Exercise 1: Bayesian Linear Model

In the Bayesian linear model, we assume that the data follows the following law:

$$y = f(\mathbf{x}) + \epsilon = \boldsymbol{\theta}^T \mathbf{x} + \epsilon,$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ and independent of **x**. On the data-level this corresponds to

$$y^{(i)} = f(\mathbf{x}^{(i)}) + \epsilon^{(i)} = \boldsymbol{\theta}^T \mathbf{x}^{(i)} + \epsilon^{(i)}, \text{ for } i \in \{1, \dots, n\}$$

where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ are iid and all independent of the $\mathbf{x}^{(i)}$'s. In the Bayesian perspective it is assumed that the parameter vector $\boldsymbol{\theta}$ is stochastic and follows a distribution.

Assume we are interested in the so-called maximum a posteriori estimate of θ , which is defined by

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}, \mathbf{y}).$$

(a) Show that if we choose a uniform distribution over the parameter vectors $\boldsymbol{\theta}$ as the prior belief, i.e.,

$$q(\boldsymbol{\theta}) \propto 1$$
,

then the maximum a posteriori estimate coincides with the empirical risk minimizer for the L2-loss (over the linear models).

(b) Show that if we choose a Gaussian distribution over the parameter vectors $\boldsymbol{\theta}$ as the prior belief, i.e.,

$$q(\boldsymbol{\theta}) \propto \exp \left[-\frac{1}{2\tau^2} \boldsymbol{\theta}^\top \boldsymbol{\theta} \right], \qquad \tau > 0,$$

then the maximum a posteriori estimate coincides for a specific choice of τ with the regularized empirical risk minimizer for the L2-loss with L2 penalty (over the linear models), i.e., the Ridge regression.

(c) Show that if we choose a Laplace distribution over the parameter vectors $\boldsymbol{\theta}$ as the prior belief, i.e.,

$$q(\boldsymbol{\theta}) \propto \exp\left[-\frac{\sum_{i=1}^{p} |\boldsymbol{\theta}_i|}{\tau}\right], \qquad \tau > 0,$$

then the maximum a posteriori estimate coincides for a specific choice of τ with the regularized empirical risk minimizer for the L2-loss with L1 penalty (over the linear models), i.e., the Lasso regression.