Name	Signature
Stream	.Index No

545/2 CHEMISTRY Paper 2 March 2022 2 hours

MID TERM EXAMINATIONS-2022

Uganda Certificate of Education

S.4 CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES;

- Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions **must** be written in the spaces provided.

- Section **B** consists of **4** semi – structured questions. Answer any **two** questions from this section.

Answers to section **B** must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

- Show all your working clearly in both sections.

Where necessary use;

 $[Mg=24 \ Ag=108, \ C=12, \ O=16, \ H=1, \ Molar \ gas \ volume \ at \ s.t.p=22.4dm^3]$

	For examiner's use only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION A

Answer all questions in this section.

1.	(a)	Define the term "flame".	(01 mark)
	(b)	Figure 1 below is the structure of a Bunsen burner luminous flame obtained of burning methane. Study it and answer the questions that follow.	ed as a result
		region X luminous and yellow region Y	
		Fig 1 air rises	
		State what is observed when a match stick head is put at;	
		i) region X	(¹ / ₂ mark)
		ii) region Y	_
	(c)	Briefly explain your answer in b(ii) above.	(01 mark)
	(d)	The gas which is used as a fuel in the Bunsen burner is a hydrocarbon of r	nolecular
	()	formula C_4H_{10} ,	
		i) Name the gas.	(01mark)
		ii) State the homologous series to which the hydrocarbon belongs.	(01mark)

Mixture		Method of separatio	n
(a) Salt so	olution		
(b) Sodiu	m chloride and potassium nitrate		
(c) Amm	onium chloride and sodium chloride		
(d) Sand	and iron fillings		
(e) Crude	e oil		
(a) Water (i).	was added to sodium peroxide; State what was observed;		(1½ marks)
(ii).	Write equation for the reaction wh	ich took place.	(1½ marks)
b) State; (i).	How the gaseous product from the water can be tested?	reaction between sodiu	m peroxide and (01 mark)
(ii).	One use of the other product of rea	action between sodium	peroxide and wate (01mark)
a) Nai (i).	me one substance in each case, which a carbonate that shows no change in		(½ mark)

(ii).

a compound that when heated turns directly into gas (es) without first melting. (01mark)

(iii)). 	a nitrate, which when heated, produces oxygen as the only	y gaseous product; (½ marks)
(b)		e equation for the reaction that would take place if each of t heated;	he following mixtures
(i)).	Iron and sulphur.	(1 ½ marks)
(ii)). 	Iron and chlorine	(1 ½ marks)
5.	(a)	Define the term allotropy.	(01 mark)
	(b)	(i) Name the two crystalline allotropes of carbon.	(01 mark)
		(ii) Give one use of each of the allotropes you have na	amed in b(i) above. (01 mark)
	(c)	Name two other elements that show allotropy.	(01 mark)

6.	(a)	Defi:	ne the term basicity of an acid.	(01 mark)				
((b)	State i)	State one example in each case of a mineral acid that is;					
		1)	Dibasic					
		ii)	Mono basic	(01 mark)				
	c)	i)	Write the equation for the reaction between the acid named i	n b(i) and aqueous				
			sodium hydroxide.	$(1^1/_2 marks)$				
		ii)	The atomic numbers of elements X , Y and Z are 11 , 15 and	17 respectively;				
(a)	Write	e the el	ectronic configuration of;					
	X:			(01mark)				
	Y:			(01mark)				
	Z:			(01mark)				
(b)	State	the pe	riod in the periodic table to which the three elements belong.	(01mark)				
(c)		nent Z (can react with both X and Y to form solid products Q and R re Identify which one of the products would have a lower melting					
	(i	i).	Give a reason for your answer in (c) (i) above.	(½ mark)				

Г	Define the term Molar gas volume.	(01 mark)	
2 C	ilver nitrate crystals decompose on heating according to the equat $AgNO_3(s) \longrightarrow 2Ag(s) + 2NO_2(g) + O_2(g)$ calculate the volume of oxygen produced at s.t.p when 2.14g of sil $Ag = 108$, $N=14$, $O = 16$, 1 mole of a gas occupies 22.4dm ³ at s.t.p	ver nitrate is hea	
- - S	uggest one anion that can be identified by silver nitrate solution.	$(^{1}/_{2} marks)$	
	Define the term saturated hydro carbon.	(01 mark)	
- G	Sive the structural difference between ethene and ethane	(01 mark)	
– (i).	Name one reagent that can be used to distinguish ethene from laboratory.	m ethane in the $(^{I}/_{2}mark)$	
(ii).	State what is observed when the reagent named in b(i) above treated with ethene and ethane.	e is separately (01 mark)	

) •		xide of hydrogen, \mathbf{Q} , of molecular mass 34 consists of 5.9% hydrogen and the rest being en. ($\mathbf{H=1, O=16}$)						
	(a) De (i)		the empirical formula of Q.	(02marks)				
	(ii)). 	the molecular formula of Q.	(01mark)				
	(b) Q		mposes to a colourless gas in presence of catalyst. Identify the colourless gas.	(½ mark)				
	(ii)). 	Write the equation for the decomposition of Q .	(1 ½ marks)				
10.		(i)		(01 1)				
10	. (a)		Define the term "alloy"	(01mark)				

			(iii) 	Give one reason why the alloy you have named in (a) (ii) is than iron itself.	(01mark)
	(b)		—— Nam	ne the major components of the following alloys;	
		(i).		Solder	(01mark)
		(ii).		Duralumin	(01mark)
	(c)		State	e one use of duralumin	(01 mark)
				SECTION B Answer any two questions in this section.	
11.	(a)		Wha	t is meant by reaction rate?	(01 mark)
	(b)		Desc of th	ctants on the rate (07 marks)	
	(c)		2.4g i)	of Magnesium powder was added to 25cm ³ of dilute sulphur. Sketch a graph to show how the rate of the reaction would temperature.	
			ii)	On the same graph, sketch another graph to show what wo rate when the temperature was increased to 30°C but keepi Magnesium powder.	uld happen to the ng the mass of (01 mark)
			iii)	Explain the shape of your graphs in c(ii) above.	(01 mark)
			(iv)	Calculate the molarity of the acid (Mg = 24 , H=1 , S = 32	, O = 16) (<i>03 marks</i>)
12.	(a)		i)	State one reason why air is considered a mixture and not a	(01 mark)
			ii)	Name one method by which the components of air can be s	separated. (01 mark)
	(b)		Oxyg i)	gen gas can be prepared in the laboratory by addition of water Identify Q.	r to substance Q (01 mark)

			END	
	(c)	Desc	ribe how ammonia can be converted to nitric acid. Use equation to er.	o illustrate your $(07_2 marks)$
		(i) (ii)	State what was observed. Write equation for the reaction that takes place.	(01 marks) $(1^{1}/_{2} \text{ mark})$
	(b)	(ii)	Write equation for the reaction leading to the formation of ammonia gas was passed over-heated lead (II) oxide.	onia. $(1^l/_2 mark)$
14.	(a)	(ii) (i)	Give one reason why rusting must be prevented. Draw a labelled diagram to show how a dry sample of ammonia prepared from ammonium chloride in the laboratory.	(04 marks)
	(c)	(i)	State two methods by which rusting can be prevented.	(02 marks)
		(ii)	State and explain observations that would be made if the experi in the diagrams that you have drawn in (b) (i) was allowed to sta days.	
	(b)	(i)	Draw labeled diagram(s) for a set up of an experiment which can show that the condition(s) you have stated in (a)(ii), is / are nece to rust.	
		(ii)	The condition(s) necessary for iron to rust.	(02 marks)
	(4) 5	(i)	what is meant by the term "rusting."	(01 mark)
13.	Unde (a) Sa		ble conditions iron can rust.	
	(e)	State	how the gaseous product in(c) can be identified in the laboratory.	(01 mark)
		iii)	Explain your observation in d(i) above.	$(1^{1}/_{2} marks)$ (02 marks)
		i) ii)	State what was observed. Write equation for the reaction between water and the gaseous p	
	(d)	flowe	er was added to the gaseous product in (c) and to the resultant solution was immersed.	
		i) ii)	State what was observed. Write equation for the reaction that took place.	(01 mark) $(1^1/_2 \text{ marks})$
	(c)	_	ece of burning sulphur was lowered into a gas jar of oxygen.	(01,1)
		i)	Draw a well labelled diagram of the setup of apparatus that can prepare oxygen from substance Q.	be used to $(2^l/_2 mark)$

Write the equation for the reaction between water and Q.

ii)

 $(1^{1}/_{2} mark)$