Циклы. Предельные циклы и их устойчивость

Цикл – замкнутая траектория автономной системы дифференциальных уравнений.

Например, пусть $d_t x = \partial_y H$, $d_t y = -\partial_x H$, H = H(x, y). У такой гамильтоновой системы диффуров функция (гамильтониан) H — первый интеграл. В окрестности максимума или минимума гамильтониана H его изолинии по лемме Морса замкнуты. Это циклы гамильтоновой системы.

Предельным циклом называется такой цикл, что в его окрестности нет других циклов.

Пример.
$$d_t x = y + \varepsilon x (R - r)$$
, $d_t y = -x + \varepsilon y (R - r)$, $\varepsilon = const$, $R = const$, $r = \sqrt{x^2 + y^2}$.

Тогда
$$rd_t r = \varepsilon r^2 (R-r) \sim d_t r = \varepsilon r (R-r)$$
.

Задача. Решить это ОДУ.

При $\varepsilon > 0$ эта система имеет устойчивый предельный цикл, поскольку радиус будет стремиться к R. При $\varepsilon < 0$ это неустойчивый предельный цикл. При $\varepsilon = 0$ все окружности – циклы. Т.е. предельного цикла у этой системы нет.

Динамика угловой координаты не зависит от параметра ε . При $\varepsilon=0$ уравнение $d_t^2 x = -x \Rightarrow T = 2\pi$. Угловая скорость равна 1.