Started on Sunday, 15 October 2023, 12:30 PM

State Finished

Completed on Sunday, 15 October 2023, 12:54 PM

Time taken 24 mins

Grade 10.00 out of 10.00 (**100**%)

Question **1**

Correct

Mark 1.00 out of

1.00

▼ Flag question

In the context of estimation, the probability density function (PDF) of the observations, viewed as a function of the unknown parameter h is termed as the

Select one:

- Objective Function
- Cost Function
- Estimation Function
- Likelihood Function

Your answer is correct.

The correct answer is: Likelihood Function

Question **2**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the wireless sensor network (WSN) estimation scenario described in lectures with each observation y(k) = h + v(k), for $1 \le k \le N$, i.e. number of observations is N and i.i.d. real Gaussian noise samples of variance σ^2 . The likelihood $p(\bar{y}; h)$ of the parameter h, where $\bar{y} = [y(1) \ y(2) \ ... \ y(N)]^T$ is

Select one:

$$\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^2}\sum_{k=1}^N|y(k)-h|}$$

Your answer is correct.

The correct answer is: $\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^2}\sum_{k=1}^{N}(y(k)-h)^2}$

Question **3**Correct

Mark 1.00 out of 1.00

Consider the wireless sensor network (WSN) estimation scenario described in lectures with each observation y(k) = h + v(k), for $1 \le k \le N$, i.e. number of observations is N and i.i.d. real Gaussian noise samples of variance σ^2 . As the number of samples N increases, the spread of estimate around the true parameter

Select one:

- Decreases
- Increa

Increases

- Remains constant
- Cannot be determined

The correct answer is: Decreases

Question **4**Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the wireless sensor network (WSN) estimation scenario described in lectures with each observation y(k) = h + v(k), for $1 \le k \le 4$, with the observations given as y(1) = -2, y(2) = 1, y(3) = -1, y(4) = -2. What is the maximum likelihood estimate \hat{h} of the unknown parameter h?

Select one:

- $-\frac{1}{4}$
- 3
- _ 1

Your answer is correct.

The correct answer is: -1

Question **5**Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the wireless sensor network (WSN) estimation scenario described in lectures with each observation y(k) = h + v(k), for $1 \le k \le 4$, i.e. number of observations N = 4 and IID Gaussian noise samples of variance $\sigma^2 = 1$. What is the variance of the maximum likelihood estimate \hat{h} of the unknown parameter h?

Select one:

- 1
 .
- 0 1

Your answer is correct.

The correct answer is: $\frac{1}{4}$

Question **6**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Let $\bar{\mathbf{x}} = [-1 \ 1 \ 1 \ -1]^T$ denote the vector of transmitted pilot symbols and $\bar{\mathbf{y}} = [-1 \ -1 \ 2 \ 3]^T$ denote the corresponding received symbol vector. The maximum likelihood estimate of the channel coefficient h is,

Select one:

- \bigcirc $-\frac{1}{4}$
- O -
- O -

Your answer is correct.

The correct answer is: $-\frac{1}{4}$

Question ${\bf 7}$

Correct

Mark 1.00 out of 1.00

Consider the fading channel estimation problem with i.i.d. Gaussian noise of zero-mean and variance $\sigma^2 = 1$ and pilot vector $\bar{\mathbf{x}} = [-1 \ 1 \ 1 \ -1]^T$. The variance of the ML estimate \hat{h} is,

Select one:

- O 2
- 0 1

Your answer is correct.

The correct answer is: $\frac{1}{4}$

Question $\bf 8$

Correct

Mark 1.00 out of 1.00

Consider the fading channel estimation problem where $\bar{\mathbf{x}}$ denotes the complex vector of transmitted pilot symbols. Let v(k) be i.i.d. symmetric complex Gaussian noise with zero-mean and variance σ^2 . The variance of the maximum likelihood estimate \hat{h} is

Select one:

- $\frac{\sigma^2}{\sigma T \sigma}$

- $\sigma^2 \frac{\bar{x}^H \bar{y}}{\bar{x}^H \bar{x}}$

Your answer is correct.

The correct answer is: $\frac{\sigma^2}{\bar{\mathbf{x}}^H\bar{\mathbf{x}}}$

Question **9**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the fading channel estimation problem with $\bar{\mathbf{x}} = [1+j \quad -1+j \quad -1-j \quad -1+j]^T$ and $\bar{\mathbf{y}} = [-j \quad 1 \quad -j \quad 1]^T$. The maximum likelihood estimate of the channel coefficient h is,

Select one:

- $\bigcirc \quad \frac{1}{4} + \frac{1}{4}j$
- \bigcirc $-\frac{1}{4} \frac{1}{4}j$
- $\frac{1}{4}j$
- $-\frac{1}{2}$

Your answer is correct.

The correct answer is: $-\frac{1}{4} - \frac{1}{4}j$

Question 10

Correct

Mark 1.00 out of 1.00

The Fisher information I(h) for estimation of a parameter h given the likelihood $p(\bar{y};h)$ is

Select one:

$$\bigcirc \quad \frac{1}{E\Big\{\!\Big(\frac{\partial}{\partial h} \ln p(\vec{y};h)\Big)^2\!\Big\}}$$

$$\bigcirc E\left\{\frac{\partial}{\partial h}p(\bar{\mathbf{y}};h)\right\}$$

$$\bigcirc E\left\{\left(\frac{\partial}{\partial h}p\left(\overline{\mathbf{y}};h\right)\right)^{2}\right\}$$

Your answer is correct.

The correct answer is: $E\left\{\left(\frac{\partial}{\partial h}\ln p(\bar{\mathbf{y}};h)\right)^2\right\}$

10/27/23, 8:46 AM Quiz 1: Attempt review

Finish review