/38 E1 Réaction du dibromure de cuivre

On considère la dismutation du dibromure de cuivre selon l'équation :

$$2 \text{ CuBr}_{2(s)} = 2 \text{ CuBr}_{(s)} + \text{Br}_{2(g)}$$

Cet équilibre se déroule dans un réacteur de volume constant $V=1,0\,\mathrm{L}$. On mesure la pression à l'équilibre dans le réacteur, P_{eq} , en fonction de la température T. Dans les cas d'un excès de CuBr_2 , les résultats sont compilés dans le tableau suivant :

Tableau 1 – Pression d'équilibre de la dismutation du dibromure de cuivre

T (K)	473	488	503	523
$P_{\rm eq}$ (mbar)	52,6	54,2	140,8	321,1

/4 $\boxed{1}$ Exprimer puis calculer la valeur de la constante d'équilibre à la température $T=200\,^{\circ}\mathrm{C}$.

- Réponse

Il est indiqué que les mesures sont effectuées avec un excès de $CuBr_2$, qui est donc encore présent à la fin de la réaction. Il s'agit donc d'un état d'équilibre, et on donc appliquer la loi d'action des masses :

$$K^{\circ} \stackrel{1}{=} Q_{r,\text{eq}}$$

$$\Leftrightarrow K^{\circ} \stackrel{1}{=} \frac{a_{\text{BR}_2,\text{eq}} \cdot a_{\text{CuBr},\text{eq}}^2}{a_{\text{CuBr}_2,\text{eq}}}$$

$$\Leftrightarrow K^{\circ} \stackrel{1}{=} \frac{p_{\text{Br}_2,\text{eq}}}{p^{\circ}} \quad \text{avec} \quad \begin{cases} p_{\text{Br}_2,\text{eq}} = 52.6 \times 10^{-3} \text{ bar} \\ p^{\circ} = 1 \text{ bar} \end{cases}$$

$$A.N. : \underline{K^{\circ}} \stackrel{1}{=} 52.6 \times 10^{-3}$$

On introduit une quantité de matière $n_1 = 2{,}00 \times 10^{-3}$ mol de CuBr₂ dans le réacteur. La température est supposée constante à 200 °C.

/13 2 Déterminer la composition et la pression à l'état final. Comment s'appelle cet état final?

– Réponse ·

On suppose un état d'équilibre. La pression finale vaut alors 52,6 mbar d'après le tableau de valeurs. On peut en déduire la quantité de dibrome formé, et donc l'avancement grâce à un tableau :

Équation ①+①		$2CuBr_{2(s)} = 2CuBr_{(s)} + Br_{2(g)}$			
Initial	$\xi = 0$	n_1	0	0	1
Final	ξ_f	$n_1 - 2\xi_f$	$2\xi_f$	ξ_f	1
Final (mmol)	$\xi_f = \xi_{\max}$	0	2,00	1,00	

Ainsi, on trouve

$$n_{\text{Br}_2,eq} = \boxed{\frac{1}{\xi_{\text{eq}}} \frac{P_{\text{eq}}V}{RT}} \quad \text{avec} \quad \begin{cases} P_{\text{eq}} = 52.6 \times 10^2 \, \text{Pa} \\ V = 1.0 \times 10^{-3} \, \text{m}^3 \\ R = 8.314 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ T = 473 \, \text{K} \end{cases}$$

A.N. :
$$\xi_{\text{eq}} = 1,34 \,\text{mmol}$$

Or, on trouve facilement l'avancement maximal :

$$n_1 - 2\xi_{\max} = 0 \Leftrightarrow \boxed{\xi_{\max} = \frac{1}{2}} \Rightarrow \underbrace{\xi_{\max} = 1,00\,\mathrm{mmol}}_{} < \xi_{\mathrm{eq}}$$
$$\xi_f = \xi_{\max} \qquad \text{rupture d'équilibre} \qquad \boxed{1}$$

Ainsi,

On complète alors la dernière ligne du tableau. Quant à la pression, on la calcule avec la quantité de dibrome à l'état final, $n_{\text{Br}_2,f} = 1,00 \,\text{mmol}$:

$$P_f = \frac{1}{N} \frac{n_{\text{Br}_2, f} RT}{V} \Rightarrow P_f = 3.9 \times 10^{-2} \text{ bar}$$

3 I	Préciser l'évolution	du système	précédent	pour les	s trois	modifications	suivantes	:
-----	----------------------	------------	-----------	----------	---------	---------------	-----------	---

/2 a – Ajout de CuBr₂ à T et P constantes.

Réponse

Le système était en rupture d'équilibre. L'ajout de réactif va donc entraı̂ner l'évolution en sens direct ①, et selon la quantité ajoutée le système peut aboutir à une nouvelle rupture d'équilibre ou à un état d'équilibre. ①

/1 b – Ajout de CuBr à T et P constantes.

Réponse —

Le système est en rupture d'équilibre car le réactif est limitant. Ajouter un produit ne change rien. ①

/1 c – Ajout de Br₂ à T et P constantes.

——— Réponse –

Le système est en rupture d'équilibre car le réactif est limitant. Ajouter un produit ne change rien. ①

On considère maintenant une quantité de matière initiale de CuBr_2 $n_2 = 1,00 \times 10^{-2} \,\text{mol}$ dans les mêmes conditions.

/6 4 Déterminer la composition et la pression à l'état final. Comment s'appelle cet état final?

— Réponse –

De la même manière que précédemment, on a $\xi_{\rm eq}$ inchangé ①, seulement on trouve $\xi_{\rm max}$ $= 5,00\,{\rm mmol} > \xi_{\rm eq}$; ainsi $\xi_f = \xi_{\rm eq}$ ①, on atteint donc un état d'équilibre ① et on peut compléter le tableau d'avancement :

Équation		$2CuBr_{2(s)}$ =	$=$ $2CuBr_{(s)}$ $-$	+ Br _{2(g)}	
Initial	$\xi = 0$	n_2	0	0	
Final (mmol)	$\xi_f = \xi_{\rm eq}$	7,32	2,68	1,34	

On a alors

$$P_f = P_{\text{eq}} \Rightarrow P_f = 52.6 \,\text{mbar}$$

- 5 Préciser l'évolution du système précédent pour les trois modifications suivantes :
- /1 a Ajout de CuBr $_2$ à T et P constantes.

——— Réponse —

Le système est à l'équilibre, et l'ajout d'un constituant solide ne modifie pas le quotient de réaction. Il n'y a donc pas d'évolution. ①

 $/1\,$ b - Ajout de CuBr à T et P constantes.

Réponse —

Le système est à l'équilibre, et l'ajout d'un constituant solide ne modifie pas le quotient de réaction. Il n'y a donc pas d'évolution. ①

/2 c – Ajout de Br₂ à T et P constantes.

Réponse —

Le système est à l'équilibre, et l'ajout d'un constituant gazeux augmente le quotient de réaction ①. Celui-ci devient donc plus grand que la constante d'équilibre, et il y a alors **évolution en sens indirect**. ①

/7 [6] On souhaite maintenant déterminer l'influence du volume du réacteur sur la pression mesurée à l'état final P_f , à température constante et à partir d'un état initial contenant n_0 moles de CuBr₂.

Tracer le graphique $P_f = f(V)$ et préciser les coordonnées du point remarquable.

- Réponse

Pour un excès de CuBr₂, l'état final sera un état d'équilibre donc la pression sera constante, avec

$$P_f = K^{\circ} P^{\circ}$$
 1

En revanche, si $CuBr_2$ est en défaut, il y a rupture d'équilibre, et on aura

$$n_{\mathrm{Br}_2,f} = \xi_{\mathrm{max}} = \frac{1}{2} \frac{n_0}{2} \Rightarrow P_f = \frac{1}{2V} \frac{n_0 RT}{2V}$$

La limite de défaut/excès de CuBr $_2$ est trouvée lorsque la quantité introduite permet tout juste d'atteindre l'état d'équilibre tout en ayant donc la pression maximale ; soit $V_{\rm lim}$ le volume limite, on a alors

$$\underbrace{\frac{n_0RT}{2V_{\mathrm{lim}}}}^{\underbrace{1}} = K^{\circ}P^{\circ} \Leftrightarrow \boxed{V_{\mathrm{lim}} = \underbrace{\frac{n_0RT}{2K^{\circ}P^{\circ}}}$$

D'où le graphique :

FIGURE 1 – Tracé $P_f = f(V)$. 1 + 1