0.1 Effect Weakening Definition

Introduce a relation $\omega : \Phi' \triangleright \Phi$ relating effect-environments.

0.1.1 Relation

- $(\mathrm{Id}) \frac{\Phi \mathsf{0k}}{\iota : \Phi \triangleright \Phi}$
- (Project) $\frac{\omega : \Phi' \triangleright \Phi}{\omega \pi : (\Phi', \alpha) \triangleright \Phi}$
- (Extend) $\frac{\omega : \Phi' \triangleright \Phi}{\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)}$

0.1.2 Weakening Properties

0.1.3 Effect Weakening Preserves 0k

$$\omega: \Phi' \triangleright \Phi \land \Phi \mathsf{Ok} \Leftarrow \Phi' \mathsf{Ok} \tag{1}$$

Proof

Case: ι

$$\Phi \mathtt{Ok} \wedge \iota : \Phi \triangleright \Phi \Leftarrow \Phi \mathtt{Ok}$$

Case: $\omega \pi$ By inversion,

$$\omega: \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{2}$$

So, by induction, Φ' 0k and hence (Φ', α) 0k

Case: $\omega \times$ By inversion,

$$\omega: \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{3}$$

So

$$(\Phi, \alpha) \mathbf{0k} \Rightarrow \Phi \mathbf{0k} \tag{4}$$

$$\Rightarrow \Phi'$$
0k (5)

$$\Rightarrow (\Phi', \alpha) \mathsf{Ok}$$
 (6)

(7)

0.1.4 Domain Lemma

$$\omega: \Phi' \triangleright \Phi \Rightarrow (\alpha \notin \Phi \Rightarrow \alpha \notin \Phi')$$

 ${\bf Proof} \quad {\rm By \ trivial \ Induction}.$

0.1.5 Weakening Preserves Effect Well-Formed-Ness

If $\omega : \Phi' \triangleright \Phi$ then $\Phi \vdash \epsilon \implies \Phi' \vdash \epsilon$

Proof By induction over the well-formed-ness of effects

Case Ground By inversion, $\Phi 0 k \wedge \epsilon \in E$. Hence by the ok-property, $\Phi' 0 k$ So $\Phi' \vdash \epsilon$

Case Var $\Phi = \Phi'', \alpha$

So either:

Case: $\Phi' = \Phi''', \alpha$ So $\omega = \omega' \times$ So $\omega' : \Phi''' \triangleright \Phi''$, and hence:

$$(\operatorname{Var}) \frac{\Phi''', \alpha \operatorname{Ok}}{\Phi''', \alpha \vdash \alpha} \tag{8}$$

Case: $\Phi' = \Phi''', \beta$ and $\beta \neq \alpha$

So $\omega = \omega' \pi$

By induction, $\omega':\Phi''' \triangleright \Phi$ so

$$(\text{Weaken}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{9}$$

Case Weaken By inversion, $\Phi = \Phi'', \beta$.

So $\omega = \omega' \times$

And, $\Phi' = \Phi''', \beta$ So By inversion $\omega' : \Phi''' \triangleright \pi_1'''$

So by induction

$$(\text{weak})\frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{10}$$

Case Monoid By inversion, $\Phi \vdash \epsilon_1$ and $\Phi \vdash \epsilon_2$. So by induction, $\Phi' \vdash \epsilon_1$ and $\Phi' \vdash \epsilon_2$, and so:

$$\Phi' \vdash \epsilon_1 \cdot \epsilon_2 \tag{11}$$

0.1.6 Weakening Preserves Type-Well-Formed-Ness

If $\omega : \Phi' \triangleright \Phi$ and $\Phi \vdash A$ then $\Phi' \vdash A$.

Proof:

Case Ground: By inversion, ΦOk , hence by property 1 of weakening, $\Phi' Ok$. Hence $\Phi' \vdash \gamma$.

Case Function: By inversion, $\Phi \vdash A$, $\Phi \vdash B$. So by induction $\Phi' \vdash A$, $\Phi' \vdash B$, hence,

$$\Phi' \vdash A \to B$$

Case Computation: By inversion $\Phi \vdash A$, and $\Phi \vdash \epsilon$.

So by induction and the effect-well-formed-ness theorem,

 $\Phi' \vdash A \text{ and } \Phi' \vdash \epsilon$

So

$$\Phi' \vdash M_{\epsilon}A$$

Case For All: By inversion, $\Phi, \alpha \vdash A$ Picking $\alpha \notin \Phi'$ using α -conversion.

So $\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)$

So $(\Phi', \alpha) \vdash A$

So $\Phi \vdash \forall \alpha.A$

0.1.7 Corollary

$$\omega: \Phi' \triangleright \Phi \land \Phi \vdash \Gamma \mathsf{Ok} \implies \Phi' \vdash \Gamma \mathsf{Ok}$$

Case Nil: By inversion ΦOk so $\Phi \vdash \Diamond Ok$

Case Var: By inversion $\Phi \vdash \Gamma Ok$, $x \in dom(\Gamma)$, $\Phi \vdash A$

So by induction $\Phi' \vdash \Gamma Ok$, and $\pi'_1 \vdash \Gamma Ok$

So $\Phi' \vdash (\Gamma, x : A) \mathsf{Ok}$

0.1.8 Effect Weakening preserves Type Relations

$$\Phi \mid \Gamma \vdash v : A \land \omega : \Phi' \triangleright \Phi \implies \Phi' \mid \Gamma \vdash v : A$$
 (12)

Proof:

Case Constants: If $\Phi \vdash \Gamma Ok$ then $\Phi' \vdash \Gamma Ok$ so:

$$(\text{Const}) \frac{\Phi' \vdash \Gamma 0 k}{\Phi' \mid \Gamma \vdash C^A : A}$$

$$(13)$$

Case Variables: If $\Phi \vdash \Gamma Ok$ then $\Phi' \vdash \Gamma Ok$ so: So, $\Phi' \mid G \vdash x : A$, if $\Phi \mid G \vdash x : A$

Case Lambda: By inversion, $\Phi \mid \Gamma, x : A \vdash v : B$, so by induction $\Phi' \mid \Gamma, x : A \vdash v : B$. So,

$$\Phi' \mid \Gamma \vdash \lambda x : A.v: A \to B \tag{14}$$

Case Apply: By inversion $\Phi \mid \Gamma \vdash v_1 : A \to B$ and $\Phi \mid \Gamma \vdash v_2 : A$. Hence by induction, $\Phi' \mid \Gamma \vdash v_1 : A \to B$ and $\Phi' \mid \Gamma \vdash v_2 : A$. So

$$\Phi' \mid \Gamma \vdash \mathsf{app} v_1 v_2 : B$$

Case Return: By inversion $\Phi \mid \Gamma \vdash v : A$

So by induction $\Phi' \mid \Gamma \vdash v : A$ Hence $\Phi' \mid \Gamma \vdash \mathsf{return}v : \mathsf{M}_1 A$

Case Bind: By inversion $\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1}A$ and $\Phi \mid \Gamma, x : A \vdash \epsilon_2 : M_{\epsilon_2}A$. Hence by induction $\Phi' \mid \Gamma \vdash v_1 : M_{\epsilon_1}A$ and $\Phi' \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2}A$. So

$$\Phi' \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1 \cdot \epsilon_2} B \tag{15}$$

Case If: By inversion $\Phi \mid \Gamma \vdash v$: Bool, $\Phi \mid \Gamma \vdash v_1$: A, and $\Phi \mid \Gamma \vdash v_2$: A. Hence by induction $\Phi' \mid \Gamma \vdash v$: Bool, $\Phi' \mid \Gamma \vdash v_1$: A, and $\Phi' \mid \Gamma \vdash v_2$: A. So

$$\Phi' \mid \Gamma \vdash \mathsf{if}_{A}, v \mathsf{ then } v_1 \mathsf{ else } v_2 : A \tag{16}$$

Case Subtype: By inversion $\Phi \mid \Gamma \vdash v: A$, and $A \leq B$.

So by induction: $\Phi' \mid \Gamma \vdash v : A$, and $A \leq : B$. So

$$\Phi' \mid \Gamma \vdash v : B \tag{17}$$

Case Effect-Lambda: By inversion Φ , $\alpha \mid \Gamma \vdash v : A$

By picking $\alpha \notin \Phi'$ using α -conversion.

$$\omega \times : \Phi', \alpha \triangleright \Phi, \alpha \tag{18}$$

So by induction, Φ' , $\alpha \mid \Gamma \vdash v : A$ Hence,

$$\Phi' \mid \Gamma \vdash \Lambda \alpha. v : \forall a. A \tag{19}$$

Case Effect-Apply: By inversion, $\Phi \mid \Gamma \vdash v : \forall \alpha. A$, and $\Phi \vdash \epsilon$.

So by induction, $\Phi' \mid \Gamma \vdash v : \forall \alpha. A$

And by the well-formed-ness-theorem $\Phi' \vdash \epsilon$

Hence,

$$\Phi' \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha \right] \tag{20}$$

0.2 Type Environment Weakening

0.2.1 Relation

We define the ternary weakening relation $\Phi \vdash w : \Gamma' \triangleright \Gamma$ using the following rules.

- $(\mathrm{Id}) \frac{\Phi \vdash \Gamma 0 k}{\Phi \vdash \iota : \Gamma \triangleright \Gamma}$
- $\bullet \ (\operatorname{Project})^{\frac{\Phi \vdash \omega : \Gamma' \rhd \Gamma}{\Phi \vdash \omega \pi : \Gamma, x : A \rhd \Gamma}} {\stackrel{x \notin \operatorname{dom}(\Gamma')}{\Phi \vdash \omega \pi : \Gamma, x : A \rhd \Gamma}}$
- (Extend) $\frac{\Phi \vdash \omega : \Gamma' \triangleright \Gamma \ x \notin \mathsf{dom}(\Gamma') \ A \leq : B}{\Phi \vdash w \times : \Gamma', x : A \triangleright \Gamma, x : B}$

0.2.2 Domain Lemma

If $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, then $dom(\Gamma) \subseteq dom(\Gamma')$.

Proof:

Case Id: Then $\Gamma' = \Gamma$ and so $dom(\Gamma') = dom(\Gamma)$.

Case Project: By inversion and induction, $dom(\Gamma) \subseteq dom(\Gamma') \subseteq dom(\Gamma' \cup \{x\})$

Case Extend: By inversion and induction, $dom(\Gamma) \subseteq dom(\Gamma')$ so

$$\operatorname{dom}(\Gamma, x : A) = \operatorname{dom}(\Gamma) \cup \{x\} \subseteq \operatorname{dom}(\Gamma') \cup \{x\} = \operatorname{dom}(\Gamma', x : A)$$

0.2.3 Theorem 1

If $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ and $\Phi \vdash \Gamma \cap \Phi \vdash \Gamma' \cap \Phi$

Proof:

Case Id:

$$(\mathrm{Id})\frac{\Phi \vdash \Gamma \mathtt{Ok}}{\Phi \vdash \iota : \Gamma \rhd \Gamma}$$

By inversion, $\Phi \vdash \Gamma Ok$.

Case Project:

$$(Project) \frac{\Phi \vdash \omega : \Gamma' \triangleright \Gamma \quad x \notin dom(\Gamma')}{\Phi \vdash \omega \pi : \Gamma \cdot x : A \triangleright \Gamma}$$

By inversion, $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ and $x \notin dom(\Gamma')$.

Hence by induction $\Phi \vdash \Gamma' \mathsf{Ok}$, $\Phi \vdash \Gamma \mathsf{Ok}$. Since $x \notin \mathsf{dom}(\Gamma')$, we have $\Phi \vdash \Gamma', x : A \mathsf{Ok}$.

 $\textbf{Case Extend:} \quad (\text{Extend}) \, \frac{\Phi \vdash \omega : \Gamma' \rhd \Gamma \ x \not\in \texttt{dom}(\Gamma') \ A \leq : B}{\Phi \vdash w \times : \Gamma', x : A \rhd \Gamma, x : B}$

By inversion, we have

 $\Phi \vdash \omega : \Gamma' \triangleright \Gamma, \ x \notin dom(\Gamma').$

Hence we have $\Phi \vdash \Gamma Ok$, $\Phi \vdash \Gamma' Ok$, and by the domain Lemma, $dom(\Gamma) \subseteq dom(\Gamma')$, hence $x \notin dom(\Gamma)$. Hence, we have $\Phi \vdash \Gamma, x : AOk$ and $\Phi \vdash \Gamma', x : AOk$

0.2.4 Theorem 2

If $\Phi \mid \Gamma \vdash t : \tau$ and $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ then there is a derivation of $\Phi \mid \Gamma' \vdash t : \tau$

Proof: We induct over the structure of typing derivations of $\Phi \mid \Gamma \vdash t:\tau$, assuming $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ holds.

Case Var and Weaken: We case split on the weakening ω .

Case: $\omega = \iota$ Then $\Gamma' = \Gamma$, and so $\Phi \mid \Gamma' \vdash x$: A holds and the derivation Δ' is the same as Δ

Case: $\omega = \omega' \pi$ Then $\Gamma' = (\Gamma'', x' : A')$ and $\Phi \vdash \omega' : \Gamma'' \triangleright \Gamma$. So by induction, there is a tree, Δ_1 deriving $\Phi \mid \Gamma'' \vdash x : A$, such that:

$$(\text{Weaken}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma'' \vdash x : A}}{\Phi \mid \Gamma'', x' : A' \vdash x : A}$$

$$(21)$$

Case: $\omega = \omega' \times$ Then

$$\Gamma' = \Gamma''', x' : B \tag{22}$$

$$\Gamma = \Gamma'', x' : A' \tag{23}$$

$$B \le: A \tag{24}$$

Case: x = x' Then A = A'.

Then we derive the new derivation, Δ' as so:

$$(Sub-type) \frac{(\text{var})_{\overline{\Phi}|\Gamma''',x:B\vdash x:\overline{B}} \quad B \leq :A}{\Phi \mid \Gamma' \vdash x:A}$$
 (25)

Case: $x \neq x'$ Then

$$\Delta = (\text{Weaken}) \frac{()\frac{\Delta_1}{\Phi \mid \Gamma'' \vdash x : A}}{\Phi \mid \Gamma \vdash x : A}$$
 (26)

By induction with $\Phi \vdash \omega : \Gamma''' \triangleright \Gamma''$, we have a derivation Δ_1 of $\Phi \mid \Gamma''' \vdash x : A$ We have the weakened derivation:

$$\Delta' = (\text{Weaken}) \frac{\left(\right) \frac{\Delta'_1}{\Phi \mid \Gamma'' \vdash x : A}}{\Phi \mid \Gamma' \vdash x : A}$$
(27)

Case Constant: The constant typing rules, (), true, false, C^A , all proceed by the same logic. Hence I shall only prove the theorems for the case C^A .

$$(\text{Const}) \frac{\Gamma 0 k}{\Gamma \vdash \mathbf{C}^A : A} \tag{28}$$

By inversion, we have $\Phi \vdash \Gamma Ok$, so we have $\Phi \vdash \Gamma' Ok$.

$$(Const) \frac{\Phi \vdash \Gamma' \mathsf{0k}}{\Phi \mid \Gamma' \vdash \mathsf{C}^A : A}$$
 (29)

Holds.

Case Lambda: By inversion, we have a derivation Δ_1 giving

$$\Delta = (\operatorname{Fn}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma, x : A \vdash v : B}}{\Phi \mid \Gamma \vdash \lambda x : A . v : A \to B}$$
(30)

Since $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, we have:

$$\Phi \vdash \omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A) \tag{31}$$

Hence, by induction, using $\Phi \vdash \omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A)$, we derive Δ'_1 :

$$\Delta' = (\operatorname{Fn}) \frac{\left(\right) \frac{\Delta'_1}{\Phi \mid \Gamma', x : A \vdash v : B}}{\Phi \mid \Gamma', x : A \vdash \lambda x : A \cdot v : A \to B}$$
(32)

Case Sub-typing:

$$(Sub-type) \frac{\Phi \mid \Gamma \vdash v : A \mid A \leq : B}{\Phi \mid \Gamma \vdash v : B}$$

$$(33)$$

by inversion, we have a derivation Δ_1

$$()\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A} \tag{34}$$

So by induction, we have a derivation Δ'_1 such that:

$$(\text{Sub-type}) \frac{()\frac{\Delta_1'}{\Phi \mid \Gamma' \vdash v : a} \quad A \leq : B}{\Phi \mid \Gamma' \vdash v : B}$$

$$(35)$$

Case Return: We have the sub-derivation Δ_1 such that

$$\Delta = (\text{Return}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \text{return} v : M_1 A}$$
(36)

Hence, by induction, with $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, we find the derivation Δ'_1 such that:

$$\Delta' = (\text{Return}) \frac{\left(\right) \frac{\Delta_1'}{\Phi \mid \Gamma' \vdash v : A}}{\Phi \mid \Gamma' \vdash \text{return} v : M_1 A}$$
(37)

Case Apply: By inversion, we have derivations Δ_1 , Δ_2 such that

$$\Delta = (\text{Apply}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \right) \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}}{\Phi \mid \Gamma \vdash v_1 \ v_2 : B}$$
(38)

By induction, this gives us the respective derivations: Δ'_1, Δ'_2 such that

$$\Delta' = (\text{Apply}) \frac{\left(\frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v_1 : A \to B}\right) \left(\frac{\Delta'_2}{\Phi \mid \Gamma' \vdash v_2 : A}\right)}{\Phi \mid \Gamma' \vdash v_1 \ v_2 : B}$$
(39)

Case If: By inversion, we have the sub-derivations $\Delta_1, \Delta_2, \Delta_3$, such that:

$$\Delta = (\mathrm{If}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \mathsf{Bool}} \cdot \left(\right) \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_1 : A} \cdot \left(\right) \frac{\Delta_3}{\Phi \mid \Gamma \vdash v_2 : A}}{\Phi \mid \Gamma \vdash \mathsf{if}_{A}, \, v \, \mathsf{then} \, v_1 \, \mathsf{else} \, v_2 : A}$$

$$\tag{40}$$

By induction, this gives us the sub-derivations $\Delta_1', \Delta_2', \Delta_3'$ such that

$$\Delta' = (\mathrm{If}) \frac{\left(\right) \frac{\Delta_1'}{\Phi \mid \Gamma' \vdash v : \mathsf{Bool}} \quad \left(\right) \frac{\Delta_2'}{\Phi \mid \Gamma' \vdash v_1 : A} \quad \left(\right) \frac{\Delta_3'}{\Phi \mid \Gamma' \vdash v_2 : A}}{\Phi \mid \Gamma' \vdash \mathsf{if}_{A}, \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 : A} \tag{41}$$

Case Bind: By inversion, we have derivations Δ_1, Δ_2 such that:

$$\Delta = (\text{Bind}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : M_{\Xi_1} A} \left(\right) \frac{\Delta_2}{\Phi \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2} B}}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(42)$$

If $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ then $\Phi \vdash \omega \times : \Gamma', x : A \triangleright \Gamma, x : A$, so by induction, we can derive $\Delta'_1, \, \Delta'_2$ such that:

$$\Delta' = (\text{Bind}) \frac{\left(\frac{\Delta'_1}{\Phi \mid \Gamma' \vdash \nu_1 : M_{\mathbb{E}_1} A}\right) \left(\frac{\Delta'_2}{\Phi \mid \Gamma', x : A \vdash \nu_2 : M_{\epsilon_2} B}\right)}{\Phi \mid \Gamma' \vdash \text{do } x \leftarrow \nu_1 \text{ in } \nu_2 : M_{\epsilon_1 : \epsilon_2} B}$$

$$(43)$$

Case Effect-Abstraction: By inversion, we have derivation Δ_1 deriving

$$(\text{Effect-Abs}) \frac{\left(\right) \frac{\Delta_1}{\Phi, \alpha \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A} \tag{44}$$

By α -conversion, we have $\iota \pi : \Phi, \alpha \triangleright \Phi$, So we have $\Phi, \alpha \vdash \omega : \Gamma' \triangleright \Gamma$ so by induction, there exists Δ_1 deriving:

$$\Delta' = (\text{Effect-Abs}) \frac{\left(\right) \frac{\Delta_1}{\Phi, \alpha \mid \Gamma' \vdash v : A}}{\Phi \mid \Gamma' \vdash \Lambda \alpha . v : \forall \alpha . A}$$
(45)

Case Effect-Application: By inversionwe have derivation Δ_1 deriving

(Effect-App)
$$\frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \in A \left[\epsilon / \alpha\right]}$$
(46)

So by induction, we have Δ'_1 deriving

(Effect-App)
$$\frac{\left(\right) \frac{\Delta_{1}'}{\Phi \mid \Gamma' \vdash v : \forall \alpha . A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma' \vdash v \; \epsilon : A \left[\epsilon / \alpha\right]}$$
(47)