Trabajo práctico

Etapas típicas en procesamiento digital de señales

Generación de una señal con cierta frecuencia de muestreo

1. Escriba un programa en MATLAB que grafique una función senoidal con las siguientes especificaciones:

Frecuencia: 100 Hz.

Frecuencia de muestreo: 1000 Hz.

Tiempo inicio: 0 s.

Tiempo final: 0.5 s.

Agregar ruido a una señal

- 2. Escriba un programa en MATLAB que permita agregar a la señal del Ejercicio 1 cierta cantidad de ruido blanco gaussiano.
 - 1. El prototipo de la función debe ser $signal_n = my_awgn(signal, snr)$. Los datos de entrada son el vector signal y el escalar snr.
 - 2. Obtenga el valor de la varianza del ruido a partir de la ecuación:

$$SNR = 10 \log \frac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

- 3. Utilice la función randn() para generar una señal con ruido blanco gaussiano (help randn).
- 4. La varianza de signal se puede calcular con la función var (help var).
- 5. Compare las salidas de las funciones my_awgn y awgn (help awgn), calculando el error cuadrático medio (RMSE, root mean squared error) entre la señal original (signal) y las señales con ruido (signal_n). Utilice la función provista rmse.m:

Efecto aliasing

- 3. Ejecute el modelo de Simulink provisto, aliasing_demo.slx para MATLAB 2021a o posterior, o aliasing_demo.mdl para MATLAB 2014a o posterior. En este modelo se genera una señal de 100 Hz muestreada a 10 kHz. El bloque ZOH la vuelve a muestrear. Finalmente se grafica su respuesta en frecuencia con un analizador de espectro.
 - 1. Observe la pantalla del analizador de espectro. ¿Qué se debería ver?
 - 2. ¿A qué frecuencia está trabajando el bloque ZOH?
 - 3. ¿Qué debe modificar en el modelo para evitar el efecto de aliasing?

Filtro antialiasing con oversampling

- 4. Suponga que debe digitalizar una señal con una frecuencia máxima de 100 Hz y que desea usar un filtro antialiasing simple con atenuación de -3 dB en 500 Hz y -60 dB en 2000 Hz. Determine:
 - 1. La mínima frecuencia de muestreo.
 - 2. Las características del filtro digital que debe implementar.
 - 3. Realice un gráfico como la Fig. 4.50 del libro de Oppenheim (filmina 15 de la presentación de filtro antialiasing).

Acondicionamiento de señal y error de cuantización

- 5. Ejecute el modelo de Simulink provisto, adc_demo.slx para MATLAB 2021a o posterior, o adc_demo.mdl para MATLAB 2014a o posterior. El objetivo del ejercicio es que la señal de salida del ADC sea exactamente igual a la señal de entrada.
 - 1. ¿Observa algún error en la salida del ADC? ¿Cómo solucionaría el problema?
 - 2. Analice el error de cuantización. ¿Es correcto su valor? De no ser así, ¿qué solución propone?
 - 3. ¿Qué propone para disminuir este error?
 - 4. Agregue un display que muestre la ecuación de la teoría SNR_{ADC} y compare su resultado para diferentes cantidad de bits del ADC.

Error de cuantización, aspectos prácticos

- 6. Utilice las funciones quantizer() y quantize() para generar señales cuantizadas y medir el error cuadrático medio respecto a la señal original.
 - 1. Genere 3 cuantizadores en punto fijo, q1, q2 y q3 con la función quantizer() para las precisiones Q31.0, Q23.8 y Q15.16:

```
q1 = quantizer('fixed','floor','saturate',[32 0]);
%[wordlength fractionlength]
```

2. Genere una señal con el comando:

```
u = linspace(-15, 15, 1000);
```

3. Aplique la señal u a los 3 cuantizadores del punto 1:

```
y1 = quantize(q1,u);
```

4. Calcule el error cuadrático medio (RMSE) entre la señal de entrada y las 3 señales de salida de los cuantizadores:

```
r1 = rmse(u, y1)
```

5. ¿Qué conclusión puede sacar al analizar los valores de los RMSE?

Tipo de distorsiones en un ADC

7. Un ADC de 3 bits ideal presenta una función de cuantización Q(x) como la de la siguiente figura:

Según las siguientes 4 figuras, indique qué ACD presenta problemas por:

- error de linealización,
 error por offset,
 pérdidas de códigos (words), y
- 4) factor de escala no lineal.

Justifique.

Error de cuantización, aspectos teóricos

8. Suponga que tenemos un ADC de 12 bits que opera sobre un rango de ±5 V. Asuma que el ADC es ideal y que su función de transferencia está dada por la siguiente figura,

- 1. ¿Cuál es el nivel de cuantización q del ADC, dado en voltios?
- 2. Si se aplica una señal compleja de 4 V pico a pico, ¿qué nivel de SNR_{ADC} se puede esperar? Desarrolle la respuesta.