MATH 517, Homework 7

Colin Roberts
October 20, 2017

Solutions

Problem 1. (Rudin 7.3) Give an example of sequences $\{f_n\}$, $\{g_n\}$ of uniformly converging functions on some set E so that $\{f_ng_n\}$ does not converge uniformly on E.

Proof. Let $f_n, g_n : \mathbb{R} \to \mathbb{R}$ with each defined by $f_n(x) = x$ and $g_n(x) = \frac{1}{n}$. Then $f_n(x) \to f(x) = x$ and $g_n(x) \to g(x) = 0$ both converge uniformly yet $f_n g_n = \frac{x}{n}$ does not.

First, fix $\epsilon > 0$ then we have that $\forall n \in \mathbb{N}$ and any $x \in \mathbb{R}$

$$|f_n(x) - f(x)| = |x - x| = 0 < \epsilon.$$

So we've shown f_n converges uniformly. Next, fix $\epsilon>0$ and $\forall n>N\geq \frac{1}{\epsilon}$ with $n,N\in\mathbb{N}$ we have for every x,

$$|g_n(x) - g(x)| = \left|\frac{1}{n}\right|$$

 $< \epsilon.$

So we've shown that g_n also converges uniformly.

Note that $f_n g_n$ converges to the 0 function pointwise. To see this, fix x and $\epsilon > 0$ then let $N \in \mathbb{N}$ be such that $N \geq \frac{|x|}{\epsilon}$. Then for n > N we have

$$|(f_n g_n)(x) - 0| = \left| \frac{x}{n} \right|$$

$$< \epsilon.$$

Finally, suppose that $f_n g_n$ converges uniformly to the 0 function. So for any x, we have for $\exists N \in \mathbb{N}$ such that $\forall n > N$ we have $|(f_n g_n)(x) - 0| < \epsilon$. However

$$|(f_n g_n)(x) - 0| = \left|\frac{x}{n}\right|$$

and we can choose $x \in \mathbb{R}$ so that $\frac{x}{n} > M$ for any positive real M. Which means that $|(f_n g_n)(x) - 0| > \epsilon$, which contradicts the supposition that f_ng_n converges uniformly.

Problem 2. (Rudin 7.7) Define $f_n(x) = \frac{x}{1+nx^2}$ for each n = 1, 2, ...

- (a) Show that $\{f_n\}$ converges uniformly to a function f on \mathbb{R} .
- (b) Show that $f'(x) = \lim_{n \to \infty} f'_n(x)$ for all $x \neq 0$, but that this fails when x = 0.

:

Proof (a). We will show that this function converges to f(x) = 0. Fix $\epsilon > 0$ and let $N \in \mathbb{N}$ be such that $N > \frac{1}{\epsilon}$. Then we have two cases. First if |x| < 1, then for n > N we have

$$|f_n(x) - 0| = \left| \frac{x}{1 + nx^2} \right|$$

$$< \left| \frac{1}{1 + nx^2} \right|$$

$$= \left| \frac{1}{x^2} \frac{1}{\frac{1}{x^2} + n} \right|$$

$$< \left| \frac{1}{\frac{1}{x^2} + n} \right|$$

$$< \left| \frac{1}{1 + n} \right| < \epsilon.$$

If $|x| \geq 1$, then for n > N we have

$$|f_n(x) - 0| = \left| \frac{x}{1 + nx^2} \right|$$

$$\leq \left| \frac{x}{1 + nx} \right|$$

$$< \left| \frac{x}{nx} \right|$$

$$= \left| \frac{1}{n} \right| < \epsilon.$$

Thus $\{f_n\}$ converges uniformly to f(x) = 0 on \mathbb{R} . It's worth noting that N did not depend on the value of x. The two cases were just easiest to show by breaking them up.

Proof (b). We have that $f'_n(x) = \frac{1-nx^2}{(1+nx^2)^2}$. We showed above that $f_n(x) \to f(x) = 0$ by part (a), and thus f' = 0 since f is a constant function. Then for $x \neq 0$ we have

$$\lim_{n \to \infty} |f'_n(x) - 0| = \lim_{n \to \infty} \left| \frac{1 - nx^2}{(1 + nx^2)^2} \right|$$

$$< \lim_{n \to \infty} \left| \frac{1 - nx^2}{1 + 2nx^2 + n^2x^4} \right|$$

$$< \lim_{n \to \infty} \left| \frac{1 - nx^2}{n^2x^4} \right|$$

$$= \lim_{n \to \infty} \left| \frac{1}{n^2} \frac{\frac{1}{n^2} - \frac{x^2}{n}}{x^4} \right|$$

$$= \lim_{n \to \infty} \frac{1}{n^2} \left| \frac{\frac{1}{n^2} - \frac{x^2}{n}}{x^4} \right| = 0$$

For x = 0 we have $f'_n(0) = 1$ for every n and thus this does not converge to zero.

Problem 3. Prove that every uniformly convergent sequence of bounded real-valued functions is uniformly bounded (i.e., there exists M > 0 so that $|f_n(x)| < M$ for all n and all x.)

.

Proof. Let f_n be a sequence of bounded real-valued functions on a domain X and this sequence of functions converges uniformly. Thus we have that $|f_n(x)| < M_n$ for every n and for any $x \in X$. Also for any $\epsilon > 0$ we have that $\exists N \in \mathbb{N}$ such that for $n > m \ge N$ and any x we have

$$|f_n(x) - f_m(x)| < \epsilon$$

$$\iff |f_n(x)| < \epsilon + |f_m(x)| \qquad \text{since } |f_n(x)| - |f_m(x)| < |f_n(x) - f_m(x)|$$

$$\iff |f_n(x)| < \epsilon + M_m$$

$$\iff M_n \le M_m \qquad \text{since } \epsilon > 0 \text{ was arbitrary.}$$

This means that for any n > m we have $M_n \leq M_m$. Then consider the finite set of M_i for i = 1, ..., m and note that $\max(\{M_1, ..., M_m\}) = M$ exists and is finite. Then we have that for any n and all x, $|f_n(x)| < M$ by how we constructed this M.

Problem 4. A family \mathcal{F} of (real- or complex-valued) functions on a set E in a metric space X is equicontinuous on E if for every $\epsilon > 0$ there exists $\delta > 0$ so that

$$|f(x) - f(y)| < \epsilon$$

whenever $d(x,y) < \delta$, $x,y \in E$, and $f \in \mathcal{F}$.

Give an example of an equicontinuous sequence $\{f_n\}$ of functions on some metric space that converges pointwise but not uniformly.

:

Proof. Consider the sequence of functions $f_n = \frac{x}{n}$ defined on all of \mathbb{R} . Then note that this is an equicontinuous sequence of functions. To see this, fix $\epsilon > 0$ and let $0 < \delta < \epsilon$. Then we have for any n and $|x - y| < \delta$

$$|f_n(x) - f_n(y)| = \left| \frac{x}{n} - \frac{y}{n} \right|$$
$$= \left| \frac{x - y}{n} \right|$$
$$< |x - y| < \epsilon.$$

Thus we have that this sequence is in fact equicontinuous. Note that in Problem 1 I showed that this sequence converges pointwise but not uniformly. The proof would be the same, so I'll omit that here. \Box