# Master Thesis: Security in Automobiles: Vulnerability and Protection (OBD-II Access Control)

Michiel Willems, 06/12/17



### **Table of Contents**

- > Introduction
- > Background
  - >> OBD-II Protocol
  - >> CAN Protocol
- Security Issues
- OBD-II Access Control
- Planning next three months



- Modern vehicle is a "Computer on Wheels".
  - » Over 100M lines of code deployed over as many as 70 ECU's.
  - >> Networking protocols to facilitate internal communications (e.g. CAN).
  - » Increasing connectability (Bluetooth, Wifi, etc).

Lee Pike, Jamey Sharp, Mark Tullsen, Patrick C. Hickey and James Bielman. 2015. Securing the automobile: A comprehensive approach.

Dan Klinedinst, Christopher King. 2016
On Board Diagnostics: Risks and Vulnerabilities of the Connected Vehicle





Aastha Yadav, Gaurav Bose, Radhika Bhange, Karan Kapoor, N.Ch.S.N Iyengar, Ronnie D. Caytiles. 2016. Security, Vulnerability and Protection of Vehicular On-board Diagnostics



Goal of thesis: Implement defence against one specific form of access: <u>The OBDII-port</u>.

> How?

>> Role Based Access Control.



### OBD-II Protocol

- On Board Diagnostics Protocol.
  - >> Allows access to vehicle subsystems via data link connector.
  - >> Introduces parameter ID's (PID) to request data from ECU's.
  - >> PID specifications are manufacturer and model specific.
  - >> Works with multiple signalling protocols, but CAN mostly used.







Vehicle Network





KULEUVEN DISTRINET





» Scan Tools.













### **CAN**

- Controller Area Network.
  - >> Bus allowing communications between ECU's inside the vehicle.
  - » Message Based Protocol.
  - >> Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
  - » Not only communications protocol implemented in vehicles (cf LIN, MOST) but most common.





Vehicle Network



### 'CAN, by design, offers no protection from manipulation' (Miller, 2013), (Koscher, 2010)

- No source address => No certainty about origin.
- > Broadcast nature => Information Disclosure.
- > Prioritized ID's => Denial of Service.
- No support for encryption or authentication.



- Potential hacking results.
  - >> Vehicle Theft.
  - » Changing Emission information ("Dieselgate").
  - » Reduce odometer value.
  - » Change recorded data after crash.
  - **>>**

Stephanie Bayer, Thomas Enderle, Dennis Kengo Oka , Marko Wolf .

Security Crash Test – Practical Security Evaluations of Automotive Onboard IT Components



## Proposed Solution: OBD-II Role Based Access Control

### **OBD-II Security**

- > Proposed solution: Role Based Access Control.
- Every role determines what kind of access is permitted.
- For example:
  - » Repair shop => Read diagnostics information only.
  - ›› Official dealership => Diagnostics + ability to fix/test faulty ECU's.
  - » Police => Check integrity of vehicle network.



### **OBD-II Security**

- Central gateway (CGW).
  - >> Acts as router for all subnetworks + gate for all incoming data.
- Perfect place to implement access control solution.







Vehicle Network



#### Future work

- Implementation:
  - » Microcontroller with CAN controller (AT90CAN128).
  - >> CAN Transceiver.
  - >> OBD-II connector.
- Demo:

» CAN testbench designed at KuLeuven for testing VulCAN.







Jo Van Bulck, Jan Tobias Muhlberg, and Frank Piessens December 2017

### Planning Next Three Months

### **Planning**

- December:
  - >> Get Familiar with Microcontroller software development.
  - >> Write December paper/poster.
- January & February:
  - » Implement a simple CAN compliant device.
  - » Start Implementing rudimentary access control.



### Questions?

### **CAN Protocol**

### CAN

- Controller Area Network.
  - » Bus allowing communications between ECU's inside the vehicle.
  - » Message Based Protocol.
  - >> Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
  - » Not only communications protocol implemented in vehicles (cf LIN, MOST) but most common.



### **CAN Frame**

| Name     | SOF | ID | RTR | IDE | r0 | DLC | Data | CRC | CRCd | ACK | EOF |
|----------|-----|----|-----|-----|----|-----|------|-----|------|-----|-----|
| No. Bits | 1   | 11 | 1   | 1   | 1  | 4   | 64   | 15  | 1    | 2   | 7   |

### Identity Field

- » Used to identify each ECU in the vehicle.
- » Also specifies a priority (Lowest ID = highest priority).
- >> Bitwise contention resolution (1 = Recessive & 0 = Dominant).



















### **CAN Frame**

| Name     | SOF | ID | RTR | IDE | r0 | DLC | Data | CRC | CRCd | ACK | EOF |
|----------|-----|----|-----|-----|----|-----|------|-----|------|-----|-----|
| No. Bits | 1   | 11 | 1   | 1   | 1  | 4   | 64   | 15  | 1    | 2   | 7   |

#### Data Field

- » Carries the payload.
- >> Length is 64 so only 8 bytes of data in each message.







J1962 Type B



#### **DLC Pinout**

- 1. Manufacturers
- 2. Bus Positive Line
- 3. Ford DCL Chrysler CCD
- 4. Chassis Ground
- 5. Signal Ground

#### 6. CAN High

- 7. K Line
- 8. Manufacturers
- 9. Manufacturers
- 10. Bus Negative
- 11. Ford DCL Chrysler CCD
- 12. Manufacturers
- 13. Manufacturers

#### 14. CAN Low

- 15. L Line
- 16. Battery Positve



- Parameter ID's (PID)
  - » Codes to request data from a vehicle.
  - >> Typical Use (with scan tool connected to DLC):
    - 1. Technician enters PID on the scan tool.
    - 2. PID is sent to the CAN bus (accessed via the DLC).
    - 3. Some ECU recognises the PID and reports the corresponding value on the bus.
    - 4. Scan tool reads response and displays it to the technician.



- Potential hacking results (safety critical).
  - » Driver Distractions (wipers etc.).
  - >> Engine shutoff.
  - » Steering changes.
  - **>>**



### Physical Access

- Impossible to completely deny physical access.
- Solutions rely on reducing potential harm of unauthorized access:
  - » Seed-key mechanism
  - >> Two-way authentication between ECU's.
  - >> Timer method.
  - » Intrusion detection system.
  - » Honeypot.
  - » VulCAN.





### Bluetooth

- Standard Bluetooth security not sufficient.
- Large protocol stack, so susceptible to multiple attacks:
  - >> Cipher attacks, Bluejacking, Backdoor attack, etc.
- Solutions should apply to the Bluetooth implementation used inside the vehicle.

### Remote Keyless Entry

- Most cars today use RF-based remote keyless entry (RKE)
- radio transmitter sends encrypted data containing identifying information.
- The ECU can determine if the key is valid and lock, unlock,
  - and start the vehicle



### Tire Pressure Monitoring System

- Each tire has pressure sensor.
- Transmits real time data to an ECU.
- Radio signal can be blocked/mimicked.
  - >> Solution: ?



### Distributed Software

### Secure Software & Systems