An Introduction to Large Gaps Between Primes 2023 Fall Analytic Number Theory

Kai Zhu

Chern Class Nankai University

December 17, 2023

Summary

Introduction

2 Erdös' Proof

3 Further Results

Introduction

Introduction

The small gap between two consecutive primes is an well-known and interesting open problem, for instance, the twin prime conjecture. And the known best result about the small gap between primes is

$$\liminf_{n \to \infty} (p_{n+1} - p_n) \le 246.$$

Hence a natural question is, how large can two consecutive primes have?

A easy and well-known result is

Theorem (1)

For any M>0, there exists $n\in\mathbb{N}$ such that $p_{n+1}-p_n\geq M$.

Proof.

Let m=[M]+2, here [x] denotes the largest integer that is smaller than x. Note that for any $2 \le k \le m$, we have m!+k is divided by k, hence $m!+2, \cdots, m!+m$ are all composite numbers. Then there exists $n_m=\pi(m!+2)$ such that

$$p_{n_m+1} - p_{n_m} \ge m \ge M, (1.1)$$

where $\pi(x)$ denotes the number of primes that less than x.

From theorem (1), we know that

$$\lim_{n \to \infty} \sup(p_{n+1} - p_n) = \infty. \tag{1.2}$$

Then a natural question is that, how can we sharpen the estimate above? From Bertrand theorem, we know that

$$\frac{1}{2}(m!+2) \le p_{n_m} \le m!+2,$$

hence we take logarithm at the same time, then

$$\log(m! + 2) - \log 2 \le \log p_{n_m} \le \log(m! + 2).$$

from Stirling formula, we have

$$\log p_{n_m} = \log(m!) + O(1)$$

$$= m \log m - m + O(\log m),$$

$$\log \log p_{n_m} = \log m + O(\log \log m).$$

Then we subsititute m by p_{n_m} in (1.1) , we have

$$p_{n_m+1} - p_{n_m} > [1 + o(1)] \frac{\log p_{n_m}}{\log \log p_{n_m}}.$$

Then we substitute m by p_{n_m} in (1.1), we have

$$p_{n_m+1} - p_{n_m} > [1 + o(1)] \frac{\log p_{n_m}}{\log \log p_{n_m}}.$$

In other words, we have

Theorem (2)

For any $\varepsilon > 0$, there are infinite many $n \in \mathbb{N}$ such that

$$p_{n+1} - p_n > (1 - \varepsilon) \frac{\log p_n}{\log \log p_n}.$$

Actually, from the prime theorem, we can deduce a stronger result. Note that for each X>0, there are $\pi(X)$ primes in the interval [1,X]. Hence there will must exist two primes p_n,p_{n+1} such that

$$p_{n+1} - p_n \ge \frac{X}{\pi(X)} = [1 + o(1)] \log X \ge [1 + o(1)] \log p_n.$$

Thus we have

Theorem (3)

For any $\varepsilon > 0$, there are infinite many $n \in \mathbb{N}$ such that

$$p_{n+1} - p_n > (1 - \varepsilon) \log p_n.$$

Historical Reuslts

Brauer and Zeitz showed that $1-\varepsilon$ in theorem 3 could be replaced by $4-\varepsilon$. Westzynthius proved that there are infinite n such that

$$p_{n+1} - p_n \ge \frac{2\log p_n \log \log \log p_n}{\log \log \log \log \log p_n},$$

and Ricci then proved that this can be improved to

$$p_{n+1} - p_n > c \log p_n \log \log \log p_n$$

for a certain constant c. Then Erdös showed that it can be further improved, which is

Erdös ' resut

Theorem (4)

There exist a certain positive constant c_1 and infinite many $n \in \mathbb{N}$ such that

$$p_{n+1} - p_n \ge \frac{c_1 \log p_n \log \log p_n}{(\log \log \log p_n)^2}.$$
(1.3)

Erdös' Proof

Reduction to a equivalent statement

We reduce our problem to the proof of the following theorem.

Theorem (5)

For a certain positive constant c, we can find $cp_n \log p_n/(\log \log p_n)^2$ consecutive integers so that no one of them is relatively prime to the product $p_1p_2 \cdots p_n$, i.e. each of these integers is divisible by at least one of the primes p_1, p_2, \cdots, p_n .

The existence of such consecutive integers is from Chinese reminder theorem. But before we use Chinese reminder theorem, we need some lemmas to find appropriate congruence equation.

Lemma (6)

For large T we have

$$\int_{1/T}^{1} \frac{e^{y}}{y} dy = \log T + O(1);$$

$$\int_{1}^{T} \frac{e^{y}}{y^{2}} dy = \frac{e^{T}}{T^{2}} + O\left(\frac{e^{T}}{T^{3}}\right);$$

$$\int_{1/T}^{1} \frac{e^{y}}{y^{2}} dy = T + \log T + O(1).$$

Lemma (7)

If $N(e^u)$ is the number of positive integers not exceeding e^u which contain no prime factor greater than

$$\exp\left(\frac{u\log\log u}{a\log u}\right),\,$$

where a > 0, then

$$N(e^u) < \frac{e^u}{u^{a-1-c_2}} \tag{2.1}$$

for any fixed $c_2 > 0$ and u large.

The proof of lemma 7-1

Put $x = \exp(u \log \log u / (a \log u))$ and take a number $\eta > 0$. Let $k = \pi(x)$, then

$$N(e^u) = \bigoplus_{v \le e^u} 1 < \bigoplus_{v \le e^u} \left(\frac{e^u}{v}\right)^{\eta} = e^{u\eta} \bigoplus_{v \le e^u} \frac{1}{v^{\eta}} < e^{u\eta} \bigoplus_{v=1}^{\infty} \frac{1}{v^{\eta}},$$

here we use \bigoplus denotes the summation over those positive integers v which have no prime factor exceeding x. Therfore, since

$$\bigoplus_{v=1}^{\infty} \frac{1}{v^{\eta}} = \prod_{l=1}^{k} (1 - p_l^{-\eta})^{-1}, \tag{2.2}$$

we have

$$N(e^u) < e^{u\eta} \prod_{l=1}^k (1 - p_l^{-\eta})^{-1}.$$
 (2.3)

proof of lemma 7-II

Put

$$f(\eta) = \prod_{l=1}^{k} (1 - p_l^{-\eta})^{-1} = \exp\left(-\sum_{l=1}^{k} \log(1 - p_l^{-\eta})\right).$$

Then we have

$$\log f(\eta) = -\sum_{l=1}^{k} \log \left(1 - p_l^{-\eta}\right) = -\sum_{t=1}^{x} \log \left(1 - t^{-\eta}\right) (\pi(t) - \pi(t - 1))$$

$$= -\pi(x) \log \left(1 - x^{-\eta}\right) + \eta \int_{2}^{x} \frac{\pi(t)}{t(t^{\eta} - 1)} dt$$

$$= O\left(\frac{x^{1-\eta}}{\log x}\right) + \eta \int_{2}^{x} \frac{dt}{(t^{\eta} - 1) \log t} + O\left(\eta \int_{2}^{x} \frac{dt}{t^{\eta} \log^{2} t}\right)$$

if $\eta > 1/2$ (for example), since $\pi(t) = rac{t}{\log t} + O\left(rac{t}{\log^2 t}
ight).$

(2.4)

Proof of lemma 7-III

Now take $1 - \eta = \delta = a \log u / u < 1/2$. Hence

$$\log f(\eta) = \int_{2}^{x} \frac{\mathrm{d}t}{t^{\eta} \log t} + O(1) + O\left(\int_{2}^{x} \frac{\mathrm{d}t}{t^{\eta} \log^{2} t}\right)$$

$$= \int_{\delta \log 2}^{\delta \log x} \frac{\mathrm{e}^{y}}{y} \mathrm{d}y + O(1) + O\left(\delta \int_{\delta \log 2}^{\delta \log x} \frac{\mathrm{e}^{y}}{y^{2}} \mathrm{d}y\right)$$

$$= \frac{x^{\delta}}{\delta \log x} + \log \frac{1}{\delta} + O\left(\frac{x^{\delta}}{\delta^{2} \log^{2} x}\right)$$

by lemma 6.

Proof of lemma 7-IV

Therefore

$$\log f(\eta) = \log u + O\left(\frac{\log u}{\log \log u}\right). \tag{2.5}$$

Thus

$$N(e^{u}) < e^{u\eta} f(\eta)$$

$$= \exp(u - \delta u + \log f(\eta))$$

$$= \exp\left(u - (a - 1)\log u + O\left(\frac{\log u}{\log\log u}\right)\right)$$

$$< \frac{e^{u}}{u^{a-1-c_{2}}},$$

which is the required result.

Putting $e^u = p_n \log p_n$ and a = 5 in (2.1), we have

$$N(p_n \log p_n) = o\left(\frac{p_n}{(\log p_n)^2}\right). \tag{2.6}$$

More precisely, (2.6) shows the lemma below,

Lemma (8)

If N_0 is the number of those integers not exceeding $p_n \log p_n$, each of whose greatest prime factor is less than $p_n^{1/(20 \log \log p_n)}$, then $N_0 = o\left(p_n/(\log p_n)^2\right)$.

From Brauer, we have the lemma below,

Lemma (9)

Let m be any positive integer greater than 1, x and y any numbers such that $1 \le x < y < m$, and N the number of primes p less than or equal to m such that p+1 is not divisible by any of the primes P, where $x \le P \le y$. Then

$$N < \frac{c_3 m \log x}{\log m \log y},\tag{2.7}$$

where c_3 is a constant independent of m, x and y.

We omit the proof here since it is too technical and not very helpful to the proof of our main theorem. What we need is putting

$$m = \frac{c_4 p_n \log p_n}{(\log \log p_n)^2}, \quad x = \log p_n, \quad y = p_n^{1/(20 \log \log p_n)}.$$

Then we have the lemma below,

Lemma (10)

We can find a constant c_4 so that the number of primes p, less than $c_4p_n/(\log\log p_n)^2$ and such that p+1 is not divisible by any prime between $\log p_n$ and $p_n^{1/(20\log\log p_n)}$, is less than $p_n/4\log p_n$.

Classification of the numbers less than p_n

We now return to theorem 5. We denote q,r,s,t the primes satisfying the inequalities

$$1 < q \le \log p_n, \quad \log p_n < r \le p_n^{1/(20 \log \log p_n)}$$

 $p_n^{1/(20 \log \log p_n)} < s \le \frac{1}{2} p_n, \quad \frac{1}{2} p_n < t \le p_n.$

We denote by a_1, a_2, \cdots, a_k the two sets of integers not greater than $p_n \log p_n$, namely

- In the prime numbers lying between $\frac{1}{2}p_n$ and $c_4p_n\log p_n/(\log\log p_n)^2$ and not congruent to -1 to any modulus r,
- 2 the integers not excedding $p_n \log p_n$ whose prime factors are included only among the r.

Some of the a's may be t's.

Then we have the final lemma below,

Lemma (11)

The number of the t's is greater than k the number of the a's, if p_n is large enough.

Proof.

From lemma 8 and 10, we have

$$k < \frac{1}{4} \frac{p_n}{\log p_n} + o\left(\frac{p_n}{(\log p_n)^2}\right). \tag{2.8}$$

The number of the t's is greater than $\frac{1}{3}p_n/\log p_n$ for large p_n , as is evident from the prime number theorem. This proves the lemma.

Proof of Theorem 5-1

Now we begin the proof of theorem 5. We determine an integer z such that for all q,r,s,

$$0 < z < p_1 p_2 \cdots p_n,$$

and it satisfies the equation below

$$z \equiv 0 \pmod{q}$$
, $z \equiv 1 \pmod{r}$, $z \equiv 0 \pmod{s}$, $z + a_i \equiv 0 \pmod{t_i}$ $i = 1, 2, \dots, k$.

By lemma 11, the last congruence is always possible, for, as there are more t's than a's, a case such as $z+a_1\equiv 0\pmod t$, $z+a_2\equiv 0\pmod t$ cannot occur.

Proof of Theorem 5-II

We now show that, if l is any integer such that

$$0 < l < c_2 p_n \log p_n / (\log \log p_n)^2, \tag{2.9}$$

then no one of the integers

$$z, z+1, z+2, \cdots, z+l$$

is relatively prime to $p_1p_2\cdots p_n$.

Now any integer b(0 < b < l) can be replaced in one at least of the following classes:

- $b \equiv 0 \pmod{q}$, for some q;
- $m b \equiv 1 \pmod{r}$, for some r;
- $\mathbf{m}b \equiv 0 \pmod{s}$, for some s;
- (b) is an a_i .

Proof of Theorem 5-III (why b can be replaced)

For b cannot be divisible by an r and by a prime greater than $\frac{1}{2}p_n$, since if this were so we should have

$$b > \frac{1}{2}p_n r > \frac{1}{2}p_n \log p_n > l,$$

for sufficiently large n. Hence, if b does not satisfy (i) or (iii), b is either a product of primes r only, and so satisfies (iv), or b is not divisible by any q, r, s. In the latter case, b must be a prime, for otherwise

$$b > \left(\frac{1}{2}p_n\right)^2 > l,$$

for sufficiently large n. Since, then, b is a prime between

$$\frac{1}{2}p_n \quad \text{and} \quad \frac{c_2p_n\log p_n}{(\log\log p_n)^2},$$

b is either an a_i , or b satisfies (ii).

Proof of Theorem 5-IV

It is now clear that z+b is not relatively prime to $p_1p_2\cdots p_n$, if

$$b < \frac{c_2 p_n \log p_n}{(\log \log p_n)^2}. \quad \Box$$

Hence also, if p_1, p_2, \cdots, p_n are the primes not excedding x, say, z+b is not relatively prime to $p_1p_2\cdots p_n$, if $b < c_5x\log x/(\log\log x)^2$, where c_5 is an appropriate constant independent of x. This is clear from the first case on noticing that, by Bertrand's theorem, $p_n \geq \frac{1}{2}x$.

Why thm 5 implies thm 4

We return to the main problem. Take $x=\frac{1}{2}p_n$. Then the product of the primes not exceeding x is less than $\frac{1}{2}p_n$ for large p_n by the prime number theorem. By theorem 5, since now $b<\frac{1}{2}p_n$, we can find K consecutive integers less than p_n , where

$$K = \frac{c_5 \log p_n \log \log p_n}{(\log \log \log p_n)^2},$$

each of which is divisible by a prime less than $\frac{1}{2} \log p_n$. Hence there are at least $K - \frac{1}{2} \log p_n > \frac{1}{2} K$ consecutive integers which are not primes.

Why thm 5 implies thm 4

Thus we have proved that at least one of the intervals between successive primes less than p_n is always of length not less than

$$c\frac{\log p_n \log \log p_n}{(\log \log \log p_n)^2}$$

for large p_n and an appropriate constant c. Since this expression is an increasing function n, it follows immediately that for infinity of n,

$$p_{n+1} - p_n \ge \frac{c \log p_n \log \log p_n}{(\log \log \log p_n)^2}.$$

Hence we finish the proof of theorem 4.

After Erdös, Rakin succeeded in showing that there are infinite many n such that

$$p_{n+1} - p_n \ge (c + o(1)) \frac{\log p_n \log \log \log \log \log \log \log p_n}{(\log \log \log p_n)^2},$$
(3.1)

with the constant c=1/3. Since this result, however, the only improvements have been in the constant c. And finally, Pintz find a better constant $c=2\mathrm{e}^{\gamma}$ in 1997, where γ denotes the Euler constant.

Erdös conjectured that 3.1 holds for arbitrary c>0, and he would like to offer \$5000 for this conjecture. But this conjecture is not been proved until 2014, by the joint work of K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao , they succeeded in showing that

Theorem (K. Ford, B. Green, S. Konyagin, J. Maynard, T. Tao)

We have

$$\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{(\log p_n)(\log_2 p_n)(\log_4 p_n)(\log_3 p_n)^{-2}} = \infty,$$

where \log_v denotes the v-fold logarithm.

Actually, Erdös had also conjectured a stronger result, for arbitrary small $\varepsilon > 0$, there exists infinite many n such that

$$p_{n+1} - p_n \ge (\log p_n)^{1+\varepsilon},$$

and he would like to offer \$10000 for the proof of this conjecture. But no known result about this harder conjecture.

The End