数字逻辑电路

复习提纲与知识点

qinxw@ustc.edu.cn

课程名称解读

课程名称: 数字逻辑电路

 \bigcirc

关键词①:数字

✓ 数字怎么构成?

✓ 可以代表什么?

第1章 数制和码制

课程名称: 数字逻辑电路

2

关键词②: 数字逻辑

✓ 什么是逻辑?

✓ 什么是数字逻辑?

第2章 逻辑代数基础

课程名称: 数字逻辑电路 ③

关键词③: 数字逻辑电路

用电子器件实现数字逻辑的电路

第3章 门电路、第4章 组合逻辑电路 第5[~]6章 时序逻辑电路 第7章 脉冲产生整形电路 第8章 数模和模数转换电路

Part 1: 逻辑代数基础

- ✓数值的各种进制表示、进制之间的转换
 - 二进制到十进制、十进制到二进制
 - ✓ 二进制与八进制、十六进制的转换
- ✓ 反码、补码、补码运算
- ✓常用编码

格雷码

三种基本逻辑

$$Y=A\cdot B=AB$$

$$Y = A + B$$

$$Y = A'$$

五种常用的复合逻辑运算

基本公式与常用公式

$$A + B C = (A + B)(A + C)$$

 $(A B)' = A' + B' (A + B)' = A'B'$

序号	公 式
.21	A + A B = A
22	A + A'B = A + B
23	A B + A B' = A
24	A(A+B)=A
25	A B + A' C + B C = A B + A' C
	A B + A' C + B CD = A B + A' C
26	A (AB)' = A B'; A'(AB)' = A'

三个定理

√ 代入定理: 公式的推广

✓ 反演定理: 写反逻辑式, Y=>Y'

✓ 对偶定理: 写对偶式, 用于公式证明

逻辑函数的多种表示

- ① 真值表
- ②逻辑式
- ③逻辑图
- ④ 波形图
- 5 卡诺图

熟练掌握各种表示方法之间的相互转换!

熟练掌握逻辑函数式的标准形式: 积之和

- ✓ 最小项概念、性质
- ✓ 真值表到标准形式的转换

熟练掌握两种化简方式

- ✓ 公式化简
- √ 卡诺图化简

具有无关项的逻辑函数的化简

- ✓ 任意项、约束项统称为无关项
- ✓ 无关项在逻辑函数化简中的应用

掌握包含无关项的卡诺图化简!

多输出逻辑函数的化简

逻辑函数形式的变换

Part 2: 门电路

整体要求: (仅要求掌握基本二极管门电路和CMOS门电路)

- ✓ 会分析各类由CMOS构成的门电路逻辑
- ✓ 认识各类逻辑图形符号,如三态门,OD门等
- ✓ 了解门电路的电压传输特性、输入输出特性
- ✓ 会做简单的计算,比如计算R_I,扇出系数等
- ✓ 了解CMOS的使用规范

二极管与门、或门

MOS管的符号

- ✓理解CMOS反相器的工作原理基础
- ✓理解CMOS门电路的逻辑特性和电气特性
 - ① 逻辑特性
 - ② 电气特性:输入特性、输出特性、电压传输特性、

✓ 理解输入噪声容限的概念

$$V_{NH} = V_{OH(\min)} - V_{IH(\min)}$$

$$V_{NL} = V_{IL(\max)} - V_{OL(\max)}$$

 \checkmark 理解高电平、低电平、正逻辑、负逻辑、 U_{IL} 、 U_{IH} 、 U_{OL} 、 U_{OH} 、 I_{OL} 、 I_{OH} 等概念

- ✓理解CMOS反相器的动态特性
- ✓ 掌握分析其他类型CMOS电路

如:与非、或非、OD门、传输门、三态门的逻辑符号与工作特点

Part 3: 组合逻辑电路

- ✓熟悉组合逻辑电路的功能、电路结构特点
- ✓ 掌握组合逻辑电路的分析及各种表达形式
- ✓ 掌握组合逻辑电路的设计
 - 1. 逻辑抽象:分析因果关系,确定输入/输出变量;定义逻辑状态的含意(赋值);列出真值表
 - 2. 写出函数式
 - 3. 选定器件类型
 - 4. 根据所选器件:对逻辑式化简(用门)、变换(用MSI)
 - 5. 画出逻辑电路图

✓ 掌握若干常用的组合逻辑电路

1. 编码器: 普通编码器、优先编码器

2. 译码器: 二进制译码器、二一十进制译码器、显示译码器

3. 数据选择器

4. 加法器: 半加、全加

5. 数值比较器

✓ 理解竞争一冒险的概念以及会分析是否会产生

要求: (不局限于下面举的例子)

- ✓掌握各种常见的组合逻辑电路的逻辑功能
- ✓ 在给定器件的类型的基础上,掌握由这些器件设计简单组合逻辑电路、器件的扩展

Part 4: 触发器与时序逻辑电路

- ✓ 触发器的两种分类
 - ① 按逻辑功能
 - ② 按触发方式
- ✓触发器次态Q*和现态Q的概念
- ✓各种类型触发器的图形符号与逻辑功能

$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases} \qquad Q^* = JQ' + K'Q \qquad Q^* = D \\ Q^* = TQ' + T'Q \end{cases}$$

- ✓表示触发器逻辑功能的基本方法
 - · 真值表、特性方程、状态图、时序图
- ✓不同触发方式的触发器的主要特点
 - 电平触发、脉冲触发、边沿触发
 - · 触发方式与电路结构的关系
 - 根据触发器符号了解是何种形式的触发
- ✓理解触发器传输延迟时间的概念

✓时序逻辑电路的特点与电路结构

- ✓分析时序逻辑电路的步骤:驱动方程 状态方程 输出方程
- ✓ 时序逻辑电路的分类:
 - · 同步、异步和Mealy、Moore

时序逻辑电路的状态转换表、状态转换图、状态机流程图和时序图表示

若干常用的时序逻辑电路

■寄存器、移位寄存器、计数器

R' _D	S_1	S_0	工作状态
0	X	X	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行输入

计数器☆☆

- ✓分类: 同步、异步; 加法、减法、可逆计数器; 二进制、二一十进制计数器等; 十进制、任意进制
- ✓同步计数器
 - ■理解同步计数器的原理
 - 触发器各输出端脉冲特性

同步十进制计数器

异步计数器 (会看懂就可以)

掌握实现任意进制的计数器

✓ M>N

✓ M<N</p>

∫异步置零法同步置零法

「异步预置数法 同步预置数法

环形计数器、扭环计数器、序列信号发生

时序逻辑电路的设计

掌握设计一般步骤

- 一、逻辑抽象, 求出状态转换图或状态转换表
- 二、状态化简
- 三、状态分配
- 四、选定触发器类型
- 五、画出逻辑图
- 六、检查自启动

结合课本中实例和习题理解步骤!

半导体存储器

1、存储器的分类、性能指标

要求:

- ✓ 了解各种存储器的特点
- ✓ 能读懂简单的存储电路
- ✓ 掌握存储器的两种扩展方式

Part 5: 脉冲产生与整形电路

施密特触发器的工作特点

- 输入信号在上升和下降过程中,电路状态转换的输入电平不同
- 电路状态转换时有正反馈过程, 使输出波形边沿变陡

会画施密特触发电路输出电压和输入电压的波形关系

单稳态电路:会分析(包括:CMOSi)电路构成的和集成单稳态电路)

特点:

- ①有一个稳态和一个暂稳态。
- ②在外界触发信号作用下,能从稳态→暂稳态,维持一段时间后自 动返回稳态。
- ③暂稳态维持的时间长短取决于电路内部参数
- ✓ 单稳态电路的输入电压与输出电压的波形图
- ✓ 计算单稳态电路的性能参数

多谐振荡电路(会分析,针对CMOS门电路构成的)

工作特点

多谐振荡器是一种自激振荡器,当电路接好后,便能自动产生矩形脉冲

- ✓ 分析多谐振荡电路的工作过程
- ✓ 掌握振荡频率与定时元件R、C之间的计算

555定时器(主要是分析)

- ✓ 会分析555定时器的功能表
- ✓ 会分析由555构成的施密特触发电路、单稳态电路、多谐振荡电路的工作原理,并计算脉冲宽度、周期等

Part 6: D/A与A/D

	,	权电阻网络
D/A	电流	倒T型权电阻网络
数-模	求和型	权电流型
A/D 模-数	直接型	并联比较型
		逐次渐进型
	间接型	V-T变换型
		V-F变换型

- ✓ 能分析看懂
- ✓ 了解每一种的优缺点
- ✓ 简单的精度计算,书上例子