Discrete graphical model learning

vishvAs vAsuki

June 25, 2010

Contents

Contents						
0.1	Activities log					
0.2	Time required in various steps					
0.3	Results					

0.1 Activities log

June 19: Completed implementation of the L1L2 based graphical model learning code and tested it by recovering graph structure using samples drawn from a 3 node chain graph structured probability distribution, where each variable could take one of 3 values, and where the edge couplings were chosen uniformly at random. Informed pradeep.

June 20: Tried implementing $L1L\infty$ code. Did not work. See mail to pradeep for details.

June 21: Met Chao and Pradeep. Introduced Chao to the code. Tried splitting work, but did not hear back from her about contributing to experiments.

June 22: Tried to learn 4 and 64 node chain structured graphical models unsuccessfully. Found much better success with star structured graphical models.

June 23: Arranged to meet Ali: seems to be arranged by pradeep and sujay.

0.2 Time required in various steps

64 node chain timings for sampling and learning are shown in Tables 1 and 2.

0.3 Results

Results are described in Tables 3 and 4; and in figure 1.

CONTENTS 2

Samples drawn		Time taken
1000		2.3s
15000		241s

Table 1: Time taken to sample from a 64 node chain graphical model.

Samples	Time taken
drawn	
150	279s (4.4s/n-
	ode), 560s
1000	107s
10000	10000s
	(166.6m or
	2h+46m).
15000	13203s
	(220m)

Table 2: Time taken to learn the structure of a 64 node chain graphical model.

Nodes	Samples	groupL1Bounds Explored (min, max region)	Probability
	drawn		of success
3	1500	$[10^{-2}2]$	≈ 1
3	15000	$[10^{-2}2]$	≈ 1
4	1000	$[10^{-2}10^{2.0}]$ (? ,10 ³)	at best, adds extra edge, omits needed edge
4	15000	$[10^{-2}2]$	close to 1, but not quite
64	1000	$[10^{-5}10^2]$	like 63 wrong edges, 3 cor- rect edges
64	10000	10^{10}	Many extra edges were learned

Table 3: Probability of success for chain graphical models.

CONTENTS 3

Nodes	Samples	groupL1Bounds Explored (min, max region)	Probability
	drawn		of success
3	1500	$[10^{-2}2]$	≈ 1
3	15000	$[10^{-2}2]$	≈ 1
30	2^{14}	$[10^{-2}10^{0}]:10^{-1},1 \text{ seem good}$	≈ 1
50	2^{14}	$[10^{-2}10^{0}]:10^{-1},1 \text{ seem good}$	≈ 1
70	2^{14}	$[10^{-2}10^{0}]$: 1 seems too high	

Table 4: Probability of success for star graphical models.

CONTENTS 4

