Countable Spaces

Definition: 2^{nd} **Countable**

Let X be a topological space. To say that X is 2^{nd} countable means that X has a countable basis.

Theorem

Let X be a topological space. If X is 2^{nd} countable then X is separable.

Proof. Assume that X is 2^{nd} countable and let $\mathcal{B} = \{B_i : i \in \mathbb{N}\}$ be a countable basis for X. From each B_i , select a value x_i and construct the set $A = \{x_1, x_2, \ldots\}$. Thus $x_i \mapsto B_i$ is one-to-one and so A is countable. Now assume that $U \in \mathcal{T}$. Then there exists at least some $B_i \subset U$ and hence $U \cap A \neq \emptyset$, and so A is countable and dense in X.

Therefore X is separable.

There are two ways to determine that a set is not 2^{nd} countable:

- 1. Show that all possible bases are uncountable.
- 2. Show that all countable subsets are not bases.

Example

1. Show that $\mathbb{R}_{\mathsf{std}}$ is 2^{nd} countable (and hence separable).

Consider the countable set $\mathcal{B}=\{(a,b)\,|\,a,b\in\mathbb{Q}\}$. Since \mathbb{Q} is countable, $\mathbb{Q}\times\mathbb{Q}$ is countable and hence \mathcal{B} is countable. Now assume that $U\in\mathcal{T}$ and assume $x\in U$. Since x is an interior point of U, there exists some $\epsilon>0$ such that $x\in(x-\epsilon,x+\epsilon)\subset U$. So there must exist $\delta\in\mathbb{Q}$ such that $0<\delta<\epsilon$, and so $x\in(x-\delta,x+\delta)\subset(x-\epsilon,x+\epsilon)\subset U$. But $(x-\delta,d+\delta)\in\mathcal{B}$, and so \mathcal{B} is a countable basis for $\mathbb{R}_{\mathrm{std}}$.

Therefore $\mathbb{R}_{\mathsf{std}}$ is 2^{nd} countable.

2. Show that \mathbb{R}_{LL} is separable but not 2^{nd} countable.

It was already shown that \mathbb{R}_{LL} is separable. So assume that \mathcal{B} is a basis for \mathbb{R}_{LL} and consider $U_a = [a, \infty) = \bigcup_{b>a} [a, b) \in \mathscr{T}$. Then there exists some $B_a \in \mathcal{B}$ such that $a \in B_a$.

Now, assume $x,y \in \mathbb{R}$ such that x < y. Since $U_y \subsetneq U_x$, there exists $B_x \subset U_x$ and $B_y \subset U_y$ such that $B_x \neq B_y$. Thus, $x \mapsto B_x$ is injective and hence \mathcal{B} is uncountable.

Therefore \mathbb{R}_{LL} is not 2^{nd} countable.

Theorem

Every uncountable set in a 2^{nd} countable space has a limit point.

Proof. Assume that X is a 2^{nd} countable space and assume that $A \subset X$ such that A is uncountable. Now, ABC that A has no limit points. This means that for all $a \in A$ it is the case that there exists $U \in \mathcal{U}_a$ such that $U_a \cap A = \{a\}$ and hence every $a \in A$ is an isolated point. So assume that $x,y \in A$ such that $x \neq y$. There exists $U \in \mathcal{U}_x$ and $V \in \mathcal{U}_y$ such that $U \neq V$. So for any basis \mathcal{B} of X, there exists $B_x, B_y \in B$ such that $B_x \neq B_y$ and $B_x \subset U$ and $B_y \subset V$. Thus, $a \mapsto B_a$ is injective and hence \mathcal{B} is uncountable, contradicting the assumption that X is 2^{nd} countable.

Therefore *A* contains a limit point.

Theorem

If X and Y are 2^{nd} countable spaces then $X \times Y$ is 2^{nd} countable.

Proof. Assume that \mathcal{B}_X is a countable basis for X and B_y is a countable basis for Y.

Claim: $\mathcal{B}_X \times \mathcal{B}_Y$ is a countable basis for $X \times Y$.

 $\mathcal{B}_X \times \mathcal{B}_Y$ is countable. So assume that $U \in \mathscr{T}_{X \times Y}$ and assume $(a,b) \in U$. This means that there exists $U_a \in \mathscr{T}_X$ and $V_b \in \mathscr{T}_Y$ such that $(a,b) \in U_a \times V_b \subset U$. Furthermore, there exists $B_a \in \mathcal{B}_X$ and $B_b \in \mathcal{B}_Y$ such that $(a,b) \in B_a \times B_b \subset U_a \times V_b \subset U$ and so $\mathcal{B}_X \times \mathcal{B}_Y$ is a countable basis for $X \times Y$.

Therefore $X \times Y$ is 2^{nd} countable.

Definition: Neighborhood Basis

Let X be a topological space and let $p \in X$. To say that a collection of sets $\{U_{\alpha} \in \mathcal{U}_p : \alpha \in \lambda\}$ is a *neighborhood basis* for p means that for all $U \in \mathcal{U}_p$ there exists some $U_{\alpha} \subset U$.

Definition: 1^{st} **Countable**

Let X be a topological space. To say that X is 1^{st} countable means that every $p \in X$ has a countable neighborhood basis.

Theorem

Let X be a topological space. If X is 2^{nd} countable then X is 1^{st} countable.

Definition: Souslin

Let X be a topological space. To say that X has the *Souslin property* means that X does not contain uncountable collection of disjoint open sets.

Theorem

 \mathbb{R}_{std} is Souslin.

Proof. ABC that $\mathbb{R}_{\mathrm{std}}$ is not Souslin, meaning it does contain an uncountable collection of disjoint open sets. Let \mathcal{U} be such a set. Since \mathbb{Q} is countable and dense in $\mathbb{R}_{\mathrm{std}}$, every $U \in \mathcal{U}$ contains some $r_U \in \mathbb{Q}$. So select one value from each $U \in \mathcal{U}$ to construct the set $\{r_U \in Q \mid U \in \mathcal{U}\}$. Thus $r_U \mapsto U$ is injective and hence \mathcal{U} is countable, contradicting the assumption.

Therefore \mathbb{R}_{std} is Souslin.