

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA

DEP. DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO LABORATÓRIO DE SISTEMAS CONTROLE

André Laurindo Maitelli/Fábio Meneghetti Ugulino de Araújo

ROTEIRO DE LABORATÓRIO

- 1. <u>Código da Experiência</u>: 3A
- 2. Título: Controle no Espaço de Estados: Realimentação de Estados (Seguidor de Referência)
- 3. *Objetivos*: Esta prática tem como objetivos:
- Aprimoramento dos conceitos envolvidos na teoria de espaço de estados;
- Introdução ao projeto de controladores no espaço de estados;
- Projeto de um seguidor de referência para o acompanhamento de entradas do tipo degrau.
- 4. <u>Equipamento Utilizado</u>: São necessários para realização desta experiência:
- Um microcomputador PC com um os softwares necessários (Windows, MATLAB/SIMULINK, compilador C, QUARC);
- Uma placa de aquisição de dados Q8-USB da Quanser;
- Um módulo de potência VoltPAQ-X1;
- Um sistema de tanques acoplados da Quanser;
- 5. <u>Introdução</u>:
 - 5.1. Seguidores de Referência para Entradas do Tipo Degrau

Considere o sistema: $\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) \\ y(t) = \mathbf{C}\mathbf{x}(t) \end{cases}$, se definirmos o erro de rastreamento como sendo:

$$e(t) = y(t) - r(t)$$
, temos que: $\dot{e}(t) = \dot{y}(t) - \dot{r}(t) = \dot{y}(t) = \mathbf{C}\dot{\mathbf{x}}(t)$.

Então, podemos definir novas variáveis: $\begin{cases} \mathbf{z} = \dot{\mathbf{x}} \\ w = \dot{u} \end{cases}$ e novas equações de estado $\dot{e} = \mathbf{C}\mathbf{z}$ $\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}w$.

Daí, Podemos juntar as duas novas equações de estado em uma única:

$$\begin{bmatrix} \dot{e} \\ \dot{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{C} \\ \mathbf{0} & \mathbf{A} \end{bmatrix} \begin{bmatrix} e \\ \mathbf{z} \end{bmatrix} + \begin{bmatrix} 0 \\ \mathbf{B} \end{bmatrix} w \Leftrightarrow$$

Se o novo sistema ($\mathbf{A_a}$, $\mathbf{B_a}$), comumente chamado de sistema aumentado, for controlável, então, existe uma lei de controle por realimentação de estado, da forma; $w = \mathbf{k_a} Z \bowtie w = k_1 e + \mathbf{k_2} \mathbf{z}$, tal que os polos do sistema aumentado podem ser posicionados arbitrariamente.

Desde que os polos sejam alocados na região de estabilidade, o erro de rastreamento será estável. Assim, o objetivo de rastreamento assintótico, com erro em regime nulo, será alcançado.

O sinal de controle u(t) é obtido da seguinte expressão:

$$u(t) = \int_0^t w(\tau)d\tau = k_1 \int_0^t e(\tau)d\tau + \mathbf{k}_2 \mathbf{x}(t)$$

na qual, os valores dos ganhos k_1 e $\mathbf{k_2}$ podem ser obtidos através da fórmula de Ackermman.

Teorema: Se $(\mathbf{A_a}, \mathbf{B_a})$ for observável, então usando uma lei de controle $w = \mathbf{k_a} \mathbf{Z} \triangleright w = k_1 e + \mathbf{k_2} \mathbf{z}$ podemos escolher arbitrariamente os autovalores de $(\mathbf{A_a} + \mathbf{B_a} \mathbf{K_a})$.

ullet Fórmula de Ackermann para Determinação da Matriz de Ganhos da Realimentação do Sistema Aumentado \mathbf{K}_{a}

- 1- Formar $\Delta(s) = s^n + a_1 s^{n-1} + ... + a_{n-1} s + a_n$ com os pólos desejados para o seguidor de referências.
- 2- Calcular $\mathbf{K}_{\mathbf{a}}$ da seguinte forma: $\mathbf{K}_{\mathbf{a}} = -\begin{bmatrix} 0 & 0 & \dots & 1 \end{bmatrix} \mathbf{U}_{\mathbf{a}}^{-1} q_c(\mathbf{A}_{\mathbf{a}})$

em que:
$$\begin{cases} \mathbf{U_a} = \begin{bmatrix} \mathbf{B_a} & \mathbf{A_a B_a} & \mathbf{A_a^2 B_a} & \dots & \mathbf{A_a^{n-1} B_a} \end{bmatrix} \\ q_c(\mathbf{A_a}) = \mathbf{A_a^n} + a_1 \mathbf{A_a^{n-1}} + \dots + a_n \mathbf{I} \end{cases}$$

5.2. Implementação de Seguidores de Referência para Entradas do Tipo Degrau

Uma vez determinado o ganho do sistema aumentado ($\mathbf{K}_{\mathbf{a}}$), é preciso determinar os ganhos (k_1 e \mathbf{k}_2) necessários para o calculo da ação de controle $u(t) = k_1 \stackrel{\circ}{\mathbf{b}}_0^t e(t) dt + \mathbf{k}_2 \mathbf{x}(t)$. Temos simplesmente que:

$$\mathbf{K}_{\mathbf{a}} = \left[\begin{array}{c|c} \mathbf{k}_1 & \mathbf{k}_2 \end{array} \right]$$

A implementação do seguidor consiste em obter o sinal de controle u(t) conforme figura a seguir.

Figura 1. Implementação, em SIMULINK/MATLAB, de um Seguidor de Degraus para o Sistemas de Tanques.

Obs.: É importante notar que no início dos cálculos, para obtenção dos ganhos, convencionou-se que: e(t) = y(t) - r(t). Porém, em um esquema convencional de controle por realimentação, como o da Figura 1, temos: e(t) = r(t) - y(t). Por isso, precisamos inverter o sinal de k_1 .

6. <u>Desenvolvimento</u>:

Conhecendo-se as EDOs que descrevem as dinâmicas dos tanques 1 e 2 (configuração #2):

$$\dot{L}_1 = -\frac{a_1}{A_1} \sqrt{\frac{g}{2L_{10}}} L_1 + \frac{K_m}{A_1} V_P$$
 e $\dot{L}_2 = -\frac{a_2}{A_2} \sqrt{\frac{g}{2L_{20}}} L_2 + \frac{a_1}{A_2} \sqrt{\frac{g}{2L_{10}}} L_1$

onde:

- $A_1 = A_2 = 15,5179;$
- $L_{20} = 15; L_{10} = \frac{a_2^2}{a_1^2} L_{20};$
- $a_1 = 0.17813919765$; $a_2 = a_1$; (Orifício médio)
- K_m = valor encontrado em experimentos anteriores (\approx 11,00).

Pede-se:

- 1°. Encontre uma representação em espaço de estados onde L_1 e L_2 sejam os estados do modelo;
- 2°. Projete um seguidor de referências, para entradas do tipo degrau, com base no modelo obtido (A escolha dos polos do seguidor faz parte do projeto, e deve ficar clara no relatório).
- 3°. Examine e descreva em seu relatório o comportamento do sistema para diferentes conjuntos de polos do seguidor: