

CS231n: Convolutional Neural Networks for Visual Recognition

(index.html)

Schedule and Syllabus

Unless otherwise specified the lectures are Tuesday and Thursday 12pm to 1:20pm in the NVIDIA Auditorium in the Huang Engineering Center. (map (https://campus-map.stanford.edu/?id=04-080&lat=37.42787956&lng=-122.17429865&zoom=17&srch=nvidia%20auditorium))

Discussion sections will (generally) be Fridays 12:30pm to 1:20pm in Gates B03. (map (https://campus-map.stanford.edu/?id=07-450&lat=37.43011014&lng=-122.17341616&zoom=17&srch=gates%20computer%20science)) Check Piazza for any exceptions.

This is the syllabus for the **Spring 2019** iteration of the course. The syllabus for the Spring 2018 (http://cs231n.stanford.edu/2018/syllabus), Spring 2017 (http://cs231n.stanford.edu/2017/syllabus), Winter 2016 (http://cs231n.stanford.edu/2016/syllabus) and Winter 2015 (http://cs231n.stanford.edu/2015/syllabus) iterations of this course are still available.

Event Type	Date	Description	Course Materials
Lecture 1	Tuesday April 2	Course Introduction Computer vision overview Historical context Course logistics	[slides] (slides/2019/cs231n_2019_lecture01.pdf)
Lecture 2	Thursday April 4	Image Classification The data-driven approach K-nearest neighbor Linear classification I	[slides] (slides/2019/cs231n_2019_lecture02.pdf) [python/numpy tutorial] (http://cs231n.github.io/pytho [image classification notes] (http://cs231n.github.io/c [linear classification notes] (http://cs231n.github.io/lir
Discussion Section	Friday April 5	Python / numpy / Google Cloud	[notebook] (notebooks/python_numpy_tutorial.ipynb)
Lecture 3	Tuesday April 9	Loss Functions and Optimization Linear classification II Higher-level representations, image features Optimization, stochastic gradient descent	[slides] (slides/2019/cs231n_2019_lecture03.pdf) [linear classification notes] (http://cs231n.github.io/optimization notes] (http://cs231n.github.io/optimiza
Lecture 4	Thursday April 11	Introduction to Neural Networks Backpropagation Multi-layer Perceptrons The neural viewpoint	[slides] (slides/2019/cs231n_2019_lecture04.pdf) [backprop notes] (http://cs231n.github.io/optimizatior [linear backprop example] (handouts/linear-backprop. [derivatives notes] (handouts/derivatives.pdf) (optional [Efficient BackProp] (http://yann.lecun.com/exdb/pub (optional) related: [1] (http://colah.github.io/posts/2015-08-Back (http://neuralnetworksanddeeplearning.com/chap2.ht (https://www.youtube.com/watch?v=q0pm3BrIUFo) (
Discussion Section	Friday April 12	Guidelines for Picking a Project	[slides] (slides/2019/cs231n_2019_section02.pdf)
Lecture 5	Tuesday April 16	Convolutional Neural Networks History Convolution and pooling ConvNets outside vision	[slides] (slides/2019/cs231n_2019_lecture05.pdf) ConvNet notes (http://cs231n.github.io/convolutional
A1 Due	Wednesday April 17	Assignment #1 due kNN, SVM, SoftMax, two-layer network	[Assignment #1] (http://cs231n.github.io/assignment
Lecture 6	Thursday April 18	Deep Learning Hardware and Software CPUs, GPUs, TPUs PyTorch, TensorFlow Dynamic vs Static computation graphs	[slides] (slides/2019/cs231n_2019_lecture06.pdf)

Discussion Section	Friday April 19	Intro to Pytorch and Tensorflow 12:30-13:50 at Thornton 102 (https://campus-map.stanford.edu/?id=04-720⪫=37.4255553&lng=-122.17370443&zoom=17&srch=thornton102)	[PyTorch notebook] (notebooks/pytorch_tutorial.ipynb [TensorFlow notebook] (notebooks/CS231N_TensorF [gradio slides] (https://docs.google.com/presentation/d/15EGMDqYhRrMY34Wora42jCDfFcY/edit?usp=sharing) [gradio nuttops://colab.research.google.com/drive/1zb1ox2wChascollTo=hA6BTuNtELa9)
Lecture 7	Tuesday April 23	Training Neural Networks, part I	[slides] (slides/2019/cs231n_2019_lecture07.pdf) Neural Nets notes 1 (http://cs231n.github.io/neural-ne Neural Nets notes 2 (http://cs231n.github.io/neural-ne Neural Nets notes 3 (http://cs231n.github.io/neural-ne tips/tricks: [1] (http://research.microsoft.com/pubs/16 (http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pd (http://arxiv.org/pdf/1206.5533v2.pdf) (optional) Deep Learning [Nature] (http://www.nature.com/nature/journal/v521/n7553/f6 (optional)
Proposal due	Wednesday April 24	Project Proposal due	[proposal description] (http://cs231n.stanford.edu/pro
Lecture 8	Thursday April 25	Training Neural Networks, part II Update rules, ensembles, data augmentation, transfer learning	[slides] (slides/2019/cs231n_2019_lecture08.pdf) Neural Nets notes 3 (http://cs231n.github.io/neural-ne
Discussion Section	Friday April 26	Backpropagation	
Lecture 9	Tuesday April 30	CNN Architectures AlexNet, VGG, GoogLeNet, ResNet, etc	[slides] (slides/2019/cs231n_2019_lecture09.pdf) AlexNet (https://papers.nips.cc/paper/4824-imagenet convolutional-neural-networks.pdf), VGGNet (https://a GoogLeNet (https://arxiv.org/abs/1409.4842), ResNet (https://arxiv.org/abs/1512.03385)
A2 Due	Wednesday May 1	Assignment #2 due Neural networks, ConvNets	[Assignment #2] (http://cs231n.github.io/assignment
Lecture 10	Thursday May 2	Recurrent Neural Networks RNN, LSTM, GRU Language modeling Image captioning, visual question answering Soft attention	[slides] (slides/2019/cs231n_2019_lecture10.pdf) DL book RNN chapter (http://www.deeplearningbook.coptional) min-char-rnn (https://gist.github.com/karpathy/d4deec(https://github.com/karpathy/char-rnn), neuraltalk2 (https://github.com/karpathy/neuraltalk2)
Discussion Section	Friday May 3	Midterm Review	
Midterm	Tuesday May 7	In-class midterm Location: TBA	
Lecture 11	Thursday May 9	Generative Models	[slides] (slides/2019/cs231n_2019_lecture11.pdf)
Lecture 12	Tuesday May 14	Detection and Segmentation	[slides] (slides/2019/cs231n_2019_lecture12.pdf)
Milestone	Wednesday May 15	Project Milestone due	
Lecture 13	Thursday May 16	Visualizing and Understanding Feature visualization and inversion Adversarial examples DeepDream and style transfer	[slides] (slides/2019/cs231n_2019_lecture13.pdf) DeepDream (https://github.com/google/deepdream) neural-style (https://github.com/jcjohnson/neural-styl fast-neural-style (https://github.com/jcjohnson/fast-n
Lecture 14	Tuesday May 21	Deep Reinforcement Learning Policy gradients, hard attention Q-Learning, Actor-Critic	[slides] (slides/2019/cs231n_2019_lecture14.pdf)

A3 Due	Wednesday	Assignment #3 due	[Assignment #3] (http://cs231n.github.io/assignme
	May 22	RNNs, LSTMs, Network Visualization, Style Transfer, GANs	
Lecture 15	Thursday	Fairness Accountability Transparency and Ethics in Al	
Guest	May 23	With a focus on Computer Vision	
Lecture		Timnit Gebru (http://ai.stanford.edu/~tgebru/)	
Discussion Section	Friday May 24	Midterm Q&A	
Section	Iviay 24		
Lecture 16	Tuesday	Neuroscience and Al	
Guest	May 28	Nick Haber (https://neuroailab.stanford.edu)	
Lecture			
Lecture 17	Thursday	Human-Centered Al	[slides] (slides/2019/cs231n_2019_lecture17.pdf)
	May 30		
Final	Tuesday	Project Report due	
Project	June 4		
Due			
Poster	Tuesday	Arrillaga Alumni Center	
Session	June 11	12:00 pm to 3:30 pm	
00331011	Julie II	12.00 μπ το 0.00 μπ	