FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER FP--ETC F/G 4/2
MODIFIED TWENTY-FOUR HOUR EXTRAPOLATION AS A FORECAST TECHNIQUE--ETC(U)
APR 76 C R SIKORA
FLEWEACEN/JTWC-TN-76-4
NL AD-A065 896 UNCLASSIFIED OF | AD A085889 Marie I END DATE FILMED 5 -79 DDC

FLEWEACEN TECH NOTE: JTWC 76-4

AD AO 65896

MODIFIED TWENTY-FOUR HOUR EXTRAPOLATION AS A FORECAST TECHNIQUE FOR THE MOVEMENT OF TROPICAL CYCLONES

CAPT CHARLES R. SIKORA APRIL 1976

DOC FILE COPY

U.S. FLEET WEATHER CENTRAL GUAM
BOX 12 COMNAVMARIANAS
F.P.O. SAN FRANCISCO, CALIFORNIA 96630

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

79 02 09 042

FLEWEACEN/ FECH NOTE:

JTWC-76-4

TN-76-4

MODIFIED TWENTY-FOUR HOUR EXTRAPOLATION AS A FORECAST TECHNIQUE FOR THE MOVEMENT OF TROPICAL CYCLONES.

Prechnical note
1973-1975,

CAPTAIN CHARLES R. SIKORA

(1)
APRIM 1976

(2) 18p.

U. S. FLEET WEATHER CENTRAL GUAM BOX 12 COMNAVMARIANAS F. P. O. SAN FRANCISCO, CALIFORNIA 96630

408 282

LB

79 02 09 042

CONTENTS

ABSTRACT	iv
LIST OF TABLES AND FIGURES	v
1. INTRODUCTION	1
2. METHOD	2
3. RESULTS	4
4. SUMMARY	10
REFERENCES	11

ABSTRACT

The Joint Typhoon Warning Center, Guam (JTWC) uses several objective techniques for forecasting the movement of tropical cyclones. Twelve-hour extrapolation (XTRP) and the TYFN75 analog program are the most successful of these techniques. The input parameters for both techniques include the past 12-hr storm position. It is felt that a subjective 24-hr extrapolation technique (XT24) based on reconnaissance positions is more realistic: (1) these data are real-time whereas the warning positions are extrapolated from the reconnaissance positions and (2) a 24-hr period tends to smooth out erratic short-term movements in the storm track. An operational evaluation of XT24 was conducted during the 1975 typhoon season. These results and recommendations for future use are discussed.

LIST OF TABLES AND FIGURES

Tables

1.	Forecast position error (nm) for various categories of reconnaissance platforms (1973 and 1974 composite data). The number of cases is shown in parentheses (Harrison, 1975)
2.	Objective forecast techniques for 17 typhoons from 1973 and 1974
3.	Objective forecast techniques for selected typhoons (10) from 1973 and 1974
4.	Objective forecast techniques for 13

1. INTRODUCTION

The official Joint Typhoon Warning Center (JTWC) warning is the culmination of a complex series of events which begins with the obtaining of a reconnaissance position (fix). To be suitable for warning purposes, a fix must be obtained 2 to 3½ hr prior to the scheduled warning time. Fixes obtained earlier are essentially too old for the warning time while fixes obtained later do not permit sufficient time for preparation of the warning. Once a warning fix has been obtained and plotted, the warning position is determined by extrapolation. For example, a fix obtained at 0930Z is the basis for extrapolation to 1200Z using the current storm speed for movement. The computerized objective forecast techniques are then run, and from these forecasts a preliminary forecast track is derived out to 72 hr. This track is evaluated subjectively for consistency and compatability with climatology and the current synoptic situation and modified as necessary.

At the present time, 12-hr extrapolation (XTRP) is the best objective technique for forecasting the 24- and 48-hr movement of tropical cyclones. XTRP uses the past 12-hr preliminary best track position and the current warning position as end points. The past 12-hr preliminary best track position is defined as that position best fitting all reconnaissance and supporting data available. The current warning position is determined by extrapolation as described above. A straight line is then drawn through these two points and becomes the forecast track. The speed of movement of the past 12-hr period is used as the forecast speed out to 48-hr.

The next most successful objective technique is the TYFN75 analog program (Jarrell and Wagoner, 1973). This program searches history data tapes for those tropical cyclones with characteristics similar to the current storm. Twenty-one acceptance parameters are considered, with the most critical being the present position and the past 12-hr location and movement of the storm.

During everyday operational application, it was observed that use of the past 12-hr preliminary best track position would frequently result in a "windshield wiper" effect for a series of warnings. This effect is the result of short term trends (based on consecutive fix positions) which indicate that significant changes in the direction of movement are possible warranted in the forecast storm track. Colon's (1953) investigation of 24-hr persistence (to forecast the direction of movement only) in the Atlantic showed that its

probability of success for at least the first 24-hr forecast was quite high in the more southerly latitudes of the Caribbean Sea and the eastern Atlantic. Riehl and Sanborn (1958) in a compilation of the three-day mean tracks for hurricanes, found that for storms in low latitudes, the general tendency is to preserve the initial direction of motion. Based on these observations, a subjective technique employing 24-hr extrapolation (XT24) was evaluated.

2. METHOD

Fifteen typhoons from 1974 and two from 1973 were utilized in an initial after-the-fact evaluation of XT24. The latest available fix position (upon which the JTWC warning was based), and that reconnaissance position 24-hr ago ±6 hr were used as the end points for linear extrapolation out to 72-hr. The speeds of the official JTWC forecast were used for movement. It should be noted that for storms which JTWC was forecasting to recurve, the official JTWC speed for the 24-hr forecast was also used for the 48- and 72-hr forecast. was done to eliminate the inconsistency of using speeds of movement of 5 to 10 kt (2.6 to 5.1 m sec-1) as a storm slows down prior to recurvature and then speeds up 20 to 35 kt (12.9 to 18.0 m sec-1) after recurvature. These speeds were used in lieu of the past 24-hr speed (persistence) for several reasons. Storms moving faster or slower than climatology do not usually maintain these speeds for 48 to 72 hr. Persistence also cannot take into account such factors as terrain influences (storms crossing the Philippines, for example, exhibit a dramatic increase in speed), rate of development, and the position and amplitude of middle and upper tropospheric features. The JTWC speeds are determined subjectively after an evaluation of all available data.

The reconnaissance positions are used as end points in lieu of the warnings positions for several reasons. First, they are based on real-time data while the current warning position is simply extrapolated from what is considered the best reconnaissance position, thereby introducing additional error. During the period 1969-1974, the average warning position error was 19 nm for all typhoons in the JTWC area of responsibility. Furthermore, at the time any warning is being prepared, it is not possible to know the absolute warning position accuracy; this can only be determined by detailed post-season analysis. Additionally, as mentioned previously, tropical cyclones often behave quite erratically over a 12-hr period and it is difficult to ignore short-term trends which indicate that a radical change in the forecast

track is possibly warranted. Thus, the 24-hr reconnaissance position is used in an attempt to smooth out short-term trends. It is also significant that although JTWC heavily considers the 500 mb prognosis for tropical cyclone steering, it has been observed that once a storm becomes well-organized (and in the absence of a well-defined ridge or trough), its circulation can effectively mask the steering flow over a considerable area. It then becomes difficult to separate the basic steering current from the circulation surrouding the storm. In the western Pacific, this is primarily true below 20N where the steering flow is generally easterly at $10-20 \text{ kt } (5.1 - 10.3 \text{ m sec}^{-1})$. Above 20N, strong westerlies dominate with short-wave troughs and an occasional long-wave trough moving off mainland China. Here, a tropical cyclone may more realistically be considered a point vortex embedded in a broad-scale flow patter of 30 kt $(15.4 \text{ m sec}^{-1})$ or greater.

Due to the nature of this self-steering concept, and for the reasons outlined above, it was felt that XT24 should be an improvement over XTRP and a valuable input to the official JTWC forecast. Since aircraft reconnaissance provides the most accurate and reliable fix data (Table 1), XT24 was based in order of preference as follows: (1) aircraft fixes; (2) land radar; (3) satellite eye fixes; and (4) satellite fixes other than eye fixes.

Table 1. Forecast position error (nm) for various categories of reconnaissance platforms (1973 and 1974 composite data). The number of cases is shown in parentheses (Harrison, 1975).

a. All Forecast	s (Tropical	Depressions,	Tropical	Storms,	and	Typhoons.
-----------------	-------------	--------------	----------	---------	-----	-----------

	FORECAST INTERVAL							
PLATFORM	WARNING	24-HR	48-HR					
Aircraft	18 (466)	111 (410)	207 (261)					
DMSP Satellite	25 (358)	119 (248)	226 (126)					
Radar	17 (61)	125 (36)	228 (22)					
Other	43 (93)	151 (43)						

b. Forecasts for Typhoons (when maximum winds were 35 kt or greater).

	FORECAST INTERVAL							
PLATFORM	WARNING	24-HR	48-HR					
Aircraft	16 (323)	106 (299)	200 (229)					
DMSP Satellite	20 (205)	103 (162)	228 (111)					
Radar	15 (39)	115 (26)	210 (20)					
Other	36 (29)	122 (11)						

From the results in Table 2, several general conclusions were drawn. Note in Table 2 and subsequent tables, that "X-AXIS" refers to the techniques listed horizontally, while "Y-AXIS" refers to those listed vertically. The example in Table 2 compares XTRP to XT24. In 326 cases available for comparison, the average 24-hr vector error for XTRP was 116 nm, while that for XT24 was 117 nm. The difference in accuracy between these two techniques was 1 nm. For all typhoons, XT24 compared favorable with JTWC and XTRP. When those tropical cyclones moving east, northeast, etc. and/or above 20N were eliminated from the verification, XT24 was a marked improvement over JTWC at 72-hr and XTRP at 48-hr (Table 3). Of course, it should be remembered that westward moving tropical cyclones below 20N may recurve, loop, or otherwise behave quite erratically. It should also be noted that in the absence of a steering flow to cause recurvature above 20N, XT24, may still be applicable.

Based on the positive results from this evaluation, XT24 was used operationally during the 1975 typhoon season with one modification. Due to the increased time span of 24-hr between end points, it was felt that the 24-hr ±6 hr reconnaissance position could be replaced by the past 24-hr preliminary best track position. This extended period permits sufficient time to evaluate additional data and establish an accurate position.

3. RESULTS

The forecast verification data for the 1975 typhoon season are presented in Table 4. Twenty-four hour extrapolation is verified against TYFN75 (only those analogs moving generally westward), XTRP, and HPAC which is the average of climatology and 12-hr persistence. XTRP was slightly more accurate for

Table 2. Objective forecast techniques for 17 typhoons from 1973 and 1974.

XT24 176 327 176 326 326 -1 326 0	JTMC 176 327 327 0	JTMC XT24	72-HOUR	XT24 259 207 248 215 220 13 217 2	XTRP 248 204 248 215 215 11 215 0	JTWC 259 207 207 0	JTWC XTRP	48-HOUR	XT24 343 107 326 116	XTRP 327 107 327 116 116 9 116 0	JTWC 344 107 107 0	JTWC XTRP	24-HOUR
				259 220 220 0			<u>XT24</u>		343 117 117 0			<u>XT24</u>	
	•					XTRP - 12-Hr Extrapolation XT24 - Modified 24-Hr Extrapolation			Y-AXIS TECHNIQUE DIFFERENCE ERROR Y-X	NUMBER OF CASES TECHNIQUE ERROR			
					¥	lation							•

Table 3. Objective forecast techniques for selected typhoons from 1973 and 1974.

XT24	JTMC			ХТ24	2	YTDD	JTWC			ХТ24	XTRP	JTWC		
121 331 121 256 256 -75 256 0	121 331 331 0	JTMC XT24	72-HOUR	171 199 166 207 171 186 -14 186 -21 186	207 8 207 0	166 100 166	171 199 199 0	JTWC XTRP	48-HOUR	215 103 208 114 215 105 2 105 -9 105	208 104 208 114 114 11 114 0	215 103 103 0	JTWC XTRP	24-HOUR
				186				XT24	_	105	\		XT24	
						1	JTWC - Official J XTRP - 12-Hr Extr			Y-AXIS TECHNIQUE FRROR		NUMBER OF CASES		
						+ III CALIADOIACION	Official JTWC Subjective Forecast 12-Hr Extrapolation			ERROR DIFFERENCE Y-X	ERROR	X-AXIS TECHNIQUE		

Table 4. Objective forecast techniques for 13 typhoons from 1975.

24-HOUR ERRORS

XT24	MH50	MH70	TYFR	TYFS	TYFC	HPAC	XTRP	JTWC	
177 149	138 144	144 159	204	195	59 134	183 135	205 142	221 130	ب
130	133	133 26	130 14	127 18	121 13	128 7	130 12	130	JTWC
173 149	136 143	143 159	193 143	184 144	57 134	182	205		×
140	148 -5	148 12	141 2	135	145 -11	138 -3	142		XTRP
169 150	119 134	126 145	177 140	165 140	53 132	183 135			픇
136 14	137 -3	T37 8	136 5	130	121	135			HPAC
50	37 115	37 141	59 146	54 136	59 134				7
134	102	40	134 12	137	134				TYFC
158 141	122	128 148	190	195					7
44	151	149	144	144					TYFS
		137							77
139	143	142	0						TYFR
	137								MH70
146	160 -17	159		ı					70
114	138 144								MH50
137	0							,	50
177									XT24
149									•

48-HOUR ERRORS

XT24	MH50	MH70	TYFR	TYFS	TYFC	HPAC	XTRP	JTMC	
129 273	96 356	98 357	157 300	153 359	49 341	133 251	153 321	165 288	ے
277 -5	292	291 66	189,	285 74	300 41	280 -30	279 32	288	JTWC
126 272	9 4 358	97 360	148 298	-61	47 341	132 252	153 321		*
290 -19	344	343	319	318 42	369 -28	288 -37	321 0		XTRP
121 274	78 276	81 299	129 274	125 338	41 289	133 251			I
250 24	249 27	249	250 24	243 94	249	251			HPAC
39	26 443	26 521	49 358	48 442	341				-
276 -46	347 96	341	341	344	341 0				TYFC
122 265	89 357	91 354	153 298	154 358					_
-66	381 -24	377	358 -59	358 0					TYFS
126 271	358 358	35.95	300						TYFR
275	56	55	0 30						20
80 273	355	98 357							MH70
298 -25	358 -3	357							
277	356								MH50
-11	356								
129 273									ХТ24
273									

72-HOUR ERRORS

ХТ24	MH50	MH70	TYFR	TYFS	TYFC	JTWC	
394	58 4 85	57 504	108 440	108 545	3 4 520	113 441	· .
438	435 50	432 72	444	101	472 48	041	JTWC
26 332	17 531	15 664	35 572	588 588	35 520		_
519 -187	520 11	511 153	520 52	520 69	520 0		TYFC
392	58 497	57 508	110	110 538			-
536 -144	534 -37	529 -21	538 -94	538 0			TYFS
392	59 495	58 504	1111 445				4
421 -29	462 33	454 50	445				TYFR
	58 484						3
486 -130	497 -13	498 0					MH70
45 352	488						·\$
439	488						MH50
393							×
393							XT24

the 24-hr forecast, while XT24 was more accurate out to 48-and 72-hr. Suprisingly, XT24 was more accurate than the JTWC official forecast and all of the objective forecast techniques for the 72-hr forecast. This appears to be partially due to the fact that even though tropical cyclones rarely move in a straight line, their erratic behavior when averaged over a period of 72-hr and in the absence of a significant upper-level steering flow (e.g., to cause recurvature) can often be approximated by a straight line (e.g., by the use of XT24). This is similar to the finding of Riehl and Sanborn (1958) which was discussed earlier.

4. SUMMARY

Most significantly, this study has demonstrated that persistence (and climatology) can be important inputs to the official JTWC forecast out to 72-hr. In addition, a longer time period of 24-hr permits the smoothing out of short-term trends which may be misleading indications of a storm's future movement. XT24 illustrates considerable skill as a forecast technique for the movement of tropical cyclones beyond 24-hr. It gives a relatively real-time estimate of where a storm is moving since real-time data is used as input to the forecast. This is an advantage over TYFN75 which, while utilizing real-time data as an input, is still relying on climatology for its forecast. Due to the relatively small sample size, it is recommended that the evaluation of XT24 continue during the 1976 typhoon season.

REFERENCES

- Colón, J. A., 1953: A Study of Hurricane Tracks for Forecasting Purposes. Mon. Wea. Rev., 81, 53-66.
- Harrison, E. J., 1975: Forecast Verification as a Function of Reconnaissance Platform. FLEWEACEN Tech Note: JTWC 75-2, 7 pp.
- Jarrell, J. D. and R. A. Wagoner, 1973: The 1972 Typhoon Analog Program (TYFOON-72). ENVPREDRSCHFAC Tech Paper No. 1-73, 44 pp.
- Riehl, H. and R. W. Sanborn, 1958: Climatology of Three-Day Hurricane Motion. Bull. Amer. Meteor. Soc., 39, 69-72.
- U. S. Fleet Weather Central/Joint Typhoon Warning Center, Guam. Annual Typhoon Reports, 1969-1975.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
FWC/JTWC TECH NOTE 76-4	ON NO. 3. RECIPIENT'S CATALOG NUMBER
MODIFIED TWENTY-FOUR HOUR EXTRAPOLATION AS A FORECAST TECHNIQUE FOR THE MOVEMENT	MMOTT NOME (1073 1076)
OF TROPICAL CYCLONES	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*)	S. CONTRACT OR GRANT NUMBER(*)
CHARLES R. SIKORA, CAPTAIN, USAF PERFORMING ORGANIZATION NAME AND ADDRESS FLEET WEATHER CENTRAL/JOINT TYPHOON	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
WARNING CENTER (FLEWEACEN/JTWC), GUAM FPO SAN FRANCISCO 96630	
FLEET WEATHER CENTRAL/JOINT TYPHOON	12. REPORT DATE 1976
WARNING CENTER (FLEWEACEN/JTWC), GUAM	13. NUMBER OF PAGES
FPO SAN FRANCISCO 96630	
FPO SAN FRANCISCO 96630 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Of	Unclassified

APPROVED FOR PUBLIC RELEASE;

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

TWENTY-FOUR HOUR EXTRAPOLATION (XT24) TWELVE-HOUR EXTRAPOLATION (XTRP)

TYPHOON ANALOG (TYFN75)

TYPHOON

RECONNAISSANCE POSITION

20. ASSTRACT (Continue on reverse side if necessary and identify by block number)

The Joint Typhoon Warning Center, Guam (JTWC) uses several objective techniques for forecasting the movement of tropical cyclones. Twelve-hour extrapolation (XTRP) and the TYFN75 analog program are the most successful of these techniques. The input parameters for both techniques include the past 12-hr storm position. It is felt that a subjective 24-hr extrapolation technique (XT24) based on reconnaissance positions is more ->

DD 1 JAN 73 1473 EDITION OF 1 NOV 81.82 OBSOLETE

Unclassified

(berein and reference the Portage Charles of This PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

these data are real-time whereas the warning realistic: positions are extrapolated from the reconnaissance positions and (2) a 24-hr period tends to smooth out erratic short-term movement in the storm track. An operational evaluation of XT24 was conducted during the 1975 typhoon season. These results and recommendations for future use are discussed.

The Join Typhoon Warning Cost , Guam (JTMC) was several citive technique for forecasting the movement of tropical ones. Telechnique extrapolation (XTRP) and INTRN75 and cam are the most successful of wase techniques. The input meters for technique solude the per literal storm tion. It is that a solution equive 24-hr extraolation singue (X) the ed on reconsessance positions as more

Unclassified