# **Control Systems 2 Cheatsheet**

Noa Sendlhofer - nsendlhofer@ethz.ch Version: June 17, 2024 Template by Micha Bosshart

Discrete Time

# 1.1 Sampling

# $T_s$ : Sampling Time

$$\omega_s$$
: Sampling frequency

1.2 Aliasing

 $y_1[k] = cos(\omega kT_s),$ 

 $y_2[k] = \cos((\omega + n\frac{2\pi}{T})kT_s),$ 

$$w_s = \frac{1}{2}$$

$$k = 0, 1, 2$$

$$=\cos(\omega kT_s + n2\pi k) = y_1[k]$$

# 1.2.1 Nyquist-Shannon Sampling theorem

$$f_N=rac{1}{2T_s}\left[ extsf{Hz}
ight] \quad ext{or} \quad \omega_N=rac{\pi}{T_s}\left[rac{ extsf{rad}}{ extsf{s}}
ight]$$
 No aliasing if  $\omega<\omega_N!$ 

# 1.3 DT State Space Representation $x[k+1] = A_d x[k] + B_d u[k]$

$$= e^{AT}x[k] + \left(\int_0^T e^{A(T-\tau)}d\tau\right)Bu[k]$$
$$y[k] = C_dx[k] + D_du[k]$$

= Cx[k] + Du[k]

If A is invertible:  $B_d = A^{-1}(A_d - I)B$ 

$$x[0] = x_0, \qquad u[k] = 0$$

$$x[0] = x_0, u[k] = 0$$

$$x[k+1] = Ax[k], \Rightarrow x[k] = A^k x_0$$

$$y[k] = Cx[k]$$

$$= CA^k x_0$$

$$A^k = (T\Lambda T^{-1})^k = T\Lambda^k T^{-1}$$

$$\lim_{k \to +\infty} A^k = 0 \quad \Longrightarrow \quad |\lambda_i| < 1$$

# x[1] = Bu[0],

$$x[2] = ABu[0]Bu[1], \dots,$$
  
 $x[k] = \sum_{i=0}^{k-1} A^{k-i-1}Bu[i],$ 

$$y[k] = \underbrace{CA^kx_0}_{\text{Homogeneous}} + C\sum_{i=0}^{k-1}A^{k-i-1}Bu[i] + Du[k]$$

# 1.4 DT Transfer Function

$$u[k] = u_0 z^k = u_0 e^{ksT} = u(kT)$$

$$\begin{split} y[k] &= C \sum_{i=0}^{k-1} A^{k-i-1} B u_0 z^i + D u_0 z^k \\ &= \underbrace{C A^k (x_0 - C(zI - A)^{-1} B u_0)}_{\text{Transient}} \\ &+ \underbrace{C(zI - A)^{-1} B u_0 z^k + D u_0 z^k}_{\text{Steady-state}} \\ \lim_{k \to +\infty} A^k &= 0 \quad \Rightarrow \quad y[k] \approx [C(zI - A)^{-1} B + D] u[k] \end{split}$$

$$\lim_{k \to +\infty} A = 0 \Rightarrow y[k] \approx [C(zI - A) \quad B + D]u[k]$$
$$y[k] \approx G(z)u[k], \quad G(z) := C(zI - A)^{-1}B + D$$

# 1.5 Approximation Methods

# **System Properties**

# 2.1 Similarity Transformation

Tustin

$$\begin{cases} x^+ = Ax + Bu \\ y = Cx + Du \end{cases} \implies \begin{cases} \tilde{x}^+ = (T^{-1}AT)\tilde{x} + (T^{-1}B)u \\ y = (CT)\tilde{x} + Du \end{cases}$$

### 2.1.1 Modal decomposition

$$\tilde{x}_i(t) = e^{\lambda_i t} \tilde{x}_i(0) \qquad \qquad x(t) = \sum_{i=1}^n e^{\lambda_i t} \tilde{x}_i(0) v_i$$

# 2.2 Reachability

$$\mathcal{R} := \begin{bmatrix} A^{n-1}B|...|AB|B \end{bmatrix} \in \mathbb{R}^{n \times n \cdot m} \qquad U := \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[n-1] \end{bmatrix}$$
 
$$\Rightarrow x[n] = \mathcal{R}U$$

The systen is reachable if and only if  $\mathcal R$  has full row rank n

# 2.3 Observability

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ Y = \begin{bmatrix} y[0] \\ y[1] \\ \vdots \\ Y = \mathcal{O}x[0] \end{bmatrix}$$

The systen is observable if and only if  $\mathcal O$  has full column rank n

# 2.4 Controllability

A system is controllable if, for any initial condition  $x_0$ , there exists a control input u that brings the state x to 0 in finite time. For CT Systems: Controllability = Reachability For DT Systems: A is invertible  $\Rightarrow$  Controllability = Reachability

# 2.5 Kalman Decomposition

$$x^{+} = \begin{bmatrix} \Lambda_{r\overline{o}} & 0 & 0 & 0 \\ 0 & \Lambda_{ro} & 0 & 0 \\ 0 & 0 & \Lambda_{\overline{ro}} & 0 \\ 0 & 0 & 0 & \Lambda_{\overline{ro}} \end{bmatrix} x + \begin{bmatrix} B_{r\overline{o}} \\ B_{ro} \\ 0 \\ 0 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 0 & C_{ro} & 0 & C_{\overline{r}o} \end{bmatrix} x + Du$$
• Stabilizability

# A system is said to be stabilizable if all unstable modes are

reachable

# Detectability

A system is said to be detectable if all unstable modes are

# 3 State Feedback

### 3.1 State Feedback



 $= (A - BK)x + B\overline{N}r, \qquad \overline{N} = KS$ 

$$G_{yr}^{cl}(s) = C(sI - A + BK)^{-1}BKS$$
$$= C(sI - A - BK)^{-1}B\overline{N}$$

y = Cx + (D = 0)

### K - Direct Method

$$p_{cl}^* = \prod_{i=1}^n (s + \lambda_i), \quad K = [k_1 \quad k_2 \quad \dots \quad k_n]$$

$$p_{cl} = det(sI - A + BK) = p_{cl}^*$$

### ${\cal K}$ - Ackermann's Formula

$$K = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix} \mathcal{R}^{-1} p_{cl}^*(A)$$

No steady-state error: 
$$\Rightarrow G_{yr}^{cl}(0)=1$$

$$\Longrightarrow \overline{N} = -(C(A - BK)^{-1}B)^{-1}, \quad S = K^{-1}\overline{N}$$

# 3.2 LQR LQR guarantees:

- phase margin  $> 60^{\circ}$
- gain margin  $(\frac{1}{2}, +\infty)$

# 3.2.1 Continuous Time

$$\begin{aligned} & \min_{K} J(x,u) = \int_{0}^{+\infty} [x(t)^{T}Qx(t) + u(t)^{T}Ru(t)]dt, \\ & \text{s.t.:} \quad \dot{x}(t) = Ax(t) + Bu(t), \end{aligned}$$

$$u(t) = -Kx(t)$$

soln.: 
$$0 = \boldsymbol{A}^T \boldsymbol{X} + \boldsymbol{X} \boldsymbol{A} + \boldsymbol{Q} - \boldsymbol{X} \boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{B}^T \boldsymbol{X}$$
 
$$K = \boldsymbol{R}^{-1} \boldsymbol{B}^T \boldsymbol{X}$$

s.t.: 
$$x[k+1] = Ax[k] + Bu[k],$$
 
$$u[k] = -Kx[k]$$

 $\min_{K} J(x, u) = \sum_{k=0}^{+\infty} (x[k]^{T} Q x[k] + u[k]^{T} R u[k]),$ 

soln.: 
$$X = A^T X A - (A^T X B)(B' X B + R)^{-1}(B^T X A) + Q$$

$$K = (R + B^T X B)^{-1} B^T X A$$

# 3.2.3 LQR Servo

$$\begin{bmatrix} x \\ \epsilon \end{bmatrix}^+ = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ \epsilon \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ I \end{bmatrix} r$$

# 4 State Estimation

# 4.1 Luenberger Observer



$$\hat{x}^{+}(t) = (A - LC)\hat{x}(t) + Bu(t) + Ly(t)$$
$$\hat{y}(t) = C\hat{x}(t)$$

$$\Rightarrow$$
 Exactely the same as finding a control gain  $K$  
$$L = p_{cl}^*(A)\mathcal{O}^-1[0,\ldots,0,1]^T$$

# 4.2 LQE

$$Q = \mathbb{E}[w(t)w(t)^T], \quad R = \mathbb{E}[n(t)n(t^T)], \quad \forall t \geq 0$$
 em: Find L, such that the steady-state covariance of the stat

Problem: Find L, such that the steady-state covariance of the state Solution:

$$0 = AY + YA^{T} - YC^{T}R^{-1}CY + Q$$
$$L = -YC^{T}R^{-1}$$

# 5 Dynamic Output Feedback



# 5.1 LQG

$$\begin{bmatrix} x \\ \eta \end{bmatrix}^{+} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ \eta \end{bmatrix} + \begin{bmatrix} BKS \\ 0 \end{bmatrix} r$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ \eta \end{bmatrix}$$

### 5.1.1 LQG Servo

$$\begin{bmatrix} x \\ x_I \\ \eta \end{bmatrix}^+ = \begin{bmatrix} A - BK & -BK_I & BK \\ -C & 0 & 0 \\ 0 & 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ x_I \\ \eta \end{bmatrix} + \begin{bmatrix} BKS \\ I \\ 0 \end{bmatrix} r$$
$$y = \begin{bmatrix} C & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_I \\ \eta \end{bmatrix}$$

### 5.1.2 LQG Stability

LQG guarantees closed loop stability, but the margins can be arbitrarily small.

### 6 MIMO

### 6.1 Transfer Function



$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad G(s) = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$$

## Push through identity

$$G_1(I + G_2G_1)^{-1} = (I + G_1G_2)^{-1}G_1$$

### MIMO state space to tf

$$G(s) = C(sI - A)^{-1}B + D$$

### 6.2 State Space

$$x^{+} = \underbrace{A}_{n \times n} \underbrace{x}_{n \times 1} + \underbrace{B}_{n \times m} \underbrace{u}_{m \times 1}$$
$$y = \underbrace{C}_{x} + \underbrace{D}_{u}$$

$$y = \underbrace{C}_{l \times n} \underbrace{x}_{n \times 1} + \underbrace{D}_{l \times m} \underbrace{u}_{m \times 1}$$

- $x \in \mathbb{R}^n$ , where n is the order of the system
- $u \in \mathbb{R}^m$ , where m is the number of inputs
- $y \in \mathbb{R}^l$ , where l is the number of outputs

### 6.3 MIMO Poles

MIMO poles are the roots of the pole polynomial of a minimal realization of the transfer function matrix. It is equal to the least common multiple of the denominators of all possible minors of the transfer function.

### 6.4 MIMO Zeros

# 6.4.1 Transmission Zeros

H(s) has a transmission zero at frequency  $\zeta_0$  if H(s) drops rank at  $s=\zeta_0$ . In this case the null space of the matrix is non-zero, which means a zero has to exist. rank(A) + nullity(A) = n

$$H(s) = \begin{bmatrix} 1 & \frac{1}{s-3} \\ 0 & 1 \end{bmatrix}$$
$$\lim_{s \to 3} \begin{bmatrix} 1 & \frac{1}{s-3} \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & \infty \\ 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & \infty \\ 0 & 0 \end{bmatrix}$$

 $\Longrightarrow \zeta_0$  is a pole and a zero!

 $\lim_{s o\zeta_0}H(s)u_0(s)=0,\quad u_0(s)$  is called "direction"

### 6.4.2 Invariant Zeros

A non-zero input frequency, that doesn't show up in the output. The output can still be non-zero. The invariant zeros correspont to the values  $s_i$  for which the matrix

$$\begin{bmatrix} sI - A & -B \\ C & D \end{bmatrix}$$

becomes singular. (not full rank)

If the system realization is minimal: invariant zeros  $\hat{=}$  transmission 7.4 Solving the Norms

7 Norms

## Definitions

6.5 Gilbert's realization

- $U \in \mathbb{R}^{n \times n}$  is orthogonal if  $U^T U = I$
- $U \in \mathbb{C}^{n \times n}$  is unitary if U'U = I(U' := complex conjugate transpose)
- S is hermitian if S = S'For any hermitian S, there exists a unitary matrix U s.t. U'SU is diagonal.

$$\begin{split} \|x\|_{p} &= \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} \\ \|x\|_{\infty} &= \max_{1 \leq i \leq n} |x_{i}| \\ \|A\|_{p, \text{ind}} &= \sup_{x \neq 0} \frac{\|Ax\|_{p}}{\|x\|_{p}} = \max_{\|x\|_{p} = 1} \|Ax\|_{p} \\ \|A\|_{F} &= \left(\operatorname{Trace}(A'A)\right)^{\frac{1}{p}} \end{split}$$

### 7.2 Singular Value Decomposition

$$A = U\Sigma V' \begin{cases} U \in \mathbb{C}^{m \times m} \\ V \in \mathbb{C}^{n \times n} \\ \Sigma \in \mathbb{R}^{m \times n} \end{cases}$$

- ullet U,V are unitary matrices
- ullet  $\Sigma$  is diagonal with nonzero entries

$$A = \overbrace{\left(\underline{u}_1 \quad \underline{u}_2\right)}^{U} \overbrace{\left(\begin{matrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{matrix}\right)}^{\Sigma} \overbrace{\left(\underline{v}_1 \quad \underline{v}_2\right)'}^{V'}$$

- $u_i$  are the left singular vectors (normalized eig(AA'))
- $v_i$  are the right singular vectors (normalized eig(A'A))
- ullet  $v_i$  is the specific input that generates the extremal output  $u_i$  with amplification  $\sigma_i$

$$\|A\|_{2, \mathsf{ind}} = \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \sigma_{\max}(A), \ \inf_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \sigma_{\min}(A)$$

### 7.3 Signal Norms

$$\begin{aligned} \|u\|_{\mathcal{L}_p} &= \left(\int_0^\infty |u(t)|^p dt\right)^{\frac{1}{p}}, \quad p \ge 1 \\ \|u\|_{\mathcal{L}_\infty} &= \sup_t |u(t)| \end{aligned}$$

$$\|G\|_{\mathcal{H}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega\right)^{\frac{1}{2}}$$

$$\|G\|_{\mathcal{H}_{\infty}} = \sup_{u \neq 0} \frac{\|y\|_{\mathcal{L}_{2}}}{\|u\|_{\mathcal{L}_{2}}} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}[G(j\omega)]$$

$$\begin{split} \left\| u(t) \right\|_{\mathcal{L}_{2}}^{2} &= \int_{0}^{\infty} \left\| u(t) \right\|_{2}^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\| U(s) \right\|_{2}^{2} d\omega \\ &= \left\| U(s) \right\|_{\mathcal{H}_{0}}^{2} \end{split}$$

## 8 Stability and Performance Robustness

### 8.1 Small Gain Theorem



- $\bullet$  G(s) is a known, stable system
- $\Delta(s)$  is unknown, assumed to be stable and  $\|\Delta\|_{\mathcal{H}_{\infty}} < 1$
- Interconnection is stable iff  $||G||_{\mathcal{H}_{\infty}} < 1$

### 8.2 Uncertainty

# Additive uncertainty:

$$\widetilde{P} = P + W\Delta$$

P: The model of the real Sys-

Multiplicative uncertainty: 
$$\overset{\sim}{P} = P(\mathbb{I} + W\Delta)$$

P: Our best guess of the system through mathematical modeling

# $\tilde{P} = (\mathbb{I} - PW\Delta)^{-1}P$

 $W\Delta$ : The uncertainty

### 8.3 Robust stability



$$G(s) = -(\mathbb{I} + CP)^{-1}CW \implies \left\| -(\mathbb{I} + CP)^{-1}CW \right\|_{\mathcal{H}_{\infty}} \stackrel{!}{<} 1$$

### 8.4 Robust performance



### **Modern Control**

- 9.1 Youla-Parametrization
- 9.2 Standard Form
- 9.3  $\mathcal{H}_2$  Control
- 9.4  $\mathcal{H}_{\infty}$  Control