KOSHA GUIDE D - 63 - 2018

안전밸브 배출배관의 설계에 관한 기술지침

2018. 11.

한 국 산 업 안 전 공 단

안전보건기술지침의 개요

- O 작성자 : 조필래, 이향직
- O 제·개정 경과
 - 2018년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - API Std 520, "Sizing, Selection, and Installation of Pressure-Relieving Devices in Refineries", 2008
 - API Std 521, "Pressure-relieving and Depressuring Systems", 2014
 - M112, PDH Online, "Selection and Sizing of Pressure Relief Valves", Randall W. Whitesides, 2008
 - M270, PDH Online, "Selecting the Optimum Pipe Size", Randall W. Whitesides. 2012
 - ASHRAE Std 15, American Society of Heating, Refrigerating and Air-Conditioning Engineers, "Safety Standard for Refrigeration Systems", 2010
 - Technical Paper No. 409, "Flow of Fluids through Valves, Fittings, and Pipe", Crane Company, Joliet, IL., 1988.
 - Neutrium, "Absolute Roughness of Pipe Material"
 - Technical Bulletin No 120, STAR Refrigeration, "Sizing of Discharge Piping for Relief Devices", 2004
 - KOSHA GUIDE D-26, "공정용 안전밸브의 기술지침"
 - KOSHA GUIDE D-18, "안전밸브 등의 배출용량 산정 및 설치 등에 관한 기술 지침"
 - KOSHA GUIDE D-59, "플레어시스템의 설계·설치 및 운전에 관한 기술지침"
- O 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2018년 11월 05일

제 정 자 : 한국산업안전보건공단 이사장

안전밸브 배출배관의 설계에 관한 기술지침

1. 목 적

이 지침은 안전밸브 배출배관의 설계에 필요한 사항을 정하는데 그 목적이 있다.

2. 적용범위

이 지침은 안전밸브 토출측을 대기로 배출하거나 배기처리설비로 연결하는 배출 배관에 적용될 수 있다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "최대 허용배압 (MABP, Maximum allowable back pressure"이라 함은 안전밸브 작동 시 배압에 의해 안전밸브의 기능이 저하되지 않도록 안 전밸브 토출측에 작용될 수 있는 최대의 배압을 말하며, 일반적으로 일 반형(Conventional type) 안전밸브의 경우에는 안전밸브 설정압력의 10% 이내이며, 벨로우즈형 안전밸브의 경우에는 안전밸브 설정압력의 50% 이내로 허용된다.
 - (나) "중첩배압 (Superimposed back pressure)"이라 함은 안전밸브가 작동하 기 직전에 토출측에 걸리는 정압(Static pressure)을 말한다.
 - (다) "누적배압 (Built-up back pressure)"이라 함은 안전밸브가 작동한 후에 유체방출로 인하여 발생하는 토출측에서의 압력증가량을 말한다.
 - (라) "일반형 안전밸브 (Conventional safety valve)"라 함은 밸브의 토출측 배압의 변화에 의하여 직접적으로 성능특성에 영향을 받도록 만들어진 스프링 직동식 안전밸브를 말한다.
 - (마) "벨로우즈형 안전밸브 (Balanced bellows safety valve)"라 함은 밸브의

토출측배압의 변화에 의하여 성능특성에 영향을 받지 않도록 만들어진 스프링 직동식 안전밸브를 말한다.

- (바) "파일롯트조작형 안전밸브 (Pilot-operated safety valve)"라 함은 안전밸브 가체에 내장된 보조의 안전밸브 작동에 의하여 작동되는 안전밸브를 말한다.
- (사) "주울-톰슨 효과 (Joule-Thomson effect)"라 함은 통상의 압력에서 압축된 기체를 단열된 구멍(노즐)을 통해 분출시키면 온도가 내려가는 현상을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 동법시행령, 동법시행규칙, 산업안전보 건 기준에 관한 규칙에서 정하는 바에 따른다.

4. 일반사항

4.1 안전밸브 배출배관 설계 시 고려사항

- (1) 안전밸브 배출배관의 흐름은 등온과정이 단열과정보다 보수적인 결과를 제시하므로 등온과정으로 가정하는 것이 좋다.
- (2) 서로 반응할 수 있는 물질을 같은 배출배관에 연결하지 않아야 한다.
- (3) 대기로 방출하는 경우에는 안전지역으로 연결하여야 한다.
- (4) 배출배관은 굴곡부나 이음관의 사용을 줄이고 가능한 한 짧고 직선으로 설치하는 것이 좋다.
- (5) 녹아웃 드럼(K.O drum) 등으로 연결된 배출배관은 배출 시 응축되는 액체 가 녹아웃 드럼 등으로 흐르도록 1/500 이상의 기울기를 가져야 한다.
- (6) 배출되는 내용물질의 부식성, 온도 및 압력에 적합한 재질 및 규격으로 설치하여야 한다.
- (7) 배출되는 물질이 냉각될 때 점성이 높아지는 물질일 경우에는 배출배관을 가열할 필요가 있다.

D - 63-2018

- (8) 배출출관의 재료(개스킷 포함)는 분기관에서 다른 연결배관에서의 역류가능 성과 주울-톰슨(Joule-Thomson) 효과에 의한 온도저하를 고려하여 재질을 선정하여야 한다.
- (9) 안전밸브 또는 파열판 작동 시의 하중이 배출배관에 과도하게 걸리는 것을 피하고, 내용물이 배출되는 동안 배관지지물의 반력을 적절히 지지할 수 있어야 한다.
- (10) 고온 또는 저온물질을 방출하는 경우에는 열응력을 고려하여야 하고, 안전 밸브 배출 시 발생하는 진동의 영향도 고려하여야 한다.

4.2 배출배관의 일반사항

4.2.1 배출배관의 길이 산정

- (1) 안전밸브 배출배관 중 지름이 동일한 구간의 분기되는 지점을 별도의 구간 으로 나눈 후에 길이를 산정한다.
- (2) 동일한 지름의 배관 중 엘보우 등과 같은 배관 핏팅류가 있으면, 식 (4-1)과 같이 실제 배관길이 (L_1) 에 핏팅류에 의한 등가배관길이를 계산하여 최종 적인 배관 등가길이 L_2 를 구한다.

$$L_2 = L_1 + y = R + y = R + x + (L/d + l) + x + d + (H/d)$$
 (4-1)

여기서.

 L_2 : 핏팅류를 포함한 배관의 등가길이 [m)

L₁: 배관의 직관부 길이(실제 길이) [m]

L/d : 핏팅류별 등가길이 비율. <표 4-1> 참조

d : 핏팅류가 설치된 배관의 내경 [m]

(3) <표 1>의 내용 중 티(Standard tee) 연결부의 흐름방향은 <그림 1>과 같다.

<표 1> 핏팅 종류별 등가길이(L/d) 비율

번호	종류	타입 또는 특성 (Type or spec.)	조건 (Condition)	(L/d) 비율
1	Globe valve	1) Plug type seat	Fully open	340
1		2) No bevel w/pin guide	Fully open	450

번호	종류	타입 또는 특성 (Type or spec.)	조건 (Condition)	(L/d) 비율
		3) Y pattern 60 degrees	Fully open	175
		4) 45 degrees	Fully open	145
2	Angle valve	1) Plug type seat	Fully open	145
	Aligie valve	2) No bevel w/pin guide	Fully open	200
		1) Wedge, double, plug disc	Fully open	13
3	Gate valve	2) Wedge, double, plug disc	1/2 open	260
		3) Wedge, double, plug disc	1/4 open	900
		1) Swing		135
		2) Clearway swing		50
4	Check valve	3) Globe, lift or step		340
		4) Angle, lift or step		145
		5) In line ball check valve		150
5	Foot valve	1) With strainer & poppet		420
5	Foot valve	2) With leather hinged		75
6	Butterfly valve		Fully open	40
		1) Straight	Fully open	18
7	Cock valve	2) Three way, straight flow	Fully open	44
		3) Three way, to branch	Fully open	140
		1) LR 90 degrees	Long radius	20
8	Elbow	2) SR 90 degrees	Short Radius	30
		3) SR 45 degrees	Short radius	16
		1) Straight flow (flow through run)		20
9	Standard Tee	2) To branch (flow through branch)		60
		3) Unequal Tee (different diameter)		100
10	Street Elbarr	1) 90 deg.		50
10	Street Elbow	2) 45 deg.		26
11	Single mitter 1) 45 deg.			15
11	bend 2) 90 deg.			58
12	Return bend			50

KOSHA GUIDE D - 63-2018

[그림 1] 티(Tee)의 흐름방향

4.2.2 배관의 공칭경과 내경

배관의 공칭경에 따른 내경은 스케줄번호에 따라 mm 단위는 <별표 1>에 있고, 인치 단위는 <별표 2>에 있다.

4.2.3 배관 재질별 절대표면거칠기

<표 2>는 배관 재질별 절대표면거칠기를 나타내며, 이 값은 마찰계수를 구하는데 사용된다.

<표 2> 재질별 절대표면거칠기

재질	절대표면거칠기 (ε) (Absolute Roughness) (mm)
Drawn Tubing, Glass, Plastic	0.0015~0.01
Drawn Brass, Copper, Stainless Steel (New)	>0.0015~0.01
Flexible Rubber Tubing - Smooth	0.006~0.07
Flexible Rubber Tubing - Wire Reinforced	0.3~4
Stainless Steel	0.03
Wrought Iron (New)	0.045
Carbon Steel (New)	0.02~0.05 (0.045 널리 사용)
Carbon Steel (Slightly Corroded)	0.05~0.15
Carbon Steel (Moderately Corroded)	0.15~1.0
Carbon Steel (Badly Corroded)	1.0~3.0

재질	절대표면거칠기 (ε) (Absolute Roughness) (mm)
Carbon Steel (Cement-lined)	1.5
Asphalted Cast Iron	0.1~1
Cast Iron (new)	0.25
Cast Iron (old, sandblasted)	1
Sheet Metal Ducts (with smooth joints)	0.02~0.1
Galvanized Iron	0.025~0.15
Wood Stave	0.18'0.91
Wood Stave, used	0.25`1
Smooth Cement	0.5
Concrete - Very Smooth	0.025~0.2
Concrete - Fine (Floated, Brushed)	0.2~0.8
Concrete - Rough, Form Marks	0.8~3
Riveted Steel	0.91~9.1
Water Mains with Tuberculations	1.2
Brickwork, Mature Foul Sewers	3

5. 안전밸브 배출배관의 설계

5.1 설계단계

안전밸브 배출배관의 설계단계는 아래와 같다.

- (1) 배출배관 계통도를 작성하고 검토구간 구분한다.
- (2) 안전밸브별 분자량, 온도, 점도 및 배출용량을 구한다.
- (3) 검토구간별 배관길이를 구한다.
- (4) 안전밸브별 최대 허용배압을 구한다.
- (5) 배출배관 연결지점의 물성치(분자량, 온도, 점도 및 배출용량)을 구한다.
- (6) 최종 배출배관에 대해 아래와 같은 사항을 분석한다.

- (가) 최종 배출배관의 압력 선정
- (나) 최종 배출배관의 배관 지름 및 출구측 마하수(Ma₂) 산출
- (다) 배관의 상대표면거칠기 및 레이놀즈수 산출
- (라) 배관의 마찰계수(f) 산출
- (마) 입구측 압력(P₁) 산출
- (바) 입구측 마하수(Ma₁) 산출
- (7) 최종 배출배관의 바로 위의 검토구간인 상류측 배관에 대해 분석한다.
 - (가) (6)항의 세부과정을 반복한다.
 - (나) (가)항의 배출배관 바로 위의 검토구간에 대해 (6)항의 과정을 반복한다.
 - (다) 계속해서 안전밸브 연결지점의 검토구간에 도달할 때까지 각 검토구간 에 대해 (6)항의 과정을 반복한다.
- (8) 안전밸브 출구측 압력과 최대 허용배압을 비교한다.
 - (가) 각각의 안전밸브별로 계산된 안전밸브 출구측 압력과 최대 허용배압을 비교한다.
 - (나) 안전밸브 출구측 압력이 최대 허용배압보다 클 경우에는 배관의 지름을 크게 하여 상기의 과정을 반복하거나 또는 안전밸브 형식을 변경(예, 일 반형인 경우에는 벨로우즈형식)하여 비교하다.

5.2 상세 설계과정

5.2.1 배출배관 계통도 작성 및 검토구간 구분

- (1) 각각의 안전밸브에서 최종 배기처리시설로 연결되는 배관에 대해 계통도를 작성한다. 계통도 작성 예는 <부록 1>의 <그림 1>과 같다.
- (2) 지름이 동일한 배관 중 분기되는 지점을 표시하고, 각 지점 사이의 구간을 검토구간으로 구분한다.
- (3) 계통도에 포함될 수 있는 사항은 아래와 같으나, 안전밸브번호 및 배출배관 의 연결지점 외의 내용은 별도의 시트에 작성할 수 있다.

- (가) 안전밸브 관련정보: 안전밸브 번호, 설정압력, 입구 및 출구측 사이즈, 안전밸브 타입(일반형, 벨로우즈형, 파일럿 작동형)
- (나) 안전밸브의 배출배관이 만나는 지점의 위치

5.2.2 안전밸브별 물성치 파악

- (1) 안전밸브 배출지점의 아래와 같은 물성치를 구한다.
 - (가) 안전밸브 배출용량(Required capacity) [kg/hr, lb/hr]
 - (나) 분자량(혼합물인 경우에는 평균분자량)
 - (다) 온도
 - (라) 점도(Viscosity) [cP]
- (2) 안전밸브 배출배관의 연결지점의 물성치는 5.2.5항의 식을 통해 구한다.
- (3) 구한 물성치를 계통도에 표시하거나 별도의 시트에 작성한다.

5.2.3 검토구간별 배관길이 산정

- (1) 검토구간별로 실제배관길이와 배관 핏팅류의 등가길이를 확인하여 최종 배관길이를 산정한다.
- (2) 배관길이 산정은 4.2.1항을 따른다.
- (3) 산정된 최종 구간별 배관길이는 계통도의 해당구간에 표시한다.

5.2.4 최대 허용배압(MABP) 산출

- (1) 각 안전밸브별 토출측의 최대 허용배압을 계산한다.
- (2) 최대 허용배압은 <표 3>의 표와 같고, 냉동시스템 외에는 일반적인 안전밸브의 기준을 따른다.

<표 3> 일반적인 최대 허용배압 기준

구분		일반적인 안전밸브	냉동시스템용 안전밸브		
적용구	7 격	API Std 520	ASHRAE 15 (비고 1)		
	일반형 안전밸브	설정압력의 10% 이내	설정압력의 15% 이내		
최대	벨로우즈형 안전밸브	설정압력의 50% 이내	설정압력의 25% 이내		
허용	파일롯 작동형 안전밸브	제한없음			
배압	파열판,	_	설정압력의 50% 이내		
	용용플러그(Fusible plug)	_			

비고 1 : ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning Engineers)는 미국공기조화냉동기술자협회를 말함

5.2.5 배출배관 연결지점의 물성치 산출

배출배관이 연결되는 지점마다 유량, 평균온도, 평균분자량, 평균점도를 아래와 같이 산출한다.

(1) 연결배관의 유량은 두 개 배관의 유량을 단순히 합산한다.

$$W_3 = W_1 + W_2 [kg/hr, lb/hr]$$
 (5-1)

(2) 연결배관의 평균분자량은 식 (5-2)를 사용하여 구한다.

$$M \simeq \sum W_i / \sum (W_i / M_i) \tag{5-2}$$

여기서,

M: 평균분자량

W_i: 개별 배관의 배출용량 [kg/hr, lb/hr]

M;: 개별 배관의 분자량

(3) 연결배관의 평균온도는 식 (5-3)을 사용하여 구한다.

$$T \simeq \sum W_i T_i / \sum W_i \tag{5-3}$$

여기서,

T : 평균온도 (절대온도) [°K, °R]

T_i: 개별배관의 온도 (절대온도) [°K, °R]

W_i: 개별 배관의 배출용량 [kg/hr, lb/hr]

(4) 평균점도는 식 (5-4)를 사용하여 구한다.

$$\mu \simeq \sum \chi_i \mu_i \sqrt{M_i} / \sum \chi_i \sqrt{M_i} \tag{5-4}$$

여기서,

μ : 평균점도 (절대점도) [cP]

u; : 개별배관 물질의 점도 (절대점도) [cP]

 χ_i : 개별배관 물질의 몰분율 ($\chi_i = W/\sum W_i$)

5.2.6 최종 배출배관의 설계

5.2.6.1 최종 배출지점의 압력 선정

- (1) 배출배관을 분석하기 위해서는 최종 배출지점에서 안전밸브까지 거슬러 올라가면서 수행하는 것이 좋다.
- (2) 최종 배출지점의 압력은 아래와 같이 선정한다.
 - (가) 대기로 배출되는 경우는 대기압이다.
 - (나) 배기처리시설(플레어스택, 흡수탑, 흡착탑 등)로 연결되는 경우에는 해당 시설의 압력강하(Pressure drop) 자료를 파악하거나, 적절히 최종 압력 을 가정한다.

5.2.6.2 최종 배출배관의 내경 및 마하수 산출

(1) 최종 배출배관의 압력, 계산된 물성치를 사용하여 아래의 식 (5-5) 또는 식 (5-6)을 사용하여 배출배관 내경과 마하수(Ma₂)를 파악한다.

$$d = \left[\frac{W\sqrt{ZT/M}}{30959.75P_2M_{a2}} \right]^{0.5}$$
 (SI units)

$$d = \left[\frac{W\sqrt{ZT/M}}{58754.4P_2 M_{o2}} \right]^{0.5}$$
 (USC units) (5-6)

$$M_{a2} = 3.23 \times 10^{-5} \left(\frac{W}{P_2 d^2}\right) \left(\frac{ZT}{M}\right)^{0.5}$$
 (SI units) (5-7)

$$M_{a2} = 1.702 \times 10^{-5} \left(\frac{W}{P_2 d^2}\right) \left(\frac{ZT}{M}\right)^{0.5}$$
 (USC units) (5-8)

여기서.

W : 최종 배출지점의 유량. 연결된 안전밸브 전체의 배출용량 [kg/hr, lb/hr]

Ma₂ : 배출측의 마하수(Mach number, 무차원)

P2: 배출측의 압력(절대압력) [kPa, psi]

d: 배출배관의 내경 [m, ft]

Z: 가스 압축계수(=1) (무차원)

M : 분자량

- (2) 계산된 배관지름을 사용하여 구한 마하수가 1 이상이면 초음속이 되어 배관의 진동 및 소음발생이 심하게 되므로 마하수가 0.8 미만이 되도록 배관의 지름을 증대시킨다.
- (3) 가능한 한 마하수를 0.6 이하로 유지하는 것이 바람직하다.

5.2.6.3 배관의 상대표면거칠기 및 레이놀즈수(Re) 산출

- (1) <표 1>의 재질별 절대표면거칠기(ϵ , mm 또는 inch)의 값을 사용하여 상대 표면거칠기(ϵ /D)를 계산한다. 여기서 D는 배관의 내경(mm 또는 inch)이다.
- (2) 식 (5-9)을 사용하여 레이놀즈수를 구하며, 다른 알려진 식을 사용하여 구할 수 있다.

$$Re = \frac{\rho VD}{\mu} = \frac{\rho QD}{\mu A} = \frac{WD}{\mu (\pi D^2/4)} = \frac{4W}{\pi \mu D}$$

$$Re = 6.316 \frac{W_{lb}}{\mu D}$$
(5-9)

여기서,

 W_{lb} : 배출용량 [lb/hr]

D : 배관의 내경 [inch]

μ: 점도 [cP]

5.2.6.4 마찰계수 산출

- (1) 계산된 상대표면거칠기(ɛ/D)와 레이놀즈수(Re)를 사용하여 <그림 2>의 무디 차트를 통해 마찰계수(f)를 구한다.
- (2) 식 (5-10) 또는 식 (5-11)을 사용하여 마찰계수(f)를 구할 수 있다.

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon}{3.7d} + \frac{2.51}{R_e\sqrt{f}}\right) \tag{5-10}$$

$$f = 1 / \left[-2 \log_{10} \left(\frac{\epsilon}{3.7d} + \frac{2.51}{R_e \sqrt{f}} \right) \right]^2 \tag{5-11}$$

여기서,

f: 마찰계수 (무차원)

ε: 배관의 표면거칠기 [m, ft]

d: 배관의 내경 [m, ft] Re: 레이놀즈수 (무차원)

(3) 그 밖의 다른 알려진 식을 사용하여 마찰계수를 구할 수 있다.

5.2.6.5 상류측 압력 계산

- (1) 식 (5-12) 또는 식 (5-13)을 사용하여 상류측 압력(P₁)을 가정하면서 시행 착오법으로 구한다.
- (2) 좌우항의 값이 같을 때의 압력(P1)값이 상류측의 압력이 된다.

$$\frac{f \cdot l}{d} = \frac{1}{M_{a2}^2} \left[\left(\frac{P_1}{P_2} \right)^2 \right] \left[1 - \left(\frac{P_2}{P_1} \right)^2 \right] - \ln \left(\frac{P_1}{P_2} \right)^2 \tag{5-12}$$

$$l = \frac{d}{f} \left[\frac{1}{M_{o2}^2} \left(\frac{P_1}{P_2} \right)^2 \left[1 - \left(\frac{P_2}{P_1} \right)^2 \right] - \ln \left(\frac{P_1}{P_2} \right)^2 \right]$$
 (5-13)

여기서,

Ma₂ : 출구측 마하수 (무차원)

f: 무디 마찰계수(Moody friction factor, 무차원수)

1: 배관의 상당길이 [m, ft], 동일 지름의 배관길이 및 배관핏팅류 등의 마찰손실도 상당길이에 포함됨

d: 배관의 내경 [m, ft]

P₁: 상류측 압력(절대압력) [kPa, psi]

5.2.6.6 입구측 마하수 산출

(1) 식 (5-14)는 상류측 압력(P₁)을 사용하여 입구측 마하수(Ma₁)를 구할 수 있는 식이다.

$$\frac{f \cdot l}{d} = \frac{1}{M_{cl}^2} \left[1 - \left(\frac{P_2}{P_1} \right)^2 \right] - \ln \left(\frac{P_1}{P_2} \right)^2 \tag{5-14}$$

여기서, Ma₁: 입구측 마하수 (무차원)

(2) 등온과정이므로 식 (5-15)을 사용하여 입구측 마하수를 구할 수 있다.

$$Ma_1 \times P_1 = Ma_2 \times P_2$$
 (5-15)

- (3) <그림 3>은 식 (5-14)를 그래프로 표시한 등온흐름 차트이며, 이를 사용하여 상류측 압력(P₁)을 구할 수 있다. 즉, f·l/d 값을 구한 후에 해당배관의 마하수(Ma2) 곡선에 해당되는 P₂/P₁ 값을 통해 P₁값을 구한다.
- (4) 입구측 마하수 (M_{al}) 가 0.8을 초과하면 배관의 사이즈가 작으므로 보다 큰 사이즈의 배관을 선정한다.
- (5) 만족스러운 마하수가 될 때까지 5.2.6.2항에서 5.2.6.5항까지의 과정을 반복한다.

[그림 2] 무디 차트 (Moody chart)

[그림 3] 등온(Isothermal)흐름 차트

5.2.7 상류측 배관의 분석

- (1) 말단배관의 분석이 완료되면 말단 배관구간 바로 위의 구간인 상류측 배관을 분석한다.
- (2) 5.2.6.5항과 5.2.6.6항에서 구한 입구측 압력(P₁)과 입구측 마하수(Ma₁)는 이 분석구간에서는 출구측 압력(P₂)과 출구측 마하수(Ma₂)가 된다.
- (3) 5.2.6.2항에서 5.2.6.6항까지의 과정을 이 검토구간에 대해서 반복한다.
- (4) 해당 검토구간에 대한 분석이 완료되면 바로 위의 검토구간에 대해 다시 5.2.7항의 (2), (3)항의 과정을 반복한다.
- (5) 최종적으로 안전밸브 배출측에 도달될 때까지 하나씩 검토구간을 순차적으로 분석한다.

5.2.8 산출된 입구측 압력과 최대 허용배압과의 비교

- (1) 5.2.7항에서 최종적으로 구한 입구측 압력 (P_1) 과 해당 안전밸브의 최대 허용 배압을 비교한다.
- (2) 최종적으로 구한 입구측 압력 (P_1) 이 해당 안전밸브의 최대 허용배압보다 작으면 배출배관의 분석은 완료된다.
- (3) 만약 최종적으로 구한 입구측 압력이 최대 허용배압보다 클 경우에는 아래 와 같은 방법을 통해 입구측 압력이 배압보다 작도록 조치한다.
 - (가) 안전밸브 토출측 배관의 사이즈를 증대시킨다.
 - (나) 만약 안전밸브의 형식이 일반형(Conventional)이면, 벨로우즈형으로 변 경하여 최대 허용배압을 증대시켜 비교한다.
- (4) 만약 계산된 입구측 압력이 최대 허용배압보다 현저히 작을 경우에는 안전 밸브 배출배관 중 길이가 가장 긴 배관의 사이즈를 줄여 입구측 압력이 최 대 허용배압에 근접하도록 조치할 필요가 있다.

5.3 안전밸브 배출배관 설계 (예)

안전밸브 배출배관의 설계 예는 [부록 1]에 있다.

D - 63-2018

<별표 1> 배관의 스케줄별 내경 (mm 기준)

공	칭경								스케줄별	배관 내	경 (mm)							
Α	В		스텐리	비스강								탄소강						
DN	NPS	Sch 5S	Sch 10S	Sch 40S	Sch 80S	Sch 10	Sch 20	Sch 30	Sch 40	STD	Sch 60	Sch 80	XS	Sch 100	Sch 120	Sch 140	Sch 160	XXS
6	1/8		7.82	6.84	5.48	7.82		7.4	6.84	6.84		5.48	5.48					
8	1/4		10.4	9.22	7.66	10.4		10	9.22	9.22		7.66	7.66					
10	3/8		13.8	12.48	10.7	13.8		13.4	12.48	12.48		10.7	10.7					
15	1/2	18	17.08	15.76	13.84	17.08		16.48	15.76	15.76		13.84	13.84				11.74	6.36
20	3/4	23.4	22.48	20.96	18.88	22.48		21.88	20.96	20.96		18.88	18.88				15.58	11.06
25	1	30.1	27.86	26.64	24.3	27.86		27.6	26.64	26.64		24.3	24.3				20.7	15.22
32	11/4	38.9	36.66	35.08	32.5	36.66		36.26	35.08	35.08		32.5	32.5				29.5	22.8
40	1½	45	42.76	40.94	38.14	42.76		41.94	40.94	40.94		38.14	38.14				34.02	28
50	2	57	54.76	52.48	49.22	54.76		53.94	52.48	52.48		49.22	49.22				42.82	38.16
65	2½	68.78	66.9	62.68	58.98	66.9		63.44	62.68	62.68		58.98	58.98				53.94	44.96
80	3	84.68	82.8	77.92	73.66	82.8		79.34	77.92	77.92		73.66	73.66				66.64	58.42
90	3½	97.38	95.5	90.12	85.44	95.5		92.04	90.12	90.12		85.44	85.44					
100	4	110.08	108.2	102.26	97.18	108.2		104.74	102.26	102.26		97.18	97.18		92.04		87.32	80.06
125	5	135.76	134.5	128.2	122.24	134.5			128.2	128.2		122.24	122.24		115.9		109.54	103.2
150	6	162.76	161.5	154.08	146.36	161.5			154.08	154.08		146.36	146.36		139.76		131.78	124.4
200	8	213.56	211.58	202.74	193.7	211.58	206.4	205.02	202.74	202.74	198.48	193.7	193.7	188.92	182.58	177.86	173.08	174.64
250	10	266.3	264.72	254.56	247.7	264.72	260.4	257.5	254.56	254.56	247.7	242.92	247.7	236.58	230.22	222.3	215.94	222.3
300	12	315.98	314.76	304.84	298.5	314.76	311.2	307.14	303.28	304.84	295.36	288.94	298.5	281.02	273.1	266.74	257.26	273.1
350	14	347.68	346.04	336.54	330.2	342.9	339.76	336.54	333.34	336.54	325.42	317.5	330.2	307.94	300.02	292.1	284.18	
400	16	398.02	396.84	387.34	381	393.7	390.56	387.34	381	387.34	373.08	363.52	381	354.02	344.48	333.34	325.42	
450	18	448.62	447.44	437.94	431.6	444.3	441.16	434.74	428.46	437.94	418.9	409.34	431.6	398.28	387.14	377.66	366.52	
500	20	498.44	496.92	488.94	482.6	495.3	488.94	482.6	477.82	488.94	466.76	455.62	482.6	442.92	431.8	419.1	407.98	
550	22	549.44	547.92			546.3	539.94	533.6		539.94	514.54	501.84	533.6	489.14	476.44	463.74	451.04	
600	24	598.92	597.3	590.94	584.6	597.3	590.94	581.46	575.04	590.94	560.78	548.08	584.6	532.22	517.96	505.26	490.92	
650	26					644.16	634.6			640.94			634.6					
700	28					695.16	685.6	679.24		691.94			685.6					
750	30	749.3	746.16			746.16	736.6	730.24		742.94			736.6					

D - 63-2018

<별표 2> 배관의 스케줄별 내경 (inch 기준)

공	칭경								스케줄별	! 배관 내	경 (inch)							
Α	В		스텐리	비스강								탄소강						
DN	NPS	Sch 5S	Sch 10S	Sch 40S	Sch 80S	Sch 10	Sch 20	Sch 30	Sch 40	STD	Sch 60	Sch 80	XS	Sch 100	Sch 120	Sch 140	Sch 160	XXS
6	1/8		0.308	0.269	0.216	0.308		0.291	0.269	0.269		0.216	0.216					
8	1/4		0.409	0.363	0.302	0.409		0.394	0.363	0.363		0.302	0.302					
10	3/8		0.543	0.491	0.421	0.543		0.528	0.491	0.491		0.421	0.421					
15	1/2	0.709	0.672	0.620	0.545	0.672		0.649	0.620	0.620		0.545	0.545				0.462	0.250
20	3/4	0.921	0.885	0.825	0.743	0.885		0.861	0.825	0.825		0.743	0.743				0.613	0.435
25	1	1.185	1.097	1.049	0.957	1.097		1.087	1.049	1.049		0.957	0.957				0.815	0.599
32	11/4	1.531	1.443	1.381	1.280	1.443		1.428	1.381	1.381		1.280	1.280				1.161	0.898
40	1½	1.772	1.683	1.612	1.502	1.683		1.651	1.612	1.612		1.502	1.502				1.339	1.102
50	2	2.244	2.156	2.066	1.938	2.156		2.124	2.066	2.066		1.938	1.938				1.686	1.502
65	2½	2.708	2.634	2.468	2.322	2.634		2.498	2.468	2.468		2.322	2.322				2.124	1.770
80	3	3.334	3.260	3.068	2.900	3.260		3.124	3.068	3.068		2.900	2.900				2.624	2.300
90	3½	3.834	3.760	3.548	3.364	3.760		3.624	3.548	3.548		3.364	3.364					
100	4	4.334	4.260	4.026	3.826	4.260		4.124	4.026	4.026		3.826	3.826		3.624		3.438	3.152
125	5	5.345	5.295	5.047	4.813	5.295			5.047	5.047		4.813	4.813		4.563		4.313	4.063
150	6	6.408	6.358	6.066	5.762	6.358			6.066	6.066		5.762	5.762		5.502		5.188	4.898
200	8	8.408	8.330	7.982	7.626	8.330	8.126	8.072	7.982	7.982	7.814	7.626	7.626	7.438	7.188	7.002	6.814	6.876
250	10	10.484	10.422	10.022	9.752	10.422	10.252	10.138	10.022	10.022	9.752	9.564	9.752	9.314	9.064	8.752	8.502	8.752
300	12	12.440	12.392	12.002	11.752	12.392	12.252	12.092	11.940	12.002	11.628	11.376	11.752	11.064	10.752	10.502	10.128	10.752
350	14	13.688	13.624	13.250	13.000	13.500	13.376	13.250	13.124	13.250	12.812	12.500	13.000	12.124	11.812	11.500	11.188	
400	16	15.670	15.624	15.250	15.000	15.500	15.376	15.250	15.000	15.250	14.688	14.312	15.000	13.938	13.562	13.124	12.812	
450	18	17.662	17.616	17.242	16.992	17.492	17.369	17.116	16.869	17.242	16.492	16.116	16.992	15.680	15.242	14.869	14.430	
500	20	19.624	19.564	19.250	19.000	19.500	19.250	19.000	18.812	19.250	18.376	17.938	19.000	17.438	17.000	16.500	16.062	
550	22	21.631	21.572			21.508	21.257	21.008		21.257	20.257	19.757	21.008	19.257	18.757	18.257	17.757	
600	24	23.580	23.516	23.265	23.016	23.516	23.265	22.892	22.639	23.265	22.078	21.578	23.016	20.954	20.392	19.892	19.328	
650	26					25.361	24.984			25.234			24.984					
700	28					27.369	26.992	26.742		27.242			26.992					
750	30	29.500	29.376			29.376	29.000	28.750		29.250			29.000					

KOSHA GUIDE D - 63-2018

[부록 1]

안전밸브 배출배관 설계 (예)

1. 안전밸브 배출배관 설계 개요

<그림 1>과 같은 4개의 안전밸브가 설치된 공정의 최종 배출구는 대기이며, 안전밸브의 배출원인은 냉각수 차단이며, 이 원인은 모든 안전밸브에 공통적으로 적용된다. 안전밸브 토출측 배관의 흐름은 완전난류유동이며, 등온과정으로 가정된다. 배압은 일반형일 때 안전밸브 설정압력의 10 %, 벨로우즈형일 때는 40 %로 허용된다. 관련자료들은 각각 관련자료 1과 관련자료 2에 있으며, 이에 대한 개략적인 도면은 <그림 1>과 같다.

안전밸브 배출측이 최대 허용배압을 초과하지 않고, 최종배출구에서 아음속이 되도록 안전밸브 배출배관의 사이즈를 계산하는 예이다.

<관련자료 1> 안전밸브 및 내용물 자료

구분	단위	안전밸브								
7 世	[인기	E 점	F 점	G 점	H 점					
안전밸브번호		PSV-02	PSV-01	PSV-04	PSV-03					
설정압력 (Ps)	psi	310	78	110	275					
(게이지압력)	kPa	2137.5	537.8	758.5	1896.1					
안전밸브 형식		일반형	벨로우즈	벨로우즈	벨로우즈					
내용물질		C_6H_{12}	C_4H_6	SO ₂ +H ₂ O	CO ₂ +H ₂ O					
배출용량 (W)	lb/hr	125,000	60,000	75,000	110,000					
메돌중앙 (W)	kg/hr	56,699	27,215	34,019	49,895					
온도 (T)	°R	640	800	580	610					
는도 (1)	°K	355	444	322	339					
분자량 (M)		84	54	60	40					
점도 (μ)	cР	0.0110	0.0130	0.0098	0.0100					

<관련정보 2> 검토구간별 배관길이

구분			검토구간								
7 世	A→B	B→D	D→F	D→E	В→С	C→H	C→G				
안전밸브	번호			PSV-01	PSV-02		PSV-03	PSV-04			
배관길이	ft	1,115	225	175	125	100	300	150			
매선질의	m	339.9	68.6	53.3	38.1	30.5	91.4	45.7			

- 배관길이에는 해당배관의 엘보우 등의 핏팅류가 등가길이로 환산되어 포함되어 있음.

[그림 1] 안전밸브 계통도

2. 안전밸브 배출배관 설계 실행

2.1 최대 허용배압(MABP) 산출

(1) 개별 안전밸브 토출측의 최대 허용배압을 구하면 아래와 같다.

(MABP)_E = (2137.5)(0.10)+101.3 = 315.0 kPa (절대압력)

(MABP)_F = (537.8)(0.40)+101.3 = 316.4 kPa (절대압력)

(MABP)_G = (758.5)(0.40)+101.3 = 404.7 kPa (절대압력)

(MABP)_H = (1896.1)(0.40)+101.3 = 859.8 kPa (절대압력)

2.2 유량산출

각 지점별로 유량을 합산하면 아래의 표와 같다.

유량(W)		A점	B점	C점	D점
	산출방법	B점과 동일	C점 + D 점	G점 + H점	E점 + F점
11 /1	산출결과	370,000	370,000	75,000+110,000	125,000+600,00
lb/hr		370,000	370,000	185,000	185,000
kg/hr		167,858	167,858	83,914	83,914

2.3 물성치 산출

식 (5-2), 식 (5-3) 및 식 (5-4)을 사용하여 혼합(연결)지점의 분자량, 온도 및 점도를 각각 산출하면 아래의 표와 같다.

구분	분자량 (M)	온도	(T)	점도 (μ)			
단위	_	°K	°R	cР			
	식(4-00)	식(4	-00)	식(4-00)			
산출식	$M_w \approx \sum_{i=1}^n W_i / \sum_{i=1}^n (W/M_w)_i$	$\sum_{i=1}^n W_i T_i$	$\left/\sum_{i=1}^n W_i\right.$	$\mu \approx \sum_{i=1}^{n} \chi_{i} \mu_{i} \left(\sqrt{M_{w}} \right)_{i} / \sum_{i=1}^{n} \chi_{i} \left(\sqrt{M_{w}} \right)_{i}$			
C점	46	332	598	0.00991			
D점	71.2	384	692	0.01156			
B점	46.3	358	645	0.01082			
A점	56.1	358	645	0.01082			

2.4 배관구간 A-B의 산출

2.4.1 배관 내경 산출

(1) 대기방출이므로 출구측 압력은 대기압($P_A = 101.3 \text{ kPa,a} = 14.7 \text{ psia}$)이고, 출구측 마하수(Ma_2)를 0.6으로 가정하여 식 (5-5)를 사용하여 출구측 배관 지름을 산출한다.

$$d = \left[\frac{W\sqrt{ZT/M}}{30959.75P_2M_{o2}} \right]^{0.5} = \left[\frac{167,858\sqrt{(1)(358)/(56.1)}}{30959.75(101.3)(0.6)} \right]^{0.5} = 0.475 \text{ [m]}$$

= 18.69 inch

(2) 따라서 부록의 <별표 1, 2>에서 20인치 스케쥴 40인 배관을 선정한다. 이 배관의 내경은 477.82 mm (18.812 in)이다.

2.4.2 상대표면거칠기 산출

상용금속배관의 절대표면거칠기값(ϵ)은 <표 2>에서 <math>0.045 mm 이므로 상대표면거칠기(ϵ /d)는 배관의 내경을 단순히 나누면 된다. 이 때 같은 단위를 사용해야 한다.

$$\epsilon/d = 0.045/477.82 = 0.0000942$$

2.4.3 레이놀즈수(Re) 및 마찰계수(f) 산출

(1) 식 (5-9)을 사용하여 산출한다. 배출용량과 내경의 단위는 US 단위이다.

$$Re = 6.316 \frac{W_{lb}}{\mu D} = 6.316(370,000)/((0.01082)(18.812)) = 1.148E+07$$

(2) 마찰계수(f)는 상대표면거칠기와 레이놀즈수를 사용하여 <그림 2>의 무디 차트(Moody chart)를 이용하여 구하거나, 또는 식 (5-11)을 사용하여 구할 수 있다. 식 (5-11)을 사용하여 시행착오법으로 마찰계수를 구하면, 마찰계수(f)는 0.01202이다.

2.4.4 마하수(Ma₂) 산출

선정된 배관의 내경(d)을 사용하여 식 (5-7)을 통해 마하수를 구한다.

$$M_{a2} = 3.23 \times 10^{-5} \left(\frac{W}{P_2 d^2} \right) \left(\frac{ZT}{M} \right)^{0.5} =$$

$$= 3.23 \times 10^{-5} \left(\frac{167,828}{(101.3)(0.4779)^2} \right) \left(\frac{(1)(358)}{56.1} \right)^{0.5} = 0.592$$

2.4.5 입구측 압력(P_B) 산출

- (1) 식 (5-12)을 사용하는 방법
 - (가) 아래와 같은 식 (5-12)을 사용하여 (P_2/P_1) 값을 가정하면서 시행착오법으로 계산한다.

$$\frac{f \cdot l}{d} = \frac{1}{\text{Ma}_2^2} \left[\left(\frac{p_1}{p_2} \right)^2 \right] \left[1 - \left(\frac{p_2}{p_1} \right)^2 \right] - \ln \left(\frac{p_1}{p_2} \right)^2$$

마찰계수(f) = 0.01202 배관길이(L) = 1,115 ft = 339.9 m Ma₂ = 0.592, 내경(d) = 0.4779 (m)

(나) 좌우항의 값이 거의 일치될 때까지 P_1/P_2 값을 가정하면서 수행하고, 그때의 값을 사용하여 P_1 값을 얻는다. P_1/P_2 압력비가 2.177일 때 좌우항이 거의 같다.

- (2) 식 (5-13)을 사용하는 방법
 - (가) 아래와 같은 식 (5-13)을 사용할 경우에는 주어진 배관길이 (L_1) 와 P_1 값을 가정하면서 이 식에서 구한 길이를 시행착오법으로 비교하면서 길이가 같게 될 때의 압력을 구하는 방법이다.

$$l = \frac{d}{f} \left[\frac{1}{M_{a2}^2} \left(\frac{P_1}{P_2} \right)^2 \left[1 - \left(\frac{P_2}{P_1} \right)^2 \right] - \ln \left(\frac{P_1}{P_2} \right)^2 \right]$$

D - 63-2018

(나) <표 1>은 이 방법을 사용하여 구한 결과를 보여준다.

2.5 배관구간 B-C의 산출

- (1) 2.4항에서 수행했던 방법을 배관구간 B-C에 대해 동일한 방법으로 수행한다.
- (2) 2.4항에서 구한 P_B 값은 이 구간에서는 P_2 값으로 사용되며, Ma_1 값은 Ma_2 값으로 사용된다.

2.6 나머지 구간의 산출

각 구간별로 2.5항과 같은 과정을 수행한다.

2.7 최대허용배압 비교

- (1) 아래와 같은 안전밸브 출구측 배관구간에서는 산출에 의해 구한 입구측 압력과 해당 안전밸브의 최대 허용배압(MABP)을 비교한다.
 - C-H 구간
 - C-G 구간
 - D-E 구간
 - D-F 구간
- (2) 만약 해당 구간의 입구측 압력이 각각 해당 안전밸브의 최대 허용배압보다 작으면, 계산은 종료된다.
- (3) 만약 입구측 압력이 최대 허용배압보다 크게 되면, 안전밸브 타입을 변경 (예, 일반형이면 벨로우즈타입으로 변경)하거나 또는 배관의 지름을 크게 하는 방법으로 계산한다.

2.8 전체 구간별 산출결과

전체 구간별 산출결과는 <표 1>과 같다.

D - 63-2018

<표 1> 안전밸브 배출배관 설계 시트 (예)

_1 -5	12	1) of 1)=1	-1 A1	검토구간								
기호	구분	상세 설명	단위	A→B	B→D	D→F	D→E	B→C	C→H	C→G		
PSV	안전밸브 번호					PSV-01	PSV-02		PSV-03	PSV-04		
Ps	이지베니 서거이러	게이지압력	psi			78	310		275	110		
PS	안전밸브 설정압력	게이지압력 (1 psi=6.895 kPa)	kPa			537.8	2137.5		1896.1	758.5		
	안전밸브 타입	일반형, 벨로우즈, 파일럿작동				벨로우즈	일반형		벨로우즈	벨로우즈		
W	배출용량	W3=W1+W2	lb/hr	370,000	185,000	60,000	125,000	185,000	110,000	75,000		
W	메돌광장	W3-W1+W2	kg/hr	167,828	83,914	27,215	56,699	83,914	49,895	34,019		
M	분자량(M)	$M_{_{W}} \approx \sum_{i=1}^{n} W_{i} / \sum_{i=1}^{n} (W/M_{_{W}})_{i}$		56.1	71.2	54	84	46.3	40	60		
Т	온도	$\sum_{i=1}^n W_i T_i \left/ \sum_{i=1}^n W_i \right.$	° R	645	692	800	640	598	610	580		
		R=F+460, C=(F-32)/1.8, K=C+273	° K	358	384	444	355	332	339	322		
μ	점도	$\mu \approx \sum_{i=1}^{n} \chi_{i} \mu_{i} \left(\sqrt{M_{w}} \right)_{i} / \sum_{i=1}^{n} \chi_{i} \left(\sqrt{M_{w}} \right)_{i}$	cР	0.01082	0.01156	0.01300	0.01100	0.00991	0.01000	0.00980		
		몰분율: Wi/ΣWi		0.5	0.5	0.324	0.676	0.5	0.595	0.405		
L1	배관길이(동일지름)	동일배관지름의 길이	ft	1115	225	175	125	100	300	150		
		1ft=0.3048 m	m	339.9	68.6	53.3	38.1	30.5	91.4	45.7		
P2	출구측 압력	대기압(101.3 kPa, 절대압력)	kPa	101.3	220.5	251.7	251.7	220.5	273	273		
12	217 67	대기압(0, 게이지압력)		0	119.2	150.4	150.4	119.2	171.7	171.7		
Ma2	출구측 마하수(가정)	$M_{a2} = 3.23 \times 10^{-5} \left(\frac{W}{P_2 d^2} \right) \left(\frac{ZT}{M} \right)^{0.5}$		0.6	0.6	0.6	0.6	0.6	0.6	0.6		
Ma2f	출구측 마하수(최종) (선정된 지름 적용)	$M_{a2} = 3.23 \times 10^{-5} \left(\frac{W}{P_2 d^2} \right) \left(\frac{ZT}{M} \right)^{0.5}$		0.592	0.307	0.244	0.364	0.508	0.724	0.393		

D - 63-2018

기호	구분	상세 설명	단위	검토구간							
				A→B	B→D	D→F	D→E	B→C	С→Н	C→G	
Ma ₁	입구측 마하수	Ma1*P1 = Ma2*P2		0.000	0.269	0.219	0.308	0.411	0.281	0.295	
d	배관지름	$d = \left[\frac{W\sqrt{ZT/M}}{30959.75P_2M_{a2}} \right]^{0.5}$	m	0.475	0.218	0.129	0.158	0.234	0.169	0.125	
			in	18.69	8.59	5.09	6.22	9.22	6.66	4.91	
	배관 선택	공칭경	in	20	12	8	8	10	6	6	
		배관 내경 (in)	in	18.812	12	7.981	7.981	10.02	6.065	6.065	
		배관 내경 (m)	m	0.478	0.305	0.203	0.203	0.255	0.154	0.154	
		스케쥴번호		40	40	40	40	40	40	40	
ε	표면거칠기 선정	절대표면거칠기(ε): <표 2>	mm	0.04500	0.04500	0.04500	0.04500	0.04500	0.04500	0.04500	
			in	0.00177	0.00177	0.00177	0.00177	0.00177	0.00177	0.00177	
	상대표면거칠기 산출	상대표면거칠기 (ε/d)	mm기준	9.418E-05	1.476E-04	2.220E-04	2.220E-04	1.768E-04	2.921E-04	2.921E-04	
			in기준	9.418E-05	1.476E-04	2.220E-04	2.220E-04	1.768E-04	2.921E-04	2.921E-04	
Re	레이놀즈수 산출	$Re = 6.316 \frac{W_{lb}}{\mu D}$		1.15E+07	8.43E+06	3.65E+06	8.99E+06	1.18E+07	1.15E+07	7.97E+06	
f	마찰계수 파악	Moody chart 이용, 또는 다른 식 사용		0.0128	0.01312	0.01434	0.01418	0.01354	0.01497	0.015	
	마찰계수 입력	마찰계수 입력		0.01202	0.01308	0.01429	0.01414	0.01349	0.01492	0.001516	
	마찰계수 산출값	$f = 1 / \left[-2 \log \left(\frac{\epsilon}{3.7d} + \frac{2.51}{R_e \sqrt{f}} \right) \right]^2$		0.01202	0.01308	0.01429	0.01414	0.01349	0.01492	0.01516	

KOSHA GUIDE D - 63-2018

기호	구분	상세 설명	단위	검토구간							
				A→B	B→D	D→F	D→E	B→C	C→H	C→G	
P ₁	배관길이(L) 산출	$L = \frac{d}{f} \left[\frac{1}{M_{a2}^2} \left(\frac{P_1}{P_2} \right)^2 \left[1 - \left(\frac{P_2}{P_1} \right)^2 \right] - \ln \left(\frac{P_1}{P_2} \right)^2 \right]$	m	339.8	68.4	53.5	38.0	30.7	91.5	45.9	
	압력비(P1/P2)	P1/P2 가정		0.01202	0.01308	0.01429	0.01414	0.01349	0.01492	0.01516	
	P1 선정	P1 결정 (if L1 = L)	kPa	339.8	68.4	53.5	38.0	30.7	91.5	45.9	
		1 kPa = 0.145 psi	psi	2.177	1.141	1.112	1.182	1.238	2.579	1.333	
	배관길이(L1)	주어진 길이	m	220.5	251.7	280	297.5	273	704	364	
MABP	최대 허용배압(MABP)	SP *10%(일반형), SP*40%(벨로우즈형) (게이지압력)	kPa			215.1	213.7		758.5	303.4	
		설정압력 대비	%			40.0	10.0		40.0	40.0	
		절대압력	kPa			316.4	315.0		859.8	404.7	
		절대압력	psi			45.9	45.7		124.7	58.7	
	MABP 와 P1 비교	MABP - P1 (절대압력 기준)	kPa			36.4	17.5		155.8	40.7	
		OK, if MABP(게이지) > P1 (게이지)				OK	OK		OK	OK	