- (1) Using a Theorem, prove that $f(x) = x^3$ is increasing on \mathbb{R} .
- (2) Using the definition and not theorems, prove that $f(x) = x^3$ is strictly increasing on \mathbb{R} .
- (3) Prove or disprove: Let f be differentiable on \mathbb{R} . If f is strictly increasing on \mathbb{R} , then f'(x) > 0 for all $x \in \mathbb{R}$.
- (4) Prove or disprove: Let f be differentiable on \mathbb{R} . If f'(x) > 0 for all $x \in \mathbb{R}$, then f is strictly increasing on \mathbb{R} .
- (5) Prove or disprove: If f'(r) = 0, then there is some $a, b \in \mathbb{R}$ with a < r < b such that f attains its maximum value or minimum value on [a, b] at x = r.
- (1) Using a Theorem, prove that $f(x) = x^3$ is increasing on \mathbb{R} .
- (2) Using the definition and not theorems, prove that $f(x) = x^3$ is strictly increasing on \mathbb{R} .
- (3) Prove or disprove: Let f be differentiable on \mathbb{R} . If f is strictly increasing on \mathbb{R} , then f'(x) > 0 for all $x \in \mathbb{R}$.
- (4) Prove or disprove: Let f be differentiable on \mathbb{R} . If f'(x) > 0 for all $x \in \mathbb{R}$, then f is strictly increasing on \mathbb{R} .
- (5) Prove or disprove: If f'(r) = 0, then there is some $a, b \in \mathbb{R}$ with a < r < b such that f attains its maximum value or minimum value on [a, b] at x = r.
- (1) Using a Theorem, prove that $f(x) = x^3$ is increasing on \mathbb{R} .
- (2) Using the definition and not theorems, prove that $f(x) = x^3$ is strictly increasing on \mathbb{R} .
- (3) Prove or disprove: Let f be differentiable on \mathbb{R} . If f is strictly increasing on \mathbb{R} , then f'(x) > 0 for all $x \in \mathbb{R}$.
- (4) Prove or disprove: Let f be differentiable on \mathbb{R} . If f'(x) > 0 for all $x \in \mathbb{R}$, then f is strictly increasing on \mathbb{R} .
- (5) Prove or disprove: If f'(r) = 0, then there is some $a, b \in \mathbb{R}$ with a < r < b such that f attains its maximum value or minimum value on [a, b] at x = r.