Deleuze-Driven Identity-Illusion Semantics (v4): Axioms, Discriminants, and Groupoid-Orbit Forms

Abstract

We formalize a Deleuze-aligned semantic layer that integrates with a pullback-based structural core. Observations pass through a form selector and an identity-illusion projection

$$\Phi_{\kappa} = q_{\kappa} \circ \rho \circ \mathrm{Obs}_{\star} : X \to I_{\kappa},$$

inducing a difference triad: the kernel flow $\mathcal{V} := \ker d\Phi_{\kappa}$, the automorphism groupoid $\operatorname{Aut}_{\Phi_{\kappa}}$, and the discriminant $\operatorname{Disc}(\Phi_{\kappa})$. We upgrade $\operatorname{Aut}_{\Phi_{\kappa}}$ to an étale groupoid of local Φ_{κ} -preserving diffeomorphisms and construct the space of repeated forms \mathcal{R} as a groupoid-orbit stratification; a jet-augmented normal form provides auditable boundary types. On a regularity hypothesis we prove: invariance laws, a short exact sequence $0 \to \mathcal{V} \to TX \xrightarrow{d\Phi_{\kappa}} \Phi_{\kappa}^*(TI_{\kappa}) \to 0$, a Lie correspondence, and a dynamic normal form (displacement \circ masquerade \circ displacement). An event-visible time layer and a profunctor halo support concurrency and soft alignment.

1 Motivation and Positioning

We treat language-level distinctions as saturated and require a single, disciplined semantic device that is audit-friendly, composable with a structural pullback core, and robust to small deformations. Deleuzian vocabulary (difference, repetition, series, deterritorialization) is operationalized as testable invariances and boundary transitions.

Contributions. (i) Axioms and hypotheses for a Deleuze-aligned semantic pipeline with explicit public gates. (ii) Discriminant calculus separating mechanism, appearance, and semantic jumps. (iii) Groupoid-orbit construction of repeated forms, with jet-augmentation for boundary audit. (iv) Regular-region theorems (invariance, exactness, Lie correspondence, dynamic normal form). (v) Interfaces to the pullback alignment core and an event-visible extension.

Structure of the Note. Section 2 fixes notation and the main hypotheses. Section 3 states axioms. Section 4 defines the semantic pipeline, discriminant, and forms. Section 5 proves the regular-region theorems. Section 6 sketches the time/event extension. Section 7 specifies the interface to the pullback core.

2 Notation and Hypotheses

Let $X = \Delta_{\text{gen}}$ be the generated difference space. Fix a readable gate $U_{\star} \subseteq X$ and an observation map $\text{Obs}_{\star}: U_{\star} \to \delta_{\star}$ with a public test family T_{\star} (calibration, thresholds, time windows, sampling law). Let $\rho: \delta_{\star} \to \mathcal{R}$ be a least-form selector; let $q_{\kappa}: \mathcal{R} \to I_{\kappa}$ be the identity-criterion projection ($\kappa \in \{\text{identity, similarity, analogy, negation}\}$). Set $\Phi_{\kappa} = q_{\kappa} \circ \rho \circ \text{Obs}_{\star}: X \to I_{\kappa}$. Write $\Sigma \subset I_{\kappa}$ for appearance singularities and $I_{\kappa}^{\text{reg}} = I_{\kappa} \setminus \Sigma$. Let $\nu: I_{\kappa}^{\text{reg}} \to \mathcal{R}$ be the type map; define $\mathcal{V} = \ker d\Phi_{\kappa} \subset TX$.

Regularity hypothesis (H_{reg}) . On $X \setminus \text{Disc}(\Phi_{\kappa})$ the differential $d\Phi_{\kappa}$ has locally constant rank; ρ is locally constant; ν is locally constant along Φ_{κ} -fibres.

3 Axioms (operational Deleuze)

- T (Time-Repetition) Every time-identification concerns repetition; boundaries lie between repeated forms.
- **D** (**Difference–Force**) Repetition manifests and regenerates difference; displacement and masquerade regenerate bifurcations and decentering.
- ER (Selective Return as Operator) There exists a return operator \mathfrak{R} on forms such that fixed points of \mathfrak{R} are precisely difference-affirming forms; labels like "identical/similar/analog/negative" are pragmatic names that apply only after return.
- S (Singularity–Series) Differences communicate through series and differences of differences; temporal allocation confers selective power to \Re .
- L (Pragmatic Legality) Public names for sameness are permitted only as post-return pragmatic effects governed by tests in T_{\star} .

4 Pipeline, Discriminant, and Forms

Definition 4.1 (Observation-to-Projection). The semantic pipeline is

$$X \xrightarrow{\mathrm{Obs}_{\star}} \delta_{\star} \xrightarrow{\rho} \mathcal{R} \xrightarrow{q_{\kappa}} I_{\kappa}, \qquad \Phi_{\kappa} := q_{\kappa} \circ \rho \circ \mathrm{Obs}_{\star}.$$

It induces $x \sim_{\kappa} y \iff \Phi_{\kappa}(x) = \Phi_{\kappa}(y)$. When Φ_{κ} is surjective, $X/\sim_{\kappa} \cong I_{\kappa}$, with differences retained in fibres.

Definition 4.2 (Discriminant calculus). The discriminant is the union

$$\operatorname{Disc}(\Phi_{\kappa}) = \underbrace{\operatorname{Crit}(\Phi_{\kappa})}_{mechanism: \ rank \ drop} \cup \underbrace{\Phi_{\kappa}^{-1}(\Sigma)}_{appearance: \ image-side \ folds} \cup \underbrace{J(\rho \circ \operatorname{Obs}_{\star})}_{semantic \ jump: \ threshold/class \ change}$$

On $X \setminus \operatorname{Disc}(\Phi_{\kappa})$ the map Φ_{κ} is a submersion and ν is locally constant.

Definition 4.3 (Automorphism groupoid and repeated forms). Let $\operatorname{Aut}_{\Phi_{\kappa}}$ be the étale groupoid of local diffeomorphisms preserving Φ_{κ} . Let \mathcal{P} be the pseudogroup generated by local flows of vector fields in $\Gamma(\ker d\Phi_{\kappa})$ and arrows of $\operatorname{Aut}_{\Phi_{\kappa}}$, acting on δ_{\star} . Define an equivalence $z \sim z' \iff \exists h \in \mathcal{P} : z' = h \cdot z$. Set $\mathcal{R} := \delta_{\star}/\sim$. A jet-augmented representative is $r = (\operatorname{nf}(z), [\operatorname{Iso}(z)], \mathbf{j}_z)$, where $\operatorname{Iso}(z)$ is the stabilizer class and \mathbf{j}_z is a finite germ/jet along Disc for auditable boundary types.

Definition 4.4 (Dynamics: displacement, masquerade, bifurcation). Displacements are flows tangent to $\mathcal{V} = \ker d\Phi_{\kappa}$. Masquerades are paths in $\operatorname{Aut}_{\Phi_{\kappa}}$. Bifurcations (deterritorializations) are transverse crossings of $\operatorname{Disc}(\Phi_{\kappa})$ that change ν from r_i to r_j .

Definition 4.5 (Auditable boundaries). Pairs (r_i, r_j) form a semantic boundary when closures of $\nu^{-1}(r_i)$ and $\nu^{-1}(r_j)$ meet along $\operatorname{Disc}(\Phi_{\kappa})$. A boundary witness is a curve γ with $\gamma \pitchfork \operatorname{Disc}$ and a jet-type change $\mathbf{j}_- \to \mathbf{j}_+$.

5 Regular-Region Theorems

Theorem 5.1 (Invariance laws). For any $g \in \operatorname{Aut}_{\Phi_{\kappa}}$ and $x \in X$,

$$dg_x(\ker d\Phi_\kappa(x)) = \ker d\Phi_\kappa(g(x)).$$

Hence $g_*V = V$, and g maps discriminant components to discriminant components.

Proposition 5.1 (Exactness at regular points). Under (H_{reg}) there is a short exact sequence of vector bundles

$$0 \longrightarrow \mathcal{V} \longrightarrow TX \xrightarrow{d\Phi_{\kappa}} \Phi_{\kappa}^*(TI_{\kappa}) \longrightarrow 0,$$

and $\mathcal{V}_x = T_x \Big(\Phi_{\kappa}^{-1} (\Phi_{\kappa}(x)) \Big)$.

Theorem 5.2 (Lie correspondence on the identity component). Let $\Gamma(\mathcal{V}) = \{V \in \mathfrak{X}(X) : d\Phi_{\kappa} \circ V = 0\}$. If V integrates, its local flow ψ_t preserves Φ_{κ} . Conversely, a path $g_t \in \operatorname{Aut}_{\Phi_{\kappa}}$ with $g_0 = \operatorname{id}$ has generator $V \in \Gamma(\mathcal{V})$. Thus $\operatorname{Lie}(\operatorname{Aut}_{\Phi_{\kappa}}^0) \cong \Gamma(\mathcal{V})$.

Theorem 5.3 (Dynamic normal form (regular region)). Any local Φ_{κ} -preserving evolution factors as

 $displacement \circ masquerade \circ displacement.$

Near Σ , bifurcation moves must be admitted.

Remark 5.1 (Singular window (exception rule)). At $\operatorname{Disc}(\Phi_{\kappa})$, the dimension of \mathcal{V} may jump; vertical flows may fail to preserve Φ_{κ} globally. Results above apply on regular open sets; singular cases require additional conditions (e.g. semialgebraic stratifications).

6 Time and Event-Visible Extension

Let T be a time object (e.g. $(\mathbb{R}, +)$ or $(\mathbb{Z}, +)$). A motion is $x : J \to X$ with projected motion $\Phi_{\kappa} \circ x : J \to I_{\kappa}$. To support concurrency, enrich the bridging theory with replayable traces and time, and require switching laws to commute with composition.

7 Interface to Pullback Alignment

Let \mathcal{A}_{\min} be the minimal bridging theory equipped with decidable predicates Pre, Post, Err, Win. Fix a semantics functor $S: \mathcal{A}_{\min} \to \delta_{\star}$ that preserves the public test family T_{\star} . For an object (X, A, θ) in the pullback alignment space $\mathcal{P} = \mathcal{C}_W \times_{\mathcal{A}_{\min}} \mathcal{D}_W$, semantic compatibility holds when

$$\rho(S \circ F(X)) = \rho(S \circ G(A)), \qquad \Phi_{\kappa}(S \circ F(X)) = \Phi_{\kappa}(S \circ G(A))$$

on a regular neighborhood in I_{κ}^{reg} . Semantic boundaries are detected by discriminant crossings that switch ν .

Minimal Audit Ledger (for this layer)

Gate U_{\star} and tests T_{\star} ; ρ , q_{κ} , Φ_{κ} ; discriminant report; groupoid data (arrows, isotropy classes); jet-augmented form representatives; regularity domain; boundary witnesses (curves and jet-type transitions).