Adic space

https://ryo1203.github.io

目次

1 Huber ring 1

1 Huber ring

記法 1.1. A を環、B, C を A の部分集合とするとき、B · C によって、B と C の元の一つづつの積の有限和からなる集合を表す。すなわち、

$$B \cdot C := \{ \sum_{i=1}^{n} b_i c_i \mid n \in \mathbb{Z}^+, b_i \in B, c_i \in C \}$$

$$\tag{1.1}$$

である。

定義 1.2 (非アルキメデス的位相環). 位相環 A が非アルキメデス的 (non-Archimedean) であるとは、A の 加法部分群からなる $0 \in A$ の基本近傍系が存在することである。

定義 1.3 (有界・幕有界・位相的冪零元・adic). A を位相環とする。

- 1. A の部分集合 B が**有界** (bounded) であるとは、 $0 \in A$ の任意の開近傍 U に対して、ある開近傍 $0 \in V \subset A$ が存在して、任意の $b \in B$ と任意の $v \in V$ の積 bv が U に含まれることである。
- 2. A の元 a が**冪有界** (power-bounded) であるとは、A の部分集合 $\{a^n \mid n \in \mathbb{Z}^+\}$ が有界であることである。
- 3. A の元 a が位相的冪零元 (topologically nilpotent) であるとは、A の点列 $(a_n)_{n=1}^{\infty}$ が $0 \in A$ への収束列になることである。
- 4. A が adic であるとは、ある A のイデアル I が存在して、 $\{I^n\mid n\in\mathbb{Z}^+\}$ が $0\in A$ の基本近傍系を 為すことである。このイデアルのことを A の定義イデアル (ideal of definition) と呼ぶ。

注意 1.4. 位相環 A が非アルキメデス的であるとする。このとき $B \subset A$ が有界であることは、和で閉じているものからなる基本近傍系が取れることから、 $0 \in A$ の任意の開近傍 U に対してある開近傍 $0 \in V \subset A$ が存在して、 $B \cdot V \subset U$ となることと同値である。

記法 1.5. 位相環 A の冪有界元全体を A° と表し、位相的冪零元全体を $A^{\circ\circ}$ と表すこととする。

定義 1.6 (Huber ring・Tate ring). A を位相環とする。

- 1. A が Huber ring あるいは f-adic ring であるとは、ある部分集合 U と有限集合 $T \subset U$ であって、 $\{U^n \mid n \in \mathbb{Z}^+\}$ が $0 \in A$ の基本近傍系を為し、 $T \cdot U = U^2 \subset U$ を満たすものが存在することである。
- 2. 位相的冪零な単元のことを pseudo-uniformizer と呼ぶ。A が Tate であるとは、A が Huber ring であり、pserudo-uniformizer を持つことである。

[Hu93] では f-adic ring と名付けており、[SW] では Huber ring と名付けている。以下では Huber ring と呼ぶこととする。ちなみに、[Ran] には f-adic ring の f は命題 1.8 にあるように、以下で定義される定義イデアルというものが有限生成で取れることに依ると述べられている。

定義 1.7 (定義環・定義イデアル). A を位相環とし、その部分環 A_0 について、 A_0 が A の定義環 (ring of definition) であるとは、 A_0 が A で開であり、その相対位相によって A_0 が adic ring となることである。 A の定義イデアル (ideal of definition) とは、ある定義環の定義イデアル (定義 1.3) のことである。

定義環と定義イデアルについて次の性質が成り立っている。

命題 1.8. A を Huber ring とし、 A_0 をその部分環とする。

- 1. A は定義環を持つ。
- 2. A_0 が A の定義環 \iff A_0 が A で開かつ有界。
- 3. Aのすべての定義環は有限生成な定義イデアルを持つ。

証明. A が Huber ring より取ることのできる部分集合 U とその有限部分集合 T を一つ固定する。

(1) W を U によって加法的に生成される A の部分加法群とする。このとき $A_0\coloneqq\mathbb{Z}\cdot 1+W$ とすると A_0 は $U^2\subset U$ より $W^2\subset W$ から A の部分環になり、 $U\subset A_0$ であるから A の中で開である。さらに、 $T\subset U\subset A_0$ より T で生成されるイデアル $I:=TA_0$ を考える。このイデアルによって A_0 が adic になることを示す。まず $T\cdot U=U^2\subset U$ より、 $U^2=T\cdot U\subset TA_0=I$ から I は開である。 $T\subset U$ から $T^2\subset T\cdot U$ と $T\cdot W\subset U^2$ から

$$I^{2} = T^{2} A_{0} = T^{2} + T^{2} \cdot W \subset T \cdot U + T \cdot U^{2} \subset T \cdot U = U^{2}$$
(1.2)

であるので $\{U^n\mid n\in\mathbb{Z}^+\}$ が基本近傍系になっていることから、 $\{I^n\mid n\in\mathbb{Z}^+\}$ も A_0 の基本近傍系になる。故に A_0 は adic な開部分環になるから A の定義環になる。

- (2) (\Rightarrow) A_0 が定義環のとき、まず定義から A_0 は開であり、基本近傍系 $\{I^n \mid n \in \mathbb{Z}^+\}$ について $I^n \cdot A_0 = I^n$ より A_0 は有界。
- (〜) 任意の正整数 n について $T(n)\coloneqq\{t_1\dots t_n\mid t_1,\dots,t_n\in T\}$ とする。 A_0 が開なので、ある $k\in\mathbb{Z}^+$ が存在して $U^k\subset A_0$ である。 $T\subset U$ より $T^k\subset U^k\subset A_0$ から $T(k)\subset A_0$ である。T が有限集合だから T(k) も有限集合なのでとくに有限生成イデアル $I\coloneqq T(k)A_0\subset A_0$ を取ることができる。 $\{I^n\mid n\in\mathbb{Z}^+\}$ が A_0 の基本近傍系になることを示す。 $U^l\subset A_0$ となる $l\in\mathbb{Z}^+$ が取れるから $T\cdot U=U^2$ よ

り $I^n=(T(k)A_0)^n=T(nk)A_0\supset T(nk)U^l=U^{l+nk}$ となるので任意の正整数 n について I^n は開になる。任意の $0\in A$ の開近傍 V について A_0 が有界よりとくに、ある正整数 m で $U^m\cdot A_0\subset V$ となる。 $T\subset U$ から、 $I^m=T(mk)A_0\subset U^{mk}\cdot A_0\subset U^m\cdot A_0\subset V$ より $\{I^n\mid n\in\mathbb{Z}^+\}$ は基本近傍系を為す。ゆえに A_0 はこの有限生成イデアル I を定義イデアルとする adic な開部分環になるので A の定義環になる。

(3) A_0 が定義環なら (2) を経由して有限生成イデアルを取り直せる。

以上を踏まえて、[SW] や [Hu94] など多くの文献では Huber ring を以下の同値な条件で定義している。

命題 1.9. 位相環 A について Huber ring であることと有限生成イデアルを定義イデアルとする定義環を持つことは同値。

証明. まず命題 1.8 から Huber ring は有限生成イデアルを定義イデアルとする定義環を持つ。逆に有限生成イデアル I を定義イデアルとする定義環 A_0 が取れるとき、 $U \coloneqq I$ とし、その有限部分集合 $T \subset U$ を I の有限個からなる生成系として取ればよい。

以下では命題 1.8 と命題 1.9 の同値性をとくに言及せずに用いる。次のような Huber ring の例がある。とくに adic ring ではない Huber ring はたしかに存在する。

- **例 1.10.** 1. 有限生成イデアルによって定まっている adic ring は Huber ring である。
 - 2. 環Aとその有限生成イデアルIについて、A[X]に

$$U_n := \{ \sum_{k=0}^m a_k X^k \in A[X] \mid a_k \in I^{n+k}, m \in \mathbb{Z}^+ \}$$
 (1.3)

を $0 \in A$ の基本近傍系とする位相を入れる。このとき、A[X] は Huber ring になるが、任意の正整数 m で $I^m \neq I^{m+1}$ ならば adic ring ではない。

- 3. $(k,|\cdot|)$ を非自明な非アルキメデス的付値体とする。(例えば \mathbb{Q}_p など) $(A,\|\cdot\|)$ をノルム付き k 代数とし、A にこのノルムからなる位相を入れると A は Tate ring になる。
- 4. 環 B とその元 s について、局所化 φ : $B \to B_s$ をとり、 B_s に $\{\varphi(s^nB) \mid n \in \mathbb{Z}^+\}$ を $0 \in B_s$ の基本近 傍系とする位相を入れれば、 B_s は $s \in B_s$ を pseudo-uniformizer とする Tate ring になる。

証明. (2) $I=(f_1,\ldots,f_r)$ としたとき $U\coloneqq U_1$ は A[X] で開であり、 $T\coloneqq\{f_1,\ldots,f_r\}$ とすると $T\subset U_1$ より $T\cdot U\subset U^2$ である。逆の包含を示す。任意の U の元 $f(X)=\sum_{k=0}^m a_k X^k$ と $g(X)=\sum_{k=0}^{m'} b_k X^k$ についてその積 $f(X)g(X)=\sum_{k=0}^{m+m'}(\sum_{i=0}^k a_i b_{k-i})X^k$ について、 $a_i\in I^{i+1}$ かつ $b_{k-i}\in I^{k-i+1}$ より $a_ib_{k-i}\in I^{k+2}$ より $\sum_{i=0}^k a_ib_{k-i}\in I^{k+2}=T\cdot I^{k+1}$ となる。ゆえに $f(X)g(X)\in T\cdot U_1=T\cdot U$ より $T\dot{U}=U^2$ となる。また、このことよりとくに $U^2\subset U_2\subset U_1=U$ より $\{U^n\mid n\in \mathbb{Z}^+\}$ も A[X] の基本近傍系になるので A[X] は Huber ring になる。

一方、任意の正整数 m について $I^m \neq I^{m+1}$ のとき A[X] が adic にならないことを示す。もしイデアル $J \subset A[X]$ で adic になったとすると任意の正整数 k について $U_n \subset J^k \subset U_m$ となる正整数 $n \geq m$ が存在 する。 $I^n \neq I^{n+1}$ と $I^{n+1} \subset I^n$ よりある $\alpha \in I^n \setminus I^{n+1}$ が取れる。 $U_n \subset J^k$ から $\alpha \in J^k$ であり、 J^k がイ デアルだからとくに任意の 0 以上の整数 i について $\alpha X^i \in J^k \subset U_m$ である。ゆえにこの任意の i について $\alpha \in I^{m+i}$ となる。しかし、十分大きい i を取ると $\alpha \in I^{m+i} \subset I^{n+1}$ となり、 $\alpha \in I^n \setminus I^{n+1}$ に矛盾する。よって A[X] は adic ではない。

(3) $A_0 := \{a \in A \mid \|a\| \le 1\}$ とし、非自明なノルムであることからある $r \in k$ で 0 < |r| < 1 となるものが取れる。このとき $\{r^n A_0 \mid n \in \mathbb{Z}^+\}$ が基本近傍系を為し、 $U := A_0$ かつ $\binom{T :=}{r}$ とすれば A は Huber ring になり、pseudo-uniformizer として $r \in A$ が取れる。

また、とくに Huber ring において十分多くの定義環が存在する。

命題 1.11. *A* を Huber ring とする。

- 1. A_0 と A_1 を A の定義環とするとき $A_0 \cap A_1$ と $A_0 \cdot A_1$ も定義環になる。
- 2. A の有界な部分環 B と A の開部分環 C であって $B \subset C$ となるものについてある A の定義環 A_0 で $B \subset A_0 \subset C$ となるものが存在する。
- 3.~A の冪有界元全体 A° は A の部分環で A の定義環すべての和集合と一致する。

証明. (1) A_0 と A_1 は開かつ有界よりその共通部分 $A_0 \cap A_1$ は開であり、有界な集合の部分集合は有界なので $A_0 \cap A_1$ は有界でもあるから $A_0 \cap A_1$ は定義環になる。

 $A_0\cdot A_1$ について $A_0\subset A_0\cdot A_1$ より開である。有界であることを示す。とくに十分小さい $0\in A$ の開近傍 U を取って和で閉じているとして良い。 A_0 が有界より十分小さくとって、ある $0\in A$ の開近傍 V_0 であって和で閉じていて $V_0\cdot A_0\subset U$ となるものが取れる。この V_0 について A_1 が有界より、ある $0\in A$ の開近傍 V_1 が存在して $V_1\cdot A_1\subset V_0$ となる。ここで $A_0\cdot A_1$ の元 $\sum x_iy_i(x_i\in A_0,y_i\in A_1)$ について、 $y_i\cdot V_1\subset A_1\cdot V_1\subset V_0$ と $x_i\cdot V_0\subset A_0\cdot V_0\subset U$ より

$$(\sum x_i y_i) \cdot V_1 \subset \sum (x_i y_i \cdot V_1) \subset \sum (x_i \cdot V_0) \subset \sum U \subset U$$
(1.4)

より $(A_0 \cdot A_1) \cdot V_1 \subset U$ なので $A_0 \cdot A_1$ は有界だから $A_0 \cdot A_1$ は定義環になる。

- (2) C について、 $C_0 := A_0 \cap C$ とすると、 A_0 と C は A で開なので C_0 は A で開である。 さらに A_0 が A で有界で $C \subset A_0$ よりとくに C も A で有界であるから C_0 も A の定義環になる。とくに $C_0 \subset C$ で C の 定義環にもなるのでこれによって C も Huber ring になる。ゆえに $B \subset C$ と有界性から (1) の証明を用いて $B \cdot C_0$ も C で有界かつ $B \subset B \cdot C_0$ から C で開になる。これによって $B \cdot C_0$ は C の定義環になって C を含む。 C が C で開であることと合わせて C は C で開かつ有界であり、 C で C より、C として この C と取ればよい。
- (3) A° が定義環の和集合になっていることを示す。まず、A の定義環は有界よりその任意の元は冪有界になるから定義環の和集合は A° に含まれる。A の定義環 A_0 を一つ固定する。任意の A° の元 x について $\{x^n\mid n\in\mathbb{Z}^+\}$ が有界であることから (1) の証明と同様にして $\{x^n\mid n\in\mathbb{Z}^+\}\cdot A_0=A_0[x]$ は有界であり、 A_0 を含むので開集合でもあるから A の定義環になる。ゆえに定義環の和集合の中に $A_0[x]$ が含まれるのでとくに x も含まれるので互いの包含関係が示された。

 A° が部分環であることは、任意の A° の元 x と y についてある定義環 A_0 と A_1 で $x \in A_0$ と $y \in A_1$ となるものが存在し、(1) から $x+y \in A_0 \cdot A_1 \subset A^\circ$ かつ $xy \in A_0 \cdot A_1 \subset A^\circ$ なので A° は部分環になる。

Huber ring A について、 A° は有界とは限らない。 $A^\circ = \cup A_0$ であり、これは有界集合 A_0 の和集合が必ずしも有界ではないという形になっている。すなわち、 $0 \in A$ を原点と見るとき、 A_0 の中では距離が有限であるが、ちょうど A° を境界その外側に距離無限大の地点が存在している。これを踏まえて特に次の Huber ring のクラスを定義する。

定義 1.12 (一様). A を Huber ring とするとき、A が一様 (uniform) であるとは、A° が有界であることである。A° が定義環になることと言ってもよい。

後に定める整元環 A^+ によって、空間の点として取る付値に制限をつけるが、これは A° とは異なる距離無限大との境界として A^+ を取ることに対応している。

命題 1.8 から次が従う。

系 1.13. A を位相環とする。

- 1. A が adic ring のとき、A が Huber ring $\iff A$ が有限生成定義イデアルを持つ。
- 2. A が Huber ring のとき、A が adic ring $\iff A$ が有界になる。
- 3. B を A の開部分環とするとき、A が Huber ring。 \iff B が Huber ring。

とくに Tate ring のときは次のようにわかりやすい形になる。

- **命題 1.14.** A を Tate ring とし、B を A の定義環とするとき次が成り立つ。
 - 1. B は A のある pseudo-uniformizer を持つ。
 - 2. $s \in B$ を A の pseudo-uniformizer とすると $A = B_s$ であり、sB が B の定義イデアルになる。
- **証明.** (1) $t \in A$ を pseudo-uniformizer とするとき、B が $0 \in A$ の開近傍より、 $t^n \to 0$ より十分大きい $k \in \mathbb{Z}^+$ によって $t^k \in B$ となる。 t^k も pseudo-uniformizer よりこれを取れば良い。
- (2) 任意の $a \in A$ について $s^n \to 0$ より $s^n a \to 0$ であるから B が $0 \in A$ の開近傍より十分大きい $k \in \mathbb{Z}^+$ で $s^k a \in B$ になるので $a \in B_s$ から $s \in A^\times$ と合わせて $A = B_s$ となる。

また、任意の正整数 n について $s^n \in A^\times$ より $A \to A$; $a \mapsto s^n a$ は同相であるから、B が A で開なので $s^n B$ は開である。また、B の定義イデアル I が $0 \in A$ の開近傍より $s^n \to 0$ より十分大きい $k \in \mathbb{Z}^+$ で $s^k \in I$ となるものが取れる。よって $s^n B \subset I$ より B の I から定まる位相は sB によって定まる位相と一致するので B は sB を定義イデアルとして持つ。

以下、完備 (化) と言ったら Hausdorff 完備 (化) のことを指すこととする。

定義 1.15 (完備化). A を Huber ring とし、定義環 A_0 とその定義イデアルを I を取る。このとき A の完備化 (completion) とは $\varprojlim A/I^n$ のことであり、それを \hat{A} と表す。ここで $I^n \subset A$ は A_0 のイデアルとしての冪であり、剰余環とその逆極限は加法群として考えて取っている。とくにこれは定義環とその定義イデアルのとり方によらないことが、定義イデアルが基本近傍系を為していることからわかる。

補題 1.16. A を Huber ring とし、B を A の定義環とし、その定義イデアルを I とする。 \hat{A} と \hat{B} を A と B の完備化とする。とくに完備化の左完全性から \hat{B} \subset \hat{A} とみなせる。このとき次が成り立つ。

- 1. \hat{A} は Huber ring であり、 \hat{B} は \hat{A} の定義環であり、 $I\hat{B}=\hat{I}$ は \hat{B} の定義環になる。
- 2. 次の図式

は可換でカルテジアン閉である。とくに $\hat{A} \cong \hat{B} \otimes_B A$ が成り立つ。

証明. (1) B が adic より I 進位相の一般論より \hat{B} は $I\hat{B}=\hat{I}$ を定義イデアルとする adic ring になる。さらに、 \hat{A} も $\{I^n\mid n\in\mathbb{Z}^+\}$ による完備化だから \hat{A} は $\{\hat{I}^n\mid n\in\mathbb{Z}^n\}$ を基本近傍系に持つ。ゆえに \hat{B} は開かつ \hat{I} を定義イデアルに持つ adic ring より \hat{A} はこれを定義環と定義イデアルとして持つ Huber ring になる。

参考文献

- [BV] K. Buzzard and A. Verberkmoes, "Stably uniform affinoids are sheafy," arXiv:1404.7020 [math], Sep. 2015, Accessed: Aug. 02, 2021. [Online]. Available: http://arxiv.org/abs/1404.7020
- [So] M. Sophie, "Adic spaces", [Online]. Available: http://perso.ens-lyon.fr/sophie.morel/adic_notes.pdf
- [Wed] T. Wedhorn, "Adic Spaces," arXiv:1910.05934 [math], Oct. 2019, Accessed: Jul. 11, 2021. [Online]. Available: http://arxiv.org/abs/1910.05934
- [Hu94] R. Huber, "A generalization of formal schemes and rigid analytic varieties," Math Z, vol. 217, no. 1, pp. 513 551, Sep. 1994, doi: 10.1007/BF02571959.
- [Hu93] R. Huber, "Continuous valuations," Math Z, vol. 212, no. 1, pp. 455 477, Jan. 1993, doi: 10.1007/BF02571668.
- [SW] P. Scholze and J. Weinstein, Berkeley lectures on p-adic geometry. Princeton; Oxford: Princeton University Press, 2020.
- [Ran] D. Rankeya, "HUBER RINGS", [Online]. Available: https://rankeya.people.uic.edu/Huber_rings.pdf