Modelling with RStan

Sydney Dimmock June 13, 2022

Modelling with Stan

- 1. Choose an initial model.
- 2. Construct Stan model.
- 3. Sample the model.
- 4. Check for convergence and good sampling quality.
 - Unsuccessful? Try a different parameterisation and review of the prior model!
- 5. Extract and interpret posterior parameters.

Bayesian Workflow

Structure of a Stan Model

```
data{
     . . .
parameters {
transformed parameters{
     . . .
model{
     . . .
generated quantities{
```

Data and Model

We have a dataset containing the number of observed head counts for twenty biased coins:

ID	Flips	Heads	Р
1	35	20	0.50
2	61	61	0.99
3	72	31	0.46
4	62	51	0.77
5	48	6	0.25
6	41	39	0.95
7	93	29	0.35

... and so on.

4

Data and Model

We can construct a mathematical model for this data:

$$y_i \sim \text{Binomial}(n_i, \theta_i), \quad i \dots N$$

 $\theta_i \sim \text{Beta}(\alpha, \beta)$

How does this translate into a Stan model?

```
Stan Example

data{
    int N;
    int y[N];
    int n[N];
}
```

```
data{
   int N;
   int y[N];
   int n[N];
}
parameters{
   real<lower=0, upper=1> theta[N];
}
```

```
data{
    int N;
    int y[N];
    int n[N];
parameters{
    real < lower = 0, upper = 1 > theta[N];
model{
    theta \sim beta(2,2);
```

```
data{
    int N;
    int y[N];
    int n[N];
parameters {
    real < lower = 0, upper = 1 > theta[N];
model{
    theta \sim beta(2,2);
    y \sim binomial(n, theta);
```

```
data{
    int N;
    int y[N];
    int n[N];
parameters{
    real < lower = 0, upper = 1 > theta[N];
model {
    theta \sim beta(2,2);
    y \sim binomial(n, theta);
generated quantities{
    int yrep[N];
    for(i in 1:N){
        yrep[i] = binomial_rng(n[i], theta[i]);
    }
```

Sampling Statements

The model section is made up of sampling statements:

```
 \begin{array}{l} \textbf{Stan Example} \\ \textbf{y} \sim \texttt{normal(0,1)} \end{array}
```

Using the distributions are short hands for incrementing the log density:

```
Stan Example
target += normal_lpdf( y | 0, 1);
```

This is how you can define your own densities within Stan.

Running the Model from R

```
library(readr)
rstan options(auto write = TRUE)
data <- read csv("data/coin.csv") # Read in the data</pre>
stan data <- list(N = nrow(data),</pre>
                   y = data$Heads,
                   n = data$Flips)
fit <- stan(file="models/binom coin.stan", data=stan data, chains=4, iter=1000)</pre>
theta <- extract(fit, "theta")$theta
```

Plotting

Plotting

Plotting

Visualisations can be created quickly using bayesplot.

The syntax is consistent across most of the library functions requiring:

- 1. Stan fit object
- 2. Parameters of interest, specified by string or regular expression.

```
Stan Example
```

```
mcmc_areas(fit, c('theta[1]', 'theta[2]'));
```