Tarea:

Nombre: Diego Palacios

Generar dos numeros pseudoaleatorios(los datos), deben utilizar dos librerias diferentes(1-6), sumar estos numeros y generar la siguiente tabla

Suma Frecuencia Probabilidad

Metodo randint

metodo con 100 numeros randomicos

```
In [27]: from random import randint
    rango=100
a=[]
b=[]
suma=[]
for x in range(0,rango):
        a.append(randint(1,6))
        b.append(randint(1,6))
        suma.append(a[x]+b[x])
        #print(a[x],"+",b[x], "= ",suma[x])

print("suma \t Frecuencia \t probabilidad")
for x in range(2,13):
    frecuencia= suma.count(x)
    print(x ,"\t",frecuencia,"\t \t",frecuencia/rango)
```

suma	Frecuencia	probabilidad
2	1	0.01
3	4	0.04
4	6	0.06
5	11	0.11
6	9	0.09
7	21	0.21
8	17	0.17
9	11	0.11
10	14	0.14
11	4	0.04
12	2	0.02

con 1000 lanzamientos de dados

```
In [28]: from random import randint
    rango=1000
    a=[]
    b=[]
    suma=[]
    for x in range(0,rango):
        a.append(randint(1,6))
        b.append(randint(1,6))
        suma.append(a[x]+b[x])
        #print(a[x],"+",b[x],"=",suma[x])

print("suma \t Frecuencia \t probabilidad")
    for x in range(2,13):
        frecuencia = suma.count(x)
        print(x ,"\t",frecuencia,"\t \t",frecuencia/rango)
```

suma	Frecuencia	probabilidad
2	36	0.036
3	59	0.059
4	88	0.088
5	112	0.112
6	113	0.113
7	167	0.167
8	142	0.142
9	114	0.114
10	95	0.095
11	37	0.037
12	37	0.037

con 10,000 lanzamientos

```
In [29]: from random import randint
    rango=10000
a=[]
b=[]
suma=[]
for x in range(0,rango):
    a.append(randint(1,6))
    b.append(randint(1,6))
    suma.append(a[x]+b[x])
    #print(a[x],"+",b[x],"=",suma[x])

print("suma \t Frecuencia \t probabilidad")
for x in range(2,13):
    frecuencia= suma.count(x)
    print(x ,"\t",frecuencia,"\t \t",frecuencia/rango)
```

suma	Frecuencia	probabilidad
2	284	0.0284
3	569	0.0569
4	811	0.0811
5	1121	0.1121
6	1354	0.1354
7	1690	0.169
8	1401	0.1401
9	1089	0.1089
10	861	0.0861
11	541	0.0541
12	279	0.0279

Metodo Random Numpy

metodo con 100 numeros randomicos

```
In [21]: #pip install numpy
         import numpy as np
         rango=100
         a=[]
         b=[]
         suma=[]
         for x in range(0,rango):
             a.append(np.random.randint(1,7))
             b.append(np.random.randint(1,7))
             suma.append(a[x]+b[x])
             #print(a[x],"+",b[x], "= ",suma[x])
         print("numpy")
         print("suma \t Frecuencia \t probabilidad")
         for x in range(2,13):
             frecuencia= suma.count(x)
             print(x ,"\t",frecuencia,"\t \t",frecuencia/rango)
```

numpy		
suma	Frecuencia	probabilidad
2	6	0.06
3	6	0.06
4	10	0.1
5	9	0.09
6	13	0.13
7	9	0.09
8	22	0.22
9	12	0.12
10	6	0.06
11	5	0.05
12	2	0.02

metodo con 1000 metodos randomicos

```
In [18]: #pip install numpy
         import numpy as np
         rango=1000
         a=[]
         b=[]
         suma=[]
         for x in range(0,rango):
             a.append(np.random.randint(1,7))
             b.append(np.random.randint(1,7))
             suma.append(a[x]+b[x])
            # print(a[x],"+",b[x], "= ",suma[x])
         print("numpy")
         print("suma \t Frecuencia \t probabilidad")
         for x in range(2,13):
             frecuencia= suma.count(x)
             print(x ,"\t",frecuencia,"\t \t",frecuencia/rango)
```

numpy		
suma	Frecuencia	probabilidad
2	21	0.021
3	70	0.07
4	87	0.087
5	105	0.105
6	150	0.15
7	159	0.159
8	138	0.138
9	113	0.113
10	82	0.082
11	49	0.049
12	26	0.026

metodo con 10000 metoso randomico

```
In [6]:
        #pip install numpy
         import numpy as np
         rango=10000
         a=[]
         b=[]
         suma=[]
         for x in range(0,rango):
             a.append(np.random.randint(1,7))
             b.append(np.random.randint(1,7))
             suma.append(a[x]+b[x])
            #print(a[x], "+", b[x], "= ", suma[x])
         print("numpy")
         print("suma \t Frecuencia \t probabilidad")
         for x in range(2,13):
             frecuencia= suma.count(x)
             print(x ,"\t",frecuencia,"\t \t",frecuencia/rango)
```

numpy		
suma	Frecuencia	probabilidad
2	295	0.0295
3	541	0.0541
4	894	0.0894
5	1080	0.108
6	1344	0.1344
7	1678	0.1678
8	1399	0.1399
9	1128	0.1128
10	800	0.08
11	563	0.0563
12	278	0.0278

conclución

En esta tarea podemos observar al usaar dos librerias distintas la mayor mayor frecuencia se da en los numero intermedios comprendidos entre(5-9) en los dos casos se puede decir que usan un algoritmo similar que al generar los numeros randomicos la mayor coincidencia son los numeros intermedios en el rango