Mathematical Foundations: Probability

Prof. Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Fall 2021) http://cs182.sist.shanghaitech.edu.cn

Motivation

Question

Given: We have 25 Male and 15 Female students. If a student is randomly picked from these 2 groups, which group will you guess the student is from?

2 classes: $A_1 = Male$, $A_2 = Female$

lacktriangle the state of nature is unpredictable ightarrow use probability

Axioms for Probability

- ▶ All probabilities are between 0 and 1: $0 \le P(A) \le 1$
- ▶ The certain event has probability 1
- ► The impossible event has probability 0
- ► If A and B are any two events,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually Exclusive Events

Two events are mutually exclusive if they cannot occur at the same time

Example

A single card is chosen at random from a standard deck of 52 playing cards

- ▶ E1: the card chosen is a five, E2: the card chosen is a king
- mutually exclusive?

Conditional Probability

- Let A and B be two events such that P(A) > 0
- \triangleright $P(B \mid A)$: probability of B given that A has occurred

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}, \quad P(A \cap B) = P(A)P(B \mid A)$$

 probability that both A and B occur is equal to the probability that A occurs times the probability that B occurs given that A has occurred

Conditional Probability...

For any n events A_1, A_2, \ldots, A_n :

$$P(A_1 \cap A_2 \cap \cdots \cap A_{n-1} \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid A_1 \cap A_2 \cap \cdots \cap A_{n-1})$$

(Formula of total probability) If events A_1, \ldots, A_n are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_n)$$

= $P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + \dots + P(A_n)P(B \mid A_n)$

Independence

Two random variables A and B are independent if

$$P(B | A) = P(B)$$
, or $P(A | B) = P(A)$

Example

A and B are two coin tosses

- ▶ the probability of B occurring is not affected by the occurrence or non-occurrence of A
- knowledge about X contains no information about Y
- ▶ this is also equivalent to $P(A \cap B) = P(A)P(B)$

If n Boolean variables (A_1, \ldots, A_n) are independent

$$P(A_1 \cap \cdots \cap A_n) = \prod_{i=1}^n P(A_i)$$

Bayes Theorem or Rule

$$P(A_i \mid B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B \mid A_i)}{P(B)}$$
$$P(\omega_i \mid x) = \frac{P(\omega_i)P(x \mid \omega_i)}{P(x)}$$

- $ightharpoonup P(\omega_i)$: prior probability of ω_i
 - initial probability for ω_i , before observing the training data
- $ightharpoonup P(\omega_i \mid x)$: posterior probability for ω_i after observing the data x
- ▶ $P(x \mid \omega_i)$: likelihood of observing the data x given class ω_i
- \triangleright P(x): probability that training data x will be observed

Example: Medical Diagnosis

Given:

- ► *P*(Cough | SARS) = 0.8
- ► P(SARS) = 0.005
- ▶ P(Cough) = 0.05

Question

Find: *P*(SARS | Cough)

$$P(SARS \mid Cough)$$

$$= \frac{P(Cough \mid SARS)P(SARS)}{P(Cough)}$$

$$= \frac{0.8 \times 0.005}{0.05} = 0.08$$

Discrete Probability Distributions

X: discrete random variable Probability function or probability distribution

$$P(X = x)$$

Cumulative distribution function (or distribution function):

$$F(x) = P(X \le x)$$

ightharpoonup if X takes on only a finite number of values $x_1, x_2, \ldots x_n$

$$F(x) = \begin{cases} 0 & -\infty < x < x_1 \\ P(X = x_1) & x_1 \le x < x_2 \\ P(X = x_1) + P(X = x_2) & x_2 \le x < x_3 \\ \vdots & \vdots & \vdots \\ P(X = x_1) + \dots + P(X = x_n) & x_n \le x < \infty \end{cases}$$

Example: Uniform Distribution

Example

outcome of throwing a fair die

 $P(X = 1) = P(X = 2) = \cdots = P(X = 6)$

Example: Binomial Distribution

Example

given: probability of getting a head is p, #heads when the biased coin is tossed n times

$$P(X = x) = Bi(x; n, p) = \binom{n}{x} p^{x} (1 - p)^{n-x}$$

Continuous Probability Distributions

X: continuous random variable

- \triangleright the probability that X takes on any one particular value is generally zero
- ▶ the probability that *X* lies between two different values is more meaningful

$$P(a < X < b) = \int_a^b p(x) dx$$

- -p(x): probability density function (pdf) (or density function)
- ► Distribution function:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(x)dx$$
 and $\frac{dF(x)}{dx} = p(x)$

Example: Uniform Distribution

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x \le b \\ 0 & \text{otherwise} \end{cases}$$

Example: Normal (Gaussian) Distributions

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

Joint Distributions: Discrete

- generalization to two or more random variables
- if X and Y are two discrete random variables, we define the joint probability function of X and Y by

$$P(X = x, Y = y) = p(x, y)$$

where
$$p(x,y) \geq 0$$
 and $\sum_{x} \sum_{y} p(x,y) = 1$

- $\triangleright P(X = x) = \sum_{i} p(x, y_i)$ marginal probability function
- ioint distribution function

$$F(x,y) = P(X \le x, Y \le y) = \sum_{u \le x} \sum_{v \le y} p(u,v)$$

Joint Distributions: Continuous

X and Y are continuous random variables

$$P(a < X < b, c < Y < d) = \int_{x=a}^{b} \int_{y=c}^{d} p(x, y) dxdy$$
$$p(x, y) \ge 0 \text{ and } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) dxdy = 1$$

- p(x, y): joint density function of X and Y
- marginal density function

$$p(x) = \int_{v=-\infty}^{\infty} p(x, v) dv$$

density function of X

Joint Distributions: Continuous...

▶ joint distribution function

$$F(x,y) = P(X \le x, Y \le y) = \int_{u=-\infty}^{x} \int_{v=-\infty}^{y} p(u,v) du dv$$
$$\frac{\partial^{2} F}{\partial x \partial y} = p(x,y)$$

marginal distribution function

$$P(X \le x) = \int_{u=-\infty}^{x} \int_{v=-\infty}^{\infty} p(u, v) du dv$$

distribution function of X

Example

- ▶ Random vector: $\mathbf{X} = [X_1, X_2, \dots, X_n]^T$
- ightharpoonup multivariate Gaussian: $m m{X} \sim N(m{\mu}, m{\Sigma})$

Mathematical Expectation

- aka expected value or expectation or mean of a random variable X
- ► *X* discrete:

$$E(X) = \sum_{j=1}^{n} x_j P(X = x_j)$$

X continuous :

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$

Moments

*r*th moment: $E(X^r)$

▶ mean $\mu = E(X)$: 1st moment

rth central moment: $\mu_r = E[(X - \mu)^r]$

ho $\mu_0 = 1$, $\mu_1 = 0$, $\mu_2 = \text{variance}$

For multivariate random vector X:

▶ 2nd central moment: covariance matrix

$$\mathbf{\Sigma} = cov(\mathbf{X}) = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$$

Covariance Matrix

For a 2-D vector $\mathbf{X} = [X_1, X_2]^T$:

$$\Sigma = E \left(\begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{bmatrix} \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{bmatrix}^T \right)
= E \left(\begin{bmatrix} (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) \\ (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 \end{bmatrix} \right)
= \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}
= \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}
= \begin{bmatrix} \sigma_{12}^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$