

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATIC	cs		9709/2
Paper 2 Pure N	Mathematics 2		May/June 202
			1 hour 15 minute
You must answ	ver on the question paper.		
You will need:	List of formulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

PapaCambridge

JC21 06_9709_21/RP © UCLES 2021

[Turn over

BLANK PAGE

	•••••	•••••						
••••				•••••	•••••		••••••	••••••
••••		••••••	•••••	•••••	•••••	•••••	•••••	•••••
••••				•••••			•••••	•••••
••••		••••••	••••••	•••••	••••••	•••••••	••••••	•
••••		••••••		•••••	•••••			•••••
••••							•••••	• • • • • • • • • • • • • • • • • • • •
								•••••
••••		••••••	••••••	•••••	•••••	•••••	••••••	••••••
••••							•••••	•••••
••••		••••••	••••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
••••						•••••	•••••	•••••
								•••••
••••		•			•••••		•••••	
••••							•••••	•••••
• • •								

(a)	Show that $(\sec x + \cos x)^2$ can be expressed as $\sec^2 x + a + b \cos 2x$, where a and b to be determined.	are constants [2]
		•••••
		•••••
(b)	Hence find the exact value of $\int_0^{\frac{1}{4}\pi} (\sec x + \cos x)^2 dx.$	[4]
		•••••
		•••••
		•••••
		•••••

[Turn over

4	A curve	has	parametric	equations
-	1 L Cui VC	mus	parametric	cquation

r-1	n(2t+6)	$1 - \ln t$	$v = t \ln t$.
$\lambda - 1$	$\Pi(\Delta \iota + 0)$	$_{l}-111\iota$	$y - \iota m \iota$

•••••
 •••••

•	
•	
•	
•	
•	• • • • • • • • • • • • • • • • • • • •
•	
•	
•	
•	
•	
•	• • • • • • • • • • • • • • • • • • • •
•	
•	

5

The diagram shows the curve with equation $y = \frac{3x+2}{\ln x}$. The curve has a minimum point M.

(a)	Find an expression for $\frac{dy}{dx}$ and show that the x-coordinate of M satisfies the equation $x = \frac{3}{3}$	$\frac{x+2}{3\ln x}$.
		[3]

3 and 4.									
•••••	••••••	••••••	•••••		••••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	••••••		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	
•••••	••••••	••••••	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	
•	••••••		• • • • • • • • • • • • • • • • • • • •				••••••	• • • • • • • • • • • • • • • • • • • •	
	••••••		• • • • • • • • • • • • • • • • • • • •				••••••	• • • • • • • • • • • • • • • • • • • •	
	••••••		• • • • • • • • • • • • • • • • • • • •				••••••	• • • • • • • • • • • • • • • • • • • •	
Use an iterati to 5 significa	nt figures.	Give the	result o	f each ite	ration to	7 significa	int figure	S.	
			•••••				•••••	•••••	•••••

© UCLES 2021 9709/21/M/J/21 **[Turn over**

	Use the trapezium rule with three intervals to find an approximation to $\int_{1}^{4} \frac{6}{1 + \sqrt{x}} dx$. Give y answer correct to 5 significant figures.	your
	answer correct to 5 significant figures.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Find the exact value of $\int_{1}^{4} 2e^{\frac{1}{2}x-2} dx$.	[3]
	JI	
		•••••
		•••••

(c)

© UCLES 2021

The diagram shows the curves $y = \frac{6}{1 + \sqrt{x}}$ and $y = 2e^{\frac{1}{2}x-2}$ which meet at a point with *x*-coordinate 4. The shaded region is bounded by the two curves and the line x = 1.

Give your answer correct to 3 significant figures.	2]
	•••
	••
	••
State, with a reason, whether your answer to part (c) is an over-estimate or under-estimate of the exact area of the shaded region.	
	1]
exact area of the shaded region.	1]
exact area of the shaded region.	
exact area of the shaded region.	
exact area of the shaded region.	
exact area of the shaded region.	

9709/21/M/J/21

[Turn over

7	The	noly	nomial	n	(x)) is	defined	hν

$$p(x) = ax^3 - 11x^2 - 19x - a,$$

where a is a constant. It is given that (x-3) is a factor of p(x).

(a)	Find the value of a.	[2]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(b)	When a has this value, factorise $p(x)$ completely.	[3]
(~)	Then we have the control of p(w) completely.	L ^o .
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

(c)	Hence find the exact values of y that satisfy the equation $p(e^y + e^{-y}) = 0$.	[4]

Additional Page

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/21/M/J/21

