

Aulas Teóricas - Testes de Hipóteses Não Paramétricos

Ana Madureira, João Matos

Instituto Superior de Engenharia do Porto

Ano letivo 2023/2024

Engenharia do Porto

Introdução

- Os Testes não paramétricos requerem menos pressupostos relativamente à população;
 - ▶ Não exigem a normalidade nem se baseiam em parâmetros da distribuição.
- Baseiam-se nas estatísticas de ordem.
- São especialmente úteis em variáveis ordinais
- Geralmente menos eficientes do que os testes paramétricos

AMD, JEM (ISEP) LEI 2023/2024 2/24

Teste dos sinais para a mediana η de uma população

- Os dados devem ser no mínimo ordinais.
- Caso a distribuição da população seja simétrica também serve para localizar a média ($\mu=\eta$) .

Tem-se

$$H_0$$
 : $\eta=\eta_0$ vs H_1 : $\eta
eq \eta_0$ ou $\eta>\eta_0$ ou $\eta<\eta_0$

• Dada uma amostra $X = (X_1, X_2, \dots, X_n)$ a estatística teste é definida por

$$\mathsf{T}(\mathsf{X}) = \mathsf{n}\mathsf{u}\mathsf{m}\mathsf{e}\mathsf{r}\mathsf{o}\mathsf{d}\mathsf{e}\mathsf{o}\mathsf{b}\mathsf{s}\mathsf{e}\mathsf{r}\mathsf{v}\mathsf{a}\mathsf{c}\mathsf{o}\mathsf{e}\mathsf{s}\;X_i\;\mathsf{a}\mathsf{b}\mathsf{a}\mathsf{i}\mathsf{x}\mathsf{o}\mathsf{o}\mathsf{o}\mathsf{u}\;\mathsf{a}\mathsf{c}\mathsf{i}\mathsf{m}\mathsf{a}\mathsf{o}\mathsf{d}\mathsf{e}\;\eta_0$$

que, sob H_0 , segue uma distribuição binomial Bi(n, p = 0.5).

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 3 / 24

- Sempre que na amostra se observarem valores iguais a η_0 não os consideramos o que implica a diminuição do tamanho da amostra.
- Para valores de $n \ge 30$ deve-se considerar a estatística

$$Z(X) = \frac{\widehat{P} - 0.5}{\frac{\sqrt{0.25}}{n}} \sim N(0, 1)$$

onde $\widehat{P} = T(X)/n$.

- O teste do sinal é particularmente importante quando temos duas amostras emparelhadas (X_i, Y_i), i = 1, 2, ..., n cujas escalas de medida é pelo menos ordinal. Neste caso faz-se um teste de sinal às diferenças D_i = X_i - Y_i, i = 1, 2, ..., n.
- Também se pode aplicar o teste do sinal para testar se as médias (ou medianas) das duas variáveis observadas são iguais desde que se suponha que as diferenças $D_i = X_i Y_i, i = 1, 2, ..., n$ são i.i.d. e possuem distribuição simétrica, relativamente a $\mu = 0$.

Teste de Wilcoxon (à mediana de uma população)

- No teste do sinal os dados são transformados em sinais "+" caso estejam acima ou sinais "-" caso estejam abaixo de η_0
- No teste de Wilcoxson além de considerarmos os sinais também consideramos as diferenças entre os dados observados e η_0 . Contudo temos que pressupor que a distribuição além de contínua é simétrica:
 - Inspeção do histograma e/ou calcular o coeficiente de assimetria de Pearson (função scipy.stats.skew() no Python) Regra prática:

```
\begin{array}{cccc} |\mathit{skewness}| < 0.1 & \longleftarrow & \mathsf{Distribuiç\~ao} \; \mathsf{sim\'etrica} \\ 0.1 < |\mathit{skewness}| < 1 & \longleftarrow & \mathsf{Distribui\~c\~ao} \; \mathsf{moderadamente} \; \mathsf{assim\'etrica} \\ |\mathit{skewness}| > 1 & \longleftarrow & \mathsf{Distribui\~c\~ao} \; \mathsf{fortemente} \; \mathsf{assim\'etrica} \end{array}
```

 Analogamente ao teste do sinal também é possível comparar medianas de duas amostras emparelhadas.

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 5 / 24

Dada uma amostra, $X = (x_1, x_2, \dots, x_n)$, calculamos o valor observado da estatística teste da seguinte forma:

- ① Calculam-se as diferenças $d_i=x_i-\eta_0,\ i=1,2,\ldots,n$ e ordenam-se de forma crescente os valores absolutos $|d_i|$ (supôr que não há empates)
- 2 A cada $|d_i|$, atribui-se um número de ordem n_i e um o sinal:

$$\left\{ \begin{array}{ll} + & \text{se } d_i > 0 \\ - & \text{se } d_i < 0 \end{array} \right.$$

- 3 Calculamos o valor da estatística que resulta da soma dos números de ordem, n_i , com argumento sinal "+", denotamos esta estatística por T_+ . Calculamos o valor da estatística que resulta da soma dos números de ordem, n_i , com argumento sinal "-", denotamos esta estatística por T_- .
 - Se houver empates atribui-se o valor médio do número de ordem ocupado pelas observações.
 - ▶ Tem-se sempre $\sum n_i = \frac{n(n+1)}{2}$. Deste modo se H_0 for verdadeira as distribuições de T_+ e T_- são idênticas e simétricas em torno de $\frac{n(n+1)}{4}$ é pois indiferente usar T_+ ou T_- .
- A estatística T₊ ou T₋ segue uma distribuição com o mesmo nome do teste (Distribution of the Wilcoxon signed rank statistic). Para amostras superiores a 20 usa-se uma aproximação à distribuição normal.

$$\frac{T - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \sim N(0,1).$$

Distribuição da estatística do teste de Wilcoxon para vários valores de n

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 7/24

Exemplo 1:

Pretende-se verificar se a média das notas nacionais a Matemática é superior a 63%. Escolheram-se aleatoriamente 10 alunos e registrou-se as respectivas notas: 66%,69%,40%,64%,67%,65%,82%,54%,70% e 74%. Assume-se que as notas obtidas são simétricas.

Resolução com o Python:

```
from numpy import array
from scipy.stats import wilcoxon
notas = [66,69,40,64,67,65,82,54,70,74]
statistic, p_value = wilcoxon(array(notas) - 63, alternative='greater')
print(f'Test..Statistic:..{statistic}')
print(f'P-value: | {p_value}')
Test Statistic: 38.0
P-value: 0.1611328125
```

- Decisão: Como o p-value é maior que α não se rejeita H_0 .
- Note que tem-se de subtrair a hipótese nula aos dados

Exemplo 2 (Teste de Wilcoxon para duas amostras emparelhadas)

• Foi realizado um estudo sobre o efeito do álcool no tempo de reação. Solicitou-se a dez participantes que assistam a um vídeo e que pressionem um botão sempre que vissem um pequeno círculo vermelho. Passada uma semana os mesmos dez participantes repetiram a tarefa mas tomaram uma bebidas contendo 2 unidades de álcool. Pretende-se efectuar um teste de hipóteses para decidir se o álcool tem efeito no tempo de reação. Os dados obtidos estão na seguinte tabela.

Part.	1	2	3	4	5	6	7	8	9	10
Sem Álcool	30	20	19	20	19	25	23	39	18	24
Com Álcool	31	27	20	20	34	24	21	23	23	26

Resolução:

- ① Seja x_i os tempos de reação sem álcool e y_i os tempos de reação com álcool, $i=1,2,\ldots,10$. Consideramos as diferenças $d_i=x_i-y_i,\ i=1,2,\ldots,10$.
- 2 Temos agora um teste de Wilcoxon a uma amostra (d_1, d_2, \ldots, d_n) com,

$$H_0: \eta = 0 \text{ vs } H_1 \eta \neq 0$$

onde η é a mediana da v.a. D = X - Y.

Exemplo 2 (cont.)

No Python teriamos:

```
from scipy.stats import wilcoxon
antes=[30,20,19,20,19,25,23,39,18,24]
depois=[31,27,20,20,34,24,21,23,23,26]
statistic, p_value = wilcoxon(antes,depois)
print(f'Test_statistic:_{statistic}')
print(f'P-value:_ufp_value}')
Test statistic: 15.5
P-value: 0.40487306185858307
```

Analisando o p-value (0.405) não temos evidências estatísticas para rejeitar H₀.

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 10 / 24

Teste de Mann-Whitney-U (Wilcoxon para duas amostras independentes)

- Este teste compara as medianas η_1 e η_2 de duas populações contínuas P_1 e P_2 com a mesma forma.
- Tem-se:

- Supondo que se retira uma amostra aleatória de tamanho n₁ da população P₁ e uma amostra aleatória de tamanho n₂ da população P₂. Supondo n₁ ≥ n₂, calculamos o valor observado da estatística teste na seguinte forma:
 - Colocam-se em ordem crescente o conjunto de todas as n = n₁ + n₂ observações, e, atribui-se um número de ordem.
 - O valor da estatística teste observada corresponde à soma, T, dos números de ordem da amostra com menor tamanho.
- ullet Supondo H_0 verdadeira e n_1 , n_2 grandes, usa-se a aproximação à distribuição normal

$$\frac{T - n_2(n+1)/2}{\sqrt{n_1 n_2(n+1)/12}} \sim N(0,1)$$

11 / 24

No Python usar a função scipy.stats.mannwhitneyu()

Teste de Friedman

 Supor que dispomos de n x k observações de uma v.a. quantitativa avaliada por n indivíduos sujeitos a k tratamentos de um determinado factor (variável qualitativa)

	Factor					
	Tratamento 1	Tratamento 2		Tratamento k		
indivíduo 1	X1,1	X1,2		×1,k		
indivíduo 2	x 2,1	×2,2		$x_{2,k}$		
-		•				
		•				
indivíduo n	×n, 1	x _n ,2		$x_{n,k}$		

O teste de Friedman tem como hipóteses:

 H_0 : A distribuição dos k tratamentos é a mesma

 H_1 : A distribuição dos k tratamentos é diferente

Ou, em particular considerando η_i a mediana da população $X_i, i=1,\ldots,k$, podemos testar

$$H_0: \eta_1 = \eta_2 = \ldots = \eta_k \text{ vs } H_1: \exists i \neq j \ \eta_i \neq \eta_i$$

 Este teste pode ser visto como uma extensão do teste de Wilcoxon para duas amostras emparelhadas.

- Para se obter a estatística teste procede-se do seguinte modo:
 - **1** Em cada linha i (i = 1, 2, ..., n) atribui-se o número de ordem $R_{i,j}$, $j=1,2,\ldots k$. Em caso de empates procedemos da mesma forma do teste de Wilcoxon.
 - **2** Calcular $T_j = \sum_{i=1}^{j} R_{i,j} \ j = 1, 2, ..., k$
 - 3 O valor da estatística observada é dada por

$$T = \frac{12}{n.k.(k+1)} \sum_{j=1}^{k} T_j^2 - 3n(k+1) \sim \chi_{k-1}^2$$

- Tem-se p-value = $P(T \ge T_{obs} \mid H_0)$
- Em Python usa-se a função scipy.stats.friedmanchisquare()

Teste de Kruskal-Wallis

- Este teste é a alternativa não paramétrica do teste One-Way ANOVA.
 Deve-se utilizar quando a hipótese da normalidade for rejeitada ou se o tamanho das amostras forem pequenas.
- Supor que dispomos de *k* amostras independentes:

$$(x_{1,1},x_{1,2},\ldots x_{1,n_1}),\ldots,(x_{k,1},x_{k,2},\ldots x_{k,n_k})$$

retiradas aleatoriamente de k populações com distribuições continuas e mesma forma

- O objectivo do teste de Kruskal-Wallis é testar se uma dada variável qualitativa, designada de factor tem efeitos iguais sobre uma determinada variável quantitativa.
- Em particular, denotando por η_i a mediana da i-ésima população (i=1,2,..., k) temos as hipóteses

$$H_0$$
: $\eta_1 = \eta_2 = \ldots = \eta_k$ vs H_1 : $\exists i \neq j \ \eta_i \neq \eta_i$

- O valor da estatística teste calcula-se da seguinte forma:
 - **1** atribuir números de ordem R_i , j (i = 1, 2 ... k e $j = 1, 2 ... n_i$) à amostra conjunta das $n = \sum_{i=1}^{k} n_i$ observações. Os empates são tratados como nos testes anteriores.
 - 2 calcular, para cada i, $T_i = \sum_{i=1}^{n_i} R_{i,j}$, $i = 1, 2, \dots, k$
 - 3 A estatística teste é dada por

$$T = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{T_i^2}{n_i} - 3(n+1) \sim \chi_{(k-1)}^2$$

Exemplo:

A seguinte tabela contém os dados relativos ao número de vezes que três grupos de indivíduos, G_1 , G_2 e G_3 vai ao cinema durante um mês. Será que os grupos apresentam a mesma distribuição?

G_1	20	4	7	2	17	3
G ₂	12	21	9	0	14	1
G ₁ G ₂ G ₃	8	22	10	5	6	3 1 20

Exemplo: (cont.)

Resolução: Tem-se:

 ${\it H}_{0}$: Os grupos apresentam a mesma distribuição

VS

 \mathcal{H}_1 : Os grupos não apresentam a mesma distribuição

Comandos no Python:

```
import scipy.stats as stats
G1=[20, 4, 7, 2, 17, 3]
G2=[12, 21, 9, 0, 14, 1]
G3=[8, 22, 10, 5, 6, 20]
res=stats.kruskal(G1,G2,G3)
print('valor_ude_prova:',round(res.pvalue,4))
valor de prova: 0.6437
```

Decisão: O p-value leva-nos a não rejeitar H_0 . Não existem diferenças significativas entre os grupos.

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 16/24

Testes de ajustamento

- São testes para averiguar se uma dada amostra pode ser considerada como sendo proveniente de uma certa distribuição teórica
- Têm especial interesse os testes de ajustamento à distribuição normal (Frequentemente, é um pressuposto para se usar um teste paramétrico)
- Investigar se duas amostras podem ser consideradas provenientes de uma distribuição comum
- Iremos começar com o teste de ajuste do χ^2 cujo procedimento é semelhante ao visto no teste a duas proporções efectuado pela função stats.chisquare()

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 17/24

Teste de ajuste do χ^2

- Baseia-se na comparação da distribuição empírica dos dados $X = (X_1, X_2, \dots X_n)$ com a distribuição teórica à qual se suspeita que a amostra é proveniente.
- Tem-se:

 H_0 : A população possui a distribuição F(x) vs H_1 : A população não possui a distribuição F(x)

- Agrupa-se as observações em k classes (intervalos no caso da distribuição ser contínua)
- Calculam-se as frequências absolutas n_i , $i=1,2,\ldots,k$ das observações em cada classe $(n=\sum_{i=1}^k n_i)$.
- Determina-se as frequências (teóricas) esperadas em cada classe $n.p_i$, onde p_i é, supondo H_0 verdadeira, a probabilidade de a variável aleatória pertencer à i-ésima classe
- A estatística teste é:

$$T(X) = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i} \sim \chi^2_{(k-1)-r}$$

onde r representa o número de parâmetros da distribuição população estimados usando a amostra.

• A amostra deve ser grande ($n \ge 30$) e $n_i p_i \ge 5$, $\forall i \in \{1, 2, ..., k\}$.

Teste de Kolmogorov-Smirnov (K-S)

- O teste K-S tem por base o ajuste entre o distribuição empírica $S_n(x)$ e a distribuição teórica $F_0(x)$
- Tem-se:

$$H_0$$
: A função de distribuição da população $F(x)$ é igual a $F_0(x)$ vs H_0 : $F(x) \neq F_0(x)$ Para algum valor de x

A estatística teste é

$$T = \sup |S_n(x) - F_0(x)|$$

que tem função distribuição conhecida.

AMD, JEM (ISEP) ANADI-TP LEI 2023/2024 19 / 24

Exemplo:

Geraram-se três amostras aleatórias A_1 , A_2 e A_3 com 1000 elementos cada onde:

- A_1 foi retirada de uma população com distribuição N(2,1)
- ullet A_2 foi retirada de uma população com distribuição $\chi^2_{(4)}$
- ullet A_3 foi retirada de uma população com distribuição $T_{(30)}$

Use o teste K-S para verificar se alguma das populações tem distribuição normal com $\mu=0$ e $\sigma=1.$

```
import numpy as np
import scipy.stats as stats
np.random.seed(42)
A1 = np.random.normal(0,2,500)
A2 = np.random.chisquare(1.500)
A3 = np.random.standard_t(30,500)
print(np.mean(A1))
print(np.mean(A2))
print(np.mean(A3))
mean=0; std_dev=1,
r1=stats.kstest(A1,'norm',args=(mean.std dev))
print('p-value_do_teste_com_A1:',round(r1.pvalue,4))
r2=stats.kstest(A2,'norm',args=(mean,std_dev))
print('p-value,do,teste,com, A2:',round(r2.pvalue,4))
r3=stats.kstest(A3,'norm',args=(mean,std_dev))
print('p-value,do,teste,com,A2:',round(r3.pvalue,4))
p-value do teste com A1: 0.0
p-value do teste com A2: 0.0
p-value do teste com A2: 0.3848
```

Conclusões?

Teste de Lilliefors

- O teste de K-S é efectuado para uma função de distribuição F(x) específica.
- Lilliefors fez uma correcção ao teste de K-S de modo a testar, independentemente dos valores da média e do desvio padrão se a amostra é proveniente de uma distribuição normal ou não.

```
Exemplo:
```

```
import numpy as np
from statsmodels.stats.diagnostic import lilliefors
np.random.seed(42)
A1 = np.random.normal(0,2,500)
res=lilliefors(A1)
print(res)
print('p-value_U(Lilliefors):',round(res[1],4))
```

Teste de Shapiro-Wilk

- Teste para verificar se a variável aleatória X, da qual foi retirada a amostra aleatória (X_1, X_2, \ldots, X_n) , segue uma distribuição normal (idêntico ao teste de Lilliefors)
- Tem-se:

 $H_0: X$ segue uma distribuição normal vs $H_1: X$ não segue uma distribuição normal

• Seja $(X_{(1)}, X_{(2)}, \dots, X_{(2)})$ a amostra colocada por ordem crescente. Então a estatística teste é

$$T(X) = \frac{\sum_{i=1}^{n} a_i X_{(i)}}{\sum_{i=1}^{n} (X_{(i)} - \overline{X})^2}$$

onde,

$$(a_1, a_2, \dots, a_n) = \frac{\mathsf{m}^T \mathsf{V}^{-1}}{\left(\mathsf{m}^T \mathsf{V}^{-1} \mathsf{V}^{-1} \mathsf{m}\right)^{1/2}}$$

sendo,

- m^T o vector transposto composto pelos valores esperados das estatística de ordem de v.a. i.i.d. provenientes de uma distribuição normal reduzida
- V a respectiva matriz das covariâncias.
- Sob H₀ verdadeiro T(X) tem uma distribuição conhecida

 Geralmente efectua-se o teste de Lilliefors para amostras grandes (n ≥ 30) enquanto para amostras de dimensão mais reduzida é mais indicado efetuar o teste de Shapiro-Wilk.

Exemplo:

```
import numpy as np
from scipy.stats import shapiro
np.random.seed(42)
A2 = np.random.chisquare(1,500)
res2=shapiro(A2)
print('p-value_u(Shapiro):',res2[1])
p-value (Shapiro): 2.92488964446179e-29
```