A Refresher on Probabilities, K-means Clustering and Gaussian Mixture Models

Gary Becigneul, Paulina Grnarova

April 27-28, 2017

Overview

A Refresher on Probabilities

K-means Clustering

Gaussian mixture model

Sample spaces and probabilities

- ightharpoonup A sample space Ω is the set of outcomes of a random experiment.
- ▶ Subsets $A \subseteq \Omega$ are called events.
- For example, consider the experiment of tossing a fair coin twice.
 - ▶ Sample space: $\Omega = \{HH, HT, TH, TT\}$
 - ▶ Event of at least one "head" occurring: $A = \{HH, HT, TH\}$.
- ▶ A probability distribution is a function that assigns a real number $\Pr[A]$ to each event $A \subseteq \Omega$.

Random variables

- Usually, we do not deal directly with sample spaces. Instead, we define random variables and probability distributions on those.
- ightharpoonup A random variable is a function $X:\Omega\to\mathbb{R}$.
- ightharpoonup For example, if X:= "the number of heads in two coin tosses", then

$$X(HH) = 2$$

$$X(HT) = 1$$

$$X(TH) = 1$$

$$X(TT) = 0$$

Probabilities of random variables

- ▶ If we denote by \mathcal{X} the set of values a random variable X can take, we can define probabilities directly on \mathcal{X} .
- ▶ In the above example, $\mathcal{X} = \{0, 1, 2\}$ and we define

$$\begin{split} \Pr[X = 0] &:= \Pr[\{TT\}] \\ \Pr[X = 1] &:= \Pr[\{HT, TH\}] \\ \Pr[X = 2] &:= \Pr[\{HH\}] \end{split}$$

▶ In practice, we often completely forget about the sample space and work only with random variables.

Discrete random variables

- X is called a discrete random variable if X is a finite or countably infinite set.
- Examples:
 - $\mathcal{X} = \{0, 1\}$
 - $\mathcal{X} = \mathbb{N}$
 - $\mathcal{X} = \mathbb{N}^d$
- ► The corresponding probability distribution

$$P(x) := \Pr[X = x]$$

is called a probability mass function.

- ▶ Non-negativity: $P(x) \ge 0, \ \forall x \in \mathcal{X}$
- Normalization: $\sum_{x \in \mathcal{X}} P(x) = 1$

Continuous random variables

- ➤ X is called a continuous random variable if X is an uncountably infinite set.
- Examples:
 - $\mathcal{X} = [0, 1]$
 - $\mathcal{X} = \mathbb{R}$
 - $\mathcal{X} = \mathbb{R}^d$
- ▶ The corresponding probability distribution p(x) is called a probability density function.
- ▶ Non-negativity: $p(x) \ge 0, \ \forall x \in \mathcal{X}$
- ▶ Normalization: $\int_{\mathcal{X}} p(x)dx = 1$

The meaning of density

Important: For continuous random variables

$$p(x) \neq \Pr[X = x] = 0$$

➤ To acquire a probability, we have to integrate p over the desired set

$$\Pr[a < X < b] = \int_a^b p(x)dx$$

Joint distributions

For two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$, their joint distribution is defined as

$$P(x,y) := \Pr[X = x, Y = y]$$

- Non-negativity: $P(x,y) \ge 0$
- Normalization: $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x, y) = 1$
- For example, assume we throw two fair six-sided dice and define X := "the number on the first die" and Y := "the number on the second die".
 - $\mathcal{X} = \mathcal{Y} = \{1, 2, 3, 4, 5, 6\}$
 - $P(6,6) = \Pr[X = 6, Y = 6] = \frac{1}{36}$

Marginal and conditional distributions

Let P(x,y) be a joint distribution of random variables X and Y.

▶ The marginal distribution of X is defined as

$$P(x) := \Pr[X = x] := \sum_{y \in \mathcal{V}} P(x, y)$$

► The conditional distribution of X given that Y has a known value y is defined as

$$\begin{split} P(x|y) &:= \Pr[X = x | Y = y] \\ &:= \frac{P(x,y)}{P(y)} \qquad \text{(defined if } P(y) > 0\text{)} \end{split}$$

Note that for any fixed y, P(x|y) is a distribution over x, i.e.

$$\sum_{x \in \mathcal{X}} P(x|y) = 1, \ \forall y \in \mathcal{Y}$$

The chain rule

▶ By definition of conditional distributions, we can always write a joint distribution of *X* and *Y* as a product of conditionals:

$$P(x,y) = P(x|y)P(y)$$

We can do the same for an arbitrary number of random variables X_1, \ldots, X_n :

$$P(x_1,...,x_n) = P(x_1|x_2,...,x_n)...P(x_{n-1}|x_n)P(x_n)$$

Consistency of marginals and conditionals:

$$\sum_{y \in \mathcal{Y}} P(x,y) = \sum_{y \in \mathcal{Y}} P(y|x) P(x) \qquad \text{(chain rule)}$$

$$= P(x) \sum_{y \in \mathcal{Y}} P(y|x)$$

$$= P(x) \qquad \text{(normalization)}$$

Bayes' rule

▶ For two random variables X and Y, by definition of the conditional distribution of X given Y:

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Also, by the chain rule:

$$P(x,y) = P(y|x)P(x)$$

► Combining the above we get Bayes' rule:

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Independence

► Two random variables X and Y are called independent, if knowing the value of X does not give any additional information about the distribution of Y (and vice versa):

$$P(x|y) = P(x)$$

$$\Leftrightarrow P(y|x) = P(y)$$

► Equivalently, *X* and *Y* are independent if their joint distribution factorizes:

$$P(x,y) = P(x|y)P(y) = P(x)P(y)$$

- ► IID := Independent and Identically Distributed
- ▶ Random variables $X_1, ..., X_n$ are called IID if
 - ▶ Each of them has the same (marginal) distribution
 - ▶ They are mutually independent
- ▶ Note that if $X_1, ..., X_n$ are IID, then

$$P(x_1, ..., x_n) = P(x_1)...P(x_n)$$
$$= \prod_{i=1}^{n} P(x_i)$$

Expectation

▶ The expectation of a random variable *X* is defined as

$$\mu_X := \mathrm{E}[X] := \sum_{x \in \mathcal{X}} x P(x)$$

- Note that the expectation $\mathrm{E}[X]$ is not the same as the most likely value $\max_{x \in \mathcal{X}} P(x)$.
- Can also be defined for a function f of X:

$$\mathrm{E}[f(X)] := \sum_{x \in \mathcal{X}} f(x) P(x)$$

Variance

▶ The variance of a random variable X is defined as

$$Var[X] := E[(X - \mu_X)^2] := \sum_{x \in \mathcal{X}} (x - \mu_X)^2 P(x)$$

- $ightharpoonup Var[X] \ge 0$
- ► The standard deviation of *X* is defined as

$$\sigma_X := \sqrt{\operatorname{Var}[X]}$$

Multidimensional moments

Let $X = (X_1, \dots, X_n)$ be a vector of random variables.

▶ The expectation of X is defined as

$$E[\boldsymbol{X}] := (E[X_1], \dots, E[X_n])$$

▶ The covariance of variables X_i and X_j is defined as

$$Cov[X_i, X_j] := E[(X_i - \mu_{X_i})(X_j - \mu_{X_j})]$$

- $ightharpoonup \operatorname{Cov}[X_i, X_i] = \operatorname{Var}[X_i]$
- $ightharpoonup X_i, X_j \text{ independent } \Rightarrow \operatorname{Cov}[X_i, X_j] = 0$
- ▶ $Cov[X_i, X_j] > 0$ roughly means that X_i and X_j increase and decrease together.
- ▶ $Cov[X_i, X_j] < 0$ roughly means that when X_i increases X_j decreases (and vice versa).

Covariance matrix

For a random vector $X = (X_1, ..., X_n)$ we define its $n \times n$ covariance matrix as follows:

$$\Sigma_{\boldsymbol{X}} = \begin{bmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}[X_1, X_2] & \cdots & \operatorname{Cov}[X_1, X_n] \\ \operatorname{Cov}[X_2, X_1] & \operatorname{Var}[X_2] & \cdots & \operatorname{Cov}[X_2, X_n] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_n, X_1] & \operatorname{Cov}[X_n, X_2] & \cdots & \operatorname{Var}[X_n] \end{bmatrix}$$

- ▶ The diagonal elements are the variances of each random variable $Cov[X_i, X_i] = Var[X_i]$.
- $\Sigma_{\boldsymbol{X}}$ is symmetric, because $Cov[X_i, X_j] = Cov[X_j, X_i]$.
- $ightharpoonup \Sigma_{m{X}}$ is positive semi-definite.
- ▶ What does it mean if Σ_X is diagonal?

Gaussian distribution (1-D)

- ightharpoonup Random variable X with $\mathcal{X} = \mathbb{R}$
- Probability density function

$$p(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

ightharpoonup $\mathrm{E}[X] = \mu, \ \mathrm{Var}[X] = \sigma^2$

Gaussian Distribution (n-D)

- Random vector $\boldsymbol{X} = (X_1, \dots, X_n)$ with $\mathcal{X} = \mathbb{R}^n$
- Probability density function

$$p(\boldsymbol{x}) := \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

- ightharpoonup $\mathrm{E}[X] = \mu$
- $ightharpoonup \Sigma$ is the covariance matrix of \boldsymbol{X} and $|\Sigma|$ is its determinant.

The clustering problem

- ▶ Consider N data points in a D-dimensional space, i.e. each data point is a D-dimensional vector \mathbf{x}_n , n = 1, ..., N.
- ▶ Our goal is to partition the data set into *K* clusters.
- In other words, find K representative vectors (centroids) u_1, \ldots, u_K , one for each cluster.
- ▶ Data point x_n belongs to cluster k if the Euclidean distance between x_n and u_k is smaller than the distance to any other centroid.

K-means cost function

Objective

Minimize the following cost function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{k,n} \| \boldsymbol{x}_n - \boldsymbol{u}_k \|_2^2.$$

- ▶ Data points: $x_1, \dots, x_N \in \mathbb{R}^D$
- $lackbox{\sf Centroids: } oldsymbol{u}_1,\ldots,oldsymbol{u}_K\in\mathbb{R}^D$
- lacksquare Assignments: $oldsymbol{z}_1,\dots,oldsymbol{z}_N\in\mathbb{R}^K$ (with $z_{k,n}\coloneqq(oldsymbol{z}_n)_k$)

Hard assignment constraints

Each point x_n is assigned to exactly one cluster:

- $z_1, \ldots, z_N \in \{0, 1\}^K$
- $\sum_{k=1}^{K} z_{k,n} = 1, \ \forall n \in \{1, \dots, N\}$

K-means algorithm

- 1. Initialize centroids $oldsymbol{u}_1^{(0)},\dots,oldsymbol{u}_K^{(0)}$ and $t\leftarrow 1.$
- 2. Cluster assignment.

$$\begin{split} k^*(\boldsymbol{x}_n) &= \operatorname*{argmin}_{k \in \{1, \dots, K\}} \left\{ \|\boldsymbol{x}_n - \boldsymbol{u}_k^{(t-1)}\|_2^2 \right\}, \ \forall n \in \{1, \dots, N\} \\ z_{j,n}^{(t)} &= \left\{ \begin{array}{l} 1 & \text{, if } j = k^*(\boldsymbol{x}_n) \\ 0 & \text{, otherwise} \end{array} \right., \ \forall n \in \{1, \dots, N\} \end{split}$$

3. Centroid update.

$$\boldsymbol{u}_{k}^{(t)} = \frac{\sum_{n=1}^{N} z_{k,n}^{(t)} \boldsymbol{x}_{n}}{\sum_{n=1}^{N} z_{k,n}^{(t)}}, \ \forall k \in \{1, \dots, K\}$$

4. If termination condition (e.g. $\|\boldsymbol{u}_k^{(t)} - \boldsymbol{u}_k^{(t-1)}\|_2^2 < \epsilon$, $\forall k$) is not met, $t \leftarrow t+1$ and go to step 2.

Gaussian Mixture Models - Assumption

Assume data is generated from a weighted mixture of K Gaussian distributions:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where $\pi_k \geq 0, \sum_{k=1}^K \pi_k = 1$.

Generative probabilistic model

K mixture components with parameters (for k = 1, ..., K):

- $m{\mu}_k$: mean of the k-th component (similar to centroid $m{u}_k$ in K-means)
- Σ_k : covariance of the k-th component
- \blacktriangleright π_k : mixture weight of the k-th component

Gaussian Mixture models - Objective

Same task, different objective

The likelihood of all the data is:

$$p(\boldsymbol{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right)$$

Maximize the log-likelihood of the Gaussian mixture model:

$$L(\boldsymbol{X}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) := \ln p(\boldsymbol{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}.$$

Which is really hard to optimize with respect to $oldsymbol{\mu}_k$ and $oldsymbol{\Sigma}_k$

The EM algorithm - Overview

- 1. Initialize $\pi_k^{(0)}$, $\boldsymbol{\mu}_k^{(0)}$, $\boldsymbol{\Sigma}_k^{(0)}$ for $k=1,\ldots,K$ and $t\leftarrow 1$.
- 2. **E-step.** Evaluate responsibilities using current parameters:

$$\gamma_{nk} := \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{j=1}^K \pi_j^{(t-1)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j^{(t-1)}, \boldsymbol{\Sigma}_j^{(t-1)})}$$

3. **M-step.** Update parameters using new responsibilities:

$$\mu_k^{(t)} := \frac{\sum_{n=1}^N \gamma_{nk} x_n}{\sum_{n=1}^N q_{kn}}
\Sigma_k^{(t)} := \frac{1}{\sum_{n=1}^N \gamma_{nk}} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k^{(t)}) (x_n - \mu_k^{(t)})^T
\pi_k^{(t)} := \frac{1}{N} \sum_{n=1}^N \gamma_{nk}$$

4. If termination condition is not met, t := t + 1 and go to step 2.

K-means vs. mixture models

- ► *K*-means
 - Hard cluster assignments
 - All clusters are the same (in terms of shape, weight, etc.)
 - Fast runtime (can be used to initialize a mixture model)
- Gaussian mixture models
 - ightharpoonup Soft cluster assignments \leftrightarrow probabilities of assignments
 - lacktriangle Each cluster has its own covariance $(oldsymbol{\Sigma_k})$ and "weight" (π_k)
 - ► Slower runtime

K-Means: Initial configuration

K-Means: First E-step

K-Means: First M-Step

K-Means: Second E-Step

K-Means: Second M-Step

GMM: Initial configuration

GMM: First E-Step

GMM: First M-Step

GMM: Two EM cycles

GMM: Five EM cycles

