Assessing phenotypic stability in plant breeding trials

Hans-Peter Piepho
Biostatistics Unit
University of Hohenheim
Germany

Content

- 1. Introduction
- 2. A few stability measures
- 3. Statistical models
- 4. Sample size
- 5. Additive Main Effects Multiplicative Interaction (AMMI)
- 6. Probability methods
- 7. Three-factorial analysis of series of trials
- 8. Making use of environmental covariate information
- 9. Time trend for stability
- 10. Concluding remarks

1. Introduction

- Plant breeding and cultivar trials
- Trial series over several environments (sites, years)
- Individual trials replicated
 (randomized complete block designs, lattice designs, α-Designs)
- Often analyses in two stages:
 - (i) Genotype means per environment
 - (ii) Analysis og genotype-environment means by factorial model

Objective:

- Identify genotypes with best mean yield
- Identify genotypes with best "yield stability"

2. A few stability measures

Environmental variance

$$S_i^2 = \frac{\sum_{j=1}^J (y_{ij} - \overline{y}_{i\bullet})^2}{J-1},$$

where

 y_{ij} = yield of *i*-th genotype in *j*-th environment

(Römer, 1917)

Ecovalence

Fig. 1: Schematic representation of a stable genotype with yield following the environmental mean.

Deviation of genotype from its mean across environments:

 $(y_{ij} - \overline{y}_{i\bullet})$

Deviation of environmental mean from grand mean:

 $(\overline{y}_{\bullet j} - \overline{y}_{\bullet \bullet})$

[= Mean of $(y_{ij} - \overline{y}_{i\bullet})$ across genotypes!]

Difference: $r_{ij} = (y_{ij} - \overline{y}_{i\bullet}) - (\overline{y}_{\bullet j} - \overline{y}_{\bullet \bullet}) = (y_{ij} - \overline{y}_{i\bullet} - \overline{y}_{\bullet j} + \overline{y}_{\bullet \bullet})$

$$W_{i} = \sum_{j=1}^{J} (y_{ij} - \overline{y}_{i\bullet} - \overline{y}_{\bullet j} + \overline{y}_{\bullet \bullet})^{2}$$

(Tadeusz Caliński, 1960; Günter Wricke, 1962)

Regression approach

Regression coefficient:

$$b_i$$
 = 1 (Genotype shows average response) \Rightarrow stable \underline{or}

$$b_i$$
 = 0 (Genotype shows no response at all) \Rightarrow stable

Deviations from regression:

$$s_{d(i)}^2$$
 = Variance of deviations from regression = 0 \Rightarrow stable

(Finlay and Wilkinson, 1963; Eberhart and Russell, 1966)

3. Statistical models

2-factorial ANOVA model

$$y_{ij} = \mu + g_i + e_j + (ge)_{ij}$$
,

where

 g_i = main effect of *i*-th genotype

 e_i = main effect of *j*-th environment

 $(ge)_{ij}$ = Interaction of *i*-th genotype with *j*-th environment

Ecovalence \Leftrightarrow Stability variance = $\sigma_{ge(i)}^2 = var[(ge)_{ij}]$

(Wricke, 1962; Shukla, 1972)

Regression approach

$$y_{ij} = \mu + g_i + \beta_i e_j + d_{ij} ,$$

where

 β_i = regression coefficient of *i*-th genotype

 d_{ij} = deviation of *i*-th genotype in *j*-th environment

Variance of deviations d_{ij} as stability measure:

$$\sigma_{d(i)}^2 = var(d_{ij})$$

Stability measures b_i and $s_{d(i)}^2$ are estimators of parameters β_i and $\sigma_{d(i)}^2$

Environmental variance

$$y_{ij} = \mu + g_i + f_{ij} .$$

$$\sigma_{ii} = \text{var}(f_{ij})$$

The environmental variance S_i^2 is an estimator of σ_{ii}

Structure of residual effect f_{ij}

Environmental variance:

none!

Stability variance:

$$f_{ij} = e_j + (ge)_{ij}$$

Regression approach:

$$f_{ij} = \beta_i \mathbf{e}_j + d_{ij}$$

3.1 Random environments, fixed genotypes

Environments:

- Target population of environments (TPE)
- Need representative sample of environments from TPE

Without random sampling of environments stability analysis is of limited value.

⇒ Environments random

Genotypes:

- Objective: Estimation of mean performance of every genotype
- Caracterization of population of genotypes of no interest
- ⇒ Genotypes fixed

But:

- In some circumstances better to take genotypes as random
 - ⇒ Use of pedigree or kinship information in breeding program
- Best Linear Unbiased Prediction (BLUE) for fixed effects tends to be less precise than Best Linear Unbiased Prediction (BLUP) for random effects

3.2 Variance-covariance structures for genotype-environment data

2-factorial ANOVA:

$$y_{ij} = \mu + g_i + e_j + (ge)_{ij}$$

where

$$e_j \sim N(0, \sigma_e^2)$$

and

$$(ge)_{ij} \sim N(0,\sigma_{ge}^2)$$

Variance of an observation: $var(y_{ij}) = \sigma_e^2 + \sigma_{ge}^2$

Covariance among 2 genotypes: $cov(y_{ij}, y_{i'j}) = \sigma_e^2$

Stability variance:

$$(ge)_{ij} \sim N(0,\sigma^2_{ge(i)})$$

Variance of an observation: $var(y_{ij}) = \sigma_e^2 + \sigma_{ge(i)}^2$

Covariance among 2 genotypes: $cov(y_{ij}, y_{i'j}) = \sigma_e^2$

Regression approach:

$$y_{ij} = \mu + g_i + \beta_i e_i + d_{ij}$$

with

$$e_j \sim N(0, \sigma_e^2)$$
 and

$$d_{ij} \sim N(0, \sigma_{d(i)}^2)$$

Variance of an observation: $var(y_{ij}) = \beta_i^2 \sigma_e^2 + \sigma_{d(i)}^2$

Covariance among 2 genotypes: $cov(y_{ij}, y_{i'j}) = \beta_i \beta_{i'} \sigma_e^2$

Environmental variance:

$$y_{ij} = \mu + g_i + f_{ij}$$

Variance of an observation: $var(y_{ij}) = var(f_{ij}) = \sigma_{ii}$

Covariance among 2 genotypes: $cov(y_{ij}, y_{i'j}) = cov(f_{ij}, f_{i'j}) = \sigma_{ii'}$

Tab. 1: Variances and covariances for different models (§: *I* = no. of genotypes).

Model	$var(y_{ij})$	$cov(y_{ij},y_{i'j})$	no. of parameters [§]
2-factorial ANOVA	$\sigma_e^2 + \sigma_{ge}^2$	$\sigma_{\sf e}^2$	2
Stability variance	$\sigma_{e}^2 + \sigma_{ge(i)}^2$	$\sigma_{\sf e}^2$	<i>l</i> + 1
Regression approach	$eta_i^2 \sigma_e^2 + \sigma_{d(i)}^2$	$eta_{i}eta_{i'}\sigma_{e}^{2}$	21
Environmental variance	σ_{ii}	$\sigma_{\!ii'}$	<i>I</i> (<i>I</i> +1)/2

3.3 Estimation of stability and model selection

Tab. 2: Unbalanced dataset from Piepho (1999) (Dataset 1).

Estimating the models

⇒ Restricted Maximum Likelihood (REML) method

(SAS, GENSTAT, ASREML, R)

Model selection

Akaike Information Criterion (AIC):

$$AIC = -2LL_{REML} + 2p$$

where

LL_{REML} = REML log-likelihood

p = number of variance parameters

The smaller the value of AIC the better the model fit

Tab. 3: Fit of different models for Dataset 1.

Model	p ^(a)	AIC (b)
2-factorial ANOVA	2	-273.37
Stability variance	6	-275.26
Regression approach	10	-275.27
Environmental variance	15	-269.94

- (a) p = number of variance parameters
- (b) AIC = Akaike Information Criterion

Tab. 4: Parameter estimates (REML) with standard errors (s.e.) for variance parameters with different stability models (Datenset 1).

Genoty	pe		Stability model						
	Stability var	riance	Re	egression	Environ. variance				
	$\sigma_{ge(i)}^2$ (s	s.e.)	β_i ((s.e.)	$\sigma_{d(i)}^2$	(s.e.)	σ_{ii}	(s.e.)	
1	12.17 (11	.94) 5.2	22 (1	1.51)	16.92	(8.13)	42.36	(13.45)	
2	23.77 (15	7.7	78 (1	1.92)	17.31	(15.60)	78.90	(25.56)	
3	54.36 (27	(.02) 9.6	61 (2	2.37)	43.81	(29.47)	159.04	(57.42)	
4	39.25 (18	.00) 10.7	79 (2	2.05)	19.55	(19.34)	136.15	(40.63)	
5	22.95 (12	.81) 8.0)3 (1	1.81)	29.73	(15.25)	99.66	(32.19)	

Convergence problems with REML

- ⇒ too few environments!
- ⇒ more genotype than environments
- ⇒ model too complex
- ⇒ limit attention to stability variance and regression approach
- ⇒ model environmental main effect as fixed (no recovery of inter-environment information)

4. Sample size

 S_i^2 is an estimator of the true environmental variance σ_{ii}

Coefficient of variation:

$$CV(S_i^2) = \frac{\sqrt{var(S_i^2)}}{E(S_i^2)} = \sqrt{2/(J-1)}$$

J = number of environments

$$J = 50$$
 $\Rightarrow CV(S_i^2) = 20\%$
 $J = 200$ $\Rightarrow CV(S_i^2) = 10\%$

5. Additive Main Effects Multiplicative Interaction (AMMI)

$$y_{ij} = \mu + g_i + e_j + \lambda_{i1} w_{j1} + \lambda_{i2} w_{j2} + \dots + d_{ij}$$

where

 λ_{ik} = coefficients (scores) for genotypes

 w_{jk} = coefficients (scores) for environments, $w_{jk} \sim N(0, 1)$

- ⇒ extension of regression approach
- ⇒ factor environment random: very flexible variance-covariance structure
- \Rightarrow factor-analytic models: $var(y_{1j},...,y_{Ij}) = \Lambda\Lambda^T + D, \Lambda = \{\lambda_{ik}\}, D = diag(\sigma_{d1}^2,...,\sigma_{dI}^2)$
- ⇒ explorative analysis of genotype-environment interactions using biplots

Tab. 5: Dataset 2.

Environment

Genotype	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	2.70	2.32	2.35	1.86	4.76	5.13	2.37	3.18	3.60	3.99	2.51	4.71	2.46	2.98	4.06	2.55	4.10
2	2.77	2.56	2.65	2.03	4.77	4.24	2.31	3.27	3.33	3.86	3.25	4.10	2.97	2.91	4.25	2.35	3.95
3	3.13	3.72	3.47	2.66	6.08	5.74	2.45	4.16	•	4.95	•	•	•	•	•	•	•
4	3.34	3.38	2.52	2.48	5.54	5.46	2.47	3.74	•	4.48	•	•	•	•	•	•	•
5	3.40	3.10	2.73	2.55	5.72	5.71	2.64	3.69	4.00	4.66	2.77	5.56	2.21	2.61	4.15	2.15	4.25
6	2.80	2.31	1.99	1.79	4.39	4.69	2.05	3.13	2.53	•	2.78	4.79	3.12	2.86	3.97	2.70	4.40
7	2.73	2.66	2.02	2.24	5.07	5.12	2.05	3.30	3.30	•	2.80	5.15	2.28	2.49	4.34	1.81	3.54
8	2.77	2.48	2.53	•	•	4.93	2.37	•	3.00	•	2.72	•	•	•	•	•	•
9	2.78	3.23	2.70	2.61	6.24	5.77	2.56	3.82	4.03	4.91	2.94	5.41	2.88	2.57	•	2.44	4.27
10	3.00	2.76	1.59	2.07	5.04	4.56	2.27	3.39	3.25	3.79	•	•	•	•	•	•	•

Fig. 3: Biplot for Dataset 2. Genotypes: G1-G10. Environments: u1-u17.

Tab. 6: Stability variances (Dataset 2).

Genotype	Stability variance
<u></u>	0.0024
G1	0.0931
G2	0.1874
G3	0.1074
G4	0.0110
G5	0.0771
G6	0.2274
G7	0.0239
G8	0.0765
G9	0.0865
G10	0.0682

Generation of biplots

- estimate interaction effects \Rightarrow BLUPs of $\lambda_{i1}w_{j1} + \lambda_{i2}w_{j2}$
- put BLUPs in matrix W (genotypes = rows and environments = columns)
- singular value decomposition (SVD) of the form $W = U \Lambda V$

where Λ = diagonal matrix of singular values U and V = left and right singular vectors

• Scores $U\Lambda$ and $V\Rightarrow$ Euclidean distances between genotypes interpretable

6. Probability methods (Kent Eskridge, 1992)

Tab. 7: Hypothetical yields of 2 genotypes in 6 environments.

			Envir		Mean E	nviron.		
	Α	В	С	D	E	F	Vä	ariance
Genotype 1 Genotype 2		27 37		25 35	22 24	23 32	23.0 29.8	6.0 40.0

Example (Dataset 3):

- CIMMYT data wheat
- South America, 1975 to 1986
- Very unbalanced: only 839 of 4500 year-location-genotype combinations
- 119 year-location combinations
- Square root transformation of data

Probability yield $< \theta$

Fig. 4: Risk that yield falls below threshold θ (dt/ha).

(3-factorial AMMI model)

Threshold θ (dt/ha)

7. Three-factorial analysis of multi-year multi-location data

$$y_{ijk} = \mu + g_i + f_{ij} + a_{ik} + b_{ijk}$$

 f_{ij} = effect of *i*-th genotype at *j*-th location

 a_{ik} = effect of *i*-th genotype in *k*-th year

 b_{iik} = effect of *i*-th genotype at *j*-th location in *k*-th year

Find optimal variance-covariance structures for f_{ij} , a_{ik} , and b_{ijk}

Example:

```
f_{ij} = main effect j-th location + ij-th interaction genotype × location
```

 a_{ik} = main effect k-th year + ik-th interaction genotype × year

 b_{ijk} = main effect jk-th location-year combination

+ *ijk*-th interaction genotype - location - year

For each of the three interaction effects we can estimate a separate stability variance!

Example:

CIMMYT data (wheat; Dataset 3)

```
f_{ij} = main effect j-th location + ij-th interaction genotype × location \Rightarrow ANOVA Modell
```

- a_{ik} = main effect k-th year + ik-th interaction genotype × year \Rightarrow dropped (series spans a whole continent)
- b_{ijk} = main effect jk-th location-year combination
 + ijk-th interaction genotype location year
 ⇒ AMMI1

Tab. 8: Simulated probability to outperform all other 14 genotypes (CIMMYT data; 1.000.000 simulation runs; Piepho & van Eeuwijk, 2002).

Genotype	Probability
1	0.0858
2	0.0385
3	0.0769
4	0.0585
5	0.0341
6	0.0253
7	0.0081
8	0.0389
9	0.0060
10	0.0517
11	0.0401
12	0.2318 ←
13	0.1038
14	0.1864
15	0.0141

8. Making use of environmental covariate information

Example:

- Triticale, regional yield trials (Germany)
- Ackerzahl (AZ) = soil fertility score (0-100)
- Regression approach
- 2 varieties: Alamo and Modus

Fig. 6: Regression of yield on Ackerzahl (AZ) for 2 triticale varieties.

Fig. 7: Risk that Alamo is outperformed by Modus (——) as a function of *Ackerzahl (AZ)*, with 95% confidence limits (——). (Piepho, 2000)

Qualitative information

Example winter wheat:

 23 agro-ecological zones in Germany

Two objectives

- (1) Local adaption: Efficient estimation for spezific zone
- ⇒ Common approach: just use yield data per zone (inefficient)
- (2) **Global adaption**: Efficient estimation of overall mean in target population of environments (across all zones)
- ⇒ Common approach: ignore stratification into zones

Improvement:

- Use all data for both objectives
- Use zones for both objectives
- Use BLUP of genotype-zone effects (Kleinknecht et al. 2013)

9. Time trend for stability

Does stability variance change over time?

Example from our trend analysis:

$$var(GL)_{ij} = \sigma_{GL(1)}^{2} + r_{i}\sigma_{GL(2)}^{2}$$

$$var(GY)_{ik} = \sigma_{GY(1)}^{2} + r_{i}\sigma_{GY(2)}^{2} + t_{k}\sigma_{GY(3)}^{2}$$

$$var(GYL)_{ijk} = \sigma_{GYL(1)}^{2} + r_{i}\sigma_{GYL(2)}^{2} + t_{k}\sigma_{GYL(2)}^{2}$$

 r_i = year of release of variety i

 t_k = calendar year

- ⇒ These are linear regression lines for variance!
- ⇒ Allow variances to become negative: intercepts and slopes can be negative!

Coding the effects in a mixed model package

Genotype-location interaction:

$$G \bullet L + G \bullet L \bullet \sqrt{r_i}$$

Genotype-year interaction:

$$G \bullet Y + G \bullet Y \bullet \sqrt{r_i} + G \bullet Y \bullet \sqrt{t_k}$$

Genotype-year interaction:

$$G \bullet L \bullet Y + G \bullet L \bullet Y \bullet \sqrt{r_i} + G \bullet Y \bullet L \bullet \sqrt{t_k}$$

10. Concluding remarks

- Many stability measures can be defined and estimated as parameters of a mixed model (REML)
- This allows a unified view on stability analysis and different measures of stability
- Choice of stability measure boils down to covariance model selection problem
- There is often a variance mean trade-off
- Probability methods and methods using environmental information particularly promising

References

Kleinknecht, K., Möhring, J., Singh, K.P., Zaidi, P.H., Atlin, G.N., Piepho, H.P., 2013: Comparison of the performance of BLUE and BLUP for zoned Indian maize data. *Crop Science* **53**, 1384-1391.

Piepho, H.P., 1998: Methods for comparing the yield stability of cropping systems - A review. *Journal of Agronomy and Crop Science* **180**, 193-213.

Piepho, H.P., 1999: Stability analysis using the SAS system. Agronomy Journal 91, 154-160.

Piepho, H.P., 2000: A mixed model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. *Genetics* **156**, 253-260.

Piepho, H.P., 2000: Exact confidence limits for covariate-dependent risk in cultivar trials. *Journal of Agricultural, Biological and Environmental Statistics* **5**, 202-213.

Piepho, H.P., Möhring, J., 2005: Best linear unbiased prediction for subdivided target regions. *Crop Science* **45**, 1151-1159.

Piepho, H.P., Möhring, J., 2006: Selection in cultivar trials – is it ignorable? *Crop Science* **146**, 193-202.

Piepho, H.P., van Eeuwijk, F.A., 2002: Stability analyses in crop performance evaluation. pp. 315-351. In: Kang, M. (ed): *Crop improvement: Challenges in the 21st century*. Haworth Press, New York.