BAZY DANYCH

1

Grzegorz Surówka

2018

PLAN WYKŁADU

- 1. WPROWADZENIE
- 2. DBMS, MODELE DANYCH, MODEL RELACYJNY
- 3. DIAGRAMY E/R
- 4. $E/R \rightarrow MODEL RELACYJNY$
- ALGEBRA RELACJI
- 6. ZŁĄCZENIA
- NORMALIZACJA BAZY DANYCH
- 8. TRANSAKCJE
- 9. OPTYMALIZACJA ZAPYTAŃ
- 10. WYDAJNOŚĆ
- 11. PODZAPYTANIA SQL
- 12. GRUPOWANIE
- 13. WIDOKI, KURSORY, WYZWALACZE, SEKWENCJE
- 14. SQL

ŹRÓDŁA

- J.D. Ullman, J. Widom, Podstawowy kurs systemów baz danych, wyd. III, Helion 2011
- R. Elmasri, S.B. Navathe, Fundamentals of Data Base Systems, Addison-Wesley
- SQLzoo.net
- www.graspsql.com
- SQLfiddle.com
- www.mysql.com
- Helion: "bazy", "DBMS", "SQL", "MySQL"

PLAN

- POJĘCIA PODSTAWOWE
- BAZY RELACYJNE
- ŚRODOWISKO PRACY
- PRZYKŁAD

informacja: wiedza o obiektach (przedmioty, fakty, procesy itp.) zależna od kontekstu

dane: reprezentacja informacji, odpowiednia do przetwarzania/przesyłana

przetwarzanie danych: wykonywanie operacji na danych (logiczne, arytmetyczne, sortowania, wyszukiwania, łączenia, zestawiania, itp.)

przetwarzanie danych ↔ przetwarzanie informacji

BAZY DANYCH - KONCEPCJE

baza danych

- zorganizowana kolekcja (magazyn) danych
 powiązanych tematycznie posiadająca określoną
 strukturę, która pozwala na wydajne
 przeszukiwanie informacji
- aplikacja komputerowa, która może szybko wyszukiwać informacje

model bazy danych

- reguły, zgodnie z którymi dane umieszcza się w strukturach
- dozwolone operacje na bazie i na danych w bazie
- zbiór zasad, którymi należy się posługiwać podczas tworzenia bazy danych

wymagania logiczne

- poprawność (zgodność z rzeczywistością i ograniczeniami)
- trwałość danych [persistence] (niezależność od sprzętu, systemu operacyjnego, aplikacji, nieulotność)
- spójność [integrity] (odporność na anomalie i błędy)
- bezpieczeństwo danych [security] (autoryzacja, uprawnienia)
- metadane (dane o danych, strukturach, użytkownikach)
- elastyczność modelu (duże dane, dużo danych)
- wspieranie transakcji (bezkolizyjność, spójność)
- wydajność [performance] (szybkość wydobywania informacji, współbieżność [concurrency])
- zarządzanie (systemem bazodanowym i danymi)
- interfejs programistyczny

przetwarzanie transakcyjne

- dostęp do bazy za pomocą transakcji o własnościach ACID
- synchronizacja transakcji
 (2PL, znaczniki czasowe, wielowersyjność danych)
- odtwarzanie spójności bazy (punkty kontrolne, wycofywanie operacji, logi)
- archiwizacja i odtwarzanie bazy

fizyczne struktury zapisu i metody dostępu

- niezależność danych od nośnika
- pliki: uporządkowane, haszowe, zgrupowane
- indeksy: drzewiaste, bitmapowe
- metody: połowienie binarne, haszowanie statyczne i dynamiczne, połączenia, sortowanie, grupowanie
- optymalizacja: składniowa, kosztowa

modele danych

- modele pojęciowe: związków-encji, UML
- modele logiczne: jednorodny, hierarchiczny, obiektowy, sieciowy, relacyjno-obiektowy, relacyjny

narzędzia programistyczne

- języki dostępu do danych w bazie (SQL)
- interfejsy (np. JDBC)
- narzędzia modelowania i projektowania

BAZA RELACYJNA

baza danych: składa się z tabel

tabela: pojemnik na dane, składa się z wierszy i kolumn, w jednej bazie może być wiele tabel, pomiędzy tabelami mogą występować powiązania logiczne (relacje)

kolumna: cecha (atrybut) obiektu

wiersz: rekord, krotka, pojedynczy obiekt

z wartościami wszystkich opisujących go cech

pole: część tabeli przechowująca jednostkowe dane

wydobywanie informacji z bazy: zwracanie krotek (rekordów), które spełniają pewien warunek (nieraz nie jest potrzebna cała krotka, ale jej wybrane pola)

ŚRODOWISKO PRACY

baza danych:

Xampp

- Apache
- MySQL
- FileZilla
- Tomcat
- ...

http://localhost/phpMyAdmin
narzędzie do łatwego zarządzania bazą danych MySQL
(napisane w php)

baza danych: biblioteka

tabela: uczniowie

imie	nazwisko	klasa
Paweł	Mazur	1b
Jan	Nowak	3c
Andrzej	Kowalski	3a
Jan	Nowak	3c

(w klasie jest dwóch uczniów o tych samych danych)

tabela: ksiazki

tytul	autor	rok
Lalka	Prus	2000
Potop	Sienkiewicz	2002
Pan Tadeusz	Mickiewicz	2005
Pan Tadeusz	Mickiewicz	2005

(są dwa egzemplarze tej samej książki)

problem: jak zapisać, że uczeń dostał konkretny egzemplarz?

- > książki musimy ponumerować unikatowymi numerami
- → dokładamy cechę (kolumnę) id

tabela: ksiazki

idksiazki	tytul	autor	rok
1	Lalka	Prus	2000
2	Potop	Sienkiewicz	2002
3	Pan Tadeusz	Mickiewicz	2005
4	Pan Tadeusz	Mickiewicz	2005

tabela: uczniowie (ta sama sytuacja)

iducznia	imie	nazwisko	klasa
1	Paweł	Mazur	1b
2	Jan	Nowak	3c
3	Andrzej	Kowalski	3a
4	Jan	Nowak	3c

klucz główny: (podstawowy, primary key) jedno, lub więcej pól, których wartość jednoznacznie (unikatowo) identyfikuje każdy rekord w tabeli

system obsługi bazy danych powinien pilnować, aby wartość id **nie została zdublowana** (zdublowanie oznaczałoby stratę spójności danych)

→ aby powiedzieć bazie, że wartości pewnej kolumny muszą być unikalne trzeba oznaczyć tą kolumnę jako klucz główny

relacja: powiązanie logiczne występujące pomiędzy tabelami realizowane za pomocą klucza podstawowego i tzw. klucza obcego (klucz obcy to klucz podstawowy w innej tabeli) albo specjalnej tabeli (tabela łącząca)

typy: jeden-do-jeden, jeden-do-wielu, wiele-do-wielu

- → bazę najlepiej jest zaprojektować od razu tak, jak ma wyglądać ostatecznie (czyli przed wprowadzeniem do niej pierwszego rekordu)
- → dokładanie kolumny do niepustej tabeli wiązałoby się z poprawianiem każdego rekordu

tabela: wypozyczenia

idwypozyczenia	iducznia	idksiazki
1	3	1
2	3	4
3	12	9
4	5	7

- nie powinno być powtórzeń (redundancji) tzn. informacja, która już jest w (innej) tabeli nie powinna być kopiowana do następnej
- warto dołożyć: datę wypożyczenia, datę zwrotu

<u>ćwiczenie praktyczne</u> <u>localhost/phpMyAdmin</u>

Databases
Create Database: "quiz", utf8_polish_ci
Create Table: "pytania", 7 kolumn
(id, pytanie, odpowiedź A, B, C, D, poprawna odpowiedź)

A_I: Auto Increment (automatyczne zwiększanie o jeden) Collation: metoda porównywania napisów

- wprowadzić jeden rekord np. żółć, aaa, bbb, ccc, ddd, a
- usunąć tabelę: Drop
- zaimportować gotową tabelę z pliku
- zmodyfikować pola w phpMyAdmin (generuje kwerendę i pokazuje ją)