$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12 k^2}{(3+2 k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{#2} + ^{\alpha}$

	#	:	1	m	m	0	n r		119
Source constraints	SO(3) irreps	$t_0^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha} == 0$	$+ \pi 1 \alpha \beta$) : $L = \pi 1 \alpha \beta$	$l_1 + -2 \mathbb{I} R O_1 + = 0$	$a_1 + a_2 + a_3 = 0$	$\binom{2+}{2} + \frac{-2 \pi \kappa}{2} \binom{2+}{2} = 0$ Total #:
$f_{1}^{\#2}$	5	0	0	0	Īkt,	1	0	0	0
$f_{1}^{\#1}$	3	0	0	0	0		0	0	0
$\omega_{1}^{#2}$, $f_{1}^{#1}$, $f_{1}^{#2}$	5 1	0	0	0	[1]	٧2	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	3	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	_ 2	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}_{\alpha\beta}$	- ds -	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2 t_1}{3}$	0		0	0	0
ω_{1+}^{*1} ω_{1}^{*2} ω_{1+}^{*2} β_{1+}^{*1}	du T	$-\frac{t_1}{3\sqrt{2}}$	£ 3	$-\frac{1}{3}$ \vec{i} k t_1	0		0	0	0
$\omega_{_1+_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	ds	$\frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$			0	0	0
		$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	- -	$\omega_1^{\#2} + \alpha$	$f_{1}^{#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{lpha}$

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	
$\tau_2^{\#1}_{2^+\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	ď
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	(
	$\sigma_{2}^{\#1} + \alpha^{eta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} + ^{lphaeta\chi}$	·

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$	
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0	
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_2^{\#1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$	

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{#1}$
$\omega_{0}^{\sharp 1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-\bar{l}\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{#_{1}}$ †	0	0	0	$k^2 r_2$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2}$	
$\tau_0^{\# 2}$	0	0	0	0	
$ au_0^{\# 1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	
$\sigma_0^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	
	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †	

?	$J^P = 2^-$ k^{μ}	?
		?

Massive particle				
$\frac{1}{r_1} > 0$				
5				
$\frac{t_1}{2r_1} >$				
2				
Odd				
5				

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)