MAT02026 - Inferência B

LISTA 3 - TESTES MP E UMP, FUNÇÃO PODER E TRV

Exercício 1 Suponha que a proporção p de itens defeituosos, em uma grande população de itens, seja desconhecida. Deseja-se testar as seguintes hipóteses $H_0: p=0,2$ versus $H_1: p\neq 0,2$. Considere que uma amostra aleatória de 20 itens seja retirada desta população e denote Y= número de itens defeituosos na amostra. O seguinte procedimento de teste será usado: Rejeitar H_0 se $Y\geq 7$ ou $Y\leq 1$.

- a) Determine a função poder deste teste.
- b) Calcule o valor da função poder para os seguintes pontos $p = \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$. Faça o gráfico.
- c) Determine o tamanho do teste, ou seja, o valor de $\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$.

Exercício 2 Seja X_1, \ldots, X_{10} uma amostra aleatória de tamanho n=10 tal que $X_i \sim Bernoulli(\theta)$ onde $P(X_i=1)=\theta=1-P(X_i=0)$. Considere as hipóteses $H_0:\theta\leq 1/2$ contra $H_1:\theta>1/2$. Assuma a seguinte regra de teste: Rejeitar H_0 se $\sum X_i\geq 6$.

- a) Determine a função poder do teste.
- b) Calcule a função poder para os seguintes pontos $p = \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$. Faça o gráfico.
- c) Determine o tamanho do teste, ou seja, o valor de $\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$.

Exercício 3 Considere a variável aleatória X com a seguinte densidade $f(x) = \theta x^{\theta-1} I_{(0,1)}(x)$. Para testar as hipóteses $H_0: \theta \leq 1$ versus $H_1: \theta > 1$, uma única observação (X_1) foi amostrada e o seguinte critério de rejeição foi adotado: rejeitar H_0 se $X_1 > 1/2$.

- a) Encontre a função poder deste teste.
- b) Determine o tamanho do teste.

Exercício 4 Suponha que X_1, \ldots, X_n é uma amostra aleatória tal que $X_i \sim \text{Bernoulli}(\theta)$. Calcule $\lambda(X)$ e determine o critério de rejeição para o TRV (Teste da Razão de Verossimilhanças) considerando as hipóteses $H_0: \theta \leq \theta_0$ versus $H_0: \theta > \theta_0$, em que θ_0 é um valor conhecido especificado pelo pesquisador.

Exercício 5 Seja X_1, \ldots, X_n uma amostra obtida a partir da distribuição Exponencial com parâmetro θ .

- a) Encontre o TRV para testar $H_0: \theta = 1$ versus $H_1: \theta \neq 1$.
- b) Se uma amostra de tamanho n = 5 observasse os seguintes valores $\mathbf{x} = \{0.8; 1.3; 1.8; 0.9; 1\}$, qual seria a sua conclusão se escolhermos a constante c = 0.5.

Exercício 6 Seja X_1, \ldots, X_n uma amostra aleatória da distribuição $N(\mu_x, 9)$ e considere Y_1, \ldots, Y_m uma amostra aleatória da distribuição $N(\mu_y, 25)$. Assuma que essas duas amostras são independentes.

- a) Encontre o TRV para $H_0: \mu_x = \mu_y$ versus $H_1: \mu_x \neq \mu_y$. Dica: Determine a distribuição de $\overline{X} \overline{Y}$.
- b) Se você observar $n=9, \sum_{i=1}^9 x_i=3.4, m=16, \sum_{i=1}^{16} y_i=4.3$. Qual seria a sua decisão considerando c=0.5.

Exercício 7 Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Gama $(3, \lambda)$. Encontre o TRV para as hipóteses $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$, onde λ_0 é um valor positivo e especificado pelo pesquisador.

Exercício 8 Seja X_1, \ldots, X_n uma amostra aleatória da densidade

$$f(x/\theta) = \frac{2x}{\theta} I_{(0,\theta]}(x),$$

onde $\theta > 0$. Encontre o TRV para as hipóteses $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$, onde θ_0 é um valor positivo e especificado pelo pesquisador.

Exercício 9 Seja X_1, \ldots, X_n uma amostra aleatória da variável $X \sim \text{Geométrica}(\theta)$.

- a) Encontre o TRV para as hipóteses $H_0: \theta = \theta_0$ contra $H_1: \theta \neq \theta_0$.
- b) Encontre o teste uniformemente mais poderoso (UMP) para testar $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, em que $\theta_0 < \theta_1$ são especificados pelo pesquisador.
- c) Encontre o teste UMP para $H_0: \theta = 0.3$ versus $H_1: \theta = 0.5$.
- d) Dado o teste UMP calculado na letra (c), considere que n=5 e $\alpha=0.04$, qual o critério de rejeição? Qual o erro tipo II? Se a amostra observada fosse $x=\{4,5,3,2,5\}$ qual a sua decisão?
- e) Gere artificialmente, no software R, uma amostra de n=100 de uma distribuição geométrica com parâmetro $\theta=0.5$. Dado o teste UMP calculado na letra (b) e $\alpha=0.04$, qual o critério de rejeição? Qual o erro tipo II? Compare com o resultado encontrado na letra (d).

Exercício 10 Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição $N(\mu, 1)$.

- a) Encontre o teste UMP para as hipóteses $H_0: \mu = 0$ contra $H_1: \mu = 1$.
- b) Suponha que n=9 e $\alpha=0,05$. Qual é a região crítica do teste obtido em (a).
- c) Faça o gráfico da função poder da letra (b).

Exercício 11 Seja X_1, \ldots, X_n uma amostra aleatória da variável X com a seguinte função densidade:

$$f(x/\theta) = \theta x^{\theta-1} I_{(0,1)}$$
, em que $\theta > 0$.

- a) O teste mais poderoso para $H_0: \theta = 1$ versus $H_1: \theta = 2$ rejeitará H_0 se $\left[\sum_{i=1}^n -\log(x_i) \le a\right]$ onde a é uma constante. Mostre este resultado.
- b) Sendo n=2 e $\alpha=[1-\log(2)]/2$ qual seria a região crítica? Dica: se $X\sim \mathrm{Beta}(\theta,\,1)$ então $-\log(X)\sim \mathrm{Exp}(\theta)$.

Exercício 12 Seja X_1, \ldots, X_n uma amostra aleatória obtida da distribuição Poisson (θ) . Encontre o teste UMP para as hipóteses $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, considere que $\theta_0 < \theta_1$

Exercício 13 Seja X_1, \ldots, X_n uma amostra aleatória obtida da distribuição $N(0, \sigma^2)$.

- a) Encontre o teste UMP para $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 = \sigma_1^2$. Considere que $\sigma_0^2 < \sigma_1^2$.
- b) Sendo $\sigma_0^2=1,\,\sigma_1^2=2,\,n=2$ e $\alpha=0.05,$ qual seria a região crítica?
- c) Gere artificialmente, no software R, uma amostra de n=10 da distribuição normal com parâmetros ($\mu=0,\sigma^2=2$). Dado o teste UMP calculado na letra (a), as hipóteses $\sigma_0^2=1$, $\sigma_1^2=2$ e $\alpha=0.04$, qual o critério de rejeição? Qual o erro tipo II? Qual a sua decisão dado essa amostra?
- d) Refaça o item anterior, mas utilize uma amostra de tamanho n = 100. Compare com o resultado encontrado na letra (c).

Exercício 14 O que é 'valor p'?

Exercício 15 O que é nível descritivo amostral?

Exercício 16 O que é nível de significância?

Exercício 17 Seja X_1, \ldots, X_n i.i.d. uniforme $(\theta, \theta + 1)$. Para testar $H_0: \theta = 0$ versus (vs.) $H_1: \theta > 0$, temos dois testes concorrentes:

$$\phi_1(X_1)$$
: Rejeita H_0 se $X_1 > 0.95$,
 $\phi_2(X_1)$: Rejeita H_0 se $X_1 + X_2 > C$,

- a) Encontre o valor de C para o qual ϕ_2 tenha o mesmo tamanho que ϕ_1 .
- b) Calcule a função poder de cada teste. Desenhe a função poder de cada teste.
- c) ϕ_2 é mais poderoso que ϕ_1 ?
- d) Mostre como encontrar um teste que tenha o mesmo tamanho de ϕ_2 , mas que seja mais poderoso que ϕ_2 .

Exercício 18 Seja X_1, \ldots, X_n a.a. de uma v.a. X com função de densidade $N(0, \sigma^2)$.

- a) Encontre o teste uniformemente mais poderoso (UMP) para testar $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$
- b) Seja $\alpha = 0.05, n = 9$ e $\sigma_0^2 = 9$. Faça o gráfico da função poder.

Exercício 19 Para amostras de tamanho n=1,4,16,64,100 de uma população normal com média μ e variância conhecida σ^2 , faça o gráfico da função poder dos seguintes testes da razão de verossimilhança (TRV's). Tome $\alpha=0.05$.

- a) $H_0: \mu \le 0$ vs. $H_1: \mu > 0$.
- b) $H_0: \mu = 0$ vs. $H_1: \neq 0$.

Exercício 20 Uma a.a. X_1, \ldots, X_n é retirada de uma população Pareto com densidade

$$f(x|\theta,\nu) = \frac{\theta\nu^{\theta}}{x^{\theta+1}} I_{\nu,\infty}(x), \quad \theta > 0, \quad \nu > 0.$$

- a) Encontre os EMV's de θ e ν .
- b) Mostre que o TRV

 $H_0: \theta = 1, \ \nu \text{ desconhecido}, \quad vs \quad H_1: \theta \neq 1, \ \nu \text{ desconhecido},$

tem região critica da forma $\{x: T(x) \leq c_1 \text{ ou } T(x) \geq c_2\}$, em que $0 < c_1 < c_2$ e

$$T = \log \left[\frac{\prod_{i=1}^{n} X_i}{(\min_i X_i)^n} \right].$$

Exercício 21 Suponhamos que temos duas amostras de variáveis aleatórias independentes: $X_1 \ldots, X_n$ são $\exp(\theta)$ e $Y_1 \ldots, Y_n$ são $\exp(\mu)$. Encontre o TRV de $H_0: \theta = \mu$ vs. $H_1: \theta \neq \mu$.

Exercício 22 Um caso especial da família de distribuições normal é quando a média e a variância são relacionadas, como por exemplo a família $N(\theta, a\theta)$. Se estamos interessados em testar esse relacionamento, independente do valor de θ , nos deparamos com um problema chamado problema do parâmetro "nuisance".

- a) Encontre o TRV de $H_0: a=1$ vs. $H_1: a\neq 1$ baseado em uma amostra X_1,\ldots,X_n de uma família $N(\theta,a\theta)$, em que θ é desconhecido.
- b) Um problema similar ocorre quando a família é $N(\theta, a\theta^2)$. Assim, se X_1, \ldots, X_n são i.i.d. $N(\theta, a\theta^2)$, quando θ é desconhecido, encontre o TRV de $H_0: a=1$ vs. $H_1: a \neq 1$.