Relazione di Laboratorio Computazionale

Alessio Marchetti

Abstract

In questa relazione prenderemo in considerazione il problema di estrarre campioni di valori casuali data una certa distribuzione di probabilita discreta. Supporremo di sapere generare variabili uniformi sull'intervallo [0, 1], che verranno implementate operativamente come le variabili generate dalla libreria numpy.

Una prima soluzione del problema è quella di dividere [0,1] in intervalli di lunghezza pari a ciascuna componente del vettore di probabilità, e scegliere il risultato in funzione dell'intervallo a cui appartiene una variabile uniforme. Questo presenta diversi inconvenienti: il metodo infatti richiede un numero di somme proporzionale al numero di componenti del vettore di probabilità. Questo potrebbe essere intrattabile quando molto grande. Inoltre spesso il vettore di probabilità è noto solo a meno di un coefficiente di normalizzazione, il cui calcolo richiederebbe di nuovo O(n) somme.

Uno dei metodi più utilizzati per ovviare a questi problemi è il metodo di Monte Carlo (abbreviato spesso con MCMC, Markov Chain Monte Carlo), che consiste nella simulazione di una camminata su una catena di Markov con distribuzione invariante la distribuzione data. Dopo un numero sufficiente di step, la frequenza di visita di un nodo sarà arbitrariamente vicina a quella voluta. In questo caso però il numero di passi necessari ad una determinata distribuzione non è noto a priori ed è di difficile calcolo.

Si andrà dunque a presentare l'algoritmo di Propp-Wilson, una modifica del MCMC che ha il vantaggio di ottenere la distribuzione esatta e di terminare una volta raggiunta questa. Applicheremo tale algoritmo al modello di Ising, una modellizzazione del comportamento magnetico della materia.

1 Il modello di Ising

Sia G=(V,E) un grafo. I vertici andranno a rappresentare i singoli atomi di un materiale, e gli archi indicano quali atomi interagiscono fra loro. Ad ogni atomo viene quindi associato uno spin che può essere +1 o -1. Una configurazione è quindi una funzione $f:V\to\{+1,-1\}$. A ciascuno di questi modelli si associa l'energia

$$H(f) = \sum_{(x,y)\in E} f(x)f(y)$$

. Inoltre viene dato un parametro reale del sistema $beta \ge 0$ detta temperatura inversa. Il modello di ising associa ad ogni configurazione $f \in \{+1, -1\}^V$ la

probabilità

$$\pi(f) = \frac{1}{Z} \exp(-\beta H(f))$$

Dove Z è il coefficiente di normalizzazione pari a

$$Z = \sum_{f \in \{+1,-1\}^V} \exp(-\beta H(f))$$