Recordar que una sucesión $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente constante si cumple que

$$\exists c, N, \ \forall n, \ N < n \implies a_n = c.$$

- 1. Supongamos que $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente constante y esto está atestiguado por c y N. Demostrar que cualquier $N' \geq N$ también sirve para justificarlo.
- **2.** Demostrar que si $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ son eventualmente constantes, entonces $\{a_n+b_n\}_{n\in\mathbb{N}}$ también lo es. (¡Ojo! Los respectivos c y N pueden ser ambos distintos).
- **3.** Sean $\{a_n\}_{n\in\mathbb{N}}$ una sucesión y $\epsilon>0$ dados. Definir formalmente: "Los términos de $\{a_n\}_{n\in\mathbb{N}}$ eventualmente tienen módulo menor que ϵ ".

Para los siguientes ejercicios, es conveniente recordar que toda sucesión es una función, y repasar las definiciones de funciones (de)crecientes (monótonas y estrictas).

- **4.** Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión.
 - (a) Escribir, usando la notación para sucesiones, las definiciones de los cuatro tipos de (de)crecimiento que puede tener $\{a_n\}_{n\in\mathbb{N}}$.
 - (b) Demostrar que si $\{a_n\}_{n\in\mathbb{N}}$ es estrictamente creciente, entonces $\{-a_n\}_{n\in\mathbb{N}}$ es estrictamente decreciente.
 - (c) Enunciar un resultado análogo al anterior para $\left\{\frac{1}{a_n}\right\}_{-\infty}$
- 5. Demostrar que la sucesión $\{\sqrt{n}\}_{n\in\mathbb{N}}$ es estrictamente creciente (recordar P1E2(c)).
- 6. Decidir si las siguientes sucesiones están acotadas inferior y/o superiormente. Justificar.
 - (a) $\{n\}_{n\in\mathbb{N}}$.

(c) $\{(-1)^n \cdot n\}_{n \in \mathbb{N}}$.

(b) $\left\{\frac{(-1)^n}{n}\right\}_{n\in\mathbb{N}}$.

- (d) Una sucesión eventualmente constante.
- 7. Demostrar que una sucesión $\{a_n\}_{n\in\mathbb{N}}$ es acotada si y sólo si existe M tal que $|a_n|\leq M$. Notar que esto aplica a funciones en general.
- **8.** Considerar la sucesión $\{a_n\}_{n\in\mathbb{N}}$ donde $a_n=\frac{(-1)^n}{n}$.
 - (a) Para $\varepsilon = 0.2$ y $\varepsilon = 0.05$: determinar los $n \in \mathbb{N}$ tales que a_n se encuentra a una distancia de al menos ε de 0.
 - (b) Probar que $\lim_{n\to\infty} a_n = 0$.
- 9. Demostrar usando la definición los siguientes límites.
 - (a) $\lim_{n \to \infty} \frac{n+1}{n} = 1$.
- (b) $\lim_{n \to \infty} (\sqrt{n^2 + 1} n) = 0.$
- 10. Usar las reglas de cálculo para obtener los siguientes límites.

 - (a) $\lim_{n \to \infty} \frac{5 2n}{3n 7}$. (b) $\lim_{n \to \infty} \frac{(n+1)^2}{n} \frac{n^3}{(n-1)^2}$. (c) $\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}}$.
- 11. Demostrar usando la definición los siguientes límites.
 - (a) $\lim_{n \to \infty} \frac{n^2 100}{n} = +\infty.$

- (b) $\lim_{n \to \infty} 2^n = +\infty.$
- 12. Calcular los siguientes límites.

 - (a) $\lim_{n \to \infty} \frac{n^3 + 7n}{n 2}$. (b) $\lim_{n \to \infty} (n \sqrt{n^2 4n})$. (c) $\lim_{n \to \infty} \sqrt[n]{n^3 + 1}$.

- 13. Probar que para todo número real $\ell \in (0,1)$, existe una sucesión $\{q_n\}_{n\in\mathbb{N}}$ de números racionales tal que $q_n \in (0,1)$ y $\lim_{n\to\infty} q_n = \ell$.
- **14.** Sea $\{a_n\}_{n\in\mathbb{N}}$ la sucesión dada por $a_n=(-1)^n$.
 - (a) Dar tres subsucesiones convergentes de $\{a_n\}_{n\in\mathbb{N}}$ distintas.
 - (b) Probar que si $\{a_{n_j}\}_{j\in\mathbb{N}}$ es una subsucesión convergente, entonces $\lim_{j\to\infty}a_{n_j}=1$ ó -1.
- **15.** (a) Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de números reales tal que $a_n\in\mathbb{Z}$ para todo $n\in\mathbb{N}$. Probar que si $\lim_{n\to\infty}a_n=\ell$ entonces $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente igual a ℓ .
 - (b) Determinar todas las subsucesiones convergentes (con su límite) de la sucesión

$$1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, \dots$$

- 16. Demostrar que cualquier subsucesión de una sucesión convergente es convergente.
- 17. (a) Demostrar que si 0 < a < 2 entonces $a < \sqrt{2a} < 2$.
 - (b) Demostrar la convergencia de la sucesión

$$\sqrt{2}$$
, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2\sqrt{2}}}$, $\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}$, ...

- (c) Hallar el límite de la sucesión del ítem anterior. (Sugerencia: notar que si a_n denota al n-ésimo término de la sucesión, entonces $(a_{n+1})^2 = 2a_n$).
- 18. Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si $\{a_n\}_{n\in\mathbb{N}}$ diverge, entonces $\{a_{3n+1}\}_{n\in\mathbb{N}}$ también diverge.
 - (b) Si $\lim_{n\to\infty} |a_n| = +\infty$, entonces $\lim_{n\to\infty} a_n = +\infty$ ó $\lim_{n\to\infty} a_n = -\infty$.
 - (c) Si $\lim_{n\to\infty} a_n = +\infty$, y $b_n > 0$ para todo n, entonces $\{a_n \cdot b_n\}_{n\in\mathbb{N}}$ tiende a $+\infty$ o converge.
 - (d) Si $\{a_{2n}\}_{n\in\mathbb{N}}$ y $\{a_{2n+1}\}_{n\in\mathbb{N}}$ convergen, entonces $\{a_n\}_{n\in\mathbb{N}}$ converge.

EJERCICIOS EXTRA

- **19.** Demostrar que si $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente constante si y sólo si existe un N tal que $\forall m, n, N < m, n \implies a_n = a_m$.
- **20.** Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión.
 - (a) Definir formalmente: "Los términos de $\{a_n\}_{n\in\mathbb{N}}$ eventualmente tienen módulo tan chico como uno quiera".
 - (b) Convencerse de que esto es exactamente lo mismo que $\lim_{n\to\infty} a_n = 0$.
- **21.** Demostrar que $\{a_n\}_{n\in\mathbb{N}}$ es estrictamente creciente si y sólo si para todo $n\in\mathbb{N}, a_n< a_{n+1}$.
- **22.** Demostrar que $\{a_n\}_{n\in\mathbb{N}}$ es una sucesión estrictamente creciente de naturales, entonces para todo $n\in\mathbb{N},\ n\leq a_n$.
- **23.** Probar que la definición de límite de sucesiones es equivalente a la que requiere que N sea un número natural. Es decir,

$$\lim_{n \to \infty} a_n = l \iff \forall \varepsilon > 0, \ \exists \underline{N \in \mathbb{N}}, \ \forall n > N, \ |a_n - l| < \varepsilon.$$