NSBB552 Final Project (2021) - Phoebe Chum

"Cerebrovascular miRNA Profile in Alzheimer's Disease"

Approach

Mice Model

Triple transgenic Alzheimer's disease "3xTg-AD" mouse model with three human genes Amyloid-beta precursor protein (APP), Presenilin 1 (PSEN1), and Microtubule-associated protein tau (MAPT).

Tissue Type

Whole brain cerebral vessels.

Study Design

- Sample groups:
 - Young control (YC; 1-2 mo)
 - Cognitive impairment (CI; 4-5 mo)
 - Amyloid-beta (AB; 6-8 mo)
 - AB+Tau (ABT; greater than 12 mo).
- n = 3 males and 3 females for each of the four groups.
- Total RNA was extracted from the vessels and sent to NanoString for miRNA expression panel.
- miRNA expression was then analyzed with DESeq2.

Hypothesis

Cerebrovascular microRNA (miRNA) expression profiles corresponding to post-transcriptional regulation can provide a diagnostic map of the early development of AD pathology.

Packages

library(DESeq2)

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
```

```
## The following objects are masked from 'package:parallel':
##
       clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
       clusterExport, clusterMap, parApply, parCapply, parLapply,
##
##
       parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
##
  The following objects are masked from 'package:base':
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
```

```
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
       'browseVignettes()'. To cite Bioconductor, see
##
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
library(pheatmap)
library(gplots)
##
## Attaching package: 'gplots'
## The following object is masked from 'package: IRanges':
##
##
       space
## The following object is masked from 'package:S4Vectors':
##
##
       space
## The following object is masked from 'package:stats':
##
##
       lowess
library(ggplot2)
```

Resources

Tutorial:

1. https://www.youtube.com/watch?v=wPzeea1Do18

Documentation:

- 1. http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#countmat
- 2. https://leaherb.com/add-gradient-colors-to-bar-chart-with-ggplot/
- $3.\ https://stackoverflow.com/questions/48633302/reordering-bars-in-a-group-with-ggplot-and-adjusting-groups-by-width$

Input Data

Load count matrix and coldata

```
cts <-read.csv("Raw Data_Formatted.csv", header = T, row.names = 1)
coldata <-read.csv("MetaData.csv", header = T, row.names = 1)
head(cts,10)</pre>
```

##		Mouse1	Mouse2 M	ouse3 Mo	use4	Mouse	e5 Moi	ıse6	Mouse7	Mouse8	Mouse9
##	mmu-let-7a	479	1	46	18	35	56	74	1	. 89	1
##	mmu-let-7b	3377	382	927	363	254	47	1141	1591	3194	1420
##	mmu-let-7c	3846	193	707	218	261	15	774	843	2184	855
##	mmu-let-7d	2183	198	639	215	162	28	768	837	2414	623
##	mmu-let-7e	868	100	230	86	59	97	197	379	737	289
##	mmu-let-7f	177	21	34	9	14	43	42	92	2 131	75
##	mmu-let-7g	1790	98	371	158	134	40	728	637	1630	404
##	mmu-let-7i	285	13	58	28	19	95	146	125	261	69
##	mmu-miR-1	48	8	11	3	2	22	12	20	64	13
##	${\tt mmu-miR-100}$	129	16	31	19	12	23	49	72	168	49
##		Mouse10	Mouse11	Mouse12	Mous	se13 N	Mouse	14 M	ouse15	Mouse16	Mouse17
##	mmu-let-7a	698	234	828		274		1	114	706	1041
##	mmu-let-7b	8878	3284	6309	3	3709	168	36	2641	5907	7479
##	mmu-let-7c	7024	2882	6182	2	2852	9!	54	2081	4738	6414
##	mmu-let-7d	7041	2693	5331	2	2327	60)2	1518	2963	4131
##	mmu-let-7e	1751	927	1551		859	28	30	637	1214	1556
##	mmu-let-7f	276	181	350		194	(88	148	263	429
##	mmu-let-7g	4937	2725	4538	1	1760	36	31	1287	2356	4580
##	mmu-let-7i	1020	488	864		404	8	37	233	373	812
##	mmu-miR-1	94	56	87		47		9	46	66	156
##	${\tt mmu-miR-100}$	335	142	253		181	į	50	127	193	398
##		Mouse18	Mouse19	Mouse20	Mous	se21 N	Mouse:	22 M	ouse23	Mouse24	
##	mmu-let-7a	540	62	120		1		78	132	583	
##	mmu-let-7b	4268	2141	3498	1	1722	359	90	2493	6595	
##	mmu-let-7c	4413				l158	276	36	2024	5025	
##	mmu-let-7d	2738	960			748	176	34	1459	4325	
##	mmu-let-7e	1239		823		344		19	615	1440	
	mmu-let-7f	222		140		86	14	10	125	261	
##	mmu-let-7g	2183	726	1042		567	20	12	1075	3377	
##	mmu-let-7i	304				96	30)1	217	617	
##	mmu-miR-1	45		34		20	4	14	17	70	
##	${\tt mmu-miR-100}$	198	90	126		75	1:	15	99	222	

coldata

Age Sex ## Mouse1 MCI ## Mouse2 MCI F ## Mouse3 F MCI ## Mouse4 MCI Μ ## Mouse5 MCI Μ ## Mouse6 MCI М ## Mouse7 YC F ## Mouse8 YC F ## Mouse9 YC F ## Mouse10 YC М ## Mouse11 YC М ## Mouse12 М ## Mouse13 AB F F ## Mouse14 ## Mouse15 AB F ## Mouse16 М ## Mouse17 AB М ## Mouse18 AB

```
## Mouse19 ABT
## Mouse20 ABT
                 F
## Mouse21 ABT
## Mouse22 ABT
## Mouse23 ABT
## Mouse24 ABT
                 М
Build an DESeqDataSet from a count matrix and a table of sample information
dds <- DESeqDataSetFromMatrix(countData = cts,</pre>
                               colData = coldata,
                               design = ~Age + Sex)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
Pre-filtering the dataset/remove rows with zero count
dds <- dds[ rowSums(counts(dds)) > 12, ]
Differential expression analysis with
ddsDE <-DESeq(dds)</pre>
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## -- note: fitType='parametric', but the dispersion trend was not well captured by the
      function: y = a/x + b, and a local regression fit was automatically substituted.
      specify fitType='local' or 'mean' to avoid this message next time.
## final dispersion estimates
## fitting model and testing
Export normalized read counts
normCounts <-counts(ddsDE, normalized = T)</pre>
write.csv(normCounts, "normal.all4.csv")
```

Extract result

specify the two groups for comparison

```
res1 <- results(ddsDE, contrast=c("Age", "MCI", "YC"))
res1</pre>
```

MCI vs YC

```
## log2 fold change (MLE): Age MCI vs YC
## Wald test p-value: Age MCI vs YC
## DataFrame with 599 rows and 6 columns
##
                    baseMean log2FoldChange
                                                 lfcSE
                                                            stat
                                                                    pvalue
                    <numeric>
                                   <numeric> <numeric> <numeric> <numeric>
## mmu-let-7a
                      220.43
                                   1.5084559 1.049197 1.437725 0.150512
## mmu-let-7b
                      2737.70
                                   0.2227796  0.302961  0.735340  0.462133
```

```
0.4479122 0.393308 1.138834 0.254773
## mmu-let-7c
                 2219.55
                  1729.28
## mmu-let-7d
                               0.0707983 0.370180 0.191254 0.848327
                               ## mmu-let-7e
                   624.94
## ...
## mghv-miR-M1-6
                   5.78055
                              ## mghv-miR-M1-7-3p 25.26609
                              -0.0840302 0.229111 -0.366767 0.713793
## mghv-miR-M1-7-5p 20.57505
                              0.2788862 0.244618 1.140091 0.254249
                              ## mghv-miR-M1-8
                   26.78637
                              -0.7971861 0.523232 -1.523581 0.127613
## mghv-miR-M1-9
                   6.73086
##
                      padj
##
                  <numeric>
## mmu-let-7a
                   0.873083
## mmu-let-7b
                   0.886469
## mmu-let-7c
                   0.873083
## mmu-let-7d
                   0.986410
## mmu-let-7e
                   0.873083
## ...
## mghv-miR-M1-6
                   0.961690
## mghv-miR-M1-7-3p 0.960818
## mghv-miR-M1-7-5p 0.873083
## mghv-miR-M1-8
                   0.873083
## mghv-miR-M1-9
                   0.873083
summary(res1)
##
## out of 599 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                   : 1, 0.17%
## LFC < 0 (down)
                   : 0, 0%
## outliers [1]
                   : 0, 0%
## low counts [2]
                   : 0, 0%
## (mean count < 1)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
resultsNames(ddsDE)
                    "Age_ABT_vs_AB" "Age_MCI_vs_AB" "Age_YC_vs_AB"
## [1] "Intercept"
## [5] "Sex_M_vs_F"
res2 <- results(ddsDE, contrast=c("Age", "AB", "YC"))</pre>
res2
AB vs YC
## log2 fold change (MLE): Age AB vs YC
## Wald test p-value: Age AB vs YC
## DataFrame with 599 rows and 6 columns
##
                  baseMean log2FoldChange
                                            lfcSE
                                                              pvalue
                                                       stat
##
                  <numeric>
                              <numeric> <numeric> <numeric> <numeric>
## mmu-let-7a
                    220.43
                               0.7218213 1.048067 0.6887170 0.491001
## mmu-let-7b
                   2737.70
                              -0.1184722  0.302529  -0.3916054  0.695350
## mmu-let-7c
                   2219.55
                              -0.0146732 0.392940 -0.0373421 0.970212
## mmu-let-7d
                   1729.28
```

```
## mmu-let-7e
                  624.94
                           ## ...
                    . . .
                                 . . .
                                        ...
## mghv-miR-M1-6
                 5.78055
                           0.09960922  0.365107  0.2728217  0.784990
## mghv-miR-M1-7-3p 25.26609
                          ## mghv-miR-M1-7-5p 20.57505
                          ## mghv-miR-M1-8
                          26.78637
## mghv-miR-M1-9
                 6.73086
                           -0.44557248 0.362786 -1.2281979 0.219373
##
                    padj
##
                <numeric>
## mmu-let-7a
                 0.949709
## mmu-let-7b
                 0.949709
## mmu-let-7c
                 0.993418
## mmu-let-7d
                 0.890748
## mmu-let-7e
                 0.949709
## ...
## mghv-miR-M1-6
                 0.949709
## mghv-miR-M1-7-3p 0.890748
## mghv-miR-M1-7-5p 0.977979
## mghv-miR-M1-8
                 0.993418
## mghv-miR-M1-9
                 0.892959
summary(res2)
##
## out of 599 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                : 2, 0.33%
## LFC < 0 (down)
                 : 0, 0%
## outliers [1]
                 : 0, 0%
## low counts [2]
                 : 0, 0%
## (mean count < 1)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
res3 <- results(ddsDE, contrast=c("Age", "ABT", "YC"))</pre>
res3
ABT vs YC
## log2 fold change (MLE): Age ABT vs YC
## Wald test p-value: Age ABT vs YC
## DataFrame with 599 rows and 6 columns
                 baseMean log2FoldChange
##
                                        lfcSE
                                                 stat
                                                       pvalue
                <numeric>
                            <numeric> <numeric> <numeric> <numeric>
## mmu-let-7a
                  220.43
                            -0.457605 1.049107 -0.436185 0.6627025
                            -0.403170 0.302565 -1.332506 0.1826938
## mmu-let-7b
                 2737.70
## mmu-let-7c
                 2219.55
                            ## mmu-let-7d
                 1729.28
                            ## mmu-let-7e
                            -0.434710 0.315077 -1.379694 0.1676808
                 624.94
## ...
                                         ...
                     . . .
                                 . . .
                5.78055
                           0.1720641 0.363121 0.473848 0.6356081
## mghv-miR-M1-6
## mghv-miR-M1-7-3p 25.26609
                           ## mghv-miR-M1-7-5p 20.57505
                           0.0297027 0.163289 0.181903 0.8556586
## mghv-miR-M1-8
                 26.78637
```

```
## mghv-miR-M1-9
                     6.73086
                                 ##
                        padj
##
                   <numeric>
                    0.914649
## mmu-let-7a
## mmu-let-7b
                    0.644263
## mmu-let-7c
                    0.683281
## mmu-let-7d
                    0.368006
## mmu-let-7e
                    0.612444
## ...
## mghv-miR-M1-6
                    0.914649
## mghv-miR-M1-7-3p
                    0.509852
## mghv-miR-M1-7-5p
                    0.946749
## mghv-miR-M1-8
                    0.969636
## mghv-miR-M1-9
                    0.538780
summary(res3)
## out of 599 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                     : 1, 0.17%
## LFC < 0 (down)
                     : 0, 0%
## outliers [1]
                     : 0, 0%
## low counts [2]
                     : 0, 0%
## (mean count < 1)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
```

Exploratory Data Analysis (EDA)

plotMA(ddsDE)

Data Transformation

```
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)

## gene-wise dispersion estimates
## mean-dispersion relationship

## -- note: fitType='parametric', but the dispersion trend was not well captured by the
    function: y = a/x + b, and a local regression fit was automatically substituted.
    specify fitType='local' or 'mean' to avoid this message next time.

## final dispersion estimates

vsd <- varianceStabilizingTransformation(dds)

## -- note: fitType='parametric', but the dispersion trend was not well captured by the
    function: y = a/x + b, and a local regression fit was automatically substituted.

## specify fitType='local' or 'mean' to avoid this message next time.</pre>
```

Heatmap

PCA

```
library(ggplot2)
pcaData <- plotPCA(vsd, intgroup=c("Age", "Sex"), returnData=TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(PC1, PC2, color=Age, shape=Sex)) +
    geom_point(size=3) +
    xlab(paste0("PC1: ",percentVar[1],"% variance")) +
    ylab(paste0("PC2: ",percentVar[2],"% variance")) +
    coord_fixed()</pre>
```


Log2 Fold Change Comparison

MCI vs YC

Convert result into data frame, the filter

```
res1 <- as.data.frame(res1)
res1p <- res1[res1$pvalue<0.05,]
res1padj <- res1[res1$padj<0.05,]
res1logUp <- res1[res1$log2FoldChange>=1,]
res1logDown <- res1[res1$log2FoldChange<=-1,]</pre>
res1logUp
```

```
## baseMean log2FoldChange lfcSE stat pvalue
## mmu-let-7a 220.430307 1.508456 1.0491967 1.437725 1.505122e-01
## mmu-miR-144 7.848560 1.205343 0.4694926 2.567331 1.024848e-02
```

```
1.779606 0.9330175 1.907366 5.647317e-02
## mmu-miR-155
                 1.367435
## mmu-miR-1947
                 3.360925
                                 1.290694 0.6737196 1.915773 5.539394e-02
                                 2.085505 0.5101870 4.087727 4.356212e-05
## mmu-miR-2134 35.062603
## mmu-miR-429
                 38.854111
                                 1.392389 0.6001107 2.320221 2.032893e-02
## mmu-miR-543
                12.558773
                                 1.009322 0.9047509 1.115580 2.646020e-01
##
                     padj
## mmu-let-7a
               0.87308305
## mmu-miR-144 0.78679676
## mmu-miR-155 0.80812046
## mmu-miR-1947 0.80812046
## mmu-miR-2134 0.02609371
## mmu-miR-429 0.79582372
## mmu-miR-543 0.87308305
res1logDown
```

Comments:

log2 Fold Change Comparison	Criteria	Up-regulated	Down-regulated
MCI vs YC (n=6 v 6)	Up-regulated: Fold-change >=1 Down-regulated: Fold-change <=-1	7 miRNAs	3 miRNAs

AB vs YC

Comments:

Convert result into data frame, the filter

```
res2 <- as.data.frame(res2)</pre>
res2p <- res2[res2$pvalue<0.05,]</pre>
res2padj <- res2[res2$padj<0.05,]</pre>
res2logUp <- res2[res2$log2FoldChange>=1,]
res2logDown <- res2[res2$log2FoldChange<=-1,]</pre>
res2logUp
##
                     baseMean log2FoldChange
                                                                         pvalue
                                                   lfcSE
                                                             stat
## mmu-miR-144
                     7.848560
                                     1.027796 0.3943233 2.606482 9.147775e-03
## mmu-miR-291a-5p 5.065948
                                     2.728232 0.5576312 4.892538 9.954385e-07
## mmu-miR-690
                    72.668587
                                     1.081045 0.2790151 3.874505 1.068416e-04
                            padj
## mmu-miR-144
                    0.6062519146
## mmu-miR-291a-5p 0.0005962677
## mmu-miR-690
                    0.0319990628
res2logDown
##
                baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                 pvalue
                                                                              padj
## mmu-miR-543 12.55877
                              -1.936399 0.9228382 -2.098308 0.0358779 0.7410643
```

log2 Fold Change Comparison	Criteria	Up-regulated	Down-regulated
AB vs YC (n=6 v 6)	Up-regulated: Fold-change >=1 Down-regulated: Fold-change <=-1	3 miRNAs	1 miRNAs

```
AB_log2 <-read.csv("AB vs YC_log2.csv", header = T)
```

Warning in read.table(file = file, header = header, sep = sep, quote = quote, :
incomplete final line found by readTableHeader on 'AB vs YC_log2.csv'

ABT vs YC

Convert result into data frame, the filter

```
res3 <- as.data.frame(res3)
res3p <- res3[res3$pvalue<0.05,]
res3padj <- res3[res3$padj<0.05,]
res3logUp <- res3[res3$log2FoldChange>=1,]
res3logDown <- res3[res3$log2FoldChange<=-1,]</pre>
```

res3logUp

```
##
                    baseMean log2FoldChange
                                                lfcSE
                                                          stat
                                                                     pvalue
## mmu-miR-183
                   18.766750
                                   1.490320 0.5836500 2.553449 1.066620e-02
## mmu-miR-1932
                   5.463301
                                   1.045087 0.3984303 2.623010 8.715675e-03
## mmu-miR-291a-5p 5.065948
                                   2.569964 0.5606528 4.583879 4.564294e-06
## mmu-miR-295
                   4.181448
                                  1.059709 0.4949342 2.141110 3.226514e-02
## mmu-miR-429
                                   1.014256 0.5865755 1.729114 8.378877e-02
                   38.854111
##
                         padj
## mmu-miR-183
                  0.354319640
## mmu-miR-1932
                  0.348045973
## mmu-miR-291a-5p 0.002734012
## mmu-miR-295
                  0.449163975
## mmu-miR-429
                   0.509852291
```

res3logDown

```
## baseMean log2FoldChange lfcSE stat pvalue padj

## mmu-miR-543 12.55877 -3.241302 0.9754260 -3.322961 0.0008906742 0.1628592

## mmu-miR-720 563.09853 -1.149735 0.4621617 -2.487733 0.0128560191 0.3560996
```

Comments:

log2 Fold Change Comparison	Criteria	Up-regulated	Down-regulated
ABT vs YC (n=6 v 6)	Up-regulated: Fold-change >=1 Down-regulated: Fold-change <=-1	5 miRNAs	2 miRNAs

Summary

Log2 Fold Change: Up-regulated

MCI vs YC	AB vs YC	ABT vs YC
mmu-let-7a mmu-miR-144 mmu-miR-155 mmu-miR-1947	mmu-miR-144 mmu-miR-291a-5p mmu-miR-690	mmu-miR-183 mmu-miR-1932 mmu-miR-291a-5p mmu-miR-295
mmu-miR-2134 mmu-miR-429 <i>mmu-miR-543</i>		mmu-miR-429

Literature Search

- Elevated Levels of miR-144-3p Induce Cholinergic Degeneration by Impairing the Maturation of NGF in Alzheimer's Disease (doi: 10.3389/fcell.2021.667412)
- \bullet Knockdown of miR-429 Attenuates A -Induced Neuronal Damage by Targeting SOX2 and BCL2 in Mouse Cortical Neurons (doi: 10.1007/s11064-018-2643-3)

Log2 Fold Change: Down-regulated

MCI vs YC	AB vs YC	ABT vs YC
mmu-miR-1939		
mmu-miR-380-3p	mmu- miR - 543	mmu- miR - 543

MCI vs YC	AB vs YC	ABT vs YC
mmu-miR-744		mmu-miR-720

Literature Search

• miR-543: PubMed search - 211 results

Conclusion

Observation

For this project, I used DESeq2 to analyze NanoString miRNA count data. The data did not show clear clustering with heatmap and PCA plot. PC1 shows 32% variance and PC2 shows 10% variance. Neither of the principle component suggests a strong distinction to separate the sample groups. Log2 fold change suggests some upregulated and downregulated miRNAs. In particular, I was interested in any miRNAs expressions with at least 2-fold differences. According to the summary table shown above, mmu-miR-144 marks the transition between mild cognitive impairment (MCI) and Amyloid-beta (A) stage whereas mmu-miR-429 marks the transition between A and Amyloid-beta + Tau (A T)stage. Interenstingly, mmu-miR-543 is upregulated in MCI, but is downregulated in A and A T.

Future Direction

Find out the pathways these miRNAs are involved in for further investigation of how they may contribute to the AD pathology.

Limitation

Due to smaller input (less than 600 miRNAs) of the dataset, the DESeq2 normalization may not have been the most appropriate tool to assess this dataset. Therefore, I have also explored another package, NanoStringDiff (doi:%2010.1093/nar/gkw677). However, I have yet to figure out the appropriate design input to receive a result from this package (Error in Beta.full %*% contrast: non-conformable arguments).

NanoStringDiff (Work in Progress) ## Data Input

housekeepingFactor(NanoStringData)

```
\label{eq:directory} $$-\text{"/Users/phoebechum/Desktop/NanoString/Data Analysis/R Analysis/Raw Data.csv"}$$ designs = data.frame(group=c("MCI1", "MCI2", "MCI3", "MCI4", "MCI5", "MCI6", "YC1", "YC2", "YC3", "YC4", "YC5", "YC6" library("NanoStringDiff")$$ NanoStringData=createNanoStringSetFromCsv(directory,header=TRUE,designs)$$ NanoStringData$$ pheno=pData(NanoStringData)$$ group=pheno$group$$ design.full=model.matrix(~0+group)$$ design.full$$ contrast=c(-1,1)$$ NanoStringData=estNormalizationFactors(NanoStringData)$$ positiveFactor(NanoStringData)$$ negativeFactor(NanoStringData)$$
```

NanoStringData2 = createNanoStringSet (endogenous, positive,

• negative, housekeeping, designs)

Nano String Data 2