FYMM/MMP IIIb 2020 Problem Set 3

Please submit your solutions for grading by Monday 16.11. in Moodle.

1. We define a map $f: S^1 \to S^2$ such that in local coordinates $\phi \in (0, 2\pi)$ on S^1 and $(\theta, \varphi) \in (0, \pi) \times (0, 2\pi)$ on S^2 it is

$$\phi \mapsto f(\phi) = (\theta(\phi), \varphi(\phi)) = (\frac{1}{2}\phi, \phi)$$
.

Consider the tangent vector

$$V = \dot{\phi}(t) \frac{\partial}{\partial \phi}$$

of the curve $c(t) = \phi(t)$ on S^1 , $t \in (0, 2\pi)$. Calculate V and its push f_*V explicitly when the curve is

- (a) $c(t) = \phi(t) = at$ where a > 0 is a constant
- (b) $c(t) = \phi(t) = 2\pi \sin t$.

Can you visualize the vector field f_*V ? (You don't have to draw it, but think about how it would look like on S^2 .)

2. Let X, Y and Z be smooth vector fields on a differentiable manifold M and f a smooth function on M. Consider the Lie bracket [X,Y] which is defined

$$[X,Y]f = X(Yf) - Y(Xf).$$

(Smooth) vector fields can be expressed in a coordinate basis as $X = X^{\mu}\partial_{\mu}$, where X^{μ} is a smooth function and $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$. Show that XY is not a vector field (i.e. it cannot be expressed in the form given above). Show that [X, Y] is a smooth vector field and write down its expression with derivatives, X^{μ} 's and Y^{μ} 's. Finally, show that the following identities are true

$$[X, fY] = (Xf)Y + f[X, Y] \text{ and } [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.$$

The latter is the Jacobi identity, which you might know from quantum mechanics. It can be shown that smooth vector fields and the Lie bracket form a Lie algebra. We will return to Lie algebras later on. (*Hint:* Despite the long explanations, the problem is a straightforward calculation.)

3. Hamilton's Equations as an Example of a Flow Generated by Vector Field. It should be familiar from Classical Mechanics that a system with N degrees of freedom can be described by generalized coordinates q_i and canonical momenta p_i , where i = 1, ..., N. The generalized coordinates and canonical momenta can be thought as coordinates of a 2N-dimensional manifold M, called the *phase space*. The dynamics of the system is given by the Hamiltonian, $H: M \to \mathbb{R}$, $H = H(q_1, ..., q_N, p_1, ..., p_N)$; its equations of motion can be written as a group of first order differential equations

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}; \ \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}.$$

These are called the Hamilton's equations. We will next reformulate them in a different way. Let's define a vector field X_H in the phase space M,

$$X_{H} = \sum_{i=1}^{N} \left\{ \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}} - \frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}} \right\}.$$

The vector field X_H gives rise to integral curves $x_H(t) = (q_1(t), \dots, q_N(t), p_1(t), \dots, p_N(t))$ on the manifold M.

- (a) Show that the equation defining the integral curves $x_H(t)$ is equivalent to Hamilton's equations.
- (b) Let $M = \mathbb{R}^2$, i.e. N = 1, and $H = \frac{1}{2}(p^2 + q^2)$. Find X_H and the generated flow $\sigma(t, x_0)$ where $x_0 = (q_0, p_0) = (1, 0)$. Illustrate it by a figure.
- (c) As before, but now with $H = \frac{1}{2}(p^2 q^2)$ and $x_0 = (1, 1)$.
- (d) Now $M = T^2$, with coordinates $q, p \in [0, 2\pi]$, and $H = \cos(p)$. Find the equation of the integral curve. Draw a figure of the curves on T^2 .
- 4. Let

$$X = X^{\mu}(x) \frac{\partial}{\partial x^{\mu}}$$

be a vector field and

$$g = g_{\mu\nu}(x)dx^{\mu} \otimes dx^{\nu}$$

be a (0,2)-tensor. Calculate the Lie derivative $\mathcal{L}_X g$ following the examples in the lecture notes.