Análisis y Selección de Modelo Predictivo para Churn de Clientes

Autor: Miguel Ángel Toro Romo

Fecha: 08-08-2025

ÍNDICE

ÍNDICE	2
Resumen Ejecutivo	3
Contexto y Alcance	4
Metodología	715
Resultados	8
Comparativa de modelos	8
Análisis visual con matrices de confusión de los tres modelos	9
Modelo seleccionado	12
Conclusiones	14
Consideraciones para producción	15

Resumen Ejecutivo

- Objetivo: Este proyecto tiene como objetivo construir un modelo de clasificación que prediga si un cliente abandonará o no los servicios de la compañía, a partir de sus características sociodemográficas y de los servicios contratados.
- La empresa quiere anticiparse al problema de la cancelación, y debemos construir un pipeline robusto para esta etapa inicial de modelado.
- Conclusiones clave: El modelo ganador fue RandomForest optimizado, su recall para clase 1 es de 88.5% y un accuracy de 68.5%.
- Beneficio esperado: Una reducción del 25% en la tasa de abandono podría significar un incremento de ingresos de \$950.000 anuales.
- Métricas claves:

Tabla Comparativa de Modelos:

Modelo	Accuracy	Precision_Clase_1	Recall_Clase_1	F1-Score_Clase_1
DecisionTree	72.69%	49.12%	79.68%	60.77%
CatBoost	75.44%	52.43%	80.75%	63.58%
RandomForest	68.49%	45.22%	88.50%	59.86%

Contexto y Alcance

- Telecom X desea mejorar la retención de clientes:
 - El tema del abandono de clientes lo que llamamos 'churn' es un indicador clave de la salud del negocio.
 - Cuando los clientes se van, no solo se pierden ingresos estables mes a mes. Además tiene un costo financiero, porque conseguir un cliente nuevo puede costar bastante más que mantener a uno que ya se tiene.
 - La verdadera ventaja está en adelantarse a la decisión de abandono del cliente. Si se entiende por qué y cuándo se van, se pueden crear estrategias personalizadas de retención antes de que decidan irse.

Descripción del dataset:

- Para realizar este análisis, Telecom X nos ha entregado un dataset con 7042 registros.
- La distribución de clientes que han abandonado (Churn Sí) y los que permanecen (Churn No) es como muestra el siguiente gráfico:

 Como se puede apreciar, existe un desbalance importante entre las clases Churn Sí y Churn No.

• Las variables del set de datos y sus valores posibles son:

```
o customerID: identificación alfanumérica del cliente
O Churn: ['No' 'Yes'] (Yes si el cliente abandonó)
o gender: ['Female' 'Male']
o SeniorCitizen: [0 1]
o Partner: ['Yes' 'No']
O Dependents: ['Yes' 'No']
o tenure: cantidad de meses que tiene o tuvo en la compañía
o PhoneService: ['Yes' 'No']
O MultipleLines: ['No' 'Yes' 'No phone service']
o InternetService: ['DSL' 'Fiber optic' 'No']
OnlineSecurity: ['No' 'Yes' 'No internet service']
OnlineBackup: ['Yes' 'No' 'No internet service']
O DeviceProtection: ['No' 'Yes' 'No internet service']
o TechSupport: ['Yes' 'No' 'No internet service']
o StreamingTV: ['Yes' 'No' 'No internet service']
o StreamingMovies: ['No' 'Yes' 'No internet service']
O Contract: ['One year' 'Month-to-month' 'Two year']
o PaperlessBilling: ['Yes' 'No']
O PaymentMethod: ['Mailed check' 'Electronic check' 'Credit card
   (automatic)'
o 'Bank transfer (automatic)']
O Charges. Monthly: facturación mensual del cliente
O Charges. Total: facturación acumulada del cliente
```

• El abandono según los meses de permanencia en el primer año es el siguiente:

 Se puede ver que la mayor fuga de clientes se produce en los primeros 5 meses de permanencia, concentrándose en el primer mes una cantidad que más que triplica a la de los meses siguientes.

Metodología

- Preprocesamiento:
 - o Eliminación de variables innecesarias:
 - customerID porque es solo un identificador del clientes
 - Charges.Monthly porque su información ya está implícita en Charges.Total.
 - o Codificación de variables:
 - Se codificaron las variables binarias 'Yes' y 'No' a 1 y 0 respectivamente.
 - Se codificaron las columnas 'gender', 'InternetService', 'Contract',
 'PaymentMethod' con técnica de recomendada eficiencia.
 - o Tratamiento del desbalanceo:
 - Se probaron varias técnicas de balanceo y se optó por RandomOverSampler, por tener los mejores resultados para todos los algoritmos.
- Algoritmos evaluados:
 - DecisionTreeClassifier.
 - o CatBoostClassifier.
 - RandomForestClassifier.
- Optimización de hiperparámetros:
 - Método usado (GridSearchCV, RandomizedSearchCV).
 - Métrica objetivo (recall clase 1).
- Validación:
 - División train/test.

Resultados

Comparativa de modelos

Tabla Comparativa de Modelos:

Modelo	Accuracy	Precision_Clase_1	Recall_Clase_1	F1-Score_Clase_1
DecisionTree	72.69%	49.12%	79.68%	60.77%
CatBoost	75.44%	52.43%	80.75%	63.58%
RandomForest	68.49%	45.22%	88.50%	59.86%

Análisis visual con matrices de confusión de los tres modelos

• DecisionTreeClassifier optimizado:

• CatBoost optimizado:

RandomForest optimizado:

• Curvas ROC:

Modelo seleccionado

- Por tener las mejores métricas para el Recall de la clase 1 (Churn Sí) se eligió el modelo generado con RandomForestClassifier.
- Importancia de variables (feature importance) de este modelo:

Matriz de confusión final (sobre test).

• Classification report final.

Reporte de clasificación usando el pipeline cargado:					
	precisión	recall	f1-score	support	
0	0.94	0.61	0.74	1035	
1	0.45	0.89	0.60	374	
accuracy		0.69	1409		
macro avg	0.70	0.75	0.67	1409	
weighted avg	0.81	0.69	0.70	1409	

Conclusiones

 El modelo RandomForest optimizado tuvo las mejores métricas para el recall de la clase 1 (89%). Sus parámetros de optimización son:

```
parametros_optimizados = {
         'n_estimators': 100,
         'max_depth': 10,
         'min_samples_split': 5,
         'min_samples_leaf': 4,
         'max_features': 'sqrt',
         'bootstrap': True,
         'class_weight': {0: 1, 1: 3},
         'random_state': 42
    }
}
```

- Esto significa que puede predecir correctamente en promedio a un 89% de los clientes susceptibles de abandonar la compañía. Esto es muy importante porque permite enfocar los esfuerzos de retención en el conjunto de interés.
- Principales Limitaciones del Modelo de Churn:

1. Desbalance de clases

A pesar de aplicar técnicas para mitigar la desproporción entre clientes que abandonan y los que permanecen, el sesgo natural en los datos puede afectar la capacidad del modelo para identificar con precisión la clase minoritaria.

2. Dependencia de la calidad de los datos

El modelo está limitado por la exactitud y completitud de la información histórica disponible.

3. Alcance de las variables

El conjunto de variables utilizado refleja principalmente información interna (contratos, servicios, facturación). Factores externos como cambios de mercado, competencia o coyuntura económica no están modelados, lo que podría limitar la capacidad predictiva.

4. Posible sobreajuste a los datos de entrenamiento

Aunque se aplicaron técnicas para reducir el *overfitting*, siempre existe el riesgo de que el modelo se ajuste demasiado a patrones específicos del conjunto de entrenamiento, perdiendo generalización.

5. Horizonte temporal de predicción

El modelo predice la probabilidad de abandono en base al comportamiento histórico, pero no define con exactitud el plazo en que este abandono podría ocurrir.

Consideraciones para producción

Arquitectura del pipeline de producción:

```
A[Datos nuevos] --> B[Drop Columns]

B --> C[Transform Yes/No]

C --> D[One-Hot Encoding]

D --> E[Modelo RF]

E --> F[Predicción]
```

Datos nuevos:

 El pipeline de producción recibe registros con la misma estructura y valores del dataset original. No es necesario hacer transformaciones previas.

• Drop Columns:

El pipeline elimina las categorías que se ignoraron para el modelado.

• Transform Yes/No:

El pipeline transforma las categorías binarias en 1 y 0.

One-Hot Encoding:

 Con esta técnica el pipeline transforma las categorías restantes para obtener un dataset con todas las categorías binarias.

Modelo RF:

 Con los datos ya transformados y codificados el pipeline ejecuta el modelo sobre ellos.

Predicción:

 Por último, el pipeline entrega la predicción para el cliente o clientes ingresados. Indicando cuál es la probabilidad para que abandone o permanezca en la compañía.