ANOVA

In Exercises 16.38–16.41, fill in the missing entries in the partially completed one-way ANOVA tables.

16.38

Source	df	SS	MS = SS/df	F-statistic
Treatment Error	2	84.400	21.652	
Total	14			

16.39

Source	df	SS	MS = SS/df	F-statistic
Treatment		2.124	0.708	0.75
Error	20			
Total				

16.40

Source	df	SS	MS = SS/df	F-statistic
Treatment	4			
Error	20		6.76	
Total		173.04		

16.41

Source	df	SS	MS = SS/df	F-statistic
Treatment			1.4	
Error	12		0.9	
Total	14			

In Exercises 16.42–16.47, we provide data from independent simple random samples from several populations. In each case,

- a. compute SST, SSTR, and SSE by using the computing formulas given in Formula 16.1 on page 726.
- b. compare your results in part (a) for SSTR and SSE with those in Exercises 16.24–16.29, where you employed the defining formulas.
- c. construct a one-way ANOVA table.
- d. decide, at the 5% significance level, whether the data provide sufficient evidence to conclude that the means of the populations from which the samples were drawn are not all the same.

4	-		44
	h	_4	. /
•	v	•	

Sample 1	Sample 2	Sample 3
1	10	4
9	4	16
	8	10
	6	
	2	

16.43

Sample 1	Sample 2	Sample 3
8	2	4
4	1	3
6	3	6
		3

16.44

Sample 1	Sample 2	Sample 3	Sample 4
6	9	4	8
3	5	4	4
3	7	2	6
	8	2	
	6	3	

16.45

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
7	5	6	3	7
4	9	7	7	9
5	4	5	7	11
4		4	4	
		8	4	

16.46

Sample 1 Sa	mple 2	Sample 3	Sample 4	Sample 5
4	8	9	4	3
2	5	6	0	6
3	5	9	2	9

16.47

Sample 1	Sample 2	Sample 3	Sample 4
11	9	16	5
6	2	10	1
7	4	10	3

Assistant Prof. Jamisusmani