

Análisis de Algoritmos

Ejercicio 04: "Dominio asintotico"

Nombre: Luis Fernando Ramírez Cotonieto

Fecha de entrega:19 de Abril del 2021

Grupo:3CM13

Ejercicio 04: "Dominio asintotico"

Análisis de Algoritmos

Ejercicio 01: 1.

$$f(x) = x^{2}$$

$$g(x) = 2x^{2} + 300x + 1000$$

$$|2x^{2} + 300x - 1000| \le c |x^{2}|$$

Si $x \ge 3$, entonces se puede escribir como:

$$2x^2 + 300x - 1000 \le Cx^2$$

Despejando C:
$$C \ge \frac{2x^2 + 300x - 1000}{x^2}$$

$$C \ge 2 + \frac{300}{X} - \frac{1000}{x^2}$$

Si
$$x = 300$$
:

$$c \ge 3 - \frac{1}{90}$$

$$c \geq 3 - \frac{1}{90}$$
 Si c=3 y k=3

$$3x^2 \ge 2x^2 + 300x - 1000$$

$$Si x=k$$

$$270000 > 270000 - \frac{1000}{200}$$

 $270000 \ge 270000 - \frac{1000}{300}$ Ambas son crecientes en $x \ge 300$

$$|\Theta(x)| \le 3|f(x)|, \forall x \ge 300$$

Ejercicio 02: 2.

$$f(x) = x^3$$
$$g(x) = 2x^3 - 30x + 500$$

f(x) es asintoticamente mayor en g(x), g(x) es O(j(x)), si existe constante positiva c y x0 como en:

$$\begin{split} g(x) &\leq c \cdot j(x) \text{ para todo } x \geq x_0 \\ g(x) &= 2x^3 - 30x + 500 \\ j(x) &= x^3 \end{split}$$
 Tomamos C=2 y X0=17
$$c \cdot j(17) = 2x17^3 = 9826 \\ g(17) &= 2x17^3 = 9816 \\ \text{Tomamos c=2 y x0=18} \\ c \cdot j(18) &= 11664 \\ g(18) &= 11624 \\ 11624_{\mathbf{i}}11664 \\ g(\mathbf{x}) &\leq c \cdot j(x) \\ g(x) \epsilon 0(j(x)) \end{split}$$

3. Ejercicio 03:

$$f_t(n) = 3n^2 + 9n + 12\epsilon 0(2n^2)$$

Figura 1: Gráfica de la función original ejercicio 03 MATLAB

|
$$3n^2 + 9n + 12$$
| $\leq C |2n^2|$
 $3n^2 + 9n + 12 \leq 2Cn^2$
 $9n \leq 2Cn^2 - 3n^2 - 12$
 $9n \leq (2C - 3)n^2 - 12$
Si C=3 y $X_0 = 4, \forall n > X_0$

\mathbf{C}	n	f(9n)	f((2c-3)n^2-12)
3	0	0	-12
	1	9	-9
	2	18	0
	3	27	15
	4	36	36
	5	45	63
	6	54	96
	7	63	135
	8	72	180
	9	81	231
	10	90	288
	11	99	351
	12	108	420
	13	117	495
	14	126	576
	15	135	663

Cuadro 1: Tabla del ejercicio 03

4. Ejercicio 04:

$$f_t(n) = 3n + 8\epsilon 0(n)$$

Figura 2: Gráfica de la función original ejercicio 04 MATLAB

$$\begin{aligned} &|2n+8| < C \, |n| \\ &2n+8 < Cn \\ &0 \le Cn-2n-8 \\ &0 \le (C-2)n-8 \\ &\text{Si C=5 y } X_0 = 5, \forall n > X_0 \end{aligned}$$

\mathbf{C}	n	f(0)	f((c-2)n-8)
5	0	0	-8
	1	0	-5
	2	0	-2
	3	0	1
	4	0	4
	5	0	7
	6	0	10
	7	0	13
	8	0	16
	9	0	19
	10	0	22
	11	0	25
	12	0	28
	13	0	31
	14	0	34
	15	0	37

Cuadro 2: Tabla del ejercicio 04

Ejercicio 05: **5.**

$$f_t(n) = 2n^3 - 3n^2 + 9n + 120\epsilon 0(n^3)$$

Figura 3: Gráfica de la función original ejercicio 05 MATLAB

Demostracion:
$$|2n^3 - 3n^2 + 9n + 120| \le C |n^3|$$

$$2n^3 - 3n^2 + 9n + 120 \le Cn^3$$

$$-3n^2 + 9n \le Cn^3 - 2n^3 - 120$$

$$-3n^2 + 9n \le (C - 2)n^3 - 120$$
Si C=7 y $X_0 = 3, \forall n > X_0$

	n	f(-	f((C-2)n^3-
		3n^2+9n)	120)
7	0	0	-120
	1	6	-115
	2	6	-80
	3	0	15
	4	-12	200
	5	-30	505
	6	-54	960
	7	-84	1595
	8	-120	2440
	9	-162	3525
	10	-210	4880
	11	-264	6535
	12	-324	8520
	13	-390	10865
	14	-462	13600
	15	-540	16755

Cuadro 3: Tabla del ejercicio 05

6. Ejercicio 06:

$$f_t(n) = 2n^3 + 3n^2 + 9n + 120\epsilon\Theta(n^3 + n^2)$$

Figura 4: Gráfica de la función original ejercicio 06 MATLAB

$$C1\left|n^3+n^2\right| \leq \left|2n^3+3n^2+9n+120\right| \leq C2\left|n^3+n^2\right|$$

$$C1\left|n^3+n^2\right| \leq \left|2n^3+3n^2+9n+120\right|$$

$$C1n^3+C1n^2 \leq 2n^3+3n^2+9n+120$$

$$C1n^{5} + C1n^{5} \le 2n^{5} + 3n^{5} + 9n + 12$$

$$2n^{3} + C1n^{2} - 3n^{2} - 120 \le 9n$$

$$(C1 - 2)n^{3} + (C1 - 3)n^{2} - 120 \le 9n$$
Si C1-2, C2=5 y $X_{0} = 4, \forall n > X_{0}$

C1	n	f(9n)	$f((C1-2)n^3+(C1-3)n^2-120)$
2	0	0	-120
C2	n	f(9n)	$f((C2-2)n^3+(C2-3)n^2-120)$
5	4	36	104

Cuadro 4: Tabla UNICAMENTE RESULTADOS ejercicio 6

7. Ejercicio 07:

$$f_t(n) = 2n^2 + +9n\epsilon\Theta(n^2)$$

Figura 5: Gráfica de la función original ejercicio 07 MATLAB

$$C1\left|n\right| \le \left|2n + 9n\right| \le C2\left|n\right|$$

$$\begin{split} &C1\left|n^{2}\right| \leq \left|2n^{2}+9n\right| \\ &C1n^{2} \leq 2n^{2}+9n \\ &C1n^{2}-2n^{2} \leq 9n \\ &(C1-2)n^{2} \leq 9n \\ &\text{Si C1=1,C2=5 y } X_{0}=3, \forall n>X_{0} \end{split}$$

C1	n	f(9n)	f((C1-2)n^2)
1	0	0	0
C2	n	f(9n)	f((C2-2)n^2)
5	3	27	27

Cuadro 5: Tabla UNICAMENTE RESULTADOS ejercicio 7