Examen de Computabilidad y Complejidad

(CMC)

27 de enero de 2004

(I) Cuestiones: (Justifique formalmente las respuestas)

- 1. ¿Es incontextual el lenguaje $L = \{w \in \{0, 1, 2\}^* : w = x2x \ con \ x \in \{0, 1\}^*\}$? (1 punto)
- 2. Se pide dar una gramática incontextual para $L=\{x1y: x,y \in \{0,1\}^*, |x|=|y|\}$? (1.5 puntos)
- 3. Sea L un lenguaje definido sobre un cierto alfabeto Σ ; se define una operación Ψ sobre L de la siguiente forma: $x \in \Psi(L) \iff x = \lambda \lor [x \in L \land pred(x) \in \Psi(L)]]$, donde pred(x) es una función que devuelve la cadena predecesora de x en el orden lexicográfico definido en Σ^* , y $pred(\lambda) = \lambda$. ¿Es la familia de los lenguajes recursivamente enumerables cerrada respecto de la operación Ψ ? (1 punto)
- 4. Sean L_1 y L_2 lenguajes definidos sobre un cierto alfabeto Σ , sea Φ la operación sobre lenguajes tal que $\Phi(L_1, L_2) = \{xy : x \in L_1 \cup L_2, y \in L_1 \cap L_2\}$. ¿Es la familia de los lenguajes recursivos cerrada respecto de la operación Φ ? (1.5 puntos)

(II) Problemas:

5. Diremos que una gramática es invertible si en su conjunto de reglas de producción no se repite ningún consecuente (parte derecha). Esto es, si $A \to \alpha$ y $B \to \alpha$, son reglas de la gramática entonces A=B. Se pide construir un módulo mathematica que, tomando como entrada una gramática incontextual (con el formato explicado en las clases de laboratorio), devuelva *True* si la gramática es invertible y *False* en caso contrario.

(2 puntos)

6. Sean las siguientes gramáticas:

$$G_1: S \rightarrow aSS \mid SSb \mid A$$
 $A \rightarrow aA \mid b$
 $G_2: S \rightarrow SA \mid AS \mid a$ $A \rightarrow AA \mid AS \mid b$
 $G_3: S \rightarrow SS \mid \lambda \mid aSb$

Sea la sustitución f definida por $f(a) = [L(G_2)]^* y$ $f(b) = [L(G_3)]^r$. Se pide obtener una gramática incontextual para el lenguaje $L = L(G_1)f(L(G_1))$.

(1.5 puntos)

7. Dada la gramática G con las siguientes producciones, se pide obtener una gramática simplificada y en Forma Normal de Chomsky que genere L(G)- $\{\lambda\}$.

```
S\rightarrow 1A \mid 0BD \mid 01
A\rightarrow BD \mid 1C \mid \lambda
B\rightarrow 0B0 \mid DB
C\rightarrow S0SA \mid BS \mid AA \mid 1
D\rightarrow S0A \mid CC \mid \lambda
```

(1.5 puntos)

Examen de Computabilitad i Complexitat

(CMC)

27 de gener de 2004

(III) Qüestions: (Justifiqueu formalment les respostes)

- 1. ¿És incontextual el llenguatge $L = \{w \in \{0,1,2\}^* : w = x2x \text{ amb } x \in \{0,1\}^*\}$? (1 punt)
- 2. Es demana donar una gramàtica incontextual per a $L=\{x1y: x, y \in \{0,1\}^*, |x|=|y|\}$? (1.5 punts)
- 3. Siga L un llenguatge definit sobre un cert alfabet Σ ; es defineix una operació Ψ sobre L de la següent forma: $x \in \Psi(L) \iff x = \lambda \lor [x \in L \land pred(x) \in \Psi(L)]]$, on pred(x) és una funció que torna la cadena predecessora de x en l'ordre lexicogràfic definit en Σ^* , i $pred(\lambda) = \lambda$. ¿És la família dels llenguatges recursivament enumerables tancada respecte de l'operació Ψ ? (1 punt)
- 4. Siguen L_1 i L_2 llenguatges definits sobre un cert alfabet Σ , siga Φ l'operació sobre llenguatges tal que $\Phi(L_1, L_2) = \{xy : x \in L_1 \cup L_2, y \in L_1 \cap L_2\}$. ¿És la família dels llenguatges recursius tancada respecte de l'operació Φ ? (1.5 punts)

(IV) Problemes:

5. Direm que una gramàtica és invertible si en el seu conjunt de regles de producció no es repeteix cap consequent (part dreta). És a dir, si $A \to \alpha$ i $B \to \alpha$, són regles de la gramàtica aleshores A=B. Es demana construir un mòdul mathematica que, prenent com entrada una gramàtica incontextual (amb el format explicat en les classes de laboratori), torne True si la gramàtica es invertible i False en cas contrari.

(2 punts)

6. Siguen las següents gramàtiques:

 $G_1: S \rightarrow aSS \mid SSb \mid A$ $A \rightarrow aA \mid b$ $G_2: S \rightarrow SA \mid AS \mid a$ $A \rightarrow AA \mid AS \mid b$ $G_3: S \rightarrow SS \mid \lambda \mid aSb$

Siga la substitució f definida per $f(a) = [L(G_2)]^*$ i $f(b) = [L(G_3)]^r$. Es demana obtenir una gramàtica incontextual per al llenguatge $L = L(G_1)f(L(G_1))$.

(1.5 punts)

7. Donada la gramàtica G amb les següents produccions, es demana obtenir una gramàtica simplificada i en Forma Normal de Chomsky que genere L(G)- $\{\lambda\}$.

 $S\rightarrow 1A \mid 0BD \mid 01$ $A\rightarrow BD \mid 1C \mid \lambda$ $B\rightarrow 0B0 \mid DB$ $C\rightarrow S0SA \mid BS \mid AA \mid 1$ $D\rightarrow S0A \mid CC \mid \lambda$

(1.5 punts)