# The Development of a Convolutional Neural **Network to Classify** Drum Sounds

**Louis Larsen** Dr. Brian Kernighan



## Music and Artificial Intelligence

- Instrument groups are distinguishable
  - (Blaszke and Kostek, 2022)

Limited classification within subset



Figure 1. Waveform representations of C4 played on four instruments. Adapted from "Fundamentals of Music Processing" by M. Müller, 2021, Springer.

#### **Related Work**

- Violin and Viola
  - (Tan et al., 2022)

- Percussion and Drum
  - (Herrera et al., 2002)
    - (Chhabra et al., 2020)



Figure 2. Spectrograms for drum sounds. Adapted from "Deep Learning Methods for Drum Transcription" by R. Vogl, 2018, Nov, Computational Perception.

66

To what extent can a convolutional neural network assist in the classification of drum samples?

## **Hypothesis and Assumptions**

My CNN will maintain at least a 90% accuracy rating to classify percussion instruments on a drum set.

Unpitched instruments will be distinguishable by a computer utilizing MEL Spectrograms.

## **Creating the Database**

1440

**Drum Samples (.WAV)** 

4

**Drum Instruments** 

## **Creating the Spectrograms**



Figure 3. Flowchart for the structure of *createSpectrograms.py*, showing a 80/20 split between testing and training data.

#### **CNN Structure**



Figure 4. Flowchart for the structure of CNNClassifier.py, showing the structure of the convolutional neural network used for predicting drum instruments.

## **Challenges**

#### **Spectrogram**

- Creating Database
- Stereo and Mono
- Saving to Directory

#### **CNN**

- Mapping Labels
- Memory Intensive
- Learning Rate

## Results - MEL Spectrogram



Figure 5. Shows example generated spectrograms for each of the four instrument types.



Figure 6. Shows Training Loss per epoch number, with a 1/x relationship.

### **Results - CNN**

94.0

**Accuracy** 

.006

Training Loss (Last Epoch)

#### Limitations

Similar Frequency,
Different Instrument

Predicted Tom, Expected Kick

model predicted drum 3



Corrupted Spectrogram

Predicted Kick, Expected Cymbal

model predicted drum 0

Figure 8. Shows edge cases of spectrogram failures, such as misclassification or corruption.

#### **Conclusions**

- Research classification within subset
- 94% Accuracy
- Creative Applications
  - Sampling
  - **Transcription**
  - Generation



Figure 9. The weights assigned to each pixel of the first eight filters.

#### **Future Work**

- Increase Accuracy
- Spectrogram Corruption
- Add More Classifications
- Work Toward Future Applications



Figure 10. Spectrograms of percussive instruments. Adapted from "Phase-based Harmonic/Percussive Separation" by E. Cano, 2014, Oct, Interspeech.

## **Acknowledgements**

- Dr. Brian Kernighan
- Dr. Sierra Eckert
- COS IW classmates

