PATENT ABSTRACTS OF JAPAN

FAX RECEIVED

(11)Publication number:

2002-142133

(43)Date of publication of application: 17.05.2002

JUL 0 3 2007

OFFICE OF PETITIONS

(51)Int.CI.

HO4N 5/202 GO2F GO2F GO9G

G09G HO4N

(21)Application number: 2001-228996

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

30.07.2001

(72)Inventor: YAMAMOTO HIDEKI

(30)Priority

Priority number: 2000252865

Priority date : 23.08.2000

Priority country: JP

(54) DISPLAY AND LIQUID-CRYSTAL PROJECTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a display wherein gamma correction characteristics can be changed without causing white saturation (i.e., losing of tones in bright parts) or defacing of dark part due to losing of tones, and the gamma correction characteristics can be changed easily. SOLUTION: The display is provided with an analog gamma correction circuit. In the former stage of the analog gamma correction circuit, a gamma correction circuit for changing gamma correction characteristics is provided whose input and output characteristics can be varied. By varying the input and output characteristics of the gamma correction circuit for changing gamma correction characteristics, the gamma correction characteristics can be changed.

LEGAL STATUS

[Date of request for examination]

01.08.2002

[Date of sending the examiner's decision of

20.04.2004

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3837306

http://www19.ipdl.inpit.go.jp/PA1/result/detail/main/wAAAJhaG0IDA4...

Searching PAJ

페이지 2 / 2

[Date of registration]

04.08.2006

[Number of appeal against examiner's decision

2004-010452

of rejection]

[Date of requesting appeal against examiner's

19.05.2004

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-142133

(P2002-142133A)

(43)公開日 平成14年5月17日(2002.5.17)

(21)出剧番号		特顧2001-228996(P2001-228996)		(71)出顧人 000001889				
			審查請求	未請求 請	求項の数12	OL	(全 9 頁)	最終頁に続く
•		680					680C	5 C O 6 8
G09G	3/20	6 4 1		C 0 9 G	3/20		641Q	5 C O 2 1
	1/133	575			1/133		575	5 C O O 6
G02F	1/13	505		C 0 2 F	1/13		505	2H093
H04N	5/202			H04N	5/202			2H088
(51) Int.Cl.		設別们号		FΙ			Ť	~73~}*(容考)

平成13年7月30日(2001.7.30) (22) 出顧日

(31) 優先権主張番号 特顧2000-252865 (P2000-252865) (32) 優先日 平成12年8月23日(2000.8.23)

日本 (JP) (33)優先権主張国

三洋電機株式会社

大阪府守门市京阪本通2 丁目 6 番 5 号

(72) 発明者 山本 英樹

大阪府守门市京阪本通2丁目5番5号 三

洋電機株式会社內

(74)代理人 100086391

弁理士 香山 秀幸

最終頁に続く

表示装置および液晶プロジェクタ (54) 【発明の名称】

(57)【要約】

【課題】 この発明は、白サチリ、黒つぶれになること なくガンマ補正特性の変更でき、しかもガンマ補正特性 の変更が簡単に行なえるようになる表示装置を提供する ことを目的とする。

【解決手段】 アナログのガンマ補正回路を備えた表示 装置において、アナログのガンマ補正回路の前段に、入 出力特性が可変のガンマ補正特性変更用のガンマ補正回 路が設けられており、ガンマ補正特性変更用のガンマ補 正回路の入出力特性が変更せしめられることにより、ガ ンマ補正特性が変更せしめられる.

!(2) 002-142133 (P2002-142133A)

【特許請求の範囲】

【請求項1】 アナログのガンマ補正回路を備えた表示 装置において、

アナログのガンマ補正回路の前段に、入出力特性が可変のガンマ補正特性変更用のガンマ補正回路が設けられており、ガンマ補正特性変更用のガンマ補正回路の入出力特性が変更せしめられることにより、ガンマ補正特性が変更せしめられることを特徴とする表示装置。

【請求項2】 ガンマ補正特性変更用のガンマ補正回路の入出力特性が、指数を可変とする指数関数式で表わされることを特徴とする請求項1に記載の表示装置。

【請求項3】 ガンマ補正特性変更用のガンマ補正回路 がデジタルのガンマ補正回路である請求項1および2の いずれかに記載の表示装置。

【請求項4】 アナログのガンマ補正回路を備えた液晶プロジェクタにおいて、アナログのガンマ補正回路の前段に、入出力特性が可変のガンマ補正特性変更用のガンマ補正回路が設けられており、ガンマ補正特性変更用のガンマ補正回路の入出力特性が変更せしめられることを特徴とする液晶プロジェクタ。

【請求項5】 ガンマ補正特性変更用のガンマ補正回路 の入出力特性が、指数を可変とする指数関数式で表わさ れることを特徴とする請求項4に記載の液晶プロジェク タ。

【請求項6】 ガンマ補正特性変更用のガンマ補正回路 がデジタルのガンマ補正回路である請求項4および5の いずれかに記載の液晶プロジェクタ。

【請求項7】 デジタルのガンマ補正回路を備えた表示 装置において、

デジタルのガンマ補正回路の前段に、入出力特性が可変 のガンマ補正特性変更用のガンマ補正回路が設けられて おり、ガンマ補正特性変更用のガンマ補正回路の入出力 特性が変更せしめられることにより、ガンマ補正特性が 変更せしめられることを特徴とする表示装置。

【請求項8】 ガンマ補正特性変更用のガンマ補正回路 の入出力特性が、指数を可変とする指数関数式で表わさ れることを特徴とする請求項7に記載の表示装置。

【請求項9】 ガンマ補正特性変更用のガンマ補正回路 がデジタルのガンマ補正回路である請求項7および8の いずれかに記載の表示装置。

【 請求項11】 ガンマ補正特性変更用のガンマ補正回路の入出力特性が、指数を可変とする指数関数式で表わ

されることを特徴とする請求項10に記載の液晶プロジェクタ。

【請求項12】 ガンマ補正特性変更用のガンマ補正回路がデジタルのガンマ補正回路である請求項10および11のいずれかに記載の液晶プロジェクタ.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、表示装置および 液晶プロジェクタに関する。

[0002]

【従来の技術】図1は、アナログのガンマ補正回路を備 えた従来の液晶プロジェクタの構成を示している。

【0003】液晶プロジェクタには、ビデオ信号(AV信号)またはコンピュータ信号(CG信号)が入力され、入力切替回路1によってAV信号、CG信号のうちのいずれかが選択されて、A/Dコンバータ2に送られる。

【0004】A/Dコンバータ2に入力されたRGB信号は、A/Dコンバータ2によってデジタル信号に変換された後、走査変換回路3に送られる。走査変換回路3では、周波数変換などのデジタル処理が行われる。走査変換回路3の出力信号はD/Aコンバータ4によってアナログ信号に変換された後、アナログガンマ補正回路5によってガンマ補正が施される。アナログガンマ補正回路5の出力信号は、サンプル&ホールド回路6に送られる。サンプル&ホールド回路6に入力された信号は時分割されて液晶パネル9に書き込まれ、番き込まれた信号は投影スクリーンに投影される。

【0005】液晶プロジェクタ内の各部は、CPU8によって制御される。CPU8は、そのプログラム等を記憶するROM11および必要なデータを記憶するRAM12を備えている。

【0006】また、A/Dコンバータ2およびD/Aコンバータ4に対するクロック、サンプル&ホールド回路6に対するサンプリングクロックおよび液晶パネル9を駆動するためのパネル駆動パルスは、タイミングジェネレータ7によって生成される。

【0007】図2は、アナログガンマ補正回路5の特性を示している。

【0008】図2の例では、ランプ波形を入力した場合に、白側1点(白側ガンマポイントァ1)と黒側2点

(黒側ガンマポイントァ2および黒側ガンマポイントァ3)との3つの折れ曲がり点を持つアナログガンマ補正回路5の入出力特性を示している。

【0009】白レベルと折れ曲がり点で1との間のAMPゲインをa、折れ曲がり点で1と折れ曲がり点で2と の間のAMPゲインをb、折れ曲がり点で2と折れ曲が り点で3との間のAMPゲインをc、折れ曲がり点で3 と黒レベルとの間のAMPゲインをdとすると、各AMPゲインa、b、c、dは液晶パネルの電圧対透過率特

!(3) 002-142133 (P2002-142133A)

性に応じて決定されている。

【0010】アナログガンマ補正回路5の特性を規定する各折れ曲がり点r1、r2、r3および各AMPゲインa、b、c、dは、ROM11に記憶されており、CPU8からアナログガンマ補正回路5に送られる。つまり、アナログガンマ補正回路5の特性を規定する各折れ曲がり点r1、r2、r3および各AMPゲインa、b、c、dは、通常は固定されている。

【0011】アナログガンマ補正回路5の上記特性によって、液晶プロジェクタの入力信号レベル対照度特性は、図3に曲線Bに示すような特性となり、黒つぶれ、白サチリがなく視覚的に明るさがほぼリニアに変化している映像が得られる。

【0012】ところで、入力される信号の特性やユーザの映像に対する好みなどによって、入力信号レベル対照度特性を変化させたい場合がある。たとえば、入力信号レベル対照度特性を図3に示すA、B、Cのように変化させたい場合がある。

【0013】図3の曲線Bは黒から白までほぼリニアな変化をしている標準の入力信号レベル対照度特性を示しており、図3の曲線Aは中間調が明るく見える入力信号レベル対照度特性を示し、図3の曲線Cは逆に中間調が暗く見える入力信号レベル対照度特性を示している。

【0014】従来回路において、入力信号レベル対照度特性を変化させるためには、アナログガンマ補正回路の特性を、図4に示すように、変化させる必要がある。つまり、各折れ曲がり点 r1、r2、r3および各AMPゲインa、b、c、dを設定する必要がある。この際、白ー黒レベル振幅が変化しないように、これらの値を設定する必要がある。

【0015】しかしながら、この設定作業は、液晶パネルの電圧対透過率特性のバラツキを考慮すると非常に多くの工数を要するため、複雑な設定作業となる。また、その設定値を個別の液晶パネルの電圧対透過率特性に合わせないと、白サチリ、黒つぶれなどになるという不具合がある。

【0016】図7は、デジタルのガンマ補正回路を備えた従来の液晶プロジェクタの構成を示している。

【0017】液晶プロジェクタには、ビデオ信号(AV信号:コンポジット信号)またはコンピュータ信号(CG信号:RGB信号)が入力される。ビデオ信号は、マトリクス処理回路101によってRGB信号に変換された後、入力切替回路102に送られる。コンピュータ信号は、そのまま入力切替回路102に送られる。入力切替回路102によってマトリクス処理回路101の出力信号またはCG信号のうちのいずれかが選択されて、A/Dコンバータ103に送られる。

【0018】A/Dコンバータ103に入力されたRG B信号は、A/Dコンバータ103によってデジタル信 号に変換された後、走査変換回路104に送られる。走 査変換回路104では、周波数変換などのデジタル処理が行われる。走査変換回路104の出力信号は、デジタルガンマ補正回路105によってガンマ補正が施される。デジタルガンマ補正回路105の特性は、ROM111にルックアップテーブルの形式で記憶されているデータに基づいてCPU108により設定される。デジタルガンマ補正回路105の出力信号は、12相展開回路106に入力された信号は時分割されて液晶パネル109に書き込まれ、書き込まれた信号は投影スクリーンに投影される。

【0019】液晶プロジェクタ内の各部は、CPU108によって制御される。CPU108は、そのプログラム等を記憶するROM111および必要なデータを記憶するRAM112を備えている。

【0020】また、A/Dコンバータ103に対するクロック、12相展開回路106に対するタイミングバルスおよび液晶パネル109を駆動するためのパネル駆動バルスは、タイミングジェネレータ107によって生成される。

【0021】図8は、デジタルガンマ補正回路105の特性を示している。

【0022】図8の例では、ランプ波形を入力した場合のデジタルガンマ補正回路105の入出力特性(ガンマ補正データ)を示している。

【0023】ガンマ補正データは、液晶パネル109の電圧対透過率特性に応じて決定されており、通常はたとえば、図8の曲線Bで表されるような特性となるように固定されている。ガンマ補正データが図8の曲線Bで表されるようなデータである場合には、液晶プロジェクタの入力信号レベル対照度特性は、図3に曲線Bに示すような特性となり、黒つぶれ、白サチリがなく視覚的に明るさがほぼリニアに変化している映像が得られる。

【0024】ところで、入力される信号の特性やユーザの映像に対する好みなどによって、入力信号レベル対照度特性を変化させたい場合がある。たとえば、入力信号レベル対照度特性を図3に示すA、B、Cのように変化させたい場合がある。

【0025】図3の曲線Bは黒から白までほぼリニアな変化をしている標準の入力信号レベル対照度特性を示しており、図3の曲線Aは中間調が明るく見える入力信号レベル対照度特性を示し、図3の曲線Cは逆に中間調が暗く見える入力信号レベル対照度特性を示している。

【0026】従来回路において、入力信号レベル対照度特性をたとえば図3にA、B、Cで示す3段階に変化させるためには、デジタルガンマ補正回路の特性を、図8にA、B、Cで示すように示すように、3段階に変化させる必要がある。そうすると、段階数に応じたルックアップテーブルが必要となり、ルックアップテーブルを記憶するメモリの容量が大きくなる。

【0027】また、R、G、B間で液晶パネルの電圧対

!(4) 002-142133 (P2002-142133A)

透過率特性が異なるため、各液晶パネル毎に異なったガンマ補正データが設定されるが、複数段階にガンマ補正データを変化させる場合には、ホワイトバランスが変わらないように、ガンマ補正データを作成する必要がある。

【0028】ホワイトバランスが変わらないようにガンマ補正データを作成するためには、R、G、B間の透過率の変化を一致させながら、各パネル毎にデジタルデータの変化量を設定していく必要があり、その作成に時間がかかるという問題がある。

[0029]

【発明が解決しようとする課題】この発明は、白サチリ、黒つぶれになることなくガンマ補正特性を変更でき、しかもガンマ補正特性の変更が簡単に行なえるようになる表示装置を提供することを目的とする。

【0030】この発明は、白サチリ、黒つぶれになることなくガンマ補正特性(液晶プロジェクタの入力レベル対照度特性)を変更でき、しかもガンマ補正特性の変更が簡単に行なえるようになる液晶プロジェクタを提供することを目的とする。

[0031]

【課題を解決するための手段】この発明による第1の表示装置は、アナログのガンマ補正回路を備えた表示装置において、アナログのガンマ補正回路の前段に、入出力特性が可変のガンマ補正特性変更用のガンマ補正回路が設けられており、ガンマ補正特性変更せしめられることにより、ガンマ補正特性が変更せしめられることを特徴とする。

【0032】ガンマ補正特性変更用のガンマ補正回路としては、その入出力特性が、たとえば、指数を可変とする指数関数式で表わされるものが用いられる。ガンマ補正特性変更用のガンマ補正回路としては、デジタルのガンマ補正回路を用いることが好ましい。

【0033】この発明による第1の液晶プロジェクタは、アナログのガンマ補正回路を備えた液晶プロジェクタにおいて、アナログのガンマ補正回路の前段に、入出力特性が可変のガンマ補正特性変更用のガンマ補正回路が設けられており、ガンマ補正特性変更せしめられることにより、ガンマ補正特性が変更せしめられることを特徴とする。

【0034】ガンマ補正特性変更用のガンマ補正回路としては、その入出力特性が、たとえば、指数を可変とする指数関数式で表わされるものが用いられる。ガンマ補正特性変更用のガンマ補正回路としては、デジタルのガンマ補正回路を用いることが好ましい。

【0035】この発明による第2の表示装置は、デジタルのガンマ補正回路を備えた表示装置において、デジタルのガンマ補正回路の前段に、入出力特性が可変のガンマ補正特性変更用のガンマ補正回路が設けられており、ガンマ補正特性変更用のガンマ補正回路の入出力特性が

変更せしめられることにより、ガンマ補正特性が変更せ しめられることを特徴とする。

【0036】ガンマ補正特性変更用のガンマ補正回路としては、その入出力特性が、たとえば、指数を可変とする指数関数式で表わされるものが用いられる。ガンマ補正特性変更用のガンマ補正回路としては、デジタルのガンマ補正回路を用いることが好ましい。

【0037】この発明による第2の液晶プロジェクタは、デジタルのガンマ補正回路を備えた液晶プロジェクタにおいて、デジタルのガンマ補正回路の前段に、入出力特性が可変のガンマ補正特性変更用のガンマ補正回路が設けられており、ガンマ補正特性変更せしめられることにより、ガンマ補正特性が変更せしめられることを特徴とする。

【0038】ガンマ補正特性変更用のガンマ補正回路としては、その入出力特性が、たとえば、指数を可変とする指数関数式で表わされるものが用いられる。ガンマ補正特性変更用のガンマ補正回路としては、デジタルのガンマ補正回路を用いることが好ましい。

[0039]

【発明の実施の形態】

【0040】[1]第1の実施の形態の説明

【0041】図5は、アナログガンマ補正回路を備えた 液晶プロジェクタの構成を示している。図5において、 図1と同じものには、同じ符号を付してその説明を省略 する。

【0042】この液晶プロジェクタと図1の液晶プロジェクタ(従来回路)とを比較すると、D/Aコンバータ4の前段に、ガンマ補正特性変更用の8bitデジタルガンマ補正回路10が設けられている点のみが異なっている。この液晶プロジェクタにおいても、従来回路と同様に、D/Aコンバータ4の後段に、アナログガンマ補正回路5が設けられている。したがって、この液晶プロジェクタでは、デジタルガンマ補正回路(前段ガンマ補正回路)10とアナログガンマ補正回路(後段ガンマ補正回路)5とによってガンマ補正が行なわれることになる。

【0043】アナログガンマ補正回路5の特性(図2に示す、各折れ曲がり点ァ1、ア2、ア3および各AMP ゲインa、b、c、dの値)は、たとえば、デジタルガンマ補正回路10が設けられていない場合に、液晶プロジェクタの入力信号レベル対照度特性が図3にBに示すような特性になるように固定されている。

【0044】デジタルガンマ補正回路10として、信号振幅が一定で入出力特性が可変の8ビットのデジタルガンマ補正回路が用いられている。デジタルガンマ補正回路10の入出力特性は、CPU8からの制御によって切り替えられるようになっている。

【0045】図6は、デジタルガンマ補正回路10が取り得る複数種類の入出力特性を示している。

(5) 002-142133 (P2002-142133A)

【0046】デジタルガンマ補正回路10の入力データをX、出力データをYとすると、デジタルガンマ補正回路10が取り得る複数種類の入出力特性は、次式(1)の指数関数で表される。

 $[0047]Y=255 \times (X/255)^a \cdots (1)$

【0048】上記式 (1) 中のaの値を変化させることによって、入出力特性が変化する。この例では、aの値としては、 $0.5\sim1$. 5の範囲内で、0.1ずつ異なる値が設定されるものとする。つまり、aは、0.5、0.6、…1.0 …1.4 、1.5 の値に設定される。

【0049】図6において、直線S(1.0)はa=1.0の場合の入出力特性を示している。また、曲線S(0.5)はa=0.5の場合の入出力特性を、曲線S(0.8)はa=0.8の場合の入出力特性を、曲線S(1.2)はa=1.2の場合の入出力特性を、それぞれ示している。

【0050】CPU8は、上記式(1)に基づいて、デジタルガンマ補正回路10の入出力特性を決定する。 【0051】a=1、0の場合、Y=Xとなり、液晶プ

【0051】a=1.0の場合、Y=Xとなり、液晶プロジェクタの入力信号レベル対照度特性が図3にBに示すような標準特性となる。aの値を1.0より小さくしていくと、液晶プロジェクタの入力信号レベル対照度特性は、図3の特性BからA側に変化していく。逆に、aの値を1.0より大きくしていくと、液晶プロジェクタの入力信号レベル対照度特性は、図3の特性BからC側に変化していく。

【0052】つまり、この実施の形態では、ユーザからの特性変更指示に基づいて、CPU8がデジタルガンマ補正回路10の入出力特性を切り替えることによって、液晶プロジェクタの入力信号レベル対照度特性が変化せしめられる。デジタルガンマ補正回路10の入出力特性の切り替えは、上記式(1)に示すような簡単な計算式に基づいて行なうことができる。

【0053】この実施の形態では、デジタルガンマ補正 回路10の入出力特性を変化させることによって、ガン マ補正特性を変化させて、液晶プロジェクタの入力信号 レベル対照度特性を変化させているので、次のような利 点がある。

【0054】つまり、ガンマ補正特性を変換させた際に、D/Aコンバータ4から出力される白ー黒間の信号振幅が変化しないため、アナログガンマ補正回路5の出力信号波形の白ー黒間振幅が変化しなくなり、白サチリ、黒つぶれが発生しなくなる。

【0055】ところで、アナログガンマ補正回路を用いることなく、8ビットのデジタルガンマ補正回路のみを用いて、図4に示すようなガンマ補正特性の変更を行なうようにすることも考えられる。しかしながら、このようにすると、デジタルガンマ補正回路の処理ビット数が少ないため、補正特性の傾きが大きい黒側で等高線ノイズが発生しやすいという問題がある。

【0056】これに対して、この実施の形態では、デジタルガンマ補正回路10とアナログガンマ補正回路5とを併用し、デジタルガンマ補正回路10を、図6に示すようになだらかに変化する入出力特性に基づいて入出力レベル変換を行なうために使用しているため、等高線ノイズが発生しにくくなるので、安価な少ないビット数のデジタルガンマ補正回路を使用することが可能となる。【0057】なお、この前段ガンマ補正回路としてアナログのガンマ補正回路を使用してもよいが、その場合には、白サチリ、黒つぶれを防止するために、図6のようにその入出力特性を変化させても、白ー黒間の振幅が変

化しないような回路とすることが必要である。 【0058】 (2) 第2の実施の形態の説明

【0059】図9は、デジタルガンマ補正回路を備えた液晶プロジェクタの構成を示している。

【0060】図9において、図7と同じものには、同じ 符号を付してその説明を省略する。

【0061】この液晶プロジェクタと図7の液晶プロジェクタ(従来回路)とを比較すると、本来のデジタルガンマ補正回路105の前段に、ガンマ補正特性変更用の8bitデジタルガンマ補正回路110が設けられている点のみが異なっている。この液晶プロジェクタでは、8bitデジタルガンマ補正回路(前段ガンマ補正回路:以下、サブガンマ補正回路という)110とデジタルガンマ補正回路という)105とによってガンマ補正が行なわれることになる。

【0062】メインガンマ補正回路105の特性は、たとえば、サブガンマ補正回路110が設けられていない場合に、液晶プロジェクタの入力信号レベル対照度特性が図3にBで示すような特性が得られるように固定されている。つまり、メインガンマ補正回路105の特性は、図8にBで示すような特性に固定されている。

【0063】サブガンマ補正回路110としては、第1の実施の形態におけるデジタルガンマ補正回路10と同様に、信号振幅が一定で入出力特性が可変の8ビットのデジタルガンマ補正回路が用いられている。サブガンマ補正回路110の入出力特性は、CPU108からの制御によって切り替えられるようになっている。

【0064】図6は、サブガンマ補正回路110が取り 得る複数種類の入出力特性を示している。

【0065】サブガンマ補正回路110の入力データをX、出力データをYとすると、サブガンマ補正回路110が取り得る複数種類の入出力特性は、次式(2)の指数関数で表される。

 $[0066]Y=255 \times (X/255)^{a} \cdots (2)$

【0067】上記式(2)中のaの値を変化させることによって、入出力特性が変化する。この例では、aの値としては、0.5~1.5の範囲内で、0.1ずつ異なる値が設定されるものとする。つまり、aは、0.5、0.

!(6) 002-142133 (P2002-142133A)

6、…1.0 …1.4、1.5 の値に設定される。

【0068】図6において、直線S(1.0)はa=1.0の場合の入出力特性を示している。また、曲線S(0.5)はa=0.5の場合の入出力特性を、曲線S

(0.8) はa=0.8の場合の入出力特性を、曲線S

(1.2) はa=1.2の場合の入出力特性を、それぞれ示している。

【0069】CPU108は、上記式(2)に基づいて、サブガンマ補正回路110の入出力特性を決定する。

【0070】a=1.0の場合、Y=Xとなり、液晶プロジェクタの入力信号レベル対照度特性が図3にBに示すような標準特性となる。aの値を1.0より小さくしていくと、液晶プロジェクタの入力信号レベル対照度特性は、図3の特性BからA側に変化していく。逆に、aの値を1.0より大きくしていくと、液晶プロジェクタの入力信号レベル対照度特性は、図3の特性BからC側に変化していく。

【0071】つまり、この実施の形態では、ユーザからの特性変更指示に基づいて、CPU108がサブガンマ補正回路110の入出力特性を切り替えることによって、液晶プロジェクタの入力信号レベル対照度特性が変化せしめられる。サブガンマ補正回路110の入出力特性の切り替えは、上記式(2)に示すような簡単な計算式に基づいて行なうことができる。

【0072】なお、メインガンマ補正回路105のガンマ補正データとしてR、G、Bの各液晶パネル毎に適正な値が設定されていれば、前段のサブガンマ補正回路110の入出力特性を変化させても、ホワイトバランスは変化しない。

【0073】第2の実施の形態によれば、サブガンマ補正回路110の入出力特性を切り替えることにより、ガンマ補正特性を複数段階に切り替えることができる。サブガンマ補正回路110の入出力特性の切り替えは、簡単な計算式に基づいて行なうことができるので、ガンマ補正特性の切り替えが簡単である。

【0074】つまり、第2の実施の形態によれば、ガンマ補正特性を複数段階に切り替えるために、メインガンマ補正回路に対するガンマ補正データとして複数種類のガンマ補正データを用意する必要がないので、メインガ

ンマ補正回路に対するガンマ補正データの作成が容易と なるとともにそれを記憶するメモリの容量を小さくする ことができる。

[0075]

【発明の効果】この発明によれば、白サチリ、黒つぶれになることなくガンマ補正特性を変更でき、しかもガンマ補正特性の変更が簡単に行なえるようになる。

【図面の簡単な説明】

【図1】アナログガンマ補正回路を備えた従来の液晶プロジェクタの構成を示すブロック図である。

【図2】アナログガンマ補正回路の特性を示す模式図で ある。

【図3】液晶プロジェクタの入力信号レベル対照度を特性を示すグラフである。

【図4】従来の液晶アロジェクタにおいてガンマ補正特性を変化させた場合の例を示す模式図である.

【図5】この発明の第1の実施の形態である液晶プロジェクタの構成を示すブロック図である。

【図6】ガンマ補正特性変更用のデジタルガンマ補正回 路の入出力特性を示すグラフである。

【図7】 デジタルガンマ補正回路を備えた従来の液晶プロジェクタの構成を示すブロック図である。

【図8】 デジタルガンマ補正回路の特性を示すグラフである。

【図9】この発明の第2の実施の形態である液晶プロジェクタの構成を示すブロック図である。

【符号の説明】

- 1、102 入力切り替え回路
- 2、103 A/Dコンバータ
- 3、104 走査変換回路
- 4 D/Aコンパータ
- 5 アナログガンマ補正回路
- 6 Sample&Hold回路
- 7、107 タイミングジェネレータ
- 8,108 CPU
- 9、109 液晶パネル
- 10、110 861 tデジタルガンマ補正回路
- 105 デジタルガンマ補正回路
- 106 12相展開回路

!(7) 002-142133 (P2002-142133A)

:(8) 002-142133 (P2002-142133A)

!(9) 002-142133 (P2002-142133A)

フロントページの続き

(51) Int. Ci.7		識別記号	FI		,	(参考)
G09G	3/36		Ģ09G	3/36		5C080
HOAN	5/66	102	H O 4 N	5/66	102B	•

F ターム(参考) 2H088 EA15 HA06 MA13 2H093 NA51 NC13 NC23 NC28 ND06 NG02 5C006 AA21 AF46 EC11 GA02 5C021 PA64 PA78 PA85 PA86 PA99 XA34 YC00 5C058 AA06 AB03 BA07 BA13 BA23 BB04 BB05 BB14 EA26 5C080 AA10 BB05 CC03 DD01 EE30 JJ02 JJ05 KK43