Identification, distribution and diet of Tasmanian predators inferred by scat DNA

Elodie Modave

Bachelor of geography, Geomatics and Geometrology and Master of Biology of

Organisms and Ecology – Université de Liège - Belgium

Institute for Applied Ecology

Faculty of Education, Science, Technology and Mathematics

University of Canberra, ACT, 2601, Australia

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy at the University of Canberra - Australia

September 2017

ABSTRACT

Species interactions within an ecosystem can appear in many ways and because of this variety, changes to one species can have cascading effects on other species or the environment. The outcomes of these interactions can be direct or indirect and happen at the intra or inter-specific level and studying them in more depth can provide greater understanding of network functions in a geographic area. Organism interactions in an ecological community are often difficult to measure and study because of the multitude of processes happening simultaneously. Nonetheless, DNA-based techniques are available to explore some of the interactions occurring in nature.

In this thesis, I focus on the Tasmanian faunal intreactions. This provides a real-life example of an ecosystem that has been subjected to considerable change in its faunal assemblage in the past century owing mainly to invasive species (Chapter 1).

I investigate the identity, the distribution and the vertebrate diet of mammal predators in Tasmania: *Sarcophilus harrisii* (Tasmanian devil), *Dasyurus viverrinus* (eastern quoll), *Dasyurus maculatus* (spotted-tailed quoll), *Felis catus* (feral cat) and *Canis lupus familiaris* (dog). I aim to explore predator dynamics that evolved among them such as the effect of invasive species through direct predation, competition or niche utilisation.

The need to identify, detect and monitor species can be achieved by analysing the DNA left by species in the environment. This provides a non-invasive technique to explore interactions among a cryptic, rare and threatened assemblage of species. By extracting eDNA (environmental DNA) from trace samples, sequencing and correctly identifying the species it belongs to, I can obtain a wide range of information without the need to directly interfering with the multitude of species under study. The limiting factors of dealing with DNA can be overcome with new technologies and the costs are less extravagant than a few decades ago.

Scats (i.e. faeces) provide a valuable source of eDNA and genetic information that they contain can persist for up to a few months in the environment, even when subjected to weather. This provides information about multiple predators and prey that can be discriminated in the laboratory, as well, as scats are a mixture of species DNA. Scats, combined with GPS localisations, provide single tools to evaluate interactions about predators relating to their environment, other predators and their prey. Because our target species, the predators in Tasmania, are relatively big in size, finding their faecal material in the landscape is relatively simple and DNA extraction has been made easier with the development of specialised kits.

I was able to develop a mini-barcode on the 12S rRNA mitochondrial gene region to identify the six large to medium-sized carnivores of Australia from scats (chapter 2). I used bioinformatics to develop the best primers from a range of sequences included in a reference DNA database. The amplification success of the mini-barcode was assessed using known tissue samples and tested in the laboratory for its sensitivity using a serial dilution of tissue samples from the Tasmanian predator species. To examine its sensitivity further, I applied the mini-barcode to DNA extracted from known captive animal scats collected in 2011 and correct identification was recorded for all successfully sequenced portions of DNA.

This barcode was applied on *ca*. 1500 field-collected scats to model predator distribution in Tasmania (chapter 3) using several species distribution modeling methods. My data suggested that dogs did not influence the distribution of any species but were negatively influenced by devils. The devils and cats influenced negatively the distribution of each other and both influenced negatively the distribution of eastern quolls. Devils were mainly restricted to rainforests and eucalypt forests and woodlands, and cat scats were found mainly in non-eucalypt forests and woodlands. No habitat preference could be determined for quolls

or dogs, and spotted-tailed quolls were removed from the study, owing to the small sample size.

Finally, I identified the vertebrate prey intake from more than 170 Tasmanian predator scats by applying two mitochondrial barcodes, 12SV5 and 16SMam and conclude on a vertebrate diet for Tasmanian devil, eastern and spotted-tailed quoll, cat and dog (chapter 4). I found that cats have a wide diet which includes small to medium-sized vertebrates, compared to the other predators in this study while devils had a more specific diet, feeding mainly on five native prey taxa. The two quolls could not be discriminated with these two barcodes, but applying the mini-barcode developed in Chapter 2, amplifying a different short region from the 12S rRNA gene, on the scats identified as "quoll" (genus level only), I could distinguish them at species level. They had similar restricted diet feeding mainly on possums, pademelons and wallabies and separated their diet by size with the eastern quoll predating on smaller prey in general. Finally, dogs were also feeding on native wildlife such as half of their diet consisted of native mammals and half was livestock/dog food. Overall, I detected between nine (for quolls) and 31 (for cats) different prey items per predator with a total of 44 prey taxa identified within 176 scats and showed the value of using scat metabarcoding for future detection and/or monitoring surveys.

I determined that using scats, considerable information about identity, distribution and diet was obtained by retrieving DNA from trace samples enabling the detection of interactions among species relating to their environments. Tools are now available to detect possibly rare Tasmanian species without going into the trouble of trapping or observing them directly and enabling management solutions to be developed based on the type of information gathered with them.

TABLE OF CONTENTS ACKNOWLEDGMENTS	ix
LIST OF FIGURES	
LIST OF TABLES	
LIST OF APPENDICES	
LIST OF PUBLICATIONS LINKED WITH THIS THESIS	
CHAPTER 1: GENERAL INTRODUCTION	1
BACKGROUND	1
Detecting a species	1
Using scats as a source of eDNA	3
Reliability in identifying a species from DNA	4
Tasmania	
Analysis of diet	9
AIMS AND STRUCTURE OF THE THESIS	10
Description of chapters	11
CHAPTER 2: A SINGLE MINI-BARCODE TEST TO SCREEN FOR AUSTRAI MAMMALIAN PREDATORS FROM ENVIRONMENTAL SAMPLES	15
Keywords	
DATA DESCRIPTION	
RESULTS	
Development of a new mammal mini-barcode	
Bioinformatic evaluation of the mini-barcode	
Evaluation of the amplification success and sensitivity of the <i>AusPreda_12S</i> primers	
Evaluation of amplification success from trace samples using known-origin scats	
DISCUSSION	
Considerations when working with scats	
Conservation implications	
Future work	
METHODS	
Selection of a candidate marker gene	
Development of a reference database for the 12S rRNA gene	37

Development of primers for the mini-barcode	38
Bioinformatic evaluation of the mini-barcode	41
Evaluation of the amplification success and sensitivity of the AusPreda_12S primers	42
Evaluation of amplification success from trace samples using known-origin scats	43
Availability of supporting data and material	44
List of abbreviations	44
CHAPTER 3: HABITAT MODELING OF PREDATORS IN TASMANIA INFE BY GENETIC MONITORING OF SCATS: PRESENCE-ONLY OR PRESENCE ABSENCE DATA?	E-
ABSTRACT	45
INTRODUCTION	46
Factors affecting species distribution	48
Detection of species with eDNA	48
Models of Tasmanian predators	49
The presence-absence versus presence-only data conflict	49
Native and introduced predators in Tasmania	50
Habitat suitability models for Tasmanian predators	52
MATERIAL AND METHODS	54
Field work	54
Samples selection	55
DNA extraction	55
PCR amplification	56
Sequencing	57
Predator identification	57
Patterns of co-occurrence of predators – First model: species interactions only	58
Species distribution modeling in R - Second model: scats as presence-absence data	59
MaxEnt – Third model: scats as presence-only data	65
MaxEnt - Third model: atlas data	65
RESULTS	66
Sequencing and predator identification	66
Patterns of co-occurrence of predators – First model: species interactions only	67
Species distribution modeling in R - Second model: scats as presence-absence data	69
Devil model	71
Cat model	71

Eastern quoll model	71
Dog model	72
MaxEnt – Third model: scats as presence-only data	74
MaxEnt - Third model: atlas data	76
DISCUSSION AND CONCLUSIONS	78
Comparison of models using scat data, atlas data and literature	78
Limitations	82
Application of SDMs built with scat data	86
CHAPTER 4: METABARCODING OF SCATS AS A TOOL FOR THE DETE AND MONITORING OF VERTEBRATE PREDATORS AND THEIR PREY	
ABSTRACT	87
INTRODUCTION	88
METHODS	95
Building a reference database	97
Field work	99
Samples selection	99
DNA extraction	100
qPCR to assess extraction dilutions	100
qPCR with MID tagged primers	101
AMPure cleaning	102
Sequencing	103
Bioinformatic analyses	103
Predator identification tested against identification obtained using other primers	105
Selecting the closest relative when an identified taxon is non-Tasmanian	105
Determining the vertebrate diet of each predator	106
Determining the vertebrate diet based on a predator location	106
Detection of a rare prey	107
Confirming the identity of species using DNA and range obtained from atlas data	107
RESULTS	108
Samples selection	108
DNA extraction and qPCR to assess extraction dilutions	110
qPCR with MID tagged primers	110
AMPure cleaning	110
Bioinformatic analyses	110

Predator identification tested against identification obtained using other primers	111
Selecting the closest relative when an identified taxon is non-Tasmanian	112
Determining the vertebrate diet of each predator and based on a predator location	113
Detection of a rare prey	120
Confirming the identity of species using DNA and range obtained from atlas data	122
DISCUSSION AND CONCLUSION	123
Predator diets obtained with this study and comparison with other published studies	125
Limitations of the metabarcoding technique	129
Detecting rare species	129
Impact of invasive predators on native prey	130
Limits of detection using DNA	131
Primer sets used in this study and their limitation	131
Future studies	132
CHAPTER 5: GENERAL CONCLUSION	133
Key findings	133
Importance of using non-invasive samples	137
Importance for conservation – management implications and new insights gained from thesis	
Future studies and further work	138
APPENDICES	141-200
REFERENCES	201-218

ACKNOWLEDGMENTS

This experiment was filled with personal growth, friendships, professional learning and achievements. I am proud today to have found the courage and motivation to accomplish a PhD.

First, I would like to thank my supervisor team, Stephen Sarre, Anna MacDonald and Bernd Gruber, for all their help, useful comments, support, guidance, fun and kindness all along my candidature. I am grateful for the opportunity to have been chosen and trusted to embark on this journey with you. I would also like to thank my previous supervisor from the Department of Primary Industries, Parks, Water and Environment Tasmania (DPIPWE), Stephen Harris for his comments, help, care and sympathy as well. Thanks to Cat Campbell as well who shared the same project as me as a PhD student too for her advices, laughs, field work company, and everything else that was related to the project and beyond. I would like to thank Elise Dewar and Candida Barclay from DPIPWE that helps with the project, as well as other people that helped all along the way: Arthur Georges, Aaron Adamack, Peter Unmack, Elise Furlan, Sumaiya Quasim, Llara Weaver, Jim Richley, Megan Hamilton, Iylani (Nur) Ramlee and all the volunteers that helped us in the field.

I would like to thank the Institute for Applied Ecology for their help with all the administrative tasks and the making sure of the well-being of PhD students in general (office temperature!, barbecues, dinners ...), Barbara Harriss, Ross Thompson, Liz Drummond, Grant Collett, Susan Ward, Em Carlson, Helen Thomas and Jane Ebner. Thanks also to all the other PhD students and others from the IAE that help me not only with my work but with building new friendships in a place where I arrive not knowing anyone: Cat Campbell, Rheyda Hinlo, Jonas Bylemans, Adrian Dusting, Suman, Foyez Shams, Shayer Alam, Alan Couch, Sally Hatton, Teresa Gonzalez, Yasmin Cross, Alissa Monk, Rob Ubrihien, Daniela

Cortez, Dorjee, Anthony Davidson, Andrew O'Reilly-Nugent, Rakhi Palit, Alex Henderson, Margarita Medina, Matt Young and last but not least, Angelica Lopez.

This project was funded by Project 1.L.21 of the Invasive Animals Cooperative Research Centre entitled "Mechanised Extraction and Next Generation Sequencing for the Analysis of Trace DNA in Predator Scats", and would not have been possible without their scholarship. I would especially like to thanks Tony Buckmaster, Andreas Glanznig and all the team behind the IA CRC for their support, annual camps and their financial contribution to several academic conferences and trainings. I met a lot of great friends at their annual camps such as Nadya Urakova, Michal Smielak, Aleona Swegen, Amy Iannella, Lana Harriott, Jessica Sparkes, Frances Zewe, Papori Barua and Natalie Banks.I would also like to acknowledge the NRM North (Tasmania) for giving me a grant entiteled "Using eDNA to detect endangered New Holland mice in Tasmania" to be able to complete my metabarcoding study.

I would like to thank the staff from the Australian museum where I nearly spent two months in the Australian Centre for Wildlife Genomics under the supervision of Rebecca Johnson and Greta Frankham. There, I worked on rhinoceroses' horns and tiger bones, along with Greta, Anja Divljan, Kyle Ewart, Prue Armstrong, Scott Ginn, Melissa Danks and Siobhan Dennison.

On a more personal note, I would like to thank my family at home for their support and my new family here in Australia for all the weekend parties, dinner parties, barbecues, cat sharing, Christmases, drinks, and so on, Charlie and Liz and Jon and Angelica. You made a life outside of the PhD possible and enjoyable far from our families and friends. I would like to thank Murphy (my cat! That's the level of craziness I reached) for his company and presence, especially during the last couple of months of my thesis that I mostly spent at home

and I would also like to thank Bram for all his support (especially towards the end when I became a bundle of nerves!) and love. I am so happy of the new family we started in June of this year. To Bram and Chloé.

LIST OF FIGURES

FIGURE 1.1: Separation between mainland Australia and Tasmania, shoreline	8
reconstruction of the Bass Strait modified from Lambeck and Chappell, 2001	
FIGURE 2.1: Gel showing the amplification success using AusPreda_12S mini-	27
barcode on 45 tissue samples	
FIGURE 2.2: Results of the sliding window analysis conducted using the R	40-41
package SPIDER for the 12S rRNA gene using a window size of 20 bp	
FIGURE 3.1: Interactions between species and preferred habitat types based on a	53
review of the literature	
FIGURE 3.2: predictors used to build the species distribution models	62
FIGURE 3.3: Map of the 714 predator scats identified from a systematic survey	67
FIGURE 3.4: Plot obtained for the four negative co-occurrences analysed where	69
the expected co-occurrence was bigger than 1	
FIGURE 3.5: Interactions between species based on the outputs of cooccur	69
FIGURE 3.6: Confusion matrix for the devil model showing the accuracy of the	70
model obtained using a GLMM. In this example, the accuracy is 89% representing	
a good value	
FIGURE 3.7: Interactions between species and preferred habitat types based on	74
the outputs of the GLMM using scat data	
FIGURES 3.8: summary results of the devil model (A), cat model (B), eastern	75
quoll model (C) and dog model (D) using MaxEnt and scat data	
FIGURE 3.9: Interactions between species and preferred habitat types based on	75
the outputs of MaxEnt using scat data	
FIGURES 3.10: summary results of the devil model (A), cat model (B) and	77
eastern quoll model (C) using MaxEnt and atlas data	
FIGURE 3.11: Interactions between species and preferred habitat types based on	77
the outputs of MaxEnt using atlas data	
FIGURE 3.12: Interactions between species and preferred habitat types based on	82
the combining outputs of the literature, Cooccur, GLMM and MaxEnt using scat	
or atlas data	0.6
FIGURE 4.1: Steps to follow to produce the libraries for metabarcoding	96
FIGURE 4.2: Trimming of low quality bases at the 3' end from single ended	104
reads obtained from a MiSeq sequencer using Trimmomatic. Figure before (a) and	
after (b) treatment. The quality per base raised in the three runs. Illustrated	
example for run 1	100
FIGURE 4.3: Map of the location of the 287 scat samples selected for	109
metabarcoding based on the model	115
FIGURES 4.4: Frequency of occurrence of prey in the scats of five Tasmanian	115-
predators: Tasmanian devil, Sarcophilu harrisii (92 scats), spotted-tailed quoll,	117
Dasyurus maculatus (12 scats), eastern quoll, Dasyurus viverrinus (8 scats), feral	
cat, Felis catus (50 scats) and domestic dog, Canis lupus familiaris (14 scats) FIGURE 4.5 : Predator diet difference using a NMDS	118
TIGUNE 7.5. I ICUAIOI UICI UITICICIICE USIIIg a INIVIDS	110

FIGURE 4.6: Comparison of cat diets in three types of habitats: dry eucalypt	119
forest and woodlands, scrub, heathland and coastal complexes and agricultural,	
urban and exotic vegetation	
FIGURE 4.7: Map representing the seven instances where a long-nosed potoroo	121
(Potorous tridactylus) was present in a scat	
FIGURE 4.8: scat range versus the atlas data range for the long-nosed potoroo	122
(Potorous tridactylus)	
FIGURE 4.9: scat range versus the atlas data range for two predators and two	123
prey	

LIST OF TABLES

TABLE 2.1 : Summary of results of genetic distance-based evaluations of the	23
AusPreda_12S mini-barcode	
TABLE 2.2 : Results of qPCR tests: determine amplification success of the	25-26
AusPreda_12S mini-barcode from low template DNA	
TABLE 2.3: PCR and DNA sequencing results from 57 known-origin scat	29-31
samples screened using the AusPreda_12S mini-barcode	
TABLE 2.4 : PCR primers used in this study	38
TABLE 3.1 : Co-occurrence table obtained for the four negative co-occurrence	68
analysed where the expected co-occurrence was bigger than 1 using the package	
cooccur on R. The matrices represent the number of survey units in which each	
species was found to be absence (0) or presence (1) compared to an interacting	
species	
TABLES 3.2 : summary results of the devil model (a), cat model (b), eastern quoll	73
model (c) and dog model (d), after removing non-significant predictors using a	
GLMMPQL	
TABLE 4.1 : Diet of target predators found in the literature	93
TABLE 4.2 : PCR primers used in this study	99
TABLE 4.3 : Diet of target predators found in this study	128

LIST OF APPENDICES

APPENDIX 2.1: Samples included in the 12S rRNA reference sequence	141-145
database used for primer design	
APPENDIX 2.2: R code for sliding windows analysis implemented using	146
SPIDER	
APPENDIX 2.3: R code for genetic distance based evaluation of the	147-150
AusPreda_12S mini-barcode implemented using SPIDER	
APPENDIX 2.4: Detailed results of genetic distance based evaluation of the	151-157
AusPreda_12S mini-barcode	
APPENDIX 2.5: Samples included in the laboratory evaluation of the	158-159
AusPreda_12S mini-barcode	
APPENDIX 2.6: Consensus sequences obtained from 53 known-origin scats by	160-164
amplification with the AusPreda_12S mini-barcode	
APPENDIX 3.1 : Cooccur results with datasets from 2010 and 2014 separrately	165
APPENDIX 3.2: R code for building an SDM for the Tasmanian predators	166-169
APPENDIX 3.3: 789 scats used for building the distribution model	170-187
APPENDIX 4.1: Information about the New Holland mouse that explain which	188-189
scats were selected	
APPENDIX 4.2: R code for the scats selection for metabarcoding	190-191
APPENDIX 4.3: Resulting diet from metabarcoding study per predator	192-200

LIST OF PUBLICATIONS LINKED WITH THIS THESIS

CHAPTER 2: A single mini-barcode test to screen for Australian mammalian	15
predators from environmental samples	
CHAPTER 3: Habitat modeling of predators in Tasmania inferred by genetic	45
monitoring of scats: presence-only or presence-absence data?	
CHAPTER 4: Metabarcoding of scats as a tool for the detection and monitoring of	87
vertebrate predators and their prey	