

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ КАФЕДРА	Информатик Системы обработк	а и системы управлен и информации и управ					
		чёт					
	по лабораторной работе № 5 «Линейные модели, SVM и деревья решений» по курсу «Технологии машинного обучения»						
Выполнил							
C	гудент группы ИУ5-63	(Подпись, дата)	Волков А.С. (Фамилия И.О.)				
Проверил	:		,				

(Подпись, дата)

Гапанюк Ю.Е. (Фамилия И.О.)

Цель лабораторной работы:

Изучение линейных моделей, SVM и деревьев решений.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - о одну из линейных моделей;
 - o SVM;
 - о дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Выполнение лабораторной работы:

In [135]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="whitegrid")
```

Загрузка и первичный анализ набора данных

Для обработки пропусков в числовых данных будем использовать набор данных о <u>медицинской страховке (https://www.kaggle.com/mirichoi0218/insurance)</u>.

Задача регрессии состоит в предсказании платы за медицинское обслуживание на основании других параметров.

Колонки:

- 1. age возраст
- 2. sex пол
- 3. bmi индекс массы тела
- 4. children кол-во детей
- 5. smoker курит/не курит
- 6. region регион проживания в США
- 7. charges плата за мед. обслуживание

```
In [136]:
```

```
data = pd.read_csv('../data/insurance.csv', sep = ',')
data
```

Out[136]:

age	sex	bmi	children	smoker	region	charges
19	female	27.900	0	yes	southwest	16884.92400
18	male	33.770	1	no	southeast	1725.55230
28	male	33.000	3	no	southeast	4449.46200
33	male	22.705	0	no	northwest	21984.47061
32	male	28.880	0	no	northwest	3866.85520
50	male	30.970	3	no	northwest	10600.54830
18	female	31.920	0	no	northeast	2205.98080
18	female	36.850	0	no	southeast	1629.83350
21	female	25.800	0	no	southwest	2007.94500
61	female	29.070	0	yes	northwest	29141.36030
	19 18 28 33 32 50 18 18 21	19 female 18 male 28 male 33 male 32 male 50 male 18 female 18 female 21 female	19 female 27.900 18 male 33.770 28 male 33.000 33 male 22.705 32 male 28.880 50 male 30.970 18 female 31.920 18 female 36.850 21 female 25.800	19 female 27.900 0 18 male 33.770 1 28 male 33.000 3 33 male 22.705 0 32 male 28.880 0 50 male 30.970 3 18 female 31.920 0 18 female 36.850 0 21 female 25.800 0	19 female 27.900 0 yes 18 male 33.770 1 no 28 male 33.000 3 no 33 male 22.705 0 no 32 male 28.880 0 no 50 male 30.970 3 no 18 female 31.920 0 no 18 female 36.850 0 no 21 female 25.800 0 no	19 female 27.900 0 yes southwest 18 male 33.770 1 no southeast 28 male 33.000 3 no southeast 33 male 22.705 0 no northwest 32 male 28.880 0 no northwest 50 male 30.970 3 no northwest 18 female 31.920 0 no northeast 18 female 36.850 0 no southeast 21 female 25.800 0 no southwest

1338 rows × 7 columns

In [137]:

```
# Размер набора данных (строки, колонки)
data.shape
```

Out[137]:

(1338, 7)

In [138]:

```
# Типы данных в колонках data.dtypes
```

Out[138]:

```
age int64
sex object
bmi float64
children int64
smoker object
region object
charges float64
dtype: object
```

Проверка на наличие пропущенных значений

In [139]:

```
data.isnull().sum()
```

Out[139]:

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

Пропущенные значения не найдены.

In [140]:

```
data.isnull().sum()
```

Out[140]:

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

Основные статистические показатели для каждого параметра

In [141]:

```
data.describe()
```

Out[141]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

Преобразуем категориальные признаки в числовые:

In [142]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
#nos
le.fit(data.sex.drop_duplicates())
data.sex = le.transform(data.sex)
#курение
le.fit(data.smoker.drop_duplicates())
data.smoker = le.transform(data.smoker)
#pezuoH
le.fit(data.region.drop_duplicates())
data.region = le.transform(data.region)
```

In [143]:

```
data.head()
```

Out[143]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520

Разделение выборки на тестовую и обучающую

Подключим необходимый метод из библиотек sklearn.

In [144]:

```
from sklearn.model_selection import train_test_split
```

Разделим выборку на входные и выходные данные:

In [145]:

```
X = data.drop(['charges'], axis = 1)
Y = data.charges
print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head())
```

Входные данные:

	age	sex	bmi	children	smoker	region
0	19	0	27.900	0	1	3
1	18	1	33.770	1	0	2
2	28	1	33.000	3	0	2
3	33	1	22.705	0	0	1
4	32	1	28.880	0	0	1

Выходные данные:

0 16884.92400 1 1725.55230 2 4449.46200 3 21984.47061 4 3866.85520

Name: charges, dtype: float64

Наконец, разделим выборку на обучающую и тестовую.

In [146]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 0)
```

In [147]:

Входные параметры обучающей выборки:

	age	sex	bmi	children	smoker	region
1075	32	0	29.59	1	0	2
131	61	0	22.04	0	0	0
15	19	1	24.60	1	0	3
1223	20	0	24.42	0	1	2
1137	26	0	22.23	0	0	1

Входные параметры тестовой выборки:

	age	sex	bmi	children	smoker	region
578	52	1	30.200	1	0	3
610	47	0	29.370	1	0	2
569	48	1	40.565	2	1	1
1034	61	1	38.380	0	0	1
198	51	0	18.050	0	0	1

Выходные параметры обучающей выборки:

```
1075 4562.84210

131 13616.35860

15 1837.23700

1223 26125.67477

1137 3176.28770

Name: charges, dtype: float64
```

Выходные параметры тестовой выборки:

```
5789724.530006108547.6913056945702.02235103412950.071201989644.25250
```

Name: charges, dtype: float64

Проверим правильность разделения выборки на тестовую и обучающую. Посмотрим на размеры матриц.

In [148]:

(335,)

```
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)

(1003, 6)
(335, 6)
(1003,)
```

Линейная регрессия

Оценим корреляцию между признаками

In [149]:

```
plt.figure(figsize = (15,10))
sns.heatmap(data.corr(), cmap='coolwarm', annot=True, fmt='.2f')
```

Out[149]:

<matplotlib.axes._subplots.AxesSubplot at 0x2236f1f5748>

Наблюдается сильная корреляция между курением и целевым признаком. Также есть нембольшая корреляция между возрастом и целевым признаком. Внутри нецелевых признаков корреляция практически не наблюдается. Значит, ничто не будет мешать построению качественной модели.

Визуализация регрессии

In [150]:

```
sns.lmplot(x='age',y='charges',hue='smoker',data=data)
```

Out[150]:

<seaborn.axisgrid.FacetGrid at 0x2236c57c808>

С возрастом плата за мед. обсулживание увеличивается одинаково у курильщиков и не-курильщиков, однако плата за мед. обслуживание больше у курильщиков

Построение линейной регрессии

In [151]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_e
rror, r2_score
Lin_Reg = LinearRegression().fit(X_train, Y_train)
lr_y_pred = Lin_Reg.predict(X_test)
```

In [152]:

```
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, lr_y_pred))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, lr_y_pred))
print('Median absolute error:',median_absolute_error(Y_test, lr_y_pred))
print('Коэффициент детерминации:',r2_score(Y_test, lr_y_pred))
```

Средняя абсолютная ошибка: 3998.2715408869753 Средняя квадратичная ошибка: 32073628.56010921 Median absolute error: 2390.4803984930822 Коэффициент детерминации: 0.7962732059725786

In [153]:

```
plt.scatter(X_test.age, Y_test, marker = 's', label = 'Тестовая выборка')
plt.scatter(X_test.age, lr_y_pred, marker = 'o', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Обучение далеко не идеальное, но все равно достаточно неплохое.

Полиномиальная регрессия

Уберем параметр region , т.к. мне кажется, что его возведение в квадрат категориального признака может оказать плохое влияние на обучение.

In [154]:

```
from sklearn.preprocessing import PolynomialFeatures

X = data.drop(['charges','region'], axis = 1)
Y = data.charges

poly = PolynomialFeatures (degree = 2)

X_quad = poly.fit_transform(X)

X_train, X_test, Y_train, Y_test = train_test_split(X_quad, Y, random_state=0)

poly_Lin_Reg = LinearRegression().fit(X_train,Y_train)

poly_y_pred = poly_Lin_Reg.predict(X_test)
```

In [155]:

```
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, poly_y_pred))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, poly_y_pred))
print('Median absolute error:',median_absolute_error(Y_test, poly_y_pred))
print('Коэффициент детерминации:',r2_score(Y_test, poly_y_pred))
```

Средняя абсолютная ошибка: 2761.13481435985 Средняя квадратичная ошибка: 18117605.544237126

Median absolute error: 1784.840904518394 Коэффициент детерминации: 0.8849197344147238

Показатели значительно улучшились. Коэффициент детерминации отличный. Хотя показатели ошибок все равно очень большие.

Метод опорных векторов

Полиномиальный регрессор

In [156]:

```
from sklearn.svm import SVR

X = data.drop(['charges'], axis = 1)
Y = data.charges
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=0)

polySVR = SVR(kernel='poly', degree=2, gamma=0.2, C=1.0)
polySVR.fit(X_train, Y_train)
svr_y_pred = polySVR.predict(X_test)

fig, ax = plt.subplots(figsize=(7,7))
ax.set_title('Полиномиальный регрессор степени 2')
ax.plot(X_test.age, Y_test, 'bs')
ax.plot(X_test.age, svr_y_pred, 'r.')
ax.set_xlabel('Возраст')
ax.set_ylabel('Целевой признак')
plt.show()
```


In [157]:

```
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, svr_y_pred))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, svr_y_pred))
print('Median absolute error:',median_absolute_error(Y_test, svr_y_pred))
print('Коэффициент детерминации:',r2_score(Y_test, svr_y_pred))
```

Средняя абсолютная ошибка: 3149.0234805327673 Средняя квадратичная ошибка: 46508573.89319307 Median absolute error: 152.70253406748088 Коэффициент детерминации: 0.7045846360572994 Видно, что благодаря полиномиальной регрессии на нижнем скоплении точек поведение предсказанных значений оказалось практически полностью идентичным, в отличие от поведения предсказанных значений на линейной регрессии.

Из-за особенностей распределения точек в выборке данных, а точнее из-за их "кучного" разброса, сложно построить точную модель предсказаний.

Масштабирование

Попробуем масштабировать наш набор данных, чтобы сделать все признаки "равноценными".

```
In [158]:
from sklearn.preprocessing import MinMaxScaler
In [159]:
x_columns = ['age','sex','bmi','children','smoker','region']
# Масштабирование данных в диапазоне от 0 до 1
sc = MinMaxScaler()
sc_data = sc.fit_transform(data[x_columns])
sc_data[:2]
Out[159]:
array([[0.02173913, 0.
                          , 0.3212268 , 0. , 1.
       1.
                 , 1.
                          , 0.47914985, 0.2 , 0.
       [0.
       0.66666667]])
In [160]:
X_train_2, X_test_2, Y_train_2, Y_test_2 = train_test_split(
    sc_data, data['charges'], test_size=0.2, random_state=1)
X_train_2.shape, X_test_2.shape
Out[160]:
((1070, 6), (268, 6))
In [161]:
SVR 2 = SVR(gamma = 'scale')
SVR_2.fit(X_train_2, Y_train_2)
Out[161]:
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scal
```

kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

```
In [162]:
```

```
svr_y_pred_2 = SVR_2.predict(X_test_2)

print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test_2, svr_y_pred_2))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test_2, svr_y_pred_2))
print('Median absolute error:',median_absolute_error(Y_test_2, svr_y_pred_2))
print('Коэффициент детерминации:',r2_score(Y_test_2, svr_y_pred_2))
```

Средняя абсолютная ошибка: 8279.155456187918 Средняя квадратичная ошибка: 165503416.86280978 Median absolute error: 5043.8682995933195 Коэффициент детерминации: -0.1086730154360227

Показатели ухудшились. Причину назвать затрудняюсь.

Попробуем убрать region , чтобы не было признака с фиктивным "порядком" в данным, который может помешать обучению.

In [163]:

```
X_train_3, X_test_3, Y_train_3, Y_test_3 = train_test_split(
    data.drop(['charges', 'region'],axis=1), test_data['charges'], test_size=0.2, rando
m_state=1)

X_train_3.shape, X_test_3.shape
```

Out[163]:

```
((1070, 5), (268, 5))
```

In [164]:

```
SVR_3 = SVR(gamma = 'scale')
SVR_3.fit(X_train_3, Y_train_3)
```

Out[164]:

```
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scal
e',
    kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
```

In [165]:

```
svr_y_pred_3 = SVR_3.predict(X_test_3)

print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test_3, svr_y_pred_3))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test_3, svr_y_pred_3))
print('Median absolute error:',median_absolute_error(Y_test_3, svr_y_pred_3))
print('Коэффициент детерминации:',r2_score(Y_test_3, svr_y_pred_3))
```

Средняя абсолютная ошибка: 8279.77156398549 Средняя квадратичная ошибка: 166561198.51123333 Median absolute error: 4979.663903338313 Коэффициент детерминации: -0.11575887500351856

Ситуация не улучшилась.

Дерево решений

In [176]:

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import GridSearchCV
params = {
    'max_depth': [3, 4, 5, 6, 7, 8],
    'min_samples_leaf': [0.04, 0.06, 0.08, 0.1],
    'max_features': [0.2, 0.4, 0.6, 0.8]
}
```

In [177]:

```
%%time
grid_1 = GridSearchCV(estimator=DecisionTreeRegressor(random_state=1),
                    param grid=params, scoring='neg_mean_absolute_error', cv=3, n_jobs=
-1)
grid_1.fit(data.drop(['charges'], axis=1), data['charges'])
Wall time: 5.66 s
Out[177]:
GridSearchCV(cv=3, error_score='raise-deprecating',
             estimator=DecisionTreeRegressor(criterion='mse', max_depth=No
ne,
                                              max_features=None,
                                              max_leaf_nodes=None,
                                              min_impurity_decrease=0.0,
                                              min_impurity_split=None,
                                              min_samples_leaf=1,
                                              min_samples_split=2,
                                              min_weight_fraction_leaf=0.0,
                                              presort=False, random_state=
1,
                                              splitter='best'),
             iid='warn', n_jobs=-1,
             param_grid={'max_depth': [3, 4, 5, 6, 7, 8],
                          'max_features': [0.2, 0.4, 0.6, 0.8],
                         'min_samples_leaf': [0.04, 0.06, 0.08, 0.1]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=Fals
e,
```

scoring='neg_mean_absolute_error', verbose=0)

```
In [178]:
```

```
%%time
grid_2 = GridSearchCV(estimator=DecisionTreeRegressor(random_state=1),
                    param_grid=params, scoring='neg_mean_squared_error', cv=3, n jobs=-
1)
grid_2.fit(data.drop(['charges'], axis=1), data['charges'])
Wall time: 618 ms
Out[178]:
GridSearchCV(cv=3, error_score='raise-deprecating',
             estimator=DecisionTreeRegressor(criterion='mse', max_depth=No
ne,
                                             max_features=None,
                                             max_leaf_nodes=None,
                                             min_impurity_decrease=0.0,
                                             min impurity split=None,
                                             min_samples_leaf=1,
                                             min_samples_split=2,
                                             min_weight_fraction_leaf=0.0,
                                             presort=False, random_state=
1,
                                             splitter='best'),
             iid='warn', n_jobs=-1,
             param_grid={'max_depth': [3, 4, 5, 6, 7, 8],
                          'max_features': [0.2, 0.4, 0.6, 0.8],
                          'min_samples_leaf': [0.04, 0.06, 0.08, 0.1]},
             pre dispatch='2*n jobs', refit=True, return train score=Fals
e,
             scoring='neg mean squared error', verbose=0)
In [179]:
print('Лучший показатель средней абсолютной ошибки:',-grid_1.best_score_)
print('Параметры для данного показателя:\n',grid_1.best_params_)
Лучший показатель средней абсолютной ошибки: 2883.9902213751066
Параметры для данного показателя:
 {'max_depth': 6, 'max_features': 0.8, 'min_samples_leaf': 0.04}
In [180]:
print('Лучший показатель средней квадратичной ошибки:',-grid_2.best_score_)
print('Параметры для данного показателя:\n',grid 2.best params )
Лучший показатель средней квадратичной ошибки: 23280508.96381089
Параметры для данного показателя:
 {'max_depth': 6, 'max_features': 0.8, 'min_samples_leaf': 0.04}
```

Дерево решение также дает плохие показатели оценок точности обучения. Возможно, для более точного обучения и получения лучшей регрессии требуется большее количество исходных данных