Narrative Conservatism

Juan Manuel García Lara, Beatriz García Osma, Fengzhi Zhu

Universidad Carlos III de Madrid

IÉSEG School of Management

December 3, 2020

Research Question

• Is narrative disclosure conservative?

Research Question

• Is narrative disclosure conservative?

Definition

 Narrative conservatism: narratives that reflect bad news in a more complete, news-consistent, and timely manner than good news.

Research Question

• Is narrative disclosure conservative?

Definition

 Narrative conservatism: narratives that reflect bad news in a more complete, news-consistent, and timely manner than good news.

Findings

- Using 8-K and 10-Q data (1994-2019), we find evidence of narrative conservatism.
- Narratives are longer, more tone-consistent (content sentiment agrees with sign of news), and timelier (shorter time lag) in reaction to bad news than to good news, where news is measured by returns as in Basu (1997).

Additional findings

 We find that incremental length in bad news narratives contributes to higher readability (shorter and less complex words).

Additional findings

- We find that incremental length in bad news narratives contributes to higher readability (shorter and less complex words).
- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.

Additional findings

- We find that incremental length in bad news narratives contributes to higher readability (shorter and less complex words).
- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.
- Initial evidence narrative conservatism complements conditional conservatism

Additional findings

- We find that incremental length in bad news narratives contributes to higher readability (shorter and less complex words).
- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.
- Initial evidence narrative conservatism complements conditional conservatism.

Contribution

- Extend literature on accounting conservatism by defining and documenting the existence of narrative conservatism.
- Explore the links between recognition and narrative disclosure.
- Add to the debate on whether managers withhold bad news.
- Add to the broader literature on the narrative properties of SEC filings.

Theoretical Framework: Conservatism

Accounting Conservatism

- Recognition (Beaver and Ryan, 2005; Ball and Shivakumar, 2005)
 - Conditional: ex post or news dependent, "higher degree of verification to recognize good news as gains than to recognize bad news as losses," (Basu, 1997, p. 7) leading to earnings that recognize bad news in a timelier and more complete manner than good news.
 - Unconditional: ex ante or news independent. Aspects of the accounting process (measurement and recognition criteria at the inception of assets and liabilities), leading to a persistent understatement of net assets.

Theoretical Framework: Conservatism

Accounting Conservatism

- Recognition (Beaver and Ryan, 2005; Ball and Shivakumar, 2005)
 - Conditional: ex post or news dependent, "higher degree of verification to recognize good news as gains than to recognize bad news as losses," (Basu, 1997, p. 7) leading to earnings that recognize bad news in a timelier and more complete manner than good news.
 - Unconditional: ex ante or news independent. Aspects of the accounting process (measurement and recognition criteria at the inception of assets and liabilities), leading to a persistent understatement of net assets.
- What role narrative disclosure?
 - Prior work focuses on recognition, little is known about conservative disclosure (Kothari et al., 2009, p.243).
 - A "committment to timely disclosure of bad news need not come exclusively through financial statement recognition" (Guay and Verrecchia, 2018, p. 73-74):

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

• Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

- Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).
- An economic event can be recognized if it satisfies all:
 - Definition, measurability, relevance, and reliability criteria

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

- Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).
- An economic event can be recognized if it satisfies all:
 - Definition, measurability, relevance, and reliability criteria
- Even if criteria are met, annual reports are still annual (low frequency and lack of timeliness). Information may need to be disclosed earlier.

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

- Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).
- An economic event can be recognized if it satisfies all:
 - Definition, measurability, relevance, and reliability criteria
- Even if criteria are met, annual reports are *still* annual (low frequency and lack of timeliness). Information may need to be disclosed earlier.
- <u>Disclosure</u>: possibility to *timely* convey information that fails to meet certain recognition criteria
 - Displays in the notes and supporting schedules that accompany financial statements (Schipper, 2007); but also:
 - 10-Qs, 8-Ks, press releases, conference calls, social media, etc.

- Role of narratives in accounting conservatism
 - Supplement information that cannot be recognized
 - Explain/complement/provide details of recognized line items

- Role of narratives in accounting conservatism
 - Supplement information that cannot be recognized
 - Explain/complement/provide details of recognized line items

Narrative conservatism

Narratives that reflect economic losses (bad news) in a more complete, news-consistent and timely manner than economic gains (good news).

Role of narratives in accounting conservatism

- Supplement information that cannot be recognized
- Explain/complement/provide details of recognized line items

Narrative conservatism

Narratives that reflect economic losses (bad news) in a more complete, news-consistent and timely manner than economic gains (good news).

Narratives may <u>not</u> be conservative:

- Strategic disclosure and bad news hoarding/smoothing (e.g., Kothari et al., 2009; Ge and Lennox, 2011; Segal and Segal, 2016; Chapman et al., 2019).
- "Full disclosure," (Guay and Verrecchia, 2018) may imply greater timeliness and completeness of good news disclosure, if all bad news are recognized.

Theoretical Framework: Asymmetric Completeness

Completeness

- Completeness implies that disclosure includes all necessary information for a user to understand the underlying economic event.
 - Disclosure reduces information asymmetry: lowers CoC and increases liquidity (Diamond and Verrecchia, 1991; Diamond, 1985; Leuz and Verrecchia, 2000)
- Good news disclosure may be completer, relative to bad news, to boost performance (Teoh et al., 1998; Lang and Lundholm, 2000).
- Bad news disclosure may be more complete, relative to good news, to avoid litigation risk (Skinner, 1994, 1997; Marinovic and Varas, 2016).

Theoretical Framework: Asymmetric Completeness

Completeness

- Completeness implies that disclosure includes all necessary information for a user to understand the underlying economic event.
 - Disclosure reduces information asymmetry: lowers CoC and increases liquidity (Diamond and Verrecchia, 1991; Diamond, 1985; Leuz and Verrecchia, 2000)
- Good news disclosure may be completer, relative to bad news, to boost performance (Teoh et al., 1998; Lang and Lundholm, 2000).
- Bad news disclosure may be more complete, relative to good news, to avoid litigation risk (Skinner, 1994, 1997; Marinovic and Varas, 2016).

H1: Asymmetric Completeness

Narrative disclosure is more complete in response to bad news than to good news.

Theoretical Framework: Asymmetric News-consistency

News-consistency

- News-consistency implies that disclosure agrees with the underlying economic event in content sentiment.
- Tone influences how information is perceived or processed, and thus it can be employed both to inform or mislead (Davis et al., 2012; Li, 2010; Huang et al., 2014).
- Firms may deploy a uniformly positive tone in both good and bad news disclosure, resulting in higher news-consistency in good news disclosure
 - "A careful manager might use 90% positive words in dismissing an employee." (Loughran and McDonald, 2016, p.1206)

Theoretical Framework: Asymmetric News-consistency

News-consistency

- News-consistency implies that disclosure agrees with the underlying economic event in content sentiment.
- Tone influences how information is perceived or processed, and thus it can be employed both to inform or mislead (Davis et al., 2012; Li, 2010; Huang et al., 2014).
- Firms may deploy a uniformly positive tone in both good and bad news disclosure, resulting in higher news-consistency in good news disclosure
 - "A careful manager might use 90% positive words in dismissing an employee." (Loughran and McDonald, 2016, p.1206)

H2: Asymmetric News-Consistency

Narrative disclosure is more news-consistent in response to bad news than to good news.

Theoretical Framework: Timeliness

Asymmetric Timeliness

- Timeliness implies that disclosure is made in time to be able to influence users' decisions.
- Managers may delay bad news disclosure to mitigate its negative economic consequences (Chambers and Penman, 1984; Niessner, 2015; Segal and Segal, 2016; Brockbank and Hennes, 2018).
- Managers may accelerate good news disclosure to increase insider profitability (Khalilov and Osma, 2020).

Theoretical Framework: Timeliness

Asymmetric Timeliness

- Timeliness implies that disclosure is made in time to be able to influence users' decisions.
- Managers may delay bad news disclosure to mitigate its negative economic consequences (Chambers and Penman, 1984; Niessner, 2015; Segal and Segal, 2016; Brockbank and Hennes, 2018).
- Managers may accelerate good news disclosure to increase insider profitability (Khalilov and Osma, 2020).

H3: Asymmetric Timeliness

Narrative disclosure is timelier in response to bad news than to good news.

Narrative Disclosure Corpora

- Corpora: 10-Q and 8-K filings because (a) they are more credible (SEC scrutiny); (b) only events with at least moderate impact are reported (Hassan et al., 2019); and (c) are timelier than other corporate communication channels.
- Heterogeneity between 10-Q and 8-K: (a) 10-Q is more diversified in content (b) 8-K is more timely.

Narrative Disclosure Corpora

- Corpora: 10-Q and 8-K filings because (a) they are more credible (SEC scrutiny); (b) only events with at least moderate impact are reported (Hassan et al., 2019); and (c) are timelier than other corporate communication channels.
- Heterogeneity between 10-Q and 8-K: (a) 10-Q is more diversified in content (b) 8-K is more timely.

Proxies for Textual Properties (TEX) and News

 Completeness (NW): natural logarithm one plus total number of words of SEC filings, also number items (NITEMS) and of 8-Ks (N8K).

Narrative Disclosure Corpora

- Corpora: 10-Q and 8-K filings because (a) they are more credible (SEC scrutiny); (b) only events with at least moderate impact are reported (Hassan et al., 2019); and (c) are timelier than other corporate communication channels.
- Heterogeneity between 10-Q and 8-K: (a) 10-Q is more diversified in content (b) 8-K is more timely.

Proxies for Textual Properties (TEX) and News

- Completeness (NW): natural logarithm one plus total number of words of SEC filings, also number items (NITEMS) and of 8-Ks (N8K).
- News-consistency (TONE): marginal change of tone in response to good vs. bad news. TONE is net positive words per thousand words.

Narrative Disclosure Corpora

- Corpora: 10-Q and 8-K filings because (a) they are more credible (SEC scrutiny); (b) only events with at least moderate impact are reported (Hassan et al., 2019); and (c) are timelier than other corporate communication channels.
- Heterogeneity between 10-Q and 8-K: (a) 10-Q is more diversified in content (b) 8-K is more timely.

Proxies for Textual Properties (TEX) and News

- Completeness (NW): natural logarithm one plus total number of words of SEC filings, also number items (NITEMS) and of 8-Ks (N8K).
- News-consistency (TONE): marginal change of tone in response to good vs. bad news. TONE is net positive words per thousand words.
- Timeliness (TLAG): reporting time lag. TLAG is days elapsed between the news release date and the filing date.

Narrative Disclosure Corpora

- Corpora: 10-Q and 8-K filings because (a) they are more credible (SEC scrutiny); (b) only events with at least moderate impact are reported (Hassan et al., 2019); and (c) are timelier than other corporate communication channels.
- Heterogeneity between 10-Q and 8-K: (a) 10-Q is more diversified in content (b) 8-K is more timely.

Proxies for Textual Properties (TEX) and News

- Completeness (NW): natural logarithm one plus total number of words of SEC filings, also number items (NITEMS) and of 8-Ks (N8K).
- News-consistency (TONE): marginal change of tone in response to good vs. bad news. TONE is net positive words per thousand words.
- Timeliness (TLAG): reporting time lag. TLAG is days elapsed between the news release date and the filing date.
- Good and Bad News: stock returns, in the spirit of Basu (1997).

Research Design: Model for 10-Q (I)

Model Specification

• Form 10-Q: We explore responsiveness to good versus bad news:

$$TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \sum_{j} \beta_n CONTROLS_{i,t} + \epsilon_{i,t},$$
(1)

- QRET quarterly market-adjusted stock return
- NEG is the bad news indicator (1 if QRET is negative, 0 otherwise)
- CONTROLS: Size, MTB, Leverage, Age, Complexity, Profitability, Operating risk, Analyst earnings forecast errors, Readability

Research Design: Model for 10-Q (I)

Model Specification

• Form 10-Q: We explore responsiveness to good versus bad news:

$$TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \sum_{j} \beta_n CONTROLS_{i,t} + \epsilon_{i,t},$$
(1)

- QRET quarterly market-adjusted stock return
- NEG is the bad news indicator (1 if QRET is negative, 0 otherwise)
- CONTROLS: Size, MTB, Leverage, Age, Complexity, Profitability, Operating risk, Analyst earnings forecast errors, Readability
- Narrative conservatism implies β_3 is negative when TEX=NW (lengthier); and positive when TEX=TONE (more tone-consistent) and TEX=TLAG (lower time lag: timelier).

Research Design: Model for 8-K

- Model Specification
 - Form 8-K: we explore responsiveness to good versus bad news.

$$TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{j=0}^{\infty} \beta_n CONTROLS_{i,t} + \epsilon_{i,t},$$
(2)

Research Design: Model for 8-K

Model Specification

Form 8-K: we explore responsiveness to good versus bad news.

$$TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{j} \beta_n CONTROLS_{i,t} + \epsilon_{i,t},$$
(2)

- ΔDRET is change in daily returns
- BN is bad news day, 1 if $\triangle DRET$ is three times larger than average change in DRET.

Figure 1: 8-K Matching Process

Research Design: Data

- US firms period 1994-2019
- 8-K and 10-Q files from EDGAR
- Data source: Compustat, CRSP and I/B/E/S
- Exclude regulated and financial firms
- Exclude firms with missing observations

Research Design: Data

- US firms period 1994-2019
- 8-K and 10-Q files from EDGAR
- Data source: Compustat, CRSP and I/B/E/S
- Exclude regulated and financial firms
- Exclude firms with missing observations
- Final sample 10-Q: 91,606 observations

Research Design: Data

- US firms period 1994-2019
- 8-K and 10-Q files from EDGAR
- Data source: Compustat, CRSP and I/B/E/S
- Exclude regulated and financial firms
- Exclude firms with missing observations
- Final sample 10-Q: 91,606 observations
- Final sample 8-K: 119,615 observations
 - If we exclude TLAG over 4 days, sample is 40,700 observations

Results: Summary Statistics

Table 2. Panel A: Summary Statistics 10-Q

	count	mean	std	min	25%	50%	75%	max
Textual Variables								
NW	91606	9.020	0.757	7.120	8.506	9.086	9.547	13.544
nw	91606	10937	10204	1236	4941	8829	13997	752337
TONE	91606	-8.921	7.236	-63.579	-13.127	-7.875	-3.866	24.215
TLAG	91606	39	6	0	36	40	44	52
READ	91606	38.161	42.160	14.580	17.840	20.210	39.660	262.519
Financial Variables								
QRET	91606	0.018	0.253	-1.579	-0.113	0.007	0.130	4.849
NEG	91606	0.483	0.500	0	0	0	1	1
SIZE	91606	6.452	1.772	2.898	5.175	6.317	7.563	11.315
MTB	91606	3.461	3.665	0.416	1.485	2.343	3.902	24.449
LEV	91606	0.192	0.182	0.000	0.011	0.162	0.315	0.705
AF	91606	0.043	0.066	-0.262	0.023	0.049	0.073	0.227
AFE	91606	-0.021	0.067	-0.445	-0.018	-0.002	0.002	0.078
BUSSEG	91606	0.859	0.447	0.693	0.693	0.693	0.693	2.773
GEOSEG	91606	0.898	0.532	0.693	0.693	0.693	0.693	3.045
AGE	91606	8.312	1.033	5.811	7.635	8.420	9.089	10.288
EARN	91606	0.005	0.042	-0.201	0.001	0.012	0.023	0.084
STD_EARN	91606	0.020	0.030	0.001	0.005	0.009	0.021	0.188
STD_QRET	91606	0.089	0.070	0.007	0.040	0.070	0.115	0.379

Results: Summary Statistics Continued

Table 2. Panel B: Summary Statistics 8-K

	count	mean	std	min	25%	50%	75%	max
Textual Variables								
NW	119615	6.093	0.926	4.898	5.553	5.846	6.358	12.486
nw	119615	1339	6398	133	257	345	576	264704
TONE	119615	-0.552	7.424	-97.851	-3.049	0.000	3.677	45.929
TLAG	119615	15	17	0	2	9	21	93
N8K	119615	1	0	1	1	1	1	4
NITEM	119615	2	1	1	2	2	2	16
Financial Variables								
DRET	119615	0.003	0.097	-0.833	-0.039	-0.003	0.041	5.991
Δ DRET	119615	-0.018	0.187	-9.062	-0.121	-0.050	0.100	5.989
BN	119615	0.542	0.498	0	0	1	1	1
SIZE	119615	6.326	1.993	2.122	4.896	6.262	7.664	11.379
MTB	119615	3.741	4.784	0.123	1.366	2.293	4.055	33.434
LEV	119615	0.204	0.192	0.000	0.012	0.171	0.334	0.735

Results: Is 8-K Narrative Disclosure Conservative?

Table 4. Panel A: Is 8-K Narrative Disclosure Conservative?

Dep. Variables	(1) NW	(2) NW	(3) TONE	(4) TONE	(5) TLAG	(6) TLAG
$\Delta { m DRET}$	0.062	0.050	-1.064**	-0.873**	-13.495***	-13.883***
	(1.61)	(1.30)	(-2.57)	(-2.15)	(-12.06)	(-11.96)
BN	0.007	0.007	-0.091	-0.082	0.211	0.194
	(1.16)	(1.07)	(-1.31)	(-1.20)	(1.13)	(1.02)
(Pred. Sign)	(-)	(-)	(+)	(+)	(+)	(+)
$\Delta DRET \times BN$	-0.129**	-0.108**	2.175***	1.837***	20.112***	20.817***
	(-2.53)	(-2.12)	(4.07)	(3.49)	(13.37)	(13.21)
SIZE	` ′	-0.010*	, ,	0.139***	,	-0.496***
		(-1.80)		(2.88)		(-5.15)
MTB		0.003***		-0.008		0.017
		(2.92)		(-1.14)		(1.06)
LEV		0.043		-0.938***		-1.867***
		(1.40)		(-3.60)		(-3.57)
Constant	7.242***	7.279***	-6.359***	-6.934***	30.063***	33.047***
Combonie	(32.57)	(33.42)	(-3.68)	(-3.99)	(7.20)	(7.83)
	(02.01)	(55.42)	(-0.00)	(-0.55)	(1.20)	(1.00)
Observations	119,615	119,615	119,615	119,615	119,615	119,615
Adjusted R-squared	0.447	0.447	0.157	0.158	0.135	0.136
rajastea n-squarea	0.441	0.441	0.101	0.100	0.100	0.100

$$TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$$
(2)

Results: Is 10-Q Narrative Disclosure Conservative?

(2)

(1)

Table 3. Panel A: Is 10-Q Narrative Disclosure Conservative?

(3)

(4)

(5)

December 3, 2020

(6)

17 / 33

Dep. Variables	ŇŴ	ŇŴ	TÒŃE	TÒŃE	TĽÁG	TĽÁG
QRET	0.039***	0.029**	-0.279**	0.335**	-0.081	-0.318*** (-2.72)
NEG	0.006	0.007	-0.113***	-0.116**	0.027	0.039
$QRET{ imesNEG}$	(1.29) -0.145***	(1.45) -0.075***	(-2.20) 2.103***	(-2.31) 0.760***	(0.73) -0.771***	(1.03) -0.189
SIZE	(-6.05)	(-3.36)	(6.67)	(2.82)	(-4.07)	(-1.04) -0.135**
		(3.79)		(5.57)		(-2.06)
МТВ						-0.023** (-1.98)
LEV		0.332***		-1.260***		0.748**
		(9.76)		(-2.77)		(2.16)
Additional controls	No	Yes	No	Yes	No	Yes
Firm & Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	91,606	91,606	91,606	91,606	91,606	91,606
Adjusted R-squared	0.649	0.653	0.557	0.570	0.613	0.616
	QRET NEG QRET×NEG SIZE MTB LEV Additional controls Firm & Year FE Observations	QRET 0.039*** (3.23) NEG 0.006 (1.29) QRET×NEG -0.145*** (-6.05) SIZE MTB LEV Additional controls No Yesr Year FE Yes Observations 91,606	QRET 0.039*** 0.029** (3.23) (2.21) NEG 0.006 0.007 (1.29) (1.45) QRET×NEG -0.145*** -0.075*** (-6.05) (-3.36) SIZE 0.035*** (3.79) MTB -0.007*** (-5.53) LEV 0.332*** (9.76) Additional controls Firm & Year FE Yes Yes Observations 91,606 91,606	QRET	QRET 0.039*** 0.029** -0.279** 0.335** (3.23) (2.21) (-2.04) (2.58) NEG 0.006 0.007 -0.113** -0.116** (1.29) (1.45) (-2.20) (-2.31) QRET×NEG -0.145*** -0.075*** 2.103*** 0.760*** (-6.05) (-3.36) (6.67) (2.82) SIZE 0.035*** 0.469*** (3.79) (5.57) MTB -0.007*** (0.777*** (-5.53) (4.34) LEV 0.332*** -1.260*** (9.76) (-2.77) Additional controls No Yes No Yes Firm & Year FE Yes Yes Yes Yes Observations 91,606 91,606 91,606	QRET 0.039*** 0.029** -0.279** 0.335** -0.081 (3.23) (2.21) (-2.04) (2.58) (-0.78) NEG 0.006 0.007 -0.113** -0.116** 0.027 (1.29) (1.45) (-2.20) (-2.31) (0.73) QRET×NEG -0.145*** -0.075*** 2.103*** 0.760*** -0.771*** (-6.05) (-3.36) (6.67) (2.82) (-4.07) SIZE 0.035*** 0.469*** (3.79) (5.57) MTB -0.007*** (0.73) (4.34) LEV 0.332*** -1.260*** (9.76) (-2.77) Additional controls No Yes No Yes No Firm & Year FE Yes Yes Yes Yes Yes Yes Observations 91,606 91,606 91,606 91,606

Narrative Conservatism

Results: Are Lengthier 10-Qs Less Readable?

Table 3. Panel B: Are Lengthier 10-Qs Less Readable?

Dep. Variables	(1) READ	(2) READ	(3) READ	$^{(4)}_{ m READ}$
NW	13.048***	13.298***	13.407***	13.697***
	(21.59)	(21.73)	(18.50)	(18.74)
QRET	-1.001	-0.471	8.889	11.146
	(-1.49)	(-0.74)	(0.82)	(1.03)
NEG	0.012	0.028	-0.597	-0.597
	(0.05)	(0.11)	(-0.14)	(-0.14)
(Pred. Sign)	(-)	(-)	(?)	(?)
QRET×NEG	3.686**	2.341*	-37.674*	-43.311*
	(2.52)	(1.66)	(-1.66)	(-1.92)
$NW \times NEG$, ,	0.067	0.068
			(0.14)	(0.14)
$QRET \times NW$			-1.093	-1.285
			(-0.91)	(-1.07)
(Pred. Sign)			(-)	(-)
$QRET \times NEG \times NW$			4.568*	5.045**
			(1.81)	(2.02)
Observations	91,606	91,606	91,606	91,606
Adjusted R-squared	0.461	0.462	0.461	0.462
Controls	NO	YES	NO	YES

 $READ_{i,t} = \beta_0 + \beta_1 NW_{i,t} + \beta_2 QRET_{i,t} + \beta_3 NEG_{i,t} + \beta_4 QRET_{i,t} \times NEG_{i,t} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$

Results: 8-K Items, Filings and Reporting Time Lag

Table 4. Panel B: 8-K Items, 8-K Filings and Reporting Time Lag

Dep. Variables	(1) NITEM	(2) NITEM	(3) N8K ₋ OL	(4) TLAG ₋ OL
ΔDRET	0.221***	0.222***	1.076***	-0.944***
	(4.27)	(4.45)	(6.73)	(-7.63)
BN	0.011	0.011	0.061	0.107***
	(1.23)	(1.24)	(1.44)	(3.82)
(Pred. Sign)	`(-)´	`(-) ´	`(-)	`(+)´
ΔDRET×BN	-0.318***	-0.321***	-1.358***	1.436***
	(-4.63)	(-4.86)	(-6.43)	(8.75)
Controls	NO	Included	Included	Included
Observations	119,615	119,615	119,615	40,700
Adjusted (Pseudo) R-squared	0.126	0.126	(0.006)	(0.009)
Year-month FE	YES	YES	` NO ´	` NO ´
Firm FE	YES	YES	NO	NO
Industry Clustered SE	YES	YES	NO	NO

 $\textit{TEX}_{i,t} = \beta_0 + \beta_1 \Delta \textit{DRET}_{i,t-t | \textit{lag}} + \beta_2 \textit{BN}_{i,t-t | \textit{lag}} + \beta_3 \Delta \textit{DRET}_{i,t-t | \textit{lag}} \times \textit{BN}_{i,t-t | \textit{lag}} + \sum \beta_n \textit{CONTROLS}_{i,t} + \epsilon_{i,t} \quad \text{(2)}$

Results: Robustness Checks

- Our evidence of narrative conservatism is robust to
 - employing an alternative tone measure using the positive and negative word list from the Harvard General Inquiry dictionary (Loughran and McDonald, 2016);
 - including controls for conditional conservatism and managerial incentives;
 - excluding 8-K items on results of operations that contain quarterly or annual financial statements (Segal and Segal, 2016);
 - using an alternative 8-K reporting time lag definition (Carter and Soo, 1999; Niessner, 2015; Chapman et al., 2019);
 - excluding a priori bad news 8-K items (Segal and Segal, 2016);
 - estimating by fiscal year from 1995 to 2020.

Results: Additional Analyses

- We expect to observe greater narrative conservatism where managers are more able to have discretion over narrative content:
 - 1 in the MD&A section as compared to the footnotes:
 - extract MD&A and Notes to Financial Statements (NFS) from 37,216 10-Qs;
 - calculate TONE and NW for these sections.
 - do not study asymmetric timeliness as sections of 10-Qs do not differ in timing.

Results: Additional Analyses

- We expect to observe greater narrative conservatism where managers are more able to have discretion over narrative content:
 - 1 in the MD&A section as compared to the footnotes:
 - extract MD&A and Notes to Financial Statements (NFS) from 37,216 10-Qs;
 - calculate TONE and NW for these sections.
 - do not study asymmetric timeliness as sections of 10-Qs do not differ in timing.
 - 2 also, in voluntary disclosures as compared to mandatory disclosures;
 - we divide 8-Ks into voluntary and mandatory following Lerman and Livnat (2010); He and Plumlee (2020)

Additional Analyses: MD&A and NFS

Table 5. Narrative conservatism in MD&A and NFS

Dep. Variables	(1)	(2)	(3)	(4)
	NW ₋ MDA	NW_NFS	TONE ₋ MDA	TONE_NFS
QRET	0.031***	0.022	0.542***	0.451
NEG	(2.60)	(1.08)	(2.94)	(1.39)
	0.015***	0.010	-0.132*	-0.038
QRET×NEG	(3.28)	(1.56)	(-1.87)	(-0.41)
	-0.062**	-0.026	0.773**	0.453
	(-2.33)	(-0.78)	(1.98)	(0.87)
Controls	Included	Included	Included	Included
Observations	37,215	37,215	37,215	37,215
Adjusted R-squared	0.741	0.812	0.560	0.568

Additional Analyses: Voluntary and Mandatory Disclosure

Table 6. Narrative Conservatism in Voluntary and Mandatory Disclosure

Dep. Variables	N	W	TO	ONE	TL	AG
Disclosure Type	(1)	(2)	(3)	(4)	(5)	(6)
	VD	MD	VD	MD	VD	MD
$\Delta { m DRET}$	0.128***	-0.036	-1.247**	-0.813	-15.607***	-6.471***
BN	(3.10)	(-0.32)	(-2.41)	(-0.65)	(-8.20)	(-4.32)
	0.011*	-0.004	-0.025	-0.093	0.431	0.150
	(1.69)	(-0.26)	(-0.38)	(-0.49)	(1.64)	(0.56)
$\begin{array}{c} (Pred. \ Sign) \\ \Delta {\rm DRET}{\times}{\rm BN} \end{array}$	(-)	(-)	(+)	(+)	(+)	(+)
	-0.221***	0.003	2.818***	1.294	25.375***	9.292***
	(-3.87)	(0.02)	(3.15)	(0.98)	(9.38)	(5.36)
SIZE	-0.003 (-0.38)	-0.021** (-2.08)	0.080 (1.42)	0.148 (1.63)	-0.631*** (-5.16)	-0.050 (-0.32)
MTB	0.001 (0.99)	0.005*** (3.17)	-0.005 (-0.51)	-0.007 (-0.44)	0.003 (0.10)	0.037 (1.47)
LEV	0.103**	-0.056	-1.135***	-0.681	-1.475**	-2.310*
	(2.47)	(-1.02)	(-3.70)	(-1.08)	(-2.39)	(-2.08)
Constant	6.806***	8.426***	-4.453**	-10.788***	30.627***	39.368***
	(34.89)	(15.03)	(-2.40)	(-2.65)	(6.25)	(4.37)
Observations	84,113	35,502 0.522	84,113	35,502	84,113	35,502
Adjusted R-squared	0.464		0.196	0.158	0.140	0.178

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_3 \Delta DRET_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} \times BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} \times BN_{i$

Results: What links Conditional Conservatism?

Quintiles of C_SCORE

Results: What links Conditional Conservatism?

Quintiles of C_SCORE

Table 8. Narrative Conservatism and Conditional Conservatism

Quintile	(1)	(2)	(3)	(4)	(5)
	0% - 20%	20% - 40%	40% - 60%	60% - 80%	80% - 100%
C_SCORE					
NW (-)	-0.198*	-0.174**	-0.179***	-0.044	-0.115***
	(-1.72)	(-2.40)	(-3.11)	(-1.06)	(-3.50)
TONE (+)	1.618	2.547***	2.235***	1.048**	1.614***
	(1.50)	(4.03)	(3.71)	(2.21)	(5.17)
TLAG (+)	-0.596	-1.566***	-1.408***	-0.217	-0.402
	(-0.89)	(-3.12)	(-3.21)	(-0.56)	(-1.11)

$$TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \epsilon_{i,t}$$
 (1)

Results: Additional Analyses

- We expect to observe greater narrative conservatism
 - in firms where recognition criteria may be stringer (less opportunities to recognize bad news).
 - in settings where managers have incentives to release bad news

Conclusions

Conclusions

- We provide evidence that narratives reflect bad news in a more complete, news-consistent, and timely manner than good news.
- Firms report lengthier 10-Qs to clarify rather than obfuscate bad news, and provide more 8-Ks and 8-K items in response to bad news than to good news.
- We document greater narrative conservatism in the MD&A section and in voluntary disclosure. Also, narrative conservatism is pervasive in firms with high conditional conservatism, intangible assets, R&D expenses and proprietary costs.
- We find greater narrative conservatism in settings where managers have strong incentives to disclose bad news.

Results: Summary Statistics Continued

Table 2. Panel C: Summary Statistics by 8-K Item —— Before August 23, 2004

Item	# of 8-Ks	%	nw	TONE	TLAG
1: Changes in Control of Registrant	4377	8.21%	1195	-1.22	17.29
2: Acquisition/Disposition Assets	6773	12.70%	7183	-4.65	22.34
3: Bankruptcy or Receivership	85	0.16%	9920	-4.05	27.89
4: Changes in Registrant's	895	1.68%	1128	-9.50	24.71
Certifying Accountant					
5: Other Events	14836	27.82%	4431	-3.14	20.49
6: Resignation of Registrant's	84	0.16%	8052	-11.32	27.98
Directors					
7: Financial Statements	18111	33.96%	5239	-3.48	20.70
and Exhibits					
8: Change in Fiscal Year	153	0.29%	3322	-0.95	27.59
9: Reg FD	4379	8.21%	571	-1.25	15.56
10: Amendments to the	11	0.02%	353	-2.93	19.64
Registrant's Code of Ethics					
11: Temporary Suspension	26	0.05%	309	-3.43	19.31
of Trading					
12: Results of Operation	3608	6.76%	316	-0.61	15.98

Results: Summary Statistics Continued

Table 2. Panel C: Summary Statistics by 8-K Item —— After August 23, 2004 (included)

Item	# of cases	%	nw	TONE	TLAG
1: Registrant's Business and Operations	15672	7.95%	797	-3.43	14.96
2: Financial Information	42226	21.42%	449	1.03	12.76
2.02: Results of Operation	35910	18.22%	395	1.97	12.43
3: Securities and Trading Markets	3063	1.55%	1081	-4.10	13.03
4: Matters Related to Accountants and Financial Statements	888	0.45%	779	-10.14	16.54
5: Corporate Governance and Management	26776	13.58%	539	-0.06	15.76
6: Asset-Backed Securities	3	0.00%	211	2.91	14.33
7: Reg FD	15795	8.01%	555	0.29	11.04
8: Other Events	18734	9.50%	567	-0.86	11.66
9: Financial Statements and Exhibits	73982	37.53%	488	0.40	12.82

Correlation matrix (I)

Table 2. Panel D: Correlation Matrix 10-Q

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) NW		-0.456	-0.192	-0.083	-0.007	0.002	0.255	0.058
(2) TONE	-0.482		0.016	0.086	0.020	-0.021	-0.062	-0.013
(3) TLAG	-0.263	0.021		0.048	-0.022	0.034	-0.331	-0.023
(4) READ	-0.252	0.169	0.125		-0.016	0.016	-0.014	-0.037
(5) QRET	-0.007	0.028	-0.032	-0.029		-0.684	-0.064	-0.029
(6) NEG	0.003	-0.024	0.033	0.028	-0.866		0.000	0.014
(7) SIZE	0.264	-0.047	-0.333	-0.078	-0.024	-0.001		0.247
(8) MTB	0.046	0.040	-0.042	-0.026	-0.055	0.033	0.382	
(9) LEV	0.014	0.076	0.000	0.075	0.003	-0.004	0.143	-0.111
(10) AF	-0.018	0.062	-0.125	0.035	-0.087	0.072	0.026	-0.299
(11) AFE	0.040	0.099	-0.149	-0.023	0.181	-0.157	0.232	0.226
(12) AGE	-0.035	0.063	-0.232	0.071	0.011	-0.015	0.336	-0.081
(13) EARN	-0.139	0.223	-0.146	0.065	0.114	-0.098	0.299	0.282
(14) STD_EARN	0.092	-0.194	0.153	-0.052	-0.024	0.028	-0.281	0.093
(15) STD_QRET	-0.047	-0.083	0.214	-0.023	0.128	-0.088	-0.325	-0.041

Correlation matrix (II)

Table 2. Panel E: Correlation Matrix 8-K

(10) (11)											
	(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	
0.042 0.075	0.042	-0.024	0.011	-0.015	0.021	0.164	0.154	0.133	-0.425		(1) NW
0.004 -0.035	0.004	0.069	-0.011	0.015	0.003	-0.081	-0.024	-0.079		-0.414	(2) TONE
0.006 -0.036	-0.006	-0.093	0.038	-0.037	-0.016	-0.055	-0.041		-0.110	0.119	(3) TLAG
0.000 0.022	0.000	0.032	-0.006	0.011	0.017	0.432		-0.059	-0.043	0.206	(4) N8K
0.005 0.027	-0.005	0.014	-0.004	0.006	0.009		0.296	-0.093	-0.104	0.184	(5) NITEM
0.004 0.003	0.004	-0.028	-0.572	0.709		0.003	0.006	-0.019	0.009	-0.001	(6) DRET
0.006 0.013	-0.006	0.069	-0.738		0.780	0.007	0.006	-0.049	0.019	-0.016	(7) ΔDRET
0.002 -0.009	0.002	-0.032		-0.863	-0.780	-0.005	-0.005	0.049	-0.012	0.012	(8) BN
0.168	0.191		-0.032	0.080	0.025	0.024	0.032	-0.113	0.075	0.029	(9) SIZE
0.085		0.350	-0.003	0.009	0.005	-0.007	0.003	-0.016	0.026	0.047	(10) MTB
).039	-0.039	0.213	-0.010	0.022	0.013	0.025	0.023	-0.041	-0.043	0.081	(11) LEV
	=	0.032 0.014 -0.028 0.069 -0.032	-0.006 -0.004 -0.572 -0.738 -0.032 -0.003	0.011 0.006 0.709 -0.863 0.080 0.009	0.017 0.009 0.780 -0.780 0.025 0.005	0.432 0.003 0.007 -0.005 0.024 -0.007	0.296 0.006 0.006 -0.005 0.032 0.003	-0.093 -0.019 -0.049 0.049 -0.113 -0.016	-0.043 -0.104 0.009 0.019 -0.012 0.075 0.026	0.206 0.184 -0.001 -0.016 0.012 0.029 0.047	(4) N8K (5) NITEM (6) DRET (7) ADRET (8) BN (9) SIZE (10) MTB

Additional Analyses: Intangible Assets and R&D Expenses

Table 7. Narrative Conservatism, Intangible Assets and R&D Expenses

Dep. Variables	NW		TONE		TLAG	
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Intangible Assets	LOW	HIGH	LOW	HIGH	LOW	HIGH
(Pred. Sign) QRET×NEG	(-) -0.024 (-1.21)	(-) -0.068*** (-2.71)	(+) 0.469 (1.50)	(+) 0.475 (1.08)	(+) -0.109 (-0.44)	(+) -0.093 (-0.24)
Observations Adjusted R-squared	29,636 0.831	29,634 0.798	29,636 0.708	29,634 0.678	29,636 0.654	29,634 0.693
Panel B: R&D Expenses	LOW	HIGH	LOW	HIGH	LOW	HIGH
(Pred. Sign) QRET×NEG	(-) -0.065 (-1.56)	(-) -0.075** (-2.45)	(+) 0.710 (1.53)	(+) 0.048 (0.10)	(+) 0.336 (1.15)	(+) -0.029 (-0.06)
Observations Adjusted R-squared	22,899 0.623	22,898 0.682	22,899 0.581	22,898 0.635	22,899 0.626	22,898 0.619

$$TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t} \tag{1}$$

Additional Analyses: Firm Characteristics

Table 8. Narrative, Conditional Conservatism and Firm Characteristics

	(1)	(2)	(3)	(4)	(5)
Quintile	0% - 20%	20% - 40%	40% - 60%	60% - 80%	80% - 100%
Panel A: C_SCORE					
NW (-)	-0.198*	-0.174**	-0.179***	-0.044	-0.115***
	(-1.72)	(-2.40)	(-3.11)	(-1.06)	(-3.50)
TONE $(+)$	1.618	2.547***	2.235***	1.048**	1.614***
	(1.50)	(4.03)	(3.71)	(2.21)	(5.17)
TLAG(+)	-0.596	-1.566***	-1.408***	-0.217	-0.402
	(-0.89)	(-3.12)	(-3.21)	(-0.56)	(-1.11)
Panel B: SIZE					
NW (-)	-0.126**	-0.073	-0.303***	-0.091	-0.196**
	(-2.43)	(-1.43)	(-5.65)	(-1.60)	(-2.46)
TONE $(+)$	1.837***	1.462**	3.639***	1.733**	1.785*
	(3.97)	(2.23)	(5.50)	(2.39)	(1.72)
TLAG(+)	0.028	-0.268	-1.767***	-1.098*	-1.269
	(0.08)	(-0.71)	(-3.40)	(-1.73)	(-1.59)
Panel C: MTB					
NW (-)	-0.179***	-0.203***	-0.090	-0.181***	-0.127***
	(-3.55)	(-3.34)	(-1.36)	(-2.91)	(-2.68)
TONE $(+)$	2.426***	3.072***	1.530**	1.557**	2.475***
	(4.45)	(4.69)	(2.06)	(2.38)	(4.51)
TLAG(+)	-0.689*	-0.531	-1.315**	-0.969*	-0.465
	(-1.67)	(-1.03)	(-2.33)	(-1.90)	(-1.23)
Panel D: LEV					
NW (-)	-0.117***	-0.121***	-0.098	-0.140**	-0.123**
	(-2.62)	(-2.80)	(-1.46)	(-2.29)	(-2.33)
TONE(+)	1.564***	0.849	1.662**	1.795**	2.934***
	(3.25)	(1.38)	(2.53)	(2.53)	(5.47)
TLAG(+)	-0.560**	-0.385	-0.647	-1.351**	-0.709*
	(-2.24)	(-1.08)	(-1.14)	(-2.29)	(-1.80)

Additional Analyses: Managerial Incentives

Table 9. Narrative Conservatism and Managerial Incentives

Dep. Variables	NW		TONE		TLAG	
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: SEO	NO	YES	NO	YES	NO	YES
(Pred. Sign) QRET×NEG	(-) -0.113** (-2.29)	(-) -0.128*** (-2.61)	(+) 1.891*** (3.29)	(+) 0.391 (0.63)	(+) 0.158 (0.32)	(+) -0.343 (-0.66)
Observations Adjusted R-squared	$17,937 \\ 0.649$	17,919 0.678	$17,937 \\ 0.595$	$^{17,919}_{0.634}$	$\begin{array}{c} 17,937 \\ 0.632 \end{array}$	$17,\!919 \\ 0.685$
Panel B: Option Value	LOW	HIGH	LOW	HIGH	LOW	$_{ m HIGH}$
(Pred. Sign) QRET×NEG	(-) -0.084 (-0.96)	(-) -0.216*** (-2.97)	(+) 0.225 (0.29)	(+) 0.654 (0.89)	(+) -0.427 (-0.68)	(+) -0.702 (-1.36)
Observations Adjusted R-squared	11,553 0.456	11,552 0.513	11,553 0.561	11,552 0.623	11,553 0.555	11,552 0.599
Panel C: Litigation Risk	LOW	HIGH	LOW	HIGH	LOW	HIGH
(Pred. Sign) QRET×NEG	(-) -0.107*** (-3.11)	(-) -0.058** (-2.34)	(+) 1.017*** (3.00)	(+) 0.691* (1.92)	(+) -0.290 (-1.05)	(+) -0.026 (-0.10)
Observations Adjusted R-squared	58,945 0.626	32,661 0.688	58,945 0.532	32,661 0.620	58,945 0.620	32,661 0.611

$$TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t} \qquad (1)$$

Narrative Conservatism December 3, 2020

33 / 33