1 Resultados

1.0.1. Introducción

Para verificar el desempeño del controlador desarrollado se tomo una edificación real y los parámetros de ésta se ingresaron en la simulación. Los detalles de cómo se ingresaron y el proceso de simulación que se muestra como ejemplo de presentan en el apendice del libro.

La torre simulada tiene una altura de 40 pisos, se usaron 4 ascensores y la población de la edificación se estableció en 3350 personas, con 3 distribuciones de tráfico presentes (ENTRADA, SALIDA, ENTREPISOS) y discretizada la entrada de pasajeros en segmentos de tiempo de 300 segundos. Los pasajeros arriban siguiendo un proceso de Poisson [?], como se explicó en el capítulo 3.

1.0.2. Validación del Simulador

La validación del simulador es muy importante para lo que se denomina "credibilidad en el modelo". En éste apartado se demuestra que el modelo es confiable y que representa adecuadamente el comportamiento del sistema bajo estudio.

1.0.3. Validación del Generador de Tráfico

Es necesario validar que el simulador esté generando el tráfico de pasajero basado en un proceso de Poisson. Para hacer esta validación se corrieron 100 simulaciones en las que se tomó el número de pasajeros generados en cada uno de los intervalos de tiempo medidos y se verificó si estos valores aleatorios siguen una distribución de Poisson. Fue necesario tomar un número frande de simulaciones para que la prueba de bondad no incurriera en errores.

En la siguiente tabla se muestran el número de pasajeros generados por simulación. En las primeras dos columnas está el parámetro lamda de la distribución de Poisson y la hora del día para la cual se van a generar los pasajeros.

En la tabla no se incluyen todos los segmentos del día, si no que se toman muestras cada hora de la cantidad de pasajeros generados, por lo tanto los datos a verificar son aquellos de las horas (7,8,9,10,11,12,13,14,15,16,17,18,19).

1		x (7 am)	x (8 am)	x (9 am)	x (10 am)	x (11 am)	x (12 pm)	x (1 pm)	x (2 pm)	x (3 pm)	x (4 pm)	x (5 pm)	x (6 pm)	x (7 pm)
2	Lamda	20	46	198	108	96	194	168	120	96	114	70	96	47
3	Sim 1	20	45	183	122	92	181	155	118	104	131	58	100	45
4	Sim 2	27	37	220	121	76	188	189	118	101	117	66	116	45
5	Sim 3	24	43	221	115	95	194	179	124	92	117	71	82	59
6	Sim 4	24	51	197	113	92	193	136	116	97	119	72	87	36
7	Sim 5	34	44	182	105	111	194	170	119	120	121	69	97	47
8	Sim 6	26	34	199	96	108	225	148	121	84	117	76	95	52
9	Sim 7	24	55	214	109	92	208	184	120	86	92	70	75	46
10	Sim 8	19	41	181	106	95	213	161	126	99	109	69	73	54
11	Sim 9	15	38	209	103	85	191	178	120	81	102	60	100	49
12	Sim 10	24	50	173	113	93	188	166	130	79	123	74	83	38
13	Sim 11	18	41	206	115	108	177	174	107	108	100	79	98	51
14	Sim 12	22	37	182	109	91	190	165	123	96	124	61	102	45
15	Sim 13	25	40	202	106	88	173	163	102	98	106	62	100	50
16	Sim 14	23	47	200	103	118	166	163	108	88	110	69	93	48
17	Sim 15	29	42	193	102	113	217	175	115	93	108	65	95	42
18	Sim 16	21	65	193	105	100	203	169	119	96	119	79	113	50
19	Sim 17	20	65	207	120	95	217	157	120	93	110	58	117	34
20	Sim 18	29	49	187	101	105	196	169	119	111	124	72	78	52
21	Sim 19	27	44	192	109	84	200	175	135	95	92	71	104	34
22	Sim 20	23	35	172	101	104	189	154	120	92	99	59	101	48
23	Sim 21	19	43	178	117	108	167	139	112	77	141	66	108	43
24	Sim 22	25	55	195	108	112	191	173	102	105	97	59	94	47

Figura 1.1: Muestras de generación de pasajeros

1.0.3.1. Prueba de bonda de ajuste Chi-Cuadrado χ^2

El primer paso para comprobar que el número de pasajeros generados sigue una distribución de Poisson, es generar la hipótesis nula y alternativa [?].

- Ho: La cantidad de pasajeros que llegan al sistema durante intervalos de 15 minutos tiene una distribución de Poisson de probabilidades.
- Ha: La cantidad de clientes que llegan al sistema durante intervalos de 15 minutos no tiene una distribución de Poisson de probabilidades.

La hipótesis nula de la prueba Chi-cuadrado postula una distribución de probabilidad totalmente especificada como el modelo matemático de la población que ha generado la muestra, en nuestro caso la distribución de Poisson. Rechazaremos la hipotesis nula en el caso que haya una probabilidad mayor al $5\,\%$ que los datos no se distribuyan Poisson.

Si existe concordancia perfecta entre las frecuencias observadas y las esperadas de la distribución chi-cuadrado el estadístico tomará un valor cercano a 0; por el contrario, si existe una gran discrepancias entre estas frecuencias el estadístico tomará un valor grande y, en consecuencia, se rechazará la hipótesis nula.

En la siguiente imágen se compara las frecuencia observadas y esperadas para demostrar que los datos se distribuyen de acuerdo a Posisson, para un valor de lamda igual a 20 con una muestra de 100 datos.

	A D		· ·	υ		
1	Etiquetas	Frecuencias	Producto	Esperado	Chi2	
11	10	0	0	0.29	2.9E-01	
12	11	1	11	0.57	3.3E-01	
13	12	1	12	1.01	8.7E-05	
14	13	0	0	1.66	1.7E+00	
15	14	6	84	2.52	4.8E+00	
16	15	6	90	3.59	1.6E+00	
17	16	2	32	4.78	1.6E+00	
18	17	5	85	6.00	1.7E-01	
19	18	10	180	7.11	1.2E+00	
20	19	8	152	7.98	3.1E-05	
21	20	7	140	8.52	2.7E-01	
22	21	6	126	8.65	8.1E-01	
23	22	4	88	8.39	2.3E+00	
24	23	8	184	7.78	6.4E-03	
25	24	11	264	6.91	2.4E+00	
26	25	8	200	5.90	7.5E-01	
27	26	3	78	4.84	7.0E-01	
28	27	5	135	3.82	3.6E-01	
29	28	2	56	2.91	2.9E-01	
30	29	3	87	2.14	3.4E-01	
31	30	0	0	1.52	1.5E+00	
32	31	1	31	1.05	2.2E-03	
33	32	2	64	0.70	2.4E+00	
34	33	0	0	0.45	4.5E-01	

Figura 1.2: Prueba chi-cuadrado en excel

Finalmente debemos calcular la probabilidad de equivocarnos si rechazamos la hipótesis nula, este valor se conoce como P-Valor, en la siguiente tabla se muestran los P-Valores para todos los intervalos de generación de pasajeros tomados en nuestra muestra. Como se puede observar la probabilidad de equivocarnos en la prueba es inferior en todos los casos al $5\,\%$, por lo que se concluye con un alto grado de certeza que los datos se distribuyen Poisson.

95	Sim 93	31	47	191	101	97	188	173	111	104	108	60	93	46
96	Sim 94	28	50	201	83	84	208	161	121	95	112	84	83	60
97	Sim 95	24	45	194	112	92	224	187	127	89	120	72	94	56
98	Sim 96	18	41	185	99	108	214	156	122	111	145	85	98	51
99	Sim 97	26	49	217	108	97	218	164	127	90	110	73	103	49
100	Sim 98	21	44	191	107	83	186	184	126	93	107	51	96	52
101	Sim 99	24	41	200	120	84	189	164	150	106	111	68	85	48
102	Sim 100	14	48	204	88	98	199	157	121	109	127	74	81	40
103	P-Valor	0.030	0.020	0.010	0.005	0.004	0.011	0.010	0.021	0.011	0.001	0.012	0.002	0.030

Figura 1.3: Prueba chi-cuadrado en excel

Adicionalmente se puede observar gráficamente que en el histograma las frecuencias observadas no difieren mucho de las esperadas para la distribución de Poisson, esta gráfica se obtuvo usando el software estadísto R, en el cual además se verificó la distribución de los datos con los mismo resultados obetenido en excel.

Figura 1.4: Prueba chi-cuadrado en R

1.0.4. Protocolo de Experimentación

1.0.4.1. Propósito

Se ha observado que el control convencional para la asignación de cabinas de ascensor no tiene en cuenta los objetivos de control inherentes en el problema de tráfico vertical "Reducir tiempo de espera, tiempo de servicio y energía consumida", si no que da prioridad a la cabina de ascensor que se encuentre más cerca para asistir la llamada.

Se desea verificar que el controlador propuesto presente un mayor rendimiento en cuanto a los objetivos de control respecto al control convencional.

1.0.4.2. Materiales

Variables Independientes

- Controlador para grupo de elevadores
 - Controlador convencional orientado por la distancia de la cabina.
 - Controlador basado en inteligencia artificial, orientado a cumplir los 3 objetivos de control del tráfico vertical.
- Número de pisos de la edificación
 - Dominio [10, 200) pisos
- Número de ascensores del grupo de elevadores a controlar.
 - Dominio [2, 20)
- Capacidad de cada uno de los elevadores.
 - Dominio [4, 20)

■ Tráfico en la edificación.

- Alto tráfico de entrada.
- Alto tráfico de salida.
- Tráfico mixto.

Variables Dependientes

- **Tiempo de espera promedio:** es el tiempo que que debe esperar un pasajero para ser atendido por una cabina, ésta variable se debe reducir.
- Tiempo de servicio promedio: es el tiempo que que debe tarda un pasajero desde que arriba al sistema hasta que llega al piso destino, ésta variable se debe reducir.
- Energía consumida promedio: es la distancia promedio medida en pisos que debe recorrer una cabina de ascensor, entre más pisos (distancia) recorra más energía consume el sistema, por lo tanto se desea reducir esta variable.

Variables Intervinientes

■ Tiempo de procesamiento: debido a los cálculo que debe realizar cada uno de los controladores se está incluyendo un tiempo adicional en el tiempo de la simulación. Para eliminar el impacto se maneja un cronómetro de simulación independiente que ignora el tiempo de procesamiento. Por lo tanto esta latencia no afecta el resultado de la simulación.

1.0.4.3. Métodos

Se harán 4 grupos de simulaciones variando las variables independientes. El cambio en las variables se hará de manera gradual para verificar el comportamiento de los controladores en todos estos escenarios.

Se tomarán como resultados las variables dependientes, estas varibles serán comparadas entre los 2 controladores.

Las demás entradas que no varían durante las simulaciones se detallan en la siguiente tabla de constantes de la simulación [?].

Constante	Valor
Velocidad cabina de ascensor	1 m/s
Aceleración cabina ascensor	$2m/s^2$
Tiempo cabina abrir puerta	1 seg
Tiempo cabina cerrar puerta	1 segundo
Tiempo transferencia de pasajeros	1 segundo x pasajero
Altura entre pisos	2 mts
Modelo arribo de pasajeros	Poisson
Factor de aceleración de la simulación	100X (1 segundo = 10 ms en simulación)

Cuadro 1.1: Constantes de la simulación

Escenario 1 Variando el número de pisos.

Se correrán 14 simulaciones variando el número de pisos de la edificación. Se parte de 40 pisos como base y se llegará hasta los 100 pisos. Se aumentará la variable independiente número de pisos de 10 en 10 y se medirán las variables dependientes para saber como afecta el desempeño de cada controlador al modificar el número de pisos.

Los valores de las demás variables que no se modifican se detallan en la siguiente tabla.

Constante	Valor
Capacidad de la cabina	8 personas
Población de la edificación	2000 personas -igualmente distribuidas en todos los pisos-

Cuadro 1.2: Constantes de la simulación

Los resultados de las 14 simulaciones son los siguientes.

Pisos	WT (Conv)	WT (CI)	Dif	ST (Conv)	ST (CI)	Dif	E (Conv)	E (0
40	140 seg	122 seg	13%	60 seg	49 seg	18%	41656	371
50	154 seg	129 seg	16%	75 seg	62 seg	17%	42895	3782
60	220 seg	169 seg	22%	80 seg	69 seg	14%	43125	3814
70	253 seg	194 seg	21%	97 seg	82 seg	15%	43519	387
80	274 seg	216 seg	22%	115 seg	101 seg	13%	43964	3815
90	293 seg	234 seg	21%	127 seg	113 seg	11 %	44525	3928
100	314 seg	245 seg	22%	133 seg	120 seg	10%	45969	3994

Cuadro 1.3: Simulación escenario 1

Escenario 2 Variando el número máximo de pasajeros por cabina de ascensor.

Se llevó a cabo la simulación modificando la capacidad de las cabinas de ascensor. Se toma como valor inicial 8 personas, se aumentó el número de pasajeros hasta llegar a 20.

Constante	Valor
Pisos de la edificación	40
Población de la edificación	2000 personas -igualmente distribuidas en todos los pisos-

Cuadro 1.4: Constantes de la simulación

Los resultados de las 14 simulaciones son los siguientes.

Capacidad	WT (Conv)	WT (CI)	Dif	ST (Conv)	ST (CI)	Dif	E (Conv)	\mathbf{E}
8	142 seg	121 seg	13%	59 seg	47 seg	18%	43519	38
10	168 seg	149 seg	11 %	65 seg	54 seg	16%	41026	36
12	187 seg	159 seg	14%	71 seg	60 seg	15%	38989	33
14	185 seg	161 seg	13%	70 seg	62 seg	11%	37895	31
16	188 seg	165 seg	12%	69 seg	61 seg	8 %	35789	28
18	191 seg	170 seg	11%	73 seg	70 seg	4 %	34899	25
20	197 seg	177 seg	10%	74 seg	72 seg	2 %	33627	22

Cuadro 1.5: Simulación escenario 2

Escenario 3 Variando el número máximo de pasajeros por cabina de ascensor.

Se llevó a cabo la simulación modificando la capacidad de las cabinas de ascensor. Se toma como valor inicial 8 personas, se aumentó el número de pasajeros hasta llegar a 20.

Constante	Valor
Pisos de la edificación	40
Población de la edificación	2000 personas -igualmente distribuidas en todos los pisos-

Cuadro 1.6: Constantes de la simulación

Los resultados de las 14 simulaciones son los siguientes.

Capacidad	WT (Conv)	WT (CI)	Dif	ST (Conv)	ST (CI)	Dif	E (Conv)
8	142 seg	121 seg	13%	59 seg	47 seg	18 %	5946
10							
12							
14							
16							
18							
20							

Cuadro 1.7: Simulación escenario 2

1.0.4.4. Caracterización de las Variables

Es necesario verificar el correcto funcionamiento del simulador antes de proceder a comparar el controlador propuesto respecto al convencional. Para la validación se toman datos del estudio de KONE

1.0.5. Experimento Verificación del Simulador

Se verifica la generación de tráfico de acuerdo a la plantilla de tráfico tomada de la edificación de oficinas Tour Paris, la cual está expuesta en el trabajo de la empresa finlandesa KONE [?]. En la siguiente gráfica se encuentra discriminado el (a) tráfico de entrada , (b) tráfico de salida, (c) tráfico entre pisos, (d) tráfico total.

Este mismo patrón de tráfico se ingreso al simulador propuesto y los resultados en cuanto a generación de pasajeros son muy similares.

Figura 1.5: Plantilla de tráfico Tou Europe

A continuación se presentan las gráficas generadas por el simulador, hay que tener en cuenta que la simulación en ambos casos se ejecuta durante 12 horas, en las gráficas del simualdor propuesto el tiempo se mide en minutos, es decir que la simulación completa dura 720 minutos.

Figura 1.6: Plantilla de tráfico Tou Europe en el simulador propuesto

1.0.6. Experimento EGCS Basado en IA comparado con EGCS Convencional

1.0.6.1. Experimentación Numérica

El AGENTE ARBITRO DEL SISTEMA escoge entre los ascesores que compiten por ésta, aquel que pueda prestar un mejor servicio. Esta decisión la toma con base en 5 criterios de decisión que són para él las entradas del motor de inferencia difuso. Recordemos brevemente las entradas.

- 1. Estimación del tiempo de espera (TE): este valor es entregado por el agente estimador W, él cual cuenta con una red neuronal ya entrenada que predice con certeza cuando se demorará en llegar el ascesor hasta el piso en donde aguarda el usuario.
- 2. Estimación del tiempo de viaje (TV): este valor es pronosticado por el agente estimador S, el cual usa una red neuronal entrenada para determinar de manera cercana cuando tiempo puede tardar un psajero en llegar desde su piso origen hasta su piso destino.
- 3. Porcentaje de ocupación del elevador (%O): calculo del número de pasajeros sobre la capacidad del elevador. Entre más vacio esté más posibilidades

tiene de atender el llamado.

- 4. **Paradas piso origen** (PO): si el ascensor tiene paradas en el piso origen del pasajero, tiene más posibilidad de atender la llamada.
- 5. Paradas piso destino (PD): si el ascensor tiene paradas en el piso destino del pasajero, tiene más posibilidad de atender la llamada.

Todas estas entradas son normalizadas a un valor entre [0,1]. Para tener una visión más clara de lo que hace el Agente asignador, se presentan los siguientes ejemplos.

Ejemplo 1 En el siguiente ejemplo se genera una llamada desde el piso 6 hasta el piso 12. El elevador 1 (transporta 1 pasajero) se encuentra en el piso 2 y tiene una parada en el piso 6. El elevador 2 (transporta 1 pasajero) está en el piso 5 y tiene una parada en el piso 17. El elevador 3 (transporta 2 pasajeros) está en el piso 2 y se dirige al piso 0. Veamos como procedería el agente asignador, usando el mecanismo tradicional y la lógica de control basada en redes neuronales y lógica difusa.

Figura 1.7: Ejemplo 1

- El mecanismo de decisión convencional le asignaría la llamada al elevador 2, debido a que se encuentra más cerca de la llamada.
- El mecanismo de decisión inteligente, tendría estos cálculos, por cada uno de los elevadores. Como se puede ver en la tabla, el elevador 1 tiene mayor prioridad a la hora de competir por la llamada, esto debido a que al evaluar la regla R16 que tiene que ver con las llamadas del elevador en el piso origen de la llamada tiene un valor superior a las demás evaluaciones. En este ejemplo queda claro que la lógica de control inteligente tiene mayor beneficio en términos de ahorro de energía porque está dejando de hacer una parada adicional.

Ejemplo 2 En el siguiente ejemplo se genera una llamada desde el piso 11 hasta el piso 17. El elevador 1 (transporta 2 pasajero) se encuentra en el piso 6 y tiene una parada en el piso 17. El elevador 2 (transporta 3 pasajeros) está en el piso 9 y tiene una parada en el piso 14. El elevador 3 (transporta 4 pasajeros) está en el piso 6 y tiene una parada en el piso 17. Veamos como procedería el agente asignador en los casos.

Figura 1.8: Ejemplo 2

■ El mecanismo de decisión convencional le asignaría la llamada al elevador 2, debido a que se encuentra más cerca.

■ El mecanismo de decisión inteligente, haría estos cálculos por cada elevador. Como se puede ver en la tabla, el elevador 1 tiene mayor prioridad a la hora de competir por la llamada. Se presenta en este caso un hecho de empate en cuando a la mayoría de las características, se podría pensar que tanto el elevador 1 como el 3 tienen las misma posibilidades. Pero la regla 13 está hablando del porcentaje de ocupación y ya que el elevador 3 tiene más pasajeros, la evaluación de la regla permite el elevador 1 que está menos ocupado se quede con la llamada.

1.0.6.2. Experimentación en el Simulador

Los resultados de la simulación revelan que haciendo uso de sistemas multiagente y usando la lógica de asignación basada en redes neuronales y lógica difusa se obtiene un mayor rendimiento en el sistema.

Ya que el simulador cuenta con reporteadores estadísticos, los datos de desempeño arrojados por el simulador se presentan en forma de cuadro comparativo.

Tiempo de Espera Como se puede constatar en los reportes estadísticos, el control convencional tuvo una media de espera de 148 seg, mientras que el controlador convencional tuvo una media de 108 segundos. Esto representa una mejora en el servicio prestado $(27\,\%$ menor), hay que notar que la varianza es mucho mayor en usando el control convencional, cerca de un $25\,\%$. Esto muestra una dispersión mayor en los resultados del controlador convencional.

En la siguiente gráfica se muestra el tiempo de espera por cada una de las llamadas, en el eje horizontal se encuentra secuencialmente cada llamada y en el eje vertical su tiempo de espera.

Cuadro 1.8: Comparación Tiempo de Espera

En ésta gráfica se se muestra el tiempo de espera propmedio según el minutos de simulación, en el eje horizotal está el tiempo de simulación en minutos y en el eje vertical el tiempo de espera promedio para ese momento.

Cuadro 1.9: Comparación Tiempo de Espera

Tiempo de Viaje De acuerdo al tiempo de viaje de un pasajero, -desde que se sube al ascensor y hasta que se baja- se evidencia una reducción en los tiempo de servicio de un 25 %. Esto muestra una dispersión mayor en los resultados del controlador convencional.

En la siguiente gráfica se muestra el tiempo de viaje por cada una de las llamadas, en el eje horizontal se encuentra secuencialmente cada llamada y en el eje vertical su tiempo de viaje.

Cuadro 1.10: Comparación Tiempo de Viaje

Energía Consumida La energía consumida también logró ser reducida en cerca de un 10%, esta mejora a pesar de ser significativa si le permitirá a un edificio de gran altura ahorra millones de dolares en el consumo de energía.

Cuadro 1.11: Comparación Energía Consumida