Machine Learning [2020.07.09 (목) ~ 2020.07.23 (목)]

- 1 타이타닉 데이터로 머신러닝 데이터 분석 절차 소개
- 2 머신러닝소개
- 3 머신러닝지도학습_분류
- 4 머신러닝지도학습_회귀
- 5 머신러닝비지도학습_군집화
- 6 머신러닝 조별 실습 및 발표

데이터 수집 (Data Collection)

데이터 전처리 (Data Preprocessing)

모델 선택 (Model Selection)

평가 및 적용 (Evaluation & Application)

데이터 수집 (Data Collection)

데이터 전처리 (Data Preprocessing)

모델 선택 (Model Selection)

평가 및 적용 (Evaluation & Application)

타이타닉 탑승자 데이터 파일

https://www.kaggle.com/c/titanic/data

데이터 전처리 (Data Preprocessing)

모델 선택 (Model Selection)

평가 및 적용 (Evaluation & Application)

데이터 확인

컬럼명 해석

변수명	정의
Passengerid	탑승자 데이터 일련번호
survived	생존 여부, 0=사망, 1=생존
pclass	티켓의 선실 등급, 1=일등석, 2=이등석, 3=삼등석
sex	탑승자 성별
name	탑승자 이름
Age	탑승자 나이
sibsp	같이 탑승한 형제자매 또는 배우자 인원수
parch	같이 탑승한 부모님 또는 어린이 인원수
ticket	티켓 번호
fare	요금
cabin	선실 번호
embarked	중간 정착 항구 C=Cherbourg, Q=Queenstown, S=Southampton

학습파일불러오기

- import pandas as pd
- titanic_df = pd.read_csv('train.csv')
- titanic_df.head()

O =	 	пн
	IIImn	
UU	lumn	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Index

- titanic_df.shape
- · (891, 12)

결손 데이터 확인

titanic_df.isna().sum()

Passengerld	0	
Survived	0	
Pclass	0	
Name	0	
Sex	0	
Age	177	
SibSp	0	
Parch	0	
Ticket	0	
Fare	0	
Cabin	687	
Embarked	2	
dtype: int64		

2 가지의 결측치 처리 방법

#1번방식

2번 방식

#1번방식

2번 방식

컬럼명	전체 행 개수	데이터수	결측치수
Age	891	714	177
Cabin	891	204	687
Embarked	891	889	2

결손데이터 확인

컬럼명	전체 행 개수	데이터수	결측치수
Age	891	714	177
Cabin	891	204	687
Embarked	891	889	2 DATA

1ST 방식 - 탑승항비율 확인 후 가장 많은 데이터 입력

- df_train['Embarked'].value_counts()
- · S 644
- · C 168
- Q 77
- Name: Embarked, dtype: int64

- df_train['Embarked'] = df_train['Embarked'].fillna('S')
- df_train['Embarked'].isnull().sum()
- 0

결손데이터 확인

컬럼명	전체 행 개수	데이터수	결측치수
Age	891	714	177
Cabin	891	204	687

1ST 방식

- #전체 평균 나이 확인
- df_train['Age'].mean()
- 29.69911764705882
- #성별에 따른 나이 평균값
- # 남자 나이 평균
- df_train[df_train['Sex'] == 'male'].Age.mean()
- 30.72664459161148
- #여자 나이 평균
- df_train[df_train['Sex'] == 'female']['Age'].mean()
- 27.915708812260537

- · # Pclass 범주확인
- df_train['Pclass'].value_counts()
- · 3 491
- · 1 216
- · 2 184
- # Pclass에 따른 평균 나이 확인
- df_train[df_train['Pclass'] == 1]['Age'].mean()
- 38.23
- df_train[df_train['Pclass']==2]['Age'].median()
- · 29.88
- df_train[df_train['Pclass']==3]['Age'].median()
- 25.14

1ST 방식

df_train['Age'].isnull().sum()

• 0

```
· # Age 결측치 채우기 – 성별과 선실 등급 각각의 평균 나이를 구하고 해당 조건에 따라 입력한다.
med_m_1 = df_train[(df_train['Sex']=='male') & (df_train['Pclass']==1)]['Age'].mean()
med_m_2 = df_train[(df_train['Sex']=='male') & (df_train['Pclass']==2)]['Age'].mean()
med_m_3 = df_train[(df_train['Sex']=='male') & (df_train['Pclass']==3)]['Age'].mean()
med_f_1 = df_train[(df_train['Sex']=='female') & (df_train['Pclass']==1)]['Age'].mean()
med_f_2 = df_train[(df_train['Sex']=='female') & (df_train['Pclass']==2)]['Age'].mean()
med_f_3 = df_train[(df_train['Sex']=='female') & (df_train['Pclass']==3)]['Age'].mean()
df_train.loc[(df_train['Age'].isnull())&(df_train['Sex']=='male') &(df_train['Pclass']==1),'Age'] = med_m_1
df_train.loc[(df_train['Age'].isnull())&(df_train['Sex']=='male') &(df_train['Pclass']==2),'Age'] = med_m_2
df_train.loc[(df_train['Age'].isnull())&(df_train['Sex']=='male') &(df_train['Pclass']==3),'Age'] = med_m_3
df_train.loc[(df_train['Age'].isnull())&(df_train['Sex']=='female')&(df_train['Pclass']==1),'Age'] = med_f_1
df_train.loc[(df_train['Age'].isnull())&(df_train['Sex']=='female')&(df_train['Pclass']==2),'Age'] = med_f_2
df_train.loc[(df_train['Age'].isnull())&(df_train['Sex']=='female')&(df_train['Pclass']==3),'Age'] = med_f_3
```

DATA **KUBWA**

결손데이터 확인

컬럼명	전체 행 개수	데이터수	결측치수
Cabin	891	204	687

- # Cabin 데이터 확인
- df_train['Cabin'].describe()

count 204
unique 147
top B96 B98
freq 4
Name: Cabin, dtype: object

- # Cabin 15개 샘플 확인
- df_train['Cabin'].sample(15)

```
691
       NaN
635
       NaN
       NaN
206
162
       NaN
247
       NaN
       NaN
302
794
       NaN
274
       NaN
406
       NaN
193
       F2
657
       NaN
158
       NaN
616
       NaN
835
       E49
870
       NaN
Name: Cabin, dtype: object
```


- # Cabin 첫번째 알파벳만 남기고
- titanic_df['Cabin'] = titanic_df['Cabin'].str[:1]
- # Cabin 최종적으로 삭제
- df_train.drop(['Cabin'], axis=1, inplace=True)
- df_train.isnull().sum()

Passengerld	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Embarked	0
dtype: int64	

#1번방식

2번 방식

2ND 방식

- #타이타닉데이터를 새로운데이터프레임명으로지정
- titanic_df = pd.read_csv('train.csv')
- #나이는 전체 평균값으로 입력
- titanic_df['Age'].fillna(titanic_df['Age'].mean(), inplace=True)
- # Cabin은 'N'으로 입력
- titanic_df['Cabin'].fillna('N', inplace=True)
- # 탑승항도 'N'으로 입력
- titanic_df['Embarked'].fillna('N', inplace=True)
- #최종 결측값 확인
- titanic_df.isnull().sum())

데이터 세트 Null 값 개수 Passengerld Survived Polass Name Sex. Age SibSp Parch Ticket Fare Cabin Embarked Name_Len Child_Adult Age_cat dtype: int64

2ND 방식

- # Cabin의 데이터 분포 확인
- titanic_df['Cabin'].value_counts()

```
Cabin 값 是至:
N 687
C23 C25 C27 4
G6 4
B96 B98 4
D 3
-----
A31 1
A20 1
B41 1
C103 1
Name: Cabin, Length: 148, dtype: int64
```

- # Cabin 데이터 수정. 첫번째 문자열만 남긴다
- titanic_df['Cabin'] = titanic_df['Cabin'].str[:1]

결측치 처리에 방식에 따른 머신러닝 모델 별 결과값 비교

# 1 방식 결측치 처리					
Machine learning Model	Accuracy				
Logistic Regression	0.7910				
Support Vector Machine	0.7612				
Decision Tree	0.7612				
Random Forest	0.7799				
하이퍼 파라미터 튜닝 (매개변수 최적화)	0.7935				

#2 방식 결측치 처리				
Machine learning Model	Accuracy			
Logistic Regression	0.7985			
Support Vector Machine	0.7612			
Decision Tree	0.7612			
Random Forest	0.7799			
하이퍼 파라미터 튜닝 (매개변수 최적화)	0.7912			

탐색적 데이터 분석

- # 컬럼별 상관관계 파악
- df_train.corr()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.039636	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.067485	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.407015	0.083081	0.018443	-0.549500
Age	0.039636	-0.067485	-0.407015	1.000000	-0.251313	-0.180705	0.118308
SibSp	-0.057527	-0.035322	0.083081	-0.251313	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.180705	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.118308	0.159651	0.216225	1.000000

titanic_df.corr()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.033207	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.069809	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.331339	0.083081	0.018443	-0.549500
Age	0.033207	-0.069809	-0.331339	1.000000	-0.232625	-0.179191	0.091566
SibSp	-0.057527	-0.035322	0.083081	-0.232625	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.179191	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.091566	0.159651	0.216225	1.000000

탐색적 데이터 분석

df_train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mr	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen,	female	26.0	0	0	STON/02. 31	7.9250	s
3	4	1	1	Futrelle, M	female	35.0	1	0	113803	53.1000	S
4	5	0	3	Allen, Mr	male	35.0	0	0	373450	8.0500	S

titanic_df.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr	male	22.0	1	0	A/5 21171	7.2500	N	S
1	2	1	1	Cumings, Mr	female	38.0	1	0	PC 17599	71.2833	С	С
2	3	1	3	Heikkinen,	female	26.0	0	0	STON/02. 31	7.9250	N	S
3	4	1	1	Futrelle, M	female	35.0	1	0	113803	53.1000	С	S
4	5	0	3	Allen, Mr	male	35.0	0	0	373450	8.0500	N	S

탐색적 데이터 분석

- #삭제: Passengerld, Name, Ticket
- for i in [df_train, titanic_df]:
- i.drop(['Passengerld', 'Name', 'Ticket'], axis=1, inplace=True)

DATA ENCODING

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

LABEL ENCODING

- from sklearn.preprocessing import LabelEncoder
- items=['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기', '믹서', '믹서']
- #LabelEncoder를 객체로 생성한 후, fit()과 transform()으로 레이블 인코딩 수행
- encoder = LabelEncoder()
- encoder.fit(items)
- labels=encoder.transform(items)
- print('인코딩 변환값:', labels)
- 인코딩 변환값: [01453322]
- print('인코딩 클래스:', encoder.classes_)
- · 인코딩 클래스: ['TV''냉장고''믹서''선풍기''전자레인지''컴퓨터']
- print('디코딩 원본 값:', encoder.inverse_transform([4,5,2,0,1,1,3,3]))
- · 디코딩 원본 값: ['전자레인지''컴퓨터''믹서''TV''냉장고''냉장고''선풍기''선풍기']

LABEL ENCODING

상품 분류	가격	상품 분류	가격
TV	1,000,000	0	1,000,000
냉장고	1,500,000	1	1,500,000
전자렌지	200,000	4	200,000
컴퓨터	800,000	5	800,000
선풍기	100,000	3	100,000
선풍기	100,000	점? 3	100,000
믹서	50,000	2	50,000
믹서	50,000	2	50,000

상품 분류	상품 분류 TV	상품 분류 냉장고	상품 분류 믹서	상품 분류 선풍기	상품 분류 전자렌지	상품 분류 컴퓨터
TV	1	0	0	0	0	0
냉장고	O	1	0	0	0	0
전자렌지	0	O	0	O	1	O
컴퓨터	0	0	O	0	0	1
선풍기	0	0	O	1	0	O
믹서	0	0	1	0	0	0

상품 분류	가격
TV	1,000,000
냉장고	1,500,000
전자렌지	200,000
컴퓨터	800,000
선풍기	100,000
선풍기	100,000
믹서	50,000
믹서	50,000

Ą	상품 분류	가격	
	0	1,000,000	
	1	1,500,000	
	4	200,000	
	5	800,000	
	3	100,000	
	3	100,000	
	2	50,000	
	2	50,000	

상품 분류 TV	상품 분류 냉장고	상품 분류 믹서	상품 분류 선풍기	상품 분류 전자렌지	상품 분류 컴퓨터
1	0	0	0	0	O
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	0	O

- import pandas as pd
- df=pd.DataFrame({'item':['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기', '믹서', '믹서']})
- pd.get_dummies(df)

	item_TV	item_냉장고	item_믹서	item_선풍기	item_전자레인지	item_컴퓨터
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	1	0
3	0	0	0	0	0	1
4	0	0	0	1	0	0
5	0	0	0	1	0	0
6	0	0	1	0	0	0
7	0	0	1	0	0	0

- OHE연습 = df_train['Embarked']
- pd.get_dummies(OHE연습)

	С	Q	S	
0	0	0	1	
1	1	0	0	
2	0	0	1	
3	0	0	1	
4	0	0	1	
886	0	0	1	
887	0	0	1	
888	0	0	1	
889	1	0	0	
890	0	1	0	
891 r	ows	× 3	col	umns

타이타닉 LABEL ENCODING

- #문자열 컬럼 사이킷런 레이블 인코딩
- from sklearn.preprocessing import LabelEncoder
- for i in ['Sex', 'Embarked']:
- encoder = LabelEncoder()
- encoder.fit(df_train[i])
- df_train[i]=encoder.transform(df_train[i])
- df_train.head()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	2
1	1	1	0	38.0	1	0	71.2833	0
2	1	3	0	26.0	0	0	7.9250	2
3	1	1	0	35.0	1	0	53.1000	2
4	0	3	1	35.0	0	0	8.0500	2

- for i in ['Sex', 'Embarked', 'Cabin']:
- encoder = LabelEncoder()
- encoder.fit(titanic_df[i])
- titanic_df[i]=encoder.transform(titanic_df[i])
- titanic_df.head()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	0	3	1	22.0	1	0	7.2500	7	3
1	1	1	0	38.0	1	0	71.2833	2	0
2	1	3	0	26.0	0	0	7.9250	7	3
3	1	1	0	35.0	1	0	53.1000	2	3
4	0	3	1	35.0	0	0	8.0500	7	3

FEATURE SCALING

FEATURE SCALING

표준화

정규화

$$\chi_{new} = \frac{\chi_i - \chi_{mean}}{Standard Deviation}$$

$$\chi_{\text{new}} = \frac{X_i - \min(X)}{\max(x) - \min(X)}$$

STANDARDSCALER

- print('feature들의 평균값:\n', df_train.mean())
- print('\nfeature들의 분산값: \n', print(df_train.var())

feature들의 Survived Polass Sex Age SibSp Parch Fare Embarked dtype: float	0.383838 2.308642 0.647587 29.112424 0.523008 0.381594 32.204208 1.536476
feature들의 Survived Polass Sex Age SibSp Parch Fare Embarked dtype: float	0.236772 0.699015 0.228475 177.007700 1.216043 0.649728 2469.436846 0.626477

- print('feature들의 평균값:\n', titanic_df.mean())
- print('\nfeature들의 분산값:\n', titanic_df.var())

feature들의	평균값:
Survived	0.383838
Polass	2.308642
Sex	0.647587
Age	29.699118
SibSp	0.523008
Parch	0.381594
Fare	32.204208
Cabin	5.946128
Embarked	2.343434
dtype: floa	t 64
feature들의	분산값:
Survived Polass Sex Age SibSp Parch Fare Cabin	0.236772 0.699015 0.228475 169.052400 1.216043 0.649728 2469.436846 4.253274
Survived Polass Sex Age SibSp Parch Fare	0.236772 0.699015 0.228475 169.052400 1.216043 0.649728 2469.436846 4.253274 1.362819

STANDARDSCALER

- from sklearn.preprocessing import StandardScaler
- # StandardScaler객체 생성
- scaler = StandardScaler()
- # StandardScaler로 데이터 세트 변환. fit()과 transform() 호출
- scaler.fit(df_train)
- First_scaled = scaler.transform(df_train)
- # transform() 시 스케일 변환된 데이터 세트가 NumPy ndarray로 반환돼 이를 DataFrame로 변환
- First_df_scaled = pd.DataFrame(data=First_scaled, columns=list(df_train.columns))
- · print('feature들의 평균값')
- print(First_df_scaled.mean())
- print('\nfeature들의 분산값')
- print(First_df_scaled.var())

- from sklearn.preprocessing import StandardScaler
- # StandardScaler객체 생성
- scaler = StandardScaler()
- # StandardScaler로 데이터 세트 변환. fit()과 transform() 호출
- scaler.fit(titanic_df)
- Second_scaled = scaler.transform(titanic_df)
- # transform() 시 스케일 변환된 데이터 세트가 NumPy ndarray로 반환돼 이를 DataFrame로 변환
- Second_df_scaled = pd.DataFrame(data=Second_scaled, columns=list(titanic_df.columns))
- · print('feature들의 평균값')
- print(Second_df_scaled.mean())
- print('\nfeature들의 분산값')
- print(Second_df_scaled.var())

STANDARDSCALER

Polass - Sex - Age SibSp Parch	-2.287732e-16 -2.031048e-16 -4.059603e-16 1.804891e-16 3.456519e-16 6.716164e-17 -4.373606e-17
feature들의 Survived Polass Sex Age SibSp Parch Fare Embarked dtype: float	1.001124 1.001124 1.001124 1.001124 1.001124 1.001124 1.001124

```
feature들의 평균값
          -2.287732e-16
Survived
Pclass
          -2.031048e-16
Sex
          -4.059603e-16
Age
           2.562796e-16
SibSp
           3.456519e-16
          6.716164e-17
Parch
Fare
          -4.373606e-17
Cabin
          -2.683974e-16
Embarked
           2.666529e-17
dtype: float64
feature들의 분산값
           1.001124
Survived
Polass
           1.001124
Sex
           1.001124
Age
           1.001124
SibSp
           1.001124
           1.001124
Parch
Fare
           1.001124
Cabin
            1.001124
Embarked 1.001124
dtype: float64
```

한번 더 상관관계

df_train.corr()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
Survived	1.000000	-0.338481	-0.543351	-0.067485	-0.035322	0.081629	0.257307	-0.167675
Pclass	-0.338481	1.000000	0.131900	-0.407015	0.083081	0.018443	-0.549500	0.162098
Sex	-0.543351	0.131900	1.000000	0.112851	-0.114631	-0.245489	-0.182333	0.108262
Age	-0.067485	-0.407015	0.112851	1.000000	-0.251313	-0.180705	0.118308	-0.011184
SibSp	-0.035322	0.083081	-0.114631	-0.251313	1.000000	0.414838	0.159651	0.068230
Parch	0.081629	0.018443	-0.245489	-0.180705	0.414838	1.000000	0.216225	0.039798
Fare	0.257307	-0.549500	-0.182333	0.118308	0.159651	0.216225	1.000000	-0.224719
Embarked	-0.167675	0.162098	0.108262	-0.011184	0.068230	0.039798	-0.224719	1.000000

titanic_df.corr()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
Survived	1.000000	-0.338481	-0.543351	-0.069809	-0.035322	0.081629	0.257307	-0.295113	-0.174963
Pclass	-0.338481	1.000000	0.131900	-0.331339	0.083081	0.018443	-0.549500	0.742093	0.197493
Sex	-0.543351	0.131900	1.000000	0.084153	-0.114631	-0.245489	-0.182333	0.118635	0.106395
Age	-0.069809	-0.331339	0.084153	1.000000	-0.232625	-0.179191	0.091566	-0.249098	-0.034883
SibSp	-0.035322	0.083081	-0.114631	-0.232625	1.000000	0.414838	0.159651	0.041058	0.068043
Parch	0.081629	0.018443	-0.245489	-0.179191	0.414838	1.000000	0.216225	-0.031553	0.032517
Fare	0.257307	-0.549500	-0.182333	0.091566	0.159651	0.216225	1.000000	-0.525742	-0.246359
Cabin	-0.295113	0.742093	0.118635	-0.249098	0.041058	-0.031553	-0.525742	1.000000	0.227505
Embarked	-0.174963	0.197493	0.106395	-0.034883	0.068043	0.032517	-0.246359	0.227505	1.000000

MACHINE LEARNING

- #데이터 분리: 학습 데이터 + 테스트 데이터
- y_titanic_df = df_train['Survived']
- X_titanic_df = df_train.drop('Survived', axis=1)
- from sklearn.model_selection import train_test_split
- X_train, X_test, y_train, y_test =
 train_test_split(X_titanic_df, y_titanic_df, test_size=0.2,
 random_state=12)
- print(X_train.shape)
- print(X_test.shape)
- print(y_train.shape)
- print(y_test.shape)

```
(712, 7)
(179, 7)
(712,)
(179,)
```

MACHINE LEARNING (SCIKIT LEARN)

머신러닝모델-분류(CLASSIFICATION) – SCIKIT-LEARN

- from sklearn.tree import DecisionTreeClassifier
- from sklearn.ensemble import RandomForestClassifier
- from sklearn.linear_model import LogisticRegression
- from sklearn.metrics import accuracy_score

- #결정트리, Random forest, 로지스틱 회귀를 위한 사이킷런 Classifier 클래스 생성
- dt_clf = DecisionTreeClassifier(random_state=11)
- rf_clf = RandomForestClassifier(random_state=11)
- Ir_clf = LogisticRegression()

머신러닝모델-분류(CLASSIFICATION) – SCIKIT-LEARN

- # DecisionTreeClassfier 학습/예측 평가
- dt_clf.fit(X_train, y_train)
- dt_pred = dt_clf.predict(X_test)
- print('DecisionTreeClassifier 정확도: {0:.4f}'.format(accuracy_score(y_test, dt_pred)))
- # RandomForestClassifier 학습/예측 평가
- rf_clf.fit(X_train, y_train)
- rf_pred = rf_clf.predict(X_test)
- print('RandomForestClassifier 정확도:{0:.4f}'.format(accuracy_score(y_test, rf_pred)))
- # LogisticRegression 학습/예측/평가
- Ir_clf.fit(X_train, y_train)
- Ir_pred = Ir_clf.predict(X_test)
- print('LogisticRegression 정확도: {0:.4f}'.format(accuracy_score(y_test, lr_pred)))
- DecisionTreeClassifier 정확도: 0.7654
- RandomForestClassifier 정확도:0.7430
- LogisticRegression 정확도: 0.7654

Feature scaling은 분류 모델에서 사용하지 않는다.

교차 검증 KFOLD

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test

교차 검증 KFOLD

print("평균 정확도: {0:.4f}".format(mean_score))

```
    from sklearn.model_selection import KFold

def exec_kfold(clf, folds=5):
   #폴드 세트를 5개인 KFold객체를 생성, 폴드 수만큼 예측결과 저장을 위한 리스트 객체 생성.
   kfold = KFold(n_splits=folds)
   scores = []
   #KFold 교차 검증 수행.
   for iter_count, (train_index, test_index) in enumerate(kfold.split(X_titanic_df)):
     #X titanic of 데이터에서 교차 검증별로 학습과 검증 데이터를 가리키는 index 생성
     X_train, X_test = X_titanic_df.values[train_index], X_titanic_df.values[test_index]
     y_train, y_test = y_titanic_df.values[train_index], y_titanic_df.values[test_index]
     # Classifier 학습, 예측, 정확도계산
     clf.fit(X_train, y_train)
     predictions = clf.predict(X_test)
     accuracy = accuracy_score(y_test, predictions)
     scores.append(accuracy)
      print("교차 검증 {0} 정확도: {1:.4f}".format(iter_count, accuracy))
   #5개 fold에서의 평균 정확도 계산.
   mean_score = np.mean(scores)
```

DATA **Kubwa**

교차 검증 KFOLD

- # exec_kfold 호출
- exec_kfold(dt_clf, folds=5)

- · # exec_kfold 호출
- exec_kfold(rf_clf, folds=5)

- · # exec_kfold 호출
- exec_kfold(lr_clf, folds=5)

교차 검증 0 정확도: 0.7542 교차 검증 1 정확도: 0.7809 교차 검증 2 정확도: 0.7865 교차 검증 3 정확도: 0.7697 교차 검증 4 정확도: 0.8202 평균 정확도: 0.7823

교차 검증 0 정확도: 0.7989 교차 검증 1 정확도: 0.7640 교차 검증 2 정확도: 0.8202 교차 검증 3 정확도: 0.7921 교차 검증 4 정확도: 0.8315 평균 정확도: 0.8013

교차 검증 0 정확도: 0.7933 교차 검증 1 정확도: 0.7921 교차 검증 2 정확도: 0.7753 교차 검증 3 정확도: 0.7472 교차 검증 4 정확도: 0.8427 평균 정확도: 0.7901

교차 검증 STRATIFIEDKFOLD

- import pandas as pd
- df_train['Survived'].value_counts()
- 0 549
- · 1 342
- Name: Survived, dtype: int64
- kfold = KFold(n_splits=5)
- num = 0
- for train_index, test_index in kfold.split(df_train):
- num+=1
- label_train = df_train['Survived'].iloc[train_index]
- label_test = df_train['Survived'].iloc[test_index]
- print('## 교차 검증: {0}'.format(num))
- print('학습 레이블 데이터 분포:\n', label_train.value_counts())
- print('검증 레이블 데이터 분포:\n', label_test.value_counts())

만약 1의 분포가 5% 내외라서 일부 검증 레이블 데이터 분포가 극단적이라면?

> 예) 검증 레이블 데이터 분포 0 200 1 0

교차 검증: 2

학습 레이블 데이터 분포:

0 450

1 263

Name: Survived, dtype: int64 검증 레이블 데이터 분포:

0 99

1 79

Name: Survived, dtype: int64

교차 검증: 3

학습 레이블 데이터 분포:

0 440

1 273

Name: Survived, dtype: int64

검증 레이블 데이터 분포:

0 106

1 72

Name: Survived, dtype: int64

교차 검증: 5

학습 레이블 데이터 분포:

0 434

1 279

Name: Survived, dtype: int64 검증 레이블 데이터 분포:

0 115

1 63

Name: Survived, dtype: int64

교차 검증 STRATIFIEDKFOLD

- from sklearn.model_selection import StratifiedKFold
- skf = StratifiedKFold(n_splits=5)
- num = 0
- for train_index, test_index in skf.split(df_train, df_train['Survived']):
- num += 1
- label_train = df_train['Survived'].iloc[train_index]
- label_test = df_train['Survived'].iloc[test_index]
- print('## 교차 검증: {0}'.format(num))
- print('학습 레이블 데이터 분포:\n', label_train.value_counts())
- print('검증레이블데이터 분포:\n', label_test.value_counts())

교차 검증: 1 학습 레이블 데이터 분포: 439 273 Name: Survived, dtype: int64 검증 레이블 데이터 분포: 110 69 Name: Survived, dtype: int64 ## 교차 검증: 2 학습 레이블 데이터 분포: 439 273 Name: Survived, dtype: int64 검증 레이블 데이터 분포: 110 69 Name: Survived, dtype: int64

검증 레이블 데이터 분포: 110 Name: Survived, dtype: int64 ## 교차 검증: 4 학습 레이블 데이터 분포: 439 274 Name: Survived, dtype: int64 검증 레이블 데이터 분포: 110 68 Name: Survived, dtype: int64 ## 교차 검증: 5 학습 레이블 데이터 분포: 440 274 Name: Survived, dtype: int64 검증 레이블 데이터 분포: 0 109 Name: Survived, dtype: int64

교차 검증 STRATIFIEDKFOLD

- skfold = StratifiedKFold(n_splits=5)
- $n_{iter} = 0$
- cv_accuracy = []
- # StratifiedKFold의 split() 호출 시 반드시 레이블 데이터 세트도 추가 입력 필요
- for train_index, test_index, in skfold.split(X_titanic_df, y_titanic_df):
- # split()으로 반환된 인덱스를 이용해 학습용, 검증용 테스트 데이터 추출
- X_train, X_test = X_titanic_df.values[train_index], X_titanic_df.values[test_index]
- y_train, y_test = y_titanic_df.values[train_index], y_titanic_df.values[test_index]
- #학습 및 예측
- dt_clf.fit(X_train, y_train)
- pred = dt_clf.predict(X_test)
- # 반복 시마다 정확도 측정
- n_iter += 1
- accuracy = np.round(accuracy_score(y_test, pred), 4)
- train_size = X_train.shape[0]
- test_size = X_test.shape[0]
- print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
- .format(n_iter, accuracy, train_size, test_size))
- cv_accuracy.append(accuracy)
- #교차 검증별 정확도 및 평균 정확도 계산
- print('\n## 교차 검증별 정확도:', np.round(cv_accuracy, 4))
- print('## 평균 검증 정확도:', np.mean(cv_accuracy))

#1 교차 검증 정확도 :0.7374, 학습 데이터 크기: 712, 검증 데이터 크기: 179

#2 교차 검증 정확도 :0.7765, 학습 데이터 크기: 712, 검증 데이터 크기: 179

#3 교차 검증 정확도 :0.8146, 학습 데이터 크기: 713, 검증 데이터 크기: 178

#4 교차 검증 정확도 :0.7697, 학습 데이터 크기: 713, 검증 데이터 크기: 178

#5 교차 검증 정확도 :0.7966, 학습 데이터 크기: 714, 검증 데이터 크기: 177

교차 검증별 정확도: [0.7374 0.7765 0.8146 0.7697 0.7966] ## 평균 검증 정확도: 0.77896

교차 검증 CROSS_VAL_SCORE

- from sklearn.model_selection import cross_val_score
- for i in [dt_clf, rf_clf, lr_clf]:
- scores = cross_val_score(i, X_titanic_df, y_titanic_df, cv=5)
- for iter_count, accuracy in enumerate(scores):
- print("교차 검증 {0} 정확도:
 - {1:.4f}".format(iter_count, accuracy))
- · print("평균 정확도:
 - {0:.4f}".format(np.mean(scores)))

```
교차 검증 0 정확도: 0.7374
교차 검증 1 정확도: 0.7765
교차 검증 2 정확도: 0.8146
교차 검증 3 정확도: 0.7697
교차 검증 4 정확도: 0.7966
평균 정확도: 0.7790
교차 검증 0 정확도: 0.7598
교차 검증 1 정확도: 0.7598
교차 검증 2 정확도: 0.8427
교차 검증 3 정확도: 0.7865
교차 검증 4 정확도: 0.8249
평균 정확도: 0.7947
교차 검증 0 정확도: 0.7989
교차 검증 1 정확도: 0.8156
교차 검증 2 정확도: 0.7809
교차 검증 3 정확도: 0.7640
교차 검증 4 정확도: 0.8192
```

평균 정확도: 0.7957

교차 검증 (1ST)

머신러닝 모델		dt_clf			rf_clf			Ir_clf	
교차 검증 모델	KFold	S_KF	C_V_S	Kfold	S_KF	C_V_S	KFold	S_KF	C_V_S
교차 검증 0 정확도:	0.7821	0.7374	0.7374	0.7709	0.7598	0.7598	0.7933	0.7989	0.7989
교차 검증 1 정확도:	0.7753	0.7765	0.7765	0.7978	0.7598	0.7598	0.8090	0.8156	0.8156
교차 검증 2 정확도:	0.8034	0.8146	0.8146	0.8539	0.8427	0.8427	0.7753	0.7809	0.7809
교차 검증 3 정확도:	0.7528	0.7697	0.7697	0.7865	0.7865	0.7865	0.7472	0.7640	0.7640
교차 검증 4 정확도:	0.7921	0.7966	0.7966	0.8202	0.8249	0.8249	0.8371	0.8192	0.8192
평균 정확도:	0.7811	0.7790	0.7790	0.8059	0.7947	0.7947	0.7924	0.7957	0.7879
머신러닝 정확도		0.7654			0.7430			0.7654	
									DATA KUB

최적 하이퍼 파라미터

- from sklearn.model_selection import GridSearchCV
- parameters1 = $\{\text{max_depth':}[1,2,3,4,5,6,7,8,9,10],$
- 'min_samples_split':[2,3,4,5,6,7,8,9,10], 'min_samples_leaf':[1,2,3,4,5,6,7,8,9,10]}
- grid_dclf = GridSearchCV(dt_clf, param_grid=parameters, scoring='accuracy', cv=5)
- grid_dclf.fit(X_train, y_train)
- print('GridSearchCV 최적 하이퍼 파라미터:', grid_dclf.best_params_)
- print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid_dclf.best_score_))
- best_dclf = grid_dclf. best_estimator_
- # GridSEarchCV의 최적 하이퍼 파라미터로 학습된 Estimator로 예측 및 평가 수행
- dpredictions = best_dclf.predict(X_test)
- accuracy = accuracy_score(y_test, dpredictions)
- print('테스트 세트에서의 DecisionTreeClassifier 정확도: {0:.4f}'.format(accuracy))

GridSearchCV 최적 하이퍼 파라미터 : {'max_depth': 6, 'min_samples_leaf': 1, 'min_samples_split': 8}

GridSearchCV 최고 정확도: 0.8118

테스트 세트에서의 DecisionTreeClassifier 정확도 : 0.8492

최적 하이퍼 파라미터

	Decision Tree	Random Forest	Logistic Regression
GridSearchCV 최고 정확도	0.8137	0.8375	0.8067
테스트세트에서의 Classifier 정확도	0.8475	0.8305	0.8475

- dt_clf.get_params().keys()
- dict_keys(['class_weight', 'criterion', 'max_depth', 'max_features', 'max_leaf_nodes', 'min_impurity_decrease', 'min_impurity_split', 'min_samples_leaf', 'min_samples_split', 'min_weight_fraction_leaf', 'presort', 'random_state', 'splitter'])
- rf_clf.get_params().keys()
- dict_keys(['bootstrap', 'class_weight', 'criterion', 'max_depth', 'max_features', 'max_leaf_nodes',
 'min_impurity_decrease', 'min_impurity_split', 'min_samples_leaf', 'min_samples_split', 'min_weight_fraction_leaf',
 'n_estimators', 'n_jobs', 'oob_score', 'random_state', 'verbose', 'warm_start'])
- Ir_clf.get_params().keys()
- dict_keys(['C', 'class_weight', 'dual', 'fit_intercept', 'intercept_scaling', 'l1_ratio', 'max_iter', 'multi_class', 'n_jobs', 'penalty', 'random_state', 'solver', 'tol', 'verbose', 'warm_start'])

