	Running head: EFFECT SIZE	1				
1	What measure of effect size when comparing two groups based on their means?					
2	Marie Delacre ¹ & Christophe Leys ¹					
3	¹ Université Libre de Bruxelles, Service of Analysis of the Data (SAD), Bruxelles, Belgiu	m				
	Author Note					
4	Author Note					
5	Correspondence concerning this article should be addressed to Marie Delacre, CP191,					
6	avenue F.D. Roosevelt 50, 1050 Bruxelles. E-mail: marie.delacre@ulb.ac.be					

7 Abstract

8

Keywords: keywords

Word count: X

What measure of effect size when comparing two groups based on their means?

12 Intro

11

During decades, researchers in social science (Henson & Smith, 2000) and education

(Fan, 2001) have overestimated the ability of the null hypothesis (H0) testing to determine

the importance of their results. The standard for researchers in social science is to define H0

as the absence of effect (Meehl, 1990). For example, when comparing the mean of two

groups, researchers commonly test the H0 that there is no mean differences between groups

(Steyn, 2000). Any effect that is significantly different from zero will be seen as sole support

for a theory.

Such an approach has faced many criticisms among which the most relevant to our concern is that the null hypothesis testing highly depends on sample size: for a given alpha level and a given difference between groups, the larger the sample size, the higher the probability of rejecting the null hypothesis (Fan, 2001; Kirk, 2009; Olejnik & Algina, 2000; Sullivan & Feinn, 2012). It implies that even tiny differences could be detected as statistically significant with very large sample sizes (McBride, Loftis, & Adkins, 1993)¹.

Facing this argument, it has become an adviced practice to report the *p*-value assorted by a measure of the effect size, that is, a quantitative measure of the magnitude of the experimental effect (Cohen, 1965; Fan, 2001; Hays, 1963). This practice is also highly endorsed by the American Psychological Association (APA) and the American Educational Research Association (AERA) (American Educational Research Association, 2006; American Psychological Association, 2010). However, limited studies properly report effect size in the

¹ Tiny differences might be due to sampling error, or to other factors than the one of interest: even under the assumption of random assignent (which is a necessary but not sufficient condition), it is almost impossible to be sure that the only difference between two conditions is the one defined by the factor of interest. Other tiny factors of no theoretical interest might slighly influence results, making the probability of getting an actual zero effect very low. This is what Meehl (1990) calls 'systematic noise'.

last several decades.

38

Generally, there is a high confusion between the effect size and other related concepts such as the Applied significance². Moreover, there are several situations that call for effect size measures and in the current litterature, it's not always easy to know which measure using in a specific context. We will therefore introduce this paper with 3 sections in which we will:

- 1. Clearly define what is a measure of effect size;
 - 2. Listing the different situations that call for effect sizes measure;
- 3. Define required properties as a function of the situations.

After these general adjustments, we will focus our attention on "between-subject" 40 designs where individuals are randomly assigned into one of two independent groups and 41 groups scores are compared based on their means³. Because it has been widely argued that 42 there are many fields in psychology where the assumption of equal variances between groups 43 is ecologically unlikely (Erceg-Hurn & Mirosevich, 2008; Grissom, 2000), it is becoming more common in statistical software to present a t-test that does not hold on this assumption by default, namely the Welch's t-test (e.g., R, Minitab). However, similar issues for the measures of effect sizes has received less attention (Shieh, 2013), and Cohen's d_s remains persistent⁴. One possible reason is that researchers cannot find a consensus on which alternative should be in use (Shieh, 2013). We will limit our study to the standardized mean difference, called the d-family, because it is the dominant family of estimators of effect size when comparing two groups based on their means (Peng, Chen, Chiang, & Chiang, 2013; Shieh, 2013), and we will see that even in this very specific context, there is little agreement between researchers as to which is the most suitable estimator. According to us, the main

² In our conception Applied significance" encompass all what refers to the relevance of an effect in real life, e.g. clinical, personnal, social, professionnal.

³ We made this choice because *t*-tests are still the most commonly used tests in the field of Psychology.

⁴ For example, in Jamovi, Cohen's ds is provided, whatever one performs Student's or Welch's t-test.

reason is that it is difficult, based on currently existing measures, to optimally serves all the purposes of en affect size measure. Throughout this section, we will:

- 1. Present the main measures of the *d*-family that are proposed in the literature, related to the purpose they serve, and introduce a new one, namely the "transformed Shieh's *d*" that should help at reaching all the purposes simultaneously;
- 2. Present and discuss the results of simulations we performed, in order to compare existing measures and the new introduced one;
 - 3. Summarize our conclusions in practical recommandations.

61

62

Measure of effect size: what it is, what it is not

The effect size is commonly referred to the practical significance of a test. Grissom & Kim (2005) define the effect size as the extent to which results differ from what is implied by the null hypothesis. In the context of the comparison of two groups based on their mean, depending on the defined null hypothesis (considering the absence of effect as the null hypothesis), we could define the effect size either as the magnitude of differences between parameters of two populations groups are extracted from (e.g. the mean; Peng & Chen, 2014) or as the magnitude of the relation between one dichotomous factor and one dependent variable (American Educational Research Association, 2006). Both definitions refers to as the most famous families of measures of effect sizes (Rosenthal, 1994): respectively the

Very often, the contribution of the measures of effect size is overestimated. First,
benchmarks about what should be a small, medium or large effect size might have
contribued at seeing the effect size as a measure of the importance or the relevance of an
effect in real life, but it is not (Stout & Ruble, 1995). The effect size is only a mathematical
indicator of the magnitude of a difference, which depends on the way a variable is converted
into numerical indicator. In order to assess the meaningfulness of an effect, we should be
able to relate this effect with behaviors/meaningful consequences in the real world

(Andersen, McCullagh, & Wilson, 2007). For example, let us imagine a sample of students in serious school failure who are randomly divided into two groups: an experimental group 81 following a training program and a control group. At the end of the training, students in the 82 experimental group have on average significantly higher scores on a test than students in the 83 control group, and the difference is large (e.g. 30 percents). Does it mean that students in the experimental condition will be able to pass to the next grade and to continue normal 85 schooling? Whether the computed magnitude of difference is an important, meaningful change in everyday life refers to another construct: the Applied significance (Bothe & Richardson, 2011). It refers to the interpretation of treatment outcomes and is neither statistical nor mathematical, it is related to underlying theory that posits an empirical hypothesis. In other words, the relation between practical and Applied significance is more a theoretical argument than a statistical one.

Second, in the context of the comparison of two groups based on their means, it should not replace the null hypothesis testing. Statistical testing allows the researcher to determine whether the oberved departure from H0 occured by chance or not (Stout & Ruble, 1995) while effect size estimators allow to assess the practical significance of an effect, and as reminds Fan (2001): "a practically meaningful outcome may also have occured by chance, and consequently, is not trustworthy" (p.278). For this reason, the use of confidence intervals around the effect size estimate is highly recommended (Bothe & Richardson, 2011).

Different purposes of effect size measures

Effect size measures can be used in an *inferential* perspective:

99

100

- The effect sizes from previous studies can be used in a priori power analysis when planning a new study (Lakens, 2013; Prentice & Miller, 1990; Stout & Ruble, 1995; Sullivan & Feinn, 2012; Wilkinson & the Task Force on Statistical Inference, 1999);
- We can also compute confidence limits around the point estimator (Shieh, 2013), in order to replace conventional hypothesis testing: if the null hypothesis area is out of the

confidence interva, we can conclude that the null hypothesis is false.

Measures of effect size can also be used in a *comparative* perspective, that is to assess the stability of results across designs, analysis, samples sizes (Wilkinson & the Task Force on Statistical Inference, 1999). It includes:

- To compare results of 2 or more studies (Prentice & Miller, 1990);

110

116

117

118

119

120

121

122

123

- To incorporate results in meta-analysis (Lakens, 2013; Li, 2016; Nakagawa & Cuthill, 2007; Stout & Ruble, 1995; Wilkinson & the Task Force on Statistical Inference, 1999).

Finally, effect size measures can be used for *interpretative* purposes: in order to assess
the practical significance of a result (beyond statistical significance; Lakens, 2013; American
Psychological Association, 2010; Prentice & Miller, 1990).

Properties of a good effect size estimator

The estimate of an estimator depends on the sampling. That is to say, based on different samples extracted from the same population, one would obtain different estimates of the same estimator. The *sampling distribution* of the estimator is the distribution of all estimates, based on all possible samples of size *n* extracted from one population. Studying the sampling distribution is very useful, as it allows to assess the goodness of an effect size estimator and more specifically, three desirable properties of a good estimator for inferential purposes: **unbiasedness**, **consistency** and **efficiency**.

An estimator is unbiased if the distribution of estimates is centered around the true population parameter. On the other hand, an estimator is positively (or negatively) biased if the distribution is centered around a value that is higher (or smaller) than the true populatione parameter (see Figure 1). In other words, the bias tells us if estimates are good, on average. The bias of a point estimator $\hat{\delta}$ can be computed as follows:

$$\hat{\delta}_{bias} = E(\hat{\delta}) - \delta \tag{1}$$

Where $E(\hat{\delta})$ is the mean expectency of the sampling distribution of the estimator and δ is the true parameter.

In order to compare the *bias* of a point estimator for different true population parameters, we can compute the bias divided by δ .

$$\hat{\delta}_{bias} = \frac{E(\hat{\delta}) - \delta}{\delta} \tag{2}$$

Bias informs us about the goodness of estimates averages, but says nothing about 133 individual estimates. Imagine a situation where the distribution of estimates is centered 134 around the real parameter but with such a large variance that some point estimates are very 135 far from the center. It would be problematic, as long as we have only one estimate, the one 136 based on our sample, and we don't know how far is this estimate from the center of the 137 sampling distribution. We hope that all possible estimates are close enough of the true 138 population parameter, in order to be sure that for any estimate, one has a correct estimation of the real parameter. In other words, we expect the variability of estimates around the true 140 population parameter to be as small as possible. It refers to the efficiency of the point 141 estimator $(\hat{\delta})$ and can be computed as follows:

$$\hat{\delta}_{efficiency} = Var(\hat{\delta}) \tag{3}$$

Among all unbiased estimators, the more efficient will be the one with the smallest variance.

145

Note that both unbiasedness and efficiency are very important. Remember that we

hope that any possible estimate is close of the real parameter. An unbiased estimator with such a large variance that somes estimates are extremely far from the real parameter is as 147 undesirable as a parameter which is highly biased. In some situations, it is better to have a 148 very slightly biased estimator with a tigh shape around the biased value, so each estimate 149 "misses" the real parameter a little, than an unbiased estimator with a large variance [Ref to 150 add: https://eranraviv.com/bias-vs-consistency/]. Because both unbiasedness and efficiency 151 must be considered, it is interesting to compute an indicator that take simultaneously both 152 properties into account (Wackerly, Mendenhall, & Scheaffer, 2008). The mean square error 153 of a point estimator $\hat{\delta}$ is defined as follows:

$$MSE(\hat{\delta}) = E[(\hat{\delta} - \delta)^2] \tag{4}$$

It can be proven that the *mean square error* is a function of the bias and the variance of $\hat{\delta}$:

$$MSE(\hat{\delta}) = \hat{\delta}_{efficiency} + \hat{\delta}_{bias}^2 \tag{5}$$

Finally, the last property of a good point estimator is **consistency**: consistency means
that the bigger the sample size, the closer the estimate of the population parameter. In other
words, the estimates *converge* to the true population parameter.

Beyond the inferential properties, Cumming (2013) reminds that an effect size estimator need to have a constant value across designs in order to be easily interpretable and to be included in meta-analysis. In other word, it should achieve the property of **generality**.

160

161

162

163

164

165

Different measures of effect sizes

The d-family effect sizes are commonly used with "between-subject" designs where individuals are randomly assigned into one of two independent groups and groups scores

means are compared. The population effect size is defined as follows:

$$\delta = \frac{\mu_1 - \mu_2}{\delta} \tag{6}$$

They exist different estimators of this effect size measure varying as a function of the chosen standardizer (δ). For all estimators, the mean difference is estimated by the difference of both sample means ($\bar{X}_1 - \bar{X}_2$). When used for inference, some of them rely on both assumptions of normally distributed residuals and equality of variances, while others rely solely on the normally distributed residuals assumption.

Alternatives when variances are equal between groups

The most common estimator of δ is Cohen's d_s where the sample mean difference is divided by a pooled error term (Cohen, 1965):

$$Cohen'sd_s = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{(n_1 - 1) \times SD_1 + (n_2 - 1) \times SD_2}{n_1 + n_2 - 2}}}$$
(7)

The reasoning behind this measure is that considering both samples as extracted from a common population variance (n.d.), we achieve a more accurate estimation of the population variance by pooling both estimates of this parameter (i.e SD_1 and SD_2) and because the larger the sample size, the more accurate the estimate, we give more weight to the estimate based on the larger sample size $(max(n_j))$. Unfortunately, even under the assumptions that residuals are independent and identically normally distributed with the same variance across groups, Cohen's d_s is known to be positively biased (Lakens, 2013) and for this reason, Hedges & Olkin (1985) has defined a bias-corrected version, which is referred to:

$$Hedge'sg_s = Cohen'sd_s \times \left(1 - \frac{3}{4 \times (n_1 + n_2) - 9}\right) \tag{8}$$

The pooled SD is the best choice when variances are equal between groups (Grissom & 183 Kim, 2001) but they may not be well advised for use with data that violates this assumption 184 (Cumming, 2013; Grissom & Kim, 2001, 2005; Kelley, 2005, 2005; Shieh, 2013). In case of a 185 positive pairing (i.e. the group with the larger sample size also has the larger variance), the 186 variance will be over-estimated and therefore, the estimator will be lower as it should be. On 187 the other side, in case of negative pairing (i.e. the group with the larger sample size has the 188 smaller variance), the estimator will be larger as it should be. However, this assumption is 189 very rare in practice (Cain, Zhang, & Yuan, 2017; Delacre, Lakens, & Leys, 2017; Delacre, 190 Leys, Mora, & Lakens, 2019; Erceg-Hurn & Mirosevich, 2008; Glass, Peckham, & Sanders, 191 1972; Grissom, 2000; Micceri, 1989; Yuan, Bentler, & Chan, 2004). For this reason, both 192 Cohen's d_s and Hedge's g_s should be abandoned in favor of a robust alternative to unequal 193 variances.

Alternatives when variances are unequal between groups

In his review, Shieh (2013) mention three alternative available in the literature: the sample mean difference, divided by the non pooled average of both variance estimates (A), the Glass's d_s (B) and the Shieh's d_s (C).

The sample mean difference, divided by the non pooled average of both variance estimates (A) was suggested by [Cohen_1988]. We immediately exclude this alternative because it suffers of many limitations:

- it results in a variance term of an artificial population and is therefore very difficult to interpret (Grissom & Kim, 2001);
- unless both sample sizes are equal, the variance term does not correspond to the variance of the mean difference (Shieh, 2013);
- unless the mean difference is null, the measure is biased. Moreover, the bigger the sample size, the larger the variance around the estimate.

When comparing one control group with one experimental group, Glass, McGav, & Smith (2005) recommend using the SD of the control group as standardizer. It is also advocated by (Cumming, 2013), because according to him, it is what makes the most sense, conceptually speaking.

$$Glass'sd_s = \frac{\bar{X}_{experimental} - \bar{X}_{control}}{SD_{control}} \tag{9}$$

Because the SD of the experimental group has no impact on the computed Glass's d_s , 212 one could advice to report both mean differences divided by the SD of the control group and 213 mean differences divided by the SD of the experimental groups. However, it could induces 214 large ambiguity because both measures could be substantially different (Shieh, 2013). When 215 reporting only the mean difference divided by the SD of the control group, the measure is 216 very stable from one design to another (e.g. Glass's delta) but have weak inferential 217 properties (as we will illustrate in the simulation section). While we consider that all 218 purposes are important, the inferential purpose is crucial in the setting we are studying. We 219 therefore consider this measure to be unsuitable. 220

Kulinskaya and Staudte (2007) adviced the use of a standardizer that take the sample sizes allocation ratios into account, in addition to the variance of both groups. It results in a modification of the exact SD of the sample mean difference:

$$Shieh'sd_s = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{SD_1^2/q_1 + SD_2^2/q_2}}$$
(10)

According to the statistical properties of Welch's statistic under heteroscedasticity, it
does not appear possible to define a proper standardised effect size without accounting for
the relative group size of subpopulations in a sampling scheme. At the same time, the lack of
generality caused by taking this specificity of the design into account has led Cumming

(2013) to question its usefulness in terms of interpretability: when keeping constant the mean difference as well as SD_1 and SD_2 , Shieh's d_s will vary as a function of the sample sizes allocation ratio (dependency of Shieh's d_s value on the sample sizes allocation ratio is detailed and illustrated in Appendix 1, and also in the following shiny application: http://l27.0.0.1:3461/).

Fortunately, this paradox can be resolved in answering the following question: "for any sample sizes ratio, what value of Shieh's d_s would have been computed if design were balanced (i.e. $n_1 = n_2$), keeping constant the mean difference, SD_1 and SD_2 ?" It can be shown that the relationship between the Shieh's d_s value when samples sizes are equal between groups (i.e. $\delta_{Shieh,n1=n2}$) and Shieh's d_s values for all other sample sizes allocation ratios can be expressed as follows:

$$\delta_{Shieh,n_1=n_2} = \delta_{Shieh} \times \frac{(nratio+1) \times \sigma_{n_1 \neq n_2}}{2 \times \sigma_{n_1=n_2} \times \sqrt{nratio}}$$
(11)

With

$$\sigma_{n_1=n_2} = \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$$

240 and

243

$$\sigma_{n_1 \neq n_2} = \sqrt{(1 - \frac{n_1}{N}) \times \sigma_1^2 + (1 - \frac{n_2}{N}) \times \sigma_2^2}$$

Thanks to this equation, Shieh's δ can be compared across two different studies using different sample sizes allocation ratio and could be included in meta-analysis.

Simulations

We performed Monte Carlo simulations using R (version 3.5.0) to assess the bias, efficiency and consistency of the 6 measures of effect sizes described in previous section: Cohen's d_s , Hedge's g_s , Glass's d_s using respectively the sample standard deviation of the

first or second group as a standardizer, Shieh's d_s and our transformed measure of Shieh's d_s ,
that we will note later d_s^* .

100,000 datasets were generated for 1,260 scenarios. In 315 scenarios, samples were 249 extracted from a normal population distribution and in 945 scenarios, samples were 250 extracted from non normal population distributions. In order to assess the goodness of 251 estimators under realistic deviations from the normality assumption, we referred to the 252 review of Cain et al. (2017). Based on their investigation⁵, Cain et al. (2017) found values of 253 kurtosis from G2 = -2.20 to 1,093.48. According to their suggestions, throughout our 254 simulations, we kept constant the population kurtosis value at the 99th percentile of their 255 distribution, i.e. G2=95.75. Regarding skewness, we simulated population parameter values 256 which correspond to the 1st and 99th percentile of their distribution, i.e. respectively G1 =257 -2.08 and G1 = 6.32. We also simulated null population parameter values (i.e. G1 = 0), in 258 order to assess the main effect of high kurtosis on the goodness of estimators. All possible 259 combinations of skewness and kurtosis and the number of scenarios for each combination are summarized in Table 1. 261

Table 1. Number of Combinations of skewness and kurtosis in our simulations

Note. Fisher's skewness (G1) and kurtosis (G2) are presented in Table 1. The 315

combinations where both G1 and G2 equal 0 correspond to the normal case.

For the 4 resulting combinations of skewness and kurtosis (see Table 1), all other population parameter values were chosen in order to illustrate the consequences of factors known to play a key role on goodness of estimators. We manipulated the sample sizes, the

⁵ Cain et al. (2017) investigated 1,567 univariate distributions from 194 studies published by authors in *Psychological Science* (from January 2013 to June 2014) and the *American Education Research Journal* (from January 2010 to June 2014). For each distribution, they computed the Fisher's skewness (G1) and kurtosis (G2).

sample size ratio (n-ratio = $\frac{n_1}{n_2}$), the SD-ratio (SD-ratio = $\frac{\sigma_1}{\sigma_2}$), and the sample size and 268 variance pairing. In our scenarios, μ_2 was always 0 and μ_1 varied from 0 to 4, in step of 1 (so 269 does $\mu_1 - \mu_2$). Moreover, σ_1 always equals 1, and σ_2 equals .1, .25, .5, 1, 2, 4 or 10 (so does 270 the SD-ratio). The simulations for which both σ_1 and σ_2 equal 1 are the particular case of 271 homoscedasticity (i.e. equal variances across groups). Sample size of both groups $(n_1 \text{ and } n_2)$ 272 were 20, 50 or 100. When sample sizes of both groups are equal, the n-ratio equals 1 (it is 273 known as a balanced design). All possible combinations of n-ratio and SD-ratio were 274 performed in order to distinguish positive pairings (the group with the largest sample size is 275 extracted from the population with the largest SD), negative pairings (the group with the 276 smallest sample size is extracted from the population with the smallest SD), and no pairing 277 (sample sizes and/or population SD are equal across all groups). In sum, the simulations 278 grouped over different sample sizes yield 5 conditions based on the n-ratio, SD-ratio, and sample size and variance pairing, as summarized in Table 2. 280

Table 2. 5 conditions based on the n-ratio, SD-ratio, and sample size and variance pairing

Note. The *n*-ratio is the sample size of the first group (n_1) divided by the sample size of the second group (n_2) . When all sample sizes are equal across groups, the *n*-ratio equals 1. When $n_1 > n_2$, *n*-ratio > 1, and when $n_1 < n_2$, *n*-ratio < 1. SD-ratio is the population SD of the first group (σ_1) divided by the population SD of the second group (σ_2) . When $\sigma_1 = \sigma_2$, SD-ratio = 1. When $\sigma_1 > \sigma_2$, SD-ratio = 1. Finally, when $\sigma_1 < \sigma_2$, SD-ratio = 1.

American Educational Research Association. (2006). Standards for reporting on empirical social science research in aera publications. *Educational Researcher*, 35, 33–40. doi:10.3102/0013189X035006033

American Psychological Association. (2010). Publication manual of the american
psychological association [apa] (6 ed.) (American Psychological Association.). Washington,

293 DC:

- Andersen, M. B., McCullagh, P., & Wilson, G. J. (2007). But what do the numbers really tell us? Arbitrary metrics and effect size reporting in sport psychology research.

 Journal of Sport & Exercise Psychology, 29, 664–672.
- Bothe, A. K., & Richardson, J. D. (2011). Statistical, practical, clinical, and personal significance: Definitions and applications in speech-language pathology. *American Journal of Speech-Language Pathology*, 20, 233–242.
- Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. *Behavior Research Methods*, 49(5), 1716–1735. doi:10.3758/s13428-016-0814-1
- Cohen, J. (1965). Some statistical issues in psychological research. In *Handbook of clinical psychology* (B. B. Wolman., pp. 95–121). New York: McGraw-Hill.
- Cumming, G. (2013). Cohen's d needs to be readily interpretable: Comment on shieh (2013). Behavior Research Methods, 45, 968–971. doi:10.3758/s13428-013-0392-4
- Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use welch's t-test instead of student's t-test. *International Review of Social Psychology*, 30(1), 92–101. doi:10.5334/irsp.82
- Delacre, M., Leys, C., Mora, Y. L., & Lakens, D. (2019). Taking parametric
 assumptions seriously: Arguments for the use of welch's f-test instead of the classical f-test
 in one-way anova. *International Review of Social Psychology*, 32(1), 1–12.
 doi:http://doi.org/10.5334/irsp.198
- Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods:

 An easy way to maximize the accuracy and power of your research. *American Psychologist*,

- 63(7), 591-601. doi:10.1037/0003-066X.63.7.591
- Fan, X. (2001). Statistical significance and effect size in education research: Two sides of a coin. *Journal of Educational Research*, 94(5), 275–282. doi:10.1080/00220670109598763
- Glass, G. V., McGav, B., & Smith, M. L. (2005). *Meta-analysis in social research* (Sage.). Beverly Hills, CA.
- Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. *Review of Educational Research*, 42(3), 237–288. doi:10.3102/00346543042003237
- Grissom, R. J. (2000). Heterogeneity of variance in clinical data. *Journal of Consulting*and Clinical Psychology, 68(1), 155–165. doi:10.1037//0022-006x.68.1.155
- Grissom, R. J., & Kim, J. J. (2001). Review of assumptions and problems in the appropriate conceptualization of effect size. *Psychological Methods*, 6(2), 135–146.

 doi:10.1037/1082-989X.6.2.135
- Grissom, R. R., & Kim, J. J. (2005). Effect size for research: A broad practical approach. (Lawrence Erlbaum Associates, Mahwah, N.J.). London.
- Hays, W. L. (1963). Statistics for psychologists (Holt, Rinehart & Winston.). New York.
- Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis (Academic Press.). Cambridge, Massachusetts. doi:10.1016/C2009-0-03396-0
- Henson, R. I., & Smith, A. D. (2000). State of the art in statistical significance and effect size reporting: A review of the APA task force report and current trends. *Journal of Research and Development in Education*, 33(4), 285–296.

```
Kelley, K. (2005). The effects of nonnormal distributions on confidence intervales around the standardized mean difference: Bootstrap and parametric confidence intervals.
```

- 340 Educational and Psychological Measurement, 65(1), 51-69. doi:10.1177/0013164404264850
- Kirk, R. E. (2009). Practical significance: A concept whose time has come. *Educational* and *Psychological Measurement*, 56(5), 746–759. doi:10.1177/0013164496056005002
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863), 1–12. doi:10.3389/fpsyg.2013.00863
- Li, J. (2016). Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data. *Behavior Research Methods*, 48(4), 1560–1574.

 doi:10.3758/s13428-015-0667-z
- McBride, G. B., Loftis, J. C., & Adkins, N. C. (1993). What do significance tests really tell us about the environment? *Environmental Management*, 17(4), 423–432.
- Meehl, P. E. (1990). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it. *Psychological Inquiry*, 1(2), 108–141.
- Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures.

 Psychological Bulletin, 105(1), 156–166. doi:10.1037/0033-2909.105.1.156
- Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. *Biological Reviews*, 82, 591–605.

 doi:10.1111/j.1469-185X.2007.00027.x
- Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies:

 Applications, interpretations, and limitations. *Contemporary Educational Psychology*, 25,

 241–286. doi:10.1006/ceps.2000.1040

Peng, C.-Y., & Chen, L.-T. (2014). Beyond cohen's d: Alternative effect size measures for between-subject designs. THE JOURNAL OF EXPERIMENTAL EDUCATION, 82(1), 22–50. doi:10.1080/00220973.2012.745471

- Peng, C.-Y., Chen, L.-T., Chiang, H.-M., & Chiang, Y.-C. (2013). The Impact of APA and AERA Guidelines on Effect size Reporting. *Contemporary Educational Psychology*, 82(1), 22–50. doi:10.1080/00220973.2012.745471
- Prentice, D., & Miller, D. T. (1990). When small effects are impressive. *Psychological Bulletin*, 112(1), 160–164.
- Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), *The hand-book of research synthesis* (pp. 231–244). New-York: Sage.
- Shieh, G. (2013). Confidence intervals and sample size calculations for the weighted eta-squared effect sizes in one-way heteroscedastic ANOVA. *Behavior Research Methods*, 45(1), 2–37. doi:10.3758/s13428-012-0228-7
- Steyn, H. S. (2000). Practical significance of the difference in means. *Journal of Industrial Psychology*, 26(3), 1–3.
- Stout, D. D., & Ruble, T. L. (1995). Assessing the practical signficance of empirical results in accounting education research: The use of effect size information. *Journal of Accounting Education*, 13(3), 281–298.
- Sullivan, G., & Feinn, R. (2012). Using effect size—or why the p value is not enough.

 Journal of Graduate Medical Education, 279–282. doi:10.4300/JGME-D-12-00156.1
- Wackerly, D. D., Mendenhall, W., & Scheaffer, R. L. (2008). *Mathematical statistics*with applications (7th edition) (Brooks/Cole, Cengage Learning.). Belmont, USA.
- Wilkinson, L., & the Task Force on Statistical Inference. (1999). Statistical methods in

psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594-604.

Yuan, K.-H., Bentler, P. M., & Chan, W. (2004). Structural equation modeling with heavy tailed distributions. *Psychometrika*, 69(3), 421–436. doi:10.1007/bf02295644

387 (n.d.).

American Educational Research Association. (2006). Standards for reporting on empirical social science research in aera publications. *Educational Researcher*, 35, 33–40. doi:10.3102/0013189X035006033

American Psychological Association. (2010). Publication manual of the american

psychological association [apa] (6 ed.) (American Psychological Association.). Washington,

DC:

Andersen, M. B., McCullagh, P., & Wilson, G. J. (2007). But what do the numbers really tell us? Arbitrary metrics and effect size reporting in sport psychology research.

Journal of Sport & Exercise Psychology, 29, 664–672.

Bothe, A. K., & Richardson, J. D. (2011). Statistical, practical, clinical, and personal significance: Definitions and applications in speech-language pathology. *American Journal of Speech-Language Pathology*, 20, 233–242.

Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. *Behavior Research Methods*, 49(5), 1716–1735. doi:10.3758/s13428-016-0814-1

Cohen, J. (1965). Some statistical issues in psychological research. In *Handbook of clinical psychology* (B. B. Wolman., pp. 95–121). New York: McGraw-Hill.

Cumming, G. (2013). Cohen's d needs to be readily interpretable: Comment on shieh (2013). Behavior Research Methods, 45, 968–971. doi:10.3758/s13428-013-0392-4

```
Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use welch's t-test instead of student's t-test. International Review of Social Psychology, 30(1), 92–101. doi:10.5334/irsp.82
```

- Delacre, M., Leys, C., Mora, Y. L., & Lakens, D. (2019). Taking parametric
 assumptions seriously: Arguments for the use of welch's f-test instead of the classical f-test
 in one-way anova. *International Review of Social Psychology*, 32(1), 1–12.
 doi:http://doi.org/10.5334/irsp.198
- Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods:

 An easy way to maximize the accuracy and power of your research. *American Psychologist*,

 63(7), 591–601. doi:10.1037/0003-066X.63.7.591
- Fan, X. (2001). Statistical significance and effect size in education research: Two sides of a coin. Journal of Educational Research, 94(5), 275–282. doi:10.1080/00220670109598763

 Glass, G. V., McGav, B., & Smith, M. L. (2005). Meta-analysis in social research
- Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. *Review of Educational Research*, 42(3), 237–288. doi:10.3102/00346543042003237

(Sage.). Beverly Hills, CA.

- Grissom, R. J. (2000). Heterogeneity of variance in clinical data. *Journal of Consulting*and Clinical Psychology, 68(1), 155–165. doi:10.1037//0022-006x.68.1.155
- Grissom, R. J., & Kim, J. J. (2001). Review of assumptions and problems in the appropriate conceptualization of effect size. *Psychological Methods*, 6(2), 135–146.

 doi:10.1037/1082-989X.6.2.135
- Grissom, R. R., & Kim, J. J. (2005). Effect size for research: A broad practical

- 430 approach. (Lawrence Erlbaum Associates, Mahwah, N.J.). London.
- Hays, W. L. (1963). Statistics for psychologists (Holt, Rinehart & Winston.). New York.
- Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis (Academic Press.). Cambridge, Massachusetts. doi:10.1016/C2009-0-03396-0
- Henson, R. I., & Smith, A. D. (2000). State of the art in statistical significance and effect size reporting: A review of the APA task force report and current trends. *Journal of Research and Development in Education*, 33(4), 285–296.
- Kelley, K. (2005). The effects of nonnormal distributions on confidence intervales around the standardized mean difference: Bootstrap and parametric confidence intervals. Educational and Psychological Measurement, 65(1), 51–69. doi:10.1177/0013164404264850
- Kirk, R. E. (2009). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759. doi:10.1177/0013164496056005002
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863), 1–12. doi:10.3389/fpsyg.2013.00863
- Li, J. (2016). Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data. *Behavior Research Methods*, 48(4), 1560–1574.
- 448 doi:10.3758/s13428-015-0667-z
- McBride, G. B., Loftis, J. C., & Adkins, N. C. (1993). What do significance tests really tell us about the environment? *Environmental Management*, 17(4), 423–432.
- Meehl, P. E. (1990). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it. *Psychological Inquiry*, 1(2), 108–141.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures.

- $Psychological\ Bulletin,\ 105(1),\ 156-166.\ doi:10.1037/0033-2909.105.1.156$
- Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical
- significance: A practical guide for biologists. Biological Reviews, 82, 591–605.
- doi:10.1111/j.1469-185X.2007.00027.x
- Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies:
- Applications, interpretations, and limitations. Contemporary Educational Psychology, 25,
- 460 241–286. doi:10.1006/ceps.2000.1040
- Peng, C.-Y., & Chen, L.-T. (2014). Beyond cohen's d: Alternative effect size measures
- for between-subject designs. THE JOURNAL OF EXPERIMENTAL EDUCATION, 82(1),
- 463 22-50. doi:10.1080/00220973.2012.745471
- Peng, C.-Y., Chen, L.-T., Chiang, H.-M., & Chiang, Y.-C. (2013). The Impact of APA
- and AERA Guidelines on Effect size Reporting. Contemporary Educational Psychology,
- 82(1), 22-50. doi:10.1080/00220973.2012.745471
- Prentice, D., & Miller, D. T. (1990). When small effects are impressive. *Psychological*
- 468 Bulletin, 112(1), 160–164.
- Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges
- 470 (Eds.), The hand-book of research synthesis (pp. 231–244). New-York: Sage.
- Shieh, G. (2013). Confidence intervals and sample size calculations for the weighted
- eta-squared effect sizes in one-way heteroscedastic ANOVA. Behavior Research Methods,
- 45(1), 2-37. doi:10.3758/s13428-012-0228-7
- Stevn, H. S. (2000). Practical significance of the difference in means. Journal of
- Industrial Psychology, 26(3), 1–3.

Stout, D. D., & Ruble, T. L. (1995). Assessing the practical signficance of empirical results in accounting education research: The use of effect size information. *Journal of Accounting Education*, 13(3), 281–298.

- Sullivan, G., & Feinn, R. (2012). Using effect size—or why the p value is not enough.

 Journal of Graduate Medical Education, 279–282. doi:10.4300/JGME-D-12-00156.1
- Wackerly, D. D., Mendenhall, W., & Scheaffer, R. L. (2008). *Mathematical statistics*with applications (7th edition) (Brooks/Cole, Cengage Learning.). Belmont, USA.
- Wilkinson, L., & the Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. *American Psychologist*, 54(8), 594–604.
- Yuan, K.-H., Bentler, P. M., & Chan, W. (2004). Structural equation modeling with heavy tailed distributions. *Psychometrika*, 69(3), 421–436. doi:10.1007/bf02295644

 (n.d.).

			Kurtosis	
		0	95.75	TOTAL
	0	315	315	630
Skewness	-2.08	/	315	315
	6.32	/	315	315
	TOTAL	315	945	1260

			n-ratio	
		1	>1	<1
	1	a	b	b
$SD ext{-}\mathrm{ratio}$	>1	С	d	е
	<1	c	e	d

Figure 1. Samplig distribution for a positively biased (left), an unbiased (center) and a negatively biased estimator (right)

Appendix

- ⁴⁸⁸ Appendix 1: The mathematical study of Shieh's δ
- Paste Appendix 1 when it will be finished
- 490 Appendix 2: Confidence intervals
- Paste Appendix 2 when it will be finished
- 492 Appendix 3: a priori power analyses
- Paste Appendix 3 when it will be finished (Cumming & Finch, 2001)
- ⁴⁹⁴ Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of
- confidence intervales that are based on central and noncentral distributions. Educational and
- Psychological Measurement, 61(532), 532-574.