學號:B04611041 系級: 工海三 姓名:簡暐晉

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 **9** 小時內 **pm2.5** 的一次項當作 **feature(**加 **bias)** 備註:
 - a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

Loss	全部 feature9 小時	Pm2.5 9 小時
Public	7.48225	7.44013
private	5.2898	5.62719
Average		
$\sqrt{\text{(public}^2 + \text{private}^2)/2}$	6.4794	6.59624

抽了全部的 feature 在 public 的成績較差,但在 private 和總平均誤差都比較好,有可能是其他 feature 也含有其他會影響 pm2.5 的因子,因此做出來的結果較好。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時, 討論其變化

Loss	全部 feature 5 小時	Pm2.5 5 小時
public	7.66487	7.57904
private	5.32828	5.79187
Average	6.60078	6.74490

如果只抽前 5 小時的 feature 兩種結果都變差,表示 $6^{\circ}9$ 小時前的數據對 pm2.5 還是有一定程度的影響,因此取較少的 feature 結果會比較差,並且取全部的 feature 相較於只取 pm2.5 還是會得到比較好的結果。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001、並作圖

全部 feature 9 小時						
λ	0	0.1	0.01	0.001		
public	7.47125	7.47125	7.47125	7.47125		
private	5.29283	5.29283	5.29283	5.29283		

Pm2.5						
λ	0	0.1	0.01	0.001		
public	7.44013	7.44013	7.44013	7.44013		
private	5.62719	5.62719	5.62719	5.62719		

由於 regularization 是在原來的 loss function 再加上 $\lambda \Sigma (w_i)^2$,但因為我訓練出來 的 w 都非常小(0.01 以下), 再平方相加乘上 λ 就變的非常小, 因此對結果幾乎沒有影

4. (1%)在線性回歸問題中, 假設有 N 筆訓練資料, 每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n , 其標註(label)為一存量 \mathbf{y}^n , 模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}), 則線性回歸的損失函數(loss function)為 $\sum_{i=1}^{n}$ ($\Box^{-} - \Box^{-} \cdot \Box$)²。若將所有訓練資 料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \mathbf{x}^2 \dots \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \mathbf{y}^2 \dots$ \mathbf{v}^{N}] 表示, 請問如何以 \mathbf{X} 和 \mathbf{v} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選 出正確答案。(其中 X^TX 為 invertible)

- (a) $(X^{T}X)X^{T}y$ (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^TX)^{-1}X^Ty$
- (d) $(X^{T}X)^{-2}X^{T}y$

因為預測的結果是 $X \cdot w$,要找的是w使loss function $L = (Y - X \cdot w)^T (Y - Xw)$ 為最小, 而 L 對 w 做微分的值為 $2 \cdot (y - Xw) \cdot (-X)$,令他為零再移項得到答案為 (c) w= $(X^TX)^T$ $^{1}X^{T}y$