

planetmath.org

Math for the people, by the people.

proof of Bezout's Theorem

Canonical name ProofOfBezoutsTheorem

 Date of creation
 2013-03-22 13:19:58

 Last modified on
 2013-03-22 13:19:58

 Owner
 Thomas Heye (1234)

 Last modified by
 Thomas Heye (1234)

Numerical id 7

Author Thomas Heye (1234)

Entry type Proof

Classification msc 13F07

Let D be an integral domain with an Euclidean valuation. Let $a,b \in D$ not both 0. Let $(a,b) = \{ax+by|x,y \in D\}$. (a,b) is an ideal in $D \neq \{0\}$. We choose $d \in (a,b)$ such that $\mu(d)$ is the smallest positive value. Then (a,b) is generated by d and has the property d|a and d|b. Two elements x and y in D are associate if and only if $\mu(x) = \mu(y)$. So d is unique up to a unit in D. Hence d is the greatest common divisor of a and b.