Numerical optimization

Mines Nancy – Fall 2024 session 5 – about convergence

Lecturer: Christophe Zhang (INRIA, IECL)

Course material:

github.com/jflamant/mines-nancy-fall24-optimization

Reminder: descent methods

Context: unconstrained optimization

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$$

Principle of descent methods: solve iteratively using

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}_k$$

where α_k is the stepsize and \mathbf{d}_k is a descent direction $(\mathbf{d}_k^{\mathsf{T}} \nabla f(\mathbf{x}^{(k)}) < 0)$.

Two important examples

• Gradient descent

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \nabla f(\mathbf{x}^{(k)})$$

• Newton's method

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1} \nabla f(\mathbf{x}^{(k)})$$

Outline

1 Main mathematical tools

2 Convergence results for gradient descent

Convergence results for Newton's method

Characterizing regularity

Context: unconstrained optimization

$$\min_{\mathbf{x}\in\mathbb{R}^N} f(\mathbf{x})$$

Assumptions

- the function f is (at least) continuously differentiable
- there exists a (global) minimizer \mathbf{x}^* ; we note $f(\mathbf{x}^*)$ the minimum

We'll consider several additional properties of the objective f:

- convexity
- smoothness
- strong convexity

Main references: Recht and Wright (2022), Boyd and Vanderberghe (2004)

Convex functions [reminder]

Theorem (first order)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be differentiable. These statements are equivalent:

- **1** f is convex on \mathbb{R}^N
- **2** for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} \mathbf{x})$
- **3** for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, $(\nabla f(\mathbf{y}) \nabla f(\mathbf{x}))^{\mathsf{T}} (\mathbf{y} \mathbf{x}) \geq 0$

The equivalence is preserved for strict convexity, with $\mathbf{x} \neq \mathbf{y}$ and strict inequalities.

Theorem (second order)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be twice differentiable. We have equivalence between

- 1 f is convex
- 2 for all $\mathbf{x} \in \mathbb{R}^N$, $\nabla^2 f(\mathbf{x}) \geq 0$, i.e. the Hessian is positive semidefinite.

Smoothness

Definition (*L*-smooth functions)

A continuously differentiable function $f: \mathbb{R}^N \to \mathbb{R}$ is said to be L-smooth if

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L\|\mathbf{x} - \mathbf{y}\|_2$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$,

i.e., its gradient ∇f is *L*-Lipschitz continuous.

Properties of smooth functions

Property 1 (Quadratic upper bound)

Let f be continuously differentiable and L-smooth on \mathbb{R}^N . Then

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$

Property 2 (Bounds on eigenvalues of the Hessian)

Let f be twice continuously differentiable on \mathbb{R}^N .

- If f is L-smooth, one has $\nabla^2 f(\mathbf{x}) \leq L \mathbf{I}_N$ for all $\mathbf{x} \in \mathbb{R}^N$.
- Conversely, if $-LI_N \leq \nabla^2 f(\mathbf{x}) \leq LI_N$, then f is L-smooth.

remark: notation $\nabla^2 f(\mathbf{x}) \leq L \mathbf{I}_N$ means that the matrix $L \mathbf{I}_N - \nabla^2 f(\mathbf{x})$ is positive semidefinite, or in other terms, the eigenvalues of the Hessian are upper-bounded by L.

proofs: in class!

Strong convexity

Definition (*m*-strongly convex functions)

Let f be a differentiable function and let m > 0. Then f is said to be m-strongly convex if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$

remarks

- the definition can be extended to non-differentiable functions
- if f is m-strongly convex, then f is also strictly convex
- the function f is m-strongly convex iff $g(\mathbf{x}) = f(\mathbf{x}) \frac{m}{2} \|\mathbf{x}\|_2^2$ is convex

Implications of strong convexity and convexity

Property 1 (Hessian characterization of strongly convex functions)

Suppose that f is twice continuously differentiable on \mathbb{R}^N . The function f is m-strongly convex if and only if $\nabla^2 f(\mathbf{x}) \geq m \mathbf{I}_N$ for all \mathbf{x} .

This result shows that Hessian eigenvalues are lower-bounded by m.

Property 2 (Convexity and L-smooth functions)

Let f be twice continuously differentiable on \mathbb{R}^N . Suppose that f is convex. Then f is L-smooth if and only if $\mathbf{0} \leq \nabla^2 f(\mathbf{x}) \leq L \mathbf{I}_N$.

proofs: in class!

Summary: smoothness and strong convexity

Assessing convergence

The kind of convergence guarantees strongly depend on the regularity properties (convexity, smoothness, strong convexity) of the objective f.

Recall that \mathbf{x}^* is a minimizer of f.

Convergence in objective function values

In this case, we bound the distance to the minimum

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)$$

this condition is usually weaker and requires less assumptions about f.

Convergence in iterates

Here, we bound the distance between the current iterate and a minimizer \mathbf{x}^*

$$\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|_2$$

This usually requires strong convexity of f. In some cases, both type of convergence can be related.

Outline

1 Main mathematical tools

2 Convergence results for gradient descent

Convergence results for Newton's method

Setting: constant stepsize gradient descent

Context: Solve the unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$$

through gradient descent with constant step size $\alpha > 0$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, \dots$$

Motivations

- simplest case, yet already illuminating
- common strategy for large scale applications (e.g. machine learning)
- results can be extended to backtracking / optimal step size without too much trouble.

Smooth gradient descent: first results

Assumptions: f is continuously differentiable and f is L-smooth

Let us exploit Property 1 of smooth functions. Let $\mathbf{y} = \mathbf{x}^{(k+1)}$ and $x = \mathbf{x}^{(k)}$. We get the inequality

$$f(\mathbf{x}^{(k+1)}) \le f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^{\mathsf{T}} (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{2}^{2}$$

Using the gradient descent update, this simplifies as

$$f(\mathbf{x}^{(k+1)}) \le f(\mathbf{x}^{(k)}) + \alpha \left(\alpha \frac{L}{2} - 1\right) \|\nabla f(\mathbf{x}^{(k)})\|_2^2$$

The RHS is minimized for $\alpha = 1/L$. For this choice of stepsize, one gets

$$f(\mathbf{x}^{(k+1)}) = f(\mathbf{x}^{(k)} - (1/L)\nabla f(\mathbf{x}^{(k)})) \le f(\mathbf{x}^{(k)}) - \frac{1}{2L} \|\nabla f(\mathbf{x}^{(k)})\|_{2}^{2}$$

in particular $f(\mathbf{x}^{(k+1)}) \le f(\mathbf{x}^{(k)})$ for this choice of stepsize.

Smooth gradient descent: general case (i)

Assumptions: f is continuously differentiable and f is L-smooth A minimizer \mathbf{x}^* exists such that $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all \mathbf{x}

Now, summing the previous inequalities from k = 0 to k + 1 = K one gets

$$f(\mathbf{x}^{(K)}) \le f(\mathbf{x}^{(0)}) - \frac{1}{2L} \sum_{k=0}^{K-1} \|\nabla f(\mathbf{x}^{(k)})\|_{2}^{2}$$

Since $f(\mathbf{x}^{(K)}) \ge f(\mathbf{x}^*)$,

$$\sum_{k=0}^{K-1} \|\nabla f(\mathbf{x}^{(k)})\|_{2}^{2} \le 2L \left[f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{*}) \right]$$

and thus $\lim_{K\to\infty} \|\nabla f(\mathbf{x}^{(K)})\|_2^2 = 0$

Hence, gradient descent converges to a stationary point of f.

Smooth gradient descent: general case (ii)

Assumptions: f is continuously differentiable and f is L-smooth

A minimizer \mathbf{x}^* exists such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x}

In addition, we get that

$$\min_{0 \le k \le K-1} \|\nabla f(\mathbf{x}^{(k)})\|_{2} \le \sqrt{\frac{2L[f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(K)})]}{K}} \le \sqrt{\frac{2L[f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{\star})]}{K}}$$

After K steps of gradient descent, we can find a point x such that

$$\|\nabla f(\mathbf{x})\|_2 \le \sqrt{\frac{2L[f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*)]}{K}}$$

Comments

- rate is very slow, in $K^{-1/2}$
- we cannot say much more without additional assumptions on f.

Smooth gradient descent: convex case

Assumptions: f is continuously differentiable and f is L-smooth A minimizer \mathbf{x}^* exists such that $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all \mathbf{x} f is convex

Theorem

Under the above assumptions, the gradient descent method with constant stepsize $\alpha_k = 1/L$ generates a sequence $\{\mathbf{x}^{(k)}\}$ such that, after K iterations,

$$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{\star}) \le \frac{L}{2K} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|_{2}^{2}$$

Proof: in class.

Comments

- rate has improved, in K^{-1}
- simple proof for quadratic functions (see next slide)
- convergence in cost, but we can only show boundedness of iterates, i.e., : $\|\mathbf{x}^{(k)} \mathbf{x}^*\| \le \|\mathbf{x}^{(0)} \mathbf{x}^*\|$

Illustration for convex quadratic functions

Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} - \mathbf{p}^{\mathsf{T}}\mathbf{x}$ with $\mathbf{Q} \geq 0$, hence f is convex.

Recall $\nabla f(\mathbf{x}) = \mathbf{Q}\mathbf{x} - \mathbf{p}$. Moreover f is L-smooth with $L = \|\mathbf{Q}\|$.

Since $\mathbf{Q} \succeq 0$ a minimizer always exists, given by $\mathbf{x}^* = \mathbf{Q}^\dagger \mathbf{p}$ where \mathbf{Q}^\dagger is the pseudo inverse of \mathbf{Q} ($\mathbf{Q}^\dagger = \mathbf{Q}^{-1}$ when $\mathbf{Q} \succ 0$)

Iterates read

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \frac{1}{L}(\mathbf{Q}\mathbf{x}^{(k)} - \mathbf{p}) = \mathbf{x}^{(k)} - \frac{1}{L}\mathbf{Q}(\mathbf{x}^{(k)} - \mathbf{x}^*)$$

Therefore

$$\mathbf{x}^{(k+1)} - \mathbf{x}^{\star} = \left[\mathbf{I}_{N} - \frac{1}{L}\mathbf{Q}\right](\mathbf{x}^{(k)} - \mathbf{x}^{\star}) = \left[\mathbf{I}_{N} - \frac{1}{L}\mathbf{Q}\right]^{k+1}(\mathbf{x}^{(0)} - \mathbf{x}^{\star})$$

Since $\mathbf{Q} \geq 0$, eigenvalues of $\mathbf{I}_N - \frac{1}{L}\mathbf{Q}$ are in [0,1]. Therefore $\|\mathbf{I}_N - \frac{1}{L}\mathbf{Q}\|_2 \leq 1$ and thus we have boundedness of the iterates

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|_{2} \le \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|$$

Smooth gradient descent: strongly convex case

Assumptions: f is continuously differentiable and f is L-smooth A minimizer \mathbf{x}^* exists such that $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all \mathbf{x} f is m-strongly convex

Theorem

Under the above assumptions, the gradient descent method with $\alpha_k = 1/L$ generates a sequence $\{\mathbf{x}^{(k)}\}$ such that, after K iterations,

$$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{*}) \le \left(1 - \frac{m}{L}\right)^{K} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{*})\right)$$
$$\|\mathbf{x}^{(K)} - \mathbf{x}^{*}\|_{2}^{2} \le \left(1 - \frac{m}{L}\right)^{K} \|\mathbf{x}^{(0)} - \mathbf{x}^{*}\|_{2}^{2}$$

Comments

- convergence in objective and iterates;
- exponential rate (also known as linear convergence)
- rate depends on the ratio m/L yet not the best in this case

Easy proof for strongly convex quadratic functions

Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} - \mathbf{p}^{\mathsf{T}}\mathbf{x}$ with $\mathbf{Q} > 0$. Note $m = \lambda_{\min}(\mathbf{Q})$ and $L = \lambda_{\max}(\mathbf{Q})$. Hence f is m-strongly convex and L-smooth

Then

$$\mathbf{x}^{(k+1)} - \mathbf{x}^* = \mathbf{x}^{(k)} - \frac{1}{L} (\mathbf{Q} \mathbf{x}^{(k)} - \mathbf{p}) - \mathbf{x}^*$$

$$= \mathbf{x}^{(k)} - \mathbf{x}^* - \frac{1}{L} \mathbf{Q} (\mathbf{x}^{(k)} - \mathbf{x}^*)$$

$$= (\mathbf{I}_N - \frac{1}{L} \mathbf{Q}) (\mathbf{x}^{(k)} - \mathbf{x}^*)$$

Since $\mathbf{Q} > 0$, the eigenvalues of $\mathbf{I}_N - \frac{1}{L}\mathbf{Q}$ are in [0, 1 - (m/L)]. Therefore, by recursion

$$\|\mathbf{x}^{(K)} - \mathbf{x}^*\|_2^2 \le \left(1 - \frac{m}{L}\right)^K \|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2.$$

similar proof for objective values

Smooth gradient descent: strongly convex case

When f is L-smooth and m-strongly convex, we can further refine converge rates through additional characterizations.

Lemma (Coercivity of the gradient)

Let f be L-smooth and m-strongly convex on \mathbb{R}^N . Then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, one has

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top}(\mathbf{x} - \mathbf{y}) \ge \frac{mL}{m+L} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{L+m} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2$$

Proof: see e.g., Bubeck (2015)

Smooth gradient descent: strongly convex case [refined]

Assumptions: f is continuously differentiable and f is L-smooth A minimizer \mathbf{x}^* exists such that $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all \mathbf{x} f is m-strongly convex

Theorem

Under the above assumptions, the gradient descent method with $\alpha_k = 2/(m+L)$ generates a sequence $\{\mathbf{x}^{(k)}\}$ such that, after K iterations,

$$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{*}) \le \frac{L}{2} \left(\frac{L - m}{L + m}\right)^{2K} \|\mathbf{x}^{(0)} - \mathbf{x}^{*}\|_{2}^{2}$$
$$\|\mathbf{x}^{(K)} - \mathbf{x}^{*}\|_{2}^{2} \le \left(\frac{L - m}{L + m}\right)^{2K} \|\mathbf{x}^{(0)} - \mathbf{x}^{*}\|_{2}^{2}$$

- improved rate: still linear, but better constant
- stepsize incorporate our knowledge of strong convexity

Summary of results

Solve the unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$$

through gradient descent with constant step size $\alpha > 0$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, ...$$

assumption on f	stepsize	rate	conv iterates
smooth	$\alpha = \frac{1}{L}$	$\ \nabla f(x^{(K)})\ = \mathcal{O}(\sqrt{K})$	-
convex, smooth	$\alpha = \frac{1}{L}$	$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{\star}) = \mathcal{O}(K^{-1})$	bounded
str. convex, smooth	$\alpha = \frac{1}{L}$	$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{\star}) = \mathcal{O}(c^K)$	yes
str. convex, smooth	$\alpha = \frac{2}{L+m}$	$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^*) = \mathcal{O}(d^{2K})$	yes

Assessing the trade-off precision - complexity

It is useful to express convergence results as *complexity* bounds, i.e., given a precision ε , provide a bound on the number of iterations K.

Example Consider the smooth convex case. We have from the theorem:

$$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{\star}) \le \frac{L}{2K} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|_{2}^{2}$$

Let $\varepsilon > 0$ be the desired precision after K iterations. Then, if one wants $f(\mathbf{x}^{(K)}) - f(\mathbf{x}^*) \le \varepsilon$, this can be satisfied if that

$$\frac{L}{2K} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|_{2}^{2} \le \varepsilon$$

and thus whenever

$$K \ge \frac{L}{2\varepsilon} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|_2^2$$

Assessing the trade-off precision - complexity

Let
$$\tau^{(k)} = f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)$$
 and note $c = 1 - m/L$.

Exercise

For f smooth and strongly convex, show that the number of iterations of gradient descent with $\alpha = 1/L$ scales with ε as

$$K \ge c_1 \log \frac{1}{\varepsilon} + c_2$$

where $c_1 \ge 0$, $c_2 \in \mathbb{R}$ are constants to be determined.

About other stepsize strategies

Most of the results for constant step size can be adapted to other stepsize strategies.

For instance, let f be L-smooth and m-strongly convex.

Optimal step size same result as $\alpha = \frac{1}{L}$, i.e.,

$$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{\star}) \le \left(1 - \frac{m}{L}\right)^{K} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{\star})\right)$$

Backtracking line search similar result, with a different constant

$$f(\mathbf{x}^{(K)}) - f(\mathbf{x}^{\star}) \le c^{K} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{\star}) \right)$$

where $c = 1 - \min(2ms, 2\eta sm/L) < 1$, (s, η) backtracking parameters

See §9.3.1 Boyd and Vanderberghe (2004) for details

Outline

1 Main mathematical tools

2 Convergence results for gradient descent

3 Convergence results for Newton's method

Setting: Newton's method with unit stepsize

Context: Solve the unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$$

through Newton's method with unit step size

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, ...$$

Basic assumptions

- f is twice differentiable
- a minimizer x* exists and satisfies the sufficient second-order optimality conditions (see Sessio 2), in particular

$$\nabla f(\mathbf{x}^*)$$
 and $\nabla^2 f(\mathbf{x}^*) > 0$

Convergence result for Newton's method

Additional assumptions the Hessian $\nabla^2 f$ is Lipschitz-continuous in a neighborhood of \mathbf{x}^* .

Theorem (see e.g. Nocedal and Wright (2006))

Under these assumptions, Newton's method with unit step size satisfies

- **1** for $\mathbf{x}^{(0)}$ close enough to \mathbf{x}^* , the sequence $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x}^* ;
- **2** the rate of convergence of $\{\mathbf{x}^{(k)}\}$ is quadratic
- **3** the sequence of gradient norms $\{\|\nabla f(\mathbf{x}^{(k)})\|_2\}$ converges quadratically to zero

Comments

- \bullet Convergence guarantees are local, i.e., apply near the minimizer \boldsymbol{x}^{\star}
- Convergence is quadratic, i.e.,

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|_{2} \le c \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|_{2}^{2}$$

(Compare with the linear rate of gradient descent)

Start by evaluating the distance and exploit the fact that $\nabla f(\mathbf{x})^* = 0$

$$\mathbf{x}^{(k+1)} - \mathbf{x}^* = \mathbf{x}^{(k)} - \mathbf{x}^* - \left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1} \nabla f(\mathbf{x}^{(k)})$$
$$= \left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1} \left[\nabla^2 f(\mathbf{x}^{(k)}) (\mathbf{x}^{(k)} - \mathbf{x}^*) - (\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^*)) \right]$$

Recall Taylor's theorem (Session 2) applied to gradients:

$$\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^*) = \int_0^1 \nabla^2 f(\mathbf{x}^{(k)} + t(\mathbf{x}^* - \mathbf{x}^{(k)}))(\mathbf{x}^{(k)} - \mathbf{x}^*) dt$$

We are now ready to bound the second paranthesis in the RHS above

Then

$$\begin{split} & \left\| \nabla^2 f(\mathbf{x}^{(k)}) (\mathbf{x}^{(k)} - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^{\star})) \right\|_2 \\ &= \left\| \int_0^1 \left[\nabla^2 f(\mathbf{x}^{(k)}) - \nabla^2 f(\mathbf{x}^{(k)} + t(\mathbf{x}^{\star} - \mathbf{x}^{(k)})) \right] (\mathbf{x}^{(k)} - \mathbf{x}^{\star}) dt \right\|_2 \\ &\leq \left\| \mathbf{x}^{(k)} - \mathbf{x}^{\star} \right\|_2 \int_0^1 \left\| \nabla^2 f(\mathbf{x}^{(k)}) - \nabla^2 f(\mathbf{x}^{(k)} + t(\mathbf{x}^{\star} - \mathbf{x}^{(k)})) \right\| dt \\ &\leq \left\| \mathbf{x}^{(k)} - \mathbf{x}^{\star} \right\|_2^2 \int_0^1 Lt dt \quad \text{(Lipschitz-continuity of the Hessian near } \mathbf{x}^{\star} \text{)} \\ &= \frac{1}{2} L \| \mathbf{x}^{(k)} - \mathbf{x}^{\star} \|_2^2 \end{split}$$

Moreover, $\nabla^2 f(\mathbf{x}^*)$ is non-singular and continuous. Thus there is a radius r > 0 such that $\|\nabla^2 f(\mathbf{x}^{(k)})^{-1}\| \le 2\|\nabla^2 f(\mathbf{x}^*)^{-1}\|$ for every $\mathbf{x}^{(k)}$ s.t. $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le r$.

By substitution, we get

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|_{2} \leq \frac{L}{2} \|\nabla^{2} f(\mathbf{x}^{(k)})^{-1}\| \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|_{2}^{2} \leq \underbrace{L \|\nabla^{2} f(\mathbf{x}^{\star})^{-1}\|}_{=L'} \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|_{2}^{2}$$

If we choose $\mathbf{x}^{(0)}$ such that $\|\mathbf{x}^{(0)} - \mathbf{x}^*\| \le \min(r, 1/(2L'))$ we obtain quadratic convergence to \mathbf{x}^* as

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{*}\|_{2} \leq L' \|\mathbf{x}^{(k)} - \mathbf{x}^{*}\|_{2}^{2}$$

$$\leq L' \cdot (L')^{2} \|\mathbf{x}^{(k-1)} - \mathbf{x}^{*}\|_{2}^{4}$$

$$\leq L' (L')^{2} \cdots (L')^{2^{k+1}} \|\mathbf{x}^{(0)} - \mathbf{x}^{*}\|_{2}^{2^{k+1}}$$

$$= (L')^{2^{k+1}-1} \|\mathbf{x}^{(0)} - \mathbf{x}^{*}\|_{2}^{2^{k+1}}$$

Regarding the gradients, note $\mathbf{p}^{(k)} = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)})$ and let us observe that

$$\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} = \mathbf{p}^{(k)}$$
 and $\nabla f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p}^{(k)} = 0$

Then,

$$\begin{aligned} \|\nabla f(\mathbf{x}^{(k+1)})\|_2 &= \|\nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}) - \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p}^{(k)}\|_2 \\ &= \left\| \int_0^1 \nabla^2 f(\mathbf{x}^{(k)} + t \mathbf{p}^{(k)}) \mathbf{p}^{(k)} dt - \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p}^{(k)} \right\|_2 \\ &\leq \frac{1}{2} L \|\mathbf{p}^{(k)}\|_2^2 \\ &\leq L' \|\nabla f(\mathbf{x}^{(k)})\|_2^2 \end{aligned}$$

which shows that gradient norms converge quadratically.

Assessing precision

Exercise

For Newton's method, show that the number of iterations K that guarantees $\tau^{(K)} = \|\mathbf{x}^{(K)} - \mathbf{x}^{\star}\|_2 \le \varepsilon$ is such that

$$K \ge c_1 \log \log \frac{1}{\varepsilon} + c_2$$

where c_1, c_2 are constants to be determined.

Hint: use the fact that the condition that $\mathbf{x}^{(0)}$ must be sufficiently close from \mathbf{x}^{\star} can be formulated as $L'\tau^{(0)} < 1$.

Final comments on convergence

- convergence results can be stated in terms of objective values or in terms of convergence of iterates (sometimes, both)
- convergence rates correspond to worst-case scenarios: they do not tell about the exact rate of algorithms for a given problem
- this means that gradient descent, under the right assumptions, converges at least with a linear rate
- this means that Newton's method, under the right assumptions, converges at least with a quadratic rate
- Statements on number of iterations such as

$$K \ge c_1 \log \frac{1}{\varepsilon} + c_2 \text{ or } \qquad K \ge c_1 \log \log \frac{1}{\varepsilon} + c_2$$

are "at most" statements

A constants can strongly affect the rate!