COSMOLOGICAL CONSTRAINTS FROM BARYONIC ACOUSTIC OSCILLATIONS

Lev Kruglyak

April 2025

In this paper, we use measurements of baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) to obtain constraints on cosmological parameters in the Λ CDM model.

The Λ CDM Model

We begin with a brief review of the Λ CDM model and some of its variants.

Energy density is split into 6 species, baryonic matter $\Omega_{\rm b}$, cold (i.e. non-relativistic) dark matter $\Omega_{\rm c}$, electromagnetic radiation Ω_{γ} , curvature $\Omega_{\rm K}$, neutrinos Ω_{ν} , and dark energy $\Omega_{\rm DE}$. Baryonic and cold dark matter is grouped as $\Omega_{\rm bc} = \Omega_{\rm b} + \Omega_{\rm c}$, while non-relativistic matter including neutrinos is grouped as $\Omega_{\rm m} = \Omega_{\rm bc} + \Omega_{\rm m}$. Using standard equation of state parameters for $\Omega_{\rm bc}$, Ω_{γ} , and Ω_{K} , we can write the time-dependent Hubble parameter as:

$$\frac{H(z)}{H_0} = \left[\Omega_{\rm bc}(1+z)^3 + \Omega_{\gamma}(1+z)^4 + \Omega_{\rm K}(1+z)^2 + \Omega_{\nu}\frac{\rho_{\nu}(z)}{\rho_{\nu,0}} + \Omega_{\rm DE}\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE,0}}\right]^{1/2}.$$
 (1)

Bayesian Analysis in Cosmology

Results

Figure 1:

[1]

References

[1] DESI Collaboration et al. DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints. 2025.