

CHAPITRE 2: INTERPOLATION POLYNOMIALE ET APPROXIMATION

Méthode d'interpolation de Lagrange

Soient n+1 points de coordonnées $(x_i,y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, pour tout $0 \le i,j \le n$ tels que $i \ne j$.

Soient n+1 points de coordonnées $(x_i,y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, pour tout $0 \le i,j \le n$ tels que $i \ne j$.

ullet Il existe un unique polynôme d'interpolation de Lagrange $P_n \in \mathbb{R}_n[X]$ vérifiant

$$P_n(x_i) = y_i, \quad \forall i \in \{0, \cdots, n\}.$$

Soient n+1 points de coordonnées $(x_i,y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, pour tout $0 \le i,j \le n$ tels que $i \ne j$.

ullet Il existe un unique polynôme d'interpolation de Lagrange $P_n \in \mathbb{R}_n[X]$ vérifiant

$$P_n(x_i) = y_i, \quad \forall i \in \{0, \cdots, n\}.$$

• Le polynôme P_n s'exprime comme suit:

$$P_n(x) = \sum_{i=0}^n y_i L_i(x), \quad x \in \mathbb{R}$$

où
$$L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Soient n+1 points de coordonnées $(x_i,y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, pour tout $0 \le i,j \le n$ tels que $i \ne j$.

ullet Il existe un unique polynôme d'interpolation de Lagrange $P_n \in \mathbb{R}_n[X]$ vérifiant

$$P_n(x_i) = y_i, \quad \forall i \in \{0, \cdots, n\}.$$

• Le polynôme P_n s'exprime comme suit:

$$P_n(x) = \sum_{i=0}^n y_i L_i(x), \quad x \in \mathbb{R}$$

où
$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

• La famille de polynômes de Lagrange $\{L_0, L_1, \dots, L_n\}$ associés aux points $(x_i, y_i), i \in \{0, \dots, n\}$, est une base de l'espace vectoriel $\mathbb{R}_n[X]$.

Exercice

Soit f une fonction qui vérifie le tableau suivant:

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

- ① Justifier l'existence d'un unique polynôme d'interpolation des points d'abscisses x_0, x_1 et x_2 .
- ② Déterminer la base de Lagrange pour l'interpolation des points d'abscisses x_0, x_1 et x_2 .
- ③ Déterminer le polynôme de Lagrange qui interpole f aux points d'abscisses x_0 , x_1 et x_2 .
- En déduire une approximation de f(0.5).

① On a $x_0 \neq x_1$, $x_1 \neq x_2$ et $x_0 \neq x_2$, alors il existe un unique polynôme d'interpolation.

- ① On a $x_0 \neq x_1$, $x_1 \neq x_2$ et $x_0 \neq x_2$, alors il existe un unique polynôme d'interpolation.
- ② Les éléments de la base de Lagrange L_0 , L_1 et L_2 associés respectivement à x_0 , x_1 et x_2 sont définies comme suit:

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{x(x-1)}{(-1)(-1-1)} = \frac{x(x-1)}{2}$$

- ① On a $x_0 \neq x_1$, $x_1 \neq x_2$ et $x_0 \neq x_2$, alors il existe un unique polynôme d'interpolation.
- ② Les éléments de la base de Lagrange L_0 , L_1 et L_2 associés respectivement à x_0 , x_1 et x_2 sont définies comme suit:

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{x(x-1)}{(-1)(-1-1)} = \frac{x(x-1)}{2}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-(-1))(x-1)}{(0-(-1))(0-1)} = \frac{(x+1)(x-1)}{-1}$$

- ① On a $x_0 \neq x_1$, $x_1 \neq x_2$ et $x_0 \neq x_2$, alors il existe un unique polynôme d'interpolation.
- ② Les éléments de la base de Lagrange L_0 , L_1 et L_2 associés respectivement à x_0 , x_1 et x_2 sont définies comme suit:

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{x(x-1)}{(-1)(-1-1)} = \frac{x(x-1)}{2}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-(-1))(x-1)}{(0-(-1))(0-1)} = \frac{(x+1)(x-1)}{-1}$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x+1)x}{(1-(-1))(1-0)} = \frac{(x+1)x}{2}.$$

3 Le polynôme de Lagrange qui interpole f aux points d'abscisses x_0,x_1 et x_2 est donné par:

$$P_{2}(x) = L_{0}(x)f(x_{0}) + L_{1}(x)f(x_{1}) + L_{2}(x)f(x_{2})$$

$$= \frac{x(x-1)}{2}f(x_{0}) + \frac{(x+1)(x-1)}{-1}f(x_{1}) + \frac{(x+1)x}{2}f(x_{2})$$

$$= 2\frac{x(x-1)}{2} - (x+1)(x-1) - \frac{(x+1)x}{2} = -\frac{1}{2}x^{2} - \frac{3}{2}x + 1.$$

3 Le polynôme de Lagrange qui interpole f aux points d'abscisses x_0,x_1 et x_2 est donné par:

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$= \frac{x(x-1)}{2}f(x_0) + \frac{(x+1)(x-1)}{-1}f(x_1) + \frac{(x+1)x}{2}f(x_2)$$

$$= 2\frac{x(x-1)}{2} - (x+1)(x-1) - \frac{(x+1)x}{2} = -\frac{1}{2}x^2 - \frac{3}{2}x + 1.$$

3 D'après ce qui précède,

$$f(0.5) \approx P_2(0.5) = 0.125.$$

Equipe AN Analyse Numérique ESPRIT

Exercice

Répondre aux questions de l'exemple introductif en utilisant la méthode d'interpolation de Lagrange.

Inconvénient majeur de la méthode d'interpolation de Lagrange

• Un inconvénient majeur de la méthode d'interpolation par les polynômes de Lagrange réside en l'ajout d'un point (x_{n+1},y_{n+1}) à l'ensemble de n points d'interpolation. Dans ce cas, il n'est numériquement pas évident de déduire P_{n+1} de P_n . Tous les calculs seront refaits de zéro.

Inconvénient majeur de la méthode d'interpolation de Lagrange

- Un inconvénient majeur de la méthode d'interpolation par les polynômes de Lagrange réside en l'ajout d'un point (x_{n+1}, y_{n+1}) à l'ensemble de n points d'interpolation. Dans ce cas, il n'est numériquement pas évident de déduire P_{n+1} de P_n . Tous les calculs seront refaits de zéro.
- Pour combler cette lacune, on pourra appliquer la méthode d'interpolation de Newton qui sera introduite ci-dessous.