normal: ③ ⇒ ○ ⑤ ♦ ② ○ + ② ♦ ③ ○ ♦ ② ○ + ⑤ ⇒ ⑥

Seperable: ○ + ② = ③ ○ ⊕ + ⑤ = ⑥

Cialois: ○ ⇒ ○ ⑤ ♦ ② ○ + ② ♦ ⑤ ○ ♦ ② ○ + ⑤ ⇒ ⑥

purely inseparable ○ + ② = ③ ○ ⊕ + ⑤ = ⑥

Conly 1 root for minimal poly

[GTM 167, Thm 4.13] char F=p. then
F perfect \$\Rightarrow F^P = F\$

open subgroup \subseteq closed subgroup = $\lceil G_a((\overline{K}/L)) \rfloor L/k$ ext $? \subseteq Subgroup$

Lem. A subgroup of a profinite group is open iff it's closed and has finite index.

Ref: https://ctnt-summer.math.uconn.edu/wp-content/uploads/sites/1632/2020/06/CTNT-InfGaloisTheory.pdf

Some wonderful exercises for Galvis correspondence:

Let E/F be field ext of deg n, $m \ln prove$. \exists subfield ext of deg m. (Sylow thm & $Z(G) \neq f \neq f$ for G p-gp & classification of $f \in G$ abelian gp) Cor For p prime, F field, one can define $F := \bigcup_{F \in F \neq g} E$, and

F = TF