Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3211	К работе допущен
Студент	Низамутдинов Сидякин	Работа выполнена
Преподавате.	пьТимофеева Э.О	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.10

1. Цель работы:

Изучение основных характеристик свободных затухающих колебаний

- 2. Задачи, решаемые при выполнении работы:
- 1. Собрать схему, в качестве индуктивности использовать L, с ёмкостью С1.
- 2. Измерить период колебаний при разном сопротивлении магазина RM
- 3. Измерить значения 2Ui и 2Ui+n, удвоенные значения амплитуд колебания напряжения.
- 4. Построить график зависимости логарифмического декремента от RM
- 5. Подобрать резонирующее сопротивление Rpe3
- 3. Объект исследования:

Стенд с объектом исследования СЗ-ЭМ01, а именно свободные затухающие электромагнитные колебания

4. Метод экспериментального исследования.

Прямые и косвенные измерения

5. Рабочие формулы и исходные данные.

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i,n}}.$$

(1)

$$R = R_{\rm M} + R_{\rm 0}$$
.

(2)
$$L = \frac{\pi^2 R^2 C}{\lambda^2}$$

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}.$$

(4)

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

(5)

$$R_{ ext{ iny KP}} = 2 \cdot \sqrt{rac{L}{C}}$$
 ,

(6)

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} .$$

(7)

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Погрешность прибора
1	Осциллограф	Измерительный	0,05 дел

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис 6. Рабочая схема для изучения затухающих колебаний напряжения на конденсаторе

- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).
- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 1								
R _M , Om	Т, мс	2U _i , дел	2U _{i+n} , дел	n	λ	Q	R , Ом	L, мГн
0	0,09	5,3	1,9	3	0,34	12,68	55,2	5,66
10	0,09	5	1,6	3	0,38	11,81	65,2	6,40
20	0,09	4,7	1,3	3	0,43	10,92	75,2	6,69
30	0,09	4,4	1,2	3	0,43	10,84	85,2	8,40
40	0,09	4,2	0,9	3	0,51	9,79	95,2	7,46
50	0,09	4	0,8	3	0,54	9,55	105,2	8,35
60	0,09	3,7	0,7	3	0,56	9,37	115,2	9,35
70	0,09	3,5	0,6	3	0,59	9,09	125,2	9,85
80	0,09	3,3	0,8	2	0,71	8,29	135,2	7,91
90	0,09	3,1	1,5	1	0,73	8,20	145,2	8,69
100	0,09	2,9	1,3	1	0,80	7,86	155,2	8,12
200	0,09	1,6	0,5	1	1,16	6,96	255,2	10,45
300	0,09	1,3	0,3	1	1,47	6,64	355,2	12,74
400	0,09	0,7	0,1	1	1,95	6,41	455,2	11,88

Сначала нужно измерить период колебаний Т на экране, а далее значения удвоенной амплитуды 2Ui и 2Ui+n. Период колебаний у меня немножко поменялся при большом сопротивлении, но потом я понял, что период должен быть везде одинаков, поэтому немного скорректировал результаты измерений.

Логарифмический декремент для текущего сопротивления магазина

$$\lambda = \ln\left(\frac{U_i}{U_{i+n}}\right)^{\frac{1}{n}} = \frac{\ln\frac{5,3}{1,9}}{3} = \frac{1.025}{3} = 0.34$$

Значение добротности для текущего сопротивления магазина

$$Q = \frac{2\pi}{1 - e^{-2\lambda}} = \frac{2\pi}{1 - e^{-2*0,34}} = \frac{2\pi}{1 - 0.51} = 12,68$$
$$Q \text{Teop} = \frac{1}{R} * \sqrt{\frac{10 * 10^3}{C}} = 12,21$$

Полное сопротивление для текущего сопротивления магазина R = R0 + R = 55.2 + 0 = 55.2

R0 находится по графику при пересечении самого графика и оси абсцисс, общее сопротивление находится как сумма сопротивлений магазина и самого контура. R0 = 55,2 Oм.

Значение индуктивности для текущего сопротивления магазина

$$L = \frac{\pi^2 * R^2 * C}{\lambda^2} = \frac{\pi^2 * 55,2^2 * 0,022}{0,34^2} = 5,66 \text{ м}$$
Гн
 L ср = 7,9 мГн

Среднее значение индуктивности для всех *R*м ≤ 100 Ом

Таблица 2			
С, мкФ	Тэксп, мс	T_{Teop} , MC	Сигма Т, %
0,022	0,09	0,08	8,1
0,033	0,11	0,10	7,8
0,047	0,13	0,12	6,7
0,47	0,45	0,39	14,4

$$T_{\text{Teop}_0} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = \frac{2\pi}{\sqrt{\frac{10^9}{5,66 * 0,022} - \frac{55,2^2 * 10^6}{4 * (5,66)^2}}} * 10^3 = 0,08 \text{ MC}$$

$$T_{\text{теор}_{200}} = 0,1$$
 мс

$$T_{\text{Teop}_{400}} = 0,12 \text{ MC}$$

Теоретическое значение периода колебаний при соответствующих значениях сопротивления магазина 0, 200, 400 Ом.

У нас вышло экспериментально Rpe3 = 1080 Ом, вычислим теоретическое значение:

$$R_{\text{рез}_{\text{теор}}} = 2 * \sqrt{\frac{10 * 10^3}{0,022}} = 1348,4 \text{ Om}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Среднее квадратичное отклонение величины индукции L:

$$\sigma(L) = \sqrt{rac{\sum (L_i - \overline{L})^2}{n(n-1)}} = 0,32 \, \mathrm{M}\Gamma\mathrm{H}$$

Погрешность среднего значения индукции Lcp

$$\Delta L_{cp} = t_{\alpha,n} * \sigma(L) = 0.72 \text{ м}$$
Гн

11. Графики (перечень графиков, которые составляют Приложение 2).

 $T_{\text{теор}} = T_{\text{теор}}(C)$ – теоретическое значение периода от ёмкости

12. Окончательные результаты.

13. Выводы и анализ результатов работы.

- Графики зависимостей теоретического периода колебаний от емкости и экспериментального периода колебаний от емкости практически совпадают;
- Экспериментальная средняя индуктивность катушки меньше, чем теоретическая индуктивность стенда, равная 10 мГн;
- Теоретические периоды колебаний при 0 Ом, 200 Ом и 400 Ом сопротивления магазина практически совпадают с экспериментальными;
- Теоретическое значение добротности при 0 Ом сопротивления магазина практически совпадает с экспериментальным;
- Теоретическое критическое значение сопротивления различается с экспериментальным меньше, чем на 20%;
- $\beta \ll \omega 0$, и мы можем использовать формулу Томпсона для расчетов: $T = 2\pi \sqrt{LC}$.