
Ćwiczenie 4A

Wykresy w QGIS

1. Uruchom program QGIS, w razie potrzeby ustaw układ współrzędnych 1992 (EPSG:2180) i do pustego projektu dodaj warstwę **województa_3_pl.shp**, ustaw skalę wyświetlania na 1:3 000 000

ZRZUT EKRANU

- 2. Na podstawie danych z tabeli atrybutów (1_SZKO_Y_P) wykonaj wykres słupkowy (właściwości warstwy kartodiagram histogram) z następującymi ustawieniami:
- kolor poligonów z województwami jasno szary;
- Atrybuty: kolor wykresów słupkowych żółty;
- Renderowanie: szerokość słupka 15, kolor linii zielony, szerokość linii 1;
- Rozmiar: atrybut 1_SZKO_Y_P, wartość maksymalna znajdź, rozmiar 40;
- Położenie: wewnątrz poligonu
- opcjonalnie: wyświetl wartości przy słupkach na mapie (etykiety czcionka Tahoma, 10, granatowa). Zapisz projekt pod nową nazwą **Wykres słupkowy_1.qgs**

ZRZUT EKRANU

- 3. Na podstawie atrybutu 1_LICEA wykonaj wykres kołowy z następującymi ustawieniami:
- kolor poligonów z województwami pomarańczowy;
- Atrybuty: kolor wykresów kołowych ciemno niebieski;
- Renderowanie: kolor linii jasno żółty, szerokość linii 1;
- Rozmiar: atrybut 1 LICEA, wartość maksymalna znajdź, rozmiar 30;
- Położenie: z użyciem brzegu

Zapisz projekt pod nową nazwą Wykres kołowy 1.qgs

ZRZUT EKRANU

4. Wykonaj wykres słupkowy z podziałem na 3 zmienne (1_PIELEGNI, 1_LEKARZE, 1_SZPITALE). Opcjonalnie dodaj etykiety z wartościami dla wszystkich trzech kategorii. Stylistyka dowolna. Zapisz projekt pod nową nazwą **Wykres słupkowy_2.qgs**

ZRZUT EKRANU

5. Wykonaj wykres kołowy z podziałem na 3 zmienne (1_PIELEGNI, 1_LEKARZE, 1_MATURZY_). Opcjonalnie dodaj etykiety z wartościami dla wszystkich trzech kategorii. Stylistyka dowolna. Zapisz projekt pod nową nazwą Wykres kołowy_2.qgs

ZRZUT EKRANU

Ćwiczenie 4B

Wybór danych i narzędzia wektorowe

Celem ćwiczenia jest zapoznanie się z poleceniami wyboru danych oraz podstawowymi narzędziami geoprocesingu dla warstw wektorowych.

1. Uruchom program QGIS i otwórz projekt *Projekt_3.qgs*. Kliknij prawym przyciskiem myszy na warstwie *powiaty_2_pl* i wybierz polecenie *Powiększ do warstwy*.

ZRZUT EKRANU

- **2.** Na bazie warstwy *powiaty_2_pl* dokonaj wyboru obiektów metodami: **wieloboku**, **zaznaczenia** i **promieniem**. <u>Wykonaj po 2 zrzuty ekranu do każdej metody</u> (w momencie zaznaczania i wynik operacji). Na końcu usuń zaznaczenie obiektów.
- **3.** Na bazie warstwy **powiaty_2_pl** dokonaj wyboru obiektów metodą wyrażenia lub w tabeli i zapisz je do osobnych plików (**Eksport Zapisz wybrane obiekty jako**):
 - a. obiekty o obwodzie >= 100 000 m (nowy plik: powiaty_obwód.shp)

ZRZUT EKRANU

b. wybierz obiekty o powierzchni >1000 km² (nowy plik *powiaty_powierzchnia.shp*)

ZRZUT EKRANU

c. wybierz obiekty z liczbą ludności > 400 000 osób (nowy plik: **powiaty_ludzie.shp**) Zapisz i zamknij projekt.

ZRZUT EKRANU

- 4. Otwórz projekt *Projekt 3a.qqs* i wykonaj następujące polecenia:
- **a.** dla warstwy punkty_2_92.shp stwórz bufor o szerokości 500 m i nazwij go **punkty_bufor.shp** (wykonaj polecenie **Otoczka**)

ZRZUT EKRANU

b. dla warstwy *linie_92.shp* stwórz bufor o szerokości 450 m i nazwij go *linie_bufor.shp* (wykonaj polecenie **Otoczka**)

ZRZUT EKRANU

c. dla warstw *linie_bufor.shp* i *punkty_bufor.shp* wykonaj polecenie **Suma** i nazwij warstwę wynikową *suma.shp*

ZRZUT EKRANU

d. dla warstwy linie_92.shp wykonaj polecenie Otoczka wypukła i nazwij ją linie otoczka.shp

ZRZUT EKRANU

e. dla warstw *linie_otoczka.shp* i *suma.shp* wykonaj polecenie **Różnica** i nazwij warstwę wynikową *roznica.shp*

ZRZUT EKRANU

f. dla warstw *punkty_bufor.shp* oraz *linie_otoczka.shp* wykonaj polecenie **Różnica** symetryczna i nazwij warstwę wynikową *roznica_sym.shp*

ZRZUT EKRANU

g. dla warstwy **suma.shp** wykonaj polecenie **Agreguj** i nazwij warstwę wynikową **agregacja.shp**

ZRZUT EKRANU