16.2) K-Nearest Neighbors

Vitor Kamada

January 2020

Reference

Tables, Graphics, and Figures from

James et al. (2017): Chapters: 2.2.3, 3.5

Hastie et al. (2017): Chapters: 2.3

Training Error and Test Error

$$Y = f(X) + \epsilon$$
 $\hat{Y} = \hat{f}(X)$
 $\{(x_1, y_1), ..., (x_n, y_n)\}$
 $rac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$
 $Ave(I(y_0 \neq \hat{y}_0))$

Bayes Classifier and Error Rate

$$Pr(Y=j|X=x_0)$$

$$1 - E[\max_{j} Pr(Y = j|X)] = 0.13$$

4 / 18

K-Nearest Neighbors (K=3)

$$Pr(Y=j|X=x_0)=\frac{1}{K}\sum_{i\in N_0}I(y_i=j)$$

KNN: K=10

KNN: K=1 and K=100

KNN Training and Test Error Rate

KNN Regression: K=1 and K=9

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in N_0} y_i$$

Vitor Kamada ECO 7100 Econometrics I January 2020 9 / 18

One-dimension KNN Regression: K=1 and K=9

10 / 18

Mean Squared Error (MSE)

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2$$

$$= E[f(X) - \hat{f}(X)]^2 + Var(\epsilon)$$
 $MSE(x_0) = E_{\tau}[f(x_0) - \hat{y}_0]^2$
 $E_{\tau}[\hat{y}_0 - E_{\tau}(\hat{y}_0)]^2 + [E_{\tau}(\hat{y}_0) - f(x_0)]^2$
 $Var_{\tau}(\hat{y}_0) + [Bias(\hat{y}_0)]^2$

Bias-Variance Tradeoff

Model Complexity

MSE: OLS vs KNN

Slightly Non-Linear Relationship

Strongly Non-Linear Relationship

Additional Noise Variables

Test Error Rates: Linear Scenarios

Test Error Rates: Non-Linear Scenarios

