© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°10

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I – Etudes d'endomorphismes donnés par leur matrice

1. Soient u et v deux réels. Soit f l'endomorphisme de $\mathbb{R}_2[X]$ ayant pour matrice dans la base canonique $(1, X, X^2)$ la matrice A suivante :

$$A = \begin{pmatrix} -u & v & 0 \\ -2 & 0 & 2v \\ 0 & -1 & u \end{pmatrix}$$

- a. Calculer le déterminant de f en justifiant votre réponse.
- **b.** Déterminer des bases du noyau de f et de l'image de f.
- **2.** Soit w un réel. Soit g l'endomorphisme de $\mathbb{R}_3[X]$ ayant pour matrice dans la base canonique $(1, X, X^2, X^3)$ la matrice B suivante :

$$B = \begin{pmatrix} -3 & w & 0 & 0 \\ -3 & -1 & 2w & 0 \\ 0 & -2 & 1 & 3w \\ 0 & 0 & -1 & 3 \end{pmatrix}$$

- **a.** Calculer le déterminant de g en justifiant votre réponse. On notera w_0 la valeur qui annule ce déterminant.
- **b.** Déterminer une base du noyau de g lorsque $w = w_0$.

Partie II – Définition d'une application linéaire, exemples et propriétés

Soient n un entier naturel supérieur ou égal à 2, Q un polynôme unitaire de degré 2 à coefficients réels et φ l'application définie sur $\mathbb{R}_n[X]$ par

$$\forall P \in \mathbb{R}_n[X], \ \varphi(P) = 2P'Q - nPQ'$$

- **3.** Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- **4.** Soient u et v deux réels. On suppose dans cette question que n=2 et $Q=X^2+uX+v$.
 - a. Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_2[X]$.

© Laurent Garcin MP Dumont d'Urville

- **b.** Déterminer le noyau de φ en fonction de Q.
- 5. Soit w un réel. On suppose dans cette question que n = 3 et $Q = X^2 + 2X + w$.
 - a. Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_3[X]$.
 - **b.** Déterminer le noyau de φ en fonction des valeurs de w.

On revient maintenant au cas général : dans toute la fin de l'énoncé, n est à nouveau un entier quelconque supérieur ou égal à 2 et Q un polynôme de degré 2 unitaire.

- **6.** On suppose que Q admet une racine double α .
 - **a.** Justifier que $((X \alpha)^k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
 - **b.** Déterminer le noyau de φ et l'image de φ .
- 7. Soit P un polynôme de $\mathbb{R}_n[X]$. En dérivant la fraction rationnelle $\frac{P^2}{Q^n}$, montrer que P appartient au noyau de φ si et seulement si P^2 est colinéaire à Q^n .
- 8. On suppose que Q n'admet pas de racine double. Montrer que
 - si n est impair, le noyau de φ est nul;
 - si *n* est pair, le noyau de φ est la droite engendrée par $Q^{n/2}$.

Exercice 1 ★★

On cherche à déterminer la nature et la somme éventuelle de la série $\sum_{n\in\mathbb{N}^*}\frac{\varepsilon_n}{n}$ pour diverses suites $(\varepsilon_n)_{n\in\mathbb{N}^*}$ à valeurs dans $\{-1,1\}$.

On notera $S_N = \sum_{n=1}^N \frac{\varepsilon_n}{n}$ la somme partielle de rang $N \in \mathbb{N}^*$ d'une telle série.

On admettra le résultat suivant.

Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle, $p\in\mathbb{N}^*$ et $\ell\in\mathbb{R}$. Si pour tout $k\in[0,p-1]$, $(u_{pn+k})_{n\in\mathbb{N}}$ converge vers ℓ , alors $(u_n)_{n\in\mathbb{N}}$ converge également vers ℓ .

- 1. On suppose dans cette question que $\varepsilon_n = (-1)^n$ et on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.
 - a. Justifier que la suite de terme général $H_n \ln(n)$ converge. On notera γ sa limite.
 - **b.** Justifier que $S_{2N}=H_N-H_{2N}$ pour tout $N\in\mathbb{N}^*.$
 - **c.** En déduire la convergence et la somme de la série $\sum_{n \in \mathbb{N}^*} \frac{\varepsilon_n}{n}$.
- 2. On suppose dans cette question que $\varepsilon_{3n+1} = 1$, $\varepsilon_{3n+2} = 1$ et $\varepsilon_{3n+3} = -1$ pour tout $n \in \mathbb{N}$. Justifier que la série $\sum_{n \in \mathbb{N}^*} \frac{\varepsilon_n}{n}$ diverge.
- **3.** On suppose dans cette question que pour tout $n \in \mathbb{N}$,

$$\varepsilon_{4n+1} = \varepsilon_{4n+2} = 1$$
 $\varepsilon_{4n+3} = \varepsilon_{4n+4} = -1$

a. Justifier que pour tout entier naturel N,

$$\sum_{n=0}^{N} \frac{1}{4n+1} - \frac{1}{4n+3} = \int_{0}^{1} \frac{1 - x^{4N+4}}{1 + x^{2}} dx$$

- **b.** En déduire l'égalité $\sum_{n=0}^{+\infty} \frac{1}{4n+1} \frac{1}{4n+3} = \frac{\pi}{4}$.
- c. Calculer de même la somme $\sum_{n=0}^{+\infty} \frac{1}{4n+2} \frac{1}{4n+4}.$
- **d.** En déduire que la série $\sum_{n\in\mathbb{N}^*} \frac{\varepsilon_n}{n}$ est convergente et que $\sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n} = \frac{\pi}{4} + \frac{1}{2} \ln 2$.
- **4.** On suppose enfin dans cette question que pour tout $n \in \mathbb{N}$,

$$\varepsilon_{6n+1} = \varepsilon_{6n+2} = \varepsilon_{6n+3} = 1$$
 $\varepsilon_{6n+4} = \varepsilon_{6n+5} = \varepsilon_{6n+6} = -1$

a. Montrer que

$$\int_0^1 \frac{1+x+x^2}{1+x^3} \, \mathrm{d}x = \frac{2\pi}{3\sqrt{3}} + \frac{1}{3} \ln 2$$

b. En s'inspirant de la question précédente, montrer que $\sum_{n\in\mathbb{N}^*} \frac{\varepsilon_n}{n}$ converge et que

$$\sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n} = \frac{2\pi}{3\sqrt{3}} + \frac{1}{3} \ln 2$$