

2.1 Linear Classifiers

Machine Learning 1: Foundations

Marius Kloft (TUK)

28 Apr - 5 May 2020

Machine learning

 computers learning from data how to make accurate predictions

Machine learning

 computers learning from data how to make accurate predictions

Machine learning

 computers learning from data how to make accurate predictions

- Given training data =
 - ightharpoonup inputs $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - ▶ labels $y_1, ..., y_n$

Machine learning

 computers learning from data how to make accurate predictions

- Given training data =
 - inputs $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - ▶ labels y_1, \ldots, y_n
- Aim: to compute a function f (called classifier or predictor) predicting the unknown label y of a new input x)

Machine learning

 computers learning from data how to make accurate predictions

- ► Given training data =
 - ▶ inputs $x_1, ..., x_n$
 - ▶ labels $y_1, ..., y_n$
- Aim: to compute a function f (called classifier or predictor) predicting the unknown label y of a new input x)
- Example: *k*-nearest neighbor algorithm

Contents of this Video

Linear Classifiers

Math Notation & Recap

2 Linear Classifiers

Math Notation & Recap

2 Linear Classifiers

▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- ▶ Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.
- Transposition of a vector or matrix:
 - ▶ if **v** is a column vector, then v^{\top} is a row vector
 - ▶ if $M \in \mathbb{R}^{m \times n}$ then $M^{\top} \in \mathbb{R}^{n \times m}$.

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.
- Transposition of a vector or matrix:
 - ightharpoonup if \mathbf{v} is a column vector, then \mathbf{v}^{\top} is a row vector
 - ▶ if $M \in \mathbb{R}^{m \times n}$ then $M^{\top} \in \mathbb{R}^{n \times m}$.
- Scalar product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$: $\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^\top \mathbf{w}$

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.
- Transposition of a vector or matrix:
 - ightharpoonup if \mathbf{v} is a column vector, then \mathbf{v}^{\top} is a row vector
 - ▶ if $M \in \mathbb{R}^{m \times n}$ then $M^{\top} \in \mathbb{R}^{n \times m}$.
- Scalar product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$: $\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^\top \mathbf{w}$
- Norm of a vector: $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\mathbf{v}^{\top} \mathbf{v}}$

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.
- Transposition of a vector or matrix:
 - ightharpoonup if \mathbf{v} is a column vector, then \mathbf{v}^{\top} is a row vector
 - ▶ if $M \in \mathbb{R}^{m \times n}$ then $M^{\top} \in \mathbb{R}^{n \times m}$.
- Scalar product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$: $\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^\top \mathbf{w}$
- Norm of a vector: $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\mathbf{v}^{\top} \mathbf{v}}$
- ▶ $\mathbf{v} \leq \mathbf{w}$ means $\forall i = 1, \dots, d : v_i \leq w_i$

$$\begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -0 & 3 \end{pmatrix} \leq \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ 0 & 4 \end{pmatrix}$$

- ▶ Vectors $\mathbf{v} \in \mathbb{R}^d$ are thought of as column vectors and denoted with boldface letters.
- Scalars $s \in \mathbb{R}$ are denoted with normal letters.
- ▶ Matrices $M \in \mathbb{R}^{m \times n}$ have m rows and n columns and are denoted with normal letters.
- ▶ Greek letters can refer to both scalars and vectors, but they are boldfaced if they denote vectors ($\lambda \in \mathbb{R}^d$ vs. $\lambda \in \mathbb{R}$).
- ▶ **0** and **1** are vectors in \mathbb{R}^d with entries all zeros and ones, respectively.
- Transposition of a vector or matrix:
 - if **v** is a column vector, then v^{\top} is a row vector
 - ▶ if $M \in \mathbb{R}^{m \times n}$ then $M^{\top} \in \mathbb{R}^{n \times m}$.
- Scalar product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$: $\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^\top \mathbf{w}$
- Norm of a vector: $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\mathbf{v}^{\top}}\mathbf{v}$
- ▶ $\mathbf{v} \le \mathbf{w}$ means $\forall i = 1, ..., d : v_i \le w_i$
- ▶ The cardinality of a set S is denoted |S|

Math Recap: Projections

Recall from linear algebra:

Definition

The scalar projection of a vector $\mathbf{v} \in \mathbb{R}^d$ onto a vector $\mathbf{w} \in \mathbb{R}^d$ is $\Pi_{\mathbf{w}} \mathbf{v} = \mathbf{v}^{\top} \frac{\mathbf{w}}{\|\mathbf{w}\|}$.

Math Recap: Hyperplanes

Definitions

- An (affine-)linear function is a function $f : \mathbb{R}^d \to \mathbb{R}$ of the form $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$, where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$.
- ▶ A hyperplane is a subset $H \subset \mathbb{R}^d$ defined as $H := \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0 \}.$

Math Recap: Signed Distance

Math Recap: Signed Distance

Proved on exercise sheet:

Proposition (properties of hyperplanes)

Let H be a hyperplane defined by the affine-linear function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$. It holds:

- 1 The vector **w** is **orthogonal** to H, meaning that: for all $\mathbf{x}_1, \mathbf{x}_2 \in H$ it is $\mathbf{w}^{\top}(\mathbf{x}_1 \mathbf{x}_2) = 0$.
- 2 The **signed distance** of a point **x** to *H* is given by

$$d(\mathbf{x}, H) \stackrel{\text{def.}}{:=} \pm \min_{\tilde{\mathbf{x}} \in H} \|\mathbf{x} - \tilde{\mathbf{x}}\| \stackrel{prop.}{=} \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{\top} \mathbf{x} + b)$$

We define the sign here as positive if and only if $f(\mathbf{x}) > 0$.

Math Notation & Recap

2 Linear Classifiers

Linear Classifiers

Definition

A classifier of the form $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + \mathbf{b})$ is called **linear** classifier.

Linear Classifiers

Definition

A classifier of the form $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ is called **linear** classifier.

What are advantages and disadvantages of linear classifiers?

Linear Classifiers

Definition

A classifier of the form $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ is called **linear** classifier.

What are advantages and disadvantages of linear classifiers?

Please **pause** your video here and think about this question for a few minutes...

The Nearest Centroid Classifier

The Nearest Centroid Classifier

Let I_{-} and I_{+} denote the indices of the data points labeled -1 and +1.

Training

- ► Compute $n_{-} = |I_{-}|$ and $n_{+} = |I_{+}|$
- ► Compute $c_- = \frac{1}{n_-} \sum_{i \in I_-} x_i$ and $c_+ = \frac{1}{n_+} \sum_{i \in I_+} x_i$

The Nearest Centroid Classifier

Let I_{-} and I_{+} denote the indices of the data points labeled -1 and +1.

Training

- ► Compute $n_{-} = |I_{-}|$ and $n_{+} = |I_{+}|$
- ▶ Compute $c_- = \frac{1}{n_-} \sum_{i \in I_-} x_i$ and $c_+ = \frac{1}{n_+} \sum_{i \in I_+} x_i$

Prediction

► Given new x predict $\arg \min_{y \in \{-,+\}} \|x - c_y\|$

NCC is a Linear Classifier

Theorem

NCC is a linear classifier $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$ with

$$\mathbf{w} := 2(c_+ - c_-)$$
 and $b = ||c_-||^2 - ||c_+||^2$.

Proof: Decision boundary:
$$H = \{x \in \mathbb{R}^d : ||x - c_{-1}| = ||x - c_{+1}|\}$$

(=) $||x - c_{-1}|^2 = ||x - c_{+1}|^2$

(=) $||x||^{-2}c^{T}x + ||c_{-1}|^2 = ||x||^2 - 2c^{T}x + ||c_{+1}|^2$

(=) $2(c_{+}-c_{-})^{T}x + (||c_{-1}|^2 - ||c_{+1}|^2) = 0$

=1 \omega = \frac{1}{2} \omeg

Conclusion

Linear Classifier: $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

Fast and easy to understand

Example: NCC

 $f(\mathbf{x}) = \arg\min_{y \in \{-,+\}} \|x - c_y\|$

