٥

ii |•**±**

1

-- Cross Reference to Related Applications.

This application claims priority from United States provisional applications Serial Nos. 60/107792, filed November 10, 1998 and 60/143962, filed July 15, 1999, and PCT International application no. PCT/EP99/07417, filed September 24, 1999, the contents of each of which are hereby incorporated by reference.—

In the Claims:

In Claim 3, line 1, replace "claim 1 or 2" with --claim 1--.

In Claim 4, line 1, replace "any one of claims 1 to 3" with --claim 1--.

In Claim 5, line 1, replace "any one of claims 1 to 4" with --claim 1--.

In Claim 6, line 1, replace "any one of claims 1 to 5" with --claim 1--.

In Claim 11, lines 2-3, replace "any one of claims 1 to 6" with --claim 1--.

In Claim 13, line 1, replace "characterized by" with

- 2 -

In Claim 14, line 1, replace "claim 1 or 8" with --claim 1--.

In Claim 16, line 1, replace "claim 1 or 8" with --claim 1--.

In Claim 17, line 2, replace "claim 1 or 8" with --claim 1--.

Cancel Claims 7 and 15 without prejudice and amend Claims 8, 9, 10 and 12 as follows:

8. (Amended) A method of treating subjects suffering from HIV

(Human Immunodeficiency Virus) infection comprising

administering to the subject a therapeutically effective

amount of [The use of] a compound of formula

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof, wherein

 $-a^1=a^2-a^3=a^4$ represents a bivalent radical of formula

-CH=CH-CH=CH- (a-1); -N=CH-CH=CH- (a-2):

-N=CH-CH=CH- (a-2);

-N=CH-N=CH- (a-3);

-N=CH-CH=N- (a-4);

-N=N-CH=CH- (a-5);

n is 0, 1, 2, 3 or 4; and in case $-a^1=a^2-a^3=a^4-$ is (a-1), then n may also be 5;

 R^1 is hydrogen; aryl; formyl; C_{1-6} alkylcarbonyl; C_{1-6} alkyl; C_{1-6} alkyloxycarbonyl; C_{1-6} alkyl substituted with formyl, C_{1-6} alkylcarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy;

ijΠ

:≟

10

C₁₋₆alkyloxyC₁₋₆alkylcarbonyl substituted with C₁₋₆alkyloxycarbonyl;

each R^2 independently is hydroxy, halo, C_{1-6} alkyl optionally substituted with cyano or $-C(=0)R^6$, C_{3-7} cycloalkyl, C_{2-6} alkenyl optionally substituted with one or more halogen atoms or cyano, C_{2-6} alkynyl optionally substituted with one or more halogen atoms or cyano, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di(C_{1-6} alkyl)amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, - $S(=0)_p R^6$, -NH- $S(=0)_p R^6$, -C(=0)R⁶, -NHC(=0)H, -C(=0)NHNH₂, -NHC(=0)R⁶, -C(=NH)R⁶ or a radical of formula

A (c)

wherein or CR⁶;

each A independently is N, CH

B is NH, O, S or NR⁶; p is 1 or 2; and R⁶ is methyl, amino, mono- or

dimethylamino or polyhalomethyl;

- L is C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-7} cycloalkyl, whereby each of said aliphatic group may be substituted with one or two substituents independently selected from
 - * C₃₋₇cycloalkyl,
 - * indolyl or isoindolyl, each optionally substituted with one, two, three or four substituents each independently selected from halo, C_{1-6} alkyl, hydroxy, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, polyhalomethyl, polyhalomethyloxy and C_{1-6} alkylcarbonyl,
 - * phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R²; or
- L is $-X-R^3$ wherein
 - R³ is phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may

A

optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in \mathbb{R}^2 ; and

X is NR^1 -, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)- or $-S(=O)_2$ -;

Q represents hydrogen, C_{1-6} alkyl, halo, polyhalo C_{1-6} alkyl or - NR^4R^5 ; and

R⁴ and R⁵ are each independently selected from hydrogen, hydroxy, C₁₋₁₂alkyl, C₁₋₁₂alkyloxy, C₁₋₁₂alkylcarbonyl, C₁₋₁₂alkyloxycarbonyl, aryl, amino, mono- or di(C₁₋₁₂alkyl) amino, mono- or di(C₁₋₁₂alkyl) aminocarbonyl wherein each of the aforementioned C₁₋₁₂alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁₋₆alkyl) amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, aryl and Het; or R⁴ and R⁵ taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C₁₋₁₂alkyl) aminoC₁₋₄alkylidene;

Y represents hydroxy, halo, C_{3-7} cycloalkyl, C_{2-6} alkenyl optionally substituted with one or more halogen atoms, C_{2-6} alkynyl optionally substituted with one or more halogen atoms, C_{1-6} alkyl substituted with cyano or $-C(=0)R^6$, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di(C_{1-6} alkyl)amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, $-S(=0)_pR^6$, $-NH-S(=0)_pR^6$, $-C(=0)R^6$, -NHC(=0)H, $-C(=0)NHNH_2$, $-NHC(=0)R^6$, $-C(=NH)R^6$ or aryl;

aryl is phenyl or phenyl substituted with one, two three, four or five substituents each independently selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano, nitro, polyhaloC₁₋₆alkyl and polyhaloC₁₋₆alkyloxy;

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridinyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy.

for the manufacture of a medicine for the treatment of subjects suffering from HIV (Human Immunodeficiency Virus) infection.]

9. (Amended) A method of treating [The use of a compound as claimed in any one of claims 1 to 6 for the manufacture of a medicine for the treatment of] subjects suffering from Human Immunodeficiency Virus infection comprising administering to the subject a therapeutically effective amount of the compound of claim 1.

ŧΞ

- 10. (Amended) The [use of a compound as claimed in any one of claims 1 to 6] method of Claim 9, wherein R¹ is hydrogen, aryl, formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyl substituted with formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl [for the manufacture of a medicine for the treatment of subjects suffering from HIV (Human Immunodeficiency Virus) infection].
- 12. (Amended) A process for preparing a pharmaceutical composition [as claimed in claim 11 <u>characterized in that</u> a therapeutically effective amount of a compound as claimed in any one of claims 1 to 6 is intimately mixed] <u>comprising mixing the compound of claim 1</u> with a pharmaceutically acceptable carrier.