The LNM Institute of Information Technology, Jaipur Session: 2017-18, EVEN Semester, Quiz 2

Subject: Control System Engineering (Core)

Date: 28th March 2018, Full Marks: 10, Time: 30 Minutes

Name:

Roll. No.:

1. Open loop transfer function of a control system is given by:

$$G(s)H(s) = \frac{k}{s(s+1)^2(s+2)}$$

Draw the root locus and determine the following:

i) breakaway points,

ii) angle of departure from complex poles,

iii) value of k for the system to be marginally stabile.

2. Construct the Routh's table and comment about the stability of the system with given characteristic equation.

$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$$

- 3. For the system shown below, determine the following specifications when K = 60.
 - i) Peak overshoot,
 - ii) Settling time.

				•	
Ans 2.	Rnahs	table			[5+3+2 = 10]
	56	1	8	20	16
	55	2	12	16	Auxiliary equation $A(5) = 25^{4} + 125^{2} + 16$
	s ⁴	2	12	16	$A(5) = 25^{4} + 125 + 16$
	- 1	\$ 8	Ø1 24		$\frac{dA(5)}{d5} = 85^3 + 245$
	52		16		Row of zero occurs once and
	51	8/3			1st rolumn of the lable has same sign, the system is
	s°	16	(2, M)		MARGINALLY STABLE.
	1000				— (IM)

Scanned by CamScanner

$$\frac{Y(5)}{R(5)} = \frac{\frac{5k}{5(5+20)}}{1 + \frac{5k}{5(5+20)}}$$

$$= \frac{5k}{5(5+20)+5k}$$

$$\frac{5K}{5^2+205+5K}$$

Comparing with generalized 2 and order equation

$$TF = \frac{w_n^2}{8^2 + 249w_n + w_n^2} - (1)$$

from (1 8 (1),

$$w_n^2 = 5K$$
 and $2 \frac{1}{910} = 20$

Given
$$K = 60$$
, $w_n = 17.32$ and $49 = 0.58$

Now,

[m

$$G(5)H(5) = \frac{\kappa}{8(s+1)^2(s+2)}$$

Steple) zeros
$$\rightarrow$$
 none poles \rightarrow 4 ie. at $s=0,-1,-1,-2$.

Ale 4 poles will terminate at ∞ .

All 4 poles will terminate at ∞ .

Slép (b)

Angle of asymptotes
$$0 = \frac{(29+1)180^{\circ}}{p-2}$$
 $q = 0,1,2,3$
 $p-7 = 4$

$$= \frac{(29+1)180^{\circ}}{4}$$

Slép (c) centroid
$$O = \frac{\sum (real poles) - \sum (real zeros)}{p-7}$$

$$\frac{-4-0}{4} = -1$$

· RL! Root Locus region

NRL: Note Root-Louis region

There exist 2 Brack-away points One between 0 & -1

another -18-2

Step (e)
$$G(s)H(s) = -1$$

or $1+G(s)H(s) = 0$
 $\Rightarrow S(s+1)^2(s+2)+K=0$
 $\Rightarrow K = -S(s+1)^2(s+2)$.

Note: $\frac{dK}{ds} = D$
 $\Rightarrow \frac{d}{ds} \left[-S(s+1)^2(s+2) \right] = 0$
 $\Rightarrow S = -1, -1.707, -0.292$
 $\Rightarrow S = -1, -1.707, -0.292$

Step (f) Jo find intersection pt. on imaginary axis.

 $(+G(s)H(s) = 0)$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^2 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^3 + 5s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^4 + 2s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^4 + 2s^4 + 2s + K = 0$
 $\Rightarrow S^4 + 4s^4 + 2s^4 + 2s$

K: 00

(IM)

Scanned by CamScanner

Root Locus

-j/52