

Tema 3 (parte 3). Cinemática diferencial del robot

Índice

Introducción a la cinemática diferencial del robot. Matriz Jacobiana del robot

Matriz Jacobiana analítica

Matriz Jacobiana geométrica

Ejemplo

Singularidades. Robots de 6 ejes

Introducción a la cinemática diferencial del robot

La cinemática diferencial del robot se encarga de determinar la relación entre las velocidades de las n coordenadas articulares del robot [dq₁/dt, dq₂/dt, ..., dq_n/dt] y las velocidades de movimiento lineal y angular del elemento terminal [dx/dt, dy/dt, ...].

$$\dot{x} = J \cdot \dot{q}$$

- Hay diferentes posibilidades para seleccionar las variables de movimiento angular en el espacio del elemento terminal, que dan lugar a diferentes matrices Jacobianas. Se suele trabajar con dos:
 - Jacobiana analítica
 - Jacobiana geométrica (o simplemente Jacobiana)

Introducción a la cinemática diferencial del robot

Matriz Jacobiana analítica

La matriz Jacobiana analítica J_a utiliza las velocidades del elemento terminal en las coordenadas cartesianas x, y, z y los tres ángulos de Euler Φ, θ, Ψ (por ejemplo los "WVW")

 Los elementos de la matriz se extraen derivando el conjunto de ecuaciones obtenidas de la cinemática directa del robot. La matriz jacobiana analítica directa es:

$$\dot{x} = \sum_{i=1}^{n} \frac{\partial f_{x}}{\partial q_{i}} \dot{q}_{i} \qquad \dot{y} = \sum_{i=1}^{n} \frac{\partial f_{y}}{\partial q_{i}} \dot{q}_{i} \qquad \dot{z} = \sum_{i=1}^{n} \frac{\partial f_{z}}{\partial q_{i}} \dot{q}_{i}$$

$$\dot{\theta} = \sum_{i=1}^{n} \frac{\partial f_{\phi}}{\partial q_{i}} \dot{q}_{i} \qquad \dot{\theta} = \sum_{i=1}^{n} \frac{\partial f_{\phi}}{\partial q_{i}} \dot{q}_{i} \qquad \dot{\eta}_{i} = \sum_{i=1}^{n} \frac{\partial f_{\psi}}{\partial q_{i}} \dot{q}_{i}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\phi} \\ \dot{\psi} \end{bmatrix} = \mathbf{J}_a \cdot \begin{bmatrix} \dot{q}_1 \\ \vdots \\ \vdots \\ \dot{q}_n \end{bmatrix} \quad \text{con } \mathbf{J}_a = \begin{bmatrix} \frac{\partial \mathbf{f}_x}{\partial q_1} & \cdots & \frac{\partial f_x}{\partial q_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{f}_{\psi}}{\partial q_1} & \cdots & \frac{\partial \mathbf{f}_{\psi}}{\partial q_n} \end{bmatrix}$$

Ejemplo: robot polar, de 2 GDL

Calcula la matriz jacobiana para el robot de 2 grados de libertad definido por la siguiente tabla de parámetros D-H, considerando sólo la posición (x,y) (sin la orientación) del elemento terminal

i	$\boldsymbol{\theta}_{i}$	d _i	a _i	α_{i}
1	$q_1 = \theta_1$	0	1	0
2	$q_2 = \theta_2$	0	1	0

 La matriz Jacobiana del manipulador J(q₁, q₂) es igual a:

$$J(q_1, q_2) = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} \end{bmatrix} = \begin{bmatrix} -s_{12} - s_1 & -s_{12} \\ c_{12} + c_1 & c_{12} \end{bmatrix}$$

Ejemplo: Jacobiana analítica del robot SCARA

$$J_a = \begin{bmatrix} -\left(l_3S_{12} + l_2S_1\right) & -l_3S_{12} & 0 & 0 \\ l_3C_{12} + l_2C_1 & l_3C_{12} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x = l_3 C_{12} + l_2 C_1$$
 $\phi_Z = q_1 + q_2 + q_4$
 $y = l_3 S_{12} + l_2 S_1$ $\theta_Y = \pi$
 $z = l_1 - l_4 + q_3$ $\psi_Z = \pi$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = J_a \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{bmatrix}$$

Matriz Jacobiana geométrica

La matriz Jacobiana geométrica (o simplemente Jacobiana) utiliza las velocidades con las que se mueve el elemento terminal a lo largo de una trayectoria. Incluye las velocifades

lineales (v_x, v_y, v_z) y angulares (w_x, w_y, w_z), todas representadas

respecto a la base del robot. J se divide en J_v y J_w

- La parte de velocidades lineales, J_v es la misma que en la Jacobiana analítica
- Para relacionar las velocidades angulares con las velocidades articulares se utiliza la matriz Ω. Se calcula a partir de la submatriz de rotación R de la cinemática directa del robot. Permite extraer J_w

$$\mathbf{A} = \begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix}$$

 W_{τ}

Ejemplo: Jacobiana (geométrica) del robot SCARA

$$J_{v} = \begin{bmatrix} -(l_{3}S_{12} + l_{2}S_{1}) & -l_{3}S_{12} & 0 & 0 \\ l_{3}C_{12} + l_{2}C_{1} & l_{3}C_{12} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{T} = {}^{0}\mathbf{A}_{4} = \begin{bmatrix} C_{124} & S_{124} & 0 & l_{3}C_{12} + l_{2}C_{1} \\ S_{124} & -C_{124} & 0 & l_{3}S_{12} + l_{2}S_{1} \\ 0 & 0 & -1 & -l_{4} + q_{3} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = {}^{0}\mathbf{A}_{4} = \begin{bmatrix} C_{124} & S_{124} & 0 & l_{3}C_{12} + l_{2}C_{1} \\ S_{124} & -C_{124} & 0 & l_{3}S_{12} + l_{2}S_{1} \\ 0 & 0 & -1 & -l_{4} + q_{3} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{aligned} \Omega &= \dot{\mathbf{R}}\mathbf{R}^{T} \Rightarrow \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\dot{q}_{1} - \dot{q}_{2} - \dot{q}_{4} & 0 \\ \dot{q}_{1} + \dot{q}_{2} + \dot{q}_{4} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \omega_{x} &= 0 \\ \omega_{y} &= 0 \\ 0 &= 0 & 0 \end{bmatrix}$$

$$\omega_{z} &= \dot{q}_{1} + \dot{q}_{2} + \dot{q}_{4} \Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Singularidades

 Existen determinadas configuraciones singulares o singularidades, en los que se pierde alguno de los grados de libertad del robot, siendo imposible que el elemento terminal se mueva en una determinada dirección u orientación.

- En una singularidad el determinante de la matriz Jacobiana se anula, es decir, en dichos puntos no existe matriz Jacobiana inversa
- Existen dos tipos:
 - 1. Singularidades en los límites del espacio de trabajo: el robot no puede desplazarse en las direcciones que lo alejan más allá de dicho espacio.
 - 2. Singularidades en el interior del espacio de trabajo. Se producen, generalmente, por el alineamiento de dos o más ejes del robot, y provocan movimientos y velocidades abruptos en algunos eslabones

Singularidades

Singularidades en un robot industrial de 6 ejes

En un robot de 6 ejes ocurren cuando se alinean dos o más ejes. Por ello existen tres tipos de singularidades (de 1º orden):

- Singularidad "de muñeca" (wrist): se produce cuando se alinean los ejes 4 y 6 (eje 5 con q₅ = 0)
- Singularidad "de hombro" (shoulder): cuando el eje 6 se alinea con el eje 1, o cuando el centro de la muñeca se sitúa sobre el eje 1.
- Singularidad " de codo" (elbow): cuando el centro de la muñeca se sitúa en el mismo plano que los ejes 2 y 3 ("codo arriba" y "codo abajo")

https://www.youtube.com/watch?v=lD2HQcxeNoA

Como evitar las singularidades

En los robots comerciales, el controlador (computador de ejes) se encarga de restringir los movimientos y modificar las trayectorias para no caer en singularidades ni pasar cerca de ellas:

(a) Without considering singularity avoidance

(b) With considering singularity avoidance

Determinar singularidades

$$J(q_1, q_2) = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} \end{bmatrix} = \begin{bmatrix} -s_{12} - s_1 & -s_{12} \\ c_{12} + c_1 & c_{12} \end{bmatrix}$$

$$|J(q_1, q_2)| = \begin{vmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} \end{vmatrix} = -c_{12}(-s_{12} - s_1) + s_{12}(c_{12} + c_1) = 0$$

$$\sin(q_2) = 0 \Rightarrow q_2 = 0, \pi$$