New Synthetic Route to Mono- η^5 -Cyclopentadienylmolybdenum Compounds: X-Ray Crystal Structure of $[(\eta-C_5H_5)Mo(Ph_2PCH_2CH_2PPh_2)(\eta-C_6H_8)][PF_6]\cdot SO_2$

By John A. Segal and Malcolm L. H. Green (Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

and Jean-Claude Daran and Keith Prout (Chemical Crystallography Laboratory, 9, Parks Road, Oxford OX1 3PD)

Summary The compound $[(\eta^5-C_5H_5)Mo(\eta^6-C_6H_6)C1]$ is shown to be a versatile precursor for carbonyl-free monocyclopentadienylmolybdenum derivatives and the new compounds $[(\eta^5-C_5H_5)Mo(dppe)L_2][PF_6]$ ($L_2=dppe, (MeCN)_2, C_4H_6, \eta^4-C_8H_8, Ph_2C_2, or Me_2C_2), [(\eta^5-C_5H_5)Mo(\eta^8-C_8H_8)]$

[PF₆], [(η^5 -C₅H₅)Mo(η^6 -C₈H₈)L][PF₆] (L = PPh₃ or CO), and [(η^5 -C₅H₅)Mo(dppe)(C₆H₈)][PF₆] are described (dppe = Ph₂PCH₂CH₂PPh₂); the crystal structure of the last compound has been determined.

An extensive chemistry of compounds containing the system $[(\eta^5\text{-}C_5H_6)\text{MoL}_3X]$ is known where L₃ normally includes carbon monoxide ligands.¹ However, carbonyl-free compounds of the mono- η -cyclopentadienylmolyb-denum system are rare and for this reason we have explored the potential of $[(\eta^5\text{-}C_5H_5)\text{Mo}(\eta^6\text{-}C_6H_6)\text{Cl}]$ (I)² as a precursor for such derivatives.

SCHEME 1. i, dppe in MeOH, 65 °C, 3 h, then NH₄PF₆ or NaBF₄; ii, stoicheiometric I₂ in CH₂Cl₂; iii, TlPF₆ in Me₂CO, then cyclooctatetraene, 56 °C, 20 min; iv, O₂ in CHCl₃; v, solution in MeCN; vi, CO in MeCN, 80 °C, 10 min; vii, CO in MeCN, 80 °C, 12 h; viii, C₂Ph₂ or C₂Me₂ in MeCN, 80 °C, 1 h; ix, diolefin in MeCN, 80 °C, 1 h; x, PPh₃ or CO in MeCN, 20 °C; xi, dppe in Me₂CO, 20 °C, 5 min.

Treatment of (I) with 1,2-bis(diphenylphosphino)ethane (dppe) gives the compound $[(\eta-C_5H_5)Mo(dppe)_2][PF_6]$ (II) (Scheme 1) which is readily oxidised with iodine to the

paramagnetic compound $[(\eta^5-C_5H_5)Mo(dppe)_2][PF_6]_2$ (III) [e.s.r. spectrum in acetone: quintet of sextets; g, 1·988; a_{180} (P), 20·4; a_{180} (H), 2·1 G]. In acetone, (I) reacts with TlPF₆ giving the acetone complex $[\{(\eta^-C_5H_5)Mo(\eta^8-C_6H_6)-(acetone)\}PF_6]$ and this with cyclo-octatetraene gives the mixed-sandwich compound $[(\eta^5-C_5H_5)Mo(\eta^8-C_8H_8)][PF_6]$ (IV) $\{\tau[(CD_3)_2CO] \cdot 2\cdot60$ (8H, s, C_8H_8) and 4·49 (5H, s, C_8H_8) Compound (I) in chloroform is also readily oxidised by dioxygen giving an improved route to the dioxo-derivative $[(\eta^5-C_5H_5)MoO_2Cl]$ (V).³ Crystalline (I) with oxygen gives the oxodichloro-compound $[(\eta^5-C_5H_5)MoOCl_2]$.

In acetonitrile the cation (II) unexpectedly loses dppe giving the bisacetonitrile derivative $[(\eta^5\text{-}C_5H_5)\text{Mo}(\text{dppe})-(\text{MeCN})_2][\text{PF}_6]$ (VI). Compound (VI) is a useful intermediate. With CO it gives successively the acetonitrile carbonyl compound $[(\eta^5\text{-}C_5H_5)\text{Mo}(\text{dppe})(\text{MeCN})(\text{CO})][\text{PF}_6]$ (VII) and the dicarbonyl cation $[(\eta^5\text{-}C_5H_5)\text{Mo}(\text{dppe})(\text{CO})_2]-[\text{PF}_6]$ (VIII). With acetylenes, R_2C_2 (R = Ph or Me), (VI) reacts to give the formally 16-electron compounds $[(\eta\text{-}C_5H_5)\text{-Mo}(\text{dppe})(R_2C_2)][\text{PF}_6]$ (IX, R = Me or Ph). The compound (IX, R = Me) exhibits fluxional behaviour whereby the ^1H n.m.r. spectrum in (CD₃)₂CO shows two methyl resonances at τ 6·93 and 8·75 at -50 °C, and these coalesce to a single line at τ 7·63 (6H) at 110 °C. It appears that

the but-2-yne ligand rotates about the Mo-acetylene axis⁴ [$\Delta G_{T_c^{\dagger}}$ (estimate) = $14\cdot3\pm0\cdot5$ kcal mol⁻¹]. Cyclohexa-1,3-diene reacts with (VI) giving, after recrystallisation from SO₂, the diene system [$(\eta$ -C₅H₅)Mo(dppe)(η -C₆H₈)][PF₆]·SO₂ (X) which has been studied by X-ray structure analysis.

Crystal data: $[(\eta^-C_5H_5)Mo(dppe)(\eta^-C_6H_8)]PF_6 \cdot SO_2$, monoclinic, a=10.879, b=15.205, c=22.357 Å, $\beta=97.50^\circ$, space group $P2_1/c$, Z=4, $D_c=1.54$ g cm⁻³, Mo- K_α , $\lambda=0.71069$ Å, four-circle diffractometry, 3513 independent reflexions. The structure was solved by Patterson and Fourier methods and refined by 'large' block least-squares. The positions of hydrogen atoms were found from slant Fourier syntheses. The unit cell contains four of the cations shown in the Figure, and four molecules of SO_2 of crystallisation. The conventional R is 0.06 with anisotropic temperature factors for all atoms except hydrogen. The C_6H_8 group is bonded to the Mo through the plane containing C(1), C(2), C(3) and C(4) (Figure), and the mean

distance between these atoms and molybdenum is 2.33 Å; in this plane the C-C distances are 1.44, 1.41, and 1.41 Å. In the η -C₅H₅ group C-C lies in the range 1.41—1.47 Å. The mean Mo-P distance is 2.50 Å.

Compound (VI) with buta-1,3-diene gives the complex $[(\eta^5-C_5H_5)Mo(dppe)(\eta^4-C_4H_6)][BF_4]$ as a solvent-dependent equilibrium mixture of the isomers (XIII) and (XIV) in the ratio of ca. 1:1 in $(CD_3)_2SO$ (Scheme 2) $\{\tau[(CD_3)_2SO]:$ (XIII), 2.42 (m, Ph), 4.83 (t, 5H, C_5H_5), 5.37 (m, 2H, C_4H_6), 6.76 (m, PCH₂CH₂P), 8.11 (m, 2H, C₄H₆), and 8.34 (m, 2H, C_4H_6); (XIV), 2·42 (m, Ph), 4·78 (2H, m, C_4H_6), 5·22 (5H, t, C_5H_5), 6.76 (m, PCH_2CH_2P), 9.17 (2H, m, C_4H_6), and 11.38 (2H, m, C₄H₆); ¹³C n.m.r. spectra for C₄H₆ ligands only: (XIII) and (XIV), 102·3 and 77·2 (CH) and 48·1 and 44·0 (CH₂) p.p.m.}. Presumably (XIII) and (XIV) are interconverted via butadiene rotation. A mixture of (XIII) and (XIV) in tetrahydrofuran reacts with NaAlH₂(OCH₂CH₂- $OMe)_2$ giving the crotyl derivatives $[(\eta^5-C_5H_5)Mo(dppe)-$ (η³-C₃H₄Me)] as a mixture of two isomers which have been partially separated by crystallisation. Equilibration of these isomers appears to occur at 130 °C in benzene solution as evidenced by the integration ratios of the C_5H_5 resonances. By analogy with the isomers of $[(\eta^5-C_5H_5)Mo(\eta^3-C_3H_5)-$ (CO)₂]⁵ we propose the structures shown in Scheme 2 for (XV) and (XVI).

The cyclo-octatetraene complex (IV) reacts very readily with CO or PPh₃ giving the compounds $[(\eta^5-C_5H_5)Mo(\eta^6-\eta^6)]$ $C_8H_8)L$ [PF₆] (XI, L = CO or PPh₃). These compounds are non-fluxional at room temperature $\{(XI, L = PPh_3), \tau\}$ $[(CD_3)_2CO]$ 2·32 (m, 15H, Ph), 3·33 (m, 2H, C_8H_8), 4·05 (m, 2H, C_8H_8), 4.95 (d, 5H, C_5H_5), 5.35 (m, 2H, C_8H_8), and 5.67 (m, 2H, C_8H_8). In contrast dppe reacts with (IV) to give $[(\eta^5-C_5H_5)Mo(dppe)(\eta^4-C_8H_8)][PF_6]$ (XII) in which the $\mathrm{C_8H_8}$ ring is fluxional even at $-90\,^{\circ}\mathrm{C}$ $\{\tau[\mathrm{(CD_3)_2CO}]\ 2.34$

(m, 20H, Ph), 5.00 (t, 8H, C_8H_8), 5.40 (t, 5H, C_5H_5), and 6.94 (m, 4H, PCH₂CH₂P) }.

FIGURE. Structure of $[(\eta - C_5H_5)Mo(dppe)(\eta - C_6H_8)]^+$.

The above results show that $[(\eta^5-C_5H_5)Mo(\eta^6-C_6H_6)Cl]$ is a precursor to an extensive chemistry of $(\eta^5-C_5H_5)$ Mo derivatives. All the new compounds (II)—(XVI) have been characterised by normal spectroscopic data and microanalysis.

We thank the S.R.C. for financial support (to J.A.S. and I-C.D.) and the Petroleum Research Fund for partial support.

(Received, 15th June 1976; Com. 680.)

¹ See e.g., G. E. Coates, M. L. H. Green, and K. Wade, 'Organometallic Compounds,' Vol. 2, Chapman and Hall, London, 1968.

M. L. H. Green, J. Knight, and J. A. Segal, J.C.S. Chem. Comm., 1975, 283.
M. Cousins and M. L. H. Green, J. Chem. Soc., 1964, 1567.
See e. g., J. A. Segal and B. F. G. Johnson, J.C.S. Dalton, 1975, 1990.
J. W. Faller, C-C. Chen, M. J. Mattina, and A. Jakubowski, J. Organometallic Chem., 1973, 52, 361.