

Deep Learning in Radiology: Applications in Lesion and Organ Segmentation

Yuxing Tang, Youbao Tang

14 February 2019

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory,
Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, MD 20892, USA

CAD Lab @ NIH Clinical Center

Ronald M. Summers, M.D., Ph.D. Senior Investigator

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory

NIH Clinical Center

Overview

Background

Previous work in our lab

Lesion & organ segmentation

Fully supervised vs. weakly supervised learning

 Generative adversarial networks (GANs) for data augmentation and segmentation

Computer-Aided Diagnosis

Era of Deep Learning

No more hand-crafted features

Large-scale annotated datasets

• Impact: More and varied researchers can contribute, accelerating pace of progress

Deep Learning Improves CAD

Journals & Magazines > IEEE Transactions on Medical ... > Volume: 35 Issue: 5

Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique

Hayit Greenspan; Bram van Ginneken; Ronald M. Summers

Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

Jie-Zhi Cheng, Dong Ni, Yi-Hong Chou ™, Jing Qin, Chui-Mei Tiu, Yeun-Chung Chang, Chiun-Sheng Huang, Dinggang Shen ™ & Chung-Ming Chen ™

Deep Learning and Convolutional Neural Networks for Medical Image Com

Scientific Reports 6, Article number: 24454 (2016) | Download Citation ±

Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective

Authors

Authors and affiliations

Ronald M. Summers 1

Email author

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, USA

CT Pancreas Segmentation

H. Roth et al. Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation, MICCAI 2016

CT Pancreas Segmentation

Pancreas CT Dataset

Abdominal contrast enhanced
 CT scans

• 82 patients

Manual annotations

• DICOM, 10 GB

CT Lymph Node Segmentation

I. Nogues et al. Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images, MICCAI 2016

Lymph Node CT Dataset

 Computed Tomography (CT) images of the mediastinum and abdomen

- 176 patient scans
- ~1,000 lymph node masks annotated by radiologist

• DICOM, 58 GB

Chest CT Lung Segmentation

Chest CT Lung Segmentation

Fig. 2: Example masks of HNN and P-HNN, depicted in red and green, respectively. Ground truth masks are rendered in cyan. (a) HNN struggles to segment the pulmonary bullae, whereas P-HNN captures it. (b) Part of the pleural effusion is erroneously included by HNN, while left out by P-HNN. (c) P-HNN better captures finer details in the lung mask. (d) In this failure case, both HNN and P-HNN erroneously include the right main bronchus; however, P-HNN better captures infiltrate regions. (e) This erroneous ground-truth example, which was filtered out, fails to include a portion of the right lung. Both HNN and P-HNN capture the region, but P-HNN does a much better job of segmenting the rest of the lung.

A. Harrison et al. Progressive and Multi-Path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images, MICCAI 2017

and more ...

Prostate MRIR. Cheng et al. JMI 2017

Pericardial effusion CT

J. Liu et al. ISBI 2017

Manual Annotation vs. Weak Supervision

• Pixel-wise annotation: laborious, time consuming

- Coarse annotation?
 - RECIST (Response evaluation criteria in solid tumors)

long-axis and short-axis

DeepLesion Dataset

- Mined from bookmarks (RECIST diameters) in NIH CC's PACS 32,120 axial CT slices from 10,594 studies of 4,427 unique patients
- 1–3 lesions in each image with size measurements (long-axis and shortaxis)
- 32,735 lesions altogether

Weakly Supervised Lesion Segmentation

J. Cai, Y. B. Tang et al. Accurate Weakly-Supervised Deep Lesion Segmentation using Large-Scale Clinical Annotations: Slice-Propagated 3D Mask Generation from 2D RECIST, MICCAI 2018

Weakly Supervised Lesion Segmentation

J. Cai, Y. B. Tang et al. Accurate Weakly-Supervised Deep Lesion Segmentation using Large-Scale Clinical Annotations: Slice-Propagated 3D Mask Generation from 2D RECIST, MICCAI 2018

Weakly Supervised Lesion Segmentation

J. Cai, Y. B. Tang et al. Accurate Weakly-Supervised Deep Lesion Segmentation using Large-Scale Clinical Annotations: Slice-Propagated 3D Mask Generation from 2D RECIST, MICCAI 2018

- (a) Mask R-CNN + HNEM
- (b) Mask R-CNN
- (c) Mask R-CNN w/o Mask

Y. B. Tang et al. *ULDor: A Universal Lesion Detector for CT Scans Enhanced Using Pseudo Masks and Hard Negative Example Mining,* ISBI 2019

Data Augmentation Using GANs

- CT-Realistic data augmentation (pix2pix GAN)
 - Training: real image & mask pairs as input
 - Inference:
 - Input: arbitrary lymph node masks (pseudo masks)
 - Output: synthesized (generated) CT images with "lymph nodes"

Data Augmentation Using GANs

GANs Generated Images Improve Segmentation

Strategy	Recall	Precision	Dice	AVD	VS
Without AAD	0.856 ± 0.128	0.783 ± 0.166	0.803 ± 0.130	2.306 ± 4.192	0.892 ± 0.113
With AAD ₁	$\textbf{0.857} \pm \textbf{0.120}$	0.803 ± 0.151	0.817 ± 0.118	1.957 ± 3.741	0.906 ± 0.096
With AAD ₂	0.827 ± 0.125	$\textbf{0.845} \pm \textbf{0.138}$	$\textbf{0.825}\pm\textbf{0.112}$	$\textbf{1.883} \pm \textbf{3.531}$	$\textbf{0.912} \pm \textbf{0.091}$

Lung Segmentation on Chest Radiographs

NIH ChestX-ray14 Dataset

- 112,120 frontal-view chest X-ray images of 30,805 unique patients
- text-mined 14 disease image labels
- each image can have multiple labels

Pathological Lungs are Harder to Segment

- To capture richer global contextual information for robust and accurate lung segmentation
- Especially for pathological lungs with less clear lung boundaries.

Y. Tang et al. XLSor: A Robust and Accurate Lung Segmentor on Chest X-Rays Using Criss-Cross Attention and Customized Radiorealistic Abnormalities Generation, under open review

Lung Segmentation with Data Augmentation

Lung Segmentation with Data Augmentation

Segmentation Results on the NIH Dataset

Method	$\mathbf{REC} \!\!\uparrow$	$\mathbf{PRE}\!\!\uparrow$	$\mathbf{DICE}\!\!\uparrow$	$\mathbf{AVD} \!\!\downarrow$	$\mathbf{VS}\!\!\uparrow$
$XLSor_R$	$0.966 {\pm} 0.02$	0.927 ± 0.09	$0.943 {\pm} 0.05$	0.669 ± 1.64	$0.966 {\pm} 0.05$
$XLSor_{R+A^1}$	$0.958 {\pm} 0.03$	0.973 ± 0.02	$0.965 {\pm} 0.02$	$0.172 {\pm} 0.26$	$0.985 {\pm} 0.01$
$XLSor_{R+A^2}$	$0.962 {\pm} 0.02$	$0.980{\pm}0.01$	0.971 ± 0.01	0.097 ± 0.08	0.989 ± 0.01
$XLSor_{R+A^3}$	$0.967 {\pm} 0.02$	0.978 ± 0.02	0.973 ± 0.01	$0.089 {\pm} 0.07$	0.990 ± 0.01
$XLSor_{R+A^4}$	$0.974{\pm}0.01$	0.976 ± 0.01	$0.975{\pm}0.01$	$0.078{\pm}0.06$	$0.993{\pm}0.01$
XLSor_{A^4}	$0.964 {\pm} 0.02$	0.983 ± 0.01	0.973 ± 0.01	0.098 ± 0.13	$0.988 {\pm} 0.01$
$U\text{-Net}_R$	0.938 ± 0.07	0.761 ± 0.20	$0.823 {\pm} 0.16$	5.231 ± 9.02	0.869 ± 0.15
U -Net $_{R+A^1}$	$0.926 {\pm} 0.05$	$0.960{\pm}0.03$	0.942 ± 0.03	0.832 ± 1.29	0.971 ± 0.02
U-Net_{R+A^2}	0.947 ± 0.04	0.950 ± 0.04	$0.948 {\pm} 0.03$	0.500 ± 1.03	$0.981 {\pm} 0.02$
U -Net $_{R+A^3}$	$0.950 {\pm} 0.03$	0.954 ± 0.03	$0.951 {\pm} 0.02$	$0.393 {\pm} 0.58$	$0.983 {\pm} 0.02$
U-Net_{R+A^4}	0.943 ± 0.04	$0.958 {\pm} 0.03$	0.950 ± 0.03	$0.454 {\pm} 0.73$	$0.982 {\pm} 0.02$
$\mathrm{U} ext{-}\mathrm{Net}_{A^4}$	$0.952{\pm}0.03$	0.959 ± 0.03	$0.955{\pm}0.02$	$0.315{\pm}0.47$	$0.983{\pm}0.02$

Lung Segmentation with Data Augmentation

Take Home Messages

Deep learning is powerful but data hungry

Pixel-wise manual annotation on medical images is tedious

 Weak supervision is an alternative way (e.g., image level label, RECIST, etc.)

Data augmentation using generative models can be helpful

Acknowledgement

- All current and previous members in the CAD lab and collaborators who contributed to the presented work
- NIH Fellowship Programs, NIH CRADA
- NVIDIA for GPU card donations

To learn more:

https://github.com/rsummers11/CADLab