БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ РАДИОФИЗИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ КАФЕДРА ИНФОРМАТИКИ И КОМПЬЮТЕРНЫХ СИСТЕМ

Н. В. ЛЕВКОВИЧ Н. В. СЕРИКОВА

ЗАДАНИЯ ПО ДИСЦИПЛИНЕ

«ПРОГРАММИРОВАНИЕ НА С++»

ВАРИАНТ А

2024 МИНСК

ОГЛАВЛЕНИЕ

1. Л	инейные алгоритмы и ветвления	4
	. Вычисления по формулам. Использование стандартных математических функций	
	. Целочисленная арифметика. приведение типов	
1.3	. Логические выражения	7
1.4	. Области на плоскости	8
1.5	. Графики на плоскости	10
1.6	. Ветвления	11
1.7	. Логическое выражение в условном операторе	13
1.8	. Побитовые операции	14
2. II	ИКЛЫ	. 15
,	. Простые циклы	
	. Циклы с условием	
	. Нахождение делителей числа	
	. Вложенные циклы	
2.5	. Перебор значений	20
	. Простые числа	
	. Пошаговый ввод данных	
3. M	Гассивы	. 23
	. Одномерный массив	
	. Простейшие действия над элементами матриц	
	. Вложенные циклы с переменными границами	
	. Заполнение матрицы значениями, зависящими от индексов	
	. Символьные матрицы	
	. Преобразование матриц	
1 C	троки	32
	. Обработка последовательностей символов	
	. Перевод из одной системы счисления в другую	
	. Выделение слов в строке	
	•	
	ункции	
	. Использование функций в выражениях	
	. Передача параметров по значению и по ссылке	
	. Передача одномерных массивов в качестве параметров	
	. Передача двумерных массивов в качестве параметров	
5.5	. Передача строк в качестве параметров	36
6. C	труктуры	. 37
	. Массивы структур	37

16 занятий (64 час.)

оценка	количество задач
4	17
5	25
6	30

№	тема		№ задач	
		4	5	6
1	1. Линейные алгоритмы	1.1 1.2	1.5	
2		1.3	1.6	1.7
3		1.4		1.8
4	2. Циклы	2.1 2.2		
5		2.3	2.5	
6		2.4	2.6	2.7
7	3. Массивы	3.1	3.3	
8		3.2	3.4	3.5
9				3.6
10	4. Строки	4.1	4.3	
11		4.2		
12	5. Функции	5.1		
13		5.2		
14		5.3		
15		5.4	5.5	
16	6. Структуры	6.1		

1. ЛИНЕЙНЫЕ АЛГОРИТМЫ И ВЕТВЛЕНИЯ

1.1. ВЫЧИСЛЕНИЯ ПО ФОРМУЛАМ. ИСПОЛЬЗОВАНИЕ СТАНДАРТНЫХ МАТЕМАТИЧЕСКИХ ФУНКЦИЙ

Написать программу, вычисляющую значение функции для различных значений аргумента x, задавая его как целое число, как вещественное число.

Обеспечить варианты: ввода данного с клавиатуры, инициализации данного в тексте программы.

Проанализировать результат выполнения программы при x = 0, x = -1.

1.
$$y = (\cos e^x + \ln(1+x)^2 + \sqrt{e^{\cos x} + \sin^2 \pi x} + \sqrt{1/x} + \cos x^2)^{\sin x}$$
;

2.
$$y = \frac{1/\sqrt{x} + \cos e^x + \cos x^2}{\sqrt[3]{\ln(1+x)^2 + \sqrt{e^{\cos x} + \sin^2 \pi x}}};$$

3.
$$y = \frac{(\sin \pi x^2 + \ln x^2)}{\sin \pi x^2 + \sin x + \ln x^2 + x^2 + e^{\cos x}};$$

4.
$$y = \sqrt{(\sin x + x^2 + e^{\cos x})^2 + (\ln x^2 + \sin \pi x^2)^3}$$
;

5.
$$y = (\ln(1+x)^2 + \cos \pi x^3)^{\sin x} + (e^{x^2} + \cos e^x + \sqrt{1/x})^{1/x}$$
;

6.
$$y = \frac{\sqrt[4]{\cos e^x + e^{x^2} + \sqrt{1/x}}}{(\cos \pi x^3 + \ln(1+x)^2)^{\sin x}};$$

7.
$$y = \frac{\sqrt[4]{\ln(1+x)^2 + \cos \pi x^3}}{(\cos e^x + \sqrt{1/x} + e^{x^2})^{\sin x}};$$

8.
$$y = \sqrt[4]{\cos \pi x^3 + \ln(1+x)^2} (e^{x^2} + \sqrt{1/x} + \cos e^x);$$

9.
$$y = \sin(\sin x + e^{\cos x} + x^2) \sqrt[4]{\sin \pi x^2 + \ln x^2}$$
;

10.
$$y = \sin(\ln x + \sin \pi x^2) \sqrt[4]{x^2 + \sin x + e^{\cos x}}$$
;

11.
$$y = \frac{\sqrt[4]{\ln x + \sin \pi x^2}}{(x^2 + e^{\cos x} + \sin x)^{\sin x}};$$

12.
$$y = (\sin x + x^2 + e^{\cos x}) \sqrt[4]{\ln x + \sin \pi x^2}$$
.

1.2. ЦЕЛОЧИСЛЕННАЯ АРИФМЕТИКА. ПРИВЕДЕНИЕ ТИПОВ

- **1.2.1.** Выполнить задание, выделяя цифры числа, хранящегося в переменной стандартного целого числового типа.
- **1.** Определить число, полученное выписыванием в обратном порядке цифр четырехзначного натурального числа n.
- **2.** Целой переменной s присвоить сумму цифр четырехзначного натурального числа k.
- **3.** Присвоить целой переменной h третью от конца цифру в записи натурального четырехзначного числа k.
- **4.** Дано четырехзначное натуральное n. Определить, является ли это число палиндромом.
- **5**. Дано четырехзначное натуральное n. Верно ли, что это число содержит ровно две цифры 7?
- **6**. Дано четырехзначное натуральное n. Верно ли, что это число содержит ровно три цифры 5?
- **7.** Дано четырехзначное натуральное n. Верно ли, что все цифры числа различны?
- **8.** Дано четырехзначное натуральное n. Верно ли, что все цифры числа одинаковые?
- 9. Определить, равно ли заданное натуральное четырехзначное число, кубу суммы цифр этого числа.
- **10**. Дано четырехзначное натуральное n. Верно ли, что это число содержит более двух цифр 9?
- **11**. Дано четырехзначное натуральное n. Верно ли, что это число содержит только одну цифру 7?
- **12**. Дано четырехзначное натуральное n. Верно ли, что сумма первых двух цифр равна сумме двух оставшихся цифр числа?

- 1.2.2. Выполнить задание, выделяя цифры числа, хранящегося в переменной стандартного вещественного числового типа.
- 1. Определить, есть ли среди первых пяти цифр дробной части заданного положительного вещественного числа, цифра 0.
- 2. Определить, есть ли среди первых четырех цифр дробной части заданного положительного вещественного числа, цифра 5.
- 3. Присвоить целой переменной d четвертую цифру из дробной части положительного вещественного числа x.
- **4**. Присвоить целой переменной d четвертую цифру из дробной части положительного вещественного числа x.
- **5.** Определить, есть ли среди первых четырех цифр дробной части заданного положительного вещественного числа, цифра 9.
- **6.** Определить сумму первых четырех цифр дробной части заданного положительного вещественного числа.
- **7**. Определить, равна ли сумма первых двух цифр дробной части заданного положительного вещественного числа сумме двух следующих цифр.
- 8. Определить, равна ли вторая цифра дробной части заданного положительного вещественного числа сумме первой и четвертой цифр.
- 9. Определить, равна ли первая цифра дробной части заданного положительного вещественного числа четвертой цифре.
- 10. Определить сумму первых пяти цифр дробной части заданного положительного вещественного числа.
- **11**. Определить, есть ли среди первых четырех цифр дробной части заданного положительного вещественного числа, цифра 7.
- 12. Определить, есть ли среди первых пяти цифр дробной части заданного положительного вещественного числа, цифра 9.

1.3. ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ

- **1.3.1.** Присвоить логической переменной значение логического выражения, истинного при выполнении следующего условия и ложного в противном случае:
 - 1. год с порядковым номером у является високосным;
 - **2.** целое число p делится нацело на число q;
 - **3.** целые n и k имеют одинаковую четность;
 - **4.** целые числа x, y, z равны между собой;
 - **5.** только одна из логических переменных a и b имеет значение true;
 - **6.** логическая переменная a имеет значение true, логическая переменная b имеет значение false;
 - **7.** только одна из логических переменных a, b и c имеет значение true;
 - **8.** ни одно из целых чисел x, y, z не является положительным;
 - **9.** хотя бы одно из целых чисел x, y, z положительно;
 - **10.** каждое из целых чисел x, y, z положительно;
 - **11.** только одно из целых чисел x, y, z положительно;
 - **12.** из целых чисел x, y, z только два равны между собой.
- **1.3.2.** Объяснить результат и вывести на экран результат логического выражения T = S для заданных значений логических переменных.
- + логическое сложение (логическое «или»)
- · логическое умножение (логическое «и»)

1.
$$T = a \cdot \overline{b \cdot c}$$
; $S = a \cdot \overline{b} + a \cdot c$;

2.
$$T = a + \overline{b} \cdot \overline{c}$$
; $S = a + \overline{b + c}$;

3.
$$T = (a+b) \cdot \overline{c} \cdot \overline{d}$$
; $S = a \cdot (\overline{c+d}) + b \cdot (\overline{c+d})$;

4.
$$T = a \cdot \overline{b} + a \cdot \overline{c}$$
; $S = a \cdot \overline{b \cdot c}$;

5.
$$T = \overline{(b+c)} \cdot d$$
; $S = \overline{b} \cdot \overline{c} \cdot d$;

6.
$$T = (\overline{b} + \overline{c}) \cdot \overline{d}$$
; $S = (\overline{b+d}) + \overline{(c+d)}$;

7.
$$T = (a+b) \cdot (\overline{c} + \overline{d}); \quad S = a \cdot \overline{(c \cdot d)} + b \cdot \overline{(c \cdot d)};$$

8.
$$T = (a+b) \cdot (c+d); \quad S = \overline{(a+b)} + c \cdot d;$$

9.
$$T = \overline{(a \cdot b) + (c \cdot \overline{d})}; \quad S = (a + \overline{b}) \cdot (\overline{c} + d);$$

10.
$$T = \overline{(a+b+c)\cdot d}$$
; $S = a\cdot \overline{(b+c)} + d$;

11.
$$T = \overline{(a+b+c)\cdot d}$$
; $S = \overline{(a+b)\cdot c} + \overline{d}$;

12.
$$T = \overline{(a + \overline{b} + c) \cdot d}$$
; $S = \overline{(a + c)} \cdot b + \overline{d}$;

1.4. ОБЛАСТИ НА ПЛОСКОСТИ

Даны вещественные числа х, у. Определить, принадлежит ли точка с координатами х, у заштрихованной части плоскости.

1.

2.

3.

4.

5.

7.

9.

11.

12.

1.5. ГРАФИКИ НА ПЛОСКОСТИ

Написать программу, которая по введённому значению аргумента вычисляет значение функции, заданной в виде графика.

1.6. ВЕТВЛЕНИЯ

Выполнить задание двумя способами: с использованием оператора if и с использованием условного оператора?.

- **1.** Даны вещественные числа a, b, c, d. Если $a \le b \le c \le d$, то каждое число заменить наибольшим, если a > b > c > d, то числа оставить без изменений, в противном случае все числа заменить их квадратами.
 - **2.**Даны вещественные x, y, z. Вычислить: $U = \frac{\max^2(x, y, z) 2^x \cdot \min(x, y, z)}{\sin(2) + \max(x, y) / \min(y, z)}$.
- **3.**Считая, что функции *sin* и *cos* применимы только к аргументам в диапазоне $[0, \pi/2]$, вычислить $y = \cos(x)$ для любого заданного вещественного числа x (использовать формулы приведения).
- **4.** Даны x, y, z вещественные числа. Существует ли треугольник с длинами сторон x, y, z? Если существует, то ответить, является ли он остроугольным.
- **5.** Если сумма трёх попарно различных вещественных x, y, z < 1, то наименьшее из этих трёх чисел заменить полусуммой двух других, в противном случае заменить меньшее из x и y полусуммой двух оставшихся.
- **6.** Считая, что функции sin и cos применимы только к аргументам в диапазоне $[0, \pi/2]$, вычислить $y = \sin(x)$ для любого заданного вещественного числа x (использовать формулы приведения).
- **7.** Даны вещественные числа a_1 , b_1 , c_1 , a_2 , b_2 , c_2 . Найти координаты точки пересечения двух прямых, описываемых уравнениями $a_1x + b_1y = c_1$ и $a_2x + b_2y = c_2$, либо сообщить: прямые совпадают, не пересекаются, не существуют.
- **8.** Даны вещественные числа x, y. Если x и y отрицательны, то каждое значение заменить его модулем. Если отрицательно только одно из них, то оба значения увеличить на 0,5. Если оба значения неотрицательны и не одно из них не принадлежит отрезку [0,5;2,0], то оба значения уменьшить в 10 раз; в остальных случаях x и y оставить без изменения.
- **9.**Считая, что функции sin и cos применимы только к аргументам в диапазоне $[0, \pi/2]$, вычислить y = tg(x) для любого заданного вещественного числа x (использовать формулы приведения).
- **10.** Даны вещественные числа x, y. Если x и y положительны, то каждое значение заменить его отрицательным значением. Если положительно только одно из них, то оба значения уменьшить на 2,5. Если оба значения отрицательны и одно из них принадлежит отрезку [-5,0;-2,0], то оба значения увеличить в 10 раз; в остальных случаях x и y оставить без изменения.
- **11.** Даны вещественные числа x, y. Если x и y разного знака, то каждое значение заменить их абсолютными значениями. Если оба значения положительны, то

уменьшить их на 10,5. Если оба значения отрицательны и одно из них принадлежит отрезку [-2,0;-1,0], то оба значения увеличить в 10 раз; в остальных случаях x и y оставить без изменения.

12. Даны a, b, c — вещественные числа. Исследовать биквадратное уравнение $ax^4 + bx^2 + c = 0$, т.е. определить все действительные корни данного уравнения, если они есть.

1.7. ЛОГИЧЕСКОЕ ВЫРАЖЕНИЕ В УСЛОВНОМ ОПЕРАТОРЕ

Поле шахматной доски определяется парой натуральных чисел, каждое из которых не превосходит 8: первое – номер вертикали, второе – номер горизонтали. Заданы натуральные числа k, l, m, n.

- **1**. Определить, являются ли поля (k, l) и (m, n) одного цвета.
- **2**. На поле (k, l) расположен слон. Угрожает ли он полю (m, n)?
- **3.** На поле (k, l) расположен ферзь. Угрожает ли он полю (m, n)?
- **4**. На поле (k, l) расположен конь. Угрожает ли он полю (m, n)?
- **5**. Можно ли с поля (k, l) одним ходом ладьи попасть на поле (m, n)?
- **6.** На поле (k, l) стоит ладья, на поле (m, n) слон. Определить, бьет ли ладья слона, слон ладью или фигуры не угрожают друг другу.
- **7.** На поле (k, l) стоит ладья, на поле (m, n) ферзь. Определить, бьет ли ладья ферзя, ферзь ладью или фигуры не угрожают друг другу.
- **8.** На поле (k, l) стоит ладья, на поле (m, n) конь. Определить, бьет ли ладья коня, конь ладью или фигуры не угрожают друг другу.
- **9**. На поле (k, l) стоит ладья, на поле (m, n) пешка. Определить, бьет ли ладья пешку, пешка ладью или фигуры не угрожают друг другу.
- **10.** На поле (k, l) стоит ферзь, на поле (m, n) слон. Определить, бьет ли ферзь слона, слон ферзя или фигуры не угрожают друг другу.
- **11.** На поле (k, l) стоит слон, на поле (m, n) конь. Определить, бьет ли слон коня, конь слона или фигуры не угрожают друг другу.
- **12.** На поле (k, l) стоит ферзь, на поле (m, n) конь. Определить, бьет ли ферзь коня, конь ферзя или фигуры не угрожают друг другу.

Примечание. Программу будет проще написать (и проверить преподавателю), если имена переменных будут однозначно отражать содержимое. Например, вместо имени переменной *m* использовать SlonX.

1.8. ПОБИТОВЫЕ ОПЕРАЦИИ

Вычислить, объяснить результат выражения, используя поразрядные операции, для заданных значений целых переменных a, b, c.

- + поразрядное сложение (побитовое «или»)
- · поразрядное умножение (побитовое «и»)
- поразрядное отрицание (побитовое «не»)
- ⊕ поразрядное сложение по модулю 2(побитовое «исключающее или»)
- 1. $a \cdot b + c$;
- **2.** $a + b \cdot c$;
- 3. $a+b\cdot \bar{c}$;
- **4.** $a+c\cdot \overline{b}$;
- 5. $\overline{a} + b \cdot c$;
- **6.** $\overline{a+b\cdot c}$;.
- 7. $\overline{a} \cdot (\overline{b+c})$;
- **8**. $a \oplus b$;
- **9.** $a \oplus b \cdot c$;
- **10.** $a \oplus b + c$;
- **11.** $a \oplus b + a \cdot b$;
- **12.** $(a \oplus b) \cdot a \cdot b$;

2. ЦИКЛЫ

2.1. ПРОСТЫЕ ЦИКЛЫ

- **1.** Найдите сумму первых n натуральных чисел, которые являются степенью числа 5.
 - **2.** Найдите сумму первых n натуральных чисел, которые делятся на 3.
- **3.** Найдите сумму первых n натуральных чисел, которые являются числами Фибоначчи.
- **4.** Найдите сумму первых n натуральных чисел, которые являются полными квадратами.
- **5.** Найдите сумму первых n натуральных чисел, которые являются степенью числа 3.
 - **6.** Найдите сумму первых n натуральных чисел, которые делятся на 5.
 - **7.** Найдите сумму первых n натуральных чисел, которые делятся на 6.
 - **8.** Найдите сумму первых n натуральных чисел, которые делятся на 9.
 - **9.** Найдите сумму первых n натуральных чисел, которые делятся на 3 и 5.
 - **10.** Найдите сумму первых n натуральных чисел, которые делятся на 3 и 10.
 - **11.** Найдите сумму первых n натуральных чисел, которые делятся на 2 или 5.
 - **12.** Найдите сумму первых n натуральных чисел, которые делятся на 3 или 5.

2.2. ЦИКЛЫ С УСЛОВИЕМ

Написать программу условной функции вычисления точках $x_i \in [x_0; x_n]; x_i = x_0 + i\Delta x, i = 0, 1...$ п. Вывод результатов обеспечить в виде таблицы со столбцами значений аргумента, функции и номера ветви расчёта. Столбцы должны иметь заголовки. Реализовать 3 версии программы с использованием циклов while, do-while, for.

1.
$$y = \begin{cases} \pi x^2 - 7/x^2, & x < 1,3, \\ ax^3 + 7\sqrt{x}, & x = 1,3, \\ \lg(x + 7\sqrt{x}), & x > 1,3. \end{cases}$$
 $x_0 = 0,8; x_n = 2; \Delta x = 0,1; a = 1,5$

2.
$$Q = \begin{cases} \pi x^2 - 7/x^2, & x < 1, 4, \\ ax^3 + 7\sqrt{x}, & x = 1, 4, \\ \ln(x + 7\sqrt{|x + a|}), & x > 1, 4. \end{cases}$$
 $x_0 = 0; x_n = 3; \Delta x = 0, 1; a = 1,65.$

1.
$$y = \begin{cases} \pi x^2 - 7/x^2, & x < 1,3, \\ ax^3 + 7\sqrt{x}, & x = 1,3, \\ \lg(x + 7\sqrt{x}), & x > 1,3. \end{cases}$$
 $x_0 = 0,8; x_n = 2; \Delta x = 0,1; a = 1,5.$

2. $Q = \begin{cases} \pi x^2 - 7/x^2, & x < 1,4, \\ ax^3 + 7\sqrt{x}, & x = 1,4, \\ \ln(x + 7\sqrt{|x + a|}), & x > 1,4. \end{cases}$ $x_0 = 0; x_n = 3; \Delta x = 0,1; a = 1,65.$

1. $y = \begin{cases} ax^2 \ln x, & 1 \le x \le 2, \\ 1, & x < 1, \\ e^{\alpha x} \cos(2x), & x > 2. \end{cases}$ $x_0 = 0; x_n = 3; \Delta x = 0,1; a = -0,5.$ (обратите внимание на расчёт при $x = 1$)

4.
$$\omega = \begin{cases} ax^2 - 0.3x + 4, & x < 1.2, \\ a/x + \sqrt{x^2 + 1}, & x = 1.2, \\ (a - 0.3x)/\sqrt{x^2 + 1}, & x > 1.2. \end{cases}$$
 $x_0 = 1; x_n = 2; \Delta x = 0.05; a = 2.8.$

5.
$$y = \begin{cases} 1,5\cos^2 x, & x < 1, \\ 1,8ax, & x = 1, \\ (x-2)^2 + 6, & 1 < x < 2, \\ 3tgx, & x \ge 2. \end{cases}$$
 $x_0 = 0,2; x_n = 2,8; \Delta x = 0,2; a = 2,3.$

6.
$$z = \begin{cases} (\ln^3 x + x^2) / \sqrt{x + a}, & x < 0.5, \\ \sqrt{x + a} + 1 / x, & x = 0.5, \\ \cos x + a \sin^2 x, & x > 0.5. \end{cases}$$
 $x_0 = 0.1; x_n = 2; \Delta x = 0.2; a = 2.2.$

7.
$$f = \begin{cases} \lg(x+1), & x > 1 \\ 0, & x = 1 \\ \sin^2(\sqrt{|ax|}), & x < 1 \end{cases}$$

$$x_0 = 0.5$$
; $x_n = 2$; $\Delta x = 0.1$; $a = 20.3$.

8.
$$Q = \begin{cases} ax - \lg ax, & ax < 1, \\ 1, & ax = 1, \\ ax + \lg ax, & ax > 1. \end{cases}$$

$$x_0 = 0.2$$
; $x_n = 2$; $\Delta x = 0.2$; $a = 1.2$.

9.
$$y = \begin{cases} \sin x \lg x, & x > 3.5, \\ \cos^2 x, & x \le 3.5. \end{cases}$$

$$x_0 = 2$$
; $x_n = 5$; $\Delta x = 0.25$.

10.
$$\omega = \begin{cases} x\sqrt[3]{x-a}, & x > a, \\ x\sin ax, & x = a, \\ e^{-ax}\cos ax, & x < a. \end{cases}$$
 $x = 1; x_n = 5; \Delta x = 0,5; a = 2,5.$

$$x_0 = 1$$
; $x_n = 5$; $\Delta x = 0.5$; $a = 2.5$.

11.
$$y = \begin{cases} a \lg x + \sqrt[3]{|x|}, & x > 1, \\ 2a \cos x + 3x^2, & x \le 1. \end{cases}$$

$$x_0 = 0.8$$
; $x_n = 2$; $\Delta x = 0.1$; $a = 0.9$.

12.
$$s = \begin{cases} (a - 0.39)/(e^{x} + \cos x), & x < 2.8, \\ (a - 0.39)/(x + 1), & 2.8 \le x < 6, \end{cases}$$
 $x_0 = 0; x_n = 7; \Delta x = 0.5; a = 2.6.$
$$e^{x} + \sin x, \quad x \ge 6.$$

$$x_0 = 0$$
; $x_n = 7$; $\Delta x = 0.5$; $a = 2.6$.

2.3. НАХОЖДЕНИЕ ДЕЛИТЕЛЕЙ ЧИСЛА

Примечание. При сдаче программы продемонстрировать порядок выполнения инструкций в цикле с помощью пошагового выполнения в режиме отладки.

- **1**. Дано натуральное число n. Получить все его натуральные делители.
- **2**. Даны натуральные числа n, m. Получить их общие делители.
- **3.** Даны натуральные числа n, m. Получить все общие кратные, меньшие $m \cdot n$.
- **4**. Вычислить наибольший общий делитель (НОД) натуральных чисел *a*, *b*.
- **5.** Даны натуральные числа n, m. Получить наименьшее общее кратное (НОК) чисел n, m. НОК $(n, m) = n \cdot m /$ НОД(n, m).
 - 6. Найти наибольший общий делитель для трех заданных натуральных чисел.
 - **7**. Даны натуральные числа n, m. Получить сумму их общих делителей.
- **8.** Найти натуральное число от n до m с максимальной суммой делителей (n, m -натуральные числа).
- **9**. Даны натуральные числа n, m. Получить все числа меньше m взаимно простые с n.
- **10**. Найти натуральное число из диапазона [n, m] (n, m -натуральные числа), которое имеет наибольшее количество делителей.
- **11**. Найти все совершенные числа, меньшие n (n натуральное число). Число совершенное, если оно равно сумме всех своих делителей, за исключением самого числа.
- **12**. Найти все пары дружественных чисел от n до m (n, m натуральные числа). Два числа называются дружественными, если каждое из них равно сумме всех делителей другого, кроме самого этого числа.

2.4. ВЛОЖЕННЫЕ ЦИКЛЫ

Примечание. При сдаче программы продемонстрировать порядок выполнения инструкций в цикле с помощью пошагового выполнения в режиме отладки.

Задано натуральное п, вещественное х. Вычислить результат выражения:

1.
$$\sum_{k=1}^{n} \sum_{m=k}^{n} \frac{x+k}{m!}$$

2.
$$\sum_{k=1}^{n} \sum_{m=k}^{n} \frac{x+k}{m \cdot k!}$$

3.
$$\sum_{i=1}^{n} \left(i! \sum_{j=1}^{i} (i+j^2) \right)$$

4.
$$\prod_{i=1}^{n} \frac{i!}{\sum_{j=1}^{i} (x+j)}$$

5.
$$\sum_{i=1}^{n} \prod_{j=1}^{i} \frac{\sin(i/j)}{j!}$$

$$6. \quad \sum_{i=1}^{n} \prod_{j=1}^{i} \frac{i+x}{j!}$$

7.
$$\sum_{k=1}^{n} \frac{\sum_{m=1}^{k} \sin(k \cdot m)}{k!}$$

8.
$$\sum_{k=1}^{n} \frac{(k+1)!}{\sum_{m=1}^{k} \cos(k \cdot m)}$$

9.
$$\sum_{i=2}^{n} \prod_{j=1}^{i-1} (i-j)/(i+j)$$

9.
$$\sum_{i=2}^{n} \prod_{j=1}^{i-1} (i-j)/(i+j)$$
 10.
$$\sum_{i=1}^{n} \prod_{j=1}^{2i} \sin(j \cdot x/(2i+1))$$

11.
$$\sum_{i=1}^{n} \prod_{j=1}^{i} j!/i!$$

12.
$$\sum_{k=1}^{n} \frac{\sin(0.01 \cdot k \cdot i)}{k!}$$

2.5. ПЕРЕБОР ЗНАЧЕНИЙ

Примечание. При сдаче программы продемонстрировать порядок выполнения инструкций в цикле с помощью пошагового выполнения в режиме отладки.

- **1**. Определить количество трехзначных натуральных чисел, сумма цифр которых равна n.
- **2**. Ввести с клавиатуры натуральное число n. Определить все способы выплаты суммы n с помощью купюр достоинством 1, 5, 10, 20 и 100 условных единиц.
- 3. Ввести с клавиатуры целое число n. Определить все способы выплаты суммы n с помощью монет достоинством в 1, 5, 10, 15, 20, 50 копеек.
- 4. Два двузначных числа, записанных подряд, образуют четырехзначное число, которое нацело делится на их произведение. Найти все такие числа.
- **5**. Вывести на экран в возрастающем порядке все трехзначные числа, в десятичной записи которых нет одинаковых цифр.
- **6**. Даны натуральные числа m, n. Получить все натуральные числа меньшие n, квадрат суммы цифр которых равен m.
- **7.** Найти все натуральные числа, не превосходящие заданного числа N и неделящиеся нацело ни на одну из своих цифр.
- **8.** Найти все пары двухзначных натуральных чисел M, N таких, что значение произведения $M \cdot N$ не изменится, если поменять местами цифры каждого из сомножителей.
- **9**. Найти все натуральные числа, не превосходящие заданного числа N, десятичная запись которых есть строго возрастающая последовательность цифр.
- **10.** Найти все натуральные числа, не превосходящие заданного числа N, десятичная запись которых есть строго убывающая последовательность цифр.
- **11**. Построить таблицу всех различных разбиений заданного натурального числа N на сумму трех натуральных слагаемых (разбиения, отличающиеся порядком слагаемых, различными не считаются).
- **12**. Найти все натуральные числа, не превосходящие заданного числа N и делящиеся нацело на каждую из своих цифр.

2.6. ПРОСТЫЕ ЧИСЛА

Примечание. При сдаче программы продемонстрировать порядок выполнения инструкций в цикле с помощью пошагового выполнения в режиме отладки.

- **1**. Найти все простые числа, не превосходящие заданного натурального числа n.
 - **2**. Дано натуральное n. Получить все его простые делители.
- 3. Среди всех четырехзначных чисел получить все простые числа, у каждого из которых сумма первых двух цифр равна сумме двух последних цифр.
- **4**. Дана последовательность натуральных чисел длины n. Вычислить сумму тех из них, порядковые номера которых простые числа.
- **5**. Дана последовательность натуральных чисел длины n. Вычислить сумму тех из них, которые простые числа.
 - 6. Получить 100 первых простых чисел.
 - **7**. Получить m первых простых чисел.
- **8.** Дано натуральное число n. Среди чисел n, n + 1, ..., 2n найти все числа-близнецы: простые числа, разность между которыми равна 2.
- **9**. Найти все простые числа, не превосходящие заданного натурального числа n, сумма цифр которых меньше m.
- **10**. Определить количество простых чисел, попадающих в диапазон допустимых значений типа *unsigned short int*.
 - **11**. Определить количество простых чисел меньших 2^{24} .
- **12.** Натуральное число, записанное в десятичной системе счисления, называется сверхпростым, если оно остается простым при любой перестановке своих цифр. Найти двузначные сверхпростые числа.

2.7. ПОШАГОВЫЙ ВВОД ДАННЫХ

Выполнить задание без хранения последовательности значений.

Примечание. При сдаче программы продемонстрировать порядок выполнения инструкций в цикле с помощью пошагового выполнения в режиме отладки.

- **1**. Вводятся натуральное число n, целые числа a_1 , ..., a_n . Вычислить сумму: $a_1 + a_2^2 + ... + a_n^n$.
 - **2**. Вводятся натуральное число n, целые числа $x_1, x_2, ..., x_n$. Вычислить:

$$P = x_1 \cdot (x_2 + x_3) \cdot (x_4 + x_5 + x_6) \cdot (x_7 + x_8 + x_9 + x_{10}) \cdot \dots$$

3. Заданы натуральные числа m, n. Вводятся целые числа a_1 , ..., a_n . Вычислить $b_1+...+b_m$, где

$$b_1 = a_1 + a_2 + \dots + a_n$$
; $b_2 = a_1^2 + a_2^2 + \dots + a_n^2$; ... $b_m = a_1^m + a_2^m + \dots + a_n^m$.

- **4**. Заданы натуральные числа m, n, вводятся действительные числа a_1 , ..., a_{nm} . Вычислить: $a_1a_2 \cdot ... \cdot a_m + a_{m+1}a_{m+2} \cdot ... \cdot a_{2m} + ... + a_{(n-1)m+1}a_{(n-1)m+2} \cdot ... \cdot a_{nm}$.
- **5.** Вводится последовательность из n ненулевых целых чисел. Определить, сколько раз в этой последовательности меняется знак чисел.
- **6.** Вводится последовательность из n вещественных чисел. Найти порядковый номер того из них, которое наиболее близко к какому-либо целому.
- 7. Вводится последовательность из n вещественных чисел. Определить, сколько из них больше своих соседей, т. е. предыдущего и последующего.
 - **8.** Вводится n целых чисел $x_1, x_2, ..., x_n$. Вычислить величину:

$$P = x_1 + (x_2 \cdot x_3) + (x_4 \cdot x_5 \cdot x_6) + (x_7 \cdot x_8 \cdot x_9 \cdot x$$

9. Вычислить для заданных n и целых числах $c_1, c_2, ..., c_n$ и $s_1, s_2, ..., s_n$:

$$\frac{c1}{s1} \cdot \frac{c1+c2}{s1+s2} \cdot \dots \cdot \frac{c1+\ldots+cn}{s1+\ldots+sn} .$$

10. Вычислить для заданных значений натурального n, действительных

$$a_1, a_2, ..., a_n$$

$$\frac{1}{a_1} + \frac{1}{a_1(a_2 + 1)} + ... + \frac{1}{a_1(a_2 + 1)...(a_n + n - 1)}.$$

- **11.** Вычислить для заданных значений натурального n, действительных $a_1, a_2, ..., a_n$: $a_1(a_2-n)(a_3-2n)...(a_n-n(n-1))$.
- 12. Вычислить для заданных значений натурального п, действительных

a1, a2, ..., an:
$$a_1a_2 + a_1a_2a_3 + a_1a_2a_3a_4 + ... + a_1a_2a_3...a_n$$

3. МАССИВЫ

3.1. ОДНОМЕРНЫЙ МАССИВ

3.1.1. Для тестирования программы предусмотреть возможность задавать элементы массива различным образом: при определении с инициализацией, случайными числами, вводом с клавиатуры.

Определите сумму элементов массива, расположенных:

- **1.** до минимального.
- 2. до максимального.
- 3. между минимальным и максимальным значениями не включая их.
- 4. до минимального значения.
- 5. до максимального значения.
- 6. после максимального значения.
- 7. после максимального по модулю значения.
- 8. после минимального по модулю значения.
- 9. до минимального по модулю значения.
- 10. между максимальным и минимальным элементами включительно.
- 11. между максимальным и минимальным по модулю элементами исключая их.
- 12. между минимальным положительным и максимальным отрицательным элементами включительно.

- **3.1.2**. Для тестирования программы предусмотреть возможность задавать элементы массива различным образом: при определении с инициализацией, случайными числами, вводом с клавиатуры. Выбор способа инициализации массива сделать через меню с использованием перечисления (**enum**).
 - **1.** Задана последовательность целых чисел. Вывести на экран все элементы, индексы которых есть степени двойки. Определить количество чисел, которые являются степенью двойки.
 - **2.** Задана последовательность целых чисел. Определить количество чисел, которые являются степенью тройки. Вывести на экран все элементы, индексы которых есть степени тройки.
 - **3.** Задана последовательность целых чисел. Вывести на экран все элементы, индексы которых являются степенями пятёрки. Определить количество чисел, которые являются степенью пятёрки.
 - **4.** Задана последовательность целых чисел. Определить количество чисел, которые являются полными квадратами. Вывести на экран все элементы, индексы которых есть полные квадраты.
 - **5.** Задана последовательность целых чисел. Вывести на экран все элементы, индексы которых есть простые числа. Определить количество элементов, являющихся простыми числами.
 - **6.** Определить количество чисел Фибоначчи в заданной последовательности. Вывести на экран все элементы, индексы которых есть числа Фибоначчи.
 - **7.** Получить: max $(a_1 + a_n, a_2 + a_{n-1}, ..., a_{n/2} + a_{n/2+1})$.
 - **8.** Получить: min $(a_1 + a_n, a_2 + a_{n-1}, ..., a_{n/2} + a_{n/2+1})$.
- **9.** Получить: $a_1a_2 + a_2 a_3 + ... + a_{n-1} a_n + a_n a_1$.
- **10.** Определить количество инверсий в заданной последовательности чисел (количество $X_i > X_j$ при всех i < j).
- **11.** Вывести на экран все элементы заданной последовательности чисел, встречающиеся в ней ровно один раз.
- 12. Вывести на экран все элементы заданной последовательности чисел, встречающиеся в ней ровно два раза.

- **3.1.3**. Для тестирования программы предусмотреть возможность задавать элементы массива различным образом: при определении с инициализацией, случайными числами, вводом с клавиатуры. Выбор способа инициализации массива сделать через меню с использованием перечисления (**enum**).
- 1. Из двух массивов разных размерностей сформируйте общий массив и вычислите сумму положительных элементов.
- 2. Из двух массивов разных размерностей сформируйте общий массив и вычислите максимум среди отрицательных элементов.
- **3.** Найти наибольшее среди чисел последовательности, встречающихся в последовательности ровно один раз.
- **4.** Найти наименьшее среди чисел последовательности, встречающихся в последовательности более одного раза.
- **5**. Заданы два одномерных массива X(n), Y(m). Причём $0 \le Y_i < n$; m <= n, $Y_i \ne Y_j$. Вычислить сумму тех элементов вектора X, индексы которых совпадают со значениями элементов массива Y.
- **6**. Заданы два одномерных массива X(n), Y(m). Причём $0 \le Y_i < n$; m <= n, $Y_i \ne Y_j$. Вычислить сумму тех элементов вектора X, индексы которых не совпадают со значениями элементов массива Y.
- **7.** Найти наименьшее среди чисел первой последовательности, не входящих во вторую.
- 8. Найти наибольшее среди чисел первой последовательности, входящих во вторую.
- **9.** Дан массив целых чисел, содержащий n элементов. Получить массив, в котором записаны сначала все отрицательные числа и нули, затем все положительные числа, сохраняя порядок следования.
- 10. Дан массив целых чисел, содержащий n элементов. Получить массив, в котором записаны сначала все положительные числа, затем все отрицательные числа и нули, сохраняя порядок следования.
- **11.** Получить массив C(k), упорядоченный по возрастанию, путем слияния массивов A(n) и B(m), упорядоченных при создании по возрастанию, где k=n+m.
- **12.** Получить массив C(k), упорядоченный по убыванию, путем слияния массивов A(n) и B(m), упорядоченных при создании по возрастанию, где k = n + m.

3.2. ПРОСТЕЙШИЕ ДЕЙСТВИЯ НАД ЭЛЕМЕНТАМИ МАТРИЦ

Задана целочисленная матрица порядка $n \times n$. Для тестирования программы предусмотреть возможность задавать элементы массива различным образом: при определении с инициализацией, случайными числами, вводом с клавиатуры. Выбор способа инициализации массива сделать через меню с использованием перечисления (enum).

- 1. Поменять местами строку, содержащую элемент с наибольшим значением в матрице, со строкой, содержащей элемент с наименьшим значением. Для каждой строки с нулевым элементом на главной диагонали вывести её номер и значение наибольшего из элементов этой строки.
- **2.** Вывести номера столбцов, все элементы, которых чётны. Для каждого столбца с отрицательным элементом на главной диагонали вывести номер и сумму элементов этого столбца.
- **3.** Определить, является ли матрица симметричной (относительно главной диагонали). Найти максимальный элемент среди стоящих на главной и побочной диагонали и поменять его местами с элементом, стоящим на пересечении этих диагоналей.
- **4.** Среди строк матрицы, содержащих только нечётные элементы, найти строку с максимальной по модулю суммой элементов. Получить транспонированную матрицу.
- **5.** Среди столбцов матрицы, содержащих только такие элементы, которые по модулю не больше заданного натурального N, найти столбец с минимальным произведением элементов. Найти сумму элементов тех строк, в которых находится наибольший элемент матрицы.
- **6.** Найти все такие числа k, что k-я строка совпадает с k-м столбцом. Найти наибольший элемент главной диагонали матрицы и вывести на печать строку, в которой он находится.
- **7.** Матрица имеет седловую точку a_{ij} , если a_{ij} является минимальным в i-й строке и максимальным в j-м столбце. Найти все седловые точки матрицы. Получить номера строк, элементы каждой из которых образуют монотонно убывающую последовательность.
- **8.** Подсчитать количество столбцов матрицы, в которых элементы не повторяются. Найти минимальный и максимальный элементы среди стоящих на главной и побочной диагонали и поменять их местами.
- **9.** Найти сумму элементов того столбца, в котором находится наименьший элемент матрицы. Получить номера строк, элементы каждой из которых образуют монотонно возрастающую последовательность.

- **10.** Найти наибольший элемент среди элементов главной и побочной диагонали и вывести на экран строку, в которой он находится. Определить, является ли матрица ортогональной, т. е. такой, в которой скалярное произведение каждой пары различных строк равно 0, а скалярное произведение каждой строки на себя равно 1.
- **11.** Определить вектор, каждый элемент которого равен скалярному произведению соответствующей строки на себя. Найти наибольший среди элементов главной и побочной диагонали и вывести на экран сумму элементов строки, в которой он находится.
- **12.**Найти минимум среди модулей элементов побочной диагонали матрицы. Вывести номера столбцов, элементы каждого из которых образуют монотонную последовательность (монотонно убывающую или возрастающую).

3.3. ВЛОЖЕННЫЕ ЦИКЛЫ С ПЕРЕМЕННЫМИ ГРАНИЦАМИ

Дана действительная матрица порядка п. Найти сумму элементов, расположенных в закрашенной части матрицы на рисунке.

3.4. ЗАПОЛНЕНИЕ МАТРИЦЫ ЗНАЧЕНИЯМИ, ЗАВИСЯЩИМИ ОТ ИНДЕКСОВ

Получить квадратную матрицу заданного порядка п.

1.	n	0	0	 0	0	0
	0	n –1	0	 0	0	0
	0	0	0	 0	2	0
	0	0	0	 0	0	1

2.	1 · 2	0	:	0	0
	0	2 · 3		0	0
				•••	•••
	0	0		(n-1) n	0
	0	0		0	n(n+1)

3 .	n	n –1	•••	2	1
	n-1	n-2		1	0
	2	1		0	0
	1	0		0	0

4.	1	2	3	•••	3	2	1	
	0	1	2		2	1	0	
	0	1	2		2	1	0	
	1	2	3		3	2	1	

5.	1	2	3		n – 1	n
	2	3	4	• • •	n	0
			• • •	• • •		•••
	n – 1	n	0		0	0
	n	0	0		0	0

6.	n	0	0	•••	0	0
	n – 1	n	0		0	0
	2	3	4		n	0
	1	2	3		n – 1	n

(1						
7.	1	1	1	 1	1	1
	0	1	1	 1	1	0
	0	1	1	 1	1	0
	1	1	1	 1	1	1

8.	1	2	3	•••	n – 1	n
	2	1	2		n-2	n – 1
	n – 1	n-2	n - 3		1	2
	n	n – 1	n-2	• • •	2	1

9.	1	0	0	 0	0	1
	1	1	0	 0	1	1
	1	1	0	 0	1	1
	1	0	0	 0	0	1

10 .	1	1	1	•••	1	1
	2	2	2	•••	2	0
				• • •	•••	
	n-1	n-1	0	• • •	0	0
	n	0	0		0	0

11.	1	0	0		0	0	1
	0	2	0	• • •	0	2	0
	0	2	0		0	2	0
	1	0	0		0	0	1

12.	1/1!	1/2!	•••	1/n!
	$1/1!^2$	$1/2!^2$		$1/n!^2$
	•••	•••	•••	•••
	$1/1!^{n-1}$	$1/2!^{n-1}$	•••	$1/n!^{n-1}$
	$1/1!^n$	$1/2!^n$	•••	$1/n!^n$

3.5. СИМВОЛЬНЫЕ МАТРИЦЫ

Выполнить задание для квадратной символьной матрицы порядка п.

- **1**.Заменить буквой '*a*' все элементы, расположенные выше главной диагонали и не являющиеся цифрами.
- 2. Заменить символом '*' все элементы, расположенные выше побочной диагонали и не являющиеся цифрами.
- 3. Определить номер последней строки, содержащей наименьшее число знаков '+' и '-'.
- **4**. Выполнить задание для квадратной символьной матрицы порядка *n*. Определить номер первой по порядку строки, содержащей наибольшее число цифр.
- **5**. Выполнить задание для квадратной символьной матрицы порядка *n*. Определить номер первой по порядку строки, содержащей наименьшее число цифр.
- 6. Определить номер последнего по порядку столбца, содержащего наименьшее число цифр.
- 7. Вывести на экран номера строк матрицы, для которых нет равных среди строк с меньшими номерами.
- 8. Вывести на экран номера столбцов матрицы, для которых есть равные среди столбцов с меньшими номерами.
- 9. Определить номер последнего по порядку столбца, в котором содержится наибольшее количество различных символов.
- 10. Определить номер первой по порядку строки, в которой содержится наименьшее количество различных символов.
- 11. Определить номер последней по порядку строки, в которой содержится наименьшее количество попарно одинаковых символов.
- 12. Определить номер первого по порядку столбца, в котором содержится наибольшее количество попарно одинаковых символов.

3.6. ПРЕОБРАЗОВАНИЕ МАТРИЦ

Для тестирования программы предусмотреть возможность задавать элементы массива различным образом: при описании с инициализацией, присвоением значений (в том числе случайных), или вводом необходимых значений.

1. Получить квадратную матрицу порядка n, элементами которой являются заданные действительные числа a_1 , ..., a_{nn} , расположенные в ней по схеме, которая приведена на рисунке.

5. Вывести последовательность действительных чисел b_1 , ..., b_{nn} , получающуюся при чтении заданной квадратной матрицы порядка n по по схеме, которая приведена на рисунке.

9. Дана действительная квадратная матрица порядка 2n. Получить новую матрицу, переставляя блоки размера $n \times n$ в соответствии с рисунком.

4. СТРОКИ

4.1. ОБРАБОТКА ПОСЛЕДОВАТЕЛЬНОСТЕЙ СИМВОЛОВ

Выполнить задание для введённой строки символов.

Результат записать в новую строку (строки).

- **1.** Заменить в строке все вхождения 'abc' на 'xy'. Заменить каждую большую букву одноименной малой.
- **2.** Заменить в строке все вхождения 'child' на 'children'. Удалить из текста все символы, являющиеся цифрами.
- **3.** Удалить в строке все буквы '*B*', непосредственно за которыми идёт цифра. Удалить из текста символы, являющиеся строчными латинскими буквами.
- **4.** Удалить в строке все вхождения 'abc'. Получить все символы-цифры, встречающиеся в строке.
- **5.** Преобразовать строку: после каждой буквы 'z' добавить символ '!'. Получить в алфавитном порядке все согласные латинские буквы, входящие в строку.
- **6.** Преобразовать строку: удалить все символы '*'. Получить в алфавитном порядке все согласные латинские буквы, не входящие в строку.
- **7.** Получить все символы между первым и вторым символом '*'. Если второго символа '*' нет, то все символы после единственного символа '*'. Записать в алфавитном порядке буквы исходной строки, которые входят в строку по одному разу.
- **8.** Определить число вхождений в строку подстроки 'abc'. Получить символы строки, не являющиеся буквами или цифрами.
- **9.** Удалить в строке все символы, непосредственно за которыми идет '*'. Получить в алфавитном порядке все гласные латинские буквы, не входящие в исходную строку.
- **10.** Преобразовать строку, исключив из неё повторные вхождения символов. Получить в алфавитном порядке все гласные латинские буквы, входящие в исходную строку без повторений.
- **11.** Исключить из строки группы символов, расположенные между первыми символами '(' и ')' вместе со скобками. Если нет символа ')', то исключить все символы до конца строки после '(', включая её. Получить в алфавитном порядке все буквы, входящие в исходную строку без повторений.
- **12.** Исключить из строки группы символов, расположенные между первыми символами '{' и '}' вместе со скобками. Если нет символа '}', то исключить все символы до конца строки после '{', включая его. Найти символ, наиболее часто встречающийся в исходной строке.

4.2. ПЕРЕВОД ИЗ ОДНОЙ СИСТЕМЫ СЧИСЛЕНИЯ В ДРУГУЮ

Числа в двоичной и шестнадцатеричной системах счисления представлять как строки с проверкой правильного ввода числа.

Числа в десятичной системе – как целые числа.

При переводе реализовать алгоритмы перевода чисел из одной системы счисления в другую самостоятельно.

- 1. Написать программу перевода целых чисел из двоичной системы счисления в шестнадцатеричную. Можно считать количество цифр в двоичном числе кратным 4.
- 2. Написать программу перевода целых чисел из шестнадцатеричной системы счисления в двоичную.
- 3. Написать программу перевода целых чисел из десятичной системы счисления в двоичную.
- **4**. Написать программу перевода целых чисел из двоичной системы счисления в десятичную.
- **5**. Написать программу перевода целых чисел из десятичной системы счисления в шестнадцатеричную.
- 6. Написать программу перевода целых чисел из шестнадцатеричной системы счисления в десятичную.
- 7. Написать программу, которая для заданного натурального числа m определяет такое натуральное n, что двоичная запись n получается из двоичной записи m изменением порядка цифр на обратный. Число в двоичной системе счисления записать в новую строку.
- **8**. Написать программу, которая для заданного натурального числа m определяет такое натуральное n, что шестнадцатеричная запись n получается из шестнадцатеричной записи m изменением порядка цифр на обратный. Число в шестнадцатеричной системе счисления записать в новую строку.
- **9**. Найти все числа, не превосходящие заданного натурального числа N, двоичная запись которых представляет собой симметричную последовательность нулей и единиц (начинающуюся единицей!). Найденные числа вывести на экран и в двоичной, и в десятичной системах счисления.
- 10. Найти все числа, не превосходящие заданного натурального числа N, шестнадцатеричная запись которых представляет собой симметричную последовательность. Найденные числа вывести на экран и в шестнадцатеричной, и в десятичной системах счисления.
- **11**. Определите все натуральные числа, не превосходящие заданного числа N, в двоичном представлении которых количество 1 превышает количество 0 больше, чем в 2 раза. Найденные числа вывести на экран и в двоичной, и в десятичной системах счисления.

12. Определите все натуральные числа, не превосходящие заданного числа N, в шестнадцатеричном представлении которых количество символов-цифр превышает количество символов-букв. Найденные числа вывести на экран и в шестнадцатеричной, и в десятичной системах счисления.

4.3. ВЫДЕЛЕНИЕ СЛОВ В СТРОКЕ

Выполнить задание для введённой строки символов. **Результат записать в новую строку.**

Для выполнения задания удобно использовать функцию деления на лексемы библиотеки функций для работы со строками.

Текст – непустая последовательность символов.

Слово – непустая последовательность любых символов, кроме символовразделителей.

Предложение – последовательность слов, разделённых одним или несколькими символами-разделителями.

Символы-разделители: «пробел», «.», «,», «:», «;», «!», «?», «-», «(», «)».

- 1. Получить строку, составленную из первых букв слов исходной строки.
- **2.** Получить строку, составленную из слов исходной строки, начинающихся с буквы a'.
 - 3. Получить строку, составленную из последних букв слов исходной строки.
- **4.** Получить строку, составленную из слов исходной строки, начинающихся и заканчивающихся одной и той же буквой.
- **5.** Получить строку, составленную из слов исходной строки, заканчивающихся на буквы 'rd'.
- **6.** Получить строку, составленную из слов исходной строки, состоящих только из букв.
- **7.** Получить строку, составленную из слов исходной строки, заканчивающихся буквами 'xyz'.
- **8.** Получить строку, составленную из слов исходной строки, начинающихся с букв 'pr'.
- **9.** Получить строку, составленную из слов исходной строки, имеющих заданную длину n.
- 10. Получить строку, составленную из слов исходной строки, в которых нет одинаковых символов.
- **11.** Получить строку, составленную из слов исходной строки, в которых нет символов-цифр.
- **12.** Получить строку, составленную из слов исходной строки, в которых нечётное количество символов.

5. ФУНКЦИИ

В программах не использовать глобальные переменные.

5.1. ИСПОЛЬЗОВАНИЕ ФУНКЦИЙ В ВЫРАЖЕНИЯХ

Выполнить задание 1.1, оформив его через функцию.

5.2. ПЕРЕДАЧА ПАРАМЕТРОВ ПО ЗНАЧЕНИЮ И ПО ССЫЛКЕ

Выполнить задания **1.2** оформив их через функции. Все необходимые данные для функций должны передаваться в качестве параметров. Возврат результата организовать тремя способами: через механизм return, через параметр-указатель, через ссылочный параметр.

5.3. ПЕРЕДАЧА ОДНОМЕРНЫХ МАССИВОВ В КАЧЕСТВЕ ПАРАМЕТРОВ

Написать функции для заполнения массива случайными числами, ввода с клавиатуры, вывода на экран. Выполнить задания **3.1** оформив их через функции. Все необходимые данные для функций должны передаваться в качестве параметров.

5.4. ПЕРЕДАЧА ДВУМЕРНЫХ МАССИВОВ В КАЧЕСТВЕ ПАРАМЕТРОВ

Написать функции для заполнения матрицы случайными числами, ввода с клавиатуры, вывода на экран. Выполнить задания **3.2**, оформив их через функции. Все необходимые данные для функций должны передаваться в качестве параметров.

5.5. ПЕРЕДАЧА СТРОК В КАЧЕСТВЕ ПАРАМЕТРОВ

Выполнить задания **4.1**, **4.3**, **4.2**, оформив их через функции. Все необходимые данные для функций должны передаваться в качестве параметров.

6. СТРУКТУРЫ

6.1. МАССИВЫ СТРУКТУР

Написать программу для создания массива записей со сведениями о студентах (ФИО, возраст, курс, пол, успеваемость). **Оформить заполнение и вывод массива отдельными функциями. Написать функцию**, которая по заданному массиву определяет:

- **1.**Определить Φ ИО самого старшего студента n курса.
- **2.**Определить ФИО самого младшего студента *n* курса.
- **3.**Определить средний возраст студентов *n* курса.
- **4.**Определить количество студентов мужского пола на n курсе.
- **5.**Определить средний балл успеваемости студентов n курса.
- **6.**Определить средний балл успеваемости студентов по m предмету на n курсе.
- **7.**Определить количество отличников на n курсе.
- **8.**Определить количество неуспевающих студентов на n курсе.
- **9.**Определить количество отличников по m предмету на n курсе.
- **10.**Определить количество неуспевающих студентов по m предмету на n курсе.
- **11.**Определить количество студентов на n курсе, имеющих средний балл успеваемости выше среднего балла по его курсу.
- **12.**Определить количество студентов на n курсе, имеющих средний балл успеваемости ниже среднего балла по его курсу.