课程导论

李修成

计算机科学与技术学院

课程简介

课程信息

- 课程名称: 离散数学 (Discrete Mathematics)
- 授课教师:李修成,信息楼 1906
- 课程 QQ 群: 814691064
- 助教: 尹昊, 李楚阳, 吴华龙, 陈弘毅
- 学时: 64 (理论) + 0 (实验)
- 成绩: 30% 作业 + 70% 考试

■ 指定教材:《离散数学》第二版,屈婉玲,耿素云,张立昂.

■ 推荐参考:《离散数学及其应用》, 肯尼思·罗森1.

¹Discrete Mathematics and Its Applications, Kenneth H. Rosen.

基本内容

- 数理逻辑
- 集合论 (set theory)
 - 集合的基本概念
 - 函数
 - 二元关系
- 图论 (graph theory)
 - 图的基本概念
 - 有向图、无向图、平面图、树
 - 图的着色、匹配

学习动机

- 集合论是始于 19 世纪末康托 (Cantor) 与戴德金 (Dedekind) 的研究.
- 集合论是现代数学的基础语言,催生了一大批数学理论.
- 戴德金基于集合论定义了实数,为数学分析奠定了基础.
- 基于集合论发展出的测度论成为了勒贝格积分的基础;
- 科莫戈洛夫 (Kolomogorov) 使用测度论和勒贝格积分公理化了概率论.
- 基于集合论发展出的点集拓扑理论,开辟了更宽广的数学空间.
- 布尔巴基学派(Bourbaki)使用集合论和公理化体系重建了现代数学.

学习动机

对计算机科学而言,集合论是进行抽象化和形式化描述的基础语言,是我们后续学习

- 图论
- 算法与数据结构
- 形式语言、编译原理
- 数据库的基础.

学习动机

- 图是我们描述和建模非欧式结构化数据(non-Euclidean structured data)的标准工具.
- 图论既是数学的分支也是理论计算机的主要研究对象,图上的算法应用极其宽广.
- 从传统的道路网络、社交网络、流量网络、最优匹配到推荐算法、知识图谱,
- 与深度学习融合产生的图神经网络,是 Al4Science, 如
 - 气象预测
 - 蛋白质结构推断
 - 分子性质预测
 - 新药物(靶向药物、抗体)研发等的基础工具.

命题与逻辑

- 命题(proposition)是一个可以判断真伪的声明式语句(declarative sentence),
- 其要么为真,要么为假,不能既真也假.

例子 2.1 (命题).

- 北京是中国的首都.
- 1+1=2.
- 2+2=3.

例子 2.2 (非命题).

- 现在是几点?
- 请把门打开.
- x+1=2.

- 我们通常用字母 *p*, *q*, *r*, *s*, . . . 来表示命题.
- 如果一个命题为真命题,我们称其真值(truth value)为真,记为 T (True).
- 如果一个命题为假命题,我们称其真值(truth value)为假,记为 F (False).

定义 *2.1.* 令 p 为命题,命题的<mark>否定式</mark> (negation),"not p",记作 $\neg p$. $\neg p$ 的真值为命题 p 真值的取反.

- p: Tom's PC runs Linux; $\neg p$: Tom's PC does not run Linux.
- $p: 1+1=2; \neg p: 1+1\neq 2.$

定义 2.2. 令 p 与 q 为命题. p 与 q 的<mark>合取式</mark>(conjunction)为命题 "p and q",记作 $p \wedge q$. $p \wedge q$ 为真当 p,q 同时为真,否则为假.

定义 2.3. 令 p 与 q 为命题. p 与 q 的<mark>析取式</mark>(disjunction)为命题 "p or q",记作 $p \vee q$. $p \vee q$ 为假当 p,q 同时为假,否则为真.

我们可以用一个表来枚举命题真值的各种可能,该表被称为真值表(truth table).

合取式真值表					
p	$p q p \wedge q$				
1	1	1			
1	0	0			
0	1	0			
0	0	0			

析取式真值表				
$p q p \lor q$				
1	1	1		
1	0	1		
0	1	1		
0	0	0		

定义 *2.4.* 令 p 与 q 为命题. p 与 q 的<mark>异或命题</mark>(exclusive or)为真当且仅当 p, q 其中一个为真另一个为假,否则命题为假,记作 $p \oplus q$.

定义 2.5. 令 p 与 q 为命题. p 与 q 的<mark>蕴含式</mark> (conditional statement) 定义为 "if p, then q", 记为 $p \to q$. p 称为蕴含式的前件,q 称为蕴含式后件. 条件语句 $p \to q$ 只有当 p 为真 q 为假时为假,其他情况都为真.

异或真值表			
$p-q-p\oplus q$			
1	1	0	
1	0	1	
0	1	1	
0	0	0	

蕴含式真值表				
p	q	$p \rightarrow q$		
1	1	1		
1	0	0		
0	1	1		
0	0	1		

- 条件语句 $p \rightarrow q$ 在英文中有多种表达,
- "if p, q", "q if p", "q when p"
- "p is sufficient for q"
- "q is a necessary condition for p"
- "q unless $\neg p$ "

例子 2.3.

- "If I am elected, then I will lower taxes."
- "I will lower taxes when I am elected."
- "I will lower taxes unless I am not elected."

定义 2.6. 令 p 与 q 为命题. p 与 q 的等价式(biconditional statement)定义为 "p if and only if q",记作 $p \leftrightarrow q$. 当 p 与 q 有相同的真值时,命题 $p \leftrightarrow q$ 为真,否则为假.

- $p \leftrightarrow q$ 在英文中的常见表达,
- lacktriangledown " p is necessary and sufficient for q"
- "if p then q, and conversely"
- "p iff q", "p exactly when q"

等价式真值表				
p	q	$p \leftrightarrow q$		
1	1	1		
1	0	0		
0	1	0		
0	0	1		

给定命题 $p \rightarrow q$, 其

- 逆命题 (converse) 为 $q \rightarrow p$,
- 否命题 (inverse) 为 $\neg p \rightarrow \neg q$,
- 逆否命题(contrapositive)为 $\neg q \rightarrow \neg p$.
- 一个命题与其逆否命题等价.

复合命题(compound proposition)的真值表

例子 2.4 (复合命题). 构造 $(p \vee \neg q) \rightarrow (p \wedge q)$ 的真值表.

思路:这是一个条件命题,条件和结论分别是合取式和析取式,合取式里面又带有否定命题.因此,我们可以从p,q出发,从里向外,先构造否定命题,然后构造析取式和合取式,最后是条件命题.

$(p \lor \neg q) \to (p \land q)$ 的真值表.					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
1	1	0	1	1	1
1	0	1	1	0	0
0	1	0	0	0	1
0	0	1	1	0	0

逻辑运算符的优先级

- 通过例子2.4,我们可以总结出如下逻辑算符 优先级(precedence),
- "否定"优先于"与或"优先于"条件".

逻辑算符优先级.				
Operator Precedence				
Г	1			
\wedge	2			
\vee	3			
\rightarrow	4			
\leftrightarrow	5			

命题的逻辑等价性

定义 2.7. 复合命题 p 与 q 被称为逻辑等价(logically equivalent)如果二者有相同的真值,记为 $p\equiv q$.

例子 2.5. 使用真值表验证 $\neg p \lor q \equiv p \to q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

命题的逻辑等价性

定理 2.1 (De Morgan Laws).

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

证明. 使用真值表验证 $\neg (p \lor q) \equiv \neg p \land \neg q$.

p	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

命题的逻辑等价性

Equivalence	Name
$p \wedge 1 \equiv p$	Identity laws 同一律
$p \lor 0 \equiv p$	
$p \lor 1 \equiv 1$	Domination laws 支配律
$p \wedge 0 \equiv 0$	
$p \lor p \equiv p$	Idempotent laws 幂等律
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law 双重否定

逻辑等价性

Equivalence	Name
$p \lor q \equiv q \lor p$	Commutative laws 交換律
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws 结合律
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws 分配律
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws 吸收律
$p \land (p \lor q) \equiv p$	
$p \vee \neg p \equiv 1$	Negation laws 否定律
$p \land \neg p \equiv 0$	

谓词 (predicate) 是用来刻画个体词性质及个体词之间关系的词. 考虑如下陈述句:

- 1. $\sqrt{2}$ 是无理数.
- 2. x 是有理数.
- 在 (1) 中, $\sqrt{2}$ 是个体常项, "是无理数"为谓词,整个陈述句可以表示为 $P(\sqrt{2})$;
- 在 (2) 中,x 是个体变项,整个陈述句可以表示为 P(x);
- 更一般的, P(x) 表示 x 具有性质 P;
- n 元谓词 $P(x_1, x_2, \ldots, x_n)$ 表示 x_1, x_2, \ldots, x_n 满足性质 P.

例子 2.6. 令 P(x) 表示语句 "x > 3". 那么 P(4) 和 P(2) 的真值是什么?

P(4) 和 P(2) 的分别代表陈述 4 > 3 和 2 > 3, 故 P(4) 为真, P(2) 为假.

例子 2.7. 令 P(x,y) 表示语句 "x = y + 3". 那么 P(1,2) 和 P(3,0) 的真值是什么?

P(1,2) 和 P(3,0) 的分别代表陈述 1=2+3 和 3=0+3, 故 P(1,2) 为假, P(3,0) 为真.

定义 2.8 (全称量词). 全称量词 (universal quantification) P(x) 为语句, "P(x) for all values of x in the domain." 记作 $\forall x P(x)$, 读作 "for all x P(x)".

例子 2.8. 令 P(x) 表示语句 "x < x + 1", x 的定义域为实数. 那么全称量词 $\forall x P(x)$ 的真值为?

定义 2.9 (存在量词). 存在量词 (existential quantification) P(x) 为语句,"There exists an element x in the domain such that P(x)." 记作 $\exists x P(x)$.

例子 2.9. 令 P(x) 表示语句 "x > 3", x 的定义域为实数. 那么量词 $\exists x P(x)$ 的真值为?

- ∀,∃ 比逻辑运算符有更高的优先级.
- 因此 $\forall x P(x) \lor Q(x)$ 表示 $(\forall x P(x)) \lor Q(x)$ 而不是 $\forall x (P(x) \lor Q(x))$.

- 考虑陈述"每个离散数学课堂上的同学都上过微积分".
- $\Diamond P(x)$ 表示 "x 上过微积分", 定义域为离散课堂上的学生, $\forall x P(x)$
- 上述陈述的否定 $\neg \forall x P(x)$ 表示什么?
- "存在离散数学课堂上的同学没有上过微积分".
- 更一般的,我们有

$$\neg \forall x P(x) \equiv \exists x \neg P(x).$$

- 考虑陈述"离散数学课堂上有同学自学过数学分析".
- $\Diamond P(x)$ 表示 "x 自学过数学分析", 定义域为离散课堂上的学生, $\exists x P(x)$.
- 上述陈述的否定 $\neg \exists x P(x)$ 表示什么?
- "离散数学课堂上的同学都没自学过数学分析".
- 更一般的,我们有

$$\neg \exists x P(x) \equiv \forall x \neg P(x).$$

例子 2.10. 陈述句 $\forall x (x^2 > x)$ 和 $\exists x (x^2 = 2)$ 的逻辑否定是什么?

- $\neg \forall x (x^2 > x) = \exists x \neg (x^2 > x) = \exists x (x^2 \le x).$
- $\neg \exists x (x^2 = 2) = \forall x \neg (x^2 = 2) = \forall x (x^2 \neq 2).$

例子 2.11. 证明 $\neg \forall x (P(x) \rightarrow Q(x))$ 和 $\exists x (P(x) \land \neg Q(x))$ 是逻辑等价的.

$$\neg \forall x (P(x) \to Q(x)) \equiv \exists x (\neg (P(x) \to Q(x)))$$

$$\equiv \exists x (\neg (\neg P(x) \lor Q(x))) \quad \text{log. equiv. between } \to \text{ and } \lor$$

$$\equiv \exists x (P(x) \land \neg Q(x)) \quad \text{De Morgan Laws.}$$

小结

The minimal material that is sufficient for our subsequent study in set and graph theory.