

Análise Complexa e Equações Diferenciais 1º Semestre 2019/2020

2º Teste — Versão A

(CURSOS: LMAC, MEFT)

14 de Dezembro de 2019, 9h

Duração: 1h 30m

[1,5 val.] 1. (a) Resolva o problema de valor inicial

$$y'' + 2y' + y = 4e^t - t;$$
 $y(0) = 1;$ $y'(0) = 0.$

[1,0 val.] (b) Determine a solução geral da equação

$$y'' + 2y' + y = \frac{e^{-t}}{1 + t^2}.$$

[1,0 val.] (c) Determine os valores de $a\in\mathbb{R}$ para os quais todas as soluções de y''+ay'+y=0 satisfazem $\lim_{t\to+\infty}y(t)=0.$

Solução:

(a) Sabemos que a solução geral do problema não homogéneo resulta da soma de uma solução particular não homogénea a todas as soluções homogéneas, as quais formam um espaço vectorial de dimensão 2:

$$y(t) = y_H(t) + y_P(t).$$

As soluções do problema homogéneo obtêm-se da equação

$$y_H'' + 2y_H' + y_H = 0 \Leftrightarrow (D^2 + 2D + 1)y_H = 0 \Leftrightarrow (D+1)^2 y_H = 0,$$

donde, pela multiplicidade algébrica dupla do valor próprio -1, se conclui que duas soluções linearmente independentes, formando uma base do espaço vectorial das soluções homogéneas, são e^{-t} e te^{-t} . Assim, o conjunto das soluções do problema homogéneo é o espaço gerado por estas duas soluções:

$$y_H(t) = c_1 e^{-t} + c_2 t e^{-t}, \quad \text{com} \quad c_1, c_2 \in \mathbb{R}.$$

O termo não homogéneo $4e^t-t$ é solução do operador $D^2(D-1)$ pelo que podemos usar o método dos aniquiladores, aplicando este operador aos dois lados da equação original e assim obtendo a equação homogénea aumentada da qual a solução particular é solução

$$(D+1)^2 y_P = 4e^t - t \Rightarrow D^2(D-1)(D+1)^2 y_P = D^2(D-1)[4e^t - t]$$

$$\Rightarrow D^2(D-1)(D+1)^2 y_P = 0.$$

Ou seja y_P é da forma geral $y_P(t)=c_1e^{-t}+c_2te^{-t}+c_3e^t+c_4+c_5t$. Mas como os termos relativos a c_1 e c_2 vimos já que são os da solução homogénea original, podemos assim procurar

$$y_P(t) = c_3 e^t + c_4 + c_5 t.$$

Resta assim determinar os valores específicos das constantes c_3, c_4 e c_5 que permitem obter o termo não homogéneo específico $4e^t-t$ do lado direito da equação original. Substituindo

$$y_P'' + 2y_P' + y_P = 4e^t - t,$$

obtemos

$$c_3e^t + 2(c_3e^t + c_5) + (c_3e^t + c_4 + c_5t) = 4c_3e^t + (2c_5 + c_4) + c_5t = 4e^t - t.$$

donde concluímos que

$$4c_3 = 4 \Rightarrow c_3 = 1,$$

$$c_5 = -1$$

$$2c_5 + c_4 = 0 \Rightarrow c_4 = 2,$$

e que portanto a solução geral do problema não homogéneo é

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} + e^t + 2 - t.$$

Por fim, determinam-se c_1 e c_2 de forma a satisfazer as condições iniciais do PVI:

$$y(0) = 1 \Rightarrow c_1 + 1 + 2 = 1 \Rightarrow c_1 = -2$$

 $y'(0) = 0 \Rightarrow -c_1 + c_2 + 1 - 1 = 0 \Rightarrow c_2 = c_1 = -2.$

Concluimos assim que a solução (única) do problema de valor inicial é

$$y(t) = -2e^{-t} - 2te^{-t} + e^{t} + 2 - t.$$

(b) O termo não homogéneo $\frac{e^{-t}}{1+t^2}$ não é aniquilável, pelo que para determinar a solução geral desta equação não homogénea é necessário recorrer à fórmula da variação das constantes para obter a solução particular. Como já obtivemos uma base do espaço das soluções homogéneas, na alínea anterior, a matriz Wronskiana pode calcular-se imediatamente

$$W(t) = \begin{bmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{bmatrix} = \begin{bmatrix} e^{-t} & te^{-t} \\ -e^{-t} & (1-t)e^{-t} \end{bmatrix},$$

e a sua inversa

$$W^{-1}(t) = \begin{bmatrix} (1-t)e^t & -te^t \\ e^t & e^t \end{bmatrix}.$$

A solução geral é agora dada pela fórmula da variação das constantes

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} + \begin{bmatrix} e^{-t} & t e^{-t} \end{bmatrix} \int \begin{bmatrix} -t e^t \\ e^t \end{bmatrix} \frac{e^{-t}}{1 + t^2} dt$$

$$= c_1 e^{-t} + c_2 t e^{-t} + \begin{bmatrix} e^{-t} & t e^{-t} \end{bmatrix} \int \begin{bmatrix} \frac{-t}{1 + t^2} \\ \frac{1}{1 + t^2} \end{bmatrix} dt$$

$$= c_1 e^{-t} + c_2 t e^{-t} + \begin{bmatrix} e^{-t} & t e^{-t} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \log(1 + t^2) \\ \arctan t \end{bmatrix}$$

$$= c_1 e^{-t} + c_2 t e^{-t} - e^{-t} \log(\sqrt{1 + t^2}) + t e^{-t} \arctan t,$$

 $com c_1, c_2 \in \mathbb{R}$.

(c) As soluções da equação são determinadas pelas duas raízes do polinómio característico $\lambda^2+a\lambda+1$, dadas por

$$\lambda_{1,2} = \frac{-a \pm \sqrt{a^2 - 4}}{2}.$$

Agora:

- se $a\in]2,+\infty[$ ambas as raízes λ_1 e λ_2 são reais e negativas (observe-se que nesse caso $0<\sqrt{a^2-4}< a$), pelo que todas as soluções serão da forma $y(t)=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}$, com $c_1,c_2\in\mathbb{R}$ e $\lambda_1,\lambda_2<0$ donde $y(t)\to 0$ quando $t\to +\infty$.
- se a=2 então $\lambda_1=\lambda_2=-a/2=-1$, donde as soluções todas serão da forma $y(t)=c_1e^{-t}+c_2te^{-t}$, com $c_1,c_2\in\mathbb{R}$, pelo que também $y(t)\to 0$ quando $t\to +\infty$.
- se $a\in]0,2[$, as raízes são complexas, da forma $\lambda_{1,2}=\frac{-a}{2}\pm\frac{\mathrm{i}\sqrt{4-a^2}}{2}$ e as soluções $y(t)=c_1e^{-\frac{a}{2}t}\cos(\frac{\sqrt{4-a^2}}{2}t)+c_2e^{-\frac{a}{2}t}\sin(\frac{\sqrt{4-a^2}}{2}t),$ com $c_1,c_2\in\mathbb{R}$, e ainda $y(t)\to 0$ quando $t\to +\infty$ pelo efeito das exponencias negativas $e^{-\frac{a}{2}t}$.

Em todos os outros casos de valores de a, ou seja, para $a \leq 0$ não é verdade que todas as soluções tendem para zero, quando $t \to +\infty$: no caso a=0 as raízes serão $\lambda_{1,2}=\pm i$ e as soluções exclusivamente oscilantes, dadas por $y(t)=c_1\cos(t)+c_2\sin(t)$, que genericamente não tendem para zero (a não ser no caso $c_1=c_2=0$); e para a<0, as soluções serão análogas às anteriores, mas com exponencias de coeficientes positivos, crescentes para $+\infty$ quando $t\to +\infty$.

Concluindo, as soluções todas da equação homogénea tendem para zero, quando $t\to +\infty$, se e só se $a\in]0,\infty[$.

[1,5 val.] 2. Usando o método de separação de variáveis, determine a solução do problema de valor inicial e valores na fronteira

$$\begin{cases} \frac{\partial u}{\partial t} - e^{-2t}u - \frac{\partial^2 u}{\partial x^2} = 0 & 0 < x < \pi , t > 0 \\ \frac{\partial u}{\partial x}(0, t) = u(\pi, t) = 0 & t > 0 \\ u(x, 0) = 4\cos\left(\frac{7x}{2}\right) - 2\cos\left(\frac{11x}{2}\right) & 0 < x < \pi. \end{cases}$$

Solução: Observamos que a equação diferencial parcial dada, assim como as condições de fronteira, são homogéneas. É válido, por isso, o princípio da sobreposição, ou seja, funções obtidas por combinações lineares arbitrárias de soluções da equação e das condições de fronteira ainda as satisfazem.

Vamos por isso usar o método de separação de variáveis, construindo soluções gerais por combinação linear (eventualmente infinita) de soluções mais simples, da forma u(x,t)=X(x)T(t), para $0< x<\pi$ e t>0. Substituindo na equação diferencial parcial obtemos

$$X(x)T'(t) - e^{-2t}X(x)T(t) - X''(x)T(t) = 0 \Leftrightarrow \frac{T'(t)}{T(t)} - e^{-2t} = \frac{X''(x)}{X(x)}.$$

Esta igualdade só é possivel se as funções dos dois lados da igualdade, de variáveis diferentes x e t, forem ambas iguais a uma constante, digamos λ . Portanto é equivalente ao sistema seguinte, onde λ é um número real qualquer

$$\left\{ \begin{array}{l} T'(t) = (\lambda + e^{-2t})T(t) \\ X''(x) - \lambda X(x) = 0. \end{array} \right.$$

A primeira equação é uma equação linear homogénea para T(t), cuja solução geral é

$$T(t) = Ae^{\lambda t - \frac{e^{-2t}}{2}} \text{ com } A \in \mathbb{R}.$$

A expressão para as soluções da segunda equação depende do sinal de λ . Temos

$$X(x) = \begin{cases} Be^{\sqrt{\lambda}x} + Ce^{-\sqrt{\lambda}x} & \text{se } \lambda > 0 \\ Bx + C & \text{se } \lambda = 0 \\ B\cos\sqrt{-\lambda}x + C\sin\sqrt{-\lambda}x & \text{se } \lambda < 0. \end{cases}$$

onde B, C são constantes reais.

As condições de fronteira homogéneas $\frac{\partial u}{\partial x}(0,t)=u(\pi,t)=0$ para as soluções da forma X(x)T(t) não nulas implicam que

$$X'(0)T(t) = X(\pi)T(t) = 0 \Rightarrow \begin{cases} X'(0) = 0 \\ X(\pi) = 0 \end{cases}$$

Impondo estas condições às soluções X(x) determinadas acima temos

(i) Para $\lambda > 0$:

$$\left\{ \begin{array}{l} \sqrt{\lambda}B - \sqrt{\lambda}C = 0 \\ Be^{\sqrt{\lambda}\pi} + Ce^{-\sqrt{\lambda}\pi} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} B = 0 \\ C = 0 \end{array} \right.$$

(ii) Para $\lambda = 0$:

$$\begin{cases} B=0 \\ B\pi+C=0 \end{cases} \Leftrightarrow \begin{cases} B=0 \\ C=0 \end{cases}$$

(iii) Para $\lambda < 0$:

$$\left\{ \begin{array}{l} \sqrt{-\lambda}C = 0 \\ B\cos\sqrt{-\lambda}\pi + C\sin\sqrt{-\lambda}\pi = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C = 0 \\ B = 0 \text{ ou } \sqrt{-\lambda}\pi = \frac{\pi}{2} + n\pi \end{array} \right.$$

donde obtemos os valores próprios $\lambda_n=-(n+\frac{1}{2})^2$ negativos, com $n=0,1,2,\cdots$, e as correspondentes funções próprias não nulas $X_n(x)=B\cos\left((n+\frac{1}{2})x\right)$.

As soluções não triviais da equação diferencial da forma X(x)T(t) que satisfazem as condições de fronteira são portanto as funções da forma

$$A\cos\left(\frac{2n+1}{2}x\right)e^{-(\frac{2n+1}{2})^2t-\frac{e^{-2t}}{2}}$$

com $A \in \mathbb{R}$ e $n = 0, 1, 2, \ldots$

Procuramos agora uma solução formal para a equação e condição inicial que seja uma "combinação linear infinita" das soluções obtidas acima:

$$u(x,t) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{2n+1}{2}x\right) e^{-\left(\frac{2n+1}{2}\right)^2 t - \frac{e^{-2t}}{2}}.$$

Substituindo esta expressão na condição inicial $u(x,0)=4\cos\left(\frac{7x}{2}\right)-2\cos\left(\frac{11x}{2}\right)$ obtemos

$$\sum_{n=0}^{\infty} a_n \cos\left(\frac{2n+1}{2}x\right) e^{-\frac{1}{2}} = 4\cos\left(\frac{7x}{2}\right) - 2\cos\left(\frac{11x}{2}\right)$$

pelo que se conclui imediatamente que a série se resume à soma de dois termos apenas, com n=3 e n=5 e com os correspondentes coeficientes a satisfazer as duas relações $a_3\,e^{-\frac{1}{2}}=4$ e $a_5\,e^{-\frac{1}{2}}=-2$, donde

$$a_3 = 4e^{\frac{1}{2}}$$
 e $a_5 = -2e^{\frac{1}{2}}$

e portanto a solução é

$$u(x,t) = 4\cos\left(\frac{7}{2}x\right)e^{-\frac{49}{4}t - \frac{e^{-2t}-1}{2}} - 2\cos\left(\frac{11}{2}x\right)e^{-\frac{121}{4}t - \frac{e^{-2t}-1}{2}}.$$

[1,5 val.] 3. Considere a matriz

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & -3 & 0 \\ 1 & 0 & 4 \end{bmatrix}.$$

Resolva o problema de valor inicial $\mathbf{y}' = A\mathbf{y}; \quad \mathbf{y}(2) = (-1, 1, 1).$

Solução: A matriz dada corresponde ao sistema

$$\begin{cases} y_1' = 2y_1 - y_3 \\ y_2' = -3y_2 \\ y_3' = y_1 + 4y_3 \end{cases}$$

onde se observa imediatamente que a equação para a componente y_2 se encontra totalmente desacoplada das duas outras componentes, e pode ser resolvida imediatamente. Assim

$$y_2(t) = Ce^{-3t},$$

e de forma a satisfazer a condição inicial $y_2(2)=1$ obtemos $C=e^6$, ou seja

$$y_2(t) = e^{-3(t-2)}.$$

Resta-nos um sistema 2×2 para as componentes y_1 e y_3 , acopladas, correspondente à matriz

$$B = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}.$$

para a qual começamos por determinar os valores próprios

$$\det(B - \lambda I) = 0 \Leftrightarrow (2 - \lambda)(4 - \lambda) + 1 = 0 \Leftrightarrow \lambda^2 - 6\lambda + 9 = 0 \Leftrightarrow (\lambda - 3)^2 = 0,$$

de onde concluímos que $\lambda=3$ com multiplicidade algébrica 2. Dado que a matriz não é diagonal, podemos até concluir desde já que a multiplicidade geométrica é 1 e que faltarão vectores próprios para construir uma base do espaço das soluções gerais do sistema homogéneo, para o qual será então genericamente preciso recorrer à forma canónica de Jordan.

Os vectores próprios são dados por

$$(B - \lambda I)\mathbf{v} = \mathbf{0} \Leftrightarrow \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow v_1 + v_2 = 0,$$

ou seja, são da forma

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad \text{com} \qquad \alpha \in \mathbb{R} \setminus \{0\},$$

confirmando que o espaço próprio tem dimensão 1, ou seja, que a multiplicidade geométrica é inferior à algébrica.

Poderiamos neste ponto fazer a observação, que simplificaria grandemente a resolução, de que procuramos uma solução (a única, pelo teorema de Picard-Lindelöf) de um problema de valor inicial específico, e que não queremos a solução geral do problema homogéneo. A condição inicial dada para y_1 e y_3 é (-1,1) ou seja, um vector próprio (com $\alpha=-1$). E visto que sabemos que $e^{\lambda t}\mathbf{v}$ é solução do sistema, com λ e \mathbf{v} , respectivamente, valor e vector próprio da matriz, podemos assim imediatamente concluir que

$$\begin{bmatrix} y_1(t) \\ y_3(t) \end{bmatrix} = e^{3(t-2)} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

é a solução que buscamos.

Caso não se observasse essa simplificação específica deste problema particular, poderíamos prosseguir com a resolução geral. Sabemos então que a matriz B é semelhante à forma canónica de Jordan

$$J = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix},$$

com uma matriz de mudança de base

$$S = \begin{bmatrix} 1 & w_1 \\ -1 & w_2 \end{bmatrix},$$

em que escolhemos o vector próprio $\mathbf{v}=(1,-1)$ como primeiro vector da nova base, e $\mathbf{w}=(w_1,w_2)$ o vector próprio generalizado, como segundo vector da base, o qual determinamos pelo sistema

$$(B - \lambda I)\mathbf{w} = \mathbf{v} \Leftrightarrow \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Leftrightarrow w_1 + w_2 = -1.$$

Fazendo, por exemplo, $w_1 = -1$ e $w_2 = 0$ obtemos

$$S = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}.$$

Assim, a exponencial da matriz B pode agora ser calculada por

$$e^{Bt} = Se^{Jt}S^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} e^{3t} & te^{3t} \\ 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} (1-t)e^{3t} & -te^{3t} \\ te^{3t} & (1+t)e^{3t} \end{bmatrix}.$$

As componentes y_1 e y_3 do PVI dado podem finalmente ser obtidas pela fórmula $e^{B(t-t_0)}\mathbf{y_0}$ ou seja

$$\begin{bmatrix} y_1(t) \\ y_3(t) \end{bmatrix} = \begin{bmatrix} (3-t)e^{3(t-2)} & -(t-2)e^{3(t-2)} \\ (t-2)e^{3(t-2)} & (-1+t)e^{3(t-2)} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -e^{3(t-2)} \\ e^{3(t-2)} \end{bmatrix}.$$

4. Determine a série de Fourier da função $f\colon [-4,4] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{se } -4 \le x < -2 \text{ ou } 2 \le x \le 4 \\ 0 & \text{se } -2 \le x < 2 \end{cases}$$

indicando a soma da série para cada $x \in \mathbb{R}$.

[1,0 val.]

Solução: A menos dos valores nos pontos x=2,-2, que têm medida nula e por isso não afectam os integrais, a função é par. Dá origem, por isso, a uma série de Fourier de cosenos. Fazendo L=4 a série é dada por

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{4},$$

em que os coeficientes são dados por

$$a_0 = \frac{1}{4} \int_{-4}^{4} f(x) dx = \frac{1}{2} \int_{0}^{4} f(x) dx = \frac{1}{2} \int_{2}^{4} 1 dx = 1,$$

e, para $n \ge 1$,

$$a_n = \frac{1}{4} \int_{-4}^4 f(x) \cos \frac{n\pi x}{4} dx = \frac{1}{2} \int_0^4 f(x) \cos \frac{n\pi x}{4} dx = \frac{1}{2} \int_2^4 \cos \frac{n\pi x}{4} dx$$
$$= \frac{2}{n\pi} \left(\sin \frac{n\pi 4}{4} - \sin \frac{n\pi 2}{4} \right) = -\frac{2}{n\pi} \sin \frac{n\pi}{2}.$$

Assim a série de Fourier da função dada é

$$\frac{1}{2} - \sum_{n=1}^{\infty} \frac{2}{n\pi} \operatorname{sen} \frac{n\pi}{2} \cos \frac{n\pi x}{4}.$$

Por fim, como f é seccionalmente C^1 , pelo teorema de convergência pontual de séries de Fourier, sabemos que converge para

$$\begin{cases} 1 & \text{se } 2 < |x| \le 4 \\ \frac{1}{2} & \text{se } x = 2, -2 \\ 0 & \text{se } -2 < x < 2 \end{cases}$$

e, nos restantes pontos $x \in \mathbb{R}$ para o prolongamento periódico, de período 2L = 8, desta função.

[1,5 val.] 5. Resolva o seguinte problema de valor inicial, determinando a sua solução <u>na forma explícita</u> e indicando o seu intervalo máximo de existência:

$$t\frac{dy}{dt} = y - 3\left(t + \frac{y^2}{t}\right) \qquad , \qquad y(1) = -1$$

Sugestão: Efectue a mudança de variável $v=\frac{y}{t}$.

Solução: Começamos por observar que a equação não está definida para t=0 e como a condição inicial é dada para $t_0=1$, consideramos o domínio da equação apenas para t>0. Poderíamos ser até um pouco mais precisos e observar que para t>0 e $y\in\mathbb{R}$ a equação está nas condições do Teorema de Picard-Lindelöf, pelo que temos a certeza de existência de solução única deste problema de valor inicial, num intervalo máximo de definição que será um subconjunto de $t\in]0,+\infty[$.

Seguindo a sugestão, temos que y(t)=tv(t) e portanto y'(t)=v(t)+tv'(t). A condição inicial y(1)=-1 traduz-se em v(1)=y(1)/1=-1. Podemos então reescrever a equação diferencial

como

$$t\frac{dy}{dt} = y - 3\left(t + \frac{y^2}{t}\right) \Leftrightarrow \frac{dy}{dt} = \frac{y}{t} - 3\left(1 + \left(\frac{y}{t}\right)^2\right) \Leftrightarrow v + t\frac{dv}{dt} = v - 3\left(1 + v^2\right),$$

ou seja

$$\frac{1}{1+v^2}\frac{dv}{dt} = -\frac{3}{t},$$

a qual é, portanto, uma equação separável. Agora, a primitiva de $\frac{1}{1+v^2}$ em ordem a v é $\arctan v$ pelo que podemos escrever o lado esquerdo da equação como a derivada da composta

$$\frac{d}{dt}(\arctan v(t)) = -\frac{3}{t}$$

e integrando os dois lados da equação entre $t_0=1$ e qualquer t>0 obtemos

$$\arctan v(t) - \arctan v(1) = \int_{t_0=1}^t -\frac{3}{s} ds \Leftrightarrow \arctan v(t) = \arctan v(1) - 3\log t + 3\log 1,$$

e substituindo v(1) = -1 e simplificando

$$\arctan v(t) = \arctan(-1) - \log t^3 \Leftrightarrow v(t) = \tan(-\pi/4 - \log t^3) = -\tan(\pi/4 + \log t^3),$$

a qual, revertendo de volta para y(t) = tv(t) dá a solução

$$y(t) = -t\tan(\pi/4 + \log t^3).$$

O seu intervalo máximo de definição é o intervalo de t>0, que inclui $t_0=1$ tal que

$$-\frac{\pi}{2} < \frac{\pi}{4} + \log t^3 < \frac{\pi}{2},$$

ou seja,

$$-\frac{\pi}{2} - \frac{\pi}{4} < \log t^3 < \frac{\pi}{2} - \frac{\pi}{4}$$
$$-\frac{3\pi}{4} < \log t^3 < \frac{\pi}{4}$$
$$e^{-\frac{3\pi}{4}} < t^3 < e^{\frac{\pi}{4}}$$
$$e^{-\frac{3\pi}{12}} < t < e^{\frac{\pi}{12}}.$$

Conclui-se assim que o intervalo máximo de definição da solução do problema de valor inicial dado é

$$t \in]e^{-\frac{3\pi}{12}}, e^{\frac{\pi}{12}}[.$$

[1,0 val.] 6. Considere o sistema de primeira ordem linear homogéneo

$$\mathbf{v}' = A(t)\mathbf{v},$$

com $A(t)=[a_{i,j}(t)]:I\subset\mathbb{R}\to M_{n\times n}$ uma função matricial contínua no intervalo $I\subset\mathbb{R}$, isto é, com entradas $a_{i,j}(t)$ contínuas para todos os $1\leq i,j\leq n$. Prove que qualquer solução $\mathbf{y}(t)$ está definida para todo o $t\in I$, ou seja, que soluções de sistema lineares homogéneos não explodem em tempo finito.

Sugestão: Defina a função $f(t) = \|\mathbf{y}(t)\|^2 = \sum_{i=1}^n (y_i(t))^2$ e prove que, exceptuando para a solução identicamente nula, se tem

$$\frac{1}{f(t)}\frac{df}{dt}(t) \le 2\sum_{i,j=1}^{n} |a_{i,j}(t)|,$$

usando depois esta desigualdade para chegar à conclusão.

Solução:

O sistema pode ser visto como uma equação vectorial $\mathbf{y}' = \mathbf{F}(t, \mathbf{y})$, com $\mathbf{F}: I \times \mathbb{R}^n \to \mathbb{R}^n$ dado por $\mathbf{F}(t, \mathbf{y}) = A(t)\mathbf{y}$. Estamos evidentemente nas condições do teorema de Picard-Lindelöf, porque as componentes da matriz A(t) são contínuas em I. Assim, \mathbf{F} é contínua em todos os pontos $(t, \mathbf{y}) \in I \times \mathbb{R}^n$ e localmente lipschitziana na variável \mathbf{y} já que as derivadas parciais de \mathbf{F} relativamente às componentes de \mathbf{y} são as entradas da matriz A(t) e por isso são contínuas em todo o domínio.

A solução nula deste sistema homogéneo $\mathbf{y}(t)=\mathbf{0}$, para todo o $t\in I$, é por isso única e consequentemente nenhuma das outras soluções do sistema se anula, qualquer que seja $t\in I$. Consideremos portanto, a partir de agora, uma solução genérica não nula $\mathbf{y}(t)\neq\mathbf{0}$ para todo o t no seu intervalo máximo de definição, contido em I. Queremos demonstrar que esse intervalo é I.

Fazendo o produto interno do sistema com a solução $\mathbf{y}(t)$ obtemos, para todo o t no intervalo máximo de definição de $\mathbf{y}(t)$,

$$\mathbf{y}(t) \cdot \mathbf{y}'(t) = \mathbf{y}(t) \cdot A(t)\mathbf{y}(t) \Leftrightarrow \frac{1}{2} \frac{d}{dt} (\mathbf{y}(t) \cdot \mathbf{y}(t)) = \mathbf{y}(t) \cdot A(t)\mathbf{y}(t) \Leftrightarrow \frac{d}{dt} (\|\mathbf{y}(t)\|^2) = 2\mathbf{y}(t) \cdot A(t)\mathbf{y}(t).$$

Agora, o lado direito $2\mathbf{y}(t) \cdot A(t)\mathbf{y}(t)$ pode ser estimado pela desigualdade

$$2\mathbf{y}(t) \cdot A(t)\mathbf{y}(t) = 2\sum_{i,j=1}^{n} a_{i,j}(t)y_i(t)y_j(t) \le 2\sum_{i,j=1}^{n} |a_{i,j}(t)y_i(t)y_j(t)| \le 2||\mathbf{y}(t)||^2 \sum_{i,j=1}^{n} |a_{i,j}(t)||$$

porque evidentemente cada componente de $\mathbf{y}(t)$ satisfaz $|y_i(t)| \leq ||\mathbf{y}(t)||$.

E, como estamos a considerar soluções que nunca se anulam no seu domínio, temos então

$$\frac{d}{dt}(\|\mathbf{y}(t)\|^2) = 2\mathbf{y}(t) \cdot A(t)\mathbf{y}(t) \Leftrightarrow$$

$$\Leftrightarrow \frac{d}{dt}(\|\mathbf{y}(t)\|^2) \le 2\|\mathbf{y}(t)\|^2 \sum_{i,j=1}^n |a_{i,j}(t)| \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{\|\mathbf{y}(t)\|^2} \frac{d}{dt}(\|\mathbf{y}(t)\|^2) \le 2 \sum_{i,j=1}^n |a_{i,j}(t)|.$$

Finalmente observamos que o lado esquerdo desta desigualdade pode ser escrito como $\frac{1}{\|\mathbf{y}(t)\|^2} \frac{d}{dt} (\|\mathbf{y}(t)\|^2) = \frac{d}{dt} \log(\|\mathbf{y}(t)\|^2)$, donde, integrando os dois lados da desigualdade entre

 t_0 e t, ambos em I, obtemos

$$\frac{d}{dt} \log(\|\mathbf{y}(t)\|^2) \le 2 \sum_{i,j=1}^n |a_{i,j}(t)|$$

$$\Rightarrow \log(\|\mathbf{y}(t)\|^2) - \log(\|\mathbf{y}(t_0)\|^2) \le \int_{t_0}^t 2 \sum_{i,j=1}^n |a_{i,j}(s)| ds$$

$$\Rightarrow \|\mathbf{y}(t)\|^2 \le \|\mathbf{y}(t_0)\|^2 e^{\int_{t_0}^t 2 \sum_{i,j=1}^n |a_{i,j}(s)| ds}.$$

Conclui-se assim, por esta última desigualdade, que $\mathbf{y}(t)$ não explode no interior do intervalo I porque a sua norma é majorada por uma função definida, e finita, para qualquer $t \in I$. E usando o corolário do teorema de Picard-Lindelöf relativamente ao prolongamento de soluções a intervalos máximos de definição, conluimos que o intervalo de definição de $\mathbf{y}(t)$ é todo o I.