SOEN 331 (Section): Introduction to Formal Methods for Software Engineering

Assignment 3 on Temporal Logic

Name(s)

Email(s)

Date

Problem 1 (20 pts): Analyzing program behavior

- 1. (10 pts) Visualize all models of behavior.
- 2. (3 pts) Specify conditions (model of behavior), if any exist, under which the program can terminate.
- 3. (7 pts) For the expressions below, indicate (true/false) whether there exists a model where the expression holds. When true, cross reference your particular model:

PROPERTY	TRUE/FALSE
$(a \wedge c) \to \Diamond \Box (g \wedge h)$,
$h \ \mathcal{U} \ m$	
$h \ \mathcal{U} \ (k \wedge g)$	
$(b \wedge c) \to \Box \Diamond (b \wedge c)$	
$(k \land \bigcirc (k \land g)) \to \bigcirc m$	
$h \mathcal{S} c$	
$((g \wedge h) \wedge \bigcirc d) \to \bigcirc^2(g \wedge h)$	
$e \mathcal{R} h$	
The program has the following stability property: $\Diamond \Box (b \land c \land h)$	
The program has the following response property: $\Box \diamondsuit (b \land c \land h)$	
$(g \wedge h)$ is an invariant property of the program.	
There is a guarantee that $(g \wedge k \wedge h)$	
The program has the following response property: $(b \land c \land h) \rightarrow \diamondsuit (b \land c \land h)$.	
The program has the following precedence property: $(b \land c \land h) \rightarrow ((g \land h) \ \mathcal{U} \ b \land c \land h))$	

Problem 2 (20 pts): Visualizing temporal expressions

1.
$$\Box(\phi \to \bigcirc^2 \psi)$$

If ϕ is true at some moment, then ψ is true at the next next moment.

 $\bullet-\bullet-\bullet-\bullet-\bullet-\bullet$

$$\phi-\circ-\psi-\circ-\circ-\circ$$

or

 $\bullet-\bullet-\bullet-\bullet-\bullet-\bullet$

$$\circ - \circ - \circ - \circ - \phi - \circ - \psi$$

etc...

2. $\Box \phi \rightarrow \bigcirc \psi$

If ϕ is globally true it implies that next ψ is true.

ullet -ullet -ullet -ullet -ullet -ullet -ullet -ullet

$$\phi - \phi - \phi - \phi - \phi - \phi$$

$$\circ - \psi - \circ - \circ - \circ - \circ$$

3. $\phi \to \bigcirc \Diamond \Box \psi$

 ϕ implies ψ becomes globally true at some point in time starting i+1.

ullet - ullet - ullet - ullet - ullet - ullet - ullet

$$\phi - \psi - \psi - \psi - \psi - \psi$$

or

ullet - ullet - ullet - ullet - ullet - ullet - ullet

$$\phi - \circ - \circ - \psi - \psi - \psi$$

etc...

4. $(\phi \land \bigcirc \psi) \rightarrow \bigcirc^2 \Diamond \Box \omega$

 ϕ and next ψ implies that ω becomes globally true at some point in time starting i+2.

ullet - ullet - ullet - ullet - ullet - ullet - ullet

$$\phi-\psi-\omega-\omega-\omega-\omega$$

or

$$\bullet-\bullet-\bullet-\bullet-\bullet-\bullet$$

$$\phi - \psi - \circ - \circ - \omega - \omega - \omega$$

etc...

5. $\Box((\phi \land \bigcirc \psi) \to \bigcirc^2 \Diamond \Box \omega)$

If ϕ and ψ next is true at some moment, then ω becomes globally true at some point in time at the next next moment.

$\bullet-\bullet-\bullet-\bullet-\bullet-\bullet$

$$\phi - \psi - \omega - \omega - \omega - \omega$$

or

$$ullet$$
 - $ullet$ - $ullet$ - $ullet$ - $ullet$ - $ullet$ - $ullet$ - $ullet$

$$\phi - \psi - \circ - \circ - \omega - \omega - \omega$$

or

$$ullet$$
 - $ullet$ - $ullet$ - $ullet$ - $ullet$ - $ullet$ - $ullet$

$$\circ - \circ - \phi - \psi - \omega - \omega$$

etc...

6.
$$(\phi \land \bigcirc \psi) \rightarrow \tau \mathcal{R} v$$

7.
$$(\phi \land \bigcirc \psi) \rightarrow \bigcirc (\tau \ \mathcal{R} \ v)$$

8.
$$(\phi \land \bigcirc \psi) \rightarrow \bigcirc (x \ \mathcal{U} \ \tau)$$

9.
$$(\phi \wedge \Box \psi) \rightarrow \bigcirc^2 \Diamond \omega$$

10.
$$(\phi \wedge \bigcirc^2 \psi) \to \bigcirc \Box \omega$$