Module 1

Introduction to Artificial Intelligence

AI is one of the newest fields in science and engineering. Work started in earnest soon after World War II, and the name itself was coined in 1956. AI currently encompasses a huge variety of subfields, ranging from the general (learning and perception) to the specific, such as playing chess, proving mathematical theorems, writing poetry, driving a car on a crowded street, and diagnosing diseases. AI is relevant to any intellectual task; it is truly a universal field.

1.1 WHAT IS AI?

In Figure 1.1 we see eight definitions of AI, laid out along two dimensions. The definitions on top are concerned with thought processes and reasoning, whereas the ones on the bottom address behavior. The definitions on the left measure success in terms of fidelity to human performance, whereas the ones on the right measure against an ideal performance measure, called rationality. A system is rational if it does the "right thing," given what it knows. Historically, all four approaches to AI have been followed, each by different people with different methods. A human-centered approach must be in part an empirical science, involving observations and hypotheses about human behavior. A rationalist approach involves a combination of mathematics and engineering.

Thinking Humanly

"The exciting new effort to make computers think ... machines with minds, in the full and literal sense." (Haugeland, 1985)

"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ..." (Bellman, 1978)

Acting Humanly

"The art of creating machines that perform functions that require intelligence when performed by people," (Kurzweil, 1990)

"The study of how to make computers do things at which, at the moment, people are better." (Rich and Knight, 1991)

Thinking Rationally

"The study of mental faculties through the use of computational models."
(Charniak and McDermott, 1985)

"The study of the computations that make it possible to perceive, reason, and act." (Winston, 1992)

Acting Rationally

"Computational Intelligence is the study of the design of intelligent agents." (Poole et al., 1998)

"AI ...is concerned with intelligent behavior in artifacts." (Nilsson, 1998)

Figure 1.1 Some definitions of artificial intelligence, organized into four categories.

1.1.1 Acting humanly: The Turing Test approach TURING TEST

The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactory operational definition of intelligence. A computer passes the test if a human interrogator, after posing some written questions, cannot tell whether the written responses come from a person or from a computer. The computer would need to possess the following capabilities:

- natural language processing to enable it to communicate successfully in English;
- knowledge representation to store what it knows or hears;
- automated reasoning to use the stored information to answer questions and to draw new conclusions;
- machine learning to adapt to new circumstances and to detect and extrapolate patterns.

Turing's test deliberately avoided direct physical interaction between the interrogator and the computer, because physical simulation of a person is unnecessary for intelligence. However, the so-called total Turing Test includes a video signal so that the interrogator can test the subject's perceptual

abilities, as well as the opportunity for the interrogator to pass physical objects "through the hatch." To pass the total Turing Test, the computer will need

- computer vision to perceive objects, and
- robotics to manipulate objects and move about.

1.1.2 Thinking humanly: The cognitive modelling approach

If we are going to say that a given program thinks like a human, we must have some way of determining how humans think. We need to get inside the actual workings of human minds. There are three ways to do this: through introspection—trying to catch our own thoughts as they go by; through psychological experiments—observing a person in action; and through brain imaging—observing the brain in action. Once we have a sufficiently precise theory of the mind, it becomes possible to express the theory as a computer program. If the program's input–output behavior matches corresponding human behavior, that is evidence that some of the program's mechanisms could also be operating in humans.

1.1.3 Thinking rationally: The "laws of thought" approach

The Greek philosopher Aristotle was one of the first to attempt to codify "right thinking," that is, certain reasoning processes. His syllogisms provided patterns for argument structures that always yielded correct conclusions when given correct premises. Logicians in the 19th century developed a precise notation for statements about all kinds of objects in the world and the relations among them. The so-called logicist tradition within artificial intelligence hopes to build on such programs to create intelligent systems. There are two main obstacles to this approach. First, it is not easy to take informal knowledge and state it in the formal terms required by logical notation, particularly when the knowledge is less than 100% certain. Second, there is a big difference between solving a problem "in principle" and solving it in practice.

1.1.4 Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). Of course, all computer programs do something, but computer agents are expected to do more: operate autonomously, perceive their environment, persist over a prolonged time period, adapt to change, and create and pursue goals. A rational agent is one that acts so as to achieve the best outcome or, when there is uncertainty, the best expected outcome. In the "laws of thought" approach to AI, the emphasis was on correct inferences. Making correct inferences is sometimes part of being a rational agent, because one way to act rationally is to reason logically to the conclusion that a given action will achieve one's goals and then to act on that conclusion.

The rational-agent approach has two advantages over the other approaches. First, it is more general than the "laws of thought" approach because correct inference is just one of several possible mechanisms for achieving rationality. Second, it is more amenable to scientific development than are approaches based on human behavior or human thought. The standard of rationality is mathematically well defined and completely general, and can be "unpacked" to generate agent designs that provably achieve it.

1.2 THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints, and techniques to AI.

1.2.1 Philosophy

Aristotle (384–322 B.C.), was the first to formulate a precise set of laws governing the rational part of the mind. He developed an informal system of syllogisms for proper reasoning, which in principle allowed one to generate conclusions mechanically, given initial premises. Much later, Ramon Lull (d.

1315) had the idea that useful reasoning could actually be carried out by a mechanical artifact. Thomas Hobbes (1588–1679) proposed that reasoning was like numerical computation. Around 1500, Leonardo da Vinci (1452–1519) designed but did not build a mechanical calculator. Gottfried Wilhelm Leibniz (1646–1716) built a mechanical device intended to carry out operations on concepts rather than numbers, but its scope was rather limited. Ren'e Descartes (1596–1650) gave the first clear discussion of the distinction between mind and matter and of the problems that arise. Given a physical mind that manipulates knowledge, the next problem is to establish EMPIRICISM the source of knowledge. The empiricism movement, starting with Francis Bacon's (1561–1626) Novum Organum, 2 is characterized by a dictum of John Locke (1632–1704): "Nothing is in the understanding, which was not first in the senses." David Hume's (1711–1776) A Treatise of Human Nature (Hume, 1739) proposed what is now known as the principle of induction: that general rules are acquired by exposure to repeated associations between their elements. Building on the work of Ludwig Wittgenstein (1889–1951) and Bertrand Russell (1872–1970), the famous Vienna Circle, led by Rudolf Carnap (1891–1970), developed the doctrine of logical positivism. The confirmation theory of Carnap and Carl Hempel (1905–1997) attempted to analyze the acquisition of knowledge from experience.

The final element in the philosophical picture of the mind is the connection between knowledge and action. This question is vital to AI because intelligence requires action as well as reasoning. Moreover, only by understanding how actions are justified can we understand how to build an agent whose actions are justifiable (or rational).

1.2.2 Mathematics

Philosophers staked out some of the fundamental ideas of AI, but the leap to a formal science required a level of mathematical formalization in three fundamental areas: logic, computation, and probability. The idea of formal logic can be traced back to the philosophers of ancient Greece, but its mathematical development really began with the work of George Boole (1815–1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847). In 1879, Gottlob Frege (1848–1925) extended Boole's logic to include objects and relations, creating the firstorder logic that is used today. Alfred Tarski (1902–1983) introduced a theory of reference that shows how to relate the objects in a logic to objects in the real world.

The next step was to determine the limits of what could be done with logic and computation. The first nontrivial algorithm is thought to be Euclid's algorithm for computing greatest common divisors. The word algorithm (and the idea of studying them) comes from al-Khowarazmi, a Persian mathematician of the 9th century, whose writings also introduced Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical deduction, and, by the late 19th century, efforts were under way to formalize general mathematical reasoning as logical deduction. In 1930, Kurt G"odel (1906–1978) showed that there exists an effective procedure to prove any true statement in the first-order logic of Frege and Russell, but that first-order logic could not capture the principle of mathematical induction needed to characterize the natural numbers.

Besides logic and computation, the third great contribution of mathematics to AI is the theory of probability. The Italian Gerolamo Cardano (1501–1576) first framed the idea of probability, describing it in terms of the possible outcomes of gambling events. In 1654, Blaise Pascal (1623–1662), in a letter to Pierre Fermat (1601–1665), showed how to predict the future of an unfinished gambling game and assign average payoffs to the gamblers. Probability quickly became an invaluable part of all the quantitative sciences, helping to deal with uncertain measurements and incomplete theories. James Bernoulli (1654–1705), Pierre Laplace (1749–1827), and others advanced the theory and introduced new statistical methods. Thomas Bayes (1702–1761), proposed a rule for updating probabilities in the light of new evidence. Bayes' rule underlies most modern approaches to uncertain reasoning in AI systems.

1.2.3 Economics

science of economics got its start in 1776, when Scottish philosopher Adam Smith (1723–1790) published An Inquiry into the Nature and Causes of the Wealth of Nations. While the ancient Greeks and others had made contributions to economic thought, Smith was the first to treat it as a science, using the idea that economies can be thought of as consisting of individual agents maximizing their own

economic well-being. Most people think of economics as being about money, but economists will say that they are really studying how people make choices that lead to preferred outcomes.

Decision theory, which combines probability theory with utility theory, provides a formal and complete framework for decisions (economic or otherwise) made under uncertainty

1.2.4 Neuroscience

How do brains process information? Neuroscience is the study of the nervous system, particularly the brain. Although the exact way in which the brain enables thought is one of the great mysteries of science, the fact that it does enable thought has been appreciated for thousands of years because of the evidence that strong blows to the head can lead to mental incapacitation. Nicolas Rashevsky (1936, 1938) was the first to apply mathematical models to the study of the nervous system.

Figure 1.2 The parts of a nerve cell or neuron. Each neuron consists of a cell body, or soma, that contains a cell nucleus. Branching out from the cell body are a number of fibers called dendrites and a single long fiber called the axon. The axon stretches out for a long distance, much longer than the scale in this diagram indicates. Typically, an axon is 1 cm long (100 times the diameter of the cell body), but can reach up to 1 meter. A neuron makes connections with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated from neuron to neuron by a complicated electrochemical reaction. The signals control brain activity in the short term and also enable long-term changes in the connectivity of neurons. These mechanisms are thought to form the basis for learning in the brain. Most information processing goes on in the cerebral cortex, the outer layer of the brain. The basic organizational unit appears to be a column of tissue about 0.5 mm in diameter, containing about 20,000 neurons and extending the full depth of the cortex about 4 mm in humans).

We now have some data on the mapping between areas of the brain and the parts of the body that they control or from which they receive sensory input. Such mappings are able to change radically over the course of a few weeks, and some animals seem to have multiple maps. Moreover, we do not fully understand how other areas can take over functions when one area is damaged. There is almost no theory on how an individual memory is stored. The measurement of intact brain activity began in 1929 with the invention by Hans Berger of the electroencephalograph (EEG). The recent development of functional magnetic resonance imaging (fMRI) (Ogawa et al., 1990; Cabeza and Nyberg, 2001) is giving neuroscientists unprecedentedly detailed images of brain activity, enabling measurements that correspond in interesting ways to ongoing cognitive processes. These are augmented by advances in single-cell recording of neuron activity. Individual neurons can be stimulated electrically, chemically, or even optically (Han and Boyden, 2007), allowing neuronal input– output relationships to be mapped. Despite these advances, we are still a long way from understanding how cognitive processes actually work. The truly amazing conclusion is that a collection of simple cells can lead to thought, action, and consciousness or, in the pithy words of John Searle (1992), brains cause minds.

	Supercomputer	Personal Computer	Human Brain	
Computational units	104 CPUs, 1012 transistors	4 CPUs, 109 transistors	10 ¹¹ neurons	
Storage units	10^{14} bits RAM 10^{15} bits disk	10 ¹¹ bits RAM 10 ¹³ bits disk	10 ¹¹ neurons 10 ¹⁴ synapses	
Cycle time	$10^{-9} { m sec}$	$10^{-9} { m sec}$	$10^{-3} {\rm sec}$	
Operations/sec	10^{15}	10^{10}	10^{17}	
Memory updates/sec	10 ¹⁴	10^{10}	10^{14}	

Figure 1.3 A crude comparison of the raw computational resources available to the IBM BLUE GENE supercomputer, a typical personal computer of 2008, and the human brain. The brain's numbers are essentially fixed, whereas the supercomputer's numbers have been increasing by a factor of 10 every 5 years or so, allowing it to achieve rough parity with the brain. The personal computer lags behind on all metrics except cycle time.

1.2.5 Psychology

How do humans and animals think and act? The origins of scientific psychology are usually traced to the work of the German physicist Hermann von Helmholtz (1821–1894) and his student Wilhelm Wundt (1832–1920). Helmholtz applied the scientific method to the study of human vision, and his Handbook of Physiological Optics is even now described as "the single most important treatise on the physics and physiology of human vision" (Nalwa, 1993, p.15).

1.2.6 Computer engineering

How can we build an efficient computer?

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The computer has been the artifact of choice. The modern digital electronic computer was invented independently and almost simultaneously by scientists in three countries embattled in World War II. The first operational computer was the electro-mechanical Heath Robinson,8 built in 1940 by Alan Turing's team for a single purpose.

Each generation of computer hardware has brought an increase in speed and capacity and a decrease in price. Performance doubled every 18 months or so until around 2005, when power dissipation problems led manufacturers to start multiplying the number of CPU cores rather than the clock speed.

1.2.7 Control theory and cybernetics

How can artifacts operate under their own control?

Ktesibios of Alexandria (c. 250 B.C.) built the first self-controlling machine: a water clock with a regulator that maintained a constant flow rate. This invention changed the definition of what an artifact could do. Previously, only living things could modify their behavior in response to changes in the environment.

Modern control theory, especially the branch known as stochastic optimal control, has as its goal the design of systems that maximize an objective function over time. This roughly matches our view of AI: designing systems that behave optimally. Why, then, are AI and control theory two different fields, despite the close connections among their founders? The answer lies in the close coupling between the mathematical techniques that were familiar to the participants and the corresponding sets of problems that were encompassed in each world view. Calculus and matrix algebra, the tools of control theory, lend themselves to systems that are describable by fixed sets of continuous variables, whereas AI was founded in part as a way to escape from these perceived limitations. The tools of logical inference and computation allowed AI researchers to consider problems such as language, vision, and planning that fell completely outside the control theorist's purview.

1.2.8 Linguistics

How does language relate to thought? In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed account of the behaviorist approach to language learning, written by the foremost expert in the field. But curiously, a review of the book became as well known as the book itself, and served to almost kill off interest in behaviorism.

Modern linguistics and AI, then, were "born" at about the same time, and grew up together, intersecting in a hybrid field called computational linguistics or natural language processing. The problem of understanding language soon turned out to be considerably more complex than it seemed in 1957. Understanding language requires an understanding of the subject matter and context, not just an understanding of the structure of sentences. This might seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in knowledge representation (the study of how to put knowledge into a form that a computer can reason with) was tied to language and informed by research in linguistics, which was connected in turn to decades of work on the philosophical analysis of language.

1.3 THE HISTORY OF ARTIFICIAL INTELLIGENCE

- The gestation of artificial intelligence (1943–1955)
- The birth of artificial intelligence (1956)
- Early enthusiasm, great expectations (1952–1969)
- A dose of reality (1966–1973)
- Knowledge-based systems: The key to power? (1969–1979)
- AI becomes an industry (1980-present)
- The return of neural networks (1986–present)
- AI adopts the scientific method (1987–present)
- The emergence of intelligent agents (1995–present)
- The availability of very large data sets (2001–present)

3.1 Problem solving agents

Intelligent agents are supposed to maximize their performance measure. Goal formulation, based on the current situation and the agent's performance measure, is the first step in problem solving. The agent's task is to find out how to act, now and in the future, so that it reaches a goal state. Before it can do this, it needs to decide (or we need to decide on its behalf) what sorts of actions and states it should consider.

Problem formulation is the process of deciding what actions and states to consider, given a goal. The agent will not know which of its possible actions is best, because it does not yet know enough about the state that results from taking each action. If the agent has no additional information—i.e., if the environment is unknown in the sense defined then it is has no choice but to try one of the actions at random.

The process of looking for a sequence of actions that reaches the goal is called search. A search algorithm takes a problem as input and returns a solution in the form of an action sequence. Once a solution is found, the actions it recommends can be carried out. This is called the execution phase. Thus, we have a simple "formulate, search, execute" design for the agent, as shown in Figure 3.1. After formulating a goal and a problem to solve, the agent calls a search procedure to solve it. It then uses the solution to guide its actions, doing whatever the solution recommends as the next thing to do—typically, the first action of the sequence—and then removing that step from the sequence. Once the solution has been executed, the agent will formulate a new goal. Notice that while the agent is executing the solution sequence it ignores its percepts when choosing an action because it knows in advance what they will be. An agent that carries out its plans with its eyes closed, so to speak, must be quite certain of what is going on. Control theorists call this an open-loop system, because ignoring the percepts breaks the loop between agent and environment. We first describe the process of problem formulation, and then devote the bulk of the chapter to various algorithms for the SEARCH function. We do not discuss the workings of the UPDATE-STATE and FORMULATE-GOAL functions further in this chapter.

3.1.1 Well-defined problems and solutions

A problem can be defined formally by five components:

• The initial state that the agent starts in. For example, the initial state for our agent in Romania might be described as In(Arad)

```
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state ← UPDATE-STATE(state, percept)

if seq is empty then

goal ← FORMULATE-GOAL(state)

problem ← FORMULATE-PROBLEM(state, goal)

seq ← SEARCH(problem)

if seq = failure then return a null action

action ← FIRST(seq)

seq ← REST(seq)

return action
```

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem, searches for a sequence of actions that would solve the problem, and then executes the actions one at a time. When this is complete, it formulates another goal and starts over.

- A description of the possible actions available to the agent. Given a particular state s, ACTIONS(s) returns the set of actions that can be executed in s. We say that each of these actions is applicable in s. For example, from the state In(Arad), the applicable actions are {Go(Sibiu), Go(Timisoara), Go(Zerind)}.
- A description of what each action does; the formal name for this is the transition model, specified by a function RESULT(s, a) that returns the state that results from doing action a in state s. We also use the term successor to refer to any state reachable from a given state by a single action.2 For example, we have

RESULT(In(Arad),Go(Zerind)) = In(Zerind).

Together, the initial state, actions, and transition model implicitly define the state space of the problem—the set of all states reachable from the initial state by any sequence of actions. The state space forms a directed network or graph in which the nodes are states and the links between nodes are actions. (The map of Romania shown in Figure 3.2 can be interpreted as a state-space graph if we view each road as standing for two driving actions, one in each direction.) A path in the state space is a sequence of states connected by a sequence of actions.

• The goal test, which determines whether a given state is a goal state. Sometimes there is an explicit set of possible goal states, and the test simply checks whether the given state is one of them. The agent's goal in Romania is the singleton set {In(Bucharest)}.

Sometimes the goal is specified by an abstract property rather than an explicitly enumerated set of states. For example, in chess, the goal is to reach a state called "checkmate," where the opponent's king is under attack and can't escape.

• A path cost function that assigns a numeric cost to each path. The problem-solving agent chooses a cost function that reflects its own performance measure. For the agent trying to get to Bucharest, time is of the essence, so the cost of a path might be its length in kilometers. In this chapter, we assume that the cost of a path can be described as the sum of the costs of the individual actions along the path. The step cost of taking action a in state s to reach state s' is denoted by c(s, a, s'). The step costs for Romania are shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4 The preceding elements define a problem and can be gathered into a single data structure that is given as input to a problem-solving algorithm. A solution to a problem is an action sequence that leads from the initial state to a goal state. Solution quality is measured by the path cost function, and an optimal solution has the lowest path cost among all solutions.

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in terms of the initial state, actions, transition model, goal test, and path cost. This formulation seems reasonable, but it is still a model—an abstract mathematical description—and not the real thing. Compare the simple state description we have chosen, In(Arad), to an actual crosscountry trip, where the state of the world includes so many things: the traveling companions, the current radio program, the scenery out of the window, the proximity of law enforcement officers, the distance to the next rest stop, the condition of the road, the weather, and so on. All these considerations are left out of our state descriptions because they are irrelevant to the problem of finding a route to Bucharest. The process of removing detail from a representation is called abstraction. In addition to abstracting the state description, we must abstract the actions themselves. A driving action has many effects. Besides changing the location of the vehicle and its occupants, it takes up time, consumes fuel, generates pollution, and changes the agent (as they say, travel is broadening). Our formulation takes into account only the change in location. Also, there are many actions that we omit altogether: turning on the radio, looking out of the window, slowing down for law enforcement officers, and so on. And of course, we don't specify actions at the level of "turn steering wheel to the left by one degree." Can we be more precise about defining the appropriate level of abstraction? Think of the abstract states and actions we have chosen as corresponding to large sets of detailed world states and detailed action sequences. Now consider a solution to the abstract problem: for example, the path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This abstract solution corresponds to a large number of more detailed paths. For example, we could drive with the radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of the trip. The abstraction is valid if we can expand any abstract solution into a solution in the more detailed world; a sufficient condition is that for every detailed state that is "in Arad," there is a detailed path to some state that is "in Sibiu," and so on.5 The abstraction is useful if carrying out each of the actions in the solution is easier than the original problem; in this case they are easy enough that they can be carried out without further search or planning by an average driving agent. The choice of a good abstraction thus involves removing as much detail as possible while retaining validity and ensuring that the abstract actions are easy to carry out. Were it not for the ability to construct useful abstractions, intelligent agents would be completely swamped by the real world.

3.2 EXAMPLE PROBLEMS

The problem-solving approach has been applied to a vast array of task environments. We list some of the best known here, distinguishing between toy and real-world problems. A toy problem is intended to illustrate or exercise various problem-solving methods. It can be given a concise, exact description and hence is usable by different researchers to compare the performance of algorithms. A real-world problem is one whose solutions people actually care about. Such problems tend not to have a single agreed-upon description, but we can give the general flavor of their formulations

Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R = Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See Figure 2.2.) This can be formulated as a problem as follows:

- States: The state is determined by both the agent location and the dirt locations. The agent is in one of two locations, each of which might or might not contain dirt. Thus, there are $2 \times 2^2 = 8$ possible world states. A larger environment with n locations has $n \cdot 2^n$ states.
- Initial state: Any state can be designated as the initial state.
- Actions: In this simple environment, each state has just three actions: Left, Right, and Suck. Larger environments might also include Up and Down.
- Transition model: The actions have their expected effects, except that moving Left in the leftmost square, moving Right in the rightmost square, and Sucking in a clean square have no effect. The complete state space is shown in Figure 3.3.
- Goal test: This checks whether all the squares are clean.
- Path cost: Each step costs 1, so the path cost is the number of steps in the path. Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions. The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the space. The object is to reach a specified goal state, such as the one shown on the right of the figure. The standard formulation is as follows:

- States: A state description specifies the location of each of the eight tiles and the blank in one of the nine squares.
- Initial state: Any state can be designated as the initial state. Note that any given goal can be reached from exactly half of the possible initial states (Exercise 3.4).
- Actions: The simplest formulation defines the actions as movements of the blank space Left, Right, Up, or Down. Different subsets of these are possible depending on where the blank is.

- Transition model: Given a state and action, this returns the resulting state; for example, if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank switched.
- Goal test: This checks whether the state matches the goal configuration shown in Figure 3.4. (Other goal configurations are possible.)
- Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and final states, ignoring the intermediate locations where the block is sliding. We have abstracted away actions such as shaking the board when pieces get stuck and ruled out extracting the pieces with a knife and putting them back again. We are left with a description of the rules of the puzzle, avoiding all the details of physical manipulations. The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as test problems for new search algorithms in AI. This family is known to be NP-complete, so one does not expect to find methods significantly better in the worst case than the search algorithms described in this chapter and the next. The 8-puzzle has 9!/2 = 181, 440 reachable states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and random instances can be solved optimally in a few milliseconds by the best search algorithms. The 24-puzzle (on a 5×5 board) has around 1025 states, and random instances take several hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that no queen attacks any other. (A queen attacks any piece in the same row, column or diagonal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is attacked by the queen at the top left

Although efficient special-purpose algorithms exist for this problem and for the whole n-queens family, it remains a useful test problem for search algorithms. There are two main kinds of formulation. An incremental formulation involves operators that augment the state description, starting with an empty state; for the 8-queens problem, this means that each action adds a queen to the state. A complete-state formulation starts with all 8 queens on the board and moves them around. In either case, the path cost is of no interest because only the final state counts. The first incremental formulation one might try is the following:

- States: Any arrangement of 0 to 8 queens on the board is a state.
- Initial state: No queens on the board.
- Actions: Add a queen to any empty square.
- Transition model: Returns the board with a queen added to the specified square.
- Goal test: 8 queens are on the board, none attacked. In this formulation, we have $64 \cdot 63 \cdots 57 \approx 1.8 \times 1014$ possible sequences to investigate. A better formulation would prohibit placing a queen in any square that is already attacked:
- States: All possible arrangements of n queens $(0 \le n \le 8)$, one per column in the leftmost n columns, with no queen attacking another.
- Actions: Add a queen to any square in the leftmost empty column such that it is not attacked by any other queen.

This formulation reduces the 8-queens state space from $1.8 \times 10^{\circ}14$ to just 2,057, and solutions are easy to find. On the other hand, for 100 queens the reduction is from roughly $10^{\circ}400$ states to about $10^{\circ}52$ states (Exercise 3.5)—a big improvement, but not enough to make the problem tractable. Section 4.1 describes the complete-state formulation, and Chapter 6 gives a simple algorithm that solves even the million-queens problem with ease

Our final toy problem was devised by Donald Knuth (1964) and illustrates how infinite state spaces can arise. Knuth conjectured that, starting with the number 4, a sequence of factorial, square root, and floor operations will reach any desired positive integer. For example, we can reach 5 from 4 as follows

$$\left\lfloor \sqrt{\sqrt{\sqrt{\sqrt{(4!)!}}}} \right\rfloor = 5.$$

The problem definition is very simple:

- States: Positive numbers.
- Initial state: 4.
- Actions: Apply factorial, square root, or floor operation (factorial for integers only). Transition model: As given by the mathematical definitions of the operations.
- Goal test: State is the desired positive integer. To our knowledge there is no bound on how large a number might be constructed in the process of reaching a given target—for example, the number 620,448,401,733,239,439,360,000 is generated in the expression for 5—so the state space for this problem is infinite. Such state spaces arise frequently in tasks involving the generation of mathematical expressions, circuits, proofs, programs, and other recursively defined objects.

3.2.2 Real-world problems

We have already seen how the route-finding problem is defined in terms of specified locations and transitions along links between them. Route-finding algorithms are used in a variety of applications. Some, such as Web sites and in-car systems that provide driving directions, are relatively straightforward extensions of the Romania example. Others, such as routing video streams in computer networks, military operations planning, and airline travel-planning systems, involve much more complex specifications. Consider the airline travel problems that must be solved by a travel-planning Web site:

- States: Each state obviously includes a location (e.g., an airport) and the current time. Furthermore, because the cost of an action (a flight segment) may depend on previous segments, their fare bases, and their status as domestic or international, the state must record extra information about these "historical" aspects.
- Initial state: This is specified by the user's query.
- Actions: Take any flight from the current location, in any seat class, leaving after the current time, leaving enough time for within-airport transfer if needed.
- Transition model: The state resulting from taking a flight will have the flight's destination as the current location and the flight's arrival time as the current time.
- Goal test: Are we at the final destination specified by the user?
- Path cost: This depends on monetary cost, waiting time, flight time, customs and immigration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage awards, and so on

Commercial travel advice systems use a problem formulation of this kind, with many additional complications to handle the byzantine fare structures that airlines impose. Any seasoned traveler knows, however, that not all air travel goes according to plan. A really good system should include contingency plans—such as backup reservations on alternate flights— to the extent that these are justified by the cost and likelihood of failure of the original plan.

Touring problems are closely related to route-finding problems, but with an important difference. Consider, for example, the problem "Visit every city in Figure 3.2 at least once, starting and ending in Bucharest." As with route finding, the actions correspond to trips between adjacent cities. The state space, however, is quite different. Each state must include not just the current location but also the set of cities the agent has visited. So the initial state would be In(Bucharest), Visited({Bucharest}), a typical intermediate state would be In(Vaslui), Visited({Bucharest, Urziceni, Vaslui}), and the goal test would check whether the agent is in Bucharest and all 20 cities have been visited.

The traveling salesperson problem (TSP) is a touring problem in which each city must be visited exactly once. The aim is to find the shortest tour. The problem is known to be NP-hard, but an enormous amount of effort has been expended to improve the capabilities of TSP algorithms. In addition to planning trips for traveling salespersons, these algorithms have been used for tasks such as planning movements of automatic circuit-board drills and of stocking machines on shop floors.

A VLSI layout problem requires positioning millions of components and connections on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and maximize manufacturing yield. The layout problem comes after the logical design phase and is usually split into two parts: cell layout and channel routing. In cell layout, the primitive components of the circuit are grouped into cells, each of which performs some recognized function. Each cell has a fixed footprint (size and shape) and requires a certain number of connections to each of the other cells. The aim is to place the cells on the chip so that they do not overlap and so that there is room for the connecting wires to be placed between the cells. Channel routing finds a specific route for each wire through the gaps between the cells. These search problems are extremely complex, but definitely worth solving. Later in this chapter, we present some algorithms capable of solving them.

Robot navigation is a generalization of the route-finding problem described earlier. Rather than following a discrete set of routes, a robot can move in a continuous space with (in principle) an infinite set of possible actions and states. For a circular robot moving on a flat surface, the space is essentially two-dimensional. When the robot has arms and legs or wheels that must also be controlled, the search space becomes many-dimensional. Advanced techniques are required just to make the search space finite. We examine some of these methods in Chapter 25. In addition to the complexity of the problem, real robots must also deal with errors in their sensor readings and motor controls.

Automatic assembly sequencing of complex objects by a robot was first demonstrated by FREDDY (Michie, 1972). Progress since then has been slow but sure, to the point where the assembly of intricate objects such as electric motors is economically feasible. In assembly problems, the aim is to find an order in which to assemble the parts of some object. If the wrong order is chosen, there will be no way to add some part later in the sequence without undoing some of the work already done. Checking a step in the sequence for feasibility is a difficult geometrical search problem closely related to robot navigation. Thus, the generation of legal actions is the expensive part of assembly sequencing. Any practical algorithm must avoid exploring all but a tiny fraction of the state space. Another important assembly problem is protein design, in which the goal is to find a sequence of amino acids that will fold into a three-dimensional protein with the right properties to cure some disease.

3.3 SEARCHING FOR SOLUTIONS

Having formulated some problems, we now need to solve them. A solution is an action sequence, so search algorithms work by considering various possible action sequences. The possible action sequences starting at the initial state form a search tree with the initial state NODE at the root; the branches are actions and the nodes correspond to states in the state space of the problem. Figure 3.6 shows the first few steps in growing the search tree for finding a route from Arad to Bucharest. The root node of the tree corresponds to the initial state, In(Arad). The first step is to test whether this is a goal state. (Clearly it is not, but it is important to check so that we can solve trick problems like "starting in Arad, get to Arad.") Then we need to consider taking various actions. We do this by expanding the current state; that is, applying each legal action to the current state, thereby generating a new set of states. In this case, we add three branches from the parent node In(Arad) leading to three new child nodes: In(Sibiu), In(Timisoara), and In(Zerind). Now we must choose which of these three possibilities to consider further.

This is the essence of search—following up one option now and putting the others aside for later, in case the first choice does not lead to a solution. Suppose we choose Sibiu first. We check to see whether it is a goal state (it is not) and then expand it to get In(Arad), In(Fagaras), In(Oradea), and In(RimnicuVilcea). We can then choose any of these four or go back and choose Timisoara or Zerind. Each of these six nodes is a leaf node, that is, a node with no children in the tree. The set of all leaf nodes available for expansion at any given point is called the frontier. (Many authors call it the open list, which is both geographically less evocative and less accurate, because other data structures are better suited than a list.) In Figure 3.6, the frontier of each tree consists of those nodes with bold outlines.

The process of expanding nodes on the frontier continues until either a solution is found or there are no more states to expand. The general TREE-SEARCH algorithm is shown informally in Figure 3.7. Search algorithms all share this basic structure; they vary primarily according to how they choose which state to expand next—the so-called search strategy.

The eagle-eyed reader will notice one peculiar thing about the search tree shown in Figure 3.6: it includes the path from Arad to Sibiu and back to Arad again! We say that In(Arad) is a repeated state in the search tree, generated in this case by a loopy path. Considering such loopy paths means that the complete search tree for Romania is infinite because there is no limit to how often one can traverse a loop. On the other hand, the state space—the map shown in Figure 3.2—has only 20 states. As we discuss in Section 3.4, loops can cause certain algorithms to fail, making otherwise solvable problems unsolvable. Fortunately, there is no need to consider loopy paths. We can rely on more than intuition for this: because path costs are additive and step costs are nonnegative, a loopy path to any given state is never better than the same path with the loop removed. Loopy paths are a special case of the more general concept of redundant paths, which exist whenever there is more than one way to get from one state to another. Consider the paths Arad-Sibiu (140 km long) and Arad-Zerind-Oradea-Sibiu (297 km long). Obviously, the second path is redundant—it's just a worse way to get to the same state. If you are concerned about reaching the goal, there's never any reason to keep more than one path to any given state, because any goal state that is reachable by extending one path is also reachable by extending the other. In some cases, it is possible to define the problem itself so as to eliminate redundant paths. For example, if we formulate the 8-queens problem (page 71) so that a queen can be placed in any column, then each state with n queens can be reached by n! different paths; but if we reformulate the problem so that each new queen is placed in the leftmost empty column, then each state can be reached only through one path.

Figure 3.6 Partial search trees for finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are shown in faint dashed lines.

function TREE-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of problem loop do

if the frontier is empty then return failure choose a leaf node and remove it from the frontier if the node contains a goal state then return the corresponding solution expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of problem initialize the explored set to be empty

if the frontier is empty then return failure choose a leaf node and remove it from the frontier if the node contains a goal state then return the corresponding solution add the node to the explored set expand the chosen node, adding the resulting nodes to the frontier only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

In other cases, redundant paths are unavoidable. This includes all problems where the actions are reversible, such as route-finding problems and sliding-block puzzles. Route finding on a rectangular grid (like the one used later for Figure 3.9) is a particularly important example in computer games. In such a grid, each state has four successors, so a search tree of depth d that includes repeated states has 4d leaves; but there are only about 2d2 distinct states within d steps of any given state. For d = 20, this means about a trillion nodes but only about 800 distinct states. Thus, following redundant paths can cause a tractable problem to become intractable. This is true even for algorithms that know how to avoid infinite loops. As the saying goes, algorithms that forget their history are doomed to repeat it. The way to avoid exploring redundant paths is to remember where one has been. To do this, we augment the TREE-SEARCH algorithm with a data structure called the explored set (also known as the closed list), which remembers every expanded node. Newly generated nodes that match previously generated nodes—ones in the explored set or the frontier—can be discarded instead of being added to the frontier. The new algorithm, called GRAPH-SEARCH, is shown informally in Figure 3.7. The specific algorithms in this chapter draw on this general design. Clearly, the search tree constructed by the GRAPH-SEARCH algorithm contains at most one copy of each state, so we can think of it as growing a tree directly on the state-space graph, as shown in Figure 3.8. The algorithm has another nice property: the frontier separates the state-space graph into the explored region and the unexplored region, so that every path from the initial state to an unexplored state has to pass through a state in the frontier. (If this seems completely obvious, try Exercise 3.13 now.) This property is illustrated in Figure 3.9. As every step moves a state from the frontier into the explored region while moving some states from the unexplored region into the frontier, we see that the algorithm is systematically examining the states in the state space, one by one, until it finds a solution.

Figure 3.8 A sequence of search trees generated by a graph search on the Romania problem of Figure 3.2. At each stage, we have extended each path by one step. Notice that at the third stage, the northernmost city (Oradea) has become a dead end: both of its successors are already explored via other paths.

Figure 3.9 The separation property of GRAPH-SEARCH, illustrated on a rectangular-grid problem. The frontier (white nodes) always separates the explored region of the state space (black nodes) from the unexplored region (gray nodes). In (a), just the root has been expanded. In (b), one leaf node has been expanded. In (c), the remaining successors of the root have been expanded in clockwise order.

3.3.1 Infrastructure for search algorithms

Search algorithms require a data structure to keep track of the search tree that is being constructed. For each node n of the tree, we have a structure that contains four components:

- n.STATE: the state in the state space to which the node corresponds;
- n.PARENT: the node in the search tree that generated this node;
- n.ACTION: the action that was applied to the parent to generate the node;
- \bullet n.PATH-COST: the cost, traditionally denoted by g(n), of the path from the initial state to the node, as indicated by the parent pointers.

Figure 3.10 Nodes are the data structures from which the search tree is constructed. Each has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

Given the components for a parent node, it is easy to see how to compute the necessary components for a child node. The function CHILD-NODE takes a parent node and an action and returns the resulting child node:

```
function CHILD-NODE(problem, parent, action) returns a node
return a node with

STATE = problem.RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)
```

The node data structure is depicted in Figure 3.10. Notice how the PARENT pointers string the nodes together into a tree structure. These pointers also allow the solution path to be extracted when a goal node is found; we use the SOLUTION function to return the sequence of actions obtained by following parent pointers back to the root. Up to now, we have not been very careful to distinguish between nodes and states, but in writing detailed algorithms it's important to make that distinction. A node is a bookkeeping data structure used to represent the search tree. A state corresponds to a configuration of the world. Thus, nodes are on particular paths, as defined by PARENT pointers, whereas states are not. Furthermore, two different nodes can contain the same world state if that state is generated via two different search paths. Now that we have nodes, we need somewhere to put them. The frontier needs to be stored in such a way that the search algorithm can easily choose the next node to expand according to its preferred strategy. The appropriate data structure for this is a queue. The operations on a queue are as follows:

- EMPTY?(queue) returns true only if there are no more elements in the queue.
- POP(queue) removes the first element of the queue and returns it.
- INSERT(element, queue) inserts an element and returns the resulting queue.

Queues are characterized by the order in which they store the inserted nodes. Three common variants are the first-in, first-out or FIFO queue, which pops the oldest element of the queue; the last-in, first-out or LIFO queue (also known as a stack), which pops the newest element of the queue; and the priority queue, which pops the element of the queue with the highest priority according to some ordering function. The explored set can be implemented with a hash table to allow efficient checking for repeated states. With a good implementation, insertion and lookup can be done in roughly constant time no matter how many states are stored. One must take care to implement the hash table with the right notion of equality between states. For example, in the traveling salesperson problem (page 74), the hash table needs to know that the set of visited cities {Bucharest,Urziceni,Vaslui} is the same as {Urziceni,Vaslui,Bucharest}. Sometimes this can be achieved most easily by insisting that the data structures for states be in some canonical form; that is, logically equivalent states should map to the same data structure. In the case of states described by sets, for example, a bit-vector representation or a sorted list without repetition would be canonical, whereas an unsorted list would not.

3.3.2 Measuring problem-solving performance

Before we get into the design of specific search algorithms, we need to consider the criteria that might be used to choose among them. We can evaluate an algorithm's performance in four ways:

- Completeness: Is the algorithm guaranteed to find a solution when there is one?
- Optimality: Does the strategy find the optimal solution, as defined on page 68?
- Time complexity: How long does it take to find a solution?
- Space complexity: How much memory is needed to perform the search?

Time and space complexity are always considered with respect to some measure of the problem difficulty. In theoretical computer science, the typical measure is the size of the state space graph, |V| + |E|, where V is the set of vertices (nodes) of the graph and E is the set of edges (links). This is appropriate when the graph is an explicit data structure that is input to the search program. (The map of Romania is an example of this.) In AI, the graph is often represented implicitly by the initial state, actions, and transition model and is frequently infinite. For these reasons, complexity is expressed in terms of three quantities: b, the branching factor or maximum number of successors of any node; d, the depth of the shallowest goal node (i.e., the number of steps along the path from the root); and m, the maximum length of any path in the state space. Time is often measured in terms of the number of nodes generated during the search, and space in terms of the maximum number of nodes stored in memory. For the most part, we describe time and space complexity for search on a tree; for a graph, the answer depends on how "redundant" the paths in the state space are. To assess the effectiveness of a search algorithm, we can consider just the search cost— which typically depends on the time complexity but

can also include a term for memory usage—or we can use the total cost, which combines the search cost and the path cost of the solution found. For the problem of finding a route from Arad to Bucharest, the search cost is the amount of time taken by the search and the solution cost is the total length of the path in kilometers. Thus, to compute the total cost, we have to add milliseconds and kilometers. There is no "official exchange rate" between the two, but it might be reasonable in this case to convert kilometers into milliseconds by using an estimate of the car's average speed (because time is what the agent cares about). This enables the agent to find an optimal tradeoff point at which further computation to find a shorter path becomes counterproductive. The more general problem of tradeoffs between different goods is taken up in Chapter 16.

3.4 UNINFORMED SEARCH STRATEGIES

This section covers several search strategies that come under the heading of uninformed search (also called blind search). The term means that the strategies have no additional information about states beyond that provided in the problem definition. All they can do is generate successors and distinguish a goal state from a non-goal state. All search strategies are distinguished by the order in which nodes are expanded. Strategies that know whether one non-goal state is "more promising" than another are called informed search or heuristic search strategies; they are covered in Section 3.5.

3.4.1 Breadth-first search

Breadth-first search is a simple strategy in which the root node is expanded first, then all the successors of the root node are expanded next, then their successors, and so on. In general, all the nodes are expanded at a given depth in the search tree before any nodes at the next level are expanded. Breadth-first search is an instance of the general graph-search algorithm (Figure 3.7) in which the shallowest unexpanded node is chosen for expansion. This is achieved very simply by using a FIFO queue for the frontier. Thus, new nodes (which are always deeper than their parents) go to the back of the queue, and old nodes, which are shallower than the new nodes, get expanded first. There is one slight tweak on the general graph-search algorithm, which is that the goal test is applied to each node when it is generated rather than when it is selected for expansion. This decision is explained below, where we discuss time complexity. Note also that the algorithm, following the general template for graph search, discards any new path to a state already in the frontier or explored set; it is easy to see that any such path must be at least as deep as the one already found. Thus, breadth-first search always has the shallowest path to every node on the frontier. Pseudocode is given in Figure 3.11. Figure 3.12 shows the progress of the search on a simple binary tree. How does breadth-first search rate according to the four criteria from the previous section? We can easily see that it is complete—if the shallowest goal node is at some finite depth d, breadth-first search will eventually find it after generating all shallower nodes (provided the branching factor b is finite). Note that as soon as a goal node is generated, we know it is the shallowest goal node because all shallower nodes must have been generated already and failed the goal test. Now, the shallowest goal node is not necessarily the optimal one;

```
function Breadth-First-Search(problem) returns a solution, or failure
  node \leftarrow a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
  if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
  frontier \leftarrow a FIFO queue with node as the only element
  explored \leftarrow an empty set
  loop do
     if EMPTY?(frontier) then return failure
      node ← POP(frontier) /* chooses the shallowest node in frontier */
     add node.STATE to explored
     for each action in problem.ACTIONS(node.STATE) do
         child \leftarrow CHILD-NODE(problem, node, action)
         if child.STATE is not in explored or frontier then
             if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
             frontier \leftarrow INSERT(child, frontier)
  Figure 3.11
                 Breadth-first search on a graph.
```

technically, breadth-first search is optimal if the path cost is a nondecreasing function of the depth of the node. The most common such scenario is that all actions have the same cost. So far, the news about breadth-first search has been good. The news about time and space is not so good. Imagine searching a uniform tree where every state has b successors. The root of the search tree generates b nodes at the first level, each of which generates b more nodes, for a total of b^2 at the second level. Each of these generates b more nodes, yielding b^3 nodes at the third level, and so on. Now suppose that the solution is at depth d. In the worst case, it is the last node generated at that level. Then the total number of nodes generated is b + b^2 + b^3 + \cdots + b^d = O(b^d) . (If the algorithm were to apply the goal test to nodes when selected for expansion, rather than when generated, the whole layer of nodes at depth d would be expanded before the goal was detected and the time complexity would be $O(b^{d+1})$.)

As for space complexity: for any kind of graph search, which stores every expanded node in the explored set, the space complexity is always within a factor of b of the time complexity. For breadth-first graph search in particular, every node generated remains in memory. There will be nodes in the explored set and $O(b^d)$ nodes in the frontier,

Figure 3.12 Breadth-first search on a simple binary tree. At each stage, the node to be expanded next is indicated by a marker.

so the space complexity is $O(b^d)$, i.e., it is dominated by the size of the frontier. Switching to a tree search would not save much space, and in a state space with many redundant paths, switching could cost a great deal of time. An exponential complexity bound such as $O(b^d)$ is scary. Figure 3.13 shows why. It lists, for various values of the solution depth d, the time and memory required for a breadthfirst search with branching factor b = 10. The table assumes that 1 million nodes can be generated per second and that a node requires 1000 bytes of storage. Many search problems fit roughly within these assumptions (give or take a factor of 100) when run on a modern personal computer

Depth	Nodes	Nodes		Memory		
2	110	.11	milliseconds	107	kilobytes	
4	11,110	11	milliseconds	10.6	megabytes	
6	10^{6}	1.1	seconds	1	gigabyte	
8	10^{8}	2	minutes	103	gigabytes	C
10	10 ¹⁰	3	hours	10	terabytes	
12	10^{12}	13	days	1	petabyte	
14	10^{14}	3.5	years	99	petabytes	
16	10^{16}	350	years	10	exabytes	

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shassume branching factor b=10; 1 million nodes/second; 1000 bytes/node.

Two lessons can be learned from Figure 3.13. First, the memory requirements are a bigger problem for breadth-first search than is the execution time. One might wait 13 days for the solution to an important problem with search depth 12, but no personal computer has the petabyte of memory it would take. Fortunately, other strategies require less memory. The second lesson is that time is still a major factor. If your problem has a solution at depth 16, then (given our assumptions) it will take about 350 years for breadth-first search (or indeed any uninformed search) to find it. In general, exponential-complexity search problems cannot be solved by uninformed methods for any but the smallest instances.

3.4.3 Depth-first search

Depth-first search always expands the deepest node in the current frontier of the search tree. The progress of the search is illustrated in Figure 3.16. The search proceeds immediately to the deepest level of the search tree, where the nodes have no successors. As those nodes are expanded, they are

dropped from the frontier, so then the search "backs up" to the next deepest node that still has unexplored successors. The depth-first search algorithm is an instance of the graph-search algorithm in Figure 3.7; whereas breadth-first-search uses a FIFO queue, depth-first search uses a LIFO queue. A LIFO queue means that the most recently generated node is chosen for expansion. This must be the deepest unexpanded node because it is one deeper than its parent—which, in turn, was the deepest unexpanded node when it was selected. As an alternative to the GRAPH-SEARCH-style implementation, it is common to implement depth-first search with a recursive function that calls itself on each of its children in turn. (A recursive depth-first algorithm incorporating a depth limit is shown in Figure 3.17.)

Figure 3.16 Depth-first search on a binary tree. The unexplored region is shown in light gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes at depth 3 have no successors and M is the only goal node.

The properties of depth-first search depend strongly on whether the graph-search or tree-search version is used. The graph-search version, which avoids repeated states and redundant paths, is complete in finite state spaces because it will eventually expand every node. The tree-search version, on the other hand, is not complete.