Tabla de propiedades de la Transformada de Laplace

	$\ell[af(t)] = aF(s)$
Linealidad	$\ell[f_1(t) + f_2(t)] = F_1(s) + F_2(s)$
Desplazamiento en el tiempo	$\ell[f(t-\tau)u(t-\tau)] = e^{-s\tau}F(s)$
Impulso	$\ell[\delta(t)] = 1$
Desplazamiento de frecuencia	$\ell \left[e^{-at} f(t) \right] = F(s+a)$
Derivada	$\ell \left[\frac{df(t)}{dt} \right] = sF(s) - f(0)$
Integral	$\ell \left[\int_{a}^{t} f(t)dt \right] = \frac{F(s)}{s} + \frac{\left[\int_{a}^{t} f(t)dt \right]_{t=0}}{s}$

Teorema del valor inicial	$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$
Teorema del valor final	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$
Tiempo por una función	$\ell[tf(t)] = \frac{-dF(s)}{ds}$
	donde $F(s) = \ell[f(t)]$
	$\ell[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$
	$\ell \left[t^n f(t) \right] = \left(-1 \right)^n \frac{d^n F(s)}{ds^n}$
	$\ell \left[f \left(\frac{t}{a} \right) \right] = aF(as)$
	$\ell\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s)ds$

Pares de Transformadas de Laplace

	f(t)	F(s)
1	Impulso unitario	1
u(t)	Escalón unitario	$\frac{1}{s}$
а	Escalón	$\frac{a}{s}$
at	Rampa	$\frac{a}{s^2}$
$e^{^{\mp at}}$	Exponencial	$\frac{1}{s \pm a}$
sen wt	Seno	$\frac{\omega}{s^2 + \omega^2}$
cos ωt	Coseno	$\frac{s}{s^2 + \omega^2}$
e^{-at} sen ωt	Seno amortiguado	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega t$	Coseno amortiguado	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$
t^n		$\frac{n!}{s^{n+1}}$
$t^n e^{-at}$		$\frac{n!}{(s+a)^{n+1}}$
t cos ωt		$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
$\frac{t}{2\omega}$ sen ωt		$\frac{s}{\left(s^2+\omega^2\right)^2}$

$\frac{f(t)}{f(t)}$	F(s)
t^{n-1}	$\frac{1}{s^n}$
$ \frac{(n-1)!}{t^{n-1}e^{\mp at}} $ Rampa amortiguada $ \frac{t^{n-1}}{(n-1)!} $	S ⁿ
$t^{n-1}e^{\mp at}$ Rampa amortiguada	$\frac{1}{(s\pm a)^n}$
	$(s\pm a)^n$
$\frac{1}{a}(1-e^{-at})$	1
a	$\frac{1}{s(s+a)}$
$\frac{1}{a^2} \left(at - 1 + e^{-at} \right)$	$\frac{1}{s^2(s+a)}$
$1 \left(e^{-at} e^{-bt} \right)$	1
$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\overline{(s+a)(s+b)}$
$\frac{1}{h-a}\left(be^{-bt}-ae^{-at}\right)$	
b-a	$\frac{s}{(s+a)(s+b)}$
$\left[\frac{1}{ab}\left[1+\frac{1}{a-b}\left(be^{-at}-ae^{-bt}\right)\right]\right]$	$\frac{1}{s(s+a)(s+b)}$
shot	ω
	$\frac{\omega}{s^2-\omega^2}$
chωt	$\frac{s}{s^2 - \omega^2}$
ω_n $-\xi \omega_n t$ $-\xi \omega_n t$	ω_n^2
$\frac{\omega_n}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}\operatorname{sen}\omega_n\sqrt{1-\xi^2}t$	$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$
$-\frac{1}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}\operatorname{sen}\left(\omega_n\sqrt{1-\xi^2}t-\arctan\frac{\sqrt{1-\xi^2}}{\xi}\right)$	$\frac{s}{s^2 + 2\xi\omega_n s + \omega_n^2}$
$1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_{n} t} \operatorname{sen} \left(\omega_n \sqrt{1 - \xi^2} t + \arctan \frac{\sqrt{1 - \xi^2}}{\xi} \right)$	$\frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$
$2 K e^{-\alpha t}\cos(\beta t + \theta)$ K es un n° complejo = $ K \underline{\theta}$	$\frac{K}{s+\alpha-\beta j} + \frac{K^*}{s+\alpha+\beta j}$
$2t K e^{-\alpha t}\cos(\beta t + \theta)$ K es un n° complejo = $ K \underline{\theta}$	$\frac{K}{(s+\alpha-\beta j)^2} + \frac{K^*}{(s+\alpha+\beta j)^2}$