Distance geometry for computing conformations

Ioannis Z. Emiris

Outline

- 02. Distance geometry
- 07. Distance matrices
- 18. Incomplete data
- 28. Noisy data: triangular inequality
- 36. Noisy data: tetrangular inequality
- 42. Matrix perturbation

Distance geometry

3D protein conformation

Goal: match pharmacophores, screen databases, identify function...

Principle: At a first level of approximation, bond distances and planar angles require too much energy to be altered in a protein ⇒ a 3D conformation depends upon the dihedral angles about the bonds.

Assume point masses, ignore chemical properties (e.g. hydrophobicity), angle limitations (postprocess).

Structure from Distances

- Treat arbitrary number (e.g. 5000 atoms) of DOFs with:
- o Nuclear Magnetic Resonance (NMR) approximates distances [K.Wüthrich, ETHZ, Chemistry Nobel'02] "for his development of NMR spectroscopy for determining the 3-dimensional structure of biological macromolecules in solution"
- \circ X-ray crystallography gives accurate distances (error \leq 1Å) but in crystal state, takes \sim 1 research year.

Distance geometry Software effective for molecules of > 100 atoms:

- DYANA [Guntert, Mumenthaler, Wüthrich'97], EMBED [Crippen, Havel'88].
- DISGEO: #507 http://qcpe.chem.indiana.edu [Havel,Wüthrich'98].
- DGSOL: open [Moré,Wu].
- ABBIE [Hendrickson], DGEOM, XPLOR module, . . .
- http://www.netsci.org/resources/software/modeling/conf
- Main phases of Distance geometry:
- Triangle/tetrangle inequalities used for bound smoothing
- minimize error function within distance intervals.

Nuclear Magnetic Resonance (NMR)

- Specific isotopes have spin $(\pm 1/2)$ e.g.: H, C¹³
- Each isotope absorbs and radiates back energy from electromagnetic (EM) pulse of specific "resonance" frequency

Steps of NMR:

- 1. Constant magnetic field applied to isotopes, spins aligned (polarized).
- 2. EM pulse applied, specific nuclei stimulated, and radiate energy
- 3. Stimulated nuclei form pairs whose distance depends on EM frequency

Experiments of NMR spectroscopy:

- Nuclear Overhauser Effect SpectroscopY (NOESY)
- Other 2D (distance) experiments: Correlation Spectroscopy (COSY),
- J- or Exchange (EXSY) Spectroscopies.
- Not 2D: Residual Dipolar Coupling (RDC) yields angles.

Nuclear Enhanced Overhauser Spectroscopy (NOESY)

- Different frequencies $f \neq f' \Rightarrow$ different distances $d \neq d'$.
- Triplet (i, j, k) of nuclei, stimulated: dist(i, j) = d, dist(j, k) = d'.

Problem 1: Match measurements to specific nuclei pairs.

Semi-automatic, human intervention still important.

Problem 2: Given some distances, embed nuclei in \mathbb{R}^3

- Only upper / lower bounds of distances are known.
- Only nuclei pairs with distance $\leq 5-6$ Å.

Global optimization has high time complexity.

[Havel, Guntert, Wüthrich] [E-Nikitopoulos]

Residual Dipolar Coupling (RDC)

- Consider the vector between each atom and its H.
- Measures angle of vector with a constant but unknown vector.

[Donald et al] [E-Pantos'07]

Distance matrices

Distance matrices

Definition (and structure):

A distance matrix M is square, $M_{ii} = 0$, $M_{ij} = M_{ji} \ge 0$.

Definition. A distance matrix M is Euclidean and embeddable in \mathbb{R}^d iff

$$\exists \text{ points } p_i \in \mathbb{R}^d : M_{ij} = \frac{1}{2} \operatorname{dist}(p_i - p_j)^2.$$

Embeddable matrices in \mathbb{R}^3 correspond to 3D conformations.

Embeddability

Thm [Schoenberg'35, Blumenthal'53] Take border (Cayley-Menger) matrix

$$B = \begin{bmatrix} 0 & 1 \cdots 1 \\ 1 & & \\ \vdots & M \\ 1 & & \end{bmatrix}.$$

Then, distance matrix M embeds in \mathbb{R}^d iff

- $\operatorname{rank}(B) \leq d + 2$ [Cayley 1841], and
- $(-1)^k D(i_1, \dots, i_k) \ge 0, \ \forall k \ge 2$ [Menger 1928],

where D(...) is any minor of B indexed by rows/columns $0, i_1, ..., i_k$.

Cor. A distance matrix M expresses a 3D conformation iff

- $rank(B) = 5 \Rightarrow all \ 6 \times 6 \ minors = 0 \Rightarrow det \ Border(5 \ points) = 0.$
- satisfies the triangle and tetrangular inequalities.

Small minors

Given points i_1, \ldots, i_k , the corresponding border matrix contains these rows/columns and the artificial (zeroth) row/column of 1's.

• det Border(points
$$i,j)=\left[egin{array}{ccc} 0&1&1\\1&0&d_{ij}^2/2\\1&d_{ij}^2/2&0 \end{array}
ight]\geq 0\Leftrightarrow d_{ij}^2\geq 0.$$

- Triangular inequality: det Border(points 1,2,3) = $(d_{12} + d_{13} + d_{23})(d_{12} + d_{13} d_{23})(d_{12} + d_{23} d_{13})(d_{13} + d_{23} d_{12}) \geq 0$ Recall classical inequalities: $d_{ij} + d_{jk} \geq d_{ik} \geq |d_{ij} d_{jk}|.$
- Tetrangular inequality: det Border(4 points) ≥ 0 .

Embeddability, again

Cor. Let border (Cayley-Menger) matrix B contain distance matrix M; the latter embeds in \mathbb{R}^d and not in \mathbb{R}^{d-1} iff

- rank(B) = d + 2 [Cayley], and
- $(-1)^k D(i_1, \dots, i_k) > 0, k = 2, \dots, d+1$ [Menger],

where D(...) is any $(k + 1) \times (k + 1)$ border minor of B indexed by rows/columns $0, i_1, \ldots, i_k$.

Distance matrices express many geometric properties: orthogonality, convexity etc [Michelucci].

Cyclohexane's distance matrix

Known: $u \simeq 1.526$ (adjacent), $\phi \simeq 110.4^{\circ} \Rightarrow c \simeq 2.285$ (triangle).

Rank condition (= 5) equivalent to the vanishing of all 6×6 minors. This yields a 3×3 system of quadratic polynomials in the x_{14}, x_{25}, x_{36} .

If all c, u same, then 2 isolated conformations, one 1-dim set. If the c, u perturbed, then ≤ 16 solutions $\in \mathbb{R}$ [E-Mourrain].

Point coordinates from distances

Input: distances d_{ij} among n+1 points $(i,j=0,\ldots,n)$ in \mathbb{R}^3 .

Output: point coordinates (up to rigid transforms) in \mathbb{R}^3 .

Consider points $p_i \in \mathbb{R}^d$ as (column) vectors, $i = 0, \dots, n$, where

$$d_{ij}^2 = |p_i - p_j|^2$$
, $d_{i0}^2 = |p_i|^2$, setting $p_0 = 0$.

Now
$$d_{ij}^2 = |p_i|^2 - 2p_i^T p_j + |p_j|^2 \Leftrightarrow p_i^T p_j = \frac{d_{i0}^2 - d_{ij}^2 + d_{j0}^2}{2} =: G_{ij}$$

defines (Gram) $n \times n$ matrix G of inner products:

$$G = \begin{pmatrix} p_1^T p_1 & p_1^T p_2 & \dots & p_1^T p_n \\ p_2^T p_1 & p_2^T p_2 & \dots & p_2^T p_n \\ \vdots & \vdots & \ddots & \vdots \\ p_n^T p_1 & p_n^T p_2 & \dots & p_n^T p_n \end{pmatrix}$$

Coordinates from inner products

Gram matrix expresses coordinate vectors:

$$[G_{ij}] = [p_i^T p_j] = P^T \cdot P$$
, where $P = [p_1, \dots, p_n]$ is $3 \times n$.

G is real symmetric, so eigen-values/vectors $\in \mathbb{R}$ and U = V: The Singular Value Decomposition (SVD) yields

$$G = V \Sigma V^T$$
, $V^T V = I$, $\Sigma = \begin{bmatrix} \sigma_1 \\ & \ddots \\ & & \sigma_n \end{bmatrix}$, $\sigma_i = |\text{eigenval}_i|$.

Since $rank(d_{ij}) = 3 \Rightarrow rank(G) = 3$, therefore can have:

- singular vector matrix V be $n \times 3$, and
- singular value matrix Σ positive, 3×3 diagonal.

Then,
$$G = V\sqrt{\Sigma}\sqrt{\Sigma}V^T = P^TP \Rightarrow P := \sqrt{\Sigma}V^T$$
.

Embeddability Theorem

Theorem. $\{p_1, \ldots, p_n\}$ embed in \mathbb{R}^3 (and not \mathbb{R}^2) iff Gram matrix $G = P^T P$ defined by coordinates P has $\mathsf{rk} G = 3$.

[\Leftarrow] SVD: symmetric real $G = VSV^T$ (previous slide), where $V^TV = VV^T = I$, $S = \operatorname{diag}[\sigma_1, \ldots, \sigma_n]$, $\sigma_i = |\operatorname{eigenvalue}_i| \geq 0$. $\operatorname{rk} G = 3 \Rightarrow S = \operatorname{diag}[\sigma_1, \sigma_2, \sigma_3, 0, \cdots]$, $\sqrt{S} = [\sqrt{\sigma_i}]$, $G = V\sqrt{S} \cdot \sqrt{S}V^T$. $P := V\sqrt{S}$ is $n \times 3$: defines n points $p_i \in \mathbb{R}^3$.

• SVD = $O(n^3)$ and well implemented, e.g. Matlab.

 $[\Rightarrow] P = [p_1, \dots, p_n]$ is $3 \times n$. $\mathsf{rk}(AB) = \mathsf{min}\{\mathsf{rk}A, \mathsf{rk}B\} \Rightarrow \mathsf{rk}G = \mathsf{rk}P$. $\mathsf{Embed} \Rightarrow \exists p_a, p_b, p_c$ linearly independent $\Rightarrow \mathsf{rk}P = 3$. • $\forall y \in \mathbb{R}^n, y^T P^T P y = (Py)^T (Py) > 0 \Rightarrow G = P^T P \succ 0$.

Positive (semi)definite matrices

Def. An $n \times n$ real matrix M is positive (semi)definite if

$$x^T M x > 0$$
, $(x^T M x \ge 0)$, $\forall x \ne 0$.

Denoted $M \succ 0$, $M \succeq 0$.

Examples:
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 3 & -1 & -2 \\ -2 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Lemma [Sylvester]: For all $i \times i$ upper-left minor M_i : $M \succ 0 \Leftrightarrow \det M_i > 0$, $M \succeq 0 \Rightarrow \det M_i \geq 0$.

Symmetric P(S)D matrices

Hypothesis: Real symmetric $M = M^T$ (or complex Hermitian $M = M^*$)

- $M \succeq 0 \Leftrightarrow \text{all eigenvalues} \geq 0$, $M \succ 0 \Leftrightarrow \text{all eigenvalues} > 0$.
- $M \succ 0 \Leftrightarrow \exists B : \det B \neq 0, M = BB^T$.
- $M\succ 0\Leftrightarrow \exists$ low-triangular $B:M=B^2$, then $B=\sqrt{M}$. Unique $B:B\succ 0, B=B^T$.

Complexity

- Given complete set of exact distances: Embed $\in P$.
- Given incomplete set of exact distances: Embed- $\mathbb{R} \in NP$ -hard. Reduction of set-partition [Saxe'79].
- Embed- $\mathbb{R}^k \in \mathsf{NP}$ -hard, for $k \geq 2$, even if weights $\in \{1,2\}$ [Saxe'79].
- (approximate) Embed- $\mathbb{R}^2 \in \mathsf{NP}\text{-hard}$ for planar graphs: weights = 1 [Demaine,RoteEtal]
- Given distances $\pm \epsilon$, approximate-Embed \in NP-hard [Moré,Wu'96].

Incomplete data

Matrix completion

Prob. Given incomplete M, complete it to PSD (or distance) matrix. This is a feasibility question on a PSD program.

Def. PSD program (feasibility): Given matrices $A_1, \ldots, A_m, b_1, \ldots, b_m \in \mathbb{R}$, \exists ? matrix X s.t.:

$$X \succeq 0, \ b_k = A_k \cdot X := \sum_{i,j} A_{i,j}^{(k)} X_{i,j}, \ k = 1, \dots, m.$$

Note $A_k \cdot X = \operatorname{trace}(A_k^T X)$.

Full PSD program includes also linear objective function on the $X_{i,j}$.

• If M contains determined line/column, completion reduces to that of submatrix.

Complexity of PSD

- Solving PSD programs with arbitrary precision $\in P_{\mathbb{R}}$: interior-point [Karmarkar], ellipsoid method [Khachiyan].
- Unknown whether PSD-program $\in NP_{bit}$.
- Unknown whether PSD-feasibility $\in P_{bit}$.
- LP $\in P_{bit}$ (weak polytime) interior-point [Karmarkar], ellipsoid [Khachiyan]
- Open whether LP in $P_{\mathbb{R}}$ (strong polytime).
- Typically, symmetric $M = M^T$, diagonal entries known.
- Focus on polynomial instances of PSD completion [Laurent].

Further into partial PSD matrices

Def. M is partial-PSD if \forall principal specified submatrix is PSD.

Lem. If incomplete matrix M has a P(S)D / distance matrix completion, $\Rightarrow M$ is partial-P(S)D / partial-distance matrix. Necessary (not sufficient) conditions for completing M.

Counter-example: Partial-PSD but ∄ PSD-completion:

Note: cycle of length 4.

Chordal Graphs: poly-1

Defn. A graph is chordal if its largest cycle is of length 3.

Defn. Given symmetric matrix M, construct graph G with nodes corresponding to rows/columns and edges to every specified matrix entry.

Thm [Johnson, Wolkowitz, et al'84, Bakonyi, Johnson'95].

Every partial-PSD (or partial-distance) matrix M with graph G has a PSD (or distance-matrix) completion iff G is chordal.

Proof: $[\Leftarrow]$ algorithm in P_{bit} [Laurent'98].

Moreover: \forall principal submatrices embed in $\mathbb{R}^k \Rightarrow$ entire matrix in \mathbb{R}^k .

Chordal filling: poly-2

Thm [Laurent]. Given M, G, if min #edges added to make G chordal is O(1), then PSD-completion $\in P_{bit}$.

Proof. PSD program with #constraints = O(1).

• Generally, minimizing #edges to make G chordal is NP-hard.

No K_4 , class $G_{p,q}$: poly-3, -4

Def Graph G' is similar to G if obtained by adding vertices to edges of G

Thm [Laurent]. Given M and G, where G has no subgraph similar to clique K_4 . Then, M can be completed to a PSD matrix in $P_{\mathbb{R}}$.

Def. Let be $p, q \ge 1$. Class $G_{p,q}$ contains graphs G = (V, E) s.t.:

- 1. $\exists V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset, \min(|V_1|, |V_2|) = p,$
- 2. $F := \{ij | i \in V_1, j \in V_2\} \Rightarrow F \cap E = \emptyset$,
- 3. Graph $H := (V, E \cup F)$ is chordal,
- 4. H has q max-cliques that are not cliques of G.

Thm [Laurent]. For integers $p, q \ge 1$, matrices with graph $G \in G_{p,q}$ can be completed to a PSD matrix in weak Polytime.

Dense Graphs: poly-5

• Consider a clique missing edges incident to a vertex v. Then, in poly-time, M is PSD-completed and its minimum embedding dimension (MED) computed. E.g.:

$$MED(v - G_1 \equiv G_2) = max\{MED(v - G_1), MED(G_1 \equiv G_2)\}.$$

• Same for star of cliques K_i :

$$MED(star) = \max_{i} \{MED(K_i)\}.$$

[E-Fragoudakis-Markou]

Graph embedding

- [Bourgain'93]. Every graph with n vertices can be embedded in *some* Euclidean space (of any dimension) with distortion $O(\log n)$.
- [Barvinok]. If graph embedded in \mathbb{R}^d , for some d, then embedded in dimension d^* s.t.:

$$d^* = \lfloor \frac{\sqrt{8E+1}-1}{2} \rfloor, \quad E+1 \le {d^*+2 \choose 2}.$$

• Conj. $d^* < \#$ vertices, or $\leq \max \deg(\text{graph})$.

Noisy data: triangular inequality

Minors

• 6×6 minors vanish \Leftrightarrow det Border(5 points) = 0.

• det Border(2 points)
$$= \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & d_{ij}^2/2 \\ 1 & d_{ij}^2/2 & 0 \end{bmatrix} \geq 0 \Leftrightarrow d_{ij}^2 \geq 0.$$

- Triangular inequality: det Border(3 points) = $(d_{12} + d_{13} + d_{23})(d_{12} + d_{13} d_{23})(d_{12} + d_{23} d_{13})(d_{13} + d_{23} d_{12}) \ge 0$
- Tetrangular inequality: det Border(4 points) ≥ 0 .

Smoothing triangular inequalities

• Triangle inequalities (equality iff coliner): For any 3 points in Euclidean space of any dimension (including \mathbb{R}^3) the triangle inequality holds:

$$|d_{ik} - d_{kj}| \le d_{ij} \le d_{ik} + d_{kj}.$$

Bound smoothing

• Improve upper bound by forcing:

$$u_{ij} \le u_{ik} + u_{kj}.$$

All-min-paths in single pass: $\Omega(VE)$,

 $O(V^3)$ [FloydWarshal], $O(V(V+m) \lg V), m$ edges in minpaths [KargerEtal91]

Improve lower bound by forcing:

$$l_{ij} \ge l_{ik} - u_{kj}, \ l_{kj} - u_{ik} \Rightarrow l_{ij} \ge l_{km} - u_{ik} - u_{mj},$$

where indices i, j, k, m not necessarily all distinct.

Independent of upper bounds; also reduces to all-minpaths.

Example

$$l_{bd} \ge l_{ab} - u_{ad} = 2$$

$$l_{ac} \ge l_{ab} - u_{bc} = 3$$

$$u_{bd} \le u_{bc} + u_{cd} = 12$$

$$u_{ac} \le u_{ad} + u_{cd} = 13$$

$$u_{ab} \le u_{ad} + u_{bd} = 20$$

Simple algorithm for upper bounds

- 1. Check all triplets of nodes, applying the inequality for upper bounds. Repeat until no improvement is possible.
- 2. The runtime $=2\binom{n}{r}=O(n^3)$. Second pass merely confirms that 1st pass found best possible bounds.
- 3. Algorithm is essentially Floyd's, $O(n^3)$ is best for dense graphs.

A better algorithm

- 1. For every graph node i consider all j, k such $(i, j), (i, k), (j, k) \in E$.
- 2. This correctly checks all triplets with 3 edges. Runtime is

$$n\sum_{i}deg(i) = O(nm)$$

- 3. For edges not in E, apply the procedure "Fillin" below.
- 4. Connected graph, m = O(n): best $\binom{n}{2}$ bounds in $= O(n^2)$

"Fillin" procedure:

- 3.1. For every i constuct BFS-tree by picking "closest" neighbors first depending on refined upper bounds.
- 3.2. G connected \Rightarrow tree is spanning.
- 3.3. $\forall j$ s.t. $(i,j) \notin E$, set as \hat{u}_{ij} the distance of i,j on tree.
- 3.3. The running time is linear per i, hence $O(n^2)$ in total.

New (?) algorithm [Palios'05].

Exotic data structures

- Improve Floyd using Dijkstra's algorithm for single-source min paths. Using binary heaps Dijkstra = $O((m+n)\log n)$; with Fibonacci heaps it is $O(m+n\log n)$, but with high hidden constant.
- [Karger, Koller, Philips'91] single-source minpaths $= O((n + \mu) \log n)$ using binary heaps; $O(\mu + n \log n)$ using Fibonacci heaps, where $\mu \leq m$ is number of edges actually participating in some minpath.
- If $m = \Theta(n) \Rightarrow$ runtime for n executions becomes $O(n^2 \log n)$ with either kind of heaps.

Noisy data: tetrangular inequality

Four points

Four atoms (1, 2, 3, 4), Cayley-Menger determinant:

$$\begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & d_{12}^2 & d_{13}^2 & d_{14}^2 \\ 1 & d_{21}^2 & 0 & d_{23}^2 & d_{24}^2 \\ 1 & d_{31}^2 & d_{32}^2 & 0 & d_{34}^2 \\ 1 & d_{41}^2 & d_{42}^2 & d_{43}^2 & 0 \end{vmatrix} > 0$$

Heron's formula $({}^{\prime}H\rho\omega\nu)$

• Triangular:
$$CM(a, b, c) = 16(\text{Area of T})^2 =$$

= $(a + b + c)(-a + b + c)(a - b + c)(a + b - c).$

• Tetrangular: $CM(a, b, c, d, e, f) = 288(Volume of T)^2$.

Independence

- To tighten bounds for a point pair, we have to solve 64 inequalities.
- If given bounds satisfy triangle inequality, only 7 are non-redundant.
- Consider the (3,4) distance: For upper limit u_{34} :

$$CM(l_{12}, u_{13}, u_{14}, u_{23}, u_{24}, u_{34}) \ge 0,$$

 $CM(u_{12}, l_{13}, l_{14}, u_{23}, u_{24}, u_{34}) > 0,$
 $CM(u_{12}, u_{13}, u_{14}, l_{23}, l_{24}, u_{34}) > 0,$

For the lower limit l_{34} we have:

$$CM(u_{12}, u_{13}, l_{14}, l_{23}, u_{24}, l_{34}) > 0,$$

 $CM(u_{12}, l_{13}, u_{14}, u_{23}, l_{24}, l_{34}) > 0,$
 $CM(l_{12}, l_{13}, u_{14}, l_{23}, u_{24}, l_{34}) > 0,$
 $CM(l_{12}, u_{13}, l_{14}, u_{23}, l_{24}, l_{34}) > 0.$

Bound smoothing

Algorithm:

- 0. Fix a Tolerance value.
- 1. Initialize using the triangle inequality.
- 2. Check all $\binom{n}{4}$ quadruples of nodes, applying 7 inequalities.
- 3. Repeat until max change in any bound is < Tolerance.

- Order of quadruples/inequalities does not affect output.
- BUT: may get in cycle and progress very slowly to final result.
- Tetrangle inequalities much tighter than triangular, but slow.

Example of cycling

- 5 edges: u = l = 1,
- 3 shown diagonals: l = 1.617,
- true diagonal = $1.618 = 2\cos 36^\circ$
- Triangle-Bound-Smoothing yields upper bound = 2 for each of 5 diagonals. New u_{24} by using quadruple (2,3,4,5), which is used in (2,4,5,1) to update u_{25} .
- After 30 passes, tolerance = 10^{-14} , we have $u_{24} = 1.6207323507579925$, $u_{25} = 1.6207323507579441$.

Matrix perturbations

Performance on ring molecules

Matlab/Scilab implementation reduces the 6-th eigenvalue; precision = 16 decimal digits, 500-MHz Pentium-III. [Nikitop-E'02].

#atoms	Init. eigval	Final eigval	Iterations	Time [sec.]	KFlop
7	2.98e-02	6.64e-14	3	0.01	36
8	2.57e-02	4.43e-12	3	0.05	49
9	2.10e-02	6.29e-11	3	0.05	73
10	2.38e-02	2.95e-13	3	0.11	109
11	3.16e-02	2.60e-12	3	0.16	165
12	8.13e-02	1.20e-07	3	0.22	282
13	8.09e-02	8.49e-08	3	0.30	450
14	3.72e-02	6.04e-13	3	0.49	606
15	3.53e-02	2.02e-14	3	0.77	940
16	3.78e-02	1.72e-12	3	1.15	1404
17	3.83e-02	1.70e-13	3	1.54	2082
18	3.53e-02	3.93e-13	3	2.14	3039
19	3.80e-02	4.59e-14	3	2.91	4344
20	4.00e-02	7.09e-13	3	3.79	6136

Example: 15-atom molecular backbone

Distance matrices: done / to do

- Triangle and tetrangle inequalities for bound smoothing.
- Find conformation if started in its neighborhood.
- Bound locally the number of DOFs on the conformation manifold [E-Nikitopoulos].
- Treat family of known proteins, or just with common features.
- Partial distance information ("on-line" or false data), or probability distribution, to avoid full NMR-spectra assignment.
- Determine the minimum set of required distances.