Supervised Learning Weak-supervised Learning Unsupervised Learning

Via two papers

Zhedong Zheng

What can we learn from

(from Stephen Chow's film)

Related Works

1. Simple Does It: Weakly Supervised Instance and Semantic Segmentation (CVPR 2017) Weak

2. Colorful Image Colorization (ECCV 2016 oral) Self

Related Works

1. Simple Does It: Weakly Supervised Instance and Semantic Segmentation (CVPR 2017) Weak

2. Colorful Image Colorization (ECCV 2016 oral) Self

What

Training sample, with box annotations

Test image, fully supervised result

Test image, weakly supervised result

Figure 1: We propose a technique to train semantic labelling from bounding boxes, and reach 95% of the quality obtained when training from pixel-wise annotations.

How

Start from object bounding box annotations

Recall Several Rules

- 1. Background: No bounding box -> background
- 2. **Object Extent**: Bboxes are instance-level, provide information

3. Objectness: Spatial Continuity / Contrasting boundary

How to begin?

If two boxes overlap, we assume the smaller one is in front.

How to begin?

Building upon the insights from the baselines in Section 3.1 and 3.2, we use the MCG segment proposals to supplement GrabCut+. Inside the annotated boxes, we mark as foreground pixels where both MCG and GrabCut+ agree; the remaining ones are marked as ignore. We denote this approach as $MCG \cap GrabCut+$ or $M \cap G+$ for short.

Because MCG and GrabCut+provide complementary information, we can think of $M \cap G+$ as an improved version of GrabCut+ⁱ providing a different trade-off between precision and recall on the generated labels (see Figure 3i).

Post-Process

Any pixel outside bbox is discard.

- If IoU<50%, re-inital
- 2. If the area of a segment is too small compared to its corresponding bounding box (e.g. IoU < 50%), the box area is reset to its initial label (fed in the first round). This enforces a minimal area (cue C2).

DenseCRF

Result

Naïve is without post-processing.

Result

Method		val. mIoU
	Fast-RCNN	44.3
-	GT Boxes	62.2
Weakly supervised	Box	61.2
	$\mathtt{Box^i}$	62.7
	MCG	62.6
	${\tt GrabCut} +$	63.4
	${ t GrabCut} + ^{ t i}$	64.3
	$\mathtt{M}\cap \mathtt{G}+$	65.7
Fully supervised	DeepLab _{ours} [5]	69.1

Table 1: Weakly supervised semantic labelling results for our baselines. Trained using Pascal VOC12 bounding boxes alone, validation set results. DeepLab $_{ours}$ indicates our fully supervised result.

Result

Related Works

1. Simple Does It: Weakly Supervised Instance and Semantic Segmentation (CVPR 2017) Weak

2. Colorful Image Colorization (ECCV 2016 oral) Self

Grayscale image: L channel

$$\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$$

Color information: ab channels $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$

$$L \rightarrow f$$

Inherent Ambiguity

Grayscale

Inherent Ambiguity

Our Output

Ground Truth

Better Loss Function

Regression with L2 loss inadequate

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

Colors in ab space

(continuous)

Better Loss Function

Regression with L2 loss inadequate

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

Use multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} \sum_{q} \mathbf{Z}_{h,w,q} \log(\widehat{\mathbf{Z}}_{h,w,q})$$

Colors in ab space

(discrete)

Failure Cases

Biases

Evaluation

	Visual Quality	Representation Learning	
	Per-pixel accuracy	Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation	
Quantitative	Perceptual realism		
	Semantic interpretability		
Qualitative	Low-level stimuli	Hidden unit activations	
Quantative	Legacy grayscale photos	riidacii ariit activations	

Hidden Unit (conv5) Activations

faces dog faces flowers

Dataset & Task Generalization on PASCAL VOC

