Network Technologies and Distributed Systems - ITC5

Fieldbusses I
Controller Area Network (CAN)
and introduction to RTaW-Sim

Networks Technologies and Distributed Systems (ITC5)

Teachers: Jimmy J. Nielsen and Hans-Peter Schwefel

Preliminary course plan (irregular times in calendar due to HPS' availability):

- JJN, "Fieldbusses I CAN"
- JJN, "Fieldbusses II FlexRay"
- 3. HPS, "Time, order and consistency part 1"
- 4. HPS, "Time, order and consistency part 2"
- 5. HPS, "Techniques used at Data Link layer: ARQ and MAC concepts"
- 6. HPS, "Multiple Access Control protocols"
- JJN, "Technology example: WLAN IEEE 802.11 standard"
- 8. JJN, "Technology example: Bluetooth"
- 9. HPS, "Introduction to fault tolerance"
- 10. HPS, "Introduction to security basic security mechanisms"

Evaluation:

At exam: 2 random questions drawn from post-lecture exercises. A list of questions will be compiled after last lecture.

Learning goals

- Become acquainted to Field busses
 - Know typical applications and requirements
- Be familiar with basic properties of CAN:
 - bus topologies and physical constraints (bit time)
 - frame layout and payload size
 - basic vs. extended frames
- Understand how CAN works with respect to:
 - Addressing method (meaning of frame ID)
 - Bus access mechanism (priority arbitration scheme)
- Become able to simulate CAN networks and understand results

- Fieldbusses
- CAN protocol
- Motivation for simulation of CAN networks
- Exercises for RTaW-Sim (group work)

Field bus application areas

Industrial communication

- Production engineering
 - Transmission of programs to computerized numerical control machines
 - Control of plants / automation of car manufacturing
- Process engineering
 - Control loops in a refinery
 - Control and regulation at aluminum smelting
- Power generation
 - Conventional thermal power station / nuclear power plant
 - Hydroelectric power plant / pumped-storage power station
- Automotive engineering
 - Distributed real time regulation in cars
 - Commercial vehicles in-car network
 - Control of special functions in work machines
- Building services engineering
 - Light control in residential houses
 - Air-conditioning technology in functional buildings

From: LOMI Universität Ulm, 2004. Lecture. Computer Networks. Fieldbus Systems. Prof. Dr. H. P. Großmann. Dipl.-Ing. Andreas Schmeiser

fast real-time systems with short deadlines and often high frequencies

In-car networks

- Today's cars have up to 50-80 ECUs that exchange messages on dedicated communication busses, e.g.:
 - LIN
 - CAN
 - FlexRay
 - Ethernet (soon)

- Cost savings during assembly of cabling
- Reduction of weight
- Increased reliability
- Decreased amount of maintenance
- Easier and more efficient fault diagnosis
- Increased flexibility of the plant
- Network provides easy access
 - Configurable sensors/actuators
 - Readings and status from sensors/actuators available from everywhere
- Redundancy

Fieldbus vs. OSI model

- Fieldbus systems often define several OSI layers in one standard
- Mostly layers 3 to 6 are nonexistent
 - Efficient, fast data processing
 - No routing
 - No fragmentation
- In the majority only layers 1-2 or layers 1-2-7 are defined

Controller Area Network (CAN) at a glance

- Number of nodes
 - unlimited (dependent on physical layer)
- Topology
 - line
 - star
- Length of bus lines (dependent on transfer rate)
 - 40 m at 1 Mbit/s (specified)
 - 620 m at 100 kbit/s
 - 10 km at 5 kbit/s
- Number of message identifiers
 - 2¹¹ (standard frame)
 - 2²⁹ (extended frame)
- Data bytes per message
 - 0...8

- Bus access
 - CSMA/CA through AMP (Carrier Sense Multiple Access/Collision Detection with Arbitration on Message Priority)
 - controlled by message priority
 - non-destructive bit-wise arbitration
- Bus throughput
 - max. 1 Mbit/s (total)
 - max. 577 kbit/s (information/payload)
- Real-time capability
 - guaranteed latency times for high priority messages (<134 µs @ 1 Mbit/s)
- Reliability / Safety
 - acknowledgment of message
 - error detection, handling and fault confinement

CAN OSI layers 1 and 2

LLC (Logical Link Control)

Acceptance Filtering Overload Notification Recovery Managment

MAC (Medium Access Control)

Data Encapsulation
/Decapsulation
Frame Coding (Stuffing, Destuffing)
Medium Access Management
Error Detection
Error Signalling
Acknowledgement
Serialization/Deserialization

PLS (Physical Signalling)

Bit Encoding/Decoding Bit Timing Synchronization

PMA (Physical Medium Attachment)

Driver/Receiver Characteristics

MDI (Medium Dependent Interface)

Connectors

OSI Layer 2 Data Link

OSI Layer 1 Physical

CAN bus

- Bus topology
- Broadcast transmissions
- a bit must "fill" whole bus
 - Limits cable length

Supported media

- All types of media that support dominant and recessive states can be used.
- Why not opposite?
 - Dominant always trumps recessive.

 The need for recessive/dominant will be clear soon.

CAN frame format

• How to extract and interpret e.g. 6 last bytes in practice?

CAN data rates

Payload length	Throughput data rate	
	Std. Frame	Ext. Frame
0	_ ·	_
1	72,1 kBit/s	61,1 kBit/s
2	144,1 kBit/s	122,1 kBit/s
3	216,2 kBit/s	183,2 kBit/s
4	288,3 kBit/s	244,3 kBit/s
5	360,4 kBit/s	305,3 kBit/s
6	432,4 kBit/s	366,4 kBit/s
7	504,5 kBit/s	427,5 kBit/s
8	576,6 kBit/s	488,5 kBit/s

10 min break

up next: CAN medium access using

CSMA/CD+AMP:

(Carrier Sense Multiple Access/Collision Detection with Arbitration on Message Priority)

CAN arbitration

- All nodes transmit on shared medium (bus)
- Collision detection + avoidance using CSMA/CD+AMP: (Carrier Sense Multiple Access/Collision Detection with Arbitration on Message Priority)

Extended Frame Format

From: LOMI Universität Ulm, 2004. Lecture. Computer Networks. Fieldbus Systems. Prof. Dr. H. P. Großmann. Dipl.-Ing. Andreas Schmeiser

Action

CAN arbitration

CAN arbitration: blackboard

Discussion

- What is the difference between:
 - CAN frame ID
 - Ethernet frame address

Solution:

- The CAN frame ID is the identifier of a message, any node can listen and receive any frame if it "subscribes" to the frame ID.
 - A node will typically use different message IDs for different connected sensors/actuators:
 - Example: window up/down, motor RPMs, speedometer, cabin light status, radio channel, ...
- The Ethernet frame address specifies the destination interface address (MAC address).
 - Only a single recipient or all, in case of broadcast.

CAN bit-stuffing

- High bit-variability gives slightly better efficiency.
- Stuff-bits allow re-synchronization to align bits

CAN bit timing

Parameter	Range	Remark	
BRP	[1 32]	defines the length of the time quantum tq	
Sync_Seg	1 t _q	fixed length, synchronization of bus input to system clock	
Prop_Seg	[1 8] t _q	compensates for the physical delay times	
Phase_Seg1	[1 8] t _q	may be lengthened temporarily by synchronization	
Phase_Seg2	[1 8] t _q	may be shortened temporarily by synchronization	
SJW	[1 4] t _q	may not be longer than either Phase Buffer Segment	
This table describes the minimum programmable ranges required by the CAN protocol			

Table 1: Parameters of the CAN Bit Time

From: http://www.can.bosch.de

CAN clock drift

- Applications on different ECUs are not necessarily clock-synchronized
 - (Even though CAN controllers are bit-synchronized)
 - For example two tasks with "same" cycle time:

- Time-varying offset → non-deterministic scheduling
- We need to be aware of actual worst case
- Easy to analyze for 2 ECUs, but whole system with gateways?

Field bus complexity

Today's CAN networks:

- Hundreds of messages
 - a message is an application input/output, usually 1 CAN ID.
- Multiple and mixed busses (CAN+FlexRay)
 - Connected using gateways (queuing in GWs)
- Latency requirements of down to 5 ms or less (end-to-end!)
- Both periodic and aperiodic traffic (event based)
- □ Target bus loads of 50% 60% and even more
- How to ensure requirements?

http://www.slideshare.net/fullscreen/REALTIMEATWORK/can-in-automotive-applications-a-look-forward/4

Verification of field bus configuration

- Ensure application real-time requirements are satisfied
 - Requirement example:
 - message arrival interval of 5ms ± 10% in 90% of cases.
 - at most 3 consecutive deadline misses.
- Methods:
 - Exhaustive worst-case search
 - Not feasible in complex networks
 - Network calculus (intro on 7th semester)
 - Analytic modeling of traffic flows
 - Takes link capacities and queuing bottlenecks into account
 - Simulation of realistic scenarios
 - Represents typical behavior
 - No guarantees for seeing worst case

Simulation of CAN networks

- Vector CANoe
 - Commercial product
 - Vector's tool chain is used by many car manufacturers for in-car network design.
 - Windows only, ~800MB
- RTaW-Sim
 - Free (starter edition)
 - Less polished than CANoe, but powerful analysis options.
 - Should work on both Windows and Linux, ~20MB
 - However, windows version seems to not work currently.

RTaW-Sim

- Download software and manual/tutorial from http://www.realtimeatwork.com/downloads/
- Group exercises learning by doing:
 - Follow the steps in the tutorial and answer the questions on the following slides.
 - Remember, these questions will be used for the exam, so answer them properly...
 - Send your answers in an email to me, 1 set of answers per group.
 - email: jjn@es.aau.dk
 - please use the subject: "ITC5 NTDS CAN lecture questions group 13grXXX", replacing XXX by your group id.

Questions (1) monobus

Section 2.2:

Use the figure on page 14 to argue: "How long time is it necessary to simulate this scenario to get a representative view of performance?"
Note: be aware that the x-axis shows frame ids, not time!

Section 2.3:

- Lower figure on page 21:
 - Explain why frame 37 is delayed.
 - If frame 37 has a max delay requirement of 4 ms (which is not fulfilled currently), which change could a network designer make to fulfill this?

Section 2.4:

- Note: on page 25, bottom, the text says "left-click on the BusSimulation field", however, I had to right-click and choose Set.
- Figure on page 28:
 - Why is the red curve above the green?
 - Why do frames with high IDs have higher response times than low ID frames?

Section 2.5:

Explain how the delay caused by a frame transmission error can be longer than the time it takes to retransmit the frame.

Questions (2) gateway

Section 2.6:

- Which delays can occur in a gatewayed system like this?
- Figure on page 44: What does the difference between the curves represent?
- Optional: Figure on page 45: Explain how the "Bus_1 local delays" (green) can be higher than "Bus_2 cluster delays" (purple)?