INF221 – Algoritmos y Complejidad

Clase #17 Dividir y Conquistar II

Aldo Berrios Valenzuela

Horst H. von Brand

Miércoles 5 de octubre de 2016

1. Dividir y Conquistar II

Discutiremos un problema planteado por Bentley [1]. Dado el arreglo a [n], hallar la máxima suma de un rango:

$$\max_{i,j} \left\{ \sum_{i \le k \le j} a[k] \right\} \tag{1.1}$$

Si todos los valores son positivos, la respuesta es obvia: la suma de todos los elementos del arreglo. El punto está si hay elementos negativos: ¿incluimos uno de ellos en la esperanza que los elementos positivos que lo rodean más que lo compensen? Finalmente, acordamos que la suma de un rango vacío es cero, y que en un arreglo de elementos negativos la suma máxima es cero.

1.1. Algoritmo ingenuo

La solución obvia, traducción directa de la especificación ecuación (1.1), es la mostrada en el listado 1. La comple-

```
double MaxSum(double a[], int n)
{
    double MaxSoFar;

MaxSoFar = 0.0;
    for(int i = 0; i < n; i++) {
        for(int j = i; j <= n; j++) {
            double Sum = 0.0;
            for(int k = i; k < j; k++)
                 Sum += a[k];
            MaxSoFar = max(MaxSoFar, Sum);
        }
    }
    return MaxSoFar;
}</pre>
```

Listado 1: Algoritmo 1: Versión ingenua

jidad del algoritmo 1 es $O(n^3)$. Lo que buscamos es mejorarlo.

1.2. No recalcular sumas

Hay dos ideas sencillas para evitar recalcular sumas.

1.2.1. Extender sumas

En vez de calcular la suma del rango cada vez, extendemos la suma anterior. Esto da el programa del listado 2. La

```
double MaxSum(double a[], int n)
{
   double MaxSoFar;

MaxSoFar = 0.0;
   for(int i = 0; i < n; i++) {
      double Sum = 0.0;
      for(int j = i; j < n; j++) {
        Sum += a[j];
        MaxSoFar = max(MaxSoFar, Sum);
      }
   }
   return MaxSoFar;
}</pre>
```

Listado 2: Algoritmo 2: Evitar recalcular sumas

complejidad del algoritmo 2 es $O(n^2)$.

1.2.2. Sumas cumulativas

Una manera de manejar rangos es usar sumas cumulativas, y obtener el valor para el rango restando. Esta idea da el listado 3. La complejidad del algoritmo 3 es $O(n^2)$. En función de nuestro algoritmo original resulta una mejora,

Listado 3: Algoritmo 3: Usar arreglo cumulativo

pero no respecto a la segunda variante.

1.3. Dividir y Conquistar

Aplicar la estragia vista la clase pasada lleva a la figura 1a. Pero debemos también considerar que el rango con máxima suma esté a hojarcadas, cruzando el punto central, como en la figura 1b. El algoritmo es el dado en el listado 4. Usando el "teorema maestro", las constantes del algoritmo 4 son a = 2, b = 2, d = 1, por lo tanto la complejidad es $O(n \log n)$.

Figura 1: Dividir y conquistar

1.4. Un algoritmo lineal

Otro algoritmo resulta de la idea, común al procesar arreglos, de tener una solución parcial hasta a[i], y analizar cómo extenderla para cubrir hasta a[i+1]. En nuestro caso, esto significa considerar la máxima suma que llega hasta a[i], y recordar la máxima suma vista hasta ahora, ver la figura 2. Esto da el algoritmo 5, del listado 5.

Figura 2: Extender la solución

La complejidad del algoritmo 5 es O(n). Sin embargo, es imposible tener una complejidad menor que n, dado que es necesario revisar cada elemento del arreglo.

Algoritmo	1	2	4	5
Líneas de C	8	7	14	7
Tiempo en $[\mu s]$	$3,4n^3$	$13n^{2}$	$46n\log n$	33 <i>n</i>
Tiempo para $n = 10^2$	3,4[s]	130 [ms]	30[ms]	3,3 [ms]
10 ³	0,94 [h]	14 [s]	0,45 [s]	33 [ms]
104	39 [dias]	22 [min]	6,1 [s]	0,33 [s]
10^{5}	108 años	1,5 días	1,3 min	3,3 [s]
106	108 millones de años	5 meses	15 min	33 [s]

Cuadro 1: Comparativa de Bentley [1] entre las variantes

Reportar la complejidad de un algoritmo en términos de $O(\cdot)$ es incompleto, pero el cuadro 1 muestra su relevancia. La ventaja es que la complejidad en estos términos es sencilla de obtener, en nuestros casos simples (algoritmos 1, 2, 3 y 5) por inspección, el teorema maestro da la complejidad para el algoritmo 4 directamente.

Referencias

[1] Jon L. Bentley: Algorithm design techniques. Communications of the ACM, 27(9):865–871, September 1984.

```
static double *aa;
static double msi(int 1, int u)
  double Sum, MaxToRight, MaxToLeft, MaxCrossing,
         MaxInA, MaxInB;
  if(l >= u) /* Zero-element vector */
   return 0.0;
  if(l == u - 1) /* One-element vector */
   return max(aa[1], 0.0);
  int m = (1 + u) / 2;
  /* Find max crossing to left */
  Sum = MaxToLeft = 0.0;
  for(int i = m - 1; i >= 1; i--) {
   Sum += aa[i];
   MaxToLeft = max(MaxToLeft, Sum);
 }
  /* Find max crossing to right */
  Sum = MaxToRight = 0.0;
  for(int i = m; i < u; i++) {
   Sum += aa[i];
   MaxToRight = max(MaxToRight, Sum);
 MaxCrossing = MaxToLeft + MaxToRight;
 MaxInA = msi(1, m);
 MaxInB = msi(m, u);
 return max(MaxCrossing, max(MaxInA, MaxInB));
}
double MaxSum(double a[], int n)
 aa = a;
 return msi(0, n);
```

Listado 4: Algoritmo 4: Usar sumas cumulativas

```
double MaxSum(double a[], int n)
{
   double MaxSoFar, MaxEndingHere;

MaxSoFar = MaxEndingHere = 0.0;
   for(int i = 0; i < n; i++) {
      MaxEndingHere = max(MaxEndingHere + a[i], 0.0);
      MaxSoFar = max(MaxSoFar, MaxEndingHere);
   }
   return MaxSoFar;
}</pre>
```

Listado 5: Algoritmo 5: Ir extendiendo resultado parcial