Shiva Acharya

Ph.D. Candidate, Electrical and Computer Engineering (Wireless@VT)

• 334-268-8102

• acharyashiva@vt.edu

• GitHub

• Google Scholar Profile

2020

EDUCATION

Ph.D. Candidate, Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA Spring 2021 - Present

Expected Graduation: Spring 2026

M.S., Computer Engineering

Virginia Tech, Blacksburg, VA

Degree awarded: Spring 2023

B.S., Electrical Engineering (Summa Cum Laude)

Design Award, South Texas VEXU Robotics Qualifying Tournament

McNeese State University, Lake Charles, LA May 2020

HONORS AND AWARDS

Awarded CCI SWVA Cyber Innovation Scholar Fund

Chosen as CCI SWVA Cyber Innovation Scholar

Most Technically Enlightening Presentation, Inaugural CCI Graduate Student Summit

Spring 2024 - Fall 2024

Spring 2023 - Fall 2024

Summa Cum Laude, McNeese State University

May 2020

President's Honor List, McNeese State University

Fall 2016 - May 2020

PUBLICATIONS

- S. Acharya, S. Li, N. Jiang, W. Xie, W. Lou, and Y. T. Hou, "Small Data Big Result: A New Approach to Tackle Channel Uncertainty with Limited Data Samples," submitted to *IEEE Wireless Communications Magazine*.
- S. Acharya, S. Li, Y. Wu, N. Jiang, W. Lou, and Y. T. Hou, "Rudra: Minimizing Spectrum Usage with Data Rate Guarantee in Next-G Communications," accepted at *IEEE MILCOM 2024*.
- E. Ghoreishi, B. Abolhassani, Y. Huang, S. Acharya, W. Lou, and Y. T. Hou, "Cyrus: A DRL-based Puncturing Solution to URLLC/eMBB Multiplexing in O-RAN," *Proc. IEEE ICCCN*, pp. 1-9, Kailua-Kona, HI, USA, 2024.
- S. Acharya, S. Li, N. Jiang, Y. Wu, Y. T. Hou, W. Lou, and W. Xie, "Mitra: An O-RAN based Real-Time Solution for Coexistence between General and Priority Users in CBRS," *Proc. IEEE MASS*, pp. 295-303, Toronto, Canada, 25-27 Sept. 2023.

TECHNICAL STRENGTHS

Programming Languages: C/C++, Python, CUDA, Matlab, Java Software: Visual Studio, Spyder, Matlab/Simulink (5G Toolbox), Eclipse

Skills: Experienced knowledge in wireless networking, algorithm design, real-time optimization

PROJECT AND RESEARCH EXPERIENCES

[P5] MU-MIMO Scheduler Under CSI Uncertainty

Fall 2023 – present

- Optimization: Designed an algorithm to minimize spectrum usage in MU-MIMO systems through resource allocation, rate adaptation, and beamforming.
- CSI Uncertainty: Modeled CSI uncertainty using limited CSI data without assuming known distributions, transforming the original stochastic optimization problem into a deterministic problem.
- Data Rate Guarantees: Developed a solution providing probabilistic data rate guarantees for UEs under CSI uncertainty.

[P4] DRL for URLLC/eMBB Multiplexing

Fall 2023 – Spring 2024

- DRL Implementation: Applied Deep Reinforcement Learning (DRL) in 5G networks to meet URLLC latency requirements by puncturing eMBB traffic.
- O-RAN Optimization: Optimized the DRL algorithm based on different time scale control loops in the O-RAN framework for faster convergence and URLLC compliance.
- Simulation: Conducted 5G link-level simulations using MATLAB 5G Toolbox to model URLLC/eMBB puncturing.

[P3] Real-Time Algorithm Design for Spectrum Coexistence

Summer 2023 – Fall 2023

- Algorithm Design: Developed a parallel resource allocation algorithm to meet 5G's 1 ms scheduling requirement under numerology 0.
- Parallel Processing: Decomposed the problem into a massive number of subproblems, selecting the promising subproblems based on domain knowledge and solving them in parallel using CUDA C++ on an NVIDIA Tesla V100 GPU.
- GPU Optimization: Streamlined memory management, thread blocks, and communication overhead to meet real-time constraints.

[P2] Spectrum Sharing Under CSI Uncertainty

Spring 2022 – Summer 2023

- *Uncertainty Modeling:* Addressed CSI uncertainty in CBRS spectrum sharing without assuming known channel distributions.
- Interference Protection: Developed a small-data approach using limited CSI samples to ensure interference protection guarantees.
- Resource Optimization: Optimized resource and power allocation in secondary networks to provide interference protection to the primary network while maximizing system throughput.

[P1] Project Leader, LaACES Ballooning Program

Sep 2019 – May 2020

- \bullet Team Leadership: Led the NASA-sponsored LaACES project to design and test a telemetry system tracking a payload at altitudes up to 30 km.
- Payload Design: Developed a system to capture and transmit images, GPS data, and atmospheric information in real-time to a ground station.

TEACHING EXPERIENCE

Teaching Assistant, ENGR 430: Systems and Control	May 2020 - Dec. 2020
Teaching Assistant, ELEN 210: Circuits I	Aug. 2019 - May 2020
Lab Assistant, ELEN 341: Linear Electronics	Aug. 2019 - May 2020
Lab Assistant, ELEN 362: Microprocessing System Design	Aug. 2019 - May 2020

PROFESSIONAL SERVICES

Treasurer, IEEE McNeese Student Chapter	Aug. 2019 - May 2020
Treasurer, Nepalese Student Association at McNeese State University	Aug. 2019 - May 2020
Volunteered as a Referee and Judge on VEXU Robotics Competition, LA	March 2019 - Feb. 2020

REFERENCES

Prof. Tom Hou: Bradley Distinguished Professor of ECE, Virginia Tech, thou@vt.edu

Prof. Wenjing Lou: W. C. English Endowed Professor of CS, Virginia Tech, wjlou@vt.edu

Prof. Jeff Reed: Willis G. Worcester Professor of ECE, Virginia Tech, reedjh@vt.edu