TỔNG HỢP HỮU CƠ ĐIỆN HÓA

I. Giới thiệu chung

- Hiện nay có hàng chục nghìn phản ứng tổng hợp hữu cơ được thực hiện bằng phương pháp điện hóa.
- -Sản lượng chất hữu cơ rất khác nhau:
 - các chất s/x với SL lớn thường đơn giản, phân tử lượng thấp, đa số được s/x bằng cracking dầu mỏ (xúc tác pha khí, công nghệ ống nóng,...) công nghệ ổn định và rẻ tiền.
 - những chất HC SL thấp thường có phân tử lớn, phức tạp, nhiều nhóm chức, chuyên dụng là sp của chuỗl nhiều pứ nốl tiếp nhau \rightarrow vai trò của điện hóa.
 - Trong Lab mọi pứ HC có kèm sự trao đổI ē đều có thể thực hiện bằng pp điện hóa,
- Trực tiếp và gián tiếp.
 - Có nhiều cách thức để đến sp, chọn lựa công nghệ, nguyên liệu đầu,... tùy theo tính kinh tế và yêu cầu của sp.

Ưu điểm

- phổ rộng các pứ oxy hóa và khử có thể thực hiện
- Nhiều tác nhân oxy hóa hay khử dùng trong tổng hợp HC bản thân được s/x = pp điện hóa : Na, K, Zn, Cl₂, Cr₂O₇²⁻, S₂O₈²⁻, ...
- Nếu xét riêng công đoạn pứ oxyhóa—khử thì ē là tác nhân oxyhóa—khử rẻ tiền nhất, linh hoạt và sẵn có, có thể s/x điện = nhiều pp: nhiệt (dầu, khí, than), hạt nhân (rẻ), mặt trờl, gió, thủy điện...
- Khác với đa số pứ oxyhóa–khử HC = pp hóa học, pứ đ/cực an toàn hơn: cháy, nổ, độc hại ...
- Có tính chọn lọc, sản phẩm tinh khiết hơn so với pp hóa học thông thường.
- dễ dàng điều khiển theo ý muốn

Nhược điểm

Dung môi:

Chất điện giải phụ

Hệ dung môi/chất điện ly: giá thành, xử lý,

Độ bền (tuổi thọ) của vật liệu điện cực, vách ngăn... trong hệ dung môi/chất điện ly.

Đánh giá 1 pứ điện tổng hợp HC

- Nguyên liệu đầu: sẵn có?, giá?
- Năng suất (độ chuyển chất) cho sp mong muốn (đặc biệt khi NL đầu đắt)
- Dạng và lượng sp phụ giảm độ tinh khiết của sp chính.
- Chí phí tách sp tinh khiết ra khỏl mt điện phân.
- Dòng cực đạI liên quan SL, nồng độ (độ hòa tan) chất hoạt điện, đk chuyển chất,....
- Tiêu thụ điện năng : không đáng kế.
- Phản ứng trên điện cực đối: lý tưởng là thu được sp trên cả 2 đ/c rất khó khăn (cùng lúc cần đk thích hợp cho cả 2 pứ; khó khăn cách ly sp,...) → *pứ trên điện cực đối không gây hại* cho pứ chính.
- -Tính bền hóa học và điện hóa của môi trường điện ly, các cấu thành...

Hiệu suất phụ thuộc vào vật liệu làm catod

Trong cùng điều kiện điện phân thì hiệu suất của sản phẩm theo vật liệu làm catod như sau:

Vật liệu catod	Graphit	Cd	Pb	Hg	Ni
Hiệu suất ADN %	99,6	95,4	88	86,4	81

- * Hiệu suất sản phẩm tốt nhất khi vật liệu catod có quá thế hidro cao như chì, graphit, cadimi.
- * Hiện nay thường dùng Cd vì cho hiệu suất ốn định trong thời gian vận hành lâu dài

So sánh hai công nghệ Monsanto

	Có màng ngăn	Không màng ngăn
% adiponitrile	92	88
Gap giữa đ/cực, cm	0,7	0,18
Độ dẫn điện, Ω.cm	38 (catolit)	12
Tốc độ chảy, m/s	2	1-1,5
Mật độ dòng, A/cm²	0,45	0,20
Phân bố thế, V:		
E	2,5	2,5
$\Sigma\eta$	1,22	0,87
iR _{dd}	6,24	0,47
iR _{màng}	1,69	-
Tổng hiệu thế bình	11,65	3,84
Tiêu thụ năng lượng, kWh/tấn	6700	2500