Steps Maths.

Equations & Fractions.

ALGEBRAIC FRACTIONS

Operations involving algebraic fractions can be done just like operations involving normal fractions with different denominators

ADDITION AND SUBTRACTION

Adding and Subtracting Algebraic Fractions

STEP 1: Identify the lowest common denominator of the denominators of all the fractions

STEP 2: Multiply the top and bottom of each fraction so that each denominator is the lowest common denominator

STEP 3: Combine the fractions over one denominator and simplify

TALENT 100: HSC SUCCESS. SIMPLIFIED. <u>www.talent-100.com.au</u>

Simplify $\frac{1}{x} + \frac{1}{x+1}$

STEP 1: Identify the lowest common denominator of the denominators of all the fractions

STEP 2: Multiply the top and bottom of each fraction so that each denominator is the lowest common denominator

STEP 3: Combine the fractions over one denominator and simplify

Simplify $\frac{1}{x-2} - \frac{2x}{x+2}$

STEP 1: Identify the lowest common denominator of the denominators of all the fractions

STEP 2: Multiply the top and bottom of each fraction so that each denominator is the lowest common denominator

STEP 3: Combine the fractions over one denominator and simplify

Simplify $\frac{4}{x^2-4x} - \frac{1}{x-4} + \frac{3}{x}$

STEP 1: Identify the lowest common denominator of the denominators of all the fractions

STEP 2: Multiply the top and bottom of each fraction so that each denominator is the lowest common denominator

STEP 3: Combine the fractions over one denominator and simplify

MULTIPLICATION AND DIVISION

Multiplying and Dividing Algebraic Fractions

STEP 1: If a fraction is being divided, flip the fraction and turn it into a multiplication

STEP 2: Factorise all expressions and cancel out any common factors between the numerators and denominators

STEP 3: Multiply the remaining terms together into one fraction and simplify

Question 4

Simplify
$$\frac{x^2-3x}{x+1} \div \frac{x}{x^2-1}$$

STEP 1: If there is a division, flip the fraction and turn it into a multiplication

STEP 2: Factorise all expressions and cancel out any common factors between the numerators and denominators

STEP 3: Multiply the remaining terms together into one fraction and simplify

Simplify
$$\frac{x^3-4x}{xy-2y} \times \frac{y}{x+2}$$

STEP 1: If there is a division, flip the fraction and turn it into a multiplication

STEP 2: Factorise all expressions and cancel out any common factors between the numerators and denominators

STEP 3: Multiply the remaining terms together into one fraction and simplify

Simplify
$$\frac{3x-x^2}{3y-xy+12-4x} \div \frac{x}{y^2+3y}$$

STEP 1: If there is a division, flip the fraction and turn it into a multiplication

STEP 2: Factorise all expressions and cancel out any common factors between the numerators and denominators

STEP 3: Multiply the remaining terms together into one fraction and simplify

Simplify the following algebraic fractions

a)
$$\frac{2}{x} - \frac{3x}{x+2}$$

b)
$$\frac{1}{x^2-1} + \frac{2x}{x-1}$$

c)
$$\frac{1}{x-2} + \frac{x^2-5x}{(x-2)(x-4)} \div \frac{x-5}{x^2-4x}$$

SIMPLIFYING COMPOUND FRACTIONS

Compound Fractions

If the fraction contains a compound fraction, first multiply the top and bottom by the denominator of the compound fraction, and then simplify the fraction as normal

Question 8

Consider the fraction $\frac{3-\frac{1}{x}}{1-3x}$

a) Multiply the fraction by $\frac{x}{x}$

b) Hence, simplify $\frac{3-\frac{1}{x}}{1-3x}$

Simplify the following compound fractions

a)
$$\frac{\frac{1}{x}+4}{x+2}$$

b)
$$\frac{\frac{1}{x+3}+2}{x-3}$$

c)
$$\frac{x^2}{x^2+1}-1$$

SIMULTANEOUS EQUATIONS

Some equations contain more than one variable, and cannot be solved with one equation alone. To solve these, you must make use of more than one equation

SOLVING BY SUBSTITUTION

Solving by Substitution

STEP 1: Using one equation, make x or y the subject

STEP 2: Substitute this into the second equation and solve for one variable

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Talent Tip:

TALENT 100: HSC SUCCESS. SIMPLIFIED. <u>www.talent-100.com.au</u>

Find x and y, given that

$$2x + y = 7$$

$$x + 2y = 5$$

STEP 1: Using one equation, make x or y the subject

STEP 2: Substitute this into the second equation and solve for one variable

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Find x and y, given that

$$x - 4y = -14$$

$$3x + 2y = 0$$

STEP 1: Using one equation, make x or y the subject

STEP 2: Substitute this into the second equation and solve for one variable

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Find x and y, given that

$$3x + 4y = 11$$

$$x - 3y = 8$$

STEP 1: Using one equation, make x or y the subject

STEP 2: Substitute this into the second equation and solve for one variable

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Solve the following equations by substitution

a)
$$x - y = -3$$
 and $3x + 2y = -1$

b)
$$4x + 2y = 3$$
 and $x + y = -1$

SOLVING BY ELIMINATION

Solving by Elimination

STEP 1: Multiply one or both equations by a constant so that the x or y terms in each equation are identical in number

STEP 2: Add or subtract the equations from each other to eliminate x or y, and solve

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Talent Tip:

TALENT 100: HSC SUCCESS. SIMPLIFIED. <u>www.talent-100.com.au</u>

Find x and y, given that

$$2x + y = 5$$

$$x + 2y = 4$$

STEP 1: Multiply one or both equations by a constant so that the x or y terms in each equation are identical in number

STEP 2: Add or subtract the equations from each other to eliminate x or y, and solve

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Find x and y, given that

$$3x - 5y = -29$$

$$2x + 4y = 10$$

STEP 1: Multiply one or both equations by a constant so that the x or y terms in each equation are identical in number

STEP 2: Add or subtract the equations from each other to eliminate x or y, and solve

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Find x and y, given that

$$5x - 6y = 23$$

$$2x + 3y = -7$$

STEP 1: Multiply one or both equations by a constant so that the x or y terms in each equation are identical in number

STEP 2: Add or subtract the equations from each other to eliminate x or y, and solve

STEP 3: Substitute what you get for **STEP 2** into one of the original equations and solve the other variable

Solve the following equations by elimination

a)
$$3x - 2y = 16$$
 and $4x + y = 14$

b)
$$2x - 5y = 4$$
 and $3x + 4y = -17$

 \boldsymbol{x} and \boldsymbol{y} are two numbers such that

$$x^2 - y = 3$$

$$3x^2 - 2y = 10$$

Find x and y using

a) Substitution

b) Elimination