1 Przestrzenie liniowe

Definicja 1 Niech \mathbb{K} będzie ciałem \mathbb{R} lub \mathbb{C} i niech V będzie zbiorem niepustym, w którym określone jest działanie dodawania + i operacja mnożenia przez elementy z ciała \mathbb{K} . Zbiór V nazywamy przestrzenia liniową nad ciałem \mathbb{K} , jeżeli dla dowolnych $x,y,z\in V$ oraz $\alpha,\beta\in\mathbb{K}$:

- $\bullet \ x + y = y + x;$
- (x+y) + z = x + (y+z);
- $\exists \mathbf{0} \in V \ \forall x \in V \ x + \mathbf{0} = x;$
- $\forall x \in V \ \exists u \in V \ x + u = 0;$
- $\mathbf{1} \cdot x = x$;
- $(\alpha\beta)x = \alpha(\beta x)$;
- $(\alpha + \beta)x = \alpha x + \beta x$;
- $\bullet \ \alpha(x+y) = \alpha x + \alpha y.$

Elementy zbioru V nazywamy wektorami, a elementy ciała $\mathbb K$ - skalarami. Na ogół wektory oznaczamy małymi rzymskimi literami, a skalary - małymi literami alfabetu greckiego. O zbiorze V zamiast przestrzeń liniowa mówimy również przestrzeń wektorowa.

Przykłady:

- Niech \mathbb{K} będzie podciałem ciała \mathbb{F} . Wtedy ciało \mathbb{F} jest przestrzenią liniową nad ciałem \mathbb{K} . W szczególności ciało \mathbb{K} jest przestrzenią liniową nad \mathbb{K} . Np. ciało \mathbb{R} jest przestrzenią liniową nad ciałem \mathbb{Q} , a także nad ciałem $\mathbb{Q}(\sqrt{2})$; ciało liczb zespolonych \mathbb{C} jest przestrzenią liniową nad ciałem \mathbb{R} .
- Niech \mathbb{K} będzie ciałem, niech $n \in \mathbb{N}$ i niech \mathbb{K}^n będzie zbiorem ciągów postaci (x_1, \ldots, x_n) , gdzie $x_1, \ldots, x_n \in \mathbb{K}^n$. Określmy w zbiorze \mathbb{K}^n dodawanie i mnożenie przez skalary w następujący sposób:

$$x + y = (x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n),$$

 $\alpha x = \alpha(x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$

dla $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{K}^n$ i $\alpha \in \mathbb{K}$. Wtedy zbiór \mathbb{K}^n z tak określonymi działaniami jest przestrzenia liniowa nad ciałem \mathbb{K} .

• Niech \mathbb{K} będzie ciałem, niech $x \in \mathbb{K}$ i niech $V = \{x\}$. Określmy w zbiorze V operacje dodawania i mnożenia przez skalary wzorami: x + x = x, $\alpha x = x$ dla $\alpha in \mathbb{K}$. Wtedy zbiór V jest przestrzenią liniową nad ciałem \mathbb{K} . Przestrzeń ta zawiera tylko jeden wektor (wektor zerowy). Przestrzenie o tej własności nazywamy przestrzeniami zerowymi.

• Niech \mathbb{K} będzie ciałem, niech X będzie zbiorem niepustym i niech \mathbb{K}^X oznacza zbiór wszystkich funkcji działających ze zbioru X w ciało \mathbb{K} . Określmy w zbiorze \mathbb{K}^X operacje dodawania i mnożenia przez skalary w następujący sposób:

$$(f+g)(x) = (f(x) + g(x),$$
$$(\alpha f)(x) = \alpha f(x)$$

dla $f,g\in\mathbb{K}^X$ i $\alpha\in\mathbb{K}.$ Wtedy zbiór \mathbb{K}^n jest przestrzenią liniową nad ciałem $\mathbb{K}.$

Zauważmy, że dla każdego wektora x przestrzeni liniowej V istnieje dokładnie jeden taki wektor u, że x+u=0. Istotnie, przypuśćmy, że $x+u_1=x+u_2=0$ dla $x,u_1,u_2\in V$. Wtedy

$$u_2 = u_2 + 0 = u_2 + x + u_1 = u_1 + x + u_2 = u_1 + 0 = u_1.$$

Jedyny wektor u spełniający równanie x+u=0 oznaczamy symbolem -x i nazywamy wektorem przeciwnym do wektora x.

Twierdzenie 1 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech $x,y\in V$. Wtedy istnieje jedyny taki wektor $z\in V$, że x+z=y. W szczególności, jeżeli dla $x\in V$ zachodzi równość x+z=x, to z=0.

Łatwo wykazać, że wektor z, o którym mowa w twierdzeniu ma postać z=y+(-x). Dalej dla wektorów $x,y\in V$ wektor x+(-y) będziemy nazywać różnicą wektorów x i y i oznaczać x-y. Działanie — będziemy nazywać odejmowaniem wektorów.

Twierdzenie 2 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} , niech $x \in V$ i niech $\alpha \in \mathbb{K}$. Wtedy $\alpha x = 0$ wtedy i tylko wtedy, gdy $\alpha = 0$ lub x = 0.

Dowód. Ponieważ

$$\alpha 0 + \alpha 0 = \alpha (0 + 0) = \alpha 0,$$

więc $\alpha 0 = 0$ dla każdego elementu $\alpha \in \mathbb{K}$.

Zauważmy, że dla dowolnego wektora $x \in V$ mamy

$$x + 0 \cdot x = 1 \cdot x + 0 \cdot x = (1 + 0)x = 1 \cdot x = x$$

co oznacza, że $0 \cdot x = 0$.

Załóżmy teraz, że $\alpha x=0$ i $\alpha \neq 0$. Mnożąc równość $\alpha x=0$ przez element α^{-1} , otrzymamy

$$\alpha^{-1}(\alpha x) = \alpha^{-1}0 = 0.$$

Ponadto,

$$\alpha^{-1}(\alpha x) = (\alpha^{-1}\alpha)x = 1 \cdot x = x.$$

Stad
$$x = 0$$
.

Niech V będzie przestrzenią liniową nad ciałem $\mathbb{K},$ niech $x,y,z\in V$ i niech $\alpha,\beta\in\mathbb{K}.$ Wtedy

•
$$x - (y + z) = (x - y) - z;$$

- x (y z) = (x y) + z;
- -(x+y) = (-x) y = (-x) + (-y);
- -(x-y) = (-x) + y;
- $\alpha(x-y) = \alpha x \alpha y$;
- $(\alpha \beta)x = \alpha x \beta x$;
- $\alpha(-x) = -\alpha x = (-\alpha)x$;
- $(-\alpha)(-x) = \alpha x$.

Definicja 2 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} . Niepusty podzbiór W przestrzeni V nazywamy podprzestrzenią liniową przestrzeni V (ozn. W < V), jeżeli:

- $\forall x, y \in W \quad x + y \in W;$
- $x \in W \ i \ \alpha \in \mathbb{K} \ \Rightarrow \ \alpha x \in W$.

Przykład

Niech $P(\mathbb{K})$ będzie zbiorem wszystkich funkcji $f \colon \mathbb{K} \to \mathbb{K}$, które mają przedstawienie wielomianowe, tzn.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

gdzie $a_0, \ldots, a_n \in \mathbb{K}$. Wtedy $P(\mathbb{K}) < \mathbb{K}^{\mathbb{K}}$.

Uwaga

Jeżeli W jest podprzestrzenią liniową przestrzeni
 liniowej V nad ciałem $\mathbb{K},$ to W jest przestrzenią liniową.

Każda przestrzeń liniowa V zawiera co najmniej dwie podprzestrzenie: zbiór V (podprzestrzeń liniowa niewłaściwa) i zbiór $\{0\}$ zawierający tylko wektor zerowy (podprzestrzeń liniowa zerowa).

Definicja 3 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} , niech $m \in \mathbb{N}$ i niech $x_1, \ldots, x_m \in V$. Kombinacją liniową wektorów x_1, \ldots, x_m nazywamy każdy wektor postaci

$$\alpha_1 x_1 + \cdots + \alpha_m x_m$$

 $gdzie \ \alpha_1, \ldots, \alpha_m \in \mathbb{K}.$

Definicja 4 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech M będzie podzbiorem zbioru V. Podprzestrzeń liniową przestrzeni V złożoną ze wszystkich kombinacji liniowych wektorów zbioru M nazywamy podprzestrzenią liniową rozpiętą na zbiorze M lub powłoką liniową zbioru M. (ozn. $\langle M \rangle$ lub linM)

Np.
$$P(\mathbb{K}) = \lim\{1, x, x^2, x^3, \ldots\}.$$

Definicja 5 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech M będzie podzbiorem zbioru V. Wektory zbioru M nazywamy liniowo niezależnymi, jeżeli dla każdego układu $x_1, \ldots, x_m \in M$

$$\alpha_1 x_1 + \dots + \alpha_m x_m = \beta_1 x_1 + \dots + \beta_m x_m \Rightarrow \alpha_1 = \beta_1, \dots, \alpha_m = \beta_m.$$

Wektory, które nie są liniowo niezależne nazywamy liniowo zależnymi.

Innymi słowy, przedstawienie każdego wektora $x \in \text{lin}M, x \neq 0$, w postaci kombinacji liniowej elementów zbioru M

$$x = \alpha_1 x_1 + \dots + \alpha_m x_m,$$

gdzie $\alpha_i \neq 0$, dla każdego $i = 1, \dots, m$, jest jedyne.

Twierdzenie 3 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech M będzie podzbiorem zbioru V. Wektory zbioru M są liniowo niezależne wtedy i tylko wtedy, gdy

$$\forall x_1, \dots, x_m \in M \quad \alpha_1 x_1 + \dots + \alpha_m x_m = 0 \implies \alpha_1 = \dots = \alpha_m = 0.$$

Dowód.

(⇒) Ponieważ

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0 = 0x_1 + \dots + 0x_m,$$

więc, na mocy liniowej niezależności wektorów $x_1, \ldots, x_m, \alpha_1 = \cdots = \alpha_m = 0.$

(⇐) Załóżmy, że

$$\alpha_1 x_1 + \dots + \alpha_m x_m = \beta_1 x_1 + \dots + \beta_m x_m.$$

Wtedy

$$(\alpha_1 - \beta_1)x_1 + \dots + (\alpha_m - \beta_m)x_m = 0.$$

Na mocy założenia

$$\alpha_1 - \beta_1 = 0, \dots, \alpha_m - \beta_m = 0.$$

Stad

$$\alpha_1 = \beta_1, \ldots, \alpha_m = \beta_m.$$

Twierdzenie 4 Zbiór wektorów x_1, \ldots, x_m jest liniowo zależny wtedy i tylko wtedy, gdy jeden z nich jest kombinacją liniową pozostałych.

Dowód. Wektory x_1, \ldots, x_m są liniowo zależne, jeżeli istnieją takie skalary $\alpha_1, \ldots, \alpha_m$, nie wszystkie równe zeru, że

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0.$$

4

Zmieniając numerację, jeśli to konieczne, możemy założyć, że $\alpha_1 \neq 0$. Wtedy mnożąc obustronnie powyższe równanie przez element $\alpha^{-1} = \frac{1}{\alpha}$, otrzymujemy

$$x_1 + \frac{\alpha_2}{\alpha_1} x_2 + \dots + \frac{\alpha_m}{\alpha_1} x_m = 0.$$

Stad

$$x_1 = \left(-\frac{\alpha_2}{\alpha_1}\right) x_2 + \dots + \left(-\frac{\alpha_m}{\alpha_1}\right) x_m,$$

tzn. wektor x_1 jest kombinacją liniową pozostałych wektorów.

Załóżmy teraz, że pewien wektor x_i , $i \in \{1, ..., m\}$, jest kombinacją liniową pozostałych wektorów. Bez straty ogólności możemy założyć, że to wektor x_1 jest kombinacją liniową pozostałych wektorów. Wtedy istnieją takie skalary $\beta_2, ..., \beta_m$, że

$$x_1 = \beta_2 x_2 + \dots + \beta_m x_m.$$

Stąd

$$1 \cdot x_1 + (-\beta_2)x_2 + \dots + (-\beta_m)x_m = 0.$$

Ponieważ współczynnik przy wektorze x_1 jest różny od 0, więc zbiór wektorów x_1, \ldots, x_m jest liniowo zależny.

Uwaga

Każdy podzbiór skończonego zbioru liniowo niezależnego jest liniowo niezależny. Każdy skończony zbiór wektorów zawierający podzbiór liniowo zależny jest też liniowo zależny.

Definicja 6 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} . Podzbiór $M \subseteq V$ nazywamy bazą przestrzeni V, jeżeli

- wektory zbioru M są liniowo niezależne;
- jeżeli $M \nsubseteq M' \subseteq V$, to wektory zbioru M' są liniowo zależne.

Innymi słowy, maksymalny (w sensie inkluzji) zbiór wektorów liniowo niezależnych przestrzeni V jest bazą przestrzeni V.

Twierdzenie 5 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech $M \subseteq V$. Zbiór M jest bazą przestrzeni V wtedy i tylko wtedy, gdy wektory zbioru M są liniowo niezależne i linM = V.

Dowód.

(⇒) Niech $y_1, \ldots, y_s \in M$. Załóżmy, że istnieje wektor $x \in V \setminus \lim M$ i

$$\alpha_0 x + \alpha_1 y_1 + \dots + \alpha_s y_s = 0.$$

Gdyby $\alpha_0 \neq 0$, to mielibyśmy

$$x = \left(-\frac{\alpha_1}{\alpha_0}\right) y_1 + \dots + \left(-\frac{\alpha_s}{\alpha_0}\right) y_s,$$

co oznaczałoby, że $x \in \lim M$, wbrew założeniu. W rezultacie $\alpha_0 = 0$. Wtedy

$$\alpha_1 y_1 + \dots + \alpha_s y_s = 0.$$

Ponieważ wektory zbioru M są liniowo niezależne, więc $\alpha_1 = \cdots = \alpha_s = 0$. W konsekwencji wektory zbioru $M \cup \{x\}$ są liniowo niezależne, co jest sprzeczne z definicją bazy.

 (\Leftarrow) Niech $M \nsubseteq M' \subseteq V$, niech $x \in M' \setminus M$ i niech $y_1, \ldots, y_s \in M$. Ponieważ $V = \lim M$, więc wektor x można przedstawić w postaci

$$x = \alpha_1 y_1 + \dots + \alpha_s y_s.$$

Stąd

$$1 \cdot x + (-\alpha_1)y_1 + \dots + (-\alpha_s)y_s = 0.$$

W konsekwencji, wektory x, y_1, \ldots, y_s są liniowo zależne. Ponieważ $\{x, y_1, \ldots, y_s\} \subseteq M'$, więc wektory zbioru M' są liniowo zależne.

Przykłady.

• W przestrzeni \mathbb{R}^n bazę stanowią wektory

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, 0, \dots, 1);$$

- W przestrzeni \mathbb{C} nad ciałem liczb rzeczywistych bazę stanowi zbiór $\{1, i\}$;
- Baza przestrzeni zerowej jest zbiór pusty.

Lemat 1 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} , niech zbiór $\{x_1, \ldots, x_n\}$ będzie bazą przestrzeni V i niech $x = \alpha_1 x_1 + \cdots + \alpha_n x_n$, gdzie $\alpha_i \neq 0$ dla $i = 1, \ldots, n$. Wtedy zbiór

$$\{x_1, \dots, x_{j-1}, x, x_{j+1}, \dots, x_n\}$$

jest bazą przestrzeni V.

Dowód. Ponieważ $x = \alpha_1 x_1 + \cdots + \alpha_n x_n$ i $\alpha_i \neq 0$ dla $i = 1, \dots, n$, więc

$$x_{j} = \frac{1}{\alpha_{j}}x + \left(-\frac{\alpha_{1}}{\alpha_{j}}\right)x_{1} + \dots + \left(-\frac{\alpha_{j-1}}{\alpha_{j}}\right)x_{j-1} + \left(-\frac{\alpha_{j+1}}{\alpha_{j}}\right)x_{j+1} + \dots + \left(-\frac{\alpha_{n}}{\alpha_{j}}\right)x_{n},$$

co oznacza, że wektor x_j jest kombinacją liniową wektorów $x_1, \ldots, x_{j-1}, x, x_{j+1}, \ldots, x_n$. Ponieważ każdy wektor przestrzeni V jest kombinacją liniową wektorów $x_1, \ldots, x_j, \ldots, x_n$, więc jest także kombinacją liniową wektorów $x_1, \ldots, x_{j-1}, x, x_{j+1}, \ldots, x_n$. Pozostaje zatem wykazać, że wektory $x_1, \ldots, x_{j-1}, x, x_{j+1}, \ldots, x_n$ są liniowo niezależne.

Załóżmy, że

$$\beta_0 x + \beta_1 x_1 + \dots + \beta_{j-1} x_{j-1} + \beta_{j+1} x_{j+1} + \dots + \beta_n x_n = 0.$$

Wtedy

$$\beta_0(\alpha_1 x_1 + \dots + \alpha_n x_n) + \beta_1 x_1 + \dots + \beta_{j-1} x_{j-1} + \beta_{j+1} x_{j+1} + \dots + \beta_n x_n = 0.$$

Stad

$$(\beta_0 \alpha_1 + \beta_1) x_1 + \dots + (\beta_0 \alpha_{j-1} \beta_{j-1}) x_{j-1} + \beta_0 \alpha_j x_j + (\beta_0 \alpha_{j+1} \beta_{j+1}) x_{j+1} + \dots + (\beta_0 \alpha_n + \beta_n) x_n = 0.$$

Ponieważ wektory x_1, \ldots, x_n są liniowo niezależne, więc wszystkie współczynniki w powyższej równości są równe 0. W szczególności $\beta_0 \alpha_j = 0$ i ponieważ $\alpha_j \neq 0$, więc $\beta_0 = 0$. Wtedy $\beta_i = 0$ dla każdego $i \in \{1, \ldots, j-1, j+1, \ldots, n\}$.

Twierdzenie 6 (Twierdzenie Steinitza o wymianie) Jeżeli wektory e_1, \ldots, e_s stanowią bazę przestrzeni liniowej V oraz wektory $f_1, \ldots, f_r \in V$ są liniowo niezależne, to $r \leq s$ oraz istnieje s-r wektorów pośród e_1, \ldots, e_s , które w połączeniu z f_1, \ldots, f_r stanowią bazę przestrzeni V.

Dowód. Dowód indukcyjny ze względu na r. Dla r=0 twierdzenie jest oczywiste. Załóżmy, że twierdzenie jest prawdziwe dla liczb mniejszych niż r i rozpatrzmy r wektorów f_1, \ldots, f_r liniowo niezależnych. Ponieważ wektory f_1, \ldots, f_{r-1} są liniowo niezależne, więc zgodnie z założeniem indukcyjnym, $r-1 \le s$ i istnieje s-r+1 wektorów pośród e_1, \ldots, e_s , które łącznie z f_1, \ldots, f_{r-1} tworzą bazę przestrzeni V. Bez straty ogólności możemy założyć, że są to wektory e_1, \ldots, e_{s-r+1} .

Gdyby r-1=s, to wektory f_1,\ldots,f_{r-1} tworzyłyby bazę przestrzeni V, co oznaczałoby, że wektor f_r byłby kombinacją liniową wektorów f_1,\ldots,f_{r-1} wbrew założeniu, że wektory f_1,\ldots,f_r są liniowo niezależne. W rezultacie r-1< s lub równoważnie $r\leq s$.

Ponieważ wektory $f_1,\ldots,f_{r-1},e_1,\ldots,e_{s-r+1}$ tworzą bazę przestrzeni V, więc wektor f_r jest ich kombinacją liniową. Z liniowej niezależności wektorów f_1,\ldots,f_r wynika, że w kombinacji liniowej przedstawiającej wektor f_r co najmniej jeden z wektorów e_1,\ldots,e_{s-r+1} występuje ze współczynnikiem różnym od 0. Możemy przyjąć, że jest to wektor e_{s-r+1} . Na mocy poprzedniego lematu, możemy utworzyć nową bazę zastępując wektor e_{s-r+1} wektorem f_r . W konsekwencji wektory $f_1,\ldots,f_r,e_1,\ldots,e_{s-r}$ tworzą bazę przestrzeni V.

Wniosek 1 Jeżeli zbiory $\{e_1, \ldots, e_s\}$ i $\{f_1, \ldots, f_r\}$ są bazami przestrzeni liniowej V, to s = r.

Dowód. Jeżeli zbiory $\{e_1,\ldots,e_s\}$ i $\{f_1,\ldots,f_r\}$ są bazami przestrzeni liniowej V, to z twierdzenia Steinitza o wymianie wynika, że $s\leq r$. Zamieniając bazy $\{e_1,\ldots,e_s\}$ i $\{f_1,\ldots,f_r\}$ rolami, otrzymamy $r\leq s$. W rezultacie r=s.

Definicja 7 Wymiarem przestrzeni liniowej V nazywamy liczbę dimV elementów dowolnej bazy tej przestrzeni. Jeżeli liczba ta nie jest skończona, to piszemy dim $V=\infty$ i mówimy, że przestrzeń V ma wymiar nieskończony. W przeciwnym razie mówimy, że przestrzeń V jest skończonego wymiaru.

Twierdzenie 7 Niech V będzie przestrzenią liniową. Jeżeli W < V, to $dimW \le dimV$.

Dowód. Z twierdzenia Steinitza o wymianie wynika, że każdy liniowo niezależny podzbiór przestrzeni V zawiera co najwyżej $\dim V$ wektorów. Ponieważ każdy liniowo niezależny podzbiór przestrzeni W jest liniowo niezależnym podzbiorem przestrzeni V, więc może zawierać co najwyżej $\dim V$ wektorów. W konsekwencji, zbiór W zawiera zbiór liniowo niezależny o maksymalnej liczbie elementów (nieprzekraczającej $\dim V$) co oznacza, że $\dim W \leq \dim V$.

Wniosek 2 Niech V będzie przestrzenią liniową skończonego wymiaru i niech W będzie podprzestrzenią przestrzeni V. Wtedy, W = V wtedy i tylko wtedy, gdy dim $W = \dim V$.

Dowód. Jeżeli W=V, to oczywiście $\dim W=\dim V$.

Jeżeli zbiór $\{e_1, \ldots, e_r\}$ jest bazą przestrzeni W, to można ją uzupełnić do bazy przestrzeni V przez dodanie $\dim V - \dim W$ elementów. Ponieważ $\dim W = \dim V$, więc baza uzupełniona jest identyczna z bazą $\{e_1, \ldots, e_r\}$ co oznacza, że W = V.

Przykłady

• Niech K będzie ciałem i niech $e_1, \ldots, e_n \in \mathbb{K}^n$ będą wektorami postaci

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$$

Wtedy każdy wektor $x=(x_1,\ldots,x_n)\in\mathbb{K}^n$ można przedstawić jako kombinację liniową wektorów e_1,\ldots,e_n :

$$x = x_1 e_1 + \dots + x_n e_n.$$

Ponadto,

$$x_1e_1 + \cdots + x_ne_n = 0 \Leftrightarrow x_1 = \cdots = x_n = 0.$$

Wynika stąd, że zbiór $\{e_1, \ldots, e_n\}$ stanowi bazę przestrzeni \mathbb{K}^n oraz dim $\mathbb{K}^n = n$. Bazę tę nazywamy bazą standardową, a jej elementy - wersorami. $(e_i - i$ -ty wersor)

 \bullet Niech $P(\mathbb{R})$ oznacza przestrzeń wielomianów nad ciałem liczb rzeczywistych. Załóżmy, że

$$\alpha_0 + \alpha_1 x + \dots + \alpha_n x^n = 0.$$

Przypuśćmy, że nie wszystkie współczynniki w tym przedstawieniu są równe 0. Możemy założyć, że $\alpha_n \neq 0$. Wtedy z zasadniczego twierdzenia algebry wynikałoby, że wielomian $\alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n$ ma skończenie wiele pierwiastków. Oznaczałoby to, że istnieje taka liczba rzeczywista m, dla której

$$\alpha_0 + \alpha_1 m + \dots + \alpha_n m^n \neq 0$$

co jest sprzeczne z założeniem. W rezultacie zbiór $\{1, x, x^2, \ldots\}$ jest bazą przestrzeni $P(\mathbb{R})$ i $\dim P(\mathbb{R}) = \infty$.

• Niech $P_n(\mathbb{R})$ oznacza przestrzeń wielomianów nad ciałem liczb rzeczywistych stopnia co najwyżej n. Wtedy zbiór $\{1, x, x^2, \dots, x^n\}$ stanowi bazę tej przestrzeni oraz $\dim P_n(\mathbb{R}) = n + 1$.

Zauważmy, że jeżeli U i W są podprzestrzeniami przestrzeni liniowej V, to przekrój $U \cap W$ jest również podprzestrzenią przestrzeni V.

Definicja 8 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech U i W będą podprzestrzeniami liniowymi przestrzeni V. Sumą algebraiczną przestrzeni U i W nazywamy zbiór

$$U + W = \{u + w : u \in U, w \in W\}.$$

Suma algebraiczna przestrzeni U i W jest najmniejszą podprzestrzenią liniową przestrzeni V zawierającą zbiory U i W. Każdy wektor $v \in U + W$ można przedstawić w postaci v = u + w, gdzie $u \in U$, $w \in W$, ale przedstawienie to nie jest na ogół jednoznaczne.

Analogicznie definiujemy sumę algebraiczną dowolnej skończonej liczby podprzestrzeni liniowych U_1, \ldots, U_m przestrzeni liniowej V.

Twierdzenie 8 Niech V będzie skończenie wymiarową przestrzenią liniową nad ciałem \mathbb{K} i niech U i W będą podprzestrzeniami liniowymi przestrzeni V. Wtedy

$$dim(U+W) = dimU + dimW - dim(U \cap W).$$

Dowód. Niech

$$\dim U = k$$
, $\dim W = l$, $\dim(U \cap W) = m$.

Ponieważ $U \cap W \subseteq U$ i $U \cap W \subseteq W$, więc $m \leq k$ i $m \leq l$. Niech $\{e_1, \ldots, e_m\}$ będzie bazą przestrzeni $U \cap W$. Z twierdzenia Steinitza o wymianie wynika, że bazę $\{e_1, \ldots, e_m\}$ możemy uzupełnić do bazy $\{e_1, \ldots, e_m, a_1, \ldots, a_{k-m}\}$ przestrzeni U oraz do bazy $\{e_1, \ldots, e_m, b_1, \ldots, b_{l-m}\}$ przestrzeni W.

Ponieważ każdy wektor sumy U+W jest postaci u+w, gdzie $u\in U$ i $w\in W$, więc

$$U + W = \lim\{e_1, \dots, e_m, a_1, \dots, a_{k-m}, b_1, \dots, b_{l-m}\}.$$

Jeżeli wektory $e_1, \ldots, e_m, a_1, \ldots, a_{k-m}, b_1, \ldots, b_{l-m}$ są liniowo niezależne, to

$$\dim(U+W) = m + (k-m) + (l-m) = k + l - m.$$

Przypuśćmy, że wektory $e_1, \ldots, e_m, a_1, \ldots, a_{k-m}, b_1, \ldots, b_{l-m}$ są liniowo zależne. Wtedy istniałyby takie skalary $\gamma_1, \ldots, \gamma_m, \alpha_1, \ldots, \alpha_{k-m}, \beta_1, \ldots, \beta_{l-m}$, nie wszystkie równe 0, że

$$\sum_{s=1}^{m} \gamma_s e_s + \sum_{i=1}^{k-m} \alpha_i a_i + \sum_{j=1}^{l-m} \beta_j b_j = 0.$$
 (*)

Stad

$$\sum_{s=1}^{m} \gamma_s e_s + \sum_{i=1}^{k-m} \alpha_i a_i = -\sum_{j=1}^{l-m} \beta_j b_j,$$

gdzie lewa strona równości jest elementem przestrzeni U, a prawa - W. Oznacza to, że wektor ten należy do przestrzeni $U \cap W$. Możemy więc przyjąć

$$-\sum_{j=1}^{l-m} \beta_j b_j = \sum_{s=1}^m \delta_s e_s.$$

Stąd

$$\sum_{s=1}^{m} \delta_{s} e_{s} + \sum_{j=1}^{l-m} \beta_{j} b_{j} = 0.$$

Ponieważ wektory $e_1, \ldots, e_m, b_1, \ldots, b_{l-m}$ są liniowo niezależne, więc, w szczególności, $\beta_1 = \cdots = \beta_{l-m} = 0$.

W konsekwencji, równość (*) jest kombinacją liniową wektorów $e_1, \ldots, e_m, a_1, \ldots, a_{k-m}$, które są liniowo niezależne. Stąd wynika, że $\gamma_1 = \cdots = \gamma_m = \alpha_1 = \cdots = \alpha_{k-m} = 0$, co jest sprzeczne z założeniem.

Definicja 9 Niech V będzie przestrzenią liniową i niech U_1, \ldots, U_m będą podprzestrzeniami przestrzeni V. Jeżeli każdy wektor $u \in U_1 + \cdots + U_m$ można jednoznacznie przedstawić w postaci

$$u = u_1 + \dots + u_m, \quad u_i \in U_i, \ i = 1, \dots, m,$$

to sum $U_1 + \cdots + U_m$ nazywamy sum $u_1 + \cdots + u_m = 1$ przestrzeni $u_1, \dots, u_m = 1$ przestrze

Zauważmy, że na to aby suma $U_1 + \cdots + U_m$ była prosta wystarczy jednoznaczność zapisu wektora zerowego.

Istotnie, jeżeli

$$0 = u_1 + \dots + u_m \implies u_1 = \dots = u_m = 0,$$

to z równości

$$w_1 + \dots + w_m = w_1' + \dots + w_m'$$

wynika, że

$$0 = (w_1 - w_1') + \dots + (w_m - w_m'), \quad w_i - w_i' \in U_i, \ i = 1, \dots, m.$$

Stad

$$w_i - w'_i = 0$$
 dla $i = 1, ..., m$.
 $w_i = w'_i$ dla $i = 1, ..., m$.

Przyjmijmy oznaczenie

$$U_1 + \cdots + \hat{U}_i + \cdots + U_m = U_1 + \cdots + U_{i-1} + U_{i+1} + \cdots + U_m.$$

Twierdzenie 9 Niech V będzie przestrzenią liniową i niech U_1, \ldots, U_m będą podprzestrzeniami przestrzeni V. Suma algebraiczna $U_1 + \cdots + U_m$ jest sumą prostą wtedy i tylko wtedy, gdy

$$U_i \cap (U_1 + \dots + \hat{U}_i + \dots + U_m) = \{0\} \ dla \ i = 1, \dots, m.$$

Dowód. Załóżmy, że suma $U_1+\cdots+U_m$ jest prosta. Ustalmy wskaźnik $i\in\{1,\ldots,m\}$. Niech

$$x \in U_i \cap (U_1 + \dots + \hat{U}_i + \dots + U_m)$$

Wtedy

$$x = u_1 + \dots + \hat{u}_i + \dots + u_m, \quad u_j \in U_j.$$

Stad

$$0 + \dots + 0 = 0 = u_1 + \dots + u_{i-1} + (-x) + u_{i+1} + \dots + u_m.$$

Ponieważ suma $U_1 + \cdots + U_m$ jest prosta, więc -x = 0.

Załóżmy teraz, że

$$U_i \cap (U_1 + \dots + \hat{U}_i + \dots + U_m) = \{0\} \text{ dla } i = 1, \dots, m.$$

Niech

$$0 = a_1 + \dots + a_i + \dots + a_m.$$

Wtedy

$$-a_i = a_1 + \dots + a_{i-1} + a_{i+1} + \dots + a_m \in U_i \cap (U_1 + \dots + \hat{U}_i + \dots + U_m) = \{0\}.$$

W rezultacie $a_i = 0$ dla i = 1, ..., m.

Zauważmy, że dla m=2 otrzymujemy: Suma U_1+U_2 jest prosta wtedy i tylko wtedy, gdy $U_1\cap U_2=\{0\}$. W szczególności, jeżeli $\dim U_1<\infty$ i $\dim U_2<\infty$, to $\dim(U_1+U_2)=\dim U_1+\dim U_2$.

Twierdzenie 10 Niech V będzie skończenie wymiarową przestrzenią liniową i niech U_1, \ldots, U_m będą podprzestrzeniami przestrzeni V. Suma algebraiczna $U = U_1 + \cdots + U_m$ jest prosta wtedy i tylko wtedy, gdy

$$dimU = \sum_{i=1}^{m} dimU_i.$$

Dowód. Dowód indukcyjny ze względu na m. Dla m=2 twierdzenie jest prawdziwe. Zauważmy, że jeżeli U jest sumą prostą, to suma $U_1+\cdots+\hat{U}_i+\cdots+U_m$ także jest prosta. Wtedy

$$\dim U = \dim U_i + \dim(U_1 + \dots + \hat{U}_i + \dots + U_m) -$$

$$-\dim(U_i \cap (U_1 + \dots + \hat{U}_i + \dots + U_m)) =$$

$$= \dim U_i + (\dim U_1 + \dots + \dim \hat{U}_i + \dots + \dim U_m) - 0 =$$

$$= \sum_{i=1}^m \dim U_i.$$

Załóżmy teraz, że

$$\dim U = \sum_{i=1}^{m} \dim U_i.$$

Wtedy suma baz podprzestrzeni U_i , $i=1,\ldots,m$, stanowi bazę przestrzeni U, co oznacza, że suma U jest prosta.

Twierdzenie 11 Niech V będzie n-wymiarową przestrzenią liniową i niech U będzie m-wymiarową podprzestrzenią przestrzeni V. Wtedy istnieje taka (n-m)-wymiarowa podprzestrzeni V przestrzeni V, że $V=U\oplus W$.

Podprzestrzenie U i W nazywamy dopełniającymi.

Dowód. Niech $\{a_1, \ldots, a_m\}$ będzie bazą przestrzeni U. Z twierdzenia Steinitza o wymianie wynika, że bazę tę możemy uzupełnić do bazy $\{a_1, \ldots, a_m, b_1, \ldots, b_{n-m}\}$ przestrzeni V. Wtedy

$$W = \lim\{b_1, \dots, b_{n-m}\}.$$

Rozpatrywaliśmy sumy proste podprzestrzeni tej samej przestrzeni liniowej. Sumy proste tego typu nazywamy wewnętrznymi. Czasami rozpatrujemy zewnętrzne sumy proste, tzn. sumy $U \oplus W$ przestrzeni liniowych nad tym samym ciałem \mathbb{K} , nawet jeśli nie są one podprzestrzeniami tej samej przestrzeni liniowej. W tym przypadku przez $U \oplus W$ rozumiemy zbiór $U \times W$ wszystkich par uporządkowanych $(u,w), u \in U, w \in W$ z działaniami określonymi wzorem

$$\alpha(u, w) + \beta(u', w') = (\alpha u + \beta u', \alpha w + \beta w').$$

2 Izomorfizm przestrzeni liniowych

Definicja 10 Niech V i W będą przestrzeniami liniowymi nad tym samym ciałem \mathbb{K} . Odwzorowanie $\varphi \colon V \to W$ nazywamy izomorfizmem, jeżeli:

- 1. φ jest odwzorowaniem wzajemnie jednoznacznym;
- 2. $\varphi(x+y) = \varphi(x) + \varphi(y) \ dla \ x, y \in V;$
- 3. $\varphi(\alpha x) = \alpha \varphi(x) \ dla \ \alpha \in \mathbb{K}, \ x \in V.$

Stwierdzenie 1 Niech V i W będą przestrzeniami liniowymi nad tym samym ciałem K. Jeżeli odwzorowanie $\varphi \colon V \to W$ jest izomorfizmem, to $\varphi(0) = 0$.

Dowód. Wprost z definicji

$$\varphi(0) = \varphi(0 \cdot 0) = 0 \cdot \varphi(0) = 0.$$

Zauważmy, że w definicji izomorfizmu własności 2 i 3 są równoważne własności

$$\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y) \text{ dla } \alpha, \beta \in \mathbb{K}, \ x, y \in V.$$

Ponadto, z własności tych wynika, że

$$\varphi(x-y) = \varphi(x) - \varphi(y)$$
 dla $x, y \in V$.

Zauważmy, że przekształcenie tożsamościowe dowolnej przestrzeni liniowej V w siebie jest izomorfizmem, przekształcenie odwrotne do izomorfizmu jest izomorfizmem oraz złożenie dwóch izomorfizmów jest izomorfizmem.

Twierdzenie 12 Niech V i W będą przestrzeniami liniowymi nad tym samym ciałem \mathbb{K} i niech odwzorowanie $\varphi \colon V \to W$ będzie izomorfizmem. Wtedy

- jeżeli zbiór $X \subseteq V$ jest liniowo niezależny (liniowo zależny lub bazą), to $\varphi(X)$ jest zbiorem liniowo niezależnym (liniowo zależnym lub bazą, odpowiednio);
- jeżeli $x, y_1, \ldots, y_n \in V$ i wektor x jest kombinacją liniową wektorów y_1, \ldots, y_n , to wektor $\varphi(x)$ jest kombinacją liniową wektorów $\varphi(y_1), \ldots, \varphi(y_n)$;
- jeżeli zbiór U jest podprzestrzenią liniową przestrzeni V, to zbiór $\varphi(U)$ jest podprzestrzenią liniową przestrzeni W;
- dimV = dimW.

Definicja 11 Dwie przestrzenie liniowe V i W nad tym samym ciałem \mathbb{K} nazywamy izomorficznymi, jeżeli istnieje izomorfizm $\varphi \colon V \to W$.

Twierdzenie 13 Niech V i W będą skończenie wymiarowymi przestrzeniami liniowymi nad tym samym ciałem \mathbb{K} . Jeżeli dim $V = \dim W$, to przestrzenie V i W są izomorficzne.

Dowód. Wykażemy, że jeżeli wektory e_1, \ldots, e_n tworzą bazę przestrzeni V, a wektory f_1, \ldots, f_n tworzą bazę przestrzeni W, to istnieje dokładnie jeden taki izomorfizm $\varphi \colon V \to W$, że $\varphi(e_i) = f_i$ dla $i = 1, \ldots, n$.

Niech $\dim V=\dim W=n$ i niech $\{e_1,\ldots,e_n\},\,\{f_1,\ldots,f_n\}$ będą bazami przestrzeni V i W, odpowiednio. Wtedy każdy wektor x przestrzeni V można jednoznacznie przedstawić w postaci

$$x = \sum_{i=1}^{n} \alpha_i e_i.$$

Określmy odwzorowanie $\varphi \colon V \to W$ wzorem

$$\varphi(x) = \sum_{i=1}^{n} \alpha_i f_i \text{ dla } x = \sum_{i=1}^{n} \alpha_i e_i.$$

Ponieważ każdy wektor y przestrzeni W można przedstawić w postaci

$$y = \sum_{i=1}^{n} \beta_i f_i,$$

więc

$$y = \varphi\left(\sum_{i=1}^{n} \beta_i e_i\right),\,$$

co oznacza, że odwzorowanie φ przekształca przestrzeń Vna W.

Niech

$$x = \sum_{i=1}^{n} \alpha_i e_i, \ x' = \sum_{i=1}^{n} \alpha'_i e_i \ i \ \varphi(x) = \varphi(x').$$

Wtedy

$$\sum_{i=1}^{n} \alpha_i f_i = \varphi(x) = \varphi(x') = \sum_{i=1}^{n} \alpha'_i f_i.$$

Z jednoznaczności przedstawienia wektorów przestrzeni W w postaci kombinacji liniowej wektorów bazy $\{f_1, \ldots, f_n\}$ wynika, że $\alpha_i = \alpha_i'$ dla $i = 1, \ldots, n$, tzn. x = x'.

Niech

$$x = \sum_{i=1}^{n} \alpha_i e_i, \quad x' = \sum_{i=1}^{n} \alpha'_i e_i, \quad \beta \in \mathbb{K}.$$

Wtedy

$$\varphi(x+x') = \varphi\left(\sum_{i=1}^{n} (\alpha_i + \alpha_i')e_i\right) = \sum_{i=1}^{n} (\alpha_i + \alpha_i')f_i =$$

$$= \sum_{i=1}^{n} \alpha_i f_i + \sum_{i=1}^{n} \alpha_i' f_i = \varphi(x) + \varphi(x').$$

Ponadto,

$$\varphi(\beta x) = \varphi\left(\sum_{i=1}^{n} (\beta \alpha_i) e_i\right) = \sum_{i=1}^{n} (\beta \alpha_i) f_i = \beta \sum_{i=1}^{n} \alpha_i f_i = \beta \varphi(x).$$

Wykazaliśmy więc, że odwzorowanie φ jest izomorfizmem.

Zauważmy, że $\varphi(e_i) = f_i$ dla $i = 1, \ldots, n$.

Niech $\psi: V \to W$ będzie takim izomorfizmem, że $\psi(e_i) = f_i$ dla $i = 1, \ldots, n$, i niech $x = \sum_{i=1}^n \alpha_i e_i \in V$. Wtedy

$$\psi(x) = \psi\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{i=1}^{n} \alpha_i \psi(e_i) = \sum_{i=1}^{n} \alpha_i f_i = \varphi(x).$$

Wniosek 3 Niech V będzie przestrzenią liniową skończonego wymiaru. Jeżeli $x, y \in V$, $x \neq 0$, $y \neq 0$, to istnieje taki izomorfizm $\varphi \colon V \to V$, że $\varphi(x) = y$.

Dowód. Ponieważ $x \neq 0$ i $y \neq 0$, więc zbiory $\{x\}$ i $\{y\}$ są liniowo niezależne. Z twierdzenia Steinitza o wymianie wynika, że zbiory te można uzupełnić do baz $\{x, e_1, \ldots, e_{n-1}\}$, $\{y, f_1, \ldots, f_{n-1}\}$ przestrzeni V. Z poprzedniego twierdzenia wynika, że istnieje izomorfizm $\varphi \colon V \to V$ o żądanych własnościach.

Wniosek 4 Niech V będzie przestrzenią liniową nad ciałem \mathbb{K} i niech dimV = n. Wtedy przestrzeń V jest izomorficzna z przestrzenią \mathbb{K}^n .

Dowód. Niech zbiór $\{e_1, \ldots, e_n\}$ będzie bazą w przestrzeni V i niech $x \in V$. Wtedy wektor x można jednoznacznie przedstawić w postaci

$$x = \sum_{i=1}^{n} \alpha_i e_i.$$

Izomorfizm $\varphi \colon V \to \mathbb{K}^n$ określamy wzorem

$$\varphi(x) = \varphi\left(\sum_{i=1}^{n} \alpha_i e_i\right) = (\alpha_1, \dots, \alpha_n).$$

Uwaga

Jeżeli w przestrzeni liniowej V nad ciałem \mathbb{K} ustalimy bazę B i jej elementy ustawimy w określonej kolejności $B=(f_1,\ldots,f_n)$, to każdy wektor $x\in V$ może zostać zapisany w postaci ciągu swoich współczynników $\varphi(x)=(\alpha_1,\ldots,\alpha_n)$. Innymi słowy, znając bazę B i mając zadany ciąg $(\alpha_1,\ldots,\alpha_n)\in\mathbb{K}^n$ można odtworzyć wektor x. Ciąg $(\alpha_1,\ldots,\alpha_n)$ nazywamy współrzędnymi wektora x w bazie B. Mówimy, że izomorfizm $\varphi\colon V\to\mathbb{K}^n$ zadaje układ współrzędnych w przestrzeni V.

Uwaga

Niech V będzie przestrzenią liniową. Izomorfizm $\varphi\colon V\to V$ nazywamy automorfizmem przestrzeni V. Zbiór wszystkich automorfizmów przestrzeni V oznaczamy symbolem AutV. Zbiór AutV z operacją składania odwzorowań jest grupą. (Na ogół nie jest to grupa przemienna.)

Dokument ten stanowi utwór podlegający ochronie na mocy prawa autorskiego. Utwór ten w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych, kopiujących, nagrywających i innych. Ponadto, utwór ten nie może być umieszczany ani rozpowszechniany w postaci cyfrowej zarówno w Internecie, jak i w sieciach lokalnych, bez pisemnej zgody posiadacza praw autorskich.