The random variable Z is normally distributed such that $\mu = 0$ and $\sigma = 1$.

$$Z \sim \mathcal{N}(0, 1)$$

To determine the probability that Z is less than z_0 (this is also the percentile of z_0), we find the area under the curve from $-\infty$ to z_0 .

$$P(Z < z_0)$$
 = Left area up to z_0

We use Φ , an upper-case "Phi", to represent a left area of the standard normal density. We know Φ depends on z_0 , so we use function notation. Also, we call this function the **standard normal cumulative function**.

$$\Phi(z_0) \equiv P(Z < z_0)$$

If we repeat the process of finding the areas from $-\infty$ to any z, we get the cumulative function.

The standard normal table gives precise values of Φ as a function of z. (See next pages.)

z Ph	ni(z)	Z	Phi(z)	Z	Phi(z)	Z	Phi(z)	Z	Phi(z)	Z	Phi(z)
0.00 0.	5000	0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772	2.50	0.9938
0.01 0.	5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.01	0.9778	2.51	0.9940
0.02 0.	5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.02	0.9783	2.52	0.9941
0.03 0.	5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.03	0.9788	2.53	0.9943
0.04 0.	5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.04	0.9793	2.54	0.9945
0.05 0.	5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.05	0.9798	2.55	0.9946
0.06 0.	5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.06	0.9803	2.56	0.9948
0.07 0.	5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.07	0.9808	2.57	0.9949
0.08 0.	5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.08	0.9812	2.58	0.9951
	5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.09	0.9817	2.59	0.9952
	5398	0.60	0.7257	1.10	0.8643	1.60	0.9452	2.10	0.9821	2.60	0.9953
0.11 0.	5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.11	0.9826	2.61	0.9955
0.12 0.	5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.12	0.9830	2.62	0.9956
	5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.13	0.9834	2.63	0.9957
	5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.14	0.9838	2.64	0.9959
	5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.15	0.9842	2.65	0.9960
	5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.16	0.9846	2.66	0.9961
	5675	0.67	0.7486	1.17	0.8790	1.67	0.9525	2.17	0.9850	2.67	0.9962
	5714	0.68	0.7517	1.18	0.8810	1.68	0.9535	2.18	0.9854	2.68	0.9963
	5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.19	0.9857	2.69	0.9964
	5793	0.70	0.7580	1.20	0.8849	1.70	0.9554	2.20	0.9861	2.70	0.9965
	5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.21	0.9864	2.71	0.9966
	5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.22	0.9868	2.72	0.9967
	5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.23	0.9871	2.73	0.9968
	5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.24	0.9875	2.74	0.9969
	5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.25	0.9878	2.75	0.9970
	6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.26	0.9881	2.76	0.9971
	6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.27	0.9884	2.77	0.9972
	6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.28	0.9887	2.78	0.9973
	6141	0.79	0.7852	1.29	0.9015	1.79	0.9633	2.29	0.9890	2.79	0.9974
	6179	0.80	0.7881	1.30	0.9032	1.80	0.9641	2.30	0.9893	2.80	0.9974
	6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.31	0.9896	2.81	0.9975
	6255	0.82	0.7939	1.32	0.9066	1.82	0.9656	2.32	0.9898	2.82	0.9976
	6293	0.83	0.7967	1.33	0.9082	1.83	0.9664	2.33	0.9901	2.83	0.9977
	6331	0.84	0.7995	1.34	0.9099	1.84	0.9671	2.34	0.9904	2.84	0.9977
	6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	2.35	0.9906	2.85	0.9978
	6406	0.86	0.8051	1.36	0.9131	1.86	0.9686	2.36	0.9909	2.86	0.9979
	6443	0.87	0.8078	1.37	0.9147	1.87	0.9693	2.37	0.9911	2.87	0.9979
	6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	2.38	0.9913	2.88	0.9980
	6517	0.89	0.8133	1.39	0.9177	1.89	0.9706	2.39	0.9916	2.89	0.9981
	6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	2.40	0.9918	2.90	0.9981
	6591	0.91	0.8186	1.41	0.9207	1.91	0.9719	2.41	0.9920	2.91	0.9982
	6628	0.92	0.8212	1.42	0.9222	1.92	0.9726	2.42	0.9922	2.92	0.9982
	6664	0.93	0.8238	1.43	0.9236	1.93	0.9732	2.43	0.9925	2.93	0.9983
	6700	0.94	0.8264	1.44	0.9251	1.94	0.9738	2.44	0.9927	2.94	0.9984
	6736	0.95 0.96	0.8289	1.45	0.9265	1.95	0.9744	2.45	0.9929	2.95	0.9984 0.9985
	6772 6808	0.96	0.8315 0.8340	1.46	0.9279 0.9292		0.9750 0.9756	2.46	0.9931 0.9932	2.96	0.9985
	6844	0.98	0.8340	1.47	0.9292	1.97	0.9756	2.47	0.9932	2.97	0.9985
	6879	0.98	0.8389	1.48	0.9306	1.98	0.9761	2.48	0.993 4 0.9936	2.98	0.9986
	6915	1.00	0.8413	1.50	0.9319	2.00	0.9767	2.49	0.9938	3.00	0.9987
0.30 0.	0313	1.00	0.0713	1.50	U.JJJZ	2.00	0.3112	2.30	0.3330	3.00	0.3301

Here are some useful rules. But, really, you should come up with these by sketching areas under curves.

Left area up to z_0 :

$$P(Z < z_0) = \Phi(z_0)$$

Right area from z_1 :

$$P(Z > z_1) = 1 - \Phi(z_1)$$
$$= \Phi(-z_1)$$

Sector from z_2 **to** z_3 :

$$P(z_2 < Z < z_3) = \Phi(z_3) - \Phi(z_2)$$

Central area from $-z_4$ to z_4 :

$$P(|Z| < z_4) = \Phi(z_4) - \Phi(-z_4)$$
$$= 1 - 2\Phi(-z_4)$$

Two-tail area below $-z_5$ and above z_5 :

$$P(|Z| > z_5) = 2\Phi(-z_5)$$

Let $X \sim \mathcal{N}(\mu, \sigma)$ and let x be a specific value of X. You may want to convert the x value into a z score.

$$z = \frac{x - \mu}{\sigma}$$

You also might want to convert a z score into an x value.

$$x = z\sigma + \mu$$

You also might want to find μ or σ when you know the other quantities.

$$\mu = x - z\sigma$$

$$\sigma = \frac{x - \mu}{z}$$

Notice all four of these equations represent the same relationship; we've just algebraically solved for different variables.