Lab SSC0220 - 29/08/2014

Conhecimentos básicos para desenvolver as tarefas de hoje

Transladação de figuras geométricas: Uma transformação de transladação de figuras geométricas no plano euclidiano é dada por:

$$x' = x + \Delta x$$

 $y' = y + \Delta y$

aplicada a todos os vértices da figura, onde (Δx , Δy) são os deslocamentos nos eixos x e y respectivamente. Um exemplo:

Estruturas de dados a serem utilizadas:

<pre>typedef struct pnt { int x, y; }ponto;</pre>	<pre>typedef struct vrtc{ ponto p; vrtc* prox; } vertice;</pre>	<pre>typedef struct fig{ int N; int Dy, Dx; vertice* p inicio;</pre>
	, vertice,	} figura;

Tarefa 1

Vetores estáticos 1

Crie um vetor estático do tipo ponto (typedef) Com 10 elementos. Cada elemento do vetor corresponderá a um vértice de uma figura geométrica com N lados. O programa deverá ler um valor inteiro N e os pontos referentes aos N vértices da figura geométrica a ser dada. Sua tarefa é, dado valores Dx e Dy quaisquer, indicar qual a posição transladada dos N vértices em uma figura após transladação por (Dx, Dy).

Entrada

O arquivo de entrada contém diversos casos de teste. A primeira linha de cada caso de teste contém um inteiro N indicando a quantidade de vértices $(0 \le N \le 10)$ da figura. A próxima linha contém N*2 inteiros, x_i e y_i , separados por espaços únicos, indicando os pontos dos vértices $(-10^4, \le x_i \le 10^4)$, $-10^4 \le y_i \le 10^4$). A linha seguinte contém 2 valores inteiros, indicando a posição x e y dos parâmetros x Dx e x Dy. O fim da entrada é indicado por uma linha contendo o valor 0.

Saída

Para cada caso de teste da entrada, imprima uma linha contendo N*2 inteiros, \mathbf{x}_i e y_i , separados por espaços únicos, indicando as novas posições de cada vértice, no plano cartesiano, baseadas nos parâmetros de deslocamentos dados.

Exemplo de entrada	Saída para o exemplo de entrada
3 -3 2 -2 5 -5 3 5 - 2 5 8 6 5 5 3 3 4 0 7 2 -1 1 4 -4 -1 2 -3 4 -3 -1 3 0 0	2 0 3 3 0 1 7 7 4 6 2 4 3 1 6 3 -4 -1 2 -3 4 -3 - 1 3

Obs.: Essa descrição de entrada e saída valerá também para as tarefas seguintes (com exceção da Tarefa 4).

Tarefa 2

Vetores estáticos 2

Crie um vetor estático do tipo ponto com 10 elementos. Cada elemento do vetor corresponderá a um vértice de uma figura geométrica com N lados.

Tarefa 2a) Transladação de pontos: Crie o corpo da função translada descrita a seguir:

```
void translada (ponto *p, int dx, int dy)
```

A função deverá receber um vetor de pontos p que conterá os vértices a serem transladados e os valores dos parâmetros dx e dy.

Tarefa 2b) Transladação da figura: Crie o corpo da função translada_figura descrita a seguir:

```
void translada_figura (ponto p_vet[], int N, int dx, int dy)
```

A função deverá receber um vetor do tipo ponto p_vet que conterá todos os vértices da figura a ser transladada, N que será a quantidade de vértices da figura, e os valores dx e dy. A função deverá utilizar a função translada.

Tarefa 2c) Programa principal: Chegou a hora de criar o programa principal que chamará a função translada_figura criada anteriormente. O programa deverá ler um valor inteiro N e os pontos referentes aos N vértices da figura geométrica a ser dada. Sua tarefa é, dado valores Dx e Dy quaisquer, indicar qual a posição transladada dos N vértices em uma figura após transladação por (Dx, Dy).

Tarefa 3

Vetores dinâmicos

Tarefa 3a) Leitura de dados: Crie o corpo da função carrega descrita a seguir:

```
ponto* carrega (int N)
```

A função deverá receber um valor inteiro N e alocar um vetor do tipo ponto com N posições. Cada elemento do vetor corresponderá a um vértice de uma figura geométrica com N lados. Após isso, a função deverá ler os pontos referentes aos N vértices da figura geométrica a ser dada e retornar o vetor alocado.

Tarefa 3b) Transladação da figura: Crie o corpo da função translada_figura descrita a seguir:

```
void translada_figura (ponto *p_vet, int N, int dx, int dy)
```

A função deverá receber um vetor do tipo ponto p_vet que conterá todos os vértices da figura

a ser transladada, N que será a quantidade de vértices da figura, e os valores dx e dy. **A função** deverá utilizar a função translada, criada na tarefa 2a.

Tarefa 3c) Programa principal: Chegou a hora de criar o programa principal que chamará as funções carrega e translada_figura criadas anteriormente. O programa deverá ler um valor inteiro N e os pontos referentes aos N vértices da figura geométrica a ser dada. Sua tarefa é, dado valores Dx e Dy quaisquer, indicar qual a posição transladada dos N vértices em uma figura após transladação por (Dx, Dy).

Tarefa 4

Lista encadeada

Utilize uma nova estrutura figura composta por três inteiros e uma varável dinâmica do tipo vertice, que corresponderão respectivamente à quantidade N de vértices pertencentes à figura geométrica, aos valores dx e dy da transladação e ao apontador p_inicio para uma lista de pontos de vértice. As estruturas do tipo vertice e figura serão as declaradas na Página 1.

Tarefa 4a) Inserção de dados: Crie o corpo da função insere descrita a seguir:

```
void insere (ponto p, figura* f)
```

A função deverá receber uma estrutura do tipo ponto a ser por um atribuído como ponto de um vértice que deverá ser inserido no fim da lista p_inicio da figura f que será passada por parâmetro. Não esqueça de incrementar o valor de N a cada inserção.

Tarefa 4b) Transladação da figura: Crie o corpo da função translada_figura descrita a seguir:

```
void translada figura (figura* f, int dx, int dy)
```

A função deverá receber um vetor do tipo figura e os valores dx e dy. Utilize a função translada criada na tarefa 3b. Ao final, modifique os valores de dx e dy da figura f, indicando quais foram os parâmetros da última transladação sofrida pela figura.

Tarefa 4c) Programa principal: Chegou a hora de criar o programa principal que chamará as funções carrega e translada_figura criadas anteriormente. O programa deverá ler um valor inteiro N e os pontos referentes aos N vértices da figura geométrica a ser dada. Cada vértice N_i deverá ser inserido na lista p_inicio por meio da função insere. Sua tarefa é, dado valores Dx e Dy quaisquer, indicar qual a posição transladada dos N vértices em uma figura após transladação por (Dx, Dy).

Entrada e Saída: Para essa função, será dada somente um caso de teste (O arquivo de entrada contém diversos casos de teste. A primeira linha de cada caso de teste contém um inteiro N indicando a quantidade de vértices ($0 \le N \le 10$) da figura. A próxima linha contém N*2 inteiros, x_i e y_i , separados por espaços únicos, indicando os pontos dos vértices (10^{4} , 10^{4} , 10^{4}). A linha seguinte contém 2 valores inteiros, indicando a posição x e y do novo ponto de origem).