ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 27 gennaio 2015

Esercizio A

$R_1 = 100 \Omega$	$R_{10} = 750 \ \Omega$		
$R_2 = 600$ $k\Omega$	$R_{11} = 25 \Omega$	V_{cc} V_{cc} V_{cc} V_{cc} V_{cc}	
$R_4 = 10 \text{ k}\Omega$	$R_{12} = 600 \ \Omega$	$R_2 \geqslant R_8 \geqslant R_{10} C_3$	
$R_5 = 2 \ k\Omega$	$R_{13} = 10 \text{ k}\Omega$	R_1 C_1 R_4 Q_1 Q_2 R_{13}	* V _u
$R_6 = 6 \text{ k}\Omega$	$C_1 = 100 \text{ nF}$	R_7 R_7	7
$R_7=2\;k\Omega$	$C_2 = 270 \text{ nF}$	$ V_i $	
$R_8 = 8 \text{ k}\Omega$	$C_3=1 \text{ nF}$	R_5 $R_{12} \neq C_2$	
$R_9 = 20 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$		

 Q_1 è un è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$, Q_2 è transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = 1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_3 = 314675.77 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 3.08$)
- 3) (Solo per 12 CFU) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz, $f_{p1} = 10.284$ Hz, $f_{z2} = 982.44$ Hz, $f_{p2} = 3125.96$ Hz, $f_{z3} = 0$ Hz, $f_{p3} = 14805.11$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{AB} + C\right)\left(\overline{C} \ \overline{D} + BE\right) + \left(\overline{C + D}\right)\left(\overline{A} + \overline{B}\right) + ABE$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 400 \Omega$	$R_5 = 4 \text{ k}\Omega$
$R_2 = 1600 \Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 2 k\Omega$	C = 100 nF
$R_4 = 4 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC₁ è un NE555 alimentato a $V_{CC} = 6V$, Q₁ e Q₂ hanno una $R_{on} = 0$ e $V_T = -1V$. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 4999.75 Hz)