Planche nº 10. Généralités sur les fonctions

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**T)

Etudier la parité des fonctions suivantes :

1)
$$f_1(x) = 3x^4 - 5x^2 + 1$$

2)
$$f_2(x) = \frac{x^5 - x}{x^2 - 1}$$

3)
$$f_3(x) = \frac{x^5 - x}{x^3 - 1}$$

4)
$$f_4(x) = \frac{e^x - 1}{e^x + 1}$$

1)
$$f_1(x) = 3x^4 - 5x^2 + 1$$
 2) $f_2(x) = \frac{x^5 - x}{x^2 - 1}$ 3) $f_3(x) = \frac{x^5 - x}{x^3 - 1}$ 4) $f_4(x) = \frac{e^x - 1}{e^x + 1}$ 5) $f_5(x) = \cos(2x) + \tan^2(x)$ 6) $f_6(x) = \sin(x) - x$

6)
$$f_6(x) = \sin(x) - x$$

7)
$$f_7(x) = \sqrt{x^2 + 1}$$

7)
$$f_7(x) = \sqrt{x^2 + 1}$$
 8) $f_8(x) = \frac{x}{x^6 - x^4 - 31x^2 + 3}$ 9) $f_9(x) = \cos(x) + \sin(x)$.

9)
$$f_9(x) = \cos(x) + \sin(x)$$
.

Exercice nº 2 (***I)

Soit f une application de R dans R. Montrer que f s'écrit de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Exercice nº 3 (**I)

Soit f une application de \mathbb{R} dans \mathbb{R} , dérivable sur \mathbb{R} . Montrer que si f est paire, sa dérivée est impaire et si f est impaire, alors sa dérivée est paire.

Généraliser à f'', $f^{(3)}$, ..., $f^{(n)}$, $n \ge 2$.

A-t-on des résultats analogues pour les primitives?

Exercice no 4 (**T)

- 1) Montrer que la droite d'équation $x = \frac{3}{2}$ est un axe de symétrie du graphe dans un repère orthonormé de la fonction
- 2) Montrer que le point I de coordonnées (1,2) est centre de symétrie du graphe de la fonction $f: x \mapsto \frac{2x+1}{x-1}$.
- 3) Montrer que le point I de coordonnées $\left(0,\frac{1}{2}\right)$ est centre de symétrie du graphe de la fonction $f: x \mapsto \frac{e^x}{e^x+1}$.
- 4) Etudier les symétries de la courbe représentative de la fonction $f: x \mapsto \cos(x) + \cos(3x)$

Exercice no 5 (**T)

Etudier la périodicité des fonctions suivantes :

1)
$$f_1(x) = \lfloor x \rfloor - x$$
 2) f_2

$$\mathbf{2)} \ \mathbf{f}_2(\mathbf{x}) = \lfloor 2\mathbf{x} \rfloor - 2\mathbf{x}$$

3)
$$f_3(x) = \cos(2x) - \sin(4x)$$

4)
$$f_4(x) = \cos(4x)$$

$$\mathbf{5)} \ \mathbf{f}_5(\mathbf{x}) = \cos\left(\frac{3\mathbf{x}}{2}\right)$$

1)
$$f_1(x) = \lfloor x \rfloor - x$$
 2) $f_2(x) = \lfloor 2x \rfloor - 2x$ 3) $f_3(x) = \cos(2x) - \sin(4x)$
4) $f_4(x) = \cos(4x)$ 5) $f_5(x) = \cos\left(\frac{3x}{2}\right)$ 6) $f_6(x) = \cos\left(\frac{2x}{3}\right)$.

nº 6 (**T)

- 1) Montrer que la fonction $f: x \mapsto \frac{x^2}{x^2+1}$ est bornée sur \mathbb{R} .
- 2) Montrer que la fonction $f: x \mapsto \frac{x}{x^2 + 1}$ est bornée sur \mathbb{R} .

Exercice nº 7 (**T)

Etudier le sens de variation des fonctions suivantes sur le domaine considéré.

1)
$$x \mapsto -3(x+1)^2 + 1$$
, $I = \mathbb{R}$

2)
$$x \mapsto 3 - \frac{5}{2x+1}$$
, $I = \left] -\infty, -\frac{1}{2} \right[$

3)
$$x \mapsto \ln(1 + e^x)$$
, $I = \mathbb{R}$

1)
$$x \mapsto -3(x+1)^2 + 1$$
, $I = \mathbb{R}$ 2) $x \mapsto 3 - \frac{5}{2x+1}$, $I = \left] -\infty$, $-\frac{1}{2} \left[$ 3) $x \mapsto \ln(1 + e^x)$, $I = \mathbb{R}$ 4) $x \mapsto \exp\left(1 - \frac{1}{\ln^2|x|+1}\right)$, $I = \mathbb{R}^*$ 5) $x \mapsto \int_0^x \frac{1}{1+t^2} dt$ 6) $x \mapsto \int_0^1 e^{xt} dt$

$$5) x \mapsto \int_0^x \frac{1}{1+t^2} dt$$

$$6) x \mapsto \int_0^1 e^{xt} dt$$

Exercice nº 8 (**T)

Etudier le sens de variation des fonctions suivantes sur l'intervalle considéré.

1)
$$x \mapsto \sin x - \cos x$$
, $I = \left[0, \frac{\pi}{4}\right]$

2)
$$x \mapsto x \ln x$$
, $I = [1, +\infty[$

$$\mathbf{1)} \ x \mapsto \sin x - \cos x, \ I = \begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix} \quad \mathbf{2)} \ x \mapsto x \ln x, \ I = \begin{bmatrix} 1, +\infty \begin{bmatrix} & \mathbf{3} \end{bmatrix} \ x \mapsto e^{3x^2 - 1} \cos \left(\frac{\pi}{2(x^2 + 1)} \right), \ I = \mathbb{R}$$

4)
$$x \mapsto \frac{2x+3}{x-1}$$
, I =]1,+ ∞

5)
$$x \mapsto \frac{x^4 - 1}{x^4 + 1}$$
, $I = \mathbb{R}$

4)
$$x \mapsto \frac{2x+3}{x-1}$$
, $I =]1, +\infty[$ 5) $x \mapsto \frac{x^4-1}{x^4+1}$, $I = \mathbb{R}$ 6) $x \mapsto -x^7 + x^4 + x^2 + 3$, $I =]-\infty, 0]$

Exercice nº 9 (*T)

- 1) Montrer que, si x est un réel tel que $1 \le x \le 2$, on a $\frac{3}{11} \le \frac{2x+1}{4x+3} \le \frac{5}{7}$.
- 2) Résoudre l'équation $\frac{2x+1}{4x+3} = \frac{3}{11}$. Que constatez-vous?
- 3) Encadrer au mieux $\frac{2x+1}{4x+3}$ pour $x \in [1,2]$.

Exercice nº 10 (*T)

Encadrer au mieux les expressions suivantes sur le domaine D considéré :

1)
$$x^2$$
, D = $[-1, 2]$

2)
$$x^2 - 3x + 2$$
, D = $[0, 4]$

3)
$$\frac{1}{x}$$
, D = [-2, -1]

1)
$$x^2$$
, D = [-1,2] 2) $x^2 - 3x + 2$, D = [0,4] 3) $\frac{1}{x}$, D = [-2,-1] 4) $\frac{1}{x^2}$, D = [-1,1] \{0\}

$$5) \cos x, D = \left[\frac{\pi}{4}, \pi\right]$$

5)
$$\cos x$$
, $D = \begin{bmatrix} \frac{\pi}{4}, \pi \end{bmatrix}$ 6) $\frac{5x+1}{13x+2}$, $D = [0,4]$ 7) $\frac{2n+3}{2n-9}$, $n \in \mathbb{N}$ 8) $\frac{4n+1}{3n+7}$, $n \in \mathbb{N}$

7)
$$\frac{2n+3}{2n-9}$$
, $n \in \mathbb{N}$

$$8) \ \frac{4n+1}{3n+7}, \ n \in \mathbb{N}$$

Exercice no 11 (**T)

Démontrer les inégalités suivantes :

1)
$$\forall x \in [1,3], \ 2x^2 - 5x + 3 \le 3x - 3$$
 2) $\forall x \in [1,+\infty[, \frac{2x^2 - 7x + 1}{x+3} \le 10x]$ 3) $\forall x \le 0, \ \sqrt{x^2 - x + 1} \ge -x$

Exercice nº 12 (*I)

Etudier le signe de $\sqrt{x^2 + 1} - x$ et $\sqrt{x^2 + 1} + x$ suivant les valeurs de x.

Exercice no 13 (**I)

Démontrer (et mémoriser) les inégalités classique suivantes :

1)
$$\forall x \ge 0$$
, $\sin x \le x$ 2) $\forall x \in \mathbb{R}$, $e^x \ge 1 + x$ 3) $\forall x \in]-1, +\infty[$, $\ln(1+x) \le x$