Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника» Кафедра «Радиоэлектронные системы и устройства»

Домашнее задание №1 по дисциплине «Электроника»

Выполнили студенты группы РЛ-41 Филимонов С.В. Мухин Г. А. Сиятелев А.Ю.

Фамилия И.О.

Проверил проф. Крайний В.И.

Оценка в баллах_____

СОКРАЩЕНИЯ ТЕРМИНОВ И АББРЕВИАТУР

ВАХ - Вольт амперная характеристика

MC - Micro-CAP12

Оглавление

СОКРАЩЕНИЯ ТЕРМИНО	В И АББРЕВИАТУР	
диод		
1. ИССЛЕДОВАНИЕ СТАТІ ДИОДОВ		, ,
2. ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ	, ,	
3.		
4.		

ДИОД

KD204B

2Д204А, 2Д204Б, 2Д204В, КД204А, КД204Б, КД204В

Диоды кремниевые, диффузионные. Предназначены для преобразования переменного напряжения частотой до 50 кГц. Выпускаются в металлостеклянном корпусе с жесткими выводами. Тип диода и схема соединения электродов с выводами приводятся на корпусе. Масса диода не более 6 г, с комплектующими деталями не более 7,5 г.

Электрические параметры

Постоянное прямое напряжение при $I_{nP} = 0.6$ A, не более:	
$T = +25 ^{\circ}\text{C}$	1,4 B
T = −60 °C	1,4 B
	1,0 6
Импульсное прямое напряжение при	
$h_{\text{NP, M}} = 2 \text{ A}, h_{\text{NP, CP}} = 30 \text{ MA}, f = 1500 \text{ Fu},$	
$t_{\rm H} = 10$ мкс, $t_{\rm \Phi} \le 4$ мкс для 2Д204А, 2Д204Б,	0.0
2Д204В, не более	2 B
Постоянный обратный ток при $U_{\text{обр}} = U_{\text{обр, макс}}$	
не более:	
T = +25 n -60 °C:	
2Д204А, КД204А	
2Д204Б, КД204Б	100 мкА
2Д204В, КД204В	50 MKA
$T = +85 ^{\circ}\text{C}$:	
КД204А	2 MA
КД204Б	
кД204В	0,5 MA
T = +125 °C:	
2Д204А	2 мА
2Д204Б	
2Д204В	
	U,3 MA
Время обратного восстановления при	
$U_{\text{OSP, H}} = 30 \text{ B}, I_{\text{TP, H}} = 1 \text{ A}, t_{\text{H}} = 10 \text{ MKC},$	
t _o ≤ 0,5 мкс, не более	1,5 мкс

ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Рис. 1 Схема

Рис.2 Описание диода в программе МС

Рис.3 DC Analysyis Limits

Рис.4 ВАХ прямой ветви

Проводим многовариантный анализ(stepping)для R2 = 1K..10K, R1 = 1..10 Ом.

Рис.5 Настройка Stepping

Рис. 6 График ВАХ

Для R1=1..10 Ом. При увеличении величины сопротивления R1 BAX смещается из-за увеличения падения напряжения на R1.

Рис. 7 R1 увеличивается

Графики расположены очень близко друг к другу поскольку сопротивления R2 и диод включены параллельно и $R_{\text{диода}} << R2$.

Рис. 8 Настройка для сохранения точек.

V(V1)	I(D1)
	(A)
.000E+00	1.000E-50
2.002E-03	2.855E-15
1.004E-03	5.711E-15
5.006E-03	8.657E-15
.008E-03	1.169E-14
.001E-02	1.473E-14
.201E-02	1.799E-14
1.401E-02	2.124E-14
.602E-02	2.465E-14
.802E-02	2.817E-14
.002E-02	3.170E-14
.202E-02	3.555E-14
2.402E-02	3.939E-14
2.603E-02	4.346E-14
2.803E-02	4.771E-14
3.003E-02	5.195E-14
3.203E-02	5.667E-14
3.403E-02	6.139E-14
3.604E-02	6.644E-14
3.804E-02	7.174E-14
.004E-02	7.705E-14
.204E-02	8.305E-14
.404E-02	8.906E-14
1.605E-02	9.554E-14
.805E-02	1.024E-13

Рис.9 Точки

$$Rb = 1.106$$
 $Is = 1.331*10^-8$
 $NFt = 0.044$

$$F(x) := x \cdot Rb + \ln\left[\frac{(IS + x)}{IS}\right] \cdot NFt.$$

Рис. 10 Вах теоретический

График обратной ветви ВАХ.

Рис. 1 Схема

Строим обратную ветвь BAX диода. Диалоговое окно задания параметров для построения BAX следующее:

Рис. 2 Настройка пределов

Рис. 3 График обратного ВАХ

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Рис. 1 Схема

Рис.2 Описание диода в программе МС

Рис.4 Настройки графика в MC Stepping:

Проведя анализ, получим резонансные кривые:

Для построения зависимости резонансной частоты как функцию напряжения источника Vvar выберем AC→Perfomance window→Add performance window.

Нажмем Get и выберем в меню Peak_X:

Получаем следующий график:

Вывод данных:

Далее рассчитываем емкость диода и строим график ее зависимости от обратного напряжения (вольт-фарадная характеристика):

