Wersja: A

Numer indeksu:
000000

Grupa.		
8–10 s. 5	8–10 s.103	8–10 s.104
8–10 s.105	8–10 s.140	12–14 zaaw
12–14 LPA	14–16 s.105	14–16 s.139

Logika dla informatyków

Crupa1.

Kolokwium nr 2, 12 grudnia 2014 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy zbiór dwuelementowy $A = \{a, b\}$. W prostokąt poniżej wpisz liczbę relacji zwrotnych na zbiorze A.

4

Zadanie 2 (2 punkty). Jeżeli istnieje zbiór A oraz taka relacja $R \subseteq A \times A$, że RR = R to w prostokąt poniżej wpisz przykład takiej relacji. W przeciwnym przypadku wpisz słowo "NIE".

$$A=\{1\},\,R=\{\langle 1,1\rangle\}$$

Zadanie 3 (2 punkty). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest wstępująca, jeżeli dla wszystkich $n\in\mathbb{N}$ zachodzi inkluzja $A_n\subseteq A_{n+1}$. Jeżeli istnieje zbiór A oraz taka nieskończona, wstępująca rodzina $\{A_n\}_{n\in\mathbb{N}}$ parami różnych zbiorów, że $\bigcup_{i=0}^{\infty}A_i\subseteq A$ oraz $\bigcup_{i=0}^{\infty}A_i\neq A$, to w prostokąt poniżej wpisz przykład takiego zbioru A i rodziny $\{A_n\}_{n\in\mathbb{N}}$. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".

$$A = [1, 3], A_n = [1, 2 - \frac{1}{1+n}]$$

Zadanie 4 (2 punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie dana wzorem

$$f(\langle n, m \rangle) = \frac{|n - m| + n + m}{2}.$$

W prostokąt poniżej wpisz obliczony obraz zbioru $\{\langle m, 2m \rangle \mid m \in \mathbb{N}\}$ w odwzorowaniu f.

$$\{2m \mid m \in \mathbb{N}\}$$

Zadanie 5 (2 punkty). Rozważmy zbiory osób O, barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób bywających we wszystkich barach podających sok Malinowy.

$$x \in O \land \forall b \in B \ (Podajq(b, 'Malinowy') \Rightarrow Bywa(x,b))$$

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Wersja: **A**

Numer indeksu:
000000

Grupa:			
8–10 s. 5	8–10 s.103	8–10 s.104	
8–10 s.105	8–10 s.140	12–14 zaaw	
12–14 LPA	14–16 s.105	14–16 s.139	

Zadanie 6 (5 punktów). Rozważmy funkcję $F:\{2n\mid n\in\mathbb{N}\}^{\{1,3,5\}}\to\{2n+1\mid n\in\mathbb{N}\}^{\{3,5,7\}}$ zdefiniowaną w następujący sposób: dla $f:\{1,3,5\}\to\{2n\mid n\in\mathbb{N}\}$ funkcja $F(f):\{3,5,7\}\to\{2n+1\mid n\in\mathbb{N}\}$ jest zadana wzorem (F(f))(x)=f(x-2)+1. Udowodnij, że F jest różnowartościowa. Czy F jest bijekcją? Uzasadnij odpowiedź (tzn. udowodnij, że F jest bijekcją lub udowodnij, że F nie jest bijekcją).

Zadanie 7 (5 punktów). Niech R i S będą symetrycznymi relacjami na zbiorze A. Udowodnij, że jeśli SR = RS to relacja RS jest symetryczna.

Zadanie 8 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną R wzorem

$$R(f,g) \iff \exists m \forall n > m \ f(n) = g(n).$$

Udowodnij, że relacja R jest przechodnia.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Wersja:	В
---------	---

Numer indeksu:
000000
000000

Grupa.

- ·· I· ··		
8–10 s. 5	8–10 s.103	8–10 s.104
8-10 s. 105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14-16 s.139

Logika dla informatyków

Kolokwium nr 2, 12 grudnia 2014 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy zbiór dwuelementowy $A = \{a, b\}$. W prostokąt poniżej wpisz liczbę relacji symetrycznych na zbiorze A.

8

Zadanie 2 (2 punkty). Jeżeli istnieje zbiór A oraz taka relacja $R \subseteq A \times A$, że $RR \neq R$ to w prostokat poniżej wpisz przykład takiej relacji. W przeciwnym przypadku wpisz słowo "NIE".

$$A = \{1, 2\}, R = \{\langle 1, 2 \rangle\}$$

Zadanie 3 (2 punkty). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest zstępująca, jeżeli dla wszystkich $n\in\mathbb{N}$ zachodzi inkluzja $A_n\supseteq A_{n+1}$. Jeżeli istnieje taka nieskończona, zstępująca rodzina $\{A_n\}_{n\in\mathbb{N}}$ parami różnych zbiorów, że $\bigcap_{i=0}^{\infty}A_i\neq\emptyset$, to w prostokąt poniżej wpisz przykład takiej rodziny $\{A_n\}_{n\in\mathbb{N}}$. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".

$$A_n = [1, 1 + \frac{1}{1+n}]$$

Zadanie 4 (2 punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie dana wzorem

$$f(\langle n,m\rangle) = \frac{|n-m|+n+m}{2}.$$

W prostokąt poniżej wpisz obliczony przeciwobraz zbioru $\{2014\}$ w odwzorowaniu f.

$$\{\langle n, 2014 \rangle \mid n \in N \land n \leq 2014\} \cup \{\langle 2014, n \rangle \mid n \in N \land n \leq 2014\}$$

Zadanie 5 (2 punkty). Rozważmy zbiory osób O, barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób bywających tylko w barach podających sok Malinowy.

$$x \in O \land \forall b \in B \ (Bywa(x, b) \Rightarrow Podaja(b, 'Malinowy'))$$

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Wersja: **B**

Numer indeksu:
000000

Grupa:			
8–10 s. 5	8-10 s. 103	8–10 s.104	
8–10 s.105	8–10 s.140	12–14 zaaw	
12–14 LPA	14-16 s. 105	14–16 s.139	

Zadanie 6 (5 punktów). Rozważmy funkcję $F:\{1,3,5\}^{\{2n|n\in\mathbb{N}\}}\to\{2,4,6\}^{\mathbb{N}}$ zdefiniowaną w następujący sposób: dla $f:\{2n\mid n\in\mathbb{N}\}\to\{1,3,5\}$ funkcja $F(f):\mathbb{N}\to\{2,4,6\}$ jest zadana wzorem (F(f))(x)=f(2x)+1. Udowodnij, że F jest "na". Czy F jest bijekcją? Uzasadnij odpowiedź (tzn. udowodnij, że F jest bijekcją lub udowodnij, że F nie jest bijekcją).

Zadanie 7 (5 punktów). Niech R i S będą przechodnimi relacjami na zbiorze A. Udowodnij, że jeśli SR = RS to relacja RS jest przechodnia

Zadanie 8 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \ \stackrel{\mathrm{df}}{\Longleftrightarrow} \ \exists m \forall n {>} m \ n \in X \Leftrightarrow n \in Y.$$

Udowodnij, że relacja R jest przechodnia.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.