Clusterability

1 Problem Statement

1.1 Notation

For any set $B \subset X$, we denote c(B) as the center of B which is defined as the average of points in B. Radius of the set B is defined as $r(B) = \max_{x \in B} |x - c(B)|$. For a given partitioning of set \mathcal{X}

Definition 1 (Niceness assumption). Given a set \mathcal{X} , we say that a partition of \mathcal{X} , $P = \{P_1, ..., P_k\}$ is (λ, ν) -nice if the following conditions hold. There exist sets $B = B_1, ..., B_k \subset \mathcal{X}$ such that for every $i \in [k]$, there exists $j_i \in [k]$ such that $B_i \subset P_{j_i}$ and

- Separation: For all $i, j \in [k], |c(B_i) c(B_j)| \ge \nu \cdot \max\{r(B_i), r(B_j)\}$
- Sparse Noise: For any ball $B \subset \mathcal{X}$ for which $r(B) \leq \lambda \cdot \max_{i \in [k]} r(B_i), |B \cap \{X \setminus \bigcup_{i \in [k]} B_i\} \leq \min_{i \in [k]} |B_i|$.

Goal: Gievn the set \mathcal{X} and the value k, our goal is to design an algorithm that do k-clustering $C = \{C_1, ..., C_k\}$ on set \mathcal{X} such that for any (λ, ν) -nice partitioning P with slusters $B_1, ..., B_k$ we have that $C|B = B_1, ..., B_k$

2 Algorithm

2.1 Based on the knowledge of $\min |B_i|$

The algorithm gets as input \mathcal{X} and the number of points in the smallest cluster min $|B_i| = t$ (say). This algorithm works in two phases.