Exercise 3.1

- (a)
- (b)

Exercise 3.2

- (a)
- (b)

Exercise 3.3

We will refute the statement for all sets A, B it holds that $|A| < |A \cup B|$. Let A = B, then we have $A = A \cup B$. In this case it holds that $|A| = |A \cup B|$, which contradicts the statement.

Exercise 3.4

Let $g \colon \{n \in \mathbb{N} \mid n \bmod 2 = 0\} \to \mathbb{Z} \colon g(n) = -\frac{n}{2}$. The function g(x) is a bijective function because it maps every even natural number to every negated natural number (which is injective and surjective). Let $s \colon \{n \in \mathbb{N} \mid n \bmod 2 \neq 0\} \to \mathbb{Z} \colon g(n) = \frac{n+1}{2}$. The function s(x) is a bijective function because it maps every odd natural number to a natural number (it is a subset of the natural numbers). The union of two bijective functions is bijective, therefore

$$f(n) = \begin{cases} -\frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{n+1}{2}, & \text{otherwise,} \end{cases} \text{ for } n \in \mathbb{N},$$

is a bijective function from $\mathbb N$ to $\mathbb Z$ and thus $\mathbb Z$ is countable.