

C L A I M S

1. A packet communication method using a
2 plurality of packet transfer apparatuses which are
3 connected to a network and transfer a lower layer frame
4 containing an encapsulated upper layer packet, at least
5 one frame transfer apparatus which mediates transfer of
6 the lower layer frame between the packet transfer
7 apparatuses through the network, and a network control
8 server which is connected to the packet transfer
9 apparatuses and the frame transfer apparatus and
10 controls a communication route of the lower layer frame
11 in the network by giving an instruction to the packet
12 transfer apparatuses and the frame transfer apparatus,
13 characterized in that

14 the packet transfer apparatus comprises
15 an extraction procedure which extracts, from
16 the received lower layer frame, a lower layer address
17 pair including a transmission source address and
18 destination address of a lower layer,
19 a first registration procedure which registers
20 a sending destination of the received lower layer frame
21 in a first table for each corresponding destination
22 address,
23 a first counter procedure which counts, for
24 each type of lower layer address pair, a quantity of the
25 lower layer address pair extracted by the extraction
26 procedure, and

27 a first transmission procedure which
28 transmits, to the frame transfer apparatus, first
29 information representing the lower layer address pair
30 counted by the first counter procedure beyond a
31 predetermined threshold value within a predetermined
32 time,

33 the frame transfer apparatus comprises
34 a second registration procedure which
35 registers a transfer destination of the received lower
36 layer frame in a second table for each destination
37 address contained in the lower layer frame,

38 a second counter procedure which counts a
39 quantity of the transferred lower layer frame for each
40 type of lower layer address pair contained in the first
41 information received from the packet transfer apparatus,
42 and

43 a second transmission procedure which
44 transmits, to the network control server, second
45 information about the lower layer address pair counted
46 by the second counter procedure beyond a predetermined
47 threshold value within a predetermined time, and

48 the network control server comprises
49 a calculation procedure which, upon receiving
50 the second information, extracts the transmission source
51 address and destination address from the second
52 information and executes calculation to optimize the
53 communication route in the network between the

54 transmission source address and the destination address,
55 and

56 a change procedure which changes registration
57 of the sending destination of the lower layer frame
58 registered in the first table and second table on the
59 basis of the calculation result.

2. A packet communication method using a
2 plurality of packet transfer apparatuses which are
3 connected to a network and transfer a lower layer frame
4 containing an encapsulated upper layer packet, at least
5 one frame transfer apparatus which mediates transfer of
6 the lower layer frame between the packet transfer
7 apparatuses through the network, and a network control
8 server which is connected to the packet transfer
9 apparatuses and the frame transfer apparatus and
10 controls a communication route of the lower layer frame
11 in the network by giving an instruction to the packet
12 transfer apparatuses and the frame transfer apparatus,
13 characterized in that

14 the packet transfer apparatus comprises
15 an extraction procedure which extracts, from
16 the received lower layer frame, a lower layer address
17 pair including a transmission source address and
18 destination address of a lower layer,
19 a counter procedure which counts, for each
20 type of lower layer address pair, a quantity of the
21 lower layer address pair extracted by the extraction

22 procedure, and
23 a transmission procedure which transmits, to
24 the frame transfer apparatus, first information
25 representing the lower layer address pair counted by the
26 counter procedure beyond a predetermined threshold value
27 within a predetermined time.

3. A packet communication method according to
2 claim 2, characterized in that in transmitting the first
3 information to the frame transfer apparatus, the
4 transmission procedure transmits information about the
5 destination address contained in the frame information
6 and a destination address of an upper layer
7 corresponding to the destination address to the
8 transmission source address of the lower layer address
9 pair contained in the first information.

4. A packet communication method using a
2 plurality of packet transfer apparatuses which are
3 connected to a network and transfer a lower layer frame
4 containing an encapsulated upper layer packet, at least
5 one frame transfer apparatus which mediates transfer of
6 the lower layer frame between the packet transfer
7 apparatuses through the network, and a network control
8 server which is connected to the packet transfer
9 apparatuses and the frame transfer apparatus and
10 controls a communication route of the lower layer frame
11 in the network by giving an instruction to the packet
12 transfer apparatuses and the frame transfer apparatus,

13 characterized in that
14 the frame transfer apparatus comprises
15 a counter procedure which counts a quantity of
16 the transferred lower layer frame for each type of lower
17 layer address pair which is instructed by the packet
18 transfer apparatus to count, and
19 a transmission procedure which transmits, to
20 the network control server, second information
21 representing the lower layer address pair counted by the
22 counter procedure beyond a predetermined threshold value
23 within a predetermined time.

5. A packet communication method according to
2 claim 4, characterized by further comprising a count
3 processing procedure which deletes, from the count, an
4 entry of an arbitrary lower layer address pair whose
5 count value does not increase in a predetermined time.

6. A packet communication method using a
2 plurality of packet transfer apparatuses which are
3 connected to a network and transfer a lower layer frame
4 containing an encapsulated upper layer packet, at least
5 one frame transfer apparatus which mediates transfer of
6 the lower layer frame between the packet transfer
7 apparatuses through the network, and a network control
8 server which is connected to the packet transfer
9 apparatuses and the frame transfer apparatus and
10 controls a communication route of the lower layer frame
11 in the network by giving an instruction to the packet

12 transfer apparatuses and the frame transfer apparatus,
13 characterized in that
14 the network control server comprises
15 a calculation procedure which, upon receiving
16 second information representing an arbitrary
17 transmission source address and destination address from
18 the frame transfer apparatus, executes calculation to
19 optimize the communication route in the network between
20 the transmission source address and the destination
21 address, and
22 a change procedure which issues an instruction
23 to change a sending destination of the lower layer frame
24 to the packet transfer apparatus and frame transfer
25 apparatus included between the transmission source
26 address and the destination address on the basis of the
27 calculation result.

7. A packet communication method according to
2 claim 1, characterized by further comprising
3 in a connectionless packet transfer network
4 which is logically build on a connection network
5 comprising a transmission link having a connection
6 multiplex transmission function and a connection switch
7 node having a connection switching function by adding,
8 as a terminal function unit, a connectionless packet
9 transfer node serving as the frame transfer apparatus
10 and a connectionless packet communication terminal
11 serving as the packet transfer apparatus to the

12 connection network, when connection arrangement is to be
13 executed in accordance with a traffic band and traffic
14 priority of the connectionless packet transfer network,
15 a notification procedure which records
16 statistical information containing a band and priority
17 for each flow defined by a pair of the transmission
18 source address and destination address for the packet
19 transmitted/received in the connectionless packet
20 communication terminal and notifies a traffic control
21 apparatus serving as the network control server of the
22 recorded statistical information, and
23 a flow list creation procedure which causes
24 the traffic control apparatus to create a flow list in
25 which information containing the transmission source
26 address, destination address, priority, and band is
27 registered for each flow, on the basis of the
28 statistical information sent from the connectionless
29 packet communication terminal.

8. A packet communication method according to
2 claim 7, characterized by further comprising
3 a flow list sorting procedure which sorts the
4 flow list in descending order of priority and sorts
5 flows with the same priority in descending order of
6 band, and
7 a connection candidate list creation procedure
8 which, assuming that a connection is set between a
9 transmission source connectionless packet communication

10 terminal and a destination connectionless packet
11 communication terminal of each flow registered in the
12 sorted flow list, creates a connection candidate list by
13 assigning a connection candidate for all flows
14 sequentially from an uppermost flow in the flow list.

9. A packet communication method according to
2 claim 7, characterized in that the connection candidate
3 list creation procedure creates the connection candidate
4 list by assigning not less than one flow having the same
5 transmission source connectionless packet communication
6 terminal, the same destination connectionless packet
7 communication terminal, and the same priority to the
8 same connection candidate without making a sum of bands
9 exceed a capacity of the connection candidate and
10 determining the priority and band of the connection
11 candidate on the basis of the priority and the sum of
12 the bands of the assigned flows.

10. A packet communication method according to
2 claim 8, characterized by further comprising
3 a connection candidate list sorting procedure
4 which sorts the connection candidate list in descending
5 order of priority and sorts connection candidates with
6 the same priority in descending order of band, and
7 a reservation procedure which reserves a
8 connection interface of the connectionless packet
9 communication terminal for all connection candidates
10 contained in the sorted connection candidate list

11 sequentially from an uppermost connection candidate in
12 the sorted connection candidate list.

11. A packet communication method according
2 to claim 10, characterized by further comprising
3 a selection procedure which selects, on the
4 basis of the connection candidate list sorted by the
5 connection candidate list sorting procedure, a
6 connection requiring no setting from a connection
7 solution list in which connections to be set are
8 registered,

9 a comparison procedure which sets, as a
10 connection candidate as a processing target, a
11 connection candidate for which reservation is possible
12 in the sorted connection candidate list and compares the
13 priority and band of the connection candidate as the
14 processing target with those of the selected connection,
15 a connection solution list creation/update
16 procedure which, when the priority and band of the
17 connection candidate as the processing target are more
18 than those of the selected connection, excludes the
19 connection candidate as the processing target from the
20 connection candidate list and adds the connection
21 candidate as the processing target to the connection
22 solution list, and excludes the selected connection from
23 the connection solution list and adds the selected
24 connection to the connection candidate list, and
25 a taboo connection list registration procedure

26 which, when the priority and band of the connection
27 candidate as the processing target are not more than
28 those of the selected connection, registers the
29 connection candidate as the processing target in a taboo
30 connection list,

31 wherein the comparison procedure sets, of the
32 connection candidates for which reservation is possible,
33 an uppermost connection candidate which is not
34 registered in the taboo connection list as the
35 connection candidate as the processing target.

12. A packet communication method according
2 to claim 10, characterized by further comprising
3 a selection procedure which selects, on the
4 basis of the connection candidate list sorted by the
5 connection candidate list sorting procedure, a
6 connection requiring no setting from a connection
7 solution list in which connections to be set are
8 registered,

9 a comparison procedure which sets, as a
10 connection candidate as a processing target, a
11 connection candidate for which reservation is possible
12 in the sorted connection candidate list and compares the
13 priority and band of the connection candidate as the
14 processing target with those of the selected connection,
15 a connection solution list creation/update
16 procedure which, when the priority and band of the
17 connection candidate as the processing target are more

18 than those of the selected connection, excludes the
19 connection candidate as the processing target from the
20 connection candidate list and adds the connection
21 candidate as the processing target to the connection
22 solution list, and excludes the selected connection from
23 the connection solution list and adds the selected
24 connection to the connection candidate list,

25 a taboo connection list registration procedure
26 which records the connection candidate as the processing
27 target in a taboo connection list together with the
28 current number of times of execution of the comparison
29 procedure, and

30 a taboo connection list delete procedure which
31 deletes, from the taboo connection list, a connection
32 candidate recorded together with the number of times of
33 execution which is smaller than the current number of
34 times of execution of the comparison procedure by not
35 less than a predetermined number,

36 wherein the comparison procedure sets, of the
37 connection candidates for which reservation is possible,
38 an uppermost connection candidate which is not
39 registered in the taboo connection list as the
40 connection candidate as the processing target.

13. A packet communication method according
2 to claim 11, characterized by further comprising
3 a route calculation procedure which calculates
4 a route when the uppermost connection in the connection

5 solution list between the transmission source
6 connectionless packet communication terminal and the
7 destination connectionless packet communication
8 terminal,

9 a connection setting procedure which, when a
10 transmission resource necessary for transmitting the
11 uppermost connection can be ensured in a transmission
12 link on the calculated route, controls the switching
13 function of the connection switch node to set the
14 uppermost connection, controls the transmission function
15 of the transmission source connectionless packet
16 communication terminal of the flow to transmit the flow
17 assigned to the uppermost connection by using the
18 connection, and excludes the uppermost connection from
19 the connection solution list, and

20 a connection solution list delete procedure
21 which, when the transmission resource cannot be ensured,
22 excludes the uppermost connection from the connection
23 solution list and adds the uppermost connection to the
24 connection candidate list.

14. A packet communication method according
2 to claim 12, characterized by further comprising
3 a route calculation procedure which calculates
4 a route when the uppermost connection in the connection
5 solution list between the transmission source
6 connectionless packet communication terminal and the
7 destination connectionless packet communication

8 terminal,
9 a connection setting procedure which, when a
10 transmission resource necessary for transmitting the
11 uppermost connection can be ensured in a transmission
12 link on the calculated route, controls the switching
13 function of the connection switch node to set the
14 uppermost connection, controls the transmission function
15 of the transmission source connectionless packet
16 communication terminal of the flow to transmit the flow
17 assigned to the uppermost connection by using the
18 connection, and excludes the uppermost connection from
19 the connection solution list, and
20 a connection solution list delete procedure
21 which, when the transmission resource cannot be ensured,
22 excludes the uppermost connection from the connection
23 solution list and adds the uppermost connection to the
24 connection candidate list.

15. A packet communication method according
2 to claim 13, characterized in that when the connection
3 solution list is empty, when the connection interface
4 cannot be reserved for any of the connection candidates
5 registered in the connection candidate list, or when the
6 transmission resource cannot be ensured for any of the
7 connections registered in the connection solution list,
8 one of a series of procedures including the flow list
9 sorting procedure, the connection candidate list
10 creation procedure, the connection candidate list

11 sorting procedure, the reservation procedure, the
12 selection procedure, the comparison procedure, the
13 connection solution list creation/update procedure, the
14 taboo connection list registration procedure, the route
15 calculation procedure, the connection setting procedure,
16 and the connection solution list delete procedure and a
17 series of procedures including the flow list sorting
18 procedure, the connection candidate list creation
19 procedure, the connection candidate list sorting
20 procedure, the reservation procedure, the selection
21 procedure, the comparison procedure, the connection
22 solution list creation/update procedure, the taboo
23 connection list registration procedure, the taboo
24 connection list delete procedure, the route calculation
25 procedure, the connection setting procedure, and the
26 connection solution list delete procedure is ended.

16. A packet communication method according
2 to claim 14, characterized in that when the connection
3 solution list is empty, when the connection interface
4 cannot be reserved for any of the connection candidates
5 registered in the connection candidate list, or when the
6 transmission resource cannot be ensured for any of the
7 connections registered in the connection solution list,
8 one of a series of procedures including the flow list
9 sorting procedure, the connection candidate list
10 creation procedure, the connection candidate list
11 sorting procedure, the reservation procedure, the

12 selection procedure, the comparison procedure, the
13 connection solution list creation/update procedure, the
14 taboo connection list registration procedure, the route
15 calculation procedure, the connection setting procedure,
16 and the connection solution list delete procedure and a
17 series of procedures including the flow list sorting
18 procedure, the connection candidate list creation
19 procedure, the connection candidate list sorting
20 procedure, the reservation procedure, the selection
21 procedure, the comparison procedure, the connection
22 solution list creation/update procedure, the taboo
23 connection list registration procedure, the taboo
24 connection list delete procedure, the route calculation
25 procedure, the connection setting procedure, and the
26 connection solution list delete procedure is ended.

17. A packet communication method according
2 to claim 7, characterized by further comprising a
3 notification interval setting procedure which causes the
4 traffic control apparatus to set a notification interval
5 of the statistical information for the connectionless
6 packet communication terminal,

7 wherein the notification procedure records the
8 statistical information for each flow for the received
9 packet at the set notification interval and notifies the
10 traffic control apparatus of the statistical
11 information, and

12 the flow list creation procedure updates the

13 flow list on the basis of the statistical information
14 sent from the connectionless packet communication
15 terminal.

18. A packet communication method according
2 to claim 7, characterized by further comprising a
3 threshold value setting procedure which causes the
4 traffic control apparatus to set a threshold value of
5 the band for each flow for the connectionless packet
6 communication terminal,

7 wherein the notification procedure records the
8 statistical information for each flow for the received
9 packet, and when the band of the recorded flow exceeds
10 the set threshold value, notifies the traffic control
11 apparatus of the statistical information of the flow
12 whose band exceeds the threshold value, and

13 the flow list creation procedure updates the
14 flow list on the basis of the statistical information
15 sent from the connectionless packet communication
16 terminal.

19. A packet communication method according
2 to claim 1, characterized by further comprising
3 in a connectionless packet transfer network
4 which is logically build on a connection network
5 comprising a transmission link having a connection
6 multiplex transmission function and a connection switch
7 node having a connection switching function by adding,
8 as a terminal function unit, a connectionless packet

9 transfer node serving as the frame transfer apparatus
10 and a connectionless packet communication terminal
11 serving as the packet transfer apparatus to the
12 connection network, when communication is to be executed
13 between the connectionless packet communication
14 terminals,

15 a transfer node selection procedure which
16 selects, as a connection setting target, a
17 connectionless packet transfer node for which the number
18 of connection switch nodes arranged between the
19 connectionless packet transfer node and a destination
20 connectionless packet communication terminal to receive
21 a packet is minimum,

22 a first connection setting procedure which
23 causes a control apparatus serving as the network
24 control server to control the connection switch node to
25 set a first connection between a transmission source
26 connectionless packet communication terminal to transmit
27 the packet and the connectionless packet transfer node
28 as the setting target, and

29 a second connection setting procedure which
30 causes the control apparatus to control the connection
31 switch node to set a second connection between the
32 connectionless packet transfer node as the setting
33 target and the destination connectionless packet
34 communication terminal.

20. A packet communication method according

2 to claim 19, characterized by further comprising
3 a transmission setting procedure which causes
4 the control apparatus to control the transmission source
5 connectionless packet communication terminal to transmit
6 the packet from the transmission source connectionless
7 packet communication terminal to the destination
8 connectionless packet communication terminal by using
9 the first connection, and
10 a transfer setting procedure which causes the
11 control apparatus to control the connectionless packet
12 transfer node as the setting target to transfer, to the
13 second connection, the packet from the transmission
14 source connectionless packet communication terminal to
15 the destination connectionless packet communication
16 terminal.

21. A packet communication method according
2 to claim 1, characterized by further comprising
3 in a connectionless packet transfer network
4 which is logically build on a connection network
5 comprising a transmission link having a connection
6 multiplex transmission function and a connection switch
7 node having a connection switching function by adding,
8 as a terminal function unit, a connectionless packet
9 transfer node serving as the frame transfer apparatus
10 and a connectionless packet communication terminal
11 serving as the packet transfer apparatus to the
12 connection network, when communication is to be executed

13 between the connectionless packet communication
14 terminals,
15 a first transfer node selection procedure
16 which selects, as a first connection setting target, a
17 connectionless packet transfer node for which the number
18 of connection switch nodes arranged between the
19 connectionless packet transfer node and a transmission
20 source connectionless packet communication terminal to
21 transmit a packet is minimum,
22 a second transfer node selection procedure
23 which selects, as a second connection setting target, a
24 connectionless packet transfer node for which the number
25 of connection switch nodes arranged between the
26 connectionless packet transfer node and a destination
27 connectionless packet communication terminal to receive
28 the packet is minimum,
29 a first connection setting procedure which
30 causes a control apparatus serving as the network
31 control server to control the connection switch node to
32 set a first connection between the connectionless packet
33 transfer node as the first setting target and the
34 connectionless packet transfer node as the second
35 setting target,
36 a second connection setting procedure which
37 causes the control apparatus to control the connection
38 switch node to set a second connection between the
39 transmission source connectionless packet communication

40 terminal and the connectionless packet transfer node as
41 the first setting target, and
42 a third connection setting procedure which
43 causes the control apparatus to control the connection
44 switch node to set a third connection between the
45 connectionless packet transfer node as the second
46 setting target and the destination connectionless packet
47 communication terminal.

22. A packet communication method according
2 to claim 21, characterized by further comprising
3 a transmission setting procedure which causes
4 the control apparatus to control the transmission source
5 connectionless packet communication terminal to transmit
6 the packet from the transmission source connectionless
7 packet communication terminal to the destination
8 connectionless packet communication terminal by using
9 the second connection,
10 a first transfer setting procedure which
11 causes the control apparatus to control the
12 connectionless packet transfer node as the first setting
13 target to transfer, to the first connection, the packet
14 from the transmission source connectionless packet
15 communication terminal to the destination connectionless
16 packet communication terminal, and
17 a second transfer setting procedure which
18 causes the control apparatus to control the
19 connectionless packet transfer node as the second

20 setting target to transfer, to the third connection, the
21 packet from the transmission source connectionless
22 packet communication terminal to the destination
23 connectionless packet communication terminal.

23. A packet communication method according
2 to claim 1, characterized by further comprising
3 in a connectionless packet transfer network
4 which is logically build on a connection network
5 comprising a transmission link having a connection
6 multiplex transmission function and a connection switch
7 node having a connection switching function by adding,
8 as a terminal function unit, a connectionless packet
9 transfer node serving as the frame transfer apparatus
10 and a connectionless packet communication terminal
11 serving as the packet transfer apparatus to the
12 connection network, when communication is to be executed
13 between the connectionless packet communication
14 terminals,

15 a first transfer node selection procedure
16 which selects, as a first connection setting target, a
17 connectionless packet transfer node in a first area to
18 which a transmission source connectionless packet
19 communication terminal to transmit a packet belongs,

20 a second transfer node selection procedure
21 which selects, as a second connection setting target, a
22 connectionless packet transfer node in a second area to
23 which a destination connectionless packet communication

24 terminal to receive the packet belongs,
25 a third transfer node selection procedure
26 which selects, as a third connection setting target, a
27 connectionless packet transfer node for which the number
28 of connection switch nodes arranged between the
29 connectionless packet transfer node and the transmission
30 source connectionless packet communication terminal is
31 minimum,

32 a fourth transfer node selection procedure
33 which selects, as a fourth connection setting target, a
34 connectionless packet transfer node for which the number
35 of connection switch nodes arranged between the
36 connectionless packet transfer node and the destination
37 connectionless packet communication terminal is minimum,

38 a first connection setting procedure which
39 causes a control apparatus serving as the network
40 control server to control the connection switch node to
41 set a first connection between the connectionless packet
42 transfer node as the first setting target and the
43 connectionless packet transfer node as the second
44 setting target,

45 a second connection setting procedure which
46 causes the control apparatus to control the connection
47 switch node to set a second connection between the
48 transmission source connectionless packet communication
49 terminal and the connectionless packet transfer node as
50 the third setting target,

51 a third connection setting procedure which
52 causes the control apparatus to control the connection
53 switch node to set a third connection between the
54 connectionless packet transfer node as the third setting
55 target and the connectionless packet transfer node as
56 the first setting target,

57 a fourth connection setting procedure which
58 causes the control apparatus to control the connection
59 switch node to set a fourth connection between the
60 connectionless packet transfer node as the fourth
61 setting target and the destination connectionless packet
62 communication terminal, and

63 a fifth connection setting procedure which
64 causes the control apparatus to control the connection
65 switch node to set a fifth connection between the
66 connectionless packet transfer node as the second
67 setting target and the connectionless packet transfer
68 node as the fourth setting target.

24. A packet communication method according
2 to claim 23, characterized by further comprising
3 a transmission setting procedure which causes
4 the control apparatus to control the transmission source
5 connectionless packet communication terminal to transmit
6 the packet from the transmission source connectionless
7 packet communication terminal to the destination
8 connectionless packet communication terminal by using
9 the second connection,

10 a first transfer setting procedure which
11 causes the control apparatus to control the
12 connectionless packet transfer node as the third setting
13 target to transfer, to the third connection, the packet
14 from the transmission source connectionless packet
15 communication terminal to the destination connectionless
16 packet communication terminal,

17 a second transfer setting procedure which
18 causes the control apparatus to control the
19 connectionless packet transfer node as the first setting
20 target to transfer, to the first connection, the packet
21 from the transmission source connectionless packet
22 communication terminal to the destination connectionless
23 packet communication terminal,

24 a third transfer setting procedure which
25 causes the control apparatus to control the
26 connectionless packet transfer node as the second
27 setting target to transfer, to the fifth connection, the
28 packet from the transmission source connectionless
29 packet communication terminal to the destination
30 connectionless packet communication terminal, and

31 a fourth transfer setting procedure which
32 causes the control apparatus to control the
33 connectionless packet transfer node as the fourth
34 setting target to transfer, to the fourth connection,
35 the packet from the transmission source connectionless
36 packet communication terminal to the destination

37 connectionless packet communication terminal.

25. A packet communication method according
2 to claim 23, characterized in that the connectionless
3 packet transfer node as the third setting target and the
4 connectionless packet transfer node as the first setting
5 target, which are present in the first area, are
6 connected through a plurality of connectionless packet
7 transfer nodes and connections present in the first
8 area, and the connectionless packet transfer node as the
9 fourth setting target and the connectionless packet
10 transfer node as the second setting target, which are
11 present in the second area, are connected through a
12 plurality of connectionless packet transfer nodes and
13 connections present in the second area.

26. A packet communication method according
2 to claim 19, characterized by further comprising
3 a notification procedure which records, as
4 statistical information, a band of each flow defined by
5 a pair of the transmission source address and
6 destination address for the packet transmitted/received
7 in the connectionless packet transfer node and notifies
8 the control apparatus of the recorded statistical
9 information, and
10 a flow list creation procedure which causes
11 the control apparatus to create a flow list in which
12 information containing the transmission source address,
13 destination address, and band is registered for each

14 flow, on the basis of the statistical information sent
15 from the connectionless packet transfer node,
16 wherein when a connectionless packet transfer
17 node for which a sum of bands of pass flows exceeds a
18 predetermined threshold value is detected by the flow
19 list in setting the connection, a connection which does
20 not pass through the connectionless packet transfer node
21 is set.

27. A packet communication method according
2 to claim 21, characterized by further comprising
3 a notification procedure which records, as
4 statistical information, a band of each flow defined by
5 a pair of the transmission source address and
6 destination address for the packet transmitted/received
7 in the connectionless packet transfer node and notifies
8 the control apparatus of the recorded statistical
9 information, and

10 a flow list creation procedure which causes
11 the control apparatus to create a flow list in which
12 information containing the transmission source address,
13 destination address, and band is registered for each
14 flow, on the basis of the statistical information sent
15 from the connectionless packet transfer node,
16 wherein when a connectionless packet transfer
17 node for which a sum of bands of pass flows exceeds a
18 predetermined threshold value is detected by the flow
19 list in setting the connection, a connection which does

20 not pass through the connectionless packet transfer node
21 is set.

28. A packet communication method according
2 to claim 23, characterized by further comprising
3 a notification procedure which records, as
4 statistical information, a band of each flow defined by
5 a pair of the transmission source address and
6 destination address for the packet transmitted/received
7 in the connectionless packet transfer node and notifies
8 the control apparatus of the recorded statistical
9 information, and

10 a flow list creation procedure which causes
11 the control apparatus to create a flow list in which
12 information containing the transmission source address,
13 destination address, and band is registered for each
14 flow, on the basis of the statistical information sent
15 from the connectionless packet transfer node,
16 wherein when a connectionless packet transfer
17 node for which a sum of bands of pass flows exceeds a
18 predetermined threshold value is detected by the flow
19 list in setting the connection, a connection which does
20 not pass through the connectionless packet transfer node
21 is set.