Capítulo 4: Capa Red - I

Este material está basado en:

- material de apoyo al texto *Computer Networking: A Top Down Approach Featuring the Internet 3rd* edition. Jim Kurose, Keith Ross Addison-Wesley, 2004
- material de wikipedia: www.wikipedia.org

Capítulo 4: Capa de Red

Objetivos de capítulo:

- Entender los principios detrás de los servicios de la capa de red:
 - Ruteo (selección de la ruta)
 - Cómo funciona un router
 - Tópicos avanzados: IPv6
- Aplicación e implementación en la Internet

Capítulo 4: Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales
 y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - O ICMP
 - IPv6

- ☐ 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- □ 4.6 Ruteo en la Internet
 - O RIP
 - OSPF
 - o BGP
- 4.7 Ruteo Broadcast y multicast

Capa red (network layer)

- Transporta segmentos de fuente a destino
- En origen encapsula segmentos a datagramas
- En destino provee segmentos a capa transporte
- Hay protocolos capa red (network) en cada terminal y router
- Router examina campos de cabecera en todos los datagramas IP que pasan por el

Funciones claves de la capa de red

- Re-envió (forwarding): mover paquetes desde la entrada del router a su salida apropiada
- □ Ruteo: determinar ruta a tomar por los paquetes desde fuente a destino.
 - Algoritmos de Ruteo

<u>Analogía:</u>

- □ Ruteo: proceso de planear viaje de fuente a destino
- □ Re-envío (forwarding): proceso de transitar a través de una intersección

Funciones de reenvío y ruteo

Figure 4.2 • Routing algorithms determine values in forwarding tables

Capa de Red

Establecimiento de Conexión

- □ Fuera de ruteo y re-envío, ésta es la 3^{ra} función de importancia en *algunas* arquitecturas de redes:
 - ATM, frame relay, X.25
- Antes que datagramas fluyan, los dos hosts y los routers que intervienen establecen una conexión virtual
 - Routers se involucran en las conexiones
- Servicio de conexión de capas red y transporte:
 - Red: entre dos terminales (hosts)
 - Transporte: entre dos procesos

Modelos de servicio de Red

Q: ¿Cuál es el *modelo de servicio* para el "canal" que transporta los datagramas desde Tx a Rx?

<u>Servicios para</u> <u>datagramas individuales:</u>

- Entrega garantizada
- □ Entrega garantizada con retardo inferior a X [ms] (e.g. 40 ms)

<u>Servicios para un flujo de</u> <u>datagramas:</u>

- Entrega de datagramas en orden
- Garantía de bandwidth mínimo para el flujo
- Restricciones sobre cambios en el espacio (tiempo) entre paquetes

Modelos de servicio de capa de red:

Α	rquitectura de la Red	Modelo de servicio	Garantías ?				Realimentación
			Bandwidth	Loss	Order	Timing	de Congestión
	Internet	best effort	none	no	no	no	no (inferida vía pérdidas)
	ATM	CBR	constant rate	yes	yes	yes	no congestión
	ATM	ABR	guaranteed minimum	no	yes	no	yes

CBR: Constant bit rate ABR: Available bit rate

Capítulo 4: Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- □ 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Servicios con y sin conexión de la capa de Red

- Las redes de datagramas proveen servicio sin conexión en su capa de red
- Redes de VC proveen servicio de conexión en su capa de red (e.g. ATM)
- Análogo a los servicios de capa transporte, pero:
 - Servicio es: terminal-a-terminal (host-to-host)
 - No hay opción: la capa de red provee sólo uno u otro
 - Implementación: en la red interna (core)

Circuitos virtuales (VC)

- "Camino de fuente a destino se comporta como un circuito telefónico"
- Para implementar un VC la red actúa desde fuente a destino
- Hay tres fases identificables:
 - Establecimiento de la llamada,
 - Transferencia de datos, y
 - o Término de la llamada
- □ Cada paquete lleva un identificador del VC (no dirección de máquina destino)
- Cada router en el camino de fuente a destino mantiene el "estado" por cada conexión que pasa por él
- Enlace y recursos del router (ancho de banda, buffers) pueden ser asignados al VC

Implementación de VC

Un VC consiste de:

- 1. Camino desde fuente a destino
- 2. Número de VC, un número por cada enlace a lo largo del camino
- 3. Entradas en tablas de re-envío en los routers a lo largo del camino
- Los paquetes que pertenecen a un VC llevan el número de VC correspondiente.
- El número de VC debe ser cambiado en cada enlace.
 - El nuevo número de VC es tomado de la tabla de re-envío

Tabla de reenvío

Incoming interface	Incoming VC#	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
•••	•••	•••	•••

Router mantiene información del estado de la conexión

Implementación de VC: Establecimiento del circuito virtual

Figure 4.4 ♦ Virtual-circuit setup

Redes de Datagramas

- Tx pone dirección destino en paquete.
- No hay estado mantenido en cada router por cada conexión.
- Paquetes se reenvían usando su dirección de terminal destino

Figure 4.5 ♦ Datagram network

Tabla de re-envío IP

4000 millones de Posibles entradas

Rango de direcciones destinos	Enlace Interfaz
11001000 00010111 00010000 00000000 a 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 a 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 a 11001000 00010111 00011111 11111111	2
en otro caso	3
	Capa de Red 4-17

Coincidencia del prefijo más largo

Prefijo Coincidente	Interfaz del Enlace
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
Otro caso	3

Ejemplos

Dirección destino: 11001000 00010111 00010110 10100001 ¿Qué interfaz?

Dirección destino: 11001000 00010111 00011000 10101010 ¿Qué interfaz?

Red de Datagrama o de VC: ¿Por qué?

Internet Protocol (IP)

- Datos intercambiados entre computadores
 - Servicio "elástico", sin requerimientos de tiempo estricto.
- Sistemas terminales "inteligentes" (computadores)
 - Se pueden adaptar, hacer control, recuperación de errores
 - Red interna simple, la complejidad en "periferia"
- Muchos tipos de enlaces
 - Características diferentes: satélite, radio, fibra, cable
 - Es difícil uniformar servicios: tasas, pérdidas, BW

ATM

- Evoluciona desde la telefonía
- Conversación humana:
 - Tiempos estrictos, requerimientos de confiabilidad
 - Necesidad de servicios garantizados
- Sistemas terminales "torpes"
 - Teléfonos
 - Complejidad dentro de la red

Capítulo 4: Capa de Red

- ☐ 4. 1 Introducción
- 4.2 Circuitos virtuales
 y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- □ 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Arquitectura de Routers: Generalidades

Dos funciones claves de routers:

Correr algoritmos/protocolos de ruteo (RIP, OSPF, BGP)

□ Re-envío de datagramas desde enlaces de entrada a

Funciones de las puerta de entrada

Capa enlace datos: e.g., Ethernet (más adelante)

- Dada la dirección destino de datagrama, se obtiene puerto de salida usando la tabla de re-envío en la memoria del puerto de entrada
- Objetivo: procesamiento completo en puerto de entrada a "velocidad de la línea"
- Hacer cola si datagramas llegan más rápido que tasa de re-envío de la estructura de *switches*

Tres tipos de estructuras de switches

Conmutación vía Memoria

Primera generación de routers:

- Computador tradicional con conmutación bajo directo control de la CPU
- □ Paquetes son copiados a la memoria del sistema
- □ Rapidez limitada por ancho de banda de la memoria (2 buses son cruzados por cada datagrama)

Conmutación vía Bus

- Datagramas transitan desde la memoria del puerto de entrada a la memoria del puerto de salida vía un bus compartidos
- □ Contención en bus: rapidez de conmutación limitada por ancho de banda del bus
- Bus de 1 Gbps, Cisco 1900: rapidez suficiente para routers de acceso y de empresas (no router regional o backbone)

Cisco 1900

Conmutación vía una red de interconexión

- Supera limitaciones de ancho de banda del bus
- Redes de interconexión originalmente desarrolladas para conectar procesadores en multi-procesadores
- □ Diseño avanzado: fragmentación de datagramas en celdas de tamaño fijo, las cuales pueden ser conmutadas en la estructura más rápidamente.
- ☐ Cisco 12000: conmuta a través de la red de interconexión 60 [Gbps]

Caso: Cisco 12000

- □ El Cisco 12000 es una serie de routers de gran capacidad diseñado y producido por Cisco Systems
- Estos routers se proveen a grandes proveedores de servicios (ISP y Telcos principales) y a algunas redes de tipo enterprise privadas
- Vienen en una variedad de chasis y tipos todos los cuales comparten interfaces de tarjetas (line cards) compatibles, también se denomina un Gigabit Switch Router or GSR
- Routers en esta serie proveen servicios IP y MPLS
- GSR line cards están disponibles para protocolos Asynchronous Transfer Mode (ATM), Frame Relay, Packet over Sonet (POS), y Gigabit Ethernet

Serie Cisco 12000

Caso: Sistema Operativo IOS

- IOS son las siglas de Internetwork Operating System
- El IOS es un sistema operativo de Interconexión de Redes creado por Cisco Systems para programar y mantener equipos de interconexión de redes informáticas como switches (conmutadores) y routers (enrutadores)
- Cisco es una de las principales compañías dedicadas a la fabricación, venta, mantenimiento y consultoría de equipos como routers, switch, hubs, firewalls y VoIP

Encolamiento en puerto de entrada

- Contención por puerto de salida
- □ Bloqueo de inicio de cola (HOL): datagramas encolados al inicio de la cola impiden que otros en la cola puedan seguir
- Redes de interconexión más lenta que las puertas de entradas combinadas -> encolamiento puede ocurrir en colas de entrada
- □ Retardo en colas y pérdidas debido a rebalse de buffer de entrada!

output port contentionat time t - only one redpacket can be transferred

green packet experiences HOL blocking

HOL:Head-Of-the-Line Capa de Red 4-29

Puertos de Salida

- Almacenamiento (Buffering) requerido cuando datagramas llegan desde la estructura de switches más rápido que la tasa de transmisión
- Disciplina de itinerario (Scheduling) escoge entre los datagramas encolados para transmisión

Encolamiento en puerto de salida

- Almacenamiento cuando la tasa de llegada del switch excede la rapidez de la línea de salida.
- Retardo en cola y pérdidas debido a que el buffer de salida puede rebasarse

Políticas de descarte y envío

- Descarte al ingresar a la cola:
 - Drop-tail: descartar el que llega cuando no hay espacio
 - Random Early Detection (RED): A la llegada de un paquete éste es marcado (para su eliminación posterior al hacer espacio en caso de llegar a un buffer lleno) o descartado dependiendo del largo promedio de la cola.
- □ Para el envío de paquetes:
 - First-come-first-served (FCFS): como cola de banco.
 - Weighted fair queuing (WFQ): comparte el ancho de banda de salida equitativamente entre las conexiones de extremo a extremo (requiere manejar más información de estados).

Capítulo 4: Capa de Red

- ☐ 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- ☐ 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- □ 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast