I. First examples

Example (French social security number)

A French social security number has the following format: s yy mm dd iii oooo kk, where:

- *s*: 1 for male, 2 for female
- yy: year of birth
- mm: month of birth
- *dd*: department of birth
- iii and ooo: Insee number and registering order
- kk: a security key to be able to identify errors in the values above.

Example (Repetition encoding)

 $b\in \mathbb{F}_2 \mapsto (b,...,b)\in \mathbb{F}_2^n\colon$

- detects any error pattern of < n errors.
- corrects up to $\left\lfloor \frac{n-1}{2} \right\rfloor$ errors by majority voting.
- · but not efficient because we transmit many bits.

Example (Parity encoding)

$$(b_1,...,b_{n-1})\mapsto \left(b_1,...,b_{n-1},\sum_{i=1}^{n-1}b_i\right):$$
 • detects only one error.

- does not correct.

II. Error correcting codes

II.1. Definitions

Definition (Linear code)

A linear code is a subspace $\mathcal{C} \subseteq \mathbb{F}_2^n$.

Remarks:

- In the next lectures, \mathbb{F}_2 might be replaced by $\mathbb{F}_q \ (q>2).$
- Anne C. will use a bit non-linear codes (i.e. \mathcal{C} is an arbitrary subset of \mathbb{F}_2^n).

II.2. Parameters

Definition (Hamming distance)

The Hamming distance between $x, y \in \mathbb{F}_2^n$ is $d_H(x, y) = |\{i \mid x_i \neq y_i\}|$.

The Hamming weight of $x \in \mathbb{F}_2^n$ is $w_H(x) = d_H(x,0)$.

A code $\mathcal{C} \in \mathbb{F}_2^n$ is associated to 3 fundamental parameters:

- its length n
- its dimension $k = \dim_{\mathbb{F}_2}(\mathcal{C}) = \log_2 |\mathcal{C}|$ (for non-linear codes)
- its minimal distance $d \stackrel{\text{\tiny 2}}{=} d_{\min} \mathcal{C} = \min_{x,y \in \mathcal{C}} \{d_H(x,y)\}$

Equivalently, if
$$\mathcal C$$
 is linear, $d=d_{\min}(\mathcal C)=\min_{\substack{x\in\mathcal C\\x\neq 0}}\{w_H(x)\}.$

Example (Repetition code)

 $\{(0...0),(1...1)\}\subseteq \mathbb{F}_2^n$ with parameters:

- *k* = 1
- d=n

Example (Parity code)

 $\{c \in \mathbb{F}_2^n \ | \ w_H(c) \text{ is even} \}$ with parameters:

- k = n 1

Exercise. Show that this is a linear space.

Let $x, y \in \mathcal{C}$, we want to prove that $w_H(x+y)$ is even too, i.e. x+y has an even number of 1's. x and y both have an even number of 1's because they belong in \mathcal{C} .

• We can remove 1's where x and y agree (all indexes i such that $x_i = y_i = 1$), because they lead to 0's. We're left with p indexes in x that will add up to a 0 in y leading to a 1, and $p + 2k(k \in \mathbb{Z})$ indexes from y in a similar fashion. Thus, there are 2p + 2k 1's in x + y.

Intuitively $\frac{k}{n}$ is a measure of efficiency and $\frac{d}{n}$ of ability to correct.

Notations.

- We usually denote parameters of $\mathcal{C}\subseteq\mathbb{F}_2^n$ as $[n,k,d]_q$ or $[n,k]_q$ if d is unknown.
- We denote:

 - $R := \frac{k}{n}$ the rate of the code $\delta := \frac{d}{n}$ the relative distance

There is a tradeoff between R and δ .

Having a δ close to 1 is a good criterion to indicate that we might be able to correct, but it is not sufficient by itself.

II.3. How to represent a linear code?

II.3.1. Using generator matrices

Definition (Generator matrix)

A generator matrix $G \in \mathbb{F}_2^{l \times n}$ is a matrix whose rows span $\mathcal C$ as a vector space $(l \geq k)$, i.e. $\mathcal C = 0$ $\{mG \mid m \in \mathbb{F}_2^l\}.$

Remark. $\mathbb{F}_2^l \to \mathbb{F}_2^n \atop m \mapsto mG$ is an encoding map (take l=k).

Note that in coding theory, vector are rows.

II.3.2. Parity-check matrices

Definition (Parity-check matrix)

A parity-check matrix (p.c.m.) $H \in \mathbb{F}_2^{l \times n} \ (l \leq n-k)$ is a matrix whose right kernel is \mathcal{C} , i.e. $\mathcal{C} = \{y \in \mathbb{F}_2^n \mid Hy^T = 0\}$.

II.3.3. Examples of such matrices

Example (Repetition code)

•
$$G = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}$$
• $H = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 1 & 1 \end{pmatrix}$

Example (Parity code)

- G: take H above.
- H: take G above.

There will be a lecture on this duality.

III. The Hamming code

III.1. Further properties of the minimal distance

Prop (Disjoint balls)

Let $\mathcal{C} \subseteq \mathbb{F}_2^n$ be a code with minimum distance d.

Then, the sets $B \big(c, \left \lfloor \frac{d-1}{2} \right \rfloor \big)$ when c ranges over $\mathcal C$ are pairwise disjoint.

Proof. Exercise or see the official lecture notes.

Prop (Linearly linked columns of p.c.m.)

Let $\mathcal{C} \subseteq \mathbb{F}_2^n$ be a code with parity-check matrix H.

Then, d is the smallest number of linearly linked columns of H.

Proof. Same as above.

III.2. Definition

Definition (Hamming code)

The $\mathit{Hamming\ code}$ is the code in \mathbb{F}_2^7 with p.c.m.

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Prop (Hamming code parameters)

The Hamming code is $[7, 4, 3]_2$.

- dimension = 4, indeed, rk(H) = 3 so dim(ker(H)) = 7 rk(H) (by rank nullity theorem).
- minimum distance:
 - $d \le 3$: $y = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$ is in the code
 - d > 1: since no zero column in H
 - d > 2: no two equal columns (because we're in \mathbb{F}_2)

(Fun?) fact: the Hamming code corrects one error:

Suppose we receive
$$y=c+e$$
 with $c\in\ker(H)$ and $w_{H(e)}=1$, ie $e=\begin{pmatrix}0&\dots&1&0&\dots0\\&&&i-\text{th position}&0&\dots0\end{pmatrix}$ Compute $Hy^T=\underbrace{Hc^T}_{0}+\underbrace{He^T}_{i-\text{th column of }H}$ then return $y+e_i$.

III.3. Comparison

- Hamming code has rate R = 4/7 that corrects a 1/7 error ratio.
 Repetition code has rate R = 1/7 and corrects a 3/7 error ratio.

Hamming code yields a better tradeoff.