Weekly Meeting

Zicun Cong

August 8th, 2016

Problem Definition

Navigation Behavior

An navigation behavior B_k is a triple (d, u, t), where d is a device id, u is an URL and t is the time the URL u is visited by the device d.

Navigation Behavior Sequence

A navigation behavior sequence \mathbb{B} is a sequence of navigation behaviors, $\mathbb{B} = \{B_1, \dots, B_n\}$, where $B_1.t < B_2.t < \dots < B_m.t$, $B_1.d = B_2.d = \dots = B_m.d$, and $B_n.t - B_1.t \leq w$. w is a user defined time window.

Problem Definition

Navigation Behavior Normality

By assuming the navigation behaviors of a device depend on his previous behaviors, we measure the normality of a *navigation* behavior B_k by the conditional probability of B_k given the historical behaviors of the device $B_k.d$ within a short period w, that is,

$$nor(B_k) = P(B_k.u|B_1.u, \dots, B_{k-1}.u)$$

 B_1, \ldots, B_k have the same device ids and $B_k.t - B_1.t \le w$.

Navigation Behavior Set Normality

The normality of a navigation behavior sequence,

 $\mathbb{B} = \{B_1, \dots, B_n\}$, is defined as the probability it is generated.

$$nor(\mathbb{B}) = P(\mathbb{B}) = \prod nor(B_k) = \prod P(B_k.u|B_1.u, \dots, B_{k-1}.u)$$

Proposed Method

- ► Embed URL
 - Character-level Convolutional Neural Network
- ▶ Learn the distribution of behavior sequence
 - ► Recurrent Neural Network

Character-level Convolutional Neural Network

- 1. Let *C* be the vocabulary of characters.
- 2. The word $k \in V$ is made up of a sequence of characters $\{c_1, \ldots, c_l\}$.
- 3. The character-level representation of k is given by the matrix $C^k \in \mathbb{R}^{\|C\|*I}$. C^k are zero-padded so that the number of columns of different words are constant.
- 4. C^k is mapped to a vector \mathbf{y}^k by a convolutional neural network, where $\mathbf{y}^k = \{y_1^k, \dots, y_h^k\}$. h is the number of filters (or kernels).

Recurrent Neural Network Language Model

We treat each *navigation behavior* as a word and each *navigation behavior sequence* as sentence. We use RNN-LM to learn a distribution over url_{t+1} given historical url sequences url_1, \ldots, url_t .

1. Given a time window w, the data are grouped into multiple navigation behavior sets.

2.
$$\mathbf{P}(\textit{url}_{t+1} = j | \textit{url}_1, \dots, \textit{url}_t) = \frac{\exp(\mathbf{h}_t * \mathbf{y}^j)}{\sum_{j' \in \textit{URL}} \exp(\mathbf{h}_t * \mathbf{y}^{j'})}$$

3. Given *navigation behavior sets*, RNN tries to minimizing the negative log-likelihood.

$$NLL = -\sum_{n=1}^{N} \sum_{t=1}^{T_n} log \mathbf{P}(url_t^n | url_1^n, \dots, url_{t-1}^n)$$

- ▶ *N* is the number of *navigation behavior sets*
- $ightharpoonup T_n$ is the size of the n-th navigation behavior set
- $ightharpoonup url_t^n$ is the t-th url in the n-th navigation behavior set