INFORME TÉCNICO - Mesa redonda de iluminados de la sagrada orden del tío Sam

Taller 2 - Ciencias Computacionales e Inteligencia Artificial

Juan Sebastian Vega Diaz - 20231020087 Nicolás Avendaño Barajas - 20231020113

Docentes: HELIO HENRY RAIREZ AREVALO

ROBERTO ALVEIRO PAVA DIAZ

Organización:

ASO - SIN SIGLA (Asociación de Profesores Universitarios Totalitarios y Anarquistas Socialistas)

Universidad Distrital Francisco José de Caldas Facultad de Ingeniería - Ingeniería de Sistemas Bogotá D.C.

22 de septiembre de 2025

${\bf \acute{I}ndice}$

1.	Introducción	2
	1.1. Objetivo	2
	1.2. Contexto del Estudio	2
2.	Diagrama UML	2
3.	Metodología Experimental	3
	3.1. Requisitos y reglas del juego	3
4.	Parámetros de estudio	3
	4.1. Datos iniciales	3
	4.2. Parámetros generales	3
	4.3. Reglas de acción	4
	4.4. Detalles de transferencia y consistencia	4
	4.5. Condición de término	4
	4.6. Registro y trazado por turno (qué documentar)	4
5 .	Pruebas de escritorio	5
	5.1. Creacion de juego	5
	5.2. Arrimar Guadaña	5
	5.3. Sacar del olvido	6
	5.3.1. Operación echar a pila	6
	5.3.2. Operación "Sacar de Pila" (Rescate)	6
	5.3.3. Principio LIFO	6
	5.4. Deguello	7
	5.5. Ganador de la mesa	8
6.	Conclusiones y Recomendaciones	9
	6.1. Conclusiones	9
	6.2 Recommendaciones	O

1. Introducción

1.1. Objetivo

Documentar el desarrollo y la verificación de un juego de "pastores" cuya interacción se organiza mediante dos estructuras lineales: un anillo circular que representa la disposición de los jugadores y una pila que almacena a los participantes eliminados. El objetivo principal es describir el diseño empleado, justificar las decisiones de implementación y comprobar, mediante una prueba de escritorio manual, que las reglas del juego se cumplen correctamente en cada turno hasta que queda un único participante.

1.2. Contexto del Estudio

El estudio analiza cómo evolucionan estados y operaciones sobre estructuras lineales (lista circular y pila) bajo reglas simples de interacción entre agentes. El objetivo es validar correctitud e identificar casos límite mediante una prueba de escritorio reproducible con 10 participantes y parámetros explícitos. La documentación resultante sirve tanto para evaluación académica como para detectar errores de diseño.

2. Diagrama UML

3. Metodología Experimental

3.1. Requisitos y reglas del juego

- Los pastores se sientan en círculo. Comienza el que tenga más monedas (doblones)
- En su turno, un pastor escoge mirar a su izquierda o derecha y considera hasta n vecinos; elimina al que tenga menos fieles (ovejas) y lo coloca en la pila.
- Si la pila no está vacía, el jugador puede elegir entre matar a un vecino o resucitar al tope de la pila entregándole la mitad de sus ovejas y monedas
- Si el jugador es estrictamente el más pobre (por monedas) puede robar 1/3 (trun- cado) del más rico (ovejas y monedas) como acción
- El juego termina cuando queda un solo pastor en el círculo.

4. Parámetros de estudio

4.1. Datos iniciales

A modo de ejemplo se sugiere registrar inicialmente la lista ordenada del círculo con: ID, ovejas, monedas. A continuación aparece un ejemplo que puede usarse y editar:

Posición	Ovejas	Monedas
P1	8	10
P2	5	15
P3	12	7
P4	4	20
P5	10	9
P6	6	12
P7	3	5
P8	9	8
P9	7	11
P10	2	18

Cuadro 1: Estado inicial sugerido (10 pastores).

4.2. Parámetros generales

- Número inicial de pastores: 10.
- Valor de n (vecinos considerados): 2 (sugerido).

- Jugador inicial: el que tenga más monedas (en empate, el primero en la lista).
- Sentido de avance entre turnos: horario (derecha). El siguiente en jugar es el que queda a la derecha del actor tras aplicar la acción.
- Política para elegir dirección (izq/der): determinística (ej. alternar R/L) o aleatoria indicar la política usada.

4.3. Reglas de acción

- Si el jugador es estrictamente el más pobre (por monedas): realiza la acción de robar $\lfloor \frac{1}{3} \rfloor$ del más rico (se transfieren ovejas y monedas; truncamiento hacia abajo).
- Si la pila no está vacía: el jugador puede resucitar al tope o matar a un vecino (documentar la política de decisión).
 - **Resucitar:** el rescatador entrega la mitad entera $(\lfloor \frac{1}{2} \rfloor)$ de sus ovejas y monedas al resucitado; el resucitado se extrae de la pila y se reinserta en el círculo (sugerencia: a la derecha del rescatador).
 - **Matar:** el actor mira hasta n vecinos en la dirección escogida y elimina al que tenga menos ovejas; los recursos del eliminado se suman al actor y el eliminado se apila (LIFO) con sus atributos.
- Si la pila está vacía: la única opción (cuando no aplica robo por ser el más pobre) es matar según la regla anterior.

4.4. Detalles de transferencia y consistencia

- Todas las transferencias usan aritmética entera (truncar hacia abajo).
- Al eliminar, los atributos del eliminado (ovejas, monedas) pasan íntegramente al asesino y el eliminado se registra en la pila con esos mismos atributos.
- Al resucitar, el resucitado recibe la mitad (entera) del rescatador; el rescatador pierde esa cantidad.

4.5. Condición de término

El juego termina cuando queda un único pastor en el círculo.

4.6. Registro y trazado por turno (qué documentar)

Para cada turno registre, en este orden:

- 1. **Turno T:** jugador activo (ID) y atributos *antes* de la acción (ovejas, monedas).
- 2. Dirección escogida (Izquierda/Derecha) y lista de n vecinos considerados (IDs).

- 3. Acción tomada (Matar / Resucitar / Robar) y justificación breve (regla aplicada).
- 4. Resultado numérico de la acción (cantidad transferida, IDs afectados).
- 5. Estado del círculo después (tabla: posición, ID, ovejas, monedas).
- 6. Estado de la pila después (lista LIFO: tope \rightarrow fondo con ID(ovejas, monedas)).
- 7. Nombres de las capturas asociadas:
 - circle_T{N}.png diagrama circular tras el turno N.
 - pile_T{N}.png diagrama de la pila tras el turno N.

5. Pruebas de escritorio

5.1. Creacion de juego

Figura 1: Inicio de juego

5.2. Arrimar Guadaña

- Función: Ejecuta un degüello hacia la derecha
- Acción: El pastor actual elimina al pastor que esté N posiciones a su derecha
- Criterio de selección: Si hay múltiples vecinos, se elige al que tenga menos feligreses
- Resultado: El pastor eliminado pasa todos sus recursos (doblones y feligreses) al pastor actual y es enviado a la pila de desposeídos

← Arrimar Guadaña → Arrimar Guadaña →

Figura 2: arrimar guadaña

5.3. Sacar del olvido

5.3.1. Operación echar a pila

- Cuándo se ejecuta: Después de cada degüello exitoso
- Qué se hace: El pastor eliminado se coloca en la cima de la pila
- Resultado: El pastor pierde su posición en la mesa pero mantiene sus recursos
- Estado: El pastor queda marcado como "no en mesa"

5.3.2. Operación "Sacar de Pila" (Rescate)

- Cuándo se ejecuta: Cuando un pastor elige la acción "Sacar del Olvido"
- Condición: Solo se puede sacar al pastor de la cima (último en entrar)
- Costo: El pastor actual debe entregar la mitad de sus recursos
- Resultado: El pastor rescatado vuelve a la mesa con los recursos transferidos

5.3.3. Principio LIFO

La pila implementa el principio Last In, First Out:

- Último en entrar: Primer pastor eliminado en el turno actual
- Primero en salir: Ese mismo pastor será el primero en poder ser rescatado
- Ventaja estratégica: Permite rescatar al pastor más recientemente eliminado

Figura 3: creacion de pilas

5.4. Deguello

al ejecutar la accion de .ªrrimar la guadaña.el pastor eliminado va a ser enviado a la pila de desposeidos , donde solo se va a poder rescatar con la accion "sacar del oviedo", la cual lo saca de la pila

Figura 4: deguello

5.5. Ganador de la mesa

Despues de degollar a todos los pastores , el ultimo pastor sera el ganador de la mesa , y se mostrara la identificación de el pastor , su cantidad de doblones finales y sus feligreses finales , al mismo tiempo se puede observar al resto de pastores en la zona de pila

Figura 5: ganador

6. Conclusiones y Recomendaciones

6.1. Conclusiones

- El diseño basado en una lista circular (para los jugadores) y una pila LIFO (para los eliminados) es apropiado y sencillo de razonar para este juego; facilita las operaciones de recorrido de vecinos y la reintroducción concentrada de participantes.
- 2. Las reglas de transferencia (aritmética entera, truncamiento) y la definición explícita de inserción al resucitar (p. ej. a la derecha del rescatador) evitan ambigüedades y hacen que la verificación manual sea reproducible.
- 3. La prueba de escritorio turno a turno es efectiva para detectar errores clásicos: desbordes de índices al eliminar/insertar, equivocaciones al actualizar el siguiente jugador, y errores en la contabilización de recursos.
- 4. Los casos de empate (en monedas o en ovejas) y las políticas de desempate deben especificarse previamente; sin esa especificación surgen resultados distintos en ejecuciones aparentemente equivalentes.
- 5. Registrar el estado completo (tabla del círculo + pila) en cada turno facilita la comparación entre la ejecución del programa y el trazado manual, y sirve como evidencia suficiente para la corrección funcional.
- 6. Un enfoque determinista para la prueba (semilla fija o reglas determinísticas de dirección/decisión) simplifica la revisión; las versiones aleatorias son útiles para pruebas de robustez, pero requieren trazabilidad adicional.

6.2. Recomendaciones

- Definir y documentar la política de desempate (por ejemplo: en empate, elegir el primero en sentido horario) y aplicar esa regla de forma consistente en código y en la prueba manual.
- Si se usa aleatoriedad en la toma de decisiones, fijar y registrar la semilla en las ejecuciones que se presentan como evidencia, de modo que la ejecución sea reproducible.
- Añadir validaciones y manejo de errores en el código: chequear que n no exceda el número de vecinos, validar que no se intente resucitar con pila vacía, y proteger las operaciones de división por cero o índices inválidos.
- Implementar trazado (logging) automático que emita, por turno, la misma información que se usa en la prueba de escritorio: jugador activo, vecinos considerados, acción, transferencias, estado del círculo y contenido de la pila. Ese log facilita la comparación y la corrección.