NPN Silicon Epitaxial Planar Transistor

for switching and amplifier applications.

As complementary types the PNP transistors 2N3905 and 2N3906 are recommended.

On special request, these transistors can be manufactured in different pin configurations.

1. Emitter 2. Base 3. Collector TO-92 Plastic Package Weight approx. 0.19g

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	V _{CBO}	60	V
Collector Emitter Voltage	V _{CEO}	40	V
Emitter Base Voltage	V_{EBO}	6	V
Collector Current	Ic	200	mA
Power Dissipation	P _{tot}	625	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	T _S	- 55 to + 150	°C

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

ST 2N3903 / 2N3904

Characteristics at $T_a = 25$ °C

x. Unit	Max.	Min.	Symbol		Parameter
			,		DC Current Gain
_	_	20	h _{FE}	2N3903	at $V_{CE} = 1 \text{ V, } I_{C} = 0.1 \text{ mA}$
-	_	40	h _{FE}	2N3904	SE , O -
-	-	35	h _{FE}	2N3903	at $V_{CE} = 1 \text{ V}$, $I_C = 1 \text{ mA}$
-	-	70	h _{FE}	2N3904	
0 -	150	50	h _{FE}	2N3903	at $V_{CE} = 1 \text{ V}, I_{C} = 10 \text{ mA}$
0 -	300	100	h_{FE}	2N3904	
-	-	30	h _{FE}	2N3903	at $V_{CE} = 1 \text{ V}$, $I_C = 50 \text{ mA}$
-	-	60	h _{FE}	2N3904	
-	-	15	h _{FE}	2N3903	at $V_{CE} = 1 \text{ V}, I_{C} = 100 \text{ mA}$
-	-	30	h _{FE}	2N3904	
) nA	50	-	1		Collector Cutoff Current
) IIA	50	-	I _{CBO}		at $V_{CB} = 30 \text{ V}$
) nA	50		I _{EBO}		Emitter Cutoff Current
, 11/4	30		IEBO		at $V_{EB} = 6 \text{ V}$
V	_	60	V _{(BR)CBO}		Collector Base Breakdown Voltage
V	_	00	V (BR)CBO		at $I_C = 10 \mu A$
V	40 -	V _{(BR)CEO}		Collector Emitter Breakdown Voltage	
•		40	A (RK)CEO		at I _C = 1 mA
V	_	6	$V_{(BR)EBO}$		Emitter Base Breakdown Voltage
· ·			▼ (BR)EBO		at I _E = 10 μA
					Collector Emitter Saturation Voltage
	0.2	-	V_{CEsat}		at $I_C = 10 \text{ mA}$, $I_B = 1 \text{ mA}$
3 V	0.3	-	V_{CEsat}		at $I_C = 50$ mA, $I_B = 5$ mA
					Base Emitter Saturation Voltage
	0.85	-	V_{BEsat}		at $I_C = 10$ mA, $I_B = 1$ mA
95 V	0.95	-	V_{BEsat}		at $I_C = 50$ mA, $I_B = 5$ mA
					Gain Bandwidth Product
MHz	-	250	f⊤	2N3903	at $V_{CE} = 20 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$
MHz	-	300	f⊤	2N3904	
F			0		Collector Base Capacitance
pF	4	-	C _{cb}		at $V_{CB} = 5 \text{ V}, f = 100 \text{ KHz}$
			_		Emitter Base Capacitance
pF	8	-	$C_{ m eb}$		at V _{EB} = 0.5 V, f = 100 KHz
) 1) K/W	250 ¹⁾	-	R _{thA}		Thermal Resistance Junction to Ambient
		- - of 2 mm fron		ient temperature a	Emitter Base Capacitance at $V_{EB} = 0.5 \text{ V}$, $f = 100 \text{ KHz}$

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated: 09/03/2007

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

ISO/TS 16949 : 2002 ISO 14001:2004 Certificate No. 05103 Certificate No. 7116