Homework 1 – Report

Mustafa Alper Sayan

S051674

Steps:

- 1. Split data into positive and negative
- 2. Find prior positive and prior negative samples
- 3. Find mean and variance for positive and negative samples
- 4. Calculate likelihood by assuming distribution is Gaussian (normal distribution), use mean and variance.
- 5. Find posterior of positive and negative samples
- 6. Determine threshold of decision based on determined parameters.
- 7. Determine estimator using posteriors (negative posterior and positive posterior)
- 8. Determine accuracy
- 9. Calculate total loss

Steps in Detail:

1. Split data into positive and negative

_	age	result		age	result
0	26	Positive	30	36	Negative
1	26	Positive	31	49	Negative
2	29	Positive	32	35	Negative
3	28	Positive	33	46	Negative
4	24	Positive	34	33	Negative

2. Find prior positive and prior negative samples Formula for priors:

$$\frac{\# of \ positive \ samples}{\# of \ samples} = P(C = Positive)$$

$$\frac{\# of \ negative \ samples}{\# of \ samples} = P(C = Negative)$$

Results from the homework:

3. Find mean and variance for positive and negative samples Formulas:

$$mean = \sum \frac{x_i}{n}$$

$$\sigma^2 = variance = \frac{\sum (x - \mu)^2}{n}$$

Results from homework:

train mean negative: 39.45

train variance negative: 16.929661016949144

test variance positive: 10.616091954022984

test mean negative: 40.06666666666667

test variance negative: 18.842937853107344

4. Calculate likelihood by assuming distribution is Gaussian (normal distribution), use mean and variance. The output of the Gaussian distribution will be likelihoods. I assumed the ages could be between 0-60.

$$y = \frac{1}{\sigma\sqrt{2\pi}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Results from the homework:

5. Find posterior of positive and negative samples

$$P(C = +|x = ?) = \frac{(Likelihood * Prior)}{Marginal Probability}$$

Marginal probility =
$$P(x = ? | c = ?) * P(c = ?) + P(x = ? | c = ?) * P(c = ?)$$

Results from homework:

First 10 instances of posterior positive

- [0.9999988051886746,
- 0.9999988652203073,
- 0.9999988881109589,
- 0.9999988760447638,
- 0.999998827874133,
- 0.9999987389359253,
- 0.9999986002911089,
- 0.9999983972124998,
- 0.999998106558812,
- 0.99999769237452051

Last 10 instances of posterior positive

- [2.8735917889913763e-10,
- 6.366908139036632e-11,
- 1.3673963238170042e-11,
- 2.846574444897552e-12,
- 5.743981050681067e-13,
- 1.1234810850303779e-13,
- 2.1300060927018268e-14,
- 3.914337248588934e-15,
- 6.972651344328983e-16,
- 1.2039264967634808e-16]

6. Determine threshold of decision based on determined parameters. Formula:

$$R(\alpha_1 \mid x) = loss_{c_1\alpha_1} * P(c_1 \mid x) + loss_{c_2\alpha_1} * P(c_2 \mid x)$$

$$R(\alpha_2 \mid x) = loss_{c_1 \alpha_2} * P(c_1 \mid x) + loss_{c_2 \alpha_2} * P(c_2 \mid x)$$

Choose $\propto_1 (c_1)$ if

$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

Results from the homework:

Loss of a False Positive = 1 Loss of a False Negative = 1

$$R(\propto_1 | x) = 0 * P(c_1 | x) + 1 * P(c_2 | x) = P(c_2 | x)$$

$$R(\propto_2 | x) = 1 * P(c_1 | x) + 0 * P(c_2 | x) = P(c_1 | x)$$

$$P(c_2 | x) = 1 - P(c_1 | x)$$

$$1 - P(c_1 | x) < P(c_1 | x)$$

$$1 < 2P(c_1 | x)$$

$$0.5 < P(c_1 | x)$$

Choose action 1 (positive class) if posterior of class 1 is bigger than 0.5

7. Determine estimator using posteriors (negative posterior and positive posterior)

Assign Positive label until age 'x' if posterior possibility is bigger than the threshold of decision

For homework:

```
age when first assigned negative for a) 32 age when first assigned negative for b) 32 age when first assigned negative for c) 33
```

8. Determine accuracy

```
False positive count train: 3 false negative count train: 2
missclassified ages: [33, 32, 28, 31, 30]
False positive count train : 3 false negative count train: 2
missclassified ages: [33, 32, 28, 31, 30]
False positive count train : 4 false negative count train: 1
missclassified ages: [33, 28, 32, 31, 30]
False positive count test : 3 false negative count test: 3
missclassified ages: [36, 33, 33, 32, 32, 32]
False positive count test : 0 false negative count test: 5
missclassified ages: [36, 33, 33, 32, 32]
_____
False positive count test : 4 false negative count test: 1
missclassified ages: [36, 32, 33, 32, 32]
```

9. calculate total loss

For the homework:

```
total loss on train a) 5
total loss on train b) 8
total loss on train c) 6

total loss on test a) 6
total loss on test b) 5
total loss on test c) 6

total loss on test + train a) 11
total loss on test + train b) 13
total loss on test + train c) 12
```