

[S2] - FastSLAM com Visual Markers

Daniel Fortunato 81498

daniel.fortunato@tecnico.ulisboa.pt

Daniel Nunes 94034

danielsebastiaonunes@tecnico.ulisboa.pt

David Ribeiro 84027

david.a.c.ribeiro@tecnico.ulisboa.pt

Pedro Fareleira
79074

pedro.miguel.fareleira.dos.santos@tecnico. ulisboa.pt

MEEC

Instituto Superior Técnico, Universidade de Lisboa

Objetivo

O princípio do SLAM consiste em usar o método de localização relativa para estimar a posição e num modelo de observação para mapear todo o ambiente à volta em relação à localização do agente em causa. Um dos métodos usados é o FastSLAM, que representa uma abordagem estocástica, onde um particle filter é implementado para estimar o estado mais provável. Neste trabalho foi usada um câmara *Kinect* como sensor, cuja função era capturar *visual markers* e fornecer a localização relativa dos mesmos.

Algoritmo

Para cada partícula, a distribuição conjunta de uma *pose* e de um *landmark* dadas as observações e os movimentos pode ser fatorizada, baseada na *Rao-Blackwellization*, e reescrita como o produto da probabilidade da *pose* dadas as observações e os movimentos (*path posterior*) e a probabilidade do mapa dada a posição e as observações (*map posterior*):

$$p(s^t, L|n^t, z^t, u^t) = p(s^t|n^t, z^t, u^t) \prod_{n=1}^{N} p(l_n|s^t, n^t, z^t)$$
 (1)

Figura 1 – Partículas no FastSLAM

Implementação

Conclusão

O algoritmo mostra-se robusto em certas situações, apresentando erros mínimos, contudo, em boa parte dos casos apresenta algum erro e não se mostrou capaz de se localizar em situações de maior movimentação independente. Ponderam-se que possíveis causas para este problema sejam erros de odometria elevados entre iterações relacionados com os sensores do Pioneer, possíveis erros na leitura da posição dos *markers* ou uma má estimativa da evolução do erro ao longo do percurso.

Resultados

Operámos em três espaços físicos distintos do piso 5 da Torre Norte do Instituto Superior Técnico: os corredores do piso, a zona de elevadores e o laboratório de Sistemas Autónomos. Testámos também vários tipos de percursos.

Figura 5 – Corredor sentido horário (FS1)

4 5 6 7

Figura 7 – Elevadores anti-horário

Figura 8 – Elevadores sentido horário

Erros

	Anti-horário	Horário
Média (m)	0.1463	0.3603
Desvio Padrão (m)	0.0744	0.2408
Mínimo (m)	0.0152	0.0859
Máximo (m)	0.2491	0.9774

	Anti-horário	Horário
Média (m)	0.2361	0.3425
Desvio Padrão (m)	0.1516	0.1111
Mínimo (m)	0.0439	0.0582
Máximo (m)	0.5083	0.5068

Tabela 2 – Erros no laboratório

Tabela 1 – Erros na zona de elevadores

Nº Partículas	10	100	1000
Média (m)	0.3217	0.2338	0.4140
Desvio Padrão (m)	0.1113	0.0954	0.1203
Mínimo (m)	0.1454	0.0659	0.2194
Máximo (m)	0.4750	0.4042	0.6557

Tabela 3 – Erros para diferente número de partículas

Média (ms) 23.8

Desvio Padrão 8.7
(ms)

Mínimo (ms) 15.3

Máximo (ms) 63.1

Tabela 4 – Tempo das iterações