PCT/DE 03/02586 BUNDE REPUBLIK DEUTS HLAND

REC'D - 3 OCT 2003
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 34 917.7

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Anmeldetag:

31. Juli 2002

Anmelder/Inhaber:

Siemens Aktiengesellschaft, München/DE

Bezeichnung:

Piezoaktor und Verfahren zum Herstellen des Piezo-

aktors

IPC:

H 02 N, H 01 L

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 8. September 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Seuscles

SEST AVAILABLE COPY

A 9161 03/00 FDV-I

Beschreibung

20

30

35

Piezoaktor und Verfahren zum Herstellen des Piezoaktors

Die Erfindung betrifft einen Piezoaktor mit mindestens einem stapelförmigen Piezoelement, das mindestens zwei entlang einer Stapelrichtung des Piezoelements übereinander angeordnete Elektrodenschichten und mindestens eine jeweils zwischen zwei Elektrodenschichten angeordnete

vorspannvorrichtung zur Krafteinleitung in ein Volumen der piezoelektrischen Schicht über mindestens eine Krafteinleitungsfläche der piezoelektrischen Schicht, die an mindestens einem der Vorspannvorrichtung zugekehrten

15 Oberflächenabschnitt der piezoelektrischen Schicht angeordnet ist. Daneben wird ein Verfahren zum Herstellen des Piezoaktors angegeben.

Ein Piezoaktor der genannten Art ist aus US 6 274 967 B1 bekannt. Der Piezoaktor weist ein Piezoelement in Vielschichtbauweise auf. Bei einem derartigen Piezoelement sind viele Elektrodenschichten und piezoelektrische Schichten abwechselnd übereinander gestapelt. Die piezoelektrischen Schichten bestehen aus einem piezokeramischen Material. Die Vorspannvorrichtung zur Krafteinleitung in das jeweilige Volumen der einzelnen piezoelektrischen Schichten besteht aus einem hohlzylindrisches Federelement, einem Aktordeckel und einem Aktorboden. Das Piezoelement ist mit seinen zwei Stirnflächen zwischen dem Aktordeckel und dem Aktorboden mit Hilfe des Federelements vorgespannt. Mit Hilfe der Vorspannvorrichtung wird in ein Gesamtvolumen jeder der piezoelektrischen Schichten eine Kraft eingeleitet. Die piezoelektrischen Schichten werden mit einer einachsigen Druckspannung entlang der Stapelrichtung beaufschlagt. Die eingeleitete Kraft bzw. die eingeleitete Druckspannung führt zur einem Domänenumschalten. Die Polarisation der Domänen

15

20

30

35

werden bevorzugt quer zur Krafteinleitungsrichtung bzw. Stapelrichtung orientiert.

Zur Krafteinleitung in das Gesamtvolumen jeder der 5 piezoelektrischen Schichten weist jede der piezoelektrischen Schichten von einander abgekehrte Oberflächenabschnitte auf, die parallel zu den Stirnflächen des Piezoelements ausgerichtet sind. Diese Oberflächenabschnitte sind entweder dem Aktordeckel oder dem Aktorboden der Vorspannvorrichtung zugekehrt. Die Oberflächenabschnitte sind so groß wie die Stirnflächen des Piezoelements. Über jeweils den gesamten Oberflächenabschnitt der piezoelektrischen Schicht kommt es zur Krafteinleitung in das Gesamtvolumen der piezoelektrischen Schicht.

Der bekannte Piezoaktor wird beispielsweise zur Ansteuerung eines Einspritzventils in einem sogenannten Common Rail Einspritzsystem eingesetzt. Dabei ist es erforderlich, dass sowohl eine bestimmte Auslenkung als auch eine bestimmte Kraft entlang der Stapelrichtung übertragen werden kann.

Ein Maß für eine Auslenkbarkeit des piezoelektrischen Materials in Richtung einer angelegten elektrischen Feldstärke ist die sogenannte piezoelektrische Ladungskonstante d₃₃. Um eine relativ große Auslenkung zu erzielen, wird beispielsweise bei einem gegebenen d33-Wert die Gesamthöhe des Piezoelements vergrößert. Alternativ dazu kann eine relativ große Auslenkung durch Einleiten einer Kraft bzw. einer einachsigen Druckspannung entlang der Stapelrichtung des Piezoelements erzielt werden. Dazu werden beispielsweise in einem unpolarisierten Piezoelement die statistisch verteilten ferroelektrischen Domänen über einen sogenannten ferroelastischen Prozess bevorzugt quer zur angelegten Druckspannung bzw. quer zur Stapelrichtung geschaltet. Dies führt zu einer bleibenden Verkürzung des Piezoelements. Dieses verkürzte Piezoelement wird elektrisch angesteuert. Durch Anlegen eines elektrischen Feldes parallel

10

15

20

30

35

zur Stapelrichtung kommt es zum Domänenschalten mit einer Vorzugsrichtung parallel zum angelegten elektrischen Feld. Es werden im Vergleich zum Piezoelement ohne Druckvorspannung wesentlich mehr Domänen umgeschaltet. Es resultiert damit eine im Vergleich zum Piezoelement ohne Druckvorspannung höhere Auslenkung des Piezoelements in Stapelrichtung.

Um auf diese Weise eine erhöhte Auslenkung in einem stapelförmigen Piezoelement in monolithischer Vielschichtbauweise erzielen zu können, wäre beispielsweise bei einer Grundfläche des Piezoelements von 1 x 1 mm 2 eine Kraft von über 100 N nötig. Bei einer Grundfläche von 5 x 5 mm 2 wäre eine Kraft von etwa 2,5 kN nötig. Dies lässt sich nur mit Hilfe einer steifen Feder mit entsprechender Einbusse an Leerlaufauslenkung bewerkstelligen.

Die Erhöhung der Auslenkung mit Hilfe der Druckvorspannung ist aber nicht nur für Piezoaktoren im Makromaßstab problematisch. Insbesondere zur Realisierung eines Piezoaktors mit relativ großer Auslenkung und Kraftübersetzung im Mikromaßstab ist die Erhöhung der Auslenkung mit Hilfe der Druckvorspannung nicht geeignet.

Aufgabe der vorliegenden Erfindung ist es, einen Aktor bereitzustellen, der als Mikroaktor einsetzbar ist und der eine im Vergleich zum bekannten Stand der Technik sehr große relative Auslenkung aufweist.

Die Aufgabe wird durch einen Piezoaktor gelöst mit mindestens einem stapelförmigen Piezoelement, das mindestens zwei entlang einer Stapelrichtung des Piezoelements übereinander angeordnete Elektrodenschichten und mindestens eine jeweils zwischen zwei Elektrodenschichten angeordnete piezoelektrische Schicht aufweist, und mindestens einer Vorspannvorrichtung zur Krafteinleitung in ein Volumen der piezoelektrischen Schicht über mindestens eine Krafteinleitungsfläche der piezoelektrischen Schicht, die an

15

20

30

35

mindestens einem der Vorspannvorrichtung zugekehrten Oberflächenabschnitt der piezoelektrischen Schicht angeordnet ist. Der Piezoaktor ist dadurch gekennzeichnet, dass die Krafteinleitungsfläche kleiner ist als der

Oberflächenabschnitt der piezoelektrischen Schicht und dass das Volumen ein Teilvolumen der piezoelektrischen Schicht ist. Dieses Teilvolumen ist aktorisch wirksam.

Zur Lösung der Aufgabe wird auch ein Verfahren zum Herstellen des Piezoaktors durch Einleiten einer Kraft in ein Teilvolumen der piezoelektrischen Schicht über die Krafteinleitungsfläche der piezoelektrischen Schicht angegeben. Die Kraft wird derart eingeleitet, dass in dem Teilvolumen der piezoelektrischen Schicht eine Polarisation quer zur Stapelrichtung erzeugt wird. Die Polarisation der Domänen des Teilvolumens werden bevorzugt quer zur Stapelrichtung orientiert. Es wird das aktorisch wirksames Teilvolumen erzeugt.

Vorzugsweise befindet sich das Piezoelement in einem nicht elektrisch angesteuerten Zustand. Es ist kein elektrisches Feld angelegt. Durch die Vorspannvorrichtung wird entlang der Stapelrichtung mittelbar über die Krafteinleitungsflächen eine lokal begrenzte Kraft bzw. lokal begrenzte mechanische Druckspannung in ein Teilvolumen der piezoelektrischen Schicht eingeleitet. Durch diese mechanische Druckspannung werden die in einer unpolarisierten piezoelektrisch Schicht statistisch verteilten oder in einer normal polarisierten piezoelektrischen Schicht parallel zur Druckeinleitung orientierten ferroelektrischen Domänen des Teilvolumens der piezoelektrischen Schicht in eine Vorzugsrichtung quer zur angelegten mechanischen Druckspannung geschaltet. Dies führt zu einer bleibenden Verkürzung der piezoelektrischen Schicht im Bereich des Teilvolumens. Eine Schichtdicke der piezoelektrischen Schicht ist verkleinert. Es resultiert ein verkürztes Piezoelement.

Wird das so erzeugte Piezoelement in Polungsrichtung (parallel zur Stapelrichtung) mit einer elektrischen Feldstärke angesteuert, werden alle Domänen sowohl innerhalb als auch außerhalb des Teilvolumens der piezoelektrischen Schicht näherungsweise parallel zur Polungsrichtung geschaltet. Bei diesem Schaltprozess bleibt der Piezoaktor im Bereich des Teilvolumens der piezoelektrischen Schicht unter Druckspannung. Allerdings wird eine erhöhte Auslenkung in Stapelrichtung des Piezoelements gemessen. Die erhöhte Auslenkung ist das Ergebnis eines erhöhten d33-Werts. Bezogen auf die Schichtdicke der piezoelektrischen Schicht werden beispielsweise bei einer Feldstärke von 1 kV/mm d33-Werte von bis zu 15.000 pm/V gemessen. Dies entspricht einer Huberhöhung um einen Faktor 10 gegenüber bisherigen Aktorlösungen.

In einer besonderen Ausgestaltung wird ein Teilvolumen verwendet, das sich entlang einer gesamten Schichtdicke der piezoelektrischen Schicht erstreckt. Es wird ein Teilvolumen erzeugt, das sich von einem Oberflächenabschnitt der piezoelektrischen Schicht zum anderen Oberflächenabschnitt erstreckt. Das Teilvolumen durchsetzt die piezoelektrische Schicht vollständig in Dickenrichtung.

Vorzugsweise wird in diesem Teilvolumen eine im Wesentlichen vollständige Polarisation quer zur Stapelrichtung erzeugt. Es wird im Teilvolumen mit Hilfe der mechanischen Druckspannung eine nahezu vollständige Domänenumschaltung quer zur einleitenden Druckspannung erreicht oder überschritten. Dies gelingt durch homogenes Krafteinleiten bzw. durch konstanten Druck im Teilvolumen über die gesamte Schichtdicke der piezoelektrischen Schicht. Das Teilvolumen ist bezüglich der Polarisationsrichtungen der Domänen homogen. Die dazu aufzubringende Druckspannung hängt dabei vom verwendeten piezoelektrischen Material der piezoelektrischen Schicht ab. Die Druckspannung ist beispielsweise um so niedriger, je

10

15

niedriger die Curie-Temperatur Tc oder je niedriger die Koerzitivfeldstärke Ec des piezoelektrischen Materials ist.

In einer besonderen Ausgestaltung weisen die Vorspannvorrichtung und/oder das Piezoelement zur Erzeugung der Krafteinleitungsfläche mindestens eine aus der Gruppe Kugelkalotte (Kugelkappe), Kegelstumpf, Quader und/oder Zylinder ausgewählte Bauform auf. Denkbar ist auch ein Prisma. Diese Bauformen ermöglichen insbesondere die Realisierung sowohl von punktförmigen als auch von streifenförmigen Krafteinleitungsflächen. Punktförmig bedeutet dabei, dass die Krafteinleitungsfläche durch eine kreisförmige oder näherungsweise kreisförmige Fläche beschrieben werden kann. Die Krafteinleitungsfläche kann dabei sowohl kreisrund, oval oder quadratisch sein. Beispielsweise verfügt die Vorspannvorrichtung über einen Stempel in Form eines Quaders mit einer quadratischen Grundfläche oder in Form eines Zylinders mit einer runden Grundfläche. Über diese Grundflächen wird die mechanische 20 Druckvorspannung auf das Piezoelement übertragen. Der Grundfläche des Stempels entsprechend wird dabei die mechanische Druckvorspannung über eine runde oder quadratische Krafteinleitungsfläche der piezoelektrischen Schicht in das Teilvolumen der piezoelektrischen Schicht eingeleitet. Weist der Quader eine rechteckige Grundfläche auf, wird die Kraft entlang einer streifenförmigen Krafteinleitungsfläche in ein entsprechend geformtes Teilvolumen der piezoelektrischen Schicht eingeleitet. Denkbar ist auch, dass bei einem Zylinder die Kraft nicht 30 über eine Grundfläche, sondern über eine Mantelfläche eingeleitet wird. Dabei liegt beispielsweise eine linienförmige Krafteinleitungsfläche vor.

Denkbar ist auch, dass die Krafteinleitungsflächen mit Hilfe 35 einer strukturierten Elektrodenschicht des Piezoelements realisiert sind. Mit Hilfe der strukturierten Elektrodenschichten wird in die piezoelektrische Schicht nur

10

15

20

an bestimmten Stellen die Kraft eingeleitet. Nur an diesen Stellen kommt es in Folge der Krafteinleitung zu einem Domänenumschalten. Zur Strukturierung der Elektrodenschicht sind alle bekannten Verfahren aus der Mikrostrukturierung anwendbar.

In einer besonderen Ausgestaltung wird eine Vielzahl von Teilvolumina in der piezoelektrischen Schicht erzeugt. Die Teilvolumina sind dabei vorzugsweise voneinander getrennt. Dies bedeutet, dass über mehrere Krafteinleitungsflächen in der piezoelektrischen Schicht das Umschalten der Polarisation der Domänen quer zur Stapelrichtung erzeugt wird. Die über die Krafteinleitungsflächen eingeleitete Druckspannung ist dabei vorzugsweise gleich. Dies bedeutet beispielsweise, dass bei gleicher Größe der Krafteinleitungsflächen jeweils eine gleiche Kraft über die Vorspannvorrichtung auf die Krafteinleitungsflächen ausgeübt wird.

Insbesondere sind mindestens drei Krafteinleitungsflächen vorhanden, die über den Oberflächenabschnitt der piezoelektrischen Schicht flächig verteilt sind. Bei drei flächig verteilten Krafteinleitungsflächen lässt sich relativ leicht eine gleiche Druckspannung in die Teilvolumina einbringen. Es resultiert eine Kraftvervielfachung durch eine Vergrößerung der gesamten Krafteinleitungsfläche. Zum Krafteinleiten muss eine größere Kraft aufgewendet werden. Es ist aber auch eine größere Kraft abrufbar.

In einer besonderen Ausgestaltung sind mindestens drei

Krafteinleitungsflächen vorhanden, die am
Oberflächenabschnitt der piezoelektrischen Schicht in einer
Reihe angeordnet sind. Beispielsweise können auf diese Weise
streifenförmige Krafteinleitungsflächen parallel zueinander
über dem Oberflächenabschnitt verteilt sein. Denkbar ist

auch, dass eine Vielzahl von punktförmigen
Krafteinleitungsflächen eine Matrix aus
Krafteinleitungsflächen bilden. Es resultiert damit eine

10

15

8

entsprechende Matrix von Teilvolumina in der piezoelektrischen Schicht.

Die an einander abgekehrten Oberflächenabschnitten der piezoelektrischen Schicht angeordneten

Krafteinleitungsflächen können sowohl bezüglich ihrer Form als auch bezüglich ihrer Größe unterschiedlich sein.

Beispielsweise ist die Krafteinleitungsfläche eines der Oberflächenabschnitte punktförmig. Die Krafteinleitungsfläche des anderen Oberflächenabschnitts kann dagegen streifenförmig sein. Denkbar ist auch, dass der gesamte andere Oberflächenabschnitt die Krafteinleitungsfläche bildet. In diesem Fall resultiert ein inhomogen druckbelastetes

Teilvolumen. Die Kraft bzw. die Druckspannung wird nicht homogen in das Teilvolumen eingebracht.

Zur Erzeugung eines homogen polarisierten und sich in Dickenrichtung erstreckenden Teilvolumens weisen in einer besonderen Ausgestaltung einander abgekehrte

20 Oberflächenabschnitte der piezoelektrischen Schicht im Wesentlichen gleiche Krafteinleitungsflächen auf. Im Wesentlichen gleich bedeutet dabei, dass die Krafteinleitungsflächen mit einer Abweichung von bis zu 10% gleich groß sind. Die Krafteinleitungsflächen sind dabei entlang der Stapelrichtung des Piezoelements bündig übereinander angeordnet. Dadurch wird über die beiden Krafteinleitungsflächen jeweils ein Teilvolumen mit der gewünschten Polarisation erzeugt.

30 Allein durch die punktförmige Krafteinleitung in die piezoelektrische Schicht wird bereits ein erhöhter d₃₃-Wert erzielt. Ein extrem hoher d₃₃-Wert wird erzielt, wenn sich das Teilvolumen homogen druckbelastet durch die gesamte piezoelektrische Schicht in Dickenrichtung bzw.

35 Stapelrichtung des Piezoelements erstreckt. Je größer die Schichtdicke der piezoelektrischen Schicht ist, desto größer ist allerdings eine Abweichung von einem homogen

15

20

30

druckbelasteten Teilvolumen. Dies kann dazu führen, dass in Bereichen des Teilvolumens die mechanische Druckspannung unter einen Minimalwert der für das Domänenschalten notwendigen Druckspannung absinkt. Das Teilvolumen ist nicht mehr homogen druckbelastet. In Folge davon stellen sich ein kleinerer d33-Wert und damit eine kleinere Auslenkung des Piezoelements ein. Eine "optimale" Schichtdicke der piezoelektrischen Schicht, bei der eine homogene Druckverteilung im Teilvolumen bei möglichst großer Schichtdicke der piezoelektrischen Schicht vorliegt, hängt in erster Linie von der Art der Krafteinleitung ab. Dagegen spielt das Material für diese Kenngröße eine untergeordnete Rolle. Ist die Schichtdicke kleiner als die "optimale" Schichtdicke, so liegt zwar eine homogene Druckverteilung im Teilvolumen vor. Die erzielbare Auslenkung nimmt aber mit abnehmender Schichtdicke der piezoelektrischen Schicht ab.

In einer besonderen Ausgestaltung ist die Schichtdicke der piezoelektrischen Schicht aus dem Bereich von einschließlich 20 µm bis einschließlich 200 µm ausgewählt. Es hat sich gezeigt, dass sich bei diesen Schichtdicken auch bei Anwendung einer kleinen Kraft ein kleines, fadenförmiges Volumens mit einer homogenen Druckverteilung erzeugen lässt.

In einer besonderen Ausgestaltung weist die Krafteinleitungsfläche eine Ausdehnung auf, die im Wesentlichen der Schichtdicke der piezoelektrischen Schicht entspricht. Die Ausdehnung ist beispielsweise ein Durchmesser oder eine Kantenlänge der Krafteinleitungsfläche. Es resultiert ein näherungsweise kubisch geformtes Teilvolumen, das besonders homogen bezüglich der Polarisation durch die Krafteinleitung ist.

In einer besonderen Ausgestaltung ist eine Vielzahl von
35 Piezoelementen übereinander gestapelt. Vorzugsweise sind
dabei mindestens zwei Piezoelemente derart über einander
gestapelt, dass Krafteinleitungsflächen der Piezoelemente im

Wesentlichen bündig übereinander angeordnet sind. Die Teilvolumina einer jeden piezoelektrischen Schicht sind in Stapelrichtung über den Teilvolumina der piezoelektrischen Schicht weiterer Piezoelemente übereinander angeordnet.

Dadurch resultiert zusätzlich zur außergewöhnlichen Auslenkungshöhe eines jeden einzelnen Piezoelements ein Piezoaktor mit einer extrem hohen Auslenkung. Es resultiert eine Hubvervielfachung. Eine Kraft, die zur hohen Auslenkung in das Volumen der piezoelektrischen Schichten eingebracht werden muss, ist dabei relativ klein.

Zusammenfassend ergeben sich mit der Erfindung folgende besonderen Vorteile:

• Durch die Art der Krafteintragung in ein Teilvolumen der piezoelektrischen Schicht wird ein Piezoelement erhalten mit einem deutlich größeren Hub. Damit lässt sich beispielsweise ein Mikroaktor mit einer Bauhöhe von 1 mm und einem Hub von 10 μm realisieren.

20

10

• Bei halbem Leerlaufhub eines Mikroaktors ist dabei eine Arbeitskraft von 10 - 20 cN erzielbar.

30

- Kraft und mechanische Arbeit sind durch geeignet gestapelte Piezoelemente vervielfältigbar und für viele Anwendungen einstellbar.
- Durch Verbindung von piezokeramischer
 Vielschichttechnologie, Mikrostrukturierung und
 Mikromechanik bietet die Erfindung Lösungen für viele
 Anwendungsgebiete (Mikropumpen, Mikroventile, Mikromotoren etc.).

Anhand mehrerer Beispiele und der dazugehörigen Figuren wird 35 die Erfindung im Folgenden näher beschrieben. Es werden einzelne Ausgestaltungen der Erfindung beschrieben, die in beliebiger Form miteinander kombiniert werden können. Die

10

15

20

够

Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar.

Figuren 1 bis 9 zeigen jeweils eine Ausschnitt verschiedener Piezoaktoren im seitlichen Querschnitt.

Figuren 10 bis 12 zeigen jeweils einen Ausschnitt einer piezoelektrischen Schicht mit Krafteinleitungsflächen in Aufsicht auf die piezoelektrische Schicht.

Figur 13 zeigt einen Piezoaktor in perspektivischer Darstellung, bei dem eine streifenförmige Krafteinleitungsfläche realisiert ist.

Figur 14 zeigt ein Piezoelement in Vielschichtbauweise.

Der Piezoaktor 1 gemäß Figuren 1 bis 9 weist jeweils mindestens ein stapelförmiges Piezoelement 2 aus zwei entlang der einer Stapelrichtung 10 des Piezoelements 2 übereinander angeordneten Elektrodenschichten 7 und 8 und einer zwischen den Elektrodenschichten 7 und 8 angeordneten piezoelektrischen Schicht 4 auf. Die piezoelektrische Schicht 4 besteht aus einem Weich-PZT. Die Curietemperatur T_c beträgt etwa 170° C. Die Koerzitivfeldstärke E_c des Weich-PZTs liegt bei 0,5 kV/mm. Die Schichtdicke 6 der piezoelektrischen Schicht 4 beträgt etwa $120~\mu m$.

Der Piezoaktor 1 verfügt jeweils über eine

Vorspannvorrichtung 15 zur Krafteinleitung in ein Teilvolumen

5 der piezoelektrischen Schicht 4. Über die

Krafteinleitungsflächen 13 und 14 wird in das Teilvolumen 5

der piezoelektrischen Schicht 4 eine Kraft 32 eingeleitet.

Die Krafteinleitungsflächen 13 und 14 sind an den der

Vorspannvorrichtung 15 zugekehrten Oberflächenabschnitten 11

und 12 der piezoelektrischen Schicht 4 angeordnet. Die

Oberflächenabschnitte 11 und 12 sind dabei voneinander

20

30

35

abgekehrt. Zumindest eine der Krafteinleitungsflächen 13 oder 14 ist kleiner als der zugehörige Oberflächenabschnitt 11 oder 12 der piezoelektrischen Schicht 4.

5 Zur Erzeugung der Krafteinleitungsflächen 13 und 14 steht die Vorspannvorrichtung 15 mit den Elektrodenschichten 7 und 8 mechanisch in Kontakt. Über die Elektrodenschichten 7 und 8 werden mittelbar die Krafteinleitungsflächen 13 und 14 der Oberflächenabschnitte 11 und 12 der piezoelektrischen Schicht 4 erzeugt. Ein Ausmaß der Krafteinleitungsflächen 13 und 14 entspricht im Wesentlichen einer jeweiligen mechanischen Kontaktfläche zwischen der Vorspannvorrichtung 15 und der entsprechenden Elektrodenschicht 7 und 8.

Gemäß Figur 1 verfügt die Vorspannvorrichtung 15 zur Erzeugung punktförmiger Krafteinleitungsflächen (vgl. Figur 10, Bezugszeichen 23) über zwei Kugelkalotten 17 und 18. Eine Kugelkalotte 17 ist mit einer Basis 16 der Vorspannvorrichtung 15 verbunden. Mit Hilfe einer nicht gezeigten Feder wird die in das Teilvolumen der piezoelektrischen Schicht 4 einzuleitende Kraft 32 auf die zweite Kugelkalotte 18 übertragen. Die Kugelkalotten 17 und 18 sind annähernd gleich geformt. Die Kugelkalotten 17 und 18 sind einander gegenüber liegenden und mit jeweils einer der Elektrodenschichten 7 und 8 in mechanischem Kontakt stehend angeordnet. Durch die Anordnung der gleichen Kugelkalotten entstehen Krafteinleitungsflächen 13 und 14 der piezoelektrischen Schicht 4, die in Stapelrichtung 10 nahezu bündig übereinander liegen. Durch Anlegen einer Druckspannung wird über die Kugelkalotten 17 und 18 eine Kraft 32 in das Teilvolumen 5 der piezoelektrischen Schicht 4 eingeleitet. Als Folge davon kommt es in dem Teilvolumen 5 zu einem Umschalten der Polarisation 27 der Domänen quer zur Stapelrichtung 10. Das Teilvolumen 5 erstreckt sich in Stapelrichtung 10 des Piezoelements 2 entlang der gesamten Schichtdicke 6 der piezoelektrischen Schicht 4. Die Polarisation erfolgt nahezu vollständig durch homogene

Krafteinleitung in das Teilvolumen. Es resultiert ein fadenförmiges, homogenes Teilvolumen 5 der piezoelektrischen Schicht 4.

Im Unterschied zum vorangegangenen Beispiel werden die punktförmigen Krafteinleitungsflächen gemäß Figur 2 mit Hilfe von Kegelstümpfen 19 und 20 und gemäß Figur 3 mit Hilfe von Zylindern 21 und 22 mit punktförmiger Grundfläche erzeugt. In einer weiteren Ausführung gemäß Figur 13 werden mit Hilfe von Quadern 30 und 31 mit rechteckiger Grundfläche streifenförmige Krafteinleitungsflächen 24 (vgl. Figur 11) erzeugt.

Zum Erzeugen der Krafteinleitungsflächen verfügen gemäß Figur 4 sowohl die Vorspannvorrichtung 15 als auch das Piezoelement 2 über einen Zylinder 22 und 21 mit punktförmiger Grundfläche. Der Zylinder 21 des Piezoelements 2 ist dabei mit Hilfe einer strukturierten Elektrodenschicht 9 realisiert.

20

Im Unterschied zu den vorangegangenen Beispielen sind die Krafteinleitungsflächen an den einander abgekehrten Oberflächenabschnitten 11 und 12 der piezoelektrischen Schicht 4 gemäß Figuren 5 und 6 nicht gleich. Die Krafteinleitungsfläche 13 am Oberflächenabschnitt 11 und die weitere Krafteinleitungsfläche 14 am weiteren Oberflächenabschnitt 12 sind unterschiedlich groß. Es resultiert ein Teilvolumen, in das die Kraft 32 nicht homogen eingebracht wird. Das Teilvolumen wird nicht homogen polarisiert. Es kann zu einem reduzierten Effekt kommen. Im Ausführungsbeispiel gemäß Figur 6 ist angedeutet, dass die obere Elektrodenschicht 8 gleich oder nur unwesentlich größer sein kann, als die Kontaktfläche zwischen der Elektrodenschicht 8 und der Vorspannvorrichtung 15.

35

30

In Figur 7 ist eine weitere Ausführungsform angedeutet, bei der mehrere Zylinder zu den Oberflächenabschnitten 11 und 12

20

in Reihe 25 angeordnet sind. Wenn die Grundflächen der Zylinder streifenförmig sind, resultieren streifenförmige Krafteinleitungsflächen 24 (Figur 11). Figur 12 stellt eine Variante der streifenförmigen Krafteinleitungsflächen 24 dar. Die streifenförmigen Krafteinleitungsflächen 24 sind quer zur Längsrichtung der Streifen über Stege miteinander verbunden. Die Krafteinleitung in die piezoelektrische Schicht 4 erfolgt netzartig.

10 Eine weitere Ausführungsform basierend auf der nach Figur 7 ist in Figur 10 dargestellt. Eine Vielzahl von punktförmigen Krafteinleitungsflächen ist über einen Oberflächenabschnitt 11, 12 der piezoelektrischen Schicht 4 in Form einer Matrix 26 verteilt.

Die Figuren 8 und 9 zeigen zwei Ausführungsbeispiele, bei denen zwei Piezoelemente 2 derart gestapelt sind, dass die Krafteinleitungsflächen 13, 14 der Piezoelemente 2 bündig übereinander angeordnet sind. Zur Krafteinleitung in die piezoelektrischen Schichten 2 ist gemäß Figur 8 zwischen den Piezoelementen 2 eine strukturierte Metallfolie 28 eingebracht. Figur 9 stellt dagegen einer Erweiterung des Ausführungsbeispiels gemäß Figur 4 dar. Zur Krafteinleitung weisen die Elektrodenschichten 9 zumindest zum Teil Zylinder auf. Die Elektrodenschichten 9 sind strukturiert. Zur Anpassung eines Kraftschlusses ist zwischen den strukturierten Elektrodenschichten 9 der gestapelten Piezoelemente 2 eine Metallzwischenfolie 29 angeordnet.

Weitere Ausführungsformen ergeben sich dadurch, dass Piezoelemente 3 in Vielschichtbauweise verwendet werden, bei denen mehrere Elektrodenschichten 7 und piezoelektrische Schichten 4 übereinander abwechselnd angeordnet sind (Figur 14). Gemäß einer weiteren Ausführungsform sind die äußeren Elektrodenschichten 7 strukturierte Elektrodenschichten 9.

Basierend auf dem Piezoaktor 1 gemäß Figur 1 wurden die in Tabelle 1 aufgeführten Messergebnisse erzielt. Das Piezoelement 2 wurde mit einer statischen Kraft von 0,7 N, beaufschlagt. Bei einer elektrischen Feldstärke von 1kV/mm wurde die piezoelektrische Ladungskonstante d₃₃ als Funktion des piezokeramischen Materials und der Schichtdicke 6 der piezoelektrischen Schicht 4 ermittelt. Es sind d₃₃-Werte von bis zu 15.000 pm/V erzielbar.

10 Tabelle 1:

5

Versuch Nr. 1	Piezo- keramik	Curie- Temperatur	Koerzitiv- feldstärke	Proben- dicke	d33
		[°C]	[kV/mm]	[mu]	[V\mq]
11	Weich-PZT	330	1.0	1000	650
2	Weich-PZT	330	1.0	110	2200
3	Weich-PZT	170	0.5	1000	1150
4	Weich-PZT	170	0.5	260	1600
5	Weich-PZT	170	0.5	120	15000
6	Weich-PZT	120	0.3	1000	1400
7	Weich-PZT	120.	0.3	160	3500

Patentansprüche

30

- 1. Piezoaktor (1) mit
- mindestens einem stapelförmigen Piezoelement (2), das mindestens zwei entlang einer Stapelrichtung (10) des Piezoelements (2) übereinander angeordnete Elektrodenschichten (7, 8, 9) und mindestens eine jeweils zwischen zwei Elektrodenschichten (7, 8, 9) angeordnete piezoelektrische Schicht (4) aufweist, und
- mindestens einer Vorspannvorrichtung (15) zur
 Krafteinleitung (32) in ein Volumen der
 piezoelektrischen Schicht (4) über mindestens eine
 Krafteinleitungsfläche (13, 14, 23, 24) der
 piezoelektrischen Schicht (4), die an mindestens einem
 der Vorspannvorrichtung (15) zugekehrten
 Oberflächenabschnitt (11, 12) der piezoelektrischen
 Schicht (4) angeordnet ist,

dadurch gekennzeichnet, dass

- die Krafteinleitungsfläche (13, 14, 23, 24) kleiner ist als der Oberflächenabschnitt (11, 12) der piezoelektrischen Schicht (4) und das Volumen ein Teilvolumen (5) der piezoelektrischen Schicht (4) ist.
 - Piezoaktor nach Anspruch 1, wobei die
 Vorspannvorrichtung (15) und/oder das Piezoelement (2)
 zur Erzeugung der Krafteinleitungsfläche (13, 14, 23,
 24) mindestens eine aus der Gruppe Kugelkalotte (17,
 18), Kegelstumpf (19, 29), Quader (30, 31) und/oder
 Zylinder (21, 22) ausgewählte Bauform aufweisen.
 - 3. Piezoaktor nach Anspruch 1 oder 2, wobei die Krafteinleitungsfläche (23) punktförmig ist.
- Piezoaktor nach Anspruch 1 oder 2, wobei die
 Krafteinleitungsfläche (24) streifenförmig ist.

10

15

20

30

35

- 5. Piezoaktor nach einem der Ansprüche 1 bis 4, wobei mindestens drei Krafteinleitungsflächen vorhanden sind, die über den Oberflächenabschnitt (11, 12) der piezoelektrischen Schicht (4) flächig verteilt sind.
- 6. Piezoaktor nach Anspruch 1 bis 5, wobei mindestens drei Krafteinleitungsflächen vorhanden sind, die am Oberflächenabschnitt (11, 12) der piezoelektrischen Schicht (4) in Reihe (25) angeordnet sind.
- 7. Piezoaktor nach einem der Ansprüche 1 bis 6, wobei einander abgekehrte Oberflächenabschnitten (11, 12) der piezoelektrischen Schicht (4) gleiche Krafteinleitungsflächen (13, 14, 23, 24) aufweisen, die entlang der Stapelrichtung (10) übereinander angeordnet sind.
- 8. Piezoaktor nach einem der Ansprüche 1 bis 7, wobei eine Schichtdicke (6) der piezoelektrischen Schicht (4) aus dem Bereich von einschließlich 20 μ m bis einschließlich 200 μ m ausgewählt ist.
 - 9. Piezoaktor nach Anspruch 8, wobei die Krafteinleitungsfläche (13, 14, 23, 24) eine Ausdehnung aufweist, die im Wesentlichen der Schichtdicke (6) der piezoelektrischen Schicht (4) entspricht.
 - 10. Piezoaktor nach einem der Ansprüche 1 bis 9, wobei eine Vielzahl von Piezoelementen (2) übereinander gestapelt ist.
 - 11. Piezoaktor nach Anspruch 10, wobei mindestens zwei Piezoelemente (2) derart übereinander gestapelt sind, dass Krafteinleitungsflächen (13, 14, 23, 24) der Piezoelemente (2) im Wesentlichen bündig übereinander angeordnet sind.

- 12. Verfahren zum Herstellen eines Piezoaktors (2) nach einem der Ansprüche 1 bis 11 durch Einleiten einer Kraft (32) in ein Teilvolumen (5) der piezoelektrischen Schicht (4) über die Krafteinleitungsfläche (13, 14, 23, 24) der piezoelektrischen Schicht (4) derart, dass in dem Teilvolumen (5) der piezoelektrischen Schicht eine Polarisation (27) quer zur Stapelrichtung (10) erzeugt wird.
- 13. Verfahren nach Anspruch 12, wobei ein Teilvolumen (5) verwendet wird, das sich entlang einer gesamten Schichtdicke (6) der piezoelektrischen Schicht (4) erstreckt.
- 15 14. Verfahren nach Anspruch 12 oder 13, wobei im Teilvolumen (5) eine im Wesentlichen vollständige Polarisation quer zur Stapelrichtung (10) erzeugt wird.

Zusammenfassung

Piezoaktor und Verfahren zum Herstellen des Piezoaktors

Die Erfindung betrifft einen Piezoaktor (1) mit mindestens einem stapelförmigen Piezoelement (2), das mindestens zwei entlang einer Stapelrichtung (10) des Piezoelements übereinander angeordnete Elektrodenschichten (7, 8) und mindestens eine jeweils zwischen zwei Elektrodenschichten angeordnete piezoelektrische Schicht (4) aufweist, und mindestens einer Vorspannvorrichtung (15) zur Krafteinleitung in ein Volumen der piezoelektrischen Schicht über mindestens eine Krafteinleitungsfläche (13, 14) der piezoelektrischen Schicht, die an mindestens einem der Vorspannvorrichtung zugekehrten Oberflächenabschnitt (11, 12) der piezoelektrischen Schicht angeordnet ist. Der Piezoaktor ist dadurch gekennzeichnet, dass die Krafteinleitungsfläche kleiner ist als der Oberflächenabschnitt der piezoelektrischen Schicht und dass das Volumen ein Teilvolumen (5) der piezoelektrischen Schicht ist. Das Herstellen des Piezoaktors erfolgt durch Einleiten einer Kraft in das Teilvolumen der piezoelektrischen Schicht über die Krafteinleitungsfläche der piezoelektrischen Schicht. Die Kraft wird derart eingeleitet, dass in dem Teilvolumen der piezoelektrischen Schicht ein Umschalten der Polarisation der Domänen quer zur Stapelrichtung hervorgerufen wird. Der Piezoaktor zeichnet sich durch einen großen relativen Hub im Prozentbereich aus, wobei Kräfte von einigen zehntel Newton pro Kontaktflächenpaar übertragen werden können.

30

5

10

15

20

Figur 1

FIG 2

FIG 3

FIG 4

FIG 9

FIG 10

FIG 11

FIG 12

FIG 13

FIG 14

