

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110
NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session 2025-2026

Vision: Dream of where you want.	Mission: Means to achieve Vision

Program Educational Objectives of the program (PEO): (broad statements that describe the professional and career accomplishments)

PEO1	Preparation	P: Preparation	Pep-CL abbreviation
PEO2	Core Competence	E: Environment	pronounce as Pep-si-lL
		(Learning Environment)	easy to recall
PEO3	Breadth	P: Professionalism	
PEO4	Professionalism	C: Core Competence	
PEO5	Learning	L: Breadth (Learning in	
	Environment	diverse areas)	

Program Outcomes (PO): (statements that describe what a student should be able to do and know by the end of a program)

Keywords of POs:

Engineering knowledge, Problem analysis, Design/development of solutions, Conduct Investigations of Complex Problems, Engineering Tool Usage, The Engineer and The World, Ethics, Individual and Collaborative Team work, Communication, Project Management and Finance, Life-Long Learning

PSO Keywords: Cutting edge technologies, Research

"I am an engineer, and I know how to apply engineering knowledge to investigate, analyse and design solutions to complex problems using tools for entire world following all ethics in a collaborative way with proper management skills throughout my life." *to contribute to the development of cutting-edge technologies and Research*.

Integrity: I will adhere to the Laboratory Code of Conduct and ethics in its entirety.

Name and Signature of Student and Date

(Signature and Date in Handwritten)

Yeshwantrao Chavan College of Engineering

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Session	2025-26 (ODD)	Course Name	HPC Lab
Semester	7	Course Code	22ADS706
Roll No	03	Name of Student	Debasrita Chattopadhyay

Practical Number	04		
Course Outcome	 Understand and Apply Parallel Programming Concepts 2. Analyze and Improve Program Performance. Demonstrate Practical Skills in HPC Tools and Environments. 		
Aim	Matrix Multiplication using OpenMP		
Problem Definition	Perform matrix multiplication		
Theory (100 words)	Matrix multiplication is a fundamental computation in scientific computing, data analysis, computer graphics, and machine learning. However, it is also expensive, doing O(n3) operations for multiplying two n×n matrices. OpenMP allows for a very straightforward way to parallelize by eliminating for loops for matrix multiplication and distributing the loop iterations among the threads, making good use of today's recommended shared memory or multicore CPU capabilities. Applications: Machine Learning (e.g., Neural Network training). Computer Graphics (3D transformations). Scientific Computing (simulations, linear algebra solvers). Big Data Analytics (matrix factorization, recommendation systems).		
Procedure and Execution	Algorithm: Step 1: Write the serial (single-threaded) matrix multiplication code		
(100 Words)	Step 2: Compile and run the serial program gcc -o matmul_serial matmul_serial.c ./matmul_serial 500		

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Step 3: Add OpenMP parallelization and timing

Save as matmul openmp.c

Step 4: Compile and run the OpenMP version

gcc -fopenmp -o matmul_openmp matmul_openmp.c export OMP_NUM_THREADS=4 # Set number of threads to 4 ./matmul_openmp 500

Step 5: Compare results

Version Execution Time (seconds) Comments Serial ~12.34 Baseline, no parallelism OpenMP (4 threads) ~4.12

Code:

```
matmul openmp.c
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
void matmul(int N, double *A, double *B, double
*C) { #pragma omp parallel for collapse(2)
for (int i = 0; i < N; i++)
for (int i = 0; i < N; i++) {
double sum = 0;
for (int k = 0; k < N; k++)
sum += A[i*N+k] * B[k*N+i];
C[i*N+j] = sum;
int main(int argc, char **argv) {
if (argc < 3) {
printf("Usage: %s matrix size num threads\n", argv[0]);
return 1;
int N = atoi(argv[1]);
int num threads = atoi(argv[2]);
```

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

NAAC A++

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

```
omp set num threads(num threads);
double *A = malloc(N*N*sizeof(double));
double *B = malloc(N*N*sizeof(double));
double *C = malloc(N*N*sizeof(double));
for (int i = 0; i < N*N; i++) {
A[i] = 1.0;
B[i] = 2.0;
}
double start = omp get wtime();
matmul(N, A, B, C);
double end = omp get wtime();
printf("OpenMP MatMul (N=%d, threads=%d) elapsed time:
%f seconds\n",
N, num threads, end - start);
free(A); free(B); free(C);
return 0;
}
matmul serial.c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
static inline double now sec(void) {
struct timespec ts;
clock gettime(CLOCK MONOTONIC, &ts);
return ts.tv sec + ts.tv_nsec * 1e-9;
void matmul(int N, double *A, double *B, double
*C) { for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
double sum = 0.0;
for (int k = 0; k < N; k++)
sum += A[(long)i*N + k] * B[(long)k*N + j];
C[(long)i*N + j] = sum;
```


Yeshwantrao Chavan College of Engineering

NAAC A++ Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: <u>www.ycce.edu</u>

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

```
int main(int argc, char **argv) {
if (argc < 2) {
printf("Usage: %s N\n", argv[0]);
return 1;
int N = atoi(argv[1]);
                double
(double*)malloc((size t)N*N*sizeof(double)); double *B
= (double*)malloc((size t)N*N*sizeof(double));
                                                     double
*C = (double*)malloc((size t)N*N*sizeof(double)); if (!A
||!B||!C) {
fprintf(stderr, "malloc failed\n");
return 2;
}
for (long i = 0; i < (long)N*N; i++) {
A[i] = 1.0;
B[i] = 2.0;
double t0 = now sec();
matmul(N, A, B, C);
double t1 = now sec();
double elapsed = t1 - t0;
double gflops = (2.0 * N * (double)N * (double)N) / (elapsed *
1e9);
printf("Serial MatMul: N=%d elapsed=%.6f s, perf=%.3f
GFLOP/s\n",
N, elapsed, gflops);
free(A); free(B); free(C);
return 0;
```


Yeshwantrao Chavan College of Engineering

NAAC A++ Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: <u>www.ycce.edu</u>

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Yeshwantrao Chavan College of Engineering

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.vcce.edu

Department of Computer Technology

Vision of the Department

 $To \ be \ a \ well-known \ centre \ for \ pursuing \ computer \ education \ through \ innovative \ pedagogy, \ value-based \ education \ and \ industry \ collaboration.$

Mission of the Department

```
b1@localhost ~]$ nano matmul_openmp.c
                                       bl@localhost ~]$ gcc -02 -fopenmp -o matmul_openmp matmul_openmp.c
bl@localhost ~]$ ./matmul_openmp 500 4
                                       nMP MatMul (N=500, threads=4) elapsed time: 0.022222 seconds
bl@localhost ~]$
                                        [lab1@localhost ~]$ nano matmul_openmp.c
                                       [lab1@localhost ~]$ gcc -02 -fopenmp -o matmul_openmp matmul_openmp.c
[lab1@localhost ~]$ ./matmul_openmp 500 4
                                       OpenMP MatMul (N=500, threads=4) elapsed time: 0.022222 seconds
                                        [lab1@localhost ~]$ gcc -02 -o matmul_serial matmul_serial.c -lrt
                                       lab1@localhost ~]$ nano matmul_openmp.c
lab1@localhost ~]$ gcc -02 -fopenmp -o matmul_openmp matmul_openmp.c
lab1@localhost ~]$ ./matmul_openmp 500 4
penMP MatMul (N=500, threads=4) elapsed time: 0.022222 seconds
                                       labi@localhost ~]$ gcc -02 -o matmul_serial matmul_serial.c -lrt
labi@localhost ~]$ ./matmul_serial 500
                                        [lab1@localhost ~]$ nano matmul_openmp.c
                                       [lab1@localhost ~]$ gcc -O2 -fopenmp -o matmul_openmp matmul_openmp.c
[lab1@localhost ~]$ ./matmul_openmp 500 4
                                       OpenMP MatMul (N=500, threads=4) elapsed time: 0.022222 seconds
                                        lab1@localhost ~]$ gcc -02 -o matmul_serial matmul_serial.c -lrt
                                        [lab1@localhost ~]$ ./matmul_serial 500
                                        Gerial MatMul: N=500 elapsed=0.087082 s, perf=2.871 GFLOP/s
                                        [lab1@localhost ~]$ ^C
                                        lab1@localhost ~]$
Output Analysis
                                    Version
                                                 Execution Time(seconds) Comments
                                    Serial
                                                      \sim 0.087082
                                                                                      Baseline, slower
                                    OpenMP (4
                                                                                    ~3.9× faster serial
                                   threads)
                                                        ~0.022222
Link of student
Github profile where
lab assignment has
been uploaded
Conclusion
                                     Matrix Multiplication using OpenMP implemented successfully.
```


Yeshwantrao Chavan College of Engineering

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

