

planetmath.org

Math for the people, by the people.

example of Banach algebra which is not a C^* -algebra for any involution

 ${\bf Canonical\ name} \quad {\bf Example Of Banach Algebra Which Is Not A Calgebra For Any Involution}$

Date of creation 2013-03-22 17:25:54 Last modified on 2013-03-22 17:25:54 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 5

Author asteroid (17536)

Entry type Example Classification msc 46L05

Defines finite dimensional C^* -algebras are semi-simple

Consider the Banach algebra $\mathcal{A} = \left\{ \begin{bmatrix} \lambda I_n & A \\ 0 & \lambda I_n \end{bmatrix} : \lambda \in \mathbb{C}, A \in Mat_{n \times n}(\mathbb{C}) \right\}$ with the usual matrix operations and matrix norm, where I_n denotes the identity matrix in $Mat_{n \times n}(\mathbb{C})$.

Claim - \mathcal{A} is not a http://planetmath.org/CAlgebra C^* -algebra for any involution *.

To prove the above claim we will give a proof of a more general fact about finite dimensional C^* -algebras, which clearly shows the for a Banach algebra to be a C^* -algebra for some involution.

Theorem - Every finite dimensional C^* -algebra is semi-simple, i.e. its Jacobson radical is $\{0\}$.

Proof: Let \mathcal{B} be a finite dimensional C^* -algebra. Let a be an element of $J(\mathcal{B})$, the Jacobson radical of \mathcal{B} .

 $J(\mathcal{B})$ is an ideal of \mathcal{B} , so $a^*a \in J(\mathcal{B})$.

The Jacobson radical of a finite dimensional algebra is nilpotent, therefore there exists $n \in \mathbb{N}$ such that $(a^*a)^n = 0$. Then, by the C^* condition and the fact that a^*a is selfadjoint,

$$0 = \|(a^*a)^{2^n}\| = \|a^*a\|^{2^n} = \|a\|^{2^{n+1}}$$

so a = 0 and $J(\mathcal{B})$ is trivial. \square

We now prove the above claim.

Proof of the claim: It is easy to see that $\left\{\begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix} : A \in Mat_{n \times n}(\mathbb{C}) \right\}$ is the only maximal ideal of \mathcal{A} . Therefore the Jacobson radical of \mathcal{A} is not trivial.

By the theorem we conclude that there is no involution * that makes $\mathcal A$ into a C^* -algebra. \square

Remark - It could happen that there were no involutions in \mathcal{A} and so the above claim would be uninteresting. That's not the case here. For example, one can see that $[a_{i,j}] \longrightarrow [\overline{a}_{2n+1-j,2n+1-i}]$ defines an involution in \mathcal{A} (this is just the taken over the other diagonal of the matrix).