Les données numériques: toutes des nombres! Algorithme kNN

Diane Lingrand

2022 - 2023

Outline

1 kNN algorithm

2 Improvements

3 Experiments

Outline

1 kNN algorithm

2 Improvements

3 Experiments

Context of classification

- training dataset
 - data $x_i \in \mathbb{R}^d$ with 0 < i < n
 - labels or class index $y_i \in \mathbb{R}$ with $0 \le i \le n$
 - binary classification : positives and negatives
 - multi-class classification
- the goal is to be able to guess the class given the data
- metrics are computed on a test dataset

Introduction: 1NN

We observe that nearby objects belong to the same class.

Introduction: 1NN

This new object will be assign to the class of purple rounds.

Introduction: 1NN

This new object will be assign to the class of green stars.

- intuition : nearest point
- Voronoi tesselation
 - points at same distance from two different points

complex decision boundary

- 1NN is very sensitive to outliers
 - idea : use more than one nearest neighbor to make decision
 - use k nearest neighbors
- algorithm
 - compute distance to every training sample x_i
 - select k closest instances
 - output the class that is most frequent

• large value : everything classified as the most probable class

How to choose value k?

- large value : everything classified as the most probable class
- small value : highly variable, unstable decision boundaries

- large value : everything classified as the most probable class
- small value : highly variable, unstable decision boundaries

• small changes in the training set imply large changes in classification

D. Lingrand (SI3) données numériques 2022 - 2023

How to choose value k?

- large value : everything classified as the most probable class
- small value : highly variable, unstable decision boundaries
 - small changes in the training set imply large changes in classification
- affects smoothness of the boundary

- large value : everything classified as the most probable class
- small value : highly variable, unstable decision boundaries
 - small changes in the training set imply large changes in classification
- affects smoothness of the boundary
- select value of k using validation dataset
 - it is critical to use the validation dataset
 - if we use the training dataset, 1NN is the best (the nearest example is itself and has the correct class/value)
- we thus need training / validation / test dataset

Distance functions: key component

Euclidean :

$$d_2(i,j) = \sqrt{\sum_{k=1}^m |x_{ik} - x_{jk}|^2}$$

• nice properties : symmetric, isotropic, ...

Distance functions: key component

Minkowski (generalisation)

$$d_q(i,j) = \sqrt[q]{\sum_{k=1}^m |x_{ik} - x_{jk}|^q}$$

- Manhattan $(q = 1) : d_1(i,j) = \sum_{k=1}^{m} |x_{ik} x_{jk}|$
- Euclidean $(q=2): d_2(i,j) = \sqrt{\sum_{k=1}^{m} |x_{ik} x_{jk}|^2}$
- max distance $(q = \infty)$: $d_{\infty}(i,j) = \max_{k} |x_{ik} x_{jk}|$

Indetermination

- no majority class: equal number of neighbours for at least 2 classes
 - in case of binary classification : use odd k
 - random between the equal classes
 - prior : pick class with greater prior
 - nearest : let 1-NN decide

Variations

- Parzen windows
 - instead of choosing the number of neighbours, choose the size of the neighborhood
 - or use all the points with a decay function for distances (close to kernel that converts distances to numbers)

kNN pros and cons

- assumption : nearby (defined by distance fn) regions of space concern the same class
- almost no learning (except k)
- sensitive to class outliers
- sensitive to lots of irrelevant attributes
- computationnally expensive :
 - space : need to store all training samples
 - time : need to compute distances to all training samples
 - expensive at testing, no training time (which is bad)

19 / 30

Outline

1 kNN algorithm

2 Improvements

3 Experiments

Reducing time

- time : O(nd) where n is the nb of samples and d the number of features
- reduce *d* (feature selection)
- reduce n:
 - idea : quickly find m << n potential near neighbors
 - compare only to those and pick k nearest neighbors O(md) time
 - Kd tree : low dim, real valued data
 - $O(dlog_2(n))$, only if d << n, can miss neighbors
 - others methods we won't study in this class :
 - LSH (locality-sensitive hashing) for high dimensions
 - inverted lists
 - ball trees
 - ...

Kd-trees (Friedman et al 1977)

- k corresponds to the dimension of the data (d in this course)
- kd-trees are binary trees
- designed to handle spatial data in a simple way

Kd-tree: construction

Repeat :

- Pick random dimension
- Find median element
- Split data

Kd-tree: Nearest Neighbor

- Example : find NNs for new point (7,4)
 - Find region containing (7,4)
 - Find kNN amoung all the points in this region

Outline

1 kNN algorithm

2 Improvements

3 Experiments

- Many implementations are available :
 - scikit-learn library
 - scipy library
- But today, you will write YOUR implementation, in python
 - brute force (original kNN), Euclidean distance
 - kd-tree

Brute force implementation

start with a simple dataset

- k in k-NN is a variable
- start be searching for the class of one single new point

Brute force implementation

start with a simple dataset

- k in k-NN is a variable
- start be searching for the class of one single new point
 - list of k neighbors
 - vote for majority class
 - decide what to do in case of ambiguity

Brute force implementation (2)

- start with a simple dataset
 - k in k-NN is a variable
 - start be searching for the class of one single new point
 - then predit class for a set of new points
 - varying k

Brute force implementation (3)

• test on a more complex synthetic dataset

Experimentations

- Classification of 3 classes 'cat', 'dog' and 'bird' from the Speech Commands Dataset
 - 200 sounds per class for training, 200 other sounds per class for testing

