

planetmath.org

Math for the people, by the people.

properties for measure

Canonical name PropertiesForMeasure
Date of creation 2013-03-22 13:45:28
Last modified on 2013-03-22 13:45:28

Owner matte (1858) Last modified by matte (1858)

Numerical id 8

Author matte (1858)
Entry type Theorem
Classification msc 60A10
Classification msc 28A10

Theorem [?, ?, ?, ?] Let (E, \mathcal{B}, μ) be a measure space, i.e., let E be a set, let \mathcal{B} be a σ -algebra of sets in E, and let μ be a measure on \mathcal{B} . Then the following properties hold:

- 1. Monotonicity: If $A, B \in \mathcal{B}$, and $A \subset B$, then $\mu(A) \leq \mu(B)$.
- 2. If A, B in $\mathcal{B}, A \subset B$, and $\mu(A) < \infty$, then

$$\mu(B \setminus A) = \mu(B) - \mu(A).$$

3. For any A, B in \mathcal{B} , we have

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

4. Subadditivity: If $\{A_i\}_{i=1}^{\infty}$ is a collection of sets from \mathcal{B} , then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mu(A_i).$$

5. Continuity from below: If $\{A_i\}_{i=1}^{\infty}$ is a collection of sets from \mathcal{B} such that $A_i \subset A_{i+1}$ for all i, then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$$

6. Continuity from above: If $\{A_i\}_{i=1}^{\infty}$ is a collection of sets from \mathcal{B} such that $\mu(A_1) < \infty$, and $A_i \supset A_{i+1}$ for all i, then

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$$

Remarks In (2), the assumption $\mu(A) < \infty$ assures that the right hand side is always well defined, i.e., not of the form $\infty - \infty$. Without the assumption we can prove that $\mu(B) = \mu(A) + \mu(B \setminus A)$ (see below). In (3), it is tempting to move the term $\mu(A \cap B)$ to the other side for aesthetic reasons. However, this is only possible if the term is finite.

Proof. For (1), suppose $A \subset B$. We can then write B as the disjoint union $B = A \cup (B \setminus A)$, whence

$$\mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A).$$

Since $\mu(B \setminus A) \geq 0$, the claim follows. Property (2) follows from the above equation; since $\mu(A) < \infty$, we can subtract this quantity from both sides. For property (3), we can write $A \cup B = A \cup (B \setminus A)$, whence

$$\mu(A \cup B) = \mu(A) + \mu(B \setminus A)$$

$$\leq \mu(A) + \mu(B).$$

If $\mu(A \cup B)$ is infinite, the last inequality must be equality, and either of $\mu(A)$ or $\mu(B)$ must be infinite. Together with (1), we obtain that if any of the quantities $\mu(A), \mu(B), \mu(A \cap B)$ or $\mu(A \cup B)$ is infinite, both sides in the equation are infinite and the claim holds. We can therefore without loss of generality assume that all quantities are finite. From $A \cup B = B \cup (A \setminus B)$, we have

$$\mu(A \cup B) = \mu(B) + \mu(A \setminus B)$$

and thus

$$2\mu(A \cup B) = \mu(A) + \mu(B) + \mu(A \setminus B) + \mu(B \setminus A).$$

For the last two terms we have

$$\mu(A \setminus B) + \mu(B \setminus A) = \mu((A \setminus B) \cup (B \setminus A))$$
$$= \mu((A \cup B) \setminus (A \cap B))$$
$$= \mu(A \cup B) - \mu(A \cap B)$$

where, in the second equality we have used properties for the http://planetmath.org/SymmetricD set difference, and the last equality follows from property (2). This completes the proof of property (3). For property (4), let us define the sequence $\{D_i\}_{i=1}^{\infty}$ as

$$D_1 = A_1, \quad D_i = A_i \setminus \bigcup_{k=1}^{i-1} A_k.$$

Now $D_i \cap D_j = \emptyset$ for i < j, so $\{D_i\}$ is a sequence of disjoint sets. Since $\bigcup_{i=1}^{\infty} D_i = \bigcup_{i=1}^{\infty} A_i$, and since $D_i \subset A_i$, we have

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} D_i)$$

$$= \sum_{i=1}^{\infty} \mu(D_i)$$

$$\leq \sum_{i=1}^{\infty} \mu(A_i),$$

and property (4) follows.

TODO: proofs for (5)-(6).

References

- [1] G.B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed, John Wiley & Sons, Inc., 1999.
- [2] A. Mukherjea, K. Pothoven, *Real and Functional analysis*, Plenum press, 1978.
- [3] D.L. Cohn, Measure Theory, Birkhäuser, 1980.
- [4] A. Friedman, Foundations of Modern Analysis, Dover publications, 1982.