Computer Science & Engineering Department I. I. T. Kharagpur

Principles of Programming Languages: CS40032

Elective

Assignment – 6: Extended type calculus, $\lambda_{rr}^{\rightarrow}$ Marks: 30 Assign Date: 19^{th} March, 2020 Submit Date: 26^{th} March, 2019

Note: Please refer to the slides on pre-expressions and type-checking rules for any clarifications of the syntax.

- 1. The given extended typed λ -calculus expressions have undefined types. Find the inconsistencies and try to fix them by modifying the type environment and/or the pre-expressions (In case multiple answers are possible, write any one). [2*5 = 10]
 - (a) Given $\mathcal{E}_0 = \{y : Int\}$:

$$y := 4$$

(b) Given the constants 2 : Int, 3 : Int, 4 : Int, func : $Int \rightarrow Bool \rightarrow Int$

 $\lambda(argv:Bool\ X\ Int\ X\ (Int \rightarrow Bool \rightarrow Int)).\ (argv) < 3,4,func >$

(c) Given the constants true: Bool and 4: Int

$$\lambda(b: Bool). (if b then \{true\} else \{4\})$$

(d) Given $\mathcal{E}_0 = \{r : \{|I_1 : Int, I_2 : Float, I_3 : Double|\}$

$$\lambda(f:Double \to Int, g:Int \to Double).(f(g(r.I_2)))$$

(e) Given $\mathcal{E}_0 = \{M : Double + Bool + Int\}$ case M of

x: Double then (x) ||

y: Bool then (y) ||

z: Int then (z)

- 2. Derive the type of each of the following expression. Show the derivation in each term. [2+4+4=10]
 - (a) Given $\mathcal{E}_0 = \{x : Ref Bool, y : Bool\}$ and the constants $succ : Int \to Int, true : Bool, 4 : Int:$

$$succ 4; x := true$$

(b) Given $\mathcal{E}_0 = \{M: Int + Bool\}$ and the constants $succ: Int \rightarrow Int, \ 4: Int, \ 6: Int:$

case M of

x: Int then (succ x) ||

b: Bool then (if b then 4 else 6)

(c) Given the constants $\{1: Int, 99.9: Float, myOp: Float \rightarrow Float\}$

$$\lambda (f: Float \rightarrow Float).\lambda (x: Float).(fx) (proj_2(<1, myOp, 99.9>))$$

- 3. Derive the type of each of the following expression and evaluate them. Any assumptions are welcome. [5 + 5 = 10]
 - (a) Given the constants $pred: Int \rightarrow Int$ is a function that computes the predecessor, true: Bool, false: Bool, 1: Int, 4: Int, 3: Int:

 $\{pred 4, if true then false else false\}.I_1$

(b) Given isGreaterThan and isZero are type constants with the type $Float \rightarrow Int \rightarrow Bool$ and $Int \rightarrow Bool$ respectively. The type of y and 3 is Int:

$$\lambda(y:Int).(if\ false\ then\ (\lambda(f:Bool\ \to Bool).\ (f\ (isZero\ y)))$$
 else $(\lambda(g:Bool\ \to Bool).\ (g\ (3.8\ isGreaterThan\ y)))$ 6