7 FYZIKÁLNÍ OPTIKA

Interference

Ohyb

Polarizace

27.2 Ohyb

Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev - jeho vznik vyplývá z Huygensova principu a interference. Je obecnou vlastností každého vlnění. Podrobnější zkoumání ukazuje, že **podmínkou vzniku pozorovatelných ohybových jevů je, aby geometrické rozměry překážek byly porovnatelné nebo menší než je vlnová délka vlny.** V případě **zvukových vln** jsou to překážky o rozměrech (10⁰-10²) *cm*, v případě radiových vln překážky o rozměrech (10-10³) *m* a v případě **světla** překážky řádu 0,1 μ*m*.

27.5

Při ohybu rovinné světelné vlny na jedné štěrbině šířky se vlnění interference zruší ve všech směrech, pro které platí podmínka

$$a \sin \alpha = N\lambda$$
, $N = 1, 2, 3 \dots$, (27.7)

Mezi směry určenými úhly α_i a α_{i+1} se nachází směry, ve kterých intenzita svazku nabývá lokálního minima . Intenzita svazku příslušející lokálnímu maximu s rostoucím řádem klesá.

Obr. 27.6 Ohyb světla na štěrbině

Odvození minim ohybu na jedné štěrbině

Vysvětlení je jednoduché: každý bod v okolí překážky se podle Huygensova principu stává zdrojem vlnění šířícího se na všechny strany.

Budeme předpokládat, že dopadající vlnění na překážku můžeme považovat už za rovinné vlny. (**Freunhoferův ohyb**) .Uvažujme nejprve o ohybu monochromatického světla po kolmém dopadu na jedinou štěrbinu šířky a (obr. 27.6). Jestliže by se vzdálenost AB rovnala na př. právě vlnové délce λ , pak úsudkem lehce zjistíme, že všechny paprsky vystupující z ní v určeném směru se

po soustředění (např. čočkou) do jednoho bodu interferencí zruší. Každému paprsku mezi paprsky 1 a 2 odpovídá totiž paprsek z druhé poloviny štěrbiny, který se od něho liší o dráhu λ/2, takže se s ním interferencí zruší. Totéž se však stane i pro N-násobný rozdíl drah, a proto uvážíme-li platnost vztahu

můžeme podmínku úplného vymizení vlnění v tomto směru skutečně vyjádřit ve tvaru (27.7).

Je-li však tento drahový rozdíl na př. větší než λ , pak se vzájemně zruší všechny paprsky ze štěrbiny z intervalu drahových rozdílů rovných λ , avšak paprsky s drahovým rozdílem $>\lambda$ se nezruší, protože nemají s čím interferovat. Tak se vše opakuje i pro celý násobek vlnových délek $N\lambda$ V tomto směru se proto vlnění částečně šíří do prostředí za štěrbinou, avšak jeho intenzita se vzrůstajícím úhlem rychle klesá.

27.6

Při ohybu rovinné vlny na soustavě štěrbin (v optice ohybová mřížka) se vlnění šíří jen ve vybraných směrech, pro které je splněno

$$d \sin \alpha = N\lambda, \quad N = 1, 2, 3 \dots,$$
 (27.8)

kde *d* je vzdálenost středů sousedících štěrbin.

Odvození maxima na ohybové interferenční mřížce

Obr. 27.7 Ohyb světla na ohybové mřížce

Jestliže rovinná vlna dopadá současně na více štěrbin (v optice nazýváme soustavu štěrbin mřížkou)

a za ní se paprsky z jednotlivých štěrbin soustřeďují (např. čočkou) do jednoho místa (obr. 27.7), zúčastňují se interference paprsky přicházející ze všech štěrbin. Projeví se to v tom, že na rozdíl od jediné štěrbiny se objevila další minima a maxima vlnění, avšak jejich intenzita je nepatrná v porovnání s maximy, které odpovídají podmínce (27.8)

$$AB = d \sin \alpha = N\lambda$$
, $N = 1, 2, 3 \dots$

Při jejím splnění se totiž interferencí zesilují paprsky ze všech štěrbin. Rozložení intenzity monochromatického světla na stínítku za mřížkou s jednou, dvěma, čtyřmi a osmi štěrbinami ukazuje obr. 27.8. Z něj vyplývá, že při velkém počtu štěrbin se intenzita vlnění rozloží jen na ostře ohraničená hlavní maxima, která v případě obdélníkových štěrbin se projeví na fotografické desce v podobě ostrých čar. Není-li dopadající světlo monochromatické, ale polychromatické, vzniká soustava čar (prvého řádu pro N = 1, druhého řádu pro N = 2, atd.).

Obr. 27.8 Rozložení intenzity světla na stínítku za ohybovou mřížkou s jednou, dvěma, čtyřmi a osmi štěrbinami

Ohybovou mřížku proto můžeme rovněž využít pro spektrální analýzu.

Rozlišovací schopnost ohybové mřížky se definuje vztahem

$$S = \frac{\lambda}{\Delta \lambda},\tag{27.9}$$

kde $\Delta\lambda$ je rozdíl vlnových délek, jejichž ohybová maxima ještě můžeme rozlišit. Výpočet dává pro tuto veličinu vztah

$$S = K N,$$
 (27.10)

kde K je počet štěrbin a N je řád spektra. Dnešní ohybové mřížky obsahují až několik tisíc štěrbin (vrypů) na 1 mm délky.

27.3 Polarizace

Polarizace vlny - každé vlnění může být **lineárně polarizované**, jestliže příslušný vektor, charakterizující vlnění zůstává v rovině, **kruhově polarizované**, jestliže koncový bod tohoto vektoru opisuje kružnici a **elipticky polarizované**, je-li touto čarou elipsa. Kruhově a elipticky polarizované vlnění může vždy rozložit na dvě lineárně polarizované vlny, kmitající v rovinách na sebe kolmých. Jestliže prostředí ovlivňuje světelnou vlnu tak, že částečně nebo úplně zabraňuje šíření vlnění polarizovanému v jedné rovině, obecně elipticky polarizované světlo se částečně nebo úplně lineárně polarizuje. Tento efekt můžeme v případě světla dosáhnout **odrazem, lomem a tzv. dvojlomem (věty 27.8 až 27.11).**

27.7

Odrazem se světlo (s ohledem na vektor intenzity elektrického pole) částečně polarizuje tak, že odražené světlo je částečně polarizováno kolmo na rovinu dopadu. Úplná polarizace odrazem nastává při splnění podmínky

$$tg \ \alpha = n_{12},$$
 (27.11)

kde úhel dopadu **«** se nazývá Brewsterův úhel.

27.8

Lomem se světlo (s ohledem na vektor intenzity elektrického pole) částečně polarizuje tak, že procházející světlo je částečně polarizováno v rovině dopadu.

Odvození polarizace odrazem a lomem

Obr. 27.9 Rozklad intenzity elektrického pole elektromagnetické vlny s ohledem na Fresnelovy vztahy

Vzni k pola rizac odrazem a lomem kvalitativně lehce pochopíme, jestliže si uvědomíme, že světelná vlna je elektromagnetické. Vzhledem k tomu, že na rozhraní se tečná složka vektoru intenzity elektrického pole nemění, je výhodné rozložit tento vektor na složku E_r v rovině dopadu a složku E_k v rovině na ni kolmou (obr. 27.9). Tato podmínka umožňuje najít tzv. Fresnelovy vztahy jako poměr složek vektoru intenzity elektrického pole odražené (index o), resp. procházející (index p) vlny a dopadající vlny (index d) ve tvaru

$$k_{ro} = \frac{E_{ro}}{E_{rd}} = -\frac{tg (\alpha - \beta)}{tg (\alpha + \beta)} = -k_{ko} \frac{\cos (\alpha + \beta)}{\cos (\alpha - \beta)},$$
(27.14)

$$k_{ko} = \frac{E_{ko}}{E_{kd}} = -\frac{\sin (\alpha - \beta)}{\sin (\alpha + \beta)},$$
(27.13)

$$k_{kp} = \frac{E_{kp}}{E_{kd}} = \frac{2 \cos \alpha \sin \beta}{\sin (\alpha + \beta)},$$
(27.15)

$$k_{rp} = \frac{E_{rp}}{E_{rd}} = \frac{2 \cos \alpha \sin \beta}{\sin (\alpha + \beta) \cos (\alpha - \beta)} = k_{kp} \frac{1}{\cos (\alpha - \beta)}$$
(27.16)

Ve vztazích (27.13) - (27.16) je α úhel dopadu a β je úhel lomu v příslušném prostředí. Z předchozích vztahů vyplývají nerovnosti

$$\left|k_{ro}\right| < \left|k_{ko}\right| \tag{27.17}$$

$$\left|k_{rp}\right| > \left|k_{kp}\right| \tag{27.18}$$

Tyto nerovnosti značí, že v odraženém světle je potlačena složka $E_{\rm ro}$ na úkor složky $E_{\rm ko}$, tj. odrazem se částečně a **při splnění podmínky** $(\alpha+\beta)=\pi/2$ úplně omezí vlna polarizovaná v rovině dopadu. Světlo se tedy polarizuje v rovině kolmé na rovinu dopadu, což je obsahem věty 27.7. **Podmínku úplné** polarizace $(\alpha+\beta)=2/\pi$ můžeme s ohledem na zákon lomu

$$= \frac{\sin \alpha}{\sin \beta} = \frac{\sin \alpha}{\sin \left(\frac{\pi}{2} = \alpha\right)} = \frac{\sin \alpha}{\cos \alpha} = tg\alpha = n_{21},$$

skutečně napsat ve tvaru (27.11).

V anizotropních prostředích se mohou ve zvoleném směru šířit **jen dvě lineárně polarizované světelné vlny, jejichž polarizační roviny jsou na sebe kolmé.** Rychlosti šíření obou vln jsou různé. Proto se elipticky polarizované světlo, které do nich vchází rozdělí na dvě lineárně polarizované vlny. Tento jev existující v anizotropních prostředích se nazývá dvojlom.

27.10

Dvojlom světla a tím i jeho polarizaci můžeme uměle vytvořit i v izotropních prostředích (dielektrikách), jestliže je vložíme do elektrického pole (Kerrův jev), resp. jestliže je vystavíme působení tlaku.

27.11

Některé (tzv. opticky aktivní) látky mají schopnost stáčet polarizační rovinu. Pro intenzitu vlny, prošlé takovým prostředím a detekované za analyzátorem platí tzv. Malusův zákon

$$I = I_o \cos^2 \alpha$$
, (27.12)

kde úhel α je úhel stáčení polarizační roviny. Stáčení polarizační roviny můžeme i uměle vyvolat pomocí magnetického pole (Faradayův jev).

Obr. 27.10 K stáčení polarizační roviny opticky aktivními látkami

Komentář k polarizačním schopnostem látek

Úplné lineární polarizace světla můžeme dosáhnout dvojlomem. Spočívá v tom, že při dopadu světelného paprsku na rozhraní izotropního a anizotropního prostředí nastává jeho rozštěpení na dva lineárně polarizované paprsky (tzv. řádný a mimořádný). V přirozeném stavu mají tuto vlastnost některé krystaly, (nejznámější je islandský vápenec), v jiných průhledných původně izotropních látkách můžeme tuto vlastnost uměle vyvolat působením elektrického pole, resp. mechanickým namáháním. Kerr zjistil, že v některých látkách vložených do elektrického pole (např. v nitrobenzenu) se paprsek rovněž štěpí na řádný a mimořádný, přičemž pro každý z nich představuje látka prostředí s odlišným indexem lomu. Jejich rozdíl n_f - n_m je přímo úměrný vlnové délce a druhé mocnině intenzity elektrického pole.

$$n_{r}-n_{m}=A \lambda E^{2}. \tag{27.19}$$

2π násobek konstanty A se nazývá Kerrova konstanta. Kerrův jev se využívá zejména při rychlé modulaci intenzity světla, protože má jen nepatrnou setrvačnost (10⁻⁹s). Dvojlom vyvolaný mechanickým tlakem je vhodný k pozorování vnitřních pnutí materiálů.

Polarizované světlo má široké využití v praxi. Nejznámější je využití na zjišťování koncentrace opticky aktivních látek, které stáčejí polarizační rovinu. Zařízení používané k tomuto účelu sestává ze dvou polarizačních hranolů: polarizátoru a analyzátoru, mezi které se vkládá opticky aktivní látka (obr. 27.10). Polarizační hranol se vyrábí zpravidla z islandského vápence (nikol), který je zbroušen, rozřezán na dvě části a znovu slepen kanadským balzámem tak, že propouští jen mimořádný paprsek. Jsou-li nicoly zkřížené, neprochází analyzátorem světlo. Opticky aktivní látka pootočí polarizační rovinu, takže světelné pole se vyjasní a analyzátorem prochází intenzita určená Malusovým zákonem (27.12). Z velikosti pootočení můžeme vypočítat koncentraci opticky aktivní látky (např. cukru v roztoku).