AMENDMENTS TO THE CLAIMS:

Please add new claim 16:

1. (Previously Presented) An electric power steering device for transmitting a rotation of a motor for assisting operation of steering which is reduced via a reduction gear to a steering mechanism, the electric power steering device comprising:

a spline shaft and a cylindrical body that is connected to a rotary shaft of said motor, said spline shaft and said cylindrical body being jointed to each other for transmitting the rotation of the motor to the reduction gear; and

a grease including a base oil having a kinetic viscosity of 1000 to 5000 mm²/s (40°C), a worked penetration of said grease being not more than 300, and which is charged in a gap between said spline shaft and said cylindrical body,

wherein the electric power steering device is devoid of an O-ring between said spline shaft and said cylindrical body.

- 2. (Previously Presented) The electric power steering device according to claim 1, wherein the kinetic viscosity of the base oil is not less than 1500 mm²/s.
- 3. (Previously Presented) The electric power steering device according to claim 1, wherein the kinetic viscosity of the base oil is not more than 2500 mm²/s.
- 4. (Previously Presented) The electric power steering device according to claim 1, wherein the worked penetration of the grease is not more than 260.

U.S. Application No. 10/796,301

Docket No. K06-167785M/TBS

(NGB.376)

5. (Previously Presented) The electric power steering device according to claim 1,

3

wherein the worked penetration of the grease is not less than 200.

6-9. (Canceled)

10. (Previously Presented) The electric power steering device according to claim 1,

further comprising:

a speed reduction mechanism, comprising:

a shaft; and

a wheel,

wherein said shaft of said speed reduction mechanism is connected to said rotary shaft

of said motor by a joint, said joint comprising said spline shaft and said cylindrical body.

11. (Previously Presented) The electric power steering device according to claim 10,

wherein said wheel comprises a synthetic resin member comprising at least one of polyacetal

terephthalate and polybutylene terephthalate.

12. (Previously Presented) An electric power steering device for transmitting a rotation of

a motor for assisting operation of steering which is reduced via a reduction gear to a steering

mechanism, the electric power steering device comprising:

a spline shaft and a cylindrical body that is connected to a rotary shaft of said motor,

said spline shaft and said cylindrical body being jointed to each other for transmitting the

4

U.S. Application No. 10/796,301 Docket No. K06-167785M/TBS (NGB.376)

rotation of the motor to the reduction gear; and

a grease including a base oil having a kinetic viscosity of 1000 to 5000 mm²/s (40°C), which is charged in a gap between said spline shaft and said cylindrical body,

wherein the electric power steering device is devoid of an O-ring between said spline shaft and said cylindrical body.

13. (Canceled)

14. (Previously Presented) An electric power steering device for transmitting a rotation of a motor for assisting operation of steering which is reduced via a reduction gear to a steering mechanism, the electric power steering device comprising:

a spline shaft and a cylindrical body that is connected to a rotary shaft of said motor, said spline shaft and said cylindrical body being jointed to each other for transmitting the rotation of the motor to the reduction gear; and

a grease having a worked penetration of which is not more than 300, and which is charged in a gap between said spline shaft and said cylindrical body,

wherein the electric power steering device is devoid of an O-ring between said spline shaft and said cylindrical body.

15. (Canceled)

16. (New) The electric power steering device according to claim 1, wherein the worked penetration of the grease is between 200 and 260.