Modelltheorie

Blatt 7

Abgabe: 12.12.2023, 12 Uhr

Aufgabe 1 (6 Punkte).

In der Sprache $\mathcal{L} = \{<\} \cup \{c_n \mid n \in \mathbb{N}\}$, welche aus unendlich vielen Konstantenzeichen c_n und aus einem 2-stelligen Relationszeichen besteht, betrachte die \mathcal{L} -Theorie T, deren Redukt zu $\{<\}$ die Theorie DLO dichter linearer Ordnungen ist und in deren Modellen \mathcal{A} die Folge $(c_n^{\mathcal{A}})$ streng wachsend ist, das heißt, für jedes n aus \mathbb{N} gilt $c_n^{\mathcal{A}} < c_{n+1}^{\mathcal{A}}$.

- a) Zeige, dass T vollständig ist und Quantorenelimination hat.
- b) Zeige, dass T bis aus Isomorphie genau drei abzählbare Modelle besitzt. Diese können mit Universum $\mathbb Q$ gewählt werden.

HINWEIS: $\lim_{n\to\infty} c_n^{\mathcal{A}}$

Aufgabe 2 (7 Punkte).

Seien \mathcal{M} und \mathcal{N} zwei \mathcal{L} -Strukturen sowie $A \subset M$ und $A' \subset N$ mit einer elementaren Abbildung $h: A \to A'$.

a) Gegeben b aus M und b' aus N zeige, dass b' den Typ $h(\operatorname{tp}^{\mathcal{M}}(b/A))$ genau dann realisiert, wenn die Fortsetzung $h' = h \cup \{(b, b')\}$ von h elementar ist.

Nun sei $\mathcal{L} = \{E\}$ und \mathcal{M} ein abzählbares Modell der Theorie T aus Aufgabe 2 von Blatt 4 welche besagt, dass $E^{\mathcal{M}}$ eine Äquivalenzrelation mit genau zwei unendlich Klassen ist. Betrachte eine Folge $(a_n)_{n\in\mathbb{N}}$ von verschiedenen Elementen aus M derart, dass für alle Indizes $i_0 < \ldots < i_n$ gilt:

$$\operatorname{tp}^{\mathcal{M}}(a_0,\ldots,a_n) = \operatorname{tp}^{\mathcal{M}}(a_{i_0},\ldots,a_{i_n}).$$

- b) Zeige, dass das abzählbare Modell \mathcal{M} von T saturiert ist.
- c) Zeige, dass für jede solche Folge die Elemente a_n für alle n aus \mathbb{N} in derselben Klasse liegen müssen. Gib (informell) eine mögliche Wahl solcher Elemente $(a_n)_{n\in\mathbb{N}}$ aus M an.

Aufgabe 3 (7 Punkte).

Sei \mathcal{M} eine Struktur in der Sprache \mathcal{L} und $B \subset M$ eine Teilmenge. Betrachte die Einschränkungsabbildung auf die erste Variable:

$$\pi: S_2^{\mathcal{M}}(B) \to S_1^{\mathcal{M}}(B).$$

$$q(x,y) \mapsto \{\varphi[x] \mathcal{L}_B\text{-Formel, mit } \varphi[x] \in q(x,y)\}.$$

- a) Zeige, dass π wohldefiniert ist.
- b) Zeige, dass π surjektiv aber nicht injektiv ist.

(Bitte wenden!)

c) Sei nun $p(x)=\operatorname{tp}(c/B)$ in $S_1^{\mathcal{M}}(B)$ ein realisierter Typ. Zeige, dass die Abbildung:

$$f: S_1^{\mathcal{M}}(B,c) \to \pi^{-1}(p) \subset S_2^{\mathcal{M}}(B)$$
$$q(y) \mapsto p(x) \cup \{\varphi[x,y] \ \mathcal{L}_B\text{-Formel, mit } \varphi[c,y] \in q(y)\}.$$

wohldefiniert und bijektiv ist.

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.33 im Keller des mathematischen Instituts.