Project: Assignment 2

Submitted By: Siddharth Agrawal (150716)

2.1 Question 1

2.1.1 Part a

Given: f is ONTO and SP To Show: $f(P'_1, P'_2) = b$

Proof: We prove this by contradiction.

Using the result proved in class, $f(P'_1, P'_2) \in \{a, b\}$.

Now assume,

$$f(P_1', P_2') = a$$

Now consider the following preference profiles:

P_1	P_2	P_1'	\hat{P}_2	P_1'	P_2'
a	c	b	с	b	a
b	b	a	a	a	b
$^{\mathrm{c}}$	a	c	b	c	\mathbf{c}

Table 2.1: Preference Profiles

Now suppose $f(P'_1, \hat{P}_2) = b$. If agent 2 falsely reports P'_2 instead of \hat{P}_2 , then the outcome changes to a, which is clearly more preferred over b by \hat{P}_2 $(a\hat{P}_2b)$. But f is strategy proof and hence non-manipulable. Thus our assumption was wrong and $f(P'_1, \hat{P}_2) = c$. (Note: $f(P'_1, \hat{P}_2) \in \{b, c\}$) Consider the transition of profile from $(P'_1, \hat{P}_2) \to (P_1, P_2)$. Clearly the dominated set of c remains same for both the agents and hence, by monotonicity (f is $SP \Rightarrow MONO$), $f(P_1, P_2) = c$. This contra-

dicts the fact that $f(P_1, P_2) = a$. Thus our assumption was wrong and $f(P'_1, P'_2) = b$.

2.1.2 Part b

If the preferences are generated from a single-peaked preference domain with the intrinsic ordering of the alternatives being a < b < c, our conclusion from part a becomes invalid. This is because in our proof, we have used the preference profile $\hat{P}_2 = {c \choose b}$, but the single-peaked preference domain invalidates the use of ${c \choose b}$ and ${c \choose b}$ as preferences.

We propose a mechanism where the SCF f chooses the leftmost peak among the peaks of agents, i.e.,

$$f(P_1, P_2) = \min\{P_1(1), P_2(1)\}\$$

Following this mechanism, $f(P'_1, P'_2) = a$ (: a < b). Now our provided mechanism will be valid if we prove that f is SP.

Proof: The agent with the left-most peak (WLOG assume agent 1 with $P_1(1)$ as its peak) will have no reason to manipulate the outcome. The other agent (agent 2) can affect the outcome only if it reports its new peak(say, $P'_2(1)$) to the left of $P_1(1)$. We thus have $P'_2(1) < P_1(1) < P_2(1)$, which implies $f(P_1, P_2)P_2f(P_1, P'_2)$. Thus, our proposed f is SP.

2.2 Question 2

We know that Gibbard-Satterthwaite setting demands that all possible ordering for each agent must be admissible in the domain. Thus in settings where preferences are restricted, Gibbard-Satterthwaite theorem does not hold.

Consider two distinct sets S and T such that $S \subset T$. Now, set T will contain all the projects of set S. So the highest ranked project of T will be at least as good as the highest ranked project in S (: T already contains the highest ranked project of S). This means that any agent will always prefer T over S or will be indifferent to both. Never will the agent prefer S over T.

Hence we find that $\forall S, T \subseteq X, S \subset T$, no agent ever prefers S over T. Thus it is not possible to have all possible ordering over the domain for each agent and so Gibbard-Satterthwaite result will NOT apply here.

2.3 Question 3

Yes, the median vector SCF is group strategy proof.

Proof: We need to consider only the peak preferences of all the agents. So let us denote the preferences denoted only by their peaks, i.e., $P = (P_1(1), ..., P_i(1), ..., P_n(1))$ and let $f(P) = a \in A$ is the median of these peaks and the phantom peaks. Consider a group of agents $K = \{i_1, i_2, ..., i_k\}$.

- If all k agents have the same peak as the median, i.e., $P_{i_1} = P_{i_2} = ... = P_{i_k} = a$. Then there is no reason for any agent to manipulate.
- If all k agents lie to the left of the median, i.e., $P_{i_j} < a \ \forall j \in \{1,2,...,k\}$. Here the only method to affect the outcome is if some agents falsely report their peaks to be right of a. Let the new outcome be b>a. In this case, $P_{i_j} < a < b \ \forall j \in \{1,2,...,k\}$ which implies $f(P_K,P_{-K})P_{i_j}f(P_K',P_{-K})\ \forall j \in \{1,2,...,k\}$.
- If all k agents lie to the right of the median, i.e., $P_{i_j} > a \ \forall j \in \{1, 2, ..., k\}$. Here the only method to affect the outcome is if some agents falsely report their peaks to be left of a. Let the new outcome be b < a. In this case, $P_{i_j} > a > b \ \forall j \in \{1, 2, ..., k\}$ which implies $f(P_K, P_{-K})P_{i_j}f(P_K', P_{-K}) \ \forall j \in \{1, 2, ..., k\}$.
- If some agents lie to the left of the median while some to the right. WLOG assume $P_{i_1} < P_{i_2} < ... < P_{i_l} < a < P_{i_{l+1}} < ... < P_{i_k}$ where 1 < l < k. Suppose after some manipulation by the agent group, the new outcome becomes b > a. In this case $f(P_K, P_{-K})P_{i_1}f(P'_K, P_{-K})$. Otherwise, if the new outcome was b < a, then $f(P_K, P_{-K})P_{i_k}f(P'_K, P_{-K})$.

Clearly in none of the above cases, there was a valid profitable manipulation of f by the agent group. Thus f is group strategy proof.