The Relationship Between Exercise Time and Weight Loss

Bilal Mozaffar, Risheng Li, Thomas Janes 2/6/2021

```
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.6.2
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
```

Abstract

The purpose of this data analysis is to apply statistical models to health data for a call center. While there were many data points missing for weight gain and the total metabolic minutes, many of these could be found using the other metrics available. The health data was processed to provide as many viable data points as possible without compromising the integrity of the analysis. Two models were constructed: a linear model to examine the relationship between total metabolic minutes and weight gain and a logistic regression model to examine the relationship between shift time and weight gain.

Introduction

We have been given several health measurements of employees working at a call center. Over eight months, the metrics have tracked information including work shift time, exercise time, weight gained (binary yes/no measurement), amount of weight gained, total metabolic minutes, and more. We hope to figure out whether certain factors, specifically total metabolic minutes and shift time, play a role in employees' weight gain.

The Data

The data used in this analysis was provided by the call center. The data consists of 392 observations and 83 features, with variables such as member information, body measurements, exercise time, and weight situation. There are thirteen variables that we will use for this analysis, including shift time, gender, age, height, weight gain, pounds gained, body weight, body mass index, vigorous exercise time, moderate exercise time, walking exercise time, and total metabolic minutes. It is important to note that there were many missing values for total metabolic minutes, but these could be filled in using the other variables available. There were also missing values for pounds gained, but no features were available to account for this so these observations were removed.

We load and subset the raw data into a new dataset that contains the columns that we will use for our analysis. After the initial examination of the data, we renamed several variables by eliminating white spaces in order to improve the easiness of analysis. Using the formula provided, $Total_met_min = 8 * Vig_ex_time + 4 * Mod_ex_time + 3.3 * Walk_ex_time, we filled in the missing values of variable <math>Total_met_min$.

```
### Already a numeric variable? No need to change
dat1$Total_Met_Min = as.numeric(dat1$Total_Met_Min)
```

pairs(dat1)


```
dat1.try <- dat1[c(3:4, 7:12)]
dat1.try <- melt(dat1.try)</pre>
```

Using Mod.ex.time as id variables

```
ggplot(data = dat1.try, aes(x = value)) + stat_density() + facet_wrap(~variable, scales = 'free')
```

Warning: Removed 82 rows containing non-finite values (stat_density).

We see that Age and BMI are right-skewed with nonzero values, so we will do a log transformation on these variables.

```
dat1$Age <- log(dat1$Age)</pre>
dat1$BMI <- log(dat1$BMI)</pre>
lm = lm(lbs_gained ~ Total_Met_Min, data = dat1)
summary(lm)
##
## Call:
  lm(formula = lbs_gained ~ Total_Met_Min, data = dat1)
##
##
  Residuals:
##
       Min
                 1Q
                     Median
                                  3Q
                                         Max
##
  -16.406
            -7.288
                     -1.913
                               3.543
                                      53.824
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept) 17.048084 2.115141 8.060 2.03e-13 ***
## Total_Met_Min -0.006761 0.019050 -0.355 0.723
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.05 on 153 degrees of freedom
## Multiple R-squared: 0.0008225, Adjusted R-squared: -0.005708
## F-statistic: 0.126 on 1 and 153 DF, p-value: 0.7232
```

ggplot(data = dat1, aes(x = Total_Met_Min, y = lbs_gained)) + geom_point() + geom_smooth()

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'


```
i = 1
for (obs in dat1$lbs_gained) {
  if (obs > 45) {
    dat1 = dat1[-i,]
  } else {
    i = i + 1
  }
}
```

```
i = 1
for (obs in dat1$Total_Met_Min) {
```

```
if (obs >= 5000) {
   dat1 = dat1[-i,]
 } else {
   i = i + 1
 }
}
lm = lm(lbs_gained ~ Total_Met_Min, data = dat1)
summary(lm)
## Call:
## lm(formula = lbs_gained ~ Total_Met_Min, data = dat1)
## Residuals:
              1Q Median
                             3Q
##
      Min
                                    Max
## -14.875 -6.588 -3.225 4.470 26.077
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
               ## (Intercept)
                         0.01477 -1.432
## Total_Met_Min -0.02115
                                            0.154
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.127 on 147 degrees of freedom
## Multiple R-squared: 0.01376, Adjusted R-squared: 0.007054
## F-statistic: 2.051 on 1 and 147 DF, p-value: 0.1542
P-value got bigger
ggplot(data = dat1, aes(x = Total_Met_Min, y = lbs_gained)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Risheng: replace lbs_gained value with 0 if weightgain = 0 and drop the rows that both weightgain and lbs_gained are missing. Also calculate the beginning weight by subtracting lbs_gain from body weight. Calculate the change in BMI using begeinning weight and height.

```
dat1$lbs_gained[dat1$weightgain == "No"] <- 0

dat1$beg_weight <- dat1$bweight - dat1$lbs_gained

dat1$Beg_BMI <- (dat1$beg_weight/(dat1$height^2))*703
dat1$BMIChange <- dat1$BMI - dat1$Beg_BMI

dat1 <- dat1 %>%
  filter_at(vars(weightgain, lbs_gained), any_vars(complete.cases(.)))
```

By turning weightgain into a dummy variable and running a logistic regression, we can measure if other variables have influence on weightgain. First, we factored the two categorical variables and built a model with variables include shift, gender, Age, height and Beg_BMI and Total_Met_Min. Because the change in BMI is very minimal, we decided to use the beginning BMI as one of the regressors. The half normal plot shows that there is no obvious outliers in the model:

```
dat1$weightgain.b <- ifelse(dat1$weightgain == 'Yes', 1, 0)
dat1</pre>
```

##			gender		height	weightgain	lbs_gained	bweight	BMI
##	1	8am	Female	3.258097	62	Yes	18	124	3.121483
##	2	9am	Female	3.295837	65	Yes	6	151	3.223664
##	3	9am		3.688879	69	Yes	10	180	3.280159
##	4	7am	Male	3.951244	72	Yes	20	190	3.249211
##	5	7am	Female	4.060443	62	Yes	20	NA	NA
##	6	other	Female	3.135494	NA	Yes	5	NA	NA
##	7	8am	Female	3.496508	62	Yes	15	155	3.344627
##	8	8am		3.401197	75	Yes	8		2.995732
##	9			4.077537	63	Yes	10		3.279783
##	10			3.713572	68	Yes	10		3.439456
##	11	8am		3.135494	64	Yes	10	NA	NA
##	12	8am		3.091042	72	Yes	20		3.461665
##	13	7am		3.988984	72	Yes	40		3.699077
##	14	8am		3.988984	69	Yes	20		3.307619
##	15	11am		3.737670	66	Yes	20		3.518388
##	16	7am		3.713572	70	Yes	10		3.376563
##	17			3.737670	63	Yes	5		3.128951
##	18			3.737670	57	Yes	10		3.196630
##	19		Female	NA	NA	Yes	3	NA	NA
##	20			3.828641	64	Yes	15		3.179303
##	21			3.688879	66	No	0	NA	NA
##	22	8am		3.401197	75	Yes	40		3.336481
##	23			3.218876	60	Yes	30	NA	NA
##	24			3.401197	61	Yes	15		3.239071
##	25			3.828641	62	Yes	20		3.088767
##	26			3.295837	64	Yes	7	NA 170	NA
	27			3.258097	62	Yes	31		3.436886
##	28 29	10am		3.135494 4.007333	69 65	Yes Yes	5		3.222868 2.888704
##	30	11am		3.091042	64	Yes	5 5		3.025291
##	31	8am		3.218876	71	Yes	20	NA	3.025291 NA
##	32			3.091042	64	Yes	7		3.120601
##	33	10am		3.850148	68	Yes	25		3.414772
##	34			3.044522	64	Yes	5		3.105035
##	35			3.178054	67	Yes	5		3.299165
	36	Odni		3.526361	61	Yes	30		3.641788
	37	other		3.332205	65	Yes	5		3.111736
	38			3.178054	63	Yes	10	NA	NA
	39			3.401197	64	Yes	10		3.832330
	40	_		3.258097	63	Yes	8		3.151881
	41	11am		3.178054	69	Yes	8		3.097837
##	42	2pm		3.044522	63	Yes	15		3.039749
##	43	-		3.135494	67	Yes	5		3.189241
##	44	_		3.688879	61	Yes	41	NA	NA
##	45	2pm	Female	3.401197	66	Yes	10	140	3.117507
##	46	_		3.465736	66	Yes	10	NA	NA
##	47	other	Female	3.332205	66	Yes	10	NA	NA
##	48	2pm	Male	NA	NA	Yes	10	173	NA
##	49	9am	Male	NA	NA	Yes	25	180	NA
##	50	8am	Female	3.332205	69	Yes	15	180	3.280159
##	51	2pm	Male	NA	72	Yes	30	250	3.523415
##	52	8am	${\tt Female}$	3.806662	62	Yes	18	167	3.419037
##	53	11am	Female	3.218876	67	Yes	20	155	3.189241

##	54	9am	Female	3.295837	59	Yes	10	217	3.780090
##				4.007333	60	Yes	30		3.502550
##	56			3.433987	63	Yes	7	NA	NA
##	57			3.496508	64	Yes	10	NA	NA
##	58			3.295837	67	Yes	20		3.122805
##	59			3.178054	65	Yes	17	NA	NA
##	60	-		3.295837	69	Yes	15	NA	NA
##	61			3.688879	62	Yes	5	NA	NA
##	62			3.583519	61	Yes	10	NA	NA
##	63			3.401197	61	Yes	5		3.268047
##	64			3.367296	63	Yes	30		3.728581
##	65			3.218876	66	Yes	10		3.028199
##	66	8am		3.258097	69	Yes	20		3.480625
##	67	8am		3.433987	72	Yes	40		3.523415
##	68	12pm		3.401197	73	Yes	5		3.272606
##	69	8am	Male	NA	NA	Yes	8	194	NA
##	70			3.806662	68	Yes	20		3.414772
##	71		Female	NA	61	Yes	20		3.239071
##	72	-		3.367296	69	Yes	8		2.915606
	73	10am		3.526361	70	Yes	15		3.675034
	74			3.931826	68	Yes	10		3.449035
	75	11am		3.258097	69	Yes	5		3.097837
##	76	1pm		3.218876	73	Yes	10		3.194993
	77	-		4.110874	66	Yes	10		3.282038
	78	_	Female	NA	71	Yes	20	NA	NA
	79			3.178054	66	Yes	10		3.312002
	80	_	Female	NA	68	Yes	20	NA	NA
	81			3.610918	70	Yes	15		3.518091
##	82	10am		4.043051	82	Yes	15		3.015045
##	83	8am		4.043051	67	Yes	10		3.382354
##	84	10am	Female	4.007333	62	Yes	12	185	3.521348
##	85	9am	Female	3.806662	68	Yes	10	165	3.222469
##	86	9am	Female	3.610918	64	Yes	4	150	3.248046
##	87	12pm	Female	3.637586	64	Yes	20	180	3.430433
##	88	_		3.218876	67	Yes	10	178	3.327910
##	89	9am	Female	3.465736	NA	Yes	5	135	NA
##	90	8am	Male	3.465736	71	Yes	15	187	3.261169
##	91	7am	Male	3.496508	68	Yes	20	180	3.309448
##	92	11am	Female	3.761200	69	Yes	10	238	3.559340
##	93	8am	Female	3.555348	64	Yes	30	NA	NA
##	94	10am	Female	3.295837	62	Yes	20	NA	NA
##	95	8am	Male	3.367296	70	Yes	20	188	3.294725
##	96	10am	Female	3.218876	65	Yes	5	115	2.951258
##	97	8am	Female	4.007333	67	Yes	30	NA	NA
##	98	11am	Female	3.178054	68	Yes	10	140	3.057768
##	99	7am	Female	3.688879	68	Yes	25	NA	NA
##	100	7am	Female	3.091042	64	Yes	15	162	3.325036
##	101	7am	Female	3.258097	62	Yes	15	138	3.228430
##	102	2pm	Female	2.995732	67	Yes	7		2.933325
##	103	-		3.912023	68	Yes	20	NA	NA
##	104	10am	Female	3.951244	64	Yes	12	208	3.575151
##	105	10am	Female	3.091042	62	Yes	20	150	3.311637
##	106	10am	Female	3.091042	64	Yes	20	170	3.373484
##	107	8am	Female	3.610918	66	Yes	6	140	3.117507

	108	11am		3.465736	75	Yes	16		.140698
	109	8am		3.218876	70	Yes	15		.194173
	110	12pm		3.951244	63	Yes	16		.489513
	111	10am		4.007333	72	Yes	10		.349202
	112			3.332205	67	Yes	5	NA	NA
	113		Female	NA	64	Yes	7		.214466
##	114	8am	Female	3.555348	70	Yes	20	240 3	.538928
##	115	11am	Male	3.688879	70	Yes	5	215 3	.429137
##	116	8am	Female	3.465736	65	Yes	10	157 3	.262701
##	117	7am	Female	3.737670	67	Yes	15	201 3	.449352
##	118	8am	Female	4.158883	64	Yes	10	145 3	.214466
##	119	8am	Female	3.091042	66	Yes	9	142 3	.132010
##	120	8am	Female	3.178054	68	Yes	40	170 3	.252311
##	121	11am	Male	3.891820	66	Yes	15	138 3	.103240
##	122	8am	Female	3.713572	62	Yes	15	187 3	.532226
##	123	8am	Female	3.688879	64	Yes	35	130 3	.105035
##	124	10am	Female	3.465736	69	Yes	15	195 3	.360028
##	125	10am	Female	3.135494	65	Yes	6	NA	NA
##	126	10am	Male	3.555348	70	Yes	10	273 3	.667911
##	127	11am	Female	3.135494	68	Yes	5	145 3	.092859
##	128	7am	Male	3.737670	69	Yes	10	210 3	.434310
##	129	8am	Female	3.218876	64	Yes	20	133 3	.128075
##	130	other	Male	3.218876	75	Yes	15	175 3	.085116
##	131	9am	Female	3.433987	70	Yes	40	215 3	.429137
##	132	8am	Female	2.944439	69	Yes	15	145 3	.063858
##	133	10am	Female	3.433987	NA	Yes	5	185	NA
##	134	9am	Female	3.496508	65	Yes	10	165 3	.312366
##	135	8am	Female	3.295837	63	Yes	30	183 3	.478467
##	136	11am	Female	3.178054	66	Yes	10	140 3	.117507
##	137	9am	Female	3.258097	64	Yes	7	125 3	.065725
##	138	2pm	Male	3.555348	74	Yes	25	230 3	.385407
##	139	10am	Female	3.135494	70	Yes	20	158 3	.121042
##	140	8am	Female	3.526361	61	Yes	5	123 3	.145875
##	141	9am	Female	3.258097	71	Yes	20	305 3	.750210
##	142	8am	Male	3.258097	72	Yes	40	280 3	.636796
	143	10am		3.091042	71	Yes	25		.400530
	144	11am		3.044522	71	Yes	10	168 3	.154017
	145			3.332205	65	Yes	10	NA	NA
	146			3.465736	67	Yes	15		.251924
	147		Female	3.295837	66	Yes	15	NA	NA
		other		3.401197	65	Yes	5		. 249987
	149	11am		3.555348	77	Yes	10		.261552
##		Vig.ex			Walk.e	x.Time Total		U -	•
##			180	160		100	81		6 19.38554
##			40	0		0	103		5 24.12663
##			40	20		10	129		0 25.10187
##			180	180		0	71		0 23.05363
##			90	40		0	177	N	
##	_		0	150		20	156	N	
	7		60	30		80	174		0 25.60354
##			0	40		30	87		2 18.99662
##			90	0		140	14		0 24.79718
##			50	160		125	36		5 29.64641
##	11		0	75		45	132	N	A NA

##	12	45	0	420	55	215	29.15606
##	13	0	40	105	140	258	34.98727
##	14	0	0	10	106	165	24.36358
##	15	90	60	60	12	189	30.50207
##	16	225	360	70	111	194	27.83306
##	17	90	60	420	78	124	21.96321
##	18	0	30	100	133	103	22.28655
##	19	0	0	30	183	NA	NA
##	20	180	0	0	35	125	21.45386
##	21	0	30	50	95	NA	NA
##	22	210	210	105	97	185	23.12089
##	23	0	120	120	176	NA	NA
##	24	0	0	60	64	120	22.67132
##	25	0	0	49	45	100	18.28824
##	26	20	0	20	76	NA	NA
##	27	300	80	189	108		25.42066
##	28	100	60	90	26	165	24.36358
##	29	75	0	20	156		17.13822
	30	300	300	60	122		19.73755
##	31	60	0	90	163	NA	NA
	32	160	60	80	56		21.45386
	33	0	0	68	75	175	26.60575
	34	180	30	100	61		21.45386
	35	120	30	600	101		26.30965
	36	0	0	35	11		32.49557
	37	30	60	100	166		21.63077
	38	0	90	150	173	NA	NA
	39	0	0	140	134		44.45239
	40	180	91	70	67		21.96321
	41	60	180	60	33		20.96744
	42	0	1680	0	150		18.24364
	43	150	150	90	69		23.49076
	44	60	50	150	13	NA	NA
	45	0	120	0	136		20.98026
	46	0	0	20	155	NA	NA
	47	180	75	35	60	NA	NA
##		0	0	420	32	163	NA
##		160	0	420	91	155	NA
##		80	0	60	171		24.36358
##		160	0	0	21		29.83410
##		0	20	80	109		27.24948
##		0	60	60	130		21.14168
##		0	9	0	113		41.80437
##		60	210	60	38		27.33889
##		80	0	0	153	NA	NA
##		0	135	0	144	NA	NA
	58	0	0	120	125		19.57563
	59	360	0	0	98	NA	NA
	60	15	10	0	42	NA	NA
	61	16	16	90	135	NA	NA
	62	0	0	135	131	NA	NA
##		90	40	30	182		25.31631
##		315	60	16	94		36.31015
##		0	0	210	158		19.04362
		Ŭ	Ŭ	210	100	110	_0.01002

##	66	180	180	0	71	200 29.53161
	67	200	240	140	100	210 28.47801
	68	60	60	60	178	195 25.72434
	69	0	0	210	158	186 NA
	70	0	100	60	149	180 27.36592
	71	40	30	280	29	115 21.72669
	72	90	9	9	164	117 17.27599
	73	200	60	0	58	260 37.30204
	74	0	0	225	162	197 29.95048
##	7 4 75	0	30	30	72	145 21.41042
##	76	180	150	50	74	175 23.08594
##	77	0	0	210	158	155 25.00394
##	78	0	20	60	93	NA NA
##	79	0	240	60	12	160 25.82185
	80	90	60	20	6	NA NA
	81	120	120	60	46	220 31.56327
	82	0	140	75	165	180 18.81916
	83	0	60	0	80	178 27.87570
##		225	0	140	77	173 31.63866
##		60	30	210	23	155 23.56510
##		0	90	140	169	146 25.05811
##		120	120	80	51	160 27.46094
##		0	45	90	135	168 26.30965
##		0	0	30	183	130 NA
	90	135	30	24	20	172 23.98651
	91	180	180	0	71	160 24.32526
	92	165	90	225	82	228 33.66604
	93	0	0	120	125	NA NA
	94	0	0	60	64	NA NA
	95	0	60	90	143	168 24.10286
	96	0	15	0	150	110 18.30296
	97	0	225	300	61	NA NA
	98	0	0	60	64	130 19.76427
	99	120	105	140	59	NA NA
##	100	225	210	420	127	147 25.22974
##	101	60	0	60	157	123 22.49454
	102	180	180	0	71	113 17.69637
	103	0	90	60	147	NA NA
	104	0	60	300	17	196 33.63965
	105	0	360	120	57	130 23.77471
	106	0	0	80	89	150 25.74463
	107	0	0	480	41	134 21.62580
	108	12	16	210	172	169 21.12124
	109	0	135	20	152	155 22.23776
##	110	0	140	140	5	169 29.93374
##	111	60	120	0	180	200 27.12191
##	112	240	40	120	83	NA NA
##	113	120	100	100	50	138 23.68506
##	114	240	120	40	86	220 31.56327
##	115	0	30	40	85	210 30.12857
##	116	60	0	0	136	147 24.45941
##	117	0	0	100	107	186 29.12854
##	118	8	56	20	93	135 23.17017
##	119	200	40	75	65	133 21.46442

ш	100	^	0	100	105	120 10 76407
	120	0	0	120	125	130 19.76427
	121	360	120	120	121	123 19.85055
	122	45	240	210	66	172 31.45578
##	123	0	40	150	154	95 16.30493
##	124	180	210	300	104	180 26.57845
##	125	30	45	360	44	NA NA
##	126	0	0	210	158	263 37.73245
	127	50	75	135	10	140 21.28460
	128	30	60	20	145	200 29.53161
##	129	135	90	160	63	113 19.39429
						160 19.99644
##	130	30	45	20	137	
##	131	0	0	80	89	175 25.10714
##	132	240	120	210	102	130 19.19555
##	133	360	0	240	116	180 NA
##	134	0	0	160	142	155 25.79053
##	135	0	30	15	49	153 27.09977
##	136	180	20	0	39	130 20.98026
##	137	0	240	300	62	118 20.25244
	138	135	105	210	73	205 26.31757
	139	180	20	60	53	138 19.79878
	140					118 22.29347
		120	40	40	18	
	141	75	0	0	151	285 39.74509
	142	240	30	0	68	240 32.54630
	143	60	90	40	181	190 26.49673
	144	480	240	60	139	158 22.03412
	145	90	90	105	34	NA NA
	146	0	0	315	7	150 23.49076
##	147	0	0	140	134	NA NA
##	148	480	0	0	124	150 24.95858
##	149	0	0	180	148	210 24.89965
##		BMIChange we	eightgain.b			
##	1	-16.26405	1			
##	2	-20.90296	1			
##	3	-21.82171	1			
##	4	-19.80442	1			
##	5	NA	1			
##	6	NA	1			
##	7	-22.25891	1			
##		-16.00089	1			
##		-21.51740	1			
	10	-26.20695	1			
	11	NA	1			
	12	-25.69439	1			
	13	-31.28819	1			
	14	-21.05596	1			
	15	-26.98368	1			
	16	-24.45650	1			
	17	-18.83426	1			
	18	-19.08992	1			
##		NA	1			
	19					
##	20	-18.27455	1			
## ##	20 21	-18.27455 NA	1 0			
## ## ##	20	-18.27455	1			

## 24	-19.43225	1
## 25	-15.19947	1
## 26	NA	1
## 27	-21.98377	1
## 28	-21.14071	1
## 29	-14.24952	1
## 30	-16.71226	1
## 31	NA	1
## 32	-18.33326	1
## 33	-23.19098	1
## 34	-18.34882	1
## 35	-23.01048	1
## 36	-28.85378	1
## 37	-18.51903	1
## 38	NA	1
## 39	-40.62006	1
## 40	-18.81133	1
## 41	-17.86961	1
## 42	-15.20389	1
## 43	-20.30151	1
## 44	NA	1
## 45	-17.86275	1
## 46	NA	1
## 47	NA	1
## 48	NA	1
## 49	NA	1
## 50	-21.08342	1
## 51	-26.31069	1
## 52	-23.83044	1
## 53	-17.95244	1
## 54	-38.02428	1
## 55	-23.83634	1
## 56	NA	1
## 57	NA	1
## 58	-16.45282	1
## 59	NA	1
## 60	NA	1
## 61	NA	1
## 62	NA	1
## 63	-22.04827	1
## 64	-32.58157	1
## 65	-16.01542	1
## 66	-26.05099	1
## 67	-24.95459	1
## 68	-22.45173	1
## 69	NA	1
## 70	-23.95115	1
## 71	-18.48762	1
## 72	-14.36039	1
## 73	-33.62701	1
## 74	-26.50144	1
## 75	-18.31258	1
## 76	-19.89095	1
## 77	-21.73288	1

##	78	NA	1
##	79	-22.50985	1
##	80	NA	1
##	81	-28.04517	1
##	82	-15.80411	1
##	83	-24.49334	1
##	84	-28.11731	1
##	85	-20.34263	1
##	86	-21.81006	1
##	87	-24.03050	1
##	88	-22.98174	1
##	89	NA	1
##	90	-20.72534	1
##	91	-21.01581	1
##	92	-30.10670	1
##	93	NA	1
##	94	NA	1
##	95	-20.80813	1
##	96	-15.35170	1
##	97	NA	1
##	98	-16.70651	1
##	99	NA	1
##	100	-21.90470	1
##	101	-19.26611	1
##	102		1
##	103		1
##			1
##			1
##			1
##	107		1
##			1
##			1
##	110		1
##	111		1
##	112		1
##	113		1
##	114		1
##	115		1
##			1
##	117		1
##	118		1
##	119		1
##	120		1
##	121		1
##	122		1
##	123		1
##	124		1
##	125		1
##	126		1
##	127		1
##	128		1
##			1
##			1
##	131		1
##	131	21.01001	1

```
## 132 -16.13169
## 133
               NA
## 134 -22.47817
                              1
## 135 -23.62131
                              1
## 136 -17.86275
                              1
## 137 -17.18672
                              1
## 138 -22.93216
## 139 -16.67773
                              1
## 140 -19.14759
## 141 -35.99488
                              1
## 142 -28.90950
                              1
## 143 -23.09620
                              1
## 144 -18.88010
                              1
## 145
                              1
## 146 -20.23883
                              1
## 147
               NA
                              1
## 148 -21.70859
                              1
## 149 -21.63809
```

head(dat)

```
Snumber Date_Started
                                               Job shift gender Age height head
##
                                dept
## 1
           1
                  4/6/2005 Training
                                            Other
                                                     8am Female
                                                                  30
                                                                          66
## 2
            2
                                                     7am Female
                 4/10/2005 Training
                                            Other
                                                                  31
                                                                          65
                                                                                 0
## 3
            3
                 4/11/2005 Training
                                            Other
                                                     8am Female
                                                                          62
                                                                                 0
## 4
            4
                                                                          62
                                                                                 5
                 4/11/2005 Training
                                            Other
                                                     7am Female
                                                                  34
## 5
           5
                 4/11/2005
                                  CS
                                            Other
                                                     9am Female
                                                                  27
                                                                          65
                                                                                 0
           6
                                                                          74
## 6
                 4/14/2005
                                  CFS Collections
                                                    11am
                                                            Male
                                                                  21
                                                                                 0
##
     neck rshoul relbow rwrist lback rleg rknee rfoot eyes uback lshould
## 1
        5
                5
                        0
                               0
                                           0
                                                              3
## 2
        5
                0
                        0
                               0
                                           0
                                                  4
                                                        0
                                                              0
                                                                     0
                                                                             0
                                      4
## 3
        3
                3
                        0
                               3
                                           0
                                                        0
                                                              4
                                                                     3
                                                                             3
                        2
                                           0
## A
        5
                4
                               3
                                      0
                                                  2
                                                        1
                                                              4
                                                                     0
                                                                             0
## 5
                0
                        0
                               0
                                      1
                                           0
                                                                             0
                0
                        0
## 6
        0
                               1
                                           0
                                                  0
                                                        0
                                                                     0
                                                                             0
                                      1
                                                              1
     lelbow lwrist butt lleg lknee lfoot ddis ddiscomfort
                                                                   oftendis
## 1
          0
                  0
                        0
                             0
                                    0
                                          0
                                              NA
                                                      #VALUE! Occasionally
## 2
          0
                  0
                        0
                                    0
                                          0
                                              NA
                                                      #VALUE!
                                                                When Active
## 3
                  3
                        0
                                    0
                                             730
                                                           730
                                                                When Active
          0
                             0
                                          0
## 4
          0
                  1
                        0
                             0
                                    2
                                          1
                                             365
                                                           365 Occasionally
## 5
          0
                  0
                        0
                             0
                                    0
                                          0
                                              NA
                                                      #VALUE! Occasionally
## 6
           1
                  0
                        0
                             0
                                          0
                                             182
                                                           182 Occasionally
##
               discomorig
                                        workplace1
                                                           Job1
                                                                       tool
                                           Seating No Concern No Concern
## 1 Gradually over time
## 2 Gradually over time
                                           Reaches No Concern No Concern
                                                        Breaks
## 3 Gradually over time Adjustability; Seating
## 4 Gradually over time
                                        No Concern No Concern No Concern
                                                       Methods No Concern
## 5 Gradually over time
                                        No Concern
## 6 Gradually over time
                                        No Concern
                                                        Breaks No Concern
                                                                      environment
##
                           handling
## 1
                            Lifting
                                                                      Temperature
## 2 Carrying; Lifting; Push/Pull
                                            Temperature; Lighting; Ventilation
            Lifting; Lift Assists
                                            Ventilation; Lighting; Temperature
## 4
                 Carrying; Lifting
                                                              Temperature; Noise
```

```
## 5
                         No Concern
                                                                          Lighting
## 6
                         No Concern Noise; Temperature; Lighting; Ventilation
     fatigue5min fatigue2 fatigue4 fatigue6 fatigue8 fatigue10 fatigue12
## 1
                5
                          3
                                    3
                                              3
                                    2
## 2
                0
                          1
                                              5
                                                        5
                                                                  NA
                                                                             NA
## 3
                1
                          2
                                    3
                                              3
                                                        4
                                                                   0
                                                                              0
## 4
                          2
                                    0
                                              2
                                                        2
                                                                  NA
                                                                             NA
                0
                                              3
## 5
                          0
                                    0
                                                        1
                                                                   2
                                                                              4
## 6
                0
                          0
                                    0
                                              0
                                                        0
                                                                   0
                                                                              0
     Days_to_less_fatigue injury
                                                               injurypart
                       14.0
## 2
                       30.0
                                Yes
## 3
                       60.0
                                Yes Neck; Hand/wrist; Lower Back; Foot
## 4
                                Yes
                        1.5
                                                                     Neck
## 5
                                 No
                         NΑ
## 6
                         NA
                                 No
##
           plabor prevposition weightgain lbs_gained pounds_gained
## 1 Very little
                             No
                                         No
                                                      NA
                                                                #VALUE!
## 2
        Moderate
                             No
                                         No
                                                                #VALUE!
                                                      NΑ
## 3
        Moderate
                             No
                                         Yes
                                                      18
                                                                     18
                                                                #VALUE!
## 4
        Moderate
                             No
                                         Yes
                                                      NA
## 5 Very little
                             No
                                         Yes
                                                       6
## 6 Very little
                                                                #VALUE!
                             No
                                         No
                                                      NA
                weight_situation bweight exbreak expartic numstretch member
## 1
        I am AT my ideal weight
                                                                              Yes
                                       135
                                                Yes
                                                           No
                                                                      0.0
## 2 I am ABOVE my ideal weight
                                       135
                                                 No
                                                           No
                                                                      0.0
                                                                               No
## 3 I am ABOVE my ideal weight
                                       124
                                                Yes
                                                          Yes
                                                                      0.0
                                                                               No
## 4 I am ABOVE my ideal weight
                                        NA
                                                Yes
                                                          Yes
                                                                      0.0
                                                                               No
## 5 I am ABOVE my ideal weight
                                        151
                                                Yes
                                                          Yes
                                                                               No
                                                                       1.5
## 6 I am ABOVE my ideal weight
                                        280
                                                Yes
                                                          Yes
                                                                       2.0
                                                                               No
     daysVHW Veg_Serv fruit_servings fried_servings vigorous7 vigur vigoroust
## 1
          3.5
                    NA
                                     NA
                                                      NA
                                                                5.5
                                                                        NA
## 2
          0.0
                      2
                                      0
                                                       0
                                                                3.0
                                                                        NA
                                                                                   30
## 3
          0.0
                      3
                                      5
                                                       2
                                                                3.0
                                                                                   60
                                                                        NΑ
                      2
                                      2
## 4
          NA
                                                       0
                                                                3.0
                                                                        NA
                                                                                  NA
## 5
          0.0
                      2
                                      3
                                                       2
                                                                2.0
                                                                        NA
                                                                                   20
## 6
          0.0
                      0
                                      0
                                                       0
                                                                3.0
                                                                        NA
                                                                                  120
##
     vigtur moderate7 modur moderatet modtur walk7 walkur walkt walktur
## 1
          NA
                      0
                           NA
                                       0
                                              NA
                                                      0
                                                             NA
                                                                    0
## 2
          NA
                      Λ
                           NA
                                       0
                                              NA
                                                      3
                                                             NA
                                                                   60
                                                                            NA
## 3
                           NA
                                      40
                                              NA
                                                                   20
                                                                            NA
          NA
                                                             NA
## 4
          8
                      7
                           NΑ
                                      NA
                                               8
                                                      3
                                                            NA
                                                                   NA
                                                                             8
## 5
                      0
          NA
                           NA
                                       0
                                              NA
                                                      0
                                                             NA
                                                                            NA
## 6
                      3
                                      60
                                                      7
                                                             NA
                                                                   90
          NA
                           NA
                                              NA
                                                                            NA
     sitt7t situr Field66
                              BMI Total_ex_time Total_Ex_Time_Exclude
## 1
                 8
                          1 21.79
                                              330
         NA
                          2 22.46
## 2
        300
                NA
                                              270
                                                                        NA
## 3
                          3 22.68
                                                                        NA
        600
                NA
                                              440
## 4
        240
                NΑ
                               NA
                                              104
                                                                        NA
                          5 25.12
## 5
        540
                NA
                                               40
                                                                        NA
## 6
        600
                          6 35.95
                                               NA
                NA
     Vig.ex.Time Mod.ex.time Walk.ex.Time Total_Met_Min Total_Exclude_Met
## 1
              330
                             0
                                            0
                                                        2640
## 2
               90
                             0
                                          180
                                                        1314
                                                                              NA
```

```
## 4
               24
                                          24
                            56
                                                                            NA
## 5
               40
                                                        320
                             0
                                           0
                                                                            NA
## 6
              360
                           180
                                         630
                                                                          5679
dat1$gender <- factor(dat1$gender)</pre>
dat1$shift <- factor(dat1$shift)</pre>
mod1 <- glm(weightgain.b ~ shift + gender + Age + height + Beg_BMI + Total_Met_Min, family = binomial,n</pre>
## Warning: glm.fit: algorithm did not converge
##qq plot
qqnorm(residuals(mod1))
```

2410

NA

3

180

160

100

Normal Q-Q Plot


```
##Outliers: no obvious outliers
library(faraway)

## Warning: package 'faraway' was built under R version 3.6.3
halfnorm(residuals(mod1))
```



```
## test if shift should be removed from the model
mod0 <- glm(weightgain.b ~ gender + Age + height + Beg_BMI + Total_Met_Min, family = binomial,na.omit(d</pre>
## Warning: glm.fit: algorithm did not converge
summary(mod1)
##
   glm(formula = weightgain.b \sim shift + gender + Age + height +
       Beg_BMI + Total_Met_Min, family = binomial, data = na.omit(dat1))
##
##
## Deviance Residuals:
##
         Min
                      1Q
                             Median
                                                       Max
## 2.409e-06 2.409e-06 2.409e-06 2.409e-06 2.409e-06
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
                  2.657e+01
                             9.919e+05
                                              0
## (Intercept)
                                                        1
## shift10am
                 -4.695e-06
                              2.728e+05
                                              0
                                                        1
## shift11am
                 -2.580e-06
                              2.789e+05
                                              0
                                                        1
## shift12pm
                  1.584e-07
                              2.974e+05
                                              0
                                                        1
                                              0
                                                        1
## shift1pm
                 -8.091e-07
                              3.662e+05
## shift2pm
                 -2.699e-06 3.245e+05
                                              0
                                                        1
```

0

1

-5.463e-06 2.889e+05

shift7am

```
## shift8am
                -1.577e-06 2.691e+05
                                                     1
## shift9am
                -1.728e-06 2.820e+05
                                            0
                                                     1
## shiftother
                -5.322e-07 3.117e+05
                                            0
## genderFemale -9.812e-08 3.916e+05
                                            0
                                                     1
## genderMale
                9.053e-07 4.036e+05
                                            0
                                                     1
                                            0
## Age
                -1.096e-06 1.174e+05
                                                     1
## height
                -1.187e-07 1.186e+04
                                            0
                                                     1
                -1.285e-07 6.968e+03
## Beg_BMI
                                            0
                                                     1
## Total_Met_Min -1.341e-10 7.348e+02
                                            0
                                                     1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 0.0000e+00 on 111 degrees of freedom
## Residual deviance: 6.4978e-10 on 96 degrees of freedom
## AIC: 32
##
## Number of Fisher Scoring iterations: 25
summary(mod0)
##
## Call:
## glm(formula = weightgain.b ~ gender + Age + height + Beg_BMI +
      Total_Met_Min, family = binomial, data = na.omit(dat1))
##
##
## Deviance Residuals:
        Min
                           Median
                                          30
                    1Q
## 2.409e-06 2.409e-06 2.409e-06 2.409e-06
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.657e+01 9.572e+05
## genderFemale -1.074e-08 3.593e+05
                                            0
                                            0
## genderMale -8.714e-09 3.693e+05
                                                     1
                                            0
## Age
                 3.807e-09 1.138e+05
                                                     1
                -3.932e-11 1.167e+04
                                            0
## height
                                                     1
## Beg_BMI
                1.322e-10 6.518e+03
                                            0
                                                     1
                                            0
## Total_Met_Min -2.871e-11 6.991e+02
                                                     1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 0.0000e+00 on 111 degrees of freedom
## Residual deviance: 6.4978e-10 on 105 degrees of freedom
## AIC: 14
##
## Number of Fisher Scoring iterations: 25
anova(mod0, mod1, test = "Chi")
## Analysis of Deviance Table
##
## Model 1: weightgain.b ~ gender + Age + height + Beg_BMI + Total_Met_Min
## Model 2: weightgain.b ~ shift + gender + Age + height + Beg_BMI + Total_Met_Min
```

```
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 105 6.4978e-10
## 2 96 6.4978e-10 9 0 1
```

##do not reject the null hypothesis that the reduced model is better(the model includes shift is less d

Solely from the model, we can see that only three variables have significant impact on the predictor: gender, Beg_BMI and Total_Met_Min. We perform a Chi-squure test to test if the model contains shift is better than the model without shifts. The null hypothesis is that the model without shift is a better model, and the alternative hypothesis is that the model without shift is not a better model. In order to compare two models, we omit the NA values in the dataset to make sure the number of cases used in each model is the same. The test statistic is is very large given a 95% confidence interval, therefore we fail to reject the null hypothesis that the reduced model is better, which means that the model contains shift is less favorable than the reduced model. The test result is shown below:

Analysis of Deviance Table

Model 1: weightgain.b ~ gender + Age + height + Beg_BMI + Total_Met_Min Model 2: weightgain.b ~ shift + gender + Age + height + Beg_BMI + Total_Met_Min Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 202 236.06

 $2\ 194\ 228.44\ 8\ 7.6207\ 0.4714$

Since the initial model shows that Total_Met_Min is a significant variable, we performed another analysis, using a forward stepwise selection to select the model with the most appropriate variables that produces the lowest AIC. The selected variables are exactly the same as our previous analysis, which are gender, Beg_BMI and Total_Met_Min, which reassures that total metabolic minutes do have an effect on weight gain and shift does not have an effect on weightgain. The results are shown below:

Call: $glm(formula = weightgain.b \sim gender + Beg_BMI + Total_Met_Min, family = binomial, data = na.omit(dat1))$

Coefficients: (Intercept) gender Male Beg_BMI Total_Met_Min 3.0281421 -0.7079166 -0.0615582 -0.0001601

Degrees of Freedom: 207 Total (i.e. Null); 204 Residual Null Deviance: 251.7 Residual Deviance: 237.4 AIC: 245.4

```
## Using stepwise to select the best model
mod00 <- glm(weightgain.b ~ 1, family = binomial,na.omit(dat1))
## Warning: glm.fit: algorithm did not converge</pre>
```

```
## Warning: glm.fit: algorithm did not converge
```

```
## Warning: glm.fit: algorithm did not converge
m.sw1$anova
     Step Df Deviance Resid. Df
                                   Resid. Dev AIC
          NA
                             111 6.497771e-10
## 1
                   NA
m.sw1
##
## Call: glm(formula = weightgain.b ~ 1, family = binomial, data = na.omit(dat1))
##
## Coefficients:
  (Intercept)
##
         26.57
##
## Degrees of Freedom: 111 Total (i.e. Null); 111 Residual
## Null Deviance:
## Residual Deviance: 6.498e-10
                                     AIC: 2
```

The selected model with the lowest AIC contains only three variables: gender, BMI and Total_Met_Min,

The Relationship Between Total Metabolic Minutes and Weight Gain

Using various methods of analysis, we found that total metabolic minutes is a significant variable. The initial model demonstrated that there is a negative relationship between total metabolic minutes and weight gain, and this was corroborated by the subsequent forward stepwise model.

The Relationship Between Shift Time and Weight Gain

Warning: glm.fit: algorithm did not converge

It does not appear that shift has significant impact on weight gain. From the Chi-square test, we found that the model without shift performs better than the model with shift. As mentioned, we failed to reject the null hypothesis that the reduced model is better, so we do not find it beneficial to include shift in our final model to predict weight gain.

Conclusion

Our initial goal was to see whether shift and total metabolic minutes have an impact on weight gain. Multiple forms of analysis indicate that shift is not a relevant factor in determining weight gain, while total metabolic minutes is. Total metabolic minutes has a slightly adverse relationship to weight gain. We conducted further analysis to go beyond the requested covariate relationships. For a final model selection, gender, Beg_BMI, and Total_Met_Min appear to be the most significant and useful predictors of weight gain.