

Lezione 1:

Introduzione ai sistemi di acquisizione e misura di segnali e dati biomedici

Misure e Acquisizione di Dati Biomedici

Sarah Tonello, PhD
Dipartimento di ingegneria dell'informazione
Universita di Padova

OUTLINE

- Esempi di sistemi di acquisizione e misura di dati biomedici: differenze e tratti in comune
- Classificazione dei segnali
- Caratteristiche in tempo e frequenza di segnali deterministici e stocastici
- Concetto di digitalizzazione dei segnali

Grandezze metrologiche: Precisione, Accuratezza e Incertezza di misura

Quando sentite
"Sistemi di acquisizione di segnali e dati biomedici"
quali sono i primi esempi che vi vengono in mente?

Tante differenti sorgenti e principi

...ma uno schema (quasi) comune!

di trasduzione....

N.B. Necessario conoscere molto bene le caratteristiche della sorgente e come la si vuole utilizzare, misurare, salvare per indirizzare al meglio il design del sistema

DEL SENSORE

CONVERSIONE E

ACQUISIZIONE

MEMORIA

VISUALIZZAZIONE E TRASMISSIONE

N.B. Necessario <u>conoscere molto bene le caratteristiche della</u> <u>sorgente e come la si vuole utilizzare</u>, misurare, salvare per indirizzare al meglio il design del sistema

Esempio: EMG vs PPG

Forte differenza tra segnali stocastici vs pseudo-deterministici, tra segnali molto ricchi in frequenza, tra la necessità di salvare tutto il segnale o solo dei parametri quantitativi specifici

OUTLINE

- Esempi di sistemi di acquisizione e misura di dati biomedici: differenze e tratti in comune
- Classificazione dei segnali
- Caratteristiche in tempo e frequenza di segnali deterministici e stocastici
- > Concetto di digitalizzazione dei segnali

Grandezze metrologiche: Precisione, Accuratezza e Incertezza di misura

Segnali biomedici come serbatoi di informazione SEGNALI ELETTRICI

- Funzioni del tempo che rappresentano il variare di grandezze fisiche (massa, pressione, temperatura, velocità....).
- sorgenti che contengono
 l'informazione da trasmettere

grandezze elettriche (tensione o corrente) che varia in funzione del tempo secondo una legge matematica I(t), V(t), riportando peculiarità e caratteristiche del segnale originario

Trasduttori, sono dispositivi che acquisiscono in ingresso una grandezza fisica ed esprimono in uscita una grandezza elettrica cui valore è funzione della grandezza di ingresso.

elettrica

Segnali come serbatoi di informazione

SEGNALI

SEGNALI ELETTRICI

- Funzioni del tempo che rappresentano il variare di grandezze fisiche (massa, pressione, temperatura, velocità....).
- Sono le **sorgenti** che contengono l'informazione da trasmettere

TRASDUTTORI

grandezze elettriche (tensione o corrente) che varia in funzione del tempo secondo una legge matematica I(t), V(t), riportando peculiarità e caratteristiche del segnale originario

CANALE DI TRASMISSIONE

(Bluetooth, Cavo, Radio, WI-FI, LoRaWan..)

SISTEMA DI ACQUISIZIONE

- «supporto fisico» su cui viaggia l'informazione
- Essenziali per trasmettere, elaborare e manipolare le informazioni

Esempi di tipologie di segnali biomedici

Segnali deterministici

Segnali "quasi" deterministici

Segnale deterministico: forma d'onda definita matematicamente, spesso periodica. (Es. Tensione di rete, potenziali evocati, serie di impulsi)

Segnale «quasi» deterministico: segnale deterministico con alcuni parametri moderatamente e lentamente variabili (Es. ECG,PPG, MUAPT)

Principali informazioni utili a descriverli:

- Periodo/specifiche durate di eventi
 - Spettro in frequenza
 - Ampiezza di Picco
 - Valore efficace
 - Potenza

Segnale casuale (stocastico): non ha una forma d'onda e una precisa descrizione matematica. Ha una descrizione statistica in termini di probabilità di essere maggiore o minore di un dato valore in un dato istante (Es. EEG,EMG)

Principali informazioni utili a descriverli:

- Spettro in frequenza

- Features specifiche in tempo e frequenza (es. Valore efficace, Varianza del segnale nel tempo, media o mediana dello spettro

Lo stesso segnale può essere descritto anche nel dominio delle frequenze S(f), cosa che risulta essere spesso più utile per particolari tipologie

Rappresentando il segnale come <u>funzione</u> <u>s(t) del tempo</u>, è possibile modellare il comportamento del segnale ed analizzarlo matematicamente

Lo stesso segnale può essere descritto anche nel dominio delle frequenze S(f), cosa che risulta essere spesso più utile per particolari tipologie

- → Frequenze
- → Ampiezze delle componenti (lineari o dB)
- → Potenza
- → Energia

In caso di spettro discreto...

→ Granularità in frequenza (Δf)

Rappresentando il segnale come <u>funzione</u> <u>s(t) del tempo</u>, è possibile modellare il comportamento del segnale ed analizzarlo matematicamente

- → Periodo
- \rightarrow Fase
- → Ampiezza picco- picco
- → Valore efficace
- → Potenza
- → Energia

In caso di campionamento...

→ Intervallo di campionamento (Δt)

Lo stesso segnale può essere però descritto nel **dominio delle frequenze S(f)**, cosa che risulta essere spesso più utile per particolari tipologie

Rappresentando il segnale come <u>funzione</u> <u>s(t) del tempo</u>, è possibile modellare il comportamento del segnale ed analizzarlo matematicamente

Tempo (s)

- → Frequenze
- → Ampiezze delle componenti (lineari o dB)
- → Potenza
- → Energia

In caso di spettro discreto...

→ Granularità in frequenza (Δf)

Questo è possibile ricordando l'uguaglianza nota come <u>TEOREMA DI PARSEVAL</u> che stabilisce <u>l'equivalenza</u> delle due rappresentazioni (dominio del tempo e della frequenza) dal punto di vista energetico. La potenza, infatti, è calcolabile in modo simile in entrambi i

$$\int_{-\infty}^{+\infty} x^2(t)dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

- → Periodo
- \rightarrow Fase
- → Ampiezza picco- picco
- → Valore efficace
- → Potenza
- → Energia

In caso di campionamento...

→ Intervallo di campionamento (Δt)

ESEMPIO PRATICO: Utilita' di entrambi i domini nell'analisi del segnale EMG

→ Oltre ad estrarre le features nel tempo, conoscere contenuto in frequenza aiuta a capire come è meglio elaborare il segnale in relazione con i disturbi e le interferenze, per evitare perdita del segnale

Caratteristiche quantitative segnali

- Valore picco (A): livello massimo del segnale
- Valore picco-picco (p-p): distanza tra picco massimo e picco minimo
- **Fase** (φ): misura della posizione relativa all'origine del segnale in un dato istante
- Periodo o lunghezza d'onda (T): intervallo temporale della periodicita', distanza tra due punti uguali della forma d'onda
- Frequenza (f): inverso del periodo
- Pulsazione ($\omega = 2\pi f$) $f = \frac{1}{T}$ in Hertz: 1Hz = $\frac{1}{\sec}$
- Valore efficace o <u>ampiezza quadratica media (Vrms</u>
 <u>o Veff)</u> di un segnale periodico è il valore che avrebbe
 un segnale costante con uguale potenza media.

Spoiler... ESE 1 MATLAB

OBIETTIVO: Simulare una sinusoide con Ampiezza, Frequenza e Fase assegnate

```
%% DEFINIZIONE DEI PARAMETRI E DI TW
V0=2; %Volt, valore di picco
Phi0=0; %s, valore della fase
f0=5; %Hz, valore dellla frequenza della sinusoide
Tw=6; %s, larghezza della finestra di osservazione
% CREAZIONE ASSE DEI TEMPI CONTINUO (PER ORA
IGNORIAMO FREQUENZA DI CAMPIONAMENTO)
t=linspace(0,Tw,10000);
% Notare che questo comando realizza un vettore con
punti equispaziati di Tw/N-1=0.2/9999=0.00002 s,
corrispondente quindi a un campionamento di circa
50000 Hz, ben 1000 volte la frequenza del segnale:
tale numero è più che sufficiente per simulare
un'acquisizione continua
%% CREAZIONE DEL SEGNALE CONTINUO
V=V0*sin(2*pi*f0*t+Phi0);
                        Pulsazione (\omega=2\pi f)
figure
plot(t, V, 'k');
xlabel('Time (s)');
```

ylabel('Amplitude (V)');

Valore efficace o RMS

Valore efficace o <u>ampiezza quadratica media (Vrms o Veff)</u> di un segnale periodico è il valore che avrebbe un segnale costante con uguale potenza media.

POTENZA MEDIA

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

Considerando una corrente/tensione alternata:

$$P=A_{picco}^2/2$$

Considerando una corrente/tensione continua:

$$P=A_{cont}^2$$

I due segnali alternato e continuo darebbero la stessa potenza media se la seguente relazione viene rispettata:

$$A_{cont} = A_{picco} / \sqrt{2}$$

 $A_{picco}/\sqrt{2}$ si definirà quindi valore efficace dell'alternata: per tale valore le due correnti o tensioni saranno equivalenti dal punto di vista energetico

Spoiler... ESE 1 MATLAB

OBIETTIVO: Calcolo del Valore efficace di una sinusoide simulata in Matlab

Continuo

$$V_{RMS} = \sqrt{\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} v^2(t) dt}$$

Discreto

$$V_{RMS} = \sqrt{\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} v^2(t) dt}$$
 $V_{RMS} = \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} v^2(nT_s)}$

VALORE EFFICACE CALCOLATO SUI CAMPIONI DEL SEGNALE CAMPIONATO, ATTRAVERSO LA FORMULA VISTA DA TEORIA

V RMS cont= sqrt(1/10000*(sum(V.*V))); hold on

```
plot(t, V RMS cont*ones(1,length(t)),'
r');
text (5, 1, '2/2/surd(2)');
legend('signal','value RMS signal');
```


Valore RMS in segnali deterministici vs non deterministici

DETERMINISTICI (es. ECG, PPG, MUAPT...)

- → Sono anche definiti **predicibili**, caratterizzati da una forma d'onda ben definita con un proprio periodo
- → Non ha senso caratterizzarli con parametri probabilistici (deviazione standard o varianza) poichè è ben noto come il segnale evolverà nel tempo e quindi non serve ricorrere a stime di quanto i campioni siano dispersi attorno alla media.
- → La formula per il calcolo del **loro valore efficace** (il più generico possibile) è:

$$V_{RMS} = \sqrt{\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} v^2(t) dt}$$

STOCASTICI (es. EEG, EMG)

→ Non sono
predicibili, quindi
l'unico modo che
abbiamo per
caratterizzarli è con
parametri
probabilistici (media,
deviazione standard,
varianza) poichè a
priori non si conosce

l'evoluzione nel tempo e quindi si può solo descrivere in un intervallo di osservazione specifico attorno a che valore medio i campioni varino e quanto siano dispersi attorno alla media.

→ La formula per il calcolo del loro valore efficace deve tenere conto del fatto che perde significato il concetto di periodo di ripetizione ma avremo piuttosto un intervallo di osservazione compreso tra T1 e T2.

$$X_{RMS} = \sqrt{rac{1}{T_2 - T_1} \int_{T1}^{T2} x(t)^2 dt}$$

Caratteristiche utili in segnali non deterministici

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N-1} \sum_{k=0}^{N-1} (x[k] - x)^2} \quad = \quad X_{RMS} = \sqrt{\frac{1}{N} (x[1]^2 + x[2]^2 + \ldots + x[N]^2)}$$

$$\sigma_x^2(t) = P_x(t) - \mu_x^2(t)$$

Segnale al quadrato

La radice quadrata del valore quadratico medio e' il Root Mean Square value (RMS value) o valore efficace.

RMS = deviazione standard della distribuzione statistica di ampiezza.

...in segnali non deterministici

Deviazione standard Assume il significato di valore efficace o root mean square

Assume il significato

Varianza

di **potenza** e quindi di quadrato

del valore

efficace

ESEMPIO PRATICO: Utilità RMS per segnale biomedico stocastico (EMG)

Un particolare di segnale stocastico: il rumore

- → insieme di segnali, in tensione o corrente elettrica, <u>imprevisti e indesiderati</u> che si sovrappongono al **segnale utile**, trasmesso o da elaborare, tipicamente presente sul canale di comunicazione e sui dispositivi di ricezione/elaborazione.
- → provoca **perdita d'informazione** o **alterazione del messaggio** trasmesso

Esempio:

Electrocardiogram recording

Fondamentali strategie di filtraggio e algoritmi di de-noising per estrarre informazioni desiderate

Un particolare di segnale stocastico: il rumore

- → insieme di segnali, in tensione o corrente elettrica, <u>imprevisti e indesiderati</u> che si sovrappongono al **segnale utile**, trasmesso o da elaborare, tipicamente presente sul canale di comunicazione e sui dispositivi di ricezione/elaborazione.
- → provoca **perdita d'informazione** o **alterazione del messaggio** trasmesso
- → varie classificazioni possibili in base al contenuto in frequenza, alla fonte che lo genera, alle distribuzioni statistiche

RUMORE BIANCO → uguale contributo alle diverse frequenze,

RUMORE COLORATO → che presenta specifiche caratteristiche in frequenza,

con un contributo più significativo ad alcune frequenze

RUMORE TEMPO VARIANTE → che presenta caratteristiche influenzate dalla

variabile tempo

→ Spesso utilizzato grazie alle sue caratteristiche non deterministiche per eccitare in modo casuale sistemi o filtri e valutarne la risposta

Il concetto di rapporto segnale-rumore (Signal-to-Noise Ratio SNR)

è un <u>numero puro o adimensionale</u> che esprime quanto il segnale sia più potente del rumore nel sistema considerato.

$$SNR = \frac{P_{segnale}}{P_{rumore}} \quad \text{con} \quad 0 \leq SNR < \infty$$

> Spesso espresso in **Decibel (dB)**

Utilizzando le **potenze**:

$$SNR \text{ (dB)} = 10 \log_{10} \left(\frac{P_{S}}{P_{N}} \right)$$

Utilizzando le tensioni efficaci:

$$SNR (dB) = 20 \log_{10} \left(\frac{V_S}{V_N} \right)$$

Equivalenza tra le due è data dalla proprietà: $log_{10}(x^2)=2log_{10}(x)$

L0 Log X	X
100	10000000000
90	1000000000
80	100000000
70	10000000
60	1000000
50	100000
40	10000
30	1000
20	100
10	10
0	1
-10	0.1
-20	0.01
-30	0.001
-40	0.0001
-50	0.00001
-60	0.000001
-70	0.0000001
-80	0.00000001
-90	0.000000001
-100	0.0000000001
Dannanta tua	dD (Leavy) a il val

Rapporto tra dB (LogX) e il valore assoluto dell'elemento misurato

Segnali analogici e digitali

Segnale analogico: Funzione del tempo definita su di un insieme continuo di valori.

Segnale digitale: Funzione del tempo che può assumere solo un insieme discreto di valori.

Se questo insieme è costituito da due soli valori, il segnale viene definito binario.

Spoiler... ESE 1 MATLAB

```
%% CREAZIONE DELL'ASSE DEI TEMPI E SEGNALE CAMPIONATO
fs=80; %Hz
ts=1/fs; %s, intervallo di campionamento
N sample=round(Tw/ts);
% il comando round arrotonda al numero intero più vicino. In questo
caso restituirà il numero di campioni acquisiti nella finestra di
osservazione
t sample=[0:N sample-1]*ts;
% poichè i campioni saranno N sample, partendo da O è necessario
porre come limite superiore N sample-1, altrimenti la lunghezza del
vettore sarebbe N sample+1
%% CREAZIONE DEL SEGNALE CAMPIONATO
V SAMPLE=V0*sin(2*pi*f0*t sample+Phi0);
%% CONFRONTO TRA SEGNALE CONTINUO E CAMPIONATO
figure
plot(t, V, 'k'); % segnale continuo
hold on
plot(t sample, V SAMPLE, 'ro');
% segnale campionato mostrato come dots rossi interploati con linee
% spezzate continue
legend('Segnale continuo', 'Segnale campionato')
xlabel('Tempo (s)')
ylabel('Ampiezza segnale (V)')
hold off
```


OUTLINE

- Esempi di sistemi di acquisizione e misura di dati biomedici: differenze e tratti in comune
- Classificazione dei segnali
- Caratteristiche in tempo e frequenza di segnali deterministici e stocastici
- Concetto di digitalizzazione dei segnali

COUIZ 2 WE WANT YOU

- Definizione di misura
- Grandezze metrologiche

Significato di «misurazione»

«Processo che permette di ottenere, per via sperimentale, uno o più valori ragionevolmente attribuibili ad una grandezza»

(Vocabolario Internazionale di Metrologia (VIM). Il documento, redatto in inglese e francese, è reperibile on-line all'indirizzo:

www.bipm.org/en/publications/quides.)

MISURA = rapporto tra una grandezza incognita ed una ad essa omogenea, assunta come riferimento ed indicata come unità (di misura).

RIFERIMENTI = campioni, ossia realizzazioni di una determinata grandezza ottenute attraverso particolari prototipi, fenomeni fisici o materiali di riferimento, il cui valore è predeterminato ed espresso anch'esso in riferimento all'unità.

Grandezza	Unità di misura	Simbolo m kg s A	
lunghezza	metro		
massa	kilogrammo		
tempo	secondo		
corrente elettrica	ampère		
temperatura termodinamica	kelvin	K	
intensità luminosa	candela	cd	
quantità di materia	mole	mol	

Utilità delle misure in ingegneria biomedica

L'ambito biomedico è caratterizzato da un'enorme varietà riguardo al tipo di grandezze da misurare, ai principi fisici utilizzati nella misurazione ed alle tipologie di strumentazione.

Alcuni segnali biomedici...

Misurando	Ampiezze	Frequenza, Hz	Metodo		
Flussi ematici	1 - 300 ml/s	0 – 20	Elettromagnetico, ultrasuoni		
Pressione sanguigna	0 - 400 mmHg	0 – 50	strain gage o cuffia		
Portata cardiaca	4 - 25 l/min	0 – 20	Fick, diluzione color. o term.		
Elettrocardiografia(ECG)	0.5 - 4 mV	0.05 - 150	Elettrodi cutanei		
Elettroencefalografia(EEG)	5 - 300 μV	0.5 – 150	Elettrodi cutanei		
Elettromiografia(EMG)	0.1 - 5 mV	0 – 10000	Elettrodi cutanei o ad ago		
Elettroretinografia (ERG)	0 - 900 μV	0 – 50	Lente Elettrodo		
Elettrooculografia (EOG)	50 - 3500 μV	0 – 50	Elettrodi cutanei		
рН	3 - 13 pH units	0 – 1	Elettrodo per pH		
pCO ₂	40 - 100 mmHg	0 – 2	Elettrodo per pCO ₂		
pO ₂	30 - 100 mmHg	0 – 2	Elettrodo per pO ₂		
Pneumotachography	0 - 600 L/min	0 – 40	Pneumotacometro		
Frequenza respiratoria	enza respiratoria 2 - 50 atti/min 0.1 -		Impedenziometria,sens. dilataz. toracica, termistore nasale		

Alcuni dispositivi biomedici...

Defibrillatori → tensioni ordine di kV,

Radioterapia → tensioni fino a centinaia di kV e MV e frequenze di qualche centinaia di kHz

Risonanza magnetica nucleare → frequenze di sollecitazione dell'ordine delle decine di MHz, in presenza di campi magnetici di alcuni **Tesla** [T].

DUPLICE FUNZIONE DELLE MISURE IN BIOINGEGNERIA:

- → Diagnostica medica
 basate su analisi di
 segnali, analisi di
 immagini, valutazione di
 proprietà fisico-chimiche.
- → Misure e prove
 sperimentali forniscono
 conoscenze indispensabili
 ai progettisti per la
 realizzazione e la messa a
 punto dei relativi
 dispositivi elettronici.

Taratura di dispositivi e sensori biomedici

<u>Taratura (calibration)</u>: operazione eseguita in condizioni specificate, che in una prima fase stabilisce una relazione tra i valori di una grandezza, con le rispettive incertezze di misura, forniti da campioni di misura, e le corrispondenti indicazioni, comprensive delle *incertezze di misura* associate, e in una seconda fase usa queste informazioni per stabilire una relazione che consente di ottenere un risultato di misura a partire da un'indicazione

Source: https://www.ceinorme.it/it/normazione-it/vim/vim-content-it?

Source: pdf articolo su Moodle «MeMeA 2021 Patch multisensing»

fonte di incertezza

incertezza (su 5 misure)

Taratura di dispositivi e sensori biomedici

Taratura (calibration): operazione eseguita in condizioni specificate,

che in una prima fase stabilisce una relazione tra i valori di una grandezza, con rispettive incertezze di misura, forniti da campioni di misura, e le corrispondenti indicazioni, comprensive delle incertezze di misura associate, e in una seconda fase usa queste informazioni per stabilire una relazione che consente di ottenere un risultato di misura a partire da un'indicazione

conc 4: 20 mM

12 μA

14.5 μΑ

Source: https://www.ceinorme.it/it/normazione-it/vim/vim-content-it?

13.2 μΑ 14.4 μΑ

...in un esempio pratico

16.2 µA

14.1

In generale...

La taratura è un'operazione che si può suddividere in due fasi:

• nella prima fase, si determina la relazione tra le indicazioni date dallo strumento ed i valori di uno più campioni, con la relativa incertezza di misura. Si ottiene in questo modo un insieme di terne: {valore indicato, valore del campione, incertezza, riferite a condizioni di misura ben conc 3: 10 mM specificate;

40	Concentrazioni	misura 1	misura 2	misura 3	misura 4	misura 5	Valor Medio	St Dev
)	conc 1: 0 mM	1.5 μΑ	2 μΑ	2.3 μΑ	3.1 μΑ	4.2 μΑ	2.6	1.1
	conc 2: 5 mM							1.0
	conc 3: 10 mM	9 μΑ	8.4 μΑ	11.2 μΑ	10.2 μΑ	8.5 μΑ	9.5	1.2

• nella seconda fase, le informazioni ottenute sono utilizzate per stabilire una relazione che permette di ottenere un risultato di misura dall'indicazione fornita dallo strumento.

valore misurato = f(valore indicato)

Se siamo in un range lineare

→ Valore indicato = m*Valore misurato + q

Quindi Valore misurato (es. conc)=(Valore indicato (es. corr)-q)/m

N.B. Solo tenendo conto di guesta relazione insieme a quelle sull'incertezza si ⁰ ottiene una misura completa

Regolazione di dispositivi e sensori biomedici

<u>Regolazione di un sistema di misura (adjustment)</u>: insieme di operazioni svolte su un **sistema di misura**, affinché esso fornisca **indicazioni** prescritte in corrispondenza di determinati **valori** di **grandezze** da sottoporre a **misurazione**

Esempio 1: Regolazione bilancia di precisione

Fase 1: Taratura svolta dal produttore:

Individuata la relazione che permette di tenere conto delle trasformazioni subite dal misurando in modo da far corrispondere un'indicazione del suo peso

Fase 2: Regolazione offset svolta dall'utilizzatore:

Regolata la relazione in modo da fornire un adeguato valore di offset in base alle condizioni di partenza della misurazione

Esempio 2: Regolazione sensori elettrochimici commerciali per glucosio

Fase 1: Taratura svolta dal produttore

Fase 2: Regolazione guadagno/offset svolta dall'utilizzatore:

Ripetuta valutazione con concentrazioni note in modo da regolare la curva di taratura in base alle nuove condizioni di laboratorio

https://www.dropsens.com/en/pdfs_productos/new_brochures/glu10.pdf

Valutazione della «qualità» di una misura

Misure di resistenza elettrodi EMG

R2 = 6.3 Ω

Sarei portato a credere che il lotto uno produca elettrodi più conduttivi rispetto al lotto 2... Ma posso concluderlo dopo solo una misura? Ho sufficienti informazioni sulla «qualità» della stessa?

Valutazione della «qualità» di una misura

Misure di resistenza elettrodi EMG

Valor medio resistenza lotto1

 $R1 = 6.1 \Omega$

Sarei portato a credere che i due lotti producano sensori del tutto equivalenti. Ho sufficienti informazioni sulla «qualità» della stessa?

Valor medio resistenza lotto2

$$R2 = 6.1 \Omega$$

Valutazione della «qualità» di una misura

Misure di resistenza elettrodi EMG

Valor medio resistenza lotto1 ± deviazione standard

$$R1 = 6.1 \pm 2.2 \Omega$$

Valor medio resistenza lotto2 ± deviazione standard

$$R2 = 6.1 \pm 0.5 \Omega$$

A questo punto la misura della resistenza degli elettrodi di entrambi i lotti è espressa in modo più completo e mi permette di concludere che la procedura adottata nel lotto 2 porti a elettrodi la cui misura di resistenza risulta più accurata e più ripetibile rispetto al lotto 1.

Valutazione della «qualità» di una misura: accuratezza e incertezza

ACCURATEZZA DI MISURA: grado di concordanza tra un valore misurato e un valor vero di un misurando. L'accuratezza di misura non è una grandezza e a essa non si assegna un valore numerico. Una misurazione è ritenuta tanto più accurata quanto minori sono gli errori di misura che la caratterizzano.

INCERTEZZA DI MISURA: parametro non negativo che caratterizza la dispersione dei valori che sono attribuiti a un misurando, sulla base delle informazioni utilizzate.

Generalmente, l'*incertezza di misura* comprende numerose componenti, **suddivisibili in due categorie**:

INCERTEZZA DI TIPO A

Comprende componenti che si ottengono partendo dalle distribuzioni statistiche dei valori provenienti da una serie di misurazioni, e possono essere caratterizzate dai corrispondenti scarti tipo.

$$\frac{\text{Calcolata con}}{\text{metodi statistici}} \quad u = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Valutazione della «qualità» di una misura: accuratezza e incertezza

ACCURATEZZA DI MISURA: grado di concordanza tra un valore misurato e un valor vero di un misurando. L'accuratezza di misura non è una grandezza e a essa non si assegna un valore numerico. Una misurazione è ritenuta tanto più accurata quanto minori sono gli errori di misura che la caratterizzano.

INCERTEZZA DI MISURA: parametro non negativo che caratterizza la dispersione dei valori che sono attribuiti a un misurando, sulla base delle informazioni utilizzate.

Generalmente, l'*incertezza di misura* comprende numerose componenti, **suddivisibili in due categorie**:

INCERTEZZA DI TIPO A

Comprende componenti che si ottengono partendo dalle distribuzioni statistiche dei valori <u>provenienti da una serie di **misurazioni**</u>, e possono essere caratterizzate dai corrispondenti scarti tipo.

$$\frac{\text{Calcolata con}}{\text{metodi statistici}} \quad u = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \mu)^2}$$

INCERTEZZA DI TIPO B

Comprende componenti che possono essere caratterizzate da scarti tipo stimati in base a funzioni di densità di probabilità derivate dall'esperienza o da altre informazioni.

$$u = \sqrt{a^2 + b^2 + c^2 + \dots}$$

Valutazione della «qualità» di una misura: La differenza tra «ripetibilità» e «riproducibilità»

RIPETIBILITA':

precisione di misura ottenuta in condizioni che assicurino: medesima procedura di misura, stessi operatori, stesso sistema di misura, medesime condizioni operative e stesso luogo, nonché l'esecuzione di *misurazioni* ripetute dello stesso oggetto, o di oggetti simili, in un intervallo di tempo breve

RIPRODUCIBILITA':

precisione di misura ottenuta in **condizioni** che assicurino: differenti luoghi, operatori e **sistemi di misura**, e l'esecuzione di *misurazioni* ripetute dello stesso oggetto, o di oggetti simili.

Lotto 2: misurato @UniPd

$\frac{\text{R2 (Ω)}}{6.3}$ $\frac{\text{R2 bis (Ω)}}{6.2}$ Lotto 2bis: misurato @UniBs

ELEVATA RIPRODUCIBILITA'

5.9 5.4

5.7

5.4

6.3

6.2

6.7

6.9

5.6

6.1

5.2

5.9

5.7

6.2

6.4

6.5

5.7

Take home messages

ESEMPI DI SISTEMI DI ACQUISIZIONE E MISURA DI DATI BIOMEDICI: DIFFERENZE E TRATTI IN COMUNE

Nonostante la grande varietà di segnali e sensori biomedici, nei sistemi di acquisizione possono essere individuati elementi comuni: caratterizzazione e la taratura del sensore, il condizionamento, la conversione analogico digitale, la memorizzazione, la trasmissione e la visualizzazione. Tali passaggi possono essere considerati parte del processo di elaborazione e approssimazione ingegneristica dei segnali.

CLASSIFICAZIONE DEI SEGNALI

- Segnali classificabili in base a: forma, informazione, ampiezze e tempo.
- La distinzione più utile per indirizzare l'analisi è tra segnali deterministici, quasi deterministici e stocastici.

CARATTERISTICHE IN TEMPO E FREQUENZA DI SEGNALI DETERMINISTICI E STOCASTICI

- Fondamentale considerare i segnali sia per il loro contenuto nel **dominio del tempo** che delle **frequenze**, per garantire la conservazione delle loro informazioni anche in caso di interferenze.
- Parametri fondamentali di un segnale: ampiezza, periodo, frequenza, energia, potenza, valore efficace, spettro in frequenza. Da ricordare che l'utilità di ciascuno di essi varia a seconda della tipologia di segnale.

CONCETTO DI DIGITALIZZAZIONE DEI SEGNALI

La possibilità di analizzare e memorizzare i dati è garantita dalla digitalizzazione dei segnali analogici acquisiti dal corpo umano. Tale digitalizzazione è resa possibile da due passaggi: il campionamento, che discretizza i tempi, e la quantizzazione, che opera sulle ampiezze.

GRANDEZZE METROLOGICHE: PRECISIONE, ACCURATEZZA E INCERTEZZA DI MISURA

- La «misurazione» è un processo che permette di ottenere, per via sperimentale, tramite il confronto con un campione di riferimento uno o più valori ragionevolmente attribuibili ad una grandezza. I suoi elementi imprescindibili sono: misurando, riferimento, incertezza
- La taratura è un processo a due fasi che permette di associare un risultato di misura a un'indicazione dello strumento. La regolazione fa si che il sistema di misura fornisca indicazioni prescritte in corrispondenza di determinati valori di grandezze da sottoporre a misurazione
- Le caratteristiche che definiscono la qualità di una misura sono l'accuratezza, l'incertezza, la precisione, la ripetibilità e la riproducibilità.