

MIE1624H-Introduction to Data Science & Analytics Assignment-1

Content Table:

- Descriptive Analysis
- 2. Male & Female Vs Salary Distribution Comparison
- 3. Highest Level of Formal Education Vs Salary Distribution Comparison
- 4. Differences In Means Plots

Name- TUHIN RANJAN Program-MENG MIE Student No-1006633555

Descriptive Analysis

KEY POINTS FOR Q1:

- 1. Data from provided dataset is being reoriented to plot graphs for describing the effect of data science profession on the salary structure due to gender, country or age.
- 2. Histogram and boxplot are being use to demonstrate the conclusions.
- 3. Gender & Profession Distribution- Males are dominating in field of data science and its oriented profession.
- 4. Developed Countries have higher job opportunity and higher salary wrt to data science related profession
- 5. Upto 30 yrs of age, the salary distribution is quite low in data science profession.

Male & Female Vs Salary Distribution Comparison

KEY POINTS FOR Q2:

- 1. Data is cleaned up to find the statistical significant difference of mean salary between male & female.
- 2. Descriptive data for both groups found out and ttest is being performed to check if p<0.05 or less than 5%.
- 3. ttest gave the value for p=5.108939e-12 < 0.05, thus rejecting the null hypothesis. Since larger the sample number more confidence of interval will be, so executing bootstrap with resampling of data to 1000 times.
- 4. After executing bootstrap, it been concluded that p=0.0<0.05 through Hypothesis test and rejecting the null hypothesis.
- 5. Means of salary between male and female is statically significant or salary is depending upon the gender.

Highest Level of Formal Education Vs Salary Distribution Comparison

KEY POINTS FOR Q3:

- 1. Data is cleaned up to find the statistical significant difference of mean salary between the highest level of formal education i.e., bachelor degree, master degree and doctoral degree.
- 2. Descriptive data for both groups found out and also represented as boxplot.
- 3. Since there are 3 mean values need to compare so, rejecting ttest method and executing bootstrap method for higher resample size of 1000. Here we used ANOVA method to check the null hypothesis.
- 4. After executing bootstrap, it been concluded that p=0.0<0.05 through Hypothesis test and f value=131162.24882062527> F critical value, thus rejecting the null hypothesis.
- 5. Means of salary between bachelor, masters and doctoral degree is statically significant or salary is depending upon the highest level of formal education which is directly proportional.

Differences In Means Plots

0.008 -

0.004

0.002

mu_degree2,sigma2,mu_degree2 - 2*sigma2, mu_degree2 + 2*sigma2 #value between

Distribution of the difference in means of salary wrt doctoral degree and master degree

(16925.28804612827. 41.65195253472916. 16841.984141058812. 17008.591951197726)

: (30678.488101136936, 67.29075444383322, 30543.90659224927, 30813.069610024602): (13753.200055008667, 47.21200725736024, 13658.776040493947, 13847.624069523386)

KEY POINTS FOR Q2 & Q3:

- 1. Difference in means have been plotted to check the normal distribution nature of the means differences.
- 2. For Male & Female Means Salary differences, the value ~12812, variance~50.
- 3. For Master & Bachelor Means Salary differences, the value, mu ~13753, variance~47.
- 4. For Doctoral & Master Means Salary differences, the value, mu ~16925, variance~41.
- 5. For Doctoral & Bachelor Means Salary differences, the value,mu ~30678, variance~67.

[51]: (12812.8674700618, 50.94955462416671, 12710.968360813466, 12914.766579310133)