

Definition: Eigenvalue Problem

Let's consider the following matrix form,

Our concern is to find values of λ that satisfy this relationship.

Above relation also can be written as...

$$([A] - \lambda [I]) \cdot [X] = [0] \quad \text{where [1] is an identity matrix.}$$

Eigenvalue Problem!

Solving Method: Eigenvalue Problems (2×2 case) - 1

$$\lambda[I] = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

$$([A] - \lambda[I]) \cdot [X] = [0]$$

$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0$$

$$a_{21}x_1 + (a_{22} - \lambda)x_2 = 0$$

Let's assume that there are solutions to these equations other than the trivial case where all the unknown $x'_s=0$.

Solving Method: Eigenvalue Problems (2×2 case) - 2

$$([A] - \lambda[I]) \cdot [X] = [0]$$

the determinant must be zero.

$$|A - \lambda I| = 0 = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix}$$

$$(a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0$$

$$(a_{11}a_{22}) - (a_{21}a_{12}) - (a_{11}\lambda) - (a_{22}\lambda) + \lambda^2 = 0$$

$$\lambda^2 + \alpha_1 \lambda + \alpha_2 = 0$$

For a quadratic equation,
$$ax^2 + bx + c = 0$$
, the general solution is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Numerical Examples of Eigenvalue Problems (2×2 case)

Numerical Example 1

The eigenvalues represent the magnitudes, or lengths, of the major and minor axes of an ellipse. See Next Page!

Numerical Example 1: Continued

The eigenvalues represent the magnitudes, or lengths, of the major and minor axes of an ellipse.

Numerical Example 1: Continued

Then rotate the ellipse to its envelope can be on the two points.

Numerical Example 2.

If the two points are closer than the case of numerical example 1,

$$[A] = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$$

Then the eigenvalues are

$$\lambda_1 = 7, \lambda_2 = -1$$

The sum of the eigenvalues(= λ_1 + λ_2 =7-1=6) is always equal to the sum of the diagonal elements(3+3), i.e. trace of the original matrix.

Numerical Example 3.

If the two points are identical,

$$[A] = \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$$

Then the eigenvalues are

$$\lambda_1 = 4, \lambda_2 = 0$$

The sum of the eigenvalues is always equal to the sum of the diagonal elements, i.e. trace of the original matrix.

Numerical Example 4.

If the two points are perpendicular to one another,

$$[A] = \begin{bmatrix} -3 & 1 \\ 1 & 3 \end{bmatrix}$$

Then the eigenvalues are

$$\lambda_1 = \sqrt{10}, \lambda_2 = -\sqrt{10}$$

The sum of the eigenvalues is always equal to the sum of the diagonal elements, i.e. trace of the original matrix.

Eigenvector Problems with Numerical Example 1

We already calculated eigenvalues in example 1

$$[A] = \begin{bmatrix} 3 & 6 \\ 6 & 3 \end{bmatrix} \quad \text{with} \quad \lambda_1 = 9, \ \lambda_2 = -3$$

For
$$\lambda_1 = 9$$

$$\begin{bmatrix} a_{11} - \lambda_1 & a_{12} \\ a_{21} & a_{22} - \lambda_1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 - 9 & 6 \\ 6 & 3 - 9 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 6 & -6 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 Eigenvector
$$\begin{bmatrix} -6 & 6 \\ 6 & -6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Eigenvector of the largest eigenvalue represents a slope of the major axis of ellipse

Eigenvector Problems with Numerical Example 1 (continued)

For
$$\lambda_2 = -3$$

$$\begin{bmatrix} a_{11} - \lambda_1 & a_{12} \\ a_{21} & a_{22} - \lambda_1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 - (-3) & 6 \\ 6 & 3 - (-3) \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Eigenvector
$$\begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The eigenvector of second largest eigenvalue represents a slope of the minor axis of ellipse

Eigenvector Problems with Numerical Example 1 (continued)

For symmetric matrices, their eigenvectors always are at right angles to each other: ORTHOGONAL!!!