PCT

世界知的所有權機関 国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C08F 265/06, C08L 51/00 // (C08F 265/06, 220:12)

(11) 国際公開番号 A1

WO00/01748

(43) 国際公開日

2000年1月13日(13.01.00)

(21) 国際出願番号

PCT/JP99/03468

JP, US, 欧州特許 (AT, BE, CH, CY, DE, DK,

(22) 国際出願日

1999年6月29日(29.06.99)

(30) 優先権データ

特願平10/199473

1998年7月1日(01.07.98)

JP

(71) 出願人 (米国を除くすべての指定国について)

三菱レイヨン株式会社

(MITSUBISHI RAYON CO., LTD.)[JP/JP]

〒108-8506 東京都港区港南一丁目6番41号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

笠井俊宏(KASAI, Toshihiro)[JP/JP]

〒461-8677 愛知県名古屋市東区砂田橋4丁目1-60

三菱レイヨン株式会社 商品開発研究所内 Aichi, (JP)

(74) 代理人

浅村 皓, 外(ASAMURA, Kiyoshi et al.)

〒100-0004 東京都千代田区大手町2丁目2番1号

新大手町ビル331 Tokyo, (JP)

(81) 指定国 ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

添付公開書類

国際調査報告書

(54) Title: FINE ACRYLIC POLYMER PARTICLES AND PLASTISOL CONTAINING THE SAME

(54)発明の名称 アクリル系重合体微粒子及びそれを用いたプラスチゾル

(57) Abstract

Fine acrylic polymer particles composed of primary particles (P) of a core-shell structure having an average particle diameter of 250 nm or larger. The fine particles comprise a core polymer (C) which is a copolymer of the following monomer mixture (Mc) and a shell polymer (S) which is a copolymer of the following monomer mixture (Ms), the weight ratio of the Mc/Ms being 10/90 to 90/10. Mc: methyl methacrylate 20 to 85 mol%, (meth)acrylic ester of C2-8 alcohol 15 to 80 mol%, other copolymerizable monomer up to 30 mol%, Ms: methyl methacrylate 20 to 79.5 mol%, (meth)acrylic ester of C2-8 alcohol 5 to 40 mol%, carboxylated or sulfonated monomer 0.5 to 10 mol%, other copolymerizable monomer up to 30 mol%.

(57)要約

、コアシェル構造を有する、平均粒子径が250nm以上の一次粒子 Pからなるアクリル系重合体微粒子及びそれを用いたプラスチゾル。

該微粒子は、コア重合体C及びシェル重合体Sが、以下に示すモノ マー混合物Mc及びMsの共重合体であり、かつMcとMsの重量比 が10/90~90/10である。

М с : メチルメタクリレート

 $20 \sim 85 \text{ mol} \%$

C 2 から C 8 のアルコールの (メタ) アクリル酸エステル・

15~80mol%

その他の共重合可能なモノマー

30mol%以下

Ms:メチルメタクリレート

 $20 \sim 79.5 \text{ mol}\%$

C 2 から C 8 のアルコールの (メタ) アクリル酸エステル

 $5 \sim 40 \text{ m o } 1\%$

カルボキシル基又はスルホン酸基含有モノマー

 $0.5 \sim 10 \text{ mol } \%$

その他の共重合可能なモノマー

30mol%以下

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アラブ省長国連邦 アルバニア アルメニア オーストリア オーストリリア オーストラリア ボズニア・ヘ バルバドス DM ドミニカ EE エストニテ ES スペインラン FI フラブボア GA ボボア EEFFGGGGGGGGHHIIIIIIJK

旧ユーゴスラヴィア

スーダン スウェーデン シンガポーン スロヴェニア

1

明細書

アクリル系重合体微粒子及びそれを用いたプラスチゾル

5 技術分野

本発明は、コアシェル構造を有するアクリル系重合体微粒子に関する。さらに、 本発明はアクリル系重合体微粒子を可塑剤に分散させてなるプラスチゾルに関す る。さらに詳しくは、本発明は貯蔵安定性に優れ、かつ加熱成膜後の可塑剤保持 性に優れたプラスチゾルに関する。

10 背景技術

20

野で使用されている。

可塑剤を媒体とし重合体微粒子を分散させてなるプラスチゾルは、多岐にわたる工業分野において利用されており、その工業的価値は著大である。とくに塩化ビニル系重合体微粒子を用いたプラスチゾルは塩化ビニルゾル (以下、塩ビゾルと略す) として知られ、その優れた物性により、壁紙、自動車用アンダーコート、自動車用ボディーシーラー、カーペットバッキング材、床材、塗料などの広い分

塩ビゾルは、塩化ビニル重合体微粒子が有する特異な性質により、プラスチゾ ルに要求される基本的な性質、すなわち

①プラスチゾルを貯蔵中に重合体微粒子が可塑剤により膨潤あるいは溶解しないこと(以下、この性質を貯蔵安定性と略す);

②プラスチゾルを塗布し加熱処理によりゲル化物を形成し乾燥塗膜を得た後でも、 該乾燥塗膜中に可塑剤が良好に保持され、経時的にブリードアウトしないこと (以下、この性質を可塑剤保持性と略す)

において非常に優れており、現在のように広く工業的に利用されるに至った。

25 しかしながら塩ビゾルを用いた製品については、焼却した時に塩化水素ガスが発生し、これが焼却炉を著しく損傷させてしまうという問題がかねてから指摘されていた。また近年では、塩化水素ガスによる酸性雨の問題、さらには焼却時に発生する、毒性が極めて高いダイオキシンによる人体や地球環境への悪影響などが問題視されるようになり、塩ビゾルと同等の物性を有しながら環境問題の少な

い代替材料の登場が期待されていた。

そこで、塩ビゾルを代替する材料の候補として、一液ウレタン系材料、エポキシ系材料、水系エマルジョン材料、シリコーン系材料などが提案されている。しかしながらこれらの材料の生産においては、いずれも既存の塩ビゾルの生産設備を利用することが不可能であり、工業的利用にあたっては膨大な設備投資を必要とする。さらに、一液ウレタン系材料は、増粘による貯蔵安定性の不良や、毒性の問題、高コストであることなど多くの問題点を有している。エポキシ系材料は、高コストであり、物性的にも塩ビゾルにはるかに及ばない等、多くの問題点を有している。水系エマルジョンの場合には、厚塗りが不可能であること、媒体である、水系エマルジョンの場合には、厚塗りが不可能であること、媒体である、水の蒸発に伴って塗膜にふくれが発生すること、塗膜の耐水性が不良であること、などが問題として挙げられる。シリコーン系材料も、コストが高く、また物性の点からも、代替材料となることはできない。したがって、これらの材料では塩ビゾルを代替することが極めて困難であった。

このような問題を解決するための代替材料として、近年アクリル系重合体微粒 15 子からなるプラスチゾル、すなわちアクリルゾルが提案されている。

たとえば特開昭60-258241号公報、特開昭61-185518号公報、 特開昭61-207418号公報には、塩化ビニル重合体とアクリル重合体を複 合化することにより得られる新規なプラスチゾルが提案されている。しかしなが らこのプラスチゾルは本質的に塩化ビニル重合体を含有するものであり、焼却時 に有害なガスを発生することに関しては従来の塩ビゾルと何ら変わらないもので あり、上記環境問題の解決には至っていない。

そこで塩化ビニル重合体及び他のハロゲン系重合体をまったく含有しないプラスチゾルとして、特開平5-255563号公報にアクリル系重合体からなるプラスチゾルが提案されている。上記公報で用いられている重合体は均一構造粒子であるが、アクリル系重合体の場合、プラスチゾルの貯蔵安定性と塗膜の可塑剤保持性を均一構造粒子で実現することは不可能であり、上記公報によるプラスチゾルは実用レベルにおいては貯蔵安定性がきわめて悪いか、あるいは塗膜物性がきわめて悪くなる傾向にある。

これは、アクリル系重合体は、塩化ビニル重合体と異なり、分子間に働くファ

ンデルワールス凝集力が弱いため、可塑剤に対して相溶性の高い組成を用いると、 可塑剤が容易に分子間に侵入して、可塑化すなわちゲル化を引き起こしてしまい、 貯蔵安定性が不良となることに起因する。

そのため、貯蔵安定性を良好にするためには、可塑剤との相溶性を低くする必要 がある。しかしながら、可塑剤との相溶性が低い重合体は、貯蔵安定性は良好な ものの、ゾルを塗布し加熱成膜した後に得られる塗膜(以下、ゲル化膜と略す) の可塑剤保持性が極めて低く、経時的に可塑剤がゲル化膜からブリードアウトし てきてしまう。

このように、アクリル系重合体微粒子を用いたアクリルゾルの場合、貯蔵安定 10 性と成膜後の可塑剤保持性の関係は相反するものであり、均一構造の重合体微粒 子ではこれを満足することは不可能であった。

そこでコアシェル構造粒子を用いたアクリル系プラスチゾルとして、特開平5 -279539号公報が提案されている。ここではアクリル系重合体に酸又は酸 無水物を含有させた重合体を用いている。しかしながら上記公報で提案されてい る重合体は、可塑剤に対する相容性が低く、特にシェル部のメチルメタクリレー トの共重合比率が高いために、フタル酸エステル系可塑剤のように極性の低い可 塑剤を用いた場合には可塑化状態が不良となり、良好な塗膜を得ることができない。

他に特開平6-322225号公報においては、同じくコアシェル構造粒子を 用いたプラスチゾルが提案されている。ここではコアシェル構造粒子といっても、 均一構造粒子を製造し、これを後にアルカリ加水分解処理を行うことによって、 粒子のごく表層部のエステル基をカルボキシル基に変換するというものである。 したがって、シェル部の厚みはきわめて薄く、実質的に粒子の体積の1%前後か それ以下にすぎない。したがってシェル部の役割として期待される貯蔵安定性の 25 改良効果はきわめて低い。またアルカリ加水分解により導入されたシェル部は酸 価が非常に高くなっており、可塑剤に対する相溶性が非常に低く、成膜性を著し く低下させる。またこのような高酸価のシェル部は、プラスチゾル中で重合体粒 子が構造粘性を作ることに寄与するため、プラスチゾルの粘度が高くなる等、作 業性が低下するという弊害がある。 またコアシェル構造粒子を用いたプラスチゾルの他の例が特開昭53-144 950号公報に提案されている。ここでは組成の異なるモノマーを段階的に重合 することによりコアシェル構造を得るという手法を用いている。ここではプラス チゾルの貯蔵安定性を発現するために可塑剤に対して非相溶性のシェルを用いて おり、多くの可塑剤に対して低い相溶性を示すメチルメタクリレートを80重量 %以上共重合したシェルを用いている。しかしながら相溶性がきわめて低いシェ ルは、貯蔵安定性においては有利であるが、ゾルの成膜性、得られる塗膜の強度、 伸度、透明性、基材に対する密着性、防音性、制振性など各種性能において劣る という傾向を有し、特に可塑剤の保持性において劣るため、ブリードアウトを発 生しやすく、実用的ではない。

コアシェル構造粒子を用いたプラスチゾルのさらなる例が特開平7-2332 99号公報及び特開平8-295850号公報に提案されている。ここでは基本的に可塑剤に対する相溶性を示すコア部と、可塑剤に対して非相溶性を示すシェル部とからなるコアシェル重合体を用いることにより、ごく基本的な性能を実現している。しかしながら、工業的に実用化するためにはきわめて高い物性が要求されることになり、その点においては上記公報により提案された重合体は、可塑剤との相溶性のバランスが最適化されておらず、貯蔵安定性及び塗膜の可塑剤保持性のいずれも低いレベルであり、工業的な実用化には不適当である。

このように、プラスチゾルの最も基本的な性質である貯蔵安定性と可塑剤保持 20 性を両立させるためにアクリルゾルについて種々の検討がなされているものの、 塩ビゾル代替材料としてはいずれも低レベルで工業的な実用レベルに達していな いのが現状であった。

発明の開示

本発明は、塩化ビニル重合体を含有せず、貯蔵安定性が良好であり、可塑剤保 25 持性が良好である新規なプラスチゾルを工業的に利用可能なレベルで提供することを課題とする。

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、アクリル系重合体 微粒子の粒子径を大きくすることにより、貯蔵安定性及び可塑剤保持性の両方に 優れたアクリルゾルが得られ、また250 n m以上の一次粒子径を有するコアシ ェル構造を有するアクリル系重合体を用い、シェル部のモノマー組成を特定し、 重合体と可塑剤の相溶性をコントロールすることにより貯蔵安定性と可塑剤保持 性のバランスを工業的に利用可能なレベルにまで改良できることを見出し、本発 明を完成した。

5 すなわち本発明の主旨とするところは、以下のとおりである;

① コア重合体Cとシェル重合体Sからなるコアシェル構造を有する一次粒子Pからなるアクリル系重合体微粒子であり、該一次粒子Pの平均粒子径が250nm以上であり、コア重合体C及びシェル重合体Sはそれぞれ以下に示すモノマー混合物Mc及びMsの共重合体であり、かつMcとMsの重量比が10/90~90/10である上記アクリル系重合体微粒子:

Mc:合計を100mol%とし、

メチルメタクリレート

20~85mo1%

C2~C8脂肪族アルコール及び/又は芳香族アルコールの (メタ) アクリル酸エステル

15

15~80mol%、及び

その他の共重合可能なモノマー

30mol%以下

Ms:合計を100mol%とし、

メチルメタクリレート

20~79. 5mol%

C2~C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア

20 クリル酸エステル

5~40mol%

カルボキシル基又はスルホン酸基含有モノマー

O. 5~10mol%、及び

その他の共重合可能なモノマー

30mo1%以下

- 25 ② (1) イ)水を主成分とする媒体中で、20℃において該媒体に対して0. 02質量%以上の溶解度を有し、かつその重合体は該媒体に溶解しない単量体を、 媒体中に乳化剤ミセルが存在しない状態において、水溶性ラジカル重合開始剤を 用いて重合せしめ、重合体分散液を得る工程、
 - ロ)上記の重合体分散液に対して単量体混合物を滴下して被覆された重合体分散

液を得る工程、

(2) 上記の重合体分散液を噴霧乾燥することによって重合体微粒子を回収する 工程、

を含む請求項1~3のいずれか一項記載のアクリル系重合体微粒子の製造方法。

5 発明を実施するための最良の形態

本明細書において、(メタ)アクリル酸はアクリル酸及び/又はメタクリル酸を、(メタ)アクリレートはアクリレート及び/又はメタクリレートを表す。

本明細書において、また、「一次粒子」とは重合体微粒子を構成する最小単位の粒子を指す。

本発明のアクリル系重合体微粒子はコアシェル構造を有する一次粒子Pからなる。コアシェル構造を用いる理由は、アクリル系重合体の場合、均一構造では貯蔵安定性と可塑剤保持性が両立できないためである。これを詳しく説明すると、アクリル系重合体は塩化ビニル重合体と異なり、分子間に働くファンデルワールス凝集力が弱いため、可塑剤に対して相容性の高い組成を用いると可塑剤が容易に分子間に侵入して可塑化すなわちゲル化を引き起こし、貯蔵安定性が不良となるからである。したがって貯蔵安定性を良好にするためには可塑剤との相溶性を低くする必要がある。しかしながら可塑剤に対する相溶性が低い重合体は、貯蔵安定性は良好なものの、加熱後のゲル化物の可塑剤保持性が極めて低く、経時的に可塑剤がブリードアウトしてきてしまう。つまりアクリル系重合体の場合、貯蔵安定性と可塑剤保持性の関係は相反するものであり、均一構造の重合体ではこれを満足することは不可能である。

これに対して、コアシェル構造を有する重合体において、コア重合体Cを可塑 剤に対して相溶性の高い組成とし、シェル重合体Sを可塑剤に対して相溶性の低 い組成とすれば、上記の相反する課題はある程度解決される。つまり、貯蔵時に 25 は重合体の周囲を完全に取り囲んでいるシェル重合体が可塑剤による膨潤・溶解 を防ぐために貯蔵安定性が良好となり、逆に加熱後は活発な分子運動によりコア シェル構造が壊れているため、コアが持つ高い相溶性により可塑剤保持性が良好 となる。

本発明で言うコアシェル構造とは、異なる組成のモノマー混合物を数段階にわ

10

20

25

けてシード重合することによって得られるものを言う。なお、「シード重合」とは、あらかじめ調製された重合体粒子をシード(種)とし、これに単量体を吸収・重合させて粒子を成長させる重合方法を指す。したがって、乳化重合や微細懸濁重合などによってあらかじめ均一構造の粒子を製造し、これをアルカリ加水分解などの後処理によって表面修飾した重合体粒子とは明らかに技術的に区別されなければならない。

その第一の理由は、アルカリ加水分解などの後処理によって表面修飾する方法 では、粒子のごく表層部のみに薄い修飾層が導入されるだけであり、その物理的 な厚みにおいて本発明が意図する十分な厚みを有したシェルとは本質的に異なる からである。

具体的には、本発明の場合、シェル部の厚みは、特に限定はされないが、一次 粒子径の約10%以上であることが好ましい。

たとえば粒子径が600nmでコア/シェル重量比が50/50の場合、理論的にはそのシェルの物理的な厚みは約62nmとなり、この値はポリメチルメタクリレート分子の大きさを0.5nmとした場合に120分子以上にも及ぶ厚みであり、この厚いシェルがプラスチゾルとした場合に重合体微粒子中に可塑剤が侵入するのを防ぎ、良好な貯蔵安定性を発現するのに寄与している。

これに対して、均一構造粒子をアルカリ加水分解処理して表面修飾層を導入する場合、粒子径が600nmの場合には10nm前後か、せいぜい20nm程度である。これはメチルメタクリレート分子の大きさにして数十分子程度の厚みしかなく、この程度の薄い表面修飾層によってプラスチゾルの貯蔵安定性を付与することは事実上不可能である。また、さらにアルカリ加水分解を行おうとしても、加水分解により生じた表面修飾層は極度に高酸価であり、水溶性を示し、重合体微粒子は粒子として固定されずに水相に溶解していくため、結局十分に厚みのあるシェルと言えるほどの表面修飾層を導入することができない。

第二の理由は、アルカリ加水分解などによって導入される表面修飾層は、その 組成、特に酸価を自由にコントロールすることがきわめて困難であり、可塑剤と の相溶性を重視される本用途には不適当だからである。

本発明においては、特に好ましくはシード重合によって表面修飾層を導入する

場合、そのシェルの組成を任意にコントロールすることができるので、プラスチ ゾルで重要な、可塑剤との相溶性やガラス転移温度を最適化することが可能であ る。これに対して、均一構造粒子をアルカリ加水分解などの後処理することによ って表面修飾層を導入する場合、その組成は重合体粒子の表層部のみが非常に高 酸価になるだけで、ある程度の厚みをもって組成をコントロールすることができ ない。

コアシェル構造を有する一次粒子Pの平均粒子径は250 n m以上であることが必要である。

前述したように、コアシェル構造を利用することによりある程度はプラスチゾルの貯蔵安定性と塗膜の可塑剤保持性のバランスを調整できるものの、これをさらに工業的に利用できるレベルにまで高めるためには、一次粒子の総表面積をより小さくすること、及びシェルが一定以上の厚みを有することが必要である。すなわち、コアシェル構造を有する一次粒子の粒子径を大きくすることが必要であり、その範囲は平均粒子径で250 nm以上である。平均粒子径がこれより小さい場合には、均一構造の重合体に比べれば貯蔵安定性と可塑剤保持性のバランスに優れるものの、例えば35℃×2週間といった工業的に要求される厳しい貯蔵安定性の要求基準を満足することができず、増粘により作業性が低下してしまう。

コア重合体Cを与えるモノマー混合物Mcは、モノマーの合計を100mol 20 %とした場合、メチルメタクリレートが20~85mol%、C2~C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが15~80mol%、及びその他の共重合可能なモノマーが30mol%以下から構成されることが必要である。

メチルメタクリレートが20mo1%より少ない場合、あるいはC2~C8の 脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが 80mol%より多い場合には、コア重合体 (C) 自体のTgが低くなることと、コア重合体 (C) の可塑剤に対する相溶性が高くなりすぎることにより、加熱により得られるゲル化物が非常に低いTgを有して粘着性などの弊害を生ずる。またこの場合コアシェル比や一次粒子径を変更しても、プラスチゾルの貯蔵安定性

が不良となってしまい、実用的には不適当である。

メチルメタクリレートが85mo1%より多い場合、あるいはC2~C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが15mo1%より少ない場合には、コア重合体の可塑剤に対する相溶性が低くなり、コア重合体の本来の目的である可塑剤保持性が低下してしまい、加熱後のゲル化物が経時的に可塑剤をブリードアウトするという問題を生ずるため不適当である。

コア重合体には、その他の共重合可能なモノマーを10mo1%以下の範囲で 任意に使用することができる。このような共重合可能なモノマーとしては、プラ スチゾルの要求性能、例えば基材への密着性、反応性等の点で付加する性能を有 10 するモノマーを適宜用いることが可能である。

モノマー混合物Mcの好ましい組成は、モノマーの合計を100mol%とした場合、メチルメタクリレートが20~70mol%、 nープチル (メタ) アクリレート、iープチル (メタ) アクリレート及びtープチル (メタ) アクリレートからなる群から選ばれる1種以上の (メタ) アクリル酸エステルが30~8 0mol%、及びその他の共重合可能なモノマーが20mol%以下である。

さらに好ましい組成は、モノマーの合計を100mol%とした場合、メチル メタクリレートが20~70mol%、nープチル(メタ) アクリレート、iー ブチル(メタ) アクリレート及びtープチル(メタ) アクリレートからなる群か ら選ばれる1種以上の(メタ) アクリル酸エステルが30~80mol%及びそ の他の共重合可能なモノマーが10mol%以下である。

これらの好ましい組成の場合、貯蔵安定性と可塑剤保持性のバランスがさらに 改良され、40℃×2週間といった非常に厳しい貯蔵安定性の要求をも満足す るプラスチゾルが得られ、かつこれを成膜して得た塗膜の強度及び伸度が非常に 優れている。

25 さらにまた、工業的に入手しやすいC4アルコールの(メタ)アクリル酸エス テルを利用することによるコストの低減も可能であり、工業的に有利である。

アクリルゾルに用いられるアクリル重合体微粒子は、一次粒子径が大きいので、 同重量で粒子径の小さい粒子と比較した場合、可塑剤に対する接触面積が少ない ため、その分シェル部のMMA量を減らしても貯蔵安定性を保持することができ、 かつその減らした分だけMMA以外の成膜成分を補うことができ、成膜時の可塑 剤保持性とゾル中でのアクリル重合体微粒子の貯蔵安定性の双方が向上する。

シェル重合体Sを与えるモノマー混合物Msは、モノマーの合計を100 mol%とした場合、メチルメタクリレートが20~79.5mol%、C2~ C8の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが5~40mol%、カルボキシル基又はスルホン酸基含有モノマーが0.5~10mol%、及びその他の共重合可能なモノマーが30mol%以下から構成されることが必要である。

メチルメタクリレートが20mol%より少ない場合、あるいはC2~C8の 10 脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが 40mol%より多い場合には、シェル重合体(S)の可塑剤に対する相溶性が 高くなり、シェル重合体の本来の目的である貯蔵安定性の付与が不良となるため、プラスチゾルの製造作業中にゲル化してしまうなどのアクリルゾルの基本性能が 不良となる傾向にある。

15 メチルメタクリレートが79.5 mol%より多い場合、あるいはC2~C8 の脂肪族アルコール及び/又は芳香族アルコールの(メタ)アクリル酸エステルが5 mol%より少ない場合には、シェル重合体の相溶性が低下しすぎるため、 貯蔵安定性こそ良好であるものの、加熱によりゲル化した後の塗膜の可塑剤保持性が不足し、可塑剤が経時的にブリードアウトしてくるという欠点を生じる傾向 20 にある。

本発明においては、カルボキシル基又はスルホン酸基含有モノマーを、本発明 のプラスチゾルの貯蔵安定性及びゾル中の重合体微粒子の分散性向上のために用 いる。

カルボキシル基及び/又はスルホン酸基含有モノマーが 0.5 mol%より少 25 ない場合、可塑剤に対するシェル重合体の相溶性が上がるため、貯蔵安定性が不 良になる傾向にある。

また可塑剤中での重合体微粒子の分散状態が変化し、プラスチゾルの粘度が上がってしまい、作業性が不良となる傾向にあり好ましくない。

またカルボキシル基及び/又はスルホン酸基含有モノマーが10mol%より

多い場合、可塑剤に対するシェル重合体の相溶性が下がりすぎるため、このようなゾルを用いて塗膜を形成するとゲル化物の可塑剤保持性が不良となり、ゲル化物より可塑剤が経時的にブリードアウトしてくるため不適当である。

さらにゲル化物が脆くなる傾向にあり、塗膜の強度が低下する傾向にある。さ らにゲル化物の耐水性も低下する傾向にあるので好ましくない。

なお、シェル重合体には、その他の共重合可能なモノマーを30mol%以下の範囲で任意に使用することができる。このような共重合可能なモノマーとしては、プラスチゾルの要求性能、例えば基材への密着性、反応性等の点で付加する性能を有するモノマーを適宜用いることが可能である。

10 モノマー混合物Msの好ましい組成としては、モノマーの合計を100mol%とした場合、メチルメタクリレートが30~79.5mol%、nーブチル(メタ)アクリレート、iーブチル(メタ)アクリレート及びtープチル(メタ)アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステルが5~40mol%、カルボキシル基含有アクリル系モノマーが0.5~10mol%、及びその他の共重合可能なモノマーが20mol%以下である。

さらに好ましい組成は、モノマーの合計を100mol%とした場合、メチルメタクリレートが $55\sim79.5mol\%$ 、n-ブチル (メタ) アクリレート、<math>i-ブチル (メタ) アクリレート及びt-ブチル (メタ) アクリレートからなる群から選ばれる1種以上の(メタ)アクリル酸エステルが $20\sim40mol\%$ 、

20 カルボキシル基含有アクリル系モノマーが 0.5~10mol%、及びその他の 共重合可能なモノマーが 10mol%以下である。

これらの好ましい組成の場合、プラスチゾルの貯蔵安定性と塗膜の可塑剤保持性のバランスがより改良され、40℃×2週間といった更に厳しい貯蔵安定性の要求をも満足するプラスチゾルが得られ、またこれを成膜して得た塗膜の強伸25 度が非常に優れている。

さらにまた、工業的に入手しやすいC4アルコールの(メタ)アクリル酸エステルや、カルボキシル基含有アクリル系モノマーを利用することによるコストの 低減も可能であり、工業的に有利である。

コア重合体Cを与えるモノマー混合物M c とシェル重合体Sを与えるモノマー

WO 00/01748

混合物Msの重量比は10/90~90/10であることが必要である。

コア重合体の比率が10重量%より低い場合、あるいはシェル重合体の比率が90重量%より高い場合には、可塑剤を保持する成分であるコア重合体が少なすぎるため、加熱してゲル化物を得た場合に可塑剤保持性が不足し、可塑剤が経時的にブリードアウトするという弊害を生じる。あるいはひどい場合には可塑剤に対する相溶性が低下しすぎるために、加熱してもゲル化すること自体が不可能となる。

コア重合体の比率が90重量%より多い場合、あるいはシェル重合体の比率が10重量%より少ない場合には、貯蔵安定性を付与する成分であるシェル重合体10が少なすぎるため、室温においても重合体が可塑剤によって膨潤又は溶解され、プラスチゾルが増粘又はゲル化してしまうという深刻な弊害を生じる。

モノマー混合物Mcとモノマー混合物Msの重量比の好ましい範囲は30/70 $\sim70/30$ である。この範囲内であれば、貯蔵安定性と可塑剤保持性のバランスが更に好適であり、40 \times 2週間といった更に厳しい貯蔵安定性の要求 を満足できるプラスチゾルが得られる。

本発明で用いるC2~C8の脂肪族アルコール及び/又は芳香族アルコールの (メタ) アクリル酸エステルは特に限定しないが、例えばエチル (メタ) アクリレート、nーブチル (メタ) アクリレート、iーブチル (メタ) アクリレート、tーブチル (メタ) アクリレート、ヘキシル (メタ) アクリレート、2ーエチル 20 ヘキシル (メタ) アクリレート、オクチル (メタ) アクリレート等の直鎖脂肪族アルコールの (メタ) アクリル酸エステル類、又はシクロヘキシル (メタ) アクリレート等の環式脂肪族アルコールの (メタ) アクリル酸エステル類、フェニル (メタ) アクリレート、ベンジル (メタ) アクリレート等の芳香族アルコールの (メタ) アクリレート、ベンジル (メタ) アクリレート等の芳香族アルコールの (メタ) アクリレート、iーブチル (メタ) アクリレート、tーブチル (メタ) アクリレートが利用できる。これらのモノマーは容易に入手することができ、工業的な実用化の点で有意義である。

本発明で用いるカルボキシル基又はスルホン酸基含有モノマーとしては特に限 定せず、例えばメタクリル酸、アクリル酸、イタコン酸、クロトン酸、マレイン 酸、フマル酸、メタクリル酸 2ーサクシノロイルオキシエチルー2ーメタクリロイルオキシエチルコハク酸、メタクリル酸 2ーマレイノロイルオキシエチルー2ーメタクリロイルオキシエチルマレイン酸、メタクリル酸 2ーフタロイルオキシエチルー2ーメタクリロイルオキシエチルフタル酸、メタクリル酸 2ー 5 ヘキサヒドロフタロイルオキシエチルー2ーメタクリロイルオキシエチルへキサヒドロフタロイルオキシエチルー2ーメタクリロイルオキシエチルへキサヒドロフタル酸等のカルボキシル基含有モノマー、アリルスルホン酸等のスルホン酸基含有モノマー等が利用できる。好ましくはメタクリル酸、アクリル酸でありこれらは工業的に安価で容易に入手することができ、他のアクリル系モノマー成分との共重合性も良く生産性の点でも好ましい。

10 またこれらの酸基含有モノマーはアルカリ金属などの塩になっていることも可能であり、例えばカリウム塩、ナトリウム塩、カルシウム塩、亜鉛塩、アルミニウム塩等が挙げられる。これらは水媒体中で重合する際に塩の形になることも可能であり、また重合後に塩の形になることも可能である。

本発明のコア重合体及びシェル重合体で用いる、その他の共重合可能なモノマ
15 一としては、例えばラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のC9以上のアルコールの(メタ)アクリレート類;アセトアセトキエチル(メタ)アクリレート等のカルボニル基含有(メタ)アクリレート類;2ーヒドロキシエチル(メタ)アクリレート、2ーヒドロキシプロピル(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート類;グリシジル(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート類;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート類;Nージメチルアミノ

エチル (メタ) アクリレート、Nージエチルアミノエチル (メタ) アクリレート 等のアミノ基含有 (メタ) アクリレート類; (ポリ) エチレングリコールジ (メタ) アクリレート、プロピレングリコールジ (メタ) アクリレート、1,6ーへ キサンジオールジ (メタ) アクリレート、トリメチロールプロパントリ (メタ)

25 アクリレート等の多官能(メタ)アクリレート類;ジアセトンアクリルアミド、 Nーメチロールアクリルアミド、Nーメトキシメチルアクリルアミド、Nーエト キシメチルアクリルアミド、Nーブトキシメチルアクリルアミド等のアクリルア ミド及びその誘導体;スチレン及びその誘導体;酢酸ビニル;ウレタン変性アク リレート類;エポキシ変性アクリレート類;シリコーン変性アクリレート類等が

25

広く利用可能であり、用途に応じて使い分けることができる。

本発明で用いる可塑剤として、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等のフタル酸ジアルキル系、フタル酸ブチルベンジル等のフタル酸アルキルベンジル系、フタル酸ジアリール系、フタル酸ジベンジル系、フタル酸ジアリール系、リン酸トリクレシル等のリン酸トリアリール系、リン酸トリアルキルアリール系、アジピン酸エステル系、エーテル系、ポリエステル系、エポキシ化大豆油等の大豆油系等が利用可能である。これらは、それぞれの可塑剤に応じた特色、すなわち耐寒性、難燃性、耐油性、低粘度、低チキソトロピー等の、プラスチゾルに要求される物性に応じて配合することができる。

このうち、工業的に安価で入手しやすいこと、また作業性、低毒性などの点か ら、フタル酸エステル系可塑剤が好ましい。

またこれらの可塑剤は1種を単独で用いるだけでなく、目的に応じて2種以上 の可塑剤を混合して用いることも可能である。

15 本発明のアクリル系重合体微粒子の製造方法は、上述した組成と構造が得られる限り特に限定せず、たとえばシード重合によりコアシェル型粒子を調製し、これをスプレードライ法(噴霧乾燥法)又は凝固法により固形分を回収する方法などが挙げられる。

250nm以上のコアシェル粒子を得るためには、シード重合を何回も繰り返 20 すことにより粒子を成長させる方法、ソープフリー重合によって得る方法、乳化 剤の量を制限する方法、乳化力の弱い乳化剤又は保護コロイド等を用いる方法な どが広く利用可能である。

このうち、好ましくは、ソープフリー重合により比較的大きな粒子径を有する シード粒子を調製しておき、これに対して任意の組成のモノマー混合物を逐次滴 下していくシード重合を用いることが、工業的に簡便な方法である。

さらに好ましくは、水を主成分とする媒体中で、20℃において該媒体に対して0.02質量%以上の溶解度を有し、かつその重合体は該媒体に溶解しない単量体を、媒体中に乳化剤ミセルが存在しない状態において水溶性ラジカル重合開始剤を用いて重合せしめ、重合体分散液を調製し、さらに上記の重合体分散液に

WO 00/01748

対して単量体混合物を滴下して被覆された重合体分散液を得る方法が好適である。 この理由は、媒体に対して0.02質量%未満の溶解度しか有さない単量体の 場合はソープフリー重合自体がきわめて進行しにくいからである。また単量体か ら得られる重合体が該媒体に溶解してしまう場合、粒子の形成が行われないこと になるから、そもそも重合体粒子を得ることができない。また媒体中に乳化剤ミ セルが存在する場合、当然のことながらソープフリー重合の定義から外れるため、 不適当であることは言うまでもない。この手法を用いることにより、工業的に簡 便で、かつスケールの発生や新粒子の発生などが抑制され、安定に目的とする粒 子を得ることができるため有利である。

10 本発明のアクリル系重合体微粒子は、コアシェル構造を有した一次粒子Pからなっていれば二次以上の高次構造は特に限定されず、例えば一次粒子が弱い凝集力で凝集した粒子、強い凝集力で凝集した粒子、熱により相互に融着した粒子といった二次構造をとることが可能であり、さらにはこれらの二次粒子を顆粒化などの処理によってより高次の構造を持たせることも可能である。これらの高次構造は、たとえば微粒子の粉立ちを抑制したり流動性を高める等、作業性を改善する目的で行うこともできるし、微粒子の可塑剤に対する分散状態を改質する等、物性の改善のために行うこともでき、用途と要求に応じて設計することが可能である。

本発明で用いるコアシェル構造を有する一次粒子Pにおいて、コア重合体Cと シェル重合体Sがグラフト交叉剤によってグラフト結合させることも可能である。 この場合のグラフト交叉剤としてはアリルメタクリレート等が利用できる。

本発明で用いるコアシェル構造を有する一次粒子Pにおいて、コア重合体C及び/又はシェル重合体Sが架橋されていることも可能である。この場合の架橋性モノマーとしては、前述した多官能モノマーを利用することができる。また多官能モノマー以外にも、二価以上のアルカリ金属又は多官能アミン類などを添加することによりカルボキシル基又はスルホン酸基とのイオン架橋を用いることも可能である。

本発明のプラスチゾルには、用途に応じて各種の添加剤(材)を配合すること が可能である。例えば炭酸カルシウム、水酸化アルミニウム、パライタ、クレー、

コロイダルシリカ、マイカ粉、珪砂、珪藻土、カオリン、タルク、ペンナイト、 ガラス粉末、酸化アルミニウム等の充填材、酸化チタン、カーボンブラック等の 顔料、ミネラルターペン、ミネラルスピリット等の希釈剤、消泡剤、防黴剤、防 臭剤、抗菌剤、界面活性剤、滑剤、紫外線吸収剤、香料、発泡剤、レベリング剤、 5 接着剤等を自由に配合することが可能である。

本発明のプラスチゾルは、浸漬、噴射、刷毛塗り、又はドクター塗り等の公知の方法で金属又は被金属基体上に $5~\mu$ m~ 5~mm厚で塗布し、温度 9~0℃~ 2~00 0℃でゲル化することができる。また、適当な型中でゲル化することによって、成形体を製造することもできる。

10 以下に、本発明を実施例を用いて説明する。実施例中の評価方法は以下のとおりである。なお、以下「部」は「重量部」を表す。

プラスチゾル粘度

得られたプラスチゾルを恒温水槽にて25℃に保温した後、E型粘度計を用いて、回転数5rpmにおいて1分後の粘度(単位:Pa・S)を測定し、以下の15 ように評価した。

〇:30未満

△:30以上50未満

×:50以上

貯蔵安定性

20 プラスチゾルを40℃の恒温槽にて保温し、1週間後に取り出して再び粘度を 測定した。プラスチゾルの増粘率は以下のようにして計算し(単位:%)、評価 した。

(貯蔵後の粘度/初期の粘度) ×100 (%)

◎:20未満

25 〇:20以上40未満

△:40以上100未満

×:100以上

ゲル化塗膜の作成及び強伸度の測定

プラスチゾルを剥離紙を敷いたガラス板の上に2mm厚に塗布し、140℃

 \times 20分加熱してゲル化させ、均一な塗膜を得た。これをガラス板から剥離した後、 $15\,\mathrm{mm}$ 幅× $80\,\mathrm{mm}$ 長に切り出し、両端から $15\,\mathrm{mm}$ ずつをつかみ部分とし、テンシロン測定器により強伸度の測定を行った。試験速度は $200\,\mathrm{mm}$ /分であった(単位:強度MPa、伸度%)。評価は以下のように行った。

5 強度 ◎:1.0以上

〇:0.8以上1.0未満

△:0.4以上0.8未満

×:0.4未満

伸度 ◎:300以上 .

10 〇:250以上300未満

△:100以上250未満

×:100未満

可塑剤保持性

アクリル重合体微粒子2部、フタル酸ジオクチル(DOP)4部を均一に混合 15 し、アルミ皿に流し込んで140℃×20分の加熱によりゲル化させた。これ をいったん室温まで放冷した後、40℃の恒温槽にて2週間保存し、ゲル化物か らの可塑剤のブリードアウトの有無を目視及び触覚にて判断した。

〇:ブリードアウトなし

×:ブリードアウトあり

20 実施例1~13

25

重合体微粒子A1~A12の製造

温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した5リットルの4つロフラスコに、純水1414gを入れ、30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。窒素ガス通気を停止した後、メチルメタクリレート45.6g、nーブチルメタクリレート34.9gを入れ、150rpmで攪拌しながら80℃に昇温した。内温が80℃に達した時点で、28gの純水に溶解した過硫酸カリウム0.70gを一度に添加し、ソープフリー重合を開始した。そのまま80℃にて攪拌を60分継続し、シード粒子分散液を得た。

引き続きこのシード粒子分散液に対して、モノマー乳化液(メチルメタクリレ

ート420.8g、nーブチルメタクリレート348.16g、ジアルキルスルホコハク酸ナトリウム(花王㈱製、商品名:ペレックスO-TP)7.00g、純水350.0gを混合攪拌して乳化したもの)を2.5時間かけて滴下し、引き続き80 \circ にて1時間攪拌を継続して、重合体分散液を得た。

引き続きこの重合体分散液に対して、モノマー乳化液(メチルメタクリレート533.1g、nープチルメタクリレート199.1g、メタクリル酸24.08g、ジアルキルスルホコハク酸ナトリウム(花王㈱製、商品名:ペレックスO-TP)7.00g、純水350.0gを混合攪拌して乳化したもの)を2.5時間かけて滴下し、引き続き80℃にて1時間攪拌を継続して、重合体分散液を10得た。

得られた重合体分散液を室温まで冷却した後、スプレードライヤー(大川原化工機㈱製、L-8型)を用いて、入口温度170℃、出口温度75℃、アトマイザ回転数25000rpmにて噴霧乾燥し、重合体微粒子A1を得た。

同様にして、表1に示した組成のアクリル系重合体粒子A2~A12を製造し 15 た。

プラスチゾルの調製

得られたアクリル系重合体微粒子A1-A12の各々100部に対し、フタル酸ジオクチル (DOP) 140部、炭酸カルシウム100部を計量し、ディスパーミキサーにて攪拌(約2000rpm×2分)し、さらに減圧脱泡して均一20 な各プラスチゾルを得た。

これらのアクリル系重合体粒子A1~A12を表2の配合処方にしたがって配合してプラスチゾルを得た。得られたプラスチゾルの評価を行った。その結果を表2に併記する。

実施例1~13はC4脂肪族アルコールのメタクリル酸エステルとしてnープ チルメタクリレート又はiープチルメタクリレートを用いた例である。いずれの 場合もフタル酸ジアルキルエステル系可塑剤として、ジー2ーエチルヘキシルフ タレート又はジーiーノニルフタレートを用いている。いずれの場合も、最も好ましい範囲で各モノマーの組成を変更した場合である。実施例5はシェル重合体 にその他のモノマーとして2ーヒドロキシエチルメタクリレートを用いた場合で

ある。実施例6~8は粒子径が1000nmを上回るコアシェル構造粒子を用いた例である。実施例9はその他のモノマーとしてスチレンを用いた場合である。 実施例10はその他のモノマーとして二官能モノマーであるエチレングリコール ジメタクリレートを用いた場合である。実施例11はその他のモノマーとして反 5 応性モノマーであるNーブトキシメチルアクリルアミドを用いた場合である。実 施例12はその他のモノマーとしてアリルメタクリレートを用いた場合である。 実施例13は実施例1と同じ重合体A1を用いて、添加剤としてブロックイソシアネートを配合した場合である。

いずれの場合も物性は良好であり、とくにプラスチゾルの貯蔵安定性、塗膜の 10 強度及び伸度がたいへん優れていた。

比較例1~9

実施例 1 と同様の手法により表 1 に示した組成の重合体微粒子 A' 1 ~ A' 9 を製造し、同様に表 2 に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表 2 に併記する。

比較例1はシェル重合体の比率を95%にまで上げた例(A'1)であるが、 15 この場合には可塑剤に対して良好な相溶性を有するコア重合体が少なすぎるため、 可塑剤が経時的にブリードアウトし、可塑剤保持性は不良であった。比較例2は コア重合体の比率を95%にまで上げた例(A'2)であるが、この場合には可 塑剤に配合した途端にゲル化が進行し、貯蔵安定性はきわめて不良であり、ゲル 化塗膜として評価するに至らなかった。比較例3はコア重合体のC4脂肪族アル 20 コールのメタクリル酸エステルであるnBMAを10mol%に低減した例 (A'3) であるが、この場合はコア重合体の可塑剤に対する相溶性が著しく低 下するため、ゲル化物から可塑剤が経時的にブリードアウトし、可塑剤保持性は 不良であった。比較例4はシェル重合体のC4脂肪族アルコールのメタクリル酸 エステルであるnBMAを2mol%にまで低減した場合(A'4)であるが、 この場合にも可塑剤のブリードアウトが生じ、可塑剤保持性は不良であった。比 較例5はコア重合体のC4脂肪族アルコールのメタクリル酸エステルであるnB MAを85mol%に増加した例(A'5)であるが、この場合はコア重合体の 可塑剤に対する相溶性が著しく上昇し、好適な範囲を超えてしまうため、貯蔵安

定性は極めて不良であった。比較例6はシェル重合体のC4脂肪族アルコールの メタクリル酸エステルであるnBMAを45mol%にまで増加した場合(A' 6) であるが、この場合には本来可塑剤に対して低相溶性であるべきシェルが高 相溶性となるため、可塑剤を配合した直後からゲル化が進行し、貯蔵安定性は極 5 めて不良であり、ゲル化塗膜として評価するに至らなかった。比較例7はシェル 重合体のカルボキシル基含有モノマーであるメタクリル酸を0.2mol%にま で低減した例 (A'7) であるが、この場合には可塑剤中における重合体微粒子 の分散状態が変化し、プラスチゾルの粘度が高く、不良となった。比較例8はシ ェル重合体のカルボキシル基含有モノマーであるメタクリル酸を12mol%に まで増加した例 (A'8) であるが、この場合には可塑剤に対する相溶性が著し 10 く低下し、ゲル化状態が不良となり、強度が低下した。またブリードアウトを発 生し、可塑剤保持性が不良であった。比較例9はコアシェル構造を有する一次粒 子の粒子径を80nmにした場合 (A'9) である (この場合には乳化剤として フレークマルセルではなく花王㈱製 商品名:ペレックスSS-Hを用いた)。 15 この場合には一次粒子の総表面積が非常に増加することと、コア重合体を可塑剤 による溶解から保護しているシェル重合体の厚みが不足するため、貯蔵安定性は 低下し、実用に耐えられなかった。

比較例10~12

特開平7-233299号公報に示された実施例に従い、表1に示す組成の重20 合体粒子A'10~A'12を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。比較例10~12は特開平7-233299号公報により提案された重合体(A'10~A'12)を用いた場合である。比較例10及び11は初期状態としては良好なプラスチゾルを与えたが、メチルメタクリレートの比率が高すぎるた25 め、フタル酸ジアルキルエステル系可塑剤を用いた場合には塗膜と可塑剤の相容性が低すぎ、伸度及び可塑剤保持性が十分ではなかった。比較例12ではコア重合体のメチルメタクリレート比率が高すぎることと、シェル重合体にカルボン酸又はスルホン酸基含有モノマーが用いられていないため、プラスチゾルの貯蔵安定性が低く、塗膜物性の評価には至らなかった。

比較例13~14

WO 00/01748

特開平8-295850号公報に示された実施例に従い、表1に示す組成の重合体粒子 $A'13\sim A'14$ を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。

比較例13~14は特開平8-295850号公報により提案された重合体を用いた場合(A'13~A'14)である。比較例13ではシェル重合体のメチルメタクリレート比率が高すぎるため、貯蔵安定性は良好なものの、塗膜の伸度と可塑剤保持性が不良であった。比較例14ではコアのメチルメタクリレート比率が低すぎるため、貯蔵安定性が不良であり、塗膜物性の評価には至らなかった。

10 比較例15~16

特開平5-279539号公報に示された実施例に従い、表1に示す組成の重合体粒子 $A'15\sim A'16$ を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。

比較例15~16は特開平5-279539号公報により提案された重合体を 用いた場合(A'15~A'16)である。いずれもシェル重合体のメチルメタク リレート比率が高すぎるため、ジー2-エチルヘキシルフタレートでは可塑化で きず、ここではジオクチルフタレートを用いて配合している。いずれも初期粘度 は良好であるが、貯蔵安定性が不良であった。また塗膜の強度がやや低く不良で あった。

20 比較例17~20

特開平5-255563号公報に示された実施例に従い、表1に示す組成の重合体粒子 $A'17\sim A'20$ を製造し、実施例1と同様に表2に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。

比較例17~20は特開平5-255563号公報により提案された重合体を 用いた場合(A'17~A'20)である。この公報で提案されている重合体はコ アシェル構造粒子ではなく均一構造粒子であり、本発明が目的とするものとは粒 子構造において異なる。プラスチゾルを配合する時の可塑剤は、上記公報により 示されたものを用いた。比較例17では貯蔵安定性が不良であり、塗膜強度もや や不良であった。比較例18では貯蔵安定性が不良であった。比較例19では重 合体と可塑剤の相溶性が高すぎて、貯蔵安定性が不良であり、塗膜の強度も低い ものとなった。

比較例21~24

特開平6-322225号公報に示された実施例に従い、表1に示す組成の重 5 合体粒子A'21~A'24を製造し、実施例1と同様に表2に示した配合にした がってプラスチゾルを調製した。当該プラスチゾルの評価結果を表2に併記する。 比較例21~24は特開平6-322225号公報により提案された重合体を 用いた場合(A'21~A'24)である。本公報ではコアシェル構造粒子を用い ると書いてあるが、ここで言うコアシェル構造粒子とははじめにアクリル樹脂か らなる均一構造粒子を製造し、この粒子の表面のエステル結合を加水分解するこ 10 とにより粒子表面にのみカルボキシル基を導入するというものである。上記公報 の条件で重合体粒子をアルカリ処理した場合、加水分解されるエステル結合は粒 子表面から数 n m程度の範囲である。したがって本発明で言うコアシェル構造粒 子と較べるとシェル重合体の比率が大きく異なり、本発明の場合、重合体粒子の 30~70mol%であるが、上記公報の場合には多く見積もっても5mol% 以下である。とくに上記公報で用いている重合体粒子の平均粒子径が2ミクロン 程度であることを考慮すると、粒子体積に対する粒子表面積は非常にわずかであ り、したがって実際にはシェル重合体の比率は1 m o 1 %以下であると計算され る。したがって表1ではコアシェル比を99/1と記載してある。

20 比較例21~22の場合、メチルメタクリレート主体の組成であるため、これを良好に可塑化するためには極性の高い可塑剤を用いる必要があり、アルキル鎖の短いフタル酸ジアルキルエステル系可塑剤を用いている。したがってプラスチゾルの貯蔵安定性が不良であり、塗膜もやや低強度である。比較例23では貯蔵安定性及び塗膜強度がやや不足している。比較例24では貯蔵安定性がやや不足

25 し、塗膜強度が大幅に低下した。

比較例25~26

特開昭 53-144950 号公報に示された実施例に従い、表 1 に示す組成の 重合体粒子 $A'25\sim A'26$ を製造し、実施例 1 と同様に表 2 に示した配合にしたがってプラスチゾルを調製した。当該プラスチゾルの評価結果を表 2 に併記す る。

比較例25~26は特開昭53-144950号公報により提案された重合体を用いた場合(A'25~A'26)である。比較例25の場合、重合体の可塑剤に対する相溶性が低いため、貯蔵安定性としては十分であるが、可塑剤保持性が 低く、ブリードアウトが発生し、伸度が低い。比較例26の場合、コア部の相溶性が改良されたが、シェル部のメチルメタクリレート共重合比率が高すぎ、全体としては相溶性が低すぎるため可塑剤保持性が低くブリードアウトが発生する。

以上詳述したように、本発明のアクリル系重合体微粒子を用いたプラスチゾルは、塩化ビニル重合体を用いた塩ビゾルと同等の優れた貯蔵安定性と優れた可塑 10 剤保持性を有しながら、かつ塩ビゾルの有する環境への悪影響の無いプラスチゾルを提供することができ、その工業的意義及び地球環境保全にもたらす効果は著大である。

表1中の略号は以下の通りである。

MMA:メチルメタクリレート

15 n BMA: n - ブチルメタクリレート

i BMA: i ープチルメタクリレート

MAA:メタクリル酸

2EHA: 2-エチルヘキシルアクリレート

St:スチレン

20 EDMA: エチレングリコールジメタクリレート

NBMA: N-ブトキシメチルアクリルアミド

AMA:アリルメタクリレート

BzMA:ベンジルメタクリレート

CHMA:シクロヘキシルメタクリレート

25 EMA: エチルメタクリレート

AA:アクリル酸

nBA:nブチルアクリレート

表 2 中の略号は以下の通りである。

DOP: ジー2-エチルヘキシルフタレート

DINP: ジイソノニルフタレート

DOPh:ジオクチルフォスフェート

DBP: ブチルベンジルフタレート

DEP:ジエチルフタレート

5 CaCO3: 炭酸カルシウム

表中の単位は以下の通りである。

配合:重量部

粘度: Pa·S

貯蔵安定性:%

10 強度: MPa

伸度:%

産業上の利用可能性

表1. 製造された重合体微粒子のモノマー組成と特徴

	モノマー組成(m			粒子径	シェル厚
重合体 微粒子	コア (Mc)	コアシェル比	(nm)	(nm)	
MATEL 1	MMA/nBMA	シェル (Ms) MMA/nBMA/MAA			1
A 1	60/40	76/20/4	50/50	350	36
	MMA/nBMA	MMA/nBMA/MAA		340	05
A 2	50/50	76/20/4	35/65		35
	MMA/nBMA	MMA/nBMA/MAA	GE /05	000	59
A 3	65/35	76/20/4	65/35	880	39
	MMA/iBMA	MMA/iBMA/MAA	50/50	360	37
A 4	50/50	W 1004		300	31
	MMA/nBMA	MMA/iBMA/MAA/2HEMA	50/50	400	41
A 5	65/35	67/29/2/2	30/30	100	
	MMA/nBMA	MMA/iBMA/MAA/2HEMA	50/50	1200	124
A 6	65/35	67/29/2/2		-	
A 7	MMA/nBMA	MMA/nBMA/MAA	70/30	1460	82
A 7	60/40	76/20/4	1.0,00		<u> </u>
Λ Θ	MMA/nBMA	MMA/nBMA/MAA	50/50	1410	145
A 8	40/60 76/20/4				
A 9	MMA/nBMA/St	MMA/nBMA/MAA/St	50/50	360	37
AJ	60/35/5	76/15/4/5			
A 1 0	MMA/nBMA/EDMA	MMA/nBMA/MAA	50/50	350	36
	59. 8/40/0. 2	76/20/4 MMA/nBMA/MAA/NBMA			
A11	MMA/nBMA/NBMA	75. 8/20/4/0. 2	50/50	390	40
	50. 8/40/0. 2	MMA/nBMA/MAA		 	
A 1 2	MMA/nBMA/AMA	76/20/4	50/50	360	37
	50. 8/40/0. 2	MMA/nBMA/MAA			
A'1	MMA/nBMA 60/40	76/20/4	5/95	350	145
<u> </u>	MMA/nBMA	MMA/nBMA/MAA		000	
A'2	60/40	76/20/4	95/5	390	3
 	MMA/nBMA	MMA/nBMA/MAA	50/50	240	35
A'3	90/10	110 to 110 to 1		340	35
 	MMA/nBMA	MMA/nBMA/MAA	50/50	350	36
A'4	60/40	94/2/4	50/50	330	30
	MMA/nBMA	MMA/nBMA/MAA .	50/50	350	36
A'5	15/85	76/20/4	30/30	000	
1	MMA/nBMA	MMA/nBMA/MAA	50/50	350	36
A'6	60/40	51/45/4	00,00		
	MMA/nBMA	MMA/nBMA/MAA	50/50	350	36
A'7	60/40	79. 8/20/0. 2			
A10	MMA/nBMA	MMA/nBMA/MAA	50/50	410	42
A'8	60/40	68/20/12			
1	MMA/nBMA	MMA/nBMA/MAA	50/50	80	8
A'9	60/40	76/20/4			
A'1 0	iBMA	MMA/MAA	30/70	300	50
A'10	100	99/1	1		

表1 (続き)

長 1 (称: 重合体	モノマー組成(mol	%)	コアシェル比	粒子径	シェル厚
微粒子	コア (Mc)	シェル (M s)	2772000	(nm)	(nm)
A'1 1	iBMA/EMA/MAA 59/40/1	MMA/MAA 99/1	40/60	320	42
A'12	nBMA/CHMA 70/30	MMA/BzMA 60/40	60/40	300	23
A'13	MMA/iBMA/nBA 40/40/20	MMA/MAA 98. 6/1. 4	35/65	35/65 280 59	
A'1 4	MMA/iBMA/EMA/nBA 12/50/18/20	MMA/EMA/AA 88/10/2	40/60	40/60 300	
A'1 5	MMA/nBMA/IA 48/50/2	MMA/IA 98/2	50/50	320	33
A'1 6	MMA/nBMA/MAA 47.5/50/2.5	MMA/MAA 97.5/2.5	50/50	330	34
A'17	MMA/iBMA/MAA 69/30/1			340	0
A'18	MMA/iBMA/MAA 59/40/1			340	0
A'1 9	MMA/iBMA/MAA 49/50/1			330	0
A'2 0	MMA/iBMA/MAA 39/60/1		_	310	0
A'2 1	MMA 100	MAA 100	99/1	2000	3
A'2 2	MMA 100	MAA 100	99/1	2000	3
A'2 3	MMA/nBMA 70/30	MMA 100	99/1	2000	3
A'2 4	MMA/EMA/St 50/30/20	MMA 100	99/1	2000	3
A'25	MMA/nBA 80/20	MMA 100	50/50	200	21
A'26	MMA/nBA 65/35	MMA/MAA 95/5	50/50	190	20

表 2. 調製されたプラスチゾルの配合及び評価結果

	プラスチン	ルの配合	(重量部)		評価結果				
	重合体	可塑剤	充填剤	添加剤	粘度	貯蔵 安定性	強度	伸度	可塑剤 保持性
実施例	A 1	DOP	CaCO ₃		0	0	0		0
1	(100)	(140)	(100)		16.8	12	1.3		
実施例	A 2	DINP	CaCO ₃		0	0	0	0	0
2	(100)	(140)	(100)		15. 4	11	1. 2	310	
実施例	A 3	DINP	CaCO ₃	_	0	0	0	©	0
3	(100)	(140)	(100)		14. 1	12	1.5	330	
実施例	A 4	DINP	CaCO ₃		0	0	0	0	Ο.
4	(100)	(140)	(100)		18. 2	14	1.5	420	
実施例	A 5	DINP	CaCO ₃	_	0	0	0	0	0
5	(100)	(140)	(100)		22.0	17	1.4	390	
実施例	A 6	DINP	CaCO ₃		0	0	0	0	0
6	(100)	(140)	(100)		21.2	35	1.1	520	
実施例	A 7	DINP	CaCO ₃	_	0	0	0	0	0
7	(100)	(140)	(100)		8. 5	10	1.5	340	
実施例	A 8	DINP	CaCO ₃	_	0	0	0	©	0
8	(100)	(140)	(100)		7. 7	15	1.3	540	
実 施 例	A 9	DINP	CaCO ₃	_	0	0	0	0	0
9	(100)	(140)	(100)	<u> </u>	7.9	12	1.3	500	
実施例	A 1 0	DINP	CaCO ₃	_	0	0	0	0	0
10	(100)	(140)	(100)	<u> </u>	16. 4	12	1.1	360	<u> </u>
実施例	A 1 1	DINP	CaCO ₃	l _	0	0	0	0	0
11	(100)	(140)	(100)		16.9	18	1.5	370	
実施例	A 1 2	DINP	CaCO ₃	_	0	0	0	0	0
1 2	(100)	(140)	(100)	<u> </u>	17.2	16	1.5	380	<u> </u>
実施例	A 1	DINP	CaCO ₃	プロックイソ	0	0	0	0	0
1 3	(100)	(140)	(100)	シアネート	24. 2	36.5	3. 1	310	
比較例	A ' 1	DINP	CaCO ₃		0	0	0	×	×
1	(100)	(140)	(100)		13.3	11	2.2	20	ļ
比較例	A ' 2	DINP	CaCO ₃	_	×	×	-	-	-
2	(100)	(140)	(100)		80. 7	ゲル化	 	 	
比較例	A , 3		CaCO ₃	_	0	0	©	×	×
3	(100)	(140)	(100)		15.4	12	2.1	30	1
比較例	J A ' 4		CaCO ₃	_	0	0	(O)	×	×
4	(100)	(140)	(100)		12. 1	11	2. 1	40	
比較例	J A ' 5	DINP	CaCO ₃	_	Δ	×		0	0
5	(100)	(140)	(100)		32. 8	280	0. 6	280	
比較例] A ' (1	CaCO ₃	_	×	X	-	_	-
6	(100)	(140)	(100)		90.5	ゲル化	 	 	1
比較多) A '	7 DINP	CaCO ₃	_	Δ	Δ	©	0	0
7	(100)	(140)	(100)		30. 3	52	1.4	280	
比較多	i A '	B DINP	CaCO ₃	_		©	×	×	×
8	(100)	(140)	(100)		28. 4	11	0.3	20	1

表2 (続き)

比較例	女 2 (がでし								
Read of the color of the co	比較例	A ' 9	DINP	CaCO ₃	_	0	×	0	0	0
R 数 例 A 1 0 DDF CaCO ₃ CaCO ₃	9	(100)	(140)	(100)						
1 ○ (100) (140) (140) (100) 25.6 53 0.9 75	比較例	A'10	DOP	CaCO ₃		0		0		×
比較例		(100)	(140)	(100)		25. 6		0.9		
1			DOP	CaCO ₃		0	0			×
比較例	1	(100)	(140)	(100)		28. 1	28	0.9	55	
1 2	比較例	A'12	DOP	CaCO ₃		×	1	-	-	_
比較例		(100)	(140)	(100)		88. 5	ゲル化			
13	比較例	A'13	DOP	CaCO ₃				1		×
比較例		(100)	(140)	(100)		25. 2				
1 4		A'14	DOP	CaCO ₃		0	1	©	l	×
L 較 例		(100)	(140)	(100)		24. 4	31	1.4		
15	比較例	A'15	D0Ph	CaCO ₃		~	L	1		0
比較例 A' 1 6 DOPh (140) (100)		(100)	(140)	(100)		24. 0				
比較例 A' 1 7	比較例	A'16	D0Ph	CaCO ₃		_		1		0
L 較 例	16	(100)	(140)	(100)		23. 3				
T	比較例	A'17	OBP	CaCO ₃		0	1	I -	1	0
日報例 A'19 DINP CaCO ₃ -	17	(100)	(140)	(100)		20. 1				
比較例 A' 1 9 DINP	比較例	A'18	DOP	CaCO ₃	l		1		9	0
1 9	18	(100)	(140)	(100)						
比較例 A'2 0 DINP	比較例	A' 1 9	DINP		l		1	l		0
R. 較 例	19	(100)	(140)	(100)			- 	+		
比較例 A'2 1 DEP	比較例	A'20	DINP	CaCO ₃	 		l l	1	1	0
日本	20	(100)	(140)	(100)	L					
比較例 A'2 3 DOP CaCO ₃	比較例	A'21	DEP		 _	1 -		-	L	10
R	2 1		(140)							<u> </u>
比較例 A'2 3 DOP		A. 2 2			_	_		1		10
上 較 別	2 2		(140)		ļ					
比較例 A'2 5 DOP CaCO ₃	比較例	A'23	DOP		 _	_	L		1	10
24 (100) (140) (100) — 23.3 77 0.3 240 比較例 A'25 DOP CaCO ₃ _ (100) — O © © × × × 21.5 11 2.1 50 比較例 A'26 DOP CaCO ₃ _ O O O O O O O O O O O O O O O O O O	2 3		(140)		ļ. <u>.</u>					
比較例 A'25 DOP CaCO ₃	比較例	A'24	DBP		1_			1	1	10
と 較 例 A 2 5 bor Caco ₃ _ 25 (100) (140) (100) - 21.5 11 2.1 50 上 較 例 A 2 6 DOP CaCo ₃ _ ○ ○ ○ ○ △ ×	2 4				<u> </u>					
25 (100) (140) (100) 21.5 11 2.1 30 比較例 A'26 DOP CaCO ₃ _ ○ ○ ○ △ ×		A'25			_	•	1	I		×
E W M A Z 6 DOF Cacos Cacos Cacos Cacos _	2 5	(100)								
2 6 (100) (140) (100) 21.8 24 0.9 190	比較例	A'26			_			I -		×
	2 6	(100)	(140)	(100)	<u> </u>	21.8	24	0.9	190	

29

求の範

1. コア重合体Cとシェル重合体Sからなるコアシェル構造を有する一次粒子 Pからなるアクリル系重合体微粒子であり、該一次粒子Pの平均粒子径が250 5 nm以上であり、コア重合体C及びシェル重合体Sはそれぞれ以下に示すモノマ 一混合物Mc及びMsの共重合体であり、かつMcとMsの重量比が10/90 ~90/10である上記アクリル系重合体微粒子;

Mc:合計を100mol%とし、

メチルメタクリレート

20~85mo1%

C2~C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア 10

クリル酸エステル

15~80mol%、及び

その他の共重合可能なモノマー

30mo1%以下

Ms:合計を100mol%とし、

メチルメタクリレート

 $20 \sim 79.5 \text{ mol}\%$

C2~C8脂肪族アルコール及び/又は芳香族アルコールの(メタ)ア 15

クリル酸エステル

5~40mol%

カルボキシル基又はスルホン酸基含有モノマー

0. 5~10mol%、及び

その他の共重合可能なモノマー

30mol%以下。

2. コア重合体C及びシェル重合体Sがそれぞれ以下に示すモノマー混合物M 20 c 及びM s の共重合体であり、かつM c とM s の重量比が 3 0 / 7 0 ~ 7 0 / 3 0である請求項1記載のアクリル系重合体微粒子;

Mc:合計を100mol%とし、

メチルメタクリレート

 $20 \sim 70 \text{ mo } 1\%$

nーブチル (メタ) アクリレート、iーブチル (メタ) アクリレート及 25 び t ーブチル (メタ) アクリレートからなる群から選ばれる1種以上の

(メタ) アクリル酸エステル 30~80mol%、及び

その他の共重合可能なモノマー 20mol%以下

Ms:合計を100mol%とし、

5

15

20

メチルメタクリレート

 $30 \sim 79.5 \text{ mo } 1\%$

nーブチル (メタ) アクリレート、iーブチル (メタ) アクリレート及 び t ーブチル (メタ) アクリレートからなる群から選ばれる1種以上の

(メタ) アクリル酸エステル

5~40mol%

カルボキシル基含有アクリル系モノマー

0.5~10mol%、及び

その他の共重合可能なモノマー

20mo1%以下。

3. コア重合体C及びシェル重合体Sがそれぞれ以下に示すモノマー混合物M c 及びM s の共重合体であり、かつM c とM s の重量比が 3 0 / 7 0 ~ 7 0 / 3 10 0である請求項1記載のアクリル系重合体微粒子;

Mc:合計を100mol%とし、

メチルメタクリレート

 $20 \sim 70 \text{ mo } 1\%$

n-ブチル (メタ) アクリレート、i-ブチル (メタ) アクリレート及 び t ーブチル (メタ) アクリレートからなる群から選ばれる1種以上の

(メタ) アクリル酸エステル

30~80mol%、及び

その他の共重合可能なモノマー

10mol%以下

Ms:合計を100mol%とし、

メチルメタクリレート

55~79. 5mol%

n ーブチル (メタ) アクリレート、i ーブチル (メタ) アクリレート及 び t ーブチル (メタ) アクリレートからなる群から選ばれる 1 種以上の (メタ) アクリル酸エステル 20~40mol%

カルボキシル基含有アクリル系モノマー

O. 5~5mol%、及び

その他の共重合可能なモノマー 10mol%以下。

- 4. 請求項1から3のいずれか一項に記載のアクリル系重合体微粒子及び可塑 25 剤を含むプラスチゾル。
 - 5. 可塑剤がフタル酸ジアルキルエステル系化合物を主成分とする請求項4記 載のプラスチゾル。
 - 6. (1) イ)水を主成分とする媒体中で、20℃において該媒体に対して0.

- 02質量%以上の溶解度を有し、かつその重合体は該媒体に溶解しない単量体を、 媒体中に乳化剤ミセルが存在しない状態において、水溶性ラジカル重合開始剤を 用いて重合せしめ、重合体分散液を得る工程、
- ロ)上記の重合体分散液に対して単量体混合物を滴下して被覆された重合体分散 5 液を得る工程、
 - (2) 上記の重合体分散液を噴霧乾燥することによって重合体微粒子を回収する工程、

を含む請求項1~3のいずれか一項記載のアクリル系重合体微粒子の製造方法。