Regularization

Model complexity: overfitting

Good model:

- fits the data well
- generalizes to new data

Overfit model:

- fits the data **too** well
- fails to generalize to new data

Regression example

Classification example

MACHINE LEARNING GENERALIZATION

FINDING THE PERFECT FIT

UNDERFIT

GOLDILOCKS ZONE

OVERFIT

How to prevent overfitting?

Collect more data

Feature selection: restrict the model complexity by choosing fewer features

Regularization: restrict the model complexity by penalizing large weights

Regularization

Regularization

Small weights (pprox 0) to make the model simpler

$$f(x) = 28x + 385x^2 - 39x^3 + 174x^4 + 100$$

$$f(x) = 13x - 0.23x^2 - 0.0000012x^3 + 0.0002x^4 + 4$$

To make w_3, w_4 small (pprox 0), modify the cost function:

$$J(ec{w},b) = rac{1}{m} \sum_{i=1}^m L(a^{(i)},y^{(i)}) + \underbrace{(1000w_3^2 + 1000w_4^2)}_{ ext{penalty for large weights}}$$

Modified cost function with regularization

Minimize both loss and complexity

$$J(ec{w},b) = \underbrace{\frac{1}{m}\sum_{i=1}^m L(a^{(i)},y^{(i)})}_{ ext{loss}} + \underbrace{\lambda\sum_{j=1}^n w_j^2}_{ ext{complexity}}$$

- j: index of the feature $(j=1,2,\ldots,n)$
- w_j : weight of the feature j
- complexity term: sum of squares of the weights
- λ (lambda): regularization parameter

Regularization parameter

$$J(ec{w},b) = \underbrace{\frac{1}{m} \sum_{i=1}^m L(a^{(i)},y^{(i)})}_{ ext{loss}} + \underbrace{\lambda \sum_{j=1}^n w_j^2}_{ ext{complexity}}$$

large λ

- Complexity term dominates
- Weights close to zero

small λ :

- Complexity term close to zero \Rightarrow Non-regularized model
- Weights close to non-regularized values

Regularized linear regression

$$J(ec{w},b) = rac{1}{m} \sum_{i=1}^m (y^{(i)} - a^{(i)})^2 + \lambda \sum_{j=1}^n w_j^2 \, .$$

Partial derivative of the cost function with respect to $\overline{w_j}$

$$rac{\partial J(ec{w},b)}{\partial w_{j}} = rac{2}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)}) x_{j}^{(i)} + 2 \lambda w_{j} \, .$$

Partial derivative of the cost function with respect to $oldsymbol{b}$

$$rac{\partial J(ec{w},b)}{\partial b} = rac{2}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)})^{-1}$$

Regularization: "Shrinking" the weights

Gradient descent update rule for w_j

$$egin{aligned} w_j &= w_j - lpha rac{\partial J(ec{w},b)}{\partial w_j} \ &= w_j - lpha \left(rac{2}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_j^{(i)} + 2 \lambda w_j
ight) \ &= w_j - 2 lpha \lambda w_j - lpha \left(rac{2}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_j^{(i)}
ight) \ &= w_j \underbrace{(1 - 2 lpha \lambda)}_{ ext{shrink factor}} - lpha \left(rac{2}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_j^{(i)}
ight) \ &= w_j \underbrace{(1 - 2 lpha \lambda)}_{ ext{shrink factor}} - lpha \left(\frac{2}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_j^{(i)}
ight) \ &= w_j \underbrace{(1 - 2 lpha \lambda)}_{ ext{shrink factor}} - lpha \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - lpha \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual update}} - rac{a}{m} \underbrace{(1 - 2 lpha \lambda)}_{ ext{usual u$$

Regularized logistic regression

$$J(ec{w},b) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \log(a^{(i)}) + (1-y^{(i)}) \log(1-a^{(i)})] + \lambda \sum_{j=1}^n w_j^2.$$

Partial derivative of the cost function with respect to w_i

$$rac{\partial J(ec{w},b)}{\partial w_j} = rac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)}) x_j^{(i)} + 2\lambda w_j \, .$$

Partial derivative of the cost function with respect to $oldsymbol{b}$

$$rac{\partial J(ec{w},b)}{\partial b} = rac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}).$$

Regularized softmax regression

$$J(ec{w},ec{b}) = -rac{1}{m} \sum_{i=1}^m \sum_{k=1}^K y_k^{(i)} \log(a_k^{(i)}) + \lambda \sum_{j=1}^n \sum_{k=1}^K w_{j,k}^2 \, .$$

Partial derivative of the cost function with respect to $w_{j,k}$

$$egin{aligned} rac{\partial J(ec{w}, ec{b})}{\partial w_{j,k}} &= rac{1}{m} \sum_{i=1}^m (a_k^{(i)} - y_k^{(i)}) x_j^{(i)} + 2 \lambda w_{j,k} \end{aligned}$$

Partial derivative of the cost function with respect to b_k

$$rac{\partial J(ec{w},ec{b})}{\partial b_k} = rac{1}{m} \sum_{i=1}^m (a_k^{(i)} - y_k^{(i)}).$$

Ridge and Lasso regression

Ridge regression:

- **L2** regularization term: w_j^2
- shrink weights (close but not equal to zero)

$$J(ec{w},b) = rac{1}{m} \sum_{i=1}^m L(y^{(i)},a^{(i)}) + \lambda \sum_{j=1}^n w_j^2$$

Lasso regression:

- **L1** regularization term: $|w_j|$
- sparse weights (set some weights to zero)

$$J(w,b) = rac{1}{m} \sum_{i=1}^m L(y^{(i)},a^{(i)}) + \lambda \sum_{j=1}^n |w_j|$$

