Aula 20 Sistemas Operacionais I

Gerenciamento de E/S – Parte 2

Prof. Julio Cezar Estrella jcezar@icmc.usp.br Material adaptado de Sarita Mazzini Bruschi

baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

- Discos Magnéticos:
 - Grande evolução em relação a:
 - Velocidade de acesso (seek): tempo de deslocamento do cabeçote até o cilindro correspondente à trilha a ser acessada;
 - Transferências: tempo para transferência (leitura/escrita) dos dados;
 - Capacidade;
 - Preço;

- Técnica para reduzir o tempo de acesso: entrelaçamento (interleaving):
 - Setores são numerados com um espaço entre eles;
 - Entre o setor K e o setor K+1 existem n (fator de entrelaçamento) setores;
 - Número **n** depende da velocidade do processador, do barramento, da controladora e da velocidade de rotação do disco;

Trilhas com 16 setores

- *Drivers* de Disco:
 - Fatores que influenciam tempo para leitura/escrita no disco:
 - Velocidade de acesso (seek) → tempo para o movimento do braço até o cilindro;
 - Delay de rotação (latência) → tempo para posicionar o setor na cabeça do disco;
 - Tempo da transferência dos dados;
 - Tempo de acesso:
 - $T_{seek} + T_{latência*} + T_{transferência}$;

^{*} Tempo necessário para o cabeçote se posicionar no setor de escrita/leitura;

- Algoritmos de escalonamento no disco:
 - FCFS (FIFO) → First-Come First-Served;
 - SSF → Shortest Seek First;
 - Elevator (também conhecido como SCAN);
- Escolha do algoritmo depende do número e do tipo de pedidos;
- Driver mantém uma lista encadeada com as requisições para cada cilindro;

Disco com 37 cilindros;

Lendo bloco no cilindro 11;

Requisições: 1,36,16,34,9,12, nesta ordem

FCFS \rightarrow atendimento: 1,36,16,34,9,12;

movimentos do braço (número de cilindros): 10,35,20,18,25,3 = 111;

Disco com 37 cilindros;

Lendo bloco no cilindro 11;

Requisições: 1,36,16,34,9,12, nesta ordem

C

Disco com 37 cilindros;

Lendo bloco no cilindro 11;

Requisições: 1,36,16,34,9,12, nesta ordem

Bit de direção corrente (driver):

Se $Up \rightarrow$ atende próxima requisição;

senão Bit = Down;

muda direção e atende requisição;

Elevator (requisições na mesma direção) → atendimento: 12,16,34,36,9,1

movimentos do braço (número de cilindros): 1,4,18,2,27,8 = 60;

Clocks – Tipos

- Dois tipos de relógios:
 - hardware (clock hardware) e software (clock driver);
- Clock Hardware:
 - Dispositivo que gera pulsos síncronos;
 - Localizados na CPU ou na placa-mãe;
 - Sinal utilizado para a execução de instruções;
 - Presente em qualquer sistema multiprogramado;
 - Fundamental para ambientes TimeSharing;
 - Freqüência de *clock*
 - Número de vezes que o pulso se repete por segundo (Hz);

Clocks – Tipos Hardware

• <u>Hardware</u>

- Dois tipos:
 - Básico: usa o sinal da rede elétrica (110/220 V) para fazer contagem (50/60 Hz)→ cada oscilação da rede é uma interrupção;

Clocks – Tipos Hardware

- Com 03 componentes → oscilador de cristal, contador e registrador;
 - Programável;
 - Contador recebe o valor armazenado no registrador;
 - A cada pulso do oscilador, o contador é decrementado de uma unidade;
 - Quando o contador zera, é gerada uma interrupção de clock (interrupção da CPU);
 - Precisão;

Clocks – Tipos Hardware

- Relógios programáveis podem operar de diversos modos:
 - One-shot mode
 - Ao ser iniciado, o relógio copia o valor contido no registrador, e decrementa o contador a cada pulso do cristal;
 - Quando o contador chega a zero, um interrupção ocorre;
 - Recomeça por intervenção de software;
 - Square-wave mode
 - Repete o ciclo automaticamente, sem intervenção de software;
- As periódicas interrupções geradas pela CPU são chamadas de <u>clock</u> <u>ticks</u> (pulsos do relógio);

- Hardware \rightarrow gera interrupções em intervalos conhecidos (*clock ticks*);
- Tudo o mais é feito por <u>Software</u>: *clock driver*;
- Funções do *clock driver*:
 - Manter a hora do dia;
 - Evitar que processos executem por mais tempo que o permitido;
 - Supervisionar o uso da CPU;
 - Cuidar da chamada de sistema alarm;
 - Fazer monitoração e estatísticas;
 - Prover temporizadores "guardiões" para os dispositivos de E/S;

- Manter a Hora do Dia
 - Hora e data correntes:
 - Checa a *CMOS*;
 - Uso de baterias para não perder as informações
 - Pergunta ao usuário;
 - Checa pela rede em algum host remoto;
 - Número de *clock ticks*:
 - Desde às 12 horas do dia 1º de janeiro de 1970 no UNIX;
 - Desde o dia 1º de janeiro de 1980 no Windows;

- Manter a hora do dia
 - Incrementar contador a cada tick;
 - Com um contador de 32 bits, a capacidade estouraria em 2 anos...
 - Solução: três abordagens:
 - a) Contador com 64 bits
 - b)Contar em segundos → ticks/seg;
 - c) Ticks relativos à hora que o sistema foi iniciado;

Manter a hora do dia

- Controlar duração da Execução dos Processos
 - Execução inicia → escalonador inicia contador → número de ticks do quantum;
 - Contador é decrementado a cada tick;
 - Contador = 0 → hora de acionar escalonador (que pode trocar o processo);

- Supervisão do uso da CPU
 - Quanto tempo o processo já foi executado?
 - Processo inicia → novo *clock* (segundo relógio) é iniciado;
 - Processo é parado → clock é lido;
 - Durante interrupções → valor do *clock* é salvo e restaurado depois;
 - Possível usar a tabela de processos

 variável global armazena o tempo (em ticks);

- Alarmes (Avisos)
 - Processos podem requerer "avisos" de tempos em tempos;
 - Avisos podem ser: um sinal, uma interrupção ou uma mensagem;
 - Exemplo:
 - redes de computadores → pacotes não recebidos devem ser retransmitidos;

- Temporizadores Guardiões
 - Esperar por um certo tempo e realizar uma tarefa:
 - $\Delta t \rightarrow registrador (contador);$
 - Quando contador zera → procedimento é executado;
 - Onde usar?
 - Exemplo:
 - acionador de disco flexível: somente quando o disco está em rotação na velocidade ideal é que as operações de E/S podem ser iniciadas;

- Tarefas básicas do driver de relógio (clock driver) durante uma interrupção:
 - Incrementar o tempo real;
 - Decrementar o quantum e comparar com 0 (zero);
 - Contabilizar o uso da CPU;
 - Decrementar o contador de alarme;
 - Gerenciar o tempo de acionamento de dispositivos de E/S;