Série 3, Exercice 5

David Wiedemann

 $1^{\rm er}$ octobre 2020

5.1

Si $\phi^{-1}(\{h\})$ vide, il n'y pas de solutions. Supposons $\phi^{-1}(\{h\})$ non vide, $\exists g_0$ tq. $\phi(g_0) = h$. Soit $e \in \ker \phi$, alors

$$\phi(g_0 \cdot e) \underbrace{\qquad}_{\phi \text{ morphisme}} h \cdot e_H = h$$

ou e_H est l'élément neutre dans H. Ceci est valable $\forall e \in \ker \phi$.

5.2

Supposons à nouveau que $e \in \ker \phi$ et que $\phi^{-1}(\{h\})$ non vide. On pose, à nouveau, que $\phi(g_0) = h$.

$$\phi(e.g_0) = e_H.h = h$$
 avec e_H l'élément neutre de $H.$

Ici, on voit que g_0 est une solution particulière à l'équation $\phi(g) = h$. Dans la résolution de systémes d'équations de la forme

$$Ax = b$$
, où A est une matrice

On peut trouver les solutions du système homogène :

Ax = 0, les solutions de ce système forment le ker

et les superposer à la solution spécifique b' qui satisfait

$$Ab' = b$$