

 $10 - (2I_2) - (-8I_3) = 0$

Series & Parallel Connections

when a node only has two element connected, we say those elements are connected in series.

. When element are in series, they experience the same current.

Parallel Connection

Elements that share the same two, nodes are in parallel & thus have the same voltage.

by KVL:

$$+ V_1 - V_2 = 0$$

 $V_1 = V_2$

Use Brute Force to find all Voltages of current and powers.

KCL

$$3)$$
 4 + $I_{2} = I_{1}$

Ohm's Law

$$V_1 = 2I_1$$

$$V_2 = 5I_2$$

$$2I_1 + 5I_2 = 10$$

 $I_1 - I_2 = 4$

$$I_1 = 4.29A$$
 $V_1 = 8.57V$
 $I_2 = 0.29A$ $V_2 = 1.43V$

$$\frac{\text{Ohms Law}}{V_1 = 10 \text{ I}_1}$$

KVL_

$$V_1 - 3V_X + V_X = 0$$

voituges a pouvois

Find all currents,

$$I_1 - I_S = 3$$
 $-I_X + I_S = 1$
 $10I_1 - 10I_X = 0$

$$I_{x} = 3.33A$$
 $I_{s} = 2.33A$
 $I_{1} = 5.33A$
 $V_{1} = 53.33V$
 $V_{x} = 26.67V$

$$I_X = 3.33A$$
 $I_S = 2.33A$
 $I_1 = 5.33A$ $V_X = 26.67V$
 $V_1 = 53.33V$

$$|A:P=V_{x}(1)=26.67w, Abs$$

 $01=-26.67w, Del$

$$3V_{x} = P = (3V_{x})(I_{5}) = 186.67 \text{ W, Del}$$

Resistors:
$$P = I^{2}R$$

107: $P = I_{1}^{2}(10)$

= 284.44 W, Abs

 $8x: P = I_{2}^{2}(8)$

= 88.89 W, Abs

$$2\pi: P = I_1^2(2) = 34.73W, A$$

$$5\pi: P = I_2^2(5) = 0.403W, A$$

$$2Pabs = 37.14 W$$

$$T_1 = 4.29A$$
 $V_2 = 1.43V$
 $T_2 = 0.29A$ $V_1 = 8.57V$

$$4A: P = (V_2)(4) = 5.71 W_1 A$$

= -5.71 W, D
 $\angle P_{Del} = 37.15 W$

7

Linearly Independent

$$2x + 3y = 6$$