Support Vector Machine

About SVM

- Supervised learning
- ●マージン最大化超平面を求めるという基準で学習
- ●ハードマージン・ソフトマージンの考え方がある
- ●線形分離できないデータも分離可能
- ●パラメータが少ない

Margin maximization (Linear SVM)

●超平面とサポートベクトルのマージンを最大化する

Margin maximization (Linear SVM)

Support Vector: 判別で用いる境界線近くのデータ

$$f(x) = w^T x + b$$

Soft margin

- ●外れ値などのノイズデータのせいで f(x) で分類できない問題も多い
- ●ノイズを許容しないのがハードマージン、許容するのがソフトマージン

Hard margin: $y_i(w^Tx_i + b) \ge 1$

Soft margin : $y_i(w^Tx_i + b) \ge 1 - \varepsilon_i$

目的関数(最小化する): $L(w,\varepsilon) = \frac{1}{2}||w||^2 + C\sum_{i=1}^N \varepsilon_i$

(C: Regularization factor)

Nonlinear SVM

- ●線形分離ができないデータの場合
 - → 非線形変換をし、高次元特徴空間に写像することで対応
- Exp. Linear SVM: Linear kernel
 Nonlinear SVM: RBF kernel

$$f(x) = w^T \varphi(x) + b$$

線形分離可能なら $\varphi(x) = x$

