

IAA6007: Computer Architecture Ch.1. Digital Logic Circuits

Wooil Kim
Dept. of Computer Science & Engineering
Incheon National University

2019 Fall

Outline

- Digital computers
- Logic gates
- Boolean algebra
- Map simplification
- Combinational circuits
- Flip-flops
- Sequential circuits

1-1. Digital computers

- Digital computers use the binary number system, which has two digits 0 and 1
- Groups of bits are used to represent binary numbers, symbols, decimal digits or letters of the alphabet

1-2. Logic gates

- Two different voltages represent binary values 0 and 1
 - Ex) a signal of 3 volts represent 1, and 0.5 volt represents 0
- Gates circuits which perform operation on binary values

Name	Graphic symbol	Algebraic function		ruth able
			A	B A
AND	A	$x = A \cdot B$ - x or	0	0 0
AND	$B \longrightarrow \bigcup$	x = AB	0	1 (
	05 5005		0 1 1	0 (
			1	1 1
		u 6-	Α	В
OR	1-	x = A + B	0	0 0
OK	B —	A A A A A A A		1 1
				0 1
			1	1 1
De com			A	х
Inverter	A - > -	x = X'	0	1
			1	o
		00([1])3		ň.
			A	x
Buffer	A	x = x = A	0	0
			1	1

		A	В	1
NAND	$A \longrightarrow A = (AB)^*$	0	0	
MAND	$B \longrightarrow A = A = A = A = A = A = A = A = A = A$	0	1	
		1	0	
	The second secon	-1	1	
ing 20 may be	OD The NOR gate or the fearing from	A	В	i
NOR	1 1 1	0	0	-
NOR	$B \longrightarrow X x = (A + B)^*$	0	1	ı
		1	0	
		1	1	
	1,	A	В	1
Exclusive-OR	$A \longrightarrow X = A \oplus B$	0	0	
(XOR)	$B \xrightarrow{\chi} or x = A'B + AB'$	0	1	ı
	x = AB + AB	1	0	ı
		1	1	
		A	В	1
Exclusive-NOR	$A \longrightarrow X = (A \oplus B)^{\circ}$	0	0	T
or equivalence	B Or or	0	1	
	x = A'B' + AB	1	0	l
		1	1	

Figure 1-2 Digital logic gates.

- Boolean function
 - Algebraic expression
 - Ex) F = x + y'z, where x, y, z are binary variables
 - A Boolean function may be expressed with a truth table
 - A Boolean function can be transformed from an algebraic expression into a logic diagram

Figure 1-3 Truth table and logic diagram for F = x + y'z.

x	y	z	F	
0	0	0	0	(1)/ _x x
0	0	1	1	_
0	1	0	0	$y \rightarrow \searrow \longrightarrow I$
0	1	1	0	
1	0	0	1 1	z
1	0	1	1	
1	1	0	1	
1	1	1	1	
(2	ı) Trı	uth ta	ble	(b) Logic diagram

- A Boolean function can be expressed algebraically in many different ways
 - One may obtain a simpler expression that requires fewer gates

TABLE 1-1 Basic Identities of Boolean Algebra

(1) x + 0 = x	$(2) x \cdot 0 = 0$
(3) $x + 1 = 1$	$(4) x \cdot 1 = x$
(5) x + x = x	$(6) x \cdot x = x$
(7) x + x' = 1	$(8) x \cdot x' = 0$
(9) x + y = y + x	(10) xy = yx
(11) x + (y + z) = (x + y) + z	(12) x(yz) = (xy)z
(13) x(y+z) = xy + xz	(14) x + yx = (x + y)(x + z)
(15) (x + y)' = x'y'	(16) (xy)' = x' + y'
(17) (x')' = x	

DeMorgan's theorem

•
$$(x + y + z)' = x'y'z', (xyz)' = x' + y' + z'$$

Figure 1-4 Two graphic symbols for NOR gate.

Figure 1-5 Two graphic symbols for NAND gate.

- Ex) F = ABC + ABC' + A'C
 - F = ABC + ABC' + A'C = AB(C + C') + A'C= AB + A'C

Figure 1-6 Two logic diagrams for the same Boolean function.

- Complement of a function
 - Can be derived from DeMorgan's theorem

• Ex)
$$F = AB + C'D' + B'D$$

- Also can be obtained by taking duals and complementing each literal
 - Interchange OR and AND
- F = AB + C'D' + B'D
- F' = (A' + B')(C + D)(B + D')

- Minterm: each combination of the variables
 - x, y -> xy, x'y, xy', x'y'
 - n variables -> 2ⁿ minterms
- Sum of Products (SOP)
 - Boolean expression ORing AND terms
 - F = y' + xy + x'y'z'
- Product of Sums (POS)
 - Boolean expression ANDing OR terms
 - F = y'(x + y)(x' + y' + z')

- Canonical SOP form
 - Boolean function expressed as sum of minterms
 - A Boolean function may be converted to a canonical SOP form

 A Boolean function may be expressed by listing the decimal equivalent of those minterms that produce 1

• Ex)
$$F(x, y, z) = xy'z + xy'z' + x'y'z + x'y'z' + xyz + xyz' + x'yz'$$

= Σ (0, 1, 2, 4, 5, 6, 7)

• Ex)
$$F(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

= $x'y'z + xy'z' + xy'z + xyz' + xyz$

x	y	z	F
0	0	0	0
0	0	1	1
	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Karnaugh map (K-map)

- Step 1: Insert 1's in those squares where the function is 1
- Step 2: Combine the squares containing 1's in groups of adjacent squares
 - Must contain a number of squares that is an integral power of 2 (e.g., 2, 4, 8, ...)
 - Groups of combined adjacent squares may share one or more
- Step 3: Take OR of those terms
 - Each group of squares represents an algebraic term

• Ex) $F(A, B, C) = \Sigma(3, 4, 6, 7)$

• F = BC + AC'

• Ex) $F(A, B, C) = \Sigma(0, 2, 4, 5, 6)$

•
$$F = C' + AB'$$

• Ex) $F(A, B, C, D) = \Sigma(0.1.2.6.8.9.10)$

• F = B'D' + B'C'+ A'CD'

- Product of sums simplification
 - Ex) $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$
- Sum of products (SOP)

- Combine squares of 0
 - F' = AB + CD + BD'
- Product of Sums (POS)
 - By DeMorgan's theorem
 - F = (A' + B')(C' + D')(B' + D)

Product of sums

Figure 1-12 Logic diagrams with AND and OR gates.

Figure 1-13 Logic diagrams with NAND or NOR gates.

- Don't care conditions
 - Not matter if function produce 0 or 1
- Ex) $F(A, B, C) = \Sigma(0, 2, 6)$
 - $d(A, B, C) = \Sigma(1, 3, 5)$; don't care condition
 - F = A' + BC'
 - F = A'C' + BC'; not good

Ex) Simplify the Boolean function, F = A'C + A'B + AB'C + BC

• F = C + A'B

- Ex) Simplify the Boolean function
- $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$
- Don't-care conditions, $d(w, x, y, z) = \Sigma(0, 2, 5)$

- Connected arrangement f logic gates with a set of inputs and outputs
- Can be described by a truth table
 - Shows binary relationship between n input variables and m output variables

Half adder

x	у	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(a) Truth table

(b) Logic diagram

•
$$S = x'y + xy' = x \oplus y$$

Full adder

Iı	puts		Out	puts
x	у	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$= x \oplus y \oplus z$$

$$C = xy + xz + yz$$
$$= xy + (x'y + xy')z$$

- Full adder
 - $S = x \oplus y \oplus z$
 - $C = xy + (x'y + xy')z = xy + (x \oplus y)z$

SR flip-flop

(a) Graphic symbol

S	R	$Q\left(t+1\right)$	
0	0	Q(t)	No change
0	1	0	Clear to 0
1	0	1	Set to 1
1	1	?	Indeterminate

D flip-flop

D	Q(t+1)	
0	0	Clear to 0
1	1	Set to 1

(a) Graphic symbol

JK flip-flop

(a) Graphic symbol

J	K	$Q\left(t+1\right)$	
0	0	Q(t)	No change
0	1	0	Clear to 0
1	0	1	Set to 1
1	1	Q'(t)	Complement

T flip-flop

(a) Graphic symbol

T	$Q\left(t+1\right)$	
0	Q(t)	No change
1	Q'(t)	Complement

- Edge-triggered flip-flop
 - State change is synchronized during a clock pulse transition

(a) Positive-edge-triggered D flip-flop.

(b) Negative-edge-triggered D flip-flop.

- Example of edge-triggered flip-flop
 - Positive-edge-triggered JK flip-flop
 - Q: Initially set to 1

- Example of edge-triggered flip-flop
 - Positive-edge-triggered JK flip-flop
 - Q: Initially set to 1

Excitation table

	SR flip-fl	lop			D flip-flop	
Q(t)	Q(t+1)	S	R	Q(t)	Q(t+1)	D
0	0	0	×	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	1	×	0	1	1	1

JK flip-flop			T flip-flop		
Q(t+1)	J	K	Q(t)	Q(t+1)	T
0	0	×	0	0	0
1/V an	1	×	0	1	1.29
0	×	1	1	0	1
1	×	0	1	1	0
	Q(t+1) 0 1	$Q(t + 1)$ J $0 0$ $1 1$ $0 \times$	$Q(t + 1)$ J K $0 0 \times 1 1 \times 0 1$	$Q(t + 1)$ J K $Q(t)$ $0 0 \times 0$ $1 1 \times 0$ $0 \times 1 1$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

1-7. Sequential circuits

- Analysis
 - Drive Boolean functions for combinational circuits
 - Flip-flops' inputs and outputs
 - Find state table
 - Obtain state diagram

1-7. Sequential circuit

Analysis of sequential circuit

- Flip-flop input equations
 - $D_A = Ax + Bx, D_B = A'x$
- Combinational circuit output equation
 - y = Ax' + Bx'

State table

Present state		Input		ext	Output
A	В	x	A	В	<i>y</i>
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State table

Present state		Input	Ne sta	Output	
A	В	\overline{x}	\overline{A}	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State diagram

Ex) Analysis with JK flip-flops

State equation is not the same as the input equation

Analysis with JK flip-flops

- State equation is not the same as the input equation
- Have to refer characteristic table or characteristic equation
- Input equations

•
$$J_A = B$$
 $K_A = Bx'$

•
$$J_B = x'$$
 $K_B = A'x + Ax'$

Analysis with JK flip-flops

State table and state diagram

Table 5.4State Table for Sequential Circuit with JK Flip-Flops

Present State		Input	Next State		Flip-Flop Inputs			
A	В	X	A	В	JA	K_A	J_B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Analysis with JK flip-flops

State table and state diagram

Table 5.4State Table for Sequential Circuit with JK Flip-Flops

Present State		Input	Next State		Flip-Flop Inputs			
A	В	X	A	В	JA	K_A	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

- Design example
 - Binary counter
- Design procedure
 - (1) translate circuit specification -> (2) state diagram > (3) state table
 -> (4) logic circuit diagram
- Binary counter
 - Sequence of repeated binary states 00, 01, 10, 11 when external input
 x = 1
 - State remains unchanged when x = 0
 - Need two flip-flops representing two bits

State diagram

State diagram

State table

Present state		Input	Next state		Flip-flop inputs			ts
A	В	x	A	В	JA	K _A	J_B	K_{B}
0	0	0	0	0	0	×	0	×
0	0	1	0	1	0	×	1	×
0	1	0	0	1	0	×	×	0
0	1	1	1	0	1	×	×	1
1	0	0	1	0	×	0	0	×
1	0	1	1	1	×	0	1	×
1	1	0	1	1	×	0	×	0
1	1	1	0	0	×	1	×	1

State table

Present state		Input	Next state		Flip-flop inputs			ts
A	В	x	A	В	JA	KA	J_B	K_{B}
0	0	0	0	0	0	×	0	×
0	0	1	0	1	0	×	1	×
0	1	0	0	1	0	×	×	0
0	1	1	1	0	1	×	×	1
1	0	0	1	0	×	0	0	×
1	0	1	1	1	×	0	1	×
1	1	0	1	1	· ×	0	×	0
1	1	1	0	0	×	1	×	1

K-maps

Logic diagram

- 3-bit binary counter
 - 3-bit counter has 3 flip-flops and can count from 0 to 2ⁿ-1 (n=3)

- 3-bit binary counter
 - 3-bit counter has 3 flip-flops and can count from 0 to 2ⁿ-1 (n=3)

- 3-bit binary counter
 - 3-bit counter has 3 flip-flops and can count from 0 to 2ⁿ-1 (n=3)

Table 5.14 *State Table for Three-Bit Counter*

Present State			Ne	Next State			Flip-Flop Inputs			
A ₂	A ₁	Ao	A ₂	A_1	A_0	T _{A2}	<i>T_{A1}</i>	T_{A0}		
0	0	0	0	0	1	0	0	1		
0	0	1	0	1	0	0	1	1		
0	1	0	0	1	1	0	0	1		
0	1	1	1	0	0	1	1	1		
1	0	0	1	0	1	0	0	1		
1	0	1	1	1	0	0	1	1		
1	1	0	1	1	1	0	1	1		
_1	1	1	0	0	0	1	1	1		

Copyright ©2012 Pearson Education, publishing as Prentice Hall

State table

Table 5.14 *State Table for Three-Bit Counter*

Present State		Ne	Next State			Flip-Flop Inputs			
A ₂	A ₁	A ₀	A ₂	<i>A</i> ₁	A ₀	T _{A2}	<i>T</i> _{A1}	T _{AO}	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	1	1	
1	1	1	0	0	0	1	1	1	

Copyright ©2012 Pearson Education, publishing as Prentice I

K-maps

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Logic diagram

Problems

- 1-2, 1-4, 1-7, 1-8 a, b, 1-9 a, b
- 1-10 a, 1-13, 1-16, 1-19, 1-20