Fundamentals of Machine Learning

Outline

- Definition
- Terminologies
- Workflow

Acknowledgement: Most of slide credits go to CSE455, University of Washington

What is machine learning?

Using Data To Train the model For better prediction!

Machine Learning basic terminologies

- Learning
- Examples / Samples / Data
- Features
- Targets / Labels
- Model
- Training
- Testing / Prediction
- Inference
- Hyperparameters

- Algorithms to approximate functions
 - Usually use lots of statistics
 - Usually minimize some form of loss function

- Algorithms to approximate functions
 - Usually use lots of statistics
 - Usually minimize some form of loss function
- Supervised learning
 - Given inputs to a function, try to predict the output
 - Have lots of labelled examples

- Algorithms to approximate functions
 - Usually use lots of statistics
 - Usually minimize some form of loss function
- Supervised learning
 - Given inputs to a function, try to predict the output
 - Have lots of labelled examples
- Semi-supervised learning
 - Same but number of labelled examples < number of examples

- Algorithms to approximate functions
 - Usually use lots of statistics
 - Usually minimize some form of loss function
- Supervised learning
 - Given inputs to a function, try to predict the output
 - Have lots of labelled examples
- Semi-supervised learning
 - Same but number of labelled examples < number of examples
- Unsupervised learning
 - Want to model unlabelled data
 - Find similarities and differences between subgroups of data
 - Learn functions to generate new data

Machine Learning workflow

- Collection
- Preparation

- Model Choosing
- Model Training

Tune modelhyperparametersfor betterperformance

 Approximation of model performance in real world problem

Supervised learning

- Given inputs to a function, try to predict the output
- Have lots of labelled examples

Data we feed

- Train Test Split
- Cross Validation

Unsupervised learning

No labels, just looking for patterns in data

E.g. clustering, in data with multiple clusters, what are they, how big, etc.

Clustering: finding groups in data

Clustering: finding groups in data

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers

https://healthcare.ai/step-step-k-means-clustering/

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers
Calculate distance points <-> centers

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers

Calculate distance points <-> centers

Assign each point to closest cluster center

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers

Calculate distance points <-> centers

Assign each point to closest cluster center

Update cluster centers: avg of points

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers

Calculate distance points <-> centers

Assign each point to closest cluster center

Update cluster centers: avg of points

Repeat!

Assume points are close to other points in group, far from points out of group

Algorithm:

Randomly initialize cluster centers Loop until converged:

Calculate distance points <-> centers
Assign each point to closest center
Update cluster centers: avg of points

Clustering on images

Group together pixels by color, automatic segmentation: k-means, k = 2

Clustering on images

Group together pixels by color, automatic segmentation: k-means, k = 4

Supervised Learning: Want to estimate f

Here's one possible f*

Data often has noise

Why?

Data often has noise

Why?

- Randomness
 - Static in phone lines, random distribution of photons hitting sensor, sensors aren't precise
- Mislabelled data
 - Common when humans label lots of data
- Variables outside of model
 - Variations might look like noise but are explained by a hidden, unknown variable

Data often has noise

Sometimes the data is more complex

- Bias
 - Error from assumptions model makes about data
 - Linear model assumes data is linear, bad for data that isn't

- Bias
 - Error from assumptions model makes about data
 - Linear model assumes data is linear, bad for data that isn't
 - Quadratic is better

- Variance
 - Algorithm's sensitivity to noise
 - More complex algorithms are more sensitive!

- Variance
 - Algorithm's sensitivity to noise
 - More complex algorithms are more sensitive!

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!
- High variance hurts generalization, overfitting

- Noise
 - Random variations in data
- Bias
 - Error from assumptions model makes about data
 - Less complex algorithms -> more assumptions about data

- Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!
- High variance hurts generalization

Q & A

External Reading:

Introduction to Probability

https://thuraaung-1601.medium.com/introduction-to-probability-7

b884750aaa1

- Introduction to Linear Regression

https://thuraaung-1601.medium.com/introduction-to-linear-regres

sion-with-normal-equation-98e6c1f839f8

- Machine Learning and Artificial Intelligence Intro

(Engr.Thet Naing Tun and Dr.Zaw Min Khaing)

https://youtu.be/ogr6Kh6ywQk

Thank You!

