

Applications of Machine Learning to Mechanical Systems

A. Hartmaier

Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) Ruhr-Universität Bochum alexander.hartmaier@rub.de

RUHR **BOCHUM**

Outline

- I. Lecture
 - 1. Machine Learning (ML) methods
 - 2. Applications as surrogate models
 - 3. Damage homogenization
 - 4. Microstructure-property relationships
- II. Tutorials
 - 1. ML-Regression
 - 2. ML-Classification

Use tutorials on Binder:

https://mybinder.org/v2/gh/AHartmaier/ML-Tutorial.git/HEAD

Installation from GitHub repository:

https://github.com/AHartmaier/ML-Tutorial.git

Handout:

https://github.com/AHartmaier/ML-Tutorial/blob/master/refs/Hand-out-Hartmaier-TUHH-2021032

Machine Learning (ML)

All examples of this lecture have been performed with scikit-learn (https://scikit-learn.org/stable/)

Reinforcement Learning: Intelligent Agents

Task: Create a computer code that can play "Go"

Source: Wikipedia

Wikimedia Commons, CC BY-SA 3.0

Unsupervised Learning: Clustering

Task: Sort pictures of same animals into groups (clustering)

Supervised Learning: Classification

Task: Identify pictures of cats and dogs (classification)

Supervised Learning: Training of ML Model

Supervised Learning: Validation

Validation with unseen data

Supervised Learning: Feature Extraction

Automated feature extraction from raw data:

- convolutions of raw data (CNN)
- autoencoder
- Fast Fourier Transform
- N-point-statistics/auto correlation
- Principle Component Analysis
- Singular Value Decomposition

Feature extraction based on domain knowledge:

- extraction of physical quantities
- correlation analysis
- experience with similar tasks

Supervised Learning: Regression

input vector "features"

Selection of features (or descriptors) determines the physics of the ML model

output vector "label" / result

Training Procedure

Find ML parameters that minimize deviation between result of ML model and known data point (ground truth).

Decision Tree Regression

Succession of if-clauses leads to final result in "leaves"

Random Forest Regression

Goal: Create model that predicts output value for given input data by learning simple decision rules

- ➤ Number of trees = 100 ... 500
- Leaves contain either 1 or 0 samples
- Final result is average of all sample values

Support Vector Machine (Regression/Classification)

Precision ϵ = 1%

SVM function:

$$y(x) = \sum_{k=1}^{n} y_k a_k K\left(x_k^{(SV)}, x\right) + \rho$$

RBF kernel:

$$K\left(x_k^{(SV)}, x\right) = \exp\left(-\gamma \left\|x - x_k^{(SV)}\right\|^2\right)$$

Goal: Find a function such that data points lie within a corridor of $\pm \epsilon$ (function as flat as possible, actual error unimportant, penalty for outliers)

- Linear or Gaussian kernel for interpolation between support vectors
- Support vectors determined during training function (data points closest to delimiter line)

Neural Networks (Regression/Classification)

Goal: Find bias values and activation functions that describe training data best. – *Deep learning*: multiple hidden layers.

Finite Element Model of indentation

- Finite element model gives accurate description of indentation process
- > Simulation times hours to days, depending on model size and constitutive model

Finite Element Model of indentation

- Spherical nanoindentation into individual ferrite grains (ARMCO iron)
- Indenter tip radius: 800nm
- Max. load: 2.5 mN

Definition of labels: Residual imprints

Definition of labels: Force-displacement curve

Data generation for training of ML surrogate model

Isotropic hardening

$$R = Q(1 - e^{-b\varepsilon_{eq}})$$

Non-linear kinematic hardening

$$\kappa = \sum_{i}^{n} \kappa_{i}; d\kappa_{i} = \frac{2}{3} C_{i} d\varepsilon_{p} - g_{i} \kappa_{i} d\varepsilon_{eq}$$

Creep/time-dependent deformation

$$\dot{\bar{\varepsilon}}^{cr} = A\tilde{q}^n t^m$$
$$= A_0 \left(\frac{q}{q_0}\right)^n \left(\frac{t}{t_0}\right)^m$$

1000 different combinations of material parameters are generated randomly from defined ranges.

Material Parameter Ranges

Parameter	Min	Max		
A ₀ , 1/s	1E-07	1E-05		
n, -	1.75	3.0 -0.5 225000 550		
m, -	-0.95			
C ₁ , MPa	125000			
g ₁ , -	350			
C ₂ , MPa	3000	5500		
Q, MPa	-350	-1750		
b, -	0.5	25		

$$A = A_0 (750 \text{MPa})^{-n} (100 \text{s})^{-m}$$

Database generation

Simulation output

Feature selection

Heat map of extracted features and labels

Training and testing of ML algorithms

Random forest regression

Artificial neural networks

Support vector regression

- Machine learning library on Scikit Learn
- Random Forest Regression (RFR), Support Vector Regression (SVR), and Neural Networks (NN) are chosen.
- 75% training data and 25% testing data
- Grid search for determining hyperparameters

Training and testing results

Creep length

Hysteresis width

Validation of surrogate model

	Pile up (µm)	x-pile up (µm)	Width (µm)	Depth (μm)	Displace- ment (µm)	X- intersect (μm)	Hys- width (µm)	Hys- lowest (µm)	Creep length (µm)	F-D slope (N/µm)
FEM	0.244	22.17	0.977	5.476	5.512	5.411	0.360	4.407	0.052	0.684
NN	0.230	22.22	0.953	5.568	5.576	5.572	0.353	4.686	0.062	0.676
NN Rel. dif. (%)	3.50%	0.23%	2.51%	1.68%	1.16%	2.97%	2.06%	6.32%	18.14%	1.28%
SVR	0.236	21.83	0.957	5.441	5.471	5.461	0.330	4.610	0.054	0.671
SVR Rel. dif. (%)	6.00%	1.52%	2.04%	0.64%	0.73%	0.91%	8.37%	4.60%	2.84%	1.96%
RFR	0.226	21.58	0.899	5.254	5.298	5.230	0.332	4.454	0.044	0.704
RFR Rel. dif. (%	7.53%	2.65%	8.04%	4.04%	3.87%	3.35%	7.82%	1.07%	14.26%	2.87%

Trained ML models are fed with unknown material parameters and compared with FEM simulation for validation

Relative difference:

Rel. diff. =
$$\left| \frac{\text{FEM-predicted value}}{\text{FEM}} \right| * 100$$

Summary – Surrogate model

- Finite Element (FE) simulations can model mechanical problems with high accuracy
- ➤ For repeated tasks, as for example for inverse methods or optimization problems, the numerical cost of FE simulations poses a severe restriction
- Trained ML models can be used as numerically efficient surrogate models for such tasks – training effort only occurs once

Co-authors: H.M. Sajjad, Z. Hamzeh, P. Nooshmer, N. Vajragupta unpublished work

Macroscopic Damage Modeling

input vector output vector $\sigma_{ m eq}$ $\sigma_{\rm hydr}$ $\sigma_{ m tri}$ **Damage Model Parameterization with experiment**

Macroscopic Damage Modeling

input vector output vector $\sigma_{ m eq}$ **Trained** $\sigma_{\rm hydr}$ **Machine** $\sigma_{ m tri}$ Learning Regressor microstructure Parameterization with experiment

micromechanical simulation

Damage: Micromechanical model

Material model

Phenomenological crystal plasticity with shear rate evolution law and isotropic hardening:

$$\dot{\gamma} = \dot{\gamma}_0 \left| \frac{\tau}{\tau_c} \right|^m \operatorname{sign}(\tau)$$
 $\dot{\tau}_c = \sum h_0 \left(1 - \frac{\tau_c}{\tau_s} \right)^n M |\dot{\gamma}|$

Damage depending on the equivalent plastic strain:

$$D = \frac{p - p_1}{p_2 - p_1}$$

with
$$p_1 = 0.3$$
 and $p_2 = 0.5$

Damage: Homogenization of Micromechanical Data

Damage and von Mises stress at time 1.66s (increment: 600)

Macroscopic (homogenized) damage

$$D^{\text{RVE}} = \frac{\text{effective structural stiffness } C_D}{\text{initial stiffness } C_0}$$

Other quantities homogenized by volume averaging

Data extraction

Extract local values of mechanical quantities (one value for each element):

- equivalent plastic strain
- > equivalent plastic strain rate
- equivalent total strain
- equivalent elastic strain
- equivalent stress
- hydrostatic stress
- > element volume

Global data by averaging local values with element volume:

$$(\blacksquare)^{\text{global}} = \frac{1}{V_{\text{RVE}}} \sum_{\text{elements}} (\blacksquare)^{\text{local}} V_{\text{elements}}$$

Virtual mechanical testing: Data generation

Generation of training & test data by virtual mechanical tests:

- 5 multiaxial load cases, 1545 data points
- filtering of peaks at UTS
- feature selection for ML algorithms according to established damage models

Feature selection

Influence of different mechanical quantities on damage evolution rate.

Selection of features for input vector of ML model.

Training result

RUB

Prediction of Damage Rate

Support Vector Regression

Test score: 98.25%

Random Forest Regression

Test score: 97.48%

Comparison with analytical damage models

Chaboche model

$$\dot{D} = \left(\frac{Y}{S}\right)^{s} \dot{p}$$

$$Y = \frac{\sigma_{\text{eq}}^{2}}{2E(1-D)^{2}}$$

$$\left[\frac{2}{3}(1+v) + 3(1-2v)\right]^{\frac{2}{3}}$$

Model parameters: s=250, S=

Reimann et al. Frontiers
Materials 2019

Summary – Damage modeling

- ➤ ML models can be trained to serve as macroscopic damage models
- Features can be selected such that essential physics covered in established damage models is represented correctly
- ML models exhibit a higher versality than mathematical damage models and can be trained with microstructure sensitive data

Co-authors: D. Reimann, K. Nidadavolu, H. ul Hassan, N. Vajragupta, T. Glasmachers, P. Junker

published in Reimann et al. Frontiers in Materials 6 (2019) 181 doi: 10.3389/fmats.2019.00181

Constitutive modeling (State-of-the-Art)

Component

Mechanical / thermal / environmental loading conditions

total strain rate $\dot{\epsilon}_{tot}$ temperature T deformation history ϵ_{pl}

Constitutive models

History dependent evolution equations for state variables

$$\dot{\sigma} = \dot{\sigma} \left(\sigma, \varepsilon_{\text{pl}}, \dot{\varepsilon}_{\text{tot}}, D, T \right)$$
 $\dot{\varepsilon}_{\text{pl}} = \dot{\varepsilon}_{\text{pl}} \left(\sigma, \varepsilon_{\text{pl}}, \dot{\varepsilon}_{\text{tot}}, D, T \right)$
 $\dot{D} = \dot{D} \left(\sigma, \varepsilon_{\text{pl}}, \dot{\varepsilon}_{\text{tot}}, D, T \right)$

Material parameters

Material specific input to constitutive models

elastic tensor C_{ijkl} yield strength σ_y work hardening rate $\partial \sigma/\partial \varepsilon_{\rm pl}$ damage onset $\varepsilon_{\rm pl}^{\rm crit}$

Material response

Time dependent state variables

stress tensor $\sigma = \sigma(t)$ plastic strain $\varepsilon_{\rm pl} = \varepsilon_{\rm pl}(t)$ damage D = D(t)

Problem

- Solutions involve rather intricate mathematical formalism
- Explicit consideration of microstructure is difficult
- Material parameters vary with microstructure

Constitutive Modeling: Digital Twin of Material

Component

Mechanical / thermal / environmental loading conditions

total strain rate $\dot{\boldsymbol{\varepsilon}}_{tot}$ temperature T deformation history $\boldsymbol{\varepsilon}_{pl}$

Digital Twin

Data-based material representation

- mechanical & functional properties
- transport properties
- explicit consideration of microstructure

Material response

Time dependent state variables

stress tensor $\sigma = \sigma(t)$ plastic strain $\varepsilon_{\rm pl} = \varepsilon_{\rm pl}(t)$ damage D = D(t)

- physics-based models
- experiment

Continuum plasticity

Yield loci of isotropic J2 and anisotropic Hill material definitions in cross-section of principle stress space

Yield function

$$f(\boldsymbol{\sigma}) = \sigma_{\rm eq} - \sigma_{\rm y}$$

Yield locus $f(\sigma) = 0$

- elasticity inside $f(\sigma) < 0$
- plasticity on yield locus
- material does not support stresses outside yield locus

Plastic strain rate (flow rule)

$$\dot{\boldsymbol{\varepsilon}}_{\mathrm{pl}} = \dot{\lambda} \boldsymbol{n}$$

- λ: plastic strain multiplier obtained from return mapping algorithm
- n: normal to yield locus

Data-based model for plastic yielding

Trained Support Vector Classification

Micromechanical Model: Property prediction

Micromechanical model with ~2,200 grains and Goss texture

- Crystal plasticity model
- Different deviatoric load cases

Anisotropic yield strength → data

Micromechanical Model: data for material description

Trained Machine Learning Flow Rule

Yield loci in different cross-sections of principle stress space

- Mechanical data obtained from micromechanical model
- Training of Machine Learning flow rule
- Barlat Yld2004-18p yield function fitted to same data

Summary

- Data-oriented material descriptions based on ML models can replace classical constitutive rules and their parameters in finite element modeling
 → Advantage: Consideration of microstructure is possible
- ➤ Micromechanical modeling (synthetic RVEs, crystal plasticity, damage) is a powerful tool to generate **data for microstructure-property relationships**
- ➤ Fully parameterized and validated micromechanical models can complement experimental data to **hybrid mechanical data**

Outline

- I. Lecture
 - 1. Machine Learning (ML) methods
 - 2. Applications as surrogate models
 - 3. Damage homogenization
 - 4. Microstructure-property relationships
- II. Tutorials
 - 1. ML-Regression
 - 2. ML-Classification

Use tutorials on Binder:

https://mybinder.org/v2/gh/AHartmaier/ML-Tutorial.git/HEAD

Installation from GitHub repository:

https://github.com/AHartmaier/ML-Tutorial.git

Handout:

https://github.com/AHartmaier/ML-Tutorial/blob/master/refs/Hand-out-Hartmaier-TUHH-2021032

