

NGS methods

Long Reads

Christine Tranchant-Dubreuil & Francois Sabot 21st of January, 2021

IRD

Oxford Nanopore

L

Oxford Nanopore

From Circulation Research

- No Amplification
- NO SYNTHESIS
- Very Long Length

Oxford Nanopore

From Circulation Research

- No Amplification
- NO SYNTHESIS
- Very Long Length

- Magnetic fields variation measure
- Minion: USB key sized
- Raw signal in Fast5, basecalled in Fastq

From Nature Biotechnology

ONT - Advantages and Limits

Advantages:

- Length (mean 10-50kb, more than 2Mb reported)
- Bases Modification detection in real-time
- Native RNA!
- Single strand direct sequencing
- Machine cheap (1,000 USD for Minion)
- Run cheap (1,000 USD for 30Gb by now minimum)
- Fast: 15mn library, 48-72h run

ONT - Advantages and Limits

Advantages:

- Length (mean 10-50kb, more than 2Mb reported)
- Bases Modification detection in real-time
- Native RNA!
- Single strand direct sequencing
- Machine cheap (1,000 USD for Minion)
- Run cheap (1,000 USD for 30Gb by now minimum)
- Fast: 15mn library, 48-72h run

Limits:

- Error Rate (3-8%, can be corrected, 1-2% in tests)
- Quality of DNA/RNA limits the sequencing
- Heu...

4

Structural Variant Detection

From Mahmoud et al, 2019 6

Thanks for your attention

