用 Euler 法、预报-校正法求 $\begin{cases} y' = -y \\ y(0) = 1 \end{cases}$, $x \in [0, 1, 0]$ 的数值解,取h = 0.1,结果保留四位小数。

1. ① Euler
$$\int y_{i+1} = y_i + h f(x_i, y_i) = y_i + 0.1 (-y_i)$$
 $y_0 = 1$
 $y_0 = 1$

3. 用预报-校正法求 $\begin{cases} y' = x^2 \\ y(0) = 0 \end{cases}$, $x \in [0,2]$ 的数值解,取h = 0.5,结果保留四位小数;并与精确解 $y = \frac{1}{3}x^3$ 作比较。

3.19 :
$$k_1 = \chi_1^2 \quad k_2 = (\chi_1^2 + 0.5)^2 = \chi_1^2 + \chi_1^2 + 0.5 \chi_1^2 + 0.5$$

ù	∞ i	预报松山	精确報
D	0	ð	b
•	0.5	0.0625	0,041)
2	1	0.3750	0.3333

3	1.5	1.1875 2.7500	1.1250	
4	ν	2.7500	2.6667	