Peramalan Nilai Emisi CO₂ di Indonesia

menggunakan Holt-Winters

Double Exponential Smoothing

oleh Kelompok 3 – STK352 K2 Minor

Daftar Isi

Ol Pendahuluan

Penjelasan Latar Belakang dan Permasalahan Topik

03 Metode

Penjelasan Sumber Data, Peubah yang Diamati, dan Prosedur Analisis

05 Kesimpulan

Kesimpulan serta Langkah-langkah yang dapat Diambil

02 Tujuan

Penjelasan mengenai Tujuan yang ingin Dicapai

04 Pembahasan

Eksplorasi Data, Aplikasi Metode Smoothing, dan Analisis

O I Pendahuluan

Penjelasan Latar Belakang dan Permasalahan Topik

Latar Belakang

Perubahan pada pola cuaca jangka panjang yang terjadi dalam skala global.

(Setiani 2020)

Perubahan Iklim

Peramalan

Untuk dapat mengetahui bagaimana kondisi emisi CO₂ di beberapa tahun ke depan. Emisi CO2 yang selalu meningkat menjadi salah satu aspek penting perubahan iklim.

O2 Tujuan Penjelasan mengenai Tujuan yang ingin Dicapai

Membangun model pemulusan deret waktu nilai emisi CO2 di Indonesia

Menghitung nilai peramalan emisi CO2 pada beberapa periode kedepan

Mengetahui dampak tingginya emisi CO2 beserta langkah-langkah yang dapat diambil dalam upaya mencegah perubahan iklim

O3 Metode

Penjelasan Sumber Data, Peubah yang Diamati, dan Prosedur Analisis

Sumber Data

Data merupakan olahan dari Pusat Analisis Informasi Karbon Dioksida, Divisi Ilmu Lingkungan, Laboratorium Nasional Oak Ridge, Tennessee, Amerika Serikat.

Link: https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=ID

Peubah yang Diamati

Selain periode yang direpresentasikan sebagai "Tahun", satu-satunya peubah yang lain yang ada pada data tersebut adalah Nilai Emisi CO₂ dalam satuan Metrics Ton per Capita.

Apa maksud satuan pada peubah di atas?

Dalam konteks Emisi CO₂, satuan tersebut berarti kadar CO₂ sejumlah 1 Ton (1000 kg) yang dihasilkan oleh suatu negara per penduduk-nya.

Peubah tersebut memiliki detail sebagai berikut.

Count	Mean	Median	Variance
59	0.974	0.755	0.349

Metode Penghalusan dan Validasi

 $F_t(k) = L_t + k T_t$

Prosedur Penghalusan dan Peramalan

Membuat plot data untuk mengetahui pola data

Mempartisi data menjadi Data Training dan Data Testing

Membangun model terbaik (Error Minimum) menggunakan Data Training

Menerapkan model pada Data Testing disertai Parameter Tuning

Menggabungkan kembali data dan melakukan peramalan

O4 Pembahasan

Eksplorasi Data, Aplikasi Metode Smoothing, dan Analisis

Eksplorasi Data (1)

Data yang diambil dari sumber berupa berkas .xlsx yang menampilkan seluruh data nilai emisi CO2 di 200 negara dari tahun 1960-2018.

Country Name	Country (Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965	1966
Aruba	ABW	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC							
Africa Eastern and Southern	AFE	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.90606	0.922474	0.930816	0.94057	0.996033	1.04728	1.033908
Afghanistan	AFG	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.046057	0.053589	0.073721	0.074161	0.086174	0.101285	0.107399
Africa Western and Central	AFW	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.09088	0.095283	0.096612	0.112376	0.133258	0.184803	0.193676
Angola	AGO	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.100835	0.082204	0.210533	0.202739	0.213562	0.205891	0.268937
1 Albania	ALB	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1.258195	1.374186	1.439956	1.181681	1.111742	1.166099	1.333055
Andorra	AND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC							
Arab World	ARB	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.609268	0.662618	0.727117	0.853116	0.972381	1.138674	1.251997
United Arab Emirates	ARE	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.119037	0.109136	0.163542	0.175833	0.132815	0.146822	0.160452
Argentina	ARG	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	2.383343	2.458551	2.538447	2.330685	2.553442	2.656466	2.806896
Armenia	ARM	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC							
7 American Samoa	ASM	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC							
Antigua and Barbuda	ATG	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.677418	0.866667	1.838457	1.487469	1.590448	2.561321	5.814611
Australia	AUS	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	8.582937	8.641569	8.835688	9.22644	9.759073	10.62232	10.32809
Austria	AUT	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	4.373319	4.496362	4.755362	5.155194	5.391004	5.252197	5.361725
1 Azerbaijan	AZE	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC							
Burundi	BDI	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC			0.015136	0.016081	0.015752	0.011851	0.015036
Belgium	BEL	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	9.941594	10.10387	10.64119	11.38693	11.05365	11.14166	11.04202
Benin Benin	BEN	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.066354	0.052049	0.054209	0.047588	0.055304	0.057115	0.042383
Burkina Faso	BFA	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.009112	0.01873	0.017003	0.017504	0.021575	0.019841	0.019534
Bangladesh	BGD	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.294805	0.296924	0.317336	0.354674	0.354201	0.360641	0.355616
7 Bulgaria	BGR	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	2.833901	3.26992	3.835892	4.259781	5.262988	5.645652	5.905437
Bahrain	BHR	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	3.544435	10.54897	9.191856	6.710613	8.742028	6.554084	3.384305
Bahamas, The	BHS	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	3,749626	4.746245	5,995987	5.557806	8.118111	9.399207	7.465217

Eksplorasi Data (2)

Dari keseluruhan data, dilakukan reduksi dan transformasi sehingga data hanya menampilkan nilai emisi CO2 untuk negara <u>Indonesia</u> pada tahun 1960-2018.

No.	Year	Emission
1	1960	0.243920444
2	1961	0.288847528
3	1962	0.248553409
4	1963	0.239783195
5	1964	0.229458195
6	1965	0.246241473
7	1966	0.227084338
8	1967	0.232007107
9	1968	0.253602314
10	1969	0.298784274
11	1970	0.312064909
12	1971	0.330738851
13	1972	0.358132823
14	1973	0.395605913

• • • •

terlihat data memiliki pola tren positif.

Eksplorasi Data (3)

Dari eksplorasi data sebelumnya, diperoleh informasi bahwa:

- Tidak ditemukan nilai Emisi CO₂ yang kosong (NULL) di setiap tahun.
- Melalui metode Visualisasi Data, Z-Scoring (threshold=3), dan
 Interquartile Range (IQR), tidak ditemukan noise maupun outlier pada data.
- Atribut yang akan diproses hanya satu, yakni Nilai Emisi CO2.

Dapat disimpulkan bahwa data telah dapat dikatakan "bersih" dan tidak perlu dilakukan pra-proses data lebih lanjut.

Untuk membuat model Smoothing dan Forecast yang baik, maka data akan <u>dipartisi</u> dengan perbandingan antara Training dan Testing sebesar 7:3 karena ukuran data relatif kecil.

Aplikasi Metode Smoothing: Excel (1)

Membuat tabel seperti di bawah ini.

Diisi menggunakan nilai yang diperoleh dari regresi linear antara nilai emisi terhadap urutan periode.

No.	Year	Actual (Xt)	Level (Lt)	Trend (Tt)	Smoothing (St)	Forecast (Ft)	Error	Percentage Error
0		7.00.00 (7.1)		31-11-1(11)				
1	1960	0.243920444			+			
2	1961	0.288847528						
3	1962	0.248553409						
4	1963	0.239783195						
5	1964	0.229458195						
6	1965	0.246241473			(5) (4)			
7	1966	0.227084338						
8	1967	0.232007107						
9	1968	0.253602314						
10	1969	0.298784274						
11	1970	0.312064909						
12	1971	0.330738851						
13	1972	0.358132823						
14	1973	0.395605913			32			
15	1974	0.402292488						
16	1975	0.412942076						

Aplikasi Metode Smoothing: Excel (2)

Dengan menggunakan fungsi Data Analysis: Regression, diperoleh nilai:

ANOVA		
	df	SS
Regression	1	4.977254288
Residual	40	0.339203378
Total	41	5.316457666
	Coefficients	Standard Error
Intercept	0.047201826	0.028933967
X Variable 1	0.028401072	0.001172303

Sehingga dapat disimpulkan bahwa:

Lo : 0.0472

To: 0.0284

Aplikasi Metode Smoothing: Excel (3)

Mengisi seluruh sel pada Data Training berdasarkan formula DES.

Menetapkan nilai parameter Alpha dan Beta agar nilai Error (MAPE) seminimal mungkin.

- Menggunakan Fungsi Solver dengan constraint 0 ≤ Alpha, Beta ≤ 1
- Membuat matriks perbandingan nilai MAPE dengan parameter Alpha dan Beta

	Alpha							
		0	0.2	0.4	0.6	0.8	1	
	0	13.9004	11.7578	9.06242	7.7341	6.79781	5.9185	
Ĭ	0.2	13.9004	13.3476	10.4665	8.56979	7.0589	6.21792	
Beta	0.4	13.9004	15.6617	11.2199	8.52069	6.7207	6.60795	
	0.6	13.9004	16.6864	11.0136	8.03185	7.09542	7.03977	
	0.8	13.9004	16.2592	10.9005	8.09369	7.48893	7.3812	
Ĩ	1	13.9004	15.7125	10.8805	8.02652	8.00364	8.08425	

Kedua metode di atas sama-sama menghasilkan keluaran Alpha = 1 dan Beta = 0.

Aplikasi Metode Smoothing: Excel (4)

Berikut merupakan grafik yang menunjukkan hasil Smoothing pada Data Training dengan menggunakan parameter yang optimum.

Aplikasi Metode Smoothing: Excel (5)

Menerapkan parameter yang diperoleh pada Data Training ke Data Testing.

Menetapkan nilai parameter Alpha dan Beta model dengan melakukan parameter tuning untuk meminimumkan MAPE pada Data Testing.

Digunakan matriks perbandingan nilai MAPE berdasarkan Alpha dan Beta yang dekat dari nilai yang diperoleh dari Data Training sebelumnya.

	Alpha								
0		0.8	0.85	0.9	0.95	1			
	0.15	4.55887	4.62155	4.72266	4.86028	5.03365			
Beta	0.1	3.76417	3.8075	3.86729	3.94336	4.03586			
	0.05	2.96779	2.964	2.95963	2.95886	2.97404			
	0	5.43102	5.32317	5.20921	5.1022	4.99128			

Nilai MAPE minimum dari model di atas diperoleh apabila

Alpha = 0.95 dan Beta = 0.05 ← Parameter yang digunakan untuk Forecast.

Aplikasi Metode Smoothing: Excel (6)

Berikut merupakan grafik yang menunjukkan hasil Forecasting 6 periode ke depan dengan menggunakan gabungan antara Data Training dan Testing.

Aplikasi Metode Smoothing : Rstudio (1)

Pencarian parameter alpha dan beta optimum dengan menggunakan data latih. Untuk nilai inisialisasinya digunakan NULL agar model dapat menentukan nilai optimumnya secara otomatis.

```
Call:
HoltWinters(x = data.train.ts, alpha = NULL, beta = NULL, gamma = FALSE)

Smoothing parameters:
alpha: 1
beta: 0.1645039
gamma: FALSE

> # Count error
> e.train = data.train.des$fitted[,2] - data.train.ts
> n.train = length(data.train.ts)
> MAPE.train = (sum(abs(e.train)/data.train.ts)/n.train)*100
> MAPE.train
[1] 5.651132
```

Nilai MAPE = 5.651 dengan Alpha = 1 dan Beta = 0.1645 pada data latih.

. . . .

Aplikasi Metode Smoothing: Rstudio (2)

Berikut grafik hasil Smoothing pada data latih dengan parameter alpha dan beta optimum.

Holt-Winters filtering

Aplikasi Metode Smoothing : Rstudio (3)

Menerapkan nilai alpha dan beta optimum data latih pada data uji dengan parameter tuning untuk meminimumkan MAPE pada data uji. Digunakan matriks perbandingan dengan nilai Alpha dan Beta yang terdekat.

Beta

Alpha

-	0.05	0.1	0.15	0.2	0.25
0.75	0.5629498	0.6787399	0.8517320	0.9654951	1.0362054
0.8	0.6710268	0.8327720	0.9297875	0.9742263	0.5459608
0.85	0.8244937	0.9067094	0.9256070	0.5452075	0.7477674
0.9	0.8974981	0.8913572	0.5445300	0.7247718	0.9675321
0.95	0.8731740	0.5439212	0.7056302	0.9193870	1.0721170
1	0.5510248	0.6902834	0.8807433	1.0130387	1.1112420

Nilai MAPE minimum = 0.5439212 dengan Alpha = 0.95, Beta = 0.1 ← Model terbaik

Aplikasi Metode Smoothing: Rstudio (4)

Dilakukan peramalan data gabungan (latih + uji) untuk 10 periode kedepan model terbaik (Alpha = 0.95, Beta = 0.1).

Forecasts from HoltWinters

Analisis Hasil (Smoothing Error)

Proses pemulusan dengan model terbaik pada <u>Data Training</u> dengan nilai Alpha = 1 dan Beta = 0, menghasilkan Error:

MAD : 0.03109 MSD : 0.00152 MAPE : 5.91850 %

Penerapan model di atas pada <u>Data Testing</u> disertai <u>Parameter Tuning</u> dengan nilai Alpha = 0.95 dan <u>Beta</u> = 0.05, menghasilkan Error :

MAD : 0.05463 MSD : 0.00584 MAPE : 2.95886 %

Penerapan model final di atas pada <u>Data Gabungan</u>, menghasilkan Error:

MAD : 0.04309 MSD : 0.00347 MAPE : 5.54040 %

Analisis Hasil (Forecast)

Berdasarkan model final yang diperoleh sebelumnya dengan nilai Alpha = 0.95 dan Beta = 0.05, berikut merupakan hasil Forecast untuk beberapa periode ke depan.

Tahun	Nilai Emisi CO2
2019	2.21535
2020	2.25883
2021	2.30231
2022	2.34579
2023	2.38927
2024	2.43275

Secara naif, apabila tren peningkatan jumlah emisi ini tidak diubah, maka pada Tahun 2050 angka tersebut menjadi

3.56322 Ton per Kapita

Begitu pula seterusnya hingga suhu permukaan bumi terus menaik sampai pada akhirnya planet kita menjadi tidak layak huni dalam beberapa ratus tahun ke depan.

O5 Kesimpulan

Kesimpulan serta Langkah-langkah yang dapat Diambil

Kesimpulan

- Model pemulusan dan peramalan menggunakan metode Holt-Winters Double Exponential Smoothing dengan nilai Alpha = 0.95 dan Beta = 0.05.
- Hasil pemulusan beserta peramalan banyaknya emisi CO2 adalah emisi CO2 akan terus meningkat dari tahun ke tahun.
 Hal ini berjalan sesuai dengan pola data itu sendiri, yakni Pola Tren Positif.

Implikasi dari meningkatnya jumlah CO2 yang dilepas ke udara adalah efek rumah kaca. Apabila hal ini terus berlangsung dalam rentang waktu yang lama, maka akan terjadi kenaikan suhu permukaan bumi yang dapat mengakibatkan perubahan iklim.

Efek domino dari peristiwa tersebut adalah mencairnya es di kutub yang dapat mengakibatkan naiknya permukaan air laut. Menurunnya kualitas air, gelombang panas berkepanjangan, kekeringan, kebakaran hutan, cuaca yang sulit diprediksi, serta menurunnya intensitas panen bahan baku makanan.

Seluruh hal tersebut jelas mengancam kesejahteraan umat manusia di bumi.

Langkah-langkah yang Dapat Diambil

- Mengurangi penggunaan kendaraan bertenaga fosil atau beralih ke moda transportasi umum.
- Menjaga kelestarian hutan dan aktif melakukan aksi menanam pohon.
- Mengurangi konsumsi daging, utamanya daging sapi.
- Mengurangi penggunaan AC dan pemanas air.
- Menerapkan prinsip Reduce, Reuse, dan Recycle.
- Senantiasa mengingatkan orang terdekat untuk sadar akan bahaya dari perubahan iklim.

Danke schön!

Is there any Question?

Saran Pasca Presentasi

