

Convex Sets

1 Why

We speak of sets of real numbers which are like intervals.

2 Definition

A **convex combination** of two distinct real numbers is an element of the closed interval they delimit. A **convex set** of real numbers contains each convex combination of any two of its elements.

The **length** of a convex combination is the real number in [0, 1] which is the ratio of the combination less the lower endpoint to the upper endpoint less the lower endpoint.

2.1 Notation

Denote the real numbers by R. Let $A \subset R$ be convex. Then for all $a, b \in A$, $[a, b] \subset A$.

Suppose A contains at least two element. Let $a, b \in A$ with a < b. If c is the combination of a and b, then the length of c is

$$(c-a)/(b-a).$$

If A is convex, then for each $a, b \in A$, and $\theta \in [0, 1]$,

$$\theta a + (1 - \theta)b \in A.$$

3 Examples

Example 1. The real numbers are a convex set.

Example 2. Real intervals are convex.

Example 3. Let a, b be non-equal real numbers. The set $\{a, b\}$ is not convex.

Example 4. The empty set is convex

Example 5. Let a be a real number. The set $\{a\}$ is convex.

Example 6. Let [a,b] and [c,d] be two disjoint real intervals. The set $[a,b] \cup [c,d]$ is not convex.