

Natural Language Processing IN2361

Prof. Dr. Georg Groh

Chapter 22 Time and Temporal Reasoning

- content is based on [1]
- certain elements (e.g. equations or tables) were taken over or taken over in a modified form from [1]
- citations of [1] or from [1] are omitted for legibility
- errors are fully in the responsibility of Georg Groh
- BIG thanks to Dan and James for a great book!

Representations of Time

Temporal logic: events ←→ points or intervals

```
I arrived in New York.
I am arriving in New York.
I will arrive in New York.

\exists e, i, n \text{ Arriving}(e) \land Arriver(e, Speaker) \land Destination(e, NewYork)
\exists e, i, n \text{ Arriving}(e) \land Arriver(e, Speaker) \land Destination(e, NewYork)
\land IntervalOf(e, i) \land EndPoint(i, n) \land Precedes(n, Now)
\exists e, i, n \text{ Arriving}(e) \land Arriver(e, Speaker) \land Destination(e, NewYork)
\land IntervalOf(e, i) \land MemberOf(i, Now)
\exists e, i, n \text{ Arriving}(e) \land Arriver(e, Speaker) \land Destination(e, NewYork)
\land IntervalOf(e, i) \land MemberOf(i, Now)
\land IntervalOf(e, i) \land EndPoint(i, n) \land Precedes(Now, n)
```

Representations of Time

Allen interval algebra

Representations of Time

Allen interval algebra

precedes	meets	overlaps	finished by	contains	starts	equals	started by	during	finishes	overlap- ped by	met by	preceded by
a b	a b	a b	a b	a b	a b	a b	a	ab	a	a	b	b
р	m	0	F	D	s	е	S	d	f	0	М	Р

Table 1. Allen's thirteen basic relations

	р	m	0	F	D	s	e	S	d	f	0	M	P
p	(p)	(p)	(p)	(p)	(p)	(p)	(p)	(p)	(pmosd)	(pmosd)	(pmosd)	(pmosd)	full
m	(p)	(p)	(p)	(p)	(p)	(m)	(m)	(m)	(osd)	(osd)	(osd)	(Fef)	(DSOMP)
0	(p)	(p)	(pmo)	(pmo)	(pmoFD)	(0)	(0)	(oFD)	(osd)	(osd)	concur	(DSO)	(DSOMP)
F	(p)	(m)	(0)	(F)	(D)	(0)	(F)	(D)	(osd)	(Fef)	(DSO)	(DSO)	(DSOMP)
D	(pmoFD)	(oFD)	(oFD)	(D)	(D)	(oFD)	(D)	(D)	concur	(DSO)	(DSO)	(DSO)	(DSOMP)
s	(p)	(p)	(pmo)	(pmo)	(pmoFD)	(s)	(s)	(seS)	(d)	(d)	(dfO)	(M)	(P)
e	(p)	(m)	(0)	(F)	(D)	(s)	(e)	(S)	(d)	(f)	(O)	(M)	(P)
S	(pmoFD)	(oFD)	(oFD)	(D)	(D)	(seS)	(S)	(S)	(dfO)	(O)	(O)	(M)	(P)
d	(p)	(p)	(pmosd)	(pmosd)	full	(d)	(d)	(dfOMP)	(d)	(d)	(dfOMP)	(P)	(P)
f	(p)	(m)	(osd)	(Fef)	(DSOMP)	(d)	(f)	(OMP)	(d)	(f)	(OMP)	(P)	(P)
0	(pmoFD)	(oFD)	concur	(DSO)	(DSOMP)	(dfO)	(O)	(OMP)	(dfO)	(O)	(OMP)	(P)	(P)
M	(pmoFD)	(seS)	(dfO)	(M)	(P)	(dfO)	(M)	(P)	(dfO)	(M)	(P)	(P)	(P)
P	full	(dfOMP)	(dfOMP)	(P)	(P)	(dfOMP)	(P)	(P)	(dfOMP)	(P)	(P)	(P)	(P)

Table 4a. Composition of basic interval relations

Relation	n	Converse		
precedes	(p)	(P)	preceded by	
meets	(m)	(M)	met by	
overlaps	(0)	(0)	overlapped by	
finished by	(F)	(f)	finishes	
contains	(D)	(d)	during	
starts	(s)	(S)	started by	
	equ	als (e	9)	

Table 2. Converses of Allen's basic temporal relations

а	(pmMP)	b		
	р	a b	E)		
"John was	m	a b	"I touched the light switch"		
in the room"	М	b			
	Р	b			
b	(mo)		с		
"I touched the	m	b c	"The light		
light switch"	0	b	was on"		

Table 3. Example "Turn on the light"

Language ←?→ Representations of Time

Ok, we fly from San Francisco to Boston at 10.

Flight 1390 will be at the gate an hour now.

refers to future event refers to past event

Flight 1902 arrived late.
Flight 1902 had arrived late.

both in past but second has important event(s) between then and now

solution: Reichenbach's reference point approach:

When Mary's flight departed, I ate lunch.
When Mary's flight departed, I had eaten lunch.

Reichenbach's Reference Point Approach

Figure 15.5 Reichenbach's approach applied to various English tenses. In these diagrams, time flows from left to right, **E** denotes the time of the event, **R** denotes the reference time, and **U** denotes the time of the utterance.

Aspect

- Events (involve change) vs states (do not involve change)
- Stative expressions: event participant is in a state at point in time I like Flight 840.

I need the cheapest fare.

I want to go first class.

Activity expressions: event participant does activity (event) over interval in time
 She drove a Mazda.

I live in Brooklyn.

Accomplishment expressions: interval has definitive end-point, results in state change
 He booked me a reservation.

United flew me to New York.

Achievement expressions: point in time, results in state change
 She found her gate.

I reached New York.

Time Bank Corpus

• Time ML:

- EVENT (events and states),
- TIME (time points),
- TLINKS (Allen relations between time points),
- ALINKS (aspectual relationships btw. Events and subevents),
- SLINKS (facts)

```
<TIMEX3 tid="t57" type="DATE" value="1989-10-26" functionInDocument="CREATION_TIME"> 10/26/89 </TIMEX3>
```

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT> 33% to a record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57"> the fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE"> bucking</EVENT> the industry trend toward <EVENT eid="e4" class="OCCURRENCE"> declining</EVENT> profits.

Time Bank Corpus

• Time ML:

- EVENT (events and states),
- TIME (time points),
- TLINKS (Allen relations between time points),
- ALINKS (aspectual relationships btw. Events and subevents),
- SLINKS (facts)

(22.25) [DCT:11/02/891]₁: Pacific First Financial Corp. said₂ shareholders approved₃ its acquisition₄ by Royal Trustco Ltd. of Toronto for \$27 a share, or \$212 million. The thrift holding company said₅ it expects₆ to obtain₇ regulatory approval₈ and complete₉ the transaction₁₀ by year-end₁₁.

Figure 22.4 A graph of the text in Eq. 22.25, adapted from (Ocal et al., 2022). TLINKS are shown in blue, <u>ALINKS in red</u>, and <u>SLINKS in green</u>.

Extracting Temporal Expressions

Steps:

, 820 sequence fag

, usually not simple

- 1. Extracting temporal expressions
- 2. **Normalizing** these expressions, by converting them to a standard format.
- 3. **Linking** events to times and extracting time graphs and timelines

Extracting Temporal Expressions

Absolute points in time, durations, and relations between them

Absolute	Relative	Durations
April 24, 1916	yesterday	four hours
The summer of '77	next semester	three weeks
10:15 AM	two weeks from yesterday	six days
The 3rd quarter of 2006	last quarter	the last three quarters

Temporal expressions: grammatical constructions with temporal triggers as heads.

Lexical triggers: nouns, proper nouns, adjectives, or adverbs; temporal expressions: noun phrases, adjective phrases, and adverbial phrases

Category	Examples
Noun	morning, noon, night, winter, dusk, dawn
Proper Noun	January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective	recent, past, annual, former
Adverb	hourly, daily, monthly, yearly

Extracting Temporal Expressions

supervised sequence labelling with any ML seq. classifier using IOB:

A fare increase initiated last week by UAL Corp's...
OOOOOBIIOOOO

features that may be used:

Feature	Explanation
Token	The target token to be labeled
Tokens in window	Bag of tokens in the window around a target
Shape	Character shape features
POS	Parts of speech of target and window words
Chunk tags	Base-phrase chunk tag for target and words in a window
Lexical triggers	Presence in a list of temporal terms

challenge: false positives:

1984 tells the story of Winston Smith...
...U2's classic Sunday Bloody Sunday

Temporal Normalization

→ map to ISO8601 standard

further examples:

Unit	Pattern	Sample Value		
Fully specified dates	YYYY-MM-DD	1991-09-28		
Weeks	YYYY-Wnn	2007-W27		
Weekends	PnWE	P1WE		
24-hour clock times	HH:MM:SS	11:13:45		
Dates and times	YYYY-MM-DDTHH:MM:SS	1991-09-28T11:00:00		
Financial quarters	Qn	1999-Q3		

Temporal Normalization

Most approaches for temporal normalizations: rule systems

```
"... 3 years old ..." matched by
```

```
pattern: /(\d+)[-\s](\TEUnits)(s)?([-\s]old)?/result: Duration(\$1, \$2)
```

```
\d : digit
\s: any whitespace
() mark match group;
$1, $2,... refer to value of first, second,... match group
```

 document or communication act has a logical temporal anchor (e.g. time of creation, time of publication, today, now, etc.)

Temporal Normalization

- → logical temporal arithmetic:
 - tomorrow = anchor of today + 1d, yesterday = anchor of today 1d
 - o anchor: 2007W26 \rightarrow 50 weeks later = week (((26 + 50) mod 53) + 1) of 2008

- but: complexity of absolute referencing may be high:
 - o ...was matched by competitors <u>over the weekend.</u>. → <u>"last</u> weekend" (relative to anchor)
 - - for both cases: indicator: tense of verb
 - o ...next Friday...: "immediate next Friday" or "Friday next week"? →
 heuristic: the closer today's anchor is to "immediate next Friday" the
 more probable is "Friday next week"

Temporal Ordering of Events

- absolute positioning of events in anchored timeline or partial ordering of events (after, before etc.) (useful in e.g. question answering)
- example for partial ordering: determining that fare increase by American Airlines came after fare increase by United
- partial ordering: binary relation detection and classification task; target relations: <u>Allen temporal</u> logic relations

Bibliography

- (1) Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft, version Jan, 2023); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL, Oct 2023) (this slideset is especially based on chapter 22)
- (2) Russel, Norvig: Artifical Intelligence, 3rd edition
- (3) University of California, Irvine, lecture slides https://ics.uci.edu/~alspaugh/cls/shr/allen.html (URL, Jan 2024)

Recommendations for Studying

minimal approach:

work with the slides and understand their contents! Think beyond instead of merely memorizing the contents

standard approach:

minimal approach + read the corresponding pages in Jurafsky [1]

interested students

standard approach + do a selection of the exercises in Jurafsky [1]