Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3 (1+2 k^2) t_1 t_3}$	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

action	$S == \iiint (\frac{1}{6} (2 \ \omega^{\alpha \prime}_{\alpha} \ (t_{1} \ \omega^{\theta}_{i} - 2 t_{3} \ \omega^{\kappa}_{i}) + 6 \ f^{\alpha \beta} \ \tau_{\alpha \beta} + 6 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} -$	$4t_1\;\omega_{\alpha\;\theta}^{\;\;\theta}\;\partial_{,f}^{\alpha\prime}+8t_3\;\omega_{\alpha\;\kappa}^{\;\;\kappa}\;\partial_{,f}^{\alpha\prime}+4t_1\;\omega_{,\;\;\theta}^{\;\;\theta}\;\partial^{\prime}f^{\alpha}_{\;\;\alpha}-8t_3\;\omega_{,\;\;\kappa}^{\;\;\kappa}\;\partial^{\prime}f^{\alpha}_{\;\;\alpha}-$	$2t_1\partial_i f^{\theta}_{\ \ }\partial^i f^{\alpha}_{\ \ \alpha} + 4t_3\partial_i f^K_{\ \ }\partial^i f^\alpha_{\ \ \alpha} - 6r_1\partial_\beta \omega_i^{\ \ \theta}\partial^i \omega^{\alpha\beta}_{\ \ \alpha} + 6r_1\partial_i \omega_\beta^{\ \ \theta}\partial^i \omega^{\alpha\beta}_{\ \ \alpha} -$	$2t_1\partial_i f^{\alpha i}\partial_\theta f_\alpha^{\ \theta} + 4t_1\partial^i f^\alpha_{\ \alpha}\partial_\theta f_\beta^{\ \theta} + 6r_1\partial_\alpha \omega^{\alpha\beta i}\partial_\theta \omega_\beta^{\ \theta} - 12r_1\partial^i \omega^{\alpha\beta}_\alpha\partial_\theta \omega_\beta^{\ \theta} -$	$6 r_1 \partial_\alpha \omega^{\alpha\beta'} \partial_\theta \omega_{'\beta}^{\ \theta} + 12 r_1 \partial' \omega^{\alpha\beta}_{\ \alpha} \partial_\theta \omega_{'\beta}^{\ \theta} - 6 t_1 \partial_\alpha f_{,\theta} \partial^\theta f^{\alpha'} -$	$3t_1\partial_\alpha f_{\theta_i}\partial^\theta f^{\alpha\prime} + 3t_1\partial_i f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\prime\alpha}\partial^\theta f^{\alpha\prime} +$	$6t_1\ \omega_{\alpha\theta_l}\ (\ \omega^{\alpha\prime\theta} + 2\ \partial^\theta f^{\alpha\prime}) - 8\ r_1\ \partial_\beta \omega_{\alpha\prime\theta}\ \partial^\theta \omega^{\alpha\beta\prime} + 4\ r_1\ \partial_\beta \omega_{\alpha\theta_l}\ \partial^\theta \omega^{\alpha\beta\prime} -$	$16r_1\partial_\beta\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$4r_1\partial_\theta\omega_{\alpha\beta}\partial^\theta\omega^{\alpha\beta\prime}+4t_3\partial_{\beta}f^{\alpha\prime}\partial_{\kappa}f_{\alpha}^{\ \ \kappa}-8t_3\partial^{\prime}f^{\alpha}_{\ \ \alpha}\partial_{\kappa}f_{\beta}^{\ \ \kappa})][t,x,y,z]dzdyd\kappa dt$
Quadratic (free) action	$S == \iiint (\frac{1}{6} (2 \omega^{\alpha \prime} (t_1 \omega_{\prime}^{\theta})^{-1}))$	$4t_1 \omega_{\alpha \ \theta}^{\ \theta} \partial_i f^{\alpha'} + 8t_3 \omega_{\alpha \ \kappa}^{\ \kappa} \partial$	$2t_1\partial_i f^{\theta}_{\alpha}\partial^i f^{\alpha}_{\alpha} + 4t_3\partial_i f^{\kappa}_{\alpha}\partial^i$	$2t_1 \partial_i f^{\alpha'} \partial_{\theta} f_{\alpha}^{\ \theta} + 4t_1 \partial^i f^{\alpha}_{\ \alpha} \partial_i$	$6r_1 \partial_{\alpha} \omega^{\alpha \beta'} \partial_{\theta} \omega_{'\beta}^{\theta} + 12r_1 \partial' \omega$	$3t_1\partial_{\alpha}f_{\theta_l}\partial^{\theta}f^{\alpha\prime}+3t_1\partial_{\beta}f_{\alpha\theta}\partial^{\theta}$	$6t_1 \ \omega_{\alpha\theta'} \ (\omega^{\alpha\prime\theta} + 2 \ \partial^{\theta} f^{\alpha\prime})$ - 8	$16r_1 \partial_{eta} \omega_{_{I} eta lpha} \partial^{eta} \omega^{lpha eta_{_I}} - 4 r_1 \partial_{_I} \omega_{_I}$	$4r_1\partial_ heta\omega_{lpha_Ieta}\partial^ heta\omega^{lphaeta_I}+4t_3\partial_ u f^lpha$

$\omega_{2^{+}lphaeta}^{\sharp1}\ f_{2^{+}lphaeta}^{\sharp1}\ \ \omega_{2^{-}lphaeta\chi}^{\sharp1}$							
$\omega_{2}^{#1}$ †	$\frac{t_1}{2}$	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2^{+}}^{#1} \dagger^{0}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_{2}^{\#1} + \alpha_{1}^{\alpha_{1}}$	^{βχ} 0	0	$k^2 r_1 + \frac{t}{2}$		<u>†1</u> 2		
$\omega_{0^{+}}^{\#1} \qquad f_{0^{+}}^{\#1} \qquad f_{0^{+}}^{\#2} \ \omega_{0^{-}}^{\#1}$							
$\omega_{0}^{\#1}$ †	t_3	-ī √2 k	k t 3	0	0		
$f_{0}^{#1} +$	$i\sqrt{2} kt_3$	$\sqrt{2} k t_3 \qquad 2 k^2 t_3$		0	0		
$f_{0}^{#2}$ †	0	0		0	0		
$\omega_{0}^{#1}$ † 0		0		0	-t ₁		
Sour	Source constraints/gauge generators						
SO(3	SO(3) irreps				Multiplicities		
$\tau_{0+}^{\#2} == 0$				1			
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$				1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$				3			
$\tau_{1}^{\#1\alpha} == 0$				3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$							

 $\tau_{2^{+}}^{\#1\,\alpha\beta} - 2\,i\,k\,\,\sigma_{2^{+}}^{\#1\,\alpha\beta} == 0$ 5

Total constraints:

 $\frac{1}{3}$ \bar{l} $\sqrt{2}$ $k(t_1 + t_3)$

 $\frac{t_1-2t_3}{3\sqrt{2}}$ $\frac{t_1+t_3}{3}$

 $\frac{1}{6}(t_1+4t_3)$

0

 $\omega_1^{\#2} +^{\alpha}$

0

0

0

0

 $k^2 r_1 - \frac{t_1}{2}$

 $\omega_{1^{\bar{-}}\alpha}^{\#2}$

0

0

0

0

0

0

 $-\frac{t_1}{\sqrt{2}}$ $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $\omega_{1}^{\#_1} \dotplus^\alpha$

 $\frac{2}{3}k^{2}(t_{1}+t_{3})$

0

 $-\frac{1}{3}\,\bar{l}\,k\,(t_1-2\,t_3)\Big|_{-\frac{1}{3}}\,\bar{l}\,\sqrt{2}\,k\,(t_1+t_3)$

0

0

0

0

 $f_{1}^{\#1} +^{\alpha}$

	•	<u>-</u>		
	$\sigma_{2}^{#1} + \alpha \beta$	$\tau_2^{#1} + \alpha \beta$	$\sigma_{2}^{#1} + ^{\alpha\beta\chi}$	
$\tau_{0}^{\#2} \ \sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †

0

Massive and massless spectra

 $r_1 < 0 \&\& t_1 > 0$

Unitarity conditions