

電子電路實習 實驗報告

實驗名稱:比較器電路實驗

系別:電子工程系 (第一)

班級:電子系二甲

組別:5

姓名:謝亞倫、王冠中

學號: C111112104、C111112168

任課老師:林俊宏

評分:A□ B□ C□

1. 實驗項目名稱:史密特電路實驗

● 實驗原理與相關應用

實驗原理

施密特觸發電路是一種波形整形電路,當任何波形的信號進入電路時,輸出在正、負飽和之間跳動,產生方波或脈波輸出。不同於比較器,史密特觸發電路有兩個臨界電壓且形成一個滯後區,可以防止在滯後範圍內之雜訊干擾電路的正常工作。如遙控接收線路,感測器輸入電路都會用到它整形。

相關應用

1. 波形變換

可將三角波、正弦波等變成長方形波。

2. 脈衝波的整形

在數位系統中,矩形脈衝在傳輸中經常發生波形畸變,出現上升和下降不理想的情況,可用 史密特觸發器整形後,獲得較理想的矩形脈衝。

3. 脈衝比較

幅度不同、不規則的脈衝訊號加到施密特觸發器的輸入端時,能選擇幅度大於欲設值的脈衝 訊號進行輸出。

資料來源:https://zhuanlan.zhihu.com/p/524399076

● 實驗材料

外觀	規格	備註
R	$R1 = 5.6k\Omega + 5\%$	綠藍紅金
	$R2 = 5.6k\Omega + 5\%$	綠藍紅金
	$R3 = 1k\Omega + 5\%$	棕黑紅金
	$R4 = 10k\Omega + 5\%$	棕黑橙金
可變電阻 3 2 1	VR1=20kΩ	順時針調 1-3 電阻變大 逆時針調 3-1 電阻變小
IC 8 7 6 5 NE5532 1 2 3 4	NE5532	線性 IC 8 7 6 5 V+ V- 1 2 3 4
麵包板		

● 實驗結果與討論

實驗電路

實際電路

量測結果:輸入直流電壓

量測結果:輸入弦波

輸入正弦波,輸出會是方波,其波峰和波谷值為正飽和與負飽和之值

2. 實驗項目名稱:窗口比較器電路實驗

● 實驗原理與相關應用

窗口比較器原理:

窗口比較器是一種常用的類比電路,其工作原理主要是透過將輸入訊號與上、下閾值進行比較,並根據比較結果輸出相應的高電平或低電平訊號。它具有限幅、濾波和判定等功能,在電子電路設計和訊號處理中廣泛應用

應用:

作用:1. 偵測輸入訊號

- 2. 限幅效應
- 3. 訊號觸發

窗口比較器在工業控制、儀表測量、醫療儀器、音訊處理、視訊訊號處理等領域中具有廣泛的應用,可幫助工程師和技術人員有效地實現訊號檢測、限幅效應和訊號觸發等功能

資料來源:https://blog.csdn.net/guangod/article/details/105387801

實體範例: 基於視窗比較器的溫度、光照指示器

下面的原型板圖為電路接線使用LDR和2K電位器來測量光照水平。綠色(視窗)指示燈點亮,表示光照水平是適合進行拍照。

資料來源:https://www.dianziaihaozhe.com/mulu/guowai/2663.html

● 實驗材料

外觀	規格	備註
電阻 R	$R1 = 1k\Omega + 5\%$	綠藍紅金
	$R2 = 1k\Omega + 5\%$	綠藍紅金
	$R3 = 1k\Omega + 5\%$	棕黑紅金
	$R4 = 1k\Omega + 5\%$	棕黑紅金
经加工标馆	V _{ZN} =3V	2個
發光二極體 長腳+	紅色與綠色	
可變電阻 3 2 1	VR1=20kΩ	順時針調 1-3 電阻變大 逆時針調 3-1 電阻變小
IC 8 7 6 5 NE5532 1 2 3 4	NE5532	線性 IC 8 7 6 5 V+ V- 1 2 3 4
麵包板		

● 實驗結果與討論

實驗電路

理論上:

當輸入電壓大於 3V 時,LED1(紅)會 亮,當輸入電壓介於 3v~-3v 之間 時,兩顆燈泡皆為暗的,當輸入電壓 小於-3V 時,LED2(綠)會亮。

但實際上:

因為電阻或稽納二極體的誤差,轉態的電位會與理論值有所差異。

測量結果

稽納二極體電壓

稽納二極體2

電路測量結果

