

Prova de Progressões - ITA

1 - (ITA-13) Considere a equação $\sum_{n=0}^5 a_n x^n = 0$ em que a soma das raízes é igual a - 2 e os coeficientes a_0 , a_1 , a_2 , a_3 , a_4 , a_5 formam, nesta ordem, uma progressão geométrica com a_0 = 1. Então $\sum_{n=0}^5 a_n$ igual a

- a) -60 b) -30 c) 0 d) 30 e) 60
- **3** (ITA-11) Considere a equação algébrica $\sum_{k=1}^{3} (x a_k)^{4-k} = 0$. Sabendo que x = 0 é uma das raízes e que (a_1, a_2, a_3) é uma progressão geométrica com $a_1 = 2$ e soma 6, pode-se afirmar que
- a) a soma de todas as raízes é 5.
- b) o produto de todas as raízes é 21.
- c) a única raiz real é maior que zero.
- d) a soma das raízes não reais é 10.
- e) todas as raízes são reais.
- **4 -** (ITA-10) Considere a progressão aritimética (a_1 , a_2 , ... , a_{50}) de razão d.

Se
$$\sum_{n=1}^{10} a_n = 10 + 25d$$
 e $\sum_{n=1}^{50} a_n = 4550$, d - a₁ é igual a (A) 3. (B) 6. (C) 9. (D) 11. (E) 14.

5 - (ITA-10) Considere a matriz

$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{bmatrix} \in M_{3\times 3} \left(\Box \right)$$

Em que a_4 =10, det A=-1000 e a_1 a_2 a_3 a_4 a_5 e a_6 formam, nesta ordem, uma progressão aritmética de razão d > 0. Pode-se afirmar que $\frac{a_1}{d}$

6 - (ITA-09) Se as soluções da equação algébrica $2x^3 - ax^2 + bx + 54 = 0$, com coeficientes $a,b \in IR$, $b \ne 0$, formam, numa determinada ordem, uma progressão geométrica, então, $\frac{a}{b}$ é igual a:

a) -3 b)
$$-\frac{1}{3}$$
 c) $\frac{1}{3}$ d) 1 e) 3

7 - (ITA-07) Se A , B , C forem conjuntos tais que $n(A \cup B) = 23$, n(B - A) = 12 , n(C - A) = 10 ,

 $n(A \cup B) = 20$, $n(B \cap A) = 12$, $n(A \cup B) = 10$, nesta ordem,

- a) formam uma progressão aritmética de razão 6.
- b) formam uma progressão aritmética de razão 2.
- c) formam uma progressão aritmética de razão 8, cujo primeiro termo é 11.
- d) formam uma progressão aritmética de razão 10, cujo primeiro termo é 31.
- e) não formam uma progressão aritmética.
- **8 -** (ITA-07) Se as medidas dos lados de um triângulo obtusângulo estão em progressão geométrica de razão q, então q pertence ao intervalo:

a)
$$(0,(1+\sqrt{2})/2)$$

b)
$$\left((1+\sqrt{2})/2,\sqrt{(1+\sqrt{5})/2}\right)$$

c)
$$\left(\sqrt{(1+\sqrt{5})/2},(1+\sqrt{5})/2\right)$$
 d) $\left((1+\sqrt{5})/2,\sqrt{(2+\sqrt{2})/2}\right)$

e)
$$\left(\sqrt{(2+\sqrt{2})/2},(1+\sqrt{3})/2,\right)$$

- **9 -** (ITA-06) Considere as seguintes afirmações sobre a expressão S = $\sum_{k=0}^{101} log_8(4^k \sqrt{2})$:
- I S é a soma dos termos de uma progressão geométrica finita.

 II – S é a soma dos termos de uma progressão aritmética finita de razão 2/3.

III - S = 3451.

$$IV - S \le 3434 + log_8 \sqrt{2}$$
.

Então, pode-se afirmar que é(são) verdadeira(s) apenas a) I e III b) II e III c) II e IV

d) II

e) III

10 - (ITA-03) O valor de y^2 – xz para o qual os números sen $\frac{\pi}{12}$; x, y, z e sen 75°, nesta ordem, formam uma progressão aritmética, é:

a)
$$3^{-4}$$
 b) 2^{-6} c) 6^{-2} d) 2^{-5} e) $\frac{2-\sqrt{3}}{4}$

11 - (ITA-03) Considere o polinômio $P(x) = 2x + a_2x^2 + ... + a_nx^n$, cujos coeficientes 2, a_2 , ..., a_n formam, nesta ordem, uma progressão geométrica de razão q > 0.

Sabendo que $-\frac{1}{2}$ é uma raiz de P e que P(2) = 5 460,

tem-se que o valor de $\frac{n^2 - q^3}{q^4}$ é igual a:

a)
$$\frac{5}{4}$$
 b) $\frac{3}{2}$ c) $\frac{7}{4}$ d) $\frac{11}{6}$ e) $\frac{15}{8}$

12 - (ITA-00) O valor de n que torna a seqüência

$$2+3n$$
, $-5n$, $1-4n$

uma progressão aritmética pertence ao intervalo:

(A)
$$[-2, -1]$$
 (B) $[-1, 0]$ (C) $[0, 1]$

(D)
$$[1, 2]$$
 (E) $[2, 3]$

13 - (ITA-99) O conjunto de todos os números reais q > 1, para os quais a₁, a₂ e a₃, formam, nesta ordem, uma progressão geométrica de razão q e representam as medidas dos lados de um triângulo, é:

a)]1,
$$\frac{1+\sqrt{5}}{2}$$
 [b)]1, $\frac{1+\sqrt{5}}{2}$]

c)]1,
$$\frac{1+\sqrt{5}}{\sqrt{5}}$$
] d)]1, $\frac{1+\sqrt{5}}{4}$ [

e)]1, 1+
$$\sqrt{5}$$
 [

14 - (ITA-98) Seja (a₁ , a₂ , a₃ ,...) uma progressão geométrica infinita de razão a₁, 0 < a₁ < 1, e soma igual a 3a₁ . A soma dos três primeiros termos desta progressão geométrica é:

a)
$$\frac{8}{27}$$
 b) $\frac{20}{27}$ c) $\frac{26}{27}$ d) $\frac{30}{27}$ e) $\frac{38}{27}$

15 - (ITA-97) Sejam a_1 , a_2 , a_3 e a_4 números reais formando, nesta ordem, uma progressão geométrica crescente com $a_1 \neq 0$. Sejam x_1 , x_2 e x_3 as raízes da equação $a_1x^3 + a_2x^2 + a_3x + a_4 = 0$. Se $x_1 = 2i$, então:

a)
$$x_1 + x_2 + x_3 = -2$$

b)
$$x_1 + x_2 + x_3 = 1$$

d) $x_1 \cdot x_2 \cdot x_3 = 8$

c)
$$x_1^2 + x_2^2 + x_3^2 = 4$$

d)
$$x_1 \cdot x_2 \cdot x_3 = 8$$

e)
$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = 5$$

16 - (ITA-97) Os números reais x, y e z formam, nesta ordem, uma progressão aritmética de razão r. Seja α um número real com $\alpha > 0$ e $\alpha \neq 1$ satisfazendo $3a^x + 2a^y - a^z = 0$. Então r é igual a a) a² b) $(\frac{1}{2})^a$ c) $\log_{2a} 4$ d) $\log_a (3/2)$ e) $\log_a 3$

17 - (ITA-95) Se a soma dos termos da progressão geométrica dada por 0,3 : 0,03 : 0,003 : ... é igual ao termo médio de uma progressão aritmética de três

termos, então a soma dos termos da progressão aritmética vale:

18 - (ITA-94) Seja (a₁, a₂,, a_n) uma progressão geométrica com um número ímpar de termos e razão q > 0. O produto de seus termos é igual a 2²⁵ e o termo do meio é 25. Se a soma dos (n - 1) primeiros termos é igual a $2(1 + q)(1 + q^2)$, então:

a)
$$a_1 + q = 16$$

b)
$$a_1 + q = 12$$

c)
$$a_1 + q = 10$$

d)
$$a_1 + q + n = 20$$
 e

d)
$$a_1 + q + n = 20$$
 e) $a_1 + q + n = 11$

19 - (ITA-94) Seja (a, b, c, d, e) uma progressão geométrica de razão a, com a \neq 0 e a \neq 1. Se a soma de seus termos é igual a (13a + 12) e x é um número real positivo diferente de 1 tal que:

$$\frac{1}{\log_{a} x} + \frac{1}{\log_{b} x} + \frac{1}{\log_{c} x} + \frac{1}{\log_{d} x} + \frac{1}{\log_{e} x} = \frac{5}{2}$$
então x é igual a:
a) 3³ b) 2³ c) $(5/2)^{2}$ d) $(5/2)^{3/2}$ e) $(2/5)^{2}$

20 - (ITA-93) Numa progressão aritmética com 2n + 1 termos, a soma dos *n* primeiros é igual a 50 e a soma dos *n* últimos é 140. Sabendo-se que a razão desta progressão é um inteiro entre 2 e 13, então seu último termo será igual a:

21 - (ITA-93) A soma dos 5 primeiros termos de uma progressão aritmética de razão r é 50 e a soma dos termos de uma progressão geométrica infinita de razão q é 12. Se ambas as progressões tiverem o mesmo termo inicial menor do que 10 e sabendo-se que $q = r^2$, podemos afirmar que a soma dos 4 primeiros termos da progressão geométrica será:

22 - (ITA-92) Numa progressão geométrica de razão inteira q > 1. Sabe-se que $a_1a_n = 243$, $\log_q a_n = \log_q a_n = 6$, onde na é o enésimo termo de progressão geométrica e an é o produto dos n primeiros termos. Então a soma dos n primeiros termos é igual a:

a)
$$\frac{3^9-1}{6}$$
 b) $\frac{3^{10}-1}{6}$ c) $\frac{3^8-1}{6}$ d) $\frac{3^9-1}{3}$ e) n.d.a.

23 - (ITA-92) Sejam a, b, c, d números reais não nulos que estão nesta ordem em progressão aritmética. Sabendo que o sistema a seguir:

$$\begin{cases} 4.2^a.x + 2^c.y = \frac{2}{3}.2^b \\ 3^d.x + 9.3^b.y = 81 \end{cases} \quad \text{\'e poss\'el e indeterminado,}$$

podemos afirmar que a soma desta progressão aritmética é:

a) 13 b) 16 c) 28 d) 30 e) n.d.a.

24 - (ITA-91) Na divisão de P(x) = $a_5x^5 + 2x^4 + a_4x^3 + 8x^2$ - $32x + a_3$ por x - 1, obteve-se o quociente $Q(x) = b_4x^4 + a_5x^4 + a$ $b_3x^3 + b_2x^2 + b_1x + b_0$ e o resto – 6. Sabe-se que (b_4 , b_3 , b_2 , b_1) é uma progressão geométrica de razão q > 0 e q ≠ 1. Podemos afirmar:

- a) $b_3 + a_3 = 10$
- b) $b_4 + a_4 = 6$ c) $b_3 + b_0 = 12$
- d) $b_4 + b_1 = 16$
- e) n.d.a.

25 - (ITA-91) Numa progressão geométrica de razão q, sabe-se que:

I- o produto do logaritmo natural do primeiro termo a₁ pelo logaritmo natural da razão é 24.

II- a soma do logaritmo natural do segundo termo com o logaritmo natural do terceiro termo é 26.

Se ln q é um número inteiro então o termo geral a_n vale:

- b) e^{4 + 6n}
- c) e²⁴ⁿ
- d) e^{4+6n}

Notação: In q denota o logaritmo natural (ou neperiano) de q

26 - (ITA-90) Numa progressão geométrica de três termos a razão é e^{-2a}, a soma dos termos é 7 enquanto que a diferença do último termo com o primeiro é 3. Nestas condições o valor de a é:

- a) In √2

- b) $\ln \frac{5}{2}$ c) $\ln \sqrt{3}$ d) $\ln \sqrt{2}$
- e) não existe número real a nestas condições

27 - (ITA-89) Numa progressão geométrica de razão q sabemos que $a_1 = 1/q$, $a_1a_n = (2/3)^5$ e o produto dos nprimeiros termos é q^{20} . Então a soma dos n primeiros termos é igual a:

- a) $\frac{1}{2} \frac{3^8 2^8}{3^6}$ b) $\frac{1}{2} \frac{3^6 2^6}{3^6}$ c) $\frac{1}{4} \frac{3^8 2^8}{3^6}$
- d) $\frac{1}{4} \frac{3^6 2^6}{3^6}$ e) $\frac{1}{4} \frac{3^6 2^6}{3^8}$

28 - (ITA-89) Numa progressão aritmética com n termos, n > 1, sabemos que o primeiro é igual a (1 + n)/n e a soma deles vale (1 + 3n)/2. Então o produto da razão desta progressão pelo último termo é igual a:

- a) 2n
- b) 2/n
- c) 3n
- d) 3/n
- e) 5n

29 - (ITA-88) Suponha que os números 2, x, y e 1458 estão, nesta ordem, em progressão geométrica. Desse modo o valor de x + y é:

- a) 90
- b) 100
- c) 180
- d) 360
- e) 1460

30 - (ITA-88) Sejam a, b e c constantes reais com a \neq 0 formando, nesta ordem, uma progressão aritmética e tais que a soma das raízes da equação $ax^2 + bx + c = 0$ é $-\sqrt{2}$. Então uma relação válida entre b e c é:

a)
$$c = \frac{b}{\sqrt{2}}(\sqrt{2}-1)$$
 b) $c = b(2-\sqrt{2})$ c) $c = b(\sqrt{2}-1)$

b)
$$c = b(2 - \sqrt{2})$$

c)
$$c = b(\sqrt{2} - 1)$$

d)
$$c = b\sqrt{2}$$

d)
$$c = b\sqrt{2}$$
 e) $c = \frac{b}{2}(4 - \sqrt{2})$

31 - (ITA-86) Sejam os números reais x > 0, a > b > 1. Os três números reais

$$x$$
, $\sqrt{x \log_a b}$, $\log_a (bx)$

são, nesta ordem, os três primeiros termos de uma progressão geométrica infinita. A soma S desta progressão vale:

- a) $S = 2x/(1 \log_a b)$
- b) $S = (x + 1)/(1 1/2\log_a b)$
- c) $S = 1/(1 \sqrt{\log_a b})$
- d) $S = 1/(1 \sqrt{\log_a b})$
- e) impossível determinar S pois é finito.

32 - (ITA-86) Sejam *a*, *b* e *c* números reais que nesta ordem formam uma progressão aritmética de soma 12. Sabendo-se que os restos das divisões de $x^{10} + 8x^8 + ax^5$ + bx^3 + cx por x - 2 e x + 2 são iguais, então a razão desta progressão aritmética é:

- a) 1
- b) 28/5
- c) 37/5
- d) 44/15

33 - (ITA-85) Sejam a₁, a₂, ..., a_n números reais positivos e $p_n = a_1$. a_2 ... a_n . Se a > 0 é uma constante real tal que

 $P_n = \frac{p^{n^2+n}}{2^n}$, então podemos afirmar que os números a_1 ,

a₂, ..., a_n, nesta ordem:

- a) Formam uma progressão geométrica de razão q = p e $a_n = (p^{2n})/2$
- b) Formam uma progressão geométrica de razão q = p e $a_n = (p^n)/2$
- c) Formam uma progressão geométrica de razão q = p² $e a_n = (p^n)/2$
- d) Formam uma progressão geométrica de razão q = p² $e a_n = (p^{2n})/2$
- e) Não formam uma progressão geométrica.
- 34 (ITA-84) Os coeficientes do trinômio x² + bx + c constituem, nesta ordem, uma progressão aritmética de

razão não nula $r=\frac{q}{2}$, onde q é a razão da progressão aritmética b^2-1 , c^2-b^2 . Nestas condições podemos afirmar que o trinômio apresenta:

- a) uma raiz nula
- b) duas raízes reais distintas
- c) duas raízes iguais
- d) duas raízes complexas
- e) nenhuma raiz
- **35 -** (ITA-83) Considere os números reais não nulos a, b, c e d em progressão geométrica tais que a, b e c são raízes da equação (em x) $x^3 + Bx^2 2Bx + D = 0$, onde B e D são números reais e B > 0. Se cd ac = -2B, então:

a)
$$(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$$
 e $b^2 + c^2 + d^2$

$$d^2 = \frac{16B^2}{B^2 + 4B}$$

b)
$$(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2 e a^2 + b^2 + c^2$$

$$c^2 = \frac{16B}{B^2 + 4}$$

c)
$$(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd) e b^2 + c^2 + c^2$$

$$d^2 = \frac{16B}{B+4}$$

d)
$$(a^2 + b^2 + c^2)(b + c + d) = (ab + bc + cd) e a^2 + b^2 + c^2 =$$

$$\frac{16B}{B+4}$$

e)
$$(a^2 + b^2 + c^2)(b + c + d) = (ab + bc + cd)^2$$
 e $a^2 + b^2 + c^2$

$$= \frac{B+4}{16B}$$

GABARITO

1	D
2	Α
3	Α
4	D
5	D
6	В
7	D
8	С
9	В
10	D
11	С
12	В
13	Α
14	E
15	Α
16	E
17	С
18	E
19	Α
20	Α
21	D
22	С
23	E
24	В
25	Α
26	D
27	Α
28	В
29	С
30	E
31	С
32	В
33	D
34	D
35	Α