# Catégorisez automatiquement des questions

Projet n°6

Parcours Openclassroom Data Science

### Introduction

L'objectif de ce projet est de développer un système de suggestion de tags pour une question posée sur le site Stack Overflow. Le but est d'aider les membres du site à mieux classifier leurs questions et avoir des réponses potentiellement plus pertinentes.

Dans un premier temps, je vais récupérer les données à partir d'une API du site Stack Overflow, puis je vais les analyser et traiter en utilisant des méthodes propres au traitement du langage naturel afin d'en tirer tout leur potentiel.

Dans un second temps, je vais mettre en œuvre 2 approches différentes de recommandation de tags. La première, non supervisée, visera à trouver le sujet principal d'une question et à proposer des mots relatifs au sujet détecté. La seconde, supervisée, visera à généraliser, à des questions non classifiées, les tags des questions déjà classifiées fournis par l'API Stack Overflow.

Le système de recommandation de tags mettant en œuvre les 2 approches sera intégré au travers d'une simple application web. Pour finir, des ouvertures à l'amélioration seront proposées.

### Récupération des données

- Récupération de **91 947 questions** en utilisant l'API StackOverflow

```
select Posts.Id,
     Name,
     Score,
     Body,
     Tags
from Posts
  inner join PostTypes on Posts.PostTypeId = PostTypes.id
where PostTypes.Name = 'Question'
  and Posts.Id >= 550000
  and Posts.Id < 600000</pre>
```

| Id    | 121656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Score | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Body  | I have the following string and I would like to remove <code>&lt;bpt *&gt;* &lt;/bpt&gt;</code> and <code>&lt;ept *&gt;*&lt;/ept&gt;</code> (notice the additional tag content inside them that also needs to be removed) without usin g a XML parser (overhead too large for tiny strings). \r\n\r\n <pre>pr\n\r\n<pre>pre&gt;<code>T he big &lt;bpt i="1" x="1" type="bold"&gt;&lt;b&gt;&lt;/bpt&gt;black&lt;ept i="1" &gt;&lt;/b&gt;&lt;/ept&gt; &lt;bpt i="2" x="2" type="ulined"&gt;&lt;u&gt;&lt;/bpt&gt;cat&lt;ept i="2"&gt;&lt;/u&gt;&lt;/ept&gt; sleeps.\r\n \r\n\r\nAny regex in VB.NET or C# will do.\r\n</code></pre></pre> |
| Title | Regular expression to remove XML tags and their content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tags  | <c#>&lt;.net&gt;<xml><vb.net><regex></regex></vb.net></xml></c#>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

- Aucune valeur manquante et aucune question en doublon
- La colonne Body est parsemée de sauts de ligne ou balises HTML
- Fusion des colonnes *Body* et *Title*
- Conservation des posts dont le score est supérieur ou égal à 3, soit **55 598 documents**

# Analyse de la variable Tags

- 9 712 tags distincts, grande diversité du vocabulaire avec de nombreux termes peu fréquents



- Ne conserver que les 100 tags les plus fréquents me permet de m'affranchir en partie du fléau de la dimension tout en restant suffisamment exhaustif (48 527 documents conservés)



# Analyse de la variable Tags



Peu de documents (1 209) ont plus de 3 tags



Je ne conserve dans la colonne tags que les 3 tags les plus fréquents pour des raisons de parcimonie et considérant que 3 tags sont suffisants pour décrire une question

# **Body: Natural Language Processing**

- Mise en minuscules du texte, suppression des caractères « whitespace » et du code au motif que le vocabulaire contenu entre des balises code est à mon sens trop spécifique

40240 i have the following string and i would like to remove and (notice the additional tag content inside them that also needs to be removed) without using a xml parser (overhead too large for tiny strings). any regex in vb.net or c# will do. regular expression to remove xml tags and their content

- Suppression du format HTML avec le package Beautiful Soup

40240 i have the following string and i would like to remove and (notice the additional tag content inside them that also needs to be removed) without using a xml parser (overhead too large for tiny strings). any regex in vb.net or c# will do. regular expression to remove xml tags and their content

 Recodage des top tags possédant des caractères spéciaux dans les documents pour éviter des effets de bord indésirables avec la suppression de la ponctuation ou la tokenisation + Suppression de la ponctuation

40240 i have the following string and i would like to remove and notice the additional tag content inside them that also needs to be removed without using a xml parser overhead too large for tiny strings any regex in xyzspecialtags16zyx or xyzspecialtags26zyx will do regular expression to remove xml tags and their content

## **Body: Natural Language Processing**

- Suppression des stopwords proposés par les modules NLP (NLTK et Spacy)
- Lemmatisation pour réduire les mots à leur forme neutre canonique
- Suppression des mots qui ne sont pas des noms (POS tagging) considérant que les verbes ou adverbes n'apportent pas de valeur ajoutée pour la problématique

40240 string notice tag content xml parser string regex xyzspecialtags16zyx xyzspecialtags26zyx expression xml tag

- Suppression de stopwords manuels. Certains des 200 premiers mots par occurrence sont très génériques et n'apportent pas de valeur ajoutée, ils sont supprimés

'file', 'way', 'user', 'use', 'problem', 'work', 'example', 'method', 'question', 'value', 'thank', 'solution', 'thing', 'number', 'change', 'idea', 'answer', 'issue', 'update', 'lot', 'message', 'information', 'people', 'reason', 'help', 'want', 'run', 'need', 'end', 'default', 'difference', 'suggestion', 'approach', 'task', 'implementation', 'check', 'e', 'custom', 'place', 'practice', 'support', 'experience', 'product', 'stuff', 'comment', 'note', 'argument', 'year'

### Conclusion après NLP:

- Tous les documents possèdent au moins un mot.
- Il y a 24 103 mots distincts, 914 109 en tout et environ 19 mots par document en moyenne.



- Je transforme la variable *Tags* à l'aide d'un *MultiLabelBinarizer* pour la modélisation supervisée

|            | Tag 1    | Tag 2 | Tag 3  |
|------------|----------|-------|--------|
| Document 1 | Python   |       |        |
| Document 2 | Pandas   | Numpy | Python |
| Document 3 | Database | SQL   |        |



|            | Python | Pandas | Numpy | Database | SQL |
|------------|--------|--------|-------|----------|-----|
| Document 1 | 1      | 0      | 0     | 0        | 0   |
| Document 2 | 1      | 1      | 1     | 0        | 0   |
| Document 3 | 0      | 0      | 0     | 1        | 1   |

- J'obtiens une matrice de taille (documents x tags) soit (48 527 x 100) de valeurs binaires indiquant la présence ou non d'un ou plusieurs tags pour chaque document

- Je splitte les jeux de données *Tags* et *Body* en jeux d'entraînement (80% soit **38 821 documents**) et validation (20% soit **9 706 documents**)





Les jeux de données sont bien équilibrés

Je transforme la variable Body préprocessée en « bag of words » à l'aide de la méthode CountVectorizer
qui se présente sous la forme d'une matrice où chaque document est représenté par un vecteur de la
même dimension que le vocabulaire, dont la composante i indique le nombre d'occurrences du i-ème
mot du vocabulaire dans le document.



- Je modifie le token\_pattern par défaut pour conserver les termes d'un seul caractère
- Je ne prends en compte que les unigrams

 Après plusieurs itérations, je retiens min\_df = 150 ce qui permet de réduire mon vocabulaire à 585 mots, soit une matrice d'entraînement de dimension 38 821 x 585

### Non supervisé: Latent Dirichlet Allocation

- Méthode qui cherche à déduire la structure des topics du corpus en fonction des mots et des documents
- L'indicateur de perplexité semble souffrir d'un bug avec Sklearn
- Je choisis le nombre de topics de façon à ce qu'il discrimine le mieux possible les documents



 A mon sens, le meilleur compromis entre l'homogénéité de la répartition des topics dans les documents, la variété des topics et leur cohérence s'obtient avec un nombre de topics égal à 15

### Non supervisé: Latent Dirichlet Allocation

|          | Word 0      | Word 1   | Word 2    | Word 3    | Word 4   | Word 5     | Word 6      | Word 7     |
|----------|-------------|----------|-----------|-----------|----------|------------|-------------|------------|
| Topic 0  | database    | datum    | sql       | server    | access   | mysql      | data        | store      |
| Topic 1  | list        | time     | date      | item      | search   | algorithm  | linq        | regex      |
| Topic 2  | C++         | С        | language  | session   | point    | compiler   | code        | tree       |
| Topic 3  | javascript  | html     | function  | jquery    | event    | content    | browser     | CSS        |
| Topic 4  | string      | property | character | path      | field    | format     | size        | system     |
| Topic 5  | windows     | studio   | project   | process   | command  | script     | folder      | service    |
| Topic 6  | application | xml      | web       | .net      | арр      | iphone     | document    | delphi     |
| Topic 7  | c#          | php      | interface | library   | git      | perl       | code        | class      |
| Topic 8  | server      | test     | unit      | thread    | memory   | testing    | client      | connection |
| Topic 9  | table       | sql      | column    | row       | query    | datum      | database    | index      |
| Topic 10 | class       | object   | exception | code      | instance | collection | constructor | reference  |
| Topic 11 | asp.net     | web      | site      | view      | http     | request    | config      | service    |
| Topic 12 | control     | image    | form      | button    | window   | ruby       | wpf         | variable   |
| Topic 13 | java        | Project  | source    | eclipse   | code     | version    | svn         | subversion |
| Topic 14 | python      | Input    | django    | parameter | bit      | procedure  | function    | integer    |

### Non supervisé: Latent Dirichlet Allocation

# Topic 0 n\_topics = 15 and id\_topic = 0.50 words cloud on test dataset client cclass game option businessnamespace con object lay layer index logic domain service lable system data web Layer index logic domain service lable system data logic domain game design myscal time application net phy store

Base de données

#### Topic 3



Développement web

#### Topic 1



Expressions régulières et temporelles

#### Topic 6



Développement d'applications graphiques

#### **Topic 8**



Tests, performance et architecture

#### Topic 10



Langage objet

#### Topic 9



Utilisation d'objets tabulaires

#### Topic 13



Développement Java et versioning

### Recommandation non supervisée de tags

- Le modèle LDA appliqué à une matrice TF permet de produire 2 matrices :
  - Une de dimension (d x t) contenant les probabilités des topics sachant le document
  - Une de dimension (t x w) contenant les probabilités des mots sachant le topic
- Le produit matriciel entre les 2 matrices pour obtenir une matrice de dimension (d x w) contient les probabilités des mots sachant le document
- On peut désormais choisir les N mots les plus probables pour proposer pour un document donné, les N mots les plus liés au topic latent du document

|       | Mots proposés                        | Cleaned Body                                                                  |
|-------|--------------------------------------|-------------------------------------------------------------------------------|
| 44492 | python, c++, c, language, code       | c c++ loop statement                                                          |
| 7894  | control, image, form, button,        | parentusercontrol host load parentusercontrol access property                 |
|       | window                               | parentusercontrol childusercontrol time property parent control child control |
| 36398 | class, object, exception, code,      | class asset class class definition asset getdefinition class definition asset |
|       | instance                             | getdefinitionbyname                                                           |
| 17197 | java, project, source, eclipse, code | java effect point operation java                                              |
| 44492 | python, c++, c, language, code       | c c++ loop statement                                                          |

- Je transforme la variable *Body* préprocessée en une matrice TF-IDF à l'aide de la méthode TfidfVectorizer

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

**TF-IDF**Term *x* within document *y* 

 $tf_{x,y}$  = frequency of x in y  $df_x$  = number of documents containing x N = total number of documents

- Je modifie le token\_pattern par défaut pour que TF-IDF conserve les termes d'un seul caractère
- Je ne prends en compte que les unigrams pour le calcul de la matrice TF-IDF
- Tuning des différents paramètres min\_df, max\_df et max\_features de TfidfVectorizer à l'aide d'une recherche par grille visant à maximiser l'indice jaccard\_weighted qui me sert de métrique d'évaluation pour l'analyse supervisée.
- Le meilleur résultat est donné pour min\_df=30, max\_df=0.1 et max\_features=1000, ce qui porte mon vocabulaire à 1 636 mots, soit une matrice d'entraînement de dimension 38 821 x 1636.

# Analyse supervisée

#### Indice de Jaccard

- Comparer un ensemble de labels prédits pour un échantillon aux labels réels correspondant
- Indice de Jaccard pondéré détermine la moyenne des métriques calculée pour chaque label, pondérée par leur distribution réelle observée



### **Binary Relevance** (OneVsRestClassifier)

- Décomposition de l'apprentissage multilabel en plusieurs apprentissages binaires indépendants (une par label)
- Présomption d'indépendance des labels entre eux

### Producing Meta Labels

| dataset  |        | binary relevance |       | evance | label powerset | meta labels |           |
|----------|--------|------------------|-------|--------|----------------|-------------|-----------|
| instance | labels | $Y_A$            | $Y_B$ | $Y_C$  | $Y_{A,B,C}$    | $Y_{A,C}$   | $Y_{B,C}$ |
| 1        | В      | 0                | 1     | 0      | В              | Ø           | В         |
| 2        | B,C    | 0                | 1     | 1      | BC             | Ø           | BC        |
| 3        | C      | 0                | 0     | 1      | C              | Ø           | C         |
| 4        | В      | 0                | 1     | 0      | В              | Ø           | В         |
| 5        | A,C    | 1                | 0     | 1      | AC             | AC          | C         |
| 6        | A,C    | 1                | 0     | 1      | AC             | AC          | C         |
| 7        | A,C    | 1                | 0     | 1      | AC             | AC          | C         |
| 8        | A,B,C  | 1                | 1     | 1      | ABC            | Ø           | BC        |
| 9        | C      | 0                | 0     | 1      | C              | Ø           | C         |

- binary relevance: 9 exs, 3 × 2 binary classes
- label powerset: 9 exs, 1 × 5 multi-class

# Analyse supervisée

**Dummy Classifier**: prédiction en respectant la distribution des labels dans l'échantillon d'entraînement

| Jaccard weighted Train | 0.024 |
|------------------------|-------|
| Jaccard weighted Test  | 0.025 |

### **MultinomialNB**

| Paramètres testés      | alpha : [0.0001, 0.001, 0.01, 0.1] |
|------------------------|------------------------------------|
|                        | fit_prior : [True, False]          |
| Meilleurs paramètres   | alpha : 0.001                      |
|                        | fit_prior : False                  |
| Jaccard weighted Train | 0.211                              |
|                        |                                    |
| Jaccard weighted Test  | 0.195                              |
|                        |                                    |

- Plus performant que le classifieur naïf
- Léger sur-apprentissage

### LogisticRegression

| Paramètres testés      | penalty : ['l1', 'l2']     |  |
|------------------------|----------------------------|--|
|                        | C: [0.1, 1, 10, 100, 1000] |  |
| Meilleurs paramètres   | penalty: l1                |  |
|                        | C:10                       |  |
| Jaccard weighted Train | 0.532                      |  |
| Jaccard weighted Test  | 0.424                      |  |
| Jaccard Weighted Test  | 0.424                      |  |
|                        |                            |  |

- Performance considérablement augmentée
- Sur-apprentissage prononcé
- Modèle retenu pour l'API

# Analyse supervisée

### **Optimisation du threshold**



- Modifier le seuil par défaut (= 0.5) n'améliore pas la capacité du modèle à mieux généraliser
- Réduire le seuil à 0.22 a pour effet de favoriser la capacité de mon modèle à fournir une prédiction sans en dégrader la performance

| Y_true                         | Y_pred_0.5                         | Y_pred_0.22                        |  |  |
|--------------------------------|------------------------------------|------------------------------------|--|--|
| (ruby, ruby-on-rails)          | (performance, ruby, ruby-on-rails) | (performance, ruby, ruby-on-rails) |  |  |
| (c#,)                          | ()                                 | (c#,)                              |  |  |
| (version-control,)             | (algorithm,)                       | (algorithm,)                       |  |  |
| (.net, c++)                    | (C++,)                             | (C++,)                             |  |  |
| (javascript,)                  | (javascript,)                      | (internet-explorer, javascript)    |  |  |
| (command-line, linux)          | ()                                 | (shell,)                           |  |  |
| (vb.net,)                      | (vb.net,)                          | (.net, vb.net)                     |  |  |
| (.net, user-interface, vb.net) | (.net,)                            | (.net, multithreading)             |  |  |
| (css, html, internet-explorer) | ()                                 | (java,)                            |  |  |
| (c#, xml)                      | (c#, xml)                          | (c#, xml)                          |  |  |

### API de recommandation de tags

- Propose une liste de tags StackOverflow (jusqu'à 3 prédits par l'approche supervisée, et 5 prédits par l'approche non supervisée) relatifs à une question saisie traitant de sujets informatiques et en Anglais



- Le texte saisi passe par toutes les étapes de préprocessing NLP puis est transformé en matrices TF ou TF-IDF avant application respectivement des modèles supervisés et non supervisés
- Non disponible sur Heroku: Error R15 (Memory quota vastly exceeded)

### Pistes d'amélioration

- Pour le modèle non supervisé, retirer les mots les plus fréquents par topic pourrait permettre d'amener un peu plus de spécificité. Je pourrais gagner en spécificité en intégrant des n-grams ou en utilisant des techniques de plongements de mots pour prendre en compte le contexte.
- Il faudrait arriver à gérer l'effet de bord induit par la faible taille des documents qui n'aide pas à bien discriminer les mots importants dans chaque document dans les matrices TF et TF-IDF.
- Je pourrais éviter de prédire les mêmes tags entre supervisé et non supervisé et donc intégrer les tags comme stopwords pour la matrice TF-IDF.
- Au lieu d'avoir un unique modèle supervisé pour prédire l'ensemble des tags, il ne serait pas inintéressant d'isoler les tags identifiant une technologie des autres tags. Je spécialiserais alors un classifieur à prédire la technologie concernée par la question tandis qu'un autre classifieur se concentrerait plutôt à décrire la nature du problème.