高数基础班 (9)

主讲 武忠祥 教授

常考题型与典型例题

常考题型

- 1. 求函数的极值和最值,确定曲线的凹向和拐点; 2. 求渐近线;
- 3. 方程的根; 4. 不等式的证明;

 - 5. 中值定理证明题

(一)求函数的极值和最值及确定曲线的凹向和拐点

【例5】(2003年,1,2)设函数

$$f(x)$$
 在 $(-\infty,+\infty)$ 内连续, \checkmark

其导函数的图形右图所示,则

$$f(x)$$
 有

- (A) 一个极小值点和两个极大值点
- (B) 两个极小值点和一个极大值点
- √(C) 两个极小值点和两个极大值点
 - (D) 三个极小值点和一个极大值点

【例6】(1990年1, 2) 已知
$$f(x)$$
 在 $x = 0$ 的某个邻域内连续,且 $f(0) = 0$, $\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = 2$, 则在点 $x = 0$ 处 $f(x)$ 《(A) 不可导. 之》 《(B) 可导,且 $f'(0) \neq 0$. 《(C) 取得极大值. 《D) 取得极小值. 【解1】直接法 《 (D) 取得极小值. 【解1】直接法 《 (D) 取得极小值. 》 (D) 取得极小值. 《 (D) 取得极小值. 《 (D) 取得极小值. 》 (D) 取得极小值. 《 (D) 取得成小值. 》 (D) 取得成小值. 《 (D) 取得成小值. 》 (D) 取得成小值. 《 (D) 取得成小值. 》 (D) 取得成

【例】 (2019年2, 3) 已知函数 $f(x) = \begin{cases} x^{2x}, & x > 0, \\ xe^x + 1, & x \le 0, \end{cases}$ 求 f'(x), $e^x \to e^0 = 1$ 并求 f(x) 的极值. $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{x^{2x} - 1}{x} = \lim_{x \to 0^{+}} \frac{e^{2x \ln x} - 1}{x} = \lim_{x \to 0^{+}} \frac{2x \ln x}{x} = \infty \qquad \qquad \int (0) x \, dx$ $f'(x) = \begin{cases} 2x^{2x}(\ln x + 1), & x > 0, \\ e^{x}(x + 1), & x < 0, \end{cases} \quad \begin{cases} x^{1x} = e^{2x \ln x} \\ e^{x}(x + 1), & x < 0, \end{cases} \quad \begin{cases} x^{1x} = e^{2x \ln x} \\ x^{1x} = e^{2x \ln x} \end{cases} \quad \begin{cases} x^{1x} = e^{2x \ln x} \\ x^{1x} = e^{2x \ln x} \end{cases}$ $\Leftrightarrow f'(x) = 0, \text{ } \emptyset \text{ } x = -1, x = \frac{1}{-}.$ $f(-1)=1-\frac{1}{e}$ $f(\frac{1}{e})=e^{-\frac{2}{e}}$ 极小值 f(0)=1 ① 如此 4 位

【例7】在半径为 R 的球中内接一直圆锥, 试求圆锥的最大体积.

2

[解2]
$$V = \frac{\pi h}{3} [R^2 - (h - R)^2]$$

$$= \frac{\pi}{3} h^2 [2R - h] = \frac{\pi}{3} (2Rh^2 - h^3)$$

$$\frac{dv}{dh} = \frac{\pi}{3}(4Rh - 3h^2) = 0 \qquad h = \frac{4}{3}R \qquad \text{fif}(4R - 3h)$$

$$= \frac{\pi}{3}k(4R - 3h) \qquad \Rightarrow \text{fif} \qquad \Rightarrow \text{$$

【例8】(2018年2, 3)曲线 $y = x^2 + 2 \ln x$ 在其拐点处的切线方

程是 _____.

[#]
$$y' = 2x + \frac{2}{x}, y'' = 2 - \frac{2}{x^2},$$

$$\phi y'' = 0$$
 得 $x = \pm 1, x = -1$ (含去),

拐点为
$$(1,1)$$
,又 $f'(1)=2+2=4$

则拐点处的切线方程是为 y-1=4(x-1)

即
$$y=4x-3$$

$$\oint_{-\infty}^{\infty} (x) = 0$$

【例9】(2004年, 2, 3) 设
$$f(x) = |x(1-x)|$$
 ,则

(A) $x = 0$ 是 $f(x)$ 的极值点,但 $(0,0)$ 不是曲线 $y = f(x)$ 的拐点

(B) $x = 0$ 不是 $f(x)$ 的极值点,但 $(0,0)$ 是曲线 $y = f(x)$ 的拐点

(C) $x = 0$ 是 $f(x)$ 的极值点,且 $(0,0)$ 是曲线 $y = f(x)$ 的拐点

(B) $x = 0$ 不是 $f(x)$ 的极值点,(0,0) 也不是曲线 $y = f(x)$ 的拐点

(B) $x = 0$ 不是 $f(x)$ 的极值点,(0,0) 也不是曲线 $y = f(x)$ 的拐点

[解1】 $f(x) = \begin{cases} -x(1-x), & x < 0, \\ x(1-x), & x \ge 0. \end{cases}$

【例9】(2004年, 2, 3) 设
$$f(x) = |x(1-x)|$$
 , 则

(A)
$$x=0$$
 是 $f(x)$ 的极值点,但 $(0,0)$ 不是曲线 $y=f(x)$ 的拐点

(B)
$$x=0$$
 不是 $f(x)$ 的极值点,但 $(0,0)$ 是曲线 $y=f(x)$ 的拐点

(C)
$$x=0$$
 是 $f(x)$ 的极值点,且 $(0,0)$ 是曲线 $y=f(x)$ 的拐点

(B)
$$x=0$$
 不是 $f(x)$ 的极值点, $(0,0)$ 也不是曲线 $y=f(x)$ 的拐点

求渐近线

【例10】(2014年1,2)下列曲线中有渐近线的是()

(A)
$$y = x + \sin x$$

$$y = x + \sin \frac{1}{x}$$
(C) $y = x + \sin \frac{1}{x}$

(B)
$$y = x^2 + \sin x$$
(D)
$$y = x^2 + \sin \frac{1}{x}$$

(D)
$$y = x^2 + \sin \frac{1}{x}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x^2 + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x^2 + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \sin \frac{1}{x} \\ y = x + \sin \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}{x} \end{cases}$$

$$\begin{cases} y = x + \cos \frac{1}{x} \\ y = x + \cos \frac{1}$$

[例11] (2007年, 1, 2) 曲线
$$y = \frac{1}{x} + \ln(1 + e^{x})$$
 渐近线的条数为

(A) 0. (B) 1. (C) 2. (D) 3.
$$y = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 + e^{x}) = 0$$

$$y = \int_{0}^{x} x + \ln(1 +$$

【例12】(2017年2) 曲线
$$y = x(1 + \arcsin \frac{2}{y}$$
) 的斜渐近线方程为

$$\frac{4}{x}$$
 田纹 $y = x(1 + arcsin - y)$ 的特别处线力性 y

[y = x + 2]

【例】(2021年2) 已知
$$f(x) = \frac{x|x|}{1+x}$$
,求 $f(x)$ 的凹凸区间及渐近线.

【解】当 $x > 0$ 时, $f(x) = \frac{x^2-1}{1+x} = x^2-1 + \frac{1}{1+x}$, $f''(x) = \frac{2}{(1+x)^3} > 0$, 凹

当
$$-1 < x < 0$$
 时, $f(x) = \frac{-x^2}{1+x} = 1 - x - \frac{1}{1+x}$, $f''(x) = -\frac{2}{(1+x)^3} < 0$, 凸

$$1+x \qquad 1+x \qquad (1+x)^3$$

当
$$x < -1$$
 时, $f(x) = \underbrace{1 - x - \frac{1}{1 + x}},$ $f''(x) = -\frac{2}{(1 + x)^3} > 0,$ 凹

渐近线:
$$x = -1$$
. $y = x - 1, y = 1 - x$,

三、方程的根 [
$$f(x) = f(x) = 0$$
]

【例13】 (1992年5) 求证: 方程 $x + p + q \cos x = 0$ 恰有一个 实根, 其中 p,q 为常数, 且 $0 < q < 1$.

[$f(x) = f(x) = 0$]

实根, 其中 p,q 为常数, 且 $0 < q < 1$.

[$f(x) = f(x) = 0$]

机氟省一个多里。

[4. 6]

【例14】设
$$a_1 + a_2 + \dots + a_n = 0$$
, 求证: 方程
$$f(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + 2a_2 x + a_1 = 0$$
在 $(0,1)$ 内至少有一个实根.
$$f(0) = a_1$$
[id]
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 = 0$$

$$f(0) = a_1$$

$$f(0) = a_1 x^n + a_{n-1} x^{n-1} + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + a_{n-1} x^{n-1} + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + a_2 x^n + a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + a_2 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + a_2 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

$$f(0) = a_1 x^n + \dots + a_1 = 0$$

【例】(2019年3)已知方程 $x^5 - 5x + k = 0$ 有三个不同的实根,则

k 的取值范围是

- A. $(-\infty, -4)$
- C. [-4,4]

- B. $(4,+\infty)$
- D. (-4,4)

四. 不等式的证明

【例15】证明:
$$\frac{x}{1+x} < \ln(1+x) < x.(x > 0)$$

$$f(x) = l_{x}x$$

$$\frac{\chi}{1+\chi} < \ln(Hx) - \ln 1 = \frac{\chi}{3} < \chi \qquad [1, Hx]$$

【例16】(1991年, 3)利用导数证明: 当 x>1 时

$$\frac{\ln(1+x)}{\ln x} > \frac{x}{1+x}.$$

$$(x+1) \ln(1+x) > x \ln x$$

$$f(x+1) = f(x)$$

$$f(x) = x \ln x.$$

f(x)=&x+1 > 0

$$\begin{cases}
(x) > 0 \\
[a, b]
\end{cases}$$

$$\begin{cases}
(a)=0 \quad f(x) \not \uparrow \downarrow \uparrow \\
f(b)=0 \quad f(b)
\end{cases}$$

【例17】 (2012年1, 2, 3) 证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1)$$
.

【证】令
$$f(x) = x \ln \frac{1+x}{1-x} + \cos x - \frac{x^2}{2} - 1$$
 (-1f(x) 是偶函数,所以是要证 $f(x) \ge 0$ (0 \le x < 1).

$$f'(x) = \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x$$

$$\geq 2x - \sin x - x = x - \sin x \geq 0$$

1(0)=0

则
$$f(x) \ge 0$$
 $(0 \le x < 1)$.

五. 中值定理证明题

【例18】设 f(x) 在区间 [a,b] 上连续,在 (a,b) 上二阶可导,且

$$f(a) = f(b) = f(c)$$
 $(a < c < b)$, 证明存在 $\xi \in (a,b)$, 使 $f''(\xi) = 0$.

ヨるとは、らり、はからか

【例20】设
$$f(x)$$
 在 $[a,b]$ 上二阶可导, $f(a) = f(b) = 0$,且存在

【例20】设
$$f(x)$$
 住 $[a,b]$ 上—阶可守, $f(a) = f(b) = 0$,且仔化

$$c \in (a,b)$$
 使 $f(c) < 0$. 试证: $\exists \xi, \eta \in (a,b), f'(\xi) < 0, f''(\eta) > 0$.

[] $f(c) - f(c) = f(g) = f(g) > 0$
 $f(g) - f(g) = f(g) > 0$
 $f(g) = f(g) > 0$
 $f(g) = f(g) > 0$

【例21】(2013年3) 设函数
$$f(x)$$
 在 $[0,+\infty)$ 上可导,且 $f(0)=0$,且 $\lim_{x\to +\infty} f(x)=2$. 证明:

$$(1) 存在 $a > 0$, 使得 $f(a) = 1$;$$

(1) 存在
$$a > 0$$
, 使得 $f(a) = 1$;
(2) 对(1)中的 a , 存在 $\xi \in (0,a)$, 使得 $f'(\xi) = \frac{1}{a}$. $= \frac{f(a) - f(a)}{f(a)}$

$$\exists \alpha \in (0, A), \forall d f(\alpha) = 1.$$

$$(2) d = \frac{f(\alpha) - f(\alpha)}{\alpha - \alpha} = f(\alpha) \qquad \beta \in (0, a)$$

$$F(\alpha) = 0$$

使待
$$f(a) = 1;$$

 $-\frac{1}{\alpha} = 0 \qquad \text{F(x)} = f(x) - \frac{x}{\alpha} \qquad \text{F(0)} = f(0) = 0$

还不关注,

关注「公众号: 武忠祥老师」

- ******你将获得
- 1、「考研数学真题」电子资料
- 2、全年每日一题
- 3、每个月的考研数学复习规划
- 4、不定期武老师公仔、周边抽奖