Block diagram

compile 後的 firmware code 是存在 PS side 的 DDR 裡,它會透過 read_romcode 這個 IP,利用 AXI master 的形式將其 load 進硬體的 BRAM 裡。而當 firmware load 進來後,則有另一個 IP(ResetControl),會把 RESET release 掉,RISCV CPU 就開始跑,開始從 spiflash fetch firmware code。跑完之後,firmware 會將值丟到 mprj pin 上。但現在沒有 simulator 可以直接從 pin 上看值,所以需要再透過一個 IP(carvel_ps),把這些值反應在 AXI-Lite 上,PS side 上的 CPU 才能做 MMIO 的 read。

IP 用處:

1. read romcode & spiflash: 因為兩個是連在一起的所以一起講


```
void read_romcode(
// PS side interace
    int romcode[CODE_SIZE/sizeof(int)],
    int internal_bram[CODE_SIZE/sizeof(int)],
   #pragma HLS INTERFACE s_axilite port=return
   #pragma HLS INTERFACE m_axi port=romcode offset=slave max_read_burst_length=64 bundle=BUS0
   #pragma HLS INTERFACE bram port=internal_bram
   #pragma HLS INTERFACE s_axilite port=length
   // Check length parameter can't over than CODE SIZE/4
    if(length > (CODE_SIZE/sizeof(int)))
       length = CODE_SIZE/sizeof(int);
    // load ROMCODE
    for(i = 0; i < length; i++) {</pre>
       #pragma HLS PIPELINE
       internal_bram[i] = romcode[i];
    return;
```

Read_romcode 的用處其實註解講得挺清楚的,是想利用 axi_m 去讀取 system memory 內的 romcode,得到的結果再存進 bram 裡面,CODE_SIZE/sizeof(int)就 是 system 總共能讀取的 data 總量。

26 行開始的 if 的用處:如果這個 parameter length(想要讀取的 data 數量)比 能讀取的 data 數還要多,就會把讀取次數限制在上限。

31 行開始的 for 迴圈就是將讀出來的 romcode 寫進 bram,總共要讀 length 次。

```
module spiflash (
          ap_clk,
          ap_rst,

  // BRAM Interface
          romcode Addr A,
          romcode EN A,
          romcode_WEN_A,
          romcode Din A,
          romcode Dout A,
          romcode_Clk_A,
          romcode_Rst_A,

  // Spiflash Interface
          csb,
          spiclk,
          io0,
          io1
  );
```

Spifalsh 依照 block diagram 宣告對應的 interface 訊號,ioO 相當於 input,io1 相當於 output。

```
// io1 output
// assign io1 = buffer[7];
assign io1 = outbuf[7];

// BRAM Interface
// BRAM Inter
```

因為是 spiflash 當方面從 bram 讀取,所以 romcode_Din 和 WEN 永遠為 0, byte count 大於等於 4 再進行 EN。

Memory 算是一個 rom_code_Dout 的 buffer,藉由 spi_addr 就能知道要拿的 romcode_Dout 是哪一部分。

這邊可以看到 bitcount 和 bytecount 就是簡單的 counter, bytecount 總共有 12bit,可以數非常久,算是一個簡單的 FSM,在 bytecount =< 3 的時候,buffer 會幫所有 addr 和 cmd reset:

2. ResetControl & caravel_ps:

這兩個因為都是使用 axi-lite 來和 system interface 進行溝通,所以可以併在一起討論。


```
#include "ap int.h"

#define NUM_IO 38

void caravel_ps (

// PS side interace

ap_uint<NUM_IO> ps_mprj_in,

ap_uint<NUM_IO>& ps_mprj_out,

ap_uint<NUM_IO>& ps_mprj_en,

Caravel flash interface

// Caravel flash interface

ap_uint<NUM_IO>& mprj_in,

ap_uint<NUM_IO> mprj_out,

ap_uint<NUM_IO> mprj_out,

ap_uint<NUM_IO> mprj_en) {
```

和上面的 block diagram 敘述的一樣,將 NUM_IO 設定為 38。Ps 屬於 interconnect IP 的 mprj,沒有 PS 的就是 RiscV 端的 mprj。

```
#pragma HLS PIPELINE
#pragma HLS INTERFACE s_axilite port=ps_mprj_in
#pragma HLS INTERFACE s_axilite port=ps_mprj_out
#pragma HLS INTERFACE s_axilite port=ps_mprj_en
#pragma HLS INTERFACE ap_ctrl_none port=return

#pragma HLS INTERFACE ap_none port=mprj_in
#pragma HLS INTERFACE ap_none port=mprj_out
#pragma HLS INTERFACE ap_none port=mprj_en
```

用 pragma 指定傳輸的 interface, 也和 block diagram 一致。

這塊表示 38 個 mprj_in 會根據對應的 mprj_en 去吃自己的 out 或者是從 bram那邊去拿 data。

```
# Release Caravel reset
# 0x10 : Data signal of outpin_ctrl
# bit 0 - outpin_ctrl[0] (Read/Write)
# others - reserved
print (ipOUTPIN.read(0x10))
ipOUTPIN.write(0x10, 1)
print (ipOUTPIN.read(0x10))
```

ResetControl 的部分我是在 ipydb 上找到的,這邊利用對應的 axilite 位址去傳送 OUTPIN control 訊號,ap_ctrl 再把訊號丟到 RiscV 內部達到 control 的效果。

workload on caravel FPGA:

```
fiROM = open("counter_wb.hex", "r+")
#fiROM = open("counter_la.hex", "r+")
#fiROM = open("gcd_la.hex", "r+")
```

```
1 # 0x00 : Control signals
                   Control signals
bit 0 - ap_start (Read/Write/COH)
bit 1 - ap_done (Read/COR)
bit 2 - ap_idle (Read)
bit 3 - ap_ready (Read)
bit 7 - auto_restart (Read/Write)
others - reserved
 4 #
5 #
 8 # 0x10 : Data signal of romcode
9 # bit 31~0 - romcode[31:0] (Read/Write)
# 0x14 : Data signal of romcode
11 # bit 31~0 - romcode[63:32] (Read/Write)
12 # 0x1c : Data signal of length_r
13 # bit 31~0 - length_r[31:0] (Read/Write)
14
15 # Program physical address for the romcode base address
16 ipReadRoMcODE.write(0x10, npRoM.device_address)
17 ipReadRoMcODE.write(0x14, 0)
18 # Program Length of moving data
19 ipReadROMCODE.write(0x1C, rom size final)
# ipReadROMCODE start to move the data from rom_buffer to bram
ipReadROMCODE.write(0x00, 1) # IP Start
24 while (ipReadROMCODE.read(0x00) & 0x04) == 0x00: # wait for done
          continue
27 print("Write to bram done")
28
```

```
Write to bram done
1 # Check MPRJ_IO input/out/en
      1 # check MPR7_IO input/out/en
2 # 0x10 : Data signal of ps_mprj_in
3 # bit 31~0 - ps_mprj_in[31:0] (Read/Write)
4 # 0x14 : Data signal of ps_mprj_in
5 # bit 5~0 - ps_mprj_in[37:32] (Read/Write)
6 # others - reserved
7 # 0x1c : Data signal of ps_mprj_out
8 # bit 31~0 - ps_mprj_out[31:0] (Read)
9 # 0x20 : Data signal of ps_mprj_out
10 # bit 5~0 - ps_mprj_out[37:32] (Read)
11 # others - reserved
12 # 0x34 : Data signal of ps_mpri_en
        12 # 0x34 : Data signal of ps_mprj_en
    bit 31-0 - ps_mprj_en[31:0] (Read)

4 # 0x38 : Data signal of ps_mprj_en

bit 5-0 - ps_mprj_en[37:32] (Read)

therefore the state of ps_mprj_en

the state of ps_mprj_en

therefore the state of ps_mprj_en

t
    print ("0x10 = ", hex(ipPS.read(0x10)))
print ("0x14 = ", hex(ipPS.read(0x14)))
print ("0x1c = ", hex(ipPS.read(0x1c)))
print ("0x20 = ", hex(ipPS.read(0x2c)))
print ("0x34 = ", hex(ipPS.read(0x34)))
print ("0x38 = ", hex(ipPS.read(0x38)))
   0x10 = 0x0
 0x14 = 0x0
0x1c = 0x8
 0x20 = 0x0
0x34 = 0xfffffff7
   0x38 = 0x3f
        1 # Check MPRJ_IO input/out/en
      2 # 0x10 : Data signal of ps_mprj_in
3 # bit 31~0 - ps_mprj_in[31:0] (Read/Write)
4 # 0x14 : Data signal of ps_mprj_in
5 # bit 5~0 - ps_mprj_in[37:32] (Read/Write)
6 # others - reserved
   5 # bit 5~0 - ps_mprj_in[37:32] (Read/Wd
6 # 0xthers - reserved
7 # 0x1c : Data signal of ps_mprj_out
8 # bit 31~0 - ps_mprj_out[31:0] (Read)
9 # 0x20 : Data signal of ps_mprj_out
10 # bit 5~0 - ps_mprj_out[37:32] (Read)
11 # others - reserved
12 # 0x34 : Data signal of ps_mprj_en
13 # 0x12 - ps_mpri_en[37:32] (Read)
    12 # 0534 but signat of ps_mprj_en[31:0] (Read)
14 # 0538 : Data signal of ps_mprj_en[37:32] (Read)
15 # bit 5~0 - ps_mprj_en[37:32] (Read)
16 # others - reserved
   17
18 print ("0x10 = ", hex(ipPS.read(0x10)))
19 print ("0x14 = ", hex(ipPS.read(0x14)))
20 print ("0x1c = ", hex(ipPS.read(0x1c)))
21 print ("0x20 = ", hex(ipPS.read(0x20)))
22 print ("0x34 = ", hex(ipPS.read(0x34)))
23 print ("0x38 = ", hex(ipPS.read(0x38)))
 0x10 = 0x0
   0x14 = 0x0
 0x1c = 0xab610008
```

0x20 = 0x2 0x34 = 0xfff70x38 = 0x37

```
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1);

reg_la2_oenb = reg_la2_iena = 0x000000000; // [95:64]

// Flag start of the test
reg_mprj_datal = 0xAB600000;

reg_mprj_datal = 0xAB610000;

reg_mprj_datal = 0xAB610000;

reg_mprj_slave == 0x2B3D) {
    reg_mprj_datal = 0xAB610000;
}
```

配合 counter_wb.c 的內容,確實是從 0xAB610000 開始的。

Counter_la.hex:

```
#fiROM = open("counter_wb.hex", "r+")
fiROM = open("counter_la.hex", "r+")
#fiROM = open("gcd_la.hex", "r+")
```

```
1 # Check MPRJ_IO input/out/en
2 # 0x10 : Data signal of ps_mprj_in
3 # bit 31~0 - ps_mprj_in[31:0] (Read/Write)
4 # 0x14 : Data signal of ps_mprj_in
5 # bit 5~0 - ps_mprj_in[37:32] (Read/Write)
6 # others - reserved
7 # 0x1c : Data signal of ps_mprj_out
8 # bit 31~0 - ps_mprj_out[31:0] (Read)
9 # 0x20 : Data signal of ps_mprj_out
10 # bit 5~0 - ps_mprj_out[37:32] (Read)
11 # others - reserved
12 # 0x34 : Data signal of ps_mprj_en
13 # bit 31~0 - ps_mprj_en[31:0] (Read)
14 # 0x38 : Data signal of ps_mprj_en
15 # bit 5~0 - ps_mprj_en[37:32] (Read)
16 # others - reserved
17
18 print ("0x10 = ", hex(ipPs.read(0x10)))
19 print ("0x14 = ", hex(ipPs.read(0x14)))
20 print ("0x24 = ", hex(ipPs.read(0x20)))
21 print ("0x34 = ", hex(ipPs.read(0x34)))
22 print ("0x34 = ", hex(ipPs.read(0x34)))
23 print ("0x34 = ", hex(ipPs.read(0x34)))
0x10 = 0x0
0x34 = 0x0
0x34 = 0x3
```

```
// Flag start of the test
reg_mprj_datal = 0xAB400000;

// Set Counter value to zero through LA probes [63:32]
reg_la1_data = 0x000000000;

// Configure LA probes from [63:32] as inputs to disable counter write
reg_la1_oenb = reg_la1_iena = 0x0000000000;

while (1) {
    if (reg_la0_data_in > 0x1F4) {
        reg_mprj_datal = 0xAB410000;
        break;
}

//print("\n");
//print("\n");
//print("Monitor: Test 1 Passed\n\n"); // Makes simulation very long!
reg_mprj_datal = 0xAB510000;
}
```

輸入 DATA 確實是從 AB510000 開始

GCD_la.hex:

```
#fiROM = open("counter_wb.hex", "r+")
#fiROM = open("counter_la.hex", "r+")
fiROM = open("gcd_la.hex", "r+")
```

```
In [43]:

1  # Check MPRJ_IO input/out/en

2  # 0x10 : Data signal of ps mprj_in

3  # bit 31-0 - ps mprj in[31:0] (Read/Write)

4  # 0x14 : Data signal of ps mprj_in

5  # bit 5-0 - ps mprj_in[37:32] (Read/Write)

6  # others - reserved

7  # 0x1c : Data signal of ps mprj_out

8  # bit 31-0 - ps mprj_out[31:0] (Read)

9  # 0x20 : Data signal of ps mprj_out

10  # bit 5-0 - ps mprj_out[37:32] (Read)

11  # others - reserved

12  # 0x34 : Data signal of ps mprj_en

13  # bit 31-0 - ps mprj_en[31:0] (Read)

14  # 0x38 : Data signal of ps mprj_en

15  # bit 5-0 - ps mprj_en[37:32] (Read)

16  # others - reserved

17

18  print ("0x10 = ", hex(ipPS.read(0x10)))

20  print ("0x14 = ", hex(ipPS.read(0x10)))

21  print ("0x20 = ", hex(ipPS.read(0x34)))

22  print ("0x20 = ", hex(ipPS.read(0x34)))

23  print ("0x34 = ", hex(ipPS.read(0x38)))

0x10 = 0x0

0x14 = 0x0

0x20 = 0x0

0x20 = 0x0

0x20 = 0x0

0x20 = 0x0
```

Study caravel_fpga.ipynb, and be familiar with caravel SoC control flow:

1. 先宣告一些 DDR 的 size(8K)給我們的.hex firmware code

```
# Allocate dram buffer will assign physical address to ip ipReadROMCODE
npROM = allocate(shape=(ROM_SIZE >> 2,), dtype=np.uint32)
```

2. 將.hex 檔案讀進 fiROM,並 parse 這個檔案將對應的資料放進 npROM 也就是真正的 dram 內部

```
npROM_index = 0
npROM_offset = 0
fiROM = open("counter_wb.hex", "r+")
#fiROM = open("gcd_la.hex", "r+")
for line in fiROM:
    if line.startswith('@'):
        # Ignore first char @
        npROM_offset = int(line[1:].strip(b'\x00'.decode()), base = 16)
        npROM_offset = npROM_offset >> 2 # 4byte per offset
        #print (npROM_offset)
        npROM_index = 0
        continue
    #print (line)
    # We suppose the data must be 32bit alignment
    buffer = 0
    bytecount = 0
    for line_byte in line.strip(b'\x00'.decode()).split():
        buffer += int(line_byte, base = 16) << (8 * bytecount)</pre>
        bytecount += 1
        # Collect 4 bytes, write to npROM
        if(bytecount == 4):
            npROM[npROM_offset + npROM_index] = buffer
            # Clear buffer and bytecount
            buffer = 0
            bytecount = 0
            npROM_index += 1
            #print (npROM_index)
            continue
    # Fill rest data if not alignment 4 bytes
    if (bytecount != 0):
        npROM[npROM_offset + npROM_index] = buffer
        npROM_index += 1
fiROM.close()
rom_size_final = npROM_offset + npROM_index
```

3. 藉由 hls 產生出來的 IP 去將 DDR 內部 bram

4. De-assert

```
# Release Caravel reset
# 0x10 : Data signal of outpin_ctrl
# bit 0 - outpin_ctrl[0] (Read/Write)
# others - reserved
print (ipOUTPIN.read(0x10))
ipOUTPIN.write(0x10, 1)
print (ipOUTPIN.read(0x10))
```

5. 讀出最終的 output pin

```
print ("0x10 = ", hex(ipPS.read(0x10)))
print ("0x14 = ", hex(ipPS.read(0x14)))
print ("0x1c = ", hex(ipPS.read(0x1c)))
print ("0x20 = ", hex(ipPS.read(0x20)))
print ("0x34 = ", hex(ipPS.read(0x34)))
print ("0x38 = ", hex(ipPS.read(0x38)))

0x10 = 0x0
0x14 = 0x0
0x1c = 0xab510041
0x20 = 0x0
0x34 = 0x0
0x38 = 0x3f
```

去看原本的.c firmware code 確實最終的 mprj data 就是 0xab51

FPGA utilization:

Overall design wrapper utilization synthesis:

```
9. Black Boxes
-----
        Ref Name | Used |
+----+
| design_1_spiflash_0_0
design 1 output pin 0 0
                     | 1|
                     | 1|
design_1_caravel_ps_0_0
design_1_caravel_0_0
                        1 |
design_1_blk_mem_gen_0_0
design_1_auto_us_0
                         1 |
design_1_auto_pc_1
                         1 |
                        1 |
design_1_auto_pc_0
```

Design_1_xbar

```
1. Slice Logic

| Site Type | Used | Fixed | Prohibited | Available | Util% |
| Slice LUTs* | 140 | 0 | 0 | 53200 | 0.26 |
| LUT as Logic | 140 | 0 | 0 | 53200 | 0.26 |
| LUT as Memory | 0 | 0 | 0 | 17400 | 0.00 |
| Slice Registers | 131 | 0 | 0 | 106400 | 0.12 |
| Register as Flip Flop | 131 | 0 | 0 | 106400 | 0.12 |
| Register as Latch | 0 | 0 | 0 | 106400 | 0.00 |
| F7 Muxes | 0 | 0 | 0 | 26600 | 0.00 |
| F8 Muxes | 0 | 0 | 0 | 13300 | 0.00 |
```

```
7. Primitives
| Ref Name | Used | Functional Category |
+-----
| FDRE | 131 |
| LUT4 | 49 |
                   Flop & Latch |
       42
LUT6
                            LUT |
        39
LUT3
                            LUT |
        | 33 |
| 8 |
 LUT5
                            LUT |
LUT2
                            LUT |
| LUT1 | 1 |
                            LUT |
```

Design_1_splifash_0_0

1. Slice Logic					
+	+	+	+	+	
Site Type	Used	Fixed	Prohibited	Available	Uti1%
+	+	+· ·	+	+	
Slice LUTs*	44	0	0	53200	0.08
LUT as Logic	44	0	0	53200	0.08
LUT as Memory	0	0	0	17400	0.00
Slice Registers	63	0	0	106400	0.06
Register as Flip Flop	63	0	0	106400	0.06
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	j 0	13300	0.00
+	+	+	+	+	++

7. Primitive	:s 	
+	Usad	t
RET Name	useu	Functional Category +
FDRE	32	Flop & Latch
FDCE	31	Flop & Latch
LUT3	26	LUT
LUT6	21	ιστ
CARRY4	10	CarryLogic
LUT4	5	LUT
LUT5	4	LUT
LUT1	2	LUT
LUT2	1	ιστ
+		++

Design_1_rst_ps7_0_50M_0

1. Slice Logic					
+	+	+	+	+	++
Site Type	Used	Fixed	Prohibited	Available	Uti1%
+	+	+	+	+	++
Slice LUTs*	19	0	0	53200	0.04
LUT as Logic	18	0	0	53200	0.03
LUT as Memory	1	0	0	17400	<0.01
LUT as Distributed RAM	0	0	l	I	
LUT as Shift Register	1	0	l	I 1	I I
Slice Registers	40	0	0	106400	0.04
Register as Flip Flop	40	0	0	106400	0.04
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+	+	+	++

7. Primitiv	es 	
		Functional Category
FDRE LUT2 LUT4 LUT1 FDSE LUT5 SRL16E LUT6 LUT3	36 9 6 5 4 3 1	Flop & Latch LUT LUT LUT LUT Flop & Latch LUT Distributed Memory LUT

Design_1_read_romcode_0_0

1. Slice Logic					
+	.	+	+	·	
Site Type	Used	Fixed	Prohibited	Available	Uti1%
+	+	+	+	+	++
Slice LUTs*	739	0	0	53200	1.39
LUT as Logic	664	0	0	53200	1.25
LUT as Memory	75	0	0	17400	0.43
LUT as Distributed RAM	0	0			
LUT as Shift Register	75	0			I I
Slice Registers	1100	0	0	106400	1.03
Register as Flip Flop	1100	0	0	106400	1.03
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+	+	·	++

7. Primitive	es 	
Ref Name	Used	++ Functional Category +
FDRE LUT3 LUT6 LUT4 LUT2 SRL16E LUT5 CARRY4 LUT1	1097 261 212 158 132 75 68 63 22	Flop & Latch LUT LUT LUT Distributed Memory LUT CarryLogic LUT Flop & Latch
RAMB36E1	1	Block Memory

Design_1_Output_pint_0_0

1. Slice Logic					
+	+	+	+	+	
Site Type	Used	Fixed	Prohibited	Available	Uti1%
+	+	+	+	+	++
Slice LUTs*	10	0	0	53200	0.02
LUT as Logic	10	0	0	53200	0.02
LUT as Memory	0	0	0	17400	0.00
Slice Registers	12	0	0	106400	0.01
Register as Flip Flop	12	0	0	106400	0.01
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+	+	+	++

7. Primitives			
+		·	
Ref Name	Used	Functional Category	
+	+		
FDRE	12	Flop & Latch	
LUT5	4	LUT	
LUT4	4	LUT	
LUT6	1	LUT	
LUT2	1	LUT	
LUT1	1	LUT	
+		++	

Design_1_caravel_ps_0_0

1. Slice Logic						
				+		
Site Type	Usea	!	Fixed	Prohibited	Available	Util%
Slice LUTs*	119	-+-	0	l 0	F2200	0.22
		- :			53200	
LUT as Logic	119	- 1	0	0	53200	0.22
LUT as Memory	0	П	0	0	17400	0.00
Slice Registers	158	1	0	0	106400	0.15
Register as Flip Flop	158	1	0	0	106400	0.15
Register as Latch	0	1	0	0	106400	0.00
F7 Muxes	0	Ī	0	0	26600	0.00
F8 Muxes	0		0	0	13300	0.00
+	+	-+		+	+	++

7. Primitive		
	Used	Functional Category
FDRE LUT3 LUT6 LUT2 LUT4 LUT5 LUT1	158 79 46 8 4 1	Flop & Latch LUT LUT LUT LUT LUT LUT

Design_1_caravel_0_0

1. Slice Logic					
+					
Site Type	Used	Fixed	Prohibited	Available	Uti1%
Slice LUTs*	3842	l 0	0	53200	7.22
LUT as Logic	3788	0	0	53200	7.12
LUT as Memory	54	0	0	17400	0.31
LUT as Distributed RAM	16	0			
LUT as Shift Register	38	0			
Slice Registers	3945	0	0	106400	3.71
Register as Flip Flop	3870	0	0	106400	3.64
Register as Latch	75	0	0	106400	0.07
F7 Muxes	169	0	0	26600	0.64
F8 Muxes	47	0	0	13300	0.35
+	+	+	·	·	++

7. Primitive	es 	
+	+	+
Ref Name	Used	Functional Category
+		++
FDRE	2623	Flop & Latch
LUT6	1753	LUT
FDCE	889	Flop & Latch
LUT5	876	LUT
LUT4	814	LUT
LUT3	291	LUT
FDPE	271	Flop & Latch
LUT2	262	LUT
LUT1	184	LUT
MUXF7	169	MuxFx
CARRY4	134	CarryLogic
FDSE	87	Flop & Latch
LDCE	75	Flop & Latch
MUXF8	47	MuxFx
SRL16E	38	Distributed Memory
RAMD32	24	Distributed Memory
RAMS32	8	Distributed Memory
RAMB18E1	6	Block Memory
+	+	++

Design_1_blk_mem_gen_0_0

1. Slice Logic							
Site Type	llsed	Fived	Prohibited	Available	IH-1192		
+	USCU 				+		
Slice LUTs*	10	0	0	53200	0.02		
LUT as Logic	8	0	0	53200	0.02		
LUT as Memory	2	0	0	17400	0.01		
LUT as Distributed RAM	0	0		 			
LUT as Shift Register	2	0		 	- 1		
Slice Registers	12	0	0	106400	0.01		
Register as Flip Flop	12	0	0	106400	0.01		
Register as Latch	0	0	0	106400	0.00		
F7 Muxes	0	0	0	26600	0.00		
F8 Muxes	0	0	0	13300	0.00		
+	+	+	+	++	+		

7. Primitive	?S 	
+	+	
Ref Name	Used	Functional Category
+		
FDRE	12	Flop & Latch
LUT2	6	LUT
SRL16E	2	Distributed Memory
RAMB36E1	2	Block Memory
LUT4	2	LUT
+		++

Design_1_auto_us_0

1. Slice Logic							
+	.	+	+	·			
Site Type	Used	Fixed	Prohibited	Available	Uti1%		
+	.	+	+	+	++		
Slice LUTs*	192	0	0	53200	0.36		
LUT as Logic	168	0	0	53200	0.32		
LUT as Memory	24	0	0	17400	0.14		
LUT as Distributed RAM	0	0	l				
LUT as Shift Register	24	0	l				
Slice Registers	343	0	0	106400	0.32		
Register as Flip Flop	343	0	0	106400	0.32		
Register as Latch	0	0	0	106400	0.00		
F7 Muxes	0	0	0	26600	0.00		
F8 Muxes	0	0	0	13300	0.00		
+	+	+	+	·	++		

7. Primitives					
+					
Ket Name	Usea	Functional Category			
FDRE	341	Flop & Latch			
LUT3	84	LUT			
LUT6	81	LUT			
LUT5	28	LUT			
SRLC32E	24	Distributed Memory			
LUT4	19	LUT			
LUT2	12	LUT			
LUT1	4	LUT			
FDSE	2	Flop & Latch			
+	++	+			

Design_1_auto_pc_1

1. Slice Logic						
Site Type	Used	Fixed	Prohibited	Available	Uti1%	
Slice LUTs*	421	0	0	53200	0.79	
LUT as Logic	356	0	0	53200	0.67	
LUT as Memory	65	0	0	17400	0.37	
LUT as Distributed RAM	0	0		l I		
LUT as Shift Register	65	0				
Slice Registers	562	0	0	106400	0.53	
Register as Flip Flop	562	0	0	106400	0.53	
Register as Latch	0	0	0	106400	0.00	
F7 Muxes	0	0	0	26600	0.00	
F8 Muxes	0	0	0	13300	0.00	
+	+	+		+	++	

+	+
Ref Name Used Functional Cate	gory
FDRE	LUT LUT LUT mory LUT LUT mory ogic

Design_1_auto_pc_0

1. Slice Logic					
+	+	+			++
Site Type	Used	Fixed	Prohibited	Available	Uti1%
Slice LUTs*	210	0	0	53200	0.39
LUT as Logic	208	0	0	53200	0.39
LUT as Memory	2	0	0	17400	0.01
LUT as Distributed RAM	2	0			I I
LUT as Shift Register	0	0			
Slice Registers	230	0	0	106400	0.22
Register as Flip Flop	230	0	0	106400	0.22
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+		+	++

7. Primitives						
Ref Name	Used	++ Functional Category				
FDRE	196	Flop & Latch				
LUT5	131	LUT				
LUT6	25	LUT				
FDCE	23	Flop & Latch				
LUT4	22	LUT				
LUT3 LUT2 LUT1	21 20 16	LUT LUT				
CARRY4	16	CarryLogic				
FDPE	11	Flop & Latch				
RAMD32	2	Distributed Memory				

Design_1_processing_system

1. Slice Logic					
Site Type	Used	Fixed	 Prohibited	Available	Uti1%
Slice LUTs* LUT as Logic	24 24	0	0	53200	0.05
LUT as Memory Slice Registers Register as Flip Flop	0 0 0	0 0 0	0 0 0	17400 106400 106400	0.00
Register as Latch F7 Muxes	0 0	0	0	106400 26600	0.00
F8 Muxes	0 +		0 +	13300 +	0.00

4. IO and GT 9	Specific	C						
1 64	te Type		l Usad	l Eivad	l Doobib	+ :+ad	Available	U+310
] 21	се туре		USEU	Fixeu	LALOUID	rcea I	Avallable	011179
Bonded IOB			I 0	0	i	0 I	125	0.00
Bonded IPAD:	ς.		1 0	:		0 1		0.00
Bonded IOPAI			130	-	:	0 I		100.00
PHY CONTROL			0	-	:	0 I		
PHASER_REF			1 0	-	:	0 I		
OUT FIFO			i 0		:	0 I		
IN_FIFO			i 0	-	:	0 i		0.00
IDELAYCTRL			0		:	0		:
IBUFDS			j 0		i	0 j	121	
PHASER_OUT/	PHASER (OUT_PHY	j 0		i		16	
PHASER IN/PH	HASER I	N_PHY	j ø	0	i	0 j	16	0.00
IDELAYE2/IDE	ELAYE2 I	FINEDELAY	· j 0	0	i	0 j	200	0.00
ILOGIC			0	0	i			0.00
OLOGIC			j 0	0	İ	0	125	0.00
				+	+	+		+
Clocking								
+	+	++		+		+	+	
Site Type	Used	Fixed	Prohibit	ted Av	ailable	Util	%	
+	+	++				+	+	
BUFGCTRL	1			0	32			
BUFIO	0	: :		0		0.0		
MMCME2_ADV				0		0.0		
PLLE2_ADV	0	: :		0		0.0		
BUFMRCE	0			0		0.0		
BUFHCE	0			0	72			
BUFR	0	0		0	16	0.0	0	
+	+	++		+		+	+	

7. Primitive	es	
+	+	++
Ref Name	Used	Functional Category
+	+	++
BIBUF	130	IO
LUT1	24	LUT
PS7	1	Specialized Resource
BUFG	1	Clock
+	+	++

Overall implementation:

1. Slice Logic				
1	+	+	+	t
Site Type	Used	Fixed	Prohibited	Available Util%
Slice LUTs	+ 5327	l 0	 0	53200 10.01
LUT as Logic	5149		_	: : :
LUT as Memory	178	:	0	
LUT as Distributed RAM	:	:	,	1/400 1.02
LUT as Shift Register	160			
Slice Registers	6051		I 0	1 106400 5.69
Register as Flip Flop	6051			106400 5.69
Register as Latch	0	0		106400 0.00
F7 Muxes	169	0		26600 0.64
F8 Muxes	47	1 0	0	13300 0.35
+	+	+	+	+

2 Clica Laria Distribution									
2. Slice Logic Distribution									
+	+	+	+	+	++				
Site Type	Used	Fixed	Prohibited	Available	Uti1%				
Slice	+ 2303	l 0	l 0	13300	17.32				
SLICEL	1625		Ĭ	13300	1/1.52				
SLICEM	678				i i				
LUT as Logic	5149	-	9	53200	9.68				
using 05 output only	0	i	Ĭ	33233	3.55				
using 06 output only	4205	i			i i				
using 05 and 06	944	i	i		i i				
LUT as Memory	178	0	0	17400	1.02				
LUT as Distributed RAM	18		į i		i i				
using 05 output only	0	i	i i		i i				
using 06 output only	2	į	İ		i i				
using 05 and 06	16								
LUT as Shift Register	160	0							
using 05 output only	41								
using 06 output only	81								
using 05 and 06	38								
Slice Registers	6051	0	0	106400	5.69				
Register driven from within the Slice	2815								
Register driven from outside the Slice	3236								
LUT in front of the register is unused	1978								
LUT in front of the register is used	1258								
Unique Control Sets	312		0	13300	2.35				
+	+	+	+	+	++				

3. Memory					
+					.
Site Type	Used	Fixed	Prohibited	Available	Uti1%
Block RAM Tile	6	l 0	0	140	4.29
RAMB36/FIFO*	3	0	0	140	2.14
RAMB36E1 only	3	j i		İ	i i
RAMB18	6	0	0	280	2.14
RAMB18E1 only	6			l	
+	+	+	+	+	++

4. DSP					
		+		+	
Site Type Used Fixed P	rohibit	ed Ava:	ilable Util9	6	
+		+		-+	
DSPs 0 0			220 0.00		
+		+		+	
5 70 57 5 151					
5. IO and GT Specific					
Site Type	llsed	Fived	Prohibited	Available	+;1%
+	+	+	+		+
Bonded IOB	l 0	I 0		125	0.00
Bonded IPADs	0	0		2	0.00
Bonded IOPADs	130	130		130	100.00
PHY_CONTROL	0	0	0	4	0.00
PHASER_REF	0	0	0	4	0.00
OUT_FIFO	0	0	0	16	0.00
IN_FIFO	0	0	0	16	0.00
IDELAYCTRL	0	0	0	4	0.00
IBUFDS	0	0	0	121	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	0	16	0.00
PHASER_IN/PHASER_IN_PHY	0	0	0	16	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	0	200	0.00
ILOGIC	0	0	0	125	0.00
OLOGIC	0	0	0	125	0.00

6. Clocking

+-		+	-+		+	+	++
1	Site Type	Used	1	Fixed	Prohibited	Available	Uti1%
+-		+	-+		+	+	++
1	BUFGCTRL	7	1	0	0	32	21.88
-1	BUFIO	0	-	0	0	16	0.00
-1	MMCME2_ADV	0	1	0	0	4	0.00
П	PLLE2_ADV	0	-	0	0	4	0.00
П	BUFMRCE	0	-	0	0	8	0.00
	BUFHCE	0		0	0	72	0.00
	BUFR	0		0	0	16	0.00

+-----

7. Specific Feature

+	+-			+	+	++
Site Type	1	Used	Fixed	Prohibited	Available	Uti1%
+	+-	4		+	+	++
BSCANE2	L	0	0	0	4	0.00
CAPTUREE2	П	0	0	0	1	0.00
DNA_PORT	П	0	0	0	1	0.00
EFUSE_USR	П	0	0	0	1	0.00
FRAME_ECCE2	П	0	0	0	1	0.00
ICAPE2	П	0	0	0	2	0.00
STARTUPE2	П	0	0	0	1	0.00
XADC	П	0	0	0	1	0.00
+	+-			+	+	++

8. Primitives							
+	+	++					
Ref Name	Used	Functional Category					
+	+						
FDRE	4715	Flop & Latch					
LUT6	2131	LUT					
LUT4	1150	LUT					
LUT5	1125	LUT					
LUT3	957	LUT					
FDCE	943	Flop & Latch					
LUT2	501	LUT					
FDPE	282	Flop & Latch					
LUT1	229	LUT					
CARRY4	216	CarryLogic					
MUXF7	169	MuxFx					
SRL16E	134	Distributed Memory					
BIBUF	130	10					
FDSE	111	Flop & Latch					
SRLC32E	64	Distributed Memory					
MUXF8	47	MuxFx					
RAMD32	26	Distributed Memory					
RAMS32	8	Distributed Memory					
BUFG	7	Clock					
RAMB18E1	6	Block Memory					
RAMB36E1	3	Block Memory					
PS7	1	Specialized Resource					
+	·	+					

10. Instantiated Netlists						
+	++					
Ref Name	Used					
+						
design_1_xbar_0	1 1					
design 1 spiflash 0 0	1 1					
design 1 rst ps7 0 50M 0	1					
design_1_read_romcode_0_0	1					
design_1_processing_system7_0_0	1					
design_1_output_pin_0_0	1					
design_1_caravel_ps_0_0	1					
design_1_caravel_0_0	1					
design_1_blk_mem_gen_0_0	1					
design_1_auto_us_0	1					
design_1_auto_pc_1	1					
design_1_auto_pc_0	1					
+	++					