Evaluation N°11 Sujet A

EXERCICE 1 (10 points)

Pour chaque question, mettre la lettre correspondant à <u>la</u> bonne réponse dans la dernière case. Bonne réponse : +2; Mauvaise réponse : -1; Pas de réponse : 0; Mauvaise réponse rayée : +0.5.

#	Questions	a	b	c	Rép.
1	ABC est un triangle rectangle en A . Le côté adjacent à l'angle \widehat{ABC} est	[AB]	[AC]	[BC]	
2	EDF est un triangle rectangle en D . Le côté adjacent à l'angle \widehat{FED} est	[ED]	[EF]	[DF]	
3	XYZ est un triangle rectangle en Y . L'hypoténuse de ce triangle est	[XY]	[XZ]	[YZ]	
4	Arrondi au centième près, $\cos 27^{\circ} =$	0,89	0, 9	0,891	
5	Arrondi au dixième près, $\cos 62^{\circ} =$	0,47	0,46	0, 5	

EXERCICE 2 (1 points)

Compléter le cours :

Notation: Si ABC est un triangle rectangle en B,

$$\cos \widehat{C} = \frac{\dots \dots}{\dots}$$

EXERCICE 3 (3 points)

Soit EFG un triangle rectangle en E tel que : $\widehat{G}=45^{\circ}$ et FG=4 cm.

- 1. Faire un schéma.
- 2. Calculer *EG*. (valeur exacte puis approchée au dixième près)

EXERCICE 4 (3 points)

Soit LEA un triangle rectangle en A tel que :

$$\widehat{L} = 68^{\circ} \text{ et } LA = 7 \text{ cm}.$$

- 1. Faire un schéma.
- 2. Calculer *LE*. (valeur exacte puis approchée au dixième près)

EXERCICE 5 (3 points)

Soit MDR un triangle rectangle en R tel que : $MD=17~\mathrm{cm}$ et $DR=15~\mathrm{cm}.$

- 1. Faire un schéma.
- 2. Calculer \widehat{MDR} . (valeur exacte puis approchée au degré près)

EXERCICE BONUS (3 points)

Soit x un nombre positif.

ABC est un triangle tel que :

AB = 5, BC = x + 1 et AC = x.

Peut-on construire un tel triangle rectangle? Justifier votre réponse.