Towards Fast Processing of SPARQL Queries on RDF Quads

Vasil Slavov CSEE, University of Missouri-Kansas City

Comprehensive Exam

<u>Acknowledgements</u>
National Science Foundation (IIS-1115871)

Committee

- Dr. Praveen Rao, Advisor and Chair
- Dr. Yugyung Lee
- Dr. Deep Medhi
- Dr. Appie van de Liefvoort
- Dr. Vijay Kumar

Outline

- Semantic Web, RDF, SPARQL, applications
- Related work
 - Indexing & query processing
- Our approach
 - The design of RIQ
- Performance evaluation of RIQ
- Future direction

Semantic Web

RDF

- Data model, W3C specification
- Directed, labeled graph
- Triples:

RDF graph

[http://en.wikipedia.org/wiki/Resource_Description_Framework]

SPARQL

- Query language
- Basic Graph Pattern (BGP) matching

```
1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2
3 SELECT ?name ?mbox WHERE {
4    ?x foaf:name ?name .
5    ?x foaf:mbox ?mbox .
6 }

triple pattern

foaf:mbox ?mbox ?mbox
```

Quads

```
1 foaf:me foaf:name "Alice" <http://ex.org/alice/foaf.rdf> .
2 foaf:me foaf:name "Bob" <http://ex.org/bob/foaf.rdf> .
```

Differentiate b/w identical statements

```
1 foaf:alice foaf:knows foaf:bob <http://ex.org/graphs/john> .
2 foaf:alice foaf:knows foaf:bob <http://ex.org/graphs/james> .
```

GRAPH query

```
1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 3 PREFIX movie: <http://data.linkedmdb.org/resource/movie/>
   SELECT ?g ?producer ?name ?label ?page ?film WHERE {
       GRAPH ?q {
 6
          ?producer movie:producer name ?name .
          ?producer rdfs:label ?label .
          ?film movie:producer ?producer .
10
11 }
                                              movie:producer name
                                  ?producer
                                                                    ?name
                movie:producer
                                       rdfs:label
                    ?film
                                                     ?label
                                9
```

Who is using SW and LD?

- Governments: US, UK (LOGD, Data.gov)
- BBC
- New York Times
- Pfizer (LODD)
- Best Buy

"Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/"

ProbTement

[http://www.triplemap.com/]

Related work

What's missing in them?

- 1. No support for quads
- 2. No large BGP queries (over 8 triple patterns)
- 3. No complex BGP queries (undirected cycles):

```
1 SELECT * WHERE {
2      ?a p    ?b .
3      ?b q    ?c .
4      ?a r    ?c .
5 }
```


Why not use triple stores for quads?

INCORRECT RESULTS

Triple vs. Quad

```
<a>>
1 < a > < b > < c > < g1 > .
2 < a > < b > < e > < q2 > .
                                  Triple store results
                          Data |
                        Query | Quad store results
  SELECT ?x WHERE {
    GRAPH ?g {
      2x < b < c > .
                                             <empty>
      2x < b < e > .
5
                        <C>
               <b>
          ?x
               <b>
```

<e>

State-of-the-art technologies are... fast

State-of-the-art technologies are... slow

State-of-the-art technologies are... really slow

Comparison

	quads	max triples/ quads	max triple patterns
RIQ	yes	1.38B	22
RDF-3X	no	845M	13
BitMat	no	1.33B	8
Jena TDB	yes	333M	6
DB2RDF	no	333M	6
TripleBit	no	2.95B	12

Semantic Web stack

Query processing

(traditional)

Query processing

(our approach)

Contributions

- New vector representation
 - RDF graphs
 - Graph patterns in SPARQL queries
- Novel filtering index
- Decrease-and-conquer approach for SPARQL query processing

Pattern Vectors (PVs)

 $\mathbb{H}: B \to \mathbb{Z}^*$

 $\mathbb{P} = \{SPO, SP?, S?O, ?PO, S??, ?P?, ??O\}$

Filter Index construction

Steps:

1. Create groups of similar PVs

Locality Sensitive Hashing

2. Compactly store Filter Index

Bloom Filters and Counting Bloom Filters

Locality Sensitive Hashing

- Indyk and Motwani [STOC '98]
- LSH on sets using Jaccard index [WWW '02, WWW '05]:

$$LSH_{k,l}(S)$$
 $k imes l$ functions: $h(x) = (ax + b) \ mod \ p$ $g(S) = min\{h(x)\}$

Two sets S_1 and S_2

$$Pr[g(S_1)=g(S_2)]=rac{|S_1\cap S_2|}{|S_1\cup S_2|}$$
 Jaccard index

LSH example

$$sim = \frac{|s_1 \cap s_2|}{|s_1 \cup s_2|}$$

Pr[at least one pair of yellow and green is identical] = $1-(1-sim^l)^k$

LSH parameters

Bloom Filters

- Operations
 - Test
 - Add
- N-bit counters for multisets
- Capacity: # of inserts
- False positive rate

Grouping PVs

$$sim(PV_a, PV_b) = \max_{r \in \mathbb{P}} \frac{|PV_{a,r} \cap PV_{b,r}|}{|PV_{a,r} \cup PV_{b,r}|}$$

 $\mathbb{P} = \{SPO, SP?, S?O, ?PO, S??, ?P?, ??O\}$

Filter Index

 $PV_{c,r} \leftarrow PV_{a,r} \cup PV_{b,r} \ and \ r \in \mathbb{P}$ Group N (union) $\mathbb{P} = \{SPO, SP?, S?O, ?PO, S??, ?P?, ??O\}$??0 S?0 SPO ?PO SP? S?? ?P? Group N of similar PVs Filter Index CBF CBF CBF CBF CBF CBF BF Group 1 Filter Group N Filter Index Index

Query execution

Initial performance evaluation

- Datasets
 - Synthetic: LUBM, 1.38 billion triples
 - Real: BTC-2012, 1.36 billion quads
- Queries
 - Large: up to 22 patterns
 - Small: up to 8 patterns

(LUBM, cold cache)

(LUBM, warm cache)

(BTC-2012, cold cache)

(BTC-2012, warm cache)

Small BGPs

(LUBM)

	Cold cache			Warm cache		
Query	RIQ	RDF-3X	Jena TDB	RIQ	RDF-3X	Jena TDB
L4	229.95	1986.21	698.08	27.46	1899.1	664.75
L5	576.96	995.26	1130.43	567.2	948.53	1127.37
L6	506.93	888.84	1119.31	489.36	847.59	1144.11
L7	892.7	1215.53	aborted	871.12	1153.31	aborted
L8	507.43	805.41	1346.17	497.69	70.35	1395.48
L9	538.99	979.79	1137.38	519.22	947.07	1142.73
L10	18.72	11.11	7.15	0.51	6.39	3.19
L11	12.19	1.98	5.79	0.41	0.25	1.13
L12	103.14	22.33	725.93	26.76	19.83	703.26
Geo. mean	193.85	210.97	282.57	59.68	115.7	207.72

Small BGPs

(BTC-2012)

	Cold cache			Warm cache		
Query	RIQ	RDF-3X	Jena TDB	RIQ	RDF-3X	Jena TDB
B3	41.01	56.42	373.59	1.83	0.82	20.13
B4	42.17	48.55	321.56	3.59	2.37	35.99
B5	70.15	74.86	3541.99	32.38	28.64	3540.28
B6	20.39	> 40,140	14.89	0.64	> 40,140	12.83
B7	221.86	210.37	1925.27	184.86	118.84	1817.85
Geo. mean	55.96	280.34	414.25	7.59	48.4	143.01

Future direction

- Query
 - optimization strategy
 - re-writing
 - SPARQL grammar: OPTIONAL, UNION, FILTER, etc.
- RIQ on other real datasets: LOGD, LODD

Publications

Accepted at WebDB 2014

Vasil Slavov, Anas Katib, Praveen Rao, Srivenu Paturi, Dinesh Barenkala. <u>Fast Processing of SPARQL Queries on RDF Quadruples</u>. 17th International Workshop on the Web and Databases (WebDB 2014), Snowbird, Utah, June 22, 2014.

- Future submissions
 - ICDE demo paper, September 2014
 - ACM Transactions on the Web Journal paper, December 2014

Q&A