Mathematics 1A HSLU, Semester 1

Matteo Frongillo

September 16, 2024

Contents

[Week	1	
L	The set theory		
	1.1 Definition of a set		
	1.2 Log	gical symbols	
	1.2.	.1 Definition	
	1.2.	2 Equal	
	1.2.	3 Belongs to	
	1.2.	4 Does not belong to	
	1.2.	5 Inclusion and contains	
	1.2.	6 For all/any	
	1.2.	7 Implication	
	1.2.	8 Inference	
	1.2.	9 If and only if	
	1.3 Nui	merical sets	
	1.3.	1 Inclusion of sets	
	1.4 The	e real line	
	Interval	ls	
		amples	

Part I

Week 1

1 The set theory

1.1 Definition of a set

A set is a collection of objects or elements.

Remark: The collection of all sets is not a set.

1.2 Logical symbols

1.2.1 Definition

Braces and the definition symbol ":=" are used to define a set giving all its elements:

$$A:=\{a,b,c,d,e\}$$

1.2.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

$$A = B$$

1.2.3 Belongs to

The symbols \in and \ni describe an element which is part of the set:

$$a \in A \Longleftrightarrow A \ni a$$

1.2.4 Does not belong to

The symbols \notin mean that an element does not belong to the set:

$$f \notin A$$

1.2.5 Inclusion and contains

The symbols \subset and \supset mean that a set has another set included in its set:

$$\mathbb{N}\subset\mathbb{Z}\Longleftrightarrow\mathbb{Z}\supset\mathbb{N}$$

1.2.6 For all/any

The symbol \forall means that we are considering any type of element:

$$\forall x \in \mathbb{R}, \ x > 0$$

In this case, we've defined a new set.

1.2.7 Implication

The symbol \Rightarrow means that by setting a rule, we imply an event or an action:

if
$$x = 1 \Longrightarrow x \in \mathbb{N}$$
, but if $x \in \mathbb{N}$ we do not know if $x = 1$

With the implication, it is <u>sufficient</u> to claim action "A" in order to claim action "B".

1.2.8 Inference

The symbol ← means that by having an event or an action, we have a rule.

$$x \in \mathbb{R}^+ \longleftarrow x > 0$$

With the inference, it is necessary to have claim the action "A" in order to have claim the action "B"

1.2.9 If and only if

The symbol \Leftrightarrow means that two events happen simultaneously (double implication):

$$x \in \mathbb{N}, \ x \neq 0 \Longleftrightarrow x \in \mathbb{N}^*$$

Example:

$$x = 2 \Longleftrightarrow x^2 - 4x + 4 = 0$$

Proof

$$x = 2 \Rightarrow (x - 2) = 0 \Rightarrow (x - 2)^2 = 0 \cdot (x - 2) \Rightarrow x^2 - 4x + 4 = 0$$

This happens because x = 2

1.3 Numerical sets

- $\mathbb{N} := \text{Natural numbers (including 0)};$
- $\mathbb{Z} := \text{Integer numbers};$
- $\mathbb{Q} := \text{Rational numbers};$
- $\mathbb{R} := \text{Real numbers} := \mathbb{Q} \cup \{ \text{irrational numbers} \}$.

Notation: The "*" symbol means that the set does not include 0.

1.3.1 Inclusion of sets

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

$$B := \{\pi, 1, -1, 0\};$$

$$C := \{\pi, 1\};$$

$$D := \{\pi\}$$
.

Then we write some examples: $\pi \in B, \ D \subset B, \ C \subset B, \ B \not\subset C, \ 0 \in B, \ 0 \notin C.$

1.4 The real line

2 Intervals

2.1 Examples

2) $\forall x \in \mathbb{R}, \ x \in]-2,-1] \cup]\frac{3}{2},+\infty[$

Notation: The union of two or more intervals where $x \in \mathbb{R}$ is denoted by the symbol \cup .