BAC S2 2001 1er groupe

EXERCICE 1

Le plan complexe P est muni d'un repère ortho normal direct $(0, \vec{u}, \vec{v})$.

Soit f l'application de $\mathbb{C} \setminus \{2i\}$ vers \mathbb{C} définie par : $f(z) = \frac{2z-i}{z-2i}$.

a) — Résoudre dans \mathbb{C} : f(z) = z.

Donner les solutions \mathbb{Z}_1 et \mathbb{Z}_2 sous forme algébrique puis sous forme trigonométrique

b) — Calculer $Z_1^4 + Z_2^4$.

1 /Soit M (z) un point de P.

Soit (Γ) l'ensemble des points M (z) tels que f (z) soit un imaginaire pur. Donner une équation cartésienne de (Γ). Tracer (Γ).

2 / Montrer que |z| = 1 équivaut à |f(z)| = 1.

EXERCICE 2

Une urne contient 10 jetons numérotés de 1 à 10. Une partie consiste à tirer successivement et sans remise 2 jetons de l'urne et à noter dan sl'ordre les deux nombres inscrits. Tous les tirages sont supposés équiprobables.

1°) Quelle est la probabilité des événements :

A = « les deux nombres inscrits sont strictement inférieurs à 5 »

B = « le premier nombre inscrit est strictement supérieur au double du second ».

2°) Un joueur effectue 7 parties successives, les parties étant supposées indépendantes;

Quelle est la probabilité pour qu'à l'issue de la 7ème partie l'événement B soit réalisé 2 fois exactement ?au moins une fois ?

PROBLEME

On considère la fonction g définie par :

$$\begin{cases} g(x) = x (1 - \ln x)^2 \\ g(0) = 0 \end{cases}$$

où In x désigne le logarithme népérien de x, on appelle C sa courbe représentative dans un repère ortho normal $(0, \rightarrow \vec{\iota}, \vec{\jmath})$.

- 1. a) Etudier la continuité et la dérivabilité de g sur son ensemble de définition.
- **b)** Etudier les variations de g.
- **c)** Tracer (\mathcal{C}).
- 2. a) Soit a un réel appartenant à l'intervalle] 0, e [.

Calculer à l'aide de deux intégrales par parties, l'aire A (a) du domaine plan limité par l'axe des abscisses, la courbe (\mathcal{C}) et les droites d'équations respectives : x = a et x = e.

- b) Calculer $\lim_{a \to +\infty} A(a)$.
- 3. a) Déterminer les coordonnées des points d'intersection de la courbe (\mathcal{C}) et la droite (Δ) : y=x
- b) Pour quelles valeurs de m la droite (Δ m) : y =mx, recoupe-t-elle la courbe $\mathcal C$ en deux points M1 et M2 autres que O ?
- c) La droite (Δ m) coupe la droite D d'équation x = e en P. Montrer que OM1 x OM2 = OP2.
- 4. a) Montrer que la restriction h de la fonction g à l'intervalle [e ; + ∞ [admet une réciproque h−1 dont on précisera l'ensemble de définition.
- b) Sur quel ensemble h-1 est-elle dérivable?

Calculer $h(e^2)$; en déduire (h-1)' (e^2) .

c) Construire la courbe de h-1 dans le repère $(0,\vec{\iota},\vec{j})$. 38