Introductior

Data

Research Question

Algorithms

Results

Discussion

References

Simulating Genome of Dictyostelium discoideum Using k^{th} -Order Markov Chain Genetic Models

Kairavi Chahal, Tony Yang, Julian Zhou

Department of Statistics Carnegie Mellon University

December 8, 2013

Chromosomes, DNA sequences, nucleotide bases

Introduction

Data

Research

Algorithm

Doculto

Discussion

D - f - ... - .

- Soil-living amoeba, aka 'slime mold'
- Interested in simulating sequences of *ATGC*

Source: Alex Wild, Scientific American

Source: Plant & Soil Sciences eLibrary

kth-th Order Markov Chain

Introduction

Data

Research Duestion

Algorithm

Results

Discussion

Deference

■ A single-stranded DNA sequence:
$$B_1$$
, B_2 , ..., B_i ; $b = \{A, T, G, C\}$

$$P(B_i = b|B_{i-1}, ..., B_1) = P(B_i = b|B_{i-1}, ..., B_{i-k})$$

• i.e.
$$P(B_i = b)$$
 is conditionally independent of $\{B_{i-k-1}, ..., B_1\}$, given $\{B_i, ..., B_{i-k}\}$

kth-th Order Transition Matrix

Introduction

Data

Research Questions

Algorithms

Results

Discussior

References

■ Row: $(i - k)^{th}$ through $(i - t)^{th}$ bases - 'prior sequence'

Column: i^{th} base Dimension: $4^k \times 4$

■ Each row sums up to 1

■ E.g. 2nd-order transition matrix based on original sequence in Chromosome 2

	Α	С	G	T
AA	r0.505	0.093	0.074	0.328 7
AC	0.420	0.245	0.054	0.282
AG	0.424	0.107	0.131	0.337
AT	0.310	0.127	0.119	0.445
CA	0.468	0.138	0.093	0.300
CC	0.612	0.116	0.045	0.227
CG	0.436	0.106	0.131	0.327
CT	0.277	0.152	0.151	0.419
GA	0.420	0.071	0.114	0.394
GC	0.462	0.142	0.065	0.332
GG	0.307	0.078	0.114	0.501
GT	0.290	0.080	0.191	0.439
TA	0.436	0.103	0.082	0.380
TC	0.484	0.135	0.066	0.316
TG	0.387	0.091	0.219	0.303
TT	0.262	0.100	0.135	0.503 💄

Reading in Data

Introduction

Data

Research Question

Algorithm

Results

Discussion

Reference

- Observe that the data is in FASTA format
- Function read.fasta in package seqinr reads such format

Summary of Data

ntroduction

Data

Researc

Algorithm

Results

Discussion

Chromosome	Length (bases)
1	4,923,596
2	8, 484, 197
2F	161, 967
3	6, 357, 299
3F	16,660
4	5, 450, 249
5	5, 125, 352
6	3,602,379
BF	75, 732
М	55, 564
R	85, 150

Questions of Interest

Introduction

Data

Research Questions

Algorithm

n 1.

Discussion

Poforoncos

- How do simulation results change as *k* changes?
- Do simulation results differ from one chromosome to another?

Why not just concatenate the chromosomes?

Introduction

Data

Research Questions

Algorithm Comparison

Results

Discussion

. .

- Doing so assumes that the starting sequence of one chromosome depends on the ending sequence of another
- Doing so assumes that transition matrices will be similar for each chromosome
- Markov matrices for the whole genome and individual chromosomes may be different
- Order in which to join the chromosomes is unknown
- Logistically, computing transition matrix and simulate the sequence for the entire genome would be overly time-consuming

Overview of Our Code

Algorithms

Replacing Ns

Introduction

Data

Researcl Question

Algorithms Comparison

Results

Discussior

. .

- **Idea:** replace the Ns with nucleotides using a uniform distribution
- **Alternative Idea:** calculating a matrix of marginal probabilities based on the rest of the sequence, and then applying it to the sequence of Ns as a 0th order
 - **Problem:** The marginal prob. matrix is inconsistent with the overall transition matrix
- Alternative Idea: Drop all Ns
 - **Problem:** Will affect the transition matrix and results

Computing Transition Matrices

Introduction

Data

Research Duestion

Algorithms Comparison

Results

Discussion

. .

- Choose order k, and obtain all consecutive substrings of length k+1
- Group substrings by which nucleotide is in last (k+1th) position
- Count occurences of sequence of nucleotides in 1st to kth position within the four groups
- Divide each row by the sum of the row (ensures each row's probability is 1)
- If a row has all zeroes, then replace with all 0.25, since each combination is equally (un)likely

Simulations

Introduction

Data

lesearch Juestion

Algorithms Comparison

Roculte

Discussion

Idea:

- Take the first *k* nucleotide bases as a starting point
- Use the transition matrix to simulate the next base
- Take the last *k* nucleotide bases in the current simulated sequence, use transition matrix, repeat
- 10 simulations per combination of chromosome & order *k* (ranging from 1 to 3)

Why not convert nucleotides into codons?

ntroduction

Data

Research Question

Algorithms

Results

Discussion

Discussion

	Codons	are	degenerate
--	--------	-----	------------

■ Without knowledge of where the *coding* region begins, simply treating the first 3 bases as the starting codon could result in *frameshift mutation*

		Second n	ucleotide		
	U	С	A	G	2
U	UUU Phe UUC UUA UUA Leu	UCU UCC UCA UCG	UAU Tyr UAC STOP UAG STOP	UGU Cys UGC STOP UGG Trp	U C A G
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU HIS CAC CAA GIn	CGU CGC CGA	D V O Cleotide
Α	AUU IIIe AUA AUA Met	ACU ACC ACA ACG	AAU Asn AAC AAA AAA Lys	AGU Ser AGA AGA	Third nucleotide
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU ASP GAC GAA GAA GIU	GGU GGC GGA GGG	U C A G

Source: Nature

Base-wise Comparision

Introduction

Data

Research Duestion

Algorithms Comparison

D ----la-

Discussion

- Number of exact matches
- Proportions of A, T, G, C (marginal probability distribution)

Comparing Transition Matrices

Introduction

Data

Research Duestion

Algorithms Comparison

Results

Discussion

lacktriangledown \mathbb{M}_{orig} : transition matrix based on the original sequence

lacktriangledown $\mathbb{M}_{\textit{sim}}$: transition matrix based on the osimulated sequence

$$\bullet \ \theta = \frac{\sum_{i=1}^{4^k} \sum_{j=1}^{4} |\mathbb{M}_{orig_{ij}} - \mathbb{M}_{sim_{ij}}|}{4^{k+1}}$$

Pairwise Global Alignment

Introductior

Data

Research Duestion

Algorithms Comparison

Results

Discussior

- *Needleman-Wunsch* algorithm (dynamic programming)
- Implemented by pairwiseAlignment in package Biostrings of Bioconductor
- Yields an optimal pairwise alignment score, based on a given scoring scheme

Pairwise Global Alignment - Scoring Scheme

ntroduction

Data

Research Question

Algorithms Comparison

Results

Discussion

Dofovono

General guidelines

- If looking for closely related sequences, penalize mismatches/ gaps a lot
- Heavier penalty for a gap opening; smaller penalty for subsequent gap extensions
- match= +2, mismatch-2, gap opening= -5, gap extension= -2

17

Possible Improvements to Algorithm/Code

Introduction

Data

lesearch Juestior

Algorithm Comparison

Results

Discussion

- Represent bases with integers (0, 1, 2, 3) instead of characters ('a', 'c', 'g', 't'), since R processes them faster
- Use BLAST for comparison, which is faster and has a standardized result. But possibility of human-error when copying/pasting.
- Previously assumed transition matrices remain constant throughout. Could take into account of evolution of transition matrices, mutation rates, etc.

threads of thought (temporary

Introduction

Data

Research

Algorithm

Results

Discussion

- split/apply/combine analyzing 11 chromosomes instead of 1 genome

Acknowledgment

Introduction

Data

Research Duestion

Algorithm Compariso

Results

Discussion

- http://a-little-book-of-r-forbioinformatics.readthedocs.org/en/latest/src/chapter1.html
- http://a-little-book-of-r-forbioinformatics.readthedocs.org/en/latest/src/chapter4.html
- http://cran.r-project.org/web/packages/seqinr/seqinr.pdf
- http://tata-box-blog.blogspot.com/2012/04/introduction-to-markov-chains-and.html