2023-1 Topología Grupo 2 Primer Corte

MÍNIMOS A SABER

- Definición de topoloía y ejemplos sobre conjuntos finitos.
- Ejemplos básicos: las topologías discreta e indiscreta, la topología del complemento finito, la topología del complemento contable, la topología euclidiana en \mathbb{R} , la topología de Zariski en \mathbb{R}^n .
- Saber comparar topologías, es decir, dadas dos topologías decidir cual es más fina o si no son comparables.
- Definiciones de base y sub-base para una topología.
- La topología generada por una base y la topología generada por una sub-base.
- La topología del orden, la topología producto, y la topología de subespacio.
- Conjuntos cerrados y axiomas de conjuntos cerrados.

RESUMEN

- Una **topología** sobre un conjunto X es un subconjunto $\mathcal{T} \subseteq \mathcal{P}(X)$ (es decir, una colección de subconjuntos de X) tal que:
 - 1. \emptyset , $X \in \mathcal{T}$;
 - 2. T es cerrado bajo uniones arbitrarias, es decir, para toda subcolección

$$\{U_{\gamma} \in \mathcal{T} : \gamma \in \Gamma\}$$

indexada por algún conjunto Γ (que puede ser infinito), tenemos que

$$\bigcup_{\gamma \in \Gamma} U_{\gamma} \in \mathcal{T};$$

3. \mathcal{T} es cerrado bajo intersecciones finitas, es decir, si $V_1, \ldots, V_k \in \mathcal{T}$ entonces

$$\bigcap_{i=1}^k V_i \in \mathcal{T}.$$

- Un elemento de una topología \mathcal{T} sobre un conjunto X se denomina un subconjunto abierto de X (o un abierto en la topología \mathcal{T}).
- Una vecindad abierta de un elemento $x \in X$ en la topología \mathcal{T} es simplemente un abierto en la topología \mathcal{T} que contiene a x.
- Nos referimos a un conjunto X con una topología \mathcal{T} como un **espacio topológico**. Usualmente escribimos (X, \mathcal{T}) cuando queremos referenciar la topología directamente.
- A los elementos de un espacio topológico se les llaman puntos.
- Sea X un conjunto arbitrario, podemos definir las siguientes topologías:
 - 1. La **topología discreta** sobre X es la colección $\mathcal{P}(X)$ de todos los subconjuntos de X;
 - 2. La **topología trivial** (o indiscreta) sobre X corresponde a la colección $\{\emptyset, X\}$;
 - 3. La colección de subconjuntos

$$\mathcal{T}_f = \{ U \subseteq X \colon X - U \text{ es finito, o } X - U = X \}$$

define una toplogía sobre X, llamada la topología del complemento finito.

4. Igualmente, la colección de subconjuntos

$$\mathcal{T}_c = \{ U \subseteq X \colon X - U \text{ es contable, o } X - U = X \}$$

define una toplogía sobre X, llamada la **topología del complemento contable**.

- Comparando topologías. Supongamos que \mathcal{T} y \mathcal{T}' son toplogías sobre un conjunto X. Si $\mathcal{T}' \supseteq \mathcal{T}$ decimos que \mathcal{T}' es **más fina** que \mathcal{T} (o decimos que \mathcal{T} es **más gruesa** que \mathcal{T}'). Si la inclusión es estricta decimos que \mathcal{T}' es **estrictamente más fina** que \mathcal{T} (respectivamente, decimos que \mathcal{T} es **estrictamente más gruesa** que \mathcal{T}').
- De la definición de topología se sigue que la topología trivial es la más gruesa de todas las topologías y que la topología discreta es la más fina de todas las topologías. En efecto, por definición si \mathcal{T} es cualquier topología, entonces

$$\mathcal{T}_0 = \{\emptyset, X\} \subseteq \mathcal{T} \subseteq \mathcal{P}(X).$$

• La topología euclidiana (o topología estándar) sobre \mathbb{R} se define como

$$\mathcal{T}_E := \{ U \subseteq \mathbb{R} : \text{ para cada } x \in U \text{ existe } \epsilon > 0 \text{ tal que } (x - \epsilon, x + \epsilon) \subseteq U \}.$$

Por ejemplo, cada intervalo abierto $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ es un abierto en la topología euclidiana. En efecto, sea $x_0 \in (a,b)$ y sea

$$\epsilon = \min\{b - x_0, x_0 - a\}.$$

Note que $\epsilon > 0$, $\epsilon \le b - x_0$, y $\epsilon \le x_0 - a$ (por ser mínimo). Entonces, si $x \in (x_0 - \epsilon, x_0 + \epsilon)$ tenemos

$$x < x_0 + \epsilon \le x_0 + (b - x_0) = b$$

y también

$$x > x_0 - \epsilon \ge a$$
.

Así, $x \in (a, b)$ y podemos concluir que $(x_0 - \epsilon, x_0 + \epsilon) \subseteq (a, b)$ (como queríamos demostrar).

Ejercicio.

- 1. Probar que los intervalos no acotados $(-\infty, b)$ y (a, ∞) también son abiertos en la topología euclidiana de \mathbb{R} .
- 2. Sea $X = \mathbb{R}$. Probar que $\mathcal{T}_f \subseteq \mathcal{T}_E$, que $\mathcal{T}_f \subseteq \mathcal{T}_c$, pero que \mathcal{T}_E y \mathcal{T}_c no son comparables.

- Sea X un conjunto. Una colección de subconjuntos $\mathcal{B} \subseteq \mathcal{P}(X)$ es una base para una topología sobre X, si satisface las siguientes propiedades:
 - 1. Para todo $x \in X$, existe $B \in \mathcal{B}$ tal que $x \in B$ (tambien decimos que la colección \mathcal{B} cubre a X).
 - 2. Si B_1 y B_2 son elementos de \mathcal{B} y $x \in B_1 \cap B_2$ entonces existe $B \in \mathcal{B}$ tal que

$$x \in B \subseteq B_1 \cap B_2$$
.

Ejercicio. Probar que la colección

$$\mathcal{B} = \{(a, b) \subset \mathbb{R} : a, b \in \mathbb{R}, \ a < b\}$$

es una base para una topología sobre \mathbb{R} .

• La topología generada por una base \mathcal{B} se define por

$$\mathcal{T}_{\mathcal{B}} = \{ U \subseteq X : \text{ para cada } x \in U \text{ existe } B \in \mathcal{B} \text{ tal que } x \in B \subseteq U \}.$$

- Es posible demostrar que $\mathcal{T}_{\mathcal{B}}$ es el conjunto formado por todas las posibles uniones de elementos de \mathcal{B} .
- \bullet La topología de Zariski en \mathbb{R}^n es la topología generada por la base

$$\mathcal{B}_Z = \{X_f : f \text{ es un polinomio en } n \text{ variables}\}, \text{ donde } X_f = \{a \in \mathbb{R}^n : f(a) \neq 0\}.$$

Ejercicio. Probar que la topología de Zariski en \mathbb{R} coincide con la topología del complemento finito.

• La topología en R generada por la base

$$\mathcal{B}_{\ell} = \{ [a, b) \colon a < b \}$$

se llama la **topología del límite inferior**. Cuando vemos a \mathbb{R} como espacio topológico con esta topología lo denotamos por \mathbb{R}_{ℓ} .

• Una colección S de subconjuntos de X es una sub-base para una topología si la union de todos los elementos de S es X (es decir, si S cubre a X). La topología generada por S es la colección de todas las uniones de intersecciones finitas de elementos de S. En efecto, la colección de todas las intersecciones finitas de elementos de S satisface los axiomas de base para una topología.

Ejercicio. Una partición de un conjunto X es una colección de subconjuntos disjuntos dos a dos, cuya unión es X. Pruebe que cada partición de X es una sub-base para una topología en X. ¿Es una base?

- Una relación R sobre un conjunto X se llama **orden simple** si satisface:
 - 1. anti-reflexividad: para ningún $x \in X$ se tiene que xRx;
 - 2. **comparabilidad**: para cada $x, y \in X$ con $x \neq y$ tenemos que xRy o que yRx;
 - 3. **transitividad**: para cada $x, y, z \in X$ con xRy y yRz tenemos que xRz.
- Sea (X, \leq) un conjunto simplemente ordenado. La **topología del orden** en X es la topología cuya base \mathcal{B} es la colección de todos los subconjuntos de los siguientes tipos:
 - 1. Intervalos abiertos (a, b) en X;
 - 2. Intervalos de la forma $(a, b_0]$ si X tiene un elemento maximal b_0 ;
 - 3. Intervalos de la form $[a_0, b)$ si X tiene un elemento minimal a_0 .
- La topología del orden en Z con respecto al orden usual es la topología discreta.
- La topología del orden en R con respecto al orden usual es la topología euclidiana.

Ejercicio: Sobre \mathbb{Z}^+ definamos los siguientes conjuntos

$$B_n = \{x \in \mathbb{Z}^+ : n \text{ divide a } x\} \text{ para } n = 1, 2, 3, ...$$

- 1. Muestre que la colección $\mathcal{B} = \{B_n : n = 1, 2, 3, ...\}$ es una base para una topología sobre \mathbb{Z}^+ ;
- 2. ξ es \mathcal{B} una topología?

Ejercicio. Un subconjunto A de un conjunto simplemente ordenado X se dice **convexo** si para cada $a, b \in A$ con a < b, el intervalo $[a, b] \subseteq A$. Pruebe o refute: cada subconjunto convexo de X diferente de \emptyset y X es un intervalo o un rayo (es decir, un subconjunto de la forma $(-\infty, b)$, $(-\infty, b]$, (a, ∞) , $[a, \infty)$).

• Si (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) son espacios topológicos entonces podemos definir una topología sobre $X \times Y$ llamada la **topología producto** y denotada por $\mathcal{T}_{X \times Y}$, cuya base es

$$\mathcal{B} = \{ U \times V \colon U \in \mathcal{T}_X, \ V \in \mathcal{T}_Y \}.$$

 \bullet Si \mathcal{B}_X y \mathcal{B}_Y son bases para las topologías de X y Y respectivamente, entonces

$$\mathcal{B}' = \{ B \times C \colon B \in \mathcal{B}_X, \ C \in \mathcal{B}_Y \}$$

es una base para la topología producto de $X \times Y$.

Ejercicio. Pruebe que la topología de Zariski en \mathbb{R}^2 no es el producto de la topología de Zariski en \mathbb{R} con si misma.

Ejercicio. Denote por \mathbb{R}_f el conjunto de los números reales con la topología del complemento finito. Describa una base para la topología producto en $\mathbb{R}_f \times \mathbb{R}$.

• Sea $Y \subseteq X$ un subconjunto de un espacio topológico X. Podemos dotar a Y con una topología natural, llamada la **topología de subespacio**. Dicha topología se define como

$$\mathcal{T}_Y = \{Y \cap U : U \text{ es abierto en } X\}.$$

Cuando dotamos a Y con la topología de subespacio, nos referimos a este como un **subespacio topológico**.

Ejercicio. Pruebe que la topología de \mathbb{Z} como subespacio de \mathbb{R} , con la topología euclidiana, es la topología discreta.

Ejercicio. Pruebe que la topología de \mathbb{Z} como subespacio de \mathbb{R} , con la topología del complemento finito, es la topología del complemento finito.

Ejercicio. Sea X un espacio topológico cuya topología es la discreta (también nos referimos a X como un espacio discreto). Describa todos los subconjuntos de X cuya topología de subespacio es la topología indiscreta.

Ejercicio. Pruebe que si Y es un abierto de X y $U \subseteq Y$ es un abierto en la topología de subespacio de Y, entonces U es abierto en X. De un ejemplo que muestre que la conclusión anterior es falsa si Y no es abierto.

Ejercicio. Suponga que X es un espacio topológico y que $A \subseteq Y \subseteq X$. Muestre que la topología de A como subespacio de Y es la misma topología de A como subespacio de X.

- Un subconjunto $Z \subseteq X$ de un espacio topológico es un **cerrado** si su complemento X Z es abierto en X.
- Una consecuencia de los axiomas de topología es que tenemos lo siguiente:
 - 1. \emptyset y X son cerrados;

- 2. intersecciones arbitrarias de subconjuntos cerrados son subconjuntos cerrados;
- 3. uniones finitas de subconjuntos cerrados son subconjuntos cerrados.

Ejercicio. Describa los cerrados de las topologías \mathcal{T}_f y \mathcal{T}_c , y de ejemplos de subconjuntos cerrados en las topologías del orden y euclidiana en \mathbb{R} .

• Si $Y \subseteq X$ es un subespacio topológico, entonces los cerrados de Y son de la forma $Y \cap Z$ para algún subconjunto cerrado Z en X.

Ejercicio. Si $Y \subset X$ es un subconjunto cerrado de X y A es un subconjunto cerrado de Y en la topología de subespacio de Y, entonces A es cerrado en X.

Ejercicio. Un espacio topológico X se dice **irreducible** si no se puede expresar en la forma $X = A \cup B$ con $A \neq X$, $B \neq X$, ambos cerrados y no vacíos. Muestre que si X es infinito entonces X con la topología del complemento finito es un espacio topológico irreducible. Muestre que hay espacios topológicos **reducibles** (es decir, que no son irreducibles) con la topología del complemento contable.

Ejercicio. Muestre que si X es un espacio topológico irreducible, entonces cada subconjunto abierto de X es irreducible con la topología de subespacio.