Teorema di Fermat

Alessio Serraino

March 6, 2016

Teorema: (di Fermat) Sia $f:(a,b) \to \mathbb{R}$ derivabile in (a,b), e sia $x_0 \in (a,b)$ un punto stazionario per f. (i.e. un punto di massimo o di minimo). Allora $f'(x_0) = 0$.

Dimostrazione

Consideriamo $z \in (a,b)$, in modo che $z > x_0$. Allora $\frac{f(z)-f(x_0)}{z-x_0} \le 0$, perchè per ipotesi x_0 è un punro di massimo, quindi $f(x_0) \ge f(z)$.

Per il teorema di permanenza del segno $\lim_{z \to x_0^+} \frac{f(z)-f(x_0)}{z-x_0} \le 0$.

Consideriamo ora $z \in (a, b)$, in modo che $z < x_0$. Allora $\frac{f(z) - f(x_0)}{z - x_0} \ge 0$. (il denominatore è negativo).

Per il teorema di permanenza del segno $\lim_{z\to x_0^-} \frac{f(z)-f(x_0)}{z-x_0} \geq 0.$

Ma f è derivabile per ipotesi, quindi $\lim_{z \to x_0^+} \frac{f(z) - f(x_0)}{z - x_0} = \lim_{z \to x_0^-} \frac{f(z) - f(x_0)}{z - x_0}$. Poichè il primo termine è ≤ 0 , ed il secondo è ≥ 0 , l'unica soluzione è che siano entrambi uguali a 0, ovvero $\lim_{z \to x_0^+} \frac{f(z) - f(x_0)}{z - x_0} = \lim_{z \to x_0^-} \frac{f(z) - f(x_0)}{z - x_0} = 0$, che è proprio quanto velevame dimentrare. proprio quanto volevamo dimostrare.