FGA0137 Sistemas de Banco de Dados 1

Prof. Maurício Serrano

Material original: Profa. Elaine Parros Machado de Sousa

Prof. Jose Fernando Rodrigues Junior

Modelo Relacional

Módulo 2

Modelo Relacional

- Criado por E. F. Codd (IBM)
 - "A relational model of data for large shared data banks". Communications of the ACM, Volume 13, Issue 6, June 1970.
- Modelo de Implementação
 - projeto lógico

Sistemas de Banco de Dados

Definição do Modelo

- "O modelo relacional representa uma base de dados como uma coleção de relações"
 [Elmasri&Navathe]
- Modelo Relacional base teórica em Teoria de Conjuntos

Definição do Modelo

Valores

dados do mundo real

Tabelas

- dados mantidos em tabelas ⇒ representam coleções de objetos, entidades, associações, etc, do mundo real
- tabelas são uma noção intuitiva para as

RELAÇÕES

Terminologia

- Relação
 - Tabela
- Tupla
 - Registro, linha
- Atributo
 - Campo
- Valor
- Relation Intension
 - Esquema
- Relation Extension
 - Instância

Modelo Intuitivo

Valores

- Modelo relacional ⇒ valores são atômicos
- Valor Atômico
 - indivisível ⇒ não pode ser recuperado em partes
 - ex: sobrenome, idade
 - monovalorado ⇒ pode ter apenas um valor
 - ex:
 - Idade de aluno é monovalorado
 - Irmãos de aluno é multivalorado

Domínios

- Domínio de aplicação
- Exemplos:
 - Escola
 - Universidade
 - Cidade
- Domínio de atributo
- Exemplos:
 - Nomes de Alunos
 - Códigos de Disciplinas
 - Idade

Domínios

- Especificação do Domínio de atributo:
 - Nome
 - Definição lógica
 - Tipo de dado e formato de dado

Especificação do Domínio

- Nome e Definição lógica. Ex:
 - Nomes de Alunos: conjunto de todos os nomes possíveis para pessoas
 - Códigos de Disciplinas: conjunto dos códigos das disciplinas oferecidas na FGA
 - Idade: conjunto de idades possíveis para alunos

Especificação do Domínio

- Tipo de dado e/ou formato. Ex:
 - Nomes de Alunos string de 60 caracteres
 - Códigos de Disciplinas string com três letras seguidas de um traço e de quatro dígitos: FGA-0137
 - Idade inteiro entre 15 e 100

Esquema de Relações

- Esquema de relação: descreve a relação
 - $\Re(A_1, A_2, ..., A_n)$
 - ou $\mathcal{R} = \{A_1, A_2, ..., A_n\}$
 - R- nome da relação
 - (A₁, A₂, ..., A_n) conjunto de atributos que formam a relação

Esquema de Relações

- N grau da relação descrita por R
 - número de atributos em R
- Dom(A_i) Domínio do Atributo A_i
- Ex:
 - uma relação de Alunos que tenha os atributos Nome, RG e Idade, tem o seguinte esquema:

Aluno(Nome, RG, Idade)

Exemplo

- Especificação dos domínios:
 - Nomes de Alunos: conjunto de todos os nomes possíveis para pessoas – strings de 60 caracteres
 - RG: conjunto dos RGs válidos no Brasil números de 9 dígitos _
 - **Idade:** conjunto de idades possíveis para alunos inteiro entre 0 e 100

Exemplo (cont.)

- Esquema da relação <u>Aluno</u>:
 - Aluno={Nome, RG, Idade}

- Domínios dos atributos de <u>Aluno</u>:
 - Dom(Nome) = Nomes de Alunos
 - Dom(RG) = RG
 - Dom(Idade) = Idade

- Relação R instância do Esquema de Relação R(A₁, A₂, ..., A_n)
 - R(R)
 - $R \subseteq Dom(A_1) \times Dom(A_2) \times ... Dom(A_n)$
 - R é um conjunto de tuplas

$$R = \{t_1, t_2, ... t_k\}$$

$$t = \{v_1, v_2, ... v_n\}, v_i \in Dom(A_i)$$

- Número total de tuplas possíveis:
 - Dom(A₁) | X | Dom(A₂) | X ... X | Dom(A_n) |

- R(R) contém apenas as tuplas válidas que representam a situação de um determinado instante do mundo real
- Relação R (relation extension) ⇒ dinâmica

- Exemplo:
 - Esquema de Relação <u>Aluno</u>:
 - Aluno = {Nome, RG, Idade}
 - Possível relação:

```
    R(Aluno) = {<José, 12345, 21>,
    <Pedro, 54321, 18>,
    <Paulo, 321321, 22>}
```

- Ordem das tuplas de uma relação
 - relação ⇒ conjunto de tuplas
 - matematicamente não existe a idéia de ordem em conjuntos ⇒ não existe uma ordem em particular para as tuplas de uma relação

OBS: na implementação de um SGBDR existe uma <u>ordem física</u> de armazenamento das tuplas, determinando uma ordem na recuperação das informações → esta ordem é eventual e pode ser alterada pelo SGBDR por questões de desempenho ou otimização

- Ordem dos valores de uma tupla
 - tupla ⇒ lista de n valores dispostos em uma ordem determinada de acordo com a disposição dos atributos no esquema da relação
- Valores nas tuplas
 - os valores de uma tupla são atômicos
 - valor nulo (*null*)
 - valor desconhecido
 - valor não se aplica
 - valor indisponível

Restrições das Relações

Restrição de domínio

 o valor de cada atributo A deve ser um valor atômico pertencente a Dom(A)

Restrição de null para atributo

 determina quando o valor especial null é ou não permitido para um atributo

Restrição de unicidade (CHAVE)

 deve ser possível <u>identificar univocamente</u> cada tupla da relação

Restrição de Unicidade

- Relação é um conjunto de tuplas
 - pela teoria de conjuntos ⇒ todas as tuplas devem ser distintas
 - para garantir esta propriedade de maneira eficiente
 - especifica-se uma Restrição de Unicidade ⇒ definição de chave

Restrição de Unicidade

Superchave

- conjunto de atributos de uma relação R que identifique univocamente cada tupla
- $SC_{Hk}(R) = \{A_j, ..., A_i\} | \{A_j, ..., A_i\} \subseteq R$
- Combinação de valores não se repete
- Exemplo:
 - Aluno = {Nome, Idade, Curso, Nro}
 - SC_{H1}(Aluno) = {Nome, Curso, Idade}
 - $SC_{H2}(Aluno) = \{Nro, Nome\}$

Restrição de Unicidade

Chave

 é uma superchave da qual não se pode retirar nenhum atributo e ainda preservar a propriedade de identificação unívoca ⇒ superchave mínima

CHAVE

 $^{\bullet} C_{Hk}(\mathcal{R}) = \{A_i, ..., A_j\} \mid \{A_i, ..., A_j\} \subseteq \mathcal{R}$

$$t_g[C_{Hk}] \neq t_h[C_{Hk}] \quad \forall g, h \in R, g \neq h$$

- Exemplo:
 - Aluno = {Nome, Idade, Curso, Nro}
 - $SC_{H1}(Aluno) = \{Nome, Nro\}$
 - $C_{H1}(Aluno) = \{Nome\}$
 - $C_{H2}(Aluno) = \{Nro\}$

Chave

Chave Candidata:

- pode existir mais de uma chave para uma mesma relação
- cada uma das chaves é chamada de Chave Candidata
 - $C_{H1}(Aluno) = \{Nome\}$
 - $C_{H2}(Aluno) = \{Nro\}$

Chave

Chave Primária

- escolhida entre as chaves candidatas
- a chave primária é frequentemente a mais utilizada para acessos à relação
- Exemplo:
 - $-C_{H0}(Aluno) = \{Nro\}$

Chave

- Notação no Esquema da Relação
 - $C_{Ho}(Aluno) = \{Nro\}$
 - $C_{H1}(Aluno) = \{Nome\}$

Aluno = { Nome, Idade, Curso, Nro}

Chave secundária

Chave primária

Base de Dados Relacional

- O esquema S de uma base de dados relacional é composto por:
 - 1) um conjunto de esquemas de relações

$$S = \{\mathcal{R}_1, \mathcal{R}_2, ..., \mathcal{R}_n\}$$

2) um conjunto de **Restrições de Integridade** *I*

Base de Dados Relacional

- Uma base de dados relacional (uma instância) é composta por:
 - um conjunto de relações

$$BD = \{R_1, R_2, ..., R_n\}$$

tal que cada R_i é uma instância de R_i e cada R_i satisfaz todas as restrições indicadas em I

Base de Dados Relacional

Exemplo

- Base de Dados para armazenar informações sobre as diversas turmas de disciplinas oferecidas num semestre
- Esquemas de Relações:
 - Aluno = {Nome, Nro, Idade, Curso}
 - Disciplina = {Sigla, Nome, NCreditos}
 - Matricula = {Aluno, Disciplina, Semestre, Ano, Nota}

Restrições de integridade

- regras a respeito dos valores que podem ser armazenados nas relações
 - objetivo: garantir consistência
- quando definidas no domínio do problema, devem ser sempre satisfeitas na base de dados

- Principais restrições de integridade para um BD relacional:
 - Restrições de Integridade da Entidade
 - Restrições de Integridade Referencial

- Restrição de Integridade da Entidade
 - a chave primária não pode ser nula em nenhuma tupla de qualquer relação
 - se a chave primária for composta por mais de um atributo, nenhum deles pode ser nulo

Restrição de Integridade Referencial

- definida entre duas relações
- usada para manter consistência entre tuplas de duas relações
- define que: se uma tupla t₁ em uma relação R₁
 faz referência a uma relação R₂, então t₁
 deve fazer referência a uma tupla existente em R₂

- Restrição de Integridade
 Referencial está vinculada ao conceito de chave estrangeira
 - conceito fundamental: compatibilidade de domínio

Compatibilidade de Domínio:

 dados dois conjuntos de atributos quaisquer C e D, ambos são compatíveis quando o primeiro atributo de C tem o mesmo domínio do primeiro atributo de D, o segundo atributo de C tem o mesmo domínio do segundo atributo de D, e assim por diante

- FK é uma Chave estrangeira em R₁ que referencia R₂ se:
 - 1) FK é compatível em domínio com **toda a chave primária** PK de R₂
 - 2) o valor dos atributos FK numa tupla t_i qualquer da relação R₁:
 - ou é igual ao **valor** dos atributos PK de alguma tupla t_k da relação $R_2 \Rightarrow t_i[FK] = t_k[PK]$, $t_i \in R_1$, $t_k \in R_2$
 - ou é nulo \Rightarrow $t_i[FK] = null$

 As duas condições para a ocorrência da chave estrangeira determinam a Restrição de Integridade Referencial entre duas relações R₁ e R₂

$$\mathcal{R}_1[\mathsf{FK}] \xrightarrow{\mathsf{CF}} \mathcal{R}_2[\mathsf{PK}]$$

Chave Estrangeira:

$$X = \{A, B, C\}$$
 $Y = \{F, G, H\}$

Dom(F, G) = Dom(A, B) {A, B} é chave primária em X {F, G} é chave estrangeira em Y

• Exemplo:

Pergunta: a chave estrangeira {Departamento} pode ser nula? Por que?

Empregado = {NomeE, Departamento}

Exemplo

Alunos = {Nome, Nro, Idade}

Quais restrições de relação e de integridade não são satisfeitas nas tuplas do exemplo? Por quê?

Disciplina = {Sigla, Monitor}