Задача 9-1

 ${\bf X}$ и ${\bf A_1}$ представляют собой бинарные вещества, имеющиеся в каждой химической лаборатории. ${\bf X}$ — бесцветные кристаллы, растворимые в воде, а ${\bf A_1}$ — тёмно-коричневый порошок, нерастворимый в воде.

Спекли $0.889 \, \Gamma$ Y, $0.104 \, \Gamma$ X, $0.261 \, \Gamma$ A₁ на воздухе, при этом образовался темно-синий порошок вещества A₃ массой $1.08 \, \Gamma$ (*p-ция* 4). При действии на него азотной кислотой образовался осадок A₁ массой $0.174 \, \Gamma$ и раствор малинового цвета (*p-ция* 5). Осадок отфильтровали, а к раствору прилили раствор серной кислоты (*p-ция* 6). Наблюдали выпадение белого осадка В массой $1.166 \, \Gamma$. Его отфильтровали и к фильтрату прилили разбавленный раствор нитрата серебра (*p-ция* 7). Масса выпавшего белого творожистого осадка C составила $0.143 \, \Gamma$.

При действии на $1.00 \, \Gamma \, A_2$ концентрированной соляной кислотой выделяется 174.8 мл (при н.у.) газа **D** (*p*-*ция* 8).

- 1) Определите неизвестные вещества X, Y, Z, A_1 , A_2 , A_3 , B, C, D, ответ подтвердите расчетами.
- 2) Запишите уравнения реакций 1 8.
- 3) 3.000 г A_3 растворили в 50.00 г 30.00%-ной HCl, вычислите массовые доли всех веществ в полученном растворе.

Решение задачи 9-1 (авторы: Дроздов А.А., Андреев М.Н.)

- 1. Запишем схемы реакций, приведённых в условии задачи:
 - 1) $\mathbf{X} + \mathrm{Na_2CO_3} \rightarrow \mathbf{Y} \downarrow + \dots$
 - 2) $\mathbf{Y} + \text{HNO}_3 \rightarrow \mathbf{Z} + \text{CO}_2 + \text{H}_2\text{O} + \dots$
 - 3) $Z + A_1 \rightarrow A_2 + ...$
 - 4) $\mathbf{Z} + \mathbf{X} + \mathbf{A_1} \rightarrow \mathbf{A_3} + \cdots$ 0.889 \mathbf{r} 0.104 \mathbf{r} 0.261 \mathbf{r} 1.08 \mathbf{r}
 - 5) $A_3 + HNO_3 \rightarrow A_1 \downarrow + p-p1$ 1.080 Γ 0.174 Γ
 - 6) \mathbf{p} - $\mathbf{p1}$ + \mathbf{H}_2 SO₄ \rightarrow $\mathbf{B}\downarrow$ + \mathbf{p} - $\mathbf{p2}$ 1.166 Γ
 - 7) \mathbf{p} - $\mathbf{p2}$ +AgNO₃ $\rightarrow \mathbf{C} \downarrow + \cdots$ 0.143 Γ
 - 8) $\mathbf{A_2}$ +HCl \rightarrow $\mathbf{D} \uparrow$ + ··· 1.00г 174.8мл

Y – это нерастворимый карбонат металла M, Z – это нитрат.

Белым творожистым осадком \mathbb{C} может быть хлорид серебра. Найдем его количество вещества: $v(\mathrm{AgCl}) = 0.143/143.32 = 0.998$ ммоль ≈ 1 ммоль. Источником хлорид-ионов может быть только \mathbb{X} , т.к. \mathbb{A}_1 , выпадает в осадок в реакции \mathbb{G} после добавления азотной кислоты. Значит, \mathbb{X} — хлорид металла \mathbb{M} . Мы можем вычислить молярную массу вещества \mathbb{X} в расчете на один атом хлора, примерно равна 104 г/моль, т.е. молярная масса металла \mathbb{M} равна $68.5 \cdot \mathbf{n}$, где \mathbf{n} — число атомов хлора на формульную единицу хлорида. При $\mathbf{n} = 2$ $M(\mathbb{M}) = 137$ г/моль $=> \mathbb{M}$ — барий. Значит $\mathbb{X} = \mathrm{BaCl}_2$; $\mathbb{Y} = \mathrm{BaCO}_3$; $\mathbb{Z} = \mathrm{Ba}(\mathrm{NO}_3)_2$; $\mathbb{B} = \mathrm{BaSO}_4$; $\mathbb{C} = \mathrm{AgCl}$.

Количество осадка сульфата бария $\nu(BaSO_4) = 1.166/233.4 \approx 5$ ммоль. Таким образом, мольное отношение атомов бария и хлора в соединении A_3 равно 5:1. Барий двухзарядный катион, значит соединение A_3 содержит ещё три трёхзарядных аниона. В расчёте на 1 атом хлора молярная масса A_3 составляет примерно 1080 г/моль. Нужно понимать, что точность молярной массы достаточно низкая, т.к. последняя значащая цифра не известна. Вычислим массу

неизвестного трехзарядного аниона, для этого вычтем из молярной массы **А**3 молярную массу хлора и 5 атомов бария, затем поделим на 3:

$$(1080 - 35.5 - 137.5)/3 \approx 119.8$$
 г/моль

Судя по методу синтеза, спекание **A**₁ с карбонатом и нитратом бария, неизвестный анион должен содержать атомы кислорода, вычтем массу кислорода из массы аниона:

Состав аниона	3 O ₂ ³⁻	3 O ₃ ³ -	3 O ₄ ³⁻	30_5^{3-}
Масса Э, г/моль	87.8	71.8	55.8	39.8

Для состава Θ_4^{3-} по массе подходит железо, однако при обработке азотной кислотой в растворе не может быть фиолетового $\operatorname{FeO_4^{2-}}$. Так как точность вычисления молярной массы $M(\mathbf{A_3})$ невысока, близким по массе и подходящим по свойствам является марганец, в кислой среде при диспропорционировании марганца (V) можно ожидать образование розового раствора перманганата.

Таким образом, $A_3 = Ba_5(MnO_4)_3Cl$. Тогда реакция 4 выглядит так:

$$\frac{9}{2}$$
Ba(NO₃)₂ + $\frac{1}{2}$ BaCl₂ + 3 A₁ → Ba₅(MnO₄)₃Cl+ ··· 0.889 Γ 0.104 Γ 1.08 Γ

В расчёте на один атом марганца $M(\mathbf{A}_1) = 87$ г/моль, т.е. $\mathbf{A}_1 = \mathrm{MnO}_2$.

В реакции **3**, нитрат бария и диоксид марганца реагируют между собой, при этом образуется манганат бария A_2 при его взаимодействии с концентрированной соляной кислотой выделяется хлор (газ **D**).

$$2Cl^- \xrightarrow{-2\bar{e}} Cl_2$$
 $\nu(\text{Cl}_2) = 174.8/22.4 = 7.80 \text{ ммоль}$

Как известно, в кислой среде Мп восстанавливается до степени окисления +2:

$$Mn^{n+} \xrightarrow{+(n-2)\bar{e}} Mn^{2+}$$

Тогда молярная масса $\mathbf{A_2}$ в расчете на один атом марганца равна $M(\mathbf{A_2}) = \frac{\mathbf{n-2}}{2} \frac{1.00}{7.80 \cdot 10^{-3}} \approx (64\mathbf{n} - 128)$ г/моль. При $\mathbf{n} = 6$ $M(\mathbf{A_2}) = 256$ г/моль, следовательно, $\mathbf{A_3}$ – это BaMnO₄.

X	Y	Z	$\mathbf{A_1}$	$\mathbf{A_2}$	A ₃	В	C	D
$BaCl_2$	BaCO ₃	Ba(NO ₃) ₂	MnO_2	BaMnO ₄	Ba ₅ (MnO ₄) ₃ Cl	BaSO ₄	AgCl	Cl_2

2. Уравнения реакций:

1)
$$BaCl_2 + Na_2CO_3 = BaCO_3 \downarrow + 2NaCl$$

2)
$$BaCO_3 + 2HNO_3 = Ba(NO_3)_2 + CO_2 \uparrow + H_2O$$

3)
$$Ba(NO_3)_2 + MnO_2 = BaMnO_4 + 2NO_2 \uparrow$$

4) 9 BaCO₃ + BaCl₂ + 6 MnO₂ + 1.5O₂ = 2 Ba₅(MnO₄)₃Cl + 9 CO₂
$$\uparrow$$

5)
$$2 \text{ Ba}_5(\text{MnO}_4)_3\text{Cl} + 18 \text{ HNO}_3 = 4 \text{ MnO}_2\downarrow + 2 \text{ HMnO}_4 + \text{BaCl}_2 + 9 \text{ Ba}(\text{NO}_3)_2 + 8\text{H}_2\text{O}$$

$$Ba_5(MnO_4)_3Cl + 8H^+ = 2MnO_2 + MnO_4^- + 5Ba^{2+} + Cl^- + 4H_2O$$

$$6) BaCl2 + H2SO4 = BaSO4 + 2HCl$$

$$Ba^{2+} + SO_4^{2-} = BaSO_4$$

7)
$$HCl + AgNO_3 = AgCl + HNO_3$$

$$Cl^{-} + Ag^{+} = AgCl$$

8)
$$BaMnO_4 + 8HCl = 2Cl_2 + BaCl_2 + MnCl_2 + 4H_2O$$

3. Вычислим массовые доли веществ в растворе

$$2 \text{ Ba}_5(\text{MnO}_4)_3\text{Cl} + 48 \text{ HCl} = 10 \text{ BaCl}_2 + 6 \text{ MnCl}_2 + 24 \text{ H}_2\text{O} + 9 \text{ Cl}_2$$

$$v(Ba_5(MnO_4)_3Cl) = 3.000 / 1078.9 = 2.781$$
 ммоль

$$v(Cl_2) = 9/2 \cdot 2.781 = 12.51$$
 ммоль $m(Cl_2) = 0.887$ г

$$\nu(BaCl_2) = 5.2.781 = 13.90 \text{ ммоль}$$
 $m(BaCl_2) = 2.895 \text{ г}$

$$\nu(MnCl_2) = 3.2.781 = 8.342 \text{ ммоль}$$
 $m(MnCl_2) = 1.050 \text{ г}$

$$\nu$$
(HCl в p-ции) = 24·2.781 = 66.74 ммоль m (HCl) = 2.433 г

$$m(pаствора) = 50.00 + 3.00 - 0.887 = 52.113 г$$

$$m(HCl oсталось) = 50.0.3 - 2.433 = 12.567 г$$

В-во	BaCl ₂	MnCl ₂	HCl
Массовая доля, %	5.56	2.01	24.11

Система оценивания:

1	Каждое вещество по 1 баллу		9 баллов
2	Уравнения реакций 1-8 по 1 баллу		8 баллов
3	Массовая доля каждого вещества – 1 балл		3 балла
		итого:	20 баллов