VE281

Data Structures and Algorithms

Hashing: Collision Resolution

Learning Objectives:

- Understand separate chaining
- Understand the general idea of open addressing
- Know three basic ways of open addressing and their advantages and disadvantages

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing

Collision Resolution Scheme

- Collision-resolution scheme: assigns distinct locations in the hash table to items involved in a collision.
- Two major scheme:
 - Separate chaining
 - Open addressing

Separate Chaining

- Each bucket keeps a **linked list** of all items whose home buckets are that bucket.
- Example: Put pairs whose keys are 6, 23, 34, 28, 29, 7, 33, 30 into a hash table with n = 7 buckets.
 - homeBucket = key % 7
 - Note: we insert object at the beginning of a linked list.

Separate Chaining

- Value find(Key key)
 - Compute k = h (key)
 - Search in the linked list located at the k-th bucket (e.g., check every entry) with the key.
- void insert(Key key, Value value)
 - Compute k = h (key)
 - Search in the linked list located at the k-th bucket. If found, update its value; otherwise, insert the pair at the beginning of the linked list in O(1) time.

Separate Chaining

- Value remove (Key key)
 - Compute k = h(key)
 - Search in the linked list located at the k-th bucket. If found, remove that pair.

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing

Open Addressing

- Reuse empty space in the hash table to hold colliding items.
- To do so, search the hash table in some systematic way for a bucket that is empty.
 - Idea: we use a sequence of hash functions h_0 , h_1 , h_2 , . . . to probe the hash table until we find an empty slot.
 - I.e., we **probe** the hash table buckets mapped by $h_0(\text{key})$, $h_1(\text{key})$, ..., in sequence, until we find an empty slot.
 - Generally, we could define $h_i(x) = h(x) + f(i)$

Open Addressing

- Three methods:
 - Linear probing:

$$h_i(x) = (h(x) + i) % n$$

• Quadratic probing:

$$h_{i}(x) = (h(x) + i^{2}) % n$$

• Double hashing:

$$h_{i}(x) = (h(x) + i*g(x)) % n$$

n is the hash table size

$$h_i(key) = (h(key)+i) % n$$

- Apply hash function h_0, h_1, \ldots , in sequence until we find an empty slot.
 - This is equivalent to doing a linear search from **h** (**key**) until we find an empty slot.
- Example: Hash table size n = 9, h (key) = key%9
 - Thus h_i (key) = (key%9+i)%9
 - Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence

Example

- Hash table size n = 9, h (key) = key%9
 - Thus h_i (key) = (key%9+i)%9
 - Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence.

	1	11	2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

- $h_0(2) = 2$. Not empty!
- So we try h_1 (2) = 3. It is empty, so we insert there!
- h_0 (21) = 3. Not empty!
- h_1 (21) = 4. It is empty, so we insert there!
- h_0 (31) = 4. Not empty!
- h_1 (31) = 5. Not empty!
- h_2 (31) = 6. It is empty, so we insert there!

find()

- With linear probing h_i (key) = (key%9+i)%9
 - How will you **search** an item with key = 31?
 - How will you **search** an item with key = 10?
- Procedure: probe in the buckets given by $h_0(key)$, $h_1(key)$, ..., in sequence **until**
 - we find the key,
 - or we find an empty slot, which means the key is not found.

remove()

	1	11	2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

- With linear probing h_i (key) = (key%9+i)%9
 - How will you **remove** an item with key = 11?
 - If we just find 11 and delete it, will this work?

What is the result for searching key = 2 with the above hash table?

remove() cluster

1 2 21 5 31 17

[0] [1] [2] [3] [4] [5] [6] [7] [8]

- After deleting 11, we need to **rehash** the following "cluster" to fill the vacated bucket.
- However, we cannot move an item **beyond** its **actual** hash position. In this example, 5 cannot be moved ahead.

	1		2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

Alternative implementation of remove()

- Lazy deletion: we mark deleted entry as "deleted".
 - "deleted" is not the same as "empty".
 - Now each bucket has three states: "occupied", "empty", and "deleted".
- We can overwrite the "deleted" entry when inserting.
- When we **search**, we will keep looking if we encounter a "deleted" entry.

Clustering Problem

cluster

- Clustering: when **contiguous** buckets are all occupied.
- <u>Claim</u>: Any hash value inside the cluster adds to <u>the end</u> of that cluster.
- Problems with a **large** cluster:
 - It becomes more likely that the next hash value will collide with the cluster.
 - Collisions in the cluster get more expensive to resolve.

Clustering Problem

- Assuming input size N, table size 2N:
 - What is the best-case cluster distribution?

• What is the worst-case cluster distribution?

Which Statements Are Correct?

- Assuming input size N, table size 2N. Analyze the average number of probes to <u>find an empty slot</u> for best-case and worst-case clusters. Select all the correct answers.
- A. The average number for best-case cluster is 1.5.
- B. The average number for best-case cluster is 1.
- C. The average number for worst-case cluster is roughly $\frac{1}{4}N$.
- D. The average number for worst-case cluster is roughly $\frac{1}{2}N$.

Best Case	X	X		X		X	
			-		-		

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing

Quadratic Probing

$$h_i(key) = (h(key) + i^2) % n$$

- It is less likely to form large clusters.
- Example: Hash table size n = 7, h (key) = key%7
 - Thus h_i (key) = $(key\%7+i^2)\%7$
 - Suppose we insert 9, 16, 11, 2 in sequence.

		9	16	11		2
[0]	[1]	[2]	[3]	[4]	[5]	[6]

- h_0 (16) = 2. Not empty!
- h_1 (16) = 3. It is empty, so we insert there.
- h_0 (2) = 2. Not empty!
- h_1 (2) = 3. Not empty!
- $h_2(2) = 6$. It is empty, so we insert there.

Problem of Quadratic Probing

- However, sometimes we will never find an empty slot even if the table isn't full!
- Luckily, if the **load factor** $L \leq 0.5$, we are guaranteed to find an empty slot.
 - <u>Definition</u>: given a hash table with *n* buckets that stores *m* objects, its **load factor** is

$$L = \frac{m}{n} = \frac{\text{\#objects in hash table}}{\text{\#buckets in hash table}}$$

More on Load Factor of Hash Table

- <u>Question</u>: which collision resolution strategy is feasible for load factor larger than 1?
 - <u>Answer</u>: separate chaining.
 - Note: for open addressing, we require $L \leq 1$.
- Claim: L = O(1) is a necessary condition for operations to run in constant time.

Double Hashing

$$h_i(x) = (h(x) + i*g(x)) % n$$

• Uses 2 distinct hash functions.

- Increment **differently** depending on the key.
 - If h(x) = 13, g(x) = 17, the probe sequence is 13, 30, 47, 64, ...
 - If h(x) = 19, g(x) = 7, the probe sequence is 19, 26, 33, 40, ...
 - For linear and quadratic probing, the incremental probing patterns are **the same** for all the keys.

Double Hashing

Example

- Hash table size n = 7, h(key) = key%7, g(key) = (5-key)%5
 - Thus h_i (key) = (key%7+(5-key)%5*i)%7
 - Suppose we insert 9, 16, 11, 2 in sequence.

		9		11	2	16
[0]	[1]	[2]	[3]	[4]	[5]	[6]

- h_0 (16) = 2. Not empty!
- h_1 (16) = 6. It is empty, so we insert there.
- $h_0(2) = 2$. Not empty!
- h_1 (2) = 5. It is empty, so we insert there.

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing

Performance of Open Addressing

- Hard to analyze rigorously.
- The runtime is dominated by the number of comparisons.
- The number of comparisons depends on the load factor L.
- Define the expected number of comparisons in an unsuccessful search as U(L).
- Define the expected number of comparisons in a successful search as S(L).

Expected Number of Comparisons

Linear probing

$$U(L) = \frac{1}{2} \left[1 + \left(\frac{1}{1 - L} \right)^2 \right]$$
$$S(L) = \frac{1}{2} \left[1 + \frac{1}{1 - L} \right]$$

L	U(L)	S(L)
0.5	2.5	1.5
0.75	8.5	2.5
0.9	50.5	5.5

 $L \leq 0.75$ is recommended.

Expected Number of Comparisons

Quadratic probing and double hashing

$$U(L) = \frac{1}{1 - L}$$

$$S(L) = \frac{1}{L} \ln \frac{1}{1 - L}$$

L	U(L)	S(L)
0.5	2	1.4
0.75	4	1.8
0.9	10	2.6

Which Strategy to Use?

- Both separate chaining and open addressing are used in real applications.
- Some basic guidelines:
 - If space is important, better to use open addressing.
 - If need removing items, better to use separate chaining.
 - remove () is tricky in open addressing.
 - In mission critical application, prototype both and compare.