List 12

Michał Balcerek Computer Simulations of Stochastic Processes

06.2022

For a stochastic process $(X_t)_{t\geq 0}$ starting in $x\in\mathbb{R}$, let us define the exit time from interval (a,b) $(a\leq x\leq b)$ as

$$\tau_{(a,b)}^x \stackrel{def}{=} \inf\{t \ge 0 : X_t \notin (a,b)\}. \tag{1}$$

Problem 1. For $x \in (a, b)$, estimate the expected time to exit

$$x \mapsto \mathbb{E}\tau^x_{(a,b)}$$

for the following processes:

- a) Brownian motion
- b) fractional Brownian motion with H = 0.3, 0.7
- c) Lévy stable motion with $\alpha \in \{0.5, 1, 1.5, 2\}$ and $\beta \in \{-1, -0.5, 0, 0.5, 1\}$.

Hint First focus on symmetric processes.

Problem 2. Calculate the probability that the exit happened through b, i.e.

$$\mathbb{P}\left(X_{\tau_{(a,b)}^x} \ge b\right),\,$$

(again, for various $x \in (a, b)$).

Problem 3. (might be hard) Fit the appropriate function to $x \mapsto \mathbb{E}\tau_{(a,b)}^x$ and find the appropriate distribution for $x \mapsto \mathbb{P}\left(X_{\tau_{(a,b)}^x} \geq b\right)$