Esame di Elettronica Ingegneria Informatica/Automatica 23 gennaio 2019

1) Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

Amplificatore Operazionale ideale con $L^+ = -L^- = 10V$

 $R_1 = 6 \text{ k}\Omega$; $R_2 = 4 \text{ k}\Omega$; C = 50 nF

Esame di Elettronica Ingegneria Informatica/Automatica 14 febbraio 2019

- 1) Dato il circuito di figura, calcolare:
 - il punto di lavoro dei due MOSFET
 - il guadagno di tensione a centro banda per piccoli segnali $A_v = v_{out}/v_{in}$

$$R_G = 5k\Omega$$
, $R_S = 50\Omega$, $R_I = 6k\Omega$, $R_2 = 1k\Omega$, $R_L = 2k\Omega$, $V_{DD} = 5V$, $C_1 \rightarrow +\infty$ $M_I = M_2 = \{V_T = 1V, K = 0.5 \text{mA/V}^2, \lambda = 0\}$

Esame di Elettronica Ingegneria Informatica/Automatica 21 marzo 2019

1) Del circuito seguente, con in ingresso una tensione continua V_1 pari a 4V e il segnale di corrente $I_1(t)$ ad onda triangolare (periodo=4ms) riportato in figura, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita $V_{out}(t)$.

$$V_1 = 4V$$
; $R_1 = 5k\Omega$; $R_L = 2k\Omega$;

Considerare l'amplificatore operazionale ideale, con tensione di alimentazione pari a $\pm 10V$.

Esame di Elettronica Ingegneria Informatica/Automatica 17 giugno 2019

A

1) Del circuito seguente, in presenza dell'impulso di tensione di alimentazione V_A riportato in figura calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

OA1 e **OA2** ideali con
$$L^+ = -L^- = 10$$
V
Q1 = { $V_t = 1$ V; $K = 1$ mA/V²; $\lambda = 0$ }
 $R_1 = 2k\Omega$, $R_2 = 3k\Omega$, $R_D = 2k\Omega$; $R_S = 1k\Omega$; $R = 1k\Omega$, $C = 1\mu$ F

Esame di Elettronica Ingegneria Informatica/Automatica 17 giugno 2019

B

1) Del circuito seguente, in presenza dell'impulso di tensione di alimentazione V_A riportato in figura calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

OA1 e **OA2** ideali con
$$L^+ = -L^- = 10V$$

Q1 = { $V_t = 2 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$ }

$$R_1 = 1k\Omega$$
, $R_2 = 4k\Omega$, $R_D = 2k\Omega$; $R_S = 2k\Omega$; $R = 10k\Omega$, $C = 0.1 \mu F$

Esame di Elettronica Ingegneria Informatica/Automatica 15 luglio 2019

A

- 1) Del circuito seguente,
- •Determinare il punto di polarizzazione dei transistor M_1 e M_2 (V_{GS} , V_{DS} , I_D)
- •Calcolare l'amplificazione di tensione per piccoli segnali $A_v = v_{out} / v_{in}$

$$M_1 e M_2 = \{V_t = 1 \text{ V}; K = 0.25 \text{ mA/V}^2; \lambda = 0\}$$

 $R_1 = 4k\Omega, R_2 = 1k\Omega, R_D = 20k\Omega; R_L = 20k\Omega;$
 $V_{DD} = 5V, C \rightarrow +\infty$

Esame di Elettronica Ingegneria Informatica/Automatica 15 luglio 2019

B

- 1) Del circuito seguente,
- Determinare il punto di polarizzazione dei transistor M_1 e M_2 (V_{GS} , V_{DS} , I_D)
- •Calcolare l'amplificazione di tensione per piccoli segnali $A_v = v_{out} / v_{in}$

$$M_1 e M_2 = \{ V_t = 2 \text{ V}; K = 0.5 \text{ mA/V}^2; \lambda = 0 \}$$

 $R_1 = 7k\Omega, R_2 = 3k\Omega, R_D = 10k\Omega; R_L = 10k\Omega;$
 $V_{DD} = 5V, C \rightarrow +\infty$

Esame di Elettronica Ingegneria Informatica/Automatica 16 settembre 2019

1) Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} . (Considerare il condensatore inizialmente scarico: $V_C(0)=0$ V)

Amplificatori Operazionali ideali con $L^+ = -L^- = 10$ V

$$M_I$$
: [$V_T = 1 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$]

 $R_D=2~{\rm k}\Omega;~~R_S=1~{\rm k}\Omega;~~R_I=1~{\rm k}\Omega;~~C=0.5~{\rm \mu F}$ $V_{DD}=10~{\rm V};$

Esame di Elettronica Ingegneria Informatica/Automatica 19 ottobre 2019

1) Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

Amplificatori Operazionali ideali con $L^+ = -L^- = 10$ V M_I : [$V_T = 1$ V; K = 0.5 mA/V²; $\lambda = 0$]

 $R_D=2.5 \text{ k}\Omega; \ R_S=0.5 \text{ k}\Omega; \ R_I=10 \text{ k}\Omega; \ C=5 \text{ nF}$ $V_{DD}=10 \text{ V};$