ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

STRUTTURE DATI:

Disjoint Set

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

a.k.a Union-Find set o Merge-Find set

Disjoint Set:

Memorizza una collezione di sottoinsiemi disgiunti di un insieme generativo. Ammette operazioni di ricerca e unione, ma non inserzione e cancellazione.

Insieme generativo: $X = \{1,2,...,n\}$

Insieme di sottoinsiemi disgiunti: $S = \{S_1, ..., S_k\}$, con $1 \le k \le n$, tali che

$$S_i \subseteq X \,\forall i = 1, ..., k$$

$$S_i \cap S_j = \emptyset \,\,\forall i \neq j, \,\, i, j = 1, ..., k$$

$$\bigcup_{i=1}^k S_i = X$$

a.k.a Union-Find set o Merge-Find set

Disjoint Set:

Memorizza una collezione di sottoinsiemi disgiunti di un insieme generativo. Ammette operazioni di ricerca e unione, ma non inserzione e cancellazione.

Insieme generativo: $X = \{1, 2, ..., n\}$

Insieme di sottoinsiemi disgiunti: $S = \{S_1, ..., S_k\}$, con $1 \le k \le n$, tali che

$$S_i \subseteq X, \forall i = 1, ..., k$$

$$S_i \cap S_j = \emptyset, \ \forall i \neq j, \ i, j = 1, ..., k$$

$$\bigcup_{i=1}^k S_i = X$$

Primitive:

- Make-set (X): restituisce un DisjointSet in cui $S_i = \{i\}, \forall i = 1,..., |X|$
- Find-set(DS,x): restituisce un rappresentante dell'insieme a cui appartiene x
- Union (DS, x, y): unisce gli insiemi a cui appartengono x e y

Realizzazione mediante FORESTA di alberi

Ogni insieme ha un rappresentate, che è la radice dell'albero

La foresta è rappresentata con il vettore dei padri

1	2	3	4	5	6	7	8	9	10
5	2	1	5	5	5	1	2	2	8

Primitive:

• Make-set (X): restituisce un DisjointSet in cui $S_i = \{i\}, \forall i = 1,..., |X|$

DS

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10

Primitive:

• Find-set(DS,x): restituisce un rappresentante dell'insieme a cui appartiene x

Find-set(DS,5)	=	5
<pre>Find-set(DS,7)</pre>	=	5
Find-set(DS,9)	=	2

10)	Find-Sec(DS, A)	
	if $DS[x] = x$	
	then return	X
0 10	else return	<pre>Find-set(DS,DS[X])</pre>

DS

1	2	3	4	5	6	7	8	9	10
5	2	1	5	5	5	1	2	2	8

Costo computazionale lineare nell'altezza dell'albero a cui appartiene x O(n)

Primitive:

• Union (DS, x, y): unisce gli insiemi a cui appartengono x e y

Union(DS,8,5)

Union(DS,x,y)
xr := Find-set(DS,x)
yr := Find-set(DS,y)
if xr ≠ yr
then DS[xr] := yr

DS

1	2	3	4	5	6	7	8	9	10
5	5	1	5	5	5	1	2	2	8

Costo computazionale lineare nella somma delle altezze degli alberi a cui appartengono $x \in y$ O(n)

Quale sequenza di operazioni genera un albero di altezza $\Omega(n)$?

Union(DS,1,2)

Quale sequenza di operazioni genera un albero di altezza $\Omega(n)$?

Union(DS, 1, 2)

Union(DS, 1, 3)

Quale sequenza di operazioni genera un albero di altezza $\Omega(n)$?

Union(DS, 1, 3)

Union(DS, 1, 4)

Quale sequenza di operazioni genera un albero di altezza $\Omega(n)$?

Union(DS, 1, 2)

Union(DS, 1, 3)

Union(DS, 1, 4)

. . . .

Quale sequenza di operazioni genera un albero di altezza $\Omega(n)$?

EURISTICA del RANGO

Nella Union l'albero più basso diventa sottoalbero di quello più alto

rank[1..n] memorizza l'altezza
degli alberi radicati nei rappresentanti

p[1..n] vettore dei padri

Union(DS, 5, 10)

Union(DS, 10, 5)

	p	1	2	3	4	5	6	7	8	9	10
DC		5	2	1	5	5	5	1	2	2	10
D2 {											
	monle	1	2	3	4	5	6	7	8	9	10
	rank	1	1	0	0	2	0	0	0	0	0

EURISTICA del RANGO

Nella Union l'albero più basso diventa sottoalbero di quello più alto


```
Make-set(X)
  DS.p := new_array[1..n]
  DS.rank := new_array[1..n]
  for i=1 to n
    DS.p[i] := i
    DS.rank := 0
  return DS
```

```
Union(DS,x,y)
  xr := Find-set(DS,x)
  yr := Find-set(DS,y)
  if xr ≠ yr
  then
  if DS.rank[xr] > DS.rank[yr]
     then DS.p[yr] := xr
  else DS.p[xr] := yr
     if DS.rank[xr] = DS.rank[yr]
     then DS.rank[yr] := DS.rank[yr] +1
```

```
Find-set(DS,X)
if DS.p[x] = x
   then return x
   else return Find-set(DS,DS.p[x])
```


EURISTICA del RANGO

Nella Union l'albero più basso diventa sottoalbero di quello più alto

```
Make-set(X)
  DS.p := new_array[1..n]
  DS.rank := new_array[1..n]
  for i=1 to n
    DS.p[i] := i
    DS.rank := 0
  return DS
```

```
Union(DS,x,y)
  xr := Find-set(DS,x)
  yr := Find-set(DS,y)
  if xr ≠ yr
  then
  if DS.rank[xr] > DS.rank[yr]
     then DS.p[yr] := xr
  else DS.p[xr] := yr
     if DS.rank[xr] = DS.rank[yr]
     then DS.rank[xr] = DS.rank[xr] +1
```

```
Find-set(DS,x)
if DS.p[x] = x
    then return x
    else return Find-set(DS,DS.p[x])
```

```
O(\text{rank}[\text{rappresentante di }x])
```

Costo computazionale?

EURISTICA del RANGO

PROPOSIZIONE:

Usando l'euristica del rango, un albero della foresta con radice r ha almeno 2^{rank[r]} nodi

un albero di radice r con k nodi

$$k \ge 2^{rank[r]}$$
 $log k \ge rank[r]$

Costo computazionale Find e Union $O(\log n)$

EURISTICA del RANGO

PROPOSIZIONE:

Usando l'euristica del rango, un albero della foresta con radice r ha almeno 2^{rank[r]} nodi

Dimostrazione per induzione sul numero di operazioni Union

CASO BASE:

dopo Make-set(X), prima della prima Union

- ogni albero ha esattamente un nodo $\Rightarrow 1 = 2^0$
- per ogni nodo r si ha rank[r] = 0

$$2^{\text{rank}[r]} \leq 1$$

EURISTICA del RANGO

PROPOSIZIONE:

Usando l'euristica del rango, un albero della foresta con radice r ha almeno 2^{rank[r]} nodi

Dimostrazione per induzione sul numero di operazioni

IPOTESI INDUTTIVA:

dopo t ≥ 0 operazioni Union, per un albero di k $\leq n$ nodi con rappresentante r vale che $2^{\operatorname{rank}[r]} < k$

PASSO INDUTTIVO: dimostriamo che l'ipotesi induttiva vale anche dopo t+1 operazioni Union

EURISTICA del RANGO

IPOTESI INDUTTIVA:

dopo t operazioni Union, per un albero di $k \le n$ nodi con rappresentante r vale che

$$2^{\operatorname{rank}[r]} \leq k$$

PASSO INDUTTIVO: dimostriamo che l'ipotesi induttiva vale anche dopo t+1 operazioni Union

EURISTICA del RANGO

IPOTESI INDUTTIVA:

dopo t operazioni Union, per un albero di $k \le n$ nodi con rappresentante r vale che

$$2^{\text{rank}[r]} \leq k$$

PASSO INDUTTIVO: dimostriamo che l'ipotesi induttiva vale anche dopo t+1 operazioni Union

EURISTICA del RANGO

IPOTESI INDUTTIVA:

dopo t operazioni Union, per un albero di $k \le n$ nodi con rappresentante r vale che

$$2^{\text{rank[r]}} \leq k$$

PASSO INDUTTIVO: dimostriamo che l'ipotesi induttiva vale anche dopo t+1 operazioni Union

rank[xr] > rank[yr]

xr diventa il nuovo rappresentante ma il suo rango non cambia

$$xr \neq xy$$

 S_x = insieme a cui appartiene x

 $S_{\rm y}$ = insieme a cui appartiene y

$$|S_x \cup S_y| > |S_x| \ge 2^{\operatorname{rank}[xr]}$$

di nodi nuovo insieme Ipotesi induttiva

EURISTICA del RANGO

IPOTESI INDUTTIVA:

dopo t operazioni Union, per un albero di $k \le n$ nodi con rappresentante r vale che

$$2^{\text{rank[r]}} \leq k$$

PASSO INDUTTIVO: dimostriamo che l'ipotesi induttiva vale anche dopo t+1 operazioni Union

simmetrico rispetto al caso 1

Union(DS,x,y)

$$xr \neq xy$$

 S_{x} = insieme a cui appartiene x

 $S_{\rm y}$ = insieme a cui appartiene y

EURISTICA del RANGO

IPOTESI INDUTTIVA:

dopo t operazioni Union, per un albero di $k \le n$ nodi con rappresentante r vale che

$$2^{\operatorname{rank}[r]} \leq k$$

PASSO INDUTTIVO: dimostriamo che l'ipotesi induttiva vale anche dopo t+1 operazioni Union

Union(DS,x,y)

$$xr \neq xy$$

 S_x = insieme a cui appartiene x

 $S_{\rm y}$ = insieme a cui appartiene y

$$rank[xr] = rank[yr]$$

xr diventa il nuovo rappresentante e il suo rango viene incrementato di 1

perché disgiunti
$$|S_x \cup S_y| = |S_x| + |S_y| \ge |S_x|$$
 nuovo

$$2^{\operatorname{rank}[xr]} + 2^{\operatorname{rank}[yr]} = 2^{\operatorname{rank}[yr]+1}$$

EURISTICA del RANGO

Nella Union l'albero più basso diventa sottoalbero di quello più alto

```
Make-set(X)
  DS.p := new_array[1..n]
  DS.rank := new_array[1..n]
  for i=1 to n
    DS.p[i] := i
    DS.rank := 0
  return DS
```

```
Union(DS,x,y)
  xr := Find-set(DS,x)
  yr := Find-set(DS,y)
  if xr ≠ yr
  then
  if DS.rank[xr] > DS.rank[yr]
    then DS.p[yr] := xr
  else DS.p[xr] := yr
    if DS.rank[xr] = DS.rank[yr]
    then DS.rank[xr] = DS.rank[xr] +1
```

```
Find-set(DS,x) O(log n)
if DS.p[x] = x
    then return x
    else return Find-set(DS,DS.p[x])
```

Costo computazionale