18/12/17

Roll No.

Total Pages: 4

MCA/D-17

10313

COMPUTER ORIENTED NUMERICAL AND STATISTICAL METHODS

Paper: MCA-14-15

Time: Three Hours] [Maximum Marks: 80]

Note: Attempt five questions in all. Question No. 1 is compulsory. In addition, attempt one question from each unit.

Compulsory Question

- 1. (a) Explain and find the order of convergence of Regula-Falsi and Bisection method.
 - (b) Discuss various pitfalls in numerical differentiation.
 - (c) Prove that regression coefficients are independent of the change of origin but not of change of scale.
 - (d) What is Sampling? Explain various types of sampling.

UNIT-I

Find real root of the equation $x^3 - 4x + 1 = 0$, correct up to 3 decimal places using Bisection, Newton-Raphson and Regula-Falsi methods. Also compare the number of iterations required to obtain the desired accuracy.

10313/200/KD/1040

IP.T.O.

3. (a) Solve the following equations by Gauss Elimination method:

$$x_1 + 2x_2 + 3x_3 = 14$$

$$2x_1 + 5x_2 + 2x_3 = 18$$

$$3x_1 + x_2 + 5x_3 = 20.$$

(b) Given

x	4.5	4	5	7	10	11	15
f(x)	:	48	100	294	900	1210	2028

Find f(15) using Newton's Divided difference method.

8

In addition, attempt II-TINUstion from each unit.

- 4. (a) Solve $\frac{dy}{dx} = \log(x+y)$ with y(0) = 2 by Predictor-corrector method at x = 1.2 with h = 0.2.
 - (b) Given $\frac{dy}{dx} = y x$, y(0) = 2.

Find the value of y when x = 0.1 and h = 0.1 by Runga-Kutta Fourth order method.

- 5. (a) Evaluate $\int_{-3}^{3} x^4 dx$ by using Trapezoidal's rule, Simpson's 1/3 rule and Simpson's 3/8 rule. Compare the results with its actual value.
 - (b) Derive the formula to fit a curve $y = ae^{bx}$. Fit the curve $y = ae^{bx}$ for the following data:

x	0	1	2	3
у	5	8	15	32

8

10313/200/KD/1040

UNIT-III

- 6. Prove the following properties of Chebyshev's polynomials:
 - (a) Show that $T_n(x)$ satisfy the following differential equation:

$$(1-x^2)\frac{d^2y}{dx^2} - x \frac{dy}{dx} + n^2y = 0$$
 where $y = T_n(x)$.

- (b) Prove that the polynomials $T_n(x)$ are orthogonal with the function $1/\operatorname{sqrt}(1-x^2)$.
- 7. (a) If the mean of Poisson distribution is 2, find the probability for 1, 2 & 3 successes respectively. Given $e^{-2} = 0.1353$.
 - (b) Find the mode of the following frequency distribution using the method of grouping:

Marks	5	10	15	20	25	30	35	40	45	50
No. of Students	20	43	75	67	72	45	39	9	8	6

10

UNIT-IV

- 8. Define Time series. Mention its importance and components with illustrations, and describe a method of smoothing of time series.
- 9. To access the significance of possible variation in performance in a certain test between the CBSE schools of a city, a common test was given to a number of students taken at random from the senior fifth class to each of the four schools concerned. The results are given below:

10313/200/KD/1040

3

040 NOX1000 [P.T.O.

_

	SCHO	OOLS	
nyle A iveria	(dedD B o sei)	oqonq C niwo	D wor
16 16 II WO	24	36	26
20	22	24	18
24	18	32	24
16	28	12	32
14	8	16	30

Make Analysis of Variance of data.

16

		The La Marie			COMPANY A
4. (4)		Scidno	tg flock	odism si	
45 50	135/40				in the state
	0.198	rs let	lea los		

VI-TINU.

vith idustrations, and describe a method of smoothing earne series.

1 covering the F.C. a research back cars

performance in a certain test between the CBSE schools on city a common test was given to a mumber of alcanalisen.

four schools concerned. The results are given below.

10313/200/KD/1040

4