Burkhard Heer · Alfred Maußner

Dynamic General Equilibrium Modeling

Computational Methods and Applications

Third Edition

Contents

Part I Representative Agent Models

1	Basic	Models 3
	1.1	Introduction
	1.2	The Deterministic Finite Horizon Ramsey Model 4
		1.2.1 The Ramsey Problem
		1.2.2 The Karush-Kuhn-Tucker Theorem 7
	1.3	The Deterministic Infinite Horizon Ramsey Model 9
		1.3.1 Recursive Utility 10
		1.3.2 Euler Equations
		1.3.3 Dynamic Programming
		1.3.4 The Saddle Path
		1.3.5 Models with Analytical Solution
	1.4	The Stochastic Ramsey Model
		1.4.1 Stochastic Output
		1.4.2 Stochastic Euler Equations
		1.4.3 Stochastic Dynamic Programming 28
	1.5	Labor Supply, Growth, and the Decentralized Economy 31
		1.5.1 Substitution of Leisure
		1.5.2 Growth and Restrictions on Technology and
		Preferences
		1.5.3 Parameterizations of Utility and Important
		Elasticities 39
		1.5.4 The Decentralized Economy 44
	1.6	Model Calibration and Evaluation 47
		1.6.1 The Benchmark Business Cycle Model 47
		1.6.2 Calibration

xvi Contents

		1.6.3	Model Evaluation	56
	1.7	Nume	rical Solution Methods	63
		1.7.1	Overview	63
		1.7.2	Accuracy of Solutions	66
	Appe	ndices	5	68
		A.1	Solution to Example 1.3.1	68
		A.2	Restrictions on Technology and Preferences	70
	Prob	lems .		75
2	Pertu	ırbatio	n Methods: Framework and Tools	79
	2.1	Introd	luction	79
	2.2	Order	of Approximation	80
	2.3			
			A Brief List	. 81
		2.3.2	Application to the Deterministic Ramsey Model \dots	82
	2.4		tochastic Linear-Quadratic Model	88
		2.4.1	The Model	89
			Policy Functions	89
			Certainty Equivalence	. 91
	2.5	A Can	onical DSGE Model	92
			Example	92
			Generalization	93
	2.6	More	Tools and First Results	96
		2.6.1	Computer Algebra versus Paper and Pencil	96
		2.6.2	Derivatives of Composite Functions and Tensor	
			Notation	98
		2.6.3	Derivatives of Composite Functions and Matrix	
			Chain Rules	103
		2.6.4	Computation of Partial Derivatives	106
	Appe	ndices	·	. 111
		A.3	Solution of the Stochastic LQ Problem	
		A.4	Third-Order Effects	113
	Prob	lems .		115
3	Pertu	ırbatio	n Methods: Solutions	119
	3.1	Introd	luction	119
	3.2	First-C	Order Solution	120
		3.2.1	First-Order Policy Functions	120
		3.2.2	BA Model	120
		323	System Reduction	123

Contents xvii

		3.2.4	Digression: Solving Separately for the	
			Deterministic and Stochastic Components	126
	3.3	Secon	d-Order Solution	. 131
		3.3.1	Second-Order Policy Functions	. 131
		3.3.2	Coefficients of the State Variables	132
		3.3.3	Coefficients of the Perturbation Parameter	135
	3.4	Third-	-Order Solution	139
		3.4.1	Third-Order Policy Functions	139
		3.4.2	Coefficients of the State Variables	139
		3.4.3	Coefficients of the State-Dependent Uncertainty	142
		3.4.4	Coefficients of the Perturbation Parameter	143
	3.5	Imple	mentation	144
	Appe	endices	5	146
		A.5	Coefficients of the State-Dependent Uncertainty	
		A.6	Coefficients of the Perturbation Parameter	152
4	Pertu	ırbatio	n Methods: Model Evaluation and Applications .	155
	4.1	Introd	luction	155
	4.2	Secon	d Moments	155
		4.2.1	Analytic Second Moments: Time Domain	156
		4.2.2	Digression: Unconditional Means	158
		4.2.3	Analytical Second Moments: Frequency Domain	159
		4.2.4	Second Moments: Monte-Carlo Approach	165
	4.3	Impul	se Responses	174
	4.4	The B	enchmark Business Cycle Model	176
	4.5	Time-	to-Build Model	. 181
	4.6	A Nev	v Keynesian Model	186
		4.6.1	The Monopolistically Competitive Economy	.187
		4.6.2	Price Staggering	199
		4.6.3	Wage Staggering	202
		4.6.4	Nominal Frictions and Interest Rate Shocks	204
		4.6.5	Habits and Adjustment Costs	206
	Appe	endices	5	.217
		A.7	Derivation of the Demand Function	
		A.8	Price Phillips Curve	219
		A.9	Wage Phillips Curve	223
	Droh	lame		225

xviii Contents

5	Weig	ghted Residuals Methods231
	5.1	Introduction
	5.2	Analytical Framework
		5.2.1 Motivation
		5.2.2 Residual, Test, and Weight Function 236
		5.2.3 Common Test Functions
		5.2.4 Spectral and Finite Element Functions241
		5.2.5 Illustration
		5.2.6 General Procedure
	5.3	Implementation
		5.3.1 State Space
		5.3.2 Basis Functions
		5.3.3 Residual Function
		5.3.4 Projection and Solution251
		5.3.5 Accuracy
	5.4	The Deterministic Growth Model
	5.5	The Benchmark Business Cycle Model 260
	5.6	The Benchmark Search and Matching Model 264
		5.6.1 Motivation
		5.6.2 The Model
		5.6.3 Galerkin Solution
		5.6.4 Results
	5.7	Disaster Risk Models
		5.7.1 Motivation
		5.7.2 The Benchmark Business Cycle Model with
		Disaster Risk
		5.7.3 Generalized Expected Utility
		5.7.4 Adjustment Costs of Capital
		5.7.5 Variable Disaster Size and Conditional Disaster
		Probability
		5.7.6 The Full Model
	Prob	olems
6	C:	ulation-Based Methods311
6	6.1	Introduction
	6.2	Extended Path Method
	0.2	6.2.1 Motivation
		6.2.2 The General Algorithm
		6.2.3 Application: The Benchmark Business Cycle Model . 321
		6.2.4 Application: The Model of a Small Open Economy 323

Contents xix

		6.2.5 Conclusion	335
	6.3	Simulation and Function Approximation	336
		6.3.1 Motivation	
		6.3.2 The General Algorithm	.341
		6.3.3 Application: The Benchmark Business Cycle Model	
		6.3.4 Application: The Limited Participation Model of	
		Money	349
		6.3.5 Conclusion	
	Prob	lems	
7	Discr	rete State Space Value Function Iteration	369
-	7.1	Introduction	
	7.2	Solution of Deterministic Models	
	7.3	Solution of Stochastic Models	
		7.3.1 Framework	
		7.3.2 Approximations of Conditional Expectations	
		7.3.3 Basic Algorithm	
		7.3.4 Initialization	
		7.3.5 Interpolation	
		7.3.6 Acceleration	
		7.3.7 Value Function Iteration and Linear Programming.	
		7.3.8 Evaluation	
	7.4	Further Applications	
		7.4.1 Nonnegative Investment	
		7.4.2 The Benchmark Model	
	Prob	lems	
Par	t II H	eterogenous Agent Models	
8	Comp	putation of Stationary Distributions	
	8.1	Introduction	
	8.2	Easy Aggregation and Gorman Preferences	415
		8.2.1 A Numerical Example	415
		8.2.2 Gorman Preferences	425
	8.3	A Simple Heterogeneous Agent Model with Aggregate	
		Certainty	429
	8.4	The Stationary Equilibrium of a Heterogeneous Agent	
		Economy	436
		8.4.1 Discretization of the Distribution Function	442
		8.4.2 Discretization of the Density Function	449

xx Contents

		8.4.3 Monte-Carlo Simulation	51
		8.4.4 Function Approximation 45	53
	8.5	The Risk-Free Rate	
		8.5.1 The Exchange Economy45	57
		8.5.2 Computation	
		8.5.3 Results	52
	8.6	Heterogeneous Productivity and Income Distribution 46	53
		8.6.1 Empirical Facts on the Income and Wealth	
		Distribution and Income Dynamics 46	54
		8.6.2 The Model 47	70
		8.6.3 Computation47	77
		8.6.4 Results	79
	Prob	lems	31
9	Dyna	umics of the Distribution Function	35
	9.1	Introduction	
	9.2	Motivation	36
	9.3	Transition Dynamics	39
		9.3.1 Partial Information	€0
		9.3.2 Guessing a Finite Time Path for the Factor Prices 50	00
	9.4	Aggregate Uncertainty: The Krusell-Smith Algorithm 50)5
		9.4.1 The Economy)5
		9.4.2 Computation 50)8
		9.4.3 Calibration and Numerical Results 51	13
	9.5	Applications	17
		9.5.1 Costs of Business Cycles with Indivisibilities and	
		Liquidity Constraints	18
		9.5.2 Income Distribution and the Business Cycle 52	
	Prob	lems54	41
10	Over	lapping Generations Models with Perfect Foresight 54	13
	10.1	Introduction	13
	10.2	The Steady State in OLG Models 54	15
		10.2.1 An Elementary Model 54	15
		10.2.2 Computational Methods	50
		10.2.3 Direct Computation 55	52
		10.2.4 Computation of the Policy Functions 55	56
	10.3	The Laffer Curve56	
	10.4	The Transition Path 57	79
		10.4.1 A Stylized 6-Period OLG Model	30

Contents xxi

		10.4.2 Computation of the Transition Path5	81
	10.5	The Demographic Transition 58	
		10.5.1 The Model	
		10.5.2 Calibration	
		10.5.3 Computation	
	10.6	10.5.4Results	
		Conclusion	
	Appe	A.10 Derivation of Aggregate Bequests in (10.29) 6.	
	Prob	lems	
11		Models with Uncertainty6	
		Introduction	27
	11.2	Overlapping Generations Models with Individual	
		Uncertainty 62	
		11.2.1 The Model	
		11.2.2 Computation of the Stationary Equilibrium 6	
	11 0	· · · · · · · · · · · · · · · · · · ·	63
	11.3	11 0 00 0	72 74
			74 75
		11.3.3 Business Cycle Dynamics of Aggregates and	, ,
			85
		11.3.4The Krusell-Smith Algorithm and Overlapping	
			93
	Appe		15
		A.11 Derivation of the Stationary Dynamic Program of	
		the Household	15
		A.12 First-Order Conditions of the Stationary Dynamic	
			18
		A.13 Derivation of the Parameters of the AR(1)-Process	
		with Annual Periods	
	Prob	lems	21
Par	t III N	Numerical Methods	
12	Linea	ar Algebra7	27
		Introduction	
		Complex Numbers	
	12.3	Vectors	29

xxii Contents

	12.4	Norms	729
	12.5	Linear Independence	730
	12.6	Matrices	730
	12.7	Linear and Quadratic Forms	735
	12.8	Eigenvalues and Eigenvectors	.737
	12.9	Matrix Factorization	738
		12.9.1 Jordan Factorization	738
		12.9.2 Schur Factorization	740
		12.9.3 QZ Factorization	740
		12.9.4LU and Cholesky Factorization	.741
		12.9.5 QR Factorization	742
		12.9.6 Singular Value Decomposition	743
13	Func	tion Approximation	.747
	13.1	Introduction	.747
	13.2	Function Spaces	748
	13.3	Taylor's Theorem	749
	13.4	Implicit Function Theorem	752
	13.5	Lagrange Interpolation	753
		13.5.1 Polynomials and the Weierstrass Approximation	
		Theorem	753
		13.5.2 Lagrange Interpolating Polynomial	754
		13.5.3 Drawbacks	756
	13.6	Spline Interpolation	758
		13.6.1 Linear Splines	759
		13.6.2 Cubic Splines	760
	13.7	Orthogonal Polynomials	762
		13.7.1 Orthogonality in Euclidean Space	762
		13.7.2 Orthogonality in Function Spaces	763
		13.7.3 Orthogonal Interpolation	765
		13.7.4 Families of Orthogonal Polynomials	766
	13.8	Chebyshev Polynomials	766
		13.8.1 Definition	766
		13.8.2 Zeros and Extrema	769
		13.8.3 Orthogonality	770
		13.8.4 Chebyshev Regression	.771
		13.8.5 Chebyshev Evaluation	774
		13.8.6 Examples	775
	13.9	Multivariate Extensions	
		13.9.1 Tensor Product and Complete Polynomials	777

Contents xxiii

		13.9.2 Multidimensional Splines	779
		13.9.3 Multidimensional Chebyshev Regression	
		13.9.4The Smolyak Polynomial	783
		13.9.5 Neural Networks	788
14	Diffe	rentiation and Integration	701
- '		Introduction	
	14.2		
	1 1.2	14.2.1 First-Order Derivatives	
		14.2.2 Second-Order Derivatives	
	14.3		
	1 1.0	14.3.1 Newton-Cotes Formulas	
		14.3.2 Gaussian Formulas	
		14.3.3 Monomial Integration Formula	
	14.4	_	
		14.4.1 Expectation of a Function of Gaussian Random	
		Variables	803
		14.4.2 Gauss-Hermite Integration	804
		14.4.3 Monomial Rules for Expectations	
15	Nonl	inear Equations and Optimization	.811
	15.1		
	15.2		
	15.3		
		15.3.1 Single Equations	
		15.3.2 Multiple Equations	
	15.4	Numerical Optimization	
		15.4.1 Golden Section Search	
		15.4.2 Gauss-Newton Method	
		15.4.3 Quasi-Newton	835
		15.4.4 Genetic Search Algorithms	838
16	Diffe	rence Equations and Stochastic Processes	.847
		Introduction	
	16.2	Difference Equations	
		16.2.1 Linear Difference Equations	
		16.2.2 Nonlinear Difference Equations	
		16.2.3 Boundary Value Problems and Shooting	
	16.3	Stochastic Processes	
		16.3.1 Univariate Processes	

•	2 , ,
XX1V	Contents

	16.3.2 Trends	858
	16.3.3 Multivariate Processes	858
16.4	Markov Processes	859
	16.4.1 The First-Order Autoregressive Process	859
	16.4.2 Markov Chains	860
16.5	Linear Filters	866
	16.5.1 Definitions	866
	16.5.2 The HP-Filter	.867
Bibliogra	phy	870

List of Figures

1.1	Boundedness of the Capital Stock
1.2	Phase Diagram of the Infinite-Horizon Ramsey Model 18
1.3	No Path Leaves the Region A_2
1.4	Convergence of the Capital Stock in the Infinite-Horizon
	Ramsey Model
1.5	Stationary Distribution of the Capital Stock in the Stochastic
	Infinite-Horizon Ramsey Model 30
1.6	Risk Aversion 40
1.7	Impulse Responses in the Benchmark Model
1.8	Impulse Responses from an Estimated VAR 58
1.9	Productivity Shock in the Benchmark Business Cycle Model . 62
2.1	Eigenvalues of J 84
2.2	Approximate Time Path of the Capital Stock in the
	Deterministic Growth Model 86
2.3	Policy Function for Consumption in the Deterministic Growth
	Model
4.1	Third-Order Approximate Policy Function for Capital16
4.2	Impulse Responses in the Time-to-Build Model 18.
4.3	Structure of the NK Model
4.4	Impulse Responses in the Monopolistically Competitive
	Economy
4.5	Interest Rate Shock and Nominal Rigidities
4.6	Interest Rate Shock and Real Frictions
4.7	TFP Shock in the NK Model
4.8	Government Spending Shock in the NK Model

xxvi List of Figures

5.1	Approximations of e^{-t}	242
5.2	Ergodic Set of the Benchmark Business Cycle Model from a	
	Second-Order Solution	246
5.3	Euler Equation Residuals: Deterministic Growth Model	260
5.4	Policy Function for the Value of Employment	273
5.5	Distribution of Unemployment in the Search and Matching	
	Model	273
5.6	Simulated Time Path of Unemployment	274
6.1	Example Solutions of the Finite-Horizon Ramsey Model	314
6.2	Approximate Time Paths of the Capital Stock in the	
	Deterministic Growth Model	316
6.3	Simulated Time Path of the Stochastic Growth Model	318
6.4	Ergodic Set of the Benchmark Business Cycle Model from the	
	Extended Path Simulation	324
6.5	Impulse Responses to a Productivity Shock in the Small Open	
	Economy Model	332
6.6	Impulse Responses to a World Interest Rate Shock in the	
	Small Open Economy Model	333
6.7	Impulse Response to a Money Supply Shock in the Limited	
	Participation Model	358
7.1	VI versus LP	398
7.2	Policy Function for Consumption in the Stochastic Growth	
	Model with Nonnegative Investment	401
8.1	Dynamics of Aggregate Capital Stock K_t	420
8.2	Dynamics of the Gini Coefficient of Wealth	423
8.3	Dynamics of the Gini Coefficient of Market Income	424
8.4	Savings Function	441
8.5	Convergence of the Distribution Mean	.447
8.6	Convergence of the Capital Stock	448
8.7	Invariant Density Function of Wealth	449
8.8	Invariant Density Function, Employed Worker	451
8.9	Next-Period Assets of the Employed Worker	460
8.10	Next-Period Assets of the Unemployed Worker	460
8.11	Savings in the Exchange Economy	461
8.12	Stationary Distribution Function	462
8.13	Lorenz Curve of US Earnings, Income, and Wealth in 1992 \dots	465
9.1	Value Function of the Employed Worker	496

List of Figures	xxvii

9.2	Savings of the Workers	496
9.3	Dynamics of the Density Function over Time	.497
9.4	Convergence of the Aggregate Capital Stock	498
9.5	The Dynamics of the Density Function	504
9.6	Goodness of Fit for Stationary Density	504
9.7	Distribution Function in Period $T = 3,000$	515
9.8	Prediction Errors without Updating	516
9.9	Time Path of the Aggregate Capital Stock	.517
9.10	Consumption Functions in the Storage Economy	.521
9.11	Savings Functions in the Storage Economy	
9.12	Invariant Density Functions in the Storage Economy	
9.13	Consumption in the Economy with Intermediation	
9.14	Savings Functions in the Economy with Intermediation	
9.15	Invariant Density Functions in the Economy with	
	Intermediation Technology	524
9.16	Lorenz Curve of Income	
9.17	Lorenz Curve of Wealth	
,,,,		0 10
10.1	Wealth-Age Profile in the Standard OLG Model	554
10.2	Labor-Supply-Age Profile in the Standard OLG Model	555
10.3	Survival Probabilities ϕ^s in Benchmark Equilibrium	569
10.4	Productivity-Age Profile \bar{y}^s	570
10.5	Wealth-Age Profile Approximation	
10.6	Wealth-Age Profile with Age-Dependent Productivities	575
10.7	Labor-Supply-Age Profile in the Economy with	
	Age-Dependent Productivities	575
10.8	Consumption-Age Profile in the Economy with	
	Age-Dependent Productivities	576
10.9	Laffer Curves	
	Wealth-Age and Labor-Supply-Age Profiles in the New and in	
	the Old Steady State	583
10.11	Wealth-Age and Labor-Age Profiles in the Old Steady State	000
	and for the Household Born in Period $t = -2$	585
10.12	Transition from the Old to the New Steady State	
	Survival Probabilities in the Years 2014 and 2100	
	US Population Growth Rate 1950-2100 (annual %)	
	Stationary Age Distribution, Initial and Final Steady State	
	Decline of the Labor Force Share during the Transition	
	Increase in the Old-Age Dependency Ratio During the	000
10.1/		602
	Transition	002

xxviii List of Figures

10.18	Convergence of Transition Path \tilde{K}	607
	Individual Wealth $\tilde{a}_t^{s,j}$ in the Initial and Final Steady State	
10.20	Individual Labor Supply $l_t^{s,j}$, Initial and Final Steady State	611
10.21	Convergence of Capital per Working Hour, $\tilde{K}_t = K_t/(A_t L_t)$,	
	and Aggregate Labor \tilde{L}_t	612
10.22	Convergence of Factor Prices w_t and r_t	613
10.23	Convergence of Government Variables \tilde{tr}_t and τ_t^p	613
11.1	Measure μ^s of the s -Year-Old Cohort	645
11.2	Labor Supply of the Low- and High-Skilled Workers with	
	Idiosyncratic Productivity θ_4	
11.3	Wealth-Age Profile in the Stochastic OLG Model	
11.4	Consumption-Age Profile in the Stochastic OLG Model	
11.5	11 7 6	658
11.6	Lorenz Curve of US and Model Earnings	659
11.7	Lorenz Curve of US and Model Wealth	659
11.8	Policy Functions as a Function of Wealth	668
11.9	Policy Functions as a Function of Accumulated Average	
	Earnings	
	Cumulative Distribution Functions	671
11.11	Steady-State Age Profiles of Capital, Consumption, and	
	Working Hours in the OLG Model of Example 11.3.1	683
11.12	Impulse Responses to a Technology Shock in the OLG Model	
	of Example 11.3.1	686
11.13	Impulse Responses to a Government Demand Shock in the	
	OLG Model of Example 11.3.1	
	Nonstochastic Steady-State Distribution of \hat{k} (case 1)	
	Nonstochastic Steady-State Age Profiles	
11.16	Simulation Results	.711
12.1	Gaussian Plane	728
13.1	Linear Interpolation	755
13.2	Polynomial Approximation of the Runge Function on an	
	Equally Spaced Grid	.757
13.3	Polynomial Approximation of the Runge Function on	
	Chebyshev Zeros	
13.4	Monomials on [0,1.2]	758
13.5	Spline Interpolation	759
13.6	Spline Interpolation of the Runge Function	762

List of	of Figures xx	
13.7	Orthogonal Vectors	762
13.8	Orthogonal Projection in Euclidean Space	763
13.9	Chebyshev Polynomials T_1 through T_5	768
13.10	Weight Function of the Chebyshev Polynomials	770
13.11	Approximation of the Runge Function with Chebyshev	
	Polynomials	776
13.12	Approximation of a Kinked Function with Chebyshev	
	Polynomials	.777
13.13	Rectangular Grid	779
	Tensor and Smolyak Grid	
13.15	Neural Networks	788
15.1	Bisection Method	816
15.2	Modified Newton-Raphson Method	.817
15.3	Secant Method	818
15.4	Gauss-Seidel Iterations	820
15.5	Dogleg Step	.827
15.6	Golden Section Search	830
15.7	Stochastic Universal Sampling	.841
16.1	Topological Conjugacy	853
16.2	Local Stable and Unstable Manifolds	854

List of Tables

1.1	Calibration of the Benchmark Business Cycle Model	56
1.2	Business Cycles Statistics from the Benchmark Model	61
2.1	Code List for Equation (2.40)	108
2.2	Computation of Derivatives of Example 1.6.1	110
4.1	Euler Equation Residuals: Benchmark Business Cycle Model	178
4.2	Second Moments: German Data	179
4.3	Second Moments: Benchmark Business Cycle Model	180
4.4	Second Moments: Time-to-Build Model	186
4.5	Calibration of the NK Model	196
4.6	Second Moments: NK Model	215
5.1	Weighted Residuals Solution of the Deterministic Growth	
	Model	259
5.2	Euler Equation Residuals of the Galerkin Solution of the	
	Benchmark Business Cycle Model	263
5.3	Second Moments from the Benchmark Business Cycle	
	Model: Perturbation versus Galerkin Solution	264
5.4	Calibration of the Search and Matching Model	270
5.5	Data on Global Real Returns	276
5.6	Calibration of the Benchmark Model with Disaster Risk	278
5.7	Annualized Real Returns in the Benchmark Model	284
5.8	Annualized Real Returns with GEU	290
5.9	Annualized Real Returns with GEU and Adjustment Costs	
	of Capital	
	Model Calibration with Variable Disaster Size	
5.11	Annualized Real Returns with Variable Disaster Size	298

xxxii List of Tables

	Baseline Calibration of the Full Disaster Risk Model	
6.1 6.2	Second Moments from the Benchmark Business Cycle Model: Extended Path Solution	
6.3	Successful generalized stochastic simulation (GSS) Solutions of the Stochastic Growth Model	
6.4 6.5	GSS Solutions of the Benchmark Business Cycle Model Second Moments from the Benchmark Business Cycle	
6.6	Model: GSS Solutions	355
6.77.1	Second Moments from the Limited Participation Model Value Function Iteration in the Deterministic Growth	359
7.2	Model: Runtime	380
7.2	Model: Accuracy	382
7.3	Runtime	394
7.5	Accuracy	396 404
8.1 8.2 8.3	Statistics for the Computation of the Invariant Distribution Credit Limit and Interest Rate	
9.1 9.2	Calibration of Employment Rates	
10.2 10.3	Computation of the Steady State of the OLG Model Calibration of the Large-Scale OLG Model	.571
11.2	Calibration of OLG Model with Idiosyncratic Uncertainty Comparison of Runtime and Accuracy	644
11.4	Second Moments of the OLG Model of Example 11.3.1 Comparison of Second Moments Across Studies	689

List of Tables xxxiii

11.6	Calibration of the OLG Model with Individual and	
	Aggregate Uncertainty	697
11.7	Runtime: Krusell-Smith Algorithm and OLG Models	704
11.8	Cyclical Behavior of the Income Distribution	713
13.1	Tabulated Values of the Sine and Cosine Function	767
16.1	Iterative Computation of the Ergodic Distribution	862
16.2	Simulation of a Markov Chain	863

Acronyms

AD	automatic differentiation	106
ΑI	Artificial Intelligence	vii
AR(1)	first-order autoregressive	52
AR(2)	second-order autoregressive	473
CAS	computer algebra system	97
CES	constant elasticity of substitution	23
CPU	central processing unit	63
CRRA	constant relative risk aversion	43
DARE	discrete algebraic Riccati equation	90
DGE	dynamic general equilibrium	vi
DSGE	dynamic stochastic general equilibrium	xi
etc	and so forth	13
FOC	first-order conditions	4
FT	Fourier transform	160
GA	genetic algorithm	838
GDP	gross domestic product	54
GEU	generalized expected utility	276
GSS	generalized stochastic simulation	
HP	Hodrick-Prescott	59
IES	intertemporal elasticity of substitution	41
iid	independently and identically distributed	89
IRF	impulse response function	174
KKT	Karush-Kuhn-Tucker	7
LAPACK	linear algebra package	135
lhs	left-hand side	9
LP	linear programming	391
LQ	linear-quadratic	88

xxxvi Acronyms

NIPA	national product and income accounts	54
NK	New Keynesian	187
OLG	overlapping generations	vii
OLS	ordinary least squares	498
PEA	parameterized expectations approach	234
rhs	right-hand side	9
SD	symbolic differentiation	106
s.t.	subject to	7
TAS	time-additive separable	10
TFP	total factor productivity	48
VAR(1)	first-order vector autoregressive	94
VI	value function iteration	x
wrt	with respect to	237

List of Symbols

\mathbb{Z}	set of all integers
\mathbb{R}	real line
\mathbb{R}_+	non-negative real numbers, i.e., $x \in \mathbb{R}$ and $x \ge 0$
\mathbb{R}_{++}	positive real numbers, i.e., $x \in \mathbb{R}$ and $x > 0$
\mathbb{R}^n	Euclidean <i>n</i> -space
\mathbb{C}^n	complex <i>n</i> -space
C^n	class of functions having n continuous derivatives
f' or $f^{(1)}$	first derivative of a single valued function of a single argument
f'' or $f^{(2)}$	second derivative of a single valued function of a single argument
$f^{(n)}$	nth order derivative of a singe valued function of a single argument
f_i or $D_i f$ or f_{x_i}	first partial derivative of a single valued function with respect to its <i>i</i> th argument
f_{ij} or D_iD_jf or	second partial derivative of a single valued function
$f_{x_i x_j}$	with respect to argument i and j (in this order)
$A = (a_{ij})$	n by m matrix A with typical element a_{ij}
$A^{-1} = (a^{ij})$	the inverse of matrix A with typical element a^{ij}
A', A^T	the transpose of the matrix $A = (a_{ij})$ with elements $A' = (a_{ii})$
$J(\bar{\mathbf{x}})$	the Jacobian matrix of the vector valued function $f(\bar{x})$ at the point \bar{x}
$H(\bar{\mathbf{x}})$	the Hesse matrix of the single valued function $f(\bar{\mathbf{x}})$ at the point $\bar{\mathbf{x}}$

xxxviii List of Symbols

 $\nabla f(\mathbf{x})$ the gradient of f at \mathbf{x} , that is, the row vector of partial

derivatives $\partial f(\mathbf{x})/\partial x_i$

 $\|\mathbf{x}\|_2$ the Euclidian norm (length) of the vector $\mathbf{x} \in \mathbb{R}^n$,

which is given by $\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

tr A the trace of the square matrix A, i.e., the sum of its

diagonal elements

 $\det A$ the determinant of the square matrix A

 $\epsilon \sim N(\mu, \sigma^2)$ the random variable ϵ is normally distributed with

mean μ and variance σ^2

 \forall for all \exists exists

! factorial, i.e., $n! = 1 \times 2 \times \cdots \times n$.

 $\binom{n}{k}$ binomial coefficient

 $x = \operatorname{argmin} f(x)$ the value x that minimizes the function f(x).

List of Programs

Fortr	an	
BN	I_EP.f90	323
BN		403
DC	_ M VI.f90	379
Di	ferentiation.f90	
	DHesse	797
	DJac	796
	DenF.f90	
	timization.f90	
-	aussNewton	834
	Search1	845
	Search2	845
	SS	831
	M NNI VI.f90	
SG	M VI.f90	396, 405
	E_ERf90	
GAU	SS	
AK	280 perturb.g678, 680, 6	584, 690
AK	60 direct.g	553
	60 proj.g	
	60 value.g	
	70_prog_pen.g 664, (
	70 stoch inc.g	
	70 stock inc.g	
	[pert.g	
	RRAM 1.src	
	-	

SolveModel				144
CoRRAM 2.src				
HPFilter				869
Impulse1				175
Impulse2				175
CoRRAM_3.src				
Bisec				815
CDHesse				797
CDJac				796
costs_cycles.g				520
Demo_trans.g	591,	598,	605,	609
DGM_VI.g				379
DGM_WRM.g				257
dynamics_income_distrib.g		531,	532,	534
Function.src				
Cheb_coef				773
Cheb_eval				775
CSpline2_coef				781
CSpline2_eval				781
CSpline_coef			257,	761
CSpline_eval			257,	761
Find				760
LSpline coef				760
LSpline eval				760
GetPar.g				
Gorman.g				419
IVDenF.g			450,	503
equivec			442,	863
IVDisF.g				444
IVdisF.g				443
IVExpF.g				455
IVMonteCarlo.g				
Krusell Smith algo.g				514
Laffer.g				
Laffer p.g				
NLEQ.src			ŕ	
Fixp1	. .			821
FixvMN1				
FixvMN2				821
MNRSten				826

OLG6_trans.g	. 582,	585,	587,	588
OLG Krusell Smith.g			698,	708
Ramsey1.g				85
Ramsey2.g				.314
Ramsey3.g				.315
Ramsey4.g				.318
Risk_free_rate.g				459
SGM_NNI_VI.g				400
SGM_VI.g			390,	405
GSS			. 440,	831
Markov_AR1_R				866
Markov_AR1_T				.865
SGM_VI_MT.g				395
SOE.g				.331
SVar.g				59
Tax_reform.g				477
transition_guess.g				.503
transition_part.g		. 493-	-495,	503
T11-				
Julia				 0
AK60_value.jl				
AK70_prog_pen.jl				
AK70_stock_inc.jl		• • • • •		643
MATLAB®				
BM CGC.m				262
BM CGT.m				
BM_CGT_Eqs.m				.262
BM EPm				
BM GSS.m				347
BM GSS NN.m				347
BM pert.m				
CDHesse.m				
CDHesseRE.m		 .		797
CDJac.m				.796
ChebBase.m				787
Cubic.m				
Der BM.m				
DGM.m				
DGM VI.m.				

80
39
3
7
7
)2
32
3
8
9
8'
6
6
-5
′5
8
21
8'
-5
6
9
97
-5
5
4
5
6
7 2
0
97
)5
34
14
9
34
7
57
3

LIST OF PROGRAMS	xliii
IVDenF.py	
OLG_Krusell_Smith.pytransition_part.py	