a) Sketch the angle -481°.

For this angle, state:

- b) the principal angle, θ .
- c) the related acute angle, β.
- d) the quadrant it terminates in.
- e) which primary trig ratio of θ will be positive.

a)
$$\theta = 239^{\circ}$$

Fill in the blanks:

- a) sin 150° = sin _____
- b) tan 110° = tan _____
- c) sec 200° = sec _____

$$2 \cdot a) \sin 150^{\circ} = \sin 30^{\circ}$$

Given
$$\cos \theta = -\frac{5}{9}$$

a) sketch the possible angles for θ .

Determine

- b) a reciprocal trig ratio for $\boldsymbol{\theta}$
- c) cos β

$$\cos \theta = -\frac{5}{9}$$
 A

b) since
$$\cot \theta = -\frac{5}{9}$$
, $\sec \theta =$

$$cos \beta = \frac{5}{9}$$

Given AABC, determine

- a) csc C
- b) cos A
- c) cot C

$$\csc C = \frac{H}{0}$$

$$\csc C = \frac{5}{3}$$

$$\int \cos A = \frac{3}{5}$$

c)
$$\cot c = \frac{A}{0}$$

$$\cot c = \frac{4}{3}$$

Given the point (4, -2) on the terminal arm of an angle θ in standard position

- a) Sketch and label the principal angle.
- b) Determine, **exactly**, the 6 trigonometric ratios for θ .
- c) Determine the value of the principal angle.

$$2^{2} + 4^{2} = c^{2}$$

$$\sqrt{20} = c$$

$$2\sqrt{5} = c$$

$$coi\theta = \frac{1}{2\sqrt{5}}.\sqrt{5}$$

$$tan \theta = -2$$

$$\cos\theta = \frac{2\sqrt{5}}{5}$$

$$\tan \theta = -\frac{1}{2}$$

$$\cot \Phi = -\frac{4}{2}$$

c)
$$\tan \theta = -\frac{1}{z}$$

$$\theta$$
 = $\tan^{-1}\left(-\frac{1}{2}\right)$

Given each set of information, determine how many triangles there are. **DO NOT SOLVE.**

a)
$$\Delta JKL \text{ if } \angle K = 30^{\circ}, k = 10 \text{ cm}, j = 20 \text{ cm}$$

b)
$$\Delta STU \text{ if } \angle U = 155^{\circ}, u = 7 \text{ m, s} = 12 \text{ m}$$

10 b/c 10 < 20, check h

$$\sin 30^{\circ} = \frac{h}{20}$$
 $h = 10$

3 blc h = a, there is I triangle.

blc 7 < 12,

there is no triangle.

Determine θ if $0^{\circ} \le \theta \le 360^{\circ}$ for the following equations.

a)
$$\sqrt{2}\sin\theta = -1$$

b)
$$4 \tan \theta - 4\sqrt{3} = 0$$

The negotive means it is in Q3 or Q4.

$$\sin \theta = \frac{1}{\sqrt{2}}$$

C

A= 60° in Q2 or Q3

$$\frac{\partial}{\partial z} = 60^{\circ}$$

$$\frac{\partial}{\partial z} = 240^{\circ}$$

Determine the exact value of

 $(\sin 210^\circ)(\tan 120^\circ) - 2\cos^2 315^\circ$

8.
$$(\sin 210^{\circ})(\tan 120^{\circ}) - a \cos^{2} 315^{\circ}$$

= $\left(-\frac{1}{2}\right)\left(-\frac{\sqrt{3}}{1}\right) - a\left(\frac{1}{\sqrt{2}}\right)^{2}$

$$= \left(\frac{\sqrt{3}}{2}\right) - 2\left(\frac{1}{2}\right)$$

$$=\frac{\sqrt{3}}{2}-\frac{2}{2}$$

$$= \sqrt{3-2}$$

$$\sin 210^{\circ} = -\frac{1}{2}$$

(2)
$$tan 120^{\circ} = -tan 60^{\circ} \frac{600}{100}$$

(3)
$$\cos 315^{\circ} = \cos 45$$
 $\frac{1}{\sqrt{2}}$ $\cos 315^{\circ} = \frac{1}{\sqrt{2}}$

Sally and Jane are going to run around a play structure. They part with an angle θ between them. Sally runs 130 m/h while Jane runs 150 m/h. After 5 minutes, they reach opposite sides of the play structure. Sally notices her friend Robin at the top of the play structure. Sally notices that the angle of elevation to Robin is 60° and that the play structure is 10 m tall. Jane realizes Robin is at an angle of elevation of 50° for her. What angle did they part at when they started their run?

9.

Sally
$$\frac{130m}{x} = \frac{60min}{5min}$$

 $x = 10.83n$
Jane $\frac{150m}{x} = \frac{60min}{5min}$

 $x = 12.5 \, \text{m}$

(1)
$$\tan 50^{\circ} = \frac{10}{x}$$

 $x = 8.39$

(2)
$$tan 60^{\circ} = 10$$
 $y = 5.77$

(4)
$$c^2 = a^2 + b^2 - 2ab \cos C$$

 $(14.1b)^2 = (12.7)^2 + (10.83)^2 - 2(12.5)(10.83) \cos C$
 $\times C = 74^{\circ}$

a) Sketch the angle -481°.

For this angle, state:

- b) the principal angle, θ .
- c) the related acute angle, β.
- d) the quadrant it terminates in.
- e) which primary trig ratio of θ will be positive.

Fill in the blanks:

Given
$$\cos \theta = -\frac{5}{9}$$

a) sketch the possible angles for θ .

Determine

- b) a reciprocal trig ratio for θ
- c) cos β

Given AABC, determine

- a) csc C
- b) cos A
- c) cot C

Given the point (4, -2) on the terminal arm of an angle θ in standard position

- a) Sketch and label the principal angle.
- b) Determine, **exactly**, the 6 trigonometric ratios for θ .
- c) Determine the value of the principal angle.

Given each set of information, determine how many triangles there are. **DO NOT SOLVE.**

a)
$$\Delta JKL$$
 if $\angle K = 30^{\circ}$, $k = 10$ cm, $j = 20$ cm

b)
$$\Delta$$
STU if $_{\angle}$ U = 155°, u = 7 m, s = 12 m

Determine θ if $0^{\circ} \le \theta \le 360^{\circ}$ for the following equations.

a)
$$\sqrt{2}\sin\theta = -1$$

b)
$$4 \tan \theta - 4\sqrt{3} = 0$$

Determine the exact value of

$$(\sin 210^\circ)(\tan 120^\circ) - 2\cos^2 315^\circ$$

Sally and Jane are going to run around a play structure. They part with an angle θ between them. Sally runs 130 m/h while Jane runs 150 m/h. After 5 minutes, they reach opposite sides of the play structure. Sally notices her friend Robin at the top of the play structure. Sally notices that the angle of elevation to Robin is 60° and that the play structure is 10 m tall. Jane realizes Robin is at an angle of elevation of 50° for her. What angle did they part at when they started their run?

MCR 3U Unit 3 Review

Answers for STATIONS

Station	Answers									CHECKE
1	a)	b)			c)		d)		e)	
2	a)			b)				c)		
3	a)			b)				c)		
4	a)			b)				c)		
5	a)		b)						c)	
6	a)					b)				
7	a)					b)				
8										
9										

MCR 3U Unit 3 Review

Answers for STATIONS

Station	Answers								CHECKED
1	a)	b)		c)		d)		e)	
2	a)		b)				c)		
3	a)		b)				с)		
4	a)		ь)				с)		
5	a)	b)						с)	
6	a)				b)				
7	a)				b)	-10-2	2,300		
8									
9		60.3				934 : 3	V2-4		