Singular Value Decomposition

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Goal: Another matrix decomposition (SVD) for low-rank matrix approximation

cf. Eigen decomposition
$$A = Q []Q^{T}$$
QR decomposition
$$A = Q []$$

See note on "least square fit" & Numerical Recipes Sec. 2.6

Rank of a Matrix

• $N \times M$ matrix A as a mapping: $R^M \to R^N$

$$M \quad \begin{bmatrix} x \\ x \end{bmatrix} \quad x (\in \mathbb{R}^M) \xrightarrow{A} b = Ax (\in \mathbb{R}^N) \quad \begin{bmatrix} b \\ b \end{bmatrix} \quad N$$

- Range of A: Vector space $\{b = Ax | \forall x\}$
- Rank of A: Number, m, of linearly-independent vectors in the range, i.e., how many linearly-independent N-element vectors are there in the range, such that

$$b = A^{\forall} x = \sum_{v=1}^{m} c_v |v\rangle$$

Low Rank Approximations of a Matrix

• Rank-1 approximation: $NM \rightarrow N + M$

$$\mathbf{N} \left[\begin{array}{c} \mathbf{M} \\ \psi \end{array} \right] \cong \left[u \right[\begin{array}{c} v \end{array} \right] \qquad |u\rangle\langle v|\forall x\rangle \propto |u\rangle$$

• Rank-2 approximation: $NM \rightarrow 2(N + M)$

$$\left[\begin{array}{c} \psi \end{array} \right] \cong \left[u_1 \right] w_1 \left[\begin{array}{c} v_1 \end{array} \right] + \left[u_2 \right] w_2 \left[\begin{array}{c} v_2 \end{array} \right]$$

• Rank- $m \ (m << N, M)$ approximation: $NM \to m(N + M)$

$$\left[\begin{array}{c} \psi \\ \end{array} \right] \cong \sum_{v=1}^{m} \left[u_{v} \right] w_{v} \left[\begin{array}{c} v_{v} \\ \end{array} \right]$$

Singular Value Decomposition

- **Problem:** Optimal approximation of an $N \times M$ matrix ψ of rank-m (m << N)?

Theorem: An
$$N \times M$$
 matrix ψ (assume $N \ge M$) can be decomposed as
$$\psi = UDV^T = \sum_{v=1}^M U_{iv} d_v V_{jv} = \sum_{v=1}^M u_i^{(v)} d_v v_j^{(v)}$$

where $U \in \mathbb{R}^N \times \mathbb{R}^M$ & $V \in \mathbb{R}^M \times \mathbb{R}^M$ are column orthogonal & D is diagonal

$$\mathbf{M} \qquad U^T U = V^T V = I_M$$

$$\mathbf{N} \begin{bmatrix} \psi \end{bmatrix} = \begin{bmatrix} U \\ U \end{bmatrix} \begin{bmatrix} \text{See appendix on polar \& singular decompositions} \\ d_1 \\ \ddots \\ d_M \end{bmatrix} \begin{bmatrix} V^T \\ W \times \mathbf{M} \end{bmatrix}$$

• Theorem: Sort the SVD diagonal elements in descending order, $d_1 \ge d_2 \ge ... \ge$ $d_M \ge 0$, & retain the first m terms $\psi^{(m)} = \sum_{i=1}^{m} u^{(v)} d_v v^{(v)T}$

which is optimal among \forall rank-m matrices in the 2-norm sense with the error

$$\min_{rank(A)=m} ||A - \psi||_2 = ||\psi^{(m)} - \psi||_2 = d_{m+1}$$

cf. singular.c & svdcmp.c cc -o singular singular.c svdcmp.c -lm

Use the program!

SVD for Image Compression

Original Image

5 Iterations

10 Iterations

D. Richards & A. Abrahamsen

20 Iterations

60 Iterations

100 Iterations

SVD in Data Mining

N. Ramakrishnan & A. Y. Grama

Reduced Density Matrix

Quantum system coupled to an environment

• **∀Quantum state of block + environment**

$$|\psi\rangle = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{ij} |i\rangle |j\rangle$$
 or $\Psi(x,X) = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{ij} \psi_i(x) \phi_j(X)$

Reduced density matrix

Low-Rank Approx. to Reduced Density Matrix

$$\psi \cong \psi^{(m)} = \sum_{v=1}^{m} u^{(v)} d_{v} v^{(v)T} \qquad \psi_{ij}^{(m)} = \sum_{v=1}^{m} u_{i}^{(v)} d_{v} v_{j}^{(v)}$$

$$\rho = \psi \psi^{T} \cong \psi^{(m)} \psi^{(m)T} = \sum_{v=1}^{m} \sum_{v'=1}^{m} u^{(v)} d_{v} \left(v^{(v)T} v^{(v')} \right) d_{v'} u^{(v')T}$$

$$= \sum_{v=1}^{m} \sum_{v'=1}^{m} u^{(v)} d_{v} \left(\delta_{vv'} \right) d_{v'} u^{(v')T} = \sum_{v=1}^{m} u^{(v)} d_{v}^{2} u^{(v)T} \equiv \rho^{(m)}$$

$$\rho_{ii'}^{(m)} = \sum_{v=1}^{m} u_{i}^{(v)} d_{v}^{2} u_{i'}^{(v)}$$

- Density matrix renormalization group = systematic procedure to accurately obtain a quantum ground state:
 - 1. Incrementally add environment to a block
 - 2. Solve the global (= block + environment) ground state
 - 3. Construct a low-rank approx. to represent the block with reduced d.o.f.

S. R. White, *Phys. Rev. B* **48**, 10345 ('93); G. K.-L. Chan & S. Sharma, *Annu. Rev. Phys. Chem.* **62**, 465 ('11)

Entanglement Entropy

- Entanglement entropy: A measure of the degree of quantum entanglement between two subsystems. If a state describing two subsystems A and B is a *separable* state $|\Psi_{AB}\rangle = |\varphi_A\rangle|\varphi_B\rangle$, then the reduced density matrix $\rho_A = \text{Tr}_B|\Psi_{AB}\rangle\langle\Psi_{AB}| = |\varphi_A\rangle\langle\varphi_A|$ is a *pure state*. Thus, the entropy of the state is zero. A reduced density matrix having a non-zero entropy is therefore a signal of the existence of entanglement in the system.
- Area law: A quantum state satisfies an *area law* if the leading term of the entanglement entropy grows at most proportionally with the *boundary* between the two partitions. Area laws are remarkably common for ground states of local gapped quantum many-body systems. *It greatly reduces the complexity of quantum many-body systems. The density matrix renormalization group and matrix product states, for example, implicitly rely on such area laws.*https://en.wikipedia.org/wiki/Entropy of entanglement

Measurement-driven entanglement transition in hybrid quantum circuits

"With increasing measurement rate, the volume law phase is unstable to a disentangled area law phase, passing through a single entanglement transition at a critical rate of

Y. Li et al., Phys. Rev. B 100, 134306 ('19)

SVD for Rapid Genome Sequencing

• \$10M Archon X prize for decoding 100 human genomes in 10 days & \$10K per genome (http://genomics.xprize.org): Preemptive attack on diseases

Quantum tunneling current for rapid DNA sequencing?

Tsutsui et al., Nature Nanotechnology ('10)

Lagerqvist et al., Nano Letters ('06)

500
400
200
100
101
101
103
Current (nA)

• Tunneling current alone cannot distinguish the 4 nucleotides (A, C, G, T)

Rapid DNA Sequencing via Data Mining

Use tunneling current (I)-voltage (V) characteristic (or electronic density-ofstates) as the 'fingerprints' of the 4 nucleotides

Shapir et al., Nature Materials ('08)

Principal component analysis (PCA) & fuzzy c-means clustering clearly distinguish the 4 nucleotides

H. Yuen et al., IJCS 4, 352 ('10)

http://www.henryvuen.net/

Viterbi algorithm for even higher-accuracy sequencing

See Henry's landmark discovery

SVD vs. PCA (in Economics)

SVD of N (number of companies) \times T (number of time points) of stock-price time series

$$\Xi_{T \times N}^{T} = U \sum_{T \times N} V^{T}_{N \times N}$$

Stock correlation matrix

$$\mathbf{C}_{N\times N} = \mathbf{\Xi} \quad \mathbf{\Xi}^{T}$$

$$N\times N = T \times N$$

Principal component analysis (PCA): Eigen decomposition of the correlation matrix

$$C = \Xi \Xi^{T}$$

$$= V \Sigma \widetilde{U^{T} U} \Sigma V^{T}$$

$$= V \Sigma^{2} V^{T}$$

Compare the spectrum with that of random matrix theory (RMT) for judging statistical significance

Apply it in your area!

 $\rho_{\rm RMT} = \frac{Q}{2\pi} \frac{\sqrt{(\lambda_+ - \lambda)(\lambda - \lambda_-)}}{\lambda}$

Y. Kichikawa et al., Proc. Comp. Sci. **60**, 1836 ('15)