Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

OPTIMAL PAGE REPLACEMENT

Optimal Page Replacement

 Replace the page that will not be used for the longest period of time.

• This page-replacement algorithm *guarantees* the lowest possible page fault rate for a fixed number of frames.

- Difficult to implement, because it requires *future knowledge* of the reference string.
- The optimal algorithm is used mainly for *comparison* studies.

Example

Let three frames are initially empty.

LEAST RECENTLY USED (LRU)

Least Recently Used (LRU)

• Replace the page that *has not been used* for the longest period of time.

• It uses the *recent past* as an approximation of the near future

Example

Let three frames are initially empty.

Homework

• Let the *reference string*:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6

Find the number of page faults for One/Two/Three/Four frames (LRU/FIFO/OPTIMAL).

Frame Allocation

Frame Allocation

• Allocation of frames:

The minimum number of frames per process is defined by the *architecture*.

The maximum number is defined by the amount of available *physical memory*.

Frame Allocation

Allocation Algorithms:

Equal allocation:

❖The easiest way to split m frames among n processes is to give everyone an equal share.

→ Proportional allocation:

❖ We allocate available memory to each process according to its size.

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

