

Course Outline

- Introduction
- Why Study Hydrogen Safety?
- The Hydrogen Hazard
- Addressing the Hydrogen Hazard
- Component Design
- PEM Fuel Cell/Electrolyzer Issues
- Hydrogen Facility Design
- Hydrogen Hazards Analysis Approach
- Summary

Introduction

- Attendees
- Name
- What do you do with hydrogen?

Instructors

- Harold Beeson
- Kevin Farrah
- Max LeuenbergerMiguel Maes
- Larry Starritt
- Stephen Woods

Administrative Details

- Facility safety considerations
- Restrooms
- Breaks
- Questions and answers
- Course evaluations

Course Objectives

- To familiarize you with H₂ safety properties
- To enable you to identify, evaluate, and address H₂ system hazards
- To teach you
- Safe practices for
- Design
- Materials selection
- H₂ system operation

Course Objectives (cont.)

- observations on which these safe practices Physical principles and empirical are based
- How to respond to emergency situations involving H₂
- How to visualize safety concepts through in-class exercises
- Identify numerous parameters important to H₂ safety

We Will Show

Hydrogen can be handled safely...

...while stressing appropriate precautions

Course Materials

- Course slides
- Safety of Hydrogen and Hydrogen ANSI/AIAA G-095-2004, Guide to Systems*
- 29CFR1910.103, Hydrogen

*Also available on the NASA Technical Standards Program [http://standards.msfc.nasa.gov/]

Disclaimer

- The use, or misuse, of this material is the responsibility of the attendee
- If you have an incident
- Do not blame the course instructors
- Do not blame anyone else
- Get good video

Course instructors assume no responsibility

Course Limitations

- Imprecise quantification
- Technical judgment required
- No unique solutions given
- No endorsements implied
- Examples are illustrations only

Technical Judgment

- Overlapping roles
- What must you know?
- What must others know?
- How does this information affect me?

Bottom line: You must think

What is Judgment?

- Recognition of
- Need
- Limitations
- Implications and consequences of actions
- Conservative approach
- Searching for hazards

Remember..

- Every situation is unique
- You are responsible

Old JSC Water Immersion Facility (January 29, 1972) Battery Box Explosion

- Watertight portable battery supply with 2 lead-acid cells had been charged overnight
- H₂ gas vent valve closed, not open
- Valve installed to purge H₂ at direction of previous hazards analysis
- (magnetic switch contacts internal to Manually operated switch on lid

In a seemingly conventional application such as this sealed battery box...

another before puncturing a 35-ft-high concrete ceiling ... the box lid killed one worker and severely injured

Tube Trailer Accident

O₂ inadvertently leaked into this H₂ tube trailer (modifications made without review)

Tube Trailer Accident (cont.)

The mixture detonated at ~550 psi

Tube Trailer Accident (cont.)

Tube Trailer Accident (cont.)

Tubes and shrapnel were hurled 1250 ft, and several employees were burned

LH Vent Line Incident Survey

H₂ Vent Line Explosion

H₂ Vent Line Explosion

Duct Fails Along Weld

Hydrogen flames do not take corners well

Hydrogen Balloon Accident

- Carlsbad, NM 2002 fireworks display
- Poor judgment used in constructing and deploying a balloon filled with hydrogen and oxygen
- One firefighter injured, and public "unnecessarily put at risk"

Why study hydrogen safety?

Why Study H₂ Safety?

Because accidents occur!

- In the '70s Over 400 industry accidents (Factory Mutual 4A7NO.RG)
- 96 NASA mishaps ('74 Ordin, NASA TM X-71565)
- See the DOE Hydrogen Incidents Database [http://www.h2incidents.org/]
- Despite H₂'s safe use for over 100 years
- Town gas was 50% H₂
- Public perception is caution & danger
- High school chemistry class experiment
- Hydrogen bomb

Hydrogen Uses

•	0	<u> </u>
		して

23%

23%

Electronics

- Fats/fatty acids
 - Blanketing

18% 17%

19%

Hydrogen Production

- Primary source
- Light hydrocarbons
- GH₂ production (USA)
- 35 billion SCFD (Air Products 2002)
- LH₂ operating capacity
- 136 tons per day (USA 1986)
- LH₂ demand
- 82 tons per day (USA 1986)

Accidents occur...

...but looks can be deceiving

Tanker Truck Fire

Tanker Truck Fire (cont.)

-H₂ Trailer Accidents

LH₂ Transportation - Reality

Miles driven

76,200

87,600,000

Trips

Deliveries

135,000

Hydrogen releases and accidents

Air Products data (1967-1989)

Lessons Learned from Previous Incidents

поптамиматиоэ 🛘
MATÉRIALS INCOMPATIBILITY
MATERIALS FAILURE
SNOIT3NUTAM
PLANNING
DESIGN
PROCEDURAL
OPERATIONAL
& 8 0 0 0 0
CAUSES, PERCENT OF TOTAL MISHAPS

General Mishap Causes

from Previous Incidents (cont.) Lessons Learned

Hindenburg Misconception

Hindenburg Misconception (cont.)

What has been seen

Theory

- Researchers concluded H₂ not to blame
- Film footage analysis shows explosion to be inconsistent with hydrogen fire, which only burns upward, with no visible flame
- Gasbags coated with gelatin
- made to stretch and waterproof outer hull Al powder mixed with doping solution
- 1930s fabric samples tested in modern laboratories proved to still be combustible

The Hydrogen Hazard

Safety-related Properties and What You Need to Know

The Hydrogen Hazard

- General properties
- Primary hydrogen hazards
- Combustion
- Pressure hazards
- Low temperature
- Hydrogen embrittlement
- Exposure and health

Physical Properties

Hydro (water) + genes (forming) = Hydrogen

Forms: Atomic Hydrogen, Molecular Hydrogen Isotopes: Protium (1amu),

Deuterium (2 amu), Tritium (3 amu)

- Molecular Hydrogen States
- Orthohydrogen protons have parallel spins
- Parahydrogen protons have anti-parallel spins
- Normal hydrogen thermal equilibrium mix of both
- 300 K: 25% parahydrogen
- 77 K: 50% parahydrogen
- 20 K: 99.8% parahydrogen

States: Gas, Liquid, Slush, and Solid

Energy Properties

- Heat of combustion (mass)
- (HHV) 61,062 Btu/lb
- (LHV) 51,560 Btu/lb
- Volumetric energy density
- (HHV) 318.1 Btu/scf
- 1 kg H2 ~ 1 gallon of gasoline
- Hydrogen mass to volume conversions
- $-1 \text{ kg H2} = 423 \text{ scf} = 11.13 \text{ Nm}^3 \text{ (normal m}^3\text{)}$

Gaseous Hydrogen Properties

- Description
- Colorless, odorless, tasteless
- General Properties
- Flammable,
- Non-irritating, nontoxic, asphyxiant
- Non-corrosive
- Lightest gas, buoyant, can escape earth
- Physical Properties

9690'0

(1/15th air)

(Air = 1.0)

(1/2 air)

Liquid Hydrogen Properties

Description - Noncorrosive, colorless liquid

Normal boiling point Density @ NBP

ensity @ Ni vapor liquid LH2 specific gravity, NBP
Equivalent vol gas @ NTP
(per vol liquid @ NBP)
Pressure to maintain NBP
liquid density in NTP gas

Triple point Thermal expansion

20.268 K, 101.325 kPa

1.338 kg/m3 70.78 kg/m3 0.0710 (H2O = 1.0) 845.1

172 MPa

13.8 K, 7.04 kPa 0.0164 K⁻¹

Thermal Expansion Coefficients of Some Cryogensa

Thermal Expansion	Coefficient
dnid	

0.0007	0.0044	0.0044	0.0057	0.0144	0.0164°	0.2100
Water ^b	Oxygen	Argon	Nitrogen	Neon	Hydrogen	Helium

^a Source: Edeskuty and Stewart 1996. Data for NBP.

^b Included for comparative purpose.

^c 23.4 times that for water.

Hydrogen Combustion Requirements

- Hydrogen mixed with an oxidizer to form a flammable mixture
- Ignition energy source (but may not be necessary for sensitive mixtures)
- Combustion can involve any of these
- Fire
- Deflagration
- Detonation
- Confinement can lead to flame acceleration and overpressure

Note: Both deflagration and detonation can appear as an explosion to the human senses

Fire

- Rapid chemical reaction that produces heat and light
- Stationary flame with the flammable mixture fed into the reaction zone (plume or jet)
- Characterized by sustained burning, as manifested by any or all of the following
- Light
- Flame
- Heat
- Smoke

Deflagration

- Flame moving through a flammable mixture as a subsonic wave, with respect to the unburned mixture
- confinements that don't favor flame acceleration Slow deflagration occurs in the open or with
- Laminar burning (2 3 m/s)
- Non accelerating confinements (less than 100 m/s)
- Flame acceleration up to choked flow (approaches sound speed in unburned gases, 400 - 800 m/s)
- accelerated flames trip to detonation by turbulence Deflagration-to-detonation transition (DDT): or reflection of shock waves.

Deflagration in Open Air Following 5 Gallon LH2 Spill

Detonation

- to shockwave that propagates through a Exothermic chemical reaction coupled detonable mixture
- Shockwave velocity is supersonic with respect to the unburned gases
- After initiation, thermal energy of reaction sustains shockwave, which compresses unreacted material to sustain reaction

Explosion

- Rapid equilibration of pressure between a system and the surroundings, such that a shockwave is produced
- May occur through
- Mechanical failure of vessels containing high-pressure fluids
- Rapid chemical reaction producing a large volume of hot gases

Hydrogen Combustion Related Properties

- Wide flammability range
- Low ignition energy
- Small quenching distance
- Rapid diffusion
- Small molecule

- Buoyant in air (above 23 K)
- High ignition temperature
- High flame velocity
- Low flame emissivity

Remember: Hydrogen must be mixed with an oxidizer [air, O₂, CI, F, N₂O₄, etc...] to burn

Combustion Properties*

18.3 - 59.0 vol% 3.9 - 95.8 vol% 3.9 - 75.0 vol% 15 - 90 vol% 0.061 cm²/s 0.017 mJ 0.064 cm 2.70 m/s 858 K 0.10 Flammability limits in NTP oxygen Detonability limits in NTP oxygen Diffusion coefficient in NTP air Minimum ignition energy in air Flammability limits in NTP air Detonability limits in NTP air Quenching gap in NTP air Autoignition temperature Flame emissivity Flame velocity

^{*} Data is for parahydrogen but is applicable to ortho or normal hydrogen

Flammability Limits in Air

Fire Concerns

- Without Confinement:
- High flame temperature (in air): 2045 °C (3713 °F)
- Difficult to sense except by direct exposure, unless detection is used
- With Confinement
- Can lead to high pressures (factor 1 8x)
- Mechanical pressure relief for confined volumes is adequate

Deflagration Concerns

- Slow Deflagration: the concerns are the same as for fire [concentrations > 8 % v/v]
- Accelerated flames and choked propagation:
- Concentrations > 12% v/v
- Confinement characterized by L/W ratios > 8
- Rapid propagation (400 800 m/s)
- Pressure piling: pressurization of unburned gases
- Dynamic pressures ranging from those produced by confined fire to a factor of 15x initial pressure
- DDT: transition to detonation due to turbulence and superposition of reflected shockwaves [Note: may begin with pressures formed by pressure piling]
- Protection of vessels by mechanical relief devices marginal for fully accelerated flames

Deflagration Pressures

Volume $\%$ H ₂	T _o (K)	${ m P_o}$ (kPa)	${f T}_{ m f}^a$ (K)	$\mathbf{P}_{\mathrm{f}}^{\mathrm{a}}$ (kPa)	$\mathrm{T_o}$ (K)	P _o (kPa)	$T_{ m f}$ (K)	P _f (kPa)
) }	<u>}</u>				<u> </u>) }	
			Hy	Hydrogen/Air				
2	298	101.3	707.9	234.7	273	101.3	684.3	247.6
25	298	101.3	2159.2	643.8	273	101.3	2141.9	0.769
50	298	101.3	1937.9	590.0	273	101.3	1917.7	637.3
75	298	101.3	1165.7	375.6	273	101.3	1142.6	401.9
			Hydr	Hydrogen/Oxygen				
2	298	101.3	694.2	230.1	273	101.3	671.6	243.0
25	298	101.3	2134.5	639.1	273	101.3	2118.3	692.2
50	298	101.3	2913.0	808.5	273	101.3	2908.3	880.0
75	298	101.3	3003.4	837.5	273	101.3	2999.2	911.6
06	298	101.3	1899.2	581.4	273	101.3	1878.6	612.2
95	298	101.3	1132.8	365.9	273	101.3	1132.8	399.4

^a T_f and P_f are the final temperature and pressure that would occur in the fixed volume (2 m³) when thermodynamic equilibrium occurred.

Detonation Concerns

case event resulting from ignition of a A detonation is potentially the worstcombustible H₂/oxidizer mixture

High velocity

1500 m/s 15 – 120 x

Pressure relief

- Large pressure ratio

Detonation Concerns (cont.) Factors that Influence Detonation

- Percentage of H₂
- Detonation limits in air*: 18.3-59 vol%
- Detonation limit in oxygen*: 15-90 vol%
- Initial temperature, pressure, composition, and presence of diluents or inhibitors
- Strength (energy) of ignition source
- Degree of confinement
- Approximate percentages are based upon moderate initiation energies, better determinations are based on cell size information

nperatures
ē
and 1
ressures and
ress
Д
ion
nat
Detc

$\begin{array}{c} \text{Volume} \\ \% \ \text{H}_2 \end{array}$	$T_o^{\ a}$ (K)	Р _о ^b (кРа)	$ m T_1/T_o$	$ m P_1/P_o$	T _o (K)	P _o (kPa)	$ m T_1/T_o$	$ m P_1/P_o$
	,	,				,		
			Hy	Hydrogen/Air				
18.3	298	101.3	7.657	12.154	298	10.1	7.580	12.111
25	298	101.3	9.257	14.605	298	10.1	8.870	14.223
50	298	101.3	8.706	13.713	298	10.1	8.482	13.555
59	298	101.3	7.678	12.144	298	10.1	7.601	12.119
			Hydro	Hydrogen/Oxygen				
'n	298	101.3	3.118	4.880	298	10.1	3.119	4.882
25	298	101.3	9.034	14.289	298	10.1	8.660	13.896
50	298	101.3	11.646	17.857	298	10.1	10.537	16.616
75	298	101.3	12.111	18.671	298	10.1	10.834	17.250
06	298	101.3	8.576	13.584	298	10.1	8.327	13.393
a T = temperature	ę							
b P = pressure								

Hydrogen/Gasoline Comparison

Comparison	ı	-/+	-/+	-/+
Gasoline	240	1.5-7.6	0.05	nonbuoyant
Hydrogen	17	4-75	0.61	1-2.9
Property	MIE (in air)	Flammability range (vol % in air)	Diffusion coefficient (cm²/s in NTP air)	Buoyant velocity (m/s in NTP air)

HYDROGEN AND GASOLINE COMPARISON

PROPERTY	RTY HYDROGEN GASOI	GASOLINE	COMPARISON
Minimum Ignition Energy in air, uJ	17	240	ı
Autoignition Temperature in air, K	858	530	+
Flammability Range, vol % in air	4-75	1.5-7.6	-/+
Detonability Range, vol % in air	18.3-59.0	1.1-3.3	-/+
Flame Temperature, K	2323	2470	П
Flame Velocity, m/s	2.7-3.5	0.4	+/-
Flame Emissivity	0.10		+/-
Thermal Energy radiated from	17-25	30-42	+
flame to surroundings, %			
Diffusion Coefficient in NTP air,	0.61	0.05	-/+
cm ² /s			
Diffusion Velocity in air at NTP,	<2.0	<0.17	-/+
cm/s			
Buoyant velocity in NTP air, m/s	1.2-9	nonbuoyant	-/+
Quenching Distance at 101.3 kPa	0.64	2	ı
absolute, mm			
Vaporization rate (steady state) of	2.5-5.0	0.005-0.02	-/+
liquid pools without burning,			
cm/min			
Burning rates of spilled liquid	3.0-6.6	0.2-0.9	-/+
pools, cm/min			

denotes hydrogen more hazardous than gasoline with respect to this property

denotes gasoline more hazardous than hydrogen with respect to this property denotes hazard is about equal for hydrogen and gasoline with respect to this property

+/- denotes that the hazard for hydrogen could be more or less than gasoline with respect to this property depending on the circumstances

Combustion Consequences Summary of Possible

- Fire
- Heating (thermal & UV energy radiated from flame)
- Promoted combustion (direct contact with flame)
- Burns (thermal & UV)
- **Deflagration and Detonation**
- Effects of fire
- Blast (overpressure)
- Fragments

Formation of Combustible Mixtures

- Identify sources of hydrogen and oxidizers
- Boil-off and venting
- Batteries, fuel cells, electrolyzers
- Chemical processes, radioactive decay
- Leaks and spills
- External leakage
- In-leakage
- Leakage between system components
- Secondary accumulation
- Internal contamination

Possible Leak/Spill Causes

- Materials
- Diffusion/permeation
- Expansion/contraction
- Embrittlement
- Hydrogen
- Low temperature
- Corrosion, wear, damage

- Mechanical
- Mechanical stressand vibration
- Deformation
 Pressure
- Temperature
- Operator error

Internal Contamination Causes

- Improper purging
- Contaminated fluids
- Pressurization gas
- Pump oils
- Buildup of impurities
- In-leakage
- Occurs from outside to inside of a system
- Cryopumping
- Internal leakage
- Occurs from one part of system to another

Ignition Sources

- Electrical
- Mechanical
 - Thermal
- Chemical

Electrical Ignition Sources

- Static discharge
- Static electricity (two-phase flow)
- Static electricity (flow with solid particles)
- Electric arc
- Lightning

- Charge accumulation
- Electrical charge generated by equipment operation
- Electrical short circuits
- Electrical sparks
- Clothing (static electricity)

Mechanical Ignition Sources

- Mechanical impact
- Tensile rupture
- Friction and galling
- Mechanical vibration
- Metal fracture

Thermal Ignition Sources

- Open flame
- Hot surface
- Personnel smoking
- Welding
- Exhaust from combustion engine
- Resonance ignition

- Explosive charge
- High-velocity jet heating
- Shock wave from tank rupture
- Fragment from bursting tank

Chemical Ignition Sources

- Catalysts
- Reactants

For more combustion hazards information:

- * (Rivkin, Carl, H. The NFPA Guide to Gas Safety. National Fire Protection Association, Quincy, MA 2005
- Center White Sands Test Facility, Las Cruces NM 88004, October 14, 1988. Hazards of Selected Aerospace Fluids. RD-WSTF-0001, Johnson Space * Benz, Frank J., Craig V. Bishop, Michael Pedley. Ignition and Thermal

and hydrogen embrittlement implications Pressure, low-temperature,

H₂ Properties Related to Overpressure Hazards

- Large liquid-to-gas expansion ratio
- Low heat of vaporization
- Large thermal difference
- Significant potential energy of compressed gas

Overpressure Hazard Sources

- Pressurization system failure
- Pressure relief system failure
- Fire from an external source
- Inadequate venting
- Ortho- to parahydrogen conversion
- Overfilling
- Liquid-to-gas phase change

Physiological Effects of Blast Overpressure

Effect on personnel		Knock personnel down	Eardrum damage	Lung damage	Threshold for fatalities	50% fatalities	99% fatalities
Aax. Overpressure	(psi)	_	2	15	35	20	65
Max. O	(kPa)	7	35	100	240	345	450

Low-temperature Hazards

- Cold fluids
- Contaminant solidification
- Cold surfaces
- Oxygen enrichment of air
- Cryogenic burn (frostbite)
- Low-temperature embrittlement
- Containment materials
- Nearby materials

N₂/O₂ Phase Diagram Showing O₂ Enrichment

Oxygen Enrichment Effect (Polyethylene)

H₂ Attack of Metals

- Mechanical properties can be significantly reduced by H₂ embrittlement
- Tensile strength
- Ductility
- Fracture toughness
- Crack behavior
- Failures have resulted
- Use less susceptible materials

Types of H₂ Embrittlement

- Environmental embrittlement
- Observed in metals and alloys plastically deformed in H₂ environment (especially high pressure)
- Maximum effect from 200 300K
- Internal embrittlement
- Caused by absorbed H₂
- Maximum effect from 200 300K

Types of H₂ Embrittlement (cont.)

- H₂ reaction embrittlement
- Absorbed H₂ chemically combines with metal to form a brittle hydride
- Lowers materials ductility
- Occurs readily at elevated temperature
- Methane can form with carbon in steels

H₂ Exposure and Ultimate Strength

Material	Exposure (2+ 80 0E)	Strength	Change
occiled sample)	(at 00 Tr)		(0/)
4140 (low strength)	69 MPa N₂69 MPa H₂	1660 (241,000) 1407 (204,000)	-15.2
4140 (high strength)	69 MPa N ₂ 41 MPa H ₂	2946 (362,000) 834 (121,000)	9.99-
C1025	69 MPa N₂69 MPa H₂	730 (106,000) 552 (80,000)	-24.4
K Monel PH	69 MPa N₂69 MPa H₂	1731 (251,000) 779 (113,000)	-55.0
K Monel (annealed)	69 MPa N ₂ 69 MPa H ₂	993 (114,000) 724 (105,000)	-27.1

Factors & Mechanisms Involved

- Operating environment
- Temperature, pressure, exposure time
- Material
- Physical and mechanical properties, stress state, stress concentrations, surface finish, microstructure, cracks
- Hydrogen
- Purity, concentration

Factors & Mechanisms Involved (cont.)

- Susceptibility to embrittlement generally increases with increasing
- Tensile stress
- Alloy ultimate strength
- $-H_2$ purity
- increases potential for H₂ embrittlement Electrical discharge machining

Health Hazards

- Burns
- Direct contact with flame
- Thermal energy radiated from flame
- UV exposure
- Asphyxiation
- Hydrogen
- Purge gas (N₂, He)
- Hypothermia

Health Hazards (cont.)

- Cryogenic burn (frostbite)
- Similar to thermal burns produced from contact with cryogen or cold surfaces
- Can result in permanent eye damage
- faster than liquid contact, even faster than Cryogen vapor can freeze skin or eyes metallic contact

Cryogenic Burns

Third-degree cryogen burn (frostbite) to fingers

What You Need to Know Summary

- General properties
- Primary hydrogen hazards
- Combustion
- Pressure hazards
- Low temperature
- Hydrogen embrittlement
- Exposure and health

Start with Safety Management

- Minimize consequences
- Use safe principles and practices
- Perform reviews
- Be prepared for emergency situations

Marraging a Hazard

Cornerstones

Safe Use of Hydrogen

Follow proper principles, practices, and procedures...

... by properly trained and motivated personnel

Federal Regulations

- 29CFR1910.103, Hydrogen
- Management of Highly Hazardous 29CFR1910.119, Process Safety Chemicals
- 49CFR Subtitle B, Vol 2, Ch 1, Parts 171-180, Transportation

* See osha.gov for latest CFR references

HYDROGEN CFR INFORMATION

Chemical Formula		H ₂
Common name		Hydrogen
Hazard material description and proper	GH_2	Hydrogen, compressed ^a
shipping name"	LH_2	Hydrogen, refrigerated liquid (cryogenic liquid) a.b
Shipping identification number ^a	GH_2	UN1049ª
	LH_2	"996IND
Shipping hazard class or division ^a	GH_2	2.1 ^a
	LH_2	2.1^{a}
Shipping packing group ^a		None given a. c
Shipping labels required ^a	GH_2	FLAMMABLE GAS ^a
	LH_2	FLAMMABLE GAS ^a
Shipping special provisions ^a		None given a
Shipping packaging authorization	GH_2	See 49CFR173.306 ^a
exceptions ^a	LH_2	See 49CFR173.316 ^a
Shipping non bulk packaging	GH_2	See 49CFR173.302 ^a
requirements"	LH_2	See 49CFR173.316 ^a
Shipping bulk packaging requirements ^a	GH_2	(See 49CFR173.302 and 173.314) ^a
	LH_2	(See 49CFR173.318 and 173.319) ^a
Shipping quantity limitations for	GH_2	Forbidden ^a
passenger aircraft or railcar"	LH_2	Forbidden ^a
Shipping quantity limitations for cargo	GH_2	150 kg ^a
arcraft only ^a	LH_2	Forbidden ^a
Vessel shipping stowage requirements ^a	GH_2	E a,d
	LH_2	D а.е
Vessel shipping stowage provisions ^a	GH_2	40°4, 57°4 8
	LH_2	40 a f
Process Safety Management Threshold Quantity ^h , 1b		≥10,000 lb ^h

 $^{^{\}rm a}$ 49CFR172.101 $^{\rm b}$ Punctuation marks and words in italics are not part of the proper shipping name, but may

be used in addition to the proper shipping name.^a
^c Class 2 materials do not have packing groups.^a
^d "E" means the material may be stowed "on deck" or "under deck" on a cargo vessel, but is prohibited on a passenger vessel.^a
^e "D" means the material must be stowed "on deck" on a cargo vessel, but is prohibited on a passenger vessel.
^f Stoage provision "40" means: "Stow 'clear of living quarters'" (49CFR176.84).
^g Stoage provision "57" means: "Stow 'separated from' chlorine" (49CFR176.84).
^h 29CFR1910.119

Guidelines and Voluntary Consensus Standards*

Standards

- NFPA 55, Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders, and Tanks. [Supersedes NFPA] 50 A and 50 B
 - NFPA 50A, GH2 Systems at Consumer Sites
- NFPA 50B, LH2 Systems at Consumer Sites

Consensus Guides

- ANSI/AIAA G-095-2004 Guide to Safety of Hydrogen and Hydrogen Systems [Required by NASA]
- * Approved standards and guidelines are available through the NASA Technical Standards Program available on the web [http://standards.msfc.nasa.gov/]

Industry Resources

- Accepted industry practice
- CGA G-5, Hydrogen
- CGA G-5.5, Hydrogen Vent Systems
- CGA G-5.4, Standard for Hydrogen Piping Systems at Consumer Locations
 - CGA G-5.6, Hydrogen Pipeline Systems
- Industry resource documents
- CGA H-2 Guidelines for the Classification and Labeling of Hydrogen Storage Systems with Hydrogen Absorbed in Reversible Metal Hydrides
 - CGA H-3 Cryogenic Hydrogen Storage
- CGA H-4 Terminology Associated with Hydrogen Fuel Technologies
 - CGA P-12 Safe Handling of Cryogenic Liquids
- CGA P-28 Risk Management Plan Guidance Document for Bulk Liquid Hydrogen Systems
- Industry positions
- CGA PS-17 CGA Position Statement on Underground Installation of Liquid Hydrogen Storage Tanks
 - SGA PS-20 CGA Position Statement on the Direct Burial of Gaseous Hydrogen Storage Tanks
- CGA PS-21 Position Statement of Adjacent Storage of Compressed Hydrogen and Other Flammable Gases
- CGA PS-25 Recommendations for aerial storage
- CGA PS-26 The Use of Carbon Fiber, Fully Wrapped Composite Storage Vessels in Stationary Gaseous Hydrogen Fueling Systems (proposed)

Consensus Standards (cont.) **Guidelines and Voluntary**

- Storage vessels
- Vessel Code, Section VIII, Pressure Vessels ASME, International Boiler and Pressure
- API Standard 620, Design and Construction of Large, Welded, Low-pressure Storage Tanks
- Piping
- ASME B31.3, Process Piping
- CGA G-5.4, Standard for Hydrogen Piping Systems at Consumer Locations
- CGA G-5.6, Hydrogen Pipeline Systems

Safety Responsibility

- Management is responsible for
- Establishing and enforcing safety policy
- Ensuring that all applicable statutory and documented, and adhered to in H₂ use regulatory requirements are identified,
- system or operation is responsible for Ultimately, everyone involved with H₂ safety

Authority Having Jurisdiction

Management shall define, designate, and document the entity (AHJ) that is empowered to implement and enforce safety policies and procedures

• The AHJ may be a person, a group, an office, an organization, or a federal, state, or local governing body

Policies and Procedures Organizational

- Required to control handling/use of H₂
- Should be
- Formal (written)
- Approved and enforced by upper level management
- Available to, and understood by, all personnel involved in H₂ activities
- Applicable to all phases of system operations

Hydrogen Safety Achieved by

- Inherent safety
- Approved operating procedures
- Trained personnel
- Design, safety, hazard, and operational reviews
- Approved quality control and maintenance programs

Inherent Safety

- Inherent safety vs. inherent hazards
- Involves
- Fail-safe design
- Automatic safety design
- Caution and warning devices
- Control of H₂ quantity
- Siting of H₂ facilities

Delta Clipper

Approved Operating Procedures

- Required for facility or system operation and for routine task performance
- Prepared/reviewed by appropriate personnel

- Performed by trained personnel
- Reviewed
 appropriately to
 ensure that changes
 to processes,
 equipment, and
 operating conditions
 have been properly
 considered

Approved Operating Procedures

(cont.)

- Help mitigate hazards
- Teach how to prevent, detect, and respond to H₂ leaks
- Outline
- Adequate ventilation guidelines
- Suitable maintenance and emergency procedures

Trained Personnel

- Training and refreshers are mandatory
- Taught by approved instructors
- Tailored to specific facility or system
- properties and their safety implications - Centered on H₂'s physicochemical
- Human limitations necessitate feedback
- Student input improve subsequent training
- Certify for critical operations

Design, Safety, Hazard, and Operational Reviews

- Should be made of a system/facility before H₂ wetting
- Should be regularly conducted to ensure continual safe use of H2

QC and Maintenance Programs

- All materials and components should be subject to a comprehensive inspection and be quality-controlled
- approved and sustained as needed Maintenance program must be
- Inspected at least annually
- according to approved procedures Maintained by qualified personnel
- equipment is made safe for such maintenance Inspection should be performed only if

Maintenance Examples

- Lubrication
- Instrumentation calibration
- Cleaning and painting
- Operational verification of relief and check valves

- Replacement of filter elements
- Repair or replacement of
- Damaged or faulty components
- Components subject to wear (seals, seats, bearings)

Minimize consequences

Minimize Severity of Consequences

- Minimize quantity involved
- Control the area
- Use
- Good housekeeping practices
- Personnel protection
- Operational requirements
- H₂ and H₂ fire detection
- Alarms and warning devices

Minimize Quantity Involved

- Minimize storage, transport, transfer, and end-use quantity
- Mitigates consequences of accidents
- Reduces siting requirements and area control requirements
- Siting requirements based on quantity involved and type of use

QUANTITY COVERED BY VARIOUS STANDARDS AND CODES

CODE, STANDARD	FLUID	QUANTITY COVERED
29CFR 1910.103 (HSS.1-2; A-53 - A-54)	GH_2	Does not apply to a system having a total content of less than 11 m ³ (400 ft ³). No maximum quantity specified. QD Requirements apply to any quantity.
NFPA 50A	GH_2	No min or max quantity specified. Does not apply to single systems using containers having a total content of less than 11 m ³ (400 ft ³) at 101.3 kPa (14.7 psia) and 294.1 K (70 °F). Applies where individual systems, each having
		a total content of less than 11 m ³ (400 ft ³) at 101.3 kPa (14.7 psia) and 294.1 K (70 °F), are located less than 1.5 m (5 ft) from each other. OD requirements apply to any quantity.
29CFR 1910.103 (HSS.1-2; A-55 - A-56)	LH_2	No min or max quantity specified. Does not apply to portable containers having a total content less than 150 L (39.63 gal). QD requirements apply to 150 L (39.63 gal) to 113,550 L (30,000 gal).
NFPA 50B	LH_2	No min or max quantity specified. Does not apply to portable containers having a total content less than 150 L (39.63 gal). QD requirements apply to 150 L (39.63 gal) to 283,875 L (75,000 gal).
29CFR 1910.119 (HSS.1-2)	any form	$\geq 4536 \text{ kg } (10,0000 \text{ lbm})$
NSS 1740.12 (NSS.A-56 - A-62)	LH_2	$0 - 4.536 \times 10^6 \text{ kg } (1 \times 10^7 \text{ lbm})$

Control the Area

- Determine
- Who can enter, and for how long
- What can enter, especially ignition sources
- What kind of activities are allowed in the area

Good Housekeeping Practices

- permitted within 25 ft of LH₂ equipment Weeds or similar combustibles are not (29CFR 1910.103, Hydrogen)
- Access and evacuation routes are to be kept clear of equipment
- Conductive and nonsparking floors are to be kept clean of dirt

Personnel Protection

- Limit or, if possible, eliminate personnel exposure to cryogenic or flame temperatures
- Protect personnel from exposure to
- Thermal radiation from H₂ fire, including intentionally flared H₂
- Oxygen-deficient atmospheres of H₂ or inert purge gases (N₂, He)

Personnel Protection (cont.)

- equipment to minimize injury if exposed Ensure personnel wear protective
- Quickly remove an injured person from a danger zone
- Insulate cold surfaces

Personnel Protection (cont.)

- Operations involving a cryogenic fluid require eye and hand protection
- Face shield when connecting and disconnecting lines/components
- Cotton/Nomex clothing
- Closed-toe shoes
- Hearing protection as appropriate
- Hard hats as appropriate

Operational Requirements

- Buddy system
- System/facility training
- Hydrogen training
- Emergency planning
- Don't innovate!

H₂ and H₂ Fire Detection

- Human senses cannot normally detect H₂
- Colorless and odorless
- Personnel should use portable H₂ detectors
- Detectors should be permanently installed where leaks can occur
- Valves, joints

H₂ and H₂ Fire Detection (cont.)

- H₂ flame nearly invisible in daylight
- H₂ flame emissivity is low
- Difficult to feel
- Personnel should use portable fire detectors

Alarms and Warning Devices

- situation, preferably before it happens Warning devices should provide an alarm for potentially hazardous
- Abnormal condition, malfunction, incipient failure
- Alarm can be audible, visible, or both

Warning System Examples

- Pressure extremes
- Hydrogen in building ventilation intake
- Flare flameout
- Loss of vacuum insulation
- Valve position

- Pump speed extremes
- Hydrogen leak
- Filter differential pressure
- Fire

Use safe principles and practices

Use a Safe, Proven Approach

- Principles
- Eliminate ignition sources
- Use fail-safe design
- Use redundancy in critical areas

Practices

- Control storage and transfer
- Prevent unwanted air and fuel mixtures
- Preventoverpressures

Storage and Transfer Operations

- Be alert for leaks
- Keep storage and transfer areas clear of nonessential personnel
- Buddy system
- Establish area control
- Cancel or discontinue operations in electrical storms
- Isolate, vent, and purge to remove H₂ or

Eliminate Ignition Sources

- Control smoking, open flames, welding, use of mechanical tools
- Bonding and grounding
- Wear proper clothing

- Use lightning protection
- Use conductive machinery belts
- Use explosion-proof or purged enclosures for electrical equipment

But assume an ignition source is present

Prevent Unwanted Fuel/Air Mixtures

- Purging
- Leak free systems
- Hydrogen venting and disposal
- Ventilation
- Maintain positive pressures

Prevent Unwanted Fuel/Air Mixtures

This demonstration simulates
the explosion of a battery box
apparatus used at the
Johnson Space Center in
February 1972. The accident
resulted in one fatality and
severe hand injuries to a
second worker

Purging

- Purge equipment with inert gas before and after using H₂
- Purge oxidizer before introducing H₂
- Purge H₂ before introducing oxidizer
- Use GN₂ if temperature is >80 K; if colder, use He
- Turn off N₂ purge to vent stack before venting cold H₂
- Otherwise, N₂ will solidify

Purge Gas Systems

- Needed for purge, pressurization gases
- H₂ volumes should be capable of being purged and vented
- protected from H₂ contamination Inert gas subsystems should be
- Use higher pressure, check valves, or a double block-and-bleed arrangement

Improper Purging Causes Mishaps

	Purging	Purging Mishaps
	O	(%)
Mishaps identified with purging problems	24*	25
Effects of mishaps due to purging problems		
release into atmosphere	1	28
Release into system containers	10	42
Effects of release into atmosphere		
ignition	13	93
Non-ignition	-	7
Effect of release into system containers		
ignition	10	100
* 25% of total mishaps		

Purging Techniques

- Evacuation and backfill
- Pressurization and venting
- Flow-through

Leak-free Systems

- Minimize number of joints and fittings
- Threaded fittings discouraged
- Back-braze or seal weld
- Leak-check with N₂, then He

Dispose of Hydrogen Properly

- Venting
- Low flow
- Flaring
- Flare stack
- Burn pond

Vent Fires

- Lightning a common cause of vent fires
- Procedure for extinguishing vent fire
- Add inert gas flow, such as He
- Stop H₂ flow
- Continue inert gas flow until metal cools
- Restart H₂ venting
- Stop inert gas flow

Ventilation

- Ventilation must preclude formation of flammable mixture
 - Ventilate to below 1/4 of LFL
- Need to couple with H₂ detection
- Limited effectiveness on complex geometries

Maintain Positive Pressures

- Preclude air inclusion into system
- Critical if system is not purged when idle
- Preclude contamination of purge and vent systems

Prevent Overpressure

Use Redundancy in Critical Areas

- Pressure relief
- Isolation
- Detection

Perform reviews

Reviews

- Design
- Safety
- Hazard
- Requirements
- Hazards analysis protocol
- Operational

Design Review

- Typically four types
- Concept
- Preliminary
- Final
- Certification
- Made for new facility, or significant modification of existing facility
- Should be made by qualified personnel of various fields of expertise

Safety Review

- Facility safety reviews made for
- Construction
- Operation
- Maintenance
- Final disposition
- Includes
- System safety analyses
- Failure modes and effects analyses

Hazard Review

Covers

- Component and system design
- Operating conditions and procedures
- Protective measures
- Emergency procedures

• Performed

- For components and systems
- Regularly and as needed by qualified technical personnel

Hazard Review Requirements

- management of highly hazardous 29CFR1910.119, Process safety chemicals
- 29CFR1910.103, Hydrogen
- Federal Clean Air Act
- Emergency preparedness

Hazard Review Requirements (cont.)

- Identify hazardous operations
- Assess/analyze risk to personnel, equipment, and facilities
- Eliminate or control hazards
- Follow an approved hazardous operating procedure or permit
- Certify personnel who perform or control hazardous operations

Hazard Review Requirements (cont.)

- Mitigate hazards in order of priority
- Design components and systems appropriately
- Install safety, caution, and warning devices
- Develop administrative controls
- Provide protective clothing and equipment

Hazards Analysis Protocol

- Systematically and objectively*
- Identify hazards
- Determine their risk level
- Provide mechanism for their elimination or control
- * See NASA Reference Publication 1358, System Engineering "Toolbox" for Design-Oriented Engineers
- * See NASA TM-2003-212059, Guide for Hydrogen Hazards Analysis on Components and Systems

Component Hazards Chart

	Assess Proba	bability Rating for:	y for:			
Component/	Failure	Flammable Ignition	Ignition	Fire	Secondary	Overall
Operational	Modes	Mixture		Deflagration	Effects	Effects
Mode		Formation		Detonation		
Valve #						
Rating	0 - 4	0 - 4	0 – 4	0 – 4	N/R	A - D

Ratings
0 = Almost impossible
1 = Remote
2 = Unlikely
3 = Probable
4 = Highly probable

A = Negligible
B = Marginal
C = Critical
D = Catastrophic Reaction Effects

Operational Reviews

- Operating procedures
- Operator training
- Test readiness
- Operational readiness inspection
- Emergency procedures

Be prepared for emergency situations

Emergency Response

- Primary aim is to protect life and prevent injury
- Principal danger from a leak or spill is
- H₂ flame limits are difficult to detect
- Flame may be invisible in daylight
- Inadvertent flame entry

Emergency Leak Procedures

- Isolate source, vent, purge, and repair
- Avoid ignition sources
- Exclude people and vehicles from leak area
- Do not deliberately flare a leak

Emergency Fire Procedures

- Let H₂ burn until supply can be cut off
- Use water to stop fire from spreading
- Do not spray water on vent systems or relief valves
- Remove a burning vessel from nearby vessels if it can be done safely

Avoid Asphyxiation

- Avoid areas near spills
- Oxygen monitoring
- Tank entry (H₂, N₂, He)
- Ensure fresh air supply
- Monitor atmosphere in tank
- Entry plan, with emergency plans
- Safety precautions

Anoxia Symptoms

At rest symptoms	Decreased ability to perform tasks; may induce early symptoms in persons with heart, lung, or circulatory problems	Respiration deeper, pulse faster, poor coordination Giddiness, poor judgement, lips slightly blue	Nausea, vomiting, unconsciousness, ashen face, fainting, mental failure	100% die in 8 min; after 6 min 50% die and 50% recover with treatment, 100% recover with treatment in 4-5 min	Coma in 40 s, convulsions, respiration ceases, death
% O2 at 1 atm total pressure (vol basis)	15 - 19	12 - 15 10 - 12	8 - 10	9 - 8	4

Summary

- Safe use of H₂ is achievable
- Comply with regulations
- Management commitment
- Apply proven principles and practices
 - Minimize consequences
- Design for inherent safety
- Review designs, safety, and operations
- Use approved operating procedures
- Proper maintenance
- Use PPE and appropriate detection
- Prepare for emergency situations
- Train and motivate personnel

"That's why I never walk in front."

Hydrogen Component Design

- System components
- CGA G-5.4, Standard for Hydrogen Piping Systems at Consumer Locations
- Materials selection
- **Liquid Hydrogen Component** Considerations

System Components

- Joints and connections
- Valves
- Pressure relief devices
- Instrumentation and controls
- Filters
- Hydrogen detectors
- Fire detectors

Material considerations

Material Considerations

- Use proper materials
- Metals
- Nonmetals
- Understand temperature effects
- Hydrogen embrittlement
- Dissimilar materials used together
- Permeability and porosity

		Service		
Material	GH ₂	LH ₂	SLH ₂	Remarks
Aluminum and its alloys	Yes	Yes	Yes	
Austenitic stainless steels with > 7%	Yes	Yes	Yes	Some make martensitic conversion if
nickel (such as, 304, 304L, 308, 316,				stressed above yield point at low
321, 347)				temperature.
Carbon steels	Yes	$ m N_{0}$	No	Too brittle for cryogenic service.
Copper and its alloys (such as, brass,	Yes	Yes	Yes	
bronze, and copper-nickel)				
Gray, ductile, or cast iron	No	No	No	Not permitted for hydrogen service.
Low-allow steels	Yes	No	No	Too brittle for cryogenic service.
Nickel and its alloys	No	Yes	Yes	Susceptible to hydrogen embrittlement
(such as, Inconel [®] and Monel [®])				
Nickel steels (such as, 2.25, 3.5, 5, and	No	No	No	Ductility lost at LH2 and SLH2
9 % Ni)				temperatures.
Titanium and its alloys	No	Yes	Yes	Susceptible to hydrogen embrittlement
(
Asbestos impregnated with Teflon [®]	Yes	Yes	Yes	Avoid use because of carcinogenic
,				hazard.
Chloroprene rubber (Neoprene®)	Yes	No	No	Too brittle for cryogenic service.
Dacron®	Yes	No	No	Too brittle for cryogenic service.
Fluorocarbon rubber (Viton®)	Yes	No	No	Too brittle for cryogenic service.
$\mathrm{Mylar}^{\circledast}$	Yes	No	No	Too brittle for cryogenic service.
Nitrile (Buna-N [®])	Yes	No	No	Too brittle for cryogenic service.
Polyamides (Nylon [®])	Yes	No	No	Too brittle for cryogenic service.
Polychlorotrifluorethylene (Kel-F [®])	Yes	Yes	Yes	
Polytetrafluorethylene (Teflon [®])	Yes	Yes	Yes	

Understand H₂ Embrittlement Effects

- Extremely embrittled
- 410 SS, 1042 steel,17-7 PH SS, 4140,440C, Inconel 718
- Severely embrittled
- Ti-6Al-4V, Ti-5Al-2.5Sn, AISI 1020,430F, Ni 270, A515

- Slightly embrittled
- 304 ELC SS, 305SS, Be-Cu Alloy 25,Ti
- Negligibly embrittled
- 310 SS, 316 SS,1100 Al, 6061-T6 Al,7075-T73 Al, OFHCCu, A286

Address H₂ Embrittlement

- Increased material thickness
- Surface finish
- Welding technique
- Material selection
- Conservative design stress (avoid yielding)

ials	GH_2	Appropriate industrial products ^b	Appropriate industrial products ^b	Appropriate industrial products ^b	Appropriate industrial products ^b		Stainless steel braided with Teflon-lining		304, 304L, 316, or 316L stainless steel		300 series stainless steel (316 preferred ^h)	Carbon steel ^g	Not applicable	1 Dupont Krytox 240AC, Fluoramics OXY-8, Dow Corning DC-33, Dow	Corning FS-3452, Bray Oil Braycote 601, General Electric Versilube,	Houghton Cosmolube 5100, Braycote 640 AC, Dupont GPL 206,	Halocarbon Series 6.3 oil, and Kel-F® oil
Typical materials	$ m LH_2$ or $ m SLH_2$	Forged, machined, and cast valve bodies (304 or 316 stainless steel, or brass) with extended bonnet, and with other materials inside	Stainless steel bayonet type for vacuum jackets	Stainless steel, Kel-F®, or Teflon®	Soft Aluminum, lead, or annealed copper between serrated flanges; Kel-F®; Teflon®;	glass-filled Teflon®	Convoluted vacuum jacketed 316 or	321 stainless steel	304, 304L, 316, or 316L stainless steel		304, 304L, 316, or 316L stainless steel		304, 304L, 316, or 316L stainless steel	No lubricants used in some applications. Lubricants listed for GH2 are compatible but will	become solid at low temperatures. Dry lubricants, such as PTFE, PTFE carbon, PTFE	bronze, fiberglass-PFTE graphite. ^e Graphite and molybdenum disulfide permit only very	limited service life for bearings. f
	Application	Valves	Fittings	O-rings	Gaskets		Flexible hoses		Rupture disk	assembly	Piping		Dewars	Lubricants			

Adapted from Table 6.1, Recommended Materials for Hydrogen Systems, in "Hydrogen Propellant," Chapter 6 in Lewis Safery Manual, NASA Technical Memorandum 104438, November (1992): pp. 6-70.

A number of standard industrial products are available covering a wide range of temperatures and pressures in a variety of compatible materials.

Metal O-rings have proven satisfactory when coated with a soft material and when used on smooth surfaces. Type 321 stainless steel, with a coating of teflon or silver, should be used in stainless steel flanges with stainless bolting. Teflon® coated aluminum should be used in aluminum flanges with aluminum bolting. Using similar materials avoids the leakage possibility from unequal contraction of dissimilar metals. (Lewis Hydrogen Safety Manual, December 10, (1959) pp. 3-18)

Threaded joints should be avoided in LH2 or SLH2 systems. If they must be used, the male and female threads should be tinned with a 60% lead-40% tin solder, then heated to provide a soldered joint with pipe thread strength. (Lewis Hydrogen Safety Manual, December 10, (1959) pp. 3-15)

W. Peschka, Liquid Hydrogen, Fuel of the Future, Springer-Verlag Wien, New York, (1992): pp. 197.

D. A. Wigley, "The Properties of Nonmetals," In Mechanical Properties of Materials at Low Temperature, Chapter 4, pp. 225, Plenum Press, New York 1971

Carbon steel meeting ANSI/ASME B31.3 standards may be used for GH₂ service above 244 K (-20 °F.) (Lewis Safety Manual, Chapter 6 "Hydrogen Propellant," NASA Technical Memorandum 104438, November (1992): pp. 6-35.)

ⁿ McPherson, B., Private communication (1996).

LH₂ Component Considerations

Lines and Fittings

- Use vacuum jacketed lines
- Do not use thread sealant in LH₂ systems
- "Cold shock" and retighten lines and fittings
- Use metal convoluted flexible hoses

Thermal Insulation

- LH₂ systems normally insulated
- Reduce heat input and boiloff
- Prevent liquid air formation
- Prevent cold surface contact by personnel
- Cold GH₂ systems may need to be insulated

Thermal Insulation

- Insulation should have selfextinguishing fire rating
- condensation with oxygen enrichment Concern with foam insulation over air
- cell, cell size, interstitial gas, joints and gaps Involves factors such as open cell vs closed

Vents

- Vents must be sized to allow for flow under all conditions
- Normal flow
- Cool down
- Vents should be at least rated for 150 psig per CGA G5-5
- Precautions must be taken to prevent cryopumping and moisture collection

Relief Devices

- Both normal flow and cooldown need protection
- Sudden pressure decrease on relief valve actuation will cause sudden boiling
- Avoid thermal cycling on rupture discs
- freeze and prevent valve from operating Moisture collected in relief valve will

Vacuum Subsystem

- Maintain insulating vacuum
- Remove unwanted H₂ or other gases by purging
- valve could develop combustible mixture Beware that vacuum pump with ballast within the pump or its exhaust

Vacuum Subsystem (cont.)

- Vacuum pump exhaust must be connected to a proper vent
- To vent H₂ gas
- To vent oil vapors (mechanical pump)
- Leak in an evacuating system can result in system being contaminated with air

Summary

- Careful consideration should be given to
- Each part of every component
- Operating conditions
- How each component is used in an H₂ system
- Special considerations are required for LH₂ systems

PEM Fuel Cell Concept

System Schematic

Understand Combustion Potential

Understand possibilities

$$- H_2 + O_2$$

-
$$H_2$$
 + air

$$-$$
 H₂ + other oxidizers

Primary focus on H₂-wetted volumes

Interstack spaces & stack headers

- Gas separators

Filters, heat exchangers, pumps

Lines and fittings

Secondary Analysis Required

- Secondary focus on regions exposed following exposure
- External to components and system
- Internal to gauges
- Separate O₂ hazards analysis required
- Possibility of O₂/material combustion
- "Kindling chain" processes
- Requires additional expertise

Approaches to Combustion Control

- Exploit physical combustion limits
- Fire and deflagration
- Choose dimensions <quenching gap
- Avoid flammable mixture compositions
- Detonation
- Choose dimensions <critical cell size
- Avoid detonable mixture compositions
- Deflagration-to-detonation transition
- Design channel lengths <~0.5 m
- Avoid detonable mixture compositions

Approaches to Combustion Control

(cont.)

- Control combustible atmosphere formation
- Composition <1% H₂
- Detection
- H₂ sensors in air, or O₂ sensors in H₂
- Multiple fault tolerance
- Buffer H₂ from oxidizers with purges
- Postfailure safing
- Monitor cell performance for pinholes

Approaches to Combustion Control

(cont.)

- Minimize ignition sources
- Beware of component power use
- Indicates ignition potential
- Reduce conductive debris
- Isolate potential surfaces
- Control accumulation of catalytic fines

Other Considerations

- Consider material compatibility
- H₂ embrittlement
- Consider H₂ in solution
- Choose SS lines over plastic
- Avoid combustible seal materials

- Design for worstcase containment
- Detonation p_{initial} x
 ~(15 to 20) x 3
 (reflection) x safety
 factor
- Deflagration p_{initial} x
 (1 to 8) x safety
 factor

Henry never knew what hit him.

General Facility Design

- General considerations
- Facility siting
- Piping and storage
- Venting, flaring, and dispersion
- Buildings and test chambers

General considerations

Goals of Facility Safety

- Protection of the public and workers most important
 - Value of equipment
- Importance of mission
- Public perception
- Environment

A Safe Facility

- Safety considered in design and construction
- As foolproof as possible
- Safety and hazard analyses
- Inputs from designers, operators, safety engineers
- Good maintenance
- Safety committee oversight

Safe Operation

- Training
- SOPs and checklists - Initial and periodic

Facility siting

Facility Siting

- Site location preferences
- Quantity-distance requirements
- Exclusion areas
- Barricades, dikes and impoundments

Site Location Preferences

- Driven by application and quantity
- Laboratory scale operations (small quantities)
- Non-propellant
- Propellant
- Laboratory scale
- Determined by site AHJ
- OSHA regulation: GH₂ < 11.3 m3 (400 ft3), LH₂ < 150 L (39.6 gal)
- Non-propellant
- Industry like applications for GH₂ or LH₂
- Primary hazard is inadvertent release into air and subsequent fire
- Must consider standard exposures [powerlines, drains, etc..]

Simulated Spill 1500 Gal LH2 in 30 seconds

Preferred Order for Locating GH₂ Storage Systems

		GH ₂ Volume	
Nature of Location	<3K ft ³	3 to 15K ft ³	>15K ft ³
	(85 m^3)	$(85 \text{ to } 425 \text{ m}^3)$	(425 m^3)
Outdoors		_	-
In separate building	=	=	=
In special room	=	=	Not permitted
Inside buildings,	>	Not permitted	Not permitted
exposed to other			
occupancies, but			
not in special room			

NFPA Gaseous Hydrogen Separation Distances

- Identifies exposures,
- Walls by material, openings, fire ratings
- Presence of flammable/combustible liquids (above and below ground), combustible materials
- Places of public assembly, sidewalks, parking, property lines
 - Provides a breakdown by quantity: <3000 ft³ (85 m³), 3000 ft³ (85 m³) 15,000 ft³ (425 m³), >15,000 ft³ (425 m³)
- For example: >15,000 ft³ (425 m³)
- 25 ft to unsprinklered building
- 50 ft to flammable gases other than hydrogen
- 50 ft to places of public assembly
- Stationary Containers, Cylinders, and Tanks [supersedes NFPA See NFPA 55, Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and

Preferred Order for Locating LH₂ Storage Systems

		LH ₂ Volume, L (gal)	L (gal)	
Nature of Location	150-189	190-1136	1137-2271	>2271
	(40-20)	(51-300)	(301-500)	(009<)
Outdoors	_	_	_	
In separate building	=	=	=	Not
				permitted
In special room	=	≡	Not	Not
			permitted	permitted
Inside buildings,	<u>></u>	Not	Not	Not
exposed to other		permitted	permitted	permitted
occupancies, but				
not in special room				

NFPA Liquid Hydrogen Separation Distances

- Identifies exposures,
- Walls by material, openings, fire ratings
- Intakes for compressors, AC, or ventilation
- Presence of flammable/combustible liquids (above and below ground), combustible materials
- Places of public assembly, sidewalks, parking, property lines
- Provides a breakdown by quantity 75 ft (gallons): 39.65 3,500, 3501 15,000, 15,001 75,000.
- For example: 15,001 75,000 gallons
- 100 ft to unsprinklered building
- 75 ft to liquid oxygen
- 100 ft to all classes of flammable & combustible liquids
- 75 ft to places of public assembly
- See NFPA 55, Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders, and Tanks [supersedes NFPA]

Siting for Propellant Applications

- Propellant applications are determined by the potential for mixing fuel and oxidizer
- Typical applications include:
- Launch pads
- Static test stands, cold-flow test operations
- Bulk storage, rest storage, & run tankage
- Pipelines
- equivalent (fuel + oxidizer) are controlled by Amounts < 45 kg (100 lbs) explosive the AHJ

LH₂-LOX Range Safety Test

Siting for Propellant Applications

- Distances are much larger than NFPA
- 75,000 lb ~100,000 gal
- 1200 ft to inhabited buildings
- 1200 ft to public traffic
- 130 ft to intragroup storage
- NASA adheres to DOD Ammunition and Explosive Safety Standard [6055.9]
- [http://www.ddesb.pentagon.mil/DoD6055.9-STD%205%20Oct%202004.pdf]
- Latest range safety test data: Correlation of Liquid Propellants NASA Headquarters RTOP, WSTF-TR-001-01-02

Facility Siting Exclusion Areas

- Create an exclusion area with controls
- training and proper protective equipment Limit access to personnel with required
- Ensure equipment is not an ignition source
- Operate according to approved procedures
- Post known hazards
- Minimum exclusion area = Q-D requirements

Facility Siting Barricades

- Use barricades to protect
- From shrapnel and fragments
- H₂ facility from other hazards
- Nearby facility from H₂ facility
- Use earth mounds and blast mats
- Ensure it does not provide confinement sufficient for detonation

Dikes and Impoundments Facility Siting

- Use to contain spills
- Can limit vaporization rate
- Possibly smaller combustion cloud, but longer time to vaporize
- area to increase vaporization rate in an Use crushed stone for added surface impoundment can
- Ensure they do not provide confinement sufficient for detonation

Piping and storage

Storage Vessels

- Design
- Vessel Code, Section VIII, Pressure Vessels - ASME, International Boiler and Pressure
- Design and siting
- 29CFR1910.103, Hydrogen
- NFPA 50A, GH₂ Systems at Consumer Sites
 - NFPA 50B, LH₂ Systems at Consumer Sites
- Hazards analysis
- 29CFR1910.119, Process safety management of highly hazardous chemicals (>10,000 lb)

Storage Vessel Design

- Equip with shutoff valve
- Automatic operation preferred
- Provide for approved vent and pressure relief systems
- Provide barriers to potential failure of rotating equipment, such as pumps

Storage Vessel Installation

- Ensure that LH₂ vessels are
- Insulated
- Limits vaporization and condensation of air
- Should be self-extinguishing
- Periodically warmed to remove solid contaminants
- Electrically bonded at all joints
- Grounded and properly labeled
- Contents, capacity, MAWP
- Surrounded by a 15-ft clear space

Piping Siting

- Be located in accordance with appropriate standards
- 29CFR1910.103, NFPA 55 [Supersedes NFPA 50 A and B]
- Not located beneath electric power lines
- New piping should not be buried
- Protect from potential failure of rotating equipment and from vehicles

Piping Design and Fabrication

- Design, fabricate, and test to ASME B31.3 and CGA G-5.4
- Provide appropriate
- Flexibility (expansion joints, loops, offsets)
- Supports, guides, and anchors
- Relief devices
- Electrical bonding across all joints
- Grounding
- Labeling (contents, flow direction)

Venting, flaring, and dispersion

Vent/Flare and Dispersion

- Vent or flare according to approved methods
- Ensure H₂ vent system velocity is in satisfactory range
- Provide purge capability
- Use N₂ or He, depending on temperature

Vent/Flare and Dispersion (cont.)

- Prevent air and precipitation from entering vent/flare system
 - Use molecular seal or flapper
- manifold does not affect relief pressure Ensure relief device connection to

H₂ flare stack with gas (molecular) seal

Siting

- Locate roof vents so that H₂ does not get into building air intakes
- Roof vent located 16 ft above roof can be used to vent up to 0.5 lb/s
- Dispose of large quantities of H₂ by flaring
- Flare stack or burn pond

Disposal Factors

- H₂ quantity/extent in combustible cloud
- Thermal radiation from flame
- Site conditions
- Size of exclusion area
- Building locations
- Personnel control
- Weather

Dispersion Test Results

White Sands Test Facility, New Mexico Fall 1980

show the effect of increasing wind speed 30 foot diameter spill pond. Three tests rate was 1500 gallons/30 seconds into a Liquid Hydrogen was spilled to study hydrogen plume dispersion. Release for the following conditions:

Flammable Mixture and Visible Cloud

Combustible Cloud Length

Time 0:04

Time 0:08

Time 0:17

Time 0:26

Time 0:38

Time 1:14

Buildings and test chambers

Buildings and Test Chambers

- damage in case of H₂ fire or explosion Minimize personnel injury and facility
- Construct with lightweight, noncombustible materials according to 29CFR1910.103, Hydrogen

Building Design

- Avoid peaks in ceilings
- Use shatterproof glass or plastic in window frames
- Ensure a 2-h fire resistance rating for walls, floors, and ceilings
- Provide explosion venting in exterior walls or roof
- Provide heat by steam, hot water, or other indirect means

Building Ventilation

- Ensure structures containing H₂-wetted systems are ventilated
- Ventilation rate should dilute H₂ leak to 25% of LFL (1% by volume) or less
- Establish ventilation before introducing H₂ into the system
- during emergency shutdown procedure Ensure ventilation does not shut down

Building Ventilation (cont.)

- Ensure building air intake is installed if H₂ vented nearby
- Sensors activate alarms and automatic air shutoff if H₂ detected
- Install H₂ sensors in building outlet vents if H₂ used inside
- pockets or ensure adequate ventilation Avoid suspended ceilings and inverted

Facility support infrastructure

Facility Support Infrastructure

- Inert gas subsystem
- Electrical subsystem
- Cooldown
- Transportation

Inert Gas Subsystem

- Used to provide purge and pressurization gases
- Ensure that all H₂-containing volumes are capable of being purged and that purge gas is vented
- Protect inert gas subsystems from H₂ contamination
- Higher pressure, check valve, double block and bleed arrangement

Positive GH₂ Shutoff Systems

Electrical Requirements

- Must conform to NFPA 70, National Electrical Code
- If within 3 ft of where connections are regularly made and disconnected
- NFPA 70, "Class I, Group B, Division 1" locations, which rely heavily on explosion-proof or an inertgas-purged enclosures
- regularly made and disconnected, or within - If within 25 ft of where connections are 25 ft of an LH₂ storage container
- NFPA 70 "Class I, Group B, Division 2" locations

Definition of Explosion-proof

- withstand any internal pressures caused Enclosure must be strong enough to by an explosion and tight enough to prevent the issuance of flames
- Does not mean that equipment has to be gas-tight
- Explosion-proof electrical equipment is required in "Class I" hazardous locations per NEC

NEC Definitions

- Class I: Location in which flammable gases or vapors exist in quantities atmosphere explosive or ignitable sufficient to render the resultant
- Group B: Atmospheres containing hydrogen or gases or vapors of equivalent hazards such as manufactured gas

NEC Definitions

- Division 1: Locations where hazardous concentrations of flammable gases or vapors exist
- Continuously, intermittently or periodically under normal conditions
- Frequently because of repair/maintenance operation or because of leakage
- equipment or processes, which might also Due to breakdown or faulty operation of cause electrical equipment failure

NEC Definitions

- flammable volatile liquids or gases are Division 2: Locations in which handled, processed, or used
- by accidental rupture or breakdown of such systems from which they can escape only Normally confined to closed containers or containers or systems or by abnormal equipment operation

Electrical Considerations

- alternative to explosion-proofing Use a purged enclosure as an
- Provide lightning protection in all areas where there is H₂
- Bond and ground mobile H₂ supply units before discharge

Personnel Electrical Protection

- Ensure personnel are grounded before working on an H₂ system
 - Use antistatic clothing
- Ensure personnel use conductive machinery belts
- Provide adequate illumination for all H₂ areas

Cooldown Model

Two-phase Flow Regimes

Bubble

Cooldown Issues

- Large stresses can result from
- Large circumferential and radial temperature gradients
- Large thermal contraction, especially in long lines
- Two-phase flow can cause random cooling
- Liquid flow will cool faster than comparable gas flow

Cooldown Issues (cont.)

- from large circumferential temperature Stratified flow can cause high stress gradients
- Maintain minimum flow during cooldown to avoid pipe bowing
- Vent appropriately the resultant gases
- Design pipe properly to accommodate required gas flow-through

Cooldown Issues (cont.)

- Establish min/max cool-down limits
- Too slow can result in stratified, 2-phase flow and pipe bowing
- Too fast can result in large radial temperature gradients
- Flange: inner wall is cooled quickly while the outer wall remains near ambient temperature

Transportation

- Transport H₂ according to 49CFR
- H₂ transportation aboard a passenger aircraft, railcar, or ship is prohibited
- Up to 150 kg (GH₂ only) permitted on a cargo aircraft
- On cargo ships, GH₂ may be stowed on or below deck, but LH₂ may only be stowed on deck

Facility safety subsystems

Facility Safety Subsystem

- Use leak- and fire-detection elements
- Include
- Fire protection
- Fire fighting

Facility Fire Protection

- Use
- Automatic or manual process shutdown systems
- Sprinklers
- Deluge systems
- Water spray systems
- Dry-chemical extinguishing systems
- Halon systems

- Large H₂ systems
- Storage, grouped
 piping, and pumps shall
 be completely covered
 by a water-spray
 system according to
 29CFR1910.163, Fixed
 extinguishing systems,
 water spray and foam

Facility Fire Protection (cont.)

- Consider installing deluge systems along the top of storage areas, especially LH₂
- Provide fire hydrant or 2 in. dia hose bib adjacent to all LH₂ storage areas
- Also used for wash down
- Keep water from entering H2 vents

Facility Fire Fighting

- Shut off H₂ supply before attempting to extinguish an H₂ fire
 - Preclude reignition of combustible cloud
- Spray water on adjacent equipment to keep it cool
- Extinguish small H₂ fires with
- Dry chemical or CO₂ extinguishers, N₂, or

Summary

- Keep safety as the primary H₂ facility consideration, from concept through disposal
- Adhere to proven practices and principles
- Follow approved procedures followed for all operations

Summary (cont.)

- Control
- Ignition sources
- Formation of combustible mixture
- Minimize exposure to the hazard
- Siting, quantity of H₂ involved, number of people exposed
- Be alert to changes in operating conditions

Overview

- Why perform hazards analysis?
- Prerequisites for hazards analysis
- Hazards analysis approach
- Sample analysis
- Summary

Why Perform a Hazards Analysis?

- Systematically and objectively
- Identify hazards
- Determine their risklevel
- Provide mechanismto evaluate for theelimination or controlof hazards

- Use to
- Improve designs
- Evaluate safety of operations
- Analyze failures
- Formal hazards
 analysis specifies
 protocol for
 evaluation and
 documentation

Hazards Analysis Prerequisites

- Understand analysis scope
- Have detailed design information
- Up-to-dateschematics
- All vendor information
- Identify all materials
 exposed to H₂

- Assemble necessary expertise
- Have information necessary to evaluate all leak paths

Hazards Analysis Overview

- H₂ hazards analysis based on NASA WSTF protocol
- Before team analysis
- System owners set agenda/scope
- Facilitators compile system information

- Sequester team from distractions
- Decide on analysis strategy
- Component similarity
 - Materials similarityAccording to system sequence

Hazards Analysis Overview (cont.)

- Conduct componentlevel assessment
- Determine failure modes and causes
- Classify failure modes
- Determine failure effects on components and systems

Failure Effects Consideration

- Evaluate probability
- Combustible mixture formation
- Ignition sources
- Types of combustion events [fire, deflagration, detonation]
- Evaluate secondary effects
- Evaluate total reaction effects

Questions to Consider

- What failure modes involve H₂?
- Where can combustible mixtures form?
- What ignition sources exist?
- What combustion mechanisms are active?
- What are the combustion effects?
- What are the overall risks to system, users, mission, or business?

Sample Analysis

- hydrogen gas water mixture exiting The following circuit depicts part of a system used to recover water from a from an electrolyzer
- The water is critical for spacecraft operations
- The hydrogen is vented overboard.
- the back-pressure regulator component The focus of the sample analysis is on

System Schematic

Component Schematic

Hazards Analysis Chart

STEP 7	18	Reaction Effect		\mathbb{D}^{5}	\mathbf{D}^{10}
9					
STEP	17		Secondary Effect	Z	Z
S					
STEP 5	13 14 15 16	J s	Other	•	0
		Probability of These Consequences	Detonation	0	0
			Deflagration	4	19
			ЭтіЧ	0	0
STEP 4	12	12 nition rces	Other	0	0
	9 10 11	of Ign	Thermal	•	0
		Probability of Ignition From These Sources	Mechanical	0	0
			Electrical	м	∞
		P]			
STEP 3	8	obability of Combustiblixture From These Even	Other	0	0
	7		Contamination	0	0
	9		Jn Jeakage	0	0
	5		External Leakage	32	37
		Probability of Failure in These Modes		_	_
STEP 2	4		rediO	0	0
	2 3		Noncatastrophic Catastrophic	1 0	16 0
\vdash	2	P of	2 idnorts a tean o V	1	7
STEP 1	1		Component	Differential -backpressure regulator into recirculation 11	Differential-backpressure regulator into the vacuum enclosure

1. The following leak paths are considered:

- A) A small internal leak across the valve which does not drop the separator outlet pressure will not create an H_2 hazard in the water line.
- B) A leak across the bellows will cause gaseous H₂ to flow into the water recirculation loop and will be analyzed separately.
- C) Leaks externally into the vacuum enclosure can occur at the manifold seal or adjusting cap seal.
- failure occurs where the solenoid valve fails open or leaks internally, then a combustible separator to enter the recirculation loop. Two failures to be considered are 1) if a large internal leak across this valve which does drop the separator outlet pressure and cause either the separator differential pressure sensor or the gas detector. Hydrogen gas will H₂ to enter the water line or 2) if the valve fails open. Both failures will be detected by solenoid valve fails open (both second point failure) could cause H2 from the phase be isolated by a solenoid valve before a combustible mixture is formed. If a second D) A large internal leak which is not sensed by the delta P sensor, or when sensed mixture could form in the recirculation loop or downstream.

and the fact that these materials are used in bellows and springs, it is recommended that Because of the H₂ embrittlement properties of Inconel 17-4and 17-7PH and the 304L, a fatigue analysis be conducted to determine the life of the parts. After assembly the component attached to the manifold is proofed to 1.5 times MDP and then tested for leaks at MDP using helium. 2. Cap leakage from the exterior can result in pressurizing the vacuum enclosure to 0.25 psia. If this is followed by a component failure resulting in H2 leaking into the vacuum enclosure, this will result in a potentially combustible mixture. The shutdown pressure inside the vacuum enclosure is 0.25 psia.

pressure >0.25 psia so that total pressure remains <0.43 psia which is where H2 and O2 are not flammable for spark energies similar to those inside the vacuum enclosure (see It is recommended that under these conditions the vacuum enclosure is vented when Fuels Handbook).

- absence of electrical component failure there is insufficient energy to ignite this mixture. 4. Given the presence of two failures to give a flammable mixture and the small ignition 3. Electrical ignition sources are present but insulation, grounding, and other protective 5. Catastrophic failure of the system is defined as loss of system function. Component system is shut down. Bleed resisters are present to drain any residual charge. In the measures are designed in to reduce the risk of arcing or sparking. At 0.25 psia, the sources, the probability of deflagration inside the vacuum enclosure is remote. failure results in system function loss.
- valve fails open (both second point failures) could cause H2 from the phase separator to 6. A large internal leak (initial failure) not sensed by the ΔP sensor or when the solenoid water recirculation loop. The effect of these failures will be analyzed separately. Leaks enter the recirculation loop. A leak across the bellows will cause GH2 to flow into the externally into the vacuum enclosure can occur at the manifold seal or adjusting cap seal. After assembly the component attached to the manifold is proofed to 1.5 times MDP and then tested for leaks at MDP using helium.

pressure of 0.25 psia. If this is followed by a failure of the component resulting in leaking of H₂ into the vacuum enclosure, this will result in a potentially combustible 7. Leakage from the exterior can result in pressurizing the vacuum enclosure to a mixture. The shut down pressure inside the vacuum enclosure is 0.25 psia.

(0.43 psia) which is where drop has shown that H2 and O2 are not flammable for spark when the pressure exceeds 0.25 psia so that the total pressure remains below 3 kPa It is recommended that under these conditions that the vacuum enclosure is vented energies similar to those inside the vacuum enclosure (See Fuels Handbook).

- Therefore, in the absence of failure of electrical components there is insufficient ignition 8. Electrical ignition sources are present but insulation, grounding and other protective measures are designed in to reduce the risk of arcing or sparking. At 0.25 psia the system is shut down. Bleed resisters are present to drain any residual charge. energy to ignite a 0.25 psia mixture.
- 9. Given the presence of two failures to give a flammable mixture and the small ignition sources, the probability of deflagration inside the vacuum enclosure is remote.
 - 10. Catastrophic failure of the system is defined as loss of system function. Failure of the component results in loss in function of the system.

Analysis Results

- Single failure required for formation of combustible mixture in first instance
- Enclosure (normal)and componentleakage
- System is controlled with pressure sensor

- Electrical ignition sources present but small
- Deflagration will occur, but likelihood is low
- Reaction effect is a function of application and is catastrophic as defined by user

Analysis Results (cont.)

- Two failures required for formation of combustible mixture
- Large internal leak
 not sensed by delta
 pressure sensor, or
 sensed but solenoid
 valve fails open
- Electrical ignition sources present, but small

- Deflagration will occur, but likelihood is low
- propagation in bubbly flow
- Reaction effect is a function of application and is catastrophic as defined by user

Summary

- Hazards analysis approach
- Systematically and objectively identify hazards and evaluate risk
- Tool to help control hazards, improve designs

- Requires
- Understanding the scope of the analysis
- Complete informationNecessary expertise
- Successfully applied to several key systems

Course Summary

Facts and Reminders

Course Summary

- H₂ use is important
- H₂ use involves hazards/risks
- H₂ can be used safely
- Thinking
- Planning
- Training
- Being prepared

We Have Studied

- Hydrogen's safety related properties
- Hazards associated with H₂ use
- How to deal with hazards and emergency situations
- Typical components and materials for use with H₂
- H₂ facility guidelines
- Hazards analysis approach

Safety in the Use of Hydrogen

- Proper system design Careful system
- Critical component redundancy
- Fail-safe policy
- Proven practices and principles
- Personnel training and certification
- Design, safety, hazard, and operational reviews

- Careful system operation
- Approved operating procedures and checklists
- Personal protective equipment
- Quality control and maintenance programs

In Summary

- A core body of knowledge exists
- It has been used to provide safe H₂ nses
- Use conservative approach
- Recognize hazards and limitations
- Search for hazards
- Don't take chances or shortcuts

HEANKS