

计算机组成原理

■ 第二章 数据表示

2.3 数据校验的基本原理

02

2.3 数据校验的基本原理

1 数据校验的必要性

受元器件的质量、电路故障或噪音干扰等因素的影响,数据 在被处理、传输、存储的过程中可能出现错误;

若能设计硬件层面的错误检测机制,可以减少基于软件检错的代价(系统观)。

2

校验的基本原理

增加冗余码(校验位)

有效信息(k位) 校验信息(r位)

发送方编码

 $d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0 \\$

H ₇	H ₆	H_5	H_4	<i>H</i> ₃	H_2	H_1
D_4	D_3	D_2	P_3	D_1	P_2	P_1

接收方 校验

 $d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0 p$

3

码距的概念

同一编码中,任意两个合法编码之间不同二进数位数的最小值;

0011与0001的码距为1,一位错误时无法识别;

0000、0011、0101、0110、1001、1010、1100、1111等编码码 距为2。任何一位发生改变,如0000变成1000就从有效编码变成了 无效编码,容易检测到这种错误。

校验码中增加冗余项的目的就是为了增大码距。

4

码距与检错或纠错能力的关系

码距	检错	纠错
1	0	0
2	1	0
3	2	或 1
4	2	加 1
5	2	加 2
6	3	加 2
7	3	加 3

1) 码距≥e+1:

可检测e个错误

2) 码距≥2t+1:

可纠正t个错误

3)码距≥e+t+1:

可纠正t个错误,同时检测e个错误(e≥t)

5 选择码距要考虑的因素

有效信息(k位) 校验信息(r位)

码距越大, 抗干扰能力越强, 纠错能力越强, 数据冗余越大, 编码效率低, 编码电路也相对复杂;

选择码距必须考虑信息发生差错的概率和系统能容许的最小差错率。

