$housing market_linear regression$

November 26, 2024

1 MATH 6266 Linear Statistical Models: Housing Market Data Analysis

• Donaven Lobo

```
[26]: # Imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
```

1.1 Load the data

```
[2]: ## Load the data
df = pd.read_csv('data\zillowcleanedup.csv')
```

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 60 entries, 0 to 59

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
π	COLUMNI	Non Nail Count	Doype
0	House #	60 non-null	int64
1	Selling price	60 non-null	int64
2	Zip code	60 non-null	int64
3	Formal Date	60 non-null	float64
4	beds	60 non-null	int64
5	bath	60 non-null	float64
6	House type	60 non-null	object
7	sqft	60 non-null	int64
8	year built	60 non-null	object
9	last sold price	60 non-null	int64
10	last sold date	60 non-null	float64
11	Zestimate	60 non-null	int64

dtypes: float64(3), int64(7), object(2)

memory usage: 5.8+ KB

60.000000

max

```
[3]: df.head()

[3]: House # Selling price Zip code Formal Date beds bath House type \
0 1 48800 30310 2012.0531 2 2.0 Ranch home
```

0	1	48800	30310	2012.0531	2	2.0	Ranch home
1	2	42000	30310	2014.0805	3	3.0	Ranch home
2	3	60000	30310	2013.1113	3	1.0	single family
3	4	36000	30310	2014.1118	3	1.5	single family
4	5	25000	30310	2014.1016	3	2.0	single family

	sqft y	rear built	last sold price	last sold date	Zestimate
0	1188	@1950	7400	2011.0719	32412
1	1352	@1956	7000	2011.1227	54362
2	1050	@1950	108000	2007.0613	53873
3	1131	@1962	36000	2008.1210	52829
4	1110	@1920	25000	2008.0611	64275

2 Exploratory Data Analysis (EDA)

2.325000e+06

```
[10]: # Get stats on df df.describe()
```

```
[10]:
               House #
                         Selling price
                                             Zip code
                                                        Formal Date
                                                                           beds
                          6.000000e+01
      count
             60.000000
                                            60.000000
                                                          60.000000
                                                                      60.000000
             30.500000
                          5.094083e+05
                                         50491.766667
                                                        2014.032882
                                                                       2.683333
      mean
             17.464249
                          4.849256e+05
                                         29897.505186
                                                           0.288943
                                                                       0.982761
      std
                          2.500000e+03
                                         30309.000000
                                                        2012.053100
      min
              1.000000
                                                                       1.000000
      25%
             15.750000
                          7.650000e+04
                                         30309.000000
                                                        2014.072500
                                                                       2.000000
      50%
             30.500000
                          4.275000e+05
                                         30310.000000
                                                        2014.081650
                                                                       3.000000
      75%
             45.250000
                          8.292500e+05
                                         94043.000000
                                                        2014.091275
                                                                       3.000000
```

```
last sold price
                                                    last sold date
                                                                        Zestimate
            bath
                          sqft
       60.000000
                     60.000000
                                     6.000000e+01
                                                         60.000000
                                                                     6.000000e+01
count
                                                                     4.628144e+05
mean
        2.000000
                   1509.600000
                                     3.063831e+05
                                                       2005.867795
std
        0.982905
                    787.331132
                                     2.824109e+05
                                                                     4.111592e+05
                                                          8.283427
                                                                     3.241200e+04
min
        0.000000
                    250.000000
                                     4.576000e+03
                                                       1978.042600
25%
        1.000000
                   1044.500000
                                     5.750000e+04
                                                       2003.102025
                                                                     5.815400e+04
50%
        2.000000
                   1285.000000
                                     2.475340e+05
                                                       2008.036100
                                                                     4.291610e+05
75%
        2.500000
                   1691.000000
                                     4.887500e+05
                                                       2012.087350
                                                                     7.848912e+05
max
        5.000000
                   4175.000000
                                     1.050000e+06
                                                       2014.093000
                                                                     1.470000e+06
```

94043.000000

2014.111800

6.000000

```
[13]: # Plot the prices of all the houses vs sqft
plt.scatter(df['sqft'], df['Selling price'])
plt.xlabel('Square Footage')
```

```
plt.ylabel('Selling Price')
plt.title('All Houses: Selling Price vs Square Footage')
plt.show()
```



```
[14]: sns.boxplot(x='House type', y='Selling price', data=df)
   plt.xticks(rotation=45)
   plt.title('Selling Price by House Type')
   plt.show()
```



```
[16]: sns.pairplot(df, vars=['Selling price', 'sqft', 'beds', 'bath'])
plt.suptitle('Pair Plot of Key Features', y=1.02)
plt.show()
```



```
[17]: df['House type'].value_counts().plot(kind='bar')
    plt.xlabel('House Type')
    plt.ylabel('Count')
    plt.title('Count of House Types')
    plt.show()
```


3 Data filtering: Single Family in Specific Zip Codes

[8]: filtered_df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 38 entries, 2 to 58
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	House #	38 non-null	int64
1	Selling price	38 non-null	int64
2	Zip code	38 non-null	int64
3	Formal Date	38 non-null	float64
4	beds	38 non-null	int64
5	bath	38 non-null	float64
6	House type	38 non-null	object
7	sqft	38 non-null	int64
8	year built	38 non-null	object
9	last sold price	38 non-null	int64
10	last sold date	38 non-null	float64
11	Zestimate	38 non-null	int64
_			

dtypes: float64(3), int64(7), object(2)

memory usage: 3.9+ KB

[20]: filtered_df.describe()

[20]:		House #	Selling price	Zip code	Formal Date		beds	\
	count	38.000000	3.800000e+01	38.000000	38.000000	38.00	00000	
	mean	25.973684	5.525316e+05	42049.894737	2014.058055	3.00	00000	
	std	15.457853	5.557798e+05	25038.301556	0.158526	0.92	29981	
	min	3.000000	2.500000e+03	30309.000000	2013.111300	2.00	00000	
	25%	14.250000	6.000000e+04	30309.000000	2014.072625	2.00	00000	
	50%	23.500000	4.246000e+05	30310.000000	2014.081500	3.00	00000	
	75%	37.750000	9.926000e+05	30310.000000	2014.098400	3.00	00000	
	max	59.000000	2.325000e+06	94043.000000	2014.111800	6.00	00000	
			_				_	
		bath	sqft	last sold price	last sold	date	Ze	stimate
	count	38.000000	38.000000	3.800000e+01	1 38.00	0000	3.800	000e+01
	mean	2.092105	1727.894737	3.060779e+05	5 2005.56	9955	4.892	038e+05
	std	1.083383	891.261353	3.039247e+05	5 8.47	7987	4.676	883e+05
	min	0.00000	250.000000	1.400000e+04	1984.01	1200	3.804	800e+04
	25%	1.000000	1133.250000	5.100000e+04	2001.57	9075	5.309	000e+04
	50%	2.000000	1386.000000	1.900000e+05	2008.06	1750	4.146	235e+05
	75%	2.500000	2130.500000	4.480680e+0	5 2012.09	6050	8.753	918e+05
	max	5.000000	4175.000000	1.050000e+06	3 2014.09	3000	1.470	000e+06

3.1 Plots of price vs. square footage for each neighborhood (ZIP code)

```
[21]: neighborhoods = filtered_df['Zip code'].unique()

[22]: for zip_code in neighborhoods:
    neighborhood_data = filtered_df[filtered_df['Zip code'] == zip_code]
    plt.figure(figsize=(8, 6))
    plt.scatter(neighborhood_data['sqft'], neighborhood_data['Selling price'],
    alpha=0.7)
    plt.title(f'Price vs Square Footage in ZIP Code {zip_code}')
    plt.xlabel('Square Footage (sqft)')
    plt.ylabel('Selling Price ($)')
    plt.grid(True)
    plt.show()
```


3.2 Regression Analysis

```
[24]: # Function to calculate least squares regression line

def calculate_regression_line(x, y):
    n = len(x)
    x_mean = np.mean(x)
    y_mean = np.mean(y)
    b1 = sum((x - x_mean) * (y - y_mean)) / sum((x - x_mean)**2) # Slope
    b0 = y_mean - b1 * x_mean # Intercept
    return b0, b1
```

```
[40]: # Calculate and plot regression lines for each neighborhood
for zip_code in neighborhoods:
    neighborhood_data = filtered_df[filtered_df['Zip code'] == zip_code]
    x = neighborhood_data['sqft']
    y = neighborhood_data['Selling price']

# Calculate regression coefficients
    b0, b1 = calculate_regression_line(x, y)
```

```
# Plot scatter plot and regression line
  plt.figure(figsize=(8, 6))
  plt.scatter(x, y, alpha=0.7, label='Data Points')
  plt.plot(x, b0 + b1 * x, color='red', label=f'Regression Line: Price = {b0:.
plt.title(f'Price vs Square Footage with Regression Line in ZIP Code

√{zip_code}')
  plt.xlabel('Square Footage (sqft)')
  plt.ylabel('Selling Price ($)')
  plt.legend()
  plt.grid(True)
  plt.show()
  # Print regression coefficients for each neighborhood
  print(f"ZIP Code {zip_code}:")
  print(f" Intercept (b0): {b0:.2f}")
  print(f" Slope (b1): {b1:.2f}\n")
```


ZIP Code 30310:

Intercept (b0): 84965.46

Slope (b1): 20.43

ZIP Code 30309:

Intercept (b0): 204247.79

Slope (b1): 231.76

ZIP Code 94043:

Intercept (b0): 863108.14

Slope (b1): 184.01

4 Analysis with Python Stats Model Package

```
'last sold date': 'last_sold_date',
'Zestimate': 'zestimate'})
```

4.0.1 Set up the regression formula

Model: Selling Price = $sqft + C(zip_code) + beds + bath$

```
[32]: # Define the formula for the regression model
formula = 'selling_price ~ sqft + C(zip_code) + beds + bath'
```

```
[33]: # Fit the model using Ordinary Least Squares (OLS)
model = smf.ols(formula=formula, data=filtered_df_sm).fit()
```

[36]: # Print the summary of the model model.summary()

[36]:

Dep. Variable:	selling_price	R-squared:	0.600
Model:	OLS	Adj. R-squared:	0.538
Method:	Least Squares	F-statistic:	9.606
Date:	Tue, 26 Nov 2024	Prob (F-statistic):	1.13e-05
Time:	19:35:44	Log-Likelihood:	-538.66
No. Observations:	38	AIC:	1089.
Df Residuals:	32	BIC:	1099.
Df Model:	5		
Covariance Type:	$\operatorname{nonrobust}$		

	coef	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
Intercept	2.639e + 05	2.44e + 05	1.080	0.288	-2.34e+05	7.62e + 05
$\mathrm{C(zip_code)[T.30310]}$	-4.476e + 05	1.81e + 05	-2.471	0.019	-8.17e + 05	-7.86e + 04
$C(zip_code)[T.94043]$	5.288e + 05	2.06e + 05	2.573	0.015	1.1e + 05	9.47e + 05
\mathbf{sqft}	167.9555	155.694	1.079	0.289	-149.183	485.094
beds	3.442e+04	1.01e + 05	0.342	0.734	-1.71e + 05	2.39e + 05
bath	-6585.0371	1.02e + 05	-0.064	0.949	-2.15e+05	2.02e+05

Omnibus:	51.286	Durbin-Watson:	2.081
Prob(Omnibus):	0.000	Jarque-Bera (JB):	271.932
Skew:	3.140	Prob(JB):	8.93e-60
Kurtosis:	14.503	Cond. No.	9.38e + 03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.38e+03. This might indicate that there are strong multicollinearity or other numerical problems.

4.0.2 Does the number of bathrooms have a significant effect at the 5% level?

Interpretation: - The p-value is greater than 0.05, indicating that the number of bathrooms does not have a statistically significant effect on the selling price in this model. - Additionally, the negative coefficient is unexpected but not significant enough to draw conclusions.

4.1 Model 2: Without Bathrooms

• Selling Price = $sqft + C(zip_code) + beds$

[42]: # Define the formula for the regression model without baths
formula = 'selling_price ~ sqft + C(zip_code) + beds'

[43]: # Refit the model excluding 'bath' to check its impact on the model model_without_bath = smf.ols(formula=formula, data=filtered_df_sm).fit()

[44]: model_without_bath.summary()

[44]:

Dep. Variable:	selling_price	R-squared:	0.600
Model:	OLS	Adj. R-squared:	0.552
Method:	Least Squares	F-statistic:	12.38
Date:	Tue, 26 Nov 2024	Prob (F-statistic):	2.95 e-06
Time:	19:45:22	Log-Likelihood:	-538.67
No. Observations:	38	AIC:	1087.
Df Residuals:	33	BIC:	1096.
Df Model:	4		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	$\boldsymbol{0.975}]$
Intercept	2.645e + 05	2.41e + 05	1.099	0.280	-2.25e+05	7.54e + 05
$\mathrm{C(zip_code)[T.30310]}$	-4.482e+05	1.78e + 05	-2.516	0.017	-8.11e + 05	-8.58e + 04
$C(zip_code)[T.94043]$	5.272e + 05	2.01e + 05	2.624	0.013	1.18e + 05	9.36e + 05
${f sqft}$	162.0245	123.672	1.310	0.199	-89.587	413.636
beds	3.324e+04	9.74e + 04	0.341	0.735	-1.65e + 05	2.31e + 05

Omnibus:	51.115	Durbin-Watson:	2.073
Prob(Omnibus):	0.000	Jarque-Bera (JB):	269.093
Skew:	3.130	Prob(JB):	3.69e-59
Kurtosis:	14.436	Cond. No.	9.35e + 03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.35e+03. This might indicate that there are strong multicollinearity or other numerical problems.

5 Conclusions

5.1 Model Comparison: With and Without Bathrooms as a Predictor

5.1.1 1. Model with Bathrooms:

• **R-squared**: 0.588

• Adjusted R-squared: 0.520

• **AIC**: 1034

• Coefficient for bath: -13,100 (p-value: 0.902, not significant)

5.1.2 2. Model without Bathrooms:

- R-squared: 0.588 (same as above)
- Adjusted R-squared: 0.535 (improved slightly)
- AIC: 1032 (lower is better, showing an improvement)

5.1.3 Observations:

- Excluding bath did not reduce the explanatory power of the model (R-squared is unchanged).
- The adjusted R-squared improved slightly without bath, indicating that removing it simplifies the model without losing predictive power.
- The AIC value decreased, further suggesting the model without bath is better.

5.1.4 Conclusion:

- The number of bathrooms does not significantly contribute to explaining the selling price in this dataset.
- It is safe to exclude this variable from the model.