Newton's Method

FPI, when convergent, is thearly convergent.

Newton's Method

To find the root of f:

Newton's Method (Algorithm)

• Begin at the point $(x_0, f(x_0))$ on the curve and draw the tangent line at the point using the slope $f'(x_0)$:

$$y = f(x_0) + f'(x_0)(x - x_0).$$

$$y=f(x_0)+f'(x_0)(x-x_0).$$
• Find the x -intercept of the line and call it x_1 :
$$f(x_0)$$

(*****)

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \,.$$

• Continue this procedure to find x_2, x_3, \ldots until the sequence converges to the root.

General iterative formula:

16/36

Newton's Method: Illustration

Series Analysis

Let
$$\epsilon_k = x_k - r, k = 1, 2, \ldots$$
, where r is the limit of the sequence and $f(r) = 0$.

Substituting
$$x_k = r + \epsilon_k$$
 into the iterative formula (*):

$$\chi_{k+1} = \Gamma + \epsilon_k$$
 into the iterative formula (*).
$$\epsilon_{k+1} = \epsilon_k - \frac{f(r + \epsilon_k)}{f'(r + \epsilon_k)}.$$

Taylor-expand f about x = r and simplify (assuming $f'(r) \neq 0$):

$$\frac{\epsilon_{k+1}}{\epsilon_{k+1}} = \epsilon_k - \frac{f(r) + \epsilon_k f'(r) + \frac{1}{2} \epsilon_k^2 f''(r) + O(\epsilon_k^3)}{f'(r) + \epsilon_k f''(r) + O(\epsilon_k^2)}$$

$$= \epsilon_k - \epsilon_k \left[1 + \frac{1}{2} \frac{f''(r)}{f'(r)} \epsilon_k + O(\epsilon_k^2) \right] \left[1 + \frac{f''(r)}{f'(r)} \epsilon_k + O(\epsilon_k^2) \right]^{-1}$$

$$= \frac{1}{2} \frac{f''(r)}{f'(r)} \epsilon_k^2 + O(\epsilon_k^3).$$

$$\frac{1}{1 - \chi} = 1 + \chi + \chi^2 + \dots$$

$$for |\chi| < 1$$

Exercise. Check algebra.

G Epri ≈ CEAR

Series Analysis (cont')

• Previous calculation shows that $\epsilon_{k+1} \approx C\epsilon_k^2$, eventually. Written differently.

$$|\epsilon_{k+1}|/|\epsilon_k|^2 \to \text{(some positive number)}, \text{ as } k \to \infty.$$

that is, each Newton iteration roughly squares the previous error. This is quadratic convergence³. Note: As k > 00, Eh > 0

So the constant term is negliquible compared to log terms.

• Alternately, note that

$$\underline{\log |\epsilon_{k+1}|} \approx 2 \underline{\log |\epsilon_k|} + \text{(constant)},$$

ignoring high-order terms. This means that the number of accurate digits⁴ approximately doubles at each iteration.

⁴We say that an iterate is **correct within** p **decimal places** if the error is less than 0.5×10^{-p} .

Convergence of Newton's Method

(formal summary of prev. Olides)

Theorem 4 (Quadratic Convergence of Newton's Method)

Let f be twice continuously differentiable and f(r)=0. If $\underline{f'(r)\neq 0}$, then Newton's method is locally and quadratically convergent to \underline{r} . The error $\epsilon_k=x_k-r$ at step k satisfies

$$\lim_{k \to \infty} \frac{|\epsilon_{k+1}|}{|\epsilon_k|^2} = \left| \frac{f''(r)}{2f'(r)} \right|.$$

20/36

```
function x = newton(f, dfdx, x1)
% NEWTON
          Newton's method for a scalar equation.
% Input:
           objective function
   dfdx
         derivative function
 v1
           initial root approximation
% Output
           vector of root approximations (last one is best)
% Operating parameters.
   funtol = 100 \times eps; xtol = 100 \times eps; maxiter = 40;
   x = x1:
   v = f(x1):
   dx = Inf: % for initial pass below
   k = 1:
   while (abs(dx) > xtol) && (abs(y) > funtol) && (k < maxiter)
       dvdx = dfdx(x(k));
       dx = -v/dvdx:
                     % Newton step
       x(k+1) = x(k) + dx;
                              & iteration formula
       k = k+1:
       y = f(x(k));
   end
   if k == maxiter, warning ('Maximum number of iterations reached.'), end
end
```

_	1	l
	MATLAB	Math.
	(vector) X	1/2
	Y	f (xxx) residual
	d×	1/2m - 1/2
3		
$\lambda_{k+1} - \lambda_k = -\frac{f(\lambda_k)}{f'(\lambda_k)}$		0
		- f(xk)
		J CAR)

Note: Stopping Criteria

Previous Stale.

For a set tolerance, TOL, some example stopping criteria are:

Absolute error:

$$|x_{k+1} - x_k| < \text{TOL}.$$

Relative error: (useful when the solution is not too close to zero)

$$\frac{|x_{k+1} - x_k|}{|x_{k+1}|} < \texttt{TOL}.$$

Hvbrid:

$$\frac{|x_{k+1} - x_k|}{\max(|x_{k+1}|, \theta)} < \text{TOL},$$

for some $\theta > 0$.

Residual:

$$|f(x_k)| < \mathtt{TOL}.$$

Also useful to set a limit on the maximum number of iterations in case convergence fails.

Secant Method

Secant Method

- Newton's method requires calculation and evaluation of f'(x), which may be challenging at times.
- The most common alternative to such situations is the secant method.
- The secant method replaces the instanteneous slope in Newton's method by the average slope using the last two iterates.

Secant Method (cont')

Secant Method (Algorithm)

• Begin with two initial iterates x_{-1} and x_0 ; draw the secant line connecting $(x_{-1}, f(x_{-1}))$ and $(x_0, f(x_0))$:

$$y = f(x_0) + \frac{f(x_0) - f(x_{-1})}{x_0 - x_{-1}} (x - x_0).$$

• Find the x-intercept of the line and call it x_1 :

$$x_1 = x_0 - f(x_0) \frac{x_0 - x_{-1}}{f(x_0) - f(x_{-1})}$$
.

Continue this procedure to find x_2, x_3, \ldots until convergence is obtained.

General iterative formula:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$
 for $k = 0, 1, 2, ...$

Secant Method: Illustration

Series Analysis

Assume that the secant method converges to r and $f'(r) \neq 0$. Let $\epsilon_k = x_k = r$ as before.

It can be shown that

$$|\epsilon_{k+1}| \approx \left| \frac{f''(r)}{2f'(r)} \right| |\epsilon_k| |\epsilon_{k-1}|,$$

which implies that

$$|\epsilon_{k+1}| \approx \left| \frac{f''(r)}{2f'(r)} \right|^{\alpha - 1} |\epsilon_k|^{\alpha},$$

where

$$\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.618,$$

the golden ratio.

Therefore, the convergence of the secant method is superlinear; it lies between linearly and quadratically convergent methods.

FPI: timear

Secant: Supertinear

Newton: gnadratic

Series Analysis (cont')

Exercise. Confirm the statements in the previous page. Namely, show that

1 The error ϵ_k satisfies the approximate equation

$$|\epsilon_{k+1}| \approx \left| \frac{f''(r)}{2f'(r)} \right| |\epsilon_k| |\epsilon_{k-1}|.$$

2 If in addition $\lim_{k\to\infty} |\epsilon_{k+1}|/|\epsilon_k|^{\alpha}$ exists and is nonzero for some $\alpha>0$, then

$$|\epsilon_{k+1}| pprox \left| rac{f''(r)}{2f'(r)}
ight|^{lpha - 1} |\epsilon_k|^{lpha}, \quad ext{where } lpha = rac{1 + \sqrt{5}}{2}.$$

Implementation

```
function x = secant(f,x1,x2)
% SECANT
          Secant method for a scalar equation.
% Input:
          objective function
 x1,x2 initial root approximations
% Output
         vector of root approximations (last is best)
% x
% Operating parameters.
    funtol = 100*eps; xtol = 100*eps; maxiter = 40;
   x = [x1 \ x2];
   dx = Inf; v1 = f(x1);
    k = 2; y2 = 100;
    while (abs(dx) > xtol) && (abs(v2) > funtol) && (k < maxiter)
       v2 = f(x(k));
       dx = -y2 * (x(k)-x(k-1)) / (y2-y1); % secant step
       x(k+1) = x(k) + dx:
       k = k+1:
       v1 = v2: % current f-value becomes the old one next time
   end
    if k == maxiter, warning ('Maximum number of iterations reached.'), end
end
```

Lec 23: Rootfinding Problem - Higher Dimensions

Newton's Method for Nonlinear Systems

Multidimensional Rootfinding Problem

Rootfinding Problem: Vector Version

Given a continuous vector-valued function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$, find a vector $\mathbf{r} \in \mathbb{R}^n$ such that $\mathbf{f}(\mathbf{r}) = \mathbf{0}$.

The rootfinding problem f(x) = 0 is equivalent to solving the <u>nonlinear system</u> of n scalar equations in n unknowns:

$$\begin{cases}
f_1(x_1, \dots, x_n) = 0, \\
f_2(x_1, \dots, x_n) = 0, \\
\vdots \\
f_n(x_1, \dots, x_n) = 0.
\end{cases}$$

Multidimensional Taylor Series

If f is differentiable, we can write

$$\mathbf{f}(\mathbf{x} + \mathbf{h}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{x})\mathbf{h} + O(\|\mathbf{h}\|^2),$$

where J is the Jacobian matrix of f

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}_{i,j=1,\dots,n}.$$

- The first two terms f(x) + J(x)h is the "linear approximation" of f near x.
- If f is actually linear, i.e., f(x) = Ax b, then the Jacobian matrix is the coefficient matrix A and the rootfinding problem f(x) = 0 is simply Ax = b.

Example

Let

$$f_1(x_1, x_2, x_3) = -x_1 \cos(x_2) - 1,$$

$$f_2(x_1, x_2, x_3) = x_1 x_2 + x_3,$$

$$f_3(x_1, x_2, x_3) = e^{-x_3} \sin(x_1 + x_2) + x_1^2 - x_2^2.$$

Then

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} -\cos(x_2) & x_1 \sin(x_2) & 0\\ x_2 & x_1 & 1\\ e^{-x_3} \cos(x_1 + x_2) + 2x_1 & e^{-x_3} \cos(x_1 + x_2) - 2x_2 & -e^{-x_3} \sin(x_1 + x_2) \end{bmatrix}.$$

Exercise. Write out the linear part of the Taylor expansion of

$$f_1(x_1 + h_1, x_2 + h_2, x_3 + h_3)$$
, near (x_1, x_2, x_3) .

The Multidimensional Newton's Method

Recall the idea of Newton's method:

If finding a zero of a function is difficult, replace the function with a simpler approximation (linear) whose zeros are easier to find.

Applying the principle:

• Linearize f at the kth iterate x_k :

$$\mathbf{f}(\mathbf{x}) \approx L(\mathbf{x}) = \mathbf{f}(\mathbf{x}_k) + \mathbf{J}(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k).$$

• Define the next iterate \mathbf{x}_{k+1} by solving $L(\mathbf{x}_{k+1}) = \mathbf{0}$:

$$\mathbf{0} = \mathbf{f}(\mathbf{x}_k) + \mathbf{J}(\mathbf{x}_k) (\mathbf{x} - \mathbf{x}_k) \implies \mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{J}(\mathbf{x}_k))^{-1} \mathbf{f}(\mathbf{x}_k).$$

Note that J^{-1} plays the same role as f/f' in the scalar Newton.

6/9

The Multidimensional Newton's Method (cont')

• In practice, we do not compute \mathbf{J}^{-1} . Rather, the kth Newton step $\mathbf{s}_k = x_{k+1} - x_k$ is found by solving the square linear system

$$\mathbf{J}(\mathbf{x}_k)\mathbf{s}_k = -\mathbf{f}(\mathbf{x}_k),$$

which is solved using the backslash in MATLAB.

• Suppose f and J are MATLAB functions calculating f and J, respectively. Then the Newton iteration is done simply by

```
% x is a Newton iterate (a column vector).
% The following is the key fragment
% inside Newton iteration loop.
fx = f(x)
s = -J(x) \setminus fx;
x = x + s;
```

Since f(xk) is the residual and sk is the gap between two consecutive iterates at the kth step, monitor their norms to determine when to stop iteration.

Computer Illustration

Let's find a root of the function introduced in the example on p. 5.

 $\mathbf{0}$ Define \mathbf{f} and \mathbf{J} , either as anonymous functions or as function m-files.

```
f = @(x) [exp(x(2)-x(1)) - 2;
 x(1)*x(2) + x(3);
 x(2)*x(3) + x(1)^2 - x(2)];

J = @(x) [-exp(x(2)-x(1)), exp(x(2)-x(1)), 0;
 x(2), x(1), 1;
 2*x(1), x(3)-1, x(2)];
```

1 Define an initial iterate x, say $\mathbf{x}_0 = (0, 0, 0)^T$.

Iterate.

```
for k = 1:7

s = -J(x) \setminus f(x);

x = x + s;

end
```

Implementation

```
function x = newtonsvs(f, x1)
% NEWTONSYS
             Newton's method for a system of equations.
% Input:
             function that computes residual and Jacobian matrix
  ×1
             initial root approximation (n-vector)
% Output
 ×
             array of approximations (one per column, last is best)
% Operating parameters.
    funtol = 1000 \times eps; xtol = 1000 \times eps; maxiter = 40;
    x = x1(:);
    [v,J] = f(x1);
    dx = Inf;
    k = 1;
    while (norm(dx) > xtol) && (norm(y) > funtol) && (k < maxiter)
        dx = -(J \setminus y); % Newton step
        x(:,k+1) = x(:,k) + dx
        k = k+1:
        [v, J] = f(x(:,k));
    end
    if k == maxiter, warning ('Maximum number of iterations reached.'), end
end
```