Análise de desempenho do particionamento do algoritmo QuickSort para os métodos de Hoare e Lomuto

Eugenio Souza Carvalho¹, Hugo Santos Piauilino Neto¹

¹Departamento de Computação Universidade Federal do Piauí (UFPI) Teresina – PI – Brazil

{hugos94,eugeniucarvalho}@gmail.com

Abstract.

Resumo. Este trabalho apresenta uma análise de desempenho do particionamento do algoritmo de ordenação QuickSort para os métodos propostos por Hoare e Lomuto [Cormen et al. 2009], além de apresentar um resumo geral sobre a história e funcionamento do algoritmo de ordenação.

1. Introdução

2. QuickSort

2.1. Dimensão de Desempenho

Para uso prático, facilidade de implementação pode ser sacrificado em prol de eficiência. Em uma base teórica, podemos determinar o número de comparações de elementos e trocas para comparar o desempenho. Além disso, o tempo de funcionamento real será influenciado por outros fatores, como desempenho de *caches* e escalonamento de *threads*.

Como será mostrado abaixo, os algoritmos possuem comportamento semelhante em permutações aleatórias, exceto pelo número de trocas. Aqui, o método de *Lomuto* necessita de três vezes a mais que o de *Hoare*.

2.2. Número de Comparações

Ambos os métodos podem ser implementados utilizando n-1 comparações para particionar um array de comprimento n. Isto é essencialmente ideal, uma vez que precisamos comparar cada elemento com o pivô para decidir onde colocá-lo.

2.3. Número de Trocas

O número de trocas é aleatório para ambos os algoritmos, dependendo dos elementos no *array*. Se assumirmos permutações aleatórias, ou seja, todos os elementos são distintos e cada permutação dos elementos é igualmente provável, podemos analisar o número esperado de trocas.

Como apenas a ordem relativa conta, assumimos que os elementos são os números 1, ..., n. Isso faz com que a discussão abaixo se torne mais fácil pois a posição de um elemento e seu valor coincidem.

2.4. Método de Lomuto

A variável índice j escaneia o array completo e sempre que encontra um elemento A[j] menor que o pivô x, a troca é realizada. Entre os elementos 1,...,n, exatamente x-1 são menores que x, então nós teremos x-1 trocas se o pivô for x.

A expectativa geral então resulta do cálculo da média de todos os pivôs. Cada valor em $\{1,...,n\}$ tem a mesma probabilidade de se tornar pivô (especificamente probabilidade de $\frac{1}{n}$), então temos

$$\frac{1}{n}\sum_{x=1}^{n}(x-1) = \frac{n}{2} - \frac{1}{2} \tag{1}$$

trocas, em média, para particionar um array de comprimento n com o método de Lomuto.

2.5. Método de Hoare

Para este método, a análise é um pouco mais complexa. Mesmo fixando o pivô x, o número de trocas permanece aleatório.

Mais precisamente: os índices i e j correm um em direção ao outro até que eles se cruzem, que sempre acontece em x (por correção do algoritmo de particionamento de Hoare). Isto divide eficazmente o array em duas partes: a parte esquerda que é verificada pela variável índice i e uma parte direita que é verificada pela variável índice j.

Agora, uma troca é feita para cada par de elementos "fora do lugar", isto é, um elemento grande (maior do que x, que pertence a partição direita) que atualmente está localizado na partição esquerda e um elemento pequeno localizado na partição direita. Note-se que este par formado trabalha sempre para fora, ou seja, o número de pequenos elementos inicialmente na partição direita é igual ao número de grandes elementos na partição esquerda.

Pode-se mostrar que o número destes pares é hiper geometricamente distribuído Hyp(n-1,n-x,x-1): para os n-x maiores elementos nós aleatoriamente traçamos suas posições no array e temos x-1 posições na partição esquerda . Por conseguinte, o número esperado de pares é (n-x)(x-1)/(n-1) dado que o pivô é x.

Finalmente, nós tiramos a média de todos os valores dos pivôs para obter o número total esperado de trocas para o método de particionamento de *Hoare*:

$$\frac{1}{n}\sum_{n=1}^{n}\frac{(n-x)(x-1)}{n-1}=\frac{n}{6}-\frac{1}{3}.$$
 (2)

Mais informações podem ser encontradas em [Wild 2013, Pág. 29].

2.6. Padrão de Acesso a Memória

Ambos os algoritmos usam dois ponteiros que escaneiam o *array* sequencialmente. Portanto, ambos possuem comportamento quase ideal.

2.7. Elementos iguais e Listas Ordenadas

A performance dos algoritmos diferem mais drasticamente para listas que não estão aleatoriamente permutadas.

Em um *array* já ordenado, o método de *Hoare* não realiza nenhuma troca, já que não existem pares mal posicionados, ao passo que o método de *Lomuto* realiza cerca de $\frac{n}{2}$ trocas.

A presença de elementos iguais requere cuidados especiais na utilização do algoritmo Quicksort. Considere um exemplo extremo onde um array é preenchido apenas com elementos 0. Para este array, o método de Hoare realiza um troca para cada par de elementos - configurando o pior caso para o particionamento de Hoare - mas i e j sempre encontram-se no meio do array. Assim, temos um particionamento ideal e o tempo total de execução permanece em $\mathcal{O}(n \log n)$.

O método de *Lomuto* possui comportamento pior para o *array* apenas com elementos 0: a comparação A[j] <= x sempre irá retornar verdadeira, então serão realizadas trocas para todos os elementos. Entretanto piora: após o loop, sempre teremos i=n, então observamos o pior caso de particionamento, fazendo com que a performance seja degradada para $\Theta(n^2)$.

3. Resultados

4. Conclusão

O método de *Lomuto* é simples e de fácil implementação, porém, não deve ser utilizado quando alto desempenho é exigido.

References

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition.

Wild, S. (2013). Java 7's dual pivot quicksort. Master's thesis, Technische Universität Kaiserslautern.