MATH 601 (DUE 10/9)

HIDENORI SHINOHARA

Contents

1

1

3.	Quadratic Equation 2
	1. Modules
	ise. (Problem 1) For each of the \mathbb{Z} -modules listed in the handout, answer the questions handout.
Proof.	
(a)	$M = \mathbb{Z}^3 \times \mathbb{Z}/86\mathbb{Z}.$
	Solve this problem!
(b)	$M = \prod_{n>1} \mathbb{Z}/n\mathbb{Z}.$
	Solve this problem!
(c)	$M = \mathbb{Z}[1/p] \subset \mathbb{Q}.$
	Solve this problem!
(d)	$M = \mathbb{Q}/\mathbb{Z}_{(p)}.$
	Solve this problem!

2. Rings of Fractions

Exercise. (Problem 3) Let $T \subset R$ be the subset consisting of all nonzero divisors.

- ullet Show that T is a multiplicative set.
- Let $s \in T$ and let $S = \{1, s, s^2, s^3, \dots\} \subset T$. Show that the following rings are isomorphic: $S^{-1}R$, the subring $R[1/s] \subset T^{-1}R$, and the quotient ring R[x]/(sx-1).

Proof.

1.

Modules

Rings of Fractions

Prove this!
Prove this!

3. QUADRATIC EQUATION

Exercise.	(Problem 20)
Exercise.	(Problem 21)
Exercise.	(Problem 22)