

LCD Display (2)

Hsi-Pin Ma

http://lms.nthu.edu.tw/course/21094
Department of Electrical Engineering
National Tsing Hua University

RAM Revisit

 $2^2 \times 4 \text{ RAM}$

COE Format

- COE: memory coefficient file
- Two parameter:
 - memory_initialization_radix
 - Radix of the values in the memory_initialization_vector
 - Ex: 2, 10, or 16
 - memory_initialization_vector:
 - Memory content
 - Memory words are separated by whitespace
 - You can use comma (,) to help identify the boundary
 - Vector (entire memory) ended by semicolon

COE Example

```
; 8-bitwide by 8-deep RAM
memory_initialization_radix=2;
memory_initialization_vector=
                  whitespace
00000000
00010000,
00111000 ,
01111100 ,
00111000 ,
00010000,
00000000,
00000000;
```


You can use ASCII art generator to generate the pictures or use drawing tool to export the figures for you.

Use RAM

 You can use RAM for changeable LCD display of your project

Similar as ROM

- The same in IP generator, except choose 'Single Port RAM'
- Now have write

Timing

- Write control, address, data should be at the same clock cycle
- Data read out from RAM is one clock cycle late than the address control

Generate RAM (1/6)

New Source

Generate RAM (2/6)

• Choose the source type: IP (CORE Generator & Architecture Wizard) and key in the filename

Generate RAM (3/6)

• Select:

Memories & Storage Elements -> RAMs/ROMs -> Block
 Memory Generator

Generate RAM (4/6)

- Wait for a while
- Select Memory Type: Single Port RAM

Generate RAM (5/6)

• Data width: 64 bits, address depth: 64 (1 frame)

151-LIU WG

Generate RAM (6/6)

- Check "Load Init File"
- Select "Browse" and load your COE file

How to Use RAM Module

You can find the port names through the functional model

How to Use RAM Module

wire clk; wire wen; wire [63:0] data_in; wire [63:0] out_64; wire [5:0] addr; RAM R1(.clka(clk), .wea(wen), .addra(addr), .dina(data_in), .douta(out_64) **)**;

LCD Display (128x64)

Concept of a ROM Controller

- Fetch a page one time
- Data rearrangement (words to bytes)
 - 8x64-bit (8 *words*) to 64x8-bit (64 *bytes*)

8 64-bit word

ROM

One Page

D0
D7

LCD Display

[cthuang]

Concept of a ROM Controller

64-bit word

ROM

One page

LCD Display

page 7

LCD Display with Keypad

Keypad

Keypad
Controller

RAM

RAM Controller LCD
Display
Controller

LCD Display

[cthuang]

RAM Controller

RAM Controller

LCD Display Controller

