College of Industrial Technology King Mongkut's University of Technology North Bangkok

Seat	No.	

Subject	amination of Semester 1 392151 Chemistry I	Year: 2019 Section: 15-18
Date:	10 October 2019	Time: 10.00-12.00
Name: _	ID:	Class:
	ns: The test is designed to measure you arts. There will be 9 pages (including th	
• /	Answer the questions on this test paper.	
• [Books, documents and lecture notes are n	ot allowed.
•	ou must be in the room for one hour after	er the exam is started and, while taking the
6	exam, you cannot go out except in an em	ergency case.
• [Before leaving, make sure you do not bank	this test outside.
• [o not use any electronic communication	device.
• (Calculators are NOT allowed in the examin	nation.

Cheating in the exam is considered an extremely serious offence which will result in expulsion from the University.

18 2 2 4 0026 4 0026	ا 10	Ne	20,180	18 18	A	39.948	ncitativi	3	ż	83 80	Xencn X	×	.31.29	racon 86	R	[222]	ununosticm 118	Ono	[294]
1	flucrine 9	щ	18.398	17	ਹ	35.453	brom re	3 (Ŗ	19.304	odine 53	_	126.90	sstatine 85	At	[210]	117	Nus	294
4	охуден 8	0	15.999	16 16	S	32.085	munas 24	ş (Se	78.96	151 tell.rum 52	e	127.30	100 cm cm	Ро	[503]	116	Unh	[292]
* 5	niroger 7	Z	14,007	15	۵	33,574	31Sen c	3 .	As	74.522	entimony 51	Sb	121.73	83	B	208.98	ununpertium 115	Uup	[288]
4	carbon	ပ	12.011	14	S	28 086	Indinanting	۶ (ge	72.51	₽ 0S	Sn	11871	82 83	Pb	207.2	114	Dnd	2,88
	5	ш	10.811	13	A	26.982	gallum.	· (Ga	66.723	MUDII.	므	114.82	malling 84	F	204.36	unurthium 113	Uut	284
Elements						12	zine	ا أ	Zu	65.39	cacmium 48	ප	.1241	mercury 80	무	200.59	urunoum 112	Uub	[277]
me						7	.addoo	3 (<u>.</u>	63.546	sher 47	Ad	107.87	Diog 52	Au	198.97	roentgenium 111	Rd	[272]
<u> </u>						10	rickel	9	Z	58.633	paliediun 46	Pd	106.42	Tatura 78	F	195.33	camstadjum 110	S	[271]
the													4	_	_	Δ	£7.		_
							Ā	8)	PA	١,	_		_		Os				_
e of				3	NE	7	mangar esa	67	M	54.936	technetum 43	ည	[36]	TS 75	Re	186.21	107	뭠	[364]
Table						9	chrom um	t7 (င်	51.996	molybderun 42	Ø	95.94	1.05.en	3	-63.87	nrigization 106	Sd	[266]
10							-								Ta				_
ij							_	_		_			_	_	Ξ	-	-		_
Periodio						3	scancium	7	Sc	44.955	y:trium.	>	88.903	Litetium 74	P	174.97	law encum	۲	[252]
<u>a</u>														67.70			89-102		
			_	_			-			_	_		_	_	Ba	_	_		_
T T t	Ithium 8	=	3 941	m pos	Na	22,990	polass um	10	×	29.098	LEIdium 37	Rb	85.468	Caesium	S	152.91	rancium 87	<u>L</u>	[223]

I anthanida sarias	anttanum 57	ceriun 58	nui-rycosend	пвофупіл БО	oranethium 61	sarariur 62	europium 63	дасојпил 64	terbium 65	фузрговіліп 86	muimlori 67	erbiur 68	thdium 69	yttərbiun 70
- Calification Series	E	င္ပ	<u>r</u>	ž	Pm	Sm	Ш	gg	면 L	2	운	ш	ᆵ	Ž
	133.91	140.12	140.31	144.24	[.75]	150.36	151 96	157.25	158.33	162.50	.64.93	167.28	163 93	173.04
	actin um	thorium	protactinium protactinium	Lranium	negunium	plutonium	втегсил	CJrium	Derkein	califo:nium	airs:einium	fermin.n.	mendelevium	robelium
Actinide series	88	90	91	92	93	94	95	96	26	8	66	100	101	102
	Ac	드	Pa	-	g	Pu	Am	S	쓢	ರ	Es	Fm	Δd	S
	727	232.04	23.34	236.03	[257]	[244]	243	247	[247]	[25-]	[252]	[257]	.258	[259]

	Multiple Choice	Part 2(1)	Part 2(2)	Total
score				

Part 1. Multiple Choice (10 points)

Choose the letter of the choice in the answer table that best completes the statement or answers the question.

Question no.	a.	b.	C.	d.
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

- Which statement is a correct meaning of a closed system?
 a. It's a system where a quantity can leave the system
 b. It's a system where both quantity and energy can exchange with its environment
 - c. It's a system where nothing can enter or leave the system
 - d. It's a system where heat can exchange with its environment
- 2. Given that the percentage abundance of Cl-35 is 75% and that of Cl-37 is 25%, What is incorrect
 - a. Chlorine has two isotopes
 - b. Both have the same atomic number
 - c. Their neutrons are equal
 - d. Average mass of isotopes is 35.5
- 3. Molar mass of CuSO₄.5H₂O is

(Cu=63.5, S=32, O=16, H=1)

- a. 159.5 g/mole
- b. 177.5 g/mole
- c. 185.5 g/mole
- d. 249.5 g/mole

4.	Ato	omic weights of nitrogen (N), barium (Ba) and oxygen (O) are 14, 137, and 16
		mole, respectively. The percent composition of oxygen in barium nitrate, Ba(NO ₃) ₂
	is:	
	a.	0.368%
	b.	6.13%
	C.	2.30%
	d.	36.8%
5.	Wh	nat is a correct answer if a container contains 12.04×10^{22} molecules of N_2 ?
	a.	It's 2 moles of N ₂
	b.	N ₂ contains 14 grams
	C.	The number of N_2 atom is 24.08 x 10^{22} atoms
	d.	The volume of this gas is 22.4 L at STP
6.		nich of the following samples contains the largest number of atoms?
	a.	24.0 grams of carbon
	b.	6.02x10 ²³ H ₂ molecules
	C.	0.50 mol NH ₃
	d.	28.0 grams of CO
7.	Но	24.0 grams of carbon 6.02x10 ²³ H ₂ molecules 0.50 mol NH ₃ 28.0 grams of CO w many moles of hydrogen gas would be produced if we put one mole of sodium th one mole of water? 0.5 mole 0.5 mole c. 1.5 moles d. 2 moles
	wit	th one mole of water?
	a.	0.5 mole b. 1 mole c. 1.5 moles d. 2 moles
8.	Wh	nich compound has a highest molecular mass?
	a.	$(NH_4)_3PO_4$
	b.	Mg_3N_2
	C.	KOH

9. Glucose $(C_6H_{12}O_6)$ reacts with oxygen to produce carbon dioxide and water:

reaction takes place completely, which choice is true?

a. Number of moles of reactants and products are equal.

d. Oxygen gas might be found at the end of the reaction.

 $Al + O_2 \longrightarrow Al_2O_3$

b. 0.6 mole

 $C_6H_{12}O_6\,(s)+O_2\,(g)\to CO_2\,(g)+H_2O\,(l)$ If student A does the reaction as expressed above and uses 180 g of glucose and

b. Number of moles of products is greater than number of moles of reactants.c. Number of molecules of reactants and products are not significantly different.

10. How many moles of Al_2O_3 can be prepared from the reaction of 0.90 mol of O_2 plus

c. 1 mole

d. 2 mole

d. KHSO₄

sufficient Al?

a. 0.3 mole

Part 2 Write your answer in the space provided for each question.

Instruction

READ carefully

Students must provide calculation detail if CALCULATION is noted for any questions. Getting a full score cannot be provided if only answer without any detail is written.

1.	systems. (3 points)
	1.1 A jar filled with water
	1.2 An egg
	1.3 A cooler
2.	If the sample you have contains 60% carbon-12 and 40% carbon-14, calculate
	the relative atomic mass of an atom in that sample. (CALCULATION, 3 points)
	รูทยาลัยเทคโรมโลซีอุตสา น กรรม
	204023°
	Z A O W.
	20023715.00
	- "เาล็ยโรฟา
	300
	14 15
3.	Relative atomic mass of nitrogen is 14.01 and atomic masses for ¹⁴ N and ¹⁵ N are 14 amu
	and 15 amu, respectively. Calculate % abundance of each nitrogen isotope.
	(CALCULATION, 5 points)

	(C=12, H=1, N=14, O=16, Co=59, Cl=35.5, Mg=24, and Si=28) 4.1 C ₈ H ₁₀ N ₄ O ₂
	4.2 Co(NH ₃) ₆ Cl ₃
	4.3 Mg ₆ Si ₄ H ₆ O ₁₆
••••	
	4.4 C ₆ H ₆
	4.4 6.116
	31023
	29/1/11
	23610M
•••••	
5.	A compound contains 52.2% carbon (C), 13.0% hydrogen (H) and 34.8% oxygen (O). Determine its empirical formula. (CALCULATION, 3 points)
	Determine its empirical formula. (CALCULATION, 3 points)
	JAIL
•••••	
•••••	
6.	Calculate the percentage composition by mass of each element in C ₆ H ₅ NH ₂ (CALCULATION, 3 points)

shamisal structure is disclared by	
chemical structure is displayed below. How ma	1000
of saccharin? How many carbon atoms are in the	ne same sample? (CALCULATION, 5 points)
(C=12, H=1, O=16, N=14 and S=32)	
Η ο	
н с //	
c c c c	
N-H	
H_C_S_	
1 1/10	
н	

	4008070
	5 Table
11. Calculate the number of moles of each compo 11.1. 2.24 L of O ₂ at STP	(CALCULATION, 6 points)
11.1. 2.24 L of O ₂ at STP	O.S.
2010	
11.2 3.01 x 10 ²⁵ CO ₂ molecules	
-	
11.3 N₂O 132 g	
20 30.403 10000	
12. Balance all the following equations	(5 points)
1Mgl ₂ (aq) +AgNO ₃ (aq) \rightarrow	
2. $__PCl_5$ (aq) + $__H_2O$ (l) \longrightarrow $__H_3P$	O ₄ (aq) + HCl (aq)
3. $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) +$	H ₂ O(g)
4. P_4O_{10} (s) + H_2O (l) \rightarrow	
5. $Al(OH)_2 + H_2SO_4 \rightarrow Al_2(SO_4)$	

13.	From the reaction: $B_2H_6 + O_2 \rightarrow HBO_2 + H_2O$
	(CALCULATION, 5 points) (B=11, H=1 and O=16)
	13.1 What mass of O_2 will be needed to burn 36.1 g of B_2H_6 ?
	13.2 How many moles of water are produced from 19.2 g of B ₂ H ₆ ?
	3 - 2 0
12102001	
•••••	
	KO₂ is used in a closed-system breathing apparatus. It removes water and carbon
14.	KO_2 is used in a closed-system breathing apparatus. It removes water and carbon
	dioxide from exhaled air. The reaction for the removal of water is: $O_2 + KOH$.
	$O_2 + KOH.$
	The KOH produced is used to remove carbon dioxide by the following reaction:
	$KOH + CO_2 \longrightarrow KHCO_3$.
	(CALCULATION, 6 points) (K=39, H=1, O=16 and C=12)
	14.1 What mass of KO ₂ produces 235 g of O ₂ ?
	440.44
	14.2 What mass of CO_2 can be removed by 123 g of KO_2 ?
	Nathjanan Jongkon Sunanta Chuayprakong

(CALCULATION, 6 points) 7.1. Determine the empirical formula of acetic acid. 7.2. Determine the molecular formula of acetic acid if the molar mass of acetic acid is 60 g/mol.
7413
8. Compute and compare the number of carbon atoms in 2 mode of ethanol (C_2H_5OH) and
3 mole of carbon dioxide (CO $_2$). (CALCULATION, 3 points) (C=12, H=1 and O=16)
Zellane.
3 mole of carbon dioxide (CO ₂). (CALCULATION, 3 points) (C=12, H=1 and O=16)
recommended daily dietary allowance of vitamin C for children aged 4–8 years is
recommended daily dietary allowance of vitamin C for children aged 4–8 years is
recommended daily dietary allowance of vitamin C for children aged 4–8 years is 1.42×10^{-4} mol. What is the mass of this allowance in grams? (CALCULATION, 3 points)
recommended daily dietary allowance of vitamin C for children aged 4–8 years is 1.42×10^{-4} mol. What is the mass of this allowance in grams? (CALCULATION, 3 points)
recommended daily dietary allowance of vitamin C for children aged 4–8 years is 1.42×10^{-4} mol. What is the mass of this allowance in grams? (CALCULATION, 3 points)
recommended daily dietary allowance of vitamin C for children aged 4–8 years is 1.42×10^{-4} mol. What is the mass of this allowance in grams? (CALCULATION, 3 points)
recommended daily dietary allowance of vitamin C for children aged 4–8 years is 1.42×10^{-4} mol. What is the mass of this allowance in grams? (CALCULATION, 3 points)