Solutions

Part a.

if we assume sum++ takes the majority of the work then 1 work is being done each iteration of the while loop

i value	Iteration number	i(rewritten)	work done
\overline{n}	1	$n/2^0$ $n/2^1$ $n/2^2$	1
n/2	2	$n/2^1$	1
n/2 $n/4$	3	$n/2^2$	1
2	k-1	$n/2^{k-1}$	1
1	k	$n/2^{k-1}$ $n/2^k$	1

In this above table we use K to represent the number of iterations

we know it terminates when $n/2^k \le 0$ using integer rounding we know $n/2^k = 0$ when $2^k > n$ so:

$$2^k > n$$

using properties of logs we get

$$k > log_2(n)$$

becuase we know k is an integer, and the minimum to satisfy the above equation we know

$$k - 1 = log_2(n)$$

$$k = log_2(n) + 1$$

We know there are $log_2(n) + 1$ iterations and 1 work done each iteration so total work is $1 * (log_2(n) + 1) = log_2(n) + 1$ so our runtime is

(ps. a more exact run time is $floor(log_2(n) + 1)$)

Part b.

if we assume sum++ takes the majority of the work then 1 work is being done each iteration of the inner for loop

i value	work done
0	1
1	1
2	1
n-2	1
n-1	1

so work for inner for loop is n-1-0+1=n (the plus one is from 0 to 0 is still 1 loop) the outer while look is like part a.

j value	Iteration number	j(rewritten)	work done
\overline{N}	1	$N/2^0 \ N/2^1 \ N/2^2$	1
N/2	2	$N/2^1$	1
N/2 $N/4$	3	$N/2^2$	1
2	k-1	$N/2^{k-1}$	1
1	k	$N/2^{k-1} \\ N/2^k$	1

here we still use K to be number of iterations. useing the math from part 1 we can skip to:

$$k = log_2(N) + 1$$

we know that the inner loops work is always n so total work is n * k so total work is $n * (log_2(N) + 1) = n * log_2(N) + N$ so order is:

$$O(n * log_2(N))$$

(ps. a more exact run time is $n * floor(log_2(N)) + n$)

Part c.

We will also assume "O(N/2)" means exactly N/2 (This will not affect the end bigO complexity) The inner for loops runs as shown:

K value	work done
0	N/2
1	N/2
2	N/2
n-2	N/2
n-1	N/2

so we have n iterations of N/2 work so total work is nN/2 we will use n_0 to mean the initial n value for the outerloop we have

n value	Iteration number	n(rewritten)	work done
$\overline{n_0}$	1	$n_0/2^0$	$N/2 * n_0/2^0$
$n_0/2$	2	$n_0/2^1$	$N/2 * n_0/2^1$
$n_0/4$	3	$n_0/2^2$	$N/2 * n_0/2^2$
2	k-1	$n_0/2^{k-1}$	$N/2 * n_0/2^{k-1}$
1	k	$n_0/2^{k-1}$ $n_0/2^k$	$N/2 * n_0/2^k$

There are 2 ways to Interpret this, if we take N and n to be 2 parameters we get

$$\begin{split} N/2 * n_0/2^0 + N/2 * n_0/2^1 + N/2 * n_0/2^2 + \dots \\ &= N/2 (n_0/2^0 + n_0/2^1 + n_0/2^2 + \dots) \\ &= N * n_0/2 (1/2^0 + 1/2^1 + 1/2^2 + \dots) \\ &= N * n_0/2 (1/(1 - 1/2)) \\ &= N * n_0/2 * 2 \\ &= N * n_0 \end{split}$$

so we get the bigO to be:

$$O(n * N)$$

However if we Assume n and N are the same thing, and N is updated with n we get:

$$\begin{split} n_0/2^0/2 * n_0/2^0 + n_0/2^0/2 * n_0/2^1 + n_0/2^0/2 * n_0/2^2 + \dots \\ &= 1/2 * (n_0^2/4^0 + n_0^2/4^1 + n_0^2/4^2 + \dots) \\ &= n_0^2/2 * (1/4^0 + 1/4^1 + 1/4^2 + \dots) \\ &= n_0^2/2(1/(1 - 1/4)) \\ &= N * n_0/2 * 4/3 \\ &= 2n_0^2/3 \end{split}$$

so we get the order to be:

$$O(n^2)$$

Part d

for ease of reading we will refer to each loop by what indexes it, that is the inner loop is loop-k, the middle is loop-j and the outer is loop-i we will also assume(rightfully so) that the system.out.println takes by far the most time

loop k work time:

k value	work done
\overline{n}	1
n-1	1
n-2	1
j+2	1
j+1	1

so the work in this loop is n - (j + 1) + 1 = n - j

loop j work time:

j value	work done
i+2	n-(i+2)
i+1	n-(i+1)

so the work in this look is n - (i + 2) + n - (i + 1) = 2n - 2i - 3 loop i work time:

i value	work done
0	2n-3
1	2n - 2 - 3
2	2n - 4 - 3
n-4	2n-2*(n-4)-3
n-3	2n-2*(n-3)-3
n-2	$n - (n - 2 + 1)^*$
n-1	0*

the last 2 loops differ because loop-j activates loop-k once on n-2 and not at all on n-1 so if we sum the work done:

$$(2n-0-3)+(2n-2-3)+(2n-4-3)+...+(2n-2*(n-3)-3)+(n-(n-2+1))$$

we know we have n-2 full iterations (the last 2 are special) so we multiply by that when we pull out constants:

$$= (n-2)(2n-3) - (0+2+4+...+2*(n-3)) + n - (n-1)$$

$$= (2n^2 - 7n + 6) - 2(0+1+2+...n-3) + 1$$

$$= (2n^2 - 7n + 7) - 2((n-3)(n-2)/2)$$

$$= (2n^2 - 7n + 7) - (n^2 - 5n + 6)$$

$$= n^2 - 2n + 1$$

$$= (n-1)^2$$

so we get bigO:

$$O(n^2)$$

(ps. a more exact run time really is $(n-1)^2$)

Part e.

There will later be a picture that makes this more readable we will also start with:

lemma
$$1:1+2+4+8+...+2^k=2^{k+1}-1$$

this should be apparent as written in binary this sum would produce k ones in a row, adding one to this would cascade causing it to be one followed by k zeros, which has a value of 2^{k+1} so:

$$(1+2+4+8+...+2^k)+1=2^{k+1}$$

 $1+2+4+8+...+2^k=2^{k+1}-1$

we can also treat this method as a recurrence:

$$aMethod(1) = 0$$

$$aMethod(n) = 1 + aMethod(n/2) + aMethod(n/2)$$

we simplify the recurrence to

$$aMethod(n) = 1 + 2 * aMethod(n/2)$$

we can unwind the recurrence:

$$aMethod(n) = 1 + 2(1 + 2 * aMethod(n/4))$$

$$aMethod(n) = 1 + 2(1 + 2 * (1 + 2 * aMethod(n/8)))$$

a bit of algebra and a pattern immerges

$$aMethod(n) = 1 + 2(1 + 2 * (1 + 2 * aMethod(n/8)))$$

 $aMethod(n) = 1 + 2(1 + 2 + 4 * aMethod(n/8))$
 $aMethod(n) = 1 + 2 + 4 + 8 * aMethod(n/8)$

we also know the 8 in n/8 came from n/2/2/2 or $n/2^3$ so we know

$$aMethod(n) = \sum_{i=0}^{3-1} (2^i) + 2^3 * aMethod(n/2^3)$$

unwinding once more would have yielded:

$$aMethod(n) = \sum_{i=0}^{4-1} (2^i) + 2^4 * aMethod(n/2^4)$$

and in general unrolling k times (so long as we don't unroll past aMethod's base case) yields:

$$aMethod(n) = \sum_{i=0}^{k-1} (2^i) + 2^k * aMethod(n/2^k)$$

we know a method keeps this behaviour until it's called with n \leq =1 which would happen when $2^k > n$ if we pick k to be the smallest integer this is valid for we get

$$aMethod(n) = \sum_{i=0}^{k-1} (2^i) + 2^k * 0$$

$$aMethod(n) = \sum_{i=0}^{k-1} (2^i)$$

because K is the smallest integer such that $2^k > n$ we also know

$$2^{k-1} <= n$$

$$k-1 \le log_2(n)$$

so we know

$$aMethod(n) = \sum_{i=0}^{log_2(n)} (2^i)$$

with lemma 1

$$aMethod(n) = 2^{log_2(n)+1} - 1$$
$$aMethod(n) = 2n - 1$$

so the bigO is:

(ps that $log_2(n)$ is really $floor(log_2(n))$ so a more exact runtime the next strictly greater power of 2 -1. ie: 7->7, 8->15, 65->127)