Problem (Exercise 13.8[M&I])

Assume that X and Y are two independent random variables defined on a probability space (Ω, \mathcal{F}, P). Assume additionally that X and Y are absolutely continuous with the same distribution.

- (a) Show that P(X = Y) = 0.
- (b) Show that $P(X < Y) = \frac{1}{2} = P(X > Y)$.

Solution

(a) Ifølge Eksempel 13.5.7 (A) i [M&I] er vektoren (X, Y) absolut kontinuert. Dvs. at hvis $A \in \mathcal{B}(\mathbb{R}^2)$, således at $\lambda_2(A) = 0$, så gælder der, at $\mathbb{P}((X,Y) \in A) = 0$. Vi bemærker, at

$$\mathbb{P}(X = Y) = \mathbb{P}((X, Y) \in A)$$

hvor $A = \{(x,y) \in \mathbb{R}^2 \mid x=y\}$. Vi regner $\lambda_2(A)$ vha. Sætning 6.3 .7 (ii) i [M&I]:

$$\lambda_2(A) = \int_{\mathbb{R}} \lambda(\{y \in \mathbb{R} \mid (x, y) \in A\}) \lambda(\mathrm{d}x) = \int_{\mathbb{R}} \lambda(\{x\}) \lambda(\mathrm{d}x) = 0$$

Dette viser, at $\mathbb{P}(X = Y) = 0$.

(b) Pr. symmetri har vi, at $\mathbb{P}(X < Y) = \mathbb{P}(X > Y)$. Ved at benytte (a) ser vi nu,

$$1 = \mathbb{P}(X = Y) + \mathbb{P}(X < Y) + \mathbb{P}(X > Y) = 2\mathbb{P}(X < Y).$$

Dermed far vi, at $\mathbb{P}(X < Y) = \frac{1}{2} = \mathbb{P}(X > Y)$, som ønsket.

Problem (Exercise 1.2)

Lad X og Y være to uafhængige d-dimensionale stokastiske vektorer definerede på sandsynlighedsfeltet (Ω, \mathcal{F}, P) , og betragt endvidere deres fordelinger P_X og P_Y på $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$

- (a) Vis, at foldningen $P_{\mathsf{X}} * P_{\mathsf{Y}}$ er fordelingen $P_{\mathsf{X}+\mathsf{Y}}$ af den stokastiske vektor $\mathsf{X} + \mathsf{Y}$.
- (b) Benyt (a) og Sætning 1.1.4(vi) til at give et alternativt bevis for Sætning 1.1.7(vii)

Solution

(a) Let
$$A \in \mathcal{B}(\mathbb{R}^d)$$
, $S(x,y) = x + y$, $S : \mathbb{R}^{2d} \to \mathbb{R}^d$, we note:

$$P_{X+Y}(A) = P(X+Y \in A) = P_{(X,Y)}(S \in A) = (\P_X \otimes P_Y) \circ S^{-1}(A) = P_X * P_Y(A)$$

(b)
$$pf: \phi_{X+Y} = \phi_X \phi_Y$$

$$\phi_{X+Y} = \hat{P}_{X+Y} = P_X \hat{*} P_Y = \hat{P}_X \hat{P}_Y = \phi_X \phi_Y$$

Problem (Exercise 1.5)

Lad X_1 og X_2 være to uafhængige stokastiske variable definerede på sandsynlighedsfeltet (Ω, \mathcal{F}, P) . Benyt da Opgave 1.4, Eksempel 1.1.3 og Sætning 1.2.5 til at bevise følgende udsagn:

- (a) Hvis X_1 og X_2 er binomialfordelte med samme sandsynligehdsparameter p og med antalsparametre hhv. n_1 og n_2 , da er $X_1 + X_2$ binomialfordelt med sandsynlighedsparameter p og antalsparameter $n_1 + n_2$.
- (b) Hvis X_1 og X_2 er Possion-fordelte med parametre hhv. l_1 og l_2 , da er $X_1 + X_2$ Poisson-fordelt med parameter $l_1 + l_2$.
- (c) Hvis $X_1 \sim N(\xi_1, \sigma_1^2)$, og $X_2 \sim N(\xi_2, \sigma_2^2)$, da er $X_1 + X_2 \sim N(\xi_1 + \xi_2, \sigma_1^2 + \sigma_2^2)$ -fordelt.

Solution

(a) Jf. Sætning 1.2.5 er det nok at vise, at den karakteristiske funktion for $X_1 + X_2$ er den karakteristiske funktion for en binomialfordeling med de påståede parametre. Idet X_1 og X_2 er uafhængige giver Korollar 1.1.7(vii), at $\varphi_{X_1+X_2}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t)$.

Vi bruger nu den karakteristiske funktion fundet i Opgave 1.4 (a)

$$\varphi_{X_1+X_2}(t) = (1-p+pe^{it})^{n_1} (1-p+pe^{it})^{n_2} = (1-p+pe^{it})^{n_1+n_2}$$

hvilket netop viser det ønskede.

(b) Vi bruger samme fremgangsmåde som i (a). Vi ser således, at

$$\varphi_{X_1+X_2}(t) = \exp\left(\ell_1 \left(e^{it} - 1\right)\right) \exp\left(\ell_2 \left(e^{it} - 1\right)\right) = \exp\left((\ell_1 + \ell_2) \left(e^{it} - 1\right)\right)$$

(c) Igen benytter vi samme fremgangsmåde. Her husker vi, at hvis $X \sim N(\xi, \sigma^2)$, så er $\varphi_X(t) = e^{it\xi}e^{-\sigma^2t^2/2}$ jf. Eksempel 1.1.3. Vi ser nu, at

$$\varphi_{Y_1, +Y_2}(t) = e^{it\xi_1}e^{-\sigma_1^2t^2/2}e^{it\xi_2}e^{-\sigma_2^2t^2/2} = e^{it(\xi_1+\xi_2)}e^{-(\sigma_1^2+\sigma_2^2)t^2/2}$$

Dette viser, at $X_1 + X_2 \sim N(\xi_1 + \xi_2, \sigma_1^2 + \sigma_2^2)$.

Problem (Exercise 1.3)

(a) Lad $f: \mathbb{R} \to [0, \infty)$ være en funktion fra $\mathcal{L}^1(\lambda)^+$, og antag at dens Fourier-transformerede \hat{f} er element i $\mathcal{L}^1_{\mathbb{C}}(\lambda)$. Benyt da Sætning 1.2.8 til at vise, at

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(t)e^{itx} \lambda(dt), \quad \text{for } \lambda - \text{n.a. } x \in \mathbb{R}$$
 (1)

(b) Lad f være en funktion fra $\mathcal{L}^1_{\mathbb{C}}(\lambda)$ og betragt funktonerne $g_+, g_-, h_+, h_- \in \mathcal{L}^1(\lambda)$ givet ved

$$g_{\pm} = \text{Re}(f)^{\pm}, \quad h_{\pm} = \text{Im}(f)^{\pm}.$$

Vis da, at $\hat{f} = \hat{g}_+ - \hat{g}_- + i(\hat{h}_+ - \hat{h}_-)$. Benyt endvidere (a) til at udlede, at (1) også gælder for det her betragtede f, såfremt $\hat{g}_{\pm}, \hat{h}_{\pm} \in \mathcal{L}^1_{\mathbb{C}}(\lambda)$.

Solution

(a) Vi husker, at $\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ixt} \lambda(dx)$. Specielt ser vi, at hvis f = 0 λ -n.o., så er $\hat{f}(t) = 0$ for alle t. Dermed er (1) opfyldt i dette tilfælde. Antag derfor, at $\lambda(\{f > 0\}) > 0$ (dvs. at f ikke er 0 n.o.). Så er $\int_{\mathbb{R}} f(x) \lambda(dx) \in (0, \infty)$, og vi sætter $c = \left(\int_{\mathbb{R}} f(x) \lambda(dx)\right)^{-1}$. Da er cf en sandsynlighedstæthed, og vi lader X være en absolut kontinuert stokastisk variabel med tæthed $f_X = cf$. Bemærk nu, at

$$\varphi_X(t) = \int_{\mathbb{R}} e^{itx} f_X(x) \lambda(dx) = c \int_{\mathbb{R}} e^{itx} f(x) \lambda(dx) = c\sqrt{2\pi} \hat{f}(-t)$$

Idet $\hat{f} \in \mathcal{L}^1_{\mathbb{C}}(\lambda)$ følger det, at $\varphi_X \in \mathcal{L}^1_{\mathbb{C}}(\lambda)$. Da giver Sætning 1.2.8, at

$$f_X(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixs} \varphi_X(s) \lambda(ds)$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixs} c\sqrt{2\pi} \hat{f}(-s) \lambda(ds)$$
$$= \frac{c}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ixt} \hat{f}(t) \lambda(dt)$$

for λ -n.a. x. I sidste lighed har vi benyttet substitutionen t = -s. Vi bemærker, at vi nu har vist (1), idet $f(x) = \frac{1}{c} f_X(x)$.

(b) Vi kan skrive $f = \text{Re}(f) + i \text{Im}(f) = g_+ - g_- + i (h_+ - h_-)$. Det følger direkte fra definitionen af Fourier-transformationen, at det er en lineær afbildning. Dvs. at hvis $f_1, f_2 \in \mathcal{L}^1_{\mathbb{C}}(\lambda)$ og $\alpha_1, \alpha_2 \in \mathbb{C}$, så er $\left(\alpha_1 \hat{f}_1 + \alpha_2 f_2\right) = \alpha_1 \hat{f}_1 + \alpha_2 \hat{f}_2$. Specielt gælder der, at $\hat{f} = \hat{g}_+ - \hat{g}_- + i \left(\hat{h}_+ - \hat{h}_-\right)$.

Antag nu, at $\hat{g}_{\pm}, \hat{h}_{\pm} \in \mathcal{L}^1_C(\lambda)$. Da er (1) opfyldt med f erstattet med hhv. g_+, g_-, h_+ og h_- . Vi har derfor, at

$$f(x) = g_{+}(x) - g_{-}(x) + i (h_{+}(x) - h_{-}(x))$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{g}_{+}(t) e^{itx} \lambda(dt) - \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{g}_{-}(t) e^{itx} \lambda(dt)$$

$$+ i \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{h}_{+}(t) e^{itx} \lambda(dt) - \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{h}_{-}(t) e^{itx} \lambda(dt) \right)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left(\hat{g}_{+}(t) - \hat{g}_{-}(t) + i \left(\hat{h}_{+}(t) - \hat{h}_{-}(t) \right) \right) e^{itx} \lambda(dt)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(t) e^{itx} \lambda(dt),$$

for λ -n.a. x.

Problem (Exercise 2.5[M&I])

Lad (S, ρ) være et metrisk rum, og lad M være en ikke-tom delmængde af S. Vi definerer da afbildningen $\rho(\cdot, M) : S \to [0, \infty)$ ved

$$\rho(x, M) = \inf\{\rho(x, y) : y \in M\}, \quad (x \in S).$$

(a) Vis, at der for alle x, z i S gælder, at

$$|\rho(x, M) - \rho(z, M)| \le \rho(x, z)$$

(b) Vis, at der for ethvert x i S gælder, at

$$\rho(x, M) = 0 \iff x \in \bar{M}.$$

(c) Vis, at der for enhver lukket delmængde F af S findes en følge $(G_n)_{n\in\mathbb{N}}$ af åbne delmængder af S, således at $G_1 \supseteq G_2 \supseteq G_3 \supseteq \cdots$, og $F = \bigcap_{n\in\mathbb{N}} G_n$.

Solution

(a) Lad $x, z \in S$. For ethvert $y \in M$ gælder der, at

$$\rho(x, M) \le \rho(x, y) \le \rho(x, z) + \rho(z, y)$$

Ved at tage infimum over $y \in M$, får vi da, at

$$\rho(x, M) < \rho(x, z) + \rho(z, M)$$

Dvs. at

$$\rho(x, M) - \rho(z, M) \le \rho(x, z) \tag{2}$$

Pr. symmetri har vi, at

$$\rho(z, M) - \rho(x, M) \le \rho(z, x) = \rho(x, z) \tag{3}$$

Ved at kombinere (2) og (3) får vi, at

$$|\rho(x, M) - \rho(z, M)| \le \rho(x, z)$$

som ønsket.

(b) Lad $x \in S$, og antag først, at $\rho(x, M) = 0$. Da findes en følge $(y_n)_{n \in \mathbb{N}}$ i M, således at $\rho(x, y_n) \to \rho(x, M) = 0$ for $n \to \infty$. Dvs. at $y_n \to x$, hvilket viser, at $x \in \overline{M}$. Antag nu, at $x \in \overline{M}$. Da findes en følge $(y_n)_{n \geq 1}$ iM, således at $y_n \to x$ for $n \to \infty$. Det betyder, at $\rho(x, y_n) \to 0$. For ethvert $\epsilon > 0$ kan vi derfor finde $N \in \mathbb{N}$ med $\rho(x, y_N) < \epsilon$. Dette medfører, at $\rho(x, M) \leq \rho(x, y_N) < \epsilon$. Idet ϵ kan vælges vilkårligt småt, viser dette, at $\rho(x, M) = 0$.

(c) Lad $F \subseteq S$ være lukket. I (a) har vi set, at afbildningen $\rho_F = \rho(\cdot, F)$ er kontinuert. For ethvert $n \ge 1$ definerer vi nu $G_n := \rho_F^{-1}((-\infty, 1/n))$. Idet $(-\infty, 1/n)$ er åben, er G_n ligeledes åben. Desuden er $(-\infty, 1/n) \supseteq (-\infty, 1/(n+1))$, og dermed er $G_n \supseteq G_{n+1}$ som ønsket. Vi bemærker, at $x \in \bigcap_{n\ge 1} G_n$, hvis og kun hvis $\rho(x, F) < 1/n$ for alle $n \ge 1$. Dvs. at $x \in \bigcap_{n\ge 1} G_n$, hvis og kun hvis $\rho(x, F) = 0$. Kombinerer vi dette med (b), ser vi, at $x \in \bigcap_{n\ge 1} G_n$, hvis og kun hvis $x \in \overline{F}$. Dermed har vi, at

$$\bigcap_{n\geq 1} G_n = \bar{F} = F$$

idet F er lukket.

Problem (Exercise 4.19[M&I])

 $\operatorname{Lad}(S, \rho)$ være et metrisk rum, lad G være en åben delmængde af S, og betragt funktionen $x \mapsto \rho(x, G^c)$ indført i Opgave 2.5.

(a) Vis, at der for ethvert x i S gælder, at

$$(k\rho(x,G^c)) \wedge 1 \uparrow \mathbf{1}_G(x) \quad \text{for } k \to \infty$$
 (4)

(b) Konkludér, at der findes en følge $(f_n)_{n\in\mathbb{N}}$ af uniformt kontinuerte funktioner $f_n: S \to [0,1]$, således at $f_n(x) \to \mathbf{1}_G(x)$ for alle x i S.

Solution

- (a) Vi bemærker først, at G^c er lukket. Dvs. at $\rho(x, G^c) = 0$, hvis og kun hvis $x \in G^c$ jf. Opgave 2.5 (b). Betragt nu $x \in S$ og antag, at $x \in G$. Da er $\rho(x, G^c) > 0$, så $k\rho(x, G^c) \uparrow \infty$, hvilket medfører, at $(k\rho(x, G^c)) \land 1 \uparrow 1 = 1_G(x)$. Antag omvendt, at $x \in G^c$. Da er $(k\rho(x, G^c)) \land 1 = 0 = 1_G(x)$ for alle k, så specielt holder konvergensen i (4).
- (b) Lad $f_n(x) = (n\rho(x, G^c)) \wedge 1$. Ifølge (a) gælder der, at $f_n(x) \to 1_G(x)$ for alle $x \in S$, så vi mangler blot at vise, at f_n er uniformt kontinuert for ethvert $n \ge 1$. Fra Opgave 2.5 (a) følger det, at

$$|n\rho(x, G^{c}) - n\rho(z, G^{c})| \le n\rho(x, z)$$

for alle $x, z \in S$ og $n \ge 1$. Dette viser, at funktionen $g_n : x \mapsto n\rho(x, G^c)$ er uniformt kontinuert for alle $n \ge 1$. Det følger nu let, at $f_n = g_n \wedge 1$ er uniformt kontinuert: Tjek tilfældene $g_n(x) > 1$ og $g_n(x) > 1$, $g_n(x) > 1$ og $g_n(x) \le 1$ osv.