Relatório da Apresentação de SO II - INE5424 Context-Aware Computing, Machine Learning and Big Data in Internet of Things

Bruno Izaias Bonotto - 16104059 Fabíola Maria Kretzer - 16100725 João Vicente Souto - 16105151

1. Internet das Coisas

A internet das coisas tem crescido rapidamente apresentando recentes avanços em comunicação e tecnologia de sensores. Porém, o campo de IoT é diversificado, amplo e complexo por causa da falta de padronização, heterogeneidade dos dispositivos, etc, exigindo uma certa "inteligência" das futuras abordagens.

Desde que a quantidade de dados se tornou problema, a compreensão, o aprendizado e o raciocínio utilizando Big Data é fundamental para o futuro sucesso da IoT. O paradigma de IoT pode ser definido como a interseção de 3 visões: orientada pela internet, pelas coisas e pela semântica, assim como mostra a Figura abaixo:

Orientada pela internet: são as tecnologias da Internet e Web of Things (WoT) (Sezer, 2018).

Orientada pelas coisas: são sensores, atuadores, redes de sensores, RFID, comunicações de campo próximo (NFCs), tecnologias de código de produtos eletrônicos, sensores sem fio e redes de atuadores (Sezer, 2018). Ou seja, são os objetos conectados a rede lot.

Orientada pela semântica: são as tecnologias semânticas, como web, linguagens e ambiente de execução, incluindo o raciocínio sobre os dados (Sezer, 2018).

Diferentes visões da IoT

2. Plataformas IoT Atuais

Atualmente, a maioria das soluções de middleware IoT focam no gerenciamento de dispositivos e dados, deixando a desejar a capacidade de aprendizado e análise, como mostrado na Figura abaixo. Desta forma, a contextualização dos dados e ações fica comprometida, limitando a automação e auto-organização das estruturas de IoT atuais.

Platforms	Web Sites	Device M.	Data M.	RT Analytics	BD Analytics	LT
AllJoyn	https://allseenalliance.org/framework	~	✓			
AirVantage	https://airvantage.net/	~	/		✓	
Arkessa	http://www.arkessa.com/	✓	✓	✓		
ARMmbed	https://www.mbed.com/	~				
Brillo	https://developers.google.com/brillo/	1	✓			
Carriots	https://www.carriots.com/	~	✓	✓		
Devicehub.net	https://www.devicehub.net/	1	✓			
Everyware Device Cloud	http://www.eurotech.com/	✓	✓	✓		
EvryThng	https://evrythng.com/	~	✓	✓		
Exosite	https://exosite.com/	✓	✓	✓		
GroveStreams	https://grovestreams.com/	~	✓	✓		
Ericsson IoT-Framework	https://github.com/EricssonResearch/iot-framework-engine		✓	✓		
IFTTT	https://ifttt.com/		✓			
IoTivity	https://www.iotivity.org/	~	✓			
Intel IoT Platforms	https://software.intel.com/	✓	✓	✓		
LinkSmart	https://linksmart.eu/redmine		✓			
NinjaBlock	https://ninjablocks.com/	~				
OpenIoT	http://www.openiot.eu/		✓			
OpenMTC	http://www.open-mtc.org/	✓	✓	✓		
Open.Sen.se	http://open.sen.se/		✓	✓		
Pentaho	http://www.pentaho.com/internet-of-things-analytics		✓	✓	✓	
realTime.io	https://www.realtime.io/	~	✓	✓		
SensorCloud	http://www.sensorcloud.com/		✓	✓		
SkySpark	http://skyfoundry.com/skyspark/		✓	✓		
Statistica	http://software.dell.com/products/statistica/		✓	✓	✓	
Tellient	http://tellient.com/index.html		✓	✓		
TempoIQ	https://www.tempoiq.com/		✓	✓		
The thing system	http://thethingsystem.com/	✓				
ThingSpeak	https://thingspeak.com/	~	✓	✓		
ThingSquare	http://www.thingsquare.com/	✓	✓	✓		
ThingWorx	https://www.thingworx.com/	~	✓	✓		
Sense Tecnic WoTkit	http://sensetecnic.com/		✓	✓		
Watson IoT Platform	http://www.ibm.com/internet-of-things/iot-solutions/watson-iot-platform/	_	/	✓	✓	~
Xively	https://xively.com/	~	✓			
Vitria	http://www.vitria.com/iot-analytics		✓	✓		
Weave	https://developers.google.com/weave/	/				

3. Context-Aware Computing

Um dos principais problemas no caminho para a criação de uma IoT inteligente e autônoma é entender o "contexto" no qual os dispositivos e dados estão incluídos. Desta forma, a computação consciente do contexto surge para prover uma percepção do ambiente e sua contextualização, realizando adaptações no comportamento de acordo com os sistemas de IoT disponíveis.

Um sistema sensível ao contexto, segundo Schilit e Theimer, adquire, compreende e reconhece o contexto para poder realizar ações correspondentes ao mesmo. Como exemplo de aplicação do uso de contexto em IoT, as Redes Semânticas de Sensores combinam Web semântica e redes de sensores para prover sua auto-organização e serviços mais otimizados.

Por fim, pode se dizer que conscientização do contexto se resume em fundir os dados do sensor com a modelagem e o raciocínio sobre o contexto, onde, segundo Abowd e Mynatt, existem um mínimo de cinco requisitos para que isso seja possível, são eles: *What, Who, Where, Why* e *When*. Como é possível notar, a maioria desses requisitos já são supridos pelo SmartData do Lisha.

a. Características de Sistemas Conscientes de Contexto

Existem três principais características da consciência de contexto relacionadas com o loT: apresentação, execução e marcação (anotação). Dentro destes conceitos, um sistema ciente do contexto decide quais informações e serviços devem ser apresentados ao usuário, levando em consideração quatro partes principais: aquisição de contexto, modelagem de contexto, raciocínio de contexto e distribuição de conteúdo, os quais são mostrados na Figura abaixo.

- Aquisição: engloba fatores do processo de obtenção dos dados, como por exemplo, frequência e tipo de sensores.
- Modelagem: define a representação do contexto e varia dependendo do domínio e dos recursos disponíveis.
- Raciocínio: é a extração de novos conhecimentos do contexto disponíveis, utilizando técnicas de IA e outras formas de descrever e inferir conhecimento.
- Distribuição: é a forma que o contexto é entregue aos usuários, um exemplo é a consulta e assinatura.

4. Machine Learning em IoT

Machine learning é uma área de estudo que busca oferecer aos computadores a capacidade de aprendizagem, sem que a mesma seja explicitamente fornecida. Seu principal uso em IoT consiste em fornecer algoritmos de previsão e decisão, a partir do uso da grande quantidade de dados disponíveis e coletados de fontes diferentes (O. B. Sezer, 2018).

Existem três classes de algoritmos utilizados em IoT, os quais são mostrados na Figura abaixo:

Classes de algoritmos utilizados em IoT

Supervised Learning: Técnicas de aprendizado supervisionado consiste em adquirir um conjunto de amostras de dados rotulados e utilizá-las para treinar um modelo com o objetivo de prever novos dados amostrais.

Unsupervised Learning: O objetivo da técnica de aprendizado não supervisionada é agrupar dados não rotulados, ou seja, sem classificação e gerar modelos de previsão. Essa classe também tende a retornar resultados mais rapidamente para padrões ocultos e melhores para uso em *Big Data*.

Reinforcement Learning: A abordagem da técnica de aprendizado por reforço busca representar estados, ações e regras e tem o objetivo de buscar a convergência para um estado ideal através de sinais de feedback (sinais de reforço do ambiente).

5. Big Data em IoT

Dados em IoT possuem certas particularidades como uma quantidade massiva de dados, forte relação de tempo e espaço, correlações, ruídos e pequena parte dos dados são significativos para análise. *Big data* surge para auxiliar na

coleta, seleção, integração e análise desses dados. Porém, *Big data* em loT também possui características diferentes das abordagens comuns de *Big Data*, exemplificados na figura abaixo:

- Geração de dados: diferentes velocidades de geração e coleta, escalabilidade, dinamismo e heterogeneidade da rede e dos dados.
- Qualidade: incerteza, redundância, ambiguidade e inconsistência.
- Interoperabilidade: semântica e incompletude dos dados.

Outra área crítica é o armazenamento de dados, onde bancos de dados relacionais não atendem aos requisitos do armazenamento de *Big Data*, deixando abordagens *NoSQL* mais atraentes. Assim, o armazenamento acaba ficando na *Cloud* por causa da grande quantidade de dados e recursos limitados dos dispositivos embarcados.

Existem diferentes modelos de processamento paralelo para análise dos dados e podem ser caracterizados em dois tipos:

- Análise em Lote: processamento de um conjunto de dados previamente coletados.
 - MapReduce;
 - Hadoop;
 - Entre outros.

- Análise em Fluxo: processamento dos dados ocorre em tempo-real.
 - Watson da IBM.

Por fim, existem diversos algoritmos e técnicas que nos permitem aprender as características e correlações ocultas existentes dos dados, seja classificando, encontrando padrões, etc. Porém, a qualidade e validação dos dados, engenharia de recursos e escalabilidade dos algoritmos são dificuldades recorrentes em IoT.

6. Conclusão

Futuramente, a conscientização do contexto será parte fundamental da criação de uma IoT inteligente e autônoma, relacionando a compreensão das mudanças no ambiente com a ações semanticamente válidas ao contexto atual. Porém, é necessário a otimização dos algoritmos de aprendizado e técnicas de *Big Data* existentes para lidar com o grande conjunto de dados a medida que o número de dispositivos e sensores aumentam. Da mesma forma, existem questões em aberto quando o assunto é IoT, tais como padrões, privacidade, segurança, automação e auto-organização de sistemas inteligentes.

TABLE III ${\bf Number\ of\ Journal\ Articles\ by\ Year\ Related\ IoT\ and\ Subjects\ in\ IoT }$

Subjects / Years		2004	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Total
"Internet of Things"	1	2	2	2	2	11	28	68	96	220	361	631	945	2369
"Artificial Intelligence" and "Internet of Things"	-	-	7=3	-	-	-	123	-	1	1	1	5	7	15
"Architectures" and "Internet of Things"		-	-	-	-	3	7	21	32	49	88	134	170	504
"Big Data" and "Internet of Things"	-	(4)	-	-	-	-	-	-	2	4	17	50	87	160
"Computation" and "Internet of Things"	-	-	-	-	-	-	-	2	12	17	36	80	62	209
"Context Awareness" and "Internet of Things"	-	-	-	2	-	-	-	-	4	14	25	31	19	93
"Machine Learning" and "Internet of Things"	-	-	-	-	-	-	-	-	-	-	1	6	14	21
"Security" and "Internet of Things"	-	-	(-)	¥	1	4	7	13	16	41	69	121	165	436
"Semantic" and "Internet of Things"	-	-	-	-	-	-	1	3	7	13	29	21	32	106

TABLE IV Number of Journal Articles by Year Related Learning Subjects in IoT

Subjects / Years		2012	2013	2014	2015	2016	Total
"Artificial Intelligence" and "Internet of Things"	-	1	1	1	5	7	15
"Bayesian Network" and "Internet of Things"	-	1	1	2	-	-	4
"Context Awareness" and "Internet of Things"	-	4	14	25	31	19	93
"Deep Learning" and "Internet of Things"	-	-	-	-	1	7	8
"Expert System" and "Internet of Things"	2	1		1	-	1	3
"Fuzzy Logic" and "Internet of Things"	6.0	-	1	-	10	1	12
"Machine Learning" and "Internet of Things"	-	-	2	1	6	14	21
"Neural Network" and "Internet of Things"	1	2	2	2	4	10	21
"Support Vector Machine" and "Internet of Things"	-	-	1	2	1	-	4
"Decision Tree" and "Internet of Things"	-	-	-	-	-	2	2

Legenda: Quantidade de pesquisas relacionadas aos temas abordados

7. Referências Bibliográficas

O. B. Sezer, E. Dogdu, A. M. Ozbayoglu, "Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey", IEEE Internet of Things Journal. vol. 5, no. 1, Feb. 2018.

Shi, Feifei et al. "A Survey of Data Semantization in Internet of Things". Sensors (Basel, Switzerland) 18.1 (2018): 313. PMC. Web. 30 Sept. 2018.

Abayomi Otebolaku and Gyu Myoung Lee, "A Framework for Exploiting Internet of Things for Context-Aware Trust-Based Personalized Services" Mobile Information Systems, vol. 2018, Article ID 6138418, 24 pages, 2018. https://doi.org/10.1155/2018/6138418.

Almeida, Henrique, & Sean Siqueira. "Uma Revisão Sistemática sobre Descrição Semântica na Internet das Coisas". *iSys - Revista Brasileira de Sistemas de Informação* [Online], 11.2 (2018): 43-62. Web. 30 Sep. 2018.