

On the Applicability of Time-Driven Cache Attacks on Mobile Devices

Raphael Spreitzer and Thomas Plos

Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology Inffeldgasse 16a, A-8010 Graz, Austria

raphael.spreitzer@iaik.tugraz.at

Motivation

- Related work
 - Bogdanov et al. [BEPW10]
 - Gallais and Kizhvatov [GK11]
 - Weiß et al. [WHS12]:
 - "... further research has to examine ... real noise"
- Our goal
 - More realistic environments
 - State-of-the-art Android-based devices
 - Acer Iconia A510
 - Samsung Galaxy S3
 - Google Nexus S

(src: [Chi12])

Advanced Encryption Standard (AES)

- Block cipher operating on 128-bit states
- 4 round transformations
- Software implementations employ T-tables
 - T-tables consist of 256 4-byte elements
 - Look-up operation T[s_i]

Memory Hierarchy

Cache Attacks

- Side-channel attacks
 - Insecure implementations of secure algorithms
 - Execution time, power consumption, etc.
- Cache attacks on the AES
 - Timing variations due to the memory hierarchy
 - Look-up operations are key dependent $\mathbf{T}[\mathbf{p}_i \oplus \mathbf{k}_i]$

Timing Attack by Bernstein [Ber05]

- Encrypt P under a known key K
- Encrypt $\widetilde{\mathbf{P}}$ under an unknown key $\widetilde{\mathbf{K}}$
- Similar timing profile if pairs satisfy

$$\widetilde{\mathbf{p}}_i \oplus \widetilde{\mathbf{k}}_i = \mathbf{p}_i \oplus \mathbf{k}_i$$
 $\widetilde{\mathbf{k}}_i = \mathbf{p}_i \oplus \mathbf{k}_i \oplus \widetilde{\mathbf{p}}_i$

Exhaustive key search

Practical Results - Bernstein's Attack (1/2)

Sample output of Bernstein's attack on the Samsung Galaxy S3

# of key candidates	Key byte	Possible values									
3	0	<u>b5</u>	b4	b8							
125	1	00	a2	be	c2	b8	1d	f6		93	
165	2	87	03	51	17	1b	1f	c7		11	
2	3	66	67							_	
104	4	59	1d	10	a5	34	06	50		<u>af</u>	
6	5	bc	bd	b9	b8	ba	bb				
8	6	CC	<u>cd</u> 8c	ca	cf	cb	c8	ce	с9		
2	7	<u>8d</u>	8c								
115	8	1e	ea	c9	ee	e6	11	12	CC	02	
2	9	b8	b9 7d								
153	10	76	7d	56	b3	5b	4b	3c		<u>55</u>	
2	11	12 83	13								
23	12	83	9f	82	96	94	97	92	9d	98	
2	13	<u>4a</u>	4b								
40	14	6a	7a	7b	74	61	7c	64	<u>6b</u>	78	
2	15	9c	<u>9d</u>								

• Exhaustive key search $\sim 2^{58}$

Practical Results - Bernstein's Attack (2/2)

- Timing information leaks
- Reduced key space from 128 bits to 58–73 bits
- Too large for exhaustive key search

Collision Attack by Bogdanov et al. [BEPW10]

- Empty cache
- Encryption of chosen P_1 ($\mathbf{s}_i = \mathbf{p}_i \oplus \mathbf{k}_i$)
- Encryption of chosen P_2 ($\mathbf{s}_i = \mathbf{p}_i \oplus \mathbf{k}_i$)
- Encryption time indicates whether a collision occurred
- Infer relations between key bytes

Practical Results - Bogdanov et al.'s Attack (1/2)

Histogram of encryption times for the ARM Cortex-A8

Histogram for a 7-round AES

Practical Results - Bogdanov et al.'s Attack (2/2)

- Collisions are hard to detect (cache-line size)
- Reduced key space from 128 bits to 52 bits
- Too large for exhaustive key search

Conclusion and Future Work

- Conclusion
 - Cache attacks are applicable in real-world environments
 - Remaining key space too large
 - Though, we consider time-driven cache attacks a real threat
- Future work
 - Reduce the key space even further
 - Countermeasures
- Cache attacks threaten the user's privacy and security

On the Applicability of Time-Driven Cache Attacks on Mobile Devices

Raphael Spreitzer and Thomas Plos

Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology Inffeldgasse 16a, A-8010 Graz, Austria

raphael.spreitzer@iaik.tugraz.at

Bibliography

[BEPW10] Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke.

Differential Cache-Collision Timing Attacks on AES with Applications to Embedded CPUs.

In CT-RSA, pages 235-251, 2010.

[Ber05] Daniel J. Bernstein.

Cache-timing attacks on AES.

Available online at http://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[Chi12] Chip.de.

Das beste Android-Tablet.

Available online at http://www.chip.de/artikel/Acer-Iconia_Tab_A510-Tablet-PC-Test_56138304.html, 2012.

IGK111 Jean-Francois Gallais and Ilva Kizhvatov.

Error-Tolerance in Trace-Driven Cache Collision Attacks.

In COSADE, pages 222-232, Darmstadt, 2011.

in 000/102, pages 222 202, Darnistaat, 2011

[WHS12] Michael Weiß, Benedikt Heinz, and Frederic Stumpf.

A Cache Timing Attack on AES in Virtualization Environments.

In FC, pages 314–328. Springer Berlin Heidelberg, 2012.