Simulation - Lectures 7 - MCMC: Metropolis Hastings

Lecture version: Sunday 1st March, 2020, 15:36

Robert Davies

Part A Simulation and Statistical Programming

Hilary Term 2020

- ► The Metropolis-Hastings (MH) algorithm allows to simulate a Markov Chain with any given stationary distribution.
- ▶ We will start with simulation of random variable *X* on a discrete state space.
- Let $p(x) = \tilde{p}(x)/Z_p$ be the pmf on Ω . We will call p the (pmf of the) target distribution.
- ▶ To simplify notations, we assume that p(x) > 0 for all $x \in \Omega$
- ▶ Choose a 'proposal' transition matrix q(y|x). We will use the notation $Y \sim q(\cdot|x)$ to mean $\Pr(Y = y|X = x) = q(y|x)$.

Metropolis-Hastings algorithm

- 1. Either set $X_0 = x_0$, or draw X_0 from some initial distribution
- 2. For $t = 1, 2, \dots, n-1$:
 - 2.1 Assume $X_{t-1} = x_{t-1}$.
 - 2.2 Simulate $Y_t \sim q(\cdot|x_{t-1})$ and $U_t \sim \text{Unif}[0,1]$.
 - 2.3 If

$$U_t \le \alpha(Y_t|x_{t-1})$$

where

$$\alpha(y|x) = \min\left\{1, \frac{\tilde{p}(y)q(x|y)}{\tilde{p}(x)q(y|x)}\right\}$$

set $X_t = Y_t$, otherwise set $X_t = x_{t-1}$.

The Metropolis-Hastings algorithm defines a Markov chain with transition matrix P such that, for $x,y\in\Omega$

$$P_{x,y} = \mathbb{P}(X_t = y | X_{t-1} = x)$$
$$= q(y|x)\alpha(y|x) + \rho(x)\mathbb{I}(y = x)$$

where $\rho(x)$ is the probability of rejection

$$\rho(x) = 1 - \sum_{y \in \Omega} q(y|x)\alpha(y|x).$$

Theorem

The transition matrix P of the Markov chain generated by the Metropolis-Hastings algorithm is reversible with respect to p and therefore admits p as stationary distribution.

▶ Proof: We check detailed balance. For $x \neq y$

$$\begin{split} p(x)P_{x,y} &= p(x)q(y|x)\alpha(y|x) \\ &= p(x)q(y|x)\min\left\{1,\frac{p(y)q(x|y)}{p(x)q(y|x)}\right\} \\ &= \min\left\{p(x)q(y|x),p(y)q(x|y)\right\} \\ &= p(y)q(x|y)\min\left\{\frac{p(x)q(y|x)}{p(y)q(x|y)},1\right\} \\ &= p(y)q(x|y)\alpha(x|y) \\ &= p(y)P_{y,x}. \end{split}$$

- ▶ To run the MH algorithm, we need to specify $X_0 = x_0$ (or $X_0 \sim \lambda$) and a proposal q(y|x).
- We only need to know the target p up to a normalizing constant as α depends only on $p(y)/p(x) = \tilde{p}(y)/\tilde{p}(x)$.
- ► If the Markov chain simulated by the MH algorithm is irreducible and aperiodic then the ergodic theorem applies.
- Verifying aperiodicity is usually straightforward, since the MCMC algorithm may reject the candidate state y, so $P_{x,x} > 0$ for at least some states $x \in \Omega$.
- In order to check irreducibility we need to check that q can take us anywhere in Ω (so q itself is an irreducible transition matrix), and then that the acceptance step doesn't trap the chain (as might happen if $\alpha(y|x)$ is zero too often).

- ► Consider a discrete random variable $X \sim p$ on $\Omega = \{1, 2, ..., m\}$ with $\tilde{p}(i) = i$ so $Z_p = \sum_{i=1}^m i = \frac{m(m+1)}{2}$.
- One simple proposal distribution is $Y \sim q$ on Ω such that q(i) = 1/m.
- ► Acceptance probability

$$\alpha(y|x) = \min\left\{1, \frac{\tilde{p}(y)q(x|y)}{\tilde{p}(x)q(y|x)}\right\} = \min\left\{1, \frac{y}{x}\right\}$$

▶ This proposal scheme is clearly irreducible

$$\mathbb{P}(X_{t+1} = y | X_t = x) \ge q(y|x)\alpha(y|x)$$
$$= \frac{1}{m}\min(1, y/x) > 0$$

- ▶ Start from $X_0 = 1$.
- ▶ For t = 1, ..., n 1
 - 1. Let $Y_t \sim \text{Unif}\{1, 2, ..., m\}$ and $U_t \sim \text{Unif}[0, 1]$
 - 2. If

$$U_t \le \frac{Y_t}{X_{t-1}}$$

set $X_t = Y_t$, otherwise set $X_t = X_{t-1}$.

- ► For t large, $X_t \stackrel{d}{\simeq} X$
- ▶ Note: $\alpha(y|x) = \min(1, y/x)$ so $U_t \le \alpha(y|x) \iff U_t \le y/x$

Code

```
set.seed(7)
n <- 10000
m < -20
x <- numeric(n)
x[1] \leftarrow 1
for(t in 1:(n - 1)) {
    Yt <- sample(1:m, 1)
    Ut <- runif(1)
    if (Ut \leftarrow (Yt / x[t])) {
         x[t + 1] \leftarrow Yt
    } else {
         x[t + 1] <- x[t]
```


Figure: Realization of the MH Markov chain for n = 100 with m = 20.

Figure: Average number of visits $V_i(n)/n$ (n = 1000) and target pmf p(i)

Where
$$V_i(n) = \sum_{t=0}^{n-1} \mathbb{I}(X_t = i)$$

Figure: Average number of visits $V_i(n)/n$ (n = 10,000) and target pmf p(i)

Example: Poisson Distribution

- We want to simulate $p(x) = e^{-\lambda} \lambda^x / x! \propto \lambda^x / x!$
- ► For the proposal we use

$$q(y|x) = \left\{ \begin{array}{ll} \frac{1}{2} & \text{for } y = x \pm 1, x \geq 1 \\ 1 & \text{for } x = 0, y = 1 \\ 0 & \text{otherwise,} \end{array} \right.$$

i.e. toss a coin and add or substract 1 to x to obtain y.

► Acceptance probability

$$\alpha(y|x) = \begin{cases} \min\left(1, \frac{\lambda}{x+1}\right) & \text{if } y = x+1, x \ge 1\\ \min\left(1, \frac{x}{\lambda}\right) & \text{if } y = x-1, x \ge 2 \end{cases}$$

and
$$\alpha(1|0) = \min(1, \lambda/2)$$
, $\alpha(0|1) = \min(1, 2/\lambda)$.

► Markov chain is irreducible (check!)

Example: Poisson Distribution

- ▶ Set $X_0 = 1$.
- ▶ For t = 1, ..., n 1
 - 1. If $X_{t-1} = 0$, set $Y_t = 1$
 - 2. Otherwise, simulate $V_t \sim \text{Unif}[0,1]$
 - 2.1 If $V_t \leq \frac{1}{2}$, set $Y_t = X_{t-1} + 1$.
 - 2.2 Otherwise set $Y_t = X_{t-1} 1$.
 - 3. Simulate $U_t \sim \text{Unif}[0,1]$.
 - 4. If $U_t \leq \alpha(Y_t|X_{t-1})$, set $X_t = Y_t$, otherwise set $X_t = X_{t-1}$.

Example: Poisson distribution

Figure: Realization of the MH Markov chain for n=500 with $\lambda=20$.

Example: Poisson distribution

Figure: Average number of visits $V_i(n)/n$ (n=1000) and target pmf p(i)

Example: Poisson distribution

Figure: Average number of visits $V_i(n)/n$ (n = 10,000) and target pmf p(i)

Example: Image

- ▶ Consider a $m_1 \times m_2$ image, where $I(i,j) \in \{0,1,\dots,256\}$ is the gray level of pixel $(i,j) \in \Omega = \{0,\dots,m_1-1\} \times \{0,\dots,m_2-1\}$
- ightharpoonup Consider a discrete random variable taking values in Ω
- Unnormalized pdf

$$\tilde{p}((i,j)) = I(i,j)$$

Proposal transition probabilities

$$q((y_1, y_2)|(x_1, x_2)) = q(y_1|x_1)q(y_2|x_2)$$

with

$$q(y_1|x_1) = \begin{cases} 1/3 & \text{if } y_1 = x_1 \pm 1 \text{ or } y_1 = x_1, \mod m_1 \\ 0 & \text{otherwise} \end{cases}$$

and similarly for $q(y_2|x_2)$.

Example: Simulation of an image

Average number of visits to each pixel (i, j): $V_{(i,j)}(n) = \frac{1}{n} \sum_{t=0}^{n-1} \mathbb{I}(X_t = (i,j))$

$$V_{(i,j)}(n) = \frac{1}{n} \sum_{t=0}^{n-1} \mathbb{I}(X_t = (i,j))$$

Example: Simulation of an image

► Target pmf

Metropolis-Hastings algorithm on \mathbb{R}^d

- ▶ The Metropolis-Hastings algorithm generalizes to continuous state-space where $\Omega \subseteq \mathbb{R}^d$ with
 - 1. p is a pdf on Ω
 - 2. $q(\cdot|x)$ is a pdf on Ω for any $x \in \Omega$
- The Metropolis-Hastings algorithm thus defines a Markov chain on $\Omega \subset \mathbb{R}^d$
- Precise definition of Markov chains on \mathbb{R}^d is beyond the scope of this course. We will just state the most important results without proof. Assume for simplicity that p(x) > 0 for all $x \in \Omega$

Metropolis-Hastings algorithm on \mathbb{R}^d

▶ The Markov chain X_0, X_1, \ldots on $\Omega \subseteq \mathbb{R}^d$ is irreducible if for any $x \in \Omega$ and $A \subset \Omega$, there is n such that

$$\mathbb{P}(X_n \in A | X_0 = x) > 0$$

Theorem

If the Metropolis-Hastings chain is irreducible, then for any function ϕ such that $\mathbb{E}_p[|\phi(X)|]<\infty$, the MH estimator is strongly consistent

$$\widehat{ heta}_n^{ extit{MH}} = rac{1}{n} \sum_{t=0}^{n-1} \phi(X_t) o heta \quad ext{almost surely as } n o \infty$$

Example: Gaussian distribution

▶ Let $X \sim N(\mu, \sigma^2)$ with

$$p(x) = (2\pi\sigma^2)^{-1/2}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 \blacktriangleright MH algorithm with target pdf p and proposal transition pdf

$$q(y|x) = \left\{ \begin{array}{ll} 1 & \text{for } y \in [x-1/2, x+1/2] \\ 0 & \text{otherwise} \end{array} \right.$$

► Acceptance probability

$$\alpha(y|x) = \min\left(1, \frac{p(y)q(x|y)}{p(x)q(y|x)}\right) = \min\left(1, e^{-\frac{(y-\mu)^2}{2\sigma^2} + \frac{(x-\mu)^2}{2\sigma^2}}\right)$$

Example: Gaussian distribution

Figure: Realizations from the MH Markov chain (X_0,\ldots,X_{1000}) with $X_0=0$.

Example: Gaussian distribution

Figure: MH estimates $\widehat{\theta}_t = \frac{1}{t} \sum_{i=0}^{t-1} X_i$ of $\theta = \mathbb{E}_p[X]$ for different realizations of the Markov chain.

Recap

- lacktriangle Given an proposal transition matrix q(y|x) that is irreducible over Ω , MCMC:Metropolis-Hastings defines an algorithm that produces a Markov chain that admits p as a stationary distribution
- ► **Next time:** Properties of MCMC, tuning parameters, and Gibbs sampling