

Model Optimization and Tuning Phase Template

Date	17 July 2024
Team ID	xxxxxx
Project Title	Predicting The Energy Output Of Wind Turbine Based On Weather Condition
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Random Forest Regressor	<pre>forest_model = RandomForestRegressor@random_state=42 param_grid = { 'n_estimators': [250, 500], 'max_depth': [5, 10, 20], 'max_leaf_nodes': [100, 250, 500], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	print(best_anramal) print(best_sores) \$\square\$ 0.0000 \[\text{max_depth': 20, 'max_leaf_nodes': 100, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 250} \] 158.29183229566257
Ridge Regression	<pre>ridge_model = Ridge() param_grid = { 'alpha': [0.1, 1, 10, 100, 1000] }</pre>	<pre>print(best_params2) print(best_score2)</pre>

Performance Metrics Comparison Report (2 Marks):

Model	Performance of Model
Random Forest Regressor	<pre>y_preds3 = forest_hp_model.predict(X_test) print(mean_absolute_error(y_test,y_preds3))</pre>
Ridge Regression	<pre>y_preds3 = linear_hp_model.predict(X_test) print(mean_absolute_error(y_test,y_preds3))</pre>

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Random Forest Regressor was selected for its robust performance
	in handling complex relationships and minimizing overfitting. With its
	ensemble approach, it effectively reduces variance and provides
	valuable insights into feature importance. During hyperparameter
Random Forest	tuning, it demonstrated high accuracy, aligning well with the project's
Regressor	objectives and justifying its selection as the final model.