UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

EXAMEN DE INGRESO 1 2015 ARITMETICA -ALGEBRA FINAL - F1 SOLUCIONARIO

1.	La cantidad de divisores comunes de los números 690 y 960, mayores que 1 y menores que 100, es:		
	A) 6 B) 10 C) 8 D) 7 E) Ninguno		
	Solución		
	La descomposición factorial de 960 es: $960 = 2^6 \times 3 \times 5$		
	La descomposición factorial de 690 es: $690 = 2 \times 3 \times 5 \times 23$		
	Los divisores comunes se obtienen a partir de los factores simples comunes: $1\ ,\ 2\ ,\ 3\ ,\ 5$:		
	$1\;,2\;,3\;,5\;,6\;,10\;,15\;,30$		
	Hat 7 divisores comunes mayores que 1 y menores que 100		
	La respuesta es D ■		
2.	Las ganancias anuales durante 10 años por un interés están en progresión aritmética. Si el primer año se ganó 200 bolivianos y el décimo año se ganó 3800 bolivianos. La ganacia G , correspondiente al quinto año, verifica: A) $G < 1650$ B) $1650 < G < 1750$ C) $1750 < G < 1850$ D) $G > 1850$ E) Ninguno $Solución$.		
	(1) Si r es la razón de la progresión, entonces las ganancias anuales en los 10 años respectivamente son: $200, 200 + r, 200 + 2r, 200 + 3r, \dots, 200 + 9r$ (2) De los datos se tiene que $200 + 9r = 3800$. De donde $r = 400$ (3) La ganancia correspondiente al quinto año es $200 + 4r = 1800$ La respuesta es \mathbf{C}		
3.	Si (x,y,z,u) es solución del sistema $2x-3z-u=2$ $3y-2z-5u=3$ $x-3y+3u=0$ $4y-3u=2$		
	entonces el valord de $x + y + z - u$ es		
	A) 4 B) 5 C) 6 D) 7 E) Ninguno		
	Solución.		
	El sistema, reordenando y completando los coeficientes de las variables que no figuran, se puede escribir como		
	x - 3y + 0z + 3u = 0		
	2x + 0y - 3z - u = 2		
	0x + 3y - 2z - 5u = 3		
	0x + 4y + 0z - 3u = 2		
	(1) Multiplicando la primera ecuación por (-2) y sumando a la segunda se obtiene:		

$$6y - 3z - 7u = 2$$
 (*)

(2) se obtiene un sistema sin la variable x:

$$6y - 3z - 7u = 2$$

$$3y - 2z - 5u = 3$$

$$4y + 0z - 3u = 2$$

(3) Multiplicando la segunda ecuación por (-2) y sumando a la primera se obtiene:

$$z + 3u = -4$$

(4) Multiplicando la primera ecuación por (-2) y sumando a la tercera multiplicada por (3) se obtiene:

$$6z + 5u = 2$$
. Se obtiene el sistema $z + 3u = -4$

$$6z + 5u = 2$$

(5) Multiplicando la primera ecuación por (-6) y sumando a la segunda, se obtiene:

$$-13u = 26$$
. De donde $u = -2$, $z = 2$, $y = -1$, $x = 3$

De donde
$$x+y+z-u=3+(-1)+2-(-2)=6$$

La respuesta es C.

4. Si α y β son las raíces de la ecuación $x^2-px+q=0$, entonces el valor de $\alpha^3+\beta^3$ es

A) $p(2q - p^2)$ B) $p(3q - p^2)$ C) $p(p^2 - 2q)$

Soluci'on.

- D) $p(p^2 3q)$
- E) Ninguno

(1) Se conoce que $\alpha + \beta = p$, $\alpha\beta = q$

(2)
$$(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta^2 + 3\alpha^2\beta = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = p^3$$

(3) Entonces $\alpha^3 + \beta^3 + 3q(p) = p^3$. De donde $\alpha^3 + \beta^3 = p(p^2 - 3q)$

La respuesta es \mathbf{D} .

Solución del examen de ingreso GEOMETRÍA-TRIGONOMETRÍA 2015 fila 1

1. En un triángulo rectángulo de lados 3 y 4 se construye un rombo (ver figura). El área (fracción simplificada) del rombo es:

(A) 77/27

(B) 82/27

(C) 79/27

(D) 80/27

(E) Ninguno

Solución:

De la figura

tenemos la razones:

$$\frac{x}{4-x} = \frac{5}{4} \text{ de donde } x = \frac{20}{9}$$

Por otro lado

$$\frac{h}{4-x} = \frac{3}{4} \text{ de donde } h = \frac{4}{3}$$

Asi el área del rombo es $xh = \left(\frac{20}{9}\right)\left(\frac{4}{3}\right) = \frac{80}{27}$. respuesta (**D**)

2. Desde la orilla de un rio un observador ve un poste de altura $\sqrt{12}$ con un ángulo de elevación de 30 grados. Cruza el rio de ancho desconocido y logra ver el poste con un ángulo de 60 grados, entonces el ancho del rio es:

(A) 2(B) 3

Solución:

C) 4

(D) 5

(E) Ninguno

1

De la figura

tenemos las siguientes razones trigonométricas

$$\tan{(60)} = \frac{\sqrt{12}}{a} = \sqrt{3}$$
 de donde se tiene $a = 2$

tambien

$$\tan{(30)} = \frac{\sqrt{12}}{x+a} = \frac{\sqrt{3}}{3}$$
 de donde se tiene $x = 4$

Así el rio tiene un ancho de 4, respuesta (C)

3. En un cuadrado de lado $\sqrt{2} + 1$ se dibujan dos circunferencias idénticas tangentes entre si y tangentes interiormente al cuadrado, ver figura, entonces el perímetro de las dos circunferencias es igual a:

(A)
$$\pi$$
 (B) 2π

$$2\pi$$
 (C) 3π

(D)
$$2.5\pi$$

Solución: De la figura

tenemos

$$(2r)^{2} = 2\left(\sqrt{2} + 1 - 2r\right)^{2}$$
$$(2r)^{2} - \left(\sqrt{2}\left(\sqrt{2} + 1 - 2r\right)\right)^{2} = 0$$
$$\left[2r - \sqrt{2}\left(\sqrt{2} + 1 - 2r\right)\right]\left[2r + \sqrt{2}\left(\sqrt{2} + 1 - 2r\right)\right] = 0$$

tenemos las soluciones $r_1 = \frac{1}{2}\sqrt{2}$ y $r_2 = \frac{\sqrt{2}+2}{2\sqrt{2}-2} = \frac{3}{2}\sqrt{2}+2$, como esta solución el mayor que el lado se la desprecia. El radio buscado es $\frac{1}{2}\sqrt{2}$ y el perímetro de las dos circunferencias es $4\pi r = 4\pi \left(\frac{1}{2}\sqrt{2}\right) = 2\pi\sqrt{2}$, respuesta (E)

- 4. Sumando las soluciones, comprendidas en el intervalo $[0, \pi]$ de la ecuación $2\sin(4x) 1 = 0$, se obtiene:
 - (A) $\frac{3}{2}\pi$ (B) $\frac{5}{2}\pi$ (C) $\frac{7}{2}\pi$ (D) $\frac{\pi}{2}$ (E) Ninguno

Solución:

$$4x = \arcsin\left(\frac{1}{2}\right)$$

Caso1:

$$4x = \frac{\pi}{6} + 2\pi k, k = 0, 1, 2, 3, \dots$$

tenemos

$$x = \frac{\pi}{24} \text{ y } x = \frac{13\pi}{24}$$

Caso2:

$$4x = \frac{5\pi}{6} + 2\pi k, k = 0, 1, 2, 3, \dots$$

tenemos

$$x = \frac{5\pi}{24} \text{ y } x = \frac{17\pi}{24}$$

Así la suma buscada es $\frac{\pi}{24} + \frac{13\pi}{24} + \frac{5\pi}{24} + \frac{17\pi}{24} = \frac{3}{2}\pi$, respuesta (A)

Pregunta F1 $V_{0A} = 0$ h = 20 m

Fila
$$\frac{1}{A}$$

B

Pora A: $h = \frac{1}{2}gt_A^2$
 $h = \frac{1}{2}h = \frac{1}{2}h$

$$t_{A} = \sqrt{\frac{2h}{9}} = \sqrt{\frac{2(20)}{10}} = \sqrt{4} = 29$$

Para B
$$t_B = t_A - 1 = 1s$$
.

$$N = V_{oB} t_B + \frac{1}{2} g t_B^2$$
 $V_{oB} = \frac{h}{t_B} - \frac{g t_B}{2}$

$$V_{og} = \frac{h}{t_0} - \frac{9t_0}{2}$$

$$V_{oB} = \frac{20}{1} - \frac{(10)(1)}{2} = 20 - 5 = 15 \text{ m/s}$$

Pregunta F21

Fila 1, Dado el valor de las masas del sistema, éste hunca podría acelerar con a = 3q.

R. (e) Ninguno

Presinta F31

Then
$$60^{\circ} = \text{mg}$$

Then $60^{\circ} = \text{Fc} = \frac{\text{mV}^2}{R}$

(2)

Then $60^{\circ} = \text{Fc} = \frac{\text{mV}^2}{R}$

Then $60^{\circ} = \text{Fc} = \frac{\text{mV}^2}{R}$

$$T \cos 60^\circ = mg$$
 (1)

Then 60° =
$$F_c = \frac{mV}{R}$$
 (2)

$$W = \sqrt{\frac{1}{1000000}}$$

$$\cos 60^\circ = \frac{1}{2}$$
 $\omega = \sqrt{\frac{2g}{L}}$

$$\omega = \sqrt{\frac{2(10)}{2}}$$

$$W = \sqrt{10}$$
 rad s

R. (d)

Pregunta F41

450

Conservación de energia:

$$\chi = \sqrt{\frac{2(10)(2)\sqrt{2}}{2(10)}}$$

$$Len 45° = \frac{\sqrt{2}}{2}$$

$$\chi = \sqrt{\frac{2(10)(2)\sqrt{2}}{2(10)}} \qquad \chi = \sqrt{2\sqrt{2}} m$$
[R.(e)]

Q13.- ¿Cuántos átomos de oxígeno hay en 28 g de bicarbonato de sodio, NaHCO₃?

A) $6,023 \times 10^{23}$

B)
$$1,205\times10^{23}$$

C)
$$1,807 \times 10^{24}$$

D)
$$2,409 \times 10^{24}$$

E) Ninguno

Solución:

$$28 \ g \ NaHCO_{3} * \frac{1 \ mol \ NaHCO_{3}}{84 \ g \ NaHCO_{3}} * \frac{3 \ moles \ de \ O}{1 \ mol \ NaHCO_{3}} * \frac{6,023 * 10^{23} \ \text{\'atm.} \ O}{1 \ mol \ O} = 6,023 * 10^{23} \ \text{\'atm.} \ O$$

Q14.- Para la reacción:

$$Al + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2$$

Calcular los moles de gas hidrógeno cuando reaccionan 270 g de aluminio puro, si el rendimiento de la reacción del 80%.

A) 12

E) Ninguno

Solución:

$$2Al + 3 H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$$

$$270~g~Al \times \frac{1~mol~Al}{27~g~Al} \times \frac{3~mol~H_2}{2~mol~Al} \times \frac{80\%}{100\%} = 12~moles~H_2$$

Q15.- En un recipiente se introducen 20 litros de amoniaco y 30 litros de oxígeno. Estas sustancias reaccionan de la siguiente manera:

$$\mathrm{NH_{3\,(g)}\,+O_{2\,(g)}} \rightarrow \mathrm{NO\,_{(g)}} + \,\, \mathrm{H_{2}O_{\,(g)}}$$

Considerando constantes las condiciones de presión y temperatura, calcular el volumen de las sustancias presentes cuando finaliza la reacción.

A) 20 L NO, 10 L H₂O, 4 L O₂

B) 20 L NO, 30 L H₂O, 5 L O₂

C) 20 L NO, 30 L H₂O, 5 L NH₃

E) Ninguno

Solución:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$$

20 L NH $_3/4 = 5$ Reactivo Limitante

$$30 \text{ L O}_2/5 = 6$$

$$20 L NH_{3} \left(\frac{4LNO}{4 L NH_{3}}\right) = 20 L NO$$

$$20 L NH_{3} \left(\frac{5LO_{2}}{4 L NH_{3}}\right) = 25 L O_{2} \text{ Reacciona}; \text{ Exceso} = 30L - 25L = 5 L O_{2}$$

$$20 L NH_{3} \left(\frac{6LH_{2}O}{4 L NH_{3}}\right) = 30 L H_{2}O$$

Q16.-¿Cuántos gramos de solución de ácido fosfórico al 70% y al 20% se deben tomar para preparar 100 g de una solución al 30%?

C) 30 y 70

D) 80 y 20

E) Ninguno

Solución:

$$m_1\%_1 + m_2\%_2 = m_3\%_3$$

 $m_1 + m_2 = m_3 = 100 \text{ g}$
 $m_1*70 + m_2*20 = 100*30$
 $70 m_1 + 20*(100-m_1) = 3000$
 $70 m_1 + 2000 - 20 m_1 = 3000$
 $50 m_2 = 1000 \Rightarrow m_2 = 20 \text{ g} ; m_1 = 80 \text{ g} \implies 80 \text{ y} = 20$