La figura 5 muestra la gráfica del integrando en el ejemplo 7 y su integral indefinida (con C=0). ¿Cuál es cuál?

Ahora sustituya u=2 sen θ y se obtiene $du=2\cos\theta\ d\theta$ y $\sqrt{4-u^2}=2\cos\theta$; por lo que

FIGURA 5

$$\int \frac{x}{\sqrt{3 - 2x - x^2}} dx = \int \frac{2 \sin \theta - 1}{2 \cos \theta} 2 \cos \theta d\theta$$

$$= \int (2 \sin \theta - 1) d\theta$$

$$= -2 \cos \theta - \theta + C$$

$$= -\sqrt{4 - u^2} - \sin^{-1}\left(\frac{u}{2}\right) + C$$

$$= -\sqrt{3 - 2x - x^2} - \sin^{-1}\left(\frac{x + 1}{2}\right) + C$$

7.3 EJERCICIOS

1–3 Evalúe las integrales siguientes utilizando la sustitución trigonométrica indicada. Dibuje y etiquete el triángulo rectángulo asociado.

1.
$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} dx$$
; $x = 3 \sec \theta$

2.
$$\int x^3 \sqrt{9 - x^2} \, dx$$
; $x = 3 \sin \theta$

$$3. \int \frac{x^3}{\sqrt{x^2 + 9}} dx; \qquad x = 3 \tan \theta$$

4–30 Evalúe la integral.

4.
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$

$$5. \int \frac{\sqrt{x^2-1}}{x^4} dx$$

6.
$$\int_0^3 \frac{x}{\sqrt{36-x^2}} dx$$

7.
$$\int_0^a \frac{dx}{(a^2 + x^2)^{3/2}}, \quad a > 0$$

$$8. \int \frac{dt}{t^2 \sqrt{t^2 - 16}}$$

9.
$$\int_2^3 \frac{dx}{(x^2-1)^{3/2}}$$

10.
$$\int_0^{2/3} \sqrt{4 - 9x^2} \ dx$$

11.
$$\int_0^{1/2} x \sqrt{1-4x^2} \, dx$$

12.
$$\int_0^2 \frac{dt}{\sqrt{4+t^2}}$$

$$13. \int \frac{\sqrt{x^2 - 9}}{x^3} dx$$

14.
$$\int_0^1 \frac{dx}{(x^2+1)^2}$$

15.
$$\int_0^a x^2 \sqrt{a^2 - x^2} \, dx$$

16.
$$\int_{\sqrt{2}/3}^{2/3} \frac{dx}{x^5 \sqrt{9x^2 - 1}}$$

$$17. \int \frac{x}{\sqrt{x^2 - 7}} dx$$

18.
$$\int \frac{dx}{[(ax)^2 - b^2]^{3/2}}$$

$$19. \int \frac{\sqrt{1+x^2}}{x} dx$$

$$20. \int \frac{x}{\sqrt{1+x^2}} \, dx$$

21.
$$\int_0^{0.6} \frac{x^2}{\sqrt{9 - 25x^2}} \, dx$$

22.
$$\int_0^1 \sqrt{x^2 + 1} \, dx$$

23.
$$\int \frac{dx}{\sqrt{x^2 + 2x + 5}}$$

24.
$$\int_0^1 \sqrt{x - x^2} \, dx$$

25.
$$\int x^2 \sqrt{3 + 2x - x^2} \, dx$$

26.
$$\int \frac{x^2}{(3+4x-4x^2)^{3/2}} dx$$

27.
$$\int \sqrt{5 + 4x - x^2} \, dx$$

28.
$$\int \frac{x^2 + 1}{(x^2 - 2x + 2)^2} dx$$

29.
$$\int x\sqrt{1-x^4} \, dx$$

30.
$$\int_0^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} \, dt$$

31. (a) Utilice una sustitución trigonométrica para demostrar que

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C$$

(b) Utilice la sustitución hiperbólica x = a senh t para demostrar que

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{senh}^{-1} \left(\frac{x}{a}\right) + C$$

Estas fórmulas están conectadas con la fórmula 3.11.3.

32. Evalúe

$$\int \frac{x^2}{(x^2 + a^2)^{3/2}} \, dx$$

- (a) por sustitución trigonométrica.
- (b) por la sustitución hiperbólica $x = a \operatorname{senh} t$.
- **33.** Encuentre el valor promedio de $f(x) = \sqrt{x^2 1}/x$, $1 \le x \le 7$.
- **34.** Determine el área de la región acotada por la hipérbola $9x^2 4y^2 = 36$ y la recta x = 3.
- **35.** Demuestre la fórmula $A = \frac{1}{2}r^2\theta$ para el área de un sector de un círculo de radio r y ángulo central θ . [Sugerencia: suponga que $0 < \theta < \pi/2$ y coloque el centro del círculo en el origen de manera que se ocupe la ecuación $x^2 + y^2 = r^2$. Entonces A es la suma del área del triángulo POQ y el área de la región PQR en la figura.]

36. Evalúe la integral

$$\int \frac{dx}{x^4 \sqrt{x^2 - 2}}$$

Trace la gráfica del integrando y su integral indefinida en la misma pantalla y verifique que su respuesta sea razonable.

- **37.** Encuentre el volumen del sólido obtenido al rotar alrededor del eje x la región acotada por las curvas $y = 9/(x^2 + 9)$, y = 0, x = 0 y x = 3.
- **38.** Determine el volumen del sólido obtenido al rotar alrededor de la recta x = 1, la región bajo la curva $y = x\sqrt{1 x^2}$, $0 \le x \le 1$.
- **39.** (a) Utilice una sustitución trigonométrica para verificar que

$$\int_{0}^{x} \sqrt{a^{2} - t^{2}} dt = \frac{1}{2}a^{2} \operatorname{sen}^{-1}(x/a) + \frac{1}{2}x \sqrt{a^{2} - x^{2}}$$

(b) Utilice la figura para dar una interpretación trigonométrica de ambos términos del lado derecho de la ecuación del inciso (a).

- **40.** La parábola $y = \frac{1}{2}x^2$ divide el disco $x^2 + y^2 \le 8$ en dos partes. Encuentre las áreas de ambas partes.
- **41.** Un toro se genera al rotar la circunferencia $x^2 + (y R)^2 = r^2$ alrededor del eje x. Encuentre el volumen encerrado por el toro
- **42.** Una varilla cargada de longitud L produce un campo eléctrico en un punto P(a, b) dado por

$$E(P) = \int_{-a}^{L-a} \frac{\lambda b}{4\pi \varepsilon_0 (x^2 + b^2)^{3/2}} dx$$

donde λ es la densidad de carga por unidad de longitud de la varilla y ε_0 es la permitividad del espacio libre (véase la figura). Evalúe la integral para determinar una expresión para el campo eléctrico E(P).

43. Encuentre el área de la región sombreada (llamada luna) acotada por los arcos de circunferencia de radios *r* y *R* (véase la figura).

44. Un tanque de almacenamiento de agua tiene la forma de un cilindro de 10 m de diámetro. Está montado de manera que las secciones transversales circulares quedan verticales. Si la profundidad del agua es de 7 m, ¿qué porcentaje de la capacidad total se está utilizando?