INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.21] FURTHER AREAS AND VOLUMES

Compiled by Christos Nikolaidis

Ο.	Pract	ice quest	tions								
1.	[Max	imum ma	rk: 12]	[with	out GD	СЈ					
	(a)	Find	(i)	$\int \ln x dx$		(ii) ∫	$\left(\ln x\right)^2 \mathrm{d}x.$				[6]
	Let F	R be the re	egion u	ınder the	e curve	$y = \ln x$	and abov	e x-axis	, from $x =$	=1 and $x=e$	
	(b)	Find the	area c	of the reg	gion R.						[3]
	(c)	Find the	volum	e of the	solid ge	nerated	when the	region R	is rotated	through 2π	
		radians a	about .	x − axis.							[3]
							• • • • • • • • • • • • • • • • • • • •				
							•••••				

2. [Maximum mark: 13] [without GDC]

Part of the functions $y = \sin x$ and $y = \cos x$ are shown on the diagram below

- (a) Find the value of the area A. [3]
- (b) Find the value of the area B. [4]
- (c) The region A is rotated through 2π about x-axis. Find the volume of the solid generated. [4]
- (d) The region B is rotated through 2π about x-axis. Write down an expression which represents the volume of the solid generated (do not find its value). [2]

$$\int_{0}^{\frac{\pi}{3}} \cos x \, dx = \sin(\frac{\pi}{6}) - \sin(0) = 1 = A + B$$

$$\int_{0}^{\frac{\pi}{3}} \sin x \, dx = \left[-\cos(x)\right]_{0}^{\frac{\pi}{3}} = -\cos\frac{\pi}{4} + \cos 0 = 1 - \frac{\sqrt{2}}{2}$$

$$2 - \sqrt{2}$$

- $(\alpha)\beta = J J_2$ $| = A + 9 - J_2$
- (b) A = J2-1

$$CC) \sqrt{-\pi} \sqrt{\frac{\pi}{3}} (\cos x - \sin x)^2 dx$$

$$TT \sqrt{\frac{\pi}{3}} (\cos^2 x - \sin^2 x) dx$$

$$TT (\cos^2 \frac{\pi}{3}) - \sin^2 \frac{\pi}{3} - \cos^2 0 + \sin^2 (0)) = TT (\frac{1}{3} \sin^2 x) \int_0^{\pi} (-\frac{1}{3} - \frac{1}{3} - 1 + 0)$$

$$= TT = TT = TT = TT = TT = TT (\frac{1}{3} \sin^2 x) + \frac{1}{3} \sin^2 x$$

.....

3. [Maximum mark: 13] [without GDC]

Consider the triangular region R enclosed by the line y = 8 - 2x and the two axes.

Let A denote the area of the triangular region R.

When R is rotated about x-axis a cone of volume V_x is generated.

When R is rotated about $\,y$ -axis a cone of volume $\,V_{_{\boldsymbol{y}}}$ is generated.

(a) Complete the table below (use formulas for Area of a triangle - Volume of a cone)

Area $A = \frac{b \times h}{2}$	$Volume V_x = \frac{1}{3}\pi r^2 h$	$Volume V_y = \frac{1}{3}\pi r^2 h$

(b) Write down definite integrals that represent the following

Area A using	Area A using
$A_x = \int_a^b y \mathrm{d}x$	$A_{y} = \int_{a}^{b} x dy$

Volume	Volume		
$V_x = \pi \int_a^b y^2 \mathrm{d}x$	$V_{y} = \pi \int_{a}^{b} x^{2} \mathrm{d}y$		

[Notice: Use your GDC to check if the results in (b) agree with those in (a)]

[5]

4. [Maximum mark: 24] [with GDC]

Consider the two curves $y = x^2$, $y = 8 - x^2$

(a) Write down definite integrals that represent the following areas; find their values.

Area	Integral expression	Value
$A \text{ using } A_x = \int_a^b y \mathrm{d}x$		
$A \text{ using } A_y = \int_a^b x \mathrm{d}y$		
$B \text{ using } A_x = \int_a^b y dx$		
$B \text{ using } A_y = \int_a^b x \mathrm{d}y$		

- [12]
- (b) Write down definite integrals that represent the volumes of the solids when the following 2π -rotations occur; find their values.

Volume	Integral expression	Value
A rotated about x -axis		
A rotated about y-axis		
B rotated about x -axis		
B rotated about y -axis		

5. [Maximum mark: 6] **[without GDC]**

Part of a line passing through the origin and the point (h,r) is shown below.

(a) Show that the equation of the line is
$$y = \frac{r}{h}x$$
. [2]

The region between the line and and x-axis is rotated through 2π about x-axis and a cone of base radius r and height h is created.

(b)	Prove the formula for the volume of the cone using integration.	[4]

6.	[Maximum mark: 20] [with GDC]						
	Cons	sider the three curves $y = e^x$, $y = 4$, $y = 20 - 4x$					
	(a)	Sketch a graph and shade the region R in the first quadrant enclosed by the three					
		curves and the $\it x$ -axis. Indicate any intercepts and points of intersection.	[5]				
	(b)	Find the exact value of the area of the region R.	[5]				
	(c)	Find the exact value of the volume of the solid generated when the region R is					
		rotated 2π radians in x -axis	[5]				
	(d)	Write down an expression for the volume of the solid generated when the region					
		R is rotated 2π radians in y -axis and hence find its value.	[5]				

Exam style questions (SHORT)

[with / without GDC] 7. [Maximum mark: 4]

A part of the graph of $y = 2x - x^2$ is given in the diagram below.

The shaded region is revolved through 360° about the *x*-axis.

Write down an expression for this volume of revolution.

[2] [2]

(b) Calculate this volume.	
(a)fit (1)x-x2)dx72	C_{α}) π $\int_{0}^{1} (3^{x-x_{3}})^{3}$
(6)[tr(x²-½x³)]² (6)[tr(x²-½x³)]²	Jo (× ×) 0 ×
$T(y^2 - \frac{1}{2}(y^3) - T(1)$	(b) $T \int (4x^2 - 4x^3 + x^4) dx$
3077 "(1)	$TI\left[\frac{4}{3}x^{3}-x^{4}+\frac{1}{5}x^{5}\right]^{2}$
411 - 211 -T	"[3/" , "3/"]"
311-231	T(3(2)3-(2)+5(35)
-(3-3)m	32 11 -1611 + 32 IT
5	3 1 5

8. [Maximum mark: 5] **[with GDC]**

The shaded region in the diagram below is bounded by $f(x) = \sqrt{x}$, the line x = a and the x-axis. The shaded region is revolved around the x-axis through 360° . The volume of the solid formed is $0.845\,\pi$. Find the value of α .

9. [Maximum mark: 4] **[with GDC]**Consider the function $f(x) = e^{2x-1} + \frac{5}{2x-1}$, $x \ne \frac{1}{2}$.

The region between the curve and the x-axis between x=1 and x=1.5 is rotated through 360° about the x-axis. Let V be the volume formed.

- (a) Write down an expression to represent *V*. [3]
- (b) Hence write down the value of *V*. [1]

10. [Maximum mark: 7] [without GDC]

The diagram shows part of the graph of $y = e^{\frac{\lambda}{2}}$.

(a) Find the coordinates of the point P, where the graph meets the y-axis. [2]

The shaded region between the graph and the x-axis, bounded by x=0 and $x=\ln 2$, is rotated through 360° about the x-axis.

(b) Write down an integral which represents the volume of the solid obtained. [2]

(c)	Show that this volume is π .	[3]

.....

.....

[without GDC]

11. [Maximum mark: 6]

	Find $\int 3\sin^2 x \cos x dx$
(b)	Let $g(x) = \sqrt{3} \sin x (\cos x)^{\frac{1}{2}}$ for $0 \le x \le \frac{\pi}{2}$. Find the volume generated when the
	curve of g is revolved through 2π about the x -axis.
[Max	kimum mark: 6] <i>[with GDC]</i>
The	graph of $y = \sin(3x)$ for $0 \le x \le \frac{\pi}{4}$ is rotated through 2π radians about the <i>x</i> -axis.
Find	the volume of the solid of revolution formed.

13.	_	function f is defined by $f(x) = \frac{\ln x}{x^3}$, $x \ge 1$.	
		<i>x</i>	
	ine (a)	region enclosed by the x -axis, the graph of f and the line $x=3$ is denoted by R . Find the volume of the solid of revolution obtained when R is rotated through 360°	
	(a)	about the x -axis.	[3]
	(b)	Show that the area of R is $\frac{1}{18}(4-\ln 3)$	[6]

14.	[Maximum mark: 4]	l	[without	CDCI
14.	[Maximum mark: 4 ⁻	l .	<i>without</i>	GDCJ

The area between the graph of $y = e^x$ and the x-axis from x = 0 to x = k (k > 0) is rotated through 360° about the x-axis. Find, in terms of k and e, the volume of the solid generated.

15. [Maximum mark: 6] *[without GDC]*

The diagram below shows the shaded region A which is bounded by the axes and part of the curve $y^2 = 8a(2a-x)$, a>0. Find in terms of a the volume of the solid formed when A is rotated through 360° around the x-axis.

16. [Maximum mark: 10] [without GDC]

The area of the enclosed region shown in the diagram is defined by $y \ge x^2 + 2$ and $y \le ax + 2$, where a > 0.

- (a) Find the area of the region.
- (b) This region is rotated 360° about the x-axis to form a solid of revolution. Find, in terms of a, the volume of this solid of revolution.

[3]

[4]

(c) This region is rotated 360° about the y-axis to form a solid of revolution. Write down an expression that represents the volume of this solid of revolution. [3]

(a)
$$\int_{0}^{c} (x+2) dx - \int_{0}^{a} x^{2} + 2 dx = A$$

 $A = \left[\frac{a}{3}x^{2} + 2x\right]_{0}^{a} - \left[\frac{1}{3}x^{3} + 2x\right]_{0}^{a}$
 $A = \left[\frac{a}{3} + 2a\right]_{0}^{a} - \frac{1}{3}a^{3} - 2a$
 $\frac{3}{6}a^{3} - \frac{2}{6}a^{3} = \frac{1}{6}a^{3} + a^{3} +$

Cp)
$$N=\mu \int_{0}^{\pi} (\alpha x + 3)^{3} x - \mu \int_{0}^{\pi} (x^{4} + 4x^{5} + 4)^{3} x$$

$$V = \pi \left(-\frac{1}{5} c^5 - \frac{4}{3} c^3 + \frac{1}{3} c^5 + \frac{1}{3} c^3 \right)$$

$$V = \pi \left(-\frac{1}{5} c^5 + \frac{5}{8} c^5 - \frac{4}{3} c^3 + \frac{6}{3} c^3 \right)$$

$$V = \pi \left(\frac{2}{15} c^5 + \frac{2}{3} c^3 \right) \text{ units}^3$$

$$(C) V = \pi C$$

17.	[Maximum mark: 6] [without GDC]
	The region bounded by the curve $y = \frac{\ln(x)}{x}$ and the lines $x = 1$, $x = e$, $y = 0$ is rotated
	through 2π radians about the x -axis. Find the volume of the solid generated.

18.	[Maxi	imum mark: 6]
	The r	region enclosed by the curves $y^2 = kx$ and $x^2 = ky$, where $k > 0$, is denoted
	by R.	. Given that the area of R is 12, find the value of k .

B. Exam style questions (LONG)

19. [Maximum mark: 12] **[without GDC]** Consider functions of the form $y = e^{-kx}$.

(a) Show that
$$\int_0^1 e^{-kx} dx = \frac{1}{k} (1 - e^{-k})$$
. [3]

(b) Let k = 0.5

(c)

- (i) Sketch the graph of $y = e^{-0.5x}$, for $-1 \le x \le 3$, indicating the y-intercept.
- (ii) Shade the region enclosed by this graph, x-axis, y-axis and line x = 1.
- (iii) Find the area of this region. [5]

The region enclosed by the graph of $y = e^{-kx}$, x-axis, y-axis and line x = 1 is rotated through 2π about x-axis.

Show that the volume of the solid generated is $\frac{\pi}{2k}(1-e^{-2k})$	[4]

20. [Maximum mark: 15] [with GDC]

The diagram below shows the graphs of $f(x) = 1 + e^{2x}$, g(x) = 10x + 2, $0 \le x \le 1.5$.

- (a) (i) The graphs of f and g intersect at x = 0 and x = a. Find the value of a.
 - (ii) Find an expression for the vertical distance p between the two graphs.
 - (iii) Given that p has a maximum value for $0 \le x \le a$, find the value of x at which this occurs.
 - (iv) Hence find the maximum value of p. [8]

Let R be the region enclosed by enclosed by the graphs of f and g.

(b) Find the area of the region R. [3]

[4]

(c) Find the volume of the solid generated when R Is rotated through 2π in x-axis.

21.

[Max	ximum mark: 21] <i>[with GDC]</i>	
The	function f is defined on the domain $x \ge 1$ by $f(x) = \frac{\ln x}{x}$.	
(a)	(i) Show, by considering the first and second derivatives of f , that there is one l . maximum point on the graph of f .	
4. \	(ii) State the exact coordinates of this point.	[9]
(b)	The graph of f has a point of inflexion at P. Find the x -coordinate of P.	[3]
Let	R be the region enclosed by the graph of f , the x -axis and the line $x=5$.	
(c)	Find the exact value of the area of <i>R</i> .	[6]
(d)	The region R is rotated through an angle 2π about the x -axis. Find the volume of	
	the solid of revolution generated.	[3]

22. [Maximum mark: 20] [with GDC]

Consider the function $f_k(x) = \begin{cases} x \ln x - kx, & x > 0 \\ 0, & x = 0 \end{cases}$, where $k \in \mathbb{N}$.

- (a) Find the derivative of $f_k(x)$, x > 0. [2]
- (b) Find the interval over which $f_k(x)$ is increasing. [2]

The graph of the function $f_k(x)$ is shown below.

- (c) (i) Show that the stationary point of $f_k(x)$ is at $x = e^{k-1}$.
 - (ii) One x-intercept is at (0, 0). Find the coordinates of the other x-intercept.

[4]

- (d) Find the area enclosed by the curve and the x-axis. [5]
- (e) Find the equation of the tangent to the curve at A. [2]
- (f) Show that the area of the triangular region created by the tangent and the coordinate axes is twice the area enclosed by the curve and the x-axis. [2]
- (g) Show that the x-intercepts of $f_k(x)$ for consecutive values of k form a geometric sequence. [3]

23.	[Max	imum mark: 16] <i>[with GDC]</i>		
	Let $f(x) = \ln x^5 - 3x^2 $, $-0.5 < x < 2$, $x \ne a$, $x \ne b$;			
	(a, b are values of x for which $f(x)$ is not defined).			
	(a) (i) Sketch the graph of $f(x)$, indicating on your sketch the number of zero			
		f(x) . Show also the position of any asymptotes.		
		(ii) Find all the zeros of $f(x)$, (that is, solve $f(x) = 0$).	[5]	
	(b)	Find the exact values of a and b .	[3]	
	(c)	Find $f'(x)$, and indicate clearly where $f'(x)$ is not defined.	[3]	
	(d)	Find the exact value of the x -coordinate of the local maximum of $f(x)$, for		
	0 < x < 1.5 . (You may assume that there is no point of inflexion.)			
(e) Write down the definite integral that represents the area of the region enc				
		by $f(x)$ and the x -axis. (Do not evaluate the integral.)	[2]	

24*.	[Max	ximum mark: 24] <i>[without GDC]</i>		
	(a)	Using the formula for $\cos(A+B)$ prove that $\cos^2\theta = \frac{\cos 2\theta + 1}{2}$.	[3]	
	(b)	Hence, find $\int \cos^2 x dx$.	[4]	
	Let	$f(x) = 4\cos x$ and $g(x) = \sec x$ for $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.		
	Let	R be the region enclosed by the two functions.		
	(c) Find the exact values of the x -coordinates of the points of intersection.			
	(d)	Sketch the functions f and g and clearly shade the region R .	[3]	
	The region R is rotated through 2π about the x -axis to generate a solid.			
	(e)	(i) Write down an integral which represents the volume of this solid.		
		(ii) Hence find the exact value of this volume.	[10]	

25.	[Maximum	mark: 211	[with	GDC1
2 5.	liviaxiiiiuiii	IIIain. Zij	LAALELL	GDC_{I}

The function f is defined by $f(x) = x\sqrt{9-x^2} + 2\arcsin\left(\frac{x}{3}\right)$.

(a) Write down the largest possible domain, for each of the two terms of the function and f, and hence state the largest possible domain, D, for f.

[2]

[3]

- (b) Find the volume generated when the region bounded by the curve y=f(x), the x-axis, the y-axis and the line x=2.8 is rotated through 2π radians about the x-axis.
- (c) Find f'(x) in simplified form. [5]
- (d) **Hence** show that $\int_{-p}^{p} \frac{11-2x^2}{\sqrt{9-x^2}} dx = 2p\sqrt{9-x^2} + 4\arcsin\left(\frac{p}{3}\right)$, where $p \in D$. [2]
- (e) Find the value of p which maximises the value of the integral in (d). [2]
- (f) (i) Show that $f''(x) = \frac{x(2x^2 25)}{(9 x^2)^{\frac{3}{2}}}$.

(3 1)	
(ii) Hence justify that $f(x)$ has a point of inflexion at $x=0$, but not at $x=\pm\sqrt{\frac{25}{2}}$.	[7]

26.

[Maximum mark: 11] [without GDC] Let $f(x) = x \cos 3x$.			
(a)	Use integration by parts to show that $\int f(x) dx = \frac{1}{3}x \sin 3x + \frac{1}{9}\cos 3x + c$.	[3]	
(b)	Use your answer to part (a) to calculate the exact area enclosed by $f(x)$ and the x -axis in each of the following cases. Give your answers in terms of π (i) $\frac{\pi}{6} \le x \le \frac{3\pi}{6}$ (ii) $\frac{3\pi}{6} \le x \le \frac{5\pi}{6}$ (iii) $\frac{5\pi}{6} \le x \le \frac{7\pi}{6}$	[4]	
(c)	Given that the above areas are the first three terms of an arithmetic sequence, find an expression for the total area enclosed by $f(x)$ and the x -axis for		
	$\frac{\pi}{6} \le x \le \frac{(2n+1)\pi}{6}$, where $n \in \mathbb{Z}$. Give your answers in terms of n and π .	[4]	