# ТЕМА 11: БУЛЕВ КУБ

## Дефиниции:

Булев вектор

Дължина на булев вектор

Тегло на булев вектор:  $|\widetilde{\alpha^n}| = \sum_{i=1}^n \alpha_i$ 

Число (номер) на булев вектор:  $\nu(\widetilde{\alpha^n}) = \sum_{i=1}^n \alpha_i 2^{n-i}$ 

Разстояние между булеви вектори:  $\rho(\widetilde{\alpha}^n, \widetilde{\beta}^n) = \sum_{i=1}^n |\alpha_i - \beta_i|$  n-мерен двоичен куб:  $B^n(J_2^n, E_n), E_n = \{(\widetilde{\alpha}_i, \widetilde{\alpha}_j), \ \rho(\widetilde{\alpha}_i, \widetilde{\alpha}_j) = 1\}$ 

Слой в n-мерния двоичен куб:  $B_k^n = \{\widetilde{\alpha} \in J_2^n : |\widetilde{\alpha}| = k\}$ 

Сфера в *п*-мерния двоичен куб.

Кълбо в n-мерния двоичен куб.

Релация предшестване на булеви вектори:  $\widetilde{\alpha}^n \preceq \widetilde{\beta}^n \Leftrightarrow \alpha_i \leq \beta_i, \ i \in I_n$ 

Непосредствено предшестване на булеви вектори:  $\widetilde{\alpha} \preceq \widetilde{\beta} \wedge \rho(\widetilde{\alpha}, \widetilde{\beta}) = 1$ 

Верига в п-мерния двоичен куб:

$$C = \{\widetilde{\alpha}_1, \widetilde{\alpha}_2, ... \widetilde{\alpha}_k | \widetilde{\alpha}_1 \preceq \widetilde{\alpha}_2 ... \preceq \widetilde{\alpha}_k, \rho(\widetilde{\alpha}_i, \widetilde{\alpha}_{i+1}) = 1, i \in I_{k-1} \}$$

Стена с ранг k и размерност n-k в n-мерния двоичен куб

Релация лексикографска наредба в  $J_2^n$ 

Релация – наредба по номер в  $J_2^n$ 

#### Задачи за упражнение:

Задача 1: Намерете номерата на векторите: (0111010100), (1111), (10001).

Задача 2: Намерете булев вектор с дължина 6 и число 19.

 ${\it 3adaчa}$   $\it 3:$  Намерете броя на векторите  $\widetilde{\alpha}\in B^n_k:\ 2^{n-1}\leq \nu(\widetilde{\alpha})<2^n.$ 

<u>Решение:</u> Неравенството  $\nu(\widetilde{\alpha}) < 2^n$  е изпълнено за всяко число, което в двоична бройна система се записва с n цифри. А за да е в сила неравенството  $2^{n-1} \leq \nu(\widetilde{\alpha})$  старшата цифра на числото в двоичния му запис трябва да е 1. И така, числото на всеки булев вектор с дължина n, който има 1 в първа позиция, изпълнява условието на задачата. Броят на тези вектори е  $2^{n-1}$ .

 ${\it 3adaua}$  4: Намерете броя на ненаредените двойки съседни върхове на  $B^n$ .

 $3a\partial aua$  5: Да се докаже, че  $B^n$  е регулярен и да се намери броят на ребрата му.

<u>Доказателство:</u> Нека  $\widetilde{\alpha}$  е произволен върх в  $B^n$ . Той има точно n съседни върхове - тези, които се получават при инвертиране на една позиция в  $\widetilde{\alpha}$ , така че  $d(\widetilde{\alpha}) = n$ . Следователно,  $B^n$  е регулярен от степен n.

Така, като знаем броя на върховете и степента на всеки един от тях, можем да определим броя на ребрата  $|E|=\frac{1}{2}n2^n=n2^{n-1}$ .

 ${\it 3a} \overline{\it daчa} \ {\it 6:} \ {\it Д}$ а се докаже, че  $B^n$  е двуделен граф.

<u>Доказателство:</u> Всяко ребро в  $B^n$  свръзва върхове  $\widetilde{\alpha}$  и  $\widetilde{\beta}$ , за които  $\rho(\widetilde{\alpha},\widetilde{\beta})=1$ . Това значи, че векторите  $\widetilde{\alpha}$  и  $\widetilde{\beta}$  имат тегла с различна четност. От това следва, че  $B^n$  е двуделен, като двата дяла са  $V'=\{\widetilde{\alpha}\in J_2^n: |\widetilde{\alpha}|=2k\}$  и  $V''=\{\widetilde{\beta}\in J_2^n: |\widetilde{\beta}|=2k+1\}$ .

**Задача** 7: Намерете броя на ненаредените двойки върхове на  $B^n$ , за които е изпълнено  $\rho(\widetilde{\alpha},\widetilde{\beta})=k$ .

<u>Решение:</u> Решението на задачата включва решаване на три подзадачи. Първата е да определим позициите, в които векторите  $\widetilde{\alpha}$  и  $\widetilde{\beta}$  се различават - k на брой. Това става по  $\binom{n}{k}$  начина. Втората е да определим съдържанието на двата вектора в тези позиции - по  $2^{k-1}$  начина. Третата е да определим съдържанието на общите позиции - по  $2^{n-k}$  начина.

Така крайният отговор е  $\binom{n}{k} 2^{k-1} 2^{n-k} = \binom{n}{k} 2^{n-1}.$ 

 $3a\partial aua$  8: Намерете  $|B_k^n|$ .

 $3a\partial a ua$  9: Намерете броя на векторите в стена с ранг k в n-мерния двоичен куб.





 $\Phi$ игура 1

 ${\it 3adaua}$  10: Намерете броя на (n-k)-мерните стени в n-мерния двоичен куб.

Pemenue: Пред вид това, че разстоянието  $\rho$  е метрика, е изпълнено:

$$\forall \widetilde{\gamma} \in B^n(\rho(\widetilde{\alpha}, \widetilde{\gamma}) + \rho(\widetilde{\beta}, \widetilde{\gamma}) \ge \rho(\widetilde{\alpha}, \widetilde{\beta}))$$

Ние ще преброим тези вектори, за които в неравенството на триъгълника се достига равенство.

В позициите, в които  $\widetilde{\alpha}$  и  $\widetilde{\beta}$  се различават, както и да изберем съответната координата на  $\widetilde{\gamma}$ , той ще се различава точно от единия от двата вектора. Следователно  $\widetilde{\gamma}$  трябва да съвпада с другите два вектора там, където те съвпадат, в противен случай ще се получи, че  $\rho(\widetilde{\alpha},\widetilde{\gamma}) + \rho(\widetilde{\beta},\widetilde{\gamma}) > m$ .

Търсените вектори са елементите на множеството  $\Gamma = \{\widetilde{\gamma} | \alpha_i = \beta_i \to \gamma_i = \alpha_i\}$ , чиято мощност е  $|\Gamma| = 2^{n-m}$ .

се намери броят на векторите  $\widetilde{\gamma}: \widetilde{\alpha} \preceq \widetilde{\gamma} \preceq \widetilde{\beta}$ .

 $\underline{Pemenue}$ : Векторите  $\widetilde{lpha}$  и  $\widetilde{eta}$  се различават в k позиции, като там координатите на  $\widetilde{lpha}$ са нули, а на  $\widetilde{\beta}$  са единици. За да е изпълнено  $\widetilde{\alpha} \preceq \widetilde{\gamma} \preceq \widetilde{\beta}$  трябва векторът  $\widetilde{\gamma}$  да се различава от  $\widetilde{\alpha}$  и  $\widetilde{\beta}$  само там, където те се различават.

Търсените вектори са елементите на множеството  $\Gamma = \{\widetilde{\gamma} | \alpha_i = \beta_i \to \gamma_i = \alpha_i\},$ чиято мощност е  $|\Gamma| = 2^{n-k}$ .

 ${\it 3adaua}$  13:Намерете броя на векторите  $\widetilde{\alpha} \in B^n_k$ , в които между всеки две единични координати има поне r нулеви.

### **Задача 14:** Да се докаже, че:

- а) Ако два n-мерни булеви вектори имат равни тегла, то те са несравними;
- b) Измежду всеки (n+2) n-мерни булеви вектори има двойка несравними вектори;
  - с) В  $J_2^n$  има само два сравними противоположни вектора;
- d) Броят на n-мерни булеви вектори, които не са сравними с даден вектор
- $\widetilde{\alpha} \in B_k^n$ , е равен на  $2^n 2^k 2^{n-k} + 1$ ; е) В  $J_2^n$  съществува подмножество с мощност  $\binom{n}{\lfloor n/2 \rfloor}$ , чиито елементи са два по два несравними вектори.

 $3a\partial a ua$  15: Намерете броя на различните максимални растящи вериги в  $B^n$ .



 $\Phi$ игура 2

Pewenue: За да бъде максимална една верига, тя трябва да започва с нулевия вектор (000...0) и да завършва с единичния вектор (111...1). Пред вид това, че разстоянието между съседните вектори във веригата е 1, то всяка верига започва в слой  $B_0^n$ , минава през всеки следващ слой на булевия куб и завършва в последния слой  $B_n^n$ .

Когато веригата е построена от  $\widetilde{\alpha_0} \in B_0^n$  до  $\widetilde{\alpha_i} \in B_i^n$ , то следващият вектор можем да изберем по n-i начина. Така броят на всички вериги с исканите свойства e: n(n-1)(n-2)...2.1 = n!

 ${\it 3adaчa}\ {\it 16:}$  Намерете броя на различните максимални растящи вериги в  $B^n$ , които съдържат фиксиран вектор  $\widetilde{\alpha}\in B^n_k$ .

<u>Решение:</u> Както видяхме в предишната задача, за да бъде максимална една верига, тя трябва да започва с нулевия вектор (000...0) и да завършва с единичния вектор (111...1). За да е сигурно, че веригата ще съдържа указания вектор, ще я разгледаме като съставена от две вериги - първата от вектора (000...0) до вектора  $\widetilde{\alpha}$  и втората от същия вектор до единичния вектор (111...1).

Първата верига започва от единствения вектор в слоя  $B_0^n$  и минава последователно през всеки следващ по намер слой, докато стигне до  $\widetilde{\alpha} \in B_k^n$ . За да осигурим веригата да минава точно през указания вектор от слой  $B_k^n$ , да си представим построяването й в обратна посока - от  $\widetilde{\alpha}$  до (000...0). При всеки преход към вектор от предишен слой трябва да намалим с едно броя на единиците. Така, броят на тези вериги е k(k-1)(k-2)...2.1=k!

Съответно решението за броя на веригите от  $\widetilde{\alpha}$  до (111...1) е:

$$(n-k)(n-k-1)...2.1 = (n-k)!$$

Така броят на всички максимални растящи вериги, съдържащи вектора  $\widetilde{\alpha} \in B_k^n$  е k!(n-k)!

 $3a\partial a$ ча 17: Да се докаже, че  $B^n$  е Хамилтонов граф.

 $P(n):\ B^n$  съдържа Хамилтонов цикъл

- 1. База: n=2 Следният път в двумерния куб  $B^2:(00),(01),(11),(10),(00)$  е Хамилтонов цикъл  $\Rightarrow P(2)$ 
  - 2. Индукционна хипотеза: Предполагаме, че за някое  $k \ge 2$ : P(k)
  - 3. Индукционна стъпка: Ще докажем P(k+1)

Съгласно ИХ в  $B^k$  има Хамилтонов цикъл. Нека  $\widetilde{\alpha}_0, \widetilde{\alpha}_1, ..., \widetilde{\alpha}_{2^k-1}$  е верига тип цикъл, която съдържа всички върхове на куба.

Да съставим следната редица от вектори от  $J_2^{k+1}$  :

$$0\widetilde{\alpha}_0, 0\widetilde{\alpha}_1, ..., 0\widetilde{\alpha}_{2^k-1}, 1\widetilde{\alpha}_{2^k-1}, ..., 1\widetilde{\alpha}_1, 1\widetilde{\alpha}_0$$

Както лесно можем да съобразим, в редицата няма повторение на вектори и всеки два вектора, съседни в редицата, са на разстояние 1. Първият и последният вектори в редицата също са на разстояние 1. Следователно, това е верига тип цикъл, която съдържа всички върхове на  $B^{k+1}$ .

Така доказахме, че  $B^{k+1}$  е Хамилтонов граф.

4. Заключение:  $\forall n \geq 2 : P(n)$ 

 $3a\partial aua$  18: Да се докаже, че в  $B^n$  няма цикли с нечетна дължина.

<u>Доказателство:</u> Липсата на цикли с нечтна дължина следва от факта, че графът е двуделен.

Същото може да се провери и директно, като съобразим, че всеки два върха, които са съседни в път в булевия куб, принадлежат на съседни по номер слоеве на куба. Така ако разгледаме произволен цикъл в графа и произволен връх от него, за да се върне пътят в същия връх трябва да премине четен брой ребра.

 $\begin{cases} \hline 3a\partial a$ ча 19: Да се докаже, че  $B^n$  е планарен за стойности на  $n\in\{1,2,3\}$  и не е планарен при  $n\geq 4$ .



 $3a\partial a ua \ 20:$  Да се намери максимална антиклика в  $B^n$ .

**Задача 21:** Множеството  $A \subseteq B^n$  е пълно, ако произволен вектор  $\widetilde{\beta} \in B^n_k$  може да се намери при положение, че са известни разстоянията  $\rho(\widetilde{\alpha}, \widetilde{\beta}) : \widetilde{\alpha} \in A$ . Базис ще наричаме минимално пълно множество. Да се докаже, че:

- а) произволна растяща верига  $\widetilde{\alpha}_1, \widetilde{\alpha}_2, ..., \widetilde{\alpha}_n \in B^n$  е базис;
- b)  $B_1^n$  и  $B_{n-1}^n$  са пълни при n>2;
- с) да се намери n, при което  $B_1^n$  не е базис.

### Задача 22: Изпълнете следните действия:

- 1. Определете  $B^3$ ;
- 2. Дайте геометрична интерпретация на  $B^3$ ;
- 3. Сортирайте във възходящ ред лексикографски и по номер векторите, които са върхове на куба  $B^3$ ;
  - 4. Определете релацията предшестване в тримерния булев куб  $B^3$ ;
  - 5. Дайте примери за несравними вектори, върхове на куба  $B^3$ ;
  - 6. Дайте примери за стени на куба  $B^3$ .