

Basic Three-Phase Circuit

What is Three-Phase Power?

- Three sinusoidal voltages of equal amplitude and frequency out of phase with each other by 120°. Known as "balanced".
- Phases are labeled A, B, and C. or R,Y and B.
- Phases are sequenced as A, B, C (positive) or A, C, B (negative).

Motion is parallel to the flux.

No voltage is induced.

Motion is 45° to flux. Induced voltage is 0.707 of maximum.

Motion is perpendicular to flux. Induced voltage is maximum.

Motion is 45° to flux.

Induced voltage is 0.707 of maximum.

Motion is parallel to flux. No voltage is induced.

Notice current in the conductor has reversed.

Motion is 45° to flux. Induced voltage is 0.707 of maximum.

Motion is perpendicular to flux. Induced voltage is maximum.

Motion is 45° to flux.

Induced voltage is 0.707 of maximum.

Motion is parallel to flux.

No voltage is induced.

Ready to produce another cycle.

Three phase system

- 4 wires
 - 3 "active" phases, A, B, C
 - 1 "ground", or "neutral"
- Color Code
 - Phase A Red
 - Phase B Yellow
 - Phase CBlue
 - Neutral Black

Phasor (Vector) Form for abc

Note that KVL applies $V_a+V_b+V_c=0$

GENERATION OF THREE-PHASE AC

THREE-PHASE WAVEFORM

Phase 2 lags phase 1 by 120°.

Phase 3 lags phase 1 by 240°.

Phase 2 leads phase 3 by 120°.

Phase 1 lags phase 3 by 120°.

THREE PHASE SYSTEM

BASICS

Line voltage VL= voltage between lines

Phase voltage Vph= voltage between a line and neutral

THREE PHASE SYSTEM

BALANCED STAR

Line Voltage $VL = \sqrt{3} Vph$ Line current IL = Iph

THREE PHASE SYSTEM

BALANCED DELTA

-r Line Voltage VL= Vph Line current IL = √3 Iph

Quick Quiz (Poll 1)

- Power in a Three Phase Circuit = ______.
- a) $P = 3 V_{Ph} I_{Ph} Cos\Phi$
- b) $P = \sqrt{3} V_L I_L Cos\Phi$
- c) Both a & b.
- d) None of The Above

3 phase Transformer connections

By connecting three single phase transformers

- 1. Star-Star connection
- 2. Delta- Delta connection
- 3. Star Delta connection
- 4. Delta Star connection

Phase transformation ratio,
$$K = \frac{Secondary\ phase\ voltage}{Primary\ phase\ voltage} = \frac{N_2}{N_1}$$

Star-Star connection

This connection satisfactory only in balanced load otherwise neutral point will be shifted.

Star-Star connection

Advantages

- 1.Requires less turns per winding ie cheaper

 Phase voltage is 1/V3 times of line voltage
- 2.Cross section of winding is large i.e stronger to bear stress during short circuit

 Line current is equal to phase current
- 3. Less dielectric strength in insulating materials phase voltage is less

Star-Star connection

Disadvantages

- 1.If the load on the secondary side unbalanced then the shifting of neutral point is possible
- 2.The third harmonic present in the alternator voltage may appear on the secondary side. This causes distortion in the secondary phase voltages
- 3. Magnetizing current of transformer has 3rd harmonic component

Delta - Delta connection

> This connection is used for moderate voltages

Delta - Delta connection

Advantages

- 1. System voltages are more stable in relation to unbalanced load
- 2. If one t/f is failed it may be used for low power level ie V-V connection
- 3. No distortion of flux ie 3rd harmonic current not flowing to the line wire

Delta - Delta connection

Disadvantages

- 1. Compare to Y-Y require more insulation
- 2. Absence of star point ie fault may severe

Star- Delta connection

Used to step down voltage i.e end of transmission line

Star- Delta connection

Advantages

- 1. The primary side is star connected. Hence fewer number of turns are required. This makes the connection economical
- 2. The neutral available on the primary can be earthed to avoid distortion.
- 3. Large unbalanced loads can be handled satisfactory.

Star- Delta connection

Disadvantages

The secondary voltage is not in phase with the primary. (30 ° phase difference)

Hence it is not possible to operate this connection in parallel with star-star or delta-delta connected transformer.

Delta - Star connection

> This connection is used to step up voltage ie. Beginning of high tension line

Delta - Star connection

Features

- > secondary Phase voltage is 1/v3 times of line voltage
- neutral in secondary can be grounded for 3 phase4 wire system
- ➤ Neutral shifting and 3rd harmonics are there
- Phase shift of 30° between secondary and primary currents and voltages