2. Team

Problem 2.1. Let $f(z): \mathbb{C} \to \mathbb{C}$ be a polynomial of degree n. For any r > 0, let

(5)
$$M(r) := \max_{|z| \le r} |f(z)|.$$

Show that if R > r > 0, then

(6)
$$\frac{M(R)}{R^n} \le \frac{M(r)}{r^n}.$$

Moreover, "=" holds in (6) if and only if $f(z) = cz^n$ for some constant c.

Problem 2.2. If $b_1 = 1$, $b_2 = 2$ and

$$b_{n+1} = b_n + b_{n-1}$$

for $n \geq 2$. Does the series

$$\sum_{n=1}^{\infty} \frac{1}{b_n}$$

converge? Show all your work.

Problem 2.3. Find all solutions of

$$\begin{cases} \Delta u = 0, & \text{in} \quad B_1 \setminus \{0\} \subset \mathbb{R}^2, \\ u(x) = 0 & \text{on} \quad \partial B_1, \\ u \ge 0, \end{cases}$$

where $B_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$

Problem 2.4. Assume the function $f:[0,1]\to\mathbb{R}$ is of $C^1[0,1]$. Prove that the set of critical values of f has measure zero.

Problem 2.5. Let w(r) and $\sigma(r)$ be non-decreasing functions in an interval (0, R]. Suppose there holds for all r < R

(7)
$$w(\tau r) \le \gamma w(r) + \sigma(r)$$

for some $\gamma, \tau \in (0,1)$. Then for any $\mu \in (0,1)$ and r < R we have

(8)
$$w(r) \le C \left\{ \left(\frac{r}{R} \right)^{\alpha} w(R) + \sigma(r^{\mu} R^{1-\mu}) \right\}$$

where $C = C(\gamma, \tau)$ and $\alpha = \alpha(\gamma, \tau, \mu)$ are positive constants.

Problem 2.6. Let $P_k(x)$ denote the k-th Chebyshev polynomial, i.e. $P_k(\cos \theta) = \cos(k\theta)$ for $k \in \mathbb{N}$. Suppose

$$f(x) = \sum_{k=0}^{n} a_k x^k$$

is a real monic polynomial (i.e. $a_n = 1$) with all roots in (-1, 1). Prove that all the roots of

(9)
$$g(x) = \sum_{k=0}^{n} a_k P_k(x)$$

are all real numbers and in (-1,1).