

• تعريف المركبات العضوية:

- تشمل المركبات العضوية كل المركبات التي مصدرها كائن حي بالإضافة إلى بعض المركبات التي تصنع في المخابر و لها نفس ميزات المركبات ذات المصدر كان حي .
 - تتميز المركبات العضوية بعدة مميزات أهمها:
 - كل المركبات العضوية هي مركبات جزيئية .
- كل المواد العضوية قابلة للإحتراق بالأكسجين أو الهواء، فتعطي غاز ثاني أكسيد الكربون و بخار الماء ، كما تعطى موادا أخرى أحيانا مثل غاز الكلور ، غاز الآزوت
- كلّ المركبات العضوية تحتوي على عنصر الكربون ، كما يدخل في تركيبها أيضا من العناصر ، حسب درجتها في تكوين هذه المشتقات ، و أهم هذه العناصر نذكر : الهيدروجين، الأوكسجين ، الآزوت

• أصناف المركبات العضوية:

نظرا لكثرة عدد المركبات العضوية، و الذي يتزايد يوما بعد يوم، فقد قسمت لتسهيل در استها، إلى فئات رئيسية حسب تركيبها العنصري و أهم هذه الفئات هي:

الفحوم الهيدروجينية:

هي المركبات العضوية التي تحتوي فقط على عنصري الكربون و الهيدروجين صيغتها الجزيئية العامة هي :

 C_xH_y

- المركبات العضوية الأكسجينية:
- هي المركبات التي تحتوي على عناصر الكربون و الهيدروجين ، و الأكسجين صيغتها الجزيئية العامة هي :

 $C_x H_y O_z$

- المركبات العضوية الآزوتية:
- هي المركبات العضوية الأزوتية التي تحتوي على عناصر الكربون ، الأكسجين ، الأزوت ، صيغتها الجزيئية العامة هي:

 $C_x H_y N_z$

• الألكانات:

- الألكانات هي فحوم هيدروجينية مشبعة ، ذات سلسلة كربونية خطية (غير متفرعة) ، صيغتها الجزيئية العامة تكون من الشكل :

 C_nH_{2n+2}

 \dots C_3H_8 ، C_2H_6 ، CH_4 ، مثل: n عدد طبیعی ، مثل: n

- يشتق إسم الألكان ذو السلسلة الكربونية الخطية (غير المتفرعة) بإضافة الحرفين " ان " إلى الإسم المعبر عن عدد ذرات الكربون التي يحتوي عليها الجزيء باللغة اليونانية، كما مبين في الجدول التالي:

الإسم	الصيغة الجزيئية	ما يوافق (n) باليونانية	n
الميثان	CH ₄	میث	1
الإيثان	C_2H_6	إيث	2
البروبان	C_3H_8	برب	3
البوتان	C_4H_{10}	بوت	4
البنتان	C_5H_{12}	بنت	5
الهكسان	C_6H_{14}	هکسـ	6
الهبتان	C_7H_{16}	هبت	7
الأوكتان	C_8H_{18}	أوكت	8
النونان	C_9H_{20}	نون	9
الديكان	$C_{10}H_{22}$	دیک	10

- عند نزع ذرة هيدروجين واحدة من جزيء ألكان نحصل على ما يسمى بالجذر الألكيلي ، و هذه الجذور لا توجد بشكل طليق، و إنما نجدها مرتبطة بالسلسلة الكربونية لجزيء المركب العضوي ، يرمز للجذر الألكيلي بـ: R و صيغته الجزيئية العامة من الشكل :

أو -
$$R$$
 (اختصار ا) C_nH_{2n+1}

- يشتق إسم الجذر الألكيلي من الألكان الموافق بنزع النهاية " ان " من اسم الألكان و تعويضها بـ " يل " . أمثلة :

$(C_{0}H_{1+02}-)$ الجذر الألكيلي		$\mathrm{C}_{\mathrm{i}}\mathrm{H}_{2+\mathrm{i}2}$ الألكان	
الصيغة	الإسم	الصيغة	الإسم
CH ₃ -	الميثيل	CH_4	الميثان
C_2H_5 -	الإيثيل	C_2H_6	الإيثان
C ₃ H ₇ -	البروبيل	C_3H_8	البروبان

- لتسمية الألكانات في حالة سلسلة كربونية متفرعة نتبع الخطوات التالية:
 - نختار أطول سلسلة كربونية و التي تعتبر السلسلة الرئيسية .
- نرقم هذه السلسلة من الطرف إلى الطرف ، ابتدءا من ذرة الكربون الأقرب إلى أول تفرع .

• نكتب إسم الجذر الألكيلي (أو الجذور الألكيلية) المرتبط بالسلسة الكربونية ، و نسبقه برقم (أو أرقام) ذرة الكربون المرتبط بها ، (ترتب الجذور وفق ترتيب الحروف الأبجدية اللاتينية في حالة وجود عدة جذور) ، بعد ذلك نكتب إسم الألكان (غير الخطي) الذي يكون فيه عد ذرات الكربون مساوي لعدد ذرات كربون السلسلة الرئيسية (الأطول) • إذا كان يتصل بالسلسلة الكربونية المرقمة عدة جذور ألكيلية متشابهة نستعمل كلمة " ثنائي" في حالة جذرين متشابهين و كلمة " ثلاثي" في حالة ثلاث عناصر أو جذور متشابهة ... و هكذا.

• الألكنات (جمع ألكن):

- الألكنات (جمع ألكن) هي فحوم هيدروجينية غير مشَبعة ذات سلاسل كربونية مفتوحة، تحتوي جزيئاتها على رابطة ثنائية بين ذرتي كربون في السلسلة الكربونية ، صيغتها الجزيئية العامة من الشكل:

 C_nH_{2n}

 $....C_4H_8$ ، C_3H_6 ، C_2H_4 : مثل . $n \ge 2$

- تخضع تسمية الألكنات (جمع ألكن) إلى نفس القاعدة السابقة المتبعة في تسمية الألكانات (جمع ألكان) ، إلا أنه في تسمية الألكنات يكون :
 - اختيار السلسلة الأطول و الحاوية على الرابطة الثنائية (السلسلة الكربون الرئيسية).
- ترقيم السلسلة الكرونية يكون من ذرة الكربون الأقرب إلى الرابطة الثنائية ، و إذا كانت الرابطة الثنائية تقع في منصف السلسلة الكربونية الرئيسية يكون الرقيم في هذه الحالة من ذرة الكربون الأقرب إلى أول تفرع .
 - يضاف في نهاية إسم الألكان الرقم الأصغر من بين رقمي ذرتي الكربون التي تكون بينهما الرابطة الثنائية .

الألكينات (جمع ألكين):

- الألكينات أو الألسينات هي فحوم هيدروجينية غير مشبعة ذات سلاسل كربونية مفتوحة، تحتوي جزيئاتها على رابطة ثلاثية بين ذرتي كربون في السلسلة الكربونية، صيغتها الجزيئية العامة من الشكل:

 $C_n H_{2n\text{-}2}$

 $.....C_4H_6$ ، C_3H_4 ، C_2H_2 : مثل . $n \ge 2$

- تخضع تسمية الألكينات (جمع ألكين) إلى نفس القاعدة السابقة المتبعة في تسمية الألكانات (جمع ألكان) ، إلا أنه في تسمية الألكنات يكون :
 - اختيار السلسلة الأطول و الحاوية على الرابطة الثلاثية (السلسلة الكربون الرئيسية).
- ترقيم السلسلة الكرونية يكون من ذرة الكربون الأقرب إلى الرابطة الثلاثية ، و إذا كانت الرابطة الثلاثية تقع في منصف السلسلة الكربونية الرئيسية يكون الرقيم في هذه الحالة من ذرة الكربون الأقرب إلى أول تفرع .
 - يضاف في نهاية إسم الألكين الرقم الأصغر من بين رقمي ذرتي الكربون التي تكون بينهما الرابطة الثنائية .

• الكحولات:

- الكحولات هي مركبات عضوية أكسجينية تتميز بوجود مجموعة هيدروكسيل (OH -) (أو أكثر) مرتبطة بذرة كربون رباعية ، صيغتها الجزيئية العامة تكون من الشكل :

 $C_nH_{2n+1}OH$ أو R-OH

 $(C_nH_{2n+1}-)$: هو جذر ألكيلي صبيغته العامة (R-) هو جذر

- إن مجموعة الهيدروكسيل (OH-) هي المجموعة المميزة للكحولات ، تسمى بـ المجموعة الوظيفية الكحولية .

- تسمى ذرة الكربون الحاوية على مجموعة الهيدروكسيل (OH-) (المجموعة الوظيفية) بـ الكربون الوظيفي .
- يشتق إسم الكحول أحادي الوظيفة من إسم الألكان الذي له نفس الهيكل الكربوني ، بإضافة المقطع (ول) ، إلى نهاية هذا الإسم ، مع إعطاء أصغر رقم ممكن للكربون الوظيفي عند ترقيم السلسلة الكربونية الأطول ، و يكون ترتيب الجذور حسب ترتيب الحروف الأبجدية اللاتينية .
 - تصنف الكُحو لاتُ إلى ثلاث أصناف رئيسية حسب موقع المجموعة (OH-) في السلسلة الكربونية كما يلي : الكحو لات الأولية:
- و هي الكحولات التي يكون فيها الكربون الوظيفي مرتبط بذرتين هيدروجين و جذر ألكيلي واحد، أو مرتبط بثلاث ذرت هيدروجين (ذرة هيدروجين بدل الجذر الألكليلي) ، ومنه فالصيغة الجزيئية العامة للكحولات الأولية تكون كما يلي :

الكحولات الثانوية:

و هي الكحولات التي يكون فيها الكربون الوظيفي مرتبط بذرة هيدروجين و جذرين ألكيليين ، و منه فالصيغة الجزيئية العامة للكحولات الثانية تكون كما يلي :

$$\begin{array}{|c|c|c|}\hline R_1 & & & & \\ R - \mathbf{C}H\mathbf{OH} & & & & \\ \hline R_2 - \mathbf{C} - \mathbf{OH} & & & \\ H & & & & \\ \hline \end{array}$$

الكحولات الثالثية :

و هي الكحولات التي يكون فيها الكربون الوظيفي مرتبط بثلاث جذور ألكيلية ، و منه فالصيغة الجزيئية العامة للكحولات الثالثية تكون كما يلي :

$$R_{2} - \mathbf{C} - \mathbf{OH}$$

$$R_{3}$$

الألدهيدات و الكيتونات :

- هي مركبات عضوية لها نفس المجموعة الوظيفية التالية و التي تسمى المجوعة الوظيفية الكربونيلية .

$$120^{\circ} C = O$$

- يسمى الكربون الحاوى على المجموعة الوظيفية الكربونيلية بـ الكربون الوظيفى .
- إذا ارتبط الكربون الوظيفي بذرة هيدروجين و بذرة كربون يقال عن المركب الكربونيلي أنه ألدهيد ، و بالتالي تكون الصيغة العامة للألدهيدات كما يلي :

R-CHO

$$R$$
 $C = O$

- إذا ارتبط الكربون الوظيفي بذرتي كربون يقال عن المركب الكربونيلي أنه كيتون ، و بالتالي تكون الصيغة العامة للكيتونات كما يلي :

$$R_2 \setminus C = O$$

- الألدهيدات و الكيتونات لهما نفس الصيغة الجزيئية المجملة و التي تكون من الشكل:

 $C_nH_{2n}O$

- يشتق إسم الألدهيد من إسم الألكان الذي له نفس الهيكل الكربوني ، بإضافة المقطع (ال) ، إلى نهاية هذا الإسم ، مع إعطاء الرقم (1) للكربون الوظيفي في هذه الحالة يكون دوما في طرف السلسلة) ، و يكون ترتيب الجذور حسب ترتيب الحروف الأبجدية اللاتينية .
- يُشتقُ إسم الكيتون من إسم الألكان الذي له نفس الهيكل الكربوني ، بإضافة المقطع (ون) ، إلى نهاية هذا الإسم ، مع إعطاء أصغر رقم ممكن للكربون الوظيفي عند ترقيم السلسلة الكربونية الأطول ، كما يضاف إلى نهاية الإسم رقم ذرة الكربون الوظيفي ، و يكون ترتيب الجذور حسب ترتيب الحروف الأبجدية اللاتينية .

• التمييز بين الألدهيد و الكيتون:

اعتماداً على الخواص الكيميائية للألدهيدات و الكيتونات ، يمكن المقارنة و التمييز بينهما كما يلي:

- إن الأكسدة المقتصدة تتم بسهولة مع الألدهيدات ، و تعطي حمضا كربوكسيليا، بينما لا تحدث أكسدة مقتصدة للكيتونات مطلقا
- يرجع الألدهيد الفضة، إذا ما أضيف إلى محلول نترات الفضة النشادرية (محلول طولونس) مع التسخين ، كما يمكنه أن يرجع محلول فهلنج ، أما الكيتون فلا يرجع الاثنين .
 - يؤثر كاشف شيف في الألدهيدات معطية اللون الوردي ، في حين أنها لا تؤثر في الكيتونات .
- يؤثر كاشف DNPH (ثنائي نترو (2،4) فنيل الهيدر ازين) في الألدهيدات و الكيتونات معا، فمع الأول يعطي راسبا أصفرا، و مع الثاني راسبا برتقاليا مصفرا، و يكاد الاختلاف في اللون بينهما لا يكون واضحا، كما أن DNPH يتفاعل بالضبط مع مجموعة الكربونيل التي يتميز بها كل من الألدهيد و الكيتون .

بمكن تلخيص هذه الخواص في جدول كما بلي:

الكيتون	الألدهيد	الكاشف
لا يتأثر	\	نترات الفضة النشادرية
۵ پیاتر	پيار	(طولونس)
لا يتأثر	يتأثر	محلول فهلنج
لا يتأثر	يتأثر	كاشف شيف
يتأثر	يتأثر	كاشف DNPH

• الأحماض الكربوكسيلية:

- الأحماض الكربوكسيلية ، هي مركبات عضوية أكسجينية ثنائية الأكسجين ، يحتوي جزيء كل منهما على المجموعة الوظيفية التربوكسيلية .

و هذه المجموعة تكون مرتبطة في جزيء الحمض الكربوكسيلي بجذر ألكيلي -R، ومنه تكون الصيغة الجزيئية العامة للأحماض الكربوكسيلية من الشكل:

- تسمى ذرة الكربون الحاوية على المجموعة الوظيفية الحمضية الكربوكسيلية (COOH-) بـ الكربون الوظيفي .

- يشتق إسم الحمض الكربوكسيلي من إسم الألكان الموافق له ، بإضافة المقطع (ويك) ، إلى نهاية هذا الإسم ، مع اختيار أطول سلسلة كربونية تحتوى على مجموعة الكربوكسيل ، و إعطاء الرقم (1) للكربون الوظيفي .

• الأسترات:

- الأسترات، هي مركبات عضوية أكسجينية صيغتها الجزيئية من الشكل:

$$\begin{bmatrix}
R - \mathbf{COO} - R' \\
\mathbf{O} - R'
\end{bmatrix}$$

$$\mathbf{O}$$

$$\mathbf{O} - R'$$

- تسمى ذرة الكربون الحاوية على المجموعة الوظيفية الكربوكسيلية (-COO-) بـ **الكربون الوظيفي** .

- تتميز الأحماض الكربوكسيلية و الأسترات بنفس المجموعة الوظيفية و هي المجموعة الوظيفية الكربوكسيلية ، كما أن لها نفس الصيغة الجزيئية المجملة التالية :

$$C_nH_{2n}O_2$$

- يتكون إسم الأستر 'R-COO-R من حدين :

الحد الأول:

يشتق من إسم الألكان الموافق للمجموعة -R-COO ، بإضافة الأحرف (وات) . مع اختيار أطول سلسلة كربونية تحتوي على مجموعة الكربوكسيل ، و إعطاء الرقم (1) للكربون الوظيفي .

الحد الّثاني :

نحصل عليه بكتابة إسم الجذر الألكيلي 'R'.

• تحضير كحول بإماهة ألكن (ضم الماء للألكن):

- يمكن الحصول على كحول $C_{1}H_{2n-1}OH$ بإماهة ألكن $C_{1}H_{2n-1}OH$ وفق المعادلة :

$$C_nH_{2n} + H_2O = C_nH_{2n+1}OH$$

• تفاعل الكحول مع الصوديوم:

يتفاعل الكحول R-OH (مهما كان صنفه) مع الصوديوم وفق تفاعل أكسدة إرجاعية ، و يؤدي إلى انطلاق غاز الهيدروجين H_2 ، و تشكل جسم ذو طبيعة شاردية ، و أساسية يدعى ألكاتولات الصوديوم H_2) وفق المعادلة الكيميائية التالية :

$$2R ext{-}OH + 2Na = (RO^- + Na^+) + H_2$$
 ألكانو لات الصوديوم

• نزع الماء من كحول:

- يمكن أن يحدث نزع الماء من جزيئين متماثلين لكحول ، ويتم ذلك بوجود وسيط نازع للماء مثل حمض الكبريت المركز H_2SO_4 و بشروط خاصة أو بوجود الألمين Al_2O_3 بدرجة حرارة معينة ، و يحدث كنتيجة لذلك نزع ماء من جزيئين كحوليين متماثلين ، حيث يتكون إيثر أكسيد وفق المعادلة الكيميائية التالية :

$$R-OH+R-OH=R-O-R+H_2O$$
 ایثر أو کسید

مثال:

 CH_3 -O- يمكن أن يحدث نزع الماء من جزيئين متماثلين للميثانول CH_3 OH (كحول) فينتج ثنائي مثيل إيثر أكسيد CH_3 O- يمكن أن يحدث نزع المعادلة الكيميائية التالية :

$$2CH_3OH = CH_3-O-CH_3 + H_2O$$

 Al_2O_3 يمكن أن يحدث نزع الماء من جزيئة واحدة لكحول ، ويتم ذلك بوجود وسيط نازع للماء مثل الألمين C_nH_{2n} بدرجة حرارة معينة ، لينتج ألكن C_nH_{2n} أو C_nH_{2n}) وفق المعادلة الكيميائية التالية :

$$R-CH_2-CH_3 \longrightarrow R-CH=CH_2+H_2O$$

ألكن كحول

• أكسدة الكحولات:

- يتأكسد الكحول الأولي أكسدة مقتصدة بمحاليل المؤكسدات الأكسجينية ، فينتج مركب مرحلي هو الألدهيد ، الذي يتأكسد بدوره معطيا حمض كربو كسيلي.
 - يتأكسد الكحول الثانوي أكسدة مقتصدة بمحاليل المؤكسدات الأكسجينية كيتون .
 - لا يتأكسد الكحول الثالثي أكسدة مقتصدة بمحاليل المؤكسدات الأكسجينية

ملاحظة:

- عند إضافة المحلول المؤكسد بزيادة إلى كحول أولي أثناء الأكسدة المقتصدة لهذا الكحول فإنه يتشكل حمض كربوكسيلي مرورا بتشكل ألدهيد كما رأينا سابقا.

- عند إضافة المحلول المؤكسد بكمية كافية إلى كحول أولي أثناء الأكسدة المقتصدة لهذا الكحول فإنه يتشكل ألدهيد و يتوقف التفاعل ، بعبارة أخرى تتوقف الأكسدة المقتصدة عند الألدهيد .

• تفاعل الأسترة:

- تفاعل الأسترة هو تفاعل يحدث بين الكحولات R-OH ، و الأحماض الكربوكسيلية R-COOH لينتج عنه مركب يدعى أستر صيغته R-COO-R ، وماء H_2O وفق المعادلة :

$R\text{-COOH} + R\text{-OH} \rightarrow R\text{-COO-R} + H_2O$

- يتميز تفاعل الأسترة بالخواص التالية:
 - محدود (غير تام).
 - لاحراري .
 - عكوس .
 - بطيء .
- لتسريع تفاعل الأسترة نستعمل طرق أهمها إضافة قطرات من الكبريت المركز إلى المزيج المتكون من الحمض الكربوكسيلي و الكحول ، ثم يوضع المزيج داخل حمام مائي درجة حرارته ثابتة .

• تفاعل الإماهة:

- تفاعل الأماهة هو تفاعل يحدث بين أستر R-COO-R' و ماء H_2O (التفاعل المعاكس لتفاعل الأسترة) لينتج حمض كربوكسيلي R-COO+R' و كحول R'-OH و فق المعادلة التالية :

$$R\text{-}COO\text{-}H + R\text{-}OH \rightarrow R\text{-}COOH + R\text{-}OH$$

- مميزات تفاعل الإماهة نفسها مميزات تفاعل الأسترة و هي : محدود (غير تام) ، لا حراري ، عكوس ، بطيء .