Progettazione di Sistemi Digitali

Simone Lidonnici

4 aprile 2024

Indice

1	Nui	meri binari $f 2$
	1.1	Numeri esadecimali
	1.2	Operazioni con numeri non decimali
		1.2.1 Somme e sottrazioni
		1.2.2 Moltiplicazioni
	1.3	Numeri binari con il segno
		1.3.1 Complemento a due
	1.4	Estendere il numero di bit
		1.4.1 Numeri senza segno
		1.4.2 Complemento a due
		1.4.3 Shiftare i numeri binari
	1.5	Numeri binari con la virgola
	1.6	Floating point
		1.6.1 Operazioni con floating point
2	Por	te logiche 8
	2.1	Tipi di porte logiche
	2.2	Circuiti logici
	2.3	Equazioni booleane
		2.3.1 Somma di prodotti (SOP)
		2.3.2 Prodotto di somme (POS)
	2.4	Completezza delle porte logiche
3	Alg	rebra booleana 11
	3.1	Assiomi e Teoremi
	3.2	Semplificare un'equazione
4	Cir	cuiti logici 13
-	4.1	Regole dei circuiti
	4.1	4.1.1 Circuiti con più output
		4.1.2 Contention
		4.1.2 Contention

1

Numeri binari

I **numeri binari** sono numeri composti solo dalle cifre 0 e 1. Per convertirli in base decimale bisogna moltiplicare ogni cifra del numero binario per 2^i , in cui i è la posizione partendo da destra e contando da 0.

Esempio:

$$1010_2 = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 = 10_{10}$$

Con N cifre in binario possiamo scrivere 2^N valori con range $[0,2^N-1]$

1.1 Numeri esadecimali

I **numeri esadecimali** si utilizzano per comodità perché è molto facile convertire i numeri binari in esadecimali.

Per convertire i numeri binari in esadecimale basta raggrupparli in gruppi da 4 cifre e scriverli con il numero corrispondente da 0 a 15 (i numeri dal 10 al 15 sono rappresentati dalle lettere A,B,C,D,E e F).

Esempio:

$$10100110_2 \implies 1010 = A,0110 = 6 \implies A6_{16}$$

Per convertirli in decimale si utilizza lo stesso principio dei numeri binari ma con 16 al posto di 2.

Esempio:

$$4AF = 15 \cdot 16^0 + 10 \cdot 16^1 + 4 \cdot 16^2 = 1199$$

Le cifre di un numero esadecimale convertite in binario e decimale:

Decimale	Binario	Esadecimale
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	$^{\mathrm{C}}$
13	1101	D
14	1110	${ m E}$
15	1111	F

Ogni cifra di un numero binario viene chiamata **bit** e vengono raggruppati in gruppi da 8 chiamati **byte**. Il bit più a sinistra in un byte è quello più significativo e quello più a destra quello meno significativo.

1.2 Operazioni con numeri non decimali

1.2.1 Somme e sottrazioni

Le operazioni di somma e sottrazioni si effettuano in modo normale ma al posto di avere il riporto a 10 si ha a 16 o a 2.

Esempi:

$$1011 + 0011 = 1110$$

 $3A09 + 1B17 = 5520$

Di solito i sistemi utilizzano un numeri di bit fisso e se un numero eccede il numero di bit massimo viene chiamato **overflow** e i bit in eccesso vengono scartati.

Esempio:

$$1001 + 1100 = 10101 = 0101$$
 sbagliato

1.2.2 Moltiplicazioni

Per eseguire una moltiplicazione si moltiplica il primo numero per ogni bit del secondo spostandosi a sinistra di una posizione ogni volta.

Esempio:

$$\begin{array}{c}
0101 \\
0111 \\
\hline
0101 \\
+ \\
01010 \\
+ \\
000000 \\
\hline
100011
\end{array}$$

1.3 Numeri binari con il segno

Per scrivere un numero con il segno in binario si utilizza il bit più a sinistra per identificare il segno:

- 0 significa positivo
- 1 significa negativo

Esempio:

1110 = -60110 = 6

Con N cifre in binario possiamo scrivere 2^{N-1} valori con range $[-(2^{N-1})-1,2^{N-1}-1]$

1.3.1 Complemento a due

Per poter eseguire facilmente addizioni i numeri binari con segno si scrivono utilizzando un altro metodo: il **complemento a due**.

Il primo bit (a sinistra) viene considerato negativo mentre gli altri positivi.

Esempi:

$$1001 = -1 \cdot 2^3 + 1 \cdot 2^0 = -7$$

$$01101 = 2^3 + 2^2 + 2^0 = 8 + 4 + 1 = 13$$

Per invertire (passare da positivo a negativo o viceversa) un numero in complemento a due bisogna invertire gli 0 con gli 1 e poi sommare 1.

Esempio:

$$27 = 011011$$

$$-27 = 100100 + 1 = 100101$$

Se vengono sommati due numeri con lo stesso segno potrebbe succedere che il risultato esca dal range a causa di un'overflow e bisogna aggiungere un bit.

Esempio:

 $0110 + 01010 = 10001 \implies$ sbagliato perché dalla somma di due numeri positivi è uscito un numero negativo, quindi va aggiunto un bit uguale a 0 all'inizio $\implies 010001$

1.4 Estendere il numero di bit

1.4.1 Numeri senza segno

Se durante un'operazione (somma o moltiplicazione) il risultato eccede il numero di bit massimo e si causa un overflow bisogna estendere il numero di bit. Per farlo basta aggiungere tutti 0 davanti agli operandi.

Esempio:

01010 + 01000 = 10010

 $1010+1000=10010\implies 1$ non viene considerato quindi aggiungiamo uno 0 davanti ad entrambi gli operandi:

4

1.4.2 Complemento a due

Per estendere il numero di bit di un numero in complemento a due si aggiunge a sinistra la prima cifra significativa ripetuta.

Esempi:

1010 = 111010

0111 = 000111

1.4.3 Shiftare i numeri binari

Se moltiplichiamo o dividiamo un numero binario per una potenza di 2 possiamo spostare le cifre a destra o sinistra di quanti posti quanto l'esponente di 2 nella potenza.

Esempi:

 $1 \cdot 2^2 = 100$

 $1000 \cdot 2^2 = 100000$

 $1010/2^3 = 1$ (il resto non viene considerato visto che stiamo lavorando con numeri interi)

10000/2 = 11000 (nei numeri negativi quando si divide si aggiungono degli 1 all'inizio)

1.5 Numeri binari con la virgola

I numeri binari con la virgola si possono scrivere in diversi modi. Nel più classico semplicemente continuiamo a sommare potenze di 2 anche per la parte decimale, solamente con esponente negativo.

Esempi:

$$0.5_{10} = 2^{-1} = 0.1_2$$

 $3.75_{10} = 3 + 2^{-1} + 2^{-2} = 11.11_2$

Un altro metodo è il **fixed point** in cui si decide preventivamente dove sia la virgola e semplicemente si scrive il numero in modo normale.

Esempio:

01101100(virgola al 4 posto) = 0110.1100 = 6.75

1.6 Floating point

Numeri binari in floating point

Un numero binario secondo la notazione **floating point** si scrive in modo simile alla notazione scientifica, cioè:

$$\pm M \cdot B^E$$

In cui:

- M = mantissa, numero con una sola cifra prima della virgola
- \bullet B = base
- E = esponente

La scrittura standard è a 32 bit di cui 1 per il segno, 8 per l'esponente e 27 per la mantissa. All'esponente bisogna aggiungere 127 (quindi per scrivere 5 dovremo scrivere 132) e nella mantissa non dobbiamo considerare il numero prima della virgola perché è sempre 1. Per convertire un numero binario in questa notazione bisogna:

- 1. Convertire il numero in binario senza segno
- 2. Scrivere il numero in notazione scientifica
- 3. Completare i 32 bit in modo opportuno

Vista la lunghezza di questi numeri, vengono solitamente scritti in esadecimale.

Esempio:

Nella notazione floating point esistono dei numeri speciali che si scrivono con dei bit specifici:

Numero	Segno	Esponente	Mantissa
0	indifferente	00000000	0000
∞	0	11111111	0000
$-\infty$	1	11111111	0000

Oltre questi esistono una serie di numeri chiamati **numeri denormalizzati** che hanno esponente uguale a 0 e mantissa diversa da 0 e serbono per scrivere numeri con esponente minore del minimo possibile. In questi numeri si considera la cifra prima della virgola come 0 e non 1. Con questa estensione in floating point abbiamo:

- Numero massimo: 2^{126}
- Numero minimo normalizzato: 2^{-126}
- Numero minimo denormalizzato: 2^{-149}

Del floating point esistono altre due versioni con diversi bit:

- Half-precision: 16 bit, 1 per il segno, 5 per l'esponente e 10 per la mantissa. L'esponente va inserito sommato di 15.
- Half-precision: 32 bit, 1 per il segno, 11 per l'esponente e 52 per la mantissa. L'esponente va inserito sommato di 1023.

1.6.1 Operazioni con floating point

Per eseguire la **somma** tra due numeri in floating point:

- 1. Convertirli in binario e scriverli in notazione scientifica
- 2. Cambiare l'esponente minore per renderli uguali
- 3. Sommare le mantisse
- 4. Riscrivere il risultato in notazione scientifica
- 5. Arrotondare se non bastano i bit
- 6. Riscrivere nel formato floating point

Esempio:

```
0x3FC00000 + 0x40500000
0x3FC00000 = 0011111111100 \dots 00 = 1.1 \cdot 2^{0} = 0.11 \cdot 2^{1}
0x40500000 = 01000000010100 \dots 00 = 1.101 \cdot 2^{1}
0.11 \cdot 2^{1} + 1.101 \cdot 2^{1} = 10.011 \cdot 2^{1} = 1.0011 \cdot 2^{2}
1.0011 \cdot 2^{2} = 0100000010011000 \dots 00 = 0x40980000
```

Per eseguire la moltiplicazione tra due numeri in floating point:

- 1. Convertirli in binario e scriverli in notazione scientifica
- 2. Sommare gli esponenti
- 3. Moltiplicare le mantisse
- 4. Riscrivere il risultato in notazione scientifica
- 5. Arrotondare se non bastano i bit
- 6. Riscrivere nel formato floating point

Esempio:

```
(1.1 \cdot 2^{10}) \cdot (1.0110 \cdot 2^{11})

2^{10} + 2^{11} = 2^{21}

1.0110 \cdot 1.1 = 10.0001

10.001 \cdot 2^{21} = 1.0001 \cdot 2^{22} = 01001010100001000 \dots 00 = 0x4A840000
```

2

Porte logiche

Le **porte logiche** sono delle funzioni che hanno un output e possono avere:

• 1 input: not, buffer

• 2 o più input: and, or, xor ...

2.1 Tipi di porte logiche

Ci sono molti tipi diversi di porte logiche:

NOT: $Y = \overline{A}$

BUFFER: Y = A

AND: $Y = A \cdot B$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR: Y = A + B

XOR: $Y = A \oplus B$

 $\mathbf{NAND}: Y = \overline{A \cdot B}$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR: $Y = \overline{A + B}$

	— Ү

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR: $Y = \overline{A \oplus B}$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

XOR3: $Y = A \oplus B \oplus C$

A	В	$\mid C \mid$	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

2.2 Circuiti logici

Componenti di un circuito logico

Un circuito logico è composto da:

- nodi: input, output e nodi interni
- circuiti elementari

I circuiti sono di due tipi:

- 1. **Combinatori**: non hanno memoria e gli output sono definiti solo dagli input attuali
- 2. **Sequanziali:** hanno memoria e gli output sono definiti dagli input attuali e precedenti

I circuiti combinatori hanno 3 regole principali:

1. Tutti i circuiti elementari sono combinatori

- 2. Ogni nodo è un input o si collega ad esattamente un output
- 3. Non ci sono cicli

2.3 Equazioni booleane

Nelle equazioni booleane utilizzeremo delle definizioni precise:

- Complemento: opposto di una variabile (\overline{A})
- Literal: una variabile o un suo complemento $(A \ o \ \overline{A})$
- Implicante: prodotto di literal $(AB \circ B\overline{C})$
- Minterm: prodotto che utilizza tutte le variabili di input $(ABC \circ \overline{A}B\overline{C})$
- Maxterm: somma che utilizza tutte le variabili di input $(A + B + C \circ \overline{A} + B + \overline{C})$

2.3.1 Somma di prodotti (SOP)

Tutte le equazioni possono essere scritte come somma di prodotti.

Se abbiamo la tabella ci basta sommare i minterm che danno come risultato 1. Il risultato può anche essere scritto come sommatoria specificando l'indice dei minterm sommati.

Esempio:

A	В	Y	Minterm	Indice del minterm
0	0	0	\overline{AB}	0
0	1	1	$\overline{A}B$	1
1	0	0	$A\overline{B}$	2
1	1	1	AB	3

In questo caso: $Y = \overline{A}B + AB = B$

Possiamo anche scrivere: $Y = \sum (1,3)$

2.3.2 Prodotto di somme (POS)

Tutte le equazioni possono essere scritte come prodotto di somme.

Se abbiamo la tabella ci basta sommare i maxterm che danno come risultato 0. Il risultato può anche essere scritto come produttoria specificando l'indice dei minterm sommati.

Esempio:

A	В	Y	Maxterm	Indice del maxterm
0	0	0	A + B	0
0	1	1	$A + \overline{B}$	1
1	0	0	$\overline{A} + B$	2
1	1	1	$\overline{A} + \overline{B}$	3

In questo caso: $Y = (A + B) + (\overline{A} + B) = B$

Possiamo anche scrivere: $Y = \prod (0,2)$

2.4 Completezza delle porte logiche

Le porte logiche **NAND** e **NOR** sono dette **funzionalmente complete** perché grazie a queste possono essere create tutte le altre porte logiche.

3

Algebra booleana

Dualità degli assiomi

Ogni assioma e teorema dell'algebra booleana può essere scritto sia con gli AND (\cdot) che con gli OR (+). Per farlo bisogna invertire i+ con $i\cdot e$ gli 0 con gli 1. La versione alternativa dell'assioma o teorema viene chiamato **duale**.

3.1 Assiomi e Teoremi

L'agebra booleana ha diversi assiomi:

Assioma	Duale
$B = 0 \iff B \neq 1$	$B = 1 \iff B \neq 0$
$\overline{0} = 1$	$\overline{1} = 0$
$0 \cdot 0 = 0$	1 + 1 + = 1
$1 \cdot 1 = 1$	0 + 0 = 0
$0 \cdot 1 = 1 \cdot 0 = 0$	1+0=0+1=1

Ci sono anche diversi teoremi:

Assioma	Duale
$B \cdot 1 = B$	B + 0 = B
$B \cdot 0 = 0$	B+1=1
$B \cdot B = B$	B+B=B
$ \overline{\overline{B}} = B $	
$B \cdot \overline{B} = 0$	$B + \overline{B} = 1$
$B \cdot C = C \cdot B$	B + C = C + B
$B \cdot C \cdot D = B(C \cdot D)$	B + C + D = B + (C + D)
$B(C+D) = (B \cdot C) + (B \cdot D)$	$B + (C \cdot D) = (B + C) \cdot (B + D)$
B(B+C)=B	$B + (B \cdot C) = B$
$(B \cdot \overline{C}) + (B \cdot C) = B$	$(B + \overline{C}) \cdot (B + C) = B$
B(1+C) = B	$B + (0 \cdot C) = B$

3.2 Semplificare un'equazione

Presa un'equazione booleana, semplificarla significa ridurla al numero minimo di implicanti tramite teoremi o assiomi (detta anche **minimizzazione**). **Esempi:**

$$\overline{A}B + A = B + A$$

$$\frac{AB + A = A}{\overline{A}B + AB = B}$$

Teorema di De Morgan

Il **teorema di De Morgan** dice che se abbiamo un'equazione booleana con una somma o una moltiplicazione negata $(\overline{AB}$ oppure $\overline{A+B}$), possiamo invertire l'operazione e negare i literal. Cioè:

$$\overline{AB} = \overline{A} + \overline{B}$$
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Esempio:

$$Y = \overline{(A + \overline{BD}) \cdot \overline{C}} = \overline{A + \overline{BD}} + \overline{\overline{C}} = \overline{A}BD + C$$

Circuiti logici

4.1 Regole dei circuiti

I circuiti logici, quando vengono disegnati, hanno diverse regole:

- Gli input vengono scritti a sinistra o in alto
- Gli output vengono scritti a destra o in basso
- Qualsiasi posta va da sinistra a destra

Inoltre vengono definite delle regole quando di intrecciano i fili:

- Se i fili formano una T sono collegati
- Se i fili formano una X con un punto sono collegati
- Se i fili formano una X senza punto non sono collegati

Nei primi due casi i fili sono collegati e nel terzo no

4.1.1 Circuiti con più output

Possono esserci circuiti che hanno più di un output, un esempio è il circuito a priorità, che ha questa tabella:

A_3	A_2	A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Molti valori in questa tabella non vengono considerati nel calcolare l'output quindi possiamo riscrivere la tabella in modo semplificato:

A_3	A_2	A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0 0 0 1 X	1	${f X}$	0	0	1	0
0	1	${f X}$	${f X}$	0	1	0	0
1	${f X}$	\mathbf{X}	\mathbf{X}	1	0	0	0

X vuol dire don't care, cioè che il valore non cambia il risultato

4.1.2 Contention

La **contention** è una situazione che viene causata quando in un circuito si incontrano due valori diversi. Si indica con X (da non confondere con il don't care) e solitamente implica un problema.

Esempio:

4.1.3 Floating