≡ Bao	Reinforcement learning introduction Graded Quiz • 30 min	⊕ English ✓ Due Mar 10, 11:59 PM CET	
© Congratulations! You passed! Grade received 100% Latest Submission Grade 100% To pass 80% or higher			
	Go to next item	Reinforcement learning introduction	
1.		✓ Submit your assignment Due Mar 10, 11:59 PM CET	1/1 point
0	are using reinforcement learning to control a four legged rob reward return	Try again	
•	action state	✓ Receive grade To Pass 80% or higher	
Q	Correct Great!	Your grade 100%	
	are controlling a Mars rover. You will be very very happy if it g aged). To reflect this, choose a reward function so that:	View Feedback We keep your highest score ets to state 1 (significant scientific discovery), slightly happy if it gets to state 2 (small scientific discovery), and unhappy if it gets to state 3 (rover is permanently	1/1 point
	R(1) > R(2) > R(3), where $R(1)$, $R(2)$ and $R(3)$ are negative. R(1) > R(2) > R(3), where $R(1)$, $R(2)$ and $R(3)$ are positive. R(1) > R(2) > R(3), where $R(1)$ and $R(2)$ are positive and $R(3)$ is R(1) < R(2) < R(3), where $R(1)$ and $R(2)$ are negative and $R(3)$ is		
@	Correct Good job!		
has	are using reinforcement learning to fly a helicopter. Using a dreached a terminal state). What is the return? -100 - 0.25*100 + 0.25*2*1000 -0.25*100 - 0.25*2*100 + 0.25*3*1000 -100 - 0.75*100 + 0.75*2*1000 -0.75*100 - 0.75*2*100 + 0.75*3*1000	iscount factor of 0.75, your helicopter starts in some state and receives rewards -100 on the first step, -100 on the second step, and 1000 on the third and final step (where it	1/1 point
@	Correct Awesome!		
4.			1/1 point
Give	end start $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ate 3 with a discount factor of $\gamma=0.25$. $ 0 \qquad 40 \qquad \longleftarrow \text{ reward} $ $5 \qquad 6 \qquad $	
	25 6.25		
@	Correct If starting from state 3, the rewards are in states 3, 2, and 1.	The return is $0+(0.25) imes 0+(0.25)^2 imes 100=6.25$.	

1 of 1 6/19/2024, 11:28 AM