1.7

Les nombres premiers

Maths 2nde 7 - JB Duthoit

1.7.1 Définition

Définition

Un **nombre premier** est un entier naturel qui a exactement deux diviseurs positifs distincts.

Exemples

Parmi les entiers suivants, lesquels sont des nombres premiers, et pourquoi?

- 1:
- 2:
- 3:
- 4:
- 5:
- 6:
- 7:
- 8:

1.7.2 Liste des nombres premiers entre 0 et 100

nous allons utiliser une méthode afin de trouver facilement tous les nombres premiers entre 1 et 100; cette méthode s'appelle le crible d'Erathostène.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Exercice 1.31

La conjecture de Goldbach affirme que "tout nombre pair supérieur ou égal à 4 est la somme de deux nombres premiers".

- 1. Vérifier cette conjecture pour tous les nombres pairs entre 10 et 20.
- 2. Trouver tous les nombres premiers p et p' tels que 100 = p + p'.

1.7.3 Algorithme avec les nombres premiers

Algorithme 1.2

En vous inspirant des algorithmes précédents, créer une fonction **premier(n)** qui prend en argument un entier positif et qui renvoie true si n est premier, False sinon.

1.7.4 Décomposition en produit de nombres premiers

Propriété

Tout entier naturel n, avec $n \geq 2$ est premier ou produit de nombres premiers. Cette décomposition en produit de facteurs premiers est unique, à l'ordre près.

Savoir-Faire 1.7

SAVOIR DÉCOMPOSER UN ENTIER EN PRODUITS DE NOMBRES PREMIERS Déterminer la décomposition en produit de facteurs premiers des nombres suivants :

- 1. 72
- 2. 207900

• Exercice 1.32

Déterminer la décomposition en produit de facteurs premiers de

1. 112

3. 490

5. 1140

2. 360

4. 495

Exercice 1.33

Décomposer les entiers suivants en produit de nombres premiers, puis en déduire tous les diviseurs de ces nombres

1. 64

2. 54

3. 72

Exercice 1.34

Mettre sous forme irréductible les fractions suivantes en décomposant le numérateur et le dénominateur en produit de facteurs premiers :

1. $\frac{48}{75}$

3. $\frac{585}{1275}$

5. $\frac{32670}{792}$

2. $\frac{180}{126}$

4. $\frac{360}{252}$

6. $\frac{17303}{1859}$