9. Given an infinite collection A_n , n=1,2,... of intervals of the real line, their intersection is defined to be

$$\bigcap_{n=1 \text{ to } \infty} [A_n] = \{x | (\forall n)(x \in A_n)\}$$

Give an example of a family of intervals A_n , n=1,2,..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1 \text{ to}} A_n = \emptyset$. Prove that your example has the stated property.

Claim: Let $A_n = (0,1/n)$

$$\forall n \in \mathbb{N}[A_{n+1} \subset A_n] \land \bigcap_{n=1 \text{ to } \infty} [A_n] = \emptyset$$

Proof: We will separate the claim in two and make two proofs.

First claim: $\forall n \in \mathbb{N}[A_{n+1} \subset A_n]$, i.e.,

 $\forall n \in \mathbb{N} [(0,1/(n+1)) \subset (0,1/n)], i.e.$

$$\forall n \in \mathbb{N} \forall x \in \mathbb{R} [\ (0 < x < 1/(n+1) \Rightarrow 0 < x < 1/n) \ \land \ \neg (0 < x < 1/(n+1) \Leftrightarrow 0 < x < 1/n) \]$$

First proof: Given and an $n \in \mathbb{N}$ and an $x \in \mathbb{R}$ suppose 0 < x < 1/(n+1). We know that 1/(n+1) < 1/n, so 0 < x < 1/(n+1) < 1/n, hence 0 < x < 1/n. From this we deduce that $A_{n+1} \subseteq A$. Now, to prove the second term, suppose 0 < x < 1/n. If x = 1/(n+0.5) then 0 < x < 1/n, but 1/(n+1) < x, so it is not the case that 0 < x < 1/(n+1), hence, A_{n+1} and A_n are not equal, so $A_{n+1} \subseteq A_n$ proving the first claim.

Second claim: $\bigcap_{n=1 \text{ to } \infty} [A_n] = \emptyset$, i.e.,

$$\{x|(\forall n)(x\in A_n)\}=\emptyset$$
, i.e.,

 $\neg \exists x \in \mathbb{R} \forall n \in \mathbb{N} [0 < x < 1/n], i.e.,$

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} [x \leq 0 \lor 1/n \leq x]$

Second proof: Given an $x \in \mathbb{R}$, if $x \le 0$ pick any $n \in \mathbb{N}$ and the claim will be true. If x > 0, pick an $n \in \mathbb{N}$ so large so that 1/n < x, so, $1/n \le x$, proving the second claim.

With both claims proved the original claim gets proved. □