Sequential Decisions With Uncertainty: When Agents Learn

With slides from Pieter Abbeel and Dan Klein (Berkeley), and Percy Liang (Stanford)

HMMs for NLP: Tagging

The Georgia branch had taken on loan commitments ...

HMM Model:

- States Y = {DT, NNP, NN, ... } are the POS tags
- Observations X = V are words
- Transition dist' n q(y_i | y_{i-1}) models the tag sequences
- Emission dist' n e(xi | yi) models words given their POS
- Q: How to we represent n-gram POS taggers?

Transitions and Emissions

Transitions

- Transitions P(s|s') encode well-formed tag sequences
 - In a bigram tagger, states = tags

In a trigram tagger, states = tag pairs

Inference (Decoding)

Problem: find the most likely (Viterbi) sequence under the model

$$\arg\max_{y_1...y_n} p(x_1...x_n, y_1...y_n)$$

Given model parameters, we can score any sequence pair

NNP VBZ NN NNS CD NN .

Fed raises interest rates 0.5 percent .

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

 In principle, we're done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

> NNP VBZ NN NNS CD NN \implies logP = -23 NNP NNS NN NNS CD NN \implies logP = -29 NNP VBZ VB NNS CD NN \implies logP = -27

Entity Tagging with HMMs

Given a sequence of observations:

Yesterday Lawrence Saul spoke this example sentence.

and a trained HMM:

Find the most likely state sequence: (Viterbi)

 $\operatorname{arg\,max}_{\bar{s}} P(\bar{s}, \bar{o})$

Any words said to be generated by the designated "person name" state extract as a person name:

Person name: Lawrence Saul

HMM Example: "Nymble"

Task: Named Entity Extraction

Train on 450k words of news wire text.

Results:

Case	Language	F1 .
Mixed	English	93%
Upper	English	91%
Mixed	Spanish	90%

[Bikel, et al 1998], [BBN "IdentiFinder"]

<u>Transition</u> <u>Observation</u> <u>probabilities</u> <u>probabilities</u>

 $P(s_t | s_{t-1}, o_{t-1})$

Back-off to:

 $P(S_t | S_{t-1})$

 $P(s_t)$

$$P(o_t | s_t, s_{t-1})$$

$$Or P(o_t | s_t, o_{t-1})$$

Back-off to:

$$P(o_t | s_t)$$

$$P(o_t)$$

Remaining HMM/BN Issues

- Where do P, E probabilities come from?
 - Training HMMs
 - Dealing with unobserved values

- What's the most likely explanation (a.k.a. decoding)
 - Needed for speech recognition, language parsing, ...
 - Solution: Viterbi algoritm (most likely explanation)
 - What is we want multiple explanations? (beam search)

HMM Training: Degree of Supervision

- Supervised: Training data is tagged by humans
- Unsupervised: Training data isn't tagged
- Partially supervised: Training data isn't tagged, but you have a dictionary giving possible tags for each word
- We'll start with the supervised case and move to decreasing levels of supervision

Training an HMM (Supervised)

- 1. Define model topology (states, possible arcs)
- 2. Obtain labeled/tagged data
- 3. Estimate HMM parameters:
 - 1. Transition probabilities
 - 2. Emission probabilities
- 4. Validate on hold-out data
- 5. Done.

MLE Example: Squeezy Pig

Consider a random pig:

- Observations:
 - squeeze it 10 times, and 8 times it goes "oink" and 2 times it goes "wee"
- Model topology:
 - assume it is a stateless pig (no hidden states)

- Maximum likelihood estimate (MLE) to model the pig as a random emitter with P("oink") = 0.8 and P("wee") = 0.2. P("moo")=?
- P(x) = count(X) / total number of trials

Learning: Maximum Likelihood

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Learning
 - Maximum likelihood methods for estimating transitions quantum and emissions e

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})}$$
 $e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$

- Will these estimates be high quality?
 - Which is likely to be more sparse, q or e?

Estimating **Transitions**: N-gram model

- Each word is predicted according to a conditional distribution based on a limited prior context
- Conditional Probability Table (CPT): P(X|both)
 - □ P(of|both) = 0.066
 - □ P(to|both) = 0.041
 - $\square P(in|both) = 0.038$
- From 1940s onward (or even 1910s Markov 1913)
- a.k.a. Markov (chain) models

Estimating **Emission** Probabilities

$$P(\mathbf{s}, \mathbf{w}) = \prod_{i} P(s_i | s_{i-1}) P(w_i | s_i)$$

- Emissions are tricker:
 - Words we've never seen before
 - Will use new method: "smoothing"
 - One option: break out the Good-Turning smoothing
 - Issue: words aren't black boxes:

343.127.23

11-year Minteria

reintroducibly

Unknown words usually broken into word classes

D+,D+.D+

D+-x+ Xx+

x+"ly"

 Another option: decompose words into features and use a maxent model along with Bayes' rule

$$P(w \mid t) = P_{MAXENT}(t \mid w)P(w)/P(t)$$

Problem: Insufficient data

$$p(t \mid M_d) = 0$$

- Zero probability
 - May not wish to assign a probability of zero to an event that is never appeared in training data (unseen)
 - − E.g., p("moo" | M_{pig})
- General approach
 - An unseen event is possible, but no more likely than would be expected by <u>chance</u>.
 - How to assign P(unseen)?

General Idea: Smoothing

We often want to make estimates from sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

Smoothing flattens spiky distributions so they generalize better

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims.

0.5 request

2 other

7 total

- Very important all over NLP, but easy to do badly!
- We'll illustrate with bigrams today (h = previous word, could be anything).

Example: Laplace smoothing

- Idea: pretend we saw every word once more than we actually did [Laplace]
 - Corresponds to a uniform prior over vocabulary
 - Think of it as taking items with observed count r > 1 and treating them as having count r* < r
 - Holds out V/(N+V) for "fake" events
 - N1+/N of which is distributed back to seen words
 - N0/(N+V) actually passed on to unseen words (nearly all!)
 - Actually tells us not only how much to hold out, but where to put it
- Addding 1 poorly in practice (why?)
- Quick fix: add some small δ instead of 1 [Lidstone-Jefferys]
- Better better, holds out less mass

HMMs: Degree of Supervision

- Supervised: Training corpus is tagged by humans
- Unsupervised: Training corpus isn't tagged
- Partly supervised: Training corpus isn't tagged, but you have a dictionary giving possible tags for each word
- We'll start with the supervised case and move to decreasing levels of supervision

Motivation: Unsupervised Training

• Accuracy of tagging degrades outside of domain; Often make errors on important words (e.g., protein names) $\lambda = (A, B, \pi)$

- Often these parameters are estimated on annotated training data, which has two drawbacks:
 - Annotation is difficult and/or expensive
 - Training data is different from the current data
- We want to maximize the parameters with respect to the current data, i.e., we're looking for a model λ ', such that

$$\lambda' = \operatorname{argmax} P(O \mid \lambda)$$

General Idea

- Start by devising a noisy channel
 - Any model that predicts the corpus observations via some hidden structure (tags, parses, pigs...)
- Initially guess the parameters of the model!
 - Educated guess is best, but random can work
- **Expectation step:** Use current parameters (and observations) to reconstruct hidden structure
- Maximization step: Use that hidden structure (and observations) to reestimate parameters

Repeat until convergence!

General Idea

2/28/24 Intelligence.

2

For Hidden Markov Models

For Hidden Markov Models

For Hidden Markov Models

EM by Dynamic Programming: Two Versions

- The Viterbi approximation
 - Expectation: pick the best parse of each sentence
 - Maximization: retrain on this best-parsed corpus
 - Advantage: Speed!
- Real EM why slower?
 - Expectation: find all parses of each sentence
 - Maximization: retrain on all parses in proportion to their probability (as if we observed fractional count)
 - Advantage: p(training corpus) guaranteed to increase
 - Exponentially many parses, so don't extract them from chart – need some kind of clever counting

Baum-Welch (1)

- Want to estimate:
 - a_{ii} (transition probability from state i to state j)
- If we had tagged corpus:
 - a_{ij} = count(transition from state i to state j) / count(transition from state i to any state)
- Don't have one. So:
 - Assume some initial values for a_{ii} and b_i(w)
 - Use a_{ij} and $b_{j}(w)$ to compute expected counts (E)
 - Then use E to re-estimate $a_{ij} \rightarrow a'_{ij}$
 - a'_{ij} = E(transition from state i to state j) / <math>E(transition from state i to any state)

BM: Intuition

• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m | s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } S_i}{\text{Number of times in state } S_i}$$

BM: Approximation

General idea:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Expected number of transitions from state } S_i \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j}$$

$$b_{i}(v_{m}) = P(v_{m} | s_{i}) = \frac{\text{Expected number of times observation } V_{m} \text{ occurs in state } S_{i}}{\text{Expected number of times in state } S_{i}}$$

$$\pi_i = P(s_i) = \text{Expected frequency in state } s_i \text{ at time } k=1.$$

BM Algorithm: Iterations

Recurrence:

- 1. Estimate $A_{k,l}$ and $E_k(b)$ from $a_{k,l}$ and $e_k(b)$ overall all training sequences (E-step)
- 2. Update $a_{k,l}$ and $e_k(b)$ using ML (M-step)
- 3. Repeat steps #1, #2 with new parameters $a_{k,l}$ and $e_k(b)$
- Initialization:
 - Set A and E to pseudocounts (or priors)
- Termination: if $\Delta log-likelihood < threshold$ or Ntimes>max_times

BM Algorithm: Iterations (2)

· Recurrence:

- 1. Calculate forward/backwards probs, $f_k(i)$ and $b_k(i)$, for each training sequence
- 2. E-step: Estimate the expected number of $k \rightarrow l$ transitions, $A_{k,l}$

$$A_{k,l} = \sum_{i} f_k(i) \cdot a_{k,l} \cdot e_l(x_{i+1}) \cdot b_l(i+1) / P(\vec{x} \mid \theta)$$

and the expected number of symbol b appearences in state k, $E_k(b)$

$$E_k(b) = \sum_{\{i \mid x_i = b\}} f_k(i) \cdot b_k(i) / P(\vec{x} \mid \theta)$$

- 3. M-step: Estimate new model parameters $a_{k,l}$ and $e_k(b)$ using ML across all training sequences
- 4. Estimate the new model's (log)likelihood to assess convergence

An example of Baum-Welch

(thanks to Sarah Wheelan, JHU)

• I observe the dog across the street. Sometimes he is inside, sometimes outside.

- I assume that since he can not open the door himself, then there is another factor, hidden from me, that determines his behavior.
- Since I am lazy, I will guess there are only two hidden states, S_1 and S_2 .

- Estimating initial probabilities:
 - Assume all sequences start with hidden state S_1 , calculate best probability
 - Assume all sequences start with hidden state S_2 , calculate best probability
 - Normalize to 1.
- Now, we have generated the updated transition, emission and initial probabilities. Repeat this method until those probabilities converge

- One set of observations:
 - I-I-I-I-O-O-I-I-I
- Guessing two hidden states. I need to invent a transition and emission matrix.
 - Note: since Baum-Welch is an EM algorithm the better my initial guesses are the better the job I will do in estimating the true parameters

Day k+1

		51	52
•	51	0.5	0.5
	52	0.4	0.6

	IN	OUT
51	0.2	0.8
52	0.9	0.1

Day

- Let's assume initial values of:
 - $P(S_1) = 0.3$, $P(S_2) = 0.7$
- Example guess: if initial I-I came from S_1 - S_2 then the probability is:

 $0.3 \times 0.2 \times 0.5 \times 0.9 = 0.027$

Day
$$k+1$$

	IN	OUT
51	0.2	0.8
52	0.9	0.1

- Now, let's estimate the transition matrix. Sequence I-I-I-I-O-O-I-I-I has the following events:
 - II, II, II, IO, OO, OI, II, II
- So, our estimate for $S_1 \rightarrow S_2$ transition probability is:
 - 0.285/2.4474 = 0.116
- Similarly, calculate the other three transition probs and normalize so they sum up to 1
- Update transition matrix

Seq	$P(Seq)$ for S_1S_2	Best P(Seq)
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
IO	0.003	0.2016 S ₂ S ₁
00	0.012	0.0960 S ₁ S ₁
OI	0.108	0.1080 S ₁ S ₂
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
Total	0.285	2.4474

Summary – Baum-Welch Algorithm

- Start with initial HMM
- Calculate, using F-B, the likelihood to get our observations given that a certain hidden state was used at time i.
- Re-estimate the HMM parameters
- Continue until convergence
- Baum showed this to monotonically improve data likelihood (not necessarily accuracy!)
- Typically requires MANY observations, and (relatively) few parameters → simple topology

Summary: HMMs

- Widely used in AI: robotics, speech, NLP, ...
- Often have large number of hidden states (e.g., words in vocabulary → 500K). Optimization needed
- Training exhaustively using MLE not feasible, need to generalize to unseen input (smoothing, classes)

- Now: Markov Decision Process.
 - How to make sequential decisions to optimize total expected future rewards

Big Picture

- Al as Planning:
 - ✓ Model of the world known (utilities, action outcomes)
 - ✓ Deterministic search: UCS, A*, MiniMax
 - ✓ Non-deterministic search → ExpectiMax
 - ➤ Inference under uncertainty: BNs, HMMs
- Al as Learning:
 - Model of world partially known (rewards? outcomes?)
 - → Markov Decision Processes (Today)
 - Rewards, action outcomes unknown
 - → Reinforcement Learning (After Spring Break)

Big Picture: Learning Agents

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Rewards, Transitions known: MDP Rewards, Transitions not known: ????

Plan (Next few weeks)

- Markov Decision Processes (MDPs)
 - MDP formalism
 - Solution: Value Iteration and Policy Iteration
- Reinforcement Learning (RL)
 - Relationship to MDPs
 - Several learning algorithms
 - RL applications to games, "real world"
- Project 3: MDPs, RL for Pacman and gridworld

Non-Deterministic Actions

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize the sum of rewards

Grid World Actions

Deterministic Grid World

New Idea: Markov Decision Process (MDP)

- An MDP is defined by:
 - **S**et of states s ∈ S
 - **– A**ctions a ∈ A
 - <u>T</u>ransition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - Reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - Start state (s₀)
 - Terminal state (<u>optional</u>)
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We can do better

What is "Markov" about MDPs?

 Remember: "Markov" means that given the current state, the future and the past are independent

Andrey Markov (1856-1922)

 Like (H) MMs, where the successor function only depends on current state (not the full history)

What is "Markov" about MDPs (2)?

 Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• Like (H) MMs, where the successor function only depends on current state (not the full history)

New Idea: Markov Decision Process (MDP)

- An MDP is defined by:
 - **S**et of states s ∈ S
 - **– A**ctions a ∈ A
 - <u>T</u>ransition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - Reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - Start state (s₀)
 - Terminal state (<u>optional</u>)
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We can do better

MDP Search Trees

Each MDP state can be viewed as an expectimax search node

Expectimax Solution: Best Action from S

Definition: Policy

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Minimax/Expectimax do NOT compute entire policies
 - They computed the action for a single state only (and then re-plan)

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

R(s) = the "living reward"

$$R(s) = -0.01$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Utilities of Sequences

 What preferences should an agent have over reward sequences?

More or less?

Now or later?

Infinite Utilities?!

Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - 1. Finite horizon: (similar to depth-limited search)
 - <u>Terminate</u> episodes after a fixed T steps (e.g. assume finite lifetime)
 - *Problem*: Gives nonstationary policies (π depends on time left)
 - 2. Discounting: use $0 \le \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller $\gamma \rightarrow$ smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Discounting

- It's reasonable to maximize the <u>sum of rewards</u>
- It's also reasonable to <u>prefer rewards now</u> to rewards later
- One solution: values of rewards decay exponentially

Big Idea: Reward Discounting

- How to discount?
 - Each time we descend a level, we multiply by the discount once

- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Detour: Temporal/Delay Discounting

- What would you rather have?
 - A. \$100 today
 - B. \$150 a year from now
- What about:
 - A. \$100 in 12 months
 - B. \$110 in 13 months
- Humans temporally discount values of rewards
 - https://en.wikipedia.org/wiki/Temporal discounting
- Delayed gratification: https://www.youtube.com/watch?v=QX oy9614HQ

Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic (no noise, for now)
- P 1: For γ = 1, what is the optimal policy?
- P 2: For γ = 0.1, what is the optimal policy?
- P 3: For which γ are West and East equally good when in state d?

https://www.wolframalpha.com/input/?i=10x%5E3+%3D+x

Example: Car Racing

Car Racing: State Diagram

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree (depth=?)

... potentially infinite depth ...

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ) /

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Next: Solving MDPs

