5 out of 4 Becision Tree KNN [k nearest Heighbor] Part B Vts Linear Regression 1 -> lom comp. uts Bayes 5 multiple, log istic sugression 10 gistre- regression Greneralized linear model (GIM) 4) simple probleme with algo to Descivation sigmoic from.

129-99 - - 12 -

a) stat

1) Decision Free:

$$Gain (A) = Info (A) - Info (D) [ucin (A)]$$

$$Gain (A) = Info (A) - Info (D) [ucin (A)]$$

Gain (1) = Info (A) - Info (D) [Thew info].

Info (D) =
$$\frac{1}{10}$$
 | $\frac{10}{10}$ | $\frac{10}{10}$ | payrennis |

1 11	*		Humidity	klindy	1 6	ag , a		1
Outra	ok fem	P		F		No	-	1
R.	11		H 7 811 01 8	7:	obl -	No	-	10
R	H	1-	(3H po) 5	F		yes.	11	1
0	H		H			yes	7	1
~5	M	*	(H spot	C F Z	601	yes.	141	1
vs	C		N	τ		No		
75	C		7	0 1	(00)	yes	11	
0	C			F				>
R	M		Н	93) -0 =	No		-
R	C		N	F		yer	2100/	3 13
~S	M		N	F	3301	yes	12	1
R	M		N	T *		70)		1
0	M		H S	TC	1.1	Yes		1
0	Н		N	FA	M	Tei		1
vs	M		H	17 2)	40.		
10	THE PARTY OF THE P	Brank Francisco						

(alulate = nfo co) = - = Pi log2 (Pi) 10 (1 10gs A A 10gs

aain (A) = Into (D) - Into (A(D).

in too her! 40; roord molows 2nho (D) - 9 log_2 (9) - 5 log_2 5 [Into (D) = 0.040.] lotal -0.637. Almbute outlook > 3 7 N R 4 0 Into (D) = 5 (-2 log2 (2 - 3 log2 5) + 0 $\frac{5}{14} \left(\frac{-3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right) + 1$ 14 (-Le log 4 - 0) Into outlook (D) = 0.693 Allabute Temperature

Y N

2 T 2

M A 2 2 Jupo outlook (D) = 4 (-2 1092 2 - 2 1092 2) + $\frac{6}{14} \left(\frac{4}{6} \log_2 \frac{4}{6} - \frac{2}{6} \log_2 \frac{2}{6} \right) + \frac{4}{14} \left(-\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \right)$ Into out took (D)= 0.919 ot -(a) otal -(a) most

Into outlook (D) =
$$\frac{7}{14} \left(-\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \right) + \frac{7}{14} \left(-\frac{6}{7} \log_2 \frac{6}{7} - \frac{1}{7} \log_2 \frac{1}{7} \right)$$

Into outlook (D) =
$$\frac{8}{14} \left(-\frac{6}{8} \log_2 \frac{6}{8} - \frac{2}{8} \log_2 \frac{2}{8} \right) + \frac{6}{14} \left(-\frac{3}{6} \log_2 \frac{3}{6} - \frac{3}{6} \log_2 \frac{9}{6} \right)$$

10 July 1510

doubles

14

		3474 37		10 Usin	£3333.
14 mbute	aci	p	14 . V		
Out100 K	100247	Highe	it	14	
Femp	0.020				
Hum	0.152	-			
windy	0.04	E COUL	至一)	= = (0)	NOOTED 1
Root Node:	outlook	- of spe	1 3 -) +	41	
		(outlook)		State control	
	8	01	R	- 11/	เล่าเม เป็นสุ
	12		4	4	11100 20014
Conside		(yes)	[3	9 4	
consider the	outwo	a table.			
OllHani	temp	Humi 1	Windy 11	Tonnie	COOHLO OF T
	(1) TEO)	Hig L	61-310		
Sunny	LI	High	S	N	
	M	High	0 - (0)	N Name of the	
	C	Mon	h. (MANO STATE	
	M	Mor (0)	S - (0	Yotal = ((Coin (A
Outlook	Temp	Humi Polit	windy p.	Tennis	tuo)ains
	M	H	WFAGO	Y	
	r	N	W - 01	10-8 = Cau	or) mind
Rairy	C	2	9 1960 - 0	N	
	M	HZZI	S - ORP	- 0% = (mus	t) rima
	M		021.0	10	

```
Into (sunry) = -2 (og 3 - 3 log 3 5
            [= 0.971.] mtal
Humidity, yes y No -
               H (200 - 4-cpd) 1- 10
           => 3 [-0-3 log 3 ]+ A= ( ( )
             \frac{2}{5}\left(-\frac{2}{2}\log_2\frac{2}{2}\right)
Tem, \mathbb{R}
   Into sur (sunny)=0
                Y 4000-1700 = (mic) miss
   windy,
     Into win (sunny)= 3/-1/09/3) + 12/21
                     = \frac{3}{5} \left( -\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \right) + \frac{1}{3}
                       \frac{2}{5} \left( \frac{-1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right)^{\frac{1}{2}}
       Info (sun) = 0.951
     Into Jem (sun)
```

E-011 1 - 199 1 William E pol & - 9 pol & - 3 (perment) of an (otop) 1=0-0=1 2 (-1692 1 - 1092 1) Info cemp(sun) => 0.4 / = 60/ = - 0 - 1 = Crain (remp) = 0.971-0.4 aain (Hum) = 0.971-0 = 0.571 aain (win) = 0.971-0.951 = 0.02. Allinbute (Cain + (- po) 1 -) = ((mauz)) Tem 0:571 Highest 2 (-1 logs + - 1 dogs

12100

(aur) - dut

Rainy;

while the outlook table; IZPO 3= mut)

Outlook	temp	Humi	windy	rennis	Mingh
	M	H	W O	EY W	
	r	N	2 W	ch s	
Rainy	С	3 - 10) +	- spals E-1	Sand ha) wie of all
	M	N	1 a	~ 1	14700
	M	1+ abo	1 5 - 0 -)	Z N.	

Rainy; Ye1=3, 10=2.

Into (Rainy) =
$$-\frac{3}{5} \left[\frac{8g_2 \cdot 3}{5} - \frac{11}{5} \frac{2}{5} \log_2 \frac{291}{5} \right] \cos \theta$$

In potential (seein) =
$$\frac{3}{5} \left(-\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3} \right) + \frac{2}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right)$$

```
[ Into remp (Rain) =
  Hum,
      \frac{2}{5}\left(-\frac{1}{2}\log_2\frac{1}{2}-\frac{1}{2}\log_2\frac{1}{2}\right)
            \frac{3}{5}\left(-\frac{2}{3}\log_2\frac{2}{3}-\frac{1}{3}\log_2\frac{1}{3}\right)
                                                                       HUYLOS
         Hum = s 0,951 ) what double est ubilities
             samp musico invita grans
  Intowin (Rainy) = \frac{3}{5} \left( \frac{-3}{3} \log_2 \frac{3}{3} - 0 \right) + \frac{3}{5} \left( \frac{-3}{3} \log_2 \frac{3}{3} - 0 \right)
                       \frac{2}{15} \left( -0 - \frac{2}{2} \log_2 \frac{2}{2} \right)
          Intowin (Rain) = 0
    (aun (Temp) = 0.941-0.95) = (propa) of a
   hain (Hum) = 0.971 = 0.951)
   cain ( wind )= 0:97 = 0 = 000 = ( cain)
                    5 - 7 100 7 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
```


2	14	May
7	7	B
7	4	B
3	4	4
,	4	1 a

· K=30 / studings New instance (3,7) Bredict the class.

Distance ming. |(22-21)+(92-91)|

[3-7)+ (7-7) = 4 @ 1 (=-3)+(u-7) = 7 D 1 (3-3) + (4-4) = 3 0 B 1(1-3)+(4-7)|-45 Cr

H, K=+; Good k=3; Good

: modding discort & B C=2; Bad is If k=3 given then (3,7) is acod? Majority -> Good mot would

K=5 gn.		class dent stamme	pal Distance
Height	weight	class under/worms	
167	62	N N	19 20 1 31 101110
142	69	N N	12-8
173	65	NUW	2-6
169	58	M M (M) (M)	2-0 1
170	57	1 N	? -3
170	155		1002 not (C=11x7) N 21 1900001

$$(1+0.55)$$
 ->? (Instance) Note of (C=) T) N
 $(1+0-16#)+(55-51)$ = 3+4 = $(55-51)$ |

K=2 -> UW~ Majoritu Mormal

(70, 55)-) Normal

K=3 -> N

1C= 4 -> 600-N

615 = (111- 2)(91-9) ~ MU(2:3

3) Baye's theorem:

p(playtennis = "yes") = 9 = 0.643 Pl playtennis = "No") = 5 = 0-357 conditional probability; Outlook N 3/5 215 4)9 Hum M. High 3/9 415 619 computé p(x/ci) for each dans

Temp	Y	N
1-10-1	29	2/5
mild	419	215
00	3 04	115

2-5 000.2

VUIVE

01

Houses

Windy	ny	M	T
5	3191	31+	+
n '	1619	215	

P[outlook = "sunny" | playtennis = "yes")=2/9 = 0-222.

Lineau Requession 1.

Least square methods.

y= b0 + b12

b(= ≤(xi-\(\frac{1}{2}\)(yi-\(\frac{1}{2}\)) $\leq (xi - \overline{x})^2$

Some (m) = Szy (a)9 (a/a)9 = (a/a)9 Liertogur - A

Simple denear regression. 9 = bo+ bizte

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y)	1 2 + C-	1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
	492010	(1×7)+3	m by
	4	(+x+)+3	y= +
b1 => 6+A+0+	4 = 20	(1×7)+3	y= +
	4 = 20	(+x+) (+	y= + = = + = = + = = + = = + = = + = = + = = + = = = + =
b1 => 6+A+0+	4 = 20	(+x+) ====================================	y= +== 4== 4== 4== 4== 4== 4== 4== 4== 4=

= 10

ŷ = 10+52

Least square method: (x-x)(y-y) (x-x)2 21-え 4-9 2 0 10 0 2 2 2 mslope = $\frac{5(x-\bar{x})(y-\bar{y})}{5(x-\bar{x})^2}$ y-me+c -> Intercept. y= 4 5= 3 4 = 63 x 3+ C 4 = 3 x 3 + C 4= 9+0 G + C = 4 9- u = c $\frac{9-20}{6}=c$ £=2.2

Agrace tal-10 = 20-5(2) 300+01=0

R2 wefferient of determination:

R2-SSR -> sum of square reg. SST -> Total sum of sug.

SST = SSR + SSE

6 coefficient FF8 00 minimulions.

per experience 1882 - 922 - 97

Description for sigmoid four FM. 0 = 48 F0 0 = 08 98-0 388 83-0 318 aye. 25 Townsoft ! 80 25 1135 101 BMI 20 11 081 3P= 120 s= loio 125 101 52 20 0.0 BIR1 + 82 X2 + - - + 13 n Th +0.28 x 32 + 0.28 x 20 + 0.38 x 12 0 t E-49 =

6 Multiple Logistic oleg:

aiven:

$$\beta_0 = 0.67$$
 $\beta_2 = 0.47$ $\beta_1 = 0.58$ $\beta_3 = 0.36$

1 Age	BMI	BP	Dia		
	22	23	*	143.311	-
20	28	140	1	Poudict	age 25
30	30	135	0		BM1 20
+	124	125	0		BP = 120
					pial =?

$$Z = \beta 0 + \beta 1 2 1 + \beta 2 2 2 + - - + \beta 2 2 1$$

Z=0.67+0.58 x25+0.28 x 20 + 0.36 x 150

$$\beta = \frac{1}{1+e^{-2}} = \frac{1}{1+0} = 1$$

5 (4) -) lox4 = 40 1(10)-) 1×10=10

Theory:

* Multiple logistic Regression

* treneratived linear model * Derivation Sigmoic from.

Indiana Tree VI KINN Linear Regression

* Bayes

O pecision Tree:

Intuin)= - & Pi log_2 (Pi)

= Info(D) - Infon(D)

	cain (A)	= In	to (D) - Entop	(2)			
	outtook	1	temperatu	ore/	Humidity	windy	Play tennis
SNO			H		High	weak	No
1	5		Н	1	1-1	Strony	NO
3	0	1	Н		L 1	W	yes
A	R	(M	2	H (JI W	Yes
5	R		C				19
6	R	(1			Normal	W	Yes
7	0		C	1	M	1 1113	No
3	S		M	78	N	3	res
9	2		C		17	W	No
10	R	Borre			7	W	Yes
11	5		M		NM	W	yes
12			M		2	5	yes
- 13	0	-	M		H	3	1 ver
14	B		+1	-14	~	N	
1 4			M	-1 20	H	5	10)
			AT LITTER		11	1111	No
					1.2 2018-		

Attributes

 $\frac{2hb}{14}\left(\frac{2}{5}\log_{2}\frac{2}{5}-\frac{3}{5}\log_{2}\frac{3}{5}\right)+$

$$\frac{1}{14} \left(\frac{-1}{4} \log_2 \frac{4}{4} - 0 \right) +$$

$$\frac{5}{14} \left(-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right)$$

Into temp (D)= $\frac{4}{14} \left[\frac{-2}{4} \log_2 \frac{2}{4} - \frac{2}{4} \log_2 \frac{2}{4} \right] +$ 6 -4 10g2 4 - 2 10g2 2 +

$$\frac{1}{14} \left(\frac{-3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \right)$$

$$= \frac{1}{14} \left(\frac{1}{4} \right) + \frac{6}{14} \left(\frac{0.92}{0.92} \right) + \frac{4}{14} \left(\frac{0.91}{0.93} \right)$$

$$= 0.29 + 0.39 + 0.23$$

$$= 0.91$$

$$\frac{1}{14} \left(\frac{-3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \right) + \frac{1}{14} \left(\frac{-3}{4} \log_2 \frac{1}{4} \right) + \frac{1}{14} \left(\frac{-3}{4} \log_2 \frac{1}{4} \right) + \frac{1}{14} \left(\frac{-3}{4} \log_2 \frac{1}{4} \right) + \frac{1}{14} \left(\frac{0.98}{0.98} \right) + \frac{1}{14} \left(\frac{0.99}{0.98} \right) + \frac{1}{14} \left(\frac{0$$

Gain (A) =
$$3nh(D) - 3nhp(D)$$

Gain (Outrook) = $0.940 - 0.40$
= $0.24 V$
Gain (Temp) = $0.940 - 0.911$
= 0.029
Gain (Hum) = $0.940 - 0.788$

(ucin(wind)=0.940 - 0.892 = 0.048.

= 0.152

sunny , Rainy fuble. o whook 9 emp Hum windy PT Hot High weale NO Hot High Smory Sunny 410 mild High weak No cold Nor weale yes Maild MOY Shong Yes

Yes=2, NO=3

$$\frac{\ln \log (\text{sunny})}{5} = -\frac{2}{5} \cdot \frac{\log_2 2}{5} - \frac{3}{5} \cdot \frac{\log_2 3}{5}$$

$$= 0.5288 + 0.4422$$
Sunny = 0.941

$$\frac{2}{5} \left(-\frac{2}{5} \left(\frac{2}{5} \left(\frac{2}{5} \right) - \frac{2}{5} \left(\frac{2}{5} \left(\frac{2}{5} \right) - \frac{2}{5} \left(\frac{2}{5} \left(\frac{2}{5} \right) - \frac{2}{5} \left(\frac{2}{5} \right) - \frac{2}{5} \left(\frac{2}{5} \left(\frac{2}{5} \right) - \frac{2}{5} \left(\frac{2}{5} \right) + \frac{2}{5} \left(\frac{2}{5} \right$$

Informply = 0.4

$$\frac{7nh + um(n)}{5} = \frac{3}{5} \left(-\frac{3}{3} \log_2 \frac{3}{3} \right) + \frac{2}{5} \left(-\frac{2}{2} \log_2 \frac{2}{2} \right)$$
= 0

windy

In powind (D) =
$$\frac{3}{5}(-\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}) + \frac{2}{5}(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2})$$

= $\frac{3}{5}(0.9183) + \frac{2}{5}(1)$
= $0.5510 + 0.4$

Gain (Temp) =
$$0.971 - 0.4$$

Cain(Heam) = $0.971 - 0$

Gain(Wind) = $0.971 - 0.9510$

= 0.02

Rainy tuble:

Outlook					Wilmondon.
	Temp				0.3900
	Mild	Hum	Windy	b+	(115)4
Rainy		ltigh	w	PT	
	(00)	Nor	W	Y	
	C001	Nor		7	
	Mild	Mor	5	N	
88.00	mild	High	W	Y	
Raini		3, NO=2		N	0.4422
	= Ye1=	= 3 , NO = 2			
Into (Rain					
· mur	4/				

Into (Rainy) =
$$-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5}$$

 $= 0.9 \pm 10$

Inpotemp(D) =
$$\frac{3}{5}\left[-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right] + \frac{2}{5}\left[-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right]$$

$$-\frac{3}{5}\left(0.9183\right) + \frac{2}{5}\left(1\right)$$

$$= 0.9510$$
Hum, $\frac{7}{14}$ $\frac{N}{1}$

$$\frac{3}{5} \left[-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right] + \frac{3}{5} \left[-\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3} \right]$$

$$= \frac{2}{5} \left(1 \right) + \frac{3}{5} \left(0.9183 \right)$$

Info windy (early) =
$$\frac{3}{5} \left(-\frac{3}{3} \log_2 \frac{3}{3} - 0 \right) + \frac{2}{5} \left(-\frac{2}{5} \log_2 \frac{2}{5} \right)$$

Lacin (Temp) =
$$0.9710 - 0.9510 = 0.026$$

Lacin (Wind) = $0.9710 - 0.9510 = 0.020$
Lacin (Wind) = $0.9710 - 0 = 0.9710$

KNN:

- " Mon-parameters
- « clarification e Ragreuron
- + lazy learner algo.

=
$$\sqrt{(\chi_2 - \chi_1)^2 + (\chi_2 - \chi_1)^2}$$
, $|(\chi_2 - \chi_1)^2 + (\chi_2 - \chi_1)|$
= $\sqrt{(\chi_2 - \chi_1)^2 + (\chi_2 - \chi_1)^2}$
Euclidean

Manhatten

$$\beta = \frac{1(3-3)+(4-3)}{2} = \frac{1}{2}$$

$$(3-3)+(4-3)=\frac{1}{2}$$

$$(4-3)=\frac{1}{2}$$

$$(1-3-3)+(4-3)=\frac{1}{2}$$

$$(1-3-3)+(4-3)=\frac{1}{2}$$

$$4 | (-3-3) + (4-3)| = 4$$

$$(4-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 3$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$(-3)| = 4$$

$$($$

$$(1 + (1-3) + (4-7) = 1-2 + (-3) = 3)$$
 $(1 + (4-7) = 1-2 + (-3) = 5)$
 $(1 + (4-7) = 1-2 + (-3) = 5)$
 $(1 + (4-7) = 1-2 + (-3) = 5)$

v=3 : (3,7) the good.

3) linear requestion:

a) hart squeeze method:

$$b_1 = \mathbb{Z}(x_i - \overline{x})(y_i - \overline{y})$$

$$\mathbb{Z}(x_i - \overline{x})^2$$

$$\mathbb{Z}(x_i - \overline{x})^2$$

30	-					
x	4	2-7	(xi-x)2	4-4	b1= (-1x	= 6
1	14	(-X	1	-6	362 (-1)	
3	24	-1	11	4.	Vaint 1	1-16
2	81	0	1.0	-2		11-2
1 3	17	1 +1	- '	73		- 11+2
iols	100	5	2 4	4		
x-2	y= 2	0				

Je => (

$$= (-1 \times -6) + (1 \times 4) + (0 \times -2) + (-1 \times -3) + (1 \times 4)$$

$$= 6 + 4 + 3 + 7$$

$$= 28.5$$

$$= 3$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 20 - 10$$

$$= 5$$

$$= 5$$

$$= 6$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$R^2 = \frac{2(\hat{y} - \bar{y})^2}{2(y - \bar{y})^2}$$

4 4 7-2	9-9	(x-2)(y-y)	(x-x)2	(y-y)	F g	9-9	(9-9)
14 -1	-6	Ь	1	36	15	5	25
3 24 -1	4	4	1	16	25	5	25
2 18 0	-2	2	0	4	20	0	0
3 27 1	-3	3	1	9	15	5	25
1/2 (20)	1 7	20	1	49	25	5	25
20 Y	= 2x +			1114			100.

$$9 = 5x + 10$$
 $5(1) + 10$
 $9 = mx + c$
 $9 = 5x + 10$

$$y = mx + c$$

 $20 = 5 \times 2 + c$
 $20 = 10 + c$

$$e^{2} = \sum (\hat{y} - \bar{y})^{2}$$

$$(= 20 - 10)$$

$$(= 20 - 10)$$

$$(= 20 - 10)$$

Sigmoic Function

Nature of other range from 0 to as

Pake log on both Eider

Expouentiating both Eidel

(et 1 e e 80 + B1x

Then,
$$\frac{p(x)}{(-p(x))} = y$$

 $\frac{1}{1+6} = \frac{80+81x}{1+6}$ $\frac{1}{1+6} = \frac{80+81x}{1+6}$ $\frac{1}{1+6} = \frac{80+81x}{1+6}$ $\frac{1}{1+6} = \frac{1}{1+6} = \frac$