

Winning Space Race with Data Science

Mawufemor Kofi Romio Dotse 10-02-2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection
 - Data wrangling
 - EDA with SQL
 - Building an interactive map with Folium
 - Building a Dashboard with Plotly Dash
 - Predictive analysis(Classification)
- Summary of all results
 - EDA results
 - Interactive analytics
 - Predictive analysis

Introduction

- Project background and context
 - SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other
 providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse
 the first stage.
- Problems you want to find answers
 - The project task is to predict if the first stage of the SpaceX Falcon 9 rocket will land successfully.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web Scrapping from Wikipedia
- Perform data wrangling
 - One Hot Encoding data field for Machine Learning and data cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM, and DT modules have been built and evaluated for the best classifier

Data Collection

- The following data sets were collected.
 - SpaceX launches data that is gathered from SpaceX REST API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
 - The SpaceX REST API endpoints, or URL, starts with api.spacexdata/v4/.
 - Another popular data source for obtaining Falcon 9 Launch data is web scrapping Wikipedia using BeautifulSoup

Data Collection - SpaceX API

Data collection with SpaceX
 REST calls

 https://github.com/KofiRomio/Dat aScienceEcosystem/blob/master/ 10-IBM%20DS%20Capstone%20proj ect-lab2-web%20scraping.ipynb

Data Collection - Scraping

 Web Scrapping from Wikipedia

 https://github.com/KofiRomi o/DataScienceEcosystem/bl ob/master/10-IBM%20DS%20Capstone% 20project-lab2web%20scraping.ipynb

Data Wrangling

https://github.com/KofiRomio/DataScienceEcosystem/blob/master/10-IBM%20DS%20Capstone-lab4-EDA%20viz.ipynb

EDA with Data Visualization

https://github.com/KofiRomio/DataScienceEcosystem/blob/master/10-IBM%20DS%20Capstone-lab4-EDA%20viz.ipynb

EDA with SQL

SQL queries performed include:

- Display the names of the unique launch sites in the mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was acheived.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
- Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

Build an Interactive Map with Folium

Map markers help to find an optimal location

https://github.com/KofiRomio/DataScienceEcosystem/blob/master/10-IBM%20DS%20Capstone-lab4-EDA%20viz.ipynb

Build a Dashboard with Plotly Dash

https://github.com/KofiRomio/DataScienceEcosystem/blob/master/dash_interact2_HY%20(1).py

Predictive Analysis (Classification)

 The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area under the curve at 0.958

https://github.com/KofiRomio/DataScienceEcosystem/blob/master/10-IBM%20DS%20Capstone-lab4-EDA%20viz.ipynb

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional to time in years they will eventually perfect the launches.
- KSC, LC, 39A had the most successful launches from all the sites.
- Orbit GEO, HEO,SSO, ES L1 has the best success rate.

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches from other sites

Payload vs. Launch Site

Success Rate vs. Orbit Type

Orbit types of ES L1, HEO, GEO, SSO are among the highest success rate

Flight Number vs. Orbit Type

A trend can be observed of shifting to VLEO launches in recent years

Payload vs. Orbit Type

There are strong correlation between ISS and Payload at the range around 2000, and between GTO and the range of 4000-8000

Launch Success Yearly Trend

The successful launch rate has increased significantly since 2013 and has been stable since 2019 due to advances in technology and lessons learned

All Launch Site Names

%sql select distinct (LAUNCH_SITE) from SPACEXTBL

Launch Site Names Begin with 'CCA'

%sql select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	О	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

 %sql select sum(PAYLOAD_MASS_KG_) from SPACEXTBL where CUSTOMER = 'NASA (CRS)'

45596

Average Payload Mass by F9 v1.1

 %sql select avg(PAYLOAD_MASS_KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928,4

First Successful Ground Landing Date

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 %sql select BOOSTER_VERSION from SPACEXTBL where Landing_Outcome = 'Success(drone ship)' & PAYLOAD_MASS_KG_ > 4000 & PAYLOAD_MASS_KG_ < 6000

Total Number of Successful and Failure Mission Outcomes

 %sql select count(MISSION_OUTCOME) from SPACEXTBL where MISSION_OUTCOME = 'Success' / MISSION_OUTCOME = 'Failure (in flight)'

Boosters Carried Maximum Payload

 %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS_KG_ = (select max(PAYLOAD_MASS_KG_) from SPACEXTBL)

F9 FT B1022 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

2015 Launch Records

%sql select * from SPACEXTBL where Landing_Outcome like 'Success%'
 & (DATE between 2015-01-01 & 2015-12-31) order by DATE desc

landing_outcome	mission_outcome	customer	orbit	payload_mass_kg_	payload	launch_site	booster_version	time_utc_
Success (ground pad)	Success	NASA (CRS)	(ISS)	2490	SpaceX CRS-10	KSC LC-39A	F9 FT B1031.1	14:39:00
Success (drone ship)	Success	Iridium Communications	Polar LEO	9600	Iridium NEXT 1	VAFB SLC-4E	F9 FT 81029.1	17:54:00
Success (drone ship)	Success	SKY Perfect JSAT Group	GTO	4600	JCSAT-16	CCAFS LC- 40	F9 FT B1026	05:26:00
Success (ground pad)	Success	NASA (CRS)	(ISS)	2257	SpaceX CRS-9	CCAFS LC- 40	F9 FT 81025.1	04:45:00
Success (drone ship)	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT 81023.1	21:39:00
e 200 100	5	SKY Perfect JSAT		1000	10019-11	CCAFS LC-	PA PE 84855	

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql select * from SPACEXTBL where Landing_Outcome like 'Success%'
 & (DATE between 2010-06-04 & 2017-03-20) order by DATE desc

Success (drone ship)	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT 81023.1	21:39:00	2016-05- 27
Success (drone ship)	Success	SKY Perfect JSAT Group	GTO	4696	JCSAT-14	CCAFS LC- 40	F9 FT B1022	05:21:00	2016-05- 06
Success (drone ship)	Success	NASA (CRS)	LEO (ISS)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT 81021.1	20:43:00	2016-04-
Success (ground pad)	Success	Orbcomm	LEO	2034	OG2 Mission 2 11 Orbcomm-OG2 satellites	CCAFS LC- 40	F9 FT 81019	01:29:00	2015-12-

All launch sites marked on map

Success/Failed launches marked on the map

Distance between a launch site to its proximities

Total success launches by all sites

Success rate by site

Payload vs launch outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM,KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional to time in years they will eventually perfect the launches.
- KSC, LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best success rate.

