Corso di Laurea in Fisica Laboratorio di Meccanica e Termodinamica – prova scritta

10 febbraio 2022

Tempo per lo svolgimento: 90 minuti

Problema 1 (8 punti)

Un oggetto fermo esplode in tre frammenti, che si muovono su uno stesso piano. Per conservazione della quantità di moto, tra i frammenti 1 e 2 sussiste la condizione: $m_1v_1sin(\theta_1)=m_2v_2sin(\theta_2)$ dove le v_i indicano i moduli delle velocità e gli angoli (presi in valore assoluto) sono misurati rispetto alla direzione di volo del terzo frammento. Si possono misurare direttamente le masse $m_1=100$ g e $m_2=200$ g, con incertezze trascurabili, le velocità $v_1=(3.11\pm0.15)$ m/s e $v_2=(2.69\pm0.15)$ m/s, l'angolo $\theta_1=60.0^{\circ}\pm0.5^{\circ}$. Determinare l'angolo θ_2 e la sua incertezza, sapendo che quelle sulle misure dirette sono incertezze massime.

Problema 2 (7 punti)

Un pittore deve dipingere alcune pareti di una casa, per una superficie totale pari a $S=78~m^2$. Si procura 10 barattoli di vernice il cui contenuto, come dichiarato dal produttore, è distribuito in modo gaussiano con media $\mu=\overline{V}=4$ litri e deviazione standard $\sigma=\sigma_V=0.2$ litri. Per tinteggiare 1 m^2 di superficie serve mezzo litro di vernice. Qual è la probabilità che i 10 barattoli risultino essere non sufficienti per dipingere la superficie totale?

Problema 3 (9 punti)

La tabella riassume le misure di conteggio relative ad un certo fenomeno. Ipotizziamo che il fenomeno segua la distribuzione di Poisson ed effettuiamo un test del χ^2 per controllare l'ipotesi. Qual è l'esito del test? Nota: unire il contenuto dei due ultimi *bin* in un unico intervallo, identificato con $k \ge 6$.

k	Ok
0	5
1	10
2	18
3	26
4	23
5	17
6	8
7	2

Problema 1

$$\sin \theta_2 = \frac{m_1 \, V_1}{m_2 \, V_2} \sin \theta_1 = \frac{100 \cdot 3.11}{200 \cdot 2.69} \sin (60^\circ)$$

$$\Rightarrow \theta_2 = 30.0^\circ$$

$$\frac{\Delta \sin \theta_2}{\sin \theta_2} = \frac{\Delta V_1}{V_1} + \frac{\Delta V_2}{V_2} + \frac{\Delta \sin \theta_1}{\sin \theta_1}$$

$$\frac{\Delta\theta_2}{+9\theta_2} = \frac{\Delta V_1}{V_1} + \frac{\Delta V_2}{V_2} + \frac{\Delta\theta_1}{+9\theta_1}$$

$$\Delta \theta_2 = + \frac{1}{2} \theta_2 \left[\frac{\Delta V_1}{V_1} + \frac{\Delta V_2}{V_1} + \frac{\Delta \theta_1}{+ \frac{1}{2} \theta_1} \right]$$

$$= 0.5774 \left[0.0482 + 0.0558 + \frac{0.5 \cdot \pi}{49(60°)} \right]$$

$$\theta_2 = (0.524 \pm 0.063) \text{ rad}$$

$$= 30.0^{\circ} \pm 3.6^{\circ}$$

Problema 2

Pu berettob:
$$5 = \frac{4}{0.5} = 8 \text{ m}^2$$

$$\sigma_s = \frac{0.2}{0.5} = 0.4 \text{ m}^2$$

Pu so barattali

$$\overline{S^{40}} = 40.8 = 80 \,\mathrm{m}^2$$

$$\delta_s^{30} = \sqrt{40 \cdot 0.4^2} = 4.265 \text{ m}^2$$

$$2 = \frac{78 - 80}{1.265} = -1.58$$

$$P(2<-1.58)=0.057$$
 (5.7%)

Problema 3

k	O _k	$\mathbf{k}\cdot\mathbf{O}_{\mathbf{k}}$
0	5	0
1	10	10
2	18	36
3	26	78
4	23	92
5	17	85
6	8	48
7	2	14
	109	363

$$\hat{p} = \frac{\sum_{k} O_{k} = 109}{N} = \frac{363}{109} = 3.33$$

$$E_{k} = N \frac{\hat{p}^{k} e^{-\hat{p}}}{k!}$$

k	Ok	E _k	χ^2
0	5	3,9	0,32
1	10	12,99	0,78
2	18	21,63	0,76
3	26	24,01	0,21
4	23	19,99	0,56
5	17	13,31	1,17
> 5	10	13,17	0,87
			4,66

i gradi di Ciberta = 5000
$$V = 7 - 2 = 5$$

 $\chi^2 = \frac{4.66}{5} = 0.93$

$$P_{y=5}(\tilde{\chi}^{2}>0.93)>0.42$$

la discrepenta du Ox es Ex non à significativa