Computação em Larga Escala Projeto Final

Prof. André Filipe de Moraes Batista, PhD. Prof. Michel Fornaciali, PhD.

Contatos:

AndreFMB@insper.edu.br MichelSF@insper.edu.br

O problema

- A aviação é em uma das maiores indústrias em receita em 2020. De acordo com um relatório da Forbes, se a aviação fosse um país, teria sido o 20º maior do mundo em PIB.
- Embora a indústria da aviação cresça rapidamente a cada ano, as perdas incorridas ainda são altas. Um dos maiores causas das perdas são os atrasos e cancelamentos ocorridos a cada hora.
- Qualquer pequeno ou grande atraso ou cancelamento de voo resulta na perda de milhares a milhões de dólares em receitas anuais para os aeroportos e também para as companhias aéreas.
- Sua missão é detectar se um determinado voo tem potencial para se atrasar ou não.

O dataset

- Este dataset contém dados plurianuais de 2009 a 2018.
- O conjunto de dados possui quase 7 GB, com quase 68 milhões de linhas.
- Fonte: https://www.kaggle.com/yuanyuwendymu/airline-delay-and-cancellation-data-2009-2018
- Observação: os dados serão disponibilizados na AWS, não se preocupem em baixálos!

O dataset – Dicionário de dados (exemplo)* Detecção de atrasos em voos

Name	Description	Type(Format)	Example
FL_DATE	Date of the flight	DATE (yy/mm/dd)	02/05/2009
OP_CARRIER	Airline Identifier	STRING	9E
OP_CARRIER_FL_NUM	Flight Number	INTEGER	2216
ORIGIN	Starting Airport Code (IATA Code)	STRING	MLI
DEST	Destination Airport Code (IATA Code)	STRING	MEM
CRS_DEP_TIME	Planned Departure Time	INTEGER	600
DEP_TIME	Actual Departure Time	FLOAT	603.0
DEP_DELAY	Total Delay on Departure in minutes	FLOAT	3.0
TAXI_OUT	The time duration elapsed between departure from the origin airport gate and wheels off	FLOAT	14.0
WHEELS_OFF	The time point that the aircraft's wheels leave the ground	FLOAT	617.0
WHEELS_ON	The time point that the aircraft's wheels touch on the ground	FLOAT	757.0

Data Explorer

7.1 GB

2009.csv

2010.csv

2011.csv

2012.csv

2013.csv

2014.csv

2015.csv

2016.csv

2017.csv

2018.csv

Os dados estão disponibilizados por ano

^{*}Veja a lista completa na planilha anexada

O desafio – Diretrizes gerais

- Trabalho em grupo com até 3 participantes
- Entrega: apresentação final no dia 26/junho, à tarde
 - Entrega via AWS, na data da apresentação
 - Uma entrega por grupo
 - Indicar os participantes do grupo
- Entregável: notebook com o processamento end-to-end, incluindo células markdown para explicações gerais e registro de análises mais profundas
- Uso do Spark!

O desafio – Critérios de avaliação **Detecção de atrasos em voos**

Machine Learning end-to-end no Spark:

utilização do Spark desde a leitura dos dados até a modelagem, passando por todos os tratamentos pertinentes.

Utilização do Spark e boas práticas de programação:

utilização adequada do Spark, implementada corretamente com ferramentas pertinentes. Por exemplo, a utilização prematura do Pandas será considerado um redutor da nota, assim como a subutilização das funções vistas em sala de aula.

Robustez e criatividade:

considera a robustez do trabalho final (o modelo faz sentido?), bem como a criatividade na resolução do problema proposto (como utilizar os dados?). Importante: "simples > complexo", mas "simples != simplório"

Nota geral e apresentação:

propôs uma solução cuja implantação faça sentido para o negócio? Tomou decisões baseadas em dados (tabelas? Gráficos? Métricas?) Fez uma apresentação clara da proposta?

Machine Learning end-to-end no Spark?

Insper