Теоретические основы сети

Модель OSI и TCP/IP

Ольга Ермолова

О спикере:

- руководитель отдела развития сети оператора связи
- работает в ІТ с 2005 года

Цели занятия

- Познакомиться с теорией компьютерных сетей: основными терминами, ключевыми протоколами и базовыми моделями
- Понять принципы организации компьютерной сети, чтобы в дальнейшем настраивать сетевое и серверное оборудование

План занятия

- <u>Сеть</u>
- (2) Сетевая модель
- **3** <u>Модель OSI</u>
- **4** <u>Модель TCP/IP</u>
- Протоколы передачи данных
- (6) Обзор технологий и механизмов NAT, VPN и Firewall
- Oбзор технологий и механизмов DNS, DHCP и HTTP/HTTPS
- Домашнее задание

Сеть

Цели темы

- Разобраться, что такое сеть и сетевое взаимодействие
- Изучить базовый принцип работы сетей

Сеть

два и более устройств, способных взаимодействовать друг с другом через использование среды передачи данных

Схема сети

Что является сетью?

Аналогия сети: общение между людьми

Использовать один и тот же язык

Изменить формат при необходимости

Требуется усиливать звук

Не перебивать друг друга

Указывать, к кому обращаетесь

Базовый принцип сети

Базовый принцип сети: аналогия из жизни

Overnooverse	
Отправитель	
Адрес	
Телефон	
Индекс	
	Получатель
	Телефон
	Индекс
	почта росси

Источник

Адреса отправителя и получателя

Итоги

- Сеть это взаимодействие двух и более устройств через среду
 передачи с обменом информацией и расширением возможностей
- Базовый принцип сетей без адресов взаимодействие невозможно.

Сетевая модель

Цели темы

- Узнать, что такое сетевая модель и для чего она используется
- Познакомиться с типами сетевых моделей
- Рассмотреть базовые принципы построения сетевой модели

Сетевая модель

описание принципов совместной работы сетевых протоколов

Типы сетевых моделей

1

Практические

(2)

Теоретические

Сетевые модели бывают

Стек протоколов

иерархически организованный набор сетевых протоколов, достаточный для организации

взаимодействия узлов в сети

Стек протоколов

Стек протоколов: аналогия из жизни

можем «подменять» конкретные реализации

Инкапсуляция

метод построения модели, когда протоколы вышестоящего уровня используют протоколы

нижестоящего уровня

Инкапсуляция

Инкапсуляция: аналогия из жизни

Итоги

- Сетевая модель описание принципов совместной работы сетевых протоколов
- При построении сетевой модели используется разделение
 на уровни. На каждом уровне применяет свой стек
 протоколов. Протоколы вышестоящего уровня
 используют протоколы нижестоящего (инкапсуляция)
- Сетевые модели бывают двух видов: теоретические показывают принципы работы сетей (OSI);
 практические – используются в действующих сетях (TCP/IP)

Модель OSI

Цели темы

- Познакомиться с моделью OSI и особенностями ее построения
- Рассмотреть взаимодействие уровней внутри модели
- Обзорно изучить работу каждого уровня модели

Дословный перевод OSI

 Open Systems
 открытое системное

 Interconnection
 соединение

Модель OSI

теоретическая сетевая модель, посредством которой различные сетевые устройства могут взаимодействовать друг с другом

Задача OSI

помогать описывать происходящие процессы в сети

Уровни модели OSI

Прикладной уровень Application layer Уровень представления 6 Presentation layer Сеансовый уровень 5 Session layer Транспортный уровень Transport layer Сетевой уровень 3 Network layer Канальный уровень 2 Data link layer Физический уровень Physical layer

Взаимодействие и инкапсуляция OSI

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

Определяет способы передачи бит информации через физические среды линий связи (оптический кабель, витая пара, оптоволокно)

Физический уровень: решаемые проблемы

- Синхронизация источника и приемника
- Избавление от помех
- Поддержание скорости передачи данных

Физический уровень: единица данных

бит

бод

Физический уровень: примеры оборудования

Витая пара

категория UTP Cat.5

Хаб

сетевой концентратор

Медиаконвертер

преобразователи оптика – медь, Ethernet RS-485

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

определяет способы передачи данных между устройствами, находящимися в одном сегменте сети

Канальный уровень: решаемые проблемы

- Обнаружение ошибок физического уровня
- Одновременная передача данных разным устройствам
- Аппаратная адресация

Канальный уровень: единица данных

кадр

Канальный уровень: примеры оборудования

Коммутатор

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

Определяет способы передачи данных между устройствами, находящимися в разных сетях (сегментах сети)

Сетевой уровень: решаемые проблемы

- Логическая адресация
- Построение маршрутов между сетями
- Диагностика сети

Сетевой уровень: единица данных

пакет

Сетевой уровень: примеры оборудования и протокола

IPv4, IPv6, ICMP

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

Определяет способы доставки данных, то есть сам механизм передачи данных

Транспортный уровень: решаемые проблемы

- Мультиплексирование: может работать с несколькими потоками данных между двумя устройствами
- Надежная передача данных
- Регулирование количества передаваемых данных
- Контроль доставки данных

Транспортный уровень: единицы данных

сегмент

дейтаграмма

Транспортный уровень: примеры

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

Определяет способы установления и поддержания сеансов связи

Сеансовый уровень: решаемые проблемы

- Создание / завершение сеанса
- Синхронизация / восстановление сеанса
- Определение прав на передачу данных
- Поддержание сеанса в периоды неактивности приложений

Сеансовый уровень: примеры протоколов

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

Определяет способы преобразования протоколов и кодирование/декодирование данных

Уровень представления: решаемые проблемы

- Сжатие и распаковка
- Кодирование и декодирование данных
- Перенаправление запросов другому сетевому ресурсу

Уровень представления: примеры протоколов

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

Определяет способы взаимодействия сети и пользователя

Прикладной уровень: решаемые проблемы

- Доступ к сетевым службам
- Передача служебной информации
- Предоставляет информацию об ошибках

Прикладной уровень: примеры протоколов

DNS SSH **Telnet**

Модель OSI: передача сообщения

^{*} сообщение (полезные данные) также называют "payload"

Источник

Модель OSI: резюме

Источник

Итоги

- Модель OSI фундамент и база для понимания всех сетевых сущностей. Представляет уровневый подход к сети
- Уровни в модели OSI взаимодействуют друг с другом по «вертикали» посредством интерфейсов, а также могут общаться с параллельным уровнем другой системы по «горизонтали» с помощью протоколов
- Всего в модели OSI 7 уровней. Каждый уровень имеет свой набор оборудования / протоколов, решает свой пул проблем и по-разному оперирует информацией

Модель ТСР/ІР

Цели темы

- Познакомиться с сетевой моделью TCP/IP
- Изучить уровни и стек протоколов в модели
- Провести сравнение сетевых моделей TCP/IP и OSI

История происхождения TCP/IP

История происхождения TCP/IP

История происхождения TCP/IP

сеть ARPANET

Advanced Research Projects
Agency Network –
сеть созданная Агентством
Министерства Обороны США

модель DOD

Department of Defense –

модель сетевого взаимодействия, разработанная Министерством Обороны США

Модель ТСР/ІР

сетевая модель передачи данных, описывающая способы передачи данных от источника информации к получателю

4>

47

Уровни модели TCP/IP

Прикладной уровень

Application layer

Транспортный уровень

Transport layer

Межсетевой уровень

Internet layer

Канальный уровень

Network Access layer

Сравнение TCP/IP и OSI

Итоги

- Сетевая модель передачи данных TCP/IP описывает способы передачи данных от источника информации к получателю в цифровом виде
- Модель имеет 4 уровня стека TCP/IP: прикладной, транспортный, межсетевой, канальный
- Модель OSI хорошо подходит для описания работы любой сети, модель TCP/IP описывает только работу протоколов стека TCP/IP

Протоколы передачи данных

Цели темы

- Познакомиться с концепцией протоколов
- Разобрать на примере работу протокола
- Узнать о спецификациях для сетевых протоколов

Протокол

набор правил, который определяет обмен данными между различными устройствами

Схема протокола

Аналогия протокола

Дипломатический протокол

Аналогия протокола

Правила сервировки стола

Источник

Возможные функции протокола

1

Установка соединения

приветствие

2

Характеристики передачи данных

скорость обмена

(3)

Формат данных

сколько данных передаем за один раз, в каком виде 4

Обработка ошибок

что делаем, если произошла ошибка **5**

Закрытие соединения

прощание

Сходство протокола и человеческого общения

Пример запуска веб-сайта

Пример запуска веб-сайта

Каждый протокол

имеет свою спецификацию (описание правил), которая выпускается различными организациями

Ключевые организации

Протокол RFC

RFC

документ, содержащий технические спецификации и стандарты, используемые

в работе сети Интернет

Итоги

- Протокол набор правил, который определяет обмен данными между различными устройствами
- Работу сетевого протокола можно увидеть, если в браузере зайти в раздел "Инструменты разработчика": нажать F12 - Network - обновить страницу - выделить элемент
- У каждого протокола есть спецификация, которая может выпускаться различными организациями. Ключевыми организациями являются IEEE и IETF

Обзор технологий и механизмов

NAT, VPN, Firewall

Цели темы

Познакомиться с технологиями и механизмами NAT, VPN и Firewall:

- рассмотреть схему работу
- узнать применения в сети

Дословный перевод **NAT**

Network Address Translation преобразование сетевых адресов

NAT

функция, которая используется для подмены адреса отправителя или адреса получателя

NAT: аналогия из жизни

Схема работы NAT

NAT используется

в большинстве случаев при построении сети

Дословный перевод VPN

Virtual Private Network сеть

VPN

технологии, позволяющие устанавливать зашифрованное соединение

VPN: аналогия из жизни

Схема работы VPN

VPN используется

при необходимости получить доступ к внутренним данным из удаленной точки с применением общедоступных сетей

Дословный перевод Firewall

Firewall

программный или программно-аппаратный элемент компьютерной сети, осуществляющий контроль и фильтрацию проходящего через него трафика

Трафик бывают

Firewall: аналогия из жизни

Источник

Схема работы Firewall

Firewall используется

обязательно при выходе в общедоступные сети

Итоги

NAT осуществляет подмену адресов отправителя и получателя. Является обязательным протоколом при построении сети

VPN помогает устанавливать зашифрованное соединение. Используется, если требуется доступ к внутренним данным с удаленного сервера через общедоступные сети

Firewall контролирует и фильтрует трафик на легитимный и нелегитимный. Обязательно используется при работе с общедоступными сетями

Обзор технологий и механизмов

DNS, DHCP, HTTP/HTTPS

Цели темы

Познакомиться с технологиями и механизмами DNS, DHCP, HTTP/HTTPS:

- рассмотреть схему работу
- узнать применение в сети

Дословный перевод DNS

Domain Name System система доменных имен

DNS

система, предназначенная для получения информации о доменах

DNS: аналогия из жизни

Схема работы DNS

Здесь: 111. 123. 111. 123

DNS используется

для получения IP-адреса по имени компьютера или устройства, а также для получения информации о почтовых серверах

Дословный перевод DHCP

Dynamic Host Configuration Protocol

протокол динамической настройки узла

DHCP

протокол, позволяющий сетевым устройствам автоматически получать IP-адрес и другие

параметры, необходимые для работы в сети

DHCP: аналогия из жизни

Источник

Схема работы DHCP

Аналогия с роутером: гостевой или домашний

DHCP используется

для автоматического назначения IP-адресов и предоставления информации клиентам

Дословный перевод НТТР

Hyper Text Transfer Protocol

протокол передачи гипертекста

HTTP

протокол прикладного уровня передачи данных, изначально— в виде гипертекстовых документов,

в настоящее время – в виде файлов

Схема работы НТТР

НТТР используется

повсеместно в сети Интернет для получения информации с веб-сайтов

Дословный перевод HTTPS

Hyper Text Transfer Protocol Secure

протокол безопасной передачи гипертекста

HTTPS

расширение протокола HTTP для поддержки шифрования в целях повышения безопасности, что обеспечивает защиту от прослушивания

4>

Схема работы HTTPS

HTTPS используется

во всем мире и поддерживается всеми популярными браузерами

Итоги

- (1) DNS используется для получения информации о доменах
- DHCP помогает автоматически устанавливать IP-адреса и передавать их клиентам
- НТТР используется для получения информации с вебсайтов в виде файлов. HTTPS дополнительно дает возможность шифровать данные и повышает безопасность обмена.

Домашнее задание

Давайте посмотрим вашу практику после лекции

- (1) Практика состоит из обязательного теста и домашнего задания со звездочкой (необязательное)
- (2) В тесте 14 вопросов, на 10 нужно ответить верно. Есть 2 попытки
- (3) Вопросы по домашнему заданию со звездочкой задавайте в чате группы
- Задачи можно сдавать по частям.
 Зачёт по домашней работе ставят после того, как приняты все задачи

Задавайте вопросы и пишите отзыв о лекции

