t	Class	(4)	(51)	t(n)	flogn	5/n	Hene 2 = 13	f1[N1-11]	f, (n,-x)
		-	- Indian	7	TRILL	1 , 21 ,	= 3.75	1 = A	
	1-2	1	1.5	1.5	0.176	0.66	-2-25	2.25	5.06
١		-		7	To To	15,20	01 19	- "	
١	2-3	3	2.5	7.5	1.194	1 · 2	-1.25	3.75	4.687
	3-4	8	3.5	28	4.352	2.286	-0.25	2	0.5
	4-5	6	4-5	27	3.919	1.33	0.75	4.5	3.375
	5 - 6	2	5.5	11	1.48	0.380	1.75	3.5	6.125
	total	20	移	75	11.12	5.8	7	16	19.75

a)
$$A \cdot M = \frac{1}{n} \sum_{i=0}^{n} f_{ini} = \frac{75}{20} = 3.75$$

The contraction of the second of the s

$$M = \frac{N}{\sum_{i=1}^{n} \frac{5i}{n_i}} = \frac{20}{5.87} = 3.41$$

d) mean deviation, mb = $\frac{1}{\pi} \left\{ \sum_{i=1}^{n} \frac{1}{2^{n}} = \frac{16}{20} = 0.8 \right\}$

Standard deviation,
$$G = \sqrt{6} = \sqrt{6} = \sqrt{60.987} = 0.99$$

$$\frac{1}{\pi}$$
 Co efficient of varience, $cv = \frac{6}{\pi} = \frac{0.99}{20} \times 100\%$

3:1)
$$A = \{3, 6, 9, 12, 15, 18\} \quad [\text{multiple of 3}]$$

$$B = \{5, 10, 15, 20\} \quad [\text{n} \quad \text{n-5}]$$
So that,
$$P(A) = \frac{6}{20} \quad \text{and} \quad P(B) = \frac{4}{20}$$

Now,

3.2

$$(A \cap B) = \{15\}$$
 : $P(A \cap B) = \frac{1}{20}$
: $P(A \cup B) = \frac{6}{20} + \frac{4}{20} - \frac{1}{20} = \frac{9}{20}$ (Am)

Total Students = 15+10 = 25

Probability of Selecting I girl and 2 boys = 10e, × 10e2

= 21 (mm

(3.3) Total balls = 9+5+6 = 15
Crething All med =
$$\frac{5e_3}{15e_3} = \frac{2}{21}$$
 (any

2.4) Total engineers = 5+6 = 11

a) All E.E =
$$\frac{5cy}{11cy} = \frac{1}{16}$$

b) 2 E.E and 2 C.E = $\frac{5c_2}{11cy} = \frac{5}{11}$ (Amy