

Engenharia de Dados com Hadoop e Spark

Bem-vindo(a)

Planejando e Configurando um Cluster Hadoop

- Arquitetura de um Cluster Hadoop
- Topologia de Rede para o Cluster Hadoop
- Workflow
- Planejamento do Cluster
- Hardware Configuração de Rede do Cluster Hadoop
- Arquivos de Configuração
- Parâmetros de Configuração
- Como funciona o HDFS
- HDFS Writes
- HDFS Reads
- Importando Dados do MySQL para o HDFS

Cluster Hadoop

Muito do que vamos estudar neste capítulo é responsabilidade do Engenheiro de Dados.

É este profissional que deve entregar ao Cientista de Dados a infraestrutura necessária para análise de Big Data.

O que é um Cluster?

Cluster de Computadores

Cluster

Um cluster é um conjunto de computadores conectados que trabalham juntos para que, em muitos aspectos, possam ser vistos como um único sistema. Os clusters de computadores têm cada nó configurado para executar a mesma tarefa, controlada e programada por software.

Cluster

conjunto de computadores conectados que trabalham juntos para que, em muitos aspectos, possam ser vistos como um único sistema.

Node

Cluster

conjunto de computadores conectados que trabalham juntos para que, em muitos aspectos, possam ser vistos como um único sistema.

O que é um Cluster? Data Science Academy rodrigo.c.abreu@hotmail.com 5e207d48e32fc335fa60447d

Existem diversos tipos de Cluster

Cluster de Alto Desempenho

1 gigaflop corresponde a 1 bilhão de instruções por segundo

- Cluster de Alto Desempenho
- Cluster de Alta Disponibilidade
- Cluster para Balanceamento de Carga
- Cluster Combo

Existem diversos tipos de Cluster

Para uma aplicação de Big Data podemos configurar um cluster de alto desempenho e ao mesmo tempo alta disponibilidade, se for necessário processamento e análise de dados em tempo real, para um sistema de recomendação, por exemplo.

O que é um Cluster? Data Science Academy rodrigo.c.abreu@hotmail.com 5e207d48e32fc335fa60447d

As tecnologias de Clustering possibilitam a solução de diversos problemas que envolvem grande volume de processamento.

Arquitetura do Cluster Hadoop

O que é um Cluster Hadoop?

Um Cluster Hadoop é um conjunto de máquinas com Hadoop instalado que é criado para armazenar e analisar grandes quantidades de dados, sejam eles estruturados ou não estruturados. Em um Cluster Hadoop, os dados são armazenados e processados ao longo de diversos computadores e tudo isso é feito de forma paralela.

O que é um Cluster Hadoop?

Funcionamento do Cluster

Arquitetura do Cluster Hadoop

Cliente (Dados + Processamento) Namenode (HDFS) / JobTracker (MapReduce)

Dados divididos em blocos. Jobs divididos em tarefas

Blocos e Tarefas são distribuídos pelo cluster

JobTracker aciona os TaskTrackers

Map

Reduce

Resultado

Passo 6 – Resultado final

O que é um Cluster Hadoop?

O que é um Cluster Hadoop?

DataNode → Armazena/Recupera Dados

TaskTracker → Executa Jobs de MapReduce

Topologia de Rede do Cluster Hadoop

Topologia de Rede do Cluster Hadoop

Cluster Hat Oop Data Science Academy rodrigo.c.abreu@hotmail.com 5e207d48e32fc335fa60447d

Rack

Topologia de Rede do Cluster Hadoop

Switch

Topologia de Rede do Cluster Hadoop

Mas e se o NameNode também der problema?

Por isso devemos configurar um Secondary NameNode.

Workflow do Cluster Hadoop

Workflow de um Cluster Hadoop

Os dados são divididos em blocos e distribuídos pelo cluster Hadoop

MapReduce analisa os dados baseado nos pares de chave-valor

Os resultados são colocados em blocos através do cluster Hadoop

Os resultados podem ser lidos do cluster

Workflow de Gravação de Dados no HDFS

O objetivo do Cluster Hadoop, é o rápido processamento, em paralelo, de grandes quantidades de dados.

A configuração padrão do Hadoop, é ter 3 cópias de cada bloco de dados no cluster (o que pode ser modificado pelo parâmetro dfs.replication no arquivo de configuração hdfs-site.xml).

Vamos verificar, como é o processo de gravação de dados no HDFS.

Workflow de Gravação de Dados no HDFS

O cliente interage com o NameNode para obter a localidade onde o storage está disponível

O cliente então interage diretamente com o DataNode

O cliente envia os dados, que são divididos em pequenos pedaços de blocos

Após o dado ser completamente gravado pelo primeiro node, a replicação é feita para os demais nodes

O objetivo do Cluster Hadoop, é o rápido processamento, em paralelo, de grandes quantidades de dados.

A configuração padrão do Hadoop, é ter 3 cópias de cada bloco de dados no cluster (o que pode ser modificado pelo parâmetro dfs.replication no arquivo de configuração hdfs-site.xml).

Vamos verificar, como é o processo de gravação de dados no HDFS.

Workflow de Gravação de Dados no HDFS

Após todos os DataNodes terminarem a gravação do dado, o relatório de blocos envia um sinal ao cliente, que então comunica o NameNode. Os DataNodes também enviam o relatório de blocos ao NameNode.

O NameNode utiliza o relatório de blocos para atualizar os Metadados.

A Função do NameNode no Processo de Gravação no HDFS

NameNode

O NameNode é o controlador principal do HDFS, que mantém os metadados de todo o sistema de arquivos para o cluster.

Principais características do NameNode:

- ☐ Mantém o track de como cada bloco compõe um arquivo e a localização de cada bloco no cluster
- □ O NameNode não contém qualquer bloco de dados
- ☐ Direciona o cliente para os DataNodes e mantém o histórico de condições de cada DataNode
- ☐ Garante que cada bloco de dado atende aos critérios mínimos definidos pela política de replicação

O NameNode funciona da seguinte forma:

- ✓ Os DataNodes enviam sinais (heartbeats) para o NameNode a cada 3 segundos através de TCP Handshake.
- ✓ Cada décimo sinal é um relatório de bloco.
- ✓ O relatório de bloco permite que o NameNode crie os metadados e garanta que 3 cópias de cada bloco existam em nodes diferentes.

O NameNode funciona da seguinte forma:

- ✓ Se o DataNode fica sem conexão, o sinal não é enviado e o NameNode deixa de considerar aquele DataNode
- ✓ O NameNode então replica o bloco para outro DataNode, sempre mantendo 3 cópias de cada bloco.

Workflow de Leitura de Dados no HDFS

Workflow to Cluster Hadoop Data Science Academy rodrigo.c.abreu@hotmail.com 5e207d48e32fc335fa60447d Academy Todrigo.c.abreu@hotmail.com 5e207d48e32fc335fa60447d

Workflow de Leitura de Dados no HDFS

Leitura dos dados do HDFS:

- > Para recuperar um documento do HDFS, o cliente aciona o NameNode e solicita o endereço (bloco) onde o dado está armazenado.
- O cliente então solicita ao DataNode o dado, com o endereço do bloco fornecido pelo NameNode. Tudo isso ocorre via protocolo TCP na porta 50010.

Planejamento do Cluster Hadoop

Fatores para Planejamento do Cluster Hadoop

Fatores para Planejamento do Cluster Hadoop

Objetivo

Volume de dados x Alta disponibilidade

Serviços

MapReduce (JobTracker, TaskTracker),
HDFS (NameNode, DataNode), Storage (NFS, SAN)

Layout

Pseudo-Distribuído para desenvolvimento e Totalmente Distribuído para produção Local / Nuvem

Worker

Configuração	Descrição	
Storage	Em um ambiente de intensivo i/o, recomenda-se 12 discos SATA 7200 RPM de 2 TB cada um, para balanceamento entre custo e performance. RAID não é recomendado em máquinas com serviços workers do Hadoop.	
Memória	Nodes slaves requerem normalmente entre 24 e 48 GB de memória RAM. Memória não utilizada será consumida por outras aplicações Hadoop.	
Processador	Processadores com clock médio e menos de 2 sockets são recomendados.	
Rede	Cluster de tamanho considerável, tipicamente requer links de 1 GB para todos os nodes em um rack com 20 nodes.	

Master

Configuração	Descrição	
Storage	Deve-se utilizar 2 servidores: um para o NameNode Principal e outro para o Secundário. O Master deve ter pelo menos 4 volumes de storage redundantes, seja local ou em rede.	
Memória	64 GB de RAM suportam <mark>a</mark> proximadamente 100 milhões de arquivos.	
Processador	16 ou 24 CPU's para suportar o tráfego de mensagens.	

Estas são apenas recomendações e que podem variar de acordo com os fatores para o planejamento do cluster: objetivo, serviços e layout.

Instalação do Hadoop

Single Node x Multi Node

Cluster Single Node	Cluster Multi Node	
Hadoop é instalado em um único servidor (node)	Hadoop é instalado em diversos nod <mark>es (entre</mark> algumas dezenas, até milhares)	
Clusters Single Node são usados para processos triviais e operações simples de MapReduce e HDFS. Pode ser usado em ambiente de testes.	Clusters Multi Node são usados para computação complexa, incluindo processamento analítico.	

Quando Usar e Quando Não Usar o HDFS?

- Hadoop Distributed File System (HDFS) é um framework distribuído e extremamente tolerante a falha.
- Foi concebido para processar grandes volumes de dados.
- O conceito do HDFS é baseado no Unix.
- O HDFS é similar a outros frameworks de arquivos distribuídos, mas com algumas diferenças:
 - O HDFS possui um modelo chamado "write-once-read-manytimes" (WORM), que significa: escreva uma vez e leia quantas vezes quiser.
 - Eficiente controle de concorrência.
 - Redireciona atividades (jobs) em caso de falhas.

Grande quantidade de dados a serem armazenados

Quando usar o HDFS?

Streams de dados constantes que requerem acesso

Apenas equipamentos simples estão disponíveis

Quantidade considerável de arquivos pequenos

Quando NÃO usar o HDFS?

Composições variadas (muitos arquivos em formatos diferentes)

Acesso de baixa latência aos dados

Obrigado