Домашняя работа к занятию 6

- 1.1-1.3 Решите уравнения, вводя параметр указанным образом.
- 1.1 xy'(xy'+1) = y; p = xy'.
- 1.2 $\ln y' + \ln y + yy' = x$; p = yy'.
- **1.3** $xy' \sqrt[3]{(y')^4} = y; p = y'$. Изобразите интегральные линии.
- 2.1 2.2 Решите уравнения, вводя параметр.
- **2.1** $(y')^{2/3} + y^{2/3} = 1$
- **2.2** $xy' + \sqrt{1 + (y')^2} = y$
- **3.1** Найдите кривую (не являющуюся прямой), отрезки касательных к которой, отсекаемые осями координат, имеют длину 1.
- **3.2** Задача о брахистохроне заключается в том, чтобы найти кривую, двигаясь по которой под действием силы тяжести, материальная точка скатится из точки A(0;0) в точку $B(x_1;y_1)$ за кратчайшее время. При решении этой задачи возникает дифференциальное уравнение $y(1+(y')^2)=C$. Решите это уравнение, вводя параметр.

Ответы и указания

1.1 Указание: полагая p = xy', запишем уравнение в виде $y = p^2 + p$. Дифференцируя это соотношение и учитывая, что dy = y' dx, получаем

систему
$$\begin{cases} dy = (2p+1)dp \\ dy = \frac{p}{x}dx \end{cases}$$
 Отсюда $\frac{p}{x}dx = (2p+1)dp$, что приводит к

уравнению $\frac{dx}{dx} = (2 + \frac{1}{p})dp$. Кроме того, p = 0 также является решением.

$$O$$
твет: общее решение $\begin{cases} x = Cpe^{2p} \\ y = p^2 + p \end{cases}$ и решение $y \equiv 0$.

1.2 Указание: полагая p=yy', запишем уравнение в виде $x=\ln p+p$. Дифференцируя это соотношение и учитывая, что $dy=y'\,dx$, получаем систему $\begin{cases} dx=(\frac{1}{p}+1)dp \\ ydy=pdx \end{cases}$ Отсюда ydy=(1+p)dp.

$$O$$
твет: общее решение
$$\begin{cases} x = \ln p + p \\ y^2 = 2p + p^2 + C \end{cases}$$

1.3 Указание: данное уравнение является уравнением Клеро. Полагая p=y', получаем $y=xp-p^{4/3}$. Далее, $pdx=xdp+pdx-\frac{4}{3}p^{1/3}dp$, откуда p=C или $x=\frac{4}{3}p^{1/3}$.

Oтвет: семейство прямых $y = Cx - C^{4/3}$ и их огибающая $y = \frac{27}{256}x^4$.

2.1 Указание: уравнение обращается в тождество, если ввести параметр следующим образом: $\begin{cases} y = \sin^3 p \\ y' = \cos^3 p \end{cases} \quad p \in [-\frac{\pi}{2}; \frac{\pi}{2}].$

Тогда
$$\begin{cases} dy = 3\sin^2 p\cos pdp & \text{что приводит к уравнению} \\ dy = \cos^3 pdx & 3\sin^2 p\cos pdp = \cos^3 pdx. \end{cases}$$

Отсюда либо $\cos p=0$, то есть $p=\pm\frac{\pi}{2}$ и соответственно $y\equiv\pm1$, либо $3\sin^2 pdp=\cos^2 pdx$. Разделяя переменные в этом уравнении, получаем $x=3\operatorname{tg} p-3p+C$.

Ответ: общее решение
$$\begin{cases} x=3\lg p-3p+C\\ y=\sin^3 p \end{cases},\, p\in[-\frac{\pi}{2};\frac{\pi}{2}],\, \text{и }y\equiv\pm1.$$

2.2 Указание: данное уравнение является уравнением Клеро. Однако

уравнение содержит выражение $\sqrt{1+(y')^2}$, поэтому введем параметр следующим образом: $y'=\operatorname{tg} p$, где $p\in(-\frac{\pi}{2};\frac{\pi}{2})$. Тогда $\sqrt{1+(y')^2}=\frac{1}{\cos p}$, и уравнение принимает вид $x\operatorname{tg} p+\frac{1}{\cos p}=y$.

Дифференцируя это соотношение и учитывая, что $dy=\lg p dx$, получаем уравнение $(x+\sin p)dp=0$. Отсюда p=C, что дает семейство прямых $y\cos C-x\sin C=1$, или $x=-\sin p$, что дает огибающую этого семейства $x^2+y^2=1$.

Oтвет: семейство прямых $y\cos C - x\sin C = 1$ и их огибающая — окружность $x^2 + y^2 = 1.$

3.1 Уравнение касательной, проходящей через точку $(x_0; y_0)$, имеет вид $y-y_0=y'(x_0)(x-x_0)$. Эта прямая пересекает оси координат в точках $a=x_0-\frac{y_0}{y'(x_0)}$ и $b=y_0-x_0y'(x_0)$.

По теореме Пифагора квадрат длины отсекаемого отрезка равен

$$a^{2} + b^{2} = \left(x_{0} - \frac{y_{0}}{y'(x_{0})}\right)^{2} + \left(y_{0} - x_{0}y'(x_{0})\right)^{2} = 1$$

В дальнейших преобразованиях индекс, обозначающий фиксированную точку, мы опустим, и получим уравнение

$$\left(\frac{y}{y'(x)} - x\right)^2 + \left(y - xy'(x)\right)^2 = 1$$

$$\left(1 + \frac{1}{(y')^2}\right) \left(y - xy'\right)^2 = 1$$

Введем параметр: $y' = \operatorname{tg} p$, где $p \in (-\frac{\pi}{2}; \frac{\pi}{2})$. Тогда $1 + \frac{1}{(y')^2} = \frac{1}{\sin^2 p}$, и уравнение принимает вид $y - x \operatorname{tg} p = \pm \sin p$.

Дифференцируя это соотношение и учитывая, что $dy = \operatorname{tg} p dx$, получаем уравнение $(x \pm \cos^3 p) dp = 0$. Отсюда p = C, что дает семейство

прямых $y=x \operatorname{tg} C \pm \sin C$, или $x=\mp \cos^3 p$, что дает огибающую этого семейства $\begin{cases} x=\mp \cos^3 p \\ y=\pm \sin^3 p \end{cases}$. Исключая из этой системы параметр p, получаем уравнение астроиды $x^{2/3}+y^{2/3}=1$.

Oтвет: искомая кривая — астроида $x^{2/3} + y^{2/3} = 1$.

3.2 Введем параметр: $y'=\cot\frac{p}{2}$, где $p\in(0;2\pi)$. Тогда уравнение принимает вид $y=C\sin^2\frac{p}{2}$. Дифференцируя это соотношение и учитывая, что $dy=\cot\frac{p}{2}dx$, получаем уравнение $C\sin\frac{p}{2}\cos\frac{p}{2}dp=\cot\frac{p}{2}dx$. Отсюда $C\sin^2\frac{p}{2}dp=dx$, следовательно $x=\frac{C}{2}(p-\sin p)+D$.

Таким образом, общее решение
$$\begin{cases} x = \frac{C}{2}(p - \sin p) + D \\ y = \frac{C}{2}(1 - \cos p) \end{cases}.$$

При p=0 получаем y=0. Для выполнения начальных условий $x=0,\,y=0$ нужно положить D=0.

$$O$$
твет: искомой кривой является циклоида
$$\begin{cases} x = \frac{C}{2}(p - \sin p) \\ y = \frac{C}{2}(1 - \cos p) \end{cases}.$$