Вариант 1.

- Вычислить $\lim_{x \to \pi} \frac{\sin x}{\pi^2 x^2}$. $(2 \, \textit{балла})$
- Вычислить $\lim_{x \to 0} \left(\frac{\sin 4x}{\operatorname{tg} 4x} \right)^{1/x^2}$. $(2 \, \textit{балла})$
- Показать, что функции $f(x) = \frac{1}{x-1}$ и $g(x) = \frac{x}{x^2-1}$ являются бесконечно 3. малыми или бесконечно большими при $x \to 1$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 1$. (4 балла)
- Исследовать на непрерывность функцию $f(x)=\left\{ egin{array}{cc} 2+rctgrac{\pi}{4x}, & x<1, \\ 3^{1/x}, & x\geqslant 1, \end{array}
 ight.$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва.

Вариант 2.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to \pi/2} \frac{\cos x + 2 \cot x}{\pi - 2x}$$
. (2 балла)

2. Вычислить
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{x^2}$$
. (2 балла)

- Показать, что функции $f(x) = x \arctan x$ и $g(x) = 2^x 1$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. $(4 \, \textit{балла})$
- Исследовать на непрерывность функцию $f(x)=\left\{\begin{array}{ll} \sqrt[3]{x}, & x\leqslant 0,\\ \frac{1}{\lg x}, & x>0, \end{array}\right.$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. $(4 \, \textit{балла})$

Вариант 3.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to \pi} \frac{\sin x + 2 \cot x}{(\pi - x) \sin \frac{x}{2}}$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} (1 + \arcsin^2 x)^{\frac{1}{\ln(1+x^2)}}$$
. (2 балла)

- Показать, что функции $f(x) = x^5 \sin \frac{1}{x} + x^3$ и $g(x) = \frac{x^3}{x+3}$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно q(x) при $x \to \infty$. (4 балла)
- Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin \pi x}{x^2-1}, & x < 2, \\ 2 \arctan \frac{1}{x-2}, & x > 2, \end{cases}$ указать точки разрыва, их характер и построизи

указать точки разрыва, их характер и построить график функции в окрестностях (4 балла) точек разрыва.

Вариант 4.

- 1. Вычислить $\lim_{x \to \pi/3} \frac{1 2\cos x}{\pi 3x}$. (2 балла)
- **2.** Вычислить $\lim_{x\to 0} \frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}}$. (2 балла)
- 3. Показать, что функции $f(x) = \frac{\sqrt{x^3}}{x-1}$ и $g(x) = x^2 \arcsin \frac{1}{x}$ являются бесконечно малыми или бесконечно большими при $x \to +\infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to +\infty$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} e^{-1/x}, & x < 0, \\ \sqrt[3]{x}, & x \geqslant 0, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 5.

Матем. анализ, ИУ9, PK2 (задачи), 2020

- 1. Вычислить $\lim_{x\to 0} \frac{e^{\sin 5x} e^{\sin x}}{\ln(1+2 \operatorname{tg} x)}$. (2 балла)
- **2.** Вычислить $\lim_{x\to 0} (\cos x)^{1/\sin x}$. (2 балла)
- 3. Показать, что функции $f(x) = x \ln(1-x^2)$ и $g(x) = \sin x$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. (4 балла)
- функции f(x) относительно g(x) при x.

 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\arctan x}{\arcsin x}, & |x| \leqslant 1, \\ x-1, & |x| > 1, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 6.

- 1. Вычислить $\lim_{x \to \pi} \frac{1 \sin \frac{x}{2}}{(\pi x)^2}$. (2 балла)
- 2. Вычислить $\lim_{x \to +\infty} x \cdot (\ln(x+2) \ln x)$. (2 балла)
- **3.** Показать, что функции $f(x) = \frac{\ln(1-x)}{x^3}$ и $g(x) = \frac{1}{\sin x}$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \sin \frac{\pi}{x}, & x \leqslant 1, \\ \ln(x-1), & x > 1, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 7.

1. Вычислить
$$\lim_{x\to\infty} x^2 \left(\cos\frac{1}{x} - 1\right)$$
. (2 балла)

2. Вычислить
$$\lim_{x \to 0} (\cos 6x)^{\text{ctg}^2 x}$$
. (2 балла)

- **3.** Показать, что функции $f(x) = \operatorname{ctg} x$ и $g(x) = \sqrt[3]{x \frac{\pi}{2}}$ являются бесконечно малыми или бесконечно большими при $x \to \frac{\pi}{2}$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \frac{\pi}{2}$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x)=\left\{ egin{array}{ll} \arctan rac{1}{x}, & x<1, \\ \dfrac{\pi x}{4}, & x\geqslant 1, \end{array} \right.$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 8.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to 1/2} \frac{1 - \sin \pi x}{\ln(\sin \pi x)}$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} \left(\frac{\sin 2x}{\operatorname{tg} 2x}\right)^{1/x^2}$$
. (2 балла)

- 3. Показать, что функции $f(x) = \ln(2+x^6)$ и $g(x) = \ln(3+x^2)$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \infty$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin \pi x}{x}, & x \leq 0, \\ \arctan \frac{1}{x}, & x > 0, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 9.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x\to 0} \frac{\cos 3x - \cos x}{x^2}$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} (1+3 \operatorname{tg}^2 x)^{\operatorname{ctg}^2 x}$$
. (2 балла)

- 3. Показать, что функции $f(x) = \frac{1}{\sin x}$ и $g(x) = \frac{1}{x^2 \pi^2}$ являются бесконечно малыми или бесконечно большими при $x \to -\pi$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to -\pi$.
- **4.** Исследовать на непрерывность функцию $f(x) = \begin{cases} \cot \pi x, & |x| \leqslant 1, \\ \frac{1}{x^2 4}, & |x| > 1, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 10.

- 1. Вычислить $\lim_{x \to \pi} \frac{\cos 5x \cos 3x}{\sin^2 x}$. (2 балла)
- **2.** Вычислить $\lim_{x \to +\infty} x \cdot \left(\ln \left(1 + \frac{x}{2} \right) \ln \frac{x}{2} \right)$. (2 балла)
- 3. Показать, что функции $f(x) = \frac{1}{\sqrt[3]{1-\sqrt{x}}}$ и $g(x) = \frac{1}{\sin(1-x)}$ являются бесконечно малыми или бесконечно большими при $x \to 1$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 1$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin \pi x}{x}, & x < 1, \\ \sqrt{x-1}, & x \geqslant 1, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 11.

Матем. анализ, ИУ9, PK2 (задачи), 2020

1. Вычислить
$$\lim_{x \to -\pi/2} \frac{1 + \sin x}{x + \pi/2}$$
. (2 балла)

2. Вычислить
$$\lim_{x \to \infty} \left(\frac{x+5}{x-5} \right)^{x+1}$$
. (2 балла)

- **3.** Показать, что функции $f(x) = \frac{\arctan x}{x^2}$ и $g(x) = \frac{\sin(1/x)}{x^2}$ являются бесконечно малыми или бесконечно большими при $x \to +\infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to +\infty$.
- **4.** Исследовать на непрерывность функцию $f(x) = \begin{cases} 2^{\frac{x}{x+1}}, & x \leq 1, \\ \cos \frac{1}{x-1}, & x > 1, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 12.

Матем. анализ, ИУ9, PK2 (задачи), 2020

1. Вычислить
$$\lim_{x\to 0} \frac{\ln\cos x}{4x^2}$$
. (2 балла)

2. Вычислить
$$\lim_{x \to \pi/2} (1 + \operatorname{ctg} x)^{3 \operatorname{tg} x}$$
. (2 балла)

- **3.** Показать, что функции $f(x) = x^3 + \sqrt[5]{x} \sin x$ и $g(x) = x \arctan x$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \infty$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{1}{2} \arccos x, & x < 0, \\ \arctan \frac{1}{x-1}, & x \geqslant 0, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 13.

- **1.** Вычислить $\lim_{x \to \infty} x \cdot (a^{1/x} 1)$. (2 балла)
- **2.** Вычислить $\lim_{x \to \infty} \left(\frac{x+3}{x-2} \right)^{2x+1}$. (2 балла)
- 3. Показать, что функции $f(x) = \lg(101 x^2)$ и g(x) = x 10 являются бесконечно малыми или бесконечно большими при $x \to 10$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 10$. (4 балла)
- функции f(x) относительно g(x) при x4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin x}{|x|}, & x < \pi, \\ \sqrt{x \pi}, & x \geqslant \pi, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 14.

Матем. анализ, ИУ9, РК2 (задачи), 2020

- 1. Вычислить $\lim_{x\to 10} \frac{\sqrt{x-1}-3}{x-10}$. (2 балла)
- **2.** Вычислить $\lim_{x\to 0} (1+x^2)^{\operatorname{ctg} x}$. (2 балла)
- 3. Показать, что функции $f(x) = \frac{1}{e^{2x} e^x}$ и $g(x) = \frac{1}{x^2}$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \sin \frac{1}{x}, & x < 0, \\ e^{\sqrt{x}}, & x \geqslant 0, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 15.

- **1.** Вычислить $\lim_{x \to 1} \frac{a^x a}{x 1}$. (2 балла)
- **2.** Вычислить $\lim_{x\to 0} (\cos x)^{1/x^2}$. (2 балла)
- 3. Показать, что функции $f(x) = \sqrt{x^4 + x}$ и $g(x) = x^2 \arctan \frac{1}{x}$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \infty$.
- функции f(x) относительно g(x) при x.

 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\operatorname{tg} x}{x}, & |x| < \frac{\pi}{2}, \\ \cos 2x, & |x| \geqslant \frac{\pi}{2}, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 16.

- Вычислить $\lim_{x\to\pi} \frac{\sin x}{\pi^2 x^2}$. $(2 \, \textit{балла})$
- Вычислить $\lim_{x \to 0} \left(\frac{\sin 4x}{\operatorname{tg} 4x} \right)^{1/x^2}$. $(2 \, \textit{балла})$
- Показать, что функции $f(x) = \frac{1}{x-1}$ и $g(x) = \frac{x}{x^2-1}$ являются бесконечно 3. малыми или бесконечно большими при $x \to 1$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 1$. (4 балла)
- Исследовать на непрерывность функцию $f(x)=\left\{ egin{array}{cc} 2+rctgrac{\pi}{4x}, & x<1, \\ 3^{1/x}, & x\geqslant 1, \end{array}
 ight.$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва.

Вариант 17.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to \pi/2} \frac{\cos x + 2 \cot x}{\pi - 2x}$$
. (2 балла)

2. Вычислить
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{x^2}$$
. (2 балла)

- Показать, что функции $f(x) = x \arctan x$ и $g(x) = 2^x 1$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. $(4 \, \textit{балла})$
- Исследовать на непрерывность функцию $f(x)=\left\{\begin{array}{ll} \sqrt[3]{x}, & x\leqslant 0,\\ \frac{1}{\lg x}, & x>0, \end{array}\right.$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. $(4 \, \textit{балла})$

Вариант 18.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to \pi} \frac{\sin x + 2 \cot x}{(\pi - x) \sin \frac{x}{2}}$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} (1 + \arcsin^2 x)^{\frac{1}{\ln(1+x^2)}}$$
. (2 балла)

- Показать, что функции $f(x) = x^5 \sin \frac{1}{x} + x^3$ и $g(x) = \frac{x^3}{x+3}$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно q(x) при $x \to \infty$. (4 балла)
- Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin \pi x}{x^2-1}, & x < 2, \\ 2 \arctan \frac{1}{x-2}, & x > 2, \end{cases}$ указать точки разрыва, их характер и построизи

указать точки разрыва, их характер и построить график функции в окрестностях (4 балла) точек разрыва.

Вариант 19.

- 1. Вычислить $\lim_{x \to \pi/3} \frac{1 2\cos x}{\pi 3x}$. (2 балла)
- **2.** Вычислить $\lim_{x\to 0} \frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}}$. (2 балла)
- **3.** Показать, что функции $f(x) = \frac{\sqrt{x^3}}{x-1}$ и $g(x) = x^2 \arcsin \frac{1}{x}$ являются бесконечно малыми или бесконечно большими при $x \to +\infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to +\infty$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} e^{-1/x}, & x < 0, \\ \sqrt[3]{x}, & x \geqslant 0, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 20.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x\to 0} \frac{e^{\sin 5x} - e^{\sin x}}{\ln(1+2 \operatorname{tg} x)}$$
. (2 балла)

- **2.** Вычислить $\lim_{x\to 0} (\cos x)^{1/\sin x}$. (2 балла)
- 3. Показать, что функции $f(x) = x \ln(1-x^2)$ и $g(x) = \sin x$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. (4 балла)
- функции f(x) относительно g(x) л. ... 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\arctan x}{\arcsin x}, & |x| \leqslant 1, \\ x-1, & |x| > 1, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 21.

1. Вычислить
$$\lim_{x \to \pi} \frac{1 - \sin \frac{x}{2}}{(\pi - x)^2}$$
. (2 балла)

- **2.** Вычислить $\lim_{x \to +\infty} x \cdot (\ln(x+2) \ln x)$. (2 балла)
- 3. Показать, что функции $f(x) = \frac{\ln(1-x)}{x^3}$ и $g(x) = \frac{1}{\sin x}$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \sin \frac{\pi}{x}, & x \leqslant 1, \\ \ln(x-1), & x > 1, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 22.

1. Вычислить
$$\lim_{x\to\infty} x^2 \left(\cos\frac{1}{x} - 1\right)$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} (\cos 6x)^{\operatorname{ctg}^2 x}$$
. (2 балла)

- **3.** Показать, что функции $f(x) = \operatorname{ctg} x$ и $g(x) = \sqrt[3]{x \frac{\pi}{2}}$ являются бесконечно малыми или бесконечно большими при $x \to \frac{\pi}{2}$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \frac{\pi}{2}$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x)=\left\{ egin{array}{ll} rctg rac{1}{x}, & x<1, \\ rac{\pi x}{4}, & x\geqslant 1, \end{array}
 ight.$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 23.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to 1/2} \frac{1 - \sin \pi x}{\ln(\sin \pi x)}$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} \left(\frac{\sin 2x}{\operatorname{tg} 2x}\right)^{1/x^2}$$
. (2 балла)

- 3. Показать, что функции $f(x) = \ln(2+x^6)$ и $g(x) = \ln(3+x^2)$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \infty$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin \pi x}{x}, & x \leq 0, \\ \arctan \frac{1}{x}, & x > 0, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 24.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x\to 0} \frac{\cos 3x - \cos x}{x^2}$$
. (2 балла)

2. Вычислить
$$\lim_{x\to 0} (1+3 \operatorname{tg}^2 x)^{\operatorname{ctg}^2 x}$$
. (2 балла)

- 3. Показать, что функции $f(x) = \frac{1}{\sin x}$ и $g(x) = \frac{1}{x^2 \pi^2}$ являются бесконечно малыми или бесконечно большими при $x \to -\pi$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to -\pi$. (4 балла)
- **4.** Исследовать на непрерывность функцию $f(x) = \begin{cases} \cot \pi x, & |x| \leqslant 1, \\ \frac{1}{x^2 4}, & |x| > 1, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 25.

- 1. Вычислить $\lim_{x \to \pi} \frac{\cos 5x \cos 3x}{\sin^2 x}$. (2 балла)
- **2.** Вычислить $\lim_{x \to +\infty} x \cdot \left(\ln \left(1 + \frac{x}{2} \right) \ln \frac{x}{2} \right)$. (2 балла)
- **3.** Показать, что функции $f(x)=\frac{1}{\sqrt[3]{1-\sqrt{x}}}$ и $g(x)=\frac{1}{\sin(1-x)}$ являются бесконечно малыми или бесконечно большими при $x\to 1$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x\to 1$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin \pi x}{x}, & x < 1, \\ \sqrt{x-1}, & x \geqslant 1, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 26.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x \to -\pi/2} \frac{1 + \sin x}{x + \pi/2}$$
. (2 балла)

2. Вычислить
$$\lim_{x \to \infty} \left(\frac{x+5}{x-5} \right)^{x+1}$$
. (2 балла)

- **3.** Показать, что функции $f(x) = \frac{\arctan x}{x^2}$ и $g(x) = \frac{\sin(1/x)}{x^2}$ являются бесконечно малыми или бесконечно большими при $x \to +\infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to +\infty$.
- **4.** Исследовать на непрерывность функцию $f(x) = \begin{cases} 2^{\frac{x}{x+1}}, & x \leq 1, \\ \cos \frac{1}{x-1}, & x > 1, \end{cases}$

указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 27.

Матем. анализ, ИУ9, РК2 (задачи), 2020

1. Вычислить
$$\lim_{x\to 0} \frac{\ln\cos x}{4x^2}$$
. (2 балла)

2. Вычислить
$$\lim_{x \to \pi/2} (1 + \operatorname{ctg} x)^{3 \operatorname{tg} x}$$
. (2 балла)

- **3.** Показать, что функции $f(x) = x^3 + \sqrt[5]{x} \sin x$ и $g(x) = x \arctan x$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \infty$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{1}{2} \arccos x, & x < 0, \\ \arctan \frac{1}{x-1}, & x \geqslant 0, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях

точек разрыва. (4 балла)

Вариант 28.

- **1.** Вычислить $\lim_{x \to \infty} x \cdot (a^{1/x} 1)$. (2 балла)
- **2.** Вычислить $\lim_{x \to \infty} \left(\frac{x+3}{x-2} \right)^{2x+1}$. (2 балла)
- 3. Показать, что функции $f(x) = \lg(101-x^2)$ и g(x) = x-10 являются бесконечно малыми или бесконечно большими при $x \to 10$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 10$. (4 балла)
- функции f(x) относительно g(x) при x4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\sin x}{|x|}, & x < \pi, \\ \sqrt{x \pi}, & x \geqslant \pi, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 29.

Матем. анализ, ИУ9, РК2 (задачи), 2020

- 1. Вычислить $\lim_{x\to 10} \frac{\sqrt{x-1}-3}{x-10}$. (2 балла)
- 2. Вычислить $\lim_{x\to 0} (1+x^2)^{\operatorname{ctg} x}$. (2 балла)
- 3. Показать, что функции $f(x) = \frac{1}{e^{2x} e^x}$ и $g(x) = \frac{1}{x^2}$ являются бесконечно малыми или бесконечно большими при $x \to 0$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to 0$. (4 балла)
- 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \sin \frac{1}{x}, & x < 0, \\ e^{\sqrt{x}}, & x \geqslant 0, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)

Вариант 30.

- **1.** Вычислить $\lim_{x \to 1} \frac{a^x a}{x 1}$. (2 балла)
- **2.** Вычислить $\lim_{x\to 0} (\cos x)^{1/x^2}$. (2 балла)
- **3.** Показать, что функции $f(x) = \sqrt{x^4 + x}$ и $g(x) = x^2 \arctan \frac{1}{x}$ являются бесконечно малыми или бесконечно большими при $x \to \infty$ и найти порядок малости (роста) функции f(x) относительно g(x) при $x \to \infty$. (4 балла)
- функции f(x) относительно g(x) при x.

 4. Исследовать на непрерывность функцию $f(x) = \begin{cases} \frac{\operatorname{tg} x}{x}, & |x| < \frac{\pi}{2}, \\ \cos 2x, & |x| \geqslant \frac{\pi}{2}, \end{cases}$ указать точки разрыва, их характер и построить график функции в окрестностях точек разрыва. (4 балла)