학습(Learning)과 모델(model)

개요

• 머신러닝에서 학습이란?

• 머신러닝에서 모델이란?

• 학습 후에 모델이 얼마나 성능이 좋은지 판단

기계학습(머신러닝, Machine Learning)이란?

어떤 분류가 정답인가?

모델(Model)

학습(Learning)

선형(직선) = aX + b a, b 등 모델을 결정하는 변수 값을 찾는 과정

모델(Model)

선형(직선) = aX + b 다차원 곡선 = a X^n + ··· + b X + c 비선형적 곡면 = ···.

. . .

사용자가 모델을 선택해 주어야 함

학습(Learning)

선형(직선) = aX + b 다차원 곡선 = a X^n + ··· + b X + c 비선형적 곡면 = ···.

. . .

a, b, c 등 모델을 결정하는 변수 값을 찾는 과정

학습(Learning)

a, b, c 등 모델을 결정하는 변수 값을 찾는 과정

최적의 변수? 최적에 대한 objective function 정의 필요하고, 해당 문제를 풀수 있어야 함

Classification 기법들

Linear Regression (선형 회귀)

■ 선형 분류기

- 예를 들면, x 가 집합1(빨간색)이면 wx > 0
- x 가 집합2(파란색)이면 wx < 0

Support Vector Machine (SVM)

- SVM은 Logistic Regression(LR)과 클래스를 분류한다는데 유사하지만, LR과 다르게 확률 값을 제공하지 않음
- 최적화를 통해 최대 간극(margin)을 보장

Support Vector Machine (SVM)

- SVM은 Logistic Regression(LR)과 클래스를 분류한다는데 유사하지만, LR과 다르게 확률 값을 제공하지 않음
- 최적화를 통해 최대 간극(margin)을 보장

Support Vector Machine (SVM)

Constraint becomes:

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i, \forall x_i$$

 $\xi_i \ge 0$

Objective function penalizes for misclassified instances and those within the margin

$$\min \frac{1}{2} \|w\|^2 + C \sum_i \zeta_i^2$$

C trades-off margin width and misclassifications

k Nearest Neighbor (k-NN)

 k개의 가장 가까운 점들을 찾아서, 해당 점들의 분류결과 평균으로 분류

k Nearest Neighbor (k-NN)

 k개의 가장 가까운 점들을 찾아서, 해당 점들의 분류결과 평균으로 분류

k = 1인 경우

- "스무고개"놀이와 결정 트리
- 3가지 속성을 가진 데이터로 각 속성은 0, 1로 표현되고, 목적 클래 스가 +, -로 분류되는 데이터가 있을 경우

No.	a_{l}	a_2	a_3	С
1	0	0	0	-
2	0	0	1	-
3	0	1	0	-
4	0	1	1	+
5	1	0	0	-
6	1	0	1	+
7	1	1	0	-
8	1	1	1	+

야구 경기가 열린 날의 날씨 데이터

Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Outlook을 맨 처음 노드로 선택한 후 다음 노드의 선택은?

Outlook을 맨 처음 노드로 선택한 후 다음 노드의 선택은?

$$H(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information Gain = 0.996 - 0.615 = 0.38

- 다른 속성도 마찬가지로 Gain을 기준으로 선택
- Outlook이 sunny인 경우에는 D_sunny = {D1, D2, D8, D9, D11}

$$Gain(D_{sunny}, Humidity) = 0.970$$

 $Gain(D_{sunny}, Temperature) = 0.570$
 $Gain(D_{sunny}, Wind) = 0.019$

Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Expectation Calculus Mathematics Pata Science Probability Variables

모든 데이터는 고차원의 점(point)

- 임의의 데이터는 고차원의 한 점으로 표현 가능
- Q. 강아지와 고양이를 구분하기 위한 모델과 학습 방법은?

(Deep) Neural Network

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK Hidden Multiple hidden layers process hierarchical features layer Input Input Output Output layer layer layer layer Output: 'George' Input Identify Node Identify combinations light/dark or features pixel value Identify Identify Identify Links carry signals combinations edges features from one node of edges to another, boosting or damping them according to each link's 'weight'.

3. 모델 선택 및 성능평가

모델 선택: Under/Over Fitting

- Underfitting : 모델이 너무 단순한 경우 발생
- Overfitting : 모델이 너무 복잡한 경우 발생

언제까지 학습(최적화)를 해야할까?

모델 성능평가: 데이터셋의 구분

- Train Set : 모델 학습용 데이터 셋
- Validation Set : 학습시 Overfitting 등을 체크할 때 사용
- Test Set : 모델 성능 측정시 사용 (학습시 사용되지 않은 데이터 셋)
 - * 그럼에도 불구하고, 실제 성능을 보장해 주지는 못함

성능 지표

Predicted Positive TP FP
Predicted Negative FN TN

취소율(recall rate) =
$$\frac{TP}{TP + FN}$$

정밀도(precision) =
$$\frac{TP}{TP + FP}$$

참 긍정률(TPR, True Positive Rate) =
$$\frac{TP}{TP + FN}$$

거짓 긍정률(FPR, False Positive Rate) =
$$\frac{FP}{FP + TN}$$