Uploading C:\Program Files\Stnexp\Queries\121.str

L1 STRUCTURE UPLOADED

=> d

L1 HAS NO ANSWERS

L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 11 full

REG1stRY INITIATED

Substance data SEARCH and crossover from CAS REGISTRY in progress... Use DISPLAY HITSTR (or FHITSTR) to directly view retrieved structures.

	(FILE 'HOME' ENTERED AT 18:25:14 ON 14 MAR 2006)
L1	FILE 'CAPLUS' ENTERED AT 18:25:24 ON 14 MAR 2006 STRUCTURE UPLOADED S L1
	FILE 'REGISTRY' ENTERED AT 18:25:47 ON 14 MAR 2006
L2	5470 S L1 FULL
	FILE 'CAPLUS' ENTERED AT 18:25:48 ON 14 MAR 2006
L3	2399 S L2 FULL
L4	70 S L3 AND (HYDROXYL OR AMINO OR SULFHYDRYL)
L5	189 S L3 AND POLYMERIZABLE
L6	18 S L5 AND SPACER
L7	123 S L3 AND MESOGEN
L8	172 S (L4 OR L5 OR L6 OR L7) AND PY<2001
L9	0 S L8 AND ACRYLOYOXY?
L10	113 S (L4 OR L5 OR L6) AND PY<2001
L11	8 S L10 AND MESOGEN

=>

=> d l11 1-8 ibib abs hitstr

L11 ANSWER 1 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:898389 CAPLUS

DOCUMENT NUMBER: 134:178846

TITLE: Polymerizable liquid crystalline twin

molecules: synthesis and thermotropic properties

AUTHOR(S): Kurschner, Kathrin; Strohriegl, Peter

CORPORATE SOURCE: Makromolekulare Chemie I and Bayreuther Institut fur

Makromolekulforschung (BIMF), Universitat Bayreuth,

Bayreuth, 95440, Germany

SOURCE: Liquid Crystals (2000), 27(12), 1595-1611

CODEN: LICRE6; ISSN: 0267-8292

PUBLISHER: Taylor & Francis Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

The synthesis of 14 novel low molar mass liquid crystalline twin mols. is described and exptl. details are given. The twin monomers contain two mesogenic units which are connected by a flexible spacer. Two terminal acrylate groups make these twins suitable for photopolymn. insertion of lateral groups into the mesogen leads to glass-forming properties. We tested several substituents (-OCH3, -CH3) in different positions of the mesogenic unit and investigated their thermotropic properties as well as their crystallization behavior by polarizing microscopy and DSC expts. Some of the novel twin mols. with lateral substituents in the mesogenic core have unusually broad mesophases of about 150°C. Below Tg stable LC glasses are formed. At room temperature a slow, kinetically hindered crystallization starts after about three hours. broad mesophases of the twin mols. allow investigations of the photopolymn. kinetics over a wide temperature range. The addition of chiral non-liquid crystalline comonomers and subsequent photopolymn. leads to cholesteric networks with interesting optical properties. Last but not least, the twins are suitable mixing agents which suppress the crystallization of classical mono-rods.

IT 250230-56-9P 250230-57-0P 250230-58-1P 325976-68-9P 325976-69-0P 325976-72-5P 325976-73-6P 325976-74-7P 325976-76-9P

325976-79-2P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (synthesis and thermotropic properties of **polymerizable** liquid crystalline twin mols.)

RN 250230-56-9 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis-, bis[4-[[2-methyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_6 - O$$

Me

 $C - O - C$
 $C - O - C$
 $C - O - C$

PAGE 1-C

RN 250230-57-0 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[2-methyl-, bis[4-[[4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

RN 250230-58-1 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[2-methyl-, bis[4-[[2-methyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-C

RN 325976-68-9 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[3-methyl-, bis[4-[[4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

$$- c H_2 - c H_2 - o - c H_2 - c H_2$$

PAGE 1-C

RN 325976-69-0 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[3,5-dimethyl-, bis[4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}}_{6^{-\text{O}}} = _{\text{C}-\text{O}-\text{C}}^{\text{O}}_{6^{-\text{O}}} = _{\text{C}-\text{O}-\text{C}}^{\text{Me}}$$

PAGE 1-B

$$- ch_2 - ch_2 - o - ch_2 - ch_2 - ch_2 - o - ch_2 -$$

RN 325976-72-5 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis-, bis[4-[[3,5-dimethyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]ph enyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_6 - O$$

Me

 $C - O - C$
 $C - O - C$
 $C - O - C$

PAGE 1-B

$$- \, {\rm CH_2} - \, {\rm CH_2} - \, {\rm O} - \, {\rm CH_2} - \, {\rm CH_2} - \, {\rm O} - \, {\rm CH_2} - \, {\rm CH_2} - \, {\rm CH_2} - \, {\rm CH_2} - \, {\rm O} - \, {\rm CH_2} - \, {\rm CH_2} - \, {\rm O} - \, {\rm CH_2} -$$

PAGE 1-C

$$O = C + CH_2$$
 $O = CH_2$
 $O = CH_2$

RN 325976-73-6 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis-, bis[4-[[3-methyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

$$H_2C = CH - C - O - (CH_2) 6 - O$$

Me

 $C - O - C$
 $C - O - C$
 $C - O - C$

PAGE 1-C

$$\begin{array}{c|c}
 & \text{Me} & \text{O} \\
 & \text{O} \\
 & \text{O} \\
 & \text{CH}_2
\end{array}$$

$$\begin{array}{c|c}
 & \text{O} \\
 & \text{CH}_2
\end{array}$$

RN 325976-74-7 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[3-methyl-, bis[4-[[3-methyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}}_{6-\text{O}} = _{\text{C}}^{\text{Me}}$$

PAGE 1-B

$$- ch_2 - ch_2 - o - ch_2 - ch_2 - ch_2 - o - ch_2 - ch_$$

RN 325976-76-9 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[3,5-dimethyl-, bis[4-[[3,5-dimethyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_6 - O$$

$$Me$$

$$C - O - C$$

$$Me$$

$$C - O - C$$

$$Me$$

$$O - C$$

$$Me$$

$$O - C$$

$$Me$$

$$O - C$$

PAGE 1-B

$$- c_{H_2} - c_$$

PAGE 1-C

$$O-(CH_2)_6-O-C-CH=CH_2$$

Me

Me

Me

RN 325976-79-2 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis-, bis[4-[[2-methyl-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 250230-56-9 CMF C68 H74 O19

$$_{\rm H_2C}=_{\rm CH-C-O-(CH_2)_{6}-O}$$

$$- c h_2 - c h_2 - o - c h_2 - c h_2$$

PAGE 1-C

IT 214398-31-9P 214398-32-0P 214398-33-1P 214398-34-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and thermotropic properties of **polymerizable** liquid crystalline twin mols.)

RN 214398-31-9 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis-, bis[4-[[4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_6 - O$$

PAGE 1-C

RN 214398-32-0 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis-, bis[4-[[3-methoxy-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]pheny l] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_6 - O$$

OMe

 $C - O - C$

O

 $C - O - C$

O

 $C - O - C$

PAGE 1-B

$$- \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2$$

PAGE 1-C

RN 214398-33-1 CAPLUS

CN

Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[3-methoxy-, bis[4-[[4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]pheny l] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}}_{6^{-\text{O}}} = _{\text{C}-\text{O}}^{\text{OMe}}$$

PAGE 1-B

$$- \text{CH}_2 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH$$

PAGE 1-C

RN 214398-34-2 CAPLUS

CN Benzoic acid, 4,4'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyloxy)]bis[3-methoxy-, bis[4-[[3-methoxy-4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl] ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$- \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2} - \, \mathrm{O} - \, \mathrm{CH_2} - \, \mathrm{CH_2$$

PAGE 1-C

THERE ARE 57 CITED REFERENCES AVAILABLE FOR THIS 57 REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

CAPLUS COPYRIGHT 2006 ACS on STN L11 ANSWER 2 OF 8

2000:441890 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

133:81645

TITLE:

Utilization of polymerizable liquid crystal

substances for the production of optical components Meyer, Frank; Schneider, Norbert; Schuhmacher, Peter

INVENTOR(S): PATENT ASSIGNEE(S):

BASF Aktiengesellschaft, Germany

SOURCE:

PCT Int. Appl., 39 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA'	KIND DATE			APPLICATION NO.							DATE							
WO	2000	0375	85		A1	-	20000629		WO	WO 1999-EP10294					1	<		
	W:	CH,	DE,	GB,	JP,	KR,	US											
	RW:	AT,	BE,	CH,	CY,	DE,	DK,	ES,	FI, F	R,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	
		PT.		·	•													
DE	1985	9584			A1		2000	0629	DE	19	998-	1985	9584		1	9981	222	<
EP	1144	547			A1		2001	1017	EP	19	999-	9683	69		1	9991	222	
EP	1144	547			В1		2003	0903										
			BE,	CH,	DE,	DK,	ES,	FR,	GB, G	R,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	,
		ΙE,																
JР	2002				Т2		2002	1008	JP	20	-000	5896	44		1	9991	222	
US	2003	2195	48		A1		2003	1127	US	20	003-	4303	22		2	0030	507	
us	6773	766			В2		2004	0810										
PRIORIT			TNFO	. :					DE	1	998-	1985	9584		A 1	9981	222	
				•					WO	1	999-	EP10	294		W 1	9991	222	
									US	2	001-	8572	16		B1 2	0010	622	
OTHER S	OHECE	181.			MAR	РДТ	133:	8164	5		_							

OTHER SOURCE(S): MARPAT 133:81645

The invention relates to the utilization of polymerizable liquid AB crystal compds., Z1Y1A1Y3MY4A2Y2Z2 (Z1, Z2 = polymerizable group; Y1-4 = single bond, O, S, OCO, etc.; A1, A2 = C2-30-spacer ; M = mesogen), for the production of optical elements having color and polarization-selective reflection and to optical elements containing said compds. in monomeric or polymerized form.

IT 252010-00-7P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses) (utilization of polymerizable liquid crystal substances for the production of optical components) 252010-00-7 CAPLUS RND-Glucitol, 1,4:3,6-dianhydro-, bis[4-[[4-[[4-[(1-oxo-2-CN propenyl)oxy]butoxy]carbonyl]oxy]benzoyl]oxy]benzoate], polymer with 2-methyl-1,4-phenylene bis[4-[[[4-[(1-oxo-2-propenyl)oxy]butoxy]carbonyl]o xy]benzoate] (9CI) (CA INDEX NAME) CM 1 CRN 223572-88-1 CMF C50 H46 O20

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

2 CM

187585-64-4 CRN CMF C37 H36 O14

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_4 - O - C - O$$
 Me
 $C - O$
 Me
 $C - O$

PAGE 1-B

THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

7

ACCESSION NUMBER:

L11 ANSWER 3 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN 1999:228111 CAPLUS

DOCUMENT NUMBER:

REFERENCE COUNT:

130:259352

TITLE:

INVENTOR(S):

Reflective broadband polarizer Verral, Mark; Argent, John Philip; Slaney, Kim;

Coates, David

PATENT ASSIGNEE(S):

Merck Patent G.m.b.H., Germany

SOURCE: Ger. Offen., 34 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE: FAMILY ACC. NUM. COUNT:

German

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 19842701 US 6099758	A1 A	19990401 20000808	DE 1998-19842701 US 1998-153997	19980917 < 19980916 <
GB 2329899	A1	19990407	GB 1998-20280	19980917 <

20010523 GB 2329899 B2 19990917 JP 1998-280508 JP 11248943 A2 19980917 <--PRIORITY APPLN. INFO.: EP 1997-116151 A 19970917 In the reflective broadband polarizer comprising a layer comprised of a polymerizable mesogen material having helical structure with planar alignment, obtained by mixing a chiral polymerizable mesogen material containing (a) at least 1 achiral polymerizable mesogen compound, (b) at least 1 chiral compound, and (c) a polymerization initiator, the material is placed between 2 different substrates and polymerized by heat or actinic ray and/or an O2-barrier layer is placed on the polymerized mesogen layer. The polarizer can be used in a liquid crystal display. IT 174063-87-7 RL: RCT (Reactant); RACT (Reactant or reagent)

: RCT (Reactant); RACT (Reactant or reagent)
(in preparation of liquid crystalline polymer layer of reflective broadband
polarizer)

RN 174063-87-7 CAPLUS

CN Benzoic acid, 4-[3-[(1-oxo-2-propenyl)oxy]propoxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

IT 221317-16-4P 221317-17-5P

RL: DEV (Device component use); PNU (Preparation, unclassified); PREP (Preparation); USES (Uses)

(liquid crystalline polymer layer of reflective broadband polarizer)

RN 221317-16-4 CAPLUS

CN Benzoic acid, 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]-,
4'-(2-methylbutyl)[1,1'-biphenyl]-4-yl ester, polymer with
2-methyl-1,4-phenylene bis[4-[3-[(1-oxo-2-propenyl)oxy]propoxy]benzoate]
and trans-4-(4-propylcyclohexyl)phenyl 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoate (9CI) (CA INDEX NAME)

CM 1

CRN 182311-45-1 CMF C31 H40 O5

Relative stereochemistry.

CM 2

CRN 174063-87-7 CMF C33 H32 O10

PAGE 1-A

PAGE 1-B

CM 3

CRN 168904-02-7 CMF C33 H38 O5

Me
$$CH_2$$
 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_2 CH_4 CH_5 CH_6 CH_6

RN 221317-17-5 CAPLUS

CN Benzoic acid, 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]-, 4-cyanophenyl ester, polymer with 4'-(2-methylbutyl)[1,1'-biphenyl]-4-yl 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoate and 2-methyl-1,4-phenylene bis[4-[3-[(1-oxo-2-propenyl)oxy]propoxy]benzoate] (9CI) (CA INDEX NAME)

CM 1

CRN 174063-87-7 CMF C33 H32 O10

$$H_2C = CH - C - O - (CH_2)_3 - O - O - C - O - C$$

CM 2

CRN 168904-02-7 CMF C33 H38 O5

CM 3

CRN 83847-14-7 CMF C23 H23 N O5

L11 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1998:658414 CAPLUS

DOCUMENT NUMBER:

129:349118

TITLE:

Liquid crystal display and manufacture thereof

INVENTOR(S):

Walton, Harry Garth; Lines, Edward Peter

PATENT ASSIGNEE(S):

Sharp Corp., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 10268318	A2	19981009	JP 1998-55553	19980306 <

B2 20041202 JP 3596722 В1 20010313 US 1998-35350 19980305 US 6201588 PRIORITY APPLN. INFO.: GB 1997-4623 A 19970306 The liquid crystal display comprises a 1st orientation layer made up of a mixture of a 1st reactive mesogen and a 2nd reactive mesogen, in which the 1st mesogen has more polymerizable functional groups than the 2nd mesogen and a ratio of the 1st mesogen to the 2nd mesogen gives a predetd. pretilt angle. The manufacture was also claimed. The control of tilt-off vertical orientations was easily controlled.

IT 174063-87-7, RM257

RL: DEV (Device component use); USES (Uses) (mesogens contained in liquid crystal display)

RN

174063-87-7 CAPLUS
Benzoic acid, 4-[3-[(1-oxo-2-propenyl)oxy]propoxy]-, 2-methyl-1,4-CN phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)_3-\text{O}} \circ _{\text{C}-\text{O}} \circ _{\text{C}} \circ _{\text{C$$

PAGE 1-B

L11 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1998:105969 CAPLUS

DOCUMENT NUMBER:

128:186553

TITLE: INVENTOR(S): Combination of optical elements for display device Verrall, Mark; Ward, Jeremy; Hanmer, James; Coates,

David

PATENT ASSIGNEE(S):

Merck Patent G.m.b.H., Germany; Verrall, Mark; Ward,

Jeremy; Hanmer, James; Coates, David

SOURCE:

PCT Int. Appl., 53 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English

LANGUAGE: FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA'	TENT NO.	KIND	DATE	ATE APPLICATION NO.					
WO	9804651	A1	19980205	WO 1997-EP3676		19970711 <			
	W: DE, GB,	JP, KR, US							
GB	2331813	A1	19990602	GB 1999-1706		19970711 <			
GB	2331813	B2	20000607			•			
DE	19781781	${f T}$	19990617	DE 1997-19781781		19970711 <			
JP	2001500276	Т2	20010109	JP 1998-508422		19970711			
KR	2000029549	Α	20000525	KR 1999-700607		19990125 <			
US	6544605	B1	20030408	us 1999-230335		19990125			
US	2003190437	A1	20031009	US 2003-367722		20030219			
US	2005142301	A1	20050630	US 2004-972147		20041025			
	Y APPLN. INFO.			EP 1996-112100	Α	19960726			
INTONII	I MILLIO.	• ,		WO 1997-EP3676	W	19970711			

US 1999-230335 A3 19990125 US 2003-367722 B1 20030219

AB The invention relates to a combination of optical elements comprising at least one optical retardation film and at least one broadband reflective polarizer, characterized in that the optical retardation film comprises at least one layer of an anisotropic polymer material having an optical symmetry axis substantially parallel to the plane of the layer, said optical retardation film being obtainable by polymerization of a mixture of a polymerizable mesogenic material comprising (a) at least one reactive mesogen having at least one polymerizable functional group, (b) an initiator, (c) optionally a nonmesogenic compound having two or more polymerizable functional groups, and (d) optionally a stabilizer and relates to an optical retardation film used in said combination of optical elements and to a liquid crystal display comprising said combination of optical elements.

IT 174063-87-7

CN

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(liquid-crystal display devices with retardation films prepared from photopolymerizable compns. containing)

RN 174063-87-7 CAPLUS

Benzoic acid, 4-[3-[(1-oxo-2-propenyl)oxy]propoxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 6 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1997:572206 CAPLUS

DOCUMENT NUMBER:

127:248453

TITLE:

Model reactions and formation of epoxy networks with

the phenylbenzoate mesogen

AUTHOR(S):

Strehmel, Veronika

CORPORATE SOURCE:

Institute of Technical and Macromolecular Chemistry, Martin-Luther-University Halle-Wittenberg, Merseburg,

D-06217, Germany

SOURCE:

Journal of Polymer Science, Part A: Polymer Chemistry

(1997), 35(13), 2653-2688 CODEN: JPACEC; ISSN: 0887-624X

PUBLISHER: Wiley
DOCUMENT TYPE: Journal
LANGUAGE: English

The phenylbenzoate **mesogen** was introduced into epoxy networks by the crosslinker 4-hydroxyphenyl-4-hydroxybenzoate and by the diglycidylether of 4-hydroxyphenyl-4-hydroxybenzoate, resp. Rigid networks were synthesized on the basis of 4-hydroxyphenyl-4-hydroxybenzoate and the diglycidylether of bisphenol A, and flexible

networks were prepared by reaction of the diglycidylether of butanediol-1.4 with the same dihydroxy compound Model investigations were used to obtain information about the reactivity differences of the phenolic hydroxyl groups of the bisphenol used for network formation. Furthermore, the thermal properties of the main products isolated from the model reactions are strongly influenced by the substituents at the phenylbenzoate structure. Some of these model substances demonstrate structures that can be also found in the networks. In addition, photoinduced cationic crosslinking of the diglycidylether of 4-hydroxyphenyl-4-hydroxybenzoate results in networks with different thermal properties that are dependent on the temperature of network formation. Moreover, the temperature used during crosslinking influences the formation of ordered structures in the networks.

IT 24704-16-3P

RL: BYP (Byproduct); PREP (Preparation)
(byproduct; model reactions and formation of epoxy networks with phenylbenzoate mesogen)

RN 24704-16-3 CAPLUS

CN Benzoic acid, 4-propoxy-, 1,4-phenylene ester (9CI) (CA INDEX NAME)

IT 181530-19-8P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (model reactions and formation of epoxy networks with phenylbenzoate mesogen)

RN 181530-19-8 CAPLUS

CN Benzoic acid, 4-(oxiranylmethoxy)-, 1,4-phenylene ester, polymer with 4-(oxiranylmethoxy)phenyl 4-(oxiranylmethoxy)benzoate (9CI) (CA INDEX NAME)

CM 1 ·

CRN 168196-20-1 CMF C26 H22 O8

CM 2

CRN 114815-57-5 CMF C19 H18 O6

REFERENCE COUNT: 108 THERE ARE 108 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L11 ANSWER 7 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:660855 CAPLUS

DOCUMENT NUMBER: 125:276859

TITLE: Intermediates and polymers of monomeric direactive

mesogenic compounds

INVENTOR(S): Coates, David; Greenfield, Simon

PATENT ASSIGNEE(S): Merck Patent Gmbh, Germany SOURCE: Brit. UK Pat. Appl., 33 pp.

CODEN: BAXXDU

DOCUMENT TYPE:

Patent English

LANGUAGE: Engli

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.																		
GB	GB 2297549 GB 2297549					1 19960807			GB 1995-2294									
	9624								WO 1996-EP240					19960122 <			<	
"0											CA,							
	•••										KP,							
											NZ,							
		SG.		IID,	110,	ruc,	1111,	11117	141,	110,	,	,	/	1.0,	,	22,	22,	
	DW -	•		MW	g D	97	IIG	ΔТ	BE	СН	DE,	DΚ	ES.	FR.	GB.	GR.	TE.	
	KW.										CG,							
277	0646	•									.996-							
	9646				A1													
EP	8083	50			A 1		1997	1126		EP 1	.996-	9017	49		1	9960	122	<
EP	8083	50			B1		2001	0718										
	R:	DE,	GB,	NL														
CN	1173	891			Α		1998	0218		CN 1	996-	1918	03		1	9960	122	<
JP	1051	3457			Т2		1998	1222		JP 1	996-	5239	26		1	9960	122	<
	6090						2000	0718		US 1	997-	8757	67		1	9970	805	<
	6475				B1			1105			000-					0000		
PRIORITY											995-					9950		
INTONIT			11110	• •							.995-			-		9950		
											.996-					9960		
													-					
										US 1	.997-	8757	67		A1 1	9970	805	

OTHER SOURCE(S): MARPAT 125:276859

Direactive mesogenic liquid crystalline monomers or mixts. thereof comprising mesogen-containing components are prepared, the mesogens having two side chains attached thereto which contain a terminal polymerizable functional group, the mesogens and the functional group being separated by 2-20 spacer atoms, wherein both spacer groups have different chain lengths. Thus, hydroquinone was reacted with tetrahydropyran and 3-(p-carboxyphenoxy)propyl 3-chloropropionate to give an intermediate phenol derivative, which was esterified with 4-(p-carboxyphenoxy)butyl 3-chloropropionate and subsequently reduced to give compound H2C:CHCO2(CH2)30-p-C6H4CO2-p-C6H4OCO-p-C6H4O(CH2)4O2CCH:CH2.

IT 125248-71-7P 174063-87-7P 182922-10-7P 182922-11-8P 182922-12-9P 182922-13-0P 182922-14-1P 182922-20-9P 182922-21-0P

RL: SPN (Synthetic preparation); PREP (Preparation) (direactive mesogenic liquid crystalline monomers)

RN 125248-71-7 CAPLUS

CN Benzoic acid, 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}}_{6^{-\text{O}}} = _{\text{C}-\text{O}}^{\text{Me}} = _{\text{C}-\text{O}}^{\text{O}}$$

RN 174063-87-7 CAPLUS

CN Benzoic acid, 4-[3-[(1-oxo-2-propenyl)oxy]propoxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}}_{3-\text{O}} = _{\text{C}-\text{O}}^{\text{Me}}$$

PAGE 1-B

RN 182922-10-7 CAPLUS

CN Benzoic acid, 4-[4-[(1-oxo-2-propenyl)oxy]butoxy]-, 4-[[4-[3-[(1-oxo-2-propenyl)oxy]propoxy]benzoyl]oxy]phenyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}} _{\text{4}} - _{\text{O}}^{\text{O}} _{\text{C}}^{\text{O}} - _{\text{C}}^{\text{O}}$$

PAGE 1-B

RN 182922-11-8 CAPLUS
CN Benzoic acid, 4-[[5-[(1-oxo-2-propenyl)oxy]pentyl]oxy]-,
4-[[4-[3-[(1-oxo-2-propenyl)oxy]propoxy]benzoyl]oxy]phenyl ester (9CI)
(CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 182922-12-9 CAPLUS
CN Benzoic acid, 4-[4-[(1-oxo-2-propenyl)oxy]butoxy]-, 4-[[4-[[5-[(1-oxo-2-propenyl)oxy]pentyl]oxy]benzoyl]oxy]phenyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 182922-13-0 CAPLUS

CN Benzoic acid, 4-[4-[(1-oxo-2-propenyl)oxy]butoxy]-, 4-[[4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]benzoyl]oxy]phenyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

$$H_2C = CH - C - O - (CH_2)_6 - O$$

RN 182922-14-1 CAPLUS

CN Benzoic acid, 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]-, 4-[[4-[[5-[(1-oxo-2-propenyl)oxy]pentyl]oxy]benzoyl]oxy]phenyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 182922-20-9 CAPLUS

CN Benzoic acid, 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]-,
3-methyl-4-[[4-[3-[(1-oxo-2-propenyl)oxy]propoxy]benzoyl]oxy]phenyl ester
(9CI) (CA INDEX NAME)

PAGE 1-A

$$_{\text{H}_2\text{C}} = _{\text{CH}-\text{C}-\text{O}-\text{(CH}_2)}^{\text{O}}_{3-\text{O}} = _{\text{C}-\text{O}}^{\text{Me}}_{-\text{C}-\text{O}}$$

PAGE 1-B

RN 182922-21-0 CAPLUS

CN Benzoic acid, 4-[[6-[(1-oxo-2-propenyl)oxy]hexyl]oxy]-, 2-methyl-4-[[4-[3-[(1-oxo-2-propenyl)oxy]propoxy]benzoyl]oxy]phenyl ester (9CI) (CA INDEX NAME)

L11 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2006 ACS on STN

1995:874049 CAPLUS ACCESSION NUMBER:

123:286797 DOCUMENT NUMBER:

Design of molecular architectures for polymeric TITLE:

mesophase formation

Pugh, Coleen; Liu, Hui; Arehart, Stephen V.; AUTHOR(S):

Narayanan, Ramasubramanian

Department of Chemistry, University of Michigan, Ann CORPORATE SOURCE:

Arbor, MI, 48109-1055, USA

Macromolecular Symposia (1995), 98(35th SOURCE:

IUPAC International Symposium on Macromolecules,

1995), 293-310

CODEN: MSYMEC; ISSN: 1022-1360

PUBLISHER: Huethig & Wepf

DOCUMENT TYPE: Journal LANGUAGE: English

Due to the tendency of low-mol.-weight liquid crystals composed of extended AB mesogens sym. disubstituted with long n-alkoxy substituents to exhibit smectic C mesophases, side-chain liquid-crystalline polymers with laterally attached (vs. terminally attached) mesogens offer an ideal architecture for obtaining sC* mesophases. In particular, mesogens that typically form the desirable sC*-n phase sequence can be laterally attached to the polymer backbone through a chiral spacer, which should result in high values of spontaneous polymerization Mesogens which exhibit sC*-n phase sequences are used, and smectic layering into systems which typically form nematic mesophases is attempted by using immiscible hydrocarbon/fluorocarbon components and electron-donor-acceptor interactions. The thermotropic behavior of poly{5-[[[2',5'-bis[(3''fluoro-4''-dimethoxyphenyl)ethynyl]benzyl]oxy]carbonyl]bicyclo[2.2.1]hept-2-ene}s and poly{5-[[[2',5'-bis[(3''-fluoro-4''methoxybenzoyl)oxy]benzyl]oxy]carbonyl]bicyclo[2.2.1]hept-2-ene}s correspond to that of their low-mol.-weight analogs. Preliminary results demonstrate that smectic layering is successfully induced in 2,5-bis[(4'-n-alkoxybenzoyl)oxy]toluenes and polynorbornenes with laterally attached 2,5-bis[(4'-n-alkoxybenzoyl)oxy]benzyl mesogens by terminating the n-alkoxy substituents with perfluorinated segments.

IT

RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation, thermotropic behavior, and smectic layering of side-chain liquid-crystalline fluoropolymers with laterally attached mesogens, monomers, and model compds.)

RN 169786-54-3 CAPLUS

Benzoic acid, 3-fluoro-4-methoxy-, 2-methyl-1,4-phenylene ester (9CI) CN INDEX NAME)

IT 26314-54-5P 51933-65-4P 66786-95-6P 76387-01-4P 76387-02-5P 76387-03-6P 169786-36-1P 169786-37-2P 169786-38-3P 169786-39-4P 169786-40-7P 169786-41-8P 169786-42-9P 169786-43-0P 169786-55-4P 169786-58-7P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation, thermotropic behavior, and smectic layering of side-chain liquid-crystalline fluoropolymers with laterally attached mesogens, monomers, and model compds.)

RN 26314-54-5 CAPLUS

CN Benzoic acid, 4-(hexyloxy)-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 51933-65-4 CAPLUS

CN Benzoic acid, 4-methoxy-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 66786-95-6 CAPLUS

CN Benzoic acid, 4-butoxy-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 76387-01-4 CAPLUS

CN Benzoic acid, 4-(pentyloxy)-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 76387-02-5 CAPLUS

CN Benzoic acid, 4-propoxy-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 76387-03-6 CAPLUS

CN Benzoic acid, 4-ethoxy-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 169786-36-1 CAPLUS

CN Benzoic acid, 4-[(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-B

-(CH₂)₄-(CF₂)₅-CF₃

RN 169786-37-2 CAPLUS

CN Benzoic acid, 4-[(6,6,7,7,8,8,9,9,10,10,11,11,11-tridecafluoroundecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

-(CH₂)₅-(CF₂)₅-CF₃

RN 169786-38-3 CAPLUS

CN Benzoic acid, 4-[(7,7,8,8,9,9,10,10,11,11,12,12,12tridecafluorododecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-B

-(CH₂)₆-(CF₂)₅-CF₃

RN 169786-39-4 CAPLUS

CN Benzoic acid, 4-[(9,9,10,10,11,11,12,12,13,13,14,14,14-tridecafluorotetradecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-B

- (CH₂)₈- (CF₂)₅- CF₃

RN 169786-40-7 CAPLUS

CN Benzoic acid, 4-[(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

- (CH₂)₄- (CF₂)₇- CF₃

RN 169786-41-8 CAPLUS

CN Benzoic acid, 4-[(6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-heptadecafluorotridecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-B

-(CH₂)₅-(CF₂)₇-CF₃

RN 169786-42-9 CAPLUS

CN Benzoic acid, 4-[(7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

- (CH₂)₆- (CF₂)₇- CF₃

RN 169786-43-0 CAPLUS

CN Benzoic acid, 4-[(9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadecyl)oxy]-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

-(CH₂)₈-(CF₂)₇-CF₃

RN 169786-55-4 CAPLUS

CN Benzoic acid, 2,3,5,6-tetrafluoro-4-methoxy-, 2-methyl-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 169786-58-7 CAPLUS

CN Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid, [2,5-bis[(3-fluoro-4-methoxybenzoyl)oxy]phenyl]methyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 169786-57-6 CMF C31 H26 F2 O8

PAGE 1-A

IT 169786-56-5P 169786-57-6P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation, thermotropic behavior, and smectic layering of side-chain liquid-crystalline fluoropolymers with laterally attached mesogens, monomers, and model compds.)

RN 169786-56-5 CAPLUS

CN Benzoic acid, 3-fluoro-4-methoxy-, 2-(bromomethyl)-1,4-phenylene ester (9CI) (CA INDEX NAME)

RN 169786-57-6 CAPLUS

CN Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid, [2,5-bis[(3-fluoro-4-methoxybenzoyl)oxy]phenyl]methyl ester (9CI) (CA INDEX NAME)

PAGE 1-A