# GRAPH INTRODUCTION

#### INTRODUCTION

- A graph data structure is a collection of nodes that have data and are connected to other nodes.
- A graph is a pictorial representation of a set of objects
- where some pairs of objects are connected by links.
- The interconnected objects are represented by points termed as vertices
- the links that connect the vertices are called edges

from the graph,

$$V = \{a, b, c, d, e\}$$
  
 $E = \{ab, ac, bd, cd, de\}$ 



#### **TYPES OF GRAPH**

# (1) Undirected Graph

- edges are not associated with the directions with them.
- If an edge exists between vertex A and B then the vertices can be traversed from B to A as well as A to B.
- Bidirectional

# **Directed Graph**

- edges form an ordered pair.
- Edges represent a specific path from some vertex A to another vertex B.
- Node A is called initial node while node B is called terminal node.
- One way relationship not backwards
- also called as di graph





## (2) WEIGHTED GRAPH

Edges have some weight

#### **UNWEIGHTED GRAPH**

Edges does not have weight

- •Undirected & Unweighted:
- relationships do not have weight and are bidirectional.
- •Undirected & Weighted:
- relationships have a weight and are bidirectional.
- •Directed & Unweighted:
- relationships do not have weight and are one way.
- •Directed & Weighted: relationships have a weight and are one way.



Undirected & Unweighted



Undirected & Weighted



**Directed & Unweighted** 



**Directed & Weighted** 

#### **GRAPH TERMINOLOGY**

#### Path

A path can be defined as the sequence of nodes that are followed in order to reach some terminal node from the initial node.

#### **Closed Path**

A path will be called as closed path if the initial node is same as terminal node. A path will be closed path if  $V_0 = V_N$ .

# **Cycle**

A cycle can be defined as the path which has no repeated edges or vertices except the first and last vertices.

## **Connected Graph**

- A connected graph is the one in which some path exists between every two vertices (u, v) in V.
- There are no isolated nodes in connected graph.

# **Complete Graph**

- A complete graph is the one in which every node is connected with all other nodes.
- A complete graph contain n(n-1)/2 edges where n is the number of nodes in the graph.

## Weighted Graph

- In a weighted graph, each edge is assigned with some data such as length or weight.
- The weight of an edge e can be given as w(e) which must be a positive (+) value indicating the cost of traversing the edge.

## Digraph

- A digraph is a directed graph in which each edge of the graph is associated with some direction
- traversing can be done only in the specified direction.

# Loop

An edge that is associated with the similar end points can be called as Loop.

## **Adjacent Nodes**

• If two nodes u and v are connected via an edge e, then the nodes u and v are called as neighbors or adjacent nodes.

## **Degree of the Node**

- A degree of a node is the number of edges that are connected with that node.
- A node with degree 0 is called as isolated node.

#### **BASIC OPERATIONS**

- •Add Vertex
- •Add Edge
- •Display Vertex
- •Graph traversal

#### **GRAPH REPRESENTATION**

#### 1. ADJACENCY MATRIX

- An adjacency matrix is a array of V x V vertices.
- Each row and column represent a vertex.
- If the value of any element a[i][j] is 1, it represents that there is an edge connecting vertex i and vertex j.
- Edge lookup ie., checking if an edge exists between vertex A and vertex B is extremely fast but it requires more space.
- Dense graph

#### 2. ADJACENCY LIST

- It represents a graph as an array of linked lists.
- The index of the array represents a vertex and each element in its linked list represents the other vertices that form an edge with the vertex.
- Sparse Graph
- An adjacency list is efficient in terms of storage because only need to store the values for the edges.
- For a graph with millions of vertices, this can mean a lot of saved space.

# **SPACE COMPLEXITY:**

Adjacent matrix=  $O(n^2)$ 

Adacency list = O(n+2e)

| APPLICATIONS OF GRAPH                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|
| •Computer science   the flow of computation.                                                                    |
| •Google maps building transportation systems,                                                                   |
| •where intersection of two(or more) roads are considered to be a vertex and the road connecting two vertices is |
| considered to be an edge,                                                                                       |
| •their navigation system is based on the algorithm to calculate the shortest path between two vertices.         |
| •In Facebook  Friend suggestion algorithm                                                                       |
| • users are considered to be the vertices and if they are friends then there is an edge running between them.   |
| •Facebook is an example of undirected graph.                                                                    |
| •In World Wide Web   Google page ranking system                                                                 |
| • web pages are considered to be the vertices.                                                                  |
| •There is an edge from a page u to other page v if there is a link of page v on page u. This is an example      |
| of <b>Directed graph</b> .                                                                                      |
| In <b>Operating System</b> ☐ Resource Allocation Graph                                                          |
| • each process and resources are considered to be vertices.                                                     |
| •Edges are drawn from resources to the allocated process, or from requesting process to the requested resource. |
| •If this leads to any formation of a cycle then a deadlock will occur.                                          |
|                                                                                                                 |