Title:

Dynamic Pricing for Urban Parking Lots

Capstone Project – Summer Analytics 2025

By: Nirnoy Barma

Project Objective

The goal of this project is to build a dynamic, data-driven pricing engine for 14 urban parking lots. Prices are updated in real-time based on features such as occupancy, queue length, vehicle type, nearby traffic congestion, special events, and competitor pricing.

We build and compare three models of increasing complexity:

- Model 1 Baseline Linear Pricing
- Model 2 Demand-Based Pricing
- Model 3 Competitive-Aware Pricing

Tech Stack

- Python (NumPy, Pandas) for data manipulation and logic
- Pathway real-time data stream simulation
- Geopy distance calculations
- Bokeh / Matplotlib data visualization
- Google Colab development and execution environment

Model 1 – Linear Pricing (Baseline)

Formula:

 $Price[t+1] = Price[t] + \alpha \times (Occupancy / Capacity)$

- Starts from a base price of \$10
- α is a constant (e.g., 2.0)
- Price increases proportionally with occupancy

Use Case:

Acts as a simple benchmark for dynamic pricing logic.

Model 2 - Demand-Based Pricing

Demand Function:

Formula:

Demand = $\alpha \times (Occupancy / Capacity) + \beta \times QueueLength - \gamma \times Traffic + \delta \times IsSpecialDay + \epsilon \times VehicleTypeWeight$

Explanation of Terms:

- Occupancy / Capacity: Measures how full the lot is
- QueueLength: Longer queues imply higher demand
- Traffic: High congestion decreases accessibility (thus lowers demand)
- IsSpecialDay: Events or holidays increase demand
- VehicleTypeWeight: Trucks > Cars > Bikes (weights: 1.5, 1.0, 0.7)

Pricing Formula:

Price = BasePrice × $(1 + \lambda \times NormalizedDemand)$

- Normalized demand is scaled to [0, 1]
- λ determines sensitivity to demand
- Price is clipped between 0.5× and 2× of base

Assumptions

• Demand function results in smooth, gradual price changes

- All vehicle types have a defined weight
 - o Car: 1.0, Bike: 0.7, Truck: 1.5
- Traffic is encoded:
 - o Low: 0.5, Medium: 1.0, High: 1.5
- Queue length has linear influence
- Base price is fixed at \$10 for all lots

Model 3 – Competitive Pricing Logic

This model adds competitive awareness based on distance and price comparison.

Logic:

- If a nearby lot (within 300 meters) is cheaper and available → suggest rerouting or reduce price
- If nearby lots are full or more expensive → allow price to increase up to 2× base
- Distances are calculated using latitude and longitude via Geopy

Real-Time Implementation

- Data is streamed using Pathway's engine, preserving timestamps
- Pricing models operate on each time slice (18 slots/day from 8:00 AM to 4:30 PM)
- Visualizations are done in real time using Bokeh or Matplotlib

Price Behavior Summary

Feature	Price Impact
Higher Occupancy	Increases Price
Longer Queue	Increases Price

Feature Price Impact

High Traffic Decreases Price

Special Event Day Increases Price

Vehicle is a Truck Increases Price (more than Car/Bike)

Nearby Lot is Cheaper Triggers Price Reduction or Rerouting

Conclusion

This system provides an efficient, real-time pricing solution for urban parking management. Each model represents an advancement in pricing logic:

- Model 1 reacts to occupancy alone
- Model 2 considers multiple demand factors
- Model 3 incorporates competition and rerouting

The full solution can be deployed with real-time data pipelines using Pathway, enabling smarter city infrastructure.