VGP332 – Artificial Intelligence

Instructor: Peter Chan

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

Assignment 4

• Questions?

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

Midterm

- No notes
- No computer
- No collaboration

• 1 hour

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

Stanley & Stella

http://www.youtube.com/watch?v=pliaEEUzl0U

- To get group behaviours, an agent needs to be able to perceive other agents
- Simplification = only consider agents in neighbourhood radius

More realistic = limited field of view

- Emergent behaviour
 - Individual agent follows specific behaviours
 - Collection of agents exhibit unexpected group behaviour
- Examples:
 - Flocking
 - Crickets' mating calls
 - Robot behaviour

- Separation
- Cohesion
- Alignment

 Maximize distance from other agents in neighbourhood

 Step 1: Determine vector away from neighbouring agent

• Step 2: Normalize vector

• Step 3: Divide by distance to neighbouring agent

• Step 4: Accumulate in agent's steering force

Step 5: Repeat for all neighbouring agents

Result = agents spread apart

Look at code!

Keep agent's heading aligned with neighbours

Step 1: Find heading of neighbouring agents

• Step 2: Compute average heading

 Step 3: Steering force = average heading - current heading

Result = agents align in same direction

Look at code!

Move agents towards neighbours' centre of mass

Step 1: Find positions of neighbouring agents

• Step 2: Compute average position

Step 3: Seek to average position

Result = agents stick together

Look at code!

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

Combining Group Behaviours

- Given 3 simple group behaviours for each agent:
 - Separation
 - Alignment
 - Cohesion
- We can create a wide variety of emergent collective behaviour
- Tweaking parameters of individual behaviours results in different group behaviour

Combining Group Behaviours

- Flocking
- Crowd path following
- Leader following
- Unaligned collision avoidance
- Queuing

http://www.red3d.com/cwr/steer/

Audience

http://vimeo.com/1842245

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

- Separation isn't enough to guarantee agent nonpenetration
- Add a non-penetration constraint

- Separation isn't enough to guarantee agent nonpenetration
- Add a non-penetration constraint

Check if distance between agents is less than the sum of their bounding circles' radii

- Separation isn't enough to guarantee agent nonpenetration
- Add a non-penetration constraint

If it is, move the entity away a distance equal to the amount of overlap

Look at code!

- Pros?
- Cons?

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview

Spatial Partitioning

- Many behaviours require testing against other agents
- Inefficient to test against every other agent
- E.g., for zero overlap:
 - If testing against 1 other agent takes 1 second
 - How much time for testing against 5 other agents?
 - How much time overall?

Spatial Partitioning

- Try to restrict the amount of testing needed
- One technique is spatial partitioning:
 - Partition the space up into cells
 - For a particular agent, determine which cell it is in
 - Only test other agents in that cell or in adjacent cells
- Other techniques:
 - BSP trees
 - Quad trees
 - Octrees
- Useful in many applications, not just A.I.

Spatial Partitioning

Try a demo

Agenda

- Assignment 4 Redux
- Midterm
- Group Behaviours
- Combining Group Behaviours
- Zero Overlap
- Spatial Partitioning
- Assignment 5 Overview