于 IN 端节点来讲, 此域置 |      |         |
|    | 1 意味着描述符以及数据缓冲都已经准备好。                        |      |         |
|    | - 对于非 Scatter/Gather DMA 模式,此域置 1 意味着数据缓冲    |      |         |
|    | 已经准备好。                                       |      |         |
|    | 当 OTG 设置以下中断时,将此位清 0:                        |      |         |
|    | - 端节点失效                                      |      |         |
|    | - 传输完成                                       |      |         |



| 域     | 说明                                     | 复位值  | 访问特性    |
|-------|----------------------------------------|------|---------|
| 30    | 端节点失效 (EPDis)                          | 1'b0 | R_WS_SC |
|       | 软件将此位置1,即使此端节点上的传输未完成,也将停止在此           |      |         |
|       | 端节点上发送数据。软件必须等待端节点失效中断发生后,才能           |      |         |
|       | 认为此端节点已经失效。当 OTG 控制器设置端节点失效中断时,        |      |         |
|       | 将此位清 0. 软件仅当在 EPEna 位为 1 时才能置此位为 1.    |      |         |
|       | 此域仅在 DMA 模式下有效。                        |      |         |
| 29:28 | 保留                                     |      | RO      |
| 27    | 设置 NAk(SNAK)                           | 1'b0 | WO      |
|       | 置 1, 设置此端节点对应的 NAK 位为 1.               |      |         |
| 26    | 清空 NAK (CNAK)                          | 1'b0 | WO      |
|       | 置 1, 设置此端节点对应的 NAK 位为 0.               |      |         |
| 25:22 | TxFIFO 号 (TxFNum)                      | 4'h0 | R_W     |
|       | 设置为 IN 端点 0 对应的 FIFO 号                 |      |         |
| 21    | STALL 握手 (Stall)                       | 1'b0 | R_WS_SC |
|       | 当收到 SETUP 包时,软件置 1, OTG 控制器清 0.        |      |         |
|       | 如果同时 NAK 位,全局非周期性 IN NAK,全局 OUT NAK 位  |      |         |
|       | 都置 1,那么 STALL 位优先级最高。                  |      |         |
| 20    | 保留                                     |      | RO      |
| 19:18 | 端节点类型 (EPType)                         | 2'h0 | RO      |
|       | 对于控制节点为 2'b00                          |      |         |
| 17    | NAK 状态 (NAKSts)                        | 1'b0 | RO      |
|       | 1'b0:基于 FIFO 的状态,OTG 控制器发送非 Non-NAK 握手 |      |         |
|       | 1'b1: OTG 控制器发送 NAK 握手                 |      |         |
| 16    | 保留                                     |      | RO      |
| 15    | USB 活动端节点 (USBActEP)                   | 1'b1 | RO      |
|       | 一直为1,表示控制端节点0总是可用                      |      |         |
| 14:2  | 保留                                     |      | RO      |
| 1:0   | 最大的包大小 (MPS)                           | 2'h0 | R_W     |
|       | 2'b00: 64B                             |      |         |
|       | 2'b01: 32B                             |      |         |
|       | 2'b10: 16B                             |      |         |
|       | 2'b11: 8B                              |      |         |

# 13.4.0.28 Device 控制 OUT 端节 0 控制寄存器 (DOEPCTL0)

Offset: B00h



| 域     | 说明                                           | 复位值   | 访问特性     |
|-------|----------------------------------------------|-------|----------|
| 31    | 端节点使能 (EPEna)                                | 1'b0  | R_WS_SC  |
|       | - 对于 Scatter/Gather DMA 模式, 对于 OUT 端节点来讲, 此域 |       |          |
|       | 置1意味着描述符以及数据缓冲都已经准备好接收数据。                    |       |          |
|       | - 对于非 Scatter/Gather DMA 模式, 此域置 1 意味着数据缓冲   |       |          |
|       | 已经准备好。                                       |       |          |
|       | 当 OTG 设置以下中断时,将此位清 0:                        |       |          |
|       | - SETUP 时相完成                                 |       |          |
|       | - 端节点失效                                      |       |          |
|       | - 传输完成                                       |       |          |
|       | 在 DMA 模式下, 若 OTG 控制器传输 SETUP 数据包时, 此位必       |       |          |
|       | 须置 1.                                        |       |          |
| 30    | 端节点失效 (EPDis)                                | 1'b0  | RO       |
|       | 软件不能使 OUT 控制节点 0 失效                          |       |          |
| 29:28 | 保留                                           |       | RO       |
| 27    | 设置 NAk(SNAK)                                 | 1'b0  | WO       |
|       | 置 1, 设置此端节点对应的 NAK 位为 1.                     |       |          |
| 26    | 清空 NAK (CNAK)                                | 1'b0  | WO       |
|       | 置 1, 清空此端节点对应的 NAK 位为 1.                     |       |          |
| 25:22 | 保留                                           |       | RO       |
| 21    | STALL 握手                                     | 1'b0  | R_WS_SC  |
|       | 当收到 SETUP 包时,软件置 1,OTG 控制器清 0.               |       |          |
|       | 如果同时 NAK 位,全局非周期性 NAK,全局 OUT NAK 位都          |       |          |
|       | 置1,那么STALL位优先级最高。但是不管此位是否置1,OTG              |       |          |
|       | 控制器对 SETUP 数据包的握手信号总是 ACK                    |       |          |
| 20    | Snoop 模式 (Snp)                               | 1'b0  | $R_{-}W$ |
|       | 在 snoop 模式下,在传输数据给内存时, OTG 控制器不检查            |       |          |
| 10.10 | OUT 数据包的正确性                                  | 211.0 | DO.      |
| 19:18 | 端节点类型 (EPType)                               | 2'h0  | RO       |
| 17    | 对于控制节点为 2'b00<br>NAK 状态 (NAKSts)             | 1'b0  | RO       |
| 11    | 1'b0: 基于 FIFO 的状态,OTG 控制器发送非 Non-NAK 握手      | 1 50  | 100      |
|       | 1'b1: OTG 控制器发送 NAK 握手                       |       |          |
| 16    | 保留                                           |       | RO       |
| 15    | USB 活动端节点 (USBActEP)                         | 1'b1  | RO       |
|       | 一直为1,表示控制端节点0总是可用                            |       |          |
| 14:2  | 保留                                           |       | RO       |
| 1:0   | 最大的包大小 (MPS)                                 | 2'h0  | R_W      |
|       | 2'b00: 64B                                   |       |          |
|       | 2'b01: 32B                                   |       |          |
|       | 2'b10: 16B                                   |       |          |
|       | 2'b11: 8B                                    |       |          |

# 13.4.0.29 Device 端节- n 控制寄存器 (DIEPCTLn/DOEPCTLn)

Endpoint\_num :  $1 \le n \le 6$ 

Offset for IN:  $900h + (Endpoint\_num*20h)$ 



# Offset for OUT: $B00h + (Endpoint\_num*20h)$

| 域     | 说明                                           | 复位值  | 访问特性    |
|-------|----------------------------------------------|------|---------|
| 31    | 端节点使能 (EPEna)                                | 1'b0 | R_WS_SC |
|       | 应用于 IN/OUT 端节点。                              |      |         |
|       | - 对于 Scatter/Gather DMA 模式, 对于 IN 端节点来讲, 此域置 |      |         |
|       | 1 意味着描述符以及数据缓冲都已经准备好; 对于 OUT 端节点             |      |         |
|       | 来讲,此域置1意味着描述符以及数据缓冲都已经准备好接收数                 |      |         |
|       | 据。                                           |      |         |
|       | - 对于非 Scatter/Gather DMA 模式, 对于 IN 端节点来讲, 此域 |      |         |
|       | 置1意味着数据缓冲已经准备好发送数据;对于 IN 端节点来讲,              |      |         |
|       | 此域置1意味着数据缓冲已经准备好接收数据:                        |      |         |
|       | 当 OTG 设置以下中断时,将此位清 0:                        |      |         |
|       | - SETUP 时相完成                                 |      |         |
|       | - 端节点失效                                      |      |         |
|       | - 传输完成                                       |      |         |
| 30    | 端节点失效 (EPDis)                                | 1'b0 | R_WS_SC |
|       | 应用于 IN/OUT 端节点                               |      |         |
|       | 软件将此位置1,即使此端节点上的传输未完成,也将停止在此                 |      |         |
|       | 端节点上发送数据。软件必须等待端节点失效中断发生后,才能                 |      |         |
|       | 认为此端节点已经失效。当 OTG 控制器设置端节点失效中断时,              |      |         |
|       | 将此位清 0. 软件仅当在 EPEna 位为 1 时才能置此位为 1.          |      |         |
| 29    | 设置 DATA1 PID (SetD1PID)                      | 1'b0 | WO      |
|       | 仅对中断 / 批量 IN 以及 OUT 端节点有效。                   |      |         |
|       | 对此位写 1,则置 DPID 位 DATA1。                      |      |         |
|       | 对描述符 DMA 与非描述符 DMA 模式都有效                     |      |         |
| 28    | 设置 DATA0 PID (SetD0PID)                      | 1'b0 | WO      |
|       | 仅对中断 / 批量 IN 以及 OUT 端节点有效。                   |      |         |
|       | 对此位写 1,则置 DPID 位 DATA0。                      |      |         |
|       | 对描述符 DMA 与非描述符 DMA 模式都有效。                    |      |         |
| 27    | 设置 NAK(SNAK)                                 | 1'b0 | WO      |
|       | 应用于 IN/OUT 端节点                               |      |         |
|       | 置 1,设置此端节点对应的 NAK 位为 1.                      |      |         |
| 26    | 清空 NAK (CNAK)                                | 1'b0 | WO      |
|       | 应用于 IN/OUT 端节点                               |      |         |
|       | 置 1, 清空此端节点对应的 NAK 位为 1.                     |      |         |
| 25:22 | TxFIFO 号 (TxFNum)                            | 4'h0 | R_W     |
|       | 仅对 IN 端节点有效;                                 |      |         |
|       | 设置为 IN 端对应的 FIFO 号                           |      |         |



| 域     | 说明                                          | 复位值    | 访问特性     |
|-------|---------------------------------------------|--------|----------|
| 21    | STALL 握手                                    | 1'b0   | R_W      |
|       | 仅对非控制,非实时的 IN/OUT 端节点有效。                    |        |          |
|       | 通过设置此位,来 stall 所有从 host 来的标记。如果同时 NAK 位,    |        |          |
|       | 全局非周期性 NAK,全局 OUT NAK 位都置 1,那么 STALL        |        |          |
|       | 位优先级最高。但是不管此位是否置 1 ,OTG 控制器对 SETUP          |        |          |
|       | 数据包的握手信号总是 ACK                              |        |          |
|       | 仅对控制端节点有效。                                  |        |          |
|       | 当收到 SETUP 包时,软件置 1 ,OTG 控制器清 0.             |        |          |
|       | 如果同时 NAK 位,全局非周期性 NAK,全局 OUT NAK 位都         |        |          |
|       | 置1,那么STALL位优先级最高。但是不管此位是否置1,OTG             |        |          |
|       | 控制器对 SETUP 数据包的握手信号总是 ACK                   |        |          |
| 20    | Snoop 模式 (Snp)                              | 1'b0   | RW       |
|       | 仅对 OUT 端节点有效                                |        |          |
|       | 在 snoop 模式下,在传输数据给内存时,OTG 控制器不检查            |        |          |
| 10.10 | OUT 数据包的正确性                                 | 01.0   | D.W      |
| 19:18 | 端节点类型 (EPType)                              | 2'h0   | $R_{-}W$ |
|       | 2'b00: 控制                                   |        |          |
|       | 2'b01: 实时                                   |        |          |
|       | 2'b10: 批量                                   |        |          |
| 17    | 2'b11: 中断<br>  NAK 状态 (NAKSts)              | 1'b0   | RO       |
| 11    | 应用于所有的 IN/OUT 端节点                           | 1 50   | 100      |
|       | 1'b0: 基于 FIFO 的状态,OTG 控制器发送非 Non-NAK 握手     |        |          |
|       | 1'b1: OTG 控制器发送 NAK 握手                      |        |          |
| 16    | 端节点数据 PID (DPID)                            | 1'b0   | RO       |
|       | 应用于中断/批量 IN 以及 OUT 端节点。                     |        |          |
|       | 包括在此端节点接收或发送的数据包的PID。当此端节点活动后,              |        |          |
|       | 软件必须设置此端节点接收或发送的第一个包的 PID。使用此寄              |        |          |
|       | 存器的 SetD0PID 以及 SetD1PID 域来设置 DATA0 或 DATA1 |        |          |
|       | PID                                         |        |          |
|       | 1'b0: DATA0                                 |        |          |
|       | 1'b1: DATA1                                 |        |          |
|       | 奇偶帧 (EO_FrNum)                              |        |          |
|       | 在非描述符 DMA 模式下,应用于实时的 IN/OUT 端节点。            |        |          |
|       | 指定为此端节点发送或接收实时数据所用地帧号。通过此寄存器                |        |          |
|       | 的 SetEvnFr 与 SetOddFr 域来设置。                 |        |          |
|       | 1'b0: 偶帧                                    |        |          |
|       | 1'b1: 奇帧                                    |        |          |
|       | 在描述符 DMA 模式下, 此域位保留域                        |        |          |
| 15    | USB 活动端节点                                   | 1'b0   | R_W_Sc   |
|       | 应用于 IN 或 OUT 端节点。                           |        |          |
| 14.11 | 指示在当前配置与接口下,端节点是否活动。                        |        | DO.      |
| 14:11 | 保留<br>- B+な+な (MDC)                         | 1175.0 | RO       |
| 10:0  | 最大包大小 (MPS)                                 | 11'b0  | R_W      |
|       | 应用于 IN 或 OUT 端节点。设置最大的包大小,以字节为单位            |        |          |



### 13.4.0.30 Device 端节- n 中断寄存器 (DIEPCTLn /DOEPCTLn)

Endpoint\_num :  $1 \le n \le 6$ 

Offset for IN: 908h + (Endpoint\_num\*20h)

Offset for OUT: B08h + (Endpoint\_num\*20h)

| 域     | 说明                         | 复位值  | 访问特性    |
|-------|----------------------------|------|---------|
| 31:15 | 保留                         |      | RO      |
| 14    | NYET 中断 (NYETIntrpt)       | 1'b0 | R_SS_WC |
| 13    | NAK 中断 (NAKIntrpt)         | 1'b0 | R_SS_WC |
| 12    | 空泡错中断 (BbleErrIntrpt)      | 1'b0 | R_SS_WC |
| 11    | 包 drop 状态 (PktDrpSts)      | 1'b0 | R_SS_WC |
| 10    | 保留                         |      | RO      |
| 9     | BNA(缓冲不可用)中断 (BNAIntr)     | 1'b0 | R_SS_WC |
| 8     | FIFO 下溢 (TxFifoUndrn)      | 1'b0 | R_SS_WC |
| 7     | TxFIFO 空 (TxFEmp)          | 1'b0 | R_SS_WC |
| 6     | IN 端节点 NAK 有效 (INEPNakEff) | 1'b0 | R_SS_WC |
| 5     | 接收到 EP 不匹配的 IN 标记中断        | 1'b0 | R_SS_WC |
|       | (INTknEPMis)               |      |         |
| 4     | 当 TxFIFO 空时接收到 IN 标记中断     | 1'b0 | R_SS_WC |
|       | (INTknTXFEmp)              |      |         |
| 3     | 超时中断                       | 1'b0 | R_SS_WC |
|       | (TImeOUT)                  |      |         |
|       | 仅对非实时端节点有效                 |      |         |
| 2     | AHB 错误中断                   | 1'b0 | R_SS_WC |
|       | (AHBErr)                   |      |         |
| 1     | 端节点失效中断                    | 1'b0 | R_SS_WC |
|       | (EPDisbld)                 |      |         |
| 0     | 传输完成中断                     | 1'b0 | R_SS_WC |
|       | (XferCompI)                |      |         |

### 13.4.0.31 Device 端节 0 传输大小寄存器 (DIEPTSIZ0/DOEPTSIZ0)

Offset for IN: 910h

Offset for OUT: B10h

对于 IN 端节点:

| 域     | 说明                        | 复位值  | 访问特性     |
|-------|---------------------------|------|----------|
| 31:15 | 保留                        |      | RO       |
| 20:19 | 包数量 (PktCnt)              | 2'b0 | $R_{-}W$ |
|       | 指示在此传输大小数量下的包数目。          |      |          |
|       | 每当从 TxFIFO 中读取一个包, 此域减 1。 |      |          |
| 18:7  | 保留域                       | 7'h0 | $R_{-}W$ |



| 域   | 说明                               | 复位值  | 访问特性 |
|-----|----------------------------------|------|------|
| 6:0 | 传输大小                             | 7'h0 | R_W  |
|     | 指示端节点 0 的传输大小(以字节为单位), 当超出这个值, 则 |      |      |
|     | 将引发中断。可被设置为此端节点的 MPS。每次一个包写入     |      |      |
|     | TxFIFO,此域减 1                     |      |      |

# 对于 OUT 端节点:

| 域     | 说明                                | 复位值  | 访问特性 |
|-------|-----------------------------------|------|------|
| 31    | 保留                                |      | RO   |
| 30:29 | SETUP 包数量 (SUPPktCnt)             | 2'b0 | R_W  |
|       | 指示此端节点能接受到的背对背 SETUP 包的数量         |      |      |
|       | 2'b01: 1 个包                       |      |      |
|       | 2'b10: 2 个包                       |      |      |
|       | 2'b11: 3 个包                       |      |      |
| 28:20 | 保留域                               | 7'h0 | R_W  |
| 19    | 包数量 (PktCnt)                      | 1'b0 | R_W  |
|       | 每当一个包写入 RxFIFO,此域减到 0.            |      |      |
| 18:7  | 保留                                |      | RO   |
| 6:0   | 传输大小 (XferSize)                   | 7'h0 | RW   |
|       | 指示端节点0的传输大小(以字节为单位),当超出这个值,则将     |      |      |
|       | 引发中断。可被设置为此端节点的 MPS。每次从 RxFIFO 中读 |      |      |
|       | 取一个包,此域减1                         |      |      |

# 13.4.0.32 Device 端节- n 传输大小寄存器 (DIEPSIZn /DOEPSIZn)

Endpoint\_num :  $1 \le n \le 6$ 

Offset for IN: 910h + (Endpoint\_num\*20h)

Offset for OUT :  $B10h + (Endpoint\_num*20h)$ 

| 域     | 说明 | 复位值 | 访问特性 |
|-------|----|-----|------|
| 31:29 | 保留 |     | RO   |



| 域     | 说明                                      | 复位值    | 访问特性  |
|-------|-----------------------------------------|--------|-------|
| 30:29 | MC (MultiCount)                         | 2'b0   | R_W   |
|       | 仅对 IN 端节点有效。                            |        |       |
|       | 对周期性 IN 端节点,此域指定在一个 microFrame 时间内传输的   |        |       |
|       | 包个数。OTG 控制器使用此域为实时 IN 端节点计算数据 PID 。     |        |       |
|       | 2'b01: 1 个包;                            |        |       |
|       | 2'b10: 2 个包;                            |        |       |
|       | 2'b11: 3 个包                             |        |       |
|       | 对于非周期性 IN 端节点, 指定 OTG 控制器必须为此端节点获取      |        |       |
|       | 的包数,在转换到下由 DIEPCTLn.Nextep 指定的下一个端节点    |        |       |
|       | 时。                                      |        |       |
|       | RxPID(接收到的数据 PID)                       |        |       |
|       | 仅对实时 OUT 端节点有效                          |        |       |
|       | 此端节点接收到的最后一个包的数据 PID                    |        |       |
|       | 2'b00: DATA0                            |        |       |
|       | 2'b01: DATA2                            |        |       |
|       | 2'b10: DATA1;                           |        |       |
|       | 2'b11: MDATA ;                          |        |       |
|       | SETUP 包数 (SUPCnt)                       |        |       |
|       | 仅对控制 OUT 端节点有效                          |        |       |
|       | 指示此端节点能接受到的背对背 SETUP 包的数量               |        |       |
|       | 2'b01: 1 个包                             |        |       |
|       | 2'b10: 2 个包                             |        |       |
|       | 2'b11: 3 个包                             |        |       |
| 28:19 | 包数量 (PktCnt)                            | 10'h0  | R_W   |
|       | 指示在此传输大小数量下的包数目 (PktCnt = XferSize/MPS) |        |       |
|       | - IN 端节点:每当从 TxFIFO 中读取一个包, 此域减 1。      |        |       |
| 10.0  | - OUT 端节点: 每当一个包写入 RxFIFO,此域减到 1        | 1011.5 | D *** |
| 18:0  | 传输大小 (XferSize)                         | 19'b0  | R_W   |
|       | 指示端节点的传输大小(以字节为单位)。                     |        |       |
|       | - 每次从 RxFIFO 中读取一个包, 此域减 1              |        |       |
|       | - 每次一个包写入 TxFIFO,此域减 1                  |        |       |

# 13.4.0.33 Device 端节- n DMA 地址寄存器 (DIEPDMAn/DOEPDMAn)

Endpoint\_num :  $1 \le n \le 6$ 

Offset for IN: 914h + (Endpoint\_num\*20h)

Offset for OUT: B14h + (Endpoint\_num\*20h)

| 域    | 说明                                  | 复位值 | 访问特性 |
|------|-------------------------------------|-----|------|
| 31:0 | DMA 地址 (DMAAddr)                    | X   | R_W  |
|      | 保存分配给此 endpoint 的外部存储的起始地址          |     |      |
|      | - 非 Scatter/Gather DMA 模式下,为起始地址    |     |      |
|      | - Scatter/Gather DMA 模式下,为描述符表的基准地址 |     |      |



### 13.4.0.34 Device 端节- n DMA Buffer 地址寄存器 (DIEPDMABn/DOEPDMABn)

Endpoint\_num :  $1 \le n \le 6$ 

Offset for IN: 91Ch + (Endpoint\_num\*20h)

Offset for OUT: B1Ch + (Endpoint\_num\*20h)

| 域    | 说明                                | 复位值 | 访问特性 |
|------|-----------------------------------|-----|------|
| 31:0 | DMA buffer 地址 (DMABufferAddr)     | X   | RO   |
|      | 保存当前 buffer 的地址。当对应此端节点的数据传输在进行时, |     |      |
|      | 此地址将实时更新。                         |     |      |
|      | 仅在 Scatter/Gather DMA 模式下有效。      |     |      |

### 13.4.0.35 Device IN 端节点-nTxFIFO 状态寄存器 (DTXSTSn)

Endpoint\_num :  $1 \le n \le 6$ 

Offset  $918h + (Endpoint_num^*20h)$ 

| 域     | 说明                                   | 复位值 | 访问特性 |
|-------|--------------------------------------|-----|------|
| 31:16 | 保留                                   |     | RO   |
| 15: 0 | IN 端节点 TxFIFO 可用空间 (INEPTxFSpcAvail) |     | RO   |
|       | 以 32 字节为单位。                          |     |      |
|       | 16'h0:端节点 TxFIFO 满                   |     |      |
|       | 16'h1: 一个字可用                         |     |      |
|       |                                      |     |      |
|       | 16'hn: n 个字可用                        |     |      |
|       | 其他: 保留                               |     |      |

#### 13.4.1 功耗与门控时钟寄存器

#### 13.4.1.1 功耗与门控时钟控制寄存器 (PCGCCTL)

Offset E00h

| 域    | 说明                                        | 复位值  | 访问特性 |
|------|-------------------------------------------|------|------|
| 31:9 | 保留                                        |      | RO   |
| 8    | 挂起后复位 (ResetAfterSusp)                    | 1'b1 | R_W  |
|      | 如果 host 需要在挂起后发出复位,那么在 clamp 移除之前,软件      |      |      |
|      | 需置1此位。如果此位未置1,那么 host 在挂起之后发出复位信          |      |      |
|      | 号                                         |      |      |
| 7    | 深度睡眠 (L1 Suspended)                       | 1'b0 | RO   |
|      | 当处于 L1 状态时,PHY 进入深度睡眠。                    |      |      |
| 6    | PHY 睡眠 (PhySleep)                         | 1'b0 | RO   |
|      | PHY 进入睡眠状态。                               |      |      |
| 5    | 使能睡眠门控 (Enbl_L1Gating)                    | 1'b0 | R_W  |
|      | 如果 OTG 控制器不能置位 utmi_l1_suspend_n 时,设置此位后, |      |      |
|      | 在睡眠状态下能对内部时钟做门控                           |      |      |



| 域 | 说明                                       | 复位值  | 访问特性 |
|---|------------------------------------------|------|------|
| 4 | 保留                                       |      | RO   |
| 3 | 复位低功耗模块 (RstPdwnModule)                  | 1'b0 | R_W  |
|   | 当断电时,软件置 1. 在上电以及 PHY 时钟起来后,软件清 0        |      |      |
| 2 | 供电隔离 (PwrClmp)                           | 1'b0 | R_W  |
|   | 在关电之前,软件将此位置1用来隔离 power-on 与 power-off 模 |      |      |
|   | 块。在上电之前,软件清0                             |      |      |
| 1 | 门控 Hclk(GateHclk)                        | 1'b0 | R_W  |
|   | 置1,则当USB处于挂起状态时,对Hclk使用门控时钟。当USB         |      |      |
|   | 恢复或新的对话开始时,软件清0                          |      |      |
| 0 | 停止 Pclk(StopPclk)                        | 1'b0 | R_W  |
|   | 置1,则当USB处于挂起状态时,停止PHY时钟。当USB恢复           |      |      |
|   | 或新的对话开始时,软件清0                            |      |      |





# 第十四章 HDA 控制器

#### 14.1 功能概述

HDA 控制器兼容 High Definition Audio Specification Revision 1.0a,主要的功能包括各种输入、输出流组合,对 48KHZ,和 44.1KHZ 的采样频率的支持,初始化序列,命令控制通道等。HDA 控制器的整体设计框架包括了 5 个大的模块,分别为 SDI ,SDO, axi\_master ,axi\_slave,和 reg config。其中 axi\_master 和 axi\_salve 分别控制了 HDA 中DMA 的读写通道和对 HDA 进行配置时的 AXI 总线控制情况。Reg config 主要的作用就是对 HDA 中的寄存器进行配置,控制 SDI SDO 的参数和运行情况。SDI 和 SDO 主要是对输入输入流的控制,包括 4 个输入流和 4 个输入流。



图 14.1: HDA 模块的整体设计框图



# 14.2 寄存器描述

寄存器的设计也是完全按照 HD audio Rev 1.0 规范进行设计的,下表列举了主要的寄存器的参数信息,具体的参考 HD audio Rev 1.0 手册.

#### 14.2.1 协议定义的音频控制器寄存器集

| 偏移开始 | 偏移结束 | 名称         | 描述          |  |
|------|------|------------|-------------|--|
| 00   | 01   | GCAP       | 全局能力        |  |
| 02   | 02   | VMIN       | 次要版本号       |  |
| 03   | 03   | VMAJ       | 主要版本号       |  |
| 04   | 05   | OUTPAY     | 输出的载荷能力     |  |
| 06   | 07   | INPAY      | 输入的载荷能力     |  |
| 08   | 0B   | GCTL       | 全局控制        |  |
| 0C   | 0D   | WAKEEN     | 唤醒启用使能      |  |
| 0E   | 0F   | WAKESTS    | 唤醒启用状态标志    |  |
| 10   | 11   | GSTS       | 全局状态        |  |
| 12   | 17   | Rsvd       | 保留          |  |
| 18   | 19   | OUTSTRMPAY | 输出流负载能力     |  |
| 1A   | 1B   | INSTRMPAY  | 输入流负载能力     |  |
| 1C   | 1F   | Rsvd       | 保留          |  |
| 20   | 23   | INTCTL     | 中断控制        |  |
| 24   | 27   | INTSTS     | 中断状态        |  |
| 28   | 2F   | Rsvd       | 保留          |  |
| 30   | 33   | WALCLK     | 时钟计数器       |  |
| 34   | 37   | Rsvd       | 保留          |  |
| 38   | 3B   | SSYNC      | 系统同步        |  |
| 3C   | 3F   | Rsvd       | 保留          |  |
| 40   | 43   | CORBLBASE  | CORB 基地址的低位 |  |
| 44   | 47   | CORBUBASE  | CORB 基地址的高位 |  |
| 48   | 49   | CORBWP     | CORB 写指针    |  |
| 4A   | 4B   | CORBRP     | CORB 读指针    |  |
| 4C   | 4C   | CORBCTL    | CORB 控制寄存器  |  |
| 4D   | 4D   | CORBSTS    | CORB 状态寄存器  |  |
| 4E   | 4E   | CORBSIZE   | CORB 大小寄存器  |  |
| 4F   | 4F   | Rsvd       | 保留          |  |
| 50   | 53   | RIRBLBASE  | RIRB 基地址的低位 |  |
| 54   | 57   | RIRBUBASE  | RIRB 基地址的高位 |  |
| 58   | 59   | RIRBWP     | RIRB 写指针    |  |
| 5A   | 5B   | RINTCNT    | RIRB 读指针    |  |
| 5C   | 5C   | RIRBCTL    | RIRB 控制寄存器  |  |
| 5D   | 5D   | RIRBSTS    | RIRB 状态寄存器  |  |
| 5E   | 5E   | RIRBSIZE   | RIRB 大小寄存器  |  |
| 5F   | 5F   | Rsvd       | 保留          |  |



| 偏移开始 | 偏移结束 | 名称        | 描述                     |
|------|------|-----------|------------------------|
| 60   | 63   | ICOI      | 立即命令输出接口               |
| 64   | 67   | ICII      | 立即命令输入接口               |
| 68   | 69   | ICIS      | 立即命令状态寄存器              |
| 6A   | 6F   | Rsvd      | 保留                     |
| 70   | 73   | DPIBLBASE | DMA 在 buf 中的位置低地址      |
| 74   | 77   | DPIBUBASE | DMA 在 buf 中的位置高地址      |
| 78   | 7F   | Rsvd      | 保留                     |
| 80   | 82   | SD0CTL    | 输入流控制寄存器               |
| 83   | 83   | SD0STS    | 输入流转台寄存器               |
| 84   | 87   | SD0LPIB   | 输入流 link 在 buf 中的位置寄存器 |
| 88   | 8B   | SD0CBL    | 输入流循环 buf 的长度          |
| 8C   | 8D   | SD0LVI    | 输入流最后一个有效的位置           |
| 8E   | 8F   | Rsvd      | 保留                     |
| 90   | 91   | SD0FIFOD  | 输入流 FIFO 的大小           |
| 92   | 93   | SD0FMT    | 输入流格式                  |
| 94   | 97   | Rsvd      | 保留                     |
| 98   | 9B   | SD0BDPL   | 输入流 BDL 的低地址           |
| 9C   | 9F   | SD0BDPU   | 输入流 BDL 的高地址           |
| A0   | A2   | SD1CTL    | 输入流控制寄存器               |
| A3   | A3   | SD1STS    | 输入流转台寄存器               |
| A4   | A7   | SD1LPIB   | 输入流 link 在 buf 中的位置寄存器 |
| A8   | AB   | SD1CBL    | 输入流循环 buf 的长度          |
| AC   | AD   | SD1LVI    | 输入流最后一个有效的位置           |
| AE   | AF   | Rsvd      | 保留                     |
| В0   | B1   | SD1FIFOD  | 输入流 FIFO 的大小           |
| B2   | В3   | SD1FMT    | 输入流格式                  |
| B4   | В7   | Rsvd      | 保留                     |
| B8   | BB   | SD1BDPL   | 输入流 BDL 的低地址           |
| BC   | BF   | SD1BDPU   | 输入流 BDL 的高地址           |
| C0   | C2   | SD2CTL    | 输入流控制寄存器               |
| C3   | СЗ   | SD2STS    | 输入流转台寄存器               |
| C4   | C7   | SD2LPIB   | 输入流 link 在 buf 中的位置寄存器 |
| C8   | СВ   | SD2CBL    | 输入流循环 buf 的长度          |
| CC   | CD   | SD2LVI    | 输入流最后一个有效的位置           |
| CE   | CF   | Rsvd      | 保留                     |
| D0   | D1   | SD2FIFOD  | 输入流 FIFO 的大小           |
| D2   | D3   | SD2FMT    | 输入流格式                  |
| D4   | D7   | Rsvd      | 保留                     |
| D8   | DD   | SD2BDPL   | 输入流 BDL 的低地址           |
| DC   | DF   | SD2BDPU   | 输入流 BDL 的高地址           |
| E0   | E2   | SD3CTL    | 输入流控制寄存器               |
| E3   | E3   | SD3STS    | 输入流转台寄存器               |
| E4   | E7   | SD3LPIB   | 输入流 link 在 buf 中的位置寄存器 |
| E8   | EB   | SD3CBL    | 输入流循环 buf 的长度          |



| 偏移开始 | 偏移结束 | 名称       | 描述                     |
|------|------|----------|------------------------|
| EE   | ED   | SD3LVI   | 输入流最后一个有效的位置           |
| EE   | EF   | Rsvd     | 保留                     |
| F0   | F1   | SD3FIFOD | 输入流 FIFO 的大小           |
| F2   | F3   | SD3FMT   | 输入流格式                  |
| F4   | F7   | Rsvd     | 保留                     |
| F8   | FF   | SD3BDPL  | 输入流 BDL 的低地址           |
| FC   | FF   | SD3BDPU  | 输入流 BDL 的高地址           |
| 100  | 102  | SD4CTL   | 输入流控制寄存器               |
| 103  | 103  | SD4STS   | 输入流转台寄存器               |
| 104  | 107  | SD4LPIB  | 输入流 link 在 buf 中的位置寄存器 |
| 108  | 10B  | SD4CBL   | 输入流循环 buf 的长度          |
| 10C  | 10D  | SD4LVI   | 输入流最后一个有效的位置           |
| 10E  | 10F  | Rsvd     | 保留                     |
| 110  | 111  | SD4FIFOD | 输入流 FIFO 的大小           |
| 112  | 113  | SD4FMT   | 输入流格式                  |
| 114  | 117  | Rsvd     | 保留                     |
| 118  | 11B  | SD4BDPL  | 输入流 BDL 的低地址           |
| 11C  | 11F  | SD4BDPU  | 输入流 BDL 的高地址           |
| 120  | 122  | SD5CTL   | 输入流控制寄存器               |
| 123  | 123  | SD5STS   | 输入流转台寄存器               |
| 124  | 127  | SD5LPIB  | 输入流 link 在 buf 中的位置寄存器 |
| 128  | 12B  | SD5CBL   | 输入流循环 buf 的长度          |
| 12C  | 12D  | SD5LVI   | 输入流最后一个有效的位置           |
| 12E  | 12F  | Rsvd     | 保留                     |
| 130  | 131  | SD5FIFOD | 输入流 FIFO 的大小           |
| 132  | 133  | SD5FMT   | 输入流格式                  |
| 134  | 137  | Rsvd     | 保留                     |
| 138  | 13B  | SD5BDPL  | 输入流 BDL 的低地址           |
| 13C  | 13F  | SD5BDPU  | 输入流 BDL 的高地址           |
| 140  | 142  | SD6CTL   | 输入流控制寄存器               |
| 143  | 143  | SD6STS   | 输入流转台寄存器               |
| 144  | 147  | SD6LPIB  | 输入流 link 在 buf 中的位置寄存器 |
| 148  | 14B  | SD6CBL   | 输入流循环 buf 的长度          |
| 14C  | 14D  | SD6LVI   | 输入流最后一个有效的位置           |
| 14E  | 14F  | Rsvd     | 保留                     |
| 150  | 151  | SD6FIFOD | 输入流 FIFO 的大小           |
| 152  | 155  | SD6FMT   | 输入流格式                  |
| 154  | 157  | Rsvd     | 保留                     |
| 158  | 15B  | SD6BDPL  | 输入流 BDL 的低地址           |
| 15C  | 15F  | SD6BDPU  | 输入流 BDL 的高地址           |
| 160  | 162  | SD7CTL   | 输入流控制寄存器               |
| 163  | 163  | SD7STS   | 输入流转台寄存器               |
| 164  | 167  | SD7LPIB  | 输入流 link 在 buf 中的位置寄存器 |
| 168  | 16B  | SD7CBL   | 输入流循环 buf 的长度          |



| 偏移开始 | 偏移结束 | 名称       | 描述           |
|------|------|----------|--------------|
| 16C  | 16D  | SD7LVI   | 输入流最后一个有效的位置 |
| 16E  | 16F  | Rsvd     | 保留           |
| 170  | 171  | SD7FIFOD | 输入流 FIFO 的大小 |
| 172  | 177  | SD7FMT   | 输入流格式        |
| 174  | 177  | Rsvd     | 保留           |
| 178  | 17B  | SD7BDPL  | 输入流 BDL 的低地址 |
| 17C  | 17F  | SD7BDPU  | 输入流 BDL 的高地址 |

### 14.2.2 自定义的调试寄存器

|     | 16'h3000 | 16'h0,sdo_sendState  | 32 位 | 输出流的状态          |
|-----|----------|----------------------|------|-----------------|
|     | 16'h3004 | 16'h0,sdoDma4_State  | 32 位 | 输出流 4DMA 状态机的状态 |
| SDO | 16'h3008 | 16'h0,sdoDma5_State  | 32 位 | 输出流 5DMA 状态机的状态 |
|     | 16'h300c | 16'h0,sdoDma6_State  | 32 位 | 输出流 6DMA 状态机的状态 |
|     | 16'h3010 | 16'h0,sdoDma7_State  | 32 位 | 输出流 7DMA 状态机的状态 |
|     | 16'h3014 | 16'h0,sdi0_RecvState | 32 位 | 输入流 0 接受状态机的状态  |
| SDI | 16'h3018 | 16'h0,sdi1_RecvState | 32 位 | 输入流 1 接受状态机的状态  |
|     | 16'h301c | 16'h0,sdi2_RecvState | 32 位 | 输入流 2 接受状态机的状态  |
|     | 16'h3020 | 16'h0,sdi_rirbState  | 32 位 | 输入流的状态          |

# 14.3 内存数据结构

内存数据结构和 HD audio Rev 1.0 规范是完全一致的,主要包括一下几个部分,详细参见 HD audio Rev 1.0 文档。

| DMA Position in Current Buffer     | 在当前缓冲区的 DMA 的位置 |
|------------------------------------|-----------------|
| Buffer Descriptor List             | 缓冲区描述符列表        |
| Buffer Descriptor List Entry       | 缓冲区描述符列表条目      |
| Command Output Ring Buffer         | 命令的输出环形缓冲区      |
| Response Input Ring Buffer         | 响应输入环形缓冲区       |
| Codec Verb and Response Structures | 编解码器的命令和响应结构    |
| Stream Format Structure            | 流格式结构           |





# 第十五章 AC97 控制器

#### 15.1 概述

在系统里一个 AC97 应用系统如图15.1所示。在一个片上系统中,与 AC97 控制器相连的有 3 部分: 一是外设总线,接收来自微处理器的控制信息以及配置信息; 二是 AC97 Codec, 多媒体数字信号编解码器,该解码器对 PCM 信号进行调制,输出人耳接受的模拟声音或者把真实的声音转换为 PCM 信号,转换通过 D/A 转换器实现; 三是 DMA 引擎,通过 DMA 的方式写或读 AC97 控制器内部的 FIFO,实现 PCM 音频数据的不间断操作。DMA 是通过微处理器配置的,从处理器设定的内存区域搬运数据给 FIFO 或者把 FIFO 的数据搬运到设定的内存区域。



图 15.1: AC97 应用系统

#### 15.2 AC97 控制器寄存器

本模块寄存器物理地址基址为 0x1fed0000。

| 寄存器名 | 宽度 | 偏移量  | 描述          |
|------|----|------|-------------|
| CSR  | 2  | 0x00 | 配置状态寄存器     |
| OCC0 | 24 | 0x04 | 输出通道配置寄存器 0 |
| OCC1 | 24 | 0x08 | 保留          |



| 寄存器名     | 宽度 | 偏移量  | 描述            |
|----------|----|------|---------------|
| OCC2     | 24 | 0x0c | 保留            |
| ICC      | 24 | 0x10 | 输入通道配置寄存器     |
| CODEC_ID | 32 | 0x14 | Codec ID 寄存器  |
| CRAC     | 32 | 0x18 | Codec 寄存器访问命令 |
| OC0      | 20 | 0x20 | 输出声道 0        |
| OC1      | 20 | 0x24 | 输出声道 1        |
| OC2      | 20 | 0x28 | 保留            |
| OC3      | 20 | 0x2c | 保留            |
| OC4      | 20 | 0x30 | 保留            |
| OC5      | 20 | 0x34 | 保留            |
| OC6      | 20 | 0x38 | 保留            |
| OC7      | 20 | 0x3c | 保留            |
| OC10     | 20 | 0x40 | 保留            |
| IC0      | 20 | 0x44 | 保留            |
| IC1      | 20 | 0x48 | 保留            |
| IC2      | 20 | 0x4c | 输入声道 2        |
| INTRAW   | 32 | 0x54 | 中断状态寄存器       |
| INTM     | 32 | 0x58 | 中断掩膜          |
| INTS     | 32 | 0x5c | 保留            |

# 15.2.1 配置状态寄存器 (CSR)

偏移量: 0x00

复位值: 0x00000000

| 位域   | 名称        | 位宽 | 访问  | 描述                      |
|------|-----------|----|-----|-------------------------|
| 31:2 | Reserved  | 30 | RO  | 保留                      |
| 1    | RESUME    | 1  | R/W | 挂起,读此位返回现在 AC97 子系统的状态  |
|      |           |    |     | 1: AC97 子系统挂起           |
|      |           |    |     | 0:正常工作状态                |
|      |           |    |     | 在挂起状态下,写入1到该位,将会开始恢复操   |
|      |           |    |     | 作。                      |
| 0    | RST_FORCE | 1  | W   | AC97 冷启动                |
|      |           |    |     | 写入 1 会导致 AC97 Codec 冷启动 |

# 15.2.2 输出通道配置寄存器 (OCC)

偏移量: 0x04

| 位域    | 名称       | 位宽 | 访问  | 描述 |
|-------|----------|----|-----|----|
| 31:24 | Reserved | 10 | R/W | 保留 |
| 23:16 | Reserved | 10 | R/W | 保留 |



| 位域    | 名称        | 位宽 | 访问  | 描述             |
|-------|-----------|----|-----|----------------|
| 15:10 | OC1_CFG_R | 10 | R/W | 输出通道1:右声道配置。   |
| 7:0   | OC0_CFG_L | 10 | R/W | 输出通道 0: 左声道配置。 |

# 15.2.3 输入通道配置寄存器 (ICC)

偏移量: 0x10

复位值: 0x00410000

| 位域    | 名称         | 位宽 | 访问  | 描述                |
|-------|------------|----|-----|-------------------|
| 31:24 | Reserved   | 10 | R/W | 保留                |
| 23:16 | IC_CFG_MIC | 10 | R/W | 输入通道 2: MIC 声道配置。 |
| 15:10 | Reserved   | 10 | R/W | 保留                |
| 7:0   | Reserved   | 10 | R/W | 保留                |

### 15.2.4 声道格式说明

| 位域  | 位域名称       | 位宽 | 访问  | 描述                       |
|-----|------------|----|-----|--------------------------|
| 7   | Reserved   | 1  | R/W | 保留                       |
| 6   | DMA_EN     | 1  | R/W | DMA 使能                   |
|     |            |    |     | 1:DMA 打开                 |
|     |            |    |     | 0: DMA 关闭                |
| 5:4 | FIFO_THRES | 2  | R/W | FIFO 门限                  |
|     |            |    |     | 输出通道 输入通道                |
|     |            |    |     | 00 FIFO 1/4 空 FIFO 1/4 满 |
|     |            |    |     | 01 FIFO 1/2 空 FIFO 1/2 满 |
|     |            |    |     | 10 FIFO 3/4 空 FIFO 3/4 满 |
|     |            |    |     | 11 FIFO 全空 FIFO 全满       |
| 3:2 | SW         | 2  | R/W | 采样位数                     |
|     |            |    |     | 00: 10位                  |
|     |            |    |     | 10: 16位                  |
| 1   | VSR        | 1  | R/W | 采样率                      |
|     |            |    |     | 1: 采样率可变                 |
|     |            |    |     | 0: 采样率固定(410KHz)         |
| 0   | CH_EN      | 1  | R/W | 通道使能                     |
|     |            |    |     | 1:通道打开                   |
|     |            |    |     | 0:通道关闭(或者进入节能状态)         |

# 15.2.5 Codec 寄存器访问命令 (Codec)

偏移量: 0x110



| 位域    | 名称        | 位宽 | 访问  | 描述                         |
|-------|-----------|----|-----|----------------------------|
| 31    | CODEC_WR  | 1  | R/W | 读 / 写选择                    |
|       |           |    |     | 1:读,读取数据时,先设置 CODEC_WR 为读方 |
|       |           |    |     | 式,并在 CODEC_ADR 设置欲访问的寄存器地  |
|       |           |    |     | 址;等到返回数据完成中断时再读 CODEC_DAT  |
|       |           |    |     | 寄存器读取值。                    |
|       |           |    |     | 0:写                        |
| 30:23 | Reserved  | 10 | R   | 保留                         |
| 22:16 | CODEC_ADR | 7  | R/W | Codec 寄存器地址                |
| 15:0  | CODEC_DAT | 16 | R/W | Codec 寄存器数据                |

### 15.2.6 中断状态寄存器 / 中断掩膜寄存器

偏移量: 0x54/510 复位值: 0x00000000

| 位域    | 名称          | 位宽 | 访问  | 描述                |
|-------|-------------|----|-----|-------------------|
| 31    | IC_FULL     | 1  | R/W | 输入通道 2: FIFO 满    |
| 30    | IC_TH_INT   | 1  | R/W | 输入通道 2: FIFO 达到门限 |
| 29:10 | Reserved    | 22 | R/W | 保留                |
| 7     | OC1_FULL    | 1  | R/W | 输出通道 1: FIFO 满    |
| 6     | OC1_EMPTY   | 1  | R/W | 输出通道 1: FIFO 空    |
| 5     | OC1_ TH_INT | 1  | R/W | 输出通道 1: FIFO 达到门限 |
| 4     | OC0_FULL    | 1  | R/W | 输出通道 0: FIFO 满    |
| 3     | OC0_EMPTY   | 1  | R/W | 输出通道 0: FIFO 空    |
| 2     | OC0_ TH_INT | 1  | R/W | 输出通道 0: FIFO 达到门限 |
| 1     | CW_DONE     | 1  | R/W | Codec 寄存器写完成      |
| 0     | CR_DONE     | 1  | R/W | Codec 寄存器读完成      |

# 15.2.7 中断状态 / 清除寄存器

偏移量: 0x5c

复位值: 0x00000000

| 位域   | 名称      | 位宽 | 访问 | 描述                     |
|------|---------|----|----|------------------------|
| 31:0 | INT_CLR | 32 | RO | 屏蔽后的中断状态寄存器,对本寄存器的读操作将 |
|      |         |    |    | 清除寄存器 0x54 中的所有中断状态    |

### 15.2.8 OC 中断清除寄存器

偏移量: 0x60



| 位域   | 名称         | 位宽 | 访问 | 描述                               |
|------|------------|----|----|----------------------------------|
| 31:0 | INT_OC_CLR | 32 | RO | 对本寄存器的读操作将清除寄存器 0x54 中的所有        |
|      |            |    |    | output channel 的中断状态对应的 bit[7:2] |

#### 15.2.9 IC 中断清除寄存器

偏移量: 0x64

复位值: 0x00000000

| 位域   | 名称         | 位宽 | 访问 | 描述                                |
|------|------------|----|----|-----------------------------------|
| 31:0 | INT_IC_CLR | 32 | RO | 对本寄存器的读操作将清除寄存器 0x54 中的所有         |
|      |            |    |    | input channel 的中断状态对应的 bit[31:30] |

### 15.2.10 CODEC WRITE 中断清除寄存器

偏移量: 0x610

复位值: 0x00000000

| 位域   | 名称         | 位宽 | 访问 | 描述                       |
|------|------------|----|----|--------------------------|
| 31:0 | INT_CW_CLR | 32 | RO | 对本寄存器的读操作将清除寄存器 0x54 中的中 |
|      |            |    |    | $\mathrm{bit}[1]$        |

#### 15.2.11 CODEC READ 中断清除寄存器

偏移量: 0x6c

| 位域   | 名称         | 位宽 | 访问 | 描述                       |
|------|------------|----|----|--------------------------|
| 31:0 | INT_CR_CLR | 32 | RO | 对本寄存器的读操作将清除寄存器 0x54 中的中 |
|      |            |    |    | bit[0]                   |





### 第十六章 LPC 控制器

LPC 控制器具有以下特性:

- 符合 LPC1.1 规范
- 支持 LPC 访问超时计数器
- 支持 Memory Read 、Memory write 访问类型
- 支持 Firmware Memory Read 、Firmware Memory Write 访问类型 (单字节)
- 支持 I/O read 、I/O write 访问类型
- 支持 Memory 访问类型地址转换
- 支持 Serizlized IRQ 规范,提供 17 个中断源

LPC 控制器内部的地址空间分布见表 16.1:

表 16.1: LPC 控制器地址空间分布

|                           | - 4        |       |
|---------------------------|------------|-------|
| 地址空间                      | 名称         | 大小    |
| 0x1fc0,0000 - 0x1fc7,ffff | LPC Boot   | 512KB |
| 0x1c00,0000 - 0x1dff,ffff | LPC Memory | 32MB  |
| 0x1ff0,0000 - 0x1ff0,ffff | LPC I/O    | 64KB  |
| 0x1ff1,0000 - 0x1ff1,00ff | LPC regs   | 256B  |

LPC Boot 地址空间是系统启动时处理器最先访问的地址空间。这个地址空间支持 LPC Memory 访问类型,访问 4Mbit 的 Flash,映射到 LPC 总线后的地址为 0xfff8,0000 ~ 0xffff.ffff。

LPC Memory 地址空间是系统用 Memory/Firmware Memory 访问的地址空间。 LPC 控制器发出哪种类型的 Memory 访问,由 LPC 控制器的配置寄存器 LPC\_MEM\_IS\_FWH 决定。处理器发往这个地址空间的地址可以进行地址转换。转换后的地址由 LPC 控制 器的配置寄存器 mem\_trans 设置。地址转换方法为:

 $lpc\_addr = \{mem\_trans\_en ? mem\_trans\_addr[6:0] : 7'b0, mem\_addr[24:0]\}$ 

处理器发往 LPC I/O 地址空间的访问按照 LPC I/O 访问类型发往 LPC 总线。地址为地址空间低 16 位。

LPC 控制器配置寄存器共有 4 个 32 位寄存器, 顺序放置在 0x1ff10000 开始的 4 个字。配置寄存器的含义见下表:



#### 表 16.2: LPC 寄存器 0

|       |                |     | ·/C 10121 | 11 C H)   1 HI C        |
|-------|----------------|-----|-----------|-------------------------|
| 位域    | 名称             | 访问  | 初值        | 描述                      |
| 31    | sirq_en        | R/W | 0         | SIRQ 使能,高有效             |
| 23    | mem_trans_en   | R/W | 0         | LPC Memory 空间地址转换使能,高有效 |
| 22:16 | mem_trans_addr | R/W | 0         | LPC Memory 空间转换目标地址     |
| 15:0  | timeout        | R/W | 0         | LPC 访问超时计数              |
|       |                |     |           | 当小于 64 时硬件将当作 63 处理     |

# 表 16.3: LPC 寄存器 1

| 位域   | 名称      | 访问  | 初值 | 描述                  |
|------|---------|-----|----|---------------------|
| 31   | mem_fwh | R/W | 0  | LPC Memory 空间访问类型控制 |
|      |         |     |    | 0: Memory           |
|      |         |     |    | 1: Firmware Memory  |
| 17:0 | int_en  | R/W | 0  | 中断使能,为1的位使能对应的中断源   |
|      |         |     |    | 17: timeout         |
|      |         |     |    | 16 0: sirq          |

### 表 16.4: LPC 寄存器 2

| 位域   | 名称      | 访问  | 初值 | 描述   |
|------|---------|-----|----|------|
| 17:0 | int_src | R/W | 0  | 中断状态 |

### 表 16.5: LPC 寄存器 3

| 位域 | 名称      | 访问 | 初值 | 描述           |
|----|---------|----|----|--------------|
| 17 | int_clr | W  | -  | 写 1 清除超时中断状态 |



### 第十七章 SPI 控制器

串行外围设备接口 SPI 总线技术是 Motorola 公司推出的多种微处理器、微控制器 以及外围设备之间的一种全双工、同步、串行数据接口标准。

#### 17.1 SPI 控制器结构

本系统集成的 SPI 控制器仅可作为主控端,所连接的是从设备。对于软件而言,SPI 控制器除了有若干 IO 寄存器外还有一段映射到 SPI Flash 的只读 memory 空间。如果将这段 memory 空间分配在 0x1fc00000,复位后不需要软件干预就可以直接访问,从而支持处理器从 SPI Flash 启动。SPI 的 IO 寄存器的基地址 0x1fe70000,外部存储地址空间是 0x1e000000 - 0x1effffff 共 16MB。其结构如图 17.1 所示,由 AXI 内部总线接口、简单的 SPI 主控制器、SPI Flash 读引擎和总线选择模块组成。根据访问的地址和类型,来自内部总线接口上的合法请求转发到 SPI 主控制器或者 SPI Flash 读引擎中(非法请求被丢弃)。



图 17.1: SPI 控制器结构

### 17.2 配置寄存器

| 表 17.1: | SPI | 配置寄存器列表 |
|---------|-----|---------|
|---------|-----|---------|

| 偏移 | 名称            | 描述      |
|----|---------------|---------|
| 0  | SPCR          | 控制寄存器   |
| 1  | SPSR          | 状态寄存器   |
| 2  | TxFIFO/RxFIFO | 数据寄存器   |
| 3  | SPER          | 外部寄存器   |
| 4  | SFC_PARAM     | 参数控制寄存器 |
| 5  | SFC_SOFTCS    | 片选控制寄存器 |
| 6  | SFC_TIMING    | 时序控制寄存器 |



# 表 17.2: 控制寄存器 (SPCR)

| 位域  | 名称   | 访问  | 初值 | 描述                               |
|-----|------|-----|----|----------------------------------|
| 7   | spie | R/W | 0  | 中断输出使能信号高有效                      |
| 6   | spe  | R/W | 0  | 系统工作使能信号高有效                      |
| 5   | -    | -   | 0  | 保留                               |
| 4   | mstr | -   | 1  | master 模式选择位,此位一直保持 1            |
| 3   | cpol | R/W | 0  | 时钟极性位                            |
| 2   | cpha | R/W | 0  | 时钟相位位1则相位相反,为0则相同                |
| 1:0 | spr  | R/W | 0  | sclk_o 分频设定,需要与 sper 的 spre 一起使用 |

### 表 17.3: 状态寄存器 (SPSR)

| 位域  | 名称      | 访问  | 初值 | 描述                      |  |  |
|-----|---------|-----|----|-------------------------|--|--|
| 7   | spif    | R/W | 0  | 中断标志位1表示有中断申请,写1则清零     |  |  |
| 6   | wcol    | R/W | 0  | 写寄存器溢出标志位为1表示已经溢出,写1则清零 |  |  |
| 5:4 | -       | -   | 0  | 保留                      |  |  |
| 3   | wffull  | R   | 0  | 写寄存器满标志 1 表示已经满         |  |  |
| 2   | wfempty | R   | 1  | 写寄存器空标志 1 表示空           |  |  |
| 1   | rffull  | R   | 0  | 读寄存器满标志 1 表示已经满         |  |  |
| 0   | rfempty | R   | 1  | 读寄存器空标志 1 表示空           |  |  |

### 表 17.4: 数据寄存器 (TxFIFO/RxFIFO)

| 位域  | 名称     | 访问 | 初值 | 描述     |
|-----|--------|----|----|--------|
| 7:0 | TxFIFO | W  | -  | 数据发送端口 |
|     | RxFIFO | R  |    | 数据接收端口 |

#### 表 17.5: 外部寄存器 (SPER)

| 43 . 5 | £ -1 |     |    | 11. 13 11 HH (×1 210) |
|--------|------|-----|----|-----------------------|
| 位域     | 名称   | 访问  | 初值 | 描述                    |
| 7:6    | icnt | R/W | 0  | 传输完多少个字节后发中断          |
|        |      |     |    | 00: 1                 |
|        |      |     |    | 01: 2                 |
|        |      |     |    | 10: 3                 |
|        |      |     |    | 11: 4                 |
| 5:3    | -    | ı   | -  | 保留                    |
| 2      | mode | R/W | 0  | spi 接口模式控制            |
|        |      |     |    | 0: 采样与发送时机同时          |
|        |      |     |    | 1: 采样与发送时机错开半周期       |
| 1:0    | spre | R/W | 0  | 与 spr 一起设定分频的比率       |

# 表 17.6: SPI 分频系数

| spre                          | 00 | 00 | 00 | 00 | 01 | 01 | 01  | 01  | 10  | 10   | 10   | 10   |
|-------------------------------|----|----|----|----|----|----|-----|-----|-----|------|------|------|
| $\operatorname{\mathbf{spr}}$ | 00 | 01 | 10 | 11 | 00 | 01 | 10  | 11  | 00  | 01   | 10   | 11   |
| 分频系数                          | 2  | 4  | 16 | 32 | 8  | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |



# 表 17.7: 参数控制寄存器 (SFC\_PARAM)

| 位域  | 名称        | 访问  | 初值 | 描述                                     |
|-----|-----------|-----|----|----------------------------------------|
| 7:4 | clk_div   | R/W | 2  | 时钟分频数选择                                |
|     |           |     |    | 分频系数与spre, spr组合相同                     |
| 3   | dual_io   | R/W | 0  | 双 I/O 模式, 优先级高于快速读                     |
| 2   | fast_read | R/W | 0  | 快速读模式                                  |
| 1   | burst_en  | R/W | 0  | SPI Flash 支持连续地址读模式                    |
| 0   | memory_en | R/W | 1  | SPI Flash 读使能, 无效时 csn[0] 可由软件控制, 否则由硬 |
|     |           |     |    | 件管理。                                   |
|     |           |     |    | 为 1 时,发往 SPI Flash 读引擎的读请求可以转换为 SPI    |
|     |           |     |    | Flash 的访问;                             |
|     |           |     |    | 为 0 时,SPI Flash 读引擎无法访问 SPI 总线,将返回不确   |
|     |           |     |    | 定的值。                                   |

## 表 17.8: 片选控制寄存器 (SFC\_SOFTCS)

| 位域  | 名称   | 访问  | 初值 | 描述                       |
|-----|------|-----|----|--------------------------|
| 7:4 | csn  | R/W | 0  | csn 引脚输出值                |
| 3:0 | csen | R/W | 0  | 为 1 时对应位的 csn 线由 7:4 位控制 |

## 表 17.9: 时序控制寄存器 (SFC\_TIMING)

| 位域  | 名称    | 访问  | 初值 | 描述                                |
|-----|-------|-----|----|-----------------------------------|
| 7:3 | -     | -   | -  | 保留                                |
| 2   | tFAST | R/W | 0  | SPI Flash 读采样模式                   |
|     |       |     |    | 0: 上沿采样,间隔半个 SPI 周期               |
|     |       |     |    | 1: 下沿采样, 间隔一个 SPI 周期              |
|     |       |     |    | 如果提高 SPI Flash 的工作频率后无法正常工作,可以尝   |
|     |       |     |    | 试将此位置1。使用支持双 I/O 的 Flash 可以获得更好的性 |
|     |       |     |    | 能。                                |
| 1:0 | tCSH  | R/W | 3  | SPI Flash 的片选信号最短无效时间,以分频后时钟周期 T  |
|     |       |     |    | 计算                                |
|     |       |     |    | 00: 1T                            |
|     |       |     |    | 01: 2T                            |
|     |       |     |    | 10: 4T                            |
|     |       |     |    | 11: 8T                            |

# 17.3 接口时序

- 17.3.1 SPI 主控制器接口时序
- 17.3.2 SPI Flash 访问时序

# 17.4 使用指南

17.4.1 SPI 主控制器的读写操作

模块初始化





图 17.2: SPI 主控制器接口时序



图 17.3: SPI Flash 标准读时序

- a) 停止 SPI 控制器工作, 对控制寄存器 spcr 的 spe 位写 0
- b) 重置状态寄存器 spsr,对寄存器写入 8'b1100\_0000
- c) 设置外部寄存器 sper,包括中断申请条件 sper[7:6] 和分频系数 sper[1:0],具体参考寄存器说明
- d) 配置 SPI 时序,包括 spcr 的 cpol、cpha 和 sper 的 mode 位。mode 为 1 时是标准 SPI 实现,为 0 时为兼容模式。
  - e) 配置中断使能, spcr 的 spie 位
  - f) 启动 SPI 控制器, 对控制寄存器 spcr 的 spe 位写 1

#### 模块的发送 / 传输操作

- a) 往数据传输寄存器写入数据
- b) 传输完成后从数据传输寄存器读出数据。由于发送和接收同时进行,即使 SPI 从设备没有发送有效数据也必须进行读出操作。

#### 中断处理

- a) 接收到中断申请
- b) 读状态寄存器 spsr 的值, 若 spsr[2] 为 1 则表示数据发送完成, 若 spsr[0] 为 1 则表示已经接收数据
  - c) 读或写数据传输寄存器





图 17.4: SPI Flash 快速读时序



图 17.5: SPI Flash 双向 I/O 读时序

d) 往状态寄存器 spsr 的 spif 位写 1,清除控制器的中断申请

### 17.4.2 硬件 SPI Flash 读

#### 初始化

- a) 将 SFC\_PARAM 的 memory\_en 位写 1。当 SPI 被选为启动设备时此位复位为 1
- b) 设置读参数(时钟分频、连续地址读、快速读、双 I/O、tCSH等)。这些参数 复位值均为最保守的值。

#### 更改参数

如果所使用的 SPI Flash 支持更高的频率或者提供增强功能,修改相应参数可以大大加快 Flash 的访问速度。参数的修改不需要关闭 SPI Flash 读使能 (memory\_en)。具



体参考寄存器说明。

#### 17.4.3 混合访问 SPI Flash 和 SPI 主控制器

1. 对 SPI Flash 进行读以外的访问

将 SPI Flash 读使能关闭后,软件就可直接控制 csn[0],并通过 SPI 主控制器访问 SPI 总线。这意味着在进行此操作时,不能从 SPI Flash 中取指。除了读以外, SPI Flash 还实现了很多命令(如擦除、写入),具体参见相关 Flash 的文档。



# 第十八章 I2C 控制器

### 18.1 概述

本芯片集成了 I2C 接口,主要用于实现两个器件之间数据的交换。 I2C 总线是由数据线 SDA 和时钟 SCL 构成的串行总线,可发送和接收数据。器件与器件之间进行双向传送,最高传送速率 400kbps。

## 18.2 I2C 控制器结构

I2C 主控制器的结构如图 18.1 所示。主要模块有: 时钟发生器 ( Clock Generator )、字节命令控制器 ( Byte Command Controller )、位命令控制器 ( Bit Command controller )、数据移位寄存器 ( Data Shift Register )。其余为总线接口和一些寄存器。

- 1) 时钟发生器模块:产生分频时钟,同步位命令的工作。
- 2) 字节命令控制器模块: 将一个命令解释为按字节操作的时序, 即把字节操作分解为位操作。
  - 3) 位命令控制器模块:进行实际数据的传输,以及位命令信号产生。
  - 4) 数据移位寄存器模块: 串行数据移位。



图 18.1: I2C 主控制器结构

# 18.3 I2C 控制器寄存器说明

本芯片集成了两个 I2C 控制器 I2C-0、I2C-1。



I2C-0 模块寄存器物理地址基址为: 0x1fe90000,地址空间 16KB。 I2C-1 模块寄存器物理地址基址为: 0x1fe91000,地址空间 16KB。

#### 18.3.1 分频锁存器低字节寄存器(PRERlo)

偏移量: 0x00 复位值: 0xff

| 位域  | 名称     | 位宽 | 访问 | 描述            |
|-----|--------|----|----|---------------|
| 7:0 | PRERlo | 8  | RW | 存放分频锁存器的低 8 位 |

#### 18.3.2 分频锁存器高字节寄存器(PRERhi)

偏移量: 0x01 复位值: 0xff

| 位域  | 名称     | 位宽 | 访问 | 描述          |
|-----|--------|----|----|-------------|
| 7:0 | PRERhi | 8  | RW | 存放分频锁存器的高8位 |

假设分频锁存器的值为 prescale,从 LPB 总线 PCLK 时钟输入的频率为 clock\_a, SCL 总线的输出频率为 clock\_s,则应满足如下关系: Prescale = clock\_a/(5\*clock\_s)-1

### 18.3.3 控制寄存器(CTR)

偏移量: 0x02 复位值: 0x00

| 位域  | 名称       | 位宽 | 访问 | 描述                         |
|-----|----------|----|----|----------------------------|
| 7   | EN       | 1  | RW | 模块工作使能位为1正常工作模式,0对分频寄存器进行操 |
|     |          |    |    | 作                          |
| 6   | IEN      | 1  | RW | 中断使能位为1则打开中断               |
| 5:0 | Reserved | 6  | RW | 保留                         |

### 18.3.4 发送数据寄存器(TXR)

偏移量: 0x03 复位值: 0x00

| 位域  | 名称   | 位宽 | 访问 | 描述                   |
|-----|------|----|----|----------------------|
| 7:1 | DATA | 7  | W  | 存放下个将要发送的字节          |
| 0   | DRW  | 1  | W  | 当数据传送时,该位保存的是数据的最低位; |



当地址传送时,该位指示读写状态

#### 18.3.5 接受数据寄存器(RXR)

偏移量: 0x03 复位值: 0x00

| 位域  | 名称  | 位宽 | 访问 | 描述           |
|-----|-----|----|----|--------------|
| 7:0 | RXR | 8  | R  | 存放最后一个接收到的字节 |

### 18.3.6 命令控制寄存器(CR)

偏移量: 0x04 复位值: 0x00

| 位域  | 名称       | 位宽 | 访问 | 描述          |
|-----|----------|----|----|-------------|
| 7   | STA      | 1  | W  | 产生 START 信号 |
| 6   | STO      | 1  | W  | 产生 STOP 信号  |
| 5   | RD       | 1  | W  | 产生读信号       |
| 4   | WR       | 1  | W  | 产生写信号       |
| 3   | ACK      | 1  | W  | 产生应答信号      |
| 2:1 | Reserved | 2  | W  | 保留          |
| 0   | IACK     | 1  | W  | 产生中断应答信号    |

都是在 I2C 发送数据后硬件自动清零。对这些位读操作时候总是读回'0'。 bit 3 为 1 时表示此次传输结束时控制器不发送 ack,反之结束时发送 ack。

### 18.3.7 状态寄存器(SR)

偏移量: 0x04 复位值: 0x00

| 位域  | 名称       | 位宽 | 访问 | 描述                         |
|-----|----------|----|----|----------------------------|
| 7   | RxACK    | 1  | R  | 收到应答位                      |
|     |          |    |    | 1 没收到应答位                   |
|     |          |    |    | 0 收到应答位                    |
| 6   | Busy     | 1  | R  | I2c 总线忙标志位                 |
|     |          |    |    | 1 总线在忙                     |
|     |          |    |    | 0 总线空闲                     |
| 5   | AL       | 1  | R  | 当 I2C 核失去 I2C 总线控制权时,该位置 1 |
| 4:2 | Reserved | 3  | R  | 保留                         |
| 1   | TIP      | 1  | R  | 指示传输的过程                    |
|     |          |    |    | 1 表示正在传输数据                 |
|     |          |    |    | 0 表示数据传输完毕                 |



| 位域 | 名称 | 位宽 | 访问 | 描述                         |
|----|----|----|----|----------------------------|
| 0  | IF | 1  | R  | 中断标志位,一个数据传输完,或另外一个器件发起数据传 |
|    |    |    |    | 输,该位置 1                    |



# 第十九章 UART 控制器

## 19.1 概述

2H 集成了四个 UART 控制器,通过 APB 总线与总线桥通信。UART 控制器提供与 MODEM 或其他外部设备串行通信的功能,例如与另外一台计算机,以 RS232 为标准使用串行线路进行通信。该控制器在设计上能很好地兼容国际工业标准半导体设备 16550A。

## 19.2 控制器结构

UART 控制器有发送和接收模块 (Transmitter and Receiver)、MODEM 模块、中 断仲裁模块 (Interrupt Arbitrator)、和访问寄存器模块 (Register Access Control),这 些模块之间的关系如图19.1所示。主要模块功能及特征描述如下: 1) 发送和接收模块: 负责处理数据帧的发送和接收。发送模块是将 FIFO 发送队列中的数据按照设定的格 式把并行数据转换为串行数据帧,并通过发送端口送出去。接收模块则监视接收端信 号,一旦出现有效开始位,就进行接收,并实现将接收到的异步串行数据帧转换为并行 数据,存入 FIFO 接收队列中,同时检查数据帧格式是否有错。 UART 的帧结构是通 过行控制寄存器 (LCR) 设置的,发送和接收器的状态被保存在行状态寄存器 (LSR) 中 2) MODEM 模块: MODEM 控制寄存器 (MCR) 控制输出信号 DTR 和 RTS 的状态。 MODEM 控制模块监视输入信号 DCD,CTS,DSR 和 RI 的线路状态,并将这些信号的状 态记录在 MODEM 状态寄存器 (MSR) 的相对应位中。3) 中断仲裁模块: 当任何一种 中断条件被满足,并且在中断使能寄存器 (IER) 中相应位置 1,那么 UART 的中断请求 信号 UAT\_INT 被置为有效状态。为了减少和外部软件的交互, UART 把中断分为四个 级别,并且在中断标识寄存器 (IIR) 中标识这些中断。四个级别的中断按优先级级别由 高到低的排列顺序为,接收线路状态中断;接收数据准备好中断;传送拥有寄存器为空 中断; MODEM 状态中断。4) 访问寄存器模块: 当 UART 模块被选中时, CPU 可通 过读或写操作访问被地址线选中的寄存器。

# 19.3 寄存器描述

龙芯 2H 中有 4 个 UART 接口, 其功能寄存器完全一样, 只是访问基址不一样。

- UART0 寄存器物理地址基址为 0x1fe80000。
- UART1 寄存器物理地址基址为 0x1fe81000。
- UART2 寄存器物理地址基址为 0x1fe82000。
- UART3 寄存器物理地址基址为 0x1fe83000。





图 19.1: UART 控制器结构

## 19.3.1 数据寄存器 (DAT)

偏移量: 0x00 复位值: 0x00

| 位域  | 名称      | 位宽 | 访问 | 描述      |
|-----|---------|----|----|---------|
| 7:0 | Tx FIFO | 8  | W  | 数据传输寄存器 |

# 19.3.2 中断使能寄存器 (IER)

偏移量: 0x01 复位值: 0x00

| 位域  | 名称       | 位宽 | 访问 | 描述            |
|-----|----------|----|----|---------------|
| 7:4 | Reserved | 4  | RW | 保留            |
| 3   | IME      | 1  | RW | Modem 状态中断使能  |
|     |          |    |    | '0'-美闭        |
|     |          |    |    | '1'-打开        |
| 2   | ILE      | 1  | RW | 接收器线路状态中断使能   |
|     |          |    |    | '0'- 关闭       |
|     |          |    |    | '1'-打开        |
| 1   | ITxE     | 1  | RW | 传输保存寄存器为空中断使能 |
|     |          |    |    | '0'-关闭        |
|     |          |    |    | '1'-打开        |
| 0   | IRxE     | 1  | RW | 接收有效数据中断使能    |
|     |          |    |    | '0'-美闭        |
|     |          |    |    | '1'-打开        |



## 19.3.3 中断标识寄存器 (IIR)

偏移量: 0x02 复位值: 0xc1

| 位域  | 名称       | 位宽 | 访问 | 描述          |
|-----|----------|----|----|-------------|
| 7:4 | Reserved | 4  | R  | 保留          |
| 3:1 | II       | 3  | R  | 中断源表示位,详见下表 |
| 0   | INTp     | 1  | R  | 中断表示位       |

### 中断控制功能表:

| Bit 3 | Bit 2 | Bit 1 | 优先级 | 中断类型     | 中断源             | 中断复位控制       |
|-------|-------|-------|-----|----------|-----------------|--------------|
| 0     | 1     | 1     | 1st | 接收线路状态   | 奇偶、溢出或帧错误,      | 读 LSR        |
|       |       |       |     |          | 或打断中断           |              |
| 0     | 1     | 0     | 2nd | 接收到有效数   | FIFO 的字符个数达到    | FIFO 的字符个数低于 |
|       |       |       |     | 据        | trigger 的水平     | trigger 的值   |
| 1     | 1     | 0     | 2nd | 接收超时     | 在 FIFO 至少有一个字   | 读接收 FIFO     |
|       |       |       |     |          | 符,但在4个字符时间      |              |
|       |       |       |     |          | 内没有任何操作,包括      |              |
|       |       |       |     |          | 读和写操作           |              |
| 0     | 0     | 1     | 3rd | 传输保存寄存   | 传输保存寄存器为空       | 写数据到 THR 或者多 |
|       |       |       |     | 器为空      |                 | IIR          |
| 0     | 0     | 0     | 4th | Modem 状态 | CTS, DSR, RI or | 读 MSR        |
|       |       |       |     |          | DCD.            |              |

## 19.3.4 FIFO 控制寄存器 (FCR)

偏移量: 0x02 复位值: 0xc0

| 位域  | 名称       | 位宽 | 访问 | 描述                        |
|-----|----------|----|----|---------------------------|
| 7:6 | TL       | 2  | W  | 接收 FIFO 提出中断申请的 trigger 值 |
|     |          |    |    | '00'-1 字节                 |
|     |          |    |    | '01'-4字节                  |
|     |          |    |    | '10'-8 字节                 |
|     |          |    |    | '11'-14 字节                |
| 5:3 | Reserved | 3  | W  | 保留                        |
| 2   | Txset    | 1  | W  | ' 1 '清除发送 FIFO 的内容,复位其逻辑  |
| 1   | Rxset    | 1  | W  | '1'清除接收 FIFO 的内容,复位其逻辑    |
| 0   | Reserved | 1  | W  | 保留                        |

# 19.3.5 线路控制寄存器 (LCR)

偏移量: 0x03



复位值: 0x03

| 位域  | 名称   | 位宽 | 访问 | 描述                                |
|-----|------|----|----|-----------------------------------|
| 7   | dlab | 1  | RW | 分频锁存器访问位                          |
|     |      |    |    | '1'-访问操作分频锁存器                     |
|     |      |    |    | '0'-访问操作正常寄存器                     |
| 6   | bcb  | 1  | RW | 打断控制位                             |
|     |      |    |    | '1'-此时串口的输出被置为0(打断状态).            |
|     |      |    |    | '0'-正常操作                          |
| 5   | spb  | 1  | RW | 指定奇偶校验位                           |
|     |      |    |    | '0'-不用指定奇偶校验位                     |
|     |      |    |    | '1'-如果 LCR[4] 位是 1 则传输和检查奇偶校验位为 0 |
|     |      |    |    | 。如果 LCR[4] 位是 0 则传输和检查奇偶校验位为 1 。  |
| 4   | eps  | 1  | RW | 奇偶校验位选择                           |
|     |      |    |    | '0'-在每个字符中有奇数个1(包括数据和奇偶校验         |
|     |      |    |    | 位)                                |
|     |      |    |    | ·1 '-在每个字符中有偶数个1                  |
| 3   | pe   | 1  | RW | 奇偶校验位使能                           |
|     |      |    |    | '0'-没有奇偶校验位                       |
|     |      |    |    | '1'-在输出时生成奇偶校验位,输入则判断奇偶校验位        |
| 2   | sb   | 1  | RW | 定义生成停止位的位数                        |
|     |      |    |    | '0'-1个停止位                         |
|     |      |    |    | '1'-在5位字符长度时是1.5个停止位,其他长度是2       |
|     |      |    |    | 个停止位                              |
| 1:0 | bec  | 2  | RW | 设定每个字符的位数                         |
|     |      |    |    | '00'-5位                           |
|     |      |    |    | '01'-6位                           |
|     |      |    |    | '10'-7位                           |
|     |      |    |    | '11'-8位                           |

# 19.3.6 MODEM 控制寄存器 (MCR)

偏移量: 0x04 复位值: 0x00

| 位域  | 名称       | 位宽 | 访问 | 描述                         |
|-----|----------|----|----|----------------------------|
| 7:5 | Reserved | 3  | W  | 保留                         |
| 4   | Loop     | 1  | W  | 回环模式控制位                    |
|     |          |    |    | '0'-正常操作                   |
|     |          |    |    | '1'-回环模式。在在回环模式中,TXD输出一直为1 |
|     |          |    |    | ,输出移位寄存器直接连到输入移位寄存器中。其他连接如 |
|     |          |    |    | 下。                         |
|     |          |    |    | DTR - DSR                  |
|     |          |    |    | RTS - CTS                  |
|     |          |    |    | Out1 - RI                  |
|     |          |    |    | Out2 - DCD                 |
| 3   | OUT2     | 1  | W  | 在回环模式中连到 DCD 输入            |



| 位域 | 名称   | 位宽 | 访问 | 描述             |
|----|------|----|----|----------------|
| 2  | OUT1 | 1  | W  | 在回环模式中连到 RI 输入 |
| 1  | RTSC | 1  | W  | RTS 信号控制位      |
| 0  | DTRC | 1  | W  | DTR 信号控制位      |

# 19.3.7 线路状态寄存器 (LSR)

偏移量: 0x05 复位值: 0x00

| 位域 | 名称    | 位宽 | 访问 | 描述                                |
|----|-------|----|----|-----------------------------------|
| 7  | ERROR | 1  | R  | 错误表示位                             |
|    |       |    |    | '1'-至少有奇偶校验位错误,帧错误或打断中断的一         |
|    |       |    |    | 个。                                |
|    |       |    |    | '0'-没有错误                          |
| 6  | TE    | 1  | R  | 传输为空表示位                           |
|    |       |    |    | '1'-传输 FIFO 和传输移位寄存器都为空。给传输 FIFO  |
|    |       |    |    | 写数据时清零                            |
|    |       |    |    | '0'-有数据                           |
| 5  | TFE   | 1  | R  | 传输 FIFO 位空表示位                     |
|    |       |    |    | '1'-当前传输 FIFO 为空, 给传输 FIFO 写数据时清零 |
|    |       |    |    | '0'-有数据                           |
| 4  | BI    | 1  | R  | 打断中断表示位                           |
|    |       |    |    | '1'-接收到起始位+数据+奇偶位+停止位都是0,即        |
|    |       |    |    | 有打断中断                             |
|    |       |    |    | '0'-没有打断                          |
| 3  | FE    | 1  | R  | 帧错误表示位                            |
|    |       |    |    | '1'-接收的数据没有停止位                    |
|    |       |    |    | '0'-没有错误                          |
| 2  | PE    | 1  | R  | 奇偶校验位错误表示位                        |
|    |       |    |    | '1'-当前接收数据有奇偶错误                   |
|    |       |    |    | '0'-没有奇偶错误                        |
| 1  | OE    | 1  | R  | 数据溢出表示位                           |
|    |       |    |    | '1'-有数据溢出                         |
|    |       | 1  |    | (0) - 无溢出                         |
| 0  | DR    | 1  | R  | 接收数据有效表示位                         |
|    |       |    |    | '0'-在 FIFO 中无数据                   |
|    |       |    |    | ' 1 '-在 FIFO 中有数据                 |

对这个寄存器进行读操作时,LSR[4:1] 和 LSR[7] 被清零,LSR[6:5] 在给传输 FIFO 写数据时清零,LSR[0] 则对接收 FIFO 进行判断。

# 19.3.8 MODEM 状态寄存器 (MSR)

偏移量: 0x06 复位值: 0x00



| 位域 | 名称   | 位宽 | 访问 | 描述                        |
|----|------|----|----|---------------------------|
| 7  | CDCD | 1  | R  | DCD 输入值的反,或者在回环模式中连到 Out2 |
| 6  | CRI  | 1  | R  | RI 输入值的反,或者在回环模式中连到 OUT1  |
| 5  | CDSR | 1  | R  | DSR 输入值的反,或者在回环模式中连到 DTR  |
| 4  | CCTS | 1  | R  | CTS 输入值的反,或者在回环模式中连到 RTS  |
| 3  | DDCD | 1  | R  | DDCD 指示位                  |
| 2  | TERI | 1  | R  | RI 边沿检测。RI 状态从低到高变化       |
| 1  | DDSR | 1  | R  | DDSR 指示位                  |
| 0  | DCTS | 1  | R  | DCTS 指示位                  |

## 19.3.9 分频锁存器

偏移量: 0x00

复位值: 0x00

| 位域  | 名称  | 位宽 | 访问 | 描述            |
|-----|-----|----|----|---------------|
| 7:0 | LSB | 8  | RW | 存放分频锁存器的低 8 位 |

偏移量: 0x01

复位值: 0x00

| 位域  | 名称  | 位宽 | 访问 | 描述          |
|-----|-----|----|----|-------------|
| 7:0 | MSB | 8  | RW | 存放分频锁存器的高8位 |



# 第二十章 NAND 控制器

## 20.1 NAND 控制器结构描述

NAND FLASH 控制器最大支持 32GB FLASH 的容量,芯片最多支持 2个片选和 2个 RDY 信号,控制器支持 SLC 和 MLC 两种类型 FLASH 的操作,NAND FLASH 控制器支持系统启动,启动模式包括 ECC 模式启动和普通模式启动。

系统启动模式选择包括两种,如下表所示:

| 启动模式     | 配置                   | 说明                                |
|----------|----------------------|-----------------------------------|
| ECC 模式启动 | 外部 SPI_CK 、SPI_CS 下拉 | 外部 NAND FLASH 中的第一个 page 的内容必须是原始 |
|          | NAND_RD 上拉           | 数据经过 RS(204,188) 编码后生成的数据         |
| 普通启动     | 外部 SPLCK 、 SPLCS 、   | 外部 NAND FLASH 第一个 page 的数据普通原始数据  |
|          | NAND_RD 全部下拉         |                                   |

# 20.2 NAND 寄存器配置描述

NAND 内部的寄存器的设置如下:

| 地址          | 寄存器名称              |
|-------------|--------------------|
| 0x1fee_0000 | NAND_CMD           |
| 0x1fee_0004 | ADDR_C             |
| 0x1fee_0008 | ADDR_R             |
| 0x1fee_000C | NAND_TIMING        |
| 0x1fee_0010 | ID.L               |
| 0x1fee_0014 | STATUS & ID_H      |
| 0x1fee_0018 | NAND_PARAMETER     |
| 0x1fee_001C | NAND_OP_NUM        |
| 0x1fee_0040 | DMA access address |

#### 20.2.1 命令寄存器 NAND\_CMD

| 位域    | 名称          | 访问  | 描述                                       |  |  |  |
|-------|-------------|-----|------------------------------------------|--|--|--|
| 31    | DMA_REQ     | R/- | 非 ECC 模式下 NAND 发出 DMA 请求                 |  |  |  |
| 30    | ECC_DMA_REQ | R/- | ECC 模式下 NAND 发出 DMA 请求                   |  |  |  |
| 29:25 | STATUS      | R/- | 内部状态机(供测试用)                              |  |  |  |
| 24    |             | R/- | Reserved                                 |  |  |  |
| 23:   | NAND_CE     | R/- | 外部 NAND 芯片片选情况,四位分别对应片外四个片选,0表示选         |  |  |  |
| 20    |             |     | 中                                        |  |  |  |
| 19:   | NAND_RDY    | R/- | 外部 NAND 芯片 RDY 情况,对应关系和 NAND_CE 一致, 1 表示 |  |  |  |
| 16    |             |     | 准备好                                      |  |  |  |
| 15    |             |     | Reserved                                 |  |  |  |
| 14    | wait_ecc    | R/W | 为 1 表示等待 ECC 读完成 (用于 ECC 读)              |  |  |  |



| 位域 | 名称              | 访问  | 描述                                        |  |  |  |
|----|-----------------|-----|-------------------------------------------|--|--|--|
| 13 | INT_EN          | R/W | NAND 中断使能信号,为 1 表示使能中断                    |  |  |  |
| 12 | RS_WR           | R/W | 为 1 表示写操作时候 ECC 功能开启                      |  |  |  |
| 11 | RS_RD           | R/W | 为 1 表示读操作时候 ECC 功能开启                      |  |  |  |
| 10 | done            | R/W | 为1表示操作完成,需要软件清零                           |  |  |  |
| 9  | Spare           | R/W | 为 1 表示操作发生在 NAND 的 SPARE 区                |  |  |  |
| 8  | Main            | R/W | 为 1 表示操作发生在 NAND 的 MAIN 区                 |  |  |  |
| 7  | Read status     | R/W | 为 1 表示读 NAND 的状态操作                        |  |  |  |
| 6  | Reset           | R/W | 为 1 表示 Nand 复位操作                          |  |  |  |
| 5  | read id         | R/W | 为 1 表示读 ID 操作                             |  |  |  |
| 4  | blocks erase    | R/W | 连续擦除标志, 缺省 0; 1 有效, 连续擦擦块的数目由 nand_op_num |  |  |  |
|    |                 |     | 决定                                        |  |  |  |
| 3  | erase operation | R/W | 为1表示擦除操作                                  |  |  |  |
| 2  | write operation | R/W | 为 1 表示写操作                                 |  |  |  |
| 1  | read operation  | R/W | 为 1 表示读操作                                 |  |  |  |
| 0  | command valid   | R/W | 为1表示命令有效,操作完成后硬件自动清零                      |  |  |  |

# 20.2.2 页内偏移地址寄存器 ADDR\_C

| 位域    | 名称       | 访问  | 描述                                             |  |  |  |  |
|-------|----------|-----|------------------------------------------------|--|--|--|--|
| 31:14 |          | R/- | Reserved                                       |  |  |  |  |
| 13:0  | Nand_Col | R/W | 读、写、擦除操作起始地址页内地址(必须以字对齐,为4的倍数),                |  |  |  |  |
|       |          |     | 和页大小对应关系如下:                                    |  |  |  |  |
|       |          |     | 512Bytes: 只需要填充[ 8:0]                          |  |  |  |  |
|       |          |     | 2K: 需要填充[11:0], [11]表示 spare 区, [10:0]表示页内偏移地址 |  |  |  |  |
|       |          |     | 4K: 需要填充[12:0], [12]表示 spare 区, [11:0]表示页内偏移地址 |  |  |  |  |
|       |          |     | 8K: 需要填充[13:0],[13]表示 spare 区,[12:0]表示页内偏移地址   |  |  |  |  |

## 20.2.3 页地址寄存器 ADDR\_R

| 位域    | 名称       | 访问  | 描述                                 |  |  |  |  |
|-------|----------|-----|------------------------------------|--|--|--|--|
| 31:25 |          | R/- | Reserved                           |  |  |  |  |
| 24:0  | Nand_Row | R/W | 读、写、擦除操作起始地址页地址,地址组成如下:            |  |  |  |  |
|       |          |     | {片选,页数}                            |  |  |  |  |
|       |          |     | 其中片选固定为 2 位,页数根据实际的单片颗粒容量确定,如 1M 页 |  |  |  |  |
|       |          |     | 则为[ 19:0], [ 21:20] 用于选择 4 片中的第几片  |  |  |  |  |

## 20.2.4 时序寄存器 NAND\_TIMING

| 位域    | 名称         | 访问  | 描述                       |
|-------|------------|-----|--------------------------|
| 31:16 |            | R/- | Reserved                 |
| 15: 8 | Hold cycle | R/W | NAND 命令有效需等待的周期数,缺省 4    |
| 7: 0  | Wait cycle | R/W | NAND 一次读写所需总时钟周期数, 缺省 18 |
|       |            |     | ECC 模式下配置为 8 'hb         |



### 20.2.5 ID 寄存器 ID\_L

| 位域    | 名称       | 访问  | 描述       |
|-------|----------|-----|----------|
| 31: 0 | ID[31:0] | R/- | ID[31:0] |

### 20.2.6 ID 和状态寄存器 STATUS & ID\_H

|   | 位域    | 名称        | 访问  | 描述               |
|---|-------|-----------|-----|------------------|
|   | 31:24 |           | R/- | Reserved         |
|   | 23:16 | STATUS    | R/- | NAND 设备当前的读写完成状态 |
| Ī | 15:0  | ID[47:32] | R/- | ID 高 16 位        |

### 20.2.7 参数配置寄存器 NAND\_PARAMETER

| 位域    | 名称        | 访问  | 描述                                             |  |  |  |  |  |
|-------|-----------|-----|------------------------------------------------|--|--|--|--|--|
| 31:20 |           | R/- | Reserved                                       |  |  |  |  |  |
| 29:16 | op_scope  | R/W | 每次能操作的范围, 配置如下: 1. 操作 main 区, 配置为一页的 main 区大小  |  |  |  |  |  |
|       |           |     | 2. 操作 spare 区,配置为一页的 spare 区大小                 |  |  |  |  |  |
|       |           |     | 2. 操作 spare 区,配置为一页的 spare 区大小                 |  |  |  |  |  |
|       |           |     | 3. 操作 main 加 spare 区,配置为一页的 main 区加上 spare 区大小 |  |  |  |  |  |
| 15    |           | R/- | Reserved                                       |  |  |  |  |  |
| 14:12 | ID_number | R/W | ID 号的字节数                                       |  |  |  |  |  |
| 11:8  | 外部颗粒容量大小  | R/W | 0:1Gb(2K页)                                     |  |  |  |  |  |
|       |           |     | 1: 2Gb (2K页)                                   |  |  |  |  |  |
|       |           |     | 2: 4Gb (2K页)                                   |  |  |  |  |  |
|       |           |     | 3:8Gb(2K页)                                     |  |  |  |  |  |
|       |           |     | 4: 16Gb (4K页)                                  |  |  |  |  |  |
|       |           |     | 5: 32Gb(8K 页)                                  |  |  |  |  |  |
|       |           |     | 6: 64Gb(8K 页 )                                 |  |  |  |  |  |
|       |           |     | 7: 128Gb(8K 页 )                                |  |  |  |  |  |
|       |           |     | 9: 64Mb(512B 页 )                               |  |  |  |  |  |
|       |           |     | a:128Mb(512B 页 )                               |  |  |  |  |  |
|       |           |     | b:256Mb(512B 页 )                               |  |  |  |  |  |
|       |           |     | c:512Mb(512B 页 )                               |  |  |  |  |  |
|       |           |     | d:1Gb(512B 页 )                                 |  |  |  |  |  |
|       |           |     | (bit)                                          |  |  |  |  |  |
| 7:0   |           | R/- | Reserved                                       |  |  |  |  |  |

# 20.2.8 操作数量寄存器 NAND\_OP\_NUM

| 位域    | 名称          | 访问  | 描述                                        |
|-------|-------------|-----|-------------------------------------------|
| 31: 0 | NAND_OP_NUM | R/W | NAND 读写操作 Byte 数 ( 必须以字对齐, 为 4 的倍数 );擦除为块 |
|       |             |     | 数                                         |



## 20.2.9 DMA 读写数据寄存器 DMA\_ADDRESS

| 位域    | 名称       | 访问  | 描述                                  |
|-------|----------|-----|-------------------------------------|
| 31: 0 | DMA_DATA | R/W | NAND 数据 DMA 传输端口。其地址应配置到 DMA 控制器的描述 |
|       |          |     | 符中                                  |

#### 20.3 NAND ADDR 说明

以 2K 页的 NAND flash 为例, 定义如下:

每一页的 main 区大小为 2KB, spare 区大小为 64B

 $main\_op = NAND\_CMD[8];$ 

 $spare_op = NAND_CMD[9];$ 

addr\_in\_page = A11, A10.. A2, A1, A0=ADDR\_C

 $page_number = \cdots A30,A29,A28,A27 \cdots A13,A12 = ADDR_R$ 

NAND flash 的 main 区总容量计算公式为

 $N = 2^{(ADDR\_C-1)} \times 2^{(ADDR\_R)} \times 8bit = 2K \times 2^{(ADDR\_R)} \times 8bit$ 

NAND 地址空间示例如下表:

|         | I/O       | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|---------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|
| Column1 | 1st Cycle | A0  | A1  | A2  | A3  | A4  | A5  | A6  | A7  |
| Column2 | 2nd Cycle | A8  | A9  | A10 | A11 | *L  | *L  | *L  | *L  |
| Row1    | 3rd Cycle | A12 | A13 | A14 | A15 | A16 | A17 | A18 | A19 |
| Row2    | 4th Cycle | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 |
| Row3    | 5th Cycle | A28 | A29 | A30 | A31 | A32 | A33 | ••• | ••• |

(注: 2K页的 1Gb 容量 NAND flash 对应的 Row 最大值为 A27,发送地址给 NAND flash 时只用发 Column1 2 和 Row1 2,不用发 Row3。配置 NAND 参数时,注意不要配错型号,否则可能会读不出数据并且控制器会死等)

对系统板上 NAND 颗粒来说,如果仅仅操作 spare 区,A11=1 是唯一标志。所以软件配置内部寄存器时,需要配置 A11 和 spare\_op 均为 1(见 Examples5),错误的示例见 Examples2。

对系统板上 NAND 颗粒来说,如果仅仅操作 main 区,A11=0 是唯一标志.;所以软件配置内部寄存器时,需要配置 A11 和 spare\_op 均为 0(见 Examples1),错误的示例见 Examples4。

对系统板上 NAND 颗粒来说,如果操作 main+spare 区,A11 可以为 0 (见 Examples3); 也可以为 1 (见 Examples6)。

Examples1: (非 ECC 模式下。NAND 颗粒中一个 page 的数据只能位于 0x0-0x83f,第一个 op 表示读写开始的数据,接下来的 op 表示随后的读写数据;NO\_op 表示不能被本次 NAND 配置读写的数据)



### $(\text{spare\_op} = 0 \& \text{main\_op} = 0) \text{ equal to } (\text{spare\_op} = 0 \& \text{main\_op} = 1); ADDR\_C = 0x30$

| Data in a page | 0     | 0x30 | ••• | 0x7ff | 0x800 | 0x830 | 0x83f |
|----------------|-------|------|-----|-------|-------|-------|-------|
| Page 0         | NO_op | op   | op  | op    | NO_op | NO_op | NO_op |
| Page 1         | op    | op   | op  | op    | NO_op | NO_op | NO_op |
| Page 2         | op    | op   | op  | op    | NO_op | NO_op | NO_op |

#### Examples2:

spare\_op=1 & main\_op=0; ADDR\_C = 0x30 (配置出错!! 开始操作不在 spare 区,下图是可能的错误访问顺序)

| Data in a page | 0     | 0x30  | •••   | 0x7ff | 0x800 | 0x830 | 0x83f |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| Page 0         | NO_op | op    | op    | op    | Op    | op    | op    |
| Page 1         | NO_op | NO_op | NO_op | NO_op | Op    | op    | op    |
| Page 2         | NO_op | NO_op | NO_op | NO_op | Op    | op    | op    |
| Page 3         | NO_op | NO_op | NO_op | NO_op | Op    | op    | op    |

## ${\bf Examples 3:}$

 $spare_op = 1 \& main_op = 1; ADDR_C = 0x30$ 

| Data in a page | 0     | 0x30 | ••• | 0x7ff | 0x800 | 0x830 | 0x83f |
|----------------|-------|------|-----|-------|-------|-------|-------|
| Page 0         | NO_op | op   | op  | op    | op    | op    | op    |
| Page 1         | op    | op   | op  | op    | op    | op    | op    |
| Page 2         | op    | op   | op  | op    | op    | op    | op    |

#### Examples4:

(spare\_op=0 & main\_op=0), (equal to spare\_op=0 & main\_op=1); ADDR\_C =0x830: (配置出错!! 开始操作在 spare 区,下图是可能的错误访问顺序)

| Data in a page | 0     | 0x30  | •••   | 0x7ff | 0x800 | 0x830 | 0x83f |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| Page 0         | NO_op |
| Page 1         | NO_op | op    | op    | op    | op    | NO_op | NO_op |
| Page 2         | op    | op    | op    | op    | op    | NO_op | NO_op |
| Page 3         | op    | op    | op    | op    | op    | NO_op | NO_op |

#### Examples 5:

 $spare_{-}op = 1$  and  $main_{-}op = 0$ ;  $ADDR_{-}C = 0x830$ 

| Data in a page | 0     | 0x30  | •••   | 0x7ff | 0x800 | 0x830 | 0x83f |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| Page 0         | NO_op | NO_op | NO_op | NO_op | NO_op | op    | op    |
| Page 1         | NO_op | NO_op | NO_op | NO_op | op    | op    | op    |
| Page 2         | NO_op | NO_op | NO_op | NO_op | op    | op    | op    |

#### Examples6:

 $spare_op = 1 \& main_op = 1; ADDR_C = 0x830$ 

| Data in a page | 0     | 0x30  | •••   | 0x7ff | 0x800 | 0x830 | 0x83f |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| Page 0         | NO_op | NO_op | NO_op | NO_op | NO_op | op    | op    |
| Page 1         | op    |
| Page 2         | op    |
| Page 3         | op    |



512B 页大小的 NAND flash 和 2KB 页大小配置类似,但在以下几个地方会有不同,需要注意:

每一页的 main 区大小为 512B ,spare 区大小为 16B 。其中 main 区分为两个 256B 区,每个 256B 区通过 A0 A7 来寻址。读写操作时,通过发送命令 0x00 、 0x01 和 0x50 来选择是在哪个 256B 区或者 spare 区(软件不必关心,硬件自动选择,如配置 NAND 控制器写 0x100 时,硬件会自动发送到高 256B 区)。

| 发送地址命令顺序如了 | 下. |   |
|------------|----|---|
|            |    | ÷ |

|                   | I/O       | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|-------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|
| Column1           | 1st Cycle | A0  | A1  | A2  | A3  | A4  | A5  | A6  | A7  |
| Row1              | 2nd Cycle | A9  | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
| Row2              | 3rd Cycle | A17 | A18 | A19 | A20 | A21 | A22 | A23 | A24 |
| Row3 <sup>1</sup> | 4th Cycle | A25 | A26 | *L  | *L  | *L  | *L  | *L  | *L  |

4K/8K 页大小的配置和 2K 页配置一样,4K 页的 main 区大小为 4KB,spare 区大小为 128B; 8K 页的 main 区大小为 8KB, spare 区大小为 640B。都需要发送五次地址命令。

## 20.4 NAND-flash 读写操作举例

命令寄存器的'command valid'位不能与其他读写使能位同时置位,要先设置好要进行的操作,最后才置'command valid'位。

例如:现在要读 Main 区的数据,那么操作分成以下两步:

- a. 先 NAND\_CMD = 0x102
- b. 再 NAND\_CMD = 0x103

#### 20.5 NAND ECC 说明

硬件集成 ECC 功能, ECC 采用 RS(204,188) 方法进行编码和解码,在配置软件过程中需要注意以下几点:

- 1. 每次读写 NAND 的时候, 推荐配置 PAGE 的页内部地址(ADDR\_C)为0;
- 2. NAND 每个 PAGE 有 2048Bytes,采用 RS(204,188)方式编解码后,只会用到前面的 2040Bytes,会有 8个 Bytes 不用;采用 ECC 后 NAND 利用率为 188/204;
- 3. 在配置操作数的时候,如果每次操作一个页面,请配置 NAND 里面的 op\_num为 204的倍数 (byte 为单位);在配置 DMA 控制器时候,操作数为 47(188/4)的倍数 (word 为单位)。

<sup>&</sup>lt;sup>1</sup>Nand flash 容量为 64Mb 、128Mb 和 256Mb 时,对应的最大列地址 ADDR\_R 分别为 A22 、A23 和 A24,只用发送三次地址命令 Column1 和 Row1∼2,不用发送 Row3;容量为 512Mb 和 1Gb 时,需要发送 Row3



4. ECC 操作和 OOB 操作可以分开,比如对一个页完成 ECC 读 / 写后可以对其 OOB 进行操作。

可以在 ECC 操作完成后通过普通方式读回所有内容,包括原始数据和 ECC 校验增加的数据(此时配置操作数 op\_num 和 DMA 相同)。

校验能力说明:最多可以纠错 8 个 Bytes,这些 Bytes 内部出错的位数可以是 1-8 个。

第一行数据共出错 64bit,恰好是 8个 Bytes,可以纠错;最后一行数据虽然错 9bits,分散在 9Bytes 中,无法纠错。

| 原始数据       | ff |     |     |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|
| ( 204Bytes |    |    |    |    |    |    |    |    |    |    |    |    |     |     |
| )          |    |    |    |    |    |    |    |    |    |    |    |    |     |     |
| 数据 1       | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | ff | ff | ff | ff | ••• | 可纠错 |
| 数据 2       | 1  | ff | ••• | 可纠错 |
| 数据 3       | fe | ff | ••• | 可纠错 |
| 数据 4       | 1  | 2  | 3  | 4  | 5  | 6  | 07 | 08 | ff | ff | ff | ff | ••• | 可纠错 |
| 数据 5       | fe | ff | ff | ff | ••• | 不可纠 |
|            |    |    |    |    |    |    |    |    |    |    |    |    |     | 错   |

## 20.6 NAND 启动说明

NAND 启动支持 512B、2K 页、4K 页和 8K 页 NAND flash 启动。根据 FLASH 的容量大小和页大小配置好 NAND\_WR 和 SPI\_SDO 的上下拉电阻 (需要对应好, 否则可能会出现死等的情况)。

NAND 启动时会取出第 0 页开始的 1K 字节, 进行芯片的初始化。如果是 512B 页则会读两页, 如果是 2K 页或者更大, 则会读取 1K 字节。故系统初始化代码需要放在从第 0 页 0 字节开始。

NAND 启动时可以通过 NAND\_RD 的上下拉来选择 ECC 和非 ECC 方式启动。两者的区别在于: ECC 方式采用了 RS(204,188) 编码, ECC 启动时读取 1020 字节,有效数据为 940 字节,其余为编码数据。(注: ECC 启动时不支持 512B 页。)





# 第二十一章 PWM 控制器

## 21.1 概述

2H 芯片里实现了四路脉冲宽度调节 / 计数控制器,以下简称 PWM。每一路 PWM 工作和控制方式完全相同。每路 PWM 有一路脉冲宽度输出信号和一路待测脉冲输入信号。其中 PWM0 和 PWM1 只能作为输出,PWM2/PWM3 的方向可配置(见 gpiocfg)。系统时钟高达 125MHz,计数寄存器和参考寄存器均 32 位数据宽度。四路 PWM 控制器系统的基地址具体如下:

表 21.1: 四路 PWM 控制器

# 21.2 寄存器描述

每路控制器共有五个寄存器,具体描述如下:

| 名称          | 地址           | 宽度 | 访问  | 说明        |
|-------------|--------------|----|-----|-----------|
| Low_buffer  | Base $+ 0x4$ | 32 | R/W | 低脉冲缓冲寄存器  |
| Full_buffer | Base $+ 0x8$ | 32 | R/W | 脉冲周期缓冲寄存器 |
| CTRL        | Base + 0xC   | 11 | R/W | 控制寄存器     |

表 21.3: PWM 控制寄存器设置

| 位域   | 名称       | 访问  | 初值    | 描述                          |
|------|----------|-----|-------|-----------------------------|
| 0    | EN       | R/W | 0     | 计数器使能位                      |
|      |          |     |       | 置1时: CNTR用来计数               |
|      |          |     |       | 置 0 时: CNTR 停止计数 (输出保持)     |
| 2: 1 | Reserved | -   | 2' b0 | 预留                          |
| 3    | OE       | R/W | 0     | 脉冲输出使能控制位,低有效               |
|      |          |     |       | 置 0 时: 脉冲输出使能               |
|      |          |     |       | 置1时:脉冲输出屏蔽                  |
| 4    | SINGLE   | R/W | 0     | 单脉冲控制位                      |
|      |          |     |       | 置1时:脉冲仅产生一次                 |
|      |          |     |       | 置 0 时: 脉冲持续产生               |
| 5    | INTE     | R/W | 0     | 中断使能位                       |
|      |          |     |       | 置 1 时:当 full_pulse 到 1 时送中断 |
|      |          |     |       | 置 0 时:不产生中断                 |



| 位域 | 名称     | 访问  | 初值 | 描述                              |
|----|--------|-----|----|---------------------------------|
| 6  | INT    | R/W | 0  | 中断位                             |
|    |        |     |    | 读操作: 1表示有中断产生,0表示没有中断           |
|    |        |     |    | 写入1:清中断                         |
| 7  | RST    | R/W | 0  | 使得 Low_level 和 full_pluse 计数器重置 |
|    |        |     |    | 置 1 时: 计数器重置 (从 buffer 读,输出低电平) |
|    |        |     |    | 置 0 时: 计数器正常工作                  |
| 8  | CAPTE  | R/W | 0  | 测量脉冲使能                          |
|    |        |     |    | 置1时:测量脉冲模式                      |
|    |        |     |    | 置 0 时: 非测量脉冲模式 (一般而言则是脉冲输出模式)   |
| 9  | INVERT | R/W | 0  | 输出翻转使能                          |
|    |        |     |    | 置1时: 使脉冲在输出去发生信号翻转(周期以高电平开      |
|    |        |     |    | 始)                              |
|    |        |     |    | 置 0 时: 使脉冲保持原始输出(周期以低电平开始)      |
| 10 | DZONE  | R/W | 0  | 防死区功能使能                         |
|    |        |     |    | 置1时:该计数模块需要启用防死区功能              |
|    |        |     |    | 置 0 时:该模块无需防死区功能                |

## 21.3 功能说明

#### 21.3.1 脉宽调制功能

Low\_buffer 和 Full\_buffer 寄存器可以由系统编程写入获得初始值。系统编程写入完毕后,模块内部的 low\_level 和 full\_pulse 寄存器分别从 Low\_buffer 和 Full\_buffer 缓冲寄存器中读取初值,之后在系统时钟驱动下不断自减(初始输出低电平)。当 low\_level 寄存器到达 1 之后,输出变为高电平,此时 full\_pulse 仍在自减。当 full\_pulse 寄存器到达 1 之后,输出变为低电平,low\_level 和 full\_pulse 又分别从 Low\_buffer 和 Full\_buffer 缓冲寄存器中读取初值,然后重新开始不断自减,控制器就产生连续不断的脉冲宽度输出。当 full\_pulse 寄存器的值等于 1 的时候,可以配置产生一个中断,从而作为定时器使用。

例:如果要产生宽度为系统时钟周期 50 倍的高脉宽和 90 倍的低脉宽,在 low\_buffer 中应该配置初始值 90,在 full\_buffer 寄存器中配置初始值 (50+90)=140.

值得说明的是,由于两个缓冲寄存器的写入有先后之分,在某些特殊的情况下(比如写入时刻刚好是旧脉冲结束时)会使得输出脉冲有异于预期。推荐的做法是在向缓冲寄存器写入新数前,将控制寄存器 EN 位写 0,在写入新数之后再将 EN 位写 1。值得说明的是,即使没有重写 EN 位,紊乱的脉冲输出最多只会维持一个周期。

如果对两个缓冲寄存器都写 0 ,则输出为低电平;如果对 low\_buffer 写 0 ,对 full\_buffer 写 1 ,则输出高电平;如果写入 Low\_buffer 的值不小于 full\_buffer ,则输出低电平。但这三类数值都是不推荐的。

此外,缓冲寄存器的数值写入应当先于 CTRL 控制寄存器。



#### 21.3.2 脉冲测量功能

待测脉冲信号连在 PWM 输入信号接口上,在设置完 CTRL 控制寄存器后,在系统时钟的驱动下, Low\_level 和 full\_pulse 寄存器开始不断自增。当检测到输入脉冲信号上跳变时,将 Low\_level 寄存器的值传送到 low\_buffer 寄存器中;当检测到输入脉冲信号下跳变时,将 full\_pulse 寄存器的值传送到 full\_buffer 寄存器中,并将 Low\_level 和 full\_pulse 寄存器置 1,重新开始计数。

例:如果要输入脉冲为系统时钟 50 倍的高脉宽和 90 倍的低脉宽,在 low\_buffer 中最终读出的值为 90,在 full\_buffer 寄存器中读出的值为 (50+90)=140.

待测脉冲应当是周期信号,且脉冲周期不应超出32位计数器能计量的范围。

每次测量均是从下跳变开始,到下一个下跳变结束。由于测量及缓冲的需要,在连续测量两个脉冲周期后,low\_buffer 和 full\_buffer 寄存器中存储的才是正确的脉冲参数。

若出现持续的周期超过 0xFFFF\_FFF9 的脉冲,控制寄存器 INT 位会被置 1,表示待测脉冲超出了计量范围。

#### 21.3.3 防死区功能

四路 PWM 都配备了防死区功能,可以防止四路脉冲输出同时发生跳变。

将四路模块分别标记为 PWM\_0、PWM\_1、PWM\_2、PWM\_3,它们的优先级为  $0_i1_i2_i3$ ,即若要同时产生跳变,在 PWM\_0 跳变之后 PWM\_1 才能跳变(低优先级的信号被"抹去"一个或多个系统时钟),依此类推。该优先级是固化的,不可配置。

一个典型的防死区示例如下(PWM\_\* 为未开防死区的输出,PWM\_\* ,为打开防死区后的输出):



图 21.1: 防死区功能例图





# 第二十二章 HPET 控制器

## 22.1 概述

HPET (High Precision Event Timer, 高精度事件定时器)定义了一组新的定时器,这组定时器被操作系统使用,用来给线程调度,内核以及多媒体定时器服务器等产生中断。操作系统可以将不同的定时器分配给不同的应用程序使用。通过配置,每个定时器都能独立产生中断。

这组定时器由一个向上累加的主计时器(up-counter)以及一组比较器构成。这个计时器以固定的频率(125MHz)向上累加,因此当软件两次读取计时器的值时,除非遇到计时器溢出,否则第二次读取的值总是比第一次读取的值大。而每个定时器都包含一个 match 寄存器以及一个比较器。当 match 寄存器的值与主计时器相等时,那么定时器产生中断。部分定时器可产生周期性中断。

HPET 模块包括一个主计数器(main count)以及三个比较器(comparator),且他们的宽度都是 32 位。在这三个比较器中,有且仅有一个比较器支持周期性中断(periodic-capable);这三个比较器都支持非周期性中断。

# 22.2 寄存器描述

下表列出了 HPET 的寄存器:

表 22.1: HPET 寄存器列表

| 寄存器偏移地址  | 寄存器                                                    | 类型   |  |  |  |
|----------|--------------------------------------------------------|------|--|--|--|
| 000-007h | General Capabilities and ID Register                   | 只读   |  |  |  |
| 008-00Fh | Reserved                                               |      |  |  |  |
| 010-017h | General Configuration Register                         | 读/写  |  |  |  |
| 018-01Fh | Reserved                                               | R/WC |  |  |  |
| 020-027h | 7h General Interrupt Status Register                   |      |  |  |  |
| 028-0EFh | 028-0EFh Reserved                                      |      |  |  |  |
| 0F0-0F7h | Main Counter Value Register                            | R/W  |  |  |  |
| 100-107h | Timer 0 Configuration and Capability Register          | R/W  |  |  |  |
| 108-10Fh | 108-10Fh Timer 0 Comparator Value Register             |      |  |  |  |
| 110-11Fh | 110-11Fh Reserved                                      |      |  |  |  |
| 120-127h | Timer 1 Configuration and Capability Register          | R/W  |  |  |  |
| 128-12Fh | 128-12Fh Timer 1 Comparator Value Register             |      |  |  |  |
| 130-13Fh | 130-13Fh Reserved                                      |      |  |  |  |
| 140-147h | 140-147h Timer 2 Configuration and Capability Register |      |  |  |  |
| 148-14Fh | Timer 2 Comparator Value Register R/W                  |      |  |  |  |
| 150-15Fh | Reserved                                               |      |  |  |  |



若系统在状态转换过程中需要保存这些寄存器的的值以便随后恢复,那么操作系统 负责保存这些寄存器的值,硬件不保存这些寄存器的值。

表 22.2: General Capabilities and ID Register

| 位域     | 名称             | 描述                                                     | 访问 |
|--------|----------------|--------------------------------------------------------|----|
| 63: 32 | COUNTER_CLK-   | Main Counter Tick Period:这个域标示了主计时器的计                  | RO |
|        | _PERIOD        | 时频率,以 $\mathrm{fps}$ ( $10^{-15}s$ ) 为单位。这个值必须大于 $0$ , |    |
|        |                | 且小于或等于 05F5E100( 100ns,即 10MHz )                       |    |
| 31: 16 | VENDOR_ID      |                                                        | RO |
| 15: 14 | Reserved       |                                                        |    |
| 13     | COUNT_SIZE_CAP | Counter Size: 主计时器的宽度;                                 | RO |
|        |                | 0: 32 bits                                             |    |
|        |                | 1: 64 bits                                             |    |
| 12:8   | NUM_TIM_CAP    | Num of Timer:定时器的个数;这个域的值指示最后一                         | RO |
|        |                | 个定时器的编号,HPET 有三个定时器, 因此这个域的值                           |    |
|        |                | 是 2 。                                                  |    |
| 7:0    | REV_ID         | 版本号;不可为0                                               | RO |

表 22.3: General Configuration Register

| 位域    | 名称         | 描述                              | 访问  |
|-------|------------|---------------------------------|-----|
| 63: 1 | Reserved   |                                 |     |
| 0     | ENABLE_CNF | Overal Enable;用来使能所有定时器产生中断。如果为 | R/W |
|       |            | 0,主计时器停止计时且所有的定时器都不再产生中断。       |     |
|       |            | 0: 主计时器停止计时且所有的定时器都不再产生中断;      |     |
|       |            | 1: 主计时器计时且允许定时器产生中断;            |     |

表 22.4: General Interrupt Status Register

| 位域    | 名称         | 描述                                            | 访问   |  |  |
|-------|------------|-----------------------------------------------|------|--|--|
| 63: 3 | Reserved   |                                               |      |  |  |
| 2     | T2_INT_STS | Timer 2 Interrupt Active: 功能同 T0_INT_STS      | R/WC |  |  |
| 1     | T1_INT_STS | Timer 1 Interrupt Active: 功能同 T0_INT_STS R/WC |      |  |  |
| 0     | T0_INT_STS | Timer 0 Interrupt Active: 功能依赖于这个定时器的中断       | R/WC |  |  |
|       |            | 触发模式是电平触发还是边沿触发:                              |      |  |  |
|       |            | 如果是电平触发模式:                                    |      |  |  |
|       |            | 这位默认是0。当对应的定时器发生中断,那么有硬件将                     |      |  |  |
|       |            | 其置 1. 一旦被置位,软件往这位写 1 将会清空这位。往这                |      |  |  |
|       |            | 位写 0 , 则无意义。                                  |      |  |  |
|       |            | 如果边沿触发模式:                                     |      |  |  |
|       |            | 软件将忽略这位。软件通常往这位写 0.                           |      |  |  |

各个定时器的中断触发模式由各自 Configuration and Capability 寄存器的 Tn\_TYPE\_CNF 位确定。



# 表 22.5: Main Counter Value Register

| 位域     | 名称               | 描述                          | 访问  |
|--------|------------------|-----------------------------|-----|
| 63: 32 | Reserved         |                             |     |
| 31: 0  | Main_Counter_Val | 主计时器的值; 只有当主计时器停止计时时, 才允许修改 | R/W |
|        |                  | 这个寄存器的值。                    |     |

# 表 22.6: Timer N Configuration and Capabilities Registe

| 位域    | 名称              | 描述                                                                                                                                                                                     | 访问  |
|-------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 63: 9 | Reserved        |                                                                                                                                                                                        |     |
| 8     | Tn_32MODE_CNF   | Timer n 32-bit 模式 (N为 0-2)。当定时器为 32 位时,<br>这位为 0,且只读                                                                                                                                   | RO  |
| 7     | Reserved        |                                                                                                                                                                                        | RO  |
| 6     | Tn_VAL_SET_CNF  | Timer N Value Set (N为0-2):只有能产生周期性中断的定时器才会使用这个域。通过对这位写1,软件能直接修改周期性定时期的累加器。软件无需对这位清0只有Timer0能产生周期性中断,因此对Timer0来讲,这位是可读可写。而对于Timer1,Timer2,这位默认为0,且为只读。                                  | R/W |
| 5     | Tn_SIZE_CAP     | Timer N Size; Timer N 的宽度(N为 0-2)。<br>0: 32 位宽。                                                                                                                                        | RO  |
| 4     | Tn_PER_INT_CAP  | Timer N Periodic Interrupt Capable (N为0-2): 1:定时器能产生周期性中断; 0:定时器不能产生周期性中断;                                                                                                             | RO  |
| 3     | Tn_TYPE_CNF     | Timer N type (N为 0-2): 如果对应的 Tn_PER_INT_CAP 位为 0,那么这位为只读,且默认为 0. 若对应的 Tn_PER_INT_CAP 位为 1,那么这位可读可写。用作使能相应的定时器产生周期性中断。 1:使能定时器产生周期性中断 0:使能定时器产生非周期性中断                                   | R/W |
| 2     | Tn_INT_ENB_CNF  | Timer N interrupt Enable (N为0-2): 使能定时器产<br>生中断                                                                                                                                        | R/W |
| 1     | Tn_INT_TYPE_CNF | Timer N Interrupt Type (N为0-2): 0:定时器的中断触发模式为边沿触发;这意位着对应的定时器将产生边沿触发中断。若另外的的中断产生,那么将产生另外的边沿。 1:定时器的中断触发模式为电平触发;这意味着对应的定时器将产生电平触发中断。这个中断将一直有效直到被软件清掉(General Interrupt Status Register)。 |     |
| 0     | Reserved        |                                                                                                                                                                                        |     |

## 表 22.7: Timer N Comparator Value Register

|        |          | 1  |    |
|--------|----------|----|----|
| 位域     | 名称       | 描述 | 访问 |
| 63: 32 | Reserved |    |    |



| 位域    | 名称         | 描述                                                        | 访问  |
|-------|------------|-----------------------------------------------------------|-----|
| 31: 0 | Tn_Com_VAL | Tn_Comparator value (N为0-2): 定时器比较器的值; 当对应的定时器配置为非周期性模式时: | R/W |



# 第二十三章 DMA 控制器

## 23.1 DMA 控制器结构描述

龙芯 2H 中 DMA 用来实现内存与 APB 设备之间数据搬移,可以节省资源提高系统数据传输的效率。DMA 的传送数据的过程由三个阶段组成:

- a) 传送前的预处理:由 CPU 配置 DMA 描述符相关的寄存器。
- b) 数据传送: 在 DMA 控制器的控制下自动完成。
- c) 传送结束处理: 发送中断请求。

本 DMA 控制器是一个基于 AXI 总线的单通道、可配置的 DMA 控制器 IP 核,主要功能就是在芯片上集成了 DMA 功能,专门负责在内存与 APB 设备间搬运数据。本 DMA 控制器限定为以字 (4Byte) 为单位的数据搬运。CPU 通过一个通用寄存器 (dma\_order) 向 DMA 发命令。DMA 根据命令内容,从内存读取描述符启动 DMA 直接操作,或者将 DMA 状态写入内存,或者停止 DMA。

## 23.2 DMA 控制器与 APB 设备的交互

在 2H 中,使用 DMA 的 APB 设备包括 NAND 和 AC97,每个设备都有单独的 DMA 控制器。在 DMA 控制器的设计中有一小部分代码是用来处理 AC97 写操作。如果是写 AC97 的操作,需要在配置 DMA 描述符时,将 DMA\_DADDR[31] 配置为 1,将 DMA\_DADDR[30:28] 配置为需要的模式。

## 23.3 DMA 控制器

## 23.3.1 下一个描述符地址寄存器 (DMA\_ORDER\_ADDR)

偏移地址: 0x0

复位值: 0x00000000

|   | 位域   | 名称             | 位宽 | 访问  | 描述               |
|---|------|----------------|----|-----|------------------|
|   | 31:1 | dma_order_addr | 31 | R/W | 存储器内部下一个描述符地址寄存器 |
| ſ | 0    | dma_order_en   | 1  | R/W | 描述符是否有效信号        |

说明:存储下一个 DMA 描述符的地址,dma\_order\_en 是下个 DMA 描述符的使能位,如果该位为 1 表示下个描述符有效,该位为 0 表示下个描述符无效,不执行操作,地址 16 字节对齐。在配置 DMA 描述符时,该寄存器存放的是下个描述符的地址,执行



完该次 DMA 操作后,通过判断 dma\_order\_en 信号确定是否开始下次 DMA 操作。

#### 23.3.2 内存地址寄存器 (DMA\_SADDR)

偏移地址: 0x4

复位值: 0x00000000

| 位域   | 名称        | 位宽 | 访问  | 描述          |
|------|-----------|----|-----|-------------|
| 31:0 | dma_saddr | 32 | R/W | DMA 操作的内存地址 |

说明: DMA 操作分为: 从内存中读数据,保存在 DMA 控制器的缓存中,由 APB 发请求来访问 DMA 缓存中的数据,该寄存器指定了读 ddr2 的地址;从 APB 设备读数据保存在 DMA 缓存中,当 DMA 缓存中的字超过一定数目,就往内存中写,该寄存器指定了写内存的地址。

#### 23.3.3 设备地址寄存器 (DMA\_DADDR)

偏移地址: 0x8

复位值: 0x00000000

| 位域    | 名称        | 位宽 | 访问  | 描述                                   |
|-------|-----------|----|-----|--------------------------------------|
| 31    |           | 1  | R/W | AC97 写使能,"1"表示是写操作                   |
| 30    |           | 1  | R/W | 0:mono 1: 2 stero                    |
| 29:28 |           | 2  | R/W | AC97 写模式, 0: 1byte,1: 2byte,2: 4byte |
| 27:0  | dma_daddr | 28 | R/W | DMA 操作的 APB 设备地址                     |

说明:从内存中读数据,保存在 DMA 控制器的缓存中,由 APB 发请求来访问 DMA 缓存中的数据,该寄存器指定了写 APB 设备的地址;从 APB 设备读数据保存在 DMA 缓存中,当 DMA 缓存中的字超过一定数目,就往内存中写,该寄存器指定了读 APB 设备的地址。

#### 23.3.4 长度寄存器 (DMA\_LENGTH)

偏移地址: 0xc

复位值: 0x00000000

| 位域   | 名称         | 位宽 | 访问  | 描述        |
|------|------------|----|-----|-----------|
| 31:0 | dma_length | 32 | R/W | 传输数据长度寄存器 |

说明:代表一块被搬运内容的长度,单位是字。当搬运完 length 长度的字之后,开



始下个 step 即下一个循环。开始新的循环,则再次搬运 length 长度的数据。当 step 变为 1,单个 DMA 描述符操作结束,开始读下个描述符。

## 23.3.5 间隔长度寄存器 (DMA\_STEP\_LENGTH)

偏移地址: 0x10

复位值: 0x00000000

| 位域   | 名称                  | 位宽 | 访问  | 描述          |
|------|---------------------|----|-----|-------------|
| 31:0 | $dma\_step\_length$ | 32 | R/W | 数据传输间隔长度寄存器 |

说明:间隔长度说明两块被搬运内存数据块之间的长度,前一个 step 的结束地址与后一个 step 的开始地址之间的间隔。

## 23.3.6 循环次数寄存器 (DMA\_STEP\_TIMES)

偏移地址: 0x14

复位值: 0x00000000

| 位域   | 名称             | 位宽 | 访问  | 描述          |
|------|----------------|----|-----|-------------|
| 31:0 | dma_step_times | 32 | R/W | 数据传输循环次数寄存器 |

说明:循环次数说明在一次 DMA 操作中需要搬运的块的数目。如果只想搬运一个连续的数据块,循环次数寄存器的值可以赋值为 1。

#### 23.3.7 控制寄存器 (DMA\_CMD)

偏移地址: 0x18

复位值: 0x00000000

| 位域    | 名称                 | 位宽   | 访问  | 描述                               |
|-------|--------------------|------|-----|----------------------------------|
| 14:13 | dma_cmd            | 2    | R/W | 源、目的地址生成方式                       |
| 12    | dma_r_w            | 1    | R/W | DMA 操作类型,"1"为读 ddr2 写设备,"0"为读设备写 |
|       |                    |      |     | ddr2                             |
| 11:8  | dma_write_state    | 4    | R/W | DMA 写数据状态                        |
| 7:4   | dma_read_state     | 4    | R/W | DMA 读数据状态                        |
| 3     | dma_trans_over     | 1    | R/W | DMA 执行完被配置的所有描述符操作               |
| 2     | dma_single_trans_o | velr | R/W | DMA 执行完一次描述符操作                   |
| 1     | dma_int            | 1    | R/W | DMA 中断信号                         |
| 0     | dma_int_mask       | 1    | R/W | DMA 中断是否被屏蔽掉                     |

说明: dma\_single\_trans\_over=1 指一次 DMA 操作执行结束,此时 length=0 且



step\_times=1,开始取下个 DMA 操作的描述符。下个 DMA 操作的描述符地址保存在 DMA\_ORDER\_ADDR 寄存器中,如果 DMA\_ORDER\_ADDR 寄存器中 dma\_order\_en=0,则 dma\_trans\_over=1,整个 dma 操作结束,没有新的描述符要读; 如果 dma\_order\_en=1,则 dma\_trans\_over 置为 0,开始读下个 dma 描述符。dma\_int 为 DMA 的中断,如果没有中断屏蔽,在一次配置的 DMA 操作结束后发生中断。CPU 处理完中断后可以直接将其置低,也可以等到 DMA 进行下次传输时自动置低。dma\_int\_mask 为对应 dma\_int 的中断屏蔽。dma\_read\_state 说明了 DMA 当前的读状态。dma\_write\_state 说明了 DMA 当前的写状态。

DMA 写状态 (WRITE\_STATE[3:0]) 描述, DMA 包括以下几个写状态:

| 状态             | 值    | 描述                                    |
|----------------|------|---------------------------------------|
| Write_idle     | 4'h0 | 写状态正处于空闲状态                            |
| W_ddr_wait     | 4'h1 | dma 判断需要执行读设备写内存操作,并发起写内存请求,但是内       |
|                |      | 存还没准备好响应请求,因此 dma 一直在等待内存的响应          |
| Write_ddr      | 4'h2 | 内存接收了 dma 写请求,但是还没有执行完写操作             |
| Write_ddr_end  | 4'h3 | 内存接收了 dma 写请求,并完成写操作,此时 dma 处于写内存操    |
|                |      | 作完成状态                                 |
| Write_dma_wait | 4'h4 | dma 发出将 dma 状态寄存器写回内存的请求,等待内存接收请求     |
| Write_dma      | 4'h5 | 内存接收写 dma 状态请求, 但是操作还未完成              |
| Write_dma_end  | 4'h6 | 内存完成写 dma 状态操作                        |
| Write_step_end | 4'h7 | dma 完成一次 length 长度的操作 (也就是说完成一个 step) |

#### DMA 读状态 (READ\_STATE[3:0]) 描述, DMA 包括以下几个读状态:

| 状态               | 值    | 描述                                   |
|------------------|------|--------------------------------------|
| Read_idle        | 4'h0 | 读状态正处于空闲状态                           |
| Read_ready       | 4'h1 | 接收到开始 dma 操作的 start 信号后,进入准备好状态,开始读描 |
|                  |      | 述符                                   |
| Get_order        | 4'h2 | 向内存发出读描述符请求,等待内存应答                   |
| Read_order       | 4'h3 | 内存接收读描述符请求,正在执行读操作                   |
| Finish_order_end | 4'h4 | 内存读完 dma 描述符                         |
| R_ddr_wait       | 4'h5 | dma 向内存发出读数据请求,等待内存应答                |
| Read_ddr         | 4'h6 | 内存接收 dma 读数据请求,正在执行读数据操作             |
| Read_ddr_end     | 4'h7 | 内存完成 dma 的一次读数据请求                    |
| Read_dev         | 4'h8 | dma 进入读设备状态                          |
| Read_dev_end     | 4'h9 | 设备返回读数据,结束此次读设备请求                    |
| Read_step_end    | 4'ha | 结束一次 step 操作,step times 减 1          |



# 第二十四章 电源管理模块

## 24.1 概述

龙芯 2H 电源管理模块提供系统功耗管理实现机制。支持 Advanced Configuration and Power Interface, Version 4.0a(ACPI), 提供相应的功耗管理功能。

- 系统休眠与唤醒,支持 ACPI S3 (待机到内存), ACPI S4 (待机到硬盘), ACPI S5 (软关机),并且支持电源失效检测和自动系统恢复。支持多种唤醒方式(USB, GMAC,电源开关等)
- 动态性能功耗控制,支持处理器核 DVFS 控制,支持动态关闭媒体解码协处理器电源。
- 系统时钟控制,模块时钟门控,多种方式调节频率。
- 提供温度管理控制功能。支持3级报警机制。

## 24.2 寄存器描述

本节介绍电源管理控制器相关寄存器,使用方法可参见下一节描述。

电源管理控制的物理基地址为: 0x1fef0000 - 0x1fef7fff (32KB)

寄存器电压域表示寄存器的该位所属电压域。

寄存器属性简写包括:

R/W 可读可写

RO 只读

R/WC 可读,写清除

WO 只写,读无效

#### 24.2.1 PMCON\_SOC : SOC General PM Configuration Register

| 地址偏移 | 电压域 | 属性      |
|------|-----|---------|
| 0x00 | SOC | R/W, RO |

| 位域    | 描述                          |
|-------|-----------------------------|
| 25    | PWRBTN_LVL - RO             |
|       | 该位指示当前 PWRBTNn 信号状态。        |
| 24    | PWRTYP - RO                 |
|       | 该位指示供电模式                    |
|       | 1: AC (适配器) 0: Battery (电池) |
| 23:22 | 保留                          |



| 位域    | 描述                                            |
|-------|-----------------------------------------------|
| 21:18 | MS_DELAY - R/W                                |
|       | 媒体解码器上电延时,确保上电电压达到稳定值, 0b0000-0b1111 (0-15us) |
| 17    | MS_DELAY_SEL - R/W                            |
|       | 该位选择媒体上电等待机制                                  |
|       | 1: 內部 ACK 信号确定上电状态                            |
|       | 0:延时方式(MS_DELAY 确定延时值)                        |
| 16    | MS_CNT_EN - R/W                               |
|       | 媒体子系统功耗管理开关                                   |
|       | 0:媒体功耗管理无效 1: 使能媒体功耗管理                        |
| 15:14 | DVFS_CNT_1 (DVFS Control 1) - R/W             |
|       | DVFS 转换时何时进行保护操作                              |
|       | 00: 不进行保护操作。                                  |
|       | 01: 电压转换阶段进行保护操作。                             |
|       | 10: 频率变换是进行保护操作。                              |
|       | 11: 电压和频率转换阶段都进行保护操作。                         |
| 13:12 | DVFS_CNT_0 (DVFS Control 2) - R/W             |
|       | DVFS 转换时保护操作类型                                |
|       | 00: 停时钟。                                      |
|       | 01: 使用备份时钟。                                   |
|       | 10: 保留。                                       |
|       | 11: 对时钟设置不做操作。                                |
| 11    | DVFS _EN - R/W                                |
|       | 该位使能处理器核 DVFS 功能                              |
|       | 0: 无效 DVFS 使能 1: 使能 DVFS 功能                   |
| 10    | PWROK_MASK_EN - R/W                           |
|       | 如果有效,在 DVFS 电压转换阶段时屏蔽 PWROK 信号                |
| 9     | DVFS_FORCE_BYPASS - R/W                       |
| 7.0   | 强制使用备份时钟,用户配置 DVFS 时将其写 0,其它情况下不应该使用该位。       |
| 7:0   | TEMP_NOW - RO.                                |
|       | CPU 内部温度传感器温度值,第7为为溢出位。                       |

# 24.2.2 $PMCON_RESUME : RESUME General PM Configuration Register$

| 地址偏移 | 电压域    | 属性            |
|------|--------|---------------|
| 0x04 | RESUME | R/W, RO, R/WC |

| 位域   | 描述                                                       |
|------|----------------------------------------------------------|
| 31:9 | 保留                                                       |
| 8    | USBPHY_LP_EN - R/W                                       |
|      | 进入 G2/S5 状态时使能 USB PHY 进入低功耗状态。                          |
| 7    | USB_GMAC_OK - R/W                                        |
|      | 如果 RSMRSTn 有效过,该位为 0,表示 USB 和 GMAC 没有配置,不能唤醒系统。重新上电      |
|      | 后由系统配置该位。                                                |
| 6    | CTT_STS - R/WC                                           |
|      | 系统在 SO 状态时发生 temperature trip,系统进入 G2/S5 状态,该位为重新上电后系统检测 |
|      | 记录事件状态                                                   |
| 5    | CTT_EN - R/W                                             |
|      | 使能 temperature trip 保护机制                                 |



| 位域 | 描述                                               |  |
|----|--------------------------------------------------|--|
| 4  | LID_OPEN - RO                                    |  |
|    | 显示屏状态检测位                                         |  |
|    | 1:显示屏打开0:显示屏合上                                   |  |
| 3  | 保留                                               |  |
| 2  | SRS (System Reset Status) - R/WC                 |  |
|    | 0: SYS_RESETn 没有被按下                              |  |
|    | 1: SYS_RESETn 被按下过,系统重新复位后需检查此位并作出相应清除操作。        |  |
| 1  | PWROK_FLR (PWROK Failure) - R/WC                 |  |
|    | 当系统在 S0 状态时,PWROK 信号变无效该位置 1,软件通过写 1 将该位清除。      |  |
| 0  | DRAM_INIT - R/W                                  |  |
|    | 该位不影响硬件功能,PMON 在进行 DRAM 初始化前将该位置 1,结束 DRAM 初始化后将 |  |
|    | 该位写 0,软件可通过此位检查 DRAM 初始化是否被打断过。                  |  |

# 24.2.3 PMCON\_RTC : RTC General PM Configuration Register

| 地址偏移 | 电压域 | 属性        |
|------|-----|-----------|
| 0x08 | RTC | R/W, R/WC |

| 位域   | 描述                                                                |  |
|------|-------------------------------------------------------------------|--|
| 31:9 | 保留                                                                |  |
| 8    | WOL_EN - R/W enable wake on LAN don't shut off SLP_LANn, use with |  |
|      | WOL_BAT_EN                                                        |  |
|      | 使能 wake on LAN,与 WOL_BAT_EN 共同使用                                  |  |
| 7    | WOL_BAT_EN - R/W                                                  |  |
|      | 如果系统使用电池供电,如果该位置 1,使能 WOL,如果该位置 0,不论 WOL_EN, WOL                  |  |
|      | 无效                                                                |  |
| 6:5  | S3_ASSERTION_WIDTH - R/W                                          |  |
|      | 这 2 bit 值代表 S3n 信号从有效到重新无效的最小时间间隔。                                |  |
|      | 11: 2s                                                            |  |
|      | 10: 125ms                                                         |  |
|      | 01: 2ms                                                           |  |
|      | 00: 120us                                                         |  |
| 4:3  | S4_ASSERTION_WIDTH - R/W                                          |  |
|      | 这 2 bit 值代表 S4n 信号从有效到重新无效的最小时间间隔。                                |  |
|      | 11: 4 seconds                                                     |  |
|      | 10: 3 seconds                                                     |  |
|      | 01: 2 seconds                                                     |  |
|      | 00: 1 seconds                                                     |  |
| 2    | S4_ASSERTION_EN - R/W                                             |  |
|      | 0: S4n 信号从有效到重新无效的间隔为 64RTC 周期。                                   |  |
|      | 1: S4n 信号从有效到重新无效的间隔为 S4_ASSERTION_WIDTH 决定。                      |  |
| 1    | PWR_FLR (Power Failure) - R/WC.                                   |  |
|      | 该位在 RTC 域,只能被 RTC_RSTn 复位。                                        |  |
|      | 如果置 1 表示系统发生过电源失效 (进入 G3 状态),即除 RTC 以外所有供电失效过(                    |  |
|      | RSMRSTn 有效过),软件通过写 1 将该位清除。                                       |  |



| 位域 | 描述                                                   |
|----|------------------------------------------------------|
| 0  | AFTERG3_EN - R/W                                     |
|    | 该位决定系统进入 G3 状态后重新供电后的动作。                             |
|    | 0:系统在供电恢复后将自动回复到 S0 状态。                              |
|    | 1: 系统将恢复到 S5 状态, 如果发生电源失效时系统在 S4 状态, 重新供电后系统恢复到 S4 状 |
|    | 态。                                                   |
|    | 该位会被 power button override 和 thermal trip 事件置 1。     |

# 24.2.4 $PM1\_STS: Power Management 1 Status Register$

| 地址偏移 | 电压域            | 属性   |
|------|----------------|------|
| 0x0C | RESUME/RTC/SOC | R/WC |

| 位域                                                | 描述                                                       |  |
|---------------------------------------------------|----------------------------------------------------------|--|
| 31:16                                             | 保留                                                       |  |
| 15                                                | WAK_STS (Wake Status) - R/WC - Resume                    |  |
|                                                   | 0:软件写1将该位清除。                                             |  |
|                                                   | 1:如果系统从任何一个休眠状态被唤醒事件唤醒,硬件将该位置1。                          |  |
| 14                                                | PCIEXP_WAKE_STS - R/WC - Resume                          |  |
|                                                   | 1: PCIE 唤醒事件发生                                           |  |
|                                                   | 0:软件写1将该位清除                                              |  |
| 13:12                                             | 保留                                                       |  |
| 11                                                | PRBTNOR_STS (Power Button Override Status) - R/WC - RTC  |  |
|                                                   | 0:软件写1将该位清除                                              |  |
|                                                   | 1:当 power button override 发生时,该位置 1,系统无条件进入 G2/S5 状态,同时将 |  |
|                                                   | AFTERG3_EN 位置 1。                                         |  |
| 10                                                | RTC_STS (RTC Status) - R/WC - Resume                     |  |
|                                                   | 0:软件写1将该位清除                                              |  |
| 1: 当 RTC 产生 alarm 时该位置 1。此外当 RTC_EN 有效时,该位产生唤醒事件。 |                                                          |  |
|                                                   | 9 保留                                                     |  |
| PWRBTN_STS (Power Button Status) - R/WC - Resume  |                                                          |  |
|                                                   | 0:软件写 1 将该位清除。Thermal trip 会清除该位。                        |  |
|                                                   | 1: 当按下 PWRBTNn 保持 16ms 以上 (4s 以下) 时,该位会置 1。              |  |
|                                                   | 在 S0 状态时, 当 PWRBTN_EN 和 PWRBTN_STS 同时有效时, 将产生中断。         |  |
|                                                   | 在 S3-S5 任何休眠状态时,如果 PWRBTN_STS 置位,系统将恢复。                  |  |
| 7:5                                               | 保留<br>PM STG (Pank) A GOOD                               |  |
| 4                                                 | BM_STS (Bus Master Status) - R/WC - SOC                  |  |
|                                                   | 0:软件写1将该位清除                                              |  |
| 1: 该位监视 bus master 上的非一致性访问。                      |                                                          |  |
| 3:1                                               |                                                          |  |
| 0                                                 | TMROF_STS (PM Timer Overflow Status) - R/WC - SOC        |  |
|                                                   | 0:软件写1将该位清除                                              |  |
|                                                   | 1: 当 24bit 计数器(周期 8ns)的最高位翻转时,该位置 1,该记时功能推荐使用 HPET 完     |  |
|                                                   | 成。                                                       |  |



### 24.2.5 PM1\_EN: Power Management 1 Enable Register

| 地址偏移 | 电压域            | 属性  |
|------|----------------|-----|
| 0x10 | RESUME/RTC/SOC | R/W |

| 位域    | 描述                                               |  |
|-------|--------------------------------------------------|--|
| 31:15 | 保留                                               |  |
| 14    | PCIEXP_WAKE_DIS - R/W - resume                   |  |
|       | 当置位时,不产生 PCIE 唤醒事件,但是该位的值不影响 PCIEXP_WAKE_STS 的值。 |  |
| 13:11 | 保留                                               |  |
| 10    | RTC_EN (RTC Event Enable) - R/W - RTC            |  |
|       | RTC 唤醒和中断使能                                      |  |
| 9     | 保留                                               |  |
| 8     | PWRBTN_EN (Power Button Enable) - R/W - Resume   |  |
|       | PWRBTN 中断事件产生使能,该位不影响 PWRBTN 唤醒事件产生。             |  |
| 7:1   | 保留                                               |  |
| 0     | TMROF_EN (PM Timer Overflow Enable) - R/W - SOC  |  |
|       | 如果该位置位,TMROF_STS 将产生中断。                          |  |

# 24.2.6 $PM1\_CNT$ : Power Management 1 Control Register

| 地址偏移 | 电压域            | 属性  |
|------|----------------|-----|
| 0x14 | RESUME/RTC/SOC | R/W |

| 位域    | 描述                                               |  |
|-------|--------------------------------------------------|--|
| 31:14 | 保留                                               |  |
| 13    | SLP_EN (Sleep Enable) - R/W - Resume             |  |
|       | 该位写 1 将会使系统进入 SLP_TYP 声明的休眠状态,进入相关休眠状态后该位自动恢复为 0 |  |
|       | 0                                                |  |
| 12:10 | SLP_TYP (Sleep Type) - R/W - RTC                 |  |
|       | 该 3bit 表示系统的休眠状态。                                |  |
|       | 000:表示 S0 状态。                                    |  |
|       | 001: Reserved.                                   |  |
|       | 010: Reserved.                                   |  |
|       | 011: Reserved.                                   |  |
|       | 100: Reserved.                                   |  |
|       | 101: Suspend-to-RAM. S3n 信号有效, 进入 S3 状态。         |  |
|       | 110: Suspend-to-Disk. S3n, S4n 信号有效, 进入 S4 状态。   |  |
|       | 111: Soft Off. S3n, S4n, S5n 信号有效, 进入 S5 状态。     |  |
| 9:2   | 保留                                               |  |
| 1     | BM_RLD (Bus master Reload) - R/W - SOC           |  |
|       | 如果置位,使能 BM_STS 产生打断事件,使得系统从 C2/C3 状态恢复。          |  |
| 0     | INT_EN - R/W - SOC                               |  |
|       | 中断使能开关,使能电源管理控制器中断信号的产生。                         |  |



#### 24.2.7 PM1\_TMR : Power Management 1 Timer

| 地址偏移 | 电压域 | 属性 |
|------|-----|----|
| 0x18 | SOC | RO |

| 位域    | 描述                                     |
|-------|----------------------------------------|
| 31:24 | 保留                                     |
| 23:0  | TMR_VAL (Timer Value) - RO.            |
|       | 计数器计数,周期 8ns。当 23 位翻转时,置位 TNROF STS 位。 |
|       | 推荐使用 HPET。                             |

### 24.2.8 $P\_CNT$ : Processor Control Register

| 地址偏移 | 电压域 | 属性      |
|------|-----|---------|
| 0x1C | SOC | R/W, RO |

| 位域   | 描述                                                     |
|------|--------------------------------------------------------|
| 31:5 | 保留                                                     |
| 4    | THTL_EN - R/W                                          |
|      | 当系统处于 C0 状态时, 使能该位可以通过 clock throttling 对 CPU 时钟进行控制。  |
| 3:1  | THTL_DTY - R/W                                         |
|      | 该 3-bit 确定 throttling 的百分比,throttling 周期是 1024 APB 时钟。 |
|      | 000: no throttling                                     |
|      | 001: 87.5% throttling                                  |
|      | 010: 75% throttling                                    |
|      | 011: 62.5% throttling                                  |
|      | 100: 50% throttling                                    |
|      | 101: 37.5% throttling                                  |
|      | 110: 25% throttling                                    |
|      | 111: 12.5% throttling                                  |
| 0    | 保留                                                     |

### 24.2.9 P\_LVL2 : Processor LVL\_2 Register

| 地址偏移 | 电压域 | 属性 |
|------|-----|----|
| 0x20 | SOC | RO |

| 位域   | 描述                                            |
|------|-----------------------------------------------|
| 31:0 | 读该寄存器是 CPU 进入 C2 状态直到 break event 发生,写该寄存器无效。 |

# $24.2.10 \quad P\_LVL3: \ Processor \ LVL\_3 \ Register$

| 地址偏移 | 电压域 | 属性 |
|------|-----|----|
| 0x24 | SOC | RO |

| 位域   | 描述                                            |
|------|-----------------------------------------------|
| 31:0 | 读该寄存器是 CPU 进入 C3 状态直到 break event 发生,写该寄存器无效。 |



### 24.2.11 GPE0\_STS : General Purpose Event0 Status Register

| 地址偏移 | 电压域    | 属性   |
|------|--------|------|
| 0x28 | RESUME | R/WC |

| 位域    | 描述                                                   |
|-------|------------------------------------------------------|
| 31:16 | 保留                                                   |
| 15:10 | USB[6:1]_STS - R/WC.                                 |
|       | 只有第 10 位有意义,15:11 位暂无意义。                             |
|       | 0:软件写1将该位清除。                                         |
|       | 1: 当 USB 发生 wake 事件时这些位被置位,当 USBx_EN 位有效时,产生唤醒事件或中断。 |
| 9     | 保留                                                   |
| 8     | RLSTS - R/WC.                                        |
|       | 0:软件写1将该位清除。                                         |
|       | 1: 当 RIn 信号有效时被置位。                                   |
| 7     | BATLOW_STS - R/WC.                                   |
|       | 0:软件写1将该位清除。                                         |
|       | 1: 当 BATLOWn 信号有效时被置位                                |
|       | 如果 BATLOW_EN 有效,BATLOW_STS 将产生中断。该位不产生唤醒事件。          |
| 6     | GMAC1_STS - R/WC.                                    |
|       | 0:软件写1将该位清除。                                         |
|       | 1: 当 GMAC1 发生 wake 事件时这些位被置位,当 GMAC1_EN 位有效时,产生唤醒事件或 |
|       | 中断。                                                  |
| 5     | GMAC0_STS - R/WC.                                    |
|       | 0:软件写1将该位清除。                                         |
|       | 1: 当 GMAC0 发生 wake 事件时这些位被置位,当 GMAC0_EN 位有效时,产生唤醒事件或 |
|       | 中断。                                                  |
| 4     | LID_STS - R/WC.                                      |
|       | 0:软件写1将该位清除。                                         |
|       | 1:当 LID_EN 位有效时,产生唤醒事件。                              |
| 3     | CTW_STS - R/WC.                                      |
|       | CPU thermal warning 发生                               |
| 2     | CTA_STS - R/WC.                                      |
| -     | CPU thermal alert 发生                                 |
| 1     | PWRSWITCH_STS - R/WC.                                |
| 0     | 供电状态发生变化,PWRTYP 变化。该位会产生中断。<br>保留                    |
| U     |                                                      |

# ${\bf 24.2.12}\quad {\bf GPE0\_EN}: {\bf General~Purpose~Event0~Status~Register}$

| 地址偏移 | 电压域        | 属性  |
|------|------------|-----|
| 0x2C | RESUME/RTC | R/W |

| 位域    | 描述                                     |
|-------|----------------------------------------|
| 31:16 | 保留                                     |
| 15:10 | USB[6:1]_EN - R/W.                     |
|       | 0: 无效                                  |
|       | 1: 使能 USBx_STS 产生唤醒事件, 当回到 S0 将产生中断信号。 |



| 位域 | 描述                                     |
|----|----------------------------------------|
| 9  | 保留                                     |
| 8  | RLEN - R/W - RTC                       |
|    | 0: 无效                                  |
|    | 1: 使能 RIn_STS 产生唤醒事件, 当回到 SO 将产生中断信号。  |
| 7  | BATLOW_EN - R/W - RTC                  |
|    | 0: 无效                                  |
|    | 1: 使能 BATLOWn 产生中断事件。                  |
| 6  | GMAC1_EN - R/W - RTC                   |
|    | 0: 无效                                  |
|    | 1:使能 GMAC1_STS 产生唤醒事件, 当回到 SO 将产生中断信号。 |
| 5  | GMAC0_EN - R/W - RTC                   |
|    | 0: 无效                                  |
|    | 1:使能 GMACO_STS 产生唤醒事件,当回到 SO 将产生中断信号。  |
| 4  | LID_EN - R/W.                          |
|    | 0: 无效                                  |
|    | 1:使能 LID_STS 产生唤醒事件,S0 状态时将产生中断信号。     |
| 3  | CTW_EN - R/W                           |
|    | 使能 CPU THERMAL WARNING 产生中断。           |
| 2  | CTA_EN - R/W                           |
|    | 使能 CPU THERMAL ALERT 产生中断。             |
| 1  | PWRSWITCH_EN - R/W                     |
|    | 使能 PWRSWITCH_STS 产生中断。                 |
| 0  | LID_POL - R/W                          |
|    | 该位设置 LID 的极性。                          |
|    | 0: LID 为低时置位 LID_STS bit.              |
|    | 1: LID 为高时置位 LID_STS bit.              |

# ${\bf 24.2.13 \quad RST\_CNT: Reset\ Control\ Register}$

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x30 | SOC | R/W |

| 位域   | 描述             |
|------|----------------|
| 31:2 | 保留             |
| 1    | WD_EN - R/W    |
|      | Watch dog 功能使能 |
| 0    | OS_RST - R/W   |
|      | 软件写该位使系统复位。    |

# 24.2.14 $WD\_SET : Watch Dog Set Register$

| 地址偏移 | 电压域 | 属性 |
|------|-----|----|
| 0x34 | SOC | WO |

| 位域   | 描述                   |
|------|----------------------|
| 31:1 | 保留                   |
| 0    | 写该位将重填 watch dog 计数器 |



#### 24.2.15 WD\_Timer: Watch Dog Timer Register

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x38 | SOC | R/W |

| 位域   | 描述                               |
|------|----------------------------------|
| 31:0 | 该寄存器的值为 watch dog 重填的值,复位后为全 1 。 |

# 24.2.16 DVFS\_CNT : Dynamic Voltage Frequency Scaling Control Register

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x3C | SOC | R/W |

| 位域    | 描述                                              |
|-------|-------------------------------------------------|
| 28    | VID_UPDATE_EN R/W                               |
|       | 如果不想改变电压 VID 值,将该位置 0 (即只进行频率转换)                |
| 27:18 | V_DELAY - R/W                                   |
|       | 该部分值表示 DVFS 电压转换时的延时值,该延时值期间可进行保护操作。            |
|       | 范围: 0 — 1000us。                                 |
| 17:9  | $\mathrm{FEQ}_{-}\mathrm{TGT}$ - $\mathrm{R/W}$ |
|       | 修改 CPU 分频器分频值。                                  |
|       | 17: 保留                                          |
|       | 16:update en                                    |
|       | 15:DIV enable                                   |
|       | 14:9 DIV number                                 |
| 8:3   | $VID_{-}TGT - R/W$                              |
|       | 设置目标电压值(目标 VID )                                |
| 2     | DVFS_POL - R/W                                  |
|       | 写 1 表示需提升性能, 升压升频。                              |
|       | 写 0 表示降低性能节约功耗,降压降频。                            |
| 1     | DVFS_START - R/W                                |
|       | 写 1 开始一个 DVFS 转换。                               |
| 0     | VID_VALID - R/W                                 |
|       | 1: 输出 VID 值有效                                   |
|       | 0:输出 VID 高阻, VID 由外部上下拉决定。                      |

### 24.2.17 $DVFS\_STS : Dynamic Voltage Frequency Scaling Status Register$

| 地址偏移 | 电压域 | 属性      |
|------|-----|---------|
| 0x40 | SOC | R/W, RO |

| 位域    | 描述            |
|-------|---------------|
| 18:10 | FEQ_STS - R/W |
|       | 当前分频器值        |
| 9:4   | VID_STS - R/W |
|       | 当前 VID 值      |
| 3:2   | 保留            |



| 位域 | 描述                              |
|----|---------------------------------|
| 1  | CPU_DVFS_STS(DVFS status) - RO. |
|    | 0: DVFS 控制器空闲,可进行 DVFS 操作       |
|    | 1:系统正在进行 DVFS 转换。               |
| 0  | 保留                              |

# ${\bf 24.2.18 \quad MS\_CNT: Media\ Subsystem\ Power\ Control\ Register}$

| 地址偏移 | 电压域 | 属性      |
|------|-----|---------|
| 0x44 | SOC | R/W, RO |

| 位域   | 描述                  |
|------|---------------------|
| 31:5 | 保留                  |
| 4:3  | MS_TGT - R/W        |
|      | 设置媒体处理器的目标状态        |
|      | 00: 工作              |
|      | 01:(保留)             |
|      | 10:停时钟              |
|      | 11: 关闭电源            |
| 2:1  | MS_STS - RO         |
|      | 0:控制器空闲,可以进行操作。     |
|      | 1:媒体控制器正在进行操作。      |
| 0    | MS_RUNNING_STS - RO |
|      | 媒体处理器的状态            |
|      | 00:工作               |
|      | 01:(保留)             |
|      | 10:停时钟              |
|      | 11: 关闭电源            |

# ${\bf 24.2.19 \quad MS\_THT: Media\ Subsystem\ Throttling\ Register}$

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x48 | SOC | R/W |

| 位域   | 描述               |
|------|------------------|
| 31:5 | 保留               |
| 4    | MS_THT_EN - R/W. |
|      | 使能媒体处理器的时钟控制     |



| 位域  | 描述                                                     |  |  |
|-----|--------------------------------------------------------|--|--|
| 3:1 | MS_THT_DTY - R/W.                                      |  |  |
|     | 该 3-bit 确定 throttling 的百分比,throttling 周期是 1024 APB 时钟。 |  |  |
|     | 000: no throttling                                     |  |  |
|     | 001: 87.5% throttling                                  |  |  |
|     | 010: 75% throttling                                    |  |  |
|     | 011: 62.5% throttling                                  |  |  |
|     | 100: 50% throttling                                    |  |  |
|     | 101: 37.5% throttling                                  |  |  |
|     | 110: 25% throttling                                    |  |  |
|     | 111: 12.5% throttling                                  |  |  |
| 0   | 保留                                                     |  |  |

# 24.2.20 THSENS\_CNT : CPU Thermal Sensor Control Register

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x4C | SOC | R/W |

| 位域    | 描述                                          |  |  |  |
|-------|---------------------------------------------|--|--|--|
| 31:27 | 保留                                          |  |  |  |
| 26:20 | WARNING_TMP - R/W                           |  |  |  |
|       | CPU 温度超过该值,如果被使能,将产生中断。如果温度位降低到该值以下,不会重复产生中 |  |  |  |
|       | 断。                                          |  |  |  |
|       | 推荐操作:系统采取降低功耗操作。                            |  |  |  |
| 19:13 | ALERT_TMP - R/W                             |  |  |  |
|       | CPU 温度超过该值,如果被使能,将产生中断。如果温度位降低到该值以下,不会重复产生中 |  |  |  |
|       | 断。                                          |  |  |  |
|       | 推荐操作: 采取正常关闭系统操作                            |  |  |  |
| 12:6  | TRIP_TMP - R/W                              |  |  |  |
|       | CPU 温度超过该值, 如果被使能, 系统无条件进入 G2/S5 状态。        |  |  |  |
| 5:0   | OFFSET - R/W                                |  |  |  |
|       | 设置温度传感器的校正偏移(软件),最高位为符号位。                   |  |  |  |

# 24.2.21 GEN\_RTC\_1 : General RTC Register 1

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x50 | RTC | R/W |

| 位域   | 描述        |
|------|-----------|
| 31:0 | RTC 通用寄存器 |

#### 24.2.22 GEN\_RTC\_2: General RTC Register 2

| 地址偏移 | 电压域 | 属性  |
|------|-----|-----|
| 0x54 | RTC | R/W |



| 位域   | 描述        |
|------|-----------|
| 31:0 | RTC 通用寄存器 |



# 第二十五章 RTC

#### 25.1 概述

实时时钟(RTC)单元可以在主板上电后进行配置,当主板断电后,该单元仍然运作,可以仅靠板上的电池供电就正常运行。RTC单元运行时电流仅几个微安。

RTC 包含振荡器,结合外部 32.768KHZ 晶体产生工作时钟。该时钟用于时间信息的维护以及产生各种定时和计数中断。

RTC 模块中包含两个计数器,分别为 TOY (Time of Year) 计数器和 RTC 计数器。其中 TOY 计数器按年月日时分秒计数,精度为以 0.1 秒;RTC 计数器以 32.768KHz 时钟计数,宽度为 32 位。

#### 25.2 寄存器描述

RTC 模块寄存器位于 0x1fef8000 - 0x1fefffff 的 32KB 地址空间内, 其基地址为 0x1fef8000, 所有寄存器位宽均为 32 位。

#### 25.2.1 寄存器地址列表

| 名称               | 地址         | 位宽 | RW | 描述              |
|------------------|------------|----|----|-----------------|
| $sys\_toytrim$   | 0x1fef8020 | 32 | RW | 软件必须初始化为 0      |
| $sys\_toywrite0$ | 0x1fef8024 | 32 | W  | TOY 低 32 位数值写入  |
| sys_toywrite1    | 0x1fef8028 | 32 | W  | TOY 高 32 位数值写入  |
| sys_toyread0     | 0x1fef802C | 32 | R  | TOY 低 32 位数值读出  |
| sys_toyread1     | 0x1fef8030 | 32 | R  | TOY 高 32 位数值读出  |
| sys_toymatch0    | 0x1fef8034 | 32 | RW | TOY 定时中断 0      |
| sys_toymatch1    | 0x1fef8038 | 32 | RW | TOY 定时中断 1      |
| sys_toymatch2    | 0x1fef803C | 32 | RW | TOY 定时中断 2      |
| sys_rtcctrl      | 0x1fef8040 | 32 | RW | TOY 和 RTC 控制寄存器 |
|                  |            |    |    | 软件必须初始化         |
| $sys\_rtctrim$   | 0x1fef8060 | 32 | RW | 软件必须初始化为 0      |
| $sys\_rtcwrite0$ | 0x1fef8064 | 32 | W  | RTC 定时计数写入      |
| $sys\_rtcread0$  | 0x1fef8068 | 32 | R  | RTC 定时计数读出      |
| sys_rtcmatch0    | 0x1fef806C | 32 | RW | RTC 时钟定时中断 0    |
| sys_rtcmatch1    | 0x1fef8070 | 32 | RW | RTC 时钟定时中断 1    |
| sys_rtcmatch2    | 0x1fef8074 | 32 | RW | RTC 时钟定时中断 2    |



### 25.2.2 TOY 计数器低 32 位数值 (SYS\_TOYWRITE0)

偏移量: 0x20

复位值: 0x00000000

| 位域    | 名称           | 访问 | 描述            |
|-------|--------------|----|---------------|
| 31:26 | TOY_MONTH    | W  | 月, 范围 1~12    |
| 25:21 | TOY_DAY      | W  | 日, 范围 1~31    |
| 20:16 | TOY_HOUR     | W  | 小时,范围 0~23    |
| 15:10 | TOY_MIN      | W  | 分, 范围 0~59    |
| 9:4   | TOY_SEC      | W  | 秒, 范围 0~59    |
| 3:0   | TOY_MILLISEC | W  | 0.1 秒, 范围 0~9 |

# 25.2.3 TOY 计数器高 32 位数值 (SYS\_TOYWRITE1)

偏移量: 0x24

复位值: 0x00000000

| 位域   | 名称       | 访问 | 描述           |
|------|----------|----|--------------|
| 31:0 | TOY_YEAR | W  | 年,范围 0~16383 |

### 25.2.4 TOY 计数器低 32 位数值 (SYS\_TOYREAD0)

偏移量: 0x28

复位值: 0x00000000

| 位域    | 名称           | 访问 | 描述            |
|-------|--------------|----|---------------|
| 31:26 | TOY_MONTH    | R  | 月, 范围 1~12    |
| 25:21 | TOY_DAY      | R  | 日, 范围 1~31    |
| 20:16 | TOY_HOUR     | R  | 小时,范围 0~23    |
| 15:10 | TOY_MIN      | R  | 分, 范围 0~59    |
| 9:4   | TOY_SEC      | R  | 秒, 范围 0~59    |
| 3:0   | TOY_MILLISEC | R  | 0.1 秒, 范围 0~9 |

### 25.2.5 TOY 计数器高 32 位数值 (SYS\_TOYREAD1)

偏移量: 0x2c

复位值: 0x00000000

| 位域   | 名称       | 访问 | 描述            |
|------|----------|----|---------------|
| 31:0 | TOY_YEAR | R  | 年, 范围 0~16383 |



# 25.2.6 TOY 计数器中断寄存器 $0/1/2(SYS\_TOYMATCH0/1/2)$

偏移量: 0x34/38/3C 复位值: 0x00000000

| 位域    | 名称    | 访问 | 描述           |
|-------|-------|----|--------------|
| 31:26 | YEAR  | RW | 年,范围 0~16383 |
| 25:22 | MONTH | RW | 月, 范围 1~12   |
| 21:17 | DAY   | RW | 日, 范围 1~31   |
| 16:12 | HOUR  | RW | 小时,范围 0~23   |
| 11:6  | MIN   | RW | 分, 范围 0~59   |
| 5:0   | SEC   | RW | 秒, 范围 0~59   |

# 25.2.7 RTC 定时器中断寄存器 0/1/2(SYS\_RTCCTRL)

偏移量: 0x40 复位值: 无

| 位域    | 名称  | 访问  | 描述                   |
|-------|-----|-----|----------------------|
| 31:24 | 保留  | R   | 保留,置0                |
| 23    | ERS | R   | REN(bit13) 写状态       |
| 22:21 | 保留  | R   | 保留,置0                |
| 20    | RTS | R   | Sys_rtctrim 写状态      |
| 19    | RM2 | R   | Sys_rtcmatch2 写状态    |
| 18    | RM2 | R   | Sys_rtcmatch2 写状态    |
| 17    | RM0 | R   | Sys_rtcmatch0 写状态    |
| 16    | RS  | R   | Sys_rtcwrite 写状态     |
| 15    | 保留  | R   | 保留,置0                |
| 14    | 保留  | R   | 保留,置0                |
| 13    | REN | R/W | RTC 使能, 高有效。需要初始化为 1 |
| 12    | 保留  | R   | 保留,置0                |
| 11    | TEN | R/W | TOY 使能, 高有效。需要初始化为 1 |
| 10    | 保留  | R   | 保留,置0                |
| 9     | 保留  | R   | 保留,置0                |
| 8     | EO  | R/W | 0: 32.768k 晶振禁止;     |
|       |     |     | 1: 32.768k 晶振使能      |
| 7     | 保留  | R   | 保留,置0                |
| 6     | 保留  | R   | 保留,置0                |
| 5     | 32S | R   | 0: 32.768k 晶振不工作;    |
|       |     |     | 1: 32.768k 晶振正常工作。   |
| 4     | 保留  | R   | 保留,置0                |
| 3     | TM2 | R   | Sys_toymatch2 写状态    |
| 2     | TM1 | R   | Sys_toymatch1 写状态    |
| 1     | TM0 | R   | Sys_toymatch0 写状态    |
| 0     | TS  | R   | Sys_toywrite 写状态     |



### 25.2.8 RTC 计数器写入端口 (SYS\_RTCWRITE)

偏移量: 0x64

复位值: 0x00000000

| 位域   | 名称  | 访问 | 描述 |
|------|-----|----|----|
| 31:0 | RTC | W  |    |

### 25.2.9 RTC 计数器写入端口 (SYS\_RTCREAD)

偏移量: 0x68

复位值: 0x00000000

| 位域   | 名称  | 访问 | 描述 |
|------|-----|----|----|
| 31:0 | RTC | R  |    |

# 25.2.10 RTC 定时器中断寄存器 0/1/2(SYS\_RTCMATCH0/1/2)

偏移量: 0x6C/70/74 复位值: 0x00000000

| 位域    | 名称  | 访问 | 描述 |
|-------|-----|----|----|
| 31:26 | RTC | RW |    |