Лекция 7

Ilya Yaroshevskiy

2 апреля 2021 г.

Содержание

1 Полнота исчесления предикатов

1

- $\Gamma \vDash \alpha \alpha$ следует из Γ при всех оценках, что все $\gamma \in \Gamma$ $[\![\gamma]\!] = \mathcal{U}$, выполнено $[\![\alpha]\!] = \mathcal{U}$
- $x = 0 \vdash \forall x.x = 0$
- $x = 0 \not\vDash \forall x.x = 0$

Определение (Условие для корректности). Правила для кванторов по свободным перменным из Γ запрещены.

Тогда $\Gamma \vdash \alpha$ влечет $\Gamma \vDash \alpha$

1 Полнота исчесления предикатов

Определение. Γ — **непротиворечивое** множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ ни при каком α

Пример. Непротиворечивые:

- Ø
- $A \vee \neg A$

Противоречивые:

A&¬A

 Π римечание. Непротиворечивое множество замкнутых (не имеющая сводных перменных) бескванторных формул

Пример. $\{A\}, \{0=0\}$

Определение. Моделью для непротиворечивого множества замкнутых бескванторных формул Γ — такая модель, что каждая формула из Γ оценивается в Π

Определение. Полное непротиворечивое замкнутых бескванторных формул — такое, что для каждой замкнутой бескванторной формулы α : либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$

Обозначение. з.б. — замкнутая бескванторная. **непр. мн** — непротиворечивое множество

Теорема 1.1. Если Γ — непротиворечивое множество з.б. фомул и α — з.б. формула. То либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\}$ — непр. мн. з.б. формул

 \mathcal{A} оказательство. Пусть и $\Gamma \cup \{\alpha\}$ и $\Gamma \cup \{\neg \alpha\}$ Доделать

Теорема 1.2. Если Γ — непр. мн. з.б. фомул, то можно построить Δ — полное непр. мн. з.б. формул. $\Gamma \subseteq \Delta$ и в языке — счетное количество формул

 $\varphi_1, \varphi_2, \varphi_3, \ldots$ формулы з.б.

- $\Gamma_0 = \Gamma$
- $\Gamma_1 = \Gamma_0 \cup \{\varphi_1\}$ либо $\Gamma_0 \cup \{\neg \varphi_1\}$ смотря что непротиворечивое
- $\Gamma_2 = \Gamma_1 \cup \{\varphi_2\}$ либо $\Gamma_1 \cup \{\neg \varphi_2\}$

$$\Gamma^* = \bigcup_i \Gamma_i$$

Свойство 1. Γ^* — полное

Свойство 2. Γ^* — непрерывное

Доказательство. Пусть $\Gamma^* \vdash \beta \& \neg \beta$

Конечное доказательство $\gamma_1,\ldots\gamma_n$, часть из которых гипотезы: γ_1,\ldots,γ_k $\gamma_i\in\Gamma_{R_i}.$ Возьмем $\Gamma_{\max R_i}.$ Правда ли $\Gamma_{\max R_i}\vdash B\&\neg B$

Теорема 1.3. Любое полное непротиворечивое множество замкнутых бескванторных формул Γ имеет модель, т.е. существует оценка []: если $\gamma \in \Gamma$, то $[\![\gamma]\!] = M$

- $\llbracket f_0^n \rrbracket$ константа \Rightarrow " f_0^n "
- $[f_k^m(\Theta_1, \dots, \Theta_k)] \Rightarrow "f_k^m(" + [\Theta_1]] + ", " + \dots + ", " + [\Theta_k]] + ")"$
- $[\![P(\Theta_1,\ldots,\Theta_n)]\!] = egin{cases} \mathbb{M} & P(\Theta_1,\ldots,\Theta_n) \in \Gamma \\ \mathbb{J} & \text{иначе} \end{cases}$
- свободные переменные: Ø

Так построенные модель — модель для Γ . Индукция по количеству связок.

База очев.

Переход $\alpha \& \beta$. При этом

- 1. Если $\alpha, \beta \in \Gamma$ $[\![\alpha]\!] = И$ и $[\![\beta]\!] = И$ то $\alpha \& \beta \in \Gamma$
- 2. Если $\alpha, \beta \notin \Gamma$ $\llbracket \alpha \rrbracket \neq \mathbf{H}$ или $\llbracket \beta \rrbracket \neq \mathbf{H}$ то $\alpha \& \beta \notin \Gamma$

Аналогично для других операций

Теорема 1.4 (Геделя о полноте). Если Γ — полное неротиворечивое множество замкнутых(не бескванторных) фомул, то оно имеет модель

Следствие 1.4.1. Пусть $\models \alpha$, тогда $\vdash \alpha$

Доказательство. Пусть $\models \alpha$, но $\not\vdash \alpha$. Значит $\{\neg \alpha\}$ — непротиворечивое множество замкнутых формул. Тогда $\{\alpha\}$ или $\{\neg \alpha\}$ — непр. мн. з. ф. Пусть $\{\alpha\}$ — непр. мн. з.ф., а $\{\neg \alpha\}$ — противоречивое. При этом $\neg \alpha \vdash \beta \& \neg \beta$, $\neg \alpha \vdash \alpha$, $\beta \& \neg \beta \models \alpha$. $\neg \alpha \vdash \alpha$, $\alpha \vdash \alpha$. Значит $\vdash \alpha$

- $\Gamma \pi.м.з.ф.$
- перестроим Γ в Γ^{\triangle} п.н.м. **б.** з. ф.
- ullet по теореме о существование модели: M^{\triangle} модель для F^{\triangle}
- ullet покажем, что M^{\triangle} модель для $\Gamma-M$

 $\Gamma_0 = \Gamma$, где все формулы — в предварительной нормальной форме

Определение. $\Pi H \Phi$ — формула, где $\forall \exists \forall \dots (\tau), \tau$ — формула без кванторов

Теорема 1.5. Если φ — формула, то существует ψ — в п.ф., то $\varphi \to \psi$ и $\psi \to \varphi$

Доказательство. $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_1 \subseteq \cdots \subseteq \Gamma^*$. $\Gamma^* = \bigcup_i \Gamma_i$

Переход: $\Gamma_i \to \Gamma_{i+1}$

Рассмторим: $\varphi_j \in \Gamma_i$

- 1. φ_i без кванторов не трогаем
- 2. $\varphi_j \equiv \forall x.\psi$ добавим все формулы вида $\psi[x:=\Theta]$, где Θ терм, состоящий из $f: d_0^e, d_1^{e'} \dots, d_{i-1}^{e' \dots'}$
- 3. $\varphi_i \equiv \exists x. \psi$ добавим $\psi[x := d_i^j]$

 $\Gamma_{i+1} = \Gamma_i \cup \{$ все добавленные формулы $\}$ — счетное количество

Теорема 1.6. Если Γ_i — непротиворечиво, то Γ_{i+1} — непротиворечиво

Теорема 1.7. $\Gamma *$ — непротиворечиво

Следствие 1.7.2. $\Gamma^{\triangle} = \Gamma *$ без формул с \forall , \exists