Pays : CamerounAnnée : 2015Session : normaleSérie : BAC, séries D et TIDurée : 4 hCoefficient : 4

Exercice 1

On considère l'application t de \mathbb{C} dans \mathbb{C} définie par : $t(z) = 9z^4 - 24z^3 + 50z^2 - 24z + 41$.

- **1.** Montrer que si z_0 est une racine de t, alors $\overline{z_0}$ est aussi une racine de t.
- 2. Vérifier que i est une racine de t et en déduire une autre racine de t.
- **3.** Déterminer trois nombres complexes a,b et c tels que : $\forall z \in \mathbb{C}, \ t(z) = (z^2 + 1)(az^2 + bz + c)$.
- **4.** Résoudre dans \mathbb{C} l'équation t(z) = 0.
- **5.** Le plan complexe est rapporté à un repère $(O; \vec{u}, \vec{v})$ (unité graphique : 3 cm).

On désigne par A, B, C et D les points d'affixes respectives $z_A = -i$, $z_B = i$, $z_C = \frac{4}{3} + \frac{5}{3}i$

et
$$z_{\rm D} = \frac{4}{3} - \frac{5}{3}i..$$

- a) Placer les points A, B, C et D.
- b) Montrer que $\frac{z_C z_A}{z_D z_A} \in i\mathbb{R}$ et $\frac{z_C z_B}{z_D z_B} \in i\mathbb{R}$ où $i\mathbb{R}$ est l'ensemble des imaginaires purs.
- c) En déduire la nature exacte des triangles ACD et CBD.
- d) Montrer que les points A, B, C et D appartiennent à un même cercle dont on précisera le centre et le rayon.

Exercice 2

Une urne contient 6 jetons rouges et 4 jetons jaunes. Un jeu consiste à tirer simultanément 2 jetons de l'urne. Si les jetons sont de même couleur, le joueur gagne 1 000 F CFA. S'ils sont de couleurs différentes, alors le joueur perd 1 000 F CFA.

- **1.** *a*) Calculer la probabilité d'obtenir deux jetons de même couleur.
- b) Calculer la probabilité d'obtenir deux jetons de couleurs différentes.
- **2.** On note X la variable aléatoire qui à chaque tirage de deux jetons associe le gain ou la perte du joueur.
- a) Donner les différentes valeurs possibles de X.
- b) Déterminer la loi de probabilité de X.
- c) Calculer l'espérance mathématique E(X) et la variance V(X) de X.

Problème

Partie A

On considère l'équation différentielle (E) : y''-4y=16x+16.

- **1.** Résoudre l'équation homogène (E') associée à (E) : y''-4y=0.
- **2.** Déterminer les réels Γ et S tels que le polynôme $p(x) = \Gamma x + S$ soit une solution particulière de (E).

- 3. Montrer qu'une fonction f est solution de (E) si et seulement si f p est solution de (E').
- 4. En déduire toutes les solutions de (E).
- 5. Déterminer parmi ces solutions celle qui vérifie les conditions f(0) = 4 et f'(0) = -4.

Partie B

On considère la fonction g définie sur \mathbb{R} par : $g(x) = e^{2x} + 3e^{-2x} - 4$.

- 1. Montrer que pour tout nombre réel x, $g(x) = e^{-2x} (e^{4x} 4e^{2x} + 3)$.
- **2.** Étudier le signe de g(x).
- **3.** On considère sur \mathbb{R} la fonction h définie par : $h(x) = \frac{1}{2}e^{2x} \frac{3}{2}e^{-2x} 4x$.
- a) Montrer que pour nombre réel x, $h(x) = e^{2x} \left(\frac{1}{2} \frac{3}{2} e^{-4x} 4x e^{-2x} \right) = e^{-2x} \left(\frac{1}{2} e^{4x} \frac{3}{2} 4x e^{2x} \right)$.
- b) Calculer la limite de h en et en + .
- c) Montrer que pour tout x de \mathbb{R} , h'(x) = g(x).
- d) En déduire le tableau de variations de h.
- e) Montrer que l'équation h(x) = 0 admet une seule solution réelle r telle que $\in]1; 2[$.
- f) Construire la courbe représentative (\mathscr{C}_h) de la fonction h dans le plan rapporté à un repère orthonormé d'unité 3 cm sur les axes.
- **4.** Déterminer l'aire de la partie du plan délimitée par la courbe (\mathcal{C}_h), l'axe des abscisses et les droites d'équations x = 0 et $x = \frac{1}{2} \ln 3$.