Game of life [John Horton Conway (1970)]

Game of life: special dynamic structures

Gosper's glider gun creating gliders

[From Wikimedia, by Lucas Vieira]

CAs are beautiful

A mesoscopic model

From [Saito et al, PRE (2017)]

D3Q19

From [Owen et al, Advances in Physics: X (2023)]

Minimizing spurious flows

From [Saito et al, PRE (2017)]

Van Kármán vortex street

Satellite view of Jan Mayen and Rishiri islands with Von Kármán vortex street in clouds

From NASA

Simulation of Von Karman vortices with FHP-III model

LGA for immiscible fluids

From the team of D. Rothman (MIT)

LBE for interfacial flows

Oscillations of an initially elongated drop.

From [Saito et al, PRE (2017)]

Time history of the interfacial location of an oscillating droplet, under (a) high or (b) low surface tension.

LBE for interfacial flows

Real fluid

From [Saito et al, PRE (2017)]

Simulated fluid

LBE for interfacial flows

Microfluidic, Red blood cells

From [Dupin et al, PRE (2007)]

Commercial software for car industry

Commercialised by EXA Corporation.

Air flow around a vehicle.

Translation = protein synthesis from mRNA

Exclusion process

First introduced to model protein synthesis by ribosomes on mRNA templates:

Model from [MacDonald et al (1968)], Sketch by [Fernandes et al, Sci. Rep. (2017)]

Exclusion Processes

Periodic Boundary Conditions

Fundamental diagram

Open Boundary Conditions

Phase Space

Domain Wall Theory

Ising model

 $\alpha > \beta$

- microscopic state
 - macroscopic uniform domains
- Domains separated by domain walls, supposed of negligible thickness
- Detailed dynamics of the system ←→ Motion of the walls

Domain wall picture

Valid only in a region of the phase diagram:

Predicts correctly the density profile with the localization length.

[C. Appert-Rolland, M. Ebbinghaus, and L. Santen, Phys. Rep. 593, 1-59 (2015)]

Domain wall picture

There are many exact results for the stationary state of TASEP. So why is it interesting to have a phenomenological picture?

- Calculations are more easy and give a physical interpretation;
- Calculations can be extended to non-stationary states, to variants of the ASEP

[L. Santen et al, J. Stat. Phys. 106 (2002) p 187]

Updates

Cellular automaton = geometry + rules + update

- Continuous time (Gillespie algorithm).
- random sequential update
 - At each microtimestep, one particle is randomly chosen and updated with a rate dependent probability
 - close to a continuous time
 - ⇒ large fluctuations

Rescaling of time $\Longrightarrow p = 1$ without loss of generality

- parallel update
 - All particles are updated in parallel
 - State of a particle at time $t + \Delta t$ determined by the state of the system at time t
 - ightharpoonup road traffic (Δt = reaction time)
 - conflicts are possible (crossing, lane changing...).

 $p = 1 \Longrightarrow Deterministic TASEP$: all possible moves are accepted

Exclusion Processes

- ordered sequential update (forward, backward...)
- shuffle updates
 - Each particle is updated once per time step
 - random shuffle update [Wölki et al (2006); Smith & Wilson (2007) J. Phys. A]
 - The order of the updates is chosen randomly at each time step
 - frozen shuffle update [C. A-R, Cividini & Hilhorst, J. Stat. Mech. (2011)]
 - Particles are updated in a predefined order according to their phase in the stepping cycle.

- no conflicts, no large fluctuations
- proposed to model pedestrian traffic

Models for road traffic

Car-following models

acceleration = fonction (distance, velocity difference, ···)

Fluid-like models

Equations for the density ρ and mean velocity u of the vehicles

Cellular automata simulations

Road = divided into cells

Particle = vehicle

State = speed (between 0 and v_{MAX})

Evolution rules = acceleration and deceleration + propagation

- Pionnering work [Nagel & Schreckenberg (1992)]
- Model by [Knospe et al (2000)]
 - finite braking capacity
 - anticipation
 - slow-to-start rule -> metastability

Configuration at time t:

a) Acceleration:

b) Braking:

c) Randomization (p = 1/3):

d) Driving (= configuration at time t+1):

Lane changes

From [Barlovic et al (1999)]

Many other improvements → real life applications

Road traffic by cellular automata

Duisburg, Germany

Road traffic by cellular automata

Duisburg, Germany

From [Barlovic et al (1999)]

Online simulation - Interactive site

http://www.traffic.uni-duisburg.de/

Road traffic by cellular automata

Many improvements, real life applications

https://www.verkehr.nrw

Cellular automata

- can be used for realistic simulations
- can be used to understand a mechanism
 - Ex: Understanding the consequences of the VDR rule (Velocity Dependent Randomization)
 [Barlović et al, Eur. Phys. J. B5 793 (1998)].

Cellular automata

Cellular automata

Cellular automata with reaction time

Cellular automata with reaction time

Real data

[Kerner, PRL (1998)]

Simulation

Cellular automata with reaction time

Without reaction time

With reaction time

- Metastability
- Hysteresis

Local measurements by an inductive loop

50

density p (vehicle/km)

From [Neubert et al, PRE (1999)]

- stochasticity
- metastability

3000

2000

1000

flux j (vehicle/hour)

100

Local measurements by an inductive loop

From [Sugiyama et al, New J. Phys. (2008)]

- stochasticity
- metastability

Consequences of the VDR rule

From [Barlovic et al, (1998)]

VDR model for $\rho = 0.15$, p = 0.01, $p_0 = 0.5$, v_{max}

"The homogeneous initial state is not destroyed immediately".

"In the outflow regime of the jam the density is reduced compared to the average density".

[Ryohei Yamaoka et al]

Monomorphic ant species *Leptogenys processionalis* → Same body length

[John et al, PRL (2009)]

For the observed species, 1 bl (body length) = 18 mm. Observed trail section: length L = 17 bl.

[John et al, PRL (2009)]

Average velocity almost independent of density. No jammed phase.

[Schadschneider et al, 2003]

Variation of speed and flux with density

[Schadschneider et al (2003)]

cars

ants

Variation of speed and flux with density

[Schadschneider et al (2003)]

ants

ants

Clustering in ants model

[Schadschneider et al (2003)]

Clustering in ants model

[John et al, TGF2007] Platoons of ants (black) & traces of pheromone (purple grey)

Lane formation and optimized traffic flow in army ants

Lane formation and optimized traffic flow in army ants

Experimental observations

- red: ants returning to the nest
- black: outbound foraging ants

Lane formation and optimized traffic flow in army ants

Experimental observations

[Couzin et al (2003)]

- red: ants returning to the nest
- black: outbound foraging ants

$M_{-1,-1}$	$M_{-1,0}$	$M_{-1,1}$
$M_{0,-1}$	$M_{0,0}$	$M_{0,1}$
$M_{1,-1}$	$M_{1,0}$	$M_{1,1}$

[C. Burstedde et al, Physica A 295 (2001) 507-525]

- Discrete model
- Inspired by the pheromones left by ants
- Dynamical field: When a pedestrian leaves a cell (i,j)

the dynamic field is increased

$$d(i,j) = d(i,j) + 1$$

Diffusion of the field d

Decay of d with a certain rate

Static field s(i,j): path planning

Static floor field

Dynamic floor field

Bidirectional flow

[C. Burstedde et al, PED (2001)]

Bidirectional flow

[C. Burstedde et al, PED (2001)]

PBC; Random initial positions

[C. Burstedde et al, PED (2001)]

[C. Burstedde et al, PED (2001)]

Comparing mean evacuation times T and corresponding variances σ

$$\begin{array}{c|c} |\operatorname{hall} A|\operatorname{hall} B \\ \hline T & 560 & 363 \\ \sigma & 85 & 24 \end{array}$$

Cellular automata models for pedestrians

- Commercial software
 - Ex: PEDGO Software

