

POLITECHNIKA ŚLĄSKA WYDZIAŁ AUTOMATYKI, ELEKTRONIKI I INFORMATYKI KIERUNEK: WPISAC WLASCIWY

Praca dyplomowa inżynierska

Tytuł pracy dyplomowej inżynierskiej

autor: Imię Nazwisko

kierujący pracą: dr inż. Imię Nazwisko

konsultant: dr inż. Imię Nazwisko

Gliwice, październik 2021

Spis treści

St	treszczenie	1
1	\mathbf{Wstep}	3
2	[Analiza tematu]	5
3	Wymagania i narzędzia	7
4	[Właściwy dla kierunku - np. Specyfikacja zewnętrzna]	9
5	[Właściwy dla kierunku - np.Specyfikacja wewnętrzna]	11
6	Weryfikacja i walidacja	13
7	Podsumowanie i wnioski	15
В	ibliografia	17
$\mathbf{S}_{\mathbf{I}}$	pis skrótów i symboli	21
Źı	ródła	23
7:	awartość dołaczonej płyty	27

Streszczenie

Streszczenie pracy -odpowiednie pole w systemie APD powinno zawierac kopie tego streszczenia. Streszczenie, wraz ze slowami kluczowymi, nie powinno przekroczyc jednej strony.

Slowa kluczowe: 2-5 slow (fraz) kluczowych, oddzielonych przecinkami

Wstęp

- wprowadzenie w problem/zagadnienie
- osadzenie problemu w dziedzinie
- cel pracy
- zakres pracy
- zwięzła charakterystyka rozdziałów
- jednoznaczne określenie wkładu autora, w przypadku prac wieloosobowych
 - tabela z autorstwem poszczególnych elementów pracy

[Analiza tematu]

- sformułowanie problemu
- osadzenie tematu w kontekście aktualnego stanu wiedzy (state of the art) o poruszanym problemie
- studia literaturowe [2, 3, 4, 1] opis znanych rozwiązań (także opisanych naukowo, jeżeli problem jest poruszany w publikacjach naukowych), algorytmów,

Wymagania i narzędzia

- wymagania funkcjonalne i niefunkcjonalne
- przypadki użycia (diagramy UML) dla prac, w których mają zastosowanie
- opis narzędzi, metod eksperymentalnych, metod modelowania itp.
- metodyka pracy nad projektowaniem i implementacją dla prac, w których ma to zastosowanie

[Właściwy dla kierunku - np. Specyfikacja zewnętrzna]

Jeśli to Specyfikacja zewnętrzna:

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

Rysunek 4.1: Podpis rysunku po rysunkiem.

[Właściwy dla kierunku - np.Specyfikacja wewnętrzna]

Jeśli to Specyfikacja wewnętrzna:

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **descriptor**, a nawet **descriptor_gaussian**. Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rysunku 5.1, a naprawdę długie fragmenty – w załączniku.

```
1 class descriptor_gaussian : virtual public descriptor
2 {
     protected:
         /** core of the gaussian fuzzy set */
         double _mean;
         /** fuzzy fication of the gaussian fuzzy set */
         double _stddev;
      public:
         /** @param mean core of the set
10
              @param stddev standard deviation */
11
         descriptor_gaussian (double mean, double stddev);
12
         descriptor_gaussian (const descriptor_gaussian & w);
13
         virtual ~descriptor_gaussian();
14
         virtual descriptor * clone () const;
16
         /** The method elaborates membership to the gaussian
17
             fuzzy set. */
         \begin{tabular}{lll} \textbf{virtual double} & getMembership & (\textbf{double} & x) & \textbf{const} \end{tabular}; \\ \end{tabular}
18
19
20 };
```

Rysunek 5.1: Klasa descriptor_gaussian.

Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tablica 6.1: Opis tabeli nad nią.

	metoda														
				alg. 3	alg. 4	$1, \gamma = 2$									
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$								
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365								
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630								
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045								
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614								
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217								
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640								
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209								
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059								
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768								
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362								
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724								

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Autor, jesli znany. https://www.fbi.gov/news/stories/forging-papers-to-sell-fake-art. dostęp 6.05.2017.
- [2] Imię Nazwisko, Imię Nazwisko. Tytuł artykułu w czasopiśmie. Tytuł czasopisma, 157(8):1092-1113, 2016.
- [3] Imię Nazwisko, Imię Nazwisko. Tytuł książki. Wydawnictwo, Warszawa, 2017.
- [4] Imię Nazwisko, Imię Nazwisko, Imię I. Nazwisko. Tytuł artykułu konferencyjnego. *Nazwa konferecji*, strony 5346–5349, 2006.

18 Bibliografia

Dodatki

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler}$ (ang. model-view-controller)

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 \mathbb{E} zbiór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść do załącznika.

```
partition fcm_possibilistic::doPartition
                                        (const dataset & ds)
3 {
      try
          if (\_nClusters < 1)
              throw std::string ("unknown_number_of_clusters");
          if (_nlterations < 1 and _epsilon < 0)
              throw std::string ("You_should_set_a_maximal_
                 number_{\sqcup} of_{\sqcup} iteration_{\sqcup} or_{\sqcup} minimal_{\sqcup} difference_{\sqcup}
                 epsilon.");
          if (_nlterations > 0 and _epsilon > 0)
10
              throw std::string ("Both_number_of_iterations_and_
11
                 minimal_{\sqcup}epsilon_{\sqcup}set_{\sqcup} _{\sqcup}you_{\sqcup}should_{\sqcup}set_{\sqcup}either_{\sqcup}
                 number_{\sqcup} of_{\sqcup} iterations_{\sqcup} or_{\sqcup} minimal_{\sqcup} epsilon.");
          auto mX = ds.getMatrix();
13
          std::size_t nAttr = ds.getNumberOfAttributes();
14
          std::size_t nX
                               = ds.getNumberOfData();
15
          std :: vector<std :: vector<double>> mV;
16
          mU = std :: vector<std :: vector<double>>> ( _n Clusters );
          for (auto & u : mU)
18
```

```
u = std::vector<double> (nX);
19
        randomise (mU);
20
        normaliseByColumns (mU);
21
        calculateEtas(_nClusters, nX, ds);
22
        if ( nlterations > 0)
23
24
            for (int iter = 0; iter < \_nlterations; iter++)
            {
26
               mV = calculateClusterCentres(mU, mX);
               mU = modify Partition Matrix (mV, mX);
28
            }
29
        }
        else if (\_epsilon > 0)
31
        {
            double frob;
33
            do
34
            {
               mV = calculateClusterCentres(mU, mX);
36
               auto mUnew = modifyPartitionMatrix (mV, mX);
37
38
               frob = Frobenius_norm_of_difference (mU, mUnew)
39
               mU = mUnew;
40
            } while (frob > _epsilon);
41
        }
        mV = calculateClusterCentres(mU, mX);
43
        std :: vector<std :: vector<double>> mS =
44
            calculateClusterFuzzification (mU, mV, mX);
45
        partition part;
        for (int c = 0; c < \_nClusters; c++)
47
48
            cluster cl;
```

```
for (std::size\_t a = 0; a < nAttr; a++)
51
               descriptor_gaussian d (mV[c][a], mS[c][a]);
52
               cl.addDescriptor(d);
54
            part . addCluster(cl);
        return part;
57
     catch (my_exception & ex)
59
60
        throw my_exception (__FILE__, __FUNCTION__, __LINE__,
            ex.what());
     }
62
     catch (std::exception & ex)
63
64
        throw my_exceptionn (__FILE__, __FUNCTION__, __LINE__
           , ex.what());
66
     catch (std::string & ex)
67
68
        throw my_exception (__FILE__, __FUNCTION__, __LINE__,
            ex);
     }
70
     catch (...)
     {
72
        throw my_exception (__FILE__, __FUNCTION__, __LINE__,
            "unknown expection");
     }
74
75 }
```

Zawartość dołączonej płyty

Do pracy dołączona jest płyta CD z następującą zawartością:

- praca (źródła L^AT_EXowe i końcowa wersja w pdf),
- źródła programu,
- dane testowe.

Spis rysunków

5.1	Klasa descriptor_gaussian										12
4.1	Podpis rysunku po rysunkiem.										10

30 Spis rysunków

Spis tablic

6.1	Opis 1	tabeli	nad	nia.																												1	4
U. <u>-</u>	~ P -~	CCC CII			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	_