Nonlinear modeling: Case study: river discharge Introduction to Statistical Modelling

Prof. Joris Vankerschaver

Model overview

Setting

Streeter-Phelps model

Use water pollution as water quality monitoring tool. Describes how dissolved oxygen decreases in a river along a certain distance by degradation of biological oxygen demand.

- Aerobic bacteria gradually remove organic pollution downstream of pollution source
- Reactions
 - Aerobic removal of biochemical oxygen demand
 - Oxygen transfer between atmosphere and water
- Assumption: plug-flow stream
- Simple dynamical model (nonlinear)

Setting

Typical values for rivers

- Biochemical oxygen demand (BOD)
 - Not polluted: BOD < 1mg/l
 - Mildly polluted: 2mg/I < BOD < 8mg/I
- Dissolved oxygen (DO)
 - Maximal saturation: DO = 12.9mg/l
 - Typical value in freshwater stream: DO $\approx 9 \text{mg/I}$
 - Threat to aquatic life: DO < 5mg/I

Model

Constant flow rate: location doesn't matter, dynamic model in time

$$\begin{split} \frac{d \text{BOD}}{dt} &= \text{BOD}_{in} - k_1 \text{BOD} \\ \frac{d \text{DO}}{dt} &= k_2 (\text{DO}_{sat} - \text{DO}) - k_1 \text{BOD} \end{split}$$

where

- BOD_{in}: BOD flux of waste discharge (mg · I^{-1} · min⁻¹)
- DO_{sat}: dissolved oxygen concentration at saturation
- k_1 : deoxygenation rate (min⁻¹)
- k_2 : reaeration rate, rate at which oxygen can be absorbed from the atmosphere (min $^{-1}$)

Model inputs

- Initial conditions:
 - $BOD_{t=0} = 7.33 mg/l$
 - $DO_{t=0} = 8.5 \text{mg/l}$
- Initial model inputs:
 - $BOD_{in} = 1 \text{mg} \cdot \text{l}^{-1} \cdot \text{min}^{-1}$
 - $DO_{sat} = 8.5 \text{mg} \cdot \text{l}^{-1}$
 - $k_1 = 0.3 \text{min}^{-1}$ (unknown)
 - $k_2 = 0.4 \text{min}^{-1}$ (unknown)

Model trajectories

Parameter estimation

Parameter estimation - simplex method

Parameter estimation - BFGS

Optimal parameter result

Sensitivity analysis

Absolute sensitivity functions

Absolute sensitivity of DO with respect to \boldsymbol{k}_1 and $\boldsymbol{k}_2.$

Difference exact approximate

Relative sensitivity functions

Conclusions

- Note difference in values with absolute sensitivities
- ullet DO seems more sensitive to k_2 than to k_1
- Extrema at slightly different time points: information concerning correlation between both parameters
 - Maximal sensitivity at same time point: parameters strongly correlated (impact of change in parameters similar)
- Studying sensitivity very valuable: sensitivity used in many techniques for model analysis

Aside: quality of estimation

- DO measurements at different times: measurement error (obtained manually) is 0.05 mg·l⁻¹
- Estimate simultaneously k_1 and k_2 (assume all other parameters and initial conditions constant)
- Gives $k_1 = 0.353 \text{min}^{-1}$, $k_2 = 0.389$

Quality of estimation: FIM

Fisher information matrix:

$$\mathrm{FIM} = \sum_{i=1}^N \left(\frac{\partial y}{\partial \theta}(t_i)\right)^T Q_i \left(\frac{\partial y}{\partial \theta}(t_i)\right)$$

- Measurement noise $\sigma_{DO}=0.05 \mathrm{mg}\,\mathrm{l}^{-1}$
- Weight "matrix" in the objective function $Q = \sigma_{DO}^{-2}$.

Gives:

$$\mathsf{FIM} = \begin{bmatrix} 3.91 \cdot 10^4 & -2.96 \cdot 10^4 \\ -2.96 \cdot 10^4 & 4.56 \cdot 10^5 \end{bmatrix}$$

Quality of estimation: confidence intervals

Error covariance matrix:

$$\mathsf{C} = \mathsf{FIM}^{-1} = \begin{bmatrix} 2.69 \cdot 10^{-5} & 1.75 \cdot 10^{-6} \\ 1.75 \cdot 10^{-6} & 2.31 \cdot 10^{-6} \end{bmatrix}$$

95% confidence intervals:

$$k_1 : 0.353 \pm 0.011$$

 $k_2 : 0.389 \pm 0.003$

Covariance:

$$\operatorname{cor}(k_1,k_2) = 0.22$$

Quantitative analysis

- ullet Calculate δ_{rmsq} for DO and different parameters
- Illustration: different measuring schemes for DO:
 - Scheme 1: $t_k = 0:0.1:2$
 - Scheme 2: $t_k = 0:2:20$
 - Scheme 3: $t_k = 0:2:10$
 - Scheme 4: $t_k = 10:2:20$

	Scheme 1	Scheme 2	Scheme 3	Scheme 4
k_1	0.24	0.13	0.18	0.18
k_2	0.09	0.44	0.43	0.43
DO_{sat}^{-}	0.49	1.32	1.23	1.23
	$k_2 < k_1 < DO_{sat}$	$k_1 < k_2 < DO_{sat}$	$k_1 < k_2 < DO_{sat}$	$k_1 < k_2 < DO$

GSA: Morris screening: parameter ranges

 Global sensitivity for 6 parameters and initial conditions in designated ranges:

```
\begin{aligned} k_1:[0.1;0.6] \quad k_2:[0.1;0.6] \quad \mathrm{DO}_{sat}:[10;12] \\ \mathrm{BOD}_{in}:[0.1;2] \quad \mathrm{DO}_{t=0}:[6;10] \quad \mathrm{BOD}_{t=0}:[6;10] \end{aligned}
```

GSA: Morris screening

Among the selected parameters:

- At time 0, DO is only sensitive to DO₀
- At time 25, DO is sensitive to k_2 and DO_{sat} .

GSA: Monte Carlo

- Monte Carlo: 100 simulations with varying k_1 and k_2
- Parameter ranges: k_1, k_2 uniformly sampled from [0.1, 0.8]
- Interested in parameter effect at t=2 and t=15

GSA: Monte Carlo

GSA: Standardized regression coefficients

Previous plots show:

- BOD is sensitive to k_1 at t=2,15
- ullet DO is sensitive to k_2 at t=15 (and somewhat at t=2)

Regression coefficients for DO at t = 15:

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} -0.342 \\ 6.374 \end{bmatrix}.$$

Standardized regression coefficients (using $\sigma_{k_1}=0.211$ and $\sigma_{DO}=1.887$):

$$SRC_{k_1} = -0.038$$
, and $SRC_{k_2} = 0.713$.