1 Introduction

2 Properties of \mathbb{R}

Introduction 2/2

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1 Introduction Monday 7 January 2019

Where to find course information

■ The course web site: http://www.math.mcmaster.ca/earn/3A03

- Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.
- Let's have a look now...

What is a "real" number?

What is a "real" number?

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- Why aren't the rational numbers (ℚ) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we *prove* this? Approach: "Proof by contradiction."

$\sqrt{2}$ is irrational

$\mathsf{Theorem}$

$$\sqrt{2} \notin \mathbb{Q}$$
.

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers m and n with gcd(m, n) = 1 such that $m/n = \sqrt{2}$.

$$\therefore \left(\frac{m}{n}\right)^2 = \left(\sqrt{2}\right)^2 \quad \Longrightarrow \quad \frac{m^2}{n^2} = 2 \quad \Longrightarrow \quad m^2 = 2n^2.$$

 $\therefore m^2$ is even $\implies m$ is even (\because odd numbers have odd squares).

m=2k for some $k\in\mathbb{N}$.

$$\therefore 4k^2 = m^2 = 2n^2 \implies 2k^2 = n^2 \implies n \text{ is even.}$$

 \therefore 2 is a factor of both m and n. Contradiction! $\therefore \sqrt{2} \notin \mathbb{O}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?
- No. Objects with side length $\sqrt{2}$ exist!

So irrational numbers are "real".

What exactly are non-rational real numbers?

- We have solid intuition for what rational numbers are. (Ratios of integers.)
- The number line contains numbers that are not rational.

- Can we construct irrational numbers?(Just as we construct rationals as ratios of integers?)
- Do we need to construct integers first?
- Maybe we should start with 0, 1, 2, ...
- But what exactly are we supposed to construct numbers from?

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.
- Define $0 \equiv \emptyset = \{\}$ (the empty set)
- Define $2 \equiv \{0,1\} = \{\{\},\{\{\}\}\}\}$
- Define $n + 1 \equiv n \cup \{n\}$ (successor function)
- Define **natural numbers** $\mathbb{N} = \{1, 2, 3, \dots\}$
 - Some books define $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$.
 - It is more common to define $\mathbb N$ to start with 1.
- Thus, *n* is defined to be a set containing *n* elements.

Introduction $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \dots$ 10/28

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.
- Logicians first tried to define n as "the set of all sets containing n elements".
- The earlier definition possibly better captures our intuitive notion of what *n* "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

Natural numbers defined as above have the right order:

$$m \le n \iff m \subseteq n$$

Note: we *define* "<" on natural numbers via "C" on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.
- We'll defer this for later, after gaining more experience with rigorous mathematical concepts.
- If you can't wait, see this free e-book:

"Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/. Introduction $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \dots$ 12/28

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

- Need additive inverses for all natural numbers.
- Need to define \cdot , +, -, for all pairs of integers.
- Again, possible to define everything via set theory.
- Again, we'll defer this for later.

- For now, we'll assume we "know" what the naturals $\mathbb N$ and the integers $\mathbb Z$ "are".
- We can then *construct* the rationals ℚ...

Properties of \mathbb{R} 13/28

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

 $\begin{array}{c} \text{Lecture 2} \\ \text{Properties of } \mathbb{R} \\ \text{Wednesday 9 January 2019} \end{array}$

Where to find course information

- The course web site: http://www.math.mcmaster.ca/earn/3A03
- Click on Course information to download pdf file.
 - Read it!!
- Check the course web site regularly!

What we did last class

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- The rationals (\mathbb{Q}) have "holes", e.g., $\sqrt{2}$.
- Numbers can be constructed using sets. We will discuss this informally. A more formal approach is taken in Math 4L03 (Mathematical Logic) or in this online e-book.
 - The naturals ($\mathbb{N} = \{1, 2, 3, \dots\}$) can be constructed from \emptyset : $0 = \emptyset$, $1 = \{0\}$, $2 = \{0, 1\}, \dots$, $n + 1 = n \cup \{n\}$.
 - The integers (\mathbb{Z}), and operations on them $(+, -, \cdot)$, can also be constructed from sets and set operations (but we deferred that for later).
 - lacksquare Given $\mathbb N$ and $\mathbb Z$, we can construct $\mathbb Q\dots$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals:

- *Idea:* Associate \mathbb{Q} with $\mathbb{Z} \times \mathbb{N}$
- Use notation $\frac{a}{b} \in \mathbb{Q}$ if $(a,b) \in \mathbb{Z} \times \mathbb{N}$.
- Define equivalence of rational numbers:

$$\frac{a}{b} = \frac{c}{d}$$
 $\stackrel{\text{def}}{=}$ $a \cdot d = b \cdot c$

Define order for rational numbers:

$$\frac{a}{b} \le \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d \le b \cdot c$$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals, continued:

■ Define operations on rational numbers:

$$\frac{a}{b} + \frac{c}{d} \stackrel{\text{def}}{=} \frac{ad + bc}{bd}$$

$$\frac{a}{b} \cdot \frac{c}{d} \stackrel{\text{def}}{=} \frac{a \cdot c}{b \cdot d}$$

- Constructed in this way (ultimately from the empty set),
 Q satisfies all the standard properties we associate with the rational numbers.
- Formally, \mathbb{Q} is a set of equivalence classes of $\mathbb{Z} \times \mathbb{N}$. Extra Challenge Problem: Are "+" and "·" well-defined on \mathbb{Q} ?

Properties of the rational numbers (\mathbb{Q})

Addition:

- A1 Closed and commutative under addition. For any $x, y \in \mathbb{Q}$ there is a number $x + y \in \mathbb{Q}$ and x + y = y + x.
- A2 Associative under addition. For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)+z=x+(y+z)$$

is true.

A3 Existence and uniqueness of additive identity. There is a unique number $0 \in \mathbb{Q}$ such that, for all $x \in \mathbb{Q}$,

$$x + 0 = 0 + x = x.$$

A4 Existence of additive inverses. For any number $x \in \mathbb{Q}$ there is a corresponding number denoted by -x with the property that

$$x + (-x) = 0.$$

Properties of the rational numbers (\mathbb{Q})

Multiplication:

- M1 Closed and commutative under multiplication. For any $x, y \in \mathbb{Q}$ there is a number $xy \in \mathbb{Q}$ and xy = yx.
- M2 Associative under multiplication. For any $x, y, z \in \mathbb{Q}$ the identity (xy)z = x(yz) is true.
- M3 Existence and uniqueness of multiplicative identity. There is a unique number $1 \in \mathbb{Q} \setminus \{0\}$ such that, for all $x \in \mathbb{Q}$, x1 = 1x = x.
- M4 Existence of multiplicative inverses. For any non-zero number $x \in \mathbb{Q}$ there is a corresponding number denoted by x^{-1} with the property that $xx^{-1} = 1$.

Properties of the rational numbers (\mathbb{Q})

Addition and multiplication together:

AM1 *Distributive law.* For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)z = xz + yz$$

is true.

The 9 properties (A1–A4, M1–M4, AM1) make the rational numbers \mathbb{Q} a **field**.

<u>Note</u>: M3 ensures $0 \neq 1$ to exclude the uninteresting case of a field with only one element.

Standard Mathematical Shorthand

Quantifiers Logical operands

\forall	for all	\wedge	logical and
\exists	there exists	\vee	logical or
∄	there does not exist	\neg	logical not
∃!	there exists a unique	$\underline{\vee}$	logical exclusive or

Note:
$$A \subseteq B \equiv (A \vee B) \wedge (\neg A \vee \neg B)$$

Other shorthand

··.	therefore	::	because
)	such that	\iff	if and only if
\equiv	equivalent	$\Rightarrow \Leftarrow$	contradiction

The field axioms (in mathematical shorthand) for field ${\mathbb F}$

Addition axioms

A1 Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists (x+y) \in \mathbb{F} \land (x+y) = (y+x)$.

A2 Associative.
$$\forall x, y, z \in \mathbb{F}$$
, $(x + y) + z = x + (y + z)$.

A3 *Identity.*
$$\exists !\ 0 \in \mathbb{F}$$
 $+\ \forall x \in \mathbb{F}$, $x + 0 = 0 + x = x$.

A4 Inverses.
$$\forall x \in \mathbb{F}, \ \exists (-x) \in \mathbb{F} + x + (-x) = 0.$$

Multiplication axioms

M1 Closed, commutative.
$$\forall x, y \in \mathbb{F}$$
, $\exists (xy) \in \mathbb{F} \land (xy) = (yx)$.

M2 Associative.
$$\forall x, y, z \in \mathbb{F}$$
, $(xy)z = x(yz)$.

M3 Identity.
$$\exists ! \ 1 \in \mathbb{F} \setminus \{0\}$$
 $\forall x \in \mathbb{F}, \ x1 = 1x = x.$

M4 *Inverses.*
$$\forall x \in \mathbb{F} \setminus \{0\},\ \exists x^{-1} \in \mathbb{F} \} xx^{-1} = 1.$$

Distribution axiom

AM1 Distribution.
$$\forall x, y, z \in \mathbb{F}$$
, $(x + y)z = xz + yz$.

Any collection \mathbb{F} of mathematical objects is called a *field* if it satisfies these 9 algebraic properties.

Examples of fields

Set	Field?	Why?
rationals (\mathbb{Q})	YES	
integers (\mathbb{Z})	NO	no multiplicative inverses
reals (\mathbb{R})	YES	
complexes (\mathbb{C})	YES	
integers modulo 3 (\mathbb{Z}_3)	YES	$2^{-1} = 2$

The integers modulo 3 (\mathbb{Z}_3)

Imagine a clock that repeats after 3 hours rather than 12 hours.

 \mathbb{Z}_3 contains the three elements $\{0,1,2\},$ with addition and multiplication defined as follows:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Ordered fields

A field \mathbb{F} is said to be **ordered** if the following properties hold:

Order axioms

- O1 For any $x, y \in \mathbb{F}$, exactly one of the statements x = y, x < yor y < x is true ("trichotomy"), i.e., $\forall x, y \in \mathbb{F}, \ ((x = y) \land \neg(x < y) \land \neg(y < x)) \veebar ((x \neq y) \land [(x < y) \veebar (y < x)])$
- O2 For any $x, y, z \in \mathbb{F}$, if x < y is true and y < z is true, then X < Z is true, i.e., $\forall x, y, z \in \mathbb{F}$, $(x < y) \land (y < z) \implies (x < z)$
- O3 For any $x, y \in \mathbb{F}$, if x < y is true, then x + z < y + z is also true for any $z \in \mathbb{F}$, i.e., $\forall x, y \in \mathbb{F}$, $(x < y) \implies x + z < y + z$, $\forall z \in \mathbb{F}$
- O4 For any $x, y, z \in \mathbb{F}$, if x < y is true and z > 0 is true, then xz < yz is also true,
 - i.e., $\forall x, y, z \in \mathbb{F}$, $(x < y) \land (0 < z) \implies (xz < yz)$

Examples of ordered fields

Field	Ordered?	Why?
rationals (\mathbb{Q})	YES	
reals (\mathbb{R})	YES	
integers modulo 3 (\mathbb{Z}_3)	NO	Next slide
complexes (\mathbb{C})	NO	
		Extra Challenge Problem: Prove the field \mathbb{C} cannot
		be ordered.

The field of integers modulo 3 cannot be ordered

Proposition

 \mathbb{Z}_3 is not an ordered field.

Proof.

Approach: proof by contradiction.

If \mathbb{Z}_3 is ordered, then O1 (trichotomy) implies that either 0 < 1 or 1 < 0 (and not both).

Suppose 0 < 1 and $1 \nleq 0$. Then $03 \Longrightarrow 0 + 1 < 1 + 1$, i.e., 1 < 2. \therefore O2 (transitivity) \implies 0 < 2.

Using O3 again, we have 0+1 < 2+1, i.e., 1 < 0. $\Rightarrow \Leftarrow$

Now suppose 1 < 0. Similarly reach a contradiction (check!). \mathbb{Z}_3 cannot be ordered.

Food for thought: Is it possible for any finite field be ordered?

What other properties does \mathbb{R} have?

- \blacksquare \mathbb{R} is an ordered field.
- \mathbb{R} includes numbers that are not in \mathbb{Q} , e.g., $\sqrt{2}$.
- What additional properties does \mathbb{R} have?
- Only one more property is required to fully characterize \mathbb{R} ... It is related to *upper and lower bounds*...