Лекция 3

Непрерывность функции

1. Понятие непрерывности функции.

Определение. Функция f(x), определенная в некоторой окрестности точки a, называется непрерывной в точке a, если

$$\lim_{x \to a} f(x) = f(a). \tag{1}$$

Таким образом, функция f непрерывна в точке a, если выполнены следующие условия:

- а) функция f определена в некоторой окрестности точки a, т. е. существует число $\delta_0 > 0$ такое, что $U_{\delta_0}(a) \subset D(f)$;
 - б) существует $\lim_{x \to a} f(x) = A;$
 - B) A = f(a).

Определение непрерывности функции f(x) в точке a, выраженное условием (1), можно сформулировать с помощью неравенств (на языке ε – δ), с помощью окрестностей и в терминах последовательностей соответственно в виде

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \colon |x - a| < \delta \to |f(x) - f(a)| < \varepsilon,$$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in U_{\delta}(a) \to f(x) \in U_{\varepsilon}(f(a)),$$

$$\forall \{x_n\} \colon \lim_{n \to \infty} x_n = a \to \lim_{n \to \infty} f(x_n) = f(a).$$

Подчеркнем, что в определении непрерывности, в отличие от определения предела, рассматривается полная, а не проколотая окрестность точки a, и пределом функции является значение этой функции в точке a.

Назовем разность x-a приращением аргумента и обозначим Δx , а разность f(x)-f(a) — приращением функции, соответствующим данному приращению аргумента Δx , и обозначим Δy . Таким образом,

$$\Delta x = x - a$$
, $\Delta y = f(x) - f(a) = f(a + \Delta x) - f(a)$.

При этих обозначениях равенство (1) примет вид

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

Таким образом, непрерывность функции в точке означает, что бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

По аналогии с понятием предела слева (справа) вводится понятие непрерывности слева (справа). Если функция f определена на получитервале $(a-\delta,a]$ и $\lim_{x\to a-0}f(x)=f(a)$, т. е. f(a-0)=f(a), то эту функцию называют непрерывной слева в точке a.

Аналогично, если функция f определена на полуинтервале $[a,a+\delta)$ и f(a+0)=f(a), то эту функцию называют непрерывной справа в точке a.

Например, функция f(x) = [x] непрерывна справа в точке x = 1 и не является непрерывной слева в этой точке (§ 9, пример 1), так как f(1-0) = 0, f(1+0) = f(1) = 1.

Очевидно, функция непрерывна в данной точке тогда и только тогда, когда она непрерывна как справа, так и слева в этой точке.

2. Точки разрыва. В п. 2 будем предполагать, что функция f определена в некоторой проколотой окрестности точки a.

Точку a назовем *точкой разрыва функции* f, если эта функция либо не определена в точке a, либо определена, но не является непрерывной в точке a.

Следовательно, a — точка разрыва функции f, если не выполняется по крайней мере одно из следующих условий:

- a) $a \in D(f)$;
- б) существует конечный $\lim_{x \to a} f(x) = A;$
- в) A = f(a).

Если a — точка разрыва функции f, причем в этой точке существуют конечные пределы слева и справа, т. е. $\lim_{x\to a-0} f(x) = f(a-0)$ и

 $\lim_{x \to a+0} f(x) = f(a+0),$ то точку a называют точкой разрыва первого рода.

Пусть x=a — точка разрыва функции f, не являющаяся точкой разрыва первого рода. Тогда ее называют точкой разрыва второго рода функции f. В такой точке хотя бы один из односторонних пределов либо не существует, либо бесконечен.

Например, для функции $f(x) = x \sin \frac{1}{x}$ точка x = 0 — точка разрыва первого рода. Доопределив эту функцию по непрерывности, получим функцию

 $\widetilde{f}(x) = \begin{cases} x \sin \frac{1}{x}, & \text{если} \quad x \neq 0, \\ 0, & \text{если} \quad x = 0, \end{cases}$

непрерывную в точке x=0, так как

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

Для функций $\sin\frac{1}{x}$ и $\frac{1}{x^2}$ точка x=0 — точка разрыва второго рода

Tеорема 1. Если функция f определена на отрезке [a,b] и монотонна, то она может иметь внутри этого отрезка точки разрыва только первого рода.

О Пусть x_0 — произвольная точка интервала (a,b). По теореме о монотонной функции, f имеет в точке x_0 конечные пределы слева и справа. Если, например, f — возрастающая функция, то

$$f(x_0 - 0) \leqslant f(x_0) \leqslant f(x_0 + 0),$$

где $f(x_0 - 0)$ и $f(x_0 + 0)$ — соответственно пределы функции f слева и справа в точке x_0 .

В том случае, когда $f(x_0 - 0) \neq f(x_0 + 0)$, точка x_0 является точкой разрыва первого рода функции f; если же $f(x_0 - 0) = f(x_0 + 0)$, то точка x_0 есть точка непрерывности функции f. Аналогичное утверждение справедливо и для убывающей функции. \bullet

3. Свойства функций, непрерывных в точке.

а) Локальные свойства непрерывной функции.

Свойство 1. Если функция f непрерывна в точке a, то она ограничена в некоторой окрестности этой точки, m. e.

$$\exists \delta > 0 \quad \exists C > 0 \colon \forall x \in U_{\delta}(a) \to |f(x)| \leqslant C.$$

Свойство 2. Если функция f непрерывна в точке a, причем $f(a) \neq 0$, то в некоторой окрестности точки a знак функции совпадает со знаком числа f(a), т. е.

$$\exists \delta > 0 \colon \forall x \in U_{\delta}(a) \to \operatorname{sign} f(x) = \operatorname{sign} f(a).$$

- О Эти утверждения следуют из свойств пределов
 - б) Непрерывность суммы, произведения и частного.

Если функции f и g непрерывны в точке a, то функции f+g, fg и f/g (при условии $g(a) \neq 0$) непрерывны в точке a.

- О Это утверждение следует из определения непрерывности и свойств пределов. ●
 - в) Непрерывность сложной функции.

Теорема 2. Если функция z = f(y) непрерывна в точке y_0 , а функция $y = \varphi(x)$ непрерывна в точке x_0 , причем $y_0 = \varphi(x_0)$, то в некоторой окрестности точки x_0 определена сложная функция $f(\varphi(x))$, и эта функция непрерывна в точке x_0 .

О Пусть задано произвольное число $\varepsilon>0$. В силу непрерывности функции f в точке y_0 существует число $\rho=\rho(\varepsilon)>0$ такое, что $U_{\rho}(y_0)\subset D(f)$ и

$$\forall y \in U_{\rho}(y_0) \to f(y) \in U_{\varepsilon}(z_0), \tag{2}$$

где $z_0 = f(y_0)$.

В силу непрерывности функции φ в точке x_0 для найденного в (2) числа $\rho > 0$ можно указать число $\delta = \delta_{\rho} = \delta(\varepsilon) > 0$ такое, что

$$\forall x \in U_{\delta}(x_0) \to \varphi(x) \in U_{\rho}(y_0). \tag{2'}$$

Из условий (2) и (2') следует, что на множестве $U_{\delta}(x_0)$ определена сложная функция $f(\varphi(x))$, причем

$$\forall x \in U_{\delta}(x_0) \to f(y) = f(\varphi(x)) \in U_{\varepsilon}(z_0),$$

где $z_0 = f(\varphi(x_0)) = f(y_0)$, т. е.

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in U_{\delta}(x_0) \to f(\varphi(x)) \in U_{\varepsilon}(\varphi(x_0)).$$

Это означает, в силу определения непрерывности, что функция $f(\varphi(x))$ непрерывна в точке x_0 . lacktriangle

Замечание 2. Соответствие между окрестностями точек x_0, y_0, z_0

Рис. 11.1

представлено на рис. 11.1. По заданному числу $\varepsilon > 0$ сначала находим $\rho > 0$, а затем для чисел $\rho > 0$ находим $\delta > 0$.

- **4.** Свойства функций, непрерывных на отрезке. Функцию f(x) называют непрерывной на отрезке [a,b], если она непрерывна в каждой точке интервала (a,b) и, кроме того, непрерывна справа в точке a и непрерывна слева в точке b.
 - а) Ограниченность непрерывной на отрезке функции.

Теорема 3 (Вейерштрасса). Если функция f непрерывна на отрезке [a,b], то она ограничена, т. е.

$$\exists C > 0 \colon \forall x \in [a, b] \to |f(x)| \leqslant C. \tag{3}$$

О Предположим противное, тогда

$$\forall C > 0 \quad \exists x_C \in [a, b] \colon |f(x_C)| > C. \tag{4}$$

Полагая в (4) C=1,2,...,n,..., получим, что

$$\forall n \in \mathbb{N} \quad \exists x_n \in [a, b] \colon |f(x_n)| > n. \tag{5}$$

Последовательность $\{x_n\}$ ограничена, так как $a\leqslant x_n\leqslant b$ для всех $n\in {\sf N}$. По теореме Больцано–Вейерштрасса из нее можно выделить сходящуюся подпоследовательность, т. е. существуют подпоследовательность $\{x_{n_k}\}$ и точка ξ такие, что

$$\lim_{k \to \infty} x_{n_k} = \xi,\tag{6}$$

где в силу условия (5) для любого $k \in \mathcal{N}$ выполняется неравенство

$$a \leqslant x_{n_k} \leqslant b. \tag{7}$$

Из условий (6) и (7) следует (см. § 4, п. 5, замечание 5), что $\xi \in [a, b]$, а из условия (6) в силу непрерывности функции f в точке ξ получаем

$$\lim_{k \to \infty} f(x_{n_k}) = f(\xi). \tag{8}$$

С другой стороны, утверждение (5) выполняется при всех $n \in N$ и, в частности, при $n = n_k$ (k = 1, 2, ...), т. е.

$$|f(x_{n_k})| > n_k,$$

откуда следует, что $\lim_{k\to\infty} f(x_{n_k})=\infty$, так как $n_k\to+\infty$ при $k\to\infty$. Это противоречит равенству (8), согласно которому последовательность $\{f(x_{n_k})\}$ имеет конечный предел. Поэтому условие (4) не может выполняться, т. е. справедливо утверждение (3). •

Замечание 3. Теорема 3 неверна для промежутков, не являющихся отрезками. Например, функция $f(x)=\frac{1}{x}$ непрерывна на интервале (0,1), но не ограничена на этом интервале. Функция $f(x)=x^2$ непрерывна на R, но не ограничена на R.

б) Достижимость точных граней.

Теорема 4 (Вейерштрасса). Если функция f непрерывна на отрезке [a, b], то она достигает своей точной верхней и нижней грани, m. e.

$$\exists \xi \in [a, b] \colon f(\xi) = \sup_{x \in [a, b]} f(x), \tag{9}$$

$$\exists \xi \in [a, b] \colon f(\xi) = \sup_{x \in [a, b]} f(x), \tag{9}$$
$$\exists \widetilde{\xi} \in [a, b] \colon f(\widetilde{\xi}) = \inf_{x \in [a, b]} f(x). \tag{10}$$

Замечание 4. Теорема 4 неверна для интервалов: функция, непрерывная на интервале, может не достигать своих точных граней. Например, функция $f(x) = x^2$ не достигает на интервале (0,1) своей точной нижней грани, равной нулю, и точной верхней грани, равной единице.

в) Промежуточные значения.

Теорема 5 (теорема Коши о нулях непрерывной функции). Если функция f непрерывна на отрезке [a,b] и принимает в его концах значения разных знаков, т. е. f(a)f(b) < 0, то на отрезке [a,b] имеется хотя бы один нуль функции f, т. е.

$$\exists c \in [a, b] \colon f(c) = 0. \tag{18}$$

Рис. 11.2

Замечание 5. Теорема 5 утверждает, что график функции y = f(x), непрерывной на отрезке [a, b] и принимающей в его концах значения разных знаков, пересекает ось Ox (рис. 11.2) хотя бы в одной точке отрезка [a,b].

Теорема 6 (теорема Коши о промежуточных значениях). Если функция f непрерывна на отрезке [a,b] и $f(a) \neq f(b)$, то для каждого значения С, заключенного между f(a) и f(b),

найдется точка $\xi \in [a,b]$ такая, что $f(\xi) = C$.

О Обозначим f(a) = A, f(b) = B. По условию $A \neq B$. Пусть, например, A < B. Нужно доказать, что

$$\forall C \in [A, B] \quad \exists \xi \in [a, b] \colon f(\xi) = C. \tag{24}$$

Если C=A, то утверждение (24) выполняется при $\xi=a$, а если C=B, то (24) имеет место при $\xi=b$. Поэтому достаточно рассмотреть случай A < C < B.

Пусть $\varphi(x)=f(x)-C$, тогда $\varphi(a)=A-C<0,$ $\varphi(b)=B-C>0,$ и по теореме 5 найдется точка $\xi\in[a,b]$ такая, что $\varphi(\xi)=0,$ т. е. $f(\xi)=C.$ Утверждение (24) доказано. lacktriangle

Следствие. Если функция f непрерывна на отрезке $[a,b], m=\lim_{x\in [a,b]}f(x), M=\sup_{x\in [a,b]}f(x),$ то множество значений, принимаемых

функцией f на отрезке [a,b], есть отрезок [m,M].

- О Для всех $x \in [a,b]$ выполняется неравенство $m \leqslant f(x) \leqslant M$, причем согласно теореме 4 функция f принимает на отрезке [a,b] значения, равные m и M. Все значения из отрезка [m,M] функция принимает по теореме 6. Отрезок [m,M] вырождается в точку, если f(x) = const на отрезке [a,b]. \bullet
- г) Существование и непрерывность функции, обратной для непрерывной и строго монотонной функции.

Теорема 7. Если функция y = f(x) непрерывна и строго возрастает на отрезке [a,b], то на отрезке [f(a),f(b)] определена функция x = g(y), обратная κ f, непрерывная и строго возрастающая.

Замечание 6. Если функция f непрерывна и строго убывает на отрезке [a,b], то обратная к ней функция g непрерывна и строго убывает на отрезке [f(b),f(a)].

Замечание 7. Аналогично формулируется и доказывается теорема о функции g, обратной к функции f, для случаев, когда функция f задана на интервале (конечном либо бесконечном) и полуинтервале.

Если функция f определена, строго возрастает и непрерывна на интервале (a,b), то обратная функция g определена, строго возрастает и непрерывна на интервале (A,B), где

$$A = \lim_{x \to a+0} f(x), \quad B = \lim_{x \to b-0} f(x).$$

Вычисление пределов функций

1. Раскрытие неопределенностей. При вычислении пределов часто встречается случай, когда требуется найти $\lim_{x\to a} \frac{f(x)}{g(x)}$, где f и g — бесконечно малые функции при $x\to a$, т. е. $\lim_{x\to a} f(x)=\lim_{x\to a} g(x)=0$. В этом случае вычисление предела называют раскрытием неопределенности вида $\frac{0}{0}$. Чтобы найти такой предел, обычно преобразуют дробь $\frac{f(x)}{g(x)}$, выделяя в числителе и знаменателе множитель вида $(x-a)^k$. Например, если в некоторой окрестности точки x=a функции f и g представляются в виде $f(x)=(x-a)^k f_1(x), \ g(x)=(x-a)^k g_1(x), \ где \ k\in \mathbb{N}$, а функции f_1 , и f_1 непрерывны в точке f_1 при f_2 непрерывны в точке f_3 при f_4 непрерывны в точке f_4 при f_4 непрерывны в точке f_4 при f_4 непрерывны в точке f_4 непрерывны в т

Аналогично, если f и g — бесконечно большие функции при $x \to a$, т. е. $\lim_{x\to a} f(x) = \infty$, $\lim_{x\to a} g(x) = \infty$, то говорят, что их частное $\frac{f(x)}{g(x)}$ и разность f(x) - g(x) представляют собой при $x \to a$ неопределенности вида $\frac{\infty}{\infty}$ и $\infty - \infty$ соответственно. Для раскрытия неопределенностей таких типов обычно преобразуют частное или разность так, чтобы к полученной функции были применимы свойства пределов. Напри-

мер, если f и g — многочлены степени n, т. е. $f(x) = \sum_{k=0}^n a_k x^k$, $g(x) = \sum_{k=0}^n b_k x^k$, где $a_n \neq 0$, $b_n \neq 0$, то, разделив числитель и знаменатель дроби $\frac{f(x)}{g(x)}$ на x^n , найдем

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{a_n + a_{n-1} \frac{1}{x} + \dots + \frac{a_0}{x^n}}{b_n + b_{n-1} \frac{1}{x} + \dots + \frac{b_0}{x^n}} = \frac{a_n}{b_n}.$$

2. Замена переменного при вычислении предела.

Теорема 1. Если существуют

$$\lim_{x \to a} \varphi(x) = b, \quad \lim_{y \to b} f(y) = A,$$

причем для всех x из некоторой проколотой окрестности точки a выполняется условие $\varphi(x) \neq b$, то в точке a существует предел сложной функции $f(\varphi(x))$ и справедливо равенство

$$\lim_{x \to a} f(\varphi(x)) = \lim_{y \to b} f(y). \tag{1}$$

О Согласно определению предела функции φ и f определены соответственно в $\dot{U}_{\delta}(a)$ и $\dot{U}_{\varepsilon}(b)$, где $\delta>0$, $\varepsilon>0$, причем для $x\in \dot{U}_{\delta}(a)$ выполняется условие $\varphi(x)\in \dot{U}_{\varepsilon}(b)$. Поэтому на множестве $\dot{U}_{\delta}(a)$ определена сложная функция $f(\varphi(x))$. Пусть $\{x_n\}$ — произвольная последовательность такая, что $\lim_{n\to\infty}x_n=a$ и $x_n\in \dot{U}_{\delta}(a),\,n\in \mathbb{N}$. Обозначим $y_n=\varphi(x_n)$, тогда по определению предела функции $\lim_{n\to\infty}y_n=b$, где $y_n\in \dot{U}_{\varepsilon}(b)$. Так как существует $\lim_{n\to b}f(y)=A$, то

$$\lim_{n \to \infty} f(\varphi(x_n)) = \lim_{n \to \infty} f(y_n) = A.$$

Это означает, что $\lim_{x \to a} f(\varphi(x)) = A$, т. е. справедливо равенство (1). ullet

Первый замечательный предел.

Если
$$x \to 0$$
, то $\frac{\sin x}{x} \to 1$, т. е. $\lim_{x \to 0} \frac{\sin x}{x} = 1$. (4)

 \circ Воспользуемся неравенством. Если $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ и $x \neq 0$, то

$$\cos x < \frac{\sin x}{x} < 1. \tag{1}$$

Рассмотрим в координатной плоскости круг единичного радиуса с центром в точке O (рис. 12.1). Пусть $\angle AOB = x$, где $0 < x < \frac{\pi}{2}$. Пусть C — проекция точки B на ось Ox, D — точка пересечения луча OB и прямой, проведенной через точку A перпендикулярно оси Ox. Тогда

$$BC = \sin x$$
, $DA = \operatorname{tg} x$.

Пусть S_1, S_2, S_3 — площади треугольника AOB, сектора AOB и треугольника AOD соответственно. Тогда $S_1==\frac{1}{2}\left(OA\right)^2\sin x=\frac{1}{2}\sin x, S_2=\frac{1}{2}\left(OA\right)^2x==\frac{1}{2}x, S_3=\frac{1}{2}OA\cdot DA=\frac{1}{2}\operatorname{tg} x$. Так как $S_1< S_2< S_3$, то $\frac{1}{2}\sin x<\frac{1}{2}x<\frac{1}{2}\operatorname{tg} x$. (2)

Рис. 12.1

Если $x\in\left(0,\frac{\pi}{2}\right)$, то $\sin x>0$, и поэтому неравенство (2) равносильно неравенству $1<\frac{x}{\sin x}<\frac{1}{\cos x},$

откуда следует, что при $x\in\left(0,\frac{\pi}{2}\right)$ выполняется неравенство (1). Так как $\frac{x}{\sin x}$ и $\cos x$ — четные функции, то неравенство (1) справедливо и при $x\in\left(-\frac{\pi}{2},0\right)$. В силу непрерывности косинуса

 $\lim_{x\to 0}\cos x=\cos 0=1.$ Переходя в соотношении (1) к пределу при $x\to 0$, получаем равенство (4). ullet

3. Второй замечательный предел. Число e.

Рассмотрим последовательность $\{x_n\}$, где

$$x_n = \left(1 + \frac{1}{n}\right)^n,$$

и покажем, что эта последовательность возрастающая и ограниченная сверху. Используя формулу бинома Ньютона, получаем

$$x_n = 1 + C_n^1 \frac{1}{n} + C_n^2 \frac{1}{n^2} + \dots + C_n^k \frac{1}{n^k} + \dots + \frac{1}{n^n},$$

где

$$C_n^k = \frac{n(n-1)...(n-(k-1))}{k!}, \quad k = \overline{1,n}, \quad C_n^0 = 1.$$

Запишем x_n в следующем виде:

$$x_n = 1 + \sum_{k=1}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{k-1}{n} \right); \tag{16}$$

тогда

$$x_{n+1} = 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{k-1}{n+1} \right). \tag{17}$$

Все слагаемые в суммах (16) и (17) положительны, причем каждое слагаемое суммы (16) меньше соответствующего слагаемого суммы (17), так как $1-\frac{m}{n}<1-\frac{m}{n+1},\, m=\overline{1,n-1},\,$ а число слагаемых в сумме (17) на одно больше, чем в сумме (16). Поэтому $x_n< x_{n+1}$ для всех $n\in \mathbb{N},\,$ т. е. $\{x_n\}$ — строго возрастающая последовательность. Кроме того, учитывая, что $0<1-\frac{m}{n}<1$ ($m=\overline{1,n-1}$), из равенст-

ва (16) получаем $x_n < 1 + \sum_{k=1}^n \frac{1}{k!}$. Так как $\frac{1}{k!} \leqslant \frac{1}{2^{k-1}}$ при $k \in \mathbb{N}$, то,

используя формулу для суммы геометрической прогрессии, получа-

ем
$$x_n < 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} = 1 + \frac{1 - (1/2)^n}{1 - 1/2} = 3 - \frac{1}{2^{n-1}}$$
. Следовательно, $x_n = \left(1 + \frac{1}{n}\right)^n < 3$,

т. е. $\{x_n\}$ — ограниченная последовательность. По теореме 1 существует $\lim_{n\to\infty} x_n$. Этот предел обозначается буквой e. Таким образом,

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e. \tag{18}$$

Число e является иррациональным, оно служит основанием натуральных логарифмов и играет важную роль в математике. Справедливо приближенное равенство

 $e \approx 2,718281828459045.$

T е о р е м а $\ 2$. Функция $\varphi(x)=\left(1+rac{1}{x}
ight)^x$ имеет при $x o\infty$ предел, равный $e,\ m.\ e.$ $\lim_{x o\infty}\left(1+rac{1}{x}
ight)^x=e.$ (4)

Следствие. Если $\alpha(x)\neq 0$ для всех x из некоторой проколотой окрестности точки x_0 и $\lim_{x\to x_0}\alpha(x)=0,$ то

$$\lim_{x \to x_0} (1 + \alpha(x))^{1/\alpha(x)} = e. \tag{14}$$

В частности,

$$\lim_{x \to 0} (1+x)^{1/x} = e. (15)$$

 \circ Для доказательства утверждения (14) достаточно воспользоваться соотношением (4) и теоремой 1. \bullet

5. Сравнение функций.

а) Эквивалентные функции. Если в некоторой проколотой окрестности точки x_0 определены функции $f,\,g,\,h$ такие, что

$$f(x) = g(x)h(x), \quad \lim_{x \to x_0} h(x) = 1,$$
 (24)

то функции f и g называют эквивалентными (асимптотически равными) при $x \to x_0$ и пишут

$$f(x) \sim g(x)$$
 при $x \to x_0$,

или, короче, $f \sim g$ при $x \to x_0$.

Например, $\sin x \sim x$ при $x \to 0$, так как $\sin x = x \frac{\sin x}{x}$, а $\lim_{x \to 0} \frac{\sin x}{x} = 1$; $\frac{x^4}{x^2+1} \sim x^2$ при $x \to \infty$, так как $\frac{x^4}{x^2+1} = x^2 \frac{x^2}{x^2+1}$, а $\lim_{x \to \infty} \frac{x^2}{x^2+1} = \lim_{x \to \infty} \frac{1}{1+\frac{1}{x^2}} = 1$.

Отметим, что функции f и g, не имеющие нулей в проколотой окрестности точки x_0 , эквивалентны при $x \to x_0$ тогда и только тогда, когда f(x)

 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{g(x)}{f(x)} = 1.$

Понятие эквивалентности обычно используют в тех случаях, когда обе функции f и g являются либо бесконечно малыми, либо бесконечно большими при $x \to x_0$.

б) Замена функций эквивалентными при вычислении пределов.

Теорема 3. Если $f \sim f_1$ и $g \sim g_1$ при $x \to x_0$, то из существования предела функции $\frac{f_1(x)}{g_1(x)}$ при $x \to x_0$ следует существование предела

функции $\frac{f(x)}{g(x)}$ при $x \to x_0$ и справедливость равенства

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}.$$
 (25)

 \circ По условию $f\sim f_1$ и $g\sim g_1$ при $x o x_0$. Это означает, что f(x)= $=f_1(x)h(x)$ и $g(x)=g_1(x)h_1(x)$, где $\lim_{x\to x_0}h(x)=1$ и $\lim_{x\to x_0}h_1(x)=1$.

Так как существует $\lim_{x\to x_0} \frac{f_1(x)}{g_1(x)}$ и $h_1(x)\to 1$ при $x\to x_0$, то найдется такая проколотая окрестность точки x_0 , в которой определены функции f_1, g_1, h_1 , причем $g_1(x) \neq 0$ и $h_1(x) \neq 0$, откуда следует, что в этой окрестности определена функция $g(x) = g_1(x)h_1(x)$ такая, что $g(x) \neq 0$.

Следовательно, $\frac{f(x)}{g(x)}$ и определена функция $\frac{f(x)}{g(x)}$ и $\frac{f(x)}{g(x)} = \frac{h(x)}{h_1(x)} \frac{f_1(x)}{g_1(x)}.$ Следовательно, в некоторой проколотой окрестности точки x_0

$$rac{f(x)}{g(x)} = rac{h(x)}{h_1(x)} rac{f_1(x)}{g_1(x)}.$$

Так как существует $\lim_{x\to x_0} \frac{f_1(x)}{g_1(x)}$, а $\lim_{x\to x_0} h(x)=1$, $\lim_{x\to x_0} h_1(x)=1$, то существует $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ и справедливо равенство (25). ullet

в) Понятие бесконечно малой функции по сравнению с другой. Если в некоторой проколотой окрестности точки x_0 определены функции f, g, α такие, что

$$f(x) = g(x)\alpha(x), \quad \lim_{x \to x_0} \alpha(x) = 0, \tag{26}$$

то функцию f называют бесконечно малой по сравнению c функцией g $npu \ x \rightarrow x_0$ и пишут

$$f(x) = o(g(x)), \quad x \to x_0, \tag{27}$$

или, короче, $f = o(g), x \to x_0$.

Эта запись читается так: "f есть o малое от g при x, стремящемся к x_0 ". В частности, запись $f(x) = o(1), x \to x_0$, означает, что f(x) является бесконечно малой функцией при $x \to x_0$. Если $g(x) \neq 0$ в некоторой проколотой окрестности точки x_0 , то соотношение (27) можно записать в виде

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

или в виде

$$\lim_{x \to x_0} \frac{o(g)}{g} = 0.$$

Следует иметь в виду, что функции f и g, о которых идет речь в записи (27), не обязательно являются бесконечно малыми при $x \to x_0$. Например, если $x \to \infty$, то $x^2 = o(x^4)$, а функции x^2 и x^4 являются бесконечно большими при $x \to \infty$.

Из сказанного следует, что равенство вида (27) не является равенством в обычном смысле. Такое равенство в соответствии с определением записи (27) следует читать только слева направо, поскольку правая часть обозначает класс функций, бесконечно малых по сравнению с g(x) при $x \to x_0$, а f(x) — какая-либо функция этого класса.

Отметим некоторые важные для дальнейшего изложения свойства символа o(g), считая, что $x \to x_0$, а равенства, содержащие этот символ, читаются слева направо (здесь C — постоянная):

Наряду с символом o(g) в математике употребляют символ O(g). Запись

$$f(x) = O(g(x)), \quad x \to x_0, \tag{28}$$

означает, что в некоторой проколотой окрестности $\dot{U}_{\delta}(x_0)$ точки x_0 определены функции $f,\,g,\,\varphi$ такие, что

$$f(x) = g(x)\varphi(x), \tag{29}$$

где arphi(x) — функция, ограниченная на $\dot{U}_{\delta}(x_0)$, т. е.

$$\exists C > 0 \colon \forall x \in \dot{U}_{\delta}(x_0) \to |\varphi(x)| \leqslant C.$$

Соотношение (28) читается так: "f(x) есть O большое от g(x) при x, стремящемся к x_0 ".

Например,

$$x^{2} + 2x^{3} = O(x^{2}), \quad x \to 0;$$

 $x^{2} + 2x^{3} = O(x^{3}), \quad x \to \infty.$

г) Критерий эквивалентности функций.

Теорема 4. Для того чтобы функции f(x) и g(x) были эквивалентными при $x \to x_0$, необходимо и достаточно, чтобы

$$f(x) = g(x) + o(g(x)), \quad x \to x_0.$$
 (30)

О Пусть $f \sim g$ при $x \to x_0$; тогда выполняются условия (24), и поэтому $f(x) - g(x) = g(x)(h(x) - 1) = g(x)\alpha(x)$, где $\alpha(x) = h(x) - 1 \to 0$ при $x \to x_0$. Отсюда по определению символа o(g) следует, что f - g = o(g), $x \to x_0$, т. е. справедливо равенство (30)

Обратно: из равенства (30) следует, что $f \sim g$ при $x \to x_0$. Действительно, если выполняется равенство (30), то $f(x) = g(x) + g(x)\alpha(x)$, где $\alpha(x) \to 0$ при $x \to x_0$, откуда f(x) = g(x)h(x), где $h(x) = 1 + \alpha(x) \to 1$ при $x \to x_0$, т. е. $f(x) \sim g(x)$ при $x \to x_0$.

В заключение отметим, что в дальнейшем будут рассмотрены более эффективные методы вычисления пределов, основанные на использовании понятия производной.