Introdução à Computação em Física

SISTEMAS LINEARES - PARTE 1

PROF. WALBER

Refs.:

Cálculo numérico, aspectos teóricos e computacionais (2nd edição), M. A. G. Ruggiero, V. L. da Rocha Lopes Computational Physics, R. Landau, M. J. Paez, C. C. Bordelanu

Sistemas lineares

Nesta aula iremos estudar alguns esquemas numéricos para a solução de sistemas lineares (que são bem comuns em Física), que podem ser apresentados no seguinte formato geral:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{cases}$$

```
a_{ij}: coeficientes (1 \leq i \leq m, x_{j}: variáveis (1 \leq j \leq n) b_{i}: constantes (1 \leq i \leq m) 1 \leq j \leq n)
```

Sistemas lineares

Pode ser escrito na forma matricial:

$$Ax = b$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix}$$

Vetor das variáveis

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \cdot \\ \cdot \\ \cdot \\ b_m \end{pmatrix}$$

vetor constante

Resolução consiste na obtenção dos valores de x_j (j = 1, ..., n) caso eles existam, que satisfaçam as m equações simultaneamente.

Métodos de resolução

Os métodos numéricos podem ser classificados em duas categorias:

- 1. Métodos iterativos: fornecem uma sequência de aproximações para a solução x a partir de uma solução inicial $x^{(0)}$. Ideia central é generalizar os métodos vistos na busca de raízes de uma equação.
- 2. Métodos diretos: fornecem solução exata através da realização de um número finito de operações. Erros de máquina somente.

Métodos iterativos

Métodos iterativos

É considerado que

$$x = \varphi(x) = Cx + d$$

Nesse contexto, é proposto um esquema iterativo (a partir de $x^{(0)}$):

$$x^{(1)} = Cx^{(0)} + d$$

$$x^{(2)} = Cx^{(1)} + d$$

$$...$$

$$x^{(k+1)} = Cx^{(k)} + d$$

Resta analisar a convergência do método e estabelecer um critério de parada.

Critério de parada

Necessitamos de um critério que será baseado ao medirmos a distância entre x^(k) e x^(k-1). Nesse sentido, podemos estimar a proximidade das soluções através de um vetor ds(k):

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \qquad x^{(1)} = Cx^{(0)} + d$$

$$x^{(2)} = Cx^{(1)} + d$$

$$\vdots$$

$$x^{(k+1)} = Cx^{(k)} + d$$

$$x^{(k+1)} = Cx^{(k)} + d$$

$$x^{(k+1)} = Cx^{(k)} + d$$

Vamos considerar um sistema linear com n equações e n variáveis:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$x_1 = \frac{1}{a_{11}}(b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n)$$

$$x_2 = \frac{1}{a_{22}}(b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n)$$

$$x_3 = \frac{1}{a_{33}}(b_3 - a_{31}x_1 - a_{32}x_2 - \dots - a_{3n}x_n)$$

$$\dots$$

$$x_n = \frac{1}{a_{nn}}(b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1})$$

Onde $a_{ii} \neq 0$ para i = 1, 2, ..., n

Assim sendo, vemos que:

$$\begin{vmatrix} x_1 & = \frac{1}{a_{11}}(b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n) \\ x_2 & = \frac{1}{a_{22}}(b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n) \\ x_3 & = \frac{1}{a_{33}}(b_3 - a_{31}x_1 - a_{32}x_2 - \dots - a_{3n}x_n) \\ & \dots \\ x_n & = \frac{1}{a_{nn}}(b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1}) \end{vmatrix}$$

$$x = Cx + d$$

$$C = \begin{pmatrix} 0 & -a_{12}/a_{11} & -a_{13}/a_{11} & \dots & -a_{1n}/a_{11} \\ -a_{21}/a_{22} & 0 & -a_{23}/a_{22} & \dots & -a_{2n}/a_{22} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n1}/a_{nn} & -a_{n2}/a_{nn} & -a_{n3}/a_{nn} & \dots & 0 \end{pmatrix} \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad d = \begin{pmatrix} b_1/a_{11} \\ b_2/a_{22} \\ \vdots \\ b_n/a_{nn} \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix}$$

$$d = \begin{pmatrix} b_1/a_{11} \\ b_2/a_{22} \\ \vdots \\ \vdots \\ b_n/a_{nn} \end{pmatrix}$$

No método de Gauss-Jacobi temos então o processo iterativo:

$$\begin{aligned}
x_1^{(k+1)} &= \frac{1}{a_{11}} (b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)} - \dots - a_{1n} x_n^{(k)}) \\
x_2^{(k+1)} &= \frac{1}{a_{22}} (b_2 - a_{21} x_1^{(k)} - a_{23} x_3^{(k)} - \dots - a_{2n} x_n^{(k)}) \\
x_3^{(k+1)} &= \frac{1}{a_{33}} (b_3 - a_{31} x_1^{(k)} - a_{32} x_2^{(k)} - \dots - a_{3n} x_n^{(k)}) \\
&\dots \\
x_n^{(k+1)} &= \frac{1}{a_{nn}} (b_n - a_{n1} x_1^{(k)} - a_{n2} x_2^{(k)} - \dots - a_{nn-1} x_{n-1}^{(k)})
\end{aligned}$$

i-ésima variável:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$

k índice da iteração

Condição para a convergência do método, dado pelo seguinte teorema (critério das linhas):

Seja o sistema linear Ax = b e seja $\alpha_m = \frac{\sum_{j=1, j \neq m}^n |a_{mj}|}{|a_{mm}|}$. Se $\alpha = \max_{1 \leq m \leq n} \alpha_m < 1$, então o método de Gauss-Jacobi gera uma sequência $\{x^{(k)}\}$ convergente para a solução do sistema dado, independente da escolha da aproximação inicial, $x^{(0)}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \ddots & & & \ddots \\ & \ddots & & & \ddots \\ & \ddots & & & \ddots \\ & a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \text{ Vale ressaltar que a condição acima é apenas suficiente, não necessária para a convergência}$$

Exemplo:

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

$$A = \begin{pmatrix} 10 & 2 & 1 \\ 1 & 5 & 1 \\ 2 & 3 & 10 \end{pmatrix}$$

$$\alpha_1 = \frac{2+1}{10} < 1$$

$$\alpha_2 = \frac{1+1}{5} < 1$$

$$\alpha_3 = \frac{2+3}{10} < 1$$

Então o máximo α é igual a 0.5. De acordo com o teorema do slide anterior nos garante a convergência do método de Gauss-Jacobi.

Implementar método de Gauss-Jacobi para o sistema abaixo (atv. prática) :

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

Considerar precisão 10-4

$$x^{(0)} = (7/10, -8/5, 6/10)$$

Método de Gauss-Seidel

Método de Gauss-Seidel:

De maneira análoga ao método de Gauss-Jacobi, no método de Gauss-Seidel o sistema linear é descrito por:

$$Ax = b$$

$$Ax = b$$
$$x = Cx + d$$

Como no processo iterativo, ao se calcular $x_i^{(k+1)}$, já temos todos os valores, $x_1^{(k+1)}$, ..., $x_{i-1}^{(k+1)}$, pode-se acelerar a convergência do método através da seguinte equação de iteração:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \Big(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \Big) \qquad \text{Obs.: Elemento a}_{\text{ii}} \text{ não aparece nas somatórias.}$$

Critério de Sassenfeld

O critério de Sassenfeld formaliza a condição de convergência do método de Gauss-Seidel.

Dado o sistema linear Ax = b. Seja os β_k de tal forma que:

$$\beta_k = \frac{1}{|a_{kk}|} \left(\sum_{j=1}^{k-1} |a_{kj}| \beta_j + \sum_{j=k+1}^n |a_{kj}| \right) < 1,$$

para $k=1,2,\ldots,n$. Então o método de Gauss-Seidel gera uma sequência $\{x^k\}$ que converge para a solução do sistema.

 Podemos usá-lo para saber se o método será convergente para um dado sistema linear.

Método de Gauss-Seidel:

Implementar método de Gauss-Seidel para o sistema linear (atv. prática):

$$\begin{cases}
-7x_1 + 3x_2 + 2x_3 = -2 \\
x_1 + 2x_2 - x_3 = 2 \\
x_1 + x_2 - 2x_3 = 0
\end{cases}$$

Considerar precisão 10⁻⁶:

$$x^{(0)} = (1/2, 1/2, 1/2)$$

Atividade prática:

Aplique o método de Gauss-Jacobi e Gauss-Seidel para obter a solução do sistema linear abaixo:

Com precisão 10⁻⁶

Considere $x^{(0)} = (20.0, ..., 20.0)$