# Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

# Факультет безопасности информационных технологий

## Дисциплина:

«Инженерно-технические средства защиты информации»

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Нелинейный локатор "NR-µ"»

| Выполнили:                                       |  |  |  |  |
|--------------------------------------------------|--|--|--|--|
| Нгуен Хоанг Хиеп, студент группы N34471          |  |  |  |  |
| 3leque                                           |  |  |  |  |
| (подпись)                                        |  |  |  |  |
| Чан Нгок Хуан, студент группы N34471             |  |  |  |  |
| fluar                                            |  |  |  |  |
| (подпись)                                        |  |  |  |  |
| Чыонг Тан Зыонг, студент группы N34471 (подпись) |  |  |  |  |
| Проверил:                                        |  |  |  |  |
| Попов Илья Юрьевич, доцент ФБИТ                  |  |  |  |  |
| (отметка о выполнении)                           |  |  |  |  |
| (подпись)                                        |  |  |  |  |

# СОДЕРЖАНИЕ

| Содер | эжание                     | 2  |
|-------|----------------------------|----|
| Введе | ение                       | 3  |
|       | Нелинейный локатор "NR-µ"  |    |
|       | Назначение                 |    |
|       | Технические характеристики |    |
|       | Устройство и работа        |    |
| 1.4   | Состав                     | 6  |
| 2     | Ход работы                 | 9  |
| Заклю | очение                     | 10 |

# **ВВЕДЕНИЕ**

Цель работы – Изучить принцип работы нелинейного локатора "NR-µ" Для достижения поставленной цели необходимо решить следующие задачи:

- ознакомиться с руководством по использованию измерителя спектра вторичных полей;
  - провести поиск полупроводниковых элементов в номерных коробках №1-5;
  - провести анализ полученных результатов.

# 1 НЕЛИНЕЙНЫЙ ЛОКАТОР "NR-µ"

#### 1.1 Назначение

Нелинейный локатор «NR-µ» предназначен для поиска скрыто установленных электронных устройств, содержащих полупроводниковые компоненты: радиомикрофонов, микрофонных усилителей, проводных микрофонов, устройств инфракрасного и ультразвукового диапазонов, средств звуко- и видеозаписи и т.п., вне зависимости от их функционального состояния, т.е. находящихся как во включенном, так и в выключенном состоянии.

Нелинейный локатор «NR-µ» обеспечивает эффективный поиск и высокую степень локализации местоположения объектов поиска в ограждающих строительных конструкциях (пол, потолок, стены), в предметах интерьера и мебели.

Нелинейный локатор «NR-µ» обеспечивает оператору возможность отличить искомые объекты от естественных (коррозийных) нелинейных отражателей.

#### Отличительные особенности:

- Облегченный корпус, встроенная кабельная система.
- Импульсный и непрерывный режим работы.
- Дополнительный индикатор на антенной системе.
- Возможность перестройки частоты зондирующего сигнала.



Рисунок 1 – Нелинейный локатор «NR-µ»

# 1.2 Технические характеристики

| Дальность обнаружения штатного и     | имитатора в не менее 0,4 м                  |  |  |  |  |
|--------------------------------------|---------------------------------------------|--|--|--|--|
| режиме излучения максимальной мог    | щности при                                  |  |  |  |  |
| максимальной чувствительности прием  | иников                                      |  |  |  |  |
| В качестве имитатора используется по | олупроводниковый диод 2Д521А, размещенный в |  |  |  |  |
| защитном кожухе                      |                                             |  |  |  |  |
| Средняя мощность зондирующего        | го сигнала не более 0,5 Вт                  |  |  |  |  |
| передатчика, подводимая к антенне,   | , в режиме                                  |  |  |  |  |
| излучения максимальной мощности      |                                             |  |  |  |  |
| Ослабление мощности зондирующего с   | сигнала двумя ступенями по 5 дБ каждая      |  |  |  |  |
| Диапазон перестройки частоты зон     | ндирующего 848±6 МГц                        |  |  |  |  |
| сигнала передатчика                  |                                             |  |  |  |  |
| Шаг перестройки частоты сигнала пере | едатчика 2 МГц                              |  |  |  |  |
| Частота следования зондирующих ради  | иоимпульсов 800 Гц                          |  |  |  |  |
| в режиме включенной модуляции        |                                             |  |  |  |  |
| Чувствительность приемников при      | отношении не хуже минус 150 дБ/Вт           |  |  |  |  |
| сигнал/шум 6дБ                       |                                             |  |  |  |  |
| Динамический диапазон приемников     | не менее 40 дБ                              |  |  |  |  |
| Ослабление уровней входных сигналов  | приемников четыре ступени по 10 дБ каждая   |  |  |  |  |
| Коэффициенты усиления приемной и     | передающей не менее 8 дБ и 6 дБ             |  |  |  |  |
| антенн                               | соответственно                              |  |  |  |  |
| Поляризация антенн                   | круговая, коэффициент                       |  |  |  |  |
|                                      | эллиптичности - не хуже 0,75                |  |  |  |  |
| Уровень задних лепестков             | диаграммы не более минус 15 дБ              |  |  |  |  |
| направленности для передающей и      | и приемной                                  |  |  |  |  |
| антенн                               |                                             |  |  |  |  |
| Индикация уровней визуаль            | ная светодиодный индикатор                  |  |  |  |  |
| принимаемых сигналов звукова         | головные телефоны                           |  |  |  |  |
| Условия диапазон рабочих темпе       | ератур от 5°C до 40°C                       |  |  |  |  |
| эксплуатации предельные пониж        | кенная и минус 20°C до +50°C                |  |  |  |  |
| повышенная температур                | ры                                          |  |  |  |  |
| относительная влажнос                | ть воздуха не более 80% (при 25°C)          |  |  |  |  |

| Питание изделия от автономного и | аккумулятор GP «VD-153» – 6 В |               |
|----------------------------------|-------------------------------|---------------|
|                                  | (два комплекта)               |               |
| Время непрерывной работы от      | в режиме                      | 5 ч           |
| одного комплекта                 | поиска                        |               |
| аккумуляторов:                   | в режиме                      | Не менее 1,5ч |
|                                  | анализа                       |               |

## 1.3 Устройство и работа

Нелинейный локатор «NR-µ» представляет собой портативный прибор, состоящий из антенной системы, передатчика и двух приемников, настроенных на удвоенную и утроенную частоты сигнала передатчика.

Антенная система состоит из двух соосно расположенных передающей и приемной антенн направленного излучения. Максимумы диа-грамм направленности антенн направлены по геометрической оси в сторону, противоположную узлу ее крепления.

Управление режимами работы осуществляется с помощью пульта управления.

Моногармонический зондирующий сигнал передатчика преобразуется на нелинейных (полупроводниковых) элементах искомого радио-электронного устройства в полигармонический и переизлучается.

Из принятого переизлученного сигнала приемниками выделяются вторая и третья гармоники частоты зондирующего сигнала, а их уровни отображаются светодиодным индикатором и индицируются в виде тонального сигнала в головных телефонах, уровень громкости которого пропорционален уровню принятого сигнала.

#### 1.4 Состав

Изделие состоит из антенной системы с пультом управления и индикации (рис. 2) и блока приемопередатчика (рис. 3).

На верхней панели приемопередатчика расположены (см. рис. 3):

- площадка с контактами и элементами крепления для установки аккумулятора;
- разъем для подключения пульта управления и индикации;
- разъем для подключения головных телефонов;
- вывод радиочастотных кабелей к антенной системе.



Рисунок 2 – Антенная система с пультом управления и индикации



Рисунок 3 – Блок приемопередатчика



Рисунок 4 – Внешний вид пульта управления и индикации

На пульте управления и индикации расположены органы управления изделием, выполненные в виде нефиксируемых кнопок, и светодиодные индикаторы:

- 1 кнопка IND переключения отображения уровней входных сигналов между индикатором на антенной системе и индикатором на пульте управления;
- 2 светодиодные шкалы (линейки) уровней принимаемых сигналов частоты второй и третьей гармоник зондирующего сигнала, маркированные цифрами 2 и 3 соответственно;
- 3 кнопки 0 dB, -5 dB и -10 dB включения/выключения зондирующего сигнала передатчика и управления его выходной мощностью;
- 4 кнопки PHONES выбора прослушиваемого в наушниках сигнала подключение головных телефонов к выходу приемника сигнала с частотой второй или третьей гармоники частоты зондирующего сигнала;
- 5,6 кнопки ATTENUATION, dB (-10, -20, -30 и -40) включения ослабления уровней входных сигналов приемников;
  - 7 кнопки VOL ( $\blacktriangle$ ,  $\blacktriangledown$ ) регулировки громкости сигнала в головных телефонах;
  - 8 кнопка ON/OFF включения/выключения питания изделия;

  - 10 кнопки FRQ ( $\blacktriangle$ ,  $\blacktriangledown$ ) перестройки частоты зондирующего сигнала.

## 2 ХОД РАБОТЫ

Были даны пять коробок с неизвестным содержимым. Нам необходимо провести поиск полупроводниковых элементов. Нам нужно провести идентификацию обнаруженного сигнала, используя показания уровней сигналов 2-ой и 3-ей гармоник сигнала передатчика на светодиодных шкалах антенного индикатора.

- Существенное превышение уровня сигнала 3-й гармоники над уровнем 2-й: источником сигнала-отклика является металл.
- Существенное превышение 2-ой гармоники зондирующего сигнала над 3-ей гармоникой: обнаружение электронной схемы и/или проводника(полупроводника) в коробке.

В ходе исследования были полученные следующие результаты:

- в первой коробке есть скрепки;
- во второй коробке есть провод;
- в третьей коробке есть полупроводник;
- в четвертой коробке есть скрепки;
- в пятой коробке полупроводник.

# **ЗАКЛЮЧЕНИЕ**

В данной работе был изучен нелинейный локатор "NR-µ", применяемый для обнаружения устройств и предметов, содержащих полупроводниковые компоненты. В ходе работы с помощью "NR-µ" осуществлялся поиск таких устройств и предметов, как полупроводник, провод, металл.