

1/47.

First Generalized
Embodiment

FIG. 1A

2/47

FIG. 1B

3147

FIG. 2A

4/4f

FIG. 2B

5/47

FIC. 3

(S)

(S)

6/47

35. CENTRAL
LONGITUDINAL
REFERENCE AXIS

$$\begin{array}{l} \beta_1 = 65^\circ \\ \beta_2 = 90^\circ \\ \beta_3 = 73^\circ \\ \beta_4 = 103^\circ \end{array}$$

FIG. 5A

FIG. 4A

	TWIST α	BEND θ
S ₁₋₅	10°	46.0°
S ₂₋₄	43.75°	42.5°
S ₃	90°	40.5°

FIG. 5B

FIG. 4B

FIG. 5C

7/47

8/47

FIG. 4C

9147

FIG. 4D1

10/47

FIG. 402

FIG. SA

12/47

FIG. 5B

W/ 47

- 151

FIG. 6

15/47

FIG. 7A

FIG. 7B

$$E_{10}' = (\overline{T_{SLS}} \cdot E_{10} \cdot A_5) + (E_{10} \cdot \bar{A}_5)$$

FIG. 7C

16/47

1633

FIG. 7D

to VD high
control circuitry

635

17/47

FIG. 7E

	T ₁₀₅	Q1	Q2	P ₁₀₀₂
Select	—	—	—	OFF
Open H	H	ON	OFF	ON
Open L	L	OFF	ON	OFF
Closed X	X	OFF	ON	OFF

Normal
Normal

18/47

FIG. 8

FIG. 9A

20/47

FIG: 9B

21/47

FIG. 9C

2247

FIG. 9D

23/47

Second
Generalized
Embodiment

FIG. 10A

24/47

FIG. 10B

25/47

FIG. 10C

26/47

FIG. 11A

27/47

FIG. 11B

FIG. 12

571

FIG. 13

10042755 - 111302

FIG. 14A

FIG. 14B

FIG. 14E

FIG. 14F

FIG. 14G

FIG. 15A

Optics Bench Array Mirror
Specifications

Mirror	Relief Angle	Twist Angle
Degrees		
1	45.91	69.32
2	47.85	34.15
3	48.4	0
4	47.85	34.15
5	45.91	69.32

Mirror	Length	Width
Millimeters		
1	19.872	17.303
2	16.341	13.746
3	16.67	15.788
4	16.341	13.746
5	19.872	17.303

FIG. 15B

34/47

Angles Specification:

Definitions:

Relief Angle - The angle between the plane including all the bottom front edges of the array mirrors and the front surface of the mirror being measured.

Twist Angle - The angle of rotation about the z-axis with 0 degrees twist being defined as perpendicular to the incident beam (field 3).

FIG. 15C

36

FIG. 15D

35/47

FIG. 15F

FIG. 15H

FIG. 15E

FIG. 15G

FIG. 15I

FIG. 16A

37/47

38147

39/47

FIG. 16F

FIG. 16G

FIG. 16H

10042755 - 111302

FIG. 17

447

Device has
omni-directional
multi-directional
and uni-directional
scanning modes of
operation

FIG. 18

FIG 20

FIG. 2/A

FIG. 21B

46177

FIG.2/C

FIG. 21D