DS-GA 1011 NLP Fall 2023 Recitation 4 Encoder-Decoder Model for Machine Translation

> Lavender Jiang Sep 29, 2023

German

Ich bin eine Katze. Ich bin eine fram. Ich bin Bürger. English

I am a cont.

I am a Woman.

I am a citizen.

1

Ich bin eine katze. 2. read

Input sequence

| 2. conceptualize

I am a cat. decode

output sequence

hidden state

6

Ich bin eine Katze. 1. read
tokenizet

Parameterized encoder

7

Ich bin eine Katze	Vocab	1 04
	Ich	1_
\int tokenize $[1, 3, 4, 5]$	du	2
	bin	3
	eine	4
	Katze	5
	frau	6

.100-1 1 7-1

40057 Ich bin eine Katze < e057	Vocab	id
40057 Ich bin eine katze < e057	Vocalo Ich du bin eine Katze frau Loos Leos Student ##fin	id 1234567890

Suppose encodor is linear. i.e. Enc:=A. vocado size=10. hidden size=20. $A \in \mathbb{R}^{(0 \times 20)}$ Then hidden for input S is h = Enc(tokenize(S))= Enc(X) = Ax

12

[40057 Ich bin eine Katze <eos> <pad>]
[40057 Ich bin eine student ##in <eos>]

M = 9 / B = 2

[40057 Ich bin eine Katze <eos> <pad> <pad>]
[40057 Ich bin eine student ##in <eos> <pad>]

13

botch { [40057 Ich bin eine Katze <0057 <pad> <pad> <pad>]
of site 2 { [40057 Ich bin eine student ##in <0057 <pad>]

entropy measures the "uncertainty"/ "chaoticness" of a dist.

Coir flip \$1

h(p) = - > P; log p; = # [- log p] E TO, 1]

Cross entropy measures how "close" two distributions are

$$H(p,q) = -\sum_{i} P_{i} \log q_{i} = \sum_{p} [-\log q_{i}]$$
 $KL(p,q) = -\sum_{i} P_{i} \log (\frac{q_{i}}{p_{i}}) = \sum_{p} [-\log \frac{q_{i}}{p_{i}}]$
 $H(p,q) = KL(p,q) - H(p)$
 $minimize H(p,q) \Rightarrow minimize KL(p,q)$

In our case, $p = P(y_{t+1} \mid context)$, $y = P(\hat{y}_{t+1} \mid context)$

Concrete example: $P = P(Y_{t+1} | [I], Lich, bin, eine, Katz])$ $Q = P(Y_{t+1} | [I], Lich, bin, eine, Katz])$ $Q = P(Y_{t+1} | [I], Lich, bin, eine, Katz])$ $Q = P(Y_{t+1} | [I], Lich, bin, eine, Katz])$