Diszkrét matematika 1

Gráfok

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Gráfok

Kézfogás-szabály

Tétel

Minden
$$G = (V, E)$$
 gráfra $\sum_{v \in V} d(v) = 2|E|$.

2. Bizonyítás.

Indukció | E | szerint.

- |E| = 0 esetén az állítás igaz (üres gráf).
- Thf $|E| \le k$ esetén igaz az állítás.
- |E| = k + 1 esete: a gráfot úgy kapjuk, hogy egy k élszámú gráfba egy új élet behúzunk.
- Ekkor a jobb oldal kettővel nő $(2(|E|-1) \rightsquigarrow 2|E|)$.
- Ekkor a bal oldal is kettővel nő (új élre illeszkedő két v_1, v_2 fokszáma eggyel-eggyel nő).

$$H = (U, F)$$

- Megegyezik-e a G és H gráf? \implies nem, például $V \neq U$, $E \neq F$.
- Azonban G és H lényegében megegyeznek, például összes tulajdonságuk megegyezik $\implies G$ és H izomorfak.

Definíció

Két G=(V,E) és H=(U,F) gráf izomorfak, ha léteznek olyan $f:V\to U$ és $g:E\to F$ bijekciók (egyértelmű hozzárendelések), hogy

$$\forall v \in V \land e \in E: v \in e \iff f(v) \in g(e)$$

Példa

	J(v)
v_1	u_2
v_2	<i>u</i> ₃
<i>v</i> ₃	u_4
v_4	<i>u</i> ₅
v_5	u_1

 $y \mid f(y) \mid$

e	g(e)
e_1	f_5
e_2	f_1
<i>e</i> ₃	f_2
e_4	f_3
<i>e</i> ₅	f_A

- $\bullet v_1 \in e_1 \Longleftrightarrow$ $u_2 = f(v_1) \in g(e_1) = f_5$

Speciális gráfok

Üres gráf: $G = (V, E), E = \emptyset$ Ciklus: C_n : $|V| = n \ge 3$ csúcson egy kör

Telies gráf:

- $\bullet \ G = (V, E), E = \{\{v_1, v_2\} : v_1, v_2 \in V, v_1 \neq v_2\}$
- K_n: n teljes gráf csúcson
- $K_n = (V, E), |V| = n, |E| = \binom{n}{2}$ (Biz.: HF)

Speciális gráfok

Ciklus

Teljes gráf

Részgráf

Példa

- Internet gráfja vs magyarországi szerverek gráfja
- Magyarország úthálózata vs Budapest úthálózata
- Budapest úthálózata vs budapesti bicikliutak hálózata

Definíció

Egy G = (V, E) gráfnak a H = (U, F) gráf részgráfja, ha U c

 $V \subset V \quad \wedge \quad F \subset E$

Részgráf

Példa

 G_2 és G_3 részgráfjai G_1 -nek, de másképp: G_3 -hoz csak a szükséges éleket töröltük.

Definíció

Egy H = (U, F) egy feszített részgráfja G = (V, E)-nek, ha

- részgráfja: $U \subset V$, $F \subset E$
- feszített: $u_1, u_2 \in U \land \{u_1, u_2\} \in E \implies \{u_1, u_2\} \in F$.

Részgráf

Feszített részgráf: Egy H = (U, F) egy feszített részgráfja G = (V, E)-nek, ha

- részgráfja: $U \subset V$, $F \subset E$
- feszített: $u_1, u_2 \in U \land \{u_1, u_2\} \in E \implies \{u_1, u_2\} \in F$.

Példa

- G_2 , G_3 részgráfjai G_1 -nek
- G₂ feszített részgráfja G₁-nek
- G₃ nem feszített részgráfja G₁-nek

Feszített részgráf: éleket csak csúcs eltörlésével hagyhatunk el

Séta, út

Legyen G = (V, E) egy város úthálózatának gráfja.

- Eljuthatunk-e v₁-ből v₈-ba?
- Igen: $v_1, e_1, v_2, e_2, v_4, e_3, v_5, e_4, v_1, e_1, v_2, e_5, v_3, e_6, v_6, e_7, v_7, e_8, v_8$

Definíció

Legyen G = (V, E) egy gráf. Egy $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ sorozatot k-hosszú sétának nevezünk, ha

- $v_i \in V \ (0 \le i \le k), \quad e_i \in E \ (1 \le i \le k)$
- \bullet $e_i = \{v_{i-1}, v_i\} \ (1 \le i \le k)$

Figyelem! A séta nem feltétlenül optimális! Vannak hosszabb és rövidebb séták.

Séta, út

Legyen G = (V, E) egy város úthálózatának gráfja.

- Eljuthatunk-e ν₁-ből ν₈-ba felesleges körök nélkül?
- Igen: $v_1, e_1, v_2, e_2, v_4, e_3, v_5, e_{10}, v_6, e_6, v_3, e_{11}, v_8$

Definíció

Legyen G = (V, E) egy gráf. Egy

 $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ sorozatot k-hosszú útnak nevezünk, ha

- ez egy séta
- $v_i \neq v_j \ (i \neq j)$

Figyelem! Az út nem feltétlenül optimális! Vannak hosszabb és rövidebb útak.

Séta, út, kör

Definíció

Legyen G=(V,E) egy gráf és $k\geq 3$. Egy $v_0,e_1,v_1,\ldots,v_{k-1},e_k,v_0$ sorozatot k-hosszú körnek nevezünk, ha

- ez egy (zárt) séta (zárt, azaz: $v_k = v_0$)
- $v_i \neq v_j \ (i \neq j)$

Példa

• $v_1, e_1, v_2, e_2, v_4, e_3, v_5, e_4, v_1$ egy 4 hosszú kör

Állítás: Egy nem zárt (azaz $v_0 \neq v_k$) sétából körök elhagyásával utat kapunk. **Bizonyítás.** Legyen $v_0, e_1, v_1, \ldots, v_{k-1}, e_k, v_k$ egy séta. Ha $v_i \neq v_j$, akkor ez egy út. Ha $\exists i < j : v_i = v_j$, akkor a $v_i, e_{i+1}, \ldots, e_j$ részt törölve a sétából egy rövidebb sétát kapunk. Az eljárást ismételve egy utat kapunk.

Összefüggőség

A világ úthálózata nem összefüggő.

Definíció

Egy G = (V, E) gráf összefüggő, ha $\forall u, v \in V, u \neq v$ van u és v között séta.

Összefüggőség

Összefüggő: Egy G = (V, E) gráf $\forall u, v \in V, u \neq v$ csúcsa között van séta.

Vezessünk be egy ~ relációt a csúcsok között.

• $u \sim v$, ha van u-ból v-be séta.

Állítás: \sim egy ekvivalencia reláció V-n.

Bizonyítás.

- reflexivitás $v_0 \sim v_0$: v_0 0 hosszú séta
- szimmetria $v_0 \sim v_k$:

$$v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k \rightarrow v_k, e_k, v_{k-1}, \dots, v_1, e_1, v_0 \rightarrow v_k \sim v_0$$

• tranzitivitás: $v_0 \sim v_k, v_k \sim v_m \rightarrow v_0 - v_k$ és $v_k - v_m$ séták konkatenálása

Komponensek: ~ ekivivalenciareláció által meghatározott osztályok

G gráf és ∼ reláció

Összefüggőség

- \sim reláció a csúcsok között: $u \sim v$, ha van u-ból v-be séta.
- $\bullet \sim \text{egy ekvivalencia reláció } V$ -n
- Komponensek: ~ ekivivalenciareláció által meghatározott osztályok

Példa

• komponensek: $\{a,b,c\}$, $\{d\}$, $\{e,f,g,h\}$ csúcsok által meghatározott feszített részgráf

Megjegyzések:

- G összefüggő
 minden csúcs ugyanabba az osztályba tartozik (azaz egy komponens van)
- Bármely él két végpontja azonos osztályba tartozik (Miért?), így a gráf minden éle hozzátartozik egy komponenshez.

d

G gráf és ∼ reláció

Fák

Definíció

Egy G = (V, E) gráfot fának hívunk, ha

- összefüggő;
- körmentes.

Fák

Tétel

Egy G gráfra a következők ekvivalensek

- 1. *G* fa
- 2. G összefüggő, de bármely él elhagyásával kapott részgráf már nem
- 3. ha v és v' a G különböző csúcsai, akkor v-ből v'-be pontosan egy út vezet
- 4. G-nek nincs köre, de bármely él hozzáadásával kapott gráfban már van.

Azaz a fa élszám tekintetében optimális:

- él elhagyásával több komponensre esik
- él hozzáadásával kör keletkezik

Bizonyítás.

Bizonyítás menete: 1. \implies 2. \implies 3. \implies 4. \implies 1