

积分 $\int B_s ds$  的distribution 是Gaussian,把它写成求和之后极限的形式,每一个分量都服从Gaussian,加上独立,求和也就服从Gaussian,均值为0,方差为 $rac{1}{3}T^3$ 

quadrtaic variation: $\lim\sum (B_{t_{i+1}}-B_{t_i})^2=T$ ,这个是啥啊,这不就是 $\int B_s^2 ds$  !!!不是!!!这个需要再乘 $(t_{i+1}-t_i)$ ,这个是 $\int (dB_t)^2$ 

 $H_u$  可以是任何函数哦,也可以包含 $B_u$ 的

 $H_u$  is simple process --> continuous trajectories, martingale , isometry( $E[(\int_0^t H_u dB_u)^2] = E[\int_0^t H_u^2 du]$ ),相乘( $E[(\int_s^{t_1} H_u dB_u) \int_s^{t_2} K_u dB_u)] = E[\int_s^{min(t_1,t_2)} H_u K_u du]$ ),另一个martingale( $(\int_0^t H_u dB_u)^2 - \int_0^t H_u^2 du$ ),均值为0

quadratic variation:  $\int_0^t H_u^2 du$ 

 $H_u \in H^2, E[\int_0^t H_u^2 du] < +\infty$  ,可以用simple process 逼近 $H^2$ , --> 也满足martingale和isometry

Proposition 5.3.5 (Wiener integral) Let  $f: \bar{\iota}o,T$ ]  $\rightarrow IR$  be a square-integrable deterministic function,

then the process  $\left(\int_{0}^{t} f(s) dB_{s}\right)_{0 \le t \le T}$  is called Wiener integral and verifies  $\int_{0}^{t} f(s) dB_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} f'(s) ds\right)$ 

 $H_u \in H^1, \int_0^t H_u^2 du < +\infty$  这时,这个积分不再是martingale,而是 local martingale

注意哈,所有的讨论都是针对这一个积分,只不过是 $H_u$ 不同满足的性质也就不一样

quadratic correlation:  $\int_0^t H_u K_u du$