

# Komunikacijske mreže

10.

Osnove sigurnosti mreža, usluga i aplikacija – sigurnost u Internetu

Ak.g. 2011./2012.

### Sadržaj predavanja



- Sigurnost, prijetnje i zahtjevi
- Osnovno o kriptografiji
  - simetrična kriptografija
  - asimetrična kriptografija
  - digitalni potpis i sažetak poruke
  - infrastruktura javnog ključa
- Sigurnosna arhitektura Interneta
  - sigurnosno proširenje protokola IP IPsec
  - sloj sigurnih priključnica SSL

#### Problem ...





#### ... i definicije



### Sigurnost (engl. security)

Sposobnost mreža, sustava, usluga i aplikacija da se suprotstave neočekivanim slučajnim događajima i zlonamjernim aktivnostima koje mogu narušiti i kompromitirati raspoloživost, vjerodostojnost, cjelovitost i povjerljivost informacije i komunikacije

### Prijetnja u mrežnom okružju

 okolnost, stanje ili događaj koji može naškoditi osoblju ili mrežnim i računalnim resursima u obliku uništavanja, razotkrivanja ili modifikacije podataka, uskrate usluge, prijevare i zlouporabe



## Sigurnost, prijetnje i zahtjevi

## Sigurnost u mrežnom okružju (1)





## Sigurnost u mrežnom okružju (2)



Primjer: pristup internetskim uslugama putem javne mreže

prijetnje sigurnosti



### Sigurnosne prijetnje i rješenja

(Intrusion Detection System)





virtualna privatna mreža

### Sigurnosne prijetnje: presretanje, prisluškivanje





Presretanje (engl. *interception*)

Prisluškivanje (engl. *evesdropping*)

Prisluškivanje na vodu (engl. *wiretapping*)

- elektronička komunikacija se presreće i preuzima informacija
- neovlaštena uporaba podataka
- narušavanje privatnosti

Zakonski regulirano (engl. *lawfull interception*)

### Sigurnosne prijetnje: prekidanje, uskraćivanje





#### Prekidanje (engl. interruption)

 prekidanje normalnog tijeka komunikacije, usluge ili aplikacije

Uskraćivanje usluge (engl. denial of service)

 onemogućavanje usluge izazivanjem preopterećenja mreže ili umreženog sustava

### Sigurnosne prijetnje: promjena, kašnjenje





Promjena (engl. modification, tampering)

- promjena ili uništenje informacije
- kašnjenje može izazvati isti učinak – informacija postaje nevažna

### Sigurnosne prijetnje: fabrikacija, ponavljanje





### Fabrikacija (engl. fabrication)

 ubacivanje zlonamjerne informacije

### Ponavljanje (engl. replay)

 ubacivanje informacije prethodno preuzete presretanje

### Sigurnosne prijetnje: lažno predstavljanje





#### Lažno predstavljanje

maskiranje (engl. *masquerade*) utjelovljenje (engl. *impersonation*)

 preuzimanje identiteta i uloge korisnika

### Sigurnosni zahtjevi (1)



- autentičnost (engl. authenticity)
  - potvrda identiteta korisnika; ovjera vjerodostojnosti (autentifikacija) sudionika komunikacije
- cjelovitost, integritet (engl. integrity)
  - jamstvo da su informacije poslane, primljene ili pohranjene u izvornom i nepromijenjenom obliku
- povjerljivost (engl. confidentiality), tajnost (engl. secrecy)
  - razmijenjene poruke trebaju biti razumljive samo pošiljatelju i namjeravanom primatelju; zaštita komunikacije ili pohranjenih informacija od uvida neovlaštenim korisnicima
- neporecivost (engl. nonrepudiation)
  - sudionici ne mogu poreći akciju u kojoj su sudjelovali, npr. nemogućnost naknadnog odricanja odaslane poruke

### Sigurnosni zahtjevi (2)



- kontrola pristupa (engl. access control)
  - ograničavanje pristupa informacijama i ograničavanje provođenja akcija
- raspoloživost (engl. availability)
  - informacije moraju biti raspoložive, a sustavi i usluge u stanju operativnosti, usprkos mogućim neočekivanim i nepredvidljivim događajima, primjerice nestanku struje, prirodnim nepogodama, nesrećama i zlonamjernim napadima
- radna sigurnost (engl. operational security)
  - (aktivno) suprotstavljanje napadima na mrežu i računala neke organizacije



## Osnovno o kriptografiji

### Kriptologija, kriptografija i kriptoanaliza



#### Temelj svake sigurnosti je tajna!

- kriptologija (engl. cryptology): znanost o šifriranju i dešifriranju, odnosno kriptiranju i dekriptiranju, koja obuhvaća dvije discipline:
  - kriptografija (engl. cryptography): skup postupaka pretvorbe izvornih podataka u oblik nečitljiv za uljeza - umješnost izmišljanja šifri
  - kriptoanaliza (engl. cryptoanalysis): skup postupaka "probijanja" tako zaštićenih podataka - umješnost razbijanja šifri

### Primjer iz povijesti: Cezarova šifra



#### Zamjenska šifra (engl. substitution cypher):

- zamjena znakova drugim znakovima
- Cezarova šifra:
  - $\blacksquare$  zamjena abecede (za p = 3 mjesta) posmaknutom abecedom

- kriptografija: posmak za p mjesta/slova, ključ = p
- kriptoanaliza: odrediti posmak p (lako probijanje  $\rightarrow$  kružno posmaknuta abeceda)
- složenije zamjenske šifre: jedno ili višeabecedna zamjena

### **Model kriptiranja (1)**



## Šifra (engl. cypher):

transformacija izvornog teksta, bez obzira na njegovu lingvističku strukturu



### **Model kriptiranja (2)**



otvoreni tekst

aktivni uljez može

mijenjati poruke

METODA

DEKRIPTIRANJA

ključ za dekriptiranje

• otvoreni tekst (engl. plaintext):

poruka koju treba kriptirati

- ključ (engl. key):
  - parametar funkcije transformacije
  - tajan i lako promjenjiv, duljina osigurava neprobojnost šifre!
- ◆ šifrirani tekst (engl. cyphertext), kriptogram (engl. cryptogram):

otvoreni

[plaintext]

*pasivni* uljez samo

prisluškuje

ključ za

kriptiranje

[intruder]

šifrirani tekst [cyphertext]

 $C = E_{\kappa}(P)$ 

- rezultat procesa kriptiranja
- uljez (engl. intruder):
  - pasivni: samo prisluškuje
  - aktivni: modificirati poruke, ponoviti memorirane ili ubaciti svoje poruke

### Model kriptiranja (3)



#### Simetrična kriptografija:

- identični ključ za kriptiranje i dekriptiranje
- primjeri standarda: DES, AES

#### Asimetrična kriptografija:

- različiti ključevi za kriptiranje i dekriptiranje
- kriptografija javnog ključa
- primjer algoritma: RSA

### Simetrična kriptografija (1)



- tradicionalna kriptografija temelji se na simetričnim algoritmima:
  - identični tajni ključ (engl. secret key) za kriptiranje i dekriptiranje
  - duljina ključa određuje snagu zaštite
- tipična primjena u mreži:
  - kriptiranje pojedine sjednice (aplikacijskih procesa) ili dijelova sjednice
    - ~ "dijalog" ograničene duljine/trajanja
- problemi:
  - kako pojačati snagu kriptiranja?
  - kako ubrzati proces kriptiranja/dekriptiranja?
  - kako sigurno dostaviti tajni ključ sudionicima komunikacije? postupak za razmjenu ključeva (*Diffie-Hellman key exchange*)

### Simetrična kriptografija (2)



#### Snaga kriptiranja

- složenost algoritma kriptiranja
- snaga kriptiranja povećava se kaskadiranjem većeg broja transformacija: produktna šifra (engl. product cypher)
- kriptiranje n-bitnih blokova otvorenog teksta blokovske šifre (engl. block cyphers):

### Ubrzanje procesa kriptiranja/dekriptiranja

- sklopovska implementacija: brzina
- programska implementacija: fleksibilnost

#### **Standard DES**



#### DES (engl. Data Encryption Standard), 1977.



- simetrična blokovska šifra:
  - šifra temeljena na jednoabecednim zamjenama (16 puta) za 64-bitne blokove
  - ključ (K) prekratak može se probiti "grubom silom" (engl. brute force)

#### Standard utrostručeniDES



#### Utrostručeni DES (engl. Triple DES), 1979.



- snaga kriptiranja DES pojačava se kaskadiranjem:
  - tri ključa (K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub>) 168 bita
- podesiva snaga kriptozaštite:
  - primjer: EDE/DED s 2 ključa (K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub> = K<sub>1</sub> 1) 112 bitova (na slici)
- primjena: elektronička pošta (PGP, S/MIME)

#### **Standard AES**



#### AES (engl. Advanced Encryption Standard)

- razvijen prema sljedećim zahtjevima (zamjena za DES):
  - simetrična blokovska šifra: blok 128 bita
  - ključevi duljine 128, 192 i 256 bita
  - moguća programska i sklopovska izvedba
  - javno objelodanjeni dizajn
  - javni ili nediskriminatorno licencirani algoritam
- odabrani algoritam: Rijndael (autori Rijnmen i Daemen, 2001.)
  - duljine ključeva i blokova u rasponu 128-256 bita, u koracima od po 32 bita
  - odabir duljina ključeva i blokova *nezavisan*

dizajn za sigurnost, ali i *veliku brzinu*!

Bolji od

Triple DES!

### Asimetrična kriptografija javnog ključa (1)



### Kriptografija javnog ključa (engl. public key cryptography)

- svaki sudionik ima dva ključa: javni ključ i tajni privatni ključ
- sudionik objavljuje javni ključ koji se kombinira s tajnim privatnim ključem:
  - kriptiranje i dekriptiranje s različitim ključevima ~ asimetrični postupak
  - E: algoritam kriptiranja, s *javnim ključem* E(P)
  - D: algoritam dekriptiranja, s privatnim ključem D(E(P)) = P
- zahtjevi :
  - izrazito teško izvesti D iz E, a E se ne može probiti metodom odabranog otvorenog teksta
  - objaviti algoritam kriptiranja

### Asimetrična kriptografija javnog ključa (2)



#### Postupak kriptiranja i dekriptiranja:

1. svaki sudionik, A i B, objavljuje svoj javni ključ,  $E_A$  i  $E_B$ :

$$A \sim E_A$$
,  $B \sim E_B$ 

2. kriptiranje:

 $A \rightarrow B: E_{R}(P_{A})$ 

javni ključ *E*<sub>B</sub>

 $B \rightarrow A: E_A(P_B)$ 

javni ključ  $E_{A}$ 

3. dekriptiranje:

B:  $D_{\rm B}(E_{\rm B}({\sf P}_{\sf A})) \equiv {\sf P}_{\sf A}$ 

privatni ključ D<sub>B</sub>

A:  $D_A(E_A(P_B)) \equiv P_B$ 

privatni ključ  $D_A$ 



#### **Algoritam RSA**



#### Algoritam RSA (Rivest, Shamir, Adleman; MIT, 1978)

- asimetrični algoritam temeljen na faktorizaciji velikih brojeva:
  - vrlo snažan i siguran algoritam za šifriranje i digitalno potpisivanje
  - zasniva se na teoriji brojeva: nalaženje prim-brojeva (> 10<sup>100</sup>) prilikom faktorizacije velikih brojeva
  - sigurnost zasnovana na vrlo velikom vremenu potrebnom za faktorizaciju, npr. za 200-znamenkasti broj oko  $4.10^9$  godina na računalu s  $t_{instr}$  = 1  $\mu$ s
  - glavni nedostatak: za dobru sigurnost potrebni *dugi* ključevi (≥ 1024 bita), tako da je izračunavanje dosta sporo
- opći nedostatak asimetričnih algoritama: sporost, pogotovo kod velikih količina podataka (100 - 1000 puta sporiji od simetričnih)

### Digitalni potpis



- zamjena za vlastoručne potpise u porukama
- sustav koji podržava sljedeće zahtjeve:
  - primatelj može provjeriti identitet pošiljatelja
    - ~ ovjera (engl. authentication) pošiljatelja
  - pošiljatelj ne može kasnije poreći sadržaj poruke
    - ~ neporecivost (engl. *nonrepudiation*) poruke
  - primatelj nije mogao "izmisliti" poruku
- mogućnosti ostvarivanja digitalnih potpisa:
  - potpis sa simetričnim ključem
  - potpis s javnim ključem
  - sažetak poruke

### Potpis sa simetričnim ključem (1)



- postoji središnji autoritet koji zna sve tajne ključeve i kojem svi vjeruju:
  - pošiljatelj šalje središnjem autoritetu kriptiranu poruku za primatelja i dodatne podatke (vremensku oznaku i slučajni broj poruke)
  - središnji autoritet ustanovljuje identitet pošiljatelja, dodaje informaciju o pošiljatelju kriptiranu svojim tajnim ključem (potpisana poruka) prosljeđuje primatelju proširenu poruku kriptiranu primateljevim ključem
- primatelj:
  - može pročitati poruku, jer je kriptirana njegovim ključam
  - siguran je u identitet pošiljatelja
  - posjeduje potpis koji on nije mogao izmisliti

## Potpis sa simetričnim ključem (2)



A, B: imena sudionika

BB: bilježnik

K<sub>A</sub>, K<sub>B</sub>, K<sub>BB</sub>: tajni ključevi

BB zna  $K_A$ ,  $K_B$  i  $K_{BB}$ 

P: poruka

R<sub>A</sub>: slučajni broj, t: vremenska oznaka

Potpisane poruke:  $K_A(B, R_A, t, P)$ ,  $K_{BB}(A, t, P)$ 



### Potpis sa simetričnim ključem (3)



- osiguranje neporecivosti (engl. nonrepudiation)
  - BB prihvatio poruku od A, jer je kriptirana tajnim ključem K<sub>A</sub>
  - BB kriptirao podatke od A: K<sub>BB</sub>(A, t, P), tako da ih B nije mogao izmisliti
- sprječavanje napada ponavljanjem (engl. replay attack):
  - t ukazuje na "stare" poruke
  - R<sub>A</sub> ukazuje na već "iskorištene" poruke



### Potpis s javnim ključem



- izbjegava se središnji autoritet kojem svi vjeruju (a koji im čita poruke!)
- ◆ od algoritma javnog ključa, uz D(E(P)) = P, dodatno se zahtijeva E(D(P)) = P (zadovoljava algoritam RSA):
  - kriptiranje kod A:  $E_B(D_A(P)) = C$
  - dekriptiranje kod B:  $E_A(D_B(C)) = E_A(D_B(E_B(D_A(P)))) = P$
- $\bullet$  neporicanje: samo A mogao je kriptirati privatnim  $D_A$ !



### Sažetak poruke (1)



#### Sažetak poruke (engl. *message digest*, MD)

- potpisivanje poruke jedinstvenim kratkim uzorkom bita fiksne duljine:
  - izbjegava se kombiniranje dviju različitih funkcija (ovjere i tajnosti)
- jednosmjerna hash funkcija MD koja iz proizvoljno dugog teksta generira niz bita fiksne duljine, sa sljedećim svojstvima
  - lako izračunati MD(P)
  - gotovo nemoguće izračunati P iz MD(P)
  - za dani P nemoguće izračunati P' ~ MD(P') = MD(P): osigurati da je hash > 128 bita
  - promjena od samo 1 bita daje vrlo različit rezultat: hash mora "temeljito izmiješati" bitove

### Sažetak poruke (2)



- primjena sažetka poruke kod potpisa sa simetričnim ključem:
  - zamjena P s MD(P): brža obrada (kriptiranje) i prijenos!
  - dekriptiranjem potpisane poruke K<sub>BB</sub>(A, t, MD(P)): uspoređuju se P i MD(P)



# Sažetak poruke (3)



- primjena sažetka poruke kod potpisa s javnim ključem:
  - kriptira se samo MD(P): puno brža obrada (kriptiranje) i prijenos
  - sigurno otkrivanje eventualne zamjene P s P' djelovanjem aktivnog uljeza provjerom usklađenosti P' i MD(P) kod B



## Algoritmi sažetka



- Secure Hash Algorithm (SHA-1), 1995.
  - algoritam američke vlade, vjerojatno najsigurniji
  - daje hash vrijednost duljine 160 bita
- Message Digest Algorithm 5 (MD5), 1992.
  - daje hash duljine 128 bita
  - prethodnik MD4 probijen, postoje problemi i s MD5
- Digital Signature Algorithm (DSA), 1991
  - u okviru *Digital Signature Standard* (DSS)
  - samo za potpisivanje, 80 bita
  - koristi SHA-1 za izračunavanje *hasha*

## Sigurna komunikacija - što se želi postići ...



#### Integritet i autentičnost:

 digitalno potpisivanje poruke tajnim privatnim ključem, provjera potpisa javnim ključem – asimetrična kriptografija

## Tajnost (povjerljivost):

- razmjena tajnog sjedničkog ključa kriptirana javnim ključem – asimetrična kriptografija
- kriptiranje poruke tajnim sjedničkim ključem simetrična kriptografija

#### Neporecivost:

digitalno potpisivanje i drugi mehanizmi

#### Kontrola pristupa

#### ... i što je problem



- Kako riješiti sigurnosne zahtjeve za veliki broj korisnika, u različitim mrežama i organizacijama, za različite oblike elektroničkog poslovanja (trgovina, plaćanje, ...)?
- Kako dostaviti javni ključ, odnosno razmijeniti javne ključeve, naročito između sudionika koji se ne poznaju?
- Kako uspostaviti povjerenje između različitih organizacija da bi njihovi korisnici sigurno komunicirali?
- Kako spriječiti prijetnju ubacivanja uljeza u komunikaciju koji preuzima javni ključ?

Sustavno rješenje: infrastruktura javnog ključa (engl. *Public Key Infrastructure*, PKI)

## Infrastruktura javnog ključa (1)



#### Identitet korisnika dokazuje se digitalnim certifikatom:

 digitalni certifikat (engl. digital certificate) digitalno potpisana izjava kojom se potvrđuje da je korisniku – vlasniku certifikata dodijeljen njegov javni ključ

Izdavanje, provjeru i povlačenje digitalnog certifikata obavlja se infrastrukturom javnog ključa u čijem su sastavu:

- registracijsko tijelo (engl. Registration Authority, RA)
  - provjerava identitet korisnika, ustanovljava sadržaj certifikata te registrira korisnika – vlasnika certifikata u ime CA
- certifikacijsko tijelo (engl. Certification Authority, CA)
  - izdaje i povlači certifikat, održava i objavljuje informacije o stanju certifikata, omogućuje provjeru izdanih certifikata
  - ima vlastiti certifikat i povezan je s drugim certifikacijskim tijelima

# Infrastruktura javnog ključa (2)





- međusobno povjerenje certifikacijskih tijela (CA<sub>x</sub>i CA<sub>y</sub>) koja jamče za svoje korisnike (korisnik<sub>i</sub> i korisnik<sub>k</sub>)
- hijerarhijski nadređeni CA (CA<sub>z</sub>) potpisuje certifikate za sebi podređene CA (CA<sub>x</sub>) i jamči za njih

## Primjer 1: digitalni certifikat





DN: cn=Anja Kovač, o=FEP

c=HR

Serial #: 3913133

Start: 1-9-2011 3:33

End: 31-8-2012 3:33

CRL: cn=CRL2, o=FER, c=HR

Key:

CA DN: o=UNI-ZG,

c=HR



jednoznačni serijski broj

informacija o važenju certifikata

informacija o povlačenju certifikata

javni ključ korisnika

informacija o instituciji koja je izdala certifikat

digitalni potpis institucije koja je izdala certifikat



## Primjer 2: digitalno potpisivanje poruke







## Sigurnosna arhitektura Interneta

Sigurnosni protokoli: IPsec, SSL

#### Sigurnosni protokoli



# Niz protokola koji se primjenjuju za pružanje sigurnosnih usluga u Internetu

Primjeri: sigurnost ovisna o usluzi Elektronička pošta: PGP (*Prety Good Privacy*) S/MIME (Secure Multipurpose Electronic Mail Extension) WWW: https (Hypertext Transfer Protocol over Secure Socket Layer) Elektroničke transakcije: SET (Secure Electronic Transactions) Ovjera: Kerberos 4 Aplikacijski sloj Aplikacijski protokoli SSL (Secure Socket Layer) TCP/UDP 3 Transportni sloj 2 Mrežni sloj **IP IPsec** 1 (Prijenosna mreža)

## IPsec (1)



#### Sigurnost za IP (engl. IP security, IPsec)

- sigurnosni mehanizmi u mrežnom sloju u kojima se primjenjuje simetrična kriptografija s tajnim ključem\*:
  - zaglavlje autentičnosti (engl. *Authentication Header*, AH): integritet datagrama, autentičnost izvora, neponavljanje
  - sigurnosno ovijeni podaci (engl. *Encapsulating Security Payload*, ESP): tajnost i integritet datagrama, autentičnost izvora
  - sigurnosno udruživanje, stvaranje i upravljanje tajnog ključa (engl. Internet Key Exchange, IKE)
- moguća primjena različitih algoritama, kao i promjena algoritama, nakon kompromitiranja duže korištenih algoritama
- \* simetrična kriptografija zbog dobrih performansi!

## IPsec (2)



 IPsec je spojno orijentiran, s time što se "spoj" odnosi na sigurnosno udruživanje (engl. Security Association, SA) sudionika.

#### Postupak:

- 1. Definiraju se krajnje točke sigurne komunikacije, krajnje računalo ili mrežni uređaj sigurnosni prilaz (SG Security Gateway) i odabire način rada, transportni ili tunelski
- 2. Uspostavlja se sigurnosno udruživanje tijekom kojeg se dogovaraju sigurnosne usluge omogućene s AH i ESP (integritet, tajnost, autentičnost) i stvara tajni ključ
- 3. Sigurno se prenose datagrami s AH ili ESP-zaglavljem

## Sigurnosno udruživanje



Sudionici uspostavljaju sigurnosnu asocijaciju\* da bi se omogućila sigurna komunikacija:

- dogovaraju se sigurnosne usluge koje pružaju AH i ESP (integritet, tajnost, autentičnost)
- dogovaraju se krajnje točke (IP-adrese) između kojih će se ostvariti sigurna komunikacija i utvrđuje način rada
- sigurno se dostavlja dijeljena tajna temeljem koje sudionici stvaraju tajni ključ
- tajni ključ se povremeno osvježava

\*sigurnosno udruživanje je jednosmjerno, tako da su potrebne dvije asocijacije za dvosmjernu razmjenu podataka

## Transportni način rada IPsec



(engl. transport mode)

Zaštita polja podatka izvornog IP-datagrama - korisnog tereta (TCP-segment)

Umetanje zaglavlja IPsec (AH ili ESP) iza IP-zaglavlja:

- zaglavlje IPsec (AH ili ESP) postavlja se ispred zaglavlja višeg protokola (TCP)
- mijenja se "oznaka višeg protokola" u IP-zaglavlju (IPsec umjesto TCP)
- štiti se polje podataka izvornog datagrama i nepromjenjivi dio IP-zaglavlja

#### Tunelski način rada IPsec



(engl. tunnel mode):

PDU<sub>2</sub>

Zag2

PDU1

Zaštita cijelog izvornog IP-datagrama

Tunel!

Formiranje novog datagrama:

- izvorni IP-datagram smješta se u polje podataka novog IPdatagrama s novim zaglavljem IP i zaglavljem IPsec (AH ili ESP):
- novo IP-zaglavlje sadrži adresu izvora i odredišta (krajnje točke sigurne komunikacije) između kojih se prenosi novi IPdatagram
- štiti se cijeli izvorni IP-datagram i nepromjenjivi dio novog IPzaglavlja (samo AH)

## Sigurna komunikacija uz IPsec



izvorni IP-datagram



Transportni način: štiti podatke protokola viših slojeva (od transportnog na više)

datagram zaštićen transportnim načinom



nepromjenjivi dijelovi

Tunelski način: štiti cijeli izvorni IP-paket



# Transportni način, primjer uporabe (1)



krajnje točke: krajnje računalo A – krajnje računalo B



## Transportni način, primjer uporabe (2)





# Tunelski način, primjer uporabe (3)



krajnje točke: dva mrežna uređaja SG<sub>1</sub>-SG<sub>2</sub>



sigurnosni prilaz (engl. Security Gateway, SG)

## Zaglavlje AH – primjer: transportni način



#### Sigurnosne usluge:

- integritet: polje podataka nepromijenjeno
- autentičnost: integritet nepromjenjivih polja IP-zaglavlja (onemogućeno falsificiranje izvora paketa - pošiljatelja)
- zaštita od napada ponavljanjem (engl. antireplay security): redni broj paketa unutar sigurnosnog zadruživanja
- ne i tajnost: nema kriptiranja podataka!

Integritet i autentičnost osigurava se kodom vjerodostojnosti poruke izvedenim tajnim ključem (engl. *Hashed Message Authentication Code, HMAC*) koji se uključuje u AH-zaglavlje.

#### Zaglavlje ESP – primjer: tunelski način



#### Sigurnosne usluge:

- tajnost: cijeli izvorni datagram (IP-zaglavlje i polje podataka)
- integritet: cijeli izvorni datagram nepromijenjen
- autentičnost: integritet izvornog IP-zaglavlja (onemogućeno falsificiranje izvora paketa - pošiljatelja)
- zaštita od napada ponavljanjem: redni broj paketa unutar sigurnosnog zadruživanja

## Sloj sigurnih priključnica



#### SSL (engl. Secure Sockets Layer)

- sigurnosni mehanizmi u transportnom sloju
- dvoslojni protokol koji se postavlja iznad transportnog protokola da bi pružio sigurnosne usluge integriteta i tajnosti aplikacijskom protokolu, npr. :
  - HTTP nad SSL: HTTPS (engl. Secure HTTP)

#### TLS (engl. Transport Layer Security)

- inačica SSL-a prihvaćena od IETF-a
- zadaće SSL/TLS:
  - uspostavljanje i održavanje sigurne komunikacije (SSL-sjednica)
  - kriptiranje uz moguće sažimanje (kompresiju) podataka

## **Arhitektura SSL-a (1)**





## **Arhitektura SSL-a (1)**



#### Transportni podsloj:

 SSL-protokol zapisa (engl. SSL Record Protocol): fragmentira i komprimira (opcija) poruku višeg sloja, dodaje kôd vjerodostojnosti poruke i sve zajedno šifrira

#### Upravljački podsloj:

- SSL-protokol rukovanja (engl. SSL Handshake Protocol): uspostava SSL-sjednice i dogovor parametara sigurne veze
- SSL-protokol promjene kripto-algoritma (engl. SSL Change Cipher Spec Protocol): označava promjenu ključa
- SSL-protokol uzbunjivanja (engl. SSL Alert Protocol): poruke upozorenja o narušenoj sigurnosti (indikacija za prekid SSLsjednice)

## Primjer sigurne sjednice klijent-poslužitelj



- uspostavljanje SSL-sjednice i dogovor o sigurnosnim parametrima SSL-protokol rukovanja (asimetrična kriptografija) autentifikacija poslužitelja ili autentifikacija poslužitelja i klijenta
- prijenos podataka tijekom SSLsjednice
   SSL-protokol zapisa
   (simetrična kriptografija)





#### **Uspostavljanje SSL-sjednice**





#### Prijenos podataka tijekom SSL-sjednice



#### Protokol SSL-zapisa

- poruka (npr. s preglednika) dijeli se na jedinice od 16K
- svaka se jedinica komprimira
- dodaje se kod vjerodostojnosti (tipično MD5) komprimirane poruke i tajnog ključa
- sve se kriptira simetričnim algoritmom kriptiranja
- dodaje se zaglavlje





# još malo o sigurnosnoj arhitekturi Interneta sigurnosna zaštitna stijena, virtualna privatna mreža



sigurnosna zaštitna stijena, vatrozid (engl. *firewall*) filtriranje IP-datagrama na ulazu/izlazu privatne



#### Pitanja za provjeru znanja



- Kako se može utvrditi autentičnost (vjerodostojnost) sudionika u komunikaciji?
- Kako se može očuvati cjelovitost (integritet) poruke?
- Kako se može postići povjerljivost (tajnost) poruke?
- Koje sigurnosne zahtjeve ne rješavaju kriptografski postupci?
- Kakve se sigurnosne usluge pruža i što se štiti zaglavljem AH u tunelskom načinu rada?
- Kakve se sigurnosne usluge pruža i što se štiti zaglavljem ESP u transportnom načinu rada?

#### Istraživački zadatak



#### Istražite pretraživanjem informacija dostupnih putem Interneta:

- Što obuhvaća pojam "Authentication Authorisation Accounting" (AAA) u Internetu?
- Kako su AAA usluge izvedene u CARnetu?
- Kad su Vam te usluge potrebne?

#### **Dodatna literatura**



- A. Bažant, Ž. Car, G. Gledec, D. Jevtić, G. Ježić, M. Kunštić, I. Lovrek, M. Matijašević, B. Mikac, Z. Skočir:
  - "Telekomunikacije tehnologija i tržište", 6. Sigurnost i privatnost, Element, Zagreb, 2007.
- L. Budin, M. Golub, D. Jakobović, L. Jelenković:
   "Operacijski sustavi", 11. Sigurnost računalnih sustava,
   Element, Zagreb, 2010.
- The Handbook of Applied Cryptography Online http://www.cacr.math.uwaterloo.ca/hac/
- An Overview of Cryptography http://www.garykessler.net/library/crypto.html