Goal: Recover information about a function f from the graph of f'.

1 Inc/Dec

Problem 1. Use the graph of f' to determine the following about f:

f'so & Alove the x-axis
f'(0 & Below the x-axis

/ 4

(a) Intervals of increase/decrease

Inc: (0,00)

(b) Positions of relative max/mins

Crif Mms: f=0 < When f toucher
the Yarks

f has a rel mun at x=0 by the 1st Derivative Test

Problem 2. Use the graph of f' to determine the following about f:

$\mathbf{2}$ Concavity

Problem 3. Use the graph of f' to determine the following about f:

(a) When f is concave up VS. concave down

CU: (2,00)

CD: (-0,2)

There is an inflection point at x=2

Problem 4. Use the graph of f' to determine the following about f:

(a) When f is concave up VS. concave down

(U; (-∞,-3)

(D: (-3,2)

 $\chi=3$ and $\chi=2$ are inflection points

Putting Everything Together

(a) Intervals of Increase/Decrease
$$Trc: (9, \infty) \setminus \{18\}; (9,18) \cup (18,\infty)$$

Dec: (-0,9)

well as inflection points Rel min at x=9

Inflection Points at 2=12,18

Problem 6. Use the graph of f' to determine the following about f:

In achieve: (-co) do)

(a) Intervals of Increase/Decrease

The:
$$(-\infty, -1)$$
 U $(-1, 1)$ U $(1, \infty)$

Dec: None

When f is concave up VS concave down f: (-1,0) \cup $(1,\infty)$

CQ: (-01-1) U (01)

well as inflection points

No Rel. Max/ Min Inflection Points at X=-1,01/

Macmillan Learning	Consider the graph of $f'(x)$, which represents the derivative of the function $f(x)$.	15
an Le	Answer the following questions regarding $f(x)$.	10-
© Macmill	For (a.), (d.), and (e.), if there is more than one answer for a specific question, separate each answer from the following one using a comma. For (b.) and (c.), if there is more than one interval in an answer, separate each interval from the next by typing UNION to enter the \cup symbol.	f' < 0 $f' > 0$ $f' < 0$ $f'(x)$ $f'(x)$
	For any part, if no answer exists at all, enter NO SOLUTION.	-5 5
\langle	37	5 0 /3
ne	$: (-3,0) \cup (3,\infty) \\ : (-\infty,-3) \cup (0,3)$	-15
	Min at -3.3 (a.) Critical Number(s) =	1. Max at X=0
	(b.) Increasing Interval(s):	(c.) Decreasing Interval(s):
	(d.) Relative Maxima Occur at $x =$	(e.) Relative Minima Occur at $x = $

© Macmillan Learning

The following graph shows the derivative f'(x) of the function f(x).

Which of the following statements is true about f(x)?

- $\int f(x)$ is increasing on $(-\infty, -1)$ and (0,1)
- f(x) has one relative minimum.
- f(x) has two relative maxima.
- f(x) has one critical number
- f(x) has three inflection points.