

The Arc Index of Theta-Curve and Handcuff Graph

Eunchan Cho¹ Jeongwon Shin¹ Boyeon Seo¹ Minho Choi¹

SEP 6, 2025 학회이름

¹Korea Science Academy of KAIST

Classifying by Determinant

THC-cromwell matrix

• The **THC-cromwell matrix** is an expansion of cromwell matrix into θ -curves and handcuff graphs

Determinant of the cromwell matrices of Knot

Theorem

Let K be any knot then its determinant of the cromwell matrix is 0 or ± 2 .

PROOF

grid diagram

THC-cromwell

row/column

1	1	0	0	0	
0	1	1	0	0	
0	0	1	1	0	
0	0	0	1	0 0 0 1 1	
1	0	0	0	1	

CASE 1. When n is an even number.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad \longmapsto \qquad \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

So the determinant of K is 0.

CASE 2. When n is an odd number.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \longmapsto$$

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix}$$

So the determinant of K is ± 2

H-deletion of THC-cromwell matricies

• The **H-deletion** Matrix of the THC-cromwell matrix G is $(n-1) \times (n-1)$ matrix which deleted vertex-row and its two side-rows from the matrix G.

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Determinant of the THC-cromwell matrices

Theorem

Let M be any THC-cromwell matrice of θ -curve or handcuff graph.

- $det(M) = \pm 1 \iff M \text{ represents } \theta\text{-curve}$
- det(M) = 0 or $\pm 2 \iff M$ represents handcuff graph

*det(M) = determinant of H-deletion matrix of M

PROOF

CASE 1. When M represents θ -curve

i Line-shape

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

	Γ1	1	0	0	1
	0	0	1	0	0
$\xrightarrow{H-deletion}$	0	0	0	1	0
	0	0	1	0	1
H−deletion →	1	0	0	1	0

and simplify with

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

subtracting

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So $det(M) = \pm 1$

7

CASE 1. When M represents θ -curve

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

and simplify with

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

regioning

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So
$$det(M) = \pm 1$$

8