

Correction TD 4

Electrocinétique 1 L1 - S1 2022-2023

Exercice 1 : Circuits ouvert et fermé et conséquences.

On considère le circuit représenté ci-dessous où figurent 3 interrupteurs parfaits (tension nulle à ses bornes lorsqu'il est fermé, courant nul lorsqu'il est ouvert).

On demande de remplir le tableau en indiquant les expressions des courants et tensions (en fonction de *E* et *R*) en fonction des différents états des interrupteurs.

	O : Ouvert			F : Fermé		
1	2	3	I_1	I_2	I_3	U
О	О	О	0	0	0	Е
О	F	О	E/(2R)	E/(2R)	0	E/2
O	О	F	E/R	0	E/R	0
F	F	О	0	E/R	0	E

Exercice 2 : Détermination d'un courant par le principe de superposition.

Dessiner les 2 circuits à étudier lors de l'application du principe de superposition et en déduire la valeur du courant I.

Pour quelle valeur de la tension E le courant I s'annulerait-il?

 $I' = - E/(R+R_1)$ I' = -0.5 A

Circuit 2:

 $I'' = R_1.I_0/(R+R_1)$ I' = 0.6 A

Au total : I = I' + I'' = 0,1A

Pour voir I = 0 il faut $E/(R+R_1) = R_1 \cdot I_0/(R+R_1)$

soit $E = R_1 . I_0 = 6V$

Exercice 3: Résolution d'un circuit simple par le principe de superposition, bilan de puissance.

- Déterminer les 3 courants en utilisant le principe de superposition.
- Faire un bilan des puissances dissipées dans les résistances et de celles fournies par les sources et conclure.

Circuit 1 : On éteint E_2 , on garde E_1

$$R_{eq} = R.R_2 / (R+R_2) = 6/5 \Omega$$

$$I'_1 = E_1 / (R_1 + R_{eq}) = 0.455 \text{ A}$$

Pour trouver I' et I'₂, pont diviseur de courant : I' = $R_2 / (R + R_2)$. I' 1 = 3/5 * 0,455 = 0,273 A $I'_2 = -R/(R + R_2).I'_1 = -2/5 * 0.455 = -0.182A$

Circuit 2 : On éteint E_1 , on garde E_2

$$R_{eq}=R.R_1 \ / \ (R{+}R_1)=2/3 \ \Omega$$

$$I''_2 = E_2 / (R_2 + R_{eq}) = 0,545 \text{ A}$$

Pour trouver I'' et I''₁, pont diviseur de courant : I'' = $R_1/(R+R_1) * I''_2 = 0.182 A$ $I''1 = -R/(R+R_1) * I''_2 = -0.364 A$

Au total :
$$I = I' + I'' = 0,455 \text{ A}$$
, $I_1 = I'_1 + I''_1 = 0,091 \text{ A}$, $I_2 = I'_2 + I''_2 = 0,363 \text{ A}$

$$I_1 = I'_1 + I''_1 = 0.091A$$

$$I_2 = I'_2 + I''_2 = 0.363 \text{ A}$$

Calcul des puissances :

Puissance fournie par source 1 : $P_{S1} = E_1 I_1 = 0,091W$, Puissance fournie par source $2: P_{S2} =$ $E_2.I_2 = 0,726W$

Puissance dissipée dans $R_1: P_{R1} = R_1.I_1^2 = 0,008 \text{ W}$, Puissance dissipée dans $R_2: P_{R2} = R_2.I_2^2 =$ Puissance dissipée dans $R : P_R = R.I^2 = 0,414 W$ 0,395 W,

On trouve $P_{S1} + P_{S2} = P_{R1} + P_{R2} + P_{R}$: La somme des puissances fournies par les sources est égale à la sommes des puissances dissipées dans les charges.