Measurable Mappings

Morten Tryti Berg and Isak Cecil Onsager Rukan.

March 22, 2024

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathcal{A}) and (X', \mathcal{A}') which respects the measurable structurs, the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathcal{A}) , to (X', \mathcal{A}') .

Definition 7.8. Let (X, \mathcal{A}) , (X', \mathcal{A}') b measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable if the pre-imag of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ is often used to indicate measurability of the map T.

Lemma 7.9. Let (X, A), (x', A') be measurable spaces and let $A' = \sigma(G')$. Then $T: X \to X'$ is A/A'-measurable iff $T^{-1}(G') \subset A$, i.e. if

$$T^{-1}(G') \in \mathcal{A}, \ \forall G' \in \mathcal{G}'.$$
 (2)

Theorem 7.10. Let (X_i, A_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 and A_2/A_3 -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

Corollary 7.11. Every continuous map betwen metric spaces is a Borel map.

Definition 7.12. (and lemma) Let $(T_i)_{i \in I}$, $T_I : X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, \mathcal{A}_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i : i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right)$$
(3)

Corollary 7.13. A function $f:(X,\mathcal{B})\to\mathbb{R}$ is measurable if $f((a,+\infty))\in\mathcal{B},\ \forall a\in\mathbb{R}.$

Corollary 7.14. Assume (X, \mathcal{B}) is a measurable space, (Y, d) is a metric space, $(f_n : (X, \mathcal{B}) \to Y)_{n=1}^{\infty}$ is a sequence of measurable maps. Assume this sequence of images $(f_n(x))_{n=1}^{\infty}$ is convergent in $Y \ \forall x \in X$. Define

$$f: X \to Y, \quad by \ f(x) = \lim_{n \to \infty} f_n(x).$$
 (4)

Then f is measurable.

Theorem 7.15. Let (X, A), (X', A') be measurable spaces and $T: X \to X'$ be an A/A'-measurable map. For every measurable μ on (X, A),

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}',$$
 (5)

defines a measure on (X', A').

Definition 7.16. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.17. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.18. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det s^{-1}| \lambda^n = |\det S|^{-1} \lambda^n.$$
(6)

Corollary 7.19. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry