Projet intégré

Antoine Aupée – Joachim Draps – Nathan Dwek

5 juin 2015

Introduction

Cahier des charges

«L'objectif [...] est de réaliser le système de contrôle d'un robot

«Ce robot doit pouvoir se déplacer en ligne droite et effectuer des rotations sur places

«Les déplacements [...] seront communiqués [...] au moyen d'un canal audio»

-Introduction au projet intégré

Introduction

Découpe en blocs

- Régulation de position
- Conditionnement et numérisation du signal audio
- Démodulation numérique des ordres
- Transmission UART des ordres entre microcontrôleurs
- Contrôle de la régulation par un «chef d'orchestre»

Dans cette présentation:

Régulation du déplacement

Réception et traitement du signal audio

Transmission des ordres entre microcontrôleurs

Régulation du déplacement

Réception et traitement du signal audio

Transmission des ordres entre microcontrôleurs

Interface avec les capteurs et actuateurs

Moteurs:

- Commandés en PWM
 ⇒ Signal de commande généré par le module output compare, à configurer
- Limitations physiques fixent le point de fonctionnement de la régulation
- Peu linéaires, dissymétriques

Interface avec les capteurs et actuateurs

Encodeurs:

- 2 x 90 flancs montants par tour de roue ⇒Signaux interprétés par le module QEI, à configurer
- ▶ Pas d'index hardware
 ⇒ Index software pour rendre impossible l'overflow des compteurs
- Précision largement suffisante compte tenu de celle des moteurs

Mise en place de la boucle fermée

- Régulation numérique, $f_{regul} = 100 \, \text{Hz}$
 - ⇒ Timer. Actions de la routine :
 - Lecture des encodeurs
 - Calcul du rapport cyclique et commande des moteurs
 - Mise à jour des consignes
 - Détection de l'arrivée à la position visée

Choix du schéma de régulation

Choix du schéma de régulation

Régulation du déplacement

Réception et traitement du signal audio

Transmission des ordres entre microcontrôleurs

Chaîne d'acquisition

Amplification et polarisation du signal audio

Chaîne d'acquisition

Filtre de garde

Traitement numérique du signal

Filtres passe-bande

Traitement numérique du signal

Détection de crête – intégration avec fskDetector

- Crête détectée si le maximum sur les derniers échantillons correspondant à une période de signal est supérieur à un niveau minimal
- Routine d'échantillonnage :
 - ► Filtrage → deux échantillons filtrés
 - ▶ Détection de crête → deux booléens
 - ▶ Détection de trame FSK → trame reconstituée ou rien
 - \Rightarrow Temps d'exécution $< 1/f_s!$?
- Si une trame est reconstituée, elle est ensuite passée au bloc UART

Régulation du déplacement

Réception et traitement du signal audio

Transmission des ordres entre microcontrôleurs

Transmission des ordres

- ► Transmission des trames reconstituées après le traitement le plus minimal possible
- Utilisation du module UART, à configurer :
 - ► Baudrate, format de trame, polarité, protocole
 - ► Transmission suffisamment rapide et sans erreurs facilement obtenue
 - Réception par interruption
 - ► Trames FSK: 10 bits trames UART: 8/9bits max
 ⇒ Nécessité de diviser la sortie de fskDetector

Transmission des ordres

Format des trames – Émetteurs et récepteurs

message

or	paramètre								
o1	0	p7	p6	p5	p4	р3	p2	p1	p0

Т1

T2

or	ire]	para	mètre	unused		
0b1	0b1	p7	р6	p5	p4	0b0	0b0

or	dre]	para	nètre	unused		
01	00,	р3	p2	p1	p0	0b0	0b0

Régulation du déplacement

Réception et traitement du signal audio

Transmission des ordres entre microcontrôleurs

- Lien entre le bloc réception de l'UART et la régulation
- ▶ Lors de la réception d'une trame
 - ► Interprétation de l'ordre et du paramètre
 - Détermination de l'accélération initiale, la distance totale et la distance avant décélération à partir de l'ordre reçu afin de générer une nouvelle consigne
 - Arrêt du robot et reset de ses variables
 - Utilisation des paramètres déterminés pour commencer à générer la consigne

Merci pour votre attention. Questions?

