

TÓM TẮT LÝ THUYẾT

Dòng điện dịch	Dòng điện dẫn
- Dòng xuất hiện giữa hai bản tụ khi có	- Dòng xuất hiện trong dây dẫn và liên
điện trường biến thiên.	quan tới sự chuyển dời của các điện
- Không gây ra hiệu ứng Joule – Lenx,	tích.
không chịu tác dụng của từ trường	- Gây ra hiệu ứng Joule – Lenx, chịu tác
ngoài.	dụng của từ trường ngoài.
- Biểu thức mật độ dòng điện dịch:	- Biểu thức mật độ dòng điện dẫn:
$\longrightarrow \partial \vec{D}$	$\overrightarrow{j_{d\tilde{a}n}} = \sigma \vec{E}$
$\overrightarrow{j_{dich}} = \frac{\partial \overrightarrow{D}}{\partial t}$	

Mối quan hệ giữa mật độ dòng điện dẫn cực đại và mật độ dòng điện dịch cực đại:

$$\frac{\left|j_{dich}\right|_{max}}{\left|j_{d\tilde{a}n}\right|_{max}} = \frac{\varepsilon\varepsilon_0\omega}{\sigma}$$

Vector mật độ dòng điện toàn phần:

$$\overrightarrow{j_{tp}} = \overrightarrow{j_{d!ch}} + \overrightarrow{j_{d\tilde{\mathbb{a}}n}}$$

DẠNG TOÁN: MẬT ĐỘ DÒNG ĐIỆN

Bài 7.5: Tính giá trị cực đại của dòng điện dịch xuất hiện trong dây đồng ($\underline{\sigma} = 6.10^7 \ \Omega$) khi có dòng điện xoay chiều có cường độ cực đại $I_0 = 2 \ A$ và chu kì $\underline{T} = 0.01 \ s$ chạy qua dây. Biết tiết diện ngang của dây là $S = 0.5 \ mm^2$

Hướng dẫn giải:

$$\frac{\left|j_{dich}\right|_{max}}{\left|j_{d\tilde{a}n}\right|_{max}} = \frac{\varepsilon\varepsilon_0\omega}{\sigma} \left. \& \left|j_{d\tilde{a}n}\right|_{max} = \frac{I_0}{S} \rightarrow \left|j_{dich}\right|_{max} = \frac{2\pi\varepsilon\varepsilon_0I_0}{\sigma TS} = 3.7.10^{-10}A/m^2$$

BÀI 7.6: Khi phóng điện cao tần vào một thanh Na có điện dẫn suất σ = 0,23.10 8 Ω 1 m $^{-1}$ dòng điện dẫn cực đại có giá trị gấp khoảng 40 triệu lần dòng điện dịch cực đại. Xác định chu kì biến đổi của dòng điện.

Hướng dẫn giải:

$$\frac{\left|j_{\text{dich}}\right|_{max}}{\left|j_{\text{dan}}\right|_{max}} = \frac{\varepsilon\varepsilon_0\omega}{\sigma} \to \omega = \frac{\sigma}{\varepsilon\varepsilon_0} \frac{\left|j_{\text{dich}}\right|_{max}}{\left|j_{\text{dan}}\right|_{max}} \to T = \frac{2\pi}{\omega} \approx 9,68.10^{-11} \text{s}$$

BÀI 7.7: Một tụ điện có điện môi với hẳng số điện môi ε = 6 được mắc vào một hiệu điện thế xoay chiều $U=U_0cos\omega t$ với U_0 = 300 V, chu kỳ T = 0,01 s. Tìm giá trị của mật độ dòng điện dịch, biết rằng hai bản tụ điện cách nhau d = 0,4 cm Hướng dẫn giải:

$$\overrightarrow{j_{dich}} = \frac{\partial \overrightarrow{D}}{\partial t} = \varepsilon \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \rightarrow |\overrightarrow{j_{dich}}| = \left| \varepsilon \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \right| = -\frac{\varepsilon \varepsilon_0 \omega U_0}{d} \sin \omega t = -\frac{2\pi \varepsilon \varepsilon_0 U_0}{d} \sin \omega t$$

$$\rightarrow j_{dich} = 2,5.10^{-3} \sin(200\pi t + \pi) \left(\frac{A}{m^2}\right)$$