Naïve Bayes

LING 572

Fei Xia

Week 3: 1/19-1/21/2010

Outline

Last week: kNN and DT

Naïve Bayes in general

Naïve Bayes for Text Classification

Questions

- Modeling:
 - Why is it called Naïve Bayes?
 - What objective function does it optimize?
 - How many types of model parameters?

• What happens at the training time?

• What happens at the test time?

Modeling

- Given x=(f₁, ..., f_d), find
 c* = arg max_c P(c|x)
 = arg max_c P(c) P(x|c) / P(x) ← Bayes' rule
 = arg max_c P(c) P(x|c)
- Conditional independence assumption:

$$\begin{split} P(x \mid c) &= P(f_1, f_2, ..., f_d \mid c) \\ &= \prod_k P(f_k \mid c, f_1^{k-1}) \\ &\approx \prod_k P(f_k \mid c) \quad \textbf{\leftarrow "Na\"ive" assumption} \end{split}$$

Naïve Bayes Model

Assumption: each f_i is conditionally independent from f_i given C.

Model parameters

- Choose $c^* = arg max_c P(c) \prod_k P(f_k \mid c)$
- Two types of model parameters:
 - Class prior: P(c)
 - Conditional probability: P(f_k | c)
- The number of model parameters: |C|+|CV|

Training stage: estimating parameters θ

Maximum likelihood (ML):
 θ* = arg max_θ P(trainingData | θ)

• $P(f_k \mid c_i) = cnt(f_k, c_i) / cnt(c_i)$

• $P(c_i) = cnt(c_i) / \sum_i cnt(c_i)$

Laplace Smoothing (add-one smoothing)

- Pretend you saw outcome one more than you actually did.
- Suppose X has K possible outcomes, and the counts for them are n₁, ..., n_K, which sum to N.
 - Without smoothing: $P(X=i) = n_i / N$
 - With Laplace smoothing: $P(X=i) = (n_i + 1) / (N+K)$

Testing stage

MAP (maximum a posteriori) decision rule:

```
classify (x)

= classify (f<sub>1</sub>, ..., f<sub>d</sub>)

= argmax<sub>c</sub> P(c|x)

= argmax<sub>c</sub> P(x|c) P(c)

= argmax<sub>c</sub> P(c) \prod_k P(f<sub>k</sub> | c)
```

Naïve Bayes for the text classification task

Features

Features: bag of words (word order information is lost)

- Number of feature types: 1
- Number of features: |V|
- Features: w_t , $t \in \{1, 2, ..., |V|\}$

Issues

Is w_t a binary feature?

• Are absent features used for calculating $P(d_i|c_i)$?

Two Naive Bayes Models (McCallum and Nigram, 1998)

- Multi-variate Bernoulli event model (a.k.a. binary independence model)
 - All features are binary: the number of times a feature occurs in an instance is ignored.
 - When calculating p(d | c), all features are used, including the absent features.

Multinomial event model: "unigram LM"

Multi-variate Bernoulli event model

Bernoulli distribution

- Bernoulli trial: a statistical experiment having exactly two mutually exclusive outcomes each with a constant probability of occurrence:
 - Ex: toss a coin
- Bernoulli distribution: has exactly two mutually exclusive outcomes: P(X=1)=p and P(X=0)=1-p.

Multi-variate Bernoulli Model

 A document is seen as a collection of |V| independent Bernoulli experiments, one for each word in the vocabulary: does this word appear in the document?

- Another way to look at this: (to be consistent with the general NB model)
 - Each word in the voc corresponds to two features: w_k and $\bar{w_k}$
 - In any document, either w_k or $\bar{w_k}$ is present; that is, it is always the case that exactly |V| features will be present in any document.

Training stage

ML estimate:

$$P(w_t|c_i) = \frac{Cnt(w_t,c_i)}{Cnt(c_i)}$$
$$P(c_i) = \frac{Cnt(c_i)}{\sum_{i} Cnt(c_i)}$$

With add-one smoothing:

$$P(w_t|c_i) = \frac{1 + Cnt(w_t, c_i)}{2 + Cnt(c_i)}$$

$$P(c_i) = \frac{1 + Cnt(c_i)}{|C| + \sum_i Cnt(c_i)}$$

Notation used in the paper

$$P(w_t|c_j) = \frac{1 + Cnt(w_t, c_j)}{2 + Cnt(c_j)}$$

Let
$$B_{it} = 1$$
 if w_t appears in d_i
= 0 otherwise

$$P(c_j | d_i) = 1$$
 if d_i has the label c_j
= 0 otherwise

$$\hat{\theta}_{w_t|c_j} = P(w_t|c_j; \theta) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} B_{it} P(c_j|d_i)}{2 + \sum_{i=1}^{|\mathcal{D}|} P(c_j|d_i)}.$$

Testing stage

$$classify(d_i) = argmax_c P(c) P(d_i|c)$$

$$P(d_i|c)$$

$$=\prod_k P(f_k|c)$$

$$= \prod_{w_k \in d_i} P(w_k|c) \prod_{w_k \notin d_i} P(\bar{w_k}|c)$$

$$= \prod_{w_k \in d_i} P(w_k|c) \prod_{w_k \notin d_i} (1 - P(w_k|c))$$

Multinomial event model

Multinomial distribution

- Possible outcomes = $\{w_1, w_2, ..., w_{|v|}\}$
- A trial for each word position: $P(CurWord=w_i)=p_i \text{ and } \sum_i p_i=1$
- Let X_i be the number of times that the word w_i is observed in the document.

$$P(X_1 = x_1, ..., X_v = x_v) = p_1^{x_1} ... p_v^{x_v} \frac{n!}{x_1! ... x_v!}$$
$$= n! \prod_k \frac{p_k^{x_k}}{x_k!}$$

An example

- Suppose
 - the voc, V, contains only three words: a, b, and c.
 - a document, d_i, contains only 2 word tokens
 - For each position, P(w=a)=p1, P(w=b)=p2 and P(w=c)=p3.
- What is the prob that we see "a" once and "b" once in d_i?

An example (cont)

- 9 possible sequences: aa, ab, ac, ba, bb, bc, cc, cb, cc.
- The number of sequences with one "a" and one "b" (ab and ba): n!/(x₁!...x_v!)
- The prob of the sequence "ab" is p_1*p_2 , so is the prob of the sequence "ba".
- So the prob of seeing "a" once and "b" once is:
 n! ∏_k (p_kx_k / x_k!) = 2 p₁*p₂

Multinomial event model

- A document is seen as a sequence of word events, drawn from the vocabulary V.
- N_{it}: the number of times that w_t appears in d_i
- Modeling: multinomial distribution:

$$P(d_i|c_j) = P(|d_i|)|d_i|! \prod_{t=1}^{|V|} \frac{P(w_t|c_j)^{N_{it}}}{N_{it}!}$$

Training stage for multinomial model

Let $P(c_j | d_i) = 1$ if d_i has the label c_j = 0 otherwise

$$P(w_t|c_j) = \frac{1 + \sum_{i=1}^{|D|} N_{it} P(c_j|d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} P(c_j|d_i)}$$

Compared with the following in the Bernoulli model:

$$\hat{\theta}_{w_t|c_j} = P(w_t|c_j; \theta) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} B_{it} P(c_j|d_i)}{2 + \sum_{i=1}^{|\mathcal{D}|} P(c_j|d_i)}.$$

Testing stage

$$classify(d_i) = argmax_c P(c) P(d_i|c)$$

$$P(d_i|c) = P(|d_i|)|d_i|! \prod_{k=1}^{|V|} \frac{P(w_k|c)^{N_{ik}}}{N_{ik}!}$$

$$classify(d_i) = argmax_c P(c) \prod_{k=1}^{|V|} P(w_k|c)^{N_{ik}}$$

Two models

- Multi-variate Bernoulli event model: treat features as binary; each trial corresponds to a word in the voc.
- Multinomial event model: treat features as nonbinary; each trial corresponds to a word position in the document.
- Multinomial event model usually beats the Bernoulli event model (McCallum and Nigram, 1998)

Two models (cont)

	Multi-variate Bernoulli	Multinomial
Features	Binary: present or absent	Real-valued: the occurrence
Each trial	Each word in the voc	Each word position in the doc
$P(c_i)$	$\frac{1 + Cnt(c_i)}{ C + \sum_{i} Cnt(c_i)}$	$\frac{1 + Cnt(c_i)}{ C + \sum_{i} Cnt(c_i)}$
$P(w_t c_j)$	$\frac{1 + Cnt(w_t, c_j)}{2 + Cnt(c_j)}$	$\frac{1 + \sum_{i=1}^{ D } N_{it} P(c_j d_i)}{ V + \sum_{s=1}^{ V } \sum_{i=1}^{ D } N_{is} P(c_j d_i)}$
$classify(d_i)$	$P(c) \prod_{w_k \in d_i} P(w_k c)$ $\prod_{w_k \notin d_i} (1 - P(w_k c))$	$P(c) \prod_{k=1}^{ V } P(w_k c)^{N_{ik}}$

Summary of Naïve Bayes

 It makes a strong independence assumption: all the features are conditionally independent given the class.

 It generally works well despite the strong assumption. Why?

Both training and testing are simple and fast.

Summary of Naïve Bayes (cont)

Strengths:

- Simplicity (conceptual)
- Efficiency at training
- Efficiency at testing time
- Handling multi-class
- Scalability
- Output topN

Weakness:

- Theoretical validity: the independency assumption
- Predication accuracy: not as good as MaxEnt etc.

Hw3

Hw3

Q1: run the NB learner in Mallet

Q2-Q3: build a Multi-variate Bernoulli NB learner

Q4: build a Multinomial NB learner

Q5: get the results with binary features

Q6: Conclusions from the experiments

Q2

 build_NB1.sh training_data test_data prior_delta cond_prob_delta model_file sys_output > acc

prior_delta: delta for calculating P(c).

 cond_prob_delta: delta for calculating P(f|c).

Model file

```
c1 P(c1) log P(c1)
                               ## log is all 10-based
f1 c1 P(f1|c1) log P(f1|c1)
f2 c1 P(f2|c1) log P(f2|c1)
f1 c2 P(f1|c2) log P(f1|c2)
f2 c2 P(f2|c2) log P(f2|c2)
```

Sys_output

instanceName trueClass c₁ p₁ c₂ p₂ ...

(c_i, p_i) should be sorted by the value of p_i.

$$p_i = P(c_i|x) = \frac{P(x|c_i)P(c_i)}{P(x)}$$

$$P(x) = \sum_{i} P(c_i, x) = \sum_{i} P(x|c_i)P(c_i)$$

The issue of underflow

$$p_i = P(c_i|x) = \frac{P(x|c_i)P(c_i)}{P(x)}$$

 $log P(x, c_1)$ is -200, $log P(x, c_2)$ is -201.

 $log P(x, c_3)$ is -202.

What is p_i ?

$$p_1 = \frac{1}{1+10^{-1}+10^{-2}} = 100/111 = 0.901$$

$$p_2 = \frac{10^{-1}}{1+10^{-1}+10^{-2}} = 10/111 = 0.09$$

$$p_3 = \frac{10^{-2}}{1+10^{-1}+10^{-2}} = 1/111 = 0.009$$

Efficiency issue: Ex 1

Log
$$P(c)\prod_{k=1}^{|V|}P(w_k|c)^{N_{ik}}$$

$$= log P(c) + \sum_{k=1}^{|V|} log (P(w_k|c)^{N_{ik}})$$

$$= log P(c) + \sum_{k=1}^{|V|} N_{ik} log P(w_k|c)$$

Efficiency: Ex #2

$$P(d_i,c)$$

$$= P(c)(\prod_{w_k \in d_i} P(w_k|c))(\prod_{w_k \notin d_i} (1 - P(w_k|c)))$$

$$= P(c) \prod_{w_k \in d_i} \frac{P(w_k|c)}{1 - P(w_k|c)} \prod_{w_k} (1 - P(w_k|c))$$

Efficiency: Ex #3

Multinomial model:

Let $P(c_j | d_i) = 1$ if d_i has the label c_j = 0 otherwise

$$P(w_t|c_j) = \frac{1 + \sum_{i=1}^{|D|} N_{it} P(c_j|d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} P(c_j|d_i)}$$

Complexity: $O(|V|^2 * |C| * |D|)$

$$Z(c_j) = 0$$
 for every c_j ;

for each d_i

Let c_i be the class label of d_i

for each w_t that is present in d_i

Let N_{it} be the number of times w_t appears in d_i

$$cnt(w_t, c_j) + = N_{it}$$

$$Z(c_j) + = N_{it}$$

for each c_j

for each w_t

$$P(w_t|c_j) = \frac{1 + cnt(w_t, c_j)}{|V| + Z(c_j)}$$

Complexity: O(|V| * |C| + |D| * avg(feat/doc))