Supplemental File for Non-Iterative Coordination of Interconnected Power Grids via Dimension Decomposition-Based Flexibility Aggregation

Siyuan Wang, Member, IEEE, Cheng Feng, Member, IEEE, Fengqi You, Senior Member, IEEE

R1

R1

R2

DЭ

R4

T	PARAMETERS	OF IEEE	110	TEGERALOE
- 1	PARAMETERS	OFTERE	I I X	TEST CASE

TABLE I
CONFIGURATION OF THE IFFF 118 SYSTEM

Item	Number		
Bus	118		
Branch	186		
Thermal power generator	32		
PV stations	23		
Wind farms	18		
Tie-lines	2 (AC@Bus17, DC@Bus31)		

II. PARAMETERS OF 5-REGION INTERCONNECTED POWER GRID

TABLE II CONFIGURATION OF GENERATION UNITS IN FIVE REGIONAL POWER GRIDS

Index	Case name	Thermal power generators	PV stations	Wind farms
R1	case39	10	10	6
R2	case118	32	12	11
R3	case89pegase	24	10	8
R4	case39	10	6	10
R5	case89pegase	24	8	10

TABLE III TIE-LINES OF 5-REGION INTERCONNECTED POWER GRIDS

From RPG	From bus	To RPG	To bus	Type

	R2	80	K4	32	AC	
		100		33	AC	
		3659		6798	AC	
	R3	4586	R5	7960	AC	
	KS	6798		8605	DC	
		7279		9239	DC	

30

33

35

37

31

34

38

82

108

16

35

34

36

38

25

28

75

913

2107

2267

5097

6233

30

2107

3659

4586

6233

R2

R3

R3

DC

DC

DC

DC

AC

AC

AC

DC

DC

AC

AC

AC

AC

AC

III. SOLUTION METHOD OF THE MIN-MAX PROBLEM

R5

To solve the Stackelberg game min-max problem in (23), the internal variables x^{int} are eliminated via duality and (23) is

transformed into a minimization problem:

$$\min_{\boldsymbol{x}^{\mathrm{bd}}, \boldsymbol{\lambda}, \boldsymbol{\pi}} \boldsymbol{\pi}^{\top} \boldsymbol{f} - \boldsymbol{\lambda}^{\top} \boldsymbol{d} + \boldsymbol{\lambda}^{\top} \boldsymbol{x}^{\mathrm{bd}}$$
s.t. $\boldsymbol{H}_{t}^{\mathrm{bd}} \boldsymbol{x}^{\mathrm{bd}} \in \mathcal{E}_{t}^{\mathrm{bd}} \left(\boldsymbol{E}_{t(k)}^{\mathrm{bd}}, \boldsymbol{e}_{t}^{\mathrm{bd}} \right), \forall t \in \mathcal{T}$

$$\boldsymbol{A}_{i}^{\mathrm{tie}} \boldsymbol{S}_{i}^{\mathrm{tie}} \boldsymbol{x}^{\mathrm{bd}} \leq \boldsymbol{b}_{i(k)}^{\mathrm{tie}}, \forall i \in \mathcal{I}^{\mathrm{tie}}$$

$$\boldsymbol{\lambda}^{\top} \boldsymbol{C} + \boldsymbol{\pi}^{\top} \boldsymbol{F} = \boldsymbol{0}$$

$$\boldsymbol{\pi} \geq \boldsymbol{0}$$
(A.1)

where λ and π are the dual variables associated with the equality (23d) and inequality constraints (23e), respectively.

The problem in (A.1) is a bilinear programming problem with a bilinear term $\lambda^\top x^{\rm bd}$ in the objective function, which poses challenges for direct solution with commonly used solvers. According to the propriety of dual variables, violation of the equality constraints (23d) will lead to the objective function an infinity value $-\infty$. Therefore, the optimal value of each element in vector λ is the 3 possible values of $0, +\infty$ and $-\infty$. To facilitate computation, we discretize each element in the unbounded vector variable λ to three specific values, -M, 0, and M, where M is a sufficient large positive constant. By introducing two discrete variables, z_1 and z_2 , λ can be expressed as follows:

$$\lambda = (z_1 - z_2) \cdot M$$

$$z_1 + z_2 \le I_1, z_1, z_2 \in \{0, 1\}^l$$
(A.2)

where $l := \operatorname{len}(\lambda)$. Subsequently, the bilinear term $\lambda^{\top} x^{\operatorname{bd}}$ can be reformulated as products between binary and continuous variables, which can then be transformed into a mixed-integer linear programming problem or directly solved using off-the-shelf solvers, such as Gurobi.