Heurísticas

Jorge Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile

Objetivos

- Comprender los conceptos de heurísticas consistentes y admisibles
- Introducir el algoritmo IDA*

Heurísticas Consistentes

Definición (Heurísticas Consistentes)

Una heurística se dice consistente ssi

- h(s) = 0, para todo $s \in G$.
- $h(s) \le c(s, s') + h(s')$, para todo vecino s' de s.

Teorema

Si h es consistente, entonces h es admisible.

Teorema

Cuando A* es usado con una heurística admisible, cuando A* expande un nodo v, g(v) contiene el costo del camino óptimo desde s_0 a v.

El anterior teorema tiene un potencial impacto en la forma de polementar A*.

La mayor es la mejor

Teorema

Si h_1 y h_2 son consistentes y $h_1 \ge h_2$, entonces A*, usado con h_2 , expande todos los nodos que A* expande cuando es usado con h_1 .

Como conclusión tenemos que h_1 es "mejor" que h_2 en la práctica.

Encontrando Heurísticas Admisibles

- Una estrategia simple: relajar el problema.
- La heurística es el costo de resolver el problema relajado.
- Ejemplo:

Estado Inicial

Objetivo

- Los operadores respetan las siguientes restricciones:
 - 1 Un azulejo sólo se puede mover a un cuadrado vecino.
 - 2 Un azulejo sólo se puede mover a un cuadrado desocupado.

Heurísticas en Nuestro Ejemplo

Si relajamos ambas restricciones:

 h_1 = "número de azulejos en la posición incorrecta"

■ Si relajamos la restricción 2:

 h_2 = "suma de la distancia manhattan de cada azulejo" ¿cuál es mejor?

Heurísticas en Nuestro Ejemplo

Si relajamos ambas restricciones:

 h_1 = "número de azulejos en la posición incorrecta"

■ Si relajamos la restricción 2:

 $h_2 =$ "suma de la distancia manhattan de cada azulejo"

¿cuál es mejor?

	Search Cost		
d	IDS	$A^*(h_1)$	$A*(h_2)$
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	364404	227	73
14	3473941	539	113
16	_	1301	211
18	_	3056	363
20	_	7276	676
22	_	18094	1219
24	_	39135	1641

Sacrificando Optimalidad Gradualmente

- A* con pesos (weighted A*) es una buena opción cuando se está dispuesto a sacrificar optimalidad para obtener un mejor rendimiento.
- Consiste en usar A* con la siguiente función de evaluación

$$f(n) = g(n) + w \cdot h(n),$$

con $w \ge 1$.

Teorema

Si h es admisible, weighted A* encuentra una solución cuyo costo es a lo más w veces el óptimo.

En la práctica encuentra soluciones mejores.

Iterative Deepening A* – IDA*

- Algoritmo similar a A* pero mucho más eficiente en memoria
- Realiza una serie de búsquedas usando DFS.
- Se poda una rama cuando se excede un límite (threshold) de costo.
- El threshold inicial es el valor-h del nodo raíz.

Pseudo-code for IDA* (Edelkamp, 2011)

/Users/jabaier/cursos/search/book/ida01_edelkamp.pdf

Pseudo-code for IDA* (Edelkamp, 2011)

/Users/jabaier/cursos/search/book/ida02_edelkamp.pdf

Objetivos

- Comprender los conceptos de heurísticas consistentes y admisibles
- Introducir el algoritmo IDA*

