HW#3 due October 11

1. (a) Calculate the fraction of atom sites that are vacant for copper (Cu) at its melting temperature of 1084°C (1357 K). Assume an energy for vacancy formation of 0.90 eV/atom.

- (b) Repeat this calculation at room temperature (298 K).
- (c) What is ratio of $N_v / N(1357 \text{ K})$ and $N_v / N(298 \text{ K})$?
- 2. Atomic radius, crystal structure, electronegativity, and the most common valence are given in the following table for several elements; for those that are nonmetals, only atomic radii are indicated.

Element	Atomic Radius (nm)	Crystal Structure	Electronegativity	Valence
Ni	0.1246	FCC	1.8	+2
\boldsymbol{C}	0.071			
H	0.046			
O	0.060			
Ag	0.1445	FCC	1.9	+1
Al	0.1431	FCC	1.5	+3
Co	0.1253	HCP	1.8	+2
Cr	0.1249	BCC	1.6	+3
Fe	0.1241	BCC	1.8	+2
Pt	0.1387	FCC	2.2	+2
Zn	0.1332	НСР	1.6	+2

Which of these elements would you expect to form the following with nickel:

- (a) a substitutional solid solution having complete solubility
- (b) a substitutional solid solution of incomplete solubility
- (c) an interstitial solid solution
- 3. (a) Compare interstitial and vacancy atomic mechanisms for diffusion.
- (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion.

4. The diffusion coefficients for carbon in nickel are given at two temperatures are as follows:

T (°C)	$D(m^2/s)$
600	5.5 × 10 ⁻¹⁴
700	3.9×10^{-13}

- (a) Determine the values of D_0 and Q_d .
- (b) What is the magnitude of D at 850°C?