Understanding plural ambiguities. An experimental perspective

Mora Maldonado

<mora.maldonado@ens.fr>

(Joint work with Emmanuel Chemla and Benjamin Spector)

~

Laboratoire de Sciences Cognitives et Psycholinguistique Institut Jean Nicod École Normale Supérieure

Two triangles are connected to two squares.

Cumulative reading

Two triangles are connected to two squares in total.

Distributive reading

Two triangles are connected to two squares **each.**

Two triangles are connected to two squares.

Cumulative reading

Two triangles are connected to two squares **in total.**

Lexical cumulatively hypothesis

There is a plurality of 2 triangles X and a plurality of 2 squares Y such that every member of X is connected to at least one member of Y and every member of Y is connected to at least one member of X.

Distributive reading

Two triangles are connected to two squares **each.**

Two triangles are connected to two squares.

Cumulative reading

Two triangles are connected to two squares **in total.**

Lexical cumulatively hypothesis

There is a plurality of 2 triangles X and a plurality of 2 squares Y such that every member of X is connected to at least one member of Y and every member of Y is is connected to at least one member of X.

Distributive reading

Two triangles are connected to two squares **each.**

Distributive operator (D) view

There is a plurality of two triangles X such that each individual of X is connected to a plurality of two squares Y.

Two triangles are connected to two squares.

Cumulative reading

Two triangles are connected to two squares **in total.**

Distributive reading

Two triangles are connected to two squares **each.**

[Two triangles [are connected to [two squares]]]

[Two triangles [**D** [are connected to [two squares]]]

Questions - Goals

Q1: Psychological evidence for abstract representations during decision tasks

Priming paradigm

Q2: Psychological evidence for the online derivation of these representations (Cost / Dynamics)

Mouse-Tracking paradigm

Previous literature on preference: Frazier et al., 1999; Brasoveanu & Dotlačil, 2015

Questions - Goals

Q1: Psychological evidence for abstract representations during decision tasks

Priming paradigm

Q2: Psychological evidence for the online derivation of these representations (Cost / Dynamics)

Mouse-Tracking paradigm

Previous literature on preference: Frazier et al., 1999; Brasoveanu & Dotlačil, 2015; a.o.

Sentence-Picture matching task (Raffray & Pickering 2010)

Trial N **Prime**

Trial N+1 **Target**

Both pictures can be good descriptions of the sentence under each reading.

Sentence-Picture matching task (Raffray & Pickering 2010)

Trial N **Prime**

Two squares are connected to three circles.

F D

Distributive prime

Cumulative prime

Trial N+1 **Target**

Different Numeral Combination 2-3 / 2-2

Sentence-Picture matching task (Raffray & Pickering 2010)

Trial N **Prime**

Two squares are connected to two circles.

D

Distributive prime

Cumulative prime

F

Trial N+1 **Target**

Different Numeral Combination 2-3 / 2-2

Results (N=60)

After Distributive primes

After Cumulative primes

Baseline

Results (N=60)

Experiment 2

Replace the sentences in prime trials and keep the pictures!

Experiment 2 - N=40

Fancier control: Experiments 3

Replace the sentences in Distributive primes to make them Cumulative primes!

Experiments 3 (N=40)

Summary and conclusions

- Participants access to both readings (High accuracy rate in primes)
- General accessing to 'exact' readings (High accuracy rate in primes)
- General reading priming is operative between conditions (Different rates for different primes independently of n°)
- Asymmetry between cumulative and distributive primes.
- 1. Priming driven specifically by a distributivity operator.
- 2. Availability of at least cumulative interpretations (?)

Questions - Goals

Q1: Psychological evidence for abstract representations during decision tasks

Priming paradigm

Q2: Psychological evidence for the online derivation of these representations (Cost / Dynamics)

Mouse-Tracking paradigm Freeman & Amdaby 2010

Previous literature on preference: Frazier et al., 1999; Brasoveanu & Dotlačil, 2015; a.o.

Truth-Judgment task

Truth-Judgment task

Truth-Judgment task

Cumulative

Distributive

++ Controls with negation

Replication of negation effects (N=57)

Replication of negation effects (N=57)

Results for Plural ambiguous sentences (N=57)

Acceptance rate

Distributive < Cumulative

Results for Plural ambiguous sentences (N=57)

Acceptance rate

Distributive < Cumulative

Response times

Distributive > Cumulative

Results for Plural ambiguous sentences (N=57)

- Acceptance rate
 Distributive < Cumulative</p>
- Response times
 Distributive > Cumulative
- Mouse-tracking
 Distributive > Cumulative

Summary and conclusions

- 1. Cumulative readings are derived by default.
- 2. Cumulative representations are not enough to face distributive situations (i.e., pictures).
- 3. Distributive readings carry additional computational cost (two-step manner)

Open questions

Differences in experimental paradigm: Are preference and cost going in opposite directions?

2. Different dynamics: parallel competition or twostep serial derivation? Thanks for you attention!

	Primes		Targets	
	Two-Two	Two-Three	Two-Two	Two-Three
	Two squares are connected to two circles.	Two squares are connected to three circles.		
Distributive				
	D F Two squares are connected to two	F D Two squares are connected to three	Two circles are connected to two	Two squares are connected to three
	circles.	circles.	hearts.	circles.
Cumulative				
	C F	F C		C D
Control	A circle is connected to two squares.	A circle is connected to three squares.		
	F T	T F		

Experiments 2 & 3

Mouse tracking vs. RTs

Controls for false sentences (Experiment I)

Inclusion of FALSE sentences (True and Negative) to test effects of FALSITY

- Effect of truth value
- Interaction between truth value and negation

Note: Results slightly different in Experiment II (Only interaction)

Analyses on False items - Experiment I

Cumulative condition

Distributive condition

Participant says **True**: Access to a <u>Cumulative reading</u> of the sentence.

Participant says False: ? (~6%)

Participant says **True**: Access to a <u>Distributive reading</u> of the sentence.

Participant says **False**: Access to a <u>Cumulative reading</u> of the sentence.

Analyses on False items - Experiment I

Analyses on False items - Experiment I

Averaged trajectories

