Контрольные (экзаменационные) вопросы по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 3. Энтропийное кодирование, модель источника.
- 4. Метод энтропийного сжатия Шеннона—Фано.
- 5. Метод энтропийного сжатия Хаффмана.
- 6. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с флаг-битом сжатая/несжатая цепочка.
- 7. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 8. Метод словарного сжатия LZ77: идея, основные опции. Концепт Зива— Лемпеля от 1977 года.
- 9. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с флагбитом ссылка/символ.
- 10. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 11. Структура текстовых файлов. ASCII. Расширения ASCII, кодировки русского языка.
- 12. Структура текстовых файлов. Unicode. UTF-8, UTF-16, UTF-32.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1

по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с флаг-битом сжатая/несжатая цепочка.

Задача: дано сообщение $C=0000\,0000\,0123\,4567$ 7777 7777 2223 3322 (в байте $k=3\,$ бита). При построении кодов $1-2\,$ указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №2

по курсу «Основы теории информации и кодирования»

- 1. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.

Задача: дано сообщение $C=0000\,0000\,0123\,3333\,$ **3434 3434 0001 4567** (в байте $k=3\,$ бита). При построении кодов $1-2\,$ указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №3

по курсу «Основы теории информации и кодирования»

- 1. Энтропийное кодирование, модель источника.
- 2. Метод словарного сжатия LZ77: идея, основные опции. Концепт Зива— Лемпеля от 1977 года.

Задача: дано сообщение $C=0001\,2222\,2223\,3333\,$ **4555 6677 6776 7767** (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №4

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Шеннона—Фано.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с флаг-битом ссылка/символ.

Задача: дано сообщение $C=1111\,1111\,0123\,4567\,$ 1231 2312 1212 1212 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Хаффмана.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с односимвольным префиксом ссылки в несжатом тексте.

Задача: дано сообщение $C=0000\,2444\,0123\,3333\,$ 4567 7771 7772 7727 (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №6

по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Структура текстовых файлов. ASCII. Расширения ASCII, кодировки русского языка.

Задача: дано сообщение $C=0000\,0000\,0123\,4567$ 7777 7777 2223 3322 (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №7

по курсу «Основы теории информации и кодирования»

- 1. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 2. Структура текстовых файлов. Unicode. UTF-8, UTF-16, UTF-32.

 ${f 3aga4a}$: дано сообщение $C=0000\,0000\,0123\,3333\,$ 3434 3434 0001 4567 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{\mathrm{PB}}(C),\ I_{\mathrm{B\Pi}}(C)$ и $I_{\mathrm{M1}}(C)$. Как $I_X(C)$ для указанных моделей Xдолжно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024 Директор СПИНТех_

_Гагарина Л. Г.

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №8

по курсу «Основы теории информации и кодирования»

- 1. Энтропийное кодирование, модель источника.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с флаг-битом сжатая/несжатая цепочка.

 ${f 3}$ адача: дано сообщение $C={f 0001\,2222\,2223\,3333}$ 4555 6677 6776 7767 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{\mathrm{PB}}(C),\ I_{\mathrm{B\Pi}}(C)$ и $I_{\mathrm{M1}}(C)$. Как $I_X(C)$ для указанных моделей Xдолжно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

Директор СПИНТех. Гагарина Л. Г.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №9

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Шеннона—Фано.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.

Задача: дано сообщение $C=1111\,1111\,0123\,4567\,$ 1231 2312 1212 1212 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024 Директор СПИНТех ________ Гагарина Л. Г.

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №10

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Хаффмана.
- 2. Метод словарного сжатия LZ77: идея, основные опции. Концепт Зива— Лемпеля от 1977 года.

Задача: дано сообщение $C=0000\,2444\,0123\,3333\,$ 4567 7771 7772 7727 (в байте $k=3\,$ бита). При построении кодов $1-2\,$ указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №11

по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с флаг-битом ссылка/символ.

Задача: дано сообщение $C=0000\,0000\,0123\,4567$ 7777 7777 2223 3322 (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12

по курсу «Основы теории информации и кодирования»

- 1. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с односимвольным префиксом ссылки в несжатом тексте.

Задача: дано сообщение $C=0000\,0000\,0123\,3333\,$ **3434 3434 0001 4567** (в байте $k=3\,$ бита). При построении кодов $1-2\,$ указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №13

по курсу «Основы теории информации и кодирования»

- 1. Энтропийное кодирование, модель источника.
- 2. Структура текстовых файлов. ASCII. Расширения ASCII, кодировки русского языка.

Задача: дано сообщение $C=0001\,2222\,2223\,3333\,$ **4555 6677 6776 7767** (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №14

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Шеннона—Фано.
- 2. Структура текстовых файлов. Unicode. UTF-8, UTF-16, UTF-32.

Задача: дано сообщение $C=1111\,1111\,0123\,4567\,$ 1231 2312 1212 1212 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Хаффмана.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с флаг-битом сжатая/несжатая цепочка.

Задача: дано сообщение $C=0000\,2444\,0123\,3333\,$ 4567 7771 7772 7727 (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №16

по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.

Задача: дано сообщение $C=0000\,0000\,0123\,4567$ 7777 7777 2223 3322 (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №17

по курсу «Основы теории информации и кодирования»

- 1. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 2. Метод словарного сжатия LZ77: идея, основные опции. Концепт Зива— Лемпеля от 1977 года.

Задача: дано сообщение $C=0000\,0000\,0123\,3333\,$ 3434 3434 0001 4567 (в байте $k=3\,$ бита). При построении кодов $1-2\,$ указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №18

по курсу «Основы теории информации и кодирования»

- 1. Энтропийное кодирование, модель источника.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с флаг-битом ссылка/символ.

Задача: дано сообщение $C=0001\,2222\,2223\,3333\,$ 4555 6677 6776 7767 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №19

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Шеннона—Фано.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с односимвольным префиксом ссылки в несжатом тексте.

Задача: дано сообщение $C=1111\,1111\,0123\,4567\,$ 1231 2312 1212 1212 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №20

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Хаффмана.
- 2. Структура текстовых файлов. ASCII. Расширения ASCII, кодировки русского языка.

Задача: дано сообщение $C=0000\,2444\,0123\,3333\,$ **4567 7771 7772 7727** (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №21

по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Структура текстовых файлов. Unicode. UTF-8, UTF-16, UTF-32.

Задача: дано сообщение $C=0000\,0000\,0123\,4567$ 7777 7777 2223 3322 (в байте $k=3\,$ бита). При построении кодов $1-2\,$ указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

Директор СПИНТех_

_Гагарина Л. Г.

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №22

по курсу «Основы теории информации и кодирования»

- 1. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с флаг-битом сжатая/несжатая цепочка.

Задача: дано сообщение $C=0000\,0000\,0123\,3333\,$ **3434 3434 0001 4567** (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №23

по курсу «Основы теории информации и кодирования»

- 1. Энтропийное кодирование, модель источника.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.

Задача: дано сообщение $C=0001\,2222\,2223\,3333\,$ **4555 6677 6776 7767** (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №24

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Шеннона—Фано.
- 2. Метод словарного сжатия LZ77: идея, основные опции. Концепт Зива— Лемпеля от 1977 года.

Задача: дано сообщение $C=1111\,1111\,0123\,4567\,$ 1231 2312 1212 1212 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №25

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Хаффмана.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с флаг-битом ссылка/символ.

Задача: дано сообщение $C=0000\,2444\,0123\,3333\,$ **4567 7771 7772 7727** (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №26

по курсу «Основы теории информации и кодирования»

- 1. Вероятностный подход к измерению информации.
- 2. Метод словарного сжатия LZ77: идея, основные опции. LZ77 с односимвольным префиксом ссылки в несжатом тексте.

Задача: дано сообщение $C=0000\,0000\,0123\,4567$ 7777 7777 2223 3322 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №27

по курсу «Основы теории информации и кодирования»

- 1. Энтропия источника данных, первая теорема Шеннона для сжатия.
- 2. Структура текстовых файлов. ASCII. Расширения ASCII, кодировки русского языка.

Задача: дано сообщение $C=0000\,0000\,0123\,3333\,$ **3434 3434 0001 4567** (в байте k=3 бита). При построении кодов 1–2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства LZ77 с флаг-битом ссылка/символ (флаг-биты группируются по k штук во флаг-байты).
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №28

по курсу «Основы теории информации и кодирования»

- 1. Энтропийное кодирование, модель источника.
- 2. Структура текстовых файлов. Unicode. UTF-8, UTF-16, UTF-32.

Задача: дано сообщение C= 0001 2222 2223 3333 4555 6677 6776 7767 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана без учёта контекста.
- 2. Сожмите C кодом из семейства LZ77 с односимвольным префиксом ссылки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №29

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Шеннона—Фано.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с флаг-битом сжатая/несжатая цепочка.

Задача: дано сообщение $C=1111\,1111\,0123\,4567\,$ 1231 2312 1212 1212 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Шеннона-Фано без учёта контекста.
- 2. Сожмите C кодом из семейства RLE с флаг-битом сжатая/несжатая цепочка.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024

Директор СПИНТех_

_Гагарина Л. Г.

Национальный исследовательский университет «МИЭТ»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №30

по курсу «Основы теории информации и кодирования»

- 1. Метод энтропийного сжатия Хаффмана.
- 2. Кодирование длин повторений (RLE): идея, основные опции. «Наивный» RLE. RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.

Задача: дано сообщение $C=0000\,2444\,0123\,3333\,$ 4567 7771 7772 7727 (в байте k=3 бита). При построении кодов 1-2 указывайте все выбираемые вами опции.

- 1. Сожмите C кодом из семейства Хаффмана с учётом одного предшествующего символа.
- 2. Сожмите C кодом из семейства RLE с односимвольным префиксом сжатой цепочки в несжатом тексте.
- 3. Рассчитайте $I_{PB}(C)$, $I_{B\Pi}(C)$ и $I_{M1}(C)$. Как $I_X(C)$ для указанных моделей X должно соотноситься с длинами кодов 1–2? Выполняются ли эти соотношения?

Билет рассмотрен и утверждён на заседании УС института СПИНТех 9.12.2024