Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

Mécanique MECA1 - Intégrales

Cours

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

Intégrales	
1.I.1 Intégrales sur une ligne, une surface ou un volume	3
1.I.1.a Préliminaires	3
1.I.1.a.i Notations	3
1.I.1.a.ii Elément d'intégration	3
1.I.1.a.iii Choix d'un repère	4
1.I.1.a.iv Bornes d'intégration	4
1.I.1.a.v Principe de séparation des variables	4
1.I.1.a.vi Calcul d'une longueur, une surface ou un volume	4
1.I.1.a.vii Erreur de signe	4
1.I.1.b Coordonnées cartésiennes	5
1.I.1.b.i Rappels	5
1.I.1.b.ii Eléments d'intégration	5
1.I.1.b.iii Exemples	6
Surface d'un rectangle	6
Surface d'un triangle	6
1.I.1.c Coordonnées cylindriques	8
1.I.1.c.i Rappels	8
1.I.1.c.ii Eléments d'intégration	
1.I.1.c.iii Exemples	9
Surface d'un demi disque	9
Surface d'un cylindre	10
Volume d'un cylindre	10
Volume d'un cône	11
Surface d'un cône	11
1.I.1.c.iv Remarques	
Vecteurs intégrés	
Astuce de calcul	
1.I.1.d Coordonnées sphériques	14
1.I.1.d.i Rappels	14
1.I.1.d.ii Eléments d'intégration	14
1.I.1.d.iii Exemples	
Surface d'une sphère	
Volume d'une sphère	
1.I.1.d.iv Remarques	15
Vecteurs intégrés	
Astuce de calcul	

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

Intégrales

1.I.1 Intégrales sur une ligne, une surface ou un volume

Nous allons avoir besoin de calculer des intégrales sur des lignes, surfaces et volumes. Voyons donc ici les outils dont nous allons avoir besoin.

1.I.1.a Préliminaires

1.I.1.a.i Notations

Dans la suite, nous noterons :

Intégrales sur une ligne $arGamma$	Intégrales sur une surface S	Intégrale sur un volume \emph{V}
$\int \vec{f} dl$	$\int \vec{f} dS$	$\int \vec{f} \ dV$
Γ	Š	\ddot{V}

Ensuite, ces intégrales seront décomposées selon le domaine intégré en 1, 2 ou 3 intégrales en fonction des variables évoluant en précisant leurs bornes. Par exemple en coordonnées cartésiennes :

Intégrales sur une ligne $arGamma$	Intégrales sur une surface ${\it S}$	Intégrale sur un volume \emph{V}
$\int_{\Gamma} \vec{f} dl = \int_{x_1}^{x_2} \vec{f} dx$	$\int_{S} \vec{f} dS = \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} \vec{f} dx dy$	$\int_{V} \vec{f} dV = \int_{z_{1}}^{z_{2}} \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} \vec{f} dx dy dz$

1.I.1.a.ii Elément d'intégration

Pour calculer une intégrale, il va falloir décrire l'élément d'intégration dl, dS ou dV. Cet élément d'intégration est une petite ligne, une petite surface ou un petit volume qu'il va falloir « déplacer » sur l'ensemble de l'élément intégré (ligne, surface ou volume) à l'aide des bornes d'intégration.

Les éléments d'intégration dépendent du système de coordonnées choisi (cartésien, cylindrique, sphérique) et du lieu d'intégration, par exemple en intégrale surfacique cylindrique, soit on intègre sur le cylindre à rayon constant, soit sur une tranche du cylindre...

Voici des exemples d'éléments d'intégration :

	Cartésien	Cylindrique	Sphérique
	dl = dx	$dl = Rd\theta$	$dl = Rd\psi$
Ligne	dl = dy	dl = dr	$dl = R \sin \psi d\theta$
	dl = dz	dl = dz	dl = dr
	dS = dxdy	$dS = Rd\theta dz$	
Surface	dS = dxdz	$dS = rdrd\theta$	$dS = R^2 \sin \psi d\theta d\psi$
	dS = dydz	dS = drdz	
Volume	dV = dxdydz	$dV = rdrd\theta dz$	$dV = r^2 \sin \psi dr d\theta d\psi$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.a.iii Choix d'un repère

Avant toute intégration, il est nécessaire de poser un repère qui va définir les bornes d'intégration.

1.I.1.a.iv Bornes d'intégration

Les bornes de l'intégrale doivent être définies de manière à décrire entièrement la ligne, la surface ou le volume où est effectuée l'intégration. Nous traiterons des exemples par la suite.

1.I.1.a.v Principe de séparation des variables

Soit l'intégrale suivante :

$$\int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x)g(y)h(z)dxdydz$$

Lorsqu'il est possible d'identifier des fonctions d'une seule des variables de l'intégrale, on peut séparer les intégrations :

$$\int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x)g(y)h(z)dxdydz = \int_{x_1}^{x_2} f(x)dx \int_{y_1}^{y_2} g(y)dy \int_{z_1}^{z_2} h(z)dz$$

1.I.1.a.vi Calcul d'une longueur, une surface ou un volume

Pour calculer une longueur, une surface ou un volume, il suffit d'intégrer le nombre 1, c'est-à-dire l'élément de longueur, surface ou volume.

Longueur	Surface	Volume
$L = \int_{\Gamma} dl$	$S = \int_{S} dS$	$V = \int_{V} dV$

1.I.1.a.vii Erreur de signe

Attention, les bornes d'une intégrale doivent être organisées de la plus petite à la plus grande.

Soit le segment *OA* suivant :

On a:

$$X_A - X_B = L$$
 ; $X_D - X_C = L$

Calculons la longueur des segments AB et CD:

$$L_{CD} = \int_{X_C}^{X_D} dx = [x]_{X_C}^{X_D} = X_D - X_C = L$$

Page 4 sur 15

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

Cette première intégrale ne nous a pas posé de soucis, C et D étant organisés de gauche à droite, une manière « habituelle » de poser le problème de gauche à droite.

Par contre, attention pour le segment AB!

$$L_{AB} = \int_{X_B}^{X_A} dx = [x]_{X_B}^{X_A} = X_A - X_B = L$$

On voit bien qu'écrire $\int_{X_A}^{X_B} dx$ induirait une erreur de signe.

Attention donc, ce problème est souvent source d'erreurs sur des calculs de moments en statique.

1.I.1.b Coordonnées cartésiennes

1.I.1.b.i Rappels

$$\overrightarrow{OM} = x\vec{x} + y\vec{y} + z\vec{z}$$

1.I.1.b.ii Eléments d'intégration

Longueur	Surface	Volume
<i>dx</i> ←	$dx \longrightarrow dx$ $dy \downarrow \qquad $	dy dz

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.b.iii Exemples

• Surface d'un rectangle

• Surface d'un triangle

Les bornes de l'intégrale doivent permettre de promener dS sur toute la surface étudiée. On peut calculer cette intégrale de deux manières.

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

Méthode 1 : faire varier x de 0 à a et y de 0 à ...

$$S = \int_{S} dS = \int_{x=0}^{a} \int_{y=0}^{f(x)} dx dy = \int_{x=0}^{a} \int_{y=0}^{b\frac{a-x}{a}} dx dy$$

On remarque que l'on ne peut pas procéder à cette intégrale par séparation de variable ni dans n'importe quel sens :

$$S = \int_{x=0}^{a} \left(\int_{y=0}^{b\frac{a-x}{a}} dy \right) dx = \int_{x=0}^{a} \left([y]_{0}^{b\frac{a-x}{a}} \right) dx = \int_{x=0}^{a} b\frac{a-x}{a} dx = \frac{b}{a} \int_{x=0}^{a} (a-x) dx$$

$$S = \frac{b}{a} \left[ax - \frac{x^2}{2} \right]_0^a = \frac{b}{a} \left[aa - \frac{a^2}{2} \right]_0^a = \frac{b}{a} \frac{a^2}{2} = \frac{ab}{2}$$

Méthode 2 : faire varier y de 0 à b et x de 0 à ...

$$S = \int_{S} dS = \int_{x=0}^{a\frac{b-y}{b}} \int_{y=0}^{b} dx dy$$

$$S = \int_{y=0}^{b} \left(\int_{x=0}^{a\frac{b-y}{b}} dx \right) dy = \int_{y=0}^{b} \left(\left[x \right]_{0}^{a\frac{b-y}{b}} \right) dy = \int_{y=0}^{b} a \frac{b-y}{b} dy = \frac{a}{b} \int_{y=0}^{b} (b-y) dy$$

$$S = \frac{a}{b} \left[by - \frac{y^2}{2} \right]_0^b = \frac{a}{b} \left[b^2 - \frac{b^2}{2} \right]_0^b = \frac{a}{b} \frac{b^2}{2} = \frac{ab}{2}$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.c Coordonnées cylindriques

1.I.1.c.i Rappels

1.I.1.c.ii Eléments d'intégration

Attention : dS et dV sont positifs, $r \in [0,R]$ uniquement

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.c.iii Exemples

• Surface d'un demi disque

$$dS = rdrd\theta$$

$$S = \int_{S} dS = \int_{r=0}^{R} \int_{\theta=0}^{\pi} r dr d\theta$$

$$S = \int_{r=0}^{R} r dr \int_{\theta=0}^{\pi} d\theta = \left[\frac{r^2}{2}\right]_{0}^{R} [\theta]_{0}^{\pi} = \frac{\pi R^2}{2}$$

Remarque : On peut calculer cette intégrale en cartésien, mais c'est à éviter

$$S = \int_{S} dS = \int_{x=-R}^{R} \int_{y=0}^{\sqrt{R^{2}-x^{2}}} dx dy = \int_{x=-R}^{R} \sqrt{R^{2}-x^{2}} dx = \dots = \frac{\pi R^{2}}{2}$$

On peut faire le calcul en posant le changement de variable :

$$x = R \cos t$$
; $dx = -R \sin t dt$

$$\begin{cases} x = -R & ; & \cos t = -1 & ; & t = \pi \\ x = R & ; & \cos t = 1 & ; & t = 0 \end{cases}$$

$$S = -R \int_{t=\pi}^{0} \sqrt{R^2 - R^2 \cos^2 t} \sin t \, dt = -R \int_{t=\pi}^{0} R \sqrt{\sin^2(t)} \sin t \, dt = -R^2 \int_{t=\pi}^{0} \sin^2(t) dt$$

$$S = -\frac{R^2}{2} \int_{t-\pi}^{0} (1 - \cos(2t))dt = -\frac{R^2}{2} \left(-\pi - \frac{1}{2} [\sin(2t)]_{\pi}^{0} \right) = -\frac{R^2}{2} (-\pi) = \frac{\pi R^2}{2}$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

• Surface d'un cylindre

$$dS = Rd\theta dz$$

$$S = \int_{S} dS = \int_{\theta=0}^{2\pi} \int_{z=-H}^{0} Rd\theta dz$$

$$S = R \int_{\theta=0}^{2\pi} d\theta \int_{z=-H}^{0} dz = R[\theta]_{0}^{2\pi}[z]_{-H}^{0} = 2\pi RH$$

• Volume d'un cylindre

$$V = \int_{V} dV = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} \int_{z=-H}^{0} r dr d\theta dz$$

$$V = \int_{r=0}^{R} r dr \int_{\theta=0}^{2\pi} d\theta \int_{z=-H}^{0} dz = \left[\frac{r^2}{2}\right]_{0}^{R} [\theta]_{0}^{2\pi} [z]_{-H}^{0} = \frac{2\pi R^2 H}{2} = \pi R^2 H$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

• Volume d'un cône

$$V = \int_{V} dV = \int_{\theta=0}^{2\pi} d\theta \left(\int_{z=0}^{H} \left(\int_{r=0}^{f(z)} r dr \right) dz \right) \quad ; \quad f(z) = \frac{R}{H} z \quad L$$

$$V = 2\pi \int_{z=0}^{H} \left[\frac{r^2}{2} \right]_{0}^{\frac{R}{H^Z}} dz = 2\pi \frac{R^2}{2H^2} \int_{z=0}^{H} z^2 dz = 2\pi \frac{R^2}{2H^2} \frac{H^3}{3} = \frac{\pi R^2 H}{3}$$

• Surface d'un cône

On sait qu'elle vaut : $\pi R \sqrt{R^2 + H^2}$. Le calcul devient moins évident, car il faut faire une intégrale double, en exprimant proprement l'élément de longueur dl en fonction de 2 variables à choisir (r, θ) ou (z, θ) .

$dS = rd\theta dl$		
$L = \sqrt{R^2 + H^2}$		
$\tan \alpha = \frac{R}{H} = \frac{r}{z}$; $r = z \frac{R}{H}$; $dr = dz \frac{R}{H}$		
	11	
(r,θ)	(z,θ)	
$\sin \alpha = \frac{dr}{dl}$	$\cos \alpha = \frac{dz}{dl}$	
$\sin \alpha = \frac{R}{L} = \frac{R}{\sqrt{R^2 + H^2}}$	$\cos \alpha = \frac{H}{L} = \frac{H}{\sqrt{R^2 + H^2}}$	
$dl = \frac{1}{\sin \alpha} dr = \frac{\sqrt{R^2 + H^2}}{R} dr$	$dl = \frac{1}{\cos \alpha} dz = \frac{\sqrt{R^2 + H^2}}{H} dz$	
	$rd\theta dl$	
$dS = rd\theta \frac{\sqrt{R^2 + H^2}}{R} dr$	$dS = z \frac{R}{H} d\theta \frac{\sqrt{R^2 + H^2}}{H} dz$	
$dS = rd\theta \frac{\sqrt{R^2 + H^2}}{R} dr$ $dS = \frac{\sqrt{R^2 + H^2}}{R} d\theta r dr$	$dS = \frac{R\sqrt{R^2 + H^2}}{\mu^2} d\theta z dz$	
$S = \frac{\sqrt{R^2 + H^2}}{R} \int_{\theta=0}^{2\pi} d\theta \left(\int_{z=0}^{R} r dr \right)$	$S = \frac{R\sqrt{R^2 + H^2}}{H^2} \int_{0}^{2\pi} d\theta \left(\int_{0}^{H} z dz \right)$	
$=2\pi \frac{\sqrt{R^2+H^2}}{R} \frac{R^2}{2}$	$= 2\pi \frac{R\sqrt{R^2 + H^2}}{H^2} \frac{H^2}{2}$	
$= \pi R \sqrt{R^2 + H^2}$		

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.c.iv Remarques

• Vecteurs intégrés

Selon l'intégrale calculée, il peut être nécessaire d'intégrer les vecteurs $\overrightarrow{e_r}$ et $\overrightarrow{e_\theta}$. Attention, ces vecteurs sont dépendants de θ et ne pourront sortir de l'intégrale.

$$\begin{cases} \vec{e_r} = \cos\theta \, \vec{x} + \sin\theta \, \vec{y} \\ \vec{e_\theta} = -\sin\theta \, \vec{x} + \cos\theta \, \vec{y} \end{cases}$$

S'ils sont intégrés entre 0 et 2π , on remarquera sans faire de calculs que le résultat donne $\vec{0}$ (la somme de $\overrightarrow{e_r}$ ou $\overrightarrow{e_\theta}$ en 2 points diamétralement opposés est nulle, et ce pour tous les bipoints considérés).

Sinon, il suffit de les projeter dans une base où les vecteurs sont fixes et sortent donc de l'intégrale.

Exemple 1:

$$\int_{S} \overrightarrow{e_r} dS = \int_{r=0}^{R} \int_{\theta=0}^{\pi} \overrightarrow{e_r} r dr d\theta = \int_{r=0}^{R} \int_{\theta=0}^{\pi} (\cos \theta \, \vec{x} + \sin \theta \, \vec{y}) r dr d\theta$$

$$= \int_{r=0}^{R} \int_{\theta=0}^{\pi} (\cos \theta) r dr d\theta \, \vec{x} + \int_{r=0}^{R} \int_{\theta=0}^{\pi} (\sin \theta) r dr d\theta \, \vec{y}$$

$$= \int_{r=0}^{R} r dr \left(\int_{\theta=0}^{\pi} \cos \theta \, d\theta \, \vec{x} + \int_{\theta=0}^{\pi} \sin \theta \, d\theta \, \vec{y} \right)$$

$$= \frac{R^2}{2} ([\sin \theta]_0^{\pi} \vec{x} + [-\cos \theta]_0^{\pi} \vec{y}) = \frac{R^2}{2} (-[\cos \theta]_0^{\pi} \vec{y})$$

$$= -\frac{R^2}{2} (-2\vec{y}) = R^2 \vec{y}$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

Exemple 2:

$$\int_{\theta_1}^{\theta_2} \int_{z_1}^{z_2} \overrightarrow{e_r} R d\theta dz = R(z_2 - z_1) \int_{\theta_1}^{\theta_2} \overrightarrow{e_r} d\theta$$

$$\int_{\theta_1}^{\theta_2} \overrightarrow{e_r} d\theta = \int_{\theta_1}^{\theta_2} (\cos \theta \, \vec{x} + \sin \theta \, \vec{y}) d\theta = \int_{\theta_1}^{\theta_2} \cos \theta \, d\theta \, \vec{x} + \int_{\theta_1}^{\theta_2} \sin \theta \, d\theta \, \vec{y}$$

$$= [\sin \theta]_{\theta_1}^{\theta_2} \vec{x} + [-\cos \theta]_{\theta_1}^{\theta_2} \vec{y} = (\sin \theta_2 - \sin \theta_1) \vec{x} + (\cos \theta_1 - \cos \theta_2) \vec{y}$$

• Astuce de calcul

On pensera que

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ x^2 + y^2 = r^2 \end{cases}$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.d Coordonnées sphériques

1.I.1.d.i Rappels

1.I.1.d.ii Eléments d'intégration

Longueur	Surface	Volume
Peu utilisé, revient à faire du	$dS = R^2 \sin \psi d\theta d\psi$	$dV = r^2 \sin \psi dr d\theta d\psi$
cartésien (ligne) ou cylindrique (cercles)	Rsiny	r sin ψ
	$R\sin\psid\theta$ $Rd\psi$	$r\sin\psi d\theta$ $rd\psi$ dr

Attention : dS et dV sont positifs, $\psi \in [0, \pi]$ et $r \in [0, R]$ uniquement

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Cours

1.I.1.d.iii Exemples

• Surface d'une sphère

$$S = \int_{S} dS = \int_{\theta=0}^{2\pi} \int_{\psi=0}^{\pi} R^{2} \sin \psi \, d\theta d\psi$$

$$S = R^2 \int_{\theta=0}^{2\pi} d\theta \int_{\psi=0}^{\pi} \sin\psi \, d\psi = R^2 [\theta]_0^{2\pi} [-\cos\psi]_0^{\pi} = -2\pi R^2 (\cos\pi - \cos0) = -2\pi R^2 (-1-1)$$

$$S = 4\pi R^2$$

• Volume d'une sphère

$$V = \int_{V} dV = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} \int_{\psi=0}^{\pi} r^{2} \sin \psi \, dr d\theta d\psi$$

$$V = \int_{r=0}^{R} r^2 \int_{\theta=0}^{2\pi} d\theta \int_{\psi=0}^{\pi} \sin\psi \, d\psi = \left[\frac{r^3}{3}\right]_{0}^{R} [\theta]_{0}^{2\pi} [-\cos\psi]_{0}^{\pi} = \frac{R^3}{3} 4\pi = \frac{4}{3}\pi R^3$$

1.I.1.d.iv Remarques

• Vecteurs intégrés

Comme illustré pour les intégrales cylindriques, on pourra intégrer le vecteur $\overrightarrow{u_r}$ (éventuellement $\overrightarrow{u_{\theta}}$ et $\overrightarrow{u_{\psi}}$ mais rarement utilisés) de la représentation sphérique en prenant :

$$\overrightarrow{u_r} = \sin \psi \cos \theta \, \vec{x} + \sin \psi \sin \theta \, \vec{y} + \cos \psi \, \vec{z}$$

• Astuce de calcul

On pensera que:

$$\begin{cases} x = r \sin \psi \cos \theta \\ y = r \sin \psi \sin \theta \\ z = r \cos \psi \\ x^2 + y^2 + z^2 = r^2 \end{cases}$$