Методы оптимизации Лекция 5: Применение двойственности и коническая двойственность

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

18 октября 2021 г.

▶ Условия оптимальности для задач без ограничений

- Условия оптимальности для задач без ограничений
- Условие оптимальности для общей задачи с ограничениями

- Условия оптимальности для задач без ограничений
- Условие оптимальности для общей задачи с ограничениями
- Двойственная функция и двойственная задача

- Условия оптимальности для задач без ограничений
- Условие оптимальности для общей задачи с ограничениями
- Двойственная функция и двойственная задача
- Свойства двойственной функции и зазор двойственности

- Условия оптимальности для задач без ограничений
- Условие оптимальности для общей задачи с ограничениями
- Двойственная функция и двойственная задача
- Свойства двойственной функции и зазор двойственности
- Сильная двойственность и условие Слейтера

- Условия оптимальности для задач без ограничений
- Условие оптимальности для общей задачи с ограничениями
- Двойственная функция и двойственная задача
- ▶ Свойства двойственной функции и зазор двойственности
- ▶ Сильная двойственность и условие Слейтера
- Условия Каруша-Куна-Таккера

1.
$$h_j(\mathbf{x}^*) \le 0$$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- $2. g_i(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \le 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Пусть $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Последнее равенство выполнено в силу

$$\min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

и необходимого условия минимума.

ККТ для выпуклых задач

Утверждение 1

Пусть прямая задача выпукла $(f_0,h_j$ – выпуклы, g_i – аффинны) и для $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач

ККТ для выпуклых задач

Утверждение 1

Пусть прямая задача выпукла $(f_0,h_j$ – выпуклы, g_i – аффинны) и для $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- ullet $(\hat{f x},\hat{m \lambda},\hat{m \mu})$ решения прямой и двойственной задач

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи

- Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- ▶ Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

- Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

▶ Введение новых переменных

$$\begin{split} \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \rightarrow & \min_{(\mathbf{x}, \mathbf{y})} \|\mathbf{y}\| \\ \text{s.t. } \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{y} \end{split}$$

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

▶ Введение новых переменных

$$\begin{split} \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \rightarrow & \min_{(\mathbf{x}, \mathbf{y})} \|\mathbf{y}\| \\ \text{s.t. } \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{y} \end{split}$$

Превращение явных ограничений в неявные

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$
s.t. $-1 \le \mathbf{x} \le 1 \rightarrow \min_{\substack{-1 \le \mathbf{x} \le 1 \\ \mathbf{A}\mathbf{x} = \mathbf{b}}} \mathbf{c}^{\top} \mathbf{x}$

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\mathbf{x} \ge 0$$

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\mathbf{x} \ge 0$$

Лагранжиан:

$$L = \mathbf{c}^{\top}\mathbf{x} + \boldsymbol{\lambda}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^{\top}\mathbf{x} = (\mathbf{c} + \mathbf{A}^{\top}\boldsymbol{\lambda} - \boldsymbol{\mu})^{\top}\mathbf{x} - \boldsymbol{\lambda}^{\top}\mathbf{b}$$

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\mathbf{x} \ge 0$$

Лагранжиан:

$$L = \mathbf{c}^{\top}\mathbf{x} + \boldsymbol{\lambda}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^{\top}\mathbf{x} = (\mathbf{c} + \mathbf{A}^{\top}\boldsymbol{\lambda} - \boldsymbol{\mu})^{\top}\mathbf{x} - \boldsymbol{\lambda}^{\top}\mathbf{b}$$

Двойственная функция

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \begin{cases} -\boldsymbol{\lambda}^{\top} \mathbf{b}, & \mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\lambda} - \boldsymbol{\mu} = 0, \\ -\infty, & \text{иначе.} \end{cases}$$

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0$

Лагранжиан:

$$L = \mathbf{c}^{\top} \mathbf{x} + \boldsymbol{\lambda}^{\top} (\mathbf{A} \mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^{\top} \mathbf{x} = (\mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\lambda} - \boldsymbol{\mu})^{\top} \mathbf{x} - \boldsymbol{\lambda}^{\top} \mathbf{b}$$

Двойственная функция

$$g(\lambda, \mu) = egin{cases} -\lambda^{ op} \mathbf{b}, & \mathbf{c} + \mathbf{A}^{ op} \lambda - \mu = 0, \\ -\infty, & ext{иначе.} \end{cases}$$

Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
 s.t. $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \ge 0$

 $1. \ \mathbf{A}\mathbf{x}^* = \mathbf{b}$

- $1. \mathbf{A}\mathbf{x}^* = \mathbf{b}$
- 2. $\mathbf{x}^* \ge 0$

- $1. \mathbf{A}\mathbf{x}^* = \mathbf{b}$
- 2. $\mathbf{x}^* \ge 0$
- 3. $\mathbf{A}^{\top} \boldsymbol{\lambda}^* + \mathbf{c} \boldsymbol{\mu}^* = 0$

- $1. \mathbf{A}\mathbf{x}^* = \mathbf{b}$
- 2. $\mathbf{x}^* \ge 0$
- 3. $\mathbf{A}^{\top} \boldsymbol{\lambda}^* + \mathbf{c} \boldsymbol{\mu}^* = 0$
- 4. $\mu_i^* x_i^* = 0$

- $1. \mathbf{A}\mathbf{x}^* = \mathbf{b}$
- 2. $\mathbf{x}^* > 0$
- 3. $\mathbf{A}^{\top} \boldsymbol{\lambda}^* + \mathbf{c} \boldsymbol{\mu}^* = 0$
- 4. $\mu_i^* x_i^* = 0$
- 5. $\mu^* \ge 0$

- $1. \mathbf{A}\mathbf{x}^* = \mathbf{b}$
- 2. $\mathbf{x}^* \ge 0$
- 3. $\mathbf{A}^{\top} \boldsymbol{\lambda}^* + \mathbf{c} \boldsymbol{\mu}^* = 0$
- 4. $\mu_i^* x_i^* = 0$
- 5. $\mu^* \ge 0$

Q: как по решению двойственной задачи восстановить решение прямой?

- $1. \mathbf{A}\mathbf{x}^* = \mathbf{b}$
- 2. $\mathbf{x}^* \ge 0$
- 3. $\mathbf{A}^{\top} \boldsymbol{\lambda}^* + \mathbf{c} \boldsymbol{\mu}^* = 0$
- 4. $\mu_i^* x_i^* = 0$
- 5. $\mu^* \ge 0$

Q: как по решению двойственной задачи восстановить решение прямой?

Утверждение

Если допустимое множество прямой задачи LP непусто, то выполнена сильная двойственность.

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Доказательство

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Доказательство

ightharpoonup Допустимое множество в прямой задаче $\{{f x}\in \mathbb{R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Доказательство

- ightharpoonup Допустимое множество в прямой задаче $\{{f x}\in {\Bbb R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор ${f p}$ такой что ${f p}^{\top}{f b}<0$ и ${f p}^{\top}{f A}\ge0$

Связь между неограниченностью и неразрешимостью

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Доказательство

- ightharpoonup Допустимое множество в прямой задаче $\{{f x}\in {\Bbb R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор ${f p}$ такой что ${f p}^{\top}{f b}<0$ и ${f p}^{\top}{f A}\ge0$
- Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
 s.t. $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \geq 0$

Связь между неограниченностью и неразрешимостью

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Доказательство

- ightharpoonup Допустимое множество в прямой задаче $\{{f x}\in {\Bbb R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор ${f p}$ такой что ${f p}^{\top}{f b}<0$ и ${f p}^{\top}{f A}\ge0$
- Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$

s.t. $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \ge 0$

▶ Пусть $\hat{\boldsymbol{\lambda}} = \theta \mathbf{p}, \ \theta > 0$, тогда $\theta \mathbf{p}^{\top} \mathbf{b} \to -\infty$ и $\theta \mathbf{A}^{\top} \mathbf{p} + \mathbf{c} \ge 0$

Связь между неограниченностью и неразрешимостью

Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

Доказательство

- ightharpoonup Допустимое множество в прямой задаче $\{{f x}\in {\Bbb R}^n \mid {f A}{f x}={f b}, \ {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор ${f p}$ такой что ${f p}^{\top}{f b}<0$ и ${f p}^{\top}{f A}\ge0$
- Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
 s.t. $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \geq 0$

- ▶ Пусть $\hat{\boldsymbol{\lambda}} = \theta \mathbf{p}, \ \theta > 0$, тогда $\theta \mathbf{p}^{\top} \mathbf{b} \to -\infty$ и $\theta \mathbf{A}^{\top} \mathbf{p} + \mathbf{c} \ge 0$
- Двойственная задача не ограничена

Двойственность для задачи с обобщёнными неравенствами

Постановка задачи

$$\begin{aligned} & \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ & h_j(\mathbf{x}) \leq_{\pmb{K}} 0, \ j = 1, \dots, p \end{aligned}$$

Двойственность для задачи с обобщёнными неравенствами

Постановка задачи

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

$$h_j(\mathbf{x}) \leq_K 0, \ j = 1, \dots, p$$

Лагранжиан

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \langle \boldsymbol{\lambda}, \mathbf{g}(\mathbf{x}) \rangle + \langle \boldsymbol{\mu}, \mathbf{h}(\mathbf{x}) \rangle$$

Двойственность для задачи с обобщёнными неравенствами

Постановка задачи

$$\begin{aligned} & \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ & h_j(\mathbf{x}) \leq_{\pmb{K}} 0, \ j = 1, \dots, p \end{aligned}$$

Лагранжиан

$$L(\mathbf{x}, \lambda, \mu) = f_0(\mathbf{x}) + \langle \lambda, \mathbf{g}(\mathbf{x}) \rangle + \langle \mu, \mathbf{h}(\mathbf{x}) \rangle$$

Двойственная задача

$$\max g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$
 s.t. $\boldsymbol{\mu} \geq_{\boldsymbol{K}^*} 0$

1. $h_j(\mathbf{x}^*) \leq_K 0$

- 1. $h_j(\mathbf{x}^*) \leq_K 0$
- 2. $g_i(\mathbf{x}^*) = 0$

- 1. $h_j(\mathbf{x}^*) \leq_K 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq_{K^*} 0$

- 1. $h_j(\mathbf{x}^*) \leq_K 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq_{K^*} 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \leq_K 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* >_{K^*} 0$
- 4. $\mu_i^* h_j(\mathbf{x}^*) = 0$
- 5. $f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$

- 1. $h_j(\mathbf{x}^*) \leq_K 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* >_{K^*} 0$
- 4. $\mu_i^* h_i(\mathbf{x}^*) = 0$
- 5. $f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$

Условия оптимальности

Все утверждения для обычных скалярных неравенств (то есть для конуса \mathbb{R}^n_+) переносятся на случай произвольного конуса K с точностью до отмеченных отличий.

- 1. $h_j(\mathbf{x}^*) \leq_K 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* >_{K^*} 0$
- 4. $\mu_i^* h_i(\mathbf{x}^*) = 0$
- 5. $f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$

Условия оптимальности

Все утверждения для обычных скалярных неравенств (то есть для конуса \mathbb{R}^n_+) переносятся на случай произвольного конуса K с точностью до отмеченных отличий.

Условие Слейтера для выпуклой задачи

Говорят, что выполнено условие Слейтера, если найдётся $\hat{\mathbf{x}} \in \mathcal{D}$ такой что $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b}$ и $f_i(\hat{\mathbf{x}}) <_K 0$

Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$
 $\mathbf{x} \geq_K 0$

▶ Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} \geq_K 0$$

▶ Строим двойственную задачу (аналогично LP)

Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\mathbf{x} \geq_K 0$$

- ▶ Строим двойственную задачу (аналогично LP)
 - ▶ Двойственная функция $g({m \lambda}) = -{m \lambda}^{ op} {f b}$

Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\mathbf{x} \geq_K 0$$

- ▶ Строим двойственную задачу (аналогично LP)
 - Двойственная функция $g(\boldsymbol{\lambda}) = -\boldsymbol{\lambda}^{\top} \mathbf{b}$
 - Двойственная задача

$$\max - \boldsymbol{\lambda}^{\top} \mathbf{b} \xrightarrow{\boldsymbol{\lambda} \equiv -\boldsymbol{\lambda}} \max \boldsymbol{\lambda}^{\top} \mathbf{b}$$
s.t. $\mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\lambda} \geq_{K^*} \mathbf{0}$

Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\mathbf{x} \ge_K 0$$

- ▶ Строим двойственную задачу (аналогично LP)
 - Двойственная функция $g(\boldsymbol{\lambda}) = -\boldsymbol{\lambda}^{\top} \mathbf{b}$
 - Двойственная задача

$$\max - \boldsymbol{\lambda}^{\top} \mathbf{b} \xrightarrow{\boldsymbol{\lambda} \equiv -\boldsymbol{\lambda}} \max \boldsymbol{\lambda}^{\top} \mathbf{b}$$
s.t. $\mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\lambda} \geq_{K^*} \mathbf{0} \Longrightarrow \mathbf{s.t.} \ \mathbf{A}^{\top} \boldsymbol{\lambda} \leq_{K^*} \mathbf{c}$

ightharpoonup Если конус K самосопряжённый мы автоматически знаем, как выглядит двойственная задача!

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$

s.t. $\operatorname{trace}(\mathbf{A}_i \mathbf{X}) = b_i$
 $\mathbf{X} \succeq 0$

Исходная задача

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t.
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

Аналогия с элементами задачи в конической форме

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t.
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

- Аналогия с элементами задачи в конической форме
 - $\mathbf{c} \to \mathbf{C}$

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t.
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

- Аналогия с элементами задачи в конической форме
 - $\mathbf{c} \to \mathbf{C}$
 - $\qquad \mathbf{K} \equiv \mathbf{S}^n_+$

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t.
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

- Аналогия с элементами задачи в конической форме
 - $\mathbf{c} \to \mathbf{C}$
 - $\mathbf{K} \equiv \mathbf{S}^n_{\perp}$
 - lacktriangle Строки матрицы ${f A}$ стали матрицами ${f A}_i$

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t.
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

- Аналогия с элементами задачи в конической форме
 - $\mathbf{c} \to \mathbf{C}$
 - $ightharpoonup K \equiv \mathbf{S}^n_+$
 - lacktriangle Строки матрицы ${f A}$ стали матрицами ${f A}_i$
 - lacktriangle Вектор f b остался как есть

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t.
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

- Аналогия с элементами задачи в конической форме
 - $\mathbf{c} \to \mathbf{C}$
 - $\mathbf{K} \equiv \mathbf{S}^n_+$
 - lacktriangle Строки матрицы ${f A}$ стали матрицами ${f A}_i$
 - ▶ Вектор b остался как есть
- Двойственная задача

$$\max_{oldsymbol{\lambda}} oldsymbol{\lambda}^{ op} \mathbf{b}$$
 $\min_{oldsymbol{\lambda}} oldsymbol{\lambda}^{ op} \mathbf{b}$ s.t. $\mathbf{C} - \sum_{i=1}^m \lambda_i \mathbf{A}_i \succeq 0$

Отличие SDP задачи от LP задачи

▶ Условие Слейтера: найдётся матрица $\hat{\mathbf{X}}$ такая что $\hat{\mathbf{X}} \succ 0$ и $\mathrm{trace}(\mathbf{A}_i\mathbf{X}) = b_i$

Отличие SDP задачи от LP задачи

- ▶ Условие Слейтера: найдётся матрица $\hat{\mathbf{X}}$ такая что $\hat{\mathbf{X}} \succ 0$ и $\mathrm{trace}(\mathbf{A}_i\mathbf{X}) = b_i$
- ► Отличие от LP: непустого допустимого множества НЕдостаточно для сильной двойственности!

Рассмотрим задачу

$$\min x_2$$

$$\max -x_2$$

$$\text{s.t. } \begin{bmatrix} x_2+1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0 \Rightarrow \text{s.t. } \begin{bmatrix} x_2+1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Рассмотрим задачу

$$\min x_2 \qquad \max -x_2
\text{s.t. } \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0 \Rightarrow \text{s.t. } \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

Рассмотрим задачу

 $\min x_2 \qquad \max -x_2$ $\text{s.t.} \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0 \Rightarrow \text{s.t.} \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

$$p^* = 0$$

Рассмотрим задачу

$$\min x_2 \qquad \max -x_2
\text{s.t. } \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0 \Rightarrow \text{s.t. } \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

 $p^* = 0$

Двойственная задача имеет вид

$$\min y_{11}$$
 s.t. $\mathbf{Y} \succeq 0$
$$y_{11} + y_{32} + y_{23} = -1$$

$$y_{22} = 0$$

Рассмотрим задачу

$$\min x_2 \qquad \max -x_2
\text{s.t. } \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0 \Rightarrow \text{s.t. } \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

 $p^* = 0$

Двойственная задача имеет вид

$$\begin{aligned} & \min y_{11} \\ \text{s.t. } \mathbf{Y} \succeq 0 \\ & y_{11} + y_{32} + y_{23} = -1 \\ & y_{22} = 0 \end{aligned}$$

▶ Допустимое множество: $y_{11} \ge 0, y_{22}y_{33} - y_{23}y_{32} \ge 0$

Рассмотрим задачу

$$\min x_2 \qquad \max -x_2
\text{s.t.} \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0 \Rightarrow \text{s.t.} \begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2+1) \ge 0, (x_2+1)(-x_2^2) \ge 0$$

 $p^* = 0$

Двойственная задача имеет вид

$$\min y_{11}$$
 s.t. $\mathbf{Y} \succeq 0$
$$y_{11} + y_{32} + y_{23} = -1$$

$$y_{22} = 0$$

- ▶ Допустимое множество: $y_{11} > 0$, $y_{22}y_{33} y_{23}y_{32} > 0$
- $d^* = -1$

▶ Условия оптимальности для выпуклых задач

- ▶ Условия оптимальности для выпуклых задач
- Преобразования задач для получения двойственных

- ▶ Условия оптимальности для выпуклых задач
- Преобразования задач для получения двойственных
- Двойственность для LP

- Условия оптимальности для выпуклых задач
- Преобразования задач для получения двойственных
- Двойственность для LP
- ▶ Двойственность для задач с обобщёнными неравенствами

- Условия оптимальности для выпуклых задач
- Преобразования задач для получения двойственных
- Двойственность для LP
- Двойственность для задач с обобщёнными неравенствами
- Коническая двойственность

- ▶ Условия оптимальности для выпуклых задач
- Преобразования задач для получения двойственных
- Двойственность для LP
- Двойственность для задач с обобщёнными неравенствами
- Коническая двойственность
- ▶ SDP vs. LP