

Johnson Space Center Engineering Directorate
L-8: Entry, Descent, and Landing at Mars

Public Release Notice

This document has been reviewed for technical accuracy, business/management sensitivity, and export control compliance. It is suitable for public release without restrictions per NF1676 #_____.

Ron Sostaric November 2016

JSC Engineering: HSF Exploration Systems Development

- We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit
- We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030s.
 - Various Roadmaps define the needed technologies
 - We are attempting to define <u>our</u> activities and dependencies
- Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025
 - Develop and Mature the technologies and systems needed
 - Develop and Mature the personnel needed
- We need collaborators to make it happen, and we think they can benefit by working with us.

Boilerplate

EA Domain Implementation Plan Overview

JSC Engineering: HSF Exploration Systems Development

- Life Support
- Active Thermal Control
- EVA
- Habitation Systems

- Human System Interfaces
- Wireless & Communication Systems
- Command & Data Handling
- Radiation & EEE Parts

- Lightweight Habitable Spacecraft
- Entry, Descent, & Landing
- Autonomous Rendezvous & Docking
- Vehicle Environments

- Entry, Descent, & Landing
- Autonomous Rendezvous & Docking -
 - Deep Space GN&C

- Reliable Pyrotechnics -
- Integrated Propulsion, Power, & ISRU
 - Energy Storage & Distribution
 - Breakthrough Power & Propulsion
 - Crew Exercise -
 - Simulation -
 - Autonomy -
 - Software
 - **Robotics** -

Aeroscience and Flight Mechanics

- Autonomous Rendezvous & Docking
- Entry, Descent, & Landing
- Deep Space GN&C

The Problem

- Desire to land increasingly large cargo on Mars, and humans in the 2030's
- State of the art Mars landed mass is ~1 metric ton (Curiosity rover)
- Need to land significantly larger mass payloads to support human missions
- Need to land on Mars safely, accurately, and repeatedly for human campaigns

Entry, Descent, and Landing at Mars

- Develop a set of technologies to support human planetary landing:
 - Slowly
 - Entry decelerators
 - Accurately
 - Terrain Relative Navigation
 - Softly
 - Altimetry and velocimetry
 - Safely
 - Hazard Detection and Avoidance

ATMOSPHERE

[characteristics and approximate composition]

OVER 100 TIMES DENSER THAN MARS' ATMOSPHERE

Mach 0.15 "touchdown" (about 120 mph)

Mach 1.5

7 U.S. Mars Entry, Descent, and Landing Successes

Historical Entry Configurations for Mars Robotic Landings

Supersonic Disk-Gap-Band Parachute

Human Mission Payload Requirement (20 * Curiosity)

Landing Accuracy

Curiosity 12 x 4 mi ellipse

100 m (or better) accuracy is needed

Mars Entry, Descent, and Landing (EDL) Technologies

Entry Decelerators

Precision Landing and Hazard Avoidance

Mars Entry, Descent, and Landing (EDL) Technologies

Entry Decelerators

Precision Landing and Hazard Avoidance

Mid L/D Technology Roadmap and Major Risk Reduction Activities

Progression of GN&C Landing System Capabilities Controlled – Precise – Safe

Controlled Landing

- Minimize vertical descent rate and lateral velocity to ensure a soft (or controlled) touchdown
- No knowledge of global position "blind" landing

Precise landing – Terrain Relative Navigation (TRN)

- Global navigation through onboard matching of real-time terrain sensing data with a priori reconnaissance data
- Enables efficient maneuvering to minimize landing error and avoid large hazards identified in a priori analyses

Safe Landing – Hazard Detection & Avoidance (HDA)

- Real-time terrain sensing to identify sites safe from lander-sized hazards that are undetectable in a priori data
- Enables a hazard avoidance maneuver to the identified safe site
- Can be leveraged for subsequent Hazard Relative Navigation (HRN) similar to TRN

Portfolio of **PL&HA** Technologies

Controlled Landing (Soft Landing)

Velocity & Altitude Sensing

Navigation Doppler Lidar (NDL)

Measures velocity and range

Long-range Laser Altimeter (LAlt)

Measures range

Optical Velocimeter (code)

Estimates velocity with camera images & algorithms

Precise Landing

Terrain Relative Navigation (TRN)

Passive-Optical/Camera-Based

(requires lighted terrain: applicable to most missions)

Active/Lidar-based

Can utilize Laser Altimeter or other 3D Lidar. Operates in dark/shadowed or lighted terrain.

GN&C SubsystemSoftware

- Navigation techniques for ALHAT
- Guidance logic
- Autonomous Flight Manager

Safe Landing

Hazard Detection (HD) and Hazard Relative Nav (HRN)

Hazard Detection System (HDS)

Lidar used to create hazard map of landing area from multiple images

Compact HDS - Takes single image and finds safe sites

JSC Engineering: HSF Exploration Systems Development

- We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030s.
- Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025
- We need collaborators to make it happen, and we think they can benefit by working with us.
 - Pointer to Co-Dev Announcements
 - Pointer to intake site

Boilerplate

