

Cálculo - Análise e Desenvolvimento de Sistemas

Prova 04

Aluno:	Nota:
--------	-------

Data: 17/07/2020

Resolva as integrais abaixo:

1.
$$\int \left(\frac{4}{x^5} + \sqrt[4]{x^3} - 3x^8 + 4\right) dx$$
 (1,0)

2.
$$\int_2^3 (2x^2 + 2) \ dx$$
 (1,5)

3.
$$\int 6x^5(x^6+3)^9dx$$
 (1,5)

4.
$$\int x^3 (3x^4 + 1)^7 dx$$
 (1,5)

5.
$$\int x^4 (6x^5 - 1)^5 dx$$
 (1,5)

6.
$$\int \frac{10x^4}{2x^5 + 1} dx$$
 (1,5)

7.
$$\int \frac{x^2}{(5x^3+2)^6} dx$$
 (1,5)

Boa prova!

Regras básicas de integração

1. $\int k \ dx = k \int dx = k \ x + c$, k é uma constante

$$2. \quad \int k f(x) dx = k \int f(x) dx$$

3.
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

4.
$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

Algumas integrais imediatas

$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$	$\int \frac{1}{x} dx = \ln x + c$
$\int a^x dx = \frac{a^x}{\ln a} + c; \ 0 < a \neq -1$	$\int e^x dx = e^x + c$
$\int sen x dx = -\cos x + c$	$\int \cos x dx = sen x + c$

Derivadas das principais funções elementares

f(x)	f'(x)	Observações
С	0	$c \in \mathcal{R}$
x^n	$n x^{n-1}$	
$\ln x$	$\frac{1}{x}$	<i>x</i> > 0
a^x	$a^x \ln a$	$a > 0 e a \neq 1$
sen x	cos x	
cos x	-sen x	
tg x	sec ² x	

Regras de derivação

•	
(u+v)'	u' + v'
(u-v)'	u'-v'
(kf)'	kf'
$(u \ v)'$	u'v + uv'
$\left(\frac{u}{v}\right)'$	$\frac{u'v - u \ v'}{v^2}$
Regra da cadeia	f'(x) = f'(u).u'