week1-big-o.md 9/6/2023

Let f and g be functions $\$ mathbb N \rightarrow \mathbb R_{\geq 0}\$ for the remainder of this summary.

Big O

Definition

\$f \in \bigO (g)\$ iff:

 $\$ \exists n_0 \in \nat : \exists c \in \rpos : \forall n \geq n_0 : f(n) \leq cg(n)\$

Big Omega

Definition

\$f \in \bigOm (g)\$ iff:

 $\$ \exists n_0 \in \nat : \exists c \in \rpos : \forall n \geq n_0 : c > 0 \text { and } f(n) \geq c g(n)\$

We need c > 0 otherwise the relation might be $f(n) \neq 0$ which is too easy to satisfy. Also note that 1/c exists and 1/c > 0, so that we can also write $g(n) \neq 1/c \cdot 0$, and we have:

Lemma

 $f \in \mathbb{G}$

Big Theta

Definition \$f \in \bigTh (g)\$ iff:

 $f \in \mathbb{G}$

In other words,

 $\$ \exists n_0 \in \nat : \exists b,c \in \rpos : \forall n \geq n_0 : c > 0 \text { and } bg(n) \geq f(n) \geq c g(n)\$

Some properties

Proposition If $f \in (g)$ and $g \in (h)$, then $f \in (h)$

Proof: We are given that there are natural numbers n_0 and m_0 and two nonnegative constants c and d s.t. $f(n) \leq n_0$ if $n \leq n_0$ and d s.t. $f(n) \leq n_0$ if $n \leq n_0$ and d s.t. $f(n) \leq n_0$ if $n \leq$

How to calculate runtime complexity

The following steps:

week1-big-o.md 9/6/2023

- denote cost and repetition count in every singleton statement.
- add all costs multiplied by repetition count.

Example:

total cost is $T(n) = (c_1 + c_4 + c_6) + (c_2 + c_3 + c_5)n \in (0, 1), clearly.$

Worst case: gives an upper bound that holds for every input.