Lecture 32: First-Order Wave Equations Contd..

Rajen Kumar Sinha

Department of Mathematics
IIT Guwahati

Recall the following example:

$$tU_x+U_t=2,\;\;t>0$$

$$U(x,0)=U_0\;\;\text{on the initial curve}\;\Gamma:\;t=0,\;0\leq x\leq 1.$$

The differential equation for the family of characteristics curve C is

$$\frac{dx}{t}=\frac{dt}{1}.$$

The family of characteristics curve is $x = \frac{1}{2}t^2 + C_1$, where C_1 is a constant. If the characteristics curve passes through $(x_R, 0)$, then $C_1 = x_R$. The equation of this particular characteristics is

$$t^2=2(x-x_R).$$

The solution along the characteristics curve is

$$\frac{dU}{2}=\frac{dt}{1} \implies U=2t+C_2,$$

where C_2 is constant along the particular characteristics.

If $U=U_R$ at $R(x_R,0) \implies C_2=U_R$. The solution along the characteristics $t^2=2(x-x_R)$ is $U=2t+U_R$.

If the charactreistics curve ${\it C}$ coincides with initial curve ${\it \Gamma}$. The solution is no longer unique.

Take $\Gamma = C$: $t^2 = 2x$. The solution is given by

$$U(x,t) = 2t + U_0 + K_1(t^2 - 2x)$$
, K_1 is an arbitrary constant.

Note that, along the characteristics curve $t^2=2x$, the solution is $U(x,t)=2t+U_0$. Away from the characteristic curve i.e., $t^2\neq 2x$, we have

$$U_t = 2 + 2K_1t; \quad U_x = -2K_1,$$

which implies U(x, t) satisfies $tU_x + U_t = 2$ and $U(x, 0) = U_0$. Since K_1 is arbitrary, we have infinitely many solutions.

Method of Charateristics: Consider

$$aU_x + bU_t = c$$
, $t > 0$
 $U(x, 0)$ is prescribed on the initial curve Γ ,

where the coefficients a, b and c may be functions of x, t and U.

Let C be the charateristics curve passes through the point $R(x_R, t_R)$. Let $P(x_P, t_P)$ be a point on C such that $x_P - x_R$ is very small. Assume that x_P is known. The method of charateristics (numerical approximation along the charateristics) proceeds as follows.

Step 1: Given x_P , compute the first approximation $t_P^{(1)}$ by solving

$$a_R(t_P^{(1)}-t_R)=b_R(x_P-x_R),$$

Next, compute the first approximation to the solution $u_P^{(1)}$ from

$$a_R(u_P^{(1)}-u_R)=c_R(x_P-x_R),$$

where $a_R = a(R)$, $b_R = b(R)$, $c_R = c(R)$.

Step 2: Improve the values of $t_P^{(1)}$ and $u_P^{(1)}$ by considering the mean values of the coefficients a, b and c along RP:

$$\frac{1}{2}(a_R + a_P^{(1)})(t_P^{(2)} - t_R) = \frac{1}{2}(b_R + b_P^{(1)})(x_P - x_R)$$

$$\frac{1}{2}(a_R + a_P^{(1)})(u_P^{(2)} - u_R) = \frac{1}{2}(c_R + c_P^{(1)})(x_P - x_R)$$

Determine $t_P^{(2)}$ and $u_P^{(2)}$ from the above equations and repeat the Step 2 until the successive iterates agree to a specified number of decimal places.

Propagation of Discontinuity: Consider the IVP:

$$\begin{aligned} &U_x + U_t = 1, & t > 0 \\ &U(x,0) = \left\{ \begin{array}{ll} f_1(x), & -\infty < x < x_P, \\ f_2(x), & x_P < x < \infty. \end{array} \right. \end{aligned}$$

The characteristic curves through the points $(x_P, 0)$, $(x_A, 0)$ and $(x_B, 0)$ are $t = x - x_P$, $t = x - x_A$ and $t = x - x_B$, respectively.

The solution along the charateriestic curve $t = x - x_B$ is $U(x, t) = t + f_2(x_B)$. Similarly, the solution along the charateriestic curve $t = x - x_A$ is $U(x, t) = t + f_1(x_A)$.

Let $U_L(x,t)$ be the solution to the left of the characteristic curve $t=x-x_P$, and let $U_R(x,t)$ be the solution to the right of the characteristic curve $t=x-x_P$.

For fixed t, $U_L(x,t) - U_R(x,t) = f_1(x_A) - f_2(x_B)$. Now, as $x_A, x_B \to x_P$, $U_L(x,t) - U_R(x,t) \neq 0$. This implies U is discontinuous along the curve $t = x - x_P$.

Thus, if the initial data is given to be discontinuous at a point $(x_P, 0)$, then the solution remains discontinuous along the characteristic curve $t = x - x_P$ through this point.

Exercise. For the IVP:

$$U_x + U_t = 1, \quad t > 0$$

$$U(x, 0) = \begin{cases} 0, & -\infty < x \le 0, \\ x, & 0 < x < \infty. \end{cases}$$

Show that the solution remains continuous along the charateristic through the point (0,0) but their partial derivatives are discontinuous for all t>0.

*** Ends ***