CS536 Science of Programming Fall 2024

Assignment 3 Sample Solution Sketches

- 1. (a) $M(S, \sigma) = \{ \{x = 2, y = 1\}, \{x = 3, y = 2\}, \{x = 0, y = 1\}, \{x = 3, y = 1\} \}$
 - (b) Here, I show the collection of states after each iteration.

$$\begin{split} &M(W,\sigma)\\ &=\ M(W,\left\{\{x=2,y=1\},\{x=3,y=2\},\{x=0,y=1\},\{x=3,y=1\}\right\})\\ &=\ M(W,\left\{\{x=1,y=1\},\{x=2,y=2\},\{x=3,y=3\},\{x=0,y=1\},\bot_d\right.\})\\ &=\ M(W,\left\{\{x=1,y=1\},\{x=1,y=2\},\{x=3,y=3\},\{x=0,y=1\},\bot_d\right.\})\\ &=\ \left\{\{x=1,y=1\},\{x=1,y=2\},\{x=3,y=3\},\{x=0,y=1\},\bot_d\right.\right\} \end{split}$$

2.

$$MAJORITY \equiv k_0 = 0; k_1 = 0;$$

while $k_0 < n \land k_1 < n \text{ do } J; k_0 := k_0 + 1; k_1 := k_1 + 1 \text{ od};$
if $k_1 = n \rightarrow major := 0 \square k_0 = n \rightarrow major := 1 \text{ fi}$

Here,
$$J \equiv \mathbf{do} \ b[k_0] = 1 \to k_0 := k_0 + 1 \square b[k_1] = 0 \to k_1 := k_1 + 1 \mathbf{od}$$
.

After the deterministic while loop, we must have $k_0 = n$ or $k_1 = n$, so there will not be any runtime error in the execution of the nondeterministic conditional statement. Actually, I think k_0 and k_1 cannot equal to n at the same time, so a deterministic conditional statement can be used here as well.

There are (should be?) other ways to implement this program. The key is to pair up one 0 and one 1 in each iteration without missing any possible pairs in one (or several) scan.

- 3. (a) False. A nondeterministic program can terminate in one state.
 - (b) False. if $\sigma \not\models p$ then $\sigma \models \{p\}S\{q\}$.
 - (c) False. If $\sigma \not\models_{tot} \{p\}S\{q\}$ then $\sigma \models p$ and $M(S,\sigma) \not\models q$.
 - (d) False. If $\sigma \not\models p$, we have $\sigma \models \{p\}S\{q\}$; then we do not know anything about $M(S,\sigma)$.
 - (e) True. If $\sigma \not\models \{p\}S\{q\}$, then $\sigma \models p$ and $M(S,\sigma)-\bot\not\models q$, which implies that $M(S,\sigma)\not\models q$ and thus $\sigma\not\models_{tot}\{p\}S\{q\}$.
- 4. (a) True, it follows the backward assignment rule immediately. Technically speaking, the backward assignment can create a partially correct triple, but in this question the statement and the post-condition are both "safe" (aka, they will not cause divergence or run-time error during evaluation), so the triple is totally correct as well.
 - (b) False. A witness can be $\sigma = \{s = 0, k = 0\}$. We have $\sigma \models P(0,0)$, but $M(s := s + 1, \sigma) = \{s = 1, k = 0\} \not\models P(0,1)$.

- (c) True. The precondition cannot be satisfied by any state.
- (d) True. The precondition logically implies $P(k,s) \wedge P(k,s_0)$. The program does not update s_0 , so $P(k,s_0)$ in the post-condition is still true.
- (e) True, using backward assignment we can get (both partial and totally) valid triples: $\{P(k+1,s)\}k := k+1\{P(k,s)\}$ and $\{P(k+1,s+1)\}s := s+1\{P(k+1,s)\}$. Combine them using the sequence rule and we get: $\{P(k+1,s+1)\}s := s+1; k := k+1\{P(k,s)\}$.
- 5. (a) When $\sigma(x) = 0$, the precondition is not satisfied so the triple is satisfied.
 - When $\sigma(x) < 0$ or when $\sigma(x)$ is odd, S will diverge; which is acceptable for partial correctness.
 - When $\sigma(x) > 0$ and $\sigma(x)$ is even, S will terminate with some state τ with $\tau(x) = 0$, which does not satisfy the post-condition.
 - To sum up, for satisfaction under partial correctness, we have $\sigma(x) \leq 0$ or $\sigma(x)\%2 = 1$.
 - (b) For total correctness, S has to terminate in σ ; so the only possible value for x in σ is 0.
- 6. (a) Yes. If $\sigma \models p_1 \land p_2$, then $\sigma \models p_1$ and $\sigma \models p_2$. Then, $M(S,\sigma) \models q_1$ and $M(S,\sigma) \models q_2$; which logically implies that $M(S,\sigma) \models q_1 \land q_2$ and then $M(S,\sigma) \models q_1 \lor q_2$. Thus, $\sigma \models_{tot} \{p_1 \land p_2\}S\{q_1 \lor q_2\}$.
 - (b) No. If $\sigma \models p_1 \vee p_2$, then $\sigma \models p_1$ or $\sigma \models p_2$.
 - If $\sigma \models p_1$ and $\sigma \models p_2$, then $M(S, \sigma) \models q_1$ and $M(S, \sigma) \models q_2$; which logically implies that $M(S, \sigma) \models q_1 \land q_2$.
 - If $\sigma \models p_1$ and $\sigma \not\models p_2$, then we only know $M(S, \sigma) \models q_1$ and we do not have any information to decide whether $M(S, \sigma) \models q_2$. It is a similar case when $\sigma \not\models p_1$ and $\sigma \models p_2$.
 - (c) Yes. If $\sigma \models p_1 \lor p_2$, then $\sigma \models p_1$ or $\sigma \models p_2$. Then, $M(S, \sigma) \models q_1$ or $M(S, \sigma) \models q_2$; which logically implies that $M(S, \sigma) \models q_1 \lor q_2$. Thus, $\sigma \models_{tot} \{p_1 \lor p_2\}S\{q_1 \lor q_2\}$.
- 7. (a) True. For any state σ , if $\sigma \models p_1 \land p_2$, then $\sigma \models p_1$ and $\sigma \models p_2$. Then, $M(S, \sigma) \bot \models q_1$ and $M(S, \sigma) \bot \models q_2$; which logically implies that $M(S, \sigma) \bot \models q_1 \land q_2$. Thus, $\models \{p_1 \land p_2\}S\{q_1 \lor q_2\}$.
 - (b) True. The post-condition of the triple semantically equals to $\neg q_1 \lor q_2$, and $q_2 \Rightarrow \neg q_1 \lor q_2$. Since $\models \{p_2\}S\{q_2\}$, thus $\models \{p_2\}S\{q_1 \to q_2\}$.
 - (c) True. The triple semantically equals to $\{p_1 \lor p_2\} S\{q_1 \lor q_2\}$. Using a proof similar to question 7(a) we can prove that this triple is valid under partial correctness.
- 8. (a) True. The validity of the triple follows from the definition of wp(S,q) immediately.
 - (b) True. The definition of wp(S,q) implies $\models_{tot} \{w\}S\{q\}$, which also implies $\models \{w\}S\{q\}$. By strengthening the precondition from w to $w \land q$, we can get the valid triple in the question.
 - (c) False. The definition of wp(S,q) logically implies that if $\sigma \not\models wp(S,q)$, then $M(S,\sigma) \not\models q$.

- (d) True. It follows from $\models_{tot} \{w\}S\{q\}$.
- (e) True. For any state $\sigma \models \neg w$, $M(S, \sigma)$ must be either a pseudo-state or a state satisfies $\neg q$. Thus, if $\sigma \not\models w$ we can get $\sigma \models \{\neg w\}S\{\neg q\}$.
- 9. (a) $wlp(S,q) \equiv wlp(y := y\%x, \ sqrt(y) > x) \equiv sqrt(y\%x) > x$

(b)

$$D(S) \equiv D(y := y\%x) \Leftrightarrow x \neq 0$$

$$D(wlp(S, q)) \equiv D(sqrt(y\%x) > x) \Leftrightarrow y\%x \ge 0 \land x \ne 0$$

Thus,

$$wp(S,q) \equiv (x \neq 0) \land (sqrt(y\%x) > x) \land (y\%x \ge 0 \land x \ne 0)$$

$$\Leftrightarrow x \neq 0 \land sqrt(y\%x) > x \land y\%x \ge 0$$

10. (a)

$$wlp(S,q) \equiv wlp(\mathbf{if}\ y \ge 0 \to x := y/x \ \Box\ x \ge 0 \to x := x/y\ \mathbf{fi}, x < y < z)$$

$$\equiv (y \ge 0 \to wlp(x := y/x, x < y < z))$$

$$\wedge (x \ge 0 \to wlp(x := x/y, x < y < z))$$

$$\equiv (y \ge 0 \to y/x < y < z) \wedge (x \ge 0 \to x/y < y < z)$$

(b)

$$\begin{split} D(S) &\equiv D(y \geq 0 \lor x \geq 0) \land (x \geq 0 \lor y \geq 0) \land (y \geq 0 \to D(x := y/x)) \\ & \land (y < 0 \to D(x := x/y)) \\ & \Leftrightarrow (x \geq 0 \lor y \geq 0) \land (y \geq 0 \to x \neq 0) \land (x \geq 0 \to y \neq 0) \\ D(wlp(S,q)) &\equiv D\big((y \geq 0 \to y/x < y < z) \land (x \geq 0 \to x/y < y < z)\big) \\ & \Leftrightarrow x \neq 0 \land y \neq 0 \end{split}$$

Thus,

$$wp(S,q) \equiv (x \ge 0 \lor y \ge 0) \land (y \ge 0 \to x \ne 0) \land (x \ge 0 \to y \ne 0)$$
$$(y \ge 0 \to y/x < y < z) \land (x \ge 0 \to x/y < y < z) \land (x \ne 0 \land y \ne 0)$$