MATH-253-YJH-CRN82680 Exam 5

David Yang

TOTAL POINTS

48 / 70

QUESTION 1

- 1 Flux 7 / 10
 - √ 1 pts Bad algebra
 - √ 2 pts Bad antiderivative

QUESTION 2

- 2 Stokes 7 / 10
 - 3 pts Bad \$\$\vec{u}_x\times\vec{u}_y\$\$

QUESTION 3

- 3 Surface area 5 / 10
 - √ 5 pts Bad parameterization

QUESTION 4

- 4 Green's Theorem 6 / 10
 - √ 4 pts Interior of C is a triangle, not a square.

QUESTION 5

- 5 Fundamental Theorem of Line Integrals 10
- / 10
 - √ 0 pts Correct

QUESTION 6

- 6 Change of variable 3 / 10
 - √ 7 pts Bad algebra

QUESTION 7

- 7 Line integral of a scalar function 10 / 10
 - √ 0 pts Correct

1. The surface S is the part of the cylinder $z = \sqrt{4 - y^2}$ in the first octant with $0 \le x \le 1$. S is oriented up. The vector field \vec{F} is $\vec{F}(x,y,z) = <$ x, 0, y >. Find the flux of \vec{F} through S.

Use
$$(y|_{n}^{2} \cap y) = 2 \cos(\theta)$$
, $z = 2 \sin(\theta)$

7(r,0) = Lr, Zws(0), Zsin(0) > 0 sin som of 0 sin of 0 si

$$\frac{7}{100} = 21,0,07, \frac{7}{100} = 20,-2sir(0), 2cos(0), \frac{7}{100}, \frac{7}{100} = \frac{13}{100}$$

$$= 20,-2cos(0),\frac{7}{100}$$

$$\frac{1}{7} \cdot (7, +7) = 0 + 0 + -2\sin(0) \cdot 2\cos(0) = -4\sin(0)\cos(0) = -2\sin(20)$$

$$\frac{\pi}{2} \left(\frac{1}{1000} \right) = \frac{\pi}{2} \left(\frac{1}{100$$

$$\frac{\left(\cos\left(20\right)\right)^{74^{2}}}{2} = \cos\left(\frac{\cos\left(20\right)}{2}\right)^{1}$$

$$= \frac{(0)(20)}{2} = \frac{(0)(\pi)}{2} - \frac{(0)(0)}{2} = \frac{-1-1}{2} = \frac{-2}{2} = \frac{-1}{2}$$

1 Flux **7** / **10**

- √ 1 pts Bad algebra
- √ 2 pts Bad antiderivative

2. Surface S is the part of the plane
$$x + y + z = 1$$
 inside the cylinder $x^2 + y^2 = 1$, oriented up. C is the boundary curve of S traced counter clockwise as seen from above. \vec{F} is the vector field $\vec{F}(x,y,z) = \langle z, x, y \rangle$. Use Stokes' Theorem to find $\int \vec{F} \cdot d\vec{r}$.

2 Stokes **7** / **10**

 $\sqrt{-3 pts}$ Bad $\$ \vec{u}_x\times\vec{u}_y\$\$

3. Surface S is the part of the paraboloid $z = x^2 + y^2$ that is inside the cylinder $x^2 + y^2 = 1$. Find the surface area.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\frac{1}{7}x^{2}=\frac{1}{9}x^{2}=\frac{1$$

3 Surface area 5 / 10

√ - 5 pts Bad parameterization

4. Curve C consists of line segments from (0,0) to (1,0) to (1,1) to (0,0). Use Green's Theorem to find $\int_C 2y \ dx + xy \ dy$.

$$= \begin{cases} \frac{1}{2} & \frac{1}{2} &$$

4 Green's Theorem 6 / 10

√ - 4 pts Interior of C is a triangle, not a square.

5. Use the Fundamental Theorem for Line Integrals to find

$$\int_C (3x^2y + 2x) \ dx + (x^3 + 4y) \ dy$$

for the curve C that is $y = x^2$ from (0,0) to (1,1).

of
$$z = \frac{7}{7} = \frac{7}{2} = \frac{7}{2}$$

$$\int_{C} \nabla f \cdot \vec{j} \cdot \vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

$$= f(1,1) - f(0,0)$$

$$= (1+1+2) - (0) = (4)$$

5 Fundamental Theorem of Line Integrals 10 / 10

√ - 0 pts Correct

6. Region D in the xy plane is enclosed by
$$y = -x + 1$$
, $y = -x + 2$, $y = 2x + 1$, and $y = 2x + 2$. Find $\iint_D (x + y)(2x - y)^2 dy dx$.

$$1 \le y \le 2$$
 $-x+2 = 2x+1$
 $3x=1$
 $x=\frac{1}{3}$
 $-x+1=2x+1$
 $3x=-\frac{1}{3}$

$$= \int_{1}^{2} -18y^{4} - 39y^{3} - 40y + 9y^{4} + 4y^{4} - 9y^{2} + 115 dy$$

$$1000 = \frac{1}{5}y^{5} - \frac{30}{4}y^{4} - 20y^{2} + \frac{9y^{5}}{10} + \frac{1}{10}y^{4} - \frac{3}{2}y^{3} + 15y^{7}$$

$$f(2) = -256$$

$$f(2) - f(1) = -256 - -15.05$$

$$= -240.45$$

6 Change of variable 3 / 10 $\,$

✓ - 7 pts Bad algebra

Parameterize Into t $r'(t) = \angle 1, 2t > 0 \le t \le 2$ $|r'(t)| = \sqrt{1+t}$ $|r'(t)| = \sqrt{1+t}$ 7. Find $\int_C x \, ds$ if C is the curve $y = x^2$ from (0,0) to (2,4). 1 + . Just 2 = } + (42+1) 2+ $\frac{1.5}{12} = \frac{1.5}{1.5} = \frac{1.5}{1.5} = \frac{(4+^2+1)}{1.5} = \frac{(4+^2+1)}{1.5} = \frac{(4+^2+1)}{1.5} = \frac{1.5}{1.5} = \frac{1.5}{1.5} = \frac{(4+^2+1)}{1.5} = \frac{1.5}{1.5} = \frac{1.5}{1.$ $-\left(\frac{17^{3h}}{17}-1\right)$

7 Line integral of a scalar function 10 / 10 $^{\prime}$

√ - 0 pts Correct