

第7章 二元关系

第7章 二元关系

- 7.1 有序对与笛卡尔积
- 7.2 二元关系
- 7.3 关系的运算
- 7.4 关系的性质
- 7.5 关系的闭包

定义7.1 由两个元素 x 和 y (允许x = y)按照一定的顺序组成的二元组称为有序对或序偶,记作<x,y>,其中x是它的第一元素,y是它的第二元素。

有序对性质:

- (1) 有序性: $\exists x \neq y$ 时, $\langle x, y \rangle \neq \langle y, x \rangle$.
- (2) < x, y> = < u, v>的充分必要条件是x=u并且 y=v. 已知< x+2, 4> = <5, 2x+y>, 求<math>x, y.

这些性质是二元集合{x, y}所不具备的,有序对中的元素是有序的,而集合中的元素是无序的

定义7.2 设A, B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对. 所有这样的有序对组成的集合称为A与B的笛卡儿积,记作 $A \times B$,

$$A \times B = \{ \langle x, y \rangle | x \in A \land y \in B \}.$$

例
$$A=\{1, 2, 3\}, B=\{a, b, c\}$$
 $A\times B$

$$= \{<1,a>,<1,b>,<1,c>,<2,a>,<2,b>,<2,c>,<3,a>,<3,b>,<3,c>\}$$

$$B\times A$$

$$= \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle, \langle a, 2 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle, \langle a, 3 \rangle, \langle b, 3 \rangle, \langle c, 3 \rangle \}$$

$$A = \{ \emptyset \}, B = \emptyset$$

$$P(A) \times A = \{ \langle \emptyset, \emptyset \rangle, \langle \{\emptyset\}, \emptyset \rangle \}$$

$$P(A) \times B = \emptyset$$

笛卡尔积的性质:

- (1) 若A或B中有一个为空集,则 $A \times B$ 就是空集 $A \times \emptyset = \emptyset \times B = \emptyset$
- (2) 不满足交换律 $A \times B \neq B \times A$ (当 $A \neq B$ 且 $A \neq \emptyset$ 且 $B \neq \emptyset$ 时)
- (3) 不满足结合律

$$(A \times B) \times C \neq A \times (B \times C)$$
 (当 $A \neq \emptyset$ 且 $B \neq \emptyset$ 且 $C \neq \emptyset$ 时)

(4) 对于并和交运算满足分配律

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 $(B \cup C) \times A = (B \times A) \cup (C \times A)$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
 $(B \cap C) \times A = (B \times A) \cap (C \times A)$

(5) 若
$$|A| = m$$
, $|B| = n$, 则 $|A \times B| = ?$ mn

证明 $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

另外三组请大家课后自己证明.

证 任取<x, y>

 $\langle x, y \rangle \in A \times (B \cup C)$

 $\Leftrightarrow x \in A \land y \in B \cup C$

 $\Leftrightarrow x \in A \land (y \in B \lor y \in C)$

 $\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$

 $\Leftrightarrow \langle x, y \rangle \in A \times B \lor \langle x, y \rangle \in A \times C$

 $\Leftrightarrow \langle x, y \rangle \in (A \times B) \cup (A \times C)$

所以有 $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

- 例1 (1) 证明A=B, $C=D \Rightarrow A \times C=B \times D$.
 - (2) $A \times C = B \times D$ 是否推出 A = B, C = D? 为什么?
- 解(1)任取<x,y>

$$\langle x, y \rangle \in A \times C$$

$$\Leftrightarrow x \in A \land y \in C$$

$$\Leftrightarrow x \in B \land y \in D$$

$$\Leftrightarrow \langle x, y \rangle \in B \times D$$

(2) 不一定. 反例如下:

$$A=\{1\}, B=\{2\}, C=D=\emptyset, 则A\times C=B\times D$$
但是 $A\neq B$.

例2 设A, B, C, D为任意集合, 判断以下命题是否为真.

(1)
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

(2)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$

(3)
$$(A-B)\times(C-D)=(A\times C)-(B\times D)$$

$$(4) (A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

解 (1) 为真. $\langle x, y \rangle \in (A \times C) \cap (B \times D)$

$$\Leftrightarrow \langle x, y \rangle \in A \times C \land \langle x, y \rangle \in B \times D$$

$$\Leftrightarrow x \in A \land y \in C \land x \in B \land y \in D$$

$$\Leftrightarrow x \in (A \cap B) \land y \in (C \cap D)$$

$$\Leftrightarrow \langle x, y \rangle \in (A \cap B) \times (C \cap D)$$

例2 设A, B, C, D为任意集合, 判断以下命题是否为真

(1)
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

(2)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$

(3)
$$(A-B)\times(C-D)=(A\times C)-(B\times D)$$

$$(4) (A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

$$A=D=\emptyset$$
, $B=\{1\}$, $C=\{2\}$,
 $£=\{1\}\times\{2\}=\{<1,2>\}$
 $右=\emptyset$.

例2 设A, B, C, D为任意集合, 判断以下命题是否为真

$$(1) (A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

(2)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$

(3)
$$(A-B)\times(C-D)=(A\times C)-(B\times D)$$

$$(4) (A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

$$A=B=\{1\}, C=\{2\}, D=\{3\},$$

例2 设A, B, C, D为任意集合, 判断以下命题是否为真

$$(1) (A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

(2)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$

(3)
$$(A-B)\times(C-D)=(A\times C)-(B\times D)$$

$$(4) (A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

$$A=B=\{1\}, C=\{2\}, D=\{3\},$$

第7章 二元关系

- 7.1 有序对与笛卡尔积
- 7.2 二元关系
- 7.3 关系的运算
- 7.4 关系的性质
- 7.5 关系的闭包

定义7.3 如果一个集合满足以下条件之一:

- (1) 集合非空, 且它的元素都是有序对;
- (2) 集合是空集,

则称该集合为一个二元关系,简称为关系,记作R.

如果 $\langle x, y \rangle \in R$, 可记作xRy; 如果 $\langle x, y \rangle \notin R$, 则记作xRy.

例: $R=\{<1, 2>, <a, b>\}, S=\{<1, 2>, a, b\}.$

R是二元关系;S不是二元关系.

根据上面的记法,可以写1R2, aRb.

定义7.4 设A,B为集合, $A \times B$ 的任何子集所定义的二元关系称作从A到B的二元关系,特别当A=B时称作A上的二元关系。

例 $A=\{0,1\}, B=\{1,2,3\},$ 那么 $R_1=\{<0,2>\}, R_2=A\times B, R_3=\emptyset, R_4=\{<0,1>\}$ R_1, R_2, R_3, R_4 是从 A 到 B 的二元关系, 并且 R_3 和 R_4 也是 A上的二元关系.

说明: |A|=n, $|A\times A|=n^2$, $A\times A$ 的子集有 2^{n^2} 个,所以 A上有 2^{n^2} 个不同的二元关系.

例如 |A|=3, 则 A上有512个不同的二元关系.

□常见的二元关系

定义7.5 对任意的集合A,定义

- 1. Ø是任何集合上的二元关系, 称为空关系.
- $2. A \times A$ 是 A 上 的 全域关系,记作 E_A $E_A = \{ \langle x, y \rangle | x \in A \land y \in A \} = A \times A$
- $3.\{\langle x,x\rangle | x \in A\}$ 为A上的恒等关系,记作 I_A

例:
$$A = \{1, 2\}$$
;
$$E_A = \{<1, 1>, <1, 2>, <2, 1>, <2, 2>\}$$
;
$$I_A = \{<1, 1>, <2, 2>\}$$
;

- 4. 小于等于关系: A是实数集R的子集 $L_A = \{ \langle x, y \rangle | x, y \in A, x \leq y \}.$
- 5. 整除关系: A是非零整数集Z*的子集 $D_A = \{ \langle x, y \rangle | x, y \in A, x | y \}.$

例: $A = \{1, 2, 3\}$; $L_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>\};$ $D_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<3,3>\};$

6. 包含关系: A是由一些集合构成的集合族 $R_{\subseteq} = \{ \langle x, y \rangle | x, y \in A, x \subseteq y \}.$

例: $B = \{a, b\}$; $A \triangleq P(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$ $R_{\subseteq} \{\langle \emptyset, \emptyset \rangle, \langle \emptyset, \{a\} \rangle, \langle \emptyset, \{b\} \rangle, \langle \emptyset, \{a, b\} \rangle, \langle \{a\}, \{a\} \rangle, \langle \{a\}, \{a, b\} \rangle, \langle \{b\}, \{b\} \rangle, \langle \{b\}, \{a, b\} \rangle, \langle \{a, b\} \rangle,$

类似的还可以定义:大于等于关系,小于关系,大于关系,真包含关系等.

关系矩阵: 若 $A=\{x_1, x_2, ..., x_m\}$, $B=\{y_1, y_2, ..., y_n\}$, R是从A到B的关系,R的关系矩阵是布尔矩阵 M_R = $[r_{ij}]_{m\times n}$, 其中 $r_{ij}=1\Leftrightarrow < x_i, y_j>\in R$, 反之 $r_{ij}=0$. 关系图: 若 $A=\{x_1, x_2, ..., x_m\}$, R是A上的关系,

关系图: $\Xi A = \{x_1, x_2, ..., x_m\}$, R 是 A 上的关系, R 的关系图是 $G_R = \langle A, R \rangle$, 其中 A 为节点集, R 为边集. 如果 $\langle x_i, x_j \rangle$ 属于关系 R ,在图中就有一条从 x_i 到 x_i 的有向边.

注意: 1. 关系矩阵适合表示从A到B的关系或A上的关系(A, B为有穷集). 2. 关系图适合表示有穷集A上的关系.

例2 $A=\{1, 2, 3, 4\}, R=\{<1, 1>, <1, 2>, <2, 3>, <2, 4>, <4, 2>\}, R的关系矩阵<math>M_R$ 和关系图 G_R 如下:

$$m{M}_R = egin{bmatrix} m{1} & m{1} & m{0} & m{0} \ m{0} & m{0} & m{1} & m{1} \ m{0} & m{0} & m{0} & m{0} \ m{0} & m{1} & m{0} & m{0} \end{bmatrix}$$

第7章 二元关系

- 7.1 有序对与笛卡尔积
- 7.2 二元关系
- 7.3 关系的运算
- 7.4 关系的性质
- 7.5 关系的闭包

定义7.6 设R是二元关系,

第一元素-->定义域

- (1) R中所有有序对的第一元素构成的集合称为R的定义域,记作dom R,形式化表示为 $dom R = \{x \mid \exists y (\langle x, y \rangle \in R) \};$
- (2) R中所有有序对的第二元素构成的集合称为R的值域,记作ranR,形式化表示为 $ranR = \{y \mid \exists x \ (\langle x,y \rangle \in R)\}$ 第二元素—>值域
- (3) R的定义域和值域的并集称为R的域,记作fldR, 形式化表示为

 $fldR = domR \cup ranR$

7.3 关系的运算

定义7.7 设R是二元关系,R的逆关系,简称为R的逆,记作 R^{-1} ,其中

$$R^{-1} = \{ \langle y, x \rangle \mid \langle x, y \rangle \in R \}$$

定义7.8 设R, S是二元关系, S对R的右复合记作 $R \circ S$, 其中

$$R \circ S = \{ \langle x, z \rangle \mid \exists y (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$$

例3
$$R = \{<1, 2>, <2, 3>, <1, 4>, <2, 2>\}$$

 $S = \{<1, 1>, <1, 3>, <2, 3>, <3, 2>, <3, 3>\}$
 $R^{-1} = \{<2, 1>, <3, 2>, <4, 1>, <2, 2>\}$
 $R \circ S = \{<1, 3>, <2, 2>, <2, 3>\}$
 $S \circ R = \{<1, 2>, <1, 4>, <3, 2>, <3, 3>\}$

7.3 关系的运算

例3 R = {<1, 2>, <2, 3>, <1, 4>, <2, 2>} S = {<1, 1>, <1, 3>, <2, 3>, <3, 2>, <3, 3>}

利用图示(不是关系图)方法求合成更为直观

$$R \circ S = \{<1, 3>, <2, 2>, <2, 3>\}$$

$$S \circ R = \{ <1, 2>, <1, 4>, <3, 2>, <3, 3> \}$$

定义7.9 设R为二元关系,A是集合,

- (1) R在A上的限制记作 $R \cap A$, 其中
 - $\square \qquad R \upharpoonright A = \{ \langle x, y \rangle \mid xRy \land x \in A \}$
- (2) A在R下的像记作R[A], 其中
 - $\square \qquad R[A] = \operatorname{ran}(R \upharpoonright A) = \{ y \mid xRy \land x \in A \}$

说明:

- □ R在A上的限制 R[A是 R 的子关系,即 R[A \subseteq R
- □ A在R下的像R[A]是ranR的子集,即R[A]⊆ranR

7.3 关系的运算

- \square $R \upharpoonright \{1\} = \{<1, 2>, <1, 3>\}$
 - $\square R \upharpoonright \varnothing = \varnothing$
 - $\square R \upharpoonright \{2, 3\} = \{<2, 2>, <2, 4>, <3, 2>\}$
 - $\square R[\{1\}] = \{2, 3\}$
 - $\square R[\varnothing] = \varnothing$
 - $\square R[\{3\}] = \{2\}$

定理7.1 设F是任意的关系,则

- (1) $(F^{-1})^{-1}=F$
- (2) $dom F^{-1} = ran F$, $ran F^{-1} = dom F$
- 证 (1) 任取< x, y>, 由逆的定义有 $< x, y> \in (F^{-1})^{-1} \Leftrightarrow < y, x> \in F^{-1} \Leftrightarrow < x, y> \in F$. 所以有 $(F^{-1})^{-1}=F$.
 - (2) 任取x,

 $x \in \text{dom} F^{-1} \Leftrightarrow \exists y (\langle x, y \rangle \in F^{-1})$ $\Leftrightarrow \exists y (\langle y, x \rangle \in F) \Leftrightarrow x \in \text{ran} F$

所以有 $dom F^{-1}=ran F$. 同理可证 $ran F^{-1}=dom F$.

定理7.2 设F, G, H是任意的关系,则

(1)
$$(F \circ G) \circ H = F \circ (G \circ H)$$

(2)
$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

证(1)任取<x, y>,

$$\langle x, y \rangle \in (F \circ G) \circ H \Leftrightarrow \exists t \ (\langle x, t \rangle \in F \circ G \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists t \ (\exists s \ (\langle x, s \rangle \in F \land \langle s, t \rangle \in G) \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists t \ \exists s \ (\langle x, s \rangle \in F \land \langle s, t \rangle \in G \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists s \ (\langle x, s \rangle \in F \land \exists t \ (\langle s, t \rangle \in G \land \langle t, y \rangle \in H))$$

$$\Leftrightarrow \exists s \ (\langle x, s \rangle \in F \land \langle s, y \rangle \in G \circ H)$$

$$\Leftrightarrow \langle x, y \rangle \in F \circ (G \circ H)$$

所以
$$(F \circ G) \circ H = F \circ (G \circ H)$$

定理7.2 设F, G, H是任意的关系,则

(1)
$$(F \circ G) \circ H = F \circ (G \circ H)$$

(2)
$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

(2) 任取
$$\langle x, y \rangle$$
,
$$\square \square \Box \langle x, y \rangle \in (F \circ G)^{-1}$$

$$\square \Leftrightarrow \langle y, x \rangle \in F \circ G$$

$$\square \Leftrightarrow \exists t \ (\langle y, t \rangle \in F \land \langle t, x \rangle \in G)$$

$$\square \Leftrightarrow \exists t \ (\langle x, t \rangle \in G^{-1} \land \langle t, y \rangle \in F^{-1})$$

$$\square \Leftrightarrow \langle x, y \rangle \in G^{-1} \circ F^{-1}$$
所以 $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$

7.3 关系的运算

定理7.3 设R为A上的关系,则 $R \circ I_A = I_A \circ R = R$

证 任取
$$\langle x, y \rangle$$

 $\langle x, y \rangle \in R \circ I_A$
 $\Leftrightarrow \exists t \ (\langle x, t \rangle \in R \land \langle t, y \rangle \in I_A)$
 $\Leftrightarrow \exists t \ (\langle x, t \rangle \in R \land t = y \land y \in A)$
 $\Leftrightarrow \langle x, y \rangle \in R$

补充知识点:

量词分配等值式

- $\textcircled{1} \ \forall x (A(x) \land B(x)) \Leftrightarrow \forall x A(x) \land \forall x B(x)$
- $\textcircled{2} \exists x (A(x) \lor B(x)) \Leftrightarrow \exists x A(x) \lor \exists x B(x)$

注意:∀对∨,∃对∧无分配律,不成立!

- $(1) \forall x A(x) \lor \forall x B(x) \Rightarrow \forall x (A(x) \lor B(x))$ (反过来不成立)
- $(2) \exists x (A(x) \land B(x)) \Rightarrow \exists x A(x) \land \exists x B(x)$ (反过来不成立)

定理7.4

- (1) $F \circ (G \cup H) = F \circ G \cup F \circ H$ (2) $(G \cup H) \circ F = G \circ F \cup H \circ F$
- (3) $F \circ (G \cap H) \subseteq F \circ G \cap F \circ H$ (4) $(G \cap H) \circ F \subseteq G \circ F \cap H \circ F$
- 只证(3) 任取<x,y>,
- $\square < x, y > \in F \circ (G \cap H)$
- $\Leftrightarrow \exists t \ (\langle x, t \rangle \in F \land \langle t, y \rangle \in G \cap H)$
- $\Leftrightarrow \exists t \ (\langle x, t \rangle \in F \land \langle t, y \rangle \in G \land \langle t, y \rangle \in H)$
- $\Leftrightarrow \exists t \ ((\langle x, t \rangle \in F \land \langle t, y \rangle \in G) \land (\langle x, t \rangle \in F \land \langle t, y \rangle \in H))$
- $\Rightarrow \exists t \ (\langle x, t \rangle \in F \land \langle t, y \rangle \in G) \land \exists t \ (\langle x, t \rangle \in F \land \langle t, y \rangle \in H)$
- $\Leftrightarrow \langle x, y \rangle \in F \circ G \land \langle x, y \rangle \in F \circ H$
- $\Leftrightarrow \langle x, y \rangle \in F \circ G \cap F \circ H$

以有 $F \circ (G \cap H) \subseteq F \circ G \cap F \circ H$.

所

定理7.4的结论可以推广到有限多个关系:

7.3 关系的运算

定理7.5 设F为关系,A,B为集合,则

- $(1) F \upharpoonright (A \cup B) = F \upharpoonright A \cup F \upharpoonright B$
- (2) $F[A \cup B] = F[A] \cup F[B]$
- (3) $F \upharpoonright (A \cap B) = F \upharpoonright A \cap F \upharpoonright B$
- (4) $F[A \cap B] \subseteq F[A] \cap F[B]$

证 只证(1)和(4). (1)
$$F \upharpoonright (A \cup B) = F \upharpoonright A \cup F \upharpoonright B$$

(1) 任取 $< x, y>$,
 $\Box \Box \Box < x, y> \in F \upharpoonright (A \cup B)$
 $\Leftrightarrow < x, y> \in F \land x \in A \cup B$
 $\Leftrightarrow < x, y> \in F \land (x \in A \lor x \in B)$
 $\Leftrightarrow < (< x, y> \in F \land x \in A) \lor (< x, y> \in F \land x \in B)$
 $\Leftrightarrow < x, y> \in F \upharpoonright A \lor < x, y> \in F \upharpoonright B$
 $\Leftrightarrow < x, y> \in F \upharpoonright A \cup F \upharpoonright B$

所以有 $F \upharpoonright (A \cup B) = F \upharpoonright A \cup F \upharpoonright B$.

$(4) F[A \cap B] \subseteq F[A] \cap F[B]$

任取y,

- $\square \square y \in F[A \cap B]$
 - $\Box \Leftrightarrow \exists x \ (\langle x, y \rangle \in F \land x \in A \cap B)$
 - $\Box \Leftrightarrow \exists x \ (\langle x, y \rangle \in F \land x \in A \land x \in B)$
 - $\Box \Leftrightarrow \exists x \ ((\langle x, y \rangle \in F \land x \in A) \land (\langle x, y \rangle \in F \land x \in B))$
 - $\square \Rightarrow \exists x \ (\langle x, y \rangle \in F \land x \in A) \land \exists x \ (\langle x, y \rangle \in F \land x \in B)$
 - $\Box \Leftrightarrow y \in F[A] \land y \in F[B]$
 - $\Box \Leftrightarrow y \in F[A] \cap F[B]$

所以有 $F[A \cap B] \subseteq F[A] \cap F[B]$.

定义7.10

设R为A上的关系,n为自然数,则R的n次幂 R^n 定义为:

- (1) $R^0 = \{ \langle x, x \rangle \mid x \in A \} = I_A \ (\text{恒等关系})$
- $(2) R^{n+1} = R^n \circ R$

注意:

- 对于A上的任何关系 R_1 和 R_2 都有 $R_1^0 = R_2^0 = I_A$
- 对于A上的任何关系 R 都有 $R^1 = R$

例5 设 $A = \{a, b, c, d\}, R = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle\}$, 求R的各次幂, 分别用矩阵和关系图表示.

解 R 与 R^2 的关系矩阵分别是:

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad M^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

与普通矩阵乘法不同,这里的加法采用的是逻辑加,即0+0=0,0+1=1,1+0=1,1+1=1

7.3 关系的运算

R^3 和 R^4 的矩阵是:

$$M^{3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad M^{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

因此
$$M^4=M^2$$
, 即 $R^4=R^2$. 因此可以得到

$$\square \square R^2 = R^4 = R^6 = \dots, R^3 = R^5 = R^7 = \dots$$

$$R^0$$
的关系矩阵是

$$R^0$$
的关系矩阵是 $M^0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$

7.3 关系的运算

 R^0 , R^1 , R^2 , R^3 ,...的关系图如下图所示.

 R^1

$$R^2 = R^4 = ...$$

$$R^3 = R^5 = ...$$

定理7.6 设A为n元集,R是A上的关系,则存在自然数s和t,使得 $R^s = R^t$.

证 R为A上的关系,对任何自然数k, R^k 都是 $A\times A$ 的子集. 由于|A|=n,A上的不同的子集只有 2^{n^2} 个.

列出R的各次幂

 $R^0, R^1, R^2, \ldots, R^{2^{n^2}}, \ldots$

必存在自然数s和t使得 $R^s = R^t$

定理7.7 设 R 是A上的关系,m, $n \in \mathbb{N}$,则

- $(1) R^m \circ R^n = R^{m+n}$
- $(2) (R^m)^n = R^{mn}$

证用归纳法

(1) 对于任意给定的 $m \in \mathbb{N}$, 对n用归纳法, 若n = 0, 则有

$$R^m \circ R^0 = R^m \circ I_A = R^m = R^{m+0}$$

假设 $R^m \circ R^n = R^{m+n}$, 则有

$$R^m \circ R^{n+1} = R^m \circ (R^n \circ R) = (R^m \circ R^n) \circ R = R^{m+n+1}$$
,所以对一切 $m, n \in \mathbb{N}$ 有 $R^m \circ R^n = R^{m+n}$.

定理7.7 设 R 是A上的关系,m, $n \in \mathbb{N}$,则

- $(1) R^m \circ R^n = R^{m+n}$
- $(2) (R^m)^n = R^{mn}$

$$(R^m)^0 = I_A = R^0 = R^{m \times 0}$$

假设 $(R^m)^n = R^{mn}$, 则有

$$(R^m)^{n+1} = (R^m)^n \circ R^m = (R^{mn}) \circ R^m$$

= $R^{mn+m} = R^{m(n+1)}$

所以对一切 $m, n \in \mathbb{N}$ 有 $(R^m)^n = R^{mn}$.

定理7.8 设R是A上的关系, 若存在自然数s, t (s<t) 使得 R^s = R^t , 则

- (1) 对任何 $k \in \mathbb{N}$ 有 $R^{s+k} = R^{t+k}$
- (2) 对任何 k, $i \in \mathbb{N}$ 有 $R^{s+kp+i} = R^{s+i}$, 其中 p = t-s
- (3) 令 $S = \{R^0, R^1, ..., R^{t-1}\}$, 则对于任意的 $q \in \mathbb{N}$ 有 $R^q \in S$
- 证 (1) $R^{s+k} = R^s \circ R^k = R^t \circ R^k = R^{t+k}$
- (2) 对k归纳. 若k=0, 则有 $R^{s+0p+i}=R^{s+i}$

假设 $R^{s+kp+i} = R^{s+i}$, 其中p = t-s, 则

$$R^{s+(k+1)p+i} = R^{s+kp+i+p} = R^{s+kp+i} \circ R^p$$

 $= R^{s+i} \circ R^p = R^{s+p+i} = R^{s+t-s+i} = R^{t+i} = R^{s+i}$

由归纳法命题得证.

定理7.8 设R是A上的关系,若存在自然数s,t(s<t)使得 R^s = R^t ,则

- (1) 对任何 $k \in \mathbb{N}$ 有 $R^{s+k} = R^{t+k}$
- (2) 对任何 k, $i \in \mathbb{N}$ 有 $R^{s+kp+i} = R^{s+i}$, 其中 p = t-s
- (3) 令 $S = \{R^0, R^1, ..., R^{t-1}\}$, 则对于任意的 $q \in \mathbb{N}$ 有 $R^q \in S$
 - (3) 任取 $q \in \mathbb{N}$, 若 q < t, 显然有 $R^q \in S$, 若 $q \ge t$, 则存在自然数 k 和 i 使得 q = s + kp + i, 其中 $0 \le i \le p 1$.

于是 $R^q = R^{s+kp+i} = R^{s+i}$

而 $s+i \le s+p-1 = s+t-s-1 = t-1$

从而证明了 $R^q \in S$.

例6 设 $A = \{a, b, d, e, f\},$

 $R = \{ \langle a, b \rangle, \langle b, a \rangle, \langle d, e \rangle, \langle e, f \rangle, \langle f, d \rangle \}.$ 求出最小的自然数m和n,使得m < n且 $R^m = R^n$.

解: $R^2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle d, f \rangle, \langle e, d \rangle, \langle f, e \rangle \}$, $R^3 = \{\langle a, b \rangle, \langle b, a \rangle, \langle d, d \rangle, \langle e, e \rangle, \langle f, f \rangle \}$, $R^6 = \{\langle a, a \rangle, \langle b, b \rangle, \langle d, d \rangle, \langle e, e \rangle, \langle f, f \rangle \}$, 最小的自然数 $m = 0, n = 6, R^0 = R^6 = I_A$

第7章 二元关系

- 7.1 有序对与笛卡尔积
- 7.2 二元关系
- 7.3 关系的运算
- 7.4 关系的性质
- 7.5 关系的闭包

定义7.11 设R 为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称 R 在 A 上是自反的
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \not\in R)$, 则称 R 在 A 上是反自反的

实例:自反:全域关系 E_A ,恒等关系 I_A ,小于等于关系 L_A ,整除关系 D_A

反自反:实数集上的小于关系,幂集上的真包含关系.

 $A=\{1,2,3\},R_1,R_2,R_3$ 是A上的关系,其中

 $R_1 = \{<1, 1>, <2, 2>\}$

 $R_2 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>\}$

 $R_3 = \{<1, 3>\}$

 R_1 既不是自反的也不是反自反的, R_2 自反, R_3 反自反

定义7.12 设R为A上的关系,

- (1) $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$, 则称 $R \rightarrow A$ 上的对称关系.
- (2) 若 $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$, 则称 R 为A上的反对称关系.

对称关系: A上的全域关系 E_A , 恒等关系 I_A 反对称关系: 恒等关系 I_A 是A上的反对称关系 设A={1,2,3}, R_1 , R_2 , R_3 和 R_4 都是A上的关系, 其中 R_1 ={<1,1>,<2,2>}, R_2 ={<1,1>,<1,2>,<2,1>} R_3 ={<1,2>,<1,3>}, R_4 ={<1,2>,<2,1>,<1,3>} R_4 ={<1,2>,<2,1>,<1,3>}

定义7.13 设R为A上的关系,若 $\forall x \forall y \forall z(x, y, z) \in A \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R \rightarrow \langle x, z \rangle \in R)$,则称 R 是A上的传递关系.

实例: A上的全域关系 E_A ,恒等关系 I_A 和空关系 \varnothing ,小于等于和小于关系,整除关系,包含与真包含关系. 设 $A=\{1,2,3\},R_1,R_2,R_3$ 是A上的关系,其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,2>,<2,3>\}$ $R_3=\{<1,3>\}$

 R_1 和 R_3 是A上的传递关系, R_2 不是A上的传递关系.

定理7.9 设R为A上的关系,则

- (1) R 在A上自反当且仅当 $I_A \subseteq R$
- (2) R 在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R 在A上对称当且仅当 $R=R^{-1}$
- (4) R 在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R 在A上传递当且仅当 R∘R \subseteq R

证明 只证(1)、(3)、(4)、(5)

(1) R 在A上自反当且仅当 I_A $\subseteq R$

必要性:

任取 $\langle x, x \rangle$, $\langle x, x \rangle \in I_A \Rightarrow x \in A$ 由于R在A上自反必有 $\langle x, x \rangle \in R$,从而 $I_A \subseteq R$

充分性:

任取x,有 $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$

因此R在A上是自反的.

(3) R 在A上对称当且仅当 $R=R^{-1}$

必要性:

任取
$$\langle x, y \rangle$$
,
$$\square \langle x, y \rangle \in R \Leftrightarrow \langle y, x \rangle \in R \Leftrightarrow \langle x, y \rangle \in R^{-1} \square$$
所以 $R = R^{-1}$

充分性:

任取
$$\langle x, y \rangle$$
, 由 $R = R^{-1}$ 得 $\square \langle x, y \rangle \in R \Rightarrow \langle y, x \rangle \in R^{-1} \Rightarrow \langle y, x \rangle \in R$ 所以 R 在 A 上是对称的.

(4) R 在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$

必要性: 任取<x, y>, 有

 $\Box <x, y>\in R \cap R^{-1} \Rightarrow <x, y>\in R \wedge <x, y>\in R^{-1}$ $\Rightarrow <x, y>\in R \wedge <y, x>\in R \Rightarrow x=y \wedge (x, y\in A) \square$ $\Rightarrow <x, y>\in I_A$

这就证明了 $R \cap R^{-1} \subseteq I_A$

<mark>充分性:</mark> 任取<x, y>,

从而证明了R在A上是反对称的.

(5) R 在A上传递当且仅当 R。 $R \subseteq R$

必要性:

任取
$$\langle x, y \rangle$$
有
$$\square \square \square \langle x, y \rangle \in R \circ R$$

$$\square \Longrightarrow \exists t \ (\langle x, t \rangle \in R \land \langle t, y \rangle \in R)$$

$$\square \Longrightarrow \langle x, y \rangle \in R \square \square$$

$$\bowtie R \circ R \subseteq R$$

充分性:

	自反性	反自反性	对称性	反对称性	传递性
集合	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R \circ R \subseteq R$
关系	主对角	主对角线	矩阵是		
矩阵	线元素	元素全是0	对称矩	$i\neq j$,则 $r_{ji}=0$	
	全是1		阵		
关系	每个顶	每个顶点	两点之	两点之间有	点 x_i 到 x_i 有
图	点都有	都没有环	间有边,	边, 是一条	边, x_j 到 x_k
	环		是一对	有向边	有边,则 x_i
			方向相		到 x_k 也有边
			反的边		

例7 判断 $A = \{1, 2, 3\}$ 上下列关系的性质,并说明理由. 请给出A上关系R,使其同时不满足自反、反自反、对称、反对称和传递性.

$$R_1 = \{<1, 1>, <1, 2>, <1, 3>, <2, 1>, <3, 1>\}$$
 $R_2 = \{<2, 1>, <3, 1>\}$
 $R_3 = \{<1, 1>, <2, 2>, <3, 3>, <2, 1>, <3, 2>, <1, 3>\}$

$$R = \{<1, 1>, <2, 2>, <2, 3>, <3, 2>, <3, 1>\}$$

设R₁和R₂是A上的关系,他们具有一些共同的性质。在经过并、交、相对补、逆或右复合以后,得到的新关系是否还能保持原来关系的性质呢?

	自反性	反自反 性	对称性	反对称 性	传递性
R_1^{-1}	√	$\sqrt{}$	√	\checkmark	
$R_1 \cap R_2$	$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark
$R_1 \cup R_2$	\checkmark	\checkmark	\checkmark	×	×
R_1 - R_2	×		√		×
$R_1 \circ R_2$	V	×	×	×	×

第7章 二元关系

- 7.1 有序对与笛卡尔积
- 7.2 二元关系
- 7.3 关系的运算
- 7.4 关系的性质
- 7.5 关系的闭包

设R是A上的关系、我们希望R具有某些有用的 性质,如自反性.如果R不具有自反性,则可 以通过在R中添加一部分有序对来改造R、得 到新的关系R',使得R'具有自反性,但又不希 望R'和R相差太多. 换句话说,添加的有序对 要尽可能少、满足这些要求的R'就称作R的自 反闭包,通过添加有序对来构造的闭包除了 自反闭包外还有对称闭包和传递闭包.

- 定义7.14 设R是非空集合A上的关系,R的自反(对称或传递)闭包是A上的关系R',使得R'满足以下条件: (1) R'是自反的(对称的或传递的) (2) R \subseteq R'
- (3) 对A上任何包含R的自反(对称或传递)关系R''有 $R' \subseteq R''$.
- R的自反闭包记作r(R),对称闭包记作s(R),传递闭包记作t(R).
 - 注: 1.R的自反(对称或传递)闭包是包含R的最小自反(对称或传递)关系.
 - 2. 若R已经是自反的(对称的或传递的),则R的自 反(对称或传递)闭包就是R.

7.5 关系的闭包

定理7.10 设R为A上的关系,则有

- $(1) r(R) = R \cup R^0$
- (2) $s(R) = R \cup R^{-1}$
- (3) $t(R)=R\cup R^2\cup R^3\cup ...$

说明:对有穷集A上的关系,存在正整数r使得 $t(R)=R\cup R^2\cup R^3\cup...\cup R^r$

定理7.10 设R为A上的关系,则有

 $(1) r(R) = R \cup R^0$

证

由 $I_A=R^0 \subseteq R \cup R^0$ 知 $R \cup R^0$ 是 自 反 的 , 且 满 足 $R \subseteq R \cup R^0$.

设R'' 是A上包含R的自反关系,则有 $R \subseteq R''$ 和 I_A $\subseteq R''$. 从而有 $R \cup R^0 \subseteq R''$. $R \cup R^0$ 满足闭包定义,所以 $r(R)=R \cup R^0$.

定理7.10 设R为A上的关系,则有

(3) $t(R)=R\cup R^2\cup R^3\cup ...$

先证 $R \cup R^2 \cup ... \subseteq t(R)$ 成立.

用归纳法证明对任意正整数n 有 $R^n \subseteq t(R)$.

n=1 时有 $R^1=R\subseteq t(R)$.

假设 $R^n \subseteq t(R)$ 成立,那么对任意的< x, y > 有 $< x, y > \in R^{n+1} = R^n \circ R \Rightarrow \exists t (< x, t > \in R^n \land < t, y > \in R)$

 $\Rightarrow \exists t \ (\langle x, t \rangle \in t(R) \land \langle t, y \rangle \in t(R))$

 $\Rightarrow \langle x, y \rangle \in t(R)$

这就证明了 $\mathbb{R}^{n+1} \subseteq t(\mathbb{R})$. 由归纳法命题得证.

定理7.10 设R为A上的关系,则有

(3) $t(R)=R\cup R^2\cup R^3\cup ...$

再证 $t(R) \subseteq R \cup R^2 \cup ...$ 成立,为此只须证明 $R \cup R^2 \cup ...$ 传递.

任取<x, y>,<y, z>,则

- - $\Rightarrow \exists t (\langle x, y \rangle \in R^t) \land \exists s (\langle y, z \rangle \in R^s)$
 - $\Rightarrow \exists t \; \exists s \; (\langle x, z \rangle \in R^{t_o}R^s)$
 - $\Rightarrow \exists t \; \exists s \; (\langle x, z \rangle \in R^{t+s})$
 - $\Rightarrow \langle x, z \rangle \in R \cup R^2 \cup ...$

从而证明了 $RUR^2U...$ 是传递的.

7.5 关系的闭包

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s 和 M_t , 则

 $M_r=M+E$ $\square M_s=M+M'$ $M_t=M+M^2+M^3+\cdots$ E 是单位矩阵,M' 是转置矩阵,相加时使用逻辑

0+0=0, 0+1=1, 1+0=1, 1+1=1

- 设关系R, r(R), s(R), t(R)的关系图分别记为G, G_r , G_s , G_t , 则 G_r , G_s , G_t 的顶点集与G的顶点集相等. 除了G的边以外, 以下述方法添加新的边:
- (1) 考察G的每个顶点,若没环就加一个环,得到 G_r
- (2) 考察G的每条边,若有一条 x_i 到 x_j 的单向边, $i \neq j$,则在G中加一条 x_i 到 x_i 的反向边,得到 G_s
- (3) 考察G的每个顶点 x_i , 找 x_i 可达的所有顶点 x_j (允许i=j), 如果没有从 x_i 到 x_j 的边, 就加上这条边, 得到图 G_t

7.5 关系的闭包

例8 设 $A=\{a, b, c, d\}$, $R=\{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle d, b \rangle\}$, $R \Rightarrow r(R)$, s(R), t(R) 的关系图如下图所示.

定理7.11 设R是非空集合A上的关系,则

- (1) R是自反的当且仅当 r(R)=R.
- (2) R是对称的当且仅当 s(R)=R.
- (3) R是传递的当且仅当 t(R)=R.

三个结论的充分性都是显然的,这里我们只证明(1)的必要性,其余的留作练习. 显然有R \subseteq r(R),又由于R 是包含了R 的自反关系,根据自反闭包的定义有r(R) \subseteq R,从而有r(R)=R.

7.5 关系的闭包

定理7.12 设 R_1 和 R_2 是非空集合A上的关系,且 $R_1 \subseteq R_2$,则

- $(1) r(R_1) \subseteq r(R_2)$
- $(2) s(R_1) \subseteq s(R_2)$
- $(3) t(R_1) \subseteq t(R_2)$

证: (3)只需证明对于任意正整数n, $R_1^n \subseteq R_2^n$. 对n归纳. n = 1, 显然为真.

假设n = k时,命题为真.任取<x, y>,

$$\langle x, y \rangle \in R_1^{k+1} \Longrightarrow \langle x, y \rangle \in R_1^k \circ R_1$$

- $\Rightarrow \exists t (\langle x, t \rangle \in R_1^k \land \langle t, y \rangle \in R_1)$
- $\Rightarrow t(\langle x, t \rangle \in R_2^k \land \langle t, y \rangle \in R_2) \Rightarrow \langle x, y \rangle \in R_2^k \circ R_2$
- $\Rightarrow \langle x, y \rangle \in R_2^{k+1}$

7.5 关系的闭包

定理7.13 设R是非空集合A上的关系,

- (1) 若R是自反的,则s(R)与t(R)也是自反的
- (2) 若R是对称的,则r(R)与t(R)也是对称的
- (3) 若R是传递的,则r(R)是传递的.

证明过程请大家自己思考

第七章主要内容:

- > 有序对与笛卡儿积的定义与性质
- \rightarrow 二元关系、从A到B的关系、A上的关系
- 关系的表示法:关系表达式、关系矩阵、 关系图
- 关系的运算:定义域、值域、域、逆、复合、限制、像、幂
- 关系运算的性质: A上关系的自反、反自反、 对称、反对称、传递的性质
- > A上关系的自反、对称、传递闭包

> 第二次作业:

> 习题4: 第7、11题;

> 习题6: 第5、8、9、10题;

> 习题7: 第7、8、9、16题。

$$A = \{\langle \emptyset, |\emptyset, |\emptyset \}\}$$
 $A = \{\langle \emptyset, |\emptyset, |\emptyset \}\}$ $A = \{\langle \emptyset, |\emptyset, |\emptyset \}$ $A = \{\langle \emptyset, |\emptyset, |\emptyset \}\}$ $A = \{\langle \emptyset, |\emptyset, |\emptyset \}\}$ $A = \{\langle \emptyset, |\emptyset, |\emptyset \}$ $A = \{\langle \emptyset, |\emptyset, |\emptyset \}\}$ $A = \{\langle \emptyset, |\emptyset, |\emptyset \}$

② 设
$$A = \{1, 2, \dots, 10\}$$
, 定义 A 上的关系 $R = \{\langle x, y \rangle | x, y \in A \land x + y = 10\}$ 说明 R 具有哪些性质并说明理由.

(25) 设R的关系图如图 7.12 所示,试给出r(R),s(R)和 t(R)的关系图.

