BOANSCHITTEUTOPSLIPERSOARTIÉS NICO NEITOVOORK

ficha 7

A ficha 7 é constituída por 8 questões. As respostas certas valem os valores indicados. Respostas erradas descontam de acordo com as fórmulas de cotação.

Classificação Total: 18,5

Pergunta: 1	
Cotação: 3	
Classificação: 1,5	
Seja $A_{3\times3}$ com car A = 2.	
Sabendo que o polinómio caracteri	stico de A é p $(\lambda) = \lambda (\lambda - 1)^2$ indique todas as afirmações verdadeiras
A é sempre diagonalizável	X
λ = 1 tem multiplicidade algéb	ica 2🏏
$det A^T = 0$	√
✓ Nul A é não trivial	√
Nenhuma	

Pergunta: 2 Cotação: 3 Classificação: 3

Considere o seguinte modelo de mobilidade da população numa dada região. Cada ano, 45% da população da cidade desloca-se para viver nos arredores. Por outro lado, anualmente, 50% da população que vive nos arredores passa a viver na cidade.

Indique todas as afirmações verdadeiras.

Intique todas as alimnações verdadenas. $\square \text{ A matriz de mobilidade da população da região em causa é dada por } \begin{pmatrix} 0.45 & 0.5 \\ 0.55 & 0.5 \end{pmatrix}$

🗆 Suponha que em 2011 a população de 1 000 000 de habitantes dessa região dividia-se em 350000 habitantes da cidade e 650000 habitantes dos arredores. A distribuição da população em 2015 será: 476190 pessoas na cidade e 523810 pessoas nos arredores.

🗆 O vector estacionário para a distribuição da população é dado por 74,3294% de população a residir na cidade e 66,8965% a residir nos arredores. Nenhuma

Pergunta: 3 Cotação: 2 Classificação: 2

Considere o seguinte quadrado de lados unitários

 $Q = \{x \vec{e}_1 + y \vec{e}_2 : x, y \in [0,1]\}$

Indique os valores próprios da transformação linear sofrida pelo quadrado Q, tendo em consideração que cada triângulo é levado no correspondente triângulo da mesma côr, e cuja imagem se apresenta de seguida:

 $\begin{array}{c} & \\ \bigcirc \lambda_1 = 2\sqrt{5} \ e \ \lambda_2 = 2 - \sqrt{5} \\ \bigcirc \lambda_1 = -2 - \sqrt{5} \ e \ \lambda_2 = -2 + \sqrt{5} \\ \hline \bigcirc \lambda_1 = 2 + \sqrt{5} \ e \ \lambda_2 = 2 - \sqrt{5} \end{array}$ $\begin{array}{c} \checkmark \\ \bigcirc \lambda_1 = 2 + \sqrt{5} \ e \ \lambda_2 = 4 \end{array}$

Pergunta: 4 Cotação: 2 Classificação: 2

Considere a aplicação linear \mathcal{T} de \mathbb{R}^2 em \mathbb{R}^2 que transforma o paralelogramo da Figura 1 no da Figura 2. Qual o coseno do menor ângulo entre os vectores próprios da aplicação au ?

Pergunta: 5 Cotação: 2 Classificação: 2

Considere o seguinte quadrado de lados unitários

 $Q = \{ x \vec{e}_1 + y \vec{e}_2 : x, y \in [0,1] \}$

Indique os valores próprios da transformação linear sofrida pelo quadrado Q, tendo em consideração que cada triângulo é levado no correspondente triângulo da mesma côr, e cuja imagem se apresenta de seguida:

 $\bigcirc \ \lambda_1 = \dot{\mathtt{z}} \, \mathtt{e} \, \lambda_2 = -\dot{\mathtt{z}}$

Pergunta: 6 Cotação: 3 Classificação: 3

Considere a transformação linear $T: \mathcal{M}(2\times 2,\mathbb{R}) \to \mathcal{M}(2\times 2,\mathbb{R})$, em que $\mathcal{M}(2\times 2,\mathbb{R})$ representa o espaço vectorial das matrizes 2×2 comentradas reais, definida por T(A) = AB, em que $B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$.

A matriz canónica que representa T é dada por

$$\bigcirc \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

$$\bigcirc \begin{pmatrix}
2 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

$$\bigcirc \begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\bigcirc \begin{pmatrix}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Pergunta: 7 Cotação: 2 Classificação: 2

Seja o espaço linear \mathcal{P}_{ξ} dos polinómios reais de variável real de grau menor ou igual a 2 e a transformação linear definida por $T: \mathcal{P}_{\xi} \longrightarrow \mathcal{P}_{\xi}$ $f(t) \mapsto f''(t) + f(t)$

onde f $^{\prime\prime}$ representa a segunda derivada e f $^{\prime}$ representa a primeira derivada de f em ordem a t.

Pergunta: 8 Cotação: 3 Classificação: 3

Sejam os espaços lineares \mathcal{P}_2 e \mathcal{P}_3 dos polinómios reais de variável real de grau menor ou igual a 2 e a 3, respectivamente, e a transformação linear

definida por
$$T\colon\thinspace \mathcal{P}_2 \to \mathcal{P}_3$$

$$f(t) \mapsto 2\int\limits_0^t f(x)\,dx \,-f(t)$$

A matriz canónica que representa T é dada por
$$\bigcirc \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & \frac{2}{3} \\ 0 & 0 & -1 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} -1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & \frac{2}{3} \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & \frac{2}{3} & -1 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 0 & 0 & \frac{2}{3} \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

Voltar