

Direction-Selective Parallel Module Structure for Cascaded Bridge and Modular Multilevel Converters with Minimum Transistor Count

- > Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - ➤ Conduction mechanism
 - ➤ Paralleling mechanism
- **≻**Results
- **≻**Conclusion

- >Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - > Conduction mechanism
 - > Paralleling mechanism
- **≻**Results
- **≻** Conclusion

MMC IS EVERYWHERE...

Credit to Stellantis

GENERAL STRUCTURE OF MMC

- >Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - > Conduction mechanism
 - > Paralleling mechanism
- **≻**Results
- **≻** Conclusion

EVOLUTION: ENABLING PARALLEL CONNECTIVITY

EVOLUTION: ENABLING PARALLEL CONNECTIVITY

8

EVOLUTION: ENABLING PARALLEL CONNECTIVITY

STORY TIME

CASCADED DOUBLE H BRIDGE CIRCUIT

Disadvantages: \$\$\$\$

Topology	Transistor count	Parallel mode?	Output polarity
Full-bridge	4	No	Bipolar
CH2B	8	Yes	Bipolar

- > Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - **≻**Structure
 - > Conduction mechanism
 - > Paralleling mechanism
- **≻**Results
- **≻** Conclusion

CASCADED DOUBLE H BRIDGE CIRCUIT

(a) Topology. (b) Connection. (c) Series connection. (d) Parallel connection. (e) Bypass connection

(a) Topology. (b) Connection. (c) Series connection. (d) Parallel connection. (e) Bypass connection

(a) Topology. (b) Connection. (c) Series connection. (d) Parallel connection. (e) Bypass connection

- > Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - ➤ Conduction mechanism
 - ➤ Paralleling mechanism
- **≻**Results
- **≻** Conclusion

- > Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - > Conduction mechanism
 - ➤ Paralleling mechanism
- **≻**Results
- **≻** Conclusion

PARALLELING LOOP

PARALLELING LOOP

- > Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - > Conduction mechanism
 - > Paralleling mechanism
- **≻**Results
- **≻** Conclusion

SIMULATION RESULTS

Trial info

Module number: 3

• Power supply: 100 V to module #2 with 10 m Ω impedance

Module voltage: 100 V

• Load: $10 \Omega + 100 \text{ mH}$

- > Introduction
 - ➤ General structure of modular multilevel converter (MMC)
 - > Evolution to enable parallel connectivity
- ➤ Working principle of Direction-Selective Parallel Structure
 - >Structure
 - > Conduction mechanism
 - > Paralleling mechanism
- **≻**Results
- **≻**Conclusion

CONCLUSION

VS T3 D4 D6 T8 D7

Direction-selective parallel topology

Topology	Transistor	Parallel mode?	Output
Full-bridge	4	No	Bipolar
CH2B	8	Yes	Bipolar
Direction-Selective-Parallel	4	Yes	Bipolar

Thank you!

