Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if $\begin{bmatrix} 0 \\ -1 \\ 6 \\ -7 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

Solution: Since

$$RREF \left(\begin{bmatrix} 2 & 4 & 0 \\ 0 & -1 & -1 \\ -1 & 4 & 6 \\ 5 & 3 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

does not contain a contradiction, $\begin{bmatrix} 0\\-1\\6\\-7 \end{bmatrix}$ is a linear combination of the three vectors.

Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

Standard S3.

Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Solution: Let
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are pivot columns, $\left\{ -3x^2 - 8x, x^2 + 2x + 2 \right\}$ is a basis for W .

Mark:

Standard S4.

Let W be the subspace of \mathcal{P}_3 given by $W = \mathrm{span}\left(\left\{x^3-x^2+3x-3,2x^3+x+1,3x^3-x^2+4x-2,x^3+x^2+x-7\right\}\right)$. Compute the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so $\dim(W) = 3$.

Additional Notes/Marks