Discrete differential geometry of surfaces. Variational principles, algorithms, and implementation

vorgelegt von Dipl.-Math. techn. Stefan Sechelmann

von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur erlangung des akademischen Grades

Doktor der Naturwissenschaften – Dr. rer. nat. –

Promotionsausschuss

Vorsitzender: NN

Gutachter/Berichter: Prof. Dr. Alexander I. Bobenko

NN

Tag der wissenschaftlichen Aussprache: NN

Berlin, den 07. Januar 2013

Contents

1	Intr	Introduction					
2	Disc	Discrete Uniformization					
	2.1	Discre	te Riemann surfaces	3			
	2.2	Variat	ional principles	4			
		2.2.1	Discrete conformal equivalence	4			
		2.2.2	Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2	4			
		2.2.3	Realization	5			
	2.3	Unifor	rmization of surfaces of higher genus	5			
		2.3.1	The cut-graph and fuchsian groups	5			
		2.3.2	Minimal presentation	6			
	2.4	Canon	nical fundamental domains of fuchsian groups	6			
		2.4.1	Separated handles	6			
		2.4.2	Opposite sides identified	6			
	2.5	Unifor	rmization of elliptic and hyperelliptic surfaces	6			
		2.5.1	Elliptic Functions	6			
		2.5.2	The moduli space	6			
		2.5.3	Numerical convergence analysis	6			
		2.5.4	The modulus of the Wente torus	6			
		2.5.5	Construction of hyperelliptic surfaces	6			
		2.5.6	Weierstrass points on hyperelliptic surfaces	6			
		2.5.7	Canonical domains	7			
		2.5.8	Lawsons surface	7			
	2.6	Confo	rmal Mapping to $\hat{\mathbb{C}}$ (Planned)	7			
		2.6.1	Selection of Branch Data	7			
		2.6.2	Examples	7			
	27	Simply	y and multiply connected domains	7			

CONTENTS

		2.7.1	Variation of edge length	7
		2.7.2	Examples	7
		2.7.3	Comparison with Examples of the Schwarz-Christoffel community $\ \ . \ \ . \ \ .$	7
3	Dis	crete S	Surface Parameterization	9
	3.1	Discre	te quasiisothermic parametrizations	9
		3.1.1	Discrete quasiisothermic parameterizations	9
		3.1.2	Formulation as boundary value problem	9
		3.1.3	Global approach	9
		3.1.4	Variational principle for S-isothermic surfaces	9
		3.1.5	Constructing the associated family of apploximate minimal surfaces $$	9
		3.1.6	A discrete ellipsoid and its dual surface	9
		3.1.7	Applications in architecture	9
		3.1.8	Piece-wise projective interpolation for arbitrary parameterizations \dots	9
	3.2	Gridsl	nells and Applications in Architecture	9
		3.2.1	Tschebyscheff Meshes	9
		3.2.2	Variational Principle	9
		3.2.3	Examples	9
Bi	ibliog	graphy		11

List of Figures

2.1	Discrete surfaces constructed from glued triangles of constant curvature. Eu-	
	clidean, hyperbolic, and spherical. Bold edegs are identified to create a cone-like singularity at the vertex	3
2.2	Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyperbolic motions	
2.3	Square with symmetric slit to the circle	7

LIST OF FIGURES

LIST OF FIGURES

Chapter 1

Introduction

Chapter 2

Discrete Uniformization

The discrete uniformization theory persented here is based on the notion of discrete conformal eqivalence of triangle meshes. The Euclidean definition was first considered by [Luo04], the variational principle and applications in computer graphics is due to [SSP08, BPS10]. The notion of conformal equivalence of non-Euclidean metrics and corresponding variational principles were first defined in [BPS10]. [Guo10] investigate the gradient flow of this principle. Most of the material presented here can be found in [BSS].

2.1 Discrete Riemann surfaces

Definition 1. A discrete surface is a collection of triangles equipped with a metric of constant Gaussian curvature and geodesic edges. Triangles are glued along edges to form a surface.

Generically a discrete surface can have boundary components. We consider this case in Section 2.7. By glueing triangles equipped with a metric of constant curvature we obtain a surface that has constant curvature except for points where the metric has cone-like singularities (Figure 2.1). A discrete surface is called Euclidean for K = 0, hyperbolic for K = -1, and spherical if K = 1.

Definition 2. The map $l: E \to \mathbb{R}$ of triangle edge lengths of a discrete surface is called a discrete Euclidean, hyperbolic, or spherical metric respectively.

Figure 2.1: Discrete surfaces constructed from glued triangles of constant curvature. Euclidean, hyperbolic, and spherical. Bold edegs are identified to create a cone-like singularity at the vertex.

2.2Variational principles

2.2.1Discrete conformal equivalence

Definition 3. Two Euclidean triangulations T and \tilde{T} are discretely conformally equivalent if there is a map $u: V \to \mathbb{R}$ such that for any edge ij it is

$$l_{ij} = e^{u_i + u_j} \tilde{l}_{ij}$$

where l_{ij} is the length of the edge ij.

Definition 4. A discrete flat Euclidean metric is a map $l: E \to \mathbb{R}_+$ such that triangle inequalities are satisfied and angle sums around each inner vertex are equal to 2π .

Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2 2.2.2

Construction of discrete flat metrics. A discrete Euclidean flat metric is the minimizer of a convex functional.

$$\lambda_{ij} := 2\log l_{ij} \tag{2.1}$$

$$\tilde{\lambda}_{ij} := \lambda_{ij} + u_i + u_j \tag{2.2}$$

$$f_{Euc}(u_i, u_j, u_k) := \alpha_i \tilde{\lambda}_{ik} + \alpha_i \tilde{\lambda}_{ki} + \alpha_k \tilde{\lambda}_{ij} + 2\left(\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k)\right)$$
(2.3)

Definition 5.

$$E_{Euc}(u) := \sum_{ijk \in F} \left(f_{Euc}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i$$
 (2.4)

This definition and the derivatives can be found in [BPS10]

For the hyperbolic case λ and $\tilde{\lambda}$ are defined as before. Further define

$$\beta_i := \frac{1}{2} (\pi + \alpha_i - \alpha_j - \alpha_k) \tag{2.5}$$

$$\beta_{i} := \frac{1}{2} (\pi + \alpha_{i} - \alpha_{j} - \alpha_{k})$$

$$\beta_{j} := \frac{1}{2} (\pi - \alpha_{i} + \alpha_{j} - \alpha_{k})$$

$$\beta_{k} := \frac{1}{2} (\pi - \alpha_{i} - \alpha_{j} + \alpha_{k})$$

$$(2.5)$$

$$(2.6)$$

$$\beta_k := \frac{1}{2} (\pi - \alpha_i - \alpha_j + \alpha_k) \tag{2.7}$$

$$f_{Hyp}(u_i, u_j, u_k) := \beta_i \tilde{\lambda}_{jk} + \beta_j \tilde{\lambda}_{ki} + \beta_k \tilde{\lambda}_{ij}$$
(2.8)

$$+\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k) + \Pi(\beta_i) + \Pi(\beta_j) + \Pi(\beta_k)$$
 (2.9)

$$+\Pi\left(\frac{1}{2}(\pi - \alpha_i - \alpha_j - \alpha_k)\right) \tag{2.10}$$

Definition 6.

$$E_{Hyp}(u) := \sum_{ijk \in F} \left(f_{Hyp}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i$$
 (2.11)

Figure 2.2: Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyperbolic motions.

2.2.3 Realization

2.3 Uniformization of surfaces of higher genus

Triangulated surfaces of genus $g \geq 2$ without boundary can be equipped with a discretely conformally equivalent flat hyperbolic metric [BPS10]. By flat hyperbolic metric we mean that the edge length are hyperbolic and for any vertex the angle sum is 2π . To realize this metric in the hyperbolic plane e.g. in the Poicaré disk model one has to introduce cuts along a basis of the homotopy. This creates a simply connected domain in \mathbb{H}^2 . Matching cut paths are realated by a hyperbolic motion i.e. the Möbius transformations that leave the unit disk invariant (Figure 2.2).

2.3.1 The cut-graph and fuchsian groups

Want so say here: the number of transformations generated by the mapping of corresponding edges equals the number of path segments in the homotopy-cut-graph. They generate a fuchsian group with #vertices relations

Proposition 1.

2.3.2 Minimal presentation

2.4 Canonical fundamental domains of fuchsian groups

- 2.4.1 Separated handles
- 2.4.2 Opposite sides identified
- 2.5 Uniformization of elliptic and hyperelliptic surfaces
- 2.5.1 Elliptic Functions
- 2.5.2 The moduli space
- 2.5.3 Numerical convergence analysis
- 2.5.4 The modulus of the Wente torus
- 2.5.5 Construction of hyperelliptic surfaces

Any hyperelliptic Riemann surface can be expressed as an algebraic curve of the form

$$\mu^2 = \prod_{i=1}^n (\lambda - \lambda_i)^2 \qquad n \ge 3, \quad \lambda_i \ne \lambda_j \forall i \ne j.$$

Here λ_i are the branch points of the doubly covered Riemann sphere.

2.5.6 Weierstrass points on hyperelliptic surfaces

A hyperelliptic surface comes together with a holomorphic involution h called the hyperelliptic involution. The branch points are fixed points under this transformation. For a hyperelliptic algebraic curve it is $h(\mu, \lambda) = (-\mu, \lambda)$

Figure 2.3: Square with symmetric slit to the circle

- 2.5.7 Canonical domains
- 2.5.8 Lawsons surface
- 2.6 Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)
- 2.6.1 Selection of Branch Data
- 2.6.2 Examples
- 2.7 Simply and multiply connected domains
- 2.7.1 Variation of edge length
- 2.7.2 Examples
- 2.7.3 Comparison with Examples of the Schwarz-Christoffel community

Chapter 3

Discrete Surface Parameterization

3.1 Discrete quasiisothermic parametrizations

The notion of quasiconformal parameterizations

- 3.1.1 Discrete quasiisothermic parameterizations
- 3.1.2 Formulation as boundary value problem
- 3.1.3 Global approach
- 3.1.4 Variational principle for S-isothermic surfaces
- 3.1.5 Constructing the associated family of apploximate minimal surfaces
- 3.1.6 A discrete ellipsoid and its dual surface
- 3.1.7 Applications in architecture
- 3.1.8 Piece-wise projective interpolation for arbitrary parameterizations
- 3.2 Gridshells and Applications in Architecture
- 3.2.1 Tschebyscheff Meshes
- 3.2.2 Variational Principle
- 3.2.3 Examples

Bibliography

- [BPS10] Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Preprint; http://arxiv.org/abs/1005.2698, 2010.
- [BSS] Alexander I. Bobenko, Stefan Sechelmann, and Boris Springborn. Uniformization of discrete Riemann surfaces. in preparation.
- [Guo10] Ren Guo. Combinatorial yamabe flow on hyperbolic surfaces with boundary. Preprint; http://arxiv.org/abs/1003.3910, 3 2010.
- [Luo04] Feng Luo. Combinatorial yamabe flow on surfaces. Commun. Contemp. Math., $6(5):765-780,\ 2004.$
- [SSP08] Boris Springborn, Peter Schröder, and Ulrich Pinkall. Conformal equivalence of triangle meshes. ACM Trans. Graph., 27(3):#77, 1–11, 2008.