SPACE HAUC Flight Software

Generated by Doxygen 1.8.13

Contents

1	Mair	n Page		1
2	Clas	s Index	C	5
	2.1	Class	List	5
3	File	Index		7
	3.1	File Lis	st	7
4	Clas	s Docu	mentation	9
	4.1	adar10	000 Struct Reference	9
	4.2	adar_b	peam_pos Union Reference	9
		4.2.1	Detailed Description	10
		4.2.2	Member Function Documentation	10
			4.2.2.1attribute()	10
	4.3	adar_r	register Union Reference	10
		4.3.1	Detailed Description	11
		4.3.2	Member Function Documentation	11
			4.3.2.1attribute()	11
	4.4	adc_ct	trl Union Reference	11
		4.4.1	Member Function Documentation	12
			4.4.1.1attribute()	12
	4.5	ads11	15 Struct Reference	12
		4.5.1	Detailed Description	12

ii CONTENTS

4.6	ads111	15_config Union Reference
	4.6.1	Detailed Description
	4.6.2	Member Data Documentation
		4.6.2.1 comp_lat
		4.6.2.2 comp_mode
		4.6.2.3 comp_pol
		4.6.2.4 comp_que
4.7	bias_c	urrent_trx Union Reference
	4.7.1	Member Function Documentation
		4.7.1.1attribute()
4.8	channe	el_t Union Reference
4.9	chx_trx	c_gain Union Reference
	4.9.1	Detailed Description
	4.9.2	Member Function Documentation
		4.9.2.1attribute()
4.10	chx_trx	c_phase Union Reference
	4.10.1	Detailed Description
	4.10.2	Member Function Documentation
		4.10.2.1attribute()
4.11	data_p	acket Union Reference
	4.11.1	Detailed Description
4.12	datavis	s_p Struct Reference
	4.12.1	Detailed Description
4.13	dev_cc	onfig Union Reference
	4.13.1	Detailed Description
	4.13.2	Member Function Documentation
		4.13.2.1attribute()
4.14	hkpara	m_t Struct Reference

CONTENTS

4.15	iface_config_a Union Reference	20
	4.15.1 Detailed Description	21
4.16	iface_config_b Union Reference	21
	4.16.1 Detailed Description	21
	4.16.2 Member Function Documentation	21
	4.16.2.1attribute()	21
4.17	Id_wrk_regs Union Reference	22
	4.17.1 Detailed Description	22
	4.17.2 Member Function Documentation	22
	4.17.2.1attribute()	22
4.18	Ism9ds1 Struct Reference	22
	4.18.1 Detailed Description	23
4.19	helmholtz.lsm9ds1 Class Reference	23
4.20	mem_ctrl Union Reference	23
	4.20.1 Member Function Documentation	24
	4.20.1.1attribute()	24
4.21	misc_enables Union Reference	24
	4.21.1 Member Function Documentation	24
	4.21.1.1attribute()	25
4.22	ncv7708 Struct Reference	25
	4.22.1 Detailed Description	26
4.23	ncv7708_packet Struct Reference	26
	4.23.1 Detailed Description	28
4.24	p31u Struct Reference	28
4.25	rx_to_tx_delay_ctrl Union Reference	29
	4.25.1 Member Function Documentation	29
	4.25.1.1attribute()	29
4.26	sw_ctrl Union Reference	29

iv CONTENTS

	4.26.1	Member Function Documentation	30
		4.26.1.1attribute()	30
4.27	tca945	Ba Struct Reference	30
	4.27.1	Detailed Description	31
4.28	transfe	r_reg Union Reference	31
	4.28.1	Detailed Description	31
	4.28.2	Member Function Documentation	31
		4.28.2.1attribute()	31
4.29	trx_bea	m_pos Union Reference	32
	4.29.1	Detailed Description	32
4.30	trx_bia:	s_ram_ctrl Union Reference	32
	4.30.1	Member Function Documentation	33
		4.30.1.1attribute()	33
4.31	trx_chx	_mem Union Reference	33
	4.31.1	Member Function Documentation	33
		4.31.1.1attribute()	33
4.32	trx_ena	bles Union Reference	34
	4.32.1	Member Function Documentation	34
		4.32.1.1attribute()	34
4.33	tsl2561	Struct Reference	34
	4.33.1	Detailed Description	35
4.34	tx_to_r	<_delay_ctrl Union Reference	35
	4.34.1	Member Function Documentation	35
		4.34.1.1 attribute ()	35

CONTENTS

5	File	Documentation 37						
	5.1	drivers	/adar1000	.h File Reference	37			
		5.1.1	Detailed	Description	40			
		5.1.2	Typedef	Documentation	41			
			5.1.2.1	ldo_trim_ctl_1	41			
	5.2	drivers	/ads1115.	c File Reference	41			
		5.2.1	Detailed	Description	42			
		5.2.2	Function	Documentation	42			
			5.2.2.1	ads1115_configure()	42			
			5.2.2.2	ads1115_destroy()	43			
			5.2.2.3	ads1115_init()	43			
			5.2.2.4	ads1115_read_config()	43			
			5.2.2.5	ads1115_read_cont()	44			
			5.2.2.6	ads1115_read_data()	44			
	5.3	drivers	/ads1115.	h File Reference	44			
		5.3.1	Detailed	Description	46			
		5.3.2	Function	Documentation	46			
			5.3.2.1	ads1115_configure()	46			
			5.3.2.2	ads1115_destroy()	47			
			5.3.2.3	ads1115_init()	47			
			5.3.2.4	ads1115_read_config()	48			
			5.3.2.5	ads1115_read_cont()	48			
			5.3.2.6	ads1115_read_data()	48			
	5.4	drivers	/lsm9ds1.d	c File Reference	49			
		5.4.1	Detailed	Description	50			
		5.4.2	Function	Documentation	50			
			5.4.2.1	lsm9ds1_config_mag()	50			
			5.4.2.2	lsm9ds1_destroy()	51			

vi CONTENTS

		5.4.2.3	lsm9ds1_init()
		5.4.2.4	lsm9ds1_offset_mag()
		5.4.2.5	lsm9ds1_read_mag()
		5.4.2.6	lsm9ds1_reset_mag()
5.5	drivers	/lsm9ds1.l	h File Reference
	5.5.1	Detailed	Description
	5.5.2	Macro D	efinition Documentation
		5.5.2.1	LSM9DS1_CTRL_REG1_G
	5.5.3	Enumera	ation Type Documentation
		5.5.3.1	MAG_OFFSET_REGISTERS
		5.5.3.2	MAG_OUT_DATA
	5.5.4	Function	Documentation
		5.5.4.1	attribute()
		5.5.4.2	lsm9ds1_config_mag()
		5.5.4.3	lsm9ds1_destroy()
		5.5.4.4	Ism9ds1_init()
		5.5.4.5	lsm9ds1_offset_mag()
		5.5.4.6	lsm9ds1_read_mag()
		5.5.4.7	lsm9ds1_reset_mag()
5.6	drivers	/ncv7708.	c File Reference
	5.6.1	Detailed	Description
	5.6.2	Function	Documentation
		5.6.2.1	ncv7708_destroy()
		5.6.2.2	ncv7708_init()
		5.6.2.3	ncv7708_transfer()
		5.6.2.4	ncv7708_xfer()
5.7	drivers	/ncv7708.	h File Reference
	5.7.1	Detailed	Description

CONTENTS vii

	5.7.2	Function	Documentation	 64
		5.7.2.1	ncv7708_destroy()	 64
		5.7.2.2	ncv7708_init()	 65
		5.7.2.3	ncv7708_transfer()	 65
		5.7.2.4	ncv7708_xfer()	 65
5.8	drivers	/tca9458a	.c File Reference	 66
	5.8.1	Detailed	Description	 67
	5.8.2	Function	Documentation	 67
		5.8.2.1	tca9458a_destroy()	 67
		5.8.2.2	tca9458a_init()	 67
5.9	drivers	/tca9458a	th File Reference	 68
	5.9.1	Detailed	Description	 69
	5.9.2	Function	Documentation	 69
		5.9.2.1	tca9458a_destroy()	 69
		5.9.2.2	tca9458a_init()	 70
		5.9.2.3	tca9458a_set()	 70
5.10	drivers	/tsl2561.c	File Reference	 71
	5.10.1	Detailed	Description	 72
	5.10.2	Function	Documentation	 72
		5.10.2.1	read16()	 72
		5.10.2.2	read8()	 73
		5.10.2.3	tsl2561_destroy()	 73
		5.10.2.4	tsl2561_get_lux()	 73
		5.10.2.5	tsl2561_init()	 74
		5.10.2.6	tsl2561_measure()	 74
		5.10.2.7	write16()	 74
		5.10.2.8	write8()	 75
		5.10.2.9	writecmd8()	 75

viii CONTENTS

5.11	drivers	tsl2561.h File Reference	5
	5.11.1	Detailed Description	1
	5.11.2	Enumeration Type Documentation	1
		5.11.2.1 TSL2561_REGISTER_SET	1
		5.11.2.2 tsl2561Gain_t	2
		5.11.2.3 tsl2561IntegrationTime_t	2
	5.11.3	Function Documentation	2
		5.11.3.1 tsl2561_destroy()	2
		5.11.3.2 tsl2561_get_lux()	3
		5.11.3.3 tsl2561_init()	3
		5.11.3.4 tsl2561_measure()	3
5.12	include	/acs.h File Reference	4
	5.12.1	Detailed Description	6
	5.12.2	Macro Definition Documentation	6
		5.12.2.1 HBRIDGE_ENABLE	6
	5.12.3	Function Documentation	7
		5.12.3.1 acs_init()	7
		5.12.3.2 acs_thread()	7
		5.12.3.3 getOmega()	7
		5.12.3.4 getSVec()	8
		5.12.3.5 HBRIDGE_DISABLE()	8
		5.12.3.6 hbridge_enable()	8
		5.12.3.7 insertionSort()	9
		5.12.3.8 readSensors()	9
5.13	include	/acs_extern.h File Reference	9
	5.13.1	Detailed Description	1
5.14	include	/acs_iface.h File Reference	1
	5.14.1	Detailed Description	2

CONTENTS ix

	5.14.2	Function Documentation
		5.14.2.1 acs_init()
		5.14.2.2 acs_thread()
5.15	include	/bessel.h File Reference
	5.15.1	Detailed Description
	5.15.2	Macro Definition Documentation
		5.15.2.1 APPLY_DBESSEL
		5.15.2.2 APPLY_FBESSEL
	5.15.3	Function Documentation
		5.15.3.1 calculateBessel()
		5.15.3.2 dfilterBessel()
		5.15.3.3 ffilterBessel()
5.16	include	/datavis.h File Reference
	5.16.1	Detailed Description
	5.16.2	Function Documentation
		5.16.2.1 datavis_thread()
5.17	include	/datavis_extern.h File Reference
	5.17.1	Detailed Description
5.18	include	/datavis_iface.h File Reference
	5.18.1	Detailed Description
	5.18.2	Function Documentation
		5.18.2.1 datavis_thread()
5.19	include	/eps_telem.h File Reference
	5.19.1	Detailed Description
	5.19.2	Function Documentation
		5.19.2.1attribute()
5.20	include	/macros.h File Reference
	5.20.1	Detailed Description

x CONTENTS

	5.20.2	Macro Def	inition Document	ation	 	 	 	 111
		5.20.2.1	CROSS_PRODU	JCT	 	 	 	 111
		5.20.2.2	DAVERAGE_BU	FFER	 	 	 	 111
		5.20.2.3	DECLARE_BUF	FER	 	 	 	 113
		5.20.2.4	DECLARE_VEC	TOR	 	 	 	 113
		5.20.2.5	DECLARE_VEC	TOR2	 	 	 	 113
		5.20.2.6	DOT_PRODUCT		 	 	 	 114
		5.20.2.7	FAVERAGE_BU	FFER	 	 	 	 114
		5.20.2.8	FLUSH_BUFFER	3	 	 	 	 115
		5.20.2.9	FLUSH_BUFFER	R_ALL	 	 	 	 115
		5.20.2.10	INVNORM		 	 	 	 115
		5.20.2.11	MATVECMUL .		 	 	 	 116
		5.20.2.12	NORM		 	 	 	 116
		5.20.2.13	NORM2		 	 	 	 117
		5.20.2.14	NORMALIZE		 	 	 	 117
		5.20.2.15	VECTOR_CLEA	R	 	 	 	 118
		5.20.2.16	VECTOR_MIXE	·	 	 	 	 118
		5.20.2.17	VECTOR_OP .		 	 	 	 119
	5.20.3	Function D	Ocumentation .		 	 	 	 119
		5.20.3.1	daverage()		 	 	 	 119
		5.20.3.2	faverage()		 	 	 	 120
		5.20.3.3	get_usec()		 	 	 	 120
		5.20.3.4	q2isqrt()		 	 	 	 120
5.21	include	/main.h File	Reference		 	 	 	 121
	5.21.1	Detailed D	escription		 	 	 	 122
	5.21.2	Function E	Occumentation .		 	 	 	 122
		5.21.2.1	sherror()		 	 	 	 122
5.22	include	/modules.h	File Reference .		 	 	 	 123

CONTENTS xi

	5.22.1	Detailed Description
5.23	include	/sitl_comm.h File Reference
	5.23.1	Detailed Description
	5.23.2	Function Documentation
		5.23.2.1 set_blocking()
		5.23.2.2 set_interface_attribs()
		5.23.2.3 setup_serial()
		5.23.2.4 sitl_comm()
5.24	include	/sitl_comm_extern.h File Reference
	5.24.1	Detailed Description
5.25	include	/sitl_comm_iface.h File Reference
	5.25.1	Detailed Description
	5.25.2	Function Documentation
		5.25.2.1 sitl_comm()
5.26	include	/uhf.h File Reference
	5.26.1	Detailed Description
	5.26.2	Function Documentation
		5.26.2.1 uhf()
5.27	include	/xband.h File Reference
	5.27.1	Detailed Description
	5.27.2	Function Documentation
		5.27.2.1 xband()
5.28	src/acs	c.c File Reference
	5.28.1	Detailed Description
	5.28.2	Macro Definition Documentation
		5.28.2.1 RST
	5.28.3	Function Documentation
		5.28.3.1 acs_init()

xii CONTENTS

		5.28.3.2	acs_th	ıread()			 	 	 	 	 	136
		5.28.3.3		bleActio								
		5.28.3.4	getOn	nega()			 	 	 	 	 	137
		5.28.3.5	getSV	'ec() .			 	 	 	 	 	137
		5.28.3.6	HBRI	OGE_DI	SABLE	≣()	 	 	 	 	 	137
		5.28.3.7	hbridg	ge_enab	le()		 	 	 	 	 	138
		5.28.3.8	inserti	onSort())		 	 	 	 	 	138
		5.28.3.9	readS	ensors())		 	 	 	 	 	139
		5.28.3.10) sunpo	intAction	n()		 	 	 	 	 	139
	5.28.4	Variable I	Docume	entation			 	 	 	 	 	139
		5.28.4.1	IMOI				 	 	 	 	 	139
		5.28.4.2	MOI				 	 	 	 	 	140
5.29	src/bes	sel.c File	Referen	тсе			 	 	 	 	 	140
	5.29.1	Detailed	Descrip	otion .			 	 	 	 	 	141
	5.29.2	Function	Docum	entation	١		 	 	 	 	 	141
		5.29.2.1	calcula	ateBess	el()		 	 	 	 	 	141
		5.29.2.2	dfilter	3essel()			 	 	 	 	 	142
		5.29.2.3	factori	al()			 	 	 	 	 	142
		5.29.2.4	ffilterB	Bessel()			 	 	 	 	 	143
5.30	src/eps	_telem.c F	File Ref	erence			 	 	 	 	 	143
	5.30.1	Detailed	Descrip	otion .			 	 	 	 	 	144
5.31	src/mai	n.c File R	eferenc	е			 	 	 	 	 	144
	5.31.1	Detailed	Descrip	otion .			 	 	 	 	 	145
	5.31.2	Function	Docum	entation	١		 	 	 	 	 	145
		5.31.2.1	catch_	_sigint()			 	 	 	 	 	145
		5.31.2.2	main())			 	 	 	 	 	146
		5.31.2.3	sherro	or()			 	 	 	 	 	146
5.32	src/sitl_	_comm.c F	File Refe	erence			 	 	 	 	 	146
	5.32.1	Detailed	Descrip	otion .			 	 	 	 	 	147
	5.32.2	Function	Docum	entation	١		 	 	 	 	 	148
		5.32.2.1	set_bl	ocking()			 	 	 	 	 	148
		5.32.2.2	set_in	terface_	attribs	()	 	 	 	 	 	148
		5.32.2.3	setup_	_serial()			 	 	 	 	 	149
		5.32.2.4	sitl_co	mm() .			 	 	 	 	 	149
5.33	src/uhf.	c File Ref	erence				 	 	 	 	 	149
	5.33.1	Detailed	Descrip	otion .			 	 	 	 	 	149
5.34	src/xba	nd.c File F	Referen	ce			 	 	 	 	 	150
	5.34.1	Detailed	Descrip	otion .			 	 	 	 	 	150
In al e												4
Index												151

Chapter 1

Main Page

SPACE HAUC Flight Code

Software to control the SPACE HAUC satellite. It is implemented as a Linux userspace program, and ideally provides the design guidelines for a multi-module system. The modules are to be implemented as POSIX threads, with complete control over variable and function scoping – so that only relevant modules can communicate, reducing programming complications and increasing maintainability of the individual modules. Modules can be registered into the main program through the modules.h file and a module_iface.h header corresponding to the module. It is encouraged that the modules be written following C99 or C11 standards.

Last stable tested commit: release branch

Current status

The following major features have been implemented:

- 1. Threaded code (split into different files)
- 2. make code generation system (TODO: Transition to cmake)
- 3. ACS detumble and sunpointing algorithms
- 4. Serial communication for SITL (Software In The Loop) testing
- 5. ACS devices have been added for HITL (Hardware In The Loop) testing
- 6. External data visualization over TCP using a Python frontend
- 7. External data visualization for Simulink data over Serial + TCP using Python frontend
- 8. Complete Doxygen documentation and travis build checker support.
- 9. The code has been redesigned to make adding modules easier, with variable and function scoping support within the realm of C99, with different modules being aware of only the variables and functions that need to be used. Refer to the design document (shflight-design.pdf) for more information. refman.pdf includes the latest documentation for the project.

2 Main Page

make Options:

1. make: Invokes all which is the default compilation option. Does not pass any arguments to the compiler, hence genrates dynamically linked code that runs is compatible with HITL without any sun sensor code.

- 2. make sim_server: Creates the server code that can read Simulink display output over serial port and publish it over TCP for geode.py visualization service.
- 3. make clean: Delete all the object files and the built code.
- 4. make spotless: Remove every object file, build directory etc.
- 5. make doc: Create doxygen documentation.
- 6. make pdf: Make PDF documentation (requires TeXLive 2019 or earlier).

Program Options:

Program options are still scattered throughout the program. These options can be passed through the CFLAGS variable to make (e.g. make CFLAGS="-DCSS_READY" will enable coarse sun sensor support in the code). Here is a list of different compile switches that turns on/off different features:

- 1. SITL: Turns on the sitl comm interface for a Software In The Loop test.
- 2. DATAVIS: Turns on the datavis service to display system performance externally.
- 3. PORT: Requires an input of the form of an integer, assigns port for the DataVis thread.
- 4. CSS_READY: Turns on coarse sun sensor related code in the software for HITL/production.
- 5. FSS_READY: Turns on fine sun sensor related code in the software for HITL/production (partial support).
- 6. I2C BUS: Requires an input of the form of a string pointing to the absolute path of the I2C device file.
- 7. SPIDEV_ACS: Requires an input of the form of a string pointing to the absolute path of the SPI device file.
- 8. ACS_DATALOG: Writes ACS data to a file.
- 9. ACS PRINT: Prints ACS status to stdout.

There is a hidden option in drivers/tsl2561.c that enables the true low-gain operation of the coarse sun sensors. The true low-gain operation is currently disabled to support the calibration that was last performed on the coarse sun sensors.

Quirks (and TO-DOs)

The following quirks are present in the code as of now:

Serial Communication

- Simulink is running in real time mode using Packet output blocks.
- 2. The baud rate being low (230400 bps == \sim 1.7 ms for 40 bytes of data) could be a possible reason for the apparent lack of synchronization. In this case, the sitl_comm thread should also time (and synchronize itself) to the simulation. Look into such possibilities.
- 3. Currently due to the synchronization problems the acs_detumble thread waits on wakeup from the sitl_ comm thread to guarantee a basic form of synchronization with the Simulation.
- 4. For HITL, no such synchronization is necessary and the flight code can operate outside of the realm of Simulink.

ACS Detumble Algorithm

- 1. Magnetic field is represented in milliGauss to enhance math precision.
- 2. Omega measurement does not include the second order correction term that uses the MOI and past measurement. This corrected value of omega should be passed through a Bessel filter.
- 3. Investigate if every sensor reading should be filtered using a low pass filter. Discuss the cutoff frequency for such a filter.
- 4. Investigate implementation of a Kalman filter instead of a Bessel function.
- 5. In HITL, due to the noise Bessel filtering is used on B, dB/dt and \$\$ which leads to a bias on \$ z\$. This throws off the detumble determination. Find a better filter/criterion.
- 6. Investigate the effect of \$ < 0\$ at initialization.

ACS Sunpointing Algorithm

- 1. Both FSS and CSS are read. If FSS reading is valid, it is used to determine sun vector.
- 2. If FSS reading is invalid, CSS readings are used to determine sun vector essentially by subtracting the flux on the negative direction from the positive direction, doing this for all three faces, and then normalizing the resultant vector.
- 3. Investigate the gain factor in the sunpointing algorithm.

4 Main Page

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

adar1000	9
adar_beam_pos	
Beam Position Vector Modulator (VM) and VGA Decoding for Receiver and Transmitter Channel 1 to Channel 4. This struct is packed in reverse order so that xfer of val in SPI proceeds normally	9
adar_register	
Data type representing an ADAR register. To write to all chips, reset addr and set bit 11 of reg. The internal structure is packed to produce 3 bytes instead of 4 due to alignment	10
adc_ctrl	11
ads1115	
Ads1115 device data structures	12
ads1115_config	
Configuration register	13
bias_current_trx	14
channel_t	15
chx_trx_gain	
Fields of register CH1_TX_GAIN or CH1_RX_GAIN or similar	15
chx_trx_phase	
Fields of register CH1_TX_PHASE_I or CH1_RX_PHASE_Q or similar	16
data_packet	
Union of the datavis_p structure and an array of bytes for transport over TCP using send()	17
datavis_p	
Internal data structure of a DataVis packet	18
dev_config	
Fields of register DEV_CONFIG	19
hkparam_t	20
iface config a	
Fields of register INTERFACE_CONFIG_A. Functions of the last four bits in this register are inten-	
tionally replicated from the first four bits in a reverse manner so that the bit pattern is the same, whether sent LSB first or MSB first	20
iface_config_b	
Fields of register INTERFACE CONFIG. R	21

6 Class Index

ld_wrk_regs	
Loads working registers from SPI for transmit or receive	22
lsm9ds1	
LSM9DS1 Device Struct	22
helmholtz.lsm9ds1	23
mem_ctrl	23
misc_enables	24
ncv7708	
NCV77X8 Device	25
ncv7708_packet	
NCV77X8 Data packet (I/O)	
p31u	28
rx_to_tx_delay_ctrl	28
sw_ctrl	28
tca9458a	
TCA9458A Device handle	30
transfer_reg	
Fields of register TRANSFER_REG	31
trx_beam_pos	
Collection of 121 beam parameters for storage in ADAR1000 RAM	32
trx_bias_ram_ctrl	32
trx_chx_mem	33
trx_enables	34
tsl2561	
TSL2561 Device Handle	34
tx to rx delay ctrl	35

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

drivers/adar1000.h	
Function prototypes and data structure for ADAR1000 SPI Driver (Linux) ADAR1000 SPI operation mode is 0	37
drivers/ads1115.c	
ADS1115 I2C Driver function definitions	11
drivers/ads1115.h	
ADS1115 I2C Driver function prototypes and data structures	14
drivers/lsm9ds1.c	
Function definitions for LSM9DS1 Magnetometer I2C driver	19
drivers/lsm9ds1.h	
Function prototypes and data structures for LSM9DS1 Magnetometer I2C driver	52
drivers/ncv7708.c	
Function definitions for NCV77X8 SPI Driver (Linux)	30
drivers/ncv7708.h	
Function prototypes and data structure for NCV77X8 SPI Driver (Linux)	33
drivers/tca9458a.c	
Function definitions for TCA9458A I2C driver	36
drivers/tca9458a.h	
Function prototypes and struct declarations for TCA9458A I2C driver	38
drivers/tsl2561.c	_
TSL2561 I2C driver function definitions	/1
drivers/tsl2561.h	
TSL2561 I2C driver function and struct declarations	15
include/acs.h	
Header file including headers and function prototypes of the Attitude Control System	34
include/acs_extern.h	
Header file including constants, extern variables and function prototypes that are part of the Attitude	٠,
Control System, used in other modules	58
include/acs_iface.h	
Header file including constants, mutexes and function prototypes that initialize, destroy and execute the Attitude Control System module	٦.
the Attitude Control System module	ונ

8 File Index

include/bessel.h
Bessel filter implementation for Attitude Control System
include/datavis.h
DataVis thread to visualize ACS data over TCP (uses client.py)
include/datavis_extern.h
DataVis thread externs for other modules
include/datavis_iface.h
DataVis thread externs for main
include/eps_telem.h
GomSpace P31u I2C interface function prototypes and data structures
include/macros.h
Defines vector macros and other helper functions for the flight software
include/main.h
Includes all headers necessary for the core flight software, including ACS, and defines ACS states
(which are flight software states), error codes, and relevant error functions
include/modules.h
Includes all headers necessary to interface modules with the main program ACS states (which are
flight software states), error codes, and relevant error functions
include/sitl_comm.h
Software-In-The-Loop (SITL) serial communication headers and function prototypes
include/sitl_comm_extern.h
Software-In-The-Loop (SITL) serial communication headers and function prototypes
include/sitl_comm_iface.h
Software-In-The-Loop (SITL) serial communication headers and function prototypes
include/uhf.h
EnduroSat UHF Transceiver Interface Code function prototypes (Needs to be written)
include/xband.h
SPACE-HAUC X-Band Transceiver function prototypes (Needs to be written)
src/acs.c
Attitude Control System related functions
src/bessel.c
Bessel filter implementation for Attitude Control System
src/eps_telem.c
GomSpace P31u I2C interface function declarations
src/main.c
Main() symbol of the SPACE-HAUC Flight Software
src/sitl_comm.c
Software-In-The-Loop (SITL) serial communication codes
src/uhf.c
UHF interface code
src/xband.c
X-Band Radio interface code

Chapter 4

Class Documentation

4.1 adar1000 Struct Reference

Public Attributes

- struct spi_ioc_transfer xfer [1] SPI Transfer IO buffer.
- int file

File descriptor for SPI bus.

- __u8 mode
 - SPI Mode (Mode 0)
- __u8 lsb
 - MSB First.
- _u8 bits

Number of bits per transfer (16)

- __u32 speed
 - SPI Bus speed (1 MHz)
- · char fname [40]

SPI device file name.

The documentation for this struct was generated from the following file:

· drivers/adar1000.h

4.2 adar_beam_pos Union Reference

Beam Position Vector Modulator (VM) and VGA Decoding for Receiver and Transmitter Channel 1 to Channel 4. This struct is packed in reverse order so that xfer of val in SPI proceeds normally.

```
#include <adar1000.h>
```

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val [4]

4.2.1 Detailed Description

Beam Position Vector Modulator (VM) and VGA Decoding for Receiver and Transmitter Channel 1 to Channel 4. This struct is packed in reverse order so that xfer of val in SPI proceeds normally.

Proceed after Weston's reply.

4.2.2 Member Function Documentation

```
4.2.2.1 __attribute__()
```

- < Unused, for N/A address padding
- < Combined gain and polarity from LUT
- < Combined gain and polarity from LUT

The documentation for this union was generated from the following file:

• drivers/adar1000.h

4.3 adar_register Union Reference

Data type representing an ADAR register. To write to all chips, reset addr and set bit 11 of reg. The internal structure is packed to produce 3 bytes instead of 4 due to alignment.

```
#include <adar1000.h>
```

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

• unsigned char bytes [3] Data for transfer.

4.3.1 Detailed Description

Data type representing an ADAR register. To write to all chips, reset addr and set bit 11 of reg. The internal structure is packed to produce 3 bytes instead of 4 due to alignment.

4.3.2 Member Function Documentation

- < Contains the payload for the register
- < Register address
- < Chip addess

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.4 adc_ctrl Union Reference

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.4.1 Member Function Documentation

- < ADC end of conversion signal
- < ADC input signal select
- < Pulse triggers conversion cycle
- < Turns on clock oscillator
- < Turns on comparator and resets state machine
- < ADC clock frequency selection

The documentation for this union was generated from the following file:

· drivers/adar1000.h

4.5 ads1115 Struct Reference

```
ads1115 device data structures.
```

```
#include <ads1115.h>
```

Public Attributes

int fd

Device file descriptor.

• char fname [40]

I2C Bus name.

4.5.1 Detailed Description

ads1115 device data structures.

The documentation for this struct was generated from the following file:

drivers/ads1115.h

4.6 ads1115_config Union Reference

```
Configuration register.
```

```
#include <ads1115.h>
```

Public Attributes

```
struct {
    uint8_t comp_que: 2
    Comparator queue and disable (ADS1114 and ADS1115 only)
    uint8_t comp_lat: 1
    Latching comparator (ADS1114 and ADS1115 only)
    uint8_t comp_mode: 1
    Comparator polarity (ADS1114 and ADS1115 only)
    uint8_t comp_pol: 1
    Comparator mode (ADS1114 and ADS1115 only)
    uint8_t dr: 3
    Data rate: These bits control the data rate setting. 000 : 8 SPS 001 : 16 SPS 010 : 32 SPS 011 : 64 SPS 100 : 128 SPS (defauint8_t mode: 1
    Device operating mode: This bit controls the operating mode. 0 : Continuous-conversion mode 1 : Single-shot mode or power uint8 t pga: 3
```

Programmable gain amplifier configuration These bits set the FSR of the programmable gain amplifier. These bits serve no ful uint8_t mux: 3

Input multiplexer configuration (ADS1115 only) These bits configure the input multiplexer. These bits serve no function on the uint8 tos: 1

Operational status or single-shot conversion start This bit determines the operational status of the device. OS can only be writ

uint16_t raw

};

Raw 16 bits corresponding to the config struct.

4.6.1 Detailed Description

Configuration register.

4.6.2 Member Data Documentation

```
4.6.2.1 comp_lat
uint8_t ads1115_config::comp_lat
Latching comparator (ADS1114 and ADS1115 only)
```

This bit controls whether the ALERT/RDY pin latches after being asserted or clears after conversions are within the margin of the upper and lower threshold values. This bit serves no function on the ADS1113. 0: Nonlatching comparator . The ALERT/RDY pin does not latch when asserted (default). 1: Latching comparator. The asserted ALERT/RDY pin remains latched until conversion data are read by the master or an appropriate SMBus alert response is sent by the master. The device responds with its address, and it is the lowest address currently asserting the ALERT/RDY bus line.

4.6.2.2 comp_mode

```
uint8_t ads1115_config::comp_mode
```

Comparator polarity (ADS1114 and ADS1115 only)

This bit controls the polarity of the ALERT/RDY pin. This bit serves no function on the ADS1113. 0 : Active low (default) 1 : Active high

4.6.2.3 comp_pol

```
uint8_t ads1115_config::comp_pol
```

Comparator mode (ADS1114 and ADS1115 only)

This bit configures the comparator operating mode. This bit serves no function on the ADS1113. 0 : Traditional comparator (default) 1 : Window comparator

4.6.2.4 comp_que

```
uint8_t ads1115_config::comp_que
```

Comparator queue and disable (ADS1114 and ADS1115 only)

These bits perform two functions. When set to 11, the comparator is disabled and the ALERT/RDY pin is set to a high-impedance state. When set to any other value, the ALERT/RDY pin and the comparator function are enabled, and the set value determines the number of successive conversions exceeding the upper or lower threshold required before asserting the ALERT/RDY pin. These bits serve no function on the ADS1113. 00: Assert after one conversion 01: Assert after two conversions 10: Assert after four conversions 11: Disable comparator and set ALERT/RDY pin to high-impedance (default)

The documentation for this union was generated from the following file:

· drivers/ads1115.h

4.7 bias_current_trx Union Reference

Public Member Functions

• struct attribute ((packed))

Public Attributes

· unsigned char val

4.7.1 Member Function Documentation

- < TR channel vector modulator bias current setting
- < TR channel VGA bias current setting

The documentation for this union was generated from the following file:

• drivers/adar1000.h

4.8 channel_t Union Reference

Public Attributes

```
struct {
    uint8_t V5_1: 1
    uint8_t V5_2: 1
    uint8_t V5_3: 1
    uint8_t V3_1: 1
    uint8_t V3_2: 1
    uint8_t V3_3: 1
    uint8_t qs: 1
    uint8_t qh: 1
};
```

• uint8_t reg

The documentation for this union was generated from the following file:

• include/eps_telem.h

4.9 chx_trx_gain Union Reference

Fields of register CH1_TX_GAIN or CH1_RX_GAIN or similar.

```
#include <adar1000.h>
```

Public Member Functions

```
• struct __attribute__ ((packed))
```

Public Attributes

· unsigned char val

4.9.1 Detailed Description

Fields of register CH1_TX_GAIN or CH1_RX_GAIN or similar.

4.9.2 Member Function Documentation

- < Channel X receive/transmit VGA gain control
- < Channel X attenuator setting for receive/transmit mode

The documentation for this union was generated from the following file:

• drivers/adar1000.h

4.10 chx_trx_phase Union Reference

```
Fields of register CH1_TX_PHASE_I or CH1_RX_PHASE_Q or similar.
```

```
#include <adar1000.h>
```

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.10.1 Detailed Description

Fields of register CH1_TX_PHASE_I or CH1_RX_PHASE_Q or similar.

4.10.2 Member Function Documentation

- < TRX vector modulator I/Q gain
- < TRX vector modulator I/Q polarity

The documentation for this union was generated from the following file:

· drivers/adar1000.h

4.11 data_packet Union Reference

Union of the datavis_p structure and an array of bytes for transport over TCP using send().

```
#include <datavis.h>
```

Collaboration diagram for data_packet:

Public Attributes

· datavis p data

Data section of the data_packet where members of datavis_p can be accessed.

unsigned char buf [sizeof(datavis_p)]

Byte section of the data_packet for transport using send().

4.11.1 Detailed Description

Union of the datavis_p structure and an array of bytes for transport over TCP using send().

The documentation for this union was generated from the following file:

• include/datavis.h

4.12 datavis_p Struct Reference

Internal data structure of a DataVis packet.

```
#include <datavis.h>
```

Public Member Functions

• DECLARE_VECTOR2 (B, float)

Measured magnetic field.

• DECLARE_VECTOR2 (Bt, float)

Calculated value of $\vec{\dot{B}}$.

• DECLARE_VECTOR2 (W, float)

Calculated value of $\vec{\omega}$.

• DECLARE_VECTOR2 (S, float)

Calculated value of sun vector.

Public Attributes

uint8_t mode

Current system state.

uint64_t step

Current ACS step number.

4.12.1 Detailed Description

Internal data structure of a DataVis packet.

The documentation for this struct was generated from the following file:

• include/datavis.h

4.13 dev_config Union Reference

```
Fields of register DEV_CONFIG.
```

```
#include <adar1000.h>
```

Public Member Functions

```
• struct __attribute__ ((packed))
```

Public Attributes

· unsigned char val

4.13.1 Detailed Description

Fields of register DEV_CONFIG.

4.13.2 Member Function Documentation

- < Normal operating modes
- < Custom operating modes
- < Device status

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.14 hkparam_t Struct Reference

Public Attributes

```
uint16_t pv [3]
uint16_t pc
uint16_t bv
uint16_t sc
int16_t temp [4]
int16_t batt_temp [2]
uint16_t latchup [6]
uint8_t reset
uint16_t bootcount
uint16_t sw_errors
uint8_t ppt_mode
uint8_t channel_status
```

The documentation for this struct was generated from the following file:

· include/eps telem.h

4.15 iface_config_a Union Reference

Fields of register INTERFACE_CONFIG_A. Functions of the last four bits in this register are intentionally replicated from the first four bits in a reverse manner so that the bit pattern is the same, whether sent LSB first or MSB first.

```
#include <adar1000.h>
```

Public Attributes

```
struct {
    unsigned char softreset_: 1
    unsigned char lsb_first_: 1
    unsigned char addr_ascn_: 1
    unsigned char sdo_active_: 1
    unsigned char sdo_active: 1
    SDO Active, reset = 0.
    unsigned char addr_ascn: 1
    Adress ascension, reset = 0.
    unsigned char lsb_first: 1
    LSB first, reset = 0.
    unsigned char softreset: 1
    soft reset, reset = 0
};
```

· unsigned char val

4.15.1 Detailed Description

Fields of register INTERFACE_CONFIG_A. Functions of the last four bits in this register are intentionally replicated from the first four bits in a reverse manner so that the bit pattern is the same, whether sent LSB first or MSB first.

The documentation for this union was generated from the following file:

· drivers/adar1000.h

4.16 iface_config_b Union Reference

```
Fields of register INTERFACE_CONFIG_B.
```

```
#include <adar1000.h>
```

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.16.1 Detailed Description

Fields of register INTERFACE_CONFIG_B.

4.16.2 Member Function Documentation

- < soft reset
- < Slow interface control
- < Master-slave readback
- < CSB Stall
- < Single Instruction

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.17 Id_wrk_regs Union Reference

Loads working registers from SPI for transmit or receive.

```
#include <adar1000.h>
```

Public Member Functions

```
• struct attribute ((packed))
```

Public Attributes

· unsigned char val

4.17.1 Detailed Description

Loads working registers from SPI for transmit or receive.

4.17.2 Member Function Documentation

```
4.17.2.1 __attribute__()
struct ld_wrk_regs::__attribute__ (
```

< Loads receive working registers from SPI

(packed)) [inline]

< Loads transmit working registers from SPI

The documentation for this union was generated from the following file:

• drivers/adar1000.h

4.18 Ism9ds1 Struct Reference

LSM9DS1 Device Struct.

```
#include <lsm9ds1.h>
```

Public Attributes

· int accel file

File descriptor for accelerometer + gyro.

• int mag_file

File descriptor for magnetometer.

• char fname [40]

I2C Bus file name.

4.18.1 Detailed Description

LSM9DS1 Device Struct.

The documentation for this struct was generated from the following file:

• drivers/lsm9ds1.h

4.19 helmholtz.lsm9ds1 Class Reference

Public Member Functions

- def __init__ (self, busnum, xl_addr, mag_addr)
- def readMag (self)
- def __del__ (self)

Public Attributes

- sbus
- xl_addr
- · mag_addr

The documentation for this class was generated from the following file:

· calibration/helmholtz.py

4.20 mem_ctrl Union Reference

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.20.1 Member Function Documentation

- < Bypass RAM for receive channels
- < Bypass RAM for transmit channels
- < Sequentially step through stored receive beam positions
- < Sequentially step through stored transmit beam positions
- < Bypass RAM and load bias position settings from SPI
- < Bypass RAM and load beam position settings from SPI
- < Scan mode enable

The documentation for this union was generated from the following file:

· drivers/adar1000.h

4.21 misc_enables Union Reference

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.21.1 Member Function Documentation

4.21.1.1 __attribute__()

- < Enables channel 4 power detector
- < Enables channel 3 power detector
- < Enables channel 2 power detector
- < Enables channel 1 power detector

Enables output of LNA Bias DAC. 0 = Open and 1 = Bias connected.

< Enables PA and LNA bias DACs. 0 = enabled

External Amplifer Bias Control. 0 = DACs assume the on register values. 1 = DACs vary with device mode (transmit and receive).

Transmit/Receive Output Driver Select. If 0, TR_SW_NEG is enabled. If 1, TR_SW_POS is enabled.

The documentation for this union was generated from the following file:

· drivers/adar1000.h

4.22 ncv7708 Struct Reference

NCV77X8 Device.

#include <ncv7708.h>

Collaboration diagram for ncv7708:

Public Attributes

```
struct spi_ioc_transfer xfer [1]

SPI Transfer IO buffer.
int file

File descriptor for SPI bus.
__u8 mode

SPI Mode (Mode 0)
__u8 lsb

MSB First.
__u8 bits

Number of bits per transfer (16)
__u32 speed

SPI Bus speed (1 MHz)
char fname [40]

SPI device file name.
ncv7708_packet * pack
```

4.22.1 Detailed Description

NCV77X8 Device.

The documentation for this struct was generated from the following file:

Pointer to ncv7708_packet for internal consistency.

• drivers/ncv7708.h

4.23 ncv7708_packet Struct Reference

NCV77X8 Data packet (I/O)

#include <ncv7708.h>

Public Attributes

•

```
union {
  unsigned short cmd
    Combined bits.
  struct {
    unsigned char ovlo: 1
       over voltage lockout
    unsigned char hbcnf1: 1
       half bridge 1 configuration (1 -> LS1 off and HS1 on, 0 -> LS1 on and HS1 off)
    unsigned char hbcnf2: 1
    unsigned char hbcnf3: 1
    unsigned char hbcnf4: 1
    unsigned char hbcnf5: 1
    unsigned char hbcnf6: 1
    unsigned char hben1: 1
       half bridge 1 enable (1 -> bridge in use, 0 -> bridge not in use)
    unsigned char hben2: 1
    unsigned char hben3: 1
    unsigned char hben4: 1
    unsigned char hben5: 1
    unsigned char hben6: 1
    unsigned char uldsc: 1
       under load detection shutdown
    unsigned char hbsel: 1
       half bridge selection (needs to be set to 0)
    unsigned char srr: 1
       status reset register: 1 -> clear all faults and reset
  }
};
union {
  unsigned short data
  struct {
    unsigned char tw: 1
       thermal warning
    unsigned char hbcr1: 1
       half bridge 1 configuration reporting (mirrors command)
    unsigned char hbcr2: 1
    unsigned char hbcr3: 1
    unsigned char hbcr4: 1
    unsigned char hbcr5: 1
    unsigned char hbcr6: 1
    unsigned char hbst1: 1
       half bridge 1 enable status (mirrors command)
    unsigned char hbst2: 1
    unsigned char hbst3: 1
    unsigned char hbst4: 1
    unsigned char hbst5: 1
    unsigned char hbst6: 1
    unsigned char uld: 1
       under load detection (1 -> fault)
    unsigned char psf: 1
       power supply failure
    unsigned char ocs: 1
```

```
over current shutdown
}
```

4.23.1 Detailed Description

NCV77X8 Data packet (I/O)

The documentation for this struct was generated from the following file:

• drivers/ncv7708.h

4.24 p31u Struct Reference

Collaboration diagram for p31u:

Public Attributes

- int file
- char fname [40]

I2C File Descriptor.

uint8_t addr

I2C File Name.

• hkparam_t hkparam

Device Address.

eps_hk_t full_hk

hkparam_t structure memory

• eps_hk_vi_t battpower_hk

Full housekeeping data.

```
    eps_hk_out_t outstats_hk
        battery voltage and current data
    eps_hk_wdt_t wdtstats_hk
        Output status and current data.
    eps_hk_basic_t basicstas_hk
```

Watchdog status data.

The documentation for this struct was generated from the following file:

• include/eps_telem.h

4.25 rx_to_tx_delay_ctrl Union Reference

Public Member Functions

```
• struct __attribute__ ((packed))
```

Public Attributes

· unsigned char val

4.25.1 Member Function Documentation

The documentation for this union was generated from the following file:

· drivers/adar1000.h

< LNA bias off to TR switch delay

4.26 sw_ctrl Union Reference

Public Member Functions

struct <u>attribute</u> ((packed))

Public Attributes

· unsigned char val

4.26.1 Member Function Documentation

Control for external polarity switch drivers. 0 == outputs 0V 1 == outputs -5V if switch is enabled.

- < State of SPI control. 0 = receive, 1 = transmit
- < Source for transmit/receive contro. 0 = TR_SPI, 1 = TR input
- < Enables switch driver for external polarization switch. 1 = Enabled
- < Enables switch driver for external transmit/receive switch. 1 = Enabled.
- < Enables receive channel subcircuits under SPI control. 1 = Enabled
- < Enables transmit channel subcircuits under SPI control. 1 = Enabled
- < Control sense of transmit/receive swutch driver output. If 0, the driver outputs 0V in receive mode.

The documentation for this union was generated from the following file:

• drivers/adar1000.h

4.27 tca9458a Struct Reference

TCA9458A Device handle.

```
#include <tca9458a.h>
```

Public Attributes

int fd

File descriptor for I2C Bus.

• char fname [40]

File name for I2C Bus.

• uint8_t channel

Current active channel.

4.27.1 Detailed Description

TCA9458A Device handle.

The documentation for this struct was generated from the following file:

· drivers/tca9458a.h

4.28 transfer_reg Union Reference

Fields of register TRANSFER_REG.

```
#include <adar1000.h>
```

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.28.1 Detailed Description

Fields of register TRANSFER REG.

4.28.2 Member Function Documentation

< Master slave transfer

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.29 trx_beam_pos Union Reference

Collection of 121 beam parameters for storage in ADAR1000 RAM.

```
#include <adar1000.h>
```

Collaboration diagram for trx_beam_pos:

Public Attributes

- adar_beam_pos beam [121]
- unsigned char val [121 *sizeof(adar_beam_pos)]

4.29.1 Detailed Description

Collection of 121 beam parameters for storage in ADAR1000 RAM.

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.30 trx_bias_ram_ctrl Union Reference

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.30.1 Member Function Documentation

- < RAM index for TRX channels
- < Get TRX beam settings from RAM

The documentation for this union was generated from the following file:

• drivers/adar1000.h

4.31 trx_chx_mem Union Reference

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.31.1 Member Function Documentation

< get tr channel beam settings from RAM

< RAM index for TR channels

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.32 trx_enables Union Reference

Public Member Functions

```
• struct __attribute__ ((packed))
```

Public Attributes

· unsigned char val

4.32.1 Member Function Documentation

- < Enables the trx channel VGAs
- < Enables the trx channel vector modulators
- < Enables receive channel LNAs or transmit channel drivers
- < Enables channel 4 subcircuits
- < Enables channel 3 subcircuits
- < Enables channel 2 subcircuits
- < Enables channel 1 subcircuits

The documentation for this union was generated from the following file:

drivers/adar1000.h

4.33 tsl2561 Struct Reference

TSL2561 Device Handle.

```
#include <tsl2561.h>
```

Public Attributes

int fd

File descriptor for I2C bus.

• char fname [40]

I2C Device name.

4.33.1 Detailed Description

TSL2561 Device Handle.

The documentation for this struct was generated from the following file:

· drivers/tsl2561.h

4.34 tx_to_rx_delay_ctrl Union Reference

Public Member Functions

• struct __attribute__ ((packed))

Public Attributes

· unsigned char val

4.34.1 Member Function Documentation

< TR switch to LNA Bias on delay

< PA bias off to TR switch delay

The documentation for this union was generated from the following file:

· drivers/adar1000.h

Chapter 5

File Documentation

5.1 drivers/adar1000.h File Reference

Function prototypes and data structure for ADAR1000 SPI Driver (Linux) ADAR1000 SPI operation mode is 0.

```
#include <sys/types.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
Include dependency graph for adar1000.h:
```


Classes

union adar_register

Data type representing an ADAR register. To write to all chips, reset addr and set bit 11 of reg. The internal structure is packed to produce 3 bytes instead of 4 due to alignment.

· union iface config a

Fields of register INTERFACE_CONFIG_A. Functions of the last four bits in this register are intentionally replicated from the first four bits in a reverse manner so that the bit pattern is the same, whether sent LSB first or MSB first.

· union iface_config_b

Fields of register INTERFACE_CONFIG_B.

· union dev_config

Fields of register DEV_CONFIG.

· union transfer reg

Fields of register TRANSFER_REG.

union chx trx gain

Fields of register CH1_TX_GAIN or CH1_RX_GAIN or similar.

· union chx trx phase

Fields of register CH1_TX_PHASE_I or CH1_RX_PHASE_Q or similar.

union ld wrk regs

Loads working registers from SPI for transmit or receive.

- union trx enables
- · union misc enables
- · union sw ctrl
- · union adc ctrl
- union bias_current_trx
- · union mem_ctrl
- union trx_chx_mem
- union tx_to_rx_delay_ctrl
- union rx_to_tx_delay_ctrl
- union trx_bias_ram_ctrl
- union adar_beam_pos

Beam Position Vector Modulator (VM) and VGA Decoding for Receiver and Transmitter Channel 1 to Channel 4. This struct is packed in reverse order so that xfer of val in SPI proceeds normally.

union trx_beam_pos

Collection of 121 beam parameters for storage in ADAR1000 RAM.

• struct adar1000

Macros

#define CASSERT(predicate) _impl_CASSERT_LINE(predicate, __LINE__)

Custom assert function to check if struct sizes are accurate.

- #define impl PASTE(a, b) a##b
- #define _impl_CASSERT_LINE(predicate, line) typedef char _impl_PASTE(assertion_failed, line)[2 * !!(predicate)-1];

Typedefs

typedef unsigned char chx_pa_bias_on

External bias for external PA X.

• typedef unsigned char Ina_bias_on

External bias for external LNAs.

- typedef unsigned char adc_output
- typedef unsigned char bias_current_rx_lna

4 bits only

- typedef unsigned char bias_current_tx_drv
- · typedef unsigned char rev_id

Chip revision ID.

• typedef unsigned char chx_pa_bias_off

External bias for external PA X.

typedef unsigned char lna_bias_off

External bias for external LNAs.

typedef unsigned char tx beam step start

Start memory address for transmit channel beam stepping.

typedef unsigned char tx beam step stop

Stop memory address for transmit channel beam stepping.

typedef unsigned char rx beam step start

Start memory address for receive channel beam stepping.

typedef unsigned char rx_beam_step_stop

Stop memory address for receive channel beam stepping.

typedef unsigned char ldo_trim_ctl_0

Trim Values for Adjusting LDO Outputs.

typedef unsigned char ldo_trim_ctl_1

Set value to 2 (10 binary) to enable user adjustments for LDO outputs. Other combinations not recommended.

Enumerations

```
    enum ADAR REG ADDR {

 INTERFACE CONFIG A = 0x000, INTERFACE CONFIG B, DEV CONFIG, CHIP TYPE,
 PRODUCT_ID_H, PRODUCT_ID_L, SCRATCH_PAD = 0xa, SPI_REV,
 VENDOR_ID_H, VENDOR_ID_L, TRANSFER_REG = 0xf, CH1_RX_GAIN,
 CH2 RX GAIN, CH3 RX GAIN, CH4 RX GAIN, CH1 RX PHASE I,
 CH1_RX_PHASE_Q, CH2_RX_PHASE_I, CH2_RX_PHASE_Q, CH3_RX_PHASE_I,
 CH3 RX PHASE Q, CH4 RX PHASE I, CH4 RX PHASE Q, CH1 TX GAIN,
 CH2_TX_GAIN, CH3_TX_GAIN, CH4_TX_GAIN, CH1_TX_PHASE_I,
 CH1 TX PHASE Q, CH2 TX PHASE I, CH2 TX PHASE Q, CH3 TX PHASE I,
 CH3 TX PHASE Q, CH4 TX PHASE I, CH4 TX PHASE Q, LD WRK REGS = 0x28,
 CH1 PA BIAS ON, CH2 PA BIAS ON, CH3 PA BIAS ON, CH4 PA BIAS ON,
 LNA BIAS ON, RX ENABLES, TX ENABLES, MISC ENABLES = 0x30,
 SW CTRL, ADC CTRL, ADC OUTPUT, BIAS CURRENT RX LNA,
 BIAS_CURRENT_RX, BIAS_CURRENT_TX, BIAS_CURRENT_TX_DRV, MEM_CTRL = 0x38,
 RX CHX MEM, TX CHX MEM, RX CH1 MEM = 0x3d, RX CH2 MEM,
 RX CH3 MEM, RX CH4 MEM, TX CH1 MEM, TX CH2 MEM,
 TX CH3 MEM, TX CH4 MEM, REV ID, CH1 PA BIAS OFF,
 CH2 PA BIAS OFF, CH3 PA BIAS OFF, CH4 PA BIAS OFF, LNA BIAS OFF,
 TX_TO_RX_DELAY_CTRL, RX_TO_TX_DELAY_CTRL, TX_BEAM_STEP_START, TX_BEAM_STEP_STOP,
 RX_BEAM_STEP_START, RX_BEAM_STEP_STOP, RX_BIAS_RAM_CTL, TX_BIAS_RAM_CTL,
 LDO_TRIM_CTL_0 = 0x400, LDO_TRIM_CTL_1 }
```

Functions

- CASSERT (sizeof(iface_config_a)==1)
- CASSERT (sizeof(iface config b)==1)
- CASSERT (sizeof(dev_config)==1)
- CASSERT (sizeof(transfer_reg)==1)
- CASSERT (sizeof(chx trx gain)==1)
- CASSERT (sizeof(chx trx phase)==1)

```
    CASSERT (sizeof(ld_wrk_regs)==1)

    CASSERT (sizeof(chx_pa_bias_on)==1)

    CASSERT (sizeof(trx_enables)==1)

    • CASSERT (sizeof(misc enables)==1)

    CASSERT (sizeof(sw ctrl)==1)

    CASSERT (sizeof(adc_ctrl)==1)

    CASSERT (sizeof(bias current trx)==1)

    CASSERT (sizeof(mem ctrl)==1)

    CASSERT (sizeof(trx_chx_mem)==1)

    CASSERT (sizeof(tx_to_rx_delay_ctrl)==1)

    CASSERT (sizeof(rx_to_tx_delay_ctrl)==1)

    CASSERT (sizeof(trx_bias_ram_ctrl)==1)

    CASSERT (sizeof(adar_beam_pos)==4)

    CASSERT (sizeof(trx_beam_pos)==121 *sizeof(adar_beam_pos))

    int adar1000_init (adar1000 *dev)

    int adar1000_xfer (adar1000 *dev, void *data, ssize t len)

    void adar1000_destroy (adar1000 *dev)

Variables
```

unsigned char adar_phase_to_i []

Lookup table to convert phase angle to I value for vector modulator. LUT phase angle quantization is 2.8125 deg. A given phase can be rounded to the nearest integer after division by 2.8125.

unsigned char adar_phase_to_q []

Lookup table to convert phase angle to Q value for vector modulator. LUT phase angle quantization is 2.8125 deg. A given phase can be rounded to the nearest integer after division by 2.8125.

5.1.1 **Detailed Description**

Function prototypes and data structure for ADAR1000 SPI Driver (Linux) ADAR1000 SPI operation mode is 0.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-07-20

Copyright

Copyright (c) 2020

5.1.2 Typedef Documentation

```
5.1.2.1 | Ido_trim_ctl_1

typedef unsigned char ldo_trim_ctl_1
```

Set value to 2 (10 binary) to enable user adjustments for LDO outputs. Other combinations not recommended.

2 bits

5.2 drivers/ads1115.c File Reference

ADS1115 I2C Driver function definitions.

```
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <signal.h>
#include "ads1115.h"
```

Include dependency graph for ads1115.c:

Functions

int ads1115_init (ads1115 *dev, uint8_t s_address)

Initializes an ADS1115 device. Opens the I2C device named in ads1115->fname.

• int ads1115_configure (ads1115 *dev, ads1115_config m_con)

Configures an ADS1115 device.

int ads1115_read_data (ads1115 *dev, int16_t *data)

Reads data from the ADC in single shot.

• int ads1115 read cont (ads1115 *dev, int16 t *data)

Reads data from the ADC in continuous mode.

int ads1115 read config (ads1115 *dev, uint16 t *data)

Read current configuration of an ADS1115.

void ads1115_destroy (ads1115 *dev)

Powers down ADS1115 device and closes file descriptor.

5.2.1 Detailed Description

ADS1115 I2C Driver function definitions.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.2.2 Function Documentation

5.2.2.1 ads1115_configure()

Configures an ADS1115 device.

Parameters

dev	Pointer to ads1115 device struct.
m_con	Configuration to apply

Returns

Returns 1 on success, -1 on failure.

5.2.2.2 ads1115_destroy()

```
void ads1115_destroy ( {\tt ads1115} \ * \ dev \ )
```

Powers down ADS1115 device and closes file descriptor.

Parameters

5.2.2.3 ads1115_init()

Initializes an ADS1115 device. Opens the I2C device named in ads1115->fname.

Parameters

dev	Pointer to ads1115 device struct.
s_address	7-bit I2C address

Returns

Returns 1 on success, -1 on failure. Sets errno.

5.2.2.4 ads1115_read_config()

Read current configuration of an ADS1115.

Parameters

dev	Pointer to ads1115 device struct.	
data	Pointer to unsigned short (ads1115_config->raw)	

Returns

Returns 1 on success, -1 on failure.

5.2.2.5 ads1115_read_cont()

```
int ads1115_read_cont (  \frac{\text{ads1115} * \textit{dev},}{\text{int16\_t} * \textit{data}} )
```

Reads data from the ADC in continuous mode.

Parameters

dev	Pointer to ads1115 device struct.	
data	Pointer to an array of short of length 4 where data is stored	

Returns

Returns 1 on success, -1 on failure.

5.2.2.6 ads1115_read_data()

```
int ads1115_read_data (  \frac{\text{ads1115} * \textit{dev,}}{\text{int16\_t} * \textit{data}} )
```

Reads data from the ADC in single shot.

Parameters

dev	Pointer to ads1115 device struct.	
data	Pointer to an array of short of length 4 where data is stored	

Returns

Returns 1 on success, -1 on failure.

5.3 drivers/ads1115.h File Reference

ADS1115 I2C Driver function prototypes and data structures.

#include <stdint.h>
Include dependency graph for ads1115.h:

This graph shows which files directly or indirectly include this file:

Classes

- union ads1115_config
 Configuration register.
- struct ads1115

ads1115 device data structures.

Macros

- #define ADS1115_S_ADDR 0x48
 - Default I2C Address.
- #define I2C_BUS "/dev/i2c-1"
 - Default I2C Bus.
- #define CONVERSION REG 0x00
 - ADC conversion register.
- #define CONFIG_REG 0x01

ADC configuration register.

Functions

```
int ads1115_init (ads1115 *dev, uint8_t s_address)
```

Initializes an ADS1115 device. Opens the I2C device named in ads1115->fname.

• int ads1115_configure (ads1115 *dev, ads1115_config m_con)

Configures an ADS1115 device.

• int ads1115_read_data (ads1115 *dev, int16_t *data)

Reads data from the ADC in single shot.

• int ads1115_read_cont (ads1115 *dev, int16_t *data)

Reads data from the ADC in continuous mode.

• int ads1115_read_config (ads1115 *dev, uint16_t *data)

Read current configuration of an ADS1115.

• void ads1115_destroy (ads1115 *dev)

Powers down ADS1115 device and closes file descriptor.

5.3.1 Detailed Description

ADS1115 I2C Driver function prototypes and data structures.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.3.2 Function Documentation

5.3.2.1 ads1115_configure()

Configures an ADS1115 device.

Parameters

dev	Pointer to ads1115 device structure	
m_con	Configuration to apply	

Returns

Returns 1 on success, -1 on failure.

5.3.2.2 ads1115_destroy()

```
void ads1115_destroy ( ads1115 * dev )
```

Powers down ADS1115 device and closes file descriptor.

Parameters

```
dev Pointer to ads1115 device struct.
```

5.3.2.3 ads1115_init()

Initializes an ADS1115 device. Opens the I2C device named in ads1115->fname.

Parameters

dev	Pointer to ads1115 device struct.
s_address	7-bit I2C address

Returns

Returns 1 on success, -1 on failure. Sets errno.

5.3.2.4 ads1115_read_config()

Read current configuration of an ADS1115.

Parameters

dev	Pointer to ads1115 device struct.	
data	Pointer to unsigned short (ads1115_config->raw)	

Returns

Returns 1 on success, -1 on failure.

5.3.2.5 ads1115_read_cont()

```
int ads1115_read_cont (  \frac{\text{ads1115} * \textit{dev,}}{\text{int16\_t} * \textit{data}} )
```

Reads data from the ADC in continuous mode.

Parameters

dev	Pointer to ads1115 device struct.
data	Pointer to an array of short of length 4 where data is stored

Returns

Returns 1 on success, -1 on failure.

5.3.2.6 ads1115_read_data()

```
int ads1115_read_data (  \frac{\text{ads1115} * \textit{dev},}{\text{int16\_t} * \textit{data}} )
```

Reads data from the ADC in single shot.

Parameters

dev	dev Pointer to ads1115 device struct.	
data	Pointer to an array of short of length 4 where data is stored	

Returns

Returns 1 on success, -1 on failure.

5.4 drivers/Ism9ds1.c File Reference

Function definitions for LSM9DS1 Magnetometer I2C driver.

```
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <linux/i2c-dev.h>
#include <errno.h>
#include <stdint.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include "lsm9dsl.h"
```

Include dependency graph for lsm9ds1.c:

Functions

• int lsm9ds1 init (lsm9ds1 *dev, uint8 t xl addr, uint8 t mag addr)

Takes the pointer to the device struct, XL address and M address, returns 1 on success, negative numbers on failure.

int lsm9ds1_config_mag (lsm9ds1 *dev, MAG_DATA_RATE datarate, MAG_RESET rst, MAG_DATA_READ dread)

Configure the data rate, reset vector and data granularity.

• int lsm9ds1_reset_mag (lsm9ds1 *dev)

Reset the magnetometer memory.

int lsm9ds1 read mag (lsm9ds1 *dev, short *B)

Store the magnetic field readings in the array of shorts, order: X Y Z.

• int lsm9ds1_offset_mag (lsm9ds1 *dev, short *offset)

Set the mag field offsets using the array, order: X Y Z.

void lsm9ds1_destroy (lsm9ds1 *dev)

Closes the file descriptors for the mag and accel and frees the allocated memory.

5.4.1 Detailed Description

Function definitions for LSM9DS1 Magnetometer I2C driver.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.4.2 Function Documentation

5.4.2.1 lsm9ds1_config_mag()

Configure the data rate, reset vector and data granularity.

Parameters

dev	Pointer to Ism9ds1
datarate	
rst	
dread	

Returns

Returns 1 on success, -1 on failure

5.4.2.2 lsm9ds1_destroy()

```
void lsm9ds1_destroy ( lsm9ds1 * dev )
```

Closes the file descriptors for the mag and accel and frees the allocated memory.

Parameters

5.4.2.3 lsm9ds1_init()

Takes the pointer to the device struct, XL address and M address, returns 1 on success, negative numbers on failure.

Parameters

	dev	Pointer to Ism9ds1	
	xl_addr		
mag_addr magnetometer address on I2C Bus (default		magnetometer address on I2C Bus (default 0x1e)	

Returns

Returns 1 on success, -1 on failure

5.4.2.4 lsm9ds1_offset_mag()

Set the mag field offsets using the array, order: X Y Z.

Parameters

dev	Pointer to Ism9ds1	
offset	Pointer to an array of shorts of length 3 where magnetometer offset is stored	

Returns

Returns 1 on success, -1 on failure

5.4.2.5 lsm9ds1_read_mag()

Store the magnetic field readings in the array of shorts, order: X Y Z.

Parameters

dev	Pointer to Ism9ds1]
В	Pointer to an array of short of length 3 where magnetometer reading is stored]

Returns

Returns 1 on success, -1 on failure

5.4.2.6 lsm9ds1_reset_mag()

```
int lsm9ds1_reset_mag ( lsm9ds1 * dev )
```

Reset the magnetometer memory.

Parameters

dev Pointer to lsm9ds1

Returns

Returns 1 on success, -1 on failure

5.5 drivers/Ism9ds1.h File Reference

Function prototypes and data structures for LSM9DS1 Magnetometer I2C driver.

#include <stdint.h>
Include dependency graph for lsm9ds1.h:

This graph shows which files directly or indirectly include this file:

Classes

struct lsm9ds1

LSM9DS1 Device Struct.

Macros

• #define MAG_I2C_FIle "/dev/i2c-1"

Default I2C device address.

• #define LSM9DS1_XL_ADDR 0x6b

Accelerometer address.

• #define LSM9DS1_MAG_ADDR 0x1e

Magnetometer address.

#define LSM9DS1_CTRL_REG1_G 0x10

- Accelerometer and Gyro registers
- #define LSM9DS1 GYRO PD 0x00

Content of the gyro control register for power down.

#define LSM9DS1 CTRL REG5 XL 0x1f

Acceleration control register.

#define LSM9DS1 XL PD 0x00

Disable outputs.

- #define LSM9DS1_CTRL_REG6_XL 0x20
 - ODR_XL[7:5]: Output data rate and power mode, 0 0 0 for power down. FS_XL[4:3]: Full scale selection. BW_SC← AL_ODR[2:2]: Bandwidth selection, 0 default, 1 bandwidth from BW_XL. BW_XL[1:0]: Custom bandwidth.
- #define MAG CTRL REG1 M 0x20

Magnetometer control register 1 address.

#define MAG_CTRL_REG2_M 0x21

Magnetometer control register 2 address.

#define MAG_CTRL_REG3_M 0x22

Magnetometer control register 3 address, write 0x0 to this.

#define MAG_CTRL_REG4_M 0x23

Magnetometer control register 4 address.

• #define MAG CTRL REG4 DATA 0x0c

Magnetometer control register 4: [11][0 0], ultra high Z performance + little endian register data selection.

#define MAG CTRL REG5 M 0x24

Magnetometer control register 5 address.

#define MAG WHO AM I 0x0f

Address of magnetometer ID register.

#define MAG IDENT 0b00111101

Magnetometer ID.

Enumerations

```
    enum MAG_OFFSET_REGISTERS {
        MAG_OFFSET_X_REG_L_M = 0x05, MAG_OFFSET_X_REG_H_M, MAG_OFFSET_Y_REG_L_M, MAG_OFFSET_Y_REG_L_M, MAG_OFFSET_Z_REG_H_M }
        MAG_OFFSET_Z_REG_L_M, MAG_OFFSET_Z_REG_H_M }
        Magnetometer registers.
    enum MAG_OUT_DATA {
        MAG_OUT_X_L = 0x28, MAG_OUT_X_H, MAG_OUT_Y_L, MAG_OUT_Y_H,
        MAG_OUT_Z_L, MAG_OUT_Z_H }
```

Functions

```
    struct attribute ((packed))
```

Configuration for magnetometer data rate.

Magnetometer measurement register addresses.

• int lsm9ds1_init (lsm9ds1 *, uint8_t, uint8_t)

Takes the pointer to the device struct, XL address and M address, returns 1 on success, negative numbers on failure.

int lsm9ds1 config mag (lsm9ds1 *, MAG DATA RATE, MAG RESET, MAG DATA READ)

Configure the data rate, reset vector and data granularity.

int lsm9ds1_reset_mag (lsm9ds1 *)

Reset the magnetometer memory.

int lsm9ds1_read_mag (lsm9ds1 *, short *)

Store the magnetic field readings in the array of shorts, order: X Y Z.

int lsm9ds1_offset_mag (lsm9ds1 *, short *)

Set the mag field offsets using the array, order: X Y Z.

void lsm9ds1_destroy (lsm9ds1 *)

Closes the file descriptors for the mag and accel and frees the allocated memory.

Variables

- MAG DATA RATE
- MAG_RESET
- MAG_DATA_READ

5.5.1 Detailed Description

Function prototypes and data structures for LSM9DS1 Magnetometer I2C driver.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.5.2 Macro Definition Documentation

5.5.2.1 LSM9DS1_CTRL_REG1_G

#define LSM9DS1_CTRL_REG1_G 0x10

· Accelerometer and Gyro registers

NOTE: Few registers are used ONLY TO power down the accelerometer and the gyroscope.

5.5.3 Enumeration Type Documentation

5.5.3.1 MAG_OFFSET_REGISTERS

enum MAG_OFFSET_REGISTERS

Magnetometer registers.

Enumerator

MAG_OFFSET_X_REG_L_M	Magnetometer X axis offset LOW byte.
	Magnetometer X axis offset HIGH byte.
MAG_OFFSET_X_REG_H_M	
MAG_OFFSET_Y_REG_L_M	Magnetometer Y axis offset LOW byte.
	Magnetometer Y axis offset HIGH byte.
MAG_OFFSET_Y_REG_H_M	
MAG_OFFSET_Z_REG_L_M	Magnetometer Z axis offset LOW byte.
	Magnetometer Z axis offset HIGH byte.
MAG_OFFSET_Z_REG_H_M	

5.5.3.2 MAG_OUT_DATA

enum MAG_OUT_DATA

Magnetometer measurement register addresses.

Enumerator

		Magnetometer X axis measurement LOW byte.
	MAG_OUT_X_L	
Γ		Magnetometer X axis measurement HIGH byte.
	MAG OUT X H	

Enumerator

	Magnetometer Y axis measurement LOW byte.
MAG_OUT_Y_L	
	Magnetometer Y axis measurement HIGH byte.
MAG_OUT_Y_H	
	Magnetometer Z axis measurement LOW byte.
MAG_OUT_Z_L	
	Magnetometer Z axis measurement HIGH byte.
MAG_OUT_Z_H	

5.5.4 Function Documentation

Configuration for magnetometer data rate.

Configures data updating method of the magnetometer.

Reset or configure scale of Magnetometer. < Self test enable. Default: 0. (0: disabled, 1: enabled)

< Enables data rates faster than 80 Hz. Default: 0 (0: disabled, 1: enabled)

Sets data rate from the sensor when fast_odr is disabled.

Set Data Rate in Hz. 000: 0.625 Hz 001: 1.25 Hz 010: 2.5 Hz 011: 5 Hz 100: 10 Hz (Default) 101: 20 Hz (SPACE HAUC setting) 110: 40 Hz 111: 80 Hz

X and Y axes operative mode selection. Default value: 00

Operative mode for X and Y axes. 00: LP mode (Default) 01: Medium perf 10: High perf 11: Ultra-high perf

Temperature compensation enable.

Default value: 0

- 0: Temperature compensation disabled 1: Temperature compensation enabled
- < Reserved, must be 0.
- < Configuration registers and user register reset function. (0: default value; 1: reset operation)
- < Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content)
- < Reserved, must be 0.

Full-scale configuration. Default value: 00 00: +/- 4 Gauss 01: +/- 8 Gauss 10: +/- 12 Gauss 11: +/- 16 Gauss

- < Reserved, must be 0.
- < Reserved, must be 0.

Block data update for magnetic data. 0: Continuous update, 1: Output registers not updated until MSB and LSB has been read

FAST_READ allows reading the high part of DATA OUT only in order to increase reading efficiency. Default: 0 0: FAST_READ disabled, 1: Enabled

5.5.4.2 lsm9ds1_config_mag()

Configure the data rate, reset vector and data granularity.

Parameters

dev	Pointer to Ism9ds1
datarate	
rst	
dread	

Returns

Returns 1 on success, -1 on failure

5.5.4.3 lsm9ds1_destroy()

```
void lsm9ds1_destroy ( lsm9ds1 * dev )
```

Closes the file descriptors for the mag and accel and frees the allocated memory.

Parameters

dev	Pointer to Ism9ds1
-----	--------------------

5.5.4.4 lsm9ds1_init()

Takes the pointer to the device struct, XL address and M address, returns 1 on success, negative numbers on failure.

Parameters

dev	Pointer to lsm9ds1	
xl_addr	Accelerometer address on I2C Bus (default 0x6b)	Generated by Doxygen
mag_addr	magnetometer address on I2C Bus (default 0x1e)	Generated by Doxygen

Returns

Returns 1 on success, -1 on failure

5.5.4.5 lsm9ds1_offset_mag()

Set the mag field offsets using the array, order: X Y Z.

Parameters

dev	Pointer to Ism9ds1
offset	Pointer to an array of shorts of length 3 where magnetometer offset is stored

Returns

Returns 1 on success, -1 on failure

5.5.4.6 lsm9ds1_read_mag()

Store the magnetic field readings in the array of shorts, order: X Y Z.

Parameters

dev	Pointer to Ism9ds1
В	Pointer to an array of short of length 3 where magnetometer reading is stored

Returns

Returns 1 on success, -1 on failure

5.5.4.7 lsm9ds1_reset_mag()

Reset the magnetometer memory.

Parameters

Returns

Returns 1 on success, -1 on failure

5.6 drivers/ncv7708.c File Reference

Function definitions for NCV77X8 SPI Driver (Linux)

```
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <fcntl.h>
#include <errno.h>
#include errno.h>
#include unux/types.h>
#include unux/spi/spidev.h>
#include <signal.h>
#include "ncv7708.h"
```

Include dependency graph for ncv7708.c:

Functions

• int ncv7708_init (ncv7708 *dev)

Initialize the SPI bus to communicate with the NCV77X8.

int ncv7708_transfer (ncv7708 *dev, uint16_t *data, uint16_t *cmd)

Makes an SPI transaction for a NCV77X8 device.

int ncv7708 xfer (ncv7708 *dev)

Makes an SPI transaction using internal data.

void ncv7708_destroy (ncv7708 *dev)

Closes SPI bus file descriptor and frees memory allocated for device.

5.6.1 Detailed Description

Function definitions for NCV77X8 SPI Driver (Linux)

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.6.2 Function Documentation

5.6.2.1 ncv7708_destroy()

```
void ncv7708_destroy ( ncv7708 * dev )
```

Closes SPI bus file descriptor and frees memory allocated for device.

Parameters

dev NCV77X8 Device Handle

5.6.2.2 ncv7708_init()

Initialize the SPI bus to communicate with the NCV77X8.

Parameters

dev	NCV77X8 Device Handle
-----	-----------------------

Returns

Returns 1 on success, 0 on SPI ioctl failures, -1 on device setup failure.

5.6.2.3 ncv7708_transfer()

Makes an SPI transaction for a NCV77X8 device.

Parameters

dev	NCV77X8 Device Handle
data	Pointer to store 16-bit data read over SPI
cmd	Pointer to 16-bit data sent over SPI

Returns

1 on success, -1 on failure

5.6.2.4 ncv7708_xfer()

```
int ncv7708_xfer ( ncv7708 * dev)
```

Makes an SPI transaction using internal data.

Parameters

dev	NCV77X8 Device Handle

Returns

1 on success, -1 on failure

5.7 drivers/ncv7708.h File Reference

Function prototypes and data structure for NCV77X8 SPI Driver (Linux)

```
#include <linux/types.h>
#include <linux/spi/spidev.h>
Include dependency graph for ncv7708.h:
```


This graph shows which files directly or indirectly include this file:

Classes

- struct ncv7708_packet

 NCV77X8 Data packet (I/O)
- struct ncv7708

NCV77X8 Device.

Functions

```
• int ncv7708_init (ncv7708 *)
```

Initialize the SPI bus to communicate with the NCV77X8.

int ncv7708_transfer (ncv7708 *, uint16_t *, uint16_t *)

Makes an SPI transaction for a NCV77X8 device.

• int ncv7708_xfer (ncv7708 *)

Makes an SPI transaction using internal data.

void ncv7708_destroy (ncv7708 *)

Closes SPI bus file descriptor and frees memory allocated for device.

5.7.1 Detailed Description

Function prototypes and data structure for NCV77X8 SPI Driver (Linux)

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.7.2 Function Documentation

5.7.2.1 ncv7708_destroy()

```
void ncv7708_destroy (
ncv7708 * dev )
```

Closes SPI bus file descriptor and frees memory allocated for device.

Parameters

dev NCV77X8 Device Handle

5.7.2.2 ncv7708_init()

```
int ncv7708_init ( ncv7708 * dev)
```

Initialize the SPI bus to communicate with the NCV77X8.

Parameters

dev	NCV77X8 Device Handle
-----	-----------------------

Returns

Returns 1 on success, 0 on SPI ioctl failures, -1 on device setup failure.

5.7.2.3 ncv7708_transfer()

Makes an SPI transaction for a NCV77X8 device.

Parameters

dev	NCV77X8 Device Handle
data	Pointer to store 16-bit data read over SPI
cmd	Pointer to 16-bit data sent over SPI

Returns

1 on success, -1 on failure

5.7.2.4 ncv7708_xfer()

Makes an SPI transaction using internal data.

Parameters

dev	NCV77X8 Device Handle

Returns

1 on success, -1 on failure

5.8 drivers/tca9458a.c File Reference

Function definitions for TCA9458A I2C driver.

```
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <linux/i2c-dev.h>
#include <errno.h>
#include <stdint.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include "tca9458a.h"
```

Include dependency graph for tca9458a.c:

Functions

• int tca9458a_init (tca9458a *dev, uint8_t addr)

Initialize a Mux device, returns 1 on success TODO: Implement a scan function at init where it checks all 3 CSS are present on 3 buses?

void tca9458a_destroy (tca9458a *dev)

Disable all outputs, close file descriptor for the I2C Bus.

5.8.1 Detailed Description

Function definitions for TCA9458A I2C driver.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.8.2 Function Documentation

5.8.2.1 tca9458a_destroy()

```
void tca9458a_destroy ( tca9458a * dev )
```

Disable all outputs, close file descriptor for the I2C Bus.

Parameters

dev

5.8.2.2 tca9458a_init()

```
int tca9458a_init ( tca9458a * dev, \\ uint8\_t ~ addr )
```

Initialize a Mux device, returns 1 on success TODO: Implement a scan function at init where it checks all 3 CSS are present on 3 buses?

Parameters

dev	
addr	TCA9458A device address (default: 0x70)

Returns

1 on success, -1 on error

5.9 drivers/tca9458a.h File Reference

Function prototypes and struct declarations for TCA9458A I2C driver.

#include <stdint.h>
Include dependency graph for tca9458a.h:

This graph shows which files directly or indirectly include this file:

Classes

• struct tca9458a

TCA9458A Device handle.

Macros

#define MUX_I2C_FIle "/dev/i2c-1"
 I2C Device for Mux.

Functions

int tca9458a_init (tca9458a *, uint8_t)

Initialize a Mux device, returns 1 on success TODO: Implement a scan function at init where it checks all 3 CSS are present on 3 buses?

• int tca9458a_set (tca9458a *dev, uint8_t channel_id)

Update active I2C channel (Inlined global symbol)

void tca9458a destroy (tca9458a *)

Disable all outputs, close file descriptor for the I2C Bus.

5.9.1 Detailed Description

Function prototypes and struct declarations for TCA9458A I2C driver.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.9.2 Function Documentation

5.9.2.1 tca9458a_destroy()

```
void tca9458a_destroy ( tca9458a * dev )
```

Disable all outputs, close file descriptor for the I2C Bus.

Parameters

5.9.2.2 tca9458a_init()

Initialize a Mux device, returns 1 on success TODO: Implement a scan function at init where it checks all 3 CSS are present on 3 buses?

Parameters

dev	
addr	TCA9458A device address (default: 0x70)

Returns

1 on success, -1 on error

5.9.2.3 tca9458a_set()

Update active I2C channel (Inlined global symbol)

Parameters

dev	
channel⊷	Channel to enable
_id	

Returns

Returns 1 on success, 0 or -1 on error (see write())

5.10 drivers/tsl2561.c File Reference

TSL2561 I2C driver function definitions.

```
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/i2c-dev.h>
#include "tsl2561.h"
#include <signal.h>
```

Include dependency graph for tsl2561.c:

Functions

static void write8 (int fd, uint8 t val)

write 8 bytes to the device represented by the file descriptor.

static void writecmd8 (int fd, uint8_t reg, uint8_t val)

Write a command to the register on the device represented by fd.

• static uint8_t read8 (int fd, uint8_t reg)

Read a byte from the specified register on the device represented by fd.

static void write16 (int fd, uint16_t val)

Write 16 bits to the device (very similar to writecmd8())

• static uint16_t read16 (int fd, uint8_t cmd)

Read 2 bytes in LE format from reg on the device represented by fd.

• int tsl2561_init (tsl2561 *dev, uint8_t s_address)

Init function for the TSL2561 device. Default: I2C_BUS TODO: Fix init + gain, figure out what goes wrong if ID register is read.

void tsl2561 measure (tsl2561 *dev, uint32 t *measure)

Read I2C data into the uint32_t measure var.\ Format: (MSB) broadband | ir (LSB)

uint32_t tsl2561_get_lux (uint32_t measure)

Calculate lux using value measured using tsl2561 measure()

void tsl2561_destroy (tsl2561 *dev)

Destroy function for the TSL2561 device. Closes the file descriptor and powers down the device.

5.10.1 Detailed Description

TSL2561 I2C driver function definitions.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.10.2 Function Documentation

5.10.2.1 read16()

Read 2 bytes in LE format from reg on the device represented by fd.

Parameters

fd	
cmd	

Returns

uint16_t

5.10.2.2 read8()

Read a byte from the specified register on the device represented by fd.

Parameters

fd	
reg	Register address

Returns

Byte read over serial

5.10.2.3 tsl2561_destroy()

```
void tsl2561_destroy ( tsl2561 * dev )
```

Destroy function for the TSL2561 device. Closes the file descriptor and powers down the device.

Parameters

dev

5.10.2.4 tsl2561_get_lux()

Calculate lux using value measured using tsl2561_measure()

Parameters

measure

Returns

Lux value

5.10.2.5 tsl2561_init()

```
int tsl2561_init ( tsl2561 * dev, \\ uint8\_t s\_address )
```

Init function for the TSL2561 device. Default: I2C_BUS TODO: Fix init + gain, figure out what goes wrong if ID register is read.

Parameters

dev	
s_address	Address for the device, values: 0x29, 0x39, 0x49

Returns

1 on success, -1 on failure

5.10.2.6 tsl2561_measure()

```
void tsl2561_measure ( tsl2561 * dev, \\ uint32\_t * measure )
```

Read I2C data into the uint32_t measure var.\ Format: (MSB) broadband | ir (LSB)

Parameters

dev	
measure	Pointer to unsigned 32 bit integer where measurement is stored

5.10.2.7 write16()

Write 16 bits to the device (very similar to writecmd8())

Parameters

fd	
val	

5.10.2.8 write8()

```
static void write8 (
          int fd,
          uint8_t val ) [inline], [static]
```

write 8 bytes to the device represented by the file descriptor.

Parameters

fd	
val	

5.10.2.9 writecmd8()

```
static void writecmd8 (
        int fd,
        uint8_t reg,
        uint8_t val ) [inline], [static]
```

Write a command to the register on the device represented by fd.

Parameters

fd	File descriptor
reg	Register address
val	Value to write at register address

5.11 drivers/tsl2561.h File Reference

TSL2561 I2C driver function and struct declarations.

#include <stdint.h>
Include dependency graph for tsl2561.h:

This graph shows which files directly or indirectly include this file:

Classes

• struct tsl2561

TSL2561 Device Handle.

Macros

• #define TSL2561_VISIBLE 2

channel 0 - channel 1

#define TSL2561_INFRARED 1

channel 1

#define TSL2561_FULLSPECTRUM 0
 channel 0

#define TSL2561_ADDR_LOW (0x29)

```
Default address (pin pulled low)

    #define TSL2561_ADDR_FLOAT (0x39)

      Default address (pin left floating)

    #define TSL2561 ADDR HIGH (0x49)

      Default address (pin pulled high)

    #define TSL2561_PACKAGE_T_FN_CL

      Dual Flat No-Lead package.

    #define TSL2561 COMMAND BIT (0x80)

     Must be 1.

    #define TSL2561_CLEAR_BIT (0x40)

      Clears any pending interrupt (write 1 to clear)

    #define TSL2561 WORD BIT (0x20)

      1 = read/write word (rather than byte)

    #define TSL2561_BLOCK_BIT (0x10)

      1 = using block read/write

    #define TSL2561_CONTROL_POWERON (0x03)

      Control register setting to turn on.

    #define TSL2561_CONTROL_POWEROFF (0x00)

      Control register setting to turn off.

    #define TSL2561_LUX_LUXSCALE (14)

      Scale by 2^{\wedge} 14.

    #define TSL2561_LUX_RATIOSCALE (9)

      Scale ratio by 2^{\wedge}9.

    #define TSL2561_LUX_CHSCALE (10)

      Scale channel values by 2^{\wedge} 10.

    #define TSL2561_LUX_CHSCALE_TINT0 (0x7517)

     322/11*2^{\land}TSL2561\_LUX\_CHSCALE

    #define TSL2561_LUX_CHSCALE_TINT1 (0x0FE7)

      322/81 * 2^{\land} TSL2561_LUX_CHSCALE

    #define TSL2561 LUX K1T (0x0040)

     0.125 * 2 RATIO_SCALE

    #define TSL2561_LUX_B1T (0x01f2)

      0.0304 * 2^{\land}LUX SCALE

    #define TSL2561 LUX M1T (0x01be)

      0.0272 * 2\(^\)LUX_SCALE

    #define TSL2561_LUX_K2T (0x0080)

     0.250 * 2 RATIO SCALE

    #define TSL2561_LUX_B2T (0x0214)

      0.0325 * 2\(^\)LUX_SCALE

    #define TSL2561_LUX_M2T (0x02d1)

      0.0440 * 2^ LUX SCALE

    #define TSL2561 LUX K3T (0x00c0)

      0.375 * 2 RATIO SCALE

    #define TSL2561_LUX_B3T (0x023f)

     0.0351 * 2^ LUX SCALE

    #define TSL2561_LUX_M3T (0x037b)

      0.0544 * 2<sup>\(\)</sup>LUX_SCALE
```

```
    #define TSL2561_LUX_K4T (0x0100)

     0.50 * 2 RATIO_SCALE

    #define TSL2561_LUX_B4T (0x0270)

     0.0381*2^{\land}LUX\_SCALE
• #define TSL2561_LUX_M4T (0x03fe)
     0.0624 * 2^ LUX SCALE

    #define TSL2561 LUX K5T (0x0138)

     0.61 * 2 RATIO_SCALE

    #define TSL2561_LUX_B5T (0x016f)

     0.0224 * 2\(^\)LUX_SCALE

    #define TSL2561_LUX_M5T (0x01fc)

     0.0310*2^{\land}LUX\_SCALE

    #define TSL2561 LUX K6T (0x019a)

     0.80 * 2 RATIO_SCALE

    #define TSL2561_LUX_B6T (0x00d2)

     0.0128 * 2\(^\)LUX SCALE

    #define TSL2561 LUX M6T (0x00fb)

     0.0153 * 2\(^\)LUX_SCALE

    #define TSL2561_LUX_K7T (0x029a)

     1.3 * 2 RATIO SCALE

    #define TSL2561_LUX_B7T (0x0018)

     0.00146 * 2\(^\text{LUX_SCALE}\)

    #define TSL2561_LUX_M7T (0x0012)

     0.00112 * 2^ LUX SCALE

    #define TSL2561_LUX_K8T (0x029a)

     1.3 * 2 RATIO SCALE

    #define TSL2561_LUX_B8T (0x0000)

     0.000*2^{\land}LUX SCALE

    #define TSL2561_LUX_M8T (0x0000)

     0.000 * 2^{\land} LUX\_SCALE

    #define TSL2561_LUX_K1C (0x0043)

     0.130 * 2 RATIO_SCALE

    #define TSL2561_LUX_B1C (0x0204)

     0.0315 * 2^{\land}LUX\_SCALE

    #define TSL2561 LUX M1C (0x01ad)

     0.0262*2^{\land}LUX\_SCALE

    #define TSL2561_LUX_K2C (0x0085)

     0.260 * 2 RATIO SCALE

    #define TSL2561_LUX_B2C (0x0228)

     0.0337 * 2\(^LUX_SCALE\)

    #define TSL2561_LUX_M2C (0x02c1)

     0.0430 * 2^ LUX SCALE

    #define TSL2561 LUX K3C (0x00c8)

     0.390 * 2 RATIO_SCALE

    #define TSL2561_LUX_B3C (0x0253)

     0.0363 * 2\(^\)LUX_SCALE

    #define TSL2561_LUX_M3C (0x0363)
```

```
0.0529 * 2\(^\)LUX_SCALE

    #define TSL2561_LUX_K4C (0x010a)

     0.520 * 2 RATIO SCALE

    #define TSL2561 LUX B4C (0x0282)

     0.0392 * 2 LUX SCALE

    #define TSL2561_LUX_M4C (0x03df)

     0.0605 * 2 LUX SCALE

    #define TSL2561_LUX_K5C (0x014d)

     0.65 * 2 RATIO SCALE

    #define TSL2561_LUX_B5C (0x0177)

     0.0229 * 2^ LUX SCALE

    #define TSL2561_LUX_M5C (0x01dd)

     0.0291 * 2^LUX_SCALE

    #define TSL2561_LUX_K6C (0x019a)

     0.80 * 2 RATIO SCALE

    #define TSL2561_LUX_B6C (0x0101)

     0.0157 * 2^ LUX SCALE

    #define TSL2561_LUX_M6C (0x0127)

     0.0180 * 2^LUX_SCALE

    #define TSL2561_LUX_K7C (0x029a)

     1.3 * 2 RATIO SCALE

    #define TSL2561_LUX_B7C (0x0037)

     0.00338 * 2^ LUX SCALE

    #define TSL2561_LUX_M7C (0x002b)

     0.00260 * 2^ LUX_SCALE

    #define TSL2561_LUX_K8C (0x029a)

     1.3 * 2 RATIO_SCALE

    #define TSL2561_LUX_B8C (0x0000)

     0.000 * 2^ LUX SCALE

    #define TSL2561_LUX_M8C (0x0000)

     0.000*2^{\land}LUX\_SCALE

    #define TSL2561_AGC_THI_13MS (4850)

     Max value at Ti 13ms = 5047.

    #define TSL2561 AGC TLO 13MS (100)

     Min value at Ti 13ms = 100.

    #define TSL2561 AGC THI 101MS (36000)

     Max value at Ti 101ms = 37177.

    #define TSL2561_AGC_TLO_101MS (200)

     Min value at Ti 101ms = 200.

    #define TSL2561_AGC_THI_402MS (63000)

     Max value at Ti 402ms = 65535.

    #define TSL2561 AGC TLO 402MS (500)

     Min value at Ti 402ms = 500.

    #define TSL2561_CLIPPING_13MS (4900)

     Counts that trigger a change in gain/integration.

    #define TSL2561 CLIPPING 101MS (37000)
```

Counts that trigger a change in gain/integration.

#define TSL2561_CLIPPING_402MS (65000)

Counts that trigger a change in gain/integration.

#define TSL2561_DELAY_INTTIME_13MS (15)

Wait 15ms for 13ms integration.

#define TSL2561_DELAY_INTTIME_101MS (120)

Wait 120ms for 101ms integration.

#define TSL2561 DELAY INTTIME 402MS (450)

Wait 450ms for 402ms integration.

• #define I2C BUS "/dev/i2c-1"

I2C bus name.

#define TSL2561 BLOCK READ 0x0B

Block read mask.

Enumerations

```
• enum TSL2561_REGISTER_SET {
    TSL2561_REGISTER_CONTROL = 0x00, TSL2561_REGISTER_TIMING = 0x01, TSL2561_REGISTER_TH
    RESHHOLDL_LOW = 0x02, TSL2561_REGISTER_THRESHHOLDL_HIGH = 0x03,
    TSL2561_REGISTER_THRESHHOLDH_LOW = 0x04, TSL2561_REGISTER_THRESHHOLDH_HIGH = 0x05,
    TSL2561_REGISTER_INTERRUPT = 0x06, TSL2561_REGISTER_CRC = 0x08,
    TSL2561_REGISTER_ID = 0x0A, TSL2561_REGISTER_CHAN0_LOW = 0x0C, TSL2561_REGISTER_CHA
    N0_HIGH = 0x0D, TSL2561_REGISTER_CHAN1_LOW = 0x0E,
    TSL2561_REGISTER_CHAN1_HIGH = 0x0F }
```

TSL2561 I2C Registers.

enum tsl2561IntegrationTime_t { TSL2561_INTEGRATIONTIME_13MS = 0x00, TSL2561_INTEGRATIONTIM
 E_101MS = 0x01, TSL2561_INTEGRATIONTIME_402MS = 0x02 }

Three options for how long to integrate readings for.

enum tsl2561Gain_t { TSL2561_GAIN_1X = 0x00, TSL2561_GAIN_16X = 0x10 }

TSL2561 offers 2 gain settings.

Functions

int tsl2561_init (tsl2561 *dev, uint8_t s_address)

Init function for the TSL2561 device. Default: I2C_BUS TODO: Fix init + gain, figure out what goes wrong if ID register is read.

void tsl2561_measure (tsl2561 *dev, uint32_t *measure)

Read I2C data into the uint32_t measure var.\ Format: (MSB) broadband | ir (LSB)

uint32_t tsl2561_get_lux (uint32_t measure)

Calculate lux using value measured using tsl2561_measure()

void tsl2561_destroy (tsl2561 *dev)

Destroy function for the TSL2561 device. Closes the file descriptor and powers down the device.

5.11.1 Detailed Description

TSL2561 I2C driver function and struct declarations.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.11.2 Enumeration Type Documentation

5.11.2.1 TSL2561_REGISTER_SET

enum TSL2561_REGISTER_SET

TSL2561 I2C Registers.

Enumerator

Control/power register.
Set integration time register.
Interrupt low threshold low-byte.
Interrupt low threshold high-byte.
Interrupt high threshold low-byte.
Interrupt high threshold high-byte.
Interrupt settings.
Factory use only.
TSL2561 identification setting.
Light data channel 0, low byte.
Light data channel 0, high byte.
Light data channel 1, low byte.
Light data channel 1, high byte.

5.11.2.2 tsl2561Gain_t

```
enum tsl2561Gain_t
```

TSL2561 offers 2 gain settings.

Enumerator

TSL2561_GAIN_1X	No gain.
TSL2561_GAIN_16X	16x gain

5.11.2.3 tsl2561IntegrationTime_t

```
enum tsl2561IntegrationTime_t
```

Three options for how long to integrate readings for.

Enumerator

TSL2561_INTEGRATIONTIME_13MS	13.7ms
TSL2561_INTEGRATIONTIME_101MS	101ms
TSL2561_INTEGRATIONTIME_402MS	402ms

5.11.3 Function Documentation

5.11.3.1 tsl2561_destroy()

```
void tsl2561_destroy ( tsl2561 * \textit{dev} )
```

Destroy function for the TSL2561 device. Closes the file descriptor and powers down the device.

Parameters

dev

5.11.3.2 tsl2561_get_lux()

Calculate lux using value measured using tsl2561_measure()

Parameters

```
measure
```

Returns

Lux value

5.11.3.3 tsl2561_init()

```
int tsl2561_init ( tsl2561 * dev, uint8\_t s\_address ) \\
```

Init function for the TSL2561 device. Default: I2C_BUS TODO: Fix init + gain, figure out what goes wrong if ID register is read.

Parameters

dev		
s_address	Address for the device, values: 0x29, 0x39, 0x49	

Returns

1 on success, -1 on failure

5.11.3.4 tsl2561_measure()

```
void tsl2561_measure ( tsl2561 \ * \ dev, uint32\_t \ * \ measure \ )
```

Read I2C data into the uint32_t measure var.\ Format: (MSB) broadband | ir (LSB)

Parameters

dev	
measure	Pointer to unsigned 32 bit integer where measurement is stored

5.12 include/acs.h File Reference

Header file including headers and function prototypes of the Attitude Control System.

#include <acs_extern.h>
Include dependency graph for acs.h:

This graph shows which files directly or indirectly include this file:

Macros

#define DIPOLE MOMENT 0.22

Dipole moment of the magnetorquer rods.

#define DETUMBLE TIME STEP 100000

ACS loop time period.

• #define MEASURE_TIME 20000

ACS readSensors() max execute time per cycle.

#define MAX DETUMBLE FIRING TIME (DETUMBLE TIME STEP - MEASURE TIME)

ACS max actuation time per cycle.

• #define MIN_DETUMBLE_FIRING_TIME 10000

Minimum magnetorquer firing time.

#define SUNPOINT_DUTY_CYCLE 20000

Sunpointing magnetorquer PWM duty cycle.

#define COARSE TIME STEP DETUMBLE TIME STEP

Course sun sensing mode loop time for ACS.

#define CSS_MIN_LUX_THRESHOLD 5000 * 0.5

Coarse sun sensor minimum lux threshold for valid measurement.

#define OMEGA TARGET LEEWAY z g W target * 0.1

Acceptable leeway of the angular speed target.

#define MIN SOL ANGLE 4

Sunpointing angle target (in degrees)

• #define MIN DETUMBLE ANGLE 4

Detumble angle target (in degrees)

• #define HBRIDGE ENABLE(name) hbridge enable(x ##name, y ##name, z ##name);

Fire magnetorquer in the direction dictated by the input vector.

• #define I2C_BUS "/dev/i2c-1"

I2C Bus device file used for ACS sensors.

#define SPIDEV_ACS "/dev/spidev0.0"

SPI device file for H-Bridge (ACS)

Functions

int acs_init (void)

Initializes the devices required to run the attitude control system.

void * acs_thread (void *id)

Attitude Control System Thread.

void acs_destroy (void)

Powers down ACS devices and closes relevant file descriptors.

void insertionSort (int a1[], int a2[])

Sorts the first array and reorders the second array according to the first array.

int hbridge enable (int x, int y, int z)

Fire magnetorquer in X, Y, and Z directions using the input integers.

• int HBRIDGE_DISABLE (int num)

Disables magnetorquer in the axis indicated by the input.

void getOmega (void)

Calculates ω using \vec{B} and stores in the circular buffer.

void getSVec (void)

Calculates sun vector using coarse sun sensor and fine sun sensor measurements. Favors the fine sun sensor measurements if exists. The value is inserted into a circular buffer.

• int readSensors (void)

Reads hardware sensors and puts the values in the global storage, upon which calls the getOmega() and getSVec() functions to calculate angular speed and sun vector.

void checkTransition (void)

This function checks if the ACS should transition from one state to the other at every iteration. The function executes only when the $\vec{\omega}$ and sun vector buffers are full.

5.12.1 Detailed Description

Header file including headers and function prototypes of the Attitude Control System.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.12.2 Macro Definition Documentation

5.12.2.1 HBRIDGE_ENABLE

Fire magnetorquer in the direction dictated by the input vector.

Parameters

name	Name of the input vector
------	--------------------------

5.12.3 Function Documentation

Initializes the devices required to run the attitude control system.

This function initializes the target angular momentum using MOI defined in shflight_globals.h and the target angular speed set in main.c. Then this function initializes all the relevant devices for ACS to function.

Returns

int 1 on success, error codes defined in SH_ERRORS on error.

5.12.3.2 acs_thread()

```
void* acs_thread (
     void * id )
```

Attitude Control System Thread.

This thread executes the ACS functions in a loop controlled by the variable done, which is controlled by the interrupt handler.

Parameters

id Thread ID passed as a pointer to an integer.

Returns

NULL

5.12.3.3 getOmega()

```
void getOmega (
     void )
```

Calculates ω using $\dot{\vec{B}}$ and stores in the circular buffer.

Calculates current angular speed. Requires current and previous measurements of \vec{B} . The calculated angular speed is put inside the global circular buffer. Sets W full to indicate the buffer becoming full the first time.

5.12.3.4 getSVec()

```
void getSVec (
     void )
```

Calculates sun vector using coarse sun sensor and fine sun sensor measurements. Favors the fine sun sensor measurements if exists. The value is inserted into a circular buffer.

Approximate definition of Pi in case M_PI is not included from math.h

5.12.3.5 HBRIDGE_DISABLE()

Disables magnetorquer in the axis indicated by the input.

Parameters

num

Integer, 0 indicates X axis, 1 indicates Y axis, 2 indicates Z axis. In hardware, a number > 2 causes all three torquers to shut down.

Returns

int Status of the operation, returns 1 on success.

5.12.3.6 hbridge_enable()

Fire magnetorquer in X, Y, and Z directions using the input integers.

Parameters

Х	Fires in the +X or -X direction depending on the input being +1 or -1, and does nothing if $x = 0$
У	Fires in the +Y or -Y direction depending on the input being +1 or -1, and does nothing if $y = 0$
Z	Fires in the $+Z$ or $-Z$ direction depending on the input being $+1$ or -1 , and does nothing if $z=0$

Returns

int Status of the operation, returns 1 on success.

5.12.3.7 insertionSort()

```
void insertionSort (
    int a1[],
    int a2[] )
```

Sorts the first array and reorders the second array according to the first array.

Parameters

a1	Pointer to integer array to sort.
a2	Pointer to integer array to reorder.

5.12.3.8 readSensors()

```
int readSensors (
    void )
```

Reads hardware sensors and puts the values in the global storage, upon which calls the getOmega() and getSVec() functions to calculate angular speed and sun vector.

Returns

int Returns 1 for success, and -1 for error.

5.13 include/acs_extern.h File Reference

Header file including constants, extern variables and function prototypes that are part of the Attitude Control System, used in other modules.

```
#include <pthread.h>
#include <macros.h>
```

Include dependency graph for acs_extern.h:

This graph shows which files directly or indirectly include this file:

Macros

#define SH_BUFFER_SIZE 64
 Circular buffer size for ACS sensor data.

Functions

• DECLARE_VECTOR2 (g_readB, extern unsigned short)

Variables

• pthread_cond_t data_available

Condition variable to synchronize ACS and Serial thread in SITL.

• unsigned short g_readFS [2]

Fine sun sensor angles read over serial.

• unsigned short g_readCS [9]

Coarse sun sensor lux values read over serial.

• unsigned char g_Fire

Magnetorquer command, format: 0b00ZZYYXX, 00 indicates not fired, 01 indicates fire in positive dir, 10 indicates fire in negative dir.

· volatile int first_run

This variable is unset by the ACS thread at first execution.

5.13.1 Detailed Description

Header file including constants, extern variables and function prototypes that are part of the Attitude Control System, used in other modules.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.14 include/acs_iface.h File Reference

Header file including constants, mutexes and function prototypes that initialize, destroy and execute the Attitude Control System module.

#include <pthread.h>
Include dependency graph for acs iface.h:

Functions

• int acs_init (void)

Initializes the devices required to run the attitude control system.

void acs_destroy (void)

Powers down ACS devices and closes relevant file descriptors.

void * acs_thread (void *)

Attitude Control System Thread.

Variables

• pthread_cond_t data_available

Condition variable to synchronize ACS and Serial thread in SITL.

5.14.1 Detailed Description

Header file including constants, mutexes and function prototypes that initialize, destroy and execute the Attitude Control System module.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.14.2 Function Documentation

Initializes the devices required to run the attitude control system.

This function initializes the target angular momentum using MOI defined in shflight_globals.h and the target angular speed set in main.c. Then this function initializes all the relevant devices for ACS to function.

Returns

int 1 on success, error codes defined in SH_ERRORS on error.

5.14.2.2 acs_thread()

Attitude Control System Thread.

This thread executes the ACS functions in a loop controlled by the variable done, which is controlled by the interrupt handler.

Parameters

id Thread ID passed as a pointer to an integer.

Returns

NULL

5.15 include/bessel.h File Reference

Bessel filter implementation for Attitude Control System.

#include <acs_extern.h>
Include dependency graph for bessel.h:

This graph shows which files directly or indirectly include this file:

Macros

- #define BESSEL_MIN_THRESHOLD 0.001
 - Bessel coefficient minimum value threshold for computation.
- #define BESSEL_FREQ_CUTOFF 5
 - Bessel filter cutoff frequency.
- #define APPLY_DBESSEL(name, index)

Applies double precision Bessel filter on a buffer declared using DECLARE_BUFFER(), and stores the filtered value at the current index.

• #define APPLY_FBESSEL(name, index)

Applies floating point Bessel filter on a buffer declared using DECLARE_BUFFER(), and stores the filtered value at the current index.

Functions

• void calculateBessel (float arr[], int size, int order, float freq_cutoff)

Calculates discrete Bessel filter coefficients for the given order and cutoff frequency.

double dfilterBessel (double arr[], int index)

Returns the filtered value at the current index using past values.

float ffilterBessel (float arr[], int index)

Returns the filtered value at the current index using past values.

Variables

float bessel_coeff [SH_BUFFER_SIZE]

Coefficients for the Bessel filter, calculated using calculateBessel().

5.15.1 Detailed Description

Bessel filter implementation for Attitude Control System.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.15.2 Macro Definition Documentation

5.15.2.1 APPLY_DBESSEL

Value:

```
x_##name[index] = dfilterBessel(x_##name, index); \
y_##name[index] = dfilterBessel(y_##name, index); \
z_##name[index] = dfilterBessel(z_##name, index)
```

Applies double precision Bessel filter on a buffer declared using DECLARE_BUFFER(), and stores the filtered value at the current index.

Parameters

name	Name of the buffer
index	Index of the current value in the buffer

5.15.2.2 APPLY_FBESSEL

Value:

```
x_##name[index] = ffilterBessel(x_##name, index); \
y_##name[index] = ffilterBessel(y_##name, index); \
z_##name[index] = ffilterBessel(z_##name, index)
```

Applies floating point Bessel filter on a buffer declared using DECLARE_BUFFER(), and stores the filtered value at the current index.

Parameters

name	Name of the buffer
index	Index of the current value in the buffer

5.15.3 Function Documentation

5.15.3.1 calculateBessel()

Calculates discrete Bessel filter coefficients for the given order and cutoff frequency.

Parameters

arr	Stores the filter coefficients
size	Size of the filter coefficients array
order	Order of the Bessel filter
freq_cutoff	Cut-off frequency of the Bessel filter

5.15.3.2 dfilterBessel()

Returns the filtered value at the current index using past values.

Parameters

arr	Input array
index	Index of current value in the array

Returns

double Filtered value

5.15.3.3 ffilterBessel()

```
float ffilterBessel (
          float arr[],
          int index )
```

Returns the filtered value at the current index using past values.

Parameters

arr	Input array
index	Index of current value in the array

Returns

double Filtered value

5.16 include/datavis.h File Reference

DataVis thread to visualize ACS data over TCP (uses client.py)

#include <stdint.h>
#include <macros.h>

Include dependency graph for datavis.h:

This graph shows which files directly or indirectly include this file:

Classes

struct datavis_p

Internal data structure of a DataVis packet.

• union data_packet

Union of the datavis_p structure and an array of bytes for transport over TCP using send().

Macros

• #define PORT 12376

TCP port on which DataVis transmission can be accessed.

#define PACK_SIZE sizeof(datavis_p)

Size of the datavis_p struct.

Functions

void * datavis_thread (void *t)

DataVis thread, sends data in g_datavis_st over TCP. This thread loops over done, and at each wakeup from the ACS thread sends the currently available data over TCP to the listening connection.

5.16.1 Detailed Description

DataVis thread to visualize ACS data over TCP (uses client.py)

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.16.2 Function Documentation

5.16.2.1 datavis_thread()

```
void* datavis_thread ( void * t )
```

DataVis thread, sends data in g_datavis_st over TCP. This thread loops over done, and at each wakeup from the ACS thread sends the currently available data over TCP to the listening connection.

Parameters

t Pointer to an integer containing the thread ID.

Returns

NULL.

5.17 include/datavis_extern.h File Reference

DataVis thread externs for other modules.

```
#include <datavis.h>
#include <pthread.h>
```

Include dependency graph for datavis_extern.h:

This graph shows which files directly or indirectly include this file:

Variables

data_packet g_datavis_st

DataVis data structure.

pthread_cond_t datavis_drdy

Condition variable used by ACS to signal to DataVis that data is ready.

5.17.1 Detailed Description

DataVis thread externs for other modules.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Date

2020-03-19

Copyright

Copyright (c) 2020

5.18 include/datavis_iface.h File Reference

DataVis thread externs for main.

#include <datavis_extern.h>
Include dependency graph for datavis_iface.h:

Functions

void * datavis_thread (void *)

DataVis thread, sends data in g_datavis_st over TCP. This thread loops over done, and at each wakeup from the ACS thread sends the currently available data over TCP to the listening connection.

5.18.1 Detailed Description

DataVis thread externs for main.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Date

2020-03-19

Copyright

Copyright (c) 2020

5.18.2 Function Documentation

5.18.2.1 datavis_thread()

DataVis thread, sends data in g_datavis_st over TCP. This thread loops over done, and at each wakeup from the ACS thread sends the currently available data over TCP to the listening connection.

Parameters

t Pointer to an integer containing the thread ID.

Returns

NULL.

5.19 include/eps_telem.h File Reference

GomSpace P31u I2C interface function prototypes and data structures.

```
#include <stdint.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <i2c/smbus.h>
#include <errno.h>
```

Include dependency graph for eps_telem.h:

This graph shows which files directly or indirectly include this file:

Classes

- struct hkparam t
- union channel_t
- struct p31u

Macros

- #define EPS I2C ADDR 0x7d
- #define EPS_I2C_BUS "/dev/i2c-0"

Enumerations

```
    enum eps_xfer_ret_t { EPS_I2C_READ_FAILED = -20, EPS_I2C_WRITE_FAILED, EPS_COMMAND_FAI
        LED, EPS_COMMAND_SUCCESS = 1 }
    enum eps_commands {
        PING = 1, REBOOT = 4, GET_HK = 8, SET_OUTPUT,
        SET_SINGLE_OUTPUT, SET_PV_VOLT, SET_PV_AUTO, SET_HEATER,
        RESET_COUNTERS = 15, RESET_WDT, CONFIG_CMD, CONFIG_GET,
        CONFIG_SET, HARD_RESET, CONFIG2_CMD, CONFIG2_GET,
        CONFIG2_SET, CONFIG3 = 25 }
    Functions
    void * eps_telem (void *id)
    struct __attribute__ ((packed))
    Beset or configure scale of Magnetometer
```

```
Reset or configure scale of Magnetometer.

    int p31u init (p31u *)

    void p31u_destroy (p31u *)

int p31u_xfer (p31u *, char *, ssize_t, char *, ssize_t)

    int eps_ping (p31u *)

int eps_reboot (p31u *)

    int eps_get_hk (p31u *, uint8_t)

    int eps_hk (p31u *)

int eps_set_output (p31u *, channel_t)
int eps_set_single (p31u *, uint8_t, uint8_t, int16_t)
int eps_set_pv_volt (p31u *, uint16_t, uint16_t, uint16_t)

    int eps_set_pv_mode (p31u *, uint8 t)

• int eps set heater (p31u *, uint8 t cmd, uint8 t heater, uint8 t mode, uint16 t *output)

    int eps_reset_counters (p31u *)

    int eps_reset_wdt (p31u *)

    int eps_config_cmd (p31u *, uint8_t)

    int eps config get (p31u *)

    int eps_config_set (p31u *, eps_config_t)
```

Variables

```
eps_hk_t
eps_hk_vi_t
eps_hk_out_t
eps_hk_wdt_t
eps_hk_basic_t
eps_config_t
eps_config2_t
eps_config3_t
```

p31u * g eps

int eps_hard_reset (p31u *)

int eps_config2_get (p31u *)

• int eps_config2_cmd (p31u *, uint8_t)

int eps_config2_set (p31u *, eps_config2_t)
 int eps_config3 (p31u *, eps_config3_t)

5.19.1 Detailed Description

GomSpace P31u I2C interface function prototypes and data structures.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.19.2 Function Documentation

Reset or configure scale of Magnetometer.

Configures data updating method of the magnetometer. Voltage of boost converters [mV] [PV1, PV2, PV3]

Voltage of battery [mV]

Current in [mA]

Current from boost converters [mA]

Current out of battery [mA]

Reserved for future use

Current out (switchable outputs) [mA]

Status of outputs**

Time till power on** [s]

Time till power off** [s] Number of latch-ups Time left on I2C wdt [s] Time left on I2C wdt [s] Pings left on CSP wdt Number of WDT I2C reboots Number of WDT GND reboots Number of WDT CSP reboots Number of EPS reboots Temperatures [degC] [0 = TEMP1, TEMP2, TEMP3, TEMP4, BP4a, BP4b] Cause of last EPS reset Mode for battery [0 = initial, 1 = undervoltage, 2 = safemode, 3 = nominal, 4=full] Mode of PPT tracker [1=MPPT, 2=FIXED] Voltage of boost converters [mV] [PV1, PV2, PV3] Voltage of battery [mV] Current in [mA] Current from boost converters [mA] Current out of battery [mA] Reserved for future use Current out (switchable outputs) [mA] Status of outputs** Time till power on** [s] Time till power off** [s] Number of latch-ups Time left on I2C wdt [s] Time left on I2C wdt [s] Pings left on CSP wdt Number of WDT I2C reboots

Number of WDT GND reboots

Number of WDT CSP reboots

Number of EPS reboots

Temperatures [degC] [0 = TEMP1, TEMP2, TEMP3, TEMP4, BATT0, BATT1]

Cause of last EPS reset

Mode for battery [0 = initial, 1 = undervoltage, 2 = safemode, 3 = nominal, 4=full]

Mode of PPT tracker [1=MPPT, 2=FIXED]

Mode for PPT [1 = AUTO, 2 = FIXED]

Mode for battheater [0 = MANUAL, 1 = AUTO]

Turn heater on at [degC]

Turn off heater at [degC]

Nominal mode output value

Safe mode output value

Output switches: init with these on delays [s]

Output switches: init with these off delays [s]

Fixed PPT point for boost converters [mV]

5.20 include/macros.h File Reference

Defines vector macros and other helper functions for the flight software.

```
#include <stdio.h>
#include <stdint.h>
#include <time.h>
#include <unistd.h>
```

Include dependency graph for macros.h:

This graph shows which files directly or indirectly include this file:

Macros

#define DECLARE_BUFFER(name, type) type x_##name[SH_BUFFER_SIZE], y_##name[SH_BUFFER_SIZE],
 z ##name[SH_BUFFER_SIZE]

Declares a buffer with name and type. Prepends x_{-} , y_{-} , z_{-} to the names (vector buffer!) This macro allocates three arrays x_{-} name, y_{-} name and z_{-} name of type and size SH_BUFFER_SIZE.

#define VECTOR CLEAR(name)

Clears a vector.

#define DECLARE_VECTOR(name, type) type x_##name = 0, y_##name = 0, z_##name = 0

Declares a vector with the name and type. A vector is a three-variable entity with $x_{,y_{,z_{,p}}$ prepended to the names. This function initializes the variables to 0, which makes it not ideal for use in extern definitions.

• #define DECLARE_VECTOR2(name, type) type x_##name, y_##name, z_##name

Declares a vector with the name and type. A vector is a three-variable entity with x_, y_, z_ prepended to the names. This function does not initialize the variables to 0, which makes it ideal for use in extern definitions.

#define FLUSH BUFFER(name)

Flushes a buffer declared using DECLARE_BUFFER(). Does not reset index counters or buffer full indicators, which needs to be done by hand on a case by case basis.

• #define FLUSH BUFFER ALL

Resets all buffers and resets indices, while not clearing buffer full indicators.

#define CROSS_PRODUCT(dest, s1, s2)

Calculates cross product of two vectors created using DECLARE_VECTOR(). The destination vector must be a different vector from any of the inputs.

#define DOT PRODUCT(s1, s2) (float)(x ##s1 * x ##s2 + y ##s1 * y ##s2 + z ##s1 * z ##s2)

Calculates the floating point (32-bit) dot product of two vectors.

• #define VECTOR OP(dest, s1, s2, op)

Performs a vector operation on the source vectors and stores in destination vector. Since the operations are performed element-by-element, the destination vector can be the same as any of the source vectors.

#define VECTOR MIXED(dest, s1, s2, op)

Performs element-by-element operation on a vector with a scalar and stores in the destination vector. Since the operations are performed element-by-element, the scalar can not depend on the source vector.

• #define NORMALIZE(dest, s1)

Normalizes the input vector and stores it in the output vector. Works for null vectors as well.

#define NORM(s) sqrt(NORM2(s))

Calculates the norm of the input vector in 32-bit floating point.

#define NORM2(s) x ##s *x ##s + y ##s *y ##s + z ##s *z ##s

Calculates the square of the norm of the input vector in 32-bit floating point.

#define INVNORM(s) q2isqrt(NORM2(s))

Calculates the inverse norm of the input vector in 32-bit floating point. Does not check for null vectors.

#define MATVECMUL(dest, s1, s2)

Muliplies the input vector by the input matrix (3x3) (left to right).

• #define FAVERAGE_BUFFER(dest, src, size)

Calculates 32-bit float average of an input buffer.

#define DAVERAGE_BUFFER(dest, src, size)

Calculates double precision average of an input buffer.

#define ACS DATALOG

Passing this option in CFLAGS enables data logging feature of ACS into a file.

• #define ACS PRINT

Passing this option in CFLAGS enables printing of ACS data to stdout.

#define SITL

Passing this option in CFLAGS compiles the program for software-in-the-loop (SITL) test.

#define DATAVIS

Passing this option in CFLAGS enables the DataVis subsystem that sets up a server at port PORT for data visualization.

Functions

float q2isqrt (float x)

float q2isqrt(float): Returns the inverse square root of a floating point number. Depending on whether MATH_SQRT is declared, it will use sqrt() function from gcc-math or bit-level hack and 3 rounds of Newton-Raphson to directly calculate inverse square root. The bit-level routine yields consistently better performance and 0.00001% maximum error. Set MATH_SQRT at compile time to use the sqrt() function.

uint64 t get usec (void)

Returns time elapsed from 1970-1-1, 00:00:00 UTC to now (UTC) in microseconds. Execution time \sim 18 us on RPi.

float faverage (float arr[], int size)

Calculates floating point average of a float array.

double daverage (double arr[], int size)

Calculates double precision point average of a float array.

5.20.1 Detailed Description

Defines vector macros and other helper functions for the flight software.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.20.2 Macro Definition Documentation

5.20.2.1 CROSS_PRODUCT

Value:

Calculates cross product of two vectors created using DECLARE_VECTOR(). The destination vector must be a different vector from any of the inputs.

Parameters

dest	Destination vector name, declared using DECLARE_VECTOR()	
s1	First source vector name, declared using DECLARE_VECTOR()	
s2	Second source vector name, declared using DECLARE_VECTOR()	

5.20.2.2 DAVERAGE_BUFFER

Value:

```
x_##dest = daverage(x_##src, size); \
    y_##dest = daverage(y_##src, size); \
    z_##dest = daverage(z_##src, size)
```

Calculates double precision average of an input buffer.

Parameters

dest	Output vector, declared using DECLARE_VECTOR()	
src	Input buffer, declared using DECLARE_BUFFER()	
size	Size of the input buffer (equals to SH_BUFFER_SIZE for a buffer declared using DECLARE_BUFFER())	

5.20.2.3 DECLARE_BUFFER

Declares a buffer with name and type. Prepends $x_{,}$ $y_{,}$ $z_{,}$ to the names (vector buffer!) This macro allocates three arrays $x_{,}$ name, $y_{,}$ name and $z_{,}$ name of type and size SH_BUFFER_SIZE.

Parameters

name	Name of the buffer (prepends x_, y_, z_ for vector)
type	Data type of the buffer

5.20.2.4 DECLARE_VECTOR

Declares a vector with the name and type. A vector is a three-variable entity with x_, y_, z_ prepended to the names. This function initializes the variables to 0, which makes it not ideal for use in extern definitions.

Parameters

name	Name of the vector
type	Data type of the vector

5.20.2.5 DECLARE_VECTOR2

Declares a vector with the name and type. A vector is a three-variable entity with x_, y_, z_ prepended to the names. This function does not initialize the variables to 0, which makes it ideal for use in extern definitions.

Parameters

name	Name of the vector
type	Data type of the vector

5.20.2.6 DOT_PRODUCT

```
#define DOT_PRODUCT( s1, \\ s2 \text{ ) (float)(x_##s1 * x_##s2 + y_##s1 * y_##s2 + z_##s1 * z_##s2)}
```

Calculates the floating point (32-bit) dot product of two vectors.

Parameters

s1	Name of the first vector, declared using DECLARE_VECTOR()
s2	Name of the second vector, declared using DECLARE_VECTOR()

5.20.2.7 FAVERAGE_BUFFER

Value:

```
x_##dest = faverage(x_##src, size); \
y_##dest = faverage(y_##src, size); \
z_##dest = faverage(z_##src, size)
```

Calculates 32-bit float average of an input buffer.

Parameters

	dest	Output vector, declared using DECLARE_VECTOR()
	src	Input buffer, declared using DECLARE_BUFFER()
Ī	size	Size of the input buffer (equals to SH_BUFFER_SIZE for a buffer declared using DECLARE_BUFFER())

5.20.2.8 FLUSH_BUFFER

Value:

Flushes a buffer declared using DECLARE_BUFFER(). Does not reset index counters or buffer full indicators, which needs to be done by hand on a case by case basis.

5.20.2.9 FLUSH_BUFFER_ALL

```
#define FLUSH_BUFFER_ALL
```

Value:

```
FLUSH_BUFFER(g_B);

FLUSH_BUFFER(g_Bt);

FLUSH_BUFFER(g_W);

FLUSH_BUFFER(g_S);

mag_index = -1;

sol_index = -1;

dot_index = -1;

omega_index = -1;

g_nightmode = 0;

omega_ready = -1;
```

Resets all buffers and resets indices, while not clearing buffer full indicators.

5.20.2.10 INVNORM

Calculates the inverse norm of the input vector in 32-bit floating point. Does not check for null vectors.

Parameters

```
s Input vector, declared using DECLARE_VECTOR()
```

Returns

float Inverse norm of the input vector

5.20.2.11 MATVECMUL

Value:

Muliplies the input vector by the input matrix (3x3) (left to right).

Parameters

dest	Output vector, declared using DECLARE_VECTOR()
s1	3 x 3 input matrix
s2	Input vector, declared using DECLARE_VECTOR(). Has to be different from the destination.

5.20.2.12 NORM

```
#define NORM( s \ ) \ \mathrm{sqrt} \left( \mathrm{NORM2} \left( \mathrm{s} \right) \right)
```

Calculates the norm of the input vector in 32-bit floating point.

Parameters

s Input vector, declared using DECLARE_VECTOR()

Returns

float Norm of the input vector

5.20.2.13 NORM2

Calculates the square of the norm of the input vector in 32-bit floating point.

Parameters

s Input vector, declared using DECLARE_VECTOR()

Returns

float Square of the norm of the input vector

5.20.2.14 NORMALIZE

Value:

Normalizes the input vector and stores it in the output vector. Works for null vectors as well.

Parameters

dest	Destination vector, declared using DECLARE_VECTOR()
s1	Source vector, declared using DECLARE_VECTOR()

5.20.2.15 VECTOR_CLEAR

```
\#define VECTOR_CLEAR( name )
```

Value:

```
x_##name = 0;
   y_##name = 0;
   z_##name = 0
```

Clears a vector.

Parameters

name	Name of the vector
------	--------------------

5.20.2.16 VECTOR_MIXED

Value:

```
x_##dest = x_##s1 op s2;
    y_##dest = y_##s1 op s2;
    z_##dest = z_##s1 op s2
```

Performs element-by-element operation on a vector with a scalar and stores in the destination vector. Since the operations are performed element-by-element, the scalar can not depend on the source vector.

Parameters

	dest	Destination vector, declared using DECLARE_VECTOR()
	s1	Input vector, declared using DECLARE_VECTOR()
s2 Input scalar		Input scalar
Ī	ор	Operation to perform on an element-by-element basis, e.g. +, -, *, /. Note: For division there is no check for division by zero.

5.20.2.17 VECTOR_OP

```
#define VECTOR_OP(
    dest,
    s1,
    s2,
    op)
```

Value:

Performs a vector operation on the source vectors and stores in destination vector. Since the operations are performed element-by-element, the destination vector can be the same as any of the source vectors.

Parameters

dest	Destination vector, declared using DECLARE_VECTOR()
s1	First vector, declared using DECLARE_VECTOR()
s2	Second vector, declared using DECLARE_VECTOR()
ор	Operation to perform on an element-by-element basis, e.g. +, -, *, /. Note: For division there is no check for division by zero.

5.20.3 Function Documentation

5.20.3.1 daverage()

Calculates double precision point average of a float array.

Parameters

arr	Pointer to array whose average is calculated
size	Length of the input array

Returns

double Average of the input array

5.20.3.2 faverage()

```
float faverage (
          float arr[],
          int size ) [inline]
```

Calculates floating point average of a float array.

Parameters

arr	Pointer to array whose average is calculated
size	Length of the input array

Returns

float Average of the input array

5.20.3.3 get_usec()

Returns time elapsed from 1970-1-1, 00:00:00 UTC to now (UTC) in microseconds. Execution time \sim 18 us on RPi.

Returns

uint64 t Number of microseconds elapsed from epoch.

5.20.3.4 q2isqrt()

```
float q2isqrt ( float x ) [inline]
```

float q2isqrt(float): Returns the inverse square root of a floating point number. Depending on whether MATH_SQRT is declared, it will use sqrt() function from gcc-math or bit-level hack and 3 rounds of Newton-Raphson to directly calculate inverse square root. The bit-level routine yields consistently better performance and 0.00001% maximum error. Set MATH_SQRT at compile time to use the sqrt() function.

Parameters

x | Floating point number (32-bit) whose inverse square root is calculated

Returns

float Inverse square root of the input

5.21 include/main.h File Reference

Includes all headers necessary for the core flight software, including ACS, and defines ACS states (which are flight software states), error codes, and relevant error functions.

#include <signal.h>
Include dependency graph for main.h:

This graph shows which files directly or indirectly include this file:

Enumerations

enum SH_ACS_MODES {
 STATE_ACS_DETUMBLE, STATE_ACS_SUNPOINT, STATE_ACS_NIGHT, STATE_ACS_READY,
 STATE_XBAND_READY }

Describes ACS (system) states.

```
    enum SH_ERRORS {
    ERROR_MALLOC = -1, ERROR_HBRIDGE_INIT = -2, ERROR_MUX_INIT = -3, ERROR_CSS_INIT = -4, ERROR_MAG_INIT = -5, ERROR_FSS_INIT = -6, ERROR_FSS_CONFIG = -7 }
```

Describes possible system errors.

Functions

• void sherror (const char *)

Prints errors specific to shflight in a fashion similar to perror.

Variables

• __thread int sys_status

Thread-local system status variable (similar to errno).

volatile sig_atomic_t done

Control variable for thread loops.

int sys_boot_count

System variable containing the current boot count of the system. This variable is provided to all modules by main.

5.21.1 Detailed Description

Includes all headers necessary for the core flight software, including ACS, and defines ACS states (which are flight software states), error codes, and relevant error functions.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.21.2 Function Documentation

Prints errors specific to shflight in a fashion similar to perror.

Parameters

ſ	msq	Input message to print along with error description
---	-----	---

5.22 include/modules.h File Reference

Includes all headers necessary to interface modules with the main program ACS states (which are flight software states), error codes, and relevant error functions.

This graph shows which files directly or indirectly include this file:

5.22.1 Detailed Description

Includes all headers necessary to interface modules with the main program ACS states (which are flight software states), error codes, and relevant error functions.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.23 include/sitl_comm.h File Reference

Software-In-The-Loop (SITL) serial communication headers and function prototypes.

This graph shows which files directly or indirectly include this file:

Macros

#define SITL_COMM_IFACE "/dev/ttyS0"
 File descriptor for SITL comm device.

Functions

- int set_interface_attribs (int fd, int speed, int parity)
 - Set speed and parity attributes for the serial device.
- void set_blocking (int fd, int should_block)
 - Set the serial device as blocking or non-blocking.
- int setup_serial (void)

Set the up serial device Opens the serial device /dev/ttyS0 (for RPi only)

void * sitl_comm (void *id)

Serial communication thread.

5.23.1 Detailed Description

Software-In-The-Loop (SITL) serial communication headers and function prototypes.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.23.2 Function Documentation

5.23.2.1 set_blocking()

Set the serial device as blocking or non-blocking.

Parameters

fd	Serial device file descriptor
should_block	0 for non-blocking, 1 for blocking mode operation

5.23.2.2 set_interface_attribs()

```
int set_interface_attribs (
    int fd,
    int speed,
    int parity )
```

Set speed and parity attributes for the serial device.

Parameters

fd	Serial device file descriptor
speed	Baud rate, is a constant of the form B#### defined in termios.h
parity	Odd or even parity for the serial device (1, 0)

Returns

0 on success, -1 on error

5.23.2.3 setup_serial()

Set the up serial device Opens the serial device /dev/ttyS0 (for RPi only)

Returns

file descriptor to the serial device

5.23.2.4 sitl_comm()

Serial communication thread.

Communicates with the environment simulator over serial port. The serial communication happens at 230400 bps, and this thread is intended to loop at 200 Hz. The thread reads the packet over serial (packet format: $[0xa0 \times 10]$ [uint8 x 28] $[0xb0 \times 2]$). The thread synchronizes to the 0xa0 in the beginning and checks for the 0xb0 at the end at each iteration. The data is read into global variables, and the magnetorquer command is read out. All read-writes are atomic.

Parameters

id Pointer to an int that specifies thread ID

Returns

NULL

5.24 include/sitl_comm_extern.h File Reference

Software-In-The-Loop (SITL) serial communication headers and function prototypes.

#include <pthread.h>
Include dependency graph for sitl_comm_extern.h:

This graph shows which files directly or indirectly include this file:

Variables

- pthread_mutex_t serial_read
 Mutex to ensure atomicity of serial data read into the system.
- pthread_mutex_t serial_write

Mutex to ensure atomicity of magnetorquer output for serial communication.

unsigned long long t_comm

SITL communication time.

• unsigned long long comm_time

5.24.1 Detailed Description

Software-In-The-Loop (SITL) serial communication headers and function prototypes.

```
Author
```

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.25 include/sitl_comm_iface.h File Reference

Software-In-The-Loop (SITL) serial communication headers and function prototypes.

Functions

```
    void * sitl_comm (void *)
    Serial communication thread.
```

5.25.1 Detailed Description

Software-In-The-Loop (SITL) serial communication headers and function prototypes.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.25.2 Function Documentation

Serial communication thread.

Communicates with the environment simulator over serial port. The serial communication happens at 230400 bps, and this thread is intended to loop at 200 Hz. The thread reads the packet over serial (packet format: $[0xa0 \times 10]$ [uint8 x 28] $[0xb0 \times 2]$). The thread synchronizes to the 0xa0 in the beginning and checks for the 0xb0 at the end at each iteration. The data is read into global variables, and the magnetorquer command is read out. All read-writes are atomic.

Parameters

id Pointer to an int that specifies thread ID

Returns

NULL

5.26 include/uhf.h File Reference

EnduroSat UHF Transceiver Interface Code function prototypes (Needs to be written)

Functions

```
    void * uhf (void *id)
    UHF main thread.
```

5.26.1 Detailed Description

EnduroSat UHF Transceiver Interface Code function prototypes (Needs to be written)

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

```
Version
```

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.26.2 Function Documentation

```
5.26.2.1 uhf()
void* uhf (
void * id )
```

UHF main thread.

Parameters

id Pointer to integer containing thread ID.

Returns

NULL

5.27 include/xband.h File Reference

SPACE-HAUC X-Band Transceiver function prototypes (Needs to be written)

Functions

void * xband (void *id)

X-band thread.

5.28 src/acs.c File Reference

5.27.1 Detailed Description

SPACE-HAUC X-Band Transceiver function prototypes (Needs to be written)

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.27.2 Function Documentation

```
5.27.2.1 xband()
```

```
void* xband (
     void * id )
```

X-band thread.

Parameters

id Pointer to integer containing thread ID

Returns

NULL

5.28 src/acs.c File Reference

Attitude Control System related functions.

```
#include <macros.h>
#include <acs.h>
#include <main.h>
#include <bessel.h>
#include <sitl_comm_extern.h>
#include <datavis_extern.h>
#include <ads1115.h>
#include <lasm9dsl.h>
#include <ncv7708.h>
#include <tca9458a.h>
#include <math.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
Include dependency graph for acs.c:
```

acs.h bessel.h main.h datavis_extem.h linux/sp/lspidev.h linux/sp/lspi

Macros

• #define RST "\x1B[0m"

This is color indicator for printf statements in ACS, for use in debug only.".

#define BLK "\x1B[30m"

black

• #define RED "\x1B[31m"

red

#define GRN "\x1B[32m"

green

#define YLW "\x1B[33m"

yellow

#define BLU "\x1B[34m"

blue

#define MGT "\x1B[35m"

magenta

• #define CYN "\x1B[36m"

cyan

#define LGY "\x1B[37m"

light gray

#define DGY "\x1B[90m"

dark gray

#define LRD "\x1B[91m"

5.28 src/acs.c File Reference 133

light red

#define LGR "\x1B[92m"

light green

#define LYW "\x1B[93m"

light yellow

#define LBU "\x1B[94m"

light blue

#define LMT "\x1B[95m"

light magenta

#define LCY "\x1B[96m"

light cyan

#define WHT "\x1B[97m"

white

#define M_PI 3.1415

Functions

DECLARE_VECTOR (g_readB, unsigned short)

Declares vector to store magnetic field reading from serial.

DECLARE_BUFFER (g_W, float)

Creates buffer for $\vec{\omega}$.

• DECLARE_BUFFER (g_B, double)

Creates buffer for \vec{B} .

DECLARE_BUFFER (g_Bt, double)

Creates buffer for \dot{B} .

DECLARE_VECTOR (g_L_target, float)

Creates vector for target angular momentum.

DECLARE_VECTOR (g_W_target, float)

Creates vector for target angular speed.

• DECLARE_BUFFER (g_S, float)

Creates buffer for sun vector.

• static void detumbleAction ()

This function executes the detumble algorithm.

static void sunpointAction ()

This function executes the sunpointing algorithm.

int hbridge_enable (int x, int y, int z)

Fire magnetorquer in X, Y, and Z directions using the input integers.

int HBRIDGE DISABLE (int num)

Disables magnetorquer in the axis indicated by the input.

void getOmega (void)

Calculates ω using \vec{B} and stores in the circular buffer.

void getSVec (void)

Calculates sun vector using coarse sun sensor and fine sun sensor measurements. Favors the fine sun sensor measurements if exists. The value is inserted into a circular buffer.

· int readSensors (void)

Reads hardware sensors and puts the values in the global storage, upon which calls the getOmega() and getSVec() functions to calculate angular speed and sun vector.

void checkTransition (void)

This function checks if the ACS should transition from one state to the other at every iteration. The function executes only when the $\vec{\omega}$ and sun vector buffers are full.

void * acs thread (void *id)

Attitude Control System Thread.

void insertionSort (int a1[], int a2[])

Sorts the first array and reorders the second array according to the first array.

int acs_init (void)

Initializes the devices required to run the attitude control system.

void acs_destroy (void)

Powers down ACS devices and closes relevant file descriptors.

Variables

· pthread cond t data available

Condition variable to synchronize ACS and Serial thread in SITL.

pthread_mutex_t data_check

Mutex for locking on data_available.

• volatile int first run = 1

This variable is unset by the ACS thread at first execution.

unsigned short g_readFS [2]

Fine sun sensor angles read over serial.

• unsigned short g_readCS [9]

Coarse sun sensor lux values read over serial.

unsigned char g Fire

Magnetorquer command, format: 0b00ZZYYXX, 00 indicates not fired, 01 indicates fire in positive dir, 10 indicates fire in negative dir.

Ism9ds1 * mag

Magnetometer device struct.

ncv7708 * hbridge

H-Bridge device struct.

tca9458a * mux

I2C Mux device struct.

tsl2561 ** css

Array of coarse sun sensor device struct.

ads1115 * adc

I2C ADC struct for fine sun sensor.

float g_CSS [9]

Storage for current coarse sun sensor lux measurements.

float g_FSS [2]

Storage for current fine sun sensor angle measurements.

• int mag index = -1

Current index of the \vec{B} circular buffer.

• int omega_index = -1

Current index of the $\vec{\omega}$ circular buffer.

5.28 src/acs.c File Reference • int bdot_index = -1 Current index of the \vec{B} circular buffer. • int sol index = -1 Current index of the sun vector circular buffer. int B full = 0 Indicates if the \vec{B} circular buffer is full. • int Bdot full = 0 Indicates if the \dot{B} circular buffer is full. • int **W_full** = 0 Indicates if the $\vec{\omega}$ circular buffer is full. • int S full = 0 • uint8_t g_night = 0 uint8_t g_acs_mode = 0 uint8_t g_first_detumble = 1 • unsigned long long acs_ct = 0 • float MOI [3][3] Moment of inertia of the satellite (SI). • float IMOI [3][3]

Indicates if the sun vector circular buffer is full.

This variable is set by checkTransition() if the satellite does not detect the sun.

This variable contains the current state of the flight system.

This variable is unset when the system is detumbled for the first time after a power cycle.

Counts the number of cycles on the ACS thread.

Inverse of the moment of inertia of the satellite (SI).

unsigned long long g_t_acs

Current timestamp after readSensors() in ACS thread, used to keep track of time taken by ACS loop.

5.28.1 **Detailed Description**

Attitude Control System related functions.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.2

Date

2020-07-01

Copyright

Copyright (c) 2020

5.28.2 Macro Definition Documentation

5.28.2.1 RST

```
#define RST "\x1B[0m"
```

This is color indicator for printf statements in ACS, for use in debug only.".

reset to default

5.28.3 Function Documentation

5.28.3.1 acs_init()

```
int acs_init (
     void )
```

Initializes the devices required to run the attitude control system.

This function initializes the target angular momentum using MOI defined in shflight_globals.h and the target angular speed set in main.c. Then this function initializes all the relevant devices for ACS to function.

Returns

int 1 on success, error codes defined in SH_ERRORS on error.

5.28.3.2 acs_thread()

```
void* acs_thread (
     void * id )
```

Attitude Control System Thread.

This thread executes the ACS functions in a loop controlled by the variable done, which is controlled by the interrupt handler.

Parameters

id Thread ID passed as a pointer to an integer.

5.28 src/acs.c File Reference 137

Returns

NULL

5.28.3.3 detumbleAction()

This function executes the detumble algorithm.

The detumble algorithm calculates the direction and time for which the magnetorquers fire. The direction is determined by first calculating the vector $\hat{B} \times L_0 - L$, which is a unit vector, and then checking which of the components have a magnitude greater than 0.01. A component with magnitude greater than 0.01 indicates that torquer can be fired, in the direction indicated by the sign of the component. Further, the torque that is generated by the firing decision is estimated for the current value of the magnetic field by calculating $\vec{\tau} = \vec{\mu} \times \vec{B}$, where \vec{mu} is calculated by multiplying the firing direction vector with the dipole moment of the magnetorquers (0.21 A ·m 2). Then for each direction, the firing time is estimated by $t_i = \frac{\Delta L_i}{\tau_i}$. The torquer in any direction is fired only if the firing time is greater than 5 ms, and any torquer is fired for at most the allowed firing time. At the end of the action, all torquers are turned off for the next magnetic field measurement.

5.28.3.4 getOmega()

```
void getOmega (
     void )
```

Calculates ω using \vec{B} and stores in the circular buffer.

Calculates current angular speed. Requires current and previous measurements of \vec{B} . The calculated angular speed is put inside the global circular buffer. Sets W full to indicate the buffer becoming full the first time.

5.28.3.5 getSVec()

Calculates sun vector using coarse sun sensor and fine sun sensor measurements. Favors the fine sun sensor measurements if exists. The value is inserted into a circular buffer.

Approximate definition of Pi in case M PI is not included from math.h

5.28.3.6 HBRIDGE_DISABLE()

Disables magnetorquer in the axis indicated by the input.

Parameters

num

Integer, 0 indicates X axis, 1 indicates Y axis, 2 indicates Z axis. In hardware, a number > 2 causes all three torquers to shut down.

Returns

int Status of the operation, returns 1 on success.

5.28.3.7 hbridge_enable()

Fire magnetorquer in X, Y, and Z directions using the input integers.

Parameters

Х	Fires in the +X or -X direction depending on the input being +1 or -1, and does nothing if $x = 0$
У	Fires in the +Y or -Y direction depending on the input being +1 or -1, and does nothing if $y = 0$
Z	Fires in the +Z or -Z direction depending on the input being +1 or -1, and does nothing if $z = 0$

Returns

int Status of the operation, returns 1 on success.

5.28.3.8 insertionSort()

```
void insertionSort (
    int a1[],
    int a2[] )
```

Sorts the first array and reorders the second array according to the first array.

Parameters

a1	Pointer to integer array to sort.
a2	Pointer to integer array to reorder.

5.28.3.9 readSensors()

```
int readSensors (
     void )
```

Reads hardware sensors and puts the values in the global storage, upon which calls the getOmega() and getSVec() functions to calculate angular speed and sun vector.

Returns

int Returns 1 for success, and -1 for error.

5.28.3.10 sunpointAction()

This function executes the sunpointing algorithm.

The sunpointing algoritm calculates the duty cycle of the Z-magnetorquer firing. The duty cycle is determined by calculating the vector $(\hat{S}(\hat{S}\cdot\hat{B}))\times((\hat{L}(\hat{L}\cdot\hat{B})))$. The Z component of this vector upon normalization specifies the duty cycle. However, due to lowering of efficiency as the spacecraft aligns with the sun, the gain is increased.

5.28.4 Variable Documentation

5.28.4.1 IMOI

```
float IMOI[3][3]
```

Initial value:

```
= {{15.461398105297564, 0, 0},
 {0, 15.461398105297564, 0},
 {0, 0, 12.623336025344317}}
```

Inverse of the moment of inertia of the satellite (SI).

5.28.4.2 MOI

```
float MOI[3][3]
```

Initial value:

```
= {{0.06467720404, 0, 0},
{0, 0.06474406267, 0},
{0, 0, 0.07921836177}}
```

Moment of inertia of the satellite (SI).

5.29 src/bessel.c File Reference

Bessel filter implementation for Attitude Control System.

```
#include <bessel.h>
#include <stdlib.h>
```

Include dependency graph for bessel.c:

Functions

· static float factorial (int i)

Calculates factorial of the input. This function is inlined, and is available only in the scope of bessel.c.

void calculateBessel (float arr[], int size, int order, float freq_cutoff)

Calculates discrete Bessel filter coefficients for the given order and cutoff frequency.

double dfilterBessel (double arr[], int index)

Returns the filtered value at the current index using past values.

• float ffilterBessel (float arr[], int index)

Returns the filtered value at the current index using past values.

Variables

float bessel_coeff [SH_BUFFER_SIZE]

Coefficients for the Bessel filter, calculated using calculateBessel().

5.29.1 Detailed Description

Bessel filter implementation for Attitude Control System.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.29.2 Function Documentation

5.29.2.1 calculateBessel()

```
void calculateBessel (
    float arr[],
    int size,
    int order,
    float freq_cutoff )
```

Calculates discrete Bessel filter coefficients for the given order and cutoff frequency.

Parameters

arr	Stores the filter coefficients	
size	Size of the filter coefficients array	
order	Order of the Bessel filter	
freq_cutoff	Cut-off frequency of the Bessel filter	

5.29.2.2 dfilterBessel()

Returns the filtered value at the current index using past values.

Parameters

arr	Input array
index	Index of current value in the array

Returns

double Filtered value

5.29.2.3 factorial()

```
static float factorial ( \quad \text{int $i$ ) [inline], [static]}
```

Calculates factorial of the input. This function is inlined, and is available only in the scope of bessel.c.

Parameters

i Input

Returns

float Factorial of input

5.29.2.4 ffilterBessel()

Returns the filtered value at the current index using past values.

Parameters

arr	Input array
index	Index of current value in the array

Returns

double Filtered value

5.30 src/eps_telem.c File Reference

GomSpace P31u I2C interface function declarations.

```
#include <eps_telem.h>
Include dependency graph for eps telem.c:
```


Functions

- void * eps_telem (void *id)
- int **p31u_init** (p31u *dev)
- void p31u_destroy (p31u *dev)
- int p31u_xfer (p31u *dev, char *out, ssize_t outsize, char *in, ssize_t insize)
- int eps_ping (p31u *dev)
- int eps_reboot (p31u *dev)
- int eps_get_hk (p31u *dev, uint8_t mode)
- int eps_hk (p31u *dev)
- int eps_set_output (p31u *dev, channel_t channels)
- int eps_set_single (p31u *dev, uint8_t channel, uint8_t value, int16_t delay)
- int eps_reset_wdt (p31u *dev)

5.30.1 Detailed Description

GomSpace P31u I2C interface function declarations.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.1

Date

2020-03-19

Copyright

Copyright (c) 2020

5.31 src/main.c File Reference

main() symbol of the SPACE-HAUC Flight Software.

```
#include <main.h>
#include <modules.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
```

Include dependency graph for main.c:

Functions

• int main (void)

Main function executed when shflight.out binary is executed.

void catch sigint (int sig)

SIGINT handler, sets the global variable done as 1, so that thread loops can break. Wakes up sitl_comm and datavis threads to ensure they exit.

void sherror (const char *msg)

Prints errors specific to shflight in a fashion similar to perror.

int bootCount ()

Variables

int sys_boot_count = -1

System variable containing the current boot count of the system. This variable is provided to all modules by main.

volatile sig_atomic_t done = 0

Control variable for thread loops.

__thread int sys_status

Thread-local system status variable (similar to errno).

5.31.1 Detailed Description

main() symbol of the SPACE-HAUC Flight Software.

Author

```
Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
```

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.31.2 Function Documentation

```
5.31.2.1 catch_sigint()
```

```
void catch_sigint ( int \ sig \ )
```

SIGINT handler, sets the global variable done as 1, so that thread loops can break. Wakes up sitl_comm and datavis threads to ensure they exit.

Parameters

```
sig Receives the signal as input.
```

5.31.2.2 main()

```
int main (
     void )
```

Main function executed when shflight.out binary is executed.

Returns

int returns 0 on success, -1 on failure, error code on thread init failures

5.31.2.3 sherror()

Prints errors specific to shflight in a fashion similar to perror.

Parameters

msg | Input message to print along with error description

5.32 src/sitl_comm.c File Reference

Software-In-The-Loop (SITL) serial communication codes.

```
#include <sitl_comm.h>
#include <acs_extern.h>
#include <main.h>
#include <stdio.h>
#include <stdint.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
```

#include <string.h>
#include <termios.h>

Include dependency graph for sitl_comm.c:

Functions

• int set_interface_attribs (int fd, int speed, int parity)

Set speed and parity attributes for the serial device.

void set_blocking (int fd, int should_block)

Set the serial device as blocking or non-blocking.

int setup_serial (void)

Set the up serial device Opens the serial device /dev/ttyS0 (for RPi only)

void * sitl_comm (void *id)

Serial communication thread.

Variables

• pthread_mutex_t serial_read

Mutex to ensure atomicity of serial data read into the system.

pthread_mutex_t serial_write

Mutex to ensure atomicity of magnetorquer output for serial communication.

• unsigned long long t_comm = 0

SITL communication time.

· unsigned long long comm_time

5.32.1 Detailed Description

Software-In-The-Loop (SITL) serial communication codes.

Author

Sunip K. Mukherjee (sunipkmukherjee@gmail.com)

Version

0.2

Date

2020-03-19

Copyright

Copyright (c) 2020

5.32.2 Function Documentation

5.32.2.1 set_blocking()

Set the serial device as blocking or non-blocking.

Parameters

	fd	Serial device file descriptor
should_block 0 for non-blocking, 1 fo		0 for non-blocking, 1 for blocking mode operation

5.32.2.2 set_interface_attribs()

```
int set_interface_attribs (
    int fd,
    int speed,
    int parity )
```

Set speed and parity attributes for the serial device.

Parameters

fd	Serial device file descriptor
speed	Baud rate, is a constant of the form B#### defined in termios.h
parity	Odd or even parity for the serial device (1, 0)

Returns

0 on success, -1 on error

5.32.2.3 setup_serial()

Set the up serial device Opens the serial device /dev/ttyS0 (for RPi only)

Returns

file descriptor to the serial device

5.32.2.4 sitl_comm()

```
void* sitl_comm (
     void * id )
```

Serial communication thread.

Communicates with the environment simulator over serial port. The serial communication happens at 230400 bps, and this thread is intended to loop at 200 Hz. The thread reads the packet over serial (packet format: $[0xa0 \times 10]$ [uint8 x 28] $[0xb0 \times 2]$). The thread synchronizes to the 0xa0 in the beginning and checks for the 0xb0 at the end at each iteration. The data is read into global variables, and the magnetorquer command is read out. All read-writes are atomic.

Parameters

id Pointer to an int that specifies thread ID

Returns

NULL

5.33 src/uhf.c File Reference

UHF interface code.

5.33.1 Detailed Description

UHF interface code.

```
Author
     Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
Version
     0.1
Date
     2020-03-19
Copyright
     Copyright (c) 2020
      src/xband.c File Reference
5.34
X-Band Radio interface code.
5.34.1
       Detailed Description
X-Band Radio interface code.
Author
     Sunip K. Mukherjee (sunipkmukherjee@gmail.com)
Version
     0.1
Date
     2020-03-19
Copyright
     Copyright (c) 2020
```

Index

attribute	HBRIDGE_ENABLE, 86
adar_beam_pos, 10	hbridge_enable, 88
adar register, 11	insertionSort, 89
adc_ctrl, 12	readSensors, 89
bias_current_trx, 15	acs iface.h
chx_trx_gain, 16	acs init, 93
chx_trx_phase, 17	- :
dev_config, 19	acs_thread, 93
eps_telem.h, 106	acs_init
iface_config_b, 21	acs.c, 136
ld_wrk_regs, 22	acs.h, 87
Ism9ds1.h, 57	acs_iface.h, 93
	acs_thread
mem_ctrl, 24	acs.c, 136
misc_enables, 24	acs.h, 87
rx_to_tx_delay_ctrl, 29	acs_iface.h, 93
sw_ctrl, 30	adar1000, 9
transfer_reg, 31	adar1000.h
trx_bias_ram_ctrl, 33	ldo_trim_ctl_1, 41
trx_chx_mem, 33	adar_beam_pos, 9
trx_enables, 34	attribute, 10
tx_to_rx_delay_ctrl, 35	adar_register, 10
APPLY DBESSEL	attribute, 11
bessel.h, 95	adc_ctrl, 11
APPLY FBESSEL	attribute, 12
-	ads1115, 12
bessel.h, 96	ads1115.c
acs.c	ads1115_configure, 42
acs_init, 136 acs_thread, 136	ads1115_destroy, 42
	ads1115 init, 43
detumbleAction, 137	ads1115_read_config, 43
getOmega, 137	ads1115_read_cont, 44
getSVec, 137	ads1115_read_data, 44
HBRIDGE_DISABLE, 137	ads1115.h
hbridge_enable, 138	ads1115_configure, 46
IMOI, 139	ads1115_destroy, 47
insertionSort, 138	ads1115_init, 47
MOI, 139	ads1115_read_config, 47
RST, 136	ads1115 read cont, 48
readSensors, 139	
sunpointAction, 139	ads1115_read_data, 48
acs.h	ads1115_config, 13
acs_init, 87	comp_lat, 13
acs_thread, 87	comp_mode, 13
getOmega, 87	comp_pol, 14
getSVec, 87	comp_que, 14
HBRIDGE_DISABLE, 88	ads1115_configure

ads1115.c, 42	DECLARE_BUFFER
ads1115.h, 46	macros.h, 113
ads1115_destroy	DECLARE_VECTOR2
ads1115.c, 42	macros.h, 113
ads1115.h, 47	DECLARE_VECTOR
ads1115_init	macros.h, 113
ads1115.c, 43	DOT_PRODUCT
ads1115.h, 47	macros.h, 114
ads1115_read_config	data_packet, 17
ads1115.c, 43	datavis.h
ads1115.h, 47	datavis_thread, 100
ads1115_read_cont	datavis_iface.h
ads1115.c, 44	datavis_thread, 103
ads1115.h, 48	datavis_p, 18
ads1115_read_data	datavis_thread
ads1115.c, 44	datavis.h, 100
ads1115.h, 48	datavis_iface.h, 103
bessel.c	daverage
calculateBessel, 141	macros.h, 119
dfilterBessel, 142	detumbleAction
factorial, 142	acs.c, 137
ffilterBessel, 142	dev_config, 19
bessel.h	attribute, 19
APPLY DBESSEL, 95	dfilterBessel
APPLY FBESSEL, 96	bessel.c, 142
calculateBessel, 96	bessel.h, 97
dfilterBessel, 97	drivers/adar1000.h, 37
ffilterBessel, 97	drivers/ads1115.c, 41
bias_current_trx, 14	drivers/ads1115.h, 44
_attribute, 15	drivers/lsm9ds1.c, 49
_ _	drivers/lsm9ds1.h, 52
CROSS_PRODUCT	drivers/ncv7708.c, 60
macros.h, 111	drivers/ncv7708.h, 63
calculateBessel	drivers/tca9458a.c, 66
bessel.c, 141	drivers/tca9458a.h, 68
bessel.h, 96	drivers/tsl2561.c, 71
catch_sigint	drivers/tsl2561.h, 75
main.c, 145	ana talam b
channel_t, 15	eps_telem.h attribute , 106
chx_trx_gain, 15	aiiiibule, 100
attribute, 16	FAVERAGE BUFFER
chx_trx_phase, 16	macros.h, 114
attribute, 17	FLUSH BUFFER ALL
comp_lat	macros.h, 115
ads1115_config, 13	FLUSH BUFFER
comp_mode	macros.h, 115
ads1115_config, 13	factorial
comp_pol	bessel.c, 142
ads1115_config, 14	faverage
comp_que	macros.h, 119
ads1115_config, 14	ffilterBessel
DAVERAGE BUFFER	bessel.c, 142
macros.h, 111	bessel.h, 97
11100003.11, 111	DE33EI.II, 37

get_usec	lsm9ds1_config_mag, 50
macros.h, 120	lsm9ds1_destroy, 50
getOmega	Ism9ds1_init, 51
acs.c, 137	lsm9ds1_offset_mag, 51
acs.h, 87	lsm9ds1_read_mag, 52
getSVec	lsm9ds1 reset mag, 52
acs.c, 137	lsm9ds1.h
acs.h, 87	attribute, 57
	LSM9DS1_CTRL_REG1_G, 55
HBRIDGE_DISABLE	lsm9ds1_config_mag, 57
acs.c, 137	lsm9ds1 destroy, 58
acs.h, 88	Ism9ds1 init, 58
HBRIDGE_ENABLE	Ism9ds1_offset_mag, 59
acs.h, 86	Ism9ds1_read_mag, 59
hbridge_enable	Ism9ds1_reset_mag, 59
acs.c, 138	MAG OFFSET REGISTERS, 56
acs.h, 88	MAG_OUT_DATA, 56
helmholtz.lsm9ds1, 23	Ism9ds1 config mag
hkparam_t, 20	Ism9ds1.c, 50
· = ·	lsm9ds1.h, 57
IMOI	
acs.c, 139	lsm9ds1_destroy
INVNORM	Ism9ds1.c, 50
macros.h, 115	lsm9ds1.h, 58
iface_config_a, 20	lsm9ds1_init
iface_config_b, 21	lsm9ds1.c, 51
attribute, 21	lsm9ds1.h, 58
include/acs.h, 84	lsm9ds1_offset_mag
include/acs_extern.h, 89	lsm9ds1.c, 51
include/acs_iface.h, 91	lsm9ds1.h, 59
include/bessel.h, 93	lsm9ds1_read_mag
include/datavis.h, 98	lsm9ds1.c, 52
include/datavis_extern.h, 100	lsm9ds1.h, 59
include/datavis_iface.h, 102	lsm9ds1_reset_mag
include/eps_telem.h, 104	lsm9ds1.c, 52
include/macros.h, 108	lsm9ds1.h, 59
include/main.h, 121	
include/modules.h, 123	MAG_OFFSET_REGISTERS
include/sitl comm.h, 124	lsm9ds1.h, 56
include/sitl comm extern.h, 126	MAG_OUT_DATA
include/sitl comm iface.h, 128	lsm9ds1.h, 56
include/uhf.h, 129	MATVECMUL
include/xband.h, 130	macros.h, 116
insertionSort	MOI
acs.c, 138	acs.c, 139
acs.h, 89	macros.h
,	CROSS_PRODUCT, 111
LSM9DS1_CTRL_REG1_G	DAVERAGE_BUFFER, 111
lsm9ds1.h, 55	DECLARE_BUFFER, 113
ld_wrk_regs, 22	DECLARE_VECTOR2, 113
attribute, 22	DECLARE_VECTOR, 113
ldo_trim_ctl_1	DOT_PRODUCT, 114
adar1000.h, 41	daverage, 119
lsm9ds1, 22	FAVERAGE_BUFFER, 114
lsm9ds1.c	FLUSH_BUFFER_ALL, 115
	·

FLUSH_BUFFER, 115	ncv7708.h, 65
faverage, 119	
get_usec, 120	p31u, 28
INVNORM, 115	q2isqrt
MATVECMUL, 116	macros.h, 120
NORM2, 117	11140100.11, 120
NORMALIZE, 117	RST
NORM, 116 q2isqrt, 120	acs.c, 136
VECTOR_CLEAR, 117	read16
VECTOR_MIXED, 118	tsl2561.c, 72
VECTOR_OP, 118	read8
main	tsl2561.c, 72
main.c, 146	readSensors
main.c	acs.c, 139
catch_sigint, 145	acs.h, 89
main, 146	rx_to_tx_delay_ctrl, 29
sherror, 146	attribute, 29
main.h	set_blocking
sherror, 122	sitl_comm.c, 148
mem_ctrl, 23	sitl_comm.h, 125
attribute, 24	set interface attribs
misc_enables, 24	sitl_comm.c, 148
attribute, 24	sitl_comm.h, 125
	setup_serial
NORM2	sitl_comm.c, 149
macros.h, 117	sitl_comm.h, 126
NORMALIZE	sherror
macros.h, 117	main.c, 146
NORM	main.h, <mark>122</mark>
macros.h, 116	sitl_comm
ncv7708, 25	sitl_comm.c, 149
ncv7708.c	sitl_comm.h, 126
ncv7708_destroy, 61	sitl_comm_iface.h, 129
ncv7708_init, 61 ncv7708_transfer, 62	sitl_comm.c
ncv7708_transier, 62	set_blocking, 148
ncv7708.h	set_interface_attribs, 148
ncv7708 destroy, 64	setup_serial, 149 sitl_comm, 149
ncv7708_init, 65	sitl comm.h
ncv7708_transfer, 65	set_blocking, 125
ncv7708_xfer, 65	set_interface_attribs, 125
ncv7708_destroy	setup_serial, 126
ncv7708.c, 61	sitl comm, 126
ncv7708.h, 64	sitl comm iface.h
ncv7708_init	sitl_comm, 129
ncv7708.c, 61	src/acs.c, 131
ncv7708.h, 65	src/bessel.c, 140
ncv7708_packet, 26	src/eps_telem.c, 143
ncv7708_transfer	src/main.c, 144
ncv7708.c, 62	src/sitl_comm.c, 146
ncv7708.h, 65	src/uhf.c, 149
ncv7708_xfer	src/xband.c, 150
ncv7708.c, 62	sunpointAction

000 0 100	+al0E61 a 70
acs.c, 139	tsl2561.c, 73
sw_ctrl, 29	tsl2561.h, 82
attribute, 30	tsl2561_init tsl2561.c, 74
TSL2561_REGISTER_SET	tsl2561.h, 83
	tsl2561 measure
tsl2561.h, 81	tsl2561.c, 74
tca9458a, 30	
tca9458a.c	tsl2561.h, 83 tsl2561Gain t
tca9458a_destroy, 67	tsl2561.h, 82
tca9458a_init, 67	tsl2561IntegrationTime_t
tca9458a.h	tsl2561.h, 82
tca9458a_destroy, 69	
tca9458a_init, 70	tx_to_rx_delay_ctrl, 35
tca9458a_set, 70	attribute, 35
tca9458a_destroy	uhf
tca9458a.c, 67	uhf.h, 130
tca9458a.h, 69	uhf.h
tca9458a_init	uhf, 130
tca9458a.c, 67	uni, 130
tca9458a.h, 70	VECTOR CLEAR
tca9458a_set	macros.h, 117
tca9458a.h, 70	VECTOR MIXED
transfer_reg, 31	macros.h, 118
attribute, 31	VECTOR OP
trx_beam_pos, 32	macros.h, 118
trx_bias_ram_ctrl, 32	11140100.11, 110
attribute, 33	write16
trx_chx_mem, 33	tsl2561.c, 74
attribute, 33	write8
trx_enables, 34	tsl2561.c, 75
attribute, 34	writecmd8
tsl2561, 34	tsl2561.c, 75
tsl2561.c	,
read16, 72	xband
read8, 72	xband.h, 131
tsl2561_destroy, 73	xband.h
tsl2561_get_lux, 73	xband, 131
tsl2561_init, 74	
tsl2561_measure, 74	
write16, 74	
write8, 75	
writecmd8, 75	
tsl2561.h	
TSL2561_REGISTER_SET, 81	
tsl2561_destroy, 82	
tsl2561_get_lux, 82	
tsl2561 init, 83	
tsl2561_measure, 83	
tsl2561Gain_t, 82	
tsl2561IntegrationTime_t, 82	
tsl2561_destroy	
tsl2561.c, 73	
tsl2561.h, 82	
tsl2561_get_lux	