UoPeople MATH 1302 U8

Abraham Chileshe

May 2025

Problem 1: Greatest Common Divisor using Division Algorithm

Problem: Choose a pair of two-digit numbers and find their greatest common divisor. Show the steps.

Solution: Let's find gcd(84, 36) using the Euclidean algorithm.

Using the division algorithm repeatedly:

$$84 = 36 \cdot 2 + 12 \tag{1}$$

$$36 = 12 \cdot 3 + 0 \tag{2}$$

Since the remainder is 0, we have gcd(84, 36) = 12.

Verification: $84 = 12 \cdot 7$ and $36 = 12 \cdot 3$, where gcd(7,3) = 1.

Problem 2: Modular Arithmetic Operation

Problem: Choose any one modular arithmetic operation from the set of positive integers \mathbb{Z} and find the identities and inverses of all elements.

Solution: I choose multiplication modulo 7, i.e., the operation \times_7 on the set $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}.$

Operation Table for Multiplication modulo 7:

Identity Element: The identity element is 1, since $a \times_7 1 = a$ for all $a \in \mathbb{Z}_7$.

Inverses:

• 0 has no inverse (since $0 \times_7 a = 0 \neq 1$ for any a)

•
$$1^{-1} = 1$$
 (since $1 \times_7 1 = 1$)

•
$$2^{-1} = 4 \text{ (since } 2 \times_7 4 = 8 \equiv 1 \pmod{7})$$

•
$$3^{-1} = 5 \text{ (since } 3 \times_7 5 = 15 \equiv 1 \pmod{7})$$

•
$$4^{-1} = 2 \text{ (since } 4 \times_7 2 = 8 \equiv 1 \pmod{7})$$

•
$$5^{-1} = 3 \text{ (since } 5 \times_7 3 = 15 \equiv 1 \pmod{7})$$

•
$$6^{-1} = 6 \text{ (since } 6 \times_7 6 = 36 \equiv 1 \pmod{7})$$

All non-zero elements have multiplicative inverses because 7 is prime, making $(\mathbb{Z}_7 \setminus \{0\}, \times_7)$ a group.

Problem 3: Solving Quadratic Equation in Modular Arithmetic

Problem: Find and explain solution for the equation $x^2 + 5x + 1 = 0$ in \mathbb{Z}_3 .

Solution: We need to solve $x^2 + 5x + 1 \equiv 0 \pmod{3}$.

First, let's simplify the coefficients modulo 3:

$$5 \equiv 2 \pmod{3} \tag{3}$$

$$1 \equiv 1 \pmod{3} \tag{4}$$

So our equation becomes: $x^2 + 2x + 1 \equiv 0 \pmod{3}$

Let's check each element in $\mathbb{Z}_3 = \{0, 1, 2\}$:

For
$$x = 0$$
: $0^2 + 2(0) + 1 = 0 + 0 + 1 = 1 \equiv 1 \pmod{3} \neq 0$

For
$$x = 1$$
: $1^2 + 2(1) + 1 = 1 + 2 + 1 = 4 \equiv 1 \pmod{3} \neq 0$

For
$$x = 2$$
: $2^2 + 2(2) + 1 = 4 + 4 + 1 = 9 \equiv 0 \pmod{3}$

Answer: The equation $x^2+5x+1 \equiv 0 \pmod 3$ has exactly one solution: $x \equiv 2 \pmod 3$. **Verification:** We can factor the simplified equation as: $x^2+2x+1=(x+1)^2 \equiv 0 \pmod 3$

This means $x+1\equiv 0\pmod 3$, so $x\equiv -1\equiv 2\pmod 3$, confirming our solution.