

1. F(+) = 480sin(#+) +160(1-10) - 480

| 11       | al    | 6    | m      | f(a)    | F(6)   | F(m)   |           |  |
|----------|-------|------|--------|---------|--------|--------|-----------|--|
| O        | 1     | 75   | 38     | 1-312.5 | 476.98 | -58.26 |           |  |
| 1 2      | 38    | 75   | 8.5    | -58     | +77    | +30    | (+1) kach |  |
|          | 38    | 56.5 | 47.25  | 1-28    | +30    | -9.5   |           |  |
| 3        | 47.25 | 26.2 | 51.375 | -9.5    | +30    | +11.5  |           |  |
| m= 49.56 |       |      |        |         |        |        |           |  |
|          | 40    |      |        |         |        |        |           |  |

$$A = \begin{pmatrix} 1 & 2^{2} & 2 & 1 \\ 2 & 2^{2} & 2 & 1 \\ 2 & 2^{2} & 2 & 1 \end{pmatrix}$$

$$VZ = \begin{pmatrix} V_{2}^{(1)} \\ V_{2}^{(2)} \\ \vdots \\ V_{2}^{(n)} \end{pmatrix}$$

$$\bigvee_{z} = \begin{pmatrix} V_{z}^{(1)} \\ V_{z}^{(2)} \\ \vdots \\ V_{z}^{(n)} \end{pmatrix}$$

$$= A^{(m)} \sum_{k=1}^{\infty} A^{(m)T}$$

3. 
$$S_a^2 = \left(\frac{\partial f}{\partial V}\Big|_{\overline{V}}\right)^2 S_v^2 + \frac{\partial f}{\partial V}$$

$$d = f(V) = \left(\frac{6V}{T}\right)^{\frac{1}{3}}$$

$$\frac{\partial f}{\partial V} = \frac{1}{3} \frac{6}{11} \left(\frac{6V}{T}\right)^{-\frac{1}{2}} \frac{3+4}{3+4} e^{-\frac{1}{3}} \frac{2}{11} \left(\frac{6\overline{V}}{T}\right)^{-\frac{1}{3}}$$

$$\frac{\partial f}{\partial V} = \frac{1}{3} \frac{6}{4} \left(\frac{6V}{T}\right)^{-\frac{2}{3}} e^{-\frac{2}{3}} e^{-\frac{2}{3}} V \Rightarrow \frac{2}{4} \left(\frac{6V}{T}\right)^{-\frac{2}{3}} e^{-\frac{2}{3}} V \Rightarrow S_{3}^{2} = \frac{1}{3} \frac{6}{4} \left(\frac{6V}{T}\right)^{-\frac{2}{3}} \frac{4}{3} S_{3}^{2}$$

$$\overline{A} = \left(\frac{6 \cdot 623.6}{7}\right)^{\frac{1}{3}} = 10.6 \text{ Hm}$$

SHEETS SHEETS SMEETS

100 200

22-141 22-142 22-144

$$S_{3}^{2} = \frac{4}{5} \frac{4}{112} \left( \frac{6V}{11} \right)^{-4/3} S_{V}^{2}$$

$$\overline{d} = \left( \frac{6 \cdot 623.6}{1} \right)^{V_{3}} = 10.6 \, \mu \text{m}$$

$$S_{3}^{2} = 3.21 \times \left[ 0^{-5} \cdot (289.1)^{2} = 2.68 \right]$$

$$S_{4} = 1.64 \, \mu \text{m}$$

$$S_a^2 = 3.21 \times [0^{-5} \cdot (289.1)^2 = 2.68$$

$$S_a = 1.64 \mu m (49)$$