Lecture 1 - Introduction

Neural Information Processing Systems (NIPS) is one of the top machine learning conferences in the world. It covers a broad range of topics, from deep learning and computer vision to cognitive science and reinforcement learning.

You may found an archive with all papers from NIPS 2015 at https://www.kaggle.com/benhamner/nips-2015-papers). Apart from the papers in pdf format, the archive contains three CSV files and one SQLite database (with three tables being copies of the CVS files)

At https://github.com/benhamner/nips-2015-papers) you will find the Python code used to generate this database.

Papers.csv

Each row in this file corresponds to one of 403 papers published at the conference. It includes the following fields:

- Id unique identifier for the paper
- Title title of the paper
- **EventType** type of the contribution (poster, oral, spotlight)
- PdfName filename for the PDF document
- **Abstract** text for the abstract ("scraped" from NIPS website)
- PaperText raw text from the PDF document (created with the pdftotext tool)

Authors.csv

- Id unique identifier for the author
- Name author's name

PaperAuthors.csv

This file links papers to their corresponding authors:

- Id unique identifier
- · PaperId id for the paper
- Authorld id for the author

Task 1 - find similar papers basing on their abstracts and full texts

Steps:

- 1. Find keywords in each paper by making use of tf-idf.
- 2. Use the knn model to detect similar papers.

Preparation of data:

- 1. Remove control codes like \n or \x from text (replace them by white spaces).
- 2. Convert everything to unicode (not necessary in Python 3).
- 3. Change text to lower case.

Digression 1: tf-idf (tf – term frequency, idf – inverse document frequency)

- a numerical statistics that is intended to reflect how important a word is to a document in a collection or corpus
- often used as a weighting factor in information retrieval, text mining, and user modeling
- the tf-idf value increases proportionally to the number of times a word appears in the document, but is often offset by the frequency of the word in the corpus, which helps to adjust for the fact that some words appear more frequently in general
- · one of the most popular term-weighting schemes
 - about 80% of text-based recommender systems in the domain of digital libraries use tf-idf
- variations of the tf-idf weighting scheme are often used by search engines as a central tool in scoring and ranking a document's relevance given a user query
- tf-idf can be successfully used for stop-words filtering in various subject fields including text summarization and classification
- one of the simplest ranking functions is computed by summing the tf-idf for each query term

The value of **tf-idf** is a product of two statistics, term frequency and inverse document frequency:

$$(tf-idf)_{i,j}=tf_{i,j} imes idf_i$$

The **term frequency** $tf_{i,j}$ may be determined in many ways. One of the choices is to use the raw count of a term in a document normalized by the sum of frequencies of all terms in the document:

$$tf_{i,j} = rac{n_{i,j}}{\sum_k n_{k,j}}$$

Here, $n_{i,j}$ is the number of occurences of term t_i in the document d_j .

The **inverse document frequency** is a measure of how much information the word provides, that is, whether the term is common or rare across all documents. It is the logarithmically scaled inverse fraction of the documents that contain the word, obtained by dividing the total number of documents by the number of documents containing the term, and then taking the logarithm of that quotient:

$$idf_i = \log rac{|D|}{|\{d: t_i \in d\}|}$$

- |D| total number of documents
- ullet $|\{d:t_i\in d\}|$ number of documents including the term t_i at least once.

Digression 2: knn model (*k nearest neighbours*) ¶

- a non-parametric method used for classification and regression in pattern recognition
- the input consists of the k closest training examples in the feature space
- the output depends on whether k-NN is used for classification or regression:
 - in k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor in k-NN regression, the output is the property value for the object. This value is the average of the values of its k nearest neighbors
- a type of instance-based learning, or lazy learning, where the function is only approximated locally and all computation is deferred until classification
- one of the simplest machine learning algorithms.
- neighbors are taken from a set of objects for which the class (for k-NN classification) or the object property value (for k-NN regression) is known (the training set for the algorithm, though no explicit training step is required)
- · sensitive to the local structure of the data

Settings:

- we are given a labelled dataset consiting of training observations (x, y). Here, x denotes a feature (attribute) and y is the target (label, class)
- given an unseen observation C with a set of attributes x we would like to predict the corresponding output y
- ullet more formally, our goal is to learn a function h:X o Y

Algorithm:

- ullet compare the attributes of C with the attributes in the labelled dataset
- choose k most similar instances from the labelled dataset. Similarity is defined according to a distance metric between two data points (a popular choice is the Euclidian distance). k is a positive integer
- assing C to the most common class among the k neighbors

Importing of the required modules

In [1]:

Reading the data

In [2]:

```
papers_data = pd.read_csv('data/Papers.csv')
authors_data = pd.read_csv('data/Authors.csv')
authorID_data = pd.read_csv('data/PaperAuthors.csv')
```

In [3]:

papers_data

Out[3]:

	Id	Title	EventType	PdfName	Abstract	PaperText
0	5677	Double or Nothing: Multiplicative Incentive Me	Poster	5677-double-or- nothing- multiplicative- incentiv	Crowdsourcing has gained immense popularity in	Double or No Multiplicative ¹ M
1	5941	Learning with Symmetric Label Noise: The Impor	Spotlight	5941-learning- with-symmetric- label-noise-the- i	Convex potential minimisation is the de facto	Learning with Symmetric La The\nImpo
2	6019	Algorithmic Stability and Uniform Generalization	Poster	6019-algorithmic- stability-and- uniform- general	One of the central questions in statistical le	Algorithmic S and Uniform Generalizati
3	6035	Adaptive Low- Complexity Sequential Inference f	Poster	6035-adaptive- low-complexity- sequential- infere	We develop a sequential low-complexity inferen	Adaptive Low Complexity S Inference f
4	5978	Covariance- Controlled Adaptive Langevin Thermo	Poster	5978-covariance- controlled- adaptive- langevin-t	Monte Carlo sampling for Bayesian posterior in	Covariance-C Adaptive Langevin\nTh
5	5714	Robust Portfolio Optimization	Poster	5714-robust- portfolio- optimization.pdf	We propose a robust portfolio optimization app	Robust Portfo Optimization\ Han\nDep
6	5937	Logarithmic Time Online Multiclass prediction	Spotlight	5937-logarithmic- time-online- multiclass- predic	We study the problem of multiclass classificat	Logarithmic T Online Multic prediction\
7	5802	Planar Ultrametrics for Image Segmentation	Poster	5802-planar- ultrametrics-for- image- segmentatio	We study the problem of hierarchical clusterin	Planar Ultram Image Segmentation
8	5776	Expressing an Image Stream with a Sequence of	Poster	5776-expressing- an-image- stream-with-a- sequenc	We propose an approach for generating a sequen	Expressing a Stream with a Sequence of
9	5814	Parallel Correlation Clustering on Big Graphs	Poster	5814-parallel- correlation- clustering-on-big- gr	Given a similarity graph between items, correl	Parallel Corre Clustering on Graphs\

	Id	Title	EventType	PdfName	Abstract	PaperText
10	5638	Faster R-CNN: Towards Real- Time Object Detecti	Poster	5638-faster-r- cnn-towards-real- time-object-det	State-of-the- art object detection networks dep	Faster R-CNI Towards Rea Object Detec
11	5971	Space-Time Local Embeddings	Poster	5971-space-time- local- embeddings.pdf	Space-time is a profound concept in physics. T	Space-Time I Embeddings\ Sun1* Jun V
12	5830	A Convergent Gradient Descent Algorithm for Ra	Poster	5830-a- convergent- gradient-descent- algorithm-f	We propose a simple, scalable, and fast gradie	A Convergen Descent Algo for\nR
13	6002	Smooth Interactive Submodular Set Cover	Poster	6002-smooth- interactive- submodular-set- cover.pdf	Interactive submodular set cover is an interac	Smooth Intera Submodular ! Cover\nYison
14	5780	Galileo: Perceiving Physical Object Properties	Poster	5780-galileo- perceiving- physical-object- proper	Humans demonstrate remarkable abilities to pre	Galileo: Perci Physical Obje Properties
15	5766	On the Pseudo- Dimension of Nearly Optimal Auct	Spotlight	5766-on-the- pseudo- dimension-of- nearly-optimal	This paper develops a general approach, rooted	The Pseudo-I of Near-Optin Auctions\
16	5790	Unlocking neural population nonstationarities	Poster	5790-unlocking- neural- population-non- stationar	Neural population activity often exhibits rich	Unlocking ne population nc stationarity\n.
17	5973	Bayesian Manifold Learning: The Locally Linear	Poster	5973-bayesian- manifold- learning-the- locally-li	We introduce the Locally Linear Latent Variabl	Bayesian Ma Learning:\nTh Linea
18	5864	Color Constancy by Learning to Predict Chromat	Spotlight	5864-color- constancy-by- learning-to- predict-ch	Color constancy is the recovery of true surfac	Color Consta Learning to Predict\nChrc
19	5681	Fast and Accurate Inference of Plackett–Luce M	Poster	5681-fast-and- accurate- inference-of- plackettlu	We show that the maximum- likelihood (ML) estim	Fast and Acc Inference of F Luce M

	Id	Title	EventType	PdfName	Abstract	PaperText
20	5753	Probabilistic Line Searches for Stochastic Opt	Oral	5753- probabilistic-line- searches-for- stochasti	In deterministic optimization, line searches a	Probabilistic I Searches\nfo Stochastic O _I
21	5857	Inferring Algorithmic Patterns with Stack-Augm	Spotlight	5857-inferring- algorithmic- patterns-with- stack	Despite the recent achievements in machine lea	Inferring Algo Patterns with' Aug
22	5848	Where are they looking?	Spotlight	5848-where-are- they-looking.pdf	Humans have the remarkable ability to follow t	Where are the looking?\n\nA Recasens*\r
23	6032	The Pareto Regret Frontier Poster for Bandits		6032-the-pareto- regret-frontier- for-bandits.pdf	Given a multi- armed bandit problem it may be d	The Pareto R Frontier for Bandits\nTor
24	5719	On the Limitation of Spectral Methods: From th	Poster	5719-on-the- limitation-of- spectral- methods-fro	We consider the following detection problem: g	On the Limita Spectral Methods:\nFr
25	5768	Measuring Sample Quality with Stein's Method	Spotlight	5768-measuring- sample-quality- with-steins- meth	To improve the efficiency of Monte Carlo estim	Measuring Sa Quality with S Method\n
26	5778	Bidirectional Recurrent Convolutional Networks	Poster	5778- bidirectional- recurrent- convolutional- net	Super resolving a low-resolution video is usua	Bidirectional Convolutiona Networks
27	5912	Bounding errors of Expectation- Propagation	Poster	5912-bounding- errors-of- expectation- propagatio	Expectation Propagation is a very popular algo	Bounding erro Expectation- Propagation\o
28	5972	A fast, universal algorithm to learn parametri	Poster	5972-a-fast- universal- algorithm-to- learn-param	Nonlinear embedding algorithms such as stochas	A Fast, Unive Algorithm\nto Parametr
29	5633	Texture Synthesis Using Convolutional Neural N	Poster	5633-texture- synthesis-using- convolutional- neu	Here we introduce a new model of natural textu	Texture Synth Using Convol Neural\n
l						

	Id	Title	EventType	PdfName	Abstract	PaperText
373	5844	Adaptive Online Learning	Spotlight	5844-adaptive- online- learning.pdf	We propose a general framework for studying ad	Adaptive Onli Learning\nDy Foster *\nC.
374	5928	A Universal Catalyst for First- Order Optimization	Poster	5928-a-universal- catalyst-for-first- order-opti We ir gene scher accel		A Universal C First-Order O
375	5810	Inference for determinantal point processes wi	terminantal int processes Poster for- determinantal- (DPPs) are		point processes (DPPs) are	Inference for determinanta processes\nw
376	5895	Kullback-Leibler Proximal Variational Inference	Proximal Poster leibler-proximal- inference poster leibler-proximal- inference poster poster leibler-proximal poster poste			Kullback-Leib Proximal Vari Inferenc
377	5825	Semi-Proximal Mirror-Prox for Nonsmooth Compos	Poster	5825-semi- proximal-mirror- prox-for- nonsmooth-c	We propose a new first-order optimization algo	Semi-Proxima Prox\nfor Nor Compo
378	5739	LASSO with Non- linear Measurements is Equivale	Spotlight	5739-lasso-with- non-linear- measurements- is-equ	Consider estimating an unknown, but structured	LASSO with I Measuremen Equivale
379	6009	From random walks to distances on unweighted g	Poster	6009-from- random-walks-to- distances-on- unweigh	Large unweighted directed graphs are commonly	From random distances on\nunweight
380	5965	Bayesian dark knowledge	Poster	5965-bayesian- dark- knowledge.pdf	We consider the problem of Bayesian parameter	Bayesian Daı Knowledge\n' Korattikara,
381	5940	Matrix Completion with Noisy Side Information	Spotlight	5940-matrix- completion-with- noisy-side- informa	We study matrix completion problem with side i	Matrix Compl Noisy Side Information\
382	5660	Dependent Multinomial Models Made Easy: Stick	Poster	5660-dependent- multinomial- models-made- easy-st	Many practical modeling problems involve discr	Dependent M Models Made Easy:\nStick.

	ld	Title	EventType	PdfName	Abstract	PaperText
383	5860	On-the-Job Learning with Bayesian Decision Theory	Spotlight	5860-on-the-job- learning-with- bayesian- decisio Our goal is to deploy a high- accuracy system s		On-the-Job L with Bayesiar The
384	5658	Calibrated Structured Prediction	Poster	5658-calibrated- structured- prediction.pdf	In user-facing applications, displaying calibr Calibrate Prediction Liang\	
385	5775	Learning Structured Output Representation usin	Poster	5775-learning- structured- output- representation	Supervised deep learning has been successfully	Learning Stru Output Representation
386	Time-Sensitive Recommendation From Recurrent U		Poster	5979-time- sensitive- recommendation- from-recurr	By making personalized suggestions, a recommen	Time-Sensitiv Recommenda From\nRecur
387	5772	Learning Stationary Time Series using Gaussian	Spotlight	5772-learning- stationary-time- series-using- gau	We introduce the Gaussian Process Convolution	Learning Stat Time Series ι Gaussian
388	5995	A Market Framework for Eliciting Private Data	Poster	5995-a-market- framework-for- eliciting- private	We propose a mechanism for purchasing informat	A Market Fra for Eliciting P Data\
389	5900	Lifted Inference Rules With Constraints	Poster	5900-lifted- inference-rules- with- constraints.pdf	Lifted inference rules exploit symmetries for	Lifted Inferen with Constraints\n
390	5899	Gradient Estimation Using Stochastic Computati	Poster	5899-gradient- estimation-using- stochastic- comp	In a variety of problems originating in superv	Gradient Esti Using\nStoch Computat
391	5672	Model-Based Relative Entropy Stochastic Search	Poster	5672-model- based-relative- entropy- stochastic-s	Stochastic search algorithms are general black	Model-Based Entropy Stock Search
392	5947	Semi-supervised Learning with Ladder Networks	Poster	5947-semi- supervised- learning-with- ladder-netw	We combine supervised learning with unsupervis	Semi-Superv Learning with Networks\

	Id	Title	EventType	PdfName	Abstract	PaperText
393	5675	Embedding Inference for Structured Multilabel	Poster	5675- embedding- inference-for- structured- multil	A key bottleneck in structured output predicti	Embedding Inference\nfo Structured Mi
394	5669	Copula variational inference	Poster	5669-copula- variational- inference.pdf	We develop a general variational inference met	Copula variat inference\n\n Tran\nH
395	5636	Recursive Training of 2D-3D Convolutional Netw	Poster	5636-recursive- training-of-2d-3d- convolutional	Efforts to automate the reconstruction of neur	Recursive Tra 2D-3D Convo Netw
396	5924	A Dual Augmented Block Minimization Framework	d Block on Poster block-		In past few years, several techniques have bee	A Dual-Augm Block Minimiz Framework\
397	5839	Optimal Testing for Properties of Distributions	Spotlight	Given samples from an unknown distrib Given samples from an unknown distribution, p		Optimal Testi Properties of Distribution
398	5792	Efficient Learning of Continuous- Time Hidden M	Poster	5792-efficient- learning-of- continuous-time- hid The Continuous- Time Hidder Markov Moo (CT-HM		Efficient Lear Continuous-T Hidden\n
399	5674	Expectation Particle Belief Propagation	Poster	5674- expectation- particle-belief- propagation.pdf	We propose an original particle-based implemen	Expectation F Belief Propagation\
400	5756	Latent Bayesian melding for integrating indivi	Spotlight	5756-latent- bayesian- melding-for- integrating-i	In many statistical problems, a more coarse- gr	Latent Bayes melding for in indivi
401	5745	Distributionally Robust Logistic Regression	Spotlight	5745- distributionally- robust-logistic- regressi	This paper proposes a distributionally robust	Confidence Ir and Hypothes fo
402		Variational Dropout and the Local		5666-variational- dropout-and-the-	We explore an as yet unexploited	Learning Opt Commitment

11.10.2017

1_intro opportunity f... Reparameteri...

403 rows × 6 columns

In [5]:

print(authors_data)

	Id	Name
•		
0	4113	Constantine Caramanis
1	4828	Richard L. Lewis
	5506	Ryan Kiros
2 3		
	7331	Kfir Levy
4	8429	Wei Cao
	7525	Hsiao-Yu Tung
5 6		
6	7997	Kai Wei
7	4137	Mark Schmidt
8	8142	Dimitris Papailiopoulos
9	6471	Ce Zhang
10	1431	Ron Meir
11	7485	Jimmy SJ Ren
12	7982	Marin Kobilarov
13	6320	Nikhil Rao
14	8043	Rahul Kidambi
15	8249	Tianqi Chen
16	4548	Mohammad E. Khan
17	6650	Sebastien Bubeck
18	5192	Rémi Bardenet
19	7963	Dominik Rothenhäusler
20	7950	Luis Pualo Reis
21	7398	Ross Girshick
22	8247	Samuel Livingstone
23	3387	Huan Xu
24	5348	Quanquan Gu
25	5542	Pinghua Gong
26	8195	Dharmendra S. Modha
27	8160	Ian Kash
28	6798	Bernt Schiele
29	7564	koray kavukcuoglu
23	7504	Koray Kavakeaogta
		• • •
1043	3001	Lawrence Carin
1044	8250	Rahul G. Krishnan
1045	4585	Silvia Villa
1046	7502	Somdeb Sarkhel
1047	8143	Siddhartha Banerjee
	2966	
1048		Kilian Q. Weinberger
1049	2686	Pieter Abbeel
1050	4285	Petros Drineas
1051		
	8029	Yossi Arjevani
1052	8156	Christian Borgs
1053	5588	James Hensman
1054	8332	Shixiang Gu
		-
1055	8061	Manuel Rodriguez
1056	7979	Shaona Ghosh
1057	8138	Maxim Rabinovich
1058	7633	Ariel D. Procaccia
1059	6644	Aryeh Kontorovich
1060	4022	Shakir Mohamed
1061	8023	Xiaoming Yuan
1062	7921	Todd Phillips
1063	5586	Youssef Mroueh
1064	8149	Chao Qian
1065	8092	C. Lawrence Zitnick
1066	8307	Antti Rasmus
1067	8087	Qiong Yan
1068	5558	Yuekai Sun
1069	8150	Yang Yu
		_
1070	8065	Andrew Gelman
1071	8222	Maurizio Filippone

1072 4509

Raquel Urtasun

[1073 rows x 2 columns]

In [6]:

print(authorID_data)

0 1 2 3 4 5 6 7 8	Id 1 2 3 4 5 6 7 8 9	PaperId 5677 5677 5941 5941 6019 6035 6035 6035 5978	AuthorId 7956 2649 8299 8300 575 8419 8437 8437 8438
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	5978 5978 5978 5714 5714 5714 5714 5937 5937 5802 5776 5776 5814 5814	8367 8368 2459 8012 5637 3555 8013 8068 2139 8130 8131 8090 4225 6551 8142 7243
26 27 28 29	27 28 29 30	5814 5814 5814 5638	3537 7986 6338 7875
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313	1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315	5947 5947 5947 5675 5675 5675 5669 5669 5636 5636 5636 5924 5924 5924 5924 5924 5925 5792 5792 5792 5792 5792 5792 5792	2813 7190 7954 7658 4524 1904 7944 6452 4085 7872 7873 7874 863 7160 8290 7476 5296 8166 8167 8118 7967 4523 3161 2077 7953 1925 1821 3402 7541

1315 1316 5756 7542

[1316 rows x 3 columns]

Helper functions

For convenience we define two helper function, which allow us to extract the id of a paper from its index and vice versa:

In [4]:

```
def given_paperID_give_index(paper_id, paper_data):
    return paper_data[paper_data['Id']==paper_id].index[0]

def given_index_give_PaperID(index, paper_data):
    return paper_data.iloc[index]['Id']
```

Raw text of a paper

In [5]:

```
Ex_paper_id = 5941
Ex_paper_index = given_paperID_give_index(Ex_paper_id, papers_data)
papers_data.iloc[Ex_paper_index]['PaperText'][0:1000]
```

Out[5]:

'Learning with Symmetric Label Noise: The\nImportance of Being Unhin ged\n\nBrendan van Rooyen*,†\n*\n\nAditya Krishna Menon†,*\n\nThe Au stralian National University\n\n†\n\nRobert C. Williamson*,†\n\nNati onal ICT Australia\n\n{ brendan.vanrooyen, aditya.menon, bob.william son }@nicta.com.au\n\nAbstract\nConvex potential minimisation is the de facto approach to binary classification.\nHowever, Long and Serve dio [2010] proved that under symmetric label noise\n(SLN), minimisat ion of any convex potential over a linear function class can result in classification performance equivalent to random quessing. This o stensibly\nshows that convex losses are not SLN-robust. In this pape r, we propose a convex,\nclassification-calibrated loss and prove th at it is SLN-robust. The loss avoids the\nLong and Servedio [2010] r esult by virtue of being negatively unbounded. The\nloss is a modifi cation of the hinge loss, where one does not clamp at zero; hence,\n we call it the unhinged loss. We show that the optimal unhinged solu tion is'

Text cleaning

In [6]:

```
def clean_text(text):
    clean_text = re.sub('[^a-zA-Z]+', ' ', text)
    return clean_text.lower()
```

In [7]:

```
papers_data['PaperText_clean'] = papers_data['PaperText'].apply(lambda x: clean_
text(x))
papers_data['Abstract_clean'] = papers_data['Abstract'].apply(lambda x: clean_te
xt(x))
```

Text after cleaning

In [8]:

```
papers_data.iloc[Ex_paper_index]['PaperText_clean'][0:1000]
```

Out[8]:

'learning with symmetric label noise the importance of being unhinge d brendan van rooyen aditya krishna menon the australian national un iversity robert c williamson national ict australia brendan vanrooyen aditya menon bob williamson nicta com au abstract convex potential minimisation is the de facto approach to binary classification however long and servedio proved that under symmetric label noise sln min imisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing the is ostensibly shows that convex losses are not sln robust in this paper we propose a convex classification calibrated loss and prove that it is sln robust the loss avoids the long and servedio result by virtue of being negatively unbounded the loss is a modification of the hinge loss where one does not clamp at zero hence we call it the unhinged loss we show that the optimal unhinged solution is equivalent to that of a strongly regularised svm and is t'

Calculating tf-idf

First of all we need a function which will reduce inflected (or sometimes derived) words to their stems (a part of the word which is common to all its inflected variants):

In [9]:

```
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english")
def tokenize_and_stem(text):
    # first tokenize by sentence, then by word to ensure that punctuation is cau
ght as it's own token
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_to
kenize(sent)]
    filtered_tokens = []
    # filter out any tokens not containing letters (e.g., numeric tokens, raw pu
nctuation)
    for token in tokens:
        if re.search('[a-zA-Z]', token):
            filtered_tokens.append(token)
    stems = [stemmer.stem(t) for t in filtered_tokens]
    return stems
```

Using this function, we can calculate the **tf-idf** matrix, both for the abstracts and full texts:

In [14]:

```
Traceback (most recent cal
LookupError
l last)
<timed exec> in <module>()
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.pv in fit transform(self, raw documents, y)
   1350
                    Tf-idf-weighted document-term matrix.
   1351
-> 1352
                X = super(TfidfVectorizer, self).fit transform(raw d
ocuments)
                self. tfidf.fit(X)
   1353
   1354
                # X is already a transformed view of raw documents s
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.py in fit transform(self, raw documents, y)
    837
    838
                vocabulary, X = self. count vocab(raw documents,
                                                   self.fixed vocabul
--> 839
ary )
    840
    841
                if self.binary:
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.py in count vocab(self, raw documents, fixed vocab)
                for doc in raw documents:
    760
                    feature counter = {}
    761
--> 762
                    for feature in analyze(doc):
    763
                        try:
                            feature idx = vocabularv[feature]
    764
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.py in <lambda>(doc)
    239
                    return lambda doc: self. word ngrams(
    240
--> 241
                        tokenize(preprocess(self.decode(doc))), stop
words)
    242
    243
                else:
<ipvthon-input-13-e9bb4a55d55f> in tokenize and stem(text)
      3 def tokenize and stem(text):
            # first tokenize by sentence, then by word to ensure tha
t punctuation is caught as it's own token
            tokens = [word for sent in nltk.sent_tokenize(text) for
word in nltk.word tokenize(sent)]
            filtered tokens = []
      6
      7
            # filter out any tokens not containing letters (e.g., nu
meric tokens, raw punctuation)
/usr/local/lib/python3.5/dist-packages/nltk/tokenize/ init .py in
sent tokenize(text, language)
     92
            :param language: the model name in the Punkt corpus
     93
---> 94
            tokenizer = load('tokenizers/punkt/{0}.pickle'.format(la
nguage))
     95
            return tokenizer.tokenize(text)
     96
```

```
/usr/local/lib/python3.5/dist-packages/nltk/data.py in load(resource
_url, format, cache, verbose, logic_parser, fstruct reader, encodin
g)
   832
   833
           # Load the resource.
--> 834
           opened resource = open(resource url)
   835
           if format == 'raw':
   836
/usr/local/lib/python3.5/dist-packages/nltk/data.py in open(resourc
e url)
   950
   951
           if protocol is None or protocol.lower() == 'nltk':
--> 952
               return find(path_, path + ['']).open()
           elif protocol.lower() == 'file':
   953
   954
               # urllib might not use mode='rb', so handle this one
 ourselves:
/usr/local/lib/python3.5/dist-packages/nltk/data.py in find(resource
_name, paths)
           sep = '*' * 70
   671
           resource_not_found = '\n%s\n%s\n' % (sep, msg, sep)
   672
--> 673
           raise LookupError(resource not found)
   674
   675
LookupError:
************************
 Resource punkt not found.
 Please use the NLTK Downloader to obtain the resource:
 >>> import nltk
 >>> nltk.download('punkt')
 Searched in:
    - '/home/szwabin/nltk data'
   - '/usr/share/nltk data'
   - '/usr/local/share/nltk data'
   - '/usr/lib/nltk data'
   - '/usr/local/lib/nltk data'
   - '/usr/nltk data'
   - '/usr/lib/nltk data'
*************************
**
```

file:///home/szwabin/Dropbox/Zajecia/UnstructuredData/1-intro/1_intro.html

```
Traceback (most recent cal
LookupError
l last)
<timed exec> in <module>()
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.pv in fit transform(self, raw documents, y)
   1350
                    Tf-idf-weighted document-term matrix.
   1351
-> 1352
                X = super(TfidfVectorizer, self).fit transform(raw d
ocuments)
                self. tfidf.fit(X)
   1353
   1354
                # X is already a transformed view of raw documents s
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.py in fit transform(self, raw documents, y)
    837
    838
                vocabulary, X = self. count vocab(raw documents,
                                                   self.fixed vocabul
--> 839
ary )
    840
    841
                if self.binary:
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.py in count vocab(self, raw documents, fixed vocab)
                for doc in raw documents:
    760
                    feature counter = {}
    761
--> 762
                    for feature in analyze(doc):
    763
                        try:
                            feature idx = vocabularv[feature]
    764
/usr/local/lib/python3.5/dist-packages/sklearn/feature extraction/te
xt.py in <lambda>(doc)
    239
                    return lambda doc: self. word ngrams(
    240
--> 241
                        tokenize(preprocess(self.decode(doc))), stop
words)
    242
    243
                else:
<ipvthon-input-13-e9bb4a55d55f> in tokenize and stem(text)
      3 def tokenize and stem(text):
            # first tokenize by sentence, then by word to ensure tha
t punctuation is caught as it's own token
            tokens = [word for sent in nltk.sent_tokenize(text) for
word in nltk.word tokenize(sent)]
            filtered tokens = []
      6
      7
            # filter out any tokens not containing letters (e.g., nu
meric tokens, raw punctuation)
/usr/local/lib/python3.5/dist-packages/nltk/tokenize/ init .py in
sent tokenize(text, language)
     92
            :param language: the model name in the Punkt corpus
     93
---> 94
            tokenizer = load('tokenizers/punkt/{0}.pickle'.format(la
nguage))
     95
            return tokenizer.tokenize(text)
     96
```

```
/usr/local/lib/python3.5/dist-packages/nltk/data.py in load(resource
_url, format, cache, verbose, logic_parser, fstruct reader, encodin
g)
    832
    833
           # Load the resource.
--> 834
           opened resource = open(resource url)
    835
    836
           if format == 'raw':
/usr/local/lib/python3.5/dist-packages/nltk/data.py in open(resourc
e url)
    950
    951
           if protocol is None or protocol.lower() == 'nltk':
--> 952
               return find(path_, path + ['']).open()
    953
           elif protocol.lower() == 'file':
               # urllib might not use mode='rb', so handle this one
    954
 ourselves:
/usr/local/lib/python3.5/dist-packages/nltk/data.py in find(resource
name, paths)
           sep = '*' * 70
    671
           resource_not_found = '\n%s\n%s\n' % (sep, msg, sep)
    672
           raise LookupError(resource not found)
--> 673
    674
    675
LookupError:
*************************
 Resource punkt not found.
 Please use the NLTK Downloader to obtain the resource:
 >>> import nltk
 >>> nltk.download('punkt')
 Searched in:
    - '/home/szwabin/nltk data'
    - '/usr/share/nltk data'
    - '/usr/local/share/nltk data'
    - '/usr/lib/nltk data'
    - '/usr/local/lib/nltk data'
    - '/usr/nltk data'
    - '/usr/lib/nltk_data'
***************************
**
In [11]:
nltk.download('punkt')
[nltk data] Downloading package punkt to /home/szwabin/nltk data...
[nltk data]
             Unzipping tokenizers/punkt.zip.
Out[11]:
True
```

In [12]:

```
from sklearn.feature extraction.text import TfidfVectorizer
# macierz tf_idf na podstawie Abstract
tfidf vectorizer Abstract = TfidfVectorizer(max df=0.95, max features=200000,
                                 min df=0.05, stop words='english',
                                 use idf=True, tokenizer=tokenize and stem, ngra
m range=(1,3)
%time tfidf matrix Abstract = tfidf vectorizer Abstract.fit transform(papers dat
a['Abstract clean'])
# macierz tf idf na podstawie PaperText
tfidf vectorizer PaperText = TfidfVectorizer(max df=0.9, max features=200000,
                                 min df=0.1, stop words='english',
                                 use idf=True, tokenizer=tokenize and stem, ngra
m range=(1,3)
%time tfidf matrix PaperText = tfidf vectorizer PaperText.fit transform(papers d
ata['PaperText clean'])
CPU times: user 1.52 s, sys: 0 ns, total: 1.52 s
Wall time: 1.53 s
CPU times: user 43.5 s, sys: 212 ms, total: 43.7 s
Wall time: 43.7 s
In [13]:
terms Abstract = tfidf vectorizer Abstract.get feature names()
terms PaperText = tfidf vectorizer Abstract.get feature names()
```

Helper functions for presenting the results

In [18]:

```
def top_tfidf_feats(row, terms, top_n=25):
    topn_ids = np.argsort(row)[::-1][:top_n]
    top_feats = [(terms[i], row[i]) for i in topn_ids]
    df = pd.DataFrame(top_feats)
    df.columns = ['feature', 'tfidf']
    return df['feature']

def given_paperID_give_keywords(paper_data, tfidfMatrix, terms, paper_id, top_n=20):
    row_id = given_paperID_give_index(paper_id, paper_data)
    row = np.squeeze(tfidfMatrix[row_id].toarray())
    return top_tfidf_feats(row, terms, top_n)
```

Top 10 keywords of a given paper

In [19]:

```
Keywords (their stems) based on abstracts:
              loss
1
            convex
2
            robust
3
          classif
4
            strong
5
             solut
6
             prove
7
               ani
8
     paper propos
9
            result
Name: feature, dtype: object
```

knn model

In [20]:

In [22]:

```
#results for an example paper
print ("Neighbors based on abstracts: %r" % indices_Abstract[1])
print ("Neighbors based on texts: %r" % indices_PaperText[1])
```

```
Neighbors based on abstracts: array([ 1, 87, 301, 112])
Neighbors based on texts: array([ 1, 125, 112, 148])
```

Abstracts of similar articles

In [23]:

```
Ex_paper_id = 5941
Ex_index = given_paperID_give_index(Ex_paper_id, papers_data)
print ("Abstract of an example paper:\n")
print (papers_data.iloc[indices_Abstract[Ex_index][0]]['Abstract'])
print ("Abstracts of similar papers:\n")
for i in range(1, len(indices_Abstract[Ex_index])):
    print ("Abstract of neighbor #%r: \n" % i)
    print (papers_data.iloc[indices_Abstract[Ex_index][i]]['Abstract'])
    print ("\n")
```

Abstract of an example paper:

Convex potential minimisation is the de facto approach to binary cla ssification. However, Long and Servedio [2008] proved that under sym metric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance eq uivalent to random guessing. This ostensibly shows that convex losse s are not SLN-robust. In this paper, we propose a convex, classifica tion-calibrated loss and prove that it is SLN-robust. The loss avoid s the Long and Servedio [2008] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most stand ard learners SLN-robust. Experiments confirm the unhinged loss' SLN-robustness.

Abstracts of similar papers:

Abstract of neighbor #1:

The framework of online learning with memory naturally captures lear ning problems with temporal effects, and was previously studied for the experts setting. In this work we extend the notion of learning with memory to the general Online Convex Optimization (OCO) framework, and present two algorithms that attain low regret. The first algorithm applies to Lipschitz continuous loss functions, obtaining optimal regret bounds for both convex and strongly convex losses. The second algorithm attains the optimal regret bounds and applies more broadly to convex losses without requiring Lipschitz continuity, yet is more complicated to implement. We complement the theoretic results with two applications: statistical arbitrage in finance, and multi-step ahead prediction in statistics.

Abstract of neighbor #2:

Multivariate loss functions are used to assess performance in many m odern prediction tasks, including information retrieval and ranking applications. Convex approximations are typically optimized in their place to avoid NP-hard empirical risk minimization problems. We propose to approximate the training data instead of the loss function by posing multivariate prediction as an adversarial game between a loss-minimizing prediction player and a loss-maximizing evaluation player constrained to match specified properties of training data. This avoids the non-convexity of empirical risk minimization, but game sizes are exponential in the number of predicted variables. We overcome this intractability using the double oracle constraint generation method. We demonstrate the efficiency and predictive performance of our approach on tasks evaluated using the precision at k, the F-score and the discounted cumulative gain.

Abstract of neighbor #3:

Modern prediction problems arising in multilabel learning and learning to rank pose unique challenges to the classical theory of supervised learning. These problems have large prediction and label spaces of a combinatorial nature and involve sophisticated loss functions. We offer a general framework to derive mistake driven online algorithms and associated loss bounds. The key ingredients in our framewor

k are a general loss function, a general vector space representation of predictions, and a notion of margin with respect to a general nor m. Our general algorithm, Predtron, yields the perceptron algorithm and its variants when instantiated on classic problems such as bina ry classification, multiclass classification, ordinal regression, and multilabel classification. For multilabel ranking and subset rank ing, we derive novel algorithms, notions of margins, and loss bound s. A simulation study confirms the behavior predicted by our bounds and demonstrates the flexibility of the design choices in our frame work.

In [24]:

```
Ex_paper_id = 5941
Ex_index = given_paperID_give_index(Ex_paper_id, papers_data)
print ("Abstract of an example paper:\n")
print (papers_data.iloc[indices_PaperText[Ex_index][0]]['Abstract'])
print ("Abstracts of similar papers:\n")
for i in range(1, len(indices_PaperText[Ex_index])):
    print ("Abstract of neighbor #%r: \n" % i)
    print (papers_data.iloc[indices_PaperText[Ex_index][i]]['Abstract'])
    print ("\n")
```

Abstract of an example paper:

Convex potential minimisation is the de facto approach to binary cla ssification. However, Long and Servedio [2008] proved that under sym metric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance eq uivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoid the Long and Servedio [2008] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most stand ard learners SLN-robust. Experiments confirm the unhinged loss' SLN-robustness.

Abstracts of similar papers:

Abstract of neighbor #1:

In regression problems involving vector-valued outputs (or equivalen tly, multiple responses), it is well known that the maximum likeliho od estimator (MLE), which takes noise covariance structure into acco unt, can be significantly more accurate than the ordinary least squa res (OLS) estimator. However, existing literature compares OLS and MLE in terms of their asymptotic, not finite sample, guarantees. Mo re crucially, computing the MLE in general requires solving a non-co nvex optimization problem and is not known to be efficiently solvabl e. We provide finite sample upper and lower bounds on the estimation error of OLS and MLE, in two popular models: a) Pooled model, b) See mingly Unrelated Regression (SUR) model. We provide precise instance s where the MLE is significantly more accurate than OLS. Furthermor e, for both models, we show that the output of a computationally eff icient alternating minimization procedure enjoys the same performanc e guarantee as MLE, up to universal constants. Finally, we show that for high-dimensional settings as well, the alternating minimization procedure leads to significantly more accurate solutions than the c orresponding OLS solutions but with error bound that depends only lo garithmically on the data dimensionality.

Abstract of neighbor #2:

Modern prediction problems arising in multilabel learning and learni ng to rank pose unique challenges to the classical theory of supervi sed learning. These problems have large prediction and label spaces of a combinatorial nature and involve sophisticated loss functions. We offer a general framework to derive mistake driven online algorit hms and associated loss bounds. The key ingredients in our framewor k are a general loss function, a general vector space representation of predictions, and a notion of margin with respect to a general nor m. Our general algorithm, Predtron, yields the perceptron algorithm and its variants when instantiated on classic problems such as bina ry classification, multiclass classification, ordinal regression, an d multilabel classification. For multilabel ranking and subset rank ing, we derive novel algorithms, notions of margins, and loss bound s. A simulation study confirms the behavior predicted by our bounds and demonstrates the flexibility of the design choices in our frame work.

Abstract of neighbor #3:

This paper proposes a framework for learning features that are robus to data variation, which is particularly important when only a limited number of trainingsamples are available. The framework makes it possible to tradeoff the discriminative value of learned features against the generalization error of the learning algorithm. Robustness is achieved by encouraging the transform that maps data to features to be a local isometry. This geometric property is shown to improve (K, \epsilon)-robustness, thereby providing theoretical justification for reductions in generalization error observed in experiments. The proposed optimization frameworkis used to train standard learning algorithms such as deep neural networks. Experimental results obtained on benchmark datasets, such as labeled faces in the wild, demonst rate the value of being able to balance discrimination and robustness.

Some other helper functions

In [25]:

```
def given_paperID_give_authours_id(paper_id, author_data, author_id_data):
    id_author_list = author_id_data[author_id_data['PaperId']==paper_id]['Author
Id']
    return id_author_list

def given_authorID_give_name(author_id, author_data):
    author_name = author_data[author_data['Id'] == author_id]['Name']
    return author_name

def given_similar_paperIDs_give_their_titles(sim_papers_list_index, paper_data):
    titles = []
    for index in sim_papers_list_index:
        titles.append(paper_data.iloc[index]['Title']+'.')
    return titles
```

In [26]:

```
Ex_paper_id = 5941
Ex_index = given_paperID_give_index(Ex_paper_id, papers_data)
print ("Titles of similar papers (based on abstracts):\n\n")
for title in
given_similar_paperIDs_give_their_titles(indices_Abstract[Ex_index],
papers_data):
    print (title)
```

Titles of similar papers (based on abstracts):

Learning with Symmetric Label Noise: The Importance of Being Unhinge d.
Online Learning for Adversaries with Memory: Price of Past Mistakes.
Adversarial Prediction Games for Multivariate Losses.
Predtron: A Family of Online Algorithms for General Prediction Problems.

In [27]:

```
Ex_paper_id = 5941
Ex_index = given_paperID_give_index(Ex_paper_id, papers_data)
print ("Titles of similar papers (based on full texts):\n\n")
for title in
given_similar_paperIDs_give_their_titles(indices_PaperText[Ex_index], papers_data):
    print (title)
```

Titles of similar papers (based on full texts):

Learning with Symmetric Label Noise: The Importance of Being Unhinge d.

Alternating Minimization for Regression Problems with Vector-valued Outputs.

Predtron: A Family of Online Algorithms for General Prediction Problems.

Discriminative Robust Transformation Learning.

Task 2 - most frequent keywords

In [28]:

```
from sklearn.feature_extraction.text import CountVectorizer
EXCLUDED BIGRAMS = [
"et al",
"10 10",
"international conference",
"neural information",
"information processing",
"processing systems",
"advances neural",
"supplementary material"
]
cv = CountVectorizer(ngram range=(2,2), max features = 500,
stop_words='english')
cv.fit(papers data.PaperText)
X = cv.transform(papers data.PaperText)
counts = X.sum(axis=0)
df = pd.DataFrame({'Bigrams': cv.get feature names(), 'Count': counts.tolist()
[0]})
df = df[df.Bigrams.map(lambda x: x not in EXCLUDED BIGRAMS)]
df.sort values(by='Count', ascending=False, inplace=True)
print(df.head(50))
```

	Bigrams	Count
257	machine learning	1436
300	neural networks	770
254	lower bound	566
253	low rank	521
184	high dimensional	485
171	gradient descent	471
469	upper bound	418
219	large scale	418
299	neural network	415
422	stochastic gradient	413
244	log likelihood	406
245	log log	388
286	monte carlo	383
47	arxiv preprint	382
413	state art	356
343	preprint arxiv	352
477	variational inference	352 350
83	conference machine	347
320	objective function	
		335
46	artificial intelligence	328
388	sample complexity	321
327	optimization problem	311
461	training set	308
230	learning research	299
267	matrix completion	296
211	journal machine	291
89	convergence rate	291
110	data sets	284
93	convex optimization	279
368	real world	279
249	loss function	271
361	random variables	270
223	learning algorithm	267
196	ieee transactions	265
178	ground truth	261
263	markov chain	261
246	logistic regression	258
458	training data	255
32	active learning	251
420	step size	249
255	lower bounds	241
485	worst case	239
78	computer science	239
108	data points	239
375	related work	233
443	test set	230
148	figure shows	226
186	high probability	225
99	covariance matrix	222
176	graphical models	222

Good to know: https://www.kaggle.com)

- data science community
- · competitions on real data
- great learning platform (many working examples available)
- · source of interesting data

In []:			