Soluzione ESERCIZI Teorici

- 1) ES1) pag 154
 - a). È CHIUSO (il complementare è x²+y²<9 palla APERTA), il Bordo è x²+y²=9
 . non è LIMITATO (ad es. contiene tutti i punti (x,0) con x>3)
 . non è Compatto perchè pur essendo chiuso non è limitato
 - b) dourf=R2. è contemporaneamente sia APERTO, sia CHIUSO: è aperto perche $\forall (x_0, y_0) \in \mathbb{R}^2$ $B_{8=1}(x_0, y_0) \in \mathbb{R}^2$, è chiuso perche il suc complementare è ϕ che è aperto (è uncaso limite ma essendo privo di punti la condizione della definizione di aperto è verificata perche nonce nulla da verificate). Il bordo $\partial \vec{k} = \phi$.
 - c) è APERTO (basta considerare & distanta dalla retta più vicina tra X=-2eX=2) il BORDO somo le rette X=-2eX=2 che & don, f hon è LIMITATO (contiene (X,0) X>2), son è compatto (ne chium, ne limitato)
 - d) e APERTO (S=1/XI), hour limitato ((x,0) edoug 4x to), non e COMPATTO (ne chiuso, ne limitato)
 - e) è APERTO (S= \frac{1}{2}(1-y) se y>0, S=\frac{1}{2}(1+y) se y>0), il bordo sono le rette y=\frac{1}{2} \tag{11-y} se y>0), il bordo sono le rette y=\frac{1}{2} \tag{11-y} se y>0), il bordo sono le rette y=\frac{1}{2} \tag{11-y} se y>0), il bordo sono le rette y=\frac{1}{2} \tag{11-y} se y>0), il bordo sono le rette y=\frac{1}{2}(1+y) se y>0, il bordo sono le rette y=
 - f) è APERTO (S= 2 dist ((x0,y0), carcouf C(q0) R=2), non à limitato (contiene (x,0) +x>2), non à compatto (ne driuso ne limitato)

- 9) nou è ne APERTO ne cHiUso, il bordo è costituito dall'assex e dalla parabola e Edourf lu parte si e in parte vo hou è limitato (contiene (X,X) YX > 1 ad esempir) hou è compatto (ve chiuso ne limitato)
- h) non è ne APERTO ne CHIUSO, il bondo è costituito dall'ellisse e dall'asse x per 1×1>3 e quindi ci sono punti del bondo che Eiusieme e punti che ¢iusieme

non à limitato (contiene l'assey per 14172) non à COMPATTO (ne chiuso, ne limitato)

- i) non à ne APERTO ne CHIUSO, è un SEMICERCHIO che contiene solo parte dei punti di bondo (quelli su y=-2x-1 st, quelli su $(x)^2+(y+1)^2=16$ NO)
 - E LIMITATO (ad es. è C BR(90) con R=6) non è compatto (non è chius anche se è limitato)
- j) non è ne aperto ne chiuso, il bondo è costituito dalle due metà nette x=-5 e x=-2 (la 2° solo per $y \le 1 \cup y = 7$) e dalla circo uferente $(X+2)^2+(y-4)^2=9$ per $x\le -2$ e il bordo appartieue odo in parte all' inneue.

non Elimitato (contreue (-3,4) ty > 7 ad exempro) non E compatto (ne chiuso, ne limitato) K) non è ne aperto ne CHIUSO, il bordo è costituito dalla vetta

Y= X+1 (X ∈ [-4,2]) che 4 douf e dalla parabola y=x²-1 (X ∈ [-1,2])

che ∈ douf (esclusi i due punti estremi).

E LIMITATO (douf c B_R(0,0) con R=4 ad esempto).

hon è compatro (mon è CHIUSO, duche se è limitato.

PUNTI

a) (3,0) $\in \partial(\text{dowf})$: infatti $\forall 8 > 0$ Bs(3,0) contiene punti del domf (per x>3) e punti $\notin \text{obuf per } \times <3$, $\times^2 + y^2 < 9$ (3,0) $\in \text{dowf}$

B₈(3,0) interseca Sia dout (3,0) Sia il suo complementate

(3,3) & INTERNO al down perche

Bs (3,3) < down ades. per S=1

dist((3,3), 8 down) = 3√2-3 ≈ 1,24

c) $(-2,-2) \in \partial(\text{dowf})$ perchè $\forall 8>0$ $B_8(-2,-2) \cap \text{dowf} \neq \emptyset$ (tutti i puuti $\text{cou } \times 7-2 \circ \times (-2)$ ma $B_8(-2,-2)$ coutieue auche puuti $\notin \text{dowf}$ (tutti i puuti $\text{cou } \times 2-2$

 $(3,3) \in \text{dowf}$ $(3,3) = 3\sqrt{2}-3$ (3,0)

 $e y \in]-2-8,-2+8[)$

 $(\frac{9}{4},-1)$ è INTERNO al douf perché $B_S(\frac{9}{4},-1)$ c douf ad es per $S=\frac{1}{8}$ Mouf (-2,-2) & down (-2,-2)

dist $((\frac{9}{4}, -1), \text{ letta } x = -2) = \frac{1}{4}$ $\frac{9}{4} - 2 = \frac{1}{4}$ $(\frac{9}{4}, -1) \in \text{dowf}$

e) (-1,+1) ∈ Odomf perché VS>0 B8(-1,2) ∩ domf ≠ Ø (tutti i punti con y<1) ma B8 Gutiene anche punti & douf (tutti i punti Guy>1

1 (3,-1)

