G. Parmeggiani

Algebra e matematica discreta, a.a. 2020/2021,

Scuola di Scienze - Corso di laurea:

Informatica

Svolgimento degli esercizi di integrazione agli Esercizi per casa 1

 $\boxed{\mathbf{1}}$ Per ciascuno dei seguenti numeri complessi

$$z_1 = i$$
, $z_2 = -3i$, $z_3 = 1 - 2i$ e $z_4 = 5 + 3i$

- (a) si calcoli il modulo;
- (b) si calcoli il coniugato;
- (c) si scriva l'inverso in forma algebrica.
- (a) Il modulo:

$$\begin{aligned} |z_1| &= |i| = \sqrt{0^2 + 1^2} = \sqrt{1} = 1, \\ |z_2| &= |-3i| = \sqrt{0^2 + (-3)^2} = \sqrt{9} = 3, \\ |z_3| &= |1 - 2i| = \sqrt{1^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5}, \\ |z_4| &= |5 + 3i| = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34}. \end{aligned}$$

(b) Il coniugato:

$$\begin{split} \overline{z}_1 &= -i, \\ \overline{z}_2 &= 3i, \\ \overline{z}_3 &= 1 + 2i, \\ \overline{z}_4 &= 5 - 3i. \end{split}$$

(c) L'inverso in forma algebrica:

Siano
$$w_1=z_1^{-1}, w_2=z_2^{-1}, w_3=z_3^{-1}$$
 e $w_4=z_4^{-1}$. Allora
$$w_1=\frac{1}{z_1}=\frac{1}{i}=\frac{1}{i}\cdot\frac{\overline{i}}{\overline{i}}=\frac{1}{i}\cdot\frac{(-i)}{(-i)}=\frac{-i}{-i^2}=\frac{-i}{1}=-i$$

è la forma algebrica di w_1 : $a_1 = 0$ e $b_1 = -1$ sono la parte reale e la parte immaginaria di w_1 ;

$$w_2 = \frac{1}{z_2} = \frac{1}{-3i} = \frac{1}{-3i} \cdot \frac{\overline{-3i}}{\overline{-3i}} = \frac{1}{-3i} \cdot \frac{3i}{3i} = \frac{3i}{-9i^2} = \frac{3i}{9} = \frac{1}{3}i$$

è la forma algebrica di w_2 : $a_2 = 0$ e $b_2 = 1/3$ sono la parte reale e la parte immaginaria di w_2 ;

$$w_3 = \frac{1}{z_3} = \frac{1}{1-2i} = \frac{1}{1-2i} \cdot \frac{\overline{1-2i}}{\overline{1-2i}} = \frac{1}{1-2i} \cdot \frac{1+2i}{1+2i} = \frac{1+2i}{1^2-(2i)^2} = \frac{1+2i}{1^2-4i^2} = \frac{1+2i}{1+4} = \frac{1}{5} + \frac{2}{5}i$$

è la forma algebrica di w_3 : $a_3 = 1/5$ e $b_3 = 2/5$ sono la parte reale e la parte immaginaria di w_3 ;

$$w_4 = \frac{1}{z_4} = \frac{1}{5+3i} = \frac{1}{5+3i} \cdot \frac{\overline{5+3i}}{\overline{5+3i}} = \frac{1}{5+3i} \cdot \frac{5-3i}{5-3i} = \frac{5-3i}{5^2-(3i)^2} = \frac{5-3i}{5^2-9i^2} = \frac{5-3i}{25+9} = \frac{5}{34} - \frac{3}{34}i = \frac{5-3i}{5^2-3i} = \frac{5-3i}{5^2-3i$$

è la forma algebrica di w_4 : $a_4 = 5/34$ e $b_4 = -3/34$ sono la parte reale e la parte immaginaria di w_4 .

2 Quali sono i numeri complessi z tali che $z = -\overline{z}$?

Scrivendo $z\in\mathbb{C}$ in forma algebrica, si ha z=a+ib con $a,b\in\mathbb{R}$. Il coniugato \overline{z} di z è $\overline{z}=a-ib$, e $-\overline{z}=-a+ib$. Poichè

$$a + ib = -a + ib \iff a = -a \iff a = 0,$$

si ottiene che

$$z = -\overline{z} \iff z = ib, \text{ con } b \in \mathbb{R},$$

ossia z è l'opposto del suo coniugato se e solo se z è un numero immaginario puro.