

Avoiding Undesired Future with Minimal Cost in Non-Stationary Environments

Wen-Bo Du Tian Qin Tian-Zuo Wang Zhi-Hua Zhou

National Key Lab for Novel Software Technology, Nanjing University, China {duwb, qint, wangtz, zhouzh}@lamda.nju.edu.cn

 $\mathbf{V}:=f(\mathbf{P}\mathbf{A}^G;oldsymbol{eta})+oldsymbol{arepsilon}$ noise, e.g. $oldsymbol{arepsilon}\sim\mathcal{N}(0,oldsymbol{\Sigma})$

structural rehearsal model (SRM): $\langle G, \boldsymbol{\theta} \rangle$

[1] Z.-H. Zhou. Rehearsal: Learning from prediction to decision. Frontiers of Computer Science, 2022.

[2] T. Qin, T.-Z. Wang, Z.-H. Zhou. Rehearsal learning for avoiding undesired future. NeurIPS, 2023.

Problem formulation

> Rehearsal learning framework

> AUF with minimal cost in non-stationary environments

$$\begin{aligned} & \min_{\mathbf{z}_{t}^{\xi_{t}}} \quad \left(\mathbf{z}_{t}^{\xi_{t}} - \mathbf{z}_{t}^{0}\right)^{\top} \mathbf{W} \left(\mathbf{z}_{t}^{\xi_{t}} - \mathbf{z}_{t}^{0}\right) \\ & \text{s.t.} \quad \left(\widehat{\mathbf{P}}\right) \left(\widehat{\mathbf{Y}}_{t} \in \mathcal{S} \mid \widehat{\boldsymbol{\theta}_{t}}, \mathbf{x}_{t}, Rh(\xi_{t})\right) \geq \tau \end{aligned}$$

- How can optimization be performed under a probabilistic constraint?
- Using the QCQP transformation to realize *efficient alteration selection*.
- How to accurately estimate θ_t in non-stationary environment?
- Adopting online-ensemble to obtain the estimation of dynamic influence.

Efficient alteration selection

 \succ Probability region for $Pr_{AUF} = \tau$

Proposition 1 The following set \mathcal{P} is a probability region which satisfies the fact that $\mathbb{P}(\mathbf{Y}_t \in \mathcal{P} \mid \boldsymbol{\theta}_t, \mathbf{x}_t, Rh(\xi_t)) = \tau$:

$$\mathcal{P} = \left\{ \boldsymbol{\mu}_{\mathbf{y}_t} + \left(\chi^{-1}(\tau) \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top} \right)^{\frac{1}{2}} \mathbf{u} \mid \|\mathbf{u}\|_2 \leq 1 \right\},$$

where $\mu_{\mathbf{y}_t} = \mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{z}_t^{\xi}$, \mathbf{u} is an arbitrary point in the unit sphere in $\mathbb{R}^{|\mathbf{Y}_t|}$, and $\chi^{-1}(\cdot)$ denotes the quantile function of the χ^2_{λ} distribution with $\lambda = |\mathbf{Y}_t|$.

Theorem 2 By using the suggested alteration ξ_t from:

$$\min_{\mathbf{z}_t^{\xi_t}} \quad \left(\mathbf{z}_t^{\xi_t} - \mathbf{z}_t^0
ight)^{ extstyle e$$

s.t. $\mathbf{MAx}_t + \mathbf{MBz}_t^{\xi_t} + \|\mathbf{MP}\|_{2,row} \leq \mathbf{d};$

where $\mathbf{P} = (\chi^{-1}(\tau)\mathbf{C}\mathbf{\Sigma}\mathbf{C}^{\top})^{\frac{1}{2}}$, it can be guaranteed that $\mathbb{P}\left(\mathbf{Y}_t \in \mathcal{S} \mid \widehat{\boldsymbol{\theta}}_t, \mathbf{x}_t, Rh(\xi_t)\right) \geq \tau$.

Leveraging the probability region proposed in Prop. 1, the original AUF problem (*) can be transformed into a convex QCQP in Thm. 2. Hence, the decision alteration can be selected efficiently and effectively.

Dynamic influence estimation

> Online ensemble approach [3]

rehearsal graph G

structural equation

[3] P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou. Adaptivity and non-stationarity: Problem dependent dynamic regret for online convex optimization. <u>Journal of Machine Learning Research</u>, 2024.

• Time-decreasing term

• Error term reflecting problem difficulty

Theorem 1 Denote the true parameter of β_j in time t as $\beta_{j,t}$ ($j \in [|V|]$) and choose $\eta_j \in (0, 1/2L_j]$ as the step size used in SGD, then it holds that:

$$\mathbb{E} \left\| \widehat{\beta}_{j,t} - \beta_{j,t} \right\|^2 \lesssim \left(1 - \mu_j \eta_j \right)^{\frac{t}{m}} \left\| \widehat{\beta}_{j,0} - \beta_{j,0} \right\|^2 + \left(\frac{m \Delta_j}{\mu_j \eta_j} \right)^2 + \frac{\eta_j \sigma^2}{\mu_j},$$

where μ_j , L_j are the minimal and maximal eigenvalues of $\{\ell_{j,t}(\cdot)\}_{t=1}^T$'s Hessian Matrices, σ^2 upper-bounds $\operatorname{Var}(\widehat{g}_{j,t})$, Δ_j upper-bounds $\|\beta_{j,t+1} - \beta_{j,t}\|_2$, and m is the longest continuous rehearsal times, for most of the V_j s, m=1.

Proposition 2 Assume $\{\widehat{\ell}_{j,t}(\cdot)\}_{t=1}^T s$ are bounded for $\forall \beta_i \in \mathcal{B}$ and $t \in [T]$; then by choosing $\alpha = \sqrt{\ln N_j/T}$, for any $\eta \in \mathcal{H}_j$, estimations $\widehat{\beta}_{j,t} s$ from Algorithm 1 satisfies that $\sum_{t=1}^T \widehat{\ell}_t \left(\widehat{\beta}_{j,t}\right) - \sum_{t=1}^T \widehat{\ell}_t \left(\beta_{j,t}^{\eta}\right) \leq \mathcal{O}\left(\sqrt{T \ln N_j}\right)$; where N_j is the number of base-learners, $\beta_{j,t}^{\eta}$ is the estimation from any expert with step size η in expert set \mathcal{H}_j in Algorithm 1.

The dynamic influence relations can be *effectively estimated* by using the presented online-ensemble based method.

Experiments

