Formelsammlung:

Physik I+II für Naturwissenschaftler

Stand: 15. Mai 2024

1 Messen und Einheiten

- Physikalische Größe $X = \text{Zahl} \cdot [X]$

Einheit

- SI-Basiseinheiten (Mechanik) Zeit $[t] = 1 \,\mathrm{s}$ Länge $[x] = 1 \,\mathrm{m}$

Masse $[m] = 1 \,\mathrm{kg}$

2 Mechanik

2.1 Kinematik in 1D

bekannt	gesucht	Operation	
Bahn $x(t)$	Geschwindigkeit	differenzieren	$v(t) = \dot{x}(t) = \frac{\mathrm{d}x}{\mathrm{d}t}$
	Beschleunigung	differenzieren	$a(t) = \ddot{x}(t) = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$
Geschwindigkeit $v(t)$	Bahn	integrieren	$x(t) = \int_0^t v(t') dt' + x_0$
	Beschleunigung	differenzieren	$a(t) = \dot{v}(t)$
Beschleunigung $a(t)$	Geschwindigkeit	integrieren	$v(t) = \int_0^t a(t') dt' + v_0$
	Bahn	integrieren	$x(t) = \int_{0}^{t} v(t') dt' + x_0$

 x_0 : Anfangsort

 v_0 : Anfangsgeschwindigkeit

 \rightarrow vollständige Information über 1D-Bahn: $a(t), x_0, v_0$!

Beispiel: Bahn bei a = const. $x(t) = \frac{1}{2} a t^2 + v_0 t + x_0$

2.2 Kinematik in 2D

• Ortsvektoren (angeheftet an Koordinatenursprung!)
$$\vec{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

• Momentangeschwindigkeit (Tangente an Bahn)
$$\vec{v}\left(t\right) = \dot{\vec{x}}\left(t\right) = \left(\begin{array}{c} \dot{x}\left(t\right) \\ \dot{y}\left(t\right) \end{array}\right)$$

Bahngeschwindigkeit
$$v(t) = |\vec{v}| = \sqrt{\dot{x}^2 + \dot{y}^2}$$

• Beschleunigung
$$\vec{a}\left(t\right) = \ddot{\vec{x}}\left(t\right) = \dot{\vec{v}}\left(t\right) = \begin{pmatrix} \ddot{x}\left(t\right) \\ \ddot{y}\left(t\right) \end{pmatrix}$$

- Beispiel 1: Allgemeiner Wurf unter Abwurfwinkel φ mit Erdbeschleunigung $g=9.81\,\mathrm{m\,s^{-2}}$

Anfangsgeschwindigkeit
$$\vec{v}_0 = \begin{pmatrix} v_0 \cos(\varphi) \\ v_0 \sin(\varphi) \end{pmatrix}$$

Anfangsort
$$\vec{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Damit folgt für die Bahn
$$\vec{x}(t) = \begin{pmatrix} v_0 \cos \varphi \cdot t \\ v_0 \sin \varphi \cdot t - \frac{1}{2}gt^2 \end{pmatrix}$$

z.B. Wurfweite
$$x_{\rm A} = \frac{v_0^2}{q} \cdot \sin(2\varphi)$$

• Beispiel 2: Gleichförmige Kreisbewegung mit Umlaufzeit T und Radius R

Bahn
$$\vec{x}(t) = R \cdot \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \end{pmatrix}$$

Winkelgeschwindigkeit
$$\omega = \frac{2\pi}{T} = \text{const.}$$
 (gleichförmig!)

Bahngeschwindigkeit
$$v = |\vec{v}| = \omega \cdot R = \text{const.}$$

Zentripetalbeschleunigung
$$a = |\vec{a}| = \omega^2 \cdot R = \frac{v^2}{R}$$
 (Betrag)

2.3 Dynamik

- 2. Newtonsches Axiom: $m \ddot{\vec{x}}(t) = \sum_{i} \vec{F}_{i}$
 - Lineare Superposition aller am Massenpunkt m angreifenden Kräfte \vec{F}_i , $[F] = 1 \text{ N} = 1 \text{ kg m s}^{-2}$
 - Mit Anfangsort $\vec{x}(0)$ und Anfangsgeschwindigkeit $\dot{\vec{x}}(0)$ folgt damit die gesamte Bahn $\vec{x}(t)$ ("Programm der Mechanik")
- Reibungskräfte (Beträge)
 - proportional zur Normalkraft $F_{\rm n}$
 - Maximale Haftreibungskraft $F_{\rm RH} = \mu_{\rm H} \cdot F_{\rm n}$
 - Gleitreibungskraft $F_{\rm RG} = \mu_{\rm G} \cdot F_{\rm n} \qquad \qquad \mu_{\rm G} < \mu_{\rm H}$
- Gravitationskraft (Betrag) zwischen Massen m_1 und m_2 im Abstand r

$$F_G = G \cdot \frac{m_1 \, m_2}{r^2}$$

wirkt anziehend entlang Verbindung der Massenpunkte mit Gravitationskonstante

$$G = 6.67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$$

• Federkraft (Hooke'sches Gesetz) F(x) = -kx

x: Dehnung/Stauchung der Feder

k: Federkonstante

2.4 Arbeit und Energie

- Arbeit einer Kraft $\vec{F}(\vec{x})$ auf dem Weg von \vec{x}_1 nach \vec{x}_2

$$W(\vec{x}_1, \vec{x}_2) = \int_{\substack{\vec{x}_1 \\ x_2 \\ x_2}}^{\vec{x}_2} \vec{F}(\vec{x}) \, d\vec{x} , \qquad [W] = 1 \, \text{kg m}^2 \, \text{s}^{-2} = 1 \, \text{J}$$

Variante in 1D $W(x_1, x_2) = \int_{-\infty}^{x_2} F(x) dx$ (Fläche unter Kurve F(x))

• Satz von der kinetischen Energie:

Energiebilanz für einen Massenpunkt m

$$\frac{1}{2}m\vec{v_1}^2 + W(\vec{x_1}, \vec{x_2}) = \frac{1}{2}m\vec{v_2}^2$$

3

mit der kinetischen Energie $E_{\rm kin} = \frac{1}{2} m \vec{v}^2$

- Energieerhaltungssatz: Bei konservativen Kräften \vec{F} wird

$$W(\vec{x}_1, \vec{x}_2) = E_{\text{pot}}(\vec{x}_1) - E_{\text{pot}}(\vec{x}_2)$$

 $E_{\text{pot}}(\vec{x}_i)$: potentielle Energie am Punkt \vec{x}_i

Damit folgt der Energieerhaltungssatz

$$\frac{1}{2}m\vec{v}_1^2 + E_{\text{pot}}(\vec{x}_1) = \frac{1}{2}m\vec{v}_2^2 + E_{\text{pot}}(\vec{x}_2) = E_{\text{ges}} = \text{const.}$$

• Beispiele zur potentiellen Energie:

- Schwerefeld
- $E_{\rm pot}(z) = mgz$

vertikale Koordinate z:

Feder

 $E_{\rm pot}(x) = \frac{1}{2}kx^2$

Dehnung/Stauchung der Feder x:

Potentielle Energie im Gravitationsfeld der Masse M

$$E_{\text{pot}}(r) = -G\frac{mM}{r}$$
 r: Abstand von Masse M

Achtung: Referenzpunkt ist hier $r = \infty$

2.5 Impuls und Impulserhaltungssatz

• Impuls einer Masse m mit Geschwindigkeit \vec{v}

$$\vec{p}=m\vec{v}$$

• Wenn nur innere Kräfte (actio = reactio) zwischen den Massen m_i wirken, gilt der Impulserhaltungssatz

$$\sum_{i} \vec{p_i} = \sum_{i} m_i \vec{v_i} = \overrightarrow{\text{const.}}$$

Anwendung: Zentraler elastischer Stoß zwischen den Massen m_1 und m_2

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

$$v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$$

4

Anfangsgeschwindigkeit von Masse m_i mit Vorzeichen

Endgeschwindigkeit von Masse m_i mit Vorzeichen

2.6 Starrer Körper - Drehbewegungen

• Translation des Schwerpunkts \vec{x}_S

$$\vec{x}_S \equiv \frac{1}{m_{\rm ges}} \sum_i m_i \vec{x}_i$$

 $\vec{x_i}$: Positionen der Massenpunkte m_i

 $m_{\rm ges} = \sum_{i} m_{i}$: Gesamtmasse

Dann lautet die Bewegungsgleichung der Translation

$$m_{\mathrm{ges}} \, \ddot{\vec{x}}_S = \sum_i \vec{F}_i$$

 \vec{F}_i : äußere Kräfte

• Kinematische Grundgrößen der Rotation (um eine feste Drehachse)

- "Bahn" der Rotation = Winkel um Drehachse $\varphi(t)$

- Winkelgeschwindigkeit $\omega(t) = \dot{\varphi}(t)$
- Winkelbeschleunigung $\alpha(t) = \ddot{\varphi}(t)$
- Drehmoment (skalare Formulierung)

$$M = rF\sin\Theta$$

F: angreifende Kraft unter Winkel Θ im Abstand r zur Drehachse ("Ursache" der Rotation)

• Bewegungsgleichung der Rotation

$$I_D \ddot{\varphi} = \sum_i M_i$$

 $I_D = \sum_i m_i r_i^2$: Trägheitsmoment der Massen m_i im Abstand r_i zur Drehachse D

 M_i : angreifende Drehmomente

• Satz von Steiner zu Trägheitsmomenten

$$I_D = I_S + m_{\rm ges}d^2$$

 I_S : Trägheitsmoment um Schwerpunktsachse S

 I_D : Trägheitsmoment um Achse D parallel zu S im Abstand d

- Drehimpuls um eine Achse D mit zugehörigem Trägheitsmoment I_D

$$L \equiv I_D \, \dot{\varphi} = I_D \, \omega$$

5

Damit wird die Bewegungsgleichung der Rotation

$$\dot{L} = \sum_{i} M_{i}$$

Wenn keine äußeren Drehmomente am starren Körper angreifen, gilt **Drehimpulserhaltung**

$$L = I_D \omega = \text{const.}$$

• Kinetische Energie der Rotation ("Rotationsenergie") um eine Achse

$$E_{\rm rot} = \frac{1}{2} I_D \,\omega^2$$

Anwendung: Rollen eines Rades (auch Zylinder oder Kugel) mit Radius R und der Masse $m_{\rm ges}$ im Schwerefeld

$$E_{\rm ges} = \frac{1}{2} m_{\rm ges} \, v_S^2 + \frac{1}{2} I_S \omega^2 + m_{\rm ges} \, gh = {\rm const.} \label{eq:eges}$$

Schwerpunktsgeschwindigkeit

 $v_S = \omega R$ (Rollbedingung)

• Gegenüberstellung von Translation und Rotation

Translation (1D)		Rotation		
Masse	m	Trägheitsmoment	I_D	
Geschwindigkeit	v	Winkelgeschwindigkeit	ω	
Kraft	F	Drehmoment	M	
Impuls	p = mv	Drehimpuls	$L = I_D \omega$	
Bewegungsgleichung	$\dot{p} = F$	Bewegungsgleichung	$\dot{L} = M$	
Kinetische Energie	$E_{\rm kin} = \frac{1}{2}mv^2$	Rotationsenergie	$E_{\rm rot} = \frac{1}{2} I_D \omega^2$	

2.7 Schwingungen

- Freie, ungedämpfte Schwingungen: harmonischer Oszillator
 - Wichtig: linear rückstellende Kraft (z.B. Feder)

$$F = -kx$$

6

- Bewegungsgleichung (2. Newton'sches Axiom) für Masse m

$$\ddot{x} + \omega_0^2 x = 0$$

ergibt Schwingung (Bahn der Masse m)

$$x(t) = A \cdot \cos(\omega_0 t)$$

mit Amplitude A und Eigenfrequenz (Kreisfrequenz!)

$$\omega_0 \equiv \sqrt{\frac{k}{m}}$$

- Periodendauer der Schwingung $T \equiv 2\pi/\omega_0$
- zugehörige Frequenz

$$f = \frac{1}{T} = \frac{\omega_0}{2\pi}$$

- Mathematisches Pendel (Massenpunkt) der Länge l

$$\ddot{\varphi} + \omega_0^2 \varphi = 0$$

- Eigenfrequenz $\omega_0 = \sqrt{g/l}$
- Physikalisches Pendel (starrer Körper, Masse m) mit Trägheitsmoment I_D um Drehachse im Abstand d vom Schwerpunkt

$$\ddot{\varphi} + \omega_0^2 \varphi = 0$$

– Eigenfrequenz
$$\omega_0 = \sqrt{\frac{mgd}{I_D}} = \sqrt{\frac{mgd}{I_S + md^2}}$$

- Freie, gedämpfte Schwingung
 - Wichtig: lineare, rückstellende Kraft F=-kx und Reibungskraft $F_{\rm R}\sim \dot{x}$
 - Bewegungsgleichung für Masse m

$$\ddot{x} + 2\kappa\dot{x} + \omega_0^2 x = 0$$

- Exponentiell abklingende Schwingung

$$x(t) = A e^{-\kappa t} \cos(\omega t)$$

mit Dämpfungskonstante κ und Kreisfrequenz $\omega = \sqrt{\omega_0^2 - \kappa^2} < \omega_0$

- Angetriebener Oszillator Resonanz
 - Äußere antreibende Kraft $F \sim \cos(\Omega t)$

 $-\,$ Bewegungsgleichung für Massem

$$\ddot{x} + 2\kappa \dot{x} + \omega_0^2 x = \text{const.} \cdot \cos(\Omega t)$$

wird gelöst von

$$x(t) = A(\Omega)\cos\left[\Omega t - \psi(\Omega)\right]$$

- Amplitude

$$A(\Omega) \equiv \frac{\text{const.}}{\sqrt{\left(\Omega^2 - \omega_0^2\right)^2 + 4\kappa^2\Omega^2}}$$

mit Resonanzfrequenz (Maximum)

$$\Omega_{res} \equiv \sqrt{\omega_0^2 - 2\kappa^2}$$

- Phasenverschiebung (Oszillator "hinkt hinterher")

$$\psi(\Omega) \equiv \arctan \frac{2\kappa\Omega}{\omega_0^2 - \Omega^2}$$

(a) Amplitude $A(\Omega)$ zeigt Resonanz

(b) Phasenverschiebung $\psi(\Omega)$

2.8 Mechanik fluider Medien (inkompressibel)

• Grundgrößen

- Druck

$$p = \frac{F_{\perp}}{A}$$

ausgeübt von der senkrechten Komponente F_{\perp} einer Kraft \vec{F} auf eine Fläche Amit den Einheiten

$$[p] = 1 \,\mathrm{N}\,\mathrm{m}^{-2} = 1 \,\mathrm{Pa(Pascal)} = 10^{-5} \,\mathrm{bar}$$

- Dichte

$$\rho = \frac{m}{V}$$

eines Körpers mit der Masse m und dem Volumen V mit der Einheit

$$[\rho] = 1\,\mathrm{kg}\,\mathrm{m}^{-3}$$

• Hydrostatischer Druck

$$p = p_0 + \rho gz$$

in der Tiefe z bei äußerem Druck p_0

• Kontinuitätsgleichung (Erhaltungsgesetz)

$$Av = \text{const.}$$

bei laminarer, stationärer Strömung mit Geschwindigkeit v durch Querschnittsfläche A

• Bernoulli-Gleichung

$$p + \frac{1}{2}\rho v^2 = \text{const.}$$

bei Geschwindigkeit v und statischem Druck p

Oberflächenspannung

$$\sigma \equiv \frac{\Delta W}{\Delta A}$$

bei Vergrößerung ΔA einer Oberfläche und dazu notwendiger Arbeit ΔW . Einfache Messmethode über eine Kraft F zum Heben der Fluidlamelle mit Länge l ergibt

$$\sigma = \frac{F}{2l}$$

Anwendung: Kapillare Steighöhe

$$h = \frac{2\sigma}{\rho gr}$$

in einem Rohr mit Radius r (totale Benetzung)

3 Elektrizität und Magnetismus

3.1 Ladung und Ladungserhaltung

• Ladung $q = n(\pm e)$ mit Elementarladung

$$e = 1.6 \cdot 10^{-19} \,\mathrm{C} = 1.6 \cdot 10^{-19} \,\mathrm{As}$$

3.2 Coulomb-Gesetz

• Kraft auf die Ladung q_1 bei \vec{x}_1 durch die Ladung q_2 bei \vec{x}_2 (Fernwirkungsprinzip)

$$\vec{F}_{12} = \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{\vec{x}_1 - \vec{x}_2}{|\vec{x}_1 - \vec{x}_2|^3}$$

mit Permittivität des Vakuums (el. Feldkonstante)

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \, \frac{\mathrm{C}^2}{\mathrm{Nm}^2}$$

• Gesamtkraft auf q_1 ausgeübt durch viele Ladungen q_2, q_3, \ldots

$$\vec{F}_1 = \vec{F}_{12} + \vec{F}_{13} + \dots$$
 (lineare Superposition)

• Elektrisches Feld \vec{E} (Nahwirkungsprinzip) der Ladungen $q_1, q_2 \dots q_N$ (Feldladungen) wirkend auf q (Probeladung) bei \vec{x}

$$\vec{E}(\vec{x}) = \frac{\vec{F}}{q} = \sum_{i=1}^{N} \frac{q_i}{4\pi\varepsilon_0} \frac{\vec{x} - \vec{x}_i}{|\vec{x} - \vec{x}_i|^3}$$

- Feldlinien:
 - Dichte = Maß für $E = |\vec{E}|$
 - Tangenten = Richtung von \vec{E} (von + nach -)
 - Feldlinien stehen senkrecht auf Leitern und verschwinden darin
- Elektrischer Dipol: Ladungen $\pm q$ im Abstand l
 - Dipolmoment p = ql
 - Fernfeld (Betrag) im Abstand $r \gg l$

$$E = \frac{1}{4\pi\varepsilon_0} \, \frac{p}{r^3}$$

3.3 Elektrisches Potential

• Potential einer Punktladung Q (Quelle) bei \vec{x}_1

$$\phi(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{|\vec{x} - \vec{x}_1|}$$

- Einheit $[\phi] = 1 \text{ J/C} = 1 \text{ V (Volt)}$
- Potential von N Punktladungen Q_i bei \vec{x}_i (Superposition)

$$\phi(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{N} \frac{Q_i}{|\vec{x} - \vec{x_i}|}$$

• Energieerhaltungssatz für eine Ladung q im Potential ϕ an zwei Punkten \vec{x}_1 und \vec{x}_2 :

$$E_{\text{ges}} = E_{\text{kin},1} + q \phi(\vec{x}_1)$$

= $E_{\text{kin},2} + q \phi(\vec{x}_2) = \text{const.}$

• Energien werden jetzt oft in <u>Elektronenvolt</u> angegeben:

$$1 \, \text{eV} = \text{e} \cdot 1 \, \text{V}$$

= $1, 6 \cdot 10^{-19} \, \text{C} \cdot 1 \, \text{V}$
= $1, 6 \cdot 10^{-19} \, \text{J}$

• Elektrische Spannung zwischen den Punkten \vec{x}_1 und \vec{x}_2 :

$$U = \phi(\vec{x}_2) - \phi(\vec{x}_1)$$

• Elektrisches Feld \vec{E} und Potential $\phi = \phi(x, y, z)$

$$\vec{E} = - \begin{pmatrix} \partial \phi / \partial x \\ \partial \phi / \partial y \\ \partial \phi / \partial z \end{pmatrix} = -\operatorname{grad} \phi$$

 \Rightarrow Feldlinien stehen senkrecht auf Äquipotentialflächen $\phi = \text{const.}$

3.4 Kapazitäten - Kondensatoren

- Kondensator speichert Ladung Q auf Elektroden mit Potentialdifferenz U
 - Kapazität ("Fassungsvermögen" für Ladung)

$$C = \frac{Q}{U}$$

- Einheit $[C] = 1 \,\mathrm{C/V} = 1 \,\mathrm{F}$ (Farad)
- \bullet Beispiel: Kondensator aus Platten der Fläche A im Abstand d hat Kapazität

$$C = \varepsilon_0 \varepsilon_r \, \frac{A}{d}$$

 ε_r : relative Dielektrizitätszahl (Vakuum: $\varepsilon_r = 1$)

- Zusammenschalten von Kondensatoren (Zweipole)
 - Serienschaltung

$$\frac{1}{C_{\mathrm{ges}}} = \frac{1}{C_1} + \frac{1}{C_2}$$

- Parallelschaltung

$$C_{\text{ges}} = C_1 + C_2$$

• Elektrische Energie im Kondensator

$$W_{\rm e} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C U^2 = \frac{1}{2} Q U$$

3.5 Bewegte Ladungen - Ströme

• Elektrischer Strom

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

- Einheit [I] = 1 C/s = 1 A (Ampère)
- Ohm'sches Gesetz $(I \sim U)$

$$I = \frac{1}{R}U$$

- Ohm'scher Widerstand R
- Einheit $[R] = 1 \text{ V/A} = 1 \Omega \text{ (Ohm)}$

• Elektrische Leistung

$$P = \frac{dW}{dt} = UI$$

- Kirchhoff'sche Regeln
 - Knotenregel

$$\sum_{k} I_{k}^{\text{in}} = \sum_{k} I_{k}^{\text{out}}$$

- Maschenregel

$$\sum_{k} U_{k} = 0$$

• Anwendung der Kirchhoff'schen Regeln

- 1. Identifiziere alle Knoten und wähle die Richtungen (beliebig) der Ströme I_k .
- 2. Bilanziere die Ströme für jeden Knoten. Für den oben gewählten Knoten bedeutet dies:

$$\underbrace{I_1}_{\text{in}} = \underbrace{I_2 + I_3}_{\text{out}}$$
.

- 3. Wähle genügend Maschen (jedes Bauteil muss mindestens in einer Masche vorkommen) und einen Umlaufsinn (beliebig) für jede Masche.
- 4. Bilanziere die Potential differenzen U_k im Umlaufsinn. Im obigen Beispiel wäre die Maschen regel:

$$\sum_{k} U_k = U_a - U_b + I_3 R_B - I_2 R_A = 0.$$

Ergebnis: Aus Knoten- und Maschenregel folgen mindestens n Gleichungen für n Unbekannte.

- Beispiel: RC-Kreis (Ladevorgang)
 - Maschenregel:

$$R \frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{Q}{C} = U_0$$
 (DGL 1. Ordnung)

Lösung:

$$Q(t) = U_0 C \left(1 - e^{-t/RC} \right)$$
$$I(t) = \dot{Q}(t) = \frac{U_0}{R} e^{-t/RC}$$

mit typischer Zeitkonstante $\tau = RC$ (Ladezeit).

- Zusammenschalten von Widerständen (Zweipole)
 - Serienschaltung

$$R_{\rm ges} = R_1 + R_2$$

- Parallelschaltung

$$\frac{1}{R_{\rm ges}} = \frac{1}{R_1} + \frac{1}{R_2}$$

