Universidad de San Carlos de Guatemala Facultad de Ingeniería Ingeniería en Ciencias y Sistemas Sistemas Operativos 1 Junio 2024

Manual de Usuario

Grupo 12

Manual de Usuario

Objetivo general

El objetivo general de este manual de usuario es proporcionar una guía detallada y accesible para los usuarios del sistema "2024 Weather Tweets", permitiéndoles entender cómo interactuar efectivamente con las herramientas clave del proyecto y aprovechar al máximo su funcionalidad.

Objetivos específicos

Descripción y Acceso a Locust:

- Proporcionar instrucciones claras sobre cómo acceder a la herramienta Locust para simular tráfico concurrente y enviar datos al sistema distribuido.
- 2. Detallar los parámetros de configuración necesarios en Locust para realizar pruebas de carga efectivas.

Descripción del Dashboard en Grafana:

- 1. Explicar cómo acceder al dashboard de Grafana para visualizar y monitorear los mensajes y métricas del sistema distribuido.
- Mostrar datos relevantes almacenados en Redis.

Descripción de Estadísticas de Kepler:

- Informar sobre cómo acceder a las estadísticas proporcionadas por Kepler para monitorear el consumo de energía y las emisiones de carbono por pod en Kubernetes.
- Explicar cómo interpretar y utilizar las métricas de Kepler para optimizar el uso de recursos y mejorar la sostenibilidad ambiental del sistema.

Locust

Locust es utilizado para simular cargas concurrentes en el sistema. En el proyecto se implementó para enviar tráfico concurrente con lo cual se insertarán los registros (tweets).

Acceso:

Levantar Locust con la línea de comandos en el directorio en el que se encuentran los archivos data.json y trafic.py:

locust -f trafic.py

En los campos respectivos colocar:

- Número de usuarios
- Cantidad de peticiones por segundo
- Host (para este proyecto ingresaremos la URL generada en las reglas de entrada de Ingress 34.123.102.57.nip.io/insert)

Reportería

El dashboard de Grafana consiste de dos paneles:

- Porcentaje de tweets según país
- Cantidad de mensajes según país

El dashboard en Grafana se diseñó para mostrar datos almacenados en Redis, utilizando tablas hash para almacenar un contador por país y un contador total de mensajes.

Acceso público: http://34.132.170.139:3000/

Kepler

Para la visualización de estadísticas y monitoreo de sustentabilidad, se implementó un dashboard de Grafana con las estadísticas obtenidas por el servicio de Kepler.

- Visualización del consumo de energía por pod y por espacio de nombre
- Visualización de emisiones de carbono por pod y por espacio de nombre

Acceso:

Se levanta la aplicación de Grafana localmente con:

kubectl port-forward svc/prometheus-grafana 8001:80 -n monitoring

Glosario de términos

Α

API (Interfaz de Programación de Aplicaciones): Conjunto de definiciones y protocolos que permite la comunicación entre diferentes componentes de software.

C

Cluster de Kubernetes: Conjunto de máquinas (nodos) que ejecutan aplicaciones en contenedores y son gestionadas por Kubernetes.

Concurrente: Situación en la cual múltiples tareas o procesos se ejecutan al mismo tiempo.

Contenedor: Unidad estándar de software que empaqueta el código y todas sus dependencias para que la aplicación se ejecute de manera rápida y confiable en diferentes entornos informáticos.

D

Dashboard: Panel de control interactivo que visualiza datos y métricas clave de un sistema o aplicación.

Distribuido: Sistema en el cual los componentes se encuentran en diferentes ubicaciones, pero funcionan como un solo sistema unificado.

G

Git: Sistema de control de versiones que permite a múltiples personas trabajar en el mismo código sin sobrescribir los cambios de los demás.

GitHub: Plataforma de alojamiento para control de versiones y colaboración de proyectos que usa Git.

gRPC: Framework de comunicación remota que utiliza HTTP/2 para el transporte, Protobuf para la serialización de datos y proporciona alta eficiencia en las comunicaciones entre servicios.

Н

Helm: Herramienta para gestionar aplicaciones en Kubernetes mediante la utilización de "charts", que son paquetes preconfigurados de recursos de Kubernetes.

HPC (Computación de Alto Rendimiento): Uso de supercomputadoras y clústeres de computadoras para realizar cálculos complejos a gran velocidad.

I

Ingress Controller: Componente de Kubernetes que gestiona el acceso externo a los servicios en un clúster, generalmente a través de HTTP/HTTPS.

J

JSON (JavaScript Object Notation): Formato de texto ligero para el intercambio de datos que es fácil de leer y escribir para los humanos y fácil de parsear y generar para las máquinas.

Κ

Kafka: Plataforma distribuida de transmisión de datos en tiempo real, diseñada para manejar flujos de datos de gran volumen con baja latencia.

Kepler: Herramienta utilizada para visualizar el consumo de energía y las emisiones de carbono en un clúster de Kubernetes.

Kubernetes: Plataforma de código abierto para automatizar el despliegue, escalado y operación de aplicaciones en contenedores.

L

Load Balancer (Balanceador de Carga): Dispositivo o software que distribuye el tráfico de red o las cargas de trabajo entre varios servidores para asegurar una carga equilibrada y evitar la sobrecarga de un solo recurso.

Locust: Herramienta de código abierto para realizar pruebas de carga distribuidas y evaluar el rendimiento de aplicaciones web.

M

MongoDB: Base de datos NoSQL orientada a documentos que almacena datos en formato JSON.

Microservicios: Estilo arquitectónico que estructura una aplicación como un conjunto de servicios pequeños y autónomos, cada uno ejecutando un único proceso y comunicándose a través de interfaces bien definidas.

Ν

Namespace: Método para organizar y separar objetos dentro de un clúster de Kubernetes, permitiendo una gestión más eficiente y segura de los recursos.

Ρ

Pod: Unidad básica de ejecución en Kubernetes que encapsula uno o más contenedores, compartiendo la misma red y almacenamiento.

R

Redis: Base de datos en memoria de estructura de datos clave-valor, utilizada para almacenamiento en caché, cola de mensajes y otras tareas de almacenamiento rápido.

RPC (Remote Procedure Call): Protocolo que un programa puede usar para solicitar servicios de un programa ubicado en otra computadora en una red.

S

Strimzi: Proyecto de código abierto que facilita la ejecución de Apache Kafka en Kubernetes mediante la utilización de operadores.

W

WebSocket: Protocolo de comunicación que proporciona un canal fullduplex sobre una única conexión TCP, permitiendo la comunicación interactiva entre el navegador y el servidor.