スコアリングのための基礎知識

資源評価・管理のためにはどのようなデータや 知見が必要なのか?なぜそれが必要なのか?

> 水産研究・教育機構 水産資源研究所 水産資源研究センター 漁業情報解析部 資源解析グループ 宮川 光代 miyaqawa mitsuyo88@fra.go.jp

資源評価の流れ

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 正確性と信頼性:データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**: 資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力や成長パターンを評価できます。
- 5. 環境データ:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧力の評価が可能になります 1 2 3 4。

これらの条件を満たすデータを収集・分析することで、より正確で信頼性の高い水産資源評価が可能になります。

正確で信頼

時間力バー

空間力バー

多様な種類

資源評価に用いる理想的なデータの条件①4

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 正確性と信頼性:データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**:資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. **環境データ**:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源 の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧 力の評価が可能になります 1 2 3 4 。

これらの条件を満たすデータを収集・分析することで、より正確で信頼性の高い水産資源評価が可能になり ます。 **資源評価に必要なデータの種類**

正確で信頼

時間力バー

空間力バー

多様な種類

データの種類(どんなデータが必要か?)

■ 資源評価における三大データ

それぞれ役割 が異なる

漁獲量

資源量指標值(資源量指数)

生物組成 (biological data) 体長組成

年齡組成

漁獲量

毎年個体群からどの位の量が 漁獲により除去されているか?

- •除去される量が多い&それでも何年も漁獲できている
 - → 資源の生産性は大きい(かも?)
- 漁獲量の正確な把握が資源評価の第一歩
 - → 資源の<u>絶対量(スケール)</u>の情報を与える
- •見えない漁獲量に注意!
 - → 投棄・未報告・外国漁獲・遊漁

資源量指数

漁業や調査から得られる 資源量などに関する相対的な指標

・漁業:単位努力量あたりの漁獲量 (CPUE)など

・調査:卵稚仔や資源調査からの産卵量や加入量の指標 など

資源の相対的なトレンドに関する情報を与える

データの種類: ③生物組成

生物組成

個体群の中にどの位の体長や年齢の魚がいるか?

• 高齢魚が沢山生き残っている

・高齢魚が少ない

魚が成熟して次世代を生み出す前に大量に漁獲される

魚が十分に成長する前に大量に漁獲する

資源の齢構成に関する情報を与える

データの種類と利用可能な資源評価モデル①

三大データ全部ある → 統合モデル,チューニングVPA,

SAMなど

漁獲量 資源量指標値 (資源量指数)

生物組成 (biological data)

データの種類と利用可能な資源評価モデル②

漁獲量と資源量指標値の二つ → プロダクションモデル

生物組成 (biological data)

データの種類と利用可能な資源評価モデル③ 11

データの種類と利用可能な資源評価モデル④

1つしかない場合 →強い仮定があり、推奨モデルなし

生物組成 (biological data)

データの種類と利用可能な資源評価モデル⑤

体長組成のみの場合 → 成長,成熟などの仮定に敏感

漁獲量

資源量指標値(資源量指数)

生物組成 (biological data)

LBSPR LIME

14

■ 生物学的特性値

成長

生産性に影響

寿命

生産性に影響

体重

資源重量(ひいてはABC)

生産性に影響

成熟率

生産性に影響

経年変化を追う

資源状態を理解 する助け 自然死亡

資源の絶対量に影響

生物学的特性値の経年変化の例(マサバ太平洋)

それぞれ役割

が異なる

【まとめ】資源評価に必要な情報とデータの役割

資源評価における三大データ

絶対量 (スケール)

漁獲量

相対量

資源量指標值 (資源量指数)

生產性

生物組成 (biological data) 体長組成

年齡組成

物学

資源評価に用いる理想的なデータの条件①17

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 正確性と信頼性:データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**:資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. **環境データ**:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧 力の評価が可能になります 1 2 3 4 。

正確で信頼

時間力バー

空間力バー

多様な種類

これらの条件を満たすデータを収集・分析することで、より正確で信頼性の高い水産資源評価が可能になり

CPUEの標準化(後述), 資源変動要因の考察など

資源評価に用いる理想的なデータの条件②18

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 正確性と信頼性:データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 空間的カバレッジ:データは広範な地域をカバーしている必要かあります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**: 資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. 環境データ:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧力の評価が可能になります 1 2 3 4。

これらの条件を満たすデータを収集・分析することで、より正確で信頼性の高い水産資源評価が可能になります。

正確で信頼

時間力バー

空間力バー

多様な種類

データの時系列の長さ

- 資源の経年変化を追う上で重要
- 長いほうが資源評価モデルで推定するパラメータの 精度は良くなる(ただし、データの一貫性に注意)

特に,生物組成の情報のないプロダクションモデルは,資源量の増減のコントラストの情報を基に,資源の生産性に関するパラメータを推定するので,ある程度の長さ(最低でも15年ほど)が必要

引用: Kokkalis et al. 2024

資源評価に用いる理想的なデータの条件(3)20

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 正確性と信頼性:データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**:資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. **環境データ**:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧力の評価が可能になります 1 2 3 4。

正確で信頼

時間力バー

空間カバー

多様な種類

資源評価に用いる理想的なデータの条件421

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 1. **正確性と信頼性**: データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**: 資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. 環境データ:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧力の評価が可能になります 1 2 3 4。

これらの条件を満たすデータを収集・分析することで、より正確で信頼性の高い水産資源評価が可能になります。

正確で信頼

時間力バー

空間力バー

多様な種類

データが正確である=偏りがない

- 偏り(bias)とは?
- 測定値が真の値からどれくらいずれているか

例:10人が魚Aと魚Bの体長を測定

AとBどちらの魚の体長のほうが測定精度は高いか?

ID	魚A	魚B
1	10.9	10.1
2	10.7	10.2
3	10.8	10.3
4	10.6	10.4
5	10.5	10.5
6	10.8	10.6
7	10.9	10.7
8	10.4	10.8
9	10.8	10.9
10	10.7	10
平均	10.71	10.45
標準偏差(SD)	0.17	0.30
変動係数(CV)	0.016	0.029

正確度(accuracy)が低くなると偏りが大きくなる

データが信頼できる=精度が高い

- 精度(precision)とは?
- 複数回の試行の間での互のばらつきの小ささの尺度
- 試行における標準偏差(SD)で表されることが多い

例:10人が魚Aと魚Bの体長を測定 AとBどちらの魚の体長のほうが測定精度は高いか?

ID	魚A	魚B
1	10.9	10.1
2	10.7	10.2
3	10.8	10.3
4	10.6	10.4
5	10.5	10.5
6	10.8	10.6
7	10.9	10.7
8	10.4	10.8
9	10.8	10.9
10	10.7	10
平均	10.71	10.45
標準偏差(SD)	0.17	0.30
変動係数(CV)	0.016	0.029

魚Aの体長の測定精度 は魚Bより高い

資源評価に用いる理想的なデータの条件424

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 1. **正確性と信頼性**: データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**: 資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. 環境データ:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧力の評価が可能になります 1 2 3 4。

これらの条件を満たすデータを収集・分析することで、より正確で信頼性の高い水産資源評価が可能になり

どういう要因が偏りや精度に影響するか?

正確で信頼

時間力バー

空間力バー

多様な種類

データの偏りに主に影響する要因(1)

- サンプルの非代表性
- サンプルサイズが小さい(精度にも影響)
- 生物資源量組成指数
- 体長測定は価値の高い大きい魚に偏っている

生物組成

• 魚の密度が高い場所・時期だけを狙っている

資源量指数

• 種の同定が正確になされていない

データの偏りに主に影響する要因(2)

- 仮定の信憑性
- Age-length keyは季節や年で同じと仮定 生物組成
- 外国船の漁獲量の生物組成は日本と同じと仮定
- その他
- 管理の変更 (狙い操業の禁止など) **資源量指数**
- ・漁具・漁法の変更など
- 漁獲量の未報告/誤報告漁獲量
- 空間的,時間的な解像度の粗さ(

資源量指数

生物組成漁獲量

偏らないためには & 対処法 漁獲量

- ✓ 誤報告や見えない漁獲量(投棄・未報告・外国漁獲・遊漁)について出来るだけ正確な情報収集
- ✓ 種の同定をきちんと行う【全データ種類に共通】
- ✓ 仮定を置くときは、その根拠と不確実性の範囲を明らかにし、資源評価においては、いくつかシナリオを設けるなどして感度テストを行う

【全データ種類に共通】

偏らないためには &

- 対処法 生物組成
- 体長測定などを行う際には, ランダムにサンプル をとってくる
- ✓ サンプルサイズを十分に確保する(少なくとも100 個体以上?)
- ✓ 調査データとの併用(漁獲量からのサンプルだけ) だと高齢や若齢にサンプルが偏っている可能性)
- ✓ 季節や時空間におけるばらつきを考慮する

資源量指数

偏らないためには & 対処法

- ✓ 調査データとの併用(ランダム OR 定点を設てサンプリングするため, サンプリグバイアス小さい)
- ✓ CPUE (努力量あたりの漁獲量)の標準化を行う

- CPUEが何故資源量指数の指標となるのか

漁獲量 = 漁獲効率 × 努力量 × 真の魚の密度(量)

(CPUE (漁獲量/努力量) = 漁獲効率 × 真の魚の密度(量))

漁獲効率が一定なら, CPUEは真の魚の密度の指標になる

- •漁獲効率とは漁具の採集能率のことであり,
 - 漁獲効率 = 漁具能率 × 漁具の選択率 ×

漁具以外の要因による可用性 (availability)

影響する要因

- 1.漁具の種類
- 2.漁具の性能
- 3.漁業者の経験 や技術, 狙い
- 1.漁具の種類
- 2.網目の大きさ
- 1. 環境要因(海流条件など)
- |2. 魚の行動(日周鉛直移動)

漁獲効率が年や場所,時期,船などでばらつくなら, CPUEは真の魚の密度の指標にならない

→ 漁獲効率のばらつきを除去する作業がCPUEの標準化

CPUE標準化に関する資料

- ① CPUE標準化に関するgood practice (Hoyle et al. 2024)
- ② R初心者講習:
 - 21~23回(一般化線形モデル:CPUE標準化への応用 1 ~3)
 - 30回(一般化線形混合モデルによるCPUE標準化と信頼区間の算出)
 - •31回(デルタ二段階法によるCPUE標準化の紹介)
- ③ 2018年度資源管理研修(GLMとCPUE標準化)

https://github.com/ichimomo/Shigen-kensyu-2018

④ 時空間モデル(VAST)を用いた資源量指数の推定 水産海洋研究 第88巻 第3号203ページ(2024)

資源評価に用いる理想的なデータの条件とは?32

Copilotの回答

水産資源評価に用いる理想的なデータの条件とは?

水産資源評価に用いる理想的なデータには、いくつかの重要な条件があります。以下にその主な条件を挙げます:

- 正確性と信頼性:データは正確で信頼できるものでなければなりません。これには、漁獲量、漁獲努力量 (CPUE)、資源量(バイオマス)などが含まれます。
- 2. **時系列データ**:長期間にわたるデータが必要です。これにより、資源の変動傾向や長期的なパターンを把握することができます。
- 3. **空間的カバレッジ**:データは広範な地域をカバーしている必要があります。特に回遊性の高い魚種の場合、広域的なデータが重要です。
- 4. **年齢・サイズ構成**: 資源の年齢やサイズ構成に関するデータも重要です。これにより、資源の再生産能力 や成長パターンを評価できます。
- 5. **環境データ**:水温、塩分濃度、海流などの環境データも資源評価に役立ちます。これらのデータは、資源の分布や生態に影響を与えるためです。
- 6. **漁業活動データ**:漁船の操業日数、漁具の種類、漁獲方法などのデータも必要です。これにより、漁業圧力の評価が可能になります 1 2 3 4。

正確で信頼

時間力バー

空間カバー

多様な種類

足りない点,抜けている点など?

次に,国内資源を例にとり, どれだけデータが理想的な条件 に近いか(=何が不足している のか?)をスコアリングしてみ ます!