Midterm 1 Reference Sheet

Algorithm 1 The Benjamini-Hochberg Procedure

Inputinput FDR level α , set of n p-values P_1, \ldots, P_n Sort the p-values P_1, \ldots, P_n in nondecreasing order $P_{(1)} \leq P_{(2)} \leq \ldots \leq P_{(n)}$

Find $K = \max\{i \in \{1, \dots, n\} : P_{(i)} \leq \frac{\alpha}{n}i\}$ Reject the null hypotheses (declare discoveries) corresponding to $P_{(1)}, \dots, P_{(K)}$

Useful Distributions:

Distribution	Support	PDF/PMF	Mean	Variance	Mode
$X \sim \operatorname{Poisson}(\lambda)$	$k = 0, 1, 2, \dots$	$\frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ	$\lfloor \lambda \rfloor$
$X \sim \operatorname{Beta}(\alpha, \beta)$	$0 \le x \le 1$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha}{\alpha + \beta} \frac{\beta}{\alpha + \beta} \frac{1}{\alpha + \beta + 1}$	$\frac{\alpha-1}{\alpha+\beta-2}$
$X \sim \operatorname{Gamma}(\alpha,\beta)$	$x \ge 0$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\frac{\alpha-1}{\beta}$
$X \sim \mathcal{N}(\mu, \sigma^2)$	$x \in \mathbb{R}$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2	μ
$X \sim \text{Exponential}(\lambda)$	$x \ge 0$	$\lambda \exp(-\lambda x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	0

Conjugate Priors: For observations x_i , i = 1, ..., n:

Likelihood	Prior	Posterior
$x_i \theta \sim \text{Bernoulli}(\theta)$	$\theta \sim \text{Beta}(\alpha, \beta)$	$\theta x_{1:n} \sim \text{Beta} \left(\alpha + \sum_{i} x_i, \beta + \sum_{i} (1 - x_i) \right)$
$x_i \mu \sim \mathcal{N}(\mu, \sigma^2)$	$\mu \sim \mathcal{N}(\mu_0, 1)$	$\frac{\mu x_{1:n} \sim \mathcal{N}\left(\frac{\sigma^2}{\sigma^2 + n}\left(\mu_0 + \frac{1}{\sigma^2}\sum_i x_i\right), \frac{\sigma^2}{\sigma^2 + n}\right)}{\mu x_{1:n} \sim \mathcal{N}\left(\frac{\sigma^2}{\sigma^2 + n}\left(\mu_0 + \frac{1}{\sigma^2}\sum_i x_i\right), \frac{\sigma^2}{\sigma^2 + n}\right)}$
$x_i \lambda \sim \text{Exponential}(\lambda)$	$\lambda \sim \text{Gamma}(\alpha, \beta)$	$\lambda x_{1:n} \sim \text{Gamma}\left(\alpha + n, \beta + \sum_{i} x_{i}\right)$

Generalized Linear Models

Regression	Inverse link function	Likelihood		
Linear	identity	Gaussian		
Poisson	exponential	Poisson		

Some powers of e:

x	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$y = e^{x}$	1.05	1.11	1.22	1.35	1.49	1.65	1.82	2.01	2.23	2.46	2.72