CS 2601 Linear and Convex Optimization 15. Lagrange duality in general problems

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Dual function and dual problem

Weak and strong duality

Slater's condition

KKT conditions revisited

1

Lagrange dual function

Consider the general optimization problem (not necessarily convex),

$$\min_{\mathbf{x}} f(\mathbf{x})
\text{s.t.} h_i(\mathbf{x}) = 0, i = 1, 2, ..., k
g_j(\mathbf{x}) \le 0, j = 1, 2, ..., m$$
(P)

The Lagrangian is

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \sum_{i=1}^{k} \lambda_i h_i(\boldsymbol{x}) + \sum_{i=1}^{m} \mu_j g_j(\boldsymbol{x})$$

The (Lagrange) dual function is

$$\phi(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in D} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in D} \left(f(\boldsymbol{x}) + \sum_{i=1}^{k} \lambda_i h_i(\boldsymbol{x}) + \sum_{j=1}^{m} \mu_j g_j(\boldsymbol{x}) \right)$$

where $D = \text{dom} f \cap (\bigcap_{i=1}^k \text{dom} h_i) \cap (\bigcap_{j=1}^m \text{dom} g_j)$ is the domain of the problem. We will downplay the role of D and focus on the case $D = \mathbb{R}^n$.

Given $A \in \mathbb{R}^{k \times n}$,

$$\min_{x} \quad \frac{f(x) = \|x\|^2 = x^T x}{\text{s.t.}}$$
s.t. $Ax = b$

$$x \ge 0$$

The Lagrangian is

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \boldsymbol{x}^T \boldsymbol{x} + \boldsymbol{\lambda}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \boldsymbol{\mu}^T \boldsymbol{x}$$

Since $\mathcal{L}(x, \lambda, \mu)$ is convex in x, its minimum satisifies

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\lambda} - \boldsymbol{\mu} = \mathbf{0} \implies \mathbf{x} = \frac{1}{2} (\boldsymbol{\mu} - \mathbf{A}^T \boldsymbol{\lambda})$$

The dual function is

$$\phi(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathcal{L}\left(\frac{1}{2}(\boldsymbol{\mu} - \boldsymbol{A}^T\boldsymbol{\lambda}), \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = -\frac{1}{4}\|\boldsymbol{\mu} - \boldsymbol{A}^T\boldsymbol{\lambda}\|^2 - \boldsymbol{b}^T\boldsymbol{\lambda}$$

Given $A \in \mathbb{R}^{k \times n}$,

$$\min_{\mathbf{x}} f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$$

s.t. $A\mathbf{x} = \mathbf{b}$

The Lagrangian is

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \boldsymbol{x}^T \boldsymbol{x} + \boldsymbol{\lambda}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$

Since $\mathcal{L}(x, \lambda)$ is convex in x, its minimum satisifies

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0} \implies \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \boldsymbol{\lambda}$$

The dual function is

$$\phi(\lambda) = \mathcal{L}\left(-\frac{1}{2}\boldsymbol{A}^T\boldsymbol{\lambda}, \boldsymbol{\lambda}\right) = -\frac{1}{4}\boldsymbol{\lambda}^T\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{\lambda} - \boldsymbol{b}^T\boldsymbol{\lambda} = -\frac{1}{4}\|\boldsymbol{A}^T\boldsymbol{\lambda}\|^2 - \boldsymbol{b}^T\boldsymbol{\lambda}$$

4

Lower bound for optimal value

For any λ and any $\mu \geq 0$, the optimal value f^* of (P) is bounded by

$$f^* \ge \phi(\lambda, \mu)$$

Proof. Let $X = \{x : h_i(x) = 0, \forall i; g_i(x) \le 0, \forall j\}$ be the feasible set.

- If $X = \emptyset$, then $f^* = +\infty$, trivially true.
- If $X \neq \emptyset$, for $\mu \geq 0$ and $x \in X$,

$$f(\mathbf{x}) \ge f(\mathbf{x}) + \sum_{i=1}^k \lambda_i \underbrace{h_i(\mathbf{x})}_{=\mathbf{0}} + \sum_{j=1}^m \underbrace{\mu_j g_j(\mathbf{x})}_{\leq \mathbf{0}} = \mathcal{L}(\mathbf{x}, \lambda, \mu)$$

Minimizing over x,

$$f^* = \inf_{\mathbf{x} \in X} f(\mathbf{x}) \ge \inf_{\mathbf{x}} f(\mathbf{x}) \ge \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda, \mu) = \phi(\lambda, \mu)$$

Concavity of dual function

The dual function is always concave, whether the primal problem (P) is convex or not.

Proof. Note $\mathcal{L}(x, \lambda, \mu)$ is affine in (λ, μ) . Thus $\phi(\lambda, \mu) = \inf_x \mathcal{L}(x, \lambda, \mu)$ is the pointwise infimum of a family of affine functions indexed by x, and hence concave. (Recall the pointwise supremum of convex functions is convex).

$$\phi(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in D} \left(f(\boldsymbol{x}) + \sum_{i=1}^k \lambda_i h_i(\boldsymbol{x}) + \sum_{j=1}^m \mu_j g_j(\boldsymbol{x}) \right)$$

$$= -\sup_{\boldsymbol{x} \in D} \left(-f(\boldsymbol{x}) - \sum_{i=1}^k \lambda_i h_i(\boldsymbol{x}) - \sum_{j=1}^m \mu_j g_j(\boldsymbol{x}) \right)$$
pointwise supremum of convex (affine) functions in $(\boldsymbol{\lambda}, \boldsymbol{\mu})$

Example. $\phi(\lambda, \mu) = -\frac{1}{4} \|\mu - A^T \lambda\|^2 - b^T \lambda$ is concave.

Lagrange dual problem

To find the best lower bound given by the dual function

$$f^* \ge \phi(\lambda, \mu)$$

solve the (Lagrange) dual problem associated with the primal problem (P),

The dual problem (D) is always convex, whether or not (P) is convex.

$$(\lambda, \mu)$$
 is dual feasible if $\mu \ge 0$ and $\phi(\lambda, \mu) > -\infty$.

Note. The domain of a convex function f is $\mathrm{dom} f = \{x: f(x) < +\infty\}$, while the domain of a concave function f is $\mathrm{dom} f = \{x: f(x) > -\infty\}$. Thus the condition $\phi(\lambda, \mu) > -\infty$ just means $(\lambda, \mu) \in \mathrm{dom}\,\phi$.

Recall the dual problem of the following LP

$$\min_{x} f(x) = c^{T}x$$
s.t. $Ax = b$

$$Gx \ge h$$

is

$$\max_{oldsymbol{\lambda}, oldsymbol{\mu}} \quad \phi(oldsymbol{\lambda}, oldsymbol{\mu}) = egin{cases} oldsymbol{\lambda}^T oldsymbol{b} + oldsymbol{\mu}^T oldsymbol{h}, & ext{if } A^T oldsymbol{\lambda} + oldsymbol{G}^T oldsymbol{\mu} = oldsymbol{c} \ -\infty, & ext{otherwise} \end{cases}$$

s.t. $\mu \geq 0$

 (λ, μ) is dual feasible if $\mu \ge 0$ and $A^T \lambda + G^T \mu = c$, which just means it is feasible for the dual LP,

$$\begin{aligned} \max_{\pmb{\lambda},\pmb{\mu}} \quad & \psi(\pmb{\lambda},\pmb{\mu}) = \pmb{\lambda}^T \pmb{b} + \pmb{\mu}^T \pmb{h} \\ \text{s.t.} \quad & \pmb{A}^T \pmb{\lambda} + \pmb{G}^T \pmb{\mu} = \pmb{c} \\ & \pmb{\mu} > \pmb{0} \end{aligned}$$

R

Recall the dual problem of the following problem

$$\min_{\mathbf{x}} \quad f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$$

s.t. $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

is

$$\begin{aligned} \max_{\pmb{\lambda},\pmb{\mu}} \quad \phi(\pmb{\lambda},\pmb{\mu}) &= -\frac{1}{4}\|\pmb{\mu} - \pmb{A}^T \pmb{\lambda}\|^2 - \pmb{b}^T \pmb{\lambda} \\ \text{s.t.} \quad \pmb{\mu} &\geq \pmb{0} \end{aligned}$$

 (λ, μ) is dual feasible if $\mu \geq 0$, as there is no implicit constraint in ϕ .

Outline

Dual function and dual problem

Weak and strong duality

Slater's condition

KKT conditions revisited

Weak and strong duality

Denote by f^* and ϕ^* the primal and dual optimal values, i.e.

$$f^* = \inf_{\mathbf{x} \in X} f(\mathbf{x}), \qquad \phi^* = \sup_{\lambda, \mu: \mu \ge 0} \phi(\lambda, \mu)$$

Weak duality: $f^* \ge \phi^*$

• always holds.

Proof. Recall $f^* \geq \phi(\lambda, \mu)$ for any λ and any $\mu \geq 0$. Weak duality follows by maximizing over λ and $\mu \geq 0$.

• $f^* - \phi^*$ is called the (optimal) duality gap of the problem.

Strong duality: $f^* = \phi^*$

- does not hold in general.
- typically holds for convex problems under various conditions known as constraint qualifications, e.g. Slater's condition.
- may also hold for nonconvex problems.
- can solve the dual problem instead if it is easier than the primal.

Duality gap

Given primal feasible x and dual feasible (λ, μ) , the difference

$$f(\mathbf{x}) - \phi(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

is called the duality gap associated with x and (λ, μ) .

Note

$$\phi(\lambda, \mu) \le \phi^* \le f^* \le f(x)$$

If the duality gap is zero, i.e. $f(x)=\phi(\lambda,\mu)$, then all inequalities become equalities, so x is primal optimal, and (λ,μ) is dual optimal.

If the gap $f(x)-\phi(\lambda,\mu)\leq\epsilon$, then the dual solution (λ,μ) serves as a proof or certificate that x is ϵ -suboptimal,

$$f(\mathbf{x}) - f^* \le f(\mathbf{x}) - \phi(\lambda, \mu) \le \epsilon$$

When strong duality holds, this can serve as a stopping criterion in an iterative algorithm, i.e. stop when $f(\mathbf{x}) - \phi(\lambda, \mu) \leq \epsilon$ for some (λ, μ) .

$$\min_{x \in \mathbb{R}} f(x) = x^2$$

s.t. $x \le a$

The dual function is

$$\phi(\mu) = \inf_{x} [x^2 + \mu(x - a)] = -\frac{\mu^2}{4} - a\mu$$

The dual problem is

$$\max_{\mu \in \mathbb{R}} \quad \phi(\mu) = -\frac{\mu^2}{4} - a\mu$$
 s.t. $\mu > 0$

The primal and dual optimal values are

1. If
$$a \ge 0$$
, $f^* = f(0) = \phi^* = \phi(0) = 0$

2. If
$$a \le 0$$
, $f^* = f(a) = \phi^* = \phi(-2a) = a^2$

Strong duality holds in both cases.

Consider

$$\min_{x \in \mathbb{R}} f(x) = x^3$$
s.t. $x > 0$

The optimal value is $f^* = f(0) = 0$.

The dual function is

$$\phi(\mu) = \inf_{x} [x^3 - \mu x] = -\infty$$

so the dual optimal value is

$$\phi^* = \sup_{\mu \ge 0} \phi(\mu) = -\infty$$

The duality gap is infinite. In particular, strong duality does not hold.

Consider

$$\min_{x \in \mathbb{R}} f(x) = \begin{cases} -x^2 - x + \frac{3}{4}, & |x| \le \frac{1}{2} \\ x^2 - x + \frac{1}{4}, & |x| \ge \frac{1}{2} \end{cases}$$
s.t. $x \le 0$

The primal optimal value is $f^* = f(0) = \frac{3}{4}$.

The dual function is

$$\phi(\mu) = \inf_{x} [f(x) + \mu x] = \begin{cases} \frac{1 - |\mu - 1|}{2}, & |\mu - 1| \le 1\\ \frac{1 - (\mu - 1)^2}{4}, & |\mu - 1| \ge 1 \end{cases}$$

The dual optimal value is $\phi^* = \phi(1) = \frac{1}{2}$.

The duality gap is $f^* - \phi^* = \frac{1}{4}$.

Example (cont'd)

To compute the dual function, note

$$\mathcal{L}(x,\mu) = f(x) + \mu x = \begin{cases} -x^2 + (\mu - 1)x + \frac{3}{4}, & |x| \le \frac{1}{2} \\ x^2 + (\mu - 1)x + \frac{1}{4}, & |x| > \frac{1}{2} \end{cases}$$

Since $y = -x^2 + (\mu - 1)x + \frac{3}{4}$ is a parabola opening down,

$$\phi_1(\mu) = \inf_{|x| \le \frac{1}{2}} \mathcal{L}(x,\mu) = \min\left\{\mathcal{L}(\frac{1}{2},\mu), \mathcal{L}(-\frac{1}{2},\mu)\right\} = \frac{1 - |\mu - 1|}{2}$$

Since $y = x^2 + (\mu - 1)x + \frac{1}{4}$ is a parabola opening up,

$$\phi_2(\mu) = \inf_{|x| \ge \frac{1}{2}} \mathcal{L}(x,\mu) = \begin{cases} \mathcal{L}(\frac{1-\mu}{2},\mu) = \frac{1-(\mu-1)^2}{4}, & |\mu-1| \ge 1\\ \min\left\{\mathcal{L}(\frac{1}{2},\mu), \mathcal{L}(-\frac{1}{2},\mu)\right\} = \frac{1-|\mu-1|}{2}, & |\mu-1| \le 1 \end{cases}$$

Thus

$$\phi(\mu) = \min\{\phi_1(\mu), \phi_2(\mu)\} = \phi_2(\mu)$$

Example (cont'd)

By definition of dual function,

$$\phi(\mu) = \inf_{\mathbf{x}} [f(\mathbf{x}) + \mu \mathbf{x}] \le f(\mathbf{x}) + \mu \mathbf{x}$$

Rearranging,

$$\ell(x) \triangleq -\mu x + \phi(\mu) \leq f(x)$$

Note $\ell(x)$ is a line with slope $-\mu$ and intercept $\phi(\mu)$ that supports $\operatorname{epi} f$.

The dual optimal value ϕ^* is the largest intercept of such lines. We can see pictorially there is a gap.

This also give us intuition about why strong duality may hold for nonconvex problem, and why it usually holds for convex problems.

$$\min_{x \in \mathbb{R}} f(x) = \begin{cases} -\sqrt{x}, & x > 0 \\ 1 & x = 0 \\ +\infty, & x < 0 \end{cases}$$
s.t. $x \le 0$

The primal optimal value is $f^* = f(0) = 1$.

The dual function is

$$\phi(\mu) = \inf_{x} [f(x) + \mu x] = \begin{cases} -\frac{1}{4\mu}, & \mu > 0 \\ -\infty, & \mu \le 0 \end{cases}$$

The dual optimal value is $\phi^* = 0$, which is not attainable.

This is a convex problem with nonzero duality gap $f^* - \phi^* = 1$, a nontypical case.

$$\min_{x \in \mathbb{R}} f(x) = \begin{cases} -\sqrt{x}, & x > 0 \\ 1 & x = 0 \\ +\infty, & x < 0 \end{cases}$$
s.t. $x \le a$

where a > 0.

The primal optimal value is $f^* = f(a) = -\sqrt{a}$.

The dual function is

$$\phi(\mu) = \inf_{x} [f(x) + \mu(x - a)] = \begin{cases} -\frac{1}{4\mu} - a\mu, & \mu > 0 \\ -\infty, & \mu \le 0 \end{cases}$$

The dual optimal value is $\phi^* = \phi(\frac{1}{2\sqrt{a}}) = -\sqrt{a}$

Strong duality holds in this case.

Outline

Dual function and dual problem

Weak and strong duality

Slater's condition

KKT conditions revisited

Slater's condition for convex problems

Consider a convex problem,

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $g_j(\mathbf{x}) \le 0, j = 1, 2, \dots, m$

$$h(\mathbf{x}) = A\mathbf{x} - b = \mathbf{0}$$
(CP)

with domain $D = \text{dom} f \cap (\bigcap_{i=1}^m \text{dom } g_i)$.

Slater's condition. The above problem is strictly feasible, i.e.

$$\exists x \in \text{int } D^1$$
 s. t. $g_j(x) < 0 \text{ for } j = 1, 2, \dots, m, \quad Ax = b$

Refined Slater's condition. If some g_j are affine, the requirement $g_j(x) < 0$ can be relaxed to feasibility $g_j(x) \le 0$ for those g_j .

 $^{^{1}}$ int D stands for the interior of D. $x \in \operatorname{int} D$ if there exists $\delta > 0$ s.t. $B(x, \delta) \subset D$. Again we focus on the case $D = \mathbb{R}^{n}$, so the requirement $x \in \operatorname{int} D$ is always satisfied. 21

Slater's Theorem

Slater's Theorem. Strong duality holds for (CP) under (refined) Slater's condition. Furthermore, if $\phi^* > -\infty$, it is attained by some (λ^*, μ^*) .

Proof idea. Consider the case with only one inequality constraint g. Let

$$C = \{(u,t) : \exists \mathbf{x} \in D \text{ s.t. } g(\mathbf{x}) \leq u, f(\mathbf{x}) \leq t\}$$

C is convex and has a supporting hyperplane P at $(0,f^*)\in\partial C$,

$$\mu u + \alpha t \ge \alpha f^*, \quad \forall (u, t) \in C$$

Letting $u, t \to +\infty$ shows $\mu \ge 0$, $\alpha \ge 0$. By Slater's condition, $\exists x_0 \in D$ s.t. $g(x_0) < 0$, so P is non-vertical, i.e. $\alpha \ne 0$. Since $(g(x), f(x)) \in C$,

$$f^* \le \mu^* g(\mathbf{x}) + f(\mathbf{x}) = \mathcal{L}(\mathbf{x}, \mu^*), \text{ where } \mu^* = \frac{\mu}{\alpha} \ge 0$$

Minimizing over $x \in D$, $f^* \le \phi(\mu^*) \le \phi^*$. Weak duality then implies $f^* = \phi(\mu^*) = \phi^*$. The condition $x_0 \in \operatorname{int} D$ will be used to deal with h.

Proof

If $f^*=-\infty$, then $\phi^*=f^*=-\infty$ by weak duality. Assume $f^*>-\infty$. Since (CP) is strictly feasible by Slater's condition, $f^*<+\infty$. Also assume $A\in\mathbb{R}^{k\times n}$ has $\mathrm{rank}\,A=k$, by removing redundant constraints. Now let

$$C = \{(\boldsymbol{u}, \boldsymbol{v}, t) : \exists \boldsymbol{x} \in D \text{ s.t. } \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{u}, \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{v}, f(\boldsymbol{x}) \leq t\}$$

- 1. C is convex. The proof is similar to that on slide 7 of $\S 4$ part 2.
- **2**. $C \neq \emptyset$ and $(\mathbf{0}, \mathbf{0}, f^*) \in \partial C$.
 - 2.1 Note $(\mathbf{0}, \mathbf{0}, t) \in C$ iff $\exists x \in D$ s.t. $g(x) \leq \mathbf{0}$, $h(x) = \mathbf{0}$, $f(x) \leq t$, i.e. iff $\exists x \in X$ s.t. $f(x) \leq t$. In particular, $(\mathbf{0}, \mathbf{0}, f(x)) \in C$ for $x \in X$.
 - 2.2 Since $f^* = \inf_{x \in X} f(x)$, there exists a sequence $\{x_i\} \subset X$ s.t. $f(x_i) \to f^*$. Since $C \ni (\mathbf{0}, \mathbf{0}, f(x_i)) \to (\mathbf{0}, \mathbf{0}, f^*)$, we have $(\mathbf{0}, \mathbf{0}, f^*) \in \overline{C}$.
 - **2.3** $(0,0,t) \notin C$ for any $t < f^*$. Thus $(0,0,f^*) \notin \text{int } C$ and $(0,0,f^*) \in \partial C$.
- 3. There exists a supporting hyperplane at $(\mathbf{0}, \mathbf{0}, f^*) \in \partial C$, i.e. there exists $(\boldsymbol{\mu}, \boldsymbol{\lambda}, \alpha) \neq \mathbf{0}$ s.t. for all $\forall (\boldsymbol{u}, \boldsymbol{v}, t) \in C$,

$$(\boldsymbol{\mu}, \boldsymbol{\lambda}, \alpha) \cdot (\boldsymbol{u}, \boldsymbol{v}, t) = \boldsymbol{\mu}^T \boldsymbol{u} + \boldsymbol{\lambda}^T \boldsymbol{v} + \alpha t \ge (\boldsymbol{\mu}, \boldsymbol{\lambda}, \alpha) \cdot (\boldsymbol{0}, \boldsymbol{0}, f^*) = \alpha f^*$$

Proof (cont'd)

- 4. Since u, t can be arbitrarily large for $(u, v, t) \in C$, letting $u, t \to \infty$ yields $\mu \ge 0$, $\alpha \ge 0$.
- 5. Since $(g(x), h(x), f(x)) \in C$,

$$\mu^T g(x) + \lambda^T h(x) + \alpha f(x) \ge \alpha f^*, \quad \forall x \in D$$

6. If $\alpha \neq 0$, then

$$f^* \leq f(\mathbf{x}) + (\boldsymbol{\lambda}^*)^T \boldsymbol{h}(\mathbf{x}) + (\boldsymbol{\mu}^*)^T \boldsymbol{g}(\mathbf{x}) = \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

where $\mu^* = \mu/\alpha \ge 0$ and $\lambda^* = \lambda/\alpha$. Minimizing over x,

$$f^* \le \phi(\lambda^*, \mu^*) \le \phi^*$$

Weak duality then implies

$$f^* = \phi(\lambda^*, \mu^*) = \phi^*$$

i.e. strong duality holds, and the dual optimal is attained.

Proof (cont'd)

- 7. Now we show Slater's condition implies $\alpha \neq 0$. Suppose $\alpha = 0$.
 - 7.1 By 5,

$$\mu^T g(x) + \lambda^T h(x) \ge 0, \quad \forall x \in D$$

7.2 Let x_0 satisfy Slater's condition, i.e. $x_0 \in \text{int } D$, $h(x_0) = 0$, and $g(x_0) < 0$. Since $\mu \ge 0$,

$$\underbrace{\boldsymbol{\mu}^{T}\boldsymbol{g}(\boldsymbol{x}_{0})}_{\leq 0} + \boldsymbol{\lambda}^{T}\underbrace{\boldsymbol{h}(\boldsymbol{x}_{0})}_{=0} \geq 0 \implies \boldsymbol{\mu} = \mathbf{0}$$

7.3 By 7.1 and 7.2,

$$\lambda^T h(x) \ge 0, \quad \forall x \in D$$

7.4 Since $x_0 \in \text{int } D$, there exists $\delta > 0$ s.t. $x_0 + z \in D$ for all $z \in B(\mathbf{0}, \delta)$. Recalling h(x) = Ax - b and $h(x_0) = \mathbf{0}$, we have

$$\lambda^T A z = \lambda^T h(x_0 + z) \ge 0, \quad \forall z \in B(0, \delta) \implies A^T \lambda = 0$$

7.5 Since A has full row rank, $\lambda = 0$. Thus $(\mu, \lambda, \alpha) = 0$, contradicting $(\mu, \lambda, \alpha) \neq 0$ given by 3.

$$\min_{x \in \mathbb{R}} f(x) = \begin{cases} -\sqrt{x}, & x > 0\\ 1 & x = 0\\ +\infty, & x < 0 \end{cases}$$

s.t.
$$x \le a$$

is a convex problem with domain $D = [0, \infty)$. Note int $D = (0, \infty)$.

- If a > 0, Slater's condition is satisfied, e.g. $\frac{a}{2} \in \operatorname{int} D$ and $\frac{a}{2} < a$, so strong duality must hold.
- If a = 0, no point in int D is feasible. Slater's Theorem is not applicable², and it turns out that strong duality does not hold.

a > 0 $(0, f^*)$

²Slater's condition is only a sufficient condition for strong duality. It is not necessary.

Example: Strong duality for LP

- Essentially, dual of dual is primal.
- By refined Slater's condition, strong duality holds if either the primal or the dual is feasible.
- When either f^* or ϕ^* is finite, then $f^* = \phi^*$ and they are both attained.

Example: Strong duality for LP (cont'd)

There are four possibilities

- 1. Primal feasible, dual feasible, $-\infty < \phi^* = f^* < +\infty$
- 2. Primal feasible, dual infeasible, $f^* = \phi^* = -\infty$

min
$$x_1 - 2x_2$$

s.t. $x_1 - x_2 = -1$
 $x_1, x_2 \ge 0$
max λ
s.t. $\lambda + \mu_1 = 1$
 $-\lambda + \mu_2 = -2$
 $\mu_1, \mu_2 \ge 0$

- 3. Primal infeasible, dual feasible, $f^* = \phi^* = +\infty$
- 4. Primal infeasible, dual infeasible, $f^* = +\infty$, $\phi^* = -\infty$

min
$$x_1 - 2x_2$$
 $max -\mu_1 + 2\mu_2$
s.t. $x_1 - x_2 \le 1$ $x_1 - \mu_2 = -2$ $x_1 + x_2 \le -2$ $x_1 - \mu_1 + \mu_2 = 1$ $x_1 - \mu_2 = -2$ $x_1 - \mu_1 + \mu_2 = 0$

Note. No duality gap in Case 2 and Case 3, but $f^* - \phi^*$ is undefined.

Example: Dual formulation of SVM

Recall the primal formulation of SVM,

$$\min_{\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{\xi}} \quad \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \mathbf{1}^{T} \boldsymbol{\xi}$$
s. t.
$$y_{i}(\boldsymbol{x}_{i}^{T} \boldsymbol{w} + b) \geq 1 - \xi_{i}, \quad i = 1, 2, \dots, n$$

$$\boldsymbol{\xi} \geq \mathbf{0}$$

where C > 0 is a hyperparameter, and 1 is the vector of all 1's.

- convex problem with affine constraints.
- always feasible. Indeed, given any w, b,

$$\xi_i = [1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)]^+, \quad i = 1, 2, \dots, n$$

yields a feasible solution (w, b, ξ) , where $(x)^+ = \max\{x, 0\}$.

- strong duality holds by refined Slater's condition
- can solve the dual problem instead, which turns out to be useful!

Example: Dual formulation of SVM (cont'd)

The Lagrangian is

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C\mathbf{1}^{T}\boldsymbol{\xi} + \sum_{i=1}^{n} \mu_{i} [1 - \xi_{i} - y_{i}(\mathbf{x}_{i}^{T}\mathbf{w} + b)] - \boldsymbol{\alpha}^{T}\boldsymbol{\xi}$$

$$= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - \left(\sum_{i=1}^{n} y_{i}\mu_{i}\mathbf{x}_{i}\right)^{T}\mathbf{w} - \boldsymbol{\mu}^{T}\mathbf{y}b + (C\mathbf{1} - \boldsymbol{\mu} - \boldsymbol{\alpha})^{T}\boldsymbol{\xi} + \mathbf{1}^{T}\boldsymbol{\mu}$$

Minimizing over w, b, ξ yields the dual function ($w = \sum_{i=1}^{n} y_i \mu_i x_i$),

$$\phi(\boldsymbol{\mu}, \boldsymbol{\alpha}) = \begin{cases} \mathbf{1}^T \boldsymbol{\mu} - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \mu_i \mu_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j, & \text{if } \boldsymbol{\mu}^T \mathbf{y} = 0, C\mathbf{1} - \boldsymbol{\mu} - \boldsymbol{\alpha} = \mathbf{0} \\ -\infty, & \text{otherwise} \end{cases}$$

The dual problem is

$$\label{eq:problem} \begin{aligned} \max_{\boldsymbol{\mu}, \boldsymbol{\alpha}} \quad & \phi(\boldsymbol{\mu}, \boldsymbol{\alpha}) \\ \text{s.t.} \quad & \boldsymbol{\mu} \geq \boldsymbol{0}, \ \boldsymbol{\alpha} \geq \boldsymbol{0} \end{aligned}$$

Example: Dual formulation of SVM (cont'd)

Making the constraints explicit, we obtain the equivalent problem,

$$\max_{\boldsymbol{\mu}, \boldsymbol{\alpha}} \quad \mathbf{1}^{T} \boldsymbol{\mu} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i} \mu_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}$$
s. t.
$$\boldsymbol{\mu}^{T} \boldsymbol{y} = 0$$

$$\boldsymbol{\mu} + \boldsymbol{\alpha} = C \mathbf{1}$$

$$\boldsymbol{\mu} \geq \mathbf{0}, \ \boldsymbol{\alpha} \geq \mathbf{0}$$

Eliminating α , we obtain the following dual formulation of SVM,

$$\max_{\boldsymbol{\mu}} \quad \mathbf{1}^{T} \boldsymbol{\mu} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i} \mu_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}$$
s. t.
$$\boldsymbol{\mu}^{T} \boldsymbol{y} = 0$$

$$\mathbf{0} \leq \boldsymbol{\mu} \leq C\mathbf{1}$$

Can be solved efficiently by an algorithm called Sequential Minimal Optimization (SMO). Also amenable to further generalization using the kernel trick that replaces $x_i^T x_j$ by a kernel (function) $K(x_i, x_j)$.

Outline

Dual function and dual problem

Weak and strong duality

Slater's condition

KKT conditions revisited

KKT conditions for convex problems

Consider a differentiable convex problem and its dual,

$$\begin{aligned} & \min_{x} \quad f(x) \\ & \text{s.t.} \quad g(x) \leq \mathbf{0} \\ & \quad h(x) = Ax - b = \mathbf{0} \end{aligned} \qquad \begin{aligned} & \max_{\lambda,\mu} \quad \phi(\lambda,\mu) = \inf_{x} \mathcal{L}(x,\lambda,\mu) \\ & \text{s.t.} \quad \mu \geq \mathbf{0} \end{aligned}$$

Theorem. KKT conditions hold at x^* with Lagrange multipliers λ^* , μ^* ,

- 1. (primal feasibility) $h(x^*) = 0$, $g(x^*) \le 0$
- 2. (dual feasibility) $\mu^* \geq 0$
- 3. (stationarity) $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \mathbf{0}$
- 4. (complementary slackness) $\mu_j^* g_j(x^*) = 0, j = 1, 2, \dots, m$

if and only if all the following conditions hold,

- 1. strong duality holds, i.e. $f^* = \phi^*$
- 2. x^* is a primal optimal solution, i.e. $f^* = f(x^*)$
- 3. (λ^*, μ^*) is a dual optimal solution, i.e. $\phi^* = \phi(\lambda^*, \mu^*)$

Proof of necessity

Assume KKT holds at x^* with Lagrange multipliers λ^* , μ^* .

- Since $\mu^* \ge 0$, $\mathcal{L}(x, \lambda^*, \mu^*) = f(x) + (\lambda^*)^T h(x) + (\mu^*)^T g(x)$ is convex in x.
- The stationarity condition $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \mathbf{0}$ implies x^* is a global minimum of $\mathcal{L}(x, \lambda^*, \mu^*)$, i.e.

$$\mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \phi(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

By primal feasibility and complementary slackness,

$$\mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = f(\boldsymbol{x}^*) + (\boldsymbol{\lambda}^*)^T \underbrace{\boldsymbol{h}(\boldsymbol{x}^*)}_{=\boldsymbol{0}} + \underbrace{(\boldsymbol{\mu}^*)^T \boldsymbol{g}(\boldsymbol{x}^*)}_{=\boldsymbol{0}} = f(\boldsymbol{x}^*)$$

SO

$$f(\mathbf{x}^*) = \phi(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

• By the discussion on slide 12, x^* is primal optimal, (λ^*, μ^*) is dual optimal and strong duality holds.

Proof of sufficiency

Assume strong duality holds, x^* is primal optimal, and (λ^*, μ^*) is dual optimal. We only need to show the stationarity condition and the complementary slackness condition.

$$\begin{split} f^* &= \phi^* & \text{(strong duality)} \\ &= \phi(\lambda^*, \mu^*) & \text{(dual optimality of } (\lambda^*, \mu^*)) \\ &= \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda^*, \mu^*) & \text{(definition of dual function)} \\ &\leq \mathcal{L}(\mathbf{x}^*, \lambda^*, \mu^*) & \text{(definition of infimum)} \\ &= f(\mathbf{x}^*) + (\lambda^*)^T \underbrace{\mathbf{h}(\mathbf{x}^*)}_{\geq \mathbf{0}} + (\underbrace{\mu^*})^T \underbrace{\mathbf{g}(\mathbf{x}^*)}_{\leq \mathbf{0}} \\ &\leq f(\mathbf{x}^*) & \text{(primal and dual feasibility of } \mathbf{x}^*, \mu^*) \\ &= f^* & \text{(primal optimality of } \mathbf{x}^*) \end{split}$$

So both inequality holds with equality. The first implies x^* is a minimum of $\mathcal{L}(x, \lambda^*, \mu^*)$, so $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \mathbf{0}$. The second implies $(\mu^*)^T \mathbf{g}(x^*) = \mathbf{0}$, so $\mu_j g_j(x^*) = 0$ for $j = 1, 2, \ldots, m$.