(!!!!! Расчеты строго по ГОСТ Р 8.736-2011 !!!!!)

Задача 1. А. При многократном измерении силы F получены значения в Н:

№ точки	1	2	3	4	5	6	7	8	9
F, H	996	1004	1000	998	1000	1001	1000	1002	997

Укажите доверительные границы истинного значения силы с вероятностью P=0.95.

Задача 1. Б. При многократном измерении силы F получены значения в Н:

№ точки	1	2	3	4	5	6	7	8	9
F, H	996	1004	1000	998	1000	1001	1000	1002	997

Основная погрешность измерительного прибора по его паспорту равна 4 Н. Измерения проводились при нормальных условиях, т.е. дополнительные погрешности равны нулю. Провести обработку результатов измерений с доверительной вероятностью P=0.95.

Задача 1. С. Проанализируйте результаты Задачи 1.Б, ответив на следующие вопросы.

- 1) Выполните анализ вкладов случайной (ε) и систематической (Θ) погрешностей в суммарную погрешность оценки измеряемой величины (Δ): какая погрешность больше, во сколько раз. Можно ли пренебречь случайной составляющей погрешности? Принять, что случайной погрешностью можно пренебречь, если выполняется условие $\frac{\Theta}{\varepsilon} = 4$. Сколько измерений силы необходимо провести, чтобы случайной погрешностью можно было бы пренебречь? Дайте обоснованный ответ.
- 2) Проверьте условие необходимости проведения многократных измерений, $\left(0,8<\frac{\Theta}{s}<8\right)$, когда требуется учитывать как случайную, так и систематическую составляющую суммарной погрешности. Определите погрешность измерительного прибора Θ_0 в случае необходимости выполнения однократных измерений исходя из условия $\frac{\Theta_0}{s}>8$.

(!!!!! Расчеты строго по ГОСТ Р 8.736-2011 !!!!!)

Задача 2. А. При многократном измерении силы электрического тока I получены значения в мА:

№ точки	1	2	3	4	5	6	7	8	9
І, мА	99,7	100,2	100,0	99,9	100,0	100,1	100,0	100,1	99,8

Укажите доверительные границы истинного значения силы тока с вероятностью P=0.95.

Задача 2. Б. При многократном измерении силы электрического тока I получены значения в мА:

№ точки	1	2	3	4	5	6	7	8	9
І, мА	99,7	100,2	100,0	99,9	100,0	100,1	100,0	100,1	99,8

Основная погрешность измерительного прибора по его паспорту равна 0,2 мА. Измерения проводились при нормальных условиях, т.е. дополнительные погрешности равны нулю. Провести обработку результатов измерений с доверительной вероятностью P=0,95.

Задача 2. С. Проанализируйте результаты Задачи 2.Б, ответив на следующие вопросы.

- 1) Выполните анализ вкладов случайной (ε) и систематической (Θ) погрешностей в суммарную погрешность оценки измеряемой величины (Δ): какая погрешность больше, во сколько раз. Можно ли пренебречь случайной составляющей погрешности? Принять, что случайной погрешностью можно пренебречь, если выполняется условие $\frac{\Theta}{\varepsilon} = 4$. Сколько измерений силы тока необходимо провести, чтобы случайной погрешностью можно было бы пренебречь? Дайте обоснованный ответ.
- 2) Проверьте условие необходимости проведения многократных измерений, $\left(0.8 < \frac{\Theta}{s} < 8\right)$, когда требуется учитывать как случайную, так и систематическую составляющую суммарной погрешности. Определите погрешность измерительного прибора Θ_0 в случае необходимости выполнения однократных измерений исходя из условия $\frac{\Theta_0}{s} > 8$.

(!!!!! Расчеты строго по ГОСТ Р 8.736-2011 !!!!!)

Задача 3. А. При многократном измерении длины балки L получены значения в см:

№ точки	1	2	3	4	5	6	7	8	9
L, см	199,5	200,3	200,0	199,9	200,0	200,1	200,0	200,2	199,8

Укажите доверительные границы истинного значения длины с вероятностью P=0.95.

Задача 3. Б. При многократном измерении длины балки L получены значения в см:

№ точки	1	2	3	4	5	6	7	8	9
L, см	199,5	200,3	200,0	199,9	200,0	200,1	200,0	200,2	199,8

Основная погрешность измерительного прибора по его паспорту равна $0,1\,$ см. Измерения проводились при нормальных условиях, т.е. дополнительные погрешности равны нулю. Провести обработку результатов измерений с доверительной вероятностью P=0,95.

Задача 3. С. Проанализируйте результаты Задачи 3.Б, ответив на следующие вопросы.

- 1) Выполните анализ вкладов случайной (ϵ) и систематической (Θ) погрешностей в суммарную погрешность оценки измеряемой величины (Δ): какая погрешность больше, во сколько раз. Можно ли пренебречь случайной составляющей погрешности? Принять, что случайной погрешностью можно пренебречь, если выполняется условие $\frac{\Theta}{\epsilon} = 4$. Сколько измерений длины необходимо провести, чтобы случайной погрешностью можно было бы пренебречь? Дайте обоснованный ответ.
- 2) Проверьте условие необходимости проведения многократных измерений, $\left(0.8 < \frac{\Theta}{s} < 8\right)$, когда требуется учитывать как случайную, так и систематическую составляющую суммарной погрешности. Определите погрешность измерительного прибора Θ_0 в случае необходимости выполнения однократных измерений исходя из условия $\frac{\Theta_0}{s} > 8$.

(!!!!! Расчеты строго по ГОСТ Р 8.736-2011 !!!!!)

Задача 4. А. При многократном измерении напряжения электрического тока U получены значения в В:

№ точки	1	2	3	4	5	6	7	8	9
U, B	9.97	10.02	10.00	9.99	10.00	10.01	10.00	10.01	9.98

Укажите доверительные границы истинного значения напряжения с вероятностью P=0.95.

Задача 4. Б. При многократном измерении напряжения электрического тока U получены значения в В:

№ точки	1	2	3	4	5	6	7	8	9
U, B	9.97	10.02	10.00	9.99	10.00	10.01	10.00	10.01	9.98

Основная погрешность измерительного прибора по его паспорту равна $0.01~\mathrm{B}.$ Измерения проводились при нормальных условиях, т.е. дополнительные погрешности равны нулю. Провести обработку результатов измерений с доверительной вероятностью P=0.95.

Задача 4. С. Проанализируйте результаты Задачи 4. Б, ответив на следующие вопросы.

- 1) Выполните анализ вкладов случайной (ϵ) и систематической (Θ) погрешностей в суммарную погрешность оценки измеряемой величины (Δ): какая погрешность больше, во сколько раз. Можно ли пренебречь случайной составляющей погрешности? Принять, что случайной погрешностью можно пренебречь, если выполняется условие $\frac{\Theta}{\epsilon} = 4$. Сколько измерений напряжения необходимо провести, чтобы случайной погрешностью можно было бы пренебречь? Дайте обоснованный ответ.
- 2) Проверьте условие необходимости проведения многократных измерений, $\left(0,8<\frac{\Theta}{s}<8\right)$, когда требуется учитывать как случайную, так и систематическую составляющую суммарной погрешности. Определите погрешность измерительного прибора Θ_0 в случае необходимости выполнения однократных измерений исходя из условия $\frac{\Theta_0}{s}>8$.

(!!!!! Расчеты строго по ГОСТ Р 8.736-2011 !!!!!)

Задача 5. А. При многократном измерении температуры объекта получены значения в °C:

№ точки	1	2	3	4	5	6	7	8	9
T, °C	39,7	40,3	40,0	39,9	40,0	40,1	40,0	40,1	39,8

Укажите доверительные границы истинного значения температуры с вероятностью P=0.95.

Задача 5. Б. При многократном измерении температуры объекта получены значения в °C:

№ точки	1	2	3	4	5	6	7	8	9
T, °C	39,7	40,3	40,0	39,9	40,0	40,1	40,0	40,1	39,8

Основная погрешность измерительного прибора по его паспорту равна $0,2\,^{\circ}$ С. Измерения проводились при нормальных условиях, т.е. дополнительные погрешности равны нулю. Провести обработку результатов измерений с доверительной вероятностью P=0,95.

Задача 5. С. Проанализируйте результаты Задачи 5.Б, ответив на следующие вопросы.

- 1) Выполните анализ вкладов случайной (ϵ) и систематической (Θ) погрешностей в суммарную погрешность оценки измеряемой величины (Δ): какая погрешность больше, во сколько раз. Можно ли пренебречь случайной составляющей погрешности? Принять, что случайной погрешностью можно пренебречь, если выполняется условие $\frac{\Theta}{\epsilon} = 4$. Сколько измерений температуры необходимо провести, чтобы случайной погрешностью можно было бы пренебречь? Дайте обоснованный ответ.
- 2) Проверьте условие необходимости проведения многократных измерений, $\left(0.8 < \frac{\Theta}{s} < 8\right)$, когда требуется учитывать как случайную, так и систематическую составляющую суммарной погрешности. Определите погрешность измерительного прибора Θ_0 в случае необходимости выполнения однократных измерений исходя из условия $\frac{\Theta_0}{s} > 8$.