Correction des exercices du TD5

Bouarah Romain S

Souffan Nathan

23 mars 2020

Exercice 4

Question 1

Convergence simple:

 $\forall n \in \mathbb{N}, \ f_n(1) = 0$

 $\forall x \neq 1 \text{ clairement } \lim_{n \to +\infty} f_n(x) = 0$

Convergence uniforme:

On suppose $\varepsilon < 1$

Si $1 - \varepsilon < x$, on a $\forall n \in \mathbb{N}$:

$$x^n(1-x) \le 1 - x < \varepsilon$$

Si $x \le 1 - \varepsilon$, on a:

$$x^{n}(1-x) \le (1-\varepsilon)^{n}(1-x) \le (1-\varepsilon)^{n}$$

Si on prend donc n_0 tel que $(1-\varepsilon)^{n_0} < \varepsilon$ on a : $x^n(1-x) < \varepsilon$, $\forall n \ge n_0$ Ainsi $\forall n \ge n_0, \ \forall x \in [0,1], \ f_n(x) < \varepsilon$

Question 2

$$g_n(x) = x^n sin(\pi x) = x^n sin(\pi - \pi x) = x^n sin(\pi(1 - x))$$

De plus $\forall x \ge 0, \ sin(x) \le x \ Donc$:

$$sin(\pi(1-x)) \le \pi(1-x)$$

$$\implies x^n sin(\pi(1-x)) \le \pi x^n (1-x), \ \forall x \in [0,1]$$

$$\implies 0 \le g_n(x) \le f_n(x) \forall x \in [0,1]$$

On sait que $f_n \stackrel{u}{\to} 0$, alors $\forall \varepsilon > 0 \exists n_0$ tel que $\forall n \geq n_0$, $\forall x | f_n(x) | < \varepsilon$ Ainsi $\forall x, \ \forall n \geq n_0$ $|g_n(x)| \leq |f_n(x)| < \varepsilon$ Donc $g_n \stackrel{u}{\to} 0$

Exercice 7

Question 1

 $f_n(x) = e^{-nx} sin(2nx) \ x > 0, \ |f_n(x)| = |e^{-nx}||sin(2nx)| \le e^{-nx}$ et $\lim_{n \to +\infty} e^{-nx} = 0$

Donc $f_n \stackrel{s}{\to} 0$ Convergence uniforme Supposons que $f_n \stackrel{u}{\to} 0$, alors soit $\varepsilon < e^{-\frac{\pi}{4}}, \exists n_0 \in \mathbb{N}$ tel que

 $\forall n \geq n_0, \ \forall x \in [0, +\infty[|f_n(x)| < \varepsilon, \text{ Or, prenons } x = \frac{\pi}{4n_0}, \text{ on a alors :}$

$$|e^{-n_0 \frac{\pi}{4n_0}} sin(2n_0 \frac{\pi}{4n_0})|$$

$$= e^{-\frac{\pi}{4}} sin(\frac{\pi}{2})$$

$$= e^{-\frac{\pi}{4}} > \varepsilon$$

Donc $f_n \not\xrightarrow{u} 0sur]0, +\infty[$ et donc également sur $[0, +\infty[$. Mais $f_n \xrightarrow{u} 0$ sur $[a, +\infty[$, a > 0 car soit $\varepsilon > 0$, $|f_n(x)| \le e^{-nx} \le -na$ Donc si on prend n_0 tel que $e^{-n_0a} < \varepsilon$, on a bien $|f_n(x)| < \varepsilon$, $\forall n \ge n_0$, $\forall x \in [a, +\infty[$

Question 2

Clairement $f_n(x) \xrightarrow{s} \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$

Donc f_n converge simplement vers un fonction non continue alors que f_n est continue $\forall n \in \mathbb{N}$.

Il vient, f_n ne converge pas uniformément

Exercice 14

Question 1

Montrons que $\lim_{k\to+\infty} f_k(x_k) = f(x)$. On a :

$$\forall k \in \mathbb{N} |f_k(x_k) - f(x)| = |f_k(x_k) - f(x_k) + f(x_k) - f(x)|$$

$$\leq |f_k(x_k) - f(x_k)| + |f(x_k) - f(x)|$$

 $(f_k)_{k\geq 0}$ converge uniformément vers f sur I donc :

- $-\exists n_0 \in \mathbb{N} \ \forall k \in \mathbb{N} \ k \ge n_0 \implies |f_k(x_k) f(x_k)| < \varepsilon$
- f est continue sur I donc $\lim_{k \to +\infty} f(x_k) = f(x)$.

Finalement $\exists n_1 \in \mathbb{N} \ \forall k \in \mathbb{N}, \ k \geq n_1 \implies |f_k(x_k) - f(x)| < \varepsilon$

Question 2

Il suffit de trouver une suite $(x_k)_{k\geq 0}$ d'élements de I convergeant vers $x\in I$ et de montrer que $\lim_{k\to +\infty} f_k(x_k)\neq f(x)$.

Exercice 22

$$\alpha \ge 0, \ \forall n \in \mathbb{N}^* \ \forall x \in [0,1] \ f_n(x) = n^{\alpha} x^n (1-x)$$

Question 1

- $--f_n(1)=0.$
- $\forall x \in [0, 1[$, par croissance comparée entre n^{α} et x^{n} , on a $\lim_{n \to +\infty} f_{n}(x) = 0$.

Donc $(f_n)_{n>0}$ converge simplement vers 0 sur [0,1].

Question 2

 $a \in]0,1[$. Fixons n, étudions alors $f_n(x)$:

$$\begin{aligned} \forall x \in [0,1], \ f_n'(x) &= n^{\alpha} x^{n-1} n (1-x) - n^{\alpha} x^n \\ &= n^{\alpha} x^{n-1} \left[n (1-x) - x \right] \\ &= n^{\alpha} x^{n-1} \left[- (n+1) x + n \right] \end{aligned}$$

Donc $f'_n(x)$ est du même signe que -(n+1)x + n, donc f_n croissante sur $[0, \frac{n}{n+1}]$ puis décroissante sur $[\frac{n}{n+1}, 1]$.

Pour n assez grand, $\frac{n}{n+1}$ tend vers 1, donc $\exists N \in \mathbb{N} \ \forall n \geq N \ a < \frac{n}{n+1}$, donc $\forall n \geq N \ f_n(x) \leq f_n(a)$ et $f_n(a)$ tend vers 0 donc $\lim_{n \to +\infty} ||f_n|| = 0$.

Question 3

Sur [0, 1].

$$||f_n||_{\infty} = f_n\left(\frac{n}{n+1}\right) = n^{\alpha} \left(\frac{n}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right)$$
$$= n^{\alpha} \left(\frac{n}{n+1}\right)^n \frac{1}{n+1}$$
$$= \frac{n^{\alpha}}{n+1} \left(\frac{n}{n+1}\right)^n$$

Remarquons que $\left(\frac{n}{n+1}\right)^n = \left(1 - \frac{1}{n+1}\right)^n \sim e^{-1}$ et $\frac{n^{\alpha}}{n+1} \sim n^{\alpha-1}$. Donc $||f_n||_{\infty} \sim n^{\alpha-1}e^{-1}$. Si $\alpha < 1$ alors $||f_n||_{\infty}$ converge vers 0.

Question 4

Avec $0 \le \alpha < 1$, on a (f_n) qui converge uniformément vers f, donc :

$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx = 0$$