

Autonomous UAV Capstone Status Presentation III

1/c Domenico Bulone 1/c Cody Meyers

1/c Matthew Kim 1/c Jacob Schellman

1/c Gavin McGahey 1/c Ryan Von Brock

Advisors:

Professor Hartnett

Lieutenant Blanco

Professor Swaszek

December 10th, 2021

Mission Needs Statement

- To design a low cost, open architecture, and cooperative autonomous quadcopter.
 - USCG Missions
 - Supplement success of ScanEagle
- Key Performance Parameters:
 - Stable, autonomous flight
 - Transporting small payloads
 - Coordinate objectives with the ASV
 - Takeoff and landing from the ASV

Platform Requirements

Requirement	Solution
Weigh less than 10 pounds (T), ideally 5 pounds (O).	Small Platform: 3.05 pounds.
Be capable of precision navigation, ideally 10cm (O).	Equipped with GPS-RTK, Lidar, and a camera.
Capable of transporting small objects.	Servo Actuated close/release mechanism.
Positively buoyancy in water for 120 seconds (T), or indefinitely (O).	Foam outriggers underneath propellers. 5.1 lbs of buoyant force.
Safety guidelines: remote kill switch, not exceed 60 V DC.	Remote kill switch configured on RC transmitter. Utilizes an 11.1 V LiPo battery.
Total cost to reproduce less than \$1,000 (O).	Current sum of components is approximately \$700.

PX4 with Pixhawk Flight Controller

Satellite Navigation with RTK

- Improved accuracy assists ASV
- NAVIO2 GPS Receiver:
 - Existing Alterative: 2.5 ft accuracy
- Sparkfun Real-Time Kinematic:
 - Established RTK Base-Station position of 16mm
 - Theoretical RTK correction accuracy of 24mm

Computer Vision

- Designing the landing pad picture
- Camera implementation
- Raspberry Pi Setup
- Apply image processing algorithm
- Communication with the controller

Computer Vision Testing

- In-Lab Tests
- Detecting red rectangles and circles, finds centroids

Computer Vision Testing

• Field tests not as successful

Refine color values

Onboard recording script

Computer Vision Testing

- ArUco markers
- Pre-determined matrix & database
- Pre-made algorithm in OpenCV library
- ~30 feet in ideal conditions with Pi
- Image smoothing to extend range

Software in the Loop (SITL) Simulation

- Gazebo Simulation Environment
 - An open-source, high-performance physics engine

- PX4 Gazebo SITL Simulation
 - Rapid, risk-free testing
 - Merge different workflows

Software in the Loop (SITL) Simulation

- Gazebo Simulation Environment
 - An open-source, high-performance physics engine.
- PX4 Gazebo SITL Simulation
 - Rapid, risk-free testing.
 - Merge different workflows.

Flight Testing

- Manual Flight Mode:
 - Achieved a tuned attitude controller
 - Established communication
- Autonomous Flight Mode:
 - Preplanned missions, waypoints, and search patterns
- Offboard Flight Mode:
 - Velocity based command

Flight Testing

- Manual Flight Mode:
 - Achieved a tuned attitude controller
 - Established communication
- Autonomous Flight Mode:
 - Preplanned missions, waypoints, and search patterns
- Offboard Flight Mode:
 - Velocity based command

Flight Testing

- Manual Flight Mode:
 - Achieved a tuned attitude controller
 - Established communication
- Autonomous Flight Mode:
 - Preplanned missions, waypoints, and search patterns
- Offboard Flight Mode:
 - Velocity based command.

Research Progression

Questions?

Budget

Major Costs:

- S500 Frame: \$59
- Motors: \$100
- Raspberry Pi 3B+: \$55
- Pixhawk 2.4.8: \$75
- RTK: \$350

Approximate Drone Cost: \$700

Future Costs:

- No anticipated additions to drone
- Dedicated computing resources will add additional costs (on hand versus new acquisition)
- Maintenance costs

The RoboBoat Competition

- RoboBoat is an international competition where an autonomous surface vessel performs navigating and docking tasks.
- Each ASV is allowed to cooperate with a UAV.
- Our role as the UAV:
 - Takeoff from and land on the ASV.
 - Locate and deliver a payload.
 - Fly desired search patterns.
 - Communicate findings with the ASV.

Entrance Criteria

- Have you reviewed comments/questions from Status Presentation # 2? Are you able to provide answers if the same question arises again?
- Has the project implemented effective systems engineering processes?
- Have you completed the detailed design based on the Allocated baseline?

Computer Vision

Exit Criteria

- Have all allocated requirements in the allocated baseline been captured in the detail design for each Configuration Item?
- How well have you documented the design decisions made in establishing the developmental baseline?
- Has the hardware and software design been specified in sufficient detail that a different teams could continue development without any additional information from the design team?
- What tests have you conducted so far, and what additional tests are planned?
- Are procedures in place for correcting deficiencies identified during system integration processes?

General thoughts on presentation

- There is a small nuance between PDR and CDR...in other words there may not be a whole lot more "new" work to present.....so use this as an opportunity to summarize your entire semester.
- The CDR construct portrays the level of detail you should be at as the semester closes.
- Status presentation 3 should be the culminating presentation of everything you have done this semester.
- Find a way to show off the hard work you have put in
- Most importantly talk about where you plan to go next semester.

Stakeholder Analysis

Professor Hartnett and LT Blanco

Additional Support:

Professor Swaszek and LCDR Veara

Interested Groups:

CG Research Development Center and CG UAS Program

Key Design Decisions

- Xbee Communication
 - Xbee range statistic.