תורת ההסתברות -1 סיכום

5 בנובמבר 2024

תוכן העניינים

3	29.10.2024-1 שיעור	1
	מבוא הקורס	
3	1.2 מרחבי מדגם ופונקציית הסתברות	
6	31.10.2024-1 תרגול	2
6	2.1 מרחבי הסתברות סופיים ובני־מניה	
8	31.10.2024-2 שיעור	3
8	3.1 השלמה לטורים דו־מימדיים	
8	3.2 תכונות של פונקציות הסתברות	
9	3.3 פרדוקס יום ההולדת	
10	5.11.2024-3 שיעור	4
10	4.1 מכפלת מרחבי הסתברות בדידים	
11	4.2 ניסויים דו־שלביים	

29.10.2024 - 1 שיעור 1

מבוא הקורס 1.1

נלמד לפי ספר שעוד לא יצא לאור שנכתב על־ידי אורי עצמו, הוא עוד לא סופי ויש בו בעיות ואי־דיוקים, תשיג את הספר הזה. כן יש הבדל בין הקורס והספר אז לא לסמוך על הסדר שלו גם כשאתה משיג אותו, אבל זו תוספת מאוד נוחה. יש סימון של כוכביות לחומר מוסף, כדאי לעבור עליו לקראת המבחן כי זה יתן לנו עוד אינטואיציה והעמקה של ההבנה.

נשים לב כי ענף ההסתברות הוא ענף חדש יחסית, שהתפתח הרבה אחרי שאר הענפים הקלאסיים של המתמטיקה, למעשה רק לפני 400 שנה נשאלה על־ידי נזיר במהלך חקר של משחק אקראי השאלה הראשית של העולם הזה, מה ההסתברות של הצלחה במשחק.

נעבור לדבר על פילוסופיה של ההסתברות. מה המשמעות של הטלת מטבע מבחינת הסתברות? ישנה הגישה של השכיחות, שמציגה הסתברות כתוצאה במקרה של חזרה על ניסוי כמות גדולה מאוד של פעמים. יש כמה בעיות בזה, לרבות חוסר היכולת להגדיר במדויק אמירה כזו, הטיות שנובעות מפיזיקה, מטבעות הם לא מאוזנים לדוגמה. הבעיה הראשית היא שלא לכל בעיה אפשר לפנות בצורה כזאת. ישנה גישה נוספת, היא הגישה האוביקטיבית או המתמטית, הגישה הזו בעצם היא תרגום בעיה מהמציאות לבעיה מתמטית פורמלית. לדוגמה נשאל את השאלה מה ההסתברות לקבל 6 בהגרלה של כל המספרים מ־1 עד מיליון. השיטה ההסתברותית קובעת שאם אני רוצה להוכיח קיום של איזשהו אוביקט, לפעמים אפשר לעשות את זה על־ידי הגרלה של אוביקט כזה והוכחה שיש הסתברות חיובית שהוא יוגרל, וזו הוכחה שהוא קיים. מה התחזיות שינבעו מתורת ההסתברות? לדוגמה אי־אפשר לחזות הטלת מטבע בודדת, אבל היא כן נותנת הבנה כללית של הטלת 1000 מטבעות, הסתברויות קטנות מספיק יכולות להיות זניחות ובמקרה זה נוכל להתעלם מהן. לפחות בתחילת הקורס נדבר על תרגום של בעיות מהמציאות לבעיות מתמטיות, זה אומנם חלק פחות ריגורזי, אבל הוא כן חשוב ליצירת קישור בין המציאות לבין החומר הנלמד.

דבר אחרון, ישנה השאלה הפילוסופית של האם באמת יש הסתברות שכן לא בטוח שיש אקראיות בטבע, הגישה לנושא מבחינה פיזיקלית קצת השתנתה בעת האחרונה וקשה לענות על השאלה הזאת. יש לנו תורות פיזיקליות שהן הסתברותיות בעיקרן, כמו תורת הקוונטים, תורה זו לא סתם הסתברותית, אנחנו לא מנסים לפתור בעיות הסתברותיות אלא ממש משתמשים במודלים סטטיסטיים כדי לתאר מצב בעולם. לדוגמה נוכל להסיק ככה מסקנה פשוטה שאם מיכל גז נפתח בחדר, יהיה ערבוב של הגז הפנימי ושל אוויר החדר, זוהי מסקנה הסתברותית. החלק המדהים הוא שתורת הקוונטים מניחה חוסר דטרמניזם כתכונה יסודית ועד כמה שאפשר לראות יש ניסויים שמוכיחים שבאמת יש חוסר ודאות בטבע. דהינו שברמה העקרונית הפשוטה באמת אין תוצאה ודאית בכלל למצבים כאלה במציאות.

1.2 מרחבי מדגם ופונקציית הסתברות

הגדרה 1.1 (מרחב מדגם) מרחב מדגם הוא קבוצה לא ריקה שמהווה העולם להסתברות.

. על־פי רוב שיבר במרחב איבר במרחב איבר מסמנה $\omega\in\Omega$ בסמנה המדגם איבר במרחב מסמנה

נוכל להגיד שמרחב במדגם הוא הקבוצה של האיברים שעליה אנחנו שואלים בכלל שאלות, זהו הייצוג של האיברים או המצבים שמעניינים אותנו. בהתאם נראה עכשיו מספר דוגמות שמקשרות בין אובייקטים שאנו דנים בהם בהסתברות ובהגדרה פורמלית של מרחבי מדגם עבורם.

דוגמה 1.1 (מרחבי הסתברות שונים) נראה מספר דוגמות למצבים כאלה:

- $\Omega = \{H,T\}$ הטלת מטבע תוגדר על־ידי הטלת
- $\Omega = \left\{ H, T \right\}^3$ הטלת שלושה מטבעות תהיה באופן דומה
 - $\Omega = [6] = \{1, \dots, 6\}$ הטלת קוביה היא
- . הטלת מטבע ואז אם יוצא עץ (H) אז מטילים קוביה ואם פלי (T) אז מטילים קוביה אז מטילים אז אז מטילים פלות. אז מטילים קוביה ואז מטילים פלוג סדור (H, (H, 1)) מסדור $\Omega = \{H1, H2, H3, \dots, H6, T1, \dots, T8\} = \{H, T\} \times \{1, \dots, 8\}$ במקרה זה נסמן
 - . $\Omega=S_{52}$ דהינו בלבד, דהינו מספרית כרשימה שלנו יהיה סימון של הקלפים מחדב ממקרה מחדב ממקרה מחדב שלנו יהיה סימון יהיה מחדב את $\Omega=\{1,\dots,52\}^{52}$ או מוכל גם לסמן במקום את $\Omega=\{1,\dots,52\}^{52}$

 ω בדוגמה זו קל במיוחד לראות שכל איבר בקבוצה מתאר מצב סופי כלשהו, ואנו יכולים לשאול שאלות הסתברותיות מהצורה מה הסיכוי שנקבל מסוים מתוך Ω , זאת ללא התחשבות בבעיה שממנה אנו מגיעים. נבחן עתה גם דוגמות למקרים שבהם אין לנו מספר סופי של אפשרויות, למעשה מקרים אלה דומים מאוד למקרים שראינו עד כה.

 $\Omega=\mathbb{N}\cup\{\infty\}$ הוא המדגם החדב איוצא שיוצא עד מטבע מטילים מטפיים) מסופיים מרחבי מדגם או 1.2 דוגמה דוגמה מטבע

 $\Omega=\mathbb{R}_+\cup\{\infty\}$ היא חלקיק, התפרקות מדידת מדידת לבחון דומה באופן באופן

הגדרה כך שמתקיים פונקציית הסתברות (פונקציית הסתברות יהי פונקציה ליהי פונקציית הסתברות פונקציית הסתברות יהי מרחב מדגם והיי א

$$\sum_{\omega \in \Omega} p(\omega) = 1$$

אז פונקציה זו נקראת פונקציית הסתברות.

למעשה פונקציית הסתברות היא מה שאנחנו נזהה עם הסתברות במובן הפשוט, פונקציה זו מגדירה לנו לכל סיטואציה ממרחב המדגם מה הסיכוי שנגיע אליה, כך לדוגמה אם נאמר שהטלת מטבע תגיע בחצי מהמקרים לעץ ובחצי השני לפלי, אז זו היא פונקציית ההסתברות עצמה, פונקציה שמחזירה חצי עבור עץ וחצי עבור פלי, נראה מספר דוגמות.

p(H)=lpha,p(T)=1-lpha נגדיר, נגדיר $\Omega=\{H,T\}$ נגדיר נגדיר מטבע) נגדיר 1.3 פונקציית הסתברות להטלת מטבע) נגדיר 1.3 נגדיר אויר פונקציית הסתברות להטלת מטבע

ולכן זו
$$\sum_{n=1}^\infty 2^{-n}=1$$
 נגדיר $(\omega)=egin{cases} 2^{-\omega}&\omega\in\mathbb{N}\\ 0&\omega=\infty \end{cases}$ ולכן זו $\Omega=\mathbb{N}\cup\{\infty\}$ נגדיר (גדיר (∞) בדוגמה 1.4 (פונקציית הסתברות אינסופית) נגדיר (∞)

נבחין כי הדוגמה האחרונה מתארת לנו התפלגות של דעיכה, זאת אומרת שלדוגמה אם קיים חלקיק עם זמן מחצית חיים של יחידה אחת, פונקציית הסתברות זו תניב לנו את הסיכוי שהוא התפרק לאחר כמות יחידות זמן כלשהי.

.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
 כי אכן כחין כי $p(\omega) = \frac{1}{\omega(\omega+1)}$ ו רי $\Omega = \mathbb{N}$ נגדיר 1.5 דוגמה 1.5

. $\mathrm{Supp}(p)=\{\omega\in\Omega\mid p(\omega)>0\}$ הוא p של התומך התומך התומך הגדרה 1.3 הגדרה

נבחין כי התומך הוא למעשה קבוצת האיברים שאפשרי לקבל לפי פונקציית ההסתברות, כל שאר המצבים מקבלים 0, משמעו הוא שאין אפשרות להגיט אליו

 $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ הערה נבחין כי תמיד

 $A^C=$ ב מסומן מסומן המשלים מאורע עבור מאורע. $\mathcal F$ עבור תסומן כל המאורעה, קבוצה של מרחב מסומן מאורע מאורע (מאורע) אורע המשלים מסומן ב־ $\Omega\setminus A$

 \mathcal{F} וקבוצת מאורעות (פונקציית הסתברות) נגדיר עתה פונקציית הסתברות שאיננה נקודתית. יהי מרחב מדגם Ω וקבוצת מאורעות

:הבאות התכונות את המקיימת $\mathbb{P}:\mathcal{F} \rightarrow [0,\infty)$ תהי

$$\mathbb{P}(\Omega) = 1$$
 .1

סדרת שונים שונים סדרת אורעות סדרת $\{A_i\}_{i=1}^\infty\subseteq\mathcal{F}$.2

$$\sum_{i\in\mathbb{N}} \mathbb{P}(A_i) = \mathbb{P}(\bigcup_{i\in\mathbb{N}} A_i)$$

דהינו, הפונקציה סכימה בתת־קבוצות בנות מניה.

 (Ω,\mathcal{F}) לפונקציה כזו נקרא פונקציית ההסתברות על

טענה הסתברות הסתברות על Ω אז נקודתית נקודתית הסתברות פונקציית הסתברות על על על על הסתברות מענה 1.6 על על

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega)$$

אז הסתברות. פונקציית הסתברות. \mathbb{P}_n

הוכחה. נוכיח ששתי התכונות של פונקציית הסתברות מתקיימות.

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega) \ge 0$$

שכן זהו סכום אי־שלילי מהגדרת p, בנוסף נקבל מההגדרה של p כי

$$\mathbb{P}_p(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1$$

וקיבלנו כי התכונה הראשונה מתקיימת.

תהי $\{A\}_{i=1}^{\infty} \in \mathcal{F}$ אז נקבל

$$\sum_{i \in \mathbb{N}} \mathbb{P}_p(A_i) = \sum_{i \in \mathbb{N}} \left(\sum_{\omega \in A_i} p(\omega) \right) = \sum_{\omega \in \bigcup_{i \in \mathbb{N}} A_i} p(\omega) = \mathbb{P}_p(\bigcup_{i \in \mathbb{N}} A_i)$$

. הסתברות פונקציית אכן היא אכן די וקיבלנו מתקיימת הסתברות התכונה השנייה מתקיימת וקיבלנו כי

נשים לב כי בעוד פונקציית הסתברות נקודתית מאפשרת לנו לדון בהסתברות של איבר בודד בקבוצות בנות מניה, פונקציית הסתברות למעשה מאפשרת לנו לדון בהסתברות של מאורעות, הם קבוצות של כמה מצבים אפשריים, ובכך להגדיל את מושא הדיון שלנו. מהטענה האחרונה גם נוכל להסיק שבין שתי ההגדרות קיים קשר הדוק, שכן פונקציית הסתברות נקודתית גוררת את קיומה של פונקציית הסתברות כללית.

31.10.2024 - 1 מרגול 2

amir.behar@mail.huji.ac.il המתרגל הוא אמיר,

מרחבי הסתברות סופיים ובני־מניה 2.1

ניזכר בהגדרה למרחב הסתברות, המטרה של הגדרה זו היא לתאר תוצאות אפשריות של מצב נתון.

הגדרה ($\Omega, \mathcal{F}, \mathbb{P}$) באשר הסתברות מרחב הסתברות מרחב

$$\forall A \in \mathcal{F}, \mathbb{P}(A) > 0$$
 .1.

$$\mathbb{P}(\Omega) = 1$$
 :2. נרמול

$$orall \{A_i\}_{i=1}^\infty \in \mathcal{F}, (orall i,j\in\mathbb{N},i
eq j\implies A_i\cap A_j=\emptyset)\implies \sum_{i\in I}\mathbb{P}(A_i)=\mathbb{P}(igcup_{i\in I}A_i)$$
 אדיטיביות: 3

תרגיל $A,B\in\mathcal{F}$, הוכיחו מרחב ($\Omega,\mathcal{F},\mathbb{P}$) יהי יהי מרגיל מרגיל מרגיל יהי

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

לסכום ולקבל (נכחין אם כן לסכום אם $\mathbb{P}(A)=\mathbb{P}(B-(A\cap B))+\mathbb{P}(A\cap B)$ וגם $\mathbb{P}(A)=\mathbb{P}(A-(A\cap B))+\mathbb{P}(A\cap B)+\mathbb{P}(A\cap B)+\mathbb{P}(A\cap B)+\mathbb{P}(A\cap B)+\mathbb{P}(A\cap B)+\mathbb{P}(A\cap B)$

נבחין כי השוויון האחרון נובע מהזרות של קבוצות אלה.

לטענה שקול לטענה $\forall A \ \mathbb{P}(A) = \frac{|A|}{|\Omega|}$ דהינו אחידה, דהינו אחידה, זה כמובן שקול לטענה $\mathcal{F} = 2^\Omega$, זה כמובן שקול לטענה לאורך פרק זה נגדיר מעתה שמתקיים Ω סופית, $\mathcal{F} = 2^\Omega$, זה כמובן שקול לטענה לאורך פרק זה נגדיר מעתה שמתקיים $\mathcal{F} = 2^\Omega$, זה כמובן שקול לטענה

תרגיל 2.2 מטילים קוביה הוגנת, מה ההסתברות שיצא מספר זוגי?

. אחידה
$$\Omega=[6]=\{1,\ldots,6\}$$
 עם Ω

$$\mathbb{P}(A) = rac{|A|}{|\Omega|} = rac{3}{6} = rac{1}{2}$$
 ולכן נקבל $A = \{2,4,6\}$ את נרצה לחשב את

?תרגיל 2.3 מטילים מטבע הוגן שלוש פעמים, מה ההסתברות שיצא עץ בדיוק פעמיים, ומה ההסתברות שיצא עץ לפחות פעמיים?

$$\Omega = \{TTT, TTP, TPT, PTT, \dots\}$$
 פתרון נגדיר

 $\mathbb{.P}(A) = \frac{3}{8}$ היא ההסתברות נקבל ולכן איכן, $A = \{TTP, TPT, PTT\}$ נגדיר נגדיר המקרה עבור עבור

 $A(B) = \frac{1}{2}$ ולכן $B = A \cup \{TTT\}$ במקרה השני נקבל

תרגיל n מטילים קוביה הוגנת 2.4 מטילים מחרגיל מחרגים מורגים מורגים מורגים מורגים מורגים מורגים מורגים מורגים מו

- .1 מה ההסתברות שתוצאת ההטלה הראשונה קטנה מ־24
- 2. מה ההסתברות שתוצאת ההטלה הראשונה קטנה שווה מתוצאת ההטלה השנייה?
 - 3. מה ההסתברות שיצא 1 לפחות פעם אחת?

$$\Omega = [6]^n = \{(x_1, \dots, x_n) \mid x_i \in [6]\}$$
 פתרון נגדיר

$$.\mathbb{P}(A)=\frac{3\cdot 6^{n-1}}{6^n}=\frac{1}{2}$$
ולכן $A=\{(x_1,\dots,x_n)\in\Omega\mid x_1<4\}$. 1

ולכן נקבל ,
$$B=\{(x_1,\ldots,x_n)\in\Omega\mid x_1\leq x_2\}=\bigcup_{i=1}^6\{(x_1,i,x_3,\ldots,x_n)\in\Omega\mid x_i\leq i\}$$
 .2

$$\mathbb{P}(B) = \sum \mathbb{P}(B_i) = \sum \frac{i \cdot 6^{n-2}}{6^n} = \frac{\sum_{i=1}^6 i}{6^2} = \frac{6 \cdot 7}{6^2 \cdot 2} = \frac{7}{12}$$

$$.C^C=\{(x_1,\ldots,x_n)\in\Omega\mid \forall i,x_1\neq 1\}$$
 בהתאם $.C=\{(x_1,\ldots,x_n)\in\Omega\mid \exists i,x_i=1\}$.3 .8 $.\mathbb{P}(C^C)=rac{5^n}{6^n}\Longrightarrow \mathbb{P}(C)=1-rac{5^n}{6^n}$

תרגיל 2.5 חמישה אנשים בריאים וחמישה אנשים חולי שפעת עומדים בשורה. מה ההסתברות שחולי השפעת נמצאים משמאל לאנשים הבריאים?

$$\Omega=\{X\subset [10]\mid |X|=5\}$$
 שכן $\Omega=(10)$, שכן לכן נקבל מוג. לכן נקבל (10) ממישה מיש מיש ל $\Omega=(10)$ ככל הסידורים של $\Omega=(10)$ ממישה מכל מוג. לכן נקבל $\Omega=(10)$ שכן $\Omega=(10)$ בהתאם $\Omega=(10)$ בהתאם $\Omega=(10)$ בהתאם $\Omega=(10)$

. החלים מייצגים מייצגים מייצגים מייצגים חמשת המספרים הראשונים מייצגים מייצגים מייצגים מייצגים חולים. $P(A)=rac{5!5!}{10!}$ וכך נקבל $A=\{\pi\in\Omega\mid\pi(\{1,2,3,4,5\})\subseteq\{1,2,3,4,5\}\}$ במקרה זה נקבל

31.10.2024 - 2 שיעור 3

3.1 השלמה לטורים דו־מימדיים

נגדיר הגדרה שדרושה לצורך ההרצאה הקודמת כדי להיות מסוגלים לדון בסכומים אינסופיים בני־מניה.

הגדרה 3.1 אם $i \in I$ לכל $a_i \geq 0$ ו־
0 אם הגדרה 3.1 אם הגדרה אונגדיר

$$\sum_{i \in I} a_i = \sup \left\{ \sum_{i \in J} \mid J \subseteq I, J \text{ is finite} \right\}$$

מכונות של פונקציות הסתברות 3.2

נעבור עתה לבחון פונקציות הסתברות ואת תכונותיהן, נתחיל מתרגיל שיוצק תוכן לתומך של פונקציית הסתברות:

a הוא של התומך הוכיחו כי החרות במילים . $|\{i\in I\mid a_i<0\}|\leq lpha$ אז אז הוא לכל $a_i\geq 0$ ו ב $a_i\geq 0$ ו ב $a_i\leq 0$ ו בימניה.

בשיעור הקודם ראינו את ההגדרה והטענה הבאות:

הגדרה 3.2 בהינתן פונקציית הסתברות נקודתית p נגדיר

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega)$$

טענה 3.3 היא פונקציית הסתברות. \mathbb{P}_p

טענה זו בעצם יוצרת קשר בין פונקציות הסתברות לפונקציות הסתברות נקודתיות, ומאפשרת לנו לחקור את פונקציות ההסתברות לעומק באופן פשוט הרבה יותר. נשתמש עתה בכלי זה.

היא בדידה ש- \mathbb{P} , אז נאמר ש- \mathbb{P} , אז נאמר

מענה 3.5 שאינן בדידות. בפרט, עבור מדגם ההסתברות $\Omega = [0,1]$ קיימת שאינן בדידות. בפרט, עבור מדגם ההסתברות שאינן מענה אינן בדידות.

$$\forall a, b \in \mathbb{R}, 0 < a < b < 1 \implies \mathbb{P}([a, b]) = b - a$$

דוגמה 3.1 עבור $\sum_{n\in\mathbb{N}}p(n)=1$ ידוע כי $p(n)=\frac{1}{\frac{\pi^2}{6}n^2}$ יו פונקציית $\Omega=\mathbb{N}$ ולכן נוכל להגדיר להגדיר $\sum_{n\in\mathbb{N}}\frac{1}{n^2}=\frac{\pi^2}{6}<\infty$ ידוע כי $\sum_{n\in\mathbb{N}}p(n)=1$ ולכן זו פונקציית : $A=2\mathbb{N}$ עבור $\mathbb{P}_p(A)$ עבור

$$\mathbb{P}_p(A) = \sum_{n \in A} p(n) = \sum_{k \in \mathbb{N}} p(2k) = \frac{1}{\frac{\pi^2}{6}(2k)^2} = \frac{6}{\pi^2} \frac{1}{4} \sum_{k \in \mathbb{N}} \frac{1}{k^2} = \frac{1}{4}$$

נסביר, הגדרנו פונקציית הסתברות של דעיכה, דהינו שככל שהמספר שאנו מבקשים גדול יותר כך הוא פחות סביר באופן מעריכי (לדוגמה זמן מחצית חיים), ואז שאלנו כמה סביר המאורע שבו נקבל מספר זוגי.

משפט 3.6 (תכונות פונקציית הסתברות) $\mathbb P$ פונקציית הסתברות על $(\Omega,\mathcal F)$, אז

- $\mathbb{P}(\emptyset) = 0$.
- $\mathbb{P}(\bigcup_{i\in I}A_i)=\sum_{i\in I}\mathbb{P}(A_i)$ אם $\{A_i\}_{i\in I}$ מאורעות זרים בזוגות, אם $\{A_i\}_{i\in I}$.2
 - $\mathbb{P}(A) \leq \mathbb{P}(B)$ אם $A \subseteq B$ מאורעות אז $A \subseteq B$.3
 - A לכל מאורע $\mathbb{P}(A) \leq 1$.4
 - $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$ מתקיים A מאורע.

הוכחה. נוכיח את התכונות

. בלבד. $\mathbb{P}(\emptyset)=0$ בסיק כי סתירה, נסיק כי בקבל שר לכן אילו $\mathbb{P}(\emptyset)\neq0$ נקבל של איחוד של קבוצות ריקות הוא זר, לכן אילו $\mathbb{P}(\emptyset)\neq0$ נקבל שר סתירה, נסיק כי $\mathbb{P}(\emptyset)=0$ בלבד.

ונקבל בסיגמא־אדיטיביות ונקבל ונשתמש לכל ונשתמש לכל אלכל לכל $A_i=\emptyset$.2

$$\mathbb{P}(\bigcup_{i \in I} A_i) = \mathbb{P}(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mathbb{P}(A_i) = \sum_{i \in I} \mathbb{P}(A_i)$$

- $\mathbb{P}(D)=\mathbb{P}(A)+\mathbb{P}(B\setminus A)\geq \mathbb{P}(A)$ נקבל $D=A\cup (B\setminus A)$ נשתמש בתכונה 2 על $B,B\setminus A$, אלו הן קבוצות זרות כמובן, אם נגדיר ($B\setminus A$).
 - $A\subseteq \Omega$ ומ־ מתכונה 1 מירות מערכונה 4.
 - $A^C=\mathbb{P}(\Omega)=\mathbb{P}(A)+\mathbb{P}(A^C)$ ניזכר כי $A^C=\Omega\setminus A$ ולכן ולכן $A^C=\Omega\setminus A$ ניזכר כי .5

נעבור עתה לאפיון של פונקציות הסתברות בדידות, נבין מתי הן כאלה ומתי לא.

משפט 3.7 (תנאים שקולים לפונקציית הסתברות בדידה) אם $(\Omega, \mathcal{F}, \mathbb{P})$ אם לפונקציית הסתברות בדידה) משפט

- היא פונקציית הסתברות בדידה \mathbb{P} .1
- $\mathbb{P}(A)=1$ בת־מניה כך בת־מניה, כלומר קיימת קבוצה $A\in\mathcal{F}$ בת־מניה, כלומר בנות־מניה, כלומר \mathbb{P} .2
 - $\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1 .3$
 - $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$ מתקיים $A \in \mathcal{F}$ מאורע. 4

,Supp $(p)=\{\omega\in\Omega\mid p(\omega)>0\}$ נניח נסתכל על פונקציית הסתברות $p:\Omega\to[0,\infty)$ עבור עבור $\mathbb{P}=\mathbb{P}_p$ עבור פונקציית הסתברות נקודתית. נסתכל על אבורת בקבע בת־מניה. נקבל $A=\mathrm{Supp}(p)$

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega) = \sum_{\omega \in \Omega} p(\omega) = \mathbb{P}(\Omega) = 1$$

ולכן נקבל $A=(A\cap S)\cup(A\cap S^C)$ דולכן הוא איחוד מר . $\mathbb{P}(S^C)=0$ בת־מניה. לכן בת־מניה. לכן $\mathbb{P}(S)=0$ נראה כי $A=(A\cap S)\cup(A\cap S^C)=0$ עבור בת־מניה. לכן $\mathbb{P}(S^C)=0$ בת־מניה.

.3 את טענה $A=\Omega$ אם נבחר : $4\implies 3$

מהתרגיל הסתברות נקודתית. אולכן $p:\Omega \to [0,\infty)$ ולכן היא פונקציית הסתברות נקודתית. אולכן $p:\Omega \to [0,\infty)$ ולכן היא פונקציית הסתברות נקודתית. אולכל פונע ש־ $S=\mathrm{Supp}(p)$ היא בת־מניה ומתקיים אולכל האולכל היא בת־מניה ומתקיים היא בת־מניה ומתקיים היא בת־מניה ומתקיים ומתקיים בת־מניה ומתקיים היא בת־מניה ומתקיים בת־מניה בת־מניה ומתקיים בת־מניה בת־מניה

$$\mathbb{P}(A) = \mathbb{P}(A \cap S) + \mathbb{P}(A \cap S^C) = \mathbb{P}(A \cap S) = \sum_{\omega \in A \cap S} \mathbb{P}(\{\omega\}) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}) = \sum_{\omega \in A} p(\omega) = \mathbb{P}_p(A)$$

3.3 פרדוקס יום ההולדת

פרדוקס יום ההולדת הוא פרדוקס מוכר הגורס כי גם בקבוצות קטנות יחסית של אנשים, הסיכוי שלשני אנשים שונים יהיה תאריך יום הולדת זהה הוא גבוה במידה משונה. הפרדוקס נקרא כך שכן לכאורה אין קשר בין מספר הימים בשנה לבין הסיכוי הכל־כך גבוה שמצב זה יקרה, נבחן עתה את הפרדוקס בהיבט הסתברותי.

נניח שכל תאריכי יום ההולדת הם סבירים באותה מידה ונבחן את הפרדוקס. נגדיר $\Omega=[365]^k$ עבור Ω מספר האנשים בקבוצה נתונה כלשהי. $\Omega=[365]^k$ נניח שכל תאריכי יום ההולדת הם סבירים באותה מידה ונבחן את הפרדוקס. נגדיר $P(A)=\mathbb{P}_p(A)=\frac{|A|}{365^k}$ נקבל $D(\omega)=\frac{1}{365^k}$ ונדים ברשימת המספרים, נגדיר $D(A)=\mathbb{P}_p(A)=\mathbb{P}_p(A)=\mathbb{P}_p(A)$ בשל המורכבות נבחן את המשלים יום, דהינו שיש שני ערכים זהים ברשימת המספרים, נגדיר $D(A)=\mathbb{P}_p(A)=\mathbb{P}_p(A)=\mathbb{P}_p(A)$ בערכו $D(A)=\mathbb{P}_p(A)=\mathbb{P}_p(A)=\mathbb{P}_p(A)$ בערכו ונחשב:

$$\mathbb{P}(A^C) = \frac{|A^C|}{365^k} = \prod_{i=1}^k \frac{365 - (i-1)}{365} = \prod_{i=1}^k (1 - \frac{i-1}{365})$$

מהנוסחה שלים יש סבירות של חצי שלפחות בערך $\frac{1}{2}$, דהינו בערך בערך של חצי שלפחות של מהנוסחה של מהנוסחה של בערה היא בערך k=23 נקבל שההסתברות היא בערך יחגגו יום הולדת באתו יום.

5.11.2024 - 3 שיעור 4

4.1 מכפלת מרחבי הסתברות בדידים

ניזכר תחילה במרחבי הסתברות אחידים

 $\omega_1,\omega_2\in\Omega$ לכל $p(\omega_1)=p(\omega_2)$ המקיים $(\Omega,\mathcal{F},\mathbb{P}_p)$ הוא החיד הסתברות מרחב $p(\omega_1)=p(\omega_2)$ הגדרה 4.1 הגדרה

 $\mathbb{P}_p(A) = rac{|A|}{|\Omega|}$ 4.2 מסקנה

נבחין כי במקרים מסוימים ההסתברות שלנו מורכבת משני מאורעות בלתי תלויים, במקרים אלה נרצה להגדיר מכפלה של מרחבי ההסתברות.

על־ידי $q:\Omega_1\times\Omega_2 o[0,\infty)$ אבדרה בדידים נגדיר הסתברות ($\Omega_2,\mathcal{F}_2,\mathbb{P}_{p_2}$) וי $(\Omega_1,\mathcal{F}_1,\mathbb{P}_{p_1})$ אם (מרחב מכפלת הסתברויות) אם $q:\Omega_1\times\Omega_2 o[0,\infty)$ אם $q(\omega_1,\omega_2)=p(\omega_1)\cdot p(\omega_2)$

מענה 4.4 q פונקציית הסתברות נקודתית.

הוכחה. נשתמש ישירות בהגדרה ונחשב

$$\sum_{(\omega_1,\omega_2)\in\Omega_1\times\Omega_2} q(\omega_1,\omega_2) = \sum_{\omega_1\in\Omega_1,\omega_2\in\Omega_2} q(\omega_1,\omega_2) = \sum_{\omega_1\in\Omega_1} \left(\sum_{\omega_2\in\Omega_2} p_1(\omega_1)p_2(\omega_2)\right) = \sum_{\omega_1\in\Omega_1} p_1(\omega_1) = 1$$

. מכפלה. ונקרא לו הצדקה הסתברות, ומרחב כמרחב ($\Omega_1 imes \Omega_2, \mathcal{F}_{1,2}, \mathbb{P}_q$) אמיתית להגדיר אמיתית להגדיר את עתה כשהוכחנו טענה זו, יש לנו

טענה 4.5 אם $(\Omega_1 imes \Omega_2, \mathcal{F}_{1,2}, \mathbb{P}_q)$ אחיד אף הוא. מרחב המכפלה $(\Omega_2, \mathcal{F}_2, \mathbb{P}_{p_2})$ ו־ $(\Omega_1, \mathcal{F}_1, \mathbb{P}_{p_1})$ אחיד אף הוא.

הוכחה.

$$q(\omega_1, \omega_2) = p_1(\omega_1)p_2(\omega_2) = \frac{1}{|\Omega_1|} \cdot \frac{1}{|\Omega_2|} = \frac{1}{|\Omega_1 \times \Omega_2|}$$

. המאורעות מכפלה או $\Omega_1 imes A$ או $A imes \Omega_2$ המאורעות מהאורעות מכפלה במרחב 4.6 הגדרה או

מאורע מכפלה. בקרא לארג $A \times B$ מכפלה.

. $\mathbb{P}_q(A imes \Omega_2) = \mathbb{P}_{p_1}(A)$ בפרט . $\mathbb{P}_q(A imes B) = \mathbb{P}_{p_1}(A) \cdot \mathbb{P}_{p_2}(B)$ טענה 4.7 במרחב מכפלה $\mathbb{P}_{p_1}(A imes B) = \mathbb{P}_{p_1}(A) \cdot \mathbb{P}_{p_2}(B)$

הוכחה.

$$\sum_{(\omega_1, \omega_2) \in A \times B} q(\omega_1, \omega_2) = \sum_{\omega_1 \in A, \omega_2 \in B} q(\omega_1, \omega_2) = \sum_{\omega_1 \in A} \left(\sum_{\omega_2 \in B} p_1(\omega_1) p_2(\omega_2) \right) = \sum_{\omega_1 \in A} p_1(\omega_1) \mathbb{P}_{p_2}(B) = \mathbb{P}_{p_1}(A) \mathbb{P}_{p_2}(B)$$

עצים? אינתן שיצאו אינתן מטבע כלשהו, מה מטבע מטבע הטלות הטינתן 4.1 בהינתן אינת k

עבור ההטלה הראשונה, $\Omega_1=\{0,1\}$. עדר ההטלה הראשונה, $\Omega_1=\{0,1\}$. עדר ההטלה בור חבטר $\Omega_1=\{0,1\}$. עבור ההטלה בהתאם נקבל $\Omega=\{0,1\}^n$ בהתאם נקבל

$$q(\omega_1, \dots, \omega_n) = \prod_{i=1}^n p(\omega_i) = \prod_{i=1}^n \alpha^{\omega_i} \cdot (1-\alpha)^{1-\omega_i} = \alpha^{\sum_{i=1}^n \omega_i} (1-\alpha)^{n-\sum_{i=1}^n \omega_i}$$

 $q(\omega) = \alpha^\omega \cdot \left(1-lpha
ight)^{1-\omega}$ בחין על־ידי ממש הזה המקרה את לתאר לתאר כי היינו כי נבחין כי היינו

וערור עחה לרחיות המאורע

$$A = \{(\omega_1, \dots, \omega_n) \in \Omega \mid \sum_{i=1}^n \omega_i = k\}$$

10

נקבל מהביטוי שמצאנו כי

$$\mathbb{P}_{q}(A) = \sum_{(\omega_{1}, \dots, \omega_{n}) \in A} q(\omega_{1}, \dots, \omega_{n}) \sum_{\sum_{i=1}^{n} \omega_{i} = k} \alpha^{\sum_{i=1}^{n} \omega_{i}} (1 - \alpha)^{n - \sum_{i=1}^{n} \omega_{i}} = |A| \alpha^{k} (1 - \alpha)^{n - k} = \binom{n}{k} \alpha^{k} (1 - \alpha)^{n - k}$$

דוגמה אנבחן עתה את המקרה של הטלות הוגנות ובחינת המקרה שחצי מההטלות לפחות יצאו עץ, זאת־אומרת שנבחן את הדוגמה הקודמת כאשר נבחל נבחן עתה את המקרה של הטלות הוגנות ובחינת המקרה של מכירים $m!\simeq\sqrt{2\pi m}(rac{m}{e})^m$ ואז נוכל להסיק $lpha=rac{1}{2}$ ה מנוסחת סטרלינג שאנחנו לא מכירים

$$\mathbb{P}_{q}(A) = \binom{2m}{m} \frac{1}{2^{m}} \simeq \frac{\sqrt{4\pi m} \left(\frac{2m}{e}\right)^{2m}}{\left(\sqrt{2\pi m} \left(\frac{k}{e}\right)^{m}\right)^{2} 2^{2m}} = \frac{\sqrt{4\pi m}}{2\pi m} = \frac{1}{\sqrt{\pi m}}$$

4.2 ניסויים דו־שלביים

נניח בניסוי השני כך שלכל תוצאה בניסוי מרחב החתברות בדידה עבור הניסוי העון, ונניח שיש מרחב הניסוי העני כך שלכל תוצאה בניסוי העניח נניח $(\Omega_1,\mathcal{F}_1,\mathbb{P}_{p_1})$ מרחב הסתברות מחתבה בניסוי השני. לכל $p_{\omega_1}:\Omega_2\to[0,\infty)$ הראשון, פונקציית הסתברות תשתנה בהתאם בניסוי השני. לכל $q(\omega_1,\omega_2)=p_1(\omega_1)\cdot p_{\omega_1}(\omega_2)$, כאשר $q(\omega_1,\omega_2)=p_1(\omega_1)\cdot p_{\omega_1}(\omega_2)$, כאשר $q(\omega_1,\omega_2)=p_1(\omega_1)\cdot p_{\omega_1}(\omega_2)$

מענה 4.8 פונקציית הסתברות. \mathbb{P}_{q}

הוכחה.

$$\sum_{(\omega_1,\omega_2)\in\Omega_1\times\Omega_2} q(\omega_1,\omega_2) = \sum_{\omega_1\in\Omega_1} \left(\sum_{\omega_2\in\Omega_2} p_1(\omega_1) p_{\omega_1}(\omega_2) \right) = \sum_{\omega_1\in\Omega_1} p_1(\omega_1) \left(\sum_{\omega_2\in\Omega_2} p_{\omega_1}(\omega_2) \right) = \sum_{\omega_1\in\Omega_1} p_1(\omega_1) = 1$$

עוד נגדיר . $p_1(H)=p_1(T)=rac{1}{2}$ נגדיר , $\Omega_2=\{1,\ldots,8\}$ רי ווד נגדיר $\Omega_1=\{H,T\}$

$$p_H(\omega_2) = \begin{cases} \frac{1}{6} & 1 \le \omega_2 \le 6\\ 0 & \text{else} \end{cases}, \qquad p_T(\omega_2) = \frac{1}{8}$$

מהגדרה זו נקבל

$$q(\omega_1, \omega_2) = \begin{cases} \frac{1}{12} & \omega_1 = H, \omega_2 \in [6] \\ 0 & \omega_1 = H, \omega_2 \in \{7, 8\} \\ \frac{1}{16} & \omega_1 = T, \omega_2 \in [8] \end{cases}$$

 $\mathbb{P}(A \cup B) < \mathbb{P}(A) + \mathbb{P}(B)$ משפט 4.9 מאורעות אם A,B אם איז (חסם האיחוד) אם

הוכחה.

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \uplus (B \setminus A)) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \leq \mathbb{P}(A) + \mathbb{P}(B)$$

נוכל להשתמש בחסם האיחוד כדי להוכיח גרסה כללית יותר של המשפט:

 $\mathbb{P}(igcup_{i=1}^k A_i) \leq \sum_{i=1}^k \mathbb{P}(A_i)$ משפט 4.10 משפט אם אם אם אם (אי־שוויון בול) 4.10 משפט

נגדיר עם הסתברות אחידה. נגדיר של הרעיון. נגדיר לבחון את פרדוקס וום ההולדת, הפעם נבחן גרסה כללית יותר של הרעיון. נגדיר עם הסתברות אחידה. נגדיר אנו או בחון את פרדוקס וום ההולדת, אנו רוצים את ההסתברות או אנו רוצים את ההסתברות או או בחן את המשלים וום אנו רוצים את ההסתברות או אנו רוצים את ההסתברות או או בחן את המשלים וום אנו רוצים את ההסתברות או המשלים וום או החסתברות אחידה. נגדיר או בחן את המשלים וום החסתברות אחידה. בדי אנו רוצים את ההסתברות אחידה וום החסתברות אחידה. בדי אנו רוצים את החסתברות אחידה וום החסתברות אחידה וום החסתברות אחידה. בדי החסתברות אחידה וום החסתברות אחידה וום החסתברות אחידה וום החסתברות אחידה וום החסתברות אחידה. בדי החסתברות אחידה וום החסתברות החסתברות

$$A^C = \{\omega \in \Omega \mid \forall 1 \leq i, j \leq k, i \neq j \implies \omega_i \neq \omega_j \}$$

נחשב

$$|A^C| = m(m-1)\cdots(m-(k-1))$$

בהתאם

$$\mathbb{P}(A^C) = \frac{\prod_{i=0}^{k-1} (m-i)}{m^k} = \prod_{i=0}^{k-1} \frac{m-i}{m^k} = \prod_{i=0}^{k-1} (1 - \frac{i}{m})$$

נזכור ש-אקבל, ונוכל לקבל, ונוכל לקבל איט, א $x\in\mathbb{R},1+x\leq e^x$

$$\prod_{i=0}^{k-1} (1-\frac{i}{m}) \leq \prod_{i=0}^{k-1} e^{-\frac{i}{m}} = \exp(-\frac{1}{m} \sum_{i=0}^{k-1} i) = e^{-\frac{k(k-1)}{2m}}$$

.0-ל ביחס קרוב מקבלים מקבלים ל-10 ביחס ליוב ל-2k

וגם
$$A_{ij}=\{\omega\in\Omega\mid\omega_i=\omega_j\}$$
 עבור $A=\bigcup_{i,j\in[k]}A_{ij}$ נגדיר הפעם נגדיר הפעם אבור וג

$$i \neq j \implies \mathbb{P}(A_{ij}) = \frac{|A_{ij}|}{m^k} = \frac{m \cdot m^{k-2}}{m^k} = \frac{1}{m}$$

ועתה

$$\mathbb{P}(A) \le \sum_{\substack{i \ne j \\ i, j \in [k]}} \mathbb{P}(A_{ij}) = \sum_{\substack{i \ne j \\ i, j \in [k]}} \frac{1}{m} = \binom{k}{2} \frac{1}{m} = \frac{k(k-1)}{2m}$$

לכן משותף משותף ליום־הולדת ההסתברות ל $\sqrt{2m}$ ל כיחס לכן אם לכן לכן לכן אם לכן אז ההסתברות ל