การแข่งขันคณิตศาสตร์และวิทยาศาสตร์ระหว่างโรงเรียนครั้งที่ 20: TUMSO 20th

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

Space War 2 (250 คะแนน)

1.5 seconds, 512 megabytes

ในศึกศักดิ์ศรีระหว่างทหารทั่วโลก 20th Tough Universe Military Struggle Olympic (TUMSO 20) ได้รับสปอนเซอร์จากเว็บไซต์ หนึ่ง ให้จัดการแข่งขันขึ้นที่เมือง OTOK โดยสนามแข่งเป็นสนามที่ใหญ่มาก ซึ่งอยู่ในระนาบ 2 มิติ มีตึกอยู่ทั้งหมด N ตึก ตึกที่ i จะสูง H_i หน่วย ซึ่งจะครอบคลุมพื้นที่ช่อง (i,1) จนถึง (i,H_i) เมื่อ $H_i \geq 1$ และด้านบนตึกแต่ละตึกจะมีพื้นที่ที่สามารถวางป้อมลอยฟ้า ของตึกแต่ละตึกได้ ซึ่งจะครอบคลุมพื้นที่ช่อง (i,L_i) ถึง (i,R_i)

โดยที่ป้อมแต่ละป้อมจะสามารถยิงขีปนาวุธได้ โดยขีปนาวุธนี้จะเคลื่อนที่ได้ในแนวขนานกับแกน X หรือ Y เท่านั้น และเมื่อยิงออกไป แล้วจะสามารถทำการเลี้ยวได้ไม่เกิน 1 ครั้ง แต่เนื่องจากตึกทั้ง N ตึกทำจากไวเบรเนี่ยมจึงไม่สามารถยิงทะลุได้

ในเมือง OTOK จะมียามผู้ซึ่งทำหน้าที่ดูแลความสงบของเมืองอยู่ ถ้าหากป้อมสองป้อมใด ๆ สามารถยิงขีปนาวุธใส่กันได้ จะทำให้เมือง ไม่เกิดความสงบ ซึ่งยามไม่ต้องการเช่นนั้น จึงต้องการให้คุณหาจำนวนวิธีในการวางป้อมทั้งหมด (โดยสามารถวางจำนวนเท่าใด หรือไม่ วางก็ได้) โดยเมื่อวางแล้วยังทำให้เมือง OTOK สงบสุขอยู่ แต่เนื่องจากคุณอยู่ในดินแดนอันห่างไกลจึงต้องส่งข้อความผ่านทางเครื่องส่ง สาร ซึ่งสามารถส่งตัวเลขได้เพียง 9 หลัก ยามจึงให้คุณส่งเศษจากการหารจำนวนวิธีทั้งหมดด้วย 998244353 แทน

จากภาพถ้าวางป้อมลอยฟ้าที่ตำแหน่ง $A,\,C$ หรือ $A,\,D$ หรือ $A,\,E$ หรือ $B,\,E$ หรือ $C,\,D$ หรือ $C,\,E$ หรือ $D,\,E$ จะยังคงสงบ อยู่ แต่ถ้าวางป้อมลอยฟ้าที่ตำแหน่ง $A,\,B$ หรือ $B,\,C$ หรือ $B,\,D$ จะเกิดความไม่สงบ

ข้อมูลนำเข้า

ข้อมูลนำเข้ามีทั้งหมด Q+1 บรรทัด

บรรทัดแรกประกอบด้วยจำนวนเต็ม N แทนจำนวนตึกทั้งหมดในเมือง OTOK $(1 \leq N \leq 10^5)$

บรรทัดที่ 2 ประกอบด้วยจำนวนเต็ม N จำนวน คือ H_1,H_2,\ldots,H_N โดยที่ H_i แทนความสูงของตึกที่ $i\ (0\leq H_i<10^5)$

บรรทัดที่ 3 ถึง N+2 ประกอบด้วยจำนวนเต็ม 2 จำนวน คือ L_i และ R_i แทนตำแหน่งของพื้นที่ที่ป้อมลอยฟ้าสามารถวางได้ $(H_i < L_i \le R_i \le 10^5)$

การแข่งขันคณิตศาสตร์และวิทยาศาสตร์ระหว่างโรงเรียนครั้งที่ 20: TUMSO 20th

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

ข้อมูลส่งออก

ตอบจำนวนเต็มเพียงหนึ่งตัว แสดงถึงเศษจากการหารจำนวนวิธีทั้งหมดที่สามารถวางป้อมได้ ด้วย 998244353

การให้คะแนน

ชุดทดสอบจะถูกแบ่งเป็น 8 ชุด จะได้คะแนนในแต่ละชุดก็ต่อเมื่อโปรแกรมให้ผลลัพธ์ถูกต้องในชุดทดสอบย่อยทั้งหมด

ชุดที่ 1 (4 คะแนน) จะมี H_i เท่ากันทุกตึก

ชุดที่ 2 (7 คะแนน) สำหรับทุก ๆ $1 \leq i < k$ จะมี $H_k > H_{k+1}$ และสำหรับทุก ๆ $k < i \leq N$ จะมี $H_{k-1} < H_k$ โดยที่ $1 \leq k \leq N$

ชุดที่ 3 (19 คะแนน) จะมี $1 \leq N \leq 20$

ชุดที่ 4 (27 คะแนน) จะมี $1 \leq N \leq 100$

ชุดที่ 5 (41 คะแนน) จะมี $1 \leq N \leq 1000$

ชุดที่ 6 (37 คะแนน) จะมี $L_i=R_i$

ชุดที่ 7 (29 คะแนน) จะมี $R_i=10^5$

ชุดที่ 8 (86 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	9
3 2 1 5	
4 5	
3 4	
5 7	
6 6	
5	11
2 3 0 5 1	
3 3	
4 4	
1 1	
6 6	
2 2	

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

คำอธิบาย

คำอธิบายตัวอย่างที่ 1

ตึกที่ 1 มีความสูง $H_1=3$ แสดงโดยใช้สี \blacksquare ตึกที่ 2 มีความสูง $H_2=2$ แสดงโดยใช้สี \blacksquare ตึกที่ 3 มีความสูง $H_3=1$ แสดงโดยใช้สี \blacksquare ตึกที่ 4 มีความสูง $H_4=5$ แสดงโดยใช้สี

พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 1 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_1=4$ ถึง $R_1=5$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 2 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_2=3$ ถึง $R_2=4$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 3 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_3=5$ ถึง $R_3=7$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 4 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_4=6$ ถึง $R_4=6$ แสดงโดยใช้สี \blacksquare

โดยสามารถวางป้อมลอยฟ้าได้ทั้งหมด 9 แบบ ได้แก่

- 1. ไม่วางในช่องใด ๆ
- 2. วางในช่อง (1,4)
- (1,5)
- 4. วางในช่อง (2,3)
- 5. วางในช่อง (2,4)
- 6. วางในช่อง (3,5)
- 7. วางในช่อง (3,6)
- 8. วางในช่อง (3,7)
- (4,6)

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

คำอธิบายตัวอย่างที่ 2

ตึกที่ 1 มีความสูง $H_1=2$ แสดงโดยใช้สี \blacksquare ตึกที่ 2 มีความสูง $H_2=3$ แสดงโดยใช้สี \blacksquare ตึกที่ 3 มีความสูง $H_3=0$ แสดงโดยใช้สี \blacksquare ตึกที่ 4 มีความสูง $H_4=5$ แสดงโดยใช้สี \blacksquare ตึกที่ 5 มีความสูง $H_5=1$ แสดงโดยใช้สี \blacksquare

พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 1 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_1=3$ ถึง $R_1=3$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 2 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_2=4$ ถึง $R_2=4$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 3 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_3=1$ ถึง $R_3=1$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 4 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_4=6$ ถึง $R_4=6$ แสดงโดยใช้สี \blacksquare พื้นที่ที่สามารถวางป้อมลอยฟ้าของตึกที่ 5 ได้ ครอบคลุมพื้นที่ตั้งแต่ $L_5=2$ ถึง $R_5=2$ แสดงโดยใช้สี

โดยสามารถวางป้อมลอยฟ้าได้ทั้งหมด 11 แบบ ได้แก่

- 1. ไม่วางในช่องใด ๆ
- 2. วางในช่อง (1,3)
- 3. วางในช่อง (2,4)
- 4. วางในช่อง (3,1)
- 5. วางในช่อง (4,6)
- 6. วางในช่อง (5,2)
- 7. วางในช่อง (1,3) และ (3,1)
- 8. วางในช่อง (1,3) และ (5,2)
- 9. วางในช่อง (2,4) และ (5,2)
- 10. วางในช่อง (3,1) และ (5,2)
- 11. วางในช่อง (1,3), (3,1) และ (5,2)