DM872 Mathematical Optimization at Work

TSP practice

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark Outline

2

Traveling Salesman Problem

https://www.math.uwaterloo.ca/tsp/

3

Dynamic Programming

- Dynamic Programming (DP) is a technique to solve combinatorial optimization problems with applications, for example, in mathematical programming, optimal control, and economics
- DP is somehow related to branch-and-bound as it performs an intelligent enumeration of the feasible solutions of the problem considered
- Principle of Optimality (known as Bellman Optimality Conditions): Suppose that the solution of a problem is the result of a sequence of n decisions $D_1, D_2, ..., D_n$; if a given sequence is optimal, then the first k decisions must be optimal, but also the last n-k decisions must be optimal
- DP breaks down the problem into stages, at which decisions take place, and find a recurrence relation that relates each stage with the previous one

Principle of Optimality

The TSP asks for the shortest tour that starts from 0, visits all cities of the set $C = \{1, 2, ..., n\}$ exactly once, and returns to 0, where the cost to travel from i to j is c_{ij} (with $(i,j) \in A$) If the optimal solution of a TSP with six cities is (0,1,3,2,4,6,5,0), then...

- the optimal solution to visit $\{1, 2, 3, 4, 5, 6\}$ starting from 0 and ending at 5 is (0, 1, 3, 2, 4, 6, 5)
- the optimal solution to visit $\{1,2,3,4,6\}$ starting from 0 and ending at 6 is (0,1,3,2,4,6)
- the optimal solution to visit $\{1,2,3,4\}$ starting from 0 and ending at 4 is (0,1,3,2,4)
- the optimal solution to visit $\{1,2,3\}$ starting from 0 and ending at 2 is (0,1,3,2)
- the optimal solution to visit $\{1,3\}$ starting from 0 and ending at 3 is (0,1,3)
- the optimal solution to visit 1 starting from 0 is (0,1)
- → The optimal solution is made up of a number of optimal solutions of smaller subproblems

Enumerate All Solutions of the TSP

• A solution of a TSP with *n* cities derives from a sequence of *n* decisions, where the *k*th decision consists of choosing the *k*th city to visit in the tour

- The number of nodes (or states) grows exponentially with n
- At stage k, the number of states is $\binom{n}{k} k!$
- With n = 6, at stage k = 6, 720 states are necessary

→ DP finds the optimal solution by implicitly enumerating all states but actually generating only some of them

Are All States Necessary?

If path (0,1,2,3) costs less than (0,2,1,3), the optimal solution cannot be found in the blue part of the tree

7

Are All States Necessary?

If path (0,1,2,3,4,5) costs less than (0,1,2,4,3,5), the optimal solution cannot be found in the blue part of the tree

.

Are All States Necessary?

- At stage k $(1 \le k \le n)$, for each subset of cities $S \subseteq C$ of cardinality k, it is necessary to have only k states (one for each of the cities of the set S)
- At state k = 3, given the subset of cities $S = \{1, 2, 3\}$, three states are needed:
 - the shortest-path to visit 5 by starting from 0 and ending at 1
 - the shortest-path to visit S by starting from 0 and ending at 2
 - the shortest-path to visit 5 by starting from 0 and ending at 3
- At stage k, $\binom{n}{k}k$ states are required to compute the optimal solution (not $\binom{n}{k}k!$)

#States	n = 6		
	Stage	$\binom{n}{k} k!$	$\binom{n}{k} k$
	1	6	6
	2	30	30
	3	120	60
	4	360	60
	5	720	30
	6	720	6

•

Complete Trees with n=4

Dynamic Programming Recursion for the TSP I

- Given a subset $S \subseteq C$ of cities and $k \in S$, let f(S, k) be the optimal cost of starting from 0, visiting all cities in S, and ending at k
- Begin by finding f(S, k) for |S| = 1, which is $f(\{k\}, k) = c_{0k}, \forall k \in C$
- To compute f(S, k) for |S| > 1, the best way to visit all cities of S by starting from 0 and ending at k is to consider all $j \in S \setminus \{k\}$ immediately before k, and look up $f(S \setminus \{k\}, j)$, namely

$$f(S,k) = \min_{j \in S \setminus \{k\}} \{f(S \setminus \{k\}, j) + c_{jk}\}$$

• The optimal solution cost z^* of the TSP is $z^* = \min_{k \in C} \{ f(C, k) + c_{k0} \}$

Dynamic Programming Recursion for the TSP II

DP Recursion from [Held and Karp (1962)]

- 1. Initialization. Set $f(\{k\}, k) = c_{0k}$ for each $k \in C$
- 2. RecursiveStep. For each stage r = 2, 3, ..., n, compute

$$f(S,k) = \min_{j \in S \setminus \{k\}} \{f(S \setminus \{k\}, j) + c_{jk}\} \forall S \subseteq C : |S| = r \text{ and } \forall k \in S$$

3. Optimal Solution. Find the optimal solution cost z^* as

$$z^* = \min_{k \in C} \{ f(C, k) + c_{k0} \}$$

- With the DP recursion, TSP instances with up to 25 30 customers can be solved to optimality; other solution techniques (i.e., branch-and-cut) are able to solve TSP instances with up to... 85900 customers
- Nonetheless, DP recursions represents the state-of-the-art solution techniques to solve a wide variety of PDPs

Dantzig, Fulkerson and Johnson (DFJ) Formulation

- Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in a printed circuit board manufacturing process or car manufacturing process
- n locations, cii cost of travel

Variables:

$$x_{ij} = \begin{cases} 1 \\ 0 \end{cases}$$

Objective:

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

Constraints:

•

$$\sum_{j:j\neq i} x_{ij} = 1$$
 $\sum_{i:i\neq i} x_{ij} = 1$

$$\forall i = 1, \ldots, n$$

$$\forall j=1,\ldots,n$$

• cut set constraints

$$\sum_{i \in S} \sum_{j \notin S} x_{ij} \ge 1$$

$$\forall S \subset N, S \neq \emptyset$$

• subtour elimination constraints

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1$$

$$\forall S \subset \textit{N}, 2 \leq |S| \leq \textit{n} - 1$$

Miller, Tucker, Zemling (MTZ) Formulation

$$\min \sum_{(ij) \in A} c_{ij} x_{ij} \tag{1}$$

$$\sum_{i:i \neq j} x_{ij} = 1 \qquad \forall j = 1, \dots, n \tag{2}$$

$$\sum_{j:i \neq j} x_{ij} = 1 \qquad \forall i = 1, \dots, n \tag{3}$$

$$u_i - u_j + n x_{ij} \leq n - 1, \qquad \forall i, j = 2, 3, \dots, n, i \neq j \tag{4}$$

$$x_{ij} \in \mathbb{B} \qquad \forall ij \in A \tag{5}$$

$$u_i \in \mathbb{R} \qquad \forall i = 1, \dots, n \tag{6}$$

Gavish-Graves (GG) Formulation

 $g_{ij} \in \mathbb{R}^+$ sequence variables (0 if $x_{ij} = 0$ otherwise indicates the position of node i and j in the tour.

$\min \sum_{(ij)\in A} c_{ij} x_{ij}$		(7)
$\sum_{i:i eq j} x_{ij} = 1$	$orall j=1,\ldots,n$	(8)
$\sum_{j:i eq j} x_{ij} = 1$	$\forall i=1,\ldots,n$	(9)
$g_{ji}-g_{ij}=1$	$\forall i = 2n$	(10)
$g_{ij} \leq (n-1)x_{ij}$	$orall ij \in \mathcal{A}$	(11)
$x_{ij} \in \mathbb{B}$	$orall ij \in \mathcal{A}$	(12)
$g_{ij} \in \mathbb{R}^+$	$orall ij \in A$	(13)

Svestka (S) Formulation

- f: gain in flow from city i to city j
- $x_{ii} = 1$: if we drive from city *i* to city *j*, else 0

•
$$y_{ij}$$
: flow from city i to city j ; else i
• y_{ij} : flow from city i to city j
 $\min \sum_{ij \in A} c_{ij} x_{ij}$
 $\sum_{ij \in A} y_{ji} \ge 1$

$$\min \sum_{ij \in A} c_{ij} imes_{ij} \ \sum_{i : i = A} y_{ji} \geq 1$$

$$\sum_{j:ij\in A} y_{ij} - \sum_{j:ji\in A} y_{ji} = f$$

$$\sum_{j:ij\in A} x_{ij} \leq n$$

$$\sum_{ij\in A} x_{ij} \le n$$

 $x_{ii} \in \mathbb{B}$

 $y_{ii} \in \mathbb{R}^+$

$$\sum_{ij \in A} x_{ij} = x_{ij}$$
$$y_{ii} < (1 + n f)x_{ii}$$

$$\sum_{ij\in A} x_{ij} \leq n$$

$$\sum_{j:ij\in A} y_{ij} - \sum_{j:ji\in A} y_{ji} = f$$

(14)

(15)

(16)

(17)

(18)

(19)

(20)17

- $\forall i = 2, \dots, n$
- $\forall i = 1, \ldots, n$

 $\forall ii \in A$

 $\forall ii \in A$

 $\forall ii \in A$

Dantzig (D) Formulation

- Indices: *i*, *jk* for cities, *t* for step
- $x_{ijt} = 1$ if we drive from city i to city j at step t, else 0.

$$\min \sum_{ij \in A} \sum_{t} c_{ij} x_{ijt}$$

$$\sum_{i} x_{ijt} - \sum_{k} x_{j,k,t+1} = 0$$

$$\sum_{j} \sum_{t} x_{ijt} = 1$$

$$x_{ijt} \in \mathbb{B}$$

$$\forall i = 1, \dots, n$$

$$\forall i = 1, \dots, n$$

$$\forall i \in A, t$$

$$(24)$$

$$(25)$$

$$\begin{split} \text{(TSPIP)} & \quad \min \; \sum c_{ij} x_{ij} \\ & \quad \text{s.t.} \; \sum_{ij \in \delta(i)} x_{ij} + \sum_{ji \in \delta(i)} x_{ji} = 2 \; \text{for all} \; i \in V \\ & \quad \sum_{ij \in E(S)} x_{ij} \leq |S| - 1 \; \text{for all} \; \emptyset \subset S \subset V, 2 \leq |S| \leq n - 1 \\ & \quad x_{ij} \in \{0,1\} \; \text{for all} \; ij \in E \end{split}$$