Practical Predictive Analytics Seminar

Talex Diede Session 4: Machine Learning Topics May 22, 2019

GLM review

- Linear model
- Interpretable
- Issues:
 - Multicollinearity
 - Variable selection
 - Variable importance
 - Interactions

Why machine learning?

- Data continues to grow
- Powerful
- Flexible
- Computational enhancements
 - Cheaper
 - More available
- It's sexy

NETFLIX

Machine learning techniques

- Regularization methods
- Classification and regression trees
- Ensemble models
- Others:
 - Clustering
 - Bayesian
 - Neural network
 - Deep learning

Regularization Methods

What is "regularization"?

 Regularization is a technique used to avoid the problem of overfitting. The idea is to add a complexity term to the loss function to penalize more complex models.

Regularization methods

- Ridge regression
- LASSO
- ElasticNet

- In R:
 - Packages: glmnet, MASS, ridge, lars, elasticnet, ...

Ridge regression

- weight decay
- L2-norm penalty
- loglikelihood =

$$-\sum[Y_i\ln(\hat{y}_i)+(1-Y_i)\ln(1-\hat{y}_i)]+\lambda\sum\boldsymbol{\beta^2}$$

LASSO

- Least absolute shrinkage and selection operator
- L1-norm penalty
- loglikelihood =

$$-\sum [Y_i \ln(\hat{y}_i) + (1 - Y_i) \ln(1 - \hat{y}_i)] + \lambda \sum |\boldsymbol{\beta}|$$

ElasticNet

- Convex combination of ridge and LASSO
- L2 & L1-norm penalties
- loglikelihood =

$$-\sum_{i=1}^{n} \left[Y_{i} \ln(\hat{y}_{i}) + (1 - Y_{i}) \ln(1 - \hat{y}_{i})\right] + \lambda \left((1 - \alpha) \sum_{i=1}^{n} \beta^{2} + \alpha \sum_{i=1}^{n} |\beta| \right)$$

Aside: Cross-Validation

• Useful for smaller datasets

Classification and Regression Trees (CART)

Trees

- Sequence of questions/rules for splitting the data
- Elements of CART algorithms
 - Rules for splitting data at each node
 - Stopping criteria
 - Prediction for the target variable

N = 350 0 = 200/350 1 = 150/350

Classification vs regression

- Classification trees: used for categorical or binary target variables
 - Predict the category a policy will fall into
- Regression trees: continuous target variable
 - Predict the value of the continuous target

Splitting nodes

- Goal: choose the split that results in nodes with maximum homogeneity
- Classification: "Impurity" function
 - Entropy
 - Misclassification rate
 - Gini index
 - Twoing

Stopping rules

- Depth
- Size
- Number of nodes
- Complexity parameter

Ensemble Models

Overview

• What:

 An ensemble model is the aggregation of two or more related but different models, averaged into a single prediction.

• Why:

- Improve accuracy of predictions
- Improve stability of the model

Ensemble methods

- Bagging
- Boosting
- Stacking

Bagging

- What is it:
 - Building multiple models from different subsamples of the training dataset, results are then combined for the final prediction.
 - Helps to reduce the variance error
- Example:
 - Random Forest
 - R package: randomForest,

Boosting

- What is it:
 - Building multiple models, each of which is built to improve the prediction errors of a prior model
 - Has shown better predictive accuracy than bagging, but more likely to overfit
- Example:
 - Gradient Boosted Machines (GBM)
 - R packages: **gbm**, xgboost, ...

Stacking

- What is it:
 - Building multiple models, typically different types of models, then having a supervisor model that determines how to best combine those results

Back to R!

Tidymodels (tidymodels.org)

Final Thoughts

Weighing your options

- Implementation
- Explanation
- Cost

Other considerations

- Actuarial judgment
- Model selection
- Data issues
- Hardware/Software

Now you're on your way!

