# La dérivation

# I) Le taux de variation

## Taux de variation d'une fonction entre deux réels

## Définition:

Soit f une fonction définie sur un intervalle I.

Soit  $a \in I$  et  $b \in I$ , tels que  $a \neq b$ .

On appelle <u>taux de variation</u> de f entre a et b le nombre

$$\frac{f(b) - f(a)}{b - a}$$

Le taux de variation est aussi appelé taux d'accroissement.



Le taux de variation représente le coefficient directeur de la droite (AB), c'est-à-dire sa pente.

### Rappel:

Soit  $A(x_a, y_a)$  et  $B(x_b, y_b)$  tels que  $x_a \neq x_b$ .

L'équation de la droite (AB) est donnée par la formule

$$y - y_a = \left(\frac{y_b - y_a}{x_b - x_a}\right)(x - x_a)$$

Il y a proportionnalité des écarts sur les abscisses et sur les ordonnées.

## II) Le nombre dérivé et la tangente

## <u>Définition</u>:

Soit f une fonction définie sur  $I \subset \mathbb{R}$ .

Soit  $a \in I$  et  $h \neq 0$  tel que  $a + h \in I$ .

On dit que f est dérivable en a si le taux de variation de f entre a et a+h admet une limite lorsque h tend vers 0. Cette limite s'appelle le <u>nombre dérivé de la fonction f en a et se note f'(a).</u>

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Si cette limite existe, on dit que f est dérivable en a.



La droite (AM) est appelée <u>sécante en A de la courbe C</u>.

Son coefficient directeur est le taux de variation de f entre a et a+h. Lorsque M se rapproche de A, le taux de variation de f admet une limite f'(a) et le coefficient directeur de (AM) tend vers la limite f'(a).

Le programme Python ci-après permet le calcul approché du nombre dérivé d'une fonction polynomiale du second degré  $f(x) = 3x^2 - 2x + 4$ , comme limite du taux de variation.

Compréhension du code : la fonction tauxDeVariation est appelée 10 fois et avant chaque appel la valeur de h passée en paramètre est divisée par deux. Lors du dernier appel, on a donc  $h=\frac{1}{2^{10}}$  soit  $h=\frac{1}{1024}$ .

| Programme       |                                                                                                                                                                                                                                                        | Résultat                                                     |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 2 + 3 4 5 + 6 7 | <pre># défini une fonction polynomiale du second degré def f(x):     return 3*x**2-2*x+4 # calcul du taux de variation d'une fonction f entre a et a+h def tauxDeVariation(f,a,h):     return (f(a+h)-f(a))/h # calcul approché du nombre dérivé</pre> | 7.0<br>5.5<br>4.75<br>4.375<br>4.1875<br>4.09375<br>4.046875 |
| _               | <pre>h=2 for n in range(10):     h/=2     print(tauxDeVariation(f,1,h))</pre>                                                                                                                                                                          | 4.0234375<br>4.01171875<br>4.005859375                       |

#### **Définition:**

Soit f définie sur  $I \subset \mathbb{R}$  dérivable en  $a \in I$ .

On appelle tangente à la courbe  $C_f$  au point A(a; f(a)) la droite passant par A et de coefficient directeur f'(a).

### Equation réduite de la tangente

### Propriété:

Soit  $f: I \to R$  dérivable en  $a \in I$ .

L'équation réduite de la tangente à la courbe  $C_f$  en (a; f(a)) est : y = f'(a)(x - a) + f(a)

### <u>Démonstration</u>:

L'équation réduite est par définition de la forme y = mx + p où m et p sont à déterminer.

m est le coefficient directeur de la droite donc m = f'(a) par définition de la tangente.

A(a; f(a)) appartient à la tangente donc  $f(a) = f'(a)a + p \Leftrightarrow p = f(a) - f'(a)a$ .

Par suite, l'équation de la tangente est  $y = f'(a)x + f(a) - f'(a)a \Leftrightarrow y = f'(a)(x - a) + f(a)$ 

## III) Fonctions dérivées

### Définition:

Soit f une fonction définie sur un intervalle I. On dit que f est <u>dérivable sur I</u> si et seulement si pour tout  $x \in I$ , le nombre dérivé f'(x) existe. La fonction qui à  $x \in I$  associe le nombre dérivé de f en x s'appelle <u>la fonction dérivée</u> et se note f'. On a : f':  $I \to \mathbb{R}$ 

$$x \to f'(x)$$

### Formulaire de dérivation

|    | Fonction $f$                                         | f dérivable sur                             | Fonction dérivée <i>f'</i>    |
|----|------------------------------------------------------|---------------------------------------------|-------------------------------|
| 1) | $f(x) = k$ , où $k \in \mathbb{R}$                   | $\mathbb{R}$                                | f'(x)=0                       |
| 2) | f(x) = x                                             | $\mathbb{R}$                                | f'(x) = 1                     |
| 3) | f(x) = ax + b                                        | $\mathbb{R}$                                | f'(x) = a                     |
| 4) | $f(x) = x^2$                                         | $\mathbb{R}$                                | f'(x) = 2x                    |
| 5) | $f(x) = x^n \text{ où } n \in \mathbb{N}^*$          | $\mathbb{R}$                                | $f'(x) = nx^{n-1}$            |
| 6) | $f(x) = \frac{1}{x}$                                 | $\mathbb{R}^* = ]-\infty;0[\cup]0;+\infty[$ | $f'(x) = -\frac{1}{x^2}$      |
| 7) | $f(x) = \frac{1}{x^n}  \text{ où } n \in \mathbb{N}$ | $\mathbb{R}^* = ]-\infty;0[\cup]0;+\infty[$ | $f'(x) = -\frac{n}{x^{n+1}}$  |
| 8) | $f(x) = \sqrt{x}$                                    | $\mathbb{R}^{+*} = ]0; +\infty[$            | $f'(x) = \frac{1}{2\sqrt{x}}$ |

## Démonstrations :

Les cas 1) et 2) sont des cas particuliers du cas 3).

Cas 3):

Soit  $f: \mathbb{R} \to \mathbb{R}$ 

$$x \rightarrow ax + b$$

Soit  $x_0 \in \mathbb{R}$  et  $h \in \mathbb{R}^*$ . On a :

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{(a(x_0+h)+b)-(ax_0+b)}{h} = \frac{ax_0+ah+b-ax_0-b}{h} = \frac{ah}{h} = a$$

Et donc

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = a$$

Cas 4): démonstration au programme

Soit  $f: \mathbb{R} \to \mathbb{R}$ 

$$x \to x^2$$

Soit  $a \in \mathbb{R}$  et  $h \in \mathbb{R}^*$ . On a:

$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2 - a^2}{h} = \frac{a^2 + 2ah + h^2 - a^2}{h} = \frac{2ah + h^2}{h} = \frac{2ah}{h} + \frac{h^2}{h} = 2a + h$$

Et donc

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = 2a$$

Cas 4): démonstration au programme

Soit  $f: \mathbb{R}^* \to \mathbb{R}$ 

$$x \to \frac{1}{x}$$

Soit  $a \in \mathbb{R}^*$  et  $h \in \mathbb{R}^*$  tel que  $a+h \neq 0$ . On a :

$$\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a}{a(a+h)} - \frac{a+h}{a(a+h)}}{h} = \frac{a-a-h}{ha(a+h)} = \frac{-h}{ha(a+h)} = \frac{-1}{a(a+h)}$$

Et donc

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = -\frac{1}{a^2}$$

Cas 8):

Soit  $f: \mathbb{R}^+ \to \mathbb{R}$ 

$$x \to \sqrt{x}$$

Soit a > 0 et  $h \in \mathbb{R}^*$  tel que  $a + h \ge 0$ . On a :

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h}$$

$$= \frac{\sqrt{a+h}-\sqrt{a}}{h} \times \frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}}$$

$$= \frac{\left(\sqrt{a+h}\right)^2 - \left(\sqrt{a}\right)^2}{h\left(\sqrt{a+h}+\sqrt{a}\right)}$$

$$= \frac{a+h-a}{h\left(\sqrt{a}+\sqrt{a+h}\right)}$$



$$= \frac{h}{h(\sqrt{a} + \sqrt{a+h})}$$
$$= \frac{1}{\sqrt{a} + \sqrt{a+h}}$$

Et donc

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{1}{2\sqrt{a}}$$

Cas où  $\alpha = 0$ : démonstration au programme

 $\sqrt{x}$  n'est pas dérivable en 0

f(0+h) n'est pas défini si h < 0. Donc f n'est pas dérivable en 0 au sens de la définition de la dérivabilité.

De plus, si h > 0, on a :

$$\frac{f(0+h)-f(0)}{h} = \frac{1}{\sqrt{h}} \quad \text{et donc} \quad \lim_{\substack{h \to 0 \\ h > 0}} \frac{f(0+h)-f(0)}{h} = \lim_{\substack{h \to 0 \\ h > 0}} \frac{1}{\sqrt{h}} = +\infty$$

Le taux de variation tend vers  $+\infty$  quand  $h \to 0$  avec h > 0. Cela signifie que la courbe admet une tangente verticale au point d'abscisse 0.

## Formules d'opérations sur les fonctions dérivées

Soit u et v deux fonctions dérivables sur un intervalle I de  $\mathbb{R}$ .

|    | Dérivabilité de la fonction                                           | Fonction dérivée                                    |
|----|-----------------------------------------------------------------------|-----------------------------------------------------|
| 1) | $ku$ , où $k\in\mathbb{R}$ , est dérivable sur $I$                    | (ku)' = ku'                                         |
| 2) | u+v est dérivable sur $I$                                             | (u+v)'=u'+v'                                        |
| 3) | uv est dérivable sur $I$                                              | (uv)' = u'v + uv'                                   |
| 4) | $\frac{1}{u}$ est dérivable sur $I$ , si $u$ ne s'annule pas sur $I$  | $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$       |
| 5) | $\dfrac{u}{v}$ est dérivable sur $I$ , si $v$ ne s'annule pas sur $I$ | $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ |

#### <u>Démonstrations</u>:

#### Cas 1):

On définit la fonction ku par  $ku: I \to \mathbb{R}$ 

$$x \to (ku)(x) = ku(x)$$

Soit  $a \in I$  et  $h \neq 0$  tels que  $a + h \in I$ 

On a 
$$\frac{ku(a+h)-ku(a)}{h} = k\frac{u(a+h)-u(a)}{h}$$
 et donc  $(ku)'(x) = \lim_{h\to 0} \frac{ku(a+h)-ku(a)}{h} = ku'(a)$ 

Exemples:

- a) la dérivée de la fonction  $x \to 3x$  est la fonction  $x \to (3x)' = 3(x)' = 3$  car (x)' = 1
- b) la dérivée de la fonction  $x \to -4x^2$  est la fonction  $x \to (-4x^2)' = -4(x^2)' = -4 \times 2x = -8x$  car  $(x^2)' = 2x$

Cas 2): la dérivée d'une somme est la somme des dérivées

On définit la fonction u + v par  $u + v : I \to \mathbb{R}$ 

$$x \rightarrow (u+v)(x) = u(x) + v(x)$$

Soit  $a \in I$  et  $h \neq 0$  tels que  $a + h \in I$ 

$$\frac{u(a+h) + v(a+h) - (u(a) + v(a))}{h} = \frac{(u(a+h) - u(a)) + (v(a+h) - v(a))}{h}$$
$$= \frac{u(a+h) - u(a)}{h} + \frac{v(a+h) - v(a)}{h}$$

Et donc

$$\lim_{h \to 0} \frac{u(a+h) + v(a+h) - (u(a) + v(a))}{h} = u'(a) + v'(a)$$

Exemples:

a) 
$$(7x^2 - 2x + 3)' = (7x^2)' + (-2x)' + (3)' = 7 \times 2x + (-2) + 0 = 14x - 2$$

b) 
$$\left(x + \frac{1}{x}\right)' = (x)' + \left(\frac{1}{x}\right)' = 1 - \frac{1}{x^2}$$

Remarque: on a immédiatement (u - v)' = (u)' - (v)'

### Cas 3): démonstration au programme

On définit la fonction uv par  $uv: I \to \mathbb{R}$ 

$$x \to (uv)(x) = u(x)v(x)$$

Soit  $a \in I$  et  $h \neq 0$  tels que  $a + h \in I$ 

$$\frac{u(a+h)v(a+h) - u(a)v(a)}{h} = \frac{u(a+h)v(a+h) - u(a)v(a+h) + u(a)v(a+h) - u(a)v(a)}{h}$$

$$= \frac{(u(a+h) - u(a))v(a+h) + u(a)(v(a+h) - v(a))}{h}$$

$$= \frac{(u(a+h) - u(a))}{h}v(a+h) + u(a)\frac{v(a+h) - v(a)}{h}$$

Or 
$$\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$$
 et  $\lim_{h\to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$ 

Donc 
$$\lim_{h\to 0} \frac{u(a+h)v(a+h) - u(a)v(a)}{h} = u'(a)v(a) + u(a)v'(a)$$

Exemples:

a) 
$$(3x^2(x+4))' = (3x^2)'(x+4) + (3x^2)(x+4)' = 6x(x+4) + 3x^2 = 9x^2 + 24x$$

b) 
$$(x\sqrt{x})' = (x)'\sqrt{x} + x(\sqrt{x})' = 1 \times \sqrt{x} + \frac{x}{2\sqrt{x}} = \sqrt{x} + \frac{(\sqrt{x})^2}{2\sqrt{x}} = \sqrt{x} + \frac{\sqrt{x}}{2} = \frac{3}{2}\sqrt{x}$$

Cas 4):

On définit la fonction  $\frac{1}{u}$  par  $\frac{1}{u}:I\to\mathbb{R}$ 

$$x \to \left(\frac{1}{u}\right)(x) = \frac{1}{u(x)}$$

Soit  $a \in I$  et  $h \neq 0$  tels que  $a + h \in I$ 

$$\frac{\frac{1}{u(a+h)} - \frac{1}{u(a)}}{h} = \frac{\frac{u(a) - u(a+h)}{u(a+h)u(a)}}{h} = \frac{u(a) - u(a+h)}{h} \frac{1}{u(a+h)u(a)} = -\frac{u(a+h) - u(a)}{h} \frac{1}{u(a+h)u(a)}$$

On constate alors que

$$\lim_{h \to h} \frac{\frac{1}{u(a+h)} - \frac{1}{u(a)}}{h} = -\frac{u'(a)}{u(a)^2}$$

## Cas 5):

Il peut se déduire des cas 3) et 4) ou être démontré directement

## Fonction dérivée de g(ax + b)

Soit  $f: \mathbb{R} \to \mathbb{R}$ 

$$x \rightarrow ax + b$$

Et  $g: J \to \mathbb{R}$  , où J est un intervalle de  $\mathbb{R}$ 

$$x \to g(x)$$

On suppose que g est dérivable sur l'intervalle J.

Soit I un intervalle de  $\mathbb{R}$  tel que les valeurs prises par f sur I soient incluses dans I.

On peut définir la fonction

$$h:I\to\mathbb{R}$$

$$x \to g(f(x)) = g(ax + b)$$

La fonction h est dérivable sur I et h'(x) = ag'(ax + b)

## Démonstration admise

Exemple:

Soit  $h: [2; +\infty[ \to \mathbb{R}$ 

$$x \to \sqrt{2x-4}$$

En appliquant la formule ci-dessus, on trouve

$$h'(x) = 2 \times \frac{1}{2\sqrt{2x-4}} = \frac{1}{\sqrt{2x-4}}$$

# IV) Etude de la fonction valeur absolue

La fonction valeur absolue est définie par

 $f: \mathbb{R} \to \mathbb{R}$ 

$$x \to |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

On a représenté ci-contre la courbe de la fonction valeur absolue.





On se propose de montrer que cette fonction n'est pas dérivable en 0 (démonstration au programme).

On a 
$$\frac{|0+h|-|0|}{h} = \frac{|h|}{h}$$

Il faut distinguer deux cas:

Si 
$$h \ge 0$$
,  $\frac{|h|}{h} = \frac{h}{h} = 1$  et  $\lim_{\substack{h \to 0 \\ h \ge 0}} \frac{|0+h| - |0|}{h} = 1$ 

Si 
$$h \le 0$$
,  $\frac{|h|}{h} = \frac{-h}{h} = -1$  et  $\lim_{\substack{h \to 0 \\ h \le 0}} \frac{|0+h| - |0|}{h} = -1$ 

La limite de  $\frac{f(0+h)-f(0)}{h}$  n'existe pas car elle dépend du signe de h.

La fonction valeur absolue n'est donc pas dérivable en 0.

## V) Variation et courbes représentatives des fonctions

## 1) Signe de la fonction dérivée et sens de variation d'une fonction

## Propriété (admise):

Soit f une fonction dérivable sur un intervalle I de  $\mathbb{R}$ .

f est croissante (resp. strictement croissante) sur  $I \Leftrightarrow \forall x \in I, f'(x) \ge 0$  (resp. f'(x) > 0)

f est décroissante (resp. strictement décroissante) sur  $I \Leftrightarrow \forall x \in I$ ,  $f'(x) \leq 0$  (resp. f'(x) < 0)

f est constante sur  $I \Leftrightarrow \forall x \in I, f'(x) = 0$ 

Pour étudier les variations d'une fonction f, il suffit donc d'étudier le signe de sa fonction dérivée.

Soit 
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \rightarrow -x^2 + 2x + 4$$

On calcule f'(x) = -2x + 2

Et on a 
$$f'(x) = 0 \Leftrightarrow -2x + 2 = 0$$

$$\Leftrightarrow x = 1$$

En étudiant le signe de f', on en déduit le tableau de variation de f.





## 2) Extrema d'une fonction

### Rappels:

Soit f une fonction définie sur un intervalle I de  $\mathbb{R}$  et à valeurs dans  $\mathbb{R}$ .

On appelle minimum de f sur l'intervalle I, noté m, la plus petite valeur de f(x) pour un nombre  $x \in I$ .

Il existe  $a \in I$  tel que f(a) = m et  $\forall x \in I$ , on a  $f(x) \ge m$ .

On appelle maximum de f sur l'intervalle I, noté M, la plus grande valeur de f(x) pour un nombre  $x \in I$ .

Il existe  $a \in I$  tel que f(a) = M et  $\forall x \in I$ , on a  $f(x) \leq M$ .

On appelle extremum de f sur I le minimum ou le maximum de f sur I.

### <u>Propriété</u>:

Soit f une fonction définie et dérivable sur un intervalle <u>ouvert</u> I de  $\mathbb{R}$  et à valeurs dans  $\mathbb{R}$ .

f admet un extremum en  $a \in I \Rightarrow f'(a) = 0$ 

f'(a) = 0 et f' change de signe en  $a \Rightarrow f$  admet un extremum local en a

Deux cas de figure sont possibles pour le tableau de variation.





## Exemple:

Soit 
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \rightarrow 3x^2 - 6x + 5$$

Etudier les variations de f.

On calcule 
$$f'(x) = 6x - 6$$
.

On a 
$$f'(x) = 0 \Leftrightarrow 6x - 6 = 0$$

$$\Leftrightarrow x = 1$$

On peut alors dresser le tableau de variation de f.



# Rappel:

On a a=3>0 et on sait donc que la courbe est une courbe en U avec un minimum.

Comme f(1) = 2, l'équation f(x) = 0 n'admet pas de solution.