COMPUTER VISION AND PHOTOGRAMMETRY

SELF-CALIBRATION

TODAY

so far...

- Geometrical definitions
- Self-Calibration

SUMMARY

3D MODELLING FROM IMAGES PIPELINE

Figure 1.7: Overview of the presented approach for 3D modeling from images

KEYPOINT DETECTORS

- Harris Corners
- DoG
- LoG
- Scale and orientation

FEATURE DESCRIPTOR

- Invariant to illumination
- Invariant to rotation
- Invariant (somehow) to viewing angle

MATCHING

- Nearest Neighbour Distance Ratio
- RANSAC
 - Evaluate a (random) hypothesis to reject outliers

RELATING IMAGES

- Fundamental Matrix (more views?)
- Projection Matrices
- Triangulation
 - PROJECTIVE RECONSTRUCTION
- if K (calibrated) Essential Matrix
 - METRIC RECONSTRUCTION
- ► IF NOT?? Self-calibration (TODAY)

DENSE MATCHING

- Stereo Matching
- Rectification
- SSD, NCC

3D MODELING

- From 3D points to triangles
- Texturing
- Other material properties??

PROJECTIVE GEOMETRY

HOMOGENEOUS COORDINATES

Homogeneous representation of lines

$$ax + by + c = 0$$
 $(a,b,c)^T$
 $(ka)x + (kb)y + kc = 0, \forall k \neq 0$ $(a,b,c)^T \sim k(a,b,c)^T$
equivalence class of vectors, any vector is representative
Set of all equivalence classes in \mathbb{R}^3 – $(0,0,0)^T$ forms \mathbb{P}^2

Homogeneous representation of points

$$x = (x, y)^{T}$$
 on $1 = (a, b, c)^{T}$ if and only if $ax + by + c = 0$
 $(x, y, 1)(a, b, c)^{T} = (x, y, 1)1 = 0$ $(x, y, 1)^{T} \sim k(x, y, 1)^{T}, \forall k \neq 0$

The point x lies on the line 1 if and only if $x^T1=1^Tx=0$

Homogeneous coordinates $(x_1, x_2, x_3)^T$ but only 2DOF Inhomogeneous coordinates $(x, y)^T$

POINTS FROM LINES AND VICE-VERSA

Intersections of lines

The intersection of two lines 1 and 1 is $x = 1 \times 1$

Line joining two points

The line through two points x and x' is $1 = x \times x'$

Example

IDEAL POINTS AND THE LINE AT INFINITY

Intersections of parallel lines

$$1 = (a, b, c)^T$$
 and $1' = (a, b, c')^T$

$$1 \times 1' = (b, -a, 0)^T$$

Example

(b,-a)tangent vector (a,b) normal direction

Ideal points $(x_1, x_2, 0)^T$ Line at infinity $1_{\infty} = (0, 0, 1)^T$

$$\mathbf{P}^2 = \mathbf{R}^2 \cup \mathbf{1}_{\infty}$$

Note that in **P**² there is no distinction between ideal points and others

DUALITY

$$x \longrightarrow 1$$

$$x^{\mathsf{T}} 1 = 0 \longrightarrow 1^{\mathsf{T}} x = 0$$

$$x = 1 \times 1' \longrightarrow 1 = x \times x'$$

Duality principle:

To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

CONICS

Curve described by 2nd-degree equation in the plane

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

or homogenized
$$x ? x_1/x_3, y ? x_2/x_3$$

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

or in matrix form

$$\mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} = 0$$
 with $\mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$

5DOF:
$$\{a:b:c:d:e:f\}$$

TANGENT LINES TO CONICS

The line I tangent to C at point x on C is given by I=Cx

DUAL CONICS

A line tangent to the conic \mathbf{C} satisfies $\mathbf{1}^T \mathbf{C}^* \mathbf{1} = 0$

In general (C full rank):
$$\mathbf{C}^* = \mathbf{C}^{-1}$$

Dual conics = line conics = conic envelopes

PROJECTIVE TRANSFORMATIONS

Definition:

A *projectivity* is an invertible mapping h from P² to itself such that three points x_1,x_2,x_3 lie on the same line if and only if $h(x_1),h(x_2),h(x_3)$ do.

Theorem:

A mapping $h: P^2 \rightarrow P^2$ is a projectivity if and only if there exist a non-singular 3x3 matrix **H** such that for any point in P^2 represented by a vector x it is true that $h(x)=\mathbf{H}x$

Definition: Projective transformation

$$\begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \text{or} \quad \mathbf{x'} = \mathbf{H} \mathbf{x}$$
8DOF

projectivity=collineation=projective transformation=homography

OVERVIEW TRANSFORMATIONS

3D POINTS

3D point

$$(X,Y,Z)^T$$
 in \mathbb{R}^3

$$X = (X_1, X_2, X_3, X_4)^T \text{ in } \mathbf{P}^3$$

$$X = \left(\frac{X_1}{X_4}, \frac{X_2}{X_4}, \frac{X_3}{X_4}, 1\right)^{\mathsf{T}} = (X, Y, Z, 1)^{\mathsf{T}} \qquad (X_4 \neq 0)$$

projective transformation

$$X' = H X (4x4-1=15 dof)$$

PLANES

3D plane

$$\pi_{1}X + \pi_{2}Y + \pi_{3}Z + \pi_{4} = 0$$

$$\pi_{1}X_{1} + \pi_{2}X_{2} + \pi_{3}X_{3} + \pi_{4}X_{4} = 0$$

$$\pi^{T}X = 0$$

Transformation

$$X' = HX$$

$$\pi' = H^{-T} \pi$$

Dual: points ↔ planes

QUADRICS AND DUAL QUADRICS

Quadric

$$X^{T}QX = 0$$
 (Q: 4x4 symmetric matrix) $Q = \begin{array}{c} ? \cdot \cdot \cdot \\ ? ? \cdot \cdot \end{array}$

- 1. 9 d.o.f.
- 2. (plane \cap quadric)=conic $C = M^TQM$
- 3. transformation $Q' = H^{-T}QH^{-1}$

Dual Quadric

$$\pi^{\mathsf{T}}Q^*\pi = 0$$

- 1. relation to quadric $Q^* = Q^{-1}$ (non-degenerate)
- 2. transformation $Q'^* = HQ^*H^T$

HIERARCHY OF TRANSFORMATIONS

Projective 15dof

$$\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

Intersection and tangency

Affine 12dof

$$\begin{bmatrix} A & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$

Parallellism of planes, Volume ratios, centroids, The plane at infinity π_{∞}

Similarity 7dof

$$\begin{bmatrix} s R & t \\ 0^T & 1 \end{bmatrix}$$

The absolute conic Ω_{∞}

Euclidean 6dof

$$\begin{bmatrix} R & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$

Volume

$$\boldsymbol{\pi}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \boldsymbol{\pi}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \\ -\mathbf{A} t & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \boldsymbol{\pi}_{\infty}$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H if H is an affinity

- 1. canical position $\pi_{\infty} = (0,0,0,1)^{T}$ 2. contains directions $D = (X_1, X_2, X_3, 0)^{T}$

THE PLANE AT INFINITY

THE ABSOLUTE CONIC

The absolute conic Ω_{∞} is a (point) conic on π_{∞} .

In a metric frame:

$$X_1^2 + X_2^2 + X_3^2$$

$$X_4 = 0$$

or conic for directions: $(X_1, X_2, X_3) \mathbf{I}(X_1, X_2, X_3)^\mathsf{T}$ (with no real points)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation H if H is a similarity

- 1. Ω_{∞} is only fixed as a set
- 2. Circle intersect Ω_{∞} in two points
- 3. Spheres intersect π_{∞} in Ω_{∞}

THE DUAL ABSOLUTE QUADRIC

$$\Omega_{\infty}^* = \begin{bmatrix} I & 0 \\ 0^{\mathsf{T}} & 0 \end{bmatrix}$$

The absolute conic Ω^*_{∞} is a fixed conic under the projective transformation \mathbf{H} if \mathbf{H} is a similarity

- 1. 8 dof
- 2. plane at infinity π_{∞} is the nullvector of Ω_{∞}

SELF-CALIBRATION

MOTIVATION

- Avoid explicit calibration procedure
 - Complex procedure
 - Need for calibration object
 - Need to maintain calibration

MOTIVATION

- Allow flexible acquisition
 - No prior calibration necessary
 - Possibility to vary intrinsics
 - Use archive footage

EXAMPLE

PROJECTIVE AMBIGUITY

Reconstruction from uncalibrated images

⇒ projective ambiguity on reconstruction

$$m = PM = (PT^{-1})(TM) = P'M'$$

STRATIFICATION OF GEOMETRY

CONSTRAINTS?

- Scene constraints
 - Parallellism, vanishing points, horizon, ...
 - Distances, positions, angles, ...
 - Unknown scene → no constraints
- Camera extrinsics constraints
 - Pose, orientation, ...

Unknown camera motion → no constraints

- Camera intrinsics constraints
 - Focal length, principal point, aspect ratio & skew

Perspective camera model too general → some constraints

EUCLIDEAN PROJECTION MATRIX

Factorization of Euclidean projection matrix

$$\mathbf{P} = \mathbf{K} \left[\mathbf{R}^{\mathsf{T}} \mid -\mathbf{R}^{\mathsf{T}} \mathbf{t} \right]$$

Intrinsics:
$$\mathbf{K} = \begin{bmatrix} f_x & s & u_x \\ & f_y & u_y \\ & & 1 \end{bmatrix}$$
 (camera geometry)

Extrinsics: (R,t) (camera motion)

Note: every projection matrix can be factorized, but only meaningful for euclidean projection matrices

CONSTRAINTS ON INTRINSIC PARAMETERS

$$\mathbf{K} = \begin{bmatrix} f_x & s & u_x \\ f_y & u_y \\ 1 \end{bmatrix}$$

Constant

e.g. fixed camera:

$$K_1 = K_2 = ?$$

Known

e.g. rectangular pixels:
$$S = 0$$

Langular pixels: square pixels: $f_x = f_y, s = 0$ square pixels: $(u_x, u_y) = (\frac{w}{2}, \frac{h}{2})$ principal point known:

SELF-CALIBRATION

Upgrade from projective structure to metric structure using constraints on intrinsic camera parameters

Constant intrinsics

```
(Faugeras et al. ECCV'92, Hartley'93, Triggs'97, Pollefeys et al. PAMI'98, ...)
```

Some known intrinsics, others varying

```
(Heyden&Astrom CVPR'97, Pollefeys et al. ICCV'98,...)
```

Constraints on intrincs and restricted motion
 (Moons et al. '94, Hartley '94, Armstrong ECCV'96, ...)

 (e.g. pure translation, pure rotation, planar motion)

A COUNTING ARGUMENT

- To go from projective (15DOF) to metric (7DOF) at least 8 constraints are needed
- Minimal sequence length should satisfy

$$n \times (\# known) + (n-1) \times (\# fixed) \ge 8$$

- Independent of algorithm
- Assumes general motion (i.e. not critical)

SELF-CALIBRATION: CONCEPTUAL ALGORITHM

Given projective structure and motion $\{P_j, M_i\}$, then the metric structure and motion can be obtained as $\{P_jT^{-1}, TM_i\}$, with

$$\mathbf{T} = \underset{\mathbf{T}}{\operatorname{arg\,min}} C(K(\mathbf{P}_{1}\mathbf{T}^{-1})K(\mathbf{P}_{2}\mathbf{T}^{-1}); K(\mathbf{P}_{n}\mathbf{T}^{-1}))$$

 $C(\mathbf{K}_1, \mathbf{K}_2, \mathbf{?}, \mathbf{K}_n)$ criterium expressing constraints $K(\mathbf{P})$ function extracting intrinsics from projection matrix

CONICS & QUADRICS

CONICS

$$\mathbf{m}^{\mathsf{T}}\mathbf{C}\mathbf{m} = \mathbf{0} \quad \mathbf{I}^{\mathsf{T}}\mathbf{C}^{*}\mathbf{I} = \mathbf{0}$$

$$\mathbf{C}^{*} = \mathbf{C}^{-1}$$

QUADRICS

$$\mathbf{M}^{\mathsf{T}}\mathbf{Q}\mathbf{M} = \mathbf{0} \qquad \mathbf{\Pi}^{\mathsf{T}}\mathbf{Q}^{*}\mathbf{\Pi} = \mathbf{0}$$
$$\mathbf{Q}^{*} = \mathbf{Q}^{-1}$$

TRANSFORMATIONS

C ?
$$C' \sim H^{-T}CH^{-1}$$

$$\mathbf{C}^*$$
 ? \mathbf{C}^* $\sim \mathbf{HC}^*\mathbf{H}^\mathsf{T}$

$$Q ? Q' \sim T^{-T}QT^{-1}$$

$$Q^* ? Q^* \sim TQ^*T^T$$

PROJECTION

$$C^* \sim PQ^*P^T$$

THE ABSOLUTE DUAL QUADRIC

(Triggs CVPR'97)

Degenerate dual quadric Ω^*_{∞}

Encodes both absolute conic ω_{∞} and π_{∞}

for metric frame:

$$\boldsymbol{\pi}^{\mathsf{T}} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 0 \end{bmatrix} \boldsymbol{\pi} = 0$$

ABSOLUTE DUAL QUADRIC AND SELF-CALIBRATION

Eliminate extrinsics from equation

$$\mathbf{K} \mathbf{R}^{\mathsf{T}} - \mathbf{R}^{\mathsf{T}} \mathbf{t}$$
 $- \mathbf{K} \mathbf{R}^{\mathsf{T}} \mathbf{R} \mathbf{K}^{\mathsf{T}} - \mathbf{K} \mathbf{K}^{\mathsf{T}}$

Equivalent to projection of dual quadric

$$\mathbf{P}\Omega_{\infty}^{*}\mathbf{P}^{\mathsf{T}} \propto \mathbf{K}\mathbf{K}^{\mathsf{T}} \quad \Omega_{\infty}^{*} = \mathrm{diag}(1110)$$

Abs. Dual Quadric also exists in projective world

$$\mathbf{K}\mathbf{K}^{\mathsf{T}} \propto \mathbf{P}\Omega_{\infty}^{*}\mathbf{P}^{\mathsf{T}} \propto (\mathbf{P}\mathbf{T}^{-1})(\mathbf{T}\Omega_{\infty}^{*}\mathbf{T}^{\mathsf{T}})(\mathbf{T}^{-\mathsf{T}}\mathbf{P}^{\mathsf{T}})$$
$$\propto \mathbf{P}'\Omega_{\infty}'^{*}\mathbf{P'}^{\mathsf{T}}$$

Transforming world so that $\Omega'_{\infty}^* \to \Omega_{\infty}^*$ reduces ambiguity to metric

IMAGE OF THE ABSOLUTE CONIC

Projection equation:

 $\omega_i^* \propto \mathbf{P}_i \Omega^* \mathbf{P}_i^T \propto \mathbf{K}_i \mathbf{K}_i^T$

Translate constraints on K through projection equation to constraints on Ω^*

Absolute conic = calibration object which is always present but can only be observed through constraints on the intrinsics

CONSTRAINTS ON Ω^*_{∞}

ω_{∞}^* =	$\int_{x}^{2} f_{x}^{2} + s^{2} + c_{x}^{2} \qquad Sf_{y}$ $Sf_{y} + c_{x}c_{y} \qquad f_{y}$	$c_{y} + c_{x}c_{y} c_{x}$ $c_{y}^{2} + c_{y}^{2} c_{y}$ c_{y} 1	
condition	constraint	√	 #constraints
Zero skew	$\omega_{12}^* \omega_{33}^* = \omega_{13}^* \omega_{23}^*$	quadratic	m
Principal point	$\omega_{13}^* = \omega_{23}^* = 0$	linear	2 <i>m</i>
Zero skew (& p.p.)	$\omega_{12}^* = 0$	linear	m
Fixed aspect ratio (& p.p.& Skew)	$\omega_{11}^* \omega_{22}^* = \omega_{22}^* \omega_{11}^*$	quadratic	m-1
Known aspect ratio (& p.p.& Skew)	$\omega_{11}^* = \omega_{22}^*$	linear	m
Focal length (& p.p. & Skew)	$\omega_{33} = \omega_{11}$	linear	m

LINEAR ALGORITHM

(Pollefeys et al.,ICCV'98/IJCV'99)

Assume everything known, except focal length

$$\omega^* \approx \begin{bmatrix} \hat{f}^2 & 0 & 0 \\ 0 & \hat{f}^2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \propto \mathbf{P}\Omega^* \mathbf{P}^T \qquad \begin{aligned} (\mathbf{P}\Omega^* \mathbf{P}^T)_1 - (\mathbf{P}\Omega^* \mathbf{P}^T)_2 &= 0 \\ (\mathbf{P}\Omega^* \mathbf{P}^T)_2 &= 0 \\ (\mathbf{P}\Omega^* \mathbf{P}^T)_3 &= 0 \\ (\mathbf{P}\Omega^* \mathbf{P}^T)_2 &= 0 \end{aligned}$$

Yields 4 constraint per image

Note that rank-3 constraint is not enforced

FIRST NORMALISE P BY KN

$$\mathbf{P}_N = \mathbf{K}_N^{-1} \mathbf{P}$$
 with $\mathbf{K}_N = \left[egin{array}{ccc} w+h & 0 & rac{w}{2} \\ w+h & rac{h}{2} \\ 1 \end{array}
ight]$

$$\omega^* \sim \mathbf{K} \mathbf{K}^{\top} = \begin{bmatrix} f^2 + s^2 + u^2 & srf + uv & u \\ srf + uv & r^2 f^2 + v^2 & v \\ u & v & 1 \end{bmatrix} \approx \begin{bmatrix} 1 \pm 9 & \pm 0.01 & \pm 0.1 \\ \pm 0.01 & 1 \pm 9 & \pm 0.1 \\ \pm 0.1 & \pm 0.1 & 1 \end{bmatrix}$$

(Pollefeys et al., ECCV'02)

Weighted linear equations

$$\mathbf{K}\mathbf{K}^{\mathsf{T}} \approx \begin{bmatrix} \hat{f}^2 & 0 & 0 \\ 0 & \hat{f}^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\hat{f} \approx 1$$

$$\mathbf{K}\mathbf{K}^{\mathsf{T}} \approx \begin{bmatrix} \hat{f}^2 & 0 & 0 \\ 0 & \hat{f}^2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \frac{\frac{1}{0.2} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0}{\frac{1}{0.01} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0} \\ \frac{\frac{1}{0.01} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0}{\frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0} \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_1 - (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_2 = 0 \\ \frac{1}{0.1} (\mathbf{P}\Omega^* \mathbf{P}^{\mathsf{T}})_3 = 0$$

PROJECTIVE TO METRIC

Compute T from

$$\widetilde{\mathbf{I}} = \mathbf{T}\Omega_{\infty}^{*}\mathbf{T}^{\mathsf{T}} \text{ or } \mathbf{T}^{\mathsf{-1}}\widetilde{\mathbf{I}}\mathbf{T}^{\mathsf{-T}} = \Omega_{\infty}^{*} \text{ with } \widetilde{\mathbf{I}} = \begin{bmatrix} \mathbf{I} & 0 \\ 0^{\mathsf{T}} & 0 \end{bmatrix}$$

using eigenvalue decomposition of $\Omega^{\frac{1}{2}}$

and then obtain metric reconstruction as \mathbf{PT}^{-1} and \mathbf{TM}

CRITICAL MOTION SEQUENCES

(Sturm, CVPR'97, Kahl, ICCV'99, Pollefeys, PhD'99)

- Self-calibration depends on camera motion
- Motion sequence is not always general enough
- Critical Motion Sequences have more than one potential absolute conic satisfying all constraints
- Possible to derive classification of CMS

CRITICAL MOTION SEQUENCES: ALGORITHM DEPENDENT

Additional critical motion sequences can exist for some specific algorithms

when not all constraints are enforced

(e.g. not imposing rank 3 constraint)

Kruppa equations/linear algorithm: fixating a point Some spheres also project to circles located in the image and hence satisfy all the linear/kruppa self-calibration constraints

NON-AMBIGUOUS NEW VIEWS FOR CMS

(Pollefeys,ICCV'01)

- restrict motion of virtual camera to CMS
- use (wrong) computed camera parameters

REFERENCES

- http://www.cs.unc.edu/~marc/tutorial/node76.html
- R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, chapter 19.