<u>Course</u> > <u>Midterm Exam 2</u> > <u>Midterm Exam 2</u> > Problem 4

Problem 4

Setup:

For $x \in \mathbb{R}$ and $heta \in (0,1)$, define

$$f_{ heta}\left(x
ight) = egin{cases} heta^2 & ext{if } -1 \leq x < 0 \ 1 - heta^2 & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise.} \end{cases}$$

Let X_1,\ldots,X_n be i.i.d. random variables with density $f_{ heta}$, for some unknown $heta\in(0,1)$.

(a)

1/1 point (graded)

To prepare, sketch the pdf $f_{ heta}\left(x
ight)$ for different values of $heta\in\left(0,1
ight)$.

Which of the following properties of $f_{ heta}\left(x
ight)$ guarantee that it is a probability density? (Check all that apply)

Note (added May 3): Note that you are **not** asked which of the following are properties of $f_{\theta}(x)$, but rather, which properties ensure that $f_{\theta}(x)$ is a density.

Note (added May 4): To be precise, select the smallest subset of choices below that would guarantee that $f_{\theta}(x)$ is a probability density.

- $ot\hspace{-0.5cm} ullet f_{ heta}\left(x
 ight) \geq 0 ext{ for all } x \in \mathbb{R} extcolor{left}
 otspace{-0.05cm}$
- $extstyle extstyle extstyle extstyle f_{ heta}\left(x
 ight) \leq 1$ for all $x\in\mathbb{R}$
- $otin \int_{\mathbb{R}}f_{ heta}\left(x
 ight) dx=1$ 🗸
- $lacksquare f_{ heta}\left(x
 ight)=0$ for $\left|x
 ight|>1$

Grading note: Partial credit are given.

Solution:

In order for $f_{\theta}(x)$ to be a probability density we need the function to be non-negative and the function to integrate to 1. Therefore, the first and third choices are the correct choices.

The remaining choices are true properties of $f_{ heta}$ that do not guarantee $f_{ heta}$ to be a density.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

(b)

2.0/2 points (graded)

Let a be the number of X_i which are **negative** ($X_i < 0$) and b be the number of X_i which are **non-negative** ($X_i \ge 0$). (Note that the total number of samples is n = a + b and be careful not to mix up the roles of a and b.)

What is the maximum likelihood estimator $\hat{m{ heta}}^{ ext{MLE}}$ of $m{ heta}$?

Note (added May 3): Different correct forms of the answer will be graded as correct.

Is $\hat{\boldsymbol{\theta}}^{\text{MLE}}$ asymptotically normal (in this example)?

- yes
- no
- not enough information to determine

Correction Note: An earlier version of the problem statement contains minor errors and was "Let a be the number of X_i which are **non-negative** ($X_i < 0$) and b be the number of X_i which are **non-negative** ($X_i \geq 0$)".

STANDARD NOTATION

Solution:

Observe that $Y_i = \mathbf{1}(X_i < 0)$ are i.i.d. $\mathsf{Ber}(\theta^2)$, so we can write down the likelihood for Bernoulli random variables and obtain:

$$L\left(X_1,\ldots,X_n; heta
ight)=\left(heta^2
ight)^a\left(1- heta^2
ight)^b.$$

(Alternatively, work out the likelihood directly from definition.) Therefore the log-likelihood is

$$\ell\left(heta
ight) = 2a\log\left(heta
ight) + b\log\left(1 - heta^2
ight).$$

Taking the derivative:

$$\ell'\left(heta
ight)=+rac{2a}{ heta}+rac{-2b heta}{1- heta^2},$$

and setting $\ell'(\theta) = 0$ gives

$${\hat{ heta}}^{ ext{MLE}} = \left(rac{a}{a+b}
ight)^{rac{1}{2}}.$$

Note that

$$\ell''\left(heta
ight)=rac{-2a}{ heta^{2}}-rac{2b\left(heta^{2}+1
ight)}{\left(1- heta^{2}
ight)^{2}}<0$$

and therefore this maximum is unique.

This MLE $\hat{\boldsymbol{\theta}}^{\text{MLE}}$ is asymptotically normal because the conditions 1-4 on the slide on this page holds:

- 1. θ is identifiable
- 2. For all $heta \in (0,1)$, the <code>support</code> of $f_ heta$ does not depend on heta
- 3. θ^* is not on the boundary of (0,1), i.e. $\theta^* \notin \{0,1\}$;
- 4. $I(\theta)$ is invertible

(In this course, we generally do not need to worry about the few more technical conditions listed on this slide.)

• Answers are displayed within the problem

(c)

2.0/2.0 points (graded)

What is the asymptotic variance $V\left(heta
ight)$ for $\hat{ heta}^{ ext{MLE}}$?

$$V(\theta) = \boxed{\frac{1-\theta^2}{4}}$$
 \quad \tag{1-\theta^2}/4

STANDARD NOTATION

Solution:

Again, note that random variable $Y_i = \mathbf{1}_{X_i < 0}$ is a $\mathsf{Ber}(\theta^2)$. Therefore the variance $\mathsf{Var}(Y_i) = \theta^2 (1 - \theta^2)$. Thus by the Central Limit Theorem it follows that

$$\sqrt{n}\left(ar{Y}_{n}- heta^{2}
ight) \xrightarrow[n o \infty]{(d)} N\left(0, heta^{2}\left(1- heta^{2}
ight)
ight).$$

However, our estimator $\hat{m{ heta}}^{ ext{MLE}}$ is not the above but is instead

$$\hat{ heta}^{ ext{MLE}} = \sqrt{ar{Y}_n} = \sqrt{rac{a}{n}}.$$

Therefore we need the delta method to derive its asymptotic variance: Let $g\left(x\right)=x^{1/2}$, so $g'\left(x\right)=rac{1}{2x^{1/2}}$. The delta method gives

$$\sqrt{n}\left(\hat{ heta}- heta
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(0, heta^2\left(1- heta^2
ight)g'(heta^2
ight)^2
ight) = \mathcal{N}\left(0, rac{\left(1- heta^2
ight)}{4}
ight)$$

Therefore, the asymptotic variance for $\hat{\theta}^{\text{MLE}}$ is $\frac{(1-\theta^2)}{4}$. **Alternatively,** use $V(\theta) = I(\theta)^{-1}$ to obtain the same answer.

Submit

You have used 3 of 3 attempts

Answers are displayed within the problem

(d)

5.0/5 points (graded)

Recall from the setup that $X_1,\ldots,X_n\sim X$ are i.i.d. random variables with density $f_{ heta}$, for some unknown $heta\in(0,1)$:

$$f_{ heta}\left(x
ight) = \left\{egin{array}{ll} heta^2 & ext{if } -1 \leq x < 0 \ 1 - heta^2 & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise.} \end{array}
ight.$$

Consider the following hypotheses:

 $H_0: X \sim \mathsf{Unif}(-1,1)$

 $H_1: X \text{ not distributed as Unif } (-1,1).$

Write down the test statistic T_n^{Wald} for Wald's test for the above hypothesis. Use the value of θ that defines H_0 as the argument of the asymptotic variance $V(\theta)$.

Hint: Rewrite the hypothesis in terms of the parameter θ .

(Enter hattheta for $\hat{\theta}^{\mathrm{MLE}}$.)

(To avoid double jeopardy, you may use \mathbf{V} for the asymptotic variance $V(\theta)$ under H_0 .)

What is the form of this Wald's test?

- ullet **1** $(T_n^{\mathrm{Wald}} > C)$ for some C > 0 🗸
 - $\mathbf{1}\left(T_n^{\mathrm{Wald}}>C\right)$ for some C<0
 - lacksquare $\mathbf{1}\left(T_n^{\mathrm{Wald}} < C
 ight)$ for some $C{>}0$
 - lacksquare 1 $(T_n^{\mathrm{Wald}} < C)$ for some C < 0

Find C such that Wald's test has asymptotic level 5%.

(Enter a numerical value accurate to at least 2 decimal places.)

$$C = \begin{bmatrix} 3.841 \end{bmatrix}$$
 Answer: 3.84

You obtain a sample of size n=100, of which 40 of the X_i are negative ($X_i<0$) and 60 of the X_i are negative ($X_i\geq0$).

Do we reject H_0 at asymptotic level 5%?

- ullet We reject H_0 . ullet
- ullet We fail to reject $H_0 ullet$
- Cannot be determined without more information.

What is the p-value for this test? (Again, use the value of heta that defines H_0 as the argument of the asymptotic variance V(heta) .)

(Enter a numerical value accurate to at least 2 decimal place)

p-value: 0.03473 **✓ Answer**: 0.035

STANDARD NOTATION

Solution:

First, rewrite the hypothesis in terms of the parameter θ : X_1 is $\mathsf{Unif}(-1,1)$ is equivalent to $\theta^2=\frac{1}{2}$. Hence the null and alternative hypotheses are

$$H_0 \; = \; heta = rac{1}{\sqrt{2}}$$

$$H_1 \; = \; heta
eq rac{1}{\sqrt{2}}$$

Then, Wald's Theorem gives, under the null hypothesis:

$$T_n = n I\left(heta_0
ight) \left(\hat{ heta} - rac{1}{\sqrt{2}}
ight)^2 \stackrel{(d)}{\longrightarrow} \chi_1^2.$$

where the Fisher information, or equivalently inverse asymptotic variance, is $I(\theta_0)=\frac{4}{1-\theta_0^2}$). Thus our Wald's test with asymptotic level 5% is

$$\psi = \mathbf{1}_{T_n > q_{0.05}} \qquad ext{where } q_{0.05} = q_{0.05} \left(\chi_1^2
ight) pprox 3.84.$$

For n = 100, a = 40, b = 60,

$$T_{100}^{
m Wald} \ = \ 800 ig(\sqrt{0.4} - \sqrt{0.5} ig)^2 pprox 4.46 > 3.84;$$

hence we reject $oldsymbol{H_0}$. The $oldsymbol{p}$ -value is

$$egin{align} p{
m -value} &=& {f P}_{\chi_1^2} \left(y > rac{4n}{1- heta_0^2} \Big(\hat{ heta}^{
m MLE} - \sqrt{ heta_0} \Big)^2
ight) \ &=& {f P}_{\chi_1^2} \left(y > 800 ig(\sqrt{0.4} - \sqrt{0.5} ig)^2 ig) \, pprox \, 0.035. \end{array}$$

Remark Because the null hypothesis consists of only 1 value of $\hat{\theta}$, we had chosen to implement Wald's test with $\hat{\theta}_0$ (as opposed to $\hat{\hat{\theta}}^{MLE}$) as the argument of the asymptotic variance.

If we have used $V(\hat{ heta}^{ ext{MLE}})$ in T_n , then

$$T_{100}^{
m Wald} \; = \; 100 \left(rac{4}{60/100}
ight) \left(\sqrt{0.4} - \sqrt{0.5}
ight)^2 pprox 3.715 < 3.84.$$

This would lead to a p-value of 0.054 which is larger than 0.05 and a failure to reject H_0 .

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

(e)

5.0/5 points (graded)

As above, $X_1,\ldots,X_n\sim X$ are i.i.d. random variables with density $f_{ heta}$, for some unknown $heta\in(0,1)$:

$$f_{ heta}\left(x
ight) = \left\{egin{array}{ll} heta^2 & ext{if } -1 \leq x < 0 \ 1 - heta^2 & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise.} \end{array}
ight.$$

As in part (b), let a denote the number of X_i which are **negative** ($X_i < 0$) and b be the number of X_i which are **non-negative** ($X_i \geq 0$).

(Be careful not to mix up the roles of a and b).

Again, we consider the hypotheses:

$$H_0: X \sim \mathsf{Unif}(-1,1)$$

 $H_1: X \text{ not distributed as Unif } (-1,1).$

Write down the test statistic $T_n^{
m LR}$ for the likelihood ratio test.

(To avoid double jeopardy, you may use **hattheta** for $\hat{\boldsymbol{\theta}}^{\text{MLE}}$, or directly enter your answer for $\hat{\boldsymbol{\theta}}^{\text{MLE}}$).

$$T_n^{\text{LR}} = 2*(2*a*\ln(\text{hattheta})+b*\ln(1 - \text{hattheta}^2) - 2*a*\ln(\text{sqrt}(1/2)) - b*\ln(1/2))$$

Answer: 2*(a*ln(hattheta^2)+b*ln(1-hattheta^2)-n*ln(1/2))

What is the form of the likelihood ratio test?

- $\mathbf{1}\left(T_{n}^{\mathrm{LR}}>C\right)$ for some C>0
- lacksquare **1** $(T_n^{
 m LR} > C)$ for some C < 0
- lacksquare 1 $(T_n^{
 m LR} < C)$ for some C > 0
- lacksquare 1 $(T_n^{
 m LR} < C)$ for some C < 0

Find C such that the Likelihood ratio test has asymptotic level 5%.

(Enter a numerical value accurate to at least 2 decimal places.)

$$C = \begin{bmatrix} 3.841 \end{bmatrix}$$
 Answer: 3.84

For the same sample as in the previous part, i.e. a sample of size n=100, of which 40 of the X_i are **negative** ($X_i < 0$) and 60 of the X_i are **non-negative** ($X_i \ge 0$).

Do we reject H_0 at asymptotic level 5%?

- ullet We reject H_0 . \checkmark
- ullet We fail to reject H_0
- Cannot be determined without more information.

What is the p-value for the likelihood ratio test? (Enter a numerical value accurate to at least 3 decimal places.)

Correction Note: An earlier version (before April 27 9pm EST) of the problem statement contains an error and was "As in part (b), let a denote the number of X_i which are **non-negative** ($X_i \leq 0$) and b be the number of X_i which are **negative** ($X_i > 0$)".

STANDARD NOTATION

Solution:

We are again testing the hypotheses

$$H_0 \;=\; heta = rac{1}{\sqrt{2}}$$
 $H_1 \;=\; heta
eq rac{1}{\sqrt{2}}$

The test statistics for the likelihood ratio test is

$$T_n^{
m LR} \; = \; 2 \left(a \ln{((\hat{ heta}^{
m MLE})}^2) + b \ln{(1 - (\hat{ heta}^{
m MLE})}^2) - n \ln{(0.5)}
ight)$$

Since $T_n^{\mathrm{LR}} \xrightarrow[n \to \infty]{(d)} \chi_1^2$, the likelihood ratio test of asymptotic level 5% is

$$\psi_n = \mathbf{1}\left(T_n^{\mathrm{LR}} > q_{0.05}\left(\chi_1^2
ight)
ight).$$

where $q_{0.05}\left(\chi_1^2\right) pprox 3.84$ is the quantile of the χ^2 distribution with degrees of freedom 1. For $n=100,\ a/n=0.4,\ b/n=0.6,$

$$T_{100}^{
m LR} \ = \ 2 \left(40 \ln \left(0.4
ight) + 60 \ln \left(0.6
ight) - 100 \ln \left(0.5
ight)
ight) \, pprox \, 4.04 > q_{0.05} \left(\chi_1^2
ight)$$

Hence, we can reject H_0 . The \emph{p} -value for this test is

$$p{
m -value} \ = \ {f P}_{\chi_1^2} \left(y > T_{100}^{
m LR}
ight) \ = \ {f P}_{\chi_1^2} \left(y > 4.04
ight) \ pprox \ 0.045.$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Error and Bug Reports/Technical Issues

Topic: Midterm Exam 2:Midterm Exam 2 / Problem 4

Show Discussion

© All Rights Reserved