1. Buktikan bahwa $n^2 + 237n \in \Theta(n^2)$

$$\exists n_0>0, c_1>0, c_2>0\ \ni \forall\ n\geq n_0:\ 0\leq c_1n^2\leq c_2n^2$$
 Ambil $n_0=1, c_2=238$, dan $1\leq c_1\leq 237$, maka terpenuhi

$$\therefore n^2 + 237n \in \Theta(n^2)$$

2. Buktikan bahwa $\log n + 2n + 4 \in O(\log n)$

Tidak mungkin $\log n + 2n + 4 \in O(\log n)$ karena n tumbuh lebih cepat daripada $\log n$, misal ambil n = 1000, maka dengan asumsi basis adalah 10, $\log n = 3$. Sehingga upperbound untuk $\log n + 2n + 4$ tidak mungkin $\log n$.

$$\therefore \log n + 2n + 4 \notin O(\log n)$$

3. Buktikan bahwa jika $f(n) \in O(g(n))$ dan $g(n) \in O(h(n))$, maka $f(n) \in O(h(n))$

$$\exists n_1, c_1 \ni \forall n > n_1 : f(n) \le c_1 g(n)$$

 $\exists n_2, c_2 \ni \forall n > n_2 : g(n) \le c_2 h(n)$

Menggabungkan kedua definisi ini, kita dapatkan:

$$f(n) \le c_1 g(n) \le c_1 c_2 h(n)$$

Sehingga,

$$\exists n_3, c_3 \ni \forall n > n_3 : f(n) \le c_3 h(n)$$

Di mana $n_3 = \max(n_1, n_2) \operatorname{dan} c_3 = c_1 c_2$

$$\therefore f(n) \in O(h(n))$$