Multiclass Classification: One vs All

Multiclass Classification

Logistic Regression

Email foldering/tagging: Work, Friends, Family, Hobby

Email foldering/tagging: Work, Friends, Family, Hobby

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Binary classification:

Multi-class classification:

Binary classification:

Multi-class classification:

Class 1: △ ←

Class 2: 🔲 🗲

Class 3: 🗶 <

Class 1: △ ←

Class 2: ☐ ←

Class 3: 🗶 <

Class 1: △ ←

Class 2: ☐ ←

Class 3: 🗶 <

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Exercise

- Suppose you have a multi-class classification problem with k classes $y \in \{1,2,...,k\}$). Using the 1-vs.-all method, how many different logistic regression classifiers will you end up training?
 - K-1
 - K
 - K+1
 - Approximately log₂(k)