

Aplicación de bases de datos ISW-413

Universidad Técnica Nacional Por: Efrén Jiménez Delgado 2017

Agenda

- Lineamientos Generales
- Dependencia funcional
- Normalización
- Modelado Relacional

Presentación

- Ingeniero en Software.
- Profesor en el Tecnológico de Costa Rica y la Universidad Técnica Nacional.
- Maestría en base de datos.
- Innovation Manager en Go-Labs.
- 8 años de experiencia como ingeniero en software.
- Correo: ejimenez@utn.ac.cr
- Skype: ejimenezdelgado

Normalización: Importancia

- Las bases de datos mal diseñadas tienen problemas de:
 - Almacenamiento redundante (varias copias de la misma información)
 - Pérdidas no deseadas de información al modificar Registros.
 - La base entra en un estado no consistente al borrar un Registro.
 - Imposibilidad de almacenar cierta información.

Transformación del Modelo ER al Modelo Relacional

Modelo Entidad Relación (Básico), transformación al modelo Relacional de:

- Entidades (no débiles)
- Entidades Débiles
- Relaciones 1:N
- Relaciones 1:1
- Relaciones M:N
- Atributos Multivalorados
- Relaciones n-arios

Definir una serie de esquemas de relaciones equivalentes

Transformación de Entidades (Paso 1)

Empleado (<u>Cédula</u>, PrimNombre, PrimApellido, SegApellido, Teléfono)

CP Atributo compuesto *Nombre*

Transformación de Entidades (Paso 1)

En caso de que más de un atributo sea parte de la clave primaria:

Proyecto (Número Proyecto, Nombre Proyecto, Descripción_Proyecto)

Transformación de Relaciones 1:N (Paso 2)

Para cada relación 1:N entre dos entidades (no débiles) E y F donde F está del lado N de la relación, se añade a la tabla correspondiente a la entidad F de alguna de las entidades la clave primaria de la otra entidad relacionada.

Transformación de Relaciones 1:N (Paso 2)

Transformación de Entidades Débiles (Paso 3)

Entidad débil

- Para cada entidad débil D del modelo ER y su respectiva relación con su entidad propietaria E se define una tabla R.
- La tabla R tiene todos los atributos de la entidad débil D más los atributos que conforman la clave primaria de la entidad propietaria E.
- La clave primaria de la tabla R está formada por los atributos de la clave primaria de la entidad propietaria E más los atributos de la clave parcial de D.

Transformación de Entidades Débiles (Paso 3)

Hito (Número Proyecto, Nombre Proyecto, Código Hito, Fecha_Hito, Descripción_Hito)

Proyecto (Número_Proyecto, Nombre_Proyecto, Descripción_Proyecto)

Transformación de Relaciones 1:1 (Paso 4)

- Para cada relación 1:1 entre dos entidades (no débiles) E y F se añade a la tabla de alguna de las entidades, a modo de clave foránea, la clave primaria de la otra entidad relacionada.
- Se especifica una restricción que define que la clave foránea añadida debe ser única (no se puede repetir, porque de hacerlo entonces sería una relación 1:N

Transformación de Relaciones 1:1 (Paso 4)

Transformación de Relaciones N:M (Paso 5)

- Para cada relación M:N entre dos entidades se crea una tabla R.
- Los atributos de la tabla R serán las claves primarias de las entidades relacionadas más los atributos propios de la relación.
- La clave primaria de la tabla R será el conjunto de todos los atributos que sean claves primarias de las entidades relacionadas.

Transformación de Relaciones N:M (Paso 5)

Proyecto (Número_Proyecto, Nombre_Proyecto)

Transformación de Atributos Multivalorados (Paso 6)

- Para cada atributo multivalorado se creará una tabla R.
- Los atributos de la tabla R serán la clave primaria de la entidad a la cual pertenece el atributo multivalorado más el (o los) atributos correspondientes al atributo multivalorado.
- La clave primaria de la tabla R será la clave primaria de la entidad a la cual pertenece el atributo multivalorado más el (o los) atributos correspondientes al atributo multivalorado

Transformación de Atributos Multivalorados (Paso 6)

Departamento

- -nombre
- -numero
- -lugares[]

Lugares_Dptos (Numero_Dpto, Lugar)

Departamento (<u>Número_Dpto</u>, Nombre_Dpto)

Transformación de Relaciones n-arios (paso 7)

- Para cada relación M:N entre tres o más entidades se crea una tabla R.
- Los atributos de la tabla R serán las claves primarias de todas las entidades relacionadas más los atributos propios de la relación.

 La clave primaria de la relación R será el conjunto de todos los atributos que sean claves primarias de todas las entidades relacionadas.

Transformación de Relaciones n-arios (paso 7)

Presta (Numero_Dpto, Código_Servicio, RIF, Fecha)

Dependencia Funcional L

- Dependencia funcional
 - Son restricciones que se aplican sobre el conjunto de relaciones
- Una dependencia funcional es una conexión entre uno o más atributos. Por ejemplo si se conoce el valor de ID tiene una conexión con Apellido o Nombre.
 - Las dependencias funcionales del sistema se escriben:
 - FechaDeNacimiento → Edad
- De la normalización (lógica) a la implementación (física o real) puede ser surgerible tener éstas dependencias funcionales para lograr la eficiencia en las tablas.

Dependencia Funcional

El resultado de una consulta cualquiera (por ejemplo, de un producto entre la tabla profesor y departamento):

Cédula	Fecha Nacimiento	Sexo	Código	Departamento
9.980.623	06/01/73	М	01	Computación
10.334.890	06/01/76	F	01	Computación
17.544.672	06/01/84	M	03	Investigación
12.334.222	06/01/77	M	02	Control
13.566.002	12/01/78	F	02	Control
10.334.890	06/01/76	F	02	Control
12.334.222	06/01/77	M	01	Computación
13.434.122	06/01/78	F	03	Investigación
13.566.002	12/01/78	F	03	Investigación
17.544.672	06/01/84	М	02	Control
18.244.670	06/01/85	М	01	Computación

Dependencia Funcional

El resultado de una consulta cualquiera (por ejemplo, de un producto entre la tabla profesor y departamento):

Cédula	Fecha Nacimiento	Sexo	Código	Departamento
9.980.623	06/01/73	М	01	Computación
10.334.890	06/01/76	F	01	Computación
17.544.672	06/01/84	M	03	Investigación
12.334.222	06/01/77	M	02	Control
13.566.002	12/01/78	F	02	Control
10.334.890	06/01/76	F	02	Control
12.334.222	06/01/77	M	01	Computación
13.434.122	06/01/78	F	03	Investigación
13.566.002	12/01/78	F	03	Investigación
17.544.672	06/01/84	М	02	Control
18.244.670	06/01/85	M	01	Computación

Cédula → Fecha Nacimiento

Cédula → **Sexo**

Código → **Departamento**

Normalización: Pasos

- El proceso de normalización consiste en:
 - Comprobar que cada tabla tiene un número fijo de columnas y las variables son sencillas o simples (atómicas)
 - Identificar la clave primaria
 - Comprobar que todos los atributos (menos la clave primaria) depende de TODA la clave no de PARTE de ella.
 - Si existe dependencia parcial rompe la relación en varias subrelaciones.
 - Comprobar que todos los atributos dependen de la clave y no de otros atributos (dependencias transitivas)
 - Si existe dependencias no relacionadas con la clave primaria subdivide las tablas

- Un esquema de relación está en primera forma normal (1FN) si, y sólo si, los dominios de todos los atributos de la relación son atómicos
- Un dominio es atómico si se considera que los elementos del dominio son unidades indivisibles.

- La primera formal normal se definió para prohibir los atributos multivalorados, los atributos compuestos y sus combinaciones
- Cuando un esquema de relación no está en primera forma normal, se deben seguir los siguientes pasos para convertir una relación en 1NF:
 - Crea una nueva relación con el grupo que se repite
 - Añade a esta nueva relación la clave primaria de la relación que originalmente la contenía
 - Darle un nombre a la nueva entidad
 - Determina la clave primaria de la nueva entidad
 - Repetir hasta que no queden más atributos no atómicos

Ejemplo

Departamento

Nombre	Código	Fecha de creación	Teléfonos
Informática	A1	01/03/2002	{6354929,6282276,2262875}
Mercadeo	A2	01/01/2002	{6316651,2775331}
Ventas	A3	01/01/2001	{6382276}
Recursos humanos	A4	01/01/2003	{2775331}

Ejemplo

Departamento

Nombre	Código	Fecha de creación	Teléfonos
Informática	A1	01/03/2002	{6354929,6282276,2262875}
Mercadeo	A2	01/01/2002	{6316651,2775331}
Ventas	A3	01/01/2001	{6382276}
Recursos humanos	A4	01/01/2003	{2775331}

- 1. Crea una nueva relación con el grupo que se repite
- 2. Añade a esta nueva relación la clave primaria de la relación que originalmente la contenía
- 3. Darle un nombre a la nueva entidad
- 4. Determina la clave primaria de la nueva entidad
- 5. Repetir hasta que no queden más atributos no atómicos

Teléfono

	I CIC	10110
D	Código	Teléfono
1	A1	6354929
2	A1	6282276
3	A1	2262875
4	A2	6316651
5	A2	2775331
6	A3	6382276
7	A4	2775331

- Un esquema de relación está en segunda forma normal (2FN) si, y sólo si, está en primera forma normal (1FN) y, además cada atributo del esquema de relación que no está en la clave primaria depende funcionalmente de la clave primaria completa y no sólo de una parte de esta
- La segunda forma normal (2FN) sólo se aplica a los esquemas de relación que tienen claves primarias compuestas por dos o más atributos
- Si un esquema de relación está en primera forma normal (1FN) y su clave primaria es simple (un solo atributo) entonces está en segunda forma normal (2FN)

Pasos para convertir una relación 1NF a 2NF:

- Elimina los atributos que dependen parcialmente de la clave primaria y crea con ellos una nueva relación.
- Añade a esta relación una copia del atributo/s del cual dependen (será la clave primaria de la nueva relación)
- Nombra a la nueva entidad (añade un 2 para indicar 2NF)
- Renombra a la entidad original (añade un 2 para indicar2NF)

Ejemplo

Orden Detalle

Número Orden	Número de producto	Descripción	Precio Unitario	Cantidad
1	1	Banano	50	3
1	2	Manzana	500	1
1	3	Pera	600	1
2	1	Banano	50	5

Ejemplo

Orden Detalle

Número Orden	Número de producto	Descripción	Precio Unitario	Cantidad
1	1 γ	Banano	50	3
1 LLAVE	PRIMARIA	Manzana	500	1
1 CON	IPUESTA	Pera	600	1
2	1	Banano	50	5

Ejemplo

Orden Detalle

<u>Número Orden</u>	Número de producto	Descripción	Precio Unitario	Cantidad
1	1	Banano	50	3
1	2	Manzana	500	1
1	3	Pera	600	1
2	1	Banano	50	5

- 1. Elimina los atributos que dependen parcialmente de la clave primaria y crea con ellos una nueva relación.
- Añade a esta relación una copia del atributo/s del cual dependen (será la clave primaria de la nueva relación)
- 3. Nombra a la nueva entidad (añade un 2 para indicar 2NF)
- Renombra a la entidad original (añade un 2 para indicar2NF)

Número de producto → Descripción Número de producto → Precio Unitario

Ejemplo

Orden Detalle

Número Orden	Número de producto	Descripción	Precio Unitario	Cantidad
1	1	Banano	50	3
1	2	Manzana	500	1
1	3	Pera	600	1
2	1	Banano	50	5

Orden Detalle

Número Orden	Número de producto	Cantidad
--------------	--------------------	----------

1 roote ermane	Descripción	Precio Unitario
----------------	-------------	-----------------

- 1. Elimina los atributos que dependen parcialmente de la clave primaria y crea con ellos una nueva relación.
- Añade a esta relación una copia del atributo/s del cual dependen (será la clave primaria de la nueva relación)
- 3. Nombra a la nueva entidad (añade un 2 para indicar 2NF)
- Renombra a la entidad original (añade un 2 para indicar2NF)

Ejemplo

Orden Detalle

Número Orden	Número de producto	Descripción	Precio Unitario	Cantidad
1	1	Banano	50	3
1	2	Manzana	500	1
1	3	Pera	600	1
2	1	Banano	50	5

1. Elimina los atributos que dependen parcialmente de la clave primaria y crea con ellos una nueva relación.

- Añade a esta relación una copia del atributo/s del cual dependen (será la clave primaria de la nueva relación)
- 3. Nombra a la nueva entidad (añade un 2 para indicar 2NF)
- 4. Renombra a la entidad original (añade un 2 para indicar2NF)

Orden Detalle2

Número Orden	Número de producto	Cantidad

Producto Detalle2

Número de producto	Descripción	Precio Unitario

 Un esquema de relación está en tercera forma normal (3FN) si, y sólo si, está en segunda forma normal (2FN) y, además cada atributo del esquema de relación que no está en la clave primaria sólo depende funcionalmente de la clave primaria, y no de ningún otro atributo

Ejemplo

Empleado Departamento

Cédula	Nombre	Fecha	Dirección	Código	Cédula	Nombre Dep
	Empleado	Nacimiento		Dep	Gerente	7

- 1. Elimina los atributos que presentan dependencias transitivas y crea una nueva relación con ellos
- Añade a esta nueva relación una copia de los atributos con los que están relacionados (son determinantes) los atributos eliminados. Estos atributos serán la clave primaria de a nueva relación.
- 3. Nombra a la nueva entidad (añade un 3 para indicar 3NF)
- 4. Renombra a la entidad original (añade un 3 para indicar 3NF)

Ejemplo

Empleado Departamento

Cédula	Nombre	Fecha	Dirección	Código	Cédula	Nombre Dep
	Empleado	Nacimiento		Dep	Gerente	

- 1. Elimina los atributos que presentan dependencias transitivas y crea una nueva relación con ellos
- Añade a esta nueva relación una copia de los atributos con los que están relacionados (son determinantes) los atributos eliminados. Estos atributos serán la clave primaria de a nueva relación.
- 3. Nombra a la nueva entidad (añade un 3 para indicar 3NF)
- 4. Renombra a la entidad original (añade un 3 para indicar 3NF)

Cédula → Código Dep Código Dep → Cédula Gerente, Nombre Dep Código Dep → Cédula

Ejemplo

Empleado Departamento

Cédula	Nombre	Fecha	Dirección	Código	Cédula	Nombre Dep
	Empleado	Nacimiento		Dep	Gerente	7

Empleado Departamento3

Cédula	Nombre	Fecha	Dirección	Código
	Empleado	Nacimiento		Dep

- 1. Elimina los atributos que presentan dependencias transitivas y crea una nueva relación con ellos
- 2. Añade a esta nueva relación una copia de los atributos con los que están relacionados (son determinantes) los atributos eliminados. Estos atributos serán la clave primaria de a nueva relación.
- 3. Nombra a la nueva entidad (añade un 3 para indicar 3NF)
- 4. Renombra a la entidad original (añade un 3 para indicar 3NF)

Departamento3

Código Dep	Cédula	Nombre
	Gerente	Dep

Normalización: Ejemplos

- vacacion(Lugar_id, Lugar_Nombre, cliente_id, cliente_Nombre, fecha)
- ¿Atributos atómicos?
 - Sí, es 1FN
- ¿Cúal es la clave?
 - vacacion(Lugar_id, Lugar_Nombre, cliente_id, cliente_Nombre, fecha)
- 2FN ¿Todos los atributos (que no sean clave primaria) dependen de toda la clave?
 - Lugar_Nombre depende de Lugar_id crea: Lugar_2(Lugar_id, Lugar_Nombre)
 - cliente_Nombre depende de cliente_id crea: cliente_2 (cliente_id, cliente_Nombre)
 - y nos queda: vacacion_2 (Lugar_id, cliente_id, fecha)
 - Ahora ya satisfacemos los requerimientos de la 2FN

¿Es importante transformar del diagrama ER al modelo Relacional?

Taller SQL- Aeropuerto

Obtener el diagrama E/R para un sistema de control de vuelos adaptado a las siguientes reglas de negocio (indicar las entidades, relaciones, atributos, claves primarias que se deducen de cada una de las reglas):

- a) De cada aeropuerto se conoce su código, nombre, ciudad y país.
- b) En cada aeropuerto pueden tomar tierra diversos modelos de aviones (el modelo de un avión determina su capacidad, es decir, el número de plazas.
- c) En cada aeropuerto existe una colección de programas de vuelo. En cada programa de vuelo se indica el número de vuelo, línea aérea y días de la semana en que existe dicho vuelo.
- d) Cada programa de vuelo despega de un aeropuerto y aterriza en otro.
- e) Los números de vuelo son únicos para todo el mundo.
- f) En cada aeropuerto hay múltiples aterrizajes y despegues. Todos los aeropuertos contemplados están en activo, es decir, tienen algún aterrizaje y algún despegue.
- g) Cada vuelo realizado pertenece a un cierto programa de vuelo. Para cada vuelo se quiere conocer su fecha, plazas vacías y el modelo de avión utilizado.
- h) Algunos programas de vuelo incorporan escalas técnicas intermedias entre los aeropuertos de salida y de llegada. Se entiende por escala técnica a un aterrizaje y despegue consecutivos sin altas ó bajas de pasajeros.
- i) De cada vuelo se quieren conocer las escalas técnicas ordenadas asignándole a cada una un número de orden.

Por ejemplo, el programa de vuelo 555 de Iberia con vuelos los lunes y jueves despega de Barajas- Madrid-España y aterriza en Caudell-Sydney-Australia teniendo las siguientes escalas técnicas:

- 1- Los Pradiños-Sao Paulo-Brasil,
- 2-El Emperador-Santiago-Chile y
- 3-Saint Kitts-Auckland-Nueva Zelanda.

Taller SQL- Aeropuerto

Con base en el diagrama diseñado, desarrolle:

- Modelado relacional
- Normalización
- Script BD con sus respectivas relaciones

Otras formas normales

- Forma normal
 - -https://es.wikipedia.org/wiki/Forma_normal