# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
  - GRAY SCALE DOCUMENTS

#### IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.









FIG. 
$$3A$$

A1

B1

FIG.  $3B$ 

FIG.  $3C$ 

FIG.  $3D$ 

A2

A1

B2

B2

B3

C1

SC

SB

SA

QUERY RESULTS

```
Algorithm PathStack(q)
01 while \neg \operatorname{end}(q)
        qmin = getMinSource(q)
02
        for q_i in subtreeNodes(q) // clean stacks
03
           while (\neg empty(S_{qi}) \land topB(S_{qi}) < nextL(T_{qmin}))
04
              pop(S_{q_i})
05
        moveStreamToStack(Tq_{\min}, Sq_{\min}, pointer to
06
                                         top(S_{parent}(q_{min})))
         if (isleaf(q_{min}))
07
           showSolutions(S_{q_{min}},1)
80
            pop (Sqmin)
09
Function end(q)
    return \forall q_i \in \text{subtreeNodes}(q) : \text{isLeaf}(q_i) \Rightarrow \text{eof}(Tq_i)
Function getMinSource(q)
    return q_i \in \text{subtreeNodes}(q) such that \text{nextL}(Tq_i)
        is minimal
Procedure moveStreamToStack(Tq,Sq,p)
      push(S_q,(next(T_q),p))
02 advance(T_q)
                                                PathStack
```

Nicolas Bruno et al. Application No. 10/747,847

3/17

FIG. 4A



### FIG. 5

```
Procedure showSolutions(SN,SP)
// Assume, for simplicity, that the stack of the query
// nodes from the root to the current leaf node we
// are interested in can be accessed as S[1],...,S[n].
// Also assume that we have a global array index[1..n]
      of pointers to the stack elements.
// index[i] represents the position in the i'th stack that
// we are interested in for the current solution, where
// the bottom of each stack has position 1
// Mark we are interested in position SP of stack SN.
01 \text{ index}[SN] = SP
02 if (SN == 1) // we are in the root
      // output solutions from the stacks
03
      output (S[n].index[n],...,S[1].index[1])
04
     else // recursive call
05
       for i = 1 to S[SN].index[SN].pointer_to_parent
06
          showSolutions(SN - 1,i)
07
                          Procedure showSolutions
```

| _                                 |                                                                                                                                 |                                 |                                                       |         |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|---------|
|                                   | CASE 1                                                                                                                          | CASE 1                          | CASE 1                                                | CASE 1  |
| PROPERTY                          | X.R <y.l< td=""><td>X.L<y.l<br>X.R&gt;Y.R</y.l<br></td><td>X.L&gt;Y.L<br/>X.R<y.r< td=""><td>X.L&gt;Y.R</td></y.r<></td></y.l<> | X.L <y.l<br>X.R&gt;Y.R</y.l<br> | X.L>Y.L<br>X.R <y.r< td=""><td>X.L&gt;Y.R</td></y.r<> | X.L>Y.R |
| SEGMENTS                          | Y                                                                                                                               | X<br>Y                          | X<br>Y                                                | Y       |
| TREE                              | ROOT<br>Y                                                                                                                       | ROOT                            | ROOT                                                  | ROOT    |
| CASES FOR PathStack AND TwigStack |                                                                                                                                 |                                 |                                                       |         |

5/17

```
Algorithm PathMPMJ(q)
01 while (\neg \operatorname{eof}(\mathsf{T}_q) \land (\operatorname{isRoot}(q)))
      \mathsf{nextL}(q) < \mathsf{nextR}(\mathsf{parent}(q)))) for (q_i \in \mathsf{subtreeNodes}(q)) // advance descendants
           while (\text{nextL}(q_i) < \text{nextL}(\text{parent})q_i)))
03
              advance(T_{q_i})
04
           PushMark(T_{q_i})
05
     if (isLeaf(q)) // solution in the streams' heads outputSolution()
06
07 else PathMPMJ(child(q))
08 advance(Tq)  
09 for (q_i \in \text{subtreeNodes}(q)) // backtrack descendants
           PopMark(T_{q_i})
10
                                                               PathMPMJ
```

```
Algorithm TwigStack(q)
    // Phase 1
01 while \neg \operatorname{end}(q)
        q_{act} = getNext(q)
        if (\neg isRoot(q_{act}))
03
           {\sf cleanStack}({\sf parent}({\sf act}),\ {\sf next}(q_{\sf act}))
        if (isRoot(q_{act}) V = empty(Sparent(<math>q_{act})))
           cleanStack(q_{act}, next(q_{act}))
06
           moveStreamToStack(Tq_{act}, pointer to
07
                                      top(Sparent(q_{act})))
           if (isLeaf(q_{act}))
08
             showSolutionWithBlocking(Sq_{act}, 1)
09
             pop(Sq_{act})
10
        else advance(Tq_{act})
11
       // Phase 2
12 mergeAllPathSolutions()
Function getNext(q)
     if (isLeaf(q) return q
02 for q_i in children(q)
       ni = getNext(qi)
       if (n_i \neq q_i) return n_i
      n_{min} = minarg_{n_i} nextL(T_{n_i})
      n_{max} = maxrarg_{n_i} nextL(T_{n_i})
      while (nextR(Tq) < nextL(T_{nmax}))
07
          advance(Tq)
80
      if (nextL(Tq) < nextL(T_{nmin})) return q
      else return nmin
Procedure cleanStack(S, actL)
      while (\neg empty(S) \land (topR(S) < actL))
           pop(S)
 02
                                                     TwigStack
```



FIG. 9

Nicolas Bruno et al. Application No. 10/747,847

8/17

```
Algorithm TwigStackXB(q)
01 while \neg \operatorname{end}(q)
        q_{act} = getNext(q)
02
         if (isPlainValue(Tq_{act}))
(03)
           if (\neg isRoot(q_{act}))
04
              cleanStack(parent (q_{act}), next(q_{act}))
05
           if (isRoot(q_{act}) V = empty(Sparent(<math>q_{act})))
06
              cleanStack(q_{act}, next(q_{act}))
07
              moveStreamToStack(Tq_{act}, pointer to
08
                                       top(S_{parent(q_{act})}))
              if (isLeaf(q_{act}))
09
                showSolutionsWithBlocking(Sq_{act},1)
10
                pop(Sq_{act})
11
12
           else advance(Tq_{act})
         else if (\neg isRoot(q_{act}) \land empty(Sparent(q_{act})) \land
(13)
                   nextL(T_{parent}(q_{act})) > nextR(T_{qact}))
         advance(T_{qact}) // Not part of a solution
(14)
         else // Might have a child in some solution
(15)
         drillDown(T_{qact})
(16)
        // Phase 2
     mergeAllPathSolutions()
Function getNext(q)
     if (isLeaf(q) return q)
     for q_i in children(q)
         n_i = getNext(q_i)
03
 (04) if (q_i \neq n_i \lor \neg isPlainValue(Tn_i)) return n_i
05 n_{min} = minarg_{n_i} nextL(T_{n_i})
06 n_{max} = maxrarg_{n_i} nextL(T_{n_i})
     while (nextR(Tq) < nextL(T_{nmax}))
          advance(Tq)
80
      if (nextL(Tq) < nextL(T_{nmin})) return q
      else return nmin
Procedure cleanStack(S, actL)
      while (\neg empty(S) \land (topR(S) < actL))
           pop(S)
 02
                                                    TwigStack
```



FIG. 10



FIG. 11





FIG. 12B



12/17

FIG. 13A



FIG. 13B





















. FOR PATTERN MATCHING HAVING HOL' © TWIG JOINS Nicolas Bruno et al.

METHOD AND SYS: . FOR

Application No. 10/747,847

16/17

FIG. 17A



FIG. 17B



FIG. 18A

17/17



FIG. 18B

\[
\sum \text{TwigStack} - \text{XB(leaves} \)
 \[
\sum \text{TwigStack} - \text{XB(Interval)} - \text{TwigStack}
 \]



FIG. 18C

☑ TwigStack-XB(leaves) ☑ TwigStack-XB(Interval) — TwigStack

