The Alethe Proof Format

Bernardo Borges Haniel Barbosa

October 7, 2024

Abstract

Specifying more rules for alethe in the Cutting Planes reasoning

Contents

1	Introduction	1
2	Pseudo Boolean Inequality in Alethe	1
3	Cutting Planes Rules in Alethe	2
	3.1 Rule 1: cp_addition	
	3.2 Rule 2: cp_multiplication	2
	3.3 Rule 3: cp_division	
	3.4 Rule 4: cp_saturation	2

1 Introduction

In this article we describe how the cutting planes reasoning can be expressed in the alethe proof format, in order to make use of checkers (carcara).

2 Pseudo Boolean Inequality in Alethe

The Pseudo Boolean format consists of:

$$\sum_{i} a_i l_i \ge A \tag{1}$$

where,

$$A, a_i \in \mathbb{N}$$

$$l_i \in \{x_i, \overline{x}_i\}, \qquad x_i + \overline{x}_i = 1$$
(2)

In order to express it in alethe, we define an expression:

$$(>= (+ < TERMS > 0) < A >)$$

where <TERMS> is a list of either:

- 1. (* $\langle a_i \rangle \langle 1_i \rangle$) in a plain literal $a_i x_i$.
- 2. (* (- 1 <a_i>) <1_i>) in a negated literal $a_i\overline{x}_i$ and <A> is the natural constant A.

3 Cutting Planes Rules in Alethe

3.1 Rule 1: cp addition

```
We can apply the rules, using the 'step' syntax:
```

3.2 Rule 2: cp multiplication

3.3 Rule 3: cp division

```
(assume c1 (>= (+ (* 2 x1) 0) 2))
(step t1 (cl (>= (+ (* 1 x1) 0) 1))
:rule cp_division :premises (c1) :args (2)
)
```

3.4 Rule 4: cp_saturation

```
(assume c1 (>= (+ (* 2 x1) 0) 1))
(step t1 (cl (>= (+ (* 1 x1) 0) 1))
:rule cp_saturation :premises (c1)
```

References