Apresentação do FTAF

C.02.01 – Ciclo Otto Ar-Combustível de Tempo Finito de Combustão

FTAF – Finite Time Air-Fuel Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-14 15h23m53s UTC

Prof. C. Naaktgeboren, PhD C.02.01 -

C.02.01 - Ciclo Otto Ar-Combustível de Tempo Finito de Combustão

Apresentação do FTAF

Como Extensão do FTAH

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Modela combustão (adição de calor) de forma **não instantânea**:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;
 - Evita modelagem termodinâmica de misturas reativas.

Como Extensão do FTAH

Ciclo Otto ar-combustível de tempo finito—FTAF

- Modelo do livro-texto (tópicos de leitura) adiciona combustão ao Ciclo Otto ideal;
 - Permite variação de combustíveis;
 - Porém, desde que sejam carbonados: norm. em C; excluindo H₂, H₄N₂ puros, p. ex.;
 - Ênfase nas **propriedades** $\bar{c}_{p,\nu}(T)$, k(T), $\bar{u}(T)$, etc. das misturas;
 - Incorpora combustão e equilíbrio químico;
 - Não emprega o calor liberado na combustão!
- Modelo ar-combustível de tempo finito, FTAF:
 - Adiciona combustão, mantendo as demais características do FTHA;
 - Obtém tanto as propriedades quanto o calor liberado pelas reações!
 - Desenvolvido em um TCC defendido em 2018 (citação nos tópicos de leitura);

Prof. C. Naaktgeboren, PhI

C.02.01 - Ciclo Otto Ar-Combustível de Tempo Finito de Combustão

Apresentação do FTAF

Como Extensão do FTAH

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e
 - Duração da combustão.

Apresentação do FTAF Tópicos de Leitura

Tópicos de Leitura I

Brunetti, F.

Motores de combustão interna. Capítulos 1 e 2.

Blücher. São Paulo. ISBN 978-85-2120-708-5.

Silva, R. K. de O.

Modelo ar-combustível de tempo finito de adição de calor de motores Otto.

Repositório Roca UTFPR.

repositorio.roca.utfpr.edu.br/jspui/handle/1/8786.

Prof. C. Naaktgeboren, PhD C.02.01 – Ciclo Otto Ar-Combustível de Tempo Finito de Combustão