Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Компьютерных сетей и систем

Кафедра Информатики

МАШИННОЕ ОБУЧЕНИЕ

ЛАБОРАТОРНАЯ РАБОТА №5 «Применение сверточных нейронных сетей (бинарная классификация)»

БГУИР 1-40 81 04

Магистрант: гр. 858641 Кукареко А.В. Проверил: Стержанов М. В.

ХОД РАБОТЫ

Данные.

Набор данных DogsVsCats, который состоит из изображений различной размерности, содержащих фотографии собак и кошек. Обучающая выборка включает в себя 25 тыс. изображений (12,5 тыс. кошек: cat.0.jpg, ..., cat.12499.jpg и 12,5 тыс. собак: dog.0.jpg, ..., dog.12499.jpg), а контрольная выборка содержит 12,5 тыс. неразмеченных изображений. Скачать данные, а также проверить качество классификатора на тестовой выборке можно на сайте Kaggle -> https://www.kaggle.com/c/dogs-vs-cats/data.

Так как отправлять данные в https://www.kaggle.com/c/dogs-vs-cats уже нельзя, был найден альтернативный вариант: https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition

Задание.

- 1. Загрузите данные. Разделите исходный набор данных на обучающую, валидационную и контрольную выборки;
- 2. Реализуйте глубокую нейронную сеть с как минимум тремя сверточными слоями. Какое качество классификации получено?
- 3. Примените дополнение данных (data augmentation). Как это повлияло на качество классификатора?
- 4. Поэкспериментируйте с готовыми нейронными сетями (например, AlexNet, VGG16, Inception и т.п.), применив передаточное обучение. Как это повлияло на качество классификатора? Какой максимальный результат удалось получить на сайте Kaggle? Почему?

Результат выполнения:

1. Загрузите данные. Разделите исходный набор данных на обучающую, валидационную и контрольную выборки.

Рисунок 1 - кол-во изображений в каждом классе.

Как видно из рисунка 1 — данные в классах сбалансированы и мы можем применять метрику ассuracy для определения точности классификатора.

Всего изображений 25 000. Они были разделены на:

- тренировочную выборку 17 000 изображений;
- валидационную выборку 4 000 изображений;
- тестовую выборку 4 000 изображений.

Так же все изображения были приведены к размеру 180 х 180 пикселей, rgb (3 канала).

Рисунок 2 – пример данных из набора «dogs vs cats».

2. Реализуйте глубокую нейронную сеть с как минимум тремя сверточными слоями. Какое качество классификации получено?

Для реализации нейронной сети была выбрана библиотека tensorflow 1.14.

Архитектура нейронной сети представлена в таблице 1.

Таблица 1 – Архитектура нейронной сети.

Слой	· •	Размер	Фильтры	Ядро	Смещение	Активация
Входной	-	180x180x3	-	-	-	-
1	Conv2d	180x180	32	4 x 4	1	ReLU
2	B. Norm.	-	-	-	-	-
3	Max Pool	90x90	32	2 x 2	2	-
4	Conv2d	90x90	64	4 x 4	1	ReLU
5	B. Norm.	-	-	-	-	-
6	Max Pool	45x45	64	2 x 2	2	-
7	Conv2d	45x45	128	4 x 4	1	ReLU
8	B. Norm.	-	-	-	-	-
9	Max Pool	23x23	128	2 x 2	2	-
10	Flatten	67712	-	_	-	-
11	FC	128	-	-	-	ReLU
12	Dropout					
13	FC	128	-	-	-	ReLU
14	Dropout					
Выходной	FC	1	-	-	-	Sigmoid

Тренировка нейросети была запущена со следующими параметрами:

- epochs -20;
- batch size 64;
- dropout 0.3.

Рисунок 3 – график изменения ассигасу первой модели.

Рисунок 4 – график изменения loss первой модели.

На тестовой выборке модель показала следующий результат:

- loss 0.4017;
- accuracy 0.8245.

По графикам видно, что в районе 19 эпохи модель начала переобучатсья, не смотря на dropout - 0.3.

3. Примените дополнение данных (data augmentation). Как это повлияло на качество классификатора?

Для «data augmentation» была использована библиотека "keras ImageDataGenerator".

Для генерации картинок использовались следующие параметры:

- rotation range 40;
- width_shift_range 0.2;
- height_shift_range 0.2;
- zoom_range 0.2;
- horizontal_flip- True.

Рисунок 5 – пример аугментированных изображений в итерации 1.

Рисунок 6 – пример аугментированных изображений в итерации 1.

Если сравнить рисунки 5 и 6 можно увидеть, как «ImageDataGenerator» преобразует одни и те же изображения.

Тренировка нейросети была запущена со следующими параметрами:

- epochs -40;
- batch size 64;
- dropout 0.15.

Рисунок 7 – график изменения ассигасу модели с применением аугментированных данных.

Рисунок 8 – график изменения loss первой модели с применением аугментированных данных.

На тестовой выборке модель показала следующий результат:

- loss 0.3793;
- accuracy 0.8472.

Для тренировки этой модели пришлось снизить показатель dropout с 0.3 до 0.15, так как модель не хотела обучаться на протяжении 10 этох.

Если посмотреть на рисунки 7 и 8, можно увидеть, что даже при меньшем значении dropout, переобучение модели отсутствует.

4. Поэкспериментируйте с готовыми нейронными сетями (например, AlexNet, VGG16, Inception и т.п.), применив передаточное обучение. Как это повлияло на качество классификатора? Какой максимальный результат удалось получить на сайте Kaggle? Почему?

Для передаточного обучения была выбрана сеть VGG16. Готовые сети с весами предоставляет библиотека «keras.applications». Архитектуру сети VGG16 можно посмотреть на рисунке 9.

	Layer	Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	224 x 224 x 3	-	-	-
1	2 X Convolution	64	224 x 224 x 64	3x3	1	relu
	Max Pooling	64	112 x 112 x 64	3x3	2	relu
3	2 X Convolution	128	112 x 112 x 128	3x3	1	relu
	Max Pooling	128	56 x 56 x 128	3x3	2	relu
5	2 X Convolution	256	56 x 56 x 256	3x3	1	relu
	Max Pooling	256	28 x 28 x 256	3x3	2	relu
7	3 X Convolution	512	28 x 28 x 512	3x3	1	relu
	Max Pooling	512	14 x 14 x 512	3x3	2	relu
10	3 X Convolution	512	14 x 14 x 512	3x3	1	relu
	Max Pooling	512	7 x 7 x 512	3x3	2	relu
13	FC	-	25088	-	-	relu
14	FC	-	4096	-	-	relu
15	FC	_	4096	-	=	relu
Output	FC	-	1000	_	-	Softmax

Рисунок 9 – архитектура сети vgg16.

У сети VGG16 были убраны последние 4 полносвязанных слоя и добавлены 3 новых. Архитектуру новой модели можно увидеть в таблице 2.

Таблица 2 – Архитектура новой модели с применением передаточного оубчения.

Слой		Размер	Активация
Входной	-	180x180x3	-
-	VGG15	5x5x512	-
-	Flatten	12800	-
-	FC	128	ReLU
-	Dropout		
-	FC	128	ReLU
-	Dropout		
Выходной	FC	1	Sigmoid

Так же было проведено 2 эксперимента:

- Модель была обучена на оригинальном наборе данных.
- Модель была обучена на аугментированном наборе данных

Обучение моделей запускалось со следующими параметрами:

- epochs -10;
- batch size 64.

Рисунок 10 – график изменения ассигасу модели с применением передаточного обучения данных (без аугментации).

Рисунок 11 — график изменения loss первой модели с применением передаточного обучения данных (без аугментации).

На тестовой выборке модель показала следующий результат:

- loss 0.1181:
- accuracy 0.9575.

Рисунок 12 – график изменения ассигасу модели с применением передаточного обучения данных (с аугментацией).

Рисунок 13 – график изменения loss первой модели с применением передаточного обучения данных (с аугментацией).

На тестовой выборке модель показала следующий результат:

- loss 0.1188;
- accuracy 0.9515.

После обучения всех моделей, были сформированы csv файлы и отправлены на Kaggle - https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition. Результаты kaggle можно посмотреть в таблице 3.

Таблица 3 – сравнение результатов на kaggle.

Модель	kaggle score
Conv + original data	0.41781
Conv + augmented data	0.36957
Transfer learning vgg16 + original data	0.44787
Transfer learning vgg16 + augmented data	0.51792

Вывод.

В ходе выполнения лабораторной работы я построил одну модель использующих сверточные слои для классификации изображений котов и собак. Обучил эту модель без применения аугментации, и с применением аугментации данных. Так же для решения данной задачи были использованы готовые модели, а именно VGG16 и техника передаточного обучения.

После обучения всех моделей и анализа результатов, можно сделать вывод, что техника аугменатции данных позволяет снизить переобучение модели и повысить её точность, а техника «передаточного обучения» в некоторых случаях позволит значительно увеличить точность модели.