المحاضرة 5

✓ الفقرات الرئيسية المطلوبة بهذه المحاضرة

- خوار زمية السمبلكس المعدلة
- جدول خوارزمية السمبلكس المعدلة.
- خطوات الانتقال من جدول السمبلكس المعدلة إلى الجدول التالى.
 - حل بعض التمارين.
 - مراجعة للمحاضرات السا<mark>بقة</mark>
 - الإجابة على أسئلة الطلاب.
- طرح بعض الأسئلة على الطلاب، والتي تتعلق بالآتي (على سبيل المثال):
- √ مناقشة وحدانية الحل الأمثل أثناء استخدام خوارزمية السمبلكس. (تترك الإجابة للطالب، ويُعطى فكرة مساعدة).
 - ✓ اذكر القواعد التي يجب أن تتحقق في جداول السمبلكس.
 (تمت الإجابة أثفاء شرح المحاضرة السابقة).
- ✓ حل التمرين 3 (الموجود بنهاية المحاضرة السابقة) باستخدام خوارزمية السمبلكس ذات التقنية M. (تترك الإجابة للطالب ويجب على الطالب مناقشة النتيجة حتى لو لم يطلب ذلك صراحة).
 - تمهيد للمحاضرة اللاحقة
 - مقدمه عن ال<mark>مسألة المرافقة.</mark>

المرجع: بحوث العمليات - د. زياد قناية، منشورات جامعة تشرين - سوريا - 2015.

الصفحة 1 من 8

المحاضرة 5

بحوث العمليات - سنة 4 رياضيات تطبيقية

• خوار زمية السمبلكس المعدلة

نبدأ بالتذكير بجدول خوارزمية السمبلكس وهو كالآتي:

القاعدة	<mark>ير القاع</mark> دة	متح <mark>ولات ال</mark>	الحل	
Z			<u>.</u>	
متحولات القا	$\frac{\mu}{\alpha}$	λ β	i.	:
धिंगड	:	0	<u> </u> :	;

نفترض أن الجدول الحالي للسمبلكس غير أمثل، ولكتابة الجدول التالي نحدد العنصر المحوري وليكن α ثم يتم تحديد متحولات القاعدة الجديدة حيث يأخذ المتحول الداخل مكان المتحول الخارج، ونستخدم التحويلات الأولية المناسبة والتي تتوافق مع التعليمات الآتية:

- المحوري lpha تقسم عناصر السطر المحوري على العنصر المحوري lpha
 - 2- بقية عناصر العمود المحوري تكون أصفار.
- 3- بالنسبة للعناصر التي ليست في السطر المحوري أو العمود المحوري نطبق القاعدة التالية:

$$\bar{\lambda} = \frac{\alpha \lambda - \mu \beta}{\alpha} \iff \bar{\lambda} = \lambda - \frac{\mu \beta}{\alpha}$$

أما بالنسبة لجدول خوارزمية السمبلكس المعدلة فهو كالآتي:

القاعدة	اعدة	متحولات غير القاعدة		
Z				
نگو	÷		:	:
حولات القاعدة				1
بر ا	:		:	:

نفترض أن الجدول الحالي للسمبلكس المعدلة هو الجدول رقم (t):

القاعدة		x_p				الحل
Z	•••					
:		:		:		:
:		μ		λ		ŀ
		:		:		<u></u>
x_k		a		β		:]
:		:(:		:
	A 10000	100	- / /	/ \	200	

الجدول رقم (t) لخوارزمية السمبلكس المعدلة

ونفترض أن المتحول الداخل في الجدول رقم (t) هو x_p ، والمتحول الخارج هو x_k الذي يحقق قاعدة النسبة الأصغر، ويكون الجدول رقم (t+1) لخوارزمية السمبلكس المعدلة هو:

القاعدة		$\left(x_{k}\right)$)		الحل
Z			<u> </u>	2		
:						:
i		$\frac{\mu}{-\alpha}$	<u></u>	$\bar{\lambda}$		i
:		:		i:		Ŀ
x_p	•••	$\frac{1}{\alpha}$		$\frac{\beta}{\alpha}$:
:				:		:

الجدول رقم (t+1) لكوارزمية السمبلكس المعدلة

ولكتابة الجدول رقم (t+1) لخوارزمية السمبلكس المعدلة نتبع التعليمات الآتية:

- 1- يتم التبادل بين المتحولين الداخل والخارج.
- يستبدل قيمة العنصر المحوري $\frac{1}{\alpha}$ بالقيمة $\frac{1}{\alpha}$.
- -3 تقسم بقية عناصر السطر المحوري على العنصر المحوري -3
 - -4تقسم بقية عناصر العمود المحو<mark>ري على -4.</mark>

الصفحة 3 من 8

5- بالنسبة لبقية العناصر (وهي ليست في السطر المحوري أو العمود المحوري) نطبق القاعدة التالية:

$$\bar{\lambda} = \lambda - \frac{\mu\beta}{\alpha}$$

د. زیاد قنایة

o تمارين تتعلق بالمحاضرة 5

تمرين 1: استخدم خوارزمية السمبلكس المعدلة لحل مسألة البرمجة الخطية الآتية:

$$\max z = 4x_1 + 3x_2$$

subject to

$$2x_1 + x_2 \le 10$$

$$5x_1 + 3x_2 \le 26$$

$$x_1 + x_2 \leq 8$$

$$x_1, x_2 \ge 0$$

الحل: تكتب الصياغة القياسية كالآتى:

$$\max z = 4x_1 + 3x_2$$

subject to

$$2x_1 + x_2 + x_3 = 10$$

$$5x_1 + 3x_2 + x_4 = 26$$

$$x_1 + x_2 + x_5 = 8$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

 $x_3 = 10, x_4 = 26, x_5 = 8$ حل القاعدة الممكن هو

والجدول الأول لخوارزمية السمبلكس المعدل<mark>ة هو:</mark>

القاعدة	x_1	x_2	الحل
Z	-4	-3	0
x_3	2	1	10
x_4	5	3	<mark>2</mark> 6
<i>x</i> ₅	<u>-1</u>	Y	8

الجدول الأول لخوار زمية السمبلكس المعدلة

القاعدة	x_3	x_2	الحل
Z	2	-1	<mark>2</mark> 0
<i>x</i> ₁	0.5	0.5	5
x_4	-2.5	0.5	1
<i>x</i> ₅	-0.5	0.5	3

الجدول الثانى لخوارزمية السمبلكس المعدلة

القاعدة	x_3	x_4	الحل
Z	-3	2	<mark>2</mark> 2
x_1	3	-1	4
x_2	-5	2	2
<i>x</i> ₅	2	-1	2

الجدول الثالث لخوارزمية السمبلكس المعدلة

القاعدة	x_5	x_4	الحل
Z	1.5	0.5	2 5
x_1	-1.5	0.5	1
x_2	2.5	-0.5	7
x_3	0.5	-0.5	1

الجدول الرابع (الأمثل) لخوارزمية السمبلكس المعدلة

$$z=25$$
 الحل الأمثل هو: $x_1=1, x_2=7, x_3=1$ الحل الأمثل هو:

تمرين 2: استخدم خوارزمية السمبلكس المعدلة لحل مسألة البرمجة الخطية الآتية:

$$\max z = -x_1 + 3x_2$$

subject to

$$3x_1 + x_2 \le 3$$

$$x_1 + 2x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

الحل:

نكتب الصياغة القياسية الموسعة، وهي <mark>كالآتي:</mark>

$$\max z = -x_1 + 3x_2 - MR$$

subject to

$$3x_1 + x_2 + x_3 = 3$$

$$x_1 + 2x_2 - x_4 + R = 2$$

$$x_1, x_2, x_2, x_4, R \ge 0$$

 $x_3 = 3, R = 2$ حل القاعدة الممكن هو

المحاضرة 5

بحوث العمليات - سنة 4 رياضيات تطبيقية

من القيد الثاني نجد $x_4 = 2 - x_1 - 2x_2 + x_4$ ، وبالتالي فان:

$$z = (-1 + M)x_1 + (3 + 2M)x_2 - Mx_4 - 2M$$

والجدول الأول لخوارزمية السمبلكس المعدلة هو:

القاعدة	x_1	x_2	x_4	الحل
Z	1- <i>M</i>	-3-2 <i>M</i>	M	-2 <i>M</i>
<i>x</i> ₃	3 (1	0	3
R	1	2	-1	2

الجدول الأول لخوارزمية السمبلكس المعدلة

القاعدة	x_1	R	x_4	الحل
z	5 2	$M+\frac{3}{2}$	$-\frac{3}{2}$	3
x_3	5 2	$\frac{1}{2}$	1 2	2
x_2	$\frac{1}{2}$	<u>1</u> 2	$-\frac{1}{2}$	1

الجدول الثاني لخوارزمية السمبلكس المعدلة

القاعدة	x_1	R	x_3	الحل
Z	10	M	3	9
x_4	5	<u></u> -1 C	2	4
x_2	3	70	1	3

الجدول الثالث (الأمثل) لخوارزمية السمبلكس المعدلة

الحل الأمثل هو: $x_1=0, x_2=3$ ، والقيمة المثلى هي: z=9

الصفحة 6 من 8

تمرين 3: استخدم خوارزمية السمبلكس المعدلة لحل مسألة البرمجة الخطية الآتية:

$$\max_{x \in S} z = 3x_1 + x_2 + 2x_3 + 4$$
subject to

$$x_1 + 2x_2 + x_3 \le 5$$

$$3x_1 + 2x_2 + x_3 \le 6$$

$$x_1 + x_2 + 2x_3 \ge 7$$

$$x_1, x_2, x_3 \ge 0$$

الحل: (يتم الحل ضمن المحاضرة من قبل الطلاب)

نكتب الصياغة القياسية الموسعة، وهي كالآتي:

$$max z = 3x_1 + x_2 + 2x_3 + 4 - MR$$

subj<mark>ect to _____</mark>

$$x_1 + 2x_2 + x_3 + x_4 = 5$$

$$3x_1 + 2x_2 + x_3 + x_5 = 6$$

$$3x_{1} + 2x_{2} + x_{3} + x_{5} = 6$$

$$x_{1} + x_{2} + 2x_{3} - x_{6} + R = 7$$

 $x_1, x_2, x_3, x_4, x_5, x_6, R \ge 0$

 $x_4 = 4, x_5 = 6, R = 7$ حل القاعدة الممكن هو

من القيد الثالث نجد $x_6 = 7 - x_1 - x_2 - 2x_3 + x_6$ من القيد الثالث نجد

z =

والجدول الأول لخوارزمية السمبلكس المعدل<mark>ة هو:</mark>

القاعدة	<i>x</i> ₁	<i>x</i> ₂	x_3	<i>x</i> ₆	الحل
Z					
x_4	1	2	1	0	5
x_5	3	2	1	0	6
R	1	1	2	-1	7

الجدول الأول لخوارزمية السمبلكس المعدلة

جامعة تشرين - كلية العلوم - قسم الرياضيات						
		المحاضرة 5			ن تطبيقية	بحوث العمليات - سنة 4 رياضيات
القاعدة	x_1	x_2	R	<i>x</i> ₆	الحل	-
z						-
x_4						-
<i>x</i> ₅						_
x_3						
الجدول الثاني لخوارزمية السمبلكس المعدلة						
القاعدة	x_5	x_2	R	<i>x</i> ₆	الحل	
z						
x_4						
<i>x</i> ₁		<u>a</u>				_
x_3						
الجدول الثالث لخوارزمية السمبلكس المعدلة						
القاعدة	x_5	x_2	R	x_4	الحل	_
z					$\frac{29}{2}$ $\frac{5}{2}$	_
<i>x</i> ₆					$\frac{5}{2}$	
<i>x</i> ₁	B				$\frac{1}{2}$	
x_3					$\frac{9}{2}$	

د. زیاد قنایة الصفحة 8 من 8

الجدول الرابع (الأمثل) لخوارزمية السمبلكس المعدلة