Klasfikasi Anime dengan KMeans

Sabtu, 5 Agustus 2023

Latar Belakang

- 1.Sumber data yang digunakan dalam projek ini berasal dari https://www.kaggle.com/datasets/crxxom/all-animes-in-mal
- 2. Melakukan klasifikasi dengan menggunakan K-Means

Tujuan

1. Mengidentifikasi anime terpopuler berdasarkan cluster yang sudah dimodelkan menggunakan algoritma K-Means

Alur Pengerjaan

DATA UNDERSTANDING

Latar Belakang

Anime adalah animasi asal Jepang yang digambar dengan tangan maupun menggunakan teknologi komputer. Kata anime merupakan singkatan dari animation dalam bahasa Inggris, yang merujuk pada semua jenis animasi Di luar Jepang, istilah ini digunakan secara spesifik untuk menyebutkan segala animasi yang diproduksi di Jepang. Meskipun demikian, tidak menutup kemungkinan bahwa anime dapat diproduksi di luar Jepang.

source: https://id.wikipedia.org/wiki/Anime

Feature

Kumpulan data ini berisi informasi mendetail lebih dari 20k+ anime yang terdaftar di myanimelist dengan fitur-fitur berikut:

- 1. judul : judul anime
- 2. episode : jumlah episode
- 3. status : apakah anime masih tayang atau sudah selesai tayang
- 4. tema : tema anime
- 5. demografi: demografi anime (misalnya shonen, shojo, seinen dan josei)
- 6. genre: genre anime
- 7. ketik: apakah anime itu acara tv atau film dll
- 8. favorit: jumlah pengguna terautentikasi yang memfavoritkan anime

- 9. Popularitas: peringkat anime berdasarkan jumlah anggota.
- 10. rank : peringkat anime berdasarkan skor dibandingkan dengan anime lainnya
- 11. skor: skor rata-rata dari semua pengguna.
- 12. member : jumlah total orang yang menambahkan anime ke daftar.
- 13. sinopsis : plot anime
- 14. tayang : saat anime ditayangkan
- 15.durasi: durasi anime misalnya. durasi per episode
- 16. premiered: musim dimana anime tersebut ditayangkan
- 17. studio : studio yang memproduksi anime tersebut

EXPLORATORY DATA ANALYS

Data Set View

DATA PROCESSING

Hapus Kolom

Penghapusan kolom yang tidak memberikan informasi atau memiliki deskrispi atau nilai yang sama dengan kolom lainnya.

```
# Menghapus kolom-kolom tertentu dari DataFrame
df = df.drop(['Unnamed: 0', 'status', 'synopsis', 'episodes', 'premiered', 'members', 'aired'], axis=1)
# Menampilkan DataFrame setelah menghapus kolom
print(df)
```

Pengecekan apakah ada duplikat. Jika ADA maka di hapus.

```
[27] df.duplicated().sum()
27
[28] df.drop_duplicates(inplace=True)
```

Ubah Tipe Data

Mayoritas tipe data adalah **Object.**

Ubah favorites, popularity, rank dan duration

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24262 entries, 0 to 24261
Data columns (total 18 columns):
    Column
                 Non-Null Count Dtype
                24262 non-null int64
    Unnamed: 0
    title
                 24262 non-null object
    episodes
                 24262 non-null object
    status
                 24262 non-null object
    theme
                 24262 non-null object
    demographic 24262 non-null object
    genres
                 24262 non-null object
                 24262 non-null object
    type
    favorites
                 24262 non-null object
    popularity
                24262 non-null object
10 rank
                 20197 non-null object
11 score
                 15294 non-null float64
 12 members
                 24262 non-null object
13 synopsis
                 24262 non-null object
14 aired
                 24262 non-null object
15 duration
                 24262 non-null object
16 premiered
                 24262 non-null object
17 studios
                 24262 non-null object
dtypes: float64(1), int64(1), object(16)
memory usage: 3.3+ MB
```



```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 12803 entries, 0 to 12812
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    title
                 12803 non-null
                                object
0
                 12803 non-null object
    theme
    demographic 12803 non-null object
                 12803 non-null object
    genres
                 12803 non-null
                                 object
    type
    favorites
                 12803 non-null
                                int64
    popularity
6
                 12803 non-null int64
7
    rank
                 12803 non-null
                                int64
                 12803 non-null float64
8
    score
                 12803 non-null object
    duration
                 10544 non-null object
10 studios
dtypes: float64(1), int64(3), object(7)
memory usage: 1.2+ MB
```

Cek Anomali Pada Data

Melakukan pengecekan apakah setiap kolom memiliki data kosong atau tidak sesuai

title	0
theme	0
demographic	0
genres	0
type	0
favorites	2056
popularity	0
rank	0
score	0
duration_eps(minutes)	384
studios	2259
dtype: int64	

+:+10	Δ.
title	0
theme	0
demographic	0
genres	0
type	0
favorites	0
popularity	0
rank	0
score	0
duration_eps(minutes)	0
studios	0
dtype: int64	

VISUALIZATION

Heat Map

Distribusi dari Demographics

10 Anime Tertinggi Berdasarkan Ranking

10 Studio Tertinggi

Relasi Antara Durasi Dan Demographic

FEATURE ENGINEERING

Binning

Melakukan pengelompokkan (binning) data dalam sebuah DataFrame menggunakan nilai dari kolom ke dalam kategori berdasarkan rentang nilai tertentu.

```
df['rank_range'] = pd.cut(
    x=df['rank'],
   bins=[0, 4271, 8542, 12813],
    labels=["low", "moderate", "high"]
df['score_range'] = pd.cut(
    x=df['score'],
   bins=[0, 4.2, 6.6, 9.1],
    labels=["bad", "good", "excellent"]
df['popularity_range'] = pd.cut(
    x=df['popularity'],
   bins=[0, 6177, 12353, 18529],
    labels=["unpopular", "popular", "very popular"]
```

rank_range	score_range	popularity_range	favorites_range
low	excellent	unpopular	yes
low	excellent	unpopular	yes
low	excellent	unpopular	no
low	excellent	unpopular	no
low	excellent	unpopular	по

Label Encoding

Melakukan proses mengubah nilai-nilai dalam sebuah kolom (sering kali berisi data kategori atau label) menjadi bilangan bulat.

```
# Membuat objek LabelEncoder
encoder = LabelEncoder()

# Menggunakan LabelEncoder untuk mengubah nilai kategori menjadi bilangan bulat
df_new['demograpic_encoded'] = encoder.fit_transform(df_new['demographic'])

# Menampilkan DataFrame hasil
print(df_new)
```

SCALLING

Scalling Pada Numeric Coloums

Melakukan proses untuk mengubah rentang nilai dari fitur (features) dalam dataset ke dalam rentang yang lebih spesifik atau lebih terstandarisasi.

Scalling Pada Object Coloums

Melakukan proses untuk mengubah rentang nilai dari fitur (features) dalam dataset ke dalam rentang yang lebih spesifik atau lebih terstandarisasi.

MODELING

Modeling K-Means

Melakukan proses pembelajaran mesin yang digunakan untuk tugas clustering atau pengelompokan data.

```
# Modeling
range clusters = list(range(2, 16))
inertia = []
for k in range clusters:
    kmeans = KMeans(n clusters=k)
    kmeans.fit(df_model)
    inertia.append(kmeans.inertia )
```

Elbow Method

Melakukan proses visual yang digunakan dalam analisis kluster untuk membantu menentukan jumlah optimal kluster (clusters) dalam suatu datase

Scatter Plot

menjalankan algoritma K-Means clustering pada dataset yang sudah distandardisasi (df_std) dengan jumlah kluster yang ditentukan sebanyak 4

Hasil Statistik

cluster		0	1	2		3
favorites	mean	26.136869	80231.977778	1416.113320	mean	586.763780
Tavoi ICES	std	134.746419	47245.879340	4149.618936	std	2330.076264
	min	1.000000	41929.000000	1.000000	min	1.000000
	q25	2.000000	47775.000000	34.000000	q25	9.000000
	median	5.000000	65050.000000	139.000000	median	36.000000
	q75	14.000000	83739.000000	751.500000	q75	201.250000
	-	4509.000000	218277.000000	38182.000000	max	31310.000000
popularity	max mean	8723.638292	39.822222	3295.546720	mean	4945.575787
populai Ity	std	3301.279504	36.447527	2392.327702	std	3167.859515
	min	175.000000	1.000000	12.000000	min	44.000000
		6278.000000	13.000000	1368.500000	q25	2300.500000
	q25 median	8958.000000	28.000000	2858.000000	median	4496.500000
			50.000000	4736.500000	q75	7309.250000
	q75	11222.000000			max	14116.000000
	max	18529.000000	140.000000	12277.000000		3159.451772
rank	mean	8271.778266	293.444444	2969.000663	mean c+d	2326.271896
	std	2094.508017	515.969412	1775.816770	std min	9.000000
	min	2491.000000	1.000000	3.000000		1217.750000
	q25	6682.000000	42.000000	1487.500000	q25	
	median 	8111.000000	109.000000	2879.000000	median	2713.500000
	q75	9819.000000	307.000000	4327.500000	q75	4644.000000
	max	12813.000000	3056.000000	8629.000000	max	11990.000000
score	mean	6.065612	8.471111	7.287020	mean	7.266752
	std	0.552802	0.421713	0.492966	std 	0.613129
	min	1.850000	7.200000	6.060000	min	5.040000
	q25	5.780000	8.230000	6.920000	q25	6.850000
	median	6.160000	8.540000	7.230000	median	7.270000
	q75	6.450000	8.750000	7.570000	q75	7.670000
	max	7.310000	9.100000	9.060000	max	9.040000
duration_eps(minutes)		22.009573	27.888889	23.025403	mean	96.610236
	std	17.420454	19.829068	9.336472	std	17.870074
	min	1.000000	22.000000	1.000000	min	54.000000
	q25	8.000000	23.000000	23.000000	q25	87.000000
	median	23.000000	24.000000	24.000000	median	95.000000
	q75	25.000000	24.000000	24.000000	q75	107.000000
	max	119.000000	130.000000	64.000000	max	168.000000

KESIMPULAN

Modeling dilakukan dengan menggunakan K-Means dengan mempertimbangkan semua fiture yang diperlukan. Dengan menggunakan metode Elbow di tentukan cluster terbagi menjadi 4 kelas.

Kemudian setelah ditentukan cluster terbagi menjadi 4 cluster, dilakukan perhitungan anal;isa dengan menggunakan 'mean', 'std', 'min', q25, 'median', q75, 'max' ditemukan bahwa cluster 0 menjadi cluster terbaik.

KONTRIBUSI

Tugas dan %kontribusi

Pembagian tugas diberikan berdasarkan kesiapan anggota. Adapun perbedaan% dikarenakan setiap anggota memiliki tanggung jawab dan kontibusi di setiap tugas.

Tugas	Agus A.M	Fadhil J.V	Mulia P.S	Zakaria F	Zulfaikar F
Data understanding	20 %	20 %	20 %	20 %	20 %
Exploration Data Analys	25 %	-	25 %	25 %	25 %
Visualization	50%	-	-	50%	-
Feature Engineering	-	-	100%	-	-
Modeling	-	-	50%	-	50%

Thank you for listening!