Let's go over part (b) of the early problem...

Proposition 1. Let X, Y be topological spaces, and let $\mathcal{B}_X, \mathcal{B}_Y$ be bases for the resp. topologies of X, Y, then:

- 1. $f: X \to Y$ is continuous iff for each $B \in \mathcal{B}_Y$, $f^{-1}(B)$ is open.
- 2. $f: X \to Y$ is continuous iff for all $x \in X$ and basic open neighborhoods $B_{f(x)}$ of f(x), there exists $B_x \in \mathcal{B}_x$ such that $x \in B_x$ and $f(B_x) \subseteq B_{f(x)}$.

The proof of (a) is left to the early problem

- Proof of part b. (\Rightarrow) Let $f: X \to Y$ be continuous. Let $x \in X$, and $B_{f(x)}$ be a basic open neighborhood of f(x). Then, since $f(x) \in B_{f(x)}$, $x \in f^{-1}(B_{f(x)})$. Since f is continuous, $f^{-1}(B_{f(x)})$ is open. By the definition of open in a generated topology, $\exists B_X \in \mathcal{B}_X$ such that $x \in B_X$ and $B_x \subseteq f^{-1}(B_{f(x)})$. Then, using the Galois connection, we get that $f(B_X) \subseteq B_{f(x)}$.
- (\Leftarrow) Assume that we have the property, now we want to show that $f: X \to Y$ is continuous. So let $U \subseteq Y$ be an open set. Now let $x \in f^{-1}(U)$ Then $f(x) \in U$. Since U is open, there is a basic open neighborhood $B_{f(x)}$ such that $f(x) \in B_{f(x)}$ and $B_{f(x)} \subseteq U$. By assumption, there is a basic open neighborhood B_x of x such that $f(B_x) \subseteq B_{f(x)} \subseteq U$. Then again by the Galois connection, $B_x \subseteq f^{-1}(U)$.

Now on to more stuff.

Definition 1. A set S of subsets of a set X whose union is all of X is a **subbasis for a topology on** X. The **topology generated by** S is the set of unions of finite intersections of elements of S.

We claim that in order to show that this is a topology, it is enough to show that the set \mathcal{B} of finite intersections of elements of S is a basis. Now let's actually do the check:

- *Proof.* 1. Let $x \in X$. Then since $\bigcup_{T \in S} T = X$, there is an element $T \in S$ such that $x \in T$, and thus $T \in \mathcal{B}$.
 - 2. Let $B_1 = T_1 \cap \ldots \cap T_n$, where $T_i \in S$, and $B_2 = T'_1 \cap \ldots \cap T'_m$, where $T'_i \in S$. Now let $x \in B_1 \cap B_2$. Since $B_1 \cap B_2$ is a finite intersection of elements of S, it is a basis element, and so we can take $B_3 = B_1 \cap B_2$.

So where is this useful? We will now move into a discussion of product spaces. This is where all of the universal property juggling should pay off.

Question 1. Given two topological spaces X, Y, what topology "should" we put on $X \times Y$? More generally, given topological spaces X_i for $i \in I$, what topology should $\prod_{i \in I} X_i$ have?

Let's recall the universal property of the product for sets, and amend it for topological spaces.

Theorem 1. Given sets topological spaces X, Y, a set topological space P together with functions continuous functions $\pi_1: P \to X$ and $\pi_2: P \to Y$ is said to have the universal property if, for any set topological space Z and functions continuous functions $f_1: Z \to X$ and $f_2: Z \to Y$ there exists a unique function continuous function $f: Z \to P$ such that.

$$X \stackrel{f_1}{\longleftarrow} P \stackrel{f_2}{\longrightarrow} Y$$

Proposition 2. "Products are unique up to unique homeomorphism." i.e. Given (P, π_1, π_2) and (P', π'_1, π'_2) with the universal property, there exists a unique homeomorphism $\varphi : P \to P'$ such that $\pi_1 = \pi'_1 \circ \varphi$ and $\pi_2 = \pi'_2 \circ \varphi$.

Proof. Let's do some good old-fashioned diagram chasing.

$$X \xleftarrow{\pi_1} P' \xrightarrow{\pi_2} Y \quad X \xleftarrow{\varphi} P \xrightarrow{\psi} Y$$

Combining these two diagrams, we get:

$$X \xleftarrow{\pi_1} V \xrightarrow{\psi \circ \varphi} X \xrightarrow{\pi_2} Y$$

So then $\psi \circ \varphi$ is the identity map, and we have what we need.

So we can revise our goal: We now want to find a topology on $X \times Y$ so that $(X \times Y, \pi_1, \pi_2)$ has the universal property.

In other words, we want to find a topology on $X \times Y$ such that $\frac{\pi_1 : X \times Y \to X}{(x,y) \mapsto x}$ and

$$\pi_2: X \times Y \to Y$$
 $(x,y) \mapsto y$ are continuous.
So we need

- 1. For each $U\subseteq X$ open, $\pi_1^{-1}(U)=U\times Y$ is open
- 2. For each $V\subseteq Y$ open, $\pi_2^{-1}(V)=X\times V$ is open.

Fig. 1. A diagram outlining what our "Product space" should look like

This is not yet a topology, we still need finite intersections. So, lets add in finite intersections: $\mathcal{B} = \{U \times V \mid U \subseteq X \text{ open}, V \subseteq Y \text{ open}\}$. This in and of itself is still not a topology, but it is a basis.

Proposition 3. Let X, Y be topological spaces, then the set:

$$\mathcal{B} = \{ U \times V \mid U \subseteq X \text{ open}, V \subseteq Y \text{ open} \}$$

Definition 2. The **product topology on** $X \times Y$ is the topology generated by the basis \mathcal{B} above.

Example 1. \mathbb{R}^2 with the usual topology has the product topology from $\mathbb{R} \times \mathbb{R}$. With the usual topology, we were taking a basis of open balls, but in this construction, we are doing it with open rectangles, which we previously showed was equivalent.