Descomposición en Valores Singulares Lección 13

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

I Semestre 2018

Contenido

- Generalidades
- 2 Repaso de espacios vectoriales
 - Combinaciones lineales
 - Subespacios y bases
- Sepacios de una matriz
 - Espacio columna
 - Espacio nulo
- 4 Ejemplos
 - Nulidad

Justificación Descomposición en Valores Singulares

- DVS: Descomposición en Valores Singulares
- SVD: Singular Value Decomposition
- Conjunto de técnicas para tratar con sistemas de ecuaciones singulares o cercanos a singulares.
- DVS funciona donde la descomposición LU o la eliminación Gaussiana fallan
- DVS permite además diagnosticar cuál es el problema
- Aun con singularidades, DVS provee una solución
- AQUÍ: cómo usar DVS (en vez de cómo hacer DVS)

Principio matemático

Descomposición en Valores Singulares

DVS parte de

$$A = UWV^T$$

con

- **A**: matriz $m \times n$
- **U**: matriz $m \times n$ de **columnas** ortogonales

$$\mathbf{U}^T\mathbf{U} = \mathbf{I}$$

- W: matriz diagonal con *n* valores singulares no negativos
- V: matriz cuadrada $n \times n$ de **columnas** y **filas** ortogonales

$$\mathbf{V}^T\mathbf{V} = \mathbf{I}$$
 $\mathbf{V}\mathbf{V}^T = \mathbf{I}$

Situaciones sobredeterminadas

Sistemas **sobredeterminados** tienen matrices $m \times n$ con m > n:

En este caso **U** tiene **todas** sus columnas ortogonales

Situaciones subdeterminadas

Sistemas **subdeterminados** tienen matrices $m \times n$ con m < n:

$$\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} = \underbrace{\begin{bmatrix}
u_{11} & u_{12} & \cdots & u_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{m1} & u_{m2} & \cdots & u_{mn}
\end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix}
w_{1} & w_{2} \\
w_{2} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n}
\end{bmatrix}}_{\mathbf{w}_{1}} \underbrace{\begin{bmatrix}
v_{11} & v_{21} & \cdots & v_{n1} \\
v_{12} & v_{22} & \cdots & v_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \cdots & v_{nn}
\end{bmatrix}}_{\mathbf{V}^{T}}$$

En este caso

- $w_j = 0$ para $j = m+1, \dots n$, y sus correspondientes columnas $\underline{\mathbf{u}}_{\cdot j} = \underline{\mathbf{0}}$.
- Únicamente las primeras m columnas de \mathbf{U} son ortogonales.

Unicidad de DVS

- DVS es una descomposición única excepto por
 - permutaciones de las columnas correspondientes de U, elementos de W y columnas de V (o filas de V^T)
 - rotaciones ortogonales entre columnas de **U** y **V** cuyos elementos correspondientes en **W** son idénticos (por ejemplo, multiplicando dichas columnas por -1)
- Resultados de DVS no necesariamente aparecen en orden canónico, así que se deben permutar las columnas de las matrices para que la diagonal de W tenga valores singulares en orden decreciente.

¿Qué es un vector?

• En física, se introducen vectores como entidades matemáticas con magnitud y dirección.

¿Qué es un vector?

- En física, se introducen vectores como entidades matemáticas con magnitud y dirección.
- En ingeniería el concepto de vector se asocia a una tupla de n componentes, por ejemplo $[x_1, x_2, \dots, x_n]^T$.

¿Qué es un vector?

- En física, se introducen vectores como entidades matemáticas con magnitud y dirección.
- En ingeniería el concepto de vector se asocia a una tupla de n componentes, por ejemplo $[x_1, x_2, \dots, x_n]^T$.
- Formalmente, un vector es un elemento de un espacio lineal o espacio vectorial.

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

• para una operación de adición vectorial en \mathbb{V} , denotada $\underline{\mathbf{x}} + \underline{\mathbf{y}}$, con $\underline{\mathbf{x}}, \underline{\mathbf{y}} \in \mathbb{V}$ se cumple que $(\mathbb{V}, \{+\})$ es un grupo abeliano; $\underline{\mathbf{y}}$

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

- para una operación de adición vectorial en \mathbb{V} , denotada $\underline{\mathbf{x}} + \underline{\mathbf{y}}$, con $\underline{\mathbf{x}}, \mathbf{y} \in \mathbb{V}$ se cumple que $(\mathbb{V}, \{+\})$ es un grupo abeliano; \mathbf{y}
- para una operación de multiplicación escalar en \mathbb{V} , denotada como $a\underline{\mathbf{x}}$, con $\underline{\mathbf{x}} \in \mathbb{V}$ y $a \in \mathbb{F}$ se cumplen los siguientes axiomas:

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

- para una operación de adición vectorial en \mathbb{V} , denotada $\underline{\mathbf{x}} + \underline{\mathbf{y}}$, con $\underline{\mathbf{x}}, \mathbf{y} \in \mathbb{V}$ se cumple que $(\mathbb{V}, \{+\})$ es un grupo abeliano; \mathbf{y}
- para una operación de multiplicación escalar en \mathbb{V} , denotada como $a\underline{\mathbf{x}}$, con $\underline{\mathbf{x}} \in \mathbb{V}$ y $a \in \mathbb{F}$ se cumplen los siguientes axiomas:
 - $a\underline{\mathbf{x}} \in \mathbb{V}$. (\mathbb{V} es cerrado con respecto a la multiplicación escalar).
 - $a(b\underline{\mathbf{x}}) = (ab)\underline{\mathbf{x}}$. (Asociatividad de la multiplicación escalar en \mathbb{V}).
 - Si 1 representa el elemento neutro multiplicativo del cuerpo \mathbb{F} entonces $1\underline{\mathbf{x}} = \underline{\mathbf{x}}$. (Neutralidad de uno).
 - $a(\underline{\mathbf{x}} + \underline{\mathbf{y}}) = a\underline{\mathbf{x}} + a\underline{\mathbf{y}}$. (Distributividad con respecto a la adición vectorial).
 - $(a+b)\underline{\mathbf{x}} = a\underline{\mathbf{x}} + b\underline{\mathbf{x}}$. (Distributividad con respecto a la adición del cuerpo \mathbb{F}).

9/38

Combinación lineal

• El vector $\underline{\mathbf{x}}$ es una **combinación lineal** de los vectores $\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n$ si

$$\underline{\mathbf{x}} = c_1 \underline{\mathbf{u}}_1 + c_2 \underline{\mathbf{u}}_2 + \ldots + c_n \underline{\mathbf{u}}_n$$

con $c_i \in \mathbb{F}$.

• Ya vimos esto en la forma $\mathbf{x} = \mathbf{U}\mathbf{c}$:

$$\underline{\mathbf{x}} = \begin{bmatrix} \underline{\mathbf{u}}_1 & \underline{\mathbf{u}}_2 & \dots & \underline{\mathbf{u}}_n \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Independencia lineal

El conjunto $\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$ es:

- **linealmente dependiente** si algún $\underline{\mathbf{u}}_i$ es una combinación lineal de otros elementos de \mathcal{U} .
- linealmente independiente o libre si

$$c_1\underline{\mathbf{u}}_1+c_2\underline{\mathbf{u}}_2+\ldots+c_n\underline{\mathbf{u}}_n=\underline{\mathbf{0}}$$

solo con
$$c_1 = ... = c_n = 0$$
.

Independencia lineal Consecuencias

- un conjunto que contiene un solo vector, es libre si el vector es no nulo,
- ullet el vector nulo $\underline{\mathbf{0}}$ no forma parte de ningún sistema libre,
- todo subconjunto de un sistema libre es también libre,
- el número máximo de vectores de un sistema libre es igual a la dimensión de dichos vectores.

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

si contiene **todas** las combinaciones lineales de los vectores de \mathcal{U} , al que se denomina entonces **conjunto generador** del espacio (ingl. *to span a space*).

• A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.
- Este espacio no varía si

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto U se le denomina en este contexto vector generador.
- Este espacio no varía si
 - se multiplica cualquier vector generador por un escalar no nulo,

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.
- Este espacio no varía si
 - se multiplica cualquier vector generador por un escalar no nulo,
 - se suma un generador con otro,

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto U se le denomina en este contexto vector generador.
- Este espacio no varía si
 - se multiplica cualquier vector generador por un escalar no nulo,
 - se suma un generador con otro,
 - si se suprimen los generadores que son una combinación lineal de los demás.

Subespacio

El subconjunto $\mathbb{W} \subset \mathbb{V}$ es un **subespacio** de \mathbb{V} si es cerrado ante la suma vectorial y la multiplicación escalar.

Los subespacios tienen las siguientes propiedades:

 Todo espacio lineal V contiene al menos dos subespacios: el mismo V y {0}.

Subespacio

El subconjunto $\mathbb{W} \subset \mathbb{V}$ es un **subespacio** de \mathbb{V} si es cerrado ante la suma vectorial y la multiplicación escalar.

Los subespacios tienen las siguientes propiedades:

- Todo espacio lineal V contiene al menos dos subespacios: el mismo V y {0}.
- La intersección W₁ ∩ W₂ de dos subespacios lineales W₁ y W₂ del mismo espacio lineal V es a su vez un subespacio lineal.

Subespacio

El subconjunto $\mathbb{W} \subset \mathbb{V}$ es un **subespacio** de \mathbb{V} si es cerrado ante la suma vectorial y la multiplicación escalar.

Los subespacios tienen las siguientes propiedades:

- Todo espacio lineal V contiene al menos dos subespacios: el mismo V y {0}.
- La intersección W₁ ∩ W₂ de dos subespacios lineales W₁ y W₂ del mismo espacio lineal V es a su vez un subespacio lineal.
- La unión W₁ ∪ W₂ de dos subespacios lineales W₁ y W₂ del mismo espacio lineal V no necesariamente es un subespacio lineal.

• \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.

- \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal $\mathbb{V} \neq \{\underline{\mathbf{0}}\}$ posee al menos una base.

- \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal $\mathbb{V} \neq \{\underline{\mathbf{0}}\}$ posee al menos una base.
- Si existen varias bases, todas contienen el mismo número de vectores generadores.

- \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal $\mathbb{V} \neq \{\underline{\mathbf{0}}\}$ posee al menos una base.
- Si existen varias bases, todas contienen el mismo número de vectores generadores.
- Este número de vectores de la base es la dimensión del espacio lineal.

Para un espacio \mathbb{V} con n dimensiones

• toda base de \mathbb{V} tiene exactamente n elementos,

Para un espacio \mathbb{V} con n dimensiones

- toda base de \mathbb{V} tiene exactamente n elementos,
- ② todo subconjunto linealmente independiente de $\mathbb V$ tiene a lo sumo n elementos y corresponde a una base de $\mathbb V$ si y solo si tiene exactamente n elementos,

Para un espacio \mathbb{V} con n dimensiones

- toda base de \mathbb{V} tiene exactamente n elementos,
- ② todo subconjunto linealmente independiente de $\mathbb V$ tiene a lo sumo n elementos y corresponde a una base de $\mathbb V$ si y solo si tiene exactamente n elementos,
- **3** cualquier subconjunto de \mathbb{V} que actúa como conjunto generador de \mathbb{V} debe tener al menos n elementos y es una base si y solo si tiene exactamente n elementos,

Para un espacio \mathbb{V} con n dimensiones

- toda base de \mathbb{V} tiene exactamente n elementos,
- ② todo subconjunto linealmente independiente de $\mathbb V$ tiene a lo sumo n elementos y corresponde a una base de $\mathbb V$ si y solo si tiene exactamente n elementos,
- **3** cualquier subconjunto de \mathbb{V} que actúa como conjunto generador de \mathbb{V} debe tener al menos n elementos y es una base si y solo si tiene exactamente n elementos,

Unicidad de coeficientes

El último punto indica que si V tiene como base a

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\}$$

entonces un vector

$$\underline{\mathbf{x}} = c_1 \underline{\mathbf{u}}_1 + c_2 \underline{\mathbf{u}}_2 + \ldots + c_n \underline{\mathbf{u}}_n$$

puede representarse utilizando tan solo los coeficientes c_i y manteniendo fija la base: $\underline{\mathbf{x}} = [c_1, c_2, \dots, c_n]^T$.

Unicidad de coeficientes

Ninguna otra secuencia puede representar con la misma base al vector $\underline{\mathbf{x}}$, puesto que si existiese alguna otra representación equivalente

$$\underline{\mathbf{x}} = d_1\underline{\mathbf{u}}_1 + d_2\underline{\mathbf{u}}_2 + \ldots + d_n\underline{\mathbf{u}}_n$$

entonces la diferencia de ambas representaciones debería ser cero y

$$(d_1-c_1)\underline{\mathbf{u}}_1+(d_2-c_2)\underline{\mathbf{u}}_2+\ldots+(d_n-c_n)\underline{\mathbf{u}}_n=\underline{\mathbf{0}}$$

se cumple solo si $d_i = c_i$, i = 1, 2, ..., n por el requisito de que la base \mathcal{U} debe ser linealmente independiente.

Mapeo lineal

• Sea el sistema

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

con una matriz **A** de tamaño $m \times n$, un vector $\underline{\mathbf{x}}$ de n dimensiones, y un vector $\underline{\mathbf{b}}$ de m dimensiones.

- La matriz A mapea o transforma linealmente el vector n-dimensional <u>x</u> a otro vector m-dimensional <u>b</u>, pues se realiza con <u>x</u> una combinación lineal de sus vectores columna
- La dimensión del espacio vectorial de las imágenes <u>b</u> puede ser menor, igual o mayor que la dimensión del espacio vectorial original que contiene a <u>x</u>, pero es igual a la dimensión del espacio que contiene a las columnas de A.

Espacio columna y rango

- Sistema $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ tiene solución siempre que $\underline{\mathbf{b}}$ se encuentre en el **espacio columna** o **alcance** de la matriz \mathbf{A} (ingl. *range*).
- El espacio columna o alcance es el espacio engendrado por las n columnas de A:

$$c_1\underline{\mathbf{a}}_{\cdot 1} + c_2\underline{\mathbf{a}}_{\cdot 2} + \dots + c_n\underline{\mathbf{a}}_{\cdot n} \in C(\mathbf{A}) \qquad \forall c_i \in \mathbb{R}$$

- El espacio columna $C(\mathbf{A})$ es un **subespacio** de \mathbb{R}^m , que corresponde al espacio de donde se toma cada columna de \mathbf{A}
- El número de columnas linealmente independientes, es decir, la dimensión del espacio columna C(A) se denomina rango de la matriz A (ingl. rank).
- Si $\mathbf{A} \neq \mathbf{0}$ entonces el rango estará entre 1 y mín(n, m)

El sistema

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{0}}$$

tiene la solución trivial $\underline{\mathbf{x}} = \underline{\mathbf{0}}$.

• Si $\underline{\mathbf{x}}_1 \neq \underline{\mathbf{0}}$ soluciona el sistema anterior, entonces $c\underline{\mathbf{x}}_1$ también lo hace, pues

$$\mathbf{A}(c\underline{\mathbf{x}}_1) = \\ c(\mathbf{A}\underline{\mathbf{x}}_1) = \\ c\underline{\mathbf{0}} = \underline{\mathbf{0}}$$

• Si también $\underline{\mathbf{x}}_2$ soluciona el sistema anterior entonces:

$$\mathbf{A}(c_1\underline{\mathbf{x}}_1 + c_2\underline{\mathbf{x}}_2) = c_1(\mathbf{A}\underline{\mathbf{x}}_1) + c_2(\mathbf{A}\underline{\mathbf{x}}_2) = c_1\underline{\mathbf{0}} + c_2\underline{\mathbf{0}} = \underline{\mathbf{0}} + \underline{\mathbf{0}} = \underline{\mathbf{0}}$$

 Por las dos propiedades anteriores el conjunto de todos los vectores <u>x</u> que satisfacen

$$\mathbf{A}\underline{\mathbf{x}}=\underline{\mathbf{0}}$$

constituyen un subespacio vectorial del espacio \mathbb{R}^n (que contiene a todos los $\underline{\mathbf{x}}$), y se denomina **espacio nulo** de \mathbf{A} .

- La dimensión del espacio nulo de A se denomina nulidad de A
- La nulidad puede tomar un valor desde cero hasta n.
- La suma del rango de A más su nulidad es igual a n (número de columnas de A)

Solución única

- Si **A** es cuadrada $n \times n$ y con rango n entonces **A** es no-singular e invertible; $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ tiene una única solución para cada $\underline{\mathbf{b}}$ y solo el $\underline{\mathbf{0}}$ se mapea a $\underline{\mathbf{0}}$ (dimensión del espacio nulo es cero).
- En este caso LU es el método de preferencia

Multiples o no soluciones

Si **A** tiene nulidad mayor que cero (rango menor que *n*) pueden pasar dos cosas:

- la mayoría de vectores **b** no producen solución
- algunos vectores <u>b</u> tienen como solución un subespacio completo

Relación entre DVS con los espacios de una matriz

La descomposición en valores singulares construye explícitamente

- base vectorial del espacio columna (columnas de U con valores singulares no nulos)
- base vectorial del espacio nulo (columnas de V con valores singulares correspondientes nulos)

DVS de matrices cuadradas

- Si A es cuadrada, entonces U, W y V también lo son.
- Puesto que las matrices son ortogonales o diagonales, el cálculo de la matriz inversa es directa:

$$\mathbf{A}^{-1} = \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \mathbf{U}^T$$

- Único problema posible $w_j = 0$ o ≈ 0
- Número de condición de la matriz **A** se define ahora como $\nu = \max_{i} (w_i) / \min_{i} (w_i)$
- Si $u \to \infty$ entonces **A** es singular
- Si $\nu\gg 0$ y $1/\nu\approx\mathscr{E}$ entonces **A** es mal condicionada

Solución de sistema homogéneo

- El sistema homogéneo es planteado como $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{0}}$
- Cualquier combinación lineal de las columnas de $\underline{\mathbf{V}}$ con correspondiente valor singular $w_j = 0$ es solución a este sistema.

(1)

Para

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

• Si $\underline{\mathbf{b}}$ está en el alcance de \mathbf{A} (en su espacio columna) y la nulidad de \mathbf{A} no es cero, entonces sistema tiene infinitas soluciones, pues si $\underline{\mathbf{x}}_1$ es una solución, entonces si se suma con cualquier vector $\underline{\mathbf{n}}$ del espacio nulo:

$$\mathbf{A}(\underline{\mathbf{x}}_1 + \underline{\mathbf{n}}) = \mathbf{A}\underline{\mathbf{x}}_1 + \mathbf{A}\underline{\mathbf{n}}$$
$$= \underline{\mathbf{b}} + \underline{\mathbf{0}}$$
$$= \underline{\mathbf{b}}$$

• Usualmente se busca la solución de menor norma $\|\underline{\mathbf{x}}\|_2$, que se obtiene fácilmente de

$$\underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}}$$

$$= \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \left(\mathbf{U}^T\underline{\mathbf{b}} \right)$$

donde para $w_j=0$ se sustituye en la matriz diagonal inversa $1/w_j \to 0$, anulando así todo aporte del espacio nulo.

Solución fuera del alcance de A

Para

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Si **b** está fuera del alcance de **A**, entonces

$$\underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}}$$

$$= \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \left(\mathbf{U}^T\underline{\mathbf{b}} \right)$$

con $1/w_i o 0$ si $w_i = 0$ encuentra "una" solución que minimiza

$$r \equiv |\mathbf{A}\underline{\mathbf{x}} - \underline{\mathbf{b}}|$$

con r el resíduo de la solución.

Seudoinversa de A

El cálculo de la matriz inversa utilizando DVS:

$$\mathbf{A}^{-1} = \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \mathbf{U}^T$$

forzando $1/w_j \to 0$ si $w_j = 0$ se denomina la inversa de Moore-Penrose o la seudoinversa de **A**, y se denota con **A**⁺. En conclusión:

- Si todo $w_j \neq 0$, la solución $\underline{\mathbf{x}} = \mathbf{A}^+ \underline{\mathbf{b}}$ resuelve el sistema no singular.
- Si algunos $w_j = 0$, la solución $\underline{\mathbf{x}} = \mathbf{A}^+\underline{\mathbf{b}}$ devuelve la "mejor" solución en el sentido de que retorna el vector $\underline{\mathbf{x}}$ más pequeño que resuelve el sistema, o aquel que produce el menor residuo si no existe solución.

Ejemplo: Matriz con nulidad

Utilizando en octave [U,W,V]=svd(A) se obtiene:

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 1 & 1 \\ 4 & 0 & 4 \end{bmatrix} = \mathbf{UWV}^{T}$$

Ejemplo: Matriz con nulidad

$$\begin{split} \mathbf{A} &= \mathbf{UWV}^T \\ \mathbf{U} &= \begin{bmatrix} -0,59684 & -0,06151 & -0,80000 \\ -0,10252 & 0,99473 & 0,00000 \\ -0,79578 & -0,08201 & 0,60000 \end{bmatrix} \\ \mathbf{W} &= \begin{bmatrix} 7,10741 & 0 & 0 \\ 0 & 1,21848 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \mathbf{V} &= \begin{bmatrix} -0,699784 & -0,420676 & -0,577350 \\ -0,014424 & 0,816369 & -0,577350 \\ -0,714208 & 0,395693 & 0,577350 \end{bmatrix} \end{split}$$

- Con $\underline{\mathbf{b}} = [9; 0; 12]^T$ la solución a $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ es $\underline{\mathbf{x}} = [1; -2; 2]^T$
- La nulidad de **A** es 1 y el espacio nulo lo engendra $\underline{\mathbf{n}} = [-\sqrt{3}/3, -\sqrt{3}/3, \sqrt{3}/3]$
- Si se hace $\underline{\mathbf{x}}' = \underline{\mathbf{x}} + c\underline{\mathbf{n}}$ para cualquier c real se obtiene el mismo $\underline{\mathbf{b}}$ con $\mathbf{A}\underline{\mathbf{x}}'$

Ejemplo: Compresión de matrices

• Con $\mathbf{A} = \mathbf{UWV}^T$ puede aproximarse \mathbf{A} descartando vectores asociados a valores singulares más pequeños:

$$\mathbf{A} pprox \tilde{\mathbf{A}} = \mathbf{U} \tilde{\mathbf{W}} \mathbf{V}^T$$

con $ilde{\mathbf{W}} = \mathsf{diag}(ilde{w}_1, ilde{w}_2, \dots, ilde{w}_n)$ donde

$$\tilde{w}_i = \begin{cases} w_i & \text{si } w_i > \tau \\ 0 & \text{en el resto} \end{cases}$$

ullet Se descartan entonces últimas columnas de $oldsymbol{V}$ y de $oldsymbol{U}$

Resumen

- Generalidades
- 2 Repaso de espacios vectoriales
 - Combinaciones lineales
 - Subespacios y bases
- Sespacios de una matriz
 - Espacio columna
 - Espacio nulo
- 4 Ejemplos
 - Nulidad

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2018 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica