Sum of 3 Squares Theorem, Hasse Principle, Banach-Tarski Paradox

John D Mangual

Scaling back, a much more ambitious project, we try to address three problems from number theory to measure theory:

- Lagrange showed $n=a^2+b^2+c^2$ iff $n \neq 4^a(8k+7)$
- One quicky way to solve this eq is to solve in congruences:
 - ullet Solve equation in 2-adic numbers $n=a^2+b^2+c^2$, so $n\not\equiv 0$ $\mod 4$
 - Solve $n = a^2 + b^2 + c^2 \mod p$ for all p > 2
 - ullet Solve $n=a^2+b^2+c^2$ in $\mathbb R$ (this just says n>0)

Hasse-Minkowski principle tells us this is sufficient, but why does Hasse-Minkowski principle work at all?

Case
$$n = a^2 + b^2 + c^2$$

Reading's Serre's *Course on Arithmetic* we can solve in Q:

$$a^2 + b^2 + c^2 - n d^2 = 0$$

We are able to find an $x \neq 0$ in \mathbb{Q} solving two quadratic eqs:

$$a^2 + b^2 = x = c^2 - n d^2$$

This works because $x \in \mathbb{Q}$ not just $x \in \mathbb{Z}$, we'd better write

$$a^{2} + b^{2} - x e^{2} = c^{2} - n d^{2} - x f^{2} = 0$$

Once we have solved for $x \in \mathbb{Q}$ we solve $(a, b, c), (d, e, f) \in \mathbb{Q}^3$

• • • This is reduction from 4 variables to 3 variables

The only case $a^2 + b^2 + c^2 - n d^2 = 0$

Reading's Serre's Course on Arithmetic we can solve in Q

Reduce 4 variables to 3...

Why is solving all congruences $n = a^2 + b^2 + c^2 \mod p$ enough?

The only case $a^2 + b^2 + c^2 - n d^2 = 0$

Reading's Serre's Course on Arithmetic we can solve in Q

Reduce 4 variables to 3...

Why is solving all congruences $n = a^2 + b^2 + c^2 \mod p$ enough?

The only case $a^2 + b^2 + c^2 - n d^2 = 0$

Serre's Course on Arithmetic is written a little bit out of squence:

Let $f = x^2 + y^2 + z^2 - n w^2$ and we are solving f = 0 in \mathbb{Q} .

For any prime² $p \in P$ we can solve in \mathbb{Q}_p two equations at once³:

$$x_p = x^2 + y^2$$
 and $x_p = z^2 - n w^2$

This can be writen in **Hilbert symbols** as a shorthand:

$$(x, -ab)_p = (a, b)_v$$
 and $(x, -cd)_v = (c, d)_v$

Then, the field of fractions $\mathbb Q$ of the integers $\mathbb Z$ is exceedingly rich, and we can find a single $x \in \mathbb Q$ solving all these Hilbert equations at once, for all $p \in P$.

 $^{^1{\}mbox{Sorry}}$ for the variable change, to make it look more like Serre.

²Think of p = 12721 or 32323 or 70507 or 94949 etc.

³Therefore $n = x^2 + y^2 + z^2$ solves both sum of two squares and Pell's equation simultaneously.

Merging solutions over \mathbb{Q}_p to solutions over \mathbb{Q}

There is a single $x \in \mathbb{Q}$ such that for every prime $p \in P$

$$ax_1^2 + bx_2^2 - xz^2 = 0$$

can be solved $(x_1, x_2, z) \in \mathbb{Q}_p^3$. There is a single $(x_1, x_2, z) \in \mathbb{Q}$

solving (*) over the rational numbers. Similarly for $x_3^2-nx_4^2-xw^2$

Therefore we can solve f = 0 over \mathbb{Q}

⁴Please excuse all the quantifiers here? You deserve an better explanation! It's just that Serre is a genius.

Sweeping Information under the Rug

In the process of doing our Hilbert symbol calculation we are likely to have used⁵:

- Dirichlet's prime number theorem in arithmetic sequences $|P\cap (a\,\mathbb{Z}+b)|=\infty$.
- Quadratic Reciprocity $(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$

I don't understand diophanine approximation or unique factorization well enough to understand all the Hilbert symbols used.

Bonus problem show there exists $x \in \mathbb{Z}$ such that Pell equation and sum of two squares can both be solved⁶ (over \mathbb{Z})

$$x_1^2 + x_2^2 = x$$
 and $-x_3^2 + n x_4^2 = x$

⁵After reading the much shorter 3-pages proof by Ankeny using **Geometry of Numbers** I decided to read this for context

⁶There could be enough "room" since we have both $x \in \mathbb{Z}$ and also $(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4$ but can we satisfy constraints on n for all primes $p \in P$?

Strong Approxmtion⁷

Let p,q be two prime numbers then $\mathbb{Z}/pq\mathbb{Z}\simeq\mathbb{Z}/p\mathbb{Z}\oplus\mathbb{Z}/q\mathbb{Z}$

It is also very reasonable that $\mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_k\mathbb{Z}$ as long as m_1, \ldots, m_k are pairwise relatively prime.

Let S be a finite subset of primes. Then $\mathbb{Q} \to \prod_{p \in S} \mathbb{Q}_p$ is dense.

Something like this is sure to work when S is infinite (or S=P), and this object will be called \mathbb{A} .

* Let a_i with $i \in I$ be some numbers. Then we can solve $(a_i, x)_p = \varepsilon_{i,p}$ for any sequence⁸ of spins $\varepsilon = \pm 1$.

⁷Possibly, weak approximation...

⁸this notation is truly dreadful and unreadable. And this statement is **false** as written. If you multiply over all primes $(a_i, x)_p = 1$. Almost all of the spins $\varepsilon_{i,p} \equiv 1$. These equations should be solvable for each prime p, $(a_i, x_p) = \varepsilon_{i,p}$. Between these three we have used Dirichlet's theorem on primes in arithmetic progressions.

References

(1) JP Serre Course on Arithmetic Springer-Verlag