

Green University of Bangladesh

Department of Computer Science and Engineering

Course Outline

1 General Information

Spring 2023 cse 206

Faculty Faculty of Science and Engineering (FSE) Department Department of Computer Science and Engineering (CSE) Bachelor of Science in Computer Science and Engineering Programme Semester Spring 2023 Course Title Algorithms Lab Course Code **CSE 206** Course Credit 1.5 units 2.5 hours/week **Contact Hours** Course Status Core Course Prerequisite Course CSE 105

2 Course Instructors

Section	Name	Office	Email
213 D1	Ms. Abida Sultana	B407	abida@cse.green.edu.bd
213 D2	Md. Mamunur Rahman	C506	rahman@cse.green.edu.bd
213 D3	Jargis Ahmed	B502	jargis@cse.green.edu.bd
213 D4	Jargis Ahmed	B502	jargis@cse.green.edu.bd
213 D5	Md. Rafiqul Islam	C605	rafiqul@cse.green.edu.bd
213 D6	Ms. Abida Sultana	B407	abida@cse.green.edu.bd
213 D7	Ms. Abida Sultana	B407	abida@cse.green.edu.bd
213 D8	Md. Rafiqul Islam	C605	rafiqul@cse.green.edu.bd
213 EB	Md. Mamunur Rahman	C506	rahman@cse.green.edu.bd
PC 213 DA	Md. Sultanul Islam Ovi	PCR 510	sultanul@cse.green.edu.bd
PC 213 DB	Md. Sultanul Islam Ovi	PCR 510	sultanul@cse.green.edu.bd
PC 213 DC	Md. Sultanul Islam Ovi	PCR 510	sultanul@cse.green.edu.bd

3 Laboratory and Counseling Hours

Section	Room	Laboratory Weekday	Time	Counseling Weekday	Time
213 D1	D801	Monday	08:00 AM - 10:30 AM	Thursday	01:30 PM - 02:45 PM
213 D2	D801	Tuesday	01:30 PM - 04:00 PM	Wednesday	11:45 AM - 01:00 PM
213 D3	C602	Tuesday	10:30 AM - 01:00 PM	Monday	11:45 AM - 01:00 PM
213 D4	C602	Wednesday	10:30 AM - 01:00 PM	Thursday	11:45 AM - 01:00 PM
213 D5	B802	Tuesday	10:30 AM - 01:00 PM	Wednesday	01:30 PM - 02:45 PM
213 D6	C601	Thursday	08:00 AM - 10:30 AM	Thursday	01:30 PM - 02:45 PM
213 D7	D801	Monday	10:30 AM - 01:00 PM	Thursday	01:30 PM - 02:45 PM
213 D8	D801	Saturday	10:30 AM - 01:00 PM	Saturday	01:30 PM - 02:45 PM
213 EB	B802	Thursday	04:00 PM - 06:30 PM	Thursday	11:45 AM - 01:00 PM

PC 213 DA	PCR-503	Tuesday	9:00AM - 11:30 AM	Friday	08:00 AM - 09:15 AM
PC 213 DB	PCR-503	Wednesday	10:15 AM - 12:45 PM	Friday	10:30 AM - 11:45 AM
PC 213 DC	PCR-503	Thursday	9:00AM - 11:30 AM	Friday	09:15 AM - 10:30 AM

4 Course Rationale

Algorithms are the heart of computer science, and the subject has countless practical applications as well as intellectual depth. This specialization is an introduction to algorithms for learners with at least a little programming experience. The specialization is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. After completing this specialization, you will be well-positioned to ace your technical interviews and speak fluently about algorithms with other programmers and computer scientists. Algorithms is designed to provide a comprehensive introduction to the design and analysis of computer algorithms and data structures. This course also covers software design methods, object-oriented Implementation issues, and experimental analysis of algorithms.

5 Course Description

Techniques for analysis of algorithms; Methods for the design of efficient algorithms: divide and conquer, greedy method, dynamic programming, backtracking, branch and bound; basic search and traversal techniques; topological sorting; connected components, spanning trees, shortest paths; Flow algorithms; Approximation algorithms; Parallel algorithms, Lower bound theory; NP-completeness, NP-hard, and NP-complete problems.

6 Teaching Methods

Lecture, Laboratory experiments, Project developments.

7 Course Outcomes

СО	CO Description	РО	Domain (LoBT)	Weight	WK	WP	EA	Assessment Methods
CO1	Analyze algorithms and their key components involving running time & memory requirement.	PO2	Cognitive (C3)	70%	WK1, WK2	WP1	EA1	
CO2	Design algorithmic solutions employing suitable approaches for solving complex engineering problems.	PO3	Cognitive (C4)	20%	WK2, WK3, WK5	WP2, WP3		Please refer to Section 8.
CO3	Adapt algorithmic techniques to solve complex engineering problems through exploring physical and/or online resources.	PO12	Affective (A4)	10%	WK5, WK6	WP5		

Legend:

CO: Course Outcome

PO: Program Outcome (Appendix: A)

WK: Knowledge Profile (Appendix: B)

WP: Complex Problem Solving (Appendix: C)

EA: Complex Engineering Activities (Appendix: D)

Lobt: Level of Bloom's Taxonomy (Appendix: E)

8 Assessment Methods of COs

Assessment Method	CO1	CO2	CO3	Total
Lab Report	15%			15%
Continues Lab Performance(CLP)	15%	10%		25%
Project, Presentation & Viva	20%		10%	30%
Lab Final	20%	10%		30%
Total	70%	20%	10%	100%

9 Lab Activity Outline

Class	Experiment Title	COs	Reference	Activities
1	Socialization and Introduction to the course	1	Lab Manual No. 1	Experiments
2	Analysis of Complexity of Algorithms	1	Lab Manual No. 2	Experiments
3	Breadth-First Search Traversal	1	Lab Manual No. 3	Experiments
4	Depth-First Search Traversal	1	Lab Manual No. 4	Experiments
5	Kruskal's Algorithm	2	Lab Manual No. 5	Experiments
6	Prim's Algorithm	2	Lab Manual No. 6	Experiments
7	Dijkstra's Algorithm	3	Lab Manual No. 7	Experiments
8	Merge Sort Algorithm	1	Lab Manual No. 8	Experiments
9	Quick Sort Algorithm	1	Lab Manual No. 9	Experiments
10	0-1 Knapsack Problem Using Dynamic Programming (DP)	2	Lab Manual No. 10	Experiments
11	Huffman Coding Algorithm	2	Lab Manual No. 11	Experiments
12	String and Pattern Matching Prob- lems using KMP Algorithm	2	Lab Manual No. 12	Experiments
13	Longest Common Subsequence (LCS) Algorithm	2		Presentation, Viva
14	Project Presentation	1, 2, 3		Presentation, Viva
15	Final Examination	1, 2, 3		Problem Solving, Viva

10 Text and Reference Materials

T Textbook:

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, & Clifford Stein, Introduction to Algorithms, 4th Edition, MIT press, 2022.
- Jon Kleinberg & Eva Tardos, Algorithm Design, 2rd Edition, Pearson Education, 2006.

R References:

- Anany Levitin, Introduction to the Design and Analysis of Algorithms, 3rd Edition, Pearson Education, 2011.

11 Grading Policy

Marks Obtained	Letter Grade	Numerical Evaluation	Definition
80% and above	A+	4.00	Excellent
75% <80%	A	3.75	Excellent
70% <75%	A-	3.50	Very Good
65% < 70%	B+	3.25	Good
60% <65%	В	3.00	Good
55% <60%	B-	2.75	Good
50% <55%	C+	2.50	Average
45% <50%	С	2.25	Average
40% <45%	D	2.00	Below Average
below 40%	F	0.00	Failing

12 Additional Course Policies

- 1. **Equipment and Aids**: Bring your own materials such as a calculator, notebook, and pen to participate effectively in classroom activities. You are NOT allowed to borrow from others inside the classroom which may potentially create distractions for your classmates.
- 2. **Assignments**: There will be a number of assignments for formative assessment purposes. The average of the assignment marks will be used for computing the final grade. Late submission of homework will carry a zero mark.
- 3. **Class Tests**: There will be at least three Class Tests taken during the semester and the best two will be counted for final grading. A class test can be taken with/without prior announcement.
- 4. **Examinations**: The midterm and final examinations will be a closed book, closed notes. Mobile phones are strictly prohibited in the exam hall. Please bring your own watch (non-smart) and synchronize at the beginning of the examination.
- 5. **Test Policy**: In case of missing a test without prior notice to the respected faculty member, a zero mark will be given. No makeup tests will be taken as the best two test scores will be considered for grading out of three tests.
- 6. **Mobile Devices Policy**: Empirical evidence of using multitasking devices such as laptops and smartphones in the classroom hinders the learning experience. Thus, the use of multitasking devices is strictly discouraged. Switch off your laptop/mobile devices during class activities.

13 Additional Information

Please click or scan:

ACADEMIC CALENDAR SPRING, 2023:

Academic Information and Policies:

PROCTORIAL RULES:

GRADING AND PERFORMANCE EVALUATION:

Md Rafiqul Islam Course Coordinator, CSE 206 May 6, 2023 Prof. Dr. Md. Saiful Azad Chairman, Department of CSE May 6, 2023

Appendix A: Program Outcomes

POs	Category	Program Outcomes
PO1	Engineering Knowl- edge	Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis	Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.
PO3	Design/Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.
PO4	Investigations	Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5	Modern tool usage	Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7	Environment and sustainability	Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics	Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.
PO9	Individual work and teamwork	Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
PO10	Communication	Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
PO11	Project management and finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of a team to manage projects in multidisciplinary environments.
PO12	Life Long Learning	Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

Appendix B: Knowledge Profile

Knowledge Profile	Attribute
WK1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
WK2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline
WK3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
WK4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline
WK5	Knowledge that supports engineering design in a practice area
WK6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
WK7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability

Appendix C: Range of Complex Engineering Problem Solving

Attribute	Identity	Complex Engineering Problem Description
Depth of knowledge required	WP1	Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach
Range of conflicting requirements	WP2	Involve wide-ranging or conflicting technical, engineering and other issues
Depth of analysis required	WP3	Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	WP4	Involve infrequently encountered issues
Extent of applicable codes	WP5	Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder involve- ment and conflicting require- ments	WP6	Involve diverse groups of stakeholders with widely varying needs
Interdependence	WP7	Are high-level problems including many component parts or sub-problems

Note: Complex Engineering Problems have IDENTITY P1 AND SOME OR ALL OF P2 TO P7.

Appendix D: Range of Complex Engineering Activities

Attribute	Identity	Activity Description
Range of resources	EA1	Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)
Level of interaction	EA2	Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues
Innovation	EA3	Involve creative use of engineering principles and researchbased knowledge in novel ways
Consequences for society and the environment	EA4	Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation
Familiarity	EA5	Can extend beyond previous experiences by applying principles- based approaches

Note: Complex activities means (engineering) activities or projects that have some or all of the above activities.

Appendix E: Domain and Level of Bloom's Taxonomy

Cogni	Cognitive Domain		Psychomotor Domain		ive Domain
C1	Remembering	P1	Perception	A1	Receive
C2	Understanding	P2	Set	A2	Respond
C3	Applying	P3	Guided Response	A3	Value
C4	Analyzing	P4	Mechanism	A4	Organize
C5	Evaluating	P5	Complex Overt Response	A5	Internalize
C6	Creating/ Designing	P6	Adaption		
		P7	Origination		