Marketing Analysis

Customer Segmentation Paula BD.

Intro

Data downloaded from Kaggle - Marketing Analytics by Jack Daoud (2205 Rows and 38 Columns)

Data contains information on:

- 1) Customer profiles
- 2) Product preferences
- 3) Campaign successes/failures
- 4) Channel performance

For this analysis I will focus on 1) and 2) in order to create customer segmentation and show their preferences.

Created new columns for the analysis

TVICITIOCAL CIOCAL SECTICI	MtnTotal	(Total s	pent)
----------------------------	-----------------	----------	-------

- MntWines
- MntFruits
- MntMeatProducts
- MntFishProducts
- MntSweetProducts
- MntGoldProds

Marital_status

- marital_Divorced
- marital_Married
- marital_Single
- marital_Together
- marital_Widow

Education_status

- education_2n_Cycle
- education_Basic
- education_Graduation
- education_Master
- education_PhD

Children_Binary; Kidhome and Teenhome > 0 Marital_Status_Binary; Together = 1, Single = 0

Income correlations

MntTotal Age education_PhD marital_Widow Teenhome education_Maste education_Graduation marital_Divorced marital_Together marital_Married marital_Single education_2n Cycle education_Basic Kidhome 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.000000 .819310 .216372 .083590 .047589 .044418 .025343 .022483 .015109 0.004510 0.007835 0.018309 0.062488 0.241868 0.540774
Name: Income, dtype: float6	

K-means Clustering for consumer segmentation

- 1) Standardization; Min Max Scaler
- 2) Perform Dimensionality Reduction with PCA

3) Fit to K-means

In order to preserve 80% of our data set, 4 components are chosen.

Running Inertia and Silhouette Score on our PCA results to determine the number of clusters for the model

4 segmentation groups are recommended

PCA clustering visualization!

Clusters with only scaled data- not PCA

Exploring our customer segmentation

Cluster 0

- 728 Customers
- 25.23 Percentage spent
- At least 1 child in the household
- 65% in a relationship and 35% single

Cluster 2

- 287 Customers
- 26. 33 Percentage spent
- No children in the household
- 57% in a relationship and 43% single

Cluster 1

- 726 Customers
- 23.04 Percentage spent
- At least 1 child in the household
- 66% in a relationship and 34% single

Cluster 3

- 280 Customers
- <u>25.40</u> Percentage spent
- No children in the household
- 60% in a relationship and 40% single

Mean values per cluster - Sorted by Income

	Income	Age	MntTotal	Children_Binary	Marital_Status_Binary
Cluster					
2	66421.73	51.25	1126.96	0.0	0.57
3	64869.02	51.69	1113.91	0.0	0.60
0	46524.70	50.21	425.71	1.0	0.65
1	45955.37	51.74	389.71	1.0	0.66

- Cluster 2 is a premium cluster with higher spending, followed by cluster 3.
- Cluster 3 with 280 customers brings a similar revenue percentage as cluster 0 with 728 customers.

Clusters 2 and 3 are pretty similar and cluster 0 and 1 as well.

What separates them as clusters?

Mean values per cluster - Sorted by Income

	Income	Basic	Graduation	Master	PhD
Cluster					
2	66421.76	0.00	1.0	0.00	0.00
3	64869.029	0.05	0.0	0.33	0.41
0	46524.77	0.00	1.0	0.00	0.00
1	45955.37	0.04	0.0	0.33	0.44

As we analyse the variable of education we can see a clear distinction between the groups.

Now that we know premium cluster is #2 and cluster #0 includes at least one child in the household let's see spending preferences.

Conclusion

- Groups 2 and 3 are the highest spenders. The company should focus on the products that are preferred by these groups and try to cross-promote other products.
- We can also see that two categories of products are the top sellers among the four groups. The recommendation is ensure a steady supply of both categories to prevent stockouts, and negotiate better deals with suppliers due to high demand.

*This analysis did not include promotions on products.

Thank you!