FUNDAMENTOS DE TEORÍA DE LA COMPUTACIÓN 2025 Trabajo Práctico Nro 5

Tiempo polinomial y no polinomial

Comentario: ningún ejercicio reviste mayor dificultad.

Ejercicio 1. Responder breve y claramente los siguientes incisos:

- a. ¿Por qué la complejidad temporal sólo trata los lenguajes recursivos?
- b. Probar que $n^3 = O(2^n)$.
- c. Probar que si $T_1(n) = O(T_2(n))$, entonces $TIME(T_1(n)) \subseteq TIME(T_2(n))$.
- d. ¿Cuándo un lenguaje pertenece a P, a NP y a EXP? ¿Por qué si un lenguaje pertenece a P también pertenece a NP y a EXP?
- e. ¿Qué formula la Tesis Fuerte de Church-Turing?
- f. ¿Por qué es indistinta la cantidad de cintas de las MT que utilizamos para analizar los lenguajes, en el marco de la jerarquía temporal que definimos?
- g. ¿Qué codificación de cadenas se descarta en la complejidad temporal?
- h. ¿Por qué si un lenguaje pertenece a P también su complemento pertenece a P?
- i. Sea L un lenguaje de NP. Explicar por qué los certificados de L miden un tamaño polinomial con respecto al tamaño de las cadenas de entrada.

Ejercicio 2. Sea SMALL-SAT = $\{\phi \mid \phi \text{ es una fórmula booleana sin cuantificadores en la forma normal conjuntiva (o FNC), y existe una asignación de valores de verdad que la satisface en la que hay a lo sumo 3 variables con valor de verdad$ *verdadero* $<math>\}$. Probar que SMALL-SAT \in P. Una fórmula booleana sin cuantificadores está en la forma FNC si es una conjunción de disyunciones de variables o variables negadas; p.ej. $(x_1 \lor x_2) \land x_4 \land (\neg x_3 \lor x_5 \lor x_6)$. *Ayuda: Una MT que decida SMALL-SAT debe contemplar asignaciones con cero, uno, dos y tres valores de verdad verdadero.*

Ejercicio 3. Dados los dos lenguajes siguientes, (1) justificar por qué no estarían en P, (2) probar que están en NP, (3) justificar por qué sus complementos no estarían en NP:

- a. El problema del conjunto dominante de un grafo consiste en determinar si un grafo no dirigido tiene un conjunto dominante de vértices. Un subconjunto D de vértices de un grafo G es un conjunto dominante de G, sii todo vértice de G fuera de D es adyacente a algún vértice de D. El lenguaje que representa el problema es DOM-SET = {(G, K) | G es un grafo no dirigido y tiene un conjunto dominante de K vértices}.
- b. El problema de los grafos isomorfos consiste en determinar si dos grafos son isomorfos. Dos grafos son *isomorfos* si son idénticos salvo por la denominación de sus arcos. P.ej., el grafo $G_1 = (\{1, 2, 3, 4\}, \{(1,2), (2,3), (3,4), (4,1)\})$ es isomorfo al grafo $G_2 = (\{1, 2, 3, 4\}, \{(1,2), (2,4), (4,3), (3,1)\})$. El lenguaje que representa el problema es ISO = $\{(G_1, G_2) \mid G_1 \text{ y } G_2 \text{ son grafos isomorfos}\}$.

Ejercicio 4. Se prueba que NP \subseteq EXP. La prueba es la siguiente. Si L \in NP, entonces existe una MT M que, para toda cadena de entrada w, verifica en tiempo poly(|w|) si w \in L, con la ayuda de un certificado x tal que $|x| \le p(|w|)$ - p es un polinomio -, y de esta manera, se puede construir una MT M´ que decida en tiempo $\exp(|w|)$ si w \in L, sin usar ninguna cadena adicional: M´ simplemente barre todos y cada uno de los certificados posibles x de w. Se pide explicar por qué M´ efectivamente tarda tiempo $\exp(|w|)$. Ayuda: como $|x| \le p(|w|)$ y los símbolos de x pertenecen a un alfabeto de k símbolos, ¿cuántos certificados x tiene a lo sumo una cadena w?