# 机器学习导论

# 第二次作业

191220008 陈南曈

## 1 Decision tree

(1)

由题可知:

$$|\mathcal{Y}|=2,\ p_1=rac{3}{5},\ p_2=rac{2}{5}$$

可以计算出根结点的信息熵为:

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -(\frac{3}{5} \log_2 \frac{3}{5} + \frac{2}{5} \log_2 \frac{2}{5}) = 0.97095059$$

若用属性 A 进行划分:

$$\operatorname{Ent}(D^{1}) = -\left(\frac{2}{3}\log_{2}\frac{2}{3} + \frac{1}{3}\log_{2}\frac{1}{3}\right) = 0.91829583$$

$$\operatorname{Ent}(D^{2}) = -\left(\frac{1}{2}\log_{2}\frac{1}{2} + \frac{1}{2}\log_{2}\frac{1}{2}\right) = 1.000000000$$

$$\operatorname{Gain}(D, A) = \operatorname{Ent}(D) - \sum_{v=1}^{2} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v})$$

$$= 0.97095059 - \left(\frac{3}{5} \times 0.91829583 + \frac{2}{5} \times 1.00000000\right)$$

$$= 0.01997309199999997$$

若用属性 B 进行划分:

$$\operatorname{Ent}(D^{1}) = -(\frac{1}{2}\log_{2}\frac{1}{2} + \frac{1}{2}\log_{2}\frac{1}{2}) = 1.000000000$$

$$\operatorname{Ent}(D^{2}) = -(\frac{2}{3}\log_{2}\frac{2}{3} + \frac{1}{3}\log_{2}\frac{1}{3}) = 0.91829583$$

$$\operatorname{Gain}(D, B) = \operatorname{Ent}(D) - \sum_{v=1}^{2} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v})$$

$$= 0.97095059 - (\frac{2}{5} \times 1.000000000 + \frac{3}{5} \times 0.91829583)$$

$$= 0.01997309199999997$$

若用属性 C 进行划分:

$$\operatorname{Ent}(D^{1}) = -(\frac{2}{2}\log_{2}\frac{2}{2} + \frac{0}{2}\log_{2}\frac{0}{2}) = 0.000000000$$

$$\operatorname{Ent}(D^{2}) = -(\frac{1}{3}\log_{2}\frac{1}{3} + \frac{2}{3}\log_{2}\frac{2}{3}) = 0.91829583$$

$$\operatorname{Gain}(D, C) = \operatorname{Ent}(D) - \sum_{v=1}^{2} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v})$$

$$= 0.97095059 - (\frac{2}{5} \times 0.000000000 + \frac{3}{5} \times 0.91829583)$$

$$= 0.41997309199999997$$

显然,属性 C 的信息增益最大,因此属性 C 被选为划分属性,划分结果为:



其中,左边的分支结点包含的样本全属于同一类别,无需再划分,故该结点标记为叶结点。 对右边的分支结点继续进行属性划分,该结点的信息熵为:

$$\operatorname{Ent}(D^2) = -\sum_{k=1}^2 p_k \log_2 p_k = -(\frac{1}{3}\log_2 \frac{1}{3} + \frac{2}{3}\log_2 \frac{2}{3}) = 0.91829583$$

若用属性 A 进行划分:

$$\begin{split} \operatorname{Ent}(D^3) &= -(\frac{0}{1}\log_2\frac{0}{1} + \frac{1}{1}\log_2\frac{1}{1}) = 0.000000000\\ \operatorname{Ent}(D^4) &= -(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) = 1.000000000\\ \operatorname{Gain}(D^2, A) &= \operatorname{Ent}(D^2) - \sum_{v=3}^4 \frac{|D^v|}{|D^2|} \operatorname{Ent}(D^v)\\ &= 0.91829583 - (\frac{1}{3} \times 0.000000000 + \frac{2}{3} \times 1.00000000)\\ &= 0.25162916333333334 \end{split}$$

若用属性 B 进行划分:

$$\operatorname{Ent}(D^3) = -(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) = 1.000000000$$

$$\operatorname{Ent}(D^4) = -(\frac{0}{1}\log_2\frac{0}{1} + \frac{1}{1}\log_2\frac{1}{1}) = 0.000000000$$

$$\operatorname{Gain}(D^2, B) = \operatorname{Ent}(D^2) - \sum_{v=3}^4 \frac{|D^v|}{|D^2|} \operatorname{Ent}(D^v)$$

$$= 0.91829583 - (\frac{2}{3} \times 1.000000000 + \frac{1}{3} \times 0.00000000)$$

$$= 0.25162916333333334$$

可见,属性 A 和属性 B 均取得了最大的信息增益,按照题目要求,选取字母序靠前的属性 A 作为划分属性,划分结果为:



其中,左边的分支结点包含的样本全属于同一类别,无需再划分,故该结点标记为叶结点。 对右边的分支结点继续进行属性划分,该结点的信息熵为:

$$\operatorname{Ent}(D^4) = -\sum_{k=1}^2 p_k \mathrm{log}_2 p_k = -(\frac{1}{2} \mathrm{log}_2 \frac{1}{2} + \frac{1}{2} \mathrm{log}_2 \frac{1}{2}) = 1.000000000$$

若用属性 B 进行划分:

$$\begin{split} \operatorname{Ent}(D^5) &= -(\frac{1}{1}\log_2\frac{1}{1} + \frac{0}{1}\log_2\frac{0}{1}) = 0.000000000\\ \operatorname{Ent}(D^6) &= -(\frac{0}{1}\log_2\frac{0}{1} + \frac{1}{1}\log_2\frac{1}{1}) = 0.000000000\\ \operatorname{Gain}(D^4, B) &= \operatorname{Ent}(D^4) - \sum_{v=5}^6\frac{|D^v|}{|D^4|}\operatorname{Ent}(D^v)\\ &= 1.000000000 - (\frac{1}{2} \times 0.0000000000 + \frac{1}{2} \times 0.000000000)\\ &= 1.0000000000 \end{split}$$

显然,属性 B 的信息增益最大,因此属性 B 被选为划分属性,划分结果为:



其中,左边和右边的分支结点包含的样本均分别全属于同一类别,无需再划分,故均标记为叶结点。 综合上述的划分结果,最终得到的决策树为:



将上述决策树用于 Table 3 的测试,得到测试结果为:

| Α | В | С | y (真实值) | f(x) (预测值) |
|---|---|---|---------|------------|
| 0 | 0 | 0 | 0       | 0          |
| 0 | 1 | 1 | 1       | 1          |
| 1 | 1 | 1 | 0       | 1          |
| 1 | 0 | 0 | 0       | 0          |

根据上表,可以得到决策树在测试集上的错误率和精度分别为:

$$E(f;D') = rac{1}{4} \sum_{i=1}^4 \mathbb{I}(f(x_i) 
eq y_i) = rac{1}{4}$$
  $\mathrm{acc}(f;D') = rac{1}{4} \sum_{i=1}^4 \mathbb{I}(f(x_i) = y_i) = 1 - E(f;D') = rac{3}{4}$ 

鉴于该问题属于二分类问题,因此可以得到分类结果的混淆矩阵:

| 二分类决策树 |    | 预测结果 | 预测结果 |
|--------|----|------|------|
|        |    | 正例   | 反例   |
| 真实结果   | 正例 | 1    | 0    |
| 真实结果   | 反例 | 1    | 2    |

根据混淆矩阵可以得到:

$$TP = 1, FP = 1, FN = 0, TN = 2$$

分别计算查准率、查全率和 F1 进行性能度量:

$$P = rac{TP}{TP + FP} = rac{1}{1+1} = rac{1}{2}$$
 
$$R = rac{TP}{TP + FN} = rac{1}{1+0} = 1$$
 
$$F1 = rac{2 imes TP}{rac{4}{7} + 1 - 2} = rac{2 imes 2}{3}$$

## 2 Neural network

代码文件: pendigits.py

代码运行方法: 直接运行即可(若需要更改参数,可直接在以下两处进行替换;数据集须与代码文件位于同一目录下)。

# Adadelta, Adagrad, Adam, Adamax, ASGD, RMSprop, Rprop, SGD optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING\_RATE)

```
EPOCHS = 100

LEARNING_RATE = 0.01

INPUT = 16

HIDDEN1 = 32

HIDDEN2 = 64

HIDDEN3 = 32

OUTPUT = 10
```

在本题中,基于pendigits数据集搭建了一个由输入层,三层全连接层和输出层构成的简单神经网络。

接下来,我将分别在不同的超参数,学习率和优化器下,展示该模型在训练集和测试集上的表现情况。 我们固定训练的轮数为 Epoch = 100 , 损失函数为对数似然代价函数 NLLLoss , 输入层神经元数目 INPUT = 16 , 输出层神经元数目 OUTPUT = 10 。

### 1、超参数

这里主要考虑三个全连接层的神经元数目。

固定学习率为 LEARNINGRATE = 0.01, 优化器为 Adam。

①  $HIDDEN_1 = 24$ ,  $HIDDEN_2 = 32$ ,  $HIDDEN_3 = 16$ :



Training Set: Epoch [100/100], Loss: 0.0318, Accuracy: 7436/7494 (99.23%)
Testing Set: Epoch [100/100], Loss: 0.2016, Accuracy: 3365/3498 (96.20%)

②  $HIDDEN_1 = 32$ ,  $HIDDEN_2 = 64$ ,  $HIDDEN_3 = 32$ :



Training Set: Epoch [100/100], Loss: 0.0135, Accuracy: 7474/7494 (99.73%)
Testing Set: Epoch [100/100], Loss: 0.1190, Accuracy: 3409/3498 (97.46%)

#### 3 HIDDEN\_1 = 20, HIDDEN\_2 = 40, HIDDEN\_3 = 20:



Training Set: Epoch [100/100], Loss: 0.0505, Accuracy: 7388/7494 (98.59%) Testing Set: Epoch [100/100], Loss: 0.2480, Accuracy: 3331/3498 (95.23%)

通过对比,发现第二组超参数  $HIDDEN_1 = 32$ , $HIDDEN_2 = 64$ , $HIDDEN_3 = 32$  的效果最好(实际上继续增加全连接层的神经元数目仍能保持不错的效果,但增幅不明显,故不再展示)。

### 2、学习率

固定超参数为 HIDDEN\_1 = 32, HIDDEN\_2 = 64, HIDDEN\_3 = 32, 优化器为 Adam。 学习率分别取 LEARNING\_RATE = 0.001, 0.005, 0.01, 0.05, 0.1。

#### ① LEARNING\_RATE = 0.001:



Training Set: Epoch [100/100], Loss: 0.1929, Accuracy: 7124/7494 (95.06%) Testing Set: Epoch [100/100], Loss: 0.3241, Accuracy: 3139/3498 (89.74%)

#### 2 LEARNING\_RATE = 0.005:



Training Set: Epoch [100/100], Loss: 0.0253, Accuracy: 7456/7494 (99.49%)
Testing Set: Epoch [100/100], Loss: 0.1917, Accuracy: 3384/3498 (96.74%)

#### 3 LEARNING\_RATE = 0.01:



Training Set: Epoch [100/100], Loss: 0.0135, Accuracy: 7474/7494 (99.73%)
Testing Set: Epoch [100/100], Loss: 0.1190, Accuracy: 3409/3498 (97.46%)

## 4 LEARNING\_RATE = 0.05:



Training Set: Epoch [100/100], Loss: 2.1354, Accuracy: 1239/7494 (16.53%)
Testing Set: Epoch [100/100], Loss: 2.1824, Accuracy: 532/3498 (15.21%)

#### (5) LEARNING\_RATE = 0.1:



经过五组不同学习率的对比,可知第三组学习率 LEARNING\_RATE = 0.01 的效果最好。其中前三组随着学习率的增大,损失趋近于 0 和查准率的趋近 100% 的速率越快;但在后两组中,由于学习率过大,步长过大,导致无法找到全局最优解。

#### 3、优化器

固定超参数为 | HIDDEN\_1 = 32, HIDDEN\_2 = 64, HIDDEN\_3 = 32, 学习率为 LEARNING\_RATE = 0.01。

优化器分别取:Adadelta, Adagrad, Adam, Adamax, ASGD, RMSprop, Rprop, SGD。
为了方便比较和观察,下列坐标图中固定纵坐标的范围,Loss∈(0, 5), Accuracy∈(0, 100)。

## ① Adadelta 优化器:



Training Set: Epoch [100/100], Loss: 2.2589, Accuracy: 1758/7494 (23.46%) Testing Set: Epoch [100/100], Loss: 2.2944, Accuracy: 835/3498 (23.87%)

## ② Adagrad 优化器:



Training Set: Epoch [100/100], Loss: 0.0733, Accuracy: 7377/7494 (98.44%)
Testing Set: Epoch [100/100], Loss: 0.1940, Accuracy: 3322/3498 (94.97%)

## ③ Adam 优化器:



Training Set: Epoch [100/100], Loss: 0.0064, Accuracy: 7485/7494 (99.88%)
Testing Set: Epoch [100/100], Loss: 0.1711, Accuracy: 3402/3498 (97.26%)

## ④ Adamax 优化器:



Training Set: Epoch [100/100], Loss: 0.0424, Accuracy: 7419/7494 (99.00%) Testing Set: Epoch [100/100], Loss: 0.1775, Accuracy: 3358/3498 (96.00%)

## ⑤ ASGD 优化器:



Training Set: Epoch [100/100], Loss: 0.4081, Accuracy: 6524/7494 (87.06%) Testing Set: Epoch [100/100], Loss: 0.5482, Accuracy: 2882/3498 (82.39%)

## ⑥ RMSprop 优化器:



Training Set: Epoch [100/100], Loss: 0.6953, Accuracy: 5628/7494 (75.10%)
Testing Set: Epoch [100/100], Loss: 0.7742, Accuracy: 2502/3498 (71.53%)

### ⑦ Rprop 优化器:



Training Set: Epoch [100/100], Loss: 0.0002, Accuracy: 7494/7494 (100.00%) Testing Set: Epoch [100/100], Loss: 3.9868, Accuracy: 3353/3498 (95.85%)

#### ® SGD 优化器:



Training Set: Epoch [100/100], Loss: 0.3081, Accuracy: 6848/7494 (91.38%) Testing Set: Epoch [100/100], Loss: 0.4543, Accuracy: 3052/3498 (87.25%)

经过上述对比,综合考虑训练集和测试集的效果,Adam 优化器的表现最好。在其余的优化器中,Adadelta 优化器的表现很不理想;RMSprop 优化器的抖动幅度很大;Rprop 优化器在训练集上达到了惊人的 100%,但当训练轮次增大到一定程度后在测试集上性能突转下降,可能是过拟合所导致;ASGD 优化器和 SGD 优化器的表现平平;Adagrad 优化器和 Adamax 优化器的表现较为理想。

#### 综上所述, 当

超参数为 HIDDEN\_1 = 32, HIDDEN\_2 = 64, HIDDEN\_3 = 32,

学习率为 LEARNING\_RATE = 0.01,

优化器为 Adam,

此时,模型的性能达到最佳。

# 3 Learn from inbalanced and noisy data

**(1)** 

代码文件: dicision\_tree.py, neural\_network.py, svm.py, k\_neighbors.py, logistic\_regression.py, naive\_bayes.py

代码运行方法: 直接运行即可 (若需要切换训练集,在下列两行数据导入的代码中将不需要的训练集注释掉即可;代码文件需位于 pendigits-corrupted-main 目录下)。

```
#original training data
#input_train, target_train = get_data(train=True)

#corrupted training data
input_train, target_train = get_data(train=True, corrupt=True)
```

# 1、基于 pendigits-corrupted.tra 训练的结果

① 决策树 (Dicision Tree)

| TimeCost: 0.03 | 6902s     |        |          |         |  |
|----------------|-----------|--------|----------|---------|--|
| Accuracy: 54.9 | 5%        |        |          |         |  |
| Classification | Report:   |        |          |         |  |
|                | precision | recall | f1-score | support |  |
|                |           |        |          |         |  |
| 0              | 0.54      | 0.81   | 0.65     | 363     |  |
| 1              | 0.46      | 0.77   | 0.57     | 364     |  |
| 2              | 0.59      | 0.74   | 0.66     | 364     |  |
| 3              | 0.60      | 0.54   | 0.57     | 336     |  |
| 4              | 0.63      | 0.89   | 0.74     | 364     |  |
| 5              | 0.45      | 0.66   | 0.53     | 335     |  |
| 6              | 0.57      | 0.26   | 0.35     | 336     |  |
| 7              | 0.64      | 0.24   | 0.35     | 364     |  |
| 8              | 0.54      | 0.19   | 0.28     | 336     |  |
| 9              | 0.65      | 0.34   | 0.45     | 336     |  |
|                |           |        |          |         |  |
| accuracy       |           |        | 0.55     | 3498    |  |
| macro avg      | 0.57      | 0.54   | 0.52     | 3498    |  |
| weighted avg   | 0.57      | 0.55   | 0.52     | 3498    |  |

#### ② 神经网络 (Neural Network)

| TimeCost: 6. |            |        |          |         |  |
|--------------|------------|--------|----------|---------|--|
| Accuracy: 65 | . 47%      |        |          |         |  |
| Classificati | on Report: |        |          |         |  |
|              | precision  | recall | f1-score | support |  |
| 0            | 0.57       | 0.96   | 0.71     | 363     |  |
| 1            | 0.59       | 0.98   | 0.73     | 364     |  |
| 2            | 0.77       | 0.78   | 0.77     | 364     |  |
| 3            | 0.74       | 0.78   | 0.76     | 336     |  |
| 4            | 0.61       | 0.82   | 0.70     | 364     |  |
| 5            | 0.57       | 0.85   | 0.69     | 335     |  |
| 6            | 0.98       | 0.25   | 0.40     | 336     |  |
| 7            | 0.96       | 0.30   | 0.46     | 364     |  |
| 8            | 0.75       | 0.36   | 0.49     | 336     |  |
| 9            | 0.69       | 0.41   | 0.52     | 336     |  |
|              |            |        |          |         |  |
| accuracy     |            |        | 0.65     | 3498    |  |
| macro avg    | 0.72       | 0.65   | 0.62     | 3498    |  |
| weighted avg | 0.72       | 0.65   | 0.62     | 3498    |  |

| TimeCost:  | 0.40  | 9901s     |        |          |         |
|------------|-------|-----------|--------|----------|---------|
| Accuracy:  | 62.4  | 1%        |        |          |         |
| Classifica | ation | Report:   |        |          |         |
|            |       | precision | recall | f1-score | support |
|            |       |           |        |          |         |
|            |       | 0.51      | 0.98   | 0.67     | 363     |
|            |       | 0.48      | 0.97   | 0.64     | 364     |
|            |       | 0.97      | 0.99   | 0.98     | 364     |
|            |       | 0.95      | 0.98   | 0.96     | 336     |
|            |       | 0.55      | 0.98   | 0.70     | 364     |
|            |       | 0.54      | 0.93   | 0.68     | 335     |
|            |       | 0.00      | 0.00   | 0.00     | 336     |
|            |       | 0.00      | 0.00   | 0.00     | 364     |
|            |       | 0.94      | 0.22   | 0.35     | 336     |
|            |       | 1.00      | 0.12   | 0.22     | 336     |
|            |       |           |        |          |         |
| accura     | асу   |           |        | 0.62     | 3498    |
| macro a    | avg   | 0.59      | 0.62   | 0.52     | 3498    |
| weighted a | avg   | 0.59      | 0.62   | 0.53     | 3498    |
|            |       |           |        |          |         |

# ④ K-近邻 (K-Neighbors)

| TimeCoot. | . 0 000 | 2007-     |        |          |         |
|-----------|---------|-----------|--------|----------|---------|
| TimeCost: |         |           |        |          |         |
| Accuracy: | 66.4    | 1%        |        |          |         |
| Classific | cation  | Report:   |        |          |         |
|           |         | precision | recall | f1-score | support |
|           |         |           |        |          |         |
|           |         | 0.56      | 0.98   | 0.71     | 363     |
|           |         | 0.51      | 0.96   | 0.67     | 364     |
|           |         | 0.74      | 0.86   | 0.80     | 364     |
|           |         | 0.77      | 0.74   | 0.75     | 336     |
|           |         | 0.67      | 0.95   | 0.78     | 364     |
|           |         | 0.62      | 0.93   | 0.75     | 335     |
|           |         | 0.96      | 0.20   | 0.33     | 336     |
|           |         | 1.00      | 0.15   | 0.26     | 364     |
|           |         | 0.95      | 0.44   | 0.60     | 336     |
|           |         | 0.91      | 0.40   | 0.56     | 336     |
|           |         |           |        |          |         |
| accur     | тасу    |           |        | 0.66     | 3498    |
| macro     | avg     | 0.77      | 0.66   | 0.62     | 3498    |
| weighted  | avg     | 0.77      | 0.66   | 0.62     | 3498    |

# ⑤ 逻辑回归 (Logistic Regression)

| TimeCost: | 0.31   | 1164s     |        |          |         |  |
|-----------|--------|-----------|--------|----------|---------|--|
| Accuracy: | 59.5   | 5%        |        |          |         |  |
| Classific | cation | Report:   |        |          |         |  |
|           |        | precision | recall | f1-score | support |  |
|           |        |           |        |          |         |  |
|           |        | 0.44      | 0.92   | 0.60     | 363     |  |
|           |        | 0.45      | 0.87   | 0.59     | 364     |  |
|           |        | 0.85      | 0.97   | 0.90     | 364     |  |
|           |        | 0.89      | 0.98   | 0.93     | 336     |  |
|           |        | 0.59      | 0.98   | 0.73     | 364     |  |
|           |        | 0.56      | 0.77   | 0.65     | 335     |  |
|           |        | 1.00      | 0.01   | 0.02     | 336     |  |
|           |        | 0.33      | 0.01   | 0.01     | 364     |  |
|           |        | 0.67      | 0.21   | 0.31     | 336     |  |
|           |        | 0.98      | 0.19   | 0.32     | 336     |  |
|           |        |           |        |          |         |  |
| accur     | асу    |           |        | 0.60     | 3498    |  |
| macro     | avg    | 0.68      | 0.59   | 0.51     | 3498    |  |
| weighted  | avg    | 0.67      | 0.60   | 0.51     | 3498    |  |

| TimeCost: 0.00 | ECCO      |        |          |         |
|----------------|-----------|--------|----------|---------|
|                |           |        |          |         |
| Accuracy: 74.6 |           |        |          |         |
| Classification | Report:   |        |          |         |
|                | precision | recall | f1-score | support |
|                |           |        |          |         |
| 0              | 0.85      | 0.88   | 0.86     | 363     |
| 1              | 0.62      | 0.60   | 0.61     | 364     |
| 2              | 0.76      | 0.88   | 0.81     | 364     |
| 3              | 0.69      | 0.91   | 0.79     | 336     |
| 4              | 0.87      | 0.99   | 0.92     | 364     |
| 5              | 0.40      | 0.50   | 0.45     | 335     |
| 6              | 0.98      | 0.91   | 0.94     | 336     |
| 7              | 0.99      | 0.70   | 0.82     | 364     |
| 8              | 0.64      | 0.32   | 0.43     | 336     |
| 9              | 0.74      | 0.76   | 0.75     | 336     |
|                |           |        |          |         |
| accuracy       |           |        | 0.75     | 3498    |
| macro avg      | 0.76      | 0.74   | 0.74     | 3498    |
| weighted avg   | 0.76      | 0.75   | 0.74     | 3498    |
| · · · · ·      |           | · ·    |          | ·       |

由上述结果可见,基于 pendigits-corrupted.tra 训练时:

时间开销:神经网络 > 支持向量机 > 逻辑回归 > 决策树 > 朴素贝叶斯 > K-近邻

准确率: 朴素贝叶斯 > K-近邻 > 神经网络 > 支持向量机 > 逻辑回归 > 决策树

# 2、基于 pendigits.tra 训练的结果

① 决策树 (Dicision Tree)

| TimeCost: 0.04 | 9890s     |        |          |         |  |
|----------------|-----------|--------|----------|---------|--|
| Accuracy: 87.6 | 3%        |        |          |         |  |
| Classification | Report:   |        |          |         |  |
|                | precision | recall | f1-score | support |  |
|                |           |        |          |         |  |
| 0              | 0.99      | 0.96   | 0.97     | 363     |  |
| 1              | 0.65      | 0.89   | 0.75     | 364     |  |
| 2              | 0.87      | 0.94   | 0.90     | 364     |  |
| 3              | 0.88      | 0.67   | 0.76     | 336     |  |
| 4              | 0.94      | 0.90   | 0.92     | 364     |  |
| 5              | 0.90      | 0.81   | 0.85     | 335     |  |
| 6              | 0.97      | 0.90   | 0.93     | 336     |  |
| 7              | 0.96      | 0.80   | 0.87     | 364     |  |
| 8              | 0.89      | 0.97   | 0.93     | 336     |  |
| 9              | 0.83      | 0.91   | 0.87     | 336     |  |
|                |           |        |          |         |  |
| accuracy       |           |        | 0.88     | 3498    |  |
| macro avg      | 0.89      | 0.88   | 0.88     | 3498    |  |
| weighted avg   | 0.89      | 0.88   | 0.88     | 3498    |  |

② 神经网络 (Neural Network)

| TimeCost: 5.39 | 4673s     |        |                                       |         |
|----------------|-----------|--------|---------------------------------------|---------|
| Accuracy: 96.7 | 4%        |        |                                       |         |
| Classification | Report:   |        |                                       |         |
|                | precision | recall | f1-score                              | support |
|                |           |        |                                       |         |
| 0              | 1.00      | 0.96   | 0.98                                  | 363     |
| 1              | 0.90      | 0.99   | 0.95                                  | 364     |
| 2              | 0.99      | 0.98   | 0.99                                  | 364     |
| 3              | 0.96      | 0.99   | 0.97                                  | 336     |
| 4              | 0.96      | 0.98   | 0.97                                  | 364     |
| 5              | 0.97      | 0.98   | 0.98                                  | 335     |
| 6              | 1.00      | 0.98   | 0.99                                  | 336     |
| 7              | 0.99      | 0.87   | 0.92                                  | 364     |
| 8              | 0.93      | 0.98   | 0.95                                  | 336     |
| 9              | 0.99      | 0.97   | 0.98                                  | 336     |
|                |           |        |                                       |         |
| accuracy       |           |        | 0.97                                  | 3498    |
| macro avg      | 0.97      | 0.97   | 0.97                                  | 3498    |
| weighted avg   | 0.97      | 0.97   | 0.97                                  | 3498    |
|                |           | · ·    | · · · · · · · · · · · · · · · · · · · |         |

# ③ 支持向量机 (SVM)

| TimeCost: 0.20 | 5489s     |        |          |         |  |
|----------------|-----------|--------|----------|---------|--|
| Accuracy: 97.4 | 8%        |        |          |         |  |
| Classification | Report:   |        |          |         |  |
|                | precision | recall | f1-score | support |  |
|                |           |        |          |         |  |
|                | 1.00      | 0.96   | 0.98     | 363     |  |
|                | 0.90      | 0.97   | 0.93     | 364     |  |
|                | 0.97      | 0.99   | 0.98     | 364     |  |
|                | 0.99      | 0.99   | 0.99     | 336     |  |
|                | 1.00      | 0.99   | 0.99     | 364     |  |
| 5              | 0.98      | 0.98   | 0.98     | 335     |  |
|                | 1.00      | 1.00   | 1.00     | 336     |  |
|                | 0.99      | 0.90   | 0.95     | 364     |  |
|                | 0.96      | 1.00   | 0.98     | 336     |  |
|                | 0.98      | 0.98   | 0.98     | 336     |  |
|                |           |        |          |         |  |
| accuracy       |           |        | 0.97     | 3498    |  |
| macro avg      | 0.98      | 0.98   | 0.98     | 3498    |  |
| weighted avg   | 0.98      | 0.97   | 0.97     | 3498    |  |

# ④ K-近邻 (K-Neighbors)

| TimeCost  | · ค คคเ | 9007e     |        |          |         |
|-----------|---------|-----------|--------|----------|---------|
|           |         |           |        |          |         |
| Accuracy  | : 97.00 | 5%        |        |          |         |
| Classific | cation  | Report:   |        |          |         |
|           |         | precision | recall | f1-score | support |
|           |         |           |        |          |         |
|           |         | 1.00      | 0.97   | 0.98     | 363     |
|           |         | 0.90      | 0.95   | 0.92     | 364     |
|           |         | 0.95      | 0.99   | 0.97     | 364     |
|           |         | 0.96      | 0.99   | 0.98     | 336     |
|           |         | 0.99      | 0.98   | 0.99     | 364     |
|           |         | 0.97      | 0.98   | 0.97     | 335     |
|           |         | 0.99      | 1.00   | 1.00     | 336     |
|           |         | 0.99      | 0.92   | 0.95     | 364     |
|           |         | 0.99      | 0.99   | 0.99     | 336     |
|           |         | 0.97      | 0.95   | 0.96     | 336     |
|           |         |           |        |          |         |
| асси      | racy    |           |        | 0.97     | 3498    |
| macro     | avg     | 0.97      | 0.97   | 0.97     | 3498    |
| weighted  | avg     | 0.97      | 0.97   | 0.97     | 3498    |
|           |         |           |        |          |         |

# ⑤ 逻辑回归 (Logistic Regression)

| TimeCost: 1.50 | 9057s     |        |          |         |  |
|----------------|-----------|--------|----------|---------|--|
| Accuracy: 91.3 | 4%        |        |          |         |  |
| Classification | Report:   |        |          |         |  |
|                | precision | recall | f1-score | support |  |
|                |           |        |          |         |  |
| 0              | 0.96      | 0.90   | 0.92     | 363     |  |
| 1              | 0.84      | 0.82   | 0.83     | 364     |  |
| 2              | 0.96      | 0.98   | 0.97     | 364     |  |
| 3              | 0.96      | 0.98   | 0.97     | 336     |  |
| 4              | 0.98      | 0.98   | 0.98     | 364     |  |
| 5              | 0.78      | 0.93   | 0.85     | 335     |  |
| 6              | 0.98      | 0.96   | 0.97     | 336     |  |
| 7              | 0.95      | 0.82   | 0.88     | 364     |  |
| 8              | 0.84      | 0.85   | 0.84     | 336     |  |
| 9              | 0.93      | 0.92   | 0.92     | 336     |  |
|                |           |        |          |         |  |
| accuracy       |           |        | 0.91     | 3498    |  |
| macro avg      | 0.92      | 0.91   | 0.91     | 3498    |  |
| weighted avg   | 0.92      | 0.91   | 0.91     | 3498    |  |

## ⑥ 朴素贝叶斯 (Naive Bayes)

| TimeCost:   | 0.00 | 9972s       |        |          |          |
|-------------|------|-------------|--------|----------|----------|
| Accuracy:   |      |             |        |          |          |
| Classifica  |      |             |        |          |          |
| 0 000011100 |      | precision   | recall | f1-score | support  |
|             |      | pi 001010ii |        | 11 00010 | зоррог с |
|             |      | 0.93        | 0.83   | 0.88     | 363      |
|             |      | 0.63        | 0.60   | 0.61     | 364      |
|             |      | 0.75        | 0.89   | 0.82     | 364      |
|             |      | 0.83        | 0.88   | 0.86     | 336      |
|             |      | 0.00        | 0.00   | 0.00     | 364      |
|             |      | 0.52        | 0.44   | 0.48     | 335      |
|             |      | 1.00        | 0.91   | 0.95     | 336      |
|             |      | 0.99        | 0.80   | 0.89     | 364      |
|             |      | 0.72        | 0.93   | 0.81     | 336      |
|             |      | 0.44        | 0.95   | 0.61     | 336      |
|             |      |             |        |          |          |
| accura      | ісу  |             |        | 0.72     | 3498     |
| macro a     | ıvg  | 0.68        | 0.72   | 0.69     | 3498     |
| weighted a  | ıvg  | 0.68        | 0.72   | 0.69     | 3498     |

由上述结果可见,基于 pendigits.tra 训练时:

时间开销:神经网络 > 逻辑回归 > 支持向量机 > 决策树 > 朴素贝叶斯 > K-近邻

准确率: 朴素贝叶斯 > K-近邻 > 神经网络 > 支持向量机 > 逻辑回归 > 决策树

# (2)

代码文件: dicision\_tree.py, neural\_network.py, svm.py, k\_neighbors.py, logistic\_regression.py, naive\_bayes.py

代码运行方法: 直接运行即可 (若需要更改 imb\_ratio 或 noise\_level, 直接在data\_utils.py 里修改即可; 代码文件需位于 pendigits-corrupted-main 目录下)。

本题需要探究类别不平衡和标签噪声对模型的影响,因此需要采用控制变量法来分别研究单个变量对模型的影响。

# 故取

- ① noise\_level = 0.3; imb\_ratio = 10, 30, 50, 70, 90
- ② imb\_ratio = 10; noise\_level = 0.1, 0.3, 0.5, 0.7, 0.9

# 1、类别不平衡的影响

固定 noise\_level = 0.3

# $\bigcirc$ [imb\_ratio = 10]

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.036902          | 54.95%         |
| 神经网络(Neural Network)      | 6.022891          | 65.47%         |
| 支持向量机(SVM)                | 0.409901          | 62.41%         |
| K-近邻 (K-Neighbors)        | 0.000997          | 66.41%         |
| 逻辑回归(Logistic Regression) | 0.311614          | 59.55%         |
| 朴素贝叶斯(Naive Bayes)        | 0.005990          | 74.64%         |

# ② imb\_ratio = 30

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.071809          | 51.54%         |
| 神经网络(Neural Network)      | 4.441236          | 59.35%         |
| 支持向量机(SVM)                | 0.104720          | 59.86%         |
| K-近邻 (K-Neighbors)        | 0.000999          | 60.63%         |
| 逻辑回归(Logistic Regression) | 0.540680          | 57.43%         |
| 朴素贝叶斯(Naive Bayes)        | 0.000997          | 72.50%         |

# 3 imb\_ratio = 50

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.034907          | 53.26%         |
| 神经网络(Neural Network)      | 4.053168          | 60.95%         |
| 支持向量机(SVM)                | 0.116687          | 60.41%         |
| K-近邻 (K-Neighbors)        | 0.000998          | 59.03%         |
| 逻辑回归(Logistic Regression) | 0.196475          | 56.46%         |
| 朴素贝叶斯(Naive Bayes)        | 0.001995          | 73.21%         |

## 4 imb\_ratio = 70

|                           | 时间开销 (Time Cost) /s | 准确率 (Accuracy) |
|---------------------------|---------------------|----------------|
| 决策树 (Dicision Tree)       | 0.040890            | 40.59%         |
| 神经网络(Neural Network)      | 4.901894            | 60.29%         |
| 支持向量机(SVM)                | 0.071809            | 60.23%         |
| K-近邻 (K-Neighbors)        | 0.000997            | 57.66%         |
| 逻辑回归(Logistic Regression) | 0.523607            | 55.49%         |
| 朴素贝叶斯(Naive Bayes)        | 0.000997            | 71.84%         |

## (5) imb\_ratio = 90

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树 (Dicision Tree)       | 0.039890          | 39.22%         |
| 神经网络(Neural Network)      | 2.373658          | 59.75%         |
| 支持向量机(SVM)                | 0.081776          | 59.69%         |
| K-近邻 (K-Neighbors)        | 0.000998          | 57.06%         |
| 逻辑回归(Logistic Regression) | 0.615363          | 55.57%         |
| 朴素贝叶斯(Naive Bayes)        | 0.001994          | 72.47%         |

# 将准确率用折线图展示:



可见,随着 imb\_ratio 的增大,决策树的准确率下降较为明显,其余模型的准确率仅略微下降。

# 2、标签噪声的影响

固定 imb\_ratio = 10

## ① noise\_level = 0.1

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.036902          | 70.01%         |
| 神经网络(Neural Network)      | 1.563818          | 78.22%         |
| 支持向量机(SVM)                | 0.113696          | 94.85%         |
| K-近邻 (K-Neighbors)        | 0.000000          | 88.42%         |
| 逻辑回归(Logistic Regression) | 0.229385          | 80.90%         |
| 朴素贝叶斯(Naive Bayes)        | 0.001994          | 80.67%         |

## ② noise\_level = 0.3

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.037900          | 54.95%         |
| 神经网络(Neural Network)      | 2.401579          | 65.47%         |
| 支持向量机(SVM)                | 0.163562          | 62.41%         |
| K-近邻 (K-Neighbors)        | 0.000997          | 66.41%         |
| 逻辑回归(Logistic Regression) | 0.283243          | 59.55%         |
| 朴素贝叶斯(Naive Bayes)        | 0.001995          | 74.64%         |

 $3 \text{ noise\_level} = 0.5$ 

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.041888          | 45.37%         |
| 神经网络(Neural Network)      | 1.750319          | 52.63%         |
| 支持向量机(SVM)                | 0.210438          | 49.63%         |
| K-近邻 (K-Neighbors)        | 0.001002          | 46.66%         |
| 逻辑回归(Logistic Regression) | 0.299199          | 42.00%         |
| 朴素贝叶斯(Naive Bayes)        | 0.002991          | 37.19%         |

## 4 noise\_level = 0.7

|                           | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|---------------------------|-------------------|----------------|
| 决策树(Dicision Tree)        | 0.035903          | 31.19%         |
| 神经网络(Neural Network)      | 2.034560          | 35.96%         |
| 支持向量机(SVM)                | 0.161568          | 31.56%         |
| K-近邻 (K-Neighbors)        | 0.000996          | 28.96%         |
| 逻辑回归(Logistic Regression) | 0.294213          | 26.56%         |
| 朴素贝叶斯(Naive Bayes)        | 0.000997          | 4.29%          |

# ⑤ noise\_level = 0.9

|                           | 时间开销 (Time Cost) /s | 准确率 (Accuracy) |
|---------------------------|---------------------|----------------|
| 决策树 (Dicision Tree)       | 0.029921            | 19.61%         |
| 神经网络(Neural Network)      | 2.051514            | 15.09%         |
| 支持向量机(SVM)                | 0.102725            | 2.34%          |
| K-近邻 (K-Neighbors)        | 0.000997            | 8.58%          |
| 逻辑回归(Logistic Regression) | 0.270279            | 11.03%         |
| 朴素贝叶斯(Naive Bayes)        | 0.001993            | 11.38%         |

# 将准确率用折线图展示:



可见,随着 noise\_level 的增大,所有模型的准确率均大幅下降,但朴素贝叶斯模型在 noise\_level 过大时,准确率反而有所上升。

由上表可知,随着 noise\_level 的增大,上述模型的时间开销大致为为先上升后下降的趋势。

(3)

# 1、类别不平衡的处理

固定 imb\_ratio = 90, noise\_level = 0

注: 需提前安装 Imbalanced-learn 库

# 方法一:调节样本类别权重

代码文件: dicision\_tree.py, svm.py, logistic\_regression.py

代码运行方法:在下图中更换为带有参数 class\_weight='balanced' 的语句后,直接运行即可(代码文件需位于 pendigits-corrupted-main 目录下)。

#model = DecisionTreeClassifier(criterion='entropy', random\_state=14)
model = DecisionTreeClassifier(criterion='entropy', random\_state=14, class\_weight='balanced')

## ① 决策树 (Dicision Tree)

|       | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|-------|-------------------|----------------|
| 调节权重前 | 0.009972          | 52.20%         |
| 调节权重后 | 0.010968          | 69.21%         |

## ② 支持向量机 (SVM)

|       | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|-------|-------------------|----------------|
| 调节权重前 | 0.030917          | 81.79%         |
| 调节权重后 | 0.037898          | 85.76%         |

## ③ 逻辑回归 (Logistic Regression)

|       | 时间开销(Time Cost)/s | 准确率 (Accuracy) |
|-------|-------------------|----------------|
| 调节权重前 | 0.182512          | 72.90%         |
| 调节权重后 | 0.207445          | 81.25%         |

## 由上述结果可知,

在调节样本类别权重后,各模型的准确率均有所提高,但时间开销也略有增多。

方法二: 过 (上) 采样 (基于 SMOTE)

方法三:欠(下)采样(基于随机欠采样)

方法四: 过采样和欠采样结合 (基于 SMOTEENN)

代码文件: dicision\_tree.py, neural\_network.py, svm.py, k\_neighbors.py, logistic\_regression.py, naive\_bayes.py

代码运行方法: 选择下图中的需要的语句后,直接运行即可 (代码文件需位于 pendigits-corrupted-main 目录下)。

#### # 样本类别不平衡处理

#input\_train, target\_train = SMOTE(random\_state=14).fit\_resample(input\_train, target\_train)
#input\_train, target\_train = RandomUnderSampler(random\_state=14).fit\_resample(input\_train, target\_train)
#input\_train, target\_train = SMOTEENN(random\_state=14).fit\_resample(input\_train, target\_train)

# ① 准确率 (Accuracy)

|                           | 处理前    | 过采样    | 欠采样    | 过采样+欠采样 |
|---------------------------|--------|--------|--------|---------|
| 决策树 (Dicision Tree)       | 52.20% | 70.18% | 55.37% | 70.10%  |
| 神经网络(Neural Network)      | 81.33% | 83.93% | 78.64% | 84.31%  |
| 支持向量机(SVM)                | 81.79% | 84.88% | 75.19% | 85.19%  |
| K-近邻 (K-Neighbors)        | 74.84% | 87.76% | 70.95% | 87.54%  |
| 逻辑回归(Logistic Regression) | 72.90% | 80.70% | 76.21% | 80.79%  |
| 朴素贝叶斯(Naive Bayes)        | 50.37% | 45.97% | 43.94% | 46.14%  |

## ② 时间开销 (Time Cost)

|                           | 处理前      | 过采样      | 欠采样      | 过采样+欠采样  |
|---------------------------|----------|----------|----------|----------|
| 决策树 (Dicision Tree)       | 0.009973 | 0.118682 | 0.003989 | 0.113696 |
| 神经网络(Neural Network)      | 2.419537 | 5.166189 | 0.045877 | 3.555489 |
| 支持向量机(SVM)                | 0.063827 | 0.124666 | 0.001994 | 0.123667 |
| K-近邻 (K-Neighbors)        | 0.000997 | 0.000997 | 0.000997 | 0.000997 |
| 逻辑回归(Logistic Regression) | 0.192523 | 0.950470 | 0.013962 | 2.419534 |
| 朴素贝叶斯(Naive Bayes)        | 0.000997 | 0.012957 | 0.000997 | 0.008978 |

#### 由上述结果可知,

在以上的模型中,过采样和过采样+欠采样的处理让准确率有一定的提高,但欠采样的处理基本没有效果,甚至由负面效果;此外,时间开销均有所增大。

# 2、标签噪声的处理

常见的噪声数据的处理方法:

① 人工检查:人为的进行数据筛选。

② 统计模型:对于正态数据,利用3个标准差原则进行去噪,或使用四分位差进行去噪。

③ 分箱:通过考察相邻数据来确定最终值。

④ 聚类:将类似的值组织成群或"簇",那些落在簇之外的值(孤立点),将被视为噪声。

⑤ 回归: 用一个函数拟合数据来光滑数据。

## **(4)**

代码文件: imb\_problem.py

代码运行方法: 直接运行即可 (代码文件需位于 anonymous-dataset 目录下) 。

采用支持向量机 (SVM) 的方法,模型参数加上 class\_weight='balanced', 然后进行预测。