Ré-identification sans coordination dans les types de données répliquées sans conflits

Matthieu Nicolas (matthieu.nicolas@loria.fr)

Rapporteurs: Hanifa Boucheneb Professeure, Polytechnique Montréal

Davide Frey Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Examinateurs : Hala Skaf-Molli Maîtresse de conférences, HdR, Nantes Université, LS2N

Stephan Merz Directeur de Recherche, Inria Nancy - Grand Est

Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Encadrants ·

MUTE'

- · Application pair-à-pair
- · Permet à groupes de rédiger collaborativement documents texte
- · Garantit confidentialité & souveraineté de ses données

^{*.} Disponible à : https://mutehost.loria.fr

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

- Doit garantir convergence à terme [1]...
- · ...malgré ordres différents d'intégration des modifications

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

- Doit garantir convergence à terme [1]...
- · ...malgré ordres différents d'intégration des modifications

Nécessite mécanismes de résolution de conflits

[1]. TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

Évaluation de MUTE

Taille du texte comparée à taille de la séquence répliquée

- · 1% contenu...
- · ...99% métadonnées

des mécanismes de résolution de conflits dans

les applications pair-à-pair?

Comment peut-on réduire le surcoût mémoire

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs) [2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- · Permettent modifications sans coordination
- Garantissent la convergence forte

Convergence forte

Ensemble des noeuds ayant intégrés le même ensemble de modifications obtient des états équivalents, sans nécessiter d'actions ou messages supplémentaires

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

LogootSplit [4], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [4], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

Propriétés des identifiants de position [3]

- 1. Unique
- 2. Immuable
- 3. Ordonnable par une relation d'ordre strict total <id
- 4. Appartenant à un espace dense

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [4], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

Propriétés des identifiants de position [3]

- 1. Unique
- 2. Immuable
- 3. Ordonnable par une relation d'ordre strict total <id
- 4. Appartenant à un espace dense
 - · Ordonne les éléments entre eux en utilisant leurs identifiants

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Identifiant

· Composé d'un ou plusieurs tuples suivants

pos^{nodeld nodeSeq}

Identifiant

Identifiant

Identifiant

Identifiant

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1}$$

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id}$$
 ? $<_{id} i_1^{B1}$

7

Identifiant

· Composé d'un ou plusieurs tuples suivants

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id} i_0^{B1} f_0^{A1} <_{id} i_1^{B1}$$

7

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

8

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

 Note l'intervalle d'identifiants d'un bloc : pos^{nodeld nodeSeq} begin..end

8

B

HL i^{B1}_{0..1}

 $i_{0..1}^{B1}$

Limites de LogootSplit

Sources croissance métadonnées

- · Croissance non-bornée de la taille des identifiants
- Fragmentation en blocs courts

Limites de LogootSplit

Sources croissance métadonnées

- · Croissance non-bornée de la taille des identifiants
- Fragmentation en blocs courts

Taille du contenu comparé à la taille de la séquence LogootSplit

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5]

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5]

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5]

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

Inadaptée aux applications pair-à-pair

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

• . •

Proposition

Mécanisme de renommage supportant les

renommages concurrents

RenamableLogootSplit

Contribution: RenamableLogootSplit

- CRDT pour le type Séquence qui incorpore un mécanisme de renommage
- · Prend la forme d'une nouvelle opération : rename

Propriétés de l'opération rename

- · Est déterministe
- · Préserve l'intention des utilisateur-rices
- · Préserve la séquence, c.-à-d. unicité et ordre de ses identifiants
- Commute avec les opérations insert, remove mais aussi rename concurrentes

 \cdot Génère nouvel identifiant pour le 1er élément :

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$
- · Puis génère identifiants contigus pour éléments suivants :

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$
- Puis génère identifiants contigus pour éléments suivants : i_1^{A2}

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$
- Puis génère identifiants contigus pour éléments suivants : $i_1^{\rm A2}$, $i_2^{\rm A2}$

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$
- Puis génère identifiants contigus pour éléments suivants : i_1^{A2} , i_2^{A2} , ...

13

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$
- Puis génère identifiants contigus pour éléments suivants : i_1^{A2} , i_2^{A2} , ...

Regroupe tous les éléments en 1 unique bloc

- Génère nouvel identifiant pour le 1er élément : $i_0^{B1} \rightarrow i_0^{A2}$
- Puis génère identifiants contigus pour éléments suivants : i_1^{A2} , i_2^{A2} , ...

Regroupe tous les éléments en 1 unique bloc

• Stocke identifiants ($[i_0^{B1}, i_0^{B1}f_0^{A1}, \dots]$) de l'état d'origine : renlds

- Peuvent générer opérations concurrentes aux opérations rename
- · Produisent anomalies si intégrées naïvement

- Peuvent générer opérations concurrentes aux opérations rename
- · Produisent anomalies si intégrées naïvement

Nécessité d'un mécanisme dédié

Mécanisme de résolution de conflits

Besoins

- 1. Détecter les opérations concurrentes aux opérations rename
- 2. Prendre en compte effet des opérations *rename* lors de l'intégration des opérations concurrentes

Mécanisme de résolution de conflits

Besoins

- 1. Détecter les opérations concurrentes aux opérations rename
- 2. Prendre en compte effet des opérations *rename* lors de l'intégration des opérations concurrentes

Ajout mécanisme d'époques

Ajout mécanisme d'époques

- Séquence commence à époque d'origine, notée $arepsilon_0$

Ajout mécanisme d'époques

- · Séquence commence à époque d'origine, notée ε_0
- \cdot rename font progresser à nouvelle époque, $arepsilon_{nodeld\ nodeSeq}$

Ajout mécanisme d'époques

- · Séquence commence à époque d'origine, notée ε_0
- \cdot rename font progresser à nouvelle époque, $arepsilon_{nodeld\ nodeSeq}$
- · Opérations labellisées avec époque de génération

Mécanisme de résolution de conflits

Besoins

- 1. Détecter les opérations concurrentes aux opérations rename
- 2. Prendre en compte effet des opérations *rename* lors de l'intégration des opérations concurrentes

Mécanisme de résolution de conflits

Besoins

- 1. Détecter les opérations concurrentes aux opérations rename
- 2. Prendre en compte effet des opérations *rename* lors de l'intégration des opérations concurrentes

Ajout d'un mécanisme de transformation des opérations *insert* et *remove* concurrentes

Ajout d'un mécanisme de transformation des opérations *insert* et *remove* concurrentes

· Prend la forme de l'algorithme renameId

Ajout d'un mécanisme de transformation des opérations *insert* et *remove* concurrentes

- · Prend la forme de l'algorithme renameId
- Inclure l'effet de l'opération rename dans l'opération transformée

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

Rappel:

$$renIds_{A2} = [i_0^{B1}, i_0^{B1}f_0^{A1}, i_1^{B1}, i_2^{B1}]$$

Exemple avec $i_0^{B1}m_0^{B2}$

• Trouver son prédecesseur dans $renlds_{A2}: i_0^{B1}f_0^{A1}$

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

- Trouver son prédecesseur dans $renlds_{A2}$: $i_0^{B1}f_0^{A1}$
- \cdot Utiliser son index (1) pour trouver équivalent à époque $arepsilon_{A2}$: i_1^{A2}

Rappel:

$$renIds_{A2} = [i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}]$$

- Trouver son prédecesseur dans $renlds_{A2}: i_0^{B1}f_0^{A1}$
- · Utiliser son index (1) pour trouver équivalent à époque ε_{A2} : i_1^{A2}
- Préfixer $i_0^{B1}m_0^{B2}$ par ce dernier : $i_1^{A2}i_0^{B1}m_0^{B2}$

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

- Trouver son prédecesseur dans $renlds_{A2}: i_0^{B1}f_0^{A1}$
- · Utiliser son index (1) pour trouver équivalent à époque ε_{A2} : i_1^{A2}
- Préfixer $i_0^{B1}m_0^{B2}$ par ce dernier : $i_1^{A2}i_0^{B1}m_0^{B2}$

Et en cas d'opérations *rename* concurrentes?

Comment faire converger les noeuds?

Comment faire converger les noeuds?

Besoin d'un mécanisme additionnel de résolution de conflits

Résolution de conflits entre opérations rename concurrentes

Observation

- · Opérations rename sont des opérations systèmes...
- · ...pas des opérations utilisateur-rices

Résolution de conflits entre opérations rename concurrentes

Observation

- · Opérations rename sont des opérations systèmes...
- · ...pas des opérations utilisateur-rices

Proposition

- · Considérer une opération rename comme prioritaire...
- · …et ignorer les opérations rename en conflit avec elle

Intuition		

Intuition

1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque <u>l'époque</u> cible

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque <u>l'époque</u> cible
- 3. Si changement d'époque cible

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque <u>l'époque</u> cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque <u>l'époque</u> cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)
 - 3.2 Annuler l'effet des opérations rename de l'époque courante au PPAC

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque <u>l'époque</u> cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)
 - 3.2 Annuler l'effet des opérations rename de l'époque courante au PPAC
 - 3.3 Appliquer l'effet des opérations rename du PPAC à l'époque cible

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque <u>l'époque</u> cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)
 - 3.2 Annuler l'effet des opérations rename de l'époque courante au PPAC
 - 3.3 Appliquer l'effet des opérations rename du PPAC à l'époque cible

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque l'époque cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)
 - 3.2 Annuler l'effet des opérations rename de l'époque courante au PPAC.
 - 3.3 Appliquer l'effet des opérations rename du PPAC à l'époque cible

Α		
В		>
6		

Arbre des époques

Comment choisir?

Arbre des époques

ε_{A2} ε_{B3} ε_{C6} ε_{B7}

Comment choisir?

• Définit relation priority, notée $<_{\varepsilon}$, ordre strict total sur les époques

Arbre des époques

Comment choisir?

- Définit relation *priority*, notée $<_{\varepsilon}$, ordre strict total sur les époques
- Utilise ordre lexicographique sur chemins des époques dans l'arbre

Arbre des époques

Comment choisir?

- Définit relation *priority*, notée $<_{\varepsilon}$, ordre strict total sur les époques
- Utilise ordre lexicographique sur chemins des époques dans l'arbre

Exemple

$$\varepsilon_0 < \varepsilon_0 \varepsilon_{A2}$$

Arbre des époques

Comment choisir?

- Définit relation *priority*, notée $<_{\varepsilon}$, ordre strict total sur les époques
- Utilise ordre lexicographique sur chemins des époques dans l'arbre

Exemple

$$\varepsilon_0 < \varepsilon_0 \varepsilon_{A2} < \varepsilon_0 \varepsilon_{A2} \varepsilon_{C6}$$

Arbre des époques

Comment choisir?

- Définit relation *priority*, notée $<_{\varepsilon}$, ordre strict total sur les époques
- Utilise ordre lexicographique sur chemins des époques dans l'arbre

Exemple

$$\varepsilon_0 < \varepsilon_0 \varepsilon_{A2} < \varepsilon_0 \varepsilon_{A2} \varepsilon_{C6} < \varepsilon_0 \varepsilon_{B3} \varepsilon_{B7}$$

Exemple - Calculs des transformations à effectuer

Arbre des époques de A

Étapes

• Époque courante : ε_{A2}

Exemple - Calculs des transformations à effectuer

Arbre des époques de A

Étapes

• Époque courante : $\varepsilon_{\mathrm{A2}}$

Arbre des époques de A

Étapes

- Époque courante : ε_{A2}
- Époque cible : ε_{B3}

Arbre des époques de A

Étapes

- Époque courante : ε_{A2}
- Époque cible : ε_{B3}
- Plus Proche Ancêtre Commun : ε_0

Arbre des époques de A

Étapes

- Époque courante : $\varepsilon_{\mathsf{A2}}$
- Époque cible : ε_{B3}
- · Plus Proche Ancêtre Commun : $arepsilon_0$

Doit annuler ε_{A2}

Arbre des époques de A

Étapes

- Époque courante : ε_{A2}
- Époque cible : ε_{B3}
- · Plus Proche Ancêtre Commun : $arepsilon_0$

Doit annuler ε_{A2} puis appliquer ε_{B3}

Algorithme d'intégration d'une opération rename

Intuition

- Ajouter l'époque créée par l'opération rename à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque l'époque cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)
 - 3.2 Annuler l'effet des opérations rename de l'époque courante au PPAC.
 - 3.3 Appliquer l'effet des opérations rename du PPAC à l'époque cible

Algorithme d'intégration d'une opération rename

Intuition

- 1. Ajouter l'époque créée par l'opération *rename* à l'ensemble des époques connues
- 2. Choisir entre époque courante et nouvelle époque l'époque cible
- 3. Si changement d'époque cible
 - 3.1 Calculer chemin entre époque courante et époque cible, et notamment leur Plus Proche Ancêtre Commun (PPAC)
 - 3.2 Annuler l'effet des opérations rename de l'époque courante au PPAC
 - 3.3 Appliquer l'effet des opérations rename du PPAC à l'époque cible

Ajout d'un nouveau mécanisme de transformation

Ajout d'un nouveau mécanisme de transformation

· Prend la forme de l'algorithme revertRenameId

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- · Exclure l'effet de l'opération rename

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- · Exclure l'effet de l'opération rename

Intuition

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- · Exclure l'effet de l'opération rename

Intuition

1. *id* fait partie des identifiants renommés : doit retourner son ancienne valeur

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- Exclure l'effet de l'opération rename

Intuition

- 1. *id* fait partie des identifiants renommés : doit retourner son ancienne valeur
- 2. *id* a (potentiellement) été inséré en concurrence : doit restaurer sa (potentielle) ancienne valeur

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- Exclure l'effet de l'opération rename

Intuition

- 1. *id* fait partie des identifiants renommés : doit retourner son ancienne valeur
- 2. *id* a (potentiellement) été inséré en concurrence : doit restaurer sa (potentielle) ancienne valeur
- 3. *id* a été inséré après le renommage : doit retourner une valeur qui préserve l'ordre

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- Exclure l'effet de l'opération rename

Intuition

- 1. *id* fait partie des identifiants renommés : doit retourner son ancienne valeur
- 2. *id* a (potentiellement) été inséré en concurrence : doit restaurer sa (potentielle) ancienne valeur
- 3. *id* a été inséré après le renommage : doit retourner une valeur qui préserve l'ordre

Distingue cas par filtrage par motif

Ajout d'un nouveau mécanisme de transformation

- · Prend la forme de l'algorithme revertRenameId
- · Exclure l'effet de l'opération rename

Intuition

- 1. *id* fait partie des identifiants renommés : doit retourner son ancienne valeur
- 2. *id* a (potentiellement) été inséré en concurrence : doit restaurer sa (potentielle) ancienne valeur
- 3. *id* a été inséré après le renommage : doit retourner une valeur qui préserve l'ordre

Distingue cas par filtrage par motif

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1}f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

Exemple avec $i_1^{A2}i_0^{B1}m_0^{B2}$

• Est de la forme i_1^{A2} concaténé à $i_0^{B1}m_0^{B2}$: cas 2 ou 3

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

- Est de la forme i_1^{A2} concaténé à $i_0^{B1}m_0^{B2}$: cas 2 ou 3
- Trouver l'équivalent de i_1^{A2} dans $renIds_{A2}$: $i_0^{B1}f_0^{A1}$

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

- Est de la forme i_1^{A2} concaténé à $i_0^{B1}m_0^{B2}$: cas 2 ou 3
- Trouver l'équivalent de i_1^{A2} dans $renIds_{A2}$: $i_0^{B1}f_0^{A1}$
- Trouver l'équivalent de i_2^{A2} dans $renIds_{A2}$: i_1^{B1}

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1}f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

- Est de la forme i_1^{A2} concaténé à $i_0^{B1}m_0^{B2}$: cas 2 ou 3
- Trouver l'équivalent de i_1^{A2} dans $renIds_{A2}$: $i_0^{B1}f_0^{A1}$
- Trouver l'équivalent de i_2^{A2} dans $renIds_{A2}$: i_1^{B1}
- Comparer $i_0^{B1}m_0^{B2}$ avec ces derniers : $i_0^{B1}f_0^{A1} <_{id} i_0^{B1}m_0^{B2} <_{id} i_1^{B1}$

Rappel:

$$renIds_{A2} = \left[i_0^{B1}, i_0^{B1} f_0^{A1}, i_1^{B1}, i_2^{B1}\right]$$

- Est de la forme i_1^{A2} concaténé à $i_0^{B1}m_0^{B2}$: cas 2 ou 3
- Trouver l'équivalent de i_1^{A2} dans $renIds_{A2}$: $i_0^{B1}f_0^{A1}$
- Trouver l'équivalent de i_2^{A2} dans $renIds_{A2}$: i_1^{B1}
- Comparer $i_0^{B1}m_0^{B2}$ avec ces derniers : $i_0^{B1}f_0^{A1} <_{id} i_0^{B1}m_0^{B2} <_{id} i_1^{B1}$
- Retourner $i_0^{B1}m_0^{B2}$

les opérations concurrentes...

Mais ça sert à quoi de renommer?

Puisqu'on doit conserver les renlds pour gérer

· Besoin de garder renlds pour transformer opérations

^{[6].} BAQUERO et al., « Making Operation-Based CRDTs Operation-Based ».

[·] Besoin de garder renlds pour transformer opérations

^{[6].} BAQUERO et al., « Making Operation-Based CRDTs Operation-Based ».

- · Besoin de garder renlds pour transformer opérations
- Si plus d'opérations nécessitant transformations vers époque donnée...

^{[6].} BAQUERO et al., « Making Operation-Based CRDTs Operation-Based ».

- · Besoin de garder renlds pour transformer opérations
- Si plus d'opérations nécessitant transformations vers époque donnée...
- · ...alors époque et renIds correspondant obsolètes

^{[6].} BAQUERO et al., « Making Operation-Based CRDTs Operation-Based ».

- · Besoin de garder renlds pour transformer opérations
- Si plus d'opérations nécessitant transformations vers époque donnée...
- · ...alors époque et renIds correspondant obsolètes

Besoins

- Détecter stabilité causale [6] des opérations rename
- · Connaître noeuds appartenant au groupe
- [6]. BAQUERO et al., « Making Operation-Based CRDTs Operation-Based ».

RenamableLogootSplit

Validation

Objectifs

- · Montrer convergence des noeuds
- Montrer que mécanisme de renommage améliore performances de la séquence répliquée (mémoire, calculs, bande-passante)

Objectifs

- · Montrer convergence des noeuds
- Montrer que mécanisme de renommage améliore performances de la séquence répliquée (mémoire, calculs, bande-passante)

Conduite d'une évaluation expérimentale

Absence d'un jeu de données de sessions d'édition collaborative

Mise en place de simulations pour générer un jeu de données

Simulations - Architecture

- · 10 noeuds éditent collaborativement un document
- · Utilisent soit LogootSplit (LS), soit RenamableLogootSplit (RLS)

Simulations - Architecture

- · 10 noeuds éditent collaborativement un document
- Utilisent soit LogootSplit (LS), soit RenamableLogootSplit (RLS)
- · Topologie réseau entièrement maillée
- · Ne considère pas pannes ou pertes de message

Simulations - Modifications

- Phase 1 (génération du contenu): Beaucoup d'insertions, quelques suppressions (80/20%)
- · Phase 2 (édition): Équilibre insertions/suppressions (50/50%)
- Noeuds passent à la phase 2 quand document atteint taille donnée (15 pages - 60k caractères)

Simulations - Modifications

- Phase 1 (génération du contenu) : Beaucoup d'insertions, quelques suppressions (80/20%)
- · Phase 2 (édition): Équilibre insertions/suppressions (50/50%)
- Noeuds passent à la phase 2 quand document atteint taille donnée (15 pages - 60k caractères)
- Noeuds terminent quand ensemble des noeuds a effectué nombre donné de modifications (10k)...
- · ...et intégré celles des autres (150k au total)

Simulations - Mécanisme de renommage

- · Noeuds désignés comme noeuds de renommage (1 à 4)
- Noeuds de renommage effectue un renommage à toutes les 7.5k/30k opérations qu'ils intègrent (5/20 opérations rename par noeud de renommage)
- Opérations rename générées à un point donné sont concurrentes

Simulations - Sorties

- Instantané de l'état de chaque noeud à différents points de la simulation (2.5k/10k opérations et état final)
- · Journal des opérations de chaque noeud

^{*.} Code des simulations et benchmarks: https://github.com/coast-team/mute-bot-random

Simulations - Sorties

- Instantané de l'état de chaque noeud à différents points de la simulation (2.5k/10k opérations et état final)
- · Journal des opérations de chaque noeud

Permet de conduire évaluations sur ces données*

^{*.} Code des simulations et benchmarks: https://github.com/coast-team/mute-bot-random

RenamableLogootSplit

Résultats

Convergence

Intuition

Comparer l'état final des différents noeuds d'une session pour confirmer l'absence de divergence

Convergence

Intuition

Comparer l'état final des différents noeuds d'une session pour confirmer l'absence de divergence

· Ensemble des noeuds convergent

Convergence

Intuition

Comparer l'état final des différents noeuds d'une session pour confirmer l'absence de divergence

- · Ensemble des noeuds convergent
- · Un résultat empirique, pas une preuve...
- · ...mais un premier pas vers la validation de RLS

Intuition

Intuition

Intuition

Intuition

Mesurer évolution de la taille de la structure de données à partir des instantanés des sessions avec 1 seul noeud de renommage

 Opération rename réinitialise surcoût du CRDT, si GC de l'entièreté des métadonnées du mécanisme de renommage

Intuition

Mesurer évolution de la taille de la structure de données à partir des instantanés des sessions avec 1 seul noeud de renommage

 Opération rename réinitialise surcoût du CRDT, si GC de l'entièreté des métadonnées du mécanisme de renommage

Intuition

- Opération rename réinitialise surcoût du CRDT, si GC de l'entièreté des métadonnées du mécanisme de renommage
- Opération rename réduit de 66% surcoût du CRDT sinon

Intuition

Intuition

Intuition

Intuition

Intuition

- Aucun impact si GC
- · Surcoût de chaque opération rename s'additionne sinon

Intuition

Mesurer temps d'intégration local et distant d'opérations insert à différents stades de la collaboration

Intuition

Mesurer temps d'intégration local et distant d'opérations insert à différents stades de la collaboration

(a) Temps intégration modifs locales

(b) Temps intégration modifs distantes

Intuition

Mesurer temps d'intégration local et distant d'opérations insert à différents stades de la collaboration

(a) Temps intégration modifs locales

- (b) Temps intégration modifs distantes
- · Opérations rename réduisent temps intégration

Intuition

Mesurer temps d'intégration local et distant d'opérations insert à différents stades de la collaboration

(a) Temps intégration modifs locales

- (b) Temps intégration modifs distantes
- · Opérations rename réduisent temps intégration
- · Réduction état contrebalance surcoût transformation

Surcoûts en calculs - Opérations rename

Intuition

Mesurer temps d'intégration local et distant d'opérations rename à différents stades de la collaboration

Surcoûts en calculs - Opérations rename

Intuition

Mesurer temps d'intégration local et distant d'opérations rename à différents stades de la collaboration

Paramètres		Temps d'intégration (ms)		
Туре	Nb Ops (k)	Médiane	1 ^{er} Percent.	99 ^{ème} Percent.
Locale	30	38.7	37.3	71.7
	90	119	116	124
	150	158	153	164
Opération rename distante même époque	30	477	454	537
	90	1482	1396	1658
	150	1676	1591	1853
Opération rename distante plus prioritaire	30	644	620	683
	90	1994	1906	2112
	150	2234	2139	2351

Surcoûts en calculs - Opérations rename

Intuition

Mesurer temps d'intégration local et distant d'opérations rename à différents stades de la collaboration

Paramètres		Temps d'intégration (ms)		
Туре	Nb Ops (k)	Médiane	1 ^{er} Percent.	99 ^{ème} Percent.
Locale	30	38.7	37.3	71.7
	90	119	116	124
	150	158	153	164
Opération rename distante même époque	30	477	454	537
	90	1482	1396	1658
	150	1676	1591	1853
Opération rename distante plus prioritaire	30	644	620	683
	90	1994	1906	2112
	150	2234	2139	2351

- Ressentie par utilisateur-rices
- · Nécessaire d'améliorer temps d'intégration distant

Surcoût en calculs - Vue globale

Intuition

Mesurer temps pour intégrer l'entièreté du journal d'opérations d'une collaboration en fonction du nombre de noeuds de renommage

Surcoût en calculs - Vue globale

Intuition

Mesurer temps pour intégrer l'entièreté du journal d'opérations d'une collaboration en fonction du nombre de noeuds de renommage

Surcoût en calculs - Vue globale

Intuition

Mesurer temps pour intégrer l'entièreté du journal d'opérations d'une collaboration en fonction du nombre de noeuds de renommage

- Initialement, gains sur opérations insert et remove contrebalancent coût des opérations rename ...
- · ...mais coût des opérations *rename* augmente surcoût total *in fine*

Conclusion générale &

Perspectives

Conclusion

Contributions

- Conception d'un mécanisme de renommage pour CRDTs pour le type Séquence à identifiants densément ordonnés
 - Implémentation et instrumentation de RenamableLogootSplit et de ses dépendances (protocole d'appartenance au réseau, couche de livraison)

Conclusion

Contributions

- Conception d'un mécanisme de renommage pour CRDTs pour le type Séquence à identifiants densément ordonnés
 - Implémentation et instrumentation de RenamableLogootSplit et de ses dépendances (protocole d'appartenance au réseau, couche de livraison)
- Comparaison des différents modèles de synchronisation pour CRDTs...
- · ...et des différentes approches pour CRDTs pour le type Séquence

Limites & perspectives

Limites de RenamableLogootSplit

- · Surcoût fonction du nombre d'opérations rename concurrentes
- · Stabilité causale requise pour supprimer les métadonnées

Perspectives autour de RenamableLogootSplit

- Comment définir une relation *priority* $<_{\varepsilon}$ réduisant calculs à échelle du système?
- Est-ce que RenamableLogootSplit est correct?

Limites & perspectives

Limites de RenamableLogootSplit

- · Surcoût fonction du nombre d'opérations rename concurrentes
- · Stabilité causale requise pour supprimer les métadonnées

Perspectives autour de RenamableLogootSplit

- Comment définir une relation *priority* $<_{\varepsilon}$ réduisant calculs à échelle du système?
- Est-ce que RenamableLogootSplit est correct?

Perspectives autour des CRDTs

- Doit-on encore concevoir CRDTs synchronisés par états ou opérations?
- Peut-on proposer un framework pour conception de CRDTs synchronisés par opérations?

Merci de votre attention, avez-vous des questions?

Publications

- Article de position à Middleware 2018 19th ACM/IFIP International Middleware Conference (Doctoral Symposium), Dec 2018, Rennes, France.
- Article d'atelier avec Gérald Oster et Olivier Perrin à PaPoC 2020
 7th Workshop on Principles and Practice of Consistency for Distributed Data, Apr 2020, Heraklion / Virtual, Greece.
- Article de revue avec Gérald Oster et Olivier Perrin dans IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2022, 33 (12), pp.3870-3885.

Benchmarks

- Node.js, version 13.1.0, avec option jitless
- Machiné équipée d'un Intel Xeon CPU E5-1620 (10MB Cache, 3.50 GHz), de 16GB de RAM et utilisant Fedora 31
- Taille des documents obtenus en utilisant notre fork de object-sizeof*
- Mesures de temps avec process.hrtime.bigint()

^{*.} https://www.npmjs.com/package/object-sizeof

Doit-on encore concevoir CRDTs synchronisés par états ou opérations?

	Sync. par états	Sync. par opérations	Sync. par diff. d'états
Forme un sup-demi-treillis	1	✓	✓
Intègre modifications par fusion d'états	✓	X	✓
Intègre modifications par élts irréductibles	X	✓	✓
Résiste nativ. aux défaillances réseau	1	X	✓
Adapté pour systèmes temps réel	X	✓	✓
Offre nativ. modèle de cohérence causale	✓	X	Х

- · Synchronisation par différences offre meilleur des mondes...
- ...y a-t-il encore un intérêt aux autres modèles, e.g. pour composition ou sécurité?