Laboratório de Fluídos e Termodinâmica

Experimento 01 - Data de entrega: 12/02/2021

Aluno: Gabriel Wendell Celestino Rocha - Matrícula: 20190112149

1 Atividade 01

h(cm)	30,0	10,0	4,0	1,0
α	167,0735	104,2213	60,1568	31,6418
C_0	-2,0116	-2,1085	-2,0025	-2,0243

2 Atividade 02

h(cm)	30,0	10,0	4,0	1,0
$C_1(cm \cdot s)$	167	101	60,9	31,2

$$C_1(h) = 31, 8 \cdot h^{0,49}$$

3 Atividade 03

$$t(h,d) = 31, 8 \cdot h^{0,49} \cdot d^{-2}$$

4 Atividade 04

1. Tabela 1

h(cm)	30,0	10,0	4,0	1,0
d(cm)	t(s)	t(s)	t(s)	t(s)
1,5	74,8228	43,6762	27,8775	14,1333
2,0	42,0878	24,5678	15,6811	7,95
3,0	18,7057	10,9191	6,9694	3,5333
5,0	6,7341	3,9309	2,509	1,272

2. Tabela 2

h(cm)	d(cm)	t(s)
5,0	1,0	69,9717
25,0	4,0	9,6227
40,0	6,0	5,3844
50,0	8,0	3,3786
60,0	10,0	2,3644

5 Questionamentos sobre a atividade

- 1. Como estamos trabalhando com medições, podemos assumir que a moda e a média são iguais, ou seja, que nossa distribuição é gaussiana, e também podemos assumir que os valores obtidos estão próximos dos valores reais. Isso nos permite inferir que a interpolação está relacionada ao erro das amostras. Com base nisso, podemos supor que a diferença entre os valores da amostra e o da função extrapolada irão nos fornecer, em primeira estância, uma boa estimativa. Basta fazermos isso para as variáveis de tempo t, altura h e distância horizontal d. Com base nos dados experimentais e nos dados obtidos pela relação analítica, temos que o maior erro ocorre no diâmetro e foi de 1.1 segundos quando localizada a uma altura 4 cm.
- 2. Com base nos dados experimentais e nos dados obtidos através da relação analítica, temos que a o maior erro estimado ocorre a uma altura de 4 cm, por outro lado, o menor erro ocorre a uma altura de 1 cm. Além disso, o maior erro relativo ocorre no diâmetro de 1,5 cm e o de menor em 5 cm.
- 3. A expressão obtida serve como uma aproximação. Entretanto, não se pode afirmar se tal aproximação é boa ou não, principalmente para valores muito distintos das amostras. Além disso, a água possui propriedades físicas e químicas específicas que influenciaram nas medições e que não foram levadas em consideração. Em suma, a nossa função geral é limitada pela precisão de valores muito longe das amostras e as especificidades do fluído em questão.
- 4. Não se teve desvio padrão de forma a aumentar a confiança nos resultados medidos, por conta disso, houve um aumento no número de erros. Uma forma de reduzir o número de erros seria aumentar o número de amostras e variar as características das amostras como densidade do fluído, por exemplo.
- Sim. Os procedimentos nos permitiram estimar, em primeira estância, uma fórmula analítica para o problema mesmo com os devidos erros e dificuldades nas medições.