

Big Data AnalyticsLecture 2

Yilu Zhou, PhD
Associate Professor
Gabelli School of Business
Fordham University

^{*} Some slides are adopted from Professor Kunpeng Zhang's Big Data course @UMD

What we'll cover...

Hadoop history and advantages

- Architecture
 - Hadoop distributed file system (HDFS)
- Hands-on Preparation for Cloudera environment
 - Installation of GitHub Lab 1
 - Basic Linux commands Lab 2

Brief History of Hadoop

Designed to answer the question:

"How to process big data with reasonable cost and time?"

Search engines in 1990s

1997

Slides adopted from:

UCI CS 237 Distributed Systems Middleware, Nalini Venkatasubramanian

Google search engines

Google

Google Search I'm Feeling Lucky

2013

1998

Slides adopted from:

UCI CS 237 Distributed Systems Middleware, Nalini Venkatasubramanian

Early Large Scale Computing

- Historically computation was processor-bound
 - Data volume has been relatively small
 - Complicated computations are performed on that data
- Advances in computer technology has historically centered around improving the power of a single machine

Distributed System: Problems

"You know you have a distributed system when the crash of a computer you've never

heard of stops you from getting any work done." -Leslie Lamport

• Distributed systems must be designed with the expectation of failure

Component Recovery

• If a component fails, it should be able to recover without restarting the entire system

Component failure or recovery during a job must not affect the final output

Hadoop

- Based on work done by Google in the early 2000s
 - "The Google File System" in 2003
 - "MapReduce: Simplified Data Processing on Large Clusters" in 2004
- The core idea was to distribute the data as it is initially stored
 - Each node can then perform computation on the data it stores without moving the data for the initial processing

Hadoop's Developers

2005: Doug Cutting and Michael J. Cafarella developed Hadoop to support distribution for the <u>Nutch</u> search engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache Software Foundation.

Slides adopted from:

Google Origins

The Google File System

2003

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google*

MapReduce: Simplified Data Processing on Large Clusters

2004

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber $\{fay.jeff,sanjay,wiisonh,kerr,m.3b,tushar,fikes,gruber\} @google.com$

2006

igtable is a distributed storage system for managing tured data that is designed to scale to a very large petabytes of data across thousands of commodity

does not support a full relational data model; instead dynamic control over data layout and format, an lows clients to reason about the locality properties of prestyres et can across monaum or commonly the first Many projects at Google store data Biggiable, stiffing web indexing. Google Earth, and Google Earth, a

Slides adopted from:

UCI CS 237 Distributed Systems Middleware, Nalini Venkatasubramanian

Some Hadoop Milestones

- 2008 Hadoop Wins Terabyte Sort Benchmark (sorted 1 terabyte of data in 209 seconds, compared to previous record of 297 seconds)
- 2009 Avro and Chukwa became new members of Hadoop Framework family
- 2010 Hadoop's Hbase, Hive and Pig subprojects completed, adding more computational power to Hadoop framework
- 2011 ZooKeeper Completed
- 2013 Hadoop 1.1.2 and Hadoop 2.0.3 alpha.
 - Ambari, Cassandra, Mahout have been added

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

One popular solution: Hadoop

Hadoop in the Wild

- Hadoop is in use at most organizations that handle big data:
 - o Yahoo!
 - o Facebook
 - o Amazon
 - Netflix
 - o Etc...
- Some examples of scale:
 - Yahoo!'s Search Webmap runs on 10,000 core Linux cluster and powers Yahoo! Web search
 - FB's Hadoop cluster hosts 100+ PB of data (July, 2012) & growing at ½ PB/day (Nov, 2012)

Three main applications of Hadoop

Advertisement (Mining user behavior to generate recommendations)

Searches (group related documents)

Security (search for uncommon patterns)

- Big data storage is challenging
- Data volumes are massive
- Reliability of storing PBs of data is challenging
- All kinds of failures: Disk/Hardware/Network Failures
- Probability of failures simply increase with the number of machines ...

How much data?

- Facebook
 - 500 TB per day
- Yahoo
 - Over 170 PB
- eBay
 - Over 6 PB

Getting the data to the processors becomes the bottleneck

- Redundant, Fault-tolerant data storage
- Parallel computation framework
- Job coordination

Hadoop offers

- Redundant, Fault-tolerant data storage
- Parallel computation framework
- Job coordination

Programmers

No longer need to worry about

Q: Where file is located?

Q: How to handle failures & data lost?

Q: How to divide computation?

Q: How to program for scaling?

Who uses Hadoop?

Financial Services

Real Time Search

Who uses Hadoop?

2007	2008	2009	2010
YAHOO! Powersel CSt-fm	ImageShack Cascading Facebook ENORMO Formation Enormation Cornell University Computing and Information Science Polo Allo Reseauce Center Enclosed Security Security Construction Cornell University Computing and Information Science Polo Allo Reseauce Center Enclosed Security Security Security Security Construction Security S	AOL Coloudera codeepdyve ExtMAP THE ENTITY SEREN EAGHE PSC College of Technology PICE TO SEREN EAGHE RapLeaf Ning quantcast Ning quantcast Proceeding Ning quantcast Proceding Systems @ ETH zürich COVK SOLUTIONS Colobal Solutions Provider Terrier Adknowledge Terrier Adknowledge Language La	BERKELEY LAB WISIBLE RAPOLLO RADSDAQ Rapleaf Wordnik Comscore Rapleaf Wordnik Comscore Forward3D Linked Microsoft Infochimps Find the world's data Propux The Datagraph Bbg NETFUX markt24.de Cuitteer media6degrees SLC Security Ward Experiment Matter. Comscore Security Ward Experiment Matter. Comscore Comscore Rapleaf Rapleaf

Hadoop big picture

MapReduce: Programming YARN: Resource Scheduling Hadoop: Data Management

HADOOP 1.0 MapReduce (cluster resource management & data processing) **HDFS** (redundant, reliable storage)

HDFS + MapReduce is core to get work done

Hadoop goals

• Scalable: Petabytes (10¹⁵ Bytes) of data on thousands on nodes

• Economical: Commodity components only

Reliable: fault tolerance

Hadoop Distributed File System HDFS

Overview

Responsible for storing data on the cluster

• Data files are split into blocks and distributed across the nodes in the cluster

Each block is replicated multiple times

HDFS Basic Concepts

• HDFS is a file system written in Java based on the Google's GFS

Provides redundant storage for massive amounts of data

HDFS

- Master-Slave architecture
- Single NameNode
 Sometimes a backup: secondary NameNode
- Many (Thousands) DataNodes
- Files are split into fixed sized blocks and stored on data nodes (default: 64MB)
- Data blocks are replicated for fault tolerance and fast access (default: 3)

HDFS Basic Concepts

- HDFS works best with a smaller number of large files
 - Millions as opposed to billions of files
 - Typically 100MB or more per file

Files in HDFS are write once

Optimized for streaming reads of large files and not random reads

How are Files Stored

- Files are split into blocks
- Blocks are split across many machines at load time
 - Different blocks from the same file will be stored on different machines
- Blocks are replicated across multiple machines
- The NameNode keeps track of which blocks make up a file and where they are stored

Data Replication

Default replication is 3-fold

Input File

copies not store in the same node

HDFS Data Distribution

Hadoop's Architecture

NameNode:

- Stores metadata for the files, like the directory structure of a typical FS. the location of the node
- The server holding the NameNode instance is quite crucial, as there is only one.
- Transaction log for file deletes/adds, etc. Does not use transactions for whole blocks or file-streams, only metadata.
- Handles creation of more replica blocks when necessary after a locked failure

Hadoop's Architecture

• DataNode:

Stores the actual data in HDFS

Can run on any underlying filesystem (ext3/4, NTFS, etc)

Notifies NameNode of what blocks it has

• NameNode replicates blocks 2x in local rack, 1x elsewhere

HDFS Architecture

Data Retrieval

When a client wants to retrieve data

- Communicates with the NameNode to determine which blocks make up a file and on which data nodes those blocks are stored
- Then communicated directly with the data nodes to read the data

MapReduce

Distributing computation across nodes

MapReduce Overview

A method for distributing computation across multiple nodes

• Each node processes the data that is stored at that node

- Consists of two main phases
 - Map
 - Reduce

MapReduce Features

Automatic parallelization and distribution

• Fault-Tolerance

• Provides a clean abstraction for programmers to use

The Mapper

- Reads data as key/value pairs
 - The key is often discarded
- Outputs zero or more key/value pairs

Shuffle and Sort

Output from the mapper is sorted by key

All values with the same key are guaranteed to go to the same machine

The Reducer

Called once for each unique key

Gets a list of all values associated with a key as input

- The reducer outputs zero or more final key/value pairs
 - Usually just one output per input key

MapReduce: Word Count

like three people

count together

Hadoop Architecture

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

What parts actually make up a Hadoop cluster

- NameNode
 - Holds the metadata for the HDFS
- Secondary NameNode
 - Performs housekeeping functions for the NameNode
- DataNode
 - Stores the actual HDFS data blocks
- JobTracker
 - Manages MapReduce jobs
- TaskTracker
 - Monitors individual Map and Reduce tasks

JobTracker and TaskTracker

- JobTracker
 - Determines the execution plan for the job
 - Assigns individual tasks
- TaskTracker
 - Keeps track of the performance of an individual mapper or reducer

Hadoop's Architecture

- <u>Hadoop Distributed Filesystem</u>
- Tailored to needs of MapReduce
- Targeted towards many reads of filestreams
- Writes are more costly
- High degree of data replication (3x by default)
- No need for RAID on normal nodes
- Large blocksize (64MB)
- Location awareness of DataNodes in network

Hadoop's Architecture

- Distributed, with some centralization
- Main nodes of cluster are where most of the computational power and storage of the system lies
- Main nodes run TaskTracker to accept and reply to MapReduce tasks, and also DataNode to store needed blocks closely as possible
- Central control node runs NameNode to keep track of HDFS directories & files, and JobTracker to dispatch compute tasks to TaskTracker
- Written in Java, also supports Python and Ruby

HDFS network topology

- HDFS takes a simple approach:
 - ☐ See the network as a tree
 - ☐ Distance between two nodes is the sum of their distances to their closest common ancestor

HDFS filesystem commands

- 1. List the contents of a directory
 - o hadoop fs -ls
- 2. Create a directory in HDFS at given path(s)
 - nadoop fs -mkdir <directory name>
- 3. Upload and download a file in HDFS
 - Upload: hadoop fs -put <local file> <remote path>
 - Download: hadoop fs -get <file in HDFS> <local path>
- 4. See contents of a file
 - o hadoop fs -cat <filename>
- 5. Delete a file/directory in HDFS
 - o hadoop fs -rm/rmr <file or directory>

HDFS filesystem commands

- 6. Move file from source to destination
 - o hadoop fs -mv <src> <dst>
- 7. Report the amount of space used and availability
 - o hadoop fs -df hdfs:/
- 8. How much space a directory occupies
 - o hadoop fs -du -s -h <dir name>
- 9. Change permission of files
 - o sudo hadoop fs -chmod 600 <file>
- 10. Change owner and group of files
 - o sudo hadoop fs -chown root:root <file>

*HDFS admin commands

DFSAdmin command

- -report: reports basic statistics of HDFS
- -safemode: though usually not required, an administrator can manually enter or leave safemode
 - enter, leave, get, wait
- -refreshNodes: updates the set of hosts allowed to connect to namenode

Usage: hadoop dfsadmin [-report] [-safemode enter | leave | get | wait] [-refreshNodes] [-finalizeUpgrade] [-upgradeProgress status | details | force] [-metasave filename] [-setQuota <quota> <dirname>...<dirname>] [-clrQuota <dirname>...<dirname>] [-help [cmd]]

Installation and configuration

Next week: Lab 3: Cloudera Hadoop Installation

Questions?

