Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA A XI-a

Problema 1. Fie A, B, C trei matrice de ordin 3, care au elemente numere reale și care îndeplinesc condițiile: $\det(A) = \det(B) = \det(C)$ și $\det(A+iB) = \det(C+iA)$. Arătați că $\det(A+B) = \det(C+A)$.

Problema 2. Fie $n \in \mathbb{N}^*$ şi o matrice $A \in \mathcal{M}_n(\mathbb{C})$, $A = (a_{pq})_{1 \leq p,q \leq n}$, cu proprietatea:

$$a_{ij} + a_{jk} + a_{ki} = 0, \forall i, j, k \in \{1, 2, \dots, n\}.$$

Arătați că $rang(A) \leq 2$.

Gazeta Matematică

Problema 3. Fie $(x_n)_{n\geq 1}$ un şir definit de

$$x_1 = 2, x_{n+1} = \sqrt{x_n + \frac{1}{n}}, \forall n \ge 1.$$

Arătați că $\lim_{n\to\infty} x_n = 1$ și calculați $\lim_{n\to\infty} (x_n)^n$.

Problema 4. a) Arătați că funcția $F : \mathbb{R} \to \mathbb{R}$, $F(x) = 2[x] - \cos(3\pi\{x\})$ are proprietățile: funcția F este continuă pe \mathbb{R} și, pentru orice $y \in \mathbb{R}$, ecuația F(x) = y are exact trei soluții ([x] este partea întreagă a lui x).

b) Fie k > 0 un număr întreg par. Arătați că nu există nicio funcție $f: \mathbb{R} \to \mathbb{R}$ cu proprietățile: funcția f este continuă pe \mathbb{R} și, pentru orice $y \in \text{Im} f$, ecuația f(x) = y are exact k soluții (Im f este mulțimea valorilor funcției f).

Timp de lucru 3 ore +1/2 oră pentru întrebări lămuritoare asupra enunţurilor. Fiecare problemă este punctată de la 0 la 7 puncte.