## Derivative of the Inverse Function

Let (a,b) be a coordinate on the graph of y = f(x).

f(x) takes a in as an input, does something with that value, and produces the output b.

 $f^{-1}$  takes in b as an input, does something with that value, and produces the output a.





To figure out the value of  $(f^{-1})'$ , we differentiate the following equation that we know from the properties of inverse functions:

$$f^{-1}(f(x)) = x$$

$$\left[f^{-1}(f(x))\right]' = [x]'$$

$$(f^{-1})'(f(x)) \cdot f'(x) = 1$$

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

What good does this do us? Well, if  $(a,b) \sim (x,y)$  we can substitute to get the following:

$$\left(f^{-1}\right)'(b) = \frac{1}{f'(a)}$$

I like to think of it in less formal terms:

$$(f^{-1})'(b) = \frac{1}{f'(\text{whatever makes})}$$

$$f(x) = b$$

1. The following table gives the values of a differentiable function f, and its derivative f' at given values of x.

| х | f | f'            |
|---|---|---------------|
| 1 | 2 | $\frac{1}{2}$ |
| 2 | 3 | 1             |
| 3 | 4 | 2             |
| 4 | 6 | 4             |

If g(x) is the inverse function of f(x), then what is the value of g'(4)?

- (b)  $\frac{1}{4}$  (c)  $\frac{1}{3}$  (d)  $\frac{1}{2}$
- (e) 2
- 2. If  $f(x) = x^3 3x^2 + 8x + 5$  and  $g(x) = f^{-1}(x)$ , then g'(5) =(a) 8 (b)  $\frac{1}{8}$  (c) 1 (d)  $\frac{1}{53}$

- (e) 5

1. The following table gives the values of a differentiable function f, and its derivative f' at given values of x.

| х | f | f'            |
|---|---|---------------|
| 1 | 2 | $\frac{1}{2}$ |
| 2 | 3 | 1             |
| 3 | 4 | 2             |
| 4 | 6 | 4             |

If g(x) is the inverse function of f(x), then what is the value of g'(4)?

- (a)  $\frac{1}{6}$
- (b)  $\frac{1}{4}$  (c)  $\frac{1}{3}$  (d)  $\frac{1}{2}$
- (e) 2
- 2. If  $f(x) = x^3 3x^2 + 8x + 5$  and  $g(x) = f^{-1}(x)$ , then g'(5) =(a) 8 (b)  $\frac{1}{8}$  (c) 1 (d)  $\frac{1}{53}$

- (e) 5

## Derivative of the Inverse Function

Let (a,b) be a coordinate on the graph of y = f(x).

f(x) takes a in as an input, does something with that value, and produces the output b.

 $f^{-1}$  takes in b as an input, does something with that value, and produces the output a.





To figure out the value of  $(f^{-1})'$ , we differentiate the following equation that we know from the properties of inverse functions:

$$f^{-1}(f(x)) = x$$

$$\left[f^{-1}(f(x))\right]' = [x]'$$

$$(f^{-1})'(f(x)) \cdot f'(x) = 1$$

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

What good does this do us? Well, if  $(a,b) \sim (x,y)$  we can substitute to get the following:

$$\left(f^{-1}\right)'(b) = \frac{1}{f'(a)}$$

I like to think of it in less formal terms:

$$(f^{-1})'(b) = \frac{1}{f'(\text{whatever makes})}$$

$$f(x) = b$$