

COMP4650/6490 Document Analysis

Multilingual and Low Resource NLP

ANU School of Computing

Administrative matters

- Practice exercise
- Quiz 3
 - Will open later this week
- Final exam:
 - Exam instructions will be available in Week 12
- Drop-in sessions
 - 1pm 2pm Friday 20 October
 - 1pm 3pm Thursday 26 October
 - 1pm 2pm Friday 27 October
 - Location: Room 3.41, Level 3, Hanna Neumann Building

Outline

- Multilingual NLP
 - Multilingual word embeddings

- Low Resource (Language) NLP
 - Challenges
 - Cross-lingual language model (XLM)

Outline

- Multilingual NLP
 - Multilingual word embeddings

- Low Resource (Language) NLP
 - Challenges
 - Cross-lingual language model (XLM)

Multilingual NLP deals with cross-lingual resources and models

- There is a need for the development of Multilingual applications, for example, commercial applications including: forum moderation and product recommendation systems
- It's possible to build multilingual NLP resources with monolingual or parallel corpora.... → lots of data

Aims:

- Solve NLP problems which require us to understand multiple languages
- Streamline our NLP tools to work seamlessly across many languages
- Solve NLP problems in languages without a lot of data

Examples of Multilingual NLP problems:

Machine translation

- Translate a sentence from one language into another.
- Typically modelled as a sequence-to-sequence problem.
- Often we use parallel corpora to train the model.

Intra-word code switching

Where the author switches languages part way through a word.

For example, in **oetverkocht** 'sold out', the particle **oet** 'out' is used that is associated with Limburgish whereas **verkocht** 'sold' is associated with Dutch. (Nguyen & Cornips, 2016)

Can be formulated as a sequence labelling problem at the character level, e.g. Tags with BIO encoding

Multilingual resources

Universal Dependencies: POS-Tags, morphological features, syntactic dependencies, and treebanks across 100+ languages

- Facilitates multilingual parser development
- Cross-lingual learning
- Parsing research from a language typology perspective

English: NOUN# The by dog was chased the cat Bulgarian: NOUN# PRON# VERB# ADP NOUN# PUNCT Кучето ce преследваше ОТ котката Czech: NOUN³ VERB# PUNCT byl Pes honěn kočkou Swedish: PUNCT Hunden jagades katten

The same sentence in four languages parsed using Universal Dependencies.

Note:

- the main grammatical relations are the same
- Also, most of same POS tags are used

https://universaldependencies.org/

Multilingual word embeddings

A word embedding space that is shared across multiple languages. Similar words in different languages are close in the embedding space.

(Above) A shared embedding space between English and German (<u>Luong et al., 2015</u>) Constructed using a parallel corpus.

More recent approaches work by aligning mono-lingual embeddings, because it is easier to find large amounts of data.

Similar geometric relations between numbers and animals in English and Spanish https://arxiv.org/abs/1309.4168

There are several method for constructing multilingual word embeddings:

Supervised: using a small bilingual dictionary to learn a mapping from the source to the target space with (iterative) Procrustes alignment

Unsupervised: without any parallel data, learn a mapping from the source to the target space using adversarial training and (iterative) Procrustes refinement

Supervised approach

Input:

- Word vectors from language A (denoted $x_i \in \mathbb{R}^d$)
- Word vectors from language B (denoted $y_i \in \mathbb{R}^d$)
- A small set of words in language A that are translations of words in language BRepresented as word pairs, denoted: $(x_i, y_i)_{i \in \{1, ..., n\}}$

Output:

• A mapping from vectors in language A to vectors in language B: $y_i \approx Wx_i$

$$X = \begin{bmatrix} 0.12 & 0.4 & \dots \\ 0.3 & 0.7 & \dots \\ 0.2 & 0.99 & \dots \\ \dots & \dots & \dots \end{bmatrix} \quad Y = \begin{bmatrix} 0.32 & 0.21 & \dots \\ 0.1 & 0.85 & \dots \\ 0.5 & 0.3 & \dots \\ \dots & \dots & \dots \end{bmatrix} \quad \text{Matrix W which does the mapping from X to Y.}$$

Learn a $d \times d$ transformation mapping from X to Y.

Supervised approach

We use the word pairs, denoted $(x_i, y_i)_{i \in \{1,...,n\}}$ as supervised examples to optimise a loss function that achieves: $y_i \approx Wx_i$

Minimize:
$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{C}(Wx_i, y_i)$$

By choosing W, where W is constrained to be an orthogonal mapping (i.e. $W^{\top}W = I$) (Preserving similarities, e.g. $y_i^{\top}y_j \approx (Wx_i)^{\top}(Wx_j) = x_i^{\top}W^{\top}Wx_j = x_i^{\top}x_j$)

One choice of ℓ is Euclidean distance:

$$\mathcal{E}(Wx_i, y_i) = \|Wx_i - y_i\|^2$$

More recent techniques have proposed loss functions that work better such as Cross-domain Similarity Local Scaling (CSLS)

Supervised word embeddings for 44 languages, aligned in a single vector space from fastText

https://arxiv.org/abs/1804.07745

Afrikaans: <i>text</i>	Arabic: text	Bulgarian: <i>text</i>	Bengali: <i>text</i>	
Bosnian: text	Catalan: text	Czech: text	Danish: text	
German: text	Greek: text	English: text	Spanish: text	
Estonian: <i>text</i>	Persian: text	Finnish: text	French: text	
Hebrew: text	Hindi: text	Croatian: text	Hungarian: text	
Indonesian: text	Italian: text	Korean: text	Lithuanian: text	
Latvian: text	Macedonian: text	Malay: text	Dutch: text	
Norwegian: text	Polish: text	Portuguese: text	Romanian: text	
Russian: text	Slovak: text	Slovenian: text	Albanian: text	
Swedish: text	Tamil: text	Thai: text	Tagalog: text	
Turkish: text	Ukrainian: <i>text</i>	Vietnamese: text	Chinese: text	

Uses a supervised approach

- Relies on a small number of known word mappings between language pairs.
- Learns a transformation matrix W that maps one language space into another
- Minimises CSLS between transformed words for known word pairs

MUSE is a Python library for multilingual word embeddings, whose goal is to provide the community with:

- state-of-the-art multilingual word embeddings (fastText embeddings aligned in a common space)
- large-scale high-quality bilingual dictionaries for training and evaluation

Based on (Conneau et al. 2018) https://arxiv.org/abs/1710.04087

- Unsupervised alignment approach
- Uses a discriminator objective (like a GAN) to get a very good initial alignment
- Refines the alignment using most frequent words in the initial alignment as seeds

Ground-truth bilingual dictionaries from Facebook research for evaluating fastText (and similar methods)

European languages in every direction

src-tgt	German	English	Spanish French		Italian	Portuguese	
German	-	full train test					
English	full train test	-	full train test	full train test	full train test	full train test	
Spanish	full train test	full train test	-	full train test	full train test	full train test	
French	full train test	full train test	full train test	-	full train test	full train test	
Italian	full train test	full train test	full train test	full train test	-	full train test	
Portuguese	full train test	-					

Outline

- Multilingual NLP
 - Multilingual word embeddings

- Low Resource (Language) NLP
 - Challenges
 - Cross-lingual language model (XLM)

Low Resource NLP

Domains where there is a small amount of data

 Applies in domains which don't have substantial training resources: biomedical, legal, etc.

Today we will mostly be talking about low resource languages:

- Languages lacking large monolingual or parallel corpora and/or manually crafted linguistic resources sufficient for building statistical NLP applications
- State-of-the-art NLP models require large amounts of training data and complex language-specific engineering
- Language-specific engineering is expensive, requires linguistically trained speakers of the language

Recent survey paper (Hedderich et al, 2021) https://arxiv.org/abs/2010.12309

Why it matters?

applications

Monitoring demographic and political processes

Image source: https://medium.com/sciforce/nlp-for-low-resource-settings-52e199779a79

Low resource does not refer only to minority or endangered languages, but also to languages spoken by millions in developing countries

- H: Higher-level NLP applications D: Discourse
- RS: Relational semantics
- LS: Lexical semantics
- DS: Distributional semantics
- SA: Syntactic analysis
- MA: Morphological analysis
- TP: Text processing

Languages spoken by millions of people do not have training data for many tasks. (Hedderich et al, 2021)

Examples of machine learning methods suitable for low resource NLP

- Active learning
- Transfer learning
- Multi-task learning
- Learning-to-Learn and Meta-Learning
- Semi-supervised learning
- Dual learning (English → French, French → English)
- Unsupervised learning

Unsupervised Learning:

- Unsupervised POS-Tagging
- Unsupervised dependency parsing
- Brown clustering

Also:

Universal representations and interlinguas

Cross-Lingual Transfer Learning

Transfer of annotations

Such as POS tags, syntactic or semantic features via cross-lingual bridges (e.g. word or phrase alignments)

Transfer of models

Training a model in a resource-rich language and applying it in a resource-poor language in zero-shot or one-shot learning

Transfer other parameters, e.g. features

Joint Multilingual or "Polyglot" Learning

Resource-rich and resource-poor learning using a languageuniversal representation

- Convert data in all languages to a shared representation (e.g. multilingual word vectors)
- Train a single model on a mix of datasets in all languages, to enable parameter sharing where possible

XLM is a BERT type model trained on 15 languages:

Trained a single model on 15 languages using Wikipedia text from each language

- Sampled sequences from each language during training.
- Used masked language modelling (aka BERT word masking)
- Sub-word vocabulary (Byte Pair Encoding) shared across all languages

The resulting contextual embedding are useful for many different cross language tasks. (Lample & Conneau, 2019)

https://arxiv.org/abs/1901.07291

https://github.com/facebookresearch/XLM

Zero-shot cross-lingual classification

Fine tune XLM on an English language classification task (e.g. NLI with only English text)

	Language	Premise / Hypothesis	Label	NLI classes are:
				Entailment, Contradiction, Neutral
]	English	You don't have to stay there.	Entailment	
		You can leave.		

Evaluate on a different language (e.g. French, Spanish)

French	La figure 4 montre la courbe d'offre des services de partage de travaux. Les services de partage de travaux ont une offre variable.					
Spanish	Y se estremeció con el recuerdo. El pensamiento sobre el acontecimiento hizo su estremecimiento.					

Zero-shot cross-lingual classification

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur	$ \Delta $
Conneau et al. (2018b)	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4	65.6
Devlin et al. (2018)															58.3	
Artetxe and Schwenk (2018)	73.9	71.9	72.9	72.6	73.1	74.2	71.5	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0	70.2
XLM (MLM)	83.2	76.5	76.3	74.2	73.1	74.0	73.1	67.8	68.5	71.2	69.2	71.9	65.7	64.6	63.4	71.5

- Conneau et al. (2018b) uses MUSE word embeddings
- Delvin et al. (2018) mBERT is BERT trained on 100 languages but is not quite as good in the above table (perhaps because of the number of languages used) https://github.com/google-research/bert/blob/master/multilingual.md
- Artetxe & Schwenk. (2018) use parallel corpora to train a BiLSTM encoder-decoder
- Newer model: XLM-R (Conneau et al, 2020)
 https://arxiv.org/abs/1911.02116
 Based on a better BERT implementation (RoBERTa)

Summary

- Multilingual NLP
 - Multilingual word embeddings

- Low Resource (Language) NLP
 - Challenges
 - Cross-lingual language model (XLM)

References

Luong, M.T., Pham, H. and Manning, C.D., 2015, June. Bilingual word representations with monolingual quality in mind. In *Proceedings of the 1st workshop on vector space modeling for natural language processing* (pp. 151-159).

Mikolov, T., Le, Q.V. and Sutskever, I., 2013. Exploiting similarities among languages for machine translation. *arXiv* preprint arXiv:1309.4168.

Joulin, A., Bojanowski, P., Mikolov, T., Jégou, H. and Grave, E., 2018. Loss in translation: Learning bilingual word mapping with a retrieval criterion. *arXiv* preprint arXiv:1804.07745.

Conneau, A., Lample, G., Ranzato, M.A., Denoyer, L. and Jégou, H., 2017. Word translation without parallel data. *arXiv preprint arXiv:1710.04087*.

Hedderich, M.A., Lange, L., Adel, H., Strötgen, J. and Klakow, D., 2020. A survey on recent approaches for natural language processing in low-resource scenarios. *arXiv preprint arXiv:2010.12309*.

Lample, G. and Conneau, A., 2019. Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L. and Stoyanov, V., 2019. Unsupervised cross-lingual representation learning at scale. *arXiv preprint arXiv:1911.02116*.