段江涛

计算机导论与程序设计 [CS006001018,X05]

机试练习参考程序代码

2020年10月25日

目录

1	第 1	上次机试练习: 熟悉 $\mathbf{DEV} ext{-}\mathbf{C} ext{++}$ 开发平台,基本输入输出语句练习 \dots	5
	1.1	计算球体重量	5
	1.2	温度转化	6
	1.3	整数简单运算	6
	1.4	A+B+C	7
	1.5	字符输入输出	8
	1.6	数字字符	8
	1.7	实数运算	9
2	第 2	? 次机试练习: 选择与循环语句练习	11
	2.1	四则运算	12
	2.2	数位输出	13
	2.3	阶梯电价计费	17
	2.4	计算某月天数	19
	2.5	计算整数各位数字之和	20
	2.6	完数	22
	2.7	最大公约数	25
	2.8	角谷定理	29
3	第 3	。 3 次机试练习	31
	3.1	整数分析	31
	3.2	冰箱温度预测	32
	3.3	除法计算器	33
	3.4	完全平方数	34
	3.5	选号程序	35
	3.6	成绩分级	37
	3.7	abc 组合	38
	3.8	工资计算	39
	3.9	自然数分解	40
	3.10	跳一跳	41

Chapter 1

第 1 次机试练习: 熟悉 DEV-C++ 开发平台, 基本输入输出语句练习

1.1 计算球体重量

已知铁的比重是 7.86(克/立方厘米),金的比重是 19.3(克/立方厘米)。写一个程序,分别计算出给定直径的铁球与金球的质量,假定 PI=3.1415926

输入说明:

输入两个整数,分别表示铁球与金球的直径(单位为毫米)

输出说明:

输出两个浮点数,分别表示铁球与金球的质量(单位为克),小数点后保留 3 位小数,两个浮点数之间用空格分隔

输入样例:

100 100

输出样例:

 $4115.486\ 10105.456$

提示:

用scanf输入,用 printf输出,保留 3 位小数的格式控制字符为%.3f

```
#include < stdio.h>
#include < math.h> // 数学库函数

#define PI 3.1415926
int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    float v1= 4.0/3.0*pow(a/2.0/10,3)*PI;
    float v2= 4.0/3.0*pow(b/2.0/10,3)*PI;
    printf("%.3f\n",7.86*v1,19.3*v2);
    return 0;
}
```

Note 1.1 (要点).

- 1. 整数除以整数, 结果为整数。
 - 4.0/3.0 结果是浮点数, 4/3 结果是整数
- 2. 化简公式会引起精度问题, 不要随意化简公式。
- 3. pow 函数原型: double pow(double x,double y) 当形参数是整数时,由于精度问题,不要使用此函数计算 x³. 推荐使用循环语句,易计算 x³。如果必要,可 自定义函数: int_mypow(int_x,int_y)。见课件。

1.2 温度转化

已知华氏温度到摄氏温度的转换公式为: 摄氏温度 = (华氏温度-32)×5/9,写程序将给定的华氏温度转换为摄氏温度输出。

输入说明:

只有一个整数,表示输入的华氏温度

输出说明:

输出一个表示摄氏温度的实数,小数点后保留2位有效数字,多余部分四舍五入

输入样例:

50

输出样例:

10.00

提示:

用 scanf 输入,用 printf 输出,保留 2 位小数的格式控制字符为

Note 1.2 (思考). 为何语句 (1),(2) 计算结果不一致, 哪一条语句正确?

1.3 整数简单运算

编写程序, 计算用户输入的两个整数的和、差、乘积(*)和商(/)。

1.4 A+B+C 7

输入格式:输入两个整数,整数之间用空格分隔。 输出格式:输出四个整数结果,分别表示和、差、积和商,每输出一个结果换行。 输入样例: 34 输出样例: 7 -1 12

```
#include < stdio.h>
int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    printf("%d\n%d\n%d\n%d\n",a+b,a-b,a*b,a/b);
    return 0;
}
```

Note 1.3 (思考). b=0 时如何处理?

1.4 A+B+C

通过键盘输入三个整数 a, b, c, 求 3 个整数之和。

输入说明:

三整形数据通过键盘输入,输入的数据介于-100000 和 100000 之间,整数之间以空格、跳格或换行分隔。输出说明:

输出3个数的和。

输入样例:

-6 0 39

输出样例:

```
#include < stdio.h>
int main()
{
    int a,b,c;
    scanf("%d%d%d",&a,&b,&c);
    printf("%d\n",a+b+c);
    return 0;
}
```

1.5 字符输入输出

```
通过键盘输入 5 个大写字母,输出其对应的小写字母,并在末尾加上"!"。输入说明: 5 个大写字母通过键盘输入,字母之间以竖线"|"分隔。输出说明:
```

输出 5 个大写字母对应的小写字母,之间无分隔,并在末尾加上 1'。

输入样例:

H|E|L|L|O

输出样例:

hello!

```
#include < stdio.h>
int main()
{
    char c1,c2,c3,c4,c5;
    scanf("%c|%c|%c|%c",&c1,&c2,&c3,&c4,&c5);
    c1+=32; c2+=32; c3+=32; c4+=32; c5+=32;
    printf("%c%c%c%c%c'!",c1,c2,c3,c4,c5);
    return 0;
}
```

Note 1.4 (要点). scanf("原样输入",...);

Note 1.5. (大小写字符转化关系) 小写字符 ASCII 码 = 大写字符 ASCII 码 +32

1.6 数字字符

通过键盘输入 1 个整数a(0 <= a <= 4),1 个数字字符b('0' <= b <= '5')求 a+b。

输入说明:

整形数据、数字字符通过键盘输入,输入的整形数据介于 0 和 4 之间,输入的数字字符介于 '0' 和 '5' 之间,二个输入数之间用","分隔。

输出说明:

分别以整数形式及字符形式输出 a+b,输出的二个数之间用","分隔。

输入样例:

3.5

输出样例:

56,8

1.7 实数运算 9

```
#include < stdio.h>
int main()
{
    int a;
    char b;
    scanf("%d,%c",&a,&b);
    printf("%d,%c",a+b,a+b);
    return 0;
}
```

Note 1.6. (scanf 函数) scanf("原样输入",...);

Note 1.7. (整型数值与字符混合运算)字符对应的 ASCII 编码参与整数运算,其结果也是整数。注意'0'与0不同,本例中输入 0,0,则a=0,b='0',变量 a 的值是整数 0,变量 b 的值是字符'0'对应的 ASCII 编码,即整数 48。

1.7 实数运算

通过键盘输入长方体的长、宽、高, 求长方体的体积 V(单精度)。

输入说明:

十进制形式输入长、宽、高,输入数据间用空格分隔。

输出说明:

单精度形式输出长方体体积 V,保留小数点后 3 位,左对齐。

输入样例:

15 8.12 6.66

输出样例:

811.188

```
#include < stdio.h>
int main()
{
    float a,b,c;
    scanf("%f%f%f",&a,&b,&c);
    printf("%.3f",a*b*c);
    return 0;
}
```

Note 1.8. (精度问题) 32 位编译器: a*b*c 与 a*c*b 结果一致。但是在 64 位编译器中, 二者不一致。 因此, 浮点数运算会存在精度问题, 不要随意改变运算顺序。

Chapter 2

第 2 次机试练习: 选择与循环语句练习

Note 2.1 (不该再次发生的常见错误, 输入输出格式转换符不对应, 导致的严重错误).

```
int a; float b; double c; char d; scanf("%d",a); // 遗忘变量前的取地址符& scanf("%d\n",&a); // 多余'\n', 导致不能正常输入 scanf("%d%f%lf%c",&a,&b,&c,%d); // 正确对应关系 scanf("%d%c%f",&a,&c,&b); // 正确对应关系 printf("%d,%f,%lf,%c",a,b,c,d); // 正确对应关系
```

Note 2.2 (不该再次发生的常见错误, 有';'引发的悲剧).

```
if();
{
...
}

while();
{
...
}

for(;;);
{
...
}
```

Note 2.3 (用 C语言关系表达式准确表达数学含义).

```
int a;
if(110<=a<=210) // 错误
{
}
if(110<=a && a<=210) // 正确
{
}
if (a>=110 && a<=210) // 正确
{
}
```

Note 2.4 (学习体会编程技巧).

- 使用 printf () 语句, 追踪程序执行细节, 查找出错原因。
- 对于条件结构,循环结构,首先书写整体结构,再添加细节,避免低级错误。
- 提倡一题多解,举一反三,体会编程技巧。

2.1 四则运算

输入两个整数和一个四则运算符,根据运算符计算并输出其运算结果(和、差、积、商、余之一)。注意做整除及求余运算时,除数不能为零。

输入说明:

使用 scanf() 函数输入两个整数和一个运算符,格式见输入样例。

输出说明:

输出使用 printf() 函数,格式见输出样例。

输入样例:

5%2

输出样例:

5%2 = 1

```
#include < stdio . h>
int main()
{
    int a,b;
    char op;
    scanf("%d%c%d",&a,&op,&b);
    switch(op)
    {
        case '+': printf("%d%c%d=%d\n",a,op,b,a+b); break;
        case '-': printf("%d%c%d=%d\n",a,op,b,a-b); break;
        case '*: printf("%d%c%d=%d\n",a,op,b,a-b); break;
        case '*: printf("%d%c%d=%d\n",a,op,b,a*b); break;
        // 注意分母为0时, 不会正确运算/,%
        case '/': if (b!=0) printf("%d%c%d=%d\n",a,op,b,a/b); break;
```

2.2 数位输出 13

```
case '%': if (b!=0) printf("%d%c%d=%d\n",a,op,b,a%b); break;
}
return 0;
}
```

Note 2.5 (printf 双引号中的% 输出, %% 表示输出%).

```
int a,b;
char op;
printf("%d%%%d=%d\n",a,b,a%b);
// 或当 op='%'时
printf("%d%c%d=%d\n",a,op,b,a%b);
```

2.2 数位输出

输入一个 5 位整数,求出其各数位数值,并按照从高位到低位的顺序输出,如:输入 12345,输出为 1~2~3~4~5。

输入说明:

输入一个五位正整数。

输出说明:

按数位从高到低依次输出,各数位之间以一个空格相分隔。

输入样例:

96237

输出样例:

```
#include < stdio . h>
/*****************
5位整数已知. 首先用10000除以整数a(分子),得到分子最高位。
改变分子分母、循环迭代、依次获得分子的最高位。
***************
int main1()
{
  int a, b=10000, i=5; // i 记录整数a的初始位数
  scanf("%d",&a);
  while (i \ge 1)
     if (i==1) printf("%d\n",a/b); // 输出当前a的最高位
     else printf("%d",a/b);
     a = a-a/b*b; // 去除当前a的最高位,准备下轮迭代的分子a
     b/=10; // b=b/10, 准备下轮迭代的分母b
     i --;
  }
  return 0;
}
/*****************
假设不知整数a的位数。
除10取余, 迭代循环, 可方便获取整数a的个位, 十位, 百位, 千位, ...
利用数组存储个位,十位,百位,千位, ... 最后反序输出即是所求。
int main2()
{
  int a, tmp[100]; // tmp数组存储100(估计的最大值)个整数,用tmp[0],tmp
  [1],tmp[2],...读写各个整数。
  int i=0, j;
              // i: 记录整数a的位数
  scanf("%d",&a);
  if(a==0) // 考虑整数0的特殊情况,直接输出即可。
  {
     printf("%d\n",a);
  else // 因为循环语句判断a是否为0, 因此要有上述判断才能考虑到所有可能情
  况的发生
  {
     while (a!=0) // 迭代逆序求出整数a的各位数字
     {
        tmp[i]=a\%10; // 存储本轮循环a的末位数
```

2.2 数位输出 15

```
//printf("调式查看tmp[i]=%d\n",tmp[i]); // 提交时, 别忘了注释或
  删除调试语句
                // 改变分子,准备下轮循环
        a=a/10;
                 // 位数递增
        i++;
     }
     //printf("调式查看i=%d\n",i);
        逆序输出tmp,此时的i是整数a的位数,注意tmp的下标从i-1开始到下标
  0结束。
     for (j=i-1; j>=0; j--)
     {
        printf("%d<sub>\(\_\)</sub>",tmp[j]);
     }
  }
  return 0;
}
假设不知整数a的位数。
利用递归函数求解, a==0的情况在函数外处理输出较方便。
因此该函数仅考虑a!=0的情况。
void output(int a)
{
  if(a!=0) // 如果考虑a==0的情况,不好判断是初始a=0还是迭代后a=0的情况。
  这里考虑后者。前者的处理留给调用它的程序。
  {
     // '栈'是一种'先进后出'的数据结构
     output(a/10); // 递归调用, 函数参数会自动存储在系统维护的'栈'中。
     printf("%d<sub>1</sub>",a%10); // 从内部存储'栈'中, 依次弹出各位数, 输出之。
  }
   else // a==0,可省略else语句,隐含结束递归调用
   {
     return; // 函数结束,注意本函数无返回值,因此return后无表达式。
   }
}
int main()
{
  int a;
  scanf("%d",&a);
   if (a==0) // 考虑整数0的特殊情况,直接输出即可。
```

```
{
    printf("%d\n",a);
}
else
{
    output(a); // 函数调用, 完成逆序输出。
}
return 0;
}
```

图 2.1: 递归函数void output(int a)中系统内部维护的'栈'结构示意图

À	栈

参数 a	output(a)	递归调用output(a/10); printf("%d _{\\\\} ",a%10);
0	output(0)	return; 结束递归, 开始出栈
1	output(1)	$output(0); printf("\%d_{\sqcup}",1);$
12	output(12)	$output(1); \ printf("\%d_{\sqcup}",2);$
123	output(123)	output(12); printf(" $\%d_{\square}$ ",3);
1234	output(1234)	output(123); printf(" $\%d_{\perp}$ ",4);
12345	output(12345)	output(1234); printf("%d _{_} ",5);

Note 2.6 (知识点).

- 1. 体会除 10 取余, 迭代循环的整数分解技巧;
- 2. 第一种解法的 b=1000 初值是可计算的, 这样就可扩充此解法为任意位的整数 a。

```
// 因为a要在main1()函数的while循环中使用。
// 因此, 定义临时变量, 存储a的值, 用于计算b的初值。
int tmp;
b=1; tmp=a;
while(tmp!=0)
{
    b=b*10;
    tmp=tmp/10;
}
```

- 3. 预习数组使用技巧;
- 4. 预习函数定义及调用;
- 5. 预习递归函数的定义, 体会系统维护的内部存储'栈'的数据存储特点。

2.3 阶梯电价计费 17

2.3 阶梯电价计费

电价分三个档次, [0,110] 度电,每度电 0.5元; (110,210] 度电,超出 110 部分每度电 0.55元,超过 210 度电,超出 210 部分每度电 0.70元,给出一个家庭一月用电量,请计算出应缴的电费(四舍五入,保留小数点后两位小数)。

```
输入说明:
输入数据为一个正实数,表示一月用电量
输出说明:
输出应缴电费,四舍五入保留2位小数。
输入样例:
输入样例 1
100
输入样例 2
200
输入样例 3
329.75
输出样例:
输出样例 1
50.00
输出样例 2
104.50
输出样例 3
193.83
```

```
#include <stdio.h>
int main()
{
    float sum, u1=0.5, u2=0.55, u3=0.70; // 用电量, 每度电单价
    float fee = 0; // 应缴电费
    scanf("%f",&sum);
    if (sum > 210)
    {
        fee = (sum - 210) * u3;
        sum = 210;
    }
    if (sum > 110)
    {
        fee += (sum-110)*u2; // fee=fee+(sum-110)*u2;
        sum = 110;
    }
```

```
fee += sum*u1;
    printf ("\%.2 f \n", fee);
    return 0;
}
int main2() // 另解
{
    float sum, u1=0.5, u2=0.55, u3=0.70; // 用电量, 每度电单价
    float fee = 0; // 应缴电费
    scanf("%f",&sum);
    if (sum >= 210)
        fee = 110*u1 + (210-110)*u2 + (sum-210)*u3;
    else if (sum >= 110)
        fee = 110*u1 + (sum-110)*u2;
    else
        fee = sum*u1;
    printf("\%.2f\n", fee);
    return 0;
}
int main3() // 另解
{
    float sum, u1=0.5, u2=0.55, u3=0.70; // 用电量, 每度电单价
    float fee = 0; // 应缴电费
    scanf("%f",&sum);
    if (sum \ll 110) fee = sum*u1;
    else if (sum \ll 210)
        fee = 110*u1;
        sum = 110; // sum = sum - 110;
        fee += sum*u2;
    }
    else // \text{ sum} > 210
        fee = 110*u1;
        fee += (210-110)*u2; // fee = fee+(210-110)*u2
```

2.4 计算某月天数 19

```
sum -= 210;  // sum=sum-210;
fee += sum*u3;  // fee = fee+ sum*u3;
}

printf("%.2f\n", fee);
return 0;
}
```

Note 2.7 (四舍五入问题). 不同的编译系统,处理结果可能不一致,printf("%.2f\n",fee);默认输出即可。
Note 2.8. 练习 if 语句的不同组合形式, 杜绝出现 if (110<=sum<=210)的错误形式。

2.4 计算某月天数

每年的 1, 3, 5, 7, 8, 10, 12 月有 31 天, 4, 6, 9, 11 月有 30 天, 闰年 2 月 29 天, 其他年份 2 月 28 天, 给定年份和月份求该月的天数

输入说明:

输入由两个正整数 a 和 b 构成, a 表示年份, b 表示月份, a 和 b 之间用空格分隔

输出说明:

根据年份和月份计算该月天数并输出

输入样例

输入样例 1

2000 3

输入样例 2

2001 2

输出样例

输出样例 1

31

输出样例 2

```
#include <stdio.h>
int main()
{
   int a,b,t = 0;
   scanf("%d%d",&a,&b);
   if((a%4 == 0 && a%100 !=0) || (a%100 == 0 && a%400 == 0))
   {
      if (b == 2) t = 29;
   }
   else if (b == 2) t = 28;
```

```
if(b == 1 || b == 3 || b == 5 || b == 7 || b == 8 || b == 10 || b ==
12) t = 31;
else if(b == 4 || b == 6 || b == 9 || b == 11) t = 30;
printf("%d\n",t);
return 0;
}
```

Note 2.9. (逻辑运算符) &&, ||, !, 练习符合逻辑的各种组合形式。

2.5 计算整数各位数字之和

假设 n 是一个由最多 9 位数字(d9,..., d1)组成的正整数。编写一个程序计算 n 的每一位数字之和。

输入说明:

输入数据为一个正整数 n

输出说明:

对整数 n 输出它的各位数字之和后换行

输入样例:

3704

输出样例:

2.5 计算整数各位数字之和 21

```
#include <stdio.h>
// 体会除10取余, 迭代循环的整数分解技巧;
int main1()
{
   int n, sum = 0; // 注意初始化sum
   scanf("%d",&n);
   while (n) // 等效于n!=0
      sum += n%10; // 累加本轮循环的末位数
                // 准备下轮循环的分子
      n /= 10;
   printf("%d",sum);
   return 0;
}
// 另解: 定义递归函数, 返回整数n的各位数之和
int sum(int n)
{
   if(n!=0)
   {
      // 递归调用, 累加本轮循环的末位数
       return (sum(n/10)+n\%10);
   else // n==0时, 结束递归调用
       return 0; // 函数结束, 返回整数0
}
int main()
{
   int n;
   scanf("%d",&n);
   printf("%d\n", sum(n)); // 函数调用。
   return 0;
}
```

图 2.2: 递归函数int sum(int n)中系统内部维护的'栈'结构示意图

参数 n	递归调用sum(n)=sum(n/10)+n%10;
0	sum(0)=0; 结束递归, 开始出栈
1	sum(1) = sum(1/10) + 1%10 = sum(0) + 1;
12	sum(12) = sum(12/10) + 12%10 = sum(1) + 2;
123	sum(123) = sum(123/10) + 123%10 = sum(12) + 3;
1234	sum(1234) = sum(1234/10) + 1234%10 = sum(123) + 4;
12345	sum(12345) = sum(12345/10) + 12345%10 = sum(1234) + 5;

出栈

Note 2.10 (知识点).

- 1. 体会除 10 取余, 迭代循环的整数分解技巧;
- 2. 预习递归函数定义及调用。

2.6 完数

请写一个程序,给出指定整数范围 [a, b] 内的所有完数,0 < a < b < 10000。一个数如果恰好等于除它本身外的所有因子之和,这个数就称为"完数"。例如 6 是完数,因为 6=1+2+3

输入说明

输入为两个整数 a 和 b, a 和 b 之间用空格分隔

输出说明

输出 [a, b] 内的所有完数,每个数字占一行

输入样例

1 10

输出样例

```
if (i == 1) continue; // 避免输出1,1不是完数
     // i不等于1, 计算各因子
     sum = 1; // 不要忘记, 内层循环前sum的初始化。1总是一个整数的合法因子
     for(j = 2; j < i; j++) // 累加整数i的所有因子
        if(i\%j == 0) sum += j; // 如果j是i的因子,累加之。
     if (sum == i) printf("%d\n",i); // 如果i是完数, 输出之。
  }
  return 0;
}
/***************
采用一重循环 + 调用函数方案
(1) 一重循环使整数i递增,函数compute调用,完成区间[n1,n2]区间的完数计算
(2) 定义函数compute, 判断整数参数是否是完数, 如果是, 返回它, 否则返回-1
// 定义函数compute, 判断整数参数a是否是完数,如果是,返回a,否则返回-1
int compute(int a)
{
  int i, s=1; // s用于存储a的各因子累加值, 1总是一个整数的合法因子
  if (a == 1)
     return -1; // 1不是完数
  // a不为1, 计算各因子
  for(i = 2; i < a; i++) // 累加整数a的所有因子
     if(a\%i == 0) s += i; // 如果i是a的因子,累加之。
  if(s == a)
     return a; // 如果a是完数,返回之。
  // 如果程序执行到此处必然不是完数
  return -1;
}
```

```
// 另一种方式定义函数compute, 判断整数参数a是否是完数, 如果是, 返回a, 否则
  返回-1
// 一条return函数返回语句
int compute1(int a)
{
   int i, s=1; // s用于存储a的各因子累加值, 1总是一个整数的合法因子
   int ret=-1; // 用于返回值, 默认为-1
   for(i = 2; i < a; i++) // 累加整数a的所有因子
      if(a\%i == 0) s += i; // 如果i是a的因子,累加之。
   if(s == a && a!=1) // 如果a是完数,返回值是本身。1不是完数
      ret = a;
   else // a不是完数
      ret = -1;
   return ret;
}
int main()
{
   int i, n1, n2;
   scanf("%d%d",&n1,&n2);
   for (i = n1; i <= n2; i++) // 调用函数compute, 完成区间[n1,n2]区间的完数
  计算
   {
      if (compute(i)!=-1) printf("%d\n",i); // 如果i是完数, 输出之。
      // 测试函数compute1的调用
      // if (compute1(i)!=-1) printf("%d\n",i); // 如果i是完数,输出之。
   }
   return 0;
}
```

Note 2.11 (特别注意). 且记: 进入内层循环前, 相关变量的初始化问题。

Note 2.12 (函数定义和调用).

2.7 最大公约数 25

- 函数定义: 返回类型 函数名(参数列表) { 函数体 }
- int fun1(float a, float b) { return a/b; // 返回整数部分 }
- void fun2(float a, float b) { printf(a/b); // 输出整数部分 }
- 函数调用

```
float m,n;
int ret;
ret = fun1(m,n); // 调用函数fun1, 其返回值赋值给变量ret;
fun2(m,n); // 调用函数fun2, 无返回值可用;
```

2.7 最大公约数

样例 3 输出

```
最大公约数 (GCD) 指某几个整数共有因子中最大的一个,最大公约数具有如下性质,
gcd(a,0)=a
gcd(a,1)=1
因此当两个数中有一个为 0 时, gcd 是不为 0 的那个整数, 当两个整数互质时最大公约数为 1。
输入两个整数 a 和 b, 求最大公约数
输入说明:
输入为两个正整数 a 和 b (0<=a,b<10000), a 和 b 之间用空格分隔,
输出说明:
输出其最大公约数
输入样例:
样例 1 输入
2 4
样例 2 输入:
12 6
样例 3 输入:
3 5
输出样例:
样例1输出
样例 2 输出
```

```
#include <stdio.h>
// 递归函数
int gcd(int a, int b)
{
   if (b==0) return a; // 公约数就是a
   return gcd(b,a%b); // 递归调用
}
int main() // 调用递归函数
{
   int a,b,t;
   scanf("%d%d",&a,&b);
   if (a < b) { t = a; a = b; b = t; } // 交换a, b
   printf("%d\n",gcd(a,b)); // 函数调用
   return 0;
}
int main1() // 暴力循环求解,效率低。
{
   int a,b,t=-1,i;//t给初值是好习惯,否则下面程序逻辑有可能使t得到随机值。
   scanf("%d%d",&a,&b); // 机试系统不要想当然给提示语句, 除非题目要求
   if(a<b) { t=a; a=b; b=t; } // 交换a,b,使a是较大者
   if(b==0)
   {
       t=a; // 考虑分母为0的情况,比如: 5,0的最大公约数为5
   }
   else
       for (i=b; i>0; i--)
       {
          if (a\%i == 0 \&\& b\%i == 0)
              t=i; break; // 求得最大公约数, a, b互质, 必然t=1
          }
       }
   printf("%d\n",t);
   return 0;
}
int main2() // 利用欧几里得定理循环求解,效率高。
```

2.7 最大公约数 27

```
{
   int a,b,r,t;
   scanf("%d%d",&a,&b); // 机试系统不要想当然给提示语句, 除非题目要求
   if (a<b) { t=a; a=b; b=t; } // 交换a,b,使a是较大者
   while (1)
      if (b==0) { t=a; break; } // 分母为0时, a就是最大公约数
      r = a\%b;
      if (r==0) {t=b; break;} // b就是最大公约数
      a=b; b=r; // 准备下一轮迭代
   printf("%d\n",t);// 输出最大公约数
   return 0;
}
int main3() // 利用欧几里得定理循环求解, 效率高。
{
   int a,b,r,t;
   scanf("%d%d",&a,&b); // 机试系统不要想当然给提示语句, 除非题目要求
   if (a < b) { t = a; a = b; b = t; } // 交换a,b,使a是较大者
   if (b==0) // 考虑分母为0的情况,比如:5,0的最大公约数为5
   {
      printf("%d\n",a);
   }
   else
     // 排除了分母为0时不能求余数的情况
      while ((r=a\%b)!=0) // a/b的余数赋值给r,r不等于0时执行循环体
      {
         a=b;
         b=r;
      printf("%d\n",b);
   return 0; // 主函数结束
}
int main4() // 体会函数结束语句return的使用
{
   int a,b,r,t;
   scanf("%d%d",&a,&b); // 机试系统不要想当然给提示语句, 除非题目要求
```

```
if (a<b) { t=a; a=b; b=t; } // 交换a,b,使a是较大者
if (b==0) // 考虑分母为0的情况,比如: 5,0的最大公约数为5
{
    printf("%d\n",a);
    return 0; // 主函数结束
}
// 排除了分母为0时不能求余数的情况
while((r=a%b)!=0) // a/b的余数赋值给r,r不等于0时执行循环体
{
    a=b; b=r; // 准备下一轮迭代
}
printf("%d\n",b);
return 0; // 主函数结束
}
```

图 2.3: 递归函数int gcd(int a, int b)中系统内部维护的'栈'结构示意图

Note 2.13 (欧几里得定理).

a(t),b(t)的最大公约数: 因为: a=mb+r, m=a/b; r=a%b, $\Rightarrow a$, b的公约数能整除 b和r.

r=a%b,r为0,则b就是最大公约数。否则迭代循环,a=b,b=r,直到余数为零,则分母就是最大公约数。

Note 2.14. 预习函数及递归函数的使用。

2.8 角谷定理 29

2.8 角谷定理

角谷定理定义如下: 对于一个大于 1 的整数 n, 如果 n 是偶数,则 n = n / 2。如果 n 是奇数,则 n = 3 * n +1,反复操作后,n 一定为 1。

例如输入 22 的变化过程: 22 ->11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, 数据变化次数为 15。

```
输入一个大于1的整数,求经过多少次变化可得到自然数1。
```

输入说明

输入为一个整数 n, 1<n<100000。

输出说明

输出变为1需要的次数

输入样例

样例 1 输入

22

样例 2 输入

33

输出样例

样例1输出

15

样例 2 输出

```
#include <stdio.h>
int main()
{
   int n, i=0; // 变量i用于计数的辅助变量
   scanf("%d",&n);
   // 因为题目输入假设n>1,因此不必考虑n=1时的情况
   while (n!=1) // n不等于1时执行循环体中的语句
   {
      if (n\%2 == 0) n = n/2;
      else n=3*n+1;
      i++;
   }
   printf("%d\n",i);
   return 0;
}
// 含程序调试语句,不吝惜写一些printf语句,观察程序的执行过程。
int main()
{
   int n=22, i=0; // 变量 i 用于计数的辅助变量
```

```
//scanf("%d",&n); // 调试时可以注释掉输入语句,改变变量n的值,观察执行
过程

printf("%d->",n);
while(n!=1) // n不等于1时执行循环体中的语句
{
    if(n%2==0)
    {
        n=n/2;
    }
    else
    {
        n=3*n+1;
    }
    printf("%d->",n);
    i++;
    }
    printf("\n总共变化次数%d\n",i);
    return 0;
}
```

Note 2.15. 试着用do{ }while(); for (;;) 改写此程序, 执行相同功能。

Chapter 3

第 3 次机试练习

3.1 整数分析

给出一个整数 n(0<=n<=100000000)。求出该整数的位数,以及组成该整数的所有数字中的最大数字和最小数字。

输入说明

输入一个整数 n (0<=n<=100000000)

输出说明

在一行上依次输出整数 n 的位数,以及组成该整数的所有数字中的最大数字和最小数字,各个数字之间用空格分隔。

输入样例

217

输出样例

3 7 1

```
#include <stdio.h>

// 循环除10取余是整数分解的基本技巧
int main()
{
    int i = 0, n, bit, max, min;
    scanf("%d",&n);
    while(n) // 等效于 while(n!=0)
    {
        bit = n%10; // 获取n的最低为
        // 切记: 初始化时, 假设的max和min必须是实际存在的数。
        if(i == 0) // 初始化: 原始n的最低位设为最大和最小数字
        {
            max = min = bit;
        }
        else
        {
            if(bit > max) max = bit;
```

32 3 第 3 次机试练习

```
if (bit < min) min = bit;
}
n /= 10; // 去除最低位
i++;
}
// (i == 0 ? 1 : i)是条件表达式,表达式的值是:
// 如果i==0,则表达式的值为1否则表达式的值是i
printf("%d_%d_%d\n",(i == 0 ? 1 : i),max,min); //考虑原始n==0的情况
return 0;
}
```

Note 3.1 (知识点).

- 1. 整数数位分解是基本编程练习之一。
- 2. 切记: 初始化时, 假设的 max 和 min 必须是实际存在的数。比如不能想当然假设 max=1000, min=0.
- 3. 注意审题: "输入一个整数 n, (0 <= n <= 100000000)", 因此, 0 也是一个合法输入。

3.2 冰箱温度预测

编写一个程序,用于预测冰箱断电后经过时间 t(以小时为单位) 后的温度 T。已知计算公式如下所示

$$T = \frac{4t^2}{t+2} - 20$$

输入说明

输入两个整数 h 和 m 表示冰箱断电后经过的时间,h 表示小时,m 表示分钟

输出说明

输出冰箱断电后经过时间 t(以小时为单位) 后的温度 T, 保留两位小数

输入样例

20

输出样例

-16.00

3.3 除法计算器 33

```
return 0;
}
```

Note 3.2 (知识点). 整数/整数, 表达式的值是整数部分, 自动舍去小数部分。

3.3 除法计算器

小明的弟弟刚开始学习除法,为了检查弟弟的计算结果是否正确,小明决定设计一个简单计算器程序来 验算。

输入说明

输入数据由四个整数 m, n, q, r 构成, m 为被除数, n 为除数, q 和 r 为小明的弟弟计算出的商和余数。整数之间用空格分隔,所有整数取值范围在 ($-100000 \sim 100000$), n 不为 0。

输出说明

如果验算结果正确,输出 yes, 否则输出正确的商和余数

输入样例:

样例 1:

10 3 3 1

样例 2:

10 3 3 2

输出样例

样例 1 输出:

yes

样例 2 输出:

3 1

```
#include <stdio.h>
int main()
{
    int m,n,q,r;
    scanf("%d%d%d%d",&m,&n,&q,&r);
    if (m=q*n+r && q=m/n && r=m%n) printf("yes\n");
    else printf("%d_%d\n",m/n,m%n);
    return 0;
}
```

Note 3.3. 改变题设条件,修改此程序,进行各种表达式计算练习,分析优先级。如果 n=0 时,如何处理。

34 3 第 3 次机试练习

3.4 完全平方数

若一个整数 n 能表示成某个整数 m 的平方的形式,则称这个数为完全平方数。写一个程序判断输入的整数是不是完全平方数。

```
输入说明
输入数据为一个整数 n, 0<=n<1000000。
输出说明
如果 n 是完全平方数,则输出构成这个完全平方数的整数 m,否则输出 no。
输入样例
样例 1:
144
样例 2:
15
输出样例
样例 1 输出:
12
样例 2 输出:
no
```

```
#include <stdio.h>
#include <math.h> // 数学函数头文件
int main()
{
    int n,m;
    scanf("%d",&n);
    m=(int)sqrt(n); // sqrt(n)计算的结果为doublel类型,此语句表示把它转化为
    int类型,自动舍去小数部分(不会四舍五入),并赋值给m。
    if(n=m*m) printf("%d\n",m);
    else printf("no");
    return 0;
}
```

Note 3.4 (要点).

1. 数据类型的强制转换, sqrt 函数原型: double sqrt(double x);
m=(int)sqrt(n)是函数调用语句,等效于:
double y=sqrt(n); // n自动由int转化为double类型的数据, 不会损失精度m=(int)y;

2. 注意审题: "输入一个整数 n, (0 <= n <= 1000000)", 因此, 0 也是一个合法输入。

3.5 选号程序 35

3.5 选号程序

小明决定申请一个新的 QQ 号码,系统随机生成了若干个号码供他选择。小明的选号原则是:

- 1. 选择所有号码中各位数字之和最大的号码。
- 2. 如果有多个号码各位数字之和相同则选择数值最大的号码。

请你写一个程序帮助小明选择一个 QQ 号码。

输入说明

输入数据由两行构成,第一行为一个整数 n 表示有 n 个待选号码 (0 < n < 100),第二行有 n 个正整数,表示各个待选的号码,每个号码长度不超过 9 位数。每个号码之间用空格分隔,且每个号码都不相同。

输出说明

输出根据小明的选号原则选出的号码。

输入样例

5

10000 11111 22222 333 1234

输出样例

```
#include <stdio.h>
// 在循环语句中, 读取备选qq号, 计算各位之和, 依据筛选条件选取qq号
int main()
{
  // 关键变量含义说明:
  // select_qq, select_sum表示备选qq及其各位之和
  // qq,sum表示当前读取的qq及其各位和
  int i,n,select_qq,select_sum,qq,sum,tmp;
  scanf("%d",&n);
  for(i=0;i< n;i++) // 注意条件表达式,表明i的最大值是n-1,因为i是0开始的,
   因此共执行n次循环
     scanf("%d",&qq); // 读取当前备选qq号
     tmp=qq; // 保存到临时变量中, 因为下面的循环语句要更改。
     sum=0; // 当前读取qq号的各位之和。 注意:一定要初始化,否则上一个
  备选号的sum值会带入本轮循环中。
     while(tmp) // 计算各位之和
     {
        sum + = tmp\%10;
        tmp/=10;
     // 第1轮迭代(i==0), 当前读取的qq就是所选, 其它根据题设条件选号
     // 因为三个表达式为||运算, 从左到右依次计算各表达式的值, 如果为真,
  则不会计算后边表达式。
```

36 3 次机试练习

```
// 因此, 当i==0时不会其它两个表达式的值, if条件为真。
       if(i==0 || sum>select_sum || (sum==select_sum && qq>select_qq))
           select_qq=qq;
           select_sum=sum;
       }
    printf("%d", select_qq);
    return 0;
}
// 解法2: 用二维数组存储所有qq号及其各位和
#define N 100 // 估计最大数组长度
int main1()
{
    // 二维数组No, 第一列表示qq号, 第二列表示该qq号的各位数字之和。
    int i, n, No[N][2], tmp, sum, max=0, largest=0, select;
    scanf("%d",&n);
    // 筛选条件2
    for (i=0; i< n; i++)
        scanf("%d",&No[i][0]);
       tmp=No[i][0];
       sum=0; // 一定初始化
        while (tmp)
           sum + = tmp\%10;
           tmp/=10;
       No [i][1] = sum;
       if(sum > = max) max = sum;
    }
    // 筛选条件1
    for (i=0; i < n; i++)
        if (No[i][1]==max) // 备选号码
        {
           if(No[i][0] > = largest)
               select=No[i][0];
               largest=No[i][0];
```

3.6 成绩分级 37

```
}
    }
    printf("%d", select);
    return 0;
}
```

Note 3.5 (要点).

1. || 和 && 运算从左到右执行,取得结果,则不执行后面的表达式。

取得结果的含义是:

if (条件 1|| 条件 2|| 条件 3) 运算中,只要有一个条件表达式为真 (非 0),即整个条件 () 结果即为真。 if (条件 1 && 条件 2 && 条件 3) 运算中,只要有一个条件表达式为假 (0),即整个条件 () 结果即为假。

- 2. 比较两种解法的优缺点。
- 3. 本例是循环迭代的范例, 应反复演练, 领会迭代程序的编程技巧。
- 4. 试着定义函数, 改写此程序。
- 5. 本题不必使用排序算法, 使程序复杂化。

3.6 成绩分级

给出一个百分制的成绩,要求输出成绩等级'A','B','C','D','E'。90 分以上为'A',80~89分为'B',70~79分为'C',60~69分为'D',60分以下为'E'。

```
输入说明
输入一个正整数 m (0<=m<=100)
输出说明
输出一个字符
输入样例
59
输出样例
E
```

```
#include <stdio.h>
int main()
{
    int grade;
    scanf("%d",&grade);
    grade /= 10;
    switch(grade)
    {
        case 0: case 1: case 2: case 3: case 4:
        case 5: printf("E"); break;
```

38 3 次机试练习

```
case 6: printf("D"); break;
    case 7: printf("C"); break;
    case 8: printf("B"); break;
    case 9:
    case 10: printf("A"); break;
}
return 0;
}
```

Note 3.6 (要点). 熟练掌握 switch 语句。

3.7 abc 组合

```
已知 abc+cba=n, 其中 a,b,c 均为一位数, 1000<n<2000, 编程求出满足条件的 a,b,c 所有组合。输入说明
一个整数 n
输出说明
按照整数 abc 从小到大的顺序, 输出 a, b, c, 用空格分隔, 每输出一组 a, b, c 后换行.
输入样例
1352
输出样例
3 7 9
4 7 8
5 7 7
6 7 6
7 7 5
8 7 4
9 7 3
```

```
#include <stdio.h>

int main()
{
    int n,a,b,c;
    scanf("%d",&n);
    for (a = 0; a <= 9; a++)
        for (b = 0; b <= 9; b++)
        for (c = 0; c <= 9; c++)
            if (a*100+b*10+c + c*100+b*10+a == n)
        printf("%d_%d_%d\n",a,b,c);</pre>
```

3.8 工资计算 39

```
return 0;
}
```

Note 3.7 (思考). 如何用数字分解技巧改写此题。

3.8 工资计算

小明的公司每个月给小明发工资,而小明拿到的工资为交完个人所得税之后的工资。假设他一个月的税前工资为 S 元,则他应交的个人所得税按如下公式计算:

- 1. 个人所得税起征点为 3500 元,若 S 不超过 3500,则不交税,3500 元以上的部分才计算个人所得税,令 A=S-3500 元;
- 2. A 中不超过 1500 元的部分, 税率 3
- 3. A 中超过 1500 元未超过 4500 元的部分, 税率 10
- 4. A 中超过 4500 元未超过 9000 元的部分, 税率 20
- 5. A 中超过 9000 元未超过 35000 元的部分, 税率 25
- 6. A 中超过 35000 元的部分, 税率 30

例如,如果小明的税前工资为 10000 元,则 A=10000-3500=6500 元,其中不超过 1500 元部分应缴税 $1500\times3\%=45$ 元,超过 1500 元不超过 4500 元部分应缴税 1500 元 1500 元

已知小明这个月税前所得为 S 元,请问他的税后工资 T 是多少元。

输入格式

输入为一个整数 S,表示小明的税前工资。所有评测数据保证小明的税前工资为一个整百的数。

输出格式

输出一个整数 T,表示小明的税后工资。

样例输入

10000

样例输出

9255

评测用例规模与约定对于所有评测用例, $1 \le T \le 100000$ 。

```
#include <stdio.h>

int main()
{
    int S,T,A;
    float tax = 0.0;
    scanf("%d",&S);
    A=S-3500;
    if (A<=0) tax=0;
    else</pre>
```

40 3 第 3 次机试练习

```
 \begin{cases} & \text{ if } (A \!\!<\! = \!\! 1500) \quad \text{tax} \!\!=\!\! A \!\!>\! 0.03; \\ & \text{ else } \quad \text{if } (A \!\!>\!\! 1500 \&\& A \!\!<\!\! = \!\! 4500) \\ & \quad \text{ tax} \!\!=\!\! 1500 \!\!>\!\! 0.03 \!\!+\!\! (A \!\!-\!\! 1500) \!\!>\!\! 0.1; \\ & \text{ else } \quad \text{if } (A \!\!>\!\! 4500 \&\& A \!\!<\!\! = \!\! 9000) \\ & \quad \text{ tax} \!\!=\!\! 1500 \!\!>\!\! 0.03 \!\!+\!\! (4500 \!-\!\! 1500) \!\!>\!\! 0.1 \!\!+\!\! (A \!\!-\!\! 4500) \!\!>\!\! 0.2; \\ & \text{ else } \quad \text{if } (A \!\!>\!\! 9000 \&\& A \!\!<\!\! =\!\! 35000) \\ & \quad \text{ tax} \!\!=\!\! 1500 \!\!>\!\! 0.03 \!\!+\!\! (4500 \!-\!\! 1500) \!\!>\!\! 0.1 \!\!+\!\! (9000 \!-\!\! 4500) \!\!>\!\! 0.2 \!\!+\!\! (A \!\!-\!\! 9000) \!\!>\!\! 0.25; \\ & \text{ else } \\ & \quad \text{ tax} \!\!=\!\! 1500 \!\!>\!\! 0.03 \!\!+\!\! (4500 \!-\!\! 1500) \!\!>\!\! 0.1 \!\!+\!\! (9000 \!-\!\! 4500) \!\!>\!\! 0.2 \!\!+\!\! (35000 \!-\!\! 9000) \\ & \!\!>\!\! 0.25 \!\!+\!\! (A \!\!-\!\! 35000) \!\!>\!\! 0.3; \\ & \quad \} \\ & \quad \text{T=S-tax}; \\ & \quad \text{printf} ("\%d \!\!\setminus\!\! n",T); \\ & \quad \text{return } 0; \\ & \quad \} \\ \end{cases}
```

Note 3.8 (要点). 掌握基本条件语句。练习 if else 语句的各种组合形式。

3.9 自然数分解

任何一个自然数 m 的立方均可写成 m 个连续奇数之和。例如:

```
1^{3} = 1
2^{3} = 3 + 5
3^{3} = 7 + 9 + 11
4^{3} = 13 + 15 + 17 + 19
```

编程实现:输入一自然数 n, 求组成 n³ 的 n 个连续奇数。输入说明一个正整数 n, 0<n<30。输出说明输出 n 个连续奇数, 数据之间用空格隔开, 并换行输入样例
4
输出样例
13 15 17 19

```
#include <stdio.h>
// 从估计的第一个奇数开始,循环迭代求解。
int main()
```

3.10 跳一跳 41

```
{
   int n, i, j, sum, first;
   scanf("%d",&n);
   // 第一个可能的奇数:
   if(n\%2) first = n;
                       // n是奇数
   else first = n + 1; // n是偶数
   while (1)
   {
       sum = 0; // 每趟内层循环前,必须置0
       // 从 first 开始, n个连续奇数, i: 表示连续奇数, j: 计数。
       for (i = first, j = 1; j \le n; i += 2, j++)
           sum += i; // 连续奇数累加
           if (sum = n*n*n)
              // 输出
               for (i = first, j = 1; j \le n; i += 2, j++)
                   if (j == n) printf("%d\n", i);
                   else printf("%d",i);
               return 0; // 函数结束
       first += 2;
   }
   return 0;
}
```

Note 3.9 (要点). 再次强调进入内层循环前, 相关变量的初始化; 以及标志变量 (如本例 first) 的使用技巧。

3.10 跳一跳

跳一跳是一款微信小游戏,游戏规则非常简单,只需玩家要从一个方块跳到下一个方块,如果未能成功跳到下一个方块则游戏结束。

计分规则如下:

1. 如果成功跳到下一个方块上,但未跳到方块中心,加1分

42 3 第 3 次机试练习

2. 如果成功跳到下一个方块上,且刚好跳到方块中心,则第一次加 2 分,此后连续跳到中心时每次递增 2 分。也就是说,第一次跳到方块中心加 2 分,连续第二次跳到方块中心加 4 分,连续第三次跳到方块中心 加 6 分,...,以此类推。

3. 如果未能成功跳到方块上,加0分,且游戏结束

现在给出玩家一局游戏的每次跳跃情况,请计算玩家最终得分。

输入说明

输入为若干个非零整数 (整数个数小于 1000),表示玩家每次的跳跃情况。整数之间用空格分隔,整数取值为 0.1.2。

- 0表示未能成功跳到下一个方块上,
- 1表示成功跳到下一个方块上但未跳到方块中心,
- 2表示成功跳到下一个方块上,且刚好跳到方块中心。

输入的数据只有最后一个整数是 0, 其余均非零。

输出说明

输出一个整数表示该玩家的最终得分。

输入样例

 $1\ 1\ 2\ 1\ 2\ 2\ 2\ 0$

输出样例

```
#include <stdio.h>
// 无限循环, 符合结束条件, break
int main()
{
   // last 记录上一次的跳跃情况, num表示连续跳至方框中心次数。
   int score=0, a, i, last=0, num=0;
   while (1) // 无限循环, a==0时, break;
   {
       scanf("%d",&a);
       if(a==1) score++;
       if ((last==1 || last==0) & a==2) // 第一次跳至中心
       {
          score=score+2;
          num=0; // 连续跳至中心清0
       if (last==2 && a==2) // 连续跳至中心
       {
          score=score+2;
          num++;
       if (last==2 && (a==1 || a==0)) // 连续跳至中心结束, 开始清算
          for (i=1;i<=num; i++) // 结算递增情况
```

3.10 跳一跳 43

Note 3.10 (要点). 通过本题编程, 有助于训练自己的逻辑思维能力。