PRATICA S2L1:

- Esercizio: Configurazione di un Server DHCP su Cisco Packet Tracer:
 - Installare e configurare un server **DHCP** (Cisco Packet Tracer);
 - Configurare il server per assegnare indirizzi IP in un range specifico.

• Esecuzione:

- Installazione e configurazione di un server DHCP:
 - Su IP configuration Del Server0 ho inserito:

IPv4	Subnet Mask	Gateway
192.168.0.10	255.255.255.0	192.168.0.1

Screenshot:

Su Services DHCP ho inserito:

Default Gateway	DNS server	Start IP Address	Subnet Mask
192.168.0.1	192.168.0.1	192.168.0.11	255.255.255.0

- Screenshot:

- Configurazione dei PC (uguale per tutti):
 - Gateway/DNS IPv4 impostate su DHCP:

Assegnazione indirizzi IP tramite DHCP visualizzata con Simulation:

• IPv4 assegnati tramite Server0 DHCP:

PC0	PC1	PC2	PC3
192.168.0.11/24	192.168.0.12/24	192.168.0.13/24	192.168.0.14/24

Test funzionamento connessione rete tramite PDU (Server0 come Source):

- Conclusioni:
 - Si utilizza il protocollo DHCP per semplificare la gestione della rete, riducendo il lavoro manuale necessario per configurare ogni dispositivo e evitando conflitti di indirizzi IP. DHCP può configurare parametri di rete aggiuntivi come gateway predefinito, server DNS, durata del lease e altre opzioni specifiche.