import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sbn
%matplotlib inline

path = "/content/abalone.csv"

df = pd.read_csv(path)

df.head()

₽		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
	4	1	0.330	0.255	0 nan + C	0.2050 ode +	0.0895 Text	0.0395	0.055	7
_							i CAC			

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	

df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)

VIZUALIZATIONS

#Univariate Analysis
sbn.boxplot(df.Length)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fe4ec70b710>

#Bi-Variant Analysis
sbn.barplot(x=df.Height,y=df.Diameter)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe4ec14bc90>

#Multi-Variant Analysis
sbn.pairplot(df)

Perform Descriptive Analysis On The Dataset

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

O / (IVI			/ toolgrilliont			
#	Column	Non-Null Count	Dtype			
0	Sex	4177 non-null	object			
1	Length	4177 non-null	float64			
2	Diameter	4177 non-null	float64			
3	Height	4177 non-null	float64			
4	Whole weight	4177 non-null	float64			
5	Shucked weight	4177 non-null	float64			
6	Viscera weight	4177 non-null	float64			
7	Shell weight	4177 non-null	float64			
8	age	4177 non-null	float64			
dtypes: float64(8), object(1)						
memory usage: 293.8+ KB						

```
df['Height'].mean()
```

0.13951639932966242

df['Diameter'].median()

0.425

df['Length'].mode()

0 0.550 0.625 dtype: float64

df.max()

Sex	M
Length	0.815
Diameter	0.65
Height	1.13
Whole weight	2.8255
Shucked weight	1.488
Viscera weight	0.76
Shell weight	1.005
age	30.5
dtype: object	

df.min()

Sex	F
Length	0.075
Diameter	0.055
Height	0.0
Whole weight	0.002
Shucked weight	0.001
Viscera weight	0.0005
Shell weight	0.0015
age	2.5

dtype: object

Check For Missing Values & Deal With Them

```
#EDA
sbn.heatmap(df.isnull())
```



```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).col
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

```
AttributeError Traceback (most recent call last) <ipython-input-15-ca6fa5e17761> in <module>
```

1 numerical_features = df.select_dtypes(include = [np.number]).columns
----> 2 categorical_features = df.select_dtypes(include = [np.object]).col

def __setattr__(self, name: str, value) -> None:

/usr/local/lib/python3.7/dist-packages/pandas/core/generic.py in __getattr__(self, name)

```
5485 ):
5486 return self[name]
-> 5487 return object.__getattribute__(self, name)
5488
```

AttributeError: 'DataFrame' object has no attribute 'col'

SEARCH STACK OVERFLOW

5489

```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

<matplotlib.axes._subplots.AxesSubplot at 0x7fe4e5f34510>

Whole Weight is almost linearly varying with all other features except age. Height has least linearity with remaining features. Age is most linearly proprtional with Shell Weight followed by Diameter and length. Age is least correlated with Shucked Weight.

KEY INSIGHT All numerical features but 'sex'

Though features are not normaly distributed, are close to normality None of the features have minimum = 0 except Height (requires re-check) Each feature has difference scale range

```
sbn.countplot(x = 'Sex', data = df, palette = 'Set3')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe4e5cb44d0>


```
plt.figure(figsize = (20,7))
sbn.swarmplot(x = 'Sex', y = 'age', data = df, hue = 'Sex')
sbn.violinplot(x = 'Sex', y = 'age', data = df)
```

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 56.2 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 52.2 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 58.5 warnings.warn(msg, UserWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe4e7a29050>

Male: age majority lies in between 7.5 years to 19 years

Female: age majority lies in between 8 years to 19 years

Immature: age majority lies in between 6 years to < 10 years

Find The Outliers & Replace Them

```
#Data Preprocessing
#Outlier handling
df = pd.get_dummies(df)
dummy_df = df

var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Shell weight']<0.8) & (df['age'] > 25)].index, inplace = True)
```

```
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Diameter'] < 0.1) & (df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Diameter'] < 0.6) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter'] > = 0.6) & (df['age'] < 25)].index, inplace = True)</pre>
```

Feature Selection and Standardization

```
X = df.drop('age', axis = 1)
y = df['age']
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import SelectKBest
standardScale = StandardScaler()
standardScale.fit_transform(X)

selectkBest = SelectKBest()
X_new = selectkBest.fit_transform(X, y)

X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)
```

MODEL Linear regression

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train, y_train)
    LinearRegression()
```

```
y_train_pred = lm.predict(X_train)
```

```
y_test_pred = lm.predict(X_test)

from sklearn.metrics import mean_absolute_error, mean_squared_error
s = mean_squared_error(y_train, y_train_pred)
print('Mean Squared Error of training set :%2f'%s)

p = mean_squared_error(y_test, y_test_pred)
print('Mean Squared Error of testing set :%2f'%p)

Mean Squared Error of training set :4.486953
    Mean Squared Error of testing set :4.904506

from sklearn.metrics import r2_score
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)

p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of training set:0.53
R2 Score of testing set:0.50
```

Colab paid products - Cancel contracts here

✓ 0s completed at 10:43 AM

X