A Short Table of Fourier Transforms

Description	Function	Transform
Definition	$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$	$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$
Scaling	x(t/T)	T .X(fT)
Time shift	x(t-T)	$X(f).e^{-j2\pi fT}$
Frequency shift	$x(t).e^{j2\pi Ft}$	X(f-F)
Complex conjugate	$x^*(t)$	X*(-f)
Temporal derivative	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n.X(f)$
Spectral derivative	$\left(-j2\pi t\right)^{n}.x(t)$	$\frac{d^n}{df^n}X(f)$
Reciprocity	X(t)	x(-f)
Linearity	a.x(t)+b.y(t)	a.X(f)+b.Y(f)
Multiplication	x(t).y(t)	X(f) * Y(f)
Convolution	x(t) * y(t)	X(f).Y(f)
Delta function	$\delta(t)$	1
Constant	1	$\delta(f)$
Rectangular function	rect(t)	sinc(f)
Sinc function	sinc(t)	rect(f)
Unit step function	U(t) = 1 for t > 0 $0 for t < 0$	$\frac{1}{2}\delta(f) - \frac{j}{2\pi f}$
Signum function	sgn(t) = 1 for t > 0 $-1 for t < 0$	$\frac{-j}{\pi f}$
Two-sided decaying exponential function	$e^{- t }$	$\frac{2}{1+\left(2\pi f\right)^2}$
One-sided decaying exponential function	$U(t).e^{-t}$	$\frac{1-j2\pi f}{1+\left(2\pi f\right)^2}$
Gaussian function	$e^{-\pi t^2}$	$e^{-\pi f^2}$
Repeated function	$ rep_{T}\{x(t)\} $ $= x(t) * rep_{T}\{\delta(t)\}$	$X(f).\left \frac{1}{T}\right rep_{\frac{1}{T}}\{\delta(f)\}$
Sampled function	$x(t).rep_{T}\{\delta(t)\}$	$X(f) * \left \frac{1}{T} \right rep_{\frac{1}{T}} \left\{ \delta(f) \right\}$
		$ = \left \frac{1}{T} \right rep_{\frac{1}{T}} \left\{ X \left(f \right) \right\} $

Question 1

i) Find the result of the convolution of signals $x(t) = e^{-\alpha t}u(t)$ and $y(t) = e^{-\beta t}u(t)$ with $\alpha > \beta > 0$ and u(t) the unit step function.

[25%]

ii) Determine the closed-form Fourier transform, X(f), of the signal $x(t) = 2\pi t \cdot \left[\operatorname{sinc}(t)\right]^2$, ignoring the component X(0).

[25%]

iii) How many multiplications and additions are required for an *N*-point DFT? Justify your answer based on the DFT formula.

Note: N-point DFT of
$$x[n]$$
: $X(k) = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi nk/N}, \ k = 0,..., N-1$

[25%]

- ii) Use the example of a sinc(x) function to demonstrate quantitatively how:
 - a) scaling in the time domain;
 - b) scaling in amplitude;
 - c) shifting in frequency;

effects the frequency domain spectra of a signal.

[25%]

Question 2

A stereo analogue audio signal (two channels) is sampled at a rate of 48 KHz and each sample is quantised using a 16 bit A/D converter. If the range of the A/D converter is 10 Volt find:

i) The maximum quantisation error (assuming rounding and that the analogue signal is within the range of the converter) and the dynamic range of the A/D converter, defined as $20 \log_{10}(R/Q)$, where Q is the quantisation width.

[25%]

ii) Assuming that the dynamic range of human hearing is approximately 100 dB, explain why a 16-bit converter is normally adequate. Calculate how many Megabytes of hard disk space are required to store the stereo signal of three-minutes duration.

[25%]

- iii) Describe *briefly* (e.g. by means of a table) the stages of the successive-approximation A/D conversion process of an analogue voltage of 1.6 volts to its:
 - offset-binary 4-bit representation, and
 - two's complement 4-bit representation

assuming that the full-scale range of the A/D converter is 8 volt.

[50%]