Data visualization of categorical data; categorial data can be: nominal, qualitative, ordinal

Libraries Used:

- 1. Seaborn: Seaborn is a data visualization library built on top of matplotlib and closely integrated with pandas data structures in Python.
- 2. Pandas: Pandas is a Python library used for working with data sets. It has functions for analyzing, cleaning, exploring and manipulating data.
- 3. Numpy: is a library consisting of multidimensional array objects and a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on arrays can be performed.
- 4. Sklearn: It provides a selection of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction via a consistence interface in Python.

```
import seaborn as sns
df = sns.load_dataset('iris')
df
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica
150 rc	owe v 5 columne				

150 rows × 5 columns

Next steps: View recommended plots

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 150 entries, 0 to 149
    Data columns (total 5 columns):
                Non-Null Count Dtype
     # Column
     0 sepal_length 150 non-null float64
     1 sepal_width 150 non-null float64
     2 petal_length 150 non-null float64
     3 petal_width 150 non-null float64
     4 species
                    150 non-null
                                    object
    dtypes: float64(4), object(1)
    memory usage: 6.0+ KB
 df.dtypes
    sepal_length
                   float64
                   float64
    sepal_width
                   float64
    petal_length
                   float64
    petal_width
    species
                    object
    dtype: object
sns.pairplot(df,hue='species')
```


sns.pairplot(df)

sns.pairplot(df,hue='species',diag_kind='hist')

sns.histplot(df['sepal_length'],kde=True)

sns.histplot(df['sepal_width'],kde=True)

<Axes: xlabel='sepal_width', ylabel='Count'>

sns.kdeplot(df['sepal_width'])

sns.histplot(df['petal_length'],kde=True)

sns.histplot(df['petal_width'],kde=True)

