· Intersections of hyperplanes

 $\dim (L, nL_2) = n-2$ if $\vec{\alpha}_1 \& \vec{a}_2$ are linearly independent

two planes meet to form a line

a third plane with "linearly independent" direction intersects to give a point.

Think Let ai, az, am e R bi, bin eR

Define hyperplanes: $L_k = \{\vec{x} \in \mathbb{R}^n | \vec{\alpha}_k \cdot \vec{x} = b_k\}$

Suppose
$$\vec{a}_1$$
, \vec{a}_1 , \vec{a}_2 , \vec{a}_3 are linearly independent.

(i.e. $y_1\vec{a}_1 + y_2\vec{a}_2 + \cdots + y_m\vec{a}_m = \vec{0} \leftarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$)

implies $y_1 = y_2 = \cdots = y_m = 0$

Then the intersection LIALIA... OLm

is an (n-m)-dimensional subspace in IRn.

So, in \mathbb{R}^n , in linearly independent hyporplanes intersect to a point of this polyhedran there are n linearly independent hyporplanes out of those $\overline{\alpha_i}, \overline{x} = b_1, \dots, \overline{\alpha_i}, \overline{x} = b_1$ (Some hyperplanes do not pass through at that point) a polytope given by the set $\overline{x} = b_1, \dots, \overline{x} = b_1, \dots$