Data Mining Classification: Alternative Techniques

Imbalanced Class Problem

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line

Challenges

- Evaluation measures such as accuracy is not well-suited for imbalanced class
- Detecting the rare class is like finding needle in a haystack

02/03/2018

Introduction to Data Mining, 2^{nd} Edition

3

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

- a: TP (true positive)
- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)

02/03/2018

Introduction to Data Mining, 2nd Edition

Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

02/03/2018

Introduction to Data Mining, 2nd Edition

5

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

02/03/2018

Introduction to Data Mining, 2nd Edition

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

02/03/2018

Introduction to Data Mining, 2nd Edition

7

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

02/03/2018

Introduction to Data Mining, 2nd Edition

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5

$$\operatorname{Recall}(r) = \frac{10}{10 + 0} = 1$$

F-measure (F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

Accuracy =
$$\frac{990}{1000}$$
 = 0.99

02/03/2018

Introduction to Data Mining, 2nd Edition

9

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5

Recall (r) =
$$\frac{10}{10+0}$$
 = 1

F-measure (F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62

Accuracy =
$$\frac{990}{1000}$$
 = 0.99

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{1}{1+0}$$
 = 1

Recall (r) =
$$\frac{1}{1+9}$$
 = 0.1

F-measure (F) =
$$\frac{2*0.1*1}{1+0.1}$$
 = 0.18

Accuracy =
$$\frac{991}{1000}$$
 = 0.991

02/03/2018

Introduction to Data Mining, 2nd Edition

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	10	40

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

02/03/2018

Introduction to Data Mining, 2nd Edition

11

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	1000	4000

Precision (p) = ~ 0.04 Recall (r) = 0.8 F - measure (F) = ~ 0.08 Accuracy = ~ 0.8

02/03/2018

Introduction to Data Mining, 2nd Edition

Measures of Classification Performance

	PREDICTED CLASS		
ACTUAL CLASS		Yes	No
	Yes	TP	FN
	No	FP	TN

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

 $Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

 $Power = sensitivity = 1 - \beta$

02/03/2018

Introduction to Data Mining, 2nd Edition

13

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) =
$$0.8$$

TPR = Recall (r) = 0.8
FPR = 0.2
F - measure (F) = 0.8
Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p) =
$$\sim 0.04$$

TPR = Recall (r) = 0.8
FPR = 0.2
F - measure (F) = ~ 0.08
Accuracy = ~ 0.8

02/03/2018

Introduction to Data Mining, 2nd Edition

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	10	40
	Class=No	10	40

Precision (p) = 0.5TPR = Recall (r) = 0.2FPR = 0.2

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	25	25
	Class=No	25	25

Precision (p) = 0.5TPR = Recall (r) = 0.5FPR = 0.5

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	40	10

Precision (p) = 0.5TPR = Recall (r) = 0.8FPR = 0.8

02/03/2018

Introduction to Data Mining, 2nd Edition

15

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

02/03/2018

Introduction to Data Mining, 2nd Edition

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

02/03/2018

Introduction to Data Mining, 2nd Edition

17

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

02/03/2018

Introduction to Data Mining, 2nd Edition

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

02/03/2018

Introduction to Data Mining, 2nd Edition

Handling Class Imbalanced Problem

- Class-based ordering (e.g. RIPPER)
 - Rules for rare class have higher priority
- Cost-sensitive classification
 - Misclassifying rare class as majority class is more expensive than misclassifying majority as rare class
- Sampling-based approaches

02/03/2018

Introduction to Data Mining, 2nd Edition

25

Cost Matrix

	PREDICTED CLASS		
ACTUAL		Class=Yes	Class=No
CLASS	Class=Yes	f(Yes, Yes)	f(Yes,No)
	Class=No	f(No, Yes)	f(No, No)

C(i,j): Cost of misclassifying class i example as class j

Cost Matrix	PREDICTED CLASS		
	C(i, j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes, Yes)	C(Yes, No)
CLASS	Class=No	C(No, Yes)	C(No, No)

 $\text{Cost} = \sum C(i, j) \times f(i, j)$

02/03/2018

Introduction to Data Mining, 2nd Edition

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	C(i,j)	+	-
ACTUAL CLASS	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	•
	+	250	45
	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

02/03/2018

Introduction to Data Mining, 2nd Edition

27

Cost Sensitive Classification

- Example: Bayesian classifer
 - Given a test record x:
 - ◆ Compute p(i|x) for each class i
 - ullet Decision rule: classify node as class k if

$$k = \arg\max_{i} p(i \mid x)$$

- For 2-class, classify x as + if p(+|x) > p(-|x)
 - ◆ This decision rule implicitly assumes that C(+|+) = C(-|-) = 0 and C(+|-) = C(-|+)

02/03/2018

Introduction to Data Mining, 2nd Edition

Cost Sensitive Classification

- General decision rule:
 - Classify test record x as class k if

$$k = \arg\min_{j} \sum_{i} p(i \mid x) \times C(i, j)$$

- 2-class:
 - Cost(+) = p(+|x) C(+,+) + p(-|x) C(-,+)
 - Cost(-) = p(+|x) C(+,-) + p(-|x) C(-,-)
 - Decision rule: classify x as + if Cost(+) < Cost(-)</p>
 - if C(+,+) = C(-,-) = 0:

$$p(+|x) > \frac{C(-,+)}{C(-,+) + C(+,-)}$$

02/03/2018

Introduction to Data Mining, 2nd Edition

29

Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - Oversample the rare class
- Advantages and disadvantages