Chapter 9: Countability

CS1231 Discrete Structures

Wong Tin Lok

National University of Singapore

2022/23 Semester 2

The following are advantages of digital representation of numerical values compared to analog representation:

- 1. Digital representation is more accurate.
- 2. Digital information are easier to store.
- 3. Digital systems are easier to design.
- 4. Noise has less effect.
- 5. Digital systems can easily be fabricated in an integrated circuit.

Elahi (2019)

Plan

- ightharpoonup countable sets ightharpoonup sets whose sizes (digital) computers can handle
- countability
- uncountable sets
- non-computability

Countability

Definition 9.1.1 (Cantor)

A set is *countable* if it is finite or it has the same cardinality as \mathbb{N} .

Note 9.1.2

Some authors allow only infinite sets to be countable.

Example 9.1.3

- (1) \mathbb{N} is countable by Proposition 8.2.4(1).

Bi-infinite sequence

Proposition 9.1.4

 \mathbb{Z} is countable.

Proof sketch

Let $f: \mathbb{N} \to \mathbb{Z}$ such that $f(0), f(1), f(2), f(3), f(4), f(5), \ldots$ are respectively

$$0, +1, -1, +2, -2, +3, -3, +4, -4, +5, -5, +6, -6, \dots$$
 (*)

 \mathbb{N} •

- ▶ f is surjective because every element of \mathbb{Z} appears in (*) at some position $n \in \mathbb{N}$.
- ightharpoonup f is injective because numbers in different positions of (*) are different.

So f is a bijection. This shows \mathbb{Z} is countable.

A bijection $f: \mathbb{Z} \to \mathbb{N}$

For each $x \in \mathbb{Z}$, set

$$f(x) = \begin{cases} 2x, & \text{if } x \ge 0; \\ 2(-x-1)+1, & \text{if } x < 0. \end{cases}$$

This definition indeed assigns to each element $x \in \mathbb{Z}$ an element $f(x) \in \mathbb{N}$ because if $x \ge 0$, then $2x \ge 0$ as well; and if x < 0, then $x \le -1$ as $x \in \mathbb{Z}$, and so

 $2(-x-1)+1 \ge 2(-(-1)-1)+1=1>0$. It suffices to show that f is bijective. To show surjectivity, pick any $y \in \mathbb{N}$. Note that y is either even or odd. If y is even, say y=2x where $x \in \mathbb{Z}$, then $x=y/2 \ge 0$, and so f(x)=2x=y. If y is odd, say

$$y = 2x + 1$$
 where $x \in \mathbb{Z}$, then

$$x+1=rac{y-1}{2}+1\geqslantrac{0-1}{2}+1=rac{1}{2}>0,$$
 and so $f(-x-1)=2(-(-x-1)-1)+1=2x+1=y.$ Thus some $x\in\mathbb{Z}$ makes $f(x)=y$ in all cases.

To show injectivity, pick $x_1, x_2 \in \mathbb{Z}$ such that $f(x_1) = f(x_2)$. If $f(x_1)$ is even, then $f(x_1) = 2x_1$ and $f(x_2) = 2x_2$ because no integer is both even and odd, and so $x_1 = x_2$. If $f(x_1)$ is odd, then $f(x_1) = 2(-x_1 - 1) + 1$ and $f(x_2) = 2(-x_2 - 1) + 1$ for a similar reason, and so $x_1 = x_2$. Thus $x_1 = x_2$ in all cases.

Semi-infinite grid

Theorem 9.1.5 (Cantor 1877)

 $\mathbb{N} \times \mathbb{N}$ is countable.

Proof sketch

The function $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ such that $f(0), f(1), f(2), \ldots$ are respectively

$$(0,0), (1,0), (0,1),$$

 $(2,0), (1,1), (0,2),$
 $(3,0), (2,1), (1,2), (0,3), \dots$

following the arrows in the right diagram is a bijection. This shows $\mathbb{N} \times \mathbb{N}$ is countable.

Strings of finite lengths

Proposition 9.1.6

 $\{0,1\}^*$ is countable.

1 0 ... 1

Proof sketch

Let $f: \mathbb{N} \to \{0,1\}^*$ such that $f(0), f(1), f(2), \ldots$ are respectively

Then f is a bijection. This shows $\{0,1\}^*$ is countable.

Guess: which of the following sets is/are countable?

countable means computer programs can run countable

- (1) \mathbb{Z}
- countable fractions can be represented as (x,y)
- \mathbb{R} not countable
- not countable
- (5) the set of all finite sets of integers countable e.g. arrays
- (6) the set of all strings over {0, 1}
- (7) the set of all infinite sequences over $\{0,1\}$ not countable
- (8) the set of all functions $A \to B$ where A, B are finite sets of integers
- (9) the set of all computer programs countable

Lemma 9.2.1

Let A and B be sets of the same cardinality. Then A is countable if and only if B is countable.

countable

Not all of these are within the scope of this module.

Countable infinity is the smallest infinity

Proposition 9.2.4

Every infinite set B has a countable infinite subset.

Proof sketch

Run the following procedure.

- 1. Initialize i = 0.
- 2. While $B \setminus \{g_1, g_2, \dots, g_i\} \neq \emptyset$ do:
 - 2.1. Pick any $g_{i+1} \in B \setminus \{g_1, g_2, \dots, g_i\}$.
 - 2.2. Increment i to i + 1.

This procedure cannot stop because otherwise $B = \{g_1, g_2, \dots, g_\ell\}$ for some $\ell \in \mathbb{N}$, and so it is not infinite.

Define $A = \{g_i : i \in \mathbb{Z}^+\}$, and $g : \mathbb{N} \to A$ by setting $g(i) = g_{i+1}$ for each $i \in \mathbb{N}$. As g is a bijection $\mathbb{N} \to A$, we deduce that A is countable.

Example 9.2.5

Knowing that $\mathbb{R} \setminus \mathbb{Q}$ is infinite tells us $\mathbb{R} \setminus \mathbb{Q}$ has a countable infinite subset.

Countable cardinalities are the smallest cardinalities

Proposition 9.2.6

- (1) Any subset A of a finite set B is finite.
- (2) Any subset A of a countable set B is countable.

Proof sketch of (2) when B is infinite

As B is countable and infinite, there is a bijection $\mathbb{N} \to B$, say f. Run the following procedure.

- Initialize i = 0.
- 2. While $A \setminus \{g_1, g_2, \dots, g_i\} \neq \emptyset$ do:
 - 2.1. Let m_{i+1} be the smallest element in $\{m \in \mathbb{N} : f(m) \in A \setminus \{g_1, g_2, \dots, g_i\}\}$.
 - 2.2. Set $g_{i+1} = f(m_{i+1})$.

2.3. Increment i to i+1.

Then the function mapping each i to g_i is a bijection $\mathbb{Z}^+ \to A$ or $\{1, 2, \dots, \ell\} \to A$ for some $\ell \in \mathbb{N}$. This shows A is countable. the procedure does not stop

countable

the procedure stops

Injecting an uncountable set into another set

Corollary 9.2.7

- (1) A set B is infinite if there is an injection f from some infinite set A to B.
- (2) A set B is uncountable if there is an injection f from some uncountable set A to B.

9c

Proof of (2)

As f is an injection $A \to B$, Exercise 8.2.5 implies that A has the same cardinality as range(f). Since A is uncountable, Lemma 9.2.1 tells us range(f) is also uncountable. Hence B is uncountable by Proposition 9.2.6(2) because range $(f) \subseteq B$.

There are countably many programs

https://tex. stackexchange. com/a/360109

Example 9.2.8

The set of all programs is countable.

Proof

- ightharpoonup Every program is stored in a computer as a string over $\{0,1\}$.
- ▶ So the set of all programs is a subset of the set $\{0,1\}^*$ of all strings over $\{0,1\}$, which we know is countable from Proposition 9.1.6.
- ▶ So Proposition 9.2.6(2) tells us that the set of all programs is countable.

A powerful set operation

Theorem 9.3.1 (when $A = \mathbb{N}$, Cantor 1891)

 \mathbb{N} does not have the same cardinality as $\mathcal{P}(\mathbb{N})$.

Proof

Let $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$. Define $R = \{x \in \mathbb{N} : x \notin f(x)\}$.

Suppose we have $a \in \mathbb{N}$ such that R = f(a). From the definition of R, we know

$$\forall x \in \mathbb{N} \ (x \in R \quad \Leftrightarrow \quad x \notin f(x)). \tag{*}$$

As R = f(a), applying (*) to x = a gives

$$a \in f(a) \Leftrightarrow a \notin f(a).$$

This is a contradiction.

Hence $R \in \mathcal{P}(\mathbb{N})$ such that $R \neq f(x)$ for any $x \in \mathbb{N}$. This shows f is not surjective. \square

Exercise

Imitate this proof to show that no set A has the same cardinality as $\mathcal{P}(A)$.

An uncountable set

Corollary 9.3.2 (when $A = \mathbb{N}$)

 $\mathcal{P}(\mathbb{N})$ is uncountable.

Proof

According to the definition of countability, we need to show that $\mathcal{P}(\mathbb{N})$ is infinite, and that $\mathcal{P}(\mathbb{N})$ does not have the same cardinality as \mathbb{N} . We already have the latter from Theorem 9.3.1. For the former, we proceed as follows.

- ▶ Let $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ defined by setting $f(n) = \{n\}$ for each $n \in \mathbb{N}$.
- ▶ Then f is injective because if $n_1, n_2 \in \mathbb{N}$ such that $f(n_1) = f(n_2)$, then $\{n_1\} = \{n_2\}$, and thus $n_1 = n_2$ by the definition of set equality.
- ightharpoonup Recall that $\mathbb N$ is infinite from Exercise 8.2.7.
- ▶ So Corollary 9.2.7(1) tells us $\mathcal{P}(\mathbb{N})$ is infinite too, as required.

Exercise

Imitate this proof to show that $\mathcal{P}(A)$ is uncountable for all countable infinite sets A.

Noncomputable sets
Corollary 9.4.2

Assumption 9.4.1. Our programs have no time and memory limitation.

There is a subset S of \mathbb{N} that is not computed by any program, \leftarrow countably many i.e., no program can, when given any input $n \in \mathbb{N}$,

output T if $n \in S$ and output F if $n \notin S$.

Proof

- lacksquare Suppose that every subset $S\subseteq\mathbb{N}$ is computed by a program.
- ▶ For each $S \in \mathcal{P}(\mathbb{N})$, let f(S) be the smallest program that computes S.
- ▶ This defines a function $f: \mathcal{P}(\mathbb{N}) \to \{0,1\}^*$, because each program has a unique representation by an element of $\{0,1\}^*$ within a computer.
- ▶ This function f is injective because if $S_1, S_2 \in \mathcal{P}(\mathbb{N})$ such that $f(S_1) = f(S_2)$, then S_1 and S_2 are computed by the same program, and thus $S_1 = S_2$.
- ▶ Recall from Corollary 9.3.2 that $\mathcal{P}(\mathbb{N})$ is uncountable.
- ▶ So Corollary 9.2.7(2) implies $\{0,1\}^*$ is uncountable as well.
- ▶ This contradicts the countability of $\{0,1\}^*$ from Proposition 9.1.6.

The Halting Problem

Theorem 9.4.3 (Turing 1936)

There is no program that computes

 $H = \{ \sigma \in \{0,1\}^* : \sigma \text{ is a program that does not stop on the empty input} \},$ i.e., no program can, when given any input $\sigma \in \{0,1\}^*$,

output T if $\sigma \in H$ and output F if $\sigma \notin H$.

Proof

Suppose not. Use a program that computes H to devise a program R satisfying

$$\forall \sigma \in \{0,1\}^* \ \left(R \text{ stops on input } \sigma \quad \Leftrightarrow \quad \frac{\sigma \text{ is a program that does}}{\text{not stop on input } \sigma} \right).$$

Applying (*) to $\sigma = R$ gives

$$R$$
 stops on input R \Leftrightarrow R is a program that does not stop on input R .

We have a contradiction.

Ш

(*)

Summary

- Definition 9.1.1 A set is *countable* if it is finite or it has the same cardinality as \mathbb{N} .
- Proposition 9.2.4 Every infinite set has a countable infinite subset.
- Proposition 9.2.6(2) Any subset of a countable set is countable.
- Corollary 9.2.7(2) A set B is uncountable if there is an injection from some uncountable set to B.
- Examples of countable sets: finite sets, \mathbb{N} , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, $\{0,1\}^*$, the set of all computer programs
- Corollary 9.3.2 $\mathcal{P}(\mathbb{N})$ is uncountable.
- Corollary 9.4.2 There is a subset of \mathbb{N} that is not computed by any program.