- 13 Matroids
- 13.2 Other Matroid Axioms

復習

定義 13.2.1. 集合システム (E, \mathcal{F}) : 非空な有限集合 E と $\mathcal{F} \subseteq 2^E$ の対. 独立性システム (E, \mathcal{F}) : 次を満たす集合システム

 $(M1) \emptyset \in \mathcal{F}$,

(M2) $X \subseteq Y \in \mathcal{F} \Rightarrow X \in \mathcal{F}$.

 \mathcal{F} の元は**独立**, $2^E\setminus\mathcal{F}$ の元は**従属**.極小な従属集合は**サーキット**,極大な独立集合は**基**. $X\subset E$ の極大な独立部分集合は,X の基と呼ばれる.

定義 13.2.2. 独立性システム (E, \mathcal{F}) と $X \subseteq E$ について,

ランク: $r(X) := \max\{|Y| : Y \subset X, Y \in \mathcal{F}\}\ (X \text{ の基の位数の最大値}).$

閉包: $\omega(X) := \{ y \in E : r(X \cup \{y\}) = r(X)) \}.$

定義 13.2.3 (定理 13.5). **マトロイド** (E, \mathcal{F}):次 (のいずれか) を満たす独立性システム

- (M3) $X, Y \in \mathcal{F}, |X| > |Y| \Longrightarrow \exists x \in X \setminus Y \text{ s.t. } Y \cup \{x\} \in \mathcal{F},$
- (M3') $X, Y \in \mathcal{F}, |X| = |Y| + 1 \Longrightarrow \exists x \in X \setminus Y \text{ s.t. } Y \cup \{x\} \in \mathcal{F},$
- (M3") 任意の $X \subseteq E$ について,X の基の位数はどれも等しい.

基の族に関する公理系

定理 13.2.9. E を有限集合とし, $\mathcal{B} \subseteq 2^E$ とする. \mathcal{B} が何らかのマトロイド (E, \mathcal{F}) の基の族であることは,以下が同時に成立することと同値.

- (B1) $\mathcal{B} \neq \emptyset$,
- (B2) $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \setminus B_2, \exists y \in B_2 \setminus B_1 \text{ s.t. } (B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}.$

証明. (⇒) (B1):(M1)よりよい.

(B2): (M2) より $B_1 \setminus \{x\} \in \mathcal{F}$.

(M3) より $\exists y \in B_2 \setminus (B_1 \setminus \{x\}) \text{ s.t. } (B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{F}$.

(M3") よりこれは基.

また $y \in B_2$ より $x \neq y$, したがって $y \in B_2 \setminus B_1$.

(\Longleftrightarrow)(B2)のイメージ: $B_1 \setminus B_2 \neq \emptyset$ のとき, B_1 を $(B_1 \setminus \{x\}) \cup \{y\}$ に置き換えると $|B_1 \cap B_2|$ が 1 増える.

まず, \mathcal{B} の元の位数がどれも等しいことを示す. $|B_1|>|B_2|$ なる B_1 , B_2 が存在すると仮定する.(B2) より $|B_1|$ を保ったまま $|B_1\cap B_2|$ をいくらでも大きくでき,矛盾.

ここで,

$$\mathcal{F} := \{ F \subseteq E : \exists B \in \mathcal{B} \text{ s.t. } F \subseteq B \},$$

とする. (E, \mathcal{F}) がマトロイドであることを示す. (M1), (M2) はよい.

(M3)を示す.((M3")で終わりでは??)

|X|>|Y| なる $X,Y\in\mathcal{F}$ を考える. $X\subseteq B_1\in\mathcal{B},Y\subseteq B_2\in\mathcal{B}$ を満たす B_1 , B_2 を, $|B_1\cap B_2|$ が最大になるようにとる.

 $B_2\cap (X\setminus Y) \neq \emptyset$ である場合, $x\in B_2\cap (X\setminus Y)$ とすると, $Y\cup \{x\}\subseteq B_2$ より $Y\cup \{x\}\in \mathcal{F}$. $B_2 \cap (X \setminus Y) = \emptyset$ と仮定して矛盾を示す.目標: $B_2 \setminus B_1 \neq \emptyset$

$$|B_{1} \cap B_{2}| + |Y \setminus B_{1}| + |(B_{2} \setminus B_{1}) \setminus Y|$$

$$= |B_{2}| = |B_{1}|$$

$$\geq |B_{1} \cap B_{2}| + |X \setminus Y| \quad (B_{2} \cap (X \setminus Y) = \emptyset)$$

$$> |B_{1} \cap B_{2}| + |Y \setminus X| \quad (|X| > |Y|)$$

$$\geq |B_{1} \cap B_{2}| + |Y \setminus B_{1}|.$$

したがって $(B_2 \setminus B_1) \setminus Y \neq \emptyset$. $y \in (B_2 \setminus B_1) \setminus Y$ をとると, $\exists x \in B_1 \setminus B_2$ s.t. $(B_2 \setminus \{y\}) \cup \{x\} \in \mathcal{B}$ となり, $|B_1 \cap B_2|$ の最大性に矛盾.

演習 8. \mathcal{B} が何らかのマトロイド (E, \mathcal{F}) の基の族であることは,以下が同時に成立することと同値であることを示せ.

- (B1) $\mathcal{B} \neq \emptyset$,
- $(\mathsf{B2}) \ \forall B_1, B_2 \in \mathcal{B}, \, \forall y \in B_2 \setminus B_1, \, \exists x \in B_1 \setminus B_2 \text{ s.t. } (B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}.$

証明.

$$\overline{\mathcal{B}} := \{ \overline{B} : B \in \mathcal{B} \} \quad (\overline{B} = E \setminus B),$$

とする. (B2) は

$$\forall \overline{B_1}, \overline{B_2} \in \overline{\mathcal{B}}, \ \forall y \in \overline{B_1} \setminus \overline{B_2}, \ \exists x \in \overline{B_2} \setminus \overline{B_1} \ \text{s.t.} \ (\overline{B_1} \setminus \{y\}) \cup \{x\} \in \overline{\mathcal{B}},$$

と同値.また,(M3") より $\mathcal B$ がマトロイドの基の族であることと $\overline{\mathcal B}$ が基の族であることは同値.

ランク関数に関する公理系

定理 13.2.10. E を有限集合とし, $r:2^E \to \mathbb{Z}_+$ とする.次の主張は同値.

- (a) $\mathcal{F}\coloneqq\{F\subseteq E: r(F)=|F|\}$ とするとき,r はマトロイド (E,\mathcal{F}) のランク関数.
- (b) 各 $X,Y \subseteq E$ について,
 - (R1) $r(X) \leq |X|$,
 - (R2) $X \subseteq Y \Longrightarrow r(X) \le r(Y)$,
 - (R3) $r(X \cup Y) + r(X \cap Y) \le r(X) + r(Y)$ (劣モジュラ性).
- (c) 各 $X \subseteq E$ と $x, y \in E$ について,
 - (R1') $r(\emptyset) = 0$,
 - (R2') $r(X) < r(X \cup \{y\}) < r(X) + 1$,
 - (R3') $r(X \cup \{x\}) = r(X \cup \{y\}) = r(X) \Longrightarrow r(X \cup \{x,y\}) = r(X).$

証明. (a) \Longrightarrow (b): r はランク関数なので,(R1) と (R2) は明らか.(R3) を示す.

 $X,Y\subseteq E$ について, $X\cap Y$ の基 A をとる.基 A を拡張して, $A\dot{\cup}B$ を X の基, $A\dot{\cup}B\dot{\cup}C$ を $X\cup Y$ の基とする. $C\subseteq Y$ より $A\cup C\subseteq Y$.また $A\cup B\cup C\in \mathcal{F}$ より $A\cup C\in \mathcal{F}$.したがって

$$r(X) + r(Y) \ge |A \cup B| + |A \cup C|$$

= $|A \cup B \cup C| + |A|$
= $r(X \cup Y) + r(X \cap Y)$.

(b) \Longrightarrow (c): (R1') は (R1) より, (R2') の前半は (R2) よりよい. また (R3) より

$$r(X \cup \{y\}) \le r(X) + r(\{y\}) - r(X \cap \{y\}) \le r(X) + 1.$$

(R3') を示す. x = y のときは明らか, $x \neq y$ のとき,

$$2r(X) \le r(X) + r(X \cup \{x, y\}) \qquad \qquad \therefore \quad (R2)$$

$$\le r(X \cup \{x\}) + r(X \cup \{y\}) \qquad \qquad \therefore \quad (R3)$$

$$= 2r(X),$$

より $r(X) = r(X \cup \{x, y\})$.

$$(c) \Longrightarrow (a)$$
:

$$\mathcal{F} := \{ F \subseteq E : r(F) = |F| \},$$

とする. (M1) は (R1') よりよい. (M2) を示す. $Y \in \mathcal{F}, y \in Y$ について, $X \coloneqq Y \setminus \{y\}$ とすると,

$$|X| + 1 = |Y| = r(Y) = r(X \cup \{y\}) \le r(X) + 1 \le |X| + 1,$$

より $X \in \mathcal{F}$.

(M3') を示す. $X,Y \in \mathcal{F}$, |X| = |Y| + 1 とする.

$$X \setminus Y = \{x_1, \dots, x_k\},\$$

とおく、 $\exists i \text{ s.t. } Y \cup \{x_i\} \in \mathcal{F}$ を示したい、そうでないと仮定する、 $(\mathbf{R2})$ より

$$r(Y \cup \{x_i\}) = r(Y) \quad (i = 1, ..., k).$$

さらに(R3)より

$$r(Y \cup \{x_1, x_i\}) = r(Y) \quad (i = 2, ..., k).$$

そこで, $Y \leftarrow Y \cup \{x_1\}$ とし,同じ議論を繰り返すと,

$$r(Y \cup \{x_1, \ldots, x_k\}) = r(X \cup Y) = r(Y).$$

これは $r(X \cup Y) \ge r(X) = |X| = |Y| + 1 > r(Y)$ に矛盾.

最後にr がマトロイド (E,\mathcal{F}) のランク関数であることを示す. $X\subseteq E$ について,X の基Y を |Y| が最大になるようにとる. $\forall x\in X\setminus Y, r(Y\cup\{x\})=r(Y)$ なので,先ほどと同じ議論により r(X)=r(Y)=|Y|.

閉包演算子に関する公理系

定理 13.2.11. E を有限集合とし, $\sigma: 2^E \to 2^E$ とする. σ があるマトロイド (E,\mathcal{F}) の閉包演算子であることは,任意の $X,Y\subseteq E$ と $x,y\in E$ について以下が同時に成立することと同値.

- (S1) $X \subseteq \sigma(X)$,
- (S2) $X \subseteq Y \subseteq E \Longrightarrow \sigma(X) \subseteq \sigma(Y)$,
- (S3) $\sigma(X) = \sigma(\sigma(X)),$
- (S4) $y \notin \sigma(X), y \in \sigma(X \cup \{x\}) \Longrightarrow x \in \sigma(X \cup \{y\}).$

証明. (\Longrightarrow) (S1) はよい. $X \subset Y$, $z \in \sigma(X)$ について

$$r(Y \cup \{z\}) = r(X \cup Y \cup \{z\})$$

$$\leq r(X \cup \{z\}) + r(Y) - r((X \cup \{z\}) \cap Y) \qquad \therefore (R3)$$

$$\leq r(X) + r(Y) - r(X) \qquad \therefore (R2)$$

$$= r(Y),$$

より(S2)もよい.

(R3') を使って X に $\sigma(X)\setminus X$ の元を追加していくと $r(\sigma(X))=r(X)$ が成り立つ.このランクを保ったまま $\sigma(X)$ に新たな元を追加することはできないので,(S3) もよい.

 $y \notin \sigma(X)$, $y \in \sigma(X \cup \{x\})$, $x \notin \sigma(X \cup \{y\})$ と仮定する. (R2') より $r(X \cup \{y\}) = r(X) + 1$, $r(X \cup \{x,y\}) = r(X \cup \{x\})$, $r(X \cup \{x,y\}) = r(X \cup \{y\}) + 1$. ゆえに $r(X \cup \{x\}) = r(X) + 2$ となり矛盾. よって (S4) もよい.

$$(\longleftarrow) \qquad \qquad \mathcal{F} := \{X \subset E : \forall x \in X, \ x \notin \sigma(X \setminus \{x\})\},\$$

とする. (E, \mathcal{F}) がマトロイドであることを示す.

(M1) はよい. $X \subset Y \in \mathcal{F}$ と $x \in X$ に対して

$$x \notin \sigma(Y \setminus \{x\}) \supseteq \sigma(X \setminus \{x\}),$$

より $X \in \mathcal{F}$. よって (M2) もよい.

主張. $X \in \mathcal{F}$ と $Y \subseteq E$ が |X| > |Y| を満たすとき, $X \not\subseteq \sigma(Y)$.

証明. $|Y\setminus X|$ に関する帰納法で示す. $Y\setminus X=\emptyset$ のとき, $Y\subset X$. $x\in X\setminus Y$ をとる.

$$x \notin \sigma(X \setminus \{x\}) \supseteq \sigma(Y),$$

より $x \notin \sigma(Y)$, したがって $X \not\subset \sigma(Y)$.

 $|Y \setminus X| > 0$ とする. $y \in Y \setminus X$ をとる. 帰納法の仮定より,

$$x \in X \setminus \sigma(Y \setminus \{y\}),$$

がとれる. $x \notin \sigma(Y)$ ならよい. そうでないとき, $x \notin \sigma(Y \setminus \{y\})$ かつ

$$x \in \sigma(Y) = \sigma((Y \setminus \{y\}) \cup \{y\}),$$

なので,(S4)より

$$y \in \sigma((Y \setminus \{y\}) \cup \{x\}).$$

y 以外の Y の元は $(Y\setminus\{y\})\cup\{x\}\subseteq\sigma((Y\setminus\{y\})\cup\{x\})$ に属するので,

$$Y \subseteq \sigma((Y \setminus \{y\}) \cup \{x\}).$$

(S2) より

$$\sigma(Y) \subseteq \sigma(\sigma((Y \setminus \{y\}) \cup \{x\})) = \sigma((Y \setminus \{y\}) \cup \{x\}).$$

帰納法の仮定より $X \not\subseteq \sigma((Y\setminus\{y\})\cup\{x\})$ なので, $X\not\subseteq \sigma(Y)$.

先ほどの主張を用いて (M3) を示す. $X,Y\in\mathcal{F}$ が |X|>|Y| を満たすとする.主張より, $x\in X\setminus\sigma(Y)$ がとれる.ここで $Y\cup\{x\}\in\mathcal{F}$ が成り立つことを示す.

 $z \in Y \cup \{x\}$ とする. $z \in Y$ のとき, $Y \in \mathcal{F}$ より $z \notin \sigma(Y \setminus \{z\})$. z = x のとき, $z \notin \sigma(Y)$ より $z \notin \sigma(Y \setminus \{z\})$.

 $z \notin \sigma(Y \setminus \{z\}), x \notin \sigma(Y)$ から、(S4) より

$$z \notin \sigma((Y \setminus \{z\}) \cup \{x\}) \supseteq \sigma((Y \cup \{x\}) \setminus \{z\}).$$

したがって $z \notin \sigma((Y \cup \{x\}) \setminus \{z\})$. よって $Y \cup \{x\} \in \mathcal{F}$.

以上より, (E, \mathcal{F}) はマトロイド.マトロイド (E, \mathcal{F}) のランク関数を r,閉 包演算子を σ' とする. $\sigma = \sigma'$ を示す.

まず, $X \subseteq E$ と $z \in \sigma'(X)$ について, $z \in \sigma(X)$ を示す. $z \in X \subseteq \sigma(X)$ ならよい. そうでない場合を考える. X の基 Y をとる.

$$r(Y \cup \{z\}) < r(X \cup \{z\}) = r(X) = |Y| < |Y \cup \{z\}|,$$

より $Y \cup \{z\} \notin \mathcal{F}$. したがって

$$\exists y \text{ s.t. } y \in \sigma((Y \cup \{z\}) \setminus \{y\}).$$

y=z ならば $z\in\sigma(Y\setminus\{z\})\subseteq\sigma(X)$. $y\neq z$ ならば, $y\notin\sigma(Y\setminus\{y\})$ なので (S2) より $z\in\sigma(Y)\subseteq\sigma(X)$.

次に, $z \notin \sigma'(X)$ について $z \notin \sigma(X)$ を示す.

 $X \cup \{z\}$ の基Y をとる. $r(X \cup \{z\}) > r(X)$ より $z \in Y$,また

$$|Y \setminus \{z\}| = |Y| - 1 = r(X \cup \{z\}) - 1 = r(X),$$

なので $Y\setminus\{z\}$ は X の基.よって $X\subseteq\sigma'(Y\setminus\{z\})\subseteq\sigma(Y\setminus\{z\})$ なので, $\sigma(X)\subseteq\sigma(Y\setminus\{z\})$.

$$Y\setminus\{z\}\in\mathcal{F}$$
 より $z\notin\sigma(Y\setminus\{z\})$ なので、 $z\notin\sigma(X)$.

サーキットの属に関する公理系

定理 13.2.12. E を有限集合とし, $C \subseteq 2^E$ とする. $\mathcal{F} = \{F \subset E : \exists C \in C \text{ s.t. } C \subseteq F\}$ とするとき, (E, \mathcal{F}) が独立性システムであって C がそのサーキットの族であることは,次の条件が同時に成り立つことと同値.

- (C1) $\emptyset \notin \mathcal{C}$,
- (C2) $C_1, C_2 \in \mathcal{C}, C_1 \subseteq C_2 \Longrightarrow C_1 = C_2.$

さらに,このとき以下の条件は同値.

- (a) (E, \mathcal{F}) はマトロイド.
- (b) $X \in \mathcal{F}, e \in E$ について, $X \cup \{e\}$ はサーキットを高々 1 個しか持たない.
- (C3) 相異なる $C_1, C_2 \in \mathcal{C}$ と $e \in C_1 \cap C_2$ について, $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$ なる $C_3 \in \mathcal{C}$ が存在する.
- (C3') $C_1,C_2\in\mathcal{C}$ と $e\in C_1\cap C_2$, $f\in C_1\setminus C_2$ について, $f\in C_3\subseteq (C_1\cup C_2)\setminus \{e\}$ なる $C_3\in\mathcal{C}$ が存在する.

前半の証明. (⇒⇒) 明らか.

 (\longleftarrow) \mathcal{C} が (C1) を満たすなら, (E,\mathcal{F}) は独立性システム.(C2) を満たすなら, \mathcal{C} の各元はサーキット.

サーキット族に関する定義

定理 13.2.13. E を有限集合とし, $\mathcal{C} \subset 2^E$ とする.

 $\mathcal{F} = \{ F \subset E : C \subseteq F \text{ なる } C \in \mathcal{C} \text{ が存在しない} \},$

とするとき, \mathcal{C} が独立性システム (E,\mathcal{F}) のサーキットの族であることは,以下が同時に成立することと同値.

- (C1) $\emptyset \notin \mathcal{C}$,
- (C2) $C_1, C_2 \in \mathcal{C}, C_1 \subseteq C_2 \Longrightarrow C_1 = C_2.$

さらに, \mathcal{C} が独立性システム (E,\mathcal{F}) のサーキットの族であるとき,以下は同値.

- (a) (E, \mathcal{F}) はマトロイド.
- (b) $X \in \mathcal{F}, e \in E$ について, $X \cup \{e\}$ は高々 1 個のサーキットしか持たない.
- (C3) 任意の相異なる $C_1,C_2\in\mathcal{C}$ と $e\in C_1\cap C_2$ について, $C_3\subseteq (C_1\cup C_2)\setminus\{e\}$ なる $C_3\in\mathcal{C}$ が存在する.
- (C3') 任意の $C_1, C_2 \in \mathcal{C}$, $e \in C_1 \cap C_2$, $f \in C_1 \setminus C_2$ について, $f \in C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$ なる $C_3 \in \mathcal{C}$ が存在する.

前半の証明. (\Longrightarrow) $\emptyset \in \mathcal{F}$ より (C1) はよい. (C2) はサーキットの極小性よりよい.

 (\longleftarrow) (M1) は (C1) よりよい. (M2) は定義より明らか. 任意のサーキットが $\mathcal C$ に属することは定義から確認できる. (C2) より $\mathcal C$ はサーキットの族.

後半の証明. (a) \Longrightarrow (C3'): \mathcal{C} をマトロイドのサーキットの族とする. $C_1,C_2\in\mathcal{C}, e\in\mathcal{C}_1\cap\mathcal{C}_2, f\in\mathcal{C}_1\setminus\mathcal{C}_2$ について,(R3)(ランク関数の劣モジュラ性)より

$$egin{aligned} |C_1| - 1 + r((C_1 \cup C_2) \setminus \{e,f\}) + |C_2| - 1 \ &= r(C_1) + r((C_1 \cup C_2) \setminus \{e,f\}) + r(C_2) \ &\geq r(C_1) + r((C_1 \cup C_2) \setminus \{f\}) + r(C_2 \setminus \{e\}) \ &\geq r(C_1 \setminus \{f\}) + r(C_1 \cup C_2) + r(C_2 \setminus \{e\}) \ &= |C_1| - 1 + r(C_1 \cup C_2) + |C_2| - 1. \end{aligned}$$

これより $r((C_1 \cup C_2) \setminus \{e, f\}) = r(C_1 \cup C_2)$. $(C_1 \cup C_2) \setminus \{e, f\}$ の基 B を

とる. $|B \cup \{f\}| > r(C_1 \cup C_2)$ より, $B \cup \{f\}$ はサーキット C_3 を含む.よって $f \in C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

- (C3') ⇒ (C3): 明らか.
- $(C3) \Longrightarrow (b)$: $X \in \mathcal{F}$ について $X \cup \{e\}$ が相異なるサーキット C_1, C_2 を含むとき,(C3) より $(C_1 \cup C_2) \setminus \{e\} \notin \mathcal{F}$. しかし $(C_1 \cup C_2) \setminus \{e\} \subseteq X$ なので, $X \notin \mathcal{F}$.
 - (b) ⇒ (a): 定理 13.8 と命題 13.7 よりよい. □