Bootcamp Data Science Zajęcia 1

Statystyka

Przemysław Spurek

O co chodzi z tą zmienną losową?

Teoria prawdopodobieństwa zajmuje się zdarzeniami pojawiającymi się przy wykonywaniu doświadczeń losowych, czyli takich, których wyniku nie da się z góry przewidzieć, a jednocześnie dających się powtarzać w tych samych warunkach.

Teoria prawdopodobieństwa zajmuje się zdarzeniami pojawiającymi się przy wykonywaniu doświadczeń losowych, czyli takich, których wyniku nie da się z góry przewidzieć, a jednocześnie dających się powtarzać w tych samych warunkach.

Impuls do rozwoju teorii prawdopodobieństwa dała analiza gier hazardowych (XVII wiek), a także, w późniejszych czasach, analiza zjawisk masowych.

Teoria prawdopodobieństwa zajmuje się zdarzeniami pojawiającymi się przy wykonywaniu doświadczeń losowych, czyli takich, których wyniku nie da się z góry przewidzieć, a jednocześnie dających się powtarzać w tych samych warunkach.

Impuls do rozwoju teorii prawdopodobieństwa dała analiza gier hazardowych (XVII wiek), a także, w późniejszych czasach, analiza zjawisk masowych.

Przykład

Pojedynczy rzut monetą. Możliwe wyniki to orzeł lub reszka.

Doświadczenie można powtarzać wielokrotnie w tych samych warunkach.

Czego można oczekiwać w wyniku wielokrotnego powtórzenia tego doświadczenia?

Zadanie

Rzucamy trzema identycznymi monetami. Oblicz prawdopodobieństwo zdarzenia, polegającego na wyrzuceniu co najmniej dwóch orłów.

Zadanie

Rzucamy trzema identycznymi monetami. Oblicz prawdopodobieństwo zdarzenia, polegającego na wyrzuceniu co najmniej dwóch orłów.

$$\Omega = \{ (O, O, O); (O, O, R); (O, R, O); (R, O, O); (R, R, R); (R, R, O); (R, O, R); (O, R, R); \}$$

Zadanie

Rzucamy trzema identycznymi monetami. Oblicz prawdopodobieństwo zdarzenia, polegającego na wyrzuceniu co najmniej dwóch orłów.

$$\Omega = \{(O, O, O); (O, O, R); (O, R, O); (R, O, O); (R, R, R); (R, R, O); (R, O, R); (O, R, R); \}$$

$$A = \{(O, O, O); (O, O, R); (O, R, O); (R, O, O)\}$$

Zadanie

Rzucamy trzema identycznymi monetami. Oblicz prawdopodobieństwo zdarzenia, polegającego na wyrzuceniu co najmniej dwóch orłów.

$$\Omega = \{ (O, O, O); (O, O, R); (O, R, O); (R, O, O); (R, R, R); (R, R, O); (R, O, R); (O, R, R); \}$$

$$A = \{ (O, O, O); (O, O, R); (O, R, O); (R, O, O) \}$$

Więc moc obu zbiorów wynosi:

$$|\Omega| = 8, \qquad |A| = 4$$

Zadanie

Rzucamy trzema identycznymi monetami. Oblicz prawdopodobieństwo zdarzenia, polegającego na wyrzuceniu co najmniej dwóch orłów.

$$\Omega = \{ (O, O, O); (O, O, R); (O, R, O); (R, O, O); (R, R, R); (R, R, O); (R, O, R); (O, R, R); \}$$

$$A = \{ (O, O, O); (O, O, R); (O, R, O); (R, O, O) \}$$

Wiec moc obu zbiorów wynosi:

$$|\Omega| = 8, \qquad |A| = 4$$

Obliczamy prawdopodobieństwo:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{8} = \frac{1}{2}.$$

Definicja

Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

 σ -ciało podzbiorów Ω . Zdarzeniami nazywać będziemy wyłącznie podzbiory należące do \mathcal{F} . Przełóżmy powyższe wymagania na formalne własności matematyczne zbioru \mathcal{F} :

- $\emptyset \in \mathcal{F}$,
- ② jeżeli $A \in \mathcal{F}$ to $A' = \Omega \setminus A \in \mathcal{F}$,
- $lackbox{0}$ ježeli $A_i \in \mathcal{F}$, dla $i=1,2,\ldots$ to $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Definicja

Rodzinę zdarzeń \mathcal{F} spełniającą warunki (S1-S3) nazywamy σ -ciałem (podzbiorów zbioru Ω).

Możemy teraz zdefiniować miarę probabilistyczną na wprowadzonym σ -ciele.

Definicja

Prawdopodobieństwem nazywamy dowolna funkcję $P\colon \mathcal{F}\to \mathbb{R}$ o wartościach rzeczywistych, określoną na σ -ciele zdarzeń $\mathcal{F}\subset 2^\Omega$, spełniającą warunki:

- $P(A) \geq 0$ dla każdego $A \in \mathcal{F}$,
- P(Ω) = 1.
- ullet Jeżeli $A_i \in \mathcal{F}$, $i=1,2,\ldots$ oraz $A_i \cap A_j = \emptyset$ dla $i \neq j$, to

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i}).$$

Matematyczny model doświadczenia losowego to trójka

$$(\Omega, \mathcal{F}, P),$$

gdzie P jest prawdopodobieństwem, określonym na pewnym σ -ciele podzbiorów zbioru zdarzeń elementarnych Ω .

Taką trojkę nazywamy przestrzenią probabilistyczną.

Definicja

Prawdopodobieństwo warunkowe zdarzenia A pod warunkiem zdarzenia B określone jest wzorem:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

przy założeniu, że P(B) > 0.

Własność

$$P(A \cap B) = P(A|B) \cdot P(A)$$

dla P(B) > 0.

Zadanie

Zadanie

$$\Omega = \{(o, o, o), (o, o, r), (o, r, o), (o, r, r), (r, o, o), (r, o, r), (r, r, o), (r, r, r)\}$$

Zadanie

```
\begin{split} \Omega &= \\ \{(o,o,o),(o,o,r),(o,r,o),(o,r,r),(r,o,o),(r,o,r),(r,r,o),(r,r,r)\} \\ \text{Prawdopodobieństwo wylosowania trzech orłów pod rząd: } P(A) &= \frac{1}{8} \\ \text{Prawdopodobieństwo wylosowania nieparzystej ilości orłów: } P(B) &= \frac{4}{8} \end{split}
```

Zadanie

$$\begin{split} \Omega &= \\ \{(o,o,o),(o,o,r),(o,r,o),(o,r,r),(r,o,o),(r,o,r),(r,r,o),(r,r,r)\} \\ \text{Prawdopodobieństwo wylosowania trzech orłów pod rząd: } P(A) &= \frac{1}{8} \\ \text{Prawdopodobieństwo wylosowania nieparzystej ilości orłów: } P(B) &= \frac{4}{8} \\ \text{Prawdopodobieństwo warunkowe zdarzenia A pod warunkiem zdarzenia B} \end{split}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\{(r,r,r)\} \cap \{(o,o,r),(o,r,o),(r,o,o),(r,r,r)\})}{P(\{(o,o,r),(o,r,o),(r,o,o),(r,r,r)\})} = \frac{\frac{1}{8}}{\frac{4}{8}} = \frac{1}{8} \cdot \frac{8}{4} = \frac{1}{4}$$

Wzór na prawdopodobieństwo całkowite

Jeżeli $\{H_1,H_2,\ldots,H_n\}$ jest **rozbiciem** Ω na zdarzenia o dodatnich prawdopodobieństwach, to dla dowolnego zdarzenia A

$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i).$$

Wzór na prawdopodobieństwo całkowite

Jeżeli $\{H_1,H_2,\ldots,H_n\}$ jest **rozbiciem** Ω na zdarzenia o dodatnich prawdopodobieństwach, to dla dowolnego zdarzenia A

$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i).$$

Zadanie

Pierwsza urna zawiera 4 białe i jedną czarną kulę, druga – 2 białe i 3 czarne. Losujemy urnę tak, by szansa wybrania pierwszej urny była dwukrotnie mniejsza niż drugiej. Następnie z wybranej urny losujemy kulę. Jakie jest prawdopodobieństwo wylosowania kuli białej.

Możemy narysować drzewo:

Oznaczmy:

 H_1 - wyboru pierwszej urny $(P(H_1) = \frac{1}{3})$ H_2 - wyboru drugiej urny $(P(H_2) = \frac{2}{3})$

A - wylosowano kulę białą

Z treści zadania wiemy, że $P(H_2)=2\cdot P(H_1)$. Wiadomo również, że $P(H_1\cup H_2)=1$ oraz $P(H_1\cap H_2)=\emptyset$. Czyli $P(H_1)=\frac{1}{3}$ oraz $P(H_2)=\frac{2}{3}$. Podstawiając do wzoru na prawdopodobieństwo całkowite otrzymujemy:

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) = \frac{4}{5} \cdot \frac{1}{3} + \frac{2}{5} \cdot \frac{2}{3} = \frac{8}{15}$$

gdzie:

 $P(A|H_1)$ – prawdopodobiestwo wylosowania bialej kuli z pierwszej urny $P(A|H_2)$ – prawdopodobiestwo wylosowania bialej kuli z drugiej urny

Wzór Bayesa

Jeżeli $\{H_i\}_{i\in I}$ jest przeliczalnym rozbiciem Ω na zdarzenia o dodatnich prawdopodobieństwach oraz P(A) > 0, to dla dowolnego $j \in I$ mamy

$$P(H_j|A) = \frac{P(A|H_j)P(H_j)}{\sum_{i \in I} P(A|H_i)P(H_i)}.$$

Wzór Bayesa

Jeżeli $\{H_i\}_{i\in I}$ jest przeliczalnym rozbiciem Ω na zdarzenia o dodatnich prawdopodobieństwach oraz P(A)>0, to dla dowolnego $j\in I$ mamy

$$P(H_j|A) = \frac{P(A|H_j)P(H_j)}{\sum_{i \in I} P(A|H_i)P(H_i)}.$$

Uwaga

Prawdopodobieństwo hipotetyczne $P(H_i)$ nazywamy prawdopodobieństwem a priori (przed doświadczeniem), $P(H_i|A)$ prawdopodobieństwem a posteriori (po doświadczeniu).

Zadanie

W sytuacji z poprzedniego zadania oblicz prawdopodobieństwo, że losowano z drugiej urny gdy wynikiem losowania jest kula biała.

Możemy narysować drzewo:

Oznaczmy:

 H_1 - wyboru pierwszej urny $(P(H_1) = \frac{1}{3})$

 H_2 - wyboru drugiej urny $(P(H_2) = \frac{2}{3})$

A - wylosowano kulę białą Z Rozwiązania poprzedniego zadania wiemy, że

$$P(A)=\frac{8}{15}.$$

W takiej sytuacji: $P(H_2|A)$ - oznacza prawdopodobieństwo, że losowano z drugiej urny gdy wynikiem losowania jest kula biała. Z tw. Bayesa mamy:

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)} = \frac{\frac{2}{5} \cdot \frac{2}{3}}{\frac{8}{15}} = \frac{\frac{4}{15}}{\frac{8}{15}} = \frac{1}{2}.$$

Definicja

Zdarzenia A i B nazywamy niezależnymi, gdy

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Zadanie

Z 52 kart ciągniemy jedną. Czy zdarzenia w następujących parach są niezależne:

- A Wyciągnięcie damy, B wyciągnięcie karo
- A Wyciągnięcie czerwonej figury, B wyciągnięcie kiera

Zadanie

Z 52 kart ciągniemy jedną. Czy zdarzenia w następujących parach są niezależne:

- A Wyciągnięcie damy, B wyciągnięcie karo
- A Wyciągnięcie czerwonej figury, B wyciągnięcie kiera
- 1. A Wyciągnięcie damy, B wyciągnięcie karo

$$P(A) = \frac{4}{52}, \quad P(B) = \frac{13}{52}$$

$$P(A \cap B) = \frac{1}{52}$$

$$P(A \cap B) = \frac{1}{52}$$

 $P(A \cap B) = \frac{1}{52} = \frac{4}{52} \frac{13}{52} = P(A) \cdot P(B)$.

Zadanie

Z 52 kart ciągniemy jedną. Czy zdarzenia w następujących parach są niezależne:

- A Wyciągnięcie damy, B wyciągnięcie karo
- 2 A Wyciągnięcie czerwonej figury, B wyciągnięcie kiera
- 1. A Wyciągnięcie damy, B wyciągnięcie karo

$$P(A) = \frac{4}{52}, \quad P(B) = \frac{13}{52}$$

$$P(A \cap B) = \frac{1}{52}$$

$$P(A \cap B) = \frac{32}{52} = \frac{4}{52} \frac{13}{52} = P(A) \cdot P(B).$$

Zdarzenia są niezależne.

2. A – Wyciągnięcie czerwonej figury, B – wyciągnięcie kiera

$$P(A) = \frac{8}{52}, \quad P(B) = \frac{13}{52}$$

$$P(A) \cdot P(B) = \frac{8}{52} \cdot \frac{13}{52} = \frac{2}{52}, \quad P(A \cap B) = \frac{4}{52}$$

$$P(A \cap B) \neq P(A) \cdot P(B)$$
.

Zdarzenia są zależne.

Zmienne losowe.

Oznaczenie

 $\mathcal{B}(\mathbb{R})$ – rodzina zbiorów Borelowskich.

Oznaczenie

 $\mathcal{B}(\mathbb{R})$ – rodzina zbiorów Borelowskich.

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Funkcję $X:\Omega\to\mathbb{R}$ określoną na przestrzeni zdarzeń elementarnych nazywamy zmienną losową o wartościach w \mathbb{R} jeżeli dla każdego $a\in\mathbb{R}$ zbiór $X^{-1}((\infty,a))$ jest zdarzeniem elementarnym, czyli $X^{-1}((\infty,a))\in\mathcal{F}$.

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut symetryczną monetą:

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

• Rzut symetryczną monetą: $X: \Omega \to \{0,1\}, \text{ gdzie}$

$$X(O) = 0, \quad X(R) = 1,$$

$$P(X = 0) = \frac{1}{2}, \quad P(X = 1) = \frac{1}{2}.$$

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

• Rzut symetryczną monetą: $X: \Omega \rightarrow \{0, 1\}, \text{ gdzie}$

$$X(O) = 0, \quad X(R) = 1,$$

 $P(X = 0) = \frac{1}{2}, \quad P(X = 1) = \frac{1}{2}.$

Wybór jednej karty z tali:

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

• Rzut symetryczną monetą: $X: \Omega \rightarrow \{0,1\}$, gdzie

$$X(O) = 0, \quad X(R) = 1,$$

 $P(X = 0) = \frac{1}{2}, \quad P(X = 1) = \frac{1}{2}.$

• Wybór jednej karty z tali: $X: \Omega \to \{1, 2, \dots, 52\}$, gdzie

$$X(As \ kier) = 1, \dots, X(2 \ pik) = 52,$$

 $P(X = i) = \frac{1}{52}, \ dla \ i = 1, \dots, 52.$

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut kostką:

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut kostką:

$$X \colon \Omega \to \{1,2,3,4,5,6\}$$
, gdzie

$$X(wypada\ 1) = 1, \dots, X(wypada\ 6) = 6,$$
 $P(X = i) = \frac{1}{6}, \ dla \ i = 1, \dots, 6.$

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut kostką:

$$X \colon \Omega \to \{1,2,3,4,5,6\}$$
, gdzie

$$X(wypada\ 1)=1,\ldots,X(wypada\ 6)=6,$$

$$P(X=i)=rac{1}{6},\ \mathsf{dla}\ i=1,\ldots,6.$$

 Odbiór partii produktów, z których 98% jest dobra, a pozostała wybrakowana:

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut kostką:

$$X \colon \Omega \to \{1,2,3,4,5,6\}$$
, gdzie

$$X(wypada\ 1)=1,\ldots,X(wypada\ 6)=6,$$
 $P(X=i)=rac{1}{6},\ \mathsf{dla}\ i=1,\ldots,6.$

 Odbiór partii produktów, z których 98% jest dobra, a pozostała wybrakowana:

$$X \colon \Omega \to \{0,1\}$$
, gdzie

$$X(produkt\ dobry) = 0, \quad X(produkt\ wybrakowany) = 1,$$

$$P(X = 0) = \frac{98}{100}, \quad P(X = 1) = \frac{2}{100}.$$

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Rozkładem prawdopodobieństwa zmiennej losowej $X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ nazywamy prawdopodobieństwo *miara* $_X$, określone na $\mathcal{B}(\mathbb{R})$ zależnością:

$$miara_X(B) = P(X^{-1}(B)), \quad B \in \mathcal{B}(\mathbb{R}).$$

Oznaczenie

 $P(X^{-1}(B))$ można również zapisywać:

$$P(X^{-1}(B)) = P(\{\omega \in \Omega \colon X(\omega) \in B\}) = P(X \in B).$$

Ostatniej, skrótowej wersji będziemy używać najczęściej.

Po co nam te zmienne losowe?

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut monetą (nie koniecznie symetryczną):

$$X \colon \Omega \to \{0,1\}$$
, gdzie $X(O) = 0$, $X(R) = 1$,

$$P(X = 0) = p, \quad P(X = 1) = (1 - p).$$

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

Rzut monetą (nie koniecznie symetryczną):

$$X \colon \Omega \to \{0,1\}$$
, gdzie $X(\mathcal{O}) = 0$, $X(R) = 1$,

$$P(X = 0) = p, \quad P(X = 1) = (1 - p).$$

Płeć noworodka:

$$X: \Omega \to \{0,1\}$$
, gdzie $X(Ch) = 0$, $X(Dzi) = 1$,

$$P(X = 0) = p, \quad P(X = 1) = (1 - p).$$

Zdefiniuj zmienną losową dla poniższych "zdarzeń":

• Rzut monetą (nie koniecznie symetryczną):

$$X \colon \Omega \to \{0,1\}$$
, gdzie $X(\mathcal{O}) = 0$, $X(R) = 1$,

$$P(X = 0) = p, \quad P(X = 1) = (1 - p).$$

Płeć noworodka:

$$X \colon \Omega \to \{0,1\}$$
, gdzie $X(\mathit{Ch}) = 0$, $X(\mathit{Dzi}) = 1$,

$$P(X = 0) = p, \quad P(X = 1) = (1 - p).$$

Wygrana w totolotka:

$$X: \Omega \rightarrow \{0,1\}$$
, gdzie $X(Wyg) = 0$, $X(Prze) = 1$,

$$P(X = 0) = p$$
, $P(X = 1) = (1 - p)$.

Zmienne losowe o rozkładzie dyskretnym

Zmienne losowe o rozkładzie dyskretnym

Definicja¹

Zmienna losowa X ma rozkład dyskretny, jeśli istnieje taki zbiór przeliczalny $S \subset \mathbb{R}$, taki że $miara_X(S) = 1$.

Zmienne losowe o rozkładzie dyskretnym

Definicja¹

Zmienna losowa X ma rozkład dyskretny, jeśli istnieje taki zbiór przeliczalny $S \subset \mathbb{R}$, taki że $miara_X(S) = 1$.

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z1.ipynb

Próba Bernoulliego (rozkład zero-jedynkowy) – dyskretny rozkład prawdopodobieństwa, dla którego zmienna losowa przyjmuje tylko wartości: 0 lub 1:

$$P(X = k) = \begin{cases} p & \text{gdy } k = 0 \\ 1 - p & \text{gdy } k \neq 1 \end{cases},$$

gdzie $0 , in <math>\{0, 1\}$.

Powyższą funkcję opisującą prawdopodobieństwo wystąpienia każdego z elementów nazywamy funkcją gęstości (probability mass function (PMF)).

Definiujemy zmienną losową

```
from scipy import stats
p = 0.5
bernoulliDist = stats.bernoulli(p)
```

Możemy wypisać parametry

```
p_tails = bernoulliDist.pmf(0)
p_heads = bernoulliDist.pmf(1)
print(p_tails)
print(p_heads)
```

Możemy wylosować próbkę oraz narysować histogram

```
trials = bernoulliDist.rvs(100)
trials
plt.hist(trials)
plt.show()
```

Rysujemy gęstość

Rysujemy dystrybuantę

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z2.ipynb

 Jeśli wielokrotnie rzucimy monety i pytamy "Jak często pojawiłaby się reszka?" to dostajemy rozkład dwumianowy.

https:

- Jeśli wielokrotnie rzucimy monety i pytamy "Jak często pojawiłaby się reszka?" to dostajemy rozkład dwumianowy.
- Ogólnie rzecz biorąc, rozkład dwumianowy jest związany z pytaniem
 "Z danej (stałej) liczby prób, ile zakończyło się sukcesem?"

https:

- Jeśli wielokrotnie rzucimy monety i pytamy "Jak często pojawiłaby się reszka?" to dostajemy rozkład dwumianowy.
- Ogólnie rzecz biorąc, rozkład dwumianowy jest związany z pytaniem
 "Z danej (stałej) liczby prób, ile zakończyło się sukcesem?"
- Przykłady:

https:

- Jeśli wielokrotnie rzucimy monety i pytamy "Jak często pojawiłaby się reszka?" to dostajemy rozkład dwumianowy.
- Ogólnie rzecz biorąc, rozkład dwumianowy jest związany z pytaniem
 "Z danej (stałej) liczby prób, ile zakończyło się sukcesem?"
- Przykłady:
 - Dla dzieci urodzonych w danym szpitalu, w danym dniu, ile z nich będzie dziewczynkami?

https:

- Jeśli wielokrotnie rzucimy monety i pytamy "Jak często pojawiłaby się reszka?" to dostajemy rozkład dwumianowy.
- Ogólnie rzecz biorąc, rozkład dwumianowy jest związany z pytaniem
 "Z danej (stałej) liczby prób, ile zakończyło się sukcesem?"
- Przykłady:
 - Dla dzieci urodzonych w danym szpitalu, w danym dniu, ile z nich będzie dziewczynkami?
 - Ilu uczniów w danej klasie ma zielone oczy?

https:

- Jeśli wielokrotnie rzucimy monety i pytamy "Jak często pojawiłaby się reszka?" to dostajemy rozkład dwumianowy.
- Ogólnie rzecz biorąc, rozkład dwumianowy jest związany z pytaniem
 "Z danej (stałej) liczby prób, ile zakończyło się sukcesem?"
- Przykłady:
 - Dla dzieci urodzonych w danym szpitalu, w danym dniu, ile z nich będzie dziewczynkami?
 - Ilu uczniów w danej klasie ma zielone oczy?
 - Ile komarów z roju umrze po zastosowaniu oprysku środkiem owadobójczym?

Gdy zmienna losowa X ma rozkład dwumianowy z parametrami p i n, zapisujemy go jako $X \sim B(n, p)$, a gęstość wyrażona jest wzorem:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k},$$

$$\operatorname{gdzie} \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Rysujemy gęstość

Rysujemy dystrybuantę

Gęstości rozkładu dwumianowego z różnymi parametrami

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z3.ipynb

Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.

https:

- Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.
- Rozkład dwumianowy sprawdza, ile razy rejestruje się sukces w stosunku do stałej liczby prób, a rozkład Poissona określa, ile razy występuje dyskretne zdarzenie (najczęściej w jakimś ustalonym czasie).

https:

- Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.
- Rozkład dwumianowy sprawdza, ile razy rejestruje się sukces w stosunku do stałej liczby prób, a rozkład Poissona określa, ile razy występuje dyskretne zdarzenie (najczęściej w jakimś ustalonym czasie).
- Nie ma "ustalonej" ilości możliwych sukcesów (parametru n). Rozkład Poissona jest określony przez pojedynczy parametr λ .

https:

- Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.
- Rozkład dwumianowy sprawdza, ile razy rejestruje się sukces w stosunku do stałej liczby prób, a rozkład Poissona określa, ile razy występuje dyskretne zdarzenie (najczęściej w jakimś ustalonym czasie).
- Nie ma "ustalonej" ilości możliwych sukcesów (parametru n). Rozkład Poissona jest określony przez pojedynczy parametr λ .
- Przykłady:

https:

- Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.
- Rozkład dwumianowy sprawdza, ile razy rejestruje się sukces w stosunku do stałej liczby prób, a rozkład Poissona określa, ile razy występuje dyskretne zdarzenie (najczęściej w jakimś ustalonym czasie).
- Nie ma "ustalonej" ilości możliwych sukcesów (parametru n). Rozkład Poissona jest określony przez pojedynczy parametr λ .
- Przykłady:
 - Ile groszy znajdę podczas mojego spaceru do domu?

https:

- Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.
- Rozkład dwumianowy sprawdza, ile razy rejestruje się sukces w stosunku do stałej liczby prób, a rozkład Poissona określa, ile razy występuje dyskretne zdarzenie (najczęściej w jakimś ustalonym czasie).
- Nie ma "ustalonej" ilości możliwych sukcesów (parametru n). Rozkład Poissona jest określony przez pojedynczy parametr λ .
- Przykłady:
 - Ile groszy znajdę podczas mojego spaceru do domu?
 - Ilu dzieci urodzi się dzisiaj w szpitalu?

https:

- Rozkład Poissona jest bardzo podobny do rozkładu dwumianowego.
 Różnica jest subtelna.
- Rozkład dwumianowy sprawdza, ile razy rejestruje się sukces w stosunku do stałej liczby prób, a rozkład Poissona określa, ile razy występuje dyskretne zdarzenie (najczęściej w jakimś ustalonym czasie).
- Nie ma "ustalonej" ilości możliwych sukcesów (parametru n). Rozkład Poissona jest określony przez pojedynczy parametr λ .
- Przykłady:
 - Ile groszy znajdę podczas mojego spaceru do domu?
 - Ilu dzieci urodzi się dzisiaj w szpitalu?
 - Ile jest dziur na 100 metrowym odcinku drogi?

Rozkład Poissona

Zamiast parametru p, który reprezentuje prawdopodobieństwo sukcesu w jednej próbie Bernoulliego (jak w rozkładzie dwumianowym), tym razem mamy parametr λ , który oznacza "średnią lub przewidywaną" liczbę zdarzeń, które mają wystąpić w naszym eksperymencie. Rozkład prawdopodobieństwa zmiennej losowej X o rozkładzie Poissona z parametrem $\lambda>0$ wyraża sie wzorem:

$$P(X=k)=e^{-\lambda}\cdot\frac{\lambda^k}{k!}.$$

Rozkład Poissona

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z3.ipynb

Zadanie

Proszę napisać skrypt w Pythonie, w którym:

- ullet zdefiniujesz zmienną losową o rozkładzie Poissona $\lambda=2$,
- narysujesz dla niej gęstość i dystrybuantę,
- wylosujesz próbkę i narysujesz histogram,
- ullet narysujesz kilka gęstości rozkładu Poissona $\lambda=1,4,10,$
- (dla chętnych) policzysz skośność i kurtozę dla gęstości Poissona $\lambda=1,4,10$.

Zmienne losowe o rozkładzie ciągłym

Zmienne losowe o rozkładzie ciągłym

Definicja

Zmienna losowa X ma rozkład ciągły, jeśli istnieje taka funkcja $f:\mathbb{R} \to \mathbb{R}$, że

$$miara_X(A) = \int_A f(x)dx, \quad A \in \mathcal{B}(\mathbb{R}).$$

Wtedy f nazywamy gęstością rozkładu $miara_X$.

Rozkład ciągły

Przykład

Wiele pomiarów ma wyniki, który nie są ograniczone do wartości całkowitych/dyskretnych, np. waga osoby może być dowolną liczbą dodatnią.

W tym przypadku krzywa opisująca prawdopodobieństwo dla każdej wartości, to znaczy rozkład prawdopodobieństwa, jest funkcją i nazywamy ją funkcją gęstości prawdopodobieństwa (PDF).

Rozkład ciągły

Podobnie jak w przypadku dyskretnym mamy:

•

$$0 \le f(x), \quad \forall x \in \mathbb{R}$$

•

$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

Rozkład jednostajny

Gęstość zmienna losowa X o rozkładzie jednostajnym na odcinku [a,b] $(a < b \text{ oraz } a,b \in \mathbb{R})$ jest dana przez:

$$\chi_{[a,b]}(x) = \begin{cases} \frac{1}{b-a} & \text{gdy } x \in [a,b] \\ 0 & \text{gdy } x \notin [a,b] \end{cases}$$

Przykład w Jupyter

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z4.ipynb

Rozkład normalny to najważniejszy rozkład prawdopodobieństwa. Wynika to z faktu, że średnie wartości wszystkich rozkładów przybliża rozkład normalny.

Gęstość zmienna losowa X o rozkładzie normalnym z parametrami μ i σ jest dana przez:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z5.ipynb

Zadanie

Proszę napisać skrypt w Pythonie, w którym:

- ullet zdefiniujesz zmienną losową o rozkładzie normalnym $\mu=$ 0, $\sigma=$ 1,
- narysujesz dla niej gęstość i dystrybuantę,
- wylosujesz próbkę i narysujesz histogram (na jednym rysunku),
- narysujesz kilka gęstości rozkładu normalnego z różnymi parametrami,
- wylosujesz kilka próbek dla zmiennej losowej o rozkładzie normalnym $\mu=0,\ \sigma=1.$ (Czemu się od siebie różnią?),
- ullet policzysz skośność i kurtozę dla gęstości Poissona $\mu=0$, $\sigma=1$.

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Dystrybuantą zmiennej losowej $X: \Omega \to \mathbb{R}$ Nazywany funkcję $F_X: \mathbb{R} \to \mathbb{R}$, określoną zależnością:

$$F_X(t) = P(X \leq t).$$

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Dystrybuantą zmiennej losowej $X: \Omega \to \mathbb{R}$ Nazywany funkcję $F_X: \mathbb{R} \to \mathbb{R}$, określoną zależnością:

$$F_X(t) = P(X \leq t).$$

Uwaga

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Dystrybuantą zmiennej losowej $X: \Omega \to \mathbb{R}$ Nazywany funkcję $F_X: \mathbb{R} \to \mathbb{R}$, określoną zależnością:

$$F_X(t) = P(X \leq t).$$

Uwaga

Dystrybuanta F_X zmiennej losowej X ma następujące własności:

a) F_X jest nie malejąca,

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Dystrybuantą zmiennej losowej $X: \Omega \to \mathbb{R}$ Nazywany funkcję $F_X: \mathbb{R} \to \mathbb{R}$, określoną zależnością:

$$F_X(t) = P(X \leq t).$$

Uwaga

- a) F_X jest nie malejąca,
- b) $\lim_{t\to\infty} F_X(t) = 1$,

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Dystrybuantą zmiennej losowej $X: \Omega \to \mathbb{R}$ Nazywany funkcję $F_X: \mathbb{R} \to \mathbb{R}$, określoną zależnością :

$$F_X(t) = P(X \leq t).$$

Uwaga

- a) F_X jest nie malejąca,
- b) $\lim_{t\to\infty} F_X(t) = 1$,
- c) $\lim_{t\to-\infty} F_X(t) = 0$,

Definicja

Niech będzie dana przestrzeń probabilistyczna (Ω, \mathcal{F}, P) . Dystrybuantą zmiennej losowej $X: \Omega \to \mathbb{R}$ Nazywany funkcję $F_X: \mathbb{R} \to \mathbb{R}$, określoną zależnością:

$$F_X(t) = P(X \leq t).$$

Uwaga

- a) F_X jest nie malejąca,
- b) $\lim_{t\to\infty} F_X(t) = 1$,
- c) $\lim_{t\to-\infty} F_X(t) = 0$,
- d) F_X jest prawostronnie ciągła

Uwaga

Jeżeli $f_X\colon \mathbb{R} \to [0,+\infty]$ jest gęstością ciągłej zmiennej losowej X to:

$$\int_{-\infty}^{x} f_X(t)dt = P((-\infty, x]) = F_X(x),$$

gdzie F_X jest dystrybuantą zmiennej losowej X.

Uwaga

Jeżeli $f_X\colon \mathbb{R} \to [0,+\infty]$ jest gęstością ciągłej zmiennej losowej X to:

$$\int_{-\infty}^{x} f_X(t)dt = P((-\infty, x]) = F_X(x),$$

gdzie F_X jest dystrybuantą zmiennej losowej X.

Uwaga

Jeśli F_X jest dystrybuantą to jest ona prawie wszędzie różniczkowalna oraz jeśli F_X' (określona prawie wszędzie) jest prawie wszędzie różna od zera, to jest ona gęstością:

$$F_X'(x) = f(x).$$

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z6.ipynb

Zgodnie z naszymi wzorami:

$$P(X \in [-\infty, x_0]) = \int_{\infty}^{x_0} f_X(x) dx = P(X \le x_0) = F_X(x_0)$$

Zadanie 1

Napisz skrypt, który będzie liczył prawdopodobieństwo:

$$P(X \in [x_0, \infty]) = \int_{x_1}^{\infty} f_X(x) dx = P(X \ge x_0) = 1 - F_X(x_1)$$

◀□▶◀∰▶◀콜▶◀콜▶ 콜 ❤)Ⴁ

Zadanie 2

Napisz skrypt, który będzie liczył prawdopodobieństwo:

$$P(X \in [-\infty, x_1] \cup [x_2 \infty]) = \int_{\infty}^{x_1} f_X(x) dx + \int_{x_2}^{\infty} f_X(x) dx$$

= $P(X \le x_2 \text{ or } X \ge x_2) = F_X(x_2) + 1 - F_X(x_1)$

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z7.ipynb

Zadanie 3

Niech X będzie zmienną losową o rozkładzie $N(\mu=0,\sigma^2=1)$. Obliczyć:

- $P(X \leq -0.4)$,
- $P(X \in (-0.2, 0.6))$,
- $P(X \ge -0.2)$,
- $P(|X| \le 1)$.

•
$$P(X \le -0.4) = CDF(-0.4) = 1 - CDF(0.4) = 1 - 0.6554 = 0.3446$$
.

•
$$P(X \le -0.4) = CDF(-0.4) = 1 - CDF(0.4) = 1 - 0.6554 = 0.3446.$$

•
$$P(-0.2 < X < 0.6) = CDF(0.6) - CDF(-0.2) =$$

•
$$P(X \le -0.4) = CDF(-0.4) = 1 - CDF(0.4) = 1 - 0.6554 = 0.3446.$$

•
$$P(-0.2 < X < 0.6) = CDF(0.6) - CDF(-0.2) =$$

= $CDF(0.6) - (1 - CDF(0.2)) = CDF(0.6) - 1 + CDF(0.2) =$
 $0.7257 - 1 + 0.5793 = 0.305$

Survival Function

Survival Function

Jak widzimy czasami w obliczeniach przydaje się funkcja 1-CDF(x), którą nazywa się Survival Function

$$SF(x) = 1 - CDF(x)$$

•
$$P(X \le -0.4) = CDF(-0.4) = 1 - CDF(0.4) = 1 - 0.6554 = 0.3446.$$

•
$$P(-0.2 < X < 0.6) = CDF(0.6) - CDF(-0.2) =$$

= $CDF(0.6) - (1 - CDF(0.2)) = CDF(0.6) - 1 + CDF(0.2) =$
 $0.7257 - 1 + 0.5793 = 0.305$

- $P(X \le -0.4) = CDF(-0.4) = 1 CDF(0.4) = 1 0.6554 = 0.3446.$
- P(-0.2 < X < 0.6) = CDF(0.6) CDF(-0.2) == CDF(0.6) - (1 - CDF(0.2)) = CDF(0.6) - 1 + CDF(0.2) =0.7257 - 1 + 0.5793 = 0.305
- $P(X \ge -0.2) = 1 P(X \le -0.2) = 1 (1 CDF(0.2)) = 1 1 + CDF(0.2) = CDF(0.2) = 0.5793.$

- $P(X \le -0.4) = CDF(-0.4) = 1 CDF(0.4) = 1 0.6554 = 0.3446.$
- P(-0.2 < X < 0.6) = CDF(0.6) CDF(-0.2) == CDF(0.6) - (1 - CDF(0.2)) = CDF(0.6) - 1 + CDF(0.2) =0.7257 - 1 + 0.5793 = 0.305
- $P(X \ge -0.2) = 1 P(X \le -0.2) = 1 (1 CDF(0.2)) = 1 1 + CDF(0.2) = CDF(0.2) = 0.5793.$
- $P(-1 \le X \le 1) = CDF(1) CDF(-1) = CDF(1) (1 CDF(1)) = CDF(1) 1 + CDF(1) = 0.8413 1 + 0.8413 = 0.6826.$

Wartość oczekiwana

Definicja Nadzieja matematyczna (wartością oczekiwaną)

Niech (Ω, Σ, P) będzie przestrzenią probabilistyczną, zaś $X : \Omega \longrightarrow \mathbb{R}$ - zmienną losową o rozkładzie dyskretnym:

$$P(X=x_i)=p_i,\ i=1,\ldots,N,\ N\leq\infty.$$

Nadzieją matematyczną nazywamy liczbę:

$$m = \mathbb{E}(X) = \mathbb{E}X = \sum_{i=1}^{N} x_i p_i.$$

Niech (Ω, Σ, P) będzie przestrzenią probabilistyczną, zaś $X \colon \Omega \longrightarrow \mathbb{R}$ -zmienną losową o rozkładzie ciągłym z gęstością f, wtedy:

$$m = \mathbb{E}(X) = \mathbb{E}X = \int_{-\infty}^{\infty} x f(x) dx.$$

Wariancja i odchylenie standardowe

Definicja Wariancja i odchylenie standardowe

Niech (Ω, Σ, P) będzie przestrzenią probabilistyczną, zaś $X: \Omega \longrightarrow \mathbb{R}$ - zmienną losową, posiadającą skończoną wartość oczekiwaną $m = \mathbb{E}(X)$. Wariancją zmiennej losowej X nazywamy liczbę:

$$\sigma^2 = \mathbb{D}^2(X) = \mathbb{D}^2 X = \mathbb{E}((X - m)^2),$$

natomiast liczbę:

$$\sigma = \sqrt{\mathbb{D}^2(X)} = \sqrt{\mathbb{D}^2 X}$$

nazywamy odchyleniem standardowym zmiennej X.

Wariancja i odchylenie standardowe

Uwaga

W przypadku zmiennej losowej o rozkładzie dyskretnym wariancję obliczamy ze wzoru:

$$\mathbb{D}^{2}(X) = \sum_{i=1}^{N} (x_{i} - m)^{2} p_{i}.$$

Uwaga

W przypadku zmiennej losowej o rozkładzie ciągłym wariancję obliczamy ze wzoru:

$$\mathbb{D}^2(X) = \int_{-\infty}^{\infty} (x - m)^2 f(x) \, dx.$$

Przykład

Obliczymy wartość oczekiwaną zmiennej losowej o rozkładzie jednostajnym na przedziale o końcach a i b.

Otrzymujemy:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} xf(x) dx = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{a+b}{2}.$$

Przykład

Obliczymy wariancję zmiennej losowej o rozkładzie jednostajnym na przedziale o końcach *a* i *b*.

Wiemy już, że $m = \mathbb{E}(X) = \frac{a+b}{2}$. Mamy więc:

$$\mathbb{D}^{2}(X) = \int_{-\infty}^{\infty} (x-m)^{2} f(x) dx = \frac{1}{b-a} \int_{a}^{b} \left(x - \frac{a+b}{2}\right)^{2} dx = \frac{(b-a)^{2}}{12}.$$

Kwantyle

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z8.ipynb

Dla każdej dystrybuanty F, a więc też dla każdej zmiennej losowej, określa się tak zwany kwantyl rzędu p, gdzie 0 . Jest to liczba:

$$q_p = \min\{x : F(x) \ge p\}.$$

Kwantyle

W przypadku gdy dystrybuanta jest funkcją odwracalną, określenie kwantyla znacznie się upraszcza:

$$q_p=F^{-1}(p).$$

Kwantyle

W przypadku gdy dystrybuanta jest funkcją odwracalną, określenie kwantyla znacznie się upraszcza:

$$q_p = F^{-1}(p).$$

Wówczas kwantyl ma prostą interpretację w języku zmiennych losowych. Mianowicie:

$$P(X < q_p) = P(X \le q_p) = F(q_p) = p,$$

 $P(X > q_p) = 1 - P(X \le q_p) = 1 - F(q_p) = 1 - p.$

Odwrotna do dystry<u>buanty</u>

Jak widzimy czasami w obliczeniach przydaje się funkcja odwrotna do dystrybuanty $CDF^{-1}(x)$, którą nazywa się Percentile Point Function (PPF):

$$PPF(x) = CDF^{-1}(x)$$

Zadanie 1

Narysuj na oddzielnych wykresach:

- gęstość rozkładu normalnego,
- dystrybuantę rozkładu normalnego,
- funkcję odwrotną do dystrybuanty.

i zaznacz na nich odpowiednie wartości tak, by móc odtworzyć poniższy rysunek.

Inverse Survival Function (ISF):

Pamiętamy, że Survival Function miała postać:

$$SF(x) = 1 - CDF(x).$$

Pamiętamy również, że Percentile Point Function (PPF) odwrotna do dystrybuanty miała postać:

$$PPF(x) = CDF^{-1}(x).$$

65 / 78

Inverse Survival Function (ISF):

Pamiętamy, że Survival Function miała postać:

$$SF(x) = 1 - CDF(x).$$

Pamiętamy również, że Percentile Point Function (PPF) odwrotna do dystrybuanty miała postać:

$$PPF(x) = CDF^{-1}(x).$$

Funkcja ISF to funkcja odwrotna do *SF*:

$$ISF(x) = SF^{-1}(x).$$

Inverse Survival Function (ISF):

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z9.ipynb

Zadanie (dla chętnych)

Narysuj na oddzielnych wykresach:

- gęstość rozkładu normalnego,
- dystrybuantę rozkładu normalnego,
- funkcję odwrotną do dystrybuanty.

i zaznacz na nich odpowiednie wartości tak, by móc odtworzyć poniższy rysunek.

Rozkład normalny, Gaussa

Reguła Trzech Sigm dla danego rozkładu normalnego $N(\mu,\sigma)$ oznacza, że w przedziale $[\mu-3\sigma,\mu+3\sigma]$ znajduje się 99.7% wszystkich obserwacji.

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z10.ipynb

Zadanie

Napisz program sprawdzający regułę trzech sigm.

Suma zmiennych losowych o rozkładzie normalnym

Własność

Jeżeli zmienne losowe X_1, X_2, \ldots, X_n są niezależne i zmienna X_i ma rozkład $N(m_i, \sigma_i^2)$ (dla $i = 1, 2, \ldots, n$), to zmienna losowa:

$$Y=X_1+X_2+\ldots X_n,$$

ma rozkład normalny

$$N\left(\sum_{i=1}^n m_i, \sum_{i=1}^n \sigma_i^2\right).$$

Suma zmiennych losowych o rozkładzie normalnym

Zadanie

Niech X_1 ma rozkład $N(\mu=10,\sigma^2=25)$ oraz X_2 ma rozkład $N(\mu=1,\sigma^2=9)$ oraz X_3 ma rozkład $N(\mu=-4,\sigma^2=16)$. Jaki rozkład ma

- a) $X_1 + X_2 + X_3$,
- b) $2X_1$ (do domu),
- c) $2X_1 + 3X_2$ (do domu).

Suma zmiennych losowych o rozkładzie normalnym

Zadanie

Niech X_1 ma rozkład $N(\mu=10,\sigma^2=25)$ oraz X_2 ma rozkład $N(\mu=1,\sigma^2=9)$ oraz X_3 ma rozkład $N(\mu=-4,\sigma^2=16)$. Jaki rozkład ma

- a) $X_1 + X_2 + X_3$,
- b) $2X_1$ (do domu),
- c) $2X_1 + 3X_2$ (do domu).

Rozwiązanie

$$X_1 + X_2 + X_3 \sim N(10 + 1 - 4,25 + 3 + 16) = N(7,44).$$

Centralne Twierdzenie Graniczne (Lindeberga-Lévy'ego)

Niech X_1,X_2,\ldots,X_n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, wartości średniej m=EX i wariancji $0<\sigma^2=D^2X<\infty$. Wtedy

$$\lim_{n\to\infty}P\left(\frac{X_1+X_2+\ldots+X_n-nm}{\sigma\sqrt{n}}< x\right)=\Phi(x),$$

gdzie Φ oznacza dystrybuantę standardowego rozkładu normalnego (N(0,1)).

Zadanie

Zmienne losowe $X_1, X_2, \dots X_{60}$ są niezależne o rozkładzie jednostajnym na odcinku [1,3]. Niech

$$X = \sum_{k=1}^{60} X_k.$$

Obliczyć przybliżoną wartość wyrażenia P(118 < X < 123).

Korzystamy z CTG (Lindeberga–Lévy'ego).

Korzystamy z CTG (Lindeberga–Lévy'ego).

Mamy n=60 oraz ze wzorów na wartość oczekiwaną i wariancję zmiennej losowej oraz rozkładzie jednostajnym na odcinku

$$m = E(X) = \frac{a+b}{2} = 2, \quad \sigma = \sqrt{D^2(X)} = \sqrt{\frac{(b-a)^2}{12}} = \sqrt{\frac{1}{3}}.$$

Korzystamy z CTG (Lindeberga–Lévy'ego).

Mamy n=60 oraz ze wzorów na wartość oczekiwaną i wariancję zmiennej losowej oraz rozkładzie jednostajnym na odcinku

$$m = E(X) = \frac{a+b}{2} = 2, \quad \sigma = \sqrt{D^2(X)} = \sqrt{\frac{(b-a)^2}{12}} = \sqrt{\frac{1}{3}}.$$

Mamy

$$P(118 < \sum_{i=1}^{100} X_i < 123) = P(\frac{118-120}{\sqrt{60\frac{1}{3}}} < \frac{\sum_{i=1}^{100} X_i - nm}{\sigma\sqrt{n}} < \frac{123-120}{\sqrt{60\frac{1}{3}}}) =$$

$$= P(\frac{-2}{\sqrt{20}} < Z < \frac{3}{\sqrt{20}}) = P(-0.4472 < Z < 0.6708) =$$

$$\Phi(0.6708) - (1 - \Phi(0.4472)) = 0.7488 - 1 + 0.6726 = 0.4214.$$

Centralne Twierdzenie Graniczne (Moivre'a-Laplace'a)

Niech X_1, X_2, \ldots, X_n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, takimi że:

$$S_n = X_1 + X_2 + \ldots + X_n \sim Bin(n, p)$$

czyli rozkład dwumianowy z parametrami n, p, 1-p. Wtedy

$$\lim_{n\to\infty}P\left(\frac{X_1+X_2+\ldots+X_n-np}{\sqrt{np(1-p)}}< x\right)=\Phi(x),$$

gdzie Φ oznacza dystrybuantę standardowego rozkładu normalnego (N(0,1)).

Zadanie

Prawdopodobieństwo uzyskania wygranej w pewnej grze losowej wynosi 0.1. Obliczyć prawdopodobieństwo, że spośród 500 grających osób wygra więcej, niż 60 osób.

 ${\sf Korzystamy}\ {\sf z}\ {\sf CTG}\ ({\sf Moivre'a-Laplace'a}).$

Korzystamy z CTG (Moivre'a-Laplace'a). Mamy: n = 500, p = 0.1, (1 - p) = 0.9.

Korzystamy z CTG (Moivre'a-Laplace'a). Mamy: $n=500,\ p=0.1,\ (1-p)=0.9.$ Musimy obliczyć:

$$P(\sum_{i=1}^{500} X_i > 60) = P\left(\frac{\sum_{i=1}^{500} X_i - 50}{\sqrt{50 \cdot 0.9}} > \frac{60 - 50}{\sqrt{50 \cdot 0.9}}\right) = P(z > \frac{10}{\sqrt{45}}) = P(Z > 1.492)$$
$$= 1 - P(Z < 1.492) = 1 - \Phi(1.492) = 1 - 0.93189 = 0.06811.$$

https:

//github.com/przem85/statistics/blob/master/D2/D2_Z11.ipynb

Centralne twierdzenie graniczne mówi, że średnią wystarczająco dużej liczby zmiennych losowych o tym samym rozkładzie można przybliżyć za pomocą rozkładu normalnego (trzeba pamiętać o założeniach twierdzenia).

Zadanie

Wygeneruj próbkę z rozkładu dwumianowego. Następnie podziel dane na zbiory po 2 i po 10 elementów. Policz średnie w zbiorach i stwórz z nich nową próbkę. Narysuj histogram dla próbki wszystkich trzech próbek.

Próbka

Definicja

Prostą próbą losową (lub krócej próbą losową) o liczności n nazywamy ciąg niezależnych zmiennych losowych X_1, X_2, \ldots, X_n określonych na przestrzeni zdarzeń elementarnych Ω i takich, że każda ze zmiennych ma taki sam rozkład.

Próbka

Definicja

Prostą próbą losową (lub krócej próbą losową) o liczności n nazywamy ciąg niezależnych zmiennych losowych X_1, X_2, \ldots, X_n określonych na przestrzeni zdarzeń elementarnych Ω i takich, że każda ze zmiennych ma taki sam rozkład.

Uwaga

Konkretny ciąg wartości $x_1, x_2, ..., x_n$ (prostej) próby losowej $X_1, X_2, ..., X_n$ nazywamy realizacją (prostej) próby losowej lub próbką.

Próbka

Definicja

Prostą próbą losową (lub krócej próbą losową) o liczności n nazywamy ciąg niezależnych zmiennych losowych X_1, X_2, \ldots, X_n określonych na przestrzeni zdarzeń elementarnych Ω i takich, że każda ze zmiennych ma taki sam rozkład.

Uwaga

Konkretny ciąg wartości $x_1, x_2, ..., x_n$ (prostej) próby losowej $X_1, X_2, ..., X_n$ nazywamy realizacją (prostej) próby losowej lub próbką.

Uwaga

Statystyką nazywamy każdą zmienną losową będącą ustaloną funkcją próby losowej X_1, X_2, \ldots, X_n .

O co chodzi z tym ciągiem zmiennych losowych?