

# Elements of Probability Theory

Machine Learning 2019

Michael Wand, Jürgen Schmidhuber, Cesare Alippi

TAs: Robert Csordas, Krsto Prorokovic, Xingdong Zou, Francesco Faccio, Louis Kirsch

based on slides by Jan Unkelbach

#### Introduction



- So far we have covered neural networks in detail
  - during application (forward phase), we can imagine them as dynamic computers
  - what exactly they compute is learned during training, by gradient descent

## Introduction



- So far we have covered neural networks in detail
  - during application (forward phase), we can imagine them as dynamic computers
  - what exactly they compute is learned during training, by gradient descent
- We now will have a look at probability theory
  - a fundament of machine learning and Al
  - important to understand many algorithms
  - important to understand the *outcome* of your experiments (statistical testing!!)



## Introduction



- So far we have covered neural networks in detail
  - during application (forward phase), we can imagine them as dynamic computers
  - what exactly they compute is learned during training, by gradient descent
- We now will have a look at probability theory
  - a fundament of machine learning and AI
  - important to understand many algorithms
  - important to understand the *outcome* of your experiments (statistical testing!)
- This is intended as a recap lesson!
  - If you find that you did not understand parts of this lecture, please have a look at a good tutorial
  - Here is a reasonable one, with exercises: <u>http://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf</u>

## Roadmap



In the following two lectures, we want to revisit

- elementary notions of probability
- random variables
- discrete and continuous probability measures
- conditional probabilities and Bayes' theorem

## Why Probability Calculus?



#### Some things are certain:

- a piece of rock falls to the ground if we drop it
- use classical physics for description
- but many things are uncertain:
- stock market
- rolling dice

and are subject to a probabilistic description

## Why Probability Calculus for ML?



We aim at building artificial systems which make good decisions in an uncertain environment

- build a backgammon (or chess...) computer that makes good moves against an unknown opponent despite not knowing the following moves
- build robots which perform well in difficult environments despite having limited information about their surroundings
- build a handwriting recognition system that gets most of it right despite large variations in people's handwriting
- we want to reason in an uncertain world, and we want our machines to be able to do so as well

## Why Probability Calculus for ML?



#### We train systems where uncertainty is inherent

- some tasks (including training a neural network) do not have an exact analytic solution
  - approximation required
- some methods require randomness (neural network initialization)
- train a neural network with a small amount of training *samples*
- often: build systems which can estimate how well they are performing!

→ most of AI / machine learning is in some way based on randomness probabilistic descriptions necessary



## The Basics

## Random Experiments



Consider the prototypical random experiment: let's roll a die!

#### possible outcomes:













• The set of all possible outcomes is called the *sample space S*.

## Random Experiments



- And if we roll two dice?
- Sample space





#### **Events**



- An *Event* is a subset of possible outcomes
- Example events for rolling a dice twice
  - having a sum of 10:
     A<sub>1</sub> = { (4 6), (5 5), (6 4) }
  - getting at least one three, and a sum of at least 8:
     A<sub>2</sub> = { (3 5), (3 6), (5 3), (6 3) }
- The elements of the sample space are called simple events, e.g.
   A<sub>simple</sub> = { (1 2) }

#### **Events**



- The *union* of two events  $A_1$  and  $A_2$  is the event consisting of all events that are either in  $A_1$  or  $A_2$  or both:  $A_1 \cup A_2$
- The *intersection* of two events  $A_1$  and  $A_2$  is the event consisting of all events that are in both  $A_1$  or  $A_2$ :  $A_1 \cap A_2$
- Two events are mutually exclusive if they have no outcomes in common, i.e.  $A_1 \cap A_2 = \emptyset$
- The complement ¬A of an event A is the set of all outcomes in S that are not in A.

#### **Events**



• A partition of an event A is a set of events

$$\{A_1, A_2, ..., A_n\}$$

with the following properties:

- all pairs  $A_i$ ,  $A_i$  are mutually exclusive, i.e.  $A_i \cap A_i = \emptyset$
- the union of all  $A_i$  is the event A:  $A_1 \cup A_2 \cup A_3 \cup ... \cup A_n = A$

## Introduction of Probability



- A probability measure assigns a number to each possible event A, with the following properties:
  - $P(A) \ge 0$
  - P(S) = 1
  - for every partition of A,  $P(A_1) + P(A_2) + ... + P(A_n) = P(A)$
- If the sample space is finite (or countable...), one can fully describe the probability measure by giving the probabilities of the simple events.



• Example: rolling a fair die once

$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

• Example: The event of getting a result ≥ 5

• 
$$P({5, 6}) = P(5) + P(6) = 1/3$$

because the events 5 and 6 are mutually exclusive!



- More examples: We roll two dice again
  - each simple event has probability 1/36
     because there are 36 simple events which are equally likely
  - Event A: First die shows a 5
  - Event B: Second die shows a 3
  - Event C: The sum of both dice is 10





More examples: We roll two dice again



- each simple event has probability 1/36
   because there are 36 simple events which are equally likely
- Event A: First die shows a 5
- Event B: Second die shows a 3
- Event C: The sum of both dice is 10
- Clearly, P(A) = P(B) = 1/6 and P(C) = 3/36 = 1/12
   because C = { (4 6), (5 5), (6 4) }, and we can just count



More examples: We roll two dice again



- each simple event has probability 1/36
   because there are 36 simple events which are equally likely
- Event A: First die shows a 5
- Event B: Second die shows a 3
- Event C: The sum of both dice is 10
- Clearly, P(A) = P(B) = 1/6 and P(C) = 3/36 = 1/12
   because C = { (4 6), (5 5), (6 4) }, and we can just count
- What is the probability of A  $\cap$  B, i.e. that both A and B happen?

## Independence



- Event A: First die shows a 5; P(A) = 1/6
- Event B: Second die shows a 3; P(B) = 1/6
- Event C: The sum of both dice is 10; P(C) = 1/12

Clearly,  $P(A \cap B) = 1/36$ , and we observe that  $P(A \cap B) = P(A) \cdot P(B)$ 

Events with this property are called *independent*: The presence or absence of event A has no influence on event B.

## Independence



- Event A: First die shows a 5; P(A) = 1/6
- Event B: Second die shows a 3; P(B) = 1/6
- Event C: The sum of both dice is 10; P(C) = 1/12

What is the probability of  $A \cap C$  or  $B \cap C$ ?

## Independence



- Event A: First die shows a 5; P(A) = 1/6
- Event B: Second die shows a 3; P(B) = 1/6
- Event C: The sum of both dice is 10; P(C) = 1/12

What is the probability of  $A \cap C$  or  $B \cap C$ ?

$$P(A \cap C) = 1/36 \neq P(A) \cdot P(C)$$

$$P(B \cap C) = 0 \neq P(B) \cdot P(C)$$

so we see that neither A and C nor B and C are independent

## Exclusive events



- Event A: First die shows a 5; P(A) = 1/6
- Event B: Second die shows a 3; P(B) = 1/6
- Event C: The sum of both dice is 10; P(C) = 1/12

And what about the *joint* events A U C and B U C (i.e. any of the two events happens)?

## Exclusive events



- Event A: First die shows a 5; P(A) = 1/6
- Event B: Second die shows a 3; P(B) = 1/6
- Event C: The sum of both dice is 10; P(C) = 1/12

And what about the *joint* events A U C and B U C (i.e. any of the two events happens)?

$$P(A \cup C) = P(\{(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,4), (4,6)\}) = \frac{8}{36} = \frac{2}{9} \neq P(A) + P(C)$$

$$P(B \cup C) = P(\{(1,3), (2,3), (3,3), (4,3), (5,3), (6,3), (6,4), (5,5), (4,6)\}) = \frac{9}{36} = \frac{1}{4} = P(B) + P(C)$$

Remember: Add probabilities only if the events are exclusive!

## Conditional probabilities



• The conditional probability of B given A is defined as

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

- This is the probability of B if we assume that A is true.
- Exercise: if A and B are independent, show that P(B|A) = P(B).

## Conditional Probabilities: Example



Let us look at the two dice again.

- Event A: First die shows a 5; P(A) = 1/6
- Event C: The sum of both dice is 10; P(C) = 1/12
- We had computed:  $P(A \cap C) = 1/36$

$$P(C|A) = \frac{P(C \cap A)}{P(A)} = \frac{1/36}{1/6} = \frac{1}{6}$$

$$P(A|C) = \frac{P(C \cap A)}{P(C)} = \frac{1/36}{1/12} = \frac{1}{3}$$

Note that P(A|C) is different from P(C|A)!

Exercise: verify that by counting!

## Recap: Rules of Computation



These are the major rules you should remember:

- Probabilities are nonnegative and sum to 1
- Assuming two events A and B,
  - $P(A \cap B) = P(A) \cdot P(B)$  if and only if the events are independent
  - $P(A \cup B) = P(A) + P(B)$  if and only if the events are exclusive
- Conditional probability:

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
 and thus  $P(B|A) \cdot P(A) = P(B \cap A)$ 





#### We use the following definition

• A Random Variable (RV) X assigns numbers (or vectors) to events

$$X: S \to \mathbb{R} \text{ or } X: S \to \mathbb{R}^N$$

- We thus get an induced probability distribution on the space  $\mathbb R$  or  $\mathbb R^{\mathsf N}$
- Requires to get some mathematical details right, we'll just skip that

Example:  $(2,3) \in \mathbb{R}^2$ 

Another example: Map the outcome of a throw of two dice to the *sum* 

- possible values: 2 ... 12, so we lose some information
- outcomes are not equally likely any more



We can describe a random variable by giving its probabilities on the value space.

- Example: sum of two dice
  - p(2) = 1/36, p(3) = 2/36, p(4) = 3/36, etc.
  - We say X has the distribution p:  $X \sim p$
  - p is nonnegative, and the sum of all its values is 1.
- Example: Y -> { 0,1 }, Y =1 if the first die shows 5
  - Exercise: describe the distribution of Y



- Two random variables are *independent* if their joint distribution factorizes.
  - Simple example: The sample space S is the space of rolls with two dice, as before
  - X: S -> { 0,1 }, X = 1 if the first die shows "five".
  - Y: S -> { 0,1 }, Y = 1 if the second die shows "three".
  - Let  $X \sim p_X$ ,  $Y \sim p_Y$ ,  $(X, Y) \sim p_{X,Y}$



- Two random variables are *independent* if their joint distribution factorizes.
  - Simple example: The sample space S is the space of rolls with two dice, as before
  - X: S -> { 0,1 }, X = 1 if the first die shows "five".
  - Y: S -> { 0,1 }, Y = 1 if the second die shows "three".
  - Let  $X \sim p_X$ ,  $Y \sim p_Y$ ,  $(X, Y) \sim p_{X,Y}$

We have

$$p_X(0) = 5/6$$
,  $p_X(1) = 1/6$ ,  $p_Y(0) = 5/6$ ,  $p_Y(1) = 1/6$   
 $p_{XY}(0,0) = 25/36$ ,  $p_{XY}(1,0) = 5/36$ ,  $p_{XY}(0,1) = 5/36$ ,  $p_{XY}(1,1) = 1/36$  (verify by counting)

Since  $p_x(a) \cdot p_y(b) = p_{xy}(a,b)$  for *all* possible pairs a,b, X and Y are independent.



- Two random variables are *independent* if their joint distribution factorizes.
  - Simple example: The sample space S is the space of rolls with two dice, as before
  - X: S -> { 0,1 }, X = 1 if the first die shows "five".
  - Y: S -> { 0,1 }, Y = 1 if the second die shows "three".
  - Z: S -> { 2, ... 12 } is the sum of two dice.
  - W: S -> { 0,1 }, W = 1 if the sum of the dice is even.
  - Let  $X \sim p_X$ ,  $Y \sim p_Y$ ,  $Z \sim p_Z$ ,  $(X,Y) \sim p_{X,Y}$  and so on.
  - Exercise: describe the joint distributions. Which random variables are independent?



 The definition of the conditional probability transfers to random variables, e.g. if we have random variables X and Y, we can define

$$P(X = a | Y = b) = \frac{P(X = a \land Y = b)}{P(Y = b)}$$

and so on (人 means "and").



#### We can now define several standard terms:

- The *expectation* of X is the sum of the possible values of X, weighted with their probabilities
  - $E[X] = \sum_{x} x \cdot P(X = x)$
  - Example: Expected value when we throw one fair die is 3.5
  - You can also compute  $E[f(X)] = \sum_{x} x \cdot P(X = x)$
- The *variance* of X is the expected squared deviance of X and its expectation:

• 
$$Var[X] = E[(X - E[X])^2] = \sum_{x} (x - E[x])^2 \cdot P(X = x) = E[X^2] - (E[X])^2$$

- *The* standard deviation is the square root of the variance:
  - $Std[X] = \sqrt{Var[X]}$

## A Word about Frequentist Statistics



- Think a final time about the dice.
  - I have got a weighted die from the joke shop.
  - How do you estimate the probability that it shows "6"?

## A Word about Frequentist Statistics



- Think a final time about the dice.
  - I have got a weighted die from the joke shop.
  - How do you estimate the probability that it shows "6"?
- In practice: Throw it "many" times and count the fraction of "6".
- E.g. if we got 25 times "6" in 100 throws, we estimate the probability of the die showing 6 to 1/4.
- Same with the expectation: Throw the die many times and average the outcome.

## A Word about Frequentist Statistics



- This is a *frequentist* approach which also gives an intuition on what the expected value is:
  - namely the average that we get when repeating the experiment many times
  - ...with each repetition being independent!
- If we perform such an experiment, the outcome is probabilistic...
  - thus the estimated probabilities and statistics are themselves probabilistic
  - opens up the large field of statistical measures (not right now...)
- Finally, note that the frequentist view fails when we have experiments which are not repeatable.



# Continuous Random Variables

## From discrete to continuous



- So far, we had discrete random variables, i.e. they took values on a discrete space (finite or countable)
- We could give the probability of single values, e.g.  $P(X_{die}=5)=1/6$
- Random variables can also take values *continuously*, e.g. on the entire  $\mathbb{R}$ .
  - Useful when the outcomes are naturally continuous, e.g. physical phenomena (signals...)
  - Will be important when we do statistical tests
  - Allows to use integral calculus
- We give probabilities of (reasonable) *subsets* of  $\mathbb{R}$ .
  - Each single value occurs with probability zero.

## A continuous random variable



Let's assume X takes all real values. How can we describe X?

• Instead of discrete distribution, use a density p

$$p: \mathbb{R} \to \mathbb{R}^+, \int p(x) dx = 1$$

• The probability of x being in the interval  $x_1 ... x_2$  is given by



The definition can be generalized to more complex subsets.

## A continuous random variable



We define our usual statistical measures as before, just substituting sums with integrals:

$$E[X] = \int x \cdot p(x) dx$$

$$Var[X] = \int (x - E[x])^2 \cdot p(x) dx = E[X^2] - (E[X])^2$$

$$Std[X] = \sqrt{Var[X]}$$

Finally, we define the cumulative distribution function

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} p(\xi) d\xi$$

## Continuous random variables



This finishes our exposition of basic probability theory. In the next lesson we do Bayes' Theorem and a bit of reasoning with Bayes.

We will occasionally come back to these issues in the future:

- A large class of parametric ML methods estimate parameters of a distribution or density over the input data.
  - HMMs are probabilistic models
- Statistical tests are derived from Bayes' ideas and allow us to quantify how sure we are about our results
- Information theory (not covered in this class) yields very fundamental results about our algorithms

## Conclusion / Summary



#### Today you should have revisited

- what is a probabilistic event, and what makes events independent
- how probability is defined, and how to compute elementary probabilities
- what *conditional* probabilities are.

You should also know a bit about

- random variables
- their expectation, variance, standard distribution
- distributions and densities.