

# Spatial: A Language and Compiler for Application Accelerators

**David Koeplinger** 

Matthew Feldman

Raghu Prabhakar

Yaqi Zhang

Stefan Hadjis

Ruben Fiszel

Tian Zhao

Luigi Nardi

Ardavan Pedram

Christos Kozyrakis Kunle Olukotun

**PLDT** June 21, 2018

### **Instructions Add Overheads**



#### **Instruction-Based**





### A Dark Tale: The CPU Power Wall

#### 42 Years of Microprocessor Trend Data



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

### **A More Efficient Way**

#### **Configuration-Based**



\*Also not to scale



#### vectorA · vectorB

mov r8, rcx
add r8, 8
mov r9, rdx
add r8, 8
mov rcx, rax
mov rax, 0

.calc:
mov rbx, [r9]
imul rbx, [r8]
add rax, rbx
add r8, 8
add r9, 8
loop .calc

#### **Instruction-Based**



\*Not to scale

### The Future Is (Probably) Reconfigurable



### **Key Question**

# How can we more productively target reconfigurable architectures like FPGAs?



### Language Taxonomy



Reconfigurable Architectures (FPGAs)

**Instruction-Based Architectures (CPUs)** 

# **Abstracting Hardware Design**



Reconfigurable Architectures (FPGAs)

**Instruction-Based Architectures (CPUs)** 

### **HDLs**

### Hardware Description Languages (HDLs)

e.g. Verilog, VHDL, Chisel, Bluespec



### C + Pragmas



### Existing High Level Synthesis (C + Pragmas)

e.g. Vivado HLS, SDAccel, Altera OpenCL



# **Criteria for Improved HLS**

| Requirement                                                                                | C+Pragmas |
|--------------------------------------------------------------------------------------------|-----------|
| Represent memory hierarchy explicitly Aids on-chip memory optimization, specialization     | X         |
| Express control as nested loops Enables analysis of access patterns                        |           |
| Support arbitrarily nested pipelining Exploits nested parallelism                          |           |
| Specialize memory transfers Enables customized memory controllers based on access patterns |           |
| Capture design parameters  Enables automatic design tuning in compiler                     |           |

### **Design Space Parameters Example**

vectorA · vectorB



Small and simple, but slow!



### **Important Parameters: Buffer Sizes**

DRAM

vectorA

tileA

tileB

tileB

- Increases length of DRAM accesses Runtime
- Increases exploited locality
- Increases local memory sizes







### **Important Parameters: Pipelining**

VectorA • vectorB

Metapipelining requires buffering

requires buffering

FPGA

vectorB

vectorB

Stage 1

- Overlaps memory and compute Runtime
- Increases local memory sizes
  - Area
- Adds synchronization logic





### **Important Parameters: Parallelization**

vectorA · vectorB



- Improves element throughput Runtime
- Duplicates compute resources Area



### **Important Parameters: Memory Banking**

Parallelization requires banking

vectorA

vectorA

vectorB

vectorB

- Improves memory bandwidth Runtime
- May duplicate memory resources Area



# **Criteria for Improved HLS**

| Requirement                                                                                | C+Pragmas |
|--------------------------------------------------------------------------------------------|-----------|
| Represent memory hierarchy explicitly Aids on-chip memory optimization, specialization     | X         |
| Express control as nested loops Enables analysis of access patterns                        |           |
| Support arbitrarily nested pipelining Exploits nested parallelism                          |           |
| Specialize memory transfers Enables customized memory controllers based on access patterns |           |
| Capture design parameters Enables automatic design tuning in compiler                      | X         |

### **Rethinking HLS**



### Improved HLS



#### **Performance**

- Memory hierarchy
- √ Arbitrary pipelining

### **Productivity**

- √ Nested loops
- ✓ Automatic memory banking/buffering
- ✓ Implicit design parameters (unrolling, banking, etc.)
- √ Automated design tuning

√ Target-generic source
across reconfigurable architectures

**Portability** 

# **Abstracting Hardware Design**



Reconfigurable Architectures (FPGAs)

**Instruction-Based Architectures (CPUs)** 

### **Spatial: Memory Hierarchy**



### **Spatial: Control And Design Parameters**

# Implicit/Explicit parallelization factors (optional, but can be explicitly declared)

### Implicit/Explicit control schemes

(also optional, but can be used to override compiler)

# **Explicit** size parameters for loop step size and buffer sizes

(informs compiler it can tune this value)

**Implicit** memory banking and buffering schemes for parallelized access

```
val P = 16 (1 \rightarrow 32)
Reduce(0)(N by 1 par P){i =>
  data(i)
\{(a,b) => a + b\}
Stream.Foreach(0 until N){i =>
val B = 64 (64 \rightarrow 1024)
val buffer = SRAM[Float](B)
Foreach(N by B){i =>
Foreach(64 par 16){i =>
  buffer(i) // Parallel read
```

```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
```

Off-chip memory declarations



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
```

Explicit work division in IR



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
  Reduce(output)(N by B){ i =>
```

Tiled reduction (outer)



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)

Accel {
   Reduce(output)(N by B){ i => val tileA = SRAM[Float](B) val tileB = SRAM[Float](B) val acc = Reg[Float]
```

On-chip memory declarations



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
  Reduce(output)(N by B){ i =>
    val tileA = SRAM[Float](B)
    val tileB = SRAM[Float](B)
    val acc = Reg[Float]
    tileA load vectorA(i :: i+B)
    tileB load vectorB(i :: i+B)
```

DRAM → SRAM transfers
(also have store, scatter, and gather)



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
  Reduce(output)(N by B){ i =>
    val tileA = SRAM[Float](B)
    val tileB = SRAM[Float](B)
    val acc = Reg[Float]
    tileA load vectorA(i :: i+B)
    tileB load vectorB(i :: i+B)
    Reduce(acc)(B by 1){ j =>
      tileA(j) * tileB(j)
    \{a, b => a + b\}
```

Tiled reduction (pipelined)



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
  Reduce(output)(N by B){ i =>
    val tileA = SRAM[Float](B)
    val tileB = SRAM[Float](B)
    val acc = Reg[Float]
    tileA load vectorA(i :: i+B)
    tileB load vectorB(i :: i+B)
    Reduce(acc)(B by 1){ j =>
      tileA(j) * tileB(j)
    \{a, b => a + b\}
  \{a, b => a + b\}
```

Outer reduce function



```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
                                                                 Banking strategy
val vectorB = DRAM[Float](N)
                                             Tile Size (B)
                                                                            Parallelism factor #3
                                        DRAM
Accel {
  Reduce(output)(N by B){ i =>
                                                      tileA (0)
                                                              tileA (1)
                                         vectorA
    val tileA = SRAM[Float](B)
    val tileB = SRAM[Float](B)
                                                      tileB (0)
                                                              tileB (1)
    val acc = Reg[Float]
                                                                                      acc
                                                                                           acc
                                                                Stage 1
                                         vectorB
    tileA load vectorA(i :: i+B)
    tileB load vectorB(i :: i+B)
                                       Parallelism
                                                      output
    Reduce(acc)(B by 1){ j \Rightarrow
                                                                       Stage 3
                                                                                       Outer Reduce
                                        factor #2
       tileA(j) * tileB(j)
                                                                                           FPGA
    \{a, b \Rightarrow a + b\}
                                                                Parallelism factor #1
  {a, b => a + b}
                                                                Metapipelining toggle
                                                                                             24
```

```
val output = ArgOut[Float]
val vectorA = DRAM[Float](N)
val vectorB = DRAM[Float](N)
Accel {
  Reduce(output)(N by B){ i =>
    val tileA = SRAM[Float](B)
    val tileB = SRAM[Float](B)
                                 Parameters
    val acc = Reg[Float]
    tileA load vectorA(i :: i+B)
    tileB load vectorB(i :: i+B)
    Reduce(acc)(B by 1){ j =>
      tileA(j) * tileB(j)
    \{a, b => a + b\}
  \{a, b => a + b\}
```

### **The Spatial Compiler**

**Spatial IR** 

**Control Inference** 

**Control Scheduling** 

**Access Pattern Analysis** 

Mem. Banking/Buffering

**Area/Runtime Analysis** 

[Optional] Design Tuning

**Pipeline Unrolling** 

**Pipeline Retiming** 

**Host Resource Allocation** 

**Control Signal Inference** 

**Chisel Code Generation** 



### **Control Scheduling**

**Spatial IR** 

**Control Inference** 

#### **Control Scheduling**

Access Pattern Analysis

Mem. Banking/Buffering

Area/Runtime Analysis

[Optional] Design Tuning

**Pipeline Unrolling** 

**Pipeline Retiming** 

**Host Resource Allocation** 

**Control Signal Inference** 

- Creates loop pipeline schedules
  - Detects data dependencies across loop intervals
  - Calculate initiation interval of pipelines
  - Set maximum depth of buffers
- Supports arbitrarily nested pipelines

(Commercial HLS tools don't support this)

Chisel Code Generation

### **Local Memory Analysis**

Mem. Banking/Buffering

- Insight: determine banking strategy in a single loop nest using the polyhedral model [Wang, Li, Cong FPGA '14]
- Spatial's contribution: find the (near) optimal banking/buffering strategy across all loop nests
- Algorithm in a nutshell:
  - I. Bank each reader as a separate coherent copy (accounting for reaching writes)
  - 2. Greedily merge copies if merging is legal and cheaper



### **Design Tuning**

Spatial IR

Design Parameters

**Control Inference** 

**Control Scheduling** 

**Access Pattern Analysis** 

Mem. Banking/Buffering

**Area/Runtime Analysis** 

[Optional] Design Tuning

**Pipeline Unrolling** 

**Pipeline Retiming** 

**Host Resource Allocation** 

**Control Signal Inference** 

Modified Parameters

Original tuning methods:

- Pre-prune space using simple heuristics
- Randomly sample ~100,000 design points
- Model area/runtime of each point

Proposed tuning method

Reinforcement learning: HyperMapper (More details in paper)

■ Fast: No slow transformers in loop

### **The Spatial Compiler: The Rest**

**Spatial IR** 

**Control Inference** 

**Control Scheduling** 

**Access Pattern Analysis** 

Mem. Banking/Buffering

Area/Runtime Analysis

[Optional] Design Tuning

**Pipeline Unrolling** 

**Pipeline Retiming** 

**Host Resource Allocation** 

**Control Signal Inference** 

**Chisel** Code Generation

#### Code generation

- Synthesizable Chisel
- C++ code for host CPU

### **Evaluation: Performance**

- FPGA:
  - Amazon EC2 F1 Instance: Xilinx VU9P FPGA
  - Fixed clock rate of 150 MHz
- Applications
  - SDAccel: Hand optimized, tuned implementations
  - Spatial: Hand written, automatically tuned implementations

Execution time = FPGA execution time

## Performance (Spatial vs. SDAccel)

Average 2.9x faster hardware than SDAccel



## **Productivity: Lines of Code**

#### Average 42% shorter programs versus SDAccel



## **Evaluation: Portability**

- FPGA I
  - Amazon EC2 F1 Instance: Xilinx VU9P FPGA
  - 19.2 GB/s DRAM bandwidth (single channel)
- FPGA 2
  - Xilinx Zynq ZC706
  - 4.3 GB/s
- Applications
  - Spatial: Hand written, automatically tuned implementations
  - Fixed clock rate of 150 MHz

## Portability: VU9P vs. Zynq ZC706

#### Identical Spatial source, multiple targets



## Portability: VU9P vs. Zynq ZC706

#### Identical Spatial source, multiple targets



## Portability: VU9P vs. Zynq ZC706

#### Identical Spatial source, multiple targets



## **Portability: Plasticine CGRA**

#### Identical Spatial source, multiple targets Even reconfigurable hardware that isn't an FPGA!

|              | DRAM Bandwidth (%) |       | Resource Utilization (%) |      |      | Speedup  |
|--------------|--------------------|-------|--------------------------|------|------|----------|
| Benchmark    | Load               | Store | PCU                      | PMU  | AG   | vs. VU9P |
| BlackScholes | 77.4               | 12.9  | 73.4                     | 10.9 | 20.6 | 1.6      |
| GDA          | 24.0               | 0.2   | 95.3                     | 73.4 | 38.2 | 9.8      |
| GEMM         | 20.5               | 2.1   | 96.8                     | 64.1 | 11.7 | 55.0     |
| K-Means      | 8.0                | 0.4   | 89.1                     | 57.8 | 17.6 | 6.3      |
| TPC-H Q6     | 97.2               | 0.0   | 29.7                     | 37.5 | 70.6 | 1.6      |

Prabhakar et al. Plasticine: A Reconfigurable Architecture For Parallel Patterns (ISCA '17)

## Conclusion

- Reconfigurable architectures are becoming key for performance / energy efficiency
- Current programming solutions for reconfigurables are still inadequate
- Need to rethink outside of the C box for high level synthesis:
  - Memory hierarchy for optimization
  - Design parameters for tuning
  - Arbitrarily nestable pipelines
- **Spatial** prototypes these language and compiler criteria:
  - Average speedup of 2.9x versus SDAccel on VU9P
  - Average 42% less code than SDAccel
  - Achieves transparent portability through internal support for automated design tuning (HyperMapper)



**Performance** 



Spatial is open source: <a href="mailto:spatial.stanford.edu">spatial.stanford.edu</a>

**Productivity** 

## **The Team**



**David** Koeplinger



**Matt** Feldman



**Raghu** Prabhakar



**Yaqi** Zhang



**Stefan** Hadjis



**Ruben** Fiszel



**Tian** Zhao



**Ardavan** Pedram



**Luigi** Nardi



**Christos** Kozyrakis



**Kunle** Olukotun

# **Backup Slides**

### **Custom ASICs**

Good for widely used, fixed specifications (like compression)

Expensive with long design turnaround for developing fields like ML



Relative # of Papers / Year Since 2009

## C + Pragmas Example

#### Add 512 integers originating from accelerator DRAM

```
void sum(int* mem) {
    mem[512] = 0;
    for(int i=0; i < 512; i++) {
        mem[512] += mem[i];
    }
}</pre>
```



Runtime: 27,236 clock cycles (100x too long!)

## C + Pragmas Example

#### Add 512 integers originating from external DRAM

```
#define CHUNKSIZE (sizeof(MPort)/sizeof(int))
    #define LOOPCOUNT (512/CHUNKSIZE)
                                                          Width of DRAM controller interface
    void sum(MPort* mem) {
        MPort buff[LOOPCOUNT];
                                             Burst Access
        memcpy(buff, mem, LOOPCOUNT); —
        int sum = 0; ___ Use local variable
        for(int i=1; i<LOOPCOUNT; i++) {</pre>
                                                     Loop
            #pragma PIPELINE
                                                     Restructuring
            for(int j=0; j<CHUNKSIZE; j++) {</pre>
Special
                #pragma UNROLL
compiler
                  sum += (int)(buff[i]>>j*sizeof(int)*8);
directives
                                                   Bit shifting to extract
        mem[512] = sum;
                                                   individual elements
```

Runtime: 302 clock cycles

## **Hardware Design Considerations**

- I. Finite physical compute and memory resources
- 2. Requires aggressive pipelining for performance
  - Maximize useful execution time of compute resources
- 3. Disjoint memory space
  - No hardware managed memory hierarchy
- 4. Huge design parameter spaces
  - Parameters are interdependent, change runtime by orders of magnitude
- 5. Others... pipeline timing, clocking, etc.

## **Local Memory Analysis Example**

```
Foreach(N by 1){ r \Rightarrow
 val a = SRAM[Float](D)
  val b = SRAM[Float](D)
  val c = SRAM[Float](D)
  Foreach(D par 2){i =>
    a(i) = ...
  Reduce(sum)(D par 2){j =>
    a(b(j))
  \{(a,b) => a + b\}
  Foreach(D par 2){k =>
    c(k) = a(k) * sum
```

#### **Step I:** For each read:

Find the **banking** and **buffering** for that read and all writes that may be visible to that read





```
Foreach(N by 1){ r \Rightarrow
 val a = SRAM[Float](D)
  val b = SRAM[Float](D)
  val c = SRAM[Float](D)
  Foreach(D par 2){i =>
    a(i) = ...
  Reduce(sum)(D par 2){j =>
    a(b(j))
  \{(a,b) => a + b\}
  Foreach(D par 2){k =>
    c(k) = a(k) * sum
```

#### **Step I:** For each read:

Find the **banking** and **buffering** for that read and all writes that may be visible to that read



```
Foreach(N by 1){ r \Rightarrow
 val a = SRAM[Float](D)
  val b = SRAM[Float](D)
  val c = SRAM[Float](D)
  Foreach(D par 2){i =>
    a(i) = ...
  Reduce(sum)(D par 2){j =>
    a(b(j))
  \{(a,b) => a + b\}
  Foreach(D par 2){k =>
    c(k) = a(k) * sum
```

#### **Step I:** For each read:

Find the **banking** and **buffering** for that read and all writes that may be visible to that read



```
Foreach(N by 1){ r \Rightarrow
 val a = SRAM[Float](D)
  val b = SRAM[Float](D)
  val c = SRAM[Float](D)
  Foreach(D par 2){i =>
    a(i) = ...
  Reduce(sum)(D par 2){j =>
    a(b(j))
  \{(a,b) => a + b\}
  Foreach(D par 2){k =>
    c(k) = a(k) * sum
```



```
Foreach(N by 1){ r \Rightarrow
 val a = SRAM[Float](D)
  val b = SRAM[Float](D)
  val c = SRAM[Float](D)
  Foreach(D par 2){i =>
    a(i) = ...
  Reduce(sum)(D par 2){j =>
    a(b(j))
  \{(a,b) => a + b\}
  Foreach(D par 2){k =>
    c(k) = a(k) * sum
```



```
Foreach(N by 1){ r =>
    val a = SRAM[Float](D)
```

**Step 2:** Greedily combine (merge) instances

- Don't combine if there are port conflicts
- Don't combine if the cost of merging is greater than sum of unmerged
- \*\*Recompute banking for merged instances!

```
c(k) = a(k) * sum
}
```



## **Local Memory Analysis**

```
Foreach(N by 1){ r =>
    val a = SRAM[Float](D)
```

**Step 2:** Greedily combine (merge) instances

- Don't combine if there are bank conflicts
- Don't combine if the cost of merging is greater than sum of unmerged
- \*\*Recompute banking for merged instances!

```
c(k) = a(k) * sum
}
```



## **Kernel-Based Approach**

# Manually implement each DSL operation; use a simple compiler to stitch them together



## **Stochastic Gradient Descent in Spatial**

```
type TM = FixPt[TRUE,_9,_23]
   type TX = FixPt[TRUE, 9, 7]
   val data = DRAM[TX](N, D)
   val y = DRAM[TM](N)
   val weights = DRAM[TM](D)
   Accel {
     val yAddr = Reg[Int](-1)
     val yCache = SRAM[TM](CSIZE)
     val WK = SRAM[TM](D)
13
     wK load weights(0::D)
14
15
     Sequential.Foreach(E by 1){e =>
       epoch(random[Int](N), ...)
16
       breakpoint()
17
18
19
20
     weights(0 :: D) store wK
```

- Arbitrary precision custom types
- Off-chip memory allocations
- Accelerator scope
- **On-chip** memory allocations
- **Explicit** memory transfer
- Declaration of a sequential loop
- Debugging breakpoint
- **Explicit** memory transfer

## **SGD** in Spatial

```
def epoch(i: Int, ...): Unit = {
23
      val yPt = Reg[TM]
      if (i >= yAddr & i < yAddr+CSIZE & yAddr != -1) {</pre>
24
        yPt := yCache(i - yAddr)
26
27
      else {
28
       yAddr := i - (i % CSIZE)
29
       yCache load y(yAddr::yAddr + CSIZE)
        yPt := yCache(i % CSIZE)
30
31
32
      val x = SRAM[TX](D)
33
      x load data(i, 0::D)
34
35
36
      // Compute gradient against wK t
      val yHat = Reg[TM]
37
      Reduce(yHat)(D by 1){j \Rightarrow wK(j) * x(j).to[TM] }{_+_}
38
      val yErr = yHat - yPt
39
40
41
      // Update wK t with reduced variance update
      Foreach(D by 1){i =>
42
        wK(i) = wK(i) - (A.to[TM] * yErr * x(i).to[TM])
43
44
45
```

Custom caching for random access on y

- Explicit memory transfer
- Gradient computation

Weight update

## **SGD** in Spatial: Hardware

