

第三章: 流体静力学

本章内容

- 1 流体静力学基本概念
- 2 作用于平面的压力
- 3 作用于曲面的压力
- 4 浮力
- 5 标准大气模型

1. 流体静力学

◆定义

研究静止流体的压力、密度、温度分布以及流体对器壁或物体的作用力。

◆流体静力学问题的例子

三峡大坝:全球瞩目的水电奇迹

流体静力学

- ◆研究流体在静止状态下的力学规律。
 - ●静止流体压力分布及对固壁、漂浮物和浸入物的作用
 - ●静止含义
 - ▶ 绝对静止:流体相对于惯性坐标系静止
 - ▶ 相对静止:流体相对于非惯性参考坐标系静止
- ◆适用范围:静止状态 U=0
 - ●实际流体、理想流体都是适用的。
 - ●流体不存在切应力、只存在压应力-压强。
- ◆控制方程
 - 积分形式 $\int_{V} (\rho \mathbf{f} \nabla p) dV = 0$ 微分形式 $\rho \mathbf{f} \nabla p = 0$

静压强的特性

◆流体静压力:流体单位面积上所受到的垂直于该 表面的力,即物理学中的压强,简称压力。

$$p = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{dF}{dA}$$

- ◆特性一(方向)
 - ●静压力沿着作用面的内法线 方向,即垂直地指向作用面。

- ◆特性二(大小)
 - ●静止流体中任何一点上各个方向的静压力大小相等, 与作用方向无关。只与空间位置有关。

绝对压力和相对压力

◆流场中一点的压力是绝对压力, 通过与绝对真空比较获得。

如果 $p > p_{atm}$ 表压Gage pressure: $p_{gage} = p - p_{atm}$

如果 $p < p_{atm}$ 真空压Vacuum pressure: $p_{vacuum} = p_{atm} - p$

压力

◆压力是各向同性的

- ●在水平面内没有变化的压力
- ●在垂直方向上的压力梯度正比于密度、重力和高度差dZ
- ●当流体元素变成一个点时,有: p, = p, = p, = p

压力在微元上的合力

- ◆假设流体中的任意压力场:
 - ●压力是一个作用在单元所有面上, 沿法线方向的表面力。

●压力梯度(不是压力)使得重力和(或)运动加速度得到平衡。

流体静力学方程

◆对静止流体,压力梯度和重力平衡

$$\vec{\nabla} p = \rho \ \vec{g}$$

- ◆在通常的参考坐标系中, z轴是垂直方向, 有: $\vec{g} = -g \vec{k}$, 其中 $g = 9.8 \text{ m}^2/\text{s}$ 。
- ◆压力梯度变为:

$$\frac{\partial p}{\partial x} = 0 \qquad \frac{\partial p}{\partial y} = 0 \qquad \frac{\partial p}{\partial z} = -\rho g = -\gamma$$

比重: $\gamma = \rho g$

$$\frac{\partial p}{\partial z} = -\gamma \qquad \qquad p_2 - p_1 = -\int_1^2 \gamma \ dz \quad (1)$$

流体静力学的压力分布

- ◆在均匀分布流体中的压力变化仅与高度相关,并且不依赖于容器的 形状。
- ◆对同一种流体介质, 压力在同一水平面上的个点都相同。

◆对于液体(不可压),式(1)变为:

$$p_2 - p_1 = -\gamma (z_2 - z_1)$$
 or $z_1 - z_2 = \frac{p_2}{\gamma} - \frac{p_1}{\gamma}$

◆变量p/y是一个长度, 称为流体垂直高度

例1: 水银气压表

$$p_2 - p_1 = -\gamma (z_2 - z_1)$$

◆水银在室温下的饱和蒸气压很低: p₁≈0.

$$p_a - 0 = -\gamma_{Hg}(0 - h)$$
 或者
$$h = \frac{p_a}{\gamma_{Hg}}$$

例2: 气压计

◆气压计原理:一段单种或者多种流体用于测量两点之间的压差。

$$p_A + \gamma_1 |z_A - z_1| - \gamma_2 |z_1 - z_2| = p_2 = p_a$$

· 液柱上升或者下降时, γ /Δz/增加或者减少

例: 匀加速运动容器中流体的相对平衡

如图,容器沿水平面以加速度a作等加速直线运动。

- ◆ 受力情况:
 - 重力
 - 惯性力 大小为ma,方向与加速度 方向相反的。

惯性力是为了应用静力学 方法求解动力学问题而假设的虚拟力。

此时, 作用在单位质量流体上的质量力为

$$\begin{cases} f_x = -a \\ f_y = 0 \end{cases}$$
$$f_z = -g$$

匀加速运动容器中流体的相对平衡

1、流体静压力分布规律

将单位质量力代入
$$dp = \rho (\mathbf{f}_x dx + \mathbf{f}_y dy + \mathbf{f}_z dz)$$

得 $dp = \rho (-adx - gdz)$

积分得
$$p = -\rho(ax + gz) + c$$

由边界条件x=0, z=0时 $p=p_0$, 有 $c=p_0$

得容器中液体的静压力分布公式。

$$p = p_0 - \rho(ax + gz)$$

它表明压力会随 z和 x 的变化而变化

匀加速运动容器中流体的相对平衡

2、等压面方程

将单位质量力的分力代入式 $(f_x dx + f_y dy + f_z dz) = 0$

积分得
$$ax + gz = c$$

由边界条件x=0时z=0 得

$$ax + gz_s = 0$$
 或 $z_s = -\frac{a}{g}x$ z_s 为自由液面的 z 坐标。

匀加速运动容器中流体的相对平衡

回过头来再分析 $p = p_0 - \rho(ax + gz)$

$$p = p_0 - \rho(ax + gz) = p_0 + \rho g(-\frac{a}{g}x - z)$$

$$= p_0 + \rho g(z_s - z)$$

即 $p = p_0 + \rho g h$ 我中。

式中
$$h = z_s - z$$

与绝对静止流体中静压力公式完全相同。

例: 等角速旋转容器中流体的相对平衡

质量力的三个分量为:

 $f_x = \omega^2 r \cos \alpha = \omega^2 x; f_y = \omega^2 r \sin \alpha = \omega^2 y; f_z = -g$ 求静压力分布和等压面方程。

等角速旋转容器中流体的相对平衡

1、静压力分布规律

$$dp = \rho(\omega^2 x dx + \omega^2 y dy - g dz)$$

积分得

$$p = \rho(\frac{\omega^2 x^2}{2} + \frac{\omega^2 y^2}{2} - gz) + c = \rho(\frac{\omega^2 r^2}{2} - gz) + c$$

根据边界条件 $x = 0, y = 0, z = 0, c = p_0$

$$p = p_0 + \rho g(\frac{\omega^2 r^2}{2g} - z)$$

这就是等角速旋转容器中液体静压力分布公式。

等角速旋转容器中流体的相对平衡

2、等压面方程

$$\omega^2 x dx + \omega^2 y dy - g dz = 0$$

积分得
$$\frac{\omega^2 x^2}{2} + \frac{\omega^2 y^2}{2} - gz = c$$
 即 $\frac{\omega^2 r^2}{2} - gz = c$

由边界条件r=0时有z=0. 得到c=0

$$\frac{\omega^2 r^2}{2} - gz = 0; \quad z_s = \frac{\omega^2 r^2}{2g}$$

Z。为自由液面的Z坐标。

说明:等压面是一族绕 z 轴的旋转抛物面。

等角速旋转容器中流体的相对平衡

则有静压力分布:

$$p = p_0 + \rho(\frac{\omega^2 r^2}{2} - gz) = p_0 + \rho g(z_s - z)$$

$$p = p_0 + \rho g h \quad (h = z_s - z)$$

与绝对静止流体中静压力公式完全相同。

p = p(s) = surface pressure distribution $\tau = \tau(s)$ = surface shear stress distribution

流体中运动物体所受的力

Pressure forces act perpendicular to the surface.

Force on the body is the vector sum of the pressure times the area around the body.

$$\vec{F} = \sum p \vec{n} \Delta A$$

Lift =
$$L = F_{normal}$$

◆气动力来源:飞行器表面的压力分布和剪应力(摩擦应力)分布

压力中心

Center of Pressure - cp

Glenn Research Center

Center of Pressure is the average location of the pressure. Pressure varies around the surface of an object. P = P(x)

$$cp = \frac{\int x \ p(x) \ dx}{\int p(x) \ dx}$$

Aerodynamic force acts through the center of pressure.

Center of pressure moves with angle of attack.

压力中心:翼型上下表面气动力的作用点,又称压心。当参考点取压力中心时,力 矩为零。

2 作用在平面上的压力(1)

在流体中浸没的一块任意形状平板

$$p = p_a + \gamma h = p_a + \gamma \xi \sin \theta$$
$$= p_a + \gamma (\xi_{CG} - \gamma) \sin \theta$$

◆在平板一侧施加的静压力为

$$F = \iint_{S} p \ dA = \iint_{S} \left(p_{a} + \gamma h \right) dA = p_{a}A + \gamma \iint_{S} h \ dA = p_{a}A + \gamma \sin \theta \iint_{S} \xi \ dA = p_{a}A + \gamma \sin \theta \xi_{CG}A$$

作用在平面上的压力(2)

◆整理得:

$$F = p_a A + \gamma h_{CG} A = (p_a + \gamma h_{CG}) A = p_{CG} A$$

- ◆在均匀流体中,施加在平板一侧的静力学压力等于平板重 心点的压力与平板面积的乘积,跟其形状和朝向(θ) 无关。
- ◆压力中心 (X_{CP}, Y_{CP}) ,一般不在平板重心上。

$$F x_{CP} = \iint_{S} x \ p \ dA = \iint_{S} x \left(p_{a} + \gamma \left(\xi_{CG} - y \right) \sin \theta \right) dA = -\gamma \sin \theta \iint_{S} xy \ dA = -\gamma \sin \theta I_{xy}$$

$$F y_{CP} = \iint_{S} y \ p \ dA = \iint_{S} y \left(p_{a} + \gamma \left(\xi_{CG} - y \right) \sin \theta \right) dA = -\gamma \sin \theta \iint_{S} y^{2} dA = -\gamma \sin \theta I_{xx}$$

$$x_{CP} = -\gamma \sin \theta \frac{I_{xy}}{p_{CG}A}$$

$$y_{CP} = -\gamma \sin \theta \frac{I_{xx}}{p_{CG}A}$$

• 对于对称平板,有 $I_{xv}=0$,所以 $X_{CP}=0$ 。压力中心在y轴上。

(c)

(d)

常见规则平面图形的面积、形心位置和通过形心的惯性矩

图形		图形面积,4	Ϋ́C	$J_{\rm C}$
正方形		a^2	<u>a</u> 2	$\frac{a^4}{12}$
矩形	$ \begin{array}{c c} \hline y_c \\ \downarrow \\ \hline B \longrightarrow \end{array} $	ВН	<u>H</u> 2	<u>BH³</u> 12
等腰三角形	$\begin{array}{c c} \downarrow & & \downarrow \\ \downarrow \\$	$\frac{BH}{2}$	2 <i>H</i> 3	BH ³ 36
正梯形	$ \begin{array}{c c} & b \rightarrow \\ \hline & y_{c} \\ & \downarrow \\ & C \\ \hline & B \rightarrow \\ \end{array} $	$\frac{H}{2}(B+b)$	$\frac{H(b+2B)}{3(b+B)}$	$\frac{H^3 \left(B^2 + 4Bb + b^2\right)}{36 \left(B + b\right)}$
圆形	$ \begin{array}{c c} \hline y_c \\ \downarrow \\ \hline \end{array} $	$\frac{\pi D^2}{4}$	<u>D</u> 2	$\frac{\pi D^4}{64}$
椭圆形	$ \begin{array}{c c} \hline y_c \\ \uparrow \\ \hline 2b \\ \hline \end{array} $	πab	a	$\frac{\pi a^3 b}{4}$

例题:作用在平面上的力

例:如图,某蓄水池水面下倾角为 $\theta=60^{\circ}$ 的边坡上装有一个矩形闸门,宽度为B=1.2m,长度为 $l_0=2m$,由上缘A处的固定较轴定位,A点沿坡面到水面长度为l=1.8m。若忽略闸门自重,求提升闸门所需的力T。

$$T \cdot l \cdot \cos \theta = \int_{0}^{l} \rho g(l_0 + y) \sin \theta \cdot B \cdot y dy$$

$$T = \rho g B t g \theta \left(l_0 l / 2 + l^2 / 3 \right)$$

$$= 1.0 \times 10^3 \times 9.8 \times 1.2 \times \sqrt{3} \left[2.0 \times 1.8 / 2 + 1.8^2 / 3 \right]$$

$$= 58662 N$$

3. 作用在曲面上的压力

- ◆分别计算垂直和水平方向的压力分量:
 - ●水平方向力等于曲面在垂直方向的投影平面上的压力
 - ●垂直方向力等于曲面上方所有流体的重量,包括水、空气等: $F_V = W_2 + W_1 + W_{air}$

作用在曲面上的压力分析

流体作用在微元面积dA 上的总压力为

$$dP = \rho ghdA$$

将其分解为水平分力与垂直分力,然后进行积分,可得到作用在曲面上的总压力的水平分力与垂直分力,进而求出总压力大小、方向及作用点。

水平分力

设 α 为微元面积dA 的法线与x 轴的夹角,则微元水平分力 $dP_x = dP\cos\alpha = (\rho ghdA)\cos\alpha = \rho gh(dA\cos\alpha) = \rho ghdA_x$ 式中 A_x —曲面面积A在yoz平面上的投影面积;

积分上式,有
$$P_{x} = \rho g \int_{A_{x}} h dA_{x}$$

故总压力的水平分力为 $P_x = \rho g \int_A h dA_x = \rho g h_c A_x$

 $h_c - A_x$ 的形心点的淹没深度。

说明:水平分力P_x等于作用于该曲面的铅垂投影面上的静水总压力,方向水平指向受力面。

垂直分力

作用在微元面积上的垂直分力为:

$$dP_z = (\rho ghdA)\sin\alpha = \rho gh(dA\sin\alpha) = \rho ghdA_z$$

式中 dA_z 一微元面积 dA 在 z 方向上的投影;

积分上式:
$$P_z = \rho g \int_A h dA_z$$

式中: $\int_A h dA_z$ —曲面ab上的液柱体积,称为压力体,记作V。

故
$$P_z = \rho g V$$

说明:垂直分力P_z等于该曲面上的压力体所包含的液重, 其作用线通过压力体的形心,方向垂直指向受力面。

曲面上总压力的大小和方向

作用在曲面上的总压力可表示为

$$P = P_x i + P_z k$$

总压力大小为:

$$\boldsymbol{P} = \sqrt{\boldsymbol{P}_x^2 + \boldsymbol{P}_z^2}$$

总压力与垂线之间的夹角为:

$$tg\theta = \frac{P_x}{P_z}$$

曲面上总压力的作用点

- ◆垂直分力的作用线通过压力体的重心,且方向铅直向下。
- ◆水平分力的作用线通过投影面 Ax的压力中心,且水平地指向 作用面。
- ◆曲面总压力的作用线必然通过 这两条作用线的交点D′而指向 作用面,且与垂直线成⊖角, 总压力矢量的延长线与曲面的 交点D就是总压力在作用面上的 作用点。

总压力的作用点

压力体

◆压力体——由液体的自由表面、承受压力的曲面和由该曲面的边线向上垂直引伸到自由液面或其延伸面的各个表面所围成的体积。

- ◆实压力体:压力体与形成压力的液体在曲面的同侧
 - ●实压力体(+):压力体内有液体,垂直分力是向下的。
- ◆虚压力体:压力体与形成压力的液体在曲面的异侧
 - ●虚压力体(-):压力体内没有液体,垂直分力是向上的。

课外阅读: 压力体划分

压力体:由液体的自由表面、承受压力的曲面和由该曲面的边线向上垂直引伸到自由液面或其延伸面的各个表面所围成的体积。划分:

- (1) 将受力曲面根据具体情况分成若干段;
- (2) 找出各段的等效自由液面。
- (3) 画出每一段的压力体并确定虚实。
- (4) 根据虚实相抵的原则将各段的压力体合成,得到最终的压力体。

例题:作用在曲面上的力

例: 盛水容器底部有一个半径 r=2.5cm 的圆孔,并用半径 R=4cm,重 G=2.452N 实心圆球封闭。已知容器水深 H=20cm 求提升球体所需拉力 T。

$$F_{z} = \rho g \left(V_{CAE} + V_{DBF} \right) - \rho g V_{MCDN}$$

$$= \rho g \left(V_{CAE} + V_{DBF} - V_{MABN} + V_{CABD} \right)$$

$$= \rho g \left(\frac{4}{3} \pi R^{3} - V_{MABN} \right)$$

$$V_{MABN} = \pi r^{2} H + \frac{\theta}{360^{0}} \cdot \frac{4}{3} \pi R^{3} - \frac{1}{3} \pi r^{2} R \cos \frac{\theta}{2}$$

$$T + F_{z} - G = 0$$

4. 浮力

◆什么使得飞艇、气球、热气球飞翔?

阿基米德定律

- ◆第一定律: 浸没在流体中物体 (潜体) 经受垂直力等于其排开 的流体重量
- ◆第二定律:对流体上漂浮物体 (浮体)的重量等于其浸入体积 大小的流体重量。
- ◆阿基米德定律: 浮力的大小等 于物体排开液体的重量, 方向垂 直向上; 浮力的作用点称为浮 心, 位于排开液体的形心。

Archimède et la couronne en or du roi Hiéron II

浮力

◆对完全淹没的物体——潜体:

●两个力作用于固体的垂直方向

$$F_B = F_V(2) + F_V(1) =$$
 等于排开物体体积大小的流体质量

●对一个微元的垂直方向的力:

$$F_B = \iint_{body} (p_2 - p_1) dA_H = -\gamma_f \iint_{body} (z_2 - z_1) dA_H = \gamma_f V_{\ddagger\ddagger}$$

漂浮物的力学平衡

◆部分淹没的物体——浮体

- ●浮力被施加到排开体积的中心
- ●合力的方向是垂直的

$$F_B = \gamma_f V_\# = W =$$
浮体重量

例:冰山

$$SG_{yk} = 0.917$$

$$SG_{\text{ABJ}} = 1.025$$

$$\Rightarrow SG_{\text{in}}V_{\text{in}} = SG_{\text{an}}V_{\text{fi}}$$

- 5. 标准大气
- ◆假设:
- ✓大气为理想气体;
- ✓大气满足流体静力学平衡方程;
- ◆大气分层

根据平均温度的变化分为8层:

- 1. 对流层(Troposphere)
- 2. 对流顶层 (Tropopause)
- 3. 平流层 (Stratosphere)
- 4. 平流层顶 (Stratopause)
- 5. 中间层 (Mesosphere) 空气密度低,压力低,温度在顶层附近低
- 6. 中间顶层(Mesopause)
- 7. 热层(Thermosphere) 由于氧分子吸收太阳能加热空气,导致温度上 升;空气稀薄
- 8. 外层(Exosphere)

◆ 大气温度:

1976国际标准大气是由美国标准大气发展而来

下标i	海拔高度 h _i (m)	静压 (pascals)	温度 <i>T_{i0}</i> (K)	温度变化率 a(K/m)
0	0	101325	288.15	-0.0065
1	11,000	22632.1	216.65	0.0
2	20,000	5474.89	216.65	0.001
3	32,000	868.019	228.65	0.0028
4	47,000	110.906	270.65	0.0
5	51,000	66.9389	270.65	-0.0028
6	71,000	3.95642	214.65	-0.002

$$T_i = T_{i0} + a(H - h_i)$$

◆气压模型

- 作用力的平衡关系 $dp = -\rho g dy$
- 引入理想气体状态方程

$$dp = -\frac{gp}{RT} dy$$
• 对流层内

dT = -0.0065 dy

得

$$\frac{p}{p_a} = \left(\frac{T}{T_a}\right)^{5.25588}$$

$$\frac{\rho}{\rho_a} = \left(\frac{T}{T_a}\right)^{4.25588}$$


```
計

対

対

大学

zhejiang university
```

```
function [airDens,airPress,temp,soundSpeed]=Atmos(geomAlt)
    1976 U.S Standard Atmosphere Interpolation
   % Note: Function does not extrapolate outside altitude range
   % Input: Geometric Altitude,m(positive up)
   % Output:Air Density, kg/m³, Air Pressure,N/m²
            Air Temperature, K, Speed of Sound, m/s
   % Values Tabulated by Geomeyric Altitude
   Z=[-10,0,2500,5000,10000,11100,15000,20000,47400,51000];
   H=[-10,0,2499,4996,9984,11081,14965,19937,47049,50594];
   %real value
   ppo=[1,1,0.737,0.533,0.262,0.221,0.12,0.055,0.0011,0.0007];
   %pressure
    rro=[1,1,0.781,0.601,0.338,0.293,0.159,0.073,0.0011,0.0007];
   %density
   T=[288.15,288.15,271.906,255.676,223.252,216.65,216.65,216.65,270.65,270.65];
    %temperature
   a=[340.294,340.294,330.563,320.545,299.532,295.069,295.069,295.069,329.799,329.799];
20
   %soundspeed
   R=6367435;
   Dens=1.225;
   Pres=101325;
   %Geopotential Altitude, m
   geopAlt=R*geomAlt/(R+geomAlt);
   if(geopAlt<1)geopAlt=1;end;</pre>
   %initial value
   airPress=0; airDens=0;
   %Linear Interpolation in Geopotential Altitude
   %for Temperature and Speed of Sound
   temp=interp1(Z,T,geopAlt);
   soundSpeed=interp1(Z,a,geopAlt);
   % Exponential Interpolation in Geometric Altitude for Air Density and
   % Pressure
    for k=2:10
       if geomAlt <= Z(k)
           betap=log(ppo(k)/ppo(k-1))/(Z(k)-Z(k-1));
           betar=log(rro(k)/rro(k-1))/(Z(k)-Z(k-1));
           airPress=Pres*ppo(k-1)*exp(betap*(geomAlt-Z(k-1)));
           airDens=Dens*rro(k-1)*exp(betar*(geomAlt-Z(k-1)));
           break
       end
43
```


作业(1)

- 1. 结合空气动力学知识说明以下几种压力计的原理。水银压力计、差压计、弹簧管压力表、压电式压力传感器。
- 2. 某飞机的巡航高度设计为30km, 推导公式, 求出该高度处的大气压力、密度和温度, 并与国际大气表上所给的数据相比较。
- 4. 如图所示,有一圆柱扇形水闸门,已知H=5m, $\alpha=60^{\circ}$,闸门宽度B=10m,求作用于曲面ab上的总压力。

作业 (2)

4. 如图所示,一矩形闸门两面受到水的压力,左边水深 $H_1 = 4.5m$,右边水深 $H_2 = 2.5m$,闸门与水面成 $\alpha = 45^{\circ}$ 倾斜角。假设闸门的宽度 b = 1m,试求作用在闸门上的总压力及其作用点。

