#### 1

# Modelica-based Technologies for Modeling and Simulation of Power Systems

(Version 0.2.4) – Thursday 1<sup>st</sup> April, 2021

Atiyah M. G. Elsheikh\*, Peter Palensky *Senior Member, IEEE*§,

\*Mathemodica.com , Egypt & Germany (atiyah.elsheikh@mathemodica.com)

§ Department of Intelligent Electrical Power Grids, Delft University of Technology, Delft, The Netherlands

Pre-order electronic edition 1.0, planned by 1st of Sep. 2021 @ https://gum.co/mathemodica-powsys https://gumroad.com/l/mathemodica-powsys

Finance the maintenance and progress of this book

One-time sponsorship @

https://www.paypal.com/paypalme/mathemodica

Or get access to the actual version of the book by Periodic sponsorship @

https://github.com/sponsors/AtiyahElsheikh https://www.patreon.com/mathemodica

#### Abstract

This is a comprehensive but a concise and educational book aiming at advertising Modelica-based technologies particularly useful for power system modeling applications. Whatever aspect that could be useful has been included, to the best of author's knowledge. We hope that this booklet to be useful not only for power system modelers desiring to get a quick idea about the benefits of employing Modelica but also for those Modelica modelers desiring a starting guide into the world of Power System Modeling applications.

Dedication from the first author

to Meram میرام

CALL FOR SPONSORSHIP OF THIS AND SIMILAR ACTIVITIES BY MATHEMODICA.COM

This book has been majorly written by the first author Atiyah Elsheikh, in his free-time. If this book is useful for you, **the first author** appreciates financial support, both from individuals and organizations, that will be an aid for

- financing the continuation of maintaining and progressing this book
- executing similar initiatives for establishing educational contents (tutorials, books and libraries)
- among other similar activities by members and friends of Mathemodica.com, cf.

http://mathemodica.com/projects

These activities are in conformance with the spirit of open science initiative.

A. Single-time product-related payment

Pre-ordering edition 1.0 of the book (planned by 1st of Sep. 2021) for free or for the price you think this book deserves, can be accomplished at

https://gum.co/mathemodica-powsys

https://gumroad.com/l/mathemodica-powsys

Subscription to Mathemodica.com's newsletters for news and future products:

https://gumroad.com/mathemodica

As a remark, a purchase or a subscription at gumroad **does not** require account registration. Another alternative:

https://www.paypal.com/paypalme/mathemodica

B. Periodic sponsorship

On github (github-account is needed):

https://github.com/sponsors/AtiyahElsheikh

or Patreon:

# https://www.patreon.com/mathemodica

By becoming a sponsor of Mathemodica.com, you

- get a closure look at current activities, milestones, accomplishments and future plans
- influence these activities
- unless explicitly communicated, you get acknowledged in one or more of the educational libraries, tools or books

## C. Appreciation to our sponsors

For individuals or organizations choosing to support members & friends of Mathemodica.com, your involvement, regardless of the amount you pay, is highly appreciable since you show us your trust in the outcomes of Mathemodica.com. You overload us the responsibility that these outcomes to go beyond your expectation. Unless explicitly communicated that this is not desired, for a considerable amount of financial support, your organization (or you) will be acknowledged for sponsorship of this book. Periodic sponsorship will also lead to the acknowledgement and recognition in another (or others) future online-accessible book or free open-source library or tool (check mathemodica.com/projects for current activities).

#### License

This book is provided under the terms of CC BY-NC-SA 4.0 license, cf. https://creativecommons.org/licenses/by-nc-sa/4.0/. Basically, you are free to:

- 1) Share, copy and redistribute the material in any medium or format
- 2) **Adapt**, remix, transform, and build upon the material under the terms:
  - 1) **Attribution**: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  - 2) NonCommercial: You may not use the material for commercial purposes.
  - 3) **ShareAlike**: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

#### About

This is a free printable and distributable copy of a comprehensive educational book on Modelica-based technologies for power systems modeling applications. The latex source code can be made accessible and modifiable for whoever is interested. You may reuse it for whatever useful purpose you have, e.g. project proposals. However you will need to provide a clear attribution/reference to this document and the owners.

### Involvement and conditions

If you are clearly involved in power-system related activities using the Modelica language, you are highly encouraged to actively improve the state of this book whenever and/or wherever possible. For this reason, this book is available on the platform Overleaf which allows collaborative writing. The latex sources are synchronously available on (currently a private) github repository.

However, it is important to note that, any suggested enhancement should be valuable, concise, accurate and elegant. The authors have the right to reject or to ask for specific corrections or improvements to any suggested enhancement.

#### Contact

Consider contacting atiyah.elsheikh@mathemodica.com if you would like to:

- contribute to the text: Consider a brief summary of the purpose of your desired involvement
- alternatively you can also provide me suggestions or pdf-annotated review, suggested corrections, suggested text, etc.
- provide a general feedback
- provide suggested topics or materials that this book should cover
- have access to the latex sources for whatever purpose you need
- have some kind of conditional financial support that should be devoted for a particular topic

Your useful scientific involvement, in whichever form, shall be acknowledged, unless explicitly communicated that this is not desired.

#### ACKNOWLEDGEMENT

Atiyah Elsheikh is highly appreciating his former employer, Austrian Institute of Technology, as this book has been initially started during his role there, initially as a technical report. The early version was still in a primitive state until he recently decided to write a comprehensive book.

Moreover, couple of capitals of this book has been written by others. Without their contribution, the book would be definitely less valuable. Thus, I'd like to thank (in alphabetical order of family names):

- Prof. Andrea Benigni, RWTH Aachen and FZ Jülich, with his great help, this report is suitable for Electrical Engineers. Particularly, major parts of Section II and Section X was originally written by him.
- Assoc. Prof. Omar Faruque, Florida State University, for presenting this initiative at a PES general meeting
- Prof. Antonello Monti, RWTH Aachen, being the initiator of the idea of having a comprehensive report that gathers all useful aspects Modelica can provide for power system modeling applications. The introduction section was originally written by him.

## CONTENTS

|     | -A                                                            | Single-time product-related payment                     | 4  |  |  |  |
|-----|---------------------------------------------------------------|---------------------------------------------------------|----|--|--|--|
|     | -B                                                            | Periodic sponsorship                                    | 4  |  |  |  |
|     | -C                                                            | Appreciation to our sponsors                            | 5  |  |  |  |
| I   | uction                                                        | 12                                                      |    |  |  |  |
| II  | Challenges in Modeling and Simulation of Power Systems        |                                                         |    |  |  |  |
|     | II-A                                                          | Traditional power system simulation studies             | 14 |  |  |  |
|     | II-B                                                          | Modern aspects in power system modeling applications    | 16 |  |  |  |
|     | II-C                                                          | Mutli-physical phenomena in power systems [TO Complete] | 17 |  |  |  |
| III | The Rise of the Modelica Language                             |                                                         |    |  |  |  |
|     | III-A                                                         | Pre-era Modelica                                        | 18 |  |  |  |
|     | III-B                                                         | The evolve of the Modelica language                     | 19 |  |  |  |
|     | III-C                                                         | Predecessors of Modelica (To complete)                  | 21 |  |  |  |
|     | III-D                                                         | Benefits of the Modelica language                       | 21 |  |  |  |
| IV  | Designing a Modelica library in Power Systems: Basic concepts |                                                         |    |  |  |  |
|     | IV-A                                                          | Variables, parameters and constants                     | 23 |  |  |  |
|     | IV-B                                                          | Physical units                                          | 24 |  |  |  |
|     | IV-C                                                          | Packages                                                | 25 |  |  |  |
|     | IV-D                                                          | Organization of packages                                | 26 |  |  |  |
|     | IV-E                                                          | Connections                                             | 27 |  |  |  |
|     | IV-F                                                          | Components                                              | 28 |  |  |  |
| V   | Object-Oriented features                                      |                                                         |    |  |  |  |
|     | V-A                                                           | Abstract Models and Inheritance                         | 31 |  |  |  |
|     | V-B                                                           | Arbitrary phase systems by an abstract package          | 32 |  |  |  |
|     | V-C                                                           | Interfaces                                              | 33 |  |  |  |
|     | V-D                                                           | Implementation of Functions                             | 34 |  |  |  |
|     | V-E                                                           | Generic connectors                                      | 36 |  |  |  |
|     | V-F                                                           | Generic components                                      | 37 |  |  |  |

| VI   | Examples                                                      |                                      |                                                         |    |  |  |  |
|------|---------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|----|--|--|--|
|      | VI-A                                                          | A power                              | flow study                                              | 39 |  |  |  |
|      | VI-B                                                          | Power generation and consumption     |                                                         |    |  |  |  |
| VII  | Current state of Modelica                                     |                                      |                                                         |    |  |  |  |
|      | VII-A                                                         | A Language specification             |                                                         |    |  |  |  |
|      | VII-B                                                         | The Modelica Standard Library        |                                                         |    |  |  |  |
|      | VII-C                                                         | The funct                            | ional mockup interface                                  | 46 |  |  |  |
|      |                                                               | VII-C1                               | System Structure and Parameterization (SSP)             | 48 |  |  |  |
|      |                                                               | VII-C2                               | Distributed Co-simulation Protocol (DCP)                | 48 |  |  |  |
|      | VII-D                                                         | Modelica                             | simulation environments                                 | 48 |  |  |  |
|      | VII-E                                                         | Projects .                           |                                                         | 48 |  |  |  |
|      | VII-F                                                         | Conferences and user groups          |                                                         |    |  |  |  |
|      | VII-G                                                         | Modelica                             | Association Membership                                  | 50 |  |  |  |
|      | VII-H                                                         | Modelica                             | Newsletters                                             | 50 |  |  |  |
|      | VII-I                                                         | Education                            | nal materials                                           | 50 |  |  |  |
| VIII | Open-source Modelica libraries                                |                                      |                                                         |    |  |  |  |
|      | VIII-A                                                        | Power systems libraries              |                                                         |    |  |  |  |
|      | VIII-B                                                        | Energy in buildings and/or districts |                                                         |    |  |  |  |
|      | VIII-C                                                        | Useful libraries                     |                                                         |    |  |  |  |
| IX   | Scalability and runtime performance                           |                                      |                                                         |    |  |  |  |
|      | IX-A                                                          | Limitation                           | ns                                                      | 64 |  |  |  |
|      |                                                               | IX-A1                                | Translation to one single big block of equations        | 64 |  |  |  |
|      |                                                               | IX-A2                                | Single-rate numerical integration                       | 65 |  |  |  |
|      |                                                               | IX-A3                                | No exploitation of sparsity patterns                    | 65 |  |  |  |
|      |                                                               | IX-A4                                | Insignificant local events cause tremendous computation | 65 |  |  |  |
|      | IX-B Active research agenda for improving runtime performance |                                      |                                                         |    |  |  |  |
|      |                                                               | IX-B1                                | Exploiting sparsity patterns and sparse solvers         | 66 |  |  |  |
|      |                                                               | IX-B2                                | Multi-rate numerical solvers                            | 66 |  |  |  |
|      |                                                               | IX-B3                                | Solvers for massive number of state-events              | 67 |  |  |  |
|      |                                                               | IX-B4                                | Hybrid modeling paradigms [TO COMPLETE]                 | 68 |  |  |  |

|   |       | IX-B5     | Agent-based modeling paradigms [TO COMPLETE]                                                                                                                                                                  | 68 |
|---|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |       | IX-B6     | Parallelization [TO COMPELETE]                                                                                                                                                                                | 69 |
| X | Summa | ry and Ou | tlook                                                                                                                                                                                                         | 70 |
|   | X-A   | Advantage | es of the Modelica language                                                                                                                                                                                   | 70 |
|   |       | X-A1      | Object-oriented paradigm                                                                                                                                                                                      | 70 |
|   |       | X-A2      | Domain-independent multi-physical modeling concepts                                                                                                                                                           | 70 |
|   |       | X-A3      | Advanced methods for efficient runtime simulation                                                                                                                                                             | 70 |
|   |       | X-A4      | Standardized (co-)simulation interfaces                                                                                                                                                                       | 71 |
|   |       | X-A5      | Code generation capabilities                                                                                                                                                                                  | 71 |
|   |       | X-A6      | Considerable amount of open-source libraries in power-system                                                                                                                                                  |    |
|   |       |           | $(related-)\ domain(s)\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$ | 71 |
|   |       | X-A7      | Further useful open-source libraries                                                                                                                                                                          | 71 |
|   |       | X-A8      | Modelica for power system modeling applications                                                                                                                                                               | 72 |
|   | X-R   | Challenge | s and Future directions                                                                                                                                                                                       | 72 |

#### REFERENCES

- D. Abel, *Object-Oriented Modelling for Simulation and Control of Energy Transformation Processes*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 327–344.
- ACOSAR, "Advanced Co-simulation Open System ARchitecture," https://itea3.org/project/acosar.html, 2015-2018.
- J. Åkesson, "Optimica an extension of Modelica supporting dynamic optimization," in *Modelica'2008: the 6th International Modelica Conference*, Bielefeld, Germany, March 2008.
- Q. Altes-Buch, S. Quoilin, and V. Lemort, "Modeling and control of chp generation for greenhouse cultivation including thermal energy storage," in *In Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems*, no. 13, Guimaraes, Portugal, Jun. 2018.
- ——, "Greenhouses: a Modelica library for the simulation of greenhouse climate and energy systems," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.
- A. Andresen, P. Dubucq, R. P. Garcia, G. Ackermann, A. Kather, and G. Schmitz, "Status of the TransiEnt library: Transient simulation of coupled energy networks with high share of renewable energy," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- —, "Status of the TransiEnt library: Transient simulation of coupled energy networks with high share of renewable energy," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.
- L. Andresen, C. Bode, and G. Schmitz, "Dynamic simulation of different transport options of renewable hydrogen to a refinery in a coupled energy system approach," *International Journal of Hydrogen Energy*, vol. 43, no. 42, pp. 19600 19614, 2018.
- Annex 60, "IEA EBC Annex 60: New generation computational tools for building and community energy systems based on the Modelica and Functional Mockup Interface standards," www. iea-annex60.org/index.htmll, 2012-2017.
- K.-E. Årzén, "Grafchart: A graphical language for sequential supervisory control applications," *IFAC Proceedings Volumes*, vol. 29, no. 1, pp. 4831 4836, 1996, 13th World Congress of IFAC, 1996, San Francisco USA, 30 June 5 July.
- P. J. Ashenden, G. D. Peterson, and D. A. Teegarden, *The system designers guide to VHDL-AMS*. Morgan Kaufmann, 2003.

- A. Ashgar and et al., "An open source modelica graphic editor integrated with electronic notebooks and interactive simulation," in *Modelica'2011, the 8th International Modelica Conference*, Dresden, Germany, Mar. 2011.
- K. J. Åström, H. Elmqvist, and S. E. Mattsson, "Evolution of continuous-time modeling and simulation," in *ESM'1998: The 12th European Simulation Multiconference Simulation Past, Present and Future*, Manchester, United Kingdom, June 1998.
- D. C. Augustin, M. S. Fineberg, B. B. Johnson, R. N. Lineberger, F. J. Sansom, and J. C. Strauss, "The sci continuous system simulation language (cssl)," *SIMULATION*, vol. 9, no. 6, pp. 281–303, 1967.
- B. Bachmann and H. Wiesmann, "Advanced modeling of electromagnetic transients in power systems," in *Modelica'2000: The Modelica Workshop*, Lund, Sweden, September 2000.
- R. Baetens, R. D. Coninck, F. Jorissen, D. Picard, L. Helsen, and D. Saelens, "OPENIDEAS
   an open framework for integrated district energy," in *Proceedings of BS2015*, Hyderabad, India, Dec. 2015.
- A. Bartolini, F. Casella, and A. Guironnet, "Towards pan-european power grid modelling in Modelica: Design principles and a prototype for a reference power system library," in *Modelica*'2019: The 13th International Modelica Conference, Regensburg, Germany, 2019.
- D. Basciotti and O. Pol, "A theotetical study of the impact of using small-scale thermo chemical storage units in district heating networks," in *The 2011 International Conference for Sustainable Energy Storage*, 2011.
- M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, and L. Vanfretti, "OpenIPSL: Open-instance power system library update 1.5 to itesla power systems library (ipsl): A modelica library for phasor time-domain simulations," *SoftwareX*, vol. 7, pp. 34–36, 2018.
- M. Baur, M. Otter, and B. Thiele, "Modelica libraries for linear control systems," in *Modelica* '2009: The 7th International Modelica Conference, Como, Italy, 2009.
- T. Bellmann, "Interactive simulations and advanced visualization with Modelica," in *Modelica* '2009: The 7th International Modelica Conference, Como, Italy, 2009.
- T. Beltrame and F. E. Cellier, "Quantised state system simulation in Dymola/Modelica using the DEVS formalism," in *Modelica'2006: The 5th International Modelica Conference*, Vienna, Austria, Sep. 2006.
- A. Benveniste, B. Caillaud, H. Elmqvist, K. Ghorbal, M. Otter, and M. Pouzet, *Multi-Mode DAE Models Challenges, Theory and Implementation*. Cham: Springer International Publishing,

- 2019, pp. 283-310.
- F. Bergero, X. Floros, J. Fernàndez, E. Kofman, and F. E. Cellier, "Simulating modelica models with a standalonequantized state systems solver," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- F. M. Bergero, F. Casella, E. Kofman, and J. Fernàndez, "On the efficiency of quantization-based integration methods for building simulation," *Building Simulation*, vol. 11, pp. 405–418, 2018.
- C. Bertsch, J. Neudorfer, E. Ahle, S. S. Arumugham, Karthikeyan, Ramachandran, and A. Thuy, "FMI for physical models on automotive embedded targets," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- T. Blochwitz and et al., "The functional mockup interface for tool independent exchange of simulation models," in *Modelica'2011: The 8th International Modelica Conference*, Dresden, Germany, Mar. 2011.
- —, "Functional mockup interfae 2.0: The standard for tool independent exchange of simulation models," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf, "The functional mockup interface for tool independent exchange of simulation models," in *Modelica'2011: The 8th International Modelica Conference*, Dresden, Germany, Mar. 2011.
- C. Bode and G. Schmitz, "Dynamic simulation and comparison of different configurations for a coupled energy system with 100 *Energy Procedia*, vol. 155, pp. 412 430, 2018, 12th International Renewable Energy Storage Conference, IRES 2018, 13-15 March 2018, Düsseldorf, Germany.
- L. Bollinger, C. Davis, R. Evins, E. Chappin, and I. Nikolic, "Multi-model ecologies for shaping future energy systems: Design patterns and development paths," *Renewable and Sustainable Energy Reviews*, vol. 82, pp. 3441 3451, 2018.
- L. Bonaventura, F. Casella, L. D. Carciopolo, and A. Ranade, "A self adjusting multirate algorithm for robust time discretization of partial differential equations," *Computers & Mathematics with Applications*, vol. 79, no. 7, pp. 2086 2098, 2020, advanced Computational methods for PDEs.
- M. Bonvini, M. Wetter, and T. S. Nouidui, "A Modelica package for building-to-electrical grid integration," in *BauSim'2014: The 5th BauSim Conference*, Aachen, Germany, Sep. 2014.

- D. Bouskela, J. Audrey, Z. Benjelloun-Touimi, P. Aronsson, and P. Fritzson, "Modelling of uncertainities with modelica," in *Modelica'2011: The 8th International Modelica Conference*, Dresden, Germany, Mar. 2011.
- W. Braun, F. Casella, and B. Bachmann, "Solving large-scale Modelica models: new approaches and experimental results using OpenModelica," in *Modelica'2017: The 12th International Modelica Conference*, Prague, Czech Republic, May 2017.
- J. Brembeck, "A physical model-based observer framework for nonlinear constrained state estimation applied to battery state estimation," *Sensors*, vol. 19(20):4402, Oct. 2019.
- J. Brkic, M. Ceran, M. Elmoghazy, R. Kavlak, A. Haumer, and C. Kral, "Open source PhotoVoltaics library for systemic investigations," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, 2019.
- C. Brüger, "Modelica language extensions for practical non-monotonic modelling: on the need for selective model extension," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, 2019.
- J. Brunnemann, F. Gottelt, K. Wellner, A. Renz, A. Thüring, V. Roeder, C. Hasenbein, C. Schulze, G. Schmitz, and J. Eiden, "Status of ClaRaCCS: Modelling and simulation of coal-fired power plants with co2 capture," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- F. Casella and C. Richter, "ExternalMedia: A library for easy re-use of external fluid property code in Modelica," in *Modelica'2008: the 6th International Modelica Conference*, Bielefeld, Germany, March 2008.
- F. Casella, M. Otter, K. Proelss, C. Richter, and H. Tummescheit, "The Modelica Fluid and Media library fpr modeling of incompressible and compressible thermo-fluid pipe networks," in *Modelica'2006: The 5th International Modelica Conference*, Vienna, Austria, Sep. 2006.
- F. Casella, A. Leva, and A. Bartolini, "Simulation of large grids in OpenModelica: reflections and perspectives," in *Modelica'2017: The 12th International Modelica Conference*, Prague, Czech Republic, May 2017.
- F. Casella, "Simulation of large-scale models in modelica: State of the art and future perspective," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- —, "Efficient computation of state derivatives for multi-rate integration of object-oriented models," *IFAC-PapersOnLine*, vol. 48, no. 1, pp. 262 267, 2015, 8th Vienna International Conferenceon Mathematical Modelling.

- F. Casella and B. Bachmann, "On the choice of initial guesses for the newton-raphson algorithm," *Applied Mathematics and Computation*, vol. 398, p. 125991, 2021.
- F. Casella and A. Leva, "Modelling of thermo-hydraulic power generation processes using Modelica," *Mathematical and Computer Modelling of Dynamical Systems*, vol. 12, no. 1, pp. 19–33, Aug. 2006.
- F. E. Cellier, Continuous System Modeling. Springer Verlag, 1991.
- ——, "World3 in Modelica: Creating system dynamics models in the Modelica framework," in *Modelica'2008: the 6th International Modelica Conference*, Bielefeld, Germany, March 2008.
- F. E. Cellier and H. Elmqvist, "Automated formula manipulation supports object-oriented continuous-system modeling," *IEEE Control Systems Magazine*, vol. 13, no. 2, pp. 28–38, 1993.
- F. E. Cellier, C. Clauß, and A. Urquia, "Electronic circuit modeling and simulation in Modelica," in *Congress on Modelling and Simulation*, Ljublijana, Sep. 2007.
- F. E. Cellier and E. Kofman, *Continuous System Simulation*. Berlin, Heidelberg: Springer-Verlag, 2006.
- N. M. Ceriani, R. Vignali, L. Piroddi, and M. Prandini, "An approximate dynamic pro-gramming approach to the energy management of a building cooling system," in *European Control Conference*, Zurich, Switzerland, Jul. 2013, pp. 2026 2031.
- A. Chieh, P. Panciatici, and D. Picard, "Power system modeling in modelica for time-domain simulation," in 2011 IEEE Trondheim PowerTech, Trondheim, Norway, Jun. 2011, pp. 1–8.
- C. Clauß, T. Leitner, A. Schneider, and P. Schwarz, "Modelling of electronic circuits with Modelica," in *Modelica* '2000: The Modelica Workshop, Lund, Sweden, September 2000.
- A. Costa, A. Bassani, J. Febres, S. López Perez, S. Herrero López, M. Rämä, K. Klobut, Y. Stauffer, R. Carrillo, G. Naveran, M. Keane, and R. Sterling, "Indigo project: A simulation based approach to support district cooling design and operation," in *Proceedings of the 16th IBPSA Conference*, V. Corrado, E. Fabrizio, A. Gasparella, and F. Patuzzi, Eds. International Building Performance Simulation Association IBPSA, 2020, pp. 1913–1920, 16th IBPSA International Conference and Exhibition, Building Simulation 2019, BS 2019; Conference date: 02-09-2019 Through 04-09-2019.
- R. David and H. Alla, *Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems*. Prentice Hall, 1992.
- A. E. A. de Araujo and D. A. V. Tonidandel, "Steinmetz and the concept of phasor: A forgotten

- story," *International Journal of Control, Automation and Electrical Systems*, vol. 24, pp. 388–395, Apr. 2013.
- I. del Hoyo Arce, S. Herrero López, S. López Perez, M. Rämä, K. Klobut, and J. A. Febres, "Models for fast modelling of district heating and cooling networks," *Renewable and Sustainable Energy Reviews*, vol. 82, pp. 1863 1873, 2018.
- F. Di Pietro, J. Fernndez, G. Migoni, and E. Kofman, "Mixed-mode statetime discretization in ode numerical integration," *Journal of Computational and Applied Mathematics*, vol. 377, p. 112911, 2020.
- H. V. Dommel, "Digital computer solution of electromagnetic transients in single-and multiphase networks," *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-88, no. 4, pp. 388–399, Apr. 1969.
- S. A. Dorado-Rojas, M. N. Catalán, M. de Castro Fernandes, and L. Vanfretti, "Performance benchmark of Modelica time-domain power system automated simulations using Python," in *Proceedings of the American Modelica Conference 2020*, Boulder, Colorado, USA, Mar. 2020.
- P. Dubucq and G. Ackermann, "Optimal use of energy storage potentials in a renewable energy system with district heating," *Energy Procedia*, vol. 135, pp. 158 171, 2017, 11th International Renewable Energy Storage Conference, IRES 2017, 14-16 March 2017, Düsseldorf, Germany.
- DYNCAP:, "Dynamic Capture of CO2 Dynamic investigation of steam power processes with CO2 capturing for providing balancing energy," http://www.kraftwerkforschung.info/en/mehr-flexibilitaet-fuer-emissionsarme-kohlekraftwerke, 2011-2014.
- DYNSTART, "Start-up behavir of Power Plants Subtopic CO2," https://www.tuhh.de/alt/technische-thermodynamik/research/recent-projects/dynstart.html, 2015-2019.
- P. Eberhart, T. S. Chung, A. Haumer, and C. Kral, "Open source library for the simulation of wind power plants," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- E. Eich-Soellner and C. Führer, *Numerical Methods in Multibody Dynamics*. Springer Fachmedien Wiesbaden, 1998.
- H. Elmqvist, "A structured model language for large continuous systems," Ph.D. dissertation, Lund Institute of Technology, Lund, Sweden, 1978.
- H. Elmqvist and M. Otter, "Methods for tearing systems of equations in object oriented modeling," in *ESM'94: European Simulation Multiconference*, Barcelona, Spain, Jun. 1994.

- H. Elmqvist, S. E. Mattsson, and M. Otter, "Object-oriented and hybrid modeling in Modelica," *Journal Europen des systmes automatiss*, vol. 35, no. 1, pp. 1–X, 2001.
- H. Elmqvist, H. Tummescheit, and M. Otter, "Object-oriented modeling of thermo-fluid systems," in *Modelica'2003: The 3rd International Modelica Conference*, Linköping, Sweden, 2003.
- H. Elmqvist, "Modelica evolution from my perspective," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- H. Elmqvist and S. E. Mattsson, "Modelica The next generation modeling language: an international design effort," in ESS97: The 9th European Simulation Symposium, Passau, Germany, Oct. 1997.
- H. Elmqvist, S. E. Mattsson, and H. Olsson, "Parallel model execution on many cores," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- H. Elmqvist, H. Olsson, A. Goteman, V. Roxling, D. Zimmer, and A. Pollok, "Automatic gpu code generation of modelica functions," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- H. Elmqvist, T. Henningsson, and M. Otter, "Innovations for future Modelica," in *Modelica*'2017: *The 12th International Modelica Conference*, Prague, Czech Republic, May 2017.
- M. u. M. S. E. Elmqvist, Hilding und Otter, "Fundamentals of synchronous control in modelica," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- A. Elsheikh, E. Widl, and P. Palensky, "Simulating complex energy systems with modelica: A primary evaluation," in 2012 6th IEEE International Conference on Digital Ecosystems Technologies (DEST). IEEE, 2012, pp. 1–6.
- A. Elsheikh, "An equation-based algorithmic differentiation technique for differential algebraic equations," *Journal of Computational and applied Mathematics*, vol. 281, pp. 135 151, June 2015.
- —, "Derivative-based hybrid heuristics for continuous-time simulation-optimization," *Simulation Modelling Practice and Theory*, vol. 46, pp. pp. 164 175, Aug. 2014.
- ——, "Modeling parameter sensitivities using equation-based algorithmic differentiation techniques: The ADMSL.Electrical.Analog library," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Mar. 2014.
- —, "Dynamic Parameter Sensitivities: Summary of computation methods for continuoustime Modelica models," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.

- EMPHYSIS, "Embedded systems with physical models in the production code software," https://emphysis.github.io, 2017-2020.
- O. Enge, C. Clauß, P. Schneider, P. Schwarz, M. Vetter, and S. Schwunk, "Quasi-stationary AC analysis using phasor description with Modelica," in *Modelica'2006: The 5th International Modelica Conference*, Vienna, Austria, Sep. 2006.
- EUROSYSLIB, "European Leaderhip in System Modeling and Simulation through advanced Modelica Libraries," https://itea3.org/project/eurosyslib.html, 2007-2010.
- J. Ferreira and J. Estima de Oliveira, "Modelling hybrid systems using statecharts and Modelica," in *The 7th IEEE International Conference on Emerging Technologies and Factory Automation,* 1999. Proceedings. ETFA '99., vol. 2, 1999, pp. 1063 –1069 vol.2.
- J. M.-D. Filippo, M. Delgado, C. Brie, and H. M. Paynter, "A survey of bond graphs: Theory, applications and programs," *Journal of the Franklin Institute*, vol. 328, no. 5, pp. 565 606, 1991.
- X. Floros, F. E. Cellier, and E. Kofman, "Discretizing time or states?: A comparative study between DASSL and QSS (work in progress paper)," in *EOOLT'2010: The 3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools*, Oslo, Norway, Oct. 2010.
- X. Floros, F. Bergero, N. Ceriani, F. Casella, E. Kofman, and F. E. Cellier, "Simulation of smart-grid models using quantization-based integration methods," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- J. W. Forrester, *Industrial Dynamics*. M.I.T. Press, 1961.
- —, Urban Dynamics. M.I.T. Press, 1969.
- —, Principles of Systems. M.I.T. Press, 1971.
- —, World Dynamics. M.I.T. Press, 1971.
- R. Franke and H. Wiesmann, "Flexible modeling of electrical power systems the Modelica PowerSystems library," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- R. Franke, F. Casella, M. Otter, M. Sielemann, H. Elmqvist, S. E. Mattsson, and H. Olsson, "Stream connectors an extension of Modelica for device-oriented modeling of convective transport phenomena," in *Modelica'2009: The 7th International Modelica Conference*, Como, Italy, 2009.
- R. Franke, F. Casella, M. Sielemann, K. Proelss, M. Otter, and M. Wetter, "Standardization of

- themo-fluid modeling in Modelica. Fluid," in *Modelica'2009: The 7th International Modelica Conference*, Como, Italy, 2009.
- R. Franke, M. Walther, N. Worschech, W. Braun, and B. Bachmann, "Model-based control with fmi and a c++ runtime for modelica," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- L. Frayssinet, F. Kuznik, J.-L. Hubert, M. Milliez, and J.-J. Roux, "Adaptation of building envelope models for energy simulation at district scale," *Energy Procedia*, vol. 122, pp. 307 312, 2017, cISBAT 2017 International ConferenceFuture Buildings Districts Energy Efficiency from Nano to Urban Scale.
- P. Fritzson, A. Pop, M. Sjölund, and A. Ashgar, "MetaModelica a symbolic-numeric Modelica language and comparison to Julia," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.
- P. Fritzson, A. Pop, K. Abdelhak, A. Asghar, B. Bachmann, W. Braun, D. Bouskela, R. Braun,
  L. Buffoni, F. Casella, R. Castro, R. Franke, D. Fritzson, M. Gebremedhin, A. Heuermann,
  B. Lie, A. Mengist, L. Mikelsons, K. Moudgalya, L. Ochel, A. Palanisamy, V. Ruge,
  W. Schamai, M. Sjölund, B. A. Thiele, J. Tinnerholm, and P. Östlund, "The OpenModelica integrated environment for modeling, simulation, and model-based development," *Modeling, Identification and Control*, vol. 41, no. 4, pp. 241–295, 2020.
- M. Gebremedhin, A. H. Moghadam, P. Fritzson, and K. Stavåker, "A data-parallel algorithmic Modelica extension for efficient execution on multi-core platforms," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- M. Gevorkyan, M. Hnatich, I. M. Gostev, A. V. Demidova, A. V. Korolkova, D. S. Kulyabov, and L. A. Sevastianov, "The stochastic processes generation in OpenModelica," in *Distributed Computer and Communication Networks*, V. M. Vishnevskiy, K. E. Samouylov, and D. V. Kozyrev, Eds. Cham: Springer International Publishing, 2016, pp. 538–552.
- C. Gomes, C. Thule, D. Broman, P. Larsen, and H. Vangheluwe, "Co-simulation: A survey," *ACM Computing Surveys*, vol. 51, 05 2018.
- F. J. Gómez, M. A. Aguilera, S. H. Olsen, and L. Vanfretti, "Software requirements for interoperable and standard-based power system modeling tools," *Simulation Modelling Practice and Theory*, vol. 103, p. 102095, 2020.
- F. Gottelt, T. Hoppe, and L. Nielsen, "Applying the power plant library ClaRa for control optimisation," in *Modelica'2017: The 12th International Modelica Conference*, Prague, Czech

- Republic, May 2017.
- gPROMS, "Process systems enterprise," http://www.psenterprise.com/gproms/index.html.
- M. Gräber, C. Kirches, D. Scharff, and W. Tegethoff, "Using functional mocku-up units for nonlinear model predictive control," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- A. Hafez and A. Forsyth, "A review of more-electric aircraft," *13th International Conference on Aerospace Sciences and Aviation Technology*, vol. 13, 04 2009.
- A. Halder, N. Pal, and D. Mondal, "Transient stability analysis of a multimachine power system with test controller a zero dynamic design approach," *International Journal of Electrical Power & Energy Systems*, vol. 97, pp. 51 71, 2018.
- A. Haumer, C. Kral, J. Gragger V., and H. Kapeller, "Quasi-Stationary modeling and simulation of electrical circuits using complex phasors," in *Modelica* '2008: the 6th International Modelica Conference, Bielefeld, Germany, March 2008.
- A. Haumer, C. Kral, H. Kapeller, B. T., and J. Gragger V., "The AdvancedMachines library: Loss models for electric," in *Modelica'2009: The 7th International Modelica Conference*, Como, Italy, 2009.
- J.-P. Heckel and C. Becker, "Advanced modeling of electric components in integrated energysystems with the TransiEnt library," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.
- E. Henningsson, H. Olsson, and L. Vanfretti, "DAE solvers for large-scale hybrid models," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, 2019.
- I. A. Hiskens and M. A. Pai, "Trajectory sensitivity analysis of hybrid systems," *IEEE Transactions on Circuits and Systems Part I: Fundamental Theory and Applications*, vol. 47, no. 2, Feb. 2000.
- C. Höger, "Sparse causalisation of differential algebraic equations for efficient event detection," in *The 8th EUROSIM Congress on Modelling and Simulation*. Cardiff, UK: IEEE Computer Society, Sep. 2013, pp. 351–356.
- S. Hölemann and D. Abel, "Modelica predective control An MPC library for Modelica," *Automatisierungstechnik*, vol. 57, no. 4, pp. 187–194, Sep. 2009.
- Q. Huang, "Electromagnetic transient and electromechanical transient stability hybrid simulation: Design, development and its applications," Ph.D. dissertation, 11 2016.
- IBPSA, "IBPSA Project 1: BIM/GIS and Modelica Framework for building and community

- energy system design and operation," https://ibpsa.github.io/project1/index.html, 2018-2022.
- INDIGO, "New Generation of Intelligent Efficient District Cooling Systems," https://www.indigo-project.eu/, 2016-2020.
- ITESLA, "Innovative Tools for Electrical System Security within Large Areas," https://cordis.europa.eu/project/id/283012, 2012-2016.
- A. Joos, K. Dietl, and G. Schmitz, "Thermal separation: An approach for a Modelica library for absorption, adsorption and rectification," in *Modelica'2009: The 7th International Modelica Conference*, Como, Italy, 2009.
- F. Jorissen, G. Reynders, R. Baetens, D. Picard, D. Saelens, and L. Helsen, "Implementation and verification of the IDEAS building energy simulation library," *Journal of Building Performance Simulation*, vol. 11, no. 6, pp. 669–688, 2018.
- ——, "Implementation and verification of the ideas building energy simulation library," *Journal of Building Performance Simulation*, vol. 11, no. 6, pp. 669–688, 2018.
- S. N. Kalaschnikow, "PQLib a Modelica library for power quality analysis in networks," in *Modelica'2002: The 2nd International Modelica Conference*, Munich, Germany, 2002.
- Y. L. Karnavas and E. I. Lygouras, "Synchronous machine analysis and modelling in LabVIEW: An educational tool for transient stability studies," *The International Journal of Electrical Engineering & Education*, vol. 57, no. 3, pp. 202–229, 2018.
- A. Klöckner, A. Knoblach, and A. Heckmann, "How to shape noise spectra for continuous system simulation," *Mathematical and Computer Modelling of Dynamical Systems*, vol. 23, no. 3, pp. 284–300, 2017.
- A. Klökner, F. L. J. van der Linden, and D. Zimmer, "Noise generation for continuous system simulation," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- E. Kofman, "A third order discrete event simulation method for continuous system simulation," *Latin American Applied Research*, vol. 36, no. 2, pp. 101–108, 2006.
- ——, "A second-order approximation for DEVS simulation of continuous systems," *Simulation*, vol. 78, no. 2, pp. 76–89, 2002.
- ——, "Discrete event simulation of hybrid systems," *SIAM Journal of Scientific Computing*, vol. 25, no. 5, p. 17711797, May 2004.
- E. Kofman and S. Junco, "Quantized-state systems: A DEVS approach for continuous system simulation," *Simulation: Transactions of the Society for Computer Simulation International*,

- vol. 18, no. 3, pp. 123-132, 2001.
- J. Köhler, H.-M. Heinkel, P. Mai, J. Krasser, M. Deppe, and M. Nagasawa, "Modelica-Association-Project System Structure and Parameterization early insights," in *The First Japanese Modelica Conferences*, Tokyo, Japan, May 2016.
- A. Kolmogorov, "On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables," *Proceedings of the USSR Academy of Sciences*, vol. 108, p. 179182, 1956, (Russian).
- C. Kral and A. Haumer, "Modelica libraries for dc machines, three phase and polyphase machines," in *Modelica'2005: The 4th International Modelica Conference*, Hamburg, Germany, 2005.
- —, Object Oriented Modeling of Rotating Electrical Machines. InTech, 2011, ch. Advances in Computer Science and Engineering, pp. 135–160.
- —, "The new Fundamental Wave library for modeling rotating electrical three phase machines," in *Modelica'2011: The 8th International Modelica Conference*, Dresden, Germany, Mar. 2011.
- M. Krammer, K. Schuch, C. Kater, K. Alekeish, T. Blochwitz, S. Materne, A. Soppa, and M. Benedikt, "Standardized integration of real-time and non-real-time systems: The distributed co-simulation protocol," in *Modelica* '2019: The 13th International Modelica Conference, Regensburg, Germany, Mar. 2019.
- G. Kron, *Duakoptics The Piecewise Solution of Large-scale Systems*. London, UK: MacDonald & Co., 1963.
- P. Kundur, N. Balu, and M. Lauby, *Power System Stability and Control*, ser. Discussion Paper Series. McGraw-Hill Education, 1994.
- A. D. la Calle, J. Hinkley, P. Scott, and J. D. Pye, "SolarTherm: a new Modelica library and simulation platform for concentrating solar thermal power systems," in *The 9th Eurosim Congress*, Oulu, Finland, Sep. 2018.
- R. Lange, S. Traversaro, O. Lenord, and C. Bertsch, *Integrating the Functional Mock-Up Interface with ROS and Gazebo*. Cham: Springer International Publishing, 2021, pp. 187–231.
- M. Larsson, "ObjectStab a Modelica library for power system stability studies," in *Modelica* '2000: The Modelica Workshop, Lund, Sweden, September 2000.
- B. Leitner, E. Widl, W. Gawlik, and R. Hofmann, "A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids," *Energy*, vol. 182, pp. 729–738, Sep. 2019.

- A. Leitold and K. M. Hangos, "Structural solvability analysis of dynamic process models," *Computers & Chemical Engineering*, vol. 25, pp. 1633–1646, 2001.
- K. Link, H. Steuer, and A. Butterlin, "Deficiencies of Modelica and its simulation environments for large fluid systems," in *Modelica'2009: The 7th International Modelica Conference*, Como, Italy, 2009.
- X. Lu, K. Hinkelman, Y. Fu, J. Wang, W. Zuo, Q. Zhang, and W. Saad, "An open source modeling framework for interdependent energy-transportation-communication infrastructure in smart and connected communities," *IEEE Access*, vol. 7, 4 2019.
- K.-E. M. Otter and I. D. Årzén, "Stategraph-a modelica library for hierarchical state machines," in *Modelica'2005: The 4th International Modelica Conference*, Hamburg, Germany, 2005.
- C. Maffezzoni, R. Girelli, and P. Lluka, "Generating efficient computational procedures from declarative models," *Simulation Practice and Theory*, 1996.
- K. Majetta, S. Böhme, C. Clauß, and P. Schneider, "SPICE3 Modelica library," in *Modelica* '2009: *The 7th International Modelica Conference*, Como, Italy, 2009.
- K. Majetta, C. Clauß, M. Franke, and P. Schneider, "Improvement of MSL electrical analog library," in *Modelica'2009: The 7th International Modelica Conference*, Como, Italy, 2009.
- K. Majetta, S. Böhme, C. Clauß, and P. Schneider, "MSL electrical Spice3 Status and further development," in *Modelica'2011: The 8th International Modelica Conference*, Dresden, Germany, Mar. 2011.
- M. Mans, T. Blacha, P. Remmen, and D. Müller, "Automated model generation and simplification for district heating and cooling networks," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.
- W. Marquardt, "Trends in computer-aided process modeling," *Computers & Chemical Engineering*, vol. 20, no. 6, pp. 591 609, 1996, fifth International Symposium on Process Systems Engineering.
- T. Marx-Schubach and G. Schmitz, "Modeling and simulation of the start-up process of coal fired power plants with post-combustion co2 capture," *International Journal of Greenhouse Gas Control*, vol. 87, pp. 44 57, 2019.
- S. E. Mattsson and G. Söderlind, "Index reduction in differential-algebraic equations using dummy derivatives," *SIAM Journal on Scientific Computing*, vol. 14, no. 3, pp. 677 692, 1993.
- V. Mehrmann and L. Wunderlich, "Hybrid systems of differential-algebraic equations analysis

- and numerical solution," *Journal of Process Control*, vol. 19, no. 8, pp. 1218 1228, 2009, special Section on Hybrid Systems: Modeling, Simulation and Optimization.
- G. Migoni and E. Kofman, "Linearly implicitdiscrete event methods for stiff odes," *Latin American Applied Research*, Dec. 2009.
- G. Migoni, P. Rullo, F. Bergero, and E. Kofman, "Efficient simulation of hybrid renewable energy systems," *International Journal of Hydrogen Energy*, vol. 41, no. 32, pp. 13934 13949, 2016.
- M. Minz, L. Netze, and A. Monti, "A multi-level approach to power system Modelica models," in 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL). Trondheim, Norway: Norwegian University of Science and Technology, Jun. 2016.
- MODELISAR, "From System Modeling to S/W running on the Vehicle," https://itea3.org/project/modelisar.htmll, 2008-2011.
- MODRIO, "Model Driven Physical Systems Operation," https://itea3.org/project/modrio.html, 2012-2016.
- P. J. Mosterman, M. Otter, and H. Elmqvist, "Modeling petri nets as local constraint equations for hybrid systems using modelica," in *In: proceedings of the Summer Computer Simulation Conference -98*, 1998, pp. 314–319.
- D. Müller, M. Lauster, A. Constantin, M. Fuchs, and P. Remmen, "AixLib an open-source Modelica library within the IEA-EBC Annex 60 framework," in *BAUSIM'2016 IBPSA Germany*, Dresden, Germany, Sep. 2016.
- S. C. Müller and et al., "Interfacing power system and ICT simulators: Challenges, state-of-the-art, and case studies," *IEEE Transactions on Smart Grid*, vol. 9, no. 1, pp. 14–24, Jan. 2016.
- M. A. A. Murad, L. Vanfretti, M. Rokonuzzaman, and R. A. Tuhin, "Enhancing engineering studies in developing countries using OpenModelica," in 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), 2017.
- K. Murota, Systems Analysis by Graphs and Matroids. Berlin: Springer, 1987.
- T. S. Nouidui and M. Wetter, "Tool coupling for the design and operation of building energy and control systems based on the functional mock-up interface standard," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- C. Nytsch-Geusen and et al., "BuildingSystems Eine modular hierarchische Modell-Bibliothek zur energetischen Gebäude- und Anlagensimulation," in *BAUSIM'2016 IBPSA Germany*,

- Dresden, Germany, Sep. 2016.
- L. Ochel and et al., "Omsimulator integrated fmi and tlm-based co-simulation with composite model editing and ssp," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, 2019.
- D. Oeding and B. R. Oswald, Elektrische Kraftwerke und Netze, 8th ed. Springer, 2016.
- H. Olsson, M. Otter, H. Elmqvist, and D. Brück, "Operator overloading in modelica 3.1," in *Modelica* '2009: The 7th International Modelica Conference, Como, Italy, 2009.
- OPENCPS, "Open Cyber-Physical System Model-Driven Certified Development," https://www.opencps.eu/, 2015-2018.
- OPENPROD, "Open Model-Driven Whole-Product Development and Simulation Environment," https://itea3.org/project/openprod.html, 2009-2012.
- M. Otter and F. E. Cellier, *Software for Modeling and Simulating Control Systems*. Boca Raton, FL, US: CRC Press, 1996, ch. The Control Handbook, pp. 415–428.
- M. Otter, "The LinearSystems library for continuous and discrete control systems," in *Modelica* '2006: The 5th International Modelica Conference, Vienna, Austria, Sep. 2006.
- M. Otter and et al., "Formal requirement modeling for simulation-based verification," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- P. Palensky, A. A. Van Der Meer, C. D. Lopez, A. Joseph, and K. Pan, "Cosimulation of intelligent power systems: Fundamentals, software architecture, numerics, and coupling," *IEEE Industrial Electronics Magazine*, vol. 11, no. 1, pp. 34–50, 2017.
- P. Palensky, E. Widl, and A. Elsheikh, "Simulating cyber-physical energy systems: challenges, tools and methods," *IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, S. I. on Industrial Applications of Distributed Intelligent Systems*, 2012.
- P. Palensky, E. Widl, A. Elsheikh, and M. Stifter, "Modeling inteligent energy systems: Cosimulation platform for validating flexible-demand ev charging management," *IEEE Transactions on Smart Grid, SI: Real-Time Demand Response*, 2013.
- C. C. Pantelides, "The consistent initialization of differential-algebraic systems," *SIAM Journal on Scientific and Statistical Computing*, vol. 9, no. 2, pp. 213–231, Mar. 1988.
- H. M. Paynter, *Analysis and Design of Engineering Systems*. Cambridge, Massachusetts: MIT Press, 1961.
- PEGASE, "Pan European Grid Advanced Simulation and state Estimation," https://ieeexplore.ieee.org/document/6465783, 2008-2012.

- C. Perfumo, E. Kofman, J. H. Braslavsky, and J. K. Ward, "Load management: Model-based control of aggregate power for populations of thermostatically controlled loads," *Energy Conversion and Management*, vol. 55, pp. 36 48, 2012.
- A. Pfeiffer, M. Hellerer, S. Hartweg, M. Otter, and M. Reiner, "PySimulator A simulation and analysis environment in Python with plugin infrastructure," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- A. Pollok, A. Klöckner, and D. Zimmer, "Psychological aspects of equation-based modelling," *Mathematical and Computer Modelling of Dynamical Systems*, vol. 25, no. 2, 25 March 2019.
- A. Pop, M. Sjölund, A. Ashgar, P. Fritzson, and F. Casella, "Static and dynamic debugging of Modelica models," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- J. A. X. Prabhu, S. Sharma, M. Nataraj, and D. P. Tripathi, "Design of electrical system based on load flow analysis using etap for iec projects," in 2016 IEEE 6th International Conference on Power Systems (ICPS), March 2016, pp. 1–6.
- V. S. Prat, A. Urquia, and S. Dormido, "ARENALib: A modelica library for discrete-event system simulation," in *Modelica'2006: The 5th International Modelica Conference*, Vienna, Austria, Sep. 2006.
- C. Protopapadaki and D. Saelens, "Heat pump and pv impact on residential low-voltage distribution grids as a function of building and district properties," *Applied Energy*, vol. 192, pp. 268 281, 2017.
- ——, "Towards metamodeling the neighborhood-level grid impact of low-carbon technologies," *Energy and Buildings*, vol. 194, pp. 273 288, 2019.
- J. R. Ragazzini, R. H. Randall, and F. A. Russell, "Analysis of problems in dynamics by electronic circuits," *Proceedings of the IRE*, vol. 35, no. 5, pp. 444–452, 1947.
- B. Rahrovi and M. Ehsani, "A review of the more electric aircraft power electronics," 02 2019, pp. 1–6.
- A. Rande and F. Casella, "Multi-rate integration algorithms: a path towards efficient simulation of object-oriented models of very large systems," in *EOOLT'2014: The 6h International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools*, Berin, Germany, Apr. 2014.
- ResiliEntEE, "Resilience of integrated energy networks with a high share of renewable Energies," https://www.tuhh.de/transient-ee/en/projectdescription.html, 2017-2021.

- J. R. Rice, "Split Runga-Kutta method for simultaneous equations," *Journal of Research of the National Bureau of Standards B. Mathematics and Mathematical Physics*, vol. 64B, no. 3, Jul. 1960.
- M. Richter, G. Oeljeklaus, and K. Grner, "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," *Applied Energy*, vol. 236, pp. 607 621, 2019.
- S. Roberts, A. Sarshar, and A. Sandu, "Coupled multirate infinitesimal GARK schemes for stiff systems with multiple time scales," *SIAM Journal on Scientific Computing*, vol. 42, p. A1609A1638, Nov. 2018.
- B. Sabeeh and C. Gan, "Power system frequency stability and control: Survey," vol. 11, pp. 5688–5695, 05 2016.
- L. Saldamli, P. Fritzson, and B. Bachmann, "Extending Modelica for partial differential equations," in *Modelica'2002: The 2nd International Modelica Conference*, Munich, Germany, 2002.
- V. Sanz and A. Urquia, "Modelica extensions for supporting message passing communication and dynamic data structures," in *EOOLT'2016: The 7h International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools*, Milan, Italy, Apr. 2016.
- V. Sanz, A. Urquia, F. E. Cellier, and S. Dormido, "Modeling of hybrid control systems using the DEVSLIB Modelica library," *Control Engineering Practice*, vol. 20, no. 1, pp. 24–34, Jan. 2012.
- ——, "Hybrid system modeling using the SIMANLib and ARENALib modelica libraries," *Simulation Modelling Practice and Theory*, vol. 37, pp. 1–17, Sep. 2013.
- V. Sanz, A. Urquia, and F. Casella, "Improving efficiency of hybrid system simulation in Modelica," in *EOOLT'2014: The 6h International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools*, Berin, Germany, Apr. 2014.
- V. Sanz, A. Urquia, and A. Leva, "1d/2d cellular automata modeling with modelica," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- ——, "CellularAutomataLib2 : improving the support for cellular automata modelling in Modelica," *Mathematical and Computer Modelling of Dynamical Systems*, vol. 22, no. 3, pp. 244–264, May 2016.
- V. Sanz, F. Bergero, and A. Urquia, "An approach to agent-based modeling with Modelica," *Simulation Modelling Practive and Theory*, vol. 83, pp. 65–74, Apr. 2018.

- V. Savcenco, "Construction of a multirate RODAS method for stiff ODEs," *Journal of Computational and Applied Mathematics*, vol. 225, no. 2, pp. 323 337, 2009.
- F. Schiavo and F. Casella, "Object-oriented modelling and simulation of heat exchangers with finite element methods," *Mathematical and Computer Modelling of Dynamical Systems*, vol. 13, no. 3, pp. 211–235, May 2007.
- G. F. Schneider, J. Oppermann, A. Constantin, R. Streblow, and D. Müller, "Hardware-in-the-Loop-Simulation of a building energy and control system to investigate circulating pump control using modelica," in *Modelica'2015: The 11th International Modelica Conference*, Paris, France, Sep. 2015.
- G. Schweiger, G. Engel, S. J., I. Hafner, T. S. Nouidui, and C. Gomes, "Co-simulation an empirical survey: Applications, recent developments and future challenges," *Simulation Notes Europe*, vol. 30, no. 2, pp. 73–76, Jun. 2020.
- G. Schweiger, H. Nilsson, J. Schoeggl, W. Birk, and A. Posch, "Modeling and simulation of large-scale systems: A systematic comparison of modeling paradigms," *Applied Mathematics and Computation*, vol. 365, 2020.
- M. Sielemann and G. Schmitz, "A quantitative metric for robustness of nonlinear algebraic equation solvers," *Mathematics and Computers in Simulation*, vol. 81, no. 12, pp. 2673 2687, 2011.
- M. Sielemann, F. Casella, and M. Otter, "Robustness of declarative modeling languages: Improvements via probability-one homotopy," *Simulation Modelling Practice and Theory*, vol. 38, pp. 38–57, Nov. 2013.
- M. Sielemann, "probability-one homotopy for robust initialization of differential-algebraic equations," in *Modelica'2012: The 9th International Modelica Conference*, Munich, Germany, Sep. 2012.
- C. P. Steinmetz, "Complex quantities and their use in Electrical Engineering," in *Proceedings* of the International Electrical Congress, Conference of AIEE (American Institute of Electrical Engineers Proceedings), Chicago, USA, 1893, pp. 33–74.
- G. Sulligoi, A. Vicenzutti, and R. Menis, "All-electric ship design: From electrical propulsion to integrated electrical and electronic power systems," *IEEE Transactions on Transportation Electrification*, vol. 2, no. 4, pp. 507–521, Dec 2016.
- B. Thiele, M. Otter, and S. E. Mattsson, "Modular multi-rate and multi-method real-time simulation," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden,

- Apr. 2014.
- B. Thiele, T. Beutlich, V. Waurich, M. Sjölund, and T. Bellmann, "Towards a standard-conform platform-generic and feature-rich Modelica device drivers library," in *Modelica'2017: The* 12th International Modelica Conference, Prague, Czech Republic, May 2017.
- J. S. Thongam, M. Tarbouchi, A. F. Okou, D. Bouchard, and R. Beguenane, "All-electric ships a review of the present state of the art," in 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), March 2013, pp. 1–8.
- M. Tiller and D. Winkler, "impact A Modelica Package Manager," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- TransiEnt, "Transient Behavior of Integrated Energy Networks with a High Share of Renewable Energies," https://www.tuhh.de/transient-ee/en/project.html, 2013-2017.
- A. Ulbig, T. S. Borsche, and G. Andersson, "Impact of low rotational inertia on power system stability and operation," *IFAC Proceedings Volumes*, vol. 47, no. 3, pp. 7290 7297, 2014, 19th IFAC World Congress.
- V. Valdivia-Guerrero, R. Foley, S. Riverso, P. Govindaraju, A. Elsheikh, L. Mangeruca, G. Burgio, A. Ferrari, M. Gottschall, T. Blochwitz, S. Bloch, D. Taylor, D. Hayes-McCoy, and A. Himmler, "Modelling and simulation tools for systems integration on aircraft," in *SAE Technical Paper*. SAE International, 09 2016.
- F. L. J. van der Linden, "General fault triggering architecture to trigger model faults in Modelica using a standardized blockset," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- L. Vanfretti, T. Bogodorova, and M. Baudette, "A Modelica power system component library for model validation and parameter identification," in *Modelica'2014: The 10th International Modelica Conference*, Lund, Sweden, Apr. 2014.
- L. Vanfretti, T. Rabuzin, M. Baudette, and M. M., "itesla power systems library (iPSL): A Modelica library for phasor time-domain simulations," *SoftwareX*, vol. 5, pp. 84–88, 2016.
- L. Vanfretti, M. Baudette, A. Amazouz, T. Bogodorova, T. Rabuzin, J. Lavenius, and F. J. Gomz-Lpez, "Rapid: A modular and extensible toolbox for parameter estimation of modelica and fmi compliant models," *SoftwareX*, vol. 5, pp. 144 149, 2016.
- F. Villella, S. Leclerc, I. Erlich, and S. Rapoport, "Pegase pan-european test-beds for testing of algorithms on very large scale power systems," in 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, Oct. 2012.

- J. Šilar, F. Ježek, and J. Kofránek, "PDEModelica: a modelica language extension for partial differential equations implemented in openmodelica," *International Journal of Modelling and Simulation*, vol. 38, no. 2, pp. 128–137, 2018.
- J. Webster and C. Bode, "Implementation of a non-discretized multiphysics PEM electrolyzer model in Modelica," in *Modelica'2019: The 13th International Modelica Conference*, Regensburg, Germany, Mar. 2019.
- M. Wetter and C. Haugstetter, "Modelica versus trnsys a comparison between an equation-based and a procedural modeling language for building energy simulation," in *The 2nd SimBuild Conference*, Cambridge, MA, USA, August 2006.
- M. Wetter, C. Van Treeck, L. Helsen, A. Maccarini, D. Saelens, D. Robinson, and G. Schweiger, "Ibpsa project 1: Bim/gis and modelica framework for building and community energy system design and operation ongoing developments, lessons learned and challenges," *IOP Conference Series / Earth and Environmental Science*, vol. 323, no. 1, 9 2019.
- M. Wetter and et al., "IEA EBC Annex 60 Modelica Library An international collaboration to develop a free open-source model library for buildings and community energy systems," in *14th IBPSA Conference*, Hyderabad, India, Dec. 2015.
- M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, "Modelica Buildings library," *Journal of Building Performance Simulation*, vol. 7, no. 4, pp. 253–270, 2014.
- E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, and P. Palensky, "The FMI++ library: A high-level utility package for FMI for model exchange," in *The IEEE Workshop on Modeling and Simulation of Cyber-Physical Energy Systems*, Berkeley, USA, May 2013.
- D. Winkler, "Electrical power system modelling in Modelica comparing open-source library options," in *SIMS2017: The 58th Conference on Simulation and Modelling*, Reykjavik, Iceland, Sep. 2017.
- L. Zabala, J. Febres, R. Sterling, S. Lpez, and M. Keane, "Virtual testbed for model predictive control development in district cooling systems," *Renewable and Sustainable Energy Reviews*, vol. 129, p. 109920, 2020.
- B. P. Zeigler and J. S. Lee, "Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment," in *Enabling Technology for Simulation Science II*, A. F. Sisti, Ed., vol. 3369, International Society for Optics and Photonics. SPIE, 1998, pp. 49 58.
- B. P. Ziegler, Theory of Modeling and Simulation. New York, USA: John Wiley & Sons, 1976.
- D. Zimmer, "A new framework for the simulation of equation-based models with variable

structure," SIMULATION, vol. 89, no. 8, pp. 935-963, 2013.

——, "Equation-based modeling with Modelica – principles and future challenges," *Simulation Notes Europe*, vol. 26, no. 2, pp. 67–74, Jun. 2016.