梯度下降

Slope 1元方程

dy is constant, slope it the same for all x

1元 2次

$$y = (x+1)^{2} + 2$$

= $x^{2} + 2x + 3$

$$\frac{dy}{dx} = 2x + 2$$

dy is not the same for different x.

Slope is like trend.

when
$$x = x + \Delta x$$

then
$$y = y + \Delta y$$

When
$$\Delta \times \rightarrow 0$$

summary,

For a function
$$y=f(x)$$
. At point x , slope $tun\theta=\frac{dy}{dx}$

$$Z = x^{2} + 2y^{2} + 2$$

Slope:
$$\begin{bmatrix} \frac{d^2}{d\infty} \\ \frac{d^2}{dy} \end{bmatrix} = \begin{bmatrix} 2x \\ 1y \end{bmatrix}$$

At point
$$(x, y) = (1, 1)$$

$$\begin{bmatrix} \frac{d^2x}{dx} \\ \frac{d^2y}{dy} \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

When:
$$X = X + 1$$
单位
$$Z = Z + \frac{d^2}{dx} \cdot | 单位$$

Increase: in
$$Z$$
, if $(1, 1)$ to $(3, 5)$ $(1, 1)$ to $(3, 2)$

(1,1) to (3,5):
$$\Delta x = 3 - 1 = 2$$

 $\Delta y = 5 - 1 = 4$

$$(1, 1)$$
 to $(3, 2)$; $\Delta x = 3 - 1 = 2$ $x = x + 2.46$
 $\Delta y = 2 - 1 = 1$ $y = y + 1.46$

X=X+2单位Y=Y+4轮 Dy=5-1=4 Z=2+位2-2中位=Z+4轮 2y = Z+ 最, 4单位=Z+16年5 Zx=Z+ 显·弹空=Z+4轮 Zy =2+ 器.1单位=2+ 4电 A, B both on $Z=x^2+2y^2+2$ If move from A to B, angle is Θ what is the change in Z?

Assume vector from A to B is T Then, length of T is 12

Then
$$\chi = \chi + [1]\cos\theta$$
.单位 $y = y + [1]\sin\theta$ 单位

Thorefore $Z = Z + \left[\frac{dz}{dx} \cdot |\vec{l}|\cos\theta + \frac{dz}{dy} \cdot |\vec{l}|\sin\theta\right] + \frac{dz}{dx}$ $= Z + \left[|\vec{l}|\cos\theta\right] \cdot \left[\frac{dz}{dx}\right]$ $= Z + \vec{l} \cdot \vec{\nabla} \cdot \vec{r}$

同量内积 的儿们意义

When B=0°, 7. 7 值最大, Z上州的最快 B=180°, 7. 7 值最大(促活的), Z下降最快

So, When 7=0, 75寸向一样, Z上機快 7-0, 75寸向相線反, Z下降最快, 要最十化SSE, 就要选了=-可,让SSE下降最小火

Review 1元线性回归

$$y=ax+b$$

 $SSE = \sum_{i=1}^{2} (y_i - \hat{a}x_i - \hat{b})^2$ $MSE = \frac{1}{N}SSE$

梯度下降。 · 找一个起始点 (ao, bo),算出在这个点的 $\Rightarrow = \begin{bmatrix} \frac{dM56}{da} \\ \frac{dmsc}{db} \end{bmatrix}$ $\begin{vmatrix} a=ao \\ b=bo \end{vmatrix}$

多元最小2乘

$$MSE = \frac{1}{n}(Y - X\Theta)^{T}(Y - X\Theta)$$

$$= \frac{1}{n} \left[Y^{T}Y - \theta^{T}X^{T}Y - Y^{T}X\Theta + \theta^{T}X^{T}X\Theta^{T} \right]$$

$$= \frac{1}{n} \left[Y^{T}Y - \theta^{T}X^{T}Y + 2X^{T}X\Theta \right]$$

$$= \frac{1}{n} \left[X^{T} \cdot (X\Theta - Y) \right]$$

$$= \frac{1}{n} \left[X^{T} \cdot (X\Theta - Y) \right]$$

$$= \frac{1}{n} \left[X^{T} \cdot (X\Theta - Y) \right]$$

$$= \frac{1}{n} \left[X^{T} \cdot (X\Theta - Y) \right]$$

(1) Take a initial point
$$\theta_0 = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_p \end{bmatrix}$$
, and a $\lambda = 0.01$

@ For m = 10000 steps

$$\Theta_{\text{new}} = \Theta_{\text{pre}} - \sum \nabla MSE(\theta) \Big|_{\theta = \theta \text{ pre}}$$