	 		 _	 	_	 	
					1	1	
SDN	- 1						
SILIY							

PES University, Bengaluru

(Established under Karnataka Act 16 of 2013)

UE17/18/19 PH101

END SEMESTER ASSESSMENT (ESA) B. TECH. I SEMESTER DECEMBER 2020 UE17/18/19PH101: ENGINEERING PHYSICS

Time: 3 hours

Answer all questions

Max marks: 100

$$\mid m_e = 9.1 x 10^{-31} \; kg \quad \mid \quad h = 6.63 x 10^{-34} Js \quad \mid \quad k_B = 1.38 \; x \; 10^{-23} \; JK ^{-1} \; \mid \\ \mid c = 3 x 10^8 \; ms^{-1} \quad \mid \quad N_A = 6.02 x 10^{23} \; \; per \; mol \quad \mid$$

1.	a)	Using Maxwell's equations show that E(z) and B(z) are orthogonal.	5
	b)	Discuss how Compton showed the particle nature of waves.	5
	c)	Derive a relation between phase and group velocities.	4
	d)	Using Gamma ray microscope thought experiment derive the uncertainty principle.	6
2.	a)	Discuss the properties of quantum wave functions. Define normalization.	
	b)	Discuss the nature of wavefunctions for a particle in a finite well and compare them with the case for an infinite well	5
	c)	Determine the normalization constant for a particle with a wavefunction $\Psi = C \cos\left(\frac{n\pi x}{a}\right)$ for the limits $x = 0$ to $x = a$ and calculate the probability of locating the particle in the first half of the well in the ground state.	7
	d)	Explain the terms zero-point energy for a quantum harmonic oscillator.	3
3.	a)	Discuss any three successful results of the quantum free electron theory.	6
	b)	Show that the probability of occupation of a state δE above the Fermi energy is equal to the probability of non-occupation of a state δE below the Fermi level.	4

UE19PH101

3.	c)	What are Fermions? Discuss the distribution of Fermions in the energy states when they are restricted to move in a cube of side d .	6
	d)	Find the electron density in a metal with a Fermi energy of 5.5 eV.	4
4.	a)	Derive an expression connecting Einstein's coefficients to the energy density.	6
	b)	What is population inversion? How is it achieved?	4
	c)	Discuss the concept of round-trip gain and derive an expression for threshold gain.	6
	d)	Discuss the important concepts of a heterojunction laser.	4
5.	a)	Evaluate the Larmor angular frequency in a magnetic field of 8 tesla.	3
	b)	What is a phase transition? Give an example of a magnetic phase transition.	5
	c)	Derive an expression for polarization of a dielectric in an external electric field E.	6
	d)	Discuss the phase transitions of Barium Titanate and explain the concept of Curie temperature.	6

*** * ***