StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Synthesis

Peter Schaldenbrand Robotics Institute

Carnegie Mellon University Pittsburgh, PA 15213

pschalde@andrew.cmu.edu

Zhixuan Liu

School of Data Science The Chinese University of Hong Kong Shenzhen, China zhixuanliu@cuhk.edu.cn

Jean Oh

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 jeanoh@nrec.ri.cmu.edu

Input (text & style image)

"A man is watching TV"

"A man is walking the dog"

"A monkey playing guitar"

"A teddy bear"

CLIPDraw

The StyleCLIPDraw model architecture

The drawing begins as randomized Bézier curves on a canvas and is optimized to fit the given style and text:

Algorithm 1 CLIPDraw

Input: Description Phrase desc; Iteration Count I; Curve Count N; Augment Size D; Pre-trained CLIP model. **Begin:**

Encode Description Phrase. EncPhr = CLIP(desc)

Initialize Curves. $Curves_{0...N} = RandomCurve()$

for i = 0 to I do

Render Curves to Pixels. *Pixels = DiffRender(Curves)*

Augment the Image. $AugBatch_{0...D} = Augment(Pixels)$

Encode Image. EncImg = CLIP(AugBatch)

Compute Loss. Loss = -CosineSim(EncPhr, EncImg)

Backprop. $Curves \leftarrow Minimize(Loss)$

end for

- The CLIPDraw produces drawings consisting of a series of Bézier curves defined by a list of coordinates, a color, and an opacity.
- The brush strokes are rendered into a raster image via differentiable model.
- The image is augmented to avoid finding shallow solutions to optimizing through the CLIP model.
- The text input and the augmented raster drawing are fed the the CLIP model and the difference in embeddings are compared using cosine distance to compute a loss that encourages the drawing to fit the text input.
- The raster image and the style image are fed through early layers of the VGG-16 model (per the STROTSS style-transfer algorithm) and the difference in extracted features form the loss that encourages the drawings to fit the style of the style image.

STROSS - Style Transfer by Relaxed Optimal Transport and Self-Similarity

Images are arranged in order of content, output, style

Reimplementation

Neural Style Transfer

content image

style image

target image

From Bézier curves to final output

Bézier curves

StyleCLIPDraw image

A man is watching TV

A man is walking the dog

A horse eating a cupcake

A girl riding a motorcycle

The trees across the street

A group of people at the meeting

A bridge over the lake

A bottle of juice

Thank you for your attention!