Hubert Michalski

10 czerwca 2023

1 Zadanie 4

Wpierw zauważmy, że problem jest klasie NP. Istotnie: żeby go rozwiązać, niedeterministycznie zgadujemy wartościowanie v a następnie bierzemy minimum z liczby literałów które są prawdziwe w każdej klauzuli przy danym wartościowaniu v, na koniec sprawdzamy czy liczba ta jest w zakresie od 3 do 5. Jest to algorytm niedeterministyczny działający w czasie wielomianowym.

Teraz pokażemy poprzez redukcję z problemu 3-CNF-SAT, który jest NP-zupełny, że rozważany problem jest NP-trudny. Wskażmy zatem wielomianowy algorytm, który przyjmuje formułę boolowską ψ z 3-CNF i przekształca ją na taką formułę ϕ z CNF, że $3 \leq score(\phi, v) \leq 5$ wtedy i tylko wtedy, gdy istnieje wartościowanie v które spełnia formułę ψ . Rozważmy następującą transformację - dla danej formuły ψ zastąpimy każdą jej klauzulę C przez taką klauzulę C', że będzie ona identyczna jak C lecz dodatkowo ostatni literał będzie dodany na koniec czterokrotnie - dwa razy tak samo i dwa razy zanegowany. Przykładowo:

$$(p \lor q \lor r) \land (x \lor y) \mapsto (p \lor q \lor r \lor r \lor r \lor \neg r) \land (x \lor y \lor y \lor \neg y \lor \neg y)$$

Oczywiście można pokazać, że taki algorytm da się zrealizować w czasie wielomianowym. Sprawdźmy więc, czy zachodzi wcześniej wspominana równoważność.

Łatwo zaobserwować, że dla formuły ψ z 3-CNF i wartościowaniu v $score(\psi, v)$ leży między zero a trzy, z kolei rozszerzenie każdej klauzuli C o nowe literały dodaje dokładnie dwa true, ponieważ będą dodatkowo spełnione albo dwa sklonowane literały albo ich negacje, zatem dla nowej formuły z CNF zachodzi $2 \leq score(\phi, v) \leq 5$. Przypuśćmy, że formuła ψ jest spełnialna przez pewne wartościowanie v. To oznacza, że przy wartościowaniu v w każdej klauzuli C co najmniej jeden literał jest prawdziwy, tak więc w każdej klauzuli C' formuły ϕ są co najmniej trzy prawdziwe literały, czyli istnieje takie wartościowanie, że $3 \leq score(\phi, v) \leq 5$.

Z drugiej strony załóżmy, że istnieje wartościowanie v takie, że $3 \leq score(\phi,v) \leq 5$. W takim przypadku wiemy, że w każdej klauzuli C' formuły ϕ co najmniej trzy literały są prawdziwe przy wartościowaniu v, przy czym dokładnie dwa z nich znajdują się w ostatnich czterech literałach. Otrzymujemy w ten sposób, że co najmniej jeden literał w każdej klauzuli C formuły ψ jest prawdziwy, zatem ta formuła jest spełnialna przez wartościowanie v.

Ostatecznie stworzyliśmy wielomianowy algorytm który zamienia wejścia problemu 3-CNF-SAT na równoważne wejścia naszego problemu, czyli nasz problem też jest NP-trudny. Udowodniliśmy także na początku, że należy on do NP, zatem problem ten jest NP-zupełny.