1 D-Separation

For the Bayes net below, determine if each independence assertion is guaranteed to be true.

1. $B \perp \!\!\!\perp C$

Paths: BAC, BDC, and BDFC

Triples:

BAC - Active

BDC -

BDF -

DFC -

Any active path indicates not guaranteed. BAC is active

2. $B \perp \!\!\!\perp C \mid G$

Paths: BAC, BDC, and BDFC

Triples:

BAC - Active

BDC -

BDF -

DFC -

Any active path indicates not guaranteed. BAC is active

3. $B \perp \!\!\! \perp C \mid H$

Paths: BAC, BDC, and BDFC

Triples:

BAC - Active

BDC -

BDF -

DFC -

Any active path indicates not guaranteed. BAC is active

4. $A \perp \!\!\!\perp D \mid G$

Paths: ABD, ACD, and ACFD

Triples:

ABD - Active

ACD -

ACF -

CFD -

Any active path indicates not guaranteed. ABD is active

5. $A \perp \!\!\!\perp D \mid H$

Paths: ABD, ACD, and ACFD

Triples:

ABD - Active

ACD -

ACF -

CFD -

Any active path indicates not guaranteed. ABD is active

6. $B \perp \!\!\!\perp C \mid A, F$

Paths: BAC, BDC, and BDFC

Triples:

BAC - Inactive

BDC - Inactive

BDF - Active

DFC - Active

Any active path indicates not guaranteed. BDFC is active

7. $F \perp \!\!\!\perp B \mid D, A$

Paths: FDB, FCAB, FCDB, and FDCAB

Triples:

FDB - Inactive

FCA -

CAB - Inactive

FCD - Active

CDB - Active

FDC - Inactive

DCA -

Any active path indicates not guaranteed. FCDB is active.

8. $F \perp \!\!\!\perp B \mid D, C$

Paths: FDB, FCAB, FCDB, and FDCAB

Triples:

FDB - Inactive

FCA - Inactive

CAB -

FCD - Inactive

CDB -

FDC - Inactive

DCA -

All paths are have an inactive triple and are thus inactive, therefore we are guaranteed that the independence assertion is true

2 Inference by Enumeration

Consider the following Bayes' net. Derive P(A|+e,-f).

A	P(A)
+a	0.3
-a	0.7

В	A	P(B A)
+b	+a	0.7
+b	-a	0.6

D	В	P(D B)
+d	+b	0.3
+d	-b	0.4

E	С	P(E C)
+e	+c	0.4
+e	-c	0.5

F	С	P(F C)
+f	+c	0.1
+f	-с	0.8

From the Bayes' net we have

$$P(A, B, C, D, +e, -f) = P(A)P(B|A)P(C|A)P(D|B)P(+e|C)P(-f|C)$$

The order in which to joint factors is arbitrary, and we wil use B, C, A resulting in the factors below.

$$f_1(A, B, D) = P(B|A)P(D|B)$$

$$f_2(A, C, +e, -f) = P(C|A)P(+e|C)P(-f|C)$$

$$f_3(A, B, C, D, +e, -f) = P(A)f_1(A, B, D)f_2(A, C, +e, -f)$$

We need this for factor 2.

$$P(C) = P(C|A) * P(A)$$

	A	С	P(C A)	P(A)	P(C)
	+a	+c	0.2	0.3	0.06
ſ	+a	-c	0.8	0.3	0.24
Ī	-a	+c	0.9	0.7	0.63
	-a	-c	0.1	0.7	0.07

С	P(C)
+c	0.69
-c	0.31

Fill in the following factor tables:

A	В	D	$f_1(A,B,D)$
+a	+b	+d	0.7 * 0.3 = 0.21
+a	+b	-d	0.7 * 0.7 = 0.49
+a	-b	+d	0.3 * 0.4 = 0.12
+a	-b	-d	0.3 * 0.6 = 0.18
-a	+b	+d	0.6 * 0.3 = 0.18
-a	+b	-d	0.6 * 0.7 = 0.42
-a	-b	+d	0.4 * 0.4 = 0.16
-a	-b	-d	0.4 * 0.6 = 0.24

A		$f_2(A,C,+e,-f)$
+a	+c	0.2 * (0.4 / 0.69) * (0.9 / 0.69) = 0.151
+a	-с	0.8 * (0.5 / 0.31) * (0.2 / 0.31) = 0.832
-a		0.9 * (0.4 / 0.69) * (0.9 / 0.69) = 0.681
-a	-c	0.1 * (0.5 / 0.31) * (0.2 / 0.31) = 0.104

Using f_1 and f_2 , compute f_3 :

A	В	С	D	$f_3(A, B, C, D, +e, -f)$
+a	+b	+c	+d	0.3 * 0.21 * 0.151 = 0.0095
+a	+b	+c	-d	0.3 * 0.49 * 0.151 = 0.0221
+a	+b	-с	+d	0.3 * 0.21 * 0.832 = 0.0524
+a	+b	-с	-d	0.3 * 0.49 * 0.832 = 0.1123
+a	-b	+c	+d	0.3 * 0.12 * 0.151 = 0.0054
+a	-b	+c	-d	0.3 * 0.18 * 0.151 = 0.0081
+a	-b	-c	+d	0.3 * 0.12 * 0.832 = 0.0299
+a	-b	-с	-d	0.3 * 0.18 * 0.832 = 0.0449
-a	+b	+c	+d	0.7 * 0.18 * 0.681 = 0.0858
-a	+b	+c	-d	0.7 * 0.42 * 0.681 = 0.2002
-a	+b	-с	+d	0.7 * 0.18 * 0.104 = 0.0131
-a	+b	-c	-d	0.7 * 0.42 * 0.104 = 0.0305
-a	-b	+c	+d	0.7 * 0.16 * 0.681 = 0.0762
-a	-b	+c	-d	0.7 * 0.24 * 0.681 = 0.1144
-a	-b	-с	+d	0.7 * 0.16 * 0.104 = 0.0116
-a	-b	-c	-d	0.7 * 0.24 * 0.104 = 0.0174

Then we marginalize over B,C, and D

	A	$\sum_{B,C,D} f_3(A,B,C,D,+e,-f)$
-	+a	0.0095 + 0.0221 + 0.0524 + 0.1123 + 0.0054 + 0.0081 + 0.0299 + 0.0449 = 0.2846
	-a	0.0858 + 0.2002 + 0.0131 + 0.0305 + 0.0762 + 0.1144 + 0.0116 + 0.0174 = 0.5492

Finally, we normalize to get our answer

A	P(A +e,-f)
+a	0.2846 / 0.8338 = 0.3413
-a	0.5492 / 0.8338 = 0.6587