

Solid-State LiDAR Sensor

Features

- Full field of view frame up to 35 fps
- Field of View: 76° x 32°, Resolution: 160 x 60
- Support 16 group of users customize region of interest setting, each group support 8 regions of interest
- Various communication ports, support USB, RS-232, RS-485, CAN and GPIO Optocoupler isolation port.
- Support GPIO input measurement simultaneously.
- Measures range up to 12m
- Range accuracy: points cloud in centimeter
- Excellent ambient light suppression ability
- Embedded anti-interference algorithm, support multi-machine work
- Total solid structure, industrial IP67 anti-water design
- Support Simple-HDR mode, Auto-HDR mode and Super-HDR mode, with fine scene adaptability.

Applications

- Robotics & AGV automatic navigated robot (obstacle detection, SLAM application)
- Drone collision avoidance, altitude hold
- Industrial safety area protection and proximity protection
- Safety surveillance

- 3D movement recognition
- 3D modeling

Description

HPS-3D160 is a new generation high-performance solid-state LiDAR sensor based on the principle of ToF, with optimized lighting system and low distortion infrared optical lens, measure distance up to 12m on 90% reflective rate white target. Flexible customize ROI setting function, Simple-HDR, Auto-HDR, and Super-HDR mode, make HPS-3D160 widely used in all reflectivity scenes HPS-3D160 integrates a high-power 850nm infrared VCSEL emitter and a high-sensitivity photosensitive device, embedded highperformance processor and advanced data process, filter and compensation algorithm, enables very stable and simultaneous measure data output. Full solid structure, industrial IP67 waterproof design and strong aerospace aluminum housing allows the HPS-3D160 to be used in a variety of complex environments

Ordering information

Overview

1.1 Technical specification

Table 1. 1.1 Technical specification

Parameter	Values	Unit
Size	78 (L) x 40 (W) x 30 (H)	mm
Weight	110 ^{*1}	g
Power supply	9 ~ 12	V
Maximum power consumption	6	W
Quiescent power consumption	0.7	W
Storage temperature	-40 ~ 85	$^{\circ}$
Operating temperature	-10 ~ 55	$^{\circ}$
Infrared VCSEL emitter	850	nm
Emitting angle	76 (horizontal) x 32 (vertical)	٥
Maximum measuring distance	12 *2	m
Minimum measuring distance	0.25	m
Maximum output frame rate	Full field of view 35	fps
Output data	Depth data, average distance, signal strength,	-
	weak signal pixels quantity, saturated pixels	
	quantity, maximum distance, minimum	
	distance	
Operating mode	Normal mode, Auto-HDR mode Super-HDR	-
	mode, Simple-HDR mode	
Power-on initialization time	1500	ms
Interface	Option: USB, RS232, RS485 or CAN	-
Optocoupler isolation IO	standard: input x 1, output x 1	-
Cable length	200	cm

Note: *1 Not include cable

^{*2} Tested on 90% reflectance white target

1.2 Dimensions and pin definitions

Figure 1. HPS-3D160 front view

Figure 2. HPS-3D160 left view

Cable color Signal Signal **Description** Remark name type Red **VCC** Power Power, connect to DC +9 ~ 12V Products with different Black **GND** Power Power ground Blue OUT I/O Optocoupler isolation I/O output terminal communication ports, DATA+ Blue/White IN I/O Optocoupler isolation I/O input terminal and DATA-Purple/White COM I/O Optocoupler isolation I/O public terminal cables have Purple **GND** Digital Signal ground different signal USB D+ / CAN D+ / RS-485 D+ / RS-232 TX Orange DATA+ Digital definitions. Orange/white DATA-Digital USB D- / CAN D- / RS-485 D- / RS-232 RX Cable shield layer, internal part connects to Shield layer SHIELD product outer shell

Table 2. HPS-3D160 cable definition

2.1 Communication ports

HPS-3D160 could communicate with host through USB, RS232, RS485 or CAN, and HPS-3D160 also comes standard with an optocoupler isolation input and an optocoupler isolation output, which can be connected with PLC and other devices.

2.2 USB, RS232, RS485 and CAN communication protocol

2.2.1 Communication protocol

In sensor, each command includes 2 headers, 1 message length bytes, 1 command byte, 1 device address byte, parameter field, 2 CRC16-CCITT check bytes; every return data includes 2 headers, 2 message length bytes, 1 device address byte, 1 RID byte (Return ID, normally same as command byte), data field, 2 CRC16-CCITT check byte, 2 message ends. command packet and return data packet is little endian, that is, the low memory address stores the low byte data.

2.2.2 Multi-sensor support

Each sensor has a programmable device address (Default address is 0x00, broadcast address is 0xFF), users can change it to achieve multi-machine work on the same bus.

2.2.3 Command data packet is indefinite length format, defined as the following table:

byte	Description			
number				
0	0xF5, Header 1			
1	0x0A, Header 2			
2	Length byte, indicates byte number 3 starting number of data			
	bytes			
3	Command byte			
4	device address, specify answering device, factory address			
4	default 0x00, broadcast address 0xFF			
N Parameter field				
5+N	CRC16 Low byte			
5+N+1	CRC16 High byte			

Note: The byte participating in the CRC check in the command packet is byte number 3-N.

Return data packet is changeable length format, defined as the following table:

byte number	Description			
0	0xF5, Header 1			
1 0x5F, Header 2				
2	Remaining valid data length low byte			
3	Remaining valid data length high byte			
4	Device address			
5	RID, return packet type ID			
N	String			
6+N	N CRC16 Low byte			
6+N+1 CRC16 High byte				
6+N+2	0x5F, Message end 1			
6+N+3	0xF5, Message end 2			

Note: The byte participating in the CRC check in the return packet is byte number4~N。

Command #1 Achieve sensor device address

This command can broadcast achieve sensor device address.

byte number	Value	Description	
0	0xF5	Header 1	
1	0x0A	Header 2	
2	0x05	Message length	
3	0xBA	Command byte	
4	0xFF	Broadcast address	
5	0x02	Fixed parameter	
6	0x1F	CRC16 Low byte	
7	0xD6	CRC16 High byte	

Return data:

byte	Name	Value	Description
number			
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Message		Message length low byte
	length Low byte		Wessage length low byte
	Message		
3	length High		Message length high byte
	byte		
4	device address		Current responding device address
5	RID	0xBA	RID, return packet type ID
6	device address		Current responding device address
7	CRC16 LSB		CRC16 low byte
8	CRC16 MSB		CRC16 high byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #2 Set sensor's device address

This command can set sensor's device address, after setting sensor's device address succeed and sending return data packet, the new address will come into effect.

byte	Value	Description		
number				
0	0xF5	Header 1		
1	0x0A	Header 2		
2	0x06	Message length		
3	0xBA	Command byte		
4	Target device	Target device address, 0x00 ~ 0xFE		
	address	g		
5	0x01	Fixed parameter		
6	0x00 ~ 0xFE	New device address		
7		CRC16 Low byte		
8		CRC16 High byte		

Return data:

byte	Name	Value	Description
number			
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Message length low byte	0x07	Message length low byte

3	Message length high byte	0x00	Message length high byte
4	device address		Current responding device address (set device address before taking effect)
5	RID	0xBA	RID, Return packet type: ID
6	Confirmation byte		0x01: succeed, 0x00: fail
7	CRC16 LSB		CRC16 low byte
8	CRC16 MSB		CRC16 high byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #3 Achieve sensor's hardware version number.

This command can achieve sensor's hardware version number.

byte number	Value	Description		
0	0xF5	Header 1		
1	0x0A	Header 2		
2	0x04	Message length		
3	0xA0	Command byte		
4	Target device address	Target device address, 0x00 ~ 0xFE		
5		CRC16 low byte		
6		CRC16 high byte		

Return data:

byte	Name	Value	Description
number			
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Message length Low byte	0x0C	Message length low byte
3	Message length High byte	0x00	Message length high byte
4	device address		Current responding device address
5	RID	0xA0	RID, return packet type ID
6	Year		
7	Month		Evenne: 2019 00 10 1/1 2 Pay2
8	Day		Example: 2018-09-19 V1.3 Rev3
9	Main version		[6]: 0x12, [7]: 0x09, [8]: 0x13, [9]: 0x01, [10]: 0x03, [11]: 0x03
10	Minor version		0.003
11	Revisions		
12	CRC16 LSB		CRC 16 low byte

13	CRC16 MSB		CRC 16 high byte
14	Message end 1	0x5F	Message end 1
15	Message end 2	0xF5	Message end 2

Command#4 Get sensor serial number

This command can get sensor serial number, each sensor serial number is unique, can be used as the unique identification code.

byte	Value	Description		
number				
0	0xF5	Header 1		
1	0x0A	Header 2		
2	0x05	Message length		
3	0xA1	Command		
4	Target device	Target device address, 0x00 ~ 0xFE		
4	address	raiget device address, Oxoo - Oxi L		
5	0x02	Stable parameter		
6		CRC16 low byte		
7		CRC16 high byte		

Return data:

byte number	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Message length low byte	0x44	Message length low byte
3	Message length high byte	0x00	Message length high byte
4	device address		Current responding device address
5	RID	0xa0	RID, return packet type ID
6~67	Sensor serial number	ASCII string	ASCII string, string is end up with'\0', that is ASCII value is 0 Example: HPS-3D160-U-1810130 [6]: 'H', [7]: 'P', [8]: 'S', [9]: '-', [10]: '3', [11]: 'D', [12]: '1', [13]: '6', [14]: '0', [15]: '-', [16]: 'U', [17]: '-', [18]: '1', [19]: '8', [20]: 1, [21]: '0', [22]: '1', [23]: '3', [24]: '0', [25]: '\0' Other data can be neglected.
68	CRC16 LSB		CRC16 low byte
69	CRC16 MSB		CRC16 high byte
70	Message end 1	0x5F	Message end 1
71	Message end 2	0xF5	Message end 2

Command #5 Set sensor working mode

This command can set sensor's working mode.

byte	Value	Description			
number					
0	0xF5	Header 1			
1	0x0A	Header 2			
2	0x06	Message length			
3	0xA3	Command byte			
4	Target device	Target device address, 0x00 ~ 0xFE			
4	address	raiget device address, UXOU - UXI L			
5	0x01	Fixed parameter			
6		0x00: Standby mode, 0x01: Single measurement mode, 0x02:			
O		Continuous measurement mode			
7		CRC16 low byte			
8		CRC16 high byte			

Return data:

byte	Name	Value	Description
number			
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Message length Low byte	0x07	Message length low byte
3	Message length High byte	0x00	Message length high byte
4	Device address	.,	Current responding device address
5	RID	0xA3	RID, return packet type ID
6	Confirmation byte		0x01: succeed, 0x00: fail
7	CRC16 LSB		CRC16 low byte
8	CRC16 MSB		CRC16 high byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #6 Select user customize region of interest setting group

User can customize 16 groups region of interest setting, each group support 8 region of interest, through this command can select sensor's region of interest setting group.

byte number	Value	Description			
0	0xF5	Header 1			
1	0x0A	Header 2			
2	0x06	Message length			
3	0xAC	Command byte			
4	Target device address	Target device address, 0x00 ~ 0xFE			
5	0xA9	Fixed parameter			
6	0x00 ~ 0x0F	Region of interest setting group ID			

7	 CRC16 low byte
8	 CRC16 high byte

Return data:

byte	Name	Value	Description
number			
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Message length low byte	0x07	Message length low byte
3	Message length high byte	0x00	Message length high byte
4	device address		Current responding device address
5	RID	0xAC	RID, return packet type ID
6	Confirmation byte		0x01: succeed, 0x00: fail
7	CRC16 LSB		CRC16 low byte
8	CRC16 MSB		CRC16 high byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command#7 Achieve current region of interest setting group ID

This command can achieve region of interest setting group ID number.

byte	Value	Description			
number					
0	0xF5	Header 1			
1	0x0A	Header 2			
2	0x05	Message length			
3	0xAC	Command byte			
4	Target device	Target device address, 0x00 ~ 0xFE			
	address	ialget device address, exist exist			
5	0xAA	Fixed parameter			
6		CRC16 low byte			
7		CRC16 high byte			

Return data:

byte number	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2

2	Message length low byte	0x07	Message length low byte
3	Message length high byte	0x00	Message length high byte
4	Device address		Current responding device address
5	RID	0xAC	RID, return packet type ID
6	Region of interest setting group ID	0x00 ~ 0x0F	Region of interest setting group ID
7	CRC16 LSB		CRC16 low byte
8	CRC16 MSB		CRC16 high byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

2.2.4 Measure packet data analysis:

Measure packet can be divided into following 4 types:

1. Complete data packet: Contains critical measurement data and full-view depth data. It is suitable for applications requiring secondary data with full-view depth for secondary development, but requires high data processing capability for terminal devices. The packet data field is defined as follows:

Header	Message	Device	RID	Measure	CRC16 value	Message
	length	address		data		end

Among these, measuring data field detailed format is as followed:

byte	Name	Value	Description		
number					
0 ~ 1	Dummy	Arbitrary value	This value can be neglected		
2	Average distance	Low byte	Full view of field average distance, unit: mm		
3	Average distance	High byte	T dil view of field average distance, driit. Hilli		
4	Effective signal	Low byte	Effective signal strongth, this value has no units		
5	strength	High byte	Effective signal strength, this value has no units		
6	6	Low byte	Average signal strength in region of interest, this value has no unit, the higher the value ,the		
7	Average signal strength	High byte	stronger the reflective signal strength, specified definition is: Average signal strength < 150: Signal strength is weak 150 <= Average signal strength <= 800: Signal strength is well Average signal strength > 800: Signal is too strong		
8	Number of low	Low byte	Number of low signal pivole		
9	signal pixels	High byte	Number of low signal pixels		

10	Number of	Low byte	
11	1	-	Number of saturated pixels
	saturated pixels	High byte	
12	Maximum	Low byte	Maximum distance value of region of interest, if
13	distance value	High byte	the value is 0, it represents invalid data
14	Minimum	Low byte	Minimum distance value of region of interest, if
15	distance value	High byte	the value is 65535, it represents invalid data
16		Lowest byte	
47		Secondary	Magazina data frama aguntar data y convenient
17	Data frame	lowest byte	Measuring data frame counter data, convenient
10	counter	Secondary	for configuring data transport, and check whether
18		highest byte	frame is lost
19		Highest byte	
20			
21	Decembed byte		Reserved byte
22	Reserved byte		
23			
		Every pixel	
		point distance	Data is arranged as:
		value is	Data is arranged as:
19200		shown by 2	Pixel point 1Pixel point 160
bytes	Depth data	bytes, Low	Pixel point 161Pixel point 320
-,		byte number	
		-	Pixel point 9440Pixel point 9600
		is stored in	
		low byte data	

2. Streamlined measurement data packets: Only critical measurement data is included, which is suitable for applications requiring only critical measurement data of full viewing angle, and requires less data processing capability and communication rate for terminal devices. The packet data field is defined as follows:

byte number	Name	Value	Description	
0 ~ 1	Dummy	Arbitrary value	This value can be neglected	
2	Average	Low byte	Average distance of full view of field, unit: mm	
3	distance	High byte	Average distance of full view of field, utilit. Hilli	
4	Effective signal	Low byte	Effective signal strength, this value has no unit	
5	strength	High byte		
6	Average signal	Low byte	Average signal strength in region of interest, this value has no unit, the higher the value ,the stronger the reflective signal strength, specified	
7	strength	High byte	definition is: Average signal strength < 150: Signal strength	

	gies oo., Eta.		111 3 3D100
			is weak 150 <= Average signal strength <= 800: Signal strength is well Average signal strength > 800: Signal is too strong
8	Number of low	Low byte	Number of law signal pivel point
9	signal pixel point	High byte	Number of low signal pixel point
10	Number of	Low byte	
11	saturated pixel	High byte	Number of saturated pixel point
11	point	rigii byte	
12	Maximum	Low byte	Maximum distance value of region of interest, if
13	distance value	High byte	the value is 0, it represents invalid data
14	Minimum	Low byte	Minimum distance value of region of interest, if
15	distance value	High byte	the value is 65535, it represents invalid data
16		Lowest byte	
17		Secondary	Magazina data frama aguntar data ganyaniant
17	Data frame	lowest byte	Measuring data frame counter data, convenient
18	counter	Secondary	for configuring data transport, and check whether frame is lost
10		highest byte	liane is lost
19		Highest byte	
20 ~ 23	Reserved byte		Reserved byte

3. Complete data packet of region of interest: Contains the critical measurement data and region of interest data for each region of interest. It is suitable for applications that only need a specific region of Interest information in the perspective. The data processing capability of the terminal device is moderate. The packet data field is defined as follows:

				Region of	Region of	Region of		
Header	Message	device	RID	interest	interest	 interest	CRC16	Message
ricadei	length	address	I	information	measuring	measuring	ONOIO	end
				IIIIOIIIIatioii	data 1	data N		

Among these, region of interest information's data field is defined as follow:

byte	Name	Value	Description
number			
0	Enable number of	0x00~0x07	Decide based on enable number of regions of
0	regions of interest	0000~0007	interest
1	Region of interest	0x00~0x0F	Current used region of interest group's ID
I	group ID	UXUU~UXUF	number
2		Lowest byte	
3		Secondary	Measuring data frame counter data,
3	Data frame counter	lowest byte	convenient for configuring data transport, and
4	4	Secondary	check whether frame is lost
4		highest byte	

5		Highest byte	
6 ~ 23	Reserved byte		Reserved byte

Region of interest measuring data field is defined as follow:

byte	Name	Value	Description		
number		3 4.10.10	2000.,		
0	Region of interest	Low byte			
1	ID	High byte	Current region of interest ID number		
2	Region of interest	Low byte			
3	upper left corner X coordinate	High byte	Current region of interest upper left corner X coordinate		
4	Region of interest	Low byte	Current region of interest upper left corner Y		
5	upper left corner Y coordinate	High byte	coordinate		
6	Region of interest	Low byte	Current region of interest lower right corner X		
7	lower right corner X coordinate	High byte	coordinate		
8	Region of interest	Low byte	Current region of interest lower right corner Y		
9	lower right corner Y coordinate	High byte	coordinate		
10	*	Low byte	Average signal strength in region of interest, this value has no unit, the higher the value ,the		
11	Average signal strength	High byte	stronger the reflective signal strength, specified definition is: Average signal strength < 150: Signal strength is weak 150 <= Average signal strength <= 800: Signal strength is well Average signal strength > 800: Signal is too strong		
12	Effective signal	Low byte	In region of interest, after removing weak signal and too strong signal, the effective signal value		
13	strength	High byte	of pixel point, this value has no unit, the higher the value, the stronger the reflective strength		
14	Average distance	Low byte	Average measured distance of pixel in region of		
15	Average distance	High byte	interest		
16	Maximum distance	Low byte	Maximum distance value of region of interest, if		
17	value	High byte	the value is 0, it represents invalid data		
18	Minimum distance	Low byte	Minimum distance value of region of interest, if		
19	value	High byte	the value is 65535, it represents invalid data		
20	Number of	Low byte	Number of saturated pixel point		
21	saturated pixel	High byte	Number of Saturated pixel point		

	point		
22		Low byte	Bit0 ~ Bit2: threshold 0, threshold 1, threshold
23	Threshold comparison result	High byte	2, trigger alarm or when alarm release it respond threshold position automatically set 1 or 0 Bit3~Bit15: reserve
24	Maximum distance	Low byte	Maximum distance value pixel relative to full view
25	value X coordinate	High byte	of field, X coordinate in region of interest
26	Maximum distance	Low byte	Maximum distance value pixel relative to full view
27	value Y coordinate	High byte	of field, Y coordinate in region of interest
28	Minimum distance	Low byte	Minimum distance value pixel relative to full view
29	value X coordinate	High byte	of field X coordinate in region of interest
30	Minimum distance	Low byte	Minimum distance value pixel relative to full view
31	value Y coordinate	High byte	of field Y coordinate in region of interest
	Denth data of	Each pixel point distance value is	The initial data is the first pixel on left upper corner, remaining data outputs in line order.
	Depth data of region of interest	shown by 2 bytes, low byte number is stored in low byte data	

4. Region of interest simple data packet: Only contain each region of interest's critical measuring data, The data processing capability and communication rate requirements of the terminal device are low. The packet data field is defined as follows:

Header	Message	device	RID	Region of	Region of	Region of	CRC16	Message
	length	address		interest	interest	 interest		end
				information	measuring	 measuring		
					data1	data N		

Among these, region of interest information data field definition as followed:

byte number	Name	Value	Description
0	Number of enabled regions of interest	0x00~0x07	Decide based on enable number of regions of interest
1	Region of interest group ID	0x00~0x0F	Current used region of interest group's ID number
2	Data frama aquatar	Lowest byte	Measuring data frame counter data, convenient
3	Data frame counter	Secondary lowest byte	for configuring data transport, and check whether frame is lost

		Secondary	
4		highest	
		byte	
E		Highest	
5		byte	
6 ~ 23	Reserved byte		Reserved byte

Region of interest measuring data field:

byte number	Name	Value	Description
0	Region of interest	Low byte	0 1 1 1 1 1 1 1 1
1	ID	High byte	Current region of interest ID number
2		Low byte	Average signal strength in region of interest, this value has no unit, the higher the value ,the stronger the reflective signal strength, specified
3	Average signal strength	High byte	definition is: Average signal strength < 150: Signal strength is weak 150 <= Average signal strength <= 800: Signal strength is well Average signal strength > 800: Signal is too strong
4		Low byte	In region of interest, after removing weak signal
5	Effective signal strength	High byte	and too strong signal, the effective signal value of pixel point, this value has no unit, the higher the value, the stronger the reflective strength
6	Average distance	Low byte	Pixel's average distance measurement in region
7	Average distance	High byte	of interest
8	Maximum distance	Low byte	Maximum distance value of region of interest, if
9	value	High byte	the value is 0, it represents invalid data
10	Minimum distance	Low byte	Minimum distance value of region of interest, if
11	value	High byte	the value is 65535, it represents invalid data
12	Number of	Low byte	
13	saturated pixel point	High byte	Number of saturated pixel point
14	Threshold	Low byte	Bit0 ~ Bit2: threshold 0, threshold 1, threshold 2, trigger alarm or when alarm release it respond
15	comparison result	High byte	threshold position automatically set 1 or 0 Bit3~Bit15: reserve
16	Maximum distance	Low byte	Maximum distance value pixel relative to full view
17	value X coordinate	High byte	of field, X coordinate in region of interest
18	Maximum distance	Low byte	Maximum distance value pixel relative to full view
19	value Y coordinate	High byte	of field, Y coordinate in region of interest
20		Low byte	

21	Minimum distance value X coordinate	High byte	Minimum distance value pixel relative to full view of field X coordinate in region of interest
22	Minimum distance	Low byte	Minimum distance value pixel relative to full view
23	value Y coordinate	High byte	of field Y coordinate in region of interest
24 ~ 32	Reserved byte		Reserved byte

Packet information

Туре	HPS-3D160
Dimension	78 (L) x 40 (W) x 30 (H)
Weight	110g / piece (not include cable)
Packet box	1 pcs / box

Revision history

Date	Revision	Description
2018/10/15	1.0	Initial version

Appendix

CRC16's C language complementation

```
static const USIGN16 crc16 tab[] = {
    0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
    0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
    0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
    0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
    0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
    0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
    0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
    0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
    0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
    Oxc9cc, Oxd9ed, Oxe98e, Oxf9af, Ox8948, Ox9969, Oxa90a, Oxb92b,
    0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
    Oxdbfd, Oxcbdc, Oxfbbf, Oxeb9e, Ox9b79, Ox8b58, Oxbb3b, Oxab1a,
    0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
    Oxedae, Oxfd8f, Oxcdec, Oxddcd, Oxad2a, Oxbd0b, Ox8d68, Ox9d49,
    0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3eff, 0x2eff, 0x1eff, 0x0eff,
    Oxff9f, Oxefbe, Oxdfdd, Oxcffc, Oxbf1b, Oxaf3a, Ox9f59, Ox8f78,
    0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
    0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
    0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
    0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
    0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
    0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
    0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
    0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
    0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
    0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
    Oxcb7d, Oxdb5c, Oxeb3f, Oxfb1e, Ox8bf9, Ox9bd8, Oxabbb, Oxbb9a,
    0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
    Oxfd2e, OxedOf, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, Ox9de8, Ox8dc9,
    0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
    Oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba, Ox8fd9, Ox9ff8,
    0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
};
// @USIGN16 Calc CRC16(const USIGN8 *buf, const int len)
// @brief Calculate 2 bytes 16 bit CRC check value
// @param buf- Data buffer pointer to be calculated
// @param len- Data length to be calculated
// @return 16bit CRC check value
```

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Hypersen Technologies Co., Ltd. reserve the right to make changes, corrections, enhancements, modifications, and improvements to Hypersen products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on Hypersen products before placing orders. Hypersen products are sold pursuant to Hypersen's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of Hypersen products and Hypersen assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by Hypersen herein.

Resale of Hypersen products with provisions different from the information set forth herein shall void any warranty granted by Hypersen for such product.

Hypersen and the Hypersen logo are trademarks of Hypersen. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 Hypersen Technologies Co., Ltd. – All rights reserved