

Module 5 : Systèmes numériques

Contenu Pédagogique de l'instructeur

Introduction aux Réseaux v7.0 (ITN)

À quoi s'attendre dans ce module

Pour faciliter l'apprentissage, les fonctionnalités suivantes de l'interface graphique peuvent être

Fonctionnalité	Description
Animations	Exposer aux apprenants de nouvelles compétences et concepts.
Vidéos	Exposez les participants à des nouvelles compétences et des nouveaux concepts.
Vérifiez votre compréhension (CYU)	Questionnaire en ligne par rubrique pour aider les apprenants à évaluer la compréhension du contenu.
Exercices interactifs	Une variété de formats pour aider les apprenants à évaluer la compréhension du contenu.
Contrôleur de syntaxe	Petites simulations qui exposent les apprenants à la ligne de commande Cisco pour pratiquer les compétences de configuration.
Exercice PT	Activités de simulation et de modélisation conçues pour explorer, acquérir, renforcer et étendre les compétences.

À quoi s'attendre dans ce module (suite)

• Pour faciliter l'apprentissage, les fonctionnalités suivantes peuvent être incluses dans ce module :

Fonctionnalité	Description
Ateliers pratiques	les travaux pratiques sont conçus pour travailler avec des équipements physiques.
Exercices en classe	Ces informations se trouvent sur la page Ressources de l'instructeur. Les activités de classe sont conçues pour faciliter l'apprentissage, la discussion en classe et la collaboration.
Quiz du module	Auto-évaluations qui intègrent les concepts et les compétences acquises tout au long de la série de sujets présentés dans le module.
Résumé du module	Récapte brièvement le contenu du module.

illiilli CISCO

Module 5 : Systèmes numériques

Introduction aux Réseaux v7.0 (ITN)

Objectifs de ce module

Titre du module : Systèmes numériques

Module Objectif : Calculer des nombres entre les systèmes décimaux, binaires et hexadécimaux.

Titre du rubrique	Objectif du rubrique
Système binaire	Convertir des nombres entre les systèmes décimaux et binaires.
Système hexadécimal	Convertir des nombres entre les systèmes décimaux et hexadécimaux.

5.1 Système binaire

Système binaire Adresses binaires et IPv4

- Le format binaire est un système de numération utilisant les chiffres 0 et 1 qui sont appelés des bits
- Système numérique décimale composé de chiffres 0 à 9
- Hôtes, serveurs et équipements réseau utilisant l'adressage binaire pour s'identifier mutuellement.
- Chaque adresse est une chaîne de 32 bits divisée en quatre parties appelées octets.

• Chaque octet contient 8 hits (ou 1 hyte) sénarés nar un noint

Système binaire Vidéo - Conversion entre les systèmes binaires et décimales

Cette vidéo couvre les points suivants:

- Révision de la notation de position
- Pouvoirs de révision des 10
- Décimal révision de la numération de base 10
- Binaire revue de numération de base 2
- Convertir une adresse P en binaire en numération décimale

Système binaire Notation de position binaire

- En numération pondérée, un chiffre représente différentes valeurs, selon la « position » qu'il occupe dans la séquence de chiffres.
- Le système de notation décimale de position fonctionne comme indiqué dans les tableaux ci-dessous.

Base	10	10	10	10
Position du nombre	3	2	1	0
Calcul	(10^3)	(10^2)	(10^1)	(100)
Valeur de position	1 00	100	10	1

		Milliers	Centaine s	Dizaine s	Unité s
	Valeur pondérée	1 000	100	10	1
•	Nombre décimal (1234)	1	2	3	4
	Calcul	1 x 1000	2 x 100	3 x 10	4 x 1
	Additionnez-les	1 000	+ 200	+ 30	+ 4
	Le résultat		1 234		

Système binaire

Notation de position binaire (suite)

Le système de notation de position binaire fonctionne comme indiqué dans les tableaux

oi doccous								
Base	2	2	2	2	2	2	2	2
Position du nombre	7	6	5	4	3	2	1	0
Calcul	(27)	(26)	(25)	(24)	(23)	(22)	(2 ¹)	(20)
Valeur de position	128	64	32	16	8	4	2	1

Valeur pondérée	128	64	32	16	8	4	2	1
Nombre binaire (11000000)	1	1	0	0	0	0	0	0
Calcul	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
Ajoutez-les	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Le résultat				192	2			

Système binaire

Convertir le binaire en décimal

Convertir 11000000.10101000.00001011.00001010 en décimal.

Valeur pondérée	128	64	32	16	8	4	2	1
Nombre binaire (11000000)	1	1	0	0	0	0	0	0
Calcul	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
Ajoutez-les	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Nombre binaire (10101000)	1	0	1	0	1	0	0	0
Calcul	1x128	0x64	1x32	0x16	1x8	0x4	0x2	0x1
Ajoutez-les	128	+ 0	+ 32	+ 0	+ 8	+ 0	+ 0	+ 0
Nombre binaire (00001011)	0	0	0	0	1	0	1	1
Calcul	0x128	0x64	0x32	0x16	1x8	0x4	1x2	1x1
Ajoutez-les	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 1
Nombre binaire (00001010)	0	0	0	0	1	0	1	0
Calcul	0x128	0x64	0x32	0x16	1x8	0x4	1x2	0x1
Ajoutez-les	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 0

Système binaire Conversion décimale en binaire

La table de valeurs de position binaire est utile pour convertir une adresse IPv4 décimale pointillée en binaire.

- Commencez dans la position 128 (le bit le plus significatif). Le nombre décimal de l'octet (n) est-il égal ou supérieur à 128 ?
- Si non, enregistrez un binaire 0 dans la valeur de position 128 et passez à la valeur de position 64.
- Si la réponse est oui, indiquez la valeur binaire 1 dans la valeur pondérée 128 et soustrayez 128 au nombre décimal.
- Répétez ces étapes à travers la valeur de position 1.

Système binaire

Conversion décimale en binaire

Convertir décimal 168 en binaire

Est-ce que 168 > 128 ?

- Oui, entrez 1 en position 128 et soustrayez 128 (168-128=40)
 40 est-il ≥ 64 ?
- Non, entrez 0 en position 64 et passez à autre chose Est-ce que 40 > 32 ?
- Oui, entrez 1 en position 32 et soustrayez 32 (40-32=8) Est-ce que 8 > 16 ?
- Non, entrez 0 en position 16 et passez à autre chose. Est-ce que 8 > 8 ?
- Égal entrez 1 en position 8 et soustrayez 8 (8-8=0) Il n'y a plus de valeurs. entrez 0 dans les positions binaires restantes

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

La décimale 168 est écrite en 10101000 en binaire

Système binaire Adresses IPv4

 Les routeurs et les ordinateurs ne comprennent que le binaire, tandis que les humains travaillent en décimal. Il est important pour vous d'acquérir une compréhension approfondie de ces deux systèmes de numérotation et de leur utilisation dans le réseautage.

5.2 Système hexadécimal

Système hexadécimal Adresses hexadécimales et IPv6

- Pour comprendre les adresses IPv6, vous devez pouvoir convertir hexadécimal en décimal et vice versa.
- Hexadécimal est un système en base seize utilisant les chiffres de 0 à 9 et les lettres de A à F.
- Il est plus facile de représenter une valeur à l'aide d'un seul chiffre hexadécimal que de quatre bits binaires.
- Le format hexadécimal permet de représenter les adresses MAC Ethernet et les

Decimal	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
0
1
2
3
4
5
6
7
8
9
А
В
С
D
E
F

Système hexadécimal Adresses hexadécimales et IPv6 (suite)

- Les adresses IPv6 ont une longueur de 128 bits. Tous les groupes de 4 bits sont représentés par un caractère hexadécimal unique Cela fait de l'adresse IPv6 un total de 32 valeurs hexadécimales.
- La figure montre la méthode préférée d'écriture d'une adresse IPv6, chaque X représentant quatre valeurs hexadécimales.
- Chaque groupe de quatre caractères hexadécimaux est désigné comme un hextet.

Système hexadécimal

Vidéo — Conversion entre systèmes de numérotation hexadécimale et décimale

Cette vidéo couvre les points suivants:

- Caractéristiques du système hexadécimal
- Convertir à partir de Hexadécimal à Décimal
- Convertir à partir de Décimal à Hexadécimal

Système hexadécimal Conversions décimales à hexadécimales

Suivez les étapes répertoriées pour convertir des nombres décimaux en valeurs hexadécimales :

- Convertir le nombre décimal en chaînes binaires 8 bits.
- Divisez les chaînes binaires en groupes de quatre à partir de la position la plus à droite.
- Convertissez chacun des quatre nombres binaires en leur équivalent hexadécimal.

Par exemple, 168 converti en hexadécimal en utilisant le processus en trois étapes.

- 168 en binaire est 10101000.
- 10101000 dans deux groupes de quatre chiffres binaires est 1010 et 1000.
- 1010 est hexadécimal A et 1000 est hexadécimal 8, donc 168 est A8.

Système hexadécimal Conversions hexadécimales à décimales

Suivez les étapes répertoriées pour convertir des nombres hexadécimaux en valeurs décimales :

- Convertir le nombre hexadécimal en chaînes binaires 4 bits.
- Créez un regroupement binaire 8 bits à partir de la position la plus à droite.
- Convertissez chaque regroupement binaire 8 bits en chiffres décimaux équivalents.

Par exemple, D2 converti en décimal à l'aide du processus en trois étapes :

- D2 dans les chaînes binaires 4 bits est 1110 et 0010.
- 1110 et 0010 est 11100010 dans un groupe 8 bits.
- 11100010 en binaire est équivalent à 210 en décimal, donc D2 est 210 est décimal

5.3 Module pratique et questionnaire

Module Pratique et Questionnaire

Qu'est-ce que j'ai appris dans ce module?

- Le format binaire est un système de numération utilisant les chiffres 0 et 1 qui sont appelés des bits.
- Decimal est un système de numération de base dix qui se compose des nombres 0 à 9.
- Le binaire est ce que les hôtes, les serveurs et l'équipement réseau utilisent pour s'identifier mutuellement.
- Hexadécimal est un système en base seize utilisant les chiffres de 0 à 9 et les lettres de A à F.
- Le format hexadécimal permet de représenter les adresses MAC Ethernet et les adresses IPv6.
- Les adresses IPv6 ont une longueur de 128 bits et chaque 4 bits est représenté par un seul chiffre hexadécimal; pour un total de 32 valeurs hexadécimales.
- Pour convertir hexadécimal en décimal, vous devez d'abord convertir l'hexadécimal en binaire, puis convertir le binaire en décimal.
- Pour convertir décimal en hexadécimal, vous devez d'abord convertir la décimale en binaire, puis le binaire en hexadécimal.

