EC3312 Game theory Lingjie, September 26, 2020

Game theory basics

GT does not state how players do but how should behave Nash Theorem: in n-player normal-form game G, if n is finite and S_i is finite $\forall i \exists$ at least one NE, possibly involving mixed strategy

	Complete	Incomplete	
	information	information	
Static	Normal-form games	Bayesian games	
	(NE)	(Bayesian NE)	
Dynamic	PI games (Subgame	II games (Perfect	
	perfect NE)	Bayesian NE)	

NE = Nash equilibrium

PI game = Extensive games with perfect information

II game = Extensive games with imperfect

information

Complete info = each players' payoff function is common

knowledge among all the players

Steps in solving the game:

- 1. set up (player, strategy, payoff)
- 2. simplify game through IEDS
- 3. play edge cases, balance game & A dominate B
- 4. solve game by double underline or FOC
- 5. play the game to see if it makes logical sense

Notation for best strategy

 $R_i(q_i)$ player i's best-response function

 $r_i^*(q_i)$ player i's best-response correspondence

Strictly Dominated Strategy

 s_i' is strictly dominated by $s_i'' \Leftrightarrow u_i(s_i', s_{-i}) < u_i(s_i'', s_{-i})$ Rational player may not exclude playing a weakly dominated strategy but will never play a strictly dominated strategy

Information set/ Contigency

a collection of decision nodes satisfying

- 1. players need to move at every node
- players do not know which node he's in
 ⇒ each node player must have same set of feasible
 actions. In singleton, players knows that the only node
 has been reached

perfect information : every information set is singleton imperfect information : ∃ at least one nonsingleton

information set (dotted line) : can't differentiate the payoffs

between the sets

1. Set up: Representation

Normal-form representation

 $G = \{S_i, u_i \mid i \in [1, n]\}$

 S_i is the strategy space and u_i is the payoff function of player i

Extensive-form representation

- 1. players
- 2a. timing for moves
- 2b. strategy at each timing
- 2c. information players know
- 3. payoffs from each possible combination of moves

can be represented by a game tree

Subgame in extensive-form

- 1. begins at a decision node n that is a singleton information set (but not first decision node)
- 2. includes all decision and terminal nodes following n in the game tree
- 3. does not cut any information sets

1. Set up: Strategy

Strategy

Complete plan of actions, specifies feasible actions for each player in every contingency (or information set) $f(\text{contingency1}, \text{contingency2}) \rightarrow (\text{action1}, \text{action2})$

Mixed Strategies

mixed strategy for player i is a probability distribution $p_i = \{p_{ik}\} \ \forall k \in [1, K] \ \text{for corresponding} \ S_i = \{s_{ik}\} \ 0 \leq p_{ik} \leq 1 \ \text{and} \ \sum_1^K p_i k = 1$

1. Set up: Payoff

Payoff

 $u_i(s_i, s_{-i})$

Expected payoffs

$$v_i(p_i, p_{-i}) = \sum_{j=1}^{J} \sum_{k=1}^{K} [p_{1j}p_{2k}u_i(s_{1j}, s_{2k})]$$

2. Simplify

Iterated Elimination of Strictly Dominated Strategies

IESD eliminate dominated strategies by **pure** or **mixed strategy**

NE always survive IESD and unique strategy from $IESD \rightarrow NE$

4. Solution: Equilibrium

Nash Equilibrium (Pure strategy)

 \boldsymbol{s}_i^* is player i's best response to strategies specified for other players

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*) \Leftrightarrow \max_{s_i \in S_i} u_i(s_i, s_{-i}^*)$$

NE can exist as a set of values $e.g.\{s^* \mid s_1^* + s_2^* = 1\} \cup \{(1,1)\}$

Nash Equilibrium (Mixed Strategies)

 \boldsymbol{p}_i^* is player i's best response to strategies specified for other players

$$v_i(p_i^*, p_{-i}^*) \ge v_i(p_i, p_{-i}^*) \Leftrightarrow \max_{p_i \in P_i} v_i(p_i, p_{-i}^*)$$

Backward-Induction Outcome

every finite game with perfect information has an SPNE, which can be found by backwards induction

- start with last players: each of last players choose strategy maximising their payoffs
- now with second last players: take last players' strategy as given then select their strategy
- 3. continue until the beginning of game

The BI outcome is $(a_1^*, R_2(a_1^*))$ but subgame perfect NE is $(a_1^*, R_2(a_1))$

Subgame-Perfect Nash Equilibrium

A Nash equilibrium is subgame-perfect if the players' strategies constitute a Nash equilibrium in every (proper) subgame Subgame perfect outcome is $(a_1^*, a_2^*, a_3^*(a_1^*, a_2^*), a_4^*(a_1^*, a_2^*))$ but subgame perfect NE is $(a_1^*, a_2^*, a_3^*(a_1, a_2), a_4^*(a_1, a_2))$

Solving Static Games of Complete Information with Pure Strategy

first form normal-form game, then solve by

- 1. maximisation problem $\max_{p_i \in P_i} u_i(p_i, p^*_{-i}) \Rightarrow \frac{d}{dp_i} = 0 \text{ then solve } n \text{ players'}$ optimal strategies simultaneously
- 2. graphically plot S_i against S_j to find intersection
- 3. *IESD*eliminate the impossible strategies by taking the first step in game, then repeat till equilibrium is reached

Splitting a pie

2 players choose to split a dollar $S_i = [0, 1]$ $NE: \{s^* | s_1^* + s_2^* = 1, s_1^*, s_2^* \geq 0\} \cup \{(1, 1)\}$

$$u_i(s_i, s_{-i}) = \begin{cases} s_i, & s_1 + s_2 \le 1 \\ 0, & s_1 + s_2 > 1 \end{cases}$$

$$R_i(s_{-i}) = \begin{cases} 1 - s_{-i}, & s_2 < 1 \\ [0, 1], & s_{-i} = 1 \end{cases}$$

Cournot Model of Duopoly

2 firms choose **quantity**, $S_i = [0, \infty), q_i \ge 0$ $NE: (q_1^*, q_2^*) = (\frac{a-c}{3}, \frac{a-c}{3})$

$$u_i(s_1, s_2) : \pi_i(q_1, q_2) = q_i[a - (q_1 + q_2) - c]$$

 $R_i(q_j) : q_i = \frac{1}{2}(a - c - q_j)$

Bertrand Model of Duopoly

2 firms choose **price**, $S_i = [0, \infty), p_i \ge 0$ $NE: (p_1^*, p_2^*) = (\frac{a+c}{2-b}, \frac{2+c}{2-b})$

$$u_i(s_1, s_2) : \pi_i(p_1, p_2) = (a - p_i + bp_j)(p_i - c)$$

$$R_i(p_j) : p_i = \frac{1}{2}(a + bp_j + c)$$

b > 0 for substitute products and marginal cost c: 0 < c < a

Voting (2 players)

NE: $(s_1, s_2) = (\frac{1}{2}, \frac{1}{2})$

Player 1, 2 decide of a location on line $s_i \in [0, 1]$

$$u_i(s_i, s_{-i}) = \begin{cases} \frac{s_1 + s_2}{2}, & s_i \le s_j \\ 1 - \frac{s_1 + s_2}{2}, & s_j \le s_i \end{cases}$$

if both players do not choose the same platform, assume $s_i < s_j$, then i can improve payoff by choosing $s_i + \epsilon$ if both players do not choose 0.5 platform, assume they choose x>0.5, then each can improve payoff by choosing $s_i-\epsilon$ Note: for 3 players voting there is no pure strategy NE

Final-Offer Arbitration

Firm offer w_f and Union offer w_u , arbitrator with ideal x wage

$$w = \begin{cases} w_f, & x < (w_f + w_u)/2 \\ w_u, & x > (w_f + w_u)/2 \end{cases}$$

$$E(w) = P(w = w_f)w_f + P(w = w_u)w_u$$

$$= F_X(w_f + w_u)/2)w_f + [1 - F_X(w_f + w_u)/2)]w_u$$

$$\begin{split} & \text{solving for } \max_{w_f} E(w) \text{ and } \max_{w_u} E(w) \\ & \Rightarrow (w_u^* - w_f^*) \cdot \frac{1}{2} f_X(\frac{w_f^* + w_u^*}{2}) = F(\frac{w_f^* + w_u^*}{2}) = 1 - F(\frac{w_f^* + w_u^*}{2}) \\ & \Rightarrow F(\frac{w_f^* + w_u^*}{2}) = \frac{1}{2} \text{ and } w_u^* - w_f^* = \frac{1}{f_{1,1}(\frac{w_f^* + w_u^*}{2})} \end{split}$$

Assume $x \sim N(m, \sigma^2)$, from $F(\frac{w_f^* + w_u^*}{2}) = \frac{1}{2} \Rightarrow \frac{w_f^* + w_u^*}{2} = m$ $w_u^* - w_f^* = \frac{1}{f_X(\frac{w_f^* + w_u^*}{2})} = \sqrt{2\pi\sigma^2}$

Solving the two equations, NE:

$$(w_u^*, w_f^*) = (m + \sqrt{\frac{\pi\sigma^2}{2}}, m - \sqrt{\frac{\pi\sigma^2}{2}})$$

The Problems of the Commons

farms $i \in [1,n]$ keeps goat $g_i, G = \sum g_i$, grazing benefit v(G)

$$u_i = g_i v(G) - cg_i$$

 $\max_{g_i} u_i \Rightarrow g_i v'(G) + v(G) - c = 0 = \frac{1}{n} G^* v'(G^*) + v(G^*) - c$ but for society: $\max_G u \Rightarrow G^{**} v'(G^{**}) + v(G^{**}) - c$ since $G^* > G^{**}$, common resource is overutilised

Solving Static Games of Complete Information with Mixed Strategy Matching Pennies

$$\frac{|\text{heads} \quad \text{tails}}{|\text{heads} \quad |}$$

$$\frac{|\text{heads} \quad \text{tails}|}{|\text{tails} \quad |}$$

$$\frac{1}{1,-1} \quad \frac{1}{1,-1}$$

$$\text{MSNE: } (p_1^*, p_2^*) = (\frac{1}{2}H + \frac{1}{2}T, \frac{1}{2}H + \frac{1}{2}T)$$

$$p_1 = (r, 1-r), p_2 = (q, 1-q)$$

$$v_1(p_1, p_2) = r \cdot q \cdot (-1) + (1-r) \cdot q \cdot (1)$$

$$+r \cdot (1-q) \cdot (1) + (1-r) \cdot (1-q) \cdot (-1)$$

$$= -4rq + 2r + 2q - 1$$

$$R_2(r) : q(r) = \frac{1}{2}$$

graphically

$$v_1(s_{11}, p_2) = q \cdot (-1) + (1 - q) \cdot 1 = 1 - 2q$$

$$v_1(s_{12}, p_2) = q \cdot 1 + (1 - q) \cdot (-1) = -1 + 2q$$

$$r(q) = \begin{cases} 1, & q < \frac{1}{2} \\ [0, 1], & q = \frac{1}{2} \\ 0, & q > \frac{1}{2} \end{cases}$$

Solving Dynamic Games of Complete and Perfect Information

Besides (player, strategy, payoff), **timing** is required Theory: Backwards Induction

Entry Deterrence

BI outcome: (E, \bar{F})

Payer 1 is an entrant; Payer 2 is an incumbent $E = \text{enter}, \overline{E} = \text{don't enter}, F = \text{fight}, \overline{F} = \text{don't fight}$

The Frog and the Scorpion

BI outcome: (don't help, sting)

Centipede game

BI outcome: $(s_1, s_2, s_3, s_4, s_5, s_6)$

Stackelberg Duopoly

a leader and follower deciding on output to produce timing:

1. leader $q_1 \geq 0$

2. follower observe then $q_2 \ge 0$ BI outcome: $(q_1^*, q_2^*) = \left(\frac{a-c}{2}, \frac{a-c}{4}\right)$

$$u_i : \pi_i(q_i, q_j) = P(Q)q_i - cq_i$$

$$R_2(q_1) = \frac{1}{2}(a - c - q_1)$$

$$\pi_1(q_1, R_2(q_1)) = \frac{1}{2}(a - c - q_1)q_1$$

$$R_1(q_2) = \frac{a - c}{2}$$

Sequential Bargaining (1-Period)

player 1, 2 splitting pie timing:

1. player 1 propose s_1 , leave $1 - s_1$ for player 2

2. player 2 then accept/reject

BI outcome: $(s_1^* = 1, R_2(s_1^*) = \text{accept})$

Sequential Bargaining (3-Period)

player 1, 2 splitting pie timing:

1. player 1 propose s_1 , leave $1 - s_1$ for player 2

2. player 2 then accept/reject, if reject then continue

3. game repeat till period 3

BI outcome: 1 offer $(s_1^*, 1 - s_1^*)$ and 2 accept immediately $(s_2^*, 1 - s_2^*) = (\delta s, 1 - \bar{\delta} s)$

player 1 accepts iif $s_2 \geq \delta s$

 $(s_1^*, 1 - s_1^*) = (1 - \delta(1 - \delta s), \delta(1 - \delta s))$

player 2 accepts iif $1 - s_1 > \delta(1 - \delta s)$

The players discount payoffs received a period later by a factor $\delta \in (0,1)$

Note: they are only comparing between this period and next

Rubinstein's Model (Infinite-Period)

player 1, 2 splitting pie timing:

1. player 1 propose s_1 , leave $1 - s_1$ for player 2

2. player 2 then accept/reject, if reject then continue

3. game repeat infinity

BI outcome: player 1 offer $(s^*, 1 - s^*) = (\frac{1}{1+\delta}, \frac{\delta}{1+\delta})$

Since when 1 offers (f(s), 1 - f(s)) 2 will accept immediately,

$$f(s) = 1 - \delta(1 - \delta s)$$

derive answer through G.S.

The first two periods of the alternative-offer bargaining game

Note: they are only comparing between this period and next

Solving Two-Stage Games of Complete but Imperfect Information

Theory: Subgame Perfection

Bank run

NE:

1. (withdraw, withdraw),

2. [(don't, don't), (withdraw, withdraw)]

		withdraw	don't	
date 1	withdraw	40,40	50,30	
	don't	30,50	next stage	
		withdraw	don't	
date 2	withdraw	100,100	150,50	
	don't	50,150	100,100	
work backwards: solve for date 2, then date 1				