

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-202595

(43)Date of publication of application : 19.07.2002

(51)Int.Cl. G03F 7/029
G03F 7/00

(21)Application number : 2000-401467 (71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing : 28.12.2000 (72)Inventor : KUNIDA KAZUTO

(54) PHOTOPOLYMERIZABLE PLANOGRAPHIC PRINTING PLATE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a photopolymerizable planographic printing plate having high sensitivity, good handleability in a light room and good shelf stability.

SOLUTION: A photopolymerizable composition containing a halogen- containing photopolymerization initiator is dissolved in three or more solvents, applied on a base and dried at 120-170°C to form a photosensitive layer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-202595

(P2002-202595A)

(43)公開日 平成14年7月19日(2002.7.19)

(51)Int.Cl'	識別記号	F I	マーク(参考)
G 0 3 F 7/029 7/00	5 0 3	G 0 3 F 7/029 7/00	2 H 0 2 5 5 0 3 2 H 0 9 6

審査請求 未請求 請求項の数1 OL (全 74 頁)

(21)出願番号 特願2000-401467(P2000-401467)

(22)出願日 平成12年12月28日(2000.12.28)

(71)出願人 000005201

富士写真フィルム株式会社

神奈川県南足柄市中沼210番地

(72)発明者 園田 一人

静岡県榛原郡吉田町川尻4000番地 富士写
真フィルム株式会社内

(74)代理人 100105647

弁理士 小栗 昌平 (外4名)

F ターム(参考) 2H025 AA01 AA04 AA11 AB03 AC08

AD01 BC13 BC42 CA14 CA18

CA28 CA39 CA48 CC03 EA10

FA10

2H096 AA06 BA05 EA04 EA23

(54)【発明の名称】 光重合性平版印刷版

(57)【要約】

【課題】 高感度で、明室取り扱い性が良好で、さらに
は、保存安定性も良好な光重合性平版印刷版を提供す
る。

【解決手段】 支持体上に、ハロゲン原子含有光重合開
始剤を含有する光重合性組成物を3種以上の溶剤に溶解
して塗布した後、120℃～170℃で乾燥して感光層
を形成したことを特徴とする。

【特許請求の範囲】

【請求項1】 支持体上に、ハロゲン原子含有光重合開始剤を含有する光重合性組成物を3種以上の溶剤に溶解して塗布した後、120℃～170℃で乾燥して感光層を形成したことを特徴とする光重合性平版印刷版。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、光重合性平版印刷版に関し、詳細には、高感度で明室取り扱い性、保存安定性も良好な光重合性平版印刷版に関する。

【0002】

【従来の技術】感光性平版印刷版の分野において波長300nm～1200nmの紫外光、可視光、赤外光を放射する固体レーザ及び半導体レーザ、ガスレーザは高出力かつ小型のものが容易に入手できるようになっており、これらのレーザはコンピュータ等のデジタルデータから直接製版する際の記録光源として、非常に有用である。これら各種レーザ光に感応する感光性平版印刷版（以下単に記録材料ともいう）については種々研究されており、代表的なものとして、第一に、感光波長760nm以上の赤外線レーザで記録可能な材料としては米国特許第4708925号記載のポジ型記録材料、特開平8-276558号公報に記載されている酸触媒架橋型のネガ型記録材料等が、第二に、300nm～700nmの紫外光または可視光レーザ対応型の記録材料としては米国特許2850445号及び特公昭44-20189号公報に記載されているラジカル重合型のネガ型記録材料等が多数ある。

【0003】この中でもラジカル光重合系のものは高感度であり、コンピューターから各種レーザーにより、従来のリスフィルムを介さずに直接版上に画像様に露光するいわゆるダイレクト印刷版に有利である。既に上記ダイレクト印刷版の分野においては、488nm、532nmといった可視光レーザー光源と光重合系平版印刷版の組み合わせが実用化されているが、より高生産性の追求としての描画速度向上に対応すべく、さらなる高感度化が必要であるばかりでなく、作業性の点で暗室ではなく黄色灯や白色灯下での取り扱い性（明室化）の要求も高まっている。さらに、上記高感度化のために光重合開始剤あるいは光重合開始系の設計開発がなされており、高感度な光重合開始剤として注目されるのが、各種ハロゲン原子を含有する光重合開始剤である。このようなハロゲン原子を含有する光重合開始剤は可視光に吸収のないものが多く、これを含有する感光性組成物は、波長300nm～450nmの紫外一紫色レーザ及び800～1200nmの赤外レーザーといった露光方式との組み合わせにより、明室化も可能となってきている。

【0004】

【発明が解決しようとする課題】しかし、残念ながら、ハロゲン原子を含有する光重合開始剤は光重合性平版印

刷版（感材）の製造時の塗布工程での高温によりハロゲンラジカルを発生しやすく、熱による暗重合と考えられる全面硬化により現像不良となる、塗布乾燥カブリという現象を生じ易いため、沸点100℃以下の低沸点溶媒との組み合わせにより乾燥温度を低下させる必要性があった。しかし低沸点溶媒の場合、製造時の爆発による危険性や、乾燥が部分的におこる塗布ムラが発生しやすく安定製造が難しいだけでなく、高温による熱的平衡状態を経ていないため、保存時に変化する安定性の悪い感材となっていた。したがって、本発明は上記の問題点を克服し、高感度で、明室取り扱い性が良好で、さらには、保存安定性も良好な光重合性平版印刷版を提供しようとするものである。

【0005】

【課題を解決するための手段】本発明者らは鋭意検討した結果、ハロゲン原子含有光重合開始剤を用いた光重合性平版印刷版の感光層の形成において、特定の溶剤を用いることにより、上記目的を達成することを見だしした。即ち、本発明は、以下の構成を有する。

（1）支持体上に、ハロゲン原子含有光重合開始剤を含有する光重合性組成物を3種以上の溶剤に溶解して塗布した後、120℃～170℃で乾燥して感光層を形成したことを特徴とする光重合性平版印刷版。

（2）前記光重合性平版印刷版を、波長300nm～450nmのレーザーを用いて露光することを特徴とする平版印刷版の製版方法。

【0006】本発明の光重合性平版印刷版は、感光層を形成する際に、ハロゲン原子含有光重合開始剤を含有する光重合性組成物を、3種以上の混合溶剤に溶解して塗布することで、塗布乾燥カブリを生じずに、120℃以上の高温乾燥が可能になり、保存安定性についても向上させることができた。

【0007】

【発明の実施の形態】本発明の光重合性平版印刷版の感光層を形成するために用いられる光重合性組成物に含まれるハロゲン原子含有光重合開始剤（以下単に、光重合開始剤または開始剤ともいう）について説明する。

【0008】本発明における好ましい光重合開始剤としては（a）芳香族ケトン類、（b）芳香族オニウム塩化合物、（c）有機過酸化物、（d）チオ化合物、（e）ヘキサアリールビイミダゾール化合物、（f）ポレート化合物、（g）メタロセン化合物、（h）炭素ハロゲン結合を有する化合物等でハロゲン原子を含有するものが挙げられる。

【0009】（a）芳香族ケトン類の好ましい例としては、「RADIATION CURING IN POLYMERSCIENCE AND TECHNOLOGY」J.P.FOUASSIER J.F.RABEK (1993)、p77～117記載のベンゾフェノン骨格或いはチオキサントン骨格を有する化合物中で、例えば

【化1】

*族ケトン類の例としては、特公昭47-6416記載の
α-チオベンゾフェノン化合物、特公昭47-3981
号記載のベンゾインエーテル化合物の中で、例えば
【0012】

【化2】

【0011】等が挙げられる。より好ましい(a)芳香*

【0013】特公昭47-22326号記載のα-置換
ベンゾイン化合物中で、例えば

【0014】

【化3】

【0015】等を挙げることができる。また、別の例で
ある(b)芳香族オニウム塩としては、周期律表の第
V、VIおよびVII族の元素、具体的にはN、P、As、
Sb、Bi、O、S、Se、Te、またはIの芳香族オ
ニウム塩が含まれる。このような芳香族オニウム塩の例
としては、特公昭52-14277号、特公昭52-1
4278号、特公昭52-14279号に示されている
化合物を挙げることができる。具体的には、

【0016】

【化4】

20

※30

40

【0017】

【化5】

(4)

特開2002-202595

 BF_4^- PF_6^- BF_4^- SbF_6^- BF_4^- BF_4^-

10

 AsF_6^- PF_6^- BF_4^- BF_4^-

20

 BF_4^-

30

 BF_4^-

【0018】

【化6】

【0019】

【化7】

(5)

特開2002-202595

8

*【0020】を挙げることができる。さらに以下のジアゾニウム塩も挙げることができる。

【0021】

【化8】

10

*20

 PF_6^{\ominus} PF_6^{\ominus} BF_4^{\ominus} PF_6^{\ominus}

【0022】

【化9】

9

【0023】本発明に使用される光重合開始剤の他の例である(c)「有機過酸化物」としては分子中に酸素-酸素結合を1個以上有する有機化合物のほとんど全てが含まれるが、その中の例としては、2,4-ジクロロベンゾイルパーオキサイドがある。

【0024】本発明で使用される光重合開始剤としての(d)チオ化合物は、下記一般式(I)で示される。

【0025】

【化10】

30

【0026】(ここで、R²⁰はアルキル基、アリール基または置換アリール基を示し、R²¹は水素原子またはアルキル基を示す。また、R²⁰とR²¹は、互いに結合して酸素、硫黄および窒素原子から選ばれたヘテロ原子を含んでもよい5員ないし7員環を形成するのに必要な非金属原子群を示す。)

【0027】上記一般式(I)におけるアルキル基としては炭素原子数1~4個のものが好ましい。またアリール基としてはフェニル、ナフチルのような炭素原子数6~10個のものが好ましく、置換アリール基としては、上記のようなアリール基に塩素原子のようなハロゲン原子、メチル基のようなアルキル基、メトシキ基、エトキシ基のようなアルコキシ基で置換されたものが含まれる。R²¹は、好ましくは炭素原子数1~4個のアルキル基である。一般式(I)で示されるチオ化合物中の具体例としては、下記に示すような化合物が挙げられる。

【0028】

【表1】

40

50 【0033】

10

No.	R ²⁰	R ²¹
1	C ₆ H ₄ Cl	CH ₃
2	C ₆ H ₄ Cl	C ₄ H ₉

【0029】本発明に使用される光重合開始剤の他の例である(e)ヘキサアリールビイミダゾールとしては、特公昭45-37377号、特公昭44-86516号記載のロフィンダイマー類の中で、例えば2,2'-ビ

- 10 ス(o-クロロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール、2,2'-ビス(o-ブロモフェニル)-4,4',5,5'-テトラフェニルビイミダゾール、2,2'-ビス(o-p-ジクロロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール、2,2'-ビス(o-p-ジクロロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール、2,2'-ビス(o,p-ジクロロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール、2,2'-ビス(o,p-トリフルオロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール等が挙げられる。
- 20 【0030】本発明における光重合開始剤の他の例である(f)ボレート塩の例としては下記一般式([II])で表わされる化合物を挙げることができる。

【0031】

【化11】

【0032】(ここで、R²²、R²³、R²⁴およびR²⁵は互いに同一でも異なっていてもよく、各々置換もしくは非置換のアルキル基、置換もしくは非置換のアリール基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアルキニル基、又は置換もしくは非置換の複素環基を示し、R²²、R²³、R²⁴およびR²⁵はその2個以上の基が結合して環状構造を形成してもよい。ただし、R²²、R²³、R²⁴およびR²⁵のうち少なくとも1つは置換もしくは非置換のアルキル基である。Z⁺はアルカリ金属カチオンまたは第4級アンモニウムカチオンを示す)。上記R²²~R²⁵のアルキル基としては、直鎖、分枝、環状のものが含まれ、炭素原子数1~18のものが好ましい。具体的にはメチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル、オクチル、ステアリル、シクロブチル、シクロペンチル、シクロヘキシルなどが含まれる。また置換アルキル基としては、上記のようなアルキル基に、ハロゲン原子(例えば-C1、-Brなど)、シアノ基、ニトロ基、アリール基(好ましくはフェニル基)、ヒドロキシ基、

11

【化12】

【0034】(ここでR²⁶、R²⁷は独立して水素原子、炭素数1～14のアルキル基、又はアリール基を示す。)、-COOR²⁸(ここでR²⁸は水素原子、炭素数1～14のアルキル基、又はアリール基を示す。)、-OCOR²⁹又は-OR³⁰(ここでR²⁹、R³⁰は炭素数1～14のアルキル基、又はアリール基を示す。)を置換基として有するものが含まれる。上記R²²～R²⁵のアリール基としては、フェニル基、ナフチル基などの1～3環のアリール基が含まれ、置換アリール基としては、上記のようなアリール基に前述の置換アルキル基の置換基又は、炭素数1～14のアルキル基を有するものが含まれる。上記R²²～R²⁵のアルケニル基としては、炭素数2～18の直鎖、分枝、環状のものが含まれ、置換アルケニル基の置換基としては、前記の置換アルキル基の置換基として挙げたものが含まれる。上記R²²～R²⁵のアルキニル基としては、炭素数2～28の直鎖又は分枝のものが含まれ、置換アルキニル基の置換基としては、前記置換アルキル基の置換基として挙げたものが含まれる。また、上記R²²～R²⁵の複素環基としてはN、SおよびOの少なくとも1つを含む5員環以上、好ましくは5～7員環の複素環基が挙げられ、この複素環基には縮合環が含まれていてもよい。更に置換基として前述の置換アリール基の置換基として挙げたものを有していてもよい。一般式[II]で示される化合物例としては具体的には米国特許3,567,453号、同4,343,891号、ヨーロッパ特許109,772号、同109,773号に記載されている化合物および以下に示すものが挙げられる。

【0035】

【化13】

10

20

30

40

12

【0036】光重合開始剤の他の例である(g)メタロセン化合物の例としては、特開昭59-152396号、特開昭61-151197号、特開昭63-41484号、特開平2-249号、特開平2-4705号記載のチタノセン化合物ならびに、特開平1-304453号、特開平1-152109号記載の鉄-アレーン錯体を挙げることができる。

【0037】上記チタノセン化合物の具体例としては、ジーシクロペンタジエニル-Ti-ジークロライド、ジーシクロペンタジエニル-Ti-ビスフェニル、ジーシクロペンタジエニル-Ti-ビス-2, 3, 4, 5, 6-ペンタフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 3, 5, 6-テトラフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 4, 6-トリフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-2, 6-ジフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 4-ジフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2, 3, 4, 5, 6-ペンタフルオロフェニ-1-イル、ジメ

チルシクロペンタジエニル-Ti-ビス-2,3,5,6-テトラフルオロフェニ-1-イル、ジーメチルシリコペンタジエニル-Ti-ビス-2,4-ジフルオロフェニ-1-イル、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ビリ-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(メチルスルホンアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(N-ブチルビアロイル-アミノ)フェニル]チタン、

13

6-ジフルオロ-3-(N-エチルアセチルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-メチルアセチルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-エチルプロピオニルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-エチル-2, 2-ジメチルブタノイル)アミノ]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-エチル-2, 2-ジメチルブタノイル)アミノ]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-ペンチル-2, 2-ジメチルブタノイル)アミノ]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-ペンチル-2, 2-ジメチルブタノイル)アミノ]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-ヘキシル)-2, 2-ジメチルブタノイル]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-メチルブチリルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-メチルベンタノイルアミノ)フェニル]チタン、
【0039】ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-エチルシクロヘキシカルボニルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-エチルイソブチリルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-エチルアセチルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(2, 2, 5, 5-テトラメチル-1, 2, 5-アザジシロリジニ-1-イル)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(オクチルスルホニアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(4-トリルスルホニアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(4-ドデシルフェニルスルホニルアミド)フェニル]チタン、
【0040】ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(4-(1-ペンチルヘアクリル)フェニルスルホニルアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(エチルスルホニルアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(4-ブロモフェニル)-スルホニルアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(2-ナフチルスルホニルアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(ヘキサデシルスルホニルアミド)フェニル]チタン、ビス(シクロペン

14

タジエニル)ビス[2, 6-ジフルオロ-3-(N-メチル-4-ドデシルフェニル)スルホニルアミド]フェニル]チタン、
【0041】ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-メチル-4-(1-ペンチルヘアクリル)フェニル)スルホニルアミド)]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N-ヘキシル-(4-トリル)-スルホニルアミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(ビロリジン-2, 5-ジオニ-1-イル)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(3, 4-ジメチル-3-ビロリジン-2, 5-ジオニ-1-イル)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(フタルイミド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-イソブチリカルボニルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(エトキカルボニルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(2-クロロエトキシ)-カルボニルアミノ)フェニル]チタン、
【0042】ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(フェノキシカルボニルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(3-フェニルチオウレイド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(3-ブチルチオウレイド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(3-ブチルウレイド)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(N, N-ジアセチルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(3, 3-ジメチルウレイド)フェニル]チタン、
【0043】ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(アセチルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(ブチリルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(デカノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(オクタデカノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(イソブチリルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2, 6-ジフルオロ-3-(2-エチルヘキサノイルアミノ)フェニル]チタ

50

15

ン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(2-メチルブタノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(ビラロイルアミノ)フェニル]チタン、

【0044】ビス(シクロペンタジエニル)ビス[2,6-ジフルオロー-3-(2,2-ジメチルブタノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロー-3-(2-エチル-2-メチルヘプタノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロー-3-(シクロヘキシルカルボニルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロー-3-(2,2-ジメチル-3-クロロプロパノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロー-3-(3-フェニルプロパノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロー-3-(2-クロロメチル-2-メチル-3-クロロプロパンオイルアミノ)フェニル]チタン、

【0045】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(3,4-キシロイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(4-エチルベンゾイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(2,4,6-メシチルカルボニルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(ベンゾイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(3-フェニルプロピル)ベンゾイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(3-エチルヘプチル)-2,2-ジメチルペニタノイルアミノ)フェニルチタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-イソブチル-(4-トルイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-イソブチルベンゾイルアミノ)フェニル]チタン、

【0046】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシリメチルビパロイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(オクソラニ-2-イルメチル)ベンゾイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(3-エチルヘプチル)-2,2-ジメチルブタノイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(3-フェニルプロピル)-(4-トルイル)アミノ)フェニル]チタン、ビス(シクロペニ

10

20

30

40

タジエニル) ビス [2, 6-ジフルオロ-3-(N-(オクソラニ-2-イルメチル)- (4-トルイル) アミノ) フェニル] チタン、ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(N-(4-トルイルメチル) ベンゾイルアミノ) フェニル] チタン、【0047】ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(N-(4-トルイルメチル)- (4-トルイル) アミノ) フェニル] チタン、ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(N-ブチルベンゾイルアミノ) フェニル] チタン、ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(N-ブチル-(4-トルイル) アミノ) フェニル] チタン、ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(N-ヘキシル-(4-トルイル) アミノ) フェニル] チタン、ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(N-(2, 4-ジメチルペンチル)-2, 2-ジメチルブタノイルアミノ) フェニル] チタン、ビス (シクロペンタジエニル) ビス [2, 6-ジフルオロ-3-(2, 4-ジメチルペンチル)-2, 2-ジメチルペンタノイルアミノ) フェニル] チタン、

【0048】ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(4-トルイル)アミノ]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(2,2-ジメチルペンタノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(2,2-ジメチル-3-エトキシプロパノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(2,2-ジメチル-3-エトキシプロパノイル)アミノ]フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(2,2-ジメチル-3-エトキシプロパノイル)アミノ]フェニル]チタン

6-ジフルオロ-3-(2,2-ジメチル-3-アリルオキシプロパノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(N-アリルアセチルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(2-エチルブタノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシルメチルベンゾイルアミノ)フェニル]チタン、

【0049】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシリメチル-(4-トルイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(2-エチルヘキシル)ベンゾイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-イソプロピルベンゾイルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(3-フェニルプロピル)-2,2-ジメチルペンタノイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ヘキシリベ

17

ンゾイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-シクロヘキシルメチル-2, 2-ジメチルペンタノイル) アミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-ブチルベンゾイルアミノ) フェニル] チタン、
【0050】ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-(2-エチルヘキシル)-2, 2-ジメチルペンタノイル) アミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-ヘキシル-2, 2-ジメチルベンタノイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-イソプロピル-2, 2-ジメチルペンタノイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-(3-フェニルプロピル) ピバロイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-ブチル-2, 2-ジメチルペンタノイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-(2-メトキシエチル) ベンゾイルアミノ) フェニル] チタン、
【0051】ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-ベンジルベンゾイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-ベンジル-(4-トルイル) アミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-(2-メトキシエチル)-(4-トルイル) アミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-(4-メチルフェニルメチル)-2, 2-ジメチルペンタノイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-(2-メトキシエチル)-2, 2-ジメチルペンタノイルアミノ) フェニル] チタン、ビス(シクロペンタジエニル) ビス[2, 6-ジフルオロ-3-(N-シクロヘキシルメチル-(2-エチル-2-メチルヘプタノイル) アミノ) フェニル] チタン、

【0052】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ブチル-(4-クロロペニソイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ヘキシル-(2-エチル-2-メチルブタノイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシリ-2,2-ジメチルベンタノイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(オクソラニ-2-イルメチル)-2,2-ジメチルベンタノイル)アミノ)フェニ

20

20
30
40

40

50

ル】チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシル-(4-クロロベンゾイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシル-(2-クロロベンゾイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(3,3-ジメチル-2-アセチジノニ-1-イル)フェニル]チタン、
【0053】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-イソシアナトフェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-エチル-(4-トリルスルホニル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ヘキシル-(4-トリルスルホニル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ブチル-(4-トリルスルホニル)アミノ)フェニル]チタン、
【0054】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-(3-フェニルアロパノイル)-2,2-ジメチル-3-クロロプロパノイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシメチル-(2,2-ジメチル-3-クロロプロパノイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-イソブチル-(2,2-ジメチル-3-クロロプロパノイル)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ブチル-(2-クロロメチル-2-メチル-3-クロロプロパノイル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(ブチルチオカルボニルアミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(フェニルチオカルボニルアミノ)フェニル]チタン、
【0055】ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-イソシアナトフェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-エチル-(4-トリルスルホニル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ヘキシル-(4-トリルスルホニル)アミノ)フェニル]チタン、ビス(シクロペニタジエニル)ビス[2,6-ジフルオロ-3-(N-ブチル-(4-トリルスルホニル)アミノ)フェニル]チタン、

19

〔2, 6-ジフルオロ-3-(N-イソブチル-(4-トリルスルホニル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ブチル-(2, 2-ジメチル-3-クロロプロパノイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(3-フェニルプロパノイル)-2, 2-ジメチル-3-クロロプロパノイル)アミノ)フェニル〕チタン、【0056】ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-シクロヘキシルメチル-(2, 2-ジメチル-3-クロロプロパノイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-イソブチル-(2, 2-ジメチル-3-クロロプロパノイル)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ブチル-(2-クロロメチル-2-メチル-3-クロロプロパノイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ヘキシル-(4-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(フェニルチオカルボニルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(メチルシクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-エチルアセチルアミノ)フェニル〕チタン、ビス(メチルシクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-エチルプロピオニルアミノ)フェニル〕チタン、ビス(トリメチルシリルベンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ブチル-2, 2-ジメチルプロパノイルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(2-メトキシエチル)-トリメチルシリルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ブチルヘキシルジメチルシリルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-エチル-(1, 1, 2,-トリメチルプロピル)ジメチルシリルアミノ)フェニル〕チタン、【0058】ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(3-エトキシメチル-3-メチル-2-アセチオジノニ-1-イル)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(3-アリルオキシメチル-3-メチル-2-アセチジノニ-1-イル)フェニル〕チタン、ビス

20

(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(3-クロロメチル-3-メチル-2-アセチジノニ-1-イル)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ベンジル-2, 2-ジメチルプロパノイルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(5, 5-ジメチル-2-ビロリジノニ-1-イル)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(6, 10-ジフェニル-2-ビペリジノニ-1-イル)フェニル〕チタン、【0059】ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(2, 3-ジヒドロ-1, 2-ベンジソチアゾロ-3-オン(1, 1-ジオキシド)-2-イル)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ヘキシル-(4-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ヘキシル-(2-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-イソプロピル-(4-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(4-メチルフェニルメチル)-(4-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(4-メチルフェニルメチル)-(2-クロロベンゾイル)アミノ)フェニル〕チタン、【0060】ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ブチル-(4-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-ベンジル-2, 2-ジメチルベンタノイルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(2-エチルヘキシル)-4-トリルスルホニル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(3-オキサヘアチル)ベンゾイルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(N-(3, 6-ジオキサデシル)ベンゾイルアミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(トリフルオロメチルスルホニル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(トリフルオロアセチルアミノ)フェニル〕チタン、【0061】ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(2-クロロベンゾイル)アミノ)フェニル〕チタン、ビス(シクロペンタジエニル)ビス〔2, 6-ジフルオロ-3-(4-クロロベンゾイ

50 ビス〔2, 6-ジフルオロ-3-(4-クロロベンゾイ

21

ル)アミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(N-(3,6-ジオキサデシル)-2,2-ジメチルペンタノイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(N-(3,7-ジメチル-7-メトキシオクチル)ベンゾイルアミノ)フェニル]チタン、ビス(シクロペンタジエニル)ビス[2,6-ジフルオロ-3-(N-シクロヘキシルベンゾイルアミノ)フェニル]チタン等を挙げることができる。

【0062】光重合開始剤の一例である(h)炭素ハロゲン結合を有する化合物の好ましい例としては、下記一般式[III]から[IX]のものを挙げることができる。

【0063】

【化14】

一般式[IV]

【0064】(式中、X²はハロゲン原子を表す。Y²は-C(X²)₃、-NH₂、-NHR³²、-NR³²、-OR³²を表す。ここでR³²はアルキル基、置換アルキル基、アリール基、置換アリール基を表す。またR³¹は-C(X²)₃、アルキル基、置換アルキル基、アリール基、置換アリール基又は置換アルケニル基を表す。)で表される化合物。

【0065】

【化15】

一般式[IV]

【0066】(ただし、R³³は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アリール基、置換アリール基、ハロゲン原子、アルコキシ基、置換アルコキシ基、ニトロ基又はシアノ基であり、X³はハロゲン原子であり、nは1~3の整数である。)で表される化合物。

【0067】

【化16】

一般式[V]

【0068】(ただし、R³⁴は、アリール基又は置換アリール基であり、R³⁵は

10 -、-C(=S)-又は-SO₂-であり、R³⁶、R³⁷はアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アリール基又は置換アリール基であり、R³⁸は一般式[III]中のR³²と同じであり、X³はハロゲン原子であり、mは1又は2である。)で表される化合物。

【0071】

【化18】

一般式[VI]

20

【0072】ただし、式中、R³⁹は置換されていてもよいアリール基又は複素環式基であり、R⁴⁰は炭素原子1~3個を有するトリハロアルキル基又はトリハロアルケニル基であり、pは1、2又は3である。

【0073】

【化19】

一般式[VII]

30

【0074】(ただし、Lは水素原子又は式: CO-(R⁴¹)_q(C(X⁴)_r)_zの置換基であり、Qはイオウ、セレン又は酸素原子、ジアルキルメチレン基、アルケン-1,2-イレン基、1,2-フェニレン基又はN-_R基であり、Mは置換又は非置換のアルキレン基又はアルケニレン基であるか、又は1,2-アリーレン基であり、R⁴²はアルキル基、アラルキル基又はアルコキシアルキル基であり、R⁴¹は炭素環式又は複素環式の2個の芳香族基であり、X⁴は塩素、臭素またはヨウ素原子であり、q=0及びr=1であるか又はq=1及びr=1又は2である。)で表される、トリハロゲノメチル基を有するカルボニルメチレン複素環式化合物。

【0075】

【化20】

50

一般式[VIII]

【0076】(ただし、X⁵はハロゲン原子であり、tは1～3の整数であり、sは1～4の整数であり、R⁴³は水素原子又はC H_{3-t}X^{5-t}基であり、R⁴⁴はs値の置換されていてもよい不飽和有機基である)で表される、4-ハロゲノ-5-(ハロゲノメチルフェニル)-オキサゾール誘導体。

【0077】

【化21】

一般式[IX]

【0078】(ただし、X⁶はハロゲン原子であり、vは1～3の整数であり、uは1～4の整数であり、R⁴⁵は水素原子又はC H_{3-v}X^{6-v}基であり、R⁴⁶はu値の置換されていてもよい不飽和有機基である。)で表される、2-(ハロゲノメチルフェニル)-4-ハロゲノ-オキサゾール誘導体。

【0079】このような炭素-ハロゲン結合を有する化合物の具体例としては、例えば、若林ら著、Bull. Chem. Soc. Japan, 42, 2924(1969)記載の化合物、例えば、2-フェニル-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(p-クロルフェニル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(p-トリリル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(p-メトキシフェニル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(2', 4'-ジクロルフェニル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2, 4, 6-トリス(トリクロルメチル)-S-トリアジン、2-メチル-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-n-ノニル-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(α, α, β-トリクロロエチル)-4, 6-ビス(トリクロルメチル)-S-トリアジン等が挙げられる。

【0080】その他、英國特許1388492号明細書記載の化合物、例えば、2-スチリル-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(p-メチルスチリル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(p-メトキシスチリル)-4,

10 6-ビス(トリクロルメチル)-S-トリアジン、2-(p-メトキシスチリル)-4-アミノ-6-トリクロルメチル-S-トリアジン等、特開昭53-133428号記載の化合物、例えば、2-(4-メトキシナフト-1-イル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(4-エトキシナフト-1-イル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-[4-(2-エトキシエチル)-ナフト-1-イル]-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(4, 7-ジメトキシナフト-1-イル)-4, 6-ビス(トリクロルメチル)-S-トリアジン、2-(アセナフト-5-イル)-4, 6-ビス(トリクロルメチル)-S-トリアジン等、獨国特許3337024号明細書記載の化合物、例えば、

【0081】

【化22】

等やその他

【0082】

【化23】

10

【0083】等を挙げることができる。また、F. C. Schaefer等によるJ. Org. Chem. 29, 1527(1964)記載の化合物、たとえば2-メチル-4, 6-ビス(トリブロムメチル)-S-トリアジン、2, 4, 6-トリス(トリブロムメチル)-S-トリアジン、2, 4, 6-トリス(ジブロムメチル)-S-トリアジン、2-アミノ-4-メチル-6-トリブロムメチル-S-トリアジン、2-メトキシ-4-メチル-6-トリクロルメチル-S-トリアジン等を挙げることができる。さらに特開昭62-58241号記載の化合物、例えば、

【0084】

【化24】

30

40

【0085】

【化25】

26

【0086】等を挙げることができる。更に特開平5-281728号記載の化合物、例えば、

【0087】

【化26】

27

【0088】等を挙げることができる。あるいはさらに 20

M. P. Hutt、E. F. ElslagerおよびL.M. Herbel著「Journal of Heterocyclic chemistry」第7巻(No.3)、第511頁以降(1970年)に記載されている合成方法に準じて、当業者が容易に合成することができる次のような化合物群

【0089】

【化27】

【0090】

【化28】

【0091】

【化29】

(17)

特開2002-202595

【0093】
【化31】【0092】
【化30】

(18)

33

特開2002-202595

34

*【0094】
【化32】

10

20

*30

【0095】あるいは、ドイツ特許第2641100号（※トキシースチリル）-6-（3,3,3-トリクロルブロモエチル）-2-ビロンおよび4-（3,4,5-トリ

35

メトキシースチリル) -6-トリクロルメチル-2-ビ
ロン、あるいはドイツ特許第3333450号に記載さ
れている化合物、例えば、

【0096】

【化33】

10

*

	R⁴²	M	L	q	(CX⁴)_r
1	C₂H₅	1,2-フェニレン	H	1	4-CCl₃
2	CH₂C₆H₅	1,2-フェニレン	H	1	4-CCl₃
3	C₂H₅	1,2-フェニレン	H	1	3-CCl₃
4	C₂H₅	1,2-フェニレン	H	1	4-CF₃
5	C₂H₅	5-CH₃-1,2-フェニレン	H	0	CCl₃
6	CH₂C₆H₅	1,2-フェニレン	H	0	CCl₃
7	C₂H₄OCH₃	1,2-フェニレン	H	1	4-CCl₃

【0099】あるいはドイツ特許第3021590号に 20※【0100】

記載の化合物群、

※ 【化34】

	R⁴⁷	X⁷
1		Cl
2		Cl
3		Cl

【0101】

【化35】

40

【0102】あるいはドイツ特許第3021599号に
記載の化合物群、例えば、

【0103】

【化36】

【0104】を挙げることができる。本発明における光重合開始剤のさらにより好ましい例としては、上述の(b)芳香族オニウム塩、(e)ヘキサアリールビイミダゾール、(g)メタロセン化合物、(h)炭素ハロゲン結合を有する化合物を挙げることができ、さらに最も好ましい例としては、(e)ヘキサアリールビイミダゾール、(h)炭素ハロゲン結合を有する化合物を挙げができる。本発明における光重合開始剤は単独もしくは2種以上の併用によって好適に用いられる。

【0105】本発明における組成物中の光重合開始剤の使用量は光重合性組成物の全成分の重量に対し、0.01～60重量%、より好ましくは0.05～30重量%である。なお、本発明における光重合開始剤は、その単独、または後述の増感色素の混合物をもって光重合開始系と総称することができる。

【0106】本発明に用いる光重合性組成物には上記重合開始剤の他以下のものが含まれる。
〔増感色素〕また本発明の光重合性組成物には上記の光重合開始剤と併用して増感色素が含有されていてもよい。本発明の光重合性組成物の1成分となり得る増感色素としては、分光増感色素、光源の光を吸収して光重合開始剤と相互作用する染料あるいは顔料があげられる。好ましい分光増感色素または染料としては多核芳香族類(例えば、ビレン、ペリレン、トリフェニレン)キサンテン類(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)シアニン類(例えば、チアカルボシアニン、オキサカルボシアニン)

20

【0107】
【化37】

【0108】アントラキノン類、例えば(アントラキノン)
スクアリウム類、例えば(スクアリウム)
等が挙げられる。より好ましい分光増感色素又は染料の例としては特公平37-13034号記載のスチリル系色素、例えば、

【0109】
【化38】

【0110】特開昭62-143044号記載の陽イオン染料、例えば、

【0111】
【化39】

メロシアニン類(例えば、メロシアニン、カルボメロシアニン)
チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)
アクリジン類(例えば、アクリジンオレンジ、クロロフラン、アクリフラビン)
フタロシアニン類(例えば、フタロシアニン、メタルフタロシアニン)
ポルフィリン類(例えば、テトラフェニルポルフィリン、中心金属置換ポルフィリン)
クロロフィル類(例えば、クロロフィル、クロロフィリン、中心金属置換クロロフィル)
金属錯体、例えば

【0107】
【化37】

【0108】
【化38】
【0109】
【化39】

【0110】
【化40】

39

40

【0112】特公昭59-24147号記載のキノキサ
リニウム塩、例えば、

* 【0113】
* 【化40】

【0114】特開昭64-33104号記載の新メチレ
ンブルー化合物、例えば、

※ 【0115】
※ 【化41】

【0116】特開昭64-56767号記載のアントラ
キノン類、例えば

★ 【0117】
★ 【化42】

41

42

【0118】特開平2-1714号記載のベンゾキサン

* 【0119】

テン染料。特開平2-226148号及び特開平2-2

【化43】

26149号記載のアクリジン類、例えば、

*20

【0120】特公昭40-28499号記載のビリリウ

* 【0121】

ム塩類、例えば

* 【化44】

43

44

【0122】特公昭46-42363号記載のシアニン
類、例えば * 【0123】
* 【化45】

【0124】特開平2-63053号記載のベンゾフラ
ン色素、例えば * 【0125】
* 【化46】

【0126】特開平2-85858号、特開平2-21
6154号の共役ケトン色素、例えば

【0127】

【化47】

* 【0128】特開昭57-10605号記載の色素。特
公平2-30321号記載のアゾシンナミリデン誘導

体、例えば、

20 【0129】

【化48】

30

【0130】特開平1-287105号記載のシアニン
系色素、例えば、

※ 【化49】

【0132】特開昭62-31844号、特開昭62-31848号、特開昭62-143043号記載のキサンテン系色素、例えば、

【0133】

【化50】

* 【0136】特公昭61-9621号記載の以下の一般式〔1〕～〔8〕で表されるメロシアニン色素、例えば、

【0137】

【化52】

【0134】特公昭59-28325号記載のアミノスチリルケトン、例えば

【0135】

【化51】

50

【0138】一般式〔3〕ないし〔8〕において、 X^8 は水素原子、アルキル基、置換アルキル基、アルコキシ基、アリール基、置換アリール基、アリールオキシ基、アラルキル基又はハロゲン原子を表わす。一般式〔2〕においてPhはフェニル基を表わす。一般式〔1〕ないし〔8〕において、 R^{48} 、 R^{49} および R^{50} はそれぞれアルキル基、置換アルキル基、アルケニル基、アリール基、置換アリール基又はアラルキル基を表わし、互いに等しくても異なってもよい。特開平2-179643号記載の以下の一般式〔9〕～〔11〕で表わされる色素、例えば
【0139】
【化53】

[9]

[10]

[11]

【0140】A : 酸素原子、イオウ原子、セレン原子、テルル原子、アルキル又はアリール置換された窒素原子またはジアルキル置換された炭素原子を表わす。

Y³ : 水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、アラルキル基、アシル基、または置換アルコキシカルボニル基を表わす。

R⁵¹、R⁵² : 水素原子、炭素数1~18のアルキル基、もしくは置換基として、R⁵³O-、

【0141】

【化54】

【0142】-(CH₂CH₂O)_w-R⁵³、ハロゲン原子(F、Cl、Br、I)を有する炭素数1~18の置換アルキル基。但し、R⁵³は水素原子又は炭素数1~10のアルキル基を表わし、Bは、ジアルキルアミノ基、水酸基、アシルオキシ基、ハロゲン原子、ニトロ基を表わす。wは0~4の整数、xは1~20の整数を表わす。特開平2-244050号記載の以下の一般式〔1~40〕で表されるメロシアニン色素、例えば、

【0143】

【化55】

[12]

* 原子、アルキル基、置換アルキル基、アルコキシカルボニル基、アリール基、置換アリール基またはアラルキル基を表わす。A²は酸素原子、イオウ原子、セレン原子、テルル原子、アルキルないしはアリール置換された窒素原子、またはジアルキル置換された炭素原子を表わす。

X⁹は含窒素ヘテロ五員環を形成するのに必要な非金属原子群を表わす。Y⁴は置換フェニル基、無置換ないし置換された多核芳香環、または無置換ないし置換されたヘテロ芳香環を表わす。Z³は水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、アラルキル基、アルコキシ基、アルキルチオ基、アリルチオ基、置換アミノ基、アシル基、またはアルコキシカルボニル基を表わし、Y⁴と互いに結合して環を形成していくてもよい。好ましい具体例としては

【0145】

【化56】

【0144】(式中R⁵⁴およびR⁵⁵は各々独立して水素*50

54

【0146】特公昭59-28326号記載の以下の一般式〔13〕で表されるメロシアニン色素、例えば、

【0147】
【化57】

【0148】上式において、R⁵⁶およびR⁵⁷はそれぞれ水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基またはアラルキル基を表わし、それらは互いに等しくても異ってもよい。X¹⁰はハメット(Hammett)のシグマ(σ)値が-0.9から+0.5までの範囲内の置換基を表わす。特開昭59-89303号記載の以下の一般式〔14〕で表されるメロシアニン色素、例えば、

【0149】
【化58】

【0150】(式中R⁵⁸およびR⁵⁹は各々独立して水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基またはアラルキル基を表わす。X¹¹はハメット(Hammett)のシグマ(σ)値が-0.9から+0.5までの範囲内の置換基を表わす。Y⁵は水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、アラルキル基、アシル基またはアルコキシカルボニル基を表わす。)好ましい具体例としては、

【0151】
【化59】

【0152】特開平8-129257号記載の以下の一般式〔15〕で表されるメロシアニン色素、例えば

【0153】

【化60】

20*カルボニル基、スルホ基、スルホナト基、置換スルフィニル基、置換スルホニル基、ホスフォノ基、置換ホスフオノ基、ホスフォナト基、置換ホスフォナト基、シアノ基、ニトロ基を表すか、もしくは、R⁶⁰とR⁶¹、R⁶¹とR⁶²、R⁶²とR⁶³、R⁶³とR⁶⁴、R⁶⁴とR⁶⁵、R⁶⁵とR⁶⁶、R⁶⁶とR⁶⁷、R⁶⁷とR⁶⁸が互いに結合して脂肪族又は芳香族環を形成していても良く、R⁶⁴は水素原子、アルキル基、置換アルキル基、アリール基、又は置換アリール基を表し、R⁶⁵は置換、又は無置換のアルケニルアルキル基、又は置換もしくは無置換のアルキニルアルキル基を表し、R⁶⁶、R⁶⁷はそれぞれ独立して、水素原子、ハロゲン原子、アルキル基、置換アルキル基、アリール基、置換アリール基、置換カルボニル基を表す)好ましい具体例としては

【0154】(式中、R⁶⁰、R⁶¹、R⁶²、R⁶³、R⁶⁴、R⁶⁵、R⁶⁶、R⁶⁷、R⁶⁸、R⁶⁹、R⁷⁰、R⁷¹はそれぞれ独立して、水素原子、ハロゲン原子、アルキル基、置換アルキル基、アリール基、置換アリール基、ヒドロキシル基、置換オキシ基、メルカブト基、置換チオ基、アミノ基、置換アミノ基、置換*

30

【0155】

【化61】

【0156】特開平8-334897号記載の以下の一般式〔16〕で表されるベンゾピラン系色素、例えば

【0157】

【化62】

*素原子、ハロゲン原子、アルキル基、アリール基、水酸基、アルコキシ基又はアミノ基を表す。またR⁷²～R⁷⁵はそれらが各々結合できる炭素原子と共に非金属原子から成る環を形成していても良い。R⁷⁶は水素原子、アルキル基、アリール基、ヘテロ芳香族基、シアノ基、アルコキシ基、カルボキシ基又はアルケニル基を表す。R⁷⁷はR⁷⁶で表される基または-Z-R⁷⁶であり、Zはカルボニル基、スルホニル基、スルフィニル基またはアリーレンジカルボニル基を表す。またR⁷⁶及びR⁷⁷は共に非金属原子から成る環を形成しても良い。AはO原子、S

【0158】(式中、R⁷²～R⁷⁵は互いに独立して、水※50

金属原子から成る環を形成しても良い。AはO原子、S

原子、NHまたは置換基を有するN原子を表す。BはO原子、または=C(G1)(G2)の基を表す。G1、G2は同一でも異なっていても良く、水素原子、シアノ基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、アリールカルボニル基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基、又はフルオロスルホニル基を表す。但し、G1、G2は同時に水素原子となることはない。またG1及びG2は炭素原子と共に非金属原子からなる環を形成していても良い。等を挙げることができる。

【0159】その他、増感色素として特に以下の赤外線吸収剤(染料或いは顔料)も好適に使用される。好ましい前記染料としては、例えば、特開昭58-125246号、特開昭59-84356号、特開昭59-202829号、特開昭60-78787号公報等に記載されているシアニン染料、英國特許434,875号明細書記載のシアニン染料等を挙げができる。

【0160】また、米国特許第5,156,938号明細書に記載の近赤外吸収増感剤も好適に用いられ、さらに、米国特許第3,881,924号明細書に記載の置換されたアリールベンゾ(チオ)ビリリウム塩、特開昭57-142645号(米国特許第4,327,169号)公報に記載のトリメチチアピリリウム塩、特開昭58-181051号、同58-220143号、同59-41363号、同59-84248号、同59-84249号、同59-146063号、同59-146061号公報に記載のビリリウム系化合物、特開昭59-216146号公報に記載のシアニン色素、米国特許第4,283,475号明細書に記載のペントメチチオピリリウム塩等や、特公平5-13514号、同5-19702号公報に記載されているビリリウム化合物も好ましく用いられる。

【0161】また、米国特許第4,756,993号明細書中に式(I)、(II)として記載されている近赤外吸収染料、EP916513A2号明細書に記載のフタロシアニン系染料も好ましい染料として挙げができる。

【0162】さらに、特願平10-79912号明細書に記載のアニオン性赤外線吸収剤も、好適に使用することができる。アニオン性赤外線吸収剤とは、実質的に赤外線を吸収する色素の母核にカチオン構造がなく、アニオン構造を有するものを示す。例えば、(c1)アニオン性金属錯体、(c2)アニオン性カーボンブラック、(c3)アニオン性フタロシアニン、さらに(c4)下記一般式(X)で表される化合物などが挙げられる。こ

れらのアニオン性赤外線吸収剤の対カチオンは、プロトンを含む一価の陽イオン、あるいは多価の陽イオンである。

【0163】

【化63】

【0164】ここで、(c1)アニオン性金属錯体とは、実質的に光を吸収する錯体部の中心金属および配位子全体でアニオンとなるものを示す。

【0165】(c2)アニオン性カーボンブラックは、置換基としてスルホン酸、カルボン酸、ホスホン酸基等のアニオン基が結合しているカーボンブラックが挙げられる。これらの基をカーボンブラックに導入するには、カーボンブラック便覧第三版(カーボンブラック協会編、1995年4月5日、カーボンブラック協会発行)第12頁に記載されるように、所定の酸でカーボンブラックを酸化する等の手段をとればよい。

【0166】(c3)アニオン性フタロシアニンは、フタロシアニン骨格に、置換基として、先に(c2)の説明において挙げたアニオン基が結合し、全体としてアニオンとなっているものを示す。

【0167】次に、前記(c4)一般式(X)で表される化合物について、詳細に説明する。前記一般式中、G_a-はアニオン性置換基を表し、G_bは中性の置換基を表す。X^{m+}は、プロトンを含む1~m価のカチオンを表し、mは1ないし6の整数を表す。Mは共役鎖を表し、この共役鎖Mは置換基や環構造を有していてもよい。共役鎖Mは、下記式で表すことができる。

【0168】

【化64】

【0169】前記式中、R¹、R²、R³はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アリール基、アルケニル基、アルキニル基、カルボニル基、チオ基、スルホニル基、スルフィニル基、オキシ基、アミノ基を表し、これらは互いに連結して環構造を形成していてもよい。nは、1~8の整数を表す。

【0170】前記一般式(X)で表されるアニオン性赤外線吸収剤のうち、以下のA-1~A-5のものが、好ましく用いられる。

【0171】

【化65】

59
A-1

60

A-2

A-3

A-4

A-5

【0172】また、以下のCA-1～CA-44に示す * 【0173】

カチオン性赤外線吸収剤も好ましく使用できる。

* 【化66】

CA-1

CA-2

CA-3

【0174】

※50※【化67】

6.1

CA-4

6.2

CA-5

CA-6

【0175】

* * 【化68】

CA-7

CA-8

CA-9

【0176】

【化69】

(33)

特開2002-202595

CA-10

63

64

*【0177】
【化70】

CA-11

CA-12

20

*

CA-13

CA-14

CA-15

【0178】

※※【化71】

65
CA-16

66

CA-17

CA-18

【0179】

【化72】

CA-19

* 【0180】

【化73】

CA-20

40

CA-21

* 50

67

CA-22

68

CA-23

CA-24

【0181】

【化74】

CA-25

* 【0182】

【化75】

CA-28

30

CA-29

CA-26

40

CA-30

CA-27

【0183】

【化76】

*

69
CA-31

70

CA-32

CA-33

【0184】

* * 【化77】

CA-34

CA-35

CA-36

71

【0185】

72

* * 【化78】

CA-37

CA-38

CA-39

【0186】

【化79】

73

74

CA-40

*【0187】
【化80】

CA-41

CA-42

CA-43

CA-44

*

【0188】前記構造式中、 T^- は、1価の対アニオンを表し、好ましくは、ハロゲンアニオン (F^- 、 Cl^- 、 Br^- 、 I^-)、ルイス酸アニオン (BF_4^- 、 PF_6^- 、 $SbCl_6^-$ 、 $C_1O_4^-$)、アルキルスルホン酸アニオン、アリールスルホン酸アニオンである。

※【0189】前記アルキルスルホン酸のアルキルとは、炭素原子数が1から20までの直鎖状、分岐状、又は環状のアルキル基を意味し、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウ

※50

ンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、*s*-ブチル基、*t*-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロヘキシル基、シクロペンチル基、2-ノルボルニル基を挙げることができる。これらの中では、炭素原子数1から12までの直鎖状、炭素原子数3から12までの分歧状、ならびに炭素原子数5から10までの環状のアルキル基がより好ましい。

【0190】また前記アリールスルホン酸のアリールと*

NA-1

10 【0192】

【化81】

*は、1個のベンゼン環からなるもの、2又は3個のベンゼン環が縮合環を形成したもの、ベンゼン環と5員不飽和環が縮合環を形成したものを表し、具体例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナブテニル基、フルオレニル基、を挙げることができ、これらの中でも、フェニル基、ナフチル基がより好ましい。

【0191】また、以下のNA-1～NA-12に示す非イオン性赤外線吸収剤も好ましく使用できる。

NA-2

(n=1,2)

NA-3

【0193】

【化82】

(40)

特開2002-202595

78

MA-4

77

*【0194】
【化83】

MA-5

10

MA-6

MA-7

20

MA-8

*

MA-9

MA-10

【0195】

【化84】

79

NA-11

NA-12

【0196】上記例示化合物中、特に好ましいアニオン性赤外線吸収剤としてはA-1が、カチオン性赤外線吸収剤としてはCA-7、CA-30、CA-40、およびCA-42が、非イオン性赤外線吸収剤としてはNA-11が挙げられる。

【0197】他の染料としては、市販の染料及び例えば「染料便覧」(有機合成化学協会編集、昭和45年刊)等の文献に記載されている公知のものが利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロニアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、ジインモニウム染料、アミニウム染料、スクワリリウム色素、金属チオレート錯体等の染料が挙げられる。

【0198】また、増感色素として、他の顔料としては、市販の顔料及びカラーインデックス(C. I.)便覧、「最新顔料便覧」(日本顔料技術協会編、1977年刊)、「最新顔料応用技術」(CMC出版、1986年刊)、「印刷インキ技術」(CMC出版、1984年

80

刊)に記載されている顔料が利用できる。例えば、顔料の種類としては、黒色顔料、黄色顔料、オレンジ色顔料、褐色顔料、赤色顔料、紫色顔料、青色顔料、緑色顔料、蛍光顔料、金属粉顔料、その他、ポリマー結合色素が挙げられる。具体的には、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、キレートアゾ顔料、フタロシアニン系顔料、アントラキノン系顔料、ペリレン及びペリノン系顔料、チオインジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、染付けレーキ顔料、アジン顔料、二トロソ顔料、ニトロ顔料、天然顔料、蛍光顔料、無機顔料、カーボンブラック等が使用できる。これらの顔料のうち好ましいものはカーボンブラックである。

【0199】これら顔料は表面処理をせずに用いてもよく、表面処理を施して用いてもよい。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤、エポキシ化合物、ポリイソシアネート等)を顔料表面に結合させる方法等が考えられる。前記の表面処理方法は、「金属石鹼の性質と応用」(幸書房)、「印刷インキ技術」(CMC出版、1984年刊)及び「最新顔料応用技術」(CMC出版、1986年刊)に記載されている。

【0200】顔料の粒径は0.01μm~10μmであるのが好ましく、0.05μm~1μmであるのがさらに好ましく、特に0.1μm~1μmであるのが特に好ましい。顔料の粒径が0.01μm未満のときは、分散物の感光層塗布液中の安定性の点で好ましくなく、また、10μmを越えると感光層の均一性の点で好ましくない。

【0201】顔料を分散する方法としては、インク製造やトナー製造等に用いられる公知の分散技術が使用できる。分散機としては、超音波分散器、サンドミル、アトライター、パールミル、スーパーミル、ボールミル、インペラー、デスパーザー、KDミル、コロイドミル、ダイナトロン、3本ロールミル、加圧ニーダー等が挙げられる。詳細は、「最新顔料応用技術」(CMC出版、1986年刊)に記載されている。

【0202】本発明における増感色素のさらにより好ましい例としては、上述の特公昭61-9621号記載のメロシアニン色素、特開平2-179643号記載のメロシアニン色素、特開平2-244050号記載のメロシアニン色素、特公昭59-28326号記載のメロシアニン色素、特開昭59-89303号記載のメロシアニン色素、特開平8-129257号記載のメロシアニン色素及び特開平8-334897号記載のベンゾピラノ系色素を挙げることができる。及び上述の特開平11-209001号記載の赤外線吸収剤を挙げることができる。本発明における増感色素も単独もしくは2種以上の併用によって好適に用いられる。さらに本発明の光重合性組成

物には、感度を一層向上させる、あるいは酸素による重合阻害を抑制する等の作用を有する公知の化合物を共増感剤として加えても良い。

【0203】この様な共増感剤の例としては、アミン類、例えばM. R. Sanderら著「Journal of Polymer Society」第10巻3173頁(1972)、特公昭44-20189号、特開昭51-82102号、特開昭52-134692号、特開昭59-138205、特開昭60-84305号、特開昭62-18537号、特開昭64-33104号、Research Disclosure 33825号記載の化合物、等があげられ、具体的には、トリエタノールアミン、p-ジメチルアミノ安息香酸エチルエステル、p-ホルミルジメチルアニリン、p-メチルチオジメチルアニリン、等があげられる。

【0204】共増感剤の別の例としてはチオールおよびスルフィド類、例えば、特開昭53-702号、特公昭55-500806号、特開平5-142772号記載のチオール化合物、特開昭56-75643号のジスルフィド化合物等があげられ、具体的には、2-メルカブトベンゾチアゾール、2-メルカブトベンゾオキサゾール、2-メルカブトベンゾイミダゾール、2-メルカブト-4(3H)-キナゾリン、β-メルカブトナフタレン等があげられる。

【0205】また別の例としては、アミノ酸化合物(例、N-フェニルグリシン等)、特公昭48-42965号記載の有機金属化合物(例、トリプチル錫アセテート等)、特公昭55-34414号記載の水素供与体、特開平6-308727号記載のイオウ化合物(例、トリチアン等)、特開平6-250389号記載のリン化合物(ジエチルホスファイト等)、特願平6-191605号記載のSi-H、Ge-H化合物等があげられる。

【0206】また、本発明において増感色素を用いる場合、光重合性組成物中の光重合開始剤と増感色素のモル比は100:0~1:99であり、より好ましくは、90:10~10:90であり、最も好ましくは80:20~20:80である。上記共増感剤を使用する場合には光重合開始剤1重量部に対して、0.01~50重量部使用するのが適当であり、より好ましくは0.02~20重量部、最も好ましくは0.05~10重量部である。

【0207】[付加重合可能なエチレン性不飽和結合を有する化合物] 本発明の光重合性組成物には、上記の光重合開始剤及び増感色素の他、付加重合可能なエチレン性不飽和結合を有する化合物を含有する。付加重合可能なエチレン性不飽和結合を有する化合物としては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)と脂肪族多価アルコール化合物とのエステル、上記不飽和カルボン酸と脂肪族多価アミン化合物と

のアミド等があげられる。

【0208】脂肪族多価アルコール化合物と不飽和カルボン酸とのエステルのモノマーの具体例としては、アクリル酸エステルとして、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、1,3-ブタンジオールジアクリレート、テトラメチレングリコールジアクリレート、プロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリエタノールジアクリレート、トリメチロールエタントリエタノールジアクリレート、ヘキサンジオールジアクリレート、1,4-シクロヘキサンジオールジアクリレート、テトラエチレングリコールジアクリレート、ペントエリスリトールジアクリレート、ペントエリスリトールトリエタノールジアクリレート、ペントエリスリトールトリエタノールジアクリレート、ジペントエリスリトールジアクリレート、ジペントエリスリトールヘキサエタノールジアクリレート、ソルビトールトリエタノールジアクリレート、ソルビトールテトラエタノールジアクリレート、ソルビトールペントエタノールジアクリレート、ソルビトールヘキサエタノールジアクリレート、トリ(アクリロイルオキシエチル)イソシアヌレート、ポリエステルアクリレートオリゴマー等がある。

【0209】メタクリル酸エステルとしては、テトラメチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、エチレングリコールジメタクリレート、1,3-ブタンジオールジメタクリレート、ヘキサンジオールジメタクリレート、ペントエリスリトールジメタクリレート、ペントエリスリトールトリメタクリレート、ペントエリスリトールテトラメタクリレート、ジペントエリスリトールジメタクリレート、ジペントエリスリトールヘキサメタクリレート、ソルビトールトリメタクリレート、ソルビトールテトラメタクリレート、ビス[p-(3-メタクリルオキシ-2-ヒドロキシプロポキシ)フェニル]ジメチルメタン、ビス-p-(アクリルオキシエトキシ)フェニル]ジメチルメタン等がある。イタコン酸エステルとしては、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3-ブタンジオールジイタコネート、1,4-ブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペントエリスリトールジイタコネート、ソルビトールテライタコネート等がある。

【0210】クロトン酸エステルとしては、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペントエリスリトールジクロトネート、ソルビトールテラジクロトネート等がある。イソクロトン酸エステルとしては、エチレングリコールジイソクロトネート、ペントエリスリトールジイソクロトネー

83

ト、ソルビトールテトライソクロトネート等がある。マレイン酸エステルとしては、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレート等がある。さらに、前述のエステルモノマーの混合物もあげることができる。また、脂肪族多価アミン化合物と不飽和カルボン酸とのアミドのモノマーの具体例としては、メチレンビスーアクリルアミド、メチレンビスマタクリルアミド、1, 6-ヘキサメチレンビスーアクリルアミド、1, 6-ヘキサメチレンビスマタクリルアミド*10

(ただし、RおよびR'はHあるいはCH₃を示す。)また、特開昭51-37193号に記載されているようなウレタンアクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号公報に記載されているようなポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレートをあげることができる。さらに日本接着協会誌vol. 20、No. 7、300~308ページ(1984年)に光硬化性モノマー及びオリゴマーとして紹介されているものも使用することができる。本発明において

84

*ミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスマタクリルアミド等がある。

【0211】その他の例としては、特公昭48-41708号公報中に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記の一般式(A)で示される水酸基を含有するビニルモノマーを付加した1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等があげられる。

※て、これらのモノマーはプレポリマー、すなわち2量体、3量体およびオリゴマー、またはそれらの混合物ならびにそれらの共重合体などの化学的形態で使用しうる。

【0212】その他、特願平11-268842号明細書記載の一般式(I)で表される構造を有するα-ヘテロ型モノマーも好適に利用できる。以下にα-ヘテロ型モノマーの具体例を示す。

【0213】

【表3】

85

86

I) 单官能型

(A群)

表-1

No.	X¹	X²
A-1	OH	OCH ₃
A-2	OH	O(n)C _n H _n
A-3	OH	O(n)C _n H _{2n}
A-4	OH	O-C ₆ H ₄ -O-
A-5	OH	O-C ₆ H ₄ -O-
A-6	OH	O-C ₆ H ₄ -O-
A-7	OH	O-C ₆ H ₄ -O-
A-8	OCH ₃	OCH ₃
A-9	O-C ₆ H ₄ -O-	O(n)C _n H _n
A-10	O(n)C _n H _n	OCH ₃
A-11	O-C ₆ H ₄ -O-	O-C ₆ H ₄ -O-
A-12	O-C ₆ H ₄ -O-	OCH ₃
A-13	O-C ₆ H ₄ -O-	OCH ₃
A-14	O-C ₆ H ₄ -Cl	OCH ₃
A-15	O-C ₆ H ₄ -OCOCH ₃	OCH ₃
A-16	O-C ₆ H ₄ -OCN	OCH ₃
A-17	OCOCH ₃	OCH ₃
A-18	OCO(n)C _n H _{2n}	OCH ₃
A-19	OCO-C ₆ H ₄ -O-	OCH ₃
A-20	OSO ₃ OH ₃	OCH ₃
A-21	OSO ₃ (n)C _n H _{2n}	OCH ₃

【0214】

* * 【表4】

87

表-1(つづき)

88

No.	X'	X"
A-22		OCH ₃
A-23	OSO ₂ CF ₃	OC ₂ H ₅
A-24	SCH ₃	OC ₂ H ₅
A-25	S(n)C ₂ H ₅	OC ₂ H ₅
A-26		OC ₂ H ₅
A-27		OCH ₃
A-28		OC ₂ H ₅
A-29	F	O(n)C ₂ H ₅
A-30	F	O-C ₆ H ₄ -O-
A-31	Cl	OCH ₃
A-32	Cl	
A-33	Br	O(n)C ₂ H ₅
A-34	Br	
A-35	I	O(n)C ₂ H ₅
A-36	I	O-C ₆ H ₄ -O-
A-37		OC ₂ H ₅
A-38		OC ₂ H ₅
A-39		OC ₂ H ₅
A-40		OC ₂ H ₅
A-41		OC ₂ H ₅
A-42		OC ₂ H ₅

【0215】

* * 【表5】

89

90

表1(つづき)

No.	X ¹	X ²
A-43		OCH ₃
A-44		OCH ₃
A-45		OCH ₃
A-46	NHOOC _n C ₄ H ₉	OCH ₃
A-47	NHCO(n)C ₄ H ₉	O(n)C ₄ H ₉
A-48		OCH ₃
A-49	NHSO ₂ CH ₃	O(n)C ₄ H ₉
A-50		O(n)C ₄ H ₉
A-51	OCOCH ₃	
A-52	OCOCH ₃	
A-53	OCOCH ₃	
A-54	OCOCH ₃	
A-55	OCOCH ₃	
A-56	OCOOCH ₃	
A-57	OCOC ₂ H ₅	
A-58	OCOC ₂ H ₅	
A-60		OCH ₃

【0216】

* * 【表6】

91
表-1(つづき)

No.	X ¹	X ²
A-70	OCOCH ₃	O \sim CC ₂ H ₅ PO ₃ H ₂
A-71	OCOCH ₃	O \sim CC ₂ H ₅ OPO ₃ H ₂
A-72	OCOCH ₃	O \sim CC ₂ H ₅ CO ₂ H
A-73	O \sim C ₆ H ₄	OH
A-74	O \sim C ₆ H ₄	O ²⁻ Na ⁺
A-75	O \sim C ₆ H ₄	O \sim CC ₂ H ₅ SO ₃ H
A-76	O \sim C ₆ H ₄	O \sim CC ₂ H ₅ SO ₃ K ⁺
A-77	O \sim C ₆ H ₄	O \sim CC ₂ H ₅ PO ₃ (C ₂ H ₅) ₂
A-78	O \sim C ₆ H ₄	O \sim CC ₂ H ₅ SO ₃ -C ₆ H ₅
A-79	OH	OCH ₃
A-80	O \sim CO \sim O \sim CH ₃	OCH ₃
A-81	OCONH-C ₆ H ₄	OCH ₃
A-82	OCONHSO ₂ -C ₆ H ₄	OCH ₃
A-83	NHCONH-C ₆ H ₄	OCH ₃
A-84	NHCO ₂ (n)C _n H _{2n}	OCH ₃
A-85	OCSNH(n)C _n H _{2n}	OCH ₃

92

【0217】

* * 【表7】

(B群) 表-2

【0218】

* * 【表8】

95
II-2百葉型
(C群)

96

表-3

No.	X'	Z'
O-1	OH	
O-2	OH	
O-3	OCOCH ₃	
O-4	OCOCH ₃	 (平均数)
O-5	OH	
O-6	OH	
O-7	OH	
O-8	OH	
O-9	OC ₂ H ₅	
O-10		
O-11	OCOC ₂ H ₅	
O-12	OCOC ₂ H ₅	
O-13	OH	
O-14	OCOCH ₃	

【0219】

* * 【表9】

97

表-3(つづき)

No.	X'	Z'
O-15	<chem>OC(=O)c1ccccc1</chem>	<chem>OC(=O)R</chem>
O-16	OH	$(OC(=O)c_1ccccc_1CO)_n$ (平均数)
O-17	OH	<chem>OC(=O)NHR</chem>
O-18	OH	<chem>RCONHCH2CH2NHCOOR</chem>
O-19	OCOCH ₃	<chem>OC(=O)NHCOOR</chem>
O-20	OCOCH ₃	<chem>OC(=O)NHCOc1ccccc1</chem>
O-21	OCO(n)Pr	<chem>OC(=O)NHCOc1ccccc1NCOOR</chem>
O-22	OCO(n)Pr	<chem>RCONHNHCOOR</chem>
O-23	<chem>OC(=O)c1ccccc1</chem>	<chem>OC(=O)NHCOc1ccccc1NHCOR</chem>
O-24	SCH ₃	<chem>OC(=O)R</chem>
O-25	<chem>c1ccsc1</chem>	<chem>OC(=O)R</chem>
O-26	SCOOCH ₃	<chem>OC(=O)R</chem>
O-27	OSO ₂ CH ₃	<chem>OC(O)C(O)R</chem>
O-28	<chem>OS(=O)(=O)c1ccccc1</chem>	<chem>OC(=O)c1ccccc1Cl</chem>
O-29	<chem>N(c1ccccc1)C(Cl)Cl</chem>	<chem>OC(=O)c1ccccc1</chem>

98

【0220】

* * 【表10】

表-3(つづき)

No.	X'	Z'
O-30	<chem>N1CCCO1</chem>	<chem>OC(=O)R</chem>
O-31	<chem>CN1CCCC1</chem>	<chem>NHSO2-c1ccccc1SO2NH</chem>
O-32	F	<chem>OC(=O)R</chem>
O-33	NHOCH ₃	<chem>N1CNCC1</chem>
O-34	<chem>NHO2c1ccccc1</chem>	<chem>NHCH2CH2NH</chem>
O-35	<chem>NHO2c1ccccc1</chem>	<chem>NHCH2CH2OCH2CH2NH</chem>

【0221】

* * 【表11】

99
(D系)

100

表4

No.	X'	Z'
D-1	OC ₂ H ₅	O~~~~~O
D-2	OCH ₃	O~~~~~O
D-3	OC ₂ H ₅	O~C~C~C~O
D-4	OC ₂ H ₅	O~C~O~C~O~(平均数)
D-5	O~C~	O~C~C~C~C~O
D-6	O~C~C~C~	O~C~C~C~O
D-7	OCH ₃	O~C~O~C~O~O~O
D-8	OCH ₃	O~C~O~C~O~C~O~O~O
D-9	O(n)O ₂ H ₅	O~C~O~C~O~O~O
D-10	O(n)O ₂ H ₅	O~C~O~C~O~C~O~O~O
D-11	O~C~OCH ₃	O~C~O~C~O~O~O
D-12	O~C~N(CH ₃) ₂	O~C~NH~C~O~C~O~O~O
D-13	OCH ₃	O~C~NH~C~O~C~O~O~O
D-14	OCH ₃	O~C~NH~C~O~C~O~O~O

【0222】

* * 【表12】

101

表4(つづき)

No.	X ²	Z ²
D-15	OCH ₃	OSO ₂ ~~~~~SO ₂ O
D-16	O(n)C ₁₂ H ₂₅	OSO ₂ - SO ₂
D-17	OCH ₃	OCO~~~~COO~~~~OCO~~~~COO
D-18	OCH ₃	OCO~~~~CONH~~~~NHCO~~~~COO
D-19	OCH ₃	OCO~~~~CO ₂ (O~~~~OCO~~~~C ₆ H ₄ ~~~~CO ₂)~~~~OCO~~~~COO (平均数)
D-20	OC ₂ H ₅	OCO~~~~CONH~~~~O
D-21	OCH ₃	OCO~~~~O
D-22	SCH ₃	OCO~~~~OCO
D-23		OCO~~~~OCO
D-24		OCO~~~~OCO
D-25		OCO~~~~OCO
D-26		OCO~~~~OCO
D-27	NH(n)C ₁₂ H ₂₅	OCO~~~~OCO
D-28	OCH ₃	S~~~~~S
D-29	O~~~~OH	S~~~~~S
D-30	O~~~~OCOCH ₃	NHCO~~~~CONH

102

【0223】

* * 【表13】

No.	X ²	Z ²
D-31	OCH ₃	
D-32	OCH ₃	
D-33	OCH ₃	NHCOO~~~~OCOCONH
D-34	OCH ₃	
D-35	OC ₂ H ₅	O

【0224】

* * 【表14】

103

iii) 3官能型以上

E群

104

表-5

No.	X ¹	Z ²
E-1	OH	
E-2	OCH ₃	
E-3	OCOCH ₃	
E-4	OH	
E-5	OCOCH ₃	
E-6	O~	
E-7	OH	
E-8	OH	
E-9	OH	

【0225】

* * 【表15】

105

表-5(つづき)

No.	X'	Z'
E-10	OCOCH ₃	
E-11	SCH ₃	
E-12	Cl	
E-13	Br	
E-14		
E-15		
E-16		
E-17	OCO(n)C _n H _{2n}	
E-18		
E-19		
E-20		
E-21	NHCOCH ₃	
E-22		

【0226】

* * 【表16】

表-5(つづき)

No.	X'	Z'
E-23		
E-24		
E-25	OH	
E-26	OH	

【0227】

* * 【表17】

107

108

F群

表8

No.	X ²	Z ¹
F-1	OH	
F-2	OOH ₂	
F-3	OCH ₃	
F-4	OCH ₃	
F-5	OCH ₃	
F-6	OCH ₃	
F-7	OCH ₃	
F-8	O(n)C ₂ H ₅	
F-9		
F-10	O(n)C ₂ H ₅	

【0228】

* * 【表18】

109

表-8(つづき)

No.	X ⁴	Z ⁴
F-11	NH-C ₆ H ₅	
F-12	NH-(n)C ₂ H ₅	
F-13	Cl	
F-14	O ⁶ N ₃ P	
F-15		
F-16	OCH ₃	
F-17	OCH ₃	
F-18	OCH ₃	
F-19		
F-20		
F-21	OCH ₃	
F-22		

110

【0229】

* * 【化85】

111
iv)高分子型

【0230】

30【化86】

(58)

特開2002-202595

113
G-7

114

Mw 20000

G-8

Mw 20000

G-9

Mw 5000

G-10

Mw 10000

G-11

Mw 10000

【0231】

* * 【化87】

(59)

特開2002-202595

115
6-12

116

6-13

6-14

6-15

【0232】

* * 【化88】

117
G-16

Mw 100000

118

G-17

Mw 15000

G-18

G-19

Mw 15000

G-20

Mw 5000

【0233】

* * 【化89】

119
e-21

Mw 20000

G-22

Mw 30000

G-23

Mw 30000

G-24

Mw 20000

G-25

Mw 15000

G-26

Mw 10000

【0234】

【化90】

121

122

v)その他

(H群)

H-1

H-2

10

H-3

H-4

H-5

20

H-6

H-7

30

【0235】

【化91】

123
(J群)

124

* * 【化92】

【0236】

125

J-10

J-11

J-12

J-13

J-14

J-15

【0237】全ての重合性基含有化合物の使用量は光重合性組成物の全成分の重量に対して、通常1~99.9%、好ましくは5~90.0%、更に好ましくは10~70%の量が使用される。(ここで言う%は重量%である)。

【0238】[線状有機高分子重合体] 本発明の光重合性組成物には、バインダーとしての線状有機高分子重合体を含有させることが好ましい。このような「線状有機高分子重合体」としては、光重合可能なエチレン性不飽和化合物と相溶性を有している線状有機高分子重合体である限り、どれを使用しても構わない。好ましくは水現像或いは弱アルカリ水現像を可能とする水あるいは弱アルカリ水可溶性または膨潤性である線状有機高分子重合体が選択される。線状有機高分子重合体は、該組成物の皮膜形成剤としてだけでなく、現像剤として水、弱アルカリ水或いは有機溶剤のいずれが使用されるかに応じて適宜選択使用される。例えば、水可溶性有機高分子重合体を用いると水現像が可能になる。この様な線状有機高分子重合体としては、側鎖にカルボン酸基を有する付加*50

*重合体、例えば特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭54-92723号、特開昭59-53836号、特開昭59-71048号に記載されているもの、すなわち、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等がある。また同様に側鎖にカルボン酸基を有する酸性セルロース誘導体がある。この他に水酸基を有する付加重合体に環状酸無水物を付加させたものなどが有用である。特にこれらの中で〔ベンジル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体及び〔アリル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体が好適である。この他に水溶性線状有機高分子として、ポリビニルピロドンやポリエチレンオキサイド等が有用である。また硬化皮膜の強度をあげるためにアルコール可溶性ポリアミドや2,2-ビス-(4-ヒドロキシフェ

40

127

ニル) - プロパンとエピクロロヒドリンのポリエーテル等も有用である。これらの線状有機高分子重合体は全組成中に任意な量を混和させることができる。しかし組成物の全成分の重量に対して90重量%を超える場合には形成される画像強度等の点で好ましい結果を与えない。好ましくは30~85%である。また光重合可能なエチレン性不飽和化合物と線状有機高分子重合体は、重量比で1/9~7/3の範囲とするのが好ましい。より好ましい範囲は3/7~5/5である。

【0239】重合禁止剤

また、本発明においては以上の基本成分の他に光重合性組成物製造中あるいは保存中において重合可能なエチレン性不飽和二重結合を有する化合物の不要な熱重合を阻止するために少量の熱重合禁止剤を添加することが望ましい。適当な熱重合禁止剤としてはハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ビロガロール、t-ブチルカテコール、ベンゾキノン、4, 4'-チオビス(3-メチル-6-t-ブチルフェノール)、2, 2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。熱重合禁止剤の添加量は、全組成物の重量に対して約0.01重量%~約5重量%が好ましい。また必要に応じて、酸素による重合阻害を防止するためにベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体等を添加して、塗布後の乾燥の過程で感光層の表面に偏在させてもよい。高級脂肪酸誘導体の添加量は、全組成物の約0.5重量%~約10重量%が好ましい。

【0240】着色剤等

さらに、感光層の着色を目的として染料もしくは顔料を添加してもよい。これにより、印刷版としての、製版後の視認性や、画像濃度測定機適性といつたいわゆる検版性を向上させることができる。着色剤としては、多くの染料は光重合系感光層の感度の低下を生じるので、着色剤としては、特に顔料の使用が好ましい。具体例としては例えばフタロシアニン系顔料、アゾ系顔料、カーボンブラック、酸化チタンなどの顔料、エチルバイオレット、クリスタルバイオレット、アゾ系染料、アントラキノン系染料、シアニン系染料などの染料がある。染料および顔料の添加量は全組成物の約0.5重量%~約5重量%が好ましい。

【0241】その他の添加剤

さらに、硬化皮膜の物性を改良するために無機充填剤や、その他可塑剤、感光層表面のインク着色性を向上させる感脂化剤等の公知の添加剤を加えてよい。可塑剤としては例えばジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカブリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン等があり、結合剤を使用した場合、

128

エチレン性不飽和二重結合を有する化合物と結合剤との合計重量に対し10重量%以下添加することができる。

【0242】また、後述する膜強度(耐刷性)向上を目的とした、現像後の加熱・露光の効果を強化するための、UV開始剤や、熱架橋剤等の添加もできる。その他、感光層と支持体との密着性向上や、未露光感光層の現像除去性を高めるための添加剤、中間層を設けることを可能である。例えば、ジアゾニウム構造を有する化合物や、ホスホン化合物、等、基板と比較的強い相互作用

10 を有する化合物の添加や下塗りにより、密着性が向上し、耐刷性を高めることができ、一方ポリアクリル酸や、ポリスルホン酸のような親水性ポリマーの添加や下塗りにより、非画像部の現像性が向上し、汚れ性の向上が可能となる。

【0243】本発明の光重合性組成物を支持体上に塗布する際には、3種以上の有機溶剤に溶かして使用に供される。ここで使用する溶媒としては、アセトン、メチルエチルケトン、シクロヘキサン、酢酸エチル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、アセチルアセトン、シクロヘキサン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3-メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコ

30 ルモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピルアセテート、N, N-ジメチルホルムアミド、ジメチルスルホキシド、アーブチロラクトン、乳酸メチル、乳酸エチルなどがある。特にプロピレングリコールモノメチルエーテル、メチルエチルケトンの高沸点混合溶媒系に、さらに低沸点のアルコールを混合した3成分

40 混合溶媒が好ましい。上記の3種以上の溶媒を用いて塗布した光重合性組成物(感光層)は120~170°Cで乾燥させることができる。そして、塗布溶液中の固形分の濃度は、2~50重量%が適当である。

【0244】感光層の支持体被覆量は、主に、感光層の感度、現像性、露光膜の強度・耐刷性に影響しうるもので、用途に応じ適宜選択することが望ましい。被覆量が少なすぎる場合には、耐刷性が十分でなくなる。一方多すぎる場合には、感度が下がり、露光に時間がかかる上、現像処理にもより長い時間を要するため好ましくない。本発明の主要な目的である走査露光用平版印刷版と

129

しては、その被覆量は乾燥後の重量で約0.1g/m²～約1.0g/m²の範囲が適当である。より好ましくは0.5～5g/m²である。

【0245】「支持体」本発明の光重合性平版印刷版を得るには上記感光層を、表面が親水性の支持体上に設ける。親水性の支持体としては、従来公知の、平版印刷版に使用される親水性支持体を限定無く使用することができる。使用される支持体は寸度的に安定な板状物であることが好ましく、例えば、紙、プラスチック（例えば、ポリエチレン、ポリプロピレン、ポリстиレン等）がラミネートされた紙、金属板（例えば、アルミニウム、亜鉛、銅等）、プラスチックフィルム（例えば、二酢酸セルロース、三酢酸セルロース、アロビオン酸セルロース、醋酸セルロース、酢酸酯酸セルロース、硝酸セルロース、ポリエチレンテレフタート、ポリエチレン、ポリстиレン、ポリアロビレン、ポリカーボネート、ポリビニルアセタール等）、上記のような金属がラミネートもしくは蒸着された紙もしくはプラスチックフィルム等が含まれ、これらの表面に対し、必要に応じ親水性の付与や、強度向上、等の目的で適切な公知の物理的、化学的処理を施しても良い。

【0246】特に、好ましい支持体としては、紙、ポリエスチルフィルムまたはアルミニウム板が挙げられ、その中でも寸法安定性がよく、比較的安価であり、必要に応じた表面処理により親水性や強度にすぐれた表面を提供できるアルミニウム板は特に好ましい。また、特公昭48-18327号に記載されているようなポリエチレンテレフタートフィルム上にアルミニウムシートが結合された複合体シートも好ましい。

【0247】好適なアルミニウム板は、純アルミニウム板およびアルミニウムを主成分とし、微量の異元素を含む合金板であり、更にはアルミニウムがラミネートまたは蒸着されたプラスチックフィルムでもよい。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等がある。合金中の異元素の含有量は高々10重量%以下である。本発明において特に好適なアルミニウムは、純アルミニウムであるが、完全に純粋なアルミニウムは精錬技術上製造が困難があるので、僅かに異元素を含有するものでもよい。このように本発明に適用されるアルミニウム板は、その組成が特定されるものではなく、従来より公知公用の素材のアルミニウム板を適宜に利用することができる。本発明で用いられるアルミニウム板の厚みはおよそ0.1mm～0.6mm程度、好ましくは0.15mm～0.4mm、特に好ましくは0.2mm～0.3mmである。

【0248】また金属、特にアルミニウムの表面を有する支持体の場合には、粗面化（砂目立て）処理、珪酸ソーダ、弗化ジルコニウム酸カリウム、燐酸塩等の水溶液への浸漬処理、あるいは陽極酸化処理などの表面処理が

130

なされていることが好ましい。アルミニウム板の表面の粗面化処理は、種々の方法により行われるが、例えば、機械的に粗面化する方法、電気化学的に表面を溶解粗面化する方法および化学的に表面を選択溶解させる方法により行われる。機械的方法としては、ボール研磨法、ブライス研磨法、ブラスト研磨法、バフ、磨法等の公知の方法を用いることができる。また、電気化学的な粗面化法としては塩酸、硝酸等の電解液中で交流または直流により行う方法がある。また、特開昭54-63902号に開示されているように両者を組み合わせた方法も利用することができる。また、アルミニウム板を粗面化するに先立ち、所望により、表面の圧延油を除去するために、例えば、界面活性剤、有機溶剤またはアルカリ性水溶液等による脱脂処理が行われる。

【0249】さらに、粗面化したのちに珪酸ナトリウム水溶液に浸漬処理されたアルミニウム板が好ましく使用できる。特公昭47-5125号に記載されているようにアルミニウム板を陽極酸化処理したのちに、アルカリ金属珪酸塩の水溶液に浸漬処理したもののが好適に使用される。陽極酸化処理は、例えば、燐酸、クロム酸、硫酸、硼酸等の無機酸、もしくは磷酸、スルファミン酸等の有機酸またはそれらの塩の水溶液または非水溶液の単独または二種以上を組み合わせた電解液中でアルミニウム板を陽極として電流を流すことにより実施される。

【0250】また、米国特許第3658662号に記載されているようなシリケート電着も有効である。さらに、特公昭46-27481号、特開昭52-58602号、特開昭52-30503号に開示されているような電解グレインを施した支持体と、上記陽極酸化処理および珪酸ソーダ処理を組合せた表面処理も有用である。また、特開昭56-28893号に開示されているような機械的粗面化、化学的エッティング、電解グレイン、陽極酸化処理さらに珪酸ソーダ処理を順に行なったものも好適である。

【0251】さらに、これらの処理を行った後に、水溶性の樹脂、例えばポリビニルホスホン酸、スルホン酸基を側鎖に有する重合体および共重合体、ポリアクリル酸、水溶性金属塩（例えば硼酸亜鉛）もしくは、黄色染料、アミン塩等を下塗りしたものも好適である。さらに特開平7-159983号に開示されているようなラジカルによって付加反応を起こし得る官能基を共有結合させたゾルゲル処理基板も好適に用いられる。

【0252】その他好ましい例として、任意の支持体上に表面層として耐水性の親水性層を設けたものも挙げることができる。このような表面層としては例えばUS3055295号や、特開昭56-13168号記載の無機顔料と接着剤とからなる層、特開平9-80744号記載の親水性潤滑層、特表平8-507727号記載の酸化チタン、ポリビニルアルコール、珪酸類からなるゾルゲル膜等を挙げることができる。これらの親水化処理

131

は、支持体の表面を親水性とするために施される以外に、その上に設けられる光重合性組成物の有害な反応を防ぐため、かつ感光層の密着性の向上等のために施されるものである。

【0253】「保護層」本発明の光重合性平版印刷版は、通常露光を大気中で行うため、感光層の上に、さらに、保護層を有している。保護層は、感光層内で露光により生じる画像形成反応を阻害する大気中に存在する塩基性物質等の低分子化合物の感光層への混入を防止し、大気中での露光を可能とする。従って、このような保護層に望まれる特性は、低分子化合物の透過性が低いことであり、さらに、露光に用いる光の透過は実質阻害せず、感光層との密着性に優れ、かつ、露光後の現像工程で容易に除去できることが望ましい。このような、保護層に関する工夫が従来よりなされており、米国特許第3,458,311号、特開昭55-49729号に詳しく記載されている。保護層に使用できる材料としては例えば、比較的、結晶性に優れた水溶性高分子化合物（水溶性ポリマーともいう）を用いることがよく、具体的には、ポリビニルアルコール、ポリビニルビロドン、酸性セルロース類、ゼラチン、アラビアゴム、ポリアクリル酸などのような水溶性ポリマーが知られているが、これらの内、ポリビニルアルコールを主成分として用いることが、酸素遮断性、現像除去性といった基本特性的にもっとも良好な結果を与える。保護層に使用するポリビニルアルコールは、必要な酸素遮断性と水溶性を有するための、未置換ビニルアルコール単位を含有する限り、一部がエステル、エーテル、およびアセタールで置換されていても良い。また、同様に一部が他の共重合成分を有していても良い。ポリビニルアルコールの具体例としては71～100モル%加水分解され、分子量が重量平均分子量で300から2400の範囲のものを挙げることができる。具体的には、株式会社クラレ製のPVA-105、PVA-110、PVA-117、PVA-117H、PVA-120、PVA-124、PVA-124H、PVA-CS、PVA-CST、PVA-HC、PVA-203、PVA-204、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-217EE、PVA-217E、PVA-220E、PVA-224E、PVA-405、PVA-420、PVA-613、L-8等が挙げられる。

【0254】保護層の成分（PVAの選択、添加剤の使用）、塗布量等は、低分子物質遮断性・現像除去性の他、カブリ性や密着性・耐傷性を考慮して選択される。一般には使用するPVAの加水分解率が高い程（保護層中の未置換ビニルアルコール単位含率が高い程）、膜厚が厚い程低分子物質遮断性が高くなり、感度の点で有利である。しかしながら、極端に低分子物質遮断性を高めると、製造時、生保存時に不要な重合反応が生じたり、

132

また画像露光時に、不要なカブリ、画線の太りが生じたりという問題を生じる。また、画像部との密着性や、耐傷性も版の取り扱い上極めて重要である。即ち、水溶性ポリマーからなる親水性の層を親油性の重合層に積層すると、接着力不足による膜剥離が発生しやすい。これに対し、これら2層間の接着性を改良すべく種々の提案がなされている。例えば米国特許第292501号、米国特許第44563号には、主にポリビニルアルコールからなる親水性ポリマー中に、アクリル系エマルジョンまたは水不溶性ビニルビロドン-ビニルアセテート共重合体などを20～60重量%混合し、重合層の上に積層することにより、十分な接着性が得られることが記載されている。本発明における保護層に対しては、これらの公知の技術をいずれも適用することができる。このような保護層の塗布方法については、例えば米国特許第3,458,311号、特開昭55-49729号に詳しく記載されている。

【0255】さらに保護層には他の機能を付与することもできる。例えば、光源としてレーザー光を使用する場合、感光性組成物としてはその光源波長での感光性には優れるが、他の波長では感光してほしくない場合がある。例えば、光源が750nm以上の赤外領域のものであれば、実質上明室で使用することができるが、実際には蛍光灯の光など短波の光でも感光する場合がある。その場合には、光源の光透過性に優れ、かつ700nm未満の波長光を効率良く吸収しうる着色剤（水溶性染料等）の添加が好ましい。また、別の例として光源が450nm以下の紫外領域のものであれば、実質上セーフライト下で使用することができる。しかし実際には、500nm以上の可視光により感光する場合がある。その場合には、光源の光透過性に優れ、かつ500nm以上の光を効率良く吸収しうる、着色剤（水溶性染料等）の添加により、感度低下を起こすことなく、セーフライト適性をさらに高めることができる。なお保護層を形成する際には、保護層に必要な成分を適当な水溶性溶媒に溶解して塗布液とし、感光層上に塗布乾燥を行うものである。この際の乾燥においても、前述の感光層と同様に120～170℃の範囲で行うことができる。

【0256】本発明の光重合性平版印刷版は、通常、画像露光したのち、現像液で感光層の未露光部を除去し、画像を得る。これらの光重合性平版印刷版から平版印刷版の製版に使用する際の好ましい現像液としては、特公昭57-7427号に記載されているような現像液が挙げられ、ケイ酸ナトリウム、ケイ酸カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、第三リン酸ナトリウム、第二リン酸ナトリウム、第三リン酸アンモニウム、第二リン酸アンモニウム、メタケイ酸ナトリウム、重炭酸ナトリウム、アンモニア水などの無機アルカリ剤やモノエタノールアミンまたはジエタノールアミンなどの有機アルカリ剤の水溶液が適当で

133

ある。このようなアルカリ溶液の濃度が0.1~10重量%、好ましくは0.5~5重量%になるように添加される。

【0257】また、このようなアルカリ性水溶液には、必要に応じて界面活性剤やベンジルアルコール、2-フエノキシエタノール、2-ブトキシエタノールのような有機溶媒を少量含むことができる。例えば、米国特許第3375171号および同第3615480号に記載されているものを挙げることができる。さらに、特開昭50-26601号、同58-54341号、特公昭56-39464号、同56-42860号の各公報に記載されている現像液も優れている。

【0258】その他、本発明の光重合性平版印刷版からの平版印刷版の製版プロセスとしては、必要に応じ、露光前、露光中、露光から現像までの間に、全面を加熱しても良い。このような加熱により、感光層中の画像形成反応が促進され、感度や耐刷性の向上や、感度の安定化といった利点が生じ得る。さらに、画像強度・耐刷性の向上を目的として、現像後の画像に対し、全面後加熱もしくは、全面露光を行うことも有効である。通常現像前の加熱は150°C以下の穏和な条件で行うことが好ましい。温度が高すぎると、非画像部までがかぶってしまう等の問題を生じる。現像後の加熱には非常に強い条件を利用する。通常は200~500°Cの範囲である。温度が低いと十分な画像強化作用が得られず、高すぎる場合には支持体の劣化、画像部の熱分解といった問題を生じる。本発明による走査露光平版印刷版の露光方法は、公知の方法を制限なく用いることができる。光源としてはレーザーが好ましく。例えば、350~450nmの波長の入手可能なレーザー光源としては以下のものを利用することができます。

【0259】ガスレーザーとして、Arイオンレーザー(364nm、351nm、10μm~1W)、Krイオンレーザー(356nm、351nm、10μm~1W)、He-Cdレーザー(441nm、325nm、1μm~100mW)、固体レーザーとして、Nd:YAG(YVO₄)とSHG結晶×2回の組み合わせ(355nm、5μm~1W)、Cr:LiSAFとSHG結晶の組み合わせ(430nm、10μm)、半導体レーザー系として、KNbO₃、リング共振器(430nm、30μm)、導波型波長変換素子とAlGaAs、InGaAs半導体の組み合わせ(380nm~450nm、5μm~100μm)、導波型波長変換素子とAlGaN、AlGaAs半導体の組み合わせ(300nm~350nm、5μm~100μm)、AlGaN(350nm~450nm、5μm~30μm)。その他、パルスレーザーとしてN₂レーザー(337nm*

ゾルゲル反応液

テトラエチルシリケート

水

メタノール

134

*■、パルス0.1~10mJ)、XeF(351nm、パルス10~250mJ)

【0260】特にこの中でAlGaN半導体レーザー(市販InGaN系半導体レーザー400~410nm、5~30mW)が波長特性、コストの面で好適である。その他、450nm~700nmの入手可能な光源としてはAr+レーザー(488nm)、YAG-SHGレーザー(532nm)、He-Neレーザー(633nm)、He-Cdレーザー、赤色半導体レーザー(650~690nm)、及び700nm~1200nmの入手可能な光源としては半導体レーザー(800~850nm)、Nd-YAGレーザー(1064nm)が好適に利用できる。

【0261】その他、超高压、高压、中压、低压の各水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、紫外のレーザランプ(ArFエキシマレーザー、KrFエキシマレーザーなど)、放射線としては電子線、X線、イオンビーム、遠赤外線なども利用できるが、安価な点で上述の350nm以上のレーザー光源が特に好ましい。また、露光機構は内面ドラム方式、外面ドラム方式、フラットベッド方式等のいずれでもよい。また本発明の感光層成分は高い水溶性のものを使用することで、中性の水や弱アルカリ水に可溶とすることもできるが、このような構成の平版印刷版は印刷機上に装填後、機上で露光-現像といった方式を行うこともできる。

【0262】

【実施例】以下、実施例によって本発明を説明するが、本発明はこれらの実施例に限定されるものではない。

30 (支持体の調製) 厚さ0.3mmのアルミニウム板を10重量%水酸化ナトリウムに60°Cで25秒間浸漬してエッティングした後、流水で水洗後20重量%硝酸で中和洗浄し、次いで水洗した。これを正弦波の交番波形電流を用いて1重量%硝酸水溶液中で300クロム/dm²の陽極時電気量で電解粗面化処理を行った。引き続いて1重量%水酸化ナトリウム水溶液中に40°Cで5秒間浸漬後30重量%の硫酸水溶液中に浸漬し、60°Cで40秒間デスマット処理した後、20重量%硫酸水溶液中、電流密度2A/dm²において、陽極酸化皮膜の厚さが2.7g/m²になるように、2分間陽極酸化処理した。その表面粗さを測定したところ、0.3μm(JIS B0601によるRa表示)であった。このように処理された基板の裏面に下記のゾルゲル反応液をバーコーターで塗布し100°Cで1分間乾燥し、乾燥後の塗布量が70mg/m²のバックコート層を設けた支持体を作成した。

【0263】

50重量部

20重量部

15重量部

135

リン酸

【0264】上記成分を混合、攪拌すると約5分で発熱 *ることによりバックコート塗布液を調製した。
が開始した。60分間反応させた後以下に示す液を加え* 【0265】

ピロガロールホルムアルデヒド縮合樹脂(分子量2000)	4重量部
ジメチルフタレート	5重量部
フッ素系界面活性剤(N-ブチルペルフルオロオクタン)	0.7重量部
スルホンアミドエチルアクリレート/ポリオキシエチレン	
アクリレート共重合体:分子量2万)	
メタノールシリカゾル(日産化学工業(株)製、メタノール30重量%)	
メタノール	50重量部
	800重量部

【0266】(感光層の調製)このように処理されたアルミニウム板上に下記組成の感光層形成溶液を乾燥塗布 【0267】

量が1.5g/m²となるように塗布し、130°Cで1*

(感光層形成溶液)

下記表-7の光重合開始剤[X]	0.2 g
下記表-7の増感色素[Y]	0.2 g
下記表-7の高分子バインダー[Z]	2.0 g
下記表-7の重合性化合物[R]	1.5 g
下記表-7の添加剤[S]	0.3 g
フッ素系界面活性剤	0.03 g

(カワツグF-177:大日本インキ化学工業(株)製)

熱重合禁止剤

N-ニトロソフェニルヒドロキシルアミシアルミニウム塩 0.01 g

顔料分散物 2.0 g

顔料分散物の組成

Pigment Blue 15:6	15重量部
アリルメタクリレート/メタクリル酸共重合体	10重量部
(共重合モル比/83/17)	
シクロヘキサン	15重量部
メトキシプロピルアセテート	20重量部
プロピレングリコールモノメチルエーテル	40重量部
メチルエチルケトン	15 g
プロピレングリコール	15 g
下表-7の低沸点アルコール[Q]	10 g

【0268】(保護層の調整)上述の感光層上に、ボリ★性平版印刷版(感材)を作製した。

ビニルアルコール(ケン化度98%、重合度550)3 【0269】

重量%の水溶液を乾燥塗布重量が2g/m²となるよう 【表19】

に塗布、100°Cで2分間乾燥し、下記表-7の光重合★

137

138

<表-7:実施例>

	X	Y	Z	R	S	Q	光重(m)
実施例	1 X-1	Y-1	Z-1	R-1	なし	A	400
" 2	X-2	Y-1	Z-1	R-1	なし	A	400
" 3	X-3	Y-2	Z-2	R-2	S-1	B	400
4	X-4	Y-3	Z-2	R-2	S-2	B	400
5	X-5	Y-1	Z-3	R-3	S-2	C	400
6	X-6	Y-2	Z-1	R-4	S-3	C	400
7	X-1	Y-4	Z-1	R-1	なし	A	532
8	X-4	Y-5	Z-2	R-2	S-4	A	532
9	X-7	Y-6	Z-3	R-4	S-1	B	532
10	X-8	Y-7	Z-1	R-2	なし	A	830
11	X-9	Y-7	Z-1	R-2	なし	A	830
12	X-10	Y-7	Z-1	R-1	なし	B	830
13	X-8	Y-8	Z-2	R-2	なし	B	830
14	X-9	Y-8	Z-2	R-4	なし	C	830
15	X-10	Y-9	Z-3	R-4	なし	C	830
比較例	1 X-1	Y-1	Z-1	R-1	なし	なし	400
" 2	X-2	Y-1	Z-1	R-1	なし	なし	400
" 3	X-3	Y-2	Z-2	R-2	S-1	なし	400
4	X-4	Y-3	Z-2	R-2	S-2	なし	400
5	X-5	Y-1	Z-3	R-3	S-2	なし	400
6	X-6	Y-2	Z-1	R-4	S-3	なし	400
7	X-1	Y-4	Z-1	R-1	なし	なし	532
8	X-4	Y-5	Z-2	R-2	S-4	なし	532
9	X-7	Y-6	Z-3	R-4	S-1	なし	532
10	X-8	Y-7	Z-1	R-2	なし	なし	830
11	X-9	Y-7	Z-1	R-2	なし	なし	830
12	X-10	Y-7	Z-1	R-1	なし	なし	830
13	X-8	Y-8	Z-2	R-2	なし	なし	830
14	X-9	Y-8	Z-2	R-4	なし	なし	830
15	X-10	Y-9	Z-3	R-4	なし	なし	830
比較例	16 X-1	Y-1	Z-1	R-1	なし	なし	400
" 17	X-3	Y-2	Z-2	R-2	S-1	なし	400
" 18	X-5	Y-1	Z-3	R-3	S-2	なし	400
(但し、比較例16~18は感光層の発色度を100°Cに低下したもの)							

<表中の低沸点アルコール>

- A : メタノール
 B : イソブロパノール
 C : n-ブロパノール

【0270】なお、感光層に用いる光重合開始剤 30* 【0271】

〔X〕、増感色素〔Y〕、高分子バインダー〔Z〕、重 【化93】

合性化合物〔R〕、添加剤〔S〕を以下に示す。 *

(71)

(X-2)

140

(X-4)

(X-5)

(X-6)

(X-7)

(X-8)

(X-9)

(X-10)

【0272】

* * 【化94】

142

141

(Y-2)

(Y-3)

(Y-4)

(Y-5)

(Y-6)

(Y-7)

(Y-8)

(Y-9)

【0273】

* * 【化95】

143
(Z-1)

ベンジルメタクリレート/メタクリル酸=70/30mol%の共重合体

Mw 100000

(Z-2)

アリルメタクリレート/メタクリル酸=80/20mol%の共重合体

Mw 120000

(Z-3)

エチルメタクリレート/メタクリル酸=85/15mol%の共重合体

Mw 100000

(R-1)

ベンタエリスリトールテトラアクリレート(ATMMT)

(R-2)

ジベンタエリスリトールヘキサアクリレート(DPHHA)

(R-3)

(R-4)

(S-1)

(S-2)

(S-3)

(S-4)

【0274】(感度の評価)このように得られた感材は、上記表-7に示す露光波長に応じてそれぞれ異なる光源を利用し、感度評価を行った。たとえば、400 nmの半導体レーザー、532 nmのFD-YAGレーザー、830 nmの半導体レーザーをそれぞれ用い大気中で露光した。下記組成の現像液に25°C、10秒間浸漬し、現像を行い、画像ができるその最小露光量からそれぞれの露光条件での感度をmJ/cm²単位で算出した。この40 【0275】

数値が小さい方が高感度である。但し、光源波長が違う*

*と光子1つ当たりが有するエネルギー量が異なるため、単純に考えても通常は短波になるほど上述の露光量が少なくとも感光することが可能となり、短波の方が高感度となる。従って、表-8は、異なる露光条件間での感度比較には意味がなく、あくまでも同一露光条件での実施例と比較例での差を見るためのものである。結果を下記表-8に示す。

(現像液の組成)

D P - 4 (富士写真フィルム社製)	65. 0 g
水	880. 0 g
リボミンLA (20%水溶液、ライオン(株)社製)	50. 0 g

【0276】(保存安定性の評価)レーザ露光前の上記感光材料を高温条件下(60°C)に7日間放置し、その後この保存後の感材を前記と同様にレーザ露光し記録に必要なエネルギー量を算出し、高温保存前後のエネルギー比(高温保存後のエネルギー/高温保存前のエネルギー)※50

※一)を求めた。このエネルギー比が1.1以下であることが製造上好ましく保存安定性においても良好といえる。この評価結果も下記表-8に示す。

【0277】(明室安定性)上述の塗布感材を蛍光灯にOD 6以上で450 nm以下をカットできるフィルター

145

をつけた黄色または黄橙色光に200ルクスで、30分
間曝した後に感度評価を行う。感度変化が感度比で1.
0~1.1倍までのものを許容とする。結果を下記表一* 【表20】
<表-8: 評価結果>

	感度 (mJ/cm ²)	保存安定性 (感度比)	明室安定性 (感度比)
実施例 1	0.07	1.0	1.0
〃 2	0.06	1.0	1.0
3	0.06	1.0	1.0
4	0.05	1.05	1.05
5	0.06	1.0	1.0
6	0.06	1.05	1.05
7	0.16	1.05	カブリによる現像不良
8	0.16	1.0	カブリによる現像不良
9	0.15	1.05	カブリによる現像不良
10	60	1.0	1.0
11	80	1.0	1.0
12	60	1.05	1.0
13	60	1.0	1.0
14	60	1.05	1.0
15	70	1.05	1.0
比較例 1	現像不良		
〃 2	現像不良		
3	現像不良	↑	評価できず
4	現像不良		
5	現像不良		
6	現像不良	↓	
7	現像不良	↑	
8	現像不良	↓	評価できず
9	現像不良		
10	現像不良	↑	
11	現像不良		
12	現像不良	↑	評価できず
13	現像不良		
14	現像不良		
15	現像不良	↓	
16	0.08	1.4	1.0
17	0.09	1.5	1.0
18	0.08	1.3	1.0

【0279】表-8より本発明の光重合性平版印刷版は高感度であり、かつ保存安定性が非常に良好であることがわかる。特に保存安定性試験は、60℃の高温条件下に7日間放置したものであり、このような試験において許容されるものは、夏場や熱帯地域などの厳しい条件下でも安定であるといえる。また、400nm及び830nm露光系では、さらに明室化も良好である。

【0280】

* 【発明の効果】本発明の光重合性平版印刷版は、感光層を形成する際に、ハロゲン原子含有光重合開始剤を含有する光重合性組成物を、3種以上の混合溶剤に溶解して支持体上に塗布することで、塗布乾燥カブリを生じずに、120℃以上の高温乾燥が可能になり、保存安定性についても向上させることができた。よって、本発明の光重合性平版印刷版は、高感度で、明室取り扱い性及び保存安定性が良好になった。