

Laboratório de Organização de Computadores **Atividade 2**

O objetivo desta atividade é permitir que o aluno seja capaz de criar um programa em linguagem assembly que manipule caracteres ASCII adequadamente.

Parte 1 – Tabela ASCII

Observe a tabela ASCII a seguir:

Tabela ASCII

Dec	Hx O	t Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	nr
0	0 00	O NUL	(null)	32	20	040		Space	64	40	100	@	0	96	60	140	`	*
1	1 00	1 SOH	(start of heading)	33	21	041	!	!	65	41	101	A	A	97	61	141	a	a
2	2 00	2 STX	(start of text)	34	22	042	6#34;	er	66	42	102	B	В	98	62	142	b	b
3	3 00	3 ETX	(end of text)	35	23	043	#	#				C					c	
4	4 00	4 EOT	(end of transmission)	36	24	044	\$	ş	68	44	104	D	D	100	64	144	d	d
5	5 00	5 ENQ	(enquiry)	37	25	045	6#37;	*									e	
6	6 00	6 ACK	(acknowledge)	38	26	046	%#38 ;	6									f	
7	7 00	7 BEL	(bell)	39	27	047	6#39;	1									g	
8	8 01	0 BS	(backspace)	40	28	050	((1000			1000	100		100000		h	
9	9 01	1 TAB	(horizontal tab)	41	29	051))									i	
10	A 01	2 LF	(NL line feed, new line)	42	2A	052	*	*									j	
11	B 01	3 VT	(vertical tab)			10000	6#43;										k	
12	C 01	4 FF	(NP form feed, new page)	44	20	054	6#44;	,									l	
13	D 01	5 CR	(carriage return)	45	2D	055	-	= 1	77	4D	115	6#77;	M	109	6D	155	m	m
14	E 01	6 50	(shift out)	46	2E	056	a#46;		78	4E	116	4#78;	N	110	6E	156	n	n
15	F 01	7 SI	(shift in)	47	2F	057	6#47;	_	79	4F	117	O	0	111	6F	157	o	0
16	10 02	O DLE	(data link escape)				a#48;		80	50	120	£#80;	P	112	70	160	p	p
17	11 02	1 DC1	(device control 1)	49	31	061	6#49;	1	81	51	121	Q	Q	113	71	161	q	q
18	12 02	2 DC2	(device control 2)	50	32	062	a#50;	2	82	52	122	R	R	114	72	162	r	r
19	13 02	3 DC3	(device control 3)	51	33	063	6#51;	3									s	
20	14 02	4 DC4	(device control 4)	52	34	064	4	4	84	54	124	T	T	116	74	164	t	t
21	15 02	5 NAK	(negative acknowledge)	53	35	065	5	5									u	
22	16 02	6 SYN	(synchronous idle)	54	36	066	a#54;	6	86	56	126	V	A	118	76	166	v	V
23	17 02	7 ETB	(end of trans. block)	55	37	067	7	7	87	57	127	W	W	119	77	167	w	w
24	18 03	O CAN	(cancel)	56	38	070	a#56;	8	88	58	130	£#88;	X	120	78	170	x	x
25	19 03	1 EM	(end of medium)	57	39	071	a#57;	9	89	59	131	Y	Y	121	79	171	y	У
26	1A 03	2 SUB	(substitute)	58	ЗA	072	a#58;	:	90	5A	132	Z	Z	122	7A	172	z	Z
27	1B 03	3 ESC	(escape)	59	3B	073	;	;	91	5B	133	[[123	7B	173	{	1
28	1C 03	4 FS	(file separator)	60	30	074	<	<	92	5C	134	\	1	124	70	174	6#124;	1
29	1D 03	5 GS	(group separator)	61	3D	075	=	=	93	5D	135]]	125	7D	175	}	}
30	1E 03	6 RS	(record separator)	62	3E	076	>	>	94	5E	136	6#94;					~	
31	1F 03	7 US	(unit separator)	63	3F	077	?	?	95	5F	137	_	_	127	7F	177	6#127;	DEI
				• court inc								5	ourc	e: 4	AVVV.	Look	upTables	

A tabela ASCII tem a função de mapear **caracteres** a **códigos de 8 bits** (geralmente representados em seu valor binário, decimal ou hexadecimal).

Na tabela acima podemos ver, por exemplo, que o código ASCII do caracter "A" corresponde ao valor **65** (em decimal), ou **41h** (em hexadecimal), que corresponde aos 8 bits **01000001b**.

Da mesma forma, podemos observar que o código ASCII do caracter "a" corresponde ao valor **97** (em decimal), ou **61h** (em hexadecimal), que corresponde aos 8 bits **01100001b**.

Já o código ASCII do caracter **"1"** corresponde ao valor **49** (em decimal), ou **31h** (em hexadecimal), que corresponde aos 8 bits **00110001b**.

Observe que nos programas em linguagem assembly:

- caracteres são representados entre aspas simples ou aspas duplas. Ex: 'A' ou "A"
- valores **decimais** são representados por números que podem <u>opcionalmente</u> ser terminados com a **letra D (ou d)**. Ex: 65 ou 65D ou 65d
- valores hexadecimais são representados por números <u>sempre</u> terminados com a letra
 H (ou h). Ex: 41H ou 41h
- valores binários são representados por números <u>sempre</u> terminados com a letra B (ou
 b). Ex: 01000001B ou 01000001b

Laboratório de Organização de Computadores **Atividade 2**

Parte 2 - Programa: CONVERTE.ASM

- 1) Crie a pasta C:\Temp\OC
- 2) Faça o download dos arquivos TASM.EXE e TLINK.EXE na pasta C:\Temp\OC
- 3) Abra o Bloco de Notas (ou o JEdit / ou o Notepad++) e digite o programa a seguir:

```
TITLE Converte
.MODEL SMALL
.STACK 100h
.DATA
                     "Digite uma letra minuscula: $"
    MSG1 DB
                     10,13,"Convertida para maiuscula: $"
    MSG2 DB
.CODE
    ; Permite o acesso às variáveis definidas em .DATA
    MOV AX,@DATA
    MOV DS,AX
    ; Exibe na tela a string MSG1 ("Digite uma letra minuscula: ")
    MOV AH,9
    LEA DX,MSG1
    INT 21h
    ; Lê um caracter do teclado e salva o caracter lido em AL
    MOV AH,1
    INT 21h
    ; Copia o caracter lido para BL
    MOV BL,AL
    ; Exibe na tela a string MSG2 ("Convertida para maiuscula: ")
    MOV AH,9
    LEA DX,MSG2
    INT 21h
    ; Converte a letra minuscula para maiuscula (subtrai 32 de BL)
    SUB BL,32
    ; Exibe a letra convertida (salva em BL)
    MOV AH,2
    MOV DL,BL
    INT 21h
    ; Finaliza o programa
    MOV AH,4Ch
    INT 21h
END
```

- 4) Salve o arquivo com o nome CONVERTE.ASM na pasta C:\Temp\OC
- 5) Abra o **DOS Box**
- 6) Execute o comando: mount C C:\Temp\OC
- 7) Execute o comando: C:
- 8) Execute comando: **DIR** (verifique se os arquivos **TASM.EXE**, **TLINK.EXE** e **CONVERTE.ASM** estão na pasta atual)
- 9) Para compilar o programa, execute o comando: TASM CONVERTE.ASM
- 10) Execute o comando: DIR (verifique se o arquivo CONVERTE.OBJ foi criado com sucesso)
- 11) Para gerar um executável, execute o comando: TLINK CONVERTE.OBJ
- 12) Execute o comando: DIR (verifique se o arquivo CONVERTE.EXE foi criado com sucesso)
- 13) Execute o programa com o comando: CONVERTE.EXE

Laboratório de Organização de Computadores **Atividade 2**

Atividade para entrega

Crie um programa em linguagem assembly chamado **ATIV2.ASM** que exibe uma mensagem na tela solicitando ao usuário que digite um primeiro número (de 0 a 9), lê o caracter digitado do teclado, exibe uma mensagem na linha seguinte solicitando ao usuário que digite um segundo número (de 0 a 9), lê o caracter digitado do teclado, exibe uma mensagem na linha seguinte informando qual o valor da soma do primeiro com o segundo número e exibe o caracter contendo o resultado da soma.

OBS: A soma dos dois números nunca deve ultrapassar o valor 9, ou seja, o usuário sempre deve digitar dois números cuja soma seja menor ou igual a 9.

Exemplo:

C:\> ATIV2.EXE

Digite um primeiro numero: **2**Digite um segundo numero: **5**A soma dos dois numeros e: **7**

ENTREGA

Cada aluno deve:

- 1) Criar uma pasta em seu escaninho no AVA com o nome Atividade2
- 2) Postar o arquivo ATIV2.ASM dentro da pasta Atividade2.