Ejercicio 3.3

Palabra 16 bits

16 registros → 4bits para representar todos

cte, desp, dir en complemento a 2.

ADx, x C (1,2,3,4)

2 ultimos bits representan el modo de direccionamiento

mnemónico significado XXXX: no usado

AD1 rd, rs	rd ← ADD(rd,rs)	00 rd rs XXXX 00
AD2 rd, ##cte	AD2 rd, ##cte rd ← ADD(rd,cte)	
AD3 rd, (rs)	AD3 rd, (rs) $rd \leftarrow ADD(rd, M[rs])$	
AD4 rd, dir	$AD4 rd, dir$ $rd \leftarrow ADD(rd, M[PC+1+dir])$	
JZ offset	if Z equ 1, PC \leftarrow ADD(PC+1+desp)	10 XXXX desp XX

- a) Dibujar el datapath del procesador
- b) Diseña la tabla de control
- c) Añade al diseño la siguiente instrucción

LAC rd rd \leftarrow M[AC] 11 XXXXXXX rd

45	AD4 R5, -28	M[45+1-1C]	R5	0042 hex
46	AD3 R1, R5	M[42]	R1	000a hex
47	AD2 R2, -11	-11	R2	-11
48	AD1 R1, R2	R2	R1	-1
49	AD2 R1, 0	1	R1	0
4a	JZ 2	2 != 1	////	////

Debido a los dos primeros y los dos lutimos bits de la instrucción podemos realizar todas las instrucciones sin recesdad de una Tabla de control.