CHAPTER 4:

Parametric Methods

 Use the Model is defined with small number of parameters

 Assume some distribution and estimate the parameters of the distribution

Use the distribution to make decisions

TROJANS

Parametric Estimation

- $X = \{x^t\}_t$ where $x^t \sim p(x)$
- Parametric estimation:

Assume a form for p ($x \mid \theta$) and estimate θ , its sufficient statistics, using X

e.g., N (μ , σ^2) where $\theta = \{\mu, \sigma^2\}$

Maximum Likelihood Estimation

Bias rule: $p(\theta \mid X) = p(X \mid \theta) p(\theta) / p(X)$

ullet Likelihood of heta given the sample ${\mathcal X}$

$$I(\vartheta \mid \theta) = p(X \mid \theta) = \prod_{t} p(x^{t} \mid \theta)$$

Goal: given X what is the best θ which describes data

Log likelihood

$$\mathcal{L}(\theta \mid \mathcal{X}) = \log I(\theta \mid \mathcal{X}) = \sum_{t} \log p(x^{t} \mid \theta)$$

Maximum likelihood estimator (MLE)

$$\theta^* = \operatorname{argmax}_{\theta} \mathcal{L}(\vartheta \mid \theta)$$

TROUM

Examples: Bernoulli/Multinomial

Bernoulli: Two states, failure/success, x in {0,1}

$$P(x) = p_o^{x} (1 - p_o)^{(1-x)}$$

$$\mathcal{L}(p_o | \mathcal{X}) = \log \prod_t p_o^{x^t} (1 - p_o)^{(1-x^t)}$$

$$MLE: p_o = \sum_t x^t / N$$

Multinomial: K>2 states, x_i in {0,1}

$$P(x_1,x_2,...,x_K) = \prod_i p_i^{x_i}$$

$$\mathcal{L}(p_1,p_2,...,p_K | \mathcal{X}) = \log \prod_t \prod_i p_i^{x_i^t}$$
 MLE:
$$p_i = \sum_t x_i^t / N$$

Gaussian (Normal) Distribution

•
$$p(x) = \mathcal{N}(\mu, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

• MLE for μ and σ^2 :

$$m = \frac{\sum_{t} x^{t}}{N}$$

$$s^{2} = \frac{\sum_{t} (x^{t} - m)^{2}}{N}$$

Bias and Variance

Unknown parameter θ Estimator $d_i = d(X_i)$ on sample X_i

Bias: $b_{\theta}(d) = E[d] - \theta$

Variance: $E[(d-E[d])^2]$

Mean square error:

$$r(d,\theta) = E[(d-\theta)^{2}]$$

= $(E[d] - \theta)^{2} + E[(d-E[d])^{2}]$
= Bias² + Variance

Bayes' Estimator

- Suppose we do know something about the parameter
- Treat θ as a random var with prior $p(\theta)$
- Bayes' rule: $p(\theta | X) = p(X | \theta) p(\theta) / p(X)$
- Full: $p(x|X) = \int p(x|\theta) p(\theta|X) d\theta$
- Maximum a Posteriori (MAP): $\theta_{MAP} = \operatorname{argmax}_{\theta} p(\theta \mid X)$
- Maximum Likelihood (ML): θ_{ML} = argmax $_{\theta}p(X|\theta)$
- Bayes': $\theta_{\text{Bayes'}} = E[\theta \mid X] = \int \theta p(\theta \mid X) d\theta$

Bayes' Estimator: Example

- $x^t \sim \mathcal{N}(\theta, \sigma_0^2)$ and $\theta \sim \mathcal{N}(\mu, \sigma^2)$
- $\bullet \theta_{MI} = m$
- $\theta_{\text{MAP}} = \theta_{\text{Bayes'}} =$ $E[\theta \mid \mathcal{X}] = \frac{N/\sigma_0^2}{N/\sigma_0^2 + 1/\sigma^2} m + \frac{1/\sigma^2}{N/\sigma_0^2 + 1/\sigma^2} \mu$

Parametric Classification

$$g_{i}(x) = p(x | C_{i})P(C_{i})$$
or
$$g_{i}(x) = \log p(x | C_{i}) + \log P(C_{i})$$

$$p(x \mid C_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

$$g_i(x) = -\frac{1}{2}\log 2\pi - \log \sigma_i - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log P(C_i)$$

• Given the sample
$$X = \{x^t, r^t\}_{t=1}^N$$

$$X \in \Re$$

$$r_i^t = \begin{cases} 1 \text{ if } x^t \in C_i \\ 0 \text{ if } x^t \in C_j, j \neq i \end{cases}$$

ML estimates are

$$\hat{P}(C_{i}) = \frac{\sum_{t} r_{i}^{t}}{N} \quad m_{i} = \frac{\sum_{t} x^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}} \quad s_{i}^{2} = \frac{\sum_{t} (x^{t} - m_{i})^{2} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Discriminant becomes

$$g_i(x) = -\frac{1}{2} \log 2\pi - \log s_i - \frac{(x - m_i)^2}{2s_i^2} + \log \hat{P}(C_i)$$

