SISTEMI DISTRIBUITI Al posto d'i comprare un PC grande si prendono n' microprocessori Un sistema distribuito e: -network d, workstation - distribuzione manufatturiera -network d, P.C. d'ufficio (pen x @ home) Praticamente tutto il uno si basa su reti di sistemi distant H Alcuni asretti Vantaggi del sistem distribut: rispetto a centralizzat: · Più economico · Più veloce, meno delay · Migliore distribuzione di dat: ·Rolability · Crescita incrementale Svantaggi: · Software & sinoroniëzazione, e coordinazione · Saturazioni di rete · Sicurezza: accesso facily a probablo a: dat:

Obbiettivo Primario Scambio di Risorse e clati · Coordinationu · Sincronizzazione Coordinazione Alcune considerazioni • serve concorrenta spaziale e temporale · Non de CLOCK GLOBALE · Latence non controllabili · Problem: Per discynère un sstema distribuito si devono gestire: - Concorrenza - Flessibilità (se down uno finzione tatto) - Performance (Performance) -Eterogeneità su più punti - Apertura (interface publishe API) - Sicurcea (C.I.A)
- Scalabilità (conso risus en mend)
- Alfidabilità (Più affidabili) - Trasparenza

In generale NON m. devo accorgère di ole mocchina del sistemo sto usando!

Sicurezza: (C.I.A)

• Confidenzialtà: limitare accesso a nsorse a chi non è autorizzato

• Integnità: protraione da alterazione e corruzzione dei dati.

« Availability: profesione da interferenze per accedere a dat.

2 MO	DELLA 21	INTERNEIN	ONE
· Client - ser	rver		
o Peer -to-			
Layer di			
fare cambia			e neasserv
SISTEMA UNI	co di comunica	1710NC	
	Applicazione c	Servizi 1	Jnico
	Middleware		per tath
	Sistema open	, tro	
	Locale'		Singola Piatlaforma
	Network		
Alcuni pro6	lemi del mid	dleware	
			to: d. dati does
· Non c'è co	noscenen globale locale e d. rete	d, tatti;	tipi d. dati, doch
			+
attraverso	un set di Af	tiper gestine	queste situation;

COMPUTING CLIENT-SERVER Client somo computer single dient che lascano un' interfaccia uscr-friendly Serven rilascia una serie di risorso condivise ai dient e il serven permotte l'accesso simultaneo a più dient per accedere a stesso database

el serror permotte l'accesso simultaneo a più dienti
per accedere a stesso database

La logica applicativa e fatta lato d'enti
La comunicazione passu attraveso, spesso, TCP-IP

Alcune componienti dell'applicazione

-logica di presentazione

-logica di processing

- Business Processing

HOST SERVER

-Data storage

BASED
- mainframe traditionelle.
Tutto gestito da sener,
clent solo monseitadera;

Shermol COOPEDATIVE PROCESSING

-logica application a should -complesse de montenere -server for tilto processing -client for losses

CLIENT-BASED PROCESSING

-client fa logice di presentazione,
applicazione e database

-server to logica DBMS e

resentatione

AZCHITETTURA a 3 LIVELLI La logica software dell'applicatione or a 3 troi di macchine -USER MACHINE - MIDDLE TIER SKRUER · Gateway · Sever 1, smist amento -BACKEND SERVER SERVICE - ORIENTED ARCHITECTURE Usato in sistemi enterprise, organizza fenzioni in struttura modulare, più die app monolitica ad orn dipartimento. Insiere di servizi e appl. client che li usano, che comunicano attraverso interfacce standardizzate (e.g.xnl) YICKTCO OI (1) RICHIEDENTE SERVICE BROWER for richicata pubblica nuevi SCYVI Zi DROVIDER 6 (3)

REMOTE PROCEDURE CALL

· Fa in modo di avere interazioni tra diverse mocchine attraverso statement e return

GTASSICTAGE ON ATZ

L) Il codice di commicazione può esser gnerato
automaticamente

L) Modularizzabile

· Sener uha contiene Portioni e procedure.

Passayg10 parametri

BINDING

- oper valore è semplie oper purtatore è difficile: - necessario sisteme di puntamento universale
 - not worth.

Abbinamento (anche persistente) tra muchine.

lesme con TEP e UDP)

Nel case del broding persistente è comodo perche basta

une sols connessione e quello può essure usata

por qui procedure call

Nel blading temporaneo può sosse conodo se si wa le RPC una o due votte.

7	ŞÞ	C		3	S N	JCī	50	7	5		VS		f	B).	vc R	2ON	E					
S	ŊП	cro	7	us																		
	• ,) (\$1	len	7	6,	510	occ.		£	00	a	M'	ami	~δ	de	l ,	اماكما	tate				
	•	ui.		Fac	ile	da	34	yet Jev	ire,	, n	ינאי ינאי	DE	rG	rm	anu		0890	ilor	<u>:</u> 1			
	•	201		3P	RUT	da ta	P	AR	, u	БU.	SMC	١,					~		•			
A	Sy :	nch	ا نص	10c	4 :																	
	(ه	Jor	١.	٤	loc	ceda ceda	ı	1	CO	ıl le	ŗ											
	•	cla	ent		bho	cedc	•	n	pai	Mll	ulo	•	on	(,)	sei	ner	•					
٦,	E ()P	.1																			
را ح	. ,	٥	•																			
C	. 1	305	Son	0	•	? SEL V	E	tre	e t	D;	9) د	OVr	or.`								
	•																					
	(i)	In	VK	•	ne	SSA	3 9	01													
	_					a Z																
	(5)		RI	cci	dor	æ	B	spo	ost	a												
В	, SO	0 v S)	ges	he	C	gni	Ł	1p0	, (d, e	moi	rel									
		,											·									
6	es	tro	ne	<i>;</i> :																		

CLUSTER

gruppo di computer interconnessi che si comportano come una solo macchina.

Ogni po de appartiere al cluster è detto Noso

failure management

e applications de una macchina fail a una funzione

pc dopo de e stato mosso a pasto.

controlle carich

il duster he bisogno di un outemu di monitorassio, avvo c trasloco di task

Middleware tione traccia del programmi del corico