Ánh xạ tuyến tính

Mảng Học tập và NCKH BCH LCĐ - LCH Viện Toán Ứng dụng và Tin học http://bit.ly/LCDLCHSAMI Group Góc học tập SAMI

banhoctapvanckh@gmail.com http://bit.ly/gochoctapSAMI

Mục lục

1	Định nghĩa ánh xạ tuyến tính	1
2	Tính chất	1
3	Ẩnh và hạt nhân	2
	3.1 Ånh qua một ánh xạ tuyến tính	2
	3.2 Hạt nhân của ánh xạ tuyến tính	2
4	Ma trận và biểu thức của ánh xạ tuyến tính	3
5	Vectơ riêng. Giá trị riêng	4
	5.1 Định nghĩa	4
	5.2 Cách tìm giá trị riêng, vectơ riêng	4
6	Đưa ma trận của phép biến đổi về dạng đường chéo	5
	6.1 Điều kiện để ma trận có thể chéo hóa được	5
	6.2 Ma trân chéo hóa	5

1. Định nghĩa ánh xạ tuyến tính

Định nghĩa

Ánh xạ tuyến tính f từ V vào W là một hàm $f\colon V\to W$ thỏa mãn

$$\begin{cases} f(u_1 + u_2) = f(u_1) + f(u_2) \\ f(ku) = kf(u) \end{cases}$$

Tên gọi và các trường hợp đặc biệt

Cho ánh xạ tuyến tính (đồng cấu) f. Nếu:

- f là đơn ánh thì ta gọi f là một đơn cấu
- f là toàn ánh thì ta gọi f là một toàn cấu
- f là song ánh thì ta gọi f là một đẳng cấu

2. Tính chất

Xét ánh xạ tuyến tính $f\colon U\to V$. Ta có một số kết quả cơ bản sau:

- 1. $f(0_U) = f(0_V)$
- 2. f biến một không gian con của ${\cal U}$ thành một không gian con của ${\cal V}$
- 3. Nếu f là một đẳng cấu và giả sử W là không gian con của V. Khi đó ta có $f^{-1}(W)$ là không gian con của U

Một số phép toán trên không gian các ánh xạ tuyến tính

Ta có một số kết quả quan trọng:

- Tổng của hai ánh xạ tuyến tính là một ánh xạ tuyến tính
- Hiệu của hai ánh xạ tuyến tính là một ánh xạ tuyến tính

- Nhân một số vô hướng với một ánh xạ tuyến tính lại thu được một ánh xạ tuyến tính
- Hợp của hai ánh xạ tuyến tính là một ánh xạ tuyến tính

Chú ý: Phép hợp các ánh xạ tuyến tính không có tính chất giao hoán.

3. Ånh và hạt nhân

3.1. Ảnh qua một ánh xạ tuyến tính

Xét ánh xạ tuyến tính $f: U \to V$

Định nghĩa 3.1. Ảnh của U qua ánh xạ tuyến tính f là tập:

$$\{v \in V \mid f(u) = v\}$$

là không gian con của V. Kí hiệu $\operatorname{Im} f = f(U)$.

Định lí 3.1. Nếu $S = \{u_1, u_2, ..., u_n\}$ là một hệ sinh của U thì $f(S) = \{f(u_1), f(u_2), ..., f(u_n)\}$ là một hệ sinh của $\operatorname{Im} f$.

Định lí 3.2. Nếu $f(S) = \{f(u_1), f(u_2), ..., f(u_n)\}$ độc lập tuyến tính trong V thì $S = \{u_1, u_2, ..., u_n\}$ độc lập tuyến tính trong V. Do đó:

$$\dim f(U) \le \dim U$$

Chú ý: Khi làm bài tập cần để ý tới hai điều sau:

- f là toàn cấu khi và chỉ khi $\operatorname{Im} f = V$
- $\dim(\operatorname{Im} f) = \operatorname{rank} f$

3.2. Hạt nhân của ánh xạ tuyến tính

Định nghĩa 3.2. Hạt nhân của ánh xạ tuyến tính f là tập:

$$\{u \in U \mid f(u) = 0\}$$

là không gian con của U. Kí hiệu ker f.

Thông thường, $\ker f$ xác định nhờ hệ phương trình thuần nhất f(u) = 0.

Định lí 3.3. Cho ánh xạ tuyến tính $f: U \to V$ và 2 vecto $u, v \in U$. Khi đó ta có

$$f(u) = f(v) \Leftrightarrow u - v \in \ker f$$

Chú ý: f là đơn cấu khi và chỉ khi ker $f = \{0\}$.

Định lí 3.4. Cho ánh xạ tuyến tính $f: U \to V$. Khi đó ta có:

$$\dim(\operatorname{Im} f) + \dim(\ker f) = \dim U$$

Ma trận và biểu thức của ánh xạ tuyến tính

Cho ánh xạ $f: V_n \to W_m$. Gọi $w = (w_1, w_2, \dots, w_m)$ là cơ sở của W_m . Biểu diễn các ảnh $f(v_i)$ qua cơ sở của W_m ta được:

$$\begin{cases} f(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m \\ f(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m \\ \dots \\ f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m \end{cases}$$

Định nghĩa 4.1. Ma trận A_f thu được từ phép chuyển vị đối với ma trận hệ số trong hệ trên:

$$A_f = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

được gọi là ma trận tuyến tính của f đối với cặp cơ sở trong $V_n = W_m$.

Trong trường hợp $V_n = W_m$ và cơ sở w trùng với cơ sở v thì A_f gọi là ma trận của phép biến đổi tuyến tính f với cơ sở đã cho.

Chú ý: Khi các cơ sở của không gian đã xác định thì mỗi axtt tương ứng với 1 và chỉ 1 ma trận kích thước $m \times n$ mà thôi.

Mối liên hệ giữa các ma trận của cùng một ánh xạ tuyến tính đối với các cơ sở khác nhau

Cho không gian V_n cùng với 2 cơ sở $(u_1, u_2, ..., u_n)$ và $(u'_1, u'_2, ..., u'_n)$ và không gian W_m cùng với 2 cơ sở $(w_1, w_2, ..., w_m)$ và $(w'_1, w'_2, ..., w'_m)$.

Gọi A là ma trận đối với cơ sở u và w. B là ma trận đối với cơ sở u' và w'.

Gọi P, T lần lượt là ma trận chuyển cơ sở từ u sang u' và từ w sang w'. Khi đó, ta có:

$$A = T B P^{-1}$$

Mối liên hệ giữa các phép toán trên ánh xạ tuyến tính với các ma trận biểu diễn

Người ta đã chứng minh được rằng:

- Nếu 2 ánh xạ tuyến tính f, g có các ma trận A, B thì f + g sẽ có ma trận A + B
- Nếu ánh xa f có ma trân A thì kf có ma trân kA
- Nếu 2 ánh xạ tuyến tính f,g có ma trận A,B thì $f\circ g$ sẽ có ma trận BA
- Nếu f là đẳng cấu có ma trận A thì f^{-1} sẽ có ma trận A^{-1} . Ma trận của f khả nghịch khi và chỉ khi f là đẳng cấu

5. Vecto riêng. Giá trị riêng

5.1. Đinh nghĩa

Định nghĩa 5.1. Số $\lambda \in \mathbb{F}$ được gọi là giá trị riêng của phép biến đổi f nếu tồn tại vecto $u \neq 0$ sao cho $f(u) = \lambda u$.

Khi đó ta nói u là vectơ riêng ứng với giá trị riêng λ .

5.2. Cách tìm giá trị riêng, vectơ riêng

Tìm giá trị riêng.

Gọi $A_{n\times n}$ là ma trận của f. Khi đó, để λ là trị riêng của f thì phải tồn tại $x\neq 0$ sao cho $Ax=\lambda x$,

hay phương trình $(A - \lambda E)x = 0$. Điều này tương đương với $|A - \lambda E| = 0$. Như vậy, λ là giá trị riêng của f khi và chỉ khi $|A - \lambda E| = 0$.

Định nghĩa 5.2. Đa thức $P_A(\lambda) = |A - \lambda E|$ được gọi là đa thức đặc trưng của A.

Người ta đã chứng minh được rằng là đa thức bậc n theo biến λ có hệ số cao nhất là $(-1)^n$, hệ số tự do là $\det A$.

Tìm vectơ riêng.

Với mỗi giá trị riêng λ ta tìm các vecto riêng ứng với giá trị riêng thông qua hệ thuần nhất $(A - \lambda E)x = 0$.

Định nghĩa 5.3. Không gian $V_A(\lambda) = \{x \mid (A - \lambda E)x = 0\}$ được gọi là không gian riêng ứng với λ .

Dua ma trận của phép biến đổi về dạng đường chéo

6.1. Điều kiện để ma trận có thể chéo hóa được

Định lí 6.1. Điều kiện cần và đủ để ma trận A của phép biến đổi $f: V_n \to V_n$ chéo hóa được là tồn tại một cơ sở của không gian này gồm những vecto riêng của f.

Định lí 6.2. Nếu tất cả các giá trị riêng của phép biến đổi tuyến tính $f: V_n \to V_n$ đôi một khác nhau thì ma trận A của f (đối với cơ sở nào đó) có thể đưa về dạng đường chéo.

6.2. Ma trân chéo hóa

Định lí 6.3. Nếu phép biến đổi tuyến tính $f: V_n \to V_n$ có ma trận A đối với cơ sở v và có ma trận đường chéo B đổi với cơ sở u thì ta có:

$$B = P^{-1} A P$$

Trong đó P là ma trận chuyển cơ sở từ v thành cơ sở u.

Định nghĩa 6.1. Ma trận P trong định lý trên được gọi là ma trận chéo hóa của A.