Knowledge Acquisition (KNOWLEDGE REPRESENTATIONS)

Definition:

- Involves gathering expertise for use in expert systems, organizing it into structured formats like IF-THEN rules.
- Also refers to the process of absorbing information into memory, focusing on effective retrieval.

Procedure:

- Identification: Break down complex issues into parts.
- Conceptualization: Define key concepts.
- Formalization: Organize knowledge formally for programmatic use.
- Implementation: Code the structured knowledge.
- Testing: Check and validate the system's functionality.

WWW.KNOWLEDGEGATE.IN

Example Scenario: Knowledge RepresenChapter-3 (KNOWLEDGE REPRESENTATIONS)

Fact:

"Book X is available in the library."

Representation in Logical Structure:

Using a logical statement, this fact can be represented as:

'Available(Book X)'

Characteristics Applied:

- Syntax and Semantics: The function `Available()` clearly defines that it checks for the availability of a specific book.
- Expressive Capacity: This structure allows the system to represent the availability of any book in the library by substituting "Book X" with any book's name.
- Efficiency: Such representation supports quick queries about book availability, facilitating efficient information retrieval and decision making processes in the library's computer system.

0

Knowledge Representation

- <u>Definition</u>: It's the study of how knowledge can be represented in a computer system to mimic human thought and reasoning.
- **Components:**
 - Facts: True information relevant to a specific domain.
 - Representation: How facts are formally expressed, often using logical structures.
- Example: For the fact "Charlie is a dog," a logical representation could be Dog(Charlie).
- **Characteristics:**
 - Syntax and semantics: Clearly defined rules for structure and meaning.
 - Expressive capacity: Ability to convey all necessary domain knowledge.
 - Efficiency: Supports effective computing and reasoning.

All birds fly: $\forall x (Bird(x) \rightarrow Fly(x))$

Tweety is a bird: Bird(Tweety)

We want to prove that Tweety can fly. Using resolution:

- 1. We negate the query ¬Fly(Tweety) and add it to our knowledge base.
- 2. Our clauses in clausal form are:
 - ¬Bird(x) ∨ Fly(x) (from ∀x (Bird(x)→Fly(x)))
 - Bird(Tweety)
- 1-20- DVQ
- ¬Fly(Tweety) (negated query)
- 3. Now we apply resolution:
 - We resolve ¬Fly(Tweety) with ¬Bird(x) ∨ Fly(x) using unification by substituting x with Tweet@
 - This gives us ¬Bird(Tweety) ∨ Fly(Tweety).
- 4. Finally, we resolve Bird(Tweety) with ¬Bird(Tweety) v Fly(Tweety), which gives us Fly(Tweety), the desired fact.

Since we started with ¬Fly(Tweety) and ended up with Fly(Tweety), we have derived a contradiction, meaning our original negation of the query must be false, thus proving that, according to our knowledge base WWeet Koan HU FDGFGATF IN

KG

- Resolution in Al is a logical inference rule used to deduce new information or solve problems by finding contradictions.
- It involves converting logical statements into a standardized form called clausal form, which is
 a set of normalized logical expressions.
- Contradictory pairs of clauses are identified, and through a process of unification and combination, new clauses are generated.
- This process is repeated iteratively until either a contradiction is found (represented by an empty clause) or no new information can be deduced.
- Resolution is particularly powerful in automated theorem proving and logic programming, such as in Prolog, where it's used to infer conclusions from given facts and rules.

Forward Chaining	Chapter-3 (KNOWLEDGE REPRESENTATIONS
1. Data-driven approach: begins with known facts.	1. Goal-driven approach: starts with the desired conclusion.
2. Bottom-up reasoning: builds up from facts to a conclusion.	2. Top-down reasoning: works packwards from goal to facts.
3. Uses Modus Ponens: applies rules to derive new information.	3. Uses Modus Tollens: checks if conclusions can lead to the goal.
4. Continues until no new information can be derived.	4. Continues until it reaches the starting facts or rules.
5. Common in real-time systems and production rule systems. www.knowl	5. Used in diagnostic systems where the end goal is known.

- •Goal: A student wants to determine the best postgraduate course to enroll in.
- •Question: What course should the student choose for a successful career?
- •Check Desired Outcome: The desired outcome is a fulfilling and prosperous career in a field the student is passionate about.
- Compare Interests: The student is interested in technology and innovation.
- •Search for Career Paths: The system considers various career paths that align with technology and innovation.
- •Hypothesis 1: Is a Master's in Computer Science suitable?
- •Check for Evidence: The system checks the student's academic background, skills, and job market trends for computer science graduates.
- •Hypothesis 2: Could an MBA in Technology Management be an alternative?
- •Check for Evidence: The system evaluates the student's leadership potential, market demand for technology managers, and the student's long-term career goals.
- •Solution if Matched: If the evidence strongly supports one path over the other based on the student's profile and job market trends, the system recommends that course.
- •Outcome: The student chooses the recommended course which aligns with their interests, background, and marke demand, leading to a more focused educational path towards a desired career.

Backward Chapter-3 (KNOWLEDGE REPRESENTATIONS)

- Starts with a goal: looks at the desired outcome first.
- Works backward: checks if current knowledge supports the goal.
- Goal-driven: each step is aimed at proving the end objective.
- Deduces necessities: determines what conditions must be met for the goal.
- Stops when it reaches the beginning facts or rules, or the goal is proven or disproven.

Complete Al Artificial Intelligence in one shot | Semester Exam | Hindi

Example: A Rice Crop Management System

Chapter-3 (KNOWLEDGE REPRESENTATIONS)

- •Initial Observation: A farmer in Odisha notices that some rice plants are shorter than usual and have yellow leaves.
- •Rule 1: If rice plants are short and have yellow leaves, they might lack nitrogen.
- •Rule 2: If rice plants lack nitrogen, then using nitrogen-rich fertilizer may help.
- •Rule 3: If the season is monsoon and the problem is nitrogen deficiency, then use urea fertilizer, which is suitable for wet conditions.

Forward Chaining Process:

- 1.Observing Symptoms: The farmer inputs into the system that the rice plants are short with yellow leaves.
- 2.Applying Knowledge: The system uses Rule 1 to deduce that the plants might be suffering from nitrogen deficiency.
- 3.Taking Action: Based on Rule 2, the system suggests that applying a nitrogen-rich fertilizer could be beneficial.
- 4.Considering Conditions: Seeing that it is the monsoon season, Rule 3 advises the farmer to use urea fertilizer specifically.
- 5.Outcome: The farmer follows the advice, applies urea, and over time the rice plants becker healthier and grow taller.

WWW KNOWLEDGEGATE IN

KG

Forward Chapter-3 (KNOWLEDGE REPRESENTATIONS)

- Begins with what is known: starts with basic facts or data.
- Moves forward: applies rules to these facts to derive new information
- Data-driven: new conclusions are made as data is processed.
- Adds knowledge: builds upon existing information incrementally.
- Stops when no further deductions can be made or a goal is reached.

Universal Genchapter-3 (KNOWLEDGE REPRESENTATIONS)

 Universal generalization is a valid inference rule which states that if premise P(c) is true for any arbitrary element c in the universe of discourse, then we can have a conclusion as ∀ x P(x).

• It can be represented as: $V_{X P(X)}$

This rule can be used if we want to show that every element has a similar property. In this
rule, x must not appear as a free variable.

HILM 1

Example: Let's represent, P(c): "A byte contains 8 bits", so for ∀ x P(x) "All bytes contain 8 bits.", it will also be true.

Existential in Chapter-3 (KNOWLEDGE REPRESENTATIONS)

 An existential introduction is also known as an existential generalization, which is a valid inference rule in first-order logic. This rule states that if there is some element c in universe of discourse which has a property P, then we can infer that there exists so the universe which has the property P.

It can be represented as:

- Example: "Priyanka got good marks in English."
- "Therefore, someone got good marks in English."

WWW.KNOWLEDGEGATE.IN

Existential Instantial (KNOWLEDGE REPRESENTATIONS)

- Existential instantiation is also called as Existential Elimination, which is a valid inference rule
 in first-order logic. It can be applied only once to replace the existential sentence.
- This rule states that one can infer P(c) from the formula given in the form of ∃x P(x) for a new constant symbol c. The restriction with this rule is that c used in the rule must be a new term for which P(c) is true.
- It can be represented as:

Universal specialization / Chapter-3 (KNOWLEDGE REPRESENTATIONS)

- Universal instantiation is also called as universal elimination or UI is a valid inference rule. It
 can be applied multiple times to add new sentences. As per UI, we can infer any sentence
 obtained by substituting a ground term for the variable.
- The UI rule state that we can infer any sentence P(c) by substituting a ground term c (a constant within domain x) from $\forall x P(x)$ for any object in the universe of discourse.
- It can be represented as:

$$\forall x P(x)$$

So we can infer that "John likes ice-cream": P(c)

3. CNF requires — to appear only in literals, so we Chapter-3 (KNOWLEDGE REPRESENTATIONS) of the following equivalences

In the example, we require just one application of the last rule:

- (¬A ∨ B ∨ C) ∧ ((¬B ∧ ¬C) ∨ A).
- 4. Now we have a sentence containing nested ∧ and ∨ operators applied to literals. We apply the distributivity law, distributing ∨ over ∧ wherever possible.
 - (¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A).
- The original sentence is now in CNF, as a conjunction of three clauses.

Conjunctive NcChapter-3 (KNOWLEDGE REPRESENTATIONS)

- A formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is an AND of ORs.
- Procedure for converting Propositional logic to CNF:
- Example: A ⇔ (B ∨ C) into CNF.
- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$.

Negation Chapter-3 (KNOWLEDGE REPRESENTATIONS)

$$\frac{A}{A} = \frac{A}{A} = \frac{A}$$

$$\neg [\exists_x P(x)] = \forall_x \neg P(x)$$

• Existential quantifiers: - with existential quantif Chapter-3 (KNOWLEDGE REPRESENTATIONS)

P(x) is true for at least one value of x in the universe of discourse.

WWW.KNOWLEDGEGATE.IN

There exists an element x is the universe of discourse sur is true. ∃_x P(x), i.e. for at least one value of a P(x) is true

- if i say four Indian are there I1, I2, I3, I4
- I_1 like samosa $(V)(I_2$ like samosa $(V)I_3$ like samosa $(V)I_4$ like samosa
- Samosa(I₁) V Samosa(I₂) V Samosa(I₃) V Samosa(I₄)
- \exists_x Samosa(x), if we confine x to be Indian then it means some x likes samosa.

[KG]

- Universal quantifiers: The universal quantificat Chapter-3 (KNOWLEDGE REPRESENTATIONS)
 proposition that asserts
- P(x) is true for all values of x in the universe of discourse.
- The universe of discourse specifies the possible value of x.
- $\forall_x P(x)$, i.e. for all value of a P(x) is true

