Techniques spectroscopiques Interactions photon-matière

UV-vis

Qu'est-ce?

La spectroscopie UV-visible (UV-vis)
mesure l'absorption d'un rayonnement
ultra-violet ou visible par une molécule.
Cette absorption correspond à l'excitation
des électrons impliqués dans les orbitales
moléculaires vers des états excités
Les rayonnements UV-vis peuvent aussi
être utilisés pour stimuler et mesurer la
fluorescence émise par les molécules
cibles

Orbitales moléculaires

L'atome en mécanique quantique

En transférant de l'énergie à un électron on peut lui faire changer d'orbitale atomique.

La molécule en mécanique quantique

Molécule: assemblage d'atomes liés par des liaisons chimiques

Liaison chimique = mise en commun d'edans des orbitales moléculaires

Orbitale moléculaire: combinaison linéaire d'orbitales atomiques

La molécule en mécanique quantique

La molécule en mécanique quantique

Comme pour les orbitales atomiques, seules les orbitales de plus basse énergie sont remplies

Les orbitales de plus haute énergie sont vides à l'état fondamental

Comme pour les orbitales atomiques, en transférant de l'énergie à un électron, on peut le faire changer d'orbitale moléculaire

Orbitales liantes et antiliantes

Orbitales liantes et antiliantes

Les orbitales liantes correspondent à celles où la probabilité de présence des e- est concentrée entre les atomes liés

Rappel courbe de Morse

La forme harmonique n'est pas réaliste, les molécules peuvent être brisées

Molécule et niveaux d'énergie

A chaque orbitale moléculaire correspond plusieurs niveau d'énergie électronique (UV-vis), chacun ayant des niveaux de vibration (IR) eux-mêmes affectés par l'énergie de rotation (μ-ondes)

Orbitales frontières

La dernière orbitale moléculaire remplie est nommée HO (haute occupée)

La première orbitale moléculaire vide est nommée BV (basse vacante)

Ce sont les orbitales frontières

Orbitales frontières

La spectroscopie UVvis va provoquer des échanges d'eentres les orbitales HO et BV

En anglais: HO = HOMO et BV = LUMO

luminescence

Emission d'un rayonnement électromagnétique qui n'est pas d'origine thermique.

Lorsque la désexcitation ne met pas en jeu de modification du spin électronique on parle de *fluorescence* (phénomène rapide ~ 10⁻⁸ s). Dans le cas contraire il s'agit de *phosphorescence* (généralement plus long)

Fluorescence

La fluorescence a lieu lorsque la molécule se désexcite en passant par un état métastable.

La longueur d'onde de fluorescence est plus grande que l'onde excitatrice

Appareillage - données

Spectres UV-vis

On représente A
(absorption) ou

ɛ (coefficient
d'absorption
molaire du
soluté) en
fonction de la
longueur d'onde

Loi de Beer-Lambert

A=log(I₀/I) A=absorption, I=intensité

A=εlc ε=coeff d'abs. molaire du soluté, l=longueur de la cellule, c=concentration du soluté

Limites: faible concentration, pas de réaction entre solvant et soluté, pas de dissociation, pas d'autre soluté ou solvant absorbant, lumière monochromatique

Intérêt de la méthode

Molécules actives

Les transitions détectées sont généralement π→n ou n→π* caractéristiques de nombreux de composés organiques.

Les transitions $\sigma \to \sigma^*$ et $n \to \sigma^*$ sont trop énergétiques pour être facilement observées (opération sous vide)

Analyse qualitative

Les composés ont moins de bandes UV-vis que de bandes IR. De plus les bandes UVvis sont larges car affectées par les phénomènes de relaxation et transitions vibroniques et rotationnelles.

Fluorescence

En fluorescence, la couleur de fluorescence peu être un critère qualitatif de reconnaissance des composés (maturation des hydrocarbures par exemple)

Mesures quantitatives

La force de la spectroscopie UV-vis est une moindre dépendance des mesures des conditions extérieures par rapport à la spectroscopie IR et un moindre nombre de bandes d'absorption des composés. Les mesures peuvent donc être quantitatives (loi de Beer-Lambert)