臺北區 103 學年度第二學期 指定科目第一次模擬考試試題

化學考科

-作答注意事項-

考試時間:80 分鐘

作答方式:

- 選擇題用 2B 鉛筆在「答案卡」上作答;更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。
- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時, 可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

參考資料

説明:下列資料,可供回答問題之參考

一、元素週期表(1~36號元素)

		7 U W	~ 791	1	- J U *//	0 / U 14	` /										
1																	2
Н																	He
1.0													•				4.0
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12						•					13	14	15	16	17	18
Na	Mg											Al	Si	P	S	C1	Ar
23.0	24.0											27.0	28.1	31.0	32.0	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	55.0	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	80.0	83.8

二、理想氣體常數 R = 0.08205 L atm K⁻¹mol⁻¹ = 8.31 J K⁻¹mol⁻¹

三、 $E = hv = h \times \frac{c}{\lambda}$, h 為普朗克常數 = 6.63×10^{-34} 焦耳·秒 c 為光速 = 3.0×10^{8} 公尺/秒, v 為頻率, λ 為波長

四、 $\log 2 = 0.30$, $\log 3 = 0.48$

第壹部分:選擇題(占81分)

一、單選題(占 45 分)

説明:第1題至第15題,每題有5個選項,其中只有一個是正確或最適當的選項, 請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答 或畫記多於一個選項者,該題以零分計算。

- 1. 已知氮和氟可以結合成數種化合物,分析其中化合物(I)與(II)的成分,得到結果是 16.5 克化合物(I)中含氟 9.5 克,而 26.00 克化合物(II)中含氟 19.00 克。若化合物(I) 之分子式爲 N_2F_2 ,則化合物(II)之化學式最可能是下列哪一個?
 - (A) NF,
 - (B) N_2F_3
 - (C) N₂F₄
 - (D) NF₅
 - (E) N_2F_5
- 2. 圖(1)是一閉口式壓力計,當左邊反應瓶(圓球)內充入氣體時,該氣體的壓力可以從 J 形玻璃管兩邊水銀柱的高度差測得。在 25° C 時,當左室充入定量的 C_2H_2 氣體時,右管水銀柱較左管高 40 公分。改充入另一定量 Cl_2 氣體時,右管水銀柱較左管高 30 公分。若將此二氣體同時充入,當反應 $C_2H_{2(g)}+2Cl_{2(g)}\to C_2H_2Cl_{4(\ell)}$ 完全反應後,在 25° C 時測得右管水銀柱應較左管水銀柱高多少公分(不考慮產物的蒸氣壓)?

- (A) 10
- (B) 25
- (C) 30
- (D) 40
- (E) 55
- 3. 在定溫下,多孔素燒圓筒中定壓的某氣體在 40 秒內可逸散出 30 mL。在相同條件下, 多孔素燒圓筒中改充入同壓的氦氣,逸散出 15 mL 只需 5 秒。根據此實驗結果,且假 設各氣體皆符合理想氣體,下列何者最可能是此氣體?
 - (A) CH_4

(B) N₂

(C) O₂

(D) CO,

- (E) SO,
- 4. 五氧化二氮 (N_2O_5) 在四氯化碳中的分解反應式如下: $2N_2O_{5(CCl_4)} \rightarrow 4NO_{2(g)} + O_{2(g)}$ 表(1)列出 N_2O_5 在定溫下濃度隨時間的變化,根據此結果推知此反應速率常數 k 的單位 應為下列何者?

		_表(1)		
時間(分)	0	20	40	60
$[N_2O_5](M)$	0.0100	0.0051	0.0025	0.0013

- (A) min⁻¹
- (B) $M \cdot min^{-1}$
- (C) $M^{-1} \cdot min^{-1}$
- (D) $M^{-2} \cdot min^{-1}$
- (E) $M^{-3} \cdot min^{-1}$

丙

- (B) Mg
- (C) O
- (D) Ne
- (E) N

- 6. 四種含硫物質(甲) SO_2 、(乙) SO_3 、(丙) SO_3^{2-} 、(丁) SO_4^{2-} ,下列有關這四種物質的 敘述何者正確?
 - (A) 平面三角形者共有兩個
 - (B) 極性物質共有三個
 - (C) 鍵角小於 109.5°者有一個
 - (D) S 上有未成對電子者共有兩個
 - (E) 平均鍵數大於 1 者共有三個
- 7. 下列各有機化合物,何者合乎 IUPAC 之命名?
 - (A) N-丙基乙胺
 - (B) 2-甲基丁酮
 - (C) 3-三級丁基-4-甲基庚烷
 - (D) 2-甲基-3-丁烯
 - (E) 3,3-二甲基-4-乙基己烷
- 8. 丙烯是 2014 年在高雄發生氣爆的主要反應物,與乙烯一樣,是重要的化工原料,也是易燃的物質。已知乙烯 C_2H_4 的莫耳生成熱與莫耳燃燒熱分別為 +52 kJ/mol、-1400 kJ/mol,且丙烯 C_3H_6 的莫耳生成熱爲 +20 kJ/mol,則丙烯的莫耳燃燒熱應爲若干 kJ/mol?
 - (A) -1380

(B) -1422

(C) -1816

(D) -2042

(E) -2258

9. 柳酸(鄰羥基苯甲酸)是重要的化工與藥物原料,經由以下反應式可分別製備主產物 1 與 2:

柳酸+乙醇→主要產物1+水

柳酸+乙酐→主要產物2+醋酸

下列何者依序是正確的(主產物 1、主產物 2)組合?

- (A) 阿斯匹靈、乙醯柳酸
- (B) 柳酸乙酯、阿斯匹靈
- (C) 乙醯柳酸、阿斯匹靈
- (D) 乙醯柳酸、柳酸乙酯
- (E) 阿斯匹靈、柳酸乙酯
- 10. 某有機物分子式 C₅H₁₀O₂, 經過檢定確認爲具有醛基的酯類。試問符合上述條件之異構物共有幾種?

(A) 3

(B) 4

(C) 5

(D) 6

(E) 7

- 11. 現有兩種溶液, (甲) 0.10 M HCl、(乙) 0.10 M CH₃COOH, 今(甲)(乙)各取 20 mL, 分別以 0.10 M 之 NaOH_(aq)滴定之,則下列敘述何者<u>不正確</u>?
 - (A) 滴定前 pH 值大小爲(乙)>(甲)
 - (B) 滴定達當量點時, pH 值大小為(乙)>(甲)
 - (C) 滴定達當量點時,所需滴加之 NaOH 體積為(乙)>(甲)
 - (D) 滴定達 pH=7時,所需滴加之 NaOH 體積為(甲)>(乙)
 - (E) 滴定前兩酸之酸性強度大小爲(甲)>(Z)
- 12. 溫度在 T K 時, $H_{2(g)} + \frac{1}{8}S_{8(s)} \rightleftharpoons H_2S_{(g)}$, $K_p = A$; $3H_{2(g)} + SO_{2(g)} \rightleftharpoons H_2S_{(g)} + 2H_2O_{(g)}$, $K_p = B$ 。 在同溫下,反應 $4H_{2(g)} + 2SO_{2(g)} \rightleftharpoons \frac{1}{4}S_{8(s)} + 4H_2O_{(g)}$ 的 $K_c = ?$
 - (A) AB
 - (B) $A^{-2}B^2$
 - (C) $A^{-2}B^2(RT)^{-2}$
 - (D) $A^{-2}B^2(RT)^{-1}$
 - (E) $A^{-2}B^2(RT)^2$
- 13. 定溫下 $0.02 \text{ M AgNO}_{3(aq)}$ 與 $0.10 \text{ M NaCl}_{(aq)}$ 兩溶液等體積混合後,有 $AgCl_{(s)}$ 白色固體產生,且溶液體積爲 100 mL。下列數值何者最接近此溶液達成平衡時 $[Ag^+]$ 之濃度?(註:該溫度下 AgCl 之 $K_{sn} = 4 \times 10^{-10}$)
 - (A) 1×10^{-8} M
 - (B) $5 \times 10^{-9} \,\mathrm{M}$
 - (C) $2 \times 10^{-5} \text{ M}$
 - (D) $1 \times 10^{-5} \,\mathrm{M}$
 - (E) 0.01 M
- 14. 承上題,今再加水使上述溶液體積增加成為 1000 mL,達新平衡時 AgCl_(s)仍存在,則下列敘述何者錯誤?
 - (A) [Ag+] 濃度變小
 - (B) [Cl-]濃度變小
 - (C) [Na+]濃度變小
 - (D) AgCl(s) 莫耳數減少
 - (E) Ag⁺ 莫耳:數增加
- 15. 有五種溶液 $A \times B \times C \times D \times E$,已知它們各爲 $AgNO_3$,HCl, $BaCl_2$, Na_2CO_3 , Na_2SO_4 的 其中一種,現將兩兩混合觀察到的現象記錄如表(2):

表(2)

混合情形	A+B	B+C	A+C	A+E	C+E	C+D
現象	放出氣體	產生沉澱	無明顯反應	產生沉澱	產生沉澱	產生沉澱

下列推斷化合物的化學式正確的為:

- (A) A 爲 AgNO,
- (B) B 爲 HC1
- (C) C 爲 BaCl₂
- (D) D 爲 Na,CO,
- (E) E 爲 Na2SO4

二、多選題(占 36 分)

- 說明:第16題至第24題,每題有5個選項,其中至少有一個是正確的選項,請將 正確選項畫記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選 項均答對者,得4分;答錯1個選項者,得2.4分,答錯2個選項者,得0.8 分,答錯多於2個選項或所有選項均未作答者,該題以零分計算。
- 16. 已知熱化學反應式如下,下列敘述哪些正確?

$$\begin{split} &H_{2(g)} + \frac{1}{2} O_{2(g)} \to H_2 O_{(\ell)} \text{ , } \Delta H_1 = -68.3 \text{ kcal} \\ &H_{2(g)} + \frac{1}{2} O_{2(g)} \to H_2 O_{(g)} \text{ , } \Delta H_2 = -57.8 \text{ kcal} \\ &N_{2(g)} + 2 O_{2(g)} \to 2 N O_{2(g)} \text{ , } \Delta H_3 = 16.2 \text{ kcal} \\ &C_{(s)} + \frac{1}{2} O_{2(g)} \to C O_{(g)} \text{ , } \Delta H_4 = -26.4 \text{ kcal} \\ &CO_{(g)} + \frac{1}{2} O_{2(g)} \to C O_{2(g)} \text{ , } \Delta H_5 = -67.6 \text{ kcal} \\ &AgNO_{3(s)} \xrightarrow{H_2 O_{(\ell)}} AgNO_{3(aq)} \text{ , } \Delta H_6 = 5.4 \text{ kcal} \end{split}$$

- (A) 水的蒸發熱為 10.5 kcal/mol
- (B) 氮的莫耳燃燒熱爲 16.2 kcal
- (C) 二氧化碳的莫耳生成熱爲 -94.0 kcal
- (D) 一氧化碳的莫耳燃燒熱爲 -67.6 kcal
- (E) 溫度升高時, AgNO363對水的溶解度增大
- 17. W、X、Y、Z 為前三週期之不同元素。X、Y、Z 是原子序值依次遞增的同週期元素,且最外層電子數之和為 18; X 與 H 可形成 XH₃氣態分子,且溶於水成鹼性;上述四種元素的質子數關係為 W=Y+Z-X+1。下列敘述哪些正確?
 - (A) W 與 Z 形成之化合物於固態及熔融態不能導電,但水溶液可導電
 - (B) XY,於常溫常壓下爲氣體
 - (C) W,Y於常溫常壓下缺乏延性與展性,溶於水呈強鹼性
 - (D) Z 與 H 形成之化合物可因氫鍵產生多聚體
 - (E) 常溫常壓下 W 具網狀共價鍵
- 18. 有關週期表第二列元素甲(1s²2s²2p⁵)與乙(1s²2s²2p^x)結合形成的單中心分子,其中心原子的混成軌域以及分子幾何形狀,哪些正確?
 - (A) x=0,sp,直線形

- (B) x=1, sp², 彎曲形
- (C) x=2, sp^3 , 正四面體形
- (D) x=3, sp^3 , 三角錐形

- (E) x = 4, sp^2 , 彎曲形
- - (A) 基態的電子組態爲乙丙
 - (B) 激發態的有甲戊
 - (C) 違反洪德定則的僅有己
 - (D) 違反包立不相容原則的僅有戊
 - (E) 寫法錯誤的有丁己

- 20. 下列有關理想氣體之敘述,哪些正確?
 - (A) 理想氣體是符合 $\frac{PV}{RT}$ =1關係之氣體
 - (B) 定溫下,定量的理想氣體體積 V 與壓力 P 無關
 - (C) 不論溫度高低,理想氣體分子間沒有作用力
 - (D) 理想氣體分子可視爲質點,不佔有體積
 - (E) 氫氣在高壓低溫時,較低壓高溫時接近理想氣體
- 21. 下列有關反應速率的敘述,哪些正確?
 - (A) 一反應若是經由複雜的多個步驟進行,最快的步驟稱為速率決定步驟
 - (B) 不管是吸熱反應還是放熱反應,溫度愈高,反應速率愈大
 - (C) 活化能即活化錯合物的位能,活化能愈大,反應愈慢
 - (D) 縮小容器體積可使氣體反應的有效碰撞頻率增加
 - (E) 兩個不同的反應,吸熱反應的活化能較放熱反應的活化能大
- 22. 在 $HNO_{2(aq)} + HSO_{3(aq)} \rightleftharpoons H_2SO_{3(aq)} + NO_{2(aq)}^{-}$ 的反應中,已知反應傾向逆反應方向進行,則下列敘述哪些正確?
 - (A) 此反應中 HSO, 爲鹼
 - (B) HSO, 與 H,SO, 爲共軛酸鹼對
 - (C) HNO, 爲 NO, 一的共軛鹼
 - (D) 酸性強弱比較: HNO₂ > H₂SO₃
 - (E) 鹼性強弱比較: NO, -> HSO, -
- 23. 某反應 $A_{2(g)}$ + 熱 \rightleftharpoons $2A_{(g)}$, $k_{_{1}}$ 、 $k_{_{-1}}$ 爲此反應的正、逆反應速率常數,K 爲平衡常數。若 施予下列各項操作時,正、逆反應速率常數、平衡常數將分別成爲 $pk_{_{1}}$ 、 $qk_{_{-1}}$ 、 rK ,下 列澤項哪些正確?

71/25 75	<u> </u>						
選項	變因	結果					
(A)	定溫定容加入 A _{2(g)}	p = q = 1, $r = 1$					
	定溫下壓縮體積	p = q = 1, $r < 1$					
(C)	定溫定容加入 He _(g)	q , $r = 1$					
(D)	定容加熱	q > p > 1, $r < 1$					
(E)	加催化劑	p = q > 1, $r = 1$					

- 24. 最新的 2014 年諾貝爾化學獎頒給三位科學家,他們利用螢光分子,將光學顯微鏡變成了奈米顯微鏡。一般的光學顯微鏡是以可見光為光源,當待測物體比可見光波長一半(最小約 0.2 微米)還小時,會因為光的繞射現象,使影像模糊。為了改進這個缺點,其中一位科學家將某種螢光水母身上分離出來的綠色螢光蛋白,嵌在要觀察的奈米物質上,再利用不同波長的光去控制發光與否,好像在這些物質表面裝上可隨意點亮或關掉的一堆小燈泡,分批記錄待測物體上不同位置的發亮小點,組合起來即可得到所要觀察物質的圖像。關於此研究與奈米科技的相關敘述,哪些正確?
 - (A) 光學顯微鏡觀測極限爲 20 奈米
 - (B) 可見光的最短波長約爲 400 奈米
 - (C) 奈米粒子具有高強度、高延性、高展性等特性
 - (D)「奈米光觸媒」一詞中的奈米,指的是激發觸媒的光波長約為 1~100 奈米
 - (E) 奈米材料愈小,材料表面的原子數佔總原子數的比例就會愈大

第貳部分:非選擇題(占19分)

- 説明:本部分共有三大題,答案必須寫在「答案卷」上,並於題號欄標明大題號 (一、二、……)與子題號(1、2、……),作答時不必抄題。計算題必須寫出 計算過程,最後答案應連同單位劃線標出。作答務必使用筆尖較粗之黑色 墨水的筆書寫,且不得使用鉛筆。
- 一、<u>小惠</u>爲了探討濃度對反應速率的影響,配製甲、乙兩溶液:甲溶液爲 3.0×10⁻² M的碘酸 鉀溶液,乙溶液爲 1.8×10⁻² M的亞硫酸氫鈉溶液,其中含少量硫酸、澱粉。<u>小惠</u>依表(3)的組成,將適量的甲溶液和乙溶液及水三者混合,開始計時,在定溫下靜置一段時間,當溶液由無色轉變爲藍色瞬間,停止計時,並記錄實驗結果於表(3)最右欄中。根據此實驗結果回答下列各問題:

表(3)									
實驗	甲溶液(mL)	乙溶液(mL)	水(mL)	時間(s)					
第一次	1.0	2.0	3.0	100					
第二次	2.0	2.0	2.0	25					
第三次	3.0	2.0	1.0	11					

- (1) 本實驗在亞硫酸氫鈉尚未用盡前,無法觀測到藍色出現,這是因爲碘會被亞硫酸氫根離子還原成 I⁻,試寫出碘與亞硫酸氫根離子反應的淨離子反應式。(2分)
- (2) 對碘酸鉀而言,此反應是幾級反應?(2分)
- (3) 以第一次的實驗結果,計算與亞硫酸氫鈉溶液反應時,碘酸鉀的消耗速率爲多少M/s?(3分)
- 二、圖(3)爲氫原子光譜之可見光區及紫外光區,請回答以下問題:

- (1) 可見光區波長最長者是哪一條譜線?請以代號做答。(1分)
- (2) c 譜線與 d 譜線的波長比爲何?請以最簡分數表示。(2 分)
- (3) 已知氫原子的游離能爲 2.179×10⁻¹⁸ J/個,若以一個能量爲 2.043×10⁻¹⁸ J 的光子去激發 一個氫原子,可將氫原子的電子由基態激發至 n 爲若干的激發態?(3 分)
- 三、實驗室現有 A~E 五種 0.10 M 之水溶液,

A: HCl

B: NaOH

C: $CH_3COOH(K_a = 1.8 \times 10^{-5})$

D: NH₃ ($K_b = 1.6 \times 10^{-5}$)

E: Na₂HPO₄ (H₃PO₄ \nearrow K_{a1} = 7.1×10⁻³, K_{a2} = 6.3×10⁻⁸, K_{a3} = 4.4×10⁻¹³)

試回答下列問題:

- (1) Na,HPO₄的中文名稱爲何?(1分)
- (2) 計算 C 溶液的 pH 值。(2 分)
- (3) 從 A~E 中挑選適當溶液,描述配製 1.0 升 pH=5.0 之緩衝溶液的方法。(3 分)