Problem Set 5 *

Ian McGroarty

Course Number: 625.603

April 4, 2019

^{*}Problem list 5.2.12, 5.3.10, 5.3.14, 5.4.20, 5.6.6

Problem 5.2.12. A random sample of size n is taken from the pdf:

$$f_y(y;\theta) = \frac{2y}{\theta^2}, \ 0 \le y \le \theta$$

$$L(\theta) = \prod_{i=1}^n f_y(y_i;\theta)$$
 Def. 5.2.1 (281)
$$= \theta^{-2n} (2y)^n$$

It is easy to see that $L(\theta)$ is decreasing in θ . To maximize $L(\theta)$ we must minimize θ . Since $y \leq \theta$, $\hat{\theta} = Y_{max}$.

Problem 5.3.10. Babe Ruth batted 0.356 with 192 hits in 540 at-bats. Construct a 95% confidence interval.

Solution To construct a 95% confidence interval, we can apply Theorem 5.3.1 (299)with k = 192, n = 540, and $z_{\alpha/2} = 1.96$.

$$\frac{k}{n} - z_{\alpha/2} \sqrt{\frac{(k/n)(1-k/n)}{n}}, \frac{k}{n} + z_{\alpha/2} \sqrt{\frac{(k/n)(1-k/n)}{n}}$$

$$\frac{192}{540} - 1.96 \sqrt{\frac{(192/540)(1-192/540)}{540}}, \frac{192}{540} + 1.96 \sqrt{\frac{(192/540)(1-192/540)}{540}}$$

$$(0.315, 0.396)$$

This is his batting average, so the 95% confidence interval for hits is 540 * (0.315, 0.396) = (170,214).

¹From Table A.1 (675)

Problem 5.3.14. If (0.57,0.63) is a 50% confindence interval for p, find $\frac{k}{n}$ and n.

Solution The margin of error can be found by using the average distance from the mean, which is the difference in the bounds. $\frac{0.63-0.57}{2}=0.03=d=\frac{k}{n}$. To find how many observations were taken we use Definition 5.3.1 (301) $d=\frac{z_{\alpha/2}}{2\sqrt{n}} \implies n=(\frac{z_{\alpha/2}}{2d})^2=(\frac{0.675}{2*(0.03)})^2=126.6\approx 127$ observations.

Problem 5.4.20. Calculate the relative efficiency (r.e.) of $\hat{\lambda}_1 = X_1$ and $\hat{\lambda}_2 = \bar{X}_2$.

Proof. I mean they are both "relatively efficient"². \Box

Solution Since it is a Poisson distribution:

$$Var_1(X) = \lambda$$
 Theorem 4.2.4 (224)
 $Var_2(\bar{X}) = Var(\frac{X_1}{n} + \dots + \frac{X_n}{n})$
 $= \frac{Var(x)}{n} = \frac{\lambda}{n}$

The relative efficiency is defined as:

$$r.e.(\hat{\lambda}_1) = \frac{Var(\hat{\lambda}_2)}{Var(\hat{\lambda}_1)}$$
 Def. 5.4.2 (314)
$$= \frac{\lambda/n}{\lambda} = \frac{1}{n}$$

²Einstein's Theory of relativity

Problem 5.6.6. Is $W = \prod_{i=1}^n Y_i$ a sufficient statistic for θ .

$$L(\theta) = \prod_{i=1}^{n} f_Y(y; \theta)$$
 Def. 5.6.1 (322)
$$= \prod_{i=1}^{n} \theta y^{\theta-1}$$

$$= \theta^n (\prod_{i=1}^{n} y_i)^{\theta-1}$$

We can see that $L(\theta)$ depends on θ but only depends on y through the values of $\prod_{i=1}^n y_i$. So define $h(Y) = \prod_{i=1}^n y_i$ and $g(h(x); \theta) = \theta^n (\prod_{i=1}^n y_i)^{\theta-1}$ and $b(k_1, \dots, k_n) = 1$. By theorem 5.6.1 (324) $W = \prod_{i=1}^n Y_i$ is sufficient for θ