BLAS Fortran 77 prototypes

Level 1 BLAS: vector, O(n) operations

types	name	(size	e arguments)	description	equation	flops	data
s, d, c, z	axpy	(n,	alpha, x, incx, y, incy)	update vector	$y = y + \alpha x$	2n	2 <i>n</i>
s, d, c, z, cs, zd	scal	(n,	alpha, x, incx)	scale vector	$y = \alpha y$	n	n
s, d, c, z	copy	(n,	x, incx, y, incy)	copy vector	y = x	0	2n
s, d, c, z	swap	(n,	x, incx, y, incy)	swap vectors	$x \leftrightarrow y$	0	2n
s, d	dot	(n,	x, incx, y, incy)	dot product	$=x^Ty$	2n	2n
c, z	dotu	(n,	x, incx, y, incy)	(complex)	$=x^Ty$	2n	2n
c, z	dotc	(n,	x, incx, y, incy)	(complex conj)	$=x^{H}y$	2n	2n
sds, ds	dot	(n,	x, incx, y, incy)	(internally double precision)	$=x^Ty$	2n	2n
s, d, sc, dz	nrm2	(n,	x, incx)	2-norm	$= x _2$	2 <i>n</i>	n
s, d, sc, dz	asum	(n,	x, incx)	1-norm	$= \ \operatorname{Re}(x)\ _1 + \ \operatorname{Im}(x)\ _1$	n	n
s, d, c, z	i_amax	(n,	x, incx)	∞-norm	$= \operatorname{argmax}_{i}(\operatorname{Re}(x_{i}) + \operatorname{Im}(x_{i}))$	n	n
s, d, c, z	rotg	(a, b, c, s)	generate plane (Given's) rotation (c real, s complex)		O(1)	O(1)
s, d, c, z †	rot	(n,	x, inex, y, iney, c, s)	apply plane rotation (c real, s complex)		6 <i>n</i>	2n
cs, zd	rot	(n,	x, inex, y, iney, c, s)	apply plane rotation (c & s real)		6 <i>n</i>	2n
s, d	rotmg	(d1, d2, a, b, param)	generate modified plane rotation		O(1)	O(1)
s, d	rotm	(n,	x, incx, y, incy, param)	apply modified plane rotation		6 <i>n</i>	2n

Level 2 BLAS: matrix-vector, $O(n^2)$ operations

types	name (options	size arguments)	description	equation	flops	data
s, d, c, z	gemv (trans,	m, n, alpha, A, ldA, x, incx, be	ta, y, incy)	general matrix-vector multiply	$y = \alpha A^* x + \beta y$	2mn	mn
c, z	hemv (uplo,	n, alpha, A, ldA, x, incx, be	ta, y, incy)	Hermitian matrix-vector mul.	$y = \alpha A x + \beta y$	$2n^2$	$n^{2}/2$
s, d †	symv (uplo,	n, alpha, A, ldA, x, incx, be	ta, y, incy)	symmetric matrix-vector mul.	$y = \alpha Ax + \beta y$	$2n^2$	$n^{2}/2$
s, d, c, z	trmv (uplo, trans, diag	g, n , A , ldA , x , $incx$)	triangular matrix-vector mul.	$x = A^*x$	n^2	$n^{2}/2$
s, d, c, z	trsv (uplo, trans, diag	g, n, A, ldA, x, incx)	triangular solve	$x = A^{-*}x$	n^2	$n^{2}/2$
s, d	ger (m, n, alpha, x, incx, y, incy,	A, ldA)	general rank-1 update	$A = A + \alpha x y^T$	2mn	mn
c, z	geru (m, n, alpha, x, incx, y, incy,	A, ldA)	general rank-1 update (complex)	$A = A + \alpha x y^T$	2mn	mn
c, z	gerc (m, n, alpha, x, incx, y, incy,	A, ldA)	general rank-1 update (complex conj)	$A = A + \alpha x y^H$	2mn	mn
s, d †	syr (uplo,	n, alpha, x, incx,	A, ldA)	symmetric rank-1 update	$A = A + \alpha x x^T$	n^2	$n^{2}/2$
c, z	her (uplo,	n, alpha, x, incx,	A, ldA)	Hermitian rank-1 update	$A = A + \alpha x x^H$	n^2	$n^{2}/2$
s, d	syr2 (uplo,	n, alpha, x, incx, y, incy,	A, ldA)	symmetric rank-2 update	$A = A + \alpha x y^T + \alpha y x^T$	$2n^2$	$n^{2}/2$
c, z	her2 (uplo,	n, alpha, x, incx, y, incy,	A, ldA)	Hermitian rank-2 update	$A = A + \alpha x y^H + y(\alpha x)^H$	$2n^2$	$n^{2}/2$

Level 2 BLAS, band storage

types	name (options	size bandwid	th arguments	description	equation
s, d, c, z	gbmv (trans,	m, n, kl, ku,	alpha, A, ldA, x, incx, beta, y, incy)	band general matrix-vector m	ultiply $y = \alpha A^* x + \beta y$
c, z	hbmv (uplo,	n, k,	alpha, A, ldA, x, incx, beta, y, incy)	band Hermitian matrix-vector	mul. $y = \alpha Ax + \beta y$
s, d	sbmv (uplo,	n, k,	alpha, A, ldA, x, incx, beta, y, incy)	band symmetric matrix-vecto	r mul. $y = \alpha Ax + \beta y$
s, d, c, z	tbmv (uplo, trans, diag	, n, k,	A, IdA, x, inex	band triangular matrix-vector	$mul. x = A^*x$
s, d, c, z	tbsv (uplo, trans, diag	n, k,	A, ldA, x, incx)	band triangular solve	$x = A^{-*}x$

Level 2 BLAS, packed storage

types	name (options	siz	e arguments)	description	equation	flops	data
c, z	hpmv (uplo,	n,	alpha, Ap,	x, incx	, beta, y, incy)	packed Hermitian matrix-vector mul.	$y = \alpha A x + \beta y$	$2n^2$	$n^2/2$
s, d †	spmv (uplo,	n,	alpha, Ap,	x, incx	, beta, y, incy)	packed symmetric matrix-vector mul.	$y = \alpha A x + \beta y$	$2n^2$	$n^{2}/2$
s, d, c, z	tpmv (uplo, trans, diag	g, n,	Ap,	x, incx)	packed triangular matrix-vector mul.	$x = A^*x$	n^2	$n^{2}/2$
s, d, c, z	tpsv (uplo, trans, diag	g, n,	Ap,	x, incx)	packed triangular solve	$x = A^{-*}x$	n^2	$n^{2}/2$
s, d †	spr (uplo,	n,	alpha, x, incx	,	Ap)	packed symmetric rank-1 update	$A = A + \alpha x x^T$	n^2	$n^{2}/2$
c, z	hpr (uplo,	n,	alpha, x, incx	,	Ap)	packed Hermitian rank-1 update	$A = A + \alpha x x^H$	n^2	$n^{2}/2$
s, d	spr2 (uplo,	n,	alpha, x, incx	, y, incy	, Ap)	packed symmetric rank-2 update	$A = A + \alpha x y^T + \alpha y x^T$	$2n^2$	$n^{2}/2$
c, z	hpr2 (uplo,	n,	alpha, x, incx	, y, incy	, Ap)	packed Hermitian rank-2 update	$A = A + \alpha x y^H + y(\alpha x)^H$	$2n^2$	$n^{2}/2$

Level 3 BLAS: matrix-matrix, $O(n^3)$ operations

types	name	(optio	ons	size	arguments)	description	equation	flops	data
s, d, c, z	gemm	(transA, transB,	m, n, k,	alpha, A, ldA, B, ldB	, beta, C, ldC)	general matrix-matrix multiply	$C = \alpha A^* B^* + \beta C$	2mnk	mk + nk + mn
s, d, c, z	gemmt	r (uplo,	transA, transB,	m, n, k,	alpha, A, ldA, B, ldB	, beta, C, ldC)	general matrix-matrix multiply	$uplo(C) = uplo(\alpha A^*B^* + \beta C)$		mk + nk + mn/2
s, d, c, z	symm	(side,	uplo,	m, n,	alpha, A, ldA, B, ldB	, beta, C, ldC)	symmetric matrix-matrix mul.	$C = \alpha AB + \beta C$	$2m^2n$	$m^2 + mn$ (left)
c, z	hemm	(side,	uplo,	m, n,	alpha, A, ldA, B, ldB	, beta, C, ldC)	Hermitian matrix-matrix mul.	$C = \alpha AB + \beta C$	$2m^2n$	$m^2 + mn$ (left)
s, d, c, z	trmm	(side,	uplo, transA, diag,	m, n,	alpha, A, ldA, B, ldB)	triangular matrix-matrix mul.	$B = \alpha A^* B$ or $B = \alpha B A^*$		$m^2 + mn$ (left)
s, d, c, z	trsm	(side,	uplo, transA, diag,	m, n,	alpha, A, ldA, B, ldB)	triangular solve matrix	$B = \alpha A^{-*}B$ or $B = \alpha BA^{-*}$	m^2n	$m^2 + mn$ (left)
s, d, c, z	syrk	(uplo, trans,	n, k,	alpha, A, ldA,	beta, C, ldC)	symmetric rank-k update	$C = \alpha A A^T + \beta C$	kn^2	$n^2/2$
c, z	herk	(uplo, trans,	n, k,	alpha, A, ldA,	beta, C, ldC)	Hermitian rank-k update	$C = \alpha AA^H + \beta C$	kn^2	$n^2/2$
s, d, c, z	syr2k	(uplo, trans,	n, k,	alpha, A, ldA, B, ldB	, beta, C, ldC)	symmetric rank-2k update	$C = \alpha A B^T + \bar{\alpha} B A^T + \beta C$	$2kn^2$	$n^2/2$
c, z	her2k	(uplo, trans,	n, k,	alpha, A, ldA, B, ldB	, beta, C, ldC)	Hermitian rank-2k update	$C = \alpha A B^H + \bar{\alpha} B A^H + \beta C$	$2kn^2$	$n^2/2$

 A^* denotes A, A^T , or A^H ;

 A^{-*} denotes A^{-1} , A^{-T} , or A^{-H} , depending on options and data type.

The destination matrix is $m \times n$ or $n \times n$. For matrix-matrix, the common dimension of A^* and B^* is k.

Flops and data are most significant term only. Where applicable, flops and data are for side=left; swap m, n for side=right. In complex, each mul becomes 6 flops and each add becomes 2 flops.

_	_	
Pre	fiva	26

s - real (float) d - double
c - complex z - double complex
ge - general gb - general banded
sy - symmetric sb - symmetric banded sp - symmetric packed
he - Hermitian hb - Hermitian banded hp - Hermitian packed
tr - triangular tb - triangular banded tp - triangular packed

† LAPACK adds complex routines [cz]rot,

and complex-symmetric routines for symv, spmv, syr, spr, but only with Fortran calling conventions, not in CBLAS.

Options

trans = 'N' o transpose: A, 'T' ranspose: A^T , 'C' onjugate transpose: A^H

uplo = 'U'pper triangular, 'L'ower triangular diag = 'N'on-unit triangular, 'U'nit triangular side = 'L'eft: *AB*, 'R'ight: *BA*

ldA is leading dimension of matrix A (major stride, number of rows of

parent matrix A). Use for submatrices.

For real matrices, trans = 'T' and 'C' are the same.

For Hermitian matrices, trans = 'T' is not allowed.

For complex symmetric matrices, trans = 'C' is not allowed.

References

Basic Linear Algebra Subprograms for Fortran Usage. Lawson, et al., 1979. An Extended Set of Fortran Basic Linear Algebra Subprograms. Dongarra, et al., 1988. A Set of Level 3 Basic Linear Algebra Subprograms. Lawson, et al., 1990.

BLAS Quick Reference Guide © 2007–2011, Mark Gates; 2011–2024, The University of Tennessee.

Licensed under Creative Commons Attribution 4.0 International.