Chemistry

Book Name: Selina Concise

EXERCISE-1(A)

Solution 1:

(a) Ferrous salts : Light green(b) Ammonium salts : Colourless

(c) Cupric salts: Blue

(d) Calcium salts : Colourless(e) Aluminium salts : Colourless

Solution 2:

(a) Cu(OH)₂

(b) ZnO

(c) NaOH

(d) NH₄OH

(e) Na+, Ca2+

(f) Fe^{2+} , Mn^{2+}

(g) Aluminium

(h) Zn(OH)₂ and Al(OH)₃

(i) PbO

(j) Ammonium ion

Solution 3:

 $2A1 + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$

(Hot and conc.) Sodium meta aluminate

(colourless)

 $PbO + 2NaOH \longrightarrow Na_2PbO_2 + H_2O$

(Yellow) sodium plumbate

(colourless, soluble)

Solution 4:

(i)

 $CuSO_4 + 2NH_4OH \longrightarrow Cu(OH)_2 \downarrow (NH_4)_2 SO_4$

Blue pale blue ppt. colourless is solution

With excess of NH₄OH, ppt dissolves

 $CU(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$

Excess Tetrammine

Copper(II) Sulphate

(ii)

 $ZnSO_4 + 2NH_4OH \rightarrow Zn(OH)_2 + (NH_4)_2SO_4$

Colourless white, gelatinous ppt colourless

With excess of NH₄OH, ppt dissolves

 $Zn(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH \rightarrow [Zn(NH_3)_4]SO_4 + 4H_2O$

(excess) Tetramminezinc(II) Sulphate

(colourless)

(iii)

 $FeCI_3 + 3NH_4OH \rightarrow Fe(OH)_3 \downarrow + 3NH_4CI$

Yellow solution reddish brown ppt. colourless in solution

Solution 5:

(i) $FeCI_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow 3 NaCI$

Yellow reddish brown, ppt colourless in solution
In excess of alkali, the reddish brown ppt, of Fe(OH)₃ remains insoluble

(ii) $ZnSO_4 + 2NaOH \rightarrow Zn(OH)_2 \downarrow + NaSO_4$

Colourless white gelatinous ppt. colourless

In excess of alkali, white gelatinous ppt. of Zn(OH)₂ becomes soluble

 $Zn(OH)_2 + 2NaOH (Excess) \rightarrow Na_2ZnO2 + 2H_2O$

Sodium zincate (colourless)

(iii) $Pb(NO_3)_2 + 2NaOH \rightarrow Pb(OH)_2 \downarrow + 2NaNO_3$ White ppt (colourless)

In excess of alkali, white precipitate of Pb(OH)₂ becom essoluble:

 $Pb(OH)_2 + 2NaOH(excess) \rightarrow Na_2PbO_2 + 2H_2O$

Sodium plumbate {colourless}

 $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 \downarrow + 2NaSO_4$

Blue colourless pale blue ppt. { colourless}

In excess of alkali, pale blue precipitate of Cu(OH)₂ is insoluble

Solution 6:

Zinc chloride (ZnCl₂) is soluble in excess of ammonium hydroxide.

 $ZnCI_2 + 2NH_4OH \rightarrow Zn(OH)_2 \downarrow 2NH_4CI$

Colourless White gelatinous ppt.

With excess of NH₄oh ppt dissolves

 $Zn(OH)_2 + 2NH_4CI + 2NH_4OH (excess) \rightarrow [Zn(NH_3)_4]CI_2 + 4H_2O$

Tetram mine zinc (II) Chloride

Colourless

Solution 7:

- (a) ZnCl₂
- (b) $Zn(OH)_2$

Solution 8:

- (a) PbO
- (b) ZnO
- (c) K₂ZnO₂

Solution 9:

(a) (iii)

Aqueous solution of copper sulphate is blue.

(b) (iii)

FeSO₄ + 2NaOH → Fe(OH)₂ + Na₂SO₄ (Dirty green, (Colourless) gelatinous ppt.)

(c) (iii)

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$

Sodium zincate

(Colourless)

 $Zz Zn + HCl \rightarrow ZnCl_2 + H_2$

Solution 10:

When freshly precipitated aluminum hydroxide reacts with caustic soda solution, whitesalt of sodium meta aluminate is obtained.

 $Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$

Sodium meta aluminate

Solution 11:

(a) Distinguish by adding Sodium hydroxide solution:

(i) $Ca(NO_3)_2 + 2NaOH$ $Ca(OH)_2 + 2NaNO_3$

On adding excess of NaOH, ppt. of Ca (OH)₂ is sparingly soluble.

 $Pb(NO_3)_2 + 2NaOH Pb(OH)_2 + 2NaNO_3$

On adding excess of NaOH, ppt of Pb(OH)₂ is soluble.

(ii) $Pb(NO_3)_2 + 2NaOH Pb(OH)_2 + 2NaNO_3$

On adding excess of NaOH, ppt of Pb(OH)₂is soluble.

 $ZnSO_4 + 2NaOH Zn(OH)_2 + Na_2SO_4$

With excess of NaOH, white gelatinous ppt. of Zn (OH)₂ is soluble. So, these two cannot be distinguished by NaOH alone. However white ppt. of Pb (OH)₂ is readily soluble in acetic acid also.

(iii) $CuSO_4 + 2NaOH$ $Cu(OH)_2 + Na_2SO_4$

With excess of NaOH, alkali pale blue ppt of Cu (OH)₂ is insoluble.

 $FeSO_4 + 2NaOH Fe(OH)_2 + Na_2SO_4$

With excess of NaOH, dirty green ppt. of Fe(OH)₂ is insoluble.

(iv) $FeSO_4 + 2NaOH Fe(OH)_2 + NaSO_4$

With excess of NaOH, dirty green ppt of Fe (OH)₂ is insoluble.

 $FeCl_3 + 3NaOH Fe(OH)_3 + 3NaCl$

With excess of NaOH, reddish brown ppt of Fe (OH)₃ is insoluble.

Printed from Vedantu.com. Register now to book a Free LIVE Online trial session with a Top tutor.

Chemistry

(b) Distinguish by adding Ammonium hydroxide solution:

(i) On addition of NH₄OH to calcium salts no precipitation of Ca (OH)₂ occurs even with addition of excess of NH₄OH because the concentration of OH-ions from ionization of NH₄OH is so low that it cannot precipitate the hydroxide of calcium.

 $Pb(NO_3)_2 + 2 NH_4OH Pb(OH)_2 + 2NH_4NO_3$

On adding excess of NH₄OH, chalky white ppt. of Pb (OH)₂ is insoluble.

(ii) $Pb(NO_3)_2 + 2 NH_4OH Pb(OH)_2 + 2NH_4NO_3$

On adding excess of NH₄OH, chalky white ppt. of Pb(OH)₂ is insoluble.

 $ZnSO_4 + 2NH_4OH$ $Zn(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, white gelatinous ppt. of Zn (OH)₂ is soluble.

(iii) $CuSO_4 + 2NH_4OH$ $Cu(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, pale blue ppt. of Cu (OH)₂ is soluble.

 $FeSO_4 + 2NH_4OH Fe(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, dirty green ppt. of Fe (OH)₂ is insoluble.

(iv) $FeSO_4 + 2NH_4OH$ $Fe(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, dirty green ppt. of Fe (OH)₂ is insoluble.

 $FeCl_3 + 3NH_4OH$ $Fe(OH)_3 + 3NH_4Cl$

With excess of NH₄OH, reddish brown ppt of Fe (OH)₃ is insoluble.

Solution 12:

Reagent bottles A and B can identified by using calcium salts such as Ca(NO₃)₂.

On adding NaOH to Ca (NO₃)₂, Ca (OH)₂ is precipitated as white precipitate which is sparingly soluble in excess of NaOH.

 $Ca(NO_3)_2 + 2NaOH \rightarrow Ca(OH)_2 + 2NaNO_3$

Whereas, on addition of NH₄OH to calcium salts, no precipitation of Ca(OH)₂ occurs even with addition of excess of NH₄OH because the concentration of OH⁻ions from the ionization of NH₄OH is so low that it cannot precipitate the hydroxide of calcium. So the reagent bottle which gives white precipitate is NaOH and the other is NH₄OH.

INTEXT QUESTIONS:

Solution 1:

- (i) Analysis: The determination of chemical components in a given sample is called analysis.
- (ii) Qualitative analysis: The analysis which involves the identification of the unknown substances in a given sample is called qualitative analysis.
- (iii) **Reagent:** A reagent is a substance that reacts with another substance.
- (iv) **Precipitation:** It is the process of formation of an insoluble solid when solutions are mixed. The solid thus formed is called precipitate.

Printed from Vedantu.com. Register now to book a Free LIVE Online trial session with a Top tutor.

Solution 2:

- (i) Yellow
- (ii) Colourless
- (iii) PaleGreen
- (iv) Colourless
- (v) Colourless

Solution 3:

- (i) Fe^{3+}
- (ii) Cu²⁺
- (iii) Cu⁺²
- (iv) Mn^{2+}

Solution 4:

- (i) Ca(OH)₂
- (ii) Fe(OH)₂ and Cu(OH)₂
- (iii) Zn(OH)₂ and Pb(OH)₂

Solution 5:

When ammonium salt is heated with caustic soda solution, ammonia gas is evolved.

The balance equation is:

$$NH_4Cl + NaOH$$
 Δ $NaCl + H_2O + NH_3$

$$(NH_4)_2SO_4 + 2NaOH$$
 Δ $Na_2SO_4 + 2H_2O + 2NH_3$

Solution 6:

NH₄OH and NaOH can be distinguished by using calcium salts.

For example on adding NaOH to Ca(NO₃)₂, Ca(OH)₂ is obtained as white precipitate which is sparingly soluble in excess of NaOH.

$$Ca(NO_3)_2 + 2NaOH \quad Ca(OH)_2 + 2NaNO_3$$

On addition of NH₄OH to calcium salts, no precipitation of Ca(OH)₂ occurs even with the addition of excess of NH₄OH. This is because the concentration of OH⁻ ions from the ionization of NH₄OH is so low that it cannot precipitate the hydroxide of calcium.

Solution 7:

- (i) Fe(OH)₂ and Pb(OH)₂
- (ii) Cu(OH)₂ and Zn(OH)₂

Printed from Vedantu.com. Register now to book a Free LIVE Online trial session with a Top tutor.