An attack on Zarankiewicz's problem through SAT solving

Jeremy Tan 24 March 2022

National University of Singapore

How I came to the problem

On 20 December 2021 I first saw a question on the Mathematics Stack Exchange (MSE) with an interesting premise:

How can 16 squares be shaded in a 7×7 grid so that for any choice of 3 rows and 3 columns, their 9 intersections always contain at least one shaded square (property A)?

The actual question had lots of fluff and was eventually closed against my wishes. At this point I was unaware that this was a small case of Zarankiewicz's problem, but I had experience with Boolean satisfiability (SAT) solvers from my ATAP at DSO National Laboratories and saw an opportunity to apply them here.

Solution

Non-solution

- Here the intersections of 1-indexed rows/columns 2, 4, 6 contain no shaded squares contiguity is not required.
- It is impossible to shade only 15 (and hence any fewer number of) squares in a 7 × 7 grid and satisfy property A. In fact the solution on the previous slide is unique up to problem symmetries (more on this later).

How I came to the problem

Using CaDiCaL, the solver I used in my internship, and a (then rudimentary) Python script to generate the necessary files, I computed the fewest number of shaded squares needed to satisfy property A for grid sizes from 3×3 to 11×11 :

$$1, 3, 5, 10, 16, 22, 32, 40, 52, 64...$$

This sequence was not in the OEIS *per se*, so I was encouraged to add it, but while my sequence was in the review queue Andrew Howroyd pointed out its inclusion as a column of an existing entry – I saw the link to Zarankiewicz's problem there and realised that the 11 \times 11 term extended yet another sequence for the first time in over 50 years.

4

How I came to the problem

As soon as my sequence was accepted as A350237 I emailed my supervisors requesting a change of my FYP topic to Zarankiewicz's problem from a rather dry one involving algorithms for medians/centres under permutation distances. I am grateful to them as well as the FYP coordinators for allowing such a change.

Definitions and scope

Zarankiewicz [12] defined his problem in the complementary manner to the MSE post:

What is the maximum number $z_{a,b}(m,n)$ of ones an $m \times n$ binary matrix can have if it is admissible, i.e. does not have an all-one $a \times b$ minor?

As in Guy [2] I suppress indices whenever the matrix or minor is square; in fact my FYP only covers 2×2 , 3×3 and 4×4 minors, so for example A350237(n) = $n^2 - z_3(n)$.

Matrices attaining the maximum number of ones are termed maximal. Beyond the values for z I also computed all admissible square maximal matrices up to permuting rows and columns and if applicable transposition, since clearly an admissible matrix remains admissible under these symmetries.

Arguments

Guy's 1969 paper [2] is still a very valuable reference for Zarankiewicz's problem, complete as it is with hand-computed tables of $z_{a,b}(m,n)$ for $2 \le a,b \le 4$ (no a=b restriction) and a few extremely useful "arguments".

Argument A

An admissible matrix with column sums c_i $(1 \le i \le n)$ satisfies $\sum_i \binom{c_i}{a} \le (b-1)\binom{m}{a}$, since otherwise the pigeonhole principle guarantees an all-one $a \times b$ minor.

Argument I

Every minor of every admissible matrix is itself admissible.

7

Arguments'

My SAT solving approach first assumes a value for $z_{a,b}(m,n)$; because of symmetries I only need to consider unordered partitions of the assumed number of ones across rows and across columns (row and column partitions). Arguments A and I usually eliminate a great many partitions from consideration, resulting in far less time needed to generate them through a simple lexicographic algorithm.

Roman's bound

Theorem [7]

For all integers $p \ge a - 1$

$$z_{a,b}(m,n) \leq \left\lfloor \frac{b-1}{\binom{p}{a-1}} \binom{m}{a} + \frac{(p+1)(a-1)}{a} n \right\rfloor$$

and equality holds with p=a or p=a-1 when $\ell(m,a,b) \leq n$, where $\ell(m,a,b) \approx \frac{b-1}{a+1}\binom{m}{a}$ is related to the hypergraph packing formulation of Zarankiewicz's problem.

9

Roman's bound

My tables for z rely on the equality cases of this theorem – and nothing else! Why?

- Guy's tables are known to contain errors (cf. [4]). One goal of this FYP is to independently verify those tables' entries as far as they extend, and then some.
- The structure of maximal matrices in this part of (m, n)-space can be summarised as "column sums as equal as possible" there are typically a huge number of solutions even after accounting for symmetries.

As explained in some other FYP presentations the norm for expressing SAT problems is the conjunctive normal form (CNF), a conjunction (AND) of clauses or disjunctions (ORs) of Boolean variables and their negations. For example

$$(\neg x_2 \vee \neg x_3) \wedge (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_3)$$

Formulating Zarankiewicz's problem for given parameters (a, b, m, n) and assumed $z_{a,b}(m,n)$ as a CNF instance is very simple – the variables are the matrix entries and each minor engenders a clause stating that it has at least one zero entry:

$$\bigwedge_{\text{(all minors)}} \bigvee_{\text{(v in minor)}} \neg_{\text{V}}$$

11

With these clauses as a base I now follow Marijn Heule's cube-and-conquer paradigm [3], solving possibly several instances* for one parameter set where each instance enforces a row and column partition pair not ruled out by the arguments.

I force a row or column to have exactly its specified number of ones using the equality variation of Sinz's cardinality constraint encoding [9] discussed in Wynn [10], an encoding deemed in the latter reference as fastest and most efficient for general use.

next variable 0										
	0	1	1	1	1	1	1			
e	0	0	1	1	1	1	1			
next variable I	0	0	1	1	1	1	1			
next	0	0	0	0	0	1	1			

Sinz's encoding enforcing that exactly 4 of 11 variables are true.

To further break the symmetries of Zarankiewicz's problem – reducing the total number of satisfying assignments for each instance while still allowing all non-isomorphic solutions – within the SAT framework I require all columns and all rows with the same sum to be *simultaneously* lexicographically sorted.

Theorem

Every binary matrix A can be made to satisfy the above property by alternately sorting same-sum rows and same-sum columns a finite number of times. In other words, no generality is lost here.

Proof

The integral resource function $f(A) = \sum_{i=1}^{m} \sum_{j=1}^{n} 2^{i+j-2} a_{ij}$ is clearly bounded and strictly increases or strictly decreases (depending on the sort order) every time two out-of-order rows or columns are swapped.

Software used

This lexicographic constraint eliminates most but not all isomorphic solutions; removing all isomorphs is equivalent to solving the graph isomorphism problem, which is better handled by a dedicated program such as Nauty's **shortg** [5] than a SAT solver. Nevertheless, the constraint is very cheap to implement in CNF.

For the maximal square matrices, beyond finding all non-isomorphic solutions using *shortg* and noting their row and column partitions, I used GAP to compute their full automorphism groups with abstract descriptions. Finally, the SAT solver I used throughout my FYP proper was CaDiCaL's successor Kissat.

Table 1: $z_2(n)$ (OEIS A072567). Italics denote new values; subscripts indicate the number of non-isomorphic solutions for that size if greater than 1.

n	1	2	3	4	5	6	7	8
$z_2(n)$	1	3	6	9	122	16	21	243
n	9	10	11	12	13	14	15	16
$z_2(n)$	29	29 34 39 45 5		52	56	61	674	
n	17	18	19	20	21	22	23	24
$z_2(n)$	74	81	88	96	105	108 ₁₀	115	122

Table 2: $z_3(n)$ (OEIS A350304).

n	1	2	3	4	5	6	7	8
$z_3(n)$	1	4	8	13	20	26	33	42
n	9	10	11	12	13	14	15	16
$z_3(n)$	497	60	69	802	92	105	120	128

Table 3: $z_4(n)$.

n	4	5	6	7	8	9	10	11	12	13
$z_4(n)$	15	22	31	42	51	619	74	864	1002	117

Circulant maximal matrices feature most prominently in the 2 \times 2 minor case, since it is easy to prove that

 $z_2(q^2+q+1)=(q+1)(q^2+q+1)$ where q is a prime power using a projective plane construction [6], which itself can be rearranged into a circulant matrix [8]. But the motif also appears elsewhere:

Proving uniqueness of the maximal matrix for $z_2(23)$ required more than just SAT solving; a count using Marc Thurley's sharpSAT revealed exactly $6^6 = 46656$ instance solutions even after imposing the cardinality and lexicographic constraints. For this case I therefore took one maximal matrix and successfully generated 6^6 distinct instance solutions by randomly permuting, then alternately sorting its rows and columns (the arguments had already ruled out all row and column partitions except the most level one, (5^{23}) (5^{23})), thereby showing that all instance solutions were isomorphic to one another.

Maximal matrices for $z_o(m)$ where m < 2a are simply described and unique by a paper of Yang [11], but they get extremely complicated as soon as m > 2a. Every such matrix found, however, is not totally asymmetric, even those without a transpose symmetry (example on right), suggesting that a purely random search like that done in [1] is unlikely to yield maximal matrices.

 $z_2(22)$ – has S_4 of order 24 as its automorphism group

Limitations and future work

I did all of the SAT solving on a single laptop computer (my own) using Kissat, which is a single-processor solver. There was thus a "natural" limit of $z\approx 100$ to the range of the table I could complete within reasonable time. My ideas for future work include:

- Taking cube-and-conquer to its fullest potential for Zarankiewicz's problem by further splitting into instances with partially assigned matrices and distributing the larger number of instances across many processors (e.g. Charity Engine).
- Exploring other ways to obtain upper and lower bounds on the z-function, such as the "neighbouring theorem" of Collins [1].
- Applying SAT solving to cases with non-square minors no part of my approach requires square minors.

Links

My full thesis, with tables for $z_{\{2,3,4\}}(m,n)$ and a complete listing of maximal square matrices, has been published on the arXiv at

https://arxiv.org/abs/2203.02283

Supporting code can be found at

https://github.com/Parcly-Taxel/Kyoto

Questions?

References i

A. F. Collins.

Bipartite ramsey numbers and zarankiewicz numbers.

Master's thesis, Rochester Institute of Technology, 2015.

R. K. Guy.

A many-facetted problem of Zarankiewicz, pages 129–148. The Many Facets of Graph Theory. Springer, 1969.

M. Heule, O. Kullmann, and A. Biere. Cube-and-Conquer for Satisfiability, pages 31–59. Handbook of Parallel Constraint Reasoning. Springer, 2018.

T. Héger.

Some graph theoretic aspects of finite geometries.

PhD thesis, Eötvös Loránd University, 2013.

References ii

B. D. McKay and A. Piperno.

Practical graph isomorphism, ii.

Journal of Symbolic Computation, 60:94–112, 2014.

I. Reiman.

Über ein problem von k. zarankiewicz.

Acta Mathematica Academiae Scientiarum Hungarica, 9(3):269–273, 1958.

S. Roman.

A problem of zarankiewicz.

Journal of Combinatorial Theory, Series A, 18(2):187–198, 1975.

References iii

J. Singer.

A theorem in finite projective geometry and some applications to number theory.

Transactions of the American Mathematical Society, 43(3):377–385. 1938.

C. Sinz.

Towards an optimal cnf encoding of boolean cardinality constraints.

In International Conference on Principles and Practice of Constraint Programming, pages 827–831. Springer, 2005.

E. Wynn.

A comparison of encodings for cardinality constraints in a sat solver, 2018.

References iv

A problem of erdős concerning lattice cubes, 2020.

K. Zarankiewicz.

Problem p 101.

Colloquium Mathematicae, 2(3–4):301, 1951.