北京师范大学 2024 ~ 2025 学年第一学期期中考试试卷

课程名称:	数学分析III		任课老师姓名:				
卷面总分:	分	考试时长: _1	00_分钟	考试类别:	闭卷⊠	开卷口	其他口
院(系):_	李亚		۷:		年级:		
姓名:		学号:		SVIET II TO			

考试要求:

胜十一

- 1. 写清答题根据, 无支持的结论将被扣除分数;
- 2. 雷同答题所得分数为应得分数除以雷同卷子数.
- **1.** (20分) 设 $f \in C^1(\mathbb{R}^2)$, f(1,0) = 0. 点 $p: (x,y,z) = (1,0,0) \in \mathbb{R}^3$.
 - (1) 求在p点附近由方程f(x-z,yz)=0 可以确定一个曲面的充分条件;并求该曲面在p点的切平面方程和法线方程.
 - (2) 求在p点附近由方程组f(x-z,yz) = 0, $x^2 y^2 = 1$ 可以确定一条曲线的充分条件; 并求该曲线在p点的切线方程和法平面方程.
- 2. (10分) 求函数 f(x,y,z) = x 2y + 2z 在有界闭区域 $x^2 + y^2 + z^2 \le 1$ 内的最大最小值点.
- 3. (30分) 计算下列积分

(1)
$$\iint_E \sqrt{1-x^2} \, dx \, dy$$
, $\not \equiv E = \{(x,y) : x^2 + y^2 \le 1, y \ge |x|\}.$

(2)
$$\iint_E (x+y)\cos(x-y)dxdy$$
, $\not\exists r \in E = \{(x,y): -\frac{\pi}{2} \le x+y \le \frac{\pi}{2}, -\frac{\pi}{2} \le x-y \le \frac{\pi}{2}\}.$

(3)
$$\iiint_{\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1} \exp\left(\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}}\right) dx dy dz.$$

4. (15分)设非空集合 $\Omega \subset \mathbb{R}^n$, 函数 $f: \Omega \to \mathbb{R}$.

ci pp

- (1) 叙述函数f在若当可测集 Ω 上黎曼可积的一个充要条件.
- (2) 如果函数f在若当可测集 Ω 上非负且 $\int_{\Omega} f = 0$,证明集合 $\{x \in \Omega; f(x) \neq 0\}$ 为零测度集(此时称f在 Ω 上几乎处处为零).
- (3) 如果函数列 $\{f_k\}$ 在若当可测集 $\Omega \subset \mathbb{R}^n$ 上一致收敛于函数 f. 且 $\forall k$, $f_k \in \mathcal{R}(\Omega)$, 证明 $f \in \mathcal{R}(\Omega)$, 且 $\int_{\Omega} f = \lim_{k \to +\infty} \int_{\Omega} f_k$.

5. (5分) 设无界集合 $E \subset \mathbb{R}^2$.

(1) 如果 ∂E 为零测度集,证明: $\{E_k = E \cap B_k(0)\}$ 为E的一个单增可测集列,因此E为广义若当可测集.

2862

(2) 设 $\Omega:=\{(x,y); \sqrt{x^2+y^2}>1, \alpha<\arctan\frac{y}{x}<\beta\}\subset E,$ 其中 $0<\alpha<\beta<\frac{\pi}{2}$,函数 f(x,y) 在E上连续且满足

$$f(x,y) \ge c(x^2 + y^2)^p$$
, $c > 0$, $p \ge -1$.

证明: 广义积分 $\iint_E f(x,y) dx dy$ 发散.

6. (5 分) 设f是一元连续函数, $z = \int_{\sin x}^{z} (f(t) + yt) dt$. 计算 z'_x , z'_y .

7. (15分)

(1) 叙述广义积分 $\int_0^{+\infty} f(x,y)dy$ 关于参变量 $x \in D \subset \mathbb{R}$ 一致收敛的M判别法.

(2) 确定函数 $F(x) = \int_0^{+\infty} \frac{dy}{5 + y^x}$ 的定义域,并讨论其连续性和可微性.

(3) 计算极限
$$\lim_{x \to +\infty} \int_0^{+\infty} \frac{dy}{5+y^x}$$
.

附加题1 (5 分) 设 $f, g \in C^1(\mathbb{R}^3)$. 求由方程组 u = f(x - ut, y - ut, z - ut), g(x, y, z) = 0,确定的隐函数的偏导数 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$. 此时 t 是自变量还是因变量?

附加题2 (5 分) 设 $E \subset \mathbb{R}^n$ 是有界集合,分别称

$$m^*(E) = \inf \left\{ \sum_{k=1}^n |I_k|; E \subset \bigcup_{k=1}^n I_k, n \in \mathbb{N}, \{I_k\}$$
是开区间集 $\right\},$

 $m_*(E) = \sup \left\{ \sum_{k=1}^n |I_k|; \stackrel{\circ}{E} \supset \bigcup_{k=1}^n I_k, n \in \mathbb{N}, \{I_k\}$ 是两两内部互不相交的闭区间集 $\right\},$

为E的外容度和内容度.

证明E是若当可测,当且仅当E的外容度等于内容度 $m^*(E)=m_*(E)$. 此时E的若当测度为 $|E|=m^*(E)=m_*(E)$.

m(2B120 m(EU201=m(E).4m(20)