Introductory Statistics Lectures

Estimating a population mean

Confidence intervals for means

ANTHONY TANBAKUCHI DEPARTMENT OF MATHEMATICS PIMA COMMUNITY COLLEGE

REDISTRIBUTION OF THIS MATERIAL IS PROHIBITED WITHOUT WRITTEN PERMISSION OF THE AUTHOR

© 2009

(Compile date: Tue May 19 14:50:24 2009)

Contents

1	Estimating a population				Computation	2
	mean		1		A complete example	4
	1.1	Introduction	1	1.3	Summary	Ę
	1.2	Confidence intervals for \bar{x}	2	1.4	Additional Examples	6
		Use	2		-	

1 Estimating a population mean

1.1 Introduction

Example 1. We would like to estimate the mean height of US adults using our class data (assuming it is a representative random sample). Moreover, we wish to determine the margin of error for our estimate to have a measure of its precision.

```
R: summary(height)
Min. 1st Qu. Median Mean 3rd Qu. Max.
62.0 65.0 68.0 67.6 69.8 77.0
```

Question 1. What do we need to know to determine our margin of error?

Recall from last lecture

- Confidence interval tells us the margin of error in estimating a population parameter with a statistic. The margin of error depends on (1) the sample size, (2) the confidence level, (3) sampling distribution of the sample statistic.
- confidence level = 1α

- $z_{\alpha/2}$ is z-score with $\alpha/2$ area to the **right**.
- CLT: \bar{x} is normally distributed with $\sigma_{\bar{x}}$ if either (1) x is normal or (2) n > 30
- Poor sampling leads to useless and potentially misleading results!

1.2 Confidence intervals for \bar{x}

USE

Often used to answer:

- 1. What is a reasonable estimate for the population mean?
- 2. How much variability is there in the estimate for the population mean?
- 3. Does a given target value fall within the confidence interval?

COMPUTATION

Definition 1.1 Confidence interval for μ when σ is known.

Requirements: (1) Simple random samples, (2) CLT applies (x normal or n > 30).

$$\boxed{\bar{x} \pm E} \tag{1}$$

where

$$E = z_{\alpha/2} \cdot \sigma_{\bar{x}} \tag{2}$$

and

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \tag{3}$$

Definition 1.2 Confidence interval for μ when σ is unknown.

Requirements: (1) Simple random samples, (2) CLT applies (x normal or n > 30).

Just like before except:

$$E = \mathbf{t}_{\alpha/2} \cdot \hat{\sigma}_{\bar{x}}$$
 (4)

and

$$\hat{\sigma}_{\bar{x}} = \frac{s}{\sqrt{n}} \tag{5}$$

Since we also have to estimate $\sigma_{\bar{x}}$ (hence the hat), a margin of error is associated with $\hat{\sigma}_{\bar{x}}$ so the distribution of \bar{x} should be broader than when σ is known.

Definition 1.3 Student t distribution.

A bell shape symmetrical distribution that describes

$$t = \frac{\bar{x} - \mu}{\hat{\sigma}_{\bar{x}}} \tag{6}$$

with increasing dispersion (variation) as the sample size decreases in terms of the **degrees of freedom**:

$$df = n - 1 \tag{7}$$

Think of the t distribution as the z distribution but with an adjusted standard deviation that increases for smaller sample sizes to account for a larger margin of error.

STUDENT t CDF:

p=pt(t, df)

Where p is the area to the left and df is the degrees of freedom.

R COMMAND

Student t inverse CDF:

t=qt(p, df)

Where p is the area to the left and df is the degrees of freedom.

R COMMAND

Comparison of z and t distributions

Comparison of critical values for z and t distribution

Critical values $t_{\alpha/2}$ when $\alpha = 0.05$ for the

R: qt(1 - 0.05/2, df = 9)[1] 2.2622

R: qt(1 - 0.05/2, df = 29)

[1] 2.0452

R: qt(1 - 0.05/2, df = 99)

[1] 1.9842

As compared to the $z_{\alpha/2}$

```
R: qnorm (1 - 0.05/2)
```

Determining required sample size given desired E

Solving equation 2 for n:

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2 \tag{8}$$

You should always determine the required n before conducting a study! If σ is unknown do a pilot study to estimate it or find applicable prior data.

What if CLT does not apply?

We have only discussed methods for estimating μ when the Central Limit Theorem applies (x is normally distributed or n>30). When looking at the original data to asses normality, it should be somewhat symmetric and have only one mode with no outliers. If the population severely deviates from a normal, sample sizes may need to be more than 50 to 100.

If the CLT does not apply you cannot use these methods. You need to use a (1) nonparametric method or (2) bootstrap method which makes no assumption about the population's distribution.

A COMPLETE EXAMPLE

Example 2. We would like to estimate the mean height of US adults using our class data (assuming it is a representative random sample). Moreover, we wish to determine the margin of error for our estimate to have a measure of its precision.

1. What is known:

Point estimate for mean height (in inches):

```
|R: x.bar = mean(height)
|R: x.bar
|[1] 67.611
```

Sample standard deviation of heights:

```
| R: s = sd(height)
| R: s
| [1] 3.8370
```

Sample size:

```
| R: n = length(height)
| R: n
| [1] 18
```

Since confidence level is unspecified, assume 95%:

```
|R: alpha = 0.05
```

2. To construct a CI, determine if CLT applies:

```
| R: par(mfrow = c(1, 2))
| R: hist(height)
| R: qqnorm(height)
| R: qqline(height)
```

Histogram of height

Lednency 65 70 75 height

Normal Q-Q Plot

Question 2. Is the CLT satisfied?

To continue, assume population is normally distributed.

- 3. Determine which sampling distribution to use: since σ is unknown, use t distribution.
 - 4. Find the margin of error and construct CI: $E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$

```
 \begin{array}{l} R{:}\;\; t.\, critical \, = \, qt(1\, - \, alpha/2\,, \; \, df \, = \, n \, - \, 1) \\ R{:}\;\; t.\, critical \\ [1]\;\; 2.1098 \\ R{:}\;\; E \, = \, t.\, critical \, * \, s/sqrt\,(n) \\ R{:}\;\; E \\ [1]\;\; 1.9081 \end{array}
```

Thus our 95% confidence interval estimate for the mean height of US adults is (in inches): 67.6 ± 1.91 or (65.7,69.5). (The National Health Survey estimates the mean height as 66.3 inches.)

1.3 Summary

Confidence intervals for \bar{x}

If CLT applies: (if it does not apply you cannot use these methods)

• Sample size: (requires some estimate of σ)

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$$

• Confidence interval

CI:
$$\bar{x} \pm E$$

1. If σ known:

$$E = z_{\alpha/2} \cdot \overbrace{\frac{\sigma_{\bar{x}}}{\sqrt{n}}}^{\sigma_{\bar{x}}}$$

 $z_{lpha/2} = ext{qnorm(1-alpha/2)}$

2. If σ unknown use s:

$$E = t_{\alpha/2} \cdot \overbrace{\frac{\hat{\sigma}_{\bar{x}}}{\sqrt{n}}}^{\hat{\sigma}_{\bar{x}}}, \qquad df = n-1$$

$$t_{\alpha/2} = \text{qt(1-alpha/2, df=n-1)}$$

The method presented here for choosing the z or t distribution slightly differs from the book. This method is arguably simpler and more accurate.

1.4 Additional Examples

Question~3. Nelson Media Research wants to estimate the mean amount of time (in minutes) that full-time college students spend watching television each weekday. Find the sample size necessary to estimate that mean with a 15-minute margin of error. Assume that a 98% confidence level is desired. Also assume prior data indicates that the population is normally distributed with a standard deviation is 112.2 minutes.

Question~4. Find the 95% confidence interval for the mean pulse rate of a dult males using the book data set ${\tt Mhealth}$. The world's smallest mammal is the bumblebee bat, also known as the Kitti's hog-nosed bat. Such bats are roughly the size of a large bumblebee. Listed below are weights (in grams) from a sample of these bats.

Question 5. Are the requirements met? How can we check?

Question 6. Construct a 90% confidence interval estimate of their mean weight (assuming that their weights are normally distributed).