

- April 21st-23rd-



## Center for Health Data Science (HeaDS)

https://heads.ku.dk

#### • The Data Science lab:

- Provides data science support for all research groups at SUND
- Organizes courses

#### • Research units:

 work on different areas and topics within the field of health data science





### The Team

- 1. Alberto Santos (HeaDS)
- 2. Annelaura Bach Nielsen (NNF CPR)
- 3. Davide Placido (NNF CPR)
- 4. Henry Webel (NNF CPR)
- 5. Marilena Hohmann (HeaDS)
- 6. Philip Charles (DBI (Oxford, UK))
- 7. Rita Colaço (PRI)
- 8. Roc Reguant (NNF CPR)
- 9. Thilde Terkelsen (HeaDS)









## Other Members of the Team

- 1. Dhouha Grissa (NNF CPR)
- 2. Jose Alejandro Romero Herrera (HeaDS)
- 3. Katerina Nastou (NNF CPR)
- 4. Kübra Altinel (BRIC)









Program

Coffee and Q&A

**Teams** 

Breakout rooms

Datathon

-- Program --

|             | Wednesday 21st April                 | Thursday 22nd April | Friday 23rd Friday    |
|-------------|--------------------------------------|---------------------|-----------------------|
| 8:45-9:00   | Coffee and the day before (optional) |                     |                       |
| 9:00-09:45  | Introduction and motivation          | Conditions          | Visualization I       |
| 9:45-10:00  | Coffee break                         |                     |                       |
| 10:00-11:00 | Installation and tools               | Loops               | Visualization II      |
| 11:00-12:00 |                                      | Functions           |                       |
|             |                                      |                     | Introduction Datathon |
| 12:00-13:00 | Lunch break                          |                     |                       |
| 13:00-14:00 | Variables and data types             | Libraries           | Datathon              |
| 14:00-14:45 | Numbers and operators                | Scientific python   | Datathon              |
| 14:45-15:15 | Coffee break                         |                     |                       |
| 15:15-16:00 | Data structures                      | Pandas              | Datathon              |
| 16:00-17:00 |                                      |                     | Presentations         |
| 17:00-17:30 | Q&A                                  |                     | What else is there?   |

-- Teams --

49 participants divided into 10 fixed teams

#### 2 working modes:

- Individual: exercises
- **Teamwork:** discussions, practice and the Datathon

-- Breakout Rooms --



-- Datathon --

A Datathon is a data-focused competition — given a dataset and a limited amount of time, participants are challenged to use their creativity and data science skills to:



-- Datathon --

A Datathon is a data-focused competition — given a dataset and a limited amount of time, participants are challenged to use their creativity and data science skills to:



# What will you learn in this course?

Tools to work with Python

The basics of Python

Some of the most relevant scientific libraries

Visualization

Good practice

### Motivation

#### Why will programming help you?

**Programming** is yet another **laboratory technique** 

It helps you **automate processes** that you need to repeat again and again

It will save you time

It gives you **freedom** to process, analyze and plot your data as you want

It will help you **demystify** bioinformatics

It will facilitate **communication** with bioinformaticians

It will **improve** your **CV** 

### Why Python?

- Python is easy to use, powerful, and versatile
- A great choice for beginners and experts alike
- Python's readability makes it a great first programming language
- It has a **huge community behind** developing useful libraries in many different fields (i.e biology, imaging, etc.)





## Basic concepts

What's programming? Variables, Functions How do you approach a problem? Car example Class, Object, attribute, functions

What's programming

 Programming is a way of communicating with a device: computer, cellphone, ..., machine of any kind

 This communication is possible if you speak a language that the machine understands

 Programming is not difficult, mastering it might be a bit more challenging



### Variables

variable\_name = value

**Variable** is a way of **storing values** that you want to use later

• To define variables, we use **name** of variable and '=' to assign values:

```
my_first_variable = 3
```

Variables can have different types:

```
my_first_variable = 3 # integer
my_second_variable = "This is my second
variable" # string
my_third_variable = 3.0 # float
```

#### **Functions**

def function\_name (parameters)

**Function** is the way to **define actions**, i.e sum, print on the screen.

To define functions, we use the **reserved word def**:

```
def sum_two_numbers(a, b):
    return a + b

def say_hi():
    print("Hi")
```

Functions can be **called** by their **name** and specifying the **parameters**:

```
sum_two_numbers(a=7, b=5)
> 12
say_hi()
> Hi
```

# Strategy for Programming

Divide and conquer



### The Car Problem

Describe a car



#### • Describe this **object**:

- **Parts**: wheels, a stirring wheel, a frame, etc.
- Actions: moves, breaks, etc.



### The Car Problem

Describe a car



- Describe this **object** → **Class**:
  - Parts: wheels, a stirring wheel, a frame, etc. → variables or attributes
  - Actions: start, change gear, etc. → functions

#### Variables:

```
color = "blue"
number_of_wheels = 4
motor = True
power = "gas"
gear = None
Functions:
def start_engine():
...
def change_gear(gear):
```



- Introduce yourself and what you do
- Explain your **motivation** to take the course
- Discuss what data could be relevant for you









