Multilingual NLP

12/12/2023 University of Tuebingen

Multilingual transfer

- So far, we've mainly talked about pretraining and finetuning models on English text.
- One approach: pretrain BERT-like models on monolingual data from a different language
 - "BERTje > Dutch, "FlauBERT" > French, "PhoBERT" > Vietnamese, etc.
- Another approach: pretrain models on a large mixture of many languages
 - mBERT, mBART, XLM-R, mT5, byT5, etc.
 - Allows for transfer learning across languages

mC4 dataset

 107 languages, lower-resource languages upsampled based on their frequency in the dataset

Model	Architecture	Parameters	# languages	Data source
mBERT (Devlin, 2018) XLM (Conneau and Lample, 2019)	Encoder-only Encoder-only	180 M 570 M	104 100	Wikipedia Wikipedia
XLM-R (Conneau et al., 2020) mBART (Lewis et al., 2020b) MARGE (Lewis et al., 2020a) mT5 (ours)	Encoder-only Encoder-decoder Encoder-decoder Encoder-decoder	270M - 550M 680M 960M 300M - 13B	100 25 26 101	Common Crawl (CCNet) Common Crawl (CC25) Wikipedia or CC-News Common Crawl (mC4)

Cross-lingual zero-shot learning

- We are given labeled training data for task X only in language A. Can we build a model that can make predictions for task X in a different language B?
- Idea: leverage information from high-resource languages to help improve performance on low-resource languages.
- Zero-shot learning: no labeled data is available for the target task X in language B, although unlabeled data in language B might be available for pretraining

XNLI benchmark

Language	Premise / Hypothesis	Genre	Label
English	You don't have to stay there. You can leave.	Face-To-Face	Entailment
French	La figure 4 montre la courbe d'offre des services de partage de travaux. Les services de partage de travaux ont une offre variable.	Government	Entailment
Spanish	Y se estremeció con el recuerdo. El pensamiento sobre el acontecimiento hizo su estremecimiento.	Fiction	Entailment
German	Während der Depression war es die ärmste Gegend, kurz vor dem Hungertod. Die Weltwirtschaftskrise dauerte mehr als zehn Jahre an.	Travel	Neutral
Swahili	Ni silaha ya plastiki ya moja kwa moja inayopiga risasi. Inadumu zaidi kuliko silaha ya chuma.	Telephone	Neutral
Russian	И мы занимаемся этим уже на протяжении 85 лет. Мы только начали этим заниматься.	Letters	Contradiction
Chinese	让我告诉你,美国人最终如何看待你作为独立顾问的表现。 美国人完全不知道您是独立律师。	Slate	Contradiction

XNLI given only English training data

Model	Sente	Sentence pair		
1110401	XNLI	PAWS-X		
Metrics	Acc.	Acc.		
Cross-lingual zero-s	shot transfer (m	odels fine-ti		
mBERT	65.4	81.9		
XLM	69.1	80.9		
InfoXLM	81.4	-		
X-STILTs	80.4	87.7		
XLM-R	79.2	86.4		
VECO	79.9	88.7		
RemBERT	80.8	87.5		
mT5-Small	67.5	82.4		
mT5-Base	75.4	86.4		
mT5-Large	81.1	88.9		
mT5-XL	82.9	89.6		
mT5-XXL	85.0	90.0		

What if we use a machine translation system to get more labeled data (e.g., translate all the labeled English text to other languages)?

Adding translations doesn't improve that much over the zero-shot setting!

Model	Sentence pair			
	XNLI	PAWS-X		
Metrics	Acc.	Acc.		
Cross-lingual zero-sho	t transfer (m	odels fine-tu		
mBERT	65.4	81.9		
XLM	69.1	80.9		
InfoXLM	81.4	-		
X-STILTs	80.4	87.7		
XLM-R	79.2	86.4		
VECO	79.9	88.7		
RemBERT	80.8	87.5		
mT5-Small	67.5	82.4		
mT5-Base	75.4	86.4		
mT5-Large	81.1	88.9		
mT5-XL	82.9	89.6		
mT5-XXL	85.0	90.0		

Translate-train (models fir	ne-tuned o	n English
XLM-R	82.6	90.4
FILTER + Self-Teaching	83.9	91.4
VECO	83.0	91.1
mT5-Small	64.7	79.9
mT5-Base	75.9	89.3
mT5-Large	81.8	91.2
mT5-XL	84.8	91.0
mT5-XXL	87.8	91.5

TyDiQA benchmark

- 1. Passage Selection Task: Given a list of the passages in the article, return either (a) the index of the passage that answers the question or (b) NULL if no such passage exists.
- 2. Minimal Answer Span Task: Given the full text of an article, return one of (a) the start and end byte indices of the minimal span that completely answers the question; (b) YES or No if the question requires a yes/no answer and we can draw a conclusion from the passage; (c) NULL if it is not possible to produce a minimal answer for this question.

Language	LATIN SCRIPT ^a	WHITE SPACE TOKENS	SENTENCE BOUNDARIES	WORD FORMATION ^b	Gender ^c	PRODROP
ENGLISH	+	+	+	+	+	_
ARABIC	_	+	+	++	+	+
BENGALI	_	+	+	+	+	+
FINNISH	+	+	+	+++	_	_
Indonesian	+	+	+	+	-	+
J APANESE	_		+	+	_	+
KISWAHILI	+	+	+	+++	e	+
KOREAN	_	$+^f$	+	+++	_	+
RUSSIAN	+	+	+	++	+	+
TELUGU	_	+	+	+++	+	+
Тнаі	_	_	_	+	+	+

^a'—' indicates **Latin script** is not the conventional writing system. Intermixing of Latin script should still be expected.

Table 1: Typological features of the 11 languages in TyDI QA. We use + to indicate that this phenomena occurs, ++ to indicate that it occurs frequently, and +++ to indicate very frequently.

https://ai.google.com/research/tydiqa

^bWe include inflectional and derivation phenomena in our notion of word formation.

^cWe limit the **gender** feature to sex-based gender systems associated with coreferential gendered personal pronouns.

^dEnglish has grammatical gender only in third person personal and possessive pronouns.

^eKiswahili has morphological noun classes (Corbett, 1991), but here we note sex-based gender systems.

^fIn Korean, tokens are often separated by whitespace, but prescriptive spacing conventions are commonly flouted.

Larger multilingual model = better QA performance

Model	
	TyDiQA-GoldF
Metrics	F1 / EM
Cross-lingu	
mBERT	59.7 / 43.9
XLM	43.6 / 29.1
InfoXLM	-/-
X-STILTs	76.0 / 59.5
XLM-R	65.1 / 45.0
VECO	67.6 / 49.1
RemBERT	77.0 / 63.0
mT5-Small	35.2 / 23.2
mT5-Base	57.2 / 41.2
mT5-Large	69.9 / 52.2
mT5-XL	75.9 / 59.4
mT5-XXL	80.8 / 65.9

What if a language is unseen or poorly represented during *pretraining*?

• The "curse of multilinguality" (Conneau et al., 2020): For a fixed-size model, the per-language capacity decreases as we increase the number of languages...

Target language adaptation

- If you only care about transferring to a specific target language B, then after normal pretraining on many languages, you can perform a second phase of finetuning on only unlabeled data from language B
- However, doing this might result in catastrophic forgetting of multilingual knowledge learned during the first stage of pretraining.

One solution: just train a small number of parameters in the second phase!

This research is still in early stages, but it's very exciting! Let's move on to machine translation

Do we have enough parallel data?

Parallel Corpus	Sentences	Parallel Corpus	Sentences
Romanian-English	399,375	Greek-English	1,235,976
Bulgarian-English	406,934	Swedish-English	1,862,234
Slovene-English	623,490	Italian-English	1,909,115
Hungarian-English	624,934	German-English	1,920,209
Polish-English	632,565	Finnish-English	1,924,942
Lithuanian-English	635,146	Portuguese-English	1,960,407
Latvian-English	637,599	Spanish-English	1,965,734
Slovak-English	640,715	Danish-English	1,968,800
Czech-English	646,605	Dutch-English	1,997,775
Estonian-English	651,746	French-English	2,007,723

Europarl parallel data: http://www.statmt.org/europarl/

What if we don't have parallel data?

https://arxiv.org/pdf/1804.07755.pdf

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com

Myle Ott Facebook AI Research myleott@fb.com Alexis Conneau
Facebook AI Research
Université Le Mans
aconneau@fb.com

Ludovic Denoyer†
Sorbonne Universités
ludovic.denoyer@lip6.fr

Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com https://arxiv.org/pdf/1711.00043.pdf

UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY

Guillaume Lample † ‡, Alexis Conneau †, Ludovic Denoyer ‡, Marc'Aurelio Ranzato † Facebook AI Research, ‡ Sorbonne Universités, UPMC Univ Paris 06, LIP6 UMR 7606, CNRS {gl,aconneau,ranzato}@fb.com,ludovic.denoyer@lip6.fr

https://arxiv.org/pdf/1901.07291.pdf

Cross-lingual Language Model Pretraining

Guillaume Lample*
Facebook AI Research
Sorbonne Universités
glample@fb.com

Alexis Conneau*
Facebook AI Research
Université Le Mans
aconneau@fb.com

https://arxiv.org/pdf/1710.11041.pdf

UNSUPERVISED NEURAL MACHINE TRANSLATION

Mikel Artetxe, Gorka Labaka & Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)
{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

Kyunghyun Cho New York University CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu

Improving Neural Machine Translation Models with Monolingual Data

- Small parallel dataset

Huge monolingual corpus in target language

French //

French //

French (mono)

- Small parallel dataset
- Huge monolingual corpus in target language
- Train a (target ightarrow source) model \mathbf{M}_{t2s}

- Small parallel dataset
- Huge monolingual corpus in target language
- Train a (target ightarrow source) model \mathbf{M}_{t2s}
- Use \mathbf{M}_{t2s} to translate target monolingual corpus

- Small parallel dataset
- Huge monolingual corpus in target language
- Train a (target ightarrow source) model \mathbf{M}_{t2s}
- Use \mathbf{M}_{t2s} to translate target monolingual corpus
- Use the two parallel datasets to train \mathbf{M}_{s2t}

- en-->de WMT14
 - Parallel only: 20.4
 - + back-translation: 23.8
- en-->de WMT15
 - Parallel only: 23.6
 - + back-translation: 26.5

- Back-translation can be used for
 - Semi-supervised machine translation
 - Style transfer
 - Domain transfer
 - (small parallel, large unlabeled data)

Many-to-Many Translation

 A single model capable of translating between 100 languages (any of them can be source or target)

(b) M2M-100: Many-to-Many Multilingual Model

Data preparation

- Selected 100 widely-spoken languages
 - from geographically diverse language families
 - have at least some parallel data available
 - also have larger monolingual data available
- Apply SentencePiece (subword tokenization) to all datasets
- In the end, 7.5 billion parallel sentences in 2,200 directions are collected
 - Backtranslation is also used to further augment the data

Results

Setting	To English	From English	Non-English
Bilingual baselines	27.9	24.5	8.3
English-Centric	31.0	24.2	5.7
English-Centric with Pivot			10.4
Many-to-Many	31.2	24.1	15.9

Table 4: Comparison of Many-to-Many and English-Centric Systems. Many-to-Many matches the performance of English-centric on evaluation directions involving English, but is significantly better on non English directions.

Bilingual baseline: trained only on a specific SRC>TGT direction

English-centric: only trained on ENG>X or X>ENG data, at test-time we feed in X>Y data

English-centric w/ pivot: only trained on ENG>X or X>ENG data, at test-time we do X>ENG and then ENG>Y

Zero-shot performance

Setting	w/ bitext	w/o bitext
En-Centric	5.4	7.6
En-Centric Piv.	9.8	12.4
M2M	12.3	18.5

Table 5: Many-to-Many versus English-Centric on zero-shot directions. We report performance on language pairs with and without bitext in the Many-to-Many training dataset.

Adding language-specific params can improve further

(c) Translating from Chinese to French with Dense + Language-Specific Sparse Model

Regular Finetuning

Obtain weight update via backpropagation

Weight update ΔW

The pretrained model could be any LLM, e.g., an encoder-style LLM (like BERT) or a generative decoder-style LLM (like GPT)

Alternative formulation (regular finetuning)

LoRA weights, W_A and W_B , represent ΔW

LoRA can even outperform full finetuning training only 2% of the parameters

Full finetuning	Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL	- ROUGE scores
	GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5	
Only tune bias vectors>	GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5	
Down Harden	GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5	
Prompt tuning	GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5	
Prefix tuning	GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8	
	GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1	
	GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9	
_	GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1	