COMP10002 Workshop Week 3

Now: login into your laptop or lab's PC Outlook: and be ready with jEdit and minGW (or Terminal). Also start your web browser.

1	Questions
2	Discuss: Ex 4.2 and 4.1
3	Functions: Do it together Ex 4.5 Also learn: using
4	Discuss: HowTo and Tools for Ex 4.6 & 4.7
5	Lab: Implement 4.6 + 4.7, 5.6
github this week	 frame.c skeleton and sample data for exercise 4.5 skeleton and sample data for exercise 5.6 sample data for exercise 4.6 & 4.7

Do it together, and now:

```
Start jEdit and minGW (or MacBook's Terminal)
In minGW window, create folder week3:
  cd H:
 cd comp10002
 mkdir week3
 cd week3
On your web browser, naviate to
git@github.com/anhvir/c102 , here you can get
some program skeletons and instructions.
```

```
Not now, but later: Learn Redirection: after
finishing grapher, try:
  grapher < grapher.data >grapher.out
  cat grapher.out
```

What learnt in week 2, questions?

loop?
function?
recursive function?

Exercise 4.2

Give a general construction that shows how any do statement can be converted into an equivalent while statement.

4.1 a)

Trace the action of the loop, and determine the values printed out by the printf statement. Assume that all variables have been declared to be of type int

```
1 for (i=0; i<20; i= i+3) {
2  printf ("%2d\n", i);
3 }</pre>
```

4.1 b-c

```
for (i=1; i<2000000; i= 2*i) {
b1
         printf ("%7d\n", i);
b2
b3
c1
    sum = 0;
    for (i=0; i<10; i++) {
c2
c3
          sum = sum + i;
         printf ("S(%2d) = %2d\n", i, sum);
c4
c5
```

4.1 d-e

```
for (i = 0; i < 8; i++) {
d1
      for (j=i+1; j < 8; j += 3) {
d2
        printf ("i= %d, j= %d\n", i, j);
d3
d4
d5
    for (i= 0; i < 8; i++) {
e1
      for (j=i+1; j < 8; j += 3) {
e2
        if (i+j == 7) {
e3
          break;
e4
e5
       printf ("i= %d, j= %d\n", i, j);
e6
e7
e8
```

4.1 f

4.1 f-g

```
f1
    j = 5;
f2
    for (i= 0; i < j; i++); {
f3
         printf ("i= %d, j= %d\n", i, j);
f4
    j = 5;
g1
g2
    for (i= 0; i < j; j++) {
g3
         printf ("i= %d, j= %d\n", i, j);
g4
```

Write a function that computes:

- a) n!
- b) $1/1^2 + 1/2^2 + ... + 1/n^2$
- c) $1 + x + x^2/2! + x^3/3! + ... + x^n/n!$ where n is the smallest positive integer that satisfies

$$|x^n/n!| < 10^{-6}$$

4.5 – Design (Discussion)

Design and implement a program grapher.c that reads integers and draw a simple graph. Assume that all of the values read are between 1 and 70. Example:

```
H: grapher
Enter integers between 1 and 70 inclusive: 3 7 11
   3 | ***
   7 | *******
11 | *********
```

4.5 – Design (Discussion)

```
H: grapher
Enter integers between 1 and 70 inclusive: 3 7 11
     * * *
    *****
 11 | ********
```

4.6, 4.7 – Design & Tools (Discussion)

Design a program my_wc that count the number of characters, words, and lines in the input. Example of execution:

```
H: my_wc
Enter text:
Mary has a little lamb,
Little lamb, little lamb;
^D (or ^Z if using MinGW/Windows)
Lines: 2
Words: 9
Chars: 26
```

4.6, 4.7 – Design & Tools (Discussion)

How to read one character?
How to recognize the end of input?
How to know that it's end of a line?
How to know that it's within a "word" or not? How to define a "word"?
What is a possible algorithm for the task?

Lab: Implement 4.5, 4.6+4.7, 5.6

4.5: Design a program grapher.c that reads integers and draw a simple graph. Graph example:

```
3 | * * *
11 | * * * * * * * * * * *
```

4.6+4.7: Design a program my_wc that count the number of characters, words, and lines in the input. Use mary.txt to test your program, that is:

bash \$ my wc < mary.txt

5.6: Two numbers are an amicable pair if their factors (excluding themselves) add up to each other. The first such pair is 220, which has the factors [1, 2, 4, 5, 10, 11, 20, 22, 44,55, 110], adding to 284; and 284, which has the factors [1, 2, 4, 71, 142], the sum of which is 220. The next pairs are 1,184 and 1,210; and then 2,620 and 2,924.

Write a function that takes two int arguments and return true if they are an amicable pair. Test the function using an appropriate scaffolding [so now you also need main(), of course]. Use e56.data to test your program.

CHALLENGE: write a program that search for amicable pairs and print them!