EE2000 Logic Circuit Design

Lecture 10 – Sequential Functional Blocks: Registers and Counters

Use T FFs and logic gates to design a synchronous counter with counting sequence 0, 4, 2, 1, 6...

Step 1:

- States: 5 states → 3 flip-flops
- Largest number $6 \rightarrow (110)_2 \rightarrow 3$ outputs
- Behavior: $000 \to 100 \to 010 \to 001 \to 110...$

STEP 2: Work out the State Diagram and Table

Pres	sent S	tate	Next State			
Q_A	Q_B	Q_C	Q_A	Q_B	Q_C	
0	0	0	1	0	0	
0	0	1	1	1	0	
0	1	0	0	0	1	
0	1	1	Х	Х	Х	
1	0	0	0	1	0	
1	0	1	Х	Х	Х	
1	1	0	0	0	0	
1	1	1	Х	Х	Х	

STEP 3: Work out T_A , T_B , T_C

Present State		Ne	ext Sta	ate	Flip-Flop			
Q_A	Q_B	Q_C	Q_A	Q_B	Q_C	T_A	T_B	T_C
0	0	0	1	0	0	1	0	0
0	0	1	1	1	0	1	1	1
0	1	0	0	0	1	0	1	1
0	1	1	Х	Х	Х	Х	Х	Х
1	0	0	0	1	0	1	1	0
1	0	1	Х	Х	Х	Х	Х	Х
1	1	0	0	0	0	1	1	0
1	1	1	Х	Х	Х	Х	Х	Х

$$T_A = Q_B' + Q_A$$

$$T_B = Q_A + Q_B + Q_C$$

STEP 4: Draw the Circuit
$$T_C = Q_A'Q_B + Q_C = (Q_A + Q_B')' + Q_C$$

Determine the state transition of remaining states

Present State		Ne	ext Sta	ate	Flip-Flop			
Q_A	Q_B	Q_C	Q_A	Q_B	Q_C	T_A	T_B	T_C
0	0	0	1	0	0	1	0	0
0	0	1	1	1	0	1	1	1
0	1	0	0	0	1	0	1	1
0	1	1						
1	0	0	0	1	0	1	1	0
1	0	1						
1	1	0	0	0	0	1	1	0
1	1	1						

$$T_A = Q'_B + Q_A$$

$$T_B = Q_A + Q_B + Q_C$$

$$T_C = Q'_A Q_B + Q_C$$

Determine the state transition of remaining states

Present State		Ne	ext Sta	ate	Flip-Flop			
Q_A	Q_B	Q_C	Q_A	Q_B	Q_C	T_A	T_B	$T_{\mathcal{C}}$
0	0	0	1	0	0	1	0	0
0	0	1	1	1	0	1	1	1
0	1	0	0	0	1	0	1	1
0	1	1	0	0	0	0	1	1
1	0	0	0	1	0	1	1	0
1	0	1	0	1	0	1	1	1
1	1	0	0	0	0	1	1	0
1	1	1	0	0	0	1	1	1

$$T_A = Q'_B + Q_A$$

$$T_B = Q_A + Q_B + Q_C$$

$$T_C = Q'_A Q_B + Q_C$$

Given an 8-bit serial-in parallel-out shift register as shown below, design a system with one output z, which is 1 only if the input x has been alternating for seven clock times (including the present one).

$$z = x\bar{A}B\bar{C}D\bar{E}F + \bar{x}A\bar{B}C\bar{D}E\bar{F}$$

- Initial input: 0011
- Synchronous Load Bit: Q_3Q_0
 - → Reset to 0011 after 1xx1
- Counter: $0011 \rightarrow 0100 \rightarrow 0101 \rightarrow 0110 \rightarrow 0111 \rightarrow 1000 \rightarrow 1001 \rightarrow 0011$
- Mod-7 counter

