Algoritmi Genetici Stack Problem

Giovanni Bocchi

Outline

- Stack problem
- Algoritmo Genetico
 - Individuo
 - Selezione Naturale
 - Crossover
 - Mutazione
- Mathematica
- Conclusioni

Stack Problem

Algoritmo Genetico

- Dati iniziali
- Individuo
- Popolazione
- Fitness
- Crossover
- Mutazione

✓ Iterazione

Individuo

Funzioni

- CS (Current Stack)
- TB (Top Block)
- NN (Next Needed)
- MT (Move to Table)
- MS (Move to Stack)
- Sensori
 - DU (Do Until)
 - NOT
 - EQ (Equal)

Codice

CS: restituisce, se presente, la prima lettera di stack

```
CS:= Module[{temp},
    If[Length[stack]==0,
         NIL,
         stack[[1]]
]
```

MT: se x è presente in stack sposta la prima lettera di stack in table

Suddivisione delle funzioni

```
lettere = {xCS,xTB,xNN,xMS[lett],xMT[lett]};
booleani = {xEQ[gen,gen],xNOT[lett],xDU[lett,bool]}
```

Selezione Naturale

• Fitness: f_i

Probabilità:
$$p_i = \frac{f_i}{\sum_i f_i}$$

> Roulette Probabilità

Crossover

Genitori

Figli

Codice

Individuo 1

```
Pos1 = Position[individuo1, x_, Infinity];
Pos1 = DeleteCases[pos1, {x___, 0}];
Pos1 = DeleteCases[pos1, {}];
Ramo = RandomChoice[pos1];
```

Individuo 2

```
Rami2 = Position[individuo2,x_/;MemberQ[appartenenza,x]];
Rami2 = DeleteCases[rami2,{0}];
Rami2 = rami2/.{x__,0}->{x};
Scambio = RandomChoice[rami2];
```

Mutazione

Genetic Algorithms: How well the Role of crossover solution solves global and mutation problem optimum solution local reproduction optimum (ideal) solution most of the hill climbing is via gene crossover occassional mutation forces trial over all space Problem parameter space

- Interpretazione
- Implementazione
- Scopo

Mathematica

Calcolo Algebrico

in: 2^3

out: 8

Calcolo Simbolico

in: Pippo^Mela out: Pippo^Mela

Mathematica - Codice

Definizione delle funzioni

Variazione del "nome" delle funzioni

Es: CS diventa xCS

Ritorno al "nome" originale

 $/. xCS \rightarrow CS$

Conclusioni

- Popolazione di 50 individui
- Risultati
- Osservazioni
- Prospettive future