Multimedia Computing

Perceptual Image Quality Assessment

Outline

- Why "Perceptual"?
 - Motivation
 - Overview
- Perceptual Image Quality Assessment
 - Mean squared error's deficiency
 - Error visibility methods
 - Structural similarity methods
- Perceptual Image Processing
 - Image compression
 -

Motivation

original Image

MSE=0, SSIM=1

MSE=309, SSIM=0.580

MSE=309, SSIM=0.928

MSE=309, SSIM=0.641

MSE=309, SSIM=0.987

MSE=309, SSIM=0.730

Perceptual Image Processing Overview

Image Quality Assessment: Classifications

	Full-reference	Reduced-reference	No-reference
Application- specific	Many	Some	Some
General- purpose	Many	Very Few	None
	Widely used: MSE or PSNR		

Availability of Reference:

- □ Full-Reference (FR): reference (original) image available
- No-Reference (NR): reference image not available
- Reduced-Reference (RR): reference image partially available

Application Scope

General-purpose vs. application-specific

Outline

- Why "Perceptual"?
 - Motivation
 - Overview
- Perceptual Image Quality Assessment
 - Mean squared error's deficiency
 - Error visibility methods
 - Structural similarity methods
- Perceptual Image Processing
 - Image compression
 - **-**

Mean Squared Error's Deficiency (1)

Mean Squared Error

image
$$x \longrightarrow \frac{1}{N} \sum_{i} |x_i - y_i|^2 \longrightarrow E$$

- Advantages
 - Easy to compute
 - Easy to optimize
 - Clear physical meaning: energy
- What's the problem?

Mean Squared Error's Deficiency (2)

MSE = 1600, MSSIM = 0.6373

MSE = 1600, MSSIM = 0.0420

Mean Squared Error's Deficiency (3)

Don't care about the sign

+ (rand sign)* 30

MSE = 900

SSIM = 0.9329

MSE = 900

SSIM = 0.2470

Mean Squared Error's Deficiency (4)

Mean Squared Error

Natural Images

$$E = \frac{1}{N} \sum_{i} |x_{i} - y_{i}|^{2}$$
 highly structured
$$\begin{bmatrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

10

Error Visibility Method: Idea

distorted signal = reference signal + error signal

Quantify error signal perceptually

Representative work

- □ Frequency weighting (pioneering work) [Mannos & Sakrison, 74]
- Visible difference predictor [Daly, 93]
- Perceptual image distortion [Teo & Heeger, 94]
- DCT-based method [Watson, 93]
- Wavelet-based method [Safranek, 89, Watson et al., 97]
- □ SSIM (Wang et al., 2004)
- FSIM (Zhang et al., 2011)

Error Visibility Method: Framework

- Goal: simulate relevant early HVS components
 - Structures motivated by physiology
 - Parameters determined by psychophysics

Structure Similarity Methods: Idea

Purpose of vision: extract structural information

Quantify structural distortion

Questions:

- How to define structural/nonstructural distortions?
- How to separate structural/nonstructural distortions?

What are Structural/Non-Structural Distortions?

Structure Similarity Index (SSIM)

For two corresponding local patches **x** and **y** in two images

Assume that x and y are vectorized as

Assume that **x** and **y** are vectorized as
$$\mathbf{x} = [x_1, x_2, ..., x_N]$$
 and $\mathbf{y} = [y_1, y_2, ..., y_N]$ $\mu_x(\mu_y)$ is the mean intensity of \mathbf{x} (\mathbf{y}), $\mu_x = \frac{1}{N} \sum_{i=1}^N x_i$ $\sigma_x(\sigma_y)$ is the standard deviation of \mathbf{x} (\mathbf{y}), $\sigma_x = \left(\frac{1}{N} \sum_{i=1}^N (x_i - \mu_x)^2\right)^{1/2}$ σ_{xy} is the covariance of \mathbf{x} and \mathbf{y} , $\sigma_{xy} = \frac{1}{N} \sum_{i=1}^N (x_i - \mu_x) (y_i - \mu_y)$

Structure Similarity Index (SSIM)

$$l(\mathbf{x}, \mathbf{y}) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}, c(\mathbf{x}, \mathbf{y}) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}, s(\mathbf{x}, \mathbf{y}) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$$

 C_1, C_2, C_3 are fixed constants, and usually set $C_3 = C_2 / 2$

Then, the structure similarity between x and y are defined as

$$SSIM(\mathbf{x}, \mathbf{y}) = l(\mathbf{x}, \mathbf{y}) \cdot c(\mathbf{x}, \mathbf{y}) \cdot s(\mathbf{x}, \mathbf{y}) = \frac{\left(2\mu_x \mu_y + C_1\right) \left(2\sigma_{xy} + C_2\right)}{\left(\mu_x^2 + \mu_y^2 + C_1\right) \left(\sigma_x^2 + \sigma_y^2 + C_2\right)}$$

If the image contains M local patches (defined by a sliding window), the overall image quality is

$$SSIM = \frac{1}{M} \sum_{i=1}^{M} SSIM(\mathbf{x}_i, \mathbf{y}_i)$$

Structure Similarity Index (SSIM)

SSIM (**x**, **y**) =
$$\frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

[Wang & Bovik, IEEE Signal Proc. Letters, '02] [Wang et al., IEEE Trans. Image Proc., '04]

Assume that $C_1 = 6.5, C_2 = 58.5$ and the sliding window is 3 by 3

$$\begin{bmatrix} 110 & 113 & 113 & 115 \\ 100 & 102 & 102 & 115 \\ 103 & 103 & 108 & 110 \\ 105 & 120 & 106 & 114 \end{bmatrix} \mathbf{X}_2 \qquad \begin{bmatrix} 109 & 112 & 112 & 114 \\ 103 & 104 & 102 & 110 \\ 115 & 103 & 101 & 112 \\ 105 & 125 & 106 & 116 \end{bmatrix} \mathbf{y}_2$$
 reference image

$$\mathbf{x}_{2} = \begin{bmatrix} 113113115102102115103108110 \end{bmatrix} \mathbf{y}_{2} = \begin{bmatrix} 112112114104102110103101112 \end{bmatrix}$$

$$\mu_{x} = (113+113+...+110)/9 = 107.89 \qquad \mu_{y} = (112+112+...+112)/9 = 107.78$$

$$\sigma_{x} = \left(((113-107.89)^{2} + (113-107.89)^{2} + ... + (110-107.89)^{2} \right)/9 \right)^{1/2} = 4.82$$

$$\sigma_{y} = \left(((112-107.78)^{2} + (112-107.78)^{2} + ... + (112-107.78)^{2} \right)/9 \right)^{1/2} = 4.87$$

$$\sigma_{xy} = \left((113-107.89) * (112-107.78) + (113-107.89) * (112-107.78) + ... + (110-107.89) * (112-107.78) \right)/9$$

$$= 18.75$$

$$SSIM(\mathbf{x}_{2}, \mathbf{y}_{2}) = \frac{(2*107.89*107.78+6.5)*(2*18.72+58.5)}{(107.89^{2}+107.78^{2}+6.5)*(4.82^{2}+4.87^{2}+58.5)} = 0.9105$$

$$\mathbf{x}_{3} = \begin{bmatrix} 100 \, 102 \, 103 \, 103 \, 103 \, 108 \, 105 \, 120 \, 106 \end{bmatrix} \, \mathbf{y}_{3} = \begin{bmatrix} 103 \, 104 \, 102 \, 115 \, 103 \, 101 \, 105 \, 125 \, 106 \end{bmatrix} \\ \mu_{x} = 105.44 \qquad \qquad \mu_{y} = 107.11 \\ \sigma_{x} = 5.62 \qquad \qquad \sigma_{y} = 7.42 \\ \sigma_{xy} = 31.84$$

$$SSIM(\mathbf{x}_3, \mathbf{y}_3) = 0.8421$$

$$\mathbf{x}_{4} = \begin{bmatrix} 102\,102\,115\,103\,108\,110\,120\,106\,114 \end{bmatrix} \, \mathbf{y}_{4} = \begin{bmatrix} 104\,102\,110\,103\,101\,112\,125\,106\,116 \end{bmatrix} \\ \mu_{x} = 107.78 \qquad \qquad \mu_{y} = 108.78 \\ \sigma_{x} = 5.71 \qquad \qquad \sigma_{y} = 7.44 \\ \sigma_{xy} = 38.28$$

$$SSIM\left(\mathbf{x}_{4},\mathbf{y}_{4}\right)=0.9225$$

The overall similarity of the reference image and the distorted image is

SSIM =
$$\frac{1}{4} \sum_{i=1}^{4} SSIM(\mathbf{x}_i, \mathbf{y}_i)$$

= $\frac{1}{4} (0.7857 + 0.9105 + 0.8421 + 0.9225) = 0.8652$

Gaussian noise corrupted image

original image

SSIM index map

absolute error map

JPEG2000 compressed image

original image

SSIM index map

absolute error map

JPEG compressed image

original image

SSIM index map

absolute error map

original Image

MSE=0, SSIM=1

MSE=309, SSIM=0.580

MSE=309, SSIM=0.928

MSE=309, SSIM=0.641

MSE=309, SSIM=0.987

MSE=309, SSIM=0.730 ₃₁

original image

Initial distortion

Initial image

Using SSIM

- Image/video coding and communications
- Watermarking/data hiding
- Image denoising
- Image enhancement
- Image/video hashing
- Image fusion
- Superresolution/interpolation
- Image/texture synthesis
- Image halftoning
- Vision processor design
- Display design
- Contrast equalization for LCD
- •

Outline

- Why "Perceptual"?
 - Motivation
 - Overview
- Perceptual Image Quality Assessment
 - Mean squared error's deficiency
 - Error visibility methods
 - Structural similarity methods
- Perceptual Image Processing
 - Image compression
 - **-**

Perceptual Image Compression

General Idea

Transform image signal into "perceptually uniform" space

Implementations

- Perceptual weighting + uniform quantization
- Equivalently, perceptually adaptive quantization
- Net effect: bit redistribution, perceptually

Perceptual Image Compression

- Frequency Weighting
 - JPEG quantization table; JPEG2000 subband weighting

HL3 HH3 LH2
HH2
HH1
HH2
HH1
HH1

wavelet tree

wavelet subbands

subband weighting

- Masking
 - JPEG2000 neighborhood/self masking

Perceptual Image Compression

original image

[Wang, Li & Shang '07]

SPIHT, 0.2bits/pixel

New, 0.2bits/pixel

SSIM map (SPIHT)

SSIM map (new) 41

References

- Zhou Wang and Alan C. Bovik. Modern Image Quality Assessment. Synthesis Lectures on Image, Video & Multimedia Processing, Morgan & Claypool Publishers, 2006.
- L. Zhang, L. Zhang, X. Mou, D. Zhang, "FSIM: A feature similarity index for image quality assessment," Image Processing, IEEE Transactions on 20 (8), 2378-2386, 2011.