Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Независимые множества и клики

- Клика в графе это полный подграф
- *Независимое множество* это подмножество вершин, порождающее пустой подграф

Независимые множества и клики

- Число независимости $\alpha(G)$ это размер максимального независимого множества
- *Кликовое число* $\omega(G)$ это максимальный размер клики в графе

Двудольные графы

- Двудольный граф это граф, вершины которого можно разбить на два независимых множества
- Полный двудольный граф $K_{m,n}$ это двудольный граф со всеми возможными рёбрами между долями (m и n мощности долей)

Раскраски вершин и рёбер

- Раскраска вершин графа G в k цветов это отображение $\phi:V(G) \to \{1,2,\dots,k\}$
- Вершинная раскраска ϕ называется *правильной*, если $\forall v' \forall v'' \left(v'v'' \in \mathrm{E}(G) \Rightarrow \phi(v') \neq \phi(v'') \right)$

Правильная раскраска вершин графа в k цветов задаёт разбиение множества вершин графа на k независимых множеств.

Раскраски вершин и рёбер

- Раскраска рёбер графа G в k цветов это отображение $\psi \colon E(G) \to \{1,2,\dots,k\}$
- Рёберная раскраска ψ называется *правильной*, если $\forall e' \forall e'' \big(e' \cap e'' \neq \emptyset \Rightarrow \psi(e') \neq \psi(e'') \big)$

Правильная раскраска рёбер графа в k цветов задаёт разбиение множества рёбер графа на k паросочетаний.

Примеры задач о раскраске

- Сотовый оператор установил в городе свои антенны. Некоторые пары антенн расположены близко друг к другу и вынуждены использовать разные частоты. Сколько радиочастот придётся выкупить сотовому оператору у
- Лидеры стран G-20 собрались на саммит. Некоторые пары участников хотят побеседовать друг с другом наедине. У каждого участника на одну такую беседу уходит один день.
 - Во сколько дней можно уложить саммит?

городских властей?

Примеры задач о раскраске

Исторически первая задача о раскраске:

• Сколько цветов достаточно использовать в типографии, чтобы можно было напечатать любую географическую карту (так, чтобы граничащие друг с другом страны не сливались на карте)?

Примеры задач о раскраске

Задачу о раскраске карт можно переформулировать на языке раскрасок, рассмотрев планарный граф, двойственный карте:

• Сколькими цветами можно правильно раскрасить любой планарный граф?

Хроматическое число

- Хроматическое число $\chi(G)$ это минимальное число цветов, в которое можно правильно раскрасить вершины графа G.
- Хроматический индекс $\chi'(G)$ это минимальное число цветов, в которое можно правильно раскрасить рёбра графа G.

Рассмотренные ранее «жизненные» задачи сводятся к нахождению хроматического числа или хроматического индекса некоторых графов.

Пусть для каждой вершины v графа G указан конечный список $L_v \subseteq \mathbb{N}$ — цвета, в которые разрешается красить v.

Правильная списочная раскраска графа G (для набора списков $\{L_v\}_{v\in V(G)}$) — это отображение $\phi\colon V(G)\to \mathbb{N}$, которое

- является правильной раскраской в обычном понимании,
- каждая вершина покрашена в цвет из своего списка: $\phi(v) \in L_v$

Списочное хроматическое число графа G — это такое минимальное k, что правильная списочная раскраска G существует для любого набора списков $\{L_v\}_{v\in V(G)}$, удовлетворяющего условию $\forall v \; |L_v| = k$.

Обозначение: $\chi_l(G)$.

Очевидно, $\chi_l(G) \ge \chi(G)$ (поскольку можно взять все списки равными $\{1,2,\ldots,k\}$).

Пример графа G, для которого $\chi_l(G) > \chi(G)$:

Теорема. При любом $k \in \mathbb{N}$ существует граф G, для которого $\chi(G) = 2$ и $\chi_l(G) > k$.

Доказательство:

Рассмотрим полный двудольный граф G, у которого вершинам каждой доли приписаны всевозможные подмножества мощности k множества $\{1,2,\ldots,2k-1\}$:

$$\{1, ..., k\}$$
 ... $\{k, ..., 2k - 1\}$... $\{1, ..., k\}$... $\{k, ..., 2k - 1\}$

Допустим, что у G есть правильная списочная раскраска в цвета из указанных списков.

Пусть A— множество цветов, использованных при раскраске вершин верхней доли.

Тогда $|A| \ge k$ (иначе в верхней доле графа G нашёлся бы список, не содержащий ни одного элемента из A).

$$\{1, ..., k\}$$
...
 $\{k, ..., 2k - 1\}$
...
 $\{1, ..., k\}$
...
 $\{k, ..., 2k - 1\}$

Имеем $|A| \ge k$.

Но тогда в нижней доле графа G есть вершина, список допустимых цветов которой полностью содержится в A. Следовательно, правильную списочную раскраску G для заданных нами списков построить нельзя. То есть $\chi_I(G)>k$.

$$\{1, ..., k\}$$
 ... $\{k, ..., 2k - 1\}$... $\{1, ..., k\}$... $\{k, ..., 2k - 1\}$

•
$$\chi(C_{2k}) = 2$$
, $\chi(C_{2k+1}) = 3$

- $\chi(K_n) = n$
- Если H подграф G, то $\chi(G) \geq \chi(H)$
- $\chi(G) \ge \omega(G)$
- $\chi(G) \geq \frac{|G|}{\alpha(G)}$, поскольку $|G| \leq \chi(G) \cdot \alpha(G)$

Утверждение. Для любого G выполнено

$$\chi(G) \le \frac{1}{2} \Big(1 + \sqrt{1 + 8 \cdot ||G||} \Big)$$

Доказательство: Пусть $\chi(G) = \chi$.

Существует разбиение $V(G) = V_1 \sqcup \cdots \sqcup V_\chi$, где V_i — независимые множества.

При этом $\forall i \neq j$ между V_i и V_j есть хотя бы одно ребро.

Поэтому $\|G\| \ge \frac{\chi(\chi-1)}{2}$. Решая это неравенство относительно χ , получаем требуемое.

Утверждение.

Хроматическое число графа G равно максимальному из хроматических чисел компонент связности G.

Поэтому в теоремах об оценках хроматических чисел достаточно рассматривать связные графы.

Утверждение.

Хроматическое число связного графа G равно максимальному из хроматических чисел блоков G.

Доказательство: индукция по числу блоков. Пусть в G более одного блока и утверждение верно для графов с меньшим числом блоков.

Пусть B — концевой блок в G, а G' — оставшаяся часть G.

Блок B «прикреплён» к G' единственной вершиной v. Пусть $k = \max\{\chi(G'), \chi(B)\}$.

Существуют правильные раскраски B и G' в цвета $\{1, \dots, k\}$. Тогда существуют правильные раскраски B и G', в которых вершина v имеет цвет 1. Совместив эти раскраски, получим раскраску всего графа G.


```
Упорядочиваем вершины графа: v_1, ..., v_{|V|}. for i \coloneqq 1 to |V|: badColors \coloneqq \{\operatorname{color}(v_j) \mid j < i \ \bowtie \ v_j v_i \in E\} color(v_i) \coloneqq \min(\mathbb{N} \setminus \operatorname{badColors})
```

(Т.е. при раскраске очередной вершины используется первый по счёту цвет, отсутствующий среди соседей вершины.)

```
for i := 1 to |V|:
    badColors \coloneqq \{ \operatorname{color}(v_i) \mid j < i \text{ и } v_i v_i \in E \}
    color(v_i) := min(\mathbb{N} \setminus badColors)
```

```
for i \coloneqq 1 to |V|:

badColors \coloneqq \{ \operatorname{color}(v_j) \mid j < i \text{ и } v_j v_i \in E \}

\operatorname{color}(v_i) \coloneqq \min(\mathbb{N} \setminus \operatorname{badColors})
```

Утверждение.

При любом упорядочении вершин графа указанный алгоритм строит правильную раскраску в не более чем $(1 + \Delta(G))$ цветов. (Т.к. всегда выполнено $|\text{badColors}| \leq \Delta(G)$.)

Утверждение-упражнение.

Качество раскраски, построенной алгоритмом, сильно зависит от упорядочения вершин:

Всегда существует упорядочение, при котором алгоритм использует ровно $\chi(G)$ цветов.

Для любого k можно предъявить $\partial в y \partial o n b + b u$ граф G и такое упорядочение его вершин, что раскраска, построенная алгоритмом, будет задействовать более k цветов.

«Жадный» алгоритм списочной раскраски

Пусть каждой вершине v присвоен список допустимых цветов L_v . Тогда алгоритм выглядит так:

```
for i \coloneqq 1 to |V|:

badColors \coloneqq \{\operatorname{color}(v_j) \mid j < i \text{ и } v_j v_i \in E\}

if L_v \subseteq \operatorname{badColors}:

error

else:

\operatorname{color}(v_i) \coloneqq \min(L_v \setminus \operatorname{badColors})
```

Оценка списочного хроматического числа

Теорема.

Для любого графа G выполнено неравенство

$$\chi_l(G) \le 1 + \max_{H \subseteq G} \delta(H)$$
.

Доказательство. Достаточно запустить жадный алгоритм на графе G, упорядочив вершины так:

- $v_{|G|}$ любая из вершин минимальной степени в G
- $v_{|G|-1}$ любая из вершин минимальной степени в $(G \{v_{|G|}\})$
- $v_{|G|-2}$ любая из вершин минимальной степени в (G-

Оценка списочного хроматического числа

Теорема. Для любого графа G выполнено

$$\chi_l(G) \le 1 + \max_{H \subseteq G} \delta(H)$$

Следствие 1. Для любого графа G имеем

$$\chi_l(G) \le 1 + \Delta(G)$$

Следствие 2. Для любого связного нерегулярного графа G выполнено неравенство

$$\chi_l(G) \leq \Delta(G)$$

(из нерегулярности G получаем $\delta(G) \leq \Delta(G) - 1$, а связность G влечёт $\delta(H) \leq \Delta(G) - 1$ для любого порождённого подграфа H, отличного от G)

Теорема Брукса

Теорема Брукса. (R. L. Brooks '1941)

Для любого связного, не полного графа G, имеющего $\Delta(G) \geq 3$, выполнено неравенство

$$\chi(G) \leq \Delta(G)$$

Доказательство (L. Lovász '1975):

Если G не регулярный, то $\chi_l(G) \leq \Delta(G)$, так что достаточно доказать теорему для регулярных графов.

Также б.о.о. можно считать G двусвязным.

Доказательство теоремы Брукса: специальная тройка вершин

Далее считаем G двусвязным, не полным, k-регулярным графом ($k \ge 3$).

Докажем, что в G можно выбрать такую тройку вершин x, y, z, что $xz, yz \in E(G), xy \notin E(G)$, и граф $(G - \{x, y\})$ связный:

Доказательство теоремы Брукса: специальная тройка вершин

Если G трёхсвязен, то z выберем произвольно, а в качестве x и y возьмём любые две несмежные вершины из N(v) (такие найдутся, т.к. G регулярный и не полный).

Если G не трёхсвязный, то в качестве z возьмём такую вершину, что граф (G-z) не двусвязный. Пусть B' и B'' — любая пара концевых блоков в (G-z).

Доказательство теоремы Брукса: специальная тройка вершин

Пусть B' и B'' «прикрепляются» к оставшейся части графа (G-z) точками сочленения u' и u'' соответственно.

В блоке B' найдётся вершина x, отличная от u' и смежная с z (иначе u' была бы точкой сочленения в G). Аналогично, в B'' есть вершина y, отличная от u'' и смежная с z.

Тройка x, y, z — искомая.

Доказательство теоремы Брукса: аккуратная нумерация вершин

Итак, в G найдётся «специальная» тройка x, y, z.

Обозначим $n\coloneqq |G|$. Положим $v_1\coloneqq x, v_2\coloneqq y$. Граф $(G-\{x,y\})$ связный, поэтому можно занумеровать его вершины v_3,\dots,v_n так, что $v_n=z$ и $\forall i< n \ \exists j>i\colon \ v_iv_i\in E(G).$

(Например, обходом графа в ширину из вершины z.)

Доказательство теоремы Брукса: жадный алгоритм на аккуратной нумерации вершин

Множество $V(G) \setminus \{x,y\}$ занумеровано $v_3,v_4,...,v_n$ так, что $v_n = z$ и $\forall i < n \ \exists j > i \colon \ v_i v_j \in E(G)$.

Запустим на G жадный алгоритм раскраски.

- Вершины v_1 , v_2 окрасятся в цвет 1.
- Пусть окрашивается вершина $v_i, 3 \leq i \leq n-1$. Так как v_i смежна хотя бы с одной из вершин $\{v_{i+1}, \dots, v_n\}$, то v_i смежна не более чем с (k-1) вершинами из множества $\{v_1, \dots, v_{i-1}\}$. Значит, v_i будет окрашена в цвет $\leq k$.
- Наконец, у v_n степень k, но заведомо есть пара соседей, окрашенных одним цветом. Поэтому v_n получит цвет $\leq k$.

Обобщения и усиления теоремы Брукса

• Теорема (В. Reed '1999). Если $\Delta(G)$ достаточно велико и $\omega(G) < \Delta(G)$, то $\chi(G) \leq \Delta(G) - 1$.

• Существуют линейные по времени алгоритмы раскраски графов в $\Delta(G)$ цветов.

• **Teopema (В.Г. Визинг '1976)** Для связного, не полного графа, не являющегося циклом, $\chi_l(G) \leq \Delta(G)$

Оценка $\chi_l(G)$ сверху через $\chi(G)$

Теорема.

Для любого графа G выполнено неравенство $\chi_l(G) \leq [\chi(G) \cdot \ln|G|]$

Докажем эту теорему с помощью вероятностного метода.

Доказательство теоремы:

Пусть G — произвольный граф, и $\chi(G) = \chi$.

Пусть $V_1 \sqcup \cdots \sqcup V_\chi$ — разбиение V(G) на независимые множества.

Пусть для каждой $v \in V(G)$ задан список допустимых цветов L_v , где $|L_v| = [\chi \ln |G|]$.

Покажем, что можно правильно раскрасить G в цвета из списков.

Положим $L\coloneqq \bigcup_{v\in V(G)} L_v$.

Построим множества \widehat{L}_1 , ..., \widehat{L}_χ по правилу:

• Для каждого элемента $l \in L$ подбрасываем χ -гранную кость, и «кладём» l в то из множеств $\hat{L}_1, \dots, \hat{L}_{\chi}$, номер которого выпал.

Получаем случайное разбиение:

$$L = \widehat{L}_1 \sqcup \cdots \sqcup \widehat{L}_{\chi}$$

Пусть $v \in V_i$ — фиксированная вершина.

Вероятность того, что $L_v \cap \widehat{L}_i = \emptyset$, равна

$$\left(\frac{\chi - 1}{\chi}\right)^{|L_v|} \le \left(1 - \frac{1}{\chi}\right)^{\chi \cdot \ln|G|} < e^{-\ln|G|} = \frac{1}{|G|}$$

Вероятность того, что хотя бы для одной вершины окажется $L_v \cap \widehat{L}_i = \emptyset$, не превосходит

$$\sum_{v \in V(G)} \left(\frac{\chi - 1}{\chi}\right)^{|L_v|} < \sum_{v \in V(G)} \frac{1}{|G|} = 1$$

Итак, с положительной вероятностью при случайном разбиении $L=\widehat{L}_1\sqcup\cdots\sqcup\widehat{L}_\chi$ для всех $i=1,\ldots,\chi$ и для всех вершин $v\in V_i$ имеем

$$L_{\nu} \cap \widehat{L}_i \neq \emptyset$$

Значит, существует разбиение с такими свойствами. Зафиксируем его.

Теперь для каждого i и каждой вершины $v \in V_i$ выберем цвет этой вершины из (непустого!) множества $L_v \cap \hat{L}_i$.

непересекающихся множеств \widehat{L}_i и \widehat{L}_i .

Для каждого i и каждой вершины $v \in V_i$ выберем цвет v из множества $L_v \cap \widehat{L}_i$.

Так как этот цвет из L_v , то он допустимый для данной вершины v. При этом если вершины v' и v'' смежны в G, то они принадлежат разным множествам V_i и V_j , а значит их цвета будут выбраны из

Теорема (N. Alon '2000)

Для любого G при всех достаточно больших $\delta(G)$ выполнено $\chi_l(G) \geq \frac{1}{4} \cdot \log_2 \delta(G)$

Доказательство:

Пусть
$$s \coloneqq \left[\frac{1}{4} \cdot \log_2 \delta\right]$$
, и пусть $\mathcal{L} \coloneqq \{1, 2, ..., s^2\}$.

Построим множество $B \subseteq V(G)$ по правилу:

- Каждая вершина G берётся в B с вероятностью $1/\sqrt{\delta}$.
- Список допустимых цветов для $u \in B$ выбирается равновероятно среди всех s-подмножеств в \mathcal{L} .

- $s \coloneqq \left[\frac{1}{4} \cdot \log_2 \delta(G)\right], \ \mathcal{L} \coloneqq \{1, 2, \dots, s^2\}.$
- Каждая вершина G берётся в B с вероятностью $1/\sqrt{\delta}$.
- Для $u \in B$ список L_u случайное s-подмножество в \mathcal{L} .

Вершина $v \in V(G) \setminus B$ сложная, если для любого $L \subset \mathcal{L}$, такого, что $|L| \geq s^2/2$, найдётся $u \in N(v) \cap B$, такая, что $L_u \subseteq L$.

Для фиксированной $v \in V(G)$ имеем

$$\Pr\{v \text{ не сложная}\} \leq \frac{1}{\sqrt{\delta}} + \left(1 - \frac{1}{\sqrt{\delta}}\right) \binom{s^2}{s^2/2} \cdot \left(1 - \frac{1}{\sqrt{\delta}} \cdot \frac{\binom{s^2/2}{s}}{\binom{s^2}{s}}\right)^o$$

В силу неравенства $(1-x) \ge 4^{-x}$ при $x \le 1/2$, получаем

$$\frac{\binom{s^2/2}{s}}{\binom{s^2}{s}} = \prod_{k=0}^{s-1} \frac{s^2/2 - k}{s^2 - k} = 2^{-s} \cdot \prod_{k=0}^{s-1} \left(1 - \frac{k}{s^2 - k}\right) \ge 2^{-s} \cdot 2^{\sum_{k=0}^{s-1} \frac{-2k}{s^2 - k}}$$

$$\geq 2^{-s} \cdot 2^{\sum_{k=0}^{s-1} \frac{-2k}{s^2 - s}} = 2^{-s-1}$$

$$\frac{\binom{s^2/2}{s}}{\binom{s^2}{s}} \ge 2^{-s-1}$$

Поэтому, пользуясь неравенством $(1-x) \le e^{-x}$, получаем

$$\left(1 - \frac{1}{\sqrt{\delta}} \cdot \frac{\binom{s^2/2}{s}}{\binom{s^2}{s}}\right)^{\delta} \le \left(1 - 2^{-s-1} \cdot \delta^{-1/2}\right)^{\delta} < e^{-\delta^{1/2}2^{-s-1}} \le e^{-\delta^{1/4}/2}$$

Отсюда

$$\Pr\{v \text{ не сложная}\} < \frac{1}{\sqrt{\delta}} + e^{s^2} \cdot e^{-\delta^{1/4}/2} < \frac{1}{\sqrt{\delta}} + e^{\left(\frac{\log_2 \delta}{4}\right)^2 - \frac{\delta^{1/4}}{2}} < \frac{1}{4}$$

Для любой фиксированной $v \in V(G)$ выполнено неравенство $\Pr\{v \text{ не сложная}\} < 1/4$

Отсюда

 \mathbb{E} #несложных вершин < |G|/4

По неравенству Маркова,

Pr{менее половины вершин графа сложные} < 1/2

Каждая вершина попадает в B с вероятностью $1/\sqrt{\delta}$.

Отсюда $\mathbb{E}|B|=|G|/\sqrt{\delta}$ и по неравенству Маркова,

$$\Pr\{|B| > 2 \cdot |G|/\sqrt{\delta}\} < \frac{1}{2}$$

Значит, с вероятностью > 0 выполнены два условия:

- более половины вершин графа сложные,
- $|B| < 2 \cdot |G| / \sqrt{\delta}$

Зафиксируем такие B, множество списков цветов для вершин B, и множество сложных вершин A, где $|A| \ge |G|/2$.

Зафиксируем до самого конца доказательства теоремы такие $A,B\subseteq V(G)$ и $\{L_u\}_{u\in B}$, для которых

- $|A| \ge |G|/2$
- $|B| \le 2 \cdot |G|/\sqrt{\delta}$
- Для любой $v \in A$ и для любого $L \subset \mathcal{L}$, такого, что $|L| \ge s^2/2$, найдётся $u \in N(v) \cap B$, такая, что $L_u \subseteq L$.

Теперь случайно выберем для каждой $v \in A$ список L_v равновероятно среди всех s-подмножеств в \mathcal{L} .

Покажем, что с положительной вероятностью граф $G|_{A \cup B}$ не может быть правильно раскрашен в цвета из списков.

- $|A| \ge |G|/2$, $|B| \le 2 \cdot |G|/\sqrt{\delta}$
- $\forall v \in A$ и $\forall L \subset \mathcal{L}$ если $|L| \ge s^2/2$, то $\exists u \in N(v) \cap B$: $L_u \subseteq L$.

 $\it 3aфиксируем$ временно произвольные допустимые цвета вершин из $\it B$.

Пусть $v \in A$ и пусть $L_{N(v)}$ — множество всех цветов, встречающихся у соседей v в B.

Так как v сложная, то для любого $L \subset \mathcal{L}$, такого, что $|L| \ge s^2/2$, имеем $L_{N(v)} \cap L \ne \emptyset$. Отсюда $|L_{N(v)}| \ge s^2/2$.

Поэтому

$$\Pr\{$$
можно выбрать цвет для v из $L_v\} \le 1 - \frac{\binom{s^2/2}{s}}{\binom{s^2}{s}} \le 1 - 2^{-s-1}$

- $|A| \ge |G|/2$, $|B| \le 2 \cdot |G|/\sqrt{\delta}$
- $\forall v \in A$ и $\forall L \subset \mathcal{L}$ если $|L| \geq s^2/2$, то $\exists u \in N(v) \cap B \colon L_u \subseteq L$.

При фиксированной раскраске вершин из B для любой $v \in A$ $\Pr\{$ можно выбрать цвет для v из $L_v\} \le 1-2^{-s-1}$

Отсюда при фиксированной раскраске вершин из B имеем $\Pr\{\exists$ докраска для $A\} \le (1-2^{-s-1})^{|G|/2} \le e^{-|G|\cdot 2^{-s-2}}$

Значит,

 $\Pr \{\exists \mathsf{раскраска} \ B \ \mathsf{такая}, \mathsf{что} \ \exists \mathsf{докраска} \ \mathsf{для} \ A \} \leq s^{|B|} \cdot e^{-|G| \cdot 2^{-s-2}} \\ \leq e^{\left(2 \cdot |G|/\sqrt{\delta}\right) \cdot \ln s} \cdot e^{-|G| \cdot 2^{-s-2}} < e^{|G| \cdot \left(\frac{2 \ln \ln \delta}{\sqrt{\delta}} - \delta^{1/4}/4\right)} < 1$

Оценки хроматического индекса

•
$$\chi'(C_{2k}) = 2$$
, $\chi'(C_{2k+1}) = 3$

- Если H подграф G, то $\chi'(G) \geq \chi'(H)$
- $\chi'(G) \geq \Delta(G)$
- $\chi'(G) \geq \frac{\|G\|}{\alpha'(G)}$, где $\alpha'(G)$ размер наибольшего паросочетания в G

Теоремы Визинга и Кёнига

Теорема. (В.Г. Визинг '1964)

$$\chi'(G) \leq \Delta(G) + 1$$
 для любого G .

Теорема. (D. Kőnig '1916)

$$\chi'(G) = \Delta(G)$$
 для любого двудольного G .

Полезные определения

Вместо «правильная рёберная раскраска графа» будем говорить просто «раскраска».

Будем говорить, что цвет α присутствует в вершине $v \in V(G)$, если некоторое инцидентное v ребро имеет цвет α .

Будем говорить, что цвет α отсутствует в v, если α в v не присутствует.

Чередующиеся α/β -цепи

Если в раскраске графа цвет α присутствует в v, а β отсутствует в v, то однозначно определена *максимальная* цепь, начинающаяся в v, рёбра которой имеют цвета α и β попеременно:

Такую цепь будем называть α/β -цепью из v.

Если в раскраске цвета рёбер любой α/β -цепи поменять друг с другом, раскраска останется правильной.

Доказательство теоремы Кёнига

Teopeма. (D. Kőnig'1916)

 $\chi'(G) = \Delta(G)$ для любого двудольного G.

Доказательство: индукция по ||G||.

Пусть G — двудольный граф, ||G|| > 1.

Пусть xy — произвольное ребро в G.

По предположению, найдётся раскраска ψ рёбер графа G' = (G - xy) в $\Delta(G)$ цветов.

Т.к. $d_{G'}(x) < \Delta(G)$, то в раскраске ψ в вершине x отсутствует некоторый цвет α .

Если α отсутствует и в y, то покрасим xy в цвет α , тем самым получим раскраску G.

Доказательство теоремы Кёнига

В раскраске ψ в вершине x отсутствует некоторый цвета α .

Если α присутствует в y, рассмотрим цвет β , отсутствующий в y и рассмотрим α/β -цепь из y в графе G'.

Эта цепь не содержит x в силу двудольности G:

Поменяв на этой цепи цвета α и β местами, получим раскраску G', в которой цвет α отсутствует в x и y. И теперь можно покрасить ребро xy в цвет α .

Теорема Визинга. (В.Г. Визинг '1964)

 $\chi'(G) \leq \Delta(G) + 1$ для любого G.

Доказательство: индукция по ||G||.

Если ||G|| = 0, то утверждение очевидно.

Пусть ||G|| > 0 и теорема выполнена для всех графов, число рёбер в которых меньше ||G||.

По предположению, для любого $e \in E(G)$ рёбра графа (G - e) можно правильно раскрасить в цвета $\{1, ..., \Delta + 1\}$, где $\Delta = \Delta(G)$.

При этом в каждой вершине будет отсутствовать хотя бы один из цветов $1, \dots, \Delta + 1$.

Докажем от противного, что у G есть раскраска.

Допустим, что это не так.

Тогда для любого ребра $xy \in E(G)$ в раскраске графа (G - xy) никакой цвет не может отсутствовать в x и y одновременно (иначе ребро xy можно окрасить в этот цвет и получить раскраску G).

Также, если цвет β отсутствует в x, а цвет α отсутствует в y, то α/β -цепь из x заканчивается в вершине y.

Иначе мы могли бы поменять цвета на α/β -цепи местами и покрасить xy в цвет α :

Пусть x — произвольная вершина графа G, и пусть y_0 — любой сосед x.

По предположению индукции, существует раскраска ψ_0 графа $G_0 = G - xy_0$.

Пусть $y_0, y_1, ..., y_k$ — максимальная последовательность соседей x, обладающая свойством: «при всех i=1,...,k цвет $\psi_0(xy_i)$ отсутствует в вершине y_{i-1} ».

Доказательство теоремы Визинга: последовательность специальных раскрасок

Пусть $y_0, y_1, ..., y_k$ — максимальная последовательность соседей x, обладающая свойством: «при всех i=1,...,k цвет $\psi_0(xy_i)$ отсутствует в вершине y_{i-1} ».

По раскраске ψ_0 графа G_0 можно построить раскраски ψ_i графов $G_i = (G - xy_i)$ по правилу:

$$\psi_i(e) = egin{cases} \psi_0(xy_{j+1}), \text{если } e = xy_j \text{ и } j < i \\ \psi_0(e) & \text{для остальных рёбер} \end{cases}$$

Доказательство теоремы Визинга: последовательность специальных раскрасок

$$\psi_i(e) = egin{cases} \psi_0(xy_{j+1}), \text{если } e = xy_j \text{ и } j < i \\ \psi_0(e) & \text{для остальных рёбер} \end{cases}$$

Цвета, отсутствующие в x в раскраске ψ_0 , будут отсутствовать и в раскраске ψ_i . То же верно и для вершин y_i , ..., y_k .

Доказательство теоремы Визинга: вывод противоречия

Пусть α и β — какие-нибудь цвета, отсутствующие соответственно в x и y_k в раскраске ψ_0 (а значит, и в любой ψ_i).

Тогда в раскраске ψ_k графа G_k α/β -цепь из y_k заканчивается в вершине x на ребре цвета β .

Из максимальности последовательности y_0, y_1, \dots, y_k следует, что найдётся индекс $s \in \{0, \dots, k-1\}$, для которого $\psi_k(xy_s) = \beta$.

Доказательство теоремы Визинга: вывод противоречия

В раскраске ψ_k графа G_k α/β -цепь из y_k заканчивается в вершине x на ребре xy_s цвета β :

Но тогда в раскраске ψ_S графа G_S α/β -цепь из y_S заканчивается в вершине y_k , не доходя до x. Противоречие.

