$y = 1 - \chi^2$ 432:10. Z=1-x $\frac{2F}{2\eta} = -4 x e^{x} \sin 2y = \frac{26}{2x} = -2(2xe^{x}) \sin 2y$

 $\int_{(0,0,0)}^{(q,b,c)} F dx + G dy$ with $\int_{3x}^{2f} = 2xe^{x^2} (os 2y)$ (A) $\left(\frac{21}{3m} = -2e^{\chi^2} \sin 2y\right)$ $f = \int 2x e^{x} (\cos 2y) dx$ $= (e^{\chi} (os 2y) + h(y)$ $\frac{2f}{3\eta} = \frac{2}{3\eta} \left(e^{\chi} \left(\cos 2\eta + h(\eta) \right) \right)$ $= -2e^{\chi} \sin 2\eta + h'(\eta) = -2e^{\chi} \sin 2\eta$ $= -2e^{\chi} \sin 2\eta + h'(\eta) = -2e^{\chi} \sin 2\eta$ h'(y) = 0 $50 \ h(y) = C, a \text{ const.}$ 1ake C=0. $\int_{A}^{b} \nabla f' d\vec{r} = f(\vec{B}) - f(\vec{A})$ Another way: $(ur|(Fî+Gi)) \equiv 0.$ 50 $\int_{(0,0,0)}^{(a,b,c)} is IoP.$

 $\frac{JJ \times dA}{JS dA} \quad \overline{y} = \frac{JJ' \eta dA}{JS dA}$ SS'x dA 432: 12. $y = (\frac{1}{3}b)^{x}$ $y = (\frac{$ $\int_{a}^{b/2} \frac{ab}{b} x dx + \int_{b}^{b} x \left(g(x) \right) dx$ $432:5. \int \left(\frac{1-2xy}{x^2} \right) dy dx = 1$ $y = x^2$ x = 1-2xy y = x y = x y = x x = 1-2xy y = x y = x y = x x = 1-2xy y = xregion of integration. R

432: 17: I_{x} , I_{y} , I_{o} $I_{x} = \iint x^{2} dA$ $I_{y} = \iint y^{2} dA$ $I_{0} = \iint y^{2} dA = I_{x} + I_{y}$ $I_{0} = \iint r^{2} dA = I_{x} + I_{y}$