安徽大学 2016—2017 学年第二学期

《 高等数学 A(一) 、B(一) 》考试试卷(B卷) 时间 120 分钟) (闭卷

考场登记表序号

题 号	_	=	Ξ	四	五	总分
得 分						
阅卷人						

-、填空题(每小题3分,共15分)

亭

第/系

得 分

- 1. 设函数 $f(x) = x\cos(\frac{1}{x^2} + 1), x \neq 0$ 则 $\lim_{x \to 0} f(x) = \underline{\qquad}$
- 2. 曲线 $y = 2x + \arctan x$ 的渐近线为 _____
- 3. 若 f(x) 为偶函数,且 f'(0) 存在,则 f'(0) = _____
- - 二、选择题(每小题3分,共15分)

得分

- 6. 下列等式中正确的是(
- A. $\lim_{x \to 0^{+}} \left(1 + \frac{1}{x} \right)^{x} = 1$ B. $\lim_{x \to 0^{+}} \left(1 + \frac{1}{x} \right)^{x} = e$
- C. $\lim_{x \to \infty} \left(1 \frac{1}{x} \right)^x = -e$ D. $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{-x} = e$

- 7. $f(x) = \begin{cases} x^2, x \ge 0 \\ x, x < 0 \end{cases}$, $\emptyset f(x) \stackrel{\cdot}{=} x = 0 \stackrel{\cdot}{=} 0$
- A. 左导数存在,但右导数不存在
- B. 左右导数均存在
- C. 右导数存在,但左导数不存在 D. 左右导数均不存在
- 8. 设 $\int f(x)dx = x^2 + C$, 则 $\int xf(-x^2)dx = ($)
- A. $\frac{1}{2}x^4 + C$ B. $-\frac{1}{2}x^4 + C$ C. $x^4 + C$ D. $-x^4 + C$

- 9. 下列描述正确的是()
- A. $\int_{-1}^{1} \frac{1}{r^2} dx = -\frac{1}{r} \Big|_{-1}^{1} = -2$ B. $f(x) < \frac{1}{r^2}$, 故 $\int_{1}^{+\infty} f(x) dx$ 收敛
- C. $\int_{0}^{+\infty} \frac{1}{x^2} dx$ 发散 D. $\int_{-\infty}^{+\infty} \sin x dx = \lim_{b \to +\infty} \int_{-b}^{b} \sin x dx = \lim_{b \to +\infty} 0 = 0$
- 10. 具有特解 $y_1 = e^x$, $y_2 = e^{-2x}$ 的二阶常系数齐次微分方程是(
- A. y'' 2y = 0

- B. y'' + y' 2y = 0
- C. y'' + 2y' y = 0
- D. y'' + y' = 0
- 三、计算题(每小题7分,共56分)

得 分

11. 计算极限 $\lim_{n\to\infty} \left(\sqrt{n+\sqrt{n}}-\sqrt{n}\right)$

12. 计算极限
$$\lim_{x\to 1} (1-x) \tan \frac{\pi}{2} x$$

13. 已知
$$y = 1 + xe^y$$
 求 $\frac{dy}{dx}$

14. 己知
$$y = (3x^2 - 2)\sin x$$
, 求 $y^{(100)}$

15. 计算不定积分 $\int \frac{x^4}{x^2+1} dx$ 。

16. 计算不定积分∫tan³xdx

17. 计算定积分 $\int_0^{+\infty} \frac{1}{x^2 + 4x + 8} dx$

18. 用定积分计算:
$$\lim_{n\to\infty} \frac{1}{n} \left(\sqrt{1+\frac{1}{n}} + \sqrt{1+\frac{2}{n}} + ... + \sqrt{1+\frac{n}{n}} \right)$$

四、应用题(每小题8分,共8分)

得分

19. 双曲线 $xy = a^2$ 在第一象限上任一点(x, y)处的切线与两坐标轴构成一个三角形,求此三角形的面积。

五、证明题(每小题8分,共8分)

得 分

20. 已知 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$,证明:存在 $\xi \in (0,1)$,使得 $f'(\xi) = 1$ 。