

Title Page

Contents

Page 27 of 55

Go Back

Full Screen

Close

Quit

The 'KLT': Introduction

[1907-1966]

K. Karhunen [1915-1992] 1945

M. Loève [1907-1979] 1948

H. Hotelling [1895-1973]

1943 https://upload.wikimedia.org/wikipedia/commons/0/0f/Kosambi-dd.jpg

https://upload.wikimedia.org/wikipedia/commons/d/d0/Michel_Lo%C3%A8ve.jpg

https://upload.wikimedia.org/wikipedia/en/4/49/Harold_Hotelling.jpg

People call it names!

- Karhunen-Loeve Transform
- Hotelling Transform
- Principal Component Analysis
- Eigenvalue-Eigenvector Transform

Pattern Recognition Terms

- A 'pattern' is a $k \times 1$ column vector a 1-D signal can be represented as a 'pattern'. A $k_1 \times k_2$ 2-D signal (an image) can be represented as a 'pattern' by taking all pixels in raster scan order (row major order) to form a $k \times 1$ 'pattern', $k = k_1 \cdot k_2$.
- k-dimensional 'patterns' \mathbf{p}_i^* , $1 \leq i \leq n$
- Stack them up together (in any order) to form a $k \times n$ Pattern Matrix \mathbf{P}^*

Title Page

Contents

Page 29 of 55

Go Back

Full Screen

Close

Quit

- Normalise each pattern: $\mathbf{p}_i \stackrel{\triangle}{=} \mathbf{p}_i^*$ \mathbf{m}
- $\mathbf{A} \stackrel{\triangle}{=} \frac{1}{n} \mathbf{P} \mathbf{P}^T$: The Covariance Matrix
- Stack together EigenVectors \mathbf{u}_i of \mathbf{A} in decreasing order of the corresponding EigenValues to get the $k \times k$ matrix $\mathbf{U}_{\mathbf{I}}$

Linear Algebra Fundamentals

- Phys significance of Eigenvalues & Eigenvectors
- Similar Matrices
- Diagonalisation of a k × k matrix
- Gram-Schmidt Orthogonalisation
- Eigenvalues of a symmetric real matrix are real
- Eigenvecs of a symmetric matrix: orthonormality
 Phys Sig of E'values, E'vectors
- For a $k \times k$ matrix **B**, if $\mathbf{B}\mathbf{u_i} = \lambda_i \mathbf{u_i}$, λ_i are the eigenvalues, and $\mathbf{u_i}$, the corresponding eigenvectors
 - Phys sig: matrix × vector ≡ scaling it!
 - Computing eigenvalues: $\mathbf{B}\mathbf{u} \lambda\mathbf{u} = \mathbf{0} \Longrightarrow (\mathbf{B} \lambda\mathbf{I})\mathbf{u} = \mathbf{0} \Longrightarrow$ non-trival solution: $|\mathbf{B} \lambda\mathbf{I}| = \mathbf{0}$
 - E'vecs: not unique! scaled versions also e'vecs

Title Page

Contents

Page 31 of 55

Go Back

Full Screen

Close

Quit

Some Less Important Properties

- Rank(B) = # of non-zero eigenvals
- $\sum \lambda_i = \text{Trace}(\mathbf{B})$ (sum of main diag), $\prod \lambda_i = |\mathbf{B}|$
- A square matrix \mathbf{A} and \mathbf{A}^T have the same eigenvalues (but usually, different eigenvectors) $\|\mathbf{A}^T \lambda \mathbf{I}\| = \|\mathbf{A}^T \lambda \mathbf{I}^T\| = \|(\mathbf{A} \lambda \mathbf{I})^T\| = \|\mathbf{A} \lambda \mathbf{I}\|$
- The eigenvalues of a diagonal matrix are those! eigenvalues: $|\mathbf{B} \lambda \mathbf{I}| = 0$, $\Pi(b_{ii} \lambda_i) = 0$
- $\mathbf{B}_{k \times k}$ is invertible iff 0 isn't an eigenvalue. Teigenvalue 0 iff $|\mathbf{B} 0\mathbf{I}| = 0$ iff $|\mathbf{B}| = 0$ i.e., non-invertible
- If **B** has an eigenvalue-eigenvector pair (λ, \mathbf{u}) , then \mathbf{B}^n $(n \in \mathcal{N})$ has the pair (λ^n, \mathbf{u}) . $\mathbf{B}_{k \times k} \mathbf{u}_{k \times 1} = \lambda \mathbf{u}_{k \times 1}$, $\mathbf{B} \mathbf{B} \mathbf{u} = \lambda \mathbf{B} \mathbf{u}$, $\mathbf{B}^2 \mathbf{u} = \lambda^2 \mathbf{u}$, etc.
- If **B** has an eigenvalue-eigenvector pair (λ, \mathbf{u}) , then \mathbf{B}^{-1} has the pair $(\lambda^{-1}, \mathbf{u})$.

$$\mathbf{B}_{k\times k}\mathbf{u}_{k\times 1} = \lambda\mathbf{u}_{k\times 1}, \mathbf{B}^{-1}\mathbf{B}\mathbf{u} = \lambda\mathbf{B}^{-1}\mathbf{u}, (1/\lambda)\mathbf{u} = \mathbf{B}^{-1}\mathbf{u}$$

Title Page

Contents

Page 32 of 55

Go Back

Full Screen

Close

Quit

- Eigenvectors of a matrix with distinct eigenvalues are linearly independent: Can form a basis Proof by Contradiction: Suppose not. 'Thin out' this to l indep eigenvectors $\mathbf{u}_1, \dots \mathbf{u}_l \equiv \lambda_1, \dots \lambda_l$ Suppose \mathbf{u} was 'thinned out' $\mathbf{u} = \sum_{j=1}^{l} c_j \mathbf{u_j}$ (1) 1. Multiply (1) by \mathbf{B} : $\mathbf{B}\mathbf{u} = \sum c_j (\mathbf{B}\mathbf{u_j})$, $\mathbf{k}\mathbf{u} = \sum c_j \lambda_j \mathbf{u_j}$
 - 2. Multiply (1) by λ : $\mathbf{A}\mathbf{u} = \sum c_j(\mathbf{B}\mathbf{u}_j)$, $\mathbf{A}\mathbf{u} = \sum c_j\lambda_j\mathbf{u}_j$ Subtract: $\mathbf{0} = \sum c_j(\lambda - \lambda_j)\mathbf{u}_j$. Hence, $\forall j$: $c_j = 0$ (no!) or $\mathbf{u}_j = \mathbf{0}$ (no, as eigenvector is a nontrival solution) or $\lambda = \lambda_j$ (no!): \mathbf{C} ontradiction!
- Eigenvalues of a symmetric real matrix are real $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{A}^*\mathbf{u}^* = \lambda^*\mathbf{u}^*$, $\mathbf{A}^* = \mathbf{A}$: real Pre-multiply by \mathbf{u}^{*T} and \mathbf{u}^T , and subtract: $\mathbf{u}^{*T}\mathbf{A}\mathbf{u} \mathbf{u}^T\mathbf{A}\mathbf{u}^* = \lambda \mathbf{u}^{*T}\mathbf{u} \lambda^*\mathbf{u}^T\mathbf{u}^*$ LHS: Consider $(\mathbf{u}^{*T}\mathbf{A}\mathbf{u})^T$, scalar's transpose. $\mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{v} = \mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{u}^$