MAS205 Complex Variables 2005-2006

Exercises 2

Exercise 5: Using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ for $\theta \in \mathbb{R}$, show that

- (a) $e^{i\theta} = e^{i(\theta + 2n\pi)}$ for $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$
- (b) $e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$ for $\theta, \phi \in \mathbb{R}$
- (c) $1/e^{i\theta} = e^{-i\theta}$ for $\theta \in \mathbb{R}$

Using (b) and mathematical induction, show that

(d) $(e^{i\theta})^n = e^{in\theta}$ for $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$

Exercise 6: Find all complex solutions of the following equations:

- (a) $e^z = i$ (b) $e^{2z} = 1$ (c) $\sinh z = 0$ (d) $\cos z = 0$

Exercise 7: Consider the transformation

$$z\mapsto w=(z-1)^2$$
.

- (a) Find the equation of the image of the line $\Re(z) = 0$ and sketch the image.
- (b) What is the image of the upper half plane?

Exercise 8: (a) Find the region in the w-plane which is the image of the upper half of the z-plane under the transformation

$$w = 1 + 1/z$$

(b) Find the regions in the z-plane which map to the left half of the w-plane under the transformation

$$w = z^4$$

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 10:30am Wednesday 19th October

Thomas Prellberg, September 2005

$$(a) \quad e^{i(\Theta + 2n\pi)} = cos(\Theta + 2n\pi) + ism(\Theta + 2n\pi)$$

$$= cos\Theta + ism\Theta = e^{i\Theta}$$

$$(4)$$

(b)
$$e^{i\theta}e^{i\phi} = (\cos\Theta + i\sin\Theta)(\cos\phi + i\sin\phi)$$

 $= (\cos\Theta\cos\phi - \sin\Theta\sin\phi) + i(\sin\Theta\cos\phi + \cos\cos\phi)$
 $= \cos(\Theta + \phi) + i\sin(\Theta + \phi) = e^{i(\Theta + \phi)}$

(c)
$$\frac{1}{e^{i\theta}} = \frac{\cos \Theta}{\cos \theta + i \sin \theta} = \frac{\cos \Theta}{\cos^2 \theta + \sin^2 \theta} = \frac{\cos \Theta}{\cos^2 \theta + \sin^2 \theta} = \frac{\cos \Theta}{\cos^2 \theta + \sin^2 \theta}$$

$$= coo\theta - i sin \Theta = coo(-\Theta) + i sin (-\Theta)$$

$$= e^{-i\Theta}$$
(6)

(d)
$$N=1: (e^{i\theta})' = e^{i\theta}$$

$$N=1: (e^{i\theta})' = (e^{i\theta})^n = (e^{i\theta})^n e^{i\theta}$$

(a)
$$e^2 = i = e^{i\frac{\pi}{2}}$$

$$\Rightarrow z = i\frac{\pi}{2} + 2k\pi i \quad , k \in \mathbb{Z}$$

(b)
$$e^{2z} = 1 = e^{0}$$

(d) cost 20
$$\sim e^{iz} + e^{-iz} = 0$$

7)
$$W = (2-1)^2 = (x-1+iy)^2$$

 $= (x-1)^2 - y^2 + 2i(x-1)y$
 $U = (x-1)^2 - y^2 , V = 2(x-1)y$

(a)
$$Re(z) = 0 \Rightarrow z = iy$$
, $y \in \mathbb{R}$
i. $x = 0$

$$v = 1 - y^2$$
, $v = 2(-1)y = -2y$
diminate $y = u = 1 - \left(\frac{\sqrt{2}}{-2}\right)^2 = 1 - \frac{1}{4}y^2$ For parabola

(b) The upper half plane is invariant into it.

2-3 2-1. Squaring gives all of C.

Thewer: C

8) (a)
$$W = 1 + \frac{1}{2}$$
 bransforms upper

(6)
$$z^4 = w$$
 $z = re^{i\theta}$

$$\frac{\pi}{8} + \frac{k}{2} \pi \leq \Theta \leq \frac{3\pi}{8} + \frac{k}{2} \pi$$

