Module-4 Test of Significance

Outline

- Test of significance
- Practical steps involved in the test of significance
- Test of significance of large samples
- Test of significance of small samples

Test of significance (Test of Hypothesis)

- It is a process of making inferences about population on the basis of sample information
- It is a decision making tool

HYPOTHESIS TESTING

Null Hypothesis (H_0)

- -The assumption you're beginning with
- -The opposite of what you're testing

Alternative Hypothesis (H_1)

-The claim you're testing

example

- Null hypothesis- there has been no significant decrease in the consumption of tea after the increase in excise duty
- Alternative hypothesis- there has been significant decrease in the consumption of tea after the increase in excise duty

example

- Null hypothesis- the coin is unbiased.
- Alternative hypothesis- the coin is biased

Effect of Bio-fertilizer 'x' on Plant growth

www.majordifferences.com

Alternative Hypothesis

H₁: Application of bio-fertilizer 'x' increase plant growth.

Null Hypothesis

H₀: Application of bio-fertilizer 'x' do not increase plant growth.

Type I and Type II Error

Given the Null Hypothesis Is

		True	False
Your Decision Based	Reject	Type I Error	Correct Decision
On a Random Sample	Do Not Reject	Correct Decision	Type II Error

Two Types of Errors in Decision Making

		The Truth (Based on Entire Population)	
		Nothing Is There (H ₀ Is True)	Something Is There (H ₀ Is False)
Your Conclusion	I Don't See Anything (Nonsignificant)	Right!	Wrong (Type II Error)
(Based on Your Sample)	I See Something (Significant)	Wrong (Type I Error)	Right!

Practical steps involved in the test of significance or testing hypothesis

- ☐ Step1- Specify the Null and Alternative Hypothesis
- ☐ Step 2: Specify the appropriate test statistic to be used
- \square Step 3 Specify the level of significance such as 5% or 1%.
- \square Step4 Compute the value of test statistic used in testing.
- ☐ Step 5 Find the critical value of the test statistic used at the selected level of significance from the table of respective statistics distribution.
- ☐ Step 6: Interpret the result

SMALL SAMPLE AND LARGE SAMPLE

Large sampling Small sampling

• n>30

• $\eta <= 30$

small sampling test

- t-test
- F-test

t- test

t-test is used when

- The sample size is 30 or less
- The variance of the population is unknown
- The sample is random sample
- The population is normal and selection of items is independent

Test for specified mean of a small sample

$$t = \frac{(\overline{X} - \mu)\sqrt{n}}{S}$$
$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

$$\mu = population mean$$
 $\overline{X} = sample mean$
 $s = s.d of sample$
 $n = sample size$

Test for difference Test for difference between the means $t = \frac{|\overline{X}_1 - \overline{X}_2|}{S} \times \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$ of two independent random samples

$$t = \frac{\left|\overline{X}_1 - \overline{X}_2\right|}{S} \times \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

$$S = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

X1 = mean of first sampleX2 = mean of second samplen1 = sample size of first sample $n2 = sample \, size \, of \, sec \, ond \, sample$ s = s.d of sample

Test for difference Test for annerence between the means of $t = \frac{-d\sqrt{n}}{S}$ dependent two samples

$$t = \frac{\overline{d}\sqrt{n}}{S}$$

$$S = \sqrt{\frac{\sum d^2 - n(\sum d)^2}{(n-1)}}$$

d = **difference** between values of pair n= sample size

S= standard deviation of sample

Question

• A fertilizer mixing machine is set to give 4 kg of nitrate for every quintal bag of fertilizers. Five of 100 kg bags are examined. The percentages of nitrate are: 2, 6, 4, 3, 1. Is there reason to believe that the machine is defective?

solution

$$H_0: \mu = 4$$

$$H_1: \mu \neq 4$$

Calculate Mean and Standard Deviation

mean

X
2
6
4
3
1
Total=16

Mean
$$\overline{X} = \frac{\sum X}{n}$$

$$\overline{X} = \frac{16}{5} = 3.2$$

Standard deviation

X	$X - \overline{X}$	$(X-\overline{X})^2$
2	-1.2	1.44
6	2.8	7.84
4	0.8	0.64
3	-0.2	0.04
1	-2.2	4.84
Total= 16		Total= 14.8

$$S = \sqrt{\frac{(X - \overline{X})^2}{n - 1}}$$

$$S = \sqrt{\frac{14.8}{5 - 1}} = \sqrt{\frac{14.8}{4}} = 1.93$$

$$t = \frac{(\overline{X} - \mu)\sqrt{n}}{S}$$
$$t = \frac{(3.2 - 4)\sqrt{5}}{1.93} = -0.927$$

• Critical Value of t at 5% level of significance = 2.78

Interpretation

• Since the computed value of t is less than table value of t, we accept the null hypothesis and conclude that the population mean is 4

To test the significance of the difference between means of two independent samples

$$t = \frac{\left|\overline{X_{1}} - \overline{X_{2}}\right|}{S} \times \sqrt{\frac{n_{1}n_{2}}{n_{1} + n_{2}}}$$
where
$$\overline{X_{1}} = \frac{\sum X_{1}}{n_{1}}$$

$$\overline{X_{2}} = \frac{\sum X_{2}}{n_{2}}$$

$$S = \sqrt{\frac{\sum (X_{1} - \overline{X_{1}})^{2} + \sum (X_{2} - \overline{X_{2}})^{2}}{n_{1} + n_{2} - 2}}$$

Question

• A group of 5 patients treated with medicine A weigh 42, 39, 48, 60, 41 kg. A second group of 5 patients treated with medicine B weigh 38, 42, 48, 67, 40 kg. Do the two medicines differ significantly with regard to their effect in increasing weight?

given: Value of t at 5% level = 2.31

Solution

X1	X2	$(X_1 - \overline{X_1})$	$(X_1 - \overline{X}_1)^2$	$(X_2 - \overline{X_2})$	$(X_2 - \overline{X_2})^2$
42	38				
39	42				
48	48				
60	67				
41	40				
TOTAL=					

```
MEAN X1 =
MEAN X2 =
STANDARD DEVIATION S =
t =
```

To test the significance of the difference between the means of two dependent samples

$$t = \frac{\overline{d}\sqrt{n}}{S}$$

$$S = \sqrt{\frac{\sum d^2 - n(\overline{d})^2}{n-1}}$$

d = differences between the values of pair

Question

• A certain medicine was given to each of the 5 patients. The results are given below:

	I	II	III	IV	V
Weight before medicine	42	39	48	60	41
Weight after medicine	38	42	48	67	40

• Given tabulated value of t = 2.78

Solution

Before X	After Y	d= Y-X	d^2
42	38		
39	42		
48	48		
60	67		
41	40		
n=5			

F- Test

• F-test is based on the ratio rather than difference between variances.

$$f = \frac{s_1^2}{s_2^2}$$

$$f = \frac{\sum (X_1 - \overline{X}_1)^2 / (n_1 - 1)}{\sum (X_2 - \overline{X}_2)^2 / (n_2 - 1)}$$

To compare the price of a certain commodity in two towns, ten shops were selected in each town. The following figures give the prices found:

Town A	61	60	56	63	56	63	59	56	44	61
Town B	55	54	47	69	51	61	57	54	62	58

Test whether the average price can be said to be same in the two towns.

Test of significance of large samples

- Large sample test (z test) = size of sample > 30
- Assumptions
 - Sampling distribution of a statistic is approximately normal
 - Samples are approximately close to the population value
- Standard error is used in z test

• Standard error =
$$\frac{\sigma}{\sqrt{n}}$$

$$\sigma = population S.D$$

$$n = sample size$$

Tabulated value of z

- At 5% level of significance = 1.96
- At 1% level of significance = 2.58

• A coin is tossed 400 times and it turns up head 216 times. Discuss whether the coin is unbiased.

Solution

- Null hypothesis: the coin is unbiased
- Alternative hypothesis: the coin is biased
- Probability of turning up head in each toss (p) = $\frac{1}{2}$
- Probability of turning up tail in each toss $(q) = \frac{1}{2}$

$$actual head = 216$$

$$\exp ected \ head(np) = 400 * \frac{1}{2} = 200$$

$$\sqrt{npq} = \sqrt{400 * \frac{1}{2} * \frac{1}{2}} = 10$$

$$z = \frac{difference}{SE} = \frac{216 - 200}{10} = 1.6$$

 $s \tan dard \ value = 1.96$

Decision :the coin is unbiased

Question

• Intelligence test on two groups of boys and girls gave the following results:

	Mean	S.D	N
Girls	61	2	64
Boys	60	4	100

• Is there a significant difference in the mean scores obtained by boys and girls? Test at 5% level of significance

solution

$$Z = \frac{\overline{X_1} - \overline{X_2}}{S.E}$$

$$S.E = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$S.E = 0.4717$$

$$Z = 2.12$$

At 5% level, the critical value of Z = 1.96 reject H0