Statistical Models: The Normal Distribution and Sampling Distributions

PSYC 203

Agenda

- Description to Inference
 - z-scores
 - Normal Distribution
- Choosing the Right Model
 - Normal or Nonnormal?
 - Linear or Nonlinear?
- Simple Modeling Concepts & Fit
 - Sampling Distributions
 - Confidence Intervals

Standard Scores (z-scores)

Converts raw scores to a common metric

$$z = \frac{X - \bar{X}}{S}$$

Characteristics of z-scores

- Magnitude & Sign
- Mean is always 0, standard deviation is always 1.

	Testing	History	Social
Student	35	70	150

	Testing	History	Social
Student	35	70	150
Test Mean	25	80	150

	Testing	History	Social
Student	35	70	150
Test Mean	25	80	150
Test SD	5	10	40

$$2score = \frac{35 \cdot 15}{5} = 1$$

	Testing	History	Social
Student	35	70	150
Test Mean	25	80	150
Test SD	5	10	40
z-score	2.00	-1.00	0

Using z-scores

- T-scores
 - T = 50 + 10(z)
 - Scale has a Mean of 50 and SD of 10
- · IQ
 - IQ = 100 + 15(z)
 - Scale has a Mean of 100 and SD of 15
- PSYC 203 scores
 - PSYC = 200,000 + 10,000(z)
 - Scale has a Mean of 200,000 and SD of 10,000

Frequency Distributions and the Normal Curve

- Observed frequency distributions/histograms tell us what the observed data 'are'
 - descriptive
- The normal curve is a mathematical distribution (a probability density function) with precise properties that can express how data 'should be'
 - probability and inference
- Observed data often approximate a normal distribution, but don't frequently perfectly conform.
- Serves as a foundational model because many variables display relatively normal distributions when collected from large samples.

Normal Curve

Characteristics of the Normal Distribution

- Unimodal
- Symmetric
- Mode, Median, and Mean are Equal
- Asymptotic
- Two normal distributions DO NOT necessarily have same means and variances

Probabilities and Normality

http://davidmlane.com/hyperstat/normal_distribution.html

Standard Normal Distribution

- Can use this to answer
 - proportion of scores between Mean and a given score
 - proportion of scores above (below) a given raw score
 - proportion of scores between any two raw scores
 - what raw score falls above (below) a given proportion of cases

http://davidmlane.com/hyperstat/normal_distribution.html

Are my data normal?

- Visual inspection
 - Histogram
 - Q-Q plot
- Empirical tests

Using the Normal Distribution

- What if we knew the following:
 - The average test score on a given test for the population of high school seniors is 25.00 and the standard deviation is 5.00.
 - What is the probability of selecting a student who has a score of at least 32?

Using the Normal Distribution

- First, stated in terms of probability:
- p > 32 = ??
- Identify the exact position of X = 32 by converting to a zscore:

$$z = \frac{X - \overline{X}}{s} = \frac{32 - 25}{5} = \frac{7}{5} = 1.4$$

• What probability corresponds to z = 1.4?

http://davidmlane.com/hyperstat/normal_distribution.html

Another Example

- In my restaurant, I know that the average number of diners for my special Sunday brunch is 241 with a standard deviation of 19.
- One Sunday, I count 198 diners.
- If my distribution of Sunday diners is normal, what is the probability of having only 198 diners (or fewer)?

Agenda

- Description to Inference
 - z-scores
 - Normal Distribution
- Choosing the Right Model
 - Normal or Nonnormal?
 - Linear or Nonlinear?
- Simple Modeling Concepts & Fit
- Sampling Distributions
- Confidence Intervals

Agenda

- Description to Inference
 - z-scores
 - Normal Distribution
- Choosing the Right Model
 - Normal or Nonnormal?
 - Linear or Nonlinear?
- Simple Modeling Concepts & Fit
- Sampling Distributions
- Confidence Intervals

Models

Everything we do in psychology can be expressed as:

$$obs_i = model + error_i$$

- What is the fit of our model under various scenarios?
- Does the model fit the data?
- Imagine we ask how many pets psychology faculty have?
 - · One person: 2
 - Two people: 2, 2
 - Three people: 2, 2, 2
 - Four people: 2, 2, 2, 0

Model Fit

- Total Error (Sum of Squares)
 - Sum of the squared deviations (observed model)
- Mean Squared Error
 - Divide SS by the degrees of freedom (n-1)

Agenda

- Description to Inference
 - z-scores
 - Normal Distribution
- Choosing the Right Model
 - Normal or Nonnormal?
 - Linear or Nonlinear?
- Simple Modeling Concepts & Fit
- Sampling Distributions
- Confidence Intervals

Sampling Distribution of Means

- We almost never know the 'true' distribution, so comparing observed data to an ideal normal distribution is often not reasonable.
- What we really want to know is,
 - "If there is a true population distribution, and we draw a given sample from that distribution, how much variability should we expect in samples drawn from the population?"
 - From this standpoint, we can determine the probability of any of our observed sample characteristics.

Sampling Distribution of Means

- As we have already seen, if we draw samples from a larger population, the means of those samples will form a normal distribution that clusters around the mean of the population.
 - http://onlinestatbook.com/stat_sim/sampling_dist/ index.html
- The variability of the sampling distribution is less than the population variability.
- Sampling distribution variability is a function of sample size (larger sample = less variability).

Central Limit Theorem

- The central limit theorem states that given a distribution with a particular mean (μ) and variance (σ^2), the sampling distribution of the mean approaches a normal distribution with a mean (μ).
- The amazing and counter-intuitive thing about the central limit theorem is that no matter the shape of the original distribution, the sampling distribution of the mean approaches a normal distribution.

Key Characteristics of Sampling Distribution of Means

- Normally distributed
- Mean = Population Mean
- Standard Deviation
- Standard Error of Mean

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

How do we use this info?

- We know that the average score for adults age 25-55 on a national test of Batman trivia is 50 and the standard deviation is 15.
- If we were to draw 1000 samples of 25 individuals
- what would the mean of the 1000 samples be?
- what would be the standard error?
- What would happen if we drew the same number of samples, but each included 50 individuals?

Agenda

- Description to Inference
 - z-scores
 - Normal Distribution
- Choosing the Right Model
 - Normal or Nonnormal?
 - Linear or Nonlinear?
- Simple Modeling Concepts & Fit
- Sampling Distributions
- Confidence Intervals

Combining Concepts

- We have talked about estimating parameters
 - Compute the mean
- We have talked about the uncertainty associated with the parameter estimate
 - Sampling error
- We can put these two together
 - Confidence Intervals

Confidence Intervals

- How much uncertainty are we willing to tolerate?
 - 95% Typical value chosen
 - 99%
- We know that 95% of cases in a normal distribution are between -1.96 and +1.96 z-scores
 - Great, but our data aren't typically in standard scores, so we have to re-scale to the original metric

Computing Lower and Upper Bounds

$$z = \frac{X - \overline{X}}{s}$$

$$-1.96 = \frac{X - \overline{X}}{s}$$

$$-1.96 = \frac{X - \overline{X}}{s}$$

$$-1.96s = X - \overline{X}$$

$$\overline{X} + (-1.96s) = X$$

$$1.96s = X - \overline{X}$$

$$\overline{X} + 1.96s = X$$

Upper and Lower Bounds

 Our interval is based on sample means, NOT variation within a sample, so we will substitute the standard error for s

$$X_{L} = \overline{X} - 1.96SE$$

$$X_{U} = \overline{X} + 1.96SE$$

Two Important Points

- 1. We can use our knowledge of the normal curve to compute intervals of any size we like (68%, 95%, 99%).
- 2. We need to account for our relatively small samples, so we often multiple by something other than 1.96.
 - We will come back to this later in the course