Городские кружки ЦПМ Осенние сборы, ноябрь 2024, 9 класс Материалы занятий

Содержание

Ι	Группа 9–1	3
1	Алгебра	4
	Показатели	5
	Показатели. Добавка	6
	Квадратичные вычеты. Теория	7
	Квадратичные вычеты. Практика	9
	Квадратичный закон взаимности. Практика	10
	Многочлены над конечным полем \mathbb{F}_p	11
	Многочлены над конечным полем $\overline{\mathbb{F}_p}$. Продолжение	12
2	Геометрия	13
	Поворотная гомотетия	14
	Поворотная гомотетия 2	16
	Поворотная гомотетия, добавка	17
	Инверсия	18
	Инверсия. Добавка	20
	Инверсия 2	21
	Инверсия 3	23
	Леммы о воробьях	25
3	Комбинаторика	26
	Теорема Турана	27
	Теорема Турана. Добавка.	29
	Лемма Холла. Теория	30
	Лемма Холла. Задачи	32
	Добавка по лемме Холла	34
	Раскраски графа	35
	Рёберные раскраски	37
	Теорема Шпернера	39

Η	Группа 9–2	41
1	Алгебра	42
	Показатели	43
	Показатели. Добавка	44
	Квадратичные вычеты. Теория	45
	Квадратичные вычеты. Практика	47
	Квадратичный закон взаимности. Практика	48
	Многочлены над конечным полем \mathbb{F}_p	49
	Многочлены над конечным полем \mathbb{F}_p . Продолжение	50
2	Геометрия	51
	Поворотная гомотетия	52
	Поворотная гомотетия 2	54
	Поворотная гомотетия, добавка	56
	Инверсия	57
	Инверсия. Добавка	59
	Инверсия 2	60
	Инверсия 3	62
	Леммы о воробьях	64
3	Комбинаторика	65
	Теорема Турана	66
	Теорема Турана. Добавка	68
	Лемма Холла. Теория	69
	Лемма Холла. Задачи	71
	Раскраски графа	73
	Рёберные раскраски	75
	Теорема Шпернера	77

Часть І

Группа 9–1

1 Алгебра

Показатели

Определение. Даны натуральные числа a и n, такие что (a,n)=1. По-казателем числа a по модулю n называется такое наименьшее натуральное число d, что

- $a^d \equiv 1 \pmod{n}$.
 - **1.** Известно, что число n^{42} дает остаток 1 по модулю 179. Чему может быть равен остаток числа n по модулю 179?
 - **2.** Докажите, что простые делители числа $2^{2^n}+1$, $n\in\mathbb{N}$ имеют вид $2^{n+1}x+1$, где $x\in\mathbb{N}$.
 - **3.** Пусть p,q простые числа, q > 5. Докажите, что если $2^p + 3^p$ делится на q, то q > p.
 - **4.** Пусть $N=2^a 3^b+1$, где a,b натуральные числа. Предположим, что для некоторого натурального c число $c^{(N-1)/3}-c^{(N-1)/6}+1$ кратно N. Докажите, что N простое.
 - **5.** Докажите, что $3^n 2^n$ не может делиться на n ни для какого натурального n > 1.
 - **6.** (а) Пусть $a>1,\ p>2$ простое число. Докажите, что все нечетные простые делители числа a^p-1 либо делят a-1, либо имеют вид 2px+1, где $x\in\mathbb{N}.$
 - (б) Выведите отсюда, что простых чисел вида 2px+1 бесконечно много.
 - 7. Найдите все тройки простых чисел p,q,r, такие что $r|p^q+1,\;p|q^r+1,\;q|r^p+1.$
 - 8. Решите в целых числах уравнение $\frac{x^7-1}{x-1} = y^5 1$

Показатели. Добавка

- Докажите, что для любых натуральных чисел n, m верно $m|\varphi(n^m-1)$. 1.
- Найдите все пары простых чисел p, q, такие, что $pq|5^p + 5^q$. $\mathbf{2}.$
- Известно, что произведение первых n простых чисел, начиная с 3, яв-3. ляется точной степенью некоторого натурального, но с прибавлением 1. Чему может быть равно n?
- Найдите все натуральные n, для которых числа n и $2^n + 1$ имеют один 4. и тот же набор простых делителей.

7 ноября 2024

Квадратичные вычеты. Теория

Определение. Пусть n — натуральное число, a — целое, взаимно простое с n. Число a называется $\kappa \epsilon a \partial p a m u u + b M$ вычетом по модулю n, если найдется целое x, такое что $x^2 \equiv a \pmod{n}$. В противном случае, число a называется квадратичным невычетом.

Определение. Символом Лежсандра числа a по простому модулю p>2называется выражение, обозначаемое $\left(\frac{a}{p}\right)$, и принимающее значение 0, если a кратно p, значение 1, если a квадратичный вычет по модулю p, и значение -1, если a невычет.

Далее во всех задачах рассматриваются квадратичные вычеты по нечётному простому модулю p.

- **1.** (а) Докажите, что существует ровно $\frac{p-1}{2}$ вычетов и $\frac{p-1}{2}$ невычетов.
 - (б) Чему равно произведение всех квадратичных вычетов по модулю р? А всех квадратичных невычетов?
- (а) Докажите, что произведение двух вычетов вычет. 2.
 - (б) Докажите, что произведение вычета на невычет невычет.
 - (в) Докажите, что произведение двух невычетов вычет.

Следствие:
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$$
.

- (a) Докажите, что если a квадратичный вычет, то $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.
 - (б) Докажите, что если a квадратичный невычет, то $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

Таким образом получаем **критерий Эйлера**: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

- Вычислите $\left(\frac{2+57+1543}{170}\right)$. 4.
- Рассмотрим множества остатков $P = \{1, 2, \dots, \frac{p-1}{2}\}$ и $S = \{-1, -2, \dots, -\frac{p-1}{2}\}$ **5**. Будем называть остатки из множества P «первичными», а остатки из множества S — «вторичными». Пусть также есть некоторое натураль
 - ное число a, взаимно простое с p. (a) Докажите, что во множестве $\{a, 2a, \dots, \frac{p-1}{2}a\}$ есть ровно по одному остатку из каждой пары $\pm 1, \pm 2, \dots, \pm \frac{p-1}{2}$.
 - (б) Обозначим за $\varepsilon(a)$ число вторичных остатков во множестве $\{a, 2a, \dots, \frac{p}{a}\}$ Докажите, что $\left(\frac{a}{p}\right) = (-1)^{\varepsilon(a)}$.

- (в) Докажите, что первичный остаток i при умножении на a становится вторичным тогда и только тогда, когда $\left[\frac{2ai}{p}\right]$ нечетное число. Выведите отсюда, что четность числа $\varepsilon(a)$ совпадает с четностью числа $\frac{p-1}{2}$ $\left[\frac{2ai}{p}\right]$.
- **6.** Пусть p,q два нечетных простых числа. Отметим на координатной плоскости точки $A=(0,0),\ B=(0,q),\ C=(p,q),\ D=(p,0)$ (см. рисунок). Точки N,K,P,M середины сторон AB,BC,CD,DA соответственно. MK пересекает NP в точке X.
 - (a) Докажите, что число целых узлов с четными абсциссами, расположенных внутри треугольника ACD, имеет ту же четность, что и число $\varepsilon(q)$.
 - (б) Докажите, что число целых узлов, расположенных внутри треугольника AXM, имеет ту же четность, что и число $\varepsilon(q)$.
 - (в) Выведите закон квадратичной взаимности Гаусса:

$$\left(\frac{q}{p}\right) \cdot \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Квадратичные вычеты. Практика

- **1.** Решите уравнение в натуральных числах: $4xy x y = z^2$.
- **2.** Докажите, что не существует натуральных чисел m,n>2, таких что $\frac{m^2+1}{n^2-5}$ является целым числом.
- 3. Пусть p простое число большее 5. Докажите, что p-е число Фибоначчи имеет остаток $\left(\frac{5}{p}\right)$ по модулю p. Подсказка. Возможно, вам понадобится формула Бине для чисел Фибоначчи: $F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$.
- **4.** Дано натуральное число a и нечетное простое число p. Известно, что (a,p)=1. Найдите, чему равна $\sum\limits_{i=0}^{p-1}\left(\frac{i(i+a)}{p}\right).$
- **5.** Докажите, что $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.
- **6.** Докажите, что простые делители числа $2^{2^n}+1$ при $n\in\mathbb{N},\,n>1$ имеют вид $2^{n+2}x+1,$ где $x\in\mathbb{N}.$

Рождественская теорема Ферма. Для того чтобы нечетное простое число p можно было представить в виде суммы квадратов двух целых чисел необходимо и достаточно, чтобы p давало остаток 1 по модулю 4.

- 7. (а) Докажите необходимое условие РТФ.
 - (6) Лемма Туэ. Пусть n > 1 натуральное число. Тогда для любого натурального a, взаимно простого с n, найдутся такие натуральные $x \leqslant \sqrt{n}, \ y \leqslant \sqrt{n}, \ \text{что } ay \equiv x \ (\text{mod } n)$ или $ay \equiv -x \ (\text{mod } n)$.
 - (в) Докажите достаточное условие РТФ.
- 8. Даны три квадратных трехчлена: $P(x) = x^2 + 5x + 1$, $Q(x) = 2x^2 x + 2$ и $R(x) = x^2 + 3x + 11$. Антон выбрал некоторое простое число p, такое что P(n) и Q(n) не делятся на p ни для какого целого n. Докажите, что Олег всегда сможет выбрать некоторое натуральное число m, такое что R(m) кратно p.
- **9.** Дана бесконечная последовательность. Известно, что среднее арифметическое любых её k последовательных элементов является полным квадратом (в том числе, для k=1). Докажите, что последовательность периодична с периодом 1.

Квадратичный закон взаимности. Практика

- 1. Докажите, что -3 квадратичный вычет по модулю нечётного простого числа p тогда и только тогда, когда p дает остаток 1 при делении на 6.
- **2.** Даны нечётные простые числа p и q и натуральное число n такое, что p-q делится на 4n. Докажите, что $\left(\frac{n}{p}\right)=\left(\frac{n}{q}\right)$.
- **3.** Натуральные числа a и b таковы, что числа 15a+16b и 16a-15b являются точными квадратами. Каково наименьшее возможное значение меньшего из этих квадратов?
- **4.** Пусть $p = 2^n + 1$ простое число Ферма (n > 2).
 - (a) Докажите, что $10^{10^{n-1}} + 1$ делится на p;
 - (6) Докажите, что $10^{10^{n-1}} + 1$ не имеет простых делителей меньших p.
- **5.** Даны натуральные числа: нечётное a, чётное b, простое p. Известно, что $p=a^2+b^2$. Докажите, что a квадратичный вычет по модулю p.
- **6.** Найдите все такие простые p, что p! + p точный квадрат.
- 7. Натуральные m и n таковы, что число $N = \frac{(m+3)^n + 1}{3m}$ натуральное. Докажите, что N нечетно.

Многочлены над конечным полем \mathbb{F}_p

Полем \mathbb{F}_p называется множество остатков по модулю p со стандартными операциями. Многочленом над \mathbb{F}_p называется многочлен, коэффициенты которого являются числами из \mathbb{F}_p . Этот листик про то, что многочлены над \mathbb{F}_p мало отличаются от многочленов над \mathbb{R} .

- 1. (а) Теорема Безу. Дан многочлен $P \in \mathbb{F}_p[x]$ и некоторый вычет a. Тогда существует многочлен Q, для которого P(x) = (x-a)Q(x) + P(a). (б) Докажите, что количество корней с учетом кратности многочлена над полем \mathbb{F}_p не превосходит его степени.
- **2. Теорема Виета.** Сформулируйте и докажите теорему Виета для многочленов над полем \mathbb{F}_p .
- **3.** (а) Разложите многочлен $x^{p-1} 1$ на множители над полем \mathbb{F}_p . (б) Выведите из предыдущих задач теорему Вильсона. Напоминание: теорема Вильсона гласит, что (p-1)! + 1 кратно p.
- **4.** Над полем \mathbb{F}_{11} задан многочлен $f(x) = x^4 + 4x^3 + 2x^2 + 7x + 8$. Найдите сумму корней уравнения f(x) = 0 (с учетом кратности).

Многочлен f называется henpusodumum, если не существует двух многочленов g и h степени хотя бы 1, для которых выполнено $f=g\cdot h$.

- **5.** Найдите число неприводимых многочленов степени 3 над полем \mathbb{F}_p .
- **6.** Конечно ли множество неприводимых многочленов над \mathbb{F}_p ?
- 7. Для каких простых p многочлен $x^4 + 1$ приводим над \mathbb{F}_p ?
- **8.** Целое число a и простое p>3 таковы, что a^3-3a+1 делится на p. Докажите, что существует b такое, что $b^2+ab+(a^2-3)$ делится на p.

Многочлены над конечным полем \mathbb{F}_p . Продолжение

В части из задач этого листика в условии нет многочлена, а где-то даже нет простого числа. В них рекомендуется этот многочлен придумать.

- **1.** f(x) и g(x) два многочлена над \mathbb{F}_p , где p простое число. Известно, что для любого $x \in \mathbb{F}_p$ выполнено f(g(x)) = x. Докажите, для любого $x \in \mathbb{F}_p$ также имеет место равенство g(f(x)) = x.
- **2.** Дано простое число p. Найдите многочлен f над \mathbb{F}_p такой, что любой квадратичный вычет является корнем f, а любой невычет нет.
- **3.** Натуральные числа a, b, c, d таковы, что $a^2 + b^2 + ab = c^2 + d^2 + cd$. Докажите, что число a + b + c + d составное.
- **4.** Пусть $P(x) = x^3 + 14x^2 2x + 1$. Докажите, что существует такое натуральное n, что $P(P((\dots P(x))) x$ делится на 101 при любом натуральном x.
- **5.** Докажите, что для любых чисел $x_0, \ldots, x_{p-1} \in \mathbb{F}_p$ существует многочлен f над \mathbb{F}_p степени не выше p-1, для которого $f(t)=x_t$ при всех $0 \le t \le p-1$.
- 6. Натуральные числа a,b,c и простое p>3 таковы, что a+b+c-1, и $a^3+b^3+c^3-1$ делятся на p. Докажите, что одно из чисел a,b,c дает остаток 1 при делении на p.
- 7. Натуральные числа a, b, c, d, e, f и их сумма S таковы, что оба числа abc+def и ab+bc+ca-de-df-ef делятся на S. Докажите, что S— составное.

2 Геометрия

Поворотная гомотетия

Поворотной гомотетией с центром в точке O, коэффициентом $k \neq 0$ и углом φ называется композиция поворота в точке O на угол φ и гомотетии с центром в точке O и коэффициентом k.

Первый сюжет

- 1. (а) Прямые AB и A'B' пересекаются в точке X. Докажите, что существует единственная поворотная гомотетия, переводящая отрезок AB в A'B', причём центром этой гомотетии является вторая точка пересечения окружностей (AA'X) и (BB'X).
 - (б) По двум прямым, пересекающимся в точке O, с постоянными (но, возможно, неодинаковыми) скоростями движутся точки A и B, причём в точке O они оказываются в разные моменты времени. Докажите, что описанные окружности треугольников OAB проходят через фиксированную точку, отличную от O.
- **2.** Докажите, что центр поворотной гомотетии, переводящей отрезок AB в A'B', совпадает с центром поворотной гомотетии, переводящей отрезок AA' в BB'. Выведите отсюда существование точки Микеля.

Второй сюжет

- 3. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая, проходящая через точку B, пересекает ω_1 и ω_2 в точках P и Q соответственно. Докажите, что существует поворотная гомотетия с центром в точке A, которая переводит ω_1 в ω_2 , а точку P в точку Q.
- **4.** (a) Докажите, что середины всевозможных отрезков PQ из предыдущей задачи лежат на одной окружности.
 - (б) Докажите, что существует фиксированная точка, которая равноудалена от точек P и Q для любого выбора этих точек.

Задачи

5. На окружности (ABC) выбрана точка X. Точки C_1 и B_1 — основания перпендикуляров из точки X на стороны AB и AC соответственно. Пусть M и N — середины отрезков BC и B_1C_1 соответственно. Докажите, что $\angle MNX = 90^\circ$.

- **6.** Точки A_2 , B_2 , C_2 середины высот AA_1 , BB_1 и CC_1 остроугольного треугольника ABC. Найдите сумму углов $B_2A_1C_2$, $C_2B_1A_2$, $A_2C_1B_2$.
- 7. Окружность с центром O проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC повторно в точках C_1 и B_1 соответственно. Пусть D вторая точка пересечения окружностей (ABC) и (AB_1C_1) . Докажите, что $\angle ADO = 90^\circ$.
- 8. В остроугольном треугольнике ABC провели высоты AA_1, BB_1 и CC_1 . Точки I, J центры вписанных окружностей треугольников A_1BC_1 и A_1CB_1 . Докажите, что точки B, I, J, C лежат на одной окружности.
- 9. На сторонах BC, AC, AB треугольника ABC выбраны точки D, E, F соответственно так, что треугольники ABC и DEF подобны.

 (а) Докажите, что центр окружности (ABC) совпадает с ортоцентром
 - треугольника DEF. (б) Докажите, что центр окружности (DEF) равноудалён от центра описанной окружности и ортоцентра треугольника ABC.
- 10. Дан остроугольный треугольник ABC, в котором AB < AC. Окружность, проходящая через точки B и C, вторично пересекает отрезки AB и AC в точках C_1 и B_1 соответственно. Окружности (ABC) и (AB_1C_1) вторично пересекаются в точке P. Отрезки BB_1 и CC_1 пересекаются в точке S. Точки Q и R симметричны S относительно прямых AB и AC соответственно. Докажите, что точки A, P, Q, R лежат на одной окружности.

Поворотная гомотетия 2

- 1. Вписанная окружность треугольника ABC касается его сторон BC, AC, AB в точках D, E, F соответственно. Описанные окружности треугольников ABC и AEF пересекаются в K. Докажите, что KD биссектриса угла BKC.
- **2.** На стороне AB треугольника ABC выбрана точка D. Описанная окружность треугольника BCD вторично пересекает окружность, проходящую через точки A и D и касающуюся прямой CD, в точке K. Точка M середина BC, N середина AD. Докажите, что точки B, M, N, и K лежат на одной окружности.
- 3. Вписанная в неравнобедренный треугольник ABC окружность касается его сторон BC, CA, AB в точках A_1 , B_1 , C_1 . На прямой AB отмечена такая точка X, что $A_1X \perp B_1C_1$. Окружности, описанные около треугольников ABC и AB_1C_1 , пересекаются второй раз в точке Z. Докажите, что $\angle XZC_1 = 90^\circ$.
- **4.** ABCD вписанный четырёхугольник, X точка пересечения его диагоналей. Некоторая прямая, проходящая через точку X, пересекает окружность, описанную около ABCD, в точках N_1 и N_2 , и окружности, описанные около треугольников ABX и CDX, в точках M_1 и M_2 . Докажите, что $M_1N_1=M_2N_2$.
- **5.** Дан вписанный четырехугольник ABCD. Точки P,Q,R основания перпендикуляров из D к прямым BC,CA,AB соответственно. Докажите, что PQ=QR тогда и только тогда, когда биссектрисы $\angle ABC$ и $\angle ADC$ пересекаются на AC.
- 6. В остроугольном треугольнике ABC, в котором AB < BC, проведи медиану AM и высоту BH. Касательные к окружности ABC, проведенные в точках A и B, пересекаются в точке T. Окружность (BMT) повторно пересекает (ABC) в точке S. Докажите, что окружность (SAH) касается прямой AB.
- 7. Точка O центр описанной окружности остроугольного неравнобедренного треугольника ABC. На стороне AB отметили точку P такую, что $\angle BOP = \angle ABC$, а на стороне AC отметили точку Q такую, что $\angle COQ = \angle ACB$. Докажите, что прямая, симметричная BC относительно PQ, касается описанной окружности треугольника APQ.

Поворотная гомотетия, добавка

- 1. Неравные окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ , проходящая через A, пересекает ω_1 в точке P и ω_2 в точке Q, причем A лежит на отрезке PQ. Точка R на отрезке PQ такова, что PR = AQ. Касательная к ω_1 в точке P и касательная к ω_2 в точке Q пересекаются в точке T. Докажите, что прямая TR касается фиксированной окружности, не зависящей от выбора прямой ℓ .
- **2.** Дан четырехугольник ABCD такой, что BC = AD и BC не параллельна AD. На сторонах BC и AD выбраны такие точки E и F, что BE = DF. Диагонали AC и BD пересекаются в точке P, прямые BD и EF в точке Q, прямые EF и AC в точке R. Докажите, что окружности, описанные около треугольников PQR (при изменении положений точек E и F), проходят через фиксированную точку, отличную от P.
- 3. Точки O и I являются центрами описанной и вписанной окружностей в треугольнике ABC соответственно. На сторонах BC, CA и AB выбраны такие точки D, E и F, что BD + BF = CA и CD + CE = AB. Окружности описанные около треугольников BFD и CDE пересекаются в точках P и D. Докажите, что OP = OI.

Инверсия

Инверсией с центром в точке O и радиусом r называется преобразование, которое каждую точку A, отличную от O, переводит в точку A' на луче OA такую, что $OA \cdot OA' = r^2$.

- **1.** Докажите, что при инверсии с центром в точке O
 - (a) прямая, проходящая через O, переходит в себя;
 - (б) окружность, проходящая через O, переходит в прямую, не проходящую через O; прямая, не проходящая через O, переходит в окружность, проходящую через O;
 - (в) окружность, не проходящая через O, переходит в окружность, не проходящую через O.
- **2.** Докажите, что при инверсии касающиеся окружности (прямая и окружность) переходят в касающиеся окружности, или в касающиеся окружность и прямую, или в пару параллельных прямых.
- 3. (а) При инверсии с центром O и радиусом r точки A и B переходят в точки A' и B' соответственно. Докажите, что $A'B' = \frac{r^2}{OA \cdot OB} \cdot AB$.
 - (б) Неравенство Птолемея. Докажите, что для любых точек A, B, C, D выполнено неравенство $AB \cdot CD + AD \cdot BC \geqslant AC \cdot BD$. В каком случае оно обращается в равенство?
- **4.** Через точку A к окружности ω с центром в точке O проведены касательные AX и AY, а также секущая, пересекающая окружность в точках B и C. Докажите, что точки B, C, O и середина отрезка XY лежат на одной окружности.
- 5. Пусть p полупериметр треугольника ABC. Точки E и F на прямой BC таковы, что AE = AF = p. Докажите, что окружность (AEF) касается вневписанной окружности треугольника ABC со стороны BC.
- 6. На плоскости взяты шесть точек A_1 , A_2 , A_3 , B_1 , B_2 , B_3 . Докажите, что если описанные окружности треугольников $A_1A_2B_3$, $A_1B_2A_3$ и $B_1A_2A_3$ проходят через одну точку, то и описанные окружности треугольников $B_1B_2A_3$, $B_1A_2B_3$ и $A_1B_2B_3$ пересекаются в одной точке.
- 7. Окружности ω_1 и ω_2 пересекаются в точках A_1 и A_2 , окружности ω_2 и ω_3 в точках B_1 и B_2 , окружности ω_3 и ω_4 в точках C_1 и C_2 , окружности ω_4 и ω_1 в точках D_1 и D_2 . Оказалось, что точки A_1 , B_1 , C_1 и D_1 лежат на одной окружности. Докажите, что точки A_2 , B_2 , C_2

- и D_2 также лежат на одной окружности.
- **8.** Дана окружность ω и точка P внутри неё, отличная от центра. Рассматриваются пары окружностей, касающиеся ω изнутри и друг друга внешним образом в точке P. Найдите геометрическое место точек X пересечения общих внешних касательных к этим окружностям.
- **9.** Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности. Докажите, что три окружности с центрами $A,\,B,\,C,$ проходящие через H, имеют общую касательную.
- **10.** В треугольнике ABC точки D, E и F выбраны на сторонах BC, CA и AB соответственно так, что отрезки AD, BE и CF пересекаются в одной точке. Окружности (AFE) и (CDE) пересекаются в точке T. Докажите, что окружности (ATD), (BTE), (CTF) имеют общую радикальную ось.

Инверсия. Добавка

- 1. В треугольник ABC вписана окружность ω с центром в точке I. Окружности (BIC) и ω пересекаются в точках X и Y. Общие касательные к окружностям ω и (BIC) пересекаются в точке Z. Докажите, что окружности (ABC) и (XYZ) касаются.
- **2.** Вписанная в треугольник ABC окружность касается сторон BC, AC, AB в точках A_1 , B_1 , C_1 соответственно. Окружности (AB_1C_1) , (A_1BC_1) , (A_1B_1C) пересекают окружность (ABC) в точках A_2 , B_2 , C_2 соответственно. Докажите, что прямые A_1A_2 , B_1B_2 , C_1C_2 пересекаются в одной точке.
- 3. Даны окружность ω , её касательная ℓ и окружность Ω , не пересекающаяся с ℓ и лежащая в другой полуплоскости с ω относительно ℓ . На окружности Ω выбирается переменная точка X. Касательные из X к ω пересекают прямую ℓ в точках Y и Z. Докажите, что окружности (XYZ) касаются двух фиксирующих окружностей.

Инверсия 2

Определение. Углом между двумя кривыми называется угол между касательными к этим кривым в их общей точке. Обобщённой окружностью будем называть окружность или прямую.

Факт. При инверсии угол между обобщёнными окружностями сохраняется.

- 1. Окружности ω_1 и ω_2 пересекаются в точках A и B и касаются окружности Ω . Окружность ω проходит через точки A и B перпендикулярно Ω . Докажите, что ω образует одинаковые углы с ω_1 и ω_2 .
- **2.** (а) Докажите, что точки A и B инверсны относительно ω тогда и только тогда, когда каждая обобщённая окружность, проходящая через них, ортогональна ω .
 - (б) Точки A и B инверсны относительно окружности ω . Некоторая инверсия переводит A в A', B в B', ω в ω' . Докажите, что A' и B' инверсны относительно ω' .
- **3.** (а) Даны непересекающиеся окружности ω_1 и ω_2 . Третья окружность перпендикулярна им и пересекает их линию центров. Докажите, что есть инверсия, переводящая ω_1 и ω_2 в концентрические.
 - (б) Поризм Штейнера. Рассмотрим две непересекающиеся окружности ω и Ω такие, что ω лежит внутри Ω . Для произвольной окружности ω_1 , касающейся их обеих, построим цепочку касающихся окружностей по следующему правилу для каждого $i \geq 2$ окружность ω_i такова, что она касается Ω внутренним образом, а ω и ω_{i-1} внешним образом. Пусть цепочка замкнулась за n шагов, то есть ω_n касается ω_1 . Докажите, что тогда для любой начальной окружности ω_1 цепочка замкнётся за n шагов.
- **4.** Окружности ω_1 , ω_2 , ω_3 , ω_4 касаются друг друга внешним образом по циклу. Окружность ω касается их всех внешним образом в точках X_1 , X_2 , X_3 , X_4 . Докажите, что касательные к ω в точках X_1 и X_3 пересекаются на прямой X_2X_4 .
- **5.** Внутри окружности Ω выбраны окружности ω_1 , ω_2 , ω_3 , которые попрано касаются друг друга и Ω . В три образовавшихся криволинейных треугольника вписаны окружности (см. рисунок). Докажите, что отмеченные шесть точек касания лежат на одной окружности.
- 6. Касательная к окружности (ABC) в точке A пересекает прямую BC в

Рис. 1: К задаче 5

Рис. 2: К задаче 6

точке D. На сторонах AB и AC построены равнобедренные треугольники ABE и ACF так, что $\angle EBC = \angle BCF$ (см. рисунок). Докажите, что точки D, E, F лежат на одной прямой.

- 7. Инверсия с центром в точке O переводит окружности ω_1 в γ_1 , ω_2 в γ_2 , ω_3 в γ_3 . Точки X и Y радикальные центры троек окружностей ω_1 , ω_2 , ω_3 и γ_1 , γ_2 , γ_3 соответственно. Докажите, что точки O, X, Y лежат на одной прямой.
 - Обратите внимание, что ваше решение должно работать для случаев, когда радикальные центры лежат и внутри, и вне окружностей.
- 8. Пусть AA_1 и AA_2 высота и биссектриса треугольника ABC. Окружность проходит через точки A_1 , A_2 и касается вписанной окружности треугольника ABC в точке A_3 внутренним образом. Аналогично определяются точки BB_3 и CC_3 . Докажите, что прямые AA_3 , BB_3 , CC_3 пересекаются в одной точке.

Инверсия 3

- 1. Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) ω_1 в точках B_1 и C_1 , а окружности (или прямой) ω_2 в точках B_2 и C_2 , причём касание в B_1 и C_1 такое же, как в B_2 и C_2 соответственно (либо внешнее, либо внутреннее). Докажите, что окружности (AB_1C_1) и (AB_2C_2) касаются друг друга.
- **2.** Лемма Архимеда. В окружности ω проведена хорда AB. Окружность γ касается ω в точке C, а отрезка AB в точке D. Точка M середина дуги AB окружности ω , не содержащей точку C. Докажите, что точки C, D, M лежат на одной прямой, сделав инверсию с центром (а) в точке C, (б) в точке M, (в) в точке A.
- **3.** В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . Прямая B_1C_1 пересекает окружность (ABC) в точках X и Y. Окружность (ABB_1) пересекает высоту CC_1 в точке Z. Докажите, что AX = AY = AZ.
- 4. В остроугольном треугольнике ABC провели высоту AD. Точки E и F проекции D на стороны AC и AB соответственно. Прямая AD вторично пересекает окружность (ABC) в точке T, а прямая EF пересекает (ABC) в точках P и Q. Докажите, что точка D является центром вписанной окружности треугольника PQT.
- 5. Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
- 6. Окружности ω_1 и ω_2 пересекаются в точках A и B. Докажите, что для всех окружностей, «вписанных» в лунку, образованную окружностями ω_1 и ω_2 (т. е. касающихся окружностей ω_1 и ω_2 и расположенных внутри них), отношение радиуса к расстоянию от центра до прямой AB одно и то же.
- 7. Точка P внутри треугольника ABC такова, что

$$\angle APB - \angle ACB = \angle APC - \angle ABC$$
.

Докажите, что биссектрисы углов ABP и ACP пересекаются на прямой AP.

- 8. В треугольнике ABC окружность с центром A и радиусом AI пересекает окружность (ABC) в точках X и Y. Докажите, что прямая XY касается вписанной окружности треугольника ABC.
- **9.** На прямой даны два непересекающихся отрезка. Найдите ГМТ, из которых эти два отрезка видны под равными углами.

Леммы о воробьях

Первая лемма о воробьях. Дан неравнобедренный треугольник ABC. На лучах BA и CA выбраны точки C_0 и B_0 соответственно, точка A_1 — середина дуги BAC описанной окружности треугольника ABC. Равенство $BC_0 = CB_0$ выполняется тогда и только тогда, когда точки B_0 , C_0 , A_1 и A лежат на одной окружности.

Вторая лемма о воробьях. На сторонах AB и AC треугольника ABC выбраны точки C_0 и B_0 соответственно, точка I — центр вписанной окружности треугольника ABC. Окружность, описанная около треугольника AB_0C_0 , проходит через I тогда и только тогда, когда $BC_0 + CB_0 = BC$.

- 1. Пусть A_0 , B_0 и C_0 точки касания вневписанных окружностей со сторонами BC, CA и AB треугольника ABC. Описанные окружности треугольников A_0B_0C , AB_0C_0 и A_0BC_0 пересекают второй раз описанную окружность треугольника ABC в точках C_1 , A_1 и B_1 соответственно. Докажите, что треугольник $A_1B_1C_1$ подобен треугольнику, образованному точками касания вписанной окружности треугольника ABC с его сторонами.
- **2.** Точки A_1, B_1 и C_1 выбраны на сторонах BC, CA и AB треугольника ABC так, что

$$AB_1 - AC_1 = CA_1 - CB_1 = BC_1 - BA_1.$$

Пусть I_a и O_a , I_b и O_b , I_c и O_c — центры вписанной и описанной окружностей треугольников AB_1C_1 , A_1BC_1 , A_1B_1C соответственно.

- (a) Докажите, что центр окружности $(I_a I_b I_c)$ совпадает с I.
- (б) Докажите, что центр вписанной окружности треугольника $O_a O_b O_c$ совпадает с I.
- 3. Точки E и F середины большой дуги BC и малой дуги BC окружности (ABC). Пусть G проекция E на отрезок AC. Докажите, что окружность (ABG) проходит через середину отрезка AF.
- **4.** На стороне BC треугольника ABC выбрана произвольная точка D. Обозначим через I_b и I_c центры вписанных в треугольники ABD и ACD окружностей, а через A_1 точку касания вписанной окружности со стороной BC. Докажите, что угол $I_bA_1I_c$ прямой.

Теорема Турана

Теорема 1 (Туран, 1941). В графе на n вершинах, не содержащем полного подграфа на $k \geqslant 3$ вершинах, рёбер не более, чем

$$\frac{(k-2)(n^2-r^2)}{2(k-1)} + \frac{r(r-1)}{2},$$

где r — остаток от деления n на k-1.

Определение *Число независимости* графа G — это размер его максимального независимого множества, то есть, максимального множества вершин, никакие две из которых не соединены ребром. Оно обозначается $\alpha(G)$.

Теорема 2. Если в графе G на n вершинах $\alpha(G) \leqslant k$, то рёбер в нём хотя бы

$$n \cdot \left[\frac{n}{k}\right] - k \cdot \frac{\left[\frac{n}{k}\right]\left(\left[\frac{n}{k}\right] + 1\right)}{2}.$$

- **1.** Докажите, что теоремы 1, 2 эквивалентны, то есть, выведите из первой вторую и из второй первую.
- 2. Докажите теорему Турана, используя двойную индукцию.

Теперь докажем теорему Турана по-другому. Новое доказательство позволит естественным образом построить пример графа, в котором оценка из теоремы Турана достигается.

- 3. *Клонированием вершины* назовём операцию добавления в граф вершины $v^{'}$, соединённой ровно с теми же вершинами, что и v.
 - (a) Докажите, что если в графе не было полного подграфа на m вершинах, то он не появится при клонировании любой.

Через G обозначим граф на n вершинах без полного подграфа на m вершинах с максимальным возможным числом рёбер.

- (б) Докажите, что степени любых двух несмежных вершин графа G равны.
- (в) Докажите, что степени любых двух смежных вершин графа G отличаются не более чем на 1.
- (г) Докажите, что если в графе G вершины u и v несмежны и вершины v и w несмежны, то вершины u и w также несмежны.
- (д) Докажите, что граф G полный (m-1)-дольный граф с почти равными долями.

- 4. В коллективе из 30 человек любых пятерых можно усадить за круглый стол таким образом, что каждый будет знаком с обоими своими соседями. Докажите, что в этом коллективе найдётся компания из 10 человек, в которой каждый знаком с каждым.
- **5.** Есть n батареек, среди них k+1 хорошая. За один ход можно попробовать вставить в фонарик две батарейки. Он заработает, если обе вставленные батарейки были хорошими. За какое минимальное число действий гарантированно получится зажечь фонарик?
- **6.** В графе n вершин, среди любых четырёх вершин проведено не более четырёх рёбер. Какое наибольшее количество рёбер может быть в таком графе?
- 7. За круглым столом сидят n человек. Разрешается поменять местами любых двух людей, сидящих рядом. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?
- 8. В графе 60 вершин и некоторое число рёбер. Каждое ребро покрашено в один из двух цветов так, что нет одноцветных треугольников. Какое максимальное количество рёбер может быть в графе?

Теорема Турана. Добавка.

- В стране 210 городов и совсем нет дорог. Король хочет построить несколь-1. ко дорог с односторонним движением так, чтобы для любых трёх городов A, B, C, между которыми есть дороги, ведущие из A в B и из B в C, не было дороги, ведущей из A в C. Какое наибольшее число дорог он сможет построить?
- В графе на 2n вершинах $n^2 + 1$ ребро. Докажите, что в нём найдётся 2.не менее n треугольников.
- На плоскости отмечено 4n точек. Соединим отрезками все пары точек, 3. расстояние между которыми равно 1. Известно, что среди любых n+1точек обязательно найдутся две, соединённые отрезком. Докажите, что проведено хотя бы 7n отрезков.

Лемма Холла. Теория

Лемма Холла. Есть n юношей и несколько девушек. Известно, что каких бы k юношей ни выбрать, число знакомых им совокупности девушек не мень $me \ k$. Тогда все юноши могут выбрать по невесте из числа своих знакомых.

- 1. Метод чередующихся цепей. Докажите лемму Холла, используя следующую конструкцию:
 - Предположим, некоторые пары заключили брак, но при этом один из юношей остался неженатым. Этот юноша с горя вступает в тайное общество. Далее каждый молодой человек приводил в тайное общество всех знакомых девушек, а каждая молодая жена — своего мужа...
- 2. Критические множества. Назовём множество из к юношей критическим, если совокупное количество знакомых им девушек в точности равно k.
 - (а) Предположим, что множество всех юношей единственное критическое множество. Докажите, что никакая свадьба юноши из этого множества не испортит для остальных условие леммы Холла.
 - (б) Докажите, что если удалить критическое множество юношей, вместе с их знакомыми девушками, то для оставшихся будет выполнено условие леммы Холла.
 - (в) Докажите лемму Холла, рассмотрев критическое подмножество юношей.
- Из шахматной доски вырезали 7 клеток. Докажите, что на оставшиеся 3. клетки можно поставить 8 не бьющих друг друга ладей.
- Лемма Холла с дефицитом. Дано натуральное число d. Докажите, 4. что если любые k юношей (для всех $1 \le k \le n$) знакомы в совокупности с k-d девушками, то n-d юношей могут выбрать себе невесту из числа знакомых.
- 5. Лемма Холла для арабских стран. Среди n юношей и нескольких девушек некоторые юноши знакомы с некоторыми девушками. Каждый юноша хочет жениться на m знакомых девушках. Докажите, что они могут это делать тогда только тогда, когда для любого набора из kюношей количество знакомых им в совокупности девушек не меньше km.

Определение. Паросочетанием называется набор ребер P, в котором ни-

какие два ребра не имеют общих вершин. 1-фактор — это паросочетание, в котором участвуют все вершины графа.

- (a) Докажите, что в регулярном двудольном графе есть 1-фактор.(б) Докажите, что регулярный двудольный граф разбивается на 1-факторы.
- 7. Конечное множество разбито на m подмножеств с одинаковым количеством элементов, и это же множество разбито на m^2 подмножеств с одинаковым числом элементов. Докажите, что можно выбрать m^2 различных элементов так, что каждое из множеств первого разбиения содержит ровно m выбранных элементов, а каждое из множеств второго разбиения содержит ровно один выбранный элемент.
- **8.** У Деда Мороза есть множество подарков для n школьников. У i-го школьника есть ровно a_i желаемых подарков из этого множества. Оказалось, что

$$\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} \leqslant 1.$$

Докажите, что Дед Мороз может дать каждому школьнику желаемый подарок.

- **9.** (a) Таблица n на n заполняется числами 0 и 1 так, что любые n клеток, никакие две из которых не содержатся в одной строке или в одном столбце, содержат хотя бы один ноль. Докажите, что существуют i строк и j столбцов, где i+j>n, пересечения которых состоят только из нолей.
 - (б) Таблица n на m заполняется числами 0 и 1 так, что любые k клеток, никакие две из которых не содержатся в одной строке или в одном столбце, содержат хотя бы один ноль. Докажите, что существуют i строк и j столбцов, где i+j>n+m-k, пересечения которых состоят только из нулей.

Лемма Холла. Задачи

- 1. Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры черным кружком. Затем входит фокусник. Его задача отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
- **2.** Латинским называется прямоугольник $m \times n$, где $m \leqslant n$, в каждой клетке которого записано число от 1 до n таким образом, что в каждой строке и в каждом столбце записанные числа различны. Докажите, что любой латинский прямоугольник можно дополнить до латинского квадрата $n \times n$.
- **3.** Пусть есть m юношей и несколько девушек, каждый юноша любит не менее t девушек, причем всех юношей можно женить на любимых ими девушках (так, чтобы брачные пары не пересекались), т. е. есть паросочетание. Тогда имеется не менее

$$\begin{cases} t!, & t \leq m; \\ t!/(t-m)!, & t > m. \end{cases}$$

способов переженить юношей на любимых ими девушках.

- **4.** Даны k мальчиков и 2k-1 конфета. Докажите, что можно дать каждому мальчику по конфете так, чтобы мальчику, которому не нравится его конфета, не нравились и конфеты остальных мальчиков.
- 5. Имеется множество юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявила: «Я могу женить всех брюнетов так, чтобы каждый женился на знакомой ему девушке.» Вторая сваха ответила: «А я могу устроить судьбу всех блондинок. Каждая сможет выйти замуж за знакомого юношу.» Этот диалог услышал любитель математики, который сказал: «В таком случае, я могу сделать и то и другое одновременно.» Прав ли он?
- **6.** Есть натуральные числа $k \le m < n$. В графе G степени всех вершин не менее m и не более n. Докажите, что можно выкинуть несколько рёбер, чтобы степени стали не менее m-k и не более n-k.

7. Имеется граф G, все вершины которого имеют степень 2k. Докажите, что из него можно выкинуть некоторое количество ребер, чтобы в оставшемся графе степень каждой вершины была равна двум.

Добавка по лемме Холла

- 1. В летний лагерь приехало некоторое количество школьников, причем каждый имеет от 50 до 100 знакомых среди остальных. Докажите, что вожатый Гриша сможет раздать им шапочки 1331 цветов так, чтобы у каждого школьника среди его знакомых было не менее 20 различных цветов.
- 2. В таблице *т* строк и *п* столбцов. Горизонтальным ходом назовем такую перестановку элементов таблицы, при которой каждый элемент остается в той же строке, в которой был до перестановки. Вертикальным ходом назовем такую перестановку элементов таблицы, при которой каждый элемент остается в том же столбце, в котором был до перестановки. За какое минимальное число ходов можно гарантированно получить любую перестановку?
- 3. У каждой из 100 девочек есть по 100 шариков; среди этих 10000 шариков есть по 100 шариков 100 различных цветов. Две девочки могут обменяться, передав друг другу по шарику. Они хотят добиться того, чтобы у каждой девочки было по 100 разноцветных шариков. Докажите, что они могут добиться этого такой серией обменов, чтобы любой шарик участвовал не более чем в одном обмене.

Раскраски графа

Определение *Хроматическим числом* $\chi(G)$ графа G называется минимальное количество цветов, в которые можно *правильно* покрасить вершины графа G (т. е. любые две смежные вершины покрашены в разные цвета).

- **1.** (а) Докажите, что $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}$, где V(G) множество вершин графа, а $\alpha(G)$ его число независимости. (б) Докажите, что $\chi(G)\chi(G') \geqslant |V(G)|$. (G' антиграф графа G).
- **2.** (a) Если в графе степень каждой вершины не превосходит d, то его можно правильно раскрасить в d+1 цвет.
 - (6) Если в любом подграфе графа есть вершина степени не больше d, то его можно правильно раскрасить в d+1 цвет.
 - (в) Дан ориентированный граф G, исходящие степени вершин которого не превосходят d. Докажите, что $\chi(G) \leq 2d+1$.
- 3. Пусть d наибольшая степень вершины графа G. Докажите, что вершины графа G можно покрасить в d^2+1 цвет так, чтобы ни у какой вершины не было двух одноцветных соседей.
- **4.** В плоском графе есть гамильтонов цикл. Докажите, что его грани можно правильно покрасить в четыре цвета.
- **5.** Докажите, что хроматическое число планарного графа не превосходит **(a)** 6 **(б)** 5.
- **6.** Докажите, что объединение планарного и двудольного графа можно раскрасить в 10 цветов.
- 7. Докажите, что $\chi(G) + \chi(G') \leqslant v(G) + 1$, где G' антиграф графа G.
- **8.** Вершины некоторого графа нельзя правильным образом раскрасить в менее, чем k цветов. Докажите, что для любой правильной раскраски вершин этого графа в k цветов существует путь, в котором встречается ровно по одной вершине каждого цвета.
- **9.** Дан связный граф. Известно, что как ни покрась его вершины в n цветов, найдется ребро с концами одного цвета. Докажите, что можно так удалить C_n^2 рёбер, чтобы граф остался связным.
- **10.** Дан граф G. Известно, что любая вершина участвует в не более чем N простых нечётных циклах. Докажите, что (a) $\chi(G) \leqslant 2N+2$; (б)

 $\chi(G) \leqslant N + 2.$

Рёберные раскраски

Определение 1. Pаскраской ребер графа G в k цветов называется отображение $\rho: E(G) \to \{1,2,\ldots,k\}$. Будем говорить, что в раскраске ρ цвет i представлен в вершине v, если существует ребро, выходящее из v, покрашенное в цвет i. Количество цветов, представленных в вершине v, будем обозначать $\rho(v)$.

Определение 2. Будем говорить, что ρ — *оптимальная раскраска* ребер графа G в k цветов, если для любой другой раскраски $\rho^{'}$ ребер этого графа в k цветов выполняется неравенство

$$\sum_{v \in V(G)} \rho(v) \geqslant \sum_{v \in V(G)} \rho^{'}(v)$$

Определение 3. Раскраска ребер графа G называется *правильной*, если любые два ребра, имеющие общий конец, покрашены в разные цвета.

Определение 4. Реберное хроматическое число графа $\chi'(G)$ — это наименьшее количество цветов, для которого существует правильная раскраска ребер графа G.

- **1.** В графе mn рёбер и несколько вершин. Известно, что рёбра можно раскрасить в m цветов правильным образом. Докажите, что это можно сделать, покрасив в каждый цвет ровно n рёбер.
- 2. Рёбра связного графа покрашены в k цветов, причем из каждой вершины выходит ровно по одному ребру каждого цвета. Злой гномик удалил k-1 ребро. Оказалось, что все удаленные ребра были разных цветов. Докажите, что граф остался связным.
- 3. Пусть ρ оптимальная раскраска ребер графа G в k цветов. Вершина v и цвета i и j таковы, что в вершине v хотя бы два раза представлен цвет i и не представлен цвет j. Рассмотрим граф H, полученный из G удалением всех ребер, кроме цветов i, j. Докажите, что компонента связности графа H, содержащая вершину v, простой цикл нечетной длины.

Обозначим за $\Delta(G)$ максимальную степень вершины графа G.

- 4. Пусть G двудольный граф. Докажите, что $\chi^{'}(G) = \Delta(G)$ (а) если G регулярный двудольный граф
 - (6) если G произвольный двудольный граф.

- 5. Пусть G двудольный граф, наименьшая степень степень вершин графа G равна d. Докажите, что существует покраска ребер графа G в d цветов, в которой в каждой вершине представлены d цветов.
- **6.** Найти $\chi'(G)$, где G полный граф на (a) 2n+1 (б) 2n вершинах.
- 7. Дан граф, степень каждой вершины которого равна 3. Известно, что число правильных раскрасок рёбер в 3 цвета не делится на 4. Докажите, что в графе есть гамильтонов цикл.
- **8.** Теорема Визинга. Докажите, что для произвольного графа G выполнено соотношение $\chi^{'}(G) \leqslant \Delta(G) + 1$.

[5 ноября – 17 ноября 2024 г.]

Калиниченко И. А., Луценко А. И., Солопов С. К. группа 9 класс 14 ноября 2024

Теорема Шпернера

Теорема Шпернера. В n-элементном множестве выбрано несколько подмножеств так, что ни одно из них не содержится ни в каком другом. Тогда этих подмножеств не более $C_n^{[n/2]}$.

- **1.** В множестве из n элементов отметили несколько подмножеств так, что никакое отмеченное подмножество не содержится ни в одном другом отмеченном.
 - (a) Докажите, что можно отметить $C_n^{[n/2]}$ подмножеств;
 - (б) При помощи леммы Холла докажите, что можно заменить все множества на $\lfloor n/2 \rfloor$ -элементные, и выведите отсюда теорему Шпернера.
- **2.** (a) Рассмотрим все возможные цепочки множеств $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_{n-1} \subset A_n = \{1, 2, \dots n\}$. В скольких цепочках содержится k-элементное множество?
 - (б) Неравенство ЛЯМ. Пусть A_1, A_2, \dots, A_k подмножества n-элементе множества, ни одно из которых не содержится в другом. Тогда $\sum_{i=1}^k \frac{1}{C_n^{|Ai|}} \le 1$;
 - (в) С помощью неравенства ЛЯМ докажите теорему Шпернера.
- 3. Детектив расследует преступление. В деле замешаны 100 человек, среди которых один преступник, а один свидетель. Каждый день детектив может пригласить к себе одного или нескольких из этих 100 человек, и если среди приглашённых есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. За какое наименьшее число дней детектив заведомо сможет раскрыть дело?
- **4.** Пусть среди отмеченных подмножеств n-элементного множества нет вложенной цепочки из k элементов. Какое наибольшее количество подмножеств может быть отмечено в этом случае?
- 5. На математической олимпиаде Средиземья было предложено 10 задач. Оказалось, что любые два гнома решили разные наборы задач, причем обязательно нашлась задача, решенная первым из них и не решенная вторым, и задача, решенная вторым из них и не решенная первым. Какое наибольшее количество верных решений могло прочитать жюри олимпиады?

- 6. В школе преподается n предметов. Оказалось, что любые два школьника имеют только оценки 5 и 2, причем имеют разные наборы оценок. Также оказалось, что нет школьника, который учится лучше, чем два других ученика и нет школьника, который учится хуже, чем два других ученика. (Мы считаем, что один ученик лучше другого, если по любому предмету у него оценка не хуже, а по какому-нибудь предмету оценка лучше). Докажите, что в школе не больше $2C_{n-1}^{[n/2]}$ учеников.
- 7. В множестве из *п* элементов отметили несколько подмножеств так, что никакое отмеченное подмножество не содержится ни в одном другом отмеченном, причем любые два отмеченные подмножества пересекаются и никакие два подмножества не дают в объединении все множество. Какое наибольшее количество подмножеств может быть отмечено, если (а) *п* четное; (б) *п* нечетное?

Часть II

Группа 9–2

1 Алгебра

Показатели

Определение. Даны натуральные числа a и n, такие что (a,n)=1. По-казателем числа a по модулю n называется такое наименьшее натуральное число d, что

- $a^d \equiv 1 \pmod{n}$.
 - **1.** Известно, что число n^{42} дает остаток 1 по модулю 179. Чему может быть равен остаток числа n по модулю 179?
 - **2.** Докажите, что простые делители числа $2^{2^n}+1$, $n \in \mathbb{N}$ имеют вид $2^{n+1}x+1$, где $x \in \mathbb{N}$.
 - **3.** Пусть p,q простые числа, q>5. Докажите, что если 2^p+3^p делится на q, то q>p.
 - **4.** Докажите, что $2^n 1$ не может делиться на n ни для какого натурального n > 1.
 - 5. Пусть $N=2^a 3^b+1$, где a,b натуральные числа. Предположим, что для некоторого натурального c число $c^{(N-1)/3}-c^{(N-1)/6}+1$ кратно N. Докажите, что N простое.
 - **6.** (а) Пусть $a>1,\ p>2$ простое число. Докажите, что все нечетные простые делители числа a^p-1 либо делят a-1, либо имеют вид 2px+1, где $x\in\mathbb{N}.$
 - (б) Выведите отсюда, что простых чисел вида 2px+1 бесконечно много.
 - 7. Решите в целых числах уравнение $\frac{x^7-1}{x-1} = y^5 1$

Показатели. Добавка

- Докажите, что для любых натуральных чисел n, m верно $m|\varphi(n^m-1)$. 1.
- Найдите все пары простых чисел p, q, такие, что $pq|5^p + 5^q$. $\mathbf{2}.$
- Известно, что произведение первых n простых чисел, начиная с 3, яв-3. ляется точной степенью некоторого натурального, но с прибавлением 1. Чему может быть равно n?
- Найдите все натуральные n, для которых числа n и $2^n + 1$ имеют один 4. и тот же набор простых делителей.

7 ноября 2024

Квадратичные вычеты. Теория

Определение. Пусть n — натуральное число, a — целое, взаимно простое с n. Число a называется $\kappa \epsilon a \partial p a m u u + b M$ вычетом по модулю n, если найдется целое x, такое что $x^2 \equiv a \pmod{n}$. В противном случае, число a называется квадратичным невычетом.

Определение. Символом Лежсандра числа a по простому модулю p>2называется выражение, обозначаемое $\left(\frac{a}{p}\right)$, и принимающее значение 0, если a кратно p, значение 1, если a квадратичный вычет по модулю p, и значение -1, если a невычет.

Далее во всех задачах рассматриваются квадратичные вычеты по нечётному простому модулю p.

- **1.** (а) Докажите, что существует ровно $\frac{p-1}{2}$ вычетов и $\frac{p-1}{2}$ невычетов.
 - (б) Чему равно произведение всех квадратичных вычетов по модулю р? А всех квадратичных невычетов?
- (а) Докажите, что произведение двух вычетов вычет. 2.
 - (б) Докажите, что произведение вычета на невычет невычет.
 - (в) Докажите, что произведение двух невычетов вычет.

Следствие:
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$$
.

- (a) Докажите, что если a квадратичный вычет, то $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.
 - (б) Докажите, что если a квадратичный невычет, то $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

Таким образом получаем **критерий Эйлера**: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

- Вычислите $\left(\frac{2+57+1543}{170}\right)$. 4.
- Рассмотрим множества остатков $P = \{1, 2, \dots, \frac{p-1}{2}\}$ и $S = \{-1, -2, \dots, -\frac{p-1}{2}\}$ **5**. Будем называть остатки из множества P «первичными», а остатки из множества S — «вторичными». Пусть также есть некоторое натураль
 - ное число a, взаимно простое с p. (a) Докажите, что во множестве $\{a, 2a, \dots, \frac{p-1}{2}a\}$ есть ровно по одному остатку из каждой пары $\pm 1, \pm 2, \dots, \pm \frac{p-1}{2}$.
 - (б) Обозначим за $\varepsilon(a)$ число вторичных остатков во множестве $\{a, 2a, \dots, \frac{p}{a}\}$ Докажите, что $\left(\frac{a}{p}\right) = (-1)^{\varepsilon(a)}$.

- (в) Докажите, что первичный остаток i при умножении на a становится вторичным тогда и только тогда, когда $\left[\frac{2ai}{p}\right]$ нечетное число. Выведите отсюда, что четность числа $\varepsilon(a)$ совпадает с четностью числа $\frac{p-1}{2}$ $\left[\frac{2ai}{p}\right]$.
- **6.** Пусть p,q два нечетных простых числа. Отметим на координатной плоскости точки $A=(0,0),\ B=(0,q),\ C=(p,q),\ D=(p,0)$ (см. рисунок). Точки N,K,P,M середины сторон AB,BC,CD,DA соответственно. MK пересекает NP в точке X.
 - (a) Докажите, что число целых узлов с четными абсциссами, расположенных внутри треугольника ACD, имеет ту же четность, что и число $\varepsilon(q)$.
 - (б) Докажите, что число целых узлов, расположенных внутри треугольника AXM, имеет ту же четность, что и число $\varepsilon(q)$.
 - (в) Выведите закон квадратичной взаимности Гаусса:

$$\left(\frac{q}{p}\right) \cdot \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Квадратичные вычеты. Практика

- **1.** Даны целые числа a,b и нечётное простое число p. Известно, что (a,p)=1. Найдите, чему равна $\sum_{i=0}^{p-1} \left(\frac{ax+b}{p}\right)$.
- **2.** Решите уравнение в натуральных числах: $4xy x y = z^2$.
- **3.** Докажите, что не существует натуральных чисел m,n>2, таких что $\frac{m^2+1}{n^2-5}$ является целым числом.
- 4. Пусть p простое число большее 5. Докажите, что p-е число Фибоначчи имеет остаток $\left(\frac{5}{p}\right)$ по модулю p. Подсказка. Возможно, вам понадобится формула Бине для чисел Фибоначчи: $F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$.
- **5.** Докажите, что $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.
- **6.** Докажите, что простые делители числа $2^{2^n}+1$ при $n\in\mathbb{N},\,n>1$ имеют вид $2^{n+2}x+1$, где $x\in\mathbb{N}.$

Рождественская теорема Ферма. Для того чтобы нечетное простое число p можно было представить в виде суммы квадратов двух целых чисел необходимо и достаточно, чтобы p давало остаток 1 по модулю 4.

- 7. (а) Докажите необходимое условие РТФ.
 - (б) Лемма Туэ. Пусть n > 1 натуральное число. Тогда для любого натурального a, взаимно простого с n, найдутся такие натуральные $x \leqslant \sqrt{n}, \ y \leqslant \sqrt{n}, \ \text{что } ay \equiv x \ (\text{mod } n)$ или $ay \equiv -x \ (\text{mod } n)$.
 - (в) Докажите достаточное условие РТФ.
- 8. Даны три квадратных трехчлена: $P(x) = x^2 + 5x + 1$, $Q(x) = 2x^2 x + 2$ и $R(x) = x^2 + 3x + 11$. Антон выбрал некоторое простое число p, такое что P(n) и Q(n) не делятся на p ни для какого целого n. Докажите, что Олег всегда сможет выбрать некоторое натуральное число m, такое что R(m) кратно p.
- **9.** Дана бесконечная последовательность. Известно, что среднее арифметическое любых её k последовательных элементов является полным квадратом (в том числе, для k=1). Докажите, что последовательность периодична с периодом 1.

Квадратичный закон взаимности. Практика

- 1. Докажите, что -3 квадратичный вычет по модулю нечетного простого числа p тогда и только тогда, когда p дает остаток 1 при делении на 6.
- **2.** Целые числа x и y таковы, что $x^2 + y^2$ делится на простое число p вида 3k + 2. Докажите, что сами числа x и y делятся на p.
- **3.** (a) Даны нечетные простые числа p, q и r такие, что p-q делится на 4r. Докажите, что если r является квадратичным вычетом по модулю p, то и по модулю q тоже.
 - (6) Даны нечетные простые числа p и q и натуральное число n такое, что p-q делится на 4n. Докажите, что $\left(\frac{n}{p}\right)=\left(\frac{n}{q}\right)$.
- **4.** Натуральные числа a и b таковы, что числа 15a+16b и 16a-15b являются точными квадратами. Каково наименьшее возможное значение меньшего из этих квадратов?
- **5.** Пусть $p = 2^n + 1$ простое число Ферма (n > 2).
 - (a) Докажите, что $10^{10^{n-1}} + 1$ делится на p;
 - (б) Докажите, что $10^{10^{n-1}} + 1$ не имеет простых делителей меньших p.
- **6.** Даны натуральные числа: нечётное a, чётное b, простое p. Известно, что $p=a^2+b^2$. Докажите, что a квадратичный вычет по модулю p.
- 7. Найдите все такие простые p, что p! + p точный квадрат.

Многочлены над конечным полем \mathbb{F}_p

Полем \mathbb{F}_p называется множество остатков по модулю p со стандартными операциями. Многочленом над \mathbb{F}_p называется многочлен, коэффициенты которого являются числами из \mathbb{F}_p . Этот листик про то, что многочлены над \mathbb{F}_p мало отличаются от многочленов над \mathbb{R} .

- **1.** Для каких простых p найдется $t \in \mathbb{Z}$ такое, что $t^2 + 3t + 4$ кратно p?
- **2.** (а) Теорема Безу. Дан многочлен $P \in \mathbb{F}_p[x]$ и некоторый вычет a. Тогда существует многочлен Q, для которого P(x) = (x-a)Q(x) + P(a). (б) Докажите, что количество корней с учётом кратности многочлена над полем \mathbb{F}_p не превосходит его степени.
- **3. Теорема Виета.** Сформулируйте и докажите теорему Виета для многочленов над полем \mathbb{F}_p .
- **4.** (a) Разложите многочлен $x^{p-1} 1$ на множители над полем \mathbb{F}_p . (б) Выведите из предыдущих задач теорему Вильсона.
 - (о) выведите из предыдущих задач теорему вильсона. Напоминание: теорема Вильсона гласит, что (p-1)!+1 кратно p.
- **5.** Над полем \mathbb{F}_{11} задан многочлен $f(x) = x^4 + 4x^3 + 2x^2 + 7x + 8$. Найдите сумму корней уравнения f(x) = 0 (с учётом кратности).

Теперь, всем кто этого ещё не сделал, следует решить задачу 8 из первого листика по квадратичным вычетам.

Многочлены над конечным полем \mathbb{F}_p . Продолжение

В части из задач этого листика в условии нет многочлена, а где-то даже нет простого числа. В них рекомендуется этот многочлен придумать.

- **1.** f(x) и g(x) два многочлена над \mathbb{F}_p , где p простое число. Известно, что для любого $x \in \mathbb{F}_p$ выполнено f(g(x)) = x. Докажите, для любого $x \in \mathbb{F}_p$ также имеет место равенство g(f(x)) = x.
- **2.** Дано простое число p. Найдите многочлен f над \mathbb{F}_p такой, что любой квадратичный вычет является корнем f, а любой невычет нет.
- **3.** Докажите, что не существует натуральных чисел a,b,c,d таких, что a+b+c+d простое и ab=cd.
- **4.** Пусть $P(x) = x^3 + 14x^2 2x + 1$. Докажите, что если P(x) P(y) делится на 101 для некоторых целых x и y, то и x-y делится на 101.
- **5.** Докажите, что для любых чисел $x_0, \ldots, x_{p-1} \in \mathbb{F}_p$ существует многочлен f над \mathbb{F}_p степени не выше p-1, для которого $f(t)=x_t$ при всех 1 < t < p-1.
- **6.** Натуральные числа a,b,c и простое p>3 таковы, что a+b+c-1, и $a^3+b^3+c^3-1$ делятся на p. Докажите, что одно из чисел a,b,c дает остаток 1 при делении на p.
- 7. Натуральные числа a, b, c, d, e, f и их сумма S таковы, что оба числа abc + def и ab + bc + ca de df ef делятся на S. Докажите, что S составное.

2 Геометрия

Поворотная гомотетия

Поворотной гомотетией с центром в точке O, коэффициентом $k \neq 0$ и углом φ называется композиция поворота в точке O на угол φ и гомотетии с центром в точке O и коэффициентом k.

Важные факты

- 1. (а) Прямые AB и A'B' пересекаются в точке X. Докажите, что существует единственная поворотная гомотетия, переводящая отрезок AB в A'B', причём центром этой гомотетии является вторая точка пересечения окружностей (AA'X) и (BB'X).
 - (б) По двум прямым, пересекающимся в точке O, с постоянными (но, возможно, неодинаковыми) скоростями движутся точки A и B, причём в точке O они оказываются в разные моменты времени. Докажите, что описанные окружности треугольников OAB проходят через фиксированную точку, отличную от O.
- **2.** Докажите, что центр поворотной гомотетии, переводящей отрезок AB в A'B', совпадает с центром поворотной гомотетии, переводящей отрезок AA' в BB'. Выведите отсюда существование точки Микеля.

Задачи

- 3. На окружности (ABC) выбрана точка X. Точки C_1 и B_1 основания перпендикуляров из точки X на стороны AB и AC соответственно. Пусть M и N середины отрезков BC и B_1C_1 соответственно. Докажите, что $\angle MNX = 90^\circ$.
- **4.** Точки A_2 , B_2 , C_2 середины высот AA_1 , BB_1 и CC_1 остроугольного треугольника ABC. Найдите сумму углов $B_2A_1C_2$, $C_2B_1A_2$, $A_2C_1B_2$.
- **5.** Вписанная окружность треугольника ABC касается его сторон BC, AC, AB в точках D, E, F соответственно. Описанные окружности треугольников ABC и AEF пересекаются в K. Докажите, что KD биссектриса угла BKC.
- 6. В остроугольном треугольнике ABC провели высоты AA_1, BB_1 и CC_1 . Точки I, J центры вписанных окружностей треугольников A_1BC_1 и A_1CB_1 . Докажите, что точки B, I, J, C лежат на одной окружности.

- 7. Дан вписанный четырехугольник ABCD. Точки P,Q,R основания перпендикуляров из D к прямым BC,CA,AB соответственно. Докажите, что PQ=QR тогда и только тогда, когда биссектрисы $\angle ABC$ и $\angle ADC$ пересекаются на AC.
- 8. Дан остроугольный треугольник ABC, в котором AB < AC. Окружность, проходящая через точки B и C, вторично пересекает отрезки AB и AC в точках C_1 и B_1 соответственно. Окружности (ABC) и (AB_1C_1) вторично пересекаются в точке P. Отрезки BB_1 и CC_1 пересекаются в точке S. Точки Q и R симметричны S относительно прямых AB и AC соответственно. Докажите, что точки A, P, Q, R лежат на одной окружности.

Поворотная гомотетия 2

- 1. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая, проходящая через точку B, пересекает ω_1 и ω_2 в точках P и Q соответственно. Докажите, что существует поворотная гомотетия с центром в точке A, которая переводит ω_1 в ω_2 , а точку P в точку Q.
- **2.** (a) Докажите, что середины всевозможных отрезков PQ из предыдущей задачи лежат на одной окружности. Указание: при поворотной гомотетии окружность переходит в окружность.
 - (б) Точка велосипедистов. Докажите, что существует фиксированная точка, которая равноудалена от точек P и Q для любого выбора этих точек.
- 3. На плоскости даны два квадрата ABCD и $A_1B_1C_1D_1$ такие, что $D=D_1$, точка C лежит на отрезке A_1D , а точки B и B_1 по разные стороны от прямой A_1D . Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в олной точке.
- **4.** Окружность с центром O проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC повторно в точках C_1 и B_1 соответственно. Пусть D вторая точка пересечения окружностей (ABC) и (AB_1C_1) . Докажите, что $\angle ADO = 90^\circ$.
- **5.** Окружности S_1, \ldots, S_n проходят через точку O. Кузнечик из точки $X_i \in S_i$ прыгает в точку $X_{i+1} \in S_{i+1}$ так, что прямая X_{i+1} проходит через вторую точку пересечения окружностей S_i и S_{i+1} . Докажите, что после n прыжков (с S_1 на S_2, \ldots , с S_n на S_1) кузнечик вернётся в исходную точку.
- 6. Окружности ω_1 и ω_2 пересекаются в точках M и N. Через точку A окружности ω_1 проведены прямые AM и AN, пересекающие окружность ω_2 в точках B и C, а через точку D окружности ω_2 прямые DM и DN, пересекающие ω_1 в точках E и F, причем точки A, E, F лежат по одну сторону от прямой MN, а D, B, C по другую. Докажите, что если AB = DE, то точки A, F, C, D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.
- 7. На сторонах BC, AC, AB треугольника ABC выбраны точки D, E, F соответственно так, что треугольники ABC и DEF подобны.
 - (a) Докажите, что центр окружности (ABC) совпадает с ортоцентром

треугольника DEF.

(б) Докажите, что центр окружности (DEF) равноудалён от центра описанной окружности и ортоцентра треугольника ABC.

Поворотная гомотетия, добавка

- 1. ABCD вписанный четырёхугольник, X точка пересечения его диагоналей. Некоторая прямая, проходящая через точку X, пересекает окружность, описанную около ABCD, в точках N_1 и N_2 , и окружности, описанные около треугольников ABX и CDX, в точках M_1 и M_2 . Докажите, что $M_1N_1=M_2N_2$.
- **2.** Вписанная в неравнобедренный треугольник ABC окружность касается его сторон BC, CA, AB в точках A_1 , B_1 , C_1 . На прямой AB отмечена такая точка X, что $A_1X \perp B_1C_1$. Окружности, описанные около треугольников ABC и AB_1C_1 , пересекаются второй раз в точке Z. Докажите, что $\angle XZC_1 = 90^\circ$.
- **3.** В остроугольном треугольнике ABC, в котором AB < BC, проведи медиану AM и высоту BH. Касательные к окружности ABC, проведенные в точках A и B, пересекаются в точке T. Окружность (BMT) повторно пересекает (ABC) в точке S. Докажите, что окружность (SAH) касается прямой AB.

Инверсия

Инверсией с центром в точке O и радиусом r называется преобразование, которое каждую точку A, отличную от O, переводит в точку A' на луче OA такую, что $OA \cdot OA' = r^2$.

- **1.** Докажите, что при инверсии с центром в точке O
 - (a) прямая, проходящая через O, переходит в себя;
 - (б) окружность, проходящая через O, переходит в прямую, не проходящую через O; прямая, не проходящая через O, переходит в окружность, проходящую через O;
 - (в) окружность, не проходящая через O, переходит в окружность, не проходящую через O.
- **2.** Докажите, что при инверсии касающиеся окружности (прямая и окружность) переходят в касающиеся окружности, или в касающиеся окружность и прямую, или в пару параллельных прямых.
- **3.** Дана точка A, лежащая вне окружности ω . С каким радиусом необходимо сделать инверсию с центром в точке A, чтобы ω перешла в себя?
- **4.** (а) При инверсии с центром O и радиусом r точки A и B переходят в точки A' и B' соответственно. Докажите, что $A'B' = \frac{r^2}{OA \cdot OB} \cdot AB$.
 - (б) Неравенство Птолемея. Докажите, что для любых точек A, B, C, D выполнено неравенство $AB \cdot CD + AD \cdot BC \geqslant AC \cdot BD$. В каком случае оно обращается в равенство?
- 5. Через точку A к окружности ω с центром в точке O проведены касательные AX и AY, а также секущая, пересекающая окружность в точках B и C. Докажите, что точки B, C, O и середина отрезка XY лежат на одной окружности.
- 6. Пусть p полупериметр треугольника ABC. Точки E и F на прямой BC таковы, что AE = AF = p. Докажите, что окружность (AEF) касается вневписанной окружности треугольника ABC со стороны BC.
- 7. На плоскости взяты шесть точек A_1 , A_2 , A_3 , B_1 , B_2 , B_3 . Докажите, что если описанные окружности треугольников $A_1A_2B_3$, $A_1B_2A_3$ и $B_1A_2A_3$ проходят через одну точку, то и описанные окружности треугольников $B_1B_2A_3$, $B_1A_2B_3$ и $A_1B_2B_3$ пересекаются в одной точке.
- 8. Окружности ω_1 и ω_2 пересекаются в точках A_1 и A_2 , окружности ω_2

- и ω_3 в точках B_1 и B_2 , окружности ω_3 и ω_4 в точках C_1 и C_2 , окружности ω_4 и ω_1 в точках D_1 и D_2 . Оказалось, что точки A_1 , B_1 , C_1 и D_1 лежат на одной окружности. Докажите, что точки A_2 , B_2 , C_2 и D_2 также лежат на одной окружности.
- **9.** Дана окружность ω и точка P внутри неё, отличная от центра. Рассматриваются пары окружностей, касающиеся ω изнутри и друг друга внешним образом в точке P. Найдите геометрическое место точек X пересечения общих внешних касательных к этим окружностям.
- **10.** Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности. Докажите, что три окружности с центрами A, B, C, проходящие через H, имеют общую касательную.

Инверсия. Добавка

- 1. В треугольнике ABC точки D, E и F выбраны на сторонах BC, CA и AB соответственно так, что отрезки AD, BE и CF пересекаются в одной точке. Окружности (AFE) и (CDE) пересекаются в точке T. Докажите, что окружности (ATD), (BTE), (CTF) имеют общую радикальную ось.
- **2.** Вписанная в треугольник ABC окружность касается сторон BC, AC, AB в точках A_1 , B_1 , C_1 соответственно. Окружности (AB_1C_1) , (A_1BC_1) , (A_1B_1C) пересекают окружность (ABC) в точках A_2 , B_2 , C_2 соответственно. Докажите, что прямые A_1A_2 , B_1B_2 , C_1C_2 пересекаются в одной точке.
- 3. В треугольник ABC вписана окружность ω с центром в точке I. Окружности (BIC) и ω пересекаются в точках X и Y. Общие касательные к окружностям ω и (BIC) пересекаются в точке Z. Докажите, что окружности (ABC) и (XYZ) касаются.

Инверсия 2

- 1. На одной стороне угла с вершиной O выбраны точки A и C, а на другой точка B. При инверсии с центром в точке O они перешли в точки A', B', C'. Докажите, что $\angle ABC = \angle A'B'C'$.
- **2.** Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) ω_1 в точках B_1 и C_1 , а окружности (или прямой) ω_2 в точках B_2 и C_2 , причём касание в B_2 и C_2 такое же, как в B_1 и C_1 . Докажите, что окружности, описанные вокруг треугольников AB_1C_1 и AB_2C_2 , касаются друг друга.
- 3. Лемма Архимеда. В окружности ω проведена хорда AB. Окружность γ касается ω в точке C, а отрезка AB в точке D. Точка M середина дуги AB окружности ω , не содержащей точку C. Докажите, что точки C, D, M лежат на одной прямой, сделав инверсию с центром (а) в точке C, (б) в точке M, (в) в точке A.
- **4.** В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . Прямая B_1C_1 пересекает окружность (ABC) в точках X и Y. Окружность (ABB_1) пересекает высоту CC_1 в точке Z. Докажите, что AX = AY = AZ.
- 5. В остроугольном треугольнике ABC провели высоту AD. Точки E и F проекции D на стороны AC и AB соответственно. Прямая AD вторично пересекает описанную окружность ω треугольника ABC в точке T, а прямая EF пересекает ω в точках P и Q. Докажите, что точка D является центром вписанной окружности треугольника PQT.
- **6.** Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
- 7. Окружности ω_1 и ω_2 пересекаются в точках A и B. Докажите, что для всех окружностей, «вписанных» в лунку, образованную окружностями ω_1 и ω_2 (т. е. касающихся окружностей ω_1 и ω_2 и расположенных внутри них), отношение радиуса к расстоянию от центра до прямой AB одно и то же.
- 8. Точка P внутри треугольника ABC такова, что

Докажите, что биссектрисы углов ABP и ACP пересекаются на прямой AP.

9. В треугольнике ABC окружность с центром A и радиусом AI пересекает описанную окружность треугольника ABC в точках X и Y. Докажите, что прямая XY касается вписанной окружности треугольника ABC.

Инверсия 3

Определение. Углом между двумя кривыми называется угол между касательными к этим кривым в их общей точке. Обобщённой окружностью будем называть окружность или прямую.

Факт. При инверсии угол между обобщёнными окружностями сохраняется.

- 1. Точки A, B, C, D не лежат на одной окружности и никакие три из четырёх них не лежат на одной прямой. Сделав инверсию, докажите, что угол между описанными окружностями треугольников ABC и ABD равен углу между описанными окружностями треугольников ACD и BCD.
- **2.** (a) Опишите множество прямых, перпендикулярных данной окружности ω .
 - (б) Докажите, что точки A и B инверсны относительно ω тогда и только тогда, когда каждая обобщённая окружность, проходящая через них, ортогональна ω .
 - (в) Точки A и B инверсны относительно окружности ω . Некоторая инверсия переводит A в A', B в B', ω в ω' . Докажите, что A' и B' инверсны относительно ω' .
- 3. Окружности ω_1 и ω_2 пересекаются в точках A и B и касаются окружности Ω . Окружность ω проходит через точки A и B перпендикулярно Ω . Докажите, что ω образует одинаковые углы с ω_1 и ω_2 .
- **4.** (а) Даны непересекающиеся окружности ω_1 и ω_2 . Третья окружность перпендикулярна им и пересекает их линию центров. Докажите, что есть инверсия, переводящая ω_1 и ω_2 в концентрические.
 - (б) Даны непересекающиеся окружности ω_1 и ω_2 . Докажите, что существует третья окружность, которая перпендикулярна им и пересекает их линию центров.
 - (в) Поризм Штейнера. Рассмотрим две неперекающиеся окружности ω и Ω такие, что ω лежит внутри Ω . Для произвольной окружности ω_1 , касающейся их обеих, построим цепочку касающихся окружностей по следующему правилу для каждого $i \geqslant 2$ окружность ω_i такова, что она касается Ω внутренним образом, а ω и ω_{i-1} внешним образом. Пусть цепочка замкнулась за n шагов, то есть ω_n касается ω_1 . Докажите, что тогда для любой начальной окружности ω_1 цепочка замкнётся за n шагов.

(г) Внутри окружности Ω выбраны окружности ω_1 , ω_2 , ω_3 , которые попарно касаются друг друга и Ω . В три образовавшихся криволинейных треугольника вписаны окружности (см. рисунок). Докажите, что отмеченные шесть точек касания лежат на одной окружности.

Рис. 3: К задаче 4в

Рис. 4: К задаче 4г

Леммы о воробьях

Первая лемма о воробьях. Дан неравнобедренный треугольник ABC. На лучах BA и CA выбраны точки C_0 и B_0 соответственно, точка A_1 — середина дуги BAC описанной окружности треугольника ABC. Равенство $BC_0 = CB_0$ выполняется тогда и только тогда, когда точки B_0 , C_0 , A_1 и A лежат на одной окружности.

Вторая лемма о воробьях. На сторонах AB и AC треугольника ABC выбраны точки C_0 и B_0 соответственно, точка I — центр вписанной окружности треугольника ABC. Окружность, описанная около треугольника AB_0C_0 , проходит через I тогда и только тогда, когда $BC_0 + CB_0 = BC$.

- 1. Пусть A_0 , B_0 и C_0 точки касания вневписанных окружностей со сторонами BC, CA и AB треугольника ABC. Описанные окружности треугольников A_0B_0C , AB_0C_0 и A_0BC_0 пересекают второй раз описанную окружность треугольника ABC в точках C_1 , A_1 и B_1 соответственно. Докажите, что треугольник $A_1B_1C_1$ подобен треугольнику, образованному точками касания вписанной окружности треугольника ABC с его сторонами.
- **2.** Точки A_1, B_1 и C_1 выбраны на сторонах BC, CA и AB треугольника ABC так, что

$$AB_1 - AC_1 = CA_1 - CB_1 = BC_1 - BA_1.$$

Пусть I_a и O_a , I_b и O_b , I_c и O_c — центры вписанной и описанной окружностей треугольников AB_1C_1 , A_1BC_1 , A_1B_1C соответственно.

- (a) Докажите, что центр окружности ($I_aI_bI_c$) совпадает с I.
- (б) Докажите, что центр вписанной окружности треугольника $O_a O_b O_c$ совпадает с I.
- 3. Точки E и F середины большой дуги BC и малой дуги BC окружности (ABC). Пусть G проекция E на отрезок AC. Докажите, что окружность (ABG) проходит через середину отрезка AF.
- **4.** На стороне BC треугольника ABC выбрана произвольная точка D. Обозначим через I_b и I_c центры вписанных в треугольники ABD и ACD окружностей, а через A_1 точку касания вписанной окружности со стороной BC. Докажите, что угол $I_bA_1I_c$ прямой.

Теорема Турана

Теорема 1 (Туран, 1941). В графе на n вершинах, не содержащем полного подграфа на $k \geqslant 3$ вершинах, рёбер не более, чем

$$\frac{(k-2)(n^2-r^2)}{2(k-1)} + \frac{r(r-1)}{2},$$

где r — остаток от деления n на k-1.

Определение *Число независимости* графа G — это размер его максимального независимого множества, то есть, максимального множества вершин, никакие две из которых не соединены ребром. Оно обозначается $\alpha(G)$.

Теорема 2. Если в графе G на n вершинах $\alpha(G) \leqslant k$, то рёбер в нём хотя бы

$$n \cdot \left[\frac{n}{k}\right] - k \cdot \frac{\left[\frac{n}{k}\right]\left(\left[\frac{n}{k}\right] + 1\right)}{2}.$$

- **1.** Докажите, что теоремы 1, 2 эквивалентны, то есть, выведите из первой вторую и из второй первую.
- 2. Докажите теорему Турана, используя двойную индукцию.

Теперь докажем теорему Турана по-другому. Новое доказательство позволит естественным образом построить пример графа, в котором оценка из теоремы Турана достигается.

- 3. *Клонированием вершины* назовём операцию добавления в граф вершины $v^{'}$, соединённой ровно с теми же вершинами, что и v.
 - (a) Докажите, что если в графе не было полного подграфа на m вершинах, то он не появится при клонировании любой.

Через G обозначим граф на n вершинах без полного подграфа на m вершинах с максимальным возможным числом рёбер.

- (б) Докажите, что степени любых двух несмежных вершин графа G равны.
- (в) Докажите, что степени любых двух смежных вершин графа G отличаются не более чем на 1.
- (г) Докажите, что если в графе G вершины u и v несмежны и вершины v и w несмежны, то вершины u и w также несмежны.
- (д) Докажите, что граф G полный (m-1)-дольный граф с почти равными долями.

- 4. В коллективе из 30 человек любых пятерых можно усадить за круглый стол таким образом, что каждый будет знаком с обоими своими соседями. Докажите, что в этом коллективе найдётся компания из 10 человек, в которой каждый знаком с каждым.
- **5.** Есть n батареек, среди них k+1 хорошая. За один ход можно попробовать вставить в фонарик две батарейки. Он заработает, если обе вставленные батарейки были хорошими. За какое минимальное число действий гарантированно получится зажечь фонарик?
- **6.** В графе n вершин, среди любых четырёх вершин проведено не более четырёх рёбер. Какое наибольшее количество рёбер может быть в таком графе?
- 7. За круглым столом сидят n человек. Разрешается поменять местами любых двух людей, сидящих рядом. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?
- 8. В графе 60 вершин и некоторое число рёбер. Каждое ребро покрашено в один из двух цветов так, что нет одноцветных треугольников. Какое максимальное количество рёбер может быть в графе?

Теорема Турана. Добавка.

- В стране 210 городов и совсем нет дорог. Король хочет построить несколь-1. ко дорог с односторонним движением так, чтобы для любых трёх городов A, B, C, между которыми есть дороги, ведущие из A в B и из B в C, не было дороги, ведущей из A в C. Какое наибольшее число дорог он сможет построить?
- В графе на 2n вершинах $n^2 + 1$ ребро. Докажите, что в нём найдётся 2.не менее n треугольников.
- На плоскости отмечено 4n точек. Соединим отрезками все пары точек, 3. расстояние между которыми равно 1. Известно, что среди любых n+1точек обязательно найдутся две, соединённые отрезком. Докажите, что проведено хотя бы 7n отрезков.

Лемма Холла. Теория

Лемма Холла. Есть n юношей и несколько девушек. Известно, что каких бы k юношей ни выбрать, число знакомых им совокупности девушек не мень $me \ k$. Тогда все юноши могут выбрать по невесте из числа своих знакомых.

- 1. Метод чередующихся цепей. Докажите лемму Холла, используя следующую конструкцию:
 - Предположим, некоторые пары заключили брак, но при этом один из юношей остался неженатым. Этот юноша с горя вступает в тайное общество. Далее каждый молодой человек приводил в тайное общество всех знакомых девушек, а каждая молодая жена — своего мужа...
- 2. Критические множества. Назовём множество из к юношей критическим, если совокупное количество знакомых им девушек в точности равно k.
 - (а) Предположим, что множество всех юношей единственное критическое множество. Докажите, что никакая свадьба юноши из этого множества не испортит для остальных условие леммы Холла.
 - (б) Докажите, что если удалить критическое множество юношей, вместе с их знакомыми девушками, то для оставшихся будет выполнено условие леммы Холла.
 - (в) Докажите лемму Холла, рассмотрев критическое подмножество юношей.
- Из шахматной доски вырезали 7 клеток. Докажите, что на оставшиеся 3. клетки можно поставить 8 не бьющих друг друга ладей.
- Лемма Холла с дефицитом. Дано натуральное число d. Докажите, 4. что если любые k юношей (для всех $1 \le k \le n$) знакомы в совокупности с k-d девушками, то n-d юношей могут выбрать себе невесту из числа знакомых.
- 5. Лемма Холла для арабских стран. Среди n юношей и нескольких девушек некоторые юноши знакомы с некоторыми девушками. Каждый юноша хочет жениться на m знакомых девушках. Докажите, что они могут это делать тогда только тогда, когда для любого набора из kюношей количество знакомых им в совокупности девушек не меньше km.

Определение. Паросочетанием называется набор ребер P, в котором ни-

какие два ребра не имеют общих вершин. 1-фактор — это паросочетание, в котором участвуют все вершины графа.

- (a) Докажите, что в регулярном двудольном графе есть 1-фактор.(б) Докажите, что регулярный двудольный граф разбивается на 1-факторы.
- 7. Конечное множество разбито на m подмножеств с одинаковым количеством элементов, и это же множество разбито на m^2 подмножеств с одинаковым числом элементов. Докажите, что можно выбрать m^2 различных элементов так, что каждое из множеств первого разбиения содержит ровно m выбранных элементов, а каждое из множеств второго разбиения содержит ровно один выбранный элемент.
- **8.** У Деда Мороза есть множество подарков для n школьников. У i-го школьника есть ровно a_i желаемых подарков из этого множества. Оказалось, что

$$\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} \leqslant 1.$$

Докажите, что Дед Мороз может дать каждому школьнику желаемый подарок.

- **9.** (a) Таблица n на n заполняется числами 0 и 1 так, что любые n клеток, никакие две из которых не содержатся в одной строке или в одном столбце, содержат хотя бы один ноль. Докажите, что существуют i строк и j столбцов, где i+j>n, пересечения которых состоят только из нолей.
 - (б) Таблица n на m заполняется числами 0 и 1 так, что любые k клеток, никакие две из которых не содержатся в одной строке или в одном столбце, содержат хотя бы один ноль. Докажите, что существуют i строк и j столбцов, где i+j>n+m-k, пересечения которых состоят только из нулей.

Лемма Холла. Задачи

- 1. Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры черным кружком. Затем входит фокусник. Его задача отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
- **2.** Латинским называется прямоугольник $m \times n$, где $m \leqslant n$, в каждой клетке которого записано число от 1 до n таким образом, что в каждой строке и в каждом столбце записанные числа различны. Докажите, что любой латинский прямоугольник можно дополнить до латинского квадрата $n \times n$.
- **3.** Пусть есть m юношей и несколько девушек, каждый юноша любит не менее t девушек, причем всех юношей можно женить на любимых ими девушках (так, чтобы брачные пары не пересекались), т. е. есть паросочетание. Тогда имеется не менее

$$\begin{cases} t!, & t \leq m; \\ t!/(t-m)!, & t > m. \end{cases}$$

способов переженить юношей на любимых ими девушках.

- **4.** Даны k мальчиков и 2k-1 конфета. Докажите, что можно дать каждому мальчику по конфете так, чтобы мальчику, которому не нравится его конфета, не нравились и конфеты остальных мальчиков.
- 5. Имеется множество юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявила: «Я могу женить всех брюнетов так, чтобы каждый женился на знакомой ему девушке.» Вторая сваха ответила: «А я могу устроить судьбу всех блондинок. Каждая сможет выйти замуж за знакомого юношу.» Этот диалог услышал любитель математики, который сказал: «В таком случае, я могу сделать и то и другое одновременно.» Прав ли он?
- **6.** Есть натуральные числа $k \le m < n$. В графе G степени всех вершин не менее m и не более n. Докажите, что можно выкинуть несколько рёбер, чтобы степени стали не менее m-k и не более n-k.

7. Имеется граф G, все вершины которого имеют степень 2k. Докажите, что из него можно выкинуть некоторое количество ребер, чтобы в оставшемся графе степень каждой вершины была равна двум.

Раскраски графа

Определение *Хроматическим числом* $\chi(G)$ графа G называется минимальное количество цветов, в которые можно *правильно* покрасить вершины графа G (т. е. любые две смежные вершины покрашены в разные цвета).

- **1.** (а) Докажите, что $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}$, где V(G) множество вершин графа, а $\alpha(G)$ его число независимости. (б) Докажите, что $\chi(G)\chi(G') \geqslant |V(G)|$. (G' антиграф графа G).
- **2.** (a) Если в графе степень каждой вершины не превосходит d, то его можно правильно раскрасить в d+1 цвет.
 - (6) Если в любом подграфе графа есть вершина степени не больше d, то его можно правильно раскрасить в d+1 цвет.
 - (в) Дан ориентированный граф G, исходящие степени вершин которого не превосходят d. Докажите, что $\chi(G) \leq 2d+1$.
- 3. Пусть d наибольшая степень вершины графа G. Докажите, что вершины графа G можно покрасить в d^2+1 цвет так, чтобы ни у какой вершины не было двух одноцветных соседей.
- **4.** В плоском графе есть гамильтонов цикл. Докажите, что его грани можно правильно покрасить в четыре цвета.
- **5.** Докажите, что хроматическое число планарного графа не превосходит **(a)** 6 **(б)** 5.
- **6.** Докажите, что объединение планарного и двудольного графа можно раскрасить в 10 цветов.
- 7. Докажите, что $\chi(G) + \chi(G') \leqslant v(G) + 1$, где G' антиграф графа G.
- **8.** Вершины некоторого графа нельзя правильным образом раскрасить в менее, чем k цветов. Докажите, что для любой правильной раскраски вершин этого графа в k цветов существует путь, в котором встречается ровно по одной вершине каждого цвета.
- **9.** Дан связный граф. Известно, что как ни покрась его вершины в n цветов, найдется ребро с концами одного цвета. Докажите, что можно так удалить C_n^2 рёбер, чтобы граф остался связным.
- **10.** Дан граф G. Известно, что любая вершина участвует в не более чем N простых нечётных циклах. Докажите, что (a) $\chi(G) \leqslant 2N+2$; (б)

 $\chi(G) \leqslant N + 2.$

Рёберные раскраски

Определение 1. Pаскраской ребер графа G в k цветов называется отображение $\rho: E(G) \to \{1,2,\ldots,k\}$. Будем говорить, что в раскраске ρ цвет i представлен в вершине v, если существует ребро, выходящее из v, покрашенное в цвет i. Количество цветов, представленных в вершине v, будем обозначать $\rho(v)$.

Определение 2. Будем говорить, что ρ — *оптимальная раскраска* ребер графа G в k цветов, если для любой другой раскраски $\rho^{'}$ ребер этого графа в k цветов выполняется неравенство

$$\sum_{v \in V(G)} \rho(v) \geqslant \sum_{v \in V(G)} \rho^{'}(v)$$

Определение 3. Раскраска ребер графа G называется npaвильной, если любые два ребра, имеющие общий конец, покрашены в разные цвета.

Определение 4. Реберное хроматическое число графа $\chi'(G)$ — это наименьшее количество цветов, для которого существует правильная раскраска ребер графа G.

Обозначим за $\Delta(G)$ максимальную степень вершины графа G.

- **1.** Приведите пример, когда $\chi'(G) > \Delta(G)$.
- 2. Назовем раскраску (не обязательно правильную) рёбер графа яркой, если между любыми двумя вершинами найдется путь, все рёбра в котором разного цвета. Какое наименьшее количество цветов может быть в яркой раскраске
 - (a) полного графа на n вершинах;
 - (б) полного двудольного графа с долями по n вершин;
 - (в) дерева на n вершинах?
- **3.** В графе mn рёбер и несколько вершин. Известно, что рёбра можно раскрасить в m цветов правильным образом. Докажите, что это можно сделать, покрасив в каждый цвет ровно n рёбер.
- **4.** Рёбра связного графа покрашены в k цветов, причем из каждой вершины выходит ровно по одному ребру каждого цвета. Злой гномик удалил

- k-1 ребро. Оказалось, что все удаленные ребра были разных цветов. Докажите, что граф остался связным.
- 5. Пусть ρ оптимальная раскраска ребер графа G в k цветов. Вершина v и цвета i и j таковы, что в вершине v хотя бы два раза представлен цвет i и не представлен цвет j. Рассмотрим граф H, полученный из G удалением всех ребер, кроме цветов i,j. Докажите, что компонента связности графа H, содержащая вершину v, простой цикл нечетной длины.
- 6. Пусть G двудольный граф. Докажите, что $\chi'(G) = \Delta(G)$ (a) если G регулярный двудольный граф (б) если G произвольный двудольный граф.
- 7. Пусть G двудольный граф, наименьшая степень степень вершин графа G равна d. Докажите, что существует покраска ребер графа G в d цветов, в которой в каждой вершине представлены d цветов.
- 8. Найти $\chi'(G)$, где G полный граф на (a) 2n+1 (б) 2n вершинах.

[5 ноября – 17 ноября 2024 г.]

Калиниченко И. А., Луценко А. И., Солопов С. К. группа 9 класс 14 ноября 2024

Теорема Шпернера

Теорема Шпернера. В n-элементном множестве выбрано несколько подмножеств так, что ни одно из них не содержится ни в каком другом. Тогда этих подмножеств не более $C_n^{[n/2]}$.

- **1.** В множестве из n элементов отметили несколько подмножеств так, что никакое отмеченное подмножество не содержится ни в одном другом отмеченном.
 - (a) Докажите, что можно отметить $C_n^{[n/2]}$ подмножеств;
 - (б) При помощи леммы Холла докажите, что можно заменить все множества на $\lfloor n/2 \rfloor$ -элементные, и выведите отсюда теорему Шпернера.
- **2.** (a) Рассмотрим все возможные цепочки множеств $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_{n-1} \subset A_n = \{1, 2, \dots n\}$. В скольких цепочках содержится k-элементное множество?
 - (б) Неравенство ЛЯМ. Пусть A_1, A_2, \dots, A_k подмножества n-элементе множества, ни одно из которых не содержится в другом. Тогда $\sum_{i=1}^k \frac{1}{C_n^{|Ai|}} \le 1$;
 - (в) С помощью неравенства ЛЯМ докажите теорему Шпернера.
- 3. Детектив расследует преступление. В деле замешаны 100 человек, среди которых один преступник, а один свидетель. Каждый день детектив может пригласить к себе одного или нескольких из этих 100 человек, и если среди приглашённых есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. За какое наименьшее число дней детектив заведомо сможет раскрыть дело?
- **4.** Пусть среди отмеченных подмножеств n-элементного множества нет вложенной цепочки из k элементов. Какое наибольшее количество подмножеств может быть отмечено в этом случае?
- 5. На математической олимпиаде Средиземья было предложено 10 задач. Оказалось, что любые два гнома решили разные наборы задач, причем обязательно нашлась задача, решенная первым из них и не решенная вторым, и задача, решенная вторым из них и не решенная первым. Какое наибольшее количество верных решений могло прочитать жюри олимпиады?

- 6. В школе преподается n предметов. Оказалось, что любые два школьника имеют только оценки 5 и 2, причем имеют разные наборы оценок. Также оказалось, что нет школьника, который учится лучше, чем два других ученика и нет школьника, который учится хуже, чем два других ученика. (Мы считаем, что один ученик лучше другого, если по любому предмету у него оценка не хуже, а по какому-нибудь предмету оценка лучше). Докажите, что в школе не больше 2C_{n-1}^[n/2] учеников.
- 7. В множестве из n элементов отметили несколько подмножеств так, что никакое отмеченное подмножество не содержится ни в одном другом отмеченном, причем любые два отмеченные подмножества пересекаются и никакие два подмножества не дают в объединении все множество. Какое наибольшее количество подмножеств может быть отмечено, если (a) n четное; (б) n нечетное?