1) Deriving the dual of the maximum flow problem

 $\max_{x,\Delta} \qquad \Delta \qquad \qquad \text{The Var}$ s.t. $\sum_{j:(j,i)\in E} x_{ji} - \sum_{j:(i,j)\in E} x_{ij} = 0, \qquad \forall \ i \neq s, t \mid \ g_i = 1, \\ \sum_{j:(j,s)\in E} x_{js} - \sum_{j:(s,j)\in E} x_{sj} + \Delta = 0 \\ \sum_{j:(j,t)\in E} x_{jt} - \sum_{j:(t,j)\in E} x_{tj} - \Delta = 0 \\ x_{ij} \leq c_{ij}, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \leq c_{ij}, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij} \geq 0, \qquad \forall \ (i,j) \in E \mid \text{$\frac{1}{2}$ ij} = 1, \\ x_{ij$

Primal			Dual		
min s.t.	$c^{\top}x$ $a_i^{\top}x \geq b_i$, $a_i^{\top}x \leq b_i$, $a_i^{\top}x = b_i$, $x_j \geq 0$, $x_j \leq 0$, x_j free,	$i \in M_2$,	max s.t.	$b^{\top}y$ $y_i \geq 0$, $y_i \leq 0$, y_i free, $A_j^{\top}y \leq c_j$, $A_j^{\top}y \geq c_j$, $A_j^{\top}y = c_j$,	$j \in N_1 \\ j \in N_2$

To simplify the derivation, we assume that $x \in \mathbb{R}^{n \times n}$ is an $n \times n$ metrix, i.e., there is a directed Connection between every pair of hodes in the graph. We can achieve this by setting $C_{i\bar{j}} = 0$ for all $(i_1\bar{j}) \notin E$.

To formulate the dual, we now rearrange x as a vector by stacking all of the columns:

Hence, the condition " $\sum_{j} x_{js} - \sum_{j} x_{sj} + \Delta = Q$ " can be written as:

$$\begin{pmatrix}
0, 1, 1, \dots, 1 & \begin{bmatrix} -1, 0, \dots, 0 & \begin{bmatrix} -1, 0, 0, \dots, 0 & \end{bmatrix} & \begin{bmatrix} -1, 0, \dots, 0, 0 & \end{bmatrix} & \begin{bmatrix} x_n \\ x_{n1} \\ x_{n2} \\ x_{nn} \end{bmatrix} = 0$$

Similarly for the constraint " \(\Si \times \Si \times \Si \times \Si \times \Si \times \O' \times \text{obtain} :

Together, this gields:

$$\begin{pmatrix}
1 & -e_{1} & -e_{1} & -e_{1} & \dots & -e_{1} & -e_{1} & 1 \\
-e_{2} & 1 & -e_{2} & -e_{2} & \dots & -e_{2} & -e_{2} & 0 \\
-e_{3} & -e_{3} & 1 & -e_{3} & \dots & -e_{3} & -e_{3} & 0
\end{pmatrix}$$

$$\begin{pmatrix}
x \\
0 \\
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
x \\
0
\end{pmatrix}$$

or compactly:
$$\begin{bmatrix} \begin{pmatrix} -T & -T & -T & ... & -T \\ -1 & -T & ... & -T \end{bmatrix} & \begin{pmatrix} 1 & 1 & 0 & ... & 0 & 0 \\ 0 & 1 & 1 & ... & 0 & 0 \\ 0 & 0 & ... & 1 & 0 \end{bmatrix} & \begin{pmatrix} \times \\ 0 & 0 \\ 0 & 0 & ... \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & ... \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & ... & 1 \end{pmatrix}$$

Using a similar vectorization for the Cis's, then capacity constraints can be simply written as: $\left(\left[\begin{array}{c} \bot & \left(\begin{array}{c} 0 \\ 0 \end{array} \right) & \left(\begin{array}{c} X \\ \Delta \end{array} \right) \leq C$ The dual problem can new be constructed as follows: (we interpret this problem as the dual and derive the corresponding primel): Mih (ys, yz, ..., yn-1, yt, tm, t21, ..., tm, t12, ..., tnn) · (0,0, ..., 0,0, Cm, C21, ..., Cnn, Cn2, ..., Cnn) free; $z_{ij} \geq 0$; S.t. .: 95,92,..., 9n-1,9t The condition $(-e_1,...,-e_{i-1},1-e_{i},...,-e_{n},0,0,...,L,0,...})$ $\begin{pmatrix} g \\ z \end{pmatrix} \geq 0$ means $\cdot -y_j + y_i + z_{5i} \ge 0$; $\forall 5 \neq i$ and $z_{ii} \ge 0$ for j = i.

The last condition means $y_s - y_t = 1$. Since all variables z_{ij} with $(i,j) \notin E$ do not obtribute to the optimization problem $(C_{ij} = 0)$ and z_{ij} can be set to satisfy the constraints, we can simplify the dual to:

$$\begin{aligned}
&\text{Min } g_{, \overline{z}} & \sum_{(i,j) \in E} C_{ij} \, \overline{z}_{ij} \\
&\text{S.t.} : \quad \overline{z}_{ij} \geq g_{i} - g_{j} \quad \forall \quad C_{i,j}) \in E \\
& \quad g_{s} - g_{t} = 1 \\
& \quad \overline{z}_{ij} \geq 0
\end{aligned}$$

this is exactly the duel problem mentioned in the lecture.

2.) Strong duality: Min-Cut-Interpretation.

In the lecture, we have seen that this dual can be interpreted as finding a minimum cut through the natural. Here, a cut is defined as

$$C(S) = \sum_{i \in S, j \notin S} C_{ij}$$

$$C(i,j) \in \mathcal{E}$$

where S is a subset of the nodes {1,..., n} containing S (= {1}) but not t (= {n}).

We reach this conclusion, by assuming that each of the g_i 's in binary, i.e., 0 or 1 and $g_i = 1$ means that node $g_i > 0$ belongs to the set / $g_i > 0$.

we now explain this interpretation and why such a binary choice of the yis must exist.

- First of all, let $S \subseteq \{1,...,n\}$ be such an appropriate subset with $S (= \{1\}) \in S$ and $\{1,2,3,4\} \notin S$. Let us set $\{y\} = 1$ $\{1,6\}$ and $\{y\} = 0$ $\{1,6\}$.

Then, by construction: $y_s - y_t = y_1 - y_n = 1$ and $z_{ij} \ge y_i - y_j = 1$ if $i \in S$ and $j \notin S$ and $j \notin S$

Consequently, setting $\Xi_{ij} := \begin{cases} 1 & \text{if } i6S \text{ and } j \notin S \\ 0 & \text{otherwise} \end{cases}$, the pair $(y_1 \pm)$ is a feasible point for the dual problem with objective function:

$$\overline{Z}_{(i,j):\in E} C_{ij} = \overline{Z}_{i6S,b \notin S} C_{ij} = C(S).$$

- By weak duality, we can infer $\Delta \leq C(S)$ for every feasible pair (x, Δ) of the primal maximum-flow problem and every appropriate set/cut S.
- We how assume that the maximum flow problem has an optimal solution (x^*, Δ^*) . By strong duality, the dual problem CD) then has an optimal solution (y^*, z^*) as well and we have: $\Delta^* = \sum_{(i,j) \in E} c_{ij} z_{ij}^*$

Notice that this solution y* does not need to be binary at this point. We now define the $Cwt: S := \{i: y_i^* \geq y_s^*\}$

and $\overline{g}_i = 1$ if $i \in S$; $\overline{g}_i = 0$ if $i \notin S$. By the complementarity colditions, we have:

 $2ib^* \cdot (xib^* - cib) = 0$ and $xib^* \cdot (2ib^* - yib^* + yb^*) = 0$. $\forall cib) \in E$

We ontime with several sub-cases:

- (a) i65 and j45: Then $y_i^* \ge y_s^* > y_s^*$. In the case, by dual feasibility, we have $z_{ij}^* \ge y_s^* y_s^* > 0$. Hence, we can infer: $x_i^* = C_{ij}$.
- (b) $i \not= 5$ and $j \in 5$: Then $y_1^* < y_2^* \le y_2^*$. In the case $x_0^* > 0$, we obtain $z_0^* = y_1^* y_2^* < 0$. Since such a $\pm i \pm i \pm i \pm i$ is infeasible, we can infer: $\times i \pm i \pm 0$ in this situation.

Due to $y_s^* = y_t^* + 1 > y_t^*$, we have $t \notin S$. Moreover, using the Onstraints of the primal prob.,

$$\Delta^{*} = \sum_{j: (j,t) \in E} x_{jt}^{*} - \sum_{j: (t,j) \in E} x_{tj}^{*} + \sum_{i \notin \overline{s}, i \neq t} \left(\sum_{j: (j,i) \in E} x_{ji}^{*} - \sum_{j: (i,j) \in E} x_{ij}^{*} \right)$$

$$= \sum_{\substack{i \notin \overline{S} \\ j : (j_i) \cap EE}} \left(\sum_{\substack{j : (i_i) \cap EE}} \times_{j_i}^* - \sum_{\substack{j \in \overline{S} \\ (j_i) \cap EE}} \times_{j_i}^* + \sum_{\substack{j \notin \overline{S} \\ (j_i) \cap EE}} \times_{j_i}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \notin \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^* - \sum_{\substack{j \in \overline{S} \\ (i_i, j) \cap EE}} \times_{i_j}^*$$

 $= \sum_{\substack{i \in \overline{S}, j \notin \overline{S} \\ (ij) \in \Gamma}} c_{ij} = c(\overline{S}).$

This shows $C(\overline{s}) = \Delta^* = C(s)$ for all cuts S; i.e., \overline{S} is a "minimum cut". As before, we can then also construct, the corresponding binary solutions $\overline{g}, \overline{z}$ such that:

$$C(\overline{S}) = \sum_{\substack{i,j \\ (i,j) \in E}} C_{ij} \overline{Z_{ij}}$$

This finishes the proof and verifies that our assumption for the yi's (each yi can be seen as a binary label for the nade i) is correct.