Privacy in DeFi: Challenges and Constructions ZK Summit 7

Guillermo Angeris

April 21, 2022

Outline

Overview and a warning

Definitions

The interesting stuff

Conclusion

This talk

► Mostly a high level talk about 'privacy'

This talk

- ► Mostly a high level talk about 'privacy'
- ► What is it?
- ► How do we define it?

This talk

- ► Mostly a high level talk about 'privacy'
- ► What is it?
- ► How do we define it?
- ► Focus on *clean* definitions/constructions/ideas

A warning

► Many will already know this!

A warning

- Many will already know this!
- ► Likely in a very different way

A warning

- Many will already know this!
- ► Likely in a very different way
- Probably in more generality than needed!

Outline

Overview and a warning

Definitions

The interesting stuff

Conclusion

A mechanism

► Start with some disclosure mechanism

A mechanism

- ► Start with some disclosure mechanism
- ▶ This is a function $T: A \rightarrow S$
- ▶ Maps (private) action $a \in \mathcal{A}$ to a (public) state $s \in \mathcal{S}$

A mechanism

- Start with some disclosure mechanism
- ▶ This is a function $T: A \rightarrow S$
- ▶ Maps (private) action $a \in \mathcal{A}$ to a (public) state $s \in \mathcal{S}$
- T can be anything!
 - CFMM taking trade a, reporting post-trade price s
 - Loan borrowed for amount a, reporting new interest s

An adversary

- ▶ We have some protocol with disclosure mechanism *T*
- Alice performs some action a, revealing public information s = T(a)
- Eve wants to reconstruct action a given public info s

An adversary

- ▶ We have some protocol with disclosure mechanism *T*
- Alice performs some action a, revealing public information s = T(a)
- Eve wants to reconstruct action a given public info s
- The big question: what can Eve learn from public data s?
- ► (We will not directly deal with history, anonymity, etc.)

Some observations

► Eve can look at the *preimage* of s

$$T^{-1}(s) = \{a' \in \mathcal{A} \mid T(a') = s\}$$

Some observations

► Eve can look at the *preimage* of s

$$T^{-1}(s) = \{a' \in \mathcal{A} \mid T(a') = s\}$$

- $ightharpoonup T^{-1}(s)$ is nonempty
- ▶ The 'larger' $T^{-1}(s)$ is, the 'harder' finding a is

Some observations

► Eve can look at the *preimage* of s

$$T^{-1}(s) = \{a' \in \mathcal{A} \mid T(a') = s\}$$

- $ightharpoonup T^{-1}(s)$ is nonempty
- ► The 'larger' $T^{-1}(s)$ is, the 'harder' finding a is
- (we will quantify this soon)

An example

▶ In many cases the set $T^{-1}(s)$ is very small

An example

- ▶ In many cases the set $T^{-1}(s)$ is very small
- e.g., in CFMMs, $T^{-1}(s)$ is a singleton! [AEC'21]

An example

- ▶ In many cases the set $T^{-1}(s)$ is very small
- e.g., in CFMMs, $T^{-1}(s)$ is a singleton! [AEC'21]
- A question we will pose: what can we do in these cases?

A final definition

- ► Before we get there!
- \blacktriangleright There is some 'measure' of 'size' of a set, μ

Definitions 10

A final definition

- ► Before we get there!
- lacktriangle There is some 'measure' of 'size' of a set, μ
- ▶ We will only require one property of μ :

$$\mu(A) \leq \mu(B)$$
 if $A \subseteq B$

A final definition

- ► Before we get there!
- lacktriangle There is some 'measure' of 'size' of a set, μ
- We will only require one property of μ :

$$\mu(A) \leq \mu(B)$$
 if $A \subseteq B$

► (Sorry measure theorists...)

▶ Silly measure, $\mu(A) = 0$

- ▶ Silly measure, $\mu(A) = 0$
- ▶ Entropy (uniform), $\mu(A) = \log |A|$

- ▶ Silly measure, $\mu(A) = 0$
- ▶ Entropy (uniform), $\mu(A) = \log |A|$
- ▶ Probability, $\mu(A) = \mathbf{Prob}(a \in A)$

- ▶ Silly measure, $\mu(A) = 0$
- ▶ Entropy (uniform), $\mu(A) = \log |A|$
- ▶ Probability, $\mu(A) = \mathbf{Prob}(a \in A)$
- Any number of other possibilities!

Talk about size

- ▶ We can now make some sense of 'size'/'privacy'
- ▶ Define the *privacy* of disclosed public info s as

$$\mu(T^{-1}(s))$$

Talk about size

- ► We can now make some sense of 'size'/'privacy'
- ▶ Define the *privacy* of disclosed public info s as

$$\mu(T^{-1}(s))$$

lacktriangle A mechanism is relatively 'private' under μ if

$$\inf_{s} \mu(T^{-1}(s))$$

is large (what 'large' means depends on μ)

Outline

Overview and a warning

Definitions

The interesting stuff

Conclusion

Framework

► Framework, definitions, ideas are very general

Framework

- Framework, definitions, ideas are very general
- Let's do stuff with them!

What does Alice need?

- ▶ Alice needs to make sure that $T^{-1}(s)$ is large for her action a
- ▶ From before: measure 'size' by $\mu(T^{-1}(s))$

What does Alice need?

- ▶ Alice needs to make sure that $T^{-1}(s)$ is large for her action a
- ▶ From before: measure 'size' by $\mu(T^{-1}(s))$
- Clearly, worst case is $\mu(T^{-1}(s)) = \mu(\{a\})$
- ► (Common in many DeFi applications)
- Can we improve this?

Batching

- ▶ Possible to *batch* actions among Alice, Bob, *etc.*
- If $\bar{a} = \bigoplus_j a_j$ is a 'batching' operator
- ▶ Then recovering a_i is (probably) hard!
- ► Why?

▶ If there exists a 0-action such that

$$0 \oplus a = a \oplus 0 = a$$

- Many ways of getting the same batched action ā!
- Set of possibilities for player i is

$$P(\bar{a}) = \left\{ a_i \mid \bar{a} = \bigoplus_j a_j \right\} \supseteq \{\bar{a}\}.$$

▶ If $P(\bar{a})$ is always large for any \bar{a} then we have privacy under μ !

▶ 'Proof': Let $a_1, ..., a_n$ be n actions by n players, Alice performs action a_i , and protocol aggregates $\bar{a} = \bigoplus_j a_j$, revealing $s = T(\bar{a})$

- ▶ 'Proof': Let $a_1, ..., a_n$ be n actions by n players, Alice performs action a_i , and protocol aggregates $\bar{a} = \bigoplus_j a_j$, revealing $s = T(\bar{a})$
- ▶ Define $P(A) = \bigcup_{y \in A} P(y)$
- ▶ Possible set of actions Alice could've taken: $P(T^{-1}(s))$, so

$$\mu(P(T^{-1}(s))) \ge \mu(P(a_i))$$

- ▶ 'Proof': Let $a_1, ..., a_n$ be n actions by n players, Alice performs action a_i , and protocol aggregates $\bar{a} = \bigoplus_j a_j$, revealing $s = T(\bar{a})$
- ▶ Define $P(A) = \bigcup_{y \in A} P(y)$
- ▶ Possible set of actions Alice could've taken: $P(T^{-1}(s))$, so

$$\mu(P(T^{-1}(s))) \ge \mu(P(a_i))$$

 \blacktriangleright Implies protocol is also 'private' under μ as

$$\inf_{s} \mu(P(T^{-1}(s))) \ge \inf_{a} \mu(P(a))$$

Can derive a slightly stronger version: $(...) \ge \inf_s \sup_{a \in T^{-1}(s)} \mu(P(a))$

Batching discussion

- ► Batching never hurts! (Privacy, that is)
- With many players and reasonable assumptions can be very beneficial
- But (a) means you have to define a batching operator (not always easy!)
- And (b) UX of batched protocol can be very different

Randomness

- ► Another possibility is to add randomness!
- Benefit of not needing other parties
- Allows a user to potentially 'control' privacy tradeoff
- ► Harder to achieve in practice

- ▶ We will write $f_w : A \to A$ where $w \sim W$ is a uniform r.v.
- Alice performs action a, mechanism takes $f_w(a)$, releases $s = T(f_w(a))$
- ▶ To succeed, Eve has to find $a \in f_w^{-1}(T^{-1}(s))$, but does not know w!

- lacktriangle The uniformity over ${\mathcal W}$ is very useful! (We can extend this)
- ► Eve 'essentially' (probabilistically) has to decide between

$$\bigcup_{w\in\mathcal{W}}f_w^{-1}(T^{-1}(s))$$

things

Given Alice performed a and global info s was released:

$$\mu\left(\bigcup_{w\in\mathcal{W}}f_w^{-1}(T^{-1}(s))\right)\geq\mu\left(\bigcup_{w\in\mathcal{W}}f_w^{-1}(a)\right)$$

Can be generalized (and refined):

$$\inf_{s} \mu \left(\bigcup_{w \in \mathcal{W}} f_{w}^{-1}(T^{-1}(s)) \right) \ge \inf_{s} \sup_{a \in T^{-1}(s)} \mu \left(\bigcup_{w \in \mathcal{W}} f_{w}^{-1}(a) \right)$$

- Unfortunately, adversarial power is not really clear in this probabilistic model
- \blacktriangleright Can be made very explicit in the case where μ is entropy, gives strong guarantees

Can be generalized (and refined):

$$\inf_{s} \mu \left(\bigcup_{w \in \mathcal{W}} f_{w}^{-1}(T^{-1}(s)) \right) \ge \inf_{s} \sup_{a \in T^{-1}(s)} \mu \left(\bigcup_{w \in \mathcal{W}} f_{w}^{-1}(a) \right)$$

- Unfortunately, adversarial power is not really clear in this probabilistic model
- ightharpoonup Can be made very explicit in the case where μ is entropy, gives strong guarantees
- ► (This is just differential privacy...)

Outline

Overview and a warning

Definitions

The interesting stuff

Conclusion

Conclusion 24

Conclusion

- ► Simple framework can be used to reason about 'privacy'
- Can include a number of important cases, depending on guarantees required
- At the end of the day, privacy is about making preimages large!

Conclusion 25