MSBD 5004 Mathematical Methods for Data Analysis Homework 1

Due date: 27 February, 9pm, Wednesday

- 1. Find a norm other than $|\cdot|$ (the absolute value function) on \mathbb{R} as a vector space over \mathbb{R} .
- 2. Consider the vector space \mathbb{R}^n .
 - (a) Check that $\|\boldsymbol{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ is indeed a norm on \mathbb{R}^n .
 - (b) Prove the equivalence

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{1} \leq n\|\boldsymbol{x}\|_{\infty}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}.$$

- 3. Let $(V, \|\cdot\|)$ be a normed vector space.
 - (a) Prove that, for all $x, y \in V$,

$$|||x|| - ||y||| \le ||x - y||.$$

(b) Let $\{x_k\}_{k\in\mathbb{N}}$ be a convergent sequence in V with limit $x\in V$. Prove that

$$\lim_{k\to\infty}\|\boldsymbol{x}_k\|=\|\boldsymbol{x}\|.$$

(Hint: Use part (a).)

- 4. Suppose that the vectors x_1, \ldots, x_N in \mathbb{R}^n are clustered using the k-means algorithm, with group representatives z_1, \ldots, z_k .
 - (a) Suppose the original vectors x_i are nonnegative, i.e., their entries are nonnegative. Explain why the representatives z_j output by the k-means algorithm are also nonnegative.
 - (b) Suppose the original vectors x_i represent proportions, i.e., their entries are nonnegative and sum to one. (This is the case when x_i are word count histograms, for example.) Explain why the representatives z_j output by the k-means algorithm also represent proportions, i.e., their entries are nonnegative and sum to one.
 - (c) Suppose the original vectors x_i are Boolean, i.e., their entries are either 0 or 1. Give an interpretation of $(z_j)_i$, the *i*-th entry of the *j* group representative.