Steven Rosendahl Homework 8

1. Determine whether each of the following polynomials has a zero in the given \mathbb{Z}_p . Either find a zero or prove that no zero exists.

(a)
$$f(x) = x^3 + x^2 + x + 1$$
 in \mathbb{Z}_2 .

We can factor $x^3 + x^2 + x + 1$ into $(x^2 + 1)(x + 1)$. The only two options for a root in \mathbb{Z}_2 are 1 and 0. If we plug in zero we get $(0+1)(0+1) \equiv 1 \mod 2$, so 1 is not a zero of the polynomial. If we try 1, we get $(1+1)(1+1) \equiv (2)(2) \equiv (0)(0) \equiv 0 \mod 2$, so 1 is a zero of the polynomial.

(b)
$$f(x) = x^3 + x^2 + x + 1$$
 in \mathbb{Z}_3 .

f(x) factors into $(x^2+1)(x+1) \equiv (x^2-2)(x-2) \mod 3$. We have one zero at x=2. If we test 0, we get $(0+1)(0+1) \equiv 1 \mod 3$, so 0 is not a zero of the polynomial, and if we test 1 we get $(-1)(-1) \equiv 1 \mod 3$, so 1 is not a zero either.

(c)
$$f(x) = x^2 + 2x + 3$$
 in \mathbb{Z}_5 .

The polynomial $f(x) = x^2 + 2x + 3$ cannot be factored in \mathbb{Z}_5 . Therefore, it has no zeros since we cannot express it in the form $g(x)(x - \alpha)$.

2. Let $f(x) = x^2 + 1$. Prove that f has a zero in \mathbb{Z}_5 , but not in \mathbb{Z}_7 .

If we consider the polynomial in \mathbb{Z}_5 , we have that

$$x^{2} + 1 \equiv x^{2} - 4 \equiv (x+2)(x-2) \equiv (x-3)(x-2) \mod 5.$$

Since f was reducible in \mathbb{Z}_5 , we know it has at least one zero, and in this case it has two zeros, x = 3 and x = 5. In \mathbb{Z}_7 , we have

$$x^2 + 1 \equiv x^2 - 6 \mod 7.$$

The polynomial $x^2 - 6$ is irreducible in \mathbb{Z}_7 , so there are no roots.