Отчет о выполнении лабораторной работы 2.2.2 Измерение теплопроводности воздуха при разных давлениях

Фокин Алексей, 922 группа

25 мая 2020 г.

Цель работы: исследовать теплопередачу от нагретой нити к цилиндрической оболочке в зависимости от концентрации (давления) заполняющего её воздуха. Измерить коэффициент теплопроводности при высоких давлениях; определить область перехода к режиму теплопередачи; определить коэффициент теплопередачи при низких давлениях.

В работе используются: цилиндрическая колба с натянутой по оси платиновой нитью; форвакуумный насос; вакуумметр; масляный манометр; вольтметр и амперметр (цифровые мультиметры); источник постоянного тока.

1 Теоретическая справка

Теплопроводность — это процесс передачи энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье:

$$\vec{q} = -\varkappa \cdot \nabla T,\tag{1}$$

где \vec{q} — плотность потока энергии, \varkappa — коэффициент теплопроводности. Система, используемая в данной установке, имеет цилиндрическую симметрию (пренебрегая краевым эффектами), поэтому имеем

$$q = -\varkappa \frac{dT}{dr},\tag{2}$$

где r — расстояние от оси симметрии системы. Закон Фурье применим при условиях

$$\lambda \ll r$$
 и $\lambda |\nabla T| \ll T$,

где λ — длина свободного пробега молекул газа, а r— характерный размер системы. Для количественного описания способности некоторой системы к тепло-передаче в целом используют коэффициент K, называемый тепловым сопротивлением, равный отношению перепада температур ΔT в системе к полному потоку энергии Q [BT] через неё:

$$K = \frac{\Delta T}{Q} \tag{3}$$

Режим теплопроводности реализуется при выполнении условий выше. Молекулярнокинетическая теория даёт следующую оценку для коэффициента теплопроводности:

$$\varkappa \approx \frac{1}{3} \lambda \bar{v} n c_V, \tag{4}$$

где n — концентрация молекул газа, $\bar{(v)}$ — их средняя тепловая скорость, $c_V = \frac{i}{2}k$ — теплоёмкость при постоянном объёме в расчёте на одну молекулу.

Длина свободного пробега обратно пропорциональна n, поэтому коэффициент теплопроводности газа (5) не зависит от его концентрации (т.е. и от давления) и определяется только его температурой.

Режим теплопередачи. В случае $\lambda \gtrsim r$ молекулы сталкиваются в основном не между собой, а со стенками. При этом теряет смысл понятие температуры как функции координат и, следовательно, градиента температуры, так что закон Фурье (1) становится неприменим. Если в системе есть поверхности, находящиеся при разных температурах, процесс обмена энергией между ними за счёт молекул газа, заполняющего сосуд, принято называть теплопередачей. Молекулы при неупругих ударах о нагретую поверхность приобретают среднюю кинетическую энергию, соответствующую температуре этой поверхности; отразившись от неё и не сталкиваясь с другими молекулами, они долетают до холодной поверхности и передают ей избыточную энергию.

Рассмотрим упрощённую модель теплопередачи в цилиндрическом сосуде радиуса R и длины $L\gg R$, на оси которого натянута тонкая нить радиуса $r\ll R$. Температуры колбы и нити равны $T_{\rm k}$ и $T_{\rm h}>T_{\rm k}$. Все молекулы в пространстве колбы можно разделить на две группы: в зависимости от того, с какой поверхностью — с колбой или с нитью — они испытали последнее неупругое столкновение, их средняя энергия равна $c_V T_{\rm k}$ либо $c_V T_{\rm h}$ соответственно. В стационарном состоянии потоки частиц, падающих на нить и улетающих от неё, равны. Тогда полный поток падающих на нить частиц составляет

$$J = \frac{1}{4} n \bar{v} S_{\scriptscriptstyle \mathrm{H}},$$

где $S_{\rm H}=2\pi r_{\rm H}L$ — площадь поверхности нити. В нашей работе относительный перепад температур мал ($\Delta T\ll T$), поэтому при расчёте потока частиц можно не различать средние скорости «горячих» (летящих от нити) и «холодных» (летящих к нити) частиц. Если учесть, что не все столкновения молекул с нитью или стенками колбы являются неупругими, введя поправочный множитель s, называемый коэффициентом аккомодации, который в наших условиях можно считать постоянным, суммарный поток энергии от нити

к колбе может быть приближённо записан как

$$Q \approx \frac{s}{4} n \bar{v} S_{\text{\tiny H}} \cdot c_V \left(T_{\text{\tiny H}} - T_{\text{\tiny K}} \right)$$

И тогда

$$\frac{1}{K_T} = \frac{s}{4}\bar{v}nc_V S_{\scriptscriptstyle H} \tag{5}$$

Общий случай. Таким образом, при больших п будет реализоваться случай теплопроводности, а при маленьких — теплопередачи. Пусть через нить пропускают постоянный ток, так что на ней выделяется известная мощность Q. В стационарном состоянии полный поток энергии через любую цилиндрическую поверхность радиуса r должен быть одинаков и равен Q.

В области теплопроводности из (2) имеем

$$Q = -2\pi r L \cdot x \frac{dT}{dr} = \text{const. } (r_{\text{\tiny H}} + \lambda \lesssim r \leq R)$$
 (6)

Если перепад температуры между стенками колбы и нитью мал, при интегрировании (8) можно пренебречь зависимостью теплопроводности от температуры. Тогда получим

$$T(r) - T_{\rm H} = \frac{Q}{2\pi L \varkappa} \ln \frac{R}{r} \tag{7}$$

B области вблизи нити $(r_{\scriptscriptstyle \rm H}\leqslant r\lesssim r_{\scriptscriptstyle \rm H}+\lambda)$ имеем

$$T_{\rm H} - T(r_{\rm H}) + \lambda) = K_T Q, \tag{8}$$

колба

Рис. 1: Распределение тем-

пературы в цилиндре

с помощью (8) промежуточную температуру $T(r_{\rm h}+\lambda)$, найдём разность температур нити и колбы:

$$\Delta T = Q \left(\frac{1}{2\pi Lx} \ln \frac{R}{r_{\rm H} + \lambda} + K_T \right) \tag{9}$$

С учетом (4) и (5) можно получить явную зависимость от концентрации.

$$\Delta T = \frac{Q}{2\pi L} \left(\frac{1}{\varkappa} \ln \frac{R}{r_{\text{H}}} - \frac{1}{\varkappa} \ln \left(1 + \frac{1}{n\sigma \cdot r_{\text{H}}} \right) + \frac{1}{\frac{s}{4} r_{\text{H}} \bar{v} c_{V}} \cdot \frac{1}{n} \right)$$
(10)

Нетрудно видеть, что второе слагаемое, с одной стороны, мало при больших давлениях; с другой стороны, при малых давлениях слабая логарифмическая зависимость будет незаметна на фоне слагаемого K_T , возрастающего, согласно (5). Поэтому в указанных пределах можно принять, что $\ln \frac{R}{r_{\rm H}+\lambda} \approx \ln \frac{R}{r_{\rm H}}$. Учитывая, что непосредственно измеряемой в опыте величиной является давление P, можно представить (9) в следующем максимально упрощённом виде:

$$\Delta T = Q\left(K_{\infty} + \frac{A}{P}\right),\tag{11}$$

где K_{∞} и A — константы, которые могут быть определены экспериментально. Величина K_{∞} есть тепловое сопротивление системы при высоких давлениях, по его значению может быть вычислен коэффициент теплопроводности газа \varkappa . По значению коэффициента A можно определить коэффициент аккомодации s.

Экспериментальная установка

Схема установки приведена на рис. 2. Внутренняя полость тонкостенной цилиндрической стеклянной колбы, на оси которой натянута металлическая (платиновая) нить, подсоединена к вакуумной установке. Колба заполнена воздухом и расположена вертикально. Контактные провода от нити выведены наружу через стеклянную вакуумную «слёзку». Вакуумная установка состоит из форвакуумного насоса, стрелочного вакуумметра M и U-образного масляного манометра. Вакуумметр служит для измерения высоких давлений вплоть до 10 торр (он показывает разность давлений между установкой и атмосферой, так что нуль на его шкале соответствует атмосферному давлению в установке). U-образный манометр заполнен маслом с плотностью $0.885 \, \text{г/см}^3$ и предназначен для измерения низких давлений (вплоть до $0.1 \, \text{торр}$). Кран K_1 служит для соединения установки и насоса с атмосферой, кран K_2 — для отсоединения откачиваемого объёма от насоса, кран K_1 — для соединения колен U-образного манометра.

Рис. 2: Вакуумная часть установки

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). В рабочем диапазоне температур (20–40 °C) сопротивление платины зависит от температуры практически линейно:

$$R(t) = R_0 \left(1 + \alpha_0 t \right) \tag{12}$$

где t — температура в °C, R_0 — сопротивление про 0°C, и

$$\alpha_0 = \frac{1}{R_0} \frac{dR}{dt} = 3,92 \cdot 10^{-3} \, {}^{\circ}C^{-1} \tag{13}$$

Электрическая схема установки приведена на рис. 3. Ток I через сопротивление $R_{\rm H}$ и напряжение U на нём измеряются цифровыми мультиметрами, один из которых работает в режиме амперметра, а другой — вольтметра. Сопротивление $R_{\rm H}$ находится по закону Ома. Те же измерения позволяют определить мощность нагрева проволоки как джоулево тепло. Ток в цепи регулируется с помощью магазина сопротивлений, включённого последовательно с источником тока.

Методика измерений. Поскольку относительное изменение сопротивления невелико ($\Delta R_{\rm H}/R_{\rm H}\approx 0,4\%$ при $\Delta T=1^{\circ}C$, измерение $R_{\rm H}$ важно провести с хорошей точностью. Это возможно с помощью построения нагрузочной кривой — зависимости изме-

Рис. 3: Электрическая схема измерений

ряемого сопротивления от выделяющейся в нём мощности R(Q). В данной работе предлагается провести серию измерений перегрева нити относительно стенок сосуда $\Delta T(Q)$ в зависимости от мощности нагрева Q при различных давлениях P в системе. Аппроксимируя зависимости $\Delta T(Q)$ прямыми линиями, определить полное тепловое сопротивление системы $K = \frac{dT}{dQ}$ при разных P; проверить справедливость зависимости (10) и определить коэффициенты A и K_{∞} , откуда получить значения коэффициента теплопроводности воздуха \varkappa при высоких давлениях и значение коэффициента аккомодации s. По найденным

коэффициентам определить предельный вакуум, достижимый при откачке форвакуумным насосом.

Два обстоятельства, которые могут привести к нарушению зависимости (10) — это остаточное давление воздуха, десорбирующегося из масляного манометра, а также давление паров самого масла и охлаждение нити за счёт излучения. Первое обстоятельство приводит к тому, что измеряемое давление оказывается меньше реального на некоторую неизвестную величину $P_{\text{ост}}$, что особенно заметно проявляется при малых P. Мощность же, излучаемая с поверхности нити, может быть найдена по закону Стефана—Больцмана:

$$Q_{\text{\tiny MSJI}} = \epsilon S_{\text{\tiny H}} \sigma_S \left(T_{\text{\tiny H}}^4 - T_{\text{\tiny K}}^4 \right) \approx 4 \epsilon S_{\text{\tiny H}} \sigma_S T_{\text{\tiny k}}^3 \Delta T \tag{14}$$

где $\sigma_S = 5,67 \cdot 10^{-8} \; \mathrm{Br/(m^2 K^4)}, \quad \epsilon = 0,04.$ Численно получаем, что на давлениях до $\tilde{1}0^{-1}$ излучением можно пренебречь.

2 Ход работы

1. Зафиксируем параметры установки:

$$2r_{\rm h} = 0,05 \text{ mm}$$
 $2R = 10 \text{ mm}$ $L = 220 \text{ mm}$

2. Оценим, когда длина свободного пробега примерно сравнивается с радиусом нити при давлении:

$$P_1 pprox rac{kT}{r_{\scriptscriptstyle
m H}\pi d^2} pprox 500$$
 мм.масл.ст.

3. Снимаем значение атмосферного давления и температуры в комнате:

$$P = 99600$$
 Па $T_{\kappa} = 297, 3$ К

- 4. Проверяем, что установка находится под вакуумом (стрелка вакуумметра в положении «-1 атм»).
- 5. Плавно запускаем воздух в установку, медленно открывая кран K_2 .
- 6. Включаем в сеть цифровые мультиметры. Устанавливаем амперметр в режим измерения постоянного тока, а вольтметр постоянного напряжения. На магазине сопротивлений устанавливаем значение 1 кОм.
- 7. Строим нагрузочную кривую при атмосферном давлении, данные приводим на графике (рис. 4)

Рис. 4: Нагрузочная кривая при атмосферном давлении

8. Экстраполируя к нулевому значению мощности, определяем:

$$R_{\rm K} = (11,767 \pm 0,002) \ {\rm Om}, \quad R_0 = (10,750 \pm 0,002) \ {\rm Om}, \quad R_{max} = (13,037 \pm 0,002) \ {\rm Om}$$

где R_{κ} — сопротивление нити при комнатной температуре, R_0 — сопротивление при $0^{\circ}C$ (по формуле (11)), R_{max} — соответствующее нагреву нити относительно стенок на $30^{\circ}C$ сопротивление.

- 9. Откачиваем установку до предельного вакуума, предварительно откачав насос при закрытых на 20 секунд K_1 и K_2 , в течение 15 минут.
- 10. Приводим в действие масляный манометр, проверяя по нему, что давление больше не меняется.
- 11. Отсоединяем насос, выключаем его и соединяем его с атмосферой.
- 12. Проводим аналогичные пункту 6 измерения в диапазоне $P_{min} \lesssim P \lesssim P_1$: см. рис. 5 и табл. 1

40 мм мс							
U, mV	I, mA	R, Ом	N, Вт	T, K			
123,41	10,52	11,73099	0,001298	296,4454			
241,23	20,5	11,76732	0,004945	297,3075			
364,75	30,86	11,81951	0,011256	298,5461			
480,7	40,46	11,88087	0,019449	300,0023			
600,83	50,17	11,97588	0,030144	302,2571			
727,14	60,23	12,07272	0,043796	304,5553			

80 мм мс							
U, mV	I, mA	R, Om	N, B _T	T, K			
117,43	10,003	11,73948	0,001175	296,6469			
236,22	20	11,811	0,004724	298,3442			
353,19	29,92	11,80448	0,010567	298,1894			
479,26	40,42	11,857	0,019372	299,4359			
598,05	50,12	11,93236	0,029974	301,2243			
725,24	59,7	12,14807	0,043297	306,3436			

112 мм мс						
U, mV	I, mA	R, Ом	N, Вт	T, K		
107,18	9,126	11,74447	0,000978	296,7652		
236,652	20,1	11,77373	0,004757	297,4597		
353,934	29,97	11,80961	0,010607	298,3112		
478,1	40,26	11,87531	0,019248	299,8704		
601,1	50,31	11,94792	0,030241	301,5936		
727,74	60,46	12,03672	0,043999	303,7009		

145 мм мс						
U, mV	I, mA	R, Om	N, Вт	T, K		
117,755	10,013	11,76021	0,001179	297,1389		
236,869	20,11	11,77867	0,004763	297,5769		
354,31	29,99	11,81427	0,010626	298,4218		
480,815	40,49	11,87491	0,019468	299,8608		
599,851	50,23	11,94209	0,030131	301,4551		
725,375	60,31	12,02744	0,043747	303,4807		

187 мм г	187 мм мс							
U, mV	I, mA	R, Ом	N, Вт	Т, К				
117,695	10,003	11,76597	0,001177	297,2756				
236,95	20,12	11,77684	0,004767	297,5335				
370,555	31,33	11,82748	0,011609	298,7353				
472,3	39,77	11,87579	0,018783	299,8817				
600,97	50,32	11,94297	0,030241	301,476				
726,57	60,4	12,0293	0,043885	303,525				

222 мм мс							
U, mV	I, mA	R, Om	N, B _T	T, K			
117,85	10,014	11,76852	0,00118	297,3362			
237,24	20,12	11,79125	0,004773	297,8756			
354,71	30,01	11,81973	0,010645	298,5513			
477,08	40,19	11,87061	0,019174	299,759			
601,29	50,36	11,93983	0,030281	301,4016			
727,78	60,53	12,02346	0,044053	303,3862			

Таблица 1: Измерения и расчеты (высокие давления)

13. Проводим аналогичные пункту 6 измерения в диапазоне $P_1 \lesssim P \lesssim P_{\text{атм}}$: см. рис 6 и табл. 2

4,25 кПа						
U, mV	I, mA	R, Ом	N, Вт	T, K		
117,72	10,01	11,76024	0,001178	297,1396		
236,88	20,12	11,77336	0,004766	297,4509		
354,25	30	11,80833	0,010628	298,2809		
474,9	40,04	11,86064	0,019015	299,5222		
596,51	50,01	11,92781	0,029831	301,1164		
720,8	60,04	12,00533	0,043277	302,956		

5,5 кПа							
U, mV	I, mA	R, Ом	N, Вт	T, K			
118,3	10,06	11,75944	0,00119	297,1207			
236,91	20,11	11,78071	0,004764	297,6253			
354,3	30	11,81	0,010629	298,3205			
480,6	40,51	11,86374	0,019469	299,5958			
599,6	50,27	11,92759	0,030142	301,1111			
725,3	60,41	12,00629	0,043815	302,9788			

10 кПа				
U, mV	I, mA	R, Ом	N, Вт	T, K
117,72	10,01	11,76024	0,001178	297,1396
236,86	20,11	11,77822	0,004763	297,5663
354,1	29,99	11,80727	0,010619	298,2557
480,16	40,5	11,8558	0,019446	299,4074
599,15	50,27	11,91864	0,030119	300,8987
724.9	60.42	11.99768	0.043798	302,7745

15 кПа				
U, mV	I, mA	R, Ом	N, Bt	T, K
117,71	10,01	11,75924	0,001178	297,1159
236,42	20,1	11,76219	0,004752	297,1858
354,92	29,97	11,84251	0,010637	299,092
481,34	40,48	11,89081	0,019485	300,2382
600,1	50,21	11,9518	0,030131	301,6857
725,57	60,32	12,02868	0,043766	303,5101

25 кПа				
U, mV	I, mA	R, Ом	N, Вт	Т, К
117,86	10,009	11,7754	0,00118	297,4994
237,1	20,1	11,79602	0,004766	297,9887
354,46	29,97	11,82716	0,010623	298,7277
480,8	40,48	11,87747	0,019463	299,9217
599,5	50,21	11,93985	0,030101	301,4021
724,42	60,28	12,01758	0,043668	303,2468

Таблица 2: Измерения и расчеты (высокие давления)

Рис. 5: Зависимости температуры нити от мощности (в диапазоне низкий давлений)

14. Построим зависимость теплового сопротивления как коэффициентов наклона графиков (рис. 5-6) от давления:

K, ° K /Дж	190	200	161	150	148	141	141	138	133	154	135
ΔK	4	30	2	2	3	2	2	1,3	2	11	1
Р, Па	346,92	693,84	971,376	1257,585	1621,851	1925,406	4500	5500	10000	15000	25000

Таблица 3: Тепловое сопротивление (из измерений выше) от давления

15. Получаем коэффициенты в зависимости (10):

$$A = (21000 \pm 1800) \mathrm{K}/(\mathrm{Дж} \ \mathrm{\Pi a})$$
 $K_{\infty} = (134 \pm 1) \mathrm{K}/\mathrm{Дж}$

16. С помощью (9) можем получить, например, коэффициент теплопроводности воздуха при комнатной температуре и атмосферном давлении:

$$arkappa pprox rac{1}{2\pi L K_{\infty}} \ln rac{R}{r_{\mathrm{H}}} = (28, 6\pm 0, 2) \cdot 10^{-3} \mathrm{Bt/m \cdot K}$$

Рис. 6: Зависимости температуры нити от мощности (в диапазоне высоких давлений)

А также после преобразований:

$$s = \frac{1}{Lr_{\text{H}}C_V \cdot A} \sqrt{\frac{\mu R T_{\text{K}}}{2\pi}} = (0, 70 \pm 0, 06)$$

17. Также проверим теоретическую зависимость в двойном логарифмическом масштабе, построив зависимость $\ln(K-K_{\infty})$ от $\ln P$

3 Выводы

- 1. В данной работе была проверена предложенная экспериментальная методика по определению коэффициента теплопроводности воздуха при комнатной температуре в зависимости от давления и коэффициента аккомодации.
- 2. Были измерены последние с высокой точностью.

Рис. 7: Зависимость К(1/Р)

Рис. 8: Зависимость теплового сопротивления от давления в двойном логарифмическом масштабе

3. Была проверена теоретическая зависимость температурного сопротивления газа от давления, которая приблизительно подтвердилась как при больших давлениях, так и при малых. Можно заметить, что при уменьшении давления в диапазоне малых тепловое сопротивление падает медленнее, чем в теории. Это отчасти может быть объяснено фактором десорбции газов с поверхности колбы и нити. Также на эксперимент влияло тепловое излучение нити.