Important Distributions (Particle Filter)

Observation Model:

- Likelihood of observation given state
- Continuous Gaussian around real depth

Motion Model:

$$p(x_{t+1}|x_t)$$
-6 -4 -2 0 2 4 6

- Probability of new state given old one
- Continuous Gaussian

Posterior:

 $p(x_t|z_{0:t})$

- Probability of state given previous and current observations
- Continuous, represented as set of Samples (Particles)

Prior:

- Probability of state given only previous observations
- Continuous, represented as set of Samples (Particles)

Particle Filter

Discrete Bayes Filter vs. Particle Filter

- Discrete Bayes Filter:
- 1. Make observation
- 2. Calculate likelihood for every position
- 3. **Multiply** with last prior and normalize
- 4. **Convolution** with motion model

5. Go to 1.

- Particle Filter:
- 1. Make observation
- 2. Calculate likelihood for every **sample** -> weights
- 3. **Resampling** according to weights
- 4. Randomly move samples according to motion model (Sampling)
- 5. Go to 1.

- Represent continuous prior with particles $\tilde{\chi}^1_t$, ..., $\tilde{\chi}^n_t$
- Make measurement: z_t

Particle Filter / Resampling

- Draw samples x_t^1 , ..., x_t^n from posterior by resampling from \tilde{x}_t^1 , ..., \tilde{x}_t^n using the weights w_t^i
- Reducing uncertainty

- Draw samples x_t^1 , ..., x_t^n from posterior by resampling from \tilde{x}_t^1 , ..., \tilde{x}_t^n using the weights w_t^i
- Reducing uncertainty

- Draw samples x_t^1 , ..., x_t^n from posterior by resampling from \tilde{x}_t^1 , ..., \tilde{x}_t^n using the weights w_t^i
- Reducing uncertainty

- Obtain samples \tilde{x}_{t+1}^1 , ..., \tilde{x}_{t+1}^n from the **new prior** by moving each particle according to motion model
- Adding uncertainty

Particle Filter (Tracking application)

Tracking an object in a video sequence [Perez at al. 2002]

- States:
 - 2D windows (location and size)
- Gaussian motion
- Observations:
 - Color histograms

Your Task

- Draw the particles and the mean particle into the image (0p)
 - You still have to do it get other points
- 2. Implement the *MotionModel* class and move particles in the *processFrame*function:
 - Gaussian distribution around last position (1p)
 - Gaussian distribution around extrapolated position (1p)
 - (Based on previous motion of each particle)
- 3. Implement the ObservationModel class and calculate the weights and the mean particle (avg. x/y position and avg. window size) in the processFrame function. (1p)
- 4. Implement the *resampleParticles* function. There are different ways to do this:
 - Either naïve way (1p)
 - Or smarter way: binary search or std::map (2p)
- 5. (extra task) parallelize your code with openMP. Can you increase FPS? You might have to use multiple random number engines for multiple threads. (up to 1p)

