يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۲

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

○ یک DFA بسازید که فقط رشتههایی را بپذیرد که شامل زیررشته abbaab باشند(الفبای باینری a و d).

تعريف فرمال محاسبه

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- **2.** $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- **3.** $r_n \in F$.

We say that M recognizes language A if $A = \{w | M \text{ accepts } w\}$.

زبانهای منظم

DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

یافتن اتوماتای قوی تر

تاکنون با FA معین سر و کار داشتیم که در آن حالت فعلی و سمبل فعلی، حالت بعدی را دقیقا تعیین می کردند.

اضافه کردن چند ویژگی

- اکنون قصد داریم FA نامعین را معرفی کنیم که دو تفاوت اصلی با FA معین دارد:
- در NFA، می توان برای هر سمبل ورودی، صفر یا چندین فلش خروجی داشت. همچنین می توان برای سمبل ϵ نیز فلش خروجی داشت.
 - در NFA، ممکن است به طور همزمان در چندین حالت بود.

- را می توان به شکل محاسبه موازی دید. همه مسیرهای ممکن جستجو می شوند تا در صورت امکان به یک حالت پذیرش برسد.
- میتوان این طور دید که حدس میزند و حدس خود را بررسی میکند؛ درحالی که همواره حدس درست زده است.
 - برای بسیاری از مسائل، ساخت NFA ساده تر است.

ورودى 0101100

یک NFA که یک رشته باینری را تشخیص دهد
که سومین حرف از آخر برابر 1 باشد.

یک DFA که زبان (11) را تشخیص دهد.

یک NFA که به 101 ختم شود.

 \circ NFA که رشتههایی را میپذیرد که به \circ ختم شوند یا فقط شامل \circ باشند.

یک NFA طراحی کنید که رشتههای پذیرش شده، تعداد فرد 0 دارند یا تعداد 1ها مضرب سه نباشد.

مجموعه تواني

○ برای مجموعه Q، مجموعه توانی به صورت زیر تعریف میشود:

$$\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$$

○ مثال:

$$\mathcal{P}(\{0,1,2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{1,0\}, \{1,2\}, \{0,2\}, \{0,1,2\}\}\$$

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

IUT-ECE

Recall the NFA N_1 :

مثال

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3.
$$\delta$$
 is given as

	0	1	arepsilon
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	\emptyset	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$