Отчет о выполнении лабораторной работы 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Выполнил студент группы Б03-302: Танов Константин

1 Цель работы:

Измерить удельное сопротивление нихромовой проволоки и вычислить систематические и случайные погрешности при использовании измерительных приборов.

2 Оборудование:

Линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

3 Теоретические сведения:

Удельное сопротивление проволоки круглого сечения, изготовленной из однородного материала и имеющую всюду одинаковую толщину, расчитывается по формуле:

$$\rho = R_{\rm mp} \frac{\pi d^2}{4l},\tag{1}$$

где $R_{\rm np}$ – сопротивление проволоки, d–диаметр проволоки, l–лина проволоки. Согласно закону Ома для участка цепи:

$$I = \frac{U}{R} \tag{2}$$

Для измерения напряжения использовалась схема рис.1. Ввиду неидеальности используемого вольтметра необходимо учесть поправку на его конечное сопротивление R_V . Показания амперметра I_A и вольтметра V_B связаны соотношением:

$$V_B = R'I_A,\tag{3}$$

где R' — сопротивление параллельно соединенных проволоки и вольтметра, причём $\frac{1}{R'} = \frac{1}{R_{\rm np}} + \frac{1}{R_V} \Leftrightarrow$

$$R' = \frac{R_{\rm np}R_V}{R_{\rm np} + R_V}$$
, и $R_V \gg R_{\rm np}$, R' . График зависимости $V_B(I_A)$ должен представлять прямую, угловой коэффициент которой R' , откуда сопротивление образца может быть найдено как:

Рис. 1: Схема измерения вольт-амперной характеристики проволоки

$$R_{\rm np} = \frac{R_V R'}{R_V - R'} \approx R' \left(1 + \frac{R'}{R_V} \right) \tag{4}$$

Формула (4) получена с использованием округления: $\frac{1}{1+a} \approx 1-a$. Член, стоящий в скобках в формуле (4), определяет поправку, которую следует внести в измерения.

4 Оборудование и инструментальные погрешности

• Линейка: $\Delta_{\text{лин}} = \pm 0,5$ мм (по цене деления). При определении положений контактов имеется дополнительная погрешность, которая может быть оценена как $\Delta_{\text{лин}} = \pm 2$ мм.

• Штангенциркуль: $\Delta_{\text{mt}} = \pm 0, 1$ мм.

• Микрометр: $\Delta_{\text{MKM}} = \pm 0,01 \text{ мм}.$

• Вольтметр и амперметр:

	Вольтметр	Амперметр
Система	Магнитно-электрическая	Цифровая
Класс точности	0,2	_
Предел измерения X_n	0,6 B	2 A
Число делений шкалы n	150	_
Разрядность дисплея	_	5 ед.
Цена деления $\frac{X_n}{n}$	4 <u>мВ</u> дел	-
Чувствительность $\frac{n}{X_n}$	250 <u>дел</u>	_
Абсолютная погрешность Δ	1,2 мВ	$\pm (0,002 \cdot X + 2k)$, где X — измеряемая величина, k — единица младшего разряда (k = 0,01 мA).
Внутреннее сопротивление прибора(на данном пределе измерения)	4000Ом	1,2Ом
Погрешность считывания	2мВ	_
Максимальная погрешность	$\pm 3,75 \text{ MB}(0,5\%)$	_

Таблица 1: Основные характеристики приборов

При измерениях в диапазоне от 32 мА до 150 мА погрешность амперметра составила соответственно от $\Delta_{A_{\min}}=\pm0,084$ мА (0,42%) до $\Delta_{A_{\max}}=\pm0,32$ мА (0,213%).

Используя тот факт, что сопротивление проволоки по порядку велечины равно 5Ом, я внутреннее сопротивление вольтметра 4000Ом, то по

формуле (4) можно оценить величину поправки при измерении. После вычеслений получилось, что поравка составляет 0,125%. Так как данная поправка меньше максимальной относительной погрешности измерений вольтметра, то неидеальность вольтметра не оказывает влияния на измерение сопротивления. Значит:

$$R_{\rm np} \approx R'$$

• Мост постоянного тока Р4833:

Класс точности	0,1
Разрядность магазина сопротивлений	5 ед.
Используемый диапазон измерений	$10^{-4} - 10 \text{ Om}$
Погрешность измерений в используемом диапазоне	±0,01 Ом

Таблица 2: Основные характеристики моста постоянного тока Р4833

5 Результаты измерений и обработка данных

5.1 Измерения диаметра d проволоки

Измерения проводились при помощи штангенциркуля (значения d_1) и микрометра (значения d_2) 10 раз на разных участках проволоки, см. табл. 3.

N, изм.	1	2	3	4	5	6	7	8	9	10
d_1 , mm	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
d_2 , mm	0,35	0,35	0,34	0,34	0,35	5 0,36 0,36 0,35 0,36 0,37				
		$\overline{d_1}=0,4\mathrm{mm}$					$\overline{d_2} =$	0,353	MM	

Таблица 3: Результаты измерения проволоки штангенциркулем и микрометром

Таким образом, при измерении диаметра проволоки штангенциркулем случайная погрешность измерений отсутствует. Значит точность результата определяется только точностью систематической погрешности штангенциркуля:

$$\overline{d_1} = (0, 4 \pm 0, 1)$$
 mm

Измерения с помощбю микрометра содержат как систематическую, так и случайную погрешности:

• Систематическая

$$\sigma_{ ext{chct}} = \Delta_{ ext{mkm}} = \pm 0,01 \text{ mm}$$

- Случайная
 - 1. Среднее значение диаметра:

$$\overline{d_2} = rac{1}{N} \sum_{j=1}^N d_{2j} = 0,353 \; ext{mm}$$

2. Среднее квадратичное отклонение:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{n} (d_{2j} - \overline{d_2})^2} \thickapprox 0,00955 \text{ мм}$$

3. Средняя квадратичная погрешность отдельного измерения

$$\sigma_{\mathrm{cj}} = \frac{\sigma_{\mathrm{otd}}}{\sqrt{N}} \thickapprox 0,00302 \; \mathrm{mm}$$

4. Суммарная погрешность измерения диаметра проволоки

$$\sigma_{\text{полн}} = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{сл}}^2} \thickapprox 0,0104$$
 мм

Таким образом, поскольку $\sigma_{\rm cn}^2 \ll \sigma_{\rm сист}^2$, то можно считать проволоку однородной по диаметру, а погрешность при измерении диаметра проволоки микрометром определяется только точностью систематической погрешности микрометра.

Окончательные результаты измерения диаметра проволоки:

Штангенциркулем: $d_1 = 0, 4 \pm 0, 01$ мм.

<u>Микрометром:</u> $d_2 = 0,353 \pm 0,01$ мм ($\varepsilon_{d_2} = 2,83\%$).

5.2 Определение площади поперечного сечения проволоки:

Для этого воспользуемся значением диаметра проволоки, полученным микрометром, так как оно более точно, и соответствующей формулой:

$$S = \frac{\pi d_2^2}{4} \approx 0,978 \cdot 10^{-3} \text{ cm}^2$$

Велечину погрешности площади поперечного сечения найдем по формуле:

$$\sigma_S = 2 \frac{\sigma_{\text{полн}}}{d_2} S \approx 5, 3 \cdot 10^{-5} \text{ cm}^2$$

5.3 Измерение сопротивления проволоки

Опыт проводим для следующих трех длин проволоки:

$$l_1 = (20, 0 \pm 0, 1)$$
cm; $l_2 = (30, 0 \pm 0, 1)$ cm; $l_3 = (50, 0 \pm 0, 1)$ cm;

Измерения ведем при убывающих и возрастающих значений тока. Показания приборов записываем в табл.4. Результаты измерения сопротивлений с помощью моста постоянного тока P4833 заносим в табл.5.

4

Строим графики зависимостей V=f(I) для всех трёх отрезков проволоки, проводя прямые через эксперементальные точки (рис. 2).Из графиков видно, что случайный разброс точек пренебрежимо мал и что эксперементальные данные с хорошей точностью (в пределах инструментальных погрешностей опыта) ложатся на теоретическую прямую V=RI, исходящую из начала коородинат.

	$l_1 = (20.0 \pm 0.2) \; ext{cm}$									
V_B , MB	272	228	180	148	96	92	128	160	224	284
I_A , MA	128,7	107,6	84,6	69,1	44,12	43,67	60,2	75,7	106,0	134,9
		$l_2 = (30.0 \pm 0.2) \; \mathrm{cm}$								
V_B , MB	476	400	288	192	108	116	208	308	388	484
I_A , MA	147,2	124,1	89,0	59,6	33,3	35,1	64,4	95,5	120,2	150
	$l_3 = (50.0 \pm 0.2) \; ext{cm}$									
V_B , MB	584	456	336	244	168	172	284	396	508	604
I_A , мА	110,3	85,3	66,6	45,6	31,8	32,5	53,4	74,0	95,6	114

Таблица 4: Зависимость V_B от I_A для разных длин проволоки 1.

Для каждой длины l строим апроксимирующие прямые, определяя их угловой коэффициент \overline{R} , используя метод наименьших квадратов, по формуле:

$$\overline{R} = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

где угловые скобки означают усреднение. Для каждой велечины значения для соответствующего усреднения указаны в табл. 5.

Среднеквадратичную случайную погрешность определения углового коэффициента вычисляем как:

$$\sigma_{\overline{R}}^{\text{\tiny CJI}} = \sqrt{\frac{1}{N-1} \left(\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - \overline{R}^2 \right)}$$

Результаты заносим в табл. 6.

	$\langle I \rangle$ мА	$\langle V \rangle$ мВ	$\langle I^2 \rangle$ м ${ m A}^2$	$\langle V^2 \rangle \text{ MB}^2$	$\langle VI \rangle$ мА·мВ
l_1	85,46	181,2	8271,56	37076,8	17512,04
l_2	91,84	296,8	10109,836	105443,2	32649,75
l_3	70,91	375,2	5848,75	163958,4	30963,9

Таблица 5: Усредненные велечины

Оценим возможную систематическую погрешность, обусловленную инструментальными погрешностями приборов. Предполагая, что при всех измерениях относительная погрешность одинакова, оценим погрешность вычисления

частного R=V/I при максимальных значениях V и I:

$$\sigma_{\overline{R}}^{ ext{chct}} = R\sqrt{\left(rac{\sigma_V}{V_{max}}
ight)^2 + \left(rac{\sigma_I}{I_{max}}
ight)^2}$$

где σ_V и σ_I — средние квадратичные ошибки измерения вольтметром и амперметром. Результаты заносим в табл. 6.

Рис. 2: Результаты измерений напряжения V_B в зависимости от тока I_A для проволок разной длины l и их линейная апроксимация y=kx. Отмечены инструментальные погрешности по вертикальной оси(3,75 мB), погрешность по горизонтальной оси не отмечена ввиду её малости

Для вольтметра средняя квадратичная ошибка вычесляется как половина абсолютной погрешности вольтметра:

$$\sigma_V = \frac{\Delta_B}{2} = 0, 6$$

А для амперметра аналогично:

$$\sigma_I = rac{\Delta_A^{
m cp}}{2} = 0,1$$
 м ${
m A}$

где $\Delta_A^{\rm cp}$ – средняя абсолютная погрешность амперметра($\Delta_A^{\rm cp} = \frac{\Delta_{A_{\min}} + \Delta_{A_{\max}}}{2} = 0, 2 \text{ мA}$).

Полная погрешность измерения \overline{R} равна:

$$\sigma_{\overline{R}}^{ ext{iojh}} = \sqrt{(\sigma_{\overline{R}}^{ ext{chct}})^2 + (\sigma_{\overline{R}}^{ ext{cj}})^2}$$

Для всех трёх длин l вносим поправку в измеренное значение сопротивления по формуле:

$$R_{
m np} = \overline{R} + rac{\overline{R}^2}{R_B}$$

где R_B — внутреннее сопротивление вольтметра. Ввиду малости поправки считаем $\sigma_{\overline{R}}^{\text{пр}} = \sigma_{\overline{R}}^{\text{полн}}$.

Результаты сведены в табл. 6. Там же для сравнения приведены результаты измерения \overline{R} с помощью моста постоянного тока P4833 с учётом его погрешности.

	\overline{R} , Ом	$R_{\rm np}$	$\sigma_{\overline{R}}^{\text{сл}}$, Ом	$\sigma_{\overline{R}}^{\text{сист}}$, Ом	$\sigma_{\overline{R}}^{\text{полн}}$, Ом	R_{moct} , Om
l_1	2,117	2,118	0,0092	0,0047	0,01	$2,116 \pm 0,01$
l_2	3,2295	3,23	0,0032	0,0045	0,0055	$3,224 \pm 0,01$
l_3	5,294	5,3	0,027	0,007	0,013	$5,284 \pm 0,01$

Таблица 6: Результаты измерения сопротивления проволоки двумя методами

Таким образом, контрольные измерения с помощью моста постоянного тока занижены по сравнению с полученными при опыте $R_{\rm np}$, но все отклонения находятся в пределах $\pm 2\sigma_{\overline{R}}^{\rm no,nh}$.

5.4 Вычисление удельного сопротивления

Определяем удельное сопротивление проволоки по формуле (1) и погрешность σ_{ρ} по формуле:

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_{\overline{R}}^{\text{\tiny{IOJH}}}}{R_{\text{np}}}\right)^2 + \left(2\frac{\sigma_{\text{d}}}{d}\right)^2 + \left(\frac{\sigma_{\text{l}}}{l}\right)^2}$$

Значения удельных сопротивлений и их погрешностей указаны в табл. 8.

	$\rho, 10^{-4} \text{ Om} \cdot \text{cm}$	$\sigma_{\rho}, 10^{-4}, \text{ Om} \cdot \text{cm}$
l_1	1,036	6
l_2	1,053	6
l_3	1,036	5,9

Таблица 7: Значения удельных сопротивлений и их погрешностей

Усредняя результаты 3-х опытов, окончательно получаем:

$$\overline{\rho} = (1,042 \pm 0,06) \cdot 10^{-6} \text{ Om·m}(\varepsilon_{\rho} = 5,76\%)$$

6 Выводы по работе

В ходе выполнения лабораторной работы эксперементальным путем было получено значение удельного сопротивления нихромовой проволоки с точностью $\approx 5,76\%$. Основной вклад в погрешность вносит измерение диаметра проволоки, составляющая $\approx 2,83\%$, но так как из-за возведения в квадрат она удваивается, вклад в погрешность окончательного результата составляет $\approx 5,7\%$. Табличные значения для нихрома при 20° С в зависимости от массового содержания компонент меняются от $0,97\cdot10^{-6}$ Ом·м до $1,12\cdot10^{-6}$ Ом·м. Измеренное значение попадает в этот диапазон в пределах одного стандартного отклонения.