COMP7703 – Demo 3 (Practical 9) Joel Thomas 44793203

Model Setup:

- Number of hidden layers = 2
- Number of neurons in each layer = 500
- Activation function = reLU (rectified linear unit)

$$f(x) = \begin{cases} 0, x \le 0 \\ x, x > 0 \end{cases} = \max(0, x)$$

- \circ Non-linear and differentiable almost everywhere except at x=0 (left-derivative of 0, right-derivative of 1 \rightarrow derivative undefined)
- Lower bound at 0 but no upper bound
- Advantage = enables network to run much faster during both training (several derivatives during backprop will simply be 0) as well as during prediction (faster matrix multiplications) → computationally efficient.
 - Because the sigmoid and hyperbolic tangent functions have almost every input yielding an output > 0, for a large neural network, almost all neurons will be activated in some way, so the activation is intense (Kızrak, 2019).
- Disadvantage = whenever the reLU outputs 0 (i.e. $x \le 0$), no learning is done on that neuron (Kızrak, 2019)
- Optimiser = Adam optimiser with parameters $\{\eta = 0.001, \beta_1 = 0.9, \beta_2 = 0.999\}$
 - o Essentially Momentum and RMSProp optimisers combined together
 - Notion of momentum as well as an adaptive learning rate similar to RMSProp (intuition heavy ball with friction) (Ruder, 2016)
 - "Gold standard" of optimisers since it attempts to cover the weaknesses of each optimiser before it
- Number of training iterations (epochs) = 100

- This methodology for assessing a model is known more formally as the Train-and-Test method according to Michie et al. (Michie, 1994)
- Hardest aspect for Q1-Q4 was enabling reproducible results working with Python
 - o Had to set seeds for not just TensorFlow but Numpy as well
 - After hours of checking code, commenting out $tf.reset_default_graph()$ worked
 - Also came across an issue when setting Numpy seed within MLPModel() function would completely reset random number generation (RNG) → needed to bring this out
 - Finally, always need to restart kernel in notebook and run code again for reproducibility due to above issue
 - i.e. simply running code block again won't reset the RNG
- Experiment closest to mean result (given by seed value):
 - o For Sonar dataset → (TensorFlow) seed = 2
 - o For Diabetes dataset → seed = 8

Results from training network 10 times with random weight initialisations (Test set accuracies)				
DATASET	Sonar	Diabetes		
Minimum	0.8286	0.5352		
Maximum	0.9286	0.7031		
Mean	0.8914	0.6394		
Standard deviation	0.0321	0.0568		
(sample/unbiased)				

Table 1: Results for Q1.

- Using an alternative method known as k-fold Cross Validation to assess performance of the model (same terminology used by Michie et al.)
 - o Preferred in moderate/large-sized datasets i.e. ≥ 1000 samples
 - See explanation in Q4. below, confidence intervals on the mean estimated classification rate using this method tend to be much larger
 - o Expect higher statistical variability i.e. standard deviation relative to the Bootstrap method
 - Expect average of estimated classification rates to be unbiased
- k = 10:
 - $\circ \frac{1}{10} \times 100 = 10\%$ validation/test and $\frac{9}{10} \times 100 = 90\%$ training sets for each split

Figure 1: How k-Fold Cross Validation works.

Results from 10-fold cross validation				
DATASET	Sonar	Diabetes		
Minimum	<mark>0.7143</mark>	<mark>0.5658</mark>		
Maximum	<mark>0.9524</mark>	<mark>0.7532</mark>		
Mean	<mark>0.8324</mark>	<mark>0.647</mark>		
Standard deviation	<mark>0.0736</mark>	0.072		
(sample/unbiased)				

Table 2: Results for Q2.

- Using Train-and-Test method again here
 - Difference to Q1 using same dataset but generating 10 random partitions (fixed 67%/33% splits) to assess model performance
- To generate 10 random partitions, first randomly shuffle data then split into 67% training and 33% test sets
 - Used np.random.permutation() function here

Results from retraining network 10 times based on 10 random partitions of the dataset				
DATASET	Sonar	Diabetes		
Minimum	0.7	0.4102		
Maximum	0.8571	0.7109		
Mean	0.7971	0.6281		
Standard deviation	0.0446	0.0832		
(sample/unbiased)				

Table 3: Results for Q3.

4.

- Using an alternative method known as the Bootstrap to assess performance of the model (same terminology used by Michie et al.)
 - o Preferred in **small-sized datasets** i.e. < 1000 samples
 - Preferable for both Sonar (208 samples) and Diabetes (768 samples) datasets
 - Why? Gives much smaller confidence intervals for mean of estimated classification rates but the downside is that these estimated classification rates are optimistic (i.e. biased upwards)
 - \circ Expect lower statistical variability i.e. standard deviation relative to the k-fold CV method
 - Expect average of estimated classification rates to be biased upwards
- Aside: different to Bagging because we are training the same model each time
 - Have controlled stochasticity of the neural network by ensuring we use the same seed value every time when training model repeatedly within a loop
 - Also not changing model parameters → same model being retrained on different data (applicable to not just Q4, but Q2-Q4)

Results from retraining network 10 times based on 10 bootstrapped datasets				
DATASET	Sonar	Diabetes		
Minimum	<mark>0.75</mark>	0.4615		
Maximum	0.8514	0.6949		
Mean	0.8098	0.624		
Standard deviation	0.0307	0.065		
(sample/unbiased)				

Table 4: Results for Q3.

Comparison between Q2 and Q4 hypotheses:

- The Bootstrap appears to have lower statistical variability than k-fold CV:
 - o True for both datasets, analysed by verifying standard deviations and comparing Q2 and Q4 graphs
- Average of estimated classification rates for the Bootstrap tends to be upward biased:
 - o **True** for both datasets, analysed by comparing mean result to both minimum and maximum results
 - "On average, results are seemingly closer to the maximum for the Bootstrap compared to kfold CV" (?)
- Important these claims need to be verified formally using statistical hypothesis testing

References:

- Ruder, S., 2016. *An overview of gradient descent optimization algorithms*. [online] Available at: https://ruder.io/optimizing-gradient-descent/ [Accessed 22 May 2021].
- Kızrak, A., 2019. *Comparison of Activation Functions for Deep Neural Networks*. [online] Medium. Available at: https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a [Accessed 22 May 2021].
- Michie, D., Spiegelhalter, D. and Taylor, C., 1994. Machine Learning, Neural and Statistical Classification. pp.108-109.