Introduction to Wavelets in Image Processing

Pyramid Representation

- Recall that we can create a multi-resolution pyramid of images
- At each level, we just store the differences (residuals) between the image at that level and the predicted image from the next level
- We can reconstruct the image by just adding up all the residuals
- Advantage: residuals are easier to store

FIGURE 7.3 Two image pyramids and their statistics: (a) a Gaussian (approximation) pyramid and (b) a Laplacian (prediction residual) pyramid.

Wavelets

- Wavelets are a more general way to represent and analyze multiresolution images
- Can also be applied to 1D signals
- Very useful for
 - image compression (e.g., in the JPG-2000 standard)
 - removing noise

Wavelet Analysis

Motivation

- Sometimes we care about both frequency as well as time
- Example: Music

- Time domain operations tell us "when"
- Fourier domain operations tell us "frequency"

Continuous Wavelet Transform

- Define a function $\psi(x)$
 - assume $\psi(x)$ band-limited and its dc component = 0
- Create scaled and shifted versions of $\psi(x)$

$$\psi_{s,\tau}(x) = \frac{1}{\sqrt{s}} \psi\left(\frac{x-\tau}{s}\right)$$

Example:

Wavelet function $\psi(t)$

Shifted wavelet function $\psi(t-k)$

Example of scaling

$$f(t) = \psi(t)$$
; $\alpha = 1$

$$f(t) = \psi(2t) \; ; \quad \alpha = \frac{1}{2}$$

$$f(t) = \psi(4t) \; ; \quad a = \frac{1}{4}$$

Continuous Wavelet Transform

• Define the continuous wavelet transform of f(x):

$$W_{\varphi}(s,\tau) = \int_{-\infty}^{\infty} f(x) \psi_{s,\tau}(x) \, dx$$

- This transforms a continuous function of one variable into a continuous function of two variables: translation and scale
- The wavelet coefficients measure how closely correlated the wavelet is with each section of the signal
- For compact representation, choose a wavelet that matches the shape of the image components
 - Example: Haar wavelet for black and white drawings

Example

Low value for $W_{\psi}(s,\tau)$

Higher value of $W_{\psi}(s,\tau_2)$

Different scale

Matlab Demo

- Run "wavemenu"
 - Choose "Continuous wavelet 1D"
 - Choose "Example analysis" -> "frequency breakdown with mexh"
 - Look at magnitude of coefficients (right click on coefficients to select scale, then hit the button "new coefficients line")

Inverse Transform

Inverse continuous wavelet transform

$$f(x) = \frac{1}{C_{w}} \int_{0}^{\infty} \int_{-\infty}^{\infty} W_{\psi}(s,\tau) \frac{\psi_{s,\tau}(x)}{s^{2}} d\tau ds$$

where

$$C_{\psi} = \int_{-\infty}^{\infty} \frac{\left| \Psi(\mu) \right|}{\left| \mu \right|} \, d\mu$$

• and $\Psi(\mu)$ is the Fourier transform of $\psi(x)$

Discrete Wavelet Transform

- Don't need to calculate wavelet coefficients at every possible scale
- Can choose scales based on powers of two, and get equivalent accuracy

$$\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k)$$

• We can represent a discrete function f(n) as a weighted summation of wavelets $\psi(n)$, plus a coarse approximation $\varphi(n)$

$$f(n) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_0, k) \varphi_{j_0, k}(n) + \frac{1}{\sqrt{M}} \sum_{j=j_0}^{\infty} \sum_{k} W_{\psi}(j, k) \psi_{j, k}(n)$$

where j_0 is an arbitrary starting scale, and n = 0, 1, 2, ... M

$$W_{\Phi}(j_0,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \, \varphi_{j_0,k}(x)$$

$$W_{\Psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \, \psi_{j,k}(x)$$

Comparison with CWT

- Usually you don't need to compute the continuous transform
- A signal (with finite energy) can be reconstructed from the discrete transform

From Matlab help page on wavelets

Harr wavelet functions

Colorado School of Mines

Image and Multidimensional Signal Processing

Example

 A function can be represented by a sum of approximation plus detail

$$f(x) = f_a(x) + f_d(x)$$

$$f_a(x) = \frac{3\sqrt{2}}{4}\varphi_{0,0}(x) - \frac{\sqrt{2}}{8}\varphi_{0,2}(x)$$

$$f_d(x) = \frac{-\sqrt{2}}{4} \psi_{0,0}(x) - \frac{\sqrt{2}}{8} \psi_{0,2}(x)$$

Matlab Demos

- "wavemenu"
- Do 1D discrete wavelet transform on noisy doppler signal, show denoising

Expanding to Two Dimensions

Colorado School of Mines

figure 7.7 A four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.5.

a dv

 $d^{H} \ d^{D}$

a(m,n): approximation

 $d^{V}(m,n)$: detail in vertical

d^H(m,n): detail in horizontal

d^D(m,n): detail in diagonal

Image and Multidimensional Signal Processing

FIGURE 7.8 (a) A discrete wavelet transform using Haar basis functions. Its local histogram variations are also shown; (b)–(d) Several different approximations (64 × 64, 128 × 128, and 256 × 256) that can be obtained from (a).

Use of Wavelets in Processing

Approach:

- Compute the 2D wavelet transform
- Alter the transform
- Compute the inverse transform

• Examples:

- De-noising
- Compression
- Image fusion

Figure 14–36 Wavelet transform image fusion: (a), (b) images taken at different focus settings; (c) fused image; (d) MRI image; (e) PET image; (f) fused image (Courtesy Henry Hui Li, reprinted by permission from [28])

Matlab Examples ("wavemenu")

- De-noising
 - Choose "SWT de-noising 2D"
 - Set threshold value to zero out coefficients below the threshold
- Compression
 - Choose "Wavelet coefficients selection 2D"
- Fusion
 - Choose "Image fusion"

Summary / Questions

- Wavelets represent the scale of features in an image, as well as their position.
 - Can also be applied to 1D signals.
- They are useful for a number of applications including image compression.
- We can use them to process images:
 - Compute the 2D wavelet transform
 - Alter the transform
 - Compute the inverse transform
- What are some other applications of wavelet processing?