Escola Politècnica Superior Escuela Politécnica Superior

FUNDAMENTOS DE MATEMÁTICA APLICADA A LA IA II

Control Bloque 2:

Espacio Vectorial Euclídeo, Transformaciones y Diagonalización de Matrices Grado en Ingeniería en Inteligencia Artificial

Fecha: 21 de mayo de 2024 Departamento de Matemática Aplicada

Ejercicio 1. En un espacio vectorial real V, tenemos un producto escalar que, respecto a una base $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$, cumple que:

- **a)** $|\vec{v_1}| = \sqrt{2}$, $|\vec{v_2}| = \sqrt{3}$ y $|\vec{v_3}| = \sqrt{\lambda}$, $\lambda > 0$.
- **b)** El complemento ortogonal de $U \equiv \{x+y+z=0\}$ es $U^{\perp}=L\{\overrightarrow{v_1}\}$.
- c) La proyección ortogonal del vector $\vec{v_1} + \vec{v_2} + \vec{v_3}$ sobre $W = L\{\vec{v_2}\}$ es $\frac{3\lambda}{|\vec{v_3}|^2}\vec{v_2}$.

Determinar la matriz de Gram del producto escalar en la base B. ¿Qué valores posibles puede tomar λ ? Calcular λ para que la distancia entre los vectores $\vec{u} = (\vec{v_1} + \vec{v_2} + \vec{v_3})$ y $\vec{v} = (-\vec{v_1} + \vec{v_2} - \vec{v_3})$ sea $4\sqrt{5}$.

Ejercicio 2. Se considera una figura 3D formada por los siguientes vértices, unidos entre sí por segmentos: (0,0,0), (3,0,0), (0,2,0) y (0,0,2). Se desea una transformación $T: \mathbb{R}^3 \to \mathbb{R}^3$ que efectúe el siguiente proceso sobre la figura, respetando el orden:

- 1) Un giro en sentido antihorario de $\frac{\pi}{4}$ alrededor del eje z.
- 2) Un giro en sentido horario de $\frac{\pi}{3}$ alrededor del eje y.
- 3) Una dilatación de factor k.
- 4) Una proyección ortogonal respecto al plano XY.

Además, el punto (0,0,2) debe transformarse en el $\left(-\frac{3\sqrt{3}}{2},0,0\right)$. Hallar la transformación T.

Ejercicio 3. Averiguar si es diagonalizable la siguiente matriz:

$$A = \left(\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array}\right)$$

En caso afirmativo, hallar una matriz diagonal D y de paso P que verifican: AP = PD.

Importante:

- Resolver cada ejercicio en folios distintos.
- Poner nombre y apellidos en todos los folios.
- Todos los ejercicios tienen la misma puntuación $(10/3 = 3.\widehat{3} \text{ ptos})$.