Bag of tricks for Image Classification with CNN

Large-batch training

1. Linear scaling learning rate

- e.g. ResNet-50 SGD 256 batch size 0.1 learning rate
- \circ init learning rate = 0.1*b/256. where b is the batch size

2. Learning rate warm up

- o at the beginning, paras are far from the final solution
- \circ e.g. we use first m batch to warm up, the init learning rate is η , at the i batch where $1 \le i \le m$, set the learning rate to be $i\eta/m$

3. **Zero** γ

- \circ Batch Normalization: $\gamma x^{\hat{}} + \beta$ Normally, both elements γ and β are initialized to 1s and 0s
- o Instead of setting them in a normal way, it set it as $\gamma=0$ to all BN layers that sit at the end of the residual block (最后一层residual block的BN层).
- o easy to train at the initial stage

4. No bias decay

- Weight decay will apply to both weight and bias
- it recommended that only apply to weight regularization to avoid overfitting. BN parameters are left unregularized

Low-precision training (降低位数)

- 1. Normal setting: 32-bit floating point (FP32) precision
- 2. Trick switching it to larger batch size (1024) with FP16 and get higher accuracy

Model Tweaks

Figure 1: The architecture of ResNet-50. The convolution kernel size, output channel size and stride size (default is 1) are illustrated, similar for pooling layers.

1. ResNet-B

○ 为了避免 1x1 conv stride=2 带来的information loss

2. ResNet-C

○ 为了避免计算量,使用两个3x3 conv代替一个7x7 conv

3. ResNet-D

。 ResNet-B中path B中的1x1 conv stride=2还是会带来信息丢失,在之前加一个avgpool stride=2 能够有效避免信息丢失

Model	#params	FLOPs	Top-1	Top-5
ResNet-50	25 M	3.8 G	76.21	92.97
ResNet-50-B	25 M	4.1 G	76.66	93.28
ResNet-50-C	25 M	4.3 G	76.87	93.48
ResNet-50-D	25 M	4.3 G	77.16	93.52

Table 5: Compare ResNet-50 with three model tweaks on model size, FLOPs and ImageNet validation accuracy.

Training Refinement

- 1. Cosine Learning Rate Decay
 - \circ $\eta_t = \frac{1}{2}(1 + cos(\frac{t\pi}{T}))\eta$
 - \circ where T is the total number of batches (ignore warmup stage)
 - t is the current batch
 - \circ η is the init learning rate

potentially improve the training progress

Figure 3: Visualization of learning rate schedules with warm-up. Top: cosine and step schedules for batch size 1024. Bottom: Top-1 validation accuracy curve with regard to the two schedules.

2. Label Smoothing

。 正则化方法,对于ground truth的分布进行混合。原始gt分布记为 q_i ,经过label smoothing之后

$$q_i^{\epsilon} = (1-\epsilon)q_i + rac{\epsilon}{K}$$

。 ϵ 为常量,K为分类类别。可以减少模型对于标签的过度信赖,对于标签不够精准有较好的帮助。

3. Knowledge Distillation

- 1. 训练一个复杂的网络(N1)
- 2. 使用数据train N1网络并得到(M1)

- 3. 根据复杂网络设计一个简单网络 (NO)
- 4. 将M1 softmax 设T=20 预测数据得到 soft target
- 5. soft target 和 hard target加权得出Target (推荐0.1:0.9)
- 6. 使用 label = Target 的数据集训练NO(T=20)得到 MO
- 7. 设T=1, M0 模型为我们得到的训练好的精简模型

4. Mixup Training

- Data Augmentation,数据进行插值扩充
- o Weighted linear interpolation (双线性插值)

$$\circ \ x = \lambda x_i + (1 - \lambda)x_j$$

$$\circ \ y = \lambda y_i + (1 - \lambda)y_j$$

 \circ $\lambda \in [0,1]$ In mixup training, we only use (x,y)

5. Result of Image Classification

Refinements	ResNet-50-D		Inception-V3		MobileNet	
Remements	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
Efficient	77.16	93.52	77.50	93.60	71.90	90.53
+ cosine decay	77.91	93.81	78.19	94.06	72.83	91.00
+ label smoothing	78.31	94.09	78.40	94.13	72.93	91.14
+ distill w/o mixup	78.67	94.36	78.26	94.01	71.97	90.89
+ mixup w/o distill	79.15	94.58	78.77	94.39	73.28	91.30
+ distill w/ mixup	79.29	94.63	78.34	94.16	72.51	91.02

6. Result of Object Detection

Incremental Tricks	mAP	$\mid \Delta$	Cumu Δ
- data augmentation	64.26	-15.99	-15.99
baseline	80.25	0	0
+ synchronize BN	80.81	+0.56	+0.56
+ random training shapes	81.23	+0.42	+0.98
+ cosine lr schedule	81.69	+0.46	+1.44
+ class label smoothing	82.14	+0.45	+1.89
+ mixup	83.68	+1.54	+3.43

Table 3. Incremental trick validation results of YOLOv3, evaluated at 416×416 on Pascal VOC 2007 test set.

Incremental Tricks	mAP	Δ	\mid Cumu Δ
- data augmentation	77.61	-0.16	-0.16
baseline	77.77	0	0
+ cosine lr schedule	79.59	+1.82	+1.82
+ class label smoothing	80.23	+0.64	+2.46
+ mixup	81.32	+0.89	+3.55

Table 4. Incremental trick validation results of Faster-RCNN, evaluated at 600×1000 on Pascal VOC 2007 test set.