Multiple Predictor Variables: Regression & the General Linear Model

Contrasts for a Multiway ANOVA

Multiple Predictor Variables: Regression & the General Linear Model

One-Way ANOVA Graphically

Two-Way ANOVA Graphically

Multiple Linear Regression?

Multiple Linear Regression?

Note no connection between predictors, as in ANOVA. This is ONLY true if we have manipulated it so that there is no relationship between the two.

Multiple Linear Regression

Curved double-headed arrow indicates COVARIANCE between predictors that we must account for.

Semi-Partial Correlation

- Semi-Partial correlation asks how much of the variation in a response is due to a predictor after the contribution of other predictors has been removed
- ► How much would R² change if a variable was removed?

$$sr_{y1} = \frac{r_{y1} - r_{y2}y_{12}}{\sqrt{1 - r_{12}^2}}$$

$$Y = bX + \epsilon$$

$$Y = bX + \epsilon$$

Remember in Simple Linear Regression $b = \frac{cov_{xy}}{var_x}$?

$$Y = bX + \epsilon$$

Remember in Simple Linear Regression $b = \frac{cov_{xy}}{var_x}$?

In Multiple Linear Regression $b = cov_{xy}S_x^{-1}$

where cov_{xy} is the covariances of x_i with y and S_x^{-1} is the variance/covariance matrix of all *Independent variables*

$$Y = bX + \epsilon$$

Remember in Simple Linear Regression $b = \frac{cov_{xy}}{var_x}$?

In Multiple Linear Regression $b = cov_{xy}S_x^{-1}$

where cov_{xy} is the covariances of x_i with y and S_x^{-1} is the variance/covariance matrix of all *Independent variables*

OR
$$bi = \frac{cov_{xy} - \sum cov_{x1xj}b_j}{var_{(x)}}$$

$$Y = bX + \epsilon$$

$$Y = bX + \epsilon$$

Coefficient Estimates: $E[\hat{oldsymbol{eta}}] = cov_{xy}S_x^{-1}$

Coefficient Variance: $Var[\hat{\beta}_i] = \frac{\sigma^2}{SXX_i}$

Many Things may Influence Species Richness

Many Things may Influence Species Richness

```
klm <- lm(rich ~ cover + firesev + hetero, data=keeley)</pre>
```

Checking for Multicollinearity: Correlation Matrices

Correlations over 0.4 can be problematic, but, they may be OK even as high as 0.8. Beyond this, are you getting unique information from each variable?

Checking for Multicollinearity: Variance Inflation Factor

$$VIF = \frac{1}{1 - R_j^2}$$

```
vif(klm)

# cover firesev hetero
# 1.295 1.262 1.050
```

 ${\sf VIF} > 5$ or 10 can be problematic and indicate an unstable solution.

Other Diagnostics as Usual!

Leverage

Obs. number

Other Diagnostics as Usual!

New Diagnostic for Outliers: Leave One Out

dfbetaPlots(klm)

Which Variables Explained Variation: Type II Marginal SS

```
# Anova Table (Type II tests)

# Response: rich

# Sum Sq Df F value Pr(>F)

# cover 1674 1 12.01 0.00083

# firesev 636 1 4.56 0.03554

# hetero 4865 1 34.91 6.8e-08

# Residuals 11985 86
```

If order of entry matters, can use type I. Remember, what models are you comparing?

The coefficients

```
summary(klm)$coef

# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.679 10.6737 0.1573 8.754e-01
# cover 15.558 4.4886 3.4661 8.264e-04
# firesev -1.817 0.8506 -2.1357 3.554e-02
# hetero 65.992 11.1694 5.9082 6.757e-08

cat(paste("R^2 = ", round(summary(klm)$r.squared, 2), sep=""))
# R^2 = 0.41
```

If order of entry matters, can use type I. Remember, what models are you comparing?

Comparing Coefficients on the Same Scale

$$r_{xy} = b_{xy} \frac{sd_x}{sd_y}$$

```
library(QuantPsyc)
lm.beta(klm)

# cover firesev hetero
# 0.3267 -0.1987 0.5016
```

Visualization of Multivariate Models is Difficult

Component-Residual Plots Aid in Visualization

Added Variable Plots for Unique Contribution of a Variable

Analagous to the A part of the three-circle diagram from earlier.

Exercise: Bird Species Richness

- ► Which bird abundances influence Species Richness?
- ► Can we use every variable?
- Visualize Resuits

All of the Birds!

Correlation Problems

```
cor(wnv[,c(3:8)])
#
                  Species.Richness All.Birds Corvids
 Species.Richness
                            1.0000
                                     0.5058 0.4326
 All.Birds
                            0.5058
                                     1.0000 0.5964
                            0.4326
                                     0.5964 1.0000
# Corvids
                            0.2406
                                     0.8465 0.3846
# Sparrows
 Robins
                            0.2928 0.8075 0.4028
 Thrushes
                            0.3859 0.8531 0.4960
#
                  Sparrows Robins Thrushes
                    0.2406 0.2928
                                   0.3859
 Species.Richness
 All.Birds
                    0.8465 0.8075
                                   0.8531
# Corvids
                    0.3846 0.4028
                                   0.4960
                    1.0000 0.7083
                                   0.7286
 Sparrows
                    0.7083 1.0000
 Robins
                                   0.9572
```

Multicollinearity Problems

```
vif(wnv_lm_vif)

# Corvids Sparrows Robins Thrushes
# 1.449 2.145 13.050 15.060
```

Odd Results from Robins and Sparrows

```
summary(wnv_lm_vif)
#
# Call:
# lm(formula = Species.Richness ~ Corvids + Sparrows + Robins +
     Thrushes, data = wnv)
# Residuals:
    Min 1Q Median 3Q
                               Max
# -24.997 -6.250 -0.093 6.827
                             22.074
# Coefficients:
            Estimate Std. Error t value Pr(>|t|)
 (Intercept) 53.3019 1.6681 31.95 <2e-16
# Corvids 0.0732 0.0262 2.79 0.0060
# Sparrows -0.0150 0.0202 -0.74 0.4596
# Robins -0.1235 0.0502 -2.46 0.0152
# Thrushes 0.1538 0.0471 3.27 0.0014
```

A New Model

No Multicollinearity Problem

```
vif(wnv_lm)

# Corvids Sparrows Robins
# 1.223 2.055 2.091
```

A Corvid Story

```
# Anova Table (Type II tests)

# Response: Species.Richness

# Sum Sq Df F value Pr(>F)

# Corvids 1793 1 18.36 3.6e-05

# Sparrows 1 1 0.01 0.94

# Robins 160 1 1.64 0.20

# Residuals 12306 126
```

A Corvid Story

crPlots(wnv_lm)

The General Linear Model

$$Y = \beta X + \epsilon$$

- ► This equation is huge. X can be anything categorical, continuous, etc.
- One easy way to see this is if we want to control for the effect of a covariate - i.e., ANCOVA
- Type of SS matters, as 'covariate' is de facto 'unbalanced'

Neanderthals and the General Linear Model

How big was their brain?

Analysis of Covariance (control for a covariate)

ANCOVA: Evaluate a categorical effect(s), controlling for a covariate (parallel lines)
Groups modify the intercept.

Exercise: Fit like a cave man

- ▶ Fit a model that will describe brain size from this data
- ▶ Does species matter? Compare type I and type II SS results
- ▶ Use Component-Residual plots to evaluate results

Type of SS Matters

```
# Analysis of Variance Table
# Response: Inbrain
          Df Sum Sq Mean Sq F value Pr(>F)
# species 1 0.0001 0.0001 0.01 0.91
# lnmass 1 0.1300 0.1300 29.28 4.3e-06
# Residuals 36 0.1599 0.0044
# Anova Table (Type II tests)
# Response: Inbrain
        Sum Sq Df F value Pr(>F)
# species 0.0276 1 6.2 0.017
# lnmass 0.1300 1 29.3 4.3e-06
# Residuals 0.1599 36
```

Species Effect

Species Effect

```
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 5.18807 0.39526 13.126 2.736e-15
# speciesrecent 0.07028 0.02822 2.491 1.749e-02
# lnmass 0.49632 0.09173 5.411 4.262e-06

summary(neand_lm)$r.squared
# [1] 0.4486
```