Polar coordinates *

Dr Juan H Klopper

Contents

1	Polar and rectangular coordinates	1
2	Polar equation curves	2
3	Polar and rectangular equations	2
4	Sketching curves	3

1 Polar and rectangular coordinates

Problem 1.1. Derive a conversion from polar to rectangular coordinates.

Problem 1.2. Derive a conversion from rectangular to polar coordinates.

Problem 1.3. Convert the point P(2,3) in the plane to polar coordinates.

Problem 1.4. Convert the polar coordinate point in (1) to rectangular coordinates.

$$P\left(-\sqrt{13}, \tan^{-1}\left(\frac{3}{2}\right) + \pi\right) \tag{1}$$

Problem 1.5. Find the rectangular coordinates of the polar coordinate point in (2).

$$P\left(2,\frac{\pi}{6}\right) \tag{2}$$

Problem 1.6. Find the rectangular coordinates of the polar coordinate point in (3).

$$P\left(-4, \frac{\pi}{3}\right) \tag{3}$$

Problem 1.7. Find the rectangular coordinates of the polar coordinate point in (4).

$$P\left(3, \frac{3\pi}{4}\right) \tag{4}$$

^{*}A course in vector calculus

2 Polar equation curves

Problem 2.1. Describe the curve r=2.

Problem 2.2. Describe the curve in (5).

$$\theta = \frac{\pi}{4} \tag{5}$$

Problem 2.3. Describe the curve $r = 2 \sin \theta$.

Problem 2.4. Write a polar equation for the y-axis.

Problem 2.5. Describe the curve $r = 4\cos\theta$.

Problem 2.6. Describe the curve $r = \tan \theta \sec \theta$.

Problem 2.7. Describe the curve in (6).

$$r = \frac{6}{\sqrt{9 - 5\sin^2\theta}}\tag{6}$$

Problem 2.8. Describe the curve $r = -10\cos\theta$.

Problem 2.9. Describe the curve $r = 6 (\sin \theta + \cos \theta)$.

Problem 2.10. Describe the curve $r = 10 \sec \theta$.

Problem 2.11. Describe the curve $r = -3 \csc \theta$.

3 Polar and rectangular equations

Problem 3.1. Convert the rectangular equation $x^2 + y^2 = 25$ to a polar equation.

Problem 3.2. Convert the rectangular equation $x^2 - y^2 = 1$ to a polar equation.

Problem 3.3. Convert the rectangular equation xy = 4 to a polar equation.

Problem 3.4. Convert the rectangular equation x = 3 to a polar equation.

Problem 3.5. Convert the rectangular equation x + 2y = 3 to a polar equation.

Problem 3.6. Convert the polar equation $\theta = 3$ to a rectangular equation.

Problem 3.7. Convert the polar equation $r = \tan \theta$ to a rectangular equation.

Problem 3.8. Show that the polar coordinate point $P\left(3, \frac{3\pi}{4}\right)$ lies on the curve of the polar equation $r = 3\sin 2\theta$.

Problem 3.9. Show that the polar coordinate point $P\left(3, \frac{3\pi}{2}\right)$ lies on the curve of the polar equation $r^2 = 9\sin\theta$.

4 Sketching curves

Problem 4.1. Sketch the polar equation $r=1+\cos\theta$

Problem 4.2. Sketch the polar equation $r = 1 + 2\cos\theta$