Санкт-Петербургский политехнический университет Институт компьютерных наук и технологий Кафедра «Компьютерные системы и программные технологии»

КУРСОВОЙ ПРОЕКТ Разработка игры "Шестиугольный сапёр"

по дисциплине «Технологии программирования»

Выполнил студент гр. 3530901/20001

Щур Л. А.

Преподаватель

Степанов Д. С.

Санкт-Петербург

2023

Санкт-Петербургский политехнический университет

ЗАДАНИЕ НА ВЫПОЛНЕНИЕ КУРСОВОГО ПРОЕКТА

студенту группы 3530901/20001 Щур Любови Александровне

- 1. Тема проекта: создание игры Сапер с шестиугольным полем и шестиугольными клетками, настраиваемым размером поля и количеством мин
- 2. Срок сдачи проекта: 31 мая
- 3. Исходные данные к проекту: требования к реализовываемому проекту
- 4. Содержание пояснительной записки: введение с описанием правил игры, основная часть (технологии Java Swing, MVC и их применение в приложении), описание автоматических тестов для бизнес-логики, заключение, список используемых источников.

Дата получения задания: «19» мая 2023 г.

Руководитель Степанов Д. С.

Задание принял к исполнению Щур Л. А.

19 мая 2023

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ОПИСАНИЕ ПРЕДЛОЖЕННОГО РЕШЕНИЯ	5
ТЕСТИРОВАНИЕ ПРОГРАММЫ	6
ЗАКЛЮЧЕНИЕ	7
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	8

ВВЕДЕНИЕ

Цель работы: создать и протестировать игру Шестиугольный сапер.

Правила игры:

Плоское или объёмное игровое поле разделено на смежные ячейки (квадраты, шестиугольники, кубы и т. п.), некоторые из которых «заминированы»; количество «заминированных» ячеек известно. Целью игры является открытие всех ячеек, не содержащих мины.

Игрок открывает ячейки, стараясь не открыть ячейку с миной. Открыв ячейку с миной, он проигрывает. Мины расставляются после первого хода. Если под открытой ячейкой мины нет, то в ней появляется число, показывающее, сколько ячеек, соседствующих с только что открытой, «заминировано» (в каждом варианте игры соседство определяется по-своему); используя эти числа, игрок пытается рассчитать расположение мин, однако иногда даже в середине и в конце игры некоторые ячейки всё же приходится открывать наугад. Если под соседними ячейками тоже нет мин, то открывается некоторая «не заминированная» область до ячеек, в которых есть цифры. «Заминированные» ячейки игрок может пометить, чтобы случайно не открыть их. Открыв все «не заминированные» ячейки, игрок выигрывает.

ОПИСАНИЕ ПРЕДЛОЖЕННОГО РЕШЕНИЯ

Для создания графического пользовательского интерфейса (GUI) использовалась библиотека Java Swing, которая обладает большим числом заготовок элементов интерфейса. В частности были использованы следующие элементы: кнопка (JButton), окно программы (JFrame), панель расположения кнопок (JPanel). Взаимодействие пользователя с графическим элементом описывается в событиях для этого элемента.

Программа была написана с использованием концепция MVC (modelview-controller) для отделения бизнес-логики от визуализации, поэтому весь основной код разбит на три файла MinesweeperView, MinesweeperController и MinesweeperModel. Отдельно был вынесен класс ячейки MinesweeperCell.

В классе Minesweeper View содержится метод инициализации окна программы на экран, задание параметров окна и расположения внутри него всех элементов интерфейса, а также прописаны события на действия мыши.

Класс MinesweeperController содержит объявление всех объектов графического интерфейса, а также методы для работы с ними.

Класс MinesweeperModel содержит переменные и методы, предназначенные для работы бизнес-логики. В соответствии с выбранным шаблоном разработки, пользователь взаимодействует с view, все команды от пользователя обрабатывает controller, который в свою очередь обращается к model и, если это необходимо, перерисовывает view.

ТЕСТИРОВАНИЕ ПРОГРАММЫ

Для тестирование бизнес-логики было написано 5 автоматических тестов, использующих возможности библиотеки JUnit.

Первый тест проверяет правильность вывода ячейки с заданным положением в таблице всех ячеек. Второй тест проверяет, устанавливается ли на заданную клетку флаг. Третий тест проверяет, удаляется ли флаг с заданной клетки. Четвертый тест проверяет, верно ли генерируется размер таблицы ячеек в соответствии с заданным размером поля.

ЗАКЛЮЧЕНИЕ

Был создан прототип приложения с графическим интерфейсом, предназначенного для игры Шестиугольный сапер. Также были разработаны автоматические тесты для проверки работоспособности модели приложения. В ходе выполнения этого задания были изучены библиотека Java Swing и шаблон MVC.

Исходные файлы приложения лежат в репозитории на GitHub: https://github.com/hangswo0/MinesweeperHexagonal.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. https://metanit.com/java/tutorial/ описание языка Java
- 2. https://intellect.icu/osnovnye-vizualnye-komponenty-swing-4446 описание Java Swing
- 3. https://itnotesblog.ru/note/pattern-mvc-na-primerecapera?ysclid=lhyxbuj6zj912024093 - пример реализации игры по паттерну MVC
- 4. https://javaswing.wordpress.com/2009/07/19/using-jpanel/ описание работы с JPanel