HW 4, STAT 450

Due: Friday, November 1

Directions: This assignment should be completed using Quarto and submitted to Canvas as a self-contained HTML or PDF file.

Reading: Chapters 5, 7, and 19 from R for Data Science (2e)

```
# load packages
library(tidyverse)
library(nycflights13)
```

Exercise 1

Use read_csv() to read the data set hate_crimes.csv into R (Lecture 12). This data set was used for the FiveThirtyEight article Higher Rates Of Hate Crimes Are Tied To Income Inequality. A description of the variables can be found at this link:

https://github.com/fivethirtyeight/data/tree/master/hate-crimes

- (a) The Gini Index is a measure of income inequality. The Gini Index is between 0 and 1, where values closer to 1 indicate greater income inequality. Which states have the highest Gini Index? Which states have the lowest Gini Index? [Hint: use arrange()]
- (b) Use ggplot() to make a scatter plot with gini_index on the x-axis and avg_hatecrimes_per_100k_fbi on the y-axis. Use geom_smooth() to add a smooth trend line to the scatter plot. Label the x-axis "Gini Index" and the y-axis "Average annual hate crimes per 100,000 residents". Describe the association between the two variables in the scatter plot, and identify any potential outliers.

Exercise 2

- (a) What function would you use to read a file where values are separated with a semicolon ";"?
- (b) What function would you use to read a file where values are separated with a vertical bar "|"?

¹https://en.wikipedia.org/wiki/Gini_coefficient

Exercise 3

Consider the following data from a Pew religion and income survey.

head(relig_income)

#	A tibble:	6 x 11						
	religion	`<\$10k`	`\$10-20k`	`\$20-30k`	`\$30-40k`	`\$40-50k`	`\$50-75k`	`\$75-100k`
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Agnostic	27	34	60	81	76	137	122
2	Atheist	12	27	37	52	35	70	73
3	Buddhist	27	21	30	34	33	58	62
4	Catholic	418	617	732	670	638	1116	949
5	Don't kn~	15	14	15	11	10	35	21
6	Evangeli~	575	869	1064	982	881	1486	949
#	i 3 more	variables	s: `\$100-15	50k` <dbl>,</dbl>	, `>150k` <	<dbl>,</dbl>		
#	`Don't	know/refu	sed` <dbl< td=""><td>></td><td></td><td></td><td></td><td></td></dbl<>	>				

Use the pivot_longer() function to reshape relig_income into a tidy data set, with the variables along the columns and observations along the rows. Your code should produce the following output:

# A tibble:	180 x 3			
religion	income	count		
<chr></chr>	<chr></chr>	<dbl></dbl>		
1 Agnostic	<\$10k	27		
2 Agnostic	\$10-20k	34		
3 Agnostic	\$20-30k	60		
4 Agnostic	\$30-40k	81		
5 Agnostic	\$40-50k	76		
6 Agnostic	\$50-75k	137		
7 Agnostic	\$75-100k	122		
8 Agnostic	\$100-150k	109		
9 Agnostic	>150k	84		
10 Agnostic	Don't know/refused	96		
# i 170 more	e rows			

Exercise 4

(a) What type of join operation is depicted below?

(b) What type of join operation is depicted below?

Exercise 5

Verify that the column tailnum uniquely identifies each row in the planes table.

Exercise 6

Use group_by() and summarize() to compute the mean arrival delay for each flight destination. Then join that data frame of grouped summaries with the airports data frame, which contains information about each airport. This is what the resulting data frame should look like after the join:

# .	# A tibble: 105 x 10									
	dest	count	${\tt arr_delay_mean}$	name	lat	lon	alt	tz	dst	tzone
	<chr></chr>	<int></int>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
1	ABQ	254	4.38	Albuquerque ~	35.0	-107.	5355	-7	Α	Amer~
2	ACK	265	4.85	Nantucket Mem	41.3	-70.1	48	-5	Α	Amer~
3	ALB	439	14.4	Albany Intl	42.7	-73.8	285	-5	Α	Amer~
4	ANC	8	-2.5	Ted Stevens ~	61.2	-150.	152	-9	Α	Amer~

```
5 ATL
         17215
                        11.3 Hartsfield J~
                                              33.6
                                                    -84.4
                                                           1026
                                                                    -5 A
                                                                             Amer~
6 AUS
          2439
                         6.02 Austin Bergs~
                                              30.2
                                                    -97.7
                                                            542
                                                                    -6 A
                                                                             Amer~
7 AVL
           275
                         8.00 Asheville Re~
                                              35.4
                                                    -82.5
                                                           2165
                                                                    -5 A
                                                                             Amer~
8 BDL
           443
                         7.05 Bradley Intl
                                              41.9
                                                    -72.7
                                                                    -5 A
                                                            173
                                                                             Amer~
9 BGR
                         8.03 Bangor Intl
                                              44.8 -68.8
           375
                                                            192
                                                                    -5 A
                                                                             Amer~
10 BHM
           297
                        16.9 Birmingham I~
                                              33.6 -86.8
                                                            644
                                                                    -6 A
                                                                             Amer~
# i 95 more rows
```

Bonus

Use the data frame from Exercise 6 to visualize the spatial distribution of arrival delays. Here's some code to create a map of the United States:

On this map, plot the coordinates (longitude, latitude) of each destination airport. Then use the color of the points to display the average delay time for each airport.² You might also what to use filter() to remove the airports located in Alaska and Hawaii.

 $^{^2}$ I recommend using the viridis color scale: https://cran.r-project.org/web/packages/viridis/vignettes/introto-viridis.html