gular superior de 2 × 2, entonces $A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$ y det $A = a_{11}a_{22} - a_{12} \cdot 0 = a_{11}a_{22}$, de mane-

ra que el teorema se cumple para n=2. Se supondrá que se cumple para k=n-1 y se demostrará para k=n. El determinante de una matriz triangular superior de $n\times n$ es

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} - a_{12} \begin{vmatrix} 0 & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$+ a_{13} \begin{vmatrix} 0 & a_{22} & \cdots & a_{2n} \\ 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{1+n} a_{1n} \begin{vmatrix} 0 & a_{22} & \cdots & a_{2,n-1} \\ 0 & 0 & \cdots & a_{3,n-1} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{vmatrix}$$

Cada uno de estos determinantes es el determinante de una matriz triangular superior de $(n-1) \times (n-1)$ que, de acuerdo con la hipótesis de inducción, es igual al producto de las componentes en la diagonal. Todas las matrices, excepto la primera, tienen una columna de ceros, por lo que por lo menos una de sus componentes diagonales es cero. De este modo, todos los determinantes, excepto el primero, son cero. Por último,

$$\det A = a_{11} \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_1 (a_{22} a_{33} & \cdots & a_{nn})$$

lo que prueba que el teorema se cumple para matrices de $n \times n$.

EJEMPLO 3.1.10 Determinantes de seis matrices triangulares

Los determinantes de las seis matrices triangulares en el ejemplo 3.1.8 son $|A| = 2 \cdot 2 \cdot 1 = 4$; |B| = (-2)(0)(1)(-2) = 0; $|C| = 5 \cdot 3 \cdot 4 = 60$; |D| = 0; |I| = 1; |E| = (2)(-7)(-4) = 56. El siguiente teorema será de gran utilidad.

Teorema 3.1.2

Sea T una matriz triangular superior. Entonces T es invertible si y sólo si det $T \neq 0$.

Demostración

Sea
$$T = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$