Derivadas direcionais e gradientes

Cálculo Diferencial e Integral III Suzana M. F. de Oliveira

Índice

- Revisão
- Derivadas direcionais
- Gradientes
- Resumo
- Bibliografia

Revisão

Resumo

Propriedades:

- plano tangente não verticalaproximação linear
- continuidade

Diferenciabilidade

$$\lim_{\substack{(\Delta x, \Delta y) \to (0,0)}} \frac{\Delta f - f_x(x_{0,} y_0) \Delta x - f_y(x_{0,} y_0) \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$
onde $\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$

Resumo

Propriedades:

- plano tangente não vertical
- aproximação linear
- continuidade

Diferenciabilidade

$$\lim_{\substack{(\Delta x, \Delta y) \to (0,0) \\ \text{onde } \Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}} \frac{\Delta f - f_x(x_0, y_0) \Delta x - f_y(x_0, y_0) \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$

Diferencial

$$dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

Resumo

Propriedades:

- plano tangente não verticalaproximação linear
- continuidade

Diferenciabilidade

$$\lim_{\substack{(\Delta x, \Delta y) \to (0,0) \\ \text{onde } \Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}} \frac{\Delta f - f_x(x_0, y_0) \Delta x - f_y(x_0, y_0) \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$

- Diferencial

$$dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

Regra da cadeia

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

6

As derivadas parciais f_x(x, y) e f_y(x, y)
 representam as taxas de variação de f(x, y)
 nas direções paralelas aos eixos x e y

E se quiséssemos em outra direção?

 Para indicar a direção é preciso usar um vetor unitário u e posicioná-lo no ponto (x₀, y₀)

- Para indicar a direção é preciso usar um vetor unitário u e posicioná-lo no ponto (x₀, y₀)
 - Uma reta no plano xy expressa parametricamente:

- A variável $z = f(x_0 + su_1, y_0 + su_2)$ é uma função do parâmetro s na reta l
 - O valor da derivada dz/ds em s = 0 dá a taxa de variação instantânea de f(x, y) em relação à distância de f(x, y) na direção e sentido de **u**

Definição:

Se f(x, y) for uma função de x e y e se u = u₁i + u₂j um vetor unitário, então a derivada direcional de f na direção e sentido de u em (x₀, y₀) será denotada por D_u f(x₀, y₀) e definida por

$$D_{u}f(x_{0},y_{0}) = \frac{d}{ds}[f(x_{0}+su_{1},y_{0}+su_{2})]_{s=0}$$

desde que esse limite exista

Semelhante para uma função de mais variáveis

- Interpretação geométrica
 - Inclinação da superfície z = f(x, y) na direção de u no ponto (x₀, y₀, f(x₀, y₀))

Exemplo: Encontre e interprete D_u f(1, 2)

$$f(x, y) = x y$$

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

$$D_{u}f(x_{0},y_{0}) = \frac{d}{ds}[f(x_{0}+su_{1},y_{0}+su_{2})]_{s=0}$$

É preciso checar se o vetor u é unitário

Exemplo: Encontre e interprete D_u f(1, 2)

$$f(x, y) = x y$$

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

Substituindo na equação da derivada direcional

$$D_{\mathbf{u}}f(1,2) = \frac{d}{ds} \left[f\left(1 + \frac{\sqrt{3}s}{2}, 2 + \frac{s}{2}\right) \right]_{s=0}$$

- Calculando f na direção de u

$$f\left(1 + \frac{\sqrt{3}s}{2}, 2 + \frac{s}{2}\right) = \left(1 + \frac{\sqrt{3}s}{2}\right)\left(2 + \frac{s}{2}\right) = \frac{\sqrt{3}}{4}s^2 + \left(\frac{1}{2} + \sqrt{3}\right)s + 2$$

Derivando em relação a s

$$D_{\mathbf{u}}f(1,2) = \frac{d}{ds} \left[\frac{\sqrt{3}}{4} s^2 + \left(\frac{1}{2} + \sqrt{3} \right) s + 2 \right]_{s=0} = \left[\frac{\sqrt{3}}{2} s + \frac{1}{2} + \sqrt{3} \right]_{s=0} = \frac{1}{2} + \sqrt{3}$$

Exemplo: Encontre e interprete D_u f(1, 2)

$$f(x, y) = x y$$

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

Substituindo na equação da derivada direcional

$$D_{\mathbf{u}}f(1,2) = \frac{d}{ds} \left[f\left(1 + \frac{\sqrt{3}s}{2}, 2 + \frac{s}{2}\right) \right]_{s=0}$$

- Calculando f na direção de u

$$f\left(1 + \frac{\sqrt{3}s}{2}, 2 + \frac{s}{2}\right) = \left(1 + \frac{\sqrt{3}s}{2}\right)\left(2 + \frac{s}{2}\right) = \frac{\sqrt{3}}{4}s^2 + \left(\frac{1}{2} + \sqrt{3}\right)s + 2$$

Derivando em relação a s

$$D_{\mathbf{u}}f(1,2) = \frac{d}{ds} \left[\frac{\sqrt{3}}{4} s^2 + \left(\frac{1}{2} + \sqrt{3} \right) s + 2 \right]_{s=0} = \left[\frac{\sqrt{3}}{2} s + \frac{1}{2} + \sqrt{3} \right]_{s=0} = \frac{1}{2} + \sqrt{3}$$

Teorema:

- Se f(x, y) for diferenciável em (x_0, y_0) , e se $\mathbf{u} = \mathbf{u}_1 \mathbf{i} + \mathbf{u}_2 \mathbf{j}$ for um vetor unitário, então a derivada direcional $D_{\mathbf{u}} f(x_0, y_0)$ existirá e será dada por

$$D_{u}f(x_{0},y_{0})=f_{x}(x_{0},y_{0})u_{1}+f_{y}(x_{0},y_{0})u_{2}$$

Semelhante para funções com mais variáveis

Teorema:

- Se f(x, y) for diferenciável em (x_0, y_0) , e se $\mathbf{u} = \mathbf{u}_1 \mathbf{i} + \mathbf{u}_2 \mathbf{j}$ for um vetor unitário, então a derivada direcional $D_{\mathbf{u}}f(x_0, y_0)$ existirá e será dada por

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

- Demonstração: A função $z = f(x_0 + su_1, y_0 + su_2)$ é a composição da função z = f(x, y) com as funções $x = x(s) = x_0 + su_1$ $y = y(s) = y_0 + su_2$

A regra da cadeia fornece

$$D_{\mathbf{u}}f(x_0, y_0) = \frac{d}{ds} \left[f(x_0 + su_1, y_0 + su_2) \right]_{s=0}$$
$$= \frac{dz}{ds} \bigg|_{s=0} = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

- Exemplo: Calcule D_u f(1, 2)
 - Resultado anterior

$$f(x, y) = x y$$

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

$$D_{u}f(x_{0},y_{0})=f_{x}(x_{0},y_{0})u_{1}+f_{y}(x_{0},y_{0})u_{2}$$

- Exemplo:
 - Resultado anterior

$$f(x, y) = x y$$

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

$$D_{\mathbf{u}}f(1,2) = \frac{1}{2} + \sqrt{3}$$

$$D_{u}f(x_{0},y_{0})=f_{x}(x_{0},y_{0})u_{1}+f_{y}(x_{0},y_{0})u_{2}$$

Usando a equação

$$f_x(1,2) = 2$$

$$f_{v}(1,2)=1$$

$$D_{\mathbf{u}}f(1,2) = 2\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2} = \sqrt{3} + \frac{1}{2}$$

Exemplo:

$$D_{u}f(x_{0},y_{0})=f_{x}(x_{0},y_{0})u_{1}+f_{y}(x_{0},y_{0})u_{2}$$

 Obtenha a derivada direcional em (-2, 0) na direção e no sentido do vetor unitário que faz um ângulo de π/3 com o eixo x positivo

$$f(x, y) = e^{xy}$$

Outra forma de expressar um vetor unitário: $u = \cos \theta i + \sin \theta j$

Exemplo:

$$D_{u}f(x_{0},y_{0})=f_{x}(x_{0},y_{0})u_{1}+f_{y}(x_{0},y_{0})u_{2}$$

 Obtenha a derivada direcional em (-2, 0) na direção e no sentido do vetor unitário que faz um ângulo de π/3 com o eixo x positivo

$$f(x, y) = e^{xy}$$

• Derivadas parciais $f_x(x, y) = ye^{xy}, \quad f_y(x, y) = xe^{xy}$

$$f_x(-2,0) = 0, \qquad f_y(-2,0) = -2$$

- Calculo de \mathbf{u} $\mathbf{u} = \cos(\pi/3)\mathbf{i} + \sin(\pi/3)\mathbf{j} = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$
- Substituindo

$$D_{\mathbf{u}}f(-2,0) = f_x(-2,0)\cos(\pi/3) + f_y(-2,0)\sin(\pi/3)$$
$$= 0(1/2) + (-2)(\sqrt{3}/2) = -\sqrt{3} \blacktriangleleft$$

Outra forma de expressar um vetor unitário: $u = \cos \theta i + \sin \theta j$

 A formula da derivada direcional pode ser expressa com o produto escalar

$$D_{\mathbf{u}} f(x_0, y_0) = (f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot (u_1\mathbf{i} + u_2\mathbf{j})$$

= $(f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot \mathbf{u}$

 A formula da derivada direcional pode ser expressa com o produto escalar

$$D_{\mathbf{u}} f(x_0, y_0) = (f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot (u_1\mathbf{i} + u_2\mathbf{j})$$

= $(f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot \mathbf{u}$

Esse vetor é chamado de gradiente

É o vetor que contém as derivadas parciais em um certo ponto de f

- Definição:
 - Se f for uma função de x e y, então o gradiente de f será definido por

$$\nabla f(x,y) = f_x(x,y)i + f_y(x,y)j$$

 Se f for uma função de x, y e z, então o gradiente de f será definido por

$$\nabla f(x,y,z) = f_x(x,y,z)i + f_y(x,y,z)j + f_z(x,y,z)k$$

- Reescrevendo a derivada direcional
 - Função de duas variáveis

$$D_{\boldsymbol{u}}f(x_0,y_0)=\nabla f(x_0,y_0)\cdot \boldsymbol{u}$$

Função de três variáveis

$$D_{u}f(x_{0},y_{0},z_{0})=\nabla f(x_{0},y_{0},z_{0})\cdot u$$

 Exemplo: Obtenha a derivada direcional usando produto escalar com o vetor gradiente no ponto (1, -2, 0).

$$f(x, y, z) = x^2y - yz^3 + z$$
 $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$

$$\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$

 $D_{u}f(x_{0},y_{0},z_{0}) = \nabla f(x_{0},y_{0},z_{0}) \cdot u$

Está normalizado?

 Exemplo: Obtenha a derivada direcional usando produto escalar com o vetor gradiente no ponto (1, −2, 0).

$$f(x, y, z) = x^2y - yz^3 + z$$
 $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$

Derivadas parciais

$$f_x(x, y, z) = 2xy$$
, $f_y(x, y, z) = x^2 - z^3$, $f_z(x, y, z) = -3yz^2 + 1$
 $f_x(1, -2, 0) = -4$, $f_y(1, -2, 0) = 1$, $f_z(1, -2, 0) = 1$

Normalizando vetor a

$$\mathbf{u} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{\sqrt{9}}(2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}$$

Usando a formula

$$D_{\mathbf{u}}f(1, -2, 0) = \nabla f(1, -2, 0) \cdot \mathbf{u} = (-4\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot \left(\frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}\right)$$
$$= (-4)\left(\frac{2}{3}\right) + \frac{1}{3} - \frac{2}{3} = -3$$

Interpretação geométrica

- A inclinação da superfície z = f(x, y) no ponto (x_0, y_0) na direção de u é o produto escalar do

- Propriedades do gradiente: Inclinação máxima
 - Supondo ∇f≠0

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = ||\nabla f(x,y)|| \, ||\mathbf{u}|| \cos \theta = ||\nabla f(x,y)|| \, \cos \theta$$
 onde θ é o ângulo entre os vetores

- Propriedades do gradiente: Inclinação máxima
 - Supondo ∇f≠0

$$D_{\mathbf{u}}f(x, y) = \nabla f(x, y) \cdot \mathbf{u} = ||\nabla f(x, y)|| ||\mathbf{u}|| \cos \theta = ||\nabla f(x, y)|| \cos \theta$$

onde θ é o ângulo entre os vetores

Mesma direção e sentido

• O valor máximo de $D_u f(x,y)$ ocorre quando $\theta=0$ (cos(0)=1)

- Propriedades do gradiente: Inclinação máxima
 - Supondo ∇f≠0

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = ||\nabla f(x,y)|| ||\mathbf{u}|| \cos \theta = ||\nabla f(x,y)|| \cos \theta$$

onde θ é o ângulo entre os vetores

- O valor máximo de $D_u f(x,y)$ ocorre quando $\theta=0$ (cos(0)=1)
- Interpretação geométrica:
 Em (x, y), a superfície z = f(x, y)
 tem sua inclinação máxima na direção do gradiente,
 e a inclinação máxima é ||∇f(x, y)||.

Decrescimento máximo y

Mesma direção

e sentido

Imagine subir um morro totalmente simétrico (semi-esfera)

- Propriedades do gradiente:
 - Supondo $\nabla f = 0$, $D_u f(x,y) = 0$ para qualquer direção
 - Isso ocorre tipicamente onde a superfície z = f(x, y) tiver um "máximo relativo", um "mínimo relativo" ou um ponto de sela.

- Propriedades do gradiente
 - Exemplo: Determine o valor máximo de uma derivada direcional em (-2,0) e o vetor unitário que da direção e sentido em que ocorre.

$$f(x, y) = x^2 e^{y}$$

- Propriedades do gradiente
 - Exemplo: Determine o valor máximo de uma derivada direcional em (-2,0) e o vetor unitário que da direção e sentido em que ocorre.

$$f(x, y) = x^2 e^{y}$$

O gradiente

$$\nabla f(x, y) = f_x(x, y)\mathbf{i} + f_y(x, y) \mathbf{j} = 2xe^y \mathbf{i} + x^2e^y \mathbf{j}$$
$$\nabla f(-2, 0) = -4\mathbf{i} + 4\mathbf{j}$$

Valor máximo

$$\|\nabla f(-2,0)\| = \sqrt{(-4)^2 + 4^2} = \sqrt{32} = 4\sqrt{2}$$

Vetor unitário

$$\mathbf{u} = \frac{\nabla f(-2,0)}{\|\nabla f(-2,0)\|} = \frac{1}{4\sqrt{2}}(-4\mathbf{i} + 4\mathbf{j}) = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$

- Gradientes como normais às curvas de nível
 - Suponha que (x₀, y₀) seja um ponto na curva de nível f(x, y) = c de f e suponha que essa curva possa ser dada por uma parametrização lisa como

$$x = x(s), \quad y = y(s)$$

onde s é um parâmetro de comprimento de arco

Quem é o vetor tangente a essa curva?

Se s=1, anda-se uma unidade, se s=2, anda-se duas unidades...

- Gradientes como normais às curvas de nível
 - Suponha que (x₀, y₀) seja um ponto na curva de nível f(x, y) = c de f e suponha que essa curva possa ser dada por uma parametrização lisa como

$$x = x(s), \quad y = y(s)$$

onde s é um parâmetro de comprimento de arco

Vetor tangente unitário

$$\mathbf{T} = \mathbf{T}(s) = \left(\frac{dx}{ds}\right)\mathbf{i} + \left(\frac{dy}{ds}\right)\mathbf{j}$$

Uma propriedade diz que o vetor tangente da curva parametrizada pelo comprimento é sempre unitário!

- Gradientes como normais às curvas de nível
 - Diferenciando os dois lados da equação a seguir em relação a s

$$f(x, y) = c$$

Pela regra da cadeia, tem-se:

$$\frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = 0$$

Pode ser reescrita usando o produto escalar?

- Gradientes como normais às curvas de nível
 - Diferenciando os dois lados da equação a seguir em relação a s

$$f(x, y) = c$$

Pela regra da cadeia, tem-se:

$$\frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = 0$$

Reescrevendo

$$\left(\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}\right) \cdot \left(\frac{dx}{ds}\mathbf{i} + \frac{dy}{ds}\mathbf{j}\right) = 0$$

- Gradientes como normais às curvas de nível
 - Diferenciando os dois lados da equação a seguir em relação a s

$$f(x, y) = c$$

Pela regra da cadeia, tem-se:

$$\frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = 0$$

Reescrevendo

$$\left(\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}\right) \cdot \left(\frac{dx}{ds}\mathbf{i} + \frac{dy}{ds}\mathbf{j}\right) = 0$$

Abreviando

$$\nabla f(x, y) \cdot \mathbf{T} = 0$$

O que isso significa?

- Gradientes como normais às curvas de nível
 - Teorema:
 - Suponha z = f(x, y) com derivadas parciais de primeira ordem contínuas em um disco aberto centrado em (x_0, y_0) e $\nabla f(x_0, y_0) \neq \mathbf{0}$. Então $\nabla f(x_0, y_0)$ será normal à curva de nível de f por (x_0, y_0)

$$f(x,y)=x^2+y^2$$

Ponto (2,-1)Curva de nível k=5 é um círculo de raio $\sqrt{5}$

Gradientes como normais às curvas de nível

Quanto mais próxima as curvas de nível, mais ingrime é a função, isto é, maior a magnitude do gradiente de f

- Gradientes como normais às curvas de nível
 - Exemplo: Esboce as direções e os sentidos dos vetores gradientes de f nos pontos P, Q e R. Em quais desses três pontos o gradiente tem magnitude máxima? E mínima?

- Gradientes como normais às curvas de nível
 - Exemplo: Esboce as direções e os sentidos dos vetores gradientes de f nos pontos P, Q e R. Em quais desses três pontos o gradiente tem magnitude máxima? E mínima?

- Gradientes como normais às curvas de nível
 - Observação: Qual seria a derivada direcional, se escolhêssemos u=T?

$$D_{\boldsymbol{u}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \boldsymbol{u}$$

- Gradientes como normais às curvas de nível
 - Observação: Qual seria a derivada direcional, se escolhêssemos u=T?

$$D_{\boldsymbol{u}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \boldsymbol{u}$$

 A função f não está crescendo nem decrescendo

- Aplicação de gradientes
 - Há inúmeras aplicações nas quais o movimento de um objeto deve ser controlado de forma que se mova em direção a um fonte de calor
 - Aplicações médicas: certos equipamentos para diagnósticos são projetados para localizar fontes de calor geradas por tumores ou infecções

- Aplicação de gradientes
 - Exemplo: Uma partícula que procura o calor está localizada no ponto (2, 3) de uma placa lisa de metal, cuja temperatura em um ponto (x, y) é

$$T(x, y) = 10 - 8x^2 - 2y^2$$

 Determine uma equação para a trajetória da partícula se ela mover-se continuamente na direção do aumento máximo da temperatura.

Trajetória é dada por uma curva paramétrica.

A partícula está inicialmente no ponto t=0

- Aplicação de gradientes
 - Exemplo: Uma partícula que procura o calor está localizada no ponto (2, 3) de uma placa lisa de metal, cuja temperatura em um ponto (x, y) é

$$T(x, y) = 10 - 8x^2 - 2y^2$$

 Determine uma equação para a trajetória da partícula se ela mover-se continuamente na direção do aumento máximo da temperatura.

Trajetória é dada por uma curva paramétrica.

A partícula está inicialmente no ponto t=0

Vetor velocidade v(t) no instante t aponta na direção do gradiente

A partícula se move na direção do aumento máximo da temperatura, isto é, na direção do gradiente de T(x, y)

- Aplicação de gradientes
 - Exemplo: Uma partícula que procura o calor está localizada no ponto (2, 3) de uma placa lisa de metal, cuja temperatura em um ponto (x, y) é

$$T(x, y) = 10 - 8x^2 - 2y^2$$

 Determine uma equação para a trajetória da partícula se ela mover-se continuamente na direção do aumento máximo da temperatura.

Chega em problema de valor inicial

$$\mathbf{v}(t) = k\nabla T(x, y)$$

- Para funções de três variáveis
 - O gráfico é representado em por curvas de níveis
 - O gradiente é a normal da curva

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
 onde A, B e C são as derivadas parciais

- Para funções de três variáveis
 - Exemplo: Considere o elipsoide

$$x^2 + 4y^2 + z^2 = 18$$

• Encontre uma equação do plano tangente ao elipsoide no ponto (1, 2, 1) e as equações paramétricas da reta que é normal ao elipsoide no ponto (1, 2, 1)

 $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ onde A, B e C são as derivadas parciais

- Para funções de três variáveis
 - Exemplo: Considere o elipsoide

$$x^2 + 4y^2 + z^2 = 18$$

- Encontre uma equação do plano tangente ao elipsoide no ponto (1, 2, 1) e as equações paramétricas da reta que é normal ao elipsoide no ponto (1, 2, 1)
 - Vetor gradiente

$$\nabla F(x, y, z) = \langle F_x(x, y, z), F_y(x, y, z), F_z(x, y, z) \rangle = \langle 2x, 8y, 2z \rangle$$

Vetor normal

$$\mathbf{n} = \nabla F(1, 2, 1) = \langle 2, 16, 2 \rangle$$

Plano tangente

$$2(x-1) + 16(y-2) + 2(z-1) = 0$$
 ou $x + 8y + z = 18$

- Equações parametrcas da reta normal

$$x = 1 + 2t$$
, $y = 2 + 16t$, $z = 1 + 2t$

Inclinação = $\nabla f \cdot \mathbf{u}$

- Derivadas direcionais
 - Inclinação em qualquer direção

- Derivadas direcionais
 - Inclinação em qualquer direção
- Gradiente
 - Inclinação máxima

- Derivadas direcionais
 - Inclinação em qualquer direção
- Gradiente
 - Inclinação máxima
 - É o vetor normal às curva de nível

- Exercícios de fixação:
 - Seção 13.6
 - Exercícios de compreensão 13.6
 - 1-18
 - 41-46
 - 47-50
 - Seção 13.7
 - 3-12

- Próxima aula:
 - Máximos e mínimos

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; BIVENS, Irl; DAVIS, Stephen.
 Cálculo, v. 2. 10a ed. Porto Alegre: Bookman, 2012.
 - Seção 13.6 e 13.7 (início)