Name: Sudarshan Rayapati KSU ID: 811287455

QUANTITATIVE MANAGEMENT MODELING Assignment -1

Question 1:

A. Clearly define the decision variables.

Collegiate(x) Mini bag pack(y)

x =no of collegiate back packs. y =no of mini back packs.

B. What is the objective function?

The objective function is maximizing profit (MP). Profit of x \$32
Profit of y \$24

Maximizing profit (MP) = 32 x + 24 y

C. What are the constraints?

	X (collegiate)	Y(Mini)
Material required for production (sq. ft)	3 sq. ft	2 sq. ft
Profit for each product (\$)	\$32	\$25
Time required for each product to produce (Minutes)	45min	40min
Target quantity to sell (Demand)	1000	1200

Material constraint:

Material receives from bank 5000sq.ft of nylon fabric. $3x + 2y \le 5000$ sq.ft.

Time constraint:

45 minutes for product X, 40 minutes for product y

40 hours per week, total labor 35

45x + 40y = 35 labor * 40 hours *60 minutes = 84000 minutes

Demand constrains:

 $x \le 1000$

 $y \le 1200$

Non-Negativity:

 $x \ge 0$

y≥0

D. Write down the full mathematical formulation for this LP problem.

Collegiate back packs per week =x Mini back packs per week =y

Maximizing profit (MP) = 32 x + 24 y

 $x \le 1000$ collegiates target to sell per week

y <= 1200 minis target to sell per week

$$45x + 40y \le 84000$$

 $3x + 2y \le 5000$ sq.ft of material required per week.

 $x,y \ge 0$

Question 2:

A. Define the decision variables.

Total new products to be produced in weigelt corporation as per the size of product to maximize the profit in each plant.

 P_1 = number of units produced on plant1 with size L

 Q_1 = number of units produced on plant1 with size M

 R_1 = number of units produced on plant1with size S

P₂= number of units produced on plant2 with size L

Q₂= number of units produced on plant2 with size M

 R_2 = number of units produced on plant2 with size S

 P_3 = number of units produced on plant3 with size L

Q₃= number of units produced on plant3 with size M

 R_3 = number of units produced on plant3 with size S

B. Formulate a Linear Programming for this Problem:

Maximize Profit

$$Z = 420 (P_1+P_2+P_3) + 360 (Q_1+Q_2+Q_3) + 300 (R_1+R_2+R_3)$$

Constraints:

Total number of units produced regardless of which plant they come from.

Production Capacity per unit by plant each day

Plant
$$1 = P_1 + Q_1 + R_1 \le 750$$

Plant
$$2 = P_2 + Q_2 + R_2 \le 900z$$

Plant
$$3 = P_3 + Q_3 + R_3 \le 450$$

Storage capacity per unit by plant each day

Plant
$$1 = 20P_1 + 15Q_1 + 12R_1 \le 13000$$

Plant
$$2 = 20P_2 + 15Q_2 + 12R_2 \le 12000$$

Plant
$$3 = 20P_3 + 15Q_3 + 12R_3 \le 5000$$

Sales forecast per day:

$$\begin{aligned} P_1 + P_2 + P_3 &\leq 900 \\ Q_1 + Q_2 + Q_3 &\leq 1200 \\ R_1 + R_2 + R_3 &\leq 750 \end{aligned}$$

The Plants steadily uses a fixed % of their extra production capacity to make new product.

$$\frac{\underline{P_1} + \underline{Q_1} + \underline{R_1}}{750} = \frac{\underline{P_2} + \underline{Q_2} + \underline{R_2}}{900} = \frac{\underline{P_3} + \underline{Q_3} + \underline{R_3}}{450}$$

$$P1, P2, P3, Q1, Q2, Q3, R1, R2, R3 \ge 0.$$