Uncertainty Quantification

Sourangshu Bhattacharya CSE, IIT Kharagpur.

Outline of this Part

- Bayesian Neural networks
- Ensemble Learning
- Neural Gaussian Process
- Post-hoc Calibration
- Conformal Prediction

Sources of uncertainty: Model uncertainty

- Many models can fit the training data well
- Also known as epistemic uncertainty
- Model uncefiainty is "reducible"
 - Vanishes in the limit of infinite data (subject to model identifiability)

Sources of uncertainty: Model uncertainty

- Many models can fit the training data well
- Also known as epistemic uncertainty
- Model uncefiainty is "reducible"
 - Vanishes in the limit of infinite data (subject to model identifiability)
- Models can be from same hypotheses class (e.g. linear classifiers in top figure) or belong to different hypotheses classes (bottom figure).

Sources of uncertainty: Data uncertainty

Labeling noise (ex: human disagreement)

Image source: <u>Battleday et al. 2019</u> "Improving machine classification using human uncefiainty measurements"

Sources of uncertainty: Data uncertainty

Labeling noise (ex: human disagreement)

Image source: <u>Battleday et al. 2019</u> "Improving machine classification using human uncefiainty measurements"

Sources of uncertainty: Data uncertainty

- Labeling noise (ex: human disagreement)
- Measurement noise (ex: imprecise tools)
- Missing data (ex: pafiially observed features, unobserved confounders)
- Also known as aleatoric uncertainty
- Data uncefiainty is "irreducible*"
 - Persists even in the limit of infinite data
 - *Could be reduced with additional features/views

Image source: <u>Battleday et al. 2019</u> "Improving machine classification using human uncefiainty measurements"

Calibration Error = |Confidence - Accuracy|

Of all the days where the model predicted rain with 80% probability, what fraction did we observe rain?

- 80% implies perfect calibration
- Less than 80% implies model is overconfident
- Greater than 80% implies model is under-confident

Calibration Error = |Confidence - Accuracy|

Of all the days where the model predicted rain with 80% probability, what fraction did we observe rain?

- 80% implies perfect calibration
- Less than 80% implies model is overconfident
- Greater than 80% implies model is under-confident

Intuition: For regression, calibration corresponds to coverage in a confidence interval.

Expected Calibration Error [Naeini+ 2015]:

$$ECE = \sum_{b=1}^{B} \frac{n_b}{N} |acc(b) - conf(b)|$$

- Bin the probabilities into B bins.
- Compute the within-bin accuracy and within-bin predicted confidence.
- Average the calibration error across bins (weighted by number of points in each bin).

Expected Calibration Error [Naeini+ 2015]:

$$ECE = \sum_{b=1}^{B} \frac{n_b}{N} |acc(b) - conf(b)|$$

confidence 0.8 0.6 0.4 $0.0 \ 0.2 \ 0.4 \ 0.6 \ 0.8$ 1.0 Outputs Outputs 0.8 Gap Gap Accuracy 0.6 Confidence > Accuracy => Overconfident Error=30.6 Error=44.9 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 1.0

ResNet (2016)

CIFAR-100

LeNet (1998) CIFAR-100

1.0

Confidence < Accuracy

=> *Underconfident*

Image source: Guo+ 2017 "On calibration of modern neural networks"

Confidence

Expected Calibration Error [Naeini+ 2015]:

$$ECE = \sum_{b=1}^{B} \frac{n_b}{N} \left| acc(b) - conf(b) \right|$$

Note: Does not reflect accuracy.

Predicting class frequency p(y=1) = 0.3 for all the inputs achieves perfect calibration.

True label	0	0	0	0	0	0	0	1	1	1	Accurate?	Calibrated?
Model prediction	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	×	V

Proper scoring rules [Gneiting & Rahery 2007]

- Negative Log-Likelihood (NLL)
 - Also known as cross-entropy
 - Can overemphasize tail probabilities
- Brier Score
 - Quadratic penalty (bounded range [0,1] unlike log).

BS =
$$\frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} [p(y|\mathbf{x}_n, \theta) - \delta(y - y_n)]^2$$

Can be numerically unstable to optimize.

Evaluate model onout-of-distribution(OOD) inputs whichdo not belong to anyof the existing classes

- Max confidence
- Entropy of p(y|x)

How do we measure the quality of robustness?

Measure generalization to a *large collection of real-world shiks*. A large collection of tasks encourages *general robustness to shifts* (ex: <u>GLUE</u> for NLP).

- Novel textures in object recognition.
- Covariate shift (e.g. corruptions).
- Different sub-populations (e.g. geographical location).

Different renditions (ImageNet-R)

Nearby video frames (ImageNet-Vid-Robust, YTBB-Robust)

Predicted: monkey

Multiple objects and poses (ObjectNet)

Bayesian Neural Networks

Bayesian Neural Networks (BNNs)

Impose probability distribution over model paramete to represent model uncertainty.

Training Time: infer the posterior distribution of weight parameters.

Prior:
$$p(oldsymbol{ heta})$$
 PostTraining data: \mathcal{D}

Posterior:
$$p(\theta|\mathcal{D}) = \frac{p(\theta)p(\mathcal{D}|\theta)}{\int p(\theta)p(\mathcal{D}|\theta)d\theta}$$

Test Time: Bayesian model averaging.

$$p(y^*|\mathbf{x}^*, \mathcal{D}) = \int p(y^*|\mathbf{x}^*, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

Bayesian Neural Networks (BNNs)

Each weight w follows gaussian distribution with mean μ and standard deviation $\sigma = \log(1 + \exp(\rho))$

Parameters μ and ρ are updated using:

- 1. Sample $\epsilon \sim \mathcal{N}(0, I)$.
- 2. Let $\mathbf{w} = \mu + \log(1 + \exp(\rho)) \circ \epsilon$.
- 3. Let $\theta = (\mu, \rho)$.
- 4. Let $f(\mathbf{w}, \theta) = \log q(\mathbf{w}|\theta) \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w})$.
- 5. Calculate the gradient with respect to the mean

$$\Delta_{\mu} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \mu}.$$
 (3)

6. Calculate the gradient with respect to the standard deviation parameter ρ

$$\Delta_{\rho} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} \frac{\epsilon}{1 + \exp(-\rho)} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \rho}.$$
 (4)

7. Update the variational parameters:

$$\mu \leftarrow \mu - \alpha \Delta_{\mu} \tag{5}$$

$$\rho \leftarrow \rho - \alpha \Delta_{\rho}. \tag{6}$$

BNN: Challenges

- Difficult to specify prior distribution of the weight parameters.
 - Parameters of DNN are uninterpretable.
 - Usually set as independent Gaussian.
- Exact Bayesian inference is intractable.
 - Approximate inference are needed.
 - Variational inference
 - Laplace approximation
 - SWAG
 - MCMC

BNNs: Variational Inference

 Minimize the KL-divergence between the approximate distribution within a given family and the true posterior

$$ELBO = \mathbb{E}_{q_{\phi}(\boldsymbol{\theta})}[\log p(\mathcal{D}|\boldsymbol{\theta})] - KL(q_{\phi}(\boldsymbol{\theta})||p(\boldsymbol{\theta})) \le KL(q_{\phi^*}(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D}))$$

Training with SGD to maximize the ELBO

BNN: Monte Carlo Dropout

- Apply dropout at both training and testing time
- Run multiple forward passes with dropout at test time
- Equivalent to BNNs with a Bernoulli variational distribution

[&]quot;Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning", Gal and Ghahramani, 2016.

BNN: SWAG

- SGD with a constant learning rate is approximately sampling from a Gaussian distribution (Mandt et al., 2017).
- Compute first two moments of SGD trajectory.
- Use these moments to construct a Gaussian approximation in weight space.
- Sample from this Gaussian distribution to form a Bayesian model averaging.

BNN: Summarization

Variational inference, Laplace approximation, SWAG...

- Local approximation with a simpler distribution
 - Simple but can only capture one mode.

- Represent the distribution with samples
 - Can explore more modes but slow convergence

Ensemble Learning

Ensemble Learning: DeepEnsemble

- Train multiple DNNs with different weight initializations
- Average prediction at test time

Model inference:

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} p(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta}_m)$$

DeepEnsemble: Empirical Results

Simple but works surprisingly well!

DeepEnsemble works consistently well under different shift intensities.

DeepEnsemble: Empirical Results

	Tox21				ToxCast				Average Ranking			
	ROC↑	ECE↓	NLL↓	BS↓	ROC↑	ECE↓	NLL↓	BS↓	ROC↓	ECE↓	NLL↓	BS↓
DNN-RDKit												
Deterministic	0.7386	0.0417	0.2771	0.0779	0.6222	0.1168	0.4436	0.1397	25.75	17.25	24.13	22.88
Temperature	0.7386	0.0342	0.2723	0.0773	0.6220	0.1114	0.4882	0.1398	25.75	15.38	21.25	19.88
Focal Loss	0.7374	0.1058	0.3161	0.0871	0.6289	0.1264	0.4389	0.1396	25.88	24.38	22.38	24.00
MC Dropout	0.7376	0.0356	0.2727	0.0763	0.6248	0.1093	0.4319	0.1358	26.50	13.00	19.38	18.63
SWAG	0.7364	0.0438	0.2793	0.0790	0.6207	0.1175	0.4441	0.1400	26.38	18.50	25.63	23.50
BBP	0.7243	0.0422	0.2847	0.0814	0.6020	0.1443	0.4673	0.1510	22.75	19.13	19.38	21.38
SGLD	0.7257	0.1192	0.3455	0.0978	0.5319	0.3054	0.6685	0.2378	27.75	26.00	28.88	27.88
Ensembles	0.7540	0.0344	0.2648	0.0746	0.6486	0.0900	0.4008	0.1292	20.00	7.13	11.75	13.13
ChemBERTa												
Deterministic	0.7542	0.0571	0.2962	0.0812	0.6554	0.1209	0.4313	0.1330	15.63	17.38	18.88	19.38
Temperature	0.7542	0.0424	0.2744	0.0792	0.6540	0.1067	0.4817	0.1313	15.88	12.00	13.88	15.38
Focal Loss	0.7523	0.0969	0.3052	0.0845	0.6442	0.1197	0.4243	0.1346	17.63	20.13	17.88	20.63
MC Dropout	0.7641	0.0423	0.2697	0.0744	0.6624	0.1069	0.4070	0.1276	12.50	10.75	10.63	10.00
SWAG	0.7538	0.0592	0.3008	0.0818	0.6556	0.1202	0.4305	0.1327	16.13	19.50	21.38	20.38
BBP	0.7433	0.0459	0.2765	0.0780	0.5814	0.1276	0.4545	0.1469	20.88	19.00	16.00	19.50
SGLD	0.7475	0.0504	0.2784	0.0795	0.5436	0.2238	0.5602	0.1881	21.13	19.88	19.13	18.63
Ensembles	0.7681	0.0440	0.2679	0.0750	0.6733	0.1037	0.3986	0.1258	12.38	13.00	11.63	12.25

DeepEnsemble works consistently well for various molecular property prediction tasks.

Hyperparameter Ensemble

- The ensemble member in DeepEnsemble differs only in random seed.
- We can also expand the space of hyperparameters we average over.

```
deep ensemble fixed init hyper ensemble \{\theta_{\mathrm{init.}}, f_{\theta}(\cdot, \lambda)\} \quad \{\theta_{\mathrm{init.}}, f_{\theta}(\cdot,
```

Hyperparameter ensemble search in the whole "block", exploiting both initialization and hyperparameter diversity.

Hyperparameter Ensemble

- The ensemble member in DeepEnsemble differs only in random seed.
- We can also expand the space of hyperparameters we average over.

Improved uncertainty estimates and accuracy than DeepEnsemble.

Efficient Ensemble: BatchEnsemble

• Exploit rank-one matrix for parameter-efficient ensemble learning

Efficient Ensemble: Multi-input Multi-output (MIMO)

• Concurrently train multiple independent subnetworks within one network

The black connections are shared by all subnetworks, while the colored connections are for individual subnetworks

- Training: independently sample the inputs from the training set
- Testing: repeat inputs M times and average the outputs in an ensemble

Efficient Ensemble: MIMO

Results on CIFAR100

Name	Accuracy (†)	NLL (↓)	ECE (↓)	cAcc (†)	cNLL (↓)	cECE (↓)	Prediction	# Forward
Name	Accuracy (1)						time (\downarrow)	passes (\downarrow)
Deterministic	79.8	0.875	0.086	51.4	2.700	0.239	0.632	1
Monte Carlo Dropout	79.6	0.830	0.050	42.6	2.900	0.202	0.656	1
Naive mutlihead $(M=3)$	79.5	0.834	0.048	52.1	2.339	0.156	0.636	1
MIMO ($M=3$) (This work)	82.0	0.690	0.022	53.7	2.284	0.129	0.639	1
TreeNet $(M=3)$	80.8	0.777	0.047	53.5	2.295	0.176	0.961	1.5
BatchEnsemble ($M=4$)	81.5	0.740	0.056	54.1	2.490	0.191	2.552	4
Thin Ensemble $(M=4)$	81.5	0.694	0.017	53.7	2.190	0.111	0.823	4
Ensemble $(M=4)$	82.7	0.666	0.021	54.1	2.270	0.138	2.536	4

Improved uncertainty estimates but much more efficient than DeepEnsemble!

Comparison between Ensemble & BNNs

 Both aggregate predictions over a collection of models. There are two core distinctions.

The space of models.

Bayes posits a prior that weighs different probability to different functions, and over an infinite collection of functions.

Ensembles weigh functions equally a priori and use a finite collection

Model aggregation.

Bayesian models apply averaging, weighted by the posterior.

Ensembles can apply any strategy and have non-probabilistic interpretations.

Comparison between Ensemble & BNNs

From Functional perspective

Comparison between Ensemble & BNNs

Ensemble + local approximate can outperform Deep Ensembles.

Neural Gaussian Process

Reminder: Gaussian Process

Definition of a Gaussian process:

 $z(x) \sim \mathcal{GP}(\mu, K)$, with mean and covariance functions $\mu(x), K(x, x')$, if any finite set of draws, $[z(x_1), ..., z(x_n)]^T$, follows $\mathcal{N}(\vec{\mu}, \mathbf{K})$ with

$$ec{\mu} = egin{bmatrix} \mu(x_1) \ dots \ \mu(x_n) \end{bmatrix}, \mathbf{K} = egin{bmatrix} K(x_1,x_1) & \cdots & K(x_1,x_n) \ dots & \ddots & dots \ K(x_n,x_1) & \cdots & K(x_n,x_n) \end{bmatrix}$$

- Encode Prior from the functional space through kernel function.
 - Usually much easier than weight space!

Reminder: Gaussian Process

• Gaussian Process can provide reasonable uncertainty estimates.

Deep Kernel Learning

- Deep neural networks: high expressive power but **poor** uncertainty estimates
- Gaussian process: low expressive power but good uncertainty estimates
- Deep kernel learning wins the best of both worlds.
- Avoid the need of specifying the prior of the uninterpretable weights as in BNNs

Apply a GP layer on the features extracted by the DNN

- Models should be distance aware: uncertainty increases farther from training data.
- Replace output layer with GP layer.
- Apply spectral normalization to preserve input distances within internal layers.

Apply Laplace approximation for fast inference

Algorithm 1 SNGP Training

- 1: **Input:** Minibatches $\{D_i\}_{i=1}^N$ for $D_i = \{y_m, \mathbf{x}_m\}_{m=1}^M$.
- 2: Initialize:

$$\hat{\Sigma} = \mathbf{I}, \mathbf{W}_L \stackrel{iid}{\sim} N(0,1), \mathbf{b}_L \stackrel{iid}{\sim} U(0,2\pi)$$

- 3: **for** train_step = 1 **to** max_step **do**
- 4: SGD update $\left\{ \beta, \{\mathbf{W}_l\}_{l=1}^{L-1}, \{\mathbf{b}_l\}_{l=1}^{L-1} \right\}$
- 5: Spectral Normalization $\{\mathbf{W}_l\}_{l=1}^{L-1}$ (10).
- 6: **if** final_epoch **then**
- 7: Update precision matrix $\{\hat{\Sigma}_k^{-1}\}_{k=1}^K$ (9).
- 8: **end if**
- 9: end for
- 10: Compute posterior covariance $\hat{\Sigma}_k = inv(\hat{\Sigma}_k^{-1})$

Algorithm 2 SNGP Prediction

- 1: **Input:** Testing example **x**.
- 2: Compute Feature:

$$\Phi_{D_L \times 1} = \sqrt{2/D_L} * \cos(\mathbf{W}_L h(\mathbf{x}) + \mathbf{b}_L),$$

3: Compute Posterior Mean:

$$logit_k(\mathbf{x}) = \mathbf{\Phi}^{\top} \boldsymbol{\beta}_k$$

4: Compute Posterior Variance:

$$\operatorname{var}_k(\mathbf{x}) = \mathbf{\Phi}^{\top} \hat{\Sigma}_k \mathbf{\Phi}.$$

5: Compute Predictive Distribution:

$$p(y|\mathbf{x}) = \int_{m \sim N(\text{logit}(\mathbf{x}), \text{Var}(\mathbf{x}))} \text{softmax}(m)$$

- Models should be distance aware: uncertainty increases farther from training data.
- Replace output layer with GP layer.
- Apply spectral normalization to preserve input distances within internal layers.

Important for out-of-domain detection

	Accuracy (†)	ECE (↓)	$NLL(\downarrow)$	OC)D	Latency (↓)
Method				AUROC (\uparrow)	AUPR (↑)	(ms / example)
Deterministic	96.5 ± 0.11	0.024 ± 0.002	3.559 ± 0.11	$\mid0.897\pm0.01$	0.757 ± 0.02	10.42
MC Dropout	96.1 ± 0.10	0.021 ± 0.001	1.658 ± 0.05	0.938 ± 0.01	0.799 ± 0.01	85.62
Deep Ensemble	$\textbf{97.5} \pm \textbf{0.03}$	$\textbf{0.013} \pm \textbf{0.002}$	$\textbf{1.062} \pm \textbf{0.02}$	0.964 ± 0.01	$\underline{0.862 \pm 0.01}$	84.46
MCD-GP	95.9 ± 0.05	0.015 ± 0.003	1.664 ± 0.04	0.906 ± 0.02	0.803 ± 0.01	88.38
DUQ	96.0 ± 0.04	0.059 ± 0.002	4.015 ± 0.08	0.917 ± 0.01	0.806 ± 0.01	15.60
DNN-SN	95.4 ± 0.10	0.037 ± 0.004	3.565 ± 0.03	0.922 ± 0.02	0.733 ± 0.01	17.36
DNN-GP	95.9 ± 0.07	0.075 ± 0.003	3.594 ± 0.02	0.941 ± 0.01	0.831 ± 0.01	18.93
SNGP	96.6 ± 0.05	0.014 ± 0.005	$\underline{1.218 \pm 0.03}$	0.969 ± 0.01	$\textbf{0.880} \pm \textbf{0.01}$	17.36

Table 4: Results for BERT_{Base} on CLINC OOS, averaged over 10 seeds.

Post-hoc Calibration

Post-hoc Calibration

Histogram Binning

- All uncalibrated predictions $\widehat{p_i}$ are divided into mutually exclusive bins B_1, \dots, B_M .
- Each bin is assigned a calibrated score θ m.

$$\min_{\theta_1, \dots, \theta_M} \sum_{m=1}^M \sum_{i=1}^n \mathbf{1} (a_m \le \hat{p}_i < a_{m+1}) (\theta_m - y_i)^2,$$

Platt Scaling

- Platt scaling learns scalar parameters $a, b \in R$
- Calibrated probability: $q_i = \sigma(az_i + b)$
- Parameters a and b are optimized using the NLL loss over the validation set.

Post-hoc Calibration: Temperature Scaling

- Rescale the logits of a pre-trained classifier
 - Initialize a temperature parameter T in the Softmax function:

$$p(y_i|\mathbf{x}) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

• Optimize T to minimize the negative log-likelihood on a hold-out calibration set.

Post-hoc Calibration: Temperature Scaling

Dataset	Model	Uncalibrated	Hist. Binning	Isotonic	BBQ	Temp. Scaling	Vector Scaling	Matrix Scaling
Birds	ResNet 50	9.19%	4.34%	5.22%	4.12%	1.85%	3.0%	21.13%
Cars	ResNet 50	4.3%	1.74%	4.29%	1.84%	2.35%	2.37%	10.5%
CIFAR-10	ResNet 110	4.6%	0.58%	0.81%	0.54%	0.83%	0.88%	1.0%
CIFAR-10	ResNet 110 (SD)	4.12%	0.67%	1.11%	0.9%	0.6%	0.64%	0.72%
CIFAR-10	Wide ResNet 32	4.52%	0.72%	1.08%	0.74%	0.54%	0.6%	0.72%
CIFAR-10	DenseNet 40	3.28%	0.44%	0.61%	0.81%	0.33%	0.41%	0.41%
CIFAR-10	LeNet 5	3.02%	1.56%	1.85%	1.59%	0.93%	1.15%	1.16%
CIFAR-100	ResNet 110	16.53%	2.66%	4.99%	5.46%	1.26%	1.32%	25.49%
CIFAR-100	ResNet 110 (SD)	12.67%	2.46%	4.16%	3.58%	0.96%	0.9%	20.09%
CIFAR-100	Wide ResNet 32	15.0%	3.01%	5.85%	5.77%	2.32%	2.57%	24.44%
CIFAR-100	DenseNet 40	10.37%	2.68%	4.51%	3.59%	1.18%	1.09%	21.87%
CIFAR-100	LeNet 5	4.85%	6.48%	2.35%	3.77%	2.02%	2.09%	13.24%
ImageNet	DenseNet 161	6.28%	4.52%	5.18%	3.51%	1.99%	2.24%	-
ImageNet	ResNet 152	5.48%	4.36%	4.77%	3.56%	1.86%	2.23%	-
SVHN	ResNet 152 (SD)	0.44%	0.14%	0.28%	0.22%	0.17%	0.27%	0.17%
20 News	DAN 3	8.02%	3.6%	5.52%	4.98%	4.11%	4.61%	9.1%
Reuters	DAN 3	0.85%	1.75%	1.15%	0.97%	0.91%	0.66%	1.58%
SST Binary	TreeLSTM	6.63%	1.93%	1.65%	2.27%	1.84%	1.84%	1.84%
SST Fine Grained	TreeLSTM	6.71%	2.09%	1.65%	2.61%	2.56%	2.98%	2.39%

Calibration Error (CE)

Average difference between model's predicted prob and true prob

Details: $CE = \sqrt{E[(m-p)^2]}$ m is predicted prob p is true prob

Platt Scaling

 Platt scaling, temperature scaling scale the model probabilities to improve them

Is Platt Scaling calibrated?

Is Model' calibrated?

Impossible to measure calibration error of scaling

Definition 2.1 (Calibration error). The calibration error of $f: \mathcal{X} \to [0, 1]$ is given by:

$$CE(f) = \left(\mathbb{E}\left[\left| f(X) - \mathbb{E}[Y \mid f(X)] \right|^2 \right] \right)^{1/2}$$

Is Platt Scaling calibrated?

Definition 3.1. The binned version of f outputs the average value of f in each bin I_i :

$$f_{\mathcal{B}}(x) = \mathbb{E}[f(X) \mid f(X) \in I_j]$$
 where $x \in I_j$ (4)

Given \mathcal{B} , the binned calibration error of f is simply the calibration error of $f_{\mathcal{B}}$. A simple example shows that using binning to estimate the calibration error can severely underestimate the true calibration error.

Example 3.2. For any binning scheme \mathcal{B} , and continuous bijective function $f:[0,1] \to [0,1]$, there exists a distribution P over \mathcal{X}, \mathcal{Y} s.t. $CE(f_{\mathcal{B}}) = 0$ but $CE(f) \geq 0.49$. Note that for all f, $0 \leq CE(f) \leq 1$.

The intuition of the construction is that in each interval I_j in \mathcal{B} , the model could underestimate the true probability $\mathbb{E}[Y \mid f(X)]$ half the time, and overestimate the probability half the time. So if we average over the entire bin the model appears to be calibrated, even though it is very uncalibrated. The formal proof is in Appendix B, and holds for arbitrary ℓ_p calibration errors including the ECE.

Is Platt Scaling calibrated?

Figure 2: Binned calibration errors of a recalibrated VGG-net model on CIFAR-10 and ImageNet with 90% confidence intervals. The binned calibration error increases as we increase the number of bins. This suggests that binning cannot be reliably used to measure the true calibration error.

• Scaling-binning calibrator fits a function to data, and outputs average function value in each bin X = labels — = calibrator output

4.1 Algorithm

We split the recalibration data T of size n into 3 sets: T_1 , T_2 , T_3 . The scaling-binning calibrator, illustrated in Figure 1, outputs $\hat{g}_{\mathcal{B}}$ such that $\hat{g}_{\mathcal{B}} \circ f$ has low calibration error:

Step 1 (Function fitting): Select $g = \arg\min_{g \in \mathcal{G}} \sum_{(z,y) \in T_1} (y - g(z))^2$.

Step 2 (Binning scheme construction): We choose the bins so that an equal number of $g(z_i)$ in T_2 land in each bin I_j for each $j \in \{1, \ldots, B\}$ —this uniform-mass binning scheme [10] as opposed to equal-width binning [9] is essential for being able to estimate the calibration error in Section [5].

Step 3 (Discretization): Discretize g, by outputting the average g value in each bin—these are the gray circles in Figure 1c. Let $\mu(S) = \frac{1}{|S|} \sum_{s \in S} s$ denote the mean of a set of values S. Let $\hat{\mu}[j] = \mu(\{g(z_i) \mid g(z_i) \in I_j \land (z_i, y_i) \in T_3\})$ be the mean of the $g(z_i)$ values that landed in the j-th bin. Recall that if $z \in I_j$, $\beta(z) = j$ is the interval z lands in. Then we set $\hat{g}_{\mathcal{B}}(z) = \hat{\mu}[\beta(g(z))]$ —that is we simply output the mean value in the bin that g(z) falls in.

(a) Effect of number of bins on squared calibration error.

Recalibration Method	Samples Needed	Can Estimate Calibration?	
Platt Scaling	Few: $O\left(\frac{1}{\epsilon^2}\right)$	×	
Histogram Binning	More: $O\left(\frac{B}{\epsilon^2}\right)$		
Scaling-Binning (Ours)	Few: $O\left(\frac{1}{\epsilon^2} + B\right)$	√	

B = # Bins ε = desired CE

Conformal Prediction

Conformal Prediction: Motivation

- Predict a small set of plausible answers which provably contains the right one
 - Classification: a collection of discrete choices
 - Regression: a continuous interval
- Benefits
 - Can be applied on top of any pre-trained predictor.
 - Finite-sample distribution free coverage guarantees.

Conformal Prediction: Notations

- Given n i.i.d examples $(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{X} \times \mathcal{Y}$ and a user-chosen error rate $\alpha \in [0, 1]$ for a new input \mathbf{x}_{n+1} , return a set of predictions $\mathcal{C}(\mathbf{x}_{n+1}) \subseteq \mathcal{Y}$
 - The predictor is **valid** if the prediction set contains the correct label with probability at least $1-\alpha$:

$$\mathbb{P}(\mathbf{y}_{n+1} \in \mathcal{C}(\mathbf{x}_{n+1})) \ge 1 - \alpha$$

The predictor is efficient if:

$$\mathbb{E}[|\mathcal{C}(\mathbf{x}_{n+1})|] \ll |\mathcal{Y}|$$

Conformal Prediction: Working Steps

- Given a pre-trained predictor, compute the conformal score $s(\mathbf{x},y) \in \mathbb{R}$ on the calibration set.
 - Measure the discrepancy between model outputs and ground-truth labels.
 - Can simply be the loss of an uncalibrated pre-trained predictor.
 - E.g., one minus the softmax output of the true class.

Conformal Prediction: Working Steps

- Given a pre-trained predictor, compute the conformal score $s(\mathbf{x},y) \in \mathbb{R}$ on the calibration set
- Compute \hat{q} as the $\frac{\lceil (n+1)(1-\alpha) \rceil}{n}$ quantile of the calibration scores $s_1=s(\mathbf{x}_1,y_1),\cdots,s_n=s(\mathbf{x}_n,y_n).$

Conformal Prediction: Working Steps

- Given a pre-trained predictor, compute the conformal score $s(\mathbf{x},y) \in \mathbb{R}$ on the calibration set.
- Compute \hat{q} as the $\frac{\lceil (n+1)(1-\alpha) \rceil}{n}$ quantile of the calibration scores $s_1=s(\mathbf{x}_1,y_1),\cdots,s_n=s(\mathbf{x}_n,y_n).$
- Use this quantile to form the prediction sets for new examples:

$$C(\mathbf{x}_{n+1}) = \{ y : s(\mathbf{x}_{n+1}, y) \le \hat{q} \}$$

Conformal Prediction yields Valid Sets

A key formal result in conformal prediction:

Theorem (Vovk et. al., 2005). Let $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., n+1 be exchangeable random variables drawn from some distribution P. For any symmetric nonconformity measure \mathcal{S} and tolerance level $\epsilon \in (0,1)$, define the conformal set (based on the first n samples) at $x \in \mathcal{X}$ as

$$C_n(x) := \left\{ y \in \mathcal{Y} \colon V_{n+1}^{(x,y)} \le \text{Quantile}(1 - \epsilon; V_{1:n}^{(x,y)} \cup \{\infty\}) \right\},\tag{1}$$

where $V_i^{(x,y)}$ is the nonconformity score assigned by S to point $(X_i = x, Y_i = y)$. Then C_n satisfies

$$\mathbb{P}\left(Y_{n+1} \in C_n(X_{n+1})\right) \ge 1 - \epsilon. \tag{2}$$

Evaluation of Conformal Prediction

- Empirically verifying the model's validity (anything above the diagonal)
 - Both model 1 and 2 are valid. Though, model 2 might be too conservative...
 - Model 3 is not valid.

Evaluation of Conformal Prediction

- Measuring the size of prediction sets (the lower the better).
 - While both models 1 and 2 are valid, model 1 is better because the prediction sets are smaller/tighter.
 - Model 3 is not valid, therefore, its small prediction sets aren't reliable.

Summary: Existing Methods for Predictive Models

- Bayesian neural networks:
 - Model parameters as probability distributions.
- Ensemble learning:
 - Train multiple models with different initializations.
- Neural Gaussian process:
 - Deep feature extractor + Gaussian process.
- Post-hoc Calibration:
 - Fit a calibration parameter on a held-out calibration dataset.
- Conformal Prediction:
 - Output set that contains correct answer with high probability.

No clear best method, choose the right one based on your problem and data!

References

- Primary references:
 - KDD 2023 tutorial: https://lingkai-kong.com/kdd23_tutorial/
 - Neurips 2020 tutorial: https://neurips.cc/virtual/2020/tutorial/16649
- Other references (good to read):
 - Coling 2022 tutorial: https://sites.google.com/view/uncertainty-nlp