Feuille 8

Résolution numérique d'équations non linéaires

Exercice 1: Méthode de la sécante

On considère un réel a et une fonction réelle f de classe C^2 au voisinage de a, telle que f(a) = 0, $f'(a) \neq 0$. La méthode de la sécante pour résoudre f(x) = 0 s'écrit

$$x_{k+1} = x_k - \frac{f(x_k)}{T(x_k, x_{k-1})}, \quad k \ge 1,$$
 (1)

où $x_0, x_1 \in \mathbb{R}$ sont fixés et

$$T(x,y) = \frac{f(x) - f(y)}{x - y}.$$

Afin d'étudier la convergence de la méthode (1), on définit $y_k = x_{k-1}, z_k = (x_k, y_k)^t$ et on reformule (1) en $z_{k+1} = \phi(z_k)$ avec $\phi : \mathbb{R}^2 \to \mathbb{R}^2$.

- **1-** Donner l'expression de $\phi(x,y)$ lorsque $f(x) \neq f(y)$.
- **2-** Etendre par continuité les fonctions T et ϕ sur un voisinage ouvert de (a,a). On admettra par la suite que les fonctions T, ϕ ainsi obtenues sont de classe C^1 au voisinage de (a,a).
- **3-** Calculer $D\phi(a,a)$. En déduire que si $|x_0-a|+|x_1-a|$ est assez petit alors $\lim_{k\to +\infty} x_k=a$.

Exercice 2:

Etant donné un réel a>0, on cherche à calculer a^{-1} par l'algorithme de Newton.

1- Montrer que l'algorithme de Newton appliqué à la fonction $f(x) = \frac{1}{x} - a$ s'écrit

$$x_{k+1} = x_k(2 - ax_k). (2)$$

2- Etudier la convergence de la suite $(x_k)_{k>0}$ suivant les valeurs de $x_0 \in \mathbb{R}$.

Exercice 3: Méthode de Broyden

Soit $a \in \mathbb{R}^n$ et une fonction $f : \mathbb{R}^n \to \mathbb{R}^n$ de classe C^2 au voisinage de a, telle que f(a) = 0 avec Df(a) inversible. La méthode de Broyden pour résoudre f(x) = 0 s'écrit

$$x_{k+1} = x_k - B_k^{-1} f(x_k), \quad k \ge 0, \tag{3}$$

où les matrices de Broyden $B_k \in M_n(\mathbb{R})$ sont déterminées par

$$B_{k+1} = B_k + \frac{f(x_{k+1}) s_k^t}{s_k^t s_k}, \quad s_k = x_{k+1} - x_k, \quad k \ge 0.$$
 (4)

La méthode est initialisée par la donnée de $x_0 \in \mathbb{R}^n$ et $B_0 \in M_n(\mathbb{R})$. Lorsque n = 1 la méthode de Broyden correspond à la méthode de la sécante. On se place par la suite dans le cas où $n \geq 2$.

- **1-** Vérifier que $B_{k+1} s_k = f(x_{k+1}) f(x_k)$ pour tout $k \ge 0$.
- **2-** Etant donnés $A, B \in M_n(\mathbb{R})$ on définit $A : B = \text{Tr}(A^t B) = \sum_{1 \leq i,j \leq n} a_{ij} b_{ij}$ (produit scalaire canonique sur $M_n(\mathbb{R})$). On note

$$\Delta_k = \{ B \in M_n(\mathbb{R}), B s_k = f(x_{k+1}) - f(x_k) \}.$$

Montrer que B_{k+1} est le projeté orthogonal de B_k sur Δ_k .

3- Exprimer B_{k+1}^{-1} en fonction de B_k^{-1} .

Indication: utiliser la formule de Sherman-Morrison

$$(A + u v^{t})^{-1} = A^{-1} - \frac{A^{-1} u v^{t} A^{-1}}{1 + v^{t} A^{-1} u}$$

définie pour $A \in M_n(\mathbb{R})$ inversible, $u, v \in \mathbb{R}^n$ et $1 + v^t A^{-1} u \neq 0$.

4- Lorsque n est grand, comparer les coûts du calcul de x_{k+1} en fonction de x_k pour les méthodes de Broyden et de Newton.

Notes sur la méthode de Broyden. On montre que si x_0 est suffisamment proche de a et B_0 suffisamment proche de Df(a), alors $\lim_{k\to +\infty} x_k = a$. De plus la convergence est super-linéaire, c'est à dire

$$\lim_{k \to +\infty} \frac{\|x_{k+1} - a\|}{\|x_k - a\|} = 0.$$

Référence utile pour l'implémentation numérique de la méthode : Numerical Recipes in C, Cambridge university press, second edition (1992).