MATH146 - 2025-01-27

GEORGE MCNINCH

Contents

1.	Polynomials over a field and the division algorithm	
1.1.	Some general notions for commutative rings	
1.2.	The degree of a polynomial	4
1.3.	The division algorithm	9

1. POLYNOMIALS OVER A FIELD AND THE DIVISION ALGORITHM

1.1. Some general notions for commutative rings.

Definition 1.1.1. If R is a commutative ring with 1 and if $u \in R$ we say that u is a unit - or that u is invertible - provided that there is $v \in R$ with uv = 1; then $v = u^{-1}$.

We write R^{\times} for the units in R.

A commutative ring R is a *field* provided that every non-zero element is invertible. Thus R is a field if $R^{\times} = R \setminus \{0\}$.

Proposition 1.1.2. If R is a commutative, then R^{\times} is an abelian group (with operation the multiplication in R).

For any commutative ring R and elements $a, b \in R$ we say that a divides b – written $a \mid b$ – if $\exists x \in R$ with ax = b.

Proposition 1.1.3. For $a, b \in R$ we have $a \mid b$ if and only if $b \in \langle a \rangle$.

Recall that we introduced the principal ideal $\langle a \rangle = aR$ for any commutative ring R and any $a \in R$. In fact, given $a_1, \dots, a_n \in R$ we can consider the ideal

$$\langle a_1, \cdots, a_n \rangle = \sum_{i=1}^n a_i R$$

defined as

$$\langle a_1, \cdots, a_n \rangle = \left\{ \sum_{i=1}^n r_i a_i | r_i \in R \right\}.$$

It is straightforward to check that $\langle a_1, \dots, a_n \rangle$ is indeed an ideal of R.

 $Date:\ 2025\text{-}01\text{-}28\ 09\text{:}54\text{:}50\ \mathrm{EST}\ (\mathrm{george@valhalla}).$

1.2. The degree of a polynomial. Let F be a field and consider the ring of polynomials F[T].

Definition 1.2.1. The degree of a polynomial $f = f(T) \in F[T]$ is define to be $\deg(f) = -\infty$ if f = 0, and otherwise $\deg(f) = n$ where

$$f = \sum_{i=0}^{n} a_i T^i$$
 with each $a_i \in F$ and $a_n \neq 0$.

We have some easy and familiar properties of the degree function:

Proposition 1.2.2. Let $f, g \in F[T]$.

- (a) $\deg(fg) = \deg(f) + \deg(g)$.
- (b) $\deg(f+g) \leq \max\{\deg(f), \deg(g)\}\$ and equality holds if $\deg(f) \neq \deg(g)$.
- (c) $f \in F[T]^{\times}$ if and only if $\deg(f) = 0$. In particular, $F[T]^{\times} = F^{\times}$.

Proposition 1.2.3. Let $f, g \in F[T]$. If $g \neq 0$ and $\deg g < \deg f$ then $[g] = g + \langle f \rangle$ is a non-zero element of $F[T]/\langle f \rangle$.

1.3. The division algorithm.

Theorem 1.3.1. Let F be a field, and let $f, g \in F[T]$ with $0 \neq g$. Then there are polynomials $q, r \in F[T]$ for which

$$f = qq + r$$

and $\deg r < \deg g$.

Proof. First note that we may suppose f to be non-zero. Indeed, if f = 0, we just take q = r = 0. Clearly f = qg + r, and $\deg(r) = -\infty < \deg(g)$ since g is non-zero.

We now proceed by induction on $deg(f) \ge 0$.

For the base case in which $\deg(f)=0$, we note that f=c is a constant polynomial; here $c\in F^{\times}$.

If $\deg(g) = 0$ as well, then $g = d \in F^{\times}$ and then c = (c/d)d + 0 so we may take q = c/d and r = 0. Now $\deg(r) = -\infty < \deg(g)$ as required.

If deg(g) > 0, we simply take q = 0 and r = f: we then have $f = 0 \cdot g + f$ and deg(f) = 0 < deg(g) as required.

We have now confirmed the Theorem holds when deg(f) = 0.

Proceeding with the induction, we now suppose n > 0 and that the Theorem holds whenever f has degree < n. We must prove the Theorem holds when f has degree n.

Since f has degree n, we may write $f = a_n T^n + f_0$ where $a_n \in F^{\times}$ and $f_0 \in F[T]$ has $\deg(f_0) < n$.

Let us write $g = \deg(g)$; we may write $g = b_m T^m + g_0$ where $b_m \in F^{\times}$ and $g_0 \in F[T]$ has $\deg(g_0) < m$.

If n < m we take q = 0 and r = f to find that f = qg + r and $\deg(r) < \deg(g)$.

Finally, if $m \leq n$ we set

$$f_1 = f - (a_n/b_m)T^{n-m}g = a_nT^n + f_0 - \left(\frac{a_n}{b_m}b_mT^n + \frac{a_n}{b_m}T^{n-m}g_0\right) = f_0 - \frac{a_n}{b_m}T^{n-m}g_0.$$

We have $\deg(f_0) < n$ by assumption, and $\deg\left(\frac{a_n}{b_m}T^{n-m}g_0\right) < n$ by the Proposition together with the fact that $\deg(g_0) < m$.

Thus $deg(f_1) < n$. Now we apply the induction hypothesis to write

$$f_1 = q_1 g + r_1$$
 with $\deg(r_1) < \deg(g)$.

Finally, we have

$$f = f_1 + (a_n/b_m)T^{n-m}g = q_1g + r_1 + (a_n/b_m)T^{n-m}g = \left(q_1 + (a_n/b_m)T^{n-m}\right)g + r_1$$
 so we have indeed written $f = qg + r$ in the required form.

Corollary 1.3.2. Let F be a field and let $f \in F[T]$. For $a \in F$, there is a polynomial $q \in F[T]$ for which

$$f = q(T - a) + f(a).$$

Corollary 1.3.3. For $f \in F[T]$ an element $a \in F$ is a **root** of the polynomial f if and only if $T - a \mid f$ in F[T].