MAT2120 Number Theory Problems II

Suhyun Park (20181634)

Department of Computer Science and Engineering, Sogang University

1. Find all solutions of $87x \equiv 57 \pmod{105}$.

Solution.

$$87x \equiv 57 \pmod{105} \Leftrightarrow 29x \equiv 19 \pmod{35}$$
.

Using the extended Euclidean algorithm to find a, b that satisfies 29a + 35b = (29, 35) = 1 yields

$$35 = \underline{29} \cdot 1 + \underline{6}$$

$$29 = \underline{6} \cdot 4 + \underline{5}$$

$$6 = \underline{5} \cdot 1 + \underline{1}$$

$$5 = 1 \cdot 5$$

$$\therefore 1 = 6 - 5 \cdot 1$$

$$= 6 - (29 - 6 \times 4) \cdot 1 = 6 \times 5 - 29$$

$$= (35 - 29 \cdot 1) \times 5 - 29 = 35 \times 5 - 29 \times 6$$

$$\Rightarrow a = -6, b = 5.$$

Hence,

$$19 (29a + 35b) = 19 \times 1 \Rightarrow 19a \times 29 = 19 - 35b$$
$$\Rightarrow 19a \times 29 \equiv 19 \pmod{35}$$
$$29 \times (-114) \equiv 19 \pmod{35}.$$

Thus $x \equiv -114 \equiv 26 \pmod{35}$, so $x \equiv 26$ or $x \equiv 61$ or $x \equiv 96$ modulo 105.

2. Show that n(n-1)(2n-1) is divisible by 6 for every positive integer n.

Proof. Suppose n = 6k + r where $k \in \mathbb{Z}$ and $0 \le r < 6$ and $r \in \mathbb{Z}$. Then

$$n(n-1)(2n-1) = (6k+r)(6k+r-1)(12k+2r-1)$$

$$\equiv r(r-1)(2r-1)$$

$$\equiv 2r^3 - 3r^2 + r \pmod{6}.$$

1. Suppose $r = 2q_2 + r_2$ where $q_2, r_2 \in \mathbb{Z}$ and $0 \le r_2 < 2$. Then

$$2r^{3} - 3r^{2} + r \equiv r^{2} + r$$

$$\equiv (2q_{2} + r_{2})^{2} + (2q_{2} + r_{2})$$

$$\equiv r_{2}^{2} + r_{2} \equiv r_{2} (r_{2} + 1) \pmod{2}.$$

Since $0(0+1) \equiv 1(1+1) \equiv 0 \pmod{2}$, $2 \mid n(n-1)(2n-1)$.

2. Similarly, suppose $r = 3q_3 + r_3$ where $q_3, r_3 \in \mathbb{Z}$ and $0 \le r_3 < 3$. Then

$$2r^{3} - 3r^{2} + r \equiv 2r^{3} + r$$

$$\equiv 2(3q_{3} + r_{3})^{3} + (3q_{3} + r_{3})$$

$$\equiv 2r_{3}^{3} + r_{3} \equiv r_{3}(2r_{3}^{2} + 1) \pmod{3}.$$

Since $0(2 \cdot 0^2 + 1) \equiv 1(2 \cdot 1^2 + 1) \equiv 2(2 \cdot 2^2 + 1) \equiv 0 \pmod{3}$, $3 \mid n(n-1)(2n-1)$.

By 1. and 2., $2 \times 3 = 6 \mid n(n-1)(2n-1)$ for any integer *n*.

3. What are the remainders when 3^{40} and 43^{37} are divided by 11?

Solution.

1. By Fermat's Little Theorem, $3^{11-1} \equiv 1 \pmod{11}$. Hence

$$3^{40} \equiv (3^{10})^4$$

 $\equiv 1^4 \equiv 1 \pmod{11}$.

2. Note that $43 \equiv -1 \pmod{11}$. Thus

$$43^{37} \equiv (-1)^{37}$$

 $\equiv -1 \equiv 10 \pmod{11}$.

4. Find all solutions to the pair of congrugences $3x - 7y \equiv 4 \pmod{15}$, $7x - 3y \equiv 1 \pmod{15}$.

Solution. Since

$$(3x-7y) \times 3 - (7x-3y) \times 7 \equiv 4 \times 3 - 1 \times 7 = 5 \pmod{15}$$

$$\Rightarrow 9x - 21x - 49x + 21y \equiv 5 \pmod{15}$$

$$\Rightarrow -40x \equiv 5x \equiv 5 \pmod{15}$$

$$\Rightarrow x \equiv 1 \pmod{3}$$

$$\Rightarrow x \equiv 1 + 5k \pmod{15}$$

where $k \in \mathbb{Z}$,

$$3x - 7y \equiv 4 \pmod{15}$$

$$\Rightarrow 3(1+5k) - 7y \equiv 4 \pmod{15}$$

$$\Rightarrow 3 + 15k - 7y \equiv 4 \pmod{15}$$

$$\Rightarrow 8y \equiv 1 \pmod{15}.$$

Thus $x \equiv 1 \pmod{3}$ and $y \equiv 2 \pmod{15}$.

5. Find all integers between 3000 and 5000 that leave remainders of 1, 3, and 5 when divided by 7, 11, and 13, respectively.

Solution. Let *x* be an integer such that

$$\begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 3 \pmod{11} \\ x \equiv 5 \pmod{13} \end{cases}$$

We derive x by using the Chinese remainder theorem. Note that the solution of

$$11 \times 13 \times m_1 \equiv 3m_1 \equiv 1 \pmod{7}$$

 $7 \times 13 \times m_2 \equiv 3m_2 \equiv 3 \pmod{11}$
 $7 \times 11 \times m_3 \equiv -m_3 \equiv 5 \pmod{13}$

is given by $m_1 \equiv 5 \pmod{7}$, $m_2 \equiv 1 \pmod{11}$, $m_3 \equiv -5 \pmod{13}$, thus

$$x \equiv 5 \cdot 11 \cdot 13 + 1 \cdot 7 \cdot 13 - 5 \cdot 7 \cdot 11 \equiv 421 \pmod{1001}$$
.

Hence integers between 3000 and 5000 that leave remainders of 1, 3, and 5 when divided by 7, 11, and 13 are:

6. Find the remainder when $13 \cdot 12^{45}$ is divided by 47.

Solution. $13 \cdot 12^{45} = 12^{46} + 12^{45}$. By Fermat's little theorem, $12^{47-1} \equiv 1 \pmod{47}$. Hence

$$13 \cdot 12^{45} = 12^{46} + 12^{45} \equiv 1 + 12^{45}$$

$$\equiv 1 + (12^{2})^{22} \times 12 \equiv 1 + (47 \times 3 + 3)^{22} \times 12$$

$$\equiv 1 + 3^{22} \times 12$$

$$\equiv 1 + (3^{5})^{4} \times 9 \times 12 \equiv 1 + (47 \times 5 + 8)^{4} \times 108$$

$$\equiv 1 + 8^{4} \times (47 \times 2 + 14) \equiv 1 + 8^{4} \times 14$$

$$\equiv 1 + (8^{2})^{2} \times 14 \equiv 1 + (47 + 17)^{2} \times 14$$

$$\equiv 1 + 17^{2} \times 14$$

$$\equiv 4047 \equiv 5.$$

7. Let p and q be distinct odd primes such that p-1 divides q-1. If (a,pq)=1, prove that $a^{q-1}\equiv 1\pmod{pq}$.

Proof. By Fermat's theorem, it is clear that $a^{q-1} \equiv 1 \pmod{q}$ and $a^{p-1} \equiv 1 \pmod{p}$.

Since $(p-1) \mid (q-1)$, we can let (q-1) = k(p-1), where $2 \le k$ and $k \in \mathbb{Z}$. Then

$$(a^{p-1})^k \equiv 1^k \equiv 1 \pmod{p}$$

$$\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p}$$

$$\Rightarrow a^{q-1} \equiv 1 \pmod{p}.$$

Since p and q are distinct primes; i. e. (p,q)=1, and since a^{q-1} is congrugent to 1 both modulo p and q, $a^{q-1} \equiv 1 \pmod{pq}$.

8. Show that if a is not divisible by 2 or by 5, then a^{101} ends in the same three decimal digits as does a. (Here we use the convention that 21, for example, ends with 021.)

Proof. We want to show that $a^{101} \equiv a \pmod{1000}$.

Since a is not divisible by 2 nor 5 but the only prime factor of 125 is 5, (a, 125) = 1. Note that

$$\phi(125) = 125\left(1 - \frac{1}{5}\right)$$
= 100.

By Euler's theorem, $a^{\phi(125)} = a^{100} \equiv 1 \pmod{125}$.

Also for 8, since only prime factor of 8 is 2 and $\phi(8) = 4$, By Euler's theorem, $a^{\phi(8)} = a^4 \equiv 1 \pmod{8}$. Hence, $(a^4)^{25} \equiv a^{100} \equiv 1 \pmod{8}$.

Thus since
$$(8, 125) = 1$$
, $a^{100} \equiv 1 \pmod{1000}$; therefore $a^{101} \equiv a \pmod{1000}$.

9. Explain why every year has at least one Friday the 13th.

Proof. If January begins on day k, where $0 \le k < 7$ and k = 0 being Sunday, then on a non-leap year,

- February begins on day $k + 31 \equiv k + 3 \pmod{7}$
- March begins on day $k+3+28 \equiv k+3 \pmod{7}$
- April begins on day $k+3+31 \equiv k+6 \pmod{7}$
- May begins on day $k+6+30 \equiv k+1 \pmod{7}$
- June begins on day $k+1+31 \equiv k+4 \pmod{7}$
- July begins on day $k+4+30 \equiv k+6 \pmod{7}$
- August begins on day $k+6+31 \equiv k+2 \pmod{7}$
- September begins on day $k+2+31 \equiv k+5 \pmod{7}$
- October begins on day $k + 5 + 30 \equiv k \pmod{7}$
- November begins on day $k+31 \equiv k+3 \pmod{7}$
- December begins on day $k+3+30 \equiv k+5 \pmod{7}$

6 Suhyun Park (20181634)

Then the set of starting days of each month forms a complete residue system, hence the set of days of the 13^{th} of each month also does. Similarily, this also holds in leap years. Thus it is guaranteed that every year will have at least one Friday the 13^{th} .