Course: INFO 531: Data Warehousing and Analytics in the Cloud

Term name and year: Spring 2025 Student's Full Name: Kai Shuen Neo

Week 16 Final Project Report

Brief description of project

This project aims to make a prediction on the level of problematic internet use exhibited by children by analysing their physical activity through fitness data. This aids in identifying early signs and indicators of problematic internet and technology use in children, allowing for prompt interventions in the earlier stages of recognising this problem that they might have and to eventually encourage and inculcate healthier digital habits in children. In the long-term, this better equips children in navigating the digital landscape responsibly.

Data source

The data that would be used would be the data collected from the Healthy Brain Network (HBN) dataset, a clinical sample containing the health data of 5000 individuals aged 5-22 years old who have undergone clinical and research screenings. The dataset consists of features that include individuals' physical activity data and internet usage behaviour data, with response being individuals' Severity Impairment Index (SII), a measure of the problematic internet use. The source of data is from Kaggle: https://www.kaggle.com/competitions/child-mind-institute-problematic-internet-use/data

Data

Data files would include a train.csv file and a test.csv file.

Tools

The tool that would be used would be a Jupyter Notebook (Anaconda) that runs on Python3.

Data Preparation Plan

Data preparation would involve data discovery, data cleaning and data transformation to preprocess data to allow it to be suitable for analysis and modelling.

In terms of data discovery, we would first need to understand the data collected. This would mean checking the data structure and data type of predictor and response variables, and thereafter, identifying data quality issues that could surface in the form of corrupted values, missing values, imbalanced and standardless data. It is critical that we filter them out at this step as data quality issues could potentially affect our analysis further on. We would also seek to understand our data better through the use of descriptive statistics and data visualizations by checking the distributions of variables and correlation between variables.

Subsequently, after the data discovery step, we would identify the data quality issues observed in the data cleaning step and fix them in the data transformation step. This would involve correcting, creating, converting and completing data. To handle missing values ('NaN' / 'NA' cells), we could consider omitting them completely, or replacing them using mean/median/mode imputation, depending on the amount of missing data so as to complete the dataset. In the event that data duplicates are present, we would remove them to prevent skewed results. As for data

inconsistencies, we could do standardization and normalization to ensure consistent formatting across all variables so as to achieve data accuracy. For instance, we could map strings and time into numbers so that the data can be processed by the code more easily. This could also involve converting variable types from categorical to numerical. We could also delete variables that are meaningless and create new variables so that the data can be better generalized. We would also need to correct possible outliers, unacceptable data inputs and unreasonable values by replacing them with NaN for further processing.

Finally, upon the completion of data preprocessing, we can then use the cleaned and processed data for exploratory data analysis and statistical evaluation to test our hypotheses. We can also utilize several Machine Learning techniques to fit models that could aid in making our predictions.

Actual code and output generated from data preparation

```
[1]: # topic: Relating physical activity to problematic internet use
    # objective: predict sii using physical activity fitness data (via classification)
    # important features include - Parent-Child Internet Addiction Test (PCIAT).

[3]: # import libraries
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    import sklearn
    from scipy import stats
    from sklearn.linear_model import LinearRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import GradientBoostingClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.neighbors import train_test_split, KFold, cross_val_score
    from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fbeta_score, roc_auc_score, classificat
```

Figure 1: import libraries

	id	Basic_Demos- Enroll_Season	Basic_Demos- Age	Basic_Demos- Sex	CGAS- Season	CGAS- CGAS_Score	Physical- Season	Physical- BMI	Physical- Height	Physical- Weight	 PCIAT- PCIAT_18	PCIAT- PCIAT_19	PCI/
0	00008ff9	Fall	5	0	Winter	51.0	Fall	16.877316	46.0	50.8	 4.0	2.0	
1	000fd460	Summer	9	0	NaN	NaN	Fall	14.035590	48.0	46.0	 0.0	0.0	
2	00105258	Summer	10	1	Fall	71.0	Fall	16.648696	56.5	75.6	 2.0	1.0	
3	00115b9f	Winter	9	0	Fall	71.0	Summer	18.292347	56.0	81.6	 3.0	4.0	
4	0016bb22	Spring	18	1	Summer	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	

3955	ff8a2de4	Fall	13	0	Spring	60.0	Fall	16.362460	59.5	82.4	 1.0	1.0	
3956	ffa9794a	Winter	10	0	NaN	NaN	Spring	18.764678	53.5	76.4	 NaN	NaN	
3957	ffcd4dbd	Fall	11	0	Spring	68.0	Winter	21.441500	60.0	109.8	 1.0	0.0	
3958	ffed1dd5	Spring	13	0	Spring	70.0	Winter	12.235895	70.7	87.0	 1.0	1.0	
3959	ffef538e	Spring	11	0	NaN	NaN	Winter	NaN	NaN	NaN	 NaN	NaN	

Figure 2: import training dataset

[7]:	# import test dataset
	test_df = pd.read_csv('test.csv')
	test_df

7]:		id	Basic_Demos- Enroll_Season	Basic_Demos- Age	Basic_Demos- Sex	CGAS- Season	CGAS- CGAS_Score	Physical- Season	Physical- BMI	Physical- Height	Physical- Weight	 BIA- BIA_TBW		PAQ PAQ_A_To
	0	00008ff9	Fall	5	0	Winter	51.0	Fall	16.877316	46.00	50.8	 32.6909	NaN	٨
	1	000fd460	Summer	9	0	NaN	NaN	Fall	14.035590	48.00	46.0	 27.0552	NaN	١
	2	00105258	Summer	10	1	Fall	71.0	Fall	16.648696	56.50	75.6	 NaN	NaN	٨
	3	00115b9f	Winter	9	0	Fall	71.0	Summer	18.292347	56.00	81.6	 45.9966	NaN	٨
	4	0016bb22	Spring	18	1	Summer	NaN	NaN	NaN	NaN	NaN	 NaN	Summer	1
	5	001f3379	Spring	13	1	Winter	50.0	Summer	22.279952	59.50	112.2	 63.1265	NaN	٨
	6	0038ba98	Fall	10	0	NaN	NaN	Fall	19.660760	55.00	84.6	 47.2211	NaN	٨
	7	0068a485	Fall	10	1	NaN	NaN	Fall	16.861286	59.25	84.2	 50.4767	NaN	٨
	8	0069fbed	Summer	15	0	NaN	NaN	Spring	NaN	NaN	NaN	 NaN	NaN	٨
	9	0083e397	Summer	19	1	Summer	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	٨
1	0	0087dd65	Spring	11	1	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	٨
	11	00abe655	Fall	11	0	Summer	66.0	NaN	NaN	NaN	NaN	 NaN	NaN	٨
1	2	00ae59c9	Fall	13	0	NaN	NaN	Winter	21.079065	57.75	100.0	 56.0118	NaN	٨
1	3	00af6387	Spring	12	0	NaN	NaN	Spring	15.544111	60.00	79.6	 NaN	NaN	٨
1	4	00bd4359	Spring	12	0	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	٨
1	5	00c0cd71	Winter	7	0	Summer	51.0	Spring	29.315775	54.00	121.6	 NaN	NaN	٨
1	6	00d56d4b	Spring	5	1	Summer	80.0	Spring	17.284504	44.00	47.6	 NaN	NaN	٨
	17	00d9913d	Fall	10	1	NaN	NaN	Fall	19.893157	55.00	85.6	 NaN	NaN	٨
1	8	00e6167c	Winter	6	0	Spring	60.0	Winter	30.094649	37.50	60.2	 38.7638	NaN	٨
1	9	00ebc35d	Winter	10	0	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	٨

20 rows × 59 columns

Figure 3: import test dataset

[11]: train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3960 entries, 0 to 3959
Data columns (total 82 columns):

Data	columns (total 82 columns):		
#	Column	Non-Null Count	Dtype
0 1	id Basic_Demos-Enroll_Season	3960 non-null 3960 non-null	object
	Basic_Demos-Age	3960 non-null	int64
	Basic_Demos-Sex	3960 non-null 3960 non-null	int64
	CGAS-Season	3960 non-null 2555 non-null 2421 non-null 3310 non-null 3022 non-null 3027 non-null	object
	CGAS-CGAS_Score	2421 non-null	float64
	Physical-Season	3310 non-null	object
	Physical-BMI	3022 non-null	float64
	Physical-Height	3027 non-null	float64
9	Physical-Weight	3076 Hon-hucc	1100104
	Physical-Waist_Circumference	898 non-null 2954 non-null	float64
11 12	Physical-Diastolic_BP Physical-HeartRate	2967 non-null	float64 float64
13	Physical-Systolic_BP	2054 11	41
	Fitness_Endurance-Season	1308 non-null	object
	Fitness_Endurance-Max_Stage	1308 non-null 743 non-null 740 non-null 740 non-null 3346 non-null 2322 non-null 2282 non-null	float64
16	Fitness_Endurance-Time_Mins	740 non-null	float64
17	Fitness_Endurance-Time_Sec	740 non-null	float64
	FGC-Season	3346 non-null	object
19	FGC-FGC_CU	2322 non-null	float64
20	FGC-FGC_CU_Zone	2282 non-null	float64
	FGC-FGC_GSND		
	FGC-FGC_GSND_Zone	1062 non-null	float64
	FGC-FGC_GSD		float64
	FGC-FGC_GSD_Zone		float64 float64
	FGC-FGC_PU FGC-FGC_PU_Zone		float64
	FGC-FGC_SRL	2305 non-null	
	FGC-FGC_SRL_Zone	2267 non-null	
	FGC-FGC_SRR	2307 non-null	
	FGC-FGC_SRR_Zone	2269 non-null	
31	FGC-FGC_TL	2324 non-null	float64
	FGC-FGC_TL_Zone	2285 non-null	
	BIA-Season	2145 non-null	
	BIA-BIA_Activity_Level_num	1991 non-null	
	BIA-BIA_BMC BIA-BIA_BMI		float64 float64
	BIA-BIA BMR		float64
	BIA-BIA DEE		float64
	BIA-BIA_ECW		float64
	BIA-BIA FFM		float64
	BIA-BIA_FFMI	1991 non-null	float64
	BIA-BIA_FMI		float64
43	BIA-BIA_Fat		float64
44	BIA-BIA_Frame_num	1991 non-null	float64
	BIA-BIA_ICW		float64
	BIA-BIA_LDM BIA-BIA_LST	1991 non-null	float64
	BIA-BIA_SMM	1991 non-null 1991 non-null	float64 float64
	BIA-BIA_TBW	1991 non-null	float64
50	PAQ_A-Season	475 non-null	object
	PAQ_A-PAQ_A_Total	475 non-null	float64
	PAQ_C-Season	1721 non-null	object
53	PAQ_C-PAQ_C_Total	1721 non-null	float64
54	PCIAT-Season	2736 non-null	object
55	PCIAT-PCIAT_01	2733 non-null	float64
56	PCIAI-PCIAI_02	2734 non-null	float64
57	PCIAT-PCIAT_03	2731 non-null	float64
	PCIAT_PCIAT_04	2731 non-null	float64
59 60	PCIAT-PCIAT_05 PCIAT-PCIAT_06	2729 non-null 2732 non-null	float64 float64
61	PCIAT-PCIAT_06 PCIAT-PCIAT_07	2732 non-null	float64
62	PCIAT-PCIAT_07	2730 non-null	float64
63	PCIAT-PCIAT_00	2730 non-null 2730 non-null 2733 non-null	float64
64	PCIAT_PCIAT_10	2733 non-null	float64
65	PCIAT_PCIAT_11	2734 non-null	float64
66	PCIAT-PCIAT_12	2731 non-null	float64
67	PCIAT-PCIAT_13	2729 non-null	float64
68	PCIAT-PCIAT_14	2732 non-null	float64
69	PCIAT_PCIAT_15	2731 non-null 2729 non-null 2732 non-null 2730 non-null	float64
		Figure 1: ab	

Figure 4: about the training dataset

```
float64
                                                                  float64
float64
float64
float64
float64
                                                                  object
float64
float64
object
float64
float64
```

```
[13]: test_df.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 20 entries, 0 to 19 Data columns (total 59 columns):
                                                                                                   Non-Null Count Dtype
                     Column
              0
                                                                                                    20 non-null
                                                                                                                                    object
                      Basic_Demos-Enroll_Season
                                                                                                    20 non-null
                                                                                                                                   object
                     Basic_Demos-Age
Basic_Demos-Sex
CGAS-Season
CGAS-CGAS_Score
                                                                                                    20 non-null
                                                                                                                                   int64
                                                                                                    20 non-null
10 non-null
                                                                                                                                   int64
                                                                                                                                   object
                                                                                                    8 non-null
                                                                                                                                   float64
                     Physical-Season
Physical-BMI
Physical-Height
                                                                                                    14 non-null
13 non-null
                                                                                                                                   object
float64
                                                                                                    13 non-null
                                                                                                                                    float64
                     Physical-Weight
Physical-Waist_Circumference
Physical-Diastolic_BP
                                                                                                   13 non-null
5 non-null
11 non-null
                                                                                                                                   float64
float64
               10
11
                                                                                                                                   float64
                     Physical-HeartRate
Physical-Systolic_BP
Fitness_Endurance-Season
                                                                                                                                   float64
float64
              12
                                                                                                    12 non-null
                                                                                                   12 non-null
11 non-null
4 non-null
3 non-null
3 non-null
3 non-null
                                                                                                                                   object
               15
16
17
                     Fitness_Endurance-Max_Stage
Fitness_Endurance-Time_Mins
Fitness_Endurance-Time_Sec
                                                                                                                                   float64
float64
float64
                                                                                                                                   object
float64
float64
              18
                      FGC-Season
                                                                                                    17 non-null
                     FGC-Season
FGC-FGC_CU
FGC-FGC_CU_Zone
FGC-FGC_GSND
FGC-FGC_GSND_Zone
FGC-FGC_GSD
                                                                                                    13 non-null
13 non-null
              19
20
                                                                                                   5 non-null
5 non-null
5 non-null
5 non-null
              21
                                                                                                                                    float64
                                                                                                                                   float64
float64
              22
              24
                      FGC-FGC_GSD_Zone
                     FGC-FGC_GSD_Zone
FGC-FGC_PU_Zone
FGC-FGC_PL_Zone
FGC-FGC_SRL_
FGC-FGC_SRR_ZOne
FGC-FGC_SRR_ZOne
FGC-FGC_TL_
FGC-FGC_TL_ZONE
BIA-Season
BIA-BIA Activity
                                                                                                                                    float64
                                                                                                    13 non-null
13 non-null
13 non-null
                                                                                                                                   float64
float64
              25
              26
27
                                                                                                                                    float64
              28
                                                                                                    13 non-null
                                                                                                                                    float64
              29
30
31
                                                                                                    13 non-null
                                                                                                                                    float64
                                                                                                    13 non-null
                                                                                                                                    float64
                                                                                                    13 non-null
                                                                                                                                   float64
                                                                                                   13 non-null
8 non-null
8 non-null
                                                                                                                                   float64
object
                      BIA-BIA_Activity_Level_num
              34
                                                                                                                                    float64
              35
36
37
                     BIA-BIA_BMC
BIA-BIA_BMI
                                                                                                    8 non-null
8 non-null
                                                                                                                                   float64
float64
                      BIA-BIA BMR
                                                                                                    8 non-null
                                                                                                                                   float64
                     BIA-BIA_DEE
BIA-BIA_ECW
BIA-BIA_FFM
                                                                                                    8 non-null
8 non-null
                                                                                                                                   float64
float64
              38
39
              40
                                                                                                    8 non-null
                                                                                                                                    float64
              41
42
43
                     BIA-BIA_FFMI
BIA-BIA_FMI
BIA-BIA_Fat
                                                                                                    8 non-null
8 non-null
                                                                                                                                   float64
float64
                                                                                                    8 non-null
                                                                                                                                    float64
              44
45
46
                     BIA-BIA_Frame_num
BIA-BIA_ICW
BIA-BIA_LDM
                                                                                                                                   float64
float64
float64
                                                                                                    8 non-null
                                                                                                    8 non-null
8 non-null
                     BIA-BIA_LST
BIA-BIA_SMM
BIA-BIA_TBW
              47
                                                                                                    8 non-null
                                                                                                                                    float64
              48
49
                                                                                                   8 non-null
8 non-null
                                                                                                                                   float64
float64
              50
51
                      PAO A-Season
                                                                                                    1 non-null
                                                                                                                                   object
                     PAQ_A-PAQ_A_Total
PAQ_C-Season
PAQ_C-PAQ_C_Total
                                                                                                    1 non-null
9 non-null
9 non-null
                                                                                                                                   float64
object
              53
                                                                                                                                   float64
                     SDS-Season
SDS-SDS_Total_Raw
SDS-SDS_Total_T
                                                                                                                                   object
float64
float64
              54
55
                                                                                                    10 non-null
                                                                                                    10 non-null
              56
                                                                                                    10 non-null
            50 PreInt_EduHx—Season
58 PreInt_EduHx—computerinternet_hoursday
dtypes: float64(46), int64(2), object(11)
memory usage: 9.3+ KB
                                                                                                                                   object
float64
                                                                                                    18 non-null
```

Figure 5: about the test dataset

```
    [15]:
    train_df.shape

    [15]:
    (3960, 82)

    [17]:
    test_df.shape

    [17]:
    (20, 59)
```

Figure 6: shape of df

```
[19]: # get column names
print(train_df.columns.values)
                                                                                                                | Fide |
```

Figure 7: get column names

		<pre># preview first 5 rows train_df.head()</pre>														
	id	Basic_Demos- Enroll_Season	Basic_Demos- Age	Basic_Demos- Sex	CGAS- Season	CGAS- CGAS_Score	Physical- Season	Physical- BMI	Physical- Height	Physical- Weight		PCIAT- PCIAT_18	PCIAT- PCIAT_19	PCIAT- PCIAT_20		
0 00	00008ff9	Fall	5	0	Winter	51.0	Fall	16.877316	46.0	50.8		4.0	2.0	4.0		
1 00	00fd460	Summer	9	0	NaN	NaN	Fall	14.035590	48.0	46.0		0.0	0.0	0.0		
2 00	0105258	Summer	10	1	Fall	71.0	Fall	16.648696	56.5	75.6		2.0	1.0	1.0		
3 00	00115b9f	Winter	9	0	Fall	71.0	Summer	18.292347	56.0	81.6		3.0	4.0	1.0		
4 00	016bb22	Spring	18	1	Summer	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN		

Figure 8: first 5 rows of train_df

		iew last df.tail(
]:		id	Basic_Demos- Enroll_Season	Basic_Demos- Age	Basic_Demos- Sex	CGAS- Season	CGAS- CGAS_Score	Physical- Season	Physical- BMI	Physical- Height	Physical- Weight	 PCIAT- PCIAT_18	PCIAT- PCIAT_19	PCIAT
39	950	ff0ab367	Spring	9	0	NaN	NaN	Spring	20.200490	52.5	79.2	 NaN	NaN	1
39	951	ff18b749	Spring	7	0	NaN	NaN	Summer	14.768842	47.5	47.4	 0.0	0.0	
39	952	ff60112d	Summer	15	0	Spring	40.0	Winter	26.364710	70.5	186.4	 1.0	1.0	
39	953	ff6c2bb8	Fall	8	0	NaN	NaN	Fall	17.139810	52.5	67.2	 2.0	2.0	
39	954	ff759544	Summer	7	1	NaN	NaN	Summer	13.927006	48.5	46.6	 3.0	3.0	
39	955	ff8a2de4	Fall	13	0	Spring	60.0	Fall	16.362460	59.5	82.4	 1.0	1.0	
39	956	ffa9794a	Winter	10	0	NaN	NaN	Spring	18.764678	53.5	76.4	 NaN	NaN	٨
39	957	ffcd4dbd	Fall	11	0	Spring	68.0	Winter	21.441500	60.0	109.8	 1.0	0.0	
39	958	ffed1dd5	Spring	13	0	Spring	70.0	Winter	12.235895	70.7	87.0	 1.0	1.0	
39	959	ffef538e	Spring	11	0	NaN	NaN	Winter	NaN	NaN	NaN	 NaN	NaN	1

Figure 9: last 10 rows of train_df

10 rows x 82 columns

Figure 10: summary statistics of training dataset

```
[27]: # data preprocessing
[29]: # analyse missing data
null_data = train_df.isna().sum().sort_values(ascending = False).head(46)
null_data = pd.DataFrame(null_data)
null_data = null_data.rename(columns={0:'Missing'})
null_data.style.background_gradient(cmap='YlorRd')
```

Figure 11: analyse missing data

70 rows × 8 columns

Figure 12: missing data in train_df

```
[31]: # drop id column
train_df = train_df.drop(columns='id')
test_df = test_df.drop(columns='id')

[33]: # check for presence of null values
print(train_df.isnull().values.any())
print(test_df.isnull().values.any())

True
True

[35]: # remove data in train_df with null sii
train_df = train_df.dropna(subset=['sii'])

[37]: # return rows where 'sii' is NaN
train_df[train_df['sii'].isnull()]

[37]: Basic_Demos- Basic_Demos- Basic_Demos- CGAS- CGAS- Physical- Physi
```

0 rows × 81 columns

Figure 13: data cleaning

```
[47]: # convert seasons into numeric encoding
       # handle missing seasons data
       train_df_cols = train_df.select_dtypes(exclude = 'number').columns
for season in train_df_cols:
    train_df[season] = train_df[season].fillna(0)
    train_df[season] = train_df[season].replace({'Spring': 1, 'Summer': 2, 'Fall': 3, 'Winter': 4})
       test_df_cols = test_df.select_dtypes(exclude = 'number').columns
       for season in test_df_cols:
    test_df[season] = test_df[season].fillna(0)
    test_df[season] = test_df[season].replace({'Spring': 1, 'Summer': 2, 'Fall': 3, 'Winter': 4})
[49]: train_df
              Basic_Demos- Basic_Demos- Basic_Demos- CGAS- CGAS-
Enroll Saason Age Sex Season CGAS_Score
[49]:
                                                                             CGAS- Physical- Physical- Physical-
                                                                                                                                               Physical-
                                                                                                                                                                 PCIAT-
                                                                                                                           nysical- PCIAT- PCI
Weight Waist_Circumference *** PCIAT_18 PCIAT
                                                                                                       BMI
                                                                                                                Height
                                          5
                                                           0
                                                                                                                                                    NaN ...
                          3
                                                                    4
                                                                               51.0
          0
                                                                                              3 16.877316
                                                                                                                  46.0
                                                                                                                             50.8
                                                                                                                                                                    4.0
      1
                                                                                                                                                    22.0 ...
                          2
                                          9
                                                           0
                                                                 0
                                                                                NaN
                                                                                             3 14.035590
                                                                                                                  48.0
                                                                                                                             46.0
                                                                                                                                                                    0.0
          2
                           2
                                          10
                                                           1
                                                                    3
                                                                                71.0
                                                                                                                             75.6
                                                                                                                                                                    2.0
                                                                                              3 16.648696
                                                                                                                  56.5
                                                                                                                                                     NaN ...
          3
                           4
                                          9
                                                           0
                                                                   3
                                                                               71.0
                                                                                             2 18.292347
                                                                                                                  56.0
                                                                                                                             81.6
                                                                                                                                                    NaN ...
                                                                                                                                                                    3.0
           5
                                                                                50.0
                                                                                              2 22.279952
                                                                                                                             112.2
                                                                                                                                                     NaN ...
                                                                                                                                                                     1.0
       ...
                                                                                                                                                     ... ...
       3953
                           3
                                           8
                                                           0
                                                                    0
                                                                                NaN
                                                                                              3 17.139810
                                                                                                                  52.5
                                                                                                                              67.2
                                                                                                                                                     25.0 ...
                                                                                                                                                                    2.0
       3954
                           2
                                                           1
                                                                   0
                                                                                NaN
                                                                                             2 13.927006
                                                                                                                  48.5
                                                                                                                             46.6
                                                                                                                                                    23.0 ...
                                                                                                                                                                    3.0
       3955
                           3
                                          13
                                                           0
                                                                                60.0
                                                                                              3 16.362460
                                                                                                                  59.5
                                                                                                                             82.4
                                                                                                                                                     NaN ...
                                                                                                                                                                     1.0
                                                                                                                                                                    1.0
       3957
                                          11
                                                           0
                                                                                             4 21.441500
                                                                                                                                                    NaN ...
                                                                                68.0
                                                                                                                  60.0
                                                                                                                             109.8
                                                           0
                                                                                              4 12.235895
       3958
                                          13
                                                                                70.0
                                                                                                                  70.7
                                                                                                                             87.0
                                                                                                                                                    NaN ...
                                                                                                                                                                     1.0
      2736 rows x 81 columns
```

Figure 14: column label encoding

```
[51]: # pick a season column
# check for presnece of null
train_df['CGAS-Season'].isnull()]

[51]: Basic_Demos- Basic_Demos- Basic_Demos- GGAS- CGAS- Physical- Physic
```

0 rows × 81 columns

Figure 15: check for absence of null values

```
[53]: # mark 50% as the threshold for columns with >50% non null values
                 # fill in missing values
                 # training dataset
threshold_train = 0.5 * len(train_df)
columns_with_data_train = train_df.columns[train_df.isnull().sum() < threshold_train]
train_df = train_df[columns_with_data_train]
# replace missing values with 0</pre>
                 train_df = train_df.fillna(0)
                 # testing dataset
threshold_test = 0.5 * len(test_df)
                 columns_with_data_test = test_df.columns[test_df.isnull().sum() < threshold_test]
test_df = test_df[columns_with_data_test]</pre>
                 # replace missing values with 0
test_df = test_df.fillna(0)
[55]: train_df
                                 Basic_Demos- Basic_Demos- Basic_Demos- CGAS- CGAS- Physical- Physi
                         0
                                                            3
                                                                                               5
                                                                                                                                    0
                                                                                                                                                                                   51.0
                                                                                                                                                                                                                 3 16.877316
                                                                                                                                                                                                                                                              46.0
                                                                                                                                                                                                                                                                                        50.8
                                                                                                                                                                                                                                                                                                                          0.0 ...
                                                                                                                                                                                                                                                                                                                                                          4.0
                                                                                                                                                                                                                                                                                                                                                                                    2.0
                1
                                                            2
                                                                                               9
                                                                                                                                    0
                                                                                                                                                       0
                                                                                                                                                                                  0.0
                                                                                                                                                                                                               3 14.035590
                                                                                                                                                                                                                                                               48.0
                                                                                                                                                                                                                                                                                       46.0
                                                                                                                                                                                                                                                                                                                        75.0 ...
                                                                                                                                                                                                                                                                                                                                                          0.0
                                                                                                                                                                                                                                                                                                                                                                                    0.0
                                                             2
                                                                                                10
                                                                                                                                    1
                                                                                                                                                        3
                                                                                                                                                                                   71.0
                                                                                                                                                                                                                 3 16.648696
                                                                                                                                                                                                                                                                                       75.6
                         2
                                                                                                                                                                                                                                                               56.5
                                                                                                                                                                                                                                                                                                                        65.0 ...
                                                                                                                                                                                                                                                                                                                                                           2.0
                                                                                                                                                                                                                                                                                                                                                                                    1.0
                                                                                                                                            3 71.0 2 18.292347
                                                                                                                                                                                                                                                                                                                                               3.0
                        3
                                                                                                                                                                                                                                                            56.0 81.6 60.0 ...
                                                                                                                                                                                                                                                                                                                                                                      4.0
                         5
                                                                                                                                                                                                                                                                                                                     60.0 ...
                                                                                                                                                                                                                                                                                                                                                           1.0
               ...
                                                                                                                                                                                                                                                                                                                    ... ... ... ...
                 3953
                                                             3
                                                                                                 8
                                                                                                                                     0
                                                                                                                                                        0
                                                                                                                                                                                     0.0
                                                                                                                                                                                                                 3 17.139810
                                                                                                                                                                                                                                                              52.5
                                                                                                                                                                                                                                                                                        67.2
                                                                                                                                                                                                                                                                                                                       60.0 ...
                                                                                                                                                                                                                                                                                                                                                         2.0
                                                                                                                                                                                                                                                                                                                                                                                  2.0
                                                            2
                                                                                               7
                                                                                                                                    1 0
                                                                                                                                                                              0.0 2 13.927006
                                                                                                                                                                                                                                                            48.5 46.6 65.0 ... 3.0 3.0
                 3954
                                                                                               13
                                                                                                                                     0
                                                                                                                                                                                   60.0
                                                                                                                                                                                                                                                               59.5
                                                                                                                                                                                                                                                                                      82.4
                                                                                                                                                                                                                                                                                                                       71.0 ...
                                                                                                                                                                                                                                                                                                                                                           1.0
                                                                                                                                                                                                                                                                                                                                                                                    1.0
                 3955
                                                             3
                                                                                                                                                                                                                 3 16.362460
                 3957
                                                            3
                                                                                               11
                                                                                                                                     0
                                                                                                                                                        1
                                                                                                                                                                                  68.0
                                                                                                                                                                                                              4 21.441500
                                                                                                                                                                                                                                                             60.0 109.8
                                                                                                                                                                                                                                                                                                                    79.0 ... 1.0 0.0
                 3958
                                                                                                13
                                                                                                                                                                                   70.0
                                                                                                                                                                                                                  4 12.235895
                                                                                                                                                                                                                                                              70.7
                                                                                                                                                                                                                                                                                        87.0
                                                                                                                                                                                                                                                                                                                       59.0 ...
                                                                                                                                                                                                                                                                                                                                                           1.0
```

Figure 16: missing values imputation for train_df

2736 rows × 72 columns

20 rows × 29 columns

: te	est_df													
:	Basic_Der Enroll_Sea		Basic_Demos- Age	Basic_Demos- Sex	CGAS- Season	Physical- Season	Physical- BMI	Physical- Height		Physical- Diastolic_BP	Physical- HeartRate	 FGC- FGC_SRR	FGC- FGC_SRR_Zone	F
()	3	5	0	4	3	16.877316	46.00	50.8	0.0	0.0	 6.0	0.0	
•	I	2	9	0	0	3	14.035590	48.00	46.0	75.0	70.0	 11.0	1.0	
2	2	2	10	1	3	3	16.648696	56.50	75.6	65.0	94.0	 10.0	1.0	
3	3	4	9	0	3	2	18.292347	56.00	81.6	60.0	97.0	 7.0	0.0	
4	ı	1	18	1	2	0	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	
Ę	5	1	13	1	4	2	22.279952	59.50	112.2	60.0	73.0	 11.0	1.0	
6	;	3	10	0	0	3	19.660760	55.00	84.6	123.0	83.0	 11.0	1.0	
7	,	3	10	1	0	3	16.861286	59.25	84.2	71.0	90.0	 0.0	0.0	
8	3	2	15	0	0	1	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	
5)	2	19	1	2	0	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	
10)	1	11	1	0	0	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	
1	ı	3	11	0	2	0	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	
12	2	3	13	0	0	4	21.079065	57.75	100.0	63.0	79.0	 9.5	1.0	
13	3	1	12	0	0	1	15.544111	60.00	79.6	57.0	71.0	 9.0	1.0	
14	ı	1	12	0	0	0	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	
15	5	4	7	0	2	1	29.315775	54.00	121.6	80.0	75.0	 15.0	1.0	
16	;	1	5	1	2	1	17.284504	44.00	47.6	61.0	76.0	 10.0	1.0	
17	,	3	10	1	0	3	19.893157	55.00	85.6	0.0	81.0	 0.0	0.0	
18	3	4	6	0	1	4	30.094649	37.50	60.2	61.0	91.0	 4.0	0.0	
19)	4	10	0	0	0	0.000000	0.00	0.0	0.0	0.0	 0.0	0.0	

Figure 17: missing values imputation for test_df

Figure 18: check for null values in train_df

```
[61]: # check for null values
  test_df.isnull().any()
[61]: Basic_Demos-Enroll_Season
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       False
                                                                    Basic_Demos-Age
Basic_Demos-Sex
CGAS-Season
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False
False
False
                                                               Basic_Demos-Sex
CGAS-Season
Physical-BMI
Physical-BMI
Physical-Height
Physical-Height
Physical-Height
Physical-Joastolic_BP
Physical-HeartRate
Physical-Systolic_BP
Fitness_Endurance-Season
FGC-FGC_CU
FGC-FGC_CU
FGC-FGC_PU
FGC-FGC_PU
FGC-FGC_PU
FGC-FGC_SR
FGC-FGC_SRR
FGC-FGC_SRR
FGC-FGC_TL
FGC-FGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 False
False
False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False
False
False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 False
False
False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 False
False
False
False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False
False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 False
False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 False
False
False
False
                                                                       PreInt_EduHx-Season
PreInt_EduHx-computerinternet_hoursday
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               False
False
                                                                       dtype: bool
```

Figure 19: check for null values in test_df

```
[63]: # check for presence of null values
    print(train_df.isnull().values.any())
    print(test_df.isnull().values.any())
    False
    False
```

Figure 20: verify absence of null values for train & test datasets

Predictor variables/features and response/target variable

There are a total of 82 predictor variables that comprises of data on demographics, internet use, children's global assessment scale, physical measures, fitnessgram vitals and treadmill, fitnessgram child, bio-electric impedance analysis, physical activity questionnaire, sleep disturbance scale, actigraphy and parent-child internet addiction test. They include all the variables listed below except 'sii'.

```
print(train_df.columns.values)

['id' 'Basic_Demos-Enroll_Season' 'Basic_Demos-Age' 'Basic_Demos-Sex'
    'CGAS-Season' 'CGAS_CGAS_Score' 'Physical-Season' 'Physical-BMI'
    'Physical-Height' 'Physical-Weight' 'Physical-Waist_Circumference'
    'Physical-Diastolic_BP' 'Physical-HeartRate' 'Physical-Systolic_BP'
    'Fitness_Endurance-Season' 'Fitness_Endurance-Max_Stage'
    'Fitness_Endurance-Time_Mins' 'Fitness_Endurance-Max_Stage'
    'Fitness_Endurance-Time_Mins' 'Fitness_Endurance-Max_Stage'
    'FGC-FGC_CU' 'FGC-FGC_CU Zone' 'FGC-FGC_GSND' 'FGC-FGC_GSND_Zone'
    'FGC-FGC_SSN' 'FGC-FGC_SSZ_Zone' 'FGC-FGC_PGC_PU Zone'
    'FGC-FGC_SSN' 'FGC-FGC_SSZ_Zone' 'FGC-FGC_PGC_PU Zone'
    'FGC-FGC_SSN' 'FGC-FGC_SSZ_Zone' 'FGC-FGC_SRR_ZONe'
    'FGC-FGC_SSI' 'FGC-FGC_TL_Zone' 'BIA-Season' 'BIA-BIA_Activity_Level_num'
    'BIA-BIA_BMC' 'BIA-BIA_BMI' 'BIA-BIA_BMR' 'BIA-BIA_DEE' 'BIA-BIA_ECW'
    'BIA-BIA_FFM' 'BIA-BIA_FFMI' 'BIA-BIA_FMI' 'BIA-BIA_EE' 'BIA-BIA_ECW'
    'BIA-BIA_FFAME_num' 'BIA-BIA_FMI' 'BIA-BIA_LOE' 'BIA-BIA_LST'
    'BIA-BIA_SMM' 'BIA-BIA_TBM' 'PAQ_A-Season' 'PAQ_A-PAQ_A_Total'
    'PAQ_C-Season' 'PAQ_C-PAQ_C_Total' 'PCIAT-PCIAT_01'
    'PCIAT-PCIAT_02' 'PCIAT-PCIAT_03' 'PCIAT-PCIAT_04' 'PCIAT-PCIAT_09'
    'PCIAT-PCIAT_06' 'PCIAT-PCIAT_03' 'PCIAT-PCIAT_08' 'PCIAT-PCIAT_09'
    'PCIAT-PCIAT_10' 'PCIAT-PCIAT_11' 'PCIAT-PCIAT_10' 'PCIAT-PCIAT_10' 'PCIAT-PCIAT_11' 'PCIA
```

The response variable would be 'sii', which is derived from 'PCIAT_Total'. It is categorised as follows: 0: None, 1: Mild, 2: Moderate, 3: Severe.

Actual implemented code for predictor variables/features and the response/target variable and output generated

]: t	rain_df['sii'].	value	_co	unts()									
1 2 3	0.0 1594 0.0 730 0.0 378 0.0 34 Uame: sii, dtype	: int	:64										
]: t	rain_df												
.]: I- 1t	Phys Waist_Circumfer			PCIAT- PCIAT_18	PCIAT- PCIAT_19	PCIAT- PCIAT_20	PCIAT- PCIAT_Total	SDS- Season	SDS- SDS_Total_Raw		PreInt_EduHx- Season	PreInt_EduHx- computerinternet_hoursday	
.8		NaN		4.0	2.0	4.0	55.0	NaN	NaN	NaN	Fall	3.0	2.0
.0		22.0		0.0	0.0	0.0	0.0	Fall	46.0	64.0	Summer	0.0	0.0
6		NaN		2.0	1.0	1.0	28.0	Fall	38.0	54.0	Summer	2.0	0.0
6		NaN		3.0	4.0	1.0	44.0	Summer	31.0	45.0	Winter	0.0	1.0
.2		NaN		1.0	2.0	1.0	34.0	Summer	40.0	56.0	Spring	0.0	1.0
.2		25.0		2.0	2.0	1.0	22.0	Fall	41.0	58.0	Fall	2.0	0.0
6		23.0		3.0	3.0	0.0	33.0	Summer	48.0	67.0	Summer	0.0	1.0
4		NaN		1.0	1.0	0.0	32.0	Winter	35.0	50.0	Fall	1.0	1.0
8		NaN		1.0	0.0	1.0	31.0	Winter	56.0	77.0	Fall	0.0	1.0
.0		NaN		1.0	1.0	1.0	19.0	Spring	33.0	47.0	Spring	1.0	0.0

Figure 21: response variable – sii

```
[43]: train_df.shape
[43]: (2736, 81)

[45]: # response variable target = train_df['sii']
```

Figure 22: mark sii as target

Figure 23: view correlation between predictor & response variables

Figure 24: correlation matrix

Training and testing datasets

The training dataset comprises of 82 features and 3960 data objects, while the testing dataset comprises of 59 features and 20 data objects. We could further split our training dataset into 80:20 train-test validation sets to run our models so that we could train the validation set on the 82 features, before using it to test on the testing dataset that only has 59 features.

Actual implemented code relating to the training & testing data processing

Figure 25: define X and y for training dataset

```
[69]: # split data into training and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Figure 26: further split training dataset into train & test sets for validation

ML techniques

To make a prediction on the level (target = ['None', 'Mild', 'Moderate', 'Severe']) of problematic internet use exhibited by children by analysing their physical activity through fitness data, we could consider the following ML techniques:

ML techniques	Description
Decision Tree	To fit a categorical variable decision tree such that we make
	categorical classifications.
Random Forest	To fit a random forest model for classification to predict the
	class label for the given input.
Gradient Boosting	To fit a gradient boosting model for classification, whereby
	an ensemble of decision trees is used to iteratively improve
	predictions for class labels.
K-Nearest Neighbours	To fit a KNN model for classification, producing outputs
	comprising of class label memberships.

Step-by-step code for each ML techniques

Decision Tree model

Figure 27: fit decision tree model

Figure 28: predict based on decision tree model

```
[87]: print('Prediction Accuracy: ', accuracy_score(y_test, y_pred_dt))
Prediction Accuracy: 1.0

[89]: # precision
dt_precision = precision_score(y_test, y_pred_dt, average='macro')
print(f"Precision: {dt_precision}")

# recall
dt_recall = recall_score(y_test, y_pred_dt, average='macro')
print(f"Recall: {dt_recall}")

# f1 score
dt_f1 = f1_score(y_test, y_pred_dt, average='macro')
print(f"F1 Score: {dt_f1}")

# f2 score
dt_f2 = fbeta_score(y_test, y_pred_dt, beta=2, average='macro')
print(f"F2 Score: {dt_f2}")

Precision: 1.0
Recall: 1.0
F1 Score: 1.0
F2 Score: 1.0
```

Figure 29: generate performance metrics for decision tree model

```
[91]: # confusion matrix

dt_cm = confusion_matrix(y_test, y_pred_dt)

plt.figure(figsize=(8, 6))
    sns.heatmap(dt_cm, annot=True, fmt="d", cmap="Blues", xticklabels=dt_model.classes_, yticklabels=dt_model.classes_)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.title('Decision Tree Confusion Matrix')
    plt.show()
```


Figure 30: confusion matrix for decision tree

Random Forest model

Figure 31: fit random forest model

```
[75]: y_pred_rf = rf_model.predict(X_test)
       print(classification_report(y_test, y_pred_rf))
                      precision
                                   recall f1-score support
                 1.0
                            0.98
                                       1.00
                                                  0.99
                                                              131
                2.0
                            1.00
                                       0.97
1.00
                                                  0.99
1.00
                                                               72
9
                                                              548
548
548
           accuracy
                                                  1.00
                                       0.99
1.00
                                                  0.99
                           1.00
      macro avg
weighted avg
```

Figure 32: predict based on random forest model

```
[79]: # precision
    rf_precision = precision_score(y_test, y_pred_rf, average='macro')
    print(f"Precision: {rf_precision}")

# recall
    rf_recall = recall_score(y_test, y_pred_rf, average='macro')
    print(f"Recall: {rf_recall}")

# fl score
    rf_f1 = f1_score(y_test, y_pred_rf, average='macro')
    print(f"F1 Score: {rf_f1}")

# f2 score
    rf_f2 = fbeta_score(y_test, y_pred_rf, beta=2, average='macro')
    print(f"F2 Score: {rf_f2}")

Precision: 0.9962406015037594
    Recall: 0.99365555555556
    F1 Score: 0.9948489338454972
    F2 Score: 0.9936523728136187
```

Figure 33: generate performance metrics for random forest model

```
[81]: # confusion matrix
rf_cm = confusion_matrix(y_test, y_pred_rf)

plt.figure(figsize=(8, 6))
sns.heatmap(rf_cm, annot=True, fmt="d", cmap="Blues", xticklabels=rf_model.classes_, yticklabels=rf_model.classes_)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Random Forest Confusion Matrix')
plt.show()
```


Figure 34: confusion matrix for random forest model

Gradient Boosting model

Figure 35: fit gradient boosting model

```
[94]: y_pred_gb = dt_model.predict(X_test)
       print(classification_report(y_test, y_pred_gb))
                     precision recall f1-score support
                                 1.00
1.00
1.00
1.00
                         1.00
                                            1.00
1.00
                0.0
1.0
                                                          131
                          1.00
           accuracy
                                               1.00
                                                          548
      macro avg
weighted avg
                       1.00
                                  1.00
                                              1.00
                                                          548
548
```

Figure 36: predict based on gradient boosting model

```
[95]: print('Prediction Accuracy: ', accuracy_score(y_test, y_pred_gb))
Prediction Accuracy: 1.0

[99]: # precision
gb_precision = precision_score(y_test, y_pred_gb, average='macro')
print(f"Precision: {gb_precision}")

# recall
gb_recall = recall_score(y_test, y_pred_gb, average='macro')
print(f"Recall: {gb_recall}")

# f1 score
gb_f1 = f1_score(y_test, y_pred_gb, average='macro')
print(f"F1 Score: {gb_f1}")

# f2 score
gb_f2 = fbeta_score(y_test, y_pred_gb, beta=2, average='macro')
print(f"F2 Score: {gb_f2}")

Precision: 1.0
Recall: 1.0
F1 Score: 1.0
F2 Score: 1.0
```

Figure 37: performance metrics for gradient boosting model

```
[101]: # confusion matrix
gb_cm = confusion_matrix(y_test, y_pred_gb)

plt.figure(figsize=(8, 6))
sns.heatmap(gb_cm, annot=True, fmt="d", cmap="Blues", xticklabels=gb_model.classes_, yticklabels=gb_model.classes_)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Gradient Boosting Confusion Matrix')
plt.show()
```


Figure 38: confusion matrix for gradient boosting model

K-Nearest Neighbours model

```
[103]: # k-nearest-neighbour model
knn_model = KNeighborsClassifier(n_neighbors=3)

# 10-fold cross validation
cv = KFold(n_splits=10, shuffle=True, random_state=42)
scores = cross_val_score(knn_model, X, y, cv=cv, scoring='accuracy')

print("Accuracy scores for each fold:", scores)
print("Mean accuracy:", np.mean(scores))

# fit model
knn_model.fit(X_train, y_train)

Accuracy scores for each fold: [0.67153285 0.71167883 0.71262774 0.63138686 0.64963504 0.6776558 0.67399267 0.67032967 0.73260073]
Mean accuracy: 0.6853118800564157

[103]: KNeighborsClassifier(n_neighbors=3)
```

Figure 39: fit knn model

```
[105]: y_pred_knn = knn_model.predict(X_test)
print(classification_report(y_test, y_pred_knn))
                                                recall f1-score
                                                   0.92
0.40
0.35
                       0.0
1.0
2.0
                                                                 0.84
0.45
0.44
                                     0.77
                                                                                 336
                                     0.50
0.60
                                                                                 131
72
                       3.0
                                     0.00
                                                   0.00
                                                                 0.00
                                                                                   9
                                                                                 548
548
                accuracy
                                     0.47
                                                   0.42
               macro avg
                                                                 0.43
          weighted avg
                                     0.67
                                                   0.70
                                                                 0.68
```

Figure 40: predict based on knn model

```
[107]: print('Prediction Accuracy: ', accuracy_score(y_test, y_pred_knn))
Prediction Accuracy: 0.7043795620437956

[109]: # precision
knn_precision = precision_score(y_test, y_pred_knn, average='macro')
print(f"Precision: {knn_precision}")

# recall
knn_recall = recall_score(y_test, y_pred_knn, average='macro')
print(f"Recall: {knn_recall}")

# f1 score
knn_f1 = f1_score(y_test, y_pred_knn, average='macro')
print(f"F1 Score: {knn_f1}")

# f2 score
knn_f2 = fbeta_score(y_test, y_pred_knn, beta=2, average='macro')
print(f"F2 Score: {knn_f2}")

Precision: 0.46562375565080927
Recall: 0.41711726039016117
F1 Score: 0.4305174701459531
F2 Score: 0.430574701459531
F2 Score: 0.42057257990324637
```

Figure 41: performance metrics for knn model

```
[111]: # confusion matrix
knn_cm = confusion_matrix(y_test, y_pred_knn)

plt.figure(figsize=(8, 6))
sns.heatmap(knn_cm, annot=True, fmt="d", cmap="Blues", xticklabels=knn_model.classes_, yticklabels=knn_model.classes_)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('K-Nearest Neighbour Confusion Matrix')
plt.show()

K-Nearest Neighbour Confusion Matrix

-300
```


Figure 42: confusion matrix for knn model

Summary of work

Model Summary

In conclusion, Decision Trees and Gradient Boosting gives the best model performance based on the performance metrics for accuracy, precision, recall, f1-score and f2-score. However, they might risk overfitting. On the other hand, KNN has the worst model performance, with lowest scores for accuracy, precision, recall, f1-score and f2-score.

Therefore, the best model would be Random Forest with its high accuracy score of 0.99635, precision of 0.99635, recall of 0.99395, f1-score of 0.99458, f2-score of 0.99365, and low probability of overfitting.

Comparison across ML models

Model	Accuracy	Precision	Recall	F1	F2
RF	0.99635	0.99624	0.99305	0.99458	0.99365
DT	1.0	1.0	1.0	1.0	1.0
GB	1.0	1.0	1.0	1.0	1.0
KNN	0.70437	0.46562	0.41711	0.43051	0.42057