

11. Graphs

dbserver.korea@gmail.com

Agenda

- Graph Problem
 - Shortest Path Algorithm
 - Minimum Spanning Tree (Optional Problem)

Shortest Path Algorithm

- Implement a function which finds a shortest path from A.
 - Graph is no direction(<u>undirected</u>) and has <u>weights</u>.
 - Use a given weight matrix representing the graph.
 - Algorithms: Use Dijkstra algorithm to find paths.
 - Here is a given graph (Example graph 1):
 - Start from A (#1)
 - Perform Dijkstra's algorithm on other graph types (Example graph 2, etc…).

Example Graph 1

Example Graph 2

```
selected: 1 (0)
063XXX
selected: 3 (3)
05367X
selected: 2 (5)
05367X
selected: 4 (6)
053679
selected: 5 (7)
053679
selected: 6 (9)
053679
Results::
To 1:5
To 2: 3
To 3: 6
To 4: 7
To 5: 9
```

Minimum Spanning Tree (optional)

- Choose 1 algorithm to solve.
- Minimum spanning tree
 - Implement a function which creates a minimum spanning tree.
 - Graph is no direction(<u>undirected</u>) and has <u>weights</u>.
 - Use <u>matrix</u> to represent your graph.
 - Algorithms:
 - 1. Kruskal's algorithm
 - 2. Prim's algorithm
 - Start from A.

Example Graph 1