

GenCore version 4.5
copyright (c) 1993 - 2000 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: January 31, 2001, 13:00:02 ; Search time 123.13 Seconds

(without alignments)
6834.114 Million cell updates/sec

Title: US-09-544-776-1

Perfect score: 2240

Sequence: 1 cgttacaccacatggctccct.....taaaaaaaaaaaaaaa 2240

Scoring table: OLIGO_NUC

Gapop 60.0 , Gapext 60.0

Searched: 480022 seqs, 187831343 residues

Word size : 0

Total number of hits satisfying chosen parameters: 960044

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

Database : N_Geneseq_36:*

1: /SIBS6/gcdata/geneseq/geneseq/NAL1980.DAT:*

2: /SIBS6/gcdata/geneseq/geneseq/NAL1981.DAT:*

3: /SIBS6/gcdata/geneseq/geneseq/NAL1982.DAT:*

4: /SIBS6/gcdata/geneseq/geneseq/NAL1983.DAT:*

5: /SIBS6/gcdata/geneseq/geneseq/NAL1984.DAT:*

6: /SIBS6/gcdata/geneseq/geneseq/NAL1985.DAT:*

7: /SIBS6/gcdata/geneseq/geneseq/NAL1986.DAT:*

8: /SIBS6/gcdata/geneseq/geneseq/NAL1987.DAT:*

9: /SIBS6/gcdata/geneseq/geneseq/NAL1988.DAT:*

10: /SIBS6/gcdata/geneseq/geneseq/NAL1989.DAT:*

11: /SIBS6/gcdata/geneseq/geneseq/NAL1990.DAT:*

12: /SIBS6/gcdata/geneseq/geneseq/NAL1991.DAT:*

13: /SIBS6/gcdata/geneseq/geneseq/NAL1992.DAT:*

14: /SIBS6/gcdata/geneseq/geneseq/NAL1993.DAT:*

15: /SIBS6/gcdata/geneseq/geneseq/NAL1994.DAT:*

16: /SIBS6/gcdata/geneseq/geneseq/NAL1995.DAT:*

17: /SIBS6/gcdata/geneseq/geneseq/NAL1996.DAT:*

18: /SIBS6/gcdata/geneseq/geneseq/NAL1997.DAT:*

19: /SIBS6/gcdata/geneseq/geneseq/NAL1998.DAT:*

20: /SIBS6/gcdata/geneseq/geneseq/NAL1999.DAT:*

21: /SIBS6/gcdata/geneseq/geneseq/NAL2000.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No. Score Query Length DB ID Description

1	1558	69.6	1610	21	236230	RESULT 1
2	1122	50.1	1122	21	256880	ID 236230 standard; cDNA: 1610 BP.
3	924	41.2	1213	20	X04379	AC 236230;
4	923	41.2	4093	21	A23454	XX DT 22-FEB-2000 (first entry)
5	766	34.2	991	20	X97587	DE cDNA encoding a bone marrow secreted protein designated BMS112.
6	698	31.2	2386	19	V30920	XX KW Bone marrow secreted protein; bone marrow stromal cell; cytokine; cell proliferation; cell differentiation; hematopoiesis; anaemia; myeloid cell deficiency; lymphoid cell deficiency; myeloid cell; erythroid progenitor cell; colony stimulating factor; granulocyte; monocyte; macrophage; myelo-suppression; megakaryocyte; platelet; plasmacytoid dendritic cell; stem cell disorder; thrombocytopenia; hematopoietic stem cell; stem cell disorder; aplastic anaemia; bone differentiation; paroxysmal nocturnal hemoglobinuria; bone growth; cartilage; tendon; ligament; nerve; wound healing; tissue repair; burn; incision; ulcer; bone fracture; cartilage damage; artificial joint; ss.
7	650	29.0	799	19	V23695	XX KW Homo sapiens.
8	556	24.8	3579	21	256886	FT Key Location/Qualifiers
9	396	17.7	423	20	V87609	FT FT CDS 132..1253 /*tag= a
10	241	10.8	404	20	X41193	FT FT FT /*products= "bone marrow secreted protein" 1516..1521 /*tag= b
11	214	9.6	301	21	A06512	FT PD 08-JUL-1999.
12	171	7.6	439	16	T20045	XX PF 18-DEC-1998; 98WO-US27008.

T20045
 ID T20045 standard; cDNA to mRNA; 439 BP.
 XX
 AC T20045;
 XX DT 17-JUL-1996 (first entry)
 XX DE Human gene signature HUMGS01184.
 KW Gene signature; messenger RNA; mRNA; relative abundance; frequency;
 KW human; cloning; mapping; non-biased library; diagnosis; detection;
 KW cell typing; abnormal cell function; ss.
 OS Homo sapiens.
 PN WO9514772-A1.
 XX PD 01-JUN-1995.
 XX PF 11-NOV-1994; 94WO-JP01916.
 XX PR 12-NOV-1993; 93JP-0355504.
 XX PA (MATSU) MATSUBARA K.
 PA (OKUBI) OKUBO K.
 XX PI Matsubara K, Okubo K;
 PT DR XX
 XX PS Claim 1: Page 545; 2245pp; Japanese.

PT Identifying gene signatures in 3'-directed human cDNA library - e.g.
 PT for diagnosis of abnormal cell function, by preparing cDNA that
 reflects relative abundance of corresp. mRNA in specific human
 tissues

XX PS Example 1: Page 545; 2245pp; Japanese.

CC A single-stranded DNA (or its complementary strand or the corresp.
 CC double-stranded DNA) which comprises one of the 7037 "GS" sequences
 given in 119001-126837 and which is able to hybridise to part of
 CC human genomic DNA, cDNA or mRNA is claimed. The GS (Gene Signature)
 CC sequences were obtained from 3'-directed cDNA libraries prepared
 from various human tissues; synthesis of cDNA was initiated from the
 CC 3'-end of mRNA by using poly(T) as the sole primer. Since the 3'-
 CC untranslated sequence is unique for a particular mRNA species almost
 CC all the 3'-oriented cDNAs hybridise with specific mRNAs. Each library
 CC is constructed so as to reflect accurately the relative abundance of
 CC different mRNAs in the particular tissue from which it was derived.
 CC The appearance frequency of a given GS in a cDNA library can be
 CC determined (esp. using primers and probes derived from the GS
 CC sequences) as a means of diagnosing abnormal cell function or for
 CC recognising different cell types.

XX SQ Sequence 439 BP; 118 A; 77 C; 79 G; 143 T; 22 other;

Query Match 7.6%; Score 171; DB 16; Length 439;
 Best Local Similarity 100.0%; Pred. No. 2.9e-53; Mismatches 0; Indels 0; Gaps 0;
 Matches 171; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1764 actgttatataatccaaatataatgattatataatgtatgtttcaca 1823
 Db 70 actgttatataatccaaatataatgattatataatgtatgtttcaca 129

QY 1824 agcttgcacccatccatccggccacccacagtgctgtatccatgttcac 183
 Db 130 agcttgcacccatccatccggccacccacagtgctgtatccatgttcac 189

QY 1884 gttatcatgtgttagtccaaaggcacataactagaaggaaatattct 1934
 Db 190 gttatcatgtgttagtccaaaggcacataactagaaggaaatattct 240

RESULT 13
 X23499
 ID X23499 standard; DNA; 211 BP.
 XX
 AC X23499;
 XX DT 17-JUN-1999 (first entry)
 XX DE Human neutrophil cDNA clone 921.
 KW Neutrophil; gene expression profile; granulocyte; pathogen-exposed;
 KW sterile inflammatory disease; detection; therapeutic agent; human;
 KW expression modulator; pathogenic infection; cell activation; primer;
 KW global transcriptional response; ss.
 OS Homo sapiens.
 PN WO9910536-A1.
 XX PR 22-AUG-1997; 97US-0056844.
 XX PA (UYYA) UNTV YALE.
 XX PI Goguen J, Newburger P, Prashar V, Weissman SM, Yerramilli SV;
 PT DR XX
 XX PS WO99-204578/17.
 XX PT Detection of pathogen exposure or sterile inflammatory disease in a
 PT subject - by comparing gene expression profiles from granulocytes
 PT of the patient and control granulocytes

XX PS Example 3; Page 53; 84pp; English.

CC This invention describes a method for the comparison of gene expression
 CC profiles from granulocytes from test subject and from pathogen-exposed
 CC or sterile inflammatory disease granulocytes or quiescent granulocytes.
 CC The method is used to detect pathogen exposure or sterile inflammatory
 CC disease in a subject and to identify therapeutic agents that modulate
 CC expression of a gene in response to a pathogenic infection or to
 CC sterile inflammatory disease in a subject. The method tests for global
 CC transcriptional response of granulocytes during cell activation.
 XX SQ Sequence 211 BP; 53 A; 37 C; 42 G; 79 T; 0 other;

Query Match 4.2%; Score 95; DB 20; Length 211;
 Best Local Similarity 100.0%; Pred. No. 1e-25; Mismatches 0; Indels 0; Gaps 0;
 Matches 95; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1414 aaaaataccatctctgtactggccatgtttcatcaatctaaggatgtaaactgtatgtta 1473
 Db 34 aaaaataccatctctgtactggccatgtttcatcaatctaaggatgtaaactgtatgtta 93
 QY 1474 tggatataacccgtaaatcatatctttccatct 1508
 Db 94 tggatataacccgtaaatcatatctttccatct 128

RESULT 14
 209075
 ID 209075 standard; cDNA; 412 BP.
 XX AC 209075;
 DT 19-OCT-1999 (first entry)
 XX DE Differentiation Induction Subtraction Hybridization DISH-846-2 sequence.
 XX KW DAP; differentiation-associated protein; terminal differentiation;

KW growth arrest; differentiation induction subtraction hybridization;
 KW DISH; melanoma; breast; lung; colorectal; prostate; cancer; ss.
 XX
 OS Homo sapiens.
 XX
 PN WO937774-A2.
 XX
 PD 29-JUL-1999.
 XX
 PF 25-JAN-1999; 99WO-US01549.
 XX
 PR 29-MAY-1998; 98US-0087167.
 PR 26-JAN-1998; 98US-0073298.
 PR 11-FEB-1998; 98US-0074441.
 PR 12-MAR-1998; 98US-0077804.
 PR 25-MAR-1998; 98US-0079326.
 PR 28-APR-1998; 98US-0083195.
 PR 15-MAY-1998; 98US-0085609.
 PR 26-MAY-1998; 98US-0086829.
 XX
 PA (GENQ-) GENQUEST INC.
 XX
 PI Fisher PB, Huang F;
 XX
 DR WPI; 1999-479051/40.
 PT Differentiation-associated proteins and related polynucleotides,
 PT useful for vaccine and pharmaceuticals to inhibit cell growth
 PS Claim 1; Fig 66; 144pp; English.
 CC Sequences 209006-209075 are Differentiation Induction Subtraction
 CC Hybridization (DISH) sequences, which encode Differentiation-Associated
 Proteins (DAPS). DAPS are associated with terminal differentiation and
 growth arrest and the sequences encoding them range from 97-903 base
 pairs in length. A DAP, a DAP fragment or a DAP polynucleotide may be
 useful in inhibiting the development of cancer including prostate,
 CC breast, lung and colorectal cancer, melanoma, astrocytoma or glioblastoma
 CC multiforme. Determining the level of a DAP or its coding sequence, in a
 CC tumour sample can be used to determine whether the tumour is malignant.
 CC The progression of cancer can be monitored by measuring DAP expression or
 CC activity levels over a period of time. An agent that increases expression
 CC of a DAP can also be used to inhibit the development of cancer.
 XX Sequence 412 BP; 123 A; 76 C; 80 G; 119 T; 14 other;
 SQ

Query Match 3.2%; Score 71; DB 20; Length 412;
 Best Local Similarity 100.0%; Pred. No. 4.5e-17;
 Matches 71; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1814 tgtttccaaagaaccttagacctttaacttcacccacccatgttgatatttcagag 1873
 Db 8 tgtttccaaagaaccttagacctttaacttcacccacccatgttgatatttcagag 67

QY 1874 tcagtcattgg 1884
 Db 68 tcagtcattgg 78

RESULT 15

ID 246327 standard; cDNA; 412 BP.
 XX
 AC Z46327;
 XX
 DT 07-MAR-2000 (first entry)

DE Human differentiation-associated cDNA, DISH-846-2.

XX Differentiation; terminal; cell cycle arrest; vaccine; inhibition;
 KW proliferation; cancer; tumour; prostate; breast; lung; colorectal;
 KW melanoma; astrocytoma; glioblastoma multiforme; antibody; diagnosis;

KW malignant; progression; monitoring; identification; modulator;
 KW expression; development; ds.
 XX
 OS Homo sapiens.
 XX
 PN WO960124-A2.
 XX
 PD 25-NOV-1999.
 XX
 PF 17-MAY-1999; 99WO-US10889.
 XX
 PR 15-MAY-1998; 98US-0085609.
 PR 26-MAY-1998; 98US-0086829.
 PR 29-MAY-1998; 98US-0087167.
 XX
 PA (HUAN/) HUANG F;
 PA (FISH/) FISHER P B.
 XX
 PI Huang F, Fisher PB;
 XX
 DR WPI; 2000-062456/05.
 PT Differentiation-associated sequences, methods for inhibiting cell
 PT growth and inducing differentiation -
 PS Claim 4; Fig 28; 87pp; English.
 XX
 CC Sequences 246327 represent cDNAs encoding human differentiation-
 CC associated proteins which are associated with terminal differentiation
 CC and cell cycle arrest. The cDNAs, or the proteins they encode, can be
 CC used in vaccines or other therapeutic compositions to inhibit development
 CC of cancer, especially prostate, breast, lung and colorectal cancer,
 CC melanoma, astrocytoma or glioblastoma multiforme. Determination of the
 CC level of the differentiation-associated protein (especially using a
 CC monoclonal antibody) is useful for assessing whether a tumour is
 CC malignant. The progression of a cancer can be monitored by comparing
 CC levels of a differentiation-associated nucleotide or protein over a
 CC period of time. The protein can also be used to identify agents that
 CC modulate cell proliferation and/or differentiation. Differentiation-
 CC associated protein gene promoters or regulatory elements can be
 CC operably linked to reporter genes and used in assays to identify agents
 CC that modulate expression. An agent that increases expression of such
 CC proteins is useful for inhibiting the development of a cancer.
 XX Sequence 412 BP; 123 A; 76 C; 80 G; 119 T; 14 other;
 SQ

Query Match 3.2%; Score 71; DB 21; Length 412;
 Best Local Similarity 100.0%; Pred. No. 4.5e-17;
 Matches 71; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1814 tgtttccaaagaaccttagacctttaacttcacccacccatgttgatatttcagag 1873
 Db 8 tgtttccaaagaaccttagacctttaacttcacccacccatgttgatatttcagag 67

QY 1874 tcagtcattgg 1884
 Db 68 tcagtcattgg 78

Search completed: January 31, 2001, 18:46:54
 Job time: 20812 sec

Thu Feb 1 11:25:23 2001

us-09-544-776-1.oli.rng

Page 13

THIS PAGE IS BLANK

Date: Feb 1, 2001 3:27 AM
 OM of: US-09-544-776-2 to: N_Geneseq_36.* out_format : pff
 About: Results were produced by the GenCore software, version 4.
 Copyright (c) 1993-2000 compugen Ltd.

representation	1523_05	4_8e-77	1122
	1520_50	6_6e-77	1610
	1177_21	8_8e-58	3579
	1158_15	1_0e-56	4093
	751_16	4_7e-34	799
	748_20	6_9e-34	1213
	742_39	1_5e-33	991
	734_17	4_2e-33	2386
	604_91	6_6e-26	3202
	548_75	8_9e-23	1766
	535_38	4_9e-22	2664
	535_07	5_1e-22	1668
	534_70	5_4e-22	1759
	526_67	1_5e-21	1656
	532_28	7_4e-22	708
	453_53	1_8e-17	1095
	448_97	3_2e-17	794
	327_60	1_9e-10	414
	320_53	4_6e-10	404
	270_29	2_9e-07	424
	242_33	1_0e-05	261
	170_85	0_0997	8705
	170_16	0_1089	9600
	169_61	0_1169	1038
	169_46	0_1191	1059
	169_46	0_1191	1059
	169_46	0_1191	1059
	170_14	0_1093	5452
	175_89	0_0523	1925
	181_70	0_0248	799
	177_71	0_0414	795
	151_92	1_13	6567
	152_95	0_9901	3211
	151_57	1_18	2338
	160_62	0_3702	3901
	160_62	0_3702	864
	149_88	1_47	3946
	141_62	4_24	12005
	130_95	16_64	51238
	149_96	1_45	145

```

seq_name: /SIDS6/gcadata/geneseq/geneseqn/NA1998.DAT:Z23249 - 179,500
/SIDS6/gcadata/geneseq/geneseqn/NA2000.DAT:Z238195 - 179,500
/SIDS6/gcadata/geneseq/geneseqn/NA1998.DAT:V22682 - 177,500
/SIDS6/gcadata/geneseq/geneseqn/NA1998.DAT:V22683 - 177,500
/SIDS6/gcadata/geneseq/geneseqn/NA1999.DAT:Z32021 - 177,500

seq_documentation_block:
ID 256888 standard; DNA; 1122 BP.
XX
AC Z56888;
XX
DT 25-APR-2000 (first entry)
XX
DE Human MAGI polypeptide variant encoding DNA.
XX
KW MAGI protein; neuroendocrine-specific protein; neuropa-
    spinal injury; neuronal degeneration; neuromuscular dis-
    order; inflammatory disorder; developmental disorder; inflamma-
    tory disorder; psychiatric disorder; developmental disorder; inflamma-
    tory disorder; stroke; cytostatic; cerebroprotective; neuroprotective
XX
OS Homo sapiens.
XX
FH Key Location/Qualifiers
  CDS 1..1122
  FT /*tag= "a
  FT /product= "MAGI polypeptide"
XX
PN WO200005364-A1.
XX
PD 03-FEB-2000.
XX
PF 21-JUL-1999; 99WO-GB02360.
XX
PR 22-JUL-1998; 99GB-0016024.
PR 19-JUL-1999; 99GB-0016898.
XX
PA (SMIK ) SMITHKLINE BEECHAM PLC.
XX
PI Michaelovich D, Prinjha RK;
XX
DR PPI; 2000-1826693/16.
P-PSDB; Y56969.
XX
PT Novel polypeptides related to neuroendocrine-specific
polynucleotides useful for diagnosis of various disease
treatment of cancer and neurological disorders -
XX
PS Claim 5; Page 21-22; 35pp; English.
XX
HU The invention relates to human MAGI protein, which is
CC neuroendocrine-specific protein. The MAGI protein can
CC standard recombinant methodology. The MAGI polypeptide
CC and antibodies are useful for treating diseases, includ-
    ing spinal injury, neuronal degeneration, neuromuscular dis-
    order, inflammatory disorders and developmental disorders. The polynucleotide is also use-
    ful for localization and for tissue expression studies. The pro-
    tein represents a DNA encoding the human MAGI protein varia-
XX
SQ Sequence 1122 BP; 224 A; 339 C; 316 G; 243 T; 0 other;
XX
FL alignment_scores:
  E Quality: 1879.00 Length: 373
  E Ratio: 5.078 Gaps: 0
  E Percent Similarity: 99.196 Percent Identity: 99.196
  E alignment_block:
    CD US-09-544-776-2 x Z56888 ...
  E
  E Align seq 1/1 to: Z56888 from: 1 to: 1122
  E

```

thy; human; sordor; cancer; tatory disorder; sordor; variant; ds. 149.96 1.45 148.74 1.70 145.85 2.46 145.85 2.46

similar to be expressed by mers, polynucleotides dding neuropathies, sorders, sordor, stroke and ercer, stroke and useful for chromosome esent sequence nt.

1 MetGluAspLeuAspGlnSerProLeuValSerSerSerAspSerProPr 17
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 1 ATGGAGACCTGGACAGCAGTCCTCTGCTCTGCTCTGGACAGCCACC 50
 17 OxyGProGlnProAlaPheLysTyrGlnPheValArgGluProGluAspG 34
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 51 CGGCCGCGAGCCGGCTCAAGTACAGTCAGTCAGGAGCCGGAGGAG 100
 34 IuGLIuGLIuGLIuGLIuGLIuAspIuAspIuAspIuAspIuAspIuAspIu 50
 101 AGGGAGAAGAGAGGAGGAGGAGGAGGAGGACGAGGAAGAACCTGGAG 150
 51 GluLeuGluValLeuGluLysProAlaAlaGlyAlaProLeuMetAspPhoGlyAsnA 84
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 151 GAGCTGGAGGTGCGAGAGGAAGCCCGCCGGGCGTCCGGGCC 200
 67 OvaLProThrAlaProAlaAlaAlaGlyAlaProLeuMetAspPhoGlyAsnA 84
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 201 AGTCCCACCGCCCTGCGCCGGCCGGCGCCCTGATGGACTTGAAATG 250
 84 sPheIeValProProAlaProArgIleLeuProAlaAlaProProVal 100
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 251 ACTTCGGTGCAGCCGGCGCCGGGACCCCTGCGGGCGCTCGCGCC 300
 101 AlaProGluArgGlnProSerTrpAspProSerProValSerThrVa 117
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 301 GCCCGGGAGCGGCAGCCGCTGGACCGGAGGCCGGGCTGCGCGCCG 350
 117 IleProAlaProSerPheLeuSerAlaAlaAlaValSerProSerIleUp 134
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 351 GCCCGGGCATCCCGCGTCCTGCGCAGCTCGCCCTCAAGCCTC 400
 134 roGluAspAspGluProProAlaArgProProProProProAlaSer 150
 451 CTGGAGGAGCACGACCTCTGGCCGGGCCCTCCCTCCCGGCCAGC 450
 151 ValSerProGlnAlaGluProValTrpIleProProAlaProAl 167
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 451 GrGAGCCCCCAGGGAGGCCGGTGGACCCGCCAGGCCGGCTCCGC 500
 167 aAlaProProSerThrProAlaAlaAlaProLysArgArgLysSerGlyS 184
 501 CGGCCGCCCTCCACCGGGCCGCCAGGCCAGGGCTCCGGCCT 550
 184 erValValValAspLeuIleTyTrpArgAspIleTyTrpLysLysThrGlyVal 200
 551 CAGTGGTGTGACCTCTGACTGGAGAGACTTAAGAGACTGGAGT 600
 201 ValPheGlyAlaSerLeuPheLeuLeuSerLeuThrValPheSerI 217
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 601 GrGTTTGGGCCAGCTTAATCCGCTGCTGCTCATGAGTATTCAGCAT 650
 217 eValSerValThAlaTyRileAlaLeuAlaLeuSerValThrIles 234
 651 TGTGAGGCTAACGCTCTACATGCCCTGGCCCTGCTCTGGACCARCA 700
 234 erProArgIleTrpLysGlyValIleGlnAlaTleGlnIleGlnLysSerAspGlu 250
 751 GCTTTAGGATATAAGGGTGGATCCAGTCAGAAATCAGATGA 750
 251 GLYHISPROHEARGALATYRILEGULYSERGLUVALIALIESERGLUGI 267
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 751 GGCACCCATTTCAGGCCATTCAGGCAATTCTGAAATTCTGAGGA 800
 267 uLeuValGlnLysTySerAsnSerAlaLeuGlyHISValAsnCystH 284
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 801 GTGGTTCAGAAGTACACTAATCTGCTCTGGTCAGTCAGCACGA 850
 284 LeuLysGluLeuIleArgIlePheLeuValAspAspLeuValAspSerLeu 300
 851 TAAGGAACTCAGGCCGCTCTTAGTAGATATCTGATCTGATCTG 900

301 LysPheAlaValLeuMetTrpValPheThrTyValGlyAlaLeuPheAs 317
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 901 AGTGTGAGCTGGATGCTGGATGTTACCTATGTTGGCTCTGTTAA 950
 317 nGlyLeuThrLeuIleLeuAlaLeuLeuSerLeuPheSerValPro 334
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 951 TGGCTGACACTACTGATTTGGCTCTCATTCCTACTCTCAGGTTCTG 1000
 334 aIleTerGluIaGlyGlnGlnAlaGlnIleAspHisTyrLeuGlyLeuAla 350
 1001 TATTTATGACGGCATCAGGACAGATAGATCATTTCTAGACTGCA 1050
 351 AsnLysAsnValLysAspAlaMetAlaLysIleGlnAlaLysIleProG 367
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 1051 ATARAAGATGTAAAGATGCTAAATCCAAGCRAAAATCCCTGG 1100
 367 YLeuLysArgLysAlaGlu 373
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 1101 ATCGAAGGCCAAAGCTGAA 1119

seq_name: /SIDS6/gcqdata/geneseq/geneseq/NA2000.DAT:236230

seq_documentation_block:

ID Z36230 standard; CDNA: 1610 BP.

XX AC XX

XX DT 22-FEB-2000 (first entry)

XX DE CDNA encoding a bone marrow secreted protein designated BMS112.

XX KW Bone marrow secreted protein; bone marrow stromal cell; cytokine;
 KW cell proliferation; cell differentiation; hematopoiesis; anaemia;
 KW myeloid cell deficiency; lymphoid cell deficiency; myeloid cell;
 KW erythroid progenitor cell; colony stimulating factor; granulocyte;
 KW monocyte; macrophage; myelo-suppression; megakaryocyte; platelet;
 KW platelet disorder; thrombocytopenia; hematopoietic stem cell;
 KW stem cell disorder; aplastic anaemia; bone differentiation;
 KW paroxysmal nocturnal hemoglobinuria; bone growth; cartilage; tendon;
 KW ligament; nerve; wound healing; tissue repair; burn; incision; ulcer;
 KW bone fracture; cartilage damage; artificial joint; ss.
 XX OS Homo sapiens.

XX FH Location/Qualifiers

XX FT 132..1253

XX FT CDS

FT FT /*tag= a

FT FT /*product= "bone marrow secreted protein"
 FT FT /*tag= b

FT FT 1516..1521

FT FT polyA_signal

XX WO9933979-A2.

XX PD 08-JUL-1999.

XX PF 18-DEC-1998;

XX PR 99WO-0527008.

PR 30-DEC-1997; 97US-0068958.

PR 24-SEP-1998; 98US-0101603.

PR 30-SEP-1998; 98US-0102540.

XX PA (CHIR) CHIRON CORP.

XX PT Lin H., Cao L;

XX DR WPT; 2000-038344/03.

XX DR P-PSDB; Y53624.

XX PT New isolated human polynucleotide and secreted proteins can induce
 production of other cytokines in certain cell populations -

XX PS Claim 11; Page 72-74; 120pp; English.

186 ValValAspIleLeuTyrTrpPheAspIleLysLysThr 198
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3001 AGTAAGAACTTCAGTTGTTGACCTCCCTGTACTGGAGAGCATTAAGAGAC 3050

198 rgyIvaIValPheGlyAlaSerIlePheLeuLeuLeuSerIleThrAlaP 215
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3051 TCGAGTGGGTTGTTGCCGCCTATTCCTGCTGCTGCTGCTGACAGTAT 3100

215 heseIleIleValSerIleValThralaTyrlleAlaLeuLeuLeuSerIleVal 231
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3101 TCAGCATTTGAGGCTAACAGCCTACATGCTTGSCCTGCTCTGCTG 3150

232 ThrIleSerProGlyIleTyrIleGlyValIleGlnAlaIleGlnLysSe 248
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3151 ACCATCACCTTGGATATCACAGGTTGATCCAGGCTTACAGGCTGATCCAGAACATC 3200

248 rasPheGlyHisProheArgAlaIleArgLysLysLeuGluValAlaL 265
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3201 AGATGAAGGCCACCCATTAGGGCATATCTGGAACTCTGAAGTTGCTAT 3250

282 CysThrIleIleGluLeuAlaArgLeuIleLeuValAspAspLeuAlaS 298
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3251 CTGAGGAGTGGGTCAGAACAGTACAGTAAATTGCTCTGGTCATGGAAC 3300

298 pheLeuIysPheAlaValLeuMetPheIlePheIlePheIleSerIlePheSer 315
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3301 TCTCTGAGTTCAGTGTGATGTTGGTATTTACCCATTGGCTGCT 3400

315 epheAsnGlyLeuThrIleLeuIleLeuAlaLeuIleSerIlePheSer 331
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3401 TGTTTAATGGCTGACACTACGATTTGGCTCTCACTCTCAGT 3450

332 ValProAlleIlePheArgIleGlnAlaGlnIleAspIlePheIleG 348
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3451 GTTCCGCTTATTTATGACGGCATCCGGCAGATAGTCATTCATTAGG 3500

348 yIleAlaAsnLysAsnValIleAspIleAlaLysIleGlnAlaLysI 365
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3551 TCCCTGGATGAGGCCTAACGCTGA 3576

3501 ACTTGCAATAAGATGTTAAAGATGCTATGGCTAAATCCAGCAAAA 3550

365 IleProGlyLeuIysAsnGlyLysAlaGlu 373
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 3551 TCCCTGGATGAGGCCTAACGCTGA 3576

seq_name: /SIDS6/genodata/geneseq/geneseq/NA20000.DAT:A33454
 seq_documentation_block:
 ID A23454 standard; cdna; 4093 BP.
 XX A23454;
 AC XX
 DT 19-JUN-2000 (first entry)
 XX
 DE CDNA encoding human secreted protein vb22_1, SEQ ID NO:63.
 KW Human; secreted protein; cancer; tumour; cardiovascular disorder;
 KW blood disorder; haemophilia; autoimmune disease; diabetes; inflammation;
 KW infection; fungal; bacterial; viral; HIV; allergy; arteritis;
 KW neurodegenerative disease; asthma; contraceptive; ss.
 OS Homo sapiens.
 XX
 PH Key Location/Qualifiers
 FT CDS 1048 .. 3729
 FT /*tag= a
 FT /product= "Human secreted protein vb22_1"
 FT 152 .. 1006
 FT /*tag= b
 FT /product= "Clone vb22_1 ORF2"
 XX
 alignment_scores:
 Quality: 1437.00 Length: 1192
 Ratio: 3.884 Gaps: 2
 Percent Similarity: 31.040 Percent Identity: 30.956
 alignment_block:
 alignment_block: us-09-544-776-2 x A23454 ..
 Align seg 1/1 to: A23454 from: 1 to: 4093
 1 MetGlusAspLeuAspGlnSerProLeuValSerSerAspSerProPr 17
 152 ATGGAAGACCTGGACAGCTCTCTGTCGTCGTCGGACAGCCACC 201
 17 GargProGlnProAlaIleLysTyrGlnPheValArgGluProGluAspG 34

DE Human NSPLP protein A coding sequence.

XX NSPLP; neuroendocrine-specific protein-like protein; human; gene therapy;

KW neurodegenerative disease; amyotrophic lateral sclerosis; cancer; ss.

XX OS Homo sapiens.

XX WO9806841-A2.

FH Location/Qualifiers

FT 75..674 /*tag= a

FT /product= NSPLPA

XX 19-FEB-1998.

XX 24-JUL-1997; 97WO-US13469.

PR 12-AUG-1996; 96US-0700607.

PA (INCY-) INCYTE PHARM INC.

XX Au-Young J, Bandman O, Goli SK, Hillman J;

PI DR WPI; 1998 15953/14.

DR P-PSDB; W53947.

XX Human neuro-endocrine-specific protein-like proteins - useful for PT diagnosis, monitoring and treatment of cancer and neuro-degenerative PT disease

XX Claim 3; Page 38-39; 73pp; English.

CC This sequence encodes a human neuroendoctrine-specific protein-like protein (NSPLP) of the invention. Recombinant cells transformed with the CC protein (NSPLP), which are used to treat cancer and neurodegenerative diseases such as amyotrophic lateral CC sclerosis. Also antisense nucleic acids and antagonists of NSPLP can be used to inhibit activity of the NSPLP proteins. Antibodies specific for NSPLP are used for diagnosis and monitoring treatment of diseases associated with NSPLP expression, in usual immunassays, and to isolate NSPLP from natural sources. The NSPLP proteins, or their fragments can also be used in drug screening to identify NSPLP antagonists. The nucleic CC acid can be used diagnostically and for monitoring treatment (in hybridisation or amplification assays), to isolate closely related CC sequences; in gene therapy for both sense and antisense applications (including use of ribozymes) and for mapping the natural genomic CC sequence.

XX Sequence 799 BP; 218 A; 141 C; 196 G; 242 T; 2 other;

SO alignment_scores:

Quality: 917.00 Length: 188

Ratio: 4.904 Gaps: 0

Percent Similarity: 99.468 Percent Identity: 99.468

US-09-544-776-2 x V23695 ..

alignment_block:

Align seg 1/1 to: V23695 from: 1 to: 799

186 ValValAspLeuLeuTyrTrpArgAspIleLysIleThrGlyValValPh 202

108 GAGTGACCTCTGTACTGGAGAACATTAAGAACTGGAGTGGTT 157

202 eGlyAlaSerIleuPheLeuLeuSerLeuThrValPheserIleIvals 219

158 TCGTGCAGGCCPATCCTGCCTTCATGAGATTGAGATTGTGA 207

219 erValIthrAlaTyrIleAlaLeuAlaLeuSerValThrIlessarPro 235

208 GCGTAACAGCCATACATGGCTTGCCCTGCTCTGACCATCACCTT 257

236 ArgIleItyrIsglyValIleGlnAialleclnLyssSerAspGluGlyH 252

||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

258 AGGATAATACAGGTTGATCAAGCTATCCAGAAATCAGTAGAAGGCCA 307

252 SPROHeArgIlaItylauGuaSerGluValAlaIleSerGluGluLeu 269

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||

308 CCCATTCAGGCCATATCTGGATCAGTTGCTATATCGAGGAGTTG 357

269 alGlnItyStySerAsnSerAlaLeuGlyHisValAsnCysThrIleLys 285

408 GAACTCAGGCCCTCTGCTAGTGAATGATTAGTGTAGTGTCTGAGTT 457

302 euIaValLeuMetTrpValPhethryValGlyAlaLeuPheAsnGlyL 319

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||

458 TGCAGTGTGTTGGGGTATTACCTATGTTGTTGCTGTTGTTAATGGTC 507

319 euthrIeuLeuIleLeuIaLeuIleSerLeuPheSerValProValle 335

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||

508 TGACATCAGTCAQATTGCGTCATTCAGTCAGTGTTGTTGTTT 557

336 TyrgIuArgHsGlnAlaGlnIleAspHisTyreIleGlyLeuIAsnly 352

558 TATGAAAGGCATCAGGCACAGATAGATCATATCTAGACTTGCAATAA 607

352 ASNValIlySpaIAlaMetAlaIlySpaIAlaMetAlaIleProGlyLeuL 369

608 GAATGTTAAAGATGCPATGGCTAAATCCANGCAAATCCTGGATTGA 657

658 AGCCAAAGCIGKA 671

369 YsArgIlysAlaGlu 373

seq_name: /SIDS6/gcdata/geneseq/geneseq/NA1999.DAT:X04379

seq_documentation_block:

ID X04379 standard; DNA; 1213 BP.

ID X04379;

AC X04379;

XX 13-APR-1999 (first entry)

XX DE Human secreted protein gene 69 clone HAGFT48.

XX Human; secreted protein; fusion protein; gene therapy; protein therapy; KW diagnosis; tissue; cancer; tumour; neurodegenerative disorder; leukaemia; KW developmental abnormality; foetal deficiency; blood; allergy; renal; ds; immune system; asthma; lymphocytic disease; brain; hepatic; lymphoma; KW inflammation; ischaemic shock; Alzheimer's disease; restenosis; AIDS; KW cognitive disorder; schizophrenia; prostate; obesity; osteoclast; thymus; KW osteoporosis; arthritis; testis; lung; thyroditis; thyroid; gastritis; neoplasm; KW endocrine; metabolism; regulation; malabsorption; gastritis; neoplasm.

XX OS Homo sapiens.

XX WO9856804 A1.

XX 17-DEC-1998.

XX 11-JUN-1998; 98WO-US12125.

XX 02-OCT-1997; 97US-006160.

PR 13-JUN-1997; 97US-004947.

PR 13-JUN-1997; 97US-004948.

PR 13-JUN-1997; 97US-004949.

PR 13-JUN-1997; 97US-004950.

PR 13-JUN-1997; 97US-004906.

PR 13-JUN-1997; 97US-004968.

PR 13-JUN-1997; 97US-0049609.
 PR 13-JUN-1997; 97US-0049610.
 PR 13-JUN-1997; 97US-0049611.
 PR 13-JUN-1997; 97US-0050566.
 PR 13-JUN-1997; 97US-00505901.
 PR 13-JUN-1997; 97US-00505919.
 PR 13-JUN-1997; 97US-00505919.
 PR 18-AUG-1997; 97US-00505984.
 PR 12-SEP-1997; 97US-00505985.
 PR 12-SEP-1997; 97US-00505986.
 PR 12-SEP-1997; 97US-00505987.
 PR 12-SEP-1997; 97US-00505988.
 PR 02-OCT-1997; 97US-0060841.
 PR 02-OCT-1997; 97US-0060844.
 PR 02-OCT-1997; 97US-0060865.
 PR 02-OCT-1997; 97US-0061059.
 PA (HUMAN) HUMAN GENOME SCI INC.
 XX
 PI Brewer LA, Eberle R, Farrie AM, Feng P, Greene JM, Lafleur DW,
 PI Moore PA, Ni J, Olsen HS, Rosen CA, Ruben SM, Shi Y, Young P;
 PI Yu GL;
 XX DR WPI: 1999-080881/07.
 DR P-PSDB; W78194.
 XX
 PT New isolated human genes and the secreted polypeptides they encode -
 PT useful for diagnosis and treatment of e.g. cancers, neurological
 disorders, immune diseases, inflammation or blood disorders
 XX
 PS Claim 1; Page 235-236; 380pp; English.
 CC This sequence represents a nucleic acid molecule which encodes a secreted
 human protein. The gene number, and the clone it is derived from, are
 detailed in the descriptor line. The gene can be used to generate fusion
 proteins by linking to the gene to a human immunoglobulin Fc portion
 (e.g. X04302) for increasing the stability of the fused protein as
 compared to the human protein only.
 CC The invention relates to 86 novel genes and their fragments (nucleic acid
 sequences: X0311-X0410); amino acid sequences W78126-W78225) which
 are useful for preventing, treating or ameliorating medical conditions
 e.g., by protein or gene therapy. Also, pathological conditions can be
 diagnosed by determining the amount of the new polypeptides in a sample
 or by determining the presence of mutations in the new polynucleotides.
 CC Specific uses are described for each of the 86 polynucleotides, based on
 which tissues they are most highly expressed in (see X04311 for described
 uses).
 XX Sequence 1213 BP; 335 A; 222 C; 297 G; 355 T; 4 other;
 CC alignment_scores:
 Quality: 917.00 Length: 188
 Ratio: 4.904 Gaps: 0
 Percent Similarity: 99.468 Percent Identity: 99.468
 XX alignment_block:
 US-09-544-776-2 x X04379 .
 Align seq 1/1 to: X04379 from: 1 to: 1213
 186 ValValAlaSpaLeuLeuTyrTrpArgAspAlaLysLysThrGlyValValPh 202
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 248 GTGTGTAACCTCCTGACTGAGAACATAGAAGACTGGAGTGCGTT 297
 202 eGlyAlaSerLeuPheLeuLeuLeuSerLeuLeuThrValPhSerSerIleLeuVal 219
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 298 TGGGCCAGCTATTCCTGCTGCTTCATGACAGATTAGCATGATGTGA 347
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 219 erValThrAlaTyrlLeAlaLeuAlaLeuLeuSerValThrIleSerPro 235
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 348 GCGTACAGCCTACAAVTCGCCTGCGCTCTGCGATCACTTT 397
 236 ArgIleTyrlYsrglYvalleGlnAlaIleGlnLysSerAspGluGlyH 252
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 398 AGGATATCACAGGGCTGACCAAGCTATCCAGAGTCAGTGAGGCCA 447
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 252 sProProIleArgAlaTyrlLeuGluSerGluValAlaIleSerGluGluLeu 269
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 448 CCCATTCAGGCCATACTGGATCTGAGTGTGCTATCTGAGGAGTGG 497
 269 aLGInLYsTrSerAsnSerAlaIleGlyHisValAsnGlyThrIleLys 285
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 498 TTCAAGTAGTACAGTAAATTCTGCTCTGGTCATGGAATCTGAGAAG 547
 286 GluLeuArgArgLeuPheLeuValAspAspLeuValAspSerLeuYsPh 302
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 548 GAACTCAGGCCCTTCCTGAGTGTGATTTGATGTTGATCTGAGT 597
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 302 eAlaValLeuMetProValIleTherTyrlValGlyAlaLeuLeuHeAsnGlyL 319
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 598 TGCACTGTTGATGTCGGTATTACCTGTTGTCCTGGTTATAGGTC 647
 319 eThyIleLeuIleLeuAlaLeuLeuSerAlaLeuSerAlaLeuSerAlaLeu 335
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 648 TGACACTACGATGTTGGCTCTCATTCACCTTCAGTGTCTGTATT 697
 336 TyrgIuargHsGlnAlaGlnIleKleSpHsIleSpHsIleSpHsIleSpHsIle 352
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 698 TATGACGGCATCACGCCACAGATCATATCATCTAGGACTTGCAATA 747
 352 SASVAVVLYsASPAIAlaMetAlaLysIleGlyLeu 369
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 748 GAATGTTAAGATGCTATGGCTAAATCCAAAGCAAATCCCTGATGTA 797
 369 YSATGlyIleAlaGlu 373
 ||||| ||||| |||||
 798 AGCGCAAAGTGAA 811
 seq_name: /SIBS6/scgdata/geneseq/geneseq/NAL999.DAT:x97587
 seq_documentation_block:
 ID X97587 standard; DNA; 991 BP.
 XX
 AC X97587;
 XX DT 13-SEP-1999 (first entry)
 DE Extended human secreted protein coding sequence, SEQ ID NO. 51.
 XX
 KW Secreted protein; human; cytokine; cellular proliferation; cell movement;
 KW cellular differentiation; immune system regulator; anti-inflammatory;
 KW haematopoiesis regulator; tissue growth regulator; tumour inhibitor;
 KW reproductive hormone regulator; chemotaxis; chemokinesis; gene therapy;
 KW genetic disease; ss.
 XX Homo sapiens.
 XX PN W09931236-A2.
 XX PD 24-JUN-1999.
 XX
 PF 17-DEC-1998; 98WO-IB02122.
 XX
 PR 10-AUG-1998; 98US-0096116.
 PR 17-DEC-1997; 97US-005957.
 PR 09-FEB-1998; 98US-0074121.
 PR 13-APR-1998; 98US-0081563.
 XX
 PA (GEST) GENSET.
 XX

XX
DR
P-PSDB; Y35903.

XX
New isolated human secreted proteins
PS
Claim 1; Page 185-186; 516pp; English.

This sequence represents an extended human secreted protein coding sequence of the invention. The secreted proteins can be used in treating or controlling a variety of human conditions. The secreted proteins may act as cytokines or may affect cellular proliferation or differentiation or may act as immune system regulators, haematopoiesis regulators, tissue growth regulators, regulators of reproductive hormones or cell movement or have chemotactic/chemokinetic, receptor/ligand, anti-inflammatory or tumour inhibition activity. The DNAs can be used in forensic procedures to identify individuals or in diagnostic procedures to identify individuals having genetic diseases resulting from abnormal expression of the genes corresponding to the extended cDNAs. They are also useful for constructing a high resolution map of the human chromosomes. They can also be used for gene therapy to control or treat genetic diseases.

Sequence 991 BP; 280 A; 175 C; 232 G; 304 T; 0 other;

alignment_scores:
Quality: 908.00 Length: 188
Ratio: 4.882 Gaps: 0
Percent Similarity: 98.936 Percent Identity: 98.936

alignment_block:
US-09-544-776-2 x x97587 ..

Align seg 1/1 to: x97587 from: 1 to: 991

186 ValValAspIleLeuIleTrpArgSpIleLysThrGlyValValPh 202

68 GTTGTGAGCTCTCTACTGGAGACATTAAGAAGACTGGAGTGTGTT 117

202 eGlyAlaSerIlePheLeuLeuLeuSerIleThrValPheSerIleVal 219

118 TGGTCGCCAGCCTATTCCTGCTGCTATCGACATTGAGCATTTGTA 167

219 eValThrAlaIleIleAlaLeuLeuSerValThrIleSerPro 235

168 GCGTACAGCCATACATTGCTTGGCTCTGCTGACCATCGCTT 217

236 ArgLeTyrylSGLValIleLeuIleGlnIleGlnIleSerAspGluGlyHi 252

218 AGGATATACAGGGTGATCCAACATTCAGAAATCAGATGAGAGGCCA 267

252 SProPheIleAlaIleLeuGlusGluValValIleSerGluGluLeuV 269

268 CCCATTCAGGCATTCCTGCACTGCAGTCTGAGTTATCGAGGGTTG 317

269 ALGLYLYSTyRSerIleSerAlaLeuGlyHisValAsnCysThrIleLys 285

318 TTCAAGGAGTACAGTAAATCCTGCTCTGGTATGTCAGTCAGATAAG 367

286 GluLeuArgArgLeuIleValAspIleValAspSerIleLeuLysPh 302

368 GAACTAGCTAGGCTCTCTCTGATGACTGCACGGATAAG 417

302 eAlaValLeuMetTrpValPheThryValGlyAlaLeuPheAsnGlyL 319

418 TGCAGTGGTGTGATGCGGTATTAATCTGATGTTGGCTCTTTATGGT 467

319 eurhrieIleIleIleIleAlaLeuIleSerIlePheSerValProValIle 335
468 TGACACTACTGATTTGGCTCTCATTCATCTCTGATGTTCCCTGTT 517

336 TyrgIuargHISGlnAlaGlnIleSpIstHISIleGlyLeuAlaAsnLy 352

518 TATGACGGCATCACGGCACAGATACTCATTCATGACTTGCAAATAA 567
352 SASnvallysAspAlaMetIalysIleGlnIalysIleProGlyLeu 369
568 GAATGTTAAAGATGCTATGGCTAAATCCAGCAAATCCCTGGATGAA 617

369 YsArgLysAlaGlu 373
||||||
618 AGCGCAAAGCTGAA 631

seq_name: /SIBS6/gcqdata/geneseq/geneseq/NA1998.DAT:V30920
seq_documentation_block:
ID V30920 standard; cDNA; 2386 BP.
XX
AC V30920;
XX
DT 14-SEP-1998 (first entry)
XX
DE Human secreted protein BG160_1 cDNA.
XX
BG160_1; secreted protein; protein factor; human; ds.
XX
OS Homo sapiens.
XX
PN W09817687-A2.
XX
PD 30-APR-1998.
XX
PR 24-OCT-1997; 97WO-US19590.
XX
PR 24-OCT-1997; 97US-0740274.
PR 25-OCT-1996; 96US-0740274.
XX
PA (GEMY) GENETICS INST INC.
XX
PI Agostino MJ, Jacobs K, Lavallie ER, McCoy JM, Merberg D;
Racie LA, Spaulding V, Treacy M;
XX
DR WPI; 1998-261426/23.
XX
PT P-PSB; W58383.
XX
PT Nucleic acid encoding secreted protein from human cells - useful,
e.g. as immunomodulator, antitumour agent, promoters of tissue
growth, haemostatic and thrombolytic agents etc.
XX
PS Claim 20; Page 74-75; 114pp; English.

XX
This cDNA clone, designated BG160_1, codes for a novel human secreted protein (see W8383). It was isolated from a human adult brain cDNA library using methods selective for cDNAs that encode secreted proteins. The clone is deposited in composite clone ATCC 98232; an oligonucleotide (see T99725) is designed to isolate the clone from the composite. The predicted AT15_4 amino acid sequence shows homology to neuroendocrine-specific proteins. Novel cDNA clones (see V0916_312) coding for human secreted proteins (see W850-90) are claimed. These can be used for recombinant production of the secreted proteins for analysis, characterisation, diagnostic or therapeutic use. They can also be used as tissue or mol.wt. markers for chromosome identification, to identify genetic disorders, to isolate new related DNA, as sources of primers for PCR, to generate antibodies, and in interaction trap assays. The secreted proteins may also have many biological activities, e.g. cytokine, immunomodulator, haematopoiesis regulating activity,

CC tissue growth activity, activin or inhibin activity, chemotactic or chemokinetic activity, haemostatic and thrombolytic activity, receptor/ligand activity, antiinflammatory, cationic and tumour invasion suppressor activity, and tumour inhibition activity. The proteins can be expressed in vivo from DNA, introduced in gene therapy vectors.

```

alignment_scores:
    Quality: 905.50      Length: 474
    Ratio: 3.165          Gaps: 12
Percent Similarity: 60.338 Percent Identity: 48.101
alignment_block:
US-09-544-776-2 x V30920   .
Align-seq 1/1 to: V30920 from: 1 to: 2386

```

5 AspGlnSerProLeuSerSerAspSerProProArgProGlnPr 21
 654 GATCATCTGTGCTAGTGAAGATTCCTCACCTGATTGAAACCGTAGTGA 703
 21 olaPhyLysTygRglnpheValArgLysProGluAspGluGluGlu 37
 704 CTTATTTAGTAGATGATCAACTACCTGACGTCTCACAAACAGATGAA 753
 38 GluglulguglugluaspGluaspGluaspIeu 49
 754 CTTGTGATGCTGTGAAAGAAGCTCTACTGAGACTCTATTGAGTCATG 803
 50 GluglulguglugluaspIeuArgLysProAlaAlaGlyLeuSerAlaAl 66
 804 ATAGAATATGAAATANGGAAA..... CTCAGTGCTT 838
 66 aprovalprothrAlaproAlaAlaGlyAlaproLeuMetAsp..... 80
 839 GCCA..... OCTGAGGGAGGAAGCCATATTGAGATCTTA 876
 80 80
 877 AGCTCAGTTGATAACACAAGATAACCCGTTACCTGATGAGTTCA 926
 80 80
 927 ACATTGAGCAAAAGGAGAAATTCCCTTGAGATGGAGGAGCTCACTAC 976
 81 PheGlyAsnAsp..... 84
 977 TGCAGTTTATTCAAATGTTGACTTATTCTAAGGAGCACAGATAA 1026
 85 PheValProProLaproArgGlyPheLeuProAla 96
 1027 GAGAAACTGAAACGTTTCAGATTCACTCCATTGAAATTAGTGGAG 1076
 97 AlaProProValAlaproGluArgInProSerTrp..... 108
 1077 TTCCCTTACATGATGATCAGTTCTCAAACGATCTATTCTAAATTAGCCAG 1126
 109 AspProSerProValSerSerThrValProAlap 120
 1127 GGAATATACTGACCTAGAGTTCACAAAGTGAATTGCTAATGCC 1176
 120 roserPheLeuSerAlaAlaAlaValSerProSerLysLeuProGluAsp 136
 1177 CGGAT..... GGAGCTGGGCTCATTCACAGATTGCCCCGAC 1220
 137 AspGluProProAlaArgProTrp..... 144
 1221 CTTCTCTTGAAGAACATACAACCCAAAGTGTAGAGAAATCAGTUTCTC 1270
 145 p 145

1521 GTGGGTTTGGTGCACCCATTCTCTGCTCTTCATGACAGATTCAG 1570
 216 rilevalSerValThrAlaThrAlaIleAlaIleLeuSerValThrI 233
 1571 CATGGAGGCTAACGCCATACGCTGCGCCCTGCTCTGACCA 1620
 233 leSerProArgLysLysGlyValIleGlnAlaIleGlnLysSerAsp 249
 1621 TCACCTTGTAGATATACAAGGGTGTGATCCAAAGCTTACAGAT 1670
 250 GluglyHisProPheArgAlaTyLeuGluSerGluValAlaLeSerG1 266
 1671 GAAGGCCACCCATTGAG..... GAAGTGTCTATPATCTGA 1705
 266 uGluLeuAlaValGlnLysSerAsnSerAlaLeuGlyLysValAsnCyst 283
 1706 GGAGITGGTICAGAGTACAGTAATCTGCTCTGGTCTGCAACTGCA 1755
 283 hrileLysGluLeuArgArgLeuPheLeuValAspAspIeuValAspSer 299
 1806 CTGAAGTTTGCAGTTGATGTTGGGATTAATCTACTATGATGATTGATGTT 1805
 1756 CGATAAAGGACTCAGGCCTCTCTTACTGTGATGATTGATGTTCT 1805
 300 LeuLysPheAlaValLeuMetTrpValPheThrTyrValGlyAlaLeuPh 316
 1806 CTGAAGTTTGCAGTTGATGTTGGGATTAATCTACTATGATGATTGATGTT 1855
 316 easnGlyLeuThrIleLeuIleLeuIleLeuIleSerLeuLeuPheSerValP 333
 1856 TAATGTCGACACTACTGATTTGGCTCATTCACACTCTCAGTGTc 1905
 333 rovalIleTyrGluLysValGlyIleAlaGlnIleLeuPheIleLeu 349
 1906 CTGTTATTATGAAAGGCATCAGGCCACAGATAGATCATTAATCTAGACTT 1955
 350 AlaasnLysAsnValLysSpaLametAlaLysIleGlnIleValIleP 366
 1956 GCAATTAAGATGTTAACAGTCATGGCTAAATCCAAAGCAAATCC 2005
 366 oGlyLeuLysArgLysAlaGlu 373
 2006 TGGATTGAGCGCAAGCTGAA 2027

seq_name: /SIDS6/gcgdata/geneseq/geneseqn/NA11998.DAT:X5770
 seq_documentation_block:
 ID X75770 standard; DNA; 3202 bp.
 XX
 AC X75770;
 DT 22-JUL-1999 (first entry)
 XX
 DE Human neuroendocrine-specific protein NSP-A DNA.

AC	PR	23-MAY-1997:	97US-0047634.		
XX	PR	23-MAY-1997:	97US-0047635.		
DT	PR	23-MAY-1997:	97US-0047637.		
XX	DE	23-MAY-1997:	97US-0047638.		
Human secreted protein gene 92 clone HAUBL57.	PR	23-MAY-1997:	97US-0047633.		
KW	Human; secreted protein; fusion protein; gene therapy; protein therapy; diagnosis; tissue; cancer; tumour; neurodegenerative disorder; leukaemia; developmental abnormality; foetal deficiency; blood; allergy; renal; ds; immune system; asthma; lymphocytic disease; brain; hepatic; lymphoma; inflammation; ischaemic shock; Alzheimer's disease; restenosis; AIDS; cognitive disorder; schizophrenia; prostate; obesity; osteoclast; thymus; osteoporosis; arthritis; testis; lung; thyroiditis; thyroid; digestion; endocrine; metabolism; regulation; malabsorption; gastritis; neoplasm.	PR	06-JUN-1997: 97US-0048964. PR 06-JUN-1997: 97US-0048974. PR 13-JUN-1997: 97US-0049610. PR 08-JUL-1997: 97US-0051926. PR 16-JUL-1997: 97US-0052874. PR 18-AUG-1997: 97US-0055724. PR 22-AUG-1997: 97US-0056630. PR 22-AUG-1997: 97US-0056631. PR 22-AUG-1997: 97US-0056632. PR 22-AUG-1997: 97US-0056636. PR 22-AUG-1997: 97US-0056637. PR 22-AUG-1997: 97US-0056639. PR 22-AUG-1997: 97US-0056644. PR 22-AUG-1997: 97US-0056845. PR 22-AUG-1997: 97US-0056846. PR 22-AUG-1997: 97US-0056847. PR 22-AUG-1997: 97US-0056848. PR 22-AUG-1997: 97US-0056849. PR 22-AUG-1997: 97US-0056850. PR 22-AUG-1997: 97US-0056851. PR 22-AUG-1997: 97US-0056852. PR 22-AUG-1997: 97US-0056854. PR 22-AUG-1997: 97US-0056855. PR 22-AUG-1997: 97US-0056856. PR 22-AUG-1997: 97US-0056857. PR 22-AUG-1997: 97US-0056858. PR 22-AUG-1997: 97US-0056859. PR 22-AUG-1997: 97US-0056860. PR 22-AUG-1997: 97US-0056861. PR 22-AUG-1997: 97US-0056862. PR 22-AUG-1997: 97US-0056864. PR 22-AUG-1997: 97US-0056865. PR 22-AUG-1997: 97US-0056866. PR 22-AUG-1997: 97US-0056867. PR 22-AUG-1997: 97US-0056868. PR 22-AUG-1997: 97US-0056869. PR 22-AUG-1997: 97US-0056870. PR 22-AUG-1997: 97US-0056871. PR 22-AUG-1997: 97US-0056872. PR 22-AUG-1997: 97US-0056874. PR 22-AUG-1997: 97US-0056875. PR 22-AUG-1997: 97US-0056876. PR 22-AUG-1997: 97US-0056877. PR 22-AUG-1997: 97US-0056878. PR 22-AUG-1997: 97US-0056879. PR 22-AUG-1997: 97US-0056880. PR 22-AUG-1997: 97US-0056881. PR 22-AUG-1997: 97US-0056882. PR 22-AUG-1997: 97US-0056883. PR 22-AUG-1997: 97US-0056884. PR 22-AUG-1997: 97US-0056885. PR 22-AUG-1997: 97US-0056886. PR 22-AUG-1997: 97US-0056887. PR 22-AUG-1997: 97US-0056888. PR 22-AUG-1997: 97US-0056889. PR 22-AUG-1997: 97US-0056907. PR 22-AUG-1997: 97US-0056910. PR 22-AUG-1997: 97US-0056911. PR 05-SEP-1997: 97US-0056930. PR 05-SEP-1997: 97US-0056931. PR 05-SEP-1997: 97US-0056932. PR 12-SEP-1997: 97US-0057761. PR 12-SEP-1997: 97US-0058785.	PR	23-MAY-1997: 97US-0047584. PR 23-MAY-1997: 97US-0047585. PR 23-MAY-1997: 97US-0047586. PR 23-MAY-1997: 97US-0047587. PR 23-MAY-1997: 97US-0047588. PR 23-MAY-1997: 97US-0047589. PR 23-MAY-1997: 97US-0047590. PR 23-MAY-1997: 97US-0047592. PR 23-MAY-1997: 97US-0047593. PR 23-MAY-1997: 97US-0047594. PR 23-MAY-1997: 97US-0047595. PR 23-MAY-1997: 97US-0047596. PR 23-MAY-1997: 97US-0047597. PR 23-MAY-1997: 97US-0047598. PR 23-MAY-1997: 97US-0047599. PR 23-MAY-1997: 97US-0047600. PR 23-MAY-1997: 97US-0047601. PR 23-MAY-1997: 97US-0047612. PR 23-MAY-1997: 97US-0047613.
W09839448-A2.	PA	(HUMA-) HUMAN GENOME SCI INC.	XX		
	PI	Bednarik DP, Brewer LA, Carter KC, Duan R, Ebner R, Endress GA;	XX		
	PI	Feng P, Ferrie AM, Fischer CL, Florence KA, Greene JM, Hu JS;	XX		
	PI	Ryaw B, Larfleur DW, Li Y, Moore PA, Ni J, Olsen HS, Rosen CA;	XX		
	PI	Ruben SM, Shi Y, Soppet DR, Young PE, Yu GL, Zeng Z;	XX		
	DR	WPI; 1998-506364/43.	XX		
	P-PSDB	W74964.	XX		
	PT	New isolated human genes and the secreted polypeptide(s) they encode	XX		
	PT	- useful for diagnosis and treatment of e.g. cancers, neurological disorders, immune diseases, inflammation or blood disorders	XX		
	CC	This sequence represents a nucleic acid molecule designated Gene 92 from the human cDNA clone HAUBL57 (deposited as clone ATCC 97897 and ATCC 209043) which encodes a secreted human protein. The gene can be used to generate fusion proteins by linking to the gene to a human immunoglobulin Fc portion (e.g. V55202) for increasing the stability of the fused protein as compared to the human protein only.	XX		
	CC	The invention relates to 186 novel genes and their fragments (nucleic	CC		

XX PA (CHIR) CHIRON CORP.
 XX PT Lin H, Cao L;
 XX DR p-PSDB; Y53634.
 XX PT New isolated human polynucleotide and secreted proteins can induce production of other cytokines in certain cell populations -
 XX PS Claim 11; Page 98-100; 120pp; English.
 XX Z36228-49 encode bone marrow secreted proteins of human bone marrow stromal cells. The proteins can exhibit cytokine, cell proliferation, or cell differentiation activity (either inducing or inhibiting). They can be used to support colony forming cells or factor-dependent cell lines, to regulate hematopoiesis, and to treat myeloid or lymphoid cell deficiencies. In addition, they may be used to support the growth and proliferation of erythroid progenitor cells, and to treat various anaemias. They can have colony stimulating factor (CSF) activity and can be used to support the growth and proliferation of myeloid cells such as granulocytes, monocytes or macrophages, to prevent or treat myelo suppression, to support the growth and proliferation of megakaryocytes and platelets, thereby allowing prevention or treatment of platelet disorders such as thrombocytopenia, to support the growth and proliferation of hematopoietic stem cells, either in place of or in conjunction with platelet transfusions, to treat stem cell disorders, such as aplastic anaemia and paroxysmal nocturnal hemoglobinuria, or to repopulate the stem cell compartment after irradiation or chemotherapy. They can be used for growth or differentiation of bone, cartilage, tendon, ligament, or nerve tissue, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers, to induce cartilage and/or bone growth in circumstances where bone is not normally formed and thus have an application in healing bone fractures and cartilage damage or defects, prophylactic use in fracture reduction and also in the improved fixation of artificial joints.
 CC Sequence 1668 BP; 435 A; 414 C; 349 G; 470 T; 0 other;
 CC SQ alignment_scores:
 Percent Similarity: 77.736 Length: 265
 Ratio: 3.180 Gaps: 5
 Percent Identity: 50.566
 alignment_block:
 US-09-544-776-2 x Z36240 ..
 Align seq 1/1 to: Z36240 from: 1 to: 1668
 131 SerIysLeuProGlu... AspAspGluProProAlaArgProPro.... 144
 12 AGCCAGTTCGGGATTAATCTATTCCCTCCCTCAGCGGCCGAT 61
 145 ProProProProAlaSerValSerProGlnAlaGluPro 158
 62 CRCCTTTCACCCCTCCACCCCTCGCTCGCTAGCCATGGCGGAGCGT 111
 158 altrpThr..... 160
 112 CGCGCCACTCTGCCATTCCATCTCTCGRCGTCTTCGGAGCGAG 161
 161 ProProAlaPro.. AlaProAlaAlaProProSerThrProAlaAlaPr 176
 162 CGGCGCCGCCGGGGGGAGGCCAGAGCCTGCCCTCGGG 211
 176 olysargarglysersergylservalvalvalaspLeuLeutyrhrpa 193
 212 GACGAAGAGCTGCAGCTCCCTGCGGTGACGATCTGATTTCTGGA 261
 193 rgaspileystystrhrglyvalvalpheglyalaSerleuheleleu 209
 262 GAGATGTGAAGAAGACGTGGTGTGTCRGTGGACACGGCTGATCAGCTG 311
 210 LeuSerLeuThrValProSerIleValSerValThrAlaTyrlleAlaIle 226
 312 CTTCCCTCGACGTTCTAGTCATCTAGTCAGTGTTCTTCACTCATCT 361
 226 uAlaLeuLeuSerValThrIleSerProArgLileTyrysglyvalleg 243
 362 GGCCTCTCTCTGTCACCATAGCTCAGGAACTACAGTCGTCACGCC 411
 243 lAlaIleGlylysSerraspGlyHisProPheArgAlaIyLenglu 259
 412 AACSTGTGACAGAAGTCAGAACGGCCATCCACATCAAAGCCATCAGCGAC 461
 260 SerGluValAlaIleSerGluGluLeuValGlyLysTyrSerAsnSerAl 276
 452 GTAGACATTAATCTGTCCTCAGAGCTTCCTAAATTCATGATGCTGC 511
 293 alaspASpLeuValAspSerLysPheAlaValLeuMetTrpValPhe 309
 562 TAGAGATCTGTTGACTCCTGAGCAGCAGCTCTCATGGGCTGATG 611
 276 aLysGlyHysValAsnCysthrIleLysGluLeuArgArgLeuPheLeu 293
 512 CATGGTCACATCACAGGGCCCTGAACTCATTCATTCATGCTCTGG 561
 612 ACCPATGTGTTGCTGCTGTTAACGGAATCACCTCTTAATCTTGCTGA 661
 326 uIleSerIeupreservalProvalleItyrGuaGhIsGnAlaInI 343
 662 ACCTCTCAITTCAGTGTGCCCAGTGTCTATGAGAACCCAGA 711
 343 leaspHisIstYrsIleGlyLeu...LysArgIysAlaGlu 373
 712 TTGATCACMATHGTTGGCATGGCCGAGATCAGCAAGTCATGTTGIGA 761
 360 LysIleGlnAlaIysIleProGlyLeu...LysArgIysAlaGlu 373
 762 AGATCCAAAGCATAACTCCCTGAGGCCAAAAAAGGCCAA 806
 seq_name: /SIDS6/gcgdata/geneseq/geneseqn/NA2000.DAT:Z38319
 seq_documentation_block:
 ID Z38319 standard; cDNA: 1759 BP.
 XX AC Z38319;
 XX DT 09-FEB-2000 (first entry)
 XX DE Human transmembrane protein cDNA clone HP02061.
 XX KW HP02061; transmembrane domain; Saos-2; homology; neuroendocrine-specific protein C; antibody; assay reagent; diagnostic marker; primer; probe; antisense; gene therapy; agonist; antagonist; ligand; therapeutic; ds.
 XX OS Homo sapiens.
 XX
 Key FH Location/Qualifiers
 FT CDS 142..852
 FT /*tag= a
 FT /product= "Human transmembrane protein HP02061"
 PN W09955862-A2.
 XX PD 04-NOV-1999.
 XX PF 27-APR-1999; 99WO-JP02226.
 XX PR 28-APR-1998; 98JP-011935.
 XX

PA (SAGA) SAGAMI CHEM RES CENT.
 PA (PROT-) PROTEGENE INC.
 XX
 PI Kato S, Kimura T;
 XX WPI: 2000-023358/02.
 DR P-PSDB; Y52387.

XX Human proteins with transmembrane domains, involved in control of cell proliferation and differentiation, useful for treating e.g. cancer or inflammation

XX Claim 4; Page 92-94; 114pp; English.

CC This sequence represents the human cDNA clone HP02061
 CC which encodes a 26 kD protein with two putative transmembrane
 CC domains. The cDNA was isolated from a Saos-2 (human osteosarcoma cell
 CC line) cDNA library. The protein has homology with the human
 CC neuroendocrine-specific protein C (PIR Accession No. I60904),
 CC and may have a similar function. The protein may be used
 CC to raise specific antibodies as assay reagents, as
 CC diagnostic tissue markers, for the isolation of cognate receptors,
 CC ligands and binding proteins, and as biologically active agents.
 CC Nucleotides encoding the protein may be used as primers and probes or
 CC antisense molecules, and in gene therapy. Cells transformed with these
 CC nucleotides may be used to screen for agonists and antagonists which are
 XX potentially useful therapeutically.

SQ Sequence 1759 BP; 454 A; 433 C; 376 G; 496 T; 0 other;

alignment_scores:
 Quality: 655.00 Length: 265
 Percent Similarity: 3.180 Gaps: 50.566
 Percent Identity: 57.736

alignment_block:
 US-09-544-776-2 x Z38319 ..

Align seg 1/1 to: 238319 from: 1 to: 1759

131 SerIysLeuProGu...AspAspGluProProAlaArgProPro.... 144

|||:|||||:::|||:|||||:|||:|||||:|||:|||||:|||:|||||:

55 AGCCAGTGGCGGATATTCTATTCCTTCCGCCCTCTCCGCCCGTAT 104

145 ProProProProAlaSerValSerProGlnAlaGluPro 158

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:

105 CTCTTTACCCCTTGCCACCGCTCGCTCGTACCCAGGGGAGCGT 154

158 altrPro..... 160

155 CGGCCGCACCTCAGTCCATCCATCTCTGTCCTCTGGAGCCGAG 204

161 ProProAlapro...AlaProAlaAlaProProSerThrProAlaAlaPr 176

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:

205 CGGTCGCGCCGCCGCGCGGGGCCAGGAGCTGCCGCCGCTGG 254

176 olysargargGlySerSerGlySerValValValaspLeuLeuTrPRA 193

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:

255 GACGAGAGGTGCACTCCUCCGACCATGATTCTGGA 304

193 rgAspIleLysLysThrGlyValValPheGlyAlaSerIlePheLeu 209

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:

305 GAGAGTGAGAGAGACTGGGTTGCTTCAGTGTTGCTTACATCTG 354

210 LeuSerLeuLeuThrIleSerProArgIleTerLysGlyValIleAla 226

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:

355 CTTTCCTGGCAGCTTCAGTGCTACAGTGTTGCTTACATCTG 404

226 ualaLeuLeuSerValThrIleSerProArgIleTerLysGlyValIle 243

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:

405 GGCTGCTCTCTGCACTCACGCTTCAGATCACAACTCCGGCATCC 454

243 lAlaIleGlnIlySerAspGluGlyHisProProArgAlaTyLeuGlu 259
 455 |||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 455 AACGCTGACAGAGTCAGAAGAACGCCATCATTCAAAGCTTACCTGGAC 504

260 SerGluValAlaIleSerGluGluLeuValGlnIysTySerAsnSerAl 276

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 505 GTAGACATTAATCTGTCAGTCAGAAGCTTCCATATTAGCATGAATGCTGC 554

276 aLeuGlyHisWalsnacysthrIleLysGluLeuArgGluLeuLeu 293

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 555 CATGGTGCACTACACAGGCCCTGAACTATATTCCGTCCTCTGCG 604

293 alASpASpIleValAspSerLeuIysPheAlaValLeuMetTrpValPhe 309

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 605 TAGAGATCCTGGTGAATCTCTGAAGCTGGCTGCTCATGTTGCTGATG 654

310 ThryrValgIlyAlaLeuPheAspGlyLeuThrLeuLeuLeuAla 326
 |||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 655 ACCTAATGTTGGCTGTTTACGGAAATCACCCCTACTATCTGCTGAA 704

326 uIleSerLeuPheSerValProValIleYrgIuargHsGlnAlaGln 343

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 705 ACTGCTCATTTCTGAGTCGCCAGTGTCTGATGAGTACAGTACAGTGTGAA 754

360 LysIleGlnIalauIleProGlyIle...LysArglyAlaGlu 373

|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 805 AGATTCACAAGCAAACCTCCCTGGAATCGCCAAAGGCGCAA 849

seq_name: /SIDS6/geodata/geneseq/geneseq/NA1999.DAT: X60810

seq_documentation_block:
 ID X60810 Standard; DNA; 1656 BP.

XX X60810;

XX DT 09-AUG-1999 (first entry)

XX DE Human secreted protein encoding DNA (clone yb8-1).

XX KW Secreted protein; kidney; lung; brain; blood; testis; bone marrow;

XX nutritional activity; cytokine; cell proliferation; immune stimulation;

XX hematopoiesis regulation; tissue growth; thrombolytic; gene therapy;

XX anti-inflammatory; tumour invasion; ss.

XX OS Homo sapiens.

XX PN WO9926961-A1.

XX PD 03-JUN-1999.

XX PF 24 -NOV-1998; 98WO-US25149.

XX PR 23 -NOV-1998; 98US-0197886.

PR 26 -NOV-1997; 97US-0066804.

XX PA (GEM) GENETICS INST INC.

XX PT Agostino MJ, Clark HF, Collins-Racie LA, Evans C;

PI Fehnel K, Jacobs K, Lavallie ER, McCoy JM, Merberg D;

PI Steininger RJ, Treacy M, Wong GG;

XX DR WPI: 1999-357809/30.

DR P-PSDB; Y17228.

New polynucleotides encoding secreted proteins

XX Claim 39; Page 125-126; 133pp; English.

The invention relates to secreted proteins (Y17219-228) encoded by

CC polynucleotides obtained from human fetal kidney, adult lung, adult CC kidney, adult brain, adult blood, adult testes, and fetal brain and CC murine adult bone marrow cDNA libraries. The secreted protein nucleic acid CC sequences (X6801-811) correspond to clones b0316-7, g1283-6, fk317-3, CC k213-2x, na316-1, n193-20, np164-1, pe204-1, ya1-1 and yb1-1, (all clones CC are deposited as ATCC 9859); The PNs and proteins are predicted to have biological activities which would make them suitable for treating, preventing or ameliorating medical conditions in humans and animals, although no supporting data is given. Suggested activities include CC nutritional activity, cytokine and cell proliferation/differentiation CC activity, immune stimulating (e.g. as vaccines) or suppressing activity, hematopoiesis regulating activity, tissue growth activity, haemostatic and CC inhibin activity, chemotactic/chemokinetic activity, anti-inflammatory CC thrombolytic activity, receptor/ligand activity, anti-tumour CC inhibition activity. The PNs are also stated to be useful for gene therapy.

Sequence 1656 BP; 473 A; 389 C; 340 G; 454 T; 0 other;

alignment_scores:
 Quality: 644 50 Length: 246
 Ratio: 3.255 Gaps: 5
 Percent Similarity: 80.488 Percent Identity: 53.659

alignment_block:
 US-09-544-776-2 x x60810 ..

Align seg 1/1 to: x60810 from: 1 to: 1656

139 ProProAla.....ArgProProPr 146
 |||||!:: ||| ::||| :|||

498 CTGGTGACTCTTGAGCTGCTGCTCATGCTGCGTGTAC 547
 312 IGLYALeupheAsnLysLeuthrileLeuleuAlaLeuIleSerL 329
 548 TGGTCGTTTAACGGAACTCACCTCTAACCTCTGCTCA 597
 biological activities which would make them suitable for treating, preventing or ameliorating medical conditions in humans and animals, although no supporting data is given. Suggested activities include nutritional activity, cytokine and cell proliferation/differentiation activity, immune stimulating (e.g. as vaccines) or suppressing activity, hematopoiesis regulating activity, tissue growth activity, haemostatic and inhibin activity, chemotactic/chemokinetic activity, anti-inflammatory and thrombolytic activity, receptor/ligand activity, anti-tumour inhibition activity. The PNs are also stated to be useful for gene therapy.

Sequence 1656 BP; 473 A; 389 C; 340 G; 454 T; 0 other;

seq_name: /\$IDS6/9cgadata/geneseq/geneseq/NA2000.DAT:238318

Seq_documentation_block:
 ID 238318 standard; cDNA: 708 BP.
 XX AC 238318;
 XX DT 09-FEB-2000 (first entry)
 DE Human transmembrane protein cDNA clone HP02061 coding sequence.
 KW HP02061; transmembrane domain; Saos-2; homology; neuroendocrine-specific protein C; antibody; assay reagent; diagnostic marker; primer; probe; antisense; gene therapy; agonist; antagonist; ligand; therapeutic; ds.
 OS Homo sapiens.
 XX FH Key Location/Qualifiers
 FT CDS 1..708
 FT /*tag= a product; "Human transmembrane protein HP02061"
 FT /note= "No stop codon given in the specification"
 PN W0955862-A2.
 XX PR 04-NOV-1999.
 XX PF 27-APR-1999; 99WO-JP02226.
 XX PR 28-APR-1998; 98JP-0119395.
 PA (SAGA) SAGAMI CHEM RES CENT.
 PA (PROT-) PROTEGENE INC.
 PI Kato S, Kimura T;
 XX DR WPI: 2000-023358/02.
 XX PSDB; Y52387.

Human proteins with transmembrane domains, involved in control of cell proliferation and differentiation, useful for treating e.g. cancer or inflammation -

XX Claim 3; Page 85; 114pp; English.

This sequence represents the coding sequence of human cDNA clone HP02061 which encodes a 26 kd protein with two putative transmembrane domains. The cDNA was isolated from a Saos-2 (human osteosarcoma cell line) cDNA library. The protein has homology with the human neuroendocrine specific protein C (PIR Accession No. 160904), and may have a similar function. The protein may be used to raise specific antibodies, as assay reagents, as diagnostic tissue markers, for the isolation of cognate receptors, ligands and binding proteins, and as biologically active agents.

Thu Feb 1 11:25:34 2001

us-09-544-776-2.p2n.rng