

正基科技股份有限公司 SPECIFICATION

SPEC. NO.:	-	REV:	1.4
DATE:	09. 16. 2015		110
PRODUCT N	AME:	AP6181	

Customer APPROVED		
Company		
Representative Signature		

DDEDA DED	REV	TEW	- APPROVED DCC ISSU	
PREPARED	PM	QA		

AMPAK

AP6181

Wi-Fi 802.11b/g/n SIP Module Spec Sheet

Revision History

Date	Revision Content	Revised By	Version
2012/10/01	- Initial released	Joe	1.0
2012/12/26	- Modify Pin name 29,30	Brian	1.1
2015/06/10	- Add Mark Dimension	Chris	1.2
2015/08/16	- Modify Physical Dimensions	Brian	1.3
2015/09/16	- Add Process	Brian	1.4
		9, 7/	100

Contents

Re	vision History	. 1
Со	ntents	. 2
1.	Introduction	. 3
2.	Features	
3.	Deliverables	. 5
	3.1 Deliverables	. 5
	3.2 Regulatory certifications	
4.	General Specification	. 6
	4.1 Wi-Fi RF Specification	. 6
	4.2 Voltages	. 7
	4.2.1 Absolute Maximum Ratings	. 7
	4.2.2 Recommended Operating Ratings	. 7
5.	Pin Assignments	. 8
	5.1 PCB Pin Outline	
	5.2 Pin Definition	. 8
6.	Dimensions	10
	6.1 Physical Dimensions	10
	6.2 Recommended Footprint	11
7.	External clock reference	12
	7.1 SDIO Pin Description	12
8.	Host Interface Timing Diagram	13
	8.1 Power-up Sequence Timing Diagram	13
	8.2 SDIO Default Mode Timing Diagram	14
	8.3 SDIO High Speed Mode Timing Diagram	15
9.	Recommended Reflow Profile	16
10	Packing Information	18
	10.1 Label	18
	10.2 Dimension	19
	10.3 MSL Level / Storage Condition	22

1. Introduction

AMPAK Technology would like to announce a low-cost and low-power consumption module which has all of the Wi-Fi functionalities. The highly integrated module makes the possibilities of web browsing, VoIP, headsets and other applications. With seamless roaming capabilities and advanced security, also could interact with different vendors' 802.11b/g/n Access Points in the wireless LAN.

This wireless module complies with IEEE 802.11 b/g/n standard and it can achieve up to a speed of 72.2Mbps with single stream in 802.11n draft, 54Mbps as specified in IEEE 802.11g, or 11Mbps for IEEE 802.11b to connect to the wireless LAN. The integrated module provides SDIO interface for Wi-Fi.

This compact module is a total solution for Wi-Fi technologies. The module is specifically developed for Tablet, Smart phones and Portable devices.

2. Features

- Single-band 2.4GHz IEEE 802.11b/g/n
- Supports standard interfaces SDIO v2.0(50MHz, 4-bit and 1-bit)
- Integrated ARM Cortex-M3TM CPU with on-chip memory enables running IEEE802.11 firmware that can be field-upgraded with future features.
- Security:
 - i. Hardware WAPI acceleration engine
 - ii. AES and TKIP in hardware for faster data encryption and IEEE 802.11i compatibility
 - WPA^TM and $\mathsf{WPA2}^\mathsf{TM}$ (Personal) support for powerful encryption and iii. authentication

A simplified block diagram of the module is depicted in the figure below.

3. Deliverables

3.1 Deliverables

The following products and software will be part of the product.

- Module with packaging
- **Evaluation Kits**
- Software utility for integration, performance test.
- Product Datasheet.
- Agency certified pre-tested report with the adapter board.

3.2 Regulatory certifications

The product delivery is a pre-tested module, without the module level certification. For module approval, the platform's antennas are required for the certification.

4. General Specification

4.1 Wi-Fi RF Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25 ℃

Feature	Description		
Model Name	AP6181		
WLAN Standard	IEEE 802.11b/g/n, WiFi compliant		
Host Interface	SDIO		
Dimension	L x W x H: 12 x 12 x 1.4 (typical) mm		
Frequency Range	2.412 GHz ~ 2.4835 GHz (2.4 GHz ISM Band)		
Number of Channels	11 for North America, 13 for Europe, and 14 for Japan		
Modulation	802.11b : DQPSK, DBPSK, CCK		
Modulation	802.11g/n : OFDM /64-QAM,16-QAM, QPSK, BPSK		
	802.11b /11Mbps : 16 dBm ± 1.5 dB @ EVM ≤ -9dB		
Output Power	802.11g /54Mbps : 15 dBm \pm 1.5 dB @ EVM \leq -25dB		
	802.11n /65Mbps : 14 dBm ± 1.5 dB @ EVM ≤ -28dB		
11/10/1	- MCS=0 PER @ -85 ± 1dBm, typical		
	- MCS=1 PER @ -84 ± 1dBm, typical		
Dagaine Canaitinity	- MCS=2 PER @ -82 ± 1dBm, typical		
Receive Sensitivity (11n,20MHz)	- MCS=3 PER @ -80 ± 1dBm, typical		
@10% PER	- MCS=4 PER @ -77 ± 1dBm, typical		
@10/81 E11	- MCS=5 PER @ -73 ± 1dBm, typical		
	- MCS=6 PER @ -71 ± 1dBm, typical		
	- MCS=7 PER @ -69 ± 1dBm, typical		
	- 6Mbps PER @ -87 ± 1dBm, typical		
	9Mbps PER @ -86 ± 1dBm, typical		
	- 12Mbps PER @ -85 ± 1dBm, typical		
Receive Sensitivity (11g)	- 18Mbps PER @ -83 ± 1dBm, typical		
@10% PER	- 24Mbps PER @ -81 ± 1dBm, typical		
	- 36Mbps PER @ -78 ± 1dBm, typical		
	- 48Mbps PER @ -74 ± 1dBm, typical		
	- 54Mbps PER @ -72 ± 1dBm, typical		
	- 1Mbps PER @ -90 ± 1dBm, typical		
Receive Sensitivity (11b)	- 2Mbps PER @ -89 ± 1dBm, typical		
@8% PER	- 5.5Mbps PER @ -87 ± 1dBm, typical		
	- 11Mbps PER @ -84 ± 1dBm, typical		

802.11g : 6, 9, 12, 18, 24, 36, 48, 54Mbps
000 11m; C.F. 10, 10 F. 00, 00 FO FO F. CEMbra
802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps
802.11n : 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65,72.2Mbps
7.00
802.11b : -10 dBm
802.11g/n : -20 dBm
-30 ℃ to 85 ℃
-40 ℃ to 85 ℃
Operating Humidity 10% to 95% Non-Condensing
Storage Humidity 5% to 95% Non-Condensing

4.2 Voltages

4.2.1 Absolute Maximum Ratings

Symbol	Description		Max.	Unit
VBAT	Input supply Voltage	-0.5	6.5	V
VDDIO	Digital/Bluetooth/SDIO Voltage	-0.5	4.1	V

4.2.2 Recommended Operating Ratings

Test conditions: At room temperature 25 ℃				
Symbol	Min.	Тур.	Max.	Unit
VBAT	3.0	3.6	4.8	V
VDDIO	1.71	-	3.6	V

Note: The voltage of VDDIO is depended on system I/O voltage.

Test conditions: At operating temperature -10 °C ~65 °C				
Symbol	Min.	Тур.	Max.	Unit
VBAT	3.0	3.6	4.8	V
VDDIO	1.71	-	3.6	V

Note: VDDIO operating voltage range from 1.71V to 3.63V at operating temperature is guaranteed.

5. Pin Assignments

5.1 PCB Pin Outline

< TOP VIEW >

5.2 Pin Definition

NO	Name	Туре	Description
1	GND	1	Ground connections
2	WL_BT_ANT	I/O	RF I/O port
3	GND		Ground connections
4	NC	M	Floating (Don't connected to ground)
5	NC	0-	Floating (Don't connected to ground)
6	NC	_	Floating (Don't connected to ground)
7	NC	_	Floating (Don't connected to ground)
8	NC	_	Floating (Don't connected to ground)
9	VBAT	Р	Main power voltage source input
10	XTAL_IN	I	XTAL oscillator input
11	XTAL_OUT	0	XTAL oscillator output
12	WL_REG_ON	I	Internal regulators power enable/disable
13	WL_HOST_WAKE	0	WLAN wake-up HOST
14	SDIO_DATA_2	I/O	SDIO data line 2
15	SDIO_DATA_3	I/O	SDIO data line3

16	SDIO_DATA_CMD	I/O	SDIO command line
17	SDIO_DATA_CLK	I/O	SDIO CLK line
18	SDIO_DATA_0	I/O	SDIO data line 0
19	SDIO_DATA_1	I/O	SDIO data line 1
20	GND	_	Ground connections
21	VIN_LDO_OUT	Р	Internal Buck voltage generation pin
22	VDDIO	Р	I/O Voltage supply input
23	VIN_LDO	Р	Internal Buck voltage generation pin
24	LPO	I	External Low Power Clock input (32.768KHz)
25	NC	_	Floating (Don't connected to ground)
26	NC	-	Floating (Don't connected to ground)
27	NC	_	Floating (Don't connected to ground)
28	NC		Floating (Don't connected to ground)
29	NC	-	Floating (Don't connected to ground)
30	NC	H	Floating (Don't connected to ground)
31	GND	WE.	Ground connections
32	NC	9	Floating (Don't connected to ground)
33	GND	b -	Ground connections
34	NC	_	Floating (Don't connected to ground)
35	NC	_	Floating (Don't connected to ground)
36	GND	- (Ground connections
37	NC	- 1	Floating (Don't connected to ground)
38	NC	700	Floating (Don't connected to ground)
39	NC	14	Floating (Don't connected to ground)
40	NC	7	Floating (Don't connected to ground)
41	NC	+	Floating (Don't connected to ground)
42	NC		Floating (Don't connected to ground)
43	NC	9-	Floating (Don't connected to ground)
44	NC	_	Floating (Don't connected to ground)
45	TP1 (NC)	_	Floating (Don't connected to ground)
46	TP2 (NC)		Floating (Don't connected to ground)
47	TP3 (NC)		Floating (Don't connected to ground)

6. Dimensions

6.1 Physical Dimensions

6.2 Recommended Footprint

(Unit: mm)

< TOP VIEW >

7. External clock reference

External LPO signal characteristics

Parameter	LPO Clock	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	±30	ppm
Duty cycle	30 - 70	%
Input signal amplitude	1600 to 3300	mV, p-p
Signal type	Square-wave or sine-wave	- W
Input impedance	>100k	Ω
Input impedance	<5	pF
Clock jitter (integrated over 300Hz – 15KHz)	<1	Hz

External Ref_CLK signal characteristics

No.	Item	Symb.	Electrical Specification				Remark
NO.			Min.	Туре	Max.	Units	Kemark
1	Nominal Frequency	F0		26.00000		MHz	
2	Mode of Vibration			Funda	mental	•	
3	Frequency Tolerance	△F/F0	-10	-	10	ppm	at 25°C ±3°C
4	Operating Temperature Range	Topr	-30	-	85	$^{\circ}\!\mathbb{C}$	
5	Frequency Stability	TC	-10	-	10	ppm	
6	Storage Temperature	T _{STG}	-55	-	125	$^{\circ}\!\mathbb{C}$	
7	Load capacitance	CL	-	16		pF	
8	Equivalent Series Resistance	ESR	-	-	50	Ω	
9	Drive Level	DL	-	100	200	μW	
10	Insulation Resistance	IR	500	-	-	ΜΩ	At 100V _{DC}
11	Shunt Capacitance	C0	-	-	3	pF	
12	Aging Per Year	Fa	-2	-	2	ppm	First Year

7.1 SDIO Pin Description

The module supports SDIO version 2.0 for 4-bit modes It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This 'out-of-band' interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B)

SDIO Pin Description

SD 4-Bit Mode					
DATA0	Data Line 0				
DATA1	Data Line 1 or Interrupt				
DATA2	Data Line 2 or Read Wait				
DATA3	Data Line 3				
CLK	Clock				
CMD	Command Line				

8. Host Interface Timing Diagram

8.1 Power-up Sequence Timing Diagram

WL_REG_ON: Internal regulators power enable/disable.
This pin must be driven high or low (not left floating).

8.2 SDIO Default Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit	
SDIO CLK (All values are refferred to minimum VIH and maximum VIL ^b)						
Frequency-Data Transfer mode	fPP	0	-	25	MHz	
Frequency-Identification mode	fOD	0	-	400	kHz	
Clock low time	tWL	10	-	-	ns	
Clock high time	tWH	10	-	-	ns	
Clock rise time	tTLH	-	-	10	ns	
Clock low time	tTHL	-	-	10	ns	
Inputs: CMD, DAT (referenced to CLK)						
Input setup time	tISU	5	-	-	ns	
Input hold time	tIH	5	-	-	ns	
Outputs: CMD, DAT (referenced to CLK)						
Output delay time - Data Transfer mode	tODLY	0	-	14	ns	
Output delay time - Identification mode	tODLY	0	-	50	ns	

a. Timing is based on CL ≤ 40pF load on CMD and Data.

b. $min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

8.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit	
SDIO CLK (All values are refferred to minimum VIH and maximum VIL ^b)						
Frequency-Data Transfer mode	fPP	0	-	50	MHz	
Frequency-Identification mode	fOD	0	-	400	kHz	
Clock low time	tWL	7	-	-	ns	
Clock high time	tWH	7	-	-	ns	
Clock rise time	tTLH	-	-	3	ns	
Clock low time	tTHL	-	-	3	ns	
Inputs: CMD, DAT (referenced to CLK)						
Input setup time	tISU	6	-	-	ns	
Input hold time	tIH	2	-	-	ns	
Outputs: CMD, DAT (referenced to CLK)						
Output delay time - Data Transfer mode	tODLY	-	-	14	ns	
Output hold time	tOH	2.5	-	-	ns	
Total system capacitance (each line)	CL	-	-	40	pF	

a. Timing is based on CL \leq 40pF load on CMD and Data.

b. min(Vih) = 0.7 x VDDIO and max(ViI) = 0.2 x VDDIO.

9. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : <250 ℃ Number of Times : ≤2 times

It must use N2 for reflow and suggest the concentration of oxygen less than 5000 ppm.

Solder Paste definition

- PCB pad design reference for AP Series models :
 - Module Specifications L 0.7mm
 - The design for PCB Pad : L:0.7mm
 - We recommen the apertures for stencil L:0.5mm 0.6mm
 - In order to avoid highness impact caused solder paste thickness, the stencil open size can be appropriately retracted

10. Packing Information

10.1 Label

Label A → Anti-static and humidity notice

Label B → MSL caution / Storage Condition

	Caution This bag contains MOISTURE-SENSITIVE DEVICES Hobark, see adjacent bar code label
	. Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
l	. Peak package body temperature:°C
	. After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
	a) Mounted within: hours of factory conditions ≤30°C/60% RH, or
	b) Stored per J-STD-033
	. Devices require bake, before mounting, if:
	a) Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at 23 \pm 5°C
	b) 3a or 3b are not met
	. If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure
	ag Seal Date: # blank, see adjacent bar code label
	Note: Level and body temperature defined by IPC/JEDEC J-STD-020

Label C → Inner box label.

Model: P/N: Qty:

Label D → Carton box label.

10.2 Dimension

W	24.00±0.30
Α0	12.30±0.10
В0	12.30±0.10
K0	1.80±0.10
E	1.75±0.10
F	11.50±0.10
P0	4.00±0.10
P1	16.00±0.10
P2	2.00±0.10
D0	1,50 +0.10
D1	Ø1.50MIN

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 2. Carrier camber is within 1 mm in 250 mm.
- 3. Material: Black Conductive Polystyrene Alloy.
- 4. All dimensions meet EIA-481-D requirements.
- 5. Thickness: 0.30±0.05mm.
- 6. Packing length per 22" reel: 98.5 Meters.(1:3)
- 7. Component load per 13" reel: 1500 pcs.

10.3 MSL Level / Storage Condition

Caution This bag contains MOISTURE-SENSITIVE DEVICES

- Calculated shelf life in sealed bag:12months at<40 ℃ and <90% relative humidity(RH)
- Peak package body temperature:
- 3. After bag is opened devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted within: hours of factory conditions If blank, see adjacent bar code label

≤30°C/60% RH.or

- b) Stored per J-STD-033
- 4. Devices require bake, before mounting, if:
 - a) Humidity Indicator Card reads>10% for level 2a-5a devices or>60% for level 2 devices when read at 23±5℃
 - b) 3a or 3b are not met.
- 5.If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure.

Bag Seal Date: ___ If blank, see adjacent bar code label

Note: Level and body temperature defined by IPC/JEDEC J-STD-020

***NOTE**: Accumulated baking time should not exceed 96hrs