TD 5-Dimension

Exercice 1

Dire si les affirmations suivantes sont vraies ou fausses (en justifiant).

- 1. Soit *E* un espace vectoriel et $(u, v, w) \in E^3$. La famille (u, v, w) est libre si et seulement si les familles (u, v), (u, w) et (v, w) sont libres.
- 2. Soit E un espace vectoriel et $(u, v, w) \in E^3$. Si $w \in \text{Vect}(u, v)$ alors (u, v, w) est liée.
- 3. La dimension de $\mathbb{R}_5[X]$ est 5.
- 4. Si F et G sont deux sous-espaces vectoriels de \mathbb{R}^3 tels que dim F = dim G alors F = G.
- 5. La famille $\begin{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ est une base de $\mathcal{M}_{2,3}(\mathbb{R})$.

Exercice 2

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $F = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid AM = MA \}.$

- 1. Montrer que F est un espace vectoriel de dimension finie.
- 2. Trouver une base de F et en déduire sa dimension.
- 3. (a) Montrer que, pour tout $n \in \mathbb{N}$, $A^n \in F$.
 - (b) Déterminer les coordonnées de Aⁿ dans la base trouvée précédemment.

Exercice 3 (Ecricome 2008)

A tout triplet (a,b,c) de réels, on associe la matrice M(a,b,c) définie par :

$$M(a,b,c) = \begin{pmatrix} a & a & a \\ 0 & b & b \\ 0 & 0 & c \end{pmatrix}$$

On désigne par E l'ensemble des matrices M(a,b,c) où a,b,c sont des réels. Ainsi :

$$E = \{M(a,b,c) \text{ avec } a,b,c \text{ r\'eels}\}$$

1. Montrer que E est un espace vectoriel. Donner une base de E ainsi que sa dimension.

- 2. On pose $J = M(1,1,1) I_3$ où la matrice I_3 est la matrice identité de $\mathcal{M}_3(\mathbb{R})$.
 - (a) Calculer les matrices J^2 , J^3 . En déduire, sans démonstration, l'expression de J^n , pour tout entier naturel $n \ge 3$.
 - (b) Montrer que pour tout entier naturel $n \ge 2$:

$$[M(1,1,1)]^n = I_3 + nJ + \frac{n(n-1)}{2}J^2$$

L'écriture obtenue est-elle encore valable pour les entiers n = 0 et n = 1?

(c) En déduire l'écriture matricielle de $[M(1,1,1)]^n$.

Exercice 4

- 1. Montrer que la famille formée des vecteurs u=(1,1,1), v=(1,-1,0), w=(1,0,-1) est une base de \mathbb{R}^3 .
- 2. Montrer que la famille $(X^2 + X + 1, X 1, X + 1)$ est une base de $\mathbb{R}_2[X]$.
- 3. Montrer que la famille $(1, X 1, (X 1)^2, (X 1)^3)$ est une base de $\mathbb{R}_3[X]$. Déterminer les coordonnées d'un polynôme $P = aX^3 + bX^2 + cX + d$ dans cette base.

Exercice 5

Soit $n \ge 2$ et $H = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}$.

- 1. Montrer que H est un sous-espace vectoriel de \mathbb{R}^n .
- 2. On note $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n et on suppose que dim H = n 1. Montrer que

$$(e_1-e_2,e_1-e_3,\ldots,e_1-e_n)$$

est une base de H.

Exercice 6

$$Soient \ E = \text{Vect}\left(\begin{pmatrix}2\\3\\-1\end{pmatrix}, \begin{pmatrix}1\\-1\\-2\end{pmatrix}\right) \ \text{et} \ F = \text{Vect}\left(\begin{pmatrix}3\\7\\0\end{pmatrix}, \begin{pmatrix}5\\0\\-7\end{pmatrix}\right) \ . \ \textit{Montrer que} \ F = E.$$

Exercice 7

Sans calcul, donner le rang des matrices suivantes et dire si elles sont inversibles ou

Exercice 8

Déterminer le rang des familles suivantes :

1.
$$\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix},\begin{pmatrix}1&1\\-1&0\end{pmatrix},\begin{pmatrix}3&2\\-2&-1\end{pmatrix}\right)$$
.

2.
$$(2,3+X,7-6X^2,2X+X^2)$$
.

Exercice 9

$$On \ considère \ C = \begin{pmatrix} 1 & 2 & 0 & -2 \\ 0 & -2 & 2 & 4 \\ 1 & 3 & -1 & -4 \\ 2 & 1 & 3 & 2 \end{pmatrix}.$$

- 1. Calculer le rang de C.
- 2. Soit E le sous-espace vectoriel de \mathbb{R}^4 engendré par les lignes de C. Déterminer la dimension de E et trouver une base de E.
- 3. Compléter cette base en une base de \mathbb{R}^4 .

Exercice 10

Dans \mathbb{R}^3 , on donne

$$u_1 = (1, 0, -1)$$
 ; $u_2 = (-1, 2, 1)$; $u_3 = (3, -4, -3)$.

- 1. Déterminer le rang de la famille (u_1, u_2, u_3) .
- 2. Déterminer la dimension du sous-espace vectoriel F engendré par (u_1, u_2, u_3) et donner en une base.

Exercice 11

Déterminer le rang des matrices suivantes.

$$A_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad , \quad A_2 = \begin{pmatrix} 1 & 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 & 1 \\ 3 & 2 & 1 & 0 & 1 \end{pmatrix} \quad , \quad A_3 = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 2 & 9 \\ 5 & 2 & 1 \end{pmatrix}$$