## **Experiment 7**

### A. Token Ring

**Aim:** To implement the token passing access in RING-LAN.

#### **Procedure:**

- 1. Click on the **TOKEN RING** icon on the desktop of both PC's.
- 2. Click **Configuration** button in the tool window in both the PC's.

## **Configuration Setting:**

| PC 1          |                                          | PC 2          |                                          |
|---------------|------------------------------------------|---------------|------------------------------------------|
| Node Id       | 0 on config menu 1<br>1 on config menu 2 | Node Id       | 0 on config menu 1<br>1 on config menu 2 |
| Protocol      | RING                                     | Protocol      | RING                                     |
| Baud Rate     | 8 Kbps (at both config menu & NEU)       | Baud Rate     | 8 Kbps (at both config<br>menu & NEU)    |
| Duration      | 100 Seconds                              | Duration      | 100 Seconds                              |
| Packet Length | 1000 bytes                               | Packet Length | 1000 bytes                               |
| My Address    | 0 on config menu 1 and 1 on menu 2       | My Address    | 2 on config menu 1 and 3 on menu 2       |
| Direction     | Sender                                   | Direction     | Sender                                   |

Note: All the nodes have to be configured as 'Senders'. Set the topology as 'Ring'.

- 3. Click **OK** button.
- 4. Download the driver to the NIU. Click **BOOT** tab on the tool window of PC 1 & PC 2 and click **OK** button.
- 5. Start running the experiment from the lowest priority node. While you do this, THT window pops up, enter the Token Holding Time (THT) (say 10000 ms) in all nodes and press the OK button first in the node, which has highest value of My Address (i.e., from My Address 3).

#### **Calculations:**

# Practical Throughput $(X_{Practical})$ from the obtained readings:

$$X_{Practical} = \frac{Sum \ of \ successfully \ Txd \ packets \ in \ all \ nodes * Packet \ Length * 8}{Duration \ of \ experiment \ in \ mSec * Data \ rate}$$

Where, Sum of successfully transmitted packets is obtained from the statistics at the end of the simulation.

# Practical Offered Load (G<sub>Practical</sub>):

$$G_{Practical} = \frac{N * P * 8}{C * t_a}$$

G – Offered load,

N – Number of nodes,

P – Packet length in bytes

C-Data rate in bits/sec,  $t_a-Inter$  packet delay in milliseconds.

### **Result Tabulation:**

| IPD(mSec) | Tx1 | Tx2 | Tx3 | Tx4 | G <sub>Practical</sub> | X <sub>Practical</sub> | Average<br>Delay |
|-----------|-----|-----|-----|-----|------------------------|------------------------|------------------|
| 16000     |     |     |     |     |                        |                        |                  |
| 8000      |     |     |     |     |                        |                        |                  |
| 4000      |     |     |     |     |                        |                        |                  |
| 2000      |     |     |     |     |                        |                        |                  |
| 1000      |     |     |     |     |                        |                        |                  |
| 100       |     |     |     |     |                        |                        |                  |
| 40        |     |     |     |     |                        |                        |                  |

## **Expected Graph:**





### **Exercise:**

- 1. Repeat the experiment for various values of Packet length, Node, Data rate.
- 2. Repeat the experiment by setting the BER to 10<sup>-2</sup> in the NEU and also try to stop one of the nodes and observe the behaviour.

#### **B. STOP and WAIT Protocol**

**Aim:** To provide reliable data transfer between two nodes over an unreliable network using the **stop-and-wait** protocol.

#### **Procedure:**

- 1. Click on the **Stop & Wait** icon from the desktop on both PCs.
- 2. Click the **Configuration** button in the window in both the PC's.

## **Configuration Setting:**

| PC 1               |                                                       | PC 2               |                                                 |
|--------------------|-------------------------------------------------------|--------------------|-------------------------------------------------|
| Node ID            | 0                                                     | Node ID            | 0                                               |
| Protocol           | CSMA/CD                                               | Protocol           | CSMA/CD                                         |
| Inter Packet Delay | 400                                                   | Inter Packet Delay | 400                                             |
| Baud Rate          | 8 Kbps (At both<br>the configuration<br>menu and NEU) | Baud Rate          | 8 Kbps (At both the configuration menu and NEU) |
| Duration           | 100s                                                  | Duration           | 100s                                            |
| Packet Length      | 1000 bytes                                            | Packet Length      | 1000 bytes                                      |
| Bit Delay          | 0 (at NEU)                                            | Bit Delay          | 0 (at NEU)                                      |
| Direction          | Sender                                                | Direction          | Receiver                                        |

- 3. Click **OK** button and download the driver to the NIU using the **BOOT** button command. Booting from any one of the applications in enough.
- 4. Run the experiments: Click RUN, then Start from each application.
- 5. Set the timeout value to 1000 ms.
- 6. Note down the no. of successfully Transmitted Packets.
- 7. Repeat the above steps for various time out values and plot the graph between timeout value & throughput. Find the optimum timeout value from the plot.
- 8. Explain why the throughput is less compared to CSMA/CD protocol.

# Practical Throughput $(X_{Practical})$ from the obtained readings:

$$X_{\textit{Practical}} = \frac{\textit{Sum of successfully Txd packets} * \textit{Packet Length} * 8}{\textit{Duration of experiment in msec} * \textit{Data rate}}$$

# **Result Tabulation:**

| Timeout value in ms | Successfully Tx packets | Practical Throughput |
|---------------------|-------------------------|----------------------|
| 1000                |                         |                      |
| 1500                |                         |                      |
| 2000                |                         |                      |
| 3000                |                         |                      |
| 4000                |                         |                      |

### C. STOP and WAIT with BER

**Aim:** To provide reliable data transfer between two nodes over an error network using the stop-and-wait protocol.

#### **Procedure:**

- 1. Set the error rate to 10<sup>-2</sup> in NEU.
- 2. Follow the **Stop-and-Wait** experiment procedure for running the experiment.
- 3. Set the timeout value as 3000 ms in the sender window.
- 4. From the Statistics window note down the number of successfully transmitted packets and calculate the throughput. (Calculation of throughput is same as explained in the previous exp.)
- 5. Repeated the experiment by setting different BER in the NEU.
- 6. Use the values to plot the graph between BER Vs Throughput.

#### **Result Tabulation:**

| BER              | Successfully Txd<br>Packets | Theoretical<br>Throughput | Practical<br>Throughput |
|------------------|-----------------------------|---------------------------|-------------------------|
| 10 <sup>-2</sup> |                             |                           |                         |
| 10 <sup>-3</sup> |                             |                           |                         |
| 10 <sup>-4</sup> |                             |                           |                         |
| 10 <sup>-5</sup> |                             |                           |                         |
| 10 <sup>-6</sup> |                             |                           |                         |

## **Expected Graph:**

Stop and Wait



## **Stop and Wait with BER**

