Spring 2022 UGBA 141 Midterm Reference Sheet

1. Process

Capacity =
$$\frac{1}{\text{Processing time of 1 unit}}$$
.

For a single linear process, Process capacity = Minimum{Capacity of resource $1, \ldots,$ Capacity of resource n}.

Flow rate = $Minimum{Available input, Demand, Process capacity}.$

$$Utilization = \frac{Flow \ rate}{Capacity}, Implied \ utilization = \frac{Demand}{Capacity}.$$

Time to fulfill X units (steady state) =
$$\frac{X}{\text{Flow rate}} = X \times \text{Cycle time}$$
.

Labor content = Sum of processing times with labor, Cost of direct labor = $\frac{\text{Total wages}}{\text{Flow rate}}$.

$$\label{eq:average_labor_utilization} \text{Average labor utilization} = \frac{\text{Labor content} \times \text{Flow rate}}{\text{Number of workers}}.$$

Idle time = Cycle time - Processing time of the single worker.

2. Quality

	Mean Charts	R-Charts	p-Charts	c-Charts
CL	$\overline{\overline{X}}$	\overline{R}	\overline{p}	\overline{c}
UCL	$\overline{\overline{X}} + A_2 \overline{R}$	$D_4\overline{R}$	$\overline{p} + 3 * \sqrt{\frac{\overline{p}(1-\overline{p})}{\text{sample size}}}$	$\overline{c} + 3\sqrt{\overline{c}}$
LCL	$\overline{\overline{X}} - A_2 \overline{R}$	$D_3\overline{R}$	$\bar{p} - 3 * \sqrt{\frac{\bar{p}(1-\bar{p})}{\text{sample size}}}$	$\overline{c} - 3\sqrt{\overline{c}}$

Figure 1: Computation of CL, UCL, LCL for control charts

For centered process, $C_p = \frac{\text{USL-LSL}}{6\hat{\sigma}}$. For off-centered process, $C_{pk} = \min\left\{\frac{\text{USL-}\overline{X}}{3\hat{\sigma}}, \frac{\overline{X}-\text{LSL}}{3\hat{\sigma}}\right\}$.

3. Inventory

- (a) Economic Order Quantity (EOQ): EOQ = $\sqrt{\frac{2 \times S \times D}{h}}$,
- (b) Continuous review model (Q,R): $Q = \sqrt{\frac{2SD}{h}}, R = \mu_{LT} + z\sigma_{LT}$.
- (c) Periodic review model (P,T): $P = \sqrt{\frac{2S}{Dh}}, T = \mu_{P+LT} + z\sigma_{P+LT}$.
- (d) Newsvendor: The order quantity Q^* satisfies $\text{Prob}(D \leq Q^*) = \text{Critical ratio} = \frac{G}{G+L}$.
- (e) Annual inventory turns = Annual cost of goods sold (COGS) / Average inventory (\$).

Table of Control Chart Constants

X-bar Chart for sigma R Chart Constants S Chart Constants
Constants estimate

Sample	A_2	A_3	d_2	D_3	D_4	B_3	B_4
Size = m	1 12	1 13	<u> </u>	23	24	23	24
2	1.880	2.659	1.128	0	3.267	0	3.267
3	1.023	1.954	1.693	0	2.574	0	2.568
4	0.729	1.628	2.059	0	2.282	0	2.266
5	0.577	1.427	2.326	0	2.114	0	2.089
6	0.483	1.287	2.534	0	2.004	0.030	1.970
7	0.419	1.182	2.704	0.076	1.924	0.118	1.882
8	0.373	1.099	2.847	0.136	1.864	0.185	1.815
9	0.337	1.032	2.970	0.184	1.816	0.239	1.761
10	0.308	0.975	3.078	0.223	1.777	0.284	1.716
11	0.285	0.927	3.173	0.256	1.744	0.321	1.679
12	0.266	0.886	3.258	0.283	1.717	0.354	1.646
13	0.249	0.850	3.336	0.307	1.693	0.382	1.618
14	0.235	0.817	3.407	0.328	1.672	0.406	1.594
15	0.223	0.789	3.472	0.347	1.653	0.428	1.572
16	0.212	0.763	3.532	0.363	1.637	0.448	1.552
17	0.203	0.739	3.588	0.378	1.622	0.466	1.534
18	0.194	0.718	3.640	0.391	1.608	0.482	1.518
19	0.187	0.698	3.689	0.403	1.597	0.497	1.503
20	0.180	0.680	3.735	0.415	1.585	0.510	1.490
21	0.173	0.663	3.778	0.425	1.575	0.523	1.477
22	0.167	0.647	3.819	0.434	1.566	0.534	1.466
23	0.162	0.633	3.858	0.443	1.557	0.545	1.455
24	0.157	0.619	3.895	0.451	1.548	0.555	1.445
25	0.153	0.606	3.931	0.459	1.541	0.565	1.435

Control chart constants for X-bar, R, S, Individuals (called "X" or "I" charts), and MR (Moving Range) Charts.

NOTES: To construct the "X" and "MR" charts (these are companions) we compute the Moving Ranges as:

 R_2 = range of 1st and 2nd observations, R_3 = range of 2nd and 3rd observations, R_4 = range of 3rd and 4th observations, etc. with the "average" moving range or "MR-bar" being the average of these ranges with the "sample size" for each of these ranges being n = 2 since each is based on consecutive observations ... this should provide an estimated standard deviation (needed for the "I" chart) of

 σ = (MR-bar)/d₂ where the value of d₂ is based on, as just stated, m = 2.

Similarly, the UCL and LCL for the MR chart will be: $UCL = D_4(MR-bar)$ and $LCL = D_3(MR-bar)$

but, since $D_3 = 0$ when n = 0 (or, more accurately, is "not applicable") there will be no LCL for the MR chart, just a UCL.

Stan	dard No	ormal P	rohahil	ities						
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9 -2.8	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.7	.0025	.0023	.0024	.0023	.0023	.0022	.0021	.0021	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2 -2.1	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0228	.0174	.0217	.0212	.0207	.0202	.0134	.0130	.0146	.0143
-1.9	.0228	.0222	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2 -1.1	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1587	.1562	.1514	.1292	.1492	.1251	.1230	.1210	.1401	.1170
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4 -0.3	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.4207	.3783	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554 .6915	.6591 .6950	.6628 .6985	.6664 .7019	.6700 .7054	.6736 .7088	.6772 .7123	.6808 .7157	.6844 .7190	.6879 .7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980 .9147	.8997	.9015
1.3	.9032	.9049	.9066 .9222	.9082	.9099	.9115 .9265	.9131 .9279	.9147	.9162 .9306	.9177 .9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772 .9821	.9778 .9826	.9783 .9830	.9788	.9793	.9798 .9842	.9803 .9846	.9808 .9850	.9812	.9817 .9857
2.1	.9821	.9826	.9868	.9834	.9838 .9875	.9842	.9846	.9850	.9854 .9887	.9857
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9 3.0	.9981 .9987	.9982 .9987	.9982 .9987	.9983	.9984	.9984	.9985	.9985	.9986 .9990	.9986 .9990
3.1	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

