Семинары по иммуноинформатике

Антон С. Смирнов

October 27, 2025

Оглавление

Πķ	редисловие	1
-	рганизация обучения Цели и задачи Ожидаемые результаты обучения Приобретаемые знания Приобретаемые навыки Система оценивания Учебные материалы Основная литература	3 4 4 4
ı	Медицина и иммуноинформатика	9
1	Интерпретация результатов NGS 1.1 Предварительная подготовка 1.2 Пример заключения 1.3 Пациент №1 (разминка) 1.4 Пациент №2 1.4.1 Расшифровка столбцов 1.5 Пациент №3	11 13 13 15
2	НLA-типирование 2.1 Генетические особенности	
II	Анализ иммунных репертуаров	21
3	Описание иммунных репертуаров	23
4	Библиотека Seurat	25
Ш	Компьютерное конструирование вакцин и антител	27
5	Проектирование мультиэпитопной вакцины	29
6	Защита проектов	31
7	Моделирование трехмерной структуры антитела	33
8	Молелирование взаимолействия антитело-антиген	25

iv	ОГЛАВЛЕНИЕ

9 Зачёт	37
References	39

Предисловие

Материалы для семинаров для нового курса "Иммуноинформатика" для студентов 5 курса ФББ МГУ. Этот предмет включен в программу по настоятельной просьбе активных и мотивированных студентов факультета. Данный курс является краткой выжимкой курса иммуноинформатики, читаемого биологам-магистрам медико-биологического факультета Пироговского университета и рассчитан на 24 академических часа. Вследствие малого количества аудиторных часов, я рассчитываю на вашу активную самостоятельную работу. Предмет рассчитан на три модуля:

- Иммуноинформатика в медицине;
- Анализ данных иммуносеквенирования
- Компьютерное конструирование иммунопрепаратов.

Подглавы пособия соответствуют темам семинара, а главы - разделам, следовательно, 1 глава - 1 семинар. Ссылки на презентации лекций будут приложены отдельно к описаниям разделов в соответствующих главах.

Предисловие

2

Организация обучения

Цели и задачи

Цель курса – познакомить слушателя с источниками данных, рабочими инструментами в иммуноинформатике и принципами их работы. В курсе рассматриваются экспериментальные методы, применяемые в фундаментальной и клинической иммунологии вместе с методами анализа результатов экспериментов. Разбираются технические аспекты применения вычислительных методов. Особое внимание уделено вопросам компьютерного конструирования вакцин.

Ожидаемые результаты обучения

После изучения курса слушатель получит представление о применении методов биоинформатики в иммунологии и используемых и информационных ресурсах. Слушатель научится применять продвинутые технические инструменты для решения как иммуноинформатических, так и общих биоинформатических задач.

Приобретаемые знания

- Знание медицинской классификации генетических вариантов, алгоритма вынесения заключения по результатам высокопроизводительного секвенирования.
- Знание об алгоритмах, используемых в картировании прочтений локуса HLA.
- Понимание принципов работы программ-предсказателей
- Понимание особенностей открытых на момент преподавания курса иммунологических данных
- Знание о принципах и этапах компьютерного конструирования вакцин и иммунологических препаратов
- Понимание принципов анализа результатов single-cell RNA секвенирования.
- Понимание принципов моделирования трехмерных структур.

Приобретаемые навыки

- Навыки работы с общедоступными биоинформатическими базами данных
- Навыки работы с интерфейсом командной строки, работы в операционной системе Linux
- Навыки написания программ на языке программирования Python, R для решения иммуноинформатических задач
- Умение применять иммуноинформатические онлайн-инструменты, интерпретировать их результаты
- Способность решать иммуноинформатические задачи как прикладного (медицинского), так и фундаментального характера.

Система оценивания

Дисциплина предполагает получение «зачета». Для «зачета» необходимо достичь порогового показателя в 60% по каждому виду деятельности:

Виды деятельности	Итого, баллы	Пороговое значение, баллы	Комментарии
Работа на очных занятиях	70	42	7 занятий по 10 баллов
Индивидуальная домашняя	40	24	4 домашних задания по 10
работа			баллов
Проект по конструированию	20	12	
вакцины			
Итоговое устное	30	18	
собеседование			
Итого	160	96	

Учебные материалы

Основная литература

- 1. Мерфи, К. Иммунобиология по Джанвэю / К. Мерфи, К. Уивер; пер. с англ.; под ред. Г.А. Игнатьевой, О.А. Свитич, И.Н. Дьякова. М.: Логосфера, 2020. 1184 с. : ил. : 21,3 см. ISBN 978-5-98657-070-9
- 2. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2) https://ngs.med-

Учебные материалы 5

gen.ru/mgngs19/%D0%A0%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE%20NGS%202019%20%D0%B2%D0%B5%D1%80.2.pdf

- 3. Namrata Tomar. Immunoinformatics. Springer Protocols 3 ed., 2020 DOI: https://doi.org/10.1007/978-1-0716-0389-5
- 4. Pedro A. Reche. Computational Vaccine Design 1 ed., 2023 DOI: https://doi.org/10.1007/978-1-0716-3239-0
- 5. Курс «Анализ транскриптомных данных», Сергей Исаев. https://github.com/serjisa/transcriptomics.

Лекции

- 1. Интерпретация результатов NGS. HLA-типирование.
- 2. Анализ иммунных репертуаров
- 3. Компьютерное конструирование вакцин

Лекции

8

Part I

Медицина и иммуноинформатика

Интерпретация результатов NGS

1.1 Предварительная подготовка

Вам потребуется для работы:

- 1. Интернет для доступа к статьям, базам данных и UCSC Genome Browser
- 2. Геномный бразуер іду. Скачать можно по ссылке

O Broad Institute

Поскольку британское правительство - нехорошие люди, институт блокирует российские IP-адреса. Проблема легко решаема самым простым ВПН. С помощью ВПН можно скачать самую последнюю версию IGV. Также могут возникнуть проблемы с загрузкой референсного генома, т.к. igv осуществляет их загрузку с серверов Amazon. Чтобы решить эту проблему, добавьте в скрипт запуска igv-launcher.bat (он лежит в папке, куда установили igv) опции, указанные ниже.

start %JAVA_CMD% ... --genomeServerURL=https://tools.epigenetic.ru/igv/genomes.txt --genome=https://tools.epigenetic.ru/igv/genomes.txt --genome=https://tools.epigenetic.ru/igv/genome=https://

3. DB Browser for SQLite

1.2 Пример заключения

Пример

- 1. Паспортная информация о документе
- Название организации, контактная информация
- Название лаборатории:

- Карта:
- Номер исследования:
- Фамилия:
- Дата рождения:
- Регион:
- Направившее ЛПУ:
- Направивший врач:
- Метод исследования: Массовое параллельное секвенирование; биоинформатический анализ ДНК
- Материал: Жидкая кровь с ЭДТА, не подвергавшаяся замораживанию
- Направляющий диагноз:
- Пункт прейскуранта:

2. Находки

Table 1.1: Патогенные варианты нуклеотидной последовательности, являющиеся вероятной причиной заболевания

	Положен	ие	Экзон/	Положен	ие	Частота	Глубина
Ген	(hg38)	Генотип	интрон	в кДНК	Эффект	аллеля*	Транскриптпрочтения
CD81	chr11:239	552 G ØAA	5	c.459+5G>	A p.?	0.0000197	72 NM_004356.828

Table 1.2: Вероятно патогенные варианты нуклеотидной последовательности, являющиеся возможной причиной заболевания

	Положен	ие	Экзон/	Положени	1e	Частота	Глубина
Ген	(hg38)	Генотип	интрон	в кДНК	Эффект	аллеля*	Транскриптпрочтения
IVD	chr15:404:	15 4\$4 C>T	9	c.932C>T	p.(Ala311V	al)0.0007293	80 NM_002225. § 40

Table 1.3: Варианты нуклеотидной последовательности неопределенного значения, имеющие возможное отношение к фенотипу

	Положени	1e	Экзон/	Положени	1e	Частота	Глубина
Ген	(hg38)	Генотип	интрон	в кДНК	Эффект	аллеля*	Транскрипт прочтения

3. Интерпретация

- 4. Описание методики
- 5. Сведения о качестве исследования
- 6. Литература
- 7. Подписи специалиста и заведующего лабораторией

і Волшебные фразы

- 1. Данные секвенирования могут быть предоставлены по запросу лечащего врача.
- 2. Все варианты, указанные в заключении, необходимо подтверждать методом прямого секвенирования по Сенгеру.
- Клиническое заключение по результатам данного исследования может быть дано только врачом-генетиком.
- 4. Результат анализа может быть интерпретирован только врачом.

1.3 Пациент N°1 (разминка)

Данные + выписки

1.4 Пациент N°2

Новорожденный мальчик с неонатального скрининга.

Данные. Скрины из выписок представлены ниже

Анамнез жизни: Ребенок от 4 беременности (1 беременность - 2012 г., срочные роды; 2 - 2013 г., выкидыш; 3 - 2022 г., выкидыш), 2 самостоятельных родов на сроке 39-40 нед. Течение беременности: на фоне токсикоза в 1-м триместре, варикозного расширения вен, ОРВИ - 13 и 38 нед., ЖДА в 3-м триместре. Вес при рождении 3502 г. Рост 53 см. Закричал сразу. По шкале Апгар 7/9 баллов. К груди приложен сразу. БЦЖ-М, гепатит В - проведено в роддоме, далее медицинский отвод от профилактических прививок. Естественное вскармливание до 2 нед. Перенесенные заболевания: перелом ключицы при родовой травме; гипопаратиреоз.

Семейный анамнез: по онкологическим, гематологическим заболеваниям не отягощен.

Анамнез заболевания: На первом месяце жизни (08.02.23) - повторные эпизоды судорог, госпитализирован в ОРИТ по месту жительства, назначены антиконвульсанты и миоплегическая

терапия, пациент переведен на ИВЛ. По данным ЭЭГ - убедительных данных за истинную эпилептиформную активность нет, лабораторно - снижение ионизированного кальция до 0,8 ммоль/л, снижение паратгормона до 0,3 пг/мл. При исследовании ликвора - незначительное повышение белка (0,5 г/л), в остальном норма. В крови - виремия (ЦМВ до 2300 к/мл), при исследовании ликвора ЦМВ, ЭБВ, ВГЧ6, ВПГ1-2 не детектированы. Пациенту проводилась противосудорожная терапия, комбинированная противомикробная терапия (сульперазон, амикацин, ванкомицин, бисептол, флуконазол, ганцикловир), ВВИГ, коррекция гипокальциемии (препараты кальция вв и рег оз, оксидевит). На фоне проводимой терапии отмечена стабилизация состояния, пациент экстубирован 21.02.23.

	Резу	льтат
	%	106/мл
WBC	-	9,42
Granulocytes	70,0	6,59
Monocytes	15,0	1,41
Lymphocytes	15,0	1,41
	%	кл/мкл
T-cells CD3+ Lym (% om Lym)	0,18	3
CD3+CD4+ Lym (% T cells)	67,0	2
T-naïve cells CD4+CD45RA+CD197+ (% om CD4)	0,0	0
T-central memory cells CD4+CD45RA-CD197+ (% om CD4)	0,0	0
Effector memory cells CD4+CD45RA-CD197- (% om CD4)	0,0	0
TEMRA CD4+CD45RA+CD197- (% om CD4)	0,0	0
CD3+CD8+ Lym (% T cells)	14,0	0
T-naïve cells CD8+CD45RA+CD197+ (% om CD8)	0,0	0
T-central memory cells CD8+CD45RA-CD197+ (% om CD8)	0,0	0
Effector memory cells CD8+CD45RA-CD197- (% om CD8)	0,0	0
TEMRA CD8+CD45RA+CD197- (% om CD8)	0,0	0
B-cells CD19+ Lym (% om Lym)	72,0	1017
NK-cells CD3-CD16+CD56+ Lym (% om Lym)	27,8	393
CD56+high NK (% om NK-cells)	1,0	4
T-NK-cells CD3+CD56+ Lym (% om Lym)	0,0	0

1.4. ПАЦИЕНТ №2 15

Название набора	TK-SMA - Набор реагентов для выделения и количественного определения ДНК TREC, KREC и качественного выявления гомозиготной делеции экзона 7 гена SMN1 методом ПЦР-РВ
Амплификатор	ДТ-прайм (ДНК-Технология)

РЕЗУЛЬТАТЫ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОЙ ДИАГНОСТИКИ

	Показатель пробы	Интерпретация	Референсные значения
SMN1	21,5	Не обнаружена	менее 25 - не обнаружена
TREC	0	Патология	менее 100 - патология от 100 до 450 - сомнительный результат более 450 - норма
KREC	2028	Норма	менее 100 - патология от 100 до 200 - сомнительный результат более 200 - норма

Комментарии.

Результат лабораторного исследования не является диагнозом. Интерпретация результата проводится врачом с учетом клинических проявлений и данных анамнеза.

1.4.1 Расшифровка столбцов

Поле	Описание
vid	Идентификатор варианта
CHROM	Хромосома
POS	Позиция на хромосоме
REF	Референсный аллель
ALT	Альтернативный аллель
AF	Частота, с которой определенный аллель встречается в
	выравнивании на этой позиции
AD	Глубина аллеля, то есть сколько прочтений показывают этот
	аллель в данном положении
GT	Генотип образца в данном положении (например,
	гомозиготный или гетерозиготный)
FILTER	Прошел ли вариант контроль качества variant caller или есть
	замечания
QUAL	Внутренняя метрика оценки качества варианта variant caller
ruseq_AF	Частота варианта по базе данных RuSeq
ruexac_af	Частота варианта по базе данных RuExac (внутренняя БД
	МГНЦ)

Поле	Описание		
gnom_exome	Частота варианта по базе данных gnomAD (экзомная часть)		
gnom_genome	Частота варианта по базе данных gnomAD (геномная часть)		
mt_freq	Частота варианта в митохондриальной ДНК		
ReMM	Regulatory Mendelian Mutation score (предсказание		
	патогенности вариантов в некодирующих областях)		
caller	Variant caller, которым был получен вариант		
clinvar	Информация о патогенности варианта из ClinVar		
gnom2E_AF_popmax,	Максимальные популяционные частоты из gnomAD разных		
gnom2G_AF_popmax,	версий геномной и экзомной части		
gnom3G_AF_popmax			
VARITY_R	Прогноз патогенности варианта по моделям из dbNSFP		
splice_ai, splice_ai_score, spidex,	Результаты предсказаний различных программ. Программы		
IntSplice	SplicaAI, SPIDEX, IntSplice прогнозируют вероятность		
	появления нового сайта сплайсинга в результаты мутации		
tid	Идентификатор транскрипта NCBI		
Annotation	Тип варианта		
Impact	Прогнозируемое влияние варианта на фенотип (выставляется		
	по определенным правилам, например, frameshift всегда HIGH		
	но далеко не всегда он патогенный)		
Gene	Имя гена		
exon	Номер экзона		
HGVSc	Запись варианта в кДНК по правилам HGVS		
HGVSp	Запись эффекта варианта на белок по правилам HGVS		
tid_no_ver	Идентификатор транскрипта без версии		
SIFT, SIFT4G, Polyphen2_HDIV,	Результаты прогноза эффекта от различных программ и		
Polyphen2_HVAR, MutationAssessor,	метапредикторов. Некоторые программы основаны на группах		
PROVEAN, DEOGEN2, FATHMM, LRT,	правил (SIFT, Polyphen), какие-то на машинном обучении		
fathmm_MKL_coding, M_CAP,	(FATHMM)		
PrimateAI, MetaSVM, MetaLR,			
mmsplice, mmsplice_pat, spip_score,			
spip, squirls_score, squirls			
hgmdID	Идентификатор варианта из БД HGMD		
hgmd_class	Заключение о варианте из БД HGMD		
pred_count	Количество программ, высказавшихся за патогенность		
	варианта		

1.4. ПАЦИЕНТ №2

Поле	Описание	
splice_pred_count	Количество программ, высказавшихся за наличие влияния на	
	сплайсинг	
DscoreSNP	Оценка патогенности варианта	
DscoreSplice	Оценка влияния на сплайсинг	
Dscore	max(DscoreSNP, DscoreSplice, VARITY_R)	
max_freq	Максимум из всех популяционных частот	
canonical	Является ли транскрипт каноничным (т.е. с которого в	
	основном в клетках транскрибируется главный продукт)	
hgmd_transcript	-	
same_effect	Оказывает ли вариант такой же эффект в неканоничных	
	транскриптах, как в каноничном	
DP	Глубина прочтения в этом месте	
VAR_COUNT	Количество раз, который этот вариант встречался в образцах	
	МГНЦ	

1.5 Пациент N°3

Новорожденный мальчик с неонатального скрининга.

Данные

Table 1.5: TREC/KREC

TREC	KREC	SMN1
3.1 [2.0-3.5]	1.1 [2.0-3.5]	N

Table 1.6: Субпопуляции лимфоцитов

Показатель	Результат	Ед. изм.
WBC	8.54	10/мл
Гранулоциты, % от WBC	21.0	%
Гранулоциты	1.79	10/мл
Моноциты, % от WBC	11.0	%
MONO#	0.94	10/мл
LYM	5.81	10/мл
LYMPH%	68.0	%

Показатель	Результат	Ед. изм.
T-cells CD3+ Lym	5052	кл/мкл
CD3 (Т-лимфоциты), % от LYM	87.0	%
CD3+CD4+ (Th cells) (% от CD3)	63.7	%
CD3+CD4+ Lym	3218	кл/мкл
CD45RA+CD197+ (T-naïve cells)	2095	кл/мкл
CD45RA+CD197+ (T-naïve cells) (% от CD4)	65.1	%
CD45RA-CD197+ (T-central memory cells)	933	кл/мкл
CD45RA-CD197+ (T-central memory cells) (% от CD4)	29.0	%
CD45RA-CD197- (Effector memory cells)	103	кл/мкл
CD45RA-CD197- (Effector memory cells) (% от CD4)	3.2	%
CD45RA+CD197- (TEMRA)	90	кл/мкл
CD45RA+CD197- (TEMRA) (% от CD4)	2.8	%
CD3+CD8+ (Tc cells) (% ot CD3)	30.4	%
CD3+CD8+ Lym	1536	кл/мкл
CD45RA+CD197+ (T-naïve cells)	1193	кл/мкл
CD45RA+CD197+ (T-naïve cells) (% от CD8)	77.7	%
CD45RA-CD197+ (T-central memory cells)	177	кл/мкл
CD45RA-CD197+ (T-central memory cells) (% от CD8)	11.5	%
CD45RA-CD197- (Effector memory cells)	71	кл/мкл
CD45RA-CD197- (Effector memory cells) (% от CD8)	4.6	%
CD45RA+CD197- (TEMRA)	97	кл/мкл
CD45RA+CD197- (TEMRA) (% ot CD8)	6.3	%
CD19+ Lym (B-cells)	0.3	%
СD19 (В-лимфоциты), % от LYM	17	кл/мкл
CD3/CD16+56 (NKT), % от LYM	0.2	%
CD3+CD16+CD56+ Lym (T-NK-cells)	12	кл/мкл
CD56+high NK, % от NK-cells	2.0	%
CD56+high NK	12	кл/мкл
CD16+56+ (NK-клетки), % от LYM	10.0	%
CD3-CD16+CD56+ Lym (NK-cells)	581	кл/мкл

HLA-типирование

2.1 Генетические особенности

Главный комплекс гистосовместимости - комплекс тесно связанных генетических локусов, расположенных на коротком плече 6-ой хромосомы (6p), а также их белковых продуктов, отвечающих за развитие иммунного ответа и синтез трансплантационных антигенов. Этот комплекс содержит больше 200 генов. Сцепленные группы генов МНС называются гаплотипами. Функции генов МНС заключается в следующем (жирным выделены функции, обозначающие цель существования такой системы)

- · Обеспечение процессинга и презентации антигенных пептидов индукторов и мишеней иммунного ответа;
- Обеспечение взаимодействия клеток
- Распознавание собственных, измененных собственных и чужеродных клеток; запуск и реализация иммуного ответа против носителей генетической информации
- Поддержание иммунологической толерантности (в том числе во время беременности);
- Участие в селекции Т-лимфоцитов;
- Создание генетического разнообразия и обеспечение выживаемости вида.

Исторически сложилось, что главный комплекс гистосовместимости у человека называют человеческим лейкоцитарным антигеном (Human Leukocyte Antigen, HLA). Поэтому процесс определения аллелей главного комплекса гистосовместимости у человека называется HLA-типированием. Генетическая карта HLA представлена

2.2 Биоинформатические особенности

Figure 2.1: Генетическая карта HLA

Part II

Анализ иммунных репертуаров

Описание иммунных репертуаров

 $https://immunomind.github.io/docs/tutorials/single_cell/\#3b-cdr3-length-distribution-for-the-selected-clusters\\$

Библиотека Seurat

https://satijalab.org/seurat/articles/pbmc3k_tutorial

Part III

Компьютерное конструирование вакцин и антител

Проектирование мультиэпитопной вакцины

Защита проектов

Моделирование трехмерной структуры антитела

Моделирование взаимодействия антитело-антиген

Зачёт

Примерный перечень вопросов к зачету.

- 1. Клиническая интерпретация результатов NGS. Алгоритм фильтрации вариантов
- 2. Заключение клинического биоинформатика
- 3. HLA-типирование. Область применения. Используемые программы и принципы их работы
- 4. Пайплайн cellranger.
- 5. Анализ результатов scRNA-seq. Визуализация данных
- 6. Иммуноинформатические ресурсы и базы данных
- 7. Этапы разработки медицинских препаратов
- 8. Типы иммунобиологических препаратов
- 9. Моделирование взаимодействия антитело-антиген
- 10. Моделирование трехмерной структуры антитела
- 11. Понятие об обратной вакцинологии
- 12. Этапы компьютерного конструирования вакцин

38 CHAPTER 9. 3AYËT

References

//::: {#refs} //:::

40 References