	MA 205 — 2
	Sequences and Series
	These are defined similar to the care of
	real numbers. That is:
D.G.	ition: A seprence { Zn} of complex
vejin	TION: A sepuence try of complex
	numbers has a limit Z if for every
	E 70 there exists a possitive intéger no
	•
	such that Zn-Z1 < E whenever n>n.
	This is written as: lim Zn = Z
	b ve say {Zh} ⁰⁰ conveyes to Z. If a
	sequence does not conveye me say it diverges.
	servence upes not convert me 1 m 1 aveiles.

Example: 1) Let $Z_n = \frac{1}{n^3} + i$: n = 1, 2, ...

 $\frac{S.7}{n}$ lim $\frac{Z_n}{n} = i$

2) The sequence $Z_n=1$: n-even

= -1 : n-odd

diverges.

Check: 1) The limit of a sequence if it

exists is unique b the sum & product

rules of convergent seprences hold.

2) It In = xn+iyn: n=1,2,... b == x+iy, then

lim Zn = Z iff lim xn = Z b lim yn = y.

	Series:
	~
Def:	du infinite series Zan of complex
	numbers converges to s if the sequence
	<u> </u>
	sn = Zai, of partial sums converges
	to s. If a series does not converge
	we say it diverges.
Check	: If Zn= 2n+iy, n=1,2, b s= x+iy,
	then $\sum_{n=1}^{\infty} Z_n = s$ iff $\sum_{n=1}^{\infty} \chi_n = \chi$ s $\sum_{n=1}^{\infty} \chi_n = y$,
	<u></u>
	i.e., $\sum_{n=1}^{\infty} Z_n = \sum_{n=1}^{\infty} \chi_n + i \sum_{n=1}^{\infty} \chi_n$, whenever
	1/51 N=1

the 2 series on the R: HS conveye or if the L: H-S

Exercise: It $\sum_{n=1}^{\infty} Z_n$ converges then $\lim_{n\to\infty} Z_n = 0$. This implies that the terms of a convergent series in G are bounded, i.e., 12n16M, + N718afixed real number M. Absolutely convergent series: Deft: A series ZZn, Zn= xn+iyn, N>,1 is said to be absolutely conveyent if the series of real numbers: $\frac{2}{2} |3n| = \frac{2}{2} \sqrt{3n^2 + y_n^2} \quad \text{conveyes.}$

-xenci	se: Absolute convergence -
	ion: Since Ixul & Jazz+yz &
	14n1 < 122+42
	we know from the comparison test
	in Calculus that the 2 series
	Z 12ml B Z 14ml must converge.
	Further, over R if a series converges
	absolutely then it is conveyent.
	Hence $\sum_{n=1}^{\infty} x_n = x + b = x + b = y + c = x + $
	21, y & R. This implies that $\sum_{n=1}^{\infty} Z_n$ conveyes.

Example: Show that $\sum_{n=0}^{\infty} Z^n = \frac{1}{1-z}$ if $\frac{1}{2} |x|^2$ S_{01}^{n} ; $S_{n+1} = 1 + 2 + \dots + 2^{n} = 1 - 2^{n+1}$; $2 \neq 1$. $\Rightarrow \lim_{N\to\infty} S_N = \lim_{N\to\infty} \frac{1-z^N}{1-z} = \bot$ (because lim 2" = 0 as 12/41). Tests for convergence: Comparison test: If $\sum_{n=1}^{\infty}$ by is absolutely convergent & if I ail & I bil for large i ten I an is absolutely connegent. Not: This is med in the exercise on page 5, for a real series

Recall linsup: Ginen a sequente of real numbers x1, x2, ..., x4, ... lin sup 2n = lin [sup {xn, xnn, --- 3] Note that the sequence in the R-H-S is decreasing. Further, linsup could be ± 00-If the limbly exists then it is equal to lim sup 2n. Examples: (1) The seguence 1,2,3,... has lin sup oo. 2) The sequence 1, 1/2, 1/3, ... has lin sup 0.

	3) The sequence 1,1,1,1, has linsup 1-									
E	Similarly define liminf.									
Ther	em: <u>Cauchy's root test</u> :									
	For a series 2 au of complex numbers,									
	let C = lin sup y [an]. Then the									
(series connerges absolutely if C<1 &									
	diverges if C>1.									
Net	This test is inconclusive for C=1.									

The	em: (Ratio test): For a series \(\frac{\infty}{2} a_n, \\ \n=1 \)
	let R = line sup and and and
	~= lining \ anti \. Then if
	R<1, the series converges absolutely
	r >1, the series diverges
	if an+ > 1 for all large w, the
	sevies also diveyes.

	Pouver Series:
	let 70 € l. d sevies of the form
	Z Cu (Z-Zo) ⁿ , where Cu E C is
	N=0
	called a power ceries around Zo.
There	en: Existence of Radius of Convergence:
	<u> </u>
	For a power series $\sum_{n=0}^{\infty} (z-z_0)^n$ define
	the number $R = 1$ husup Ticul
	N-300 (CM)
	where $R = D$ or ∞ if $\lim_{n \to \infty} \int_{-\infty}^{\infty} x = 0$ or
	where $R = 0$ or ∞ if $\limsup_{n \to \infty} \sqrt{ x } = 0$ or ∞
	respectively. Then
	• V

(i) if 17-Zo1 < R, the series conveyes
absolutely.
(ii) if 17-701>R, the series becomes
unbounded and so diverges.
(III) if OCYCR then the series conveyes
uniformly on {z/12-201< rg.
Hereover, R is the only number having
properties (i) b(ji).
Prof: bre tru voot test.
Renork: The real number R is Called
the hadins of convergence of the power server

Apply ratio test. lin | and = lin = 00

i.e, tris series converges everywhere.

2.
$$Z - \frac{z^3}{3} + \frac{z^5}{5} - \dots$$

Show that: Radius of convergence is 1.

(Both tests apply here.

Properties of power series: There can be added, substracted and multiplied in the obvious way. It can also be differentiated term by term in its domain of convergence. $f(z) = \sum_{n=0}^{\infty} C_n(z-a_0)^n$: $C_n \in C$, n=1/2, then, lim f(z+h)-f(z) $= \sum_{n=0}^{\infty} G_n \left(\lim_{h\to 0} \left(\frac{z-z_0+h}{h} \right)^n - \left(z-z_0 \right)^n \right)$ = Z n G (Z-Zo) 1-1. Note: Apply the not test to check that the differentiated power series has the same

radius of convergence as the original one. Proposition: Let $f(z) = Z(L(z-z_0)^n)$ have padins of convergence R>0. Then: (i) For each k71, the series [n(n-1) ... (n-k+1) Cn (Z-Zo)n-k n=k has radius of convergence R. (ii) The function of is infinitely differentiable on BR(20). Further, fk(z) is given by the series in(i) for all k>,1 and 17-20/2R. continue

(iii) For n > 0, $C_n = \int_{N_0}^{n} (z_0)$. Depri let RCC be a donnain. A function f: I - I is said to be analytic if it is locally given by a convergent power series, i.e., every ZoEIL has a neighborhood contained in I such that there exists a power series centered at Zo which converges to f(z) for all Z in that neighborhood. By the earlier proposition, analytic functions are infinitely differentiable.

If $f(z) = \sum_{n=1}^{\infty} C_n (z-z_0)^n$ then $C_n = \int_{n}^{n} (\overline{z_o})$. Thus, an analytic function is given by its Taylor series. We will see later that holomorphic \Rightarrow analytic. This will imply that once differentiable in C is always differentiable!

Special functions

I Exponential function:

Recall that in the last lecture me have

seen tent the power series in C:

 $\exp(z) = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$

converges for every ZEC. In analogy

with R we sometimes denote this by e²,

i.e., $e \times \rho(z) = e^{z}$: $z \in C$.

Properties of the exponential function:

 $1. \quad \frac{d}{d_{\overline{4}}}(e^2) = e^2$

Term by term différentiation of the power

$$\frac{d}{dt} \left(e^{2t} \right) = \sum_{N=1}^{\infty} \frac{1}{N} \frac{1}{N} = \sum_{N=1}^{\infty} \frac{1}{(N-1)!} = e^{2t}.$$

Then
$$g'(z) = e^{z} \cdot e^{-z} + e^{z}(-e^{-z}) = 0$$
.

$$=$$
 $e^{(\xi_1 + \xi_2)} = e^{\xi_1} \cdot e^{\xi_2} \cdot 4 \cdot \xi_2 \in \mathbb{C}$

In particular, 1 = e° = e²-² = e² : ZEC $e^{\frac{1}{2}} = \frac{1}{2}$ & $e^{\frac{3}{2}} + 0$: $\forall z \in \mathbb{C}$. Exercise: Consider the function [exp [1/0] Is exp one-one? onto? 4 exp (Z) = exp(Z) i.e., e= = e= This follows from the fact that all the Coefficients in the power series of et qual numbers.

Hence for any ZEC,

 $|e^{z}|^{2} = e^{z} \cdot e^{z} = e^{z+z} = \exp(2 \cdot \text{Re}(z))$.

In particular for $0 \in \mathbb{R}$,

 $|e^{i\theta}|^2 = | : as Re(i\theta) = 0.$

Analgons to R, me define:

 $\cos Z = 1 - \frac{Z^{2}}{2!} + \frac{Z^{4}}{4!} + \dots + (-1)^{n} \frac{Z^{2n}}{(2n)!} + \dots$

 $sin z = z - z^3 + z^5 + ... + (-1)^n z^{2n-1} + ...$

Exercises: 1. Show that sinz b cosz converge at

every point in C.

2. Show that: d (sin 2) = (os 2 & d(los 2) = -sin 2 (Use term bytern différentiation of the Rower Series). 3. Show that: sin2 + cos2 = 1.

Solution: $\frac{d}{dz}$ ($\sin^2 z + (\cos^2 z) = 2\sin z \cdot \cos z - 2\cos z \cdot \sin z$

= 0

... six 2 + cos z = a constant function.

Put 7=0 to get:

Sin2 = + cos2 = = 1.

4. Show that:

Sin (Z1 + Z2) = Sin Z1 (09 Z2 + C09 Z1 Sin Z2 &

(05 (21+22) = (05 21 cos 22 - sin 21. sin 22

5. Show that: $\sin z - \bot (e^{iz} - \tilde{e}^{iz})$ &

$$\log Z = \frac{1}{2} \left(e^{iZ} + e^{-iZ} \right)$$

Use this to get another proof that

6. Define tre hyperbolic sine & cosine functions:

Sinh
$$Z = Z + \frac{Z^3}{3!} + \cdots + \frac{Z^{2n+1}}{2n+1!} + \cdots$$

$$\cosh z = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots$$

Find the radius of convergence of the above

Power series. Show that;

7. Show that: eiz = cusz + isin z : ZEF

(me exercise 5!).

Note By exercise 7. above, ue see that

there is a natural relation between

tu complex exponential function & the

complex trigonometric functions sin & cos.

Such a relation is not detected in

real analysis!

P. Let Z = x+iy & C. Show that

le2 = exp (Re(Z)) lo org (eZ) = Im(Z).

Me: et = extiy = ex. eig

Periodicity of ez

For
$$o \in \mathbb{R}$$
, we have:

$$e^{i(\theta+2\pi n)}$$
 = $\cos(\theta+2\pi n)$ + $i\sin(\theta+2\pi n)$).

Conversely, if
$$e^{\frac{z}{L}} = e^{\frac{z}{L} + C}$$
: for some $c \in C$

the real line is one-one)

⇒ c = i0 for some 0 ∈ R. Further, $1=e^{c}=e^{i\theta}=\cos\theta+i\sin\theta$ ⇒ 0 = 2 Tn, for some integer n-Note: This periodicity of the complex exp function is not present in the real exponential function.

Exercises: Show that sinz is unbounded on C. Compare with the real case! Sin - is bounded on the real axis (recall MA105 Calculus) is unbounded on the maginary axis. (see below for a proof) For y ER consider $\sin(iy) = e^{-y} - e^{y}$. for y < 0, show that $e^{-y} - e^{y}$ is unbounded.

Definition: A power series Zanzⁿ which converges for all values $z \in C$ defines an analytic function on & called an entire function. Example: Polynomials with complex coefficients, e², Sin Z, cos Z are all entire functions-Theorem: (Liouville) & bounded entire function is a constant function. Prof: Will be proved later using "integration".

Exerc	ise: A non-constant complex polynomial
	assumes all complex values i.e., its
	hange = C.
ØJ	what is the name of the map
	C→C 9 Is it C\{o}} Z → e [₹]
Thur	m: (Little Picard's Theorem):
	du entire function which misses two
	complex values is a constant.
Eva	uple: Show that sin Z does not wiss
	any complex value.

	We sint = \perp (e^{it} - e^{it})										
	use	<u> </u>	int	=	<u></u>	(ett	- ē	=)			
					2i						
Exenci	se.	Dote	L ensiv	Q	Ithe	Zens	res	4	sint	& cos	足.
								7			
								•			

Logarithm

We have seen earlier that ez is not

a one-one function on C- Even so, me

know that it is so, on some subsets

like RCG. We would like to

construct au inverse function viz a

"leg" on such subsets (if possible)

which is analytic, i.e, me want to

define log W so that whenever

 $z = log \omega$ then $\omega = e^{z}$.

Clearly, as $e^{Z} \neq 0$, we cannot define log 0!

Z = x + iy $\Rightarrow w = e^{Z} = e^{x + iy} = e^{x} \cdot e^{iy}$ $\Rightarrow |w| = e^{x}$ $\Rightarrow y = arg(w) + 2Tn;$ for some integer n.

Hence solutions for $w=e^{\frac{z}{4}}$ are given by:

{ log |w| + i(arg (w) + 2th) | n is any?; integer }-

Here log IvI is the usual real legarithm

defined using the real power series for

instance.

Definition: If \mathbb{Z} is an open connected subset of \mathbb{Z} by \mathbb{Z} is a continuous function such that $\mathbb{Z} = \exp f(\mathbb{Z})$; $\mathbb{Z} \in \mathbb{Z}$

then f is said to be a branch of the logani thm. Note: 0 & Sl (why 9) Roposition: If ICC is open & connected & J is a branch of log & on I then the other branches of log Z are the functions f(z) + 2Thi: n-an intger. Prof: First vote that if f is a given branch of log E & n is any integer then the function g(Z):= f(Z) + 2Thi is also a branch as exp(g(Z)) = exp(f(Z)) = Z.

Conversely, if I & 9 are branches of log Z then for each ZEIL; $f(z) = g(z) + 2\pi i n_z : for som$ integer nz depending on Z. Clearly, the function $h(t) := n_2 = f(t) - g(t)$ is continuous on I and its image h(r) C Z-tre set of integers. As I is conveited, h(I) is converted & hence a constant. (Use: Continuous ;mape of a connected set is connected).

Hence I a fixed integer n such that $f(z) = g(z) + 2\pi in : for every <math>z \in L$ as required. · We will usually work with a fixed branch of log 2 Called the Principal branch defined as follows: Let St = C \ {ZER/Z603 i.e., complex plane minus the regative real axis. Clearly, It is open & connected. For Z∈IL, Z = |Z|.e;0 : -T<0<T = v.ei0

Define: $f(re^{i\theta}) = legr + i\theta : -\pi < \theta < \pi$ = lop | Z| + i Arg (Z) is a branch of log Z on I. Infact, f is analytic & its derivative is 1-

We can ure log to define some other functions like the inverse trigonometric functions Example: Let W= sint Z Then $Z = \sin w = \frac{e^{iw} - e^{iw}}{2i}$ Solving this quadratic equation, we get $e^{i\omega} = i\overline{t} + \sqrt{1-\overline{t}^2}$ Thuy, $\sin^2 Z = \int \log (iZ + \sqrt{1-Z^2})$. a) Determine cost 2 la cosh Z

Exercises: Recall: C \{03 - ,π] Z - Arg (2) Show that Arg (Z) is discontinuous at every point on the regative real axis. Choose any point, say I, in the regative real axis. As Z -> + ferom the upper half plane, we have Arg (Z) -> T. As 7-> 1 from the lower half plane, we have Arg (Z) -> -T.

Hence Arg (2) is discontinuous on the repative real axis = { 2 xiy / x < 0 by=0}. (helate to arctary) Check: Arg (E) = 2. Show that log | 7 | is a harmonic function on the plane except at z=0 Find a harmonic conjugate to leg [7] in a \ \ \ \ x + iy / x < 0 & y = 03. Can me find such a harmonic conjugate on 6 12032

$$\frac{\text{Sol}^{2}}{2} \log |Z| = \frac{1}{2} \log (x^{2} + y^{2}) : Z = x + iy$$

het
$$u(x,y) = \frac{\log(x^2+y^2)}{2}$$

$$Ux = \frac{x}{x^2 + y^2}$$
; $U_{xx} = \frac{-x^2 + y^2}{(x^2 + y^2)^2}$; $(x,y) \neq (q, \sigma)$

To find its conjugate use CR-equations.

We have:
$$v_y = \frac{x}{x^2 + y^2}$$
 by $v_x = \frac{-y}{x^2 + y^2}$

Integrate with suspect to y to get:

$$V(x,y) = \operatorname{anctan}(\frac{y}{x}) + f(x) : \text{ for some}$$

$$function f.$$

Differentiate with suspect to x to get:

$$v_x = \left(\frac{1}{1+(\frac{y}{x}^2)}, \left(\frac{-y}{x^2}, \frac{1}{x^2}\right)\right) + f'(x)$$

$$\Rightarrow \frac{-y}{x^2 + y^2} = \frac{-y}{x^2 + y^2} + f'(x)$$
i.e., $f'(x) = 0$ i.e., $f(x) = 0$, a constant.

$$\Rightarrow V(x,y) = \operatorname{arctan}(\frac{y}{x}) + 0$$
 is a

harmonic conjugate of u .

Note: The harmonic conjugate vo in the

earlier page is nottring but Arg (Z).

Thus left = lef |Z| + i Ang Z is

3. Show that $\frac{d}{dz}(\log z) = \frac{1}{z}$.

Sol": leg Z = leg 121 + i Arg Z = u +iv

 $\Rightarrow \frac{d}{dz} (\log z) = 4z + iv_x$

= Ux - illy

 $U(x,y) = leg(z) = \frac{1}{2} ln(x^2 + y^2)$

 $\Rightarrow U_{x} = \frac{x}{x^{2} + y^{2}}; U_{y} = \frac{y}{x^{2} + y^{2}}$

$$\frac{d}{dz}\left(\log z\right) = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2} = \frac{x-iy}{x^2+y^2}$$

$$=\frac{1}{x_{1}}$$

Power functions:

For a ∈ C define Z = exp(algZ).

leg z being multivalued > z a is multivaluel

Taking tre principal branch of log Z in

the abone definition, we get the

principal branch of Za.

This is habonosphic on C\{x+iy/x≤0byzo}

$$\frac{d}{dz}(z^{\alpha}) = \frac{d}{dz}(\exp(\alpha \log z))$$

Thus,
$$\frac{d}{d\xi}(\xi^{\alpha}) = \alpha \cdot \xi^{\alpha-1}$$
.

where bette sides are the principal branches.

=
$$\exp(-T)$$
 = e^{-T} $\in \mathbb{R}!$