Wydział Elektroniki i Technik Informacyjnych

Modelowanie i identyfikacja

Dokumentacja projektu II, zadanie 16

Krystian Guliński nr albumu 283408

Spis treści

1	Ide	ntyf	ikacja modeli statycznych	2
	1.1	Wy	kres danych statycznych	2
	1.2	Po	dział danych statycznych na zbiór uczący i weryfikujący	2
	1.3	Wy	znaczenie statycznego modelu liniowego	4
	1.	3.1	Otrzymane błędy dla modelu statycznego liniowego:	5
	1.4	Wy	znaczanie modeli statycznych nieliniowych	6
	1.	4.1	Otrzymane wyniki	6
	1.5	Wy	bór najlepszego modelu statycznego	10
2	Ide	ntyf	ikacja modeli dynamicznych	11
	2.1	Wy	kresy danych dynamicznych	11
	2.2	Wy	znaczanie modeli dynamicznych liniowych	12
	2.	2.1	Otrzymane wyniki	12
	2.3	Wy	bór najdokładniejszego modelu dynamicznego liniowego	16
	2.4	Wy	znaczanie modeli dynamicznych nieliniowych	17
	2.	4.1	Otrzymane wyniki	17
	2.	4.2	Wnioski z otrzymanych wyników	20
	2.	4.3	Pierwsza ścieżka wykresów: dla rzędu nr 4, modele stopnia od 1 do 4	21
	2.	4.4	Druga ścieżka wykresów: dla stopnia nr 4, modele rzędu od 1 do 4	25
	2.5	Wy	bór najdokładniejszego modelu dynamicznego nieliniowego	29
	2.6	Sta	tyczny model nieliniowy na podstawie modelu dynamicznego	30

1 Identyfikacja modeli statycznych

1.1 Wykres danych statycznych

1.2 Podział danych statycznych na zbiór uczący i weryfikujący

Podział przeprowadzony został według następującego schematu:

- 1. Dane posortowano względem danych na temat sygnału wejściowego w celu zapewnienia równomiernego zapełnienia dziedziny przez zbiór uczący i weryfikujący po podziale danych.
- 2. Następnie idąc po kolei od początku zestawu danych statycznych przyporządkowywano na przemian po jednej próbce do każdego ze zbiorów zaczynając od zbioru uczącego.

Fragment kodu programu przyporządkowującego próbki do zbiorów

1.3 Wyznaczenie statycznego modelu liniowego

Postać modelu liniowego

$$y(u) = w_0 + w_1 u$$

Wyznaczanie tego modelu odbędzie się za pomocą metody najmniejszych kwadratów. Minimalizowana będzie po współczynnikach w suma

$$\min_{w} \sum_{i=1}^{P} \left(y^{mod}(i) - y(i) \right)^{2}$$

i – próbka pomiarowa
P – ilość próbek pomiaryowych
y^{mod} – wyjście modelu
y – wyjście zmierzone danej próbki
w – wektor współczynników modelu

Korzystając z zapisu macierzowego:

$$y = Mw$$

$$\begin{bmatrix} y(1) \\ \vdots \\ y(P) \end{bmatrix} = \begin{bmatrix} 1 & u(1) \\ \vdots & \vdots \\ 1 & u(P) \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

i z pakietu MATLAB, możemy w łatwy sposób wyznaczyć współczynniki modelu. Wystarczy użyć operatora \, który domyślnie realizuje dla podanych w sposób pokazany poniżej argumentów metodę najmniejszych kwadratów i zwraca na wyjściu współczynniki modelu

$$w = M \setminus v$$

Po wyznaczeniu współczynników modelu należy obliczyć błędy dla danych uczących i weryfikujących w tym celu obliczamy wyjście modelu dla danych uczących i weryfikacyjnych a następnie liczymy błąd według wzoru.

$$E = \sum_{i=1}^{P} \left(y^{mod}(i) - y(i) \right)^{2}$$

1.3.1 Otrzymane błędy dla modelu statycznego liniowego:

ilość współczynników	2
E_{ucz}	6.445315
E_{wer}	5.182576

Błędy są duże i jak wydać na poniższym wykresie model nie dopasowuje się zbyt dobrze do jakichkolwiek nieliniowości obiektu.

Ten model mógłby być wystarczający, gdybyśmy chcieli przybliżyć działanie obiektu w sposób liniowy godząc się na niedokładności w większości dziedziny. Takie uproszczenie może mieć

1.4 Wyznaczanie modeli statycznych nieliniowych

Postać modelu:

$$y(u) = w_0 + \sum_{i=1}^{N} w_i u^i$$

N – stopień wielomianu

Sposób obliczania współczynników modelu jest identyczny, co dla modelu statycznego liniowego. Jedyną różnicą jest rozszerzony zapis macierzowy:

$$y = Mw$$

$$\begin{bmatrix} y(1) \\ \vdots \\ y(P) \end{bmatrix} = \begin{bmatrix} 1 & u(1) & \cdots & u^{N}(1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u(P) & \cdots & u^{N}(P) \end{bmatrix} \begin{bmatrix} w_{0} \\ \vdots \\ w_{N} \end{bmatrix}$$

1.4.1 Otrzymane wyniki

Załączona z prawej strony tabela prezentuje wyniki otrzymane z wyznaczania modeli statycznych nieliniowych różnego stopnia.

Symulacje zostały przeprowadzone dla stopni od 1 do 30.

Zgodnie z przewidywaniami z każdym zwiększeniem stopnia wielomianu błąd dla danych uczących na początku gwałtownie, następnie bardzo powoli maleje.

Mały błąd dla zbioru uczącego nie świadczy jednak o jego poprawności. Im bardziej model dopasowuje się do zbioru uczącego tym słabiej się generalizuje.

Widać to po przebiegu błędu dla zbioru weryfikującego, dla którego największą dokładność otrzymujemy już dla wielomianu 4 stopnia.

Dla wielomianów wyższego stopnia błąd ten już zaczyna rosnąć, ze względu na zbyt dokładne dostosowanie się modelu do danych uczących.

Poniżej przedstawiono wykresy kilku wybranych modeli o różnych stopniach wielomianu. Będą to stopnie 2-6 pokazujące dopasowywanie się modelu do danych i stopień 25 pokazujący słabą generalizacje modelu zbyt dopasowanego do danych uczących.

N	ilość	E	L.
1./1	wsp.	E_{ucz}	E_{wer}
1	2	6.445315	5.182576
2	3	6.233886	5.1212
3	4	2.012677	1.473872
4	5	0.398205	0.466706
5	6	0.391948	0.469106
6	7	0.391618	0.473867
7	8	0.389633	0.483234
8	9	0.389486	0.484679
9	10	0.384634	0.497939
10	11	0.372798	0.516451
11	12	0.372559	0.522002
12	13	0.370275	0.524174
13	14	0.370042	0.519798
14	15	0.366838	0.519702
15	16	0.366609	0.517522
16	17	0.364879	0.518311
17	18	0.362732	0.492871
18	19	0.361449	0.507019
19	20	0.355046	0.512416
20	21	0.353892	0.539494
21	22	0.349584	0.546613
22	23	0.334658	1.023042
23	24	0.323531	0.832852
24	25	0.321371	1.300312
25	26	0.315159	4.884941

1.5 Wybór najlepszego modelu statycznego

Kryterium wyboru jest błąd dla zbioru weryfikującego, który jak widać na fragmencie tabeli jest minimalny już przy czwartym stopniu wielomianu.

To, że błąd ten nie maleje w nieskończoność tak jak błąd dla zbioru uczącego spowodowane jest tym, że model dopasowuje się zbyt dokładnie do danych uczących przez co słabo się generalizuje.

Dodatkowo model stopnia 4 jest nieskomplikowany obliczeniowo, posiada tylko 5 współczynników.

Najdokładniejszym modelem statycznym nieliniowym jest w takim razie **model stopnia 4**

N	ilość	_C	E
	wsp.	E_{ucz}	E_{wer}
1	2	6.445315	5.182576
2	3	6.233886	5.1212
3	4	2.012677	1.473872
4	5	0.398205	0.466706
5	6	0.391948	0.469106
6	7	0.391618	0.473867
7	8	0.389633	0.483234
8	9	0.389486	0.484679
9	10	0.384634	0.497939
10	11	0.372798	0.516451

Fragment tabeli, całość

2 Identyfikacja modeli dynamicznych

2.1 Wykresy danych dynamicznych

2.2 Wyznaczanie modeli dynamicznych liniowych

Postać modelu dynamicznego liniowego

$$y(k) = \sum_{i=1}^{R} [w_{2i-2} u(k-i) + w_{2i-1} y(k-i)]$$

$$R - rzad modelu$$

Sposób obliczania współczynników modelu jest identyczny, co dla modelu statycznego liniowego. Jedyną różnicą jest zmodyfikowany zapis macierzowy:

$$y = Mw$$

$$\begin{bmatrix} y(1) \\ \vdots \\ y(P) \end{bmatrix} = \begin{bmatrix} u(R) & y(R) & u(R-1) & y(R-1) & \cdots & u(1) & y(1) \\ u(R+1) & y(R+1) & u(R) & y(R) & \cdots & u(2) & y(2) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ u(P) & y(P) & u(P-1) & y(P-1) & \cdots & u(P-R) & y(P-R) \end{bmatrix} \begin{bmatrix} w_0 \\ \vdots \\ w_{2R-1} \end{bmatrix}$$

2.2.1 Otrzymane wyniki

Jak widać po umieszczonej z prawej strony tabelach z wynikami model liniowy już dla drugiego rzędu jest w stanie zapewnić mały błąd w trybie bez rekurencji.

Problemy z liniowym modelem dynamicznym zaczynają się w momencie, kiedy używamy trybu z rekurencją, w którym model sobie kompletnie nie radzi nie schodząc nigdy z wartością błędu dla danych weryfikacyjnych poniżej 100.

Powoduje to brak nieliniowych członów. Bez nich model nie daje rady odtworzyć w pełni zachowania obiektu, który bez wątpliwości jest nieliniowy.

Minimum błędu dla danych weryfikacyjnych model osiąga już dla drugiego rzędu. Nie jest to jednak wynik w żaden sposób zadowalający.

Model, mimo że jest w stanie odtworzyć charakter przebiegu, nie jest w stanie pokryć się z danymi ze względu na ciągle występujące uchyby, które często utrzymują się na dość dużym poziomie, szczególnie przy większych skokach.

Poniżej znajdują się wykresy modeli rzędów 1, 2 i 3 odpowiednio w trybie bez rekurencji i z rekurencją.

	Tryb bez rekurencji									
R	ilość wsp.	E_{ucz}	E_{wer}							
1	2	0.955423	0.911456							
2	4	0.189558	0.185886							
3	6	0.146698	0.147648							
4	8	0.135556	0.135725							
5	10	0.116914	0.119779							
6	12	0.099475	0.103404							
7	14	0.090416	0.093687							
8	16	0.08547	0.087206							
9	18	0.084384	0.085419							
10	20	0.08379	0.084871							

	Tryb z rekurencją										
R	ilość wsp.	E_{ucz}	E_{wer}								
1	2	179.0601	170.5183								
2	4	108.9138	115.9637								
3	6	102.1029	119.7879								
4	8	100.4659	124.9145								
5	10	96.13297	127.7096								
6	12	91.49472	129.0032								
7	14	89.79163	132.0275								
8	16	89.87634	133.2023								
9	18	89.45921	131.6273								
10	20	89.07498	129.7914								

Model rzedu N=1, tryb bez rekurencji

Model rzedu N=1, tryb z rekurencja

Model rzedu N=2, tryb bez rekurencji

Model rzedu N=2, tryb z rekurencja

Model rzedu N=3, tryb bez rekurencji

Model rzedu N=3, tryb z rekurencja

2.3 Wybór najdokładniejszego modelu dynamicznego liniowego

Nawet po rozszerzonej wersji tabeli z wynikami widać, że zastosowanie modelu liniowego do modelowania tego obiektu jest istotnym ograniczeniem.

W trybie z rekurencją minimum otrzymujemy już bardzo wcześnie, bo dla drugiego rzędu.

Minimum to nie jest jednak zadowalające, jak widać na powyższych wykresach. Symulacje do 30 rzędu nie wykazały żadnej poprawy.

Wybór na najdokładniejszy model pada w takim razie właśnie na **model o rzędzie 2**

		Tryb bez re	kurencji	Tryb z reki	urencją	
Ъ	ilość	•				
R	wsp.	E_{ucz}	E_{wer}	E_{ucz}	E_{wer}	
1	2	0.955423	0.911456	179.0601	170.5183	
2	4	0.189558	0.185886	108.9138	115.9637	
3	6	0.146698	0.147648	102.1029	119.7879	
4	8	0.135556	0.135725	100.4659	124.9145	
5	10	0.116914	0.119779	96.13297	127.7096	
6	12	0.099475	0.103404	91.49472	129.0032	
7	14	0.090416	0.093687	89.79163	132.0275	
8	16	0.08547	0.087206	89.87634	133.2023	
9	18	0.084384	0.085419	89.45921	131.6273	
10	20	0.08379	0.084871	89.07498	129.7914	
11	22	0.08366	0.084746	89.61455	129.0434	
12	24	0.083446	0.084711	89.30012	126.7333	
13	26	0.083365	0.084663	89.47399	127.6087	
14	28	0.082903	0.084575	89.47815	129.2165	
15	30	0.082728	0.084537	90.01385	129.3287	
16	32	0.082658	0.084566	89.91539	131.3288	
17	34	0.082521	0.084413	89.98898	133.6674	
18	36	0.082489	0.084416	89.86639	135.0702	
19	38	0.08243	0.084458	89.90821	132.9902	
20	40	0.082285	0.084437	90.10807	129.7751	
21	42	0.082142	0.084337	89.47497	131.4723	
22	44	0.081721	0.084659	90.22765	136.3958	
23	46	0.08165	0.084664	90.11789	136.014	
24	48	0.081621	0.084637	89.85219	135.4367	
25	50	0.081602	0.084814	89.89214	136.9611	
26	52	0.081546	0.084878	89.77378	137.3158	
27	54	0.081491	0.084903	89.96773	138.7611	
28	56	0.08142	0.084897	90.15579	140.6614	
29	58	0.081392	0.084826	90.48095	141.6675	
30	60	0.081266	0.085092	90.33151	139.3508	

2.4 Wyznaczanie modeli dynamicznych nieliniowych

Postać modelu dynamicznego nieliniowego

$$\begin{split} y(k) &= w_0 u(k-1) + w_1 y(k-1) + w_2 u^2(k-1) + w_3 y^2(k-1) \dots \\ &+ w_{2s} u(k-2) + w_{2s+1} y(k-2) + w_{2s+2} u^2(k-2) + w_{2s+3} y^2(k-2) \dots \end{split}$$

S – stopień modelu

Dla każdego rzędu występują również człony tego rzędu podniesione do każdej potęgi po kolei kończąc na stopniu modelu. Ilość współczynników przez to drastycznie rośnie, jak i również złożoność obliczeniowa. Ilość współczynników od stopnia i rzędu modelu jest zaprezentowana w poniższej tabeli.

Sposób obliczania współczynników modelu jest identyczny, co dla modelu statycznego liniowego. Jedyną różnicą jest wzbogacony o człony nieliniowe zapis macierzowy

ilo	ść					Sto	pień mode	elu			
WS	p.	1	2	3	4	5	6	7	8	9	10
	1	2	4	6	8	10	12	14	16	18	20
	2	4	8	12	16	20	24	28	32	36	40
	3	6	12	18	24	30	36	42	48	54	60
	4	8	16	24	32	40	48	56	64	72	80
	5	10	20	30	40	50	60	70	80	90	100
	6	12	24	36	48	60	72	84	96	108	120
modelu	7	14	28	42	56	70	84	98	112	126	140
E S	8	16	32	48	64	80	96	112	128	144	160
Rząd	9	18	36	54	72	90	108	126	144	162	180
_ ~	10	20	40	60	80	100	120	140	160	180	200
	11	22	44	66	88	110	132	154	176	198	220
	12	24	48	72	96	120	144	168	192	216	240
	13	26	52	78	104	130	156	182	208	234	260
	14	28	56	84	112	140	168	196	224	252	280
	15	30	60	90	120	150	180	210	240	270	300

2.4.1 Otrzymane wyniki

Po symulacji modeli rzędów od 1 do 15 oraz stopni od 1 do 10 uzyskano następujące wyniki przedstawione w poniższych tabelach.

	Tryb bez rekurencji, błąd dla danych uczących														
			Stopień modelu												
E_u	CZ	1	2	3	4	5	6	7	8	9	10				
	1	0.9554	0.9220	0.6666	0.5697	0.5674	0.5662	0.5647	0.5646	0.5617	0.5607				
	2	0.1896	0.1800	0.1493	0.1345	0.1331	0.1327	0.1321	0.1321	0.1316	0.1314				
	3	0.1467	0.1379	0.1027	0.0816	0.0814	0.0813	0.0807	0.0805	0.0803	0.0801				
	4	0.1356	0.1296	0.0930	0.0602	0.0600	0.0598	0.0596	0.0593	0.0591	0.0589				
	5	0.1169	0.1145	0.0900	0.0506	0.0503	0.0501	0.0498	0.0496	0.0494	0.0491				
٦	6	0.0995	0.0983	0.0837	0.0464	0.0462	0.0460	0.0456	0.0454	0.0453	0.0450				
modelu	7	0.0904	0.0894	0.0772	0.0432	0.0429	0.0426	0.0423	0.0421	0.0419	0.0417				
m 0 E	8	0.0855	0.0843	0.0712	0.0411	0.0409	0.0404	0.0402	0.0399	0.0397	0.0395				
Rząd	9	0.0844	0.0828	0.0679	0.0393	0.0389	0.0384	0.0380	0.0377	0.0373	0.0370				
~	10	0.0838	0.0821	0.0647	0.0383	0.0378	0.0374	0.0370	0.0367	0.0363	0.0360				
	11	0.0837	0.0819	0.0632	0.0374	0.0370	0.0365	0.0360	0.0356	0.0352	0.0348				
	12	0.0834	0.0817	0.0620	0.0372	0.0367	0.0361	0.0357	0.0352	0.0347	0.0342				
	13	0.0834	0.0816	0.0616	0.0370	0.0364	0.0358	0.0353	0.0349	0.0343	0.0337				
	14	0.0829	0.0810	0.0614	0.0367	0.0361	0.0355	0.0350	0.0345	0.0339	0.0333				
	15	0.0827	0.0807	0.0611	0.0364	0.0358	0.0351	0.0345	0.0340	0.0334	0.0328				

			Tr	yb bez rel	kurencji, k	ołąd dla d	anych we	ryfikujący	rch			
		Stopień modelu										
E_{w}	er	1	2	3	4	5	6	7	8	9	10	
	1	0.9115	0.8554	1.0189	0.5834	0.6023	0.6791	0.7805	0.7118	1.5417	1.8552	
	2	0.1859	0.1766	0.2040	0.1297	0.1324	0.1305	0.1331	0.1315	0.1982	0.3126	
	3	0.1476	0.1394	0.1763	0.0807	0.0827	0.0815	0.0874	0.0943	0.1157	0.1424	
	4	0.1357	0.1304	0.1926	0.0640	0.0667	0.0651	0.0698	0.0878	0.1080	0.1201	
	5	0.1198	0.1162	0.1731	0.0542	0.0562	0.0552	0.0617	0.0755	0.1304	0.2011	
	6	0.1034	0.1013	0.1332	0.0495	0.0514	0.0504	0.0608	0.0798	0.1167	0.1861	
modelu	7	0.0937	0.0918	0.1077	0.0473	0.0495	0.0504	0.0583	0.0735	0.0986	0.2523	
E S	8	0.0872	0.0854	0.0912	0.0462	0.0485	0.0507	0.0561	0.0752	0.1002	0.2251	
Rząd	9	0.0854	0.0834	0.0849	0.0450	0.0479	0.0523	0.0584	0.0861	0.1196	0.3118	
~	10	0.0849	0.0827	0.0815	0.0451	0.0487	0.0508	0.0620	0.0907	0.1228	0.4015	
	11	0.0847	0.0826	0.0813	0.0446	0.0479	0.0509	0.0683	0.1093	0.1383	0.7287	
	12	0.0847	0.0824	0.0809	0.0448	0.0488	0.0525	0.0704	0.1173	0.1613	0.8501	
	13	0.0847	0.0823	0.0819	0.0458	0.0504	0.0540	0.0734	0.1249	0.1759	1.0124	
	14	0.0846	0.0822	0.0820	0.0459	0.0499	0.0545	0.0784	0.1227	0.1892	1.1193	
	15	0.0845	0.0823	0.0822	0.0467	0.0512	0.0564	0.0787	0.1294	0.1976	1.2698	

				Tryb z re	ekurencją,	błąd dla d	danych uc	zących			
						Stopień n	nodelu				
E_u	lCZ	1	2	3	4	5	6	7	8	9	10
	1	179.060	175.935	50.7365	22.7310	23.3399	23.0920	22.6012	22.7092	NaN	NaN
	2	108.914	114.514	16.9247	2.3094	2.1483	2.1168	2.2193	2.2249	2.2232	2.2413
	3	102.103	107.457	14.0708	0.3186	0.3162	0.3195	0.3521	0.3515	0.3617	0.3592
	4	100.466	105.819	13.9940	0.0934	0.0924	0.0936	0.0940	0.0932	0.0977	0.1023
	5	96.1330	102.912	14.0648	0.0602	0.0601	0.0597	0.0583	0.0595	0.0616	0.0615
_	6	91.4947	94.2655	14.1608	0.0530	0.0541	0.0537	0.0519	0.0514	0.0517	0.0510
del	7	89.7916	86.0118	14.8975	0.0503	0.0509	0.0505	0.0493	0.0487	0.0488	0.0495
E G	8	89.8763	86.4093	16.1317	0.0493	0.0492	0.0488	0.0480	0.0470	0.0464	0.0463
Rząd modelu	9	89.4592	90.5958	17.6876	0.0490	0.0484	0.0477	0.0467	0.0458	0.0454	0.0441
~	10	89.0750	99.0926	19.7133	0.0490	0.0481	0.0475	0.0462	0.0450	0.0445	0.0425
	11	89.6145	104.723	21.5907	0.0484	0.0476	0.0472	0.0459	0.0449	0.0444	0.0419
	12	89.3001	107.690	23.9762	0.0482	0.0473	0.0468	0.0455	0.0443	0.0440	0.0420
	13	89.4740	106.480	27.4094	0.0479	0.0469	0.0464	0.0450	0.0441	0.0438	0.0425
	14	89.4782	92.1891	23.2784	0.0479	0.0471	0.0465	0.0449	0.0438	0.0433	0.0436
	15	90.0139	93.2580	24.0065	0.0476	0.0469	0.0463	0.0447	0.0436	0.0430	0.0426

			Т	ryb z reku	rencją, bł	ąd dla dar	ych wery	fikujących			
						Stopień r	nodelu				
E_{w}	er	1	2	3	4	5	6	7	8	9	10
	1	170.518	164.761	147.104	33.8701	41.9787	78.3733	60.4454	43.0734	665.51	NaN
	2	115.964	124.733	66.2095	3.0796	3.5389	3.1963	3.6551	3.5853	7.2096	NaN
	3	119.788	131.509	68.8516	0.4201	0.5456	0.4969	0.8478	NaN	4.3027	NaN
	4	124.915	135.597	73.7605	0.1256	0.1452	0.1531	0.2274	0.8976	1.6528	NaN
	5	127.710	135.567	75.0130	0.0805	0.0827	0.0948	0.2250	NaN	2.1754	NaN
5	6	129.003	121.243	70.1352	0.0739	0.0716	0.0751	0.1630	NaN	NaN	4.1274
modelu	7	132.027	109.026	76.2388	0.0760	0.0851	0.0927	0.1568	NaN	NaN	NaN
E	8	133.202	112.994	86.6791	0.0751	0.0880	0.0936	0.1292	NaN	NaN	NaN
Rząd	9	131.627	125.263	113.768	0.0761	0.0934	0.0920	0.1458	NaN	NaN	NaN
~	10	129.791	148.105	168.458	0.0738	0.0911	0.0866	0.1769	NaN	NaN	6.3484
	11	129.043	155.824	Inf	0.0759	0.0916	0.0889	0.2224	NaN	NaN	9.5678
	12	126.733	164.174	NaN	0.0778	0.0909	0.0870	0.2036	NaN	NaN	10.965
	13	127.609	160.949	NaN	0.0794	0.0925	0.0929	0.2091	NaN	NaN	12.255
	14	129.217	126.933	NaN	0.0779	0.0882	0.0916	NaN	NaN	NaN	10.011
	15	129.329	125.907	NaN	0.0827	0.0986	0.0979	NaN	NaN	NaN	11.109

2.4.2 Wnioski z otrzymanych wyników

Po zebraniu wyników widać dużą tendencję modeli stopnia 4 do bycia bardziej dokładnymi niż inne. Można w ten sposób wnioskować, że modelowany obiekt jest właśnie czwartego stopnia, choć nie jest to na to dowodem.

W trybie bez rekurencji modele stawały się wraz z kolejnymi stopniami i rzędami coraz bardziej dokładne zgodnie z założeniami. Dla obu zestawów danych można również zaobserwować niewielki uskok w dokładności przy przejściu ze stopnia 3 na stopień 4.

W trybie z rekurencją błędy układają się w bardzo podobny sposób, jednak na znacznie większą skalę. Uskok w dokładności przy przejściu ze stopnia 3 na stopień 4 jest bardzo duży. Dla stopnia 4 już dla niewielkiego rzędu uzyskujemy zadowalającą dokładność.

Pojawiły się tu również błędy oznaczone jako NaN i Inf, są to modele, które bardzo źle reagowały na przebieg danych, na przykład odpowiadając skokiem do nieskończoności. Modele te oczywiście na wstępie są eliminowane z puli modeli do wyboru.

Jako że umieszczenie w dokumentacji 300 wykresów mija się z celem, wybrane zostały dwie interesujące ścieżki, których wykresy zostaną umieszczone poniżej.

Pierwsza ścieżka wykresów dla rzędu nr 4: modele stopnia od 1 do 4. Ścieżka ta pokazuje jak zwiększanie stopnia modelu wpływa na dokładność.

Druga ścieżka wykresów dla stopnia nr 4: modele rzędu od 1 do 4. Ścieżka ta pokazuje jak zwiększanie rzędu modelu wpływa na dokładność.

2.4.3 Pierwsza ścieżka wykresów: dla rzędu nr 4, modele stopnia od 1 do 4

Model rzedu N=4, stopnia S=1, tryb z rekurencja

Model rzedu N=4, stopnia S=2, tryb bez rekurencji

Model rzedu N=4, stopnia S=2, tryb z rekurencja

Model rzedu N=4, stopnia S=3, tryb bez rekurencji

Model rzedu N=4, stopnia S=3, tryb z rekurencja

Model rzedu N=4, stopnia S=4, tryb bez rekurencji

Model rzedu N=4, stopnia S=4, tryb z rekurencja

2.4.4 Druga ścieżka wykresów: dla stopnia nr 4, modele rzędu od 1 do 4

Model rzedu N=1, stopnia S=4, tryb z rekurencja

Model rzedu N=2, stopnia S=4, tryb bez rekurencji

Model rzedu N=2, stopnia S=4, tryb z rekurencja

Model rzedu N=3, stopnia S=4, tryb bez rekurencji

Model rzedu N=3, stopnia S=4, tryb z rekurencja

Model rzedu N=4, stopnia S=4, tryb bez rekurencji

Model rzedu N=4, stopnia S=4, tryb z rekurencja

2.5 Wybór najdokładniejszego modelu dynamicznego nieliniowego

Wybór najdokładniejszego modelu jest prosty. Największą dokładność w trybie rekurencyjnym dla danych weryfikujących posiada **model rzędu 10 i stopnia 4.**

Nie jest to jednak optymalne rozwiązanie ze względu na dużą liczbę współczynników. Niewielkim kosztem dokładności rzędu kilku setnych można **zmniejszyć liczbę współczynników z 80 na 32** wybierając **model rzędu 4 i stopnia 4.**

Tryb z rekurencją, błąd dla danych weryfikujących fragment, <u>całość</u>								
E_{wer}		Stopień modelu						
		1	2	3	4	5		
Rząd modelu	1	170.518	164.761	147.104	33.8701	41.9787		
	2	115.964	124.733	66.2095	3.0796	3.5389		
	3	119.788	131.509	68.8516	0.4201	0.5456		
	4	124.915	135.597	73.7605	0.1256	0.1452		
	5	127.710	135.567	75.0130	0.0805	0.0827		
	6	129.003	121.243	70.1352	0.0739	0.0716		
	7	132.027	109.026	76.2388	0.0760	0.0851		
	8	133.202	112.994	86.6791	0.0751	0.0880		
	9	131.627	125.263	113.768	0.0761	0.0934		
	10	129.791	148.105	168.458	0.0738	0.0911		

Takie zmniejszenie liczby współczynników drastycznie wpływa na złożoność obliczeniową modelu.

Model	Błąd dla danych wer.	Ilość współczynników	
rząd 10, stopień 4	0.07377631	80	
rząd 4, stopień 4	0.12561655	32	

Z tego powodu wybór pada na model rzędu 4 i stopnia 4.

2.6 Statyczny model nieliniowy na podstawie modelu dynamicznego

Wyznaczenie statycznego modelu nieliniowego na podstawie wybranego modelu nie obejdzie się bez rozwiązania numerycznie równań nieliniowych dla zakresu sygnału wejściowego [-1,1].

Na początku należy doprowadzić równanie różnicowe modelu do postaci, w której wszystkie poprzednie próbki sygnału wejściowego i wyjścia obiektu są sobie równe. To znaczy, że w przestrzeni czasu nie zmienia się wejście i wyjście obiektu są stałe.

$$y(k) = w_0 u(k-1) + w_1 y(k-1) + w_2 u^2(k-1) + w_3 y^2(k-1) \dots + w_{29} u^3(k-4) + w_{30} y^3(k-4) + w_{31} u^4(k-4) + w_{32} y^4(k-4)$$

Po przekształceniach:

$$0 = -y + w_0 u + w_1 y + w_2 u^2 + w_3 y^2 \dots + w_{29} u^3 + w_{30} y^3 + w_{31} u^4 + w_{32} y^4$$

Tak przekształcone równanie można wykorzystać już do numerycznego rozwiązania równania nieliniowego za pomocą funkcji środowiska MATLAB *fsolve*.

Takie równanie zostało rozwiązane dla każdej wartości sygnału wejściowego u z przedziału [-1,1] z rozdzielczością 0.001. Punktem początkowym solvera dla każdego rozwiązania był punkt 0.

