Ch 3 : Trigonométrie

Le plan est muni d'un repère orthonormé direct (O; I, J).

I Trigonométrie - Rappels

Angle en degrés	0°	30°	45°	60°	90°	180°	360°
Angle en radians	0	<u>π</u> 6	<u>π</u> 4	<u>π</u> 3	$\frac{\pi}{2}$	π	2π

1) Mesure d'un angle orienté de vecteurs

<u>Définition</u>: Soit M un point d'un cercle trigonométrique.

On appelle mesure en radian de l'angle orienté $(\overline{OI}, \overline{OM})$ tout nombre réel x associé au point M.

Définitions :

On considère deux vecteurs non nuls \vec{u} et \vec{v} et on construit sur le cercle trigonométrique les points F et H tels que \overrightarrow{OF} soit colinéaire et de même sens que \vec{v} et \overrightarrow{OH} soit colinéaire et de même sens que \vec{v} .

- La mesure de l'angle orienté (\vec{u}, \vec{v}) est égale à celle de l'angle orienté $(\overrightarrow{OF}, \overrightarrow{OH})$.
- Pour tout réel x associé au point F et tout réel y associé au point H, y x est une mesure en radian de l'angle orienté (\vec{u}, \vec{v}) .
- L'unique mesure en radian de l'angle orienté appartenant à l'intervalle] π ; π] est appelé la **mesure principale** de cet angle orienté.

Remarque : Si α est une mesure de l'angle orienté alors les autres mesures de cet angle orienté sont les réels $\alpha + k \times 2\pi$ où k est un entier relatif.

2) Cosinus et sinus d'un nombre réel

a) Définition

Pour tout réel \boldsymbol{x} on peut associer un point unique M du cercle trigonométrique.

Le cosinus de x, noté cos x, est l'abscisse de M.

Le sinus de x, noté sin x, est l'ordonnée de M.

b) Propriétés

<u>Propriétés</u>: Pour tout nombre réel x:

 $-1 \le \cos x \le 1$

 $-1 \le \sin x \le 1$

 $\cos^2 x + \sin^2 x = 1$

c) Valeurs remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos X	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0	- 1
sin X	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

$$cos(-x) = cos(x)$$

$$sin(-x) = -sin(x)$$

$$\cos (\pi - x) = -\cos (x)$$

$$\sin (\pi - x) = \sin (x)$$

$$\cos (\pi + x) = -\cos (x)$$

$$\sin (\pi + x) = \sin (x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin\left(x\right)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos\left(x\right)$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin\left(x\right)$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos(x)$$

II Fonctions sinusoïdales

1) Fonctions cosinus et sinus

fonction sinus

Les fonctions cosinus et sinus sont périodiques de période 2π (Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation). La fonction **cosinus est paire** et la fonction **sinus est impaire** (Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées et celle de la fonction sinus est symétrique par rapport à l'origine).

2) Fonctions sinusoïdales $t \mapsto A\cos(\omega t + \varphi)$ et $t \mapsto A\sin(\omega t + \varphi)$

En physique, de nombreux phénomènes sont liés à la propagation d'onde : le son, la lumière, ... Les grandeurs associées à ces ondes peuvent être mathématisées par des fonctions sinusoïdales du type $t \mapsto A\cos(\omega t + \varphi)$ et $t \mapsto A\sin(\omega t + \varphi)$.

a) Amplitude

<u>Définition</u>: L'amplitude d'une fonction périodique est sa valeur maximale.

<u>Propriété</u>: L'amplitude des fonctions $t \mapsto A\cos(\omega t + \varphi)$ et $t \mapsto A\sin(\omega t + \varphi)$ est A.

b) Phase

<u>Définitions</u>: $\omega t + \phi$ est appelé la **phase instantanée** du signal.

Si t = 0, φ est appelée la **phase à l'origine** du signal. ω est appelée la **pulsation** du signal.

<u>Remarque</u>: En physique, la phase s'exprime en radians et la pulsation en radians par seconde.

c) Période

<u>Définition</u>: La **période** d'une fonction est la longueur du plus petit intervalle pour lequel la courbe de la fonction se reproduit à l'identique.

<u>Remarque</u>: En physique, la période s'exprime en secondes.

<u>Propriété</u>: La période T des fonctions $t \mapsto A\cos(\omega t + \varphi)$ et $t \mapsto A\sin(\omega t + \varphi)$ est $\frac{2\pi}{\omega}$.

d) Dérivées

Fonction	Dérivée		
$A\cos(\omega t + \varphi)$	$-A\omega\sin(\omega t + \varphi)$		
$A\sin(\omega t + \varphi)$	Aωcos(ωt+φ)		