Spring 2019 Week 11, Lecture 22

Database Systems - Introduction to Databases and Data Warehouses

CHAPTER 3 - Relational Database Modeling (Part 1)

MAIN TOPICS

- Review: basic concepts in relational database model
- Primary Key
- Map entity with unique attribute into relation
- Map Composite attributes (unique or not unique)
- Map Optional attribute
- Entity integrity constraint
- Foreign key
- Map relationships: 1:M, M:N, 1:1
- Example of Mapping ERD to Relational Schema
- ERD Plus tool demo

- Logical database model
 - The database model that is implementable by a DBMS software
- Relational database model
 - Logical database model that represents a database as a collection of related tables
- Relational database
 - A database modeled using a relational database model
- Relational schema
 - Visual depiction of the relational database model
- Most contemporary commercial DBMS software packages
 - Relational DBMS (RDBMS) software packages

- This chapter
 - Concepts of relational database modeling
 - Convert a ER diagram (conceptual database model) to a relational schema (logical database model)

Terminology

TABLE 3.1	Synonyms Used	in the Relational Databa	se Model	
Relation	=	Relational Table	=	Table
Column	=	Attribute	=	Field
Row	=	Tuple	=	Record

Relational database

- A collection of related relations
 - Each relation must have a unique name within one collection

Relation

- A table in a relational database
- A table containing rows and columns
- The main construct in the relational database model
- Every relation is a table, not every table is a relation

- Relation table in a relational database
 - Conditions for a table to be a relation:
 - Must have a name for each column
 - * Unique column name within each table
 - Unique row within each table
 - Single-valued entry
 - * Within each row, each value in each column must be single valued
 - Must have same (predefined) domain for all values in each column
 - Irrelevant ordering of columns and rows

- Relation table in a relational database
 - Conditions for a table to be a relation:
 - Example: Employee information
 - * Domains of each column
 - Employee ID 4 digits
 - Employee Name 0 to 20 chars
 - Employee Gender 'M' or 'F'
 - Employee Phone "xddd" //d: digit
 - Employee Bdate date (day, month, year)

Example of relational and non-relational tables

EmpID	EmpName	EmpGender	EmpPhone	EmpBdate
0001	Joe	М	x234	1/11/1985
0002	Sue	F	x345	2/7/1983
0003	Amy	F	x456	4/4/1990
0004	Pat	F	x567	3/8/1971
•				
0005	Mike	M	x678	5/5/1965
Not a R	elational Tal	ole		
			x678 EmpPhone	EmpBdate
Not a R	elational Tal	ole		
Not a R EmpID	elational Tal	ole EmpInfo	EmpPhone	EmpBdate
Not a R EmpID 0001	elational Tal EmpInfo Joe	ole EmpInfo	EmpPhone x234	EmpBdate 1/11/1985
Not a R EmpID 0001 0002	elational Tal EmpInfo Joe Sue	EmpInfo M F	EmpPhone x234 x345	EmpBdate 1/11/1985 2/7/1983

Different ordering of rows and columns in a relation

But same information about Employee => same relation

EmpID	Em	pName	EmpGender	EmpPhone	EmpBdate
0001	Joe)	М	x234	1/11/1985
0002	Sue	е	F	x345	2/7/1983
0003	Am	ıy	F	x456	4/4/1990
0004	Pat		F	x567	3/8/1971
	Mik		M	x678	5/5/1965
0005 Exact Sa EmpNa	ame				5/5/1965 nns is irreleval
Exact S	ame	Relatio	n (order of ro	ws and colur	nns is irreleva
Exact Sa EmpNa	ame	Relatio EmpID	n (order of ro EmpGender	ws and colur EmpBdate	mns is irreleval
EmpNar Joe Amy	ame	Relatio EmpID	n (order of ro EmpGender M	ws and colur EmpBdate 1/11/1985	EmpPhone
Exact Sa EmpNar	ame	Relatio EmpID 0001	n (order of ro EmpGender M	ws and colur EmpBdate 1/11/1985 4/4/1990	EmpPhone x234 x456

PRIMARY KEY

- Primary key
 - A single column (or a set of columns) that uniquely identify each row
 - Must have one primary key for each relation
 - Notation:
 - Underlined column(s)

PRIMARY KEY

Relation with the primary key underlined

MAPPING ER DIAGRAMS INTO RELATIONAL SCHEMAS

- Map an ER diagram into a relational schema
 - A collection of relations

MAPPING ENTITIES

- Mapping entities into relations
 - Each regular entity => a relation
 - Each regular attribute of a regular entity =>
 - A column of the new relation
 - The single unique attribute in a regular entity =>
 - Primary key in the new relation

MAPPING ENTITIES

Entity mapped into a relation

Sample data records for the mapped relation

CUSTOMER				
CustID	CustName	CustGender	CustBdate	
1111	Tom	M	1/1/1965	
2222	Jenny	F	2/2/1968	
3333	Greg	M	1/2/1962	
4444	Sophia	F	2/2/1983	

MAPPING ENTITIES WITH COMPOSITE ATTRIBUTES

- Mapping entities with composite attributes into relations
 - Each component of a composite attribute =>
 - A column of the new relation
 - The composite attribute itself
 - Not shown in the new relation

MAPPING ENTITIES WITH COMPOSITE ATTRIBUTES

Entity with a composite attribute mapped into a relation

Sample data records for the mapped relation

20310	MER			
CustID	CustFName	CustLName	CustGender	CustBdate
1111	Tom	Lendrum	M	1/1/1965
2222	Jenny	Jones	F	2/2/1968
3333	Greg	Newton	M	1/2/1962
4444	Sophia	Danks	F	2/2/1983

MAPPING ENTITIES WITH COMPOSITE ATTRIBUTES

The mapped relation as presented to a user in a front-end application

Composite attribute shown in the user interface

CUSTO	MER			
	CustFu	IIName		
CustID	CustFName	CustLName	CustGender	CustBdate
1111	Tom	Lendrum	M	1/1/1965
2222	Jenny	Jones	F	2/2/1968
3333	Greg	Newton	M	1/2/1962
4444	Sophia	Danks	F	2/2/1983

COMPOSITE PRIMARY KEY

- Composite primary key
 - A primary key that is composed of multiple columns
 - All column names of a composite primary key are underlined

MAPPING ENTITIES WITH UNIQUE COMPOSITE ATTRIBUTES

- Mapping entities with unique composite attributes into relations
 - The only unique composite attribute in an entity =>
 - A composite primary key in the new relation

MAPPING ENTITIES WITH UNIQUE COMPOSITE ATTRIBUTES

Entity with a unique composite attribute mapped into a relation

Sample data records for the mapped relation

	CLASSROOM		
Building	RoomNumber	NoOfSeats	
Maguire	110	100	
Maguire	210	50	
Houser	110	50	
Houser	210	50	

MAPPING ENTITIES WITH OPTIONAL ATTRIBUTES

- Mapping entities with optional attributes into relations
 - Optional attribute of an entity =>
 - An optional column in the new relation

MAPPING ENTITIES WITH OPTIONAL ATTRIBUTES

Entity with an optional attribute mapped into a relation

Sample data records for the mapped relation

ENTITY INTEGRITY CONSTRAINT

- Integrity Constraints
 - Rules that make data integrate
- Entity integrity constraint
 - Rule: no primary key column can be optional
 - No null (empty) values in a primary key column in any relational table
 - No null values in a component primary key column if composite primary key
 - Enforced by every RBMS

ENTITY INTEGRITY CONSTRAINT

Entity integrity constraint — compliance and violation example

Single-column primary key

ENTITY INTEGRITY CONSTRAINT

Entity integrity constraint — another compliance and violation example

Composite primary key

FOREIGN KEY

- Foreign key (FK)
 - A column in a relation that refers to a primary key column in another (referred) relation
 - A mechanism used to depict relationships in the relational database model
 - Used to map ER diagram to relational schema
 - In a relational schema, draw a directed line from each foreign key to its corresponding primary key
 - Can depict all relationships (1:1, 1:M, M:N)

Mapping 1:M relationships

- The relation mapped from the entity on the M side of the 1:M relationship has a foreign key that corresponds to the primary key of the relation mapped from the 1 side of the 1:M relationship.
 - Add a foreign key column in the relation for the entity on M side

Example - Map 1:M relationship

Sample data records for the mapped ER diagram

EmpID	EmpName	DeptID
1234	Becky	1
2345	Molly	2
3456	Rob	1
1324	Ted	2

DeptID	DeptLocation
1	Suite A
2	Suite B

DEDADTMENT

Example - Map a 1:M relationship

Mandatory participation on the 1 side

DeptID –
 required (not optional)
 column in EMPLOYEE

Sample data records for the mapped ER diagram

EMPLOYEE			
<u>EmpID</u>	EmpName	DeptID	
1234	Becky	1	
2345	Molly	2	
3456	Rob	1	
1324	Ted	2	

DeptID	DeptLocation
1	Suite A
2	Suite B

Example - Map a 1:M relationship

Mandatory participation on the M side

 No DeptID in DEPARTMENT is NOT referred by a DeptID in EMPLOYEE

Sample data records for the mapped ER diagram

<u>EmpID</u>	EmpName	DeptID
1234	Becky	1
2345	Molly	2
3456	Rob	1
1324	Ted	2

DeptLocation
Suite A
Suite B

Example –
Map a 1:M
relationship
Optional
participation on

DeptID – optional column in EMPLOYEE

the 1 side

Sample data records for the mapped ER diagram

EMPLOYEE			
EmpID	EmpName	DeptID	
1234	Becky	1	
2345	Molly	2	
3456	Rob		
1324	Ted	2	

DeptID DeptLocation	
1	Suite A
2	Suite B

Example Map a 1:M
relationship
Optional
participation on
the M side

Some
 DeptIDs in
 DEPARTMENT
 are not
 referred by
 any DeptID in
 EMPLOYEE

ER Diagram DeptLocation **EmpID EmpName** DeptID **EMPLOYEE** ReportsTo DEPARTMENT Resulting Relational Schema **EMPLOYEE** DEPARTMENT **EmpID** DeptID **EmpName** DeptLocation DeptID (FK)

Sample data records for the mapped ER diagram

EmpID EmpName DeptID 1234 Becky 1 2345 Molly 2 3456 Rob 1 1324 Ted 2

Suite A
Suite B
Suite C

Example -Map a 1:M relationship

Rename a foreign key

- better in some cases
- Data shows FK rule

Sample data records for the mapped ER diagram

STUDENT		
StudentID	StudentName	AdvisorID
1111	Robin	P11
2222	Pat	P22
3333	Jami	P11

I KOI LOOOK		
ProfID	ProfLname	
P11	Zydiak	
P22	Lash	

PROFFSSOR

- Mapping M:N relationships
 - In addition to the two relations representing the two entities involved in the M:N relationship, another relation is created to represent the M:N relationship itself
 - Add a new relation for the M:N relationship
 - Bridge relation whose name may or may not = M:N relationship
 - This new relation has two foreign keys, corresponding to the primary keys of the two relations representing the two entities involved in the M:N relationship
 - Add two foreign key columns to the new relation
 - Point to primary keys of two relations involved
 - The two foreign keys form the composite primary key of the new relation
 - Two foreign keys = primary key of new relation

Example -Map an M:N relationship

Bridge relationBELONGSTO

Sample data records for the mapped ER diagram

STUDENT StudentID StudentName StudentGender 1111 Robin Male 2222 Pat Male 3333 Jami Female

OrgLocation	OrgType
Student Hall	Charity
Damen Hall	Sport
Student Hall	Charity
	Student Hall Damen Hall

StudentID	OrgID
1111	011
1111	O41
2222	011
2222	O41
2222	O47
3333	011

Example Map an M:N
relationship
Mandatory
participation
on both sides

Sample data records for the mapped ER diagram

STUDENT StudentID StudentName StudentGender 1111 Robin Male 2222 Pat Male 3333 Jami Female

OrgLocation	OrgType
Student Hall	Charity
Damen Hall	Sport
Student Hall	Charity
	Student Hall Damen Hall

DELONGOTO		
StudentID	OrgID	
1111	011	
1111	O41	
2222	011	
2222	O41	
2222	O47	
3333	011	

Example Mapping an
M:N
relationship
Optional
participation on
both sides

Sample data records for the mapped ER diagram

STUDENT StudentID StudentName StudentGender 1111 Robin Male 2222 Pat Male 3333 Jami Female 4444 Abby Female

OTTO TO TO			
OrgID	OrgLocation	OrgType	
011	Student Hall	Charity	
O41	Damen Hall	Sport	
O47	Student Hall	Charity	
O50	Damen Hall	Politics	

ORGANIZATION

DELONGOTO		
StudentID	OrgID	
1111	O11	
1111	O41	
2222	011	
2222	O41	
2222	O47	
3333	011	

RELONGSTO

Example - Map a M:N relationship with an attribute

Add a
 column for
 each
 attribute to
 the new
 relation for
 M:N
 relationship

Sample data records for the mapped ER diagram

STUDENT

StudentID	StudentName	StudentGender
1111	Robin	Male
2222	Pat	Male
3333	Jami	Female

ORGANIZATION

OrgID	OrgLocation	OrgType
011	Student Hall	Charity
O41	Damen Hall	Sport
O47	Student Hall	Charity

BELONGSTO

StudentID	OrgID	Function	
1111	011	President	
1111	O41	Member	
2222	011	V.P.	
2222	O41	Member	
2222	O47	Treasurer	
3333	O11	Member	

- Mapping 1:1 relationships
 - In the same way as mapping 1:M relationships
 - Add a foreign key column to either of the two resulting relations
 - The foreign key points to the primary key of the other resulting relation
 - Recommendation for choosing the resulting relation to add a FK column
 - Choose the one that has an advantage if possible
 - * Choose mandatory foreign key over optional foreign key
 - The case of mandatory---1: optional-1 relationship
 - Example in next slide
 - Advantage: not have to manage null values
 - Otherwise, choose either relation
 - * The case of mandatory—1: mandatory—1 or
 - * The case of optional—1: optional—1

MAPPING RELATIONSHIPS INTO RELATIONAL DATABASE CONSTRUCTS

Example -Map a 1:1 relationship

mandatory-1: optional-1

Sample data records for the mapped ER diagram

REFERENTIAL INTEGRITY CONSTRAINT

- Referential integrity constraint
 - A rule defining valid values of foreign keys
 - In each row of a relation containing a foreign key, the value of the **foreign key EITHER matches** one of the values in the **primary key** column of the referred relation **OR** the value of **the foreign key is null** (empty).
 - Valid foreign key value: either of
 - * Matching primary key value of the referred relation
 - Existing primary key value in the referred relation
 - * Null
 - In the case of optional participation
- Referential integrity constraint lines
 - Lines pointing from the foreign key to the corresponding primary key in a relational schema

REFERENTIAL INTEGRITY CONSTRAINT

Example of Foreign Key column with optional participation

Optional Foreign Key column DeptID in EMPLOYEE

REFERENTIAL INTEGRITY CONSTRAINT

Referential integrity constraint — compliance and violation examples

Matching PK

Matching PK or null

Not matching PK

MAPPING ER DIAGRAM INTO RELATIONAL SCHEMA

- Mapping an ER diagram into a relational schema
 - 1. Map all entities and their attributes
 - From left to right and from top to bottom
 - 2. Map all relationships
 - From left to right and from top to bottom
 - Steps to map each relationship
 - 1) Identify the type: 1:1, 1:M, or M:N
 - 2) Map the relationship according to its type
 - M:N, add a new relation with composite PK
 - 1:M, add a FK to relation for entity on M side
 - 1:1, decide which relation to add a FK, then add FK
 - 3. Verify the resulting relational schema
 - Compare the relational schema to the ER diagram

Map Example ER diagram: ZAGI Retail Company Sales Department Database

