SQL JOINS

By:
Dr. Rinkle Rani
Associate Professor, CSED
TIET, Patiala

What is SQL Join?

An SQL JOIN clause combines rows from two or more tables based on a common field between them. It creates a set of rows in a temporary table.

A "Join" can be recognized in a SQL SELECT statement if it has more than one table after the FROM keyword.

For example:

SELECT "list-of-columns"

FROM table1, table2

List of SQL JOINS

- 1. INNER JOIN
- 2. LEFT JOIN OR LEFT OUTER JOIN
- 3. RIGHT JOIN OR RIGHT OUTER JOIN
- 4. FULL OUTER JOIN
- 5. NATURAL JOIN
- 6. CROSS JOIN
- 7. SELF JOIN

Equi Join or Inner Join

The Inner Join or Equi Join returns all rows from both tables where there is a match. Or in other words, if the query is relating two tables using an equality operator (=), it is an equality join, also known as an inner join or an Equi Join.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,.... FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;
OR

SELECT field1, field2, field3

FROM first_table, second_table

WHERE first_table.keyfield = second_table.keyfield;

List the employee name with their department names.

SQL>SELECT ename, dname

FROM Emp,dept

where emp.deptno=dept.deptno;

The Output is:

ENAME DNAME

ROLL_NO	NAME	ADDRESS	PHONE	Age
1	HARSH	DELHI	xxxxxxxx	18
2	PRATIK	BIHAR	xxxxxxxxx	19
3	RIYANKA	SILIGURI	xxxxxxxxx	20
4	DEEP	RAMNAGAR	xxxxxxxx	18
5	SAPTARHI	KOLKATA	XXXXXXXXX	19
6	DHANRAJ	BARABAJAR	xxxxxxxxx	20
7	ROHIT	BALURGHAT	XXXXXXXXX	18
8	NIRAJ	ALIPUR	XXXXXXXXX	19

STUDENT

COURSE_ID	ROLL_NO
1	1
2	2
2	3
3	4
1	5
4	9
5	10
4	11

StudentCourse

Show the names and age of students enrolled in different courses.

SELECT StudentCourse.COURSE_ID, Student.NAME, Student.AGE FROM Student
INNER JOIN StudentCourse
ON Student.ROLL_NO = StudentCourse.ROLL_NO;

COURSE_ID	NAME	Age
1	HARSH	18
2	PRATIK	19
2	RIYANKA	20
3	DEEP	18
1	SAPTARHI	19

LEFT JOIN: This join returns all the rows of the table on the left side of the join and matching rows for the table on the right side of join. The rows for which there is no matching row on right side, the result-set will contain *null*. **L**EFT JOIN is also known as **LEFT OUTER** JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,.... FROM table1 LEFT JOIN table2 ON table1.matching column = table2.matching column;

SELECT Student.NAME,StudentCourse.COURSE_ID FROM Student LEFT JOIN StudentCourse ON StudentCourse.ROLL_NO = Student.ROLL_NO;

NAME	COURSE_ID	
HARSH	1	
PRATIK	2	
RIYANKA	2	
DEEP	3	
SAPTARHI	1	
DHANRAJ	NULL	
ROHIT	NULL	
NIRAJ	NULL	

RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of the table on the right side of the join and matching rows for the table on the left side of join.

The rows for which there is no matching row on left side, the resultset will contain *null*.

RIGHT JOIN is also known as RIGHT OUTER JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,.... FROM table1 RIGHT JOIN table2 ON table1.matching_column =

table2.matching_column;

SELECT Student.NAME,StudentCourse.COURSE_ID FROM Student RIGHT JOIN StudentCourse ON StudentCourse.ROLL_NO = Student.ROLL_NO;

NAME	COURSE_ID	
HARSH	1	
PRATIK	2	
RIYANKA	2	
DEEP	3	
SAPTARHI	1	
NULL	4	
NULL	5	
NULL	4	

FULL JOIN: FULL JOIN creates the result-set by combining result of both LEFT JOIN and RIGHT JOIN. The result-set will contain all the rows from both the tables. The rows for which there is no matching, the result-set will contain *NULL* values.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....
FROM table1 FULL JOIN table2
ON table1.matching_column = table2.matching_column;

SELECT Student.NAME,StudentCourse.COURSE_ID FROM Student FULL JOIN StudentCourse ON StudentCourse.ROLL_NO = Student.ROLL_NO;

NAME	COURSE_ID	
HARSH	1	
PRATIK	2	
RIYANKA	2	
DEEP	3	
SAPTARHI	1	
DHANRAJ	NULL	
ROHIT	NULL	
NIRAJ	NULL	
NULL	9	
NULL	10	
NULL	11	

CARTESIAN JOIN: The CARTESIAN JOIN is also known as CROSS JOIN. In a CARTESIAN JOIN there is a join for each row of one table to every row of another table.

This usually happens when the matching column or WHERE condition is not specified. In the absence of a WHERE condition the CARTESIAN JOIN will behave like a CARTESIAN PRODUCT. i.e., the number of rows in the result-set is the product of the number of rows of the two tables.

In the presence of WHERE condition this JOIN will function like a INNER JOIN.

Generally speaking, Cross join is similar to an inner join where the join-condition will always evaluate to True

Syntax:

SELECT table1.column1, table1.column2, table2.column1... FROM table1 CROSS JOIN table2;

In query we will select NAME and Age from Student table and COURSE_ID from StudentCourse table.

In the output each row of the table Student is joined with every row of the table StudentCourse.

The total rows in the result-set = 4 * 4 = 16.

SELECT Student.NAME, Student.AGE, StudentCourse.COURSE_ID FROM Student CROSS JOIN StudentCourse;

NAME	AGE	COURSE_ID
Ram	18	1
Ram	18	2
Ram	18	2
Ram	18	3
RAMESH	18	1
RAMESH	18	2
RAMESH	18	2
RAMESH	18	3
SUJIT	20	1
SUJIT	20	2
SUJIT	20	2
SUJIT	20	3
SURESH	18	1
SURESH	18	2
SURESH	18	2
SURESH	18	3

SELF JOIN: As the name signifies, in SELF JOIN a table is joined to itself. That is, each row of the table is joined with itself and all other rows depending on some conditions. In other words we can say that it is a join between two copies of the same table.

Syntax:

SELECT a.coulmn1, b.column2 FROM table_name a, table_name b WHERE some_condition; SELECT a.ROLL_NO , b.NAME FROM Student a, Student b WHERE a.ROLL_NO < b.ROLL_NO;

ROLL_NO	NAME	
1	RAMESH	
1	SUJIT	
2	SUJIT	
1	SURESH	
2	SURESH	
3	SURESH	

Natural Join:

Natural Join joins two tables based on same attribute name and datatypes. The resulting table will contain all the attributes of both the table but keep only one copy of each common column.

Example:

Consider the two tables given below:

Student

Roll_No	Name
1	Α
2	В
3	С

Marks

Roll_No	Marks	
2	70	
3	50	
4	85	

SELECT * FROM Student S NATURAL JOIN Marks M;

Roll_No	Name	Marks
2	В	70
3	С	50

Difference between Natural join and Inner Join in SQL

SELECT * FROM student S INNER JOIN Marks M ON S.Roll_No = M.Roll_No;

Roll_No	Name	Roll_No	Marks
2	В	2	70
3	С	3	50

Difference between Natural JOIN and INNER JOIN in SQL:

SR.NO.	NATURAL JOIN	INNER JOIN
1.	Natural Join joins two tables based on same attribute name and datatypes.	Inner Join joins two table on the basis of the column which is explicitly specified in the ON clause.
2.	In Natural Join, The resulting table will contain all the attributes of both the tables but keep only one copy of each common column	In Inner Join, The resulting table will contain all the attribute of both the tables including duplicate columns also
3.	In Natural Join, If there is no condition specifies then it returns the rows based on the common column	In Inner Join, only those records will return which exists in both the tables
4.	SYNTAX: SELECT * FROM table1 NATURAL JOIN table2;	SYNTAX: SELECT * FROM table1 INNER JOIN table2 ON table1.Column_Name = table2.Column_Name;