Piotr Szmurło 303785

WSI21Z

Ćw 2. (7 pkt), data oddania: do 08.11.2021 - Algorytmy ewolucyjne i genetyczne

Zaimplementować algorytm ewolucyjny dla problemu minimalizacji funkcji n-zmiennych np. dwuwymiarowe: Rosenbrock Function, Shubert Function, Bird Function.

Wyniki eksperymentów (Bird Function, wartość minimum globalnego -106.764537):

Rozmiar populacji	Średni czas działania z trzech prób (500 iteracji)	Średnia wartość funkcji celu
20	0.68s	-106.7877154742328
50	1.62s	-106.78773161600293
100	3.20s	-106.78773348229161
200	6.55s	-106.78773363342042
500	17.33s	-106.78773368433772

-120

10

Wnioski i obserwacje:

Bardzo ważnym elementem jest równomierne pokrycie dziedziny populacją początkową. Dzięki temu osobniki w okolicy maksimum globalnego mają szansę na zdominowanie populacji (wiele optimów jest sprawdzane). Gdy populacja początkowa składa się z klonów losowego punktu, występuje duże ryzyko utknięcia algorytmu w minimum lokalnym. W takim wypadku można odpowiednio zwiększyć siłę mutacji, aby populacja miała szansę przejść do lepszego minimum (mimo to startowanie z jednego, losowego punktu nie jest zbyt dobrym rozwiązaniem).

Równomierne pokrycie dziedziny wiąże się z zwiększeniem wielkości populacji, jednak wydłuża to czas działania algorytmu.

Zbyt duży rozmiar elity może powodować gorsze właściwości eksploracyjne algorytmu (zwiększają się za to zdolności eksploatacyjne) – przeżywa zbyt mało słabych osobników, które mogą być bliżej lepszego minimum niż reszta populacji.

Zwiększenie siły i prawdopodobieństwa mutacji zwiększa właściwości eksploracyjne populacji, jednak może spowodować problem ze znalezieniem ostatecznego punktu z wysoką precyzją (eksploatacja). Dobrym podejściem mogłoby być ustawienie dużych wartości związanych z mutacją i zmniejszanie ich wraz z kolejnymi iteracjami.