

GEOMETRÍA

TOMO 7

1rd SECONDARY

RETROALIMENTACIÓN

1. Se tiene un triángulo ABD, donde C ∈ BD, E ∈ AD y m<BAD = m<ECD. Si AB = 10, BD = 15 y ED = 6; halle CE.

2. En un triángulo ABC se ubican los puntos tal que, D ∈ AB, E ∈ BC, m∢BDE = m∢ BCA y BD = 4, BE = 3 y EC = 5. Halle DA.

$$\frac{3}{4+x} = \frac{4}{8}$$

$$6 = 4+x$$

3. Halle el valor de x.

4. En un triángulo ABC, recto en B de traza la altura \overline{BH} . Si HC = 8, BC = 12,

halle el valor de AH.

 $Teorema\ del\ cateto$

$$12^{2} = (x + 8)8$$

$$144 = (x + 8)8$$

$$18 = x + 8$$

5. En el gráfico, halle el valor de AC.

En el ABC

$$x^2 = 8^2 + \sqrt{80^2}$$

$$x^2 = 64 + 80$$

$$x^2 = 144$$

$$x = 12$$

6. En el gráfico, halle el valor de x.

$$c^2 = 64 + 225$$

$$c^2 = 289$$

$$c = 17$$

$$8 \times 15 = 17x$$

$$120 = 17x$$

$$x = \frac{120}{17}$$

7. Calcule el área de la región ABC.

8. Calcule el área de la región limitada por un triángulo rectángulo, si un cateto mide 8 m y la hipotenusa mide 17 m.

9. Calcule el área de la región limitada por un triángulo equilátero, si la longitud de su lado es 10 m.

Resolución Piden S_{∆ABC}

$$\mathsf{S}_{\Delta\mathsf{ABC}} = \frac{\mathsf{10}^{\;2}\sqrt{\mathsf{3}}}{\mathsf{4}}$$

$$\mathbf{S}_{\Delta \mathsf{ABC}} = \frac{100 \; \sqrt{3}}{4}$$

$$S_{\Delta ABC} = 25\sqrt{3} \text{ m}^2$$

10. Se colocan cuatro postes de alumbrado público en el jardín del profesor Eduardo, como se muestra en la figura. Determine la longitud de la vereda BD que cruza el parque.

Resolución

Piden: h

$$DC = 25 - 9$$

$$h^2 = (9)(16)$$

$$h^2 = 144$$

$$h = 12 m$$