ST308 Bayesian Inference

Kostas Kalogeropoulos (Office B610)

Week 4: Exercises

- 1. Let $y = (y_1, \ldots, y_{10})$ be a sample of independent and identically distributed (iid) random variables from the Normal distribution with unknown mean θ and known variance 1. The sample mean \bar{y} is recorded to be 0.3.
 - (a) Suppose that we are interested in only two values of θ s, i.e. 0 and 1, and no prior knowledge is available. Assign a suitable prior on θ , justifying your choice, and derive the corresponding posterior. Consider the hypotheses $H_0: \theta = 0$ and $H_1: \theta = 1$, calculate the Bayes factor for comparing H_1 in reference to H_0 and interpret its value.
 - (b) Now consider the hypotheses $H_0: \theta \leq 0$ and $H_1: \theta > 0$. Calculate the Bayes factor for comparing H_1 in reference to H_0 and interpret its value.
 - (c) Finally, consider the hypotheses $H_0: \theta = 0$ and $H_1: \theta \neq 0$. Can you calculate the Bayes factor in this case? Justify your answers.
- 2. Find the predictive distribution based on x for a future observation y in the following cases
 - (a) An observation x from a Binomial (n, θ) likelihood with a Beta (α, β) prior for θ .
 - (b) An random sample $x = (x_1, ..., x_n)$ from a Poisson(λ) likelihood with a Gamma(α, β) prior for λ .