Measurement of differential $t\bar{t}$ production cross sections for high- p_T top quarks in proton-proton collisions at $\sqrt{s}=13$ TeV

I+jets channel

Please see hadronic slides for analysis overview and documentation

TOP-18-013: I+jets Channel Overview

- Measurement of differential $t\bar{t}$ cross section in I+jets channel for $p_T(top) > 400$ GeV
 - p_T(top), |y|(top) distributions
 - Particle and parton level
 - Full 2016 dataset, 35.9 fb-1
- Final state: lepton + b jet + t jet + MET
- Characterize events by whether b and t jet candidates pass tagging requirements
- Perform simultaneous likelihood fit to extract background normalizations, t tagging SF
- Unfold background-subtracted data distribution to parton and particle levels

Note:

Plots / tables for paper NEW since preapproval

Event Selection

- ==1 μ (e) passing Medium(Tight) ID
 - $p_T > 50 \text{ GeV}$, $|\eta| < 2.1$, minilso* < 0.1

- *Summed track p_T divided by lepton p_T, for tracks in a cone around the lepton whose radius scales inversely with lepton p_T
- Veto additional leptons (Medium ID, no minilso requirement)
- In e channel, require $|\Delta\phi(e/j,E_T^{miss})-1.5|<1.5*\frac{E_T^{miss}}{110~{
 m GeV}}$ for e or leading jet
- ≥1 b jet candidate
 - AK4 (anti-kt, R=0.4) jet with $p_T > 50$ GeV, $|\eta| < 2.4$
 - $0.3 < \Delta R(\ell, jet) < \pi/2$
- ≥1 t jet candidate
 - AK8 (anti-kt, R=0.8) jet with $p_T > 400$ GeV, $|\eta| < 2.4$
 - $\Delta R(\ell, jet) > \pi/2$
- $E_T^{miss} > 35(50) \text{ GeV for } \mu(e) \text{ channel}$

μ trigger:

HLT_Mu40_eta2p1_ PFJet200 PFJet50

e trigger:

HLT_Ele45_CaloIdVT _GsfTrkIdT_PFJet200 _PFJet50

Kinematic Regions

- Classify events based on whether b and t jet candidates pass tagging requirements
- b tag
 - CSVv2 < 0.8484 (Medium WP)
- t tag
 - 105 < SoftDrop jet mass < 220 GeV
 - N-subjettiness ratio $\tau_{32} < 0.81$

- Ot: t jet candidate fails t tag
- 1t0b: t jet candidate passes t tag, b jet candidate fails b tag
- 1t1b: t and b jet candidates both pass tag

Samples / Backgrounds

- TTbar
 - Powheg sample with tune CUETP8M2T4; used for semileptonic (signal) and non-semileptonic
- MC modeled backgrounds
 - Single top (Powheg for tW- and t-channel, aMC@NLO for s-channel)
 - W+Jets (MadGraph): binned in H_T to increase statistics; split into W+light and W+heavy flavor
 - Z+Jets (MadGraph)
 - Diboson (Powheg): WW, WZ, ZZ
 - QCD (MadGraph): used to cross-check data-driven estimate; binned in H_T to increase statistics
- Data-driven QCD
 - Shape from QCD-dominated data sideband

All MC samples interfaced with Pythia8

Final background normalizations extracted from kinematic fit

Correction Factors

- PU reweighting
- Lepton efficiencies
 - Trigger custom T&P in dileptonic boosted $t\overline{t}$ sample
 - ID μ from POG; e from SUS PAG
 - Isolation μ assessed to be ~1; e from SUS PAG
- Jet energy corrections
 - Summer16_23Sep2016V3
- Jet energy resolution
- b tagging SF
- t tagging SF
 - Correlated with cross section, extracted from simultaneous fit

Standard POGapproved values used

QCD Estimation

- Define QCD dominated data sideband
 - 0.1 < minilso < 0.2; Medium electron ID
- Subtract expected non-QCD contributions
 - 28(33)% contamination in μ(e) channel
- Compare QCD shape in data sideband against QCD MC in data sideband and signal region
 - Generally good agreement
 - Largest deviations are in electron p_T and η

S. Dittmer

Expected and Observed Event Counts

Campla	Number of events (<i>µ</i> +jets channel)			
Sample	Preselection	Ot	1t0b	1t1b
tī (signal)	26491 ± 102	17290 ± 118	4819 ± 72	4382 ± 41
tī (non-semilep)	4748 ± 43	4145 ± 46	318 ± 19	285 ± 10
Single top	3257 ± 16	2871 ± 17	249 ± 6	137 ± 3
W+jets	30861 ± 43	27155 ± 46	3566 ± 15	139 ± 3
Z+jets	3070 ± 122	2726 ± 128	318 ± 42	26 ± 11
Diboson	595 ± 19	552 ± 19	40 ± 5	3 ± 1
QCD	2992 ± 72	2741 ± 69	197 ± 20	53 ± 8
Total	72014 ± 186	57481 ± 200	9508 ± 90	5025 ± 45
Data	60672	49137	7348	4187
MC / Data excess	19%	17%	29%	20%

Cample	Number of events (e+jets channel)			
Sample	Preselection	Ot	1t0b	1t1b
tī (signal)	16492 ± 80	10417 ± 93	3168 ± 59	2907 ± 33
tt̄ (non-semilep)	3475 ± 37	3036 ± 39	249 ± 16	190 ± 8
Single top	2203 ± 13	1944 ± 14	165 ± 5	93 ± 3
W+jets	18306 ± 36	16083 ± 37	2143 ± 12	80 ± 2
Z+jets	1259 ± 77	1075 ± 83	167 ± 31	16 ± 9
Diboson	391 ± 15	361 ± 16	27 ± 4	2 ± 1
QCD	2630 ± 112	2345 ± 103	263 ± 45	22 ± 7
Total	44755 ± 167	35261 ± 172	6183 ± 83	3312 ± 36
Data	39313	31559	4801	2953
MC / Data excess	14%	12%	29%	12%

Prefit Kinematic Distributions

S. Dittmer

TOP-18-013 approval, TOP PAG meeting, 10.12.19

Simultaneous Likelihood Fit

Use tagging status to define kinematic regions

- Perform simultaneous kinematic fit in 3 regions to simultaneously extract t tag SF, background normalizations
 - Systematic uncertainties enter as nuisance parameters
 - Using Higgs Combine package

Fit templates:

0t — AK4 jet η
1t0b — AK4 jet η
1t1b — AK8 jet SD mass

Best signal/background discrimination, QCD well-modeled, uncorrelated w/ AK8 jet p_T

Systematic Uncertainties — Experimental

- Correction factor uncertainties provided by respective POGs
 - Lepton ID / iso / trigger SFs, JEC, JER, b tag SF
- Uncertainties to be constrained by fit given conservative a priori values
 - t tag SF: 25% uncertainty
 - Separate SFs for t tag ($t\bar{t}$, single top) and t mistag
 - Background normalizations: 50(30)% for QCD(other backgrounds)
 - Separate normalizations for e and µ channel QCD
 - Separate normalizations for W+light and W+heavy flavor
- Lumi, pileup uncertainties not included in fit

Systematic Uncertainties — Theoretical

- PDF: standard deviation of 100 NNPDF3.0 MC replicas
- Renormalization and factorization scales (μR/μF): envelope of separately scaling μR, μF by 0.5, 2.0 (excluding anticorrelated variations)
- Initial and final state radiation (ISR, FSR): α_S for ISR(FSR) varied by factor of 2(√2)
- Matrix element to parton shower (ME-PS) matching: resummation damping factor h_{damp} varied by ±1σ
- Color reconnection: variant sample generated with color reconnection model (MPI-based + QCD-inspired + gluon move) applied
- Underlying event: tune CUETP8M2T4 parameters varied by ±1σ

Theoretical uncertainties not included in fit

Fit Results: Nuisances

$$r = 0.81 \pm 0.05$$

t (mis)tag uncertainties constrained from conservative a priori value Posterior nuisances generally agree with a priori Expected anticorrelation between t tag and t mistag, W+LF and W+HF

Fit Results: t tag SF

- Nominal t tag SF extracted in fit is inclusive
- p_T and |η| dependence of t tag SF assessed by fitting in two bins of t jet p_T or |η|
 - $p_T < (>) 500 \text{ GeV}; |\eta| < (>) 1.0$
 - Fit performed simultaneously in both bins, with all nuisances besides t tag SF fully correlated
- Difference between inclusive and binned t tag SF interpreted as shape uncertainty

Posterior nuisance parameters

	Top-tag SF	Top-mis-tag SF
Inclusive	0.18 ± 0.25	-1.06 ± 0.34
Top jet $p_T < 500 \text{ GeV}$	0.09 ± 0.24	-1.00 ± 0.37
Top jet $p_T > 500 \text{ GeV}$	-0.14 ± 0.26	-0.53 ± 0.39
Top jet $ \eta < 1.0$	0.20 ± 0.26	-1.21 ± 0.35
Top jet $ \eta > 1.0$	0.06 ± 0.27	-0.94 ± 0.39

Posterior SFs

t tag*:
$$1.04 \pm 0.06$$
 (fit) $\pm 0.01-0.08$ (shape)

t mistag:
$$0.79 \pm 0.06$$
 (fit)
 $\pm 0.01-0.10$ (shape)

^{*}compare against 1.06 +0.09/-0.04 (JME POG)

Postfit Event Counts

Pa	per
----	-----

			i apci	
Process	Number of events (μ +jets channel)			
Process	Ot	1t0b	1t1b	
tt	16772 ± 1438	4245 ± 174	3905 ± 80	
Single t	3286 ± 587	282 ± 68	153 ± 34	
W+jets	23104 ± 2871	2368 ± 318	105 ± 20	
Z+jets	2582 ± 680	234 ± 69	19 ± 10	
Diboson	557 ± 155	31 ± 10	2 ± 1	
Multijet	2833 ± 1207	159 ± 76	43 ± 22	
Total	49135 ± 3549	7320 ± 383	4228 ± 93	
Data	49137	7348	4187	

Process	Number of events (e+jets channel)			
	Ot	1t0b	1t1b	
tt /	10707 ± 938	2835 ± 116	2670 ± 66	
Single t	2267 ± 403	191 ± 47	107 ± 24	
W+jets	13945 ± 1742	1445 ± 194	62 ± 12	
Z+jets	1068 ± 295	118 ± 37	17 ± 15	
Diboson	373 ± 105	22 ± 7	2 ± 1	
Multijet	3200 ± 735	242 ± 80	31 ± 30	
Total	31560 ± 2171	4854 ± 247	2889 ± 79	
Data	31559	4801	2953	
		·		

Postfit Kinematic Distributions

S. Dittmer

TOP-18-013 approval, TOP PAG meeting, 10.12.19

Postfit Kinematic Distributions (cont.)

S. Dittmer

TOP-18-013 approval, TOP PAG meeting, 10.12.19

Unfolding

- Unfold measured p_T(top), |y|(top) distributions to give cross section at particle and parton level
 - Measured distribution: background-subtracted data in 1t1b signal region
- Unfolding method: TUnfold
 - Regularized matrix inversion
- Unfolding performed without regularization
 - Best performance, determined by measuring bias and uncertainty in MC closure tests
- Dedicated high-mass TTbar samples (700 < m($t\bar{t}$) < 1000, m($t\bar{t}$) > 1000 GeV) used to improve response matrix statistics

Parton and Particle Level Phase Spaces

Parton level

- Selection: semileptonic $t\bar{t}$, top quark $p_T > 400 \text{ GeV}$
 - ==1 μ/e (isPromptFinalState, or isDirectPromptTauDecayProductFinalState from isPromptDecayed τ)
- Top quark: isLastCopy top quark (after FSR) with sign opposite the lepton

Particle level

- Selection
 - \geq 1 particle-level AK8 jet with p_T > 400 GeV, $|\eta|$ < 2.4, and 105 < m_{jet} < 220 GeV
 - ≥ 1 particle-level AK4 jet with $p_T > 50$ GeV, $|\eta| < 2.4$ originating from a b quark
 - ==1 μ /e with $p_T > 50$ GeV, $|\eta| < 2.1$
- Top jet: leading particle-level AK8 jet

Response Matrices: pt

parton level

particle level

Response Matrices: |y|

parton level

particle level

Unfolded data — parton level p_T

Theory somewhat overpredicts data for all models, but describes p_T shape well

aMC@NLO has best agreement

Unfolded data — particle level p_T

Smaller uncertainty on measurement than at parton level

Theory somewhat overpredicts data for all models, but describes p_T shape well

aMC@NLO has best agreement

Unfolded Data — Uncertainties for pt

Parton shower dominant uncertainty at both parton and particle level Stat uncertainty dominant at high p_T ; systematics dominant at low p_T

Unfolded data — parton level |y|

Theory somewhat overpredicts data for all models

aMC@NLO predicts slightly more central distribution than Powheg; data favors aMC@NLO

Unfolded data — particle level |y|

Theory somewhat overpredicts data for all models; less so for aMC@NLO than Powheg

All models predict slightly more forward distribution than data

Unfolded Data — Uncertainties for |y|

Parton shower dominant uncertainty at both parton and particle level Stat uncertainty dominant only at very high |y|; systematics dominant at low |y|

Correlation Matrices

Summary

- Presented measurement of boosted differential $t\bar{t}$ cross section in I+jets channel
 - Particle and parton levels
 - p_T(top) and |y|(top), absolute and normalized
 - Compared to predictions from Powheg+Pythia8, Powheg+Herwig++, and aMC@NLO+Pythia8
- All models overpredict the absolute cross section (~20%)
- Differential distributions generally well described —> change from previous measurements
- We see the approval of TOP-18-013

BACKUP

Closure Tests — Parton Level p_T

Unfold half sample with half sample

Include systematic uncertainties

Average bias, stat. unc., and total unc. for 1000 toys

TOP-18-013 approval, TOP PAG meeting, 10.12.19

Closure Tests — Particle Level pt

Unfold half sample with half sample

Include systematic uncertainties

Average bias, stat. unc., and total unc. for 1000 toys

S. Dittmer

TOP-18-013 approval, TOP PAG meeting, 10.12.19

Closure Tests — Parton Level |y|

Unfold half sample with half sample

Include systematic uncertainties

Average bias, stat. unc., and total unc. for 1000 toys

Closure Tests — Particle Level |y|

Unfold half sample with half sample

Include systematic uncertainties

Average bias, stat. unc., and total unc. for 1000 toys

TOP-18-013 approval, TOP PAG meeting, 10.12.19