Aula 8 – Sequências Monótonas e Subsequências

Metas da aula: Apresentar o conceito de sequência monótona e estabelecer o Teorema da Sequência Monótona. Introduzir o conceito de subsequência e estabelecer o Teorema de Bolzano-Weierstrass.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o enunciado do Teorema da Sequência Monótona e o uso desse resultado para estabelecer a existência do limite de sequências.
- Entender o conceito de subsequências e seu uso em conexão com o estabelecimento da convergência e da divergência de sequências.
- Saber o enunciado do Teorema de Bolzano-Weierstrass e seu uso para estabelecer a existência de subsequências convergentes.

Introdução

Nesta aula vamos aprender um resultado muito importante que nos permitirá afirmar a convergência de certas sequências, chamadas monótonas, mesmo em situações em que não temos candidatos a limites dessas sequências, nas quais, portanto, não seria possível verificar a convergência diretamente usando a Definição 6.2. Vamos também estudar o conceito de subsequências e seu uso no estabelecimento de limites bem como na prova da divergência de sequências. Por fim, vamos enunciar e provar o famoso Teorema de Bolzano-Weierstrass.

Sequências Monótonas

Vamos iniciar nossa aula definindo sequências monótonas.

Definição 8.1

Seja $\mathbf{x} = (x_n)$ uma sequência de números reais. Dizemos que \mathbf{x} é $n\tilde{a}o$ decrescente se $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$, isto é, $x_1 \leq x_2 \leq x_3 \leq \cdots$. Diz-se
que \mathbf{x} é crescente se $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$, ou seja, $x_1 < x_2 < x_3 < \cdots$. Em particular, sequências crescentes constituem um caso especial de sequências não-decrescentes.

Analogamente, dizemos que \mathbf{x} é não-crescente se $x_n \geq x_{n+1}$ para todo $n \in \mathbb{N}$, isto é, $x_1 \geq x_2 \geq x_3 \geq \cdots$, e **x** é decrescente se $x_n > x_{n+1}$ para todo $n \in \mathbb{N}$, ou seja, $x_1 > x_2 > x_3 > \cdots$. De novo, temos que sequências decrescentes constituem um caso especial de sequências não-crescentes.

Dizemos, de modo geral, que \mathbf{x} é monótona se \mathbf{x} é não-decrescente ou não-crescente.

As sequências (1, 2, 2, 3, 3, 3, ...), (n), (1, 1/2, 1/2, 1/3, 1/3, 1/3, ...) e (1/n) são exemplos de sequências monótonas: a primeira é não-decrescente, a segunda é crescente, a terceira é não-crescente e a quarta é decrescente.

A seguir enunciamos o resultado mais importante sobre sequências monótonas.

Teorema 8.1 (Teorema da Sequência Monótona)

Uma sequência monótona de números reais é convergente se, e somente se, é limitada. Além disso:

(a) Se $\mathbf{x} = (x_n)$ é uma sequência não-decrescente limitada, então

$$\lim x_n = \sup\{x_n : n \in \mathbb{N}\}.$$

(b) Se $\mathbf{x} = (x_n)$ é uma sequência não-crescente limitada, então

$$\lim x_n = \inf\{x_n : n \in \mathbb{N}\}.$$

Prova: Vimos no Teorema 7.1 que toda sequência convergente é limitada. Portanto, basta mostrar que se uma sequência monótona é limitada, então ela é convergente. Seja, então, x uma sequência monótona limitada. Então, ou **x** é não-decrescente, ou **x** é não-crescente.

(a) Vamos tratar primeiro o caso em que $\mathbf{x} = (x_n)$ é uma sequência limitada não-decrescente. Como $\mathbf{x}(\mathbb{N}) = \{x_n : n \in \mathbb{N}\}$ é um conjunto limitado, pelo Teorema 5.7 (do Supremo), existe $x^* := \sup \mathbf{x}(\mathbb{N})$. Afirmamos que $\lim x_n = x^*$.

Com efeito, seja dado $\varepsilon > 0$ qualquer. Então $x^* - \varepsilon$ não é cota superior de $\mathbf{x}(\mathbb{N})$, e, portanto, existe $N_0 \in \mathbb{N}$ tal que $x^* - \varepsilon < x_{N_0}$. Como (x_n) é não-decrescente, temos que $x_{N_0} \leq x_n$ para todo $n > N_0$, e assim segue que

$$x^* - \varepsilon < x_{N_0} \le x_n \le x^* < x^* + \varepsilon$$
 para todo $n > N_0$,

ou seja,

$$|x_n - x^*| < \varepsilon$$
 para todo $n > N_0$.

Como $\varepsilon > 0$ é arbitrário, fica provado que $x_n \to x^*$.

(b) Consideremos agora o caso em que $\mathbf{x} = (x_n)$ é não-crescente. De novo, como $\mathbf{x}(\mathbb{N})$ é limitado, segue do Teorema do Supremo que existe $x_* := \inf \mathbf{x}(\mathbb{N})$. A prova de que $\lim x_n = x_*$ é inteiramente análoga à que acabamos de dar para o caso em que (x_n) é não-decrescente e deixaremos para você como exercício.

Exemplos 8.1

(a) $\lim(1/n^{1/3}) = 0$.

Esse é um caso particular do Exemplo 7.2 (c); contudo, daremos aqui uma outra demonstração usando o Teorema da Sequência Monótona. A sequência $\mathbf{x} := (1/n^{1/3})$ é decrescente e, claramente, 0 é uma cota inferior de \mathbf{x} . Não é difícil mostrar que, de fato, temos $0 = \inf \mathbf{x}(\mathbb{N})$ e, portanto, a afirmação segue do referido teorema. De outro modo, sabemos pelo Teorema da Sequência Monótona que existe $\bar{x} := \lim x_n$. Como $x_n^3 = 1/n$ e $\lim 1/n = 0$, temos

$$\bar{x}^3 = (\lim x_n)^3 = \lim x_n^3 = \lim \frac{1}{n} = 0 \Longrightarrow \bar{x} = \lim \frac{1}{n^{1/3}} = 0.$$

(b) Seja $\mathbf{x} = (x_n)$ definida indutivamente por $x_1 := 1$, $x_{n+1} := (x_n/3) + 1$ para todo $n \in \mathbb{N}$. Mostraremos que $\lim x_n = 3/2$.

Provemos, usando Indução Matemática, que vale $1 \le x_n < x_{n+1} < 2$ para todo $n \in \mathbb{N}$. Como $x_2 = (x_1/3) + 1 = (1/3) + 1 = 4/3$, a afirmação é válida para n = 1. Suponhamos, por indução, que vale $1 \le x_k < x_{k+1} < 2$. Temos

$$1 \le x_k < x_{k+1} = (x_k/3) + 1 < (x_{k+1}/3) + 1 = x_{k+2} < (2/3) + 1 = 5/3 < 2,$$

e, portanto, vale $1 \le x_{k+1} < x_{k+2} < 2$, o que conclui a prova por indução de que $1 \le x_n < x_{n+1} < 2$ para todo $n \in \mathbb{N}$.

Assim, temos que (x_n) é crescente e limitada. Pelo Teorema da Sequência Monótona, existe $\bar{x} = \lim x_n$. Como a 1-cauda $\mathbf{x}_1 = (x_{n+1})$ converge para o mesmo limite que \mathbf{x} , tomando o limite na relação $x_{n+1} = (x_n/3) + 1$ obtemos

$$\bar{x} = \frac{\bar{x}}{3} + 1,$$

e daí segue que $\bar{x} = 3/2$.

(c) Seja $\mathbf{x} = (x_n)$ definida indutivamente por $x_1 := 0$, $x_{n+1} := \sqrt{2 + x_n}$ para todo $n \in \mathbb{N}$. Vamos mostrar que $\lim x_n = 2$.

Provemos por indução que vale $0 \le x_n < x_{n+1} \le 2$ para todo $n \in \mathbb{N}$. Como $x_2 = \sqrt{2+0} = \sqrt{2}$, a afirmação é claramente verdadeira para n=1. Suponhamos por indução que vale $0 \le x_k < x_{k+1} \le 2$. Então

$$0 \le x_k < x_{k+1} = \sqrt{2 + x_k} < \sqrt{2 + x_{k+1}} = x_{k+2} \le \sqrt{2 + 2} = 2,$$

e, portanto, $0 \le x_{k+1} < x_{k+2} \le 2$, o que conclui a prova por indução de que $0 \le x_n < x_{n+1} \le 2$ para todo $n \in \mathbb{N}$.

Assim, temos que (x_n) é uma sequência crescente e limitada. Logo, pelo Teorema da Sequência Monótona, existe $\bar{x} = \lim x_n$ e $\bar{x} = \sup \mathbf{x}(\mathbb{N})$. Como a 1-cauda $\mathbf{x}_1 = (x_{n+1})$ converge para o mesmo limite que \mathbf{x} , tomando o limite na relação $x_{n+1} = \sqrt{2 + x_n}$, usando o Exemplo 7.2 (b) e o Teorema 7.5, obtemos

$$\bar{x} = \sqrt{2 + \bar{x}}$$
 e $0 \le \bar{x} \le 2$.

Vemos então que \bar{x} é uma raiz não-negativa da equação $x^2 - x - 2 = 0$ cujas raizes são -1 e 2. Logo, $\bar{x}=2$ como afirmado.

(d) Seja $s_n := 1 + 1/2 + 1/3 + \cdots + 1/n$. A sequência (s_n) é conhecida como série harmônica. Como $s_{n+1} = s_n + 1/(n+1) > s_n$, essa é uma sequência crescente e, pelo Teorema da Sequência Monótona, será convergente se, e somente se, for limitada superiormente. Mostraremos a seguir que (s_n) é ilimitada e, portanto, divergente.

O interessante nessa questão é que ela nos traz um exemplo claro de um caso em que um argumento simples, puramente matemático, mostrase muito mais poderoso que a tentativa de se fazer previsões baseadas exclusivamente no cálculo massivo de computadores de última geração. De fato, um cálculo com computador exibirá valores aproximados de s_n em torno de 11.4 para $n=50\,000$, e $s_n\approx 12.1$ para $n=100\,000$. Tais dados poderiam nos levar a concluir que a sequência é limitada. No entanto, podemos provar que vale o contrário, observando que

$$s_{2^{n}} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots + \underbrace{\left(\frac{1}{2^{n}} + \dots + \frac{1}{2^{n}}\right)}_{2^{n-1} \text{ vezes}}$$

$$= 1 + \underbrace{\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}}_{n \text{ vezes}}$$

$$= 1 + \frac{n}{2}.$$

Os termos s_n crescem de modo extremamente lento. Por exemplo, pode-se mostrar que para obtermos $s_n > 50$ seriam necessárias aproximadamente 5.2×10^{21} adições, trabalho esse que levaria cerca de $400\,000$ anos num computador normal da atualidade, e mais de 160 anos num supercomputador capaz de realizar um trilhão de adições por segundo.

Cálculo de Raízes Quadradas.

Agora daremos uma aplicação do Teorema da Sequência Monótona relacionada com o cálculo de raízes quadradas de números positivos.

Seja a>0. Apresentaremos um método de aproximação de \sqrt{a} por meio da construção de uma seqüencia (s_n) que converge a esse número. Esse processo para calcular raízes quadradas já era conhecido na Mesopotamia antes do ano 1500 A.C..

Seja $s_1 > 0$ arbitrariamente escolhido e definamos

$$s_{n+1} := \frac{1}{2}(s_n + a/s_n)$$
 para todo $n \in \mathbb{N}$.

Mostraremos que (s_n) converge a \sqrt{a} .

Primeiramente, mostremos que $s_n^2 \geq a$ para $n \geq 2$. De fato, da relação $s_n^2 - 2s_{n+1}s_n + a = 0$ vemos que s_n é raiz da equação de segundo grau $x^2 - 2s_{n+1}x + a = 0$, cujo discriminante é $4s_{n+1}^2 - 4a$. Como tal equação possui raízes reais, seu discriminante deve ser não negativo e, portanto, devemos ter $s_{n+1}^2 \geq a$ para todo $n \in \mathbb{N}$.

Agora mostraremos que (s_n) é ultimadamente não-crescente; mais precisamente, que $s_{n+1} \leq s_n$ para $n \geq 2$. Com efeito,

$$s_n - s_{n+1} = s_n - \frac{1}{2} \left(s_n + \frac{a}{s_n} \right) = \frac{1}{2} \frac{(s_n^2 - a)}{s_n} \ge 0, \text{ se } n \ge 2.$$

Portanto, $s_{n+1} \leq s_n$ para todo $n \geq 2$. O Teorema da Sequência Monótona implica que $\bar{s} := \lim s_n$ existe. Além disso, os Teorema 7.2 e 7.5 nos dão que \bar{s} deve satisfazer as relações

$$\bar{s} = \frac{1}{2} \left(\bar{s} + \frac{a}{\bar{s}} \right) \qquad \bar{s} \ge \sqrt{a},$$

donde segue que $\bar{s}=a/\bar{s}$, ou seja, $\bar{s}^2=a$. Logo, $\bar{s}=\sqrt{a}$.

O Número e.

Seja (s_n) definida indutivamente por $s_1 = 1$, $s_{n+1} = s_n + \frac{1}{n!}$ e, portanto,

$$s_{n+1} := 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 para todo $n \in \mathbb{N}$.

Como, para todo $n \in \mathbb{N}$, $s_n < s_{n+1}$ e

$$s_{n+1} = 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \cdot \dots n}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 1 + 1 + 2(\frac{1}{2} - \frac{1}{2^n}) < 3,$$

segue do Teorema da Sequência Monótona que (s_n) converge. Definimos

$$e := \lim s_n = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right).$$
 (8.1)

O número e assim definido é o número "transcendental" mais importante da Matemática depois de π . O termo "transcendental" significa que esses números não são raízes de polinômios com coeficientes racionais, a não ser, obviamente, o polinômio identicamente nulo. Em particular, os números trancendentais são irracionais. A prova de que e é transcendental, embora possa ser feita de modo relativamente simples, escapa dos objetivos deste curso.

Pelo que acabamos de ver, vale $2 < e \le 3$. A sequência acima nos permite obter aproximações de e com erros arbitrariamente pequenos. Por exemplo, s_{10} nos dá a aproximação 2.7182818, com erro menor que 10^{-7} . O número e é às vezes chamado de número de Euler, em homenagem a LEONHARD EU-LER (1707–1783), considerado até hoje um dos maiores matemáticos de todos os tempos. Ele é a base dos assim chamados logaritmos naturais: o logaritmo natural de um número real positivo x, denotado por $\log x$, é definido através da equação $e^{\log x} = x$.

O resultado seguinte trata de um limite clássico bastante importante.

Teorema 8.2

$$\lim \left(1 + \frac{1}{n}\right)^n = e. \tag{8.2}$$

Prova: Seja $t_n := (1 + 1/n)^n$ para $n \in \mathbb{N}$. Aplicando a fórmula binomial obtemos

$$t_n = 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1)(n-2)\cdots 2\cdot 1}{n!} \cdot \frac{1}{n^n}$$

= 1 + 1 + $\frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right).$

Fazendo o mesmo para t_{n+1} e comparando as respectivas fórmulas, vemos que a segunda fórmula para t_{n+1} contém uma parcela positiva a mais que a segunda fórmula para t_n e que as parcelas restantes são todas maiores que as parcelas correspondentes na fórmula para t_n . Portanto, temos que $t_n < t_{n+1}$ para todo n. Claramente, temos que $t_n < s_n$, onde $s_n = 1 + 1 + 1/2! + \cdots + 1/n!$. Como vimos há pouco, $s_n < 3$ e, assim, segue que $t_n < 3$. Logo, pelo Teorema da Sequência Monótona segue que (t_n) converge.

Afirmamos que $\lim t_n = \lim s_n = e$. Com efeito, o fato de que $\lim t_n \le \lim s_n = e$ decorre diretamente do Teorema 7.4, uma vez que vale $t_n < s_n$ para todo $n \in \mathbb{N}$.

Agora, tomando n > m, vale

$$t_n \ge 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{m!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{m-1}{n} \right).$$

Fixando m e fazendo $n \to \infty$ obtemos

$$\lim t_n \ge 1 + \frac{1}{2!} + \dots + \frac{1}{m!} = s_m.$$

Fazendo agora $m \to \infty$, obtemos $\lim t_n \ge \lim_{m \to \infty} s_m = e$. Segue, então, que $\lim t_n = e$.

Subsequências e o Teorema de Bolzano-Weierstrass

Como uma sequência de números reais é por definição uma função $\mathbf{x}: \mathbb{N} \to \mathbb{R}$, dada uma função qualquer $\mathbf{n}: \mathbb{N} \to \mathbb{N}$ (isto é, uma sequência de números naturais) a função composta $\mathbf{x} \circ \mathbf{n}: \mathbb{N} \to \mathbb{R}$ é também sequência de números reais. As subsequências de uma dada sequência \mathbf{x} constituem os casos especiais, em que a função \mathbf{n} é crescente, dessa forma de obter novas sequências a partir de uma sequência dada.

Definição 8.2

Seja $\mathbf{x} = (x_n)$ uma sequência de números reais e $\mathbf{n} = (n_k)$ uma sequência crescente de números naturais, $n_1 < n_2 < \cdots < n_k < \cdots$. Então dizemos que a sequência $\mathbf{x} \circ \mathbf{n} = (x_{n_k})_{k \in \mathbb{N}} = (x_{n_1}, x_{n_2}, \dots, x_{n_k}, \dots)$ é chamada uma subsequência de \mathbf{x} .

Por exemplo, dada a sequência (1/n) as sequências (1/2k) e (1/(2k-1)) são ambas subsequências suas com $n_k = 2k$ e $n_k = 2k - 1$ para $k \in \mathbb{N}$, respectivamente. Outros exemplos de subsequências dessa mesma sequência

são as sequências $(1/2^k)$ e (1/k!), com $n_k = 2^k$ e $n_k = k!$, respectivamente. Por outro lado, a sequência

$$(\frac{1}{3}, \frac{1}{2}, \frac{1}{1}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \dots, \frac{1}{3k}, \frac{1}{3k-1}, \frac{1}{3k-2}, \dots)$$

não é subsequência de (1/n), pois a sequência (n_k) correspondente não é crescente.

O resultado seguinte afirma que todas as subsequências de uma sequência convergente convergem para o mesmo limite da sequência.

Teorema 8.3

Se uma sequência de números reais (x_n) converge para $\bar{x} \in \mathbb{R}$, então qualquer subsequência (x_{n_k}) de (x_n) também converge para \bar{x} .

Prova: Seja dado $\varepsilon > 0$ qualquer. Existe N_0 tal que se $n > N_0$, então $|x_n - \bar{x}| < \varepsilon$. Como $n_1 < n_2 < \cdots < n_k < \cdots$, é fácil mostrar usando Indução Matemática que $n_k \geq k$. Portanto, se $k > N_0$, então $n_k \geq k > N_0$ e, portanto, $|x_{n_k} - \bar{x}| < \varepsilon$. Decorre daí que (x_{n_k}) também converge para \bar{x} .

Uma consequência imediata porém bastante útil do Teorema 8.3 é o seguinte critério para testar a divergência de sequências.

Teorema 8.4

Suponhamos que $\mathbf{x}=(x_n)$ é uma sequência e que (x_{n_k}) e (x_{m_k}) são duas subsequências de **x** satisfazendo: existe $\varepsilon_0 > 0$ tal que $|x_{n_k} - x_{m_k}| > \varepsilon_0$ para todo $k \in \mathbb{N}$ suficientemente grande. Então \mathbf{x} é divergente.

Prova: Com efeito, se existe $\bar{x} = \lim x_n$, então, pelo Teorema 8.2, $\bar{x} = \lim x_n$ $\lim x_{n_k} = \lim x_{m_k}$. Daí teríamos, pelos resultados da aula anterior,

$$0 = |\bar{x} - \bar{x}| = \lim_{k \to \infty} |x_{n_k} - x_{m_k}| \ge \varepsilon_0 > 0,$$

o que é um absurdo, provando assim que \mathbf{x} é divergente.

Exemplos 8.2 (a)
$$\lim_{n \to \infty} (1 + \frac{1}{n^2})^{n^2} = e$$
.

A sequência (y_k) , com $y_k := (1 + \frac{1}{k^2})^{k^2}$, é uma subsequência da sequência (t_n) , com $t_n = (1 + 1/n)^n$. Logo, pelo Teorema 8.3, $\lim_{n \to \infty} (1 + \frac{1}{l \cdot 2})^{k^2} =$ $\lim (1+1/n)^n = e.$

(b) A sequência $\mathbf{x} = ((1 + (-1)^n)/2 - (-1)^n/n)$ é divergente.

Com efeito, $\mathbf{x} = (x_n)$ com $x_{2k-1} = 1/k$ e $x_{2k} = 1 - 1/k$ para $k \in \mathbb{N}$, de modo que as subsequências (x_{2k-1}) e (x_{2k}) convergem para 0 e 1, respectivamente. Portanto, pelo Teorema 8.4, \mathbf{x} é divergente.

A seguir vamos enunciar e provar o célebre Teorema de Bolzano-Weierstrass assim nomeado em referência aos matemáticos Bernhard Bolzano (1781–1848) e Karl Weierstrass (1815–1897) que foram os primeiros a estabelecê-lo. Ele foi, na verdade, provado primeiramente por Bolzano, mas essa prova se perdeu. Foi depois redemonstrado por Weierstrass e se tornou uma peça central da Análise. Mais tarde descobriu-se que o teorema havia sido provado por Bolzano muito antes de Weierstrass e daí veio seu nome.

Teorema 8.5 (Teorema de Bolzano-Weierstrass)

Toda sequência limitada de números reais possui uma subsequência convergente.

Prova: Como o conjunto de valores $\mathbf{x}(\mathbb{N}) = \{x_n : n \in \mathbb{N}\}$ é limitado, ele está contido num intervalo fechado $I_1 := [a, b]$. Façamos $n_1 = 1$. Agora, dividimos o intervalo I_1 em dois intervalos fechados de igual comprimento I'_1 e I''_1 , isto é, $I'_1 := [a, (a+b)/2]$ e $I''_1 := [(a+b)/2, b]$. Distinguimos assim dois subconjuntos de \mathbb{N} , a saber,

$$\mathbb{N}'_1 := \{ n \in \mathbb{N} : n > n_1, \ x_n \in I'_1 \} \quad \text{e} \quad \mathbb{N}''_1 := \{ b \in \mathbb{N} : n > n_1, \ x_n \in I''_1 \}.$$

Como $\mathbb{N}'_1 \cup \mathbb{N}''_1 = \mathbb{N}_1 := \{n \in \mathbb{N} : n > n_1\}$ é um subconjunto infinito de \mathbb{N} , temos que pelo menos um dos dois conjuntos, \mathbb{N}'_1 e \mathbb{N}''_1 , é infinito. Chamemos de \mathbb{N}_2 um desses dois subconjuntos que seja infinito, denotemos por I_2 o subintevalo correspondente, e chamemos de n_2 o menor elemento de \mathbb{N}_2 , cuja existência é dada pelo Princípio da Boa Ordenação. Observe que $x_{n_2} \in I_2$. Vamos mostrar por Indução Matemática que é possível construir dessa forma uma família de intervalos fechados limitados $I_1, I_2, \ldots, I_k, \ldots$, com $I_1 \supset I_2 \supset \cdots \supset I_k \supset I_{k+1} \supset \cdots$ e uma sequência de números naturais (n_k) com $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$, tais que $x_{n_k} \in I_k$. Suponhamos por indução que I_1, I_2, \ldots, I_k e n_1, n_2, \ldots, n_k tenham sido definidos satisfazendo $I_1 \supset I_2 \supset \cdots \supset I_k, n_1 < n_2 < \cdots < n_k$ e tais que $x_{n_j} \in I_j, j = 1, \ldots, k$. Sejam $\mathbb{N}_1, \mathbb{N}_2, \ldots, \mathbb{N}_k$ definidos indutivamente por $\mathbb{N}_j := \{n \in \mathbb{N}_{j-1} : n > n_{j-1}, x_n \in I_{j-1}\}$. De novo, dividimos o intervalo I_k em dois subintervalos de igual comprimento, I'_k e I''_k , e definimos

$$\mathbb{N}'_k := \{ n \in \mathbb{N}_k : n > n_k, \ x_n \in I'_k \}, \qquad \mathbb{N}''_k := \{ n \in \mathbb{N}_k : n > n_k, \ x_n \in I''_k \}.$$

Chamemos de \mathbb{N}_{k+1} a um desses dois subconjuntos de \mathbb{N}_k que seja infinito, denotemos por I_{k+1} o subintervalo de I_k correspondente, e façamos $n_{k+1} := \inf \mathbb{N}_{k+1}$. Temos então que $I_k \supset I_{k+1}$, $n_k < n_{k+1}$ e $x_{n_{k+1}} \in I_{k+1}$. Fica, assim, provada por indução a existência da família de intervalos fechados encaixados $I_1 \supset I_2 \supset \cdots \supset I_k \supset I_{k+1} \supset \cdots$ e da sequência de números naturais (n_k) com $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$, tais que $x_{n_k} \in I_k$.

Como o comprimento de I_k é igual a $(b-a)/2^{k-1}$, segue do Teorema 5.12 (Propriedade dos Intervalos Encaixados) que existe um único ponto $\xi \in I_k$ para todo $k \in \mathbb{N}$. Como ambos x_{n_k} e ξ pertencem a I_k , temos

$$|x_{n_k} - \xi| \le \frac{(b-a)}{2^{k-1}},$$

donde concluímos que a subsequência (x_{n_k}) converge para ξ .

O próximo resultado é uma aplicação do Teorema de Bolzano-Weierstrass. Em sua prova, vamos utilizar o fato de que se \mathbf{x}' é uma subsequência de \mathbf{x} , então \mathbf{x}' é, com todo direito, também uma sequência e, sendo assim, também possui subsequências. Observamos que se \mathbf{x}'' é uma subsequência de \mathbf{x}' , então \mathbf{x}'' também é uma subsequência de \mathbf{x} .

Teorema 8.6

Seja $\mathbf{x} = (x_n)$ uma sequência limitada de números reais e $\bar{x} \in \mathbb{R}$ tendo a propriedade de que toda subsequência convergente de \mathbf{x} converge a \bar{x} . Então a sequência \mathbf{x} converge a \bar{x} .

Prova: Como (x_n) é limitada, podemos obter M > 0 tal que $|x_n| < M$ para todo $n \in \mathbb{N}$. Suponhamos, por absurdo, que \mathbf{x} não converge a \bar{x} . Então existe um $\varepsilon_0 > 0$ e uma subsequência (x_{n_k}) de (x_n) tal que

$$|x_{n_k} - \bar{x}| \ge \varepsilon_0$$
 para todo $k \in \mathbb{N}$. (8.3)

De fato, a negação da afirmação

$$(\forall \varepsilon > 0)(\exists N_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n > N_0 \Rightarrow |x_n - \bar{x}| < \varepsilon), \tag{8.4}$$

que é a definição formal de $x_n \to \bar{x}$, é a proposição

$$(\exists \varepsilon_0 > 0)(\forall k \in \mathbb{N})(\exists n_k \in \mathbb{N})(n_k > k \in |x_{n_k} - \bar{x}| > \varepsilon_0),$$
 (8.5)

que equivale à afirmação que fizemos contendo (8.3). Observe que, apenas por conveniência, ao escrever a negação de (8.4), trocamos as variáveis ε , N_0 , n pelas variáveis ε 0, k, n_k , o que é plenamente de nosso direito.

Agora, temos $|x_{n_k}| < M$ para todo $k \in \mathbb{N}$. Logo, o Teorema de Bolzano-Weierstrass implica que a sequência $\mathbf{x}' = (x_{n_k})$ possui uma subsequência convergente \mathbf{x}'' . Como \mathbf{x}'' também é subsequência de \mathbf{x} , a qual por hipótese converge a \bar{x} , devemos ter $\lim \mathbf{x}'' = \bar{x}$. Portanto, todos os termos de \mathbf{x}'' devem ultimadamente pertencer a ε_0 -vizinhança de \bar{x} , $V_{\varepsilon_0}(\bar{x}) = \{x \in \mathbb{R} : |x - \bar{x}| < \varepsilon_0\}$, o que contradiz (8.3) e conclui a prova do teorema.

Exemplos 8.3

(a) Suponhamos que $\mathbf{x} = (x_n)$ é uma sequência tal que as suas subsequências $\mathbf{x}' := (x_{2k-1})$ e $\mathbf{x}'' := (x_{2k})$, correspondentes aos índices ímpares e pares, respectivamente, convergem ambas para \bar{x} . Então (x_n) converge para \bar{x} .

Essa afirmação pode ser provada sem nenhuma dificuldade usando-se diretamente a Definição 6.2. Em vez disso, vamos prová-la aplicando o Teorema 8.6.

Com efeito, as subsequências \mathbf{x}' e \mathbf{x}'' são convergentes e, portanto, são limitadas. Como o conjunto dos valores de \mathbf{x} , $\mathbf{x}(\mathbb{N})$, é a união do conjunto dos valores de \mathbf{x}' , $\mathbf{x}'(\mathbb{N})$, com o conjunto dos valores de \mathbf{x}'' , $\mathbf{x}''(\mathbb{N})$, segue que \mathbf{x} é limitada.

Agora, dada qualquer subsequência convergente $\mathbf{z} := (x_{n_k})$ de (x_n) , então pelo menos uma das duas afirmações seguintes é verdadeira: (i) n_k é impar para uma infinidade de sub-índices $k \in \mathbb{N}$; (ii) n_k é par para uma infinidade de sub-índices $k \in \mathbb{N}$. Em qualquer caso, será possível obter uma subsequência \mathbf{z}' de \mathbf{z} cujos índices são todos ímpares ou todos pares. Então, \mathbf{z}' será uma subsequência de \mathbf{x}' e, assim, pelo Teorema 8.1, converge a \bar{x} . Mas então, pela mesma razão, devemos ter $\lim \mathbf{z} = \bar{x}$. Logo, podemos usar o Teorema 8.6 para concluir que $\lim x_n = \bar{x}$.

Sugerimos que você dê uma demonstração dessa mesma proposição usando diretamente a Definição 6.2.

(b) Seja (x_n) a sequência definida indutivamente por

$$x_1 = 1,$$
 $x_{n+1} := \frac{1}{1 + x_n}$ para todo $n \in \mathbb{N}$.

Os termos dessa sequência têm a forma

$$\frac{1}{1+1}$$
, $\frac{1}{1+\frac{1}{1+1}}$, $\frac{1}{1+\frac{1}{1+1}}$, ...

e, por isso, constituem o que chamamos fração contínua ou fração continuada. Mostraremos que

$$\lim x_n = \frac{-1 + \sqrt{5}}{2}.$$

Por indução, provamos facilmente que $0 \le x_n \le 1$ para todo $n \in \mathbb{N}$. De fato, isso é verdade para n=1 e, supondo que $0 \le x_k \le 1$, segue da fórmula $x_{k+1} = 1/(1+x_k)$ que $0 \le x_{k+1} \le 1$, o que prova que $0 \le x_n \le 1$ para todo $n \in \mathbb{N}$.

Vemos por substituição direta que $x_2 = 1/2$, $x_3 = 2/3$ e $x_4 = 3/5$. Portanto, $x_1 = 1 > x_3 = 2/3$ e $x_2 = 1/2 < x_4 = 3/5$. Seja $y_k := x_{2k-1}$ e $z_k := x_{2k}$. Agora, temos

$$x_{n+2} = \frac{1}{1+x_{n+1}} = \frac{1}{1+\frac{1}{1+x_n}} = \frac{1+x_n}{2+x_n} = 1 - \frac{1}{2+x_n}.$$
 (8.6)

Desta última expressão para x_{n+2} em função de x_n segue que se $x_n <$ x_{n+2} , então $x_{n+2} < x_{n+4}$. Da mesma forma, se $x_n > x_{n+2}$, então $x_{n+2} > x_{n+4}.$

Portanto, temos $x_1 > x_3 > \cdots > x_{2k-1} > x_{2k+1} > \cdots$, e $x_2 < x_4 < \cdots$ $\cdots < x_{2k} < x_{2k+2} < \cdots$. Assim, a subsequência (y_n) é decrescente e a subsequência (z_n) é crescente. Além disso, ambas são limitadas e, portanto, são convergentes, pelo Teorema da Sequência Monótona. Mais ainda, de (8.6) temos

$$y_{n+1} = 1 - \frac{1}{2 + y_n}$$
 e $z_{n+1} = 1 - \frac{1}{2 + z_n}$.

Sejam $\bar{y} := \lim y_n \in \bar{z} := \lim z_n$. Segue do que foi visto na aula anterior que $0 \le \bar{y} \le 1$, $0 \le \bar{z} \le 1$, $\bar{y} = 1 - 1/(2 + \bar{y})$ e $\bar{z} = 1 - 1/(2 + \bar{z})$. Logo, \bar{y} e \bar{z} são ambos raízes não-negativas da equação de segundo grau

$$t^2 + t - 1 = 0,$$

cujas raízes são $(-1 \pm \sqrt{5})/2$. Assim, $\bar{y} = \bar{z} = (-1 + \sqrt{5})/2$. Segue do exemplo anterior que $\lim x_n = (-1 + \sqrt{5})/2$.

Exercícios 8.1

- 1. Seja $x_1 = 3$ e $x_{n+1} := \frac{1}{5}x_n + 4$ para todo $n \in \mathbb{N}$. Mostre que (x_n) é limitada e monótona. Encontre o limite.
- 2. Seja $x_1 > 1$ e $x_{n+1} := 2 1/x_n$ para todo $n \in \mathbb{N}$. Mostre que (x_n) é limitada e monótona. Encontre o limite.

- 3. Seja $x_1 \geq 2$ e $x_{n+1} := 1 + \sqrt{x_n 1}$ para $n \in \mathbb{N}$. Mostre que (x_n) é decrescente e limitada inferiormente por 2. Encontre o limite.
- 4. Seja $x_1 = 1$ e $x_{n+1} := \sqrt{2x_n}$ para $n \in \mathbb{N}$. Mostre que (x_n) converge e encontre o limite.
- 5. Seja $y_1 := \sqrt{p}$, onde p > 0 e $y_{n+1} := \sqrt{p + y_n}$ para $n \in \mathbb{N}$. Mostre que (y_n) converge e encontre o limite. (Dica: Primeiro mostre por indução que $1 + 2\sqrt{p}$ é uma cota superior.)
- 6. Seja a > 0 e $x_{n+1} = x_n + 1/x_n$ para $n \in \mathbb{N}$. Determine se (x_n) diverge ou converge. (Dica: Mostre que (x_n) é crescente e veja o que acontece quando se supõe que x_n converge.)
- 7. Estabeleça a convergência e encontre o limite das seguintes sequências:
 - (a) $((1+1/n)^{n+1})$,
 - (b) $((1+1/n)^{2n})$,
 - (c) $((1+1/(n+1))^n)$,
 - (d) $((1-1/n)^n)$. (Dica: Use $1-1/n=(1+1/(n-1))^{-1}$.)
- 8. Estabeleça a convergência e ache os limites das seguintes sequências:
 - (a) $((1+1/n^2)^{2n^2})$,
 - (b) $((1+1/(9n^2))^{n^2})$,
 - (c) $((1+1/2n)^n)$,
 - (d) $((1+2/n)^n)$.
- 9. Determine os limites das seguintes sequências:
 - (a) $((3n)^{1/2n})$,
 - (b) $((1+2/n)^{3n})$.
- 10. Suponha que toda subsequência de $\mathbf{x} = (x_n)$ possui uma subsequência que converge a um mesmo número real \bar{x} . Mostre que $\lim x_n = \bar{x}$.
- 11. Seja $\mathbf{x} = (x_n)$ definida indutivamente por $x_1 = 1$ e $x_{n+1} = 1/(2 + x_n)$. Mostre que \mathbf{x} converge e encontre o limite.

- 12. Considere a sequência de Fibonacci definida indutivamente por $y_1 = 1$, $y_2 = 1$ e $y_{n+2} := y_{n+1} + y_n$ para todo $n \in \mathbb{N}$. Seja $\mathbf{x} = (x_n)$ definida por $x_n = y_n/y_{n+1}$. Mostre que **x** converge e encontre o limite.
- 13. Considere a sequência (x_n) definida indutivamente por $x_1 := 1$ e $x_{n+1} =$ $1/(a_n+x_n)$ para todo $n \in \mathbb{N}$, onde $a_{2k-1}:=1$ e $a_{2k}:=2$ para todo $k \in \mathbb{N}$.
 - (a) Mostre que $0 \le x_n \le 1$ para todo $n \in \mathbb{N}$.
 - (b) Mostre que $\mathbf{x}' := (x_{2k-1})$ é decrescente e $\mathbf{x}'' := (x_{2k})$ é crescente.
 - (c) Encontre $\bar{x}' := \lim_{k \to \infty} x_{2k-1} \in \bar{x}'' := \lim_{k \to \infty} x_{2k}$.
 - (d) Observe que $\bar{x}' \neq \bar{x}''$ e justifique a conclusão de que (x_n) é divergente.