Eigenvalue Algorithms

Numerical Strategies Providing for the Time and Resource Efficient Computation of Eigenvalues for Any General Square Matrix

Jayden Li

Friday, March 7, 2025

The Problem

How can we find the eigenvalues of any $n \times n$ matrix A?

$$A\mathbf{x} = \lambda \mathbf{x}$$

2/25

Table of Contents

Power Method

- \bigcirc Basic QR Algorithm

Section 1

Power Method

Power Method

1 Let x_0 be a random vector in \mathbb{R}^n .

Power Method

- Let x_0 be a random vector in \mathbb{R}^n .
- ② Define $x_{i+1} = \frac{Ax_i}{||Ax_i||}$. Then $x_k \neq A^k x_0$, but are pointing in the same direction.

Power Method

- **1** Let x_0 be a random vector in \mathbb{R}^n .
- ② Define $x_{i+1} = \frac{Ax_i}{||Ax_i||}$. Then $x_k \neq A^k x_0$, but are pointing in the same direction.
- **3** Iterate the above process for m steps. Now, we have have calculated x_m , which is parallel to $A^m x_0$.

Power Method

- **1** Let x_0 be a random vector in \mathbb{R}^n .
- ② Define $x_{i+1} = \frac{Ax_i}{||Ax_i||}$. Then $x_k \neq A^k x_0$, but are pointing in the same direction.
- **3** Iterate the above process for m steps. Now, we have have calculated x_m , which is parallel to $A^m x_0$.
- Calculate the dominant eigenvalue

$$\lambda_1 = \frac{\|AA^m x_0\|}{\|A^m x_0\|} = \frac{\|Ax_m\|}{\|x_m\|} = \frac{Ax_m \cdot x_m}{x_m \cdot x_m}.$$

Reference: [Koc25].

• A is an $n \times n$ matrix.

- A is an $n \times n$ matrix.
- We are basically multiplying on the left by A.

- A is an $n \times n$ matrix.
- We are basically multiplying on the left by A.
- Algorithm tends to $\lim_{k\to\infty} A^k x_0$.

- A is an $n \times n$ matrix.
- We are basically multiplying on the left by A.
- Algorithm tends to $\lim_{k\to\infty} A^k x_0$.
- Let $A = PDP^{-1}$ be the diagonalization.
- Then $\lim_{k\to\infty} A^k = PD^kP^{-1}$.

- A is an $n \times n$ matrix.
- We are basically multiplying on the left by A.
- Algorithm tends to $\lim_{k\to\infty} A^k x_0$.
- Let $A = PDP^{-1}$ be the diagonalization.
- Then $\lim_{k\to\infty} A^k = PD^kP^{-1}$.
- $\bullet \lim_{k \to \infty} A^k P = PD^k.$

• Let $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$. The λ_i 's are eigenvalues of A.

- Let $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. The λ_i 's are eigenvalues of A.
- Quick reminder: D is diagonal matrix of eigenvalues.

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

- Let $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. The λ_i 's are eigenvalues of A.
- Quick reminder: D is diagonal matrix of eigenvalues.

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

• Choose a random vector $v_0 \in \mathbb{R}^n$, let $v = Pv_0$.

- Let $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. The λ_i 's are eigenvalues of A.
- Quick reminder: D is diagonal matrix of eigenvalues.

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

- Choose a random vector $v_0 \in \mathbb{R}^n$, let $v = Pv_0$.
- $\lim_{k \to \infty} A^k P = PD^k$ becomes $\lim_{k \to \infty} A^k Pv_0 = PD^k v_0$.

• $\lim_{k \to \infty} A^k P = PD^k$ becomes $\lim_{k \to \infty} A^k Pv_0 = PD^k v_0 = A^k v$.

8/25

• $\lim_{k \to \infty} A^k P = PD^k$ becomes $\lim_{k \to \infty} A^k Pv_0 = PD^k v_0 = A^k v$.

$$A^k v = P \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} \begin{bmatrix} v_{0_1} \\ \vdots \\ v_{0_n} \end{bmatrix} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix} \begin{bmatrix} \lambda_1^k v_{0_1} \\ \vdots \\ \lambda_n^k v_{0_n} \end{bmatrix}$$

• $\lim_{k \to \infty} A^k P = PD^k$ becomes $\lim_{k \to \infty} A^k P v_0 = PD^k v_0 = A^k v$.

$$A^k v = P \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} \begin{bmatrix} v_{0_1} \\ \vdots \\ v_{0_n} \end{bmatrix} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix} \begin{bmatrix} \lambda_1^k v_{0_1} \\ \vdots \\ \lambda_n^k v_{0_n} \end{bmatrix}$$

$$A^{k}v = \sum_{i=1}^{n} \lambda_{i}^{k} v_{0_{i}} p_{i} = \sum_{i=1}^{n} \lambda_{1}^{k} \frac{\lambda_{i}^{k}}{\lambda_{1}^{k}} v_{0_{i}} p_{i} = \lambda_{1}^{k} \sum_{i=1}^{n} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{0_{i}} p_{i}$$

• $\lim_{k \to \infty} A^k P = PD^k$ becomes $\lim_{k \to \infty} A^k Pv_0 = PD^k v_0 = A^k v$.

$$A^k v = P \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} \begin{bmatrix} v_{0_1} \\ \vdots \\ v_{0_n} \end{bmatrix} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix} \begin{bmatrix} \lambda_1^k v_{0_1} \\ \vdots \\ \lambda_n^k v_{0_n} \end{bmatrix}$$

$$A^{k}v = \sum_{i=1}^{n} \lambda_{i}^{k} v_{0_{i}} p_{i} = \sum_{i=1}^{n} \lambda_{1}^{k} \frac{\lambda_{i}^{k}}{\lambda_{1}^{k}} v_{0_{i}} p_{i} = \lambda_{1}^{k} \sum_{i=1}^{n} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{0_{i}} p_{i}$$

• Now, if $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n|$, then $\lambda_i/\lambda_1 < 1$ for all $i \ne 1$.

$$A^k v = \lambda_1^k v_{0_1} p_1$$

• $\lim_{k \to \infty} A^k P = PD^k$ becomes $\lim_{k \to \infty} A^k Pv_0 = PD^k v_0 = A^k v$.

$$A^k v = P \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} \begin{bmatrix} v_{0_1} \\ \vdots \\ v_{0_n} \end{bmatrix} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix} \begin{bmatrix} \lambda_1^k v_{0_1} \\ \vdots \\ \lambda_n^k v_{0_n} \end{bmatrix}$$

$$A^{k}v = \sum_{i=1}^{n} \lambda_{i}^{k} v_{0_{i}} p_{i} = \sum_{i=1}^{n} \lambda_{1}^{k} \frac{\lambda_{i}^{k}}{\lambda_{1}^{k}} v_{0_{i}} p_{i} = \lambda_{1}^{k} \sum_{i=1}^{n} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{0_{i}} p_{i}$$

• Now, if $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n|$, then $\lambda_i/\lambda_1 < 1$ for all $i \ne 1$.

$$A^k v = \lambda_1^k v_{0_1} p_1$$

• A^k is an eigenvector of A.

• Now suppose $|\lambda_1| = |\lambda_2|$.

• Now suppose $|\lambda_1| = |\lambda_2|$.

$$A^k v = \sum_{i=1}^n \lambda_i^k v_{0_i} p_i = \sum_{i=1}^n \lambda_1^k \frac{\lambda_i^k}{\lambda_1^k} v_{0_i} p_i = \lambda_1^k \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k v_{0_i} p_i$$

$$A^k v = \lim_{k \to \infty} \lambda_1^k \left(\left(\frac{\lambda_1}{\lambda_1} \right)^k v_{0_1} p_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k v_{0_2} p_2 + \sum_{i=3}^n \left(\frac{\lambda_i}{\lambda_1} \right)^k v_{0_i} p_i \right)$$

$$A^{k}v = \lim_{k \to \infty} \lambda_{1}^{k} \left(v_{0_{1}}p_{1} + v_{0_{2}}p_{2} \right)$$

is not an eigenvector of A if $\lambda_1 \neq \lambda_2$.

• If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.

- If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.
- If dominant eigenvalue $\lambda_1 = a + bi$ is complex $(b \neq 0)$, then $\lambda_2 = \overline{\lambda_1} = a bi$ is also eigenvalue.

- If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.
- If dominant eigenvalue $\lambda_1 = a + bi$ is complex $(b \neq 0)$, then $\lambda_2 = \overline{\lambda_1} = a bi$ is also eigenvalue.
- But $|\lambda_1| = \sqrt{a^2 + b^2} = |\lambda_2|$.

- If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.
- If dominant eigenvalue $\lambda_1 = a + bi$ is complex $(b \neq 0)$, then $\lambda_2 = \overline{\lambda_1} = a bi$ is also eigenvalue.
- But $|\lambda_1| = \sqrt{a^2 + b^2} = |\lambda_2|$.
- Cannot calculate complex eigenvalues.

- If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.
- If dominant eigenvalue $\lambda_1 = a + bi$ is complex $(b \neq 0)$, then $\lambda_2 = \overline{\lambda_1} = a bi$ is also eigenvalue.
- But $|\lambda_1| = \sqrt{a^2 + b^2} = |\lambda_2|$.
- Cannot calculate complex eigenvalues.
- Can use shifts (calculate eigenvalues of A cI), but that is complicated.

- If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.
- If dominant eigenvalue $\lambda_1 = a + bi$ is complex $(b \neq 0)$, then $\lambda_2 = \overline{\lambda_1} = a bi$ is also eigenvalue.
- But $|\lambda_1| = \sqrt{a^2 + b^2} = |\lambda_2|$.
- Cannot calculate complex eigenvalues.
- Can use shifts (calculate eigenvalues of A cI), but that is complicated.
- Even worse: only calculates dominant eigenvalue.

- If $|\lambda_1| = |\lambda_2|$, then $(\lambda_1/\lambda_2)^k$ tends to 1, not 0.
- If dominant eigenvalue $\lambda_1 = a + bi$ is complex $(b \neq 0)$, then $\lambda_2 = \overline{\lambda_1} = a bi$ is also eigenvalue.
- But $|\lambda_1| = \sqrt{a^2 + b^2} = |\lambda_2|$.
- Cannot calculate complex eigenvalues.
- Can use shifts (calculate eigenvalues of A cI), but that is complicated.
- Even worse: only calculates dominant eigenvalue.
- Speed of convergence depends on choice of starting vector.

Section 2

Schur form

Let A be an $n \times n$ real matrix. The **Schur form** of A is:

$$A = QUQ^T = QUQ^{-1}$$

where Q is orthogonal and U is upper triangular. A and U are similar so they share the same eigenvalues, which are the diagonal entries of U.

• Set
$$A_1 = A$$
.

- **1** Set $A_1 = A$.
- ② Define $A_{i+1} = R_i Q_i$, where $A_1 = Q_i R_i$.

- Set $A_1 = A$.
- ② Define $A_{i+1} = R_i Q_i$, where $A_1 = Q_i R_i$.
- 3 Iterate step 2 m times to calculate A_{m+1} .

Basic QR Algorithm

Basic QR Algorithm

- **1** Set $A_1 = A$.
- ② Define $A_{i+1} = R_i Q_i$, where $A_1 = Q_i R_i$.
- **3** Iterate step 2 m times to calculate A_{m+1} .
- If "good case," A_{m+1} tends to a triangular matrix (U in Schur form). Trivial to read off eigenvalues.

Reference: [Arb16, p. 64].

Basic QR Algorithm

Basic QR Algorithm

- **1** Set $A_1 = A$.
- ② Define $A_{i+1} = R_i Q_i$, where $A_1 = Q_i R_i$.
- 3 Iterate step 2 m times to calculate A_{m+1} .
- **1** If "good case," A_{m+1} tends to a triangular matrix (U in Schur form). Trivial to read off eigenvalues.

Reference: [Arb16, p. 64].

Proof is hard and complicated. We will "prove" by example.

Example of the Basic QR Algorithm (1)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 1 \end{bmatrix}$$

Eigenvalues

$$\lambda_1 \approx 12.4542$$

$$\lambda_2 \approx -5.0744$$

$$\lambda_3 \approx -0.379762$$

Example of the Basic QR Algorithm (2)

$$A_1 = \begin{bmatrix} 1.00 & 2.00 & 3.00 \\ 4.00 & 5.00 & 6.00 \\ 7.00 & 8.00 & 1.00 \end{bmatrix}$$

Example of the Basic QR Algorithm (2)

$$A_{1} = \begin{bmatrix} 1.00 & 2.00 & 3.00 \\ 4.00 & 5.00 & 6.00 \\ 7.00 & 8.00 & 1.00 \end{bmatrix}$$

$$Q_{1} = \begin{bmatrix} -0.12 & 0.90 & 0.41 \\ -0.49 & 0.30 & -0.82 \\ -0.86 & -0.30 & 0.41 \end{bmatrix}$$

$$R_{1} = \begin{bmatrix} -8.12 & -9.60 & -4.19 \\ 0.00 & 0.90 & 4.22 \\ 0.00 & 0.00 & -3.27 \end{bmatrix}$$

Example of the Basic QR Algorithm (2)

$$A_{1} = \begin{bmatrix} 1.00 & 2.00 & 3.00 \\ 4.00 & 5.00 & 6.00 \\ 7.00 & 8.00 & 1.00 \end{bmatrix}$$

$$Q_{1} = \begin{bmatrix} -0.12 & 0.90 & 0.41 \\ -0.49 & 0.30 & -0.82 \\ -0.86 & -0.30 & 0.41 \end{bmatrix}$$

$$R_{1} = \begin{bmatrix} -8.12 & -9.60 & -4.19 \\ 0.00 & 0.90 & 4.22 \\ 0.00 & 0.00 & -3.27 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 9.33 & -8.98 & 2.81 \\ -4.08 & -1.00 & 0.98 \\ 2.81 & 0.98 & -1.33 \end{bmatrix}$$

Example of the Basic QR Algorithm (3)

$$A_2 = \begin{bmatrix} 9.33 & -8.98 & 2.81 \\ -4.08 & -1.00 & 0.98 \\ 2.81 & 0.98 & -1.33 \end{bmatrix}$$

Example of the Basic QR Algorithm (3)

$$A_2 = \begin{bmatrix} 9.33 & -8.98 & 2.81 \\ -4.08 & -1.00 & 0.98 \\ 2.81 & 0.98 & -1.33 \end{bmatrix}$$

$$Q_2 = \begin{bmatrix} -0.88 & -0.47 & 0.02 \\ 0.39 & -0.70 & 0.60 \\ -0.27 & 0.54 & 0.80 \end{bmatrix}$$

$$R_2 = \begin{bmatrix} -10.57 & 7.28 & -1.75 \\ 0.00 & 5.44 & -2.73 \\ 0.00 & 0.00 & -0.42 \end{bmatrix}$$

Example of the Basic QR Algorithm (3)

$$A_{2} = \begin{bmatrix} 9.33 & -8.98 & 2.81 \\ -4.08 & -1.00 & 0.98 \\ 2.81 & 0.98 & -1.33 \end{bmatrix}$$

$$Q_{2} = \begin{bmatrix} -0.88 & -0.47 & 0.02 \\ 0.39 & -0.70 & 0.60 \\ -0.27 & 0.54 & 0.80 \end{bmatrix}$$

$$R_{2} = \begin{bmatrix} -10.57 & 7.28 & -1.75 \\ 0.00 & 5.44 & -2.73 \\ 0.00 & 0.00 & -0.42 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 12.61 & -1.09 & 2.74 \\ 2.83 & -5.28 & 1.08 \\ 0.11 & -0.22 & -0.33 \end{bmatrix}$$

Example of the Basic QR Algorithm (4)

$$A_4 = \begin{bmatrix} 12.15 & -4.87 & -3.01 \\ -1.07 & -4.77 & -0.65 \\ 0.00 & 0.02 & -0.38 \end{bmatrix}$$

Example of the Basic QR Algorithm (4)

$$A_4 = \begin{bmatrix} 12.15 & -4.87 & -3.01 \\ -1.07 & -4.77 & -0.65 \\ 0.00 & 0.02 & -0.38 \end{bmatrix}$$
$$A_5 = \begin{bmatrix} 12.54 & -3.34 & 2.96 \\ 0.46 & -5.16 & 0.93 \\ 0.00 & -0.00 & -0.38 \end{bmatrix}$$

Example of the Basic QR Algorithm (4)

$$A_4 = \begin{bmatrix} 12.15 & -4.87 & -3.01 \\ -1.07 & -4.77 & -0.65 \\ 0.00 & 0.02 & -0.38 \end{bmatrix}$$
$$A_5 = \begin{bmatrix} 12.54 & -3.34 & 2.96 \\ 0.46 & -5.16 & 0.93 \\ 0.00 & -0.00 & -0.38 \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} 12.45 & -3.79 & 2.98 \\ 0.00 & -5.07 & 0.85 \\ 0.00 & -0.00 & -0.38 \end{bmatrix}$$

Example of the Basic QR Algorithm (5)

$$A_{11} = \begin{bmatrix} 12.45 & -3.79 & 2.98 \\ 0.00 & -5.07 & 0.85 \\ 0.00 & -0.00 & -0.38 \end{bmatrix}$$

We found <u>EVERY</u> eigenvalue!

Is it good enough?

• Similar convergence problems to Power Method: only guaranteed to work if $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$

Is it good enough?

- Similar convergence problems to Power Method: only guaranteed to work if $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$
- Needs modifications to find complex eigenvalues.

Is it good enough?

- Similar convergence problems to Power Method: only guaranteed to work if $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$
- Needs modifications to find complex eigenvalues.
- Could be faster: runs in $\mathcal{O}(n^3)$ time for $n \times n$ matrix.

Bad Example (1)

$$A = \begin{bmatrix} 1 & 5 \\ -1 & -3 \end{bmatrix}$$

Eigenvalues $\lambda_1 = -1 + i$ $\lambda_2 = -1 - i$

$$\lambda_1 = -1 + i$$

$$\lambda_2 = -1 - i$$

Bad Example (1)

$$A = \begin{bmatrix} 1 & 5 \\ -1 & -3 \end{bmatrix}$$

Eigenvalues $\lambda_1 = -1 + i$ $\lambda_2 = -1 - i$

$$\lambda_1 = -1 + i$$

$$\lambda_2 = -1 - i$$

$$|\lambda_1| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$

 $|\lambda_2| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$

Bad Example (2)

$$A_{1} = \begin{bmatrix} 1.00 & 5.00 \\ -1.00 & -3.00 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} -3.00 & -5.00 \\ 1.00 & 1.00 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -1.40 & 5.80 \\ -0.20 & -0.60 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} -0.60 & -5.80 \\ 0.20 & -1.40 \end{bmatrix}$$

Bad Example (2)

$$A_{1} = \begin{bmatrix} 1.00 & 5.00 \\ -1.00 & -3.00 \end{bmatrix} \qquad A_{5} = \begin{bmatrix} 1.00 & 5.00 \\ -1.00 & -3.00 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} -3.00 & -5.00 \\ 1.00 & 1.00 \end{bmatrix} \qquad A_{6} = \begin{bmatrix} -3.00 & -5.00 \\ 1.00 & 1.00 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -1.40 & 5.80 \\ -0.20 & -0.60 \end{bmatrix} \qquad A_{7} = \begin{bmatrix} -1.40 & 5.80 \\ -0.20 & -0.60 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} -0.60 & -5.80 \\ 0.20 & -1.40 \end{bmatrix} \qquad A_{8} = \begin{bmatrix} -0.60 & -5.80 \\ 0.20 & -1.40 \end{bmatrix}$$

Bad Example (2)

$$A_{1} = \begin{bmatrix} 1.00 & 5.00 \\ -1.00 & -3.00 \end{bmatrix} \qquad A_{5} = \begin{bmatrix} 1.00 & 5.00 \\ -1.00 & -3.00 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} -3.00 & -5.00 \\ 1.00 & 1.00 \end{bmatrix} \qquad A_{6} = \begin{bmatrix} -3.00 & -5.00 \\ 1.00 & 1.00 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -1.40 & 5.80 \\ -0.20 & -0.60 \end{bmatrix} \qquad A_{7} = \begin{bmatrix} -1.40 & 5.80 \\ -0.20 & -0.60 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} -0.60 & -5.80 \\ 0.20 & -1.40 \end{bmatrix} \qquad A_{8} = \begin{bmatrix} -0.60 & -5.80 \\ 0.20 & -1.40 \end{bmatrix}$$

 $\lim_{k\to\infty} A_k$ will not converge onto a triangular matrix.

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 1, \lambda_4 = -1$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 1, \lambda_4 = -1$$

$$A_1 = A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = A_1 I$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 1, \lambda_4 = -1$$

$$A_1 = A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = A_1 I$$

$$A_2 = R_1 Q_1 = I A_1 = A_1$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 1, \lambda_4 = -1$$

$$A_1 = A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = A_1 I$$

$$A_2 = R_1 Q_1 = I A_1 = A_1$$

This will never converge to a triangular matrix, since $A_i = A$ for all i.

Section 3

Improved QR Algorithm

23 / 25

Improved QR Algorithm

Lapack Algorithm

• Reduce A to an upper Hessenberg form by calculating $A = QHQ^T$, where Q is orthogonal and H is an upper Hessenberg matrix. H and A are similar and share the same eigenvalues.

Improved QR Algorithm

Lapack Algorithm

- Reduce A to an upper Hessenberg form by calculating $A = QHQ^T$, where Q is orthogonal and H is an upper Hessenberg matrix. H and A are similar and share the same eigenvalues.

Reference: [Bla99].

Improved QR Algorithm

Lapack Algorithm

- Reduce A to an upper Hessenberg form by calculating $A = QHQ^T$, where Q is orthogonal and H is an upper Hessenberg matrix. H and A are similar and share the same eigenvalues.

Reference: [Bla99].

Used by the Linear Algebra PACKage (LAPACK), which is used by NumPy and SciPy behind the scenes.

References

- [Arb16] Peter Arbenz. Lecture Notes on Solving Large Scale Eigenvalue Problems. 2016. URL: https: //people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf.
- [Bla99] Susan Blackford. Eigenvalues, Eigenvectors and Schur Factorization. Oct. 1, 1999. URL: https://www.netlib.org/lapack/lug/node50.html.
- [Koc25] Gregory Koch. Lab #9: Power Method for Approximating Eigenvalues. Feb. 10, 2025. URL: https://peddie.instructure.com/courses/7772/assignments/182563.