Fluïdummechanica Stroming in leidingen

Brecht Baeten¹

¹KU Leuven, Technologie campus Diepenbeek, e-mail: brecht.baeten@kuleuven.be

8 november 2016

Inhoud

- Inleiding
- 2 Dimensieanalyse
- 3 Laminaire stroming
- 4 Turbulente stroming

Voorbeeld

Bron: http://www.etftrends.com/

Ontwikkelende stroming

Inhoud

- Inleiding
- 2 Dimensieanalyse
- 3 Laminaire stroming
- 4 Turbulente stroming

$$\Delta p = \phi(L, D, v, \mu, \rho)$$

$$\Delta p = \phi(L, D, v, \mu, \rho)$$

Buckingham Pi,
$$(n = 5, k = 3)$$

$$\Delta p = \phi(L, D, v, \mu, \rho)$$

Buckingham Pi,
$$(n = 5, k = 3)$$

$$\frac{\Delta p}{\frac{1}{2}\rho v^2} = f(L/D, Re)$$

$$\Delta p = \phi(L, D, v, \mu, \rho)$$

Buckingham Pi,
$$(n = 5, k = 3)$$

$$\frac{\Delta p}{\frac{1}{2}\rho v^2} = f(L/D, Re)$$

$$\frac{\Delta p}{\frac{1}{2}\rho v^2} = f(Re)\frac{L}{D}$$

$$\Delta p = \phi(L, D, v, \mu, \rho)$$

Buckingham Pi, (n = 5, k = 3)

$$\frac{\Delta p}{\frac{1}{2}\rho v^2} = f(L/D, Re)$$

$$\frac{\Delta p}{\frac{1}{2}\rho v^2} = f(Re)\frac{L}{D}$$

$$\Delta p = f(Re) \frac{1}{2} \rho v^2 \frac{L}{D}$$

(1)

Inhoud

- Inleiding
- 2 Dimensieanalyse
- 3 Laminaire stroming
- 4 Turbulente stroming

Behoud van impuls in de stromingsrichting:

$$F_x = 0$$

Behoud van impuls in de stromingsrichting:

$$F_x = 0$$

$$p\pi r^2\big|_x - p\pi r^2\big|_{x+\Delta x} - \tau 2\pi r \Delta x = 0$$

Behoud van impuls in de stromingsrichting:

$$F_x = 0$$

$$p\pi r^2 \big|_x - p\pi r^2 \big|_{x+\Delta x} - \tau 2\pi r \Delta x = 0$$

$$-\frac{1}{2} \frac{\mathrm{d}p}{\mathrm{d}x} r = \tau$$

Behoud van impuls in de stromingsrichting:

$$F_x = 0$$

$$p\pi r^2 \Big|_x - p\pi r^2 \Big|_{x+\Delta x} - \tau 2\pi r \Delta x = 0$$

$$-\frac{1}{2} \frac{\mathrm{d}p}{\mathrm{d}x} r = \tau$$

Newtoniaanse vloeistof:

$$\frac{1}{2}\frac{\mathrm{d}p}{\mathrm{d}x}r = \mu \frac{\mathrm{d}v}{\mathrm{d}r}$$

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r$$

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r$$

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r$$
$$v = \frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r^2 + C$$

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r$$

$$v = \frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r^2 + C$$

$$\downarrow v|_{r=R} = 0$$

$$C = -\frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r$$

$$v = \frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} r^2 + C$$

$$v|_{r=R} = 0$$

$$C = -\frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$v = -\frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2 \left(1 - \frac{r^2}{R^2}\right)$$

Laminaire stroming

(2)

$$\frac{v}{v_{\text{max}}} = \left(1 - \frac{r^2}{R^2}\right)$$
$$v_{\text{max}} = -\frac{1}{4\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$\begin{split} \frac{v}{v_{\rm max}} &= \left(1 - \frac{r^2}{R^2}\right) \\ v_{\rm max} &= -\frac{1}{4\mu}\frac{\mathrm{d}p}{\mathrm{d}x}R^2 \end{split}$$

Gemiddelde snelheid

Debiet:

$$\dot{V} = 2\pi \int_0^R v_{\text{max}} \left(1 - \frac{r^2}{R^2}\right) r dr = v_{\text{max}} \frac{\pi R^2}{2}$$

Debiet:

$$\dot{V} = 2\pi \int_0^R v_{\text{max}} \left(1 - \frac{r^2}{R^2} \right) r dr = v_{\text{max}} \frac{\pi R^2}{2}$$

Gemiddelde snelheid:

$$v_{\text{gem}} = \frac{\dot{V}}{\pi R^2} = \frac{v_{\text{max}}}{2} = -\frac{1}{8\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$
 (2)

$$v_{\rm gem} = -\frac{1}{8\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$v_{\rm gem} = -\frac{1}{8\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = -8\mu v_{\mathrm{gem}} \frac{1}{R^2}$$

$$v_{\text{gem}} = -\frac{1}{8\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = -8\mu v_{\text{gem}} \frac{1}{R^2}$$

$$\psi \qquad \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{\Delta p}{L}$$

$$R = D/2$$

$$v_{\text{gem}} = -\frac{1}{8\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = -8\mu v_{\text{gem}} \frac{1}{R^2}$$

$$\psi \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{\Delta p}{L}$$

$$R = D/2$$

$$\Delta p = 32\mu v_{\text{gem}} \frac{L}{D^2}$$

$$v_{\text{gem}} = -\frac{1}{8\mu} \frac{\mathrm{d}p}{\mathrm{d}x} R^2$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = -8\mu v_{\text{gem}} \frac{1}{R^2}$$

$$\psi \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{\Delta p}{L}$$

$$R = D/2$$

$$\Delta p = 32\mu v_{\text{gem}} \frac{L}{D^2}$$

$$\Delta p = \frac{1}{2}\rho v^2 \frac{64\mu}{\rho v D} \frac{L}{D}$$

$$\Delta p = \frac{1}{2}\rho v^2 \frac{64\mu}{\rho v D} \frac{L}{D}$$

$$\Delta p = \frac{1}{2} \rho v^2 \frac{64 \mu}{\rho v D} \frac{L}{D}$$

$$\Delta p = \frac{1}{2}\rho v^2 \frac{64}{\mathrm{Re}} \frac{L}{D}$$

$$\Delta p = \frac{1}{2} \rho v^2 \frac{64 \mu}{\rho v D} \frac{L}{D}$$

$$\Delta p = \frac{1}{2}\rho v^2 \frac{64}{\text{Re}} \frac{L}{D}$$

$$\Delta p = \frac{1}{2}\rho v^2 f \frac{L}{D} \tag{3}$$

$$\Delta p = \frac{1}{2} \rho v^2 \frac{64 \mu}{\rho v D} \frac{L}{D}$$
$$\Delta p = \frac{1}{2} \rho v^2 \frac{64}{\text{Re}} \frac{L}{D}$$

$$\Delta p = \frac{1}{2}\rho v^2 f \frac{L}{D} \tag{3}$$

wrijvingsfactor voor laminaire stroming $f = \frac{64}{\mathrm{Re}}$

Inhoud

1 Inleiding

- 2 Dimensieanalyse
- 3 Laminaire stroming
- 4 Turbulente stroming

Empirische data

Empirische data

$$\Delta p = \phi(L, D, v, \mu, \rho, \varepsilon)$$

$$\Delta p = f(Re, \varepsilon/D) \frac{1}{2} \rho v^2 \frac{L}{D}$$

Dimensieanalyse

$$\Delta p = \phi(L, D, v, \mu, \rho, \varepsilon)$$

$$\Delta p = f(Re, \varepsilon/D) \frac{1}{2} \rho v^2 \frac{L}{D}$$

De wrijvingsfactor f voor turbulente stroming moet bepaald worden met behulp van empirische data: Moody diagram

Moody diagram

Turbulent snelheidsprofiel

Turbulent snelheidsprofiel

$$\frac{\bar{v}}{v_{\rm max}} \approx \left(1 - \frac{r}{R}\right)^{1/7}$$

Invloed van ruwheid

Inleiding Dimensieanalyse Laminaire stroming **Turbulente stroming**

Invloed van ruwheid

Bij laminaire stroming worden door de ruwheid geïnduceerde fluctuaties door de viskeuze krachten afgevlakt

Inleiding Dimensieanalyse Laminaire stroming **Turbulente stroming**

Invloed van ruwheid

Bij laminaire stroming worden door de ruwheid geïnduceerde fluctuaties door de viskeuze krachten afgevlakt

Bij turbulente stroming hebben door de ruwheid geïnduceerde fluctuaties invloed in de volledige stroming