

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER V [Information Technology] SUBJECT: (IT 511) Theory of Automata and Formal Language

Seat No.

: Third Sessional Examination : 10/10/2016

Day

Date : 12:45 to 2:00 Time

:Monday : 36 Max. Marks

- **INSTRUCTIONS**: Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.
- Assume suitable data, if required & mention them clearly.
- Draw neat sketches wherever necessary.

Q.1

- [12] If Turing machine accepts all the words of the languages L and rejects or loops for other [01] Do as directed. words, which are not in L, then L is said to be
 - (B) Recursive (C) Context Free Language (CFL) (A) Recursive enumerable
 - [01] (D) None of the given Which of the following problem is undecidable?
 - (A) membership problem for CFL (B) membership problem for regular sets (b)
 - (C) membership problem for CSL (D) membership problem for type 0 languages "Let L be any infinite regular language, defined over an alphabet Σ then there exist three
 - [01] strings x, y and z belonging to Σ such that all the strings of the form xy^nz for n=1,2,3,...(c) are the words in L". The given statement represents [01]

[Complement of L / pumping lemma / Kleene's theorem / None from given]

- Which of the following statements is false? (d)
 - A) The halting problem for Turing machines is undecidable B) determining whether a context-free grammar is ambiguous is un-decidable
 - C) Given two arbitrary context-free grammar, G₁ and G₂, it is undecidable
 - D) given two regular grammars G_1 and G_2 , it is undecidable whether $L(G_1) = L(G_2)$

Computational complexity theory aims to (A) Introduce classes of problems that have similar complexity (require a similar

- quantity of computational resources) (B) Study the intrinsic properties of complexity classes
 - (C) Identify algorithmic feasibility and efficiency
- (D) All of above

Church's Thesis supports (f)

(A) A Turing machine as a general-purpose computer system

- (B) A Turing machine an algorithm and an algorithm as a Turing machine
- (C) Both (A) and (B) are correct
- Let L₁ be a regular language and L₂ a deterministic CFL. L₃ is recursively enumerable but [02] not recursive. Which one of the following statement is FALSE? (g)
 - (A) $L_1 \cap L_2$ is a DCFL

(B) $L_3 \cap L_1$ is recursive

(D) $L_1 \cap L_2 \cap L_3$ is recursively enumerable

[01]

[01]

- [02] (C) L₁ U L₂ is context-free The language $L = \{0^i 21^i / i \ge 0\}$ over the alphabet $\{0, 1, 2\}$ is (h)
 - A. not recursive B. is recursive and is a deterministic CFL
 - C. is a regular language

D. is not a deterministic CFL but a CFL [02] $L_1 = \{a^{n+m} b^n c^m | n, m \ge 0\}$ (i)

 $L_{1} = \{a^{n+m} b^{n+m} c^{m} | n, m \ge 0\}$ $L_{2} = \{a^{n+m} b^{n+m} c^{m+n} | n, m \ge 0\}$ $L_{3} = \{a^{n+m} b^{n+m} c^{m+n} | n, m \ge 0\}$

Which of these languages are not CF.

(D) L₂ and L₃ (A) L_1 only (B) L_3 only (C) L_1 and L_2

			[12]
Q.2	Attempt any two from following (a) Draw a transition diagram for a computable TM with input alphabet {0, 1} that interprets the input string as the binary representation of a nonnegative integer and adds 1 to it.		[06]
		Example: then tape input = "1011" output: "1100"	
	(b)	Design a computable Turing machine to reverse the input string.	[06]
	(c)	Give the Chomsky hierarchy .Explain the grammar formation rules clearly for all grammars used in the hierarchy.	[06]
3		A Erray near skeletes whorever necessary	[12]
Q.3		Q.1 Do so directed	[12]
	(a)	Construct a Turing machine with one tape, that accepts the language $\{0^{2n}I^n: n \ge 0\}$. Also derive the time complexity of the TM designed.	[UO
	(b)	Given two CFLs L_1 and L_2 , Prove that $L_1 \cap L_2$ and L'_1 and L'_2 are not CFLs	[04
		(A) membership problem for CSL (D) membership problem for type 0 i	
		OR OR	[12
Q.3	(a)	Prove that the language $L=\{ss \mid s \in \{a,b\}^*\}$ is not context free language.	[04
	(b)	Twing machine with one tape, that accepts the language	[08
		$\{a \ b : n < m\}$. Also define the	

(C) Both (A) and (B) are correct

D. Is not a deterministic CFE but a CFE

TOGENERAL (A)