THE SCHRÖDINGER EQUATION WITH A MOVING POINT INTERACTION IN THREE DIMENSIONS

ANDREA POSILICANO

ABSTRACT. In the case of a single point interaction we improve, by using different methods, the existence theorem for the unitary evolution generated by a Schrödinger operator with moving point interactions obtained by Dell'Antonio, Figari and Teta.

1. Introduction

Let us denote by $L^2(\mathbb{R}^3)$, with the usual scalar product $\langle \cdot, \cdot \rangle_2$ and corresponding norm $\|\cdot\|_2$, the Hilbert space of square integrable measurable functions on \mathbb{R}^3 . By $H^1(\mathbb{R}^3)$ and by $H^2(\mathbb{R}^3)$ we denote the usual Sobolev-Hilbert spaces

$$H^1(\mathbb{R}^3) := \left\{ \psi \in L^2(\mathbb{R}^3) \, : \, \nabla \psi \in L^2(\mathbb{R}^3) \right\} \,,$$

$$H^2(\mathbb{R}^3) := \left\{ \psi \in H^1(\mathbb{R}^3) \, : \, \Delta \psi \in L^2(\mathbb{R}^3) \right\} \, .$$

Let

$$H \equiv -\Delta: H^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$$

be the self-adjoint operator giving the Hamiltonian of a free quantum particle in \mathbb{R}^3 . For any $y \in \mathbb{R}^3$ let us consider the symmetric operator H_y° obtained by restricting H to the subspace

$$\{\psi \in H^2(\mathbb{R}^3) : \psi(y) = 0\}.$$

Such a symmetric operator has defect indices (1,1). Any of its self-adjoint extensions different from H itself describes a point interaction centered at y. One has the following (see [1], section I.1.1 as regards $H_{\alpha,y}$ and see [9] as regards $F_{\alpha,y}$)

Theorem 1.1. Any self-adjoint extension of H_y° different from H itself is given by

$$H_{\alpha,y}: D(H_{\alpha,y}) \to L^2(\mathbb{R}^3)$$
,

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 47B25, 47D08; Secondary 47D06, 81Q10.

 $[\]it Key\ words\ and\ phrases.$ Point interactions, singular perturbations, unitary propagators.

$$D(H_{\alpha,y}) := \{ \psi \in L^2(\mathbb{R}^3) : \psi(x) = \psi_{\lambda}(x) + \Gamma_{\alpha}(\lambda)^{-1} \psi_{\lambda}(y) \, \mathcal{G}_{\lambda}(x-y) \,, \ \psi_{\lambda} \in H^2(\mathbb{R}^3) \} \,,$$
$$(H_{\alpha,y} + \lambda) \psi := (H + \lambda) \psi_{\lambda} \,,$$

the definition being λ -independent. Here $\alpha \in \mathbb{R}$,

$$\Gamma_{\alpha}(\lambda) = \alpha + \frac{\sqrt{\lambda}}{4\pi}, \qquad \mathcal{G}_{\lambda}(x) = \frac{e^{-\sqrt{\lambda}|x|}}{4\pi|x|}$$

and $\lambda > 0$ is chosen in such a way that $\Gamma_{\alpha}(\lambda) \neq 0$. The kernel of the resolvent of $H_{\alpha,y}$ is given by

$$(H_{\alpha,y} + \lambda)^{-1}(x_1, x_2) = \mathcal{G}_{\lambda}(x_1 - x_2) + \Gamma_{\alpha}(\lambda)^{-1}\mathcal{G}_{\lambda}(x_1 - y) \mathcal{G}_{\lambda}(x_2 - y).$$

The quadratic form associated with $H_{\alpha,y}$ is

$$F_{\alpha,y}: D(F_y) \times D(F_y) \to \mathbb{R}$$

$$D(F_y) := \left\{ \psi \in H^1(\mathbb{R}^3) : \psi(x) = \psi_{\lambda}(x) + q_{\psi} \mathcal{G}_{\lambda}(x - y) , \ \psi_{\lambda} \in H^1(\mathbb{R}^3) , \ q_{\psi} \in \mathbb{C} \right\} ,$$
$$(F_{\alpha,y} + \lambda)(\psi, \phi) = \langle \nabla \psi_{\lambda}, \nabla \phi_{\lambda} \rangle_2 + \lambda \langle \psi_{\lambda}, \phi_{\lambda} \rangle_2 + \Gamma_{\alpha}(\lambda) \, \bar{q}_{\psi} q_{\phi} .$$

Moreover the essential spectrum of $H_{\alpha,y}$ is purely absolutely continuous,

$$\sigma_{ess}(H_{\alpha,y}) = \sigma_{ac}(H_{\alpha,y}) = [0, \infty),$$

$$\alpha < 0 \quad \Rightarrow \quad \sigma_{pp}(H_{\alpha,y}) = -(4\pi\alpha)^{2},$$

$$\alpha \geq 0 \quad \Rightarrow \quad \sigma_{pp}(H_{\alpha,y}) = \emptyset.$$

Suppose now that the point y is not fixed but describes a curve y: $\mathbb{R} \to \mathbb{R}^3$, thus producing the family of self-adjoint operators $H_{\alpha,y}(t) \equiv H_{\alpha,y(t)}$. Then one is interested in showing that the time-dependent Hamiltonian $H_{\alpha,y}(t)$ generates a strongly continuous unitary propagator $U_{t,s}$. Note that both the operator and the form domain of $H_{\alpha,y}(t)$ are strongly time-dependent. This renders inapplicable the known general theorems (see [3], [6]) and such a generation problem is not trivial.

By exploiting the explicit form of $H_{\alpha,y}(t)$ and in the case of several moving point interactions, Dell'Antonio, Figari and Teta obtained in [2] the following (here we state their results in the simpler case of a single point interaction)

Theorem 1.2. Suppose that

$$y \in C^3(\mathbb{R}; \mathbb{R}^3)$$
, $\psi \in C_0^\infty(\mathbb{R}^3)$, $\psi(y(s)) = 0$.

Then there exist an unique strongly continuous unitary propagator

$$U_{t,s}: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$$

such that

(1.1)
$$\left(i\frac{d}{dt}U_{t,s}\psi,\phi\right)_t = F_{\alpha,y}(t)(U_{t,s}\psi,\phi)$$

for all $\phi \in D(F_y(t))$.

Here $(\cdot, \cdot)_t$ denotes the duality between $D(F_y(t))$ and its strong dual. Moreover the solution $\psi(t) := U_{t,s}\psi$ has a natural representation (see [2], equations (14)-(21) for the details).

In the introduction of [2] the authors conjectured that $U_{t,s}$ defines a flow on $D(F_y(t))$ which is continuous with respect to the Banach topology induced by the quadratic form $F_{\alpha,y}(t)$.

Here we show, by using different methods, that if $y \in C^2(\mathbb{R}; \mathbb{R}^3)$ then this is indeed the case and Theorem 1.2 above holds for any $\psi \in D(F_y(s))$ (see Theorem 3.1 for the precise statements).

Our proof procedes in the following conceptually simple way. Noticing that the unitary map

$$T_t \psi(x) := \psi(x + y(t))$$

transforms the equation

$$i\frac{d\psi}{dt}(t) = H\psi(t)$$

into the nonautonomous one

$$i\frac{d\psi}{dt}(t) = H_{\mathsf{v}}(t)\psi(t) \equiv (H + i\mathsf{v}(t)\cdot\nabla)\,\psi(t)\,,\qquad \mathsf{v}(t) \equiv \frac{dy}{dt}(t)\,,$$

we consider the point perturbations (at y=0) of $H_{\rm v}$, where ${\rm v}$ is a given, time-independent vector in \mathbb{R}^3 . We realize (see Theorem 2.3) that the form domains $D(F_{\rm v})$ of such singular perturbations $H_{{\rm v},\alpha}$ of $H_{\rm v}$ are ${\rm v}$ -independent. Indeed one has $D(F_{\rm v})\equiv D(F_0)$, where $D(F_0)$ is the form domain of $H_{\alpha,y}, y=0$. This allows, in the case the vector ${\rm v}$ is time-dependent, the application of Kisyński theorem (see the Appendix) thus obtaining a strongly continuous unitary propagator $\tilde{U}_{t,s}$ which is also a strongly continuous propagator on $D(F_0)$ with respect to the Banach topology induced by the quadratic form associated with $H_{\alpha,y}, y=0$. Moreover $F_{{\rm v},\alpha}$, the quadratic form associated with $H_{\alpha,0}$, are related by the identity (see Theorem 2.3 again)

$$F_{\mathbf{v},\alpha} = F_{\alpha,0} + Q_{\mathbf{v}}$$

where Q_{v} is the quadratic form associated with the natural extension of $i\mathbf{v}\cdot\nabla$ to $D(F_0)$ (see Remark 2.4). This allows us to show (see Theorem

3.1) that

$$U_{t,s} := T_t^{-1} \tilde{U}_{t,s} T_s$$

satisfies (1.1) for any $\psi \in D(F_{\alpha,y}(s))$ and is a continuous flow from $D(F_{\alpha,y}(s))$ onto $D(F_{\alpha,y}(t))$. In the case $y \in C^3(\mathbb{R}; \mathbb{R}^3)$ we also show that $U_{t,s}$ maps $\tilde{D}(H_{\alpha,y}(s))$ onto $\tilde{D}(H_{\alpha,y}(t))$, where

$$\tilde{D}(H_{\alpha,y}(t)) := V_t D(H_{\alpha,y}(t)), \quad V_t \psi(x) := e^{i\mathbf{v}(t)\cdot x/2} \psi(x).$$

2. The operator $-\Delta + iL_v$ with a point interaction

Let us consider the linear operator $-\Delta + iL_{v}$, where

$$L_{\mathsf{v}}\psi := \sum_{k=1}^{3} \mathsf{v}_{k} \partial_{k} \psi \,, \quad \mathsf{v} \equiv (\mathsf{v}_{1}, \mathsf{v}_{2}, \mathsf{v}_{3}) \in \mathbb{R}^{3} \,.$$

Since, for any $\epsilon > 0$,

$$\begin{split} \|L_{\mathsf{v}}\psi\|_{2}^{2} &\leq \sum_{1 \leq k, j \leq 3} \left| \mathsf{v}_{k} \mathsf{v}_{j} \langle \partial_{kj}^{2} \psi, \psi \rangle_{2} \right| \leq 3 |\mathsf{v}|^{2} |\langle \Delta \psi, \psi \rangle_{2}| \\ &\leq \frac{3}{2} |\mathsf{v}|^{2} \left(\epsilon \|\Delta \psi\|_{2}^{2} + \frac{1}{\epsilon} \|\psi\|_{2}^{2} \right) \,, \end{split}$$

by Kato-Rellich theorem one has that

$$H_{\mathsf{v}} := -\Delta + iL_{\mathsf{v}} : H^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$$

is self-adjoint. Moreover, since, for any $\epsilon > 0$,

$$|\langle L_{\mathsf{v}}\psi,\psi\rangle_{2}| \leq |\mathsf{v}| \|\nabla\psi\|_{2} \|\psi\|_{2} \leq \frac{|\mathsf{v}|}{2} \left(\epsilon \|\nabla\psi\|_{2}^{2} + \frac{1}{\epsilon} \|\psi\|_{2}^{2}\right),$$

 H_{v} has lower bound $-|\mathsf{v}|^2/4$.

Now we look for the self-adjoint extensions of the symmetric operator H_{v}° obtained by restricting H_{v} to the kernel of the continuous and surjective linear map

$$\tau: H^2(\mathbb{R}^3) \to \mathbb{C}, \qquad \tau \psi := \psi(0).$$

Theorem 2.1. Any self-adjoint extension of H_{v}° different from H_{v} itself is given by

$$H_{\mathbf{v},\alpha}: D(H_{\mathbf{v},\alpha}) \to L^2(\mathbb{R}^3) ,$$

$$D(H_{\mathbf{v},\alpha}) := \left\{ \psi \in L^2(\mathbb{R}^3) : \psi = \psi_{\lambda} + \Gamma_{\mathbf{v},\alpha}(\lambda)^{-1} \psi_{\lambda}(0) \mathcal{G}_{\lambda}^{\mathbf{v}}, \ \psi_{\lambda} \in H^2(\mathbb{R}^3) \right\} ,$$

$$(H_{\mathbf{v},\alpha} + \lambda) \psi := (H_{\mathbf{v}} + \lambda) \psi_{\lambda} ,$$

the definition being λ -independent. Here $\alpha \in \mathbb{R}$,

$$\Gamma_{\mathbf{v},\alpha}(\lambda) = \alpha + \frac{\sqrt{\lambda - |\mathbf{v}|^2/4}}{4\pi}, \qquad \mathcal{G}_{\lambda}^{\mathbf{v}}(x) = \frac{e^{-\sqrt{\lambda - |\mathbf{v}|^2/4} |x|}}{4\pi |x|} e^{i\mathbf{v}\cdot x/2}$$

and $\lambda > |\mathbf{v}|^2/4$ is chosen in such a way that $\Gamma_{\mathbf{v},\alpha}(\lambda) \neq 0$. The kernel of the resolvent of $H_{\mathbf{v},\alpha}$ is given by

$$(H_{\mathsf{v},\alpha} + \lambda)^{-1}(x_1, x_2) = \mathcal{G}_{\lambda}^{\mathsf{v}}(x_1 - x_2) + \Gamma_{\mathsf{v},\alpha}(\lambda)^{-1}\mathcal{G}_{\lambda}^{\mathsf{v}}(x_1)\mathcal{G}_{\lambda}^{-\mathsf{v}}(x_2).$$

Moreover the spectrum of $H_{\nu,\alpha}$ is purely absolutely continuous,

$$\sigma_{ess}(H_{\mathbf{v},\alpha}) = \sigma_{ac}(H_{\mathbf{v},\alpha}) = [-|\mathbf{v}|^2/4, \infty),$$

$$\alpha < 0 \quad \Rightarrow \quad \sigma_{pp}(H_{\mathbf{v},\alpha}) = -(4\pi\alpha)^2 - |\mathbf{v}|^2/4,$$

$$\alpha \ge 0 \quad \Rightarrow \quad \sigma_{pp}(H_{\mathbf{v},\alpha}) = \emptyset.$$

Proof. Let us define the bounded linear operators

$$\breve{G}(\lambda): L^2(\mathbb{R}^3) \to \mathbb{C}, \qquad \breve{G}(\lambda):=\tau(H_{\mathsf{v}}+\lambda)^{-1}$$

and

$$G(\lambda): \mathbb{C} \to L^2(\mathbb{R}^3), \qquad G(\lambda):= \check{G}(\lambda)^*.$$

Since

$$\mathcal{G}_{\lambda}^{\mathbf{v}}(x) = \frac{e^{-\sqrt{\lambda - |\mathbf{v}|^2/4} \, |x|}}{4\pi |x|} \, e^{i\mathbf{v}\cdot x/2}$$

is the Green function of $H_v + \lambda$ (see e.g. [5]), one obtains

$$\breve{G}(\lambda)\psi = \langle \mathcal{G}_{\lambda}^{-\mathsf{v}}, \psi \rangle_2, \qquad G(\lambda)q = q \, \mathcal{G}_{\lambda}^{\mathsf{v}}.$$

Since (see [7], Lemma 2.1)

$$(\mu - \lambda)(H_{\mathsf{v}} + \lambda)^{-1}G(\mu) = G(\lambda) - G(\mu),$$

one obtains (see [7], Lemma 2.2)

$$\begin{split} &(\mu - \lambda) \breve{G}(\lambda) G(\mu) \\ = &\tau (G(\lambda) - G(\mu)) = \tau (G(\nu) - G(\mu)) - \tau (G(\nu) - G(\lambda)) \\ = &\frac{\sqrt{\mu - |\mathbf{v}|^2/4}}{4\pi} - \frac{\sqrt{\nu - |\mathbf{v}|^2/4}}{4\pi} - \left(\frac{\sqrt{\lambda - |\mathbf{v}|^2/4}}{4\pi} - \frac{\sqrt{\nu - |\mathbf{v}|^2/4}}{4\pi}\right) \\ = &\frac{\sqrt{\mu - |\mathbf{v}|^2/4}}{4\pi} - \frac{\sqrt{\lambda - |\mathbf{v}|^2/4}}{4\pi} \,. \end{split}$$

The thesis about $H_{\nu,\alpha}$ and its resolvent then follows from Theorem 2.1 in [7]. As regards the spectral properties of $H_{\nu,\alpha}$ one procedes as in [1], Theorem 1.1.4.

Remark 2.2. Note that, as expected, $H_{\mathbf{v},\alpha}$ converges in norm resolvent sense to $H_{\alpha,0}$ as $|\mathbf{v}| \downarrow 0$.

Theorem 2.3. The quadratic form associated with $H_{\nu,\alpha}$ is

$$F_{\mathbf{v},\alpha}: D(F_0) \times D(F_0) \to \mathbb{R}$$
, $F_{\mathbf{v},\alpha} = F_{\alpha,0} + Q_{\mathbf{v}}$,

where $D(F_0)$ is the domain of the quadratic form $F_{\alpha,0}$ associated with $H_{\alpha,y}$, y = 0, (see Theorem 1.1) and

$$Q_{\mathsf{v}}:D(F_0)\times D(F_0)\to\mathbb{R}$$

$$Q_{\mathsf{v}}(\psi,\phi) := \langle iL_{\mathsf{v}}\psi_{\lambda},\phi_{\lambda}\rangle_{2} + \bar{q}_{\psi}\langle\mathcal{G}_{\lambda},iL_{\mathsf{v}}\phi_{\lambda}\rangle_{2} + q_{\phi}\langle iL_{\mathsf{v}}\psi_{\lambda},\mathcal{G}_{\lambda}\rangle_{2}.$$

Proof. Given ψ and ϕ in $D(H_{\mathbf{v},\alpha})$ put

$$q_{\psi} := \Gamma_{\mathsf{v},\alpha}(\lambda)^{-1} \psi_{\lambda}(0) \,, \qquad q_{\phi} := \Gamma_{\mathsf{v},\alpha}(\lambda)^{-1} \phi_{\lambda}(0) \,.$$

Then

$$\langle (H_{\mathsf{v},\alpha} + \lambda)\psi, \phi \rangle_2 = \langle (H_{\mathsf{v}} + \lambda)\psi_{\lambda}, \phi_{\lambda} \rangle_2 + q_{\phi} \langle (H_{\mathsf{v}} + \lambda)\psi_{\lambda}, \mathcal{G}_{\lambda}^{\mathsf{v}} \rangle_2$$
$$= \langle (H_{\mathsf{v}} + \lambda)\psi_{\lambda}, \phi_{\lambda} \rangle_2 + \Gamma_{\mathsf{v},\alpha}(\lambda) \, \bar{q}_{\psi} q_{\phi} \,.$$

Thus one is lead to define the quadratic form

$$F_{\mathsf{v},\alpha}:D(F_{\mathsf{v}})\times D(F_{\mathsf{v}})\to\mathbb{R}$$

by

$$D(F_{\mathbf{v}}) := \left\{ \psi \in H^{1}(\mathbb{R}^{3}) : \psi = \psi_{\lambda} + q_{\psi} \mathcal{G}_{\lambda}^{\mathbf{v}}, \quad \psi_{\lambda} \in H^{1}(\mathbb{R}^{3}), \ q_{\psi} \in \mathbb{C} \right\},$$

$$(F_{\mathsf{v},\alpha} + \lambda)(\psi,\phi)$$

$$:= \langle (-\Delta + iL_{\mathsf{v}} + \lambda)^{1/2} \psi_{\lambda}, (-\Delta + iL_{\mathsf{v}} + \lambda)^{1/2} \phi_{\lambda} \rangle_{2} + \Gamma_{\mathsf{v},\alpha}(\lambda) \, \bar{q}_{\psi} q_{\phi} \,.$$

It is then straightforward to check that $F_{\nu,\alpha}$ is closed and bounded from below. Thus $F_{\nu,\alpha}$ is the quadratic form associated with $H_{\nu,\alpha}$. Since

$$\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda} \in H^1(\mathbb{R}^3)$$

one obtains $D(F_{v}) \equiv D(F_{0})$. Re-writing the quadratic form above by using the decomposition entering in the definition of $D(F_{0})$ and noticing that

$$\forall \psi \in H^1(\mathbb{R}^3)$$
 $(F_{\mathsf{v}} + \lambda)(\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}, \psi) = \langle \mathcal{G}_{\lambda}, iL_{\mathsf{v}}\psi \rangle_2$

one obtains

$$(F_{\mathsf{v},\alpha} + \lambda)(\psi,\phi) = \langle \nabla \psi_{\lambda}, \nabla \phi_{\lambda} \rangle_{2} + \lambda \langle \psi_{\lambda}, \phi_{\lambda} \rangle_{2} + Q_{\mathsf{v}}(\psi,\phi) + (\Gamma_{\mathsf{v},\alpha}(\lambda) + (F_{\mathsf{v},\alpha} + \lambda)(\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}, \mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda})) \, \bar{q}_{\psi} q_{\phi} ,$$

Since L_{v} is skew-adjoint one has $\langle L_{\mathsf{v}}\psi,\psi\rangle_2=0$ for any real-valued $\psi\in H^1(\mathbb{R}^3)$. Thus, by taking a real-valued $J_{\epsilon}\in C_0^{\infty}(\mathbb{R}^3)$ such that J_{ϵ}

weakly converges to the Dirac mass at the origin as $\epsilon \downarrow 0$, one obtains (here * denotes convolution)

$$\begin{split} &(F_{\mathsf{v},\alpha} + \lambda)(\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}, \mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}) = \langle \mathcal{G}_{\lambda}, iL_{\mathsf{v}}(\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}) \rangle_{2} \\ &= \lim_{\epsilon \downarrow 0} \langle iL_{\mathsf{v}}\mathcal{G}_{\lambda} * J_{\epsilon}, \mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda} * J_{\epsilon} \rangle_{2} = \lim_{\epsilon \downarrow 0} \langle iL_{\mathsf{v}}\mathcal{G}_{\lambda} * J_{\epsilon}, \mathcal{G}_{\lambda}^{\mathsf{v}} \rangle_{2} = \\ &= \lim_{\epsilon \downarrow 0} \langle (H_{\mathsf{v}} + \lambda)(\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}) * J_{\epsilon}, \mathcal{G}_{\lambda}^{\mathsf{v}} \rangle_{2} \\ &= \lim_{\epsilon \downarrow 0} \langle \mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}, (H_{\mathsf{v}} + \lambda)\mathcal{G}_{\lambda}^{\mathsf{v}} * J_{\epsilon}, \rangle_{2} = \lim_{\epsilon \downarrow 0} \langle \mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda}, J_{\epsilon}, \rangle_{2} = \\ &= (\mathcal{G}_{\lambda}^{\mathsf{v}} - \mathcal{G}_{\lambda})(0) = \frac{\sqrt{\lambda} - \sqrt{\lambda - |\mathbf{v}|^{2}/4}}{4\pi} \equiv \Gamma_{\alpha}(\lambda) - \Gamma_{\mathsf{v},\alpha}(\lambda) \end{split}$$

and the proof is done.

Remark 2.4. Let J_{ϵ} be a real-valued, compactly supported smooth function weaky converging to the Dirac mass a zero as $\epsilon \downarrow 0$. For any $\psi = \psi_{\lambda} + q_{\psi}\mathcal{G}_{\lambda}$ and $\phi = \phi_{\lambda} + q_{\phi}\mathcal{G}_{\lambda}$, let us define $\psi_{\epsilon} := \psi_{\lambda} + q_{\psi}\mathcal{G}_{\lambda} * J_{\epsilon}$ and $\phi_{\epsilon} := \phi_{\lambda} + q_{\phi}\mathcal{G}_{\lambda} * J_{\epsilon}$. Then, since L_{ν} is skew-adjoint, one has

$$\lim_{\epsilon \downarrow 0} \langle i L_{\mathsf{v}} \psi_{\epsilon}, \phi_{\epsilon} \rangle_{2} = \lim_{\epsilon \downarrow 0} (\langle i L_{\mathsf{v}} \psi_{\lambda}, \phi_{\lambda} \rangle_{2} + \bar{q}_{\psi} \langle \mathcal{G}_{\lambda} * J_{\epsilon}, i L_{\mathsf{v}} \phi_{\lambda} \rangle_{2}$$

$$+ q_{\phi} \langle i L_{\mathsf{v}} \psi_{\lambda}, \mathcal{G}_{\lambda} * J_{\epsilon} \rangle_{2} - i \bar{q}_{\psi} q_{\phi} \langle L_{\mathsf{v}} \mathcal{G}_{\lambda} * J_{\epsilon}, \mathcal{G}_{\lambda} * J_{\epsilon} \rangle_{2})$$

$$= \lim_{\epsilon \downarrow 0} Q_{\mathsf{v}} (\psi_{\epsilon}, \phi_{\epsilon}) = Q_{\mathsf{v}} (\psi, \phi) .$$

Thus $Q_{\mathbf{v}}$ is the natural extension to $D(F_0)$ of the quadratic form associated with $iL_{\mathbf{v}}$.

3. The Schrödinger equation with a moving point interaction

Let us now consider a differentiable curve $y: \mathbb{R} \to \mathbb{R}^3$ and put $\mathsf{v}(t) \equiv \frac{dy}{dt}(t)$. Thus one has the families of self-adjoint operators and associated quadratic forms

$$H_{\alpha,y}(t): D(H_{\alpha,y}(t)) \to L^{2}(\mathbb{R}^{3}),$$

$$F_{\alpha,y}(t): D(F_{y}(t)) \times D(F_{y}(t)) \to \mathbb{R},$$

$$H_{\nu,\alpha}(t): D(H_{\alpha,y}(t)) \to L^{2}(\mathbb{R}^{3}),$$

$$F_{\nu,\alpha}(t): D(F_{0}) \times D(F_{0}) \to \mathbb{R}.$$

Now we can state our main result:

Theorem 3.1. Let $y \in C^2(\mathbb{R}; \mathbb{R}^3)$. Then there is a unique strongly continuous unitary propagator

$$U_{t,s}: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3), \qquad (t,s) \in \mathbb{R}^2,$$

such that

1)
$$U_{t,s}D(F_{\alpha,y}(s)) = D(F_{\alpha,y}(t));$$

2) each $U_{t,s}$ is strongly continuous as a map from $D(F_y(s))$ onto $D(F_y(t))$ with respect to the Banach topologies induced by the bounded from below closed quadratic forms $F_{\alpha,y}(s)$ and $F_{\alpha,y}(t)$ respectively;

$$\forall \psi \in D(F_y(s)), \quad t \mapsto F_{\alpha,y}(t)(U_{t,s}\psi, U_{t,s}\psi) \quad \text{is in } C(\mathbb{R}; \mathbb{R});$$
4)

$$\forall \psi \in D(F_y(s)), \quad t \mapsto U_{t,s}\psi \quad \text{is in } C^1(\mathbb{R}; D(F_y(\cdot))^*),$$

where $D(F_y(t))^*$ denotes the dual of $D(F_y(t))$ with respect to the $L^2(\mathbb{R}^3)$
scalar product;

$$\forall \psi \in D(F_y(s)), \ \forall \phi \in D(F_y(t)), \quad \left(i \frac{d}{dt} U_{t,s} \psi, \phi\right)_t = F_{\alpha,y}(t) (U_{t,s} \psi, \phi),$$

where $(\cdot, \cdot)_t$ denotes the duality between $D(F_y(t))$ and $D(F_y(t))^*$. If $y \in C^3(\mathbb{R}; \mathbb{R}^3)$ then

$$U_{t,s}\tilde{D}(H_{\alpha,y}(s)) = \tilde{D}(H_{\alpha,y}(t)),$$

where

5)

$$\tilde{D}(H_{\alpha,y}(t)) := V_t D(H_{\alpha,y}(t)), \quad V_t \psi(x) := e^{i\mathbf{v}(t)\cdot x/2} \psi(x).$$

Proof. By Theorem 2.3 we have that $y \in C^2(\mathbb{R}; \mathbb{R}^3)$ implies that

$$\forall \psi, \phi \in D(F_0), \quad t \mapsto F_{\mathsf{v},\alpha}(t)(\psi,\phi) \quad \text{is in} \quad C^1(\mathbb{R}).$$

Let T > 0. By Kisyński's theorem (see the Appendix) applied to the family of strictly positive self-adjoint operators

$$H_{\mathbf{v},\alpha}(t) + \lambda$$
, $t \in [-T,T]$, $\lambda > (4\pi \min(0,\alpha))^2 + \frac{1}{4} \sup_{t \in [-T,T]} |\mathbf{v}(t)|$,

one knows that $H_{\mathsf{v},\alpha}(t)$, $t \in [-T,T]$, generates a strongly continuous unitary propagator $\tilde{U}_{t,s}^T$, $(s,t) \in [-T,T]^2$. By unicity if T' > T then $\tilde{U}_{s,t}^T = U_{s,t}^{T'}$ for any $(s,t) \in [-T,T]^2 \subset [-T',T']^2$. Thus we obtain an unique strongly continuous unitary propagator $\tilde{U}_{t,s}$, $(s,t) \in \mathbb{R}^2$, generated by the family $H_{\mathsf{v},\alpha}(t)$, $t \in \mathbb{R}$. Such a propagator is also a strongly continuous propagator on $D(F_0)$ with respect to the Banach topology induced by the bounded from below closed quadratic form $F_{\alpha,0}$.

Considering the unitary map

$$T_t: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3), \qquad T_t \psi(x) := \psi(x + y(t)),$$

we define then the strongly continuous unitary propagator

$$U_{t,s} := T_t^{-1} \tilde{U}_{t,s} T_s.$$

Since T_t is a bounded operator from $D(F_y(t))$ onto $D(F_0)$ one has that $U_{t,s}$ is a bounded operator from $D(F_y(s))$ onto $D(F_y(t))$ with respect to the Banach topologies induced by the bounded from below closed quadratic forms $F_{\alpha,y}(s)$ and $F_{\alpha,y}(t)$ respectively. Moreover, for all $\psi \in D(F_y(s))$, the map

$$t \mapsto F_{\alpha,y}(t)(U_{t,s}\psi, U_{t,s}\psi) \equiv F_{\alpha,0}(\tilde{U}_{t,s}T_s\psi, \tilde{U}_{t,s}T_s\psi)$$

is continuous. Let us now show that, for all $\psi \in D(F_y(s))$ and for all $\phi \in D(F_y(t))$ one has

$$\left(i\frac{d}{dt}U_{t,s}\psi,\phi\right)_t = F_{\alpha,y}(t)(U_{t,s}\psi,\phi).$$

For any $\psi \in D(F_y(s))$ and $\phi \in D(F_y(t))$ there exist $\tilde{\psi}$ and $\tilde{\phi}$ in $D(F_0)$ such that $T_s^{-1}\tilde{\psi} = \psi$ and $T_t^{-1}\tilde{\phi} = \phi$. Thus equivalently we need to show that

$$\left(i\frac{d}{dt}T_t^{-1}\tilde{U}_{t,s}\tilde{\psi},T_t^{-1}\tilde{\phi}\right)_t = F_{\alpha,y}(t)(T_t^{-1}\tilde{U}_{t,s}\tilde{\psi},T_t^{-1}\tilde{\phi}) \equiv F_{\alpha,0}(\tilde{U}_{t,s}\tilde{\psi},\tilde{\phi}).$$

Since

$$\begin{split} & \left(i\,\frac{d}{dt}\,T_t^{-1}\tilde{U}_{t,s}\tilde{\psi},T_t^{-1}\tilde{\phi}\right)_t = \left(i\,T_t\,\frac{d}{dt}\,T_t^{-1}\tilde{U}_{t,s}\tilde{\psi},\tilde{\phi}\right) \\ = & \left(i\,T_t\left(\frac{d}{dt}\,T_t^{-1}\right)\tilde{U}_{t,s}\tilde{\psi},\tilde{\phi}\right) + \left(i\,\frac{d}{dt}\,\tilde{U}_{t,s}\tilde{\psi},\tilde{\phi}\right) \\ = & \left(i\,T_t\left(\frac{d}{dt}\,T_t^{-1}\right)\tilde{U}_{t,s}\tilde{\psi},\tilde{\phi}\right) + F_{\mathsf{v},\alpha}(t)(\tilde{U}_{t,s}\tilde{\psi},\tilde{\phi})\,, \end{split}$$

by Theorem 2.3 we need to show that

$$\left(i T_t \frac{d}{dt} T_t^{-1} \tilde{\psi}, \tilde{\phi}\right) = -Q_{\mathsf{v}}(\tilde{\psi}, \tilde{\phi}).$$

This is obviously true in the case either $\tilde{\psi}$ or $\tilde{\phi}$ is in $H^1(\mathbb{R}^3)$ and, by taking J_{ϵ} as in Remark 2.4,

$$\left(T_t \frac{d}{dt} T_t^{-1} \mathcal{G}_{\lambda}, \mathcal{G}_{\lambda}\right) = \lim_{\epsilon \downarrow 0} \left\langle T_t \frac{d}{dt} T_t^{-1} \mathcal{G}_{\lambda} * J_{\epsilon}, \mathcal{G}_{\lambda} * J_{\epsilon} \right\rangle_{2}$$

$$= -\lim_{\epsilon \downarrow 0} \left\langle L_{\mathsf{V}} \mathcal{G}_{\lambda} * J_{\epsilon}, \mathcal{G}_{\lambda} * J_{\epsilon} \right\rangle_{2} = 0.$$

Thus point 5) is proven. Point 6) follows from Kisyński's theorem again by noticing that if $y \in C^3(\mathbb{R}; \mathbb{R}^3)$ then $\tilde{U}_{t,s}$ maps $D(H_{v,\alpha}(s))$ onto $D(H_{v,\alpha}(t))$ and that

$$D(H_{\mathsf{v},\alpha}(t)) \equiv T_t V_t D(H_{\alpha,y}(t)) \,.$$

4. Appendix: the Kisyński's theorem

For the reader's convenience in this appendix we recall Kisyński's theorem. For the proof we refer to Kisyński's original paper [4] (see in particular [4], section 8. Also see [8], section II.7).

Let us remind that the double family $U_{t,s}$, $(t,s) \in [T_1, T_2]^2$, is said to be a strongly continuous propagator on the Hilbert space \mathscr{H} if each $U_{t,s}$ is a bounded operator on \mathscr{H} , the map $(t,s) \mapsto U_{t,s}$ is strongly continuous, $U_{s,s} = 1$ and the Chapman-Kolmogorov equation

$$U_{t,r}U_{r,s}=U_{t,s}$$

holds. Such a propagator is then said to be unitary if each $U_{t,s}$ is unitary.

Theorem 4.1. Let A(t), $t \in [T_1, T_2]$, be a family of strictly positive selfadjoint operators on the Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ with time-independent form domain \mathcal{H}_+ . Suppose that

$$\forall \psi, \phi \in \mathscr{H}_{+} \quad t \mapsto F(t)(\psi, \phi) \quad \text{is in } C^{k}([T_{1}, T_{2}]; \mathbb{R}) ,$$

where F(t) denotes the quadratic form associated with A(t). If k = 1 then there is a unique strongly continuous unitary propagator

$$U_{t,s}: \mathcal{H} \to \mathcal{H}, \qquad (s,t) \in [T_1, T_2]^2,$$

such that

1)

$$U_{t,s}\mathcal{H}_+ = \mathcal{H}_+;$$

2) $U_{t,s}$ is a strongly continuous propagator on $(\mathcal{H}_+, \langle \cdot, \cdot \rangle_+)$, where $\langle \cdot, \cdot \rangle_+$ denotes any of the equivalent scalar products

$$\langle \psi, \phi \rangle_{t,+} := F(t)(\psi, \phi);$$

3)

$$\forall \psi \in \mathscr{H}_+ \qquad t \mapsto U_{t,s}\psi \qquad is \ in \quad C^1([T_1, T_2]; \mathscr{H}_-) ,$$

where $(\mathcal{H}_-, \langle \cdot, \cdot \rangle_-)$ is the completion of \mathcal{H} endowed with any of the equivalent scalar products

$$\langle \psi, \phi \rangle_{t,-} := \langle A(t)^{-1/2} \psi, A(t)^{-1/2} \phi \rangle;$$

THE SCHRÖDINGER EQUATION WITH A MOVING POINT INTERACTION 11

4)
$$\forall \psi, \phi \in \mathscr{H}_{+} \qquad \left(i \frac{d}{dt} U_{t,s} \psi, \phi \right) = F(t)(U_{t,s} \psi, \phi) ,$$
where (\cdot, \cdot) denotes the duality between \mathscr{H}_{+} and \mathscr{H}_{-} . If $k = 2$ then
5)
$$U_{t,s} D(A(s)) = D(A(t)) ,$$
6)
$$\forall \psi \in D(A(s)) \quad t \mapsto U_{t,s} \psi \quad \text{is in} \quad C^{1}([T_{1}, T_{2}]; \mathscr{H}) \cap C([T_{1}, T_{2}]; D(A(\cdot))) ,$$
7)
$$i \frac{d}{dt} U_{t,s} \psi = A(t) U_{t,s} \psi .$$

References

- [1] Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Second edition. AMS Chelsea Publishing, Providence, RI, 2005
- [2] Dell'Antonio, G.F., Figari, R., Teta, A.: The Schrödinger equation with moving point interactions in three dimensions. Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), 99-113, CMS Conf. Proc. 28, Amer. Math. Soc., Providence, RI, 2000
- [3] Kato, T.: Linear evolution equations of "hyperbolic" type. J. Fac. Sci. Univ. Tokyo 27 (1970), 241-258
- [4] Kisyński, J.: Sur les opérateurs de Green des problèmes de Cauchy abstraits. *Studia Math.* **23** (1963/1964), 285-328
- [5] Ortner, N.: Regularisierte Faltung von Distributionen. II. Eine Tabelle von Fundamentallösungen. Z. Angew. Math. Phys. 31 (1980), 155-173
- [6] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983
- [7] Posilicano, A.: A Kreĭn-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183 (2001), 109-147
- [8] Simon, B.: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, N. J., 1971
- [9] Teta, A.: Quadratic forms for singular perturbations of the Laplacian. Publ. RIMS, Kyoto Univ. 26 (1990), 803-817

DIPARTIMENTO DI FISICA E MATEMATICA, UNIVERSITÀ DELL'INSUBRIA, I-22100 Como, Italy

E-mail address: posilicano@uninsubria.it