Lecture 3. Lists and recursion

Functional Programming 2018/19

Goals

- ► More list functions
- ► List comprehensions
- Recursion

Chapters 5 and 6 from Hutton's book

From previous lectures

Primitives for building lists

- ► [] :: [a] is the empty list
- ► (:) :: a -> [a] -> [a] (the "cons" operator)
 - Build a list by putting an element at the front
- ► When we write [1, 2, 3] the compiler translates it to 1 : 2 : 3 : []

Pattern matching over lists

```
length [] = 0
length (_:xs) = 1 + length xs
```

From previous lectures

Useful list functions

```
null :: [a] -> Bool
head :: [a] -> a
tail :: [a] -> [a]
reverse :: [a] -> [a]
(++) :: [a] -> [a] -> [a]
sum :: Num a => [a] -> a
replicate :: Int -> a -> [a]
```

Foldable in the interpreter

If you ask for the type of sum in ghci, you get

```
sum :: (Foldable t, Num a) => t a -> a
```

- ► This is a more generic version of sum
- "Adding up all elements" works for other containers
 - Think of sets or (binary) trees

How to obtain the types I show

From GHC 8.0.1 on

- Start the interpreter with ghci -XTypeApplications
- 2. Indicate that you want the type specifically for lists

```
> :t sum @[]
sum @[] :: Num a => [a] -> a
```

From GHC 8.2.1 on

```
> :t sum
sum :: (Num a, Foldable t) => t a -> a
> :t +d sum
sum :: [Integer] -> Integer
```

List comprehensions

List comprehensions

[expr | x <- list]</pre>

Succint notation for building new lists from old ones

```
addone :: Num a => [a] -> [a] addone xs = [x + 1 | x < - xs]
```

- ► "For each x in xs, return x + 1"
- ▶ Very similar to mathematical notation

$$\{x+1\,|\,x\in xs\}$$

Guards

```
[ expr | x <- list, condition ]
-- Check is a number is divisible by 2
even :: Integer -> Bool

sumeven :: [Integer] -> Integer
sumeven xs = sum [x | x <- xs, even x]</pre>
```

- "Take all x in xs such that x is even"
- The result of a comprehension is another list
 - ▶ We can further consume it with other functions
 - In this case, we use sum

Pattern matching

```
[ expr | pattern <- list ]
heads :: [[a]] -> [a]
heads xs = [y | (y:_) <- xs]</pre>
```

- Only includes those elements which match the pattern
 - ► In this case, non-empty lists

```
> heads [[1,2],[],[3,4,5]]
[1,3]
```

- We can introduce new names, as we do with usual pattern matching
 - In this case, we refer to the head in the result

Multiple clauses

We can have multiple generators and guards

Generators provide every possible combination

Generators and conditions may refer to each other

```
> [(x,y) | x <- [1,2,3], y <- [1,2,3], x <= y]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
> [(x,y) | x <- [1,2,3], y <- [x .. 3]]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]</pre>
```

▶ Problem: Compute all primes $\leq n$

- ▶ Problem: Compute all primes $\leq n$
- 1. A number x is a prime iff ($x \ge 2$ and) it has exactly two factors
- 2. f is a factor of x if the remainder of $\frac{x}{f}$ is zero

- ▶ Problem: Compute all primes $\leq n$
- 1. A number x is a prime iff ($x \ge 2$ and) it has exactly two factors
- 2. f is a factor of x if the remainder of $\frac{x}{f}$ is zero

Good style: divide the problem in parts and refine it

```
primes :: Int -> [Int]
primes n = [ x | x <- [2 .. n], isPrime x ]
  where isPrime x = _</pre>
```


- ▶ Problem: Compute all primes $\leq n$
- 1. A number x is a prime iff ($x \ge 2$ and) it has exactly two factors
- 2. f is a factor of x if the remainder of $\frac{x}{f}$ is zero

Good style: divide the problem in parts and refine it

```
primes :: Int -> [Int]
primes n = [ x | x <- [2 .. n], isPrime x ]
  where isPrime x = length (factors x) == 2
      factors x = _</pre>
```


- ▶ Problem: Compute all primes $\leq n$
- 1. A number x is a prime iff ($x \ge 2$ and) it has exactly two factors
- 2. f is a factor of x if the remainder of $\frac{x}{f}$ is zero

Good style: divide the problem in parts and refine it

Question

```
fizzbuzz :: (Int, Int) -> [Int]
-> ([Int], [Int], [Int])
```

A call of the form fizzbuzz (m, n) xs should return a triple with a list in each element:

- ightharpoonup The first list contains elements of xs divisible by m
- ▶ The second list those divisible by n (and not by m)
- ▶ The third list should contain the rest

Question

```
fizzbuzz :: (Int, Int) -> [Int]
-> ([Int], [Int], [Int])
```

A call of the form fizzbuzz (m, n) xs should return a triple with a list in each element:

- ightharpoonup The first list contains elements of xs divisible by m
- ▶ The second list those divisible by n (and not by m)
- ▶ The third list should contain the rest

Question: can the type be generalized?

- Divide and conquer approach
 - 1. Pick a pivot
 - 2. Partition the elements smaller and larger than the pivot
 - 3. Sort those partitions
 - 4. Put together the list

- ► Divide and conquer approach
 - 1. Pick a pivot
 - ► The first element in the list works
 - 2. Partition the elements smaller and larger than the pivot
 - 3. Sort those partitions
 - 4. Put together the list

```
quicksort [] = []
quicksort (pivot:rest) = undefined
```

- ► Divide and conquer approach
 - 1. Pick a pivot
 - 2. Partition the elements
 - 3. Sort those partitions
 - 4. Put together the list

- Divide and conquer approach
 - 1. Pick a pivot
 - 2. Partition the elements smaller and larger than the pivot
 - 3. Sort those partitions
 - 4. Put together the list

Question

Define replicate using comprehensions

Question

Define replicate using comprehensions

```
replicate :: Int -> a -> [a]
replicate n x = [x | _ <- [1 .. n]]</pre>
```

Recursion

Recursion on natural numbers

Recursion = defining something in terms of itself

```
fac 0 = 1
fac n = n * fac (n - 1)
0 * m = 0
n * m = m + (n - 1) * m
```

- ► A case for 0 or 1
- A recursive case where the value of n is computed from the same function applied to n-1

Does our product work?

```
0 * m = 0
                   -- (1)
n * m = m + (n - 1) * m -- (2)
2 * 4
= -- apply (2)
4 + (2 - 1) * 4
= -- perform substraction
4 + 1 * 4
= -- apply (2) and perform substraction
4 + (4 + 0 * 4)
= -- apply (1)
4 + (4 + 0)
= -- perform additions
```

Recursion can go wrong

No base case

```
fac n = n * fac (n-1) -- (1)
-- No more equations
fac 1
= -- apply (1), what else?
1 * fac 0
= -- apply (1)
1 * 0 * fac (-1)
= -- apply (1)
1 * 0 * (-1) * fac (-2)
= -- apply (1)
```

Recursion can go wrong

Argument does not get smaller

Recursion on Lists

```
length [] = 0
length (_ : xs) = 1 + length xs

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
```


Does our concatenation work?

```
[] ++ ys = ys
                        -- (1)
(x:xs) ++ ys = x : (xs ++ ys) -- (2)
[1, 2] ++ [3, 4]
= -- remove syntactic sugar for [1, 2]
(1:2:[]) ++ [3, 4]
= -- apply (2)
1:((2:[])++[3,4])
= -- apply (2)
1:(2:([]++[3,4]))
= -- apply (1)
1:2:[3,4]
= -- resugar the resulting list
[1, 2, 3, 4]
```


Hutton's recipe for recursion

- 1. Define the type
- 2. Enumerate the cases
- 3. Define the simple (base) cases
- 4. Define the other (recursive) cases
 - ► This part involves most of the thinking
 - ► The main question: can I obtain the value of the function if I know its result for a smaller part?
 - lacktriangle The tail of the list, or n-1 for numbers
- 5. Generalize and simplify
 - Remove duplicate equations
 - Pattern match only as necessary
 - Infer a more general type

Cooking sum

1. Define the type

```
sum :: [Int] -> Int
```

2. Enumerate the cases

```
sum [] = _
sum (x:xs) = _
```

Cooking sum

1. Define the type

```
sum :: [Int] -> Int
```

2. Enumerate the cases

```
sum [] = _
sum (x:xs) = _
```

GHC helps by giving information about what it needs

```
<Sum.hs:2:14>: error:
    • Found hole: _ :: Int
    • In an equation for 'sum': sum [] = _
    <Sum.hs:3:14>: error:
    • Found hole: _ :: Int
    • In an equation for 'sum': sum (x : xs) =
```


Cooking sum

3. Define the simple (base) cases

```
sum [] = 0
```

- 4. Define the other (recursive) cases
 - \blacktriangleright If I know the result of sum xs, can I get sum (x:xs)?
 - Just add the head element to that result!

```
sum (x:xs) = x + sum xs
```

- 5. Generalize and simplify
 - In this case our definition works for any numeric type

```
sum :: Num a => [a] -> a
```

Cooking elem

elem x xs tells you whether x is an element of xs

```
> 1 `elem` [1,2]
True
> 3 `elem` [1,2]
False
> 2 `elem` []
False
```

We usually write eleminfix to make it look like $1 \in [1,2]$

Cooking elem

1. Define the (approximate) type

```
elem :: Int -> [Int] -> Bool
```

2. Enumerate the cases

```
elem x [] = \_ elem x (y:ys) = \_
```

3. Define the simple (base) cases

```
elem x [] = False
```

Cooking elem

- 4. Define the other (recursive) cases
 - ▶ We need to distinguish between x equal to y or not
 - Remember: we cannot repeat a variable in a pattern
 - ▶ If it is, we stop; otherwise, we continue further

```
elem x (y:ys) | x == y = True
| otherwise = elem x ys
```

- 5. Generalize and simplify
 - ▶ We only use (==) to inspect values, so Eq is enough

```
elem :: Eq a => a -> [a] -> Bool
```


take n xs gets the first n elements of list xs, or the entire list if there are less than those

```
> take 2 [1,2,3]
[1,2]
> take 0 [1,2,3]
[]
> take 4 [1,2,3]
[1,2,3]
```

- 1. Define the type
 - ▶ The type of the elements of the list does not matter

```
take :: Int -> [a] -> [a]
```

- 2. Enumerate the cases
 - We can match on both the number and list

```
take 0 [] = _
take 0 (x:xs) = _
take n [] = _
take n (x:xs) = _
```

- 3. Define the simple (base) cases
 - If there are no elements to take, we obtain an empty list

```
take 0 [] = []
take 0 (x:xs) = []
take n [] = []
```

- 4. Define the other (recursive) cases
 - If we have taken 1 element from x:xs, there are only n-1 left to take from xs

```
take n(x:xs) = x : take (n-1) xs
```

4. We have the following until now

```
take 0 [] = []

take 0 (x:xs) = []

take n [] = []

take n (x:xs) = x : take (n-1) xs
```

- 5. Generalize and simplify
 - When the number is 0, the list does not matter
 - If the list is empty, the number does not matter

```
take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
```


Question

Define list difference

```
(\\) :: Eq a => [a] -> [a] -> [a]
```

Return all elements in the first list except if they appear in the second

```
> [1,2] \\ [1]
[2]
> [1,2] \\ [2,3,4]
[1]
> [] \\ [1,2,3]
[]
```

Question

Define list difference

```
(\\) :: Eq a => [a] -> [a] -> [a]
```

Return all elements in the first list except if they appear in the second

```
> [1,2] \\ [1]
[2]
> [1,2] \\ [2,3,4]
[1]
> [] \\ [1,2,3]
[]
```

Hint: use elem to detect if an element appears in the second

Cooking init

init xs gives you all the elements except for the last

```
> init [1,2,3]
[1,2]
> init []
*** Exception: Prelude.init: empty list
```

1. Define the type

```
init :: [a] -> [a]
```

- 2. Enumerate the cases
 - The empty list should yield an error

```
init [] = error "empty list in init"
init (x:xs) = _
```


Cooking init

- Here is the trick, we need to distinguish whether we have just one element in the list – and we are finished – or we need to get more elements
 - We do this by further pattern matching
- 2. Enumerate the cases

```
init (x:[]) = _
init (x:xs) = _
```

3. Define the simple (base) cases

```
init (x:[]) = []
```

4. Define the other (recursive) cases

```
init (x:xs) = x : init xs
```


Universiteit Utrecht

Cooking init

- 5. Generalize and simplify
 - ▶ We can use [x] to match a one-element list
 - lacktriangle We do not care about that single element ightarrow use lacktriangle

```
init :: [a] -> [a]
init [] = error "empty list in init"
init [_] = []
init (x:xs) = x : init xs
```

Cooking sorted

sorted xs returns True if and only if the elements in the list are in ascending order > sorted [1,2,3]

```
True
```

```
> sorted [2,1,3]
```

False

```
> sorted []
```

True

1. Define the type

```
sorted :: [Int] -> Bool
```

2. Fnumerate the cases

```
sorted [] = _
sorted (x:xs) =
```


Cooking sorted

3. Define the simple (base) cases

```
sorted [] = True
```

- 4. Define the other (recursive) cases
 - We need to compare the first and second elements
 - We need further pattern matching
 - If they are in the right relation, we check further

Cooking sorted

5. Generalize and simplify

- ightharpoonup As before, we can use [x] instead of x: []
- ► We are reusing the whole y:ys in the right-hand side
 - We can give it a name using @
 - We avoid matching and rebuilding the list

zip xs ys turns two lists into a list of tuples

```
> zip [1,2] [3,4]
[(1,3),(2,4)]
> zip [1,2] [3,4,5]
[(1,3),(2,4)]
```

If one of the lists runs out of elements, we stop

zip xs ys turns two lists into a list of tuples

```
> zip [1,2] [3,4]
[(1,3),(2,4)]
> zip [1,2] [3,4,5]
[(1,3),(2,4)]
```

If one of the lists runs out of elements, we stop

Try yourself!

1. Define the type

```
zip :: [a] -> [b] -> [(a,b)]
```

2. Enumerate the cases

3. Define the simple (base) cases

Universiteit Utrecht

4. Define the other (recursive) cases

```
zip (x:xs) (y:ys) = (x,y) : zip xs ys
```

- 5. Generalize and simplify
 - If one of the lists is empty, we don't care about the other

Given two sorted lists xs and ys, merge xs ys produces a new sorted list from those elements

▶ This is the basis of a sorting algorithm called MergeSort

```
> merge [1,4] [2,3,5]
[1,2,3,4,5]
> merge [] [2,3,5]
[2,3,5]
```


1. Define the type

```
merge :: [Int] -> [Int] -> [Int]
```

2. Enumerate the cases

```
merge [] [] = _
merge (x:xs) [] = _
merge [] (y:ys) = _
```

▶ In the last case we have to decide which number is larger

```
merge (x:xs) (y:ys)
| x <= y = _
| otherwise = _
```


3. Define the simple (base) cases

```
merge [] [] = []
merge (x:xs) [] = x:xs
merge [] (y:ys) = y:ys
```

- 4. Define the other (recursive) cases
 - Choose the smallest one and merge the rest

5. Generalize and simplify

- ► This function works for any type which can be ordered
- ▶ In the case of an empty list, we just return the other list
- We can give names to complete lists to avoid duplication

Cooking reverse

reverse xs gives the same elements in reverse order

```
> reverse [1,2,3] [3,2,1]
```

1. Define the type

```
reverse :: [a] -> [a]
```

2. Enumerate the cases

```
reverse [] = _
reverse (x:xs) = _
```


Cooking reverse

3. Define the simple (base) cases

```
reverse [] = []
```

- 4. Define the other (recursive) cases
 - Suppose you get [1,2,3], which you split as 1 and [2,3]
 - ▶ The reverse of [2,3] is [3,2], where do you put the 1?
 - At the end of the reversed list!

```
reverse (x:xs) = reverse xs ++ [x]
```


Problem with reverse reverse

- ► This definition is very inefficient
 - Each time you call (++), you need to traverse the whole list, since the new element goes at the end
 - lacktriangle If the list has n elements, the amount of steps is

$$n-1+n-2+n-3+...+1=\frac{n\cdot(n-1)}{2}=\mathcal{O}(n^2)$$

Solution: use an accumulator

- There is a standard technique to solve this problem: using an accumulator
 - Introduce a local definition with an additional parameter (the accumulator)
 - **invariant:** accumulator contains solution for all elements seen so far.
 - 2. Initialize the accumulator in the main call
 - 3. Follow Hutton's recipe, but
 - Do not pattern match on the accumulator
 - Return the accumulator in the base case
 - Update the accumulator in the recursive steps

Define sum using an accumulator

Define sum using an accumulator

```
sum [1,2,3,4] = 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]
= 1 + 2 + 3 + sum [4]
= 1 + 2 + 3 + 4 + sum []
```

Define sum using an accumulator

```
sum [1,2,3,4] = 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]
= 1 + 2 + 3 + sum [4]
= 1 + 2 + 3 + 4 + sum []
```

- ▶ Observation: Always of the form 'a + sum xs'
- ▶ Introduce the function sum' that has as invariant:

```
sum' acc xss = acc + sum xs
```

Implementing sum'

▶ invariant: 'sum' acc xs = acc + sum xs

Implementing sum'

▶ invariant: 'sum' acc xs = acc + sum xs Sum' :: Int -> [Int] -> Int sum' acc [] = sum' acc (x:xs) =Invariant tells us that: Sum' :: Int -> [Int] -> Int sum' acc [] = acc sum' acc (x:xs) = sum' (acc + x) xs

Implementing sum'

Universiteit Utrecht

```
▶ invariant: 'sum' acc xs = acc + sum xs
Sum'
    :: Int -> [Int] -> Int
sum' acc [] =
sum' acc (x:xs) =
Invariant tells us that:
          :: Int -> [Int] -> Int
Sum'
sum' acc [] = acc
sum' acc (x:xs) = sum' (acc + x) xs
SO:
sum :: [Int] -> Int
sum xs = sum' 0 xs
```

Define sum using an accumulator.

We can also apply η -reduction and use a case expression.

reverse with an accumulator

 Introduce a local definition with an additional parameter to hold the interim result

```
reverse xs = _
where
    reverse' :: [a] -> [a] -> [a]
    reverse' acc xs = _
```

- 2. Initialize the accumulator in the main call
 - When we start, we haven't accumulated any element yet

```
reverse xs = reverse' xs []
where
  reverse' acc xs = _
```

reverse with an accumulator

- 3. Follow Hutton's recipe, but
 - ▶ Do not pattern match on the accumulator
 - ▶ Return the accumulator in the base case
 - Update the accumulator in the recursive steps

```
reverse xs = reverse' xs []
where
  reverse' acc [] = acc
  reverse' acc (x:xs) = reverse' (x:acc) xs
```


reverse with an accumulator

```
reverse xs = reverse' xs []
where
  reverse' acc [] = acc
  reverse' acc (x:xs) = reverse' (x:acc) xs
```

Cooking initial segments

inits $\,xs$ returns the initial segments of xs, that is, all the lists which are prefixes of the original one

```
> inits [1,2,3]
[[],[1],[1,2],[1,2,3]]
> inits []
[[]]
```

1. Define the type

```
inits :: [a] -> [[a]]
```

2. Enumerate the cases

```
inits [] = _
inits (x:xs) = _
```


Cooking initial segments

3. Define the simple (base) cases

```
inits [] = [[]]
```

- 4. Define the other (recursive) cases
 - Suppose you have [1,2,3], that is, 1 : [2,3]
 - ► The initial segments of [2,3] are [[],[2],[2,3]], what do you do with the 1?
 - ► If you put the 1 in front of every list, you get [[1],[1,2],[1,2,3]]
 - We are almost there! We are just missing the extra empty list at the front

```
inits (x:xs) = [] : [x:rs | rs \leftarrow inits xs]
```


Cooking final segments

tails xs returns the final segments of xs, that is, all the lists which are suffixes of the original one

```
> tails [1,2,3]
[[1,2,3],[2,3],[3],[]]
> tails [2.3]
[ [2,3],[3],[]]
> tails [3]
              [3],[]]
tails :: [a] -> [[a]]
tails [] = [[]]
tails ts@(_:xs) = ts : tails xs
```


Final segments using initial segments

Final segments of xs seem related to initial segments of reverse xs

```
> tails [1,2,3]
[[1,2,3],[2,3],[3],[]]
> inits [3,2,1]
[[],[3],[3,2],[3,2,1]]
```

- ▶ There are two problems with the second result
 - 1. Each of the inner lists is reversed
 - 2. The whole outer list is reversed
- Let's fix this and give an alternative definition of tails

Final segments using initial segments

► To reverse each of the inner lists we use a list comprehension

```
> [reverse i | i <- inits [3,2,1]] [[],[3],[2,3],[1,2,3]]
```

This leads to this final definition

Revisit Fizzbuzz

► Write fizzbuzz using direct recursion; test if some element is divisible by n (and by m) only once.

```
fizzbuzz :: (Int, Int) -> [Int]
-> ([Int], [Int], [Int])
```

A call of the form fizzbuzz (m, n) xs should return a triple with a list in each element:

- ightharpoonup The first list contains elements of xs divisible by m
- The second list those divisible by n (and not by m)
- ▶ The third list should contain the rest

Revisit Fizzbuzz

```
fizzbuzz (m,n) xs = fb xs
 where
   fb[] = ([],[],[])
   fb (x:xs) = case (x \mod m == 0)
                    x \mod n == 0
                    ) of
                 (True, ) \rightarrow (x:ms,ns, rs)
                 ( , True) -> (ms, x:ns,rs)
                 (_ , _ ) -> (ms, ns, x:rs)
     where
        (ms,ns,rs) = fb xs
```

Final words

Defining recursive functions is like riding a bicycle: it looks easy when someone else is doing it, may seem impossible when you first try to do it yourself, but becomes simple and natural with practice.

– From "Programming in Haskell"

- On the other hand, don't get too attached to recursion
- Many of these examples have better implementations using higher-order functions
 - Which happens to be the topic for next day!