1 Joint overview

This report is a demonstration of what is possible with an automated reporting tool. Placeholder values are used.

Figure 1: Plot of joint at nominal.

2 Preload

The following parameters were provided:

- Torque (T) = 9.0 + 0.5 / -0.5 in lbf
- Nut factor (K) = 0.2 (as-received)
- Preload uncertainty $(\Gamma) = 0.35$

2.1 Nominal preload

Nominal preload (P_{pi-nom}) is calculated per NASA-STD-5020B Eq. 24 see equation 1

$$P_{p-nom} = \frac{T}{K \cdot D} = \frac{9.0}{0.2 \cdot 0.112} = 401.8 \ lbf$$
 (1)

2.2 Minimum preload

$$c_{min} = \frac{T_{nom} - T_{tol-minus}}{T_{nom}}$$

$$= \frac{9.0 - 0.5}{9.0}$$

$$= 0.944$$
(2)

A single fastener joint is specified. Minimum initial preload (P_{pi-min}) is calculated per NASA-STD-5020B, Eq. 26a, see equation 3

$$P_{pi-min} = c_{min}(1-\Gamma)P_{pi-nom}$$

$$= 0.944(1-0.35)401.7857142857142$$

$$= 512.277 \ lb f$$
(3)

3 Margins of safety

Margins of safety are calculated using FF = 1.15, $FS_y = 1.4$, $FS_u = 2.0$. External loads and temperatures shown below in table 1

Table 1: Loads used to calculate margins of safety

		ΔT_{min}	ΔT_{max}	P	V	M
case	eid					
cold	1000	-80.00	0.00	21.39	93.68	57.98
	1001	-80.00	0.00	93.00	63.56	35.83
	1002	-80.00	0.00	27.02	92.37	34.15
	1003	-80.00	0.00	7.90	4.93	24.49
hot	1000	-0.00	100.00	23.42	79.13	2.50
	1001	-0.00	100.00	63.68	65.67	63.06
	1002	-0.00	100.00	26.07	59.82	55.75
	1003	-0.00	100.00	81.18	77.07	91.28

Margins of safety are shown below in table 2

Table 2: Calculated margins of safety

		Р	V	M	MS_{sep}	MS_{tu}	MS_{su}	MS_{ty}	MS_{slip}	MS_{int}		
case	eid				•			Ü	•			
cold	1000	21.39	93.68	57.98	14.83	18.62	3.22	0.80	-0.65	9.34		
								Continued on next page				

Table 2: Calculated margins of safety

		Р	V	M	MS_{sep}	MS_{tu}	MS_{su}	MS_{ty}	MS_{slip}	MS_{int}
case	eid				-			_	_	
	1001	93.00	63.56	35.83	2.64	3.51	5.22	-0.59	-0.54	8.44
	1002	27.02	92.37	34.15	11.53	14.53	3.28	0.42	-0.64	9.31
	1003	7.90	4.93	24.49	41.83	52.10	79.22	3.86	4.92	102.56
hot	1000	23.42	79.13	2.50	13.46	16.92	4.00	0.64	-0.58	10.85
	1001	63.68	65.67	63.06	4.32	5.59	5.03	-0.40	-0.53	10.11
	1002	26.07	59.82	55.75	11.98	15.10	5.62	0.47	-0.46	13.73
	1003	81.18	77.07	91.28	3.17	4.17	4.13	-0.53	-0.60	8.31

3.1 Bolt shear ultimate

The margin of safety for bolt shear ultimate (MS_{su}) is calculated using NASA-STD-5020B, Eq. 14. The equation and the calculation for the minimum margin of safety are shown below in equation 4

$$MS_{su} = \frac{P_{su-allow}}{FF \cdot FS_u \cdot P_{sL}} - 1$$

$$= \frac{910.1}{1.15 \cdot 2.0 \cdot 93.7} - 1$$

$$= 3.224$$
(4)

3.2 Separation

$$P'_{sep} \le P'_{tu}$$

= 637.708 \le 160.513
= False (5)

$$P'_{sep} \le P'_{ty}$$

= 637.708 \le 61.879
= False (6)

3.3 Joint separation

Joint separation margin of safety (MS_{sep}) is calculated using NASA-STD-5020B, eq TODO. The equation and the calculation for the minimum margin of safety are shown below in equation 7

$$MS_{sep} = \frac{P_{p-min}}{FF \cdot FS_{sep} \cdot P_{tL}} - 1$$

$$= \frac{486.663}{1.15 \cdot 1.25 \cdot 21.4} - 1$$

$$= 0.1$$
(7)

3.4 Bolt tensile ultimate

The margin of safety for bolt tensile ultimate (MS_{tu}) is calculated using NASA-STD-5020B, Eq. 6. The joint is predicted to separate before rupture, so the allowable is determined by the bolt tensile ultimate strength $(P_{tu-allow})$. The equation and the calculation for the minimum margin of safety are shown below in equation 8

$$MS_{tu} = \frac{P_{tu-allow}}{FF \cdot FS_u \cdot P_{tL}} - 1$$

$$= \frac{965.2}{1.15 \cdot 2.0 \cdot 200.0} - 1$$

$$= -0.1$$
(8)