## Lecture 1: Why Econometrics?

Pierre Biscaye

Fall 2022

Acknowledgement: Lecture material in this course relies heavily on materials produced by Professor Jeremy Magruder.

## Econometrics applies statistical analysis to economic data

- We often want to examine relationships between two variables
  - Usually referred to as X and Y; for example, could look at relationships between:
  - Country: X=GDP/capita and Y=CO2 emissions
  - Individual: X=education years and Y=income
- In many cases want to develop *causal* interpretations
  - Does X=smoking cause an increased risk of Y=lung cancer?
  - Do X=school closures cause reductions in Y=women's employment?

## Econometrics helps evaluate policy and test theory

- In some cases, want to evaluate the impact of policy on outcomes
  - Do mask mandates reduce the spread of COVID-19?
  - Does providing treated mosquito nets lead to higher human capital attainment?
- In others, may want to test a theory or hypothesis
  - Do higher minimum wages increase unemployment?
  - Does maternity leave increase women's labor force participation?
  - Does (lack of) access to credit prevent poor farmers from achieving high yields?

## Why study Econometrics?

- Tools for understanding how to think critically about relationships between variables, particularly causal relationships
- Provides a broadly transferable lens to view the world
  - For example, will help you evaluate news reporting of scientific studies or government policies
- Economics wants to be a science: need the right tools to apply the scientific method

# Why is Econometrics different from statistics and data science in other fields?

- Focus on causal inference rather than prediction
- Economics often wants causal answers
  - E.g., what is the effect of mandating masks on COVID-19 infections?
  - But, state governments did not adopt mask mandates at random ⇒ how to identify the effect of mask mandates alone?
- Econometrics was built to ask: what can we say about the causal impact of policy when we only have observational data?
  - Occasionally we will have experimental data as in other sciences; causal inference is easy in this case
  - But a lot of the time, we will not. In this class, we'll cover some approaches to estimating causal effects outside of experimental settings.

## Example: GDP and CO2 emissions

- Good News: most countries are becoming richer over time
- Bad News: what does this mean for CO2 emissions and climate change?
- Policy need: how should carbon policy account for global economic growth?
- What do the data say?

### CO<sub>2</sub> emissions over time

#### Annual CO<sub>2</sub> emissions

Carbon dioxide (CO<sub>2</sub>) emissions from fossil fuels and industry. Land use change is not included.





## GDP and CO2 scatter plot

Per Capita Carbon Dioxide Emission, 2011

#### CO2 emissions (ton per capita)



Source: World Bank: World Development Indicators

#### Data

- We have Data
  - The data are a matrix of observations  $y_i, x_i$
  - $y_i$  is the dependent variable
  - $= x_i$  is the independent variable
  - Each row of data corresponds to a unit i
- In this case, i is a country,  $y_i$  is  $\frac{CO_{2i}}{Pop_i}$ ,  $x_i$  is  $\frac{GDP_i}{Pop_i}$

## How can we model this relationship?

Per Capita Carbon Dioxide Emission, 2011





Source: World Bank: World Development Indicators

# Why do we need a model?

■ To make sense of data, we need a statistical model

$$y_i = f(x_i) + \epsilon_i \tag{1}$$

$$\frac{CO_{2i}}{Pop_i} = f(\frac{GDP_i}{Pop_i}) + \epsilon_i \tag{2}$$

## The linear model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{3}$$

$$\frac{CO_{2i}}{Pop_i} = \beta_0 + \beta_1 \frac{GDP_i}{Pop_i} + \epsilon_i \tag{4}$$

- The linear model tells us that we think the relationship between CO<sub>2</sub> / Pop and GDP / Pop is linear
  - There is a constant amount of  $CO_2/Pop$  emitted by all countries  $(\beta_0)$
  - Each extra unit of GDP/Pop is associated with an additional  $\beta_1$  units of  $CO_2/Capita$
- We estimate the parameters of the linear model via a tool called linear regression or Ordinary Least Squares

## Linear regression, graphically



## Causality

- When can we draw *causal* interpretations?
  - What is the effect of an increase in GPD/capita on CO2/capita, holding all else constant?
- This class will teach you what conditions must hold for a modeled relationship to identify causal effects, as opposed to just a statistical association
- At the end of class you will be able to answer: Does X cause Y holding all else constant?
  - I reject that X causes Y holding all else constant with a certain level of confidence
  - I cannot reject that X causes Y holding all else constant with a certain level of confidence
- Preview: functional form and omitted variables

## Causality: Functional form

- What if the relationship between  $\frac{CO_{2i}}{Pop_i}$  and  $\frac{GDP_i}{Pop_i}$  is not linear?
- We can adjust the statistical model: for any  $f(\cdot)$ , we can specify

$$\frac{CO_{2i}}{Pop_i} = \beta_0 + \beta_1 f(\frac{GDP_i}{Pop_i}) + \epsilon_i$$
 (5)

■ What we need for causality: True model is linear in a function of x

## Causality: Omitted variables

- Suppose something else also matters for  $\frac{CO_2}{Pop}$
- What if we know about it?
- Suppose our dataset consists of  $\frac{CO_{2i}}{Pop_i}$ ,  $\frac{GDP_i}{Pop_i}$  but also some other variables  $x_{2i}$ ,  $x_{3i}$ , ...,  $x_{ki}$
- We can adjust the statistical model

$$\frac{CO_{2i}}{Pop_i} = \beta_0 + \beta_1 \frac{GDP_i}{Pop_i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + \epsilon_i$$
 (6)

■ But what if something else matters for  $\frac{CO_2}{Pop}$ , and we don't have data about it, or even know about it?

## Preview: Different type of data

#### Four main types of data:

- Cross-Sectional Data
  - Each observation is a different individual/firm/country/etc. in the same time period
- Repeated Cross-Section
  - Each Observation is a different individual/firm/country/etc., but data cover multiple time periods
- Panel Data
  - Multiple observations of the same individuals/firms/countries/etc. at different points in time
- Time Series (not covered in this course)
  - Multiple time periods of one individual/firm/country/etc.

We will use different techniques to analyze different types of data, which is why the textbook is organized by types of data