국가기술자격 실기시험문제지

2021년도 제2회 기사 필답형 실기시험

자 격 종 목	시험시간	문제수	수험번호	성명
소방설비기사(기계)	3시간	16	044-865-0063	다산에듀

문제 01 [배점] 4점

스프링클러설비 배관의 안지름을 수리계산에 의하여 선정하고자 한다. 그림에서 B~C구간의 유량을 165L/min, E~F구간의 유량을 330L/min이라고 가정할 때 다음을 구하시오.(단. 화재안전기준에서 정하는 유속기준을 만족하도록 하여야 한다.)

- (1) B~C구간의 배관 안지름[mm]의 최솟값을 구하시오.
 - 계산과정 :
 - 답
- (2) E~F구간의 배관 안지름[mm]의 최솟값을 구하시오.
 - 계산과정 :
 - 답 :

문제 02 [배점] 5점

문제 03 [배점] 4점

다음은 지하구의 화재안전기준 중 일부이다. 다음 물음에 답하시오.

(1) 다음은 지하구의 정의이다. () 안에 들어갈 내용으로 적합한 것을 쓰시오.

전력·통신용의 전선이나 가스·냉난방용의 배관 또는 이와 비슷한 것을 집합수용하기 위하여 설치한 지하 인공구조 물로서 사람이 점검 또는 보수를 하기 위하여 출입이 가능한 것 중 다음의 어느 하나에 해당하는 것

- 1) 전력 또는 통신사업용 지하 인공구조물로서 전력구(케이블 접속부가 없는 경우는 제외한다) 또는 통신구 방식으로 설치된 것
- 2) 1)외의 지하 인공구조물로서 폭이 (①)m 이상이고 높이가 (②)m 이상이며 길이가 (③)m 이상인 것
- (2) 연소방지설비의 교차배관의 최소 구경[mm] 기준을 쓰시오.

문제 04 [배점] 5점

다음 그림은 내화구조로 된 15층 업무시설의 1층 평면도이다. 이 건물의 1층에 정방형으로 습식 폐쇄형 스프링클러헤드를 설치하려고 한다. 다음 물음에 답하시오.

- (1) 스프링클러헤드의 최소 소요개수[개]를 구하시오.
 - 계산과정 :
 - 답 :
- (2) 주어진 도면에 헤드를 배치하시오. (단, 헤드 배치시에는 배치의 위치를 치수로서 표시하여야 하며, 헤드간 거리는 최대로 배치하고, ㈜, ⑧ 간 거리는 최소치로 한 쪽으로 치우치지 않게 그리시오.)

문제 05 [배점] 8점

아래의 표는 분말소화설비에 관한 것이다. 빈칸에 적당한 답을 쓰시오.

종 별	주성분	기 타			
1종		안전밸브 작동압력	가압식		
2종		인신필드 식공합덕	축압식		
3종		충전비			
4종		가압용 가스용기를 3병 이상 설치한 경우 전자개방밸브수			

문제 06 [배점] 11점

다음 조건을 기준으로 전역방출방식 이산화탄소소화설비의 심부화재에 대한 물음에 답하시오. [조건]

① 특정소방대상물의 천장까지의 높이는 3m이고, 방호구역의 크기와 용도는 다음과 같다.

전기실	모피창고
(8m×3m)	(10m×3m)
개구부 1m×2m	개구부 1m×2m
(자동폐쇄장치 미설치)	(자동폐쇄장치 미설치)
케이블실	서고
(4m×3m)	(10m×7m)
자동폐쇄장치 설치	자동폐쇄장치 설치

저장용기실

- ② 소화약제는 고압저장방식으로 하고, 약제방출방식은 전역방출방식이다.
- ③ 저장용기의 내용적은 68L이고, 충전비는 1.511이다.
- ④ 유압기기가 설치된 실은 없으며, 케이블실과 전기실은 약제가 동시에 방출된다고 가정한다.
- ⑤ 헤드의 방사율은 1.3kg/(mm²·min·개)이며, 헤드당 분구면적은 10mm²이다.
- ⑥ 주어진 조건외에는 소방관련법규 및 화재안전기준을 따른다.
- (1) 저장용기 1병당 저장량[kg]을 구하시오.
- (2) 집합관의 용기수[병]를 구하시오.
- (3) 모피창고에 설치되는 헤드의 개수[개]를 구하시오.
 - 계산과정 :
 - 답 :
- (4) 선택밸브의 개수[개]를 구하시오.
- (5) 서고의 선택밸브 직후의 유량[kg/min]을 구하시오.

문제 07 [배점] 6점

다음은 스프링클러설비의 구성요소 중 시험장치에 관한 내용이다. 다음 각 물음에 답하시오.

- (1) 습식 및 부압식 스프링클러설비의 경우 시험장치의 설치위치를 쓰시오
- (2) 건식 스프링클러설비의 경우 시험장치의 설치위치를 쓰시오.
- (3) 시험장치 배관 끝부분에 설치하는 구성요소 2가지를 쓰시오.

문제 08 [배점] 5점

펌프가 수원보다 3m 높은 위치에서 0.3m³/min의 물을 이송하고 있다. 대기압은 표준대기압이고, 중력가속도는 9.8m/s²이고, 흡입측 배관의 마찰손실은 3.5kPa이며, 포화수증기압은 2.33kPa(물의 온도 20℃)이다. 다음 물음에 답하시오.

- (1) 유효흡입양정[m]을 구하시오.
- (2) 필요흡입양정이 5m일 때, 공동현상이 발생하는지 여부를 판별하시오.

문제 09 [배점] 6점

안지름이 각각 300mm와 450mm의 원관이 직접 연결되어 있다. 안지름이 작은 관에서 큰 관 방향으로 매초 230L의 물이 흐르고 있을 때 돌연확대부분에서의 손실[m]을 구하시오.(단, 중력가속도는 9.8m/s²이다.)

- 계산과정:
- 답 :

문제 10 [배점] 8점

소화배관에 1500L/min의 유량이 흐르고 있다가 Q_1 , Q_2 , Q_3 의 분기배관으로 나누어 흐르다가 다시 합쳐져 있다. 다음 조건을 참고하여 각 배관에 흐르는 유량 Q_1 , Q_2 , Q_3 [L/min]을 구하시오. (단, 최종 답안은 정수로 나타내시오.)

① 각 분기관에서의 마찰손실은 10m로 모두 동일하며, 배관의 마찰손실은 다음의 하젠-윌리엄의 식으로 산정한다.

$$\varDelta P = 6.053 \times 10^{4} \times \frac{Q^{1.85}}{C^{1.85} \times d^{4.87}}$$

여기서, $\varDelta P$: 1m당 배관의 마찰손실압력[MPa/m] Q : 유량[L/min]

C : 조도 d : 배관의 내경[mm]

② 배관의 조도는 모두 동일하며, 비중량은 9.8kN/m³이다.

문제 11 [배점] 4점

특별피난계단의 계단실 및 부속실 제연설비에 대하여 주어진 조건을 참고하여 다음 각 물음에 답하시오.

[조건]

- ① 거실과 부속실의 출입문 개방에 필요한 힘 $F_1 = 60$ N이다.
- ② 화재시 거실과 부속실의 출입문 개방에 필요한 힘 $F_2 = 110$ N이다.
- ③ 출입문 폭(W)은 1m이고, 높이(H)는 2.4m이다.
- ④ 손잡이는 출입문 끝에 있다고 가정한다.
- ⑤ 스프링클러설비는 설치되어 있지 않다.
- (1) 제연구역 선정기준 3가지만 쓰시오
- (2) 제시된 조건을 이용하여 부속실과 거실 사이의 차압[Pa]을 구하고, 국가화재안전기준에 따른 최소차압기준과 비교하여 적합여부를 설명하시오.
 - 계산과정 :
 - 답 :

문제 12 [배점] 3점

지하 1층의 판매시설로서 해당 용도로 사용하는 바닥면적은 3000m²이다. 판매시설에 능력단위가 A급 3단위인 분말소화기를 설치할 경우 소화기의 최소 개수를 구하시오.

- 계산과정 :
- 답 :

문제 13 [배점] 9점

다음과 같이 옥내소화전을 설치하고자 한다. 다음 물음에 답하시오.

[조건]

- ① 지표면으로부터 최상층 방수구까지의 거리는 28m이고, 소방펌프는 지표면으로부터 3.5m 아래에 설치되어 있으며, 흡입고는 1.5m이다.
- ② 직관의 마찰손실은 6m. 호스의 마찰손실은 6.5m. 관부속품의 마찰손실은 8m이다.
- ③ 소화전의 설치개수는 1층 2개소, 2~4층까지 각 4개소씩, 5~6층에 각 3개소, 옥상층에는 시험용 소화전을 설치하였다.
- ④ 수원의 양은 옥상수조의 양을 포함하여 산정한다.
- ⑤ 수원의 양 및 가압펌프의 토출량은 15% 가산한 양으로 한다. (단, 중복 가산하지 않는다.)
- (1) 전용수원의 용량[m³]을 구하시오.
- (2) 옥내소화전 가압송수장치의 펌프토출량[L/min]을 구하시오.
- (3) 펌프의 양정[m]을 구하시오.
- (4) 가압송수장치의 전동기 용량[kW]을 구하시오. (단, 효율은 65%, 전달계수는 1.1이다.)

문제 14 [배점] 6점

그림에서 A실을 급기 가압하여 옥외와의 압력차가 50Pa이 유지되도록 하려고 한다. 다음 물음에 답하시오.

[조건]

- ① 급기량(Q)은 $Q = 0.827 \times A \times \sqrt{P_1 P_2}$ 로 구한다.
- ② 그림에서 A₁, A₂, A₃, A₄는 닫힌 출입문으로 공기누설 틈새면적은 모두 0.01m²로 한다. (여기서, Q: 급기량[m³/s], A: 틈새면적[m²], P₁·P₂: 급기가압실 내·외의 기압[Pa])
- (1) 실의 전체 누설틈새면적[m²]을 구하시오. (단. 소수점 아래 5째자리까지 나타내시오.)
 - 계산과정 :
 - 답 :
- (2) 유입해야 할 풍량[m³/min] 구하시오.
 - 계산과정 :
 - 답 :

문제 15 [배점] 8점

아래의 [표]를 참조하여 화재안전기준에 따라 할로겐화합물 및 불활성기체 소화설비를 설치하려고 할 때 다음을 구하시오.

[압력배관용 탄소강관 SPPS 380[KS D 3562(Sch 40)]의 규격]

호칭지름	25A	32A	40A	50A	65A	100A
바깥지름[mm]	34.0	42.7	48.6	60.5	76.3	114.3
관 두께[mm]	3.4	3.6	3.7	3.9	5.2	6.0

- (1) 호칭지름이 32A인 압력배관용 탄소강관(Sch 40)에 분사헤드가 접속되어 있다. 이때 분사헤드 오리피스의 최대구경[mm]을 구하시오.
- (2) 호칭구경이 65A인 압력배관용 탄소강관(Sch 40)을 사용하여 용접이음으로 배관을 접합할 경우 배관에 적용할 수 있는 최대허용압력[MPa]을 구하시오. (단, 인장강도는 380MPa, 항복점은 220MPa이며, 이 배관에 전기저항 용접배관을 함에 따라 배관이음효율은 0.85이다.)

문제 16 [배점] 5점

다음 조건에 따라 각 물음에 답하시오.

[조건]

- ① 항공기격납고로서 전역방출방식의 고발포용 고정포방출구가 설치되어 있다.
- ② 격납고의 크기는 20m×10m×2m(높이)이다.
- ③ 개구부 등에는 자동폐쇄장치가 설치되어 있다.
- ④ 방호대상물의 높이는 1.8m이다.
- ⑤ 합성계면활성제포 3%를 사용한다.
- ⑥ 포의 팽창비는 500이며, 1m³에 대한 분당 포수용액 방출량은 0.29L이다.
- (1) 고정포방출구의 개수[개]를 산정하시오.
 - 계산과정 :
 - 답 :
- (2) 포수용액의 양[m³]을 구하시오.
 - 계산과정 :
 - 답 :
- (3) 합성계면활성제 소화약제량[L]을 구하시오.
 - 계산과정 :
 - 답 :

[정답지]

1.

(1) B~C구간의 배관 안지름(최솟값)

• 계산과정 :
$$D = \sqrt{\frac{4 \times 0.165 \text{m}^3/60 \text{s}}{\pi \times 6 \, \text{m/s}}} = 0.024157 \text{m} = 24.16 \text{mm}$$
 (호칭경 25A 선정)

• 답 : 25A

(2) E~F구간의 배관 안지름(최솟값)

• 계산과정 :
$$D = \sqrt{\frac{4 \times 0.33 \mathrm{m}^3/60 \mathrm{s}}{\pi \times 10 \, \mathrm{m/s}}} = 0.026462 \mathrm{m} = 26.46 \mathrm{mm}$$
 (호칭경 40A 선정)

※ 교차배관의 최소구경은 40mm이다.

• 답 : 40A

2.

(1)

(2) ① 평상시 : 댐퍼 D₁, D₃ 개방, 댐퍼 D₂, D₄ 폐쇄

② 화재시 : 댐퍼 D₂, D₄ 개방, 댐퍼 D₁, D₃ 폐쇄

3.

(1) ① 1.8

2 2.0

3 50

(2) 40mm

4.

(1) 헤드의 최소 소요개수

• 계산과정 : $S=2 \times 2.3 \mathrm{m} \times \mathrm{cos}45\,^{\circ}=3.25 \mathrm{m}$

가로헤드 설치수
$$=$$
 $\frac{29\text{m}}{3.25\text{m}} = 8.9 = 9$ 개

세로헤드 설치수 =
$$\frac{22\text{m}}{3.25\text{m}}$$
 = $6.8 = 7$ 개

∴ 총 헤드수 = 9개 × 7개 = 63개

• 답 : 63개

(2) 헤드 배치도

5.

종 별	주성분	기타			
1종	탄산수소나트륨	이렇게 그렇다하려	가압식	최고사용압력의 1.8배 이하	
2종	탄산수소칼륨	안전밸브 작동압력	축압식	내압시험압력의 0.8배 이하	
3종	인산암모늄	충전비		0.8 이상	
4종	탄산수소칼륨+요소	가압용 가스용기를 3병 이상 설치한 경우 전자개방밸브수		2개 이상	

6.

(1) 저장용기 1병당 저장량

• 계산과정 : 1병당 저장량 = $\frac{68L}{1.511L/kg} = 45kg$

• 답 : 45kg

(2) 집함관의 용기수

• 계산과정 : 〈전기실〉

$$Q = (8 \times 3 \times 3) \text{m}^3 \times 1.3 \text{kg/m}^3 + (1 \times 2) \text{m}^2 \times 10 \text{kg/m}^2 = 113.6 \text{kg}$$

$$N = \frac{113.6 \mathrm{kg}}{45 \mathrm{kg/b}} = 2.5 = 3$$
병

〈모피창고〉

$$Q = (10 \times 3 \times 3) \text{m}^3 \times 2.7 \text{kg/m}^3 + (1 \times 2) \text{m}^2 \times 10 \text{kg/m}^2 = 263 \text{kg}$$

$$N = \frac{263 \text{kg}}{45 \text{kg/범}} = 5.8 = 6$$
병

〈케이블실〉

$$Q = (4 \times 3 \times 3) \text{m}^3 \times 1.3 \text{kg/m}^3 = 46.8 \text{kg}$$

$$N = \frac{46.8 \mathrm{kg}}{45 \mathrm{kg/ \stackrel{1}{ro}}} = 1.04 = 2$$
 병

$$Q = (10 \times 7 \times 3) \text{m}^3 \times 2.0 \text{kg/m}^3 = 420 \text{kg}$$

$$N = \frac{420 \mathrm{kg}}{45 \mathrm{kg/병}} = 9.3 = 10$$
병

• 답 : 10병

(3) 헤드의 개수(모피창고)

• 계산과정 :
$$N = \frac{45 \text{kg} \times 6 \text{ 병}}{1.3 \text{kg}/(\text{mm}^2 \cdot \text{min} \cdot \text{게}) \times 7 \text{min} \times 10 \text{mm}^2} = 2.97 = 3 \text{ 개}$$

답: 3개

(4) 3개

(5) 선택밸브 직후의 유량(서고)

• 계산과정 :
$$\frac{45 \text{kg} \times 10 \, \text{병}}{7 \text{min}} = 64.29 \text{kg/min}$$

• 답 : 64.29kg/min

7.

- (1) 유수검지장치 2차측 배관에 연결하여 설치
- (2) 유수검지장치에서 가장 먼 거리에 위치한 가지배관의 끝으로부터 연결하여 설치
- (3) ① 개폐밸브
 - ② 반사판 및 프레임을 제거한 오리피스만으로 설치된 개방형혜드 또는 스프링클러혜드와 동등한 방수성능을 가진 오리피스

8.

(1) 유효흡입양정

• 계산과정 : NPSH
$$_{\rm av}=10.332{
m m}-2.33{
m kPa}-3.5{
m kPa}-3{
m m}$$

$$=7.332{
m m}-5.83{
m kPa}$$

$$=7.332{
m m}-\frac{5.83\times10^3{
m Pa}}{1000{
m kg/m}^3\times9.8{
m m/s}^2}$$

$$=6.74{
m m}$$

- 답 : 6.74m
- (2) NPSH_{av}(6.74m) > NPSH_{re}(5m) 이므로 공동현상은 발생하지 않는다.

9.

• 계산과정 :
$$V_1=\frac{0.23\mathrm{m}^3/\mathrm{s}}{\frac{\pi}{4}\times(0.3\mathrm{m})^2}=3.25\mathrm{m/s}$$

$$V_2=\frac{0.23\mathrm{m}^3/\mathrm{s}}{\frac{\pi}{4}\times(0.45\mathrm{m})^2}=1.45\mathrm{m/s}$$

$$H=\frac{(3.25\mathrm{m/s}-1.45\mathrm{m/s})^2}{2\times9.8\mathrm{m/s}^2}=0.17\mathrm{m}$$

• 답 : 0.17m

10.

• 계산과정 :
$$\Delta P = 9.8 \mathrm{kN/m^3} \times 10 \mathrm{m} = 98 \mathrm{kN/m^2} = 98 \mathrm{kPa} = 0.098 \mathrm{MPa}$$

$$L_1 = 40m + 20m = 60m$$

$$L_2 = \sqrt{(40\text{m})^2 + (20\text{m})^2} = 44.72\text{m}$$

$$L_3 = 40\text{m} + 20\text{m} = 60\text{m}$$

$$\Delta P_1 = 6.053 \times 10^4 \times \frac{Q_1^{1.85}}{C^{1.85} \times (80 \text{mm})^{4.87}} \times 60 \text{m} = 0.098 \text{MPa}$$

$$Q_1 = \left\{ \frac{(80\text{mm})^{4.87} \times 0.098\text{MPa} \times \text{C}^{1.85}}{6.053 \times 10^4 \times 60\text{m}} \right\}^{\frac{1}{1.85}} = 8.29\text{C}$$

$$\varDelta P_2 = 6.053 \times 10^4 \times \frac{\mathrm{Q}_2^{1.85}}{C^{1.85} \times (50 \mathrm{mm})^{4.87}} \, \times 44.72 \mathrm{m} = 0.098 \mathrm{MPa}$$

$$Q_2 = \left\{ \frac{(50\text{mm})^{4.87} \times 0.098\text{MPa} \times \text{C}^{1.85}}{6.053 \times 10^4 \times 44.72\text{m}} \right\}^{\frac{1}{1.85}} = 2.82\text{C}$$

$$\varDelta P_{3} = 6.053 \times 10^{4} \times \frac{Q_{3}^{1.85}}{C^{1.85} \times (60 \mathrm{mm})^{4.87}} \times 60 \mathrm{m} = 0.098 \mathrm{MPa}$$

$$Q_3 = \left\{ \frac{(60\text{mm})^{4.87} \times 0.098\text{MPa} \times \text{C}^{1.85}}{6.053 \times 10^4 \times 60\text{m}} \right\}^{\frac{1}{1.85}} = 3.89C$$

$$Q_1 + Q_2 + Q_3 = 1500 \text{L/min}$$

$$8.29C + 2.82C + 3.89C = 1500 L/min$$

$$15C = 1500L/min$$

$$C = 100$$

$$Q_1 = 8.29 \times 100 = 829 \, \text{L/min}$$

$$Q_2 = 2.82 \times 100 = 282 \,\mathrm{L/min}$$

$$Q_3 = 3.89 \times 100 = 389 \text{ L/min}$$

- 답 : ① Q₁ = 829L/min
- ② $Q_2 = 282L/min$ ③ $Q_3 = 389L/min$

11.

- (1) ① 계단실 및 그 부속실을 동시에 제연하는 것
 - ② 부속실만을 단독으로 제연하는 것
 - ③ 계단실을 단독으로 제연하는 것
 - ④ 비상용 승강기의 승강장을 단독제연하는 것
- (2) 차압

• 계산과정 :
$$\Delta P = \frac{(110-60)\text{N} \times 2 \times (1\text{m}-0\text{m})}{1 \times 1\text{m} \times (1 \times 2.4)\text{m}^2} = 41.67\text{Pa}$$

화재안전기준에서 정하는 최소차압기준 40Pa 이상이므로 적합하다.

답 : 적합

12.

• 계산과정 : 소화기구의 능력단위
$$= \frac{3000 \mathrm{m}^2}{100 \mathrm{m}^2} = 30$$
단위

소화기의 최소개수 =
$$\frac{30단위}{3단위}$$
 = 10개

• 답 : 10개

13.

- (1) 전용수원의 양
 - 계산과정 : $Q = (2.6\text{m}^3 \times 27\text{H} \times 1.15) + (2.6\text{m}^3 \times 27\text{H} \times 1.15 \times \frac{1}{3}) = 7.97\text{m}^3$
 - 답: 7.97m³
- (2) 펌프토출량
 - 계산과정 : $Q = 130 \text{L/min} \times 2$ 개 $\times 1.15 = 299 \text{L/min}$
 - 답: 299L/min
- (3) 펌프의 양정
 - 계산과정 : H = 6.5m + (6+8)m + (1.5+3.5+28)m + 17m = 70.5m
- (4) 전동기용량
 - 계산과정 : $P = \frac{0.163 \times 0.299 \text{m}^3/\text{min} \times 70.5 \text{m}}{0.65} \times 1.1 = 5.81 \text{kW}$
 - 답 : 5.81kW

14.

(1) 전체 누설틈새면적

• 계산과정 :
$$A_{3\sim 4}=\frac{1}{\sqrt{\dfrac{1}{\left(0.01m^2\right)^2}+\dfrac{1}{\left(0.01m^2\right)^2}}}=0.00707m^2$$

$$A_2 \mathfrak{A} \ A_{3\sim 4}=0.01m^2+0.00707m^2=0.01707m^2$$

$$A_1 \text{과} \ A_{2\sim 4}=\dfrac{1}{\sqrt{\dfrac{1}{\left(0.01m^2\right)^2}+\dfrac{1}{\left(0.01707m^2\right)^2}}}=0.00862m^2$$

$$\sqrt{\frac{1}{(0.01\text{m}^2)^2} + \frac{1}{(0.01707\text{m}^2)^2}}$$

- 답 : 0.00862m²
- (2) 유입해야 할 풍량
 - 계산과정 : $Q = 0.827 \times 0.00862 \text{m}^2 \times \sqrt{50 \text{Pa}} \times 60 \text{s/min} = 3.02 \text{m}^3/\text{min}$
 - 답 : 3.02m³/min

15.

- (1) 오리피스의 최대구경
 - 계산과정

배관구경면적
$$A = \frac{\pi}{4} \times [42.7 - (2 \times 3.6)]^2 = 989.8 \mathrm{mm}^2$$

오리피스의 면적은 배관구경면적의 70%를 초과하지 않아야 하므로

오리피스의 면적 = 989.8mm $^2 \times 0.7 = 692.8$ 6mm 2

$$\therefore$$
 오리피스의 최대구경 $d=\sqrt{rac{4 imes 692.86 ext{mm}^2}{\pi}}=29.7 ext{mm}$

- 답 : 29.7mm
- (2) 최대허용압력
 - 계산과정

SE: 최대허용응력[MPa]

① 배관재질 인장강도의 $\frac{1}{4}$ 값 = $380 \mathrm{MPa} \times \frac{1}{4} = 95 \mathrm{MPa}$

② 항복점의
$$\frac{2}{3}$$
값 = 220MPa $\times \frac{2}{3}$ = 146.67MPa

최대허용압력
$$P = \frac{2 \times 96.9 \text{MPa}}{76.3 \text{mm}} \times (5.2 \text{mm} - 0) = 13.21 \text{MPa}$$

• 답 : 13.21MPa

16.

(1) 고정포방출구의 개수

• 계산과정 :
$$N = \frac{20 ext{m} imes 10 ext{m}}{500 ext{m}^2} = 0.4 = 1$$
개

• 답 : 1개

(2) 포수용액의 양

• 계산과정 :
$$Q = (20 \times 10 \times 2.3) \text{m}^3 \times 0.29 \text{L}/(\text{m}^3 \cdot \text{min}) \times 10 \text{min} = 1334 \text{L} = 1.33 \text{m}^3$$

• 답 : 1.33m³

(3) 소화약제량

• 계산과정 :
$$Q = (20 \times 10 \times 2.3) \text{m}^3 \times 0.29 \text{L}/(\text{m}^3 \cdot \text{min}) \times 10 \text{min} \times 0.03 = 40.02 \text{L}$$

• 답 : 40.02L