Topologie (Bachelor)

zur Vorlesung von Prof. Dr. Birgit Richter

18. Oktober 2024

Inhaltsverzeichnis

1	Mengentheoretische Topologie 1.1 Metrische Räume 1.2 Topologische Räume	
2	Algebraische Topologie 2.1	6

Konventionen

• TBD

Dies ist ein inoffizielles Skript zur Vorlesung Topologie bei Prof. Dr. Birgit Richter im Wintersemester 24/25. Fehler und Verbesserungsvorschläge immer gerne an rasmus.raschke@uni-hamburg.de.

1 Mengentheoretische Topologie

1.1 Metrische Räume

Definition 1.1.1. Metrischer Raum

Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge X und einer Abstandsfunktion

$$d: X \times X \to \mathbb{R},\tag{1.1.1}$$

genannt Metrik, die die folgenden Axiome erfüllt:

- (M1) Positivität: $\forall x, y \in X : d(x, y) > 0$
- (M2) Symmetrie: $\forall x, y \in X : d(x, y) = d(y, x)$
- (M3) Dreiecksungleichung: $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$

Beispiele. 1. Im \mathbb{R}^n ist die **Standardmetrik** oder **euklidische Metrik** für $x, y \in \mathbb{R}$ gegeben durch

$$d_2(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$
(1.1.2)

2. Auf (\mathbb{R}^n, d_n) ist eine Metrik durch

$$d_n(x,y) := \sum_{i=1}^n |x_i - y_i|$$
(1.1.3)

gegeben.

3. Die **Maximumsnorm** $(\mathbb{R}^n, d_{\infty})$ ist gegeben durch

$$d_{\infty}(x,y) = \max_{i \in \{1,\dots,n\}} |x_i - y_i|. \tag{1.1.4}$$

4. Eine weitere Metrik auf \mathbb{R}^n ist gegeben durch

$$d_{\sqrt{.}}(x,y) = \sqrt{d_2(x,y)}. (1.1.5)$$

Diese Metrik kommt nicht von einer Norm.

5. Die diskrete Metrik auf einer beliebigen Menge X ist gegeben durch

$$d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$
 (1.1.6)

6. Auf $X = \mathcal{C}([0,1],\mathbb{R})$ ist für $f,g \in X$ durch das Integral eine Metrik

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx \tag{1.1.7}$$

definiert.

Bemerkungen. 1. Wenn (X, d) ein metrischer Raum ist, so ist $Y \subseteq X$ als $(Y, d|_{Y \times Y})$ auch ein metrischer Raum.

- 2. Wenn (X_1, d_1) und (X_2, d_2) metrische Räume sind, so ist $(X_1 \times X_2, d_1 \times d_2)$ wieder ein metrischer Raum.
- 3. Vorsicht: Für eine Familie $(X_i, d_i)_{i \in I}$ ist der Sachverhalt komplizierter.

Definition 1.1.2. ϵ -Ball

Sei (X,d) ein metrischer Raum, $x \in X$ und $\epsilon > 0$. Dann ist der ϵ -Ball mit x im Zentrum definiert als

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \}. \tag{1.1.8}$$

Definition 1.1.3. Umgebung

Sei (X, d) ein metrischer Raum. Eine Menge $U \subseteq X$ heißt **Umgebung** von $x \in X$, falls ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq U$ existiert.

Definition 1.1.4. Offen und Abgeschlossen

Sei (X, d) ein metrischer Raum. Eine Teilmenge $O \subseteq X$ heißt **offen**, falls für alle $x \in O$ ein $\epsilon > 0$ existiert, sodass $B_{\epsilon}(x) \subseteq O$ gilt. O ist also eine Umgebung all seiner Elemente.

Eine Menge $A \subseteq X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist.

Bemerkungen. 1. Sei $\epsilon > 0$ und (X, d) ein metrischer Raum. Dann ist $B_{\epsilon}(x) \subseteq X$ offen und eine Umgebung von x.

2. ÜA: Sei (X, d) ein metrischer Raum und $x \in X$. Dann ist $\{x\}$ abgeschlossen.

Satz 1.1.5. Umgebungseigenschaften metrischer Räume

Sei (X, d) ein metrischer Raum. Dann gilt:

- (U1) Jede Umgebung von $x \in X$ enthält x und X ist eine Umgebung von x.
- (U2) Ist $U \subseteq X$ eine Umgebung von X und $U \subseteq V \subseteq X$, so ist V auch eine Umgebung von x.
- (U3) Wenn U_1 und U_2 Umgebungen von x sind, so auch $U_1 \cap U_2$.
- (U4) Ist $U \subseteq X$ eine Umgebung von x, so existiert eine weitere Teilmenge $V \subseteq X$, sodass U eine Umgebung von allen $y \in V$ ist.

Beweis.

- 1. Trivial.
- 2. Trivial.
- 3. Nach Voraussetzung existiert für $x \in U_1 \cap U_2$ ein $\epsilon_1 > 0$, sodass $B_{\epsilon_1}(x) \subseteq U_1$ und ein $\epsilon_2 > 0$, sodass $B_{\epsilon_2}(x) \subseteq U_2$. Definiere $\epsilon := \min(\epsilon_1, \epsilon_2)$. Dann gilt $B_{\epsilon}(X) \subseteq U_1$ und $B_{\epsilon}(x) \subseteq U_2$, also $B_{\epsilon}(x) \subseteq U_1 \cap U_2$.
- 4. Nach Voraussetzung existiert ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq U$. Dann ist die Behauptung durch $V := B_{\epsilon}(x)$ erfüllt.

Satz 1.1.6. Eigenschaften offener Mengen

Sei (X, d) ein metrischer Raum. Dann gilt:

- 1. \emptyset und X sind offen.
- 2. Sind $O_1, O_2 \subseteq X$ offen, so auch $O_1 \cap O_2$.
- 3. Ist $(O_i)_{i \in I}$ eine Familie offener Teilmengen $O_i \subseteq X$, so ist $\cup_i O_i$ auch offen.

Beweis.

- 1. Trivial.
- 2. Mit $min(\epsilon_1, \epsilon_2)$ analog zum obigen Beweis.
- 3. Sei $x \in \bigcup_i O_i$. Dann existiert ein $i \in I$ mit $x \in O_i$, sodass ein $\epsilon > 0$ existiert mit $B_{\epsilon}(x) \subseteq O_i \subseteq \bigcup_i O_i$.

Satz 1.1.7. Eigenschaften abgeschlossener Mengen

Sei (X, d) ein metrischer Raum. Dann gilt:

- (A1) \emptyset und X sind abgeschlossen.
- (A2) Wenn $A_1, A_2 \subseteq X$ abgeschlossene Teilmengen sind, so ist auch $A_1 \cup A_2$ abgeschlossen.
- (A3) Seien $(A_i)_{i \in I}$ abgeschlossene Teilmengen von X. Dann ist $\cup_i A_i$ wieder abgeschlossen.

Beweis.

- 1. Da $\emptyset = X \setminus X$ und $X = X \setminus \emptyset$ gilt, sind X und \emptyset gemäß Satz 1.1.6 offen.
- 2. Sei $A_1 = X \setminus O_1$ und $A_2 = X \setminus O_2$ mit $O_1, O_2 \subseteq X$ offen. Gemäß Satz 1.1.6 (2.) folgt

$$X \setminus (A_1 \cup A_2) = (X \setminus A_1) \cap (X \setminus A_2) = O_1 \cap O_2, \tag{1.1.9}$$

wobei $O_1 \cap O_2$ wieder offen ist.

3. Wir betrachten offene Teilmengen $O_i := X \backslash A_i.$ Gemäß Satz 1.1.6 ist

$$X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i = \bigcup_{i \in I} O_i$$
(1.1.10)

offen.

Definition 1.1.8. stetige Abbildung

Seien (X,d) und (Y,d') metrische Räume und $f:X\to Y$. Dann heißt f stetig in $x_0\in X$, wenn für alle $\epsilon>0$ ein $\delta > 0$ existiert, sodass

$$d(x_0, x) < \delta \Rightarrow d'(f(x_0), f(x)) < \epsilon \tag{1.1.11}$$

gilt. f heißt **stetig**, falls dies für alle $x_0 \in X$ erfüllt ist.

Satz 1.1.9. Äquivalente Formulierung der Stetigkeit

Seien (X,d) und (Y,d') metrische Räume und $f:X\to Y$. Dann sind äquivalent:

- 1. f ist stetig.
- 2. V ist Umgebung von $f(x) \Rightarrow f^{-1}(V)$ ist eine Umgebung von x.
- 3. $O \in Y$ ist offen $\Rightarrow f^{-1}(O)$ ist offen in X.

4. $A \in Y$ ist abgeschlossen $\Rightarrow f^{-1}(A)$ ist abgeschlossen in X.

Beweis. (1. \Rightarrow 2.): Sei V eine Umgebung von f(x). Per Definition existiert ein $\epsilon > 0$, sodass $f(x) \in B_{\epsilon}(f(x)) \subseteq V$ gilt. Gemäß Annahme existiert ein $\delta > 0$ mit $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$. Daraus folgt, dass

$$B_{\delta}(x) \subseteq f^{-1}f(B_{\delta}(x)) \subseteq f^{-1}(B_{\epsilon}(f(x))) \subseteq f^{-1}(V). \tag{1.1.12}$$

Also ist $f^{-1}(V)$ eine Umgebung von x.

 $(2. \Rightarrow 3.)$: O ist Umgebung all seiner Elemente.

 $(3. \Rightarrow 4.)$: $Y \setminus A$ ist offen in Y, d.h. $f^{-1}(Y \setminus A) = f^{-1}(Y) \setminus f^{-1}(A) = X \setminus f^{-1}(A)$ ist offen in X. Also ist $f^{-1}(A)$ abgeschlossen.

 $(4. \Rightarrow 1.)$: $Y \setminus B_{\epsilon}(f(x))$ ist abgeschlossen impliziert, dass $f^{-1}(Y \setminus B_{\epsilon}(f(x)))$ auch abgeschlossen ist. Damit folgt, dass $X \setminus f^{-1}(B_{\epsilon}(f(x)))$ abgeschlossen und damit $f^{-1}(B_{\epsilon}(f(x)))$ offen ist. Für $x \in f^{-1}(B_{\epsilon}(f(x)))$ existiert ein $\delta > 0$ mit $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x)))$, also auch $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$.

Definition 1.1.10. Äquivalenz von Metriken

Seien d_1 und d_2 Metriken auf einer Menge X.

1. Gibt es $\alpha, \beta > 0$ mit

$$\alpha d_1(x, y) \le d_2(x, y) \le \beta d_1(x, y)$$
 (1.1.13)

für alle $x, y \in X$, so heißen d_1 und d_2 stark äquivalent.

- 2. d_1 und d_2 heißen **äquivalent**, falls es für jedes $x \in X$ und alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodass
 - (i) $d_1(x,y) < \delta \Rightarrow d_2(x,y) < \epsilon$
 - (ii) $d_2(x,y) < \delta \Rightarrow d_1(x,y) < \epsilon$

gilt.

Bemerkungen. 1. Genau dann, wenn d_1 und d_2 äquivalente Metriken sind, sind $\mathrm{id}_X:(X,d_1)\to (X,d_2)$ und $id_X:(X,d_2)\to (X,d_1)$ stetig.

- 2. d_1 und d_2 stark äquivalent impliziert, dass id $_X$ gleichmäßig stetig ist.
- 3. Äquivalente Metriken ergeben die gleichen offenen (und abgeschlossenen) Mengen.

Beispiele. 1. Die d_1 -, d_2 - und d_{∞} -Metrik auf dem \mathbb{R}^n sind stark äquivalent.

- 2. Sei $d_0(x,y) = |x^3 y^3|$ und $d_2(x,y)$ die euklidische Metrik. Die Identität $\mathrm{id}_{\mathbb{R}}(\mathbb{R},d_2) \to (\mathbb{R},d_0)$ ist stetig, aber nicht gleichmäßig stetig.
- 3. Sei X eine beliebige Menge mit einer beliebigen Metrik d. Dann ist d äquivalent zu

$$d'(x,y) := \frac{d(x,y)}{1+d(x,y)} < 1 \tag{1.1.14}$$

für alle $x, y \in X$. Also ist jede Metrik äquivalent zu einer beschränkten Metrik.

1.2 Topologische Räume

Der Begriff des topologischen Raums wird durch Abstraktion der Eigenschaften offener Mengen und stetiger Abbildungen in metrischen Räumen konstruiert.

Definition 1.2.1. Topologischer Raum

Ein **topologischer Raum** ist ein Paar (X, \mathcal{T}) , bestehend aus einer Menge X und einer Familie \mathcal{T} von Teilmengen von X, sodass folgende Axiome erfüllt sind:

- (O1) $\emptyset, X \in \mathcal{T}$
- (O2) $O_1, O_2 \in \mathcal{T} \Rightarrow O_1 \cap O_2 \in \mathcal{T}$
- (O3) Für eine Familie $(O_i)_{i \in I}$ mit $O_i \in \mathcal{T}$ für alle $i \in I$ folgt $\bigcup_{i \in I} O_i \in \mathcal{T}$.

 \mathcal{T} heißt **Topologie** auf X und alle $O \in \mathcal{T}$ heißen **offene Mengen**.

Bemerkung. Äquivalent dazu ist: Eine Topologie $\mathcal{T} \subseteq \mathcal{P}(X)$ ist abgeschlossen unter endlichen Schnitten und beliebigen Vereinigungen.

Beispiele. 1. Metrische Räume (X, d) sind auch topologische Räume mit offenen Mengen gegeben durch d.

- 2. Auf einer beliebigen Menge X kann die **diskrete Topologie** $\mathcal{T} := \mathcal{P}(X)$ definiert werden, in der alle Teilmengen von X offen sind.
- 3. Auch kann auf beliebigem X die **indiskrete Topologie** oder **Klumpentopologie** durch $\mathcal{T} := \{\emptyset, X\}$ definiert werden.
- 4. Auf beliebigem X existiert die koendliche Topologie: $O \subseteq X$ ist offen genau dann, wenn $X \setminus O$ endlich ist

Definition 1.2.2. Topologische Grundbegriffe

Sei (X, \mathcal{T}) ein topologischer Raum.

- 1. $A \subseteq X$ heißt **abgeschlossen**, falls $X \setminus A \in \mathcal{T}$.
- 2. Sei $x \in U \subseteq X$. Dann heißt U Umgebung von x, falls ein $O \in \mathcal{T}$ existiert, sodass $x \in O \subseteq U$ gilt.
- 3. Die Menge aller Umgebungen von X wird mit $\mathfrak{U}(x)$ bezeichnet und heißt **Umgebungssystem von** x.
- 4. Ein Punkt $x \in X$ heißt **Berührpunkt** von $B \subseteq X$, falls für alle $U \subseteq \mathfrak{U}(x)$ gilt: $U \cap B \neq \emptyset$.
- 5. Die abgeschlossene Hülle von $B \subseteq X$ ist definiert als

$$\overline{B} := \bigcap_{B \subseteq X, C \text{ abg.}} C. \tag{1.2.1}$$

- 6. Ein Punkt $x \in X$ heißt **innerer Punkt** von $B \subseteq X$, falls es ein $U \in \mathfrak{U}(x)$ gibt, sodass $x \in U \subseteq B$ gilt.
- 7. Für $B \subseteq X$ ist

$$\mathring{B} := \bigcup_{O \subseteq B, O \text{ offen}} \tag{1.2.2}$$

der **offene Kern** von B.

8. Der Rand von $A \subseteq X$ ist definiert als

$$\partial A := \{ x \in X | \forall U \in \mathfrak{U}(x) : U \cap A \neq \emptyset \neq U \cap (X \setminus A) \}. \tag{1.2.3}$$

Satz 1.2.3. Eigenschaften bestimmter Mengen

Sei (X, \mathcal{T}) ein top. Raum. Dann gilt:

- 1. Die abgeschlossenen Mengen von X erfüllen (A1)-(A3).
- 2. Die Umgebungen erfüllen (U1)-(U4).

Bemerkung. Eine Topologie kann äquivalent durch die Auflistung abgeschlossener Mengen definiert werden, wenn diese (A1)-(A3) erfüllen.

Definition 1.2.4. Stetigkeit in top. Räumen

Seien (X, \mathcal{T}) und (Y, \mathcal{T}') top. Räume und $f: X \to Y$.

- (i) f heißt stetig in $x \in X$, wenn für alle $U \in \mathfrak{U}(f(x))$ auch $f^{-1}(U) \in \mathfrak{U}(x)$ gilt.
- (ii) f heißt **stetig**, falls für alle $O \in \mathcal{T}'$ gilt, dass $f^{-1} \in \mathcal{T}$.

Satz 1.2.5. Eigenschaften von Abschluss und Innerem

Sei (X, \mathcal{T}) ein top. Raum mit $A \in \mathcal{T}$. Dann gilt

- 1. (a) \overline{A} ist abgeschlossen und $A \subseteq \overline{A}$.
 - (b) $A = \overline{A}$ gilt genau dann, wenn A abgeschlossen ist.
 - (c) \overline{A} besteht aus der Menge der Berührpunkte von A.
- 2. (a) \mathring{B} ist offen und $\mathring{B} \subseteq B$.
 - (b) $B = \mathring{B}$ genau dann, wenn B offen ist.
 - (c) \mathring{B} besteht aus der Menge der inneren Punkte von B.

Beweis. (a) und (b) sind jeweils trivial. Wir beweisen 1(a). Angenommen, $x \in \overline{A}$ aber ist kein Berührpunkt von A. Dann existiert ein $U \in \mathfrak{U}(x)$, sodass $U \cap A = \emptyset$ gilt. Daraus folgt, dass $A \subseteq X \setminus U$ gilt, woraus $A \subseteq X \setminus O$ abgeschlossen folgt. Weiterhin existiert ein $O \in \mathcal{T}$ mit $x \in O \subseteq U$, also $X \setminus U \subseteq X \setminus O$. Dann ist aber $\overline{A} \subseteq X \setminus O$, also $x \notin \overline{A}$. Jetzt nehmen an, dass x Berührpunkt ist, aber $x \notin \overline{A}$. Also folgt aus $x \in X \setminus \overline{A}$ offen, dass $V := X \setminus \overline{A} \in \mathfrak{U}(x)$, aber $V \cap A = \emptyset$, also ist x kein Berührpunkt im Widerspruch zur Annahme.

Bemerkung. Folgendes gilt allgemein:

- Ist $A \subseteq B$, so auch $\mathring{A} \subseteq \mathring{B}$ und $\overline{A} \subseteq \overline{B}$.
- $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- $A \cap B = \mathring{A} \cap \mathring{B}$

Definition 1.2.6. Dichheit

Sei (X, \mathcal{T}) ein top. Raum. $A \subseteq X$ heißt dicht, falls $\overline{A} = X$. $A \subseteq X$ heißt hingegen nirgends dicht, falls $\overset{\circ}{A} = \emptyset$.

Beispiele. 1. $\mathbb{Q} \subseteq \mathbb{R}$ ist dicht.

2. $(a,b) \subseteq \mathbb{R} \subseteq \mathbb{R}^2$, (a,b) nirgends dicht in \mathbb{R} .

2 Algebraische Topologie

2.1 ...