Competitive Assessment of Scala vs. PySpark

Max Moro Nikhil Gupta

Distributed Computing

The Need

As the size of data increases, it needs to be stored and computed over distributed systems

The Solution

MapReduce and Hadoop

Uses a network of many computers for massive amounts of data and computation

The Evolution

Spark (Apache)

Faster, Distributed, in Memory

Spark

Latest Technology

Quickly and easily handle Big Data

Flexible Alternative to MapReduce

Works also with AWS, Cassandra, and more

100x faster then MapReduce

Keeps data in memory (vs. hard disk for MapReduce)

Distributed data collection

Scala

General purpose programming Language

- From Object-Oriented to Functional Programming
- Java VM

Overcome Java's shortcomings

- No boilerplates
- Easy to code

Used for

- Web App
- Data Streaming
- Parallel Processing
- Analysis using Spark

PySpark

What?

Spark API's for Python programming language

Why?

- Python is the most popular language for machine learning
- Allows easier interfacing to existing applications built in Python

Project Goal 1

Which one is Faster?

Scala Python (PySpark)

Project Goal 2

Should a company invest in a new environment like Scala?

Design of Experiment

Data Generation

Random Data Generator in Python

Query Execution

Executed in Random order in each run.

Blocking

By Machine

By Setup

By Data Size

By Operation

Design Metrics

Query Execution Time

Avoid Human Error

Automated Timing Code

Logging Capability

Throughput

Does performance change with data size?

Execution Time normalized for data size MB processed / second

Datasets - Rows

10MBs 10K rows

100MBytes 100K rows

200MBytes 200K rows

300MBytes 300k rows

500MBytes 500k rows

Datasets - Columns

- 20 Columns
- Random positive and negative numbers
- 20 columns
- Random positive and negative numbers
- 10 columns
- From 5 to 10 words per sentence
- Randomly Generated from a 400k word dictionary
- 10 columns
- From 1k to 50k groups per dataset
- 2 to 3 word identifiers (factors) used for grouping
- Randomly Generated from a 400k word dictionary

Queries

Aggregate Operations Row Operations Column Operations Inner Join Group By Pivot Ranking • Outer Join Expression • Full Join Merge Sum • Split Lagging • Sort Calculation

6 runs per each Dataset

Environments

AWS -MapReduce

- Virtual Cluster Setup
 - Using Databricks
 - 1 master and 3 slaves

Data Points

We completed a total of 300 tests, with 33 queries each, obtaining 9,900 data points used to complete the analysis.

Statistical Analysis

Memory Flush

Warm Cache Runs
Discard first run

Statistical Analysis

Right Skewed Data
Unequal Variance
Wilcoxon Rank Sum Test

Results – Environments

Results – Datasets

Comparing Datsets - All Environments

Results – Row Operations

Rows Operations - By Environment - Run/Shift (All Operations)

Rows Operations - By Environment - Writing (All Operations)

Results – Row Operations

Rows Operations - By Environment - Filtering (All Operations)

Results – Column Operations

Columns Operations - By Environment - Splitting (All Operations)

Columns Operations - By Environment - Merging (All Operations)

PySpark

Results – Column Operations

Columns Operations - By Environment - Sorting (All Operations)

Columns Operations - By Environment - Mathematics (All Operations)

Results – Column Operations

Columns Operations - By Environment - Joining (All Operations)

Results – Aggregate Operations

Aggregate Operations - By Environment - Ranking (All Operations)

Aggregate Operations - By Environment - Grouping (All Operations)

-- PySpark -- Scala

Results – Mixed Operations

Mixed Operations - By Environment - Pivots (All Operations)

Result Summary

Row	Filtering	Tie
Operations	Running Sum	Scala Faster
	Lagging	Scala Faster
	Writing	Scala Faster
Column Operations	Split & Merge	Scala Faster
	Sort	Scala Faster
	Join	Scala slightly faster
	Calculation	Tie
Aggregate and Mixed Operations	Group By	Scala slightly faster
	Ranking	Scala faster
	Pivot	Tie

Key Findings

Setup

- AWS has some complexity to setup Spark and libraries
- Databricks makes the process much easier

Memory

- Spark uses a lot of memory
- A 500MB dataset requires 8GB of memory to run complex gueries

Scala

- Similar to Java
- Fast but some limitations on libraries
- Many functions are still in beta

PySpark

- Complex to setup in Linux
- Scala-like commands + flexibility of Python
- API data transfer has a performance penalty

Conclusion

For Data Scientists, what is the best Big Data Solution?

Which one is faster?

- Scala is faster (compared to PySpark) for most operations
- Difference in performance increases as machines become more powerful (e.g. on distributed cluster)

Is it worth learning a new faster language?

- Scala is not yet mature as Python
- Use Scala for larger datasets if ML algorithms are available
- Use PySpark for data manipulation + Python if ML algorithms not available in Scala.

Reproducible Research

Code for queries and complete analysis is available on GitHub

