

Sistemas Gráficos e Interacção

Epoca Normal		2018-01-27
N.º	Nome	
Duração da	a prova: 75 minutos	
Cotação de	e cada pergunta: assinalada com parêntesis rectos	
Perguntas o	de escolha múltipla: cada resposta incorrecta desc	onta 1/3 do valor da pergunta

Parte Teórica 20%

- a. **[2.5]** Da comparação de uma interface WIMP (*Windows, Icons, Menus and Pointers*) com uma de linha de comandos resulta normalmente que
 - i. A primeira está mais vocacionada do que a segunda para ser usada por utilizadores
 experientes
 - ii. O esforço de memorização e a carga cognitiva impostos aos utilizadores são menores na primeira do que na segunda
 - iii. A probabilidade de ocorrência de erros de interacção é maior na primeira do que na segunda
 - iv. Nenhuma das anteriores
- b. [2.5] Num sistema gráfico dotado de um frame buffer RGBA de 32 bits/píxel
 - i. Cada píxel é descrito por 8 bits para a componente vermelha, 8 bits para a verde, 8 bits para a azul e 8 bits para o canal alfa
 - ii. É possível reproduzir imagens com 2^8 = 256 níveis de vermelho, 256 níveis de verde e 256 níveis de azul
 - iii. É possível reproduzir imagens de objectos transparentes
 - iv.) Todas as anteriores
- c. [2.5] O caso particular da transformação de escala glScaled(1.0, 1.0, 1.0); constitui um exemplo de
 - i. Uma transformação identidade
 - ii. Uma transformação rígida
 - iii. Uma transformação homotética
 - iv. Todas as anteriores
- d. **[2.5]** Qual das seguintes técnicas de codificação de malhas poligonais permite desenhar a malha sem que cada aresta seja desenhada duas vezes?
 - i. Explícita
 - ji. Ponteiros para uma lista de vértices
 - iii.) Ponteiros para uma lista de arestas
 - iv. Nenhuma das anteriores

- e. [2.5] O conhecimento do vector normal é necessário ao cálculo
 - i. Das componentes ambiente e difusa de iluminação
 - (ii.) Das componentes difusa e especular de iluminação
 - iii. Das componentes especular e ambiente de iluminação
 - iv. Nenhuma das anteriores
- f. [2.5] No modelo de iluminação do OpenGL é possível definir um factor de atenuação da intensidade luminosa
 - i. Constante, isto é, que não depende da distância da fonte de luz ao objecto iluminado
 - ii. Linear, isto é, proporcional à distância da fonte de luz ao objecto iluminado
 - iii. Quadrático, isto é, proporcional ao quadrado da distância da fonte de luz ao objecto iluminado
 - iv.) Todas as anteriores
- g. **[2.5]** De que forma ou formas permite o mecanismo de mapeamento de texturas do OpenGL aplicar uma textura à superfície de um objecto?
 - i. Misturando a cor da superfície com uma cor predefinida
 - ii. Modulando a cor da superfície com a dos téxeis
 - iii. Substituindo a cor da superfície pela dos téxeis
 - iv.) Todas as anteriores
- h. [2.5] A correcção perspectiva permite
 - i. Corrigir o efeito de discretização (*aliasing*) que decorre da utilização de *frame buffers* de baixa resolução
 - ii. Corrigir o efeito de diminuição da dimensão aparente de um objecto quando a distância do mesmo à câmara aumenta
 - (iii.) Corrigir o efeito de deformação que decorre da utilização de técnicas simples de interpolação linear no mapeamento de texturas em polígonos
 - iv. Nenhuma das anteriores

Sistemas Gráficos e Interacção

Época Normal 2018-01-27

Parte Teórico-Prática 30%

Resolução: No próprio enunciado

Perguntas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta

Nota: Em todas as perguntas, a menos que algo seja dito em contrário, assuma a posição da câmara por omissão

a. [3.0] Aplique a textura apresentada na Figura 1 a um rectângulo, de modo a ficar com o aspecto apresentado na Figura 2.


```
glTexCoord2f(1.0, 0.0);
                                      glTexCoord2f(1.0, 1.0);
glVertex3fv(v0);
                                      glVertex3fv(v0);
glTexCoord2f(1.0, 1.0);
                                      glTexCoord2f(1.0, 0.0);
glVertex3fv(v1);
                                      glVertex3fv(v1);
qlTexCoord2f(0.5, 1.0);
                                      glTexCoord2f(0.5, 0.0);
glVertex3fv(v2);
                                      glVertex3fv(v1);
                                      glTexCoord2f(0.5, 1.0);
glTexCoord2f(0.5, 0.0);
glVertex3fv(v3);
                                      glVertex3fv(v1);
```

b. **[3.0**] Considere um cubo com material cor-de-laranja (1.0, 0.5, 0.0) iluminado por uma única fonte de luz azul-clara (0.0, 0.5, 1.0). Quais as componentes primárias (R, G, B) da cor resultante? **Indique os cálculos realizados**.

```
R = 1.0 * 0.0 = 0.0

G = 0.5 * 0.5 = 0.25

B = 0.0 * 1.0 = 0.0
```


c. **[3.0**] Considerando as definições por omissão do OpenGL, pretende-se definir a normal para o quadrilátero desenhado pelo seguinte extracto de código. Qual a normal unitária perpendicular ao quadrilátero?

```
glBegin(GL_QUADS);
    glNormal3f(0.0, 1.0, 0.0);
    glVertex3f(0, 1, 1);
    glVertex3f(1, 1, 1);
    glVertex3f(1, 1, 0);
    glVertex3f(0, 1, 0);
glEnd();
```

d. [3.0] Pretende-se simular uma câmara em cima de um piloto de um carro de Fórmula 1 a olhar para a frente do carro. A posição do piloto é dada por modelo.x, modelo.y e modelo.z, a direcção que o carro está a seguir é dada por modelo.dir, e a altura a que a câmara fica da posição do piloto é dada por ALTURA_CAMARA. Complete a instrução seguinte de modo a conseguir a câmara pretendida, considerando como eixo vertical o eixo dos Z (positivo para cima).

Nota: A orientação da câmara é similar à visão normal do piloto durante a condução, olhando para a frente do carro.

e. Considere o objecto representado na Figura 3 e a existência da função caixa() que desenha um cubo com 1 unidade de lado, centrado na origem.

As dimensões dos elementos são Lx, Ax e Px, em que x designa o nome do elemento.

Considere que:

- O elemento A se desloca linearmente sobre o plano XZ;
- O elemento B roda em torno do vértice do elemento A;
- O elemento C roda em torno do ponto médio da lateral do elemento B.

Figura 3

i. **[4.0]** Construa a árvore de cena do objecto apresentado na Figura 3. Não se esqueça de colocar as transformações que garantam o movimento dos elementos A, B e C.

Sistemas Gráficos e Interacção

Época Normal 2018-01-27

ii. [4.0] Pretende-se controlar o deslocamento do elemento A com as teclas do cursor (GLUT_KEY_LEFT e GLUT_KEY_RIGHT). Complete o código que se segue para implementar o controlo do movimento pretendido, directamente no callback glutSpecialFunc(). Considere que as constantes LEFT_LIMIT e RIGHT_LIMIT definem os limites do deslocamento.