Solving Heat Conduction and Convection Problems with Physics-informed Neural Networks

Wei Chen

China-UK Low Carbon College Shanghai Jiao Tong University

June, 13 2022

1 Overview

2 Methodology

3 Results

4 Discussion and conclusion

Solved problem

Overview

- Forward problem
 - 2D transient heat conduction,
 - 2D transient heat convection,
 - 1D transient heat conduction with thermal diffusivity as a variable
- Inverse problem of 1D transient heat conduction.

Overview

- Forward problem
 - 2D, conduction: finite difference method (FDM),
 - 2D, convection: OpenFOAM,
 - 1D, conduction: analytical solution,
- Inverse problem, 1D conduction: analytical solution.

Abstract framework[1]

For governing equation,

$$f := u_t + \mathcal{N}[u; \lambda]. \tag{1}$$

For boundary conditions or initial conditions,

$$g := u(\mathbf{x}, t) - u, \mathbf{x} \in \partial\Omega \tag{2}$$

Mean square error,

$$MSE = MSE_f + MSE_g, \tag{3}$$

2D, conduction I

Governing equations:

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T. \tag{4}$$

Loss functions for governing equation:

$$f(\mathbf{x},t) = T_t(\mathbf{x},t) - \alpha(T_{xx}(\mathbf{x},t) + T_{yy}(\mathbf{x},t)), \mathbf{x} \in \Omega, t \in [0,t_1],$$
 (5)

where
$$\mathbf{x} = (x, y)$$
, $T_t = \partial T/\partial t$, $T_{xx} = \partial^2 T/\partial x^2$ and $T_{yy} = \partial^2 T/\partial y^2$.

2D, conduction II

Figure 1: BCs and IC of 2D transient heat conduction

Network architecture.

Figure 2: Network architecture of 2D transient heat conduction

2D. convection I

The governing equations of 2D transient heat convection consist of 3 parts, continuity equation

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, (6)$$

momentum equation

$$\frac{\partial u}{\partial t} + \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -p_{x} + \nu \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right)
\frac{\partial v}{\partial t} + \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -p_{y} + \nu \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} \right),$$
(7)

2D, convection II

and energy equation

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right). \tag{8}$$

By introduction stream function ψ as

$$u = \frac{\partial \psi}{\partial x}, v = -\frac{\partial \psi}{\partial y},$$

the continuity equation is satisfied automatically.

Figure 3: BCs and IC of 2D transient heat convection

1D, conduction

BCs and IC,

$$\begin{cases}
T(-1,t) = 0 \\
T(1,t) = 0 \\
T(x,0) = 1.
\end{cases}$$
(9)

Loss function:

$$f(x,t,\alpha) = u_t(x,t) - \alpha u_{xx}(x,t). \tag{10}$$

Loss function:

$$f(x,t) = u_t(x,t) - \alpha u_{xx}(x,t), \qquad (11)$$

where α is a parameter of the neural networks¹.

 $^{^{1}}$ He et al. [2] treated lpha as an output neuron of a network and only solved a problem with spatial uniformly distributed α .

Table 1: Neural network's layers number

Problem	Layers
2D conduction	$3+10+20+40\times 3+20+10+5+1$
2D convection, velocity	$3 + 20 \times 8 + 2$
2D convection, energy	$3 + 20 \times 8 + 1$
1D conduction, $lpha$	$3 + 20 \times 8 + 1$
1D conduction, inverse	$3 + 10 + 20 + 40 \times 3 + 20 + 10 + 5 + 1$

2D, conduction I

Figure 4: time = 0 s

Figure 5: time = 0.05 s

2D, conduction III

Figure 6: time = 0.1 s

2D, conduction IV

Figure 7: time = 0.5 s

2D, conduction V

Figure 8: time = 1.0 s

2D, conduction VI

Figure 9: Line chart 1

2D, conduction VII

Figure 10: Line chart 2

2D, conduction VIII

Figure 11: Line chart 3

2D, conduction IX

Figure 12: Line chart 4

2D, conduction X

Figure 13: Line chart 5

2D, convection I

2D, convection II

Figure 14: Prediction value of 2D transient heat conduction

2D, convection III

Figure 15: Comparison between prediction and exact value of 2D transient heat convection

1D, conduction I

Figure 16: $\alpha = 0.2$, heatmap

1D, conduction II

Figure 17: $\alpha = 0.2$, sampling line chart

1D, conduction III

Figure 18: $\alpha = 0.6$, heatmap

1D, conduction IV

Figure 19: $\alpha = 0.6$, sampling line chart

1D, conduction V

Figure 20: $\alpha = 1.0$, heatmap

1D, conduction VI

Figure 21: $\alpha = 1.0$, sampling line chart

Training time

It is not precise, just as an additional information.

- 1 2D conduction: 1 hour
- 2D convection: 2-3 hours for two networks
- 3 1D conduction: less than 1 hour

They are much larger than the computational cost of traditional methods.

Inverse, 1D, conduction I

Algorithm 1 Training process for inverse problem without noise

- 1: Randomly select training points for governing equation
- 2: Randomly select some points with given temperature value according to the analytical solution

- 3: **for** epoch = 1 to 10 **do**
- 4: **while** The loss decrease **do**
- 5: Optimize the model
- 6: end while
- 7: Randomly select new training points for governing equation
- 8: end for

Inverse, 1D, conduction II

Figure 22: Trial 1 without noise

Inverse, 1D, conduction III

Figure 23: Trial 2 without noise

Inverse, 1D, conduction IV

Figure 24: Trial 3 without noise

Inverse, 1D, conduction V

Figure 25: Mean value of the three trials without noise

Inverse, 1D, conduction VI

Algorithm 2 Training process for inverse problem with noise

- 1: Randomly select training points for governing equation
- 2: Randomly select some points with given temperature value according to the analytical solution

Reculte 0000

- 3: Impose noise on the given temperature fields.
- 4: **for** epoch = 1 to 10 **do**
- 5: while The loss decrease do
- Optimize the model 6:
- end while 7.
- Randomly select new training points for governing equation
- 9: end for

Inverse, 1D, conduction VII

Figure 26: Results with noise

About the project

- II PINNs can solve some heat conduction and convection problem with acceptable accuracy.
- Taking training time into consideration, the PINNs' computational cost for forward problem is significantly higher than the traditional method.
- 3 PINNs is able to solve inverse problem with comparatively short training time and surprisingly low error.

About my achievement

Figure 27: Learning curve

- [1] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686-707, February 2019. ISSN 00219991. doi: 10.1016/j.jcp.2018.10.045. URL https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125.
- Zhili He, Futao Ni, Weiguo Wang, and Jian Zhang. A physics-informed deep learning method for solving direct and inverse heat conduction problems of materials. Materials Today Communications, 28:102719, September 2021. ISSN 23524928. doi: 10.1016/j.mtcomm.2021.102719. URL https://linkinghub.elsevier.com/retrieve/pii/S235249282100711X.