Credit Risk: Modeling Default Dependence with Copulas

Roza Galeeva e-mail: groza@bu.edu

DEPARTMENT OF FINANCE

Questrom School of Business

FALL 2021

Invariance of copulas

A useful property of the copula is invariance under *strictly increasing* transformations of marginals.

Proposition 1

Let (X,Y) be a random vector with continuous margins and copula C and let T_1,T_2 be strictly increasing functions. Then $(T_1(X_1),T_2(X_2))$ also has copula C.

Sketch of the proof

- 1. $(T_1(X_1), T_2(X_2))$ is a random vector with continuous margins
- 2. Since transformations T_i are increasing, the following sets are equivalent:

$${X \le x} = {T_1(X) \le T_1(x)}, {Y \le y} = {T_2(Y) \le T_2(y)}$$

MF-772- Lecture 11 2 / 16

(3) If H(x,y) is a joint d.f. then

$$C(u,v) = H(F^{(-1)}(u),G^{(-1)}(v)) = \mathbb{P}\left(X \le F^{(-1)}(u),Y \le G^{(-1)}(v)\right)$$

$$= \mathbb{P}\left(T_1(X) \le T_1 \circ F^{(-1)}(u), T_2(Y) \le T_2 \circ G^{(-1)}(v)\right) =$$

$$= \mathbb{P}\left(T_1(X) \le F_{T_1(X)}^{(-1)}(u), T_2(Y) \le F_{T_2(Y)}^{(-1)}(v)\right)$$

(4) The last equality follows from the fact that for a r.v. X and increasing continuous function T we have: 1

$$F_{T(X)}^{(-1)}(\alpha) = T\left(F^{(-1)}(\alpha)\right)$$

(prove it).

MF-772- Lecture 11 3 /

 $^{^{1}}$ More general it is enough T is left continuous

Revisit the fundamental copulas

Comonotonicity: From the proposition for comonotonic r.v. X and Y their copula is the same as copula of (X,X), which is d.f of (F(x),F(y)) or (U,U). Then

$$H(x,y) = C(F(x),F(y)) = \mathbb{P}(U \le u, U \le v) = \min(u,v)$$

Countermonotonicity: By the same arguments, if X and Y are countermonotonic, their copula is the same as of (X, -X) which is d.f. (F(x), 1 - F(-y)) or (U, 1 - U). Then

$$H(x,y) = C(F(x), 1 - F(-y)) = \mathbb{P}(U \le u, 1 - U \le v) =$$

$$= \max(u + v - 1, 0)$$

we need to use \max since the probability is non-negative.

MF-772- Lecture 11 4 / 16

$$F(x,y) = 1 - F(x) - G(y) + H(x,y) = \hat{F}(x) + \hat{G}(y) - 1 + C[F(x), G(y)]$$

$$F(x) = u \quad \hat{G}(y) = v$$

$$C(u,v) = u + v - 1 + C[1-u,1-v)$$

Survival Copulas

- 1. In credit we often talk about survival: the probability of default occurring after some time T. Therefore, it is useful to define survival function $\bar{F}(x) = \mathbb{P}(X \ge x) = 1 F(x)$, where F is the d.f. of r.v X
- 2. For a pair of r.v. (X,Y) with joing d.f. H, the joint survival is given by $\bar{H}(x,y) = \mathbb{P}(X \ge x,Y \ge y)$. Now lets assume that the copula of X and Y is C Then we have: 2

$$\bar{H}(x,y) = 1 - F(x) - G(y) + H(x,y) = \bar{F}(x) + \bar{G}(y) - 1 + C(F(x), H(y))$$

$$= 1 - F(x) - G(y) + H(x,y) = \bar{F}(x) + \bar{G}(y) - 1 + C(1 - \bar{F}(x), \bar{H}(y))$$

3. We can define a survival copula $\bar{C}:\mathbb{I}^2 \to \mathbb{I}$ by

$$\bar{C}(u,v) = u + v - 1 + C(1 - u, 1 - v)$$

4. \bar{C} is a copula (check), and it is called a *survival* copula.

MF-772- Lecture 11

²volume of rectangles with vertices $x, y, x, \infty, \infty, y, \infty, \infty$

Example

• Consider Gumbel's bivariate distribution function $\theta \in [0,1]$ and write its survival copula

$$H_{\theta}(x,y) = \left(1 - e^{-x} - e^{-y} + e^{-(x+y+\theta xy)}\right), x \setminus geq0, y \ge 0$$

$$H(x,y) = 0 \text{ otherwise}$$

Write its copula and the survival copula.

$$H_{\theta}(X, +\infty) = 1 - e^{-x} = u = F(x)$$
 $\Rightarrow 1 - u = e^{-x}$
 $I_{n(1-u)} = -x$
 $F^{-1}(u) = x = -I_{n(1-u)}$

MF-772- Lecture 11

 $F^{(-1)}(u) = -\ln(1-u) \qquad G^{(-1)}(v) = -\ln(1-v)$ $C_{\theta}(u,v) = u+v-1+(1-u)(1-v)e^{-\theta\ln(1-u)\ln(1-v)}$ $\tilde{C}_{\theta}(u,v) = uve^{-\theta\ln \ln v}$

Co(U,V) = (1-u) + (1-u) -1 + C(U,V) = x-μ+1-ν-x+μ+ν-1+ uve-θ/nulnu = uve -θ/nulnu

Volume in n-dimensional space

- 1. For any positive integer n we define \mathbb{R}^n . Let $\mathbf{a} = (a_1, ... a_n)$ be a vector. We write $\mathbf{a} \leq \mathbf{b}$ if $a_k \leq b_k$ for all k
- 2. For $a \le b$ let [a, b] denote n-box

$$B = [a_1, b_1] \times [a_2, b_2] \times ..[a_n, b_n]$$

3. Vertices of an *n*-box *B* are the points $\mathbf{c} = (c_1, c_2, ... c_n)$.

Definition 1

Let $S_1,...S_n$ be non-empty sets of \mathbb{R} and let H be real function defined in $Dom H = S_1 \times S_2...S_n$. Let $B = [\mathbf{a}, \mathbf{b}]$ be n = box with vertices in Dom H. Then H-volume of B is given by

tine of using a
$$V_H(B) = \sum sgn(\mathbf{c})\mathbf{H}(\mathbf{c})$$

where the sum is taken over all vertices c and sgn(c) is given by

$$sgn(\mathbf{c}) = \begin{cases} 1, & \text{if } c_k = a_k \text{ for even number of } k's. \\ -1, & \text{if } c_k = a_k \text{ for odd number of } k's. \end{cases}$$
 (1)

MF-772- Lecture 11 7 / 16

Copula function in n-dimensional case

Definition 2

A function $C: \mathbb{I}^d \to \mathbb{I}$ is a copula if

- 1. C in d-increasing function (so the generalized volume defined by C is positive for any box in \mathbb{I}^d .)
- 2.

$$C(0,...,u_i,0...)=0, \forall i=1,2,...,d.$$

3.

$$C(1, \dots, 1, u_i, 1, \dots, 1) = u_i, \quad \forall i = 1, 2, \dots, d.$$

Theorem 2

(a) Let F be a joint distribution function with margins F_i . There exists a copula $C: [0,1]^d \to [0,1]$ such that

$$C(F_1(x_1), \dots, F_d(x_d)) = F(x_1, \dots, x_d).$$

If the margins are continuous, then C is unique.

A copula model for dependent defaults

Proposition 3

Assume we are given:

- ▶ A term structure of default probabilities $F_i(T) := \mathcal{P}(\tau_i \leq T)$ for each obligor $i \in \{1, \dots, m\}$.
- A copula function $C:[0,1]^m \to [0,1]$.

Then, $C(F_1(T_1), \dots, F_m(T_m))$ gives a joint probability function for τ_i .

$$\mathcal{P}\left(\tau_{i} \leq T_{i}, \forall i \in \{1, \dots, m\}\right) = C\left(F_{1}(T_{1}), \dots, F_{m}(T_{m})\right),$$

MF-772- Lecture 11 9 / 10

The Gaussian Copula

- If X, Y belong to bivariate normal distribution with correlation ρ then their copula is so-called Gauss (or Gaussian) copula.
- lacktriangle By Proposition 1 we can assume X, Y are standard normal
- ▶ Then margins are N(x) and N(y), $u = N^{-1}(x)$, $v = N^{-1}(y)$ and the bivariate Gaussian copula is given by

$$C_{\rho}(u,v) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{N^{-1}(u)} \int_{-\infty}^{N^{-1}(v)} e^{\left(-\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1-\rho^2)}\right)} dx_1 dx_2.$$

- The independence and comonotonicity copulas are special cases : $\rho=0$ corresponds to independence, $\rho=1$ to comonotonicity, and $\rho=-1$ to countermonotonicity.
- The Gaussian copula is implicit, it does not have a simple closed form, differently from explicit copulas (like Gumbel).

MF-772- Lecture 11 10 / 16

Gaussian copula: simulation

Let C_G be the Gaussian copula function, and N_d be a d-dimensional normal distribution function for a vector (X_1, \dots, X_d) of standard normal random variables with covariance matrix Σ .

- (a) Draw (X_1, \dots, X_d) with distribution $N_d(0, \Sigma_d)$.
- (b) Define $U_i := N(X_i), i \in \{1, \dots, d\}.$

Example: Two obligators for which we are given hazard rates (or intensities), λ_1 and λ_2

- 1. Generate two correlated variables x_i , y_i with correlation coefficient ρ (Cholevsky)
- 2. Calculate their CDF, generating series of uniform r.v. u_i , v_i :

$$u_i = N(x_i), v_i = N(y_i)$$

3. Using u_i and v_i generate random default times $\tau_i^{(1)}, \tau_i^{(2)}$:

$$\tau_i^{(1)} = -\frac{\ln(1 - u_i)}{\lambda_1}, \tau_i^{(2)} = -\frac{\ln(1 - v_i)}{\lambda_2}$$

General Procedure for simulations from a copula

- By virtue of Sklar's theorem, we need to generate a pair of (u,v) observations from of uniform (0,1) r.v. (U,V) whose joint distribution function is C
- One procedure of generating such a pair (u, v) is the conditional distribution method. For this method we need the conditional distribution function for V given U = u, which we denote $c_u(v)$: 3 .

$$c_u(v) = \mathbb{P}[V \le v | U = u] = \lim_{\delta u \to 0} \frac{C(u + \Delta u, v) - C(u, v)}{\Delta u} = \frac{\partial C(u, v)}{\partial u}$$

- ▶ Therefore to generate a pair (u, v) we proceed as follows:
- 1. Generate two independent uniform (0,1) variates u and t
 - 2. Set $v = c_u^{(-1)}(t)$, where $c_u^{(-1)}$ denotes a quasi-inverse of c_u
 - 3. The desired pair is (u, v)

12 / 16

MF-772- Lecture 11

 $^{^3{\}rm The}$ existence of partial derivatives and their properties , a non-decreasing function, taking values in [0,1] follows from the definition of a copula

t-distributions

An alternative candidates in lieu of normal distribution for a copula is t-distribution. It has heavier tails comparing with a normal distribution and better properties at extremes for the copula.

- 1. The *t*-distributions are very important in classical statistics because of their use in testing and confidence interval.
- 2. The classical definition of t-distribution with $\nu = N-1$ degrees of freedom is

$$X = \frac{\bar{r} - \mu}{s_r / \sqrt{N}}$$

where \bar{r} and s_r are estimates of the mean and standard deviations, and $r_i, i = 1,...N$ are drawn from a normal distribution.

3. The variance of t-distribution is finite if $\nu > 2$ and equal $\sigma_{t\nu} = \nu/(\nu - 2)$, the kurtosis is

$$Kurt = 3 + \frac{6}{\nu - 4}$$

Mixture Models

Another class of models with heavy tails distributions are *mixture* models. To illustrate, we consider a simple example:

- Consider a distribution which is 90% N(0,1) and 10% N(0,25).
- To generate a r.v. Y from this distribution, we can generate a uniform r.v. $U \in [0,1]$ and a normal r.v. X with mean and variance 1. If $Y \le 0.9$, Y = X and if $U \ge 0.9$, Y = 5X.
- These two cases can represent two regimes: one is "normal volatility", and the second is "high volatility", the first one happens 90% of the time.
- A r.v Y from such distribution is very different from normal r.v.Z which matches the variance

Questions:

- 1. Calculate and compare the probabilities that |Y| > 6 and |Z| > 6
- 2. Calculate kurtosis for Y and Z.

MF-772- Lecture 11 14 / 16

Continuous mixtures

- A t_{ν} -distribution is an example of a continuous normal *mixture* distribution.
- B The general definition of a normal mixture is given by the following distribution:

$$\mu + \sqrt{W}Z$$

where μ is a constant equal to the mean, Z is N(0,1), U is a positive r.v. giving the variance of each component; Z and W are independent.

- C If W can assume only a finite number of values then it is a discrete (or finite) mixture distribution (previous example)
- D If W is continuous, then we have have a continuous mixture distribution. For t-distribution the mixing variable W is

$$W = \frac{\nu}{Y}$$

where Y is chi-squared with ν degrees of freedom.

MF-772- Lecture 11 15 / 16

t-copula

- 1. To create a multivariate t-distribution, we can start with multivariate Gaussian vector (X_1, \dots, X_d) of standard normal random variables with covariance matrix Σ
- 2. Randomizing (or mixing) the normal components with $\sqrt{W} = \sqrt{\frac{\nu}{Y}}$, we will get multivariate t-distribution. Note that the correlation matrix stays the same ($\mathbb{E}(W) < \infty^{-4}$
- 3. Let F_{ν} be a t- d.f. with ν degrees of freedom, and let $F_{\nu}^{(-1)}$ be its inverse. Then we can write down a t-copula function as

$$C_{\nu}(u_1,...u_d) = H_{\nu}\left(F_{\nu}^{(-1)}(u_1),....F_{\nu}^{(-1)}(u_d)\right)$$

where H_{ν} is the multivariate t-distribution function with ν degrees of freedom (and given covariance matrix)

MF-772- Lecture 11 16 / 16

 $^{^{4}\}mbox{However lack of correlation does imply independence for multivariate }t$ components