

UE LU3EE104 - 2019/20 - Corrigé de l'écrit réparti n°1

Exercice 1:

a. La tension est choisie comme origine des phase, donc : $\underline{V} = |\underline{V}|$. $e^{j.0} = 400 [V]$. $\underline{I_1} = \frac{\underline{V}}{R_1} \implies \underline{I_1} = \frac{400}{100} = 4,0 [A]$

Valeur efficace = module de l'intensité complexe $\left| \underline{I_1} \right| = 4,0 \ [A]$

Phase à l'origine de $I_1=\arg\ I_1=0$

b.
$$\underline{I_2} = \frac{\underline{V}}{R_2 + jX_2} \implies \underline{I_2} = \frac{400}{30 + j40} = \frac{400}{30^2 + 40^2} \times (30 - j40) = 8,0 \times (0,3 - j0,4)$$

Valeur efficace = module de l'intensité complexe $\left| \underline{I_2} \right| = \frac{400}{\sqrt{30^2 + 40^2}} = 8,0 \ [A]$

Phase à l'origine de $\underline{I_2} = \arg \underline{I_2} = - \tan \left(\frac{0.4}{0.3} \right) = -53,1^{\circ}$

c.
$$\underline{I} = \underline{I_1} + \underline{I_2}$$

 $I = 4.0 + 8.0 \times [0.6 - j. 0.8] = 8.8 - j. 6.4 [A]$

Valeur efficace : $|\underline{I}| = 10,9 [A]$

Phase de
$$I = \arg I = - \arctan \left(\frac{6.4}{8.8} \right) = -36.0^{\circ}$$

d.

e.
$$\underline{S} = \underline{V} \cdot \underline{I}^* = P + j \cdot Q$$
.

$$\underline{S} = 400 \times (8.8 + j.6.4) = 3520 + j.2560$$
, d'où $P = 3520 [W]$ et $Q = 2560 [VAR]$

$$S = |\underline{S}| = 4352 [VA]$$

Par définition :
$$FP = \frac{P}{S} = \frac{3520}{4352} = 0.81$$

Exercice 2:

a.

b.
$$P_Z = 3 \times Re[\underline{Z}] \times (\underline{U})^2 = 3 \times 80 \times (\frac{400}{100})^2 = 3840 [W]$$

$$Q_Z = 3 \times Im[\underline{Z}] \times [\frac{U}{Z}]^2 = 3 \times 60 \times [\frac{400}{100}]^2 = 2880 [W]$$

c.
$$P_{moteur} = \frac{P_{m\acute{e}ca}}{\eta} = 8\ 000\ [W]$$

$$Q_{moteur} = P_{moteur} \frac{\sin \varphi}{\cos \varphi} = 8000 \times \frac{0.8}{0.6} = 10667 [VAR]$$

$$P_{atelier} = P_{moteur} + P_Z + P_{lampes} = 8000 + 3840 + 3 \times 1000 = 14840 [W]$$

$$Q_{atelier} = Q_{moteur} + Q_Z + Q_{lampes} = 10667 + 2880 + 3 \times 0 = 13547 [VAR]$$

d.
$$S_{atelier} = 3 \times V \times I$$
, et $S_{atelier} = \sqrt{P_{atelier}^2 + S_{atelier}^2} = 20~093~[VA]$

$$I = \frac{S_{atelier}}{3 \times V} = \frac{20093}{3 \times 230} = 29,1 [A]$$

$$FP_{atelier} = \frac{P_{atelier}}{S_{atelier}} = \frac{14840}{20093} = 0.74$$

pas acceptable car inférieur à 0,8

e.
$$Q_{compens\'e} = Q_{atelier} + Q_{condensateurs}$$

Valeur à obtenir :
$$Q_{compens\'e} = P_{atelier} \times \frac{\sin \varphi}{\cos \varphi}$$
, avec $\cos \varphi = 0.8$

$$Q_{compensé} = 14840 \times \frac{0.6}{0.8} = 11130 [VAR]$$

D'où
$$Q_{condensateurs} = 11 \ 130 - 13 \ 547 = -2417 \ [VAR]$$

Par ailleurs :
$$Q_{condensateurs} = -3 \times C\omega \times U^2$$
,

d'où
$$C = \frac{-Q_{condensateurs}}{3 \times U^2 \times \omega} = \frac{2417}{3 \times 400^2 \times 100\pi} = 16 \times 10^{-6} [F]$$

Dans ces conditions :
$$S_{compens\acute{e}} = \sqrt{14\ 840^2 + 11\ 130^2} = 18\ 550\ [VA]$$

$$I_{compensé} = \frac{18550}{3 \times 230} = 26,9 [A]$$

La compensation permet de réduire les courants de ligne, pour une même puissance active fournie.

Exercice 3:

a. Sur $[0, \alpha T]$: K1 fermé, donc $v_{K1} = 0$,

d'où
$$v_L = U = 40 [V]$$
 et $v_{K2} = -E = -100 [V]$

Sur $[\alpha T, T]$: K2 fermé, donc $v_{K2} = 0$,

d'où
$$v_L = U - E = -60 [V] v_{K1} = E = 100 [V]$$

Chronogrammes des tensions

b.
$$\langle v_L \rangle = \frac{1}{T} [\alpha T \times U + (1 - \alpha)T \times (U - E)] = U - (1 - \alpha).E$$

Par ailleurs :
$$\langle v_L \rangle = \frac{1}{T} \int_0^T v_L(t) \, dt$$
 et $v_L(t) = L \cdot \frac{di_{PV}}{dt}(t)$

Donc:
$$\langle v_L \rangle = \frac{1}{T} \int_0^T L \cdot \frac{di_{PV}}{dt}(t) \cdot dt = \frac{L}{T} [i_{PV}(t)]_0^T = \frac{L}{T} [i_{PV}(T) - i_{PV}(0)]$$

En régime périodique :
$$i_{PV}(T) = i_{PV}(0)$$
, donc $\langle v_L \rangle = 0$

On en déduit que
$$U-(1-\alpha)$$
. $E=0$, d'où $\alpha=1-\frac{U}{E}=0.6$

c. Sur
$$[0, \alpha T]$$
: $v_L = L \cdot \frac{di_{PV}}{dt}(t) = U$, donc: $i_{PV}(t) = \frac{U}{L}t + C_1$

$$i_{PV}(t=0) = i_0$$
, donc $C_1 = i_0$ et $i_{PV}(t) = \frac{v_{PV}}{L}t + i_0$

Sur
$$[\alpha T, T]$$
: $v_L = L \cdot \frac{di_{PV}}{dt}(t) = U - E$, donc: $i_{PV}(t) = \frac{U - E}{L}t + C_2$

$$i_{PV}(t=T) = i_0$$
, donc $\frac{U-E}{L}T + C_2 = i_0$ et $i_{PV}(t) = \frac{U-E}{L}(t-T) + i_0$

$$i_{\alpha} = i_0 + \frac{U}{L} \alpha T$$

d. Compte tenu de la forme affine du courant, $\langle i_{PV} \rangle = \frac{i_0 + i_\alpha}{2}$. De plus, $\langle \Delta i_{PV} \rangle = i_\alpha - i_0$.

On obtient donc
$$i_{\alpha} = \langle i_{PV} \rangle + \frac{1}{2} \langle \Delta i_{PV} \rangle = 10.5 [A]$$
 et $i_0 = \langle i_{PV} \rangle - \frac{1}{2} \langle \Delta i_{PV} \rangle = 9.5 [A]$.

Chronogrammes des courants

e. Caractéristiques tension-courant des interrupteurs :

Pour K1, il faut un transistor

Pour K2, il faut une diode

Exercice 4:

Pour $0 \le \theta < 2\pi$: D est passante pour $\frac{\pi}{6} \le \theta \le \frac{5\pi}{6}$

$$v_s(\theta) = \begin{cases} \sqrt{2}V\sin(\theta) & si \frac{\pi}{6} \le \theta \le \frac{5\pi}{6} \\ E & ailleurs \end{cases}$$

$$v_D(\theta) = \begin{cases} 0 & \text{si } \frac{\pi}{6} \le \theta \le \frac{5\pi}{6} \\ \sqrt{2}V \sin(\theta) - E & \text{ailleurs} \end{cases}$$

$$i_s(\theta) = \begin{cases} \frac{\sqrt{2}V\sin(\theta) - E}{R} & \text{si } \frac{\pi}{6} \le \theta \le \frac{5\pi}{6} \\ 0 & \text{ailleurs} \end{cases}$$

